Short Report

Streptococcus pneumoniae early response genes to human lung epithelial cells

Xin-Ming Song*, Wayne Connor¹, Karsten Hokamp², Lorne A Babiuk³ and Andrew A Potter¹

Address: ¹Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada, ²Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland and ³University of Alberta, Edmonton, Alberta, T6G 2J9, Canada

Email: Xin-Ming Song* - xinming.song@usask.ca; Wayne Connor - wayne.connor@usask.ca; Karsten Hokamp - karsten_hokamp@sfu.ca; Lorne A Babiuk - lorne.babiuk@ualberta.ca; Andrew A Potter - andrew.potter@usask.ca

* Corresponding author

Published: 12 August 2008

BMC Research Notes 2008, 1:64 doi:10.1186/1756-0500-1-64

Received: 4 July 2008

Accepted: 12 August 2008

This article is available from: http://www.biomedcentral.com/1756-0500/1/64

© 2008 Song et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: *Streptococcus pneumoniae* infection starts from colonization of the host respiratory tract where interaction with host respiratory tract epithelial cells occurs. To investigate pneumococcal genes that are involved in the early stage of interaction with host epithelial cells, transcriptional responses of an encapsulated pathogenic pneumococcal strain TIGR4 upon exposure to human lung epithelial cells A549 for 0.5 h and 1 h time periods were investigated by using TIGR (JCVI) microarray technology. Gene expression changes were validated by quantitative real-time PCR (qRT-PCR) analysis.

Findings: We observed different transcriptional profiles at two incubation time periods in which most gene expressions were down-regulated at 0.5 h but up-regulated at 1 h. Many genes associated with ribonucleotide biosynthesis were down-regulated at both time points, whereas the genes associated with cell envelope, energy metabolism, transport and protein synthesis were mostly up-regulated at 1 h. Furthermore, these profiles were compared to the transcriptomes of a TIGR4-derived strain in response to human macrophages for the same time periods. We found one set of genes that exhibited similar expression changes upon exposure to both types of host cells, including cell envelope-associated *bgaA* (SP0648) and *nanA* (SP1693), and uncharacterized gene clusters such as SP1677–SP1680 and SP1688–SP1690.

Conclusion: These data indicate that at the early stage of interaction with host epithelial cells, a complex gene regulation and expression change occur in bacteria. Some of them might play an essential role during pathogen-host interactions and for the establishment of infection.

Findings

Background

As a major bacterial pathogen, *Streptococcus pneumoniae* infection starts from colonization of the human upper respiratory tract, causing respiratory tract diseases such as pneumonia, bronchitis, otitis media and sinusitis. Under certain circumstances, bacteria invade host cells and evade host immunity, causing systemic infections such as bacteremia, sepsis and meningitis. Therefore, the interaction of *S. pneumoniae* with host respiratory tract epithelial cells is
an initial step for infection. Many factors that contribute to the colonization and/or invasion of host epithelial cells have been characterized in *S. pneumoniae* (recently reviewed by: [1-3]). However, it is becoming obvious that multiple factors are involved in this complex process [4].

Microarray-based transcriptome studies have been used in many pathogens, investigating their transcriptional responses to host cells [5]. However, they were rarely performed at an early stage of interaction time period, a stage that might be critical for microbes to establish an infection. This is likely due to the difficulty of obtaining sufficient bacterial RNA from a mixture of bacteria and host cells. In *S. pneumoniae*, transcriptome studies were initiated by Orihuela et al. [6] in which an unencapsulated derivative of TIGR4 was investigated following exposure to human pharyngeal epithelial cells (Detroit 562) for 3 h. By using self-spotted pneumococcal oligonucleotide (oligo) microarrays we have also examined gene expression changes of an encapsulated serotype 3 clinical isolate and one unencapsulated avirulent laboratory strain following incubation with human lung epithelial cells (A549) for 1 h and 3 h, respectively [7]. Nevertheless, a lack of information exists regarding pneumococcal gene expression at an early stage of interaction with host cells. The strain-specific gene regulation features of *S. pneumoniae* [8] also prompted our research interests on other serotype strains.

In this study, we have developed a system which can be used to isolate enough bacterial RNA for microarray analysis from encapsulated pathogenic strains following incubation with A549 cells for a short time period. By using TIGR microarrays, we performed transcriptome studies on an encapsulated wild-type strain TIGR4. This study highlighted the gene transcriptional profiles in *S. pneumoniae* and revealed the potential roles of some target genes during pathogen-host interactions.

Methods

Incubation of bacteria and host cells

Culturing and incubation of pneumococcal strain TIGR4 (provided by Dr. Caroline A. Obert, St. Jude Children’s Research Hospital) and human lung epithelial cells A549 were performed as previously described [7] with minor modifications. Briefly, bacteria grown to early logarithmic-phase at OD$_{600}$ 0.3 were collected by centrifugation, re-suspended in antibiotic-free MEM complete medium supplemented with 1% fetal bovine serum (FBS), and incubated with host cells in T75 flasks at a multiplicity of infection 120:1. After incubation, non-adherent bacteria were removed by washing 3 times with 5 ml of antibiotic-free cell culture medium. Host cells were removed by incubation with a host cell lysis buffer containing guanidine thiocyanate (Sigma), β-mercaptoethanol, phenol and ethanol at room temperature for 10 min. Bacterial samples were collected by centrifugation for RNA isolation. Bacteria incubated with cell culture medium for different time points, treated with RNALater (Ambion), were collected as medium control samples.

Preparation of bacterial RNA

Isolation of bacterial RNA was performed with RiboPure™-Bacteria Kit (Ambion) or a modified method using RNeasy MiniKit (Qiagen) as previously described [7]. From each flask of cell infection, about 2–4 μg bacterial total RNA with less than 10% of eukaryotic RNA contamination could be generated. Medium control RNA samples at each incubation time point were generated by pooling RNAs isolated from 3 separate assays. Genomic DNA contamination was removed by the treatment with RNase-free of DNase I (Ambion).

Microarray experiment and analysis

TIGR (J. Craig Venter Institute) *S. pneumoniae* 70-mer oligo microarray (version 6), provided by the Pathogen Functional Genomics Resource Center (PFGRC), was used in this study. The cDNA synthesis, Cy-dye labelling, and microarray hybridization were carried out according to TIGR’s standard operating procedures (SOPs) [9]. This includes flagging of marker spots, background correction, printTip Loess normalization with Limma, and statistical analysis with Limma’s eBayes moderated t-test [10]. Gene expressions of fold change ≥ 2.0 (bacteria incubated with host cells vs. bacteria incubated with media) with statistical significance (p ≤ 0.05) were classified as being significantly changed. In this study, eight independent hybridizations, including four labelled in dye flips, using RNA samples isolated from eight separate assays were performed for each incubation time point.

Quantitative real-time PCR (qRT-PCR) analysis

The oligo primers used for qRT-PCR analysis (Table 1) were designed from *S. pneumoniae* TIGR4 genome sequences by using Clone Manager Suite 7 (Scientific & Educational Software) and synthesized by Invitrogen. The qRT-PCR reaction and analysis were performed as previously described [7]. For each gene, duplicate reactions were performed on the RNA samples isolated from at least two separate assays for each incubation time point.

Results and discussion

Transcriptional responses of S. pneumoniae to host epithelial cells

Microarray analysis revealed many gene expression changes following exposure to A549 cells (Table 2). At 0.5
h, most gene expressions were down-regulated (35 vs. 16) and a smaller number of genes changed (Fig. 1). At 1 h, more genes were changed and most of them were up-regulated (50 vs. 25) (Fig. 2). Furthermore, most of those changed genes were only defined at a certain incubation time period (Fig. 3). These data indicate divergent transcriptional profiles between 0.5 h and 1 h incubation time periods. Repressed transcriptional profiles at 0.5 h (Fig. 1) suggest that the interaction with human respiratory tract epithelial cells, a natural reservoir for \textit{S. pneumoniae}, might be a favourable situation for pneumococci. This is in contrast to the \textit{S. pneumoniae} transcriptomes to macrophages, where most genes that showed transcriptional changes at the early stage of interactions were up-regulated (Song XM, Connor W, Hokamp K, Babiuk LA, Potter AA: Transcriptome studies on \textit{Streptococcus pneumoniae}, illustration of early response genes to THP-1 human macrophages, submitted). When incubated for 1 h, bacterial survival, growth and virulence mechanisms appear to be activated, apparent from an induced expression of genes in cell envelope, energy metabolism, transport, protein synthesis, and hypothetical proteins (Fig. 2).

We also observed a common change between two incubation time points, that more than 10 purine and pyrimidine ribonucleotide biosynthesis genes, including purine and pyrimidine regulatory genes purR and pyrR, were consistently down-regulated (Table 2; Figs. 1, 2). The roles of ribonucleotide biosynthesis and their gene regulation mechanism in \textit{S. pneumoniae} are largely unknown. However, down-regulation of these genes in pneumococci appears to occur only at an early stage of interaction with host epithelial cells, but not at 3 h [6,7]. It also might be specific to the pneumococcal strains and the types of host cells because most of those ribonucleotide biosynthesis genes were unchanged in a serotype 3 strain [7] or when the TIGR4-derived strain was exposed to the host macrophages (Song XM, Connor W, Hokamp K, Babiuk LA, Potter AA: Transcriptome studies on \textit{Streptococcus pneumoniae}, illustration of early response genes to THP-1 human macrophages, submitted). Perhaps this is the shift of bacteria to parasitism enabling the uptake of substrates from the host cells [11], or the indication of metabolic changes in different pneumococcal strains in different host environment.

Table 1: Oligonucleotide primers used for qRT-PCR analysis
Gene name

purH
strH
cbpI
nrrD
caps4A
purR
strH
gyrA
pyrR
strH
strH
strH
nanA
purR

* Obtained from [7].
Table 2: Microarray identified genes in pneumococcal strain TIGR4 upon exposure to A549 cells for 0.5 h and 1 h time periods

Function/gene name	Protein	TIGR4 genome acc. No.	Incubation time
		0.5 h	1 h
Cell envelope			
cbpI	choline binding protein I	SP0069	2.8
cps4A	capsular polysaccharide biosynthesis protein Cps4A	SP0346	2.9
cps4B	capsular polysaccharide biosynthesis protein Cps4B	SP0347	2.0
cps4C	capsular polysaccharide biosynthesis protein Cps4C	SP0348	3.3
cps4E	capsular polysaccharide biosynthesis protein Cps4E	SP0350	2.9
bgaA	l-galactosidase	SP0648	17.0
nanA	neuraminidase A, authentic frameshift	SP1693	16.5
Energy metabolism			
agoS	sugar isomerase domain protein AgaS	SP0065	5.6
pyk	pyruvate kinase	SP0897	-2.7
glgA	glycogen synthase	SP1124	3.8
zwf	glucose-6-phosphate 1-dehydrogenase	SP1243	-2.7
scrB	sucrose-6-phosphate hydrodrolase	SP1724	3.0
galT	galactose-1-phosphate uridylyltransferase	SP1852	2.7
galK	galactokinase	SP1853	2.3
recP	transketolase	SP2030	-3.6
arcA	arginine deiminase	SP2148	4.6
gplK	glycerol kinase	SP2186	3.0
Hypothetical proteins			
conserved hypothetical protein	SP0024	-2.6	
hypothetical protein	SP0026	-2.3	
hypothetical protein	SP0052	-3.5	
hypothetical protein	SP0067	2.4	
conserv hypothetical protein	SP0095	-2.4	
hypothetical protein	SP0159	-2.3	
hypothetical protein	SP0190	2.3	
conserv hypothetical protein	SP0203	-2.5	
conserv hypothetical protein	SP0207	-2.1	
conserv hypothetical protein	SP0288	-4.2	
conserv hypothetical protein	SP0742	-2.9	
conserv hypothetical protein	SP0951	2.4	
conserv hypothetical protein	SP1003	2.1	
hypothetical protein	SP1049	2.0	
hypothetical protein	SP1059	4.4	
conserv hypothetical protein	SP1174	2.4	
hypothetical protein	SP1198	2.7	
hypothetical protein	SP1199	2.9	
conserv hypothetical protein	SP1601	2.4	
hypothetical protein	SP1677	10.3	
hypothetical protein	SP1678	2.9	
hypothetical protein	SP1679	4.6	
conserv hypothetical protein	SP1680	5.3	
hypothetical protein	SP2183	2.7	
Others			
bacteriocin, putative	SP0109	2.3	
lacC	lactose phosphotransferase system repressor, degenerate	SP0169	2.2
dihydropterone synthase	SP0289	-2.2	
acpP	acyl carrier protein	SP0418	-2.0
fabF	3-oxoacyl-(acyl-carrier-protein) synthase II	SP0422	-2.4
accD	acetyl-CoA carboxylase, carboxyl transferase subunit beta	SP0426	-2.4
accA	acetyl-CoA carboxylase, carboxyl transferase subunit alpha	SP0427	-3.4
Table 2: Microarray identified genes in pneumococcal strain TIGR4 upon exposure to A549 cells for 0.5 h and 1 h time periods

Gene	Description	Symbol/Number	Log2 Ratio
ilvB	Acetolactate synthase, large subunit, biosynthetic type	SP0445	-2.8
zmpB	Zinc metalloprotease ZmpB	SP0664	-2.1
ilvE	Branched-chain amino acid aminotransferase	SP0856	-2.0
preprotein translocase, SecG subunit, putative	SP0974	2.5	
asd	Aspartate-semialdehyde dehydrogenase	SP1013	-2.0
bta	Bacterocin transport accessory protein	SP1499	-2.7
	Transcriptional regulator, MerR family	SP1856	2.0
groEL	Chaperonin, 60 kDa	SP1906	-2.4

Protein synthesis

Gene	Description	Symbol/Number	Log2 Ratio
rpsD	Ribosomal protein S4	SP0085	2.7
rpsJ	Ribosomal protein S10	SP0208	4.1
rplW	Ribosomal protein L23	SP0211	2.9
rpsC	Ribosomal protein S3	SP0215	2.0
infA	Translation initiation factor IF-1	SP0232	2.4
valS	Valyl-tRNA synthetase	SP0568	-2.1
rplK	Ribosomal protein L1 I	SP0630	2.5
infC	Translation initiation factor IF-3	SP0959	2.5
rpsR	Ribosomal protein S18	SP1539	2.8
rpsF	Ribosomal protein S6	SP1541	2.9
rpmN	Ribosomal protein L34	SP1993	2.4
rpmG	Ribosomal protein L33	SP2135	2.1
yfIA	Ribosomal subunit interface protein	SP2206	-3.9

Purine and pyrimidine ribonucleotide biosynthesis

Gene	Description	Symbol/Number	Log2 Ratio
purA	Adenylosuccinate synthetase	SP0019	-2.5
purC	Phosphoribosylaminomimidazole-succinocarboxamide synthase	SP0044	-5.1
purH	Phosphoribosylaminomimidazolecarboxamide formyltransferase-IMP cyclohydrolase	SP0050	-15.3
purE	Phosphoribosylaminomimidazole carboxylase, catalytic subunit	SP0053	-6.4
purK	Phosphoribosylaminomimidazole carboxylase, ATPase subunit	SP0054	-2.4
nrdD	Anaerobic ribonucleoside-triphosphate reductase	SP0202	-4.4
nrdG	Anaerobic ribonucleoside-triphosphate reductase activating protein	SP0205	-3.4
thyA	Thymidylate synthase	SP0669	-2.2
pyrK	Dihydroorotate dehydrogenase, electron transfer subunit	SP0963	-3.6
nrdH	NrdH-redoxin	SP1178	-2.1
carB	Carbamoyl-phosphate synthase, large subunit	SP1275	-4.2
pyrR	Pyrimidine operon regulatory protein	SP1278	-2.1
guaA	GMP synthase	SP1445	-2.4
purR	Pur operon repressor	SP1979	-2.7

Transport

Gene	Description	Symbol/Number	Log2 Ratio
PTS system, II A component		SP0064	2.2
PTS system, mannose-specific IID component		SP0282	-3.7
xanthine-uracil permease family protein		SP0287	-8.4
O-antigen transporter RibX, putative		SP0356	2.5
PTS system, IIC component, putative		SP0647	4.3
Sugar ABC transporter, ATP-binding protein		SP0846	-2.1
ABC transporter, permease protein		SP1688	5.3
ABC transporter, permease protein		SP1689	2.8
ABC transporter, substrate-binding protein		SP1690	2.1
msmE	Sugar ABC transporter, sugar-binding protein	SP1897	2.1
molD	maltodextrin ABC transporter, permease protein	SP2110	2.6

Unknown function

Gene	Description	Symbol/Number	Log2 Ratio
vanZ	Protein, putative	SP0049	-2.9
ACT	Domain protein	SP0238	-2.1
HIT	Family protein	SP0521	-2.4
gid	Gid protein	SP0943	-2.2
flavoprotein		SP1231	-2.0
usp4S	Secreted 45 kd protein	SP2216	2.1

a genes that are also involved in pathogenesis according to TIGR genome annotation
Microarray data have been deposited in the ArrayExpress microarray database http://www.ebi.ac.uk/arrayexpress under accession No. E-FPMI-15.

Microarray data validation
To confirm gene expression changes identified in microarray analysis, we performed qRT-PCR analysis on 16 selected genes at different incubation time point, most of them associated with cell envelope, ribonucleotide biosynthesis, SP1677-SP1680 and SP1688-SP1690 gene clusters. Except for the unchanged SP1680 at 0.5 h, all the other gene expressions changed in accordance to the microarray data, but at a greater average fold change in the qRT-PCR analysis (Figs. 4, 5). Expression change of SP0057 at 1 h was only obtained from qRT-PCR assay because the strain-specific oligo probes were absent on the microarrays (Fig. 5).

Common response genes to host cells
In a separate transcriptome study, we have investigated gene expression changes of a TIGR4-derived unencapsulated strain following incubation with human THP-1 derived macrophages for different time points (0.5 h, 1 h and 3 h) (Song XM, Connor W, Hokamp K, Babiuk LA, Potter AA: Transcriptome studies on Streptococcus pneumoniae, illustration of early response genes to THP-1 human...
The exoglycosidase family genes

In *S. pneumoniae*, the *bgaA*-encoded β-galactosidase (BgaA) and the *nanA*-encoded neuraminidase (NanA) belong to a family of exoglycosidases exposed on the bacterial surface. Studies have demonstrated that both enzymes, especially NanA, are involved in adherence to host respiratory tract epithelial cells, possibly by clearing host cell surface structures and secreted components to enhance pathogen-host interactions [12-15]. These reports demonstrated the importance of *S. pneumoniae* to deglycosylate human targets during colonization and/or pathogenesis.

In this study, expression of *bgaA* (SP0648) and *nanA* (SP1693) was highly induced when incubated with A549 cells for 1 h in both microarray and qRT-PCR analyses (Table 2; Fig. 4). Further qRT-PCR assay revealed an unchanged expression of *strH* (SP0057) (Fig. 5), correlated to the previous observation that StrH was not involved in the adherence [15]. The enhanced expression of *bgaA* and *nanA* was also observed in a TIGR4-derived strain when exposed to human macrophages for 0.5 h and 1 h time periods (Table 3). It suggests that both *bgaA* and *nanA* belong to a family of conserved early response genes. Clearing host cell surface components and accessing to the host cells are a priority for bacteria at the early stage of pathogen-host interactions.

Other genes

The *cbpi* (SP0069), encoding choline binding protein I, was also up-regulated in expression (Table 2; Fig. 4). The choline binding proteins (CBPs) are a family of surface proteins, many of them are involved in colonization of nasopharynx [16]. However, *cbpi* was the only CBP gene that was identified in this study. The function of CbpI is still unclear but its crystal structure has been solved [17]. Whether it is important in colonization, most CBPs might not be required at the early stage of interaction with host epithelial cells.

Because of strain-specific gene regulations in *S. pneumoniae* [7,8], different microarray technologies and experimental conditions, some potential gene targets might be missed in our transcriptome studies. For example, the *pspC* (SP1417) gene was reported to be up-regulated in a serotype 2 strain D39 within 1 h post-infection in mice [18]. However, expression change of *pspC* was not identified in our assays, despite of a degenerated PspC carried by the TIGR4 genome (TIGR). Another unchanged gene cluster was the *rlrA* pathogenicity islet genes (SP0461-SP0468) encoding pneumococcal pili [19,20]. All of these TIGR4-specific oligo probes were carried by the TIGR microarrays, and they were clearly identified in our studies of the regulation mechanisms for the pilus locus genes (Song XM, Connor W, Hokamp K, Babiuk LA, Potter AA: The growth phase-dependent regulation of the pilus locus genes by two-component system TCS08 in *Streptococcus pneumoniae*, submitted). We could therefore exclude the technical concern for these genes in our microarray analysis. Earlier studies suggested that pneumococcal pili were mainly involved in the host cell adhesion [21]. Recently, Rosch, et al. defined the restricted functions of pili in invasion of host lung epithelial cells [22], suggesting its roles at a late stage of pathogen-host interactions. If this is the...
Table 3: Common response genes to both A549 cells and THP-1 derived macrophages at 0.5 h and 1 h incubation time periods

Function/gene name	Protein	TIGR4 genome acc. No.	A549^a	THP-1^b		
Cell envelope			0.5 h	1 h	0.5 h	1 h
cbpI^c			2.8	8.4		
bgA^c			17.0	26.9		
nanA^c			16.5	3.9	47.1	
Energy metabolism						
agoS^c			5.6	10.3		
gga^a			3.8	5.4		
scrb^b			2.7	4.9	6.0	
gatT			2.7	2.6	4.4	
goIK			2.3	2.8		
recP			3.0	4.1		
Hypothetical proteins						
hypothetical protein			-3.5	-5.6	-2.6	-3.5
hypothetical protein			2.4	2.1		
conserved hypothetical protein			-2.3	-2.0		
conserved hypothetical protein			-2.9	-6.5	-3.2	
conserved hypothetical protein			2.1	2.1	3.4	
hypothetical protein			4.4	56.3	16.0	
conserved hypothetical protein			2.4	2.7		
hypothetical protein			2.7	2.6	2.8	
hypothetical protein			2.9	2.0	2.2	
hypothetical protein			2.9	2.0	2.2	
hypothetical protein			10.3	14.6		
hypothetical protein			2.9	6.1	6.9	
hypothetical protein			4.6	9.6	6.6	
conserved hypothetical protein			5.3	11.5	2.0	14.6
Others						
lactose phosphotransferase system repressor, degenerate		SP0169	2.2	15.4	6.0	
acpP			-2.0	-2.3		
fabF^b			-2.4	-5.1		
bta^c						
Protein synthesis						
rpsD^c			2.7	2.4		
rpsJ^c			4.1	2.9		
rpsC^c			2.0	2.2		
infC^c			2.5	2.2	2.3	
rpmI^c			3.9	2.2		
rpsF^c			2.9	3.0	2.2	
yflA^c			-3.9	-2.6	-2.5	
Purine and pyrimidine ribonucleotide biosynthesis						
purC^c			-5.1	-4.7	-2.4	-7.8
purH^c			-15.3	-4.1	-4.3	-5.5
purE^c			-6.4	-8.5	-4.2	
corB^c			-4.2	-4.2		
pyrR^c			-2.1	-7.8	-2.3	-4.4
Transport						
PTS system, IIA component			2.2	3.4	6.5	
PTS system, mannose-specific IID component		SP0282	-3.7	-2.4		
Acknowledgements

We thank Dr. Caroline A. Obert, St. Jude Children’s Research Hospital, Memphis, for providing S. pneumoniae strain TIGR4.

This work was gratefully supported by the Saskatchewan Health Research Foundation (SHRF) and the Delfari Bridging Fund of the University of Saskatchewan. Microarray slides and experimental protocols were kindly provided by the Pathogen Functional Genomics Resource Center (PFGRC) through NIAID. We also acknowledge the support of Genome Canada, Genome BC and Genome Prairie for the "Pathogenomics of Invasive Immunity" research program.

Published with permission of the Director of VIDO as journal series No. 489

Table 3: Common response genes to both A549 cells and THP-1 derived macrophages at 0.5 h and 1 h incubation time periods

Gene Name	Log2 Ratio	Time 0.5 h	Time 1 h	
xanthine-uracil permease family	SP0287	-8.4	-5.3	-2.3
PTS system, IIIC component, putative	SP0647	4.3	3.5	2.2
ABC transporter, permease protein	SP1688	5.3	2.4	1.3
ABC transporter, permease protein	SP1689	2.8	3.7	18.9
ABC transporter, substrate-binding protein	SP1690	2.1	1.9	21.6
msmE	SP1897	2.1	4.1	
molD	SP2110	2.6	2.1	6.4

Unknown function

Gene Name	Log2 Ratio
vanZ protein, putative	SP0049
ACT domain protein	SP0238
HIT family protein	SP0521
flavoprotein	SP1231

References

1. Bergmann S, Hammerschmidt S: Versatility of pneumococcal surface proteins. Microbiology 2006, 152(2):295-303.
2. Hammerschmidt S: Adherence molecules of pathogenic pneumococci. Curr Opin Microbiol 2006, 9(1):12-20.
3. Mitchell TJ: Streptococcus pneumoniae: infection, inflammation, and disease. Adv Exp Med Biol 2006, 582:111-124.
4. Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Muller E, Rohde M: Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 2005, 73(8):4653-4667.
5. Waddell SJ, Butcher PD, Stoker NG: RNA profiling in host-pathogen interactions. Curr Opin Microbiol 2007, 10(3):297-302.
6. Orihuela CJ, Radin JN, Sublett JE, Gao G, Kaushal D, Tuomanen E: Microarray analysis of pneumococcal gene expression during invasive disease. Infect Immun 2004, 72(10):5582-5596.
7. Song XM, Connor W, Jalal S, Hokiamp K, Potter AA: Microarray analysis of Streptococcus pneumoniae gene expression changes to human lung epithelial cells. Can J Microbiol 2008, 54:189-200.
8. Hendriksen WT, Silva N, Bootsma Hj, Blue CE, Paterson GK, Kerr AR, de Jong A, Kuipers OP, Hermans PW, Mitchell TJ: Regulation of gene expression in Streptococcus pneumoniae by response regulator 09 is strain dependent. J Bacteriol 2007, 189(4):1382-1389.
9. Hokiamp K, Roche FM, Acab M, Rousseau ME, Koo B, Goode D, Aeschliman D, Bryan J, Babiuk LA, Hancock RE, Brinkman FS: ArrayPipe: a flexible processing pipeline for microarray data. Nucleic Acids Res 2004, 32(Web Server issue):W457-9.
10. Smyth GK: Limma: linear models for microarray data. In Bioinformatics and computational biology solutions using R and bioconductor Edited by: Gentleman RCVDSRHW, Springer, New York ; 2005:397420.
11. Cecconi KR, Gorton TS, Geary SJ: Transcriptional responses of Mycoplasma gallisepticum strain R in association with eukaryotic cells. J Bacteriol 2007, 189(16):5803-5807.
12. Orihuela CJ, Gao G, Francis KP, Yu J, Tuomanen E: Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J Infect Dis 2004, 190(9):1661-1669.
13. Manco S, Hernon F, Yesilkaya H, Paton JC, Andrew PW, Kadioglu A: Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect Immun 2006, 74(7):4014-4020.
14. Tong HH, Blue LE, James MA, DeMaria TF: Evaluation of the virulence of a Streptococcus pneumoniae neuraminidase-defi-
cient mutant in nasopharyngeal colonization and development of otitis media in the chinchilla model. Infect Immun 2000, 68(2):921–924.

15. King SJ, Huppe KR, Weiser JN: Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol 2006, 59(3):961–974.

16. Gosink KK, Mann ER, Guglielmo C, Tuomanen EJ, Masure HR: Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect Immun 2000, 68(10):5690–5695.

17. Paterson NG, Riboldi-Tunicliffe A, Mitchell TJ, Isaacs NW: Overexpression, purification and crystallization of a choline-binding protein Cbpl from Streptococcus pneumoniae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006, 62(Pt 7):672–675.

18. Quin LR, Moore QC 3rd, Thornton JA, McDaniel LS: Peritoneal challenge modulates expression of pneumococcal surface protein C during bacteremia in mice. Infect Immun 2008, 76(3):1122–1127.

19. Nelson AL, Ries J, Bagnoli F, Dahlberg S, Falkier S, Rounioja S, Tschop J, Morfeldt E, Ferlenghi I, Hilleringmann M, Holden DW, Rappuoli R, Normark S, Barocchi MA, Henriques-Normark B: RrgA is a pilus-associated adhesin in Streptococcus pneumoniae. Mol Microbiol 2006, 66(2):329–340.

20. Hilleringmann M, Giusti F, Baudner BC, Massignani V, Covacci A, Rappuoli R, Barocchi MA, Ferlenghi I: Pneumococcal pili are composed of protofilaments exposing adhesive clusters of RrgA. PLoS Pathog 2008, 4(3):e1000026.

21. Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B, Kanth A, Dahlberg S, Fernebro J, Moschioni M, Massignani V, Hultenby K, Taddei AR, Beiter K, Wartha F, von Euler A, Covacci A, Holden DW, Normark S, Rappuoli R, Henriques-Normark B: A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci U S A 2006, 103(8):2857–2862.

22. Rosch JW, Mann B, Thornton J, Sublett J, Tuomanen E: Convergence of Regulatory Networks on the Pilus Locus of Streptococcus pneumoniae. Infect Immun 2008.