Surgical Treatment for Recurrent Benign Paroxysmal Positional Vertigo

Gonzalo Corvera Behar¹ Miguel Alfredo García de la Cruz¹,²

¹Instituto Mexicano de Otología y Neurotología S.C., México, DF, Mexico
²Department of Otolaryngology, Hospital General Dr. Manuel Gea González, México, DF, Mexico

Abstract

Introduction Benign paroxysmal positional vertigo is a generally benign condition that responds to repositioning maneuvers and frequently resolves spontaneously. However, for some patients it can become a disabling condition in which surgery must be considered. Two different surgical techniques exist, singular neurectomy and posterior semicircular canal occlusion.

Objective The objective of this study is to review the current status of singular nerve section and posterior semicircular canal occlusion as treatments for intractable benign paroxysmal positional vertigo, and to determine if there are published data available that favors one over the other.

Data Sources MEDLINE and OLDMEDLINE databases of the National Library of Medicine.

Data Synthesis Four studies regarding singular neurectomy and 14 reports on semicircular canal occlusion were analyzed. Both techniques are reported to provide similar symptomatic benefit, with low risk of hearing loss and balance impairment. However, anatomical and clinical studies of singular neurectomy show it to be a more challenging technique, and considering that it is indicated in a very small number of cases, it may be difficult to master.

Conclusions Both singular neurectomy and semicircular canal occlusion can be safe and effective in those few patients that require surgery for intractable positional vertigo. Although semicircular canal occlusion requires a postauricular transmastoid approach, it is ultimately easier to learn and perform adequately, and thus may be considered the best alternative.

Introduction

Benign paroxysmal positional vertigo (BPPV) is a very common vestibular disorder, characterized by episodic vertigo following certain provocative head movements. It is considered to be the most frequent type of peripheral vertigo, although estimates regarding its frequency among patients with this type of symptoms vary between 5 and 40%.¹,² Since the histopathologic studies of Schuknecht and Ruby,³ in the early 70’s, it has been regarded as a disease that originates in the posterior semicircular canal, yet many aspects of its pathophysiology remain uncertain.⁴

The vast majority of all BPPV cases are of the posterior canal variant. The pathophysiology that causes most of these cases is thought to be canalithiasis. This is probably because most of the free-floating endolymph debris tends to gravitate...
to the posterior canal, being the most gravity-dependent part of the vestibular labyrinth in both the upright and supine positions. Once the debris enters the posterior canal, the cupular barrier at the shorter, more dependent end of the canal blocks the exit of the debris. Therefore, the debris becomes "trapped" and can only exit at the end that has no ampulla (the common crus). The prevalence of horizontal canal BPPV, although lower than that of the posterior canal type, is significant, accounting for up to 20% of the cases of paroxysmal vertigo; the lower incidence is attributed to its spatial orientation, since the lateral canal slopes up and has its cupular barrier at the upper end. Therefore, free-floating debris in the lateral canal would tend to float back out into the utricle as a result of natural head movements. Superior canal involvement is exceedingly rare.

Current treatment of all forms of BPPV is mostly through canal repositioning maneuvers, developed to free the canal fromolithiasis. Such maneuvers were described by Epley and Semont, and are very effective, with a success rate of up to 98% after three sessions. Furthermore, spontaneous resolution is frequent, usually occurring after 6 to 8 weeks of the initial symptoms; thus, BPPV is generally considered a benign disease.

However, positional vertigo is a potentially disabling condition, and a small fraction of the patients present symptoms and refractory vertigo after repeated canal repositioning maneuvers and physical therapy. For these patients, surgery may be considered- and various technical approaches have been proposed, including utricular ablation, microvascular decompression, singular nerve section (SNS), and two procedures that are considered as functionally equivalent, posterior semicircular canal occlusion (PSCO) and laser assisted “partitioning.” The only techniques that have been widely adopted, or that have been studied by more than one author, are posterior ampullary nerve (“singular nerve”) section and semicircular canal occlusion (SCO). It is important to note that singular neururectomy is performed through an external ear canal approach, which can be done under local anesthesia, while SCO requires a retroauricular incision and simple mastoidectomy.

The objective of this study is to review the current status of these two procedures and to determine if published data exist to favor one over the other.

Review of the Literature

Search Strategy and Study Selection

Most publications regarding BPPV are not classified by its Medical Subject Heading (MESH) term. In fact, a search using that term only produces 193 publications. We, therefore, conducted a search through PaperChase, a service which provides Telnet access to all references found in the MEDLINE and OLDMEDLINE databases of the National Library of Medicine, and which can provide great granularity in its search terms. We then searched for publications containing any of the following words and/or MESH terms: “Benign Paroxysmal Positional Vertigo”, “Positional”, “Vertigo”, “Postural”, “Cupulolithiasis” and “Semicircular canals”, which we then cross-referenced with “Vertigo/Surgery”, which unites the term “Vertigo” with surgical treatment. In this way, we obtained a manageable amount of studies to analyze. The studies that met our inclusion criteria are summarized in Table 1. This cannot be considered as an exhaustive review, but considering the homogeneity of the results reported, it can be considered a representative analysis of the published data.

Results

After reviewing the literature, it became evident that BPPV-related surgical cases have been decreasing since the early 1990s, presumably because of the emergence and high success rate of the repositioning maneuvers. It is also evident that singular nerve section (SNS), which was never widely adopted, seems to have been largely abandoned. Anatomical studies report a wide variation in the possibility of locating the singular nerve, ranging from 98%, in Kos et al., to 20%, reported by Lewer et al. Both authors agree, however, on the difficulty of correctly identifying the nerve through a surgical approach via the external ear canal. In 2000, Feil et al. reported an interesting anatomical study in which they documented that a significant learning curve is needed to obtain adequate results. The largest series published are those of Silverstein and White, in 1990, and Gacek, in 1995; the latter reported, in an earlier study, an inability to locate the singular nerve in two of his first 12 patients (16%).

In contrast with SNS, SCO is a much more straightforward technique, and thus, still a subject of study. Regarding published results and complications, by aggregating all the patients reported in the studies shown in Table 1, we can observe that SCO is reported to be successful in eliminating positional vertigo in 100% of patients, which is somewhat difficult to believe, although some papers mention recurrence of vertigo through another canal, and Shaia et al. mention an 85% patient satisfaction rate, even though all patients had normalization of the Hallpike test. On the other hand, SNS is reported to be successful in 79 to 94% of cases, probably due to the anatomical difficulties mentioned above. Both techniques report a similar incidence of postoperative hearing loss, around 5%.

It is important to note that, although there would seem to be a slightly better success rate with SCO as compared to SNS, the majority of the studies analyzed do not evaluate postoperative vertigo using objective and quantifiable instruments, and those that do, differ between them. It is difficult to assure that the differences between the procedures regarding results are truly significant. Hearing loss is also loosely reported, with differing definitions of what constitutes hearing loss and whether or not it can be attributed to the procedures. Still, both techniques seem to provide important benefits, with an acceptable risk of hearing and balance loss in selected patients.

Discussion

The choice between SNS and SCO for the few patients with intractable BPPV is based on the success rate and risk for...
hearing loss. This review would seem to indicate a slightly lower success rate for SNS, perhaps due to the difficulty in locating the singular nerve near the base of the round window. When performing a SCO, there are no troubles in locating the semicircular canals for any otologic surgeon, and the result in hearing preservation depends mostly on how carefully the canal is opened and manipulated. It is worth mentioning that we have also been using SCO as a conservative surgical procedure for patients with intractable Ménière’s disease and serviceable hearing, and that our experience in avoiding hearing loss and controlling vertigo agrees with that of the studies we have reviewed. In our experience, SCO is a very straightforward technique and it avoids the anatomical difficulty of locating the singular nerve. Thus, we consider SCO as the technique of choice for those rare patients who require surgery for intractable positional vertigo.

Final Comments

Both SCO and SNS are effective surgical options for patients with difficult to control, incapacitating, BPPV. Although SCO requires a retroauricular, transmastoid approach, it is an easier and safer procedure, thus it should be considered the best alternative.

Conflict of Interest

The authors declare no conflicts of interest.

References

1. von Brevern M, Radtke A, Lezius F, et al. Epidemiology of benign paroxysmal positional vertigo: a population based study. J Neurol Neurosurg Psychiatry 2007;78(07):710–715
2. Neuhäuser HK, von Brevern M, Radtke A, et al. Epidemiology of vestibular vertigo: a neurotologic survey of the general population. Neurology 2005;65(06):898–904
3. Schuknecht HF, Ruby RR. Cupulolithiasis. Adv Otorhinolaryngol 1973;20:434–443
4. Corvera G, Corvera J. Benign positional paroxysmal vertigo as a symptom of a global vestibular disturbance. In: Arenberk IK, ed. Dizziness and balance disorders. Amsterdam/New York: Kugler Publications; 1993:541–543. ISBN 09–6299–100–9
5. Parnes LS, Agrawal SK, Atlas J. Diagnosis and management of benign paroxysmal positional vertigo (BPPV), CMAJ 2003;169(07):681–693
6. Nuti D, Mandalà M, Salerni L. Lateral canal paroxysmal positional vertigo revisited. Ann N Y Acad Sci 2009;1164:316–323
7. Epley JM. The canalith repositioning procedure: for treatment of benign paroxysmal positional vertigo. Otolaryngol Head Neck Surg 1992;107(02):399–404
8. Semont A, Freyss C, Vitte E. Curing the BPPV with a liberatory maneuver. Adv Otorhinolaryngol 1988;42:290–293

Table 1 Success rate and incidence of postoperative hearing loss reported by different authors after singular nerve section or semicircular canal occlusion

Author	Year	Procedure	Number of procedures	Number of successful procedures (%)	Number of cases with postoperative hearing loss (%)
Gacek²⁰	1978	SNS	12	10 (83.33%)	1 (8.33%)
Silverstein¹⁸	1990	SNS	49	39 (79.59%)	3 (6.12%)
Gacek¹⁹	1995	SNS	146	138 (94.52%)	4 (2.74%)
Pournaras²²	2008	SNS	8	8 (100.00%)	2 (25.00%)
Parnes¹³	1990	SCO	2	2 (100.00%)	0 (0.00%)
Pace-Balzan²³	1991	SCO	5	5 (100.00%)	0 (0.00%)
Anthony¹⁴	1991	SCO	2	2 (100.00%)	0 (0.00%)
Hawthorne²⁴	1994	SCO	15	15 (100.00%)	0 (0.00%)
Zappia²⁹	1996	SCO	8	8 (100.00%)	0 (0.00%)
Pulec²⁶	1997	SCO	17	17 (100.00%)	0 (0.00%)
Walsh²⁷	1999	SCO	13	13 (100.00%)	0 (0.00%)
Nomura²⁸	2002	SCO	2	2 (100.00%)	0 (0.00%)
Shaia²¹	2006	SCO	28	28 (100.00%)	1 (3.57%)
Kisilevsky²⁹	2009	SCO	32	32 (100.00%)	0 (0.00%)
Ahmed³⁰	2012	SCO	55	55 (100.00%)	0 (0.00%)
Beyea³¹	2012	SCO	77	77 (100.00%)	0 (0.00%)
Ramakrishna³²	2012	SCO	12	12 (100.00%)	2 (16.67%)
Zhu³³	2015	SCO	3	3 (100.00%)	0 (0.00%)

Abbreviations: SNS, singular nerve section; SCO, semicircular canal occlusion.

* Kisilevsky et al report less than 10dB average loss by frequency.
9 Anthony PF. Utricular macular ablation for benign paroxysmal positional vertigo. Ear Nose Throat J 1996;75(07):416–421
10 Møller MB. Results of microvascular decompression of the eighth nerve as treatment for disabling positional vertigo. Ann Otol Rhinol Laryngol 1990;99(9 Pt 1):724–729
11 Møller MB, Møller AR, Jannetta PJ, Sekhar L. Diagnosis and surgical treatment of disabling positional vertigo. J Neurosurg 1986;64(01):21–28
12 Gacek RR. Transsection of the posterior ampullary nerve for the relief of benign paroxysmal positional vertigo. Ann Otol Rhinol Laryngol 1974;83(05):596–605
13 Parnes LS, McClure JA. Posterior semicircular canal occlusion for intractable benign paroxysmal positional vertigo. Ann Otol Rhinol Laryngol 1990;99(5 Pt 1):330–334
14 Anthony PF. Partitioning of the labyrinth: application in benign paroxysmal positional vertigo. Am J Otol 1991;12(05):388–393
15 Kos MI, Feigl G, Anderhuber F, Fasel JH, Guyot JP. Transcanal approach to the singular nerve. Otol Neurotol 2006;27(04):542–546
16 Leuwer RM, Westhofen M. Surgical anatomy of the singular nerve. Acta Otolaryngol 1996;116(04):576–580
17 Feigl G, Kos I, Anderhuber F, Guyot JP. Development of surgical skill with singular neuroectomy using human cadaveric temporal bones. Ann Anat 2008;190(04):316–323
18 Silverstein H, White DW. Wide surgical exposure for singular neuroectomy in the treatment of benign positional vertigo. Laryngoscope 1990;100(07):701–706
19 Gacek RR. Technique and results of singular neuroectomy for the management of benign paroxysmal positional vertigo. Acta Otolaryngol 1995;115(02):154–157
20 Gacek RR. Further observations on posterior ampullary nerve transsection for positional vertigo. Ann Otol Rhinol Laryngol 1978;87(3 Pt 1):300–305
21 Shaia WT, Zappia JJ, Bojrab DI, LaRouere ML, Sargent EW, Diaz RC. Success of posterior semicircular canal occlusion and application of the dizziness handicap inventory. Otolaryngol Head Neck Surg 2006;134(03):424–430
22 Pournaras I, Kos I, Guyot JP. Benign paroxysmal positional vertigo: a series of eight singular neuroctomies. Acta Otolaryngol 2008;128(01):5–8
23 Pace-Balzan A, Rutka JA. Non-ampullary plugging of the posterior semicircular canal for benign paroxysmal positional vertigo. J Laryngol Otol 1991;105(11):901–906
24 Hawthorne M, el-Naggar M. Fenestration and occlusion of posterior semicircular canal for patients with intractable benign paroxysmal positional vertigo. J Laryngol Otol 1994;108(11):935–939
25 Zappia JJ. Posterior semicircular canal occlusion for benign paroxysmal positional vertigo. Am J Otol 1996;17(05):749–754
26 Pulec JL. Ablation of posterior semicircular canal for benign paroxysmal positional vertigo. Ear Nose Throat J 1997;76(01):17–22, 24
27 Walsh RM, Bath AP, Cullen JR, Rutka JA. Long-term results of posterior semicircular canal occlusion for intractable benign paroxysmal positional vertigo. Clin Otolaryngol Allied Sci 1999;24(04):316–323
28 Nomura Y. Argon laser irradiation of the semicircular canal in two patients with benign paroxysmal positional vertigo. J Laryngol Otol 2002;116(09):723–725
29 Kisilevsky V, Baille NA, Dutt SN, Rutka JA. Lessons learned from the surgical management of benign paroxysmal positional vertigo: the University Health Network experience with posterior semicircular canal occlusion surgery (1988-2006). J Otolaryngol Head Neck Surg 2009;38(02):212–221
30 Ahmed RM, Pohl DV, MacDougall HG, Makeham T, Halmagyi GM. Posterior semicircular canal occlusion for intractable benign positional vertigo: outcome in 55 ears in 53 patients operated upon over 20 years. J Laryngol Otol 2012;126(07):677–682
31 Beyea JA, Agrawal SK, Parnes LS. Transmastoid semicircular canal occlusion: a safe and highly effective treatment for benign paroxysmal positional vertigo and superior canal dehiscence. Laryngoscope 2012;122(08):1862–1866
32 Ramakrishna J, Goebel JA, Parnes LS. Efficacy and safety of bilateral posterior canal occlusion in patients with refractory benign paroxysmal positional vertigo: case report series. Otol Neurotol 2012;33(04):640–642
33 Zhu Q, Liu C, Lin C, et al. Efficacy and safety of semicircular canal occlusion for intractable horizontal semicircular benign paroxysmal positional vertigo. Ann Otol Rhinol Laryngol 2015;124(04):257–260