This systematic review aimed to evaluate whether alternative materials to conventional triple antibiotic paste (TAP - metronidazole, ciprofloxacin, and minocycline) and grey mineral trioxide aggregate (GMTA) could avoid tooth discoloration in teeth submitted to Regenerative Endodontic Procedure (REP). It was also investigated if dental bleaching is able to reverse the color of darkened teeth due to REP. The search was conducted in four databases (Medline via PubMed, Scopus, ISI Web of Science and BVS - Virtual health library), following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The retrieved papers were uploaded in the software EndNoteTM and two reviewers independently selected the studies and extracted the data. Only studies in humans (case reports, case series, clinical trials) were included in the review. From 1,122 potentially eligible studies, 83 were selected for full-text analysis, and 38 were included in the review. The included studies were mainly case reports (76.3%). The studies described a total of 189 teeth submitted to REP. From these, about 54% of teeth presented some degree of discoloration. Most teeth presenting color alteration were treated with TAP, especially when combined with GMTA. Only three studies performed dental bleaching to restore the color of teeth and neither bleaching technique was able to restore the original color of the crowns. The use of alternative materials to TAP and GMTA, such as double antibiotic paste or Ca(OH)2 pastes and white mineral trioxide aggregate or BiodentineTM, reduces the occurrence of tooth discoloration.

Introduction

Regenerative endodontic procedure (REP) has been proposed as a treatment option for necrotic immature permanent teeth (NIPT) in detriment to apexogenesis with calcium hydroxide (CaOH2) and apexification with trioxide mineral aggregate (MTA) (1). REP is based on the formation of blood clot into the root canal space creating a natural scaffold that serves as anchorage site for cells from apical papilla and periodontal tissues. Additionally, blood supplies growth factors that act along with those from dentin matrix, contributing to the formation of a new tissue into the pulp cavity and to the resumption of root development (1,2). Therefore, REP seems to provide an increase in root lengthening and thickening, as well as a remission of the signs and symptoms of apical periodontitis (2).

In the Clinical Considerations for a Regenerative Procedure, the American Association of Endodontists (AAE) (3) recommends for root canal disinfection the use of CaOH2 or triple antibiotic paste (TAP - metronidazole, ciprofloxacin and minocycline), for a short period (3). Probably, the presence of minocycline, an antibiotic of tetracycline family, in TAP composition plays an important role in tooth discoloration (4,5). Minocycline binds to the calcium ions present in the dentin by means of chelation, being incorporated into the dentin matrix and inducing a change in the color of the dental structure (4). To avoid crown discoloration, it was proposed to seal the coronal dentinal tubules with bonding agent prior to the use of TAP as intracanal medication (6) as well as the replacement or eliminating minocycline from TAP composition. The alternatives to minocycline report in the literature are performed mainly with cefaclor (7), amoxicillin (8) or clindamicine (9). Some studies have adopted only the elimination of minocycline of conventional TAP, so called Double antibiotic paste (DAP - metronidazole, ciprofloxacin) (10,11).

Moreover, the blood clotted inside of the root canal must be protected in its cervical portion by a sealing material, conventionally the MTA (2). However, MTA also can lead to a change in the tooth color due to presence of minerals as bismuth oxide, its radiopacifier component (12). Although the AAE recommends the use of glass ionomer cement (GIC) to avoid the discoloration in areas where esthetic is primordial (3), several studies have performed the seal with
white MTA (WMTA) due to less amount of metallic ions (7,13,14), which could reduce tooth crown discoloration. Therefore, although satisfactory biological results are achieved after REP (1,2,15), several case reports have indicated color change, especially in those cases treated with TAP (16-18). A recent literature review (19) has also shown that TAP is the main reason to tooth discoloration in REP, although did not directly compare the possible reduction of tooth discoloration when alternatives materials (to TAP and gray MTA) are employed. Thus, it suggest that the use of pastes alternative to TAP and the replacement of grey MTA (GMTA) could decrease the percentage of tooth discoloration (5,20,21). Moreover, in cases of discoloration, dental bleaching can be performed aiming to minimize esthetic damages. However, the ability of dental bleaching in restore the original color of teeth did not was aim of systematic reviews. Similarly, little is investigated to ability of alternatives materials to TAP and GMTA to avoid the tooth discoloration in REP. Thus, the aim of this study was to review the literature systematically and evaluated whether alternatives to conventional TAP and GMTA could avoid tooth discoloration in teeth submitted to revascularization and investigate if dental bleaching is able to reverse the color of discolored teeth due to REP.

Material and Methods

This systematic review was carried out according to the guidelines of Cochrane Handbook for Systematic Reviews of Interventions, following the four-phase flow diagram of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (22). This report is based on the PRISMA Statement. The question of research was adapted from the PICO framework; Population – human immature permanent teeth; Intervention and Comparison – use of TAP and GMTA in regenerative endodontic procedures vs. alternative materials; Outcome – tooth discoloration.

A structured research was carried in Pubmed/Medline, Scopus, ISI Web of Science and BVS – Virtual health library. Date limit was set up to March 2017, with no language restriction. The search and the combinations of syntaxes are described in Table 1. The references of all eligible papers were also hand-searched. A wide search strategy was used to avoid missing information. Duplicated studies were removed by using EndNote™X7 software (Thomson Reuters, Rochester, New York, NY, USA). The inclusion criteria were in vivo original studies (prospective, retrospective, clinical cases, case series, clinical trials) in which regenerative procedures were performed in immature permanent teeth, and which color maintenance or the tooth discoloration, as an outcome or not, were described. Studies were included independently of their follow-up intervals. The exclusion criteria were: reviews, in vitro studies, studies in animals, or studies that did not report the color maintenance or tooth discoloration.

Two independent reviewers (L. A. C. and C. G. S.) initially screened the titles of all identified studies. If the title indicated possible inclusion, the abstract was carefully appraised, and the manuscripts considered eligible for the review (or in case of doubt) were selected for full-text reading. Discrepancies were resolved by discussion with a third reviewer (L. G. P.) Standardized outline was used for data extraction of the studies that met the inclusion criteria. Due to the high heterogeneity of included studies, evaluation of risk of bias and meta-analysis could not be performed. Consequently, the characteristics of studies were summarized descriptively.

Results

Studies selection

The flowchart of the systematic review is shown in Figure 1. A total of 1,122 records were identified and 843 remained after duplicated studies removal. After title and abstract evaluation, 83 papers were selected for full-text assessment. From these, 38 studies met the inclusion criteria of the present study. Forty-five studies were excluded after full-text reading once they did not report the color maintenance or the tooth discoloration (23–62), or since the tooth discoloration described had occurred prior to revascularization procedure (63–68).

Studies Characteristics

Most included papers were case reports (76.3%) followed by case series (15.8%). Few clinical trials were included (69,70). The first published study included in this review was issued in 2009 (71). The studies were conducted in 14 different countries; most of them were carried out in the United States of America (29%) followed by Turkey (13%) (Table 2). The included studies described

Table 1. Structured search strategy carried out in MEDLINE/PubMed database*

Search Syntaxes
([(clinical trials) OR random allocation) OR (Longitudinal Studies) OR (Longitudinal Study) OR (Retrospective Studies) OR (Clinical Evaluation) OR (Case Study) OR (Case Studies) OR (Case Histories) OR (Case-Control Study) OR (case reports) OR (Follow-up)]
([(Immature Permanent Teeth) OR (Immature Permanent Tooth) OR (Young Permanent Teeth) OR (Young Permanent Tooth)]
([(Root Canal Revascularization) OR (Revascularization OR Maturogenesis)]

* Searches in SciVerse Scopus® (SS), ISI web of a science® and Cochrane library® were adapted according to the database. In ISI web of a science®, the search #5 was included also keyword: [AND Dentistry]
the regenerative procedures performed in a total of 189 teeth. From these, 81% (n=153) were incisors, 17% (n=33) premolar, 1% molars (n=2), and 0.5% (n=1) canine.

Triple antibiotic paste (TAP) in different concentrations were used as intracanal medication in 23.3% of the teeth (n=44). Alternative pastes to TAP, were used in 65.6% of teeth (n=124). From these, minocycline were replaced by cefaclor in 72 cases (6, 7,70,72,73), amoxicillin in 18 (8,74), clindamicine in 31 teeth (9), and tetracycline in one (75). Double antibiotic paste (DAP - metronidazole, ciprofloxacin) were used in two cases (10, 11). In 10.6% of the teeth (n=20), Ca(OH)₂ was used as intracanal medication (14,69,76-81), and in 0.5% of the teeth (n=01) no medication was applied (13).

Regarding the cervical sealing material, grey MTA (GMTA) was employed in 50.8% of the teeth (n=96) (4,8-11,16,71,73-75,80-86), white MTA (6,7,13,14,18,69,70,76-78,87-95) in 46.0% (n=87), Biodentine (72) in 2.1% (n=04) and Calcium-enriched mixture (CEM) (79) cement in 1% (n=02). Although, it was not a goal of this study to review the means by which dental color was taken, it was noticed that in all the included studies teeth color analysis was performed only by means of visual parameters. Spectrophotometers or colorimeters were not used for this propose in the included studies.

Synthesis of Results

Considering the 189 teeth evaluated, 54% (n=102) presented some degree of discoloration. Tooth color assessment was performed at the end of REP, therefore the evaluated teeth had already suffered the possible effects of intracanal medication as well as cervical sealing material. Thus, the results of the present review are described according the association of these factors: (1) TAP/GMTA, (2) TAP/alternative materials (AM) to GMTA (WMTA, Biodentine, and CEM), (3) AM to TAP/GMTA, and (4) AM to TAP/ AM to GMTA.

From the 14 teeth treated with TAP/GMTA association, 13 (92.9%) showed tooth discoloration (4,16,71,82-86); while, from de 30 teeth treated with TAP/AM to GMTA, 21 (70.0%) presented crown discoloration (18, 69, 87-95). When AM to TAP were associated with GMTA, 45 teeth (54.9%)
Table 2. Summary of descriptive characteristics of included studies

Author (years)	Country	Number of teeth (dental group)	Follow-up Time	Intracanal medication	Cervical Plug	Bleaching Method	Color Analyses
Reynolds et al. (71)	USA	2 (premolar)	18 months	TAP	GMTA	–	Visual
		Only one tooth shown a little discoloration in the region of cervical of crown					
Kim et al. (4)	Korea	1 (incisor)	8 months	TAP	GMTA	Sodium perborate	Visual
		After the use of intracanal medication was observed discoloration. Dental bleaching result in an improve of color, but not returned to original color					
Petrinio et al. (88)	USA	4 (incisor)	11 months	TAP	–	–	Visual
		2 (premolar)					
		Was observed discoloration in one tooth (after 10 days of treatment)					
Torabinejad et al. (17)	USA	1 (premolar)	5.5 months	TAP	GMTA	–	Visual
		Crown of revascularized tooth presented discoloration					
Cehreli et al. (77)	Turkey	2 (incisor)	18 months	Ca(OH)₂	GMTA	–	Visual
		Did not observe tooth discoloration after 18 months; Dental necrosis was caused due trauma.					
Dabbagh et al. (7)	Canada	18 (incisor and premolar)	24 months	TAP	–	Visual	
		Was observed color alterations in one tooth					
Gelman et al. (89)	USA	1 (central incisor)	11 months	TAP	WMTA	–	Visual
		Grayish discoloration was observed two weeks after the star of triple antibiotic past use					
Narayana et al. (91)	USA	1 (NR)	12 months	TAP	WMTA	–	Visual
		Discoloration did not observe in the period of follow-up					
Nosrat et al. (82)	USA	2 (incisor)	72 months	TAP	GMTA	–	Visual
		The crowns showed moderate discoloration in the final of treatment					
Miller et al. (87)	USA	1 (incisor)	18 months	TAP	WMTA	–	Visual
		Little change color were observed in the cervical crown					
Becerra et al. (92)	Colombia	1 (premolar)	24 months	TAP	–	Visual	
		Discoloration was observed					
Kottoor et al. (90)	India	1 (incisor)	5 years	TAP	WMTA	–	Visual
		Discoloration was not observed; the authors attributing it due the use of white MTA					
McIntigue et al. (9)	USA	29 (incisor)	51 months	TAP	GMTA and WMTA	Bleaching with sodium perborate and hydrogen peroxide 10%	Visual
		3 (premolar)		TAP/ clind.			
		In 14 teeth were observed tooth discoloration during the treatment. Dental bleaching was able to whiten the teeth satisfactorily					
Nosrat et al. (83)	USA	1 (incisor)	31 months	TAP	WMTA	Bleaching with sodium perborate	Visual
		Gradual discoloration was observed at the end of treatment					
Wang et al. (18)	China	2 (premolar)	18 vmonths	TAP	WMTA	–	Visual
		Both teeth presented discoloration					
Bezin et al. (6)	Turkey	2 (premolar)	12 months	TAP / Cefaclor	WMTA	–	Visual
		No discoloration was observed. Teeth were sealed with dentin bonding					
Guven Polat et al. (75)	Turkey	1 (premolar)	24 months	TAP / tetra	GMTA	–	Visual
		Did not observe tooth discoloration					
Kahler et al. (8)	Australia	16 (incisor and premolar)	18 months or more	TAP / Amox.	GMTA	–	Visual
		Ten of 16 teeth presented discoloration					
Kaya-Buyukbayram et al. (85)	Turkey	1 (incisor)	20 months	Ca(OH)₂ and TAP	GMTA	–	Visual
		Authors reported discoloration due to MTA and TAP					
Authors	Country	Number of teeth	Months	Treatment	Additional Procedures	Color Change	
------------------	------------	-----------------	------------	----------------------------	-----------------------	-----------------------	
Lin et al. [86]	Italy	1 (incisor)	16 months	TAP		MTA caused crown discoloration	
Nagata et al. [69]	Brazil	23 (incisor)	15 months	TAP or Ca(OH)_2 + Chlorhexidine 2%	WMTA	Tooth discoloration was observed in 10 of 12 teeth treated with TAP and in 3 of 11 treated with Ca(OH)_2	
Bezgin et al. [70]	Turkey	20 (premolar and incisor)	18 months	TAP / CEF	WMTA	Authors related that discoloration was not due antibiotic, but by MTA. 12 cases from 20 presented teeth discoloration; The author report perform the seal of dentinal walls with bonding agent to avoid the discoloration	
Park et al. [74]	Korea	2 (premolar)		TAP/ampox. GMTA		After 12 months of treatment the teeth presented crown discoloration	
Nagata et al. [78]	Brazil	1 (incisor)	16	Ca(OH)_2	WMTA	Tooth discoloration did not observed in the follow-ups	
Sachdeva et al. [93]	India	1 (incisor)	36 months	TAP	WMTA	The tooth presented further discoloration after intracanal medications	
Santiago et al. [16]	Brazil	5 (incisor)	15 months	TAP	GMTA	All teeth presented color changes in different levels	
Silva et al. [16]	USA	1 (incisor)	36 months	Ca(OH)_2	WMTA	The teeth presented little discoloration	
Wang et al. [76]	China	2 (premolar)	30	TAP	WMTA	Authors reported sing of tooth discoloration	
Asgary et al. [79]	Iran	2 (incisor)	36 months	Calcium hydroxide / TAP	Calcium-enhanced mixture	No discoloration was observed in both teeth treated with calcium hydroxide or TAP	
Chaniotis (13)	Greece	1 (incisor)	24 months	WMTA		Crown discoloration was observed	
Cho et al. [11]	Korea	1 (canine)	24 months	DAP / ciprofloxacin and metronidazole	GMTA	Blush-gray discolorations was observed after the application of paste	
Plascencia et al. [14]	Mexico	1 (incisor)	32 months	Ca(OH)_2	WMTA	Mild discoloration was observed	
Ray et al. [10]	USA	1 (incisor)	36 months	DAP ciprofloxacin and metronidazole	GMTA	The tooth presented discoloration	
She et al. [80]	China	1 (premolar)	66 months	Ca(OH)_2	GMTA	It was observed discoloration in cervical region	
Wang et al. [94]	China	2 (premolar)	17/18 months	TAP	WMTA	It was observed discoloration	
Bakhtiar et al. [72]	UK	4 (incisor)	18 months	TAP/cefaclor Biodentine		Discoloration was observed in 4 of 4 cases. Besides, Dentin walls of the pulp chamber were sealed with bonding.	
Chan et al. [73]	Canada	28 (Main incisor)	30 months	TAP/cefclor GMTA		Discoloration was observed in 16 of 28 teeth evaluated. Also, the discoloration occurs only in teeth with traumatized previously.	
Timmerman et al. [81]	Australia	1 (incisor)	36 months	Ca(OH)_2	GMTA	The tooth did not presented discoloration	

TAP: ciprofloxacin, metronidazole e minociclina; TAP/ampox.: ciprofloxacin, metronidazole e amoxicilina; TAP/cefclor: ciprofloxacin, metronidazole e cefaclor; TAP/clind.: ciprofloxacin, metronidazole e clindamicina; TAP / tetra ciprofloxacin, metronidazole, and tetracycline; GMTA: grey mineral trioxide aggregate; WMTA: white mineral trioxide aggregate
presented color change (8-11,73-75, 80,81). Considering the 63 teeth treated with AM to TAP/AM to GMTA, 21 (33.3%) presented crown discoloration (6,7,13,14,69,70,72,76-79). Thus, a tendency to avoid dental color alterations in studies that employed alternative materials (to TAP and GMTA) is observed in the Figure 2.

Moreover, we observed few studies that followed the strategy advised by AAE for avoid discoloration, sealing pulp chamber walls with dentin bonding agent. Bezgin et al. (6) applying this strategy observed no dentin discoloration in both two revascularized teeth; while, Bakhtiar et al. (72) observed minimal discoloration in all teeth sealed with dentin bonding.

In three studies dental bleaching was performed in 16 teeth (4,9,83) to restore the natural dental color. Internal bleaching technique applying sodium perborate as whitening agent was employed in two studies (2 teeth). The third study, associated 10% hydrogen peroxide to the sodium perborate (83). In studies in which only sodium perborate was used, authors described an improvement in the color of the teeth, but teeth do not return to the original shade. Satisfactory results were reported for 11 of the 14 teeth treated with sodium perborate associated with hydrogen peroxide.

Discussion

The regeneration of NIPT is a recent approach presenting promissory results (1,2). However, the risk of tooth discoloration, observed in several cases (10,16,18,69,87,89,92,94), can compromise esthetic results and even the quality of life of the individuals (96). In the present study, the literature was systematically reviewed to assess whether alternative materials to conventional TAP and GMTA could avoid tooth discoloration after pulp revascularization. The included studies showed that there is great potential for tooth discoloration after REP. More than 50% of the revascularized teeth presented some color alteration, mainly when TAP was used as intracanal medication and GMTA as cervical sealing material.

TAP is the most used intracanal medication in revascularization (2), presenting biocompatibility (97) and adequate antimicrobial capacity, being able to perform root canal system disinfection (98-100). According to the American Association of Endodontics (AAE) antibiotic pastes should be used at concentrations ranging from 0.1 mg/mL to 1 mg/mL, which promote low cytotoxicity to stem cells from apical papilla (3), maintaining its disinfection ability (101). However, even nowadays, authors have still employed pastes at different concentrations higher than that recommended. A recent case series study reported the use of 1g/mL on detriment to recommended due to clinical difficulties of applying pastes in low concentrations (72). Hence, crown discoloration has been more frequently reported after the use of 1g/mL TAP in root canal treatment. Some studies reports a rapid tooth discoloration after TAP application (89,93). The main reason for tooth staining (69), has been advocated to minocycline, a tetracycline derivate, present in TAP composition (102). Discoloration induced by minocycline normally occurs in the first 24 hours after its use, promoting a bluish-grey staining, clinically perceivable (11). Usually, this alteration is more evident in tooth crown, and in the cervical third of the root (102). Therefore, modifications to the original TAP (98) have been proposed, with the aim at avoiding discoloration, by the use of cefaclor (6,7,70,72,73), amoxicillin (8,74) and clindamicine instead of minocycline (9) Nevertheless,
of discoloration (20,21). Some studies in vitro have shown that WMTA also could promote some degree of discoloration than TAP with amoxicillin, doxycycline, or cefaclor (102). It was also observed that TAP induced a severe color change in the first day of the assessment, while the use of amoxicillin showed similar discoloration only after one week. On the other hand, double antibiotic paste (DAB – metronidazole and ciprofloxacin) and Ca(OH)₂ did not produce color alterations (102). Another in vitro study showed similar discolorations induced by these pastes, while the most esthetic outcomes were found when alternatives to minocycline were used (5).

A reduced number of cases reporting discoloration were observed when Ca(OH)₂ was applied as intracanal medication, however, from 20 teeth revascularized with Ca(OH)₂ six presented some color change (14,69,76-81). This may be explained by the fact that the materials used in the cervical plug can also promote discoloration, especially GMTA (80,81). Although in some cases is difficult to define if the color change was promote by antibiotic paste.

GMTA has been extensively used as cervical sealing material, being applied above the blood clot in revascularized teeth (2). However, GMTA presents high levels of iron, magnesium, aluminum, as well as bismuth oxides a radiopacifier, which can oxidize promoting tooth discoloration (12). Staining due to MTA can occur immediately after the first day of application and increase over the time (21). Aiming to avoid tooth discoloration, WMTA was developed, with significant reduction of minerals in its composition. Despite this, in vitro studies have shown that WMTA also could promote some degree of discoloration (20,21).

Only one study included in this review used Biodentine™ as cervical plug. As a result, all teeth treated showed minimal discoloration (72). In these cases, the color alteration probably can be attributed to the biochemical interaction between Biodentine™ and platelet-rich fibrin (PRF), mixed to the blood clot, since Biodentine presents zirconium oxide as radiopacifier instead of bismuth oxide (20,21). Biodentine™ was recently developed tricalcium silicate-based material, which presents high biocompatibility and mechanical resistance (103). Recently, in order to avoid the negative effect of the Portland cement-based materials on tooth color, AAE (3) recommends the use of glass ionomer cement in the cervical sealing, especially for the anterior teeth, in which esthetics assumes an important role. No study included in this review used GIC for this purpose.

Another reported way to minimize the risks of tooth discoloration is sealing dentinal tubules of the pulp chamber with adhesive agent prior to the use of TAP (3). However, more studies are necessary to confirm the role of adhesive agents in prevent color alterations following REP. In the present review, three studies performed this preventive technique (6,70,72). Bezgin et al. (6) applying adhesive agent previously intracanal medication with TAP/cefaclor, followed by WMTA as cervical sealing material. No discoloration was observed in both two evaluated teeth. However, in a study performed in 20 cases of revascularization, the application of an adhesive agent before TAP/cefaclor, did not prevent discoloration in 12 teeth. Nevertheless, the staining was attributed to the GMTA, used as cervical sealing material (70). Finally, Bakhtiar et al. (72) also sealed coronal dentinal tubules prior to treat root canal with TAP/cefaclor; however, as cervical sealing material Biocemente™ was used rather than MTA. Discoloration occurred in all the four revascularized teeth. Authors attributed the staining to the interaction between Biocemente and PRF. Confirming the results of those studies, an in vitro (4) one observed that the use of the adhesive (self-etching, 2-component adhesive dentin bonding system) reduced, but did not prevent staining. The samples became yellow, reproducing the color of minocycline. The explanation for this was probably due the use of a clear bonding agent, without the ability of completely blocking the yellowish color of the antibiotic. Besides, it is important highlight that the REP per se can promote some degree of discoloration. An recent in vitro study that evaluate by spectrophotometry the change color in teeth submitted to REP observed a low discoloration in the control group – no antibiotic pastes treatment (5).

Aiming restore tooth color, some studies reported perform dental bleaching. The crowns were treated by the internal bleaching technique with sodium perborate or sodium perborate associated to hydrogen peroxide (4, 9, 83). However, neither technique was able to restore the original color of the crowns. These results did not corroborate with a study that used spectrophotometer, before and after the use of materials commonly applied in REP, to investigate the efficacy of dental bleaching on the color of bovine teeth. The results showed that only one application of 10% carbamide peroxide, inside the pulp chamber and on the outer surface of the crown, was enough to make the color of the teeth similar to the original one (5).

In all the studies included in this review, the visual method of analysis was used to evaluate the color change. However, this method results in a subjective evaluation, which can be affected by factors such as the experience and the chromatic perception of the evaluator, the illumination of the environment (104). In order to avoid biases resulting from the evaluation of the human eye, spectrophotometers should be used instead. Spectrophotometer devices...
determine the color of the tooth from numerical values that represent light and hue, being considered reliable methods for color reading (105). However, these devices are not yet widely used in the clinical routine.

It is important to highlight that reports of tooth discoloration was found predominantly in cases treated with TAP and GMTA. Although the high amount of studies found at the initial search, many studies did not fulfill inclusion criteria of this review. Therefore, the present results should be interpreted with caution. Since the main outcome assessed in included studies was the survival of the teeth, dental color was mostly reported as secondary data. Therefore, tooth discoloration might had been underestimate, being reported only in those cases in which a major color change was noticed. Moreover, the lonely effect of the different materials involved in REP on tooth discoloration is a very hard task, since intracanal medication and cervical sealing are applied sequentially, and both have potential to induce tooth color alteration. The conduction of randomized clinical trials evaluating tooth color on each phase of regenerative endodontics is highly recommended to better understand the role of each material in tooth discoloration.

Alternatives to conventional Triple Antibiotic Pastes and Gray MTA avoid tooth discoloration in teeth submitted to revascularization. The association of alternatives to Triple Antibiotic Paste and alternatives to Gray MTA resulted in minor discoloration. Dental bleaching is able to reverse partially the color of discolored teeth due to REP. Minocycline seems to be the main responsible for discoloration induced by TAP.

References
1. Chisini LA, Grazzioli G, Francia A, San Martin AS, Demarco, FF, Conde MCM. Revascularization versus apical barrier technique with mineral trioxide aggregate plug: A systematic review. G Ital Endod 2018;32:9-16.
2. Conde MC, Chisini LA, Sarkis-Onofre R, Schuch HS, Nor JE, Demarco FF. A scoping review of root canal revascularization: relevant aspects for clinical success and tissue formation. Int Endod J 2017;50:860-874.
3. American Association of Endodontists. Endodontists’ Guide to CTD 2017. Available from: https://www.aae.org/specialty/wp-content/uploads/sites/2/2017/07/aae_2017guidetocdt.pdf. Latest access: October 15, 2018.
4. Kim JH, Kim Y, Shin SJ, Park JW, Jung JY. Tooth discoloration of immature permanent incisor associated with triple antibiotic therapy: a case report. J Endod 2010;36:1086-91.
5. Santos LG, Felippe WT, Souza BD, Konrath AC, Cordeiro MM, Felippe MC. Crown discoloration promoted by materials used in regenerative endodontic procedures and effect of dental bleaching: spectrophotometric analysis. J Appl Oral Sci 2017;25:234-42.
6. Bezgin T, Yilmaz AB, Çelik BN, Sönmez H. Concentrated platelet-rich plasma used in root canal revascularization: 2 case reports. Int Endod J 2014;47:41-49.
7. Dabbagh B, Alvaro E, Vu DD, Rizkkallah J, Schwartz S. Clinical Complications in the Revascularization of Immature Necrotic Permanently Teeth. Ped Dent 2012;34:414-417.
8. Kahler B, Mistry S, Moule A, Ringsmuth AK, Case P, Thomson A, et al. Revascularization outcomes: A prospective analysis of 16 consecutive cases. J Endod 2014;40:333-338.
9. McGugan DJ, Subramanian K, Kumar A. Management of immature permanent teeth with pulpal necrosis: A case series. Ped Dent 2013;55:56-60.
10. Ray HL, Jr., Marcelino J, Braga R, Horwat R, Lisen M, Khaliq S. Long-term follow up of revascularization using platelet-rich fibrin. Dent Traumatol 2016;32:80-84.
11. Cho WC, Kim MS, Lee HS, Choi SC, Nam OH. Pulp revascularization of a severely malformed immature maxillary canine. J Oral Sci 2016;58:295-298.
12. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. J Endod 2010;36:16-27.
13. Chaniotis A. The use of a single-step regenerative approach for the treatment of a replanted mandibular central incisor with severe resorption. Int Endod J 2016;49:802-812.
14. Plascencia H, Cruz A, Díaz M, Jiménez AL, Solís R, Bernal C. Root canal filling after revascularization/revitalization. J Clin Pediatr Dent 2016;40:445-449.
15. Chisini LA, Conde MC, Alcacer JC, Silva AF, Nor JE, Tarquinio SB, et al. Immunohistochemical expression of TGF-beta1 and osteonectin in engineered and Ca(OH)₂-repaired human pulp tissues. Braz Oral Res 2016;30:e93.
16. Santiago CN, Pinto SS, Sassone LM, Hirata R, Jr., Fidel SR. Revascularization technique for the treatment of external inflammatory root resorption: a report of 3 cases. J Endod 2015;41:1560-1564.
17. Torabinejad M, Turman M. Revitalization of tooth with necrotic pulp and open apex by using platelet-rich plasma: A case report. J Endod 2011;37:265-268.
18. Wang JH, Chen YHM, Chen KL. Conservative treatment of immature teeth with apical periodontitis using triple antibiotic paste disinfection. J Dent Sci 2013;11:196-211.
19. Kahler B, Rossi-Fedege G. A review of tooth discoloration after regenerative endodontic therapy. J Endod 2016;42:563-9.
20. Kohli MR, Yamaguchi M, Setzer FC, Karabucak B. Spectrophotometric analysis of coronal tooth discoloration induced by various bioceramic cements and other endodontic materials. J Endod 2015;41:1862-6.
21. Marconyak LJ, Jr., Kirkpatrick TC, Roberts HW, Roberts MD, Aparicio A, Himel VF, et al. A Comparison of coronal tooth discoloration elicited by various endodontic reparative materials. J Endod 2016;42:470-473.
22. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred...
reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.

23. Al-Ghamdi NS, Al-Nazhan S. Pulp revascularization of immature maxillary first premolar. J Conserv Dent 2015;18:496-499.

24. Atabek D, Sillelioglu H, Cinar C, Gmez A. Maturogenesis of an early erupted immature permanent tooth: a case report with 7-year follow-up. J Clin Pediatr Dent 2015;39:262-267.

25. Meschi N, Hilkens P, Lambrecht I, Van den Eynde K, Movridou A, Strijbos G, et al. Regenerative endodontic procedure of an infected immature permanent human tooth: an immunohistological study. Clin Oral Investig 2016;20:807-814.

26. Miltiadous ME, Floratos SG. Regenerative endodontic treatment as a retreatment option for a tooth with open apex - A case report. Braz Dent J 2015;26:552-556.

27. Aldakak MM, Capar ID, Rekab MS, Abboud S. Single-visit pulp revascularization of a nonvital immature permanent tooth using Biocaine. Iran Endod J 2016;11:246-249.

28. El Ashiry EA, Farsi NM, Abuzeid ST, El Ashiry MM, Bahamman HA. Dental pulp revascularization of necrotic permanent teeth with immature apices. J Clin Pediatr Dent 2016;40:361-366.

29. Estefan BS, El Batoouy KM, Nagy MM, Diogenes A. Influence of age and apical diameter on the success of endodontic regeneration procedures. J Endod 2016;42:1620-1625.

30. Farhad AR, Shukraneh A, Shekarchizade N. Regeneration or replacement? A case report and review of literature. Dent Traumatol 2016;32:71-79.

31. Zizka R, Buchta T, Vohorna I, Harvan L, Sedy J. Root maturation in teeth treated by unsuccessful revitalization: 2 case reports. J Endod 2016;42:724-729.

32. Lucisano MP, Nelson-Filho P, Silva LA, Silva RA, de Carvalho FK, de Queiroz AM. Apical revascularization after delayed tooth replantation: an unusual case. case rep dent 2016;2016:2651643.

33. Priya MH, Tambakad PB, Naidu J. Pulp and periodontal regeneration after delayed replantation of a human immature permanent tooth: an immunohistological study. Clin Oral Investig 2012;16:327-331.

34. Zizka R, Buchta T, Vohorna I, Harvan L, Sedy J. Root maturation in teeth treated by unsuccessful revitalization: 2 case reports. J Endod 2016;42:724-729.

35. Kapaskar RR, Kapaskar AR. Maturogenesis of non-vital immature permanent teeth with apical periodontitis/abscess to revascularization procedures. Responses of immature permanent teeth with infected necrotic pulp tissue and apical periodontitis/abscess to revascularization procedures. J Endod 2012;38:1330-1336.

36. Kim DS, Park HJ, Yoon JH, Seo JS, Ryu GJ, Park KH, et al. Long-term follow-ups of revascularized immature necrotic teeth: three case reports. Int J Oral Sci 2012;4:109-113.

37. Lenzi R, Trope M. Revitalization procedures in two traumatized incisors with different biological outcomes. J Endod 2012;38:411-414.

38. Rudagi KB, Rudagi BM. One-step apexification in immature tooth using grey mineral trisilicate aggregate as an apical barrier and autologous platelet rich fibrin membrane as an internal matrix. J Conserv Dent 2012;15:196-199.

39. Shimizu E, Jong G, Partridge N, Rosenberg PA, Lin LM. Histologic observation of a human immature permanent tooth with irreversible pulpitis after revascularization/regeneration procedure. J Endod 2012;38:1293-1297.

40. Farsi N, Abuzeid S, El Ashiry E. Revascularization of dental pulp in human necrotic permanent teeth with immature apex: Three case reports. Life Sci Jul 2013;10:1516-1521.

41. Forghani M, Paraisy I, Maghsoudlou A. Apexogenesis and revascularization treatment procedures for two traumatized immature permanent maxillary incisors: a case report. Restor Dent Endod 2013;38:178-181.

42. Jaydav G, Shah N, Logani A. Comparative outcome of revascularization in bilateral, non-vital, immature maxillary anterior teeth supplemented with or without platelet rich plasma: A case series. J Conserv Dent 2013;16:568-572.

43. Kalaskar RR, Kalaskar AR. Maturogenesis of non-vital immature permanent teeth. Contemp Clin Dent 2013;4:268-270.

44. Martin G, Ricucci D, Gibbs JL, Lin LM. Histological findings of revascularized/revitalized permanent immature molar with apical periodontitis using platelet-rich plasma. J Endod 2013;39:138-144.

45. Paryani K, Kim SG. Regenerative endodontic treatment of an immature necrotic molar with arrested root development by using recombinant human platelet-derived growth factor: a case report. J Endod 2016;42:72-75.

46. At-Tammami MF, Al-Nazhan SA. Retreatment of failed regenerative endodontic of orthodontically treated immature permanent maxillary central incisor: a case report. Restor Endod 2017;42:65-71.

47. Siluji J, Linsuwanton P. Treatment outcomes of apexification or revascularization in nonvital immature permanent teeth: A Retrospective Study. J Endod 2017;43:238-245.

48. Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: New treatment protocol? J Endod 2015;40:196-200.

49. Thibodeau B, Trope M. Pulp revascularization of a necrotic infected immature permanent tooth: case report and review of the literature. Pediatr Dent 2007;29:47-50.

50. Cotti E, Mereu M, Lusso D. Regenerative treatment of an immature, traumatized tooth with apical periodontitis: Report of a case. J Endod 2008;34:611-616.

51. Jung IY, Lee SJ, Hargreaves KM. Biologically based treatment of immature permanent teeth with pulpal necrosis: a case series. J Endod 2008;34:876-887.

52. Shin SY, Albert JS, Mortman RE. One step pulp revascularization treatment of an immature permanent tooth with chronic apical abscess: a case report. Int Endod J 2009;42:1118-1126.

53. Cehreli ZC, Isbitiren B, Sara S, Erbas G. Regenerative endodontic treatment (revascularization) of immature necrotic molars medicated with calcium hydroxide: A case series. J Endod 2011;37:1327-1330.

54. Aggarwal V, Miglani S, Singla M. Conventional apexification and revascularization induced maturogenesis of two non-vital, immature teeth in same patient: 24 months follow up of a case. J Conserv Dent 2012;15:68-72.

55. Chen MFH, Chen CL, Chen CA, Taiyebaty F, Rosenberg PA, Lin LM. Responses of immature permanent teeth with infected necrotic pulp tissue and apical periodontitis to revascularization procedures. Int Endod J 2012;45:294-305.

56. Jaydav G, Shah N, Logani A. Revascularization with and without platelet-rich plasma in nonvital, immature, anterior teeth: a pilot clinical study. J Endod 2012;38:1581-7.
66. Abduljabbar F, Bahksh A, Abed H. Revascularization procedure induced maturation of upper permanent incisor. Oral Health Dent Manag 2014;13:831-834.

67. JadHAV GR, Shah N, Logani A. Platelet-rich plasma supplemented revascularization of an immature tooth associated with a periapical lesion in a 40-year-old man. Case Rep Dent 2014;2014:479584.

68. Solomon RV, FaiZuddin U, Guniganti SS, Waghry S. Analysis of the rate of maturation of a traumatized Ockel's stage 3 anterior tooth treated with platelet-rich fibrin as a regenerative tool using three-dimensional cone-beam computed tomography: An original case report. Indian J Dent Res 2015;26:90-95.

69. Nagata JY, Figueiredo De Almeida Gomes BP, Rocha Lima TF, Murakami LS, De Faria DE, et al. Traumatized immature teeth treated with 2 protocols of pulp revascularization. J Endod 2014;40:606-12.

70. Bezgin T, Yilmaz AD, Celik BN, Kolusz ME, Sonmez H. Efficacy of Platelet-rich Plasma as a Scaffold in Regenerative Endodontic Treatment. J Endod 2015;41:36-44.

71. Reynolds K, Johnson JD, Cohenca N. Pulp revascularization of necrotic bilateral bicuspids using a modified novel technique to eliminate potential coronal discoloration: a case report. Int Endod J 2009;42:84-92.

72. Bakhtiar H, Esmaeili S, Fakhr Tabatabayi S, Ellini MR, Nekoofar MH, Bakhtiar H, Esmaeili S, Fakhr Tabatabayi S, Ellini MR, Nekoofar MH. Delayed root development by displaced root dentine to a mixture of ciprofloxacin, metronidazole and minocycline. Int Endod J 1996;29:118-124.

73. Silva MHC, Campos CN, Coelho MS. Revascularization of an immature tooth associated with a periapical lesion. J Endod 2012;38:91-94.

74. Wang Y, Chen YM, K C. Conservative treatment of immature teeth with apical periodontitis using triple antibiotic paste disinfection. J Dent Sci 2016;11:196-201.

75. Wang Y, Zhu XF, Zhang CF. Pulp revascularization on permanent teeth with open apices in a middle-aged patient. J Endod 2015;41:1571-1575.

76. Klages U, Erbe C, Sandru S, Brullman D, Wehrbrin h. Psychosocial impact of dental aesthetic in adolescence: validity and reliability of a questionnaire across age-groups. Qual Life Res 2015;24:379-390.

77. Gomes-Filho JE, Duarte PCT, De Oliveira CW, Watanabe S, Lodi CS, Cintra LTA, et al. Tissue reaction to a triantibiotic paste used for endodontic tissue self-regeneration of nonvital immature permanent teeth. J Endod 2012;38:91-94.

78. Hoskino E, Kirihara-Ando N, Sato I, Uematsu H, Sato M, Kata K, et al. In-vitro antibacterial susceptibility of bacteria taken from infected root-canal dentine by topical application of a mixture of ciprofloxacin, metronidazole and minocycline. Int Endod J 1996;29:125-130.

79. Sato I, Ando-Kurihara N, Kata K, Iwaku M, Hoskino E. Sterilization of infected root-canal dentine by topical application of a mixture of ciprofloxacin, metronidazole and minocycline in situ. Int Endod J 1996;29:118-124.

80. Thibodeau B, Teixeira F, Yamauchi M, Caplan DJ, Trope M. Pulp revascularization of immature dog teeth with apical periodontitis. J Endod 2007;33:680-689.

81. J-responsive fibers in the revitalization of tooth with necrotic pulp and open apex. J Conserv Dent 2012;15:395-398.

82. Abduljabbar F, Bahksh A, Abed H. Pulp revascularization of necrotic bilateral bicuspids using a modified novel technique to eliminate potential coronal discoloration: a case report. Int Endod J 2009;42:84-92.

83. Bakhtiar H, Esmaeili S, Fakhr Tabatabayi S, Ellini MR, Nekoofar MH. Delayed root development by displaced root dentine to a mixture of ciprofloxacin, metronidazole and minocycline. Int Endod J 1996;29:118-124.

84. Wang Y, Chen YM, K C. Conservative treatment of immature teeth with apical periodontitis using triple antibiotic paste disinfection. J Dent Sci 2016;11:196-201.

85. Wang Y, Zhu XF, Zhang CF. Pulp revascularization on permanent teeth with open apices in a middle-aged patient. J Endod 2015;41:1571-1575.

86. Klages U, Erbe C, Sandru S, Brullman D, Wehrbrin h. Psychosocial impact of dental aesthetic in adolescence: validity and reliability of a questionnaire across age-groups. Qual Life Res 2015;24:379-390.

87. Gomes-Filho JE, Duarte PCT, De Oliveira CW, Watanabe S, Lodi CS, Cintra LTA, et al. Tissue reaction to a triantibiotic paste used for endodontic tissue self-regeneration of nonvital immature permanent teeth. J Endod 2012;38:91-94.

88. Hoskino E, Kirihara-Ando N, Sato I, Uematsu H, Sato M, Kata K, et al. In-vitro antibacterial susceptibility of bacteria taken from infected root-canal dentine by topical application of a mixture of ciprofloxacin, metronidazole and minocycline. Int Endod J 1996;29:125-130.

89. Sato I, Ando-Kurihara N, Kata K, Iwaku M, Hoskino E. Sterilization of infected root-canal dentine by topical application of a mixture of ciprofloxacin, metronidazole and minocycline in situ. Int Endod J 1996;29:118-124.

90. Thibodeau B, Teixeira F, Yamauchi M, Caplan DJ, Trope M. Pulp revascularization of immature dog teeth with apical periodontitis. J Endod 2007;33:680-689.

91. Ruparel NB, Teixeira FB, Ferraz CC, Diogenes A. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J Endod 2012;38:1372-5.