Despite the global administration of approved COVID-19 vaccines (e.g., ChAdOx1 nCoV-19®, mRNA-1273®, BNT162b2®), the number of infections and fatalities continue to rise at an alarming rate because of the new variants such as Omicron and its subvariants. Including COVID-19 vaccines that are licensed for human use, most of the vaccines that are currently in clinical trials are administered via parenteral route. However, it has been proven that the parenteral vaccines do not induce localized immunity in the upper respiratory mucosal surface, and administration of the currently approved vaccines does not necessarily lead to sterilizing immunity. This further supports the necessity of a mucosal vaccine that blocks the main entrance route of COVID-19: nasal and oral mucosal surfaces. Understanding the mechanism of immune regulation of M cells and dendritic cells and targeting them can be another promising approach for the successful stimulation of the mucosal immune system. This paper reviews the basic mechanisms of the mucosal immunity elicited by mucosal vaccines and summarizes the practical aspects and challenges of nanotechnology-based vaccine platform development, as well as ligand hybrid nanoparticles as potentially effective target delivery agents for mucosal vaccines.
1. Introduction

The number of COVID-19 infections and fatalities has rapidly increased worldwide, and the World Health Organization (WHO) declared it as a global pandemic on March 11, 2020. More than 386,548,962 cases of infection, including 5,705,754 deaths, have been reported till February 1, 2022. These numbers continue to increase at an alarming rate. Considering its long-lasting, expanding socioeconomic impact on global society, a novel strategy and convenient global distribution of vaccines are imperative.

COVID-19 belongs to the genus Betacoronavirus of the Coronaviridae family, which comprises enveloped, single positive-strand RNA viruses infecting the respiratory system, with a genome size of 26–32 kb. Under an electron microscope, the virus envelope expresses a club-shaped glycoprotein projection, exhibiting the shape of the solar corona. The genome of COVID-19 encodes four structural proteins, spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins, in addition to 16 nonstructural proteins (NSPs). In the early stages of infection, the receptor-binding domain (RBD) of the S1 subunit of the S protein binds to angiotensin-converting enzyme 2 (ACE2) in the host cell membrane, which subsequently leads to the fusion of the virus with the membrane through the S2 subunit, followed by clathrin-mediated endocytosis and dynamin-independent endocytosis. As ACE2 is expressed on the membrane of the vascular endothelium, respiratory epithelium, alveolar monocytes, and macrophages, COVID-19 tends to exhibit a tropism toward such cells. Typically, during viral infection, entry of the viral particles into the epithelial cells of the airway leads to the activation of cytoplasmic regulatory factor (IRF) 3 and IRF7 and subsequently activates the antiviral response against the virus. However, COVID-19 suppresses the activation of TRAF3/6, thereby suppressing the antiviral response. Consequently, the viral particles can readily replicate in the respiratory epithelial cells without hindrance by the immune system. Excessive replication of the virus triggers cell death that results in the expression of the viral particles and cell debris with the subsequent activation of inflammatory cytokines (type I IFN, IL-1β, IL-6, TNF-α) and the recruitment of immune cells like neutrophils, macrophages, and monocytes. Furthermore, induction of the IgG antibodies against COVID-19 can cause additional cell damage, which is known as the “anti-body-dependent enhancement (ADE) effect”. The immune complex formed by viral particles and IgG antibody bind to FcγR of macrophages and induces the production of inflammatory cytokines that can lead to further destruction of the affected organ. Thus, viral replication in the immune-suppressed alveolar epithelial cells coupled with the recruitment of activated inflammatory cytokines and immune cells is the key immunological pathophysiology of COVID-19.

The clinical features of COVID-19 are known to be the consequence of the massive immune response caused by the damage to the alveolar epithelial cells and vascular endothelial cells. The most common symptoms at the onset of the disease include fever, cough, fatigue, myalgia, and dyspnea. However, the clinical manifestations range from mild pneumonia to critical conditions such as acute respiratory failure, systemic shock, or multi-organ failure. Although ~80% of the patients exhibit mild symptoms (with mild or no pneumonia), 20%–30% of patients who undergo hospitalization with pneumonia require intensive care for respiratory support, which can rapidly exacerbate into severe hypoxia, acute respiratory distress syndrome (ARDS), and conditions requiring mechanical ventilation. Patients can also exhibit extra-pulmonary symptoms such as thrombotic complications, myocardial dysfunction, coronary syndrome, gastrointestinal symptoms, neurologic illness, and dermatologic complications.

The major route of transmission of COVID-19 is respiratory droplets (>5–10 μm in diameter) that enter through the mucosal membranes of the nose, eyes, and mouth. Abundant expression of ACE2 in the nasal and oral mucosa further supports its mode of transmission and the resulting pulmonary and gastrointestinal symptoms. As asymptomatic carriers of COVID-19 are able to transmit the virus, policy measures such as social distancing and travel restrictions have been implemented to curb the spread of the virus. However, these methods are temporary, and it is important to enhance and boost the immune system to combat the virus regardless of exposure, which necessitates the development of a vaccine against COVID-19.

In-depth research and understanding of the pathology and molecular biology of COVID-19 have stimulated the rapid development of therapeutics and vaccines against COVID-19. Currently, ten vaccines, including CoronaVac®, ChAdOx1 nCoV-19®, mRNA-1273®, and BNT162b2®, have been approved as COVID-19 vaccines for human use and have entered phase 4 clinical trials for their verification and monitoring of efficacy and safety. Despite the global vaccine administration, there are still several challenges in achieving the global control of COVID-19. To enable successful usage of vaccines and increase their accessibility worldwide, four aspects should be fulfilled: development and production, affordability, allocation, and deployment. After proving their efficacies, the vaccines are affordably produced on a large scale; then, they are broadly distributed and strictly stored for easy administration. However, the lack of COVID-19 vaccine supply due to the limited manufacturing capacity, difficulty of universal allocation, scarcity of storage facilities, lack of medical infrastructure for the vaccination, in addition to hesitancy and doubts toward vaccination, are hampering the administration in the global population. In this aspect, a needle-free formulation that enables the mucosal administration of the vaccine can provide safe, convenient, low-cost, and accessible vaccines. Needle-free non-invasive formulations enable low-cost mass production. Moreover, the ease of administration enhances patients’ compliance by enabling the patient to self-inoculate the vaccine without visiting the hospital. In addition, needle-free mucosal vaccines eliminate the risk of infections caused by the needle. However, among the 170 vaccine candidates that entered clinical trials until August 2022, only 20 vaccines can be administered via the needle-free mucosal route, five vaccines via the oral route, 12 vaccines via the intranasal route, one vaccine via aerosol, and two vaccines via inhalation. Approximately 154 vaccines are administered systematically; five via the subcutaneous route, nine via the intradermal route, and 140 via the intramuscular route. The fact that most vaccines depend on injection implies the urgent need for the development of needle-free vaccines to enhance the accessibility of vaccines and thus achieve herd immunity.

The effectiveness of needle-free mucosal vaccines is not limited to practical and economic aspects but has advantages in...
inducing both local mucosal and systemic immunity. As the primary entrance route of COVID-19 infection is through the mucosal membranes of the nose or mouth, and owing to the abundant expression of ACE2 in the nasal and oral mucosa, blockage of the viral entry through the immune induction of the local mucosa is crucial. Moreover, immunization through the mucosal route (intranasal or oral vaccine) is able to elicit a strong mucosal antibody response along with the systemic immune response; thus, mucosal vaccines can be an effective strategy for sterilizing immunity and prophylaxis against COVID-19.

Despite its practical and clinical importance, there are several challenges facing the development of mucosal vaccines. To deal with these challenges, great effort has been made to develop platforms that induce potent mucosal immunity without being inactivated by the harsh mucosal environment. In this regard, nanotechnology is now being employed as an effective delivery platform to protect vaccine antigens from degradation and selectively deliver antigens to the mucosal immune system. The stability of nanotechnology-based formulations, encapsulation of antigens with adjuvants, and suitability of attaching various ligands or receptors enable the induction of mucosal immunity. Thus, the main aim of this review was to describe the basic mechanisms of mucosal immunity elicited by mucosal vaccines and summarize the practical aspects and challenges of developing nanotechnology-based vaccine platforms, as well as ligand hybrid nanoparticles as potentially effective target delivery agents for mucosal vaccines.

2. Currently available COVID-19 vaccine platforms

2.1. Overview of COVID-19 vaccine platforms in clinical trials

For the successful development of vaccines against COVID-19, the selection of a suitable antigen, delivery agent, adjuvant, and route of administration is crucial. In the aspect of vaccine antigens, S protein, a key molecule for viral entry, is the only surface protein of coronaviruses, making it an attractive target for vaccine development against COVID-19. Antibodies targeting the S protein, especially the receptor-binding domain (RBD), can not only neutralize the virus but also prevent the virus from binding to the host cell. Currently, a majority of the vaccines under development utilize the S protein as an antigen and can be categorized into three classes depending on the mode of antigen delivery (Fig. 1). First, the mode of delivery in inactivated, live, and recombinant protein vaccines is the direct introduction of the antigen itself. Second, viral vector vaccines utilize a viral vector (mainly adenovirus), with or without a replication potential, that is genetically modified to express the S protein on its surface. Lastly, DNA and RNA vaccines have a relatively new mode of delivery, where the S protein-encoding nucleic acid is translated into S protein upon delivery to the target cell. Currently, 170 candidate vaccines have entered clinical trials (Table 1). Among the various types of vaccine platforms, ten vaccine candidates are currently approved for human use by WHO-recognized regulatory authorities; of them, two are mRNA vaccines, three are inactivated virus vaccines, four are non-replicating viral vector vaccines, and one protein is subunit vaccine. They are currently undergoing phase 4 clinical trials for their verification and monitoring of efficacy. Interim reports of efficacy are summarized in Table 2.

2.2. Challenges and limitations of the current major vaccine platforms

The main mechanism that endows the human body a function of protection from the virus is the induction of antibody response through natural infection or vaccination. Natural infection with COVID-19 induces both mucosal antibody responses (secretory IgA) and systemic antibody responses (IgG). While secretory IgA is known to protect the upper respiratory tract, IgG is known to protect the lower respiratory tract. By contrast, intramuscular or intradermal administration of vaccines mainly induces IgG without inducing the secretory IgA. Considering that the SARS-CoV-2 Omicron variant (B.1.1.529) preferentially infects and replicates in the upper respiratory airways, inducing high levels of neutralizing antibodies in the nasal mucosa is vital for the prevention of viral transmission. The neutralizing potency of secretory IgA in the nasopharynx is 7.5-fold higher than that of IgG in serum. In this aspect, while intramuscular or intradermal administration of vaccines leads to the prevention of severe lower respiratory infections, it is less likely that these vaccines would induce local mucosal immunity. For instance, a study on adenoviral vector vaccine in chimpanzees (ChAd) revealed that the intramuscular administration of vaccines to the BALB/c mouse model did not induce secretory IgA response. Even though these vaccines may prevent the onset of the symptomatic severe lower respiratory tract infections, a possibility of mild upper respiratory tract infections remains. Likewise, evaluation of the currently used intramuscular COVID-19 vaccines revealed that all vaccines exhibited high efficacy in the prevention of severe infections in all age groups, while efficacy in prevention of symptomatic infection and transmission remains low and shows variable results (Table 2). Thus, intramuscular or intradermal administration of vaccines does not necessarily lead to sterilizing immunity of the whole population. In comparison, intranasal administration of vaccines can induce both secretory IgA in the upper respiratory tract and IgG in the lower respiratory tract. Such a dual effect of intranasal vaccines can provide mucosal immunity in both the upper and lower respiratory tracts, thereby leading to the sterilizing immunity of the whole population. Different immunological effects of the parental and intranasal routes are summarized in Fig. 2.

2.3. Urgent necessity of mucosal COVID-19 vaccine and limitations of the current major vaccine platforms as potential mucosal vaccines

Mucosal vaccines licensed for human use still heavily rely on whole-cell inactivated or live attenuated vaccine platforms. In the case of COVID-19, among the 170 vaccine candidates that have undergone clinical trials, only five vaccine candidates are administered orally, and 11 are administered intranasally (Table 3). As seen in Table 1, despite the current broad shift of intramuscular vaccine platforms from whole virus vaccines (live attenuated or inactivated) toward viral vector, nucleic acid, and subunit vaccines, only a small percentage of these three platforms are administered via the mucosal route. Such discrepancy in vaccine platform landscapes between injectable and mucosa-administered vaccines is due to the protective barriers and immunotolerant characteristics of the mucosa. Viral-vectored and live attenuated vaccines use the natural pathogen as a vector. Since the natural pathogen includes various types of pathogen-associated molecular patterns (PAMPs) and is able to evade or breach the mucosal barrier, the natural pathogen as a vector acts as a strong adjuvant for...
inducing a potent immune response and enables the effective antigen delivery to the mucosal immune inductive sites19,71. However, despite their prevalent usage as mucosal vaccines, the safety of the viral-vectored, live attenuated, and whole-cell killed vaccines is their major limitation72,73. Due to the potential reversion or recovery of virulence, these vaccine platforms pose risks to immunocompromised patients and require strict quality control and high manufacturing costs74,75. By contrast, nucleic acid-based vaccines and protein subunit vaccines are purified molecules. Without protective delivery agents, these molecules are prone to degradation in harsh mucosal environments and lack the capability to induce an immune response. However, protein subunit and nucleic acid-based vaccines can be easily manufactured on a large scale and reduce the potential safety issue caused by virulence reversion74. Thus, there are ongoing attempts to develop effective delivery agents for the successful mucosal administration of protein subunit vaccines and nucleic acid-based vaccines76.

Viral-vectored vaccines are the commonly used vaccine platform developed for mucosal vaccines, owing to their ease of manufacturing, well-described biochemical traits, potent ability to induce T cell and B cell responses, and the broad availability of administration routes (aerosol, oral, intradermal, and intramuscular)26,71,77. As the natural adenovirus can breach through the mucosal layer of the respiratory tract, the intranasal administration of aerosol adenoviral vector enables the safe and effective delivery of antigens to the immune inductive site of the respiratory tract77. In this manner, the capability of breaching and safe delivery of antigens across the mucosa of the host has made the viral vector vaccine the most utilized platform for potential mucosal vaccines against COVID-19. Additionally, the adenoviral vector itself can elicit B cell and T cell responses and act as a self-adjuvant for the induction of immune response. The critical disadvantages of the adenoviral vector vaccine are the lack of long-term efficacy and the issue of safety triggered by pre-existing adenoviral immunity42. Pre-existing immunity against the adenovirus can act as a double-edged sword for the efficacy and safety of the vaccine. Induction of the anti-adenoviral effector memory T cell triggered by pre-existing adenovirus immunity can degrade the vaccine-
Table 1 Overview of efficacy, safety, manufacture, storage, and proportion of each vaccine platform in clinical trials.

Platform	Efficacy	Safety	Manufacture & storage	Candidate vaccine (no. and %)
PS	- Weaker immune response compared to whole virus vector and viral vector vaccine due to lack of PAMPs. Requires the addition of adjuvants or administration of booster dose to enhance immunogenicity. The utilization of aluminum hydroxide as an adjuvant is common. CpG1018 and Matrix-M1 were also used as adjuvant28–30	- Well tolerated compared to whole virus and viral vector vaccines and safely administered to immunocompromised people39,40	- Expression system of protein influences quality and quality of protein subunit vaccines due to post-translational modification in mammalian cell31–33	54 32%
RNA	- Lower immunogenicity and requirement of booster doses due to waning vaccine effectiveness31,34 - Exhibits the highest efficacy to prevent symptomatic COVID-19 compared to other vaccines35 - Requires carrier molecules (lipid- or polymer-based nanoparticles) to protect RNA from RNase degradation and increase efficacy4,36,37 - Activation of innate immunity induces the type 1 interferon pathway, which degrades mRNA and inhibits translation of mRNA, leading to a decrease in the efficacy of the vaccine. Sequence optimization is required to improve efficacy4,38	- No interaction with host-cell DNA, which does not lead to genomic integration and subsequent insertional mutagenesis (non-integrating platform)4,31 - Naturally degraded without metabolic toxicity - Activation of interferon signaling due to exogenous RNA induces inflammation4,31	- High adaptability to new pathogens and variants due to scalability and ease of mass production through high yield of in vitro transcription4 - Safely produced without having to handle viral particles4 - Stable and do not require storage in low-temperature storage facilities40,33	41 24%
VV	- Stronger immune response. Elicit robust humoral and cellular responses with a single dose by mimicking natural infection, providing long-term immune response36,41 - Pre-existing immunity against human viral vectors can attenuate immune responses42,43	- Potential risk for infection and inflammation that can cause adverse reactions - Risk of genomic integration41	- Optimization of the cellular system is required for efficient viral vector4 - Safely produced without having to handle viral particle4 - Can be easily produced on large scale46 - Stable and do not require stringent storage conditions41	21 (VVnr) 4 (Vv) 2 (Vv + APC) 1 (VVnr + APC)
IV	- Weaker immune response compared to live attenuated vaccines, requiring a higher dose, booster dosages, or adjuvants20,27,48 - Induction of long-lived humoral and cellular immune responses with several booster doses (results of nonrandomized trial among health care workers administered with BBIBP-CoV29)	- Less risk of virulence reversion compared with live attenuated virus vaccine if properly inactivated, which is also suitable for immunocompromised patients20 - Potential induction of vaccine-induced eosinophilic pulmonary response4	- Require high levels of live pathogens for production51 - Inactivation process can affect the immunogenicity of the antigen due to structural deformation30,31 - Ease of transport and storage. Inactivated virus vaccine can be stored at 2–8 °C, enabling storage in countries with limited cold storage facilities48	22 13%
DNA	- Induce humoral and cellular responses, but weaker immune response compared to live attenuated vaccines and viral vector vaccines31,52 - Difficulty in nuclear membrane barrier penetration causes low immunogenicity2	- Non-living, non-replicating, non-transmitting DNA plasmids are used3 - Well tolerated compared to whole virus vaccine and viral vector vaccines4 - Potential risk of genetic integration leading to insertional mutagenesis4,53	- High adaptability to new pathogens and variants due to scalability and easiness of mass production29 - Safely produced without having to handle viral particles - Stable under room temperature and easy to store32	16 9%

(continued on next page)
infected cell, hindering the long-term actions of the vaccine12. In the phase 1 study of recombinant adenovirus type 5 (Ad5)-vectored vaccine, individuals with high baseline Ad5 neutralizing antibody titer (>1:200) exhibited weaker antibody and T cell responses compared to those with low baseline neutralizing antibody titer (≤1: 200)13. Moreover, severe side effects of the adenoviral vaccine, such as Bell’s palsy, Guillain-Barre Syndrome, gait instability, and pneumonia, can be linked with the pre-existing immunity of the adenovirus26. For instance, a recent study has proposed the potential causality between thrombocytopenic thrombosis and injection of ChAdOx1 nCoV-19 vaccine in a similar manner to heparin-induced thrombocytopenia44,45.

Live attenuated vaccine is developed by attenuating the virulence of the whole virus while keeping it viable by mutating the pathogenic component of the viral genome. As live attenuated vaccine preserves immunogenic components of the natural pathogen, it induces robust and long-lasting immune responses without requiring the usage of adjuvants or administration of multiple boosters46,57. However, the safety issue dealing with virulence reversion remains the main limitation of the live attenuated vaccine platform.

Protein subunit vaccines can be easily manufactured on a large-scale and are relatively more tolerable compared to viral-vectored and live attenuated vaccines24,78. However, subunit vaccines are prone to enzymatic degradation in the mucosal tract and are relatively less immunogenic due to the lack of immunostimulating antigens. In this aspect, equipping adjuvants and delivery agents is necessary to enhance the mucosal immunogenicity of subunit vaccines28.

Nucleic acid vaccines, another major vaccine platform utilized for COVID-19, deliver a nucleic acid that encodes a specific protein to the cell. The mRNA in the cytosol is constantly translated into specific proteins that induce the host immune response79. Such proteins include antigens of a certain pathogen, antibodies of a specific antigen, and immunostimulatory molecules (CD70, GM-CSF). The mRNA vaccine can be readily manufactured through in vitro transcription. Such easiness of vaccine production through in vitro transcription enables the prompt development of vaccines against various viral antigens79. Additionally, its safe manufacturing process compared to the live attenuated viral vaccine or the inactivated viral vaccine makes it an attractive new-generation vaccine platform for future pandemics. However, there are no approved nucleic acid vaccines for mucosal administration so far. The major limitations of the mRNA vaccine lie in the innate instability of the RNA, difficulty of intracellular delivery, and induction of innate immunity7. The naked mRNA is an unstable molecule and can be degraded by RNase that is widely distributed in our body. Moreover, the negative charge of the RNA vaccine hinders its intracellular delivery52. Furthermore, ssRNA or dsRNA in the cytosol can be recognized by toll-like receptors (TLRs), inducing innate immunity of the cell10. The activation of innate immunity induces the type 1 interferon pathway, which degrades mRNA and inhibits mRNA translation, decreasing the efficacy of the vaccine4,38. To overcome these difficulties, it is crucial to select delivery agents that protect RNA molecules from degradation by RNases and facilitate intracellular delivery41,82. One of the major delivery agents for mRNA vaccine is the lipid-based delivery platform, which includes cationic lipids, cholesterol, and PEG1. The lipid nanoparticle platform-based mRNA-1273 and BNT162b2 also utilize ionizable cationic lipid, helper lipid, and PEG-lipid (Fig. 3)83. This nanocarrier not only stably encapsulates the RNA but also enables its endocytosis into the cytosol. Other delivery platforms include polymer-based delivery, peptide-based delivery, and cationic nanoemulsion11,84,85. However, there are no licensed mRNA vaccines or candidates undergoing clinical trials for the mucosal route of administration. The absence of target delivery platforms toward the immune inductive site can hinder the full efficacy of the mRNA vaccine due to the nonspecific delivery of the mRNA toward a non-targeted cell85,86.\n

Table 1 (continued)

Platform	Efficacy	Safety	Manufacture & storage	Candidate vaccine (no. and %)
VLP	- Stronger immune response compared to protein subunit vaccines due to self-adjuvant properties owing to epitope similar to native virus1,24,35	- Overcome safety issues from the reversion of virulence caused by inactivated virus vaccine and live attenuated virus vaccine4,38	- Scalability and ease of mass production1	6 4%
	- Particulate size resembling respiratory viruses (20–200 nm), which is optimal for uptake by antigen-presenting cells43,56		- Safely produced without involving live virus or inactivation steps8	
			- Difficulty in particle assembly35	
			- Low stability in environmental change (temperature, shear stress, and fluid dynamics)35	
			- Possibility of virulence reversion and safety problems in immunocompromised patient11	2 1%
LAV	- Stronger immune response. Robust cellular and humoral immune responses without the usage of adjuvants, resulting in long-lasting immune responses25,57	- Possibility of virulence reversion and safety problems in immunocompromised patient11	- Difficulty in achieving attenuated strains39	
			- Needs to be stored at low temperatures to remain stable58	
			- Low stability under environmental changes (temperature, shear stress, and fluid dynamics)35	

PS, protein subunit; VV, viral vector; VVnr, non-replicating viral vector; VVr, replicating viral vector; VVr + APC, replicating viral vector + antigen presenting cell; VVnr + APC, non-replicating viral vector + antigen presenting cell; IV, inactivated virus; VLP, virus-like particle; LAV, live attenuated vaccine.
Consequently, the lack of targeted mRNA delivery agents hinders the development of mucosal mRNA vaccines, which further necessitates the development of a nanoparticle-based targeted delivery system.

Considering the safety issue of commonly used mucosal vaccine platforms (viral vector, live attenuated virus, and inactivated virus), protein subunit and nucleic acid vaccines can be safe alternatives. Additionally, the ease of scale-up and manufacturing of protein subunit vaccine and mRNA vaccine would offer high adaptability to new variants or pathogens. However, weak inherent immunogenicity and prompt degradation of mRNA vaccine and protein subunit vaccine in the mucosal environment remain the main obstacles. Considering the clinical importance and necessity of mucosal vaccines, it is crucial to study the target cell for antigen delivery, prepare a suitable formulation for effective antigen protection, and choose an adjuvant for the successful induction of mucosal immunity. This necessitates the research and development of the components and mechanisms of mucosal immune systems and various mucosal vaccine platforms for the effective induction of mucosal immunity.

2.4. COVID-19 mucosal vaccines in the preclinical study and clinical trials

Despite the absence of approved COVID-19 vaccines for intranasal administration, 11 intranasal vaccines are currently undergoing clinical trials. Among the 11 intranasal COVID-19 vaccines, eight vector vaccines, two protein subunit vaccines, and one live attenuated vaccine are now being investigated.

Viral vector vaccines are the most prevalent vaccine platform developed for mucosal COVID-19 vaccines. For instance, intranasal vaccination of nonreplicating human type 5 adenovirus encoding the full-length SARS-CoV-2 S protein developed by CanSino Biologics (Tianjin, China) (Ad5-nCoV) has induced S-specific IgG and IgA as well as IFNγ, TNFα, IL-2 responses in splenic CD8+ and CD4+ T cells in BALB/c mice. Activation of the local and systemic immune system has prevented infection in both the upper and lower respiratory tract. Moreover, intranasal administration of chimpanzee adenovirus (simian Ad-36) encoding a stabilized prefusion form of the S protein (ChAd-SARS-
CoV-2) has also induced the production of anti-S and anti-RBD neutralizing antibodies and T cell responses in nasal swabs, bronchoalveolar lavage fluid (BAL), and lung tissues of rhesus macaques\(^88\). Other viral vectors include attenuated influenza virus, parainfluenza virus 5 (PIV 5), vesicular stomatitis virus (VSV), live Newcastle disease virus (NDV), and lentivirus. Live recombinant NDV expressing a stable version of the S protein in prefusion conformation (AVX/COVID-12-HEXAPRO) was administered to pigs intranasally, intramuscularly, and by a combination of the two routes\(^89\). Administration of vaccine-induced antibodies against the S protein and variants of concern (B.1.1.7, B.1.351, P.1) blocked ACE2-RBD interactions\(^89\). Viral-vectored intranasal vaccines in the clinical phase are summarized in Table 4. While most clinical data are yet to be released, AVX/COVID-12 HEXAPRO was administered twice intramuscularly (IM-IM), twice intranasally (IN-IN), or intranasally (IN), followed by intramuscularly (IN-M) to 91 healthy volunteers in an open-label non-randomized non-placebo-controlled phase 1 clinical trial (NCT04871737). Potent antibody and cellular immune responses were detected in the IM-IM/IN-IN high-dose group\(^90\). All administration routes at all dose levels were well tolerated and were not associated with severe adverse events\(^90\). Based on this result, a phase II study on AVX/COVID-12 HEXAPRO is ongoing for the evaluation of safety and immunogenicity (NCT05205746).

Two intranasal doses of live attenuated influenza virus-vectored vaccine encoding RBD (DelNS1-2019-nCoV-RBD-OPT1) in double-blind, randomized, placebo-controlled phase 1 and 2 trials have also demonstrated immunogenicity and safety, which was well tolerated in healthy adults and induced RBD-specific IgG, secretory IgA and T cell immunity (ChiCTR2000037782, ChiCTR2000039715, ChiCTR2100048316)\(^91\).

In the case of viral-vectored vaccines developed for oral administration, VXA-CoV2-1 developed by Vaxart, an adenovirus type 5 (rAd5) vector containing full-length SARS-CoV-2 S gene with cytomegalovirus promoter, and full-length SARS-CoV-2 N gene with a human beta-actin promoter (Ad5 S + N vaccine) has...
shown promising preclinical data. Two doses of VXA-Cov-2-1 were orally administered (oral gavage) to Syrian hamsters before intranasal challenge with SARS-CoV-2. Histopathological analysis of the lung samples showed that two oral doses of VXA-Cov-2-1 elicited a reduction in the inflammatory response and viral load by more than 4 logs in the lungs after intranasal challenge with SARS-CoV-2. Vaccination also induced robust S1-specific serum antibody in the serum, secretory IgA in the upper and lower respiratory tract. A phase 1 clinical trial was conducted on hAd5-S-Fusion + N-ETSD, and the results showed ten-fold T cell-specific IFN-γ secretion in recipients compared to naïve participants with cross-reactivity found in B.1.1.7, B.1.429, P.1, and B.1.351 strains (NCT04591717). hAd5-S-Fusion + N-ETSD is currently ongoing clinical trials for diverse administration routes, such as sublingual, oral, and subcutaneous.

In the case of intranasal protein subunit vaccines, trimeric or monomeric S protein adjuvanted with cyclic GMP-AMP synthase and the stimulator of interferon gene agonist (STINGa) was encapsulated with liposome. Intranasal administration of adjuvant encapsulated liposome to BALB/c mice elicited neutralizing antibody in the serum, secretory IgA in the upper and lower airway, and S-specific T cells in the spleen and lungs. Protein subunit vaccines in the clinical phase are CIBG-669, which constitutes an RBD protein with an HBV nucleocapsid antigen (AgHB), and Razi Cov Pars, which constitutes a recombinant S protein. Intranasal administration of CIBG-669 in phase 1/2 trials induced an anti-RBD response by 4-fold with no severe adverse effects. COVI-VAC, a live-attenuated vaccine with 283 silent mutations in the gene encoding the S protein is now being tested as an

Vaccine platform	Candidate vaccine	Route of administration	Manufacturer	Phase	Clinical trial No.
Ad-vectored vaccine	ChAdOx1	IN or IM	University of Oxford/Vaxart	Phase 1	NCT04816019
	Ad5-nCoV	IN or IM	Bharat Biotech International	Phase 1/2	NCT04840992
	BBV154	IN		Phase 3	CTR200202/040065
	VXA-CoV2-1	Oral, SC, Oral, or SL	Vacxart	Phase 2	NCT05067933
	hAd5 S-Fusion + N-ETSD	IN	ImmunityBio	Phase 2/3	NCT04843722
LAIV-vectored vaccine	DelNS1-2019-nCoV-RBD-OPT1	IN	University of Hongkong/ Xiamen University/ Beijing Wantai Biological Pharmacy	Phase 3	ChICTR 2100051391
PIV5- vectored vaccine	CVXGA1	IN	CyanVac LLC	Phase 1	NCT04954287
RSV-vectored vaccine	MV-014-212	IN	Meissa Vaccines, Inc.	Phase 1	NCT04798001
NDV-vectored vaccine	AVX/COVID-12-H	IN or IM + IM	Laboratorio Avi-Mex	Phase 1	NCT04871737
	EXAPRO	IN		Phase 2/3	NCT05354024
	NDV-HXP-S	IN	Sean Liu/Icahn School of Medicine at Mount Sinai	Phase 1/2	RPCE00000345
PS	CIGB-669 (RGB + AgnHB)	IN or IM + IM	Center for Genetic Engineered Biology (CIGB)	Phase 3	IRCT20210206050259N3
	Razi Cov pars, (recombinant S protein)	IM + IN	Razi Vaccine/Serum Research Institute		
LAV	CoV2-0GEN1	Oral	USSF/Vaxform	Phase 1	NCT04893512
	COVI-VAC	IN	Codagenex/ Serum Institute of India	Phase 3	BRCTN 15779782
DNA	BacTRL-spike DNA vaccine	Oral	Symvivo Corporation	Phase 1	NCT04334980

Ad, adenovirus; LAIV, live attenuated influenza virus; PIV, parainfluenza virus 5; RSV, respiratory syncytial virus; NDV, Newcastle disease virus; PS, protein subunit; LAV, live attenuated vaccine; IN, intranasal; IM, intramuscular; SC, subcutaneous; SL, sublingual.
intranasal formulation. Phase 1 randomized, double-blind, placebo-controlled, dose-escalation trial of a single intranasal dose of COVI-VAC has demonstrated that administration of COVI-VAC was not associated with substantial adverse events and stimulated serum and mucosal immune responses (NCT04619628). Currently, COVI-VAC is undergoing a phase 3 clinical trial (ISCRTN15779782).

Finally, the bacTRL-spike oral DNA vaccine developed by Symvivo corporation (Burnaby, BC V5J 5J8, Canada) utilizes the unique bacTRL™ platform, which is commensal bacteria (Bifidobacterium longum) engineered to deliver synthetic plasmid DNA encoding spike protein. A commensal Bifidobacterium selectively colonizes in the lower gastrointestinal tract and expresses transport protein which binds to plasmid DNA. Transport protein-bound plasmid DNA is secreted to the extracellular environment and subsequently transfects the colon epithelium. Transfected colon epithelium expresses antigen, inducing antigen-presenting, followed by activation of the immune response. Oral administration of bacTRL-spike-1 is currently undergoing the phase 1 trial to evaluate safety and tolerability in healthy adults (NCT04334980).

3. Basic mechanism of mucosal immunity and mucosal vaccines

3.1. Antigen sampling in mucosal inductive sites

The organized lymphoid tissue in respiratory and gastrointestinal mucosa plays a critical role in the sampling of antigens and induction of mucosal immunity. The organized mucosal inductive site, mainly located at the site of pathogen exposure (palatine tonsil, lingual tonsil, adenoid, Peyer’s patch) has unique epithelial cells called ‘follicle-associated epithelium (FAE)’ along with the lymphoid follicle. FAE, a specialized epithelial cell differentiated from the mucosal lymphoid follicle, possesses a distinct ability of antigen capture, delivery, or presentation, which is mediated by the M cell (microfold cell). The M cell, named after its scarce microvilli present on the apical side compared to other absorptive epithelial cells, possesses high endocytic activity and effectively captures foreign materials from the lumen of the mucosal surface and delivers them to the basolateral side (Fig. 4). The basolateral side of the M cell has a pocket shape structure, which enables the localized recruitment of DC, B cell, and T cell inside the pocket.

The primary inductive sites for gastrointestinal adaptive immune response are Peyer’s patch, cecal patch, and colonic patch, which are the largest MALT in the digestive tract, and are found in the submucosa of the small intestine, cecum, and colon. The primary inductive site for the upper respiratory adaptive immune response is NALT in mice, which is found on the dorsal side of the soft palate. Humans also have organized mucosal lymphoid tissues called Waldeyer’s ring. Peyer’s patch and NALT exhibit highly similar structures composed of follicle-associated epithelium, subepithelial dome, B cell follicles with germinal centers, and interfollicular zone. The chemokines CCL20 and CCL9 produced by FAE recruit lymphocytes and dendritic cells expressing the corresponding counter receptor (CCR6 and CCR1). Below the epithelium is the subepithelial dome (SED), where DCs encounter antigens transported by enterocytes and M cells. Beneath the SED
are interfollicular T cell zones and B cell follicles with a germinal center. In the interfollicular T cell zones, DCs present antigens and activate effector CD4+ and CD8+ T cells. Activated CD4+ T cells induce the formation of an IgA+ plasma cell through isotype class switching and affinity maturation in the germinal center of the B cell follicle (Fig. 5).

3.2. Immune responses in mucosal effective sites

Effector B and T cells activated by DC express tissue-specific adhesion molecules and chemokine receptors. Such a receptor-mediated homing property of lymphocytes enables the localized concentration of mucosal immune response at the site of antigen exposure as well as distant organs, which express the corresponding receptor or ligand of the molecule. Effector B and T cells stimulated in inductive sites are preferentially transferred to related mucosal-effector sites. For instance, IgA+ plasma cells induced by NALT express α4β7 and CCR10, which migrate to the respiratory and genitourinary tracts expressing VCAM-1 and CCL28. This elicits local recruitment and focusing of IgA+ B cells in the respiratory tract. IgA+ plasma cells localized in the respiratory tract secrete antigen-specific IgA+ to the lumen, which prevents viral entry into the respiratory epithelium (Fig. 5). IgA+ plasma cells activated from Peyer’s of the intestine express α4β7 integrin, which strongly binds to MADCAM1 of the small intestinal venules. This elicits local recruitment and focusing of IgA+ B cells in the intestine, preventing viral entry into the digestive tract. In contrast, systemic immunization of the antigen did not induce the expression of α4β7 integrin and CCR10 in B cells, which further corroborates the ineffectiveness of systemic immunization for the induction of mucosal immunity.

As such “counter receptors” are widely expressed in various types of mucosal organs, induction of the mucosal immunity in a primary organ can elicit immunity in distant organs (Fig. 6). For instance, IgA-secreting B cells activated from MALT expresses CCR10, which enables its recruitment towards various organs expressing the corresponding CCL28 (the small intestine, large intestine, and vagina) and VCAM-1. Thus, it is important to consider the potency of localized mucosal responses of each organ while determining the site of administration. In this aspect, intranasal vaccination would be a rational approach for the prevention of SARS-CoV-2 infection compared to oral vaccination.

Although it is obvious that secretory IgA and virus-neutralizing antibodies block the viral entry site and provide sterilizing immunity, the recent advent of highly contagious Omicron variants (B.1.1.529) evading neutralizing antibodies is raising a new concern. In this aspect, CD8+ T cell, despite its non-sterilizing immunity and redundant protective effect with neutralizing antibodies, recognizes highly conserved epitopes among various types of SARS-CoV-2 variants. Specifically, lung resident and systemic memory T cells showed effective protective immunity against antibody-resistant Beta (B.1.351) variants in the absence of neutralizing antibodies. Thus, inducing both neutralizing antibodies and memory T cells can be a new paramount of the COVID-19 vaccine by endowing both sterilizing immunity and high cross-reactivity. Tissue-resident memory T cells (TRM), long-lived memory T cells residing in various types of tissues (the gut, skin, lungs, reproductive tract, liver, and brain), are crucial for the prevention of respiratory infection by their rapid response to re-infection stimuli. TRM develops from effector memory T cell (TEM) precursors in response to local antigen recognition and exposure to TGF-β and IL-15. Despite its functional similarity with TEM, TRM exhibits distinct transcription profiles for its long-term survival in the tissue microenvironment and induces stronger protective mucosal immunity than TEM. Specifically, lung CD8+ TRM cell produces a significant amount of IFNγ compared to TEM cells in other types of tissue, which has a pivotal role in protection from respiratory virus infection. Lung CD8+ TRM cells can be divided into two subpopulations known as airway TRM and interstitial TRM. Within these two subgroups, airway TRM is known to be less cytolytic and determines the efficacy of lung cellular immunity.

Despite its clinical importance, lung CD8+ TRM tends to exhibit a short lifespan and is lost a few months after acute infection, thereby leaving the host susceptible to secondary infection. A study demonstrated that the short lifespan of lung CD8+ TRM is associated with epigenetics and transcriptional changes of the airway TRM cells induced by the airway environment, which promotes apoptosis due to amino acid starvation and activation of an integrated stress response. Thus, sustaining the lifespan of lung TRM cells can be a key strategy of mucosal vaccines for the prevention of SARS-CoV-2 infection.
respect to this strategy, an Adenovirus vector expressing influenza nucleoprotein (AdNP) was administered intranasally to increase the longevity of lung CD8\(^{+}\) TRM. The results have shown larger populations of lung TRM and a longer population maintenance period (1-year post-vaccination) compared to influenza infection. Such expansion of longevity is induced by persistent antigen expression after AdNP vaccination. These studies further support the necessity of intranasally delivered vaccines and suitable delivery agents for the sufficient activation and long-term maintenance of lung TRM cells.

3.3. M cell and dendritic cells – key target cells for mucosal vaccine delivery

In the mucosal membrane, potentially harmful antigens are captured by various modalities of the mucosal surface and specific antigens induce immune surveillance of the luminal components. Among the various modalities of capturing luminal antigens, one of the most intriguing mechanisms is capturing and transcytosis of antigens mediated by M cell, a highly specialized epithelium that plays an important role in mediating the induction of mucosal immunity. Transported antigens are effectively transferred to antigen-presenting cells or dendritic cells localized in the basolateral pocket and initiate the activation of mucosal immune responses. The M cells are present in the FAE of gut-associated lymphoid tissue (GALT) and nasal-associated lymphoid tissue (NALT). Importantly, various studies have proven the importance of NALT M cells in the immune induction of the common mucosal immune system. In a CCR6-deficient murine model that exhibits a reduced number of NALT M cells, antigen-specific nasal IgA was not detected after nasal immunization of attenuated vaccine strain of Salmonella typhimurium, whereas the nasal immunization in the wild-type CCR6 model successfully induced the secretion of nasal IgA. For the development of mucosal vaccines, understanding the unique structural features of M cells and the cellular mechanisms underlying antigen capturing, transportation, and presentation are crucial.

The M cell exhibits close contact with columnar epithelial cells through tight junctions and desmosomes. Compared to the adjacent columnar epithelial cells, the morphology of the M cell is characterized by a sparse amount of microvilli and short microvilli showing a microfold pattern on the apical side and deep invagination of the basolateral side that acts as a localization space of antigen-presenting cells. Such unique structures of M cells enable the efficient sampling of antigens and transportation of antigens to APC located in the basolateral pocket. Since microvilli have negative charges owing to their glycoprotein structure, the columnar epithelial cells abundant in proximity to the microvilli tend to show electric repulsion with the bacterial peptide. As a scarce amount of M cells exists on the apical side, electrical repulsion between the bacterial peptides and the M cell is less likely to occur. Thus, the bacterial peptides or antigens are constantly repelled from the columnar epithelial cells and finally

![Figure 4](image_url)
Figure 4 Morphological features of M cells. M cell is characterized by a sparse amount of microvilli and short microvilli showing microfold pattern on apical side and deep invagination of the basolateral side, which acts as localization space of dendritic cells and lymphocytes. Recruitment of dendritic cells and lymphocytes is mediated by chemokine (e.g., CCL20) secreted from the follicle-associated epithelium (FAE) and its counter-receptor (e.g., CCR6).
reach the M cells, where less electrical repulsion is present (M cell trap)131. Additionally, the basolateral pocket of the M cell provides a space for the interaction of various immune cells. Antigen transported by M cell is effectively captured by APCs or DCs in the basolateral pocket and migrates to the interfollicular T cell zone or draining lymph node. This induces the activation of Naïve T cells, class switching, affinity maturation of B cell response, and memory response of lymphocytes. Activated T cells and IgA-producing B cells localize to effector sites producing antigen-specific IgA in the nasal cavity116. In this aspect, the distinct role of the M cell in capturing the luminal foreign antigen and providing direct entry to the mucosal immune inductive site makes the M cell an attractive target for mucosal vaccine delivery137.

The population of DCs, which comprises heterogeneous subgroups, performs a pivotal role in guiding the immunity towards activation or tolerance138. Since the mucosal environment is constantly exposed to diverse commensal and foreign antigens, it is important for the immune system to distinguish between harmless and harmful antigens. In this regard, DCs in the mucosal immune system subtly regulate the balance between immune activation and tolerance139. Therefore, for the successful induction of immune response by the mucosal vaccine, it is important to understand and utilize the mechanism of immune regulation mediated by DCs. Moreover, delivering antigens to the proper subtype of mucosal dendritic cells and skewing the balance of the immune system to trigger its activation is crucial.

Within the mouse NALT, a large population of DCs was found to be adjacent to the sub-epithelium and peri-vascular and peri-lymphatic spaces, with some DCs extending their dendrites to the epithelium115. Three major subsets of dendritic cells were identified: CD103+ CD11b− cells, CD103+ CD11b+ cells, and CD103− CD11b− cells115,116. Among the three subsets, CD103− CD11b− cells, located mostly in the FAE or NALT, predominate over other types of DCs115. After nasal immunization or infection, CD103− CD11b− cells migrate to cervical lymph nodes and present antigens to CD4+ T cells116,140–142. The CD103+ CD11b− DCs, which are mostly distributed along the peripheral site of the NALT, skin, lungs, and intestine, efficiently uptake viral antigens and subsequently activate CD8+ T cells via cross presentation115,143,144. Furthermore, studies on nasal CD103+ DCs have proved that activating CD103+ DCs in NALT stimulates the vaccine-specific IgA induction145,146. Specifically, the intranasal administration of influenza hemagglutinin subunit with polyinosine-polycytidylic (polyI:C) enhanced the production of vaccine-specific IgA146. A mechanistic study revealed that polyI:C was endocytosed into CD103+ DCs and activated the TLR3 pathway.
signal, which subsequently induced T cell-dependent IgA production. Accordingly, targeting nasal CD103^+ DCs can be an attractive approach for inducing immunity in the nasal mucosa. Peyer’s patch follows a similar pattern to NALT. Vaccine or viral antigens transported by M cells can be captured by CD11b^+ DCs in the basolateral side of the M cells. Capturing of the antigen induces expression of CCR7 in CD11b^+ DCs, which triggers migration to the interfollicular region and presentation of antigen to the interfollicular T cell area. Activation of effector T cells induces isotype class switching and affinity maturation in B cells via CD103^+ DCs in the Peyer patch migrates into the afferent lymphatic vessels and cross presents antigen to CD8^+ T cells in the mesenteric lymph node. Interaction of CD103^+ DC and T cells also stimulates expression of CCR9 and α4β7 integrin of T cells, which act as gut-homing receptors.

Despite their efficient antigen cross-presentation and CD8^+ T cell activation, CD103^+ DCs are also known as efficient inducers of FOXP3^+ Treg cells in the intestine. Specifically, mesenteric lymph node-derived CD103^+ DCs exhibit high expression of tissue plasminogen activator, TGFβ2, and latent TGF-β-binding protein 3, which are crucial for the activation, secretion, and localization of latent TGF-β. Activation of TGF-β stimulates differentiation and maintenance of FOXP3^+ Treg cells (induced Treg, iTreg). Additionally, CD103^+ targeting antibody M290 coupled with ovalbumin (M290, OVA) was administered intratracheally. Administration of M290, OVA significantly reduced airway eosinophilia, Th2 cytokines, and anti-OVA IgE antibody responses, which implicates induction of immunotolerance via CD103^+ targeting.

These observations implicate that CD103^+ DC exerts two opposing effects on the mucosal immune system: (1) cross-presentation of foreign antigens with subsequent activation of CD8^+ T cell, leading to protection from viral infections and (2) induction of immunotolerance by triggering differentiation of FOXP3^+ Treg cells (induced Treg, iTreg). Such counter-effects of CD103^+ DCs can be explained by two hypotheses: 1) cross-presentation of foreign antigens or self-antigens and 2) exposure to differing molecular cues and environmental conditioning in each mucosal organ. Firstly, the cross-presentation of antigens to CD8^+ T cells leads to one of two different pathways: cross-priming or cross-tolerance. While cross-priming would lead to the cellular immune response against the foreign antigen, cross-tolerance would lead to T cell deletion or T cell anergy, which subsequently induces tolerance. Cross-tolerance is induced through the phagocytosis of apoptotic cells by CD103^+ DCs. Secondly, in the gut microenvironment, a significant amount of retinoic acid is formed by epithelial enzymes. Retinoic acid acts as a crucial cofactor for the induction of intestinal iTreg mediated by TGF-β. While in vitro cultures of MLN CD103^+ with retinoic acid and TGF-β have sufficiently induced Treg, the addition of retinoic acid inhibitors significantly reduced the induction of Treg. Moreover, a study demonstrated that CD103^+ DCs adjacent to intestinal epithelial cells obtain a tolerogenic phenotype, which leads to the activation of Treg. This further supports the hypothesis that environmental conditioning and molecular cues adjacent to CD103^+ DCs determine the immunological pathway.

In this aspect, further studies on CD103^+ DCs and characterization of the factors that determine the state of immune activation or immune tolerance would enable control of the activity of the immune system via DC targeting. In the case of mucosal COVID-19 vaccines, skewing the balance to immune activation would be

Figure 6 Different routes of administration localize antigens to specific immune inductive sites. Mucosal immune inductive sites consist of NALT (tonsils, adenoid), BALT (no known equivalent tissue in human bronchi), GALT (Peyer’s patch), and rectal solitary follicle of the rectum. Each immune inductive site activates antigen-specific lymphocytes, which are subsequently drained to the corresponding lymph nodes (cervical lymph node, hilar lymph node, mesenteric lymph node, rectal lymph node) and circulate through the bloodstream. Circulating effector T cells and B cells are preferentially recruited to the site of antigen exposure other than immune effective sites. However, tissue-specific adhesion molecules and chemokine receptors of lymphocytes enable localization to distant organs that express the corresponding receptor or ligand. Such receptors or ligands are widely expressed in various types of mucosal organs, thereby eliciting immunity in distant organs.
an important strategy for protection against respiratory infections. Thus, it is important to consider such bidirectional capacity and the heterogeneous subgroups of DCs.

4. Nanotechnology-assisted COVID-19 mucosal vaccine

4.1. Challenges and practical strategies for mucosal vaccination

Challenges and the rational design of a mucosal vaccine are closely related to the distinct immunological traits of the mucosal system. Since the mucosal system is constantly exposed to various types of environmental irritants, pathogens, and allergens, it has developed its own measures to guard the human body against various types of environmental pathogens. Exposure to various types of antigens renders the mucosal system with three distinct protective mechanisms to keep the antigens from entering and harming the human body. Firstly, the mucosal surface exhibits a harsh environment through its innate defense mechanisms. Antigens can be diluted, captured, or removed from the mucus through mucous, enzymatic degradation, and ciliary clearance. Secondly, the mucosal system is able to distinguish harmless antigens from harmful counterparts and induce immune tolerance against them. This prevents unnecessary inflammation against harmless antigens. Thirdly, the mucosal surface has its own specialized epithelial cells (FAE) and lymphoid tissues. Through this specialized compartment known as MALT, the mucosal immune system is able to sample antigens from the mucosal surface (immune inductive site) and recruit the activated effector lymphocytes to the lamina propria of various mucosa and form cytokine and secretory IgA at the immune effector site. The secretory IgA neutralizes harmful toxins and pathogens in the mucosal environment, while the effector T and B cells retain long-term immune activity against specific pathogens. The distinct immunological features of the mucosa guide the effective design of the mucosal vaccine in three aspects: the vaccine should remain stable under physical and chemical barriers of a harsh mucosal environment, breach the epithelium through precise targeting of the sampling site of the mucosal immune system, and subsequently induce the immune activation rather than immune tolerance. Accordingly, the formulation of a mucosal vaccine should possess stability, capability of targeted delivery, and immunogenicity to achieve effective mucosal immunity against pathogens. Thus, nanotechnology-based delivery agents can be utilized to fulfill the following three aspects: (1) evasion and protection from mucosal barriers, (2) targeted delivery to the specific types of cells, and (3) activation of the immune system. The nanotechnology-based formulation is expected to impart favorable traits (protection of antigen, targeted delivery, and immunogenicity) for mucosal vaccine via several strategies: (1) modification of the physicochemical properties (such as size, shape, charge) of the nanoparticles, with a size of 20–200 nm in diameter and positively charged nanoparticle showing stronger intranasal immune response, (2) encapsulating or attaching antigens to the nanoparticle, (3) targeting specific cells through targeting moieties or ligands, and (4) using nanoparticle with innate adjuvant activity and equipping nanoparticles with immune activating signals or molecules.

Pathogens, foreign materials, as well as mucosal vaccines are generally exposed to the harsh environment of the mucosal surface, which includes dilution of materials through mucus, degradation mediated by protease and nuclease, and mucociliary clearance. As a result, soluble non-adherent antigens are removed and diluted by the constant renewal of the mucus and are not recognized as non-self, leading to immune tolerance toward the antigens. Thus, designing effective delivery agents or formulations that have the ability to protect the antigen and induce mucosal immunity is crucial to achieving a successful induction of mucosal immunity. Formulation of mucosal vaccines requires that the formulation should reach FAE without being degraded or removed by the harsh mucosal environment and host defense mechanism (stability). After being delivered to FAE, the formulation should enable the effective uptake of antigens and mucosal adjuvants (antigen uptake). Subsequently, antigen and adjuvant should induce potent mucosal immunity through antigen presentation and lymphocyte activation (immunogenicity). Therefore, antigen encapsulated with a well-designed particle can be easily recognized by the innate immune system and act as a stronger inducer of mucosal immune response compared to its soluble counterparts.

Considering that ACE2 receptors recognized by SARS-CoV-2 are highly expressed on the oral and mucosal epithelium, inducing protective immunity via oral and intranasal delivery routes can be possible candidates for administration. Within oral and intranasal routes, intranasal vaccination induces robust immune activation in the upper respiratory tract and extended lifespan of lung TRM cells as discussed above. By contrast, oral immunization induces strong immune responses in the digestive tract and salivary glands rather than in the upper respiratory tracts. In addition, low bioavailability owing to gastric degradation and first-pass metabolism and dilution of the vaccine due to intestinal content further hinders the efficacy of oral vaccines. In this aspect, nasal vaccine delivery can be a suitable route of administration for the prevention of SARS-CoV-2 infection. For the development of intranasal nanovaccines, the target cell and formulation of the vaccine are crucial factors to be considered.

4.1.1. Polymeric nanoparticles

By modifying the physicochemical properties and surface molecules of biodegradable and biocompatible polymeric nanoparticles, target delivery toward MALT can be achieved. Specifically, equipping nanoparticles with mucoadhesive materials (passive targeting) and anchoring certain lectins, ligands, or specified antibodies that can selectively bind to M cells are commonly utilized methods.

The first strategy is modifying the surface property of the nanoparticles by incorporating and anchoring mucoadhesive material to the nanoparticle. The mucoadhesive property of such formulations increases the chance of antigen uptake by prolonging the contact time of the vaccine and mucosal surface without being degraded. The mucus is composed of glycoprotein, lipid, inorganic salt, and water. It is formed by crosslinking the layers of mucin fiber, which is a polymer formed by disulfide bonds between the mucin monomers. The negative charge of mucin is formed by a glycoprotein consisting of numerous sialic acids and sulfates. In addition, its cysteine-rich domain of the naked protein region forms a hydrophobic domain. Thus, a particle having a positive charge and a hydrophobic property adheres to the negatively charged mucus through electrostatic and hydrophobic interactions.

Secondly, active targeting of cells and organs through receptor-ligand interaction can be an attractive strategy for antigen delivery. Through surface modification, nanoparticles can be selectively delivered to FAE or mucosal surfaces. The typical target cell of such a delivery platform is the M cell, a specified epithelial cell located in FAE, acting as a portal of entry for antigens into APCs.
and lymphocytes. Its specialized ability to capture antigens and transport them to APCs in the basolateral pocket makes it an interesting potential target site for mucosal vaccines. However, the inadequate amount of M cells in the human body implies that specific targeting and binding of M cells is crucial for the successful induction of mucosal immunity. Thus, by modifying the surface of nanoparticles with certain lectins, ligands, or specified antibodies that can selectively bind to M cells, the antigen can be effectively delivered to the site of induction. In addition, coating the outer membrane of the mucosa-breaching bacteria and viruses with a nanoparticle surface enables the evasion of the host defense mechanism, strong adhesion to M cells, and strong induction of mucosal immunity. Such formulations include a virus-like particle (VLP) and membrane-coated nanoparticle.

Polymeric nanoparticle, a particulate delivery agent encapsulating antigens, is able to fulfill the aforementioned features by endowing a wide variety of physiochemical properties and binding capacity to certain target tissues. Due to their structural stability, strong immunogenicity, and capability of controlled release, various types of polymeric nanoparticles and microparticles are now being studied as delivery agents of mucosal vaccines. Among the various types of polymer materials, synthetic polymeric nanoparticles, poly(l-lactide-co-glycolide) (PLGA), poly(ε-caprolactone) (PCL), and poly(l-lactide) (PLA) are widely investigated due to their high biocompatibility, protective function for antigen and adjuvant, capability of cell and organ targeting, capability of controlled release, and low toxicity. PLGA is the most extensively studied polymeric nanoparticle for the delivery of vaccine antigens. Specifically, PLGA - encapsulating TLR agonists induced strong antigen-specific mucosal immune response against various types of pathogens. Also, surface modification of PLGA with mucoadhesive materials and M cell targeting moieties enables efficient induction of mucosal immunity.

Another type of synthetic polymeric nanoparticle is dendrimers, which contain a central core surrounded by hyperbranched nanosized symmetric macromolecules with a monodisperse structure. As branched elements are built around the central core, dendrimers form internal cavities for the encapsulation of antigens and distinctive size, shape, and surface charges. Due to such features, physiochemical and biological properties can be customized through the introduction of different functionalized surface moieties. For instance, intranasal immunization of the HIV-1 gp120 peptide complexed with fourth-generation polyamidoamine dendrimer (G4-PAMAM) induced peptide-specific IgG and IgA responses in the serum, nasal wash, and vaginal fluid of mice.

Natural polymeric nanoparticles exhibiting bioadhesive properties include chitosan, maltodextrin, alginate, hyaluronic acid, carboxymethyl cellulose, hydroxyethyl cellulose, and pectin. For instance, chitosan, a cationic polymer synthesized by deacetylation of chitin, has widely been used for mucosal vaccines. Chitosan is able to adhere to the mucosal membrane for a long period and enhance paracellular transportation without being affected by mucociliary clearance. Chitosan also possesses adjuvant properties and induces mucosal immunity and further enhances the immunogenicity of the mucosal vaccine. However, since chitosan exhibits hydrophobicity at physiological pH, a trimethylated form of chitosan (TMC) has been used for enhancement of hydrophilicity and was employed in the nasal vaccine platform. Moreover, PLGA particles exhibit low bioadhesive capability. Thus, chitosan can also be employed to enhance the mucosal adhesive property of PLGA particles, further enhancing the mucosal immunogenicity of the vaccine.

4.1.2. Liposomes

Liposomes consist of biodegradable, non-toxic, and non-immunogenic phospholipids. Their wide variety of physiochemical properties, including various sizes, lipid composition, and electrical charges, enables a rational vaccine design. Additionally, liposomes can protect antigens from being degraded by the harsh mucosal environment by encapsulating the antigens in the hydrophilic core or complexing antigens with acyl chains or electrically charged surfaces. Importantly, coating or modifying the surface of the liposomes with certain ligands and adjuvants enable the selective delivery of liposome toward certain organs with the subsequent induction of a stronger immune response. This leads to a more potent and selective immune response against the encapsulated antigen. In this context, liposomes can be an attractive delivery platform for mucosal vaccines since M cell targeting can also be achieved through the modification of liposomes with specific ligands. As mentioned in the polymerized nanoparticle, lectin, M cell-specific ligand, and immunoglobulin can be utilized in the polymerized liposome for active targeting of M cells. A typical example of such a platform is BSA-encapsulated liposomes coated with UEA-1, which has shown immune-stimulating results in a mouse model compared to the uncoated liposomes.

4.1.3. Inorganic nanoparticles

Among inorganic nanoparticles, gold nanoparticles (AuNPs) are commonly used for vaccination, due to their efficient internalization by antigen-presenting cells and inherent immunostimulatory effects, inducing a subsequent immune activation. Further, the ease of size and morphology customization and functionalization makes gold nanoparticles potential antigen delivery agents. Using the stable bond between the thiol groups and gold, AuNPs can be easily functionalized or conjugated with antigens or adjuvants. Specifically, peptide consensus M2e of influenza virus A, which has a cysteine residue at the C-terminal, was conjugated to AuNPs through a bond between the thiol group and gold (M2e-AuNP). Intranasal administration of M2e-AuNP adjuvanted with CpG (cytosine-guanine rich oligonucleotide) induced M2e-specific IgG serum antibodies with cross-reactivity to various types of influenza viral strains. Another method of AuNP functionalization is polyelectrolyte multilayer (PEM) coating of AuNPs. The gold nanoparticle template was coated layer by layer, with alternating deposition of anionic adjuvant polyinosinic-polycytidylic acid (polyIC) and SIINFEKL peptide antigen modified with nona-arginine. The former acts as a poly-anionic TLR agonist, and the latter as an antigen with a cationic anchor. The resulting (immune-PEM coated) AuNPs were efficiently internalized by DCs and induced a high level of circulating antigen-specific CD8+ T cells. Despite its wide range of functionalization capacity, the safety of gold nanoparticles remains an obstacle. As gold nanoparticles can accumulate in specific organs such as the liver and spleen in the long term, the distribution of gold nanoparticles and toxicity of accumulated gold nanoparticles in various cell types should be addressed.

Another type of inorganic nanoparticle, carbon nanotube (CNT), is a cylindrical structure composed of carbon atoms arranged in a planar honeycomb lattice. Carbon nanotubes can be classified into single-wall carbon nanotubes (swCNTs) with an approximate diameter of 1–2 nm and multi-wall carbon nanotubes (mwCNTs) with an approximate diameter of 2–100 nm. Recently, CNTs have been extensively studied as vaccine carriers due to their high stability, high loading capacity, diverse ways of functionalization, and ease of mass production. However,
due to their hydrophobicity and toxic effects on macrophages, CNTs are generally functionalized to reduce toxicity and increase biocompatibility. Common functionalization methods of CNTs include the introduction of a carboxylic acid or amino group to their surface. The carboxylic acid group or protonated amine group of CNTs can increase biocompatibility and act as a moiety to conjugate or electrostatically adsorb protein antigens or DNA. Functionalized CNTs possess inherent immunogenic activity, which is efficiently captured by antigen-presenting cells and induce the production of pro-inflammatory cytokines, leading to robust immune responses. Moreover, targeting M cells or DCs through CNT surface modification can be a potential strategy to induce a potent mucosal immune response. However, the safety of CNTs remains a concern. Due to its pro-inflammatory effect, airway exposure to CNTs has led to the exacerbation of lung injury in a mouse model. Despite a successful reduction of toxicity via functionalization, further studies on the toxicology of CNTs and assessment of regimen and functionalization strategies to control an appropriate level of immune activity are required.

4.2. Nanotechnology-assisted COVID-19 mucosal vaccine for M cell targeting

4.2.1. Target tissue and cell of mucosal vaccine

Since the major route of transmission of COVID-19 is the respiratory droplets entering the mucosal membranes of the nose, eyes, and mouth, stimulating the mucosal immunity in the luminal surface of such organs can be a key strategy to achieve sterilized immunization. NALT is one of the major constituents of MALT, which acts as an induction site of mucosal antigen-specific immune responses. The Waldeyer’s ring, composed of paired palatine, nasopharyngeal tonsils, and lingual tonsils, is considered the human anatomical equivalent of the NALT in mice. Components of nasal mucosal immunity are summarized in Table 6. Specifically, human tonsils consist of lymphoid follicles and interfollicular tissues supported by reticular cells. Lymphoid follicles contain germinal centers filled with follicular DCs and B cells. The interfollicular region contains substantial amounts of APCs and αβ T cells. Due to its specialized structure, the intranasal administration of the vaccine-induced mucosal immune responses in NALT and was verified to induce strong mucosal immunity in the respiratory immune system in addition to the systemic immunity. For example, the intranasal administration of live attenuated influenza virus vaccine has proven to be effective in preventing seasonal influenza infection. Additionally, it has been demonstrated that nasal immunization induces the activation of CCR10 and αβ1 integrin expressing IgA-secreting B cells, which can migrate and localize to CCL28 and VCAM1 expressing organs (respiratory tract and genital tract). In addition, nasal administration requires a
smaller dose of the antigen compared to oral administration since antigens are not exposed to the digestive enzymes of the gastrointestinal tract, which exhibits a less hostile environment.4

4.2.2. Nanotechnology-assisted mucosal vaccine for M cell targeting

For the successful antigen capture and transfer mediated by the M cell, three requirements need to be fulfilled. Firstly, the vaccine should reach and strongly bind to the apical membrane of the M cell. Secondly, the antigen and adjuvants should be effectively delivered into the M cell and transferred to the APCs. Thirdly, the antigen and adjuvants should induce a potent immune response.

Accordingly, either non-specific binding or receptor-mediated specific binding to the M cell can be considered the main delivery strategy. In the case of non-specific binding, the surface potential of the particle and hydrophobicity would act as important factors for interaction. Specifically, a particle with high hydrophobicity or positive charge is known to strongly interact with the M cell. Nevertheless, since the chemical and physical environment of the mucus and the adjacent luminal protein constantly fluctuates, it is likely that the physiochemical property of the delivery agent would also change, leading to inconsistent efficacy. Despite its specialized role in capturing the macromolecules and particles, the proportion of the M cells in the respiratory epithelium is very low. Thus, active targeting of the M cell through a specific receptor-ligand interaction would lead to consistent and accurate delivery of the antigen to the M cell. Such modalities can be achieved through nanoparticle coating of M cells binding ligands or mimicking the outer surface of the M cell breaching virus or bacteria through membrane-coated nanoparticles.

For effective sampling and uptake of antigen, M cell expresses various types of receptors. A typical example of such a receptor is glycoprotein 2 (GP2), which not only acts as a specific marker of the M cell but also as a receptor of the Fim H component of Type I pili, which enables the effective uptake of microbes. Type I piliated bacteria E. coli and S. typhimurium do not undergo transcytosis in GP2-deficient M cells, which implicates the crucial role of the glycoprotein and receptor-ligand interaction in the M cell-mediated antigen capture. Furthermore, prion protein (PrPc), a protein that is highly expressed on the apical membrane of the M cell, is known to interact with Hsp60-containing bacteria such as Brucella abortus, which subsequently leads to the internalization of the bacteria. In addition, ANXA 5 of the M cell specifically recognizes lipid A of LPS, which enables the uptake of gram-negative bacteria and peptidoglycan recognition protein 1 (PGLRP-1), which is highly expressed on the M cell, recognizing the peptidoglycan of bacteria.

Thus, understanding the receptor-ligand interaction between the M cell and antigen is crucial in designing a vaccine that is easily recognized by M cells and efficiently transferred to the APCs on the basolateral side. Such target receptors or glycoproteins include α-L-fucose, claudin 4 protein, integrin-β1, GP2, TNFα-induced protein 2 (Tnfaip2), and C-C motif chemokine ligand 9. The investigated M cell-specific molecules and their ligands are summarized in Table 7, while the nanotechnology-based M cell targeting strategies are illustrated in Fig. 8.

4.2.2.1. Lectin-coupled polymeric particle for M cell targeting

The M cell has a specific glycocalyx structure on its cell surface, unlike other epithelial cells. Thus, M cell-specific carbohydrate residues can be potential targets for lectin-mediated delivery. An example of M cell-specific carbohydrate residues is α-L-fucose. By incorporating lectin that can bind with α-L-fucose of the M cell through surface modification of...
nanoparticle, the antigen can be successfully delivered to the M cell. The most investigated candidates are lectin Ulex europaeus 1 (UEA-1) and LTA. In particular, the M cell targeting vaccine using UEA-1 coupled antigen-encapsulated liposome has successfully induced antigen-specific secretory IgA response. Unfortunately, UEA-1 cannot be used for human M cell-targeting vaccines due to the lack of specific receptors in human cells. In addition, coupling the antigen with NKM 16-2-4, a monoclonal antibody exhibiting higher affinity towards α-L-fucose compared to UEA-1, resulted in the successful induction of the antigen-specific IgA response.

4.2.2.2. Microbial protein-mediated M cell targeting. Another strategy for the targeted delivery of antigen is modifying the polymeric nanoparticle with an M cell-specific ligand or microbial adhesin. Diverse types of microorganisms utilize M cells as a route for host invasion. Since these microorganisms use microbial adhesin to bind with M cells, microbial adhesin has been exploited as a delivery guide to target M cells. Such microorganisms tend to survive in hostile mucosal environments, implying that microbial adhesins are generally resistant to mucosal degradation. Additionally, some microbial adhesins tend to be internalized into epithelial cells in addition to adhesion, thus further enhancing the induction of mucosal immunity.

An example of such microbial adhesin is the invasion of Yersinia species. Yersinia is one of the typical microbes that exploit the intestinal M cell as an entry route for invasion. The mechanism of M cell targeting is mainly mediated by protein invasin, which can selectively bind with the β1 integrin of the M cell. By applying this mechanism to a mucosal vaccine, a study has proved the effective binding of the M cell and the increased uptake of antigen by coating an invasin-coated membrane to a polystyrene particle. Moreover, the CPE30 peptide derived from the C-terminal domain of Clostridium perfringens

Table 5 Functionalizing liposomes with lectins or ligands for M cell-targeted delivery (cited from Ref. 21).

Strategy to enhance M cell delivery	Lectin or ligands	Receptor	Conjugation
Lectin-coupled liposomes	UEA-1	α-Fucose residues	Liposomes
Ligands-modified liposomes	WGA	(D-GlcNAc)2, sialic acid	Liposomes
Antibody-coated liposomes	CTB subunit	Ganglioside GM1	Liposomes
	Secretory IgA	Liposomes	Liposomes

UEA-1, Ulex europaeus agglutinin 1; WGA, Triticum vulgare wheat germ agglutinin; CTB, cholera toxin B subunit; D-GlcNAc, N-acetylgalactosamine; GM1, monosialotetrahexosylganglioside.

Figure 9 (a) Four tonsils comprise Waldeyer’s ring (pharyngeal tonsil, tubal tonsil, palatine tonsil, and lingual tonsil). (b) Human tonsils are composed of the follicle and interfollicular tissue. The follicle contains follicular dendritic cells and B cells, which induce activation and affinity maturation of B cells. Interfollicular tissue includes substantial amounts of antigen-presenting cells.
enterotoxin selectively binds to claudin-4 in the M cells, a tight junction transmembrane protein that is highly expressed in Peyer’s patch M cells. PLGA nanoparticle incorporating a fusion protein with influenza hemagglutinin fused with CPE30 has shown enhanced delivery through the M cell in vivo.

Another example of microbial adhesin is the reovirus protein σ1. Reovirus is one of the viruses that are typically known to adhere to the M cell and is endocytosed by the intestinal M cells in vivo, where its mechanism is mediated by the viral hemagglutinin σ1 protein. By incorporating σ1 protein into a liposome, enhanced adhesion to rat Peyer’s patch tissues has been observed.

4.2.2.3. Immunoglobulin-mediated M cell targeting. Secretory IgA can also adhere to the apical membrane of the M cell, which promotes the uptake of antigen. The mechanism of adherence and cellular uptake is mediated by Dectin-1, a small type II transmembrane protein of the C-type lectin family. By taking into account, chitosan-dextran sulfate nanoparticles loaded with pertussis toxin and sIgA were developed for the intranasal delivery of proteins, which showed an enhanced uptake of nanoparticles by the M cells.

A typical example of an M cell-targeting vaccine platform is a study on the UEA-1-conjugated PLGA nanoparticle that uses the TLR agonist monophosphoryl lipid A (MLP) as a mucosal adjuvant. Since UEA-1 of PLGA nanoparticles can interact with the fucose of the M cell, the vaccine is effectively bound to the M cell, delivered to DCs, and successfully induced mucosal IgA and serum IgG responses. In addition, the lectin-anchored HbsAg-loaded PLGA nanoparticle effectively binds to the fucose of the M cell and can be utilized as an oral immunization platform. A PEG-PLGA nanoparticle with the RGD motif (RGD-decorated PEG-PLGA NP) bound to β1 integrin of M cells and enhanced the cellular uptake of the antigen with adjuvant activity. Another application of nanoparticle used glycochitosan surface-coated mucoadhesive PLA nanosphere, which successfully induced mucosal immunity.

4.2.3. Nanotechnology-assisted COVID-19 mucosal vaccine for DC targeting

Considering the different roles of each DC subset and the bidirectional capacity of DC, two main aspects should be fulfilled for successful immune activation: (1) selective delivery of antigen toward a proper type of DC via modulating the surface molecules of the nanoparticles that bind to the receptors of DCs and (2) shifting the balance of DCs toward immune activation via equipping nanoparticles with proper signals and stimuli, such as activating adjuvants and transcription factors.
Phosphatidyl serine (PS) showed an immunotolerant effect by mimicking the apoptotic cells224,225.

Secondly, antigen uptake, processing, and presentation mechanisms mediated by APCs are determined by the particle size. Particles smaller than 100 nm tend to go through clathrin-mediated endocytosis, while particles larger than 200 nm tend to go through phagocytosis. The different entry mechanism of particles leads to different endocytic routes of the nanoparticles. Specifically, the cargo of the nanoparticles taken up by phagocytosis is prone to be processed through the endo-lysosomal route and presented via the MHC II pathway, which leads to the activation of CD4$^+$ T cells. By contrast, nanoparticles smaller than 100 nm resemble the entry mechanism and processing pathway of the virus, and the Th1 response predominates over the Th2 response.

Thirdly, the uptake mediated by APCs is known to be influenced by shape more than size226. Specifically, in the case of solid nanoparticles, rod-shaped nanoparticles are reported to induce a proinflammatory response compared to their spherical counterparts.

4.2.3.2. Use of DC-specific ligands for DC targeting and DC-mediated immune activation

Targeting DC receptors can be another promising approach for stimulating the mucosal immune system. The ability of DCs to recognize and internalize antigens is attributed to their receptors. DC receptors sense foreign materials, pathogen-associated molecular patterns (PAMPs), and danger-associated molecular patterns (DAMPs) via various types of pattern recognition receptors (PRRs). Typical examples of PRRs are TLRs, C-type lectin receptors (CLRs), nucleotide-binding and oligomerization domain-like receptors (NLRs), and retinoic acid-inducible gene 1-like helicases receptors (RLRs)227. In addition, other types of receptors, such as Fcγ receptor (FcγR) and Siglecs, act as important regulators of the immune response. After encountering antigen through the receptor, immature DCs undergo maturation and activation process. Mature DCs migrate to secondary lymphoid organs via chemokine receptors and express co-stimulatory molecules (CD80, CD86, and CD40) to provide a second signal for T cells in the secondary lymphoid organs227. In this regard, nanoparticles equipped with targeting ligands for specific types of DC receptors can enhance antigen internalization, processing, and presentation. Since different types of DC receptors activate different subtypes of T cells and consequently lead to either immune activation or tolerance, it is important to categorize which receptor to target to obtain the intended outcome.

Firstly, among the various types of receptors, CLRs are an important group of DC receptors that recognize glycosylated antigens. Typical examples of CLRs include DC-specific ICAM-3 grabbing non-integrin (DC-SIGN), dendritic cell natural killer lectin group receptor-1 (DNLR-1), mannose receptor (MR), and a 205-kDa membrane protein (DEC-205) (Fig. 11). Interaction of CLRs with glycosylated antigens are mainly mediated by carbohydrate recognition domains (CRDs), which binds to carbohydrates such as mannose, fucose, galactose, Lewis X, and glucan228,229. Important features of CLRs include phagocytosis and cross-presentation of antigens. Particularly, CLRs activate tyrosine kinase and downstream signaling, which stimulates the NF-κB pathway and activates immune responses, whereas some types of CLRs, such as DC immunoreceptor (DCIR), contain immune-receptor tyrosine-based inhibitory motifs (ITIMs), which inhibit activation of the immune responses230. Considering this aspect, targeting specific types of CLRs has been used as a major immune-activating modality for DC-targeting vaccines. Specifically, the intranasal administration of \textit{Yersinia pestis} Lcr V protein fused to anti-DEC-205-antibody with poly I:C as an adjuvant induced IFNγ secreting CD4$^+$ T cells in the airway as well as pulmonary IgG and IgA antibodies231.

Secondly, other important target DC receptors are TLRs, which also constitute an important group of receptors that recognize PAMPs. Specifically, the intranasal administration of influenza hemagglutinin subunit with polyinosine-polycytidylic (polyI:C)
enhanced the production of vaccine-specific IgA146. A mechanistic study has revealed that polyI:C was endocytosed into CD103+ DCs and activated the TLR3, which subsequently induced T cell-dependent IgA production146.

Thirdly, Fc\textsubscript{g}R is also a crucial receptor that regulates the immune response and induces DC maturation and presentation of antigen and activation of IFN\textgreek{g} secreting memory CD4+ T cell in mice233.

4.3. Mucosal adjuvants for fostering immunogenicity of mucosal vaccine

Intranasal administration of the vaccine alone is not sufficient to stimulate NALT-induced mucosal immunity108, necessitating the use of an adjuvant. An adjuvant is defined as a component co-administered with a certain antigen to increase or modulate a specific immune response. Since an adjuvant can be a major determinant for the development of long-lived memory B cells and effector plasma B cells24, selecting the appropriate adjuvant should be taken into account. Similar to the formulation of a vaccine, an effective mucosal adjuvant should protect the antigen from mucosal defense mechanisms, possess a mucoadhesive property, activate the cellular uptake of the antigen, and possess an immunostimulatory property to induce mucosal immunity. The majority of adjuvants are TLR agonists possessing a pattern-associated molecular pattern (PAMP) that activates the innate immune system. The activated innate immune system further mediates the stimulation of adjuvants such as flagellin—a ligand...
of TLR5, monophosphoryl lipid A—a ligand of TLR4, and CpG-oligodeoxynucleotide (ODN)—a ligand of TLR9.

Another well-known adjuvant of the mucosal vaccine is bacterial enterotoxin, which includes cholera toxin, and *E. coli* heat-labile toxin. Such enterotoxins possess an AB complex, with the A portion exhibiting major toxic activity while the B portion binding to ganglioside (GM1) of the mucosal epithelium. Following the interaction between ganglioside and enterotoxin, FAE can readily uptake the enterotoxin. However, since ganglioside is expressed in various types of cells, binding of enterotoxin to off-target cells can possibly trigger various types of side effects. One of these side effects is Bell’s palsy, a paralysis of the facial nerve (Cranial Nerve VII) caused by the interaction between the ganglioside of the nerve cell and enterotoxin. To decrease the toxicity of the enterotoxin, a site-directed mutated form of A1, the A2 subunit of *cholera* toxin, was developed. Moreover, the B subunit of *cholera* toxin was removed and substituted by D-fragment of protein A of *Staphylococcus aureus* (CTA1-DD). This adjuvant can effectively bind to CD21 of the follicular DCs and activate the maturation of B cells in germinal center formation.

5. Discussion and perspectives

The aim of this review was to summarize various vaccine platforms available against COVID-19 and to emphasize the necessity of the needle-free mucosal vaccine. Most of the vaccines that are currently undergoing clinical trials, including COVID-19 vaccines licensed for human use, are administered parentally. The lack of conveniently administered formulations and advance of new variants has led to the limited accessibility and production of the vaccines, which is hampering the formation of herd immunity. Factors resulting in low accessibility of vaccines include scarcity of manufacturing or storage facilities, limited accessibility to medical professionals for the administration of injectable vaccines, and high cost of vaccines. Furthermore, since it is demonstrated that the parenteral vaccines do not induce localized immunity in the upper respiratory mucosal surface, administration of the currently approved vaccines does not lead to sterilizing immunity. This further supports the need for a mucosal vaccine that blocks the main entrance routes of COVID-19, that is, the nasal and oral mucosal surfaces.

The later part of this review describes the basic mechanisms and traits of mucosal immunity and further extends to the discussion of the challenges and strategies of the mucosal vaccine. Since the mucosal surface exhibits a harsh environment for foreign materials and shows relatively weak immunogenicity, the mucosal vaccine should fulfill high stability and selective delivery of antigens to the mucosal immune inductive site. In this aspect, nanoparticle-based vaccines can offer stability, targeted delivery, and immunogenicity. For the successful delivery of the antigen and activation of mucosal immunity, the antigen should be transported from the luminal surface to the specialized subepithelial lymphoid organs. For this purpose, the target cell, administration route, formulation, and mucosal adjuvants should be carefully considered.

The M cell, a highly specialized epithelium presenting in the FAE of GALT and NALT, can act as a key player in the induction of mucosal immunity. The distinctive role of the M cell in capturing the antigen and its transcytosis to APCs localized in the basolateral pocket renders it an attractive target for mucosal vaccines. Since the proportion of M cells in the mucosal epithelium is significantly low, designing a formulation that enables the selective binding and delivery of antigens is crucial. A typical strategy for the M cell-targeted delivery is through targeting specific receptors of the M cell by modifying the surface of nanoparticles with a certain lectin, ligand, or antibody that can selectively bind to the M cell. In this regard, various surface modifications of polymeric nanoparticles and liposomes have enhanced the antigen delivery to APCs with the subsequent induction of mucosal immunity.

However, there are still some challenges facing the development of an M cell-targeted delivery platform. Firstly, a significantly low number of M cells present in the mucosal epithelium hamper the M cell-targeted delivery. To address this issue, receptor activator of nuclear factor kappa-B ligand (RANKL), a factor that induces the differentiation of the M cell from a precursor epithelial cell, can be exploited to increase the number of M cells in the mucosal epithelium. Secondly, the lack of an animal model for M cells owing to the difference in the receptor profile of M cell profiles between humans and other mammals should be overcome for strict preclinical study of the mucosal vaccine. Thirdly, the bidirectional capacity of M cell delivery is a challenge that needs to be addressed. Strictly, since the role of the M cell is limited to antigen capturing and transportation, the M cell-targeted delivery can induce both immune activation and tolerance. However, factors that determine whether M cell-targeted delivery results in the stimulation of immune response or immune tolerance remain elusive. Specifically, an animal study has demonstrated that oral and intranasal administration of ovalbumin fused to revovirus protein σ1 (OVA-prσ1) induces immune tolerance by reducing anti-OVA Ab and CD4+ T cell response in mucosal and systemic lymphoid tissues. In this aspect, further studies on M cell delivery should focus on investigating and standardizing various factors that determine immune activation or tolerance. Additionally, encapsulating or crosslinking mucosal adjuvants with nanoparticles can impart a mucosal immunostimulatory property of vaccines, which includes TLR agonists and microbial toxins.

DCs, initiators and key regulators of the immune response, are other attractive target cells to enhance the induction of immune response. Since DCs are a heterogeneous group of cells that induce both immune activation and immune tolerance in addition to activating different types of lymphocytes depending on the processing pathways, it is important to deliver antigens toward the proper type of DCs and promote immune activation. The typical strategy of DC-targeted delivery includes modulating the physiochemical properties (charge, size, and shape) of nanoparticles and equipping the nanoparticles with various types of specific ligands of the DCs.

For sophisticated modulation of the immune response, a profound understanding of the role of each subset of DCs and factors that influence the bidirectional capacity of DCs are necessary. For instance, the distinctive role of different subsets of DCs in NALT and the receptor and marker profiles of each subset are crucial. In addition, similar to the M cell-targeted delivery, the physical and chemical properties that determine the immune activation or tolerance are also important but remain unclear. Furthermore, since the role of DCs is affected by the interaction with various types of immune cells and cytokines within the immune system, research on how external signals and cell-to-cell interactions guide DCs to immune activation or tolerance should also be investigated.

Despite the various limitations and obstacles, this study recommends carrying out further research on mucosal vaccines and nanoparticle-based M cell vaccines. Moreover, DC-targeting
platforms might act as a crucial strategy to combat COVID-19 and upcoming new variants.

Acknowledgments

This research was supported by grants from the National Research Foundation of Korea (2019R1A2C1085986, 2022M3A9H1014123, 2022M3A9G8018189).

Author contributions

Junwoo Lee collected relevant research articles and summarized the literatures and drafted the manuscript. Dongwoo Kang conceived, supervised and edited the review.

Conflicts of interest

The authors have no conflicts of interest to declare.

References

1. World Health Organization. WHO coronavirus (COVID-19) dashboard. Available from: https://covid19.who.int/.

2. Le TT, Cramer JP, Chen R, Mayhew S. Evolution of the COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020;19:667–8.

3. Mudgal R, Nehul S, Tomar S. Prospects for mucosal vaccine: shutting the door on SARS-CoV-2. Hum Vaccin Immunother 2020;16:2921–31.

4. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov 2018;17:261–79.

5. Al-Horani RA, Kar S, Aliter KF. Potential anti-COVID-19 therapeutics that block the early stage of the viral life cycle: structures, mechanisms, and clinical trials. Int J Mol Sci 2020:21.

6. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395:565–74.

7. Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: immunology and treatment options. Clin Immunol 2020;215:108448.

8. Feng L, Wang Q, Shan C, Yang C, Feng Y, Wu J, et al. An adenovirus-vectored COVID-19 vaccine confers protection from SARS-CoV-2 challenge in rhesus macaques. Nat Commun 2020;11:1–11.

9. Takada A, Kawaoa Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol 2003;13:387–98.

10. Fu Y, Cheng Y, Yu W. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin 2020;35:266–71.

11. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–62.

12. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020;180:934–43.

13. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Zazhi 2020;41:145–51.

14. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506.

15. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061–9.

16. Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, et al. Extrapolimonal manifestations of COVID-19. Nat Med 2020;26:1017–32.

17. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203:631–7.

18. World Health Organization. Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations: scientific brief. Available from: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations.

19. Wouters OJ, Shadlen KC, Salcher-Konrad M, Pollard AJ, Larson HJ, Teerawattananon Y, et al. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet 2021;397:1023–34.

20. World Health Organization. COVID-19 Landscape of novel coronavirus candidate vaccine development worldwide. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.

21. Islam MA, Firdous J, Badruddoza AZM, Reesor E, Azad M, Hasan A, et al. M cell targeting engineered biomaterials for effective vaccination. Biomatrmals 2019;19:75–94.

22. Hassan AO, Kafai NM, Dmitriev IP, Fox JM, Smith BK, Harvey JB, et al. A single-dose intranasal Chad vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 2020;183:169–184 e113.

23. Qu D, Zheng B, Yao X, Guan Y, Yuan ZH, Zhong NS, et al. Intranasal immunization with inactivated SARS-CoV (SARS-associated coronavirus) induced local and serum antibodies in mice. Vaccine 2005;23:924–31.

24. Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol 2012;12:592–605.

25. Amanat F, Stadlbauer D, Strohmeier S, Nguyen TH, Chromikova V, McMahon M, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med 2020;26:1033–6.

26. Kremer EJ. Pros and cons of adenosvirus-based SARS-CoV-2 vaccines. Mol Ther 2020;28:2303–4.

27. Krammer F. SARS-CoV-2 vaccines in development. Nature 2020;586:516–27.

28. Alu A, Chen L, Lei H, Wei Y, Tian X, Wei X. Intranasal COVID-19 vaccines: from bench to bed. EBioMedicine 2022;76:103841.

29. Tiboni M, Casettari L, Illum L. Nasal vaccination against SARS-CoV-2: synergistic or alternative to intramuscular vaccines? Int J Pharm 2021;603:120686.

30. Kaur SP, Gupta V. COVID-19 Vaccine: a comprehensive status report. Virus Res 2020;288:198114.

31. Li YD, Chi WY, Su JH, Ferrall L, Hung CF, Wu TC. Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci 2020;27:1–23.

32. Du L, Zhao G, Chan CC, Sun S, Chen M, Liu Z, et al. Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect, and E. coli cells elicits potent neutralizing antibody and protective immunity. Virology 2009;383:144–50.

33. Heidary M, Kaviar VH, Shirani M, Ghanavati R, Motahar M, et al. A comprehensive review of the protein subunit virus candidate vaccine development worldwide. Available from: https://www.who.int/news-room/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations.

34. Teerawattananon Y, et al. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet 2021;397:1023–34.

35. Paliwal Y, Apte A, Shulam Y, Shin J, Bhosale S, Martina N, et al. A comprehensive review of the protein subunit virus candidate vaccine development worldwide. Available from: https://www.who.int/news-room/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations.

36. Kauffman KJ, Webber MJ, Anderson DG. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J Contr Release 2016;240:227–34.
Mucosal nanovaccine against COVID-19 and its variants

37. Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. *Mol Cancer* 2021;20:1–23.

38. Alfagih IM, Aldossari B, AlQuadeib B, Almursheid A, Alfagih MM. Nanoparticles as adjuvants and nanodelivery systems for mRNA-based vaccines. *Pharmaceuticals* 2020;13.

39. Uddin MN, Roni MA. Challenges of storage and stability of mRNA-based COVID-19 vaccines. *Vaccines* 2021;9:1033.

40. Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, Edmunds WJ, Egger M, et al. Efficacy and effectiveness of an rSVA-vectorized vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). *Lancet* 2017;389:505–18.

41. Deng S, Liang H, Chen P, Li Y, Li Z, Fan S, et al. Viral vector vaccine development and application during the COVID-19 pandemic. *Microorganisms* 2022;10:1450.

42. Wang X, Sun C, Li P, Wu T, Zhou H, Yang D, et al. Vaccine engineering with dual-functional mineral shell: a promising strategy to overcome preexisting immunity. *Adv Mater* 2016;28:694–700.

43. Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectorized COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. *Lancet* 2020;395:1845–54.

44. Schultz NH, Sarvol IH, Michelsen AE, Munteh LA, Lund-Johansen F, Ahlen MT, et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. *N Engl J Med* 2021;384:2124–30.

45. Greinacher A, Thiele T, Warkentin TE, Weisker K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCoV-19 vaccination. *N Engl J Med* 2021;384:2092–101.

46. Zou FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, et al. Immunogenicity and safety of a recombinant adenovirus type-5 vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. *Lancet* 2020;396:479–88.

47. Chapter 11—vaccines and vaccination. In: Burrell C, Howard C, Murphy F, editors. *Fenner and white's medical virology* nucleic acid vaccines in the prevention and treatment of infectious diseases. *N Engl J Med* 2022;384:2092–101.

48. Bolles M, Deming D, Long K, Agnihothram S, Whitmore A, et al. Reduced pathogenicity of the SARS-CoV-2 Omicron variant in hamsters. *Med* 2022;3:262–268, e4.

49. Waheed MT, Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Dealing with a mucosal viral pandemic: lessons fortifying the frontiers. *Nanomaterials* 2022;12:226.

50. Awadasseid A, Wu Y, Tanaka Y, Zhang W, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial. *Lancet* 2021;398:213–22.

51. Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et al. Safety and efficacy of NVX-CoV2373 COVID-19 vaccine. *N Engl J Med* 2021;385:1172–83.

52. McMahan K, Giffin RA, Rotem Z. Foreign nucleic acids as the stimulus to induce mucosal immune responses by a third dose of inactivated SARS-CoV-2 vaccine. *Int J Biol Sci* 2021;8:35–45.

53. Taniroover MD, Doganay HL, Akova M, Güner HR, Azap A, Akhan S, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. *Lancet* 2021;398:213–22.

54. Te Yeh M, Bujaki E, Dolan PT, Smith M, Wahid R, Konz J, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19. *N Engl J Med* 2021;384:2187–201.

55. Halperin SA, Ye L, MacKinnon-Cameron D, Smith B, Cahn PE, Ruiz-Palacios GM, et al. Efficacy analysis of the single-dose recombinant novel coronavirus vaccine (ad5 vector) in adults 18 years and older: an international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. *Lancet* 2020;396:479–88.

56. Chapter 11—vaccines and vaccination. In: Burrell C, Howard C, Murphy F, editors. *Fenner and white's medical virology* nucleic acid vaccines in the prevention and treatment of infectious diseases. *N Engl J Med* 2022;385:213–22.

57. Wang X, Sun C, Li P, Wu T, Zhou H, Yang D, et al. Vaccine engineering with dual-functional mineral shell: a promising strategy to overcome preexisting immunity. *Adv Mater* 2016;28:694–700.

58. Khoshnoosh S, Arshadi M, Akrami S, Koupaie M, Ghahramanpour H, Shariati A, et al. An overview on inactivated and live-attenuated SARS-CoV-2 vaccines. *J Clin Lab Anal* 2022;36:e24418.

59. Liu Y, Zeng Q, Deng C, Li M, Ll, Liu D, et al. Robust induction of B cell and T cell responses by a third dose of inactivated SARS-CoV-2 vaccine. *Cell Discov* 2022;8:1–13.

60. Bolles M, Deming D, Long K, Alhatlani B, Sinter W, Whitmore A, Ferris M, et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and increases induced eosinophilic proinflammatory pulmonary response upon challenge. *J Virol* 2011;85:12201–15.

61. Awadasseid A, Wu Y, Tanaka Y, Zhang W. Current advances in the development of SARS-CoV-2 vaccines. *Int J Biol Sci* 2021;17:8.

62. Qin F, Xia F, Chen H, Cui B, FENG Y, Zhang P, et al. A Guide to nucleic acid vaccines in the prevention and treatment of infectious diseases and cancers: from basic principles to current applications. *Front Cell Dev Biol* 2021;9:653776.

63. Württele H, Little K, Chartrand P. Illegitimate DNA integration in mammalian cells. *Gene Ther* 2003;10:1791–9.

64. Dai S, Wang H, Deng F. Advances and challenges in enveloped virus-like particle (VLP)-based vaccines. *J Immunol Sci* 2018;2:36–41.

65. Tarig H, Batool S, Asif S, Ali M, Abbasi BH. Virus-like particles: revolutionary platforms for developing vaccines against emerging infectious diseases. *Front Microbiol* 2022;12:790121.

66. Syomin B, Ilyin Y. Virus-like particles as an instrument of vaccine production. *Mol Biol* 2019;53:323–34.

67. Lee S, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases. *Immun Net* 2015;15:51–7.

68. Talaxja JL, Ellis S, Remmele Jr RL. Live attenuated and inactivated viral vaccine formulation and nasal delivery: potential and challenges. *Adv Drug Deliv Rev* 2015;93:56–78.
81. Han X, Mitchell MJ, Nie GJM. Nanomaterials for therapeutic RNA delivery. Matter 2020;3:1948–75.
82. Seyfoori A, Shokrollahi Barough M, Mokarram P, Ahmadi M, Mehrbod P, Sheidary A, et al. Emerging advances of nanotechnology in drug and vaccine delivery against viral associated respiratory infectious diseases (VARID). Int J Mol Sci 2021;22:6937.
83. Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, et al. mRNA- lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharm 2021;601:120586.
84. Brito LA, Chan M, Shaw CA, Hekele A, Carsillo T, Schaefer M, et al. A cationic nanoeumulsion for the delivery of next-generation RNA vaccines. Mol Ther 2014;22:2118–29.
85. Veiga N, Goldsmith M, Granot Y, Rosenblum D, Damnes N, Kedni R, et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat Commun 2018;9:4493.
86. Zeng C, Zhang C, Walker PG, Dong Y. Formulation and delivery technologies for mRNA vaccines. Curr Top Microbiol Immunol 2020. Available from: https://doi.org/10.1007/82_2020_217.
87. Wu S, Zhong G, Zhang J, Shuai L, Zhang Z, Wen Z, et al. A single dose of an adenovirus- vectored vaccine provides protection against SARS-CoV-2 challenge. Nat Commun 2020;11:1–7.
88. Hassan AO, Feldmann F, Zhao H, Curiel DT, Okumura A, Tang-Huau TL, et al. A single intranasal dosing of chimpanzee adenovirus vectored vaccines protects against SARS-CoV-2 infection in rhesus macaques. Cell Rep Med 2021;2:100230.
89. Lara-Puente JH, Carreño JM, Sun W, Suárez-Martínez A, Ramírez-Martínez L, Quezada-Monroy F, et al. Safety and immunogenicity of a Newcastle disease virus vector-based SARS-CoV-2 vaccine candidate, AVX/COVID-12-HXPRO (Patria), in Pigs. mBio 2021;12:e01908–21.
90. Ponce de León S, Torres M, Soto-Ramírez LE, Calva JJ, Santillán-Doherty P, Caranza-Salazar DE, et al. Safety and immunogenicity of a live recombinant Newcastle disease virus-based COVID-19 vaccine (Patria) administered via the intranasal or intratracheal route: interim results of a non-randomized open label phase I trial in Mexico. medRxiv 2022. Available from: https://doi.org/10.1101/2022.02.08.22270767.
91. Zhu F, Zhuang C, Chu K, Zhang L, Zhao H, Huang S, et al. Safety and immunogenicity of a live attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine in adults: randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Respir Med 2022;10:749–60.
92. Johnson S, Martinez CI, Tedjakusuma SN, Peinovich N, Dora EG, Birch SM, et al. Oral vaccination protects against severe acute respiratory syndrome coronavirus 2 in a Syrian hamster challenge model. J Infect Dis 2022;225:34–41.
93. Langel SN, Johnson S, Martinez CI, Tedjakusuma SN, Peinovich N, Dora EG, et al. Oral and intranasal Ad5 SARS-CoV-2 vaccines decrease disease and viral transmission in a golden hamster model. bioRxivBioRxiv 2021. Available from: https://doi.org/10.1101/2021.10.03.462919.
94. Johnson S, Martinez CI, Jegede CB, Gutierrez S, Cortese M, Martinez CJ, et al. SARS-CoV-2 oral tablet vaccination induces neutralizing mucosal IgA in a phase 1 open label trial. MedRxiv 2022. Available from: https://doi.org/10.1101/2022.07.16.22277601.
95. Rice A, Verma M, Shin A, Zakin L, Sieling P, Tanaka S, et al. A next generation bivalent human Ad5 COVID-19 vaccine delivering both spike and nucleocapsid antigens elicits Th1 dominant CD4+ , CD8+ T-cell and neutralizing antibody responses. BioRxiv 2020. Available from: https://doi.org/10.1101/2020.07.29.227795.
96. Gabititsch E, Safrit JT, Verma M, Rice A, Sieling P, Zakin L, et al. Dual-antigen COVID-19 vaccine subcutaneous prime delivery with oral boosts protects NHP against SARS-CoV-2 challenge. Front Immunol 2021;12:729837.
97. Sieling P, King T, Wong R, Nguyen A, Wnuk K, Gabititsch E, et al. Prime hAd5 spike+ nucleocapsid vaccination induces ten-fold increases in mean T-cell responses in phase 1 subjects that are sustained against spike variants. medRxiv 2021. Available from: https://doi.org/10.1101/2021.04.05.21254940.
98. An X, Martinez-Paniagua M, Rezvan A, Sefat SR, Fathi M, Singh S, et al. Single-dose intranasal vaccination elicits systemic and mucosal immunity against SARS-CoV-2. iScience 2021;24:103037.
99. Brandtzæg P, Kiyono H, Pabst R, Russell MW. Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol 2008;1:31–7.
100. Neutra MR, Kozloowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 2006;6:148–58.
101. O’Leary AD, Sweeney EC. Lymphoid structures of the colon: structure and distribution. Histopathology 1986;10:267–83.
102. Clark MA, Jepson MA, Hirst BH. Exploiting M cells for drug and vaccine delivery. Adv Drug Deliv Rev 2001;50:81–106.
103. Yamamoto M, Pascual DW, Kiyono H. M cell-targeted mucosal vaccine strategies. Curr Top Microbiol Immunol 2012;354:39–52.
104. Mantis NJ, Wagner J. Analysis of adhesion molecules involved in leukocyte homing into the basolateral pockets of mouse Peyer’s patch M cells. J Drug Target 2004;12:79–87.
105. Silva-Sanchez A, Randall TD. Anatomical uniqueness of the mucosal immune system (GALT, NALT, iBALT) for the induction and regulation of mucosal immunity and tolerance. Mucosal Vaccines 2020:21–54.
106. Cook DN, Prosser DM, Forster R, Zhang J, Kuklin NA, Abbondanzo SJ, et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunology 2000;12:495–503.
107. Kunkel EJ, Butcher EC. Plasma-cell homing. J Immunol 2003;170:3799–805.
108. Lazzarus NH, Kunkel EJ, Johnston B, Wilson E, Youngman KR, Butcher EC. A common mucosal chemokine (mucosae-associated epithelial chemokine/CC1.28) selectively attracts IgA plasmablasts. J Immunol 2003;170:3799–805.
109. Johansen F-E, Baekkevold ES, Carlsen HS, Farstad IN, Soler D, Brandtzæg P. Regional induction of adhesion molecules and chemokine receptors explains disparate homing of human B cells to systemic and mucosal effector sites: dispersion from tonsils. Blood 2005;106:593–600.
110. Ogra PL. Handbook of mucosal immunology. 2nd ed. San Diego: Academic Press, Inc.; 1994. p. 357–72.
111. Wu HY, Russell MW. Nasal lymphoid tissue, intranasal immunization, and compartmentalization of the common mucosal immune system. Immunol Rev 1997;161:187–201.
112. Jones AT, Shen X, Walter KL, LaBranche CC, Wyatt LS, Tomaras GD, et al. HIV-1 vaccination by needle-free oral injection induces strong mucosal immunity and protects against SHIV challenge. Nat Commun 2019;10:798.
113. Staats HF, Montgomery SP, PALKER TJJAr, retroviruses h. Intranasal administration for the induction of systemic and mucosal anti-HIV antibody responses. AIDS Res Hum Retrovir 2017;19:45–52.
114. Du Y, Xu Y, Feng J, Hu L, Zhang Y, Zhang B, et al. Intranasal administration of a recombinant RBD vaccine induced protective immunity against SARS-CoV-2 in mice. Vaccine 2021;39:2280–7.
115. Lee H, Ruane D, Law K, Ho Y, Garg A, Rahman A, et al. Phenotype and function of nasal dendritic cells. Mucosal Immunol 2015;8:1083–98.
116. Takaki H, Ichimiya S, Matsumoto M, Tjjoii Seya. Mucosal immunity against SARS-CoV-2 in mouse. Front Immunol 2022;12:729837.
117. Lee H, Ruane D, Law K, Ho Y, Garg A, Rahman A, et al. Phenotype and function of nasal dendritic cells. Mucosal Immunol 2015;8:1083–98.
118. Yakagita M, Hiroi T, Kinagaki N, Hamada S, Ito HO, Shimuchi H, et al. Nasopharyngeal-associated lymphoreticular tissue (NALT) immunity: fimbriae-specific Th1 and Th2 cell-regulated IgA responses for the inhibition of bacterial attachment to epithelial cells and subsequent inflammatory cytokine production. J Immunol 1999;162:3559–65.
119. Mora J, Von Andrian U. Differentiation and homing of IgA-secreting cells. Mucosal Immunol 2008;1:96–109.
120. Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med 2005;11:54–53.
120. Wilhelm A, Widera M, Grikscsheit K, Toptan T, Schenk B, Pallas C, et al. Reduced neutralization of SARS-CoV-2 Omicron variant by vaccine sera and monoclonal antibodies. medRxiv 2021. Available from: https://doi.org/10.1101/2021.12.07.21267432.

121. Kingstad-Bakke B, Lee W, Chandrasekar SS, Gasper DJ, Salas-Minguez C, Cleven T, et al. Vaccine-induced systemic and mucosal T cell immunity to SARS-CoV-2 viral variants. Proc Natl Acad Sci USA 2022;119:e2118312119.

122. Redd AD, Nardin A, Kared H, Bloch EM, Pekosz A, Laeyendecker K, et al. Airway-resident memory CD8+ T cells and their localization to the small intestinal mucosa. Int Immunol 2021;33:301–9.

123. Slütter B, Weyand G, Iwamoto K, Harty JT. Lung airway-surrounding CXCR3hi memory CD8+ T cells are critical for protection against influenza A virus. Immunity 2013;39:939–48.

124. McMaster SR, Wilson JJ, Wang H, Kohlmeier JE. Airway-resident memory CD8 T cells provide antigen-specific protection against respiratory virus challenge through rapid IFN-γ production. J Immunol 2015;195:203–9.

125. Wu T, Hu Y, Lee YT, Bouchard KR, Benechet A, Khanna K, et al. A distinct lung-interstitial-resident memory CD8+ T cell subset confers enhanced protection to lower respiratory tract infection. Cell Rep 2016;16:1800–9.

126. McMaister SA, Wilson JJ, Wang H, Kohlmeier JE, Receiver 2 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukoc Biol 2014;95:215–24.

127. Giúchuk P, Hill TM, Guy C, McMasterr J, Boyd KL, Rabacal WA, et al. A distinct lung-interstitial-resident memory CD8+ T cell subset confers enhanced protection to lower respiratory tract infection. Cell Rep 2016;16:1800–9.

128. Bemark M, Bergqvist P, Stensson A, Helmberg A, Mattson J, Lycke NY. A unique role of the cholelith toxin Al-DD adjuvant for long-term plasma memory and B cell development. J Immunol 2011;186:1399–410.

129. Uddback I, Cartwright EK, Schallier AS, Wein AN, Hayward SL, Lobby J, et al. Long-term maintenance of lung resident memory T cells is mediated by persistent antigen. Mucosal Immunol 2021;14:92–9.

130. Dillon A, Lo DD. M Cells: intelligent engineering of mucosal immune surveillance. Front Immunol 2019;10:1499.

131. Williams I, Owen R. Chapter 13-M cells: specialized antigen sampling cells in the follicle-associated epithelium. In: Mucosal immunology, 4th ed., vol. 1 New York: Academic Press; 2015. p. 211–29.

132. Date Y, Ebisawa M, Fukuda S, Shima H, Obata Y, Takahashi D, et al. NALT M cells are important for immune induction for the common mucosal immune system. Int Immunol 2017;29:471–8.

133. Kim DY, Sato A, Fukuyama S, Sagara H, Nagatake T, Iwata MG, et al. The airway antigen sampling system: respiratory M cells as an alternative gateway for inhaled antigens. J Immunol 2011;186:4253–62.

134. Kojima K, Tanaka K-i, Kurose M, Ohkuni T, Koizumi J-i, et al. Regulation of tight junctions in upper airway epithelium. Biomed Res Int 2013;2013:547072.

135. Krachenbuhl JP, Neutra MR. Epithelial M cells: differentiation and function. Annu Rev Cell Dev Biol 2000;16:301–32.

136. Azi F, Kumar A, Dietr-Mitoma F, Mestecky J. Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog 2010;6:e1001147.

137. Nagya N, de Haas AM, Geijtenbeek TBH, van Beeck R, Tsav SW, van Kook Y, et al. Therapeutic liposomal vaccines for dendritic cell activation or tolerance. Front Immunol 2021;12:674048.

138. Nam JH, Lee JH, Choi SY, Jung NC, Song JY, Seo HG, et al. Functional amviablence of dendritic cells: tolerogeneity and immunogenicity. Int J Mol Sci 2021;22:4430.
161. Kar S, Devnath P, Emran TB, Tallei TE, Mitra S, Dhama K. Oral and intranasal vaccines against SARS-CoV-2: current progress, prospects, advantages, and challenges. *Infect Immun* 2022;90:e00604.

162. Rhee JH. *Current and new approaches for mucosal vaccine delivery*. *Mucosal vaccines*. 2nd ed. London: Academic Press; 2020. p. 325–56.

163. Tyer PC, Ruth Foxwell A, Kyd JM, Otcky DC, Criggs AW. Receptor mediated targeting of M-cells. *Vaccine* 2007;25:3204–9.

164. Ma T, Wang L, Yang T, Ma G, Wang S. M-cell targeted polymeric lipid nanoparticles containing a Toll-like receptor agonist to boost oral immune activity. *Int J Pharm* 2019;572:118731.

165. Sharma R, Agrawal U, Mody N, Vyas SP. Polymer nanotechnology based approaches in mucosal vaccine delivery: challenges and opportunities. *Biotechnol Adv* 2015;33:64–79.

166. Thakur A, Foged C. *Nanoencapsulated biologics for mucosal vaccine delivery*. Nanoeengineered biomaterials for advanced drug delivery 1st ed. Amsterdam: Elsevier; 2020. p. 603–616.

167. Ma T, Wang L, Yang T, Ma G, Wang S. M-cell targeted polymeric lipid nanoparticles containing a Toll-like receptor agonist to boost oral immune activity. *Int J Pharm* 2014;473:296–303.

168. Pawar D, Mangal S, Goswami R, Jaganathan KS. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. *Eur J Pharm Biopharm* 2018;85:550–9.

169. Mignani S, Shi X, Karup A, Lentini G, Majoral J-P. Functionalized dendrimer platforms as a new front for targeting SARS-CoV-2: an opportunity. *Pharmaceutics* 2021;13:1513.

170. Rodríguez-Fonseca RA, Bello M, de Los Muñoz-Fernández MA, Jiménez JL, Rojas-Hernández S, Fragoso-Vázquez M, et al. In Silico search, chemical characterization and immunogenic evaluation of amino-terminated G4-PAMAM-HIV peptide complexes using three-dimensional models of the HIV-1 gp120 protein. *Colloids Surf, B* 2019;177:77–93.

171. Le MQ. *Research on nanodelivery systems for nasal vaccine*. Université de Lille; 2018.

172. Xia Y, Fan Q, Hao D, Wu J, Ma G, Su Z. Chitosan-based mucosal adjuvants: sunrise on the ocean. *Vaccine*. 2015;33:5997–6010.

173. van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan for mucosal vaccination. *Adv Drug Deliv Rev* 2001;52:139–44.

174. Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Wijnker Jiskoot. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. *J Contr Release* 2006;111:107–16.

175. Slutter B, Bal S, Reijzer C, Mallants R, Hagenas N, Que I, et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. *Vaccine*. 2010;28:6282–91.

176. Giddlam AK, Zaman M, Skwarczyński M, Toth I. Liposome-based delivery system for vaccine candidates: constructing an effective formulation. *Nanomedicine (Lond)* 2012;7:1877–93.

177. Nordly P, Madsen HB, Nielsen HM, Foged C. Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. *Expt Opin Drug Pros* 2009;6:567–72.

178. Sapra P, Allen TM. Lipid-targeted liposomal antiviral drugs. *Prog Lipid Res* 2003;42:439–62.

179. Li K, Chen D, Zhao X, Hu H, Yang C, Pang D. Preparation and investigation of Ulex europaeus agglutinin I-conjugated liposomes as potential oral vaccine carriers. *Arch Pharm Res (Seoul)* 2011;34:1899–907.

180. Kang S, Ahn S, Lee J, Kim JY, Choi M, Gujrati V, et al. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. *J Contr Release* 2017;256:56–67.

181. Ferrando RM, Lay L, Polito L. Gold nanoparticle-based platforms for vaccine development. *Drug Discov Today Technol* 2020;38:57–67.

182. Dacoba TG, Olivera A, Torres D, Crecente-Campo J, Alonso MJ. Modulating the immune system through nanotechnology. *Semin Immunol* 2017;34:78–102.

183. Tao W, Ziemer KS, Gill HS. Gold nanoparticle–M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. *Vaccine*. 2014;32:237–51.

184. Zhang P, Chiu YC, Tostanoski LH, Jewell CM. Polyelectrolyte multilayers assembled entirely from immune signals on gold nanoparticle templates promote antigen-specific T cell response. *ACS Nano* 2015;9:6465–77.

185. Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: prepa- rations, imaging, diagnostics, therapies and toxicity. *Chem Soc Rev* 2009;38:1759–82.

186. Sengupta A, Azharuddin M, Al-Otaibhi N, Hinkula J. Efficacy and immune response elicited by gold nanoparticle-based nanovaccines against infectious diseases. *Vaccines* 2022;10:505.

187. Rosales Mendoza S, González Ortega O. Nanovaccines: an innovative technology to fight human and animal diseases. 1st ed. Cham: Springer; 2019. p. 159–76.

188. de Carvalho Lima EN, Díaz RS, Justo IF, Piqueira IRC. Advances and perspectives in the use of carbon nanotubes in vaccine development. *Int J Nanomed* 2021;16:5411.

189. Kang SH, Hong SJ, Lee YK, Cho S. Oral Vaccine delivery for intestinal immunity—biological basis, barriers, delivery system, and m cell targeting. *Polymers* 2018;10:948.

190. Chen H, Zheng X, Nicholas J, Humes ST, Loeb JC, Robinson SE, et al. Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza a virus titers in mice. *Virology* 2017;514:1–15.

191. Mishra V, Kesharwani P, Jain NK. Biomedical applications and toxicological aspects of functionalized carbon nanotubes. *Crit Rev Ther Drug Carri* Syst 2018;35:293–330.

192. Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. *Mucosal Immunol* 2013;6:666–77.

193. Perry M, Whyte A. Immunology of the tonsils. *Immunol Today* 1998;19:414–21.

194. Kiyono H, Fukuyama S. NALT- versus Peyer’s-patch-mediated mucosal immunity. *Nat Rev Immunol* 2004;4:699–710.

195. Mak TW, Saunders ME, Jett BD. *Primer to the immune response*. Amsterdam: Elsevier; 2014.

196. Carter NJ, Curran MP. Live attenuated influenza vaccine (Flu- Mist(R); Fluenz): a review of its use in the prevention of seasonal influenza in children and adults. *Drugs* 2011;71:1591–622.

197. Kunkel EJ, Kim CH, Lazarus NH, Vierra MA, Soler D, Bowman EP, et al. CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. *J Clin Invest* 2003;111:1001–10.

198. Frey A, Neutra MR. Targeting of mucosal vaccines to Peyer’s patch M cells. *Behring Inst Mitt* 1997;376–89.

199. Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M, et al. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. *Nature* 2009;462:226–30.

200. Nakato G, Hase K, Suzuki M, Kimura M, Ato M, Hanazato M, et al. Cutting edge: *Brucella abortus* exploits a cellular prion protein on intestinal M cells as an invasive receptor. *J Immunol* 2012;189:1540–4.

201. Rand JH, Wu XX, Lin EY, Griffler A, Gialanella P, McKirich JC. Annexin A5 binds to lipopolysaccharide and reduces its endotoxin activity. *mbio* 2012;3:e00292-e002911.

202. Yang X, Chen X, Lei T, Qin L, Zhao Y, Hu C, et al. The construction of in vitro nasal cavity-mimic M-cell model, design of M cell-targeting nanoparticles and evaluation of mucosal vaccination by nasal administration. *Acta Pharm Sin B* 2020;10:1049–1054.

203. Kim SH, Jang YS. Antigen targeting to M cells for enhancing the efficacy of mucosal vaccines. *Exp Mol Med* 2014;46:e85.

204. Jepson MA, Clark MA, Foster N, Mason CM, Bennett MK, Simmons NL, et al. Targeting to intestinal M cells. *J Anat* 1996;189:507–16.

205. Gupta PN, Khatri K, Goyal AK, Mishra N, Vyas SP. M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. *J Drug Target* 2007;15:701–13.
Mucosal nanovaccine against COVID-19 and its variants

206. Gupta PN, Vyas SP. Investigation of lectinized liposomes as M-cell targeted carrier-adjuvant for mucosal immunization. Colloids Surf, B 2011;82:118–25.

207. Nochi T, Yuki Y, Matsumura A, Mejima M, Terahara K, Kim DY, et al. A novel M cell-specific carbohydrate-targeted mucosal vaccine selectively induces antigen-specific immune responses. J Exp Med 2007;204:2789–96.

208. Isberg RR, Leong JM. Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 1990;60:861–71.

209. Wolf JL, Rubin DH, Finberg R, Kauffman RS, Sharpe AH, Trier JS, et al. Determinants of reovirus interaction with the intestinal M cells for oral vaccination. PLoS Pathog 2008;4:e1000168.

210. Vecchio AJ, Rathnayake SS, Stroud RM. Structural basis for Clostridium perfringens enterotoxin targeting of claudins at tight junctions in mammalian gut. Proc Natl Acad Sci U S A 2021;118.

211. Rajapaksa TE, Bennett KM, Hamer M, Lytle C, Rodgers VG, Lo DD. Intranasal M cell uptake of nanoparticles is independently influenced by targeting ligands and buffer ionic strength. J Biol Chem 2010;285:23739–46.

212. Wolf JL, Rubín DH, Finberg R, Kauffman RS, Sharpe AH, Trier JS, et al. Intestinal M cells: a pathway for entry of reovirus into the host. Science 1981;212:471–2.

213. Wolf JL, Kauffman RS, Finberg R, Dambrauskas R, Fields BN, Trier JS. Determinants of reovirus interaction with the intestinal M cells and absorptive cells of murine intestine. Gastroenterology 1983;85:291–300.

214. Rubas W, Banerjea SS, Stroud RM. Structural basis for Clostridium perfringens enterotoxin targeting of claudins at tight junctions in mammalian gut. Proc Natl Acad Sci U S A 2021;118.

215. Florindo HF, Pandit S, Gonçalves LM, Alpar HO, Almeida AJ. M cells for oral vaccination. Plapied L, et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. Int J Pharm 2007;311:C498.

216. Rochereau N, Drocourt D, Perouzel E, Pavot V, Redelinghuys P, Tissue Res 2017;85:2563

217. Wang L, Yang T, Ma G. Particle design of membrane emulsification for protein drug and vaccine delivery. Curr Pharmaceut Des 2015;21:2563–98.

218. Gupta PN, Mahor S, Rawat A, Khatri K, Goyal A, Vyas SP. Lectin anchored stabilized biodegradable nanoparticles for oral immunization. 1. Development and in vitro evaluation. Int J Pharm 2006;318:163–73.

219. Gаринот М, Фиеvez V, Порцеле V, Стольббах F, де Риу A, Плапид L, et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Contr Release 2007;120:195–204.

220. Florindo HF, Pandit S, Gonçalves LM, Alpar HO, Almeida AJ. Surface modified polymeric nanoparticles for immunisation against equine strangles. Int J Pharm 2010;390:25–31.

221. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021;20:101–24.

222. Zupancic E, Curato C, Paisana M, Rodrigues C, Porat Z, Viana AS, et al. Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming. J Contr Release 2017;258:182–95.

223. Van gasseri DP, Cui Z, Chen W, Hokey DA, Falo Jr LD, Huang L. Immunostimulation of dendritic cells by cationic liposomes. Mol Membr Biol 2006;23:385–95.

224. Harel-Adar T, Ben Mordechai T, Amsalem Y, Feinberg MS, Leor J, Cohen S. Modulation of cardiac macrophages by phosphatidylinerine-presenting liposomes improves infarct repair. Proc Natl Acad Sci U S A 2011;108:1827–32.

225. Shi D, Fu M, Fan P, Li W, Chen X, Li C, et al. Artificial phosphatidylserine liposome as a dendritic cell-targeted mucosal vaccine in response to 1-chloro-2,4-dinitrobenzen in vitro. Arch Dermatol Res 2007;299:327–36.

226. Gets DR, Shea LD, Miller SD, King NJ. Harnessing nanoparticles for immune modulation. Trends Immunol 2015;36:419–27.

227. Hossain MK, Wall KA. Use of dendritic cell receptors as targets for enhancing anti-cancer immune responses. Cancers (Basel) 2019;11:418.

228. Jiang PL, Lin HJ, Wang HW, Tsai WY, Lin SF, Chien MY, et al. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater 2015;11:356–67.

229. van Kooyk Y, Rabinovich GA. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 2008;9:593–601.

230. Dambuzo IM, Brown GD. C-Type lectins in immunity: recent developments. Curr Opin Immunol 2015;32:21–7.

231. Do Y, Didierlaurent AM, Ryu S, Koh H, Park CG, Park S, et al. Induction of pulmonary mucosal immune responses with a protein vaccine targeted to the DEC-205/CD205 receptor. Vaccine 2012;30:6359–67.

232. Swanson JA, Hoppe AD. The coordination of signaling during Fc receptor-mediated phagocytosis. J Leukoc Biol 2004;76:1093–103.

233. Bitsakis C, Babadjanova Z, Gosselin EJ. In vivo mechanisms involved in enhanced protection utilizing an Fc receptor-targeted mucosal vaccine platform in a bacterial vaccine and challenge model. Infect Immun 2015;83:77–89.

234. Wood MB, Rios D, Williams IR. TNF-alpha augments RANKL-dependent intestinal M cell differentiation in enteroid cultures. Am J Physiol Cell Physiol 2016;311:C498–507.

235. Rynda A, Maddaloni M, Mierzejewska D, Ochoa-Reparaz J, Maslanka T, Crist K, et al. Low-dose tolerance is mediated by the microfold cell ligand, reovirus protein sigma 1. J Immunol 2008;180:5187–200.

236. Suzuki H, Sekine S, kataoka K, Pascual DW, Maddaloni M, Kobayashi R, et al. Ovalbumin-protein sigma 1 M-cell targeting facilitates oral tolerance with reduction of antigen-specific CD4+ T cells. Gastroenterology 2008;135:917–25.