Abstract

Background: Genomic data release for the grapevine has increased exponentially in the last five years. The *Vitis vinifera* genome has been sequenced and *Vitis* EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet).

Methodology/Principal Findings: The sequences from the *Vitis vinifera* (cv. Pinot Noir PN40024) genome sequencing project and ESTs from the *Vitis* genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 “Metabolic”, 15 “Genetic Information Processing”, 12 “Environmental Information Processing”, 3 “Cellular Processes”, 21 “Transport”, and 80 “Transcription Factors”. The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment.

Conclusions/Significance: VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the *Vitis vinifera* genome (currently at 8x coverage) and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at http://metnet3.vrac.iastate.edu/. All VitisNet files including the manual annotation of the grape genome encompassing pathway names, individual genes, their genome identifier, and chromosome location can be accessed and downloaded from the VitisNet tab at http://vitis-dormancy.sdstate.org.

Introduction

During the pre-genomics era, gene function was established through a reductionist approach [1] where organism physiology was understood by breaking components into pieces, studying them, and then putting them back together to see the larger picture. With the emergence of genome sequencing, organisms are now seen as complex interactive systems. Systems biology, adapted from the general system theory [2] and the living system theory [3], intends to explain biological phenomena utilizing a systemic view of the objects’ relationships rather than their simple composition [4]. Integrative functional genomics combines the molecular components (transcripts, proteins, and metabolites) of an organism and incorporates them into functional networks or models designed to describe the dynamic activities of that organism. While many of the functions of individual parts are unknown or not well defined, their biological role can sometimes be inferred through association with other known parts, providing a better understanding of the biological system as a whole. On a system-wide scale the description requires three levels of information [5,6]: (1) identification of the components (structural annotation) and characterization of their identity (functional annotation); (2) identification of molecules that interact with each component, which leads to the reconstruction of a biochemical reaction network; and (3) characterization of the behaviors of the transcripts, proteins, and metabolites under various conditions. Integration of the three levels of information into a coherent framework (or canvas) provides a powerful approach to tackle the difficult problem of extracting systems-wide behavior from the component interactions.

The most developed examples of application of this approach can be found in prokaryotes, because of their small genomes [7,8]. For example, in *E. coli*, 92% of the gene product functions have been experimentally verified. Genome-scale models (GEMs) have...
been used for metabolic engineering to systematically manipulate *E. coli* strains to overproduce lycopene, lactic acid, ethanol, succinate, amino acids, and many other products including hydrogen and vanillin. New biological discoveries of open reading frames (ORF) can be made by focusing on the gaps in the unknown portions of the Omic maps, using the genomic responses of different genotypes under different conditions to determine the probable gene candidates that fill knowledge gaps. GEMs have been widely used to characterize and understand physiological responses to environmental conditions such as abiotic and biotic stresses. This has been particularly useful in the identification of resistance mechanisms that can be established in new strains.

Such global analyses have become possible with the development of high throughput genomics technologies in both the field of nucleic acid sequencing and quantitative data acquisition. Over the last 20 years, expressed tag sequencing (EST) [9] has been widely utilized for gene discovery and genome characterization. EST data are stored in comprehensive databases such as UniGene [10] or the DFCI Gene Indices [11]. Recently, cheaper and faster Next-Gen sequencing technologies have emerged such as 454 [12] or Illumina [13]. Recently, cheaper and faster Next-Gen sequencing technologies have emerged such as 454 [12] or Illumina [13]. In parallel, methods have been developed for quantitative data acquisition: microarrays are used to quantitatively assess the transcriptome [14]. Two dimensional-gels have routinely been used for proteome studies [15]. Recently, however, gel-free technologies have emerged such as iCAT [16] or iTRAQ [17]. Metabolome studies are performed with a variety of tools such as gas chromatography or high performance liquid chromatography for separation and mass spectrometry and nuclear magnetic resonance for the identification and quantification of the metabolites [18].

Genomics resources for *Vitis vinifera* and related species have proliferated rapidly within the last several years, including EST sequencing [19,20,21] to whole genome sequencing [22,23] and integrated genetic maps [24]. These resources have permitted large-scale mRNA expression profiling studies of gene expression profiles during berry development using cDNA or oligonucleotide microarrays [25,26]. A high-density, Affymetrix GeneChip® *Vitis vinifera* (Grape) Genome Array containing approximately one-third of the expected gene content of the *V. vinifera* genome with some bias towards leaf and berry tissues was developed, leading to numerous publications [27,28,29,30,31,32,33]. Under the encouragement of the international grape community, the microarray data for several of these experiments has been centralized and can be accessed at PLEXdb (http://www.plexdb.org) [34]. Six additional microarray datasets using cDNA, oligo, or Affymetrix arrays are available through Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/sites/entrez?db=geo) and citations for publications are also linked to these public data sets [33,35,36].

Proteomics resources have also emerged recently. Most of these studies use 2-D gel analysis and focus either on berry metabolism [37,38] or abiotic stress resistance [39,40,41] or both [42]. Recently high resolution techniques, such as iTRAQ, have also been applied to grape [43]. Metabolomics studies for grape are still rudimentary; however, several works have presented simultaneous analysis of about 50 to 120 compounds [28,30,42,44]. To date, only two studies present the transcriptomic, proteomic, and metabolomic analyses on the same material, one in berry tissues [29,42] and the other on abiotic stress in shoots [40,28]. Information from structural and functional genomics must be combined with detailed biochemical reaction networks to further our understanding of biological function and incorporate the knowledge into cultural practice. While a considerable amount of effort has been put into resolving the structural information (level 1) and “Omics” characterization of individual groups of transcripts, proteins or metabolites (level 3), relatively few biochemical reaction networks (level 2) have been constructed in grapevines or other plant systems. While pathway databases exist at the KEGG (http://www.genome.jp/kegg/pathway.html) or AraCyc [45], they are limited to metabolic pathways. In contrast, MetNet (http://metnet3.vrac.iastate.edu/) stores both metabolic and regulatory interactions for Arabidopsis and soybean [46].

In order to contextualize the molecular structure and a metric representing their behavior, we have developed a model of the molecular networks present in grapevines (VitisNet). This resource allows visualization of the dynamic interactions in the transcriptome, proteome, and metabolome within known molecular networks (for example, metabolic or signaling pathways). Integrating transcripts with protein and metabolite profiles in a comprehensive molecular map enables the researcher to elucidate different biochemical responses of grapevines to developmental and environmental cues.

Results and Discussion

A Set of 39,424 Unique Sequences Defined

The set of unique genes was not restricted to the Pinot Noir genome sequences, as an extensive amount of data have been produced on other *V. vinifera* cultivars and other *Vitis* species. The *V. vinifera* EST database contains only a very small fraction of Pinot Noir sequences (1.8% or 6,385/353,688), whereas Cabernet Sauvignon (half of the EST sequences), Chardonnay, Thompson Seedless, Muscat de Hambourg, and Perlette each have at least two times the number of Pinot Noir sequences. In addition, a significant amount of ESTs have been produced for other *Vitis* species. It is expected that a significant amount of transcript sequences are cultivar and species specific and may not be represented within the Pinot Noir PN40024 genome. A set of 39,424 unique sequences were defined after the matching of the genomic sequences and the transcripts (Figure 1). Only 36.4% of these sequences (14,330) were found in both the genomic sequences and the transcripts. In the set of unique sequences, the genomic sequences were conserved over transcript sequences because they should be the full length gene, whereas there is less certainty for the transcript. In some cases, several supposedly unique transcript sequences matched a single gene, mainly

![Figure 1. Overview of the unique set assembly and results of the annotation procedure. Box sizes are relative to respective number of genes inside.](http://www.plosone.org/doi/fig/10.1371/journal.pone.0008365.g001)
VVID	Network Name	#gen	#pro	#met	VVID	Network Name	#gen	#pro	#met
1.1	**Carbohydrate Metabolism**				1.1	**Energy Metabolism**			
10010	Glycolysis / Gluconeogenesis	192	28	28	10020	Citrate cycle (TCA cycle)	74	17	21
10030	Pentose phosphate pathway	83	17	21	10040	Pentose/glucuron. interconv.	57	11	14
10051	Fructose and mannose met.	108	21	21	10052	Galactose metabolism	155	17	27
10053	Ascorbate and aldurate met.	40	9	9	10054	Aminosugars metabolism			
10055	Starch and sucrose met.	337	43	34	1.2	**Energy Metabolism**			
10190	Oxidative phosphorylation	343	101	7	10195	Photosynthesis	173	52	106
10196	Photosynthesis - antenna prot.	27	11	109					
10710	Carbon fixation	140	21	20	10711	Carbon fixation	140	21	20
1.3	**Lipid Metabolism**				1.3	**Lipid Metabolism**			
10061	Fatty acid biosynthesis	76	13	36	10062	Fatty acid elongation in mitoc.	25	7	29
10071	Fatty acid metabolism	94	17	40	10072	Synth. / degr. of ketone bodies	18	3	4
10100	Biosynthesis of steroids	142	47	74	10140	C21-Steroid hormone met.	20	6	14
1.4	**Nucleotide Metabolism**				1.4	**Nucleotide Metabolism**			
10230	Purine metabolism	151	48	62	10240	Pyrimidine metabolism	109	35	46
1.5	**Amino Acid Metabolism**				1.5	**Amino Acid Metabolism**			
10251	Glutamate metabolism	93	28	25	10330	Arginine and proline met.	54	17	23
10252	Alanine and aspartate met.	109	23	24	10340	Histidine metabolism	70	16	19
10260	Gly, ser and thr met.	110	30	38	10350	Tyrosine metabolism	149	25	39
10271	Methionine metabolism	124	33	48	10360	Phenylalanine metabolism	212	15	14
10272	Cysteine metabolism	78	17	25	10380	Tryptophan metabolism	20	6	7
1.6	**Met. of Other Amino Acids**				1.6	**Met. of Other Amino Acids**			
10410	beta-Alanine met.	60	12	13	10460	Cysteine succino acid met.	35	8	16
10450	Selenoamino acid met.	69	15	17	10480	Glutathione met.	127	35	16
1.7	**Glycan Biosynth. And Met.**				1.7	**Glycan Biosynth. And Met.**			
10510	N-Glycan biosynthesis	50	19	21	10561	Glycerolipid met.	146	19	18
10511	N-Glycan degradation	67	8	106					
10540	Lipopolysac. Biosynth.	12	10	13	11030	Glycan struct. biosynth. 1	88	26	49
10550	Peptidoglycan biosynth.	18	3	15	1.8	**Met. of Cofactors and Vit.**			
10730	Thiamine metabolism	21	12	20	10780	Biotin metabolism	12	6	8
10740	Riboflavin metabolism	63	12	15	10790	Folate biosynthesis	39	18	24
10750	Vitamin B6 metabolism	23	7	13	10670	One carbon pool by folate	42	15	9
1.9	**Biosynth. of Secondary Met.**				1.9	**Biosynth. of Secondary Met.**			
10900	Terpenoid biosynthesis	182	18	24	10941	Flavonoid biosynthesis	183	25	52
10904	Diterpenoid biosynthesis	72	18	37	10942	Anthocyanin biosynthesis	59	8	18
10902	Monoterpenoid biosynth.	192	24	37	10943	Isoflavonoid biosynthesis	63	7	17
because they matched different regions of the gene. A total of 652 unique sequences corresponded to previously published grapevine sequences (Table S1).

The set that was found only in the genomic sequences included 40.8% (16,104) of the unique sequences. This means that so far there is no proof that these sequences are actually transcribed. Finally 22.8% (8990) of the unique sequences were found only as transcripts. This set could include cultivar or species specific genes absent in the Pinot Noir genome or genes not yet extracted from the genome. However as 73% (6553) of these unique sequences were not homologous to sequences from other organisms, it is likely that most of them corresponded to short sequences or contained mostly UTR regions so that a BLAST analysis could not be conducted against the genome sequences encoding for their putative proteins. These sequences were of interest because many of them were placed on the highly popular Affymetrix GeneChip® *Vitis vinifera* (Grape) Genome Array. There were 3208 sequences amongst the 11,734 non-redundant sequences in the Affymetrix chip that did not present a match in the genome.

Half of the Matched Sequences Were Assigned to Molecular Networks

Seventy percent (27,680) of the unique genes matched a previously described *Vitis* cDNA or protein or a sequence from another organism. The remaining 11,744 sequences were *Vitis*-specific and a function could not be assigned. This number rose to 83% when only genes from the genome sequences were used. This gene set was divided into two groups, a group that could not be assigned to molecular networks and a group that could be assigned. The group that was not assigned to molecular networks consisted of 14,355 genes (52.5%) that covered a wide range of functional descriptions. At one extreme, the sequences (1,817) presented a completely unknown function. At the other extreme, an identifier was assigned because an EC or KO number could be attributed to these sequences or an *Arabidopsis* homolog had an identifier; however, they couldn’t be placed on the networks. In between the unknown and EC/KO identity, the description of the function ranged from sequences containing a poorly described domain, a general enzymatic activity, or to a well-documented gene.

The second subset of the matched genes (13,145 sequences, 47.5%), which were homologous to proteins with a known function, was assigned to the molecular networks. The 13,145 genes present in the networks were classified into 6 main overlapping categories (Table 1-6): Metabolism (5442 sequences), Genetic Information Processing (1249 sequences), Environmental Information Processing (1305 sequences), Cellular Processes (1121 sequences), Transport (3523 sequences), and Transcription Factors (2423 sequences). The complete annotation of the genes and relevant information for each is presented in Table S1. The references used for annotating genes and for developing pathways not found in KEGG are presented in Text S1.

Table 1. Cont.

VVID	Network Name	#gen	#pro	#met
10908	Zeatin biosynthesis	52	10	20
10906	Carotenoid biosynthesis.	40	19	33
10905	Brassinosteroid biosynth.	19	7	24
10940	Phenylpropanoid biosynth.	220	21	44
	Other			
11000	Single reactions	162	15	38

VVID: VitisNet identification number; #gen: number of genes in network; #pro: number of proteins in network; #met: number of metabolites in network. doi:10.1371/journal.pone.0008365.t001

Table 2. List of Genetic Information Processing Networks.

VVID	Network Name	#gen	#pro	#met
2.1	Transcription			
23020	RNA polymerase	85	32	20
2.2	Translation			
23010	Ribosome	473	147	20970
2.3	Folding, Sorting Degr.			
23060	Protein export	36	16	24120
24130	SNARE int. in ves. transport	63	22	24140
23050	Proteasome	58	48	
2.4	Replication and Repair			
23030	DNA replication	60	38	23430
23410	Base excision repair	31	21	23440
23420	Nucleotide excision repair	53	36	23450

VVID: VitisNet identification number; #gen: number of genes in network; #pro: number of proteins in network; #met: number of metabolites in network. doi:10.1371/journal.pone.0008365.t002
Construction of 219 Networks

The networks were constructed with the CellDesigner software. This software has the benefit of being able to save the networks in the SRML (System Biology Markup Language) format. This format is highly portable into a variety of software packages, including Cytoscape, which was used here for data visualization of molecular expression. The networks were constructed with four main families of nodes (gene, transcripts, proteins, and metabolites) represented by specific shapes and colors in CellDesigner (Figure 2) and by shape only in Cytoscape (Figure 3; color was used to visualize abundance). In VitisNet, some extra node styles can be used in the networks for additional categories (phenotypes, phylogenetic tree node, etc.). Edge styles represented different types of reactions, and they were specified by shape in CellDesigner and color in Cytoscape; Text S2 has a legend that summarizes the node and edge styles used in VitisNet in Cytoscape. Five digit IDs were assigned to the networks (Table S2). The first digit refers to the network category (metabolic pathway etc.), and the last four digits refer to the KEGG pathway number (if it existed in KEGG).

Metabolic pathways (1). Metabolic pathways are the most common type of pathway that can be found for plants in several online databases such as KEGG or PlantCyc (http://www.plantcyc.org/). These networks (Table 1) represented metabolic reactions known to occur in grapevines. With the software package KEGG2SBML, it was easy to import the metabolic pathways from KEGG. The KEGG pathways were limited when they were used; however, the KEGG pathways were not related to the molecular events occurring in plants. Although a small portion of the pathways were derived from KEGG, most components of the networks were represented by a picture of a specific modus operandi, with every involved protein listed at the side rather than in a diagram of the enzymatic reactions. In VitisNet, we have tried to represent these pictures interactively. Where this was not possible, the networks were presented as lists of genes, transcripts, and proteins. The total number of items in the 15 "Genetic Information Processing" networks included 1,338 genes and transcripts, 527 proteins, and 71 metabolites.

Environmental information processing (3). The category "Environmental Information Processing" (Table 3) represents signal processes that occur in the grapevine. The networks belonging to “Signal Transduction” are highly variable amongst species but they are well documented for Arabidopsis in KEGG and were constructed using the Arabidopsis data. The networks for hormone signaling and plant-specific signaling were reconstructed from the literature. To the best of our knowledge, these networks could not be found in any other pathway databases. These networks are particularly valuable for the plant community since hormonal signaling is an important subject in many plant physiology studies. The total number of items in the 12 "Environmental Information Processing" networks included 1,373 genes and transcripts, 563 proteins, and 63 metabolites.

Cellular processes (4). These networks for the "Cellular Processes" category (Table 4) were named from the KEGG pathways; however the KEGG pathways were not related to the molecular events occurring in plants. Although a small portion of the pathways were derived from KEGG, most components of the networks were constructed from information collected from the

VVID	Network Name	#gen	#pro	#met	VVID	Network Name	#gen	#pro	#met
3.1	**Signal Transduction**				3.2	**Hormone Signaling**			
3.3	**Plant-Specific Signaling**					**Environmental Information Processing**			
						Cellular Processes			

Table 3. List of Environmental Information Processing Networks.

Table 4. List of Cellular Processes Networks.
Table 5. List of Transport Networks.

VVID	Network Name	#gen	#pro	#met	VVID	Network Name	#gen	#pro
5.1	Membrane Transport				5.2	Hormone Transport		
52010	ABC transporters	283	87		50004	Auxin transport	57	23
5.3	Transport System				5.4	Transporter Catalog		
50110	Protein coat	157	83		50111	tethering factors	100	65
50112	Nuclear pore complex	72	26		50113	Thylakoid targeting pathway	62	15
50101	Channels and pores	391	131		50104	Group translocators	39	4
50105	Transport electron carriers	89	38		50108	Accessory fact. Inv. in transp.	173	11
50109	Incomp. charact. transp. syst.	332	101		50109	Incomp. charact. transp. syst.	332	101
50121	Porters categories 1 to 6	187	85		50121	Porters categories 1 to 6	187	85
50122	Porters categories 7 to 17	242	49		50122	Porters categories 7 to 17	242	49
50123	Porters categories 18 to 29	204	46		50123	Porters categories 18 to 29	204	46

VVID: VitisNet identification number; #gen: number of genes in network; #pro: number of proteins in network; #met: number of metabolites in network.

doi:10.1371/journal.pone.0008365.t005

Omics Data Can Be Visualized on the Networks

Annotation of the genes and construction of VitisNet has filled a major gap in precise descriptive and quantitative tools for grapevine systems biology. The next challenge is the integration of the data. The molecular networks were built to allow simultaneous visualization of transcripts, proteins, and metabolites. Their respective abundance under various conditions can be visualized through the Cytoscape software.

Several methods exist to correlate and integrate transcript, protein, and metabolite profiles. For example molecule abundance profiles were linked with Pearson [50,51] and Spearman [52] correlation coefficients, the BL-SOM method [53,54] and the O2PLS method [55]. The O2PLS method enables the determination of the effect of each variable, in a multivariable experiment, on the co-expression of molecules. More recently the O2PLS method has been developed further to integrate all three molecular profiles (transcripts, proteins, and metabolites) [56].

In most of these statistical studies, data were visualized by representing molecules by nodes and the correlation by edges. Subsequently, selected pathways were drawn manually for biological phenomenon highlighted by the correlations of molecular abundance. In the visualization of “omics” data in VitisNet, edges represented biological processes and nodes represented molecules, as in classical presentations of pathways. Molecular abundance was represented by color changes of the nodes and biological phenomenon could be visualized automatically. As an illustration of the methodology used in VitisNet to provide visualization of “omics” data, datasets from a study of the differential transcript, protein, and metabolite abundance measured in three berry tissues [29,42] was uploaded into the molecular maps. For consistency, proteins and metabolites [42] were clustered with the same methods used for clustering the transcripts [29] and the same color scheme was used, green = molecules over-abundant in pulp, purple = molecules over-abundant in the skin, and orange = molecules over-abundant in seed [29]. The flavonoid biosynthesis pathway (Figure 3) presented here was more complex.
that than previous representations of the pathway in [29] and [42]. Here it was further customized from the total flavonoid biosynthesis pathway in VitisNet by removing the gene nodes for easier visualization. As these studies have illustrated, molecules involved in the flavonoid biosynthesis pathway are slightly more abundant in skin than seed and clearly more abundant in both skin and seed than in the pulp. Transcriptomic results from Affymetrix GeneChip Vitis vinifera (Grape) Genome Array were used here, but data from any microarray platform can be uploaded onto the networks. For example, Table S1 contains data for mapping the cDNA array used in a grape bud chilling requirement fulfillment study [35]. The integration of the berry tissues “omic” data on all the pathways was divided into higher level pathway categories; the Cytoscape session files, molecular networks and a tutorial (Text S2) can be accessed and downloaded at the VitisNet tab at vitis-dormancy.sdstate.org. All molecular network files are also available for browsing or downloading at MetNet (http://metnet3.vrac.iastate.edu/).

Materials and Methods

Definition of a Unique Set of Genes

The 30,434 DNA sequences encoding for putative proteins from the Vitis vinifera (c.v Pinot noir PN40024) genome [23] were matched to EST sequences from Vitis vinifera and other Vitis species. The V. vinifera sequences originated from the 5.0 release of the DFCI grape index [http://compbio.dfci.harvard.edu/cgi-bin/tgi/gimain.pl?gudb = grape] which contained 34,134 unique sequences. The set of non-vinifera sequences contained a total of 26,389 redundant ESTs obtained from the NCBI website. This set included sequences from the following species: V. shuttleworthii (10,704 sequences), hybrid cultivars (6,542 sequences), V. arizonica x...
Figure 2. Citrate cycle pathway visualized using CellDesigner. Symbols represent different molecules or reactions, i.e. blue rectangle: gene; green parallelogram: transcript; orange round rectangle: protein; and yellow ellipse: metabolite. Edges with a circle at the tip: catalysis (A). Edges with Delta at the tip: metabolic reaction (B). Edges with dash-dot-dot-dash: transcription (C). Edges with dash-dot-dash: translation (D). Insert box at the upper right represents a zoom-in of an area of the network showing the different molecule types.

Figure 3. Flavonoid biosynthesis pathway and tissue-specific molecule abundance visualized using Cytoscape. Parallelogram: transcript; rectangle: protein; ellipse: metabolite; triangle: reaction node. Blue edges with circle at the tip: catalysis. Black edges with Delta at the tip: metabolic reaction. Turquoise edges: translation. Transcript node in bold: existence of an Affymetrix (Vitis Vinifera (Grape) Genome Array) probeset. Red: over abundant in seed; magenta: over abundant in skin; green: over abundant in pulp; orange: over abundant in seed and skin. Insert box at the upper right represents a zoom-in of an area of the network showing the different molecule types.
rapistris (5,421 sequences), V. aestivalis (2,101 sequences), and V. riparia (1,821 sequences). A BLAST analysis of the sequences from the V. vinifera EST set and the non-vinifera EST set (Megablast, p > 95, e-value<1e-15) was conducted against the genomic sequences. Sequences not identified in the genome were added to the genomic sequences to constitute the unique sequences set. The 1395 mRNAs corresponding to grapevine protein sequences registered in UniProt and not belonging to one of the two genome sequencing projects were manually retrieved and BLAST analyzed (blastx, e-value<1e-10) against the unique sequences set.

Gene Annotation
During the first steps of annotation, a batch BLAST analysis (blastx, e-value<1e-10) of unique sequences was conducted against several relevant databases, including the Arabidopsis and rice genomes and the Viridiplantae protein sequences in NCBI. For each gene, the ten best significant matches in each database were conserved and reviewed for defining the most likely annotation. Particular attention was paid to using identical nomenclature for genes with the same function. A BLAST analysis of the genes that had at least one significant match containing a putative function was conducted against the KEGG database (http://www.genome.jp/kegg/) for defining an enzyme commission (EC) number or a KEGG Orthology (KO) number. For genes not identified in this screen, the EC number of genes suspected to encode for a protein with enzymatic function was identified by browsing enzyme nomenclature databases (such as Expasy [http://www.expasy.org/enzyme/] or BRENDA [http://www.brenda-enzymes.org/]). A BLAST analysis (blastx, e-value<1e-10) of the unique set was conducted against the Transport Classification Database (TCDB) (http://www.tcdb.org/) and the genes matching sequences from that database were again manually reviewed and assigned to a category from the Transport Classification System [37].

BLAST analysis (blastx, e-value<1e-10) of the unique set was conducted against two plant transcription factor databases, PlantTFDB, [http://planttfdb.cbi.pku.edu.cn/] [47] and PlnTFDB (http://plantfb.bio.uni-potsdam.de/v2/0/) [48]. InterPro domains obtained for the grape sequences from the UniProt website were also used for the classification of transcription factors. The transcription factors were then grouped into families.

Where molecular interactions were identified in the literature, the gene function was browsed to identify the Vitis gene potentially involved. The genes described in the literature were validated by BLAST against the unique set of Vitis sequences to correctly identify any potential homolog that was previously mislabeled. A short identifier was defined for genes that were present on the networks but did not have a previously defined EC number or a KO. For most of these, that identifier corresponded to the one commonly used for their Arabidopsis homolog in their Entrez webpage (http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene). For genes without an Arabidopsis homolog with a clear identifier, a unique identifier was created that was consistent with the gene function.

Network Construction
Metabolic pathways (1). KEGG metabolic pathways were downloaded from the KEGG website and converted into SBML files with the KEGG2SBML software package [58]. Grape genes and transcripts were manually added to the networks and linked to their corresponding proteins with the CellDesigner software package [59]. Plant- or grape-specific reactions that were not present in KEGG but were described in the literature were added manually.

Genetic information processing (2), signal transduction (3.1), and ABC transporters (5.2). KEGG pathways were manually reconstructed with CellDesigner using the SBML format, and then grape genes and transcripts were manually added to the networks and linked to their corresponding proteins. Plant- or grape-specific processes that were not present in KEGG but were described in the literature were manually added.

Hormones signaling (3.2), plant-specific signaling (3.3), cellular processes (4), hormone transport (5.2), and transport system (5.3). Networks were manually constructed from the literature with CellDesigner using the SBML format, and then grape genes and transcripts were manually added to the networks and linked to their corresponding proteins.

Transport catalog (5.4). Networks were manually constructed with CellDesigner using the SBML format. Grape genes and transcripts matching transporter proteins from any other organisms were manually added to the networks and linked to their corresponding proteins. For each transcription factor family, a phylogenetic tree was constructed based on protein alignment generated with the neighbor-joining method using ClustalW. The transcription factors were then grouped according to the phylogenetic tree. Distances are not related to respective phylogenic distances. All the relevant bibliography for the construction of literature-based pathways is included in Table S2 and Text S1.

Expression Profiling
Affymetrix probesets were matched to the genome using the same process as that used between the genome sequences and EST sequences. The tentative contigs from the DFCI Grape Gene Index (http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=grape), that contain the ESTs that were used as templates for the Affymetrix probesets, were BLAST analyzed against the genome sequences (Megablast, p<95, e-value<1e-15). Transcriptomic data were retrieved from Grimplet et al. [29]. Proteomics and metabolomics data were retrieved from Grimplet et al. [42]. All molecules with differential abundance were grouped into 12 clusters presented by Grimplet et al. [29] according to their abundance in the three berry tissues. Data were visualized using VitisNet with the Cytoscape software [60] (see Text S2 for a tutorial on the complete procedure).

Supporting Information
Table S1 The complete grape gene annotation based on the 8X assembly (Jaillon et al., 2007) of transcript sequences. Unique Gene: Genoscope ID (Jaillon et al., 2007) is used if a genome sequence has been identified, otherwise VVG1 5 TC (Tentative Consensus sequences) number or EST GenBank ID is used. Unique transcript: VVG1 5 TC number or EST GenBank ID is used if a transcript has been identified, otherwise the Genoscope ID is used. Function: tentative functional annotation. Network ID: the identifier that is used in the networks. Network or simplified category: list of the networks where the genes appear, otherwise a short description of the biological role. In Network: the gene is present in at least one network. ProbeSet: probeSet ID for the Affymetrix GeneChip® Vitis vinifera (Grape) Genome Array. Best Arabidopsis match: best matched hit in Arabidopsis putative proteins. InterPro domain ID: list of the domains detected from InterPro (Hunter et al., 2009).
Gene Ontology ID: list of the identified GO terms. Gene Ontology description: description of the GO term ([Gene Ontology Consortium], 2009). Accession UniProt: UniProt ID for the genome sequences (Apweiler et al., 2004). Accession UniProt for published grapevine protein: UniProt ID for grapevine proteins individually published apart of the genome sequencing. EST probedet: EST from which the probedet was designed. IASMA gene: ID from the heterozygote Vitis genome (Velasco et al., 2007). Chromosome position: position of the gene on chromosome retrieved from Geneneme.org. Other Vitis: presence in non-vitis Vitis species. cDNA array: ID from Vitis in the cDNA array from Mathiason et al., (2009). Other TC from VVG15: list of other TC from the DFCI matching the gene. Other probedets: other Affymetrix probedets matching the gene.

Found at: doi:10.1371/journal.pone.0008365.s002 (0.03 MB XLS)

Table S2 List of pathways constructed from bibliographic data and the corresponding journal articles used.

Found at: doi:10.1371/journal.pone.0008365.s001 (0.10 MB DOC)

Text S1 References for supporting material.

References

1. Descartes R (1637) Discours de la méthode. Jan Maire (ed), Leiden, Netherlands. 78 p.
2. Von Bertalanffy L (1968) General System Theory: Foundations, Development, Applications. George Braziller (ed), New York, USA. 296 p.
3. Miller JG (1978) Living Systems. McGraw-Hill, New York, USA. 1102 p.
4. Mesarovic MD (1968) Systems theory and biology - view of a theoretician. In: Systems Theory and Biology, Mesarovic MD (ed) pp 39–87. Springer: Verlag New York, USA.
5. Kitano H (2002) Systems biology: a brief overview. Science 295: 1662–1664.
6. Albert R (2007) Network inference, analysis, and modeling in systems biology. Plant Cell 19: 3327–3338.
7. Feist AM, Palsson BO (2008) The growing scope of applications of genome-scale metabolic reconstructions using *E. coli* cobi. Nat Biotechnol 26: 659–667.
8. Becker SA, Palsson BO (2005) Genome-scale reconstruction of the metabolic network in *Saccharomyces cerevisiae* a313: an initial draft to the two-dimensional annotation. BMC Microbiol 5: 8.
9. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, et al. (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252: 1651–1656.
10. Boguski MS, Schuler GD (1995) ESTablishing a human transcript map. Nat Genet 10: 369–371.
11. Quackenbush J, Cho J, Lee D, Liang F, Holt I, et al. (2001) The TIGR Gene Indices: analysis of gene transcripts sequences in highly sampled eukaryotic species. Nucleic Acids Res 29: 159–64.
12. Margulies M, Eghdami M, Alman WE, Attiya S, Bader JS, et al. (2005) Genome sequencing in microfabricated high-density planar microarrays. Nature 437: 378–380.
13. Bennett S (2004) Solexa Ltd. Pharmacogenomics 5: 433–438.
14. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.
15. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–21.
16. Grzyb SP, Riaz B, Gruber SA, Tsurveck F, Belgh M, et al. (1999) Quantitative analysis of complex protein mixtures using iso-electro-coded affinity tags. Mol Biotechnol 17: 994–999.
17. Ross PL, Huang YM, Marches JN, Williamson B, Parker K, et al. (2004) Multiplexed protein quantitation in *Saccharomyces cerevisiae* using amine-reactive isobaric tags reagents. Mol Cell Proteomics 3: 1134–1169.
18. Fein J (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48: 155–171.
19. Da Silva FG, Iandolino A, Al-Kayal F, Bohlmann MC, Cashman MA, et al. (2002) Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple *F. vinifera* species and development of a compendium of gene expression during berry development. Plant physiology 139: 574–597.
20. Moser C, Segala C, Fontana P, Salakhutdinov I, Ganto P, et al. (2003) Comparative analysis of expressed sequence tags from different organs of *F. vinifera*. Funct Integr Genomics 5: 208–217.
21. Peng FY, Reid KE, Liao N, Schlosser J, Ljajevszt D, et al. (2007) Generation of ESTs in *F. sylvatica* wine grape (Cabernet Sauvignon) and table grape (*Muscat Hamburg*) and discovery of new candidate genes with potential roles in berry development. Gene 402: 40–50.
22. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, et al. (2007) A high quality draft consensus sequence of the genome of a heterogeneous grapevarey. PLoS ONE 2: 1326.
23. Jaillon O, Aury JM, Noel B, Polerici A, Clepet C, et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm clades. Nature 447: 463–467.
24. Vezzulli S, Micheletti D, Riaz S, Pindo M, Viola R, et al. (2008) A SNP transferability survey within the genus *Vitis*. BMC Plant Biol 8: 128.
25. Torrier N, Glisant D, Grimpet J, Barriere F, Abbal P, et al. (2005) Iodegene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (*F. vinifera* L.) development. Planta 222: 692–697.
26. Waters DL, Holton T, Aebi L, Lee LS, Henry RJ (2005) cDNA microarray analysis of developing grape (*F. vinifera* cv. Shiraz) berry skin. Funct Integr Genomics 5: 49–58.
27. Tattersall E, Grimpet J, Deluc L, Wheatley M, Vincent D, et al. (2007) Transcript abundance profiles reveal larger and more complex responses of grapevare to chilling compared to osmotic and salinity stress. Funct Integr Genomics 7: 317–333.
28. Cramer G, Ergul A, Grimpet J, Tillet R, Tattersall E, et al. (2007) Water and salinity stress in grapevare: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7: 111–134.
29. Grimpet J, Deluc LG, Tillet RL, Wheatley MD, Schlauch KA, et al. (2007) Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics 8: 187.
30. Deluc LG, Grimpet J, Wheatley MD, Tillet RL, Quilici DR, et al. (2007) Transcriptomic and metabolic analyses of cabernet sauvignon grape berry development. BMC Genomics 8: 429.
31. Espinoza C, Vega A, Medina C, Schlauch K, Gramer G, et al. (2007) Gene expression associated with compatible viral diseases in grapevare cultivars. Funct Integr Genomics 7: 95–110.
32. Piastra S, Perazzoli M, Malossini A, Cestaro A, Dematte L, et al. (2007) Genome-wide transcriptional analysis of grapevare berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison. BMC Genomics 8: 428.
33. Fung RW, Gonzalo M, Fekete C, Kovacs LG, He Y, et al. (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 146: 236–249.
34. Wise RP, Caldo RA, Hong L, Shen L, Cannon EK, et al. (2007) barleyBase/ PLEXdb: A Unified Expression Profiling Database for Plants and Plant Pathogens In Methods in Molecular Biology, Vol. 406. Plant Bioinformatics - Methods and Protocols. Edwards D. ed. Humana Press, Totowa, NJ. pp 347–363.
35. Mathiason K, He D, Grimpet J, Venkatavaci J, Galbraith D, et al. (2009) Transcript profiling in *F. vinifera* during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genomics 9: 81–96.
36. Lund ST, Peng FY, Nayar T, Reid KE, Schlosser J (2008) Gene expression analyses in individual grape (*F. vinifera* L.) berries during ripening initiation

Text S2 Tutorial for Using VitisNet, a database for the grapevine molecular networks.

Found at: doi:10.1371/journal.pone.0008365.s004 (3.51 MB DOC)

Acknowledgments

The authors wish to thank Wei Ma and Wendy Craddock for the http://vitis-dormancy.udstate.org website design, Kim Victor for curation of the SBML networks source code, and Yves Suceat and Erie S. Wurtele for the MetNet interface API.

Author Contributions

Designed the study, annotated the genes, constructed the networks, set up the “omics” visualization protocol and drafted the manuscript: JG. Participated in the organization of the study and finalization of the manuscript: GRC JAD. Participated in the validation of the “omics” visualization protocol and finalization of the manuscript: KM. Participated in VitisNet incorporation into MetNet: JLV. Organized the study, finalized the “omics” visualization protocol and finalized the written manuscript: AYF.
reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster. Plant Mol Biol 68: 301–315.

37. Sarry J-E, Sommerer N, Sauvage F-X, Bergoin A, Rossignol M, et al. (2004) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Proteomics 4: 201–213.

38. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

39. Sarry J-E, Sommerer N, Sauvage F-X, Bergoin A, Rossignol M, et al. (2004) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

40. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

41. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

42. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

43. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

44. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

45. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

46. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

47. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

48. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

49. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

50. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

51. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

52. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

53. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.

54. Giribaldi M, Perugini I, Sauvage F-X, Bergoin A, Rossignol M, et al. (2007) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Plant Mol Biol 68: 301–315.