Differences and similarities between disseminated intravascular coagulation and thrombotic microangiopathy

Hideo Wada1, Takeshi Matsumoto2, Kei Suzuki3, Hiroshi Imai3, Naoyuki Katayama4, Toshiaki Iba5 and Masanori Matsumoto6

Abstract

Introduction: Both disseminated intravascular coagulation (DIC) and thrombotic microangiopathy (TMA) cause microvascular thrombosis associated with thrombocytopenia, bleeding tendency and organ failure.

Reports and discussion: The frequency of DIC is higher than that of thrombotic thrombocytopenic purpura (TTP). Many patients with TMA are diagnosed with DIC, but only about 15% of DIC patients are diagnosed with TMA. Hyperfibrinolysis is observed in most patients with DIC, and microangiopathic hemolytic anemia is observed in most patients with TMA. Markedly decreased ADAMTS13 activity, the presence of Shiga-toxin-producing Escherichia coli (STEC) and abnormality of the complement system are useful for the diagnosis of TTP, STEC-hemolytic uremic syndrome (HUS) and atypical HUS, respectively. However, there are no specific biomarkers for the diagnosis of DIC.

Conclusion: Although DIC and TMA are similar appearances, all coagulation, fibrinolysis and platelet systems are activated in DIC, and only platelets are markedly activated in TMA.

Keywords: DIC, TMA, Microvascular thrombosis, Hyperfibrinolysis, Organ failure, Microangiopathic hemolytic anemia

Background

Disseminated intravascular coagulation (DIC) [1, 2] is a serious disease that causes microvascular thrombosis associated with thrombocytopenia, a bleeding tendency and organ failure. These symptoms and laboratory data are similar to those of thrombotic microangiopathy (TMA) [3] which includes thrombotic thrombocytopenic purpura (TTP) [4, 5], Shiga-toxin-producing Escherichia coli (STEC) - hemolytic uremic syndrome (HUS) [6, 7], complement-mediated TMA (also called atypical HUS; aHUS) [7, 8] and secondary TMA [3, 9]. DIC also has several clinical subtypes, including asymptomatic type, marked bleeding type, organ failure type and complication types such as TTP or heparin-induced thrombocytopenia [10]. As the treatment of DIC [11] differs from that of TMA [4, 12], it is important to perform a differential diagnosis of DIC and TMA. The differences and similarities between DIC and TMA are reviewed in this study.

Differences in the definition and concept of DIC and TMA

The frequency of pneumonia associated DIC was reported to be about 10,000 cases per year according to the Japanese Diagnosis Procedure Combination (DPC) database [13], suggesting that DIC due to pneumonia occurs in about 70/10^6 populations. With the addition of other types of DIC, the frequency of all DIC is about 300/10^6 populations. In contrast, the frequency of TTP was reported to be 2.0/10^6 populations [3]. These reports suggest that the frequency of DIC in Japan is 150-fold higher than that of TTP (Fig. 1). According to the International Society of Thrombosis and Haemostasis (ISTH), DIC is an acquired syndrome characterized by the intravascular activation of coagulation with the loss of localization arising from different causes. It can originate from and cause damage to the microvasculature, which if sufficiently severe, can produce organ dysfunction. DIC is characterized by the generation of fibrin.
related markers (FRMs; soluble fibrin monomers, fibrinogen and fibrin degradation products [FDPs], D-dimers, etc.) and reflects an acquired (inflammatory) or non-inflammatory disorder of the microvasculature [1]. Regarding the definition of TMA, TMA presents with microangiopathic hemolytic anemia (MHA), including hemolytic anemia, thrombocytopenia and organ failure in the kidney, central nervous system, and other organs [3, 4]. These findings suggest that marked elevation of FRMs is required in DIC while MHA is required in TMA; the diagnosis of TTP among TMA requires a markedly decreased ADAMTS13 level [14], that of STEC-HUS requires the detection of a STEC infection [15] and that of aHUS requires the detection of abnormalities in the complement system [16].

However, DIC has no specific marker for its diagnosis and is instead diagnosed by a scoring system using global coagulation tests. Furthermore, DIC is often associated with TMA, and TMA is often associated with DIC [17], suggesting that a differential diagnosis between DIC and TMA may be difficult.

DIC associated with TMA was observed in patients with bone marrow metastasis of solid cancer as gastric cancer, those with liver failure and those with group A streptococcal infection. In patients with DIC, bone marrow metastasis mainly causes MHA, liver failure mainly causes an
increase in the von Willebrand factor/ADAMTS13 ratio, and group A streptococcal infection mainly cause massive hemolysis. However, it would be much more important to find TMA associated with DIC.

Differences and similarities in the mechanism of onset for DIC and TMA

The basic mechanism of onset for DIC is the marked activation and consumption of coagulation system followed by the activation of secondary fibrinolysis [18]. In contrast, the basic mechanism of onset for TMA is the marked activation and consumption of platelets due to several factors followed by the activation and injury of vascular endothelial cells [19, 20] (Fig. 2). Triggers of the activation of coagulation system are reported to include tissue factor (TF) [21, 22], inflammatory cytokines [23, 24] and lipopolysaccharide (LPS) [25], the activation leukocytes [26] and abnormal delivery among others. Trigger of platelet and vascular endothelial cells activation are reported to be a marked decrease in the ADAMTS13 levels in TTP [27], the detection of STEC in STEC-HUS [15] and the detection of abnormalities in the complement system in aHUS [16], along with other factors, such as transplantation, pregnancy, drugs and immune diseases, in secondary TMA [28]. Particularly marked decreases in the ADAMTS13 level result in an inability to cleave ultra-large multimers of von Willebrand factor [29, 30], thereby causing platelet aggregation. Markedly fibrinolysis is frequently observed in most patients with DIC, except for some septic DIC cases [31], while markedly fibrinolysis is not observed in patients with TMA.

Both DIC and TMA cause microvascular thrombosis, which is caused mainly by the activation of the coagulation system in DIC and by the activation of platelets and vascular endothelial cells in TMA. Several cases of TMA have been reported to be complicated with hemophilia patients treated with activated prothrombin complex concentrates (APCCs) in the clinical trial for Emicizumab [32]. As APCCs usually causes DIC but not TMA, the differential diagnosis is important in these cases [33].

Although DIC is an acquired disease, Upshaw-Schulman syndrome as familial TTP [34] and many patients with aHUS are examples of congenital TMA.

Difference in the diagnosis between DIC and TMA

As there is no gold standard for diagnosing DIC and no specific biomarker that clearly diagnoses DIC, the differential diagnosis between DIC and TMA is difficult. Four diagnostic criteria for DIC has been established by the Japanese Ministry of Health, Labor and Welfare, JAAM Japanese Association for Acute Medicine, ISTH platelet count, FDP fibrinogen and fibrin degradation products, TAT thrombin antithrombin complex, SF soluble fibrin, SIRS systemic inflammatory response syndrome, DIC disseminated intravascular coagulation

ISTH	P	JSTH	P	JMHLW	P	JAAM	P
PLT (x 10³/μl) 100 ≥ 50 1 120 ≥ 80 1 120 ≥ 80 1 120 ≥ 80 1							
50 ≥ 2 80 ≥ 50 2 80 ≥ 50 2							
50 ≥ 3 50 ≥ 3 3 80 ≥ 3 3							
Reduction of PLT 30% 1* 30% 1* 50% 3*							
Prothrombin time ratio or Prolongation (s) 3 ≤ 6.0 1 1.25 ≤ 1.67 1 1.25 ≤ 1.67 1 1.2 ≤ 1							
6 ≤ 2 1.67 ≤ 2 1.67 ≤ 2							
Fibrinogen (g/L) 1.0 ≥ 1 1.5 ≥ 1.0 1 1.0 ≥ 2							
Fibrin related markers, FDP (μg/ml) Increase 2 20 ≤ 40 2 20 ≤ 40 2							
Markedly increase 3 40 ≤ 3 40 ≤ 3 25 ≤ 3 3							
Antithrombin < 70% 1							
TAT or SF 2 fold higher of NR							
Underlying diseases Positive 1							
Bleeding Positive 1							
OF due to thrombosis Positive 1							
SIRS Positive 1							
DIC 5 ≤ 7 ≤ 4 ≤							

ISTH International Society of Thrombosis and Haemostasis, JSTH Japanese Society of Thrombosis and Hemostasis, JMHLW Japanese Ministry of Health, Labor and Welfare, JAAM Japanese Association for Acute Medicine, PLT platelet count, FDP fibrinogen and fibrin degradation products, TAT thrombin antithrombin complex, SF soluble fibrin, SIRS systemic inflammatory response syndrome, DIC disseminated intravascular coagulation

*PLT and reduction of PLT points should be within 3 points
These diagnostic criteria use a similar scoring system based on global coagulation tests (GLTs) such as the platelet count, prothrombin time (PT), FRMs (Table 1). Therefore, there are no significant differences in the usefulness among various diagnostic criteria for DIC [39]. The diagnosis of TMA is based on the presence of hemolytic anemia (hemoglobin < 10 g/dl), thrombocytopenia (12 x 10^9/ml) and organ failure. TMA patients with ADAMTS13 < 10%, those with STEC and those with abnormalities in the complement system can be easily diagnosed with TTP, STEC-HUS and aHUS, respectively [4, 40, 41]. However, markedly decreased ADAMTS13 levels have been reported in severe sepsis patients without TTP [42, 43], suggesting that platelet activation due to decreased ADAMTS13 might be observed in DIC patients with severe sepsis. The diagnosis of other TMA aside from DIC with hemolysis is difficult. Most patients with TMA can be diagnosed using several DIC diagnostic criteria to have DIC, but only 10%–15% of DIC patients can be diagnosed to have TMA (Fig. 2).

Differences and similarities between DIC and TMA

The differences and similarities between DIC and TMA are described in Table 3. Among clinical symptoms, bleeding and organ failure are frequently observed in patients with DIC as well as those with TMA, but lung or cardiovascular failures is more frequently observed only in patients with DIC [44], while renal or central nervous system failure is more frequently observed in patients with TMA [3]. Hypotension as organ failure is observed in many patients with DIC, while hypertension tend to be observed in patients with TMA [45]. Hypertension may be caused by acute kidney injury or arterial occlusion.

Symptoms	Severe DIC	Severe TMA
Organ failure	Often (Lung, Kidney, Shock)	Usually (Kidney, CNS)
Bleeding and bleeding tendency	Frequent	Frequent
Blood pressure	Low	High
Hematuria	Sometimes	Frequent
Anemia	Often	Usually
Laboratory data		
Platelet count	Low	Low
Hemoglobin	Often low	Low
Fibrin related markers	Markedly high	Slightly high
Prothrombin time	Often prolong	Normal
Antithrombin	Often low	Normal
Albumin	Often low	Normal
Creatinine	Often high	High
Total bilirubin, LDH	Often high	High
Treatments	Supportive therapy	Recommended
Blood transfusion (RBC, FFP)	Recommended	Recommended,
Blood transfusion (PC)	Recommended	Not recommended
Anticoagulant	Recommended (Japan)	Not mentioned
PE/FFP	Not mentioned	Recommended
Special treatment	AT, rhTM (Japan)	Hemodialysis (HUS), Eculizumab (aHUS), Rituximab (TTP)

Table 2 Diagnostic criteria for TMA [4, 35, 36]

	STEC-HUS	aHUS	TTP	TMA
Hemoglobin (g/dl)	10.0 ≥	10.0 ≥		10.0 ≥
Platelet (x 10^9/μl)	15.0 ≥	15.0 ≥		15.0 ≥
Ogan failure	Renal failure	Creatinine ≥ 1.5 folds of the standard	Renal failure	Creatinine ≥ 1.5 folds of the standard
Laboratory finding	Detection of STEC		Genetic abnormality in the complement system	ADAMTS13 < 10%
Anemia is also more frequently observed in patients with TMA [20, 46] than in those with DIC. Red blood cell fragmentation may be caused by microvascular thrombosis on the arterial side which has a high blood pressure, but not on the venous side (Fig. 3). Among laboratory data, thrombocytopenia is observed in both DIC and TMA. A decreased hemoglobin level and increased levels of creatinine, total bilirubin and LDH are observed in most patients with TMA, but these abnormalities are observed in only 15% of patients with DIC. A prolonged PT and decreased AT and albumin levels are frequently (but not always) observed in patients with DIC. Markedly elevated FRMs are observed in most patients with DIC. As markedly fibrinolysis may dissolve microthromboses in patients with DIC but not in those with TMA, thrombosis of DIC is not usually detected on autopsy. Therefore, elevated FRMs and decreased platelet counts are the most useful markers for DIC [1].

In Japan, regarding the treatment of DIC and TMA, platelet transfusion is contraindicated for TMA [4], while anticoagulant therapy for DIC, but not for TMA, is recommended [10, 11]. Anti-fibrinolytic therapy is recommended for DIC patients with hyperfibrinolysis. Plasma exchange is recommended in most some cases of TMA such as TTP [47], but not for DIC. Antithrombin concentrate [48] and recombinant thrombomodulin [49] for DIC are frequently used in Japan, while eculizumab [50] has proven effective for compliment mediated TMA, such as aHUS, and rituximab [51] is effective for TTP in patients with a high titer of inhibitor for ADAMTS13.

Conclusion

DIC and TMA are similar appearances, however, all coagulation, fibrinolysis and platelet systems are activated in DIC, and only platelets are markedly activated in TMA. As treatment is different between DIC and TMA, differential diagnosis between DIC and TMA is important.

Abbreviations

aHUS: atypical HUS; DIC: Disseminated intravascular coagulation; DPC: Diagnosis Procedure Combination; FDP: fibrinogen and fibrin degradation products; FRMs: fibrin related markers; GLTs: global coagulation tests; HUS: Hemolytic uremic syndrome; ISTH: International Society of Thrombosis and Haemostasis; JSTH: Japanese Society on Thrombosis and Hemostasis; MHA: microangiopathic hemolytic anemia; PT: prothrombin time; STEC: Shiga- toxin-producing Escherichia coli; TMA: thrombotic microangiopathy; TTP: thrombotic thrombocytopenic purpura

Acknowledgements

None

Funding

This work was supported in part by a Grant-in-Aid from the Ministry of Health, Labour and Welfare of Japan and the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Availability of data and materials

None

Authors’ contributions

WH fully wrote this manuscript. MT, SK and IH reviewed these references. KN, IT, and MM discussed and gave the suggestions for this manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

The study protocol was approved by the Human Ethics Review Committee of the Mie University School of Medicine, and a signed consent form was obtained from each subject. This study was faithfully carried out in accordance with the principles of the Declaration of Helsinki.

Consent for publication

A signed consent form was obtained from each subject.

Competing interests

The authors declare that they have no competing interests.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Molecular and Laboratory Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan. 2Division of Blood Transfusion Medicine and Cell Therapy, Mie University Graduate School of Medicine, Tsu, Japan. 3Emergency Critical Care Center, Mie University Graduate School of Medicine, Tsu, Japan. 4Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan. 5Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan. 6Department of Blood Transfusion Medicine, Nara Medical University, Nara, Japan. 7Department of Molecular and Laboratory Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan. 8Division of Blood Transfusion Medicine and Cell Therapy, Mie University Graduate School of Medicine, Tsu, Japan.

Received: 23 January 2018 Accepted: 21 March 2018

Published online: 11 July 2018

References
1. Taylor FB Jr, Toh CH, Hoots WK, Wada H, Levi M. Scientific subcommittee on disseminated intravascular coagulation (DIC) of the international society on thrombosis and Haemostasis (ISTH): towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86:1327–30.

2. Wada H, Matsumoto T, Yamashita Y, Hatada T. Disseminated intravascular coagulation: testing and diagnosis. Clin Chim Acta. 2014;436:130–4.

3. Wada H, Matsumoto T, Yamashita Y. Natural history of thrombotic thrombocytopenic Purpura and hemolytic uremic syndrome. Semin Thromb Hemost. 2014;40:866–73.

4. Matsumoto M, Fujimura Y, Wada H, Kokame K, Nishiki K, Nishikawa M, vaccinated S, Yagi H, Suzuki K, Nakamura S, Nobi T. Measurement of tissue factor messenger RNA levels in leukocytes from patients in hypercoagulable state caused by several underlying diseases. Thromb Haemost. 2003;89:660–5.

5. Seise T, Wada H, Nishioka J, Abe Y, Gabaaza EC, Shiku H, Suzuki K, Nakamura S, Nobi T. Measurement of tissue factor messenger RNA levels in leukocytes from patients in hypercoagulable state caused by various diseases. Thromb Haemost. 2004;92:132–9.

6. Wada H, Tamaki S, Tanigawa M, Takagi M, Deguchi A, Mori Y, Yamamoto N, Yamamoto T, Deguchi K, Shitokawa S. Plasma level of IL-1β in disseminated intravascular coagulation. Thromb Haemost. 1991;65:364–8.

7. Wada H, Ohiwa M, Nishioka J, Deguchi A, Mori Y, Katayama N, Yamamoto T. Plasma level of IL-1β in disseminated intravascular coagulation. Thromb Haemost. 1991;65:364–8.

8. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.

9. Seise T, Wada H, Nishioka J, Abe Y, Gabaaza EC, Shiku H, Suzuki K, Nakamura S, Nobi T. Measurement of tissue factor messenger RNA levels in leukocytes from patients in hypercoagulable state caused by various diseases. Thromb Haemost. 2003;89:660–5.

10. Seise T, Wada H, Nishioka J, Abe Y, Gabaaza EC, Shiku H, Suzuki K, Nakamura S, Nobi T. Measurement of tissue factor messenger RNA levels in leukocytes from patients in hypercoagulable state caused by various diseases. Thromb Haemost. 2004;92:132–9.

11. Wada H, Tamaki S, Tanigawa M, Takagi M, Deguchi A, Mori Y, Katayama N, Yamamoto T, Deguchi K, Shitokawa S. Plasma level of IL-1β in disseminated intravascular coagulation. Thromb Haemost. 1991;65:364–8.

12. Seise T, Wada H, Nishioka J, Abe Y, Gabaaza EC, Shiku H, Suzuki K, Nakamura S, Nobi T. Measurement of tissue factor messenger RNA levels in leukocytes from patients in hypercoagulable state caused by various diseases. Thromb Haemost. 2003;89:660–5.

13. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.

14. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.

15. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.

16. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.

17. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.

18. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.

19. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.

20. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.

21. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.

22. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.

23. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.

24. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.

25. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.

26. Seise T, Wada H, Matsumoto M, Fujimura Y, Isonishi A, Yagi H, Kokame K, Soejima K, Murata M. Elevated von Willebrand factor and von Willebrand factor multimers in plasma from patients with thrombotic microangiopathy. Transfusion. 2017;57:2775–85.
37. Asakura H, Takahashi H, Uchiyama T, Eguchi Y, Okamoto K, Kawasugi K, Madoiwa S, Wada H. DIC subcommittee of the Japanese Society on Thrombosis and Hemostasis: Proposal for new diagnostic criteria for DIC from the Japanese Society on Thrombosis and Hemostasis. Crit Care Med. 2008;36:145–50.

38. Wada H, Takahashi H, Uchiyama T, Eguchi Y, Okamoto K, Kawasugi K, Madoiwa S, Asakura H. DIC subcommittee of the Japanese Society on Thrombosis and Hemostasis: The approval of revised diagnostic criteria for DIC from the Japanese Society on Thrombosis and Hemostasis. Thromb J. 2017;15:17.

39. Takemitsu T, Wada H, Hatada T, Ohnori Y, Ishikura K, Takeda T, Sugiyama T, Yamada N, Maruyama K, Katayama N, Isaji S, Shimpoo H, Kusunoki M, Nobori T. Prospective evaluation of three different diagnostic criteria for disseminated intravascular coagulation. Thromb Res. 2011;128:40–4.

40. Terano C, Ishikura K, Hamada R, Yoshiya Y, Kubota W, Okuda Y, Shinozuka S, Harada R, Iyoda S, Fujimura Y, Hamasaki Y, Hataya H, Honda M. Practical issues in using eculizumab for children with atypical hemolytic uremic syndrome in the acute phase: a review of 4 patients. Nephrolody (Carlton). 2017, in press.

41. Kato H, Nangaku M, Hataya H, Sawai T, Ashida A, Fujimura R, Hidaka Y, Kaname S, Maruyama S, Yasuda T, Yoshiya Y, Ito S, Hattori M, Miyakawa Y, Fujimura Y, Okada K, Kage S. Joint Committee for the Revision of clinical guidelines of atypical hemolytic-uremic syndrome in Japan: guidelines for the diagnosis of atypical hemolytic-uremic syndrome in Japan. Pediatr Int. 2016;58:549–55.

42. Ono T, Mimuro J, Madoiwa S, Soejima K, Kashiwakura Y, Ishiwata A, Takano K, Ohnori T, Sakata Y. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107:528–34.

43. Habe K, Wada H, Ito-Habe N, Hatada T, Matsumoto T, Oishi K, Maruyama K, Imai H, Muiutani H, Nobori T, Plasma ADAMTS13, von Willebrand factor (VWF) and VWF propeptide profiles in patients with DIC and related diseases. Thromb Res. 2012;129:598–602.

44. Wada H, Matsumoto T, Hatada T. Diagnostic criteria and laboratory tests for disseminated intravascular coagulation. Expert Rev Hematol. 2012;5:543–52.

45. Rafiq A, Tariq H, Abbas N, Sheny M. Atypical hemolytic-uremic syndrome: a case report and literature review. Ann J Case Rep. 2015;16:109–14.

46. Ito N, Wada H, Matsumoto M, Fujimura Y, Murata M, Izuo T, Sugita M, Ikeda Y. National questionnaire survey of TMA. Int J Hematol. 2009;90:328–35.

47. Rock GA, Shumak KH, Buskard NA, Blanchette VS, Keltun DG, Nair RC, Spasoff RA, Group CAS. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. N Engl J Med. 1991;325:395–7.

48. Iba T, Gando S, Saitoh D, Wada H, Di Nisio M, Thachil J. Antithrombin supplementation and risk of bleeding in patients with sepsis-associated disseminated intravascular coagulation. Thromb Res. 2016;145:46–50.

49. Hayakawa M, Yamakawa K, Saito S, Uchino S, Kudo D, Iizuka Y, Sanui M, Takimoto K, Mayumi T, Ono K. Japanese septic disseminated intravascular coagulation (SEPTIC DIC) study group: recombinant human soluble thrombomodulin and mortality in sepsis-induced disseminated intravascular coagulation. A multicentre retrospective study. Thromb Haemost. 2016;115:1157–66.

50. Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S, Bedosian C, Bingham C, Cohen DJ, Delmas Y, Douglas K, Etter F, Feldkamp T, Fouque D, Furman RR, Gaber O, Herenhelius M, Hourmant M, Kaprnan D, Lebranchi Y, Mariat C, Menne J, Moulin B, Nurnberger J, Ogawa M, Remuzzi G, Richard T, Sberro-Sousan R, Severino B, Sheinin NS, Trivelli A, Zimmerhackl LB, Goodship T, Liorat C. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013 Jun 6;368:2169–81.

51. George IN, Woodson RD, Kiss JE, Kojoari K, Vesely SK. Rituximab therapy for thrombotic thrombocytopenic purpura: a proposed study of the transfusion medicine/hemostasis clinical trials network with a systematic review of rituximab therapy for immune-mediated disorders. J Clin Apheresis. 2006:21:49–56.