Graph States Under the Action of Local Clifford Group in Non-Binary Case

Mohsen Bahramgiri, Salman Beigi

Mathematics Department
and
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

(Dated: August 20, 2006)

Graph states are well-entangled quantum states that are defined based on a graph. Of course, if two graphs are isomorphic their associated states are the same. Also, we know local operations do not change the entanglement of quantum states. Therefore, graph states that are either isomorphic or equivalent under the local Clifford group have the same properties. In this paper, we first establish a bound on the number of graph states which are neither isomorphic nor equivalent under the action of local Clifford group.

Also, we study graph states in non-binary case. We translate the action of local Clifford group, as well as measurement of Pauli operators, into transformations on their associated graphs.

Finally, we present an efficient algorithm to verify whether two graph states, in non-binary case, are locally equivalent or not.

PACS numbers:

I. INTRODUCTION

Graph states, forming a universal resource for quantum computation based on measurement, have been used in many applications in quantum information theory as well as quantum computation, and have been studied extensively. This is due to the fact that these states not only maintain a rich structure, but also can be described transparently in different ways.

For example, the notion of entanglement, the significant property of quantum systems compared to the classical ones, has been widely studied for graph states, for instance see [11]. On the other hand, the properties of stabilizer codes, the most well-studied class of quantum codes, are really covered by graph states. These states have been studied in this point of view too, see e.g. [10], [11].

A. Basic definitions and recent works

To overview the definitions, recall that Pauli group is the group generated by Pauli operators, and Clifford group is its normalizer, generated by Hadamard, CNOT and the phase gates. [13]. A stabilizer state is the common eigenvalue of a (full rank) abelian subgroup of Pauli group. Since, Clifford group is the normalizer of Pauli group, any stabilizer state is sent to another stabilizer state under Clifford operators. On the other hand, local operators do not change the properties of a state in the quantum information theory point of view. Therefore, we say two stabilizer states are equivalent if they can be sent to each other under some local Clifford operators.

Graph states are a special class of stabilizer states that are defined based on a graph, and are of interest because of two reason. First, they can be represented just by a graph which is both succinct and also, captures all the properties of the state. Second, it can be proven that any stabilizer state is equivalent to a graph state under the action of local Clifford group, see [13]. Indeed, it says that in order to study stabilizer states it is sufficient to study graph states that have a more simple representation.

As an example, we know that a Clifford operator sends a stabilizer state to another one. Therefore, translating this action to their associated graphs, we find a description of local Clifford group in the language of graphs. This fact is first discovered in [10] and [9]. It is also shown that Pauli measurements can be translated in the language of graph theory.

Here, a question arises naturally. Can two graph states be equivalent under local Clifford group? The answer, by simply trying some examples, is yes. So as the second question, one may ask how many graph states can be equivalent to a given one?

There are some recent works to answer these questions, and also to relate the latter results of graph theory in this direction. For example, [3] and [8] have presented an algorithm to recognize whether two given graph states are equivalent or not.

The other question is that what the number of different graph states is. Of course, by different graph states we mean states that are neither isomorphic nor equivalent under the local Clifford group, and isomorphic states means they are the same by relabeling their qubits. In [11] the number of graph states, which are
non-isomorphic and not equivalent, is counted for n up to 12, where n is the number of qubits. There is no a known method yet, to count them in general.

B. Our results

In this paper, we first find a bound on the number of graph states that are neither isomorphic nor equivalent under the local Clifford group. It is the first such a bound.

In the second part of this paper we try to answer the same questions for the non-binary case, i.e. qudits, where $d \neq 2$. Indeed, Pauli group is well-known for the non-binary quantum systems, too. Also, Clifford group, same as binary case, is defined to be the normalizer of the Pauli group, and in [7] there is an interesting characterization of this generalized Clifford group. So that, stabilizer states, and then graph states, can be defined same as binary case. Although, all these notions were known (for example see [1], [11] and [12]), but we did not know anything about the action of local Clifford group in this case.

Here, we first show that any stabilizer state is equivalent to a graph state under local Clifford group, same as what we had in binary case. Then, we focus on non-binary graph states and translate the action of local Clifford group and also Pauli measurements to some operators on graphs.

After this paper, these operators over graphs have been studied, and in [2] an efficient algorithm is presented that given two graph states, determines whether they are equivalent or not. We present this result here, too.

II. NON-EQUIVALENT GRAPH STATES

The notions of stabilizer states and also graphs states (in binary case) are well-known in the theory and we do not repeat them here. We just refer the reader to [13] and [1] for a full survey on this subject.

It is known that two graph states are equivalent under local Clifford group if and only if their associated graphs are equivalent under local complementation operators (see for instance [1]), by which we mean the following operator. Suppose that v is a vertex of a graph G. To locally complement G at v, consider all neighbors of v in G and complement the subgraph of G induced by these vertices to obtain a new graph, denoted by $G \ast v$. Two graphs are called locally equivalent if one of them is obtained from the other by a series of local complementations. This notion has been extensively studied in graph theory, see [2]. Also, there is a polynomial time algorithm to recognize whether two graphs are locally equivalent or not, [3].

A tree is a connected graph which contains no cycle. The following theorem is a significant result on locally equivalent graphs (see [1]).

Theorem 1. Any two locally equivalent graphs are isomorphic.

By this theorem, if two trees are not isomorphic then they are not locally equivalent, and then, the number of non-isomorphic trees on n vertices is a lower bound on the number of graph states which are not locally equivalent. Note that, there are graphs that are not locally equivalent to a tree, and so, the number of trees is not a tight bound. However, it is the only known bound of this type.

The following theorem gives us an approximation of the number of non-isomorphic trees. This bound is proved in [14].

Theorem 2. Let T_n be the number of non-isomorphic trees on n vertices, then

$$T_n = \frac{3}{4} \cdot \frac{\alpha n^{3/2}}{\pi} \cdot \alpha^{-n} + O(\alpha^{-n}),$$

where $\alpha \approx 0.3383219$ and $\beta \approx 7.924780$.

We thus obtain the following result, presenting a lower bound for the number of non-equivalent graph states under the action of local Clifford group, whose graphs are connected and mutually non-isomorphic.

Theorem 3. Let A_n be the number of graph states which are locally equivalent to some tree. Then for large enough values of n

$$A_n \approx \frac{3}{4} \cdot \frac{\alpha n^{3/2}}{\pi} \approx 5.349485 \frac{\alpha^{-n}}{n^{5/2}},$$

where $\alpha \approx 0.3383219$.

Remark. A_n is a lower bound for χ_n, where χ_n is the number of graph states which are not equivalent under the local Clifford group, and their associate graphs are connected and non-isomorphic. But, is this bound a good one?

For a fixed graph G, there is an algorithm to count the number of graphs locally equivalent to G (see [2]). This number varies from one graph to another. For instance, the number of graphs locally equivalent to the complete graph over n vertices is $n + 1$, but this number for a path of length n is $O((1 + \sqrt{3})^n)$. Hence, it can vary from linear to exponential, for different graphs.

This observation shows that the problem of finding the exact number of non-equivalent graphs is relatively...
a hard one. The lower bound presented in the remark above is in fact the best lower bound known so far, which can be compared to the real values of χ_n for small n’s in Table 1.

n	$\log_2\chi_n$	$\log_2\lambda_n$
5	0.2772	0.2197
6	0.3996	0.2310
7	0.4654	0.3138
8	0.5768	0.3612
9	0.6763	0.4012
10	0.8049	0.4465
11	0.9643	0.4821
12	1.1714	0.5137

Table 1. Values of χ_n are taken from [11].

III. NON-BINARY STABILIZER CODES

The theory of non-binary stabilizer codes and non-binary stabilizer states have been developed, see [1], [12]. In this theory, the notion of stabilizer codes and stabilizer states, as well as graph states are defined based on Pauli and Clifford groups. In this section, we establish a description of the action of local Clifford group on graph states by operations on their associated graphs.

A. Generalized Pauli and Clifford groups

Through this section, let p be an odd prime number, $\omega = e^{2\pi i/p}$ and \mathbb{F}_p be the finite field of p elements. Also, we let \mathbb{C}^p to be the Hilbert space of every particle in the quantum system (qubit), and $\{|x\rangle; x \in \mathbb{F}_p\}$ be an orthonormal basis for this space.

Definition. For $a, b \in \mathbb{F}_p$, define unitary operators $X(a)$ and $Z(b)$ on \mathbb{C}_p as follows:

$$X(a)|x\rangle = |x + a\rangle,$$

$$Z(b)|x\rangle = \omega^{bx}|x\rangle.$$

The following properties are proved in [12].

Lemma 1.

(i) $X(a)X(a') = X(a + a')$, $Z(b)Z(b') = Z(b + b')$ and $X(a)^\dagger = X(-a)$, $Z(b)^\dagger = Z(-b)$.

(ii) $\{X(a)Z(b); a, b \in \mathbb{F}_p\}$ is a basis for the space of linear operators over \mathbb{C}^p.

(iii) $Z(b)X(a) = \omega^{ab}X(a)Z(b)$.

(iv) $X(a)Z(b)$ and $X(a')Z(b')$ commute iff $ab' - ba' = 0$.

Using these properties, we can define the generalized Pauli group, generated by these operators.

$$\mathcal{G} = \{\omega^c X(a)Z(b); a, b, c \in \mathbb{F}_p\}.$$

Also, the Pauli group over n qudits is the n-fold tensor product of \mathcal{G}

$$\mathcal{G}_n = \{\omega^c X(a)Z(b); a, b \in \mathbb{F}_p^n, c \in \mathbb{F}_p\},$$

where $X(a) = X(a_1) \otimes X(a_2) \otimes \cdots \otimes X(a_n)$ and $Z(b) = Z(b_1) \otimes Z(b_2) \otimes \cdots \otimes Z(b_n)$.

By lemma 1 part (iv), one can easily check that two elements $\omega^c X(a)Z(b)$ and $\omega^c X(a')Z(b')$ commute if and only if $a \cdot b' - b \cdot a' = 0$ (dot product is the usual inner product on \mathbb{F}_p^n, i.e. $\sum_{i=1}^{n} a_i b'_i - a'_i b_i = 0$).

Definition. Generalized Clifford group \mathcal{C}_n is the normalizer of \mathcal{G}_n. Also, generalized local Clifford group is the n-fold tensor product of Clifford group of order one, $(\mathcal{C}_1 = \mathcal{C})$.

In the binary case we know that the Clifford group is generated by Hadamard, CNOT and the phase gates. For the general case, in order to somehow characterize \mathcal{C}_n, suppose $h \in \mathcal{C}$. Then by definition, $hX(1)h^\dagger$ and $hZ(1)h^\dagger$ are in \mathcal{G}. Let $hX(1)h^\dagger = \omega^c X(a)Z(b)$ and $hZ(1)h^\dagger = \omega^c X(a')Z(b')$. Since $Z(1)X(1) = \omega X(1)Z(1)$, by lemma 4 we have $ab' - ba' = 1$. The following theorem states that, this is the only condition on h to make it an element of \mathcal{C}. See [7] for the proof.

Theorem 4. For any a, b, c, a', b' and c' in \mathbb{F}_p, such that $ab' - ba' = 1$, there exists $h \in \mathcal{C}$ such that $hX(1)h^\dagger = \omega^c X(a)Z(b)$ and $hZ(1)h^\dagger = \omega^c X(a')Z(b')$.

B. Stabilizer states

Before introducing the notion of stabilizer codes, we should first study some properties of eigenvalues and eigenspaces of Pauli operators.

Lemma 2. Let $g = \omega^c X(a)Z(b) \in \mathcal{C}_n$. Then for every positive integer k,

$$g^k = \omega^{kc + \binom{k}{2}a \cdot b} X(ka)Z(kb),$$

where $\binom{k}{2}$ is the binomial coefficient.
Proof. By induction on k we prove the lemma. There is nothing to prove for $k = 1$, and for $k + 1$ we have
\[
g^{k+1} = (\omega^c X(a)Z(b))(\omega^{(kc+i)}a.b) X(ka)Z(kb)
\]
\[
= \omega^{(k+1)c+i}a.b X(a)(Z(b)X(ka))Z(kb)
\]
\[
= \omega^{(k+1)c+i}a.b X(a)(\omega^{jka}X(ka)Z(b))Z(kb)
\]
\[
= \omega^{(k+1)c+i}a.b X((k+1)a)Z((k+1)b).
\]
□

Since, by definitions, $X(p a) = Id$, $Z(p b) = Id$ and $\omega^p = 1$, one obtains that $g^p = Id$ for any $g \in \mathcal{G}_n$. Notice that, we are now using the fact that p is odd. In fact, for an odd number m, m divides $(\frac{n}{2})$. But it is not true for any even number. It is why we should add multiplicity of $i = \sqrt{-1}$ in the definition of Pauli group in the binary case. This observation shows that eigenvalues of the elements of \mathcal{G}_n are p-th roots of the unity.

Lemma 3. Suppose that $g = \omega^c X(a)Z(b) \in \mathcal{G}_n$ is not a scalar multiple of the identity. Let
\[
P_j = \frac{1}{p}(Id + \omega^{-j}g + \omega^{-2j}g + \cdots + \omega^{-(p-1)j}g)
\]
for $j = 0, 1, \ldots (p - 1)$. Then P_j is the projection on ω^j-eigenspace of g. Also, all P_j’s have same ranks.

Proof. Since $g^p = Id$, clearly $P_j^2 = P_j$ and $gP_j = \omega^j P_j$. Therefore, it is sufficient to prove that all P_j’s have equal ranks. Since, g is not a scalar multiple of the identity, at least one of a_i’s or b_i’s is non-zero. For instance, suppose that $a_i \neq 0$ (the other case is similar). One can simply check that
\[
Z_i(k)P_j Z_i(-k) = P_{j-k a_i}
\]
holds for every k. Finally, since a_i is non-zero, all P_j’s are conjugate and thus have the same rank.
□

We can now define the stabilizer code as the common eigenspace for eigenvalue one, of a subgroup of \mathcal{G}_n. It is easy to check that for a subgroup S, similar to the binary case, this common eigenspace is non-trivial provided that S is abelian and does not contain any scalar multiple of identity, except Id itself, see [12]. We call such a subgroup a valid one.

In order to define graph states, we should investigate the properties of stabilizer codes more precisely. Consider a valid subgroup S of \mathcal{G}_n. Let $S = \langle g_1, \ldots g_k \rangle$ be a minimal set of generators for S, so that no subset of $\{g_1, \ldots g_k\}$ generates S. Suppose that
\[
g_j = \omega^c X(a^j)Z(b^j).
\]
Since, the only scalar multiple of the identity in S is itself, for any $a, b \in \mathbb{F}_p^n$, at most one element of S is of the form $\omega^c X(a)Z(b)$. It means that, without any ambiguity, in order to represent the elements of S, we can drop the scalar coefficient ω^c, and for any $\omega^c X(a)Z(b), \omega^c X(a')Z(b') \in S$, we can write
\[
(X(a)Z(b))(X(a')Z(b')) = X(a + a')Z(b + b'),
\]
as an equality in S. Therefore, by this notation, set of vectors (a, b) where $X(a)Z(b)$ is in S consist a vector subspace of \mathbb{F}_p^{2n}. In fact, since S is generated by $g_1, \ldots g_k$ this vector subspace is generated by vectors (a^i, b^i), $i = 1, \ldots k$. So, it would be helpful to define the matrix
\[
A = \begin{pmatrix}
\begin{array}{cc}
a^1 & b^1 \\
a^2 & b^2 \\
\vdots & \vdots \\
a^k & a^k
\end{array}
\end{pmatrix}
\]
as a generator matrix for S.

In general, a matrix is a generator matrix of S if for any (a, b) a row of matrix, there exists c such that $\omega^c X(a)Z(b)$ is in S, and also, these operators for different rows consist a minimal set of generators.

Lemma 4.

(i) Using the above notation, $S = \{xA; \ x \in \mathbb{F}_p^k\}$.

(ii) The matrix UA is also a generator matrix of S, for any invertible $k \times k$ matrix U. Moreover, any generator matrix of S is of this form.

(iii) Rows of A are orthogonal with respect to the inner product defined as $\langle (a, b), (a', b') \rangle = a.b' - b.a'$.

(iv) $\text{rank}(A) = k$.

Proof. (i) follows from the definition, and (ii) comes from the fact that any element of S should be of the form xA, (part (i)). (iii) is true because S is abelian, and (iv) follows from (iii). □

Lemma 5. Suppose that P_{ij} is the projection over the ω^j-eigenspace of g_i. Then $P_{i1}P_{i2} \cdots P_{ik}$ is the projection over the code space. Also, all $P_{ij}, P_{j2} \cdots P_{j3}$’s have the same rank.
Proof. All g_i’s commute, and therefore by lemma 3, all P_{ij}’s commute as well. So, the first argument follows immediately. Since (a_i^t, b_i^t)’s are independent by lemma 4 there exists (e_i^t, f_i^t) such that $h_i = X(e_i^t)Z(f_i^t)$ commutes with each g_i, where $l \neq i$, and also, $h_i g_i h_i^\dagger = \omega^i g_i$ for non-zero r_i. In other words, (e_i^t, f_i^t) is orthogonal to all (a_i^t, b_i^t)’s but (a_i^t, b_i^t). Now let $h = h_1 h_2 \cdots h_k$, we have $hP_{j1} P_{j2} \cdots P_{jk} h^\dagger = P_{(j1-r1)2(j2-r2)} \cdots P_{(jk-rk)k}$. Since r_i’s are arbitrary, all $P_{j1} P_{j2} \cdots P_{jk}$’s are conjugate, and therefore have the same rank.

Using this lemma, we conclude that $rank(P_{00}P_{20} \cdots P_{k0}) = p^{n-k}$. It means that, a stabilizer group with k generators corresponds to a stabilizer code of dimension $n - k$. Therefore, if we have n independent generators, we get a one dimensional code space, i.e. a stabilizer state.

C. Graph states

Next, we consider the action of the local Clifford group on stabilizer spaces. If $h = h_1 h_2 \cdots h_n \in C^{\otimes n}$ is an element of the local Clifford group, then hSh^\dagger is also an abelian subgroup of G_n, and the only scalar multiple of the identity in hSh^\dagger is Id itself. In fact, if S is the stabilizer group of the state $|\phi\rangle$, then hSh^\dagger is the stabilizer group of $h|\phi\rangle$.

Since hSh^\dagger is a stabilizer group, it has a generator matrix, and our goal is to compute the generator matrix of this group in terms of A, the generator matrix of S. Indeed, g_1, \ldots, g_n are generators of S. So that, $h g_1 h^\dagger, \ldots, h g_n h^\dagger$ are generators of hSh^\dagger. Thus, suppose

$$h_i X(1) h_i^\dagger = \omega^{d_i} X(e_i) Z(f_i),$$

$$h_i Z(1) h_i^\dagger = \omega^{d_i} X(e_i^\prime) Z(f_i^\prime).$$

By theorem 4 we have $e_i f_i^\prime - f_i e_i^\prime = 1$, and by the above observation it is a simple calculation to check that the generator matrix of hSh^\dagger is the matrix AY, where

$$Y = \begin{pmatrix} E & F \\ E' & F' \end{pmatrix},$$

and

$$E = diag(e_1, \cdots, e_n), F = diag(f_1, \cdots, f_n),$$

$$E' = diag(e_1^\prime, \cdots, e_n^\prime), F' = diag(f_1^\prime, \cdots, f_n^\prime).$$

Lemma 6. Two stabilizer states with generator matrices A, B are equivalent under the action of the local Clifford group, if and only if there exist invertible matrices U and Y, such that

$$Y = \begin{pmatrix} E & F \\ E' & F' \end{pmatrix},$$

where

$$E = diag(e_1, \cdots, e_n), F = diag(f_1, \cdots, f_n),$$

$$E' = diag(e_1^\prime, \cdots, e_n^\prime), F' = diag(f_1^\prime, \cdots, f_n^\prime),$$

and $e_i f_i^\prime - f_i e_i^\prime = 1$, for any i, and also, $B = UAY$ holds as well.

Proof. The proof follows from the above discussion together with lemma 4.

This lemma can be restated in the following way

Lemma 6’. Two stabilizer states with generator matrices A, B are equivalent under the action of the local Clifford group, if and only if there exists an invertible matrix Y, such that

$$Y = \begin{pmatrix} E & F \\ E' & F' \end{pmatrix},$$

where

$$E = diag(e_1, \cdots, e_n), F = diag(f_1, \cdots, f_n),$$

$$E' = diag(e_1^\prime, \cdots, e_n^\prime), F' = diag(f_1^\prime, \cdots, f_n^\prime),$$

and $e_i f_i^\prime - f_i e_i^\prime = 1$, for any i, and also, all rows of B are orthogonal to rows of AY.

Proof. By lemma 4 rows of B are orthogonal to each other, and $rank(B) = n$. Therefore, rows of B consist a vector subspace of dimension n, in the space of dimension $2n$, and is orthogonal to itself. So that, any vector orthogonal to rows of B is in this subspace.

Now suppose that, rows of AY are orthogonal to rows of B. Hence, rows of AY are in the subspace generated by B, and since $rank(AY) = n$, there exists an invertible matrix U such that $B = UAY$. The other direction follows from lemma 6.

We can now define the notion of graph state, and its associated labeled graph.

Definition. A graph state is the stabilizer state of a group with a generator matrix of the form $\begin{pmatrix} Id_n & M \end{pmatrix}$,
Theorem 5. Two graph states G and H with label matrices M and N over \mathbb{F}_p, are equivalent under local Clifford group if and only if there exists a sequence of $*$ and \circ operators acting on one of them to obtain the other.

Proof. Let $A = \begin{pmatrix} I_{d_n} & M \end{pmatrix}$ and $B = \begin{pmatrix} I_{d_n} & N \end{pmatrix}$ be the generator matrices of these two graph states. If these two states are equivalent, by lemma 6 there exist matrices U and $Y = \begin{pmatrix} E & F \\ E' & F' \end{pmatrix}$ satisfying the conditions mentioned in lemma 6 such that $B = UAY$.

For every i, let

$$Y_i = \begin{pmatrix} E_i & F_i \\ E'_i & F'_i \end{pmatrix},$$

where

$$E_i = \text{diag}(1, \ldots, 1, e_{i}, \ldots, 1, 1),$$

$$F_i = \text{diag}(0, \ldots, 0, f_i, 0, \ldots, 0),$$

$$E'_i = \text{diag}(0, \ldots, 0, e'_i, 0, \ldots, 0),$$

$$F'_i = \text{diag}(1, \ldots, 1, f'_i, 1, \ldots, 1).$$

where M is a symmetric matrix with zero diagonal. Note that, this matrix has rank n, because of identity matrix in the first block. Also, all of whose rows are orthogonal since M is symmetric. Hence, $\begin{pmatrix} I_{d_n} & M \end{pmatrix}$ is really a generator matrix of a stabilizer group.

We assign to such a graph state a labeled graph over n vertices $\{1, \ldots, n\}$, with labels coming from the matrix M, i.e., with label M_{ij} for the edge (i, j).

Lemma 7. Every stabilizer state is equivalent to a graph state with respect to the local Clifford group.

Proof. Consider a stabilizer state with generating matrix A. By lemma 4, A is full-rank and the rows of A are orthogonal. Moreover, since by lemma 6 we can apply a linear transformation of determinant one on any pair of columns, we can end up with a matrix with identity in the first block, and a symmetric matrix with zero diagonal in the second block.

\square

D. Description of local Clifford group in terms of operations over graphs

In this section, similar to the binary case in [9], we want to describe the action of local Clifford group in terms of operations on graphs. First, we should define the operators.

Definition. Let G be a labeled graph on vertex set $\{1, 2, \ldots, n\}$, such that the label of the edge $\{i, j\}$ is the ij-th entry of matrix M, where M is a symmetric matrix over \mathbb{F}_p with zero diagonal. For every vertex v, and $0 \neq b \in \mathbb{F}_p$, define the operator $\circ_b v$ on the graph as follows; $G \circ_b v$ is the graph on the same vertex set, with label matrix $I(v, b)MI(b, a)$, where $I(v, b) = \text{diag}(1, 1, \ldots, b, \ldots, 1), b$ being on the v-th entry. See figure 1.

Also, for every vertex w, and $a \in \mathbb{F}_p$ define the operator $*_{a} w$ on the graph as follows; $G *_{a} w$ is the graph on the same vertex set, with label matrix M', where $M'_{jk} = M_{jk} + a M_{vj} M_{ek}$ for $j \neq k$, and $M'_{jj} = 0$ for all j. See figure 2.

Now, the main theorem;

Theorem 5. Two graph states G and H with label matrix-
Then Y_i’s commute mutually, and $Y = Y_1Y_2 \cdots Y_n$. We call Y_i trivial if $E_i = Id_n$ and $E'_i = 0$.

We prove the theorem by induction on the number of non-trivial matrices Y_i’s. If all Y_i’s are trivial, then $AY = (Id_n \mid D)$, for some matrix D. Therefore $U = Id_n$, as well as $Y = Id_{2n}$ and $A = B$. Thus, suppose that at least one of the Y_i’s is non-trivial.

We consider two cases;

Case (i). $e_{i_0} \neq 0$ for some i_0, where Y_{i_0} is non-trivial.

Let $AY_{i_0} = (V \mid D)$. Therefore,

$$V = \begin{pmatrix} 1 & 0 & \cdots & e'_{i_0}M_{i_1} & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & & \ddots & \ddots \\ 0 & 0 & \cdots & e'_{i_0}M_{n_{i_0}} & \cdots & 1 \end{pmatrix}$$

In order to invert V, one has to multiply the i_0-th row by $e_{i_0}^{-1}$, and then multiply it to $-e'_{i_0}M_{ji_0}$ and finally add it to j-th row, for any $j \neq i_0$.

Therefore, $V^{-1}AY_{i_0} = (Id_n \mid V^{-1}D)$. Also, the jk entry of $V^{-1}D$, for $j \neq k$ and both unequal to i_0, is

$$(V^{-1}D)_{jk} = M_{jk} - e_{i_0}^{-1}e'_{i_0}M_{i_1}M_{ik},$$

and the i_0j entry is

$$(V^{-1}D)_{i_0j} = e_{i_0}^{-1}M_{i_1j}.$$

$V^{-1}D$ may have non-zero entries on its diagonal. But there exists a trivial matrix Y', such that $V^{-1}AY_{i_0}Y'$ is equal to $V^{-1}AY_{i_0}$, except on the entries of the diagonal of the second block, which are all zero for the matrix $V^{-1}AY_{i_0}Y'$. Therefore $V^{-1}AY_{i_0}Y'$ is the generator matrix of a graph state, and by the above equalities, this graph state is

$$G \ast_{i_0} (e_{i_0}^{-1}e'_{i_0}) \circ_{i_0} e_{i_0}^{-1}e'_{i_0}^{-1}.$$

On the other hand, we have

$$B = UAY = UV(V^{-1}AY_{i_0}Y')(Y'^{-1}Y''),$$

where Y'' is equal to the multiplication of all Y_j’s except Y_{i_0}. We now observe that $V^{-1}AY_{i_0}Y'$ is a graph obtained from G, via operations \ast and \circ. Also the number of non-trivial terms in $Y'^{-1}Y''$ is less than this number in Y, and therefore by induction, the claim is proved.

Case (ii). $e_i = 0$ for all i’s that Y_i is non-trivial. Suppose that Y_{i_0} is non-trivial. If for every non-trivial Y_j, $M_{i_0j} = 0$, then the i_0-th row of the first block of AY is zero and hence, it would not be invertible and the first block of UAY can not be the identity. Thus, there exists an i_1, such that Y_{i_1} is non-trivial and $M_{i_0i_1} \neq 0$. Then the first block of the matrix $AY_{i_0}Y_{i_1}$ is

$$V = \begin{pmatrix} 1 & \cdots & e'_{i_0}M_{i_1} & e'_{i_1}M_{i_{i_1}} & \cdots & 0 \\ 0 & \vdots & \vdots & \vdots & \vdots & 0 \\ \vdots & 0 & e'_{i_1}M_{i_{i_1}} & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & e'_{i_0}M_{n_{i_0}} & e'_{i_1}M_{n_{i_1}} & \cdots & 1 \end{pmatrix}.$$

In order to invert V, one has to multiply the i_0-th and the i_1-st rows to $(e'_{i_0}M_{i_{i_0}})^{-1}$ and $(e'_{i_1}M_{i_{i_1}})^{-1}$, respectively, and then multiply the i_1-st row to $-e'_{i_1}M_{ji_0}$ and add it to the j-th row, for any j. And the same process for the i_0-th row. Notice that $e'_{i_0}f_{i_0} - e'_{i_0}f_{i_0} = 1$ and $e_{i_0} = 0$, so $e'_{i_0}f_{i_0} = -1$ and consequently, e'_{i_0} is non-zero. Also the same is true for e'_{i_1}. After all, switch the rows i_0 and i_1. By this process we get a matrix with the identity in the first block as well as a symmetric matrix on the second block. The non-zero elements of the diagonal of this block can be fixed by multiplying by an appropriate trivial matrix Y', same as previous case. So, we get

$$A' = V^{-1}AY_{i_0}Y_{i_1} = (Id_n \mid M'),$$

where M' is the matrix of a graph G' such that

$$M'_{jk} = M_{jk} - M^{-1}_{i_0j}M_{i_0j}M_{jk} - M^{-1}_{i_1j}M_{i_1j}M_{i_0k}.$$

Now, one can see that

$$G' = G \circ_{(e'_{i_0}M_{i_{i_0}})^{-1}}(\ast_{i_0}) \circ_{i_0} (e_{i_0}^{-1}e'_{i_0}) \ast_{i_0} e_{i_0}^{-1}e'_{i_0}^{-1}.$$

We have $B = UV^{-1}AY'^{-1}Y''$, where Y'' is equal to the multiplication of all Y_j’s, except Y_{i_0} and Y_{i_1}. Also the number of non-trivial terms in $Y'^{-1}Y''$ is strictly less than this number in Y, and therefore, by induction, the claim is proved.

The other direction of the theorem is an immediate consequence of the first direction.

\[
\square
\]

E. Local measurement of Pauli operators

Theorem 5 tells us that the action of the local Clifford group can be translated into operations on graphs. We do the same process, for local measurement of Pauli operators.
Suppose that the stabilizer group of a state is generated by \(g_1, g_2, \ldots, g_n \) and we measure \(h \in \mathbb{G} \). Assume that \(g_i^{-1} h g_i = \omega c h \). If \(c_i \)'s are all zero then \(h \) commutes with all of \(g_i \)'s, and therefore the outcome of the measurement is the state itself, with the unchanged stabilizer group. Otherwise, there exists at least one non-zero \(c_i \). By changing the set of generators for stabilizer group (using lemma 4), we can assume that \(c_1 \) is non-zero, and \(c_i = 0 \), \(i = 2, \ldots, n \). Therefore \(\omega c h, g_2, \ldots, g_n \) is a set of generators for the state after the measurement, in which \(c \) is the outcome of measurement. We use this idea to translate the local Pauli measurements to operations on graphs. In order to do so, we need the following definition.

Definition. Suppose that \(G \) is a labeled graph on \(\mathbb{F}_p \). If \(v \) is a vertex of \(G \), define \(d(v)G \) to be a graph on the same vertex set, but all neighborhood edges of \(v \) have zero labels.

Theorem 6. Suppose we have a graph state with label matrix \(M \) and we measure the operator \(X_i(a) \), that is \(X(a) \) on the \(i \)-th qupit. Then if \(M_{ij} = 0 \) for all \(j = 1, \ldots, n \) then the state remains unchanged, and if \(M_{ij} \neq 0 \) for some \(j \), then the state after the measurement is equivalent to

\[
d(i)(G^{\circ (M_{ij})^2} i \circ (-M_{ij}) j \circ (M_{ij})^2 i).
\]

Proof. If \(M_{ij} = 0 \), then \(X_i(a) \) commutes with the stabilizer group, and therefore, the state remains unchanged after the measurement. Thus, let us suppose that \(M_{ij} \neq 0 \) for some \(j \), and let \(\alpha = M_{ij} \). Now \(U (Id_n | M) \) is also a generator matrix for the graph state (lemma 4), where

\[
U = \begin{pmatrix}
1 & 0 & \cdots & -\alpha^{-1} M_{1i} & 0 \\
0 & 1 & \cdots & -\alpha^{-1} M_{2i} & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & 1 & \ddots & \vdots \\
0 & \cdots & -\alpha^{-1} M_{ni} & \cdots & 1
\end{pmatrix},
\]

and non-zero off-diagonal entries are on \(j \)-th column. We observe that \(X_i(a) \) commutes with all of the rows of \(U (Id_n | M) \), except the \(j \)-th one. Hence, if we replace the \(j \)-th row by

\[
(0, \cdots, 0, a, 0, \cdots, 0 | 0, \cdots, 0),
\]

we obtain the generator matrix for the new state. On the other hand, by lemma 7, every stabilizer state is equivalent to a graph state under the local Clifford group, and if we apply this process to the new generator matrix we end up with the generator matrix \((Id_n | M') \), where \(M' \) is the matrix of the the graph

\[
d(i)(G^{\circ (M_{ij})^2} i \circ (-M_{ij}) j \circ (M_{ij})^2 i).
\]

□

The changes after measuring the operator \(X_i(a)Z_i(b) \) on a graph state is presented in the following theorem.

Theorem 7. Consider a graph state with label matrix \(M \), and suppose that one measures the operator \(X_i(a)Z_i(b) \) on the \(i \)-th qupit, where \(a, b \) are non-zero. Then the state after measurement is equivalent to \(d(i)(G^{\circ (ab^{-1})} i) \).

Proof. First, suppose that \(M_{ij} = 0 \) for every \(j \). In this case \(X_i(a)Z_i(b) \) commutes with all of the generators, except the \(i \)-th one. So, if we replace it by

\[
(0, \cdots, 0, a, 0, \cdots, 0 | 0, \cdots, 0, b, 0, \cdots, 0),
\]

where \(a \) and \(b \) both locate on the \(i \)-th entries, then, using the local Clifford group, we obtain the same generator matrix and the same graph. Notice that in this case, \(d(i)(G^{\circ (ab^{-1})} i) \) is same as \(G \).

Therefore, assume that \(M_{ij} \neq 0 \) for some \(j \), and let \(\alpha = M_{ij} \). Clearly, \((U + \alpha a^{-1} b \delta_{ij}) (Id_n | M) \) is also a generator matrix for the stabilizer group, where

\[
U = \begin{pmatrix}
1 & 0 & \cdots & -\alpha^{-1} M_{1i} & 0 \\
0 & 1 & \cdots & -\alpha^{-1} M_{2i} & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & 1 & \ddots & \vdots \\
0 & \cdots & -\alpha^{-1} M_{ni} & \cdots & 1
\end{pmatrix},
\]

and again, non-zero off-diagonal entries are on \(j \)-th column. It is easy to check that all of the rows of \((U + \alpha a^{-1} b \delta_{ij}) (Id_n | M) \), except the \(j \)-th one, commute with \(X_i(a)Z_i(b) \). Hence, if we replace it by the row-representation of \(X_i(a)Z_i(b) \) we get to a generator for the new state. Applying the algorithm to get a graph state from this state (lemma 7), we obtain that the new graph is \(d(i)(G^{\circ (ab^{-1})} i) \).

□

And finally, measuring the operator \(Z_i(b) \) has some affects on the graph states, described below in details.

Theorem 8. Suppose that \(G \) is a graph state with label matrix \(M \), and we measure the operator \(Z_i(b) \) on the \(i \)-th qupit, where \(b \) is non-zero. Then the state after this measurement is equivalent to \(d(i)G \).
Proof. Consider the generating matrix \((Id_n \mid M) \) of the graph state. We know that all of the rows of this matrix, except the \(i \)-th one, are orthogonal to the row-representation of \(Z_i(b) \), which is \((0, \ldots, 0 \mid 0, \ldots, b, 0, \ldots, 0)\). Therefore, after the measurement, the stabilizer group is in fact the group generated by the rows of \((Id_n \mid M) \), except the \(i \)-th one, and \(Z_i(b) \). Therefore, the stabilizer state, after deleting the \(i \)-th qupit, is \(d(i)G \).

IV. EFFICIENT ALGORITHM TO RECOGNIZE EQUIVALENCY OF GRAPH STATES

Let \(G \) and \(H \) be two connected graphs, with label matrices \(M \) and \(N \), and assume that these two graphs are equivalent under the action of local Clifford group. Notice that by operations \(\ast \) and \(\circ \), a connected graph remains connected. Therefore, by lemma 6', There exists a matrix \(Y \) such that

\[
Y = \begin{pmatrix} E & F \\ E' & F' \end{pmatrix},
\]

where

\[
E = \text{diag}(e_1, \ldots, e_n), \quad F = \text{diag}(f_1, \ldots, f_n),
\]

\[
E' = \text{diag}(e_1', \ldots, e_n'), \quad F' = \text{diag}(f_1', \ldots, f_n'),
\]

and \(e_i e_i' = f_i f_i' = 1 \), for any \(i \); in addition, the rows of \((Id_n \mid N) \) and \((Id_n \mid M) Y \) are orthogonal.

In order to rephrase these conditions, by abuse of notation, consider each diagonal block as a vector. That is \(E = (e_1, \ldots, e_n), \ E' = (e_1', \ldots, e_n'), \ F = (f_1, \ldots, f_n) \) and finally \(F' = (f_1', \ldots, f_n') \). Also for two vectors \(v, u \in \mathbb{F}_p^n \), let \(v \times u \) be the vector satisfying

\[
(v \times u)_i = v_i u_i,
\]

and recall that \(v \cdot u \) is the usual inner product that we used latter.

Using these notations, one can check that the orthogonality and the determinant assumptions are equivalent to the followings:

\[
E' \cdot (M_i \times N_j) - F' \cdot (M_i \times \delta_j) + E \cdot (\delta_i \times N_j) - F \cdot (\delta_i \times \delta_j) = 0,
\]

(1)

for all \(i, j \), and

\[
E \times F' - E' \times F = (1, 1, \cdots, 1),
\]

(2)

where, \(M_i \) and \(N_j \) are \(i \)-th and \(j \)-th rows of matrices \(M \) and \(N \), respectively, and \(\delta \) is the Kronecker delta function.

(1) is a set of linear equations with undetermined variables \(E, E', F \) and \(F' \), and its solutions consist a vector space. Hence, one can compute a basis \(B \) for this space using efficient algorithms. It means that, our problem is reduced to checking the equation (2) for these solutions. But, the space of solutions may have a large dimension, and it may take an exponential time to check it for all solutions. On the other hand, it is proved in (2) that if the dimension of the solutions is large enough, then, there exists an affine subspace of large dimension satisfying equation (2). In fact we have the following precise theorem (see (2)).

Theorem 9. If two graphs \(G \) and \(H \) are equivalent, then there exists an affine linear subspace in the space of solutions (of (1)) satisfying (2), with co-dimension at most 5.

Roughly speaking, if \(G \) and \(H \) are equivalent then almost all of the solutions of (1) satisfy (2). In fact, using the following lemma which is proved in [2], we can check the equation (2) in polynomial time.

Lemma 8. For any base \(B \) of a linear space \(\Lambda \), and every affine subspace \(\Gamma \) of \(\Lambda \) of codim \(\leq 5 \), there exists a vector \(u \in \Gamma \), which is a linear combination of at most five elements of \(B \).

Putting theorem 9 and lemma 8 together, we obtain the following algorithm for recognizing local equivalency of graphs.

Algorithm. First, compute a basis \(B \) for the space of solutions of (1). Next, consider all vectors which are a linear combination of at most 5 vectors in \(B \), and check the equation (2) for them. If among them at least one satisfies (2), then \(G \) and \(H \) are equivalent, otherwise they are not equivalent. Notice that, this is a polynomial time algorithm.

V. CONCLUSION

We have established a lower bound on the number of graph states over \(n \) qubits. For non-binary case, we have shown that the action of local Clifford group on the graph states, can be described by some operations on graphs. Also, we have established an efficient algorithm to verify whether two graphs are locally equivalent or not.

Acknowledgement. Authors are greatly thankful to Peter W. Shor, for all his gracious support and helpful
advice. They are also thankful to Isaac Chuang for introducing this problem, and for all useful comments he kindly gave them.

[1] A. Ashikhmin and E. Knill, *Nonbinary quantum stabilizer codes*, IEEE Trans. Info. Theory, 47 (2001), 3065-3072.
[2] M. Bahramgiri, S. Beigi, *An efficient algorithm to recognize locally equivalent graphs in non-binary case*, cs/0702057.
[3] A. Bouchet, *An efficient algorithm to recognize locally equivalent graphs*, Combinatorica, 11 (1991), 315-329.
[4] A. Bouchet, *Transforming trees by successive local complementations*, J. Graph Theory, 12 (1988), 195-207.
[5] A. Bouchet, *Recognizing locally equivalent graphs*, Discrete Math., 114 (1993), 75-86.
[6] R. Cleve, *Quantum Stabilizer Codes and Classical Linear Codes*, Phys. Rev. A 55, 4054 - 4059 (1997).
[7] J. Dehaene, E. Hostens and B. De Moor, *Stabilizer states and Clifford operations for systems of arbitrary dimensions, and modular arithmetic*, quant-ph/0408190.
[8] J. Dehaene, M. Van den Nest and B. De Moor, *An efficient algorithm to recognize local Clifford equivalence of graph states*, quant-ph/0405023.
[9] J. Dehaene, M. Van den Nest and B. De Moor, *Graphical description of the action of local Clifford transformations on graph states*, quant-ph/0308151.
[10] M. Hein, J. Eisert and H. J. Briegel, *Multi-party entanglement in graph states*, quant-ph/0307130.
[11] M. Hein, W. Dur, J. Eisert, R. Raussendorf, M. Van den Nest and H. J. Briegel, *Entanglement in graph states and its applications*, quant-ph/0602096.
[12] A. Ketkar, A. Klappenecker, S. Kumar and P. K. Sarvepalli, *Nonbinary stabilizer codes over finite fields*, quant-ph/0508070.
[13] M. A. Nielsen and I. L. Chuang, *Quantum computation and quantum information*, Cambridge University Press, (2000).
[14] R. Otter, *The number of trees*, Ann. of Math. (2), 49 (1948), 583-599.
[15] D. Schlingemann, *Stabilizer codes can be realized as graph codes*, quant-ph/0111080.