Transportation Proof of an inequality by Anantharam, Jog and Nair

Thomas A. Courtade
University of California, Berkeley

January 30, 2019

Abstract
Anantharam, Jog and Nair recently put forth an entropic inequality which simultaneously
generalizes the Shannon-Stam entropy power inequality and the Brascamp-Lieb inequality in
entropic form. We give a brief proof of their result based on optimal transport.

1 Introduction
Let \((c_1, \ldots, c_k)\) and \((d_1, \ldots, d_m)\) be nonnegative numbers, and let \((A_1, \ldots, A_m)\) be a collection
of surjective linear transformations identified as matrices, satisfying \(A_j : \mathbb{R}^n \rightarrow \mathbb{R}^n\) for \(j = 1, \ldots, m\). Let \(S^+ (\mathbb{R}^n)\) denote the set of \(n \times n\) real symmetric, positive definite matrices, and define

\[
M_g := \sup_{B_1, \ldots, B_k \in S^+ (\mathbb{R}^{r_i})} \frac{1}{2} \sum_{i=1}^k c_i \log \det (B_i) - \frac{1}{2} \sum_{j=1}^m d_j \log \det (A_j B A_j^T),
\]

where \(B := \text{diag} (B_1, \ldots, B_k)\). For a random vector \(X\) in \(\mathbb{R}^n\) with density \(f\) with respect to Lebesgue
measure, we define the Shannon (differential) entropy according to

\[
h(X) := - \int_{\mathbb{R}^n} f(x) \log f(x) dx,
\]

and say that the entropy exists if the defining integral exists in the Lebesgue sense and is finite.

Anantharam, Jog and Nair recently established the following result:

Theorem 1 ([1, Theorem 3]). Let \(X\) be a random vector in \(\mathbb{R}^n\) that can be partitioned into \(k\) mutually independent components \(X = (X_1, \ldots, X_k)\), where each \(X_i\) is a random vector in \(\mathbb{R}^{r_i}\), and \(\sum_{i=1}^k r_i = n\). If \(X\) has finite entropy and second moments, then letting the above notation prevail,

\[
\sum_{i=1}^k c_i h(X_i) - \sum_{j=1}^m d_j h(A_j X) \leq M_g.
\]

As discussed in detail in [1], this result contains as special cases both the Shannon-Stam entropy
power inequality [2, 3] (in Lieb’s form [4]), and the Brascamp-Lieb inequality (in entropic form, due to Carlen and Cordero-Erasquin [5]).

Anantharam et al.’s proof of Theorem 1 is based on a doubling argument applied to information
measures, following the scheme developed in [6] by Geng and Nair. This doubling-trick for proving
Gaussian optimality goes back at least to Lieb’s original proof of the Brascamp-Lieb inequality \cite{lieb1976}, but the Geng-Nair interpretation in the context of information measures has enjoyed recent popularity in information theory (e.g., \cite{geng2001, nair2003, nair2004}). The contribution in the present note is to give a brief proof of Theorem 1 based on optimal transport. It has the advantage of being considerably shorter than the doubling proof in \cite{zaslavsky2009}. Interestingly, the proof here also seems to be simpler than Barthe’s transport proof of the Brascamp-Lieb inequality \cite{barthe2001}. However, Barthe’s argument and the proof contained herein are not truly comparable on account of the following caveats: (i) Theorem 1 implies the entropic form of the Brascamp-Lieb inequality, so some work is required to recover the functional form; and (ii) Barthe’s argument simultaneously establishes a reverse form of the Brascamp-Lieb inequality (i.e., Barthe’s inequality), and further gives a precise relationship between best constants in the forward and reverse inequalities.

\section{Proof of Theorem 1}

The key lemma is the following change-of-variables estimate, inspired by Rioul and Zamir’s recent proof \cite{rioul2009} of the Zamir-Feder entropy power inequality \cite{zamir2009} (which also follows from Theorem 1 as noted in \cite{zaslavsky2009}). We remark that other applications of optimal transport to entropy power inequalities can be found in \cite{geng2001, nair2003, nair2004}. Readers are referred to \cite{zaslavsky2009} for background on optimal transport.

\textbf{Lemma 1.} Let $\tilde{Z} \sim N(0, I)$ be a standard normal random variable in \mathbb{R}^n, and let $A : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a surjective linear map. Let X be a random vector in \mathbb{R}^n, and let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be the Brenier map sending \tilde{Z} to X. If T is differentiable with pointwise positive definite Jacobian ∇T, then

\[h(A(\tilde{Z})) \geq h(Z) + \frac{1}{2} \mathbb{E} \log \det(A(\nabla T(\tilde{Z}))^2A^T), \]

where Z is standard normal on \mathbb{R}^m.

\textbf{Proof.} Consider the QR decomposition of $A^T = QR = [Q_1, Q_2][R_1^T, 0]^T$, where Q is an orthogonal $n \times n$ matrix, and R_1 is an upper triangular $m \times m$ matrix, with positive entries on the diagonal. Let Z' be standard normal on \mathbb{R}^{n-m}, independent of Z, and note that $\tilde{Z} = Q_1Z + Q_2Z'$ is a valid coupling. Now, for fixed z', the map $z \in \mathbb{R}^m \rightarrow AT(Q_1z + Q_2z') \in \mathbb{R}^m$ is invertible and differentiable. Differentiability follows from our assumption on T, and invertibility follows by writing $T = \nabla \varphi$ for strictly convex φ (Brenier’s theorem with the positivity assumption), and noting that the map $z \rightarrow Q_1^T \nabla \varphi(Q_1z + Q_2z')$ is the gradient of the strictly convex function $z \rightarrow \varphi(Q_1z + Q_2z')$, and is therefore invertible. So, we have

\begin{align*}
\hfill (1) \quad h(AX) &= h(AT(\tilde{Z})) = h(AT(Q_1Z + Q_2Z')) \\
&\geq h(AT(Q_1Z + Q_2Z')|Z') \\
&\geq h(Z) + \frac{1}{2} \mathbb{E} \log \det(Q_1^T \nabla T(\tilde{Z})Q_1) + \log \det R_1 \hfill (2) \\
&= h(Z) + \frac{1}{2} \mathbb{E} \log \left(\det(Q_1^T \nabla T(\tilde{Z})Q_1)\right)^2 + \log \det R_1 \hfill (3) \\
&= h(Z) + \frac{1}{2} \mathbb{E} \log \det(Q_1^T(\nabla T(\tilde{Z}))^2Q_1) + \log \det R_1 \hfill (4) \\
&= h(Z) + \frac{1}{2} \mathbb{E} \log \det(A(\nabla T(\tilde{Z}))^2A^T).
\end{align*}
Above, (1) follows since $X = T(\hat{Z})$ in distribution; (2) follows from the fact that conditioning reduces entropy; (3) is the change of variables formula for entropy; and (4) follows since the squared spectrum of $Q_1^T \nabla T(\hat{z}) Q_1$ is equal to the spectrum of $Q_1^T (\nabla T(\hat{z}))^2 Q_1$ for each \hat{z} by symmetry of ∇T (an easy exercise, e.g., seen by diagonalizing $\nabla T(\hat{z})$).

Now, we begin the proof of Theorem 1. Without loss of generality, we may assume the density of each X_i is smooth, bounded and strictly positive. Indeed, if this is not the case, then we first regularize the density of X via convolution with a Gaussian density. The general claim then follows by continuity in the limit of vanishing regularization, which is valid provided entropies and second moments are finite (e.g., [18, Lemma 1.2]).

By dimensional analysis, a necessary condition for $M_g < \infty$ is that $\sum_{i=1}^{k} c_i r_i = \sum_{j=1}^{m} d_j n_j$. So, we make this assumption henceforth. Now, let $Z = (Z_1, \ldots, Z_k)$ be independent, standard normal random vectors with $Z_i \in \mathbb{R}^{r_i}$, and let $T_i : \mathbb{R}^{r_i} \to \mathbb{R}^{r_i}$ be the Brenier map sending Z_i to X_i. Define $T = (T_1, \ldots, T_k)$, which is the Brenier map transporting Z to X by the independence assumption. We remark that each T_i is differentiable, with ∇T_i being pointwise symmetric and positive definite. This follows from Brenier’s Theorem [19] and regularity estimates for the Monge-Ampère equation under our assumption that the densities of the X_i’s are smooth with full support [17, Remark 4.15].

So, by Lemma 1, we have

$$
\sum_{j=1}^{m} d_j h(A_j X) \geq \sum_{j=1}^{m} d_j h(Z'_j) + \frac{1}{2} \sum_{j=1}^{m} d_j \mathbb{E} \log \det(A_j (\nabla T(Z))^2 A_j^T),
$$

where Z'_j is standard normal on \mathbb{R}^{n_j}. By the change of variables formula, $h(X_i) = h(Z_i) + \mathbb{E} \log \det(\nabla T_i(Z_i))$ for each $i = 1, \ldots, k$, so summing terms gives

$$
\sum_{i=1}^{k} c_i h(X_i) = \sum_{i=1}^{k} c_i h(Z_i) + \frac{1}{2} \sum_{i=1}^{k} c_i \mathbb{E} \log \det((\nabla T_i(Z_i))^2).
$$

By the relation $\sum_{i=1}^{k} c_i r_i = \sum_{j=1}^{m} d_j n_j$, we have $\sum_{i=1}^{k} c_i h(Z_i) = \sum_{j=1}^{m} d_j h(Z'_j)$. Hence, on combining the above estimates, we have

$$
\sum_{i=1}^{k} c_i h(X_i) - \sum_{j=1}^{m} d_j h(A_j X) \leq \frac{1}{2} \sum_{i=1}^{k} c_i \mathbb{E} \log \det((\nabla T_i(Z_i))^2) - \frac{1}{2} \sum_{j=1}^{m} d_j \mathbb{E} \log \det(A_j (\nabla T(Z))^2 A_j^T) \leq M_g,
$$

where the last line follows by definition of M_g (applied pointwise inside the expectation).

References

[1] Venkat Anantharam, Varun Jog, and Chandra Nair. Unifying the Brascamp-Lieb inequality and the entropy power inequality. arXiv preprint arXiv:1901.06619, 2019.

[2] C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal, The, 27(4):623–656, Oct 1948.

[3] A. J. Stam. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Information and Control, 2(2):101–112, 1959.
[4] Elliott H Lieb. Proof of an entropy conjecture of Wehrl. *Commun. Math. Phys.*, 62(1):35–41, 1978.

[5] Eric A. Carlen and Dario Cordero-Erausquin. Subadditivity of the entropy and its relation to Brascamp–Lieb type inequalities. *Geometric and Functional Analysis*, 19(2):373–405, 2009.

[6] Yanlin Geng and C. Nair. The capacity region of the two-receiver Gaussian vector broadcast channel with private and common messages. *Information Theory, IEEE Transactions on*, 60(4):2087–2104, April 2014.

[7] Elliott H Lieb. Gaussian kernels have only Gaussian maximizers. *Inventiones mathematicae*, 102(1):179–208, 1990.

[8] Thomas A Courtade. A strong entropy power inequality. *IEEE Transactions on Information Theory*, 64(4):2173–2192, 2018.

[9] Erixhen Sula, Michael Gastpar, and Gerhard Kramer. Sum-rate capacity for symmetric Gaussian multiple access channels with feedback. In *2018 IEEE International Symposium on Information Theory (ISIT)*, pages 306–310. IEEE, 2018.

[10] Jingbo Liu, Thomas Courtade, Paul Cuff, and Sergio Verdú. A forward-reverse Brascamp-Lieb inequality: Entropic duality and Gaussian optimality. *Entropy*, 20(6):418, 2018.

[11] Franck Barthe. On a reverse form of the Brascamp-Lieb inequality. *Inventiones mathematicae*, 134(2):335–361, 1998.

[12] Olivier Rioul and Ram Zamir. Equality in the matrix entropy-power inequality and blind separation of real and complex sources. *arXiv preprint arXiv:1901.06905*, 2019.

[13] Ram Zamir and Meir Feder. A generalization of the entropy power inequality with applications. *IEEE transactions on information theory*, 39(5):1723–1728, 1993.

[14] Olivier Rioul. Yet another proof of the entropy power inequality. *IEEE Transactions on Information Theory*, 63(6):3595–3599, 2017.

[15] Olivier Rioul. Optimal transport to Rényi entropies. In *International Conference on Geometric Science of Information*, pages 143–150. Springer, 2017.

[16] Thomas A Courtade, Max Fathi, and Ashwin Pananjady. Quantitative stability of the entropy power inequality. *IEEE Transactions on Information Theory*, 64(8):5691–5703, 2018.

[17] Cédric Villani. *Topics in optimal transportation*. Number 58. American Mathematical Soc., 2003.

[18] E. A. Carlen and A. Soffer. Entropy production by block variable summation and central limit theorems. *Communications in mathematical physics*, 140(2):339–371, 1991.

[19] Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. *Communications on pure and applied mathematics*, 44(4):375–417, 1991.