Studies of Naturally Infected Babesiosis and its Effect on some Hematological and Biochemical Parameters in Cattle in Qena, Egypt

Mohamed Saied M.M.¹*

¹ Veterinarian at GOVS (general organization of veterinary service) in Egypt.

*Corresponding author: Mohamed Saied M.M., PH.D., Veterinarian at GOVS (general organization of veterinary service) in Egypt; Email: mosmvet@yahoo.com

Received: 11th July 2017, Accepted: 2nd August 2017, Published: 23rd August 2017.

Citation: Mohamed Saied M.M. (2017) Ectoparasite Prevalence in Small Ruminant Livestock of Ginir District in Bale Zone, Oromia Regional State, Ethiopia: Nessa J Veterinary Sci

Copyright: © 2017 Mohamed Saied M.M. et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstracts

In the present study, 40 Egyptian cattle infected with babesiosis and 10 healthy (as control) were used as animal material. Haematological findings that were observed with domestic animals in connection with blood parasite infections are very essential. In this study it was demonstrated that value of haematological parameters of the group, compromising infected animals, were relatively lower compared to control group parameters he infected animal showing decrease in Rbc’s counts, Wbc’s counts and increase in phosphorus, decrease in calcium. Serum level of aspartate aminotransferase (AST) showed significant increase in babesiosis, while the Serum level of alanine (ALT) was significantly increased in A babesiosis. Serum level of iron and copper suffered from babesiosis showed significant increase of both iron and copper serum levels.

The aim of this study was to ascertain the effect of babesiosis on haematological parameters and several mineral levels.

Keywords: cattle, Babesia ovis, hematology, Mineral substances
Introduction

Babesiosis is a protozoan disease, which is generally characterized with high fever (40-41°C), anorexia, weight loss, ruminal atony, dyspnoe, red water urine (haemoglobinuria) and jaundice, of sheep, goat, cattle, horse, dog, and cats. Emaciation, anemia, various degrees of jaundice (icterus) from paleness in mild cases to severe yellow discoloration of conjunctival and vaginal mucous membranes in more progress cases., The vector places itself in animal’s erythrocytes and Babesia forms can vary as pear-shaped, round and elongated.

The most common species that causes infection on cattle are in Egypt. babesia bigemina, babesia divergens, babesia bovis babesia major. Two species, B. bigemina and B. bovis, have a considerable impact on cattle health and productivity in tropical and subtropical countries (Iseki et al., 2010). (Aytuğ et al. (1990), (Ferrer et al. 1998), (İmren et al. 1991), Popa E 1998),(Yfruham I et al. 1998), (Mahmoud M et al.2016), Adham EK et al.2009).

The mucous membranes are first hyperaemic, but at the later stages, they become icteric and the colour changes to the pallor of anemia. Primary cause of anemia is due to intravascular haemolysis and rate of destruction of erythrocytes and capacity of erythropoiesis are the main denominators of the occurrence and intensity of the anemia. Feldman B F (1981), Jain J J (1986), (Mosqueda J et al.,2012), (Decaro N et al., 2013).

In Egypt, bovine babesiosis is caused mainly by B. bigemina and B. bovis and consideredas the most important and endemic parasitic disease affecting cattle (Nagati 1947, Adham et al. 2009).

Most often owners are trying to describe the clinical appearance of their animals using less informative symptoms, which often accompanies most diseases. Only few owners are able to describe symptoms, which could be pathognostic initially to babesiosis, and let the veterinarian to apply purposely one or more tests.

Material and Method

Forty (40) Egyptian cattle infected with babesiosis and ten (10)healthy (as control) were used as animal materials. Blood samples were collected from the jugular vein into EDTA-containing tubes from 50 animals (40 cattle infected and 10 cattle as controls) of both sexes and aged 2–5 years, and were originating from different villages. The animals were examined at the Veterinary unit.

The control group (10 cattle)was carefully examined clinically and parasitologically and found healthy and free from external, internal, and hemoparasites. Approximately 10ml of blood was taken from the jugular vein of all animals with a syringe containing EDTA. The blood samples were subjected to hematological parameters analysis (Schalm et al. 1975, Coles 1986).
Clinical Examination

Animals were subjected to clinical and hematological examinations at Veterinary unit.

The filed-exposed group showed various degrees of bovine babesiosis such as high fever (>40 °C), anorexia, hemoglobinuria (bloody urine), anemia, and jaundice. They were also infested with ticks to various degrees. The control group was examined thoroughly for presence of any abnormal clinical changes and external parasites, and was thoroughly examined by different laboratory techniques such as direct smear, flotation, sedimentation and Barmen's techniques and blood film to confirm the absence of any internal parasites.

Statistical analysis

The obtained data were statistical analyzed by mean of computer statistical program, SPSS (Borenstein et al. 1997). Data were analyzed using Student’s t-test to compare the mean data between groups. The results obtained were expressed as mean ± Differences were considered statistically significant based on P< 0.05.

Results

Clinical Findings

Cattle infected with B. bovis showed typical clinical signs of babesiosis, Table 1.

Briefly, highly rise in body temperature (40–41.5 °C), conjunctival and vaginal mucous membranes were anemic and the clinical severity was ranged from paleness in mild cases to severe yellow discoloration (icterus)in more progressive cases, red to dark red urine (coffee-color) urine, hemoglobinuria was common sign in cattle with severe clinical manifestation and accelerated heart and respiratory rates. Some cases showed nervous manifestations in advanced stages such as incoordination and head pressing. Various degrees of tick infestations were present around groins, horns, Inter-mandibular space, and ears.

Hematological Findings

Giemsa-stained blood smears from B. bovis infected animals showed intra-erythrocytic piroplasms of B. bovis that were in the form of pyriform or pear-shaped.

The mean values of RBCs, hemoglobin amount, PCV %, WBCs, and differential leucocytic count are listed in Table 2. Briefly, the important findings can be summarized as follows; there is a clear significant difference in the haematological parameters between B. bovis-infected buffaloes and B.bovis-infected cattle in comparison to control group at P-value (≤ 0.01) and (≤ 0.001), respectively
Table 1: Clinical findings of *Babaesia bovis* (B. bovis)-infected cattle comparison to control group under natural field conditions

Parameters	Infected animals	Control animals
Numbers	40	10
temperature(°C)	40-41	38.5
Red urine	present	yellow
Jaundice	present	Not present
Respiration	accelerated	normal
Appetite	decreased	normal
Recumbency	3	no
Death	4	no

Table 2: Hematological findings of *B. bovis*-infected cattle in comparison to control group under natural field conditions (mean ±S.E).

parameters	Infected animals	Control animals
RBCs (106 /ml)	3.2±1.8***	5.2±1.3
Hb (g/dl)	5.1±1.4***	10.5±2.1
PCV (%)	16.8±1.1***	33.5±1.1
WBCs (103)	11.6±2.1***	5.5±1.1
Lymphocytes/ cmm	3.5±1.3*	2.6±1.1
Monocytes / cmm	0.53±2.1**	2.3±13
Neutrophils / cmm	3.5±1.5*	2.9±1.4
Basophils / cmm	1.1±1.0	1.5±0.1

*significantly at P≤ 0.05, **P≤ 0.01 ***highly significant at P≤ 0.001).
Table 3 Biochemical findings of B. bovis-infected cattle in comparison to control group under natural field conditions (mean ±S.E).

parameters	Infected animals	Control animals
Ca mg/dl	6.2±1.8***	10.2±1.3
Ph mg/dl	5.8±1.4***	3.5±2.1
Copper (µg/dl)	153.5±1.5**	98.34±2.15
Iron (µg/dl)	168.2±1.5**	188.25±15.49
ALT(U/l)	26.08±1.14***	13.78±0.70
AST(U/l)	130.26±10.62***	28.34±1.6
Total proteins (gm/dl)	5.82±0.28**	6.92±0.15

*significantly at P≤ 0.05, **P≤ 0.01 ***highly significant at P≤ 0.001

Discussion

Tick-borne diseases have a negative effect on livestock health (Omar AOJ et al.2013). In this study, Babesia infection was confirmed via light microscopy examination. Presence of pear shape piroplasms inside RBCs is confirmative of diagnosis especially in acute stages of the disease (Singh AP et al.2009).

A–Clinical findings

The observed clinical findings in cattle with babesiosis such as fever, dark brown to coffee urine, pale mucous membranes with empty episcleral blood vessels with reduced appetite could be attributed to severe haemolytic process associated the presence of Babesia sp. inside the red blood cells. (Fujinaga 1981) and (Georgi et al. 1990) supported this view.

B–Haematological findings

Leucogram showed significant decrease (P<0.001) in total leucocytic count and neutrophil. Normocytic normochromic anemia observed in cattle with babesiosis which could be attributed to intravascular haemolysis of red blood cells. (Pandy and Misra 1987) supported this view. Insignificant changes in total leucocytic count in total leucocytic count in cattle with babesiosis, while there was significant increase in lymphocytes and monocytes associated with significant decrease (P<0.001) in neutrophils. This could be explained as the breakdown of redblood cells by Babesia sp (Hussein, A.H., et al.2007) (Riond BMM et al. 2008), (Salem NY et al. 014), (Salem NY et al. 2015). Even in animals which
recover spontaneously, erythrocyte count, packed cell volume, and hemoglobin level continue to decline steadily after patency. Once the parasites have been eliminated, increased hematopoiesis occurs, evidenced by the presence of nucleated erythrocytes, polychromasia, and anisocytosis (Purnell et al. 1977).

C–Biochemical findings

Babesiosis infected cattle showed significant decrease in calcium and increase in phosphorus levels, this agree with (O’Neill, A. R. 1983), (Annetta Zintl et al. 2003) who noticed the serum changes may include increased potassium and reduced calcium and sodium levels.

Babesiosis infected cattle showed significant increase in AST, hypoproteinemia. This may indicate the harmful effect of toxic metabolites of Babesia sp. on liver cells. These results were supported by (Yeruham et al. 2003). Serum level of iron was significantly decreased (P<0.001), while copper showed insignificant change. The drop in serum level of iron may be due to anaemia which leads to excessive withdrawal of serum iron to be utilized for erythropoiesis. While others have extremely high concentrations of serum iron (Jerichow, H., and R. Jungmann. 1969).

Babesiosis infected cattle showed significant decrease in protein. Our present study indicate that the serum protein and globulin pattern was significantly altered by babesia bigemina infection. There was a significant decrease in total protein in serum of infected clinical cases and these in accordance with data recorded in cattle (Ashmawy, et al. 1994) (Amrita Sharma et al. 2016), in calves by (Venu. R. et al. 2015) and In buffaloes (Abd El-maksoud, et al. 2005), (Werner LL et al. 2004) (Kerr MG 2002)

Concerning the effect of babesia Bigemina infection on activity of liver enzymes, the obtained results revealed a highly significant increase in serum AST and ALT. These results were in agreement with other previous studies reported by Allen and Kuttler, (1981) Camacho, et al (2005) and Barbara, et al (2008). The increase in enzymes activity may attributed to sever anemia that lead to hypoxic and toxic liver damages. Also massive hemolysis may occur which in conjunction with hypoxia may lead to hepatic cell degeneration and glomerular dysfunction leading to increase in AST, ALT and Bun, Allen and Kuttler, (1981).

Control

Babesiosis infected cattle is often only noticed at the onset of hemoglobinuria, when the disease is far advanced. Although therapy and transfusion will generally save an infected animal even at an advanced stage of the disease, it may continue to be severely debilitated for several months after recovery (Lewis et al.1981). Thus, for economic and animal welfare reasons, the best option is to prevent rather than treat infections.
Reference

1. Abd El-Maksoud, H.A., M.Y. Ramadan and A.D. Abdel-Mageid, 2005. Biochemical studies and haemolymph microscopy diagnosis of Babesia bovis infection in buffaloes with special reference to protein electrophoresis and alterations in serum fatty acid patterns. 4 intl. Sci. Conf., Mansoura 5-6 April.pp: 1241-1256.
2. Adham FK, Abd-El-Samie EM, Gabre RM, El-Hussein H (2009) Detection of tickblood parasites in Egypt using PCR assay, I-Babesia bovis and Babesia bigemina. Parasitol Res. 105(3): 721–730.
3. Allen PC, Kuttler KL, Amerault TE (1981), Clinical chemistry of anaplasmosis: blood chemical changes in infected mature cows. Am J Vet Res. Feb;42(2):322-5.
4. Amrita Sharma, Lachhman Das Singla, Ashuma, Balvinder Kaur Batth, Paramjit Kaur(2016)., Clinicopatho-Biochemical Alterations Associated with Subclinical Babesiosis in Dairy Animals, J Arthropod-Borne Dis, June 2016, 10(2): 258–266.
5. Annetta Zintl, Grace Mulcahy, Helen E. Skerrett, Stuart M. Taylor, and Jeremy S. Gray(2003), Babesia divergens, a Bovine Blood Parasite of Veterinary and Zoonotic Importance, Clin Microbiol Rev. 2003 Oct; 16(4): 622–636.
6. Ashmawy, K Rady, A.; Mandour, A. and Korshom M. (1994): Alteration in protein electrophoretic pattern glutathione redox system and trace.
7. Aytuğ C N, Alaçam E, Görgül S (1990): Koyun ve Keçi Hastalıkları ve Yetiştiriciliği İstanbul. Tüm-Vet Hayvancılık hizmetleri Yayını. Pp. 201-202.
8. Barrera, R; Carapeto, MV; Habela, MA and Zaragoza, C (2010). Electrophoresis pattern of serum in horses with babesiosis. Arch. Med. Vet., 42: 173-178.
9. Camacho, AT; Guitian, FJ; Pallas, E; Gestal, JJ; Olmeda, AS; Goethert, HK; Telford, SR and Spielman, A (2005). Serum protein response and renal failure in canine Babesia annae infection. Vet. Res., 36: 713-722.
10. Coles E A (1986) Veterinary Clinical Pathology, 4thed. Saunders Compay, Phildelpa.
11. Decaro N, Larocca V, Parisi A, Losurdo M, Paolo Lia R, Greco MF, et al. Clinical bovine piroplasmosis caused by Babesia occultans in Italy. J Clin Microbiol 2013;51:2432–4.
12. Feldman B F (1981): Anemias Associated with Blood Loss and Hemolysis. Vet. Clin. North. Am. 11: 265-276.
13. Ferrer JD, Castella JF, Gutierrez Lavin S, Marco I (1998): Seroprevalence of Babesia ovis in Mouflon Sheep in Spain. Journal-of-Wildlife-Diseases. 34 (3): 637-639.
14. Fujinaga, T. (1981): Bovine Babesiosis in Japan clinical and clinico pathological studies on cattle experimentally infected with Babesia ovata. Jpn. J. Vet. Sci., 43, 803–813.
15. Georgi, J. R.; Georgi, M. E. and Theodrides, V. J. (1990): Parasitology for Veterinarians 5th ed., W. B. Saunders Company. Harcourt Brace Jovanovich, Inc. Philadelphia.
16. Hiroshi Iseki a, Lijia Zhoua, Chulmin Kima, Tawin Inpankaewb, Chainirun Sununtac, Naoaki Yokoyamaa, Xuenan Xuanab, Sathaporn Jittapalapongb, Ikuo Igarashia, 2010, Seroprevalence of Babesia infections of dairy cows in northern Thailand, Veterinary Parasitology 170) 193–196.
17. Hussein, A.H., Mohammed, N.A.-E.-S. and Mohammed, H.K.(2007), theileriosis and babesiosis in cattle: haemogram and some biochemical parameters, ISAH-2007 Tartu, Estonia 143-150.
18. İmren H Y, Şahal M (1991): Veteriner İç Hastalıkları. Ankara. Feryal Matbaacılık San. ve Tic.Ltd.Şti. pp. 207-208. (ISBN: 975-774-00-6)
19. Jain J J (1986): Schalm’s Veterinary Hematology. 4th ed. Lea and Febiger. Philadelphia.
20. Jerichow, H., and R. Jungmann. 1969. Untersuchungen zur Schadwirkung von Babesia divergens. 1. Mitteilung: der Gehalt an Kalium, Kalzium, Magnesium und Eisen im Blutserum bzw.-Plasma bei klinisch manifester Piroplasmose unter den Bedingungen der natürlichen Infektion. Monatsh. Veterina’rmed. 24:732–736.
21. Kerr MG 2002: Veterinary laboratory medicine clinical biochemistry and hematology. 2nd ed. Cornwall: Blackwell Science; 2002, p. 74–9.
22. Lewis, D., R. E. Purnell, L. M. A. Francis, and E. R. Young. (1981). The effect of treatment with imidocarb dipropionate on the course of Babesia divergens infections in splenectomised calves, and their subsequent immunity to homologous challenge. J. Comp. Pathol. 91:285–292.
23. Mahmoud M Kandil O, Nasr S, Hendawy SH, Habeeb SM, Mabrouk DM, et al. Serological and molecular diagnostic surveys combined with examining hematological profiles suggests increased levels of infection and hematological response of cattle to babesiosis infections compared to native buffaloes in Egypt. Parasit Vectors 2015;8:319–33.
24. Mosqueda J, Olvera-Ramirez A, Aguilar-Tipacamu G, Canto GJ. Current advances in detection and treatment of babesiosis. Curr Med Chem 2012;19:1504–18.
25. Nagati HE (1947) Some new and rare recordsof piroplasmosis with a list of the species of Babesia and Theileria so far recorded from Egypt. Vet Rec. 59:145–147.
26. Omar AOJ, Sadat M, Emam FA(2015): Determination of oxidativestress markers associated with Babesia Bigemina. Afr JBiotechnol Res 2015;3:150–5.
27. O’Neill, A. R. 1983. Blood transfusions in the treatment of red water. Ir.Vet. News July:4–5.
28. Pandy, N. and Misra, S. (1987): Haematological and Biochemical response to haemolytic anaemia of clinical Babesiosis in cattle and therapy. Ind. Vet. J., 64, 882–886.
29. Popa E (1998): Ixodid Ticks - Vectors of Babesiosis in Animals in Romania. Revista-Romana-de-Medicina-Veterinara. 8 (2): 61-67.
30. Purnell, R. E., E. R. Young, D. W. Brocklesby, and D. J. Hendry. (1977). The haematology of experimentally induced B. divergens, and E. phagocytophila infections in splenectomised calves. Vet. Rec. 100:4–6.
31. Riond BMM, Braun U, Deplazes P, Joerger K, Thoma R, Lutz H, et al.(2008) Concurrent infections with vectorborne pathogens associated with fatal anaemia in cattle: hematology and blood chemistry. Comp Clin Pathol 17:171–7.
32. Salem NY, Farag HS (2014). Clinical, hematologic, and molecular findings in naturally occurring Babesia canis vogeli in Egyptian dogs. Vet Med Int [Internet] 2014;2014:270345. Available from https://www.hindawi.com/journals/vmi/2014/270345/.

33. Salem NY, El-sherif MA (2015): Malondialdehyde status, trace minerals and hematologic results of anemic–T. equi infected Egyptian horses. Int J Vet Sci 4:118–22.

34. Schalm OW, Jain NC, Carroll EJ (1975) Veterinary Haematology. 3rd Edition. Lea and Febiger, Philadelphia.

35. Singh AP, Singla LD, Singh A. A (2000): study on the effects of macroclimatic factors on the seasonal population dynamics of Boophilus micropus (Canes 1888) infesting the cross-bred cattle of Ludhiana district. Int J Anim Sci;15:29–31.

36. Venu R., Sailaja N., K. Srinivasa RaoN. Jayasree • W. L. N. V. Vara Prasad 2015, Babesia bigemina infection in a 14-day old Jersey crossbred calf: a case report, J Parasit Dis (Apr-June) 39(2):264–265.

37. Werner LL, Turnwald GH, Willard MD (2004). Immunologic and plasma protein disorders. In: Willard MD, Tvedten H, editors. Small animal clinical diagnosis by laboratory method methods. Saunders; p. 290–305.

38. Yeruham, I.; Avidar, Y.; Aroch, I. and Hadani, A. (2003): Intra-uterine infection with Babesia bovis in a 2-day-old calf. J. Vet. Med. B. Infect. Dis. Vet. Public Health, 50, 60–62.

39. Yeruham I, Hadani A, Galker F, Avidar Y, Bogin E (1998): Clinico-Pathological and Serological Studies of Babesia ovis in Experimentally Infected Sheep. Journal of Veterinary-Medicine. 45 (7): 385-394.