A Roadmap for Integrated Green Health EcoTourism Infrastructures, Safe Cultural Heritage Experience and AgriTourism Destinations in the Post Covid-19 Pandemic Era

Tilemachos K. Koliopoulos¹,², Panagiotis Kouloubis², Krystyna Ciarkowska³, Jacek Antonkiewicz⁴, and Florian Gambus⁴

¹ Department of Community Health and Public Health, University of West Attica, Athens, Greece
tilkolgr@gmail.com
² Telegeco Research and Development, Athens, Greece
³ Department of Soil and Agrophysics, University of Agriculture in Krakow, Krakow, Poland
⁴ Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Krakow, Poland

Abstract. This study addresses a road-map on how information technologies can be used to enhance the safe cultural heritage experience throughout the visitors’ journey time within integrated health green ecotourism sustainable infrastructures and associated agritourism facilities for particular activities in space. As its main contribution, it presents a model of information communication technology to enhance effective project management for sustainable fast applied construction designs for environmental - public health protection and safe cultural heritage experience for tourists at ecological landscapes, forests and sea shore, coastal destinations. In the examining application of relative web project management technologies it is not limited to the onsite stage of the cultural experience, but is extended also to the integrated educational agritourism and ecotourism travel destinations for all stakeholders. The examining presented roadmap at a cultural heritage site provides insights into the opportunities to use a combination of applications in rehabilitation projects for enriching and facilitating the cultural visit in terms of a healthy environment with cultural, heritage life for renewable energy consumption from biofuels, wastewater units, landfill design emissions units. Also qualitative food, drink production activities should be promoted that are improving human health, promoting biological agricultural products, gastronomic healthy ones and biological drinks at the destination according to an extended, multi-stage perspective of the gastronomic heritage experience for all ages. In this way integrated green health tourism infrastructures and reclamation works are necessary for different ages and interests of tourists.

Keywords: Sustainable resources in ecotourism · Green health tourism · Construction management ICTs in tourism after covid-19

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
J. V. de Carvalho et al. (Eds.): ICOTTS 2020, SIST 208, pp. 108–119, 2021.
https://doi.org/10.1007/978-981-33-4256-9_10
1 Introduction

Nowadays, the emergence of smart technologies is becoming necessity in the post covid-19 pandemic era that has provided extraordinary possibilities to enrich and facilitate tourism experiences with relevant implications for the project management and marketing of unique travel destinations. Cultural tourism combined with health green ecotourism and educational agri-tourism is one key area of exploration and exploitation of the potential of information communication technologies (ICT’s) technologies for enhancing visitors’ safe experiences at heritage sites and gastronomic healthy food and drink products, attractions and thereby contribute to destination development and attractiveness. The widespread adoption of smart ICTs technologies, the development of Internet of Things (IoT’s), the real time update of web pages, simulation scenarios for augmented reality maintenance applications at sustainable projects have fueled the interest of researchers to investigate the application of smart ICTs, IoTs, monitoring technologies for enhancing tourism attractions like safe cultural heritage experiences linked with integrated community health green ecotourism interactive projects combined with alternative types of community tourism for the promotion of good health of tourists during their vacations [4, 19–24, 32].

However, the applications and studies in this area mostly focus only on the onsite stage of the cultural visit. Accordingly, a primary challenge is to understand a roadmap focused on the importance of integrated web project management ICTs utilities to enhance a safe cultural heritage experience for tourists. Safe travel destinations should exist with construction facilities and reclamation works that promote a well human health by extending its boundaries to include pre- and post-visit stages for all ages of tourists improving their health during their vacations in terms of clean environment, qualitative indoor, outdoor hotel accommodation spaces, applying proper room ventilation and building openings for safe hotels according to public health protection, applying regulations and protocols for prevention measures due to covid-19 post pandemic era, safe building designs in earthquakes, maintenance designs of remediation projects, biofuels production, protection of hotels from floods, fires, other extreme phenomena.

Starting from this challenge, the examining roadmap presents an integrated project management model for public health protection in tourism planning policy and a tourism circular economy after covid-19 era with safe sanitary travel destinations. In this way it is aimed at supporting visitors’ experience in the pre-, during, and post-visit stages of cultural visits through a system of supported proper ICTs applications not only for tourists but also for relative professions in staff vocational training around health tourism, agritourism, ecotourism. The proposed model has been conceived and tested within a project aimed at developing new technological applications for enriching cultural heritage experiences at local sites and increasing the attractiveness of the mountainous forests, ecological landscapes, lakes and sea shore on islands, coastal travel attractions as a cultural tourism destination. The conceptualization of the model of technology enhanced cultural heritage experience combined with integrated health green ecotourism’s infrastructures and educational agri-tourism is examined through a combination of qualitative and quantitative methods of research on the role of web
project management utilities for the enhancement of the experience at green health ecotourism qualitative destinations.

Urban areas and particular alternative tourism destination sites next to them are complex social ecosystems, where ensuring sustainable development and quality of life are important concerns. In such urban, semi-urban, agricultural environments, local governments, citizens, stakeholders and companies experience specific demands and needs regarding key themes such as sustainable development, innovative business creation and employment. Moreover the next topics should be taken into account like effectiveness of rehabilitation works for tourism infrastructures; community healthcare; educational tourism; vocational education within physical activities and geo-tourism; integrated healthcare – medical tourism infrastructures; alternative types of tourism; sustainable energy; clean technologies and environments; public health protection; efficient operations management at community health care centers; the sustainable mobility environment; sustainable transportation designs of goods; safety at innovative construction designs related to environmental health, efficient sanitary designs due to post covid-19 era at outdoors/indoors spaces – efficient safe openings of buildings, sustainability, green economy and efficient operational mobility services for tourists. An integrated health policy is necessary in terms of sustainability of green health ecotourism centers within relative smart city growth infrastructures and efficient ICTs, tourism infrastructures growth planning within an effective circular economy, sustainable construction designs, proper water resources management, clean ecotourism – agritourism facilities, landfill emissions exploitation, promotion of renewable resources and operational management in future smart city ecosystems.

2 Web Project Management Utilities at Tourism Destinations

The development of the proliferation of web information together with a smart perspective (IoTs) and communication technologies (ICTs) in all the contexts of human activities for future smart cities have encouraged the diffusion of technology also in the tourism sector [18], giving rise to the Smart Tourism concept applied to alternative types of tourism. Although there is still a lack of definitional clarity related to this term [5, 11], smart tourism that could be linked for integrated green health ecotourism infrastructures with associated alternative types of tourism encompasses three main components [11]: smart destinations, smart experience, and smart business for stakeholders using proper ICTs. In particular, the extensive use of ICTs supports efficiency and sustainability in the destination aspects; the personalization aspects and enrichment in the tourism experience; and the introduction of innovations in the aspects related to tourism business. The proper use of ICTs, IoTs and smart approach at destinations provides the needed utilities, safety tools for public health protection due to several epidemics, pandemics like SARS covid-2, covid-19, others and infrastructures to bridge the gaps between the physical world and the digital realm in the space and between different stages of the tourism for sanitary alerts in terms of indoor, outdoor quality, optimum openings in hotel buildings efficient sustainable with innovative health - safety stable designs for good aeration of closed spaces due to covid-19, safe
structural designs of openings in shear walls and experience process in the time [24, 25, 30, 31, 41].

Furthermore, these advancements are becoming essential not only for the competitiveness of the destination as a whole, but also for tourism services providers that are confronted with the challenges related to the development of relative effective web project management utilities, ICTs, IoTs, geoinformation tools for safe infrastructures approach in integrated community health tourism destinations to be competitive in future smart cities [19, 20, 22–24, 32]. In particular, new technologies allow the enrichment of the tourism experience by favoring personalization of offers, applying properly quantitative, qualitative analysis of travel attractions, context-awareness, information aggregation, ubiquitous connectedness and real-time monitoring and synchronization [5, 20, 21, 28].

However, the smart approach acts on the tourists’ decision making process and contributes to create more satisfying tourism experiences, with relevant implications for the project management of safe – qualitative travel destinations and relative promotional marketing. Studies in this area identify three key technological components that influence the success of smart – web tourism experiences at destinations [41, 42]. Cloud Computing Services, Internet of Things (IoT), and End-User Internet Service Systems. The Internet of Things (IoT) is composed by a variety of always-responsive objects (tags, sensors etc.), which are able to interact with each other in order to achieve common goals, safety and optimum operational management especially in emergencies [42]. Cloud computing services are technological infrastructures able to collect, manage and store a large number of data that are useful for supporting the development of an integrated health tourism in many ways [24].

The value of ICTs, web project management utilities, IoTs technologies for stakeholders enhanced tourism experiences has a broader sense for all, being created not only during the visit phase, but also before and after the visit, during every interaction of the tourist with the tourism services providers and associated media like Facebook, linked-in, flickr etc. Therefore, destinations marketers need to focus on the entire tourism experience for the proper promotion of safe health ecotourism destinations next to forests, lakes, coasts, natural landscapes and invest into technologies that are able to enhance all the stages of the experience process.

Moreover, cultural tourism, which is driven by visitors’ motivations to view the historical, artistic, scientific or lifestyle/heritage offerings of a community, region, or institution (Silberberg 1995; Laurajane et al. 2009; Jack et al. 2005), is an area of significant application of proper web technologies for enhancing visitors’ experiences. Cultural resources, including museums, theatres, archeological, historical, and religious sites, monuments, art galleries, cultural festivals and events related to local agricultural biological traditional food and drinks products combined with alternative types of tourism like walking, running, cycling, fishing, river sports, other sports tourism events, planting forest trees, agricultural cultivation – educational agritourism should be promoted properly in terms of public health protection that can provide tourists unique experiences contributing to differentiate a destination from its competitors, learning about renewable resources, the meaning of circular economy, environmental – public health protection, reclamation works, soil protection at brownfield sites,
rehabilitation projects and robust fast construction designs [1–3, 8, 10, 16, 19, 21, 22, 28–30, 33, 34, 40].

In more detail, the advent of ICTs, mobile-based augmented reality browsers and smart wearable devices has fueled the development of a variety of applications to provide information and contents to cultural visitors, support learning and involvement, facilitate the planning and management of itineraries, enable visitors to co-create and share their experiences. For example, Augmented Reality systems can help visitors to relive historic life or sustainable ecological health architecture facilities next to forests, lakes by revealing ruins or ancient buildings as 3D objects. These could be overlaid on the actual monuments creating new activities for sports tourism, interactive movements, local theaters and speeches about the meaning of integrated health tourism facilities.

Furthermore, useful infrastructures could be related to agritourism and alternative types of tourism like sports tourism, swimming facilities for all ages from elderly people with disabilities to young families supported with innovative sustainable construction designs of integrated community health centers and maternity units for young families with kids during their travel vacations. Further, they provide opportunities to explore unknown areas in an enjoyable and interactive manner and to facilitate learning processes through the integration of proper ICTs, IoTs, Virtual Reality, vocational education training tools, e-learning tools like moodle-moot, sloodle, other associated educational - training online utilities for stakeholders and Augmented Reality gaming. Research in this field also emphasizes the potential of Virtual Reality as a tool for cultural heritage marketing, education and preservation for stakeholders [12, 14, 17, 31]. However, by contrast, the cultural heritage experience combined with agritourism interactive projects – associated alternative types of tourism for tourists is not limited to the time spent onsite, but begins before the actual visit and continues with memories and reflections after the visit taking an action like an asynchronous biomatic learning laboratory [24, 26, 27, 38].

Moreover, the effectiveness of an Environmental System within a smart tourism ICTs project management utility should be related to an Efficient Sustainable Design of a Health Care Communal Building Facility for elderly tourists or modern Maternity units for young families that are traveling both for long term destinations with babies, kids. Future infrastructures of health green ecotourism destinations associated with alternative types of tourism in order to get a competitive advantage in relation to other travel destinations should take into account the next relative road map activities. A public health protection in tourism planning policy should be taken into account in a roadmap for integrated green health ecotourism infrastructures. In this way can be achieved safe cultural heritage experience for tourists as well as safe agri-tourism travel destinations and interactions of tourists at indoors, outdoors spaces next to hotel accommodations in the post covid-19 pandemic era.

According to the examining roadmap are demanded sustainable hotel facilities supporting proper sustainable building safe economic construction designs so as to recover a huge amount of raw energy resources, applying a right sustainable environmental health management. Renewable resources and clean technologies from landfill emissions can be exploited not only for saving energy consumption but also to minimize air pollutants, water pollutants – soil pollutants’ emissions. Landfill
emissions like biogas and leachates treatment can be exploited properly for electricity, heating consumption, irrigation and lighting respectively for landscape upgrade, recovery of waste emissions for biofuels cultivations, support of renewable resources in quality assurance of polluted soil reclamation and efficient supply chain – project management of renewable resources [22–24, 35, 39].

In this way the examining roadmap will provide assistance for stakeholders in efficient use of water resources for a sustainable ecotourism growth in relation to clean technologies at particular semi-urban tourism facility designs next to agri-tourism destinations. Moreover, the examining roadmap will be helpful to establish the right guidelines not only for staff training at hotels but also for stakeholders to support integrated effective sustainable services, environmental sustainable designs in relation to proper use of renewable resources from landfill gas – waste water treatment units of landfill leachates, sustainability on roof garden designs, recovery of waste emissions from hotels and public health protection at outdoor and indoor spaces next to community health ecotourism centers. Therefore, taking into account the examining roadmap characteristics for an integrated public health protection in tourism planning policy should be established not only to conserve our natural resources for qualitative ecotourism facilities but also to support clean technologies at agri-tourism travel destinations with the consumption of renewable resources utilizing efficient sustainable transportation design infrastructures protecting environmental eco-tourism’s resources and public health.

3 Health Policy for Efficient Environmental Resources’ Management of Green Health Ecotourism – Agritourism Infrastructures

Nowadays, an effective sustainable design system of a communal health care facility not only for elderly people with disabilities like Alzheimer’s disease or Musculoskeletal Disorders but also for young families with babies and kids that have been survived from recent covid-19 pandemic should identify potential locations that construction projects will support innovative fast applied construction designs’ combinations of construction materials in terms of sustainability providing efficient sports tourism – associated alternative types of tourism services like swimming or other ones for qualitative healthcare to tourists. The latter fact could be combined with agritourism activities focused on educational training tourism activities for stakeholders not only for biological agricultural food and drinks products but also phytoremediation applications – biofuel production and atmospheric protection which is semantic especially for traveling tourists who belongs in populations living in urban centers with atmospheric pollution and they have been recovered from covid-19 pandemic disease.

Moreover, a good planning and web marketing is necessary to promote unique travel destinations of access into and around the spaces within the health care facility focused on the safe mobility, sustainability in construction design not only for the maintenance but also the proper construction design in emergencies that environmental hazards could probable exist like floods, earthquakes or landfill gas fires, landfill
leachate leakage etc. at associated alternative types of green tourism that promote an integrated health tourism [6, 13, 19, 21, 22, 33–35, 37].

However, in the last decades for the optimization of Environmental Resources’ Management several system analysis methods in constructions for mobility, sustainable airport designs and economic means in transportation for shipment of goods to integrated health tourism destinations, efficient hotel building design facilities in energy consumption should be used properly including proper web utilities in supply chain project management, numerical schemes and Input-Output analysis. The latter should be combined with several tools like digital spatial databases, I.S.O. standards during the use of several monitoring methods or devices collecting data for Environmental Impact Assessments combined with web G.I.S tools and G.P.S. Devices for the right decision making in time, protecting environment and public health. Based on the above in Fig. 1 is presented a roadmap that should be applied in integrated Health Eco-tourism Policies combined with integrated Agri-tourism facilities and alternative types of tourism.

![Roadmap Diagram](image)

Fig. 1. Integrated public health protection in tourism planning policy for implementation on sustainable future green health eco-tourism within efficient community-based healthcare infrastructures combined with agri-tourism ones and associated alternative types of tourism.

According to the roadmap presented in Fig. 1 for an integrated public health protection in tourism planning policy, proper investments by hotel owners should be made not only for staff training but also for stakeholders applying properly sustainable safe designs and clean technologies for environmental health protection in the post
covid-19 pandemic era as well as water resources project management ICTs utilities for sustainability and support of construction management solutions in emergencies like flood control, fire protection. Moreover, is needed support in renewable resources, cleaning with water-chlorine jets for sanitation, spa and beauty services, construction physical activities’ designs for recovery of elderly people and others that have been survived in the post pandemic covid-19 era, swimming pool facilities and other integrated sanitary designs. Furthermore, efficient designs can promote green health eco-tourism services like waste water units for water – sludge exploitation in agricultural cultivations, reclamation projects of demolition waste, soil upgrade, upgrade of other polluted inert materials for economic hotel’s roof building thermal insulation, effective irrigation designs for biofuels’ productivity, associated green geotechnical reclamation projects of brownfields, landscape upgrade supporting sports facilities for physical activity at unique travel destinations, environmental health design protection to support agri-tourism activities – promotion of local food products, drinks, proper use of clean technologies for sustainability and public health protection in supply chain of associated agri-tourism’s products.

Moreover, based on the roadmap presented in Fig. 1 the content of such project management ICTs utilities can be used also in proper useful visual e-learning reading portals in educational virtual reality tourism and web project management ICT utilities demonstrating travelling interactive attractions – associated training not only for tourists but also for staff at hotels and stakeholders supporting green health tourism in the green economy and associated innovative construction – sanitary designs, clean technologies for sustainable development and public health protection [7, 15].

In this way could be achieved sustainable solutions at hotel accommodations that could be used as marketing tools promoting at their web advertisement pages the associated offered facilities to tourists including public health protection services for safe travel destinations. Festivals, bazaars, safe enhanced experiences and activities for tourists should exist at eco-tourism, agri-tourism destinations supported by renewable resources, safe designs for public health protection, safe cultural travel ecological tourism destinations, clean technologies so to promote local traditional cultural products, gastronomic goods and social health eco-tourism services, sports tourism activities in clean environments without air pollution or other types of pollutants. New opportunities, jobs should be created based on green economy for associated alternative tourism facilities for unemployed population, immigrants, other social groups under particular risks not only that they need moral support due to their recent recovery from covid-19 pandemic disease but also to other ones that should be empowered for employment like immigrants or other social groups, business communities that they are in economic risks in the post covid-19 pandemic era.

4 Conclusions

The paper is framed within the current debate on the public health protection in tourism planning policy using proper project management ICTs and efficient web technologies for the creation of safe cultural travel ecological tourism destinations. Efficient water resources ICT’s management utilities as well as safe construction designs for
sustainable tourism facilities are necessary so as to identify particular investments that are demanded at eco-tourism, agri-tourism as unique travel destinations within an integrated tourism circular economy after covid-19. In this way applying efficient hotel sustainable construction designs, transportation designs, exploitation of waste emissions from hotels and landfill emissions a qualitative environmental health level will exist that could be presented at web pages of hotels including alternative types of tourism, associated services offered to tourists.

In this way tourists can search in the web for hotel accommodations that they support safe eco-tourism facilities with quality assurance in terms of public health protection so as to be achieved enhanced experiences at the destination, focusing on the visitors’ experience at cultural heritage sites. The creation of positive tourism experiences with new technologies is a strategic challenge for destination competitiveness and smart development related to integrated green health eco-tourism infrastructures combined with agri-tourism and alternative types of tourism for environmental - public health protection in the post covid-19 pandemic era. Safe relative tourism services that follow proper ISO standards should be presented at particular hotels’ web pages as a marketing tool for tourists so as to be promoted unique travel eco-tourism and agri-tourism destinations.

Moreover, travel visitors experience should become an important notion in cultural heritage marketing related to safe environments with associated educational tourism activities for stakeholders as well as qualitative traditional goods like biological foods, drinks, wines and other activities ones related to alternative types of tourism in health services and environmental protection. As its main contribution, the paper presents a model of modules with ICTs technology-enhanced cultural heritage experience, which follows the recommendation of cultural heritage researchers to consider a multi-stage perspective of the visit experience in relation to health services that promote a good healthy life. According to the presented roadmap based on an investment budget by a hotel owner investor the return of incomes goes to competitive services and goods to tourists. Tourists will have the opportunity to increase their knowledge around sustainable development solutions and unique activities in onsite experience for agri-tourism products, gastronomic goods, drinks etc.

The presented roadmap health policy in terms of technological enhancement is not limited to the actual encounter in the onsite experience stage, but is extended also to the pre- and post-stages of the whole visitors’ journey in relative actions for environmental protection and public health protection. The results could be useful for future adoptions of emerging environmental design technologies in future smart sustainable tourism infrastructures; innovative construction designs; simulations of tourists at interactive web virtual travel visits as a marketing promotional tool so as to learn tourists what will be the benefit for them at travel destinations at particular hotels with unique services and integrated investment of facilities of alternative types of eco-tourism, agri-tourism; proper project management ICTs utilities; water resources management in a climate change; construction management of reclamation works for soil protection; educational e-learning content; material for vocational education, training for hotel staff, stakeholders and operations management within sustainable designs. All the above should be taken into account for future sustainable integrated environmental management services in associated alternative types of tourism that promote circular economy
growth within tourism industry and integrated health eco-tourism, agri-tourism facilities for environmental - public health protection and sustainability in the post covid-19 pandemic era.

References

1. Artiola, J., Pepper, I.L., Brusseau, M.L.: Environmental Monitoring and Characterization. Publisher Elsevier Science & Technology Books, Amsterdam (2004)
2. Antonkiewicz, J., Kołodziej, B., Bielińska, E., Witkowicz, R., Tabor, S.: Using Jerusalem artichoke to extract heavy metals from municipal sewage sludge amended soil. Pol. J. Environ. Stud. 27(2), 513–527 (2018). https://doi.org/10.15244/pjes75200
3. Antonkiewicz, J., Kołodziej, B., Bielińska, E.: Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita. Int. J. Phytorem. 19(4), 309–318 (2017). https://doi.org/10.1080/15226514.2016.1225283
4. Babatsikou, F., Koliopoulos, T., Koutis, C.: Efficient design of a community health construction infrastructure and public health protection in emergencies. Rev. Clin. Pharmacol. Pharmacok. Int. Ed. 31(2), 79–84 (2017)
5. Buhalis, D., Amaranggana, A.: Smart tourism destinations. In: Xiang, Z., Tussyadiah, I. (eds.) Information and Communication Technologies in Tourism 2014, pp. 553–564. Springer, Heidelberg (2014)
6. Bookman, M.Z., Bookman, K.R.: Medical Tourism in Developing Countries. Palgrave Macmillan, New York (2007)
7. Brown, F., Hall, D.: Tourism in Peripheral Areas. Channel View Publications, Clevedon (2000)
8. Ciarkowska, K., Gambus, F., Antonkiewicz, J., Koliopoulos, T.: Polycyclic aromatic hydrocarbon and heavy metal contents in the urban soils in southern Poland. J. Chemosphere 229, 214–226 (2019). https://doi.org/10.1016/j.chemosphere.2019.04.209
9. Ciarkowska, K., Hanus-Fajerska, E., Gambuś, F., Muszyńska, E., Czech, T.: Phytostabilization of Zn-Pb ore flotation tainlings with Dianthus catusianorum and Biscutella laevigata after amending with mineral fertilizers or sewage sludge. J. Environ. Manage. 189, 75–83 (2017)
10. Das, B.M.: Geotechnical Engineering Handbook. J. Ross Publishing, Fort Lauderdale (2011)
11. Gretzel, U., Sigala, M., Xiang, Z., Koo, C.: Smart tourism: foundations and developments. Electron. Mark. 25, 179–188 (2015)
12. Gutentag, D.A.: Virtual reality: applications and implications for tourism. Tour. Manag. 31(5), 637–651 (2010)
13. Harris, R., Griffin, T., Williams, P.: Sustainable Tourism: A Global Perspective. Butterworth-Heinemann, Oxford (2002)
14. Huang, Y.C., Backman, S.J., Backman, K.F., Moore, D.: Exploring user acceptance of 3D virtual worlds in travel and tourism marketing. Tour. Manag. 36, 490–501 (2013)
15. Hrastinski, S.: Asynchronous and synchronous e-learning. EDUCAUSE J. 31(4), 51–55 (2008)
16. Huang, P.M., Li, Y., Sumner, M.E.: Handbook of Soil Sciences, Properties and Processes, 2nd edn. CRC Press, Boca Raton (2012)
17. Jung, T., Dieck, M.C., Lee, H., Chung, N.: Effects of virtual reality and augmented reality on visitor experiences in museum. In: Inversini, A., Schegg, R. (eds.) Information and Communication Technologies in Tourism 2016, pp. 621–635. Springer, Cham (2016)
18. Koo, C., Gretzel, U., Hunter, W.C., Chung, N.: The role of IT in tourism. Asia Pac. J. Inf. Syst. 25(1), 99–104 (2015)
19. Koliopoulos, T., Katsoni, V.: The innovative health tourism’s environmental management sustainable design facilities assessment capability. In: Smart Tourism as a Driver for Culture and Sustainability, Chap. 6. Springer (2019). https://doi.org/10.1007/978-3-030-03910-3_6. Edition 978-3-030-03909
20. Koliopoulos, T., Mebarek-Oudina, F., Kouloumbis, P., Ciarkowska, K., Antonkiewicz, J.: Soil materials for agricultural food protection and sustainability. In: Emerging Environmental Technologies and Health Protection, vol. 2, pp. 54–70. Telegeco, Greece (2019). https://www.telegeco.gr/2_5.pdf. ISSN 2623-4874, e-ISSN 2623-4882
21. Koliopoulos, T.K., Katsoni, V.: The innovative geo-informatics public health utilities for sustainable ecological tourism facilities. In: Katsoni, V., Spyriadis, T. (eds.) Cultural and Tourism Innovation in the Digital Era, pp. 649–659. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36342-0_50
22. Koliopoulos, T., Katsoni, V., Radu, C.: Information tools for health tourism’s sustainability and safe mobility. In: Koliopoulos, T., Sharma, S., Nerantzis, E. (eds.) Emerging Environmental Technologies and Health Protection, Chap. 10, vol. 1, pp. 138–146. Telegeco, Greece (2018). ISSN 2623-4874, e-ISSN 2623-4882. https://www.telegeco.gr/10.pdf
23. Koliopoulos, T., Theocharatos, S., Kouloumpis, P., Radu, C., Cristea, I.: A project management geo-informatics utility for health protection and sanitary drawings in green constructions - infrastructure works. JESR 24(4), 32–37 (2018)
24. Koliopoulos, T.: Environmental Energy Designs – EcoHealth Policy & Economy, Ecological Public Health – Sustainable Designs in Environmental Energy and Sanitary Engineering for Circular Economy. Lambert, Germany (2019)
25. Klinger, R.: Masonry Structural Design. McGraw-Hill, New York (2010)
26. Kuflik, T., Wecker, A.J., Lanir, J., Stock, O.: An integrative framework for extending the boundaries of the museum visit experience: linking the pre, during and post visit phases. Inf. Technol. Tour. 15(1), 17–47 (2015)
27. Laurajane, S., Natsuko, A.: Intangible Heritage. Taylor & Francis, Milton Park (2009)
28. Marty, P.F.: Museum websites and museum visitors: before and after the museum visit. Mus. Manag. Curatorship 22(4), 337–360 (2007)
29. McIntosh, A.J.: Into the tourist’s mind: understanding the value of the heritage experience. J. Travel Tour. Mark. 8(1), 41–64 (1999)
30. Neuhofre, B., Buhalis, D., Ladkin, A.: Smart technologies for personalized experiences: a case study in the hospitality domain. Electron. Mark. Int. J. Netw. Bus. 25(3), 243–254 (2015)
31. Niromand, H., Kassim, K.A.: Design and Construction of Soil Anchor Plates. Elsevier, Amsterdam (2016)
32. Okumus, F., Avci, U., Kilic, I., Walls, A.R.: Cultural tourism in Turkey: a missed opportunity. J. Hosp. Mark. Manag. 21(6), 638–658 (2012)
33. Pantano, E.: Virtual cultural heritage consumption: a 3D learning experience. Int. J. Technol. Enhanc. Learn. 3(5), 482–495 (2011)
34. Pearce, P.L., Moscardo, G., Ross, G.F.: Tourism Community Relationships. Pergamon Press, Oxford (1996)
35. Peczek, B.: Revitalizing tourism in small regional towns through folklore-driven slow tourism: the example of Matyó land, Hungary. Dosalgraves Multidiscip. J. 27, 94–119 (2016)
36. Prideaux, B., Cooper, M.: River Tourism. Cabi International (2009)
37. Reisman, D.: Health Tourism, Social Welfare through International Trade. Edward Elgar Publications, Cheltenham (2010)
38. Silberberg, T.: Cultural tourism and business opportunities for museums and heritage sites. Tour. Manag. 16, 361–365 (1995)
39. Smith, M., Puczko, L.: Health and Wellness Tourism. Elsevier, Amsterdam (2009)
40. Torres, R.M., Momsen, J.H.: Tourism and Agriculture, New Geographies of Consumption, Production and Rural Restructuring. Routledge, Abingdon (2011)
41. United Nations Environment Programme and World Tourism Organization: Tourism in the Green Economy – Background Report, UNWTO, Madrid (2012)
42. Wah, L.S.: Structural Precast Concrete Handbook, Building and Construction Authority, UK (2001)
43. Wang, D., Li, X.R., Li, Y.: China’s “smart tourism destination” initiative: a taste of the servicedominant logic. J. Dest. Mark. Manag. 2(2): 59–61, 31 (2013)
44. Want, R., Schilit, B.N., Jenson, S.: Enabling the Internet of Things. Computer 1, 28–35 (2015)