Effects of skin washing frequency on the epidermal barrier function and inflammatory processes of the epidermis: An experimental study

Cara Symanzik1,2 | Sanja Kezic3 | Ivone Jakasa4 | Christoph Skudlik1,2 | Swen Malte John1,2 | Richard Brans1,2 | Flora Karla Sonsmann1,2

1Department of Dermatology, Environmental Medicine and Health Theory, Osnabrück University, Osnabrück, Germany
2Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), Osnabrück University, Osnabrück, Germany
3Amsterdam University Medical Center (UMC), Department of Public and Occupational Health, University of Amsterdam, Amsterdam, The Netherlands
4Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia

Correspondence
Dr. rer. nat. Cara Symanzik, Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm) at Osnabrück University, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
Email: cara.symanzik@uni-osnabrueck.de

Funding information
Beiersdorf AG; Projekt DEAL

Abstract
Background: Increased hand hygiene measures during the COVID-19 pandemic have led to an increased quantum of hand eczema (HE).
Objectives: To examine the effects of varying washing frequencies using current mild cleansing agents—alongside with the effect of a rehydrating cream—on the epidermal barrier function and inflammatory processes of the stratum corneum (SC).
Methods: Standardized skin washings on the volar aspects of the lower arms of skin-healthy volunteers were performed using the automated cleansing device either 5 or 11 times within 4 h for 60 s each with a standard cleanser, a lipid-containing syndet, or a lipid-containing syndet followed by one-time application of a rehydrating cream. Skin bioengineering parameters (transepidermal water loss, SC hydration, erythema, and SC pH) and biochemical/immunological parameters (interleukin-1α, interleukin-1α receptor antagonist and natural moisturizing factor) of SC samples collected by tape stripping were assessed.
Results: All applied washing procedures provided comparable, mild effects on the epidermal barrier function and skin inflammation.
Conclusion: Occupational skin cleansers seem to have improved regarding skin barrier damaging effects. To further corroborate this, a study design, modified on the basis of our findings, applying longer washing periods for consecutive days seems desirable.

KEYWORDS
COVID-19, detergents, hand eczema, hand washing, irritant contact dermatitis, non-invasive measuring methods, occupational, risk assessment, skin barrier

1 | INTRODUCTION

For preventing transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and development of coronavirus disease 2019 (COVID-19), hand hygiene measures must be followed strictly.1 This applies to the general public and particularly specific professional groups, including healthcare workers (HCWs).2 Hand hygiene recommendations during the COVID-19 pandemic entail longer durations and frequencies of hand washing,3 which have been shown to go along with skin strain and adverse skin
The accumulating skin strain through water contact—which alone may be skin irritating—and the contact with soaps or detergents lead to impairments of the skin barrier function and subsequently irritant contact dermatitis of the hands. Due to a high amount of wet work, the prevalence of hand eczema (HE) in HCWs was already about twice as high as in the general population before the COVID-19 pandemic. Workers subjected to a high occupational skin strain are now doubly burdened by the current hygiene measures which also take place in their private surroundings. Accordingly, the elevated COVID-19 associated hygiene measures have reportedly caused an increase of HE in the general population as well as high-risk occupations.

In view of individual suffering of HE patients and the health economic relevance of this disease, preventative measures are needed in order to impede genesis of HE as well as to contain existing HE and to avoid chronification. Since hand hygiene measures will likely remain elevated momentarily, demonstrably gentle hand washing regimes should be established. Against this background, this proof-of-concept study aims in an experimental set-up mimicking real-life conditions at assessing the effects of varying washing frequencies on the epidermal barrier function and inflammatory processes of the epidermis using a lipid-containing syndet compared to a standard skin cleanser. In addition, the effect of skin cream application after washing is to be determined.

MATERIALS AND METHODS

Trial design

This study was a non-invasive, experimental, skin bioengineering, biochemical, immunological trial. Ethic approval was obtained by the subcommission on the evaluation of medical research involving human subjects at the Medical Chamber of Lower Saxony, Hanover, Germany under the procedure number 30/35/2020. The trial was registered at the German Clinical Trials Register (DRKS), number (DRKS-ID) DRKS00022958.

Participants

Only skin-healthy volunteers without atopic diathesis according to the Erlangen Atopy Score (score value <8) were included in the study. Detailed inclusion and exclusion criteria are listed in Table S1. Informed consent in accordance with the Helsinki Declaration of 1975, and later revisions, was obtained from all participants prior to their inclusion in the study.

Washing procedures

The practical study phase took place from February to April 2021. Six test areas on the volar aspects of the lower arms and one control area on the volar aspects of the upper arm with a surface of 8 cm² each were marked. The test areas on the volar lower arms were randomized per participant. The test and control areas with the corresponding interventions are listed in Table 1. For each washing, a standardized amount of 3 mL cleanser + 7 mL distilled water (aqua dest.) was used. If cream was used, a standardized amount of 24 mg cream was applied per test area (Table 1). The cream was weighed by using an electronic precision scale and a plastic top as container. Weighing took place immediately prior to application. After weighing, the cream was completely taken off of the plastic top with the aid of finger gloves and evenly distributed in the test area. Standardized washings of the test areas were performed using the automated cleansing device (ACiD) with a contact pressure of the washing units of 150 g and a rotation speed of 100 rotations per minute (Figure 1). The ACiD has been previously described in depth elsewhere. The ingredients according to the International Nomenclature of Cosmetic Ingredients of the commercially available study products provided by Beiersdorf AG, Hamburg, Germany are listed in Table S2.

Test areas and control site with the corresponding conducted intervention

No.	Intervention
1	Control site, no washing, empty control
2	Five-time washing (60 s each) with a standard cleanser within 4 h
3	Five-time washing (60 s each) with a lipid-containing syndet within 4 h
4	Five-time washing (60 s each) with a lipid-containing syndet within 4 h followed by application of a rehydrating skin cream
5	Eleven-time washing (60 s each) with a standard cleanser within 4 h
6	Eleven-time washing (60 s each) with a lipid-containing syndet within 4 h
7	Eleven-time washing (60 s each) with a lipid-containing syndet within 4 h followed by application of a rehydrating skin cream

*Test areas were randomized per participant.
*A standardized amount of 3 mL cleanser + 7 mL distilled water (aqua dest.) were applied per test area.
*A standardized amount of 24 mg cream was applied per test area.
after washing (T2), and 24 h after the last washing (T3). The transepidermal water loss (TEWL) was assessed using the Tewameter TM 300 (Courage+Khazaka electronic GmbH), the stratum corneum (SC) hydration (SCH) was assessed using the Corneometer CM 825 (Courage+Khazaka electronic GmbH), erythema (a* value of chromametry) was assessed using the Chromameter CR200 (Minolta), and the SC pH value was assessed using the Skin-pH-Meter PH 905 (Courage+Khazaka electronic GmbH).

At T3, SC tape stripping (D-Squame sampling) was done to collect SC samples. Sampling was conducted using round adhesive disks (22-mm Standard D-Squame Skin Sampling Discs; Monaderm) which were pressed onto the test areas for 10 s with the D500 D-Squame Pressure Instrument (CuDerm) in order to ensure a defined pressure. This procedure was conducted with eight discs. The fifth consecutive disk was used for natural moisturizing factor (NMF) analysis and the seventh consecutive disk was used for cytokine (interleukin-1α [IL-1α] as well as interleukin-1α receptor antagonist [IL-1αRA]) analysis. NMF analysis was conducted after extraction of NMF from the sampling discs using high-performance liquid chromatography with ultraviolet detection and the analysis of the cytokines was conducted using electrochemiluminescence immunoassays (Mesoscale). As the amount of SC on the tape varies, the amount of cytokine in the SC on each tape was normalized by the protein content, which was determined using the Pierce Micro BCA Protein Assay Kit (Thermo Fischer Scientific) with the bovine serum albumin supplied as standard. The results of NMF were corrected for SC protein content on the tape strips determined with the 850 nm absorption infrared densitometer SquameScan 850A (Heiland Electronic).

2.5 | Statistical analyses

Calculations were performed by using Prism 9 software (GraphPad). Distribution of data was tested using the Shapiro-Wilk normality test. Results for all investigated parameters at T3 were analysed by using two-way repeated measures analysis of variance (ANOVA) and uncorrected Fisher’s least significant difference (LSD) followed by post hoc correction for multiple comparisons carried out by the false discovery rate (FDR) method of Benjamini Hochberg (BH). Difference in data on skin bioengineering parameters TEWL, SCH, erythema and SC pH measured at T0 to T3 were tested by two-way repeated measures ANOVA. Association between all measured parameters was performed by using Spearman correlation analysis. P < .05 was considered significant.

3 | RESULTS

3.1 | Characteristics of the participants

Twenty-five healthy volunteers (23 women) with an age ranging from 22 to 55 years (mean ± SD: 33.8 ± 10.7 years) and an Erlangen Atopy Score ranging from 0 to 7 (mean ± SD: 3.6 ± 1.9) were included. Nineteen participants (76.0%) had a Fitzpatrick skin phototype II and 6 (24.0%) had a Fitzpatrick skin phototype III. None of the participants had used any topical immunosuppressants in the test areas in the weeks before the study.
3.2 | Effects of washing frequency and cream application

Two-way repeated measures ANOVA and uncorrected Fisher’s LSD followed by post hoc correction for multiple comparisons carried out by the FDR method of BH revealed that for TEWL, SCH, erythema, SC pH, NMF, IL-1α, and IL-1αRA there were no statistically significant differences at T3 comparing the various test areas (Table 1) with their respective control sites (Figures S1-S7). Full results of TEWL, SCH, erythema, SC pH, NMF, IL-1α and IL-1αRA are provided in Tables S3-S7, respectively. Two-way repeated measures ANOVA did not reveal significant differences from T0 to T3 in any of investigated parameters.

3.3 | Correlation analysis of skin barrier parameters

Figure 2 shows a heatmap containing Spearman correlation coefficients and corresponding levels of significance. Skin barrier function as measured by TEWL showed an inverse correlation with NMF, and was positively correlated with SCH, SC pH, IL-1α, and IL-1αRA. Next to TEWL, NMF was also inversely correlated with IL-1α and IL-1αRA. There was no association of erythema with TEWL, SCH, SC pH, NMF, IL-1α and IL-1αRA.

4 | DISCUSSION

To the best of our knowledge, this study is the first study to examine the effects of varying washing frequencies on the epidermal barrier function and inflammatory processes of the epidermis using a variation of cleansing agents with and without the application of a rehydrating cream under laboratory conditions using a skin cleansing device. The mimicking of almost life-like conditions and the standardization of procedures by using the ACID can be considered as a strength of this study.

To analyse effects on the epidermal barrier function and inflammatory processes of the epidermis, measurements taken at T3 (24 h after the last washing procedure) were examined primarily. It was shown that the applied interventions (Table 1) had a mild effect on the examined skin bioengineering parameters TEWL, SCH, erythema, and SC pH which was not statistically significant nor of practical importance. This observation leads to the conclusion that all of the interventions did not lead to detectable impairment of the epidermal barrier function or inflammatory processes of the epidermis. Furthermore, finding is sustained by the reported results on biochemical/immunological parameters since there were no statistically significant changes in NMF, IL-1α, and IL-1αRA. The positive effect of emollient application on the epidermal barrier function after skin washing has, however, already been described in previous studies. Potentially damaging effect of cleansing agents on the skin barrier function might be reduced by the application of emollients, which seems advisable after hand washing—especially when higher hand washing frequencies are applied.

Correlation analysis of skin barrier and inflammatory parameters has shown that TEWL is inversely correlated with NMF levels. Due to its hygroscopic properties, NMF contributes largely to the retention of water in the SC. Reduced NMF values would result in an increase in epidermal water loss concomitant with higher TEWL. Positive association was observed between TEWL and IL-1α levels, which corroborates earlier studies which have shown that skin barrier damage—depicted by higher TEWL—is associated with lower IL-1α concentrations.

COVID-19-associated hygiene regimes comprise elevated hand washing frequencies and longer washing durations. The chosen duration (60 s) for each washing was thus considered appropriate for mimicking current hand washing durations in pandemic times. However, the applied washing frequencies of 5 times and 11 times within 4 h might not reflect the actual skin strain HCWs are exposed to during working days, particularly considering additive effects over several working days. Whilst designing this study, infection control regulations needed to be followed to protect study participants as well as the examiners.

To generate results even closer to the exposure HCWs are subjected to in their working environment, it seems recommendable to conduct skin washings within a longer time period of 8 h as well as for consecutive days when the pandemic situation allows such a study design. It should be considered to include not only skin-healthy subjects in following studies but also individuals with a history of atopic dermatitis who have a reduced skin barrier function and are more susceptible to developing contact dermatitis providing a more representative design for a real-life situation in the workplace. It can be suspected that the study design of the present study might generate different results in individuals with an atopic skin diathesis or sensitive skin rather than in individuals with normal, healthy skin.
Another limitation of this study is that the compared skin cleansers are expected to be skin-friendlier compared to cleansers used in the past. No irritant control (e.g., washing with diluted sodium lauryl sulphate [SLS]) was included due to the limited number of test areas related to the design of the ACiD. The reference cleanser contains sodium laurate sulphate (SLES)–a mild detergent by contrast with other detergents such as SLS. It also contains glycerin, a humectant. SLS has to a great extent been used as a model irritant in studies examining skin irritation and surfactant-induced impairment of the epidermal barrier. If a cleanser containing SLS would instead have been applied, most likely, greater differences would have been observed. The current findings might allow the assumption that skin cleansers currently on the market—when SLES is used instead of harsher detergents such as SLS—have improved in comparison to products in the past in terms of skin barrier damaging effects. It thus can be denoted as a positive characteristic of this study that we depicted the current recommendations regarding usage of mild skin cleansers and have consequently followed a real-life study design as far as possible.

Within the presented experimental setting, applied skin washing frequencies did only have mild adverse effects on epidermal barrier function and on inflammatory processes in the epidermis. No differences were observed regarding the different skin cleansing products. Formulations of skin cleansers currently on the market seem to have improved in terms of skin barrier damaging effects. In the future, a study design, modified on the basis of our findings, applying washings within longer periods for consecutive days seems recommendable to generate circumstances even closer to occupational exposure of HCWs. In such a design, it is to be expected that application of an emollient after washing may have positive effects in terms of epidermal barrier homeostasis. This would especially be important for wet work professions at risk of development of occupational HE such as HCWs as well as the general population in pandemic times.

ACKNOWLEDGEMENT
The authors would like to thank Beiersdorf AG, Hamburg, Germany for financial and material support. The authors also would like to thank Anja Hollenberg and Ulrike Vollmer for their support in conducting washings and taking measurements. Open access funding enabled and organized by Projekt DEAL.

AUTHOR CONTRIBUTIONS
Cara Symanzik: Conceptualization (lead); data curation (lead); formal analysis (lead); investigation (lead); methodology (equal); project administration (lead); visualization (lead); writing – original draft (lead); writing – review and editing (equal). Sanja Kezic: Formal analysis (equal); methodology (supporting); visualization (equal); writing – review and editing (equal). Ivone Jakasa: Formal analysis (equal); methodology (supporting); writing – review and editing (equal). Christoph Skudlik: Conceptualization (equal); funding acquisition (lead); resources (lead); writing – review and editing (equal). Swen Malte John: Conceptualization (lead); formal analysis (equal); funding acquisition (lead); methodology (lead); project administration (lead); resources (lead); writing – review and editing (lead). Richard Brans: Conceptualization (lead); investigation (equal); methodology (lead); project administration (equal); supervision (lead); writing – review and editing (lead). Flora Karla Sonsmann: Conceptualization (lead); formal analysis (equal); investigation (lead); methodology (lead); project administration (equal); supervision (lead); writing – review and editing (lead).

CONFLICTS OF INTEREST
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.

ORCID
Cara Symanzik https://orcid.org/0000-0002-4090-6726
Sanja Kezic https://orcid.org/0000-0002-1063-4547
Ivone Jakasa https://orcid.org/0000-0002-7961-4069
Christoph Skudlik https://orcid.org/0000-0002-5670-8396
Swen Malte John https://orcid.org/0000-0001-5406-9458
Richard Brans https://orcid.org/0000-0002-1245-024X
Flora Karla Sonsmann https://orcid.org/0000-0002-2863-4641

REFERENCES
1. Beiu C, Mihai M, Popa L, Cima L, Popescu MN. Frequent hand washing for COVID-19 prevention can cause hand dermatitis: management tips. Cureus. 2020;12(4):e7506.
2. Hillier MD. Using effective hand hygiene practice to prevent and control infection. Nurs Stand. 2020;35(5):45-50.
3. Balato A, Ayala F, Bruze M, et al. European task force on contact dermatitis statement on coronavirus disease-19 (COVID-19) outbreak and the risk of adverse cutaneous reactions. J Eur Acad Dermatol Venereol. 2020;34(8):e353-e354.
4. Lan J, Song Z, Miao X, et al. Skin damage among health care workers managing coronavirus disease-2019. J Am Acad Dermatol. 2020;82(5):1215-1216.
5. Lin P, Zhu S, Huang Y, et al. Adverse skin reactions among healthcare workers during the coronavirus disease 2019 outbreak: a survey in Wuhan and its surrounding regions. Br J Dermatol. 2020;183(1):190-192.
6. Metin N, Turan C, Utlu Z. Changes in dermatological complaints among healthcare professionals during the COVID-19 outbreak in Turkey. Acta Dermatovenerol Alp Pannonica Adriat. 2020;29(3):115-122.
7. Tsai T-F, Malbach HI. How irritant is water? An overview. Contact Dermatitis. 1999;41(6):311-314.
8. Agner T, Elsner P. Hand eczema: epidemiology, prognosis and prevention. J Eur Acad Dermatol Venereol. 2020;34(S1):4-12.
9. Ibler KS, Jemec GB, Flyhovsky M-A, Diepgen TL, Jensen A, Agner T. Hand eczema: prevalence and risk factors of hand eczema in a population of 2274 healthcare workers. Contact Dermatitis. 2012;67(4):200-207.
10. Ibler KS, Jemec GB, Agner T. Exposures related to hand eczema: a study of healthcare workers. Contact Dermatitis. 2012;66(5):247-253.
11. Greveling K, Kunkeler ACM. Hand eczema pandemic caused by severe acute respiratory syndrome coronavirus 2 hygiene measures: the set-up of a hand eczema helpline for hospital personnel. J Eur Acad Dermatol Venereol. 2020;34(10):e556-e557.
12. Guertler A, Moellhoff N, Schenck TL, et al. Onset of occupational hand eczema among healthcare workers during the SARS-CoV-2 pandemic: comparing a single surgical site with a COVID-19 intensive care unit. Contact Dermatitis. 2020;83(2):108-114.

13. Erdem Y, Altunay I, Aksu Çerman A, et al. The risk of hand eczema in healthcare workers during the COVID-19 pandemic: do we need specific attention or prevention strategies? Contact Dermatitis. 2020;83(5):422-423.

14. Diepgen TL, Purwins S, Posthumus J, Kuessner D, John SM, Augustin M. Cost-of-illness analysis of patients with chronic hand eczema in routine care in Germany: focus on the impact of occupational disease. Acta Derm Venereol. 2013;93(5):538-543.

15. Passlov HM, Pontén A, Björk J, et al. Hand strength and dexterity in individuals with hand eczema. J Eur Acad Dermatol Venereol. 2020;34(12):2856-2862.

16. Tan SW, Oh CC. Contact dermatitis from hand hygiene practices in the COVID-19 pandemic. Ann Acad Med Singap. 2020;49(9):674-676.

17. Diepgen T, Fartasch M, Hornstein O. Kriterien zur Beurteilung der atopischen Hautdiathese. Dermatosen. 1991;39(3):79-83.

18. Sonsmann FK, Strunk M, Gediga K, et al. Standardization of skin cleansing in vivo: part I. Development of an automated cleansing device (ACiD). Skin Res Technol. 2014;20(2):228-238.

19. Sonsmann FK, Strunk M, Gediga K, et al. Standardization of skin cleansing in vivo: part II. Validation of a newly developed automated cleansing device (ACiD). Skin Res Technol. 2014;20(2):239-245.

20. Schliemann S, Diepgen TL, John SM, et al. In-vivo evaluation of occupational skin cleansers—final scientific report of the DGUV research project FP 276. Derm Beruf Umwelt. 2014;62(1):3-34.

21. Keurentjes AJ, Jakasa I, Kezic S. Research techniques made simple: stratum corneum tape stripping. J Invest Dermatol. 2021;141(5):1129-1133.

22. Dapic I, Jakasa I, Yau NLH, Kezic S, Kammeyer A. Evaluation of an HPLC method for the determination of natural moisturizing factors in the human stratum corneum. Anal Lett. 2013;46(14):2133-2144.

23. Morgan E, Varro R, Sepulveda H, et al. Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin Immunol. 2004;110(3):252-266.

24. Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol. 1988;124(6):869-871.

25. Jordan L. Efficacy of a hand regimen in skin barrier protection in individuals with occupational irritant contact dermatitis. J Drugs Dermatol. 2016;15(11):s81-s85.

26. Williams C, Wilkinson SM, McShane P, et al. A double-blind, randomized study to assess the effectiveness of different moisturizers in preventing dermatitis induced by hand washing to simulate healthcare use. Br J Dermatol. 2010;162(5):1088-1092.

27. Jurakic Toncic R, Kezic S, Jakasa I, et al. Filaggrin loss-of-function mutations and levels of filaggrin degradation products in adult patients with atopic dermatitis in Croatia. J Eur Acad Dermatol Venereol. 2020;34(8):1789-1794.

28. Soltanipoor M, Stillas T, Riethmüller C, et al. Specific barrier response profiles after experimentally induced skin irritation in vivo. Contact Dermatitis. 2018;79(2):59-66.

29. De Jongh CM, Verberk MM, Withagen CE, Jacobs JJ, Rustemeyer T, Kezic S. Stratum corneum cytokines and skin irritation response to sodium lauryl sulfate. Contact Dermatitis. 2006;54(6):325-333.

30. Angelova-Fischer I, Becker V, Fischer TW, Zillikens D, Wigger-Alberti W, Kezic S. Tandem repeated irritation in aged skin induces distinct barrier perturbation and cytokine profile in vivo. Br J Dermatol. 2012;167(4):787-793.

31. Rerknimitr P, Otsuka A, Nakashima C, Kabashima K. Skin barrier function and atopic dermatitis. Curr Derm Rep. 2018;7(4):209-220.

32. Aquino M, Fonacier L. The role of contact dermatitis in patients with atopic dermatitis. J Allergy Clin Immunol Pract. 2014;2(4):382-387.

33. Owen JL, Vakharia PP, Silverberg JI. The role and diagnosis of allergic contact dermatitis in patients with atopic dermatitis. Am J Clin Dermatol. 2018;19(3):293-302.

34. Charbonnier V, Morrison BM Jr, Paye M, Maibach HI. Subclinical, non-erythematous irritation with an open assay model (washing): sodium lauryl sulfate (SLS) versus sodium laureth sulfate (SLES). Food Chem Toxicol. 2001;39(3):279-286.

35. Löffler H, Happle R. Profile of irritant patch testing with detergents: sodium lauryl sulfate, sodium laureth sulfate and alkyl polyglycoside. Contact Dermatitis. 2003;48(1):26-32.

36. Yamada T, Habuka A, Hatta I. Moisturizing mechanism of glycerol and diglycerol on human stratum corneum studied by synchrotron X-ray diffraction. Int J Cosmet Sci. 2021;43(1):38-47.

37. Giménez-Arnau A. Standards for the protection of skin barrier function. Curr Probl Dermatol. 2016;49:123-134.

38. Tupker RA, Willis C, Berardesca E, et al. Guidelines on sodium lauryl sulfate (SLS) exposure tests. A report from the standardization Group of the European Society of contact dermatitis. Contact Dermatitis. 1997;37(2):53-69.

39. Aramaki J, Löffler C, Kawana S, Effendy I, Happle R, Löffler H. Irritant patch testing with sodium lauryl sulphate: interrelation between concentration and exposure time. Br J Dermatol. 2001;145(5):704-708.

40. Fluhr JW, Kuss O, Diepgen T, et al. Testing for irritation with a multifactorial approach: comparison of eight non-invasive measuring techniques on five different irritation types. Br J Dermatol. 2001;145(5):696-703.

41. Fartasch M, Schnetz E, Diepgen TL. Characterization of detergent-induced barrier alterations – effect of barrier cream on irritation. J Investig Dermatol Symp Proc. 1998;3(2):121-127.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Symanzik C, Kezic S, Jakasa I, et al. Effects of skin washing frequency on the epidermal barrier function and inflammatory processes of the epidermis: An experimental study. Contact Dermatitis. 2022;87(3):241-246. doi:10.1111/cod.14119