SIMPLE FIXATION OF DISPLACED LATERAL END CLAVICLE FRACTURE BY TBW
Neelakrishnan¹, P. S. Balamurugavel², V. Barathiselvan³, S. Rajesh⁴

ABSTRACT: BACKGROUND: Displaced lateral end clavicle fractures have high incidence of delayed union or non-union, hence several authors suggested operative management for these fractures. Many surgical techniques are available. But adequate reduction and minimal soft tissue dissection during implant placement and early removal is ideal for these fractures. METHODS: 15 patients with displaced lateral end clavicle fractures were included in our study in Rajah Muthiah Medical College & Hospital, Chidambaram. The fracture were reduced by open reduction and fixed with 2 transacromial K-wires and additional TBW with SS wire. Implant removal was done at an average of six weeks. RESULTS: All 15 fractures united. The mean average age was 27.5 years ranging from 20 years to 55 years. The mean average time of union was 7.8 weeks ranging from 6 weeks to 11 weeks. All patients regained near normal range of motion and 10 patients had excellent constant murley score, 3 had good and 2 had fair results. In our study two patients had K-wire back out without loss of reduction. CONCLUSION: The clinico-radiological outcome of displaced lateral end clavicle fractures treated by transacromial K-wires with TBW is encouraging and comparable with earlier studies. KEYWORDS: Lateral end clavicle fractures, transacromian, K-wires, tension band wiring (TBW), Stainless Steel wire (SS wire).

INTRODUCTION: Clavicle fractures are one of the most common fractures encountered in orthopaedic practice. Previous epidemiologic studies suggest that clavicle fractures represent up to 5% of all adult fractures and up to 44% of all shoulder girdle fractures.[2-4] The incidence of injury also is characterized by bimodal age distribution with peak under age 40yrs. With respect to the incidence of different fracture types, fractures of middle third of the clavicle are most common accounting for 69% to 81%. The second most common type is fracture of lateral or distal third of clavicle, accounting for 16% to 30%. Less than 3% of all clavicle fractures are fractures of medial or proximal third of the clavicle.[2-4]

Neer in 1968 classified distal clavicle fractures according to the location in relation to the coraco-clavicular ligaments.

Type 1 fractures are stable fractures are stable fractures located lateral to coraco-clavicular ligaments.

Type 2 fractures are complex unstable fracture dis location which leaves the distal end of clavicle and the AC joint untouched, separating the clavicle from the underlying coraco-clavicular ligament complex through a vertical or oblique fracture line.

Type 3 fractures are intra-articular fractures of AC joint

The deforming forces acting in the lateral end clavicle makes the lateral end mobile and prone for non-union.
There are studies which show high rate of delayed union and non-union in displaced lateral end clavicle (Neer's Type 2 fractures).[1,7,15]

Several authors recommended operative treatment for displaced lateral end clavicle fractures and reported good clinical and radiological outcomes with few complications.

Many surgical methods have been introduced for treatment of displaced lateral end clavicle fractures like K-wire fixation, TBW, hook plate, Bosworth coracoclavicular screw, knowels pin etc. But still there is no gold standard treatment for displaced lateral end clavicle fractures.

In view of these considerations, the present study is of Surgical Management of Displaced Lateral End Clavicle Fractures with minimal soft tissue dissection using Transacromial K-wires and Tension band wiring.

MATERIALS AND METHODS: This study was conducted in RAJAH MUTHIAH MEDICAL COLLEGE AND HOSPITAL from May 2012 to June 2014. During this period 15 cases of adult patients with displaced lateral end clavicle fractures were included.

Pre-operative assessment was made by X-ray AP view for all patients. All the patients were operated in supine position. A small incision of about 3cms was made antero-superiorly centering over the fracture site and exposing the acromian process. Cautery dissection was carried out to minimize bleeding from the subcutaneous plane onwards. Every care was taken not to disturb acromioclavicular ligaments.

The fracture site was visualized and the hematoma was curetted and washed. The fracture was reduced and fixed with two 1.8mm trans-acromial Krischner wires and the reduction was checked with an image intensifier. An anteroposterior drill hole was made with 2mm drill bit on proximal part of the fracture. A stainless steel wire was passed through the hole. The SS wire was tied in a figure of eight manner keeping the knot superiorly around the K-wires. The K-wires were bent and buried inside the skin. The wound was irrigated with saline and closed in layers over drain.

RESULTS: All 15 fractures united. The mean average age was 27.5 years ranging from 20 years to 55 years. The mean average time of union was 7.8 weeks ranging from 6 weeks to 11 weeks. All patients regained near normal range of motion and 10 patients had excellent constant murley score, 3 had good and 2 had fair results. In our study two patients had K-wire back out without loss of reduction, which is managed by early implant removal. No wound related complications like infection was noted.

DISCUSSION: Clavicle fractures are one of the most common fractures encountered in orthopaedic practice.

Previous epidemiologic studies suggest that clavicle fractures represent up to 5% of all adult fractures and up to 44% of all shoulder girdle fractures.[2-4]

The incidence of injury also is characterized by bimodal age distribution with peak under age 40yrs.

With respect to the incidence of different fracture types, fractures of middle third of the clavicle are most common accounting for 69% to 81%. The second most common type is fracture of lateral or distal third of clavicle, accounting for 16% to 30%. Less than 3% of all clavicle fractures are fractures of medial or proximal third of the clavicle.[2-4]
Neer in 1968 classified distal clavicle fractures according to the location in relation to the coraco-clavicular ligaments.[7]

Neer original series of clavicle fractures observed unusually high rate of non-union or delayed union in displaced lateral third clavicle.[1]

The deforming forces and the rotational movements acting in the clavicle is the reason for the displacement of the fragments which is the reason for delayed or non-union.

So Neer suggested operative stabilization for displaced lateral end clavicle. He showed successful results with K-wire fixation with few complications.[7]

Consequently, various surgical modalities have been advocated with various techniques of fixation with better outcomes. But still there is no gold standard method of fixation for displaced lateral end clavicle. Gaining control over such rotational movement with some sort of semi rigid to rigid fixation would prevent non-union.

Coracoclavicular reconstruction is generally not required as the ligaments are intact and attached to the distal clavicle.

Anatomical alignment and prevention of rotation will suffice for such fractures to unite. In view of these consideration our method is a minimally invasive with 2 transacromial K-wires and tension band wiring with SS wire, where tensile force is converted into compressive force.[30]

We routinely remove Krischner wires before full active mobilization of the shoulder around six weeks by the time fracture become sticky and due to its intramembranosous nature of ossification, union takes place if a conductive environment is provided. So early implant removal eliminates the complications like wire breakage which is compared to Laxman Rijal et al.[30]

With our method, minimal dissection is required to reduce the fracture. Transacromial K-wires are passed under image intensifier guidance to hold the fracture in an anatomical position and compression at fracture site is given by tension band wiring. We keep the limb supported in an arm pouch for six weeks to make the patient aware that their shoulder needs protection and secondly, the stress exerted by hanging the limb is guarded. Both these facts minimize undue stress at the healing bone. Results of our method of fixation are encouraging with this small cohort study of 15 patients and comparable with other studies.

Neer reported 100% union with Krischner wire fixation and suggested displaced fractures should be stabilized for better results.[7]

Kona et al reported 52.6% success rate with Krischner wires and reported complications like loosening of K-wires, migration, undue stress during active mobilization, back out, and breakage.[11] Stabilization with a clavicular hook plate has yielded a success rate of up to 88% and 12% nonunion in a series of 18 patients by Tambe et al.[37]

Acromian osteolysis has also been reported in a 30% with hook plates. However, Lee et al[38] described the advantageous role of hook plate fixation in comparative study between role of hook plate and tension band. Anderson et al[40] reported 94% union rate with pre contoured superior locking plate for displaced distal clavicle fractures. Peri-implant fracture has been reported in one case and infected non-union in the other.

Levy[22] described single figure eight suture fixation with PDS suture with a success rate of 100%. Though alignment is secured, rotational stress during mobilization may awaken suture fixation. Their technique has been modified by Badhe et al,[27] that consists of two figure-eight sutures with non-absorbable polyester.
Our method of fixation allows stable fixation with two transacromial Krischner wires and figure of eight suturing with SS wire which provides compression at the fracture site. Early removal of implant allows active mobilization without the fear of implant related complications. Though we encountered two cases of K-wire back out around 4 weeks without the loss of reduction, we removed the K-wires at 4th week and supported the limb in arm pouch and the union occurred around 11th week for that two cases.

In our study males are more commonly affected (87%) than female which is compared to Laxman Rijal et al[30] and Chi-Chuan Wu.[31]

In our study 4 cases had associated rib fracture (27%) which is compared to Faisal Qureshi et al who showed 10% associated rib fractures.[40]

In our study most common mode of injury is fall with an outstretched hand (53%), RTA (27%) which is compared to Robinson who showed simple fall (25%), RTA (29%).[41]

In our study we achieved 95% union in all cases which is compared to Neer who reported 100% union with K-wires,[7] Kona et al showed 52.6% union[11] and Yih-Shiunn Lee et al showed 95% union with tension band wires.[28]

Age	No. of cases	Percentage
0-20	1	7
21-40	11	73
41-60	3	20

Age distribution

Nature	No. of cases	Percentage
Fall on an outstretched hand	8	53
RTA	4	27
Fall on shoulder	3	20

Mode of injury

RESULTS	No. of cases	Percentage
Excellent	10	66
Good	3	20
Fair	2	14
Poor	nil	Nil

Constant murley score
CASE ILLUSTRATIONS:

Case 1: Pre-op x-ray 3 weeks follow up

Case 2: Pre-op x-ray 3 weeks post-op

6 weeks follow up

6 weeks post-op
CONCLUSION: Lateral end clavicle fractures are the second most common clavicle fractures encountered in orthopaedics practice which accounts 16%to 30%. The deforming forces and the rotational movements acting in the clavicle is the reason for the displacement of the fragments which is the reason for delayed or non-union. Hence the displaced lateral end clavicle fractures necessitate fixation. Anatomical alignment and prevention of rotation will suffice for such fractures to unite.

Our method is a minimally invasive with 2 transacromial K-wires and tension band wiring with SS wire, where tensile force is converted into compressive force which helps in fracture union. Full active mobilization is not allowed with the implants. Early implant removal as soon as there is a radiological signs of union may minimize implant related complications.

To conclude the clinical and radiological outcome with two Transacromial K-wires and Tension band wiring with SS wire for displaced Neer Type 2 lateral end clavicle fractures were encouraging.

REFERENCES:
1. Neer CS. Nonunion of the clavicle. JAMA 1972; 1960: 1006-11.
2. Neer CS. Fractures of the clavicle. In: Rockwood CA Jr, Green DP, editors. Fractures in adults. 2nd ed. Philadelphia: JB Lippincot Company 1984. p. 707-13.
3. Postachini F, Gummina, De Santis P et al. Epidemiology of clavicle fractures. Clin Orthop 1968; 5829-42.
4. Nordquist A, Peterson C. The incidence of fractures of the clavicle. Clin Orthop 1994; 300: 127-32.
5. Robinson CM. Fractures of the clavicle in the adult: epidemiology and classification. J Bone Joint Surg Br 1988; 80: 476-84.
6. Allman FL Jr. Fractures and ligamentous injuries of the clavicle and its articulation. J Bone Joint Surg Am 1967; 49: 774-84.
7. Neer CS. Fractures of the third of the clavicle. Clin Orthop 1968; 58: 43-50.
8. Rockwood CA. Fractures of the outer clavicle in children and adults. J Bone Joint Surg Br 1982; 64: 642-7.
9. Kavanagh TG, Sarkar SD, Philips H. Complications of displaced fractures (Type 2 Neer) of the outer end clavicle. J Bone Joint Surg 1985; 67B (3): 492-493.
10. Eskola A, Vainionpaa S, Patiala H, et al. Outcome of operative treatment in fresh lateral clavicular fracture. Ann Chir Gynecol 1987; 76: 167-9.
11. Kona J, Bose MJ, Staehli JW, et al. Type 2 distal clavicle fractures: retrospective review of surgical management. J Orthop Trauma 1990; 4: 115-20.
12. Criag EV. Fractures of the clavicle. In: Rockwood CA, Masten FA, editors. The shoulder. Philadelphia: WB Saunders; 1990. p.367-412.
13. Ballmer FT, Gerber C. Coracoclavicular screw fixation for unstable fractures of the distal clavicle. A report of five cases. J Bone Joint Surg Br 1991; 73:291-4.
14. Edwards DJ, Kavanagh T, Flannery MC. Fractures of the distal clavicle: a case for fixation. Injury 1992; 23: 44-6.
15. Nordquist A, Peterson C, Redlund-Johnell I. The natural course of lateral clavicle fractures. 15 (11-21).
Year follow up of 110 cases. Acta Orthop Scand 1993; 64: 87-91.
16. Goldberg JA, Bruce WJ, Sonnabend DH, et al. Type 2 fractures of the distal clavicle: a new surgical technique. J Shoulder Elbow Surg 1997; 6 (4): 380-2.
17. Yamaguchi H, Arakawa H, Kobayashi M. Results of the Bosworth method for unstable fractures distal clavicle. Int Orthop 1998; 22960: 366-8.
18. Kruger-Franke M, Kohne G, Rosemeyer B [outcome of surgically treated clavicle fractures]. [Article in German] Unfallchirurg. 2000 Jul; 103 (7): 53-44.
19. Kao Fc, Chao EK, Chen CH, et al. Treatment of distal clavicle fractures using Krischner wires and tension band wires. J Trauma 2001; 51(30:522-5).
20. Flinkkila T. Ristiniemi J, Hyvonen P, et al. Surgical treatment of unstable fractures of the distal clavicle: a comperative study of Krischener wire and clavicular hook plate. Acta Orhop Scand 2002; 73 (10:50-3).
21. Rokito AS, Zuckerman JD, Shaaru JM, Eisenberg DP, Cuomo F, Gallagher MA. Comparison of nonoperative and operative treatment of type 2 distal clavicle fractures. Bull Hosp Jt Dis. 2002-2003; 61 (12): 32-9.A.
22. Levy O (2003) Simple, minimally invasive surgical technique for treatment of type 2 fractures of the distal clavicle. J Shoulder Elbow Surg 12:24-28.
23. Robinson CM, Carins DA. Primary nonoperative treatment of displaced lateral fractures of the clavicle. J Bone Joint Surg Am 2004; 86 (4) 778-82.
24. Scadden JE, Richards R. Intramedullary fixation of Neer type 2 fractures of the distal clavicle with an AO/ASIF screw. Injury 2005: 36 (100:1172-5.
25. Jin CZ, Kim HK, Min BH. Surgical treatment for distal clavicle fracture associated with coracoclavicular ligament rupture using a cannulated screw fixation technique. J Trauma 2006; 60 (6) 1358-61.
26. Kashii M, Inui H, Yamamoto K. Surgical treatment of distal clavicle fractures using the clavicular hook plate. Clin Orthop 2006; 447: 158-64.
27. Badhe SP, Lawerence TM, Clark DI. Tension band for displace type 2 lateral end clavicle fractures. Arch Orthop trauma Surg 2007; 127 (1):25-8.
28. Yih-Shiunn Lee. Ming-Jye Lau. Ya-Chun Tseng. Comparison of the efficacy of hook plate versus tension band wire in the treatment of unstable fractures of the distal clavicle. SICOT (2009) 33:1401-1405.
29. Yu-Chuan Tsuei, Man-Kuan Au, William Chu. Comparison of treajment for iunstable distal clavicle fractures by Transacromial pins with and without Tension band wire. J Chin Med Assoc 2010; 73 (12): 638-643.
30. Laxman Rijal, Gopal Saagar, Anushmala Joshi, Khima Nand Joshi. Modified tension band for displaced type 2 lateral end clavicle fractures. SICOT (2012) 36; 1417-1422.
31. Chi-Chuan Wu. Tension band wiring versus Knowels pinning for non-union of type 2 distal end clavicle fractures. Jr of Orthop Surg 2012; 20 (3): 297-301.
32. Qingjun Liu, Jianyun Miao, Bin Lin, Kejian Lian. Surgical treatment for unstable distal clavicle fracture with MAAP. Int Jr of Med Sci 2012; 9 (4): 301-305.
33. Swamy A, Swamy A. open reduction and internal fixation of distal clavicle fractures. J Dr NTR Univ Health Sci 2013; 2: 15-7.
34. Lyons FA, Rockwood CA Jr. Migration of pins used in operations on shoulder. J Bone Joint Surg 1990; 72-A: 1262-1267.
35. Weber MC, Haines JF. The Treatment of lateral clavicle fractures. Injury 2000; 31:175-179.
36. Nourissat G, Kakuda C, Dumoniter C, Sautet A, Doursounion. Arthroscopic stabilization of Neer type 2 fracture of distal part of the clavicle. Arthroscopy 2007; 23: 674. El-4. Epub.
37. Tambe AD, Motkar P, Qamar A, Drew S, Turner SM(2006) Fracture of distal third of the clavicle treated by hook plate. Int Orthop 30 (1): 7- 10.
38. Lee YS, Lau MJ, Tseng YC, Chen WC, Kao HY, Wei JD(2009) Comparison of the efficacy of hook plate versus tension band wire in the treatment of unstable fractures of the distal clavicle. Int 001-1405rthop 33 (5):14.
39. Anderson JR, Willis MP, Nelson R, Mighell MA (2011) Precontoured superior locking plate of distal clavicle fractures: a new strategy. Clin Orthop Relat 469 (12): 3344-3350.
40. Qureshi F, Sachdeva G, Salgia AK, Biswas SK. A propspective comparative study between The Surgical and Conservative treatment of fracture lateral 1/3rd of clavicle. J Maha Orth Assoc 2012; 7(1).

AUTHORS:
1. Neelakrishnan
2. P. S. Balamurugavel
3. V. Barathiselvan
4. S. Rajesh

PARTICULARS OF CONTRIBUTORS:
1. Professor, Department of Orthopaedics, RMMCH, Annamalai University.
2. Lecturer, Department of Orthopaedics, RMMCH, Annamalai University.
3. Lecturer, Department of Orthopaedics, RMMCH, Annamalai University.
4. Final Year Post Graduate, Department of Orthopaedics, RMMCH, Annamalai University.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
Dr. S. Rajesh,
Room No. 208, PG Doctor’s Men Hostel,
Annamalai Nagar,
Chidambaram-608002.
Email: sellappanrajesh@gmail.com

Date of Submission: 24/09/2014.
Date of Peer Review: 25/09/2014.
Date of Acceptance: 10/10/2014.
Date of Publishing: 15/10/2014.