ON THE HYPERGRAPH CONNECTIVITY OF SKELETA OF POLYTOPES

DANIEL HATHCOCK AND JOSEPHINE YU

Abstract. We show that for every d-dimensional polytope, the hypergraph whose nodes are k-faces and whose hyperedges are $(k + 1)$-faces of the polytope is strongly $(d - k)$-vertex connected, for each $0 \leq k \leq d - 1$.

1. Introduction

Balinski proved that the edge graph of any d-dimensional polytope is d-vertex connected [Bal61]. That is, removing fewer than d of the vertices leaves the remaining vertices connected via edges. A number of natural generalizations of this result have since been investigated. Sallee found bounds for several different notions of connectivity of incidence graphs between r-faces and s-faces of a polytope [Sal67]. More recently, Athanasiadis considered the graphs $G_k(P)$ for a convex polytope P, whose nodes are the k-faces of P, and with two nodes adjacent if the corresponding k-faces are both contained in the same $(k + 1)$-face. Vertex connectivity of $G_k(P)$ is equivalent to one of the connectivity notions on the incidence graphs considered by Sallee. Athanasiadis described exactly the minimum vertex connectivity of $G_k(P)$ over all d-polytopes for every k and d [Ath09].

Let P be a convex d-dimensional polytope. We denote by $H_k(P)$ the hypergraph whose nodes are the k-faces of polytope P, and whose hyperedges correspond naturally to the $(k + 1)$-faces of P. We say a hypergraph is strongly α-vertex connected if removing fewer than α nodes along with all hyperedges incident to each removed node leaves the remaining nodes connected. Using tropical geometry, Maclagan and the second author showed that for every rational d-polytope, $H_k(P)$ is strongly $(d - k)$-vertex connected [MY19]. Our main result is generalizing this statement to all polytopes:

Theorem 1. For every d-polytope P, the hypergraph $H_k(P)$ is strongly $(d - k)$-vertex connected, for each $0 \leq k \leq d - 1$.

The result is tight. For simple polytopes, each k-face is contained in exactly $d - k$ of the $(k + 1)$-faces, so the hypergraph $H_k(P)$ cannot have higher connectivity.

2. Proof of the result

We say that a pure k-dimensional polyhedral complex is c-connected through codimension one if after removing fewer than c closed maximal faces, the remaining maximal faces are connected via paths through faces of dimension $k - 1$. That is, for any two remaining
maximal faces F, F', there remains a sequence $F = G_1, \ldots, G_\ell = F'$ of maximal faces such that for each i, $G_i \cap G_{i+1}$ is a face of dimension $k - 1$ not belonging to a removed face. The m-skeleton of a polytope Q is the polyhedral complex whose maximal faces are the m-dimensional faces of Q. Then Theorem 1 can be rephrased as the following equivalent form on the polar dual $Q = P^\Delta$.

Theorem 2. For every d-polytope Q, the $(d - k - 1)$-skeleton is $(d - k)$-connected through codimension one, for each $0 \leq k \leq d - 1$. Equivalently, the k-skeleton of Q is $(k + 1)$-connected through codimension one for each $0 \leq k \leq d - 1$.

We will need some lemmas before proceeding with the proof by induction on dimension.

Lemma 3. Let F, G, R be three distinct k-faces of a d-polytope Q, for some $1 \leq k \leq d - 1$. Then there is a hyperplane intersecting F and G and avoiding R. Moreover, the hyperplane can be chosen to avoid all vertices of Q.

Proof. Let $f \in F$ and $g \in G$ be relative interior points, and let L be the line through f and g. Let Q' be the smallest face of Q containing $F \cup G$. By convexity, $L \cap Q \subset Q'$ and L meets the boundary of Q' only at the two points f and g. In particular L does not meet R or any other face of dimension $\leq k$.

We may assume that Q is a d-dimensional polytope in \mathbb{R}^d. Let π be a corank one linear map from \mathbb{R}^d to \mathbb{R}^{d-1} such that the image of L is a point. Then the image $R' = \pi(R)$ does not contain $\pi(L)$, and each vertex v_1, \ldots, v_n of Q has $v_i = \pi(v_i) \neq \pi(L)$ since L does not contain any of the vertices.

Since R' is convex and does not contain $\pi(L)$, there is a hyperplane through $\pi(L)$ which does not meet R'. Since R' is compact, the set of normal vectors of such hyperplanes form a full dimensional open set in \mathbb{R}^{d-1}. (More precisely, it is the interior of the dual cone, and its negative, of the pointed cone generated by R' after a translation that sends $\pi(L)$ to the origin.) On the other hand, the condition that such a hyperplane contains each v'_i is a codimension one closed condition. Thus, as there are finitely many v'_i, the cone of such normal vectors restricted to those whose hyperplane does not contain any v'_i is non-empty. In particular, there is a hyperplane H' through $\pi(L)$ which does not meet R' or any of the v'_i. Its preimage $\pi^{-1}(H)$ is a desired hyperplane. \qed

Lemma 4. Let Q be a polytope and H a hyperplane intersecting Q but not containing any vertices of Q. The map $\phi : F \mapsto F \cap H$ is a poset isomorphism from the poset of faces of Q that meet H to the face poset of $Q \cap H$.

Proof. For any face F of Q which meets H, since H does not contain any vertices of F, F is not contained in H and H meets the relative interior of F, so $\dim(F \cap H) = \dim(F) - 1$. Moreover, $F \cap H$ is indeed a face of $Q \cap H$: any supporting hyperplane for F in Q is also a supporting hyperplane for $F \cap H$ in $Q \cap H$. On the other hand, for any face F' of $Q \cap H$, let $x \in F'$ be a relative interior point in F', and let F be the unique face of Q for which x is a relative interior point. Then x is also in the relative interior of $F \cap H$. Since F' and $F \cap H$ are two faces of $Q \cap H$ that meet in their relative interiors, we have $F \cap H = F'$. So ϕ is a surjective map between the desired sets. If $F \cap H = G \cap H$ for k-faces F, G meeting H, then F and G would have a common relative interior point, which implies $F = G$. Thus ϕ is injective. It is clear that ϕ preserves the inclusion relation. \qed
Proof of Theorem 2. We will use induction on k. The statement is trivial for $k = 0$, as we are not removing any faces, and the vertices of a polytope are connected through the empty face. The case when $k = 1$ is clear, as removing a single edge does not disconnect the vertex-edge graph of any polytope.

Suppose $2 \leq k \leq d - 1$. Let Q be a d-polytope and B be any set of k k-faces of Q to remove. We need to find a path between any two k-faces $F, G \notin B$, through codimension-one faces, which we will call ridge paths. Arbitrarily choose any $R \in B$. Lemma 3 gives a hyperplane H intersecting F and G, and avoiding R and vertices of Q. Let $Q' = Q \cap H$. Since H intersects F and G, $F' = F \cap H$ and $G' = G \cap H$ are two $(k - 1)$-faces of Q' by Lemma 4. Moreover, each face in $B \setminus \{R\}$ corresponds to at most one $(k - 1)$-dimensional face in Q'. Call these faces B'. As $|B'| \leq k - 1$, by induction there is a ridge path in Q' connecting F' to G' and avoiding each face in B'. Using Lemma 4, we can lift this path back up to a ridge path connecting F to G in Q avoiding B.

Acknowledgements
We thank Diane Maclagan for discussions and the referee for comments which helped improve the exposition. JY was partially supported by NSF-DMS grant #1855726.

References

[Ath09] Christos A Athanasiadis. On the graph connectivity of skeleta of convex polytopes. *Discrete & Computational Geometry*, 42(2):155–165, 2009.

[Bal61] Michel L Balinski. On the graph structure of convex polyhedra in n-space. *Pacific Journal of Mathematics*, 11(2):431–434, 1961.

[MY19] Diane Maclagan and Josephine Yu. Higher connectivity of tropicalizations. *arXiv preprint arXiv:1908.05988*, 2019.

[Sal67] George Thomas Sallee. Incidence graphs of convex polytopes. *Journal of Combinatorial Theory, 2*(4):466–506, 1967.

DEPARTMENT OF MATHEMATICAL SCIENCES, CARNEGIE MELLON UNIVERSITY, PITTSBURGH PA, US

Email address: dhathcoc@andrew.cmu.edu

SCHOOL OF MATHEMATICS, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA GA, US

Email address: jyu@math.gatech.edu