Discovery of Single Top Quark Production

Dag Gillberg
Simon Fraser University (now Carleton University)
For the DØ and CDF Collaborations
March 4, 2009 – both DØ and CDF independently present first observation of single top, **14 years** after discovery of $t\bar{t}$ production
Milestone for small signal in large background!

From R. Wallny’s Wine and Cheese talk
Why single top?

Electroweak single top production:

- **s-channel (tb)**
 - $\sigma_{NLO}^{[†]} = 0.88 \pm 0.11 \text{ pb}$
 - $\sigma_{(N)NLO}^{[‡]} = 1.12 \pm 0.05 \text{ pb}$

- **t-channel (tqb)**
 - $\sigma_{NLO}^{[†]} = 1.98 \pm 0.25 \text{ pb} \ (m_t=175 \text{ GeV})$
 - $\sigma_{(N)NLO}^{[‡]} = 2.34 \pm 0.13 \text{ pb} \ (m_t=170 \text{ GeV})$

- Measurement of top properties, e.g., **polarization**
- **New Physics:** 4th quark generation?
 - tb: W', H^\pm?
 - tqb: FCNC?
- Background for $WH \rightarrow Wb\bar{b}$ — **similar analysis**
- Milestone for small signal in large backgrounds

The Wtb coupling

$V_{CKM} = \begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}$

- Direct $|V_{tb}|$ measurement
- Unitarity test of CKM matrix
- Anomalous Wtb couplings

[†] Z. Sullivan, Phys. Rev. D 70, 114012 (2004)
[‡] N. Kidonakis, Phys. Rev. D 74, 114012 (2006)
Selection and Backgrounds

$t\bar{b}(q) \rightarrow \ell \nu \bar{b}\bar{b}(q)$ selection

- High p_T isolated e or μ (not for E_T+jets analysis)
- E_T from neutrino
- 2 or 3 (or 4 DØ) jets
- At least 1 b-tagged jet

Very small signal/background ratio after selection:

CDF Run II Preliminary, L=3.2fb$^{-1}$
Huge background!

- **S : B ≈ 1 : 20**
- Signal acceptance 2–3%
- Counting experiment not possible!
- Sophisticated multivariate methods needed

Event Yields in 2.3 fb⁻¹ of DØ Data

Component	Yield (± Error)
e,μ, 2,3,4-jets, 1,2-tags combined	223 ± 30
W+jets	2,647 ± 241
Z+jets, dibosons	340 ± 61
t\(\bar{t}\) pairs	1,142 ± 168
Multijets	300 ± 52
Total prediction	**4,652 ± 352**
Data	**4,519**

CDF

Analysis	LJ [fb⁻¹]	MJ [fb⁻¹]
tb + t\(\bar{t}\)	3.2	2.1
W+HF	1551	304
t\(\bar{t}\)	686	185
W+LF, multij.	778	679
Z+jets, dibos.	52	129
Total pred.	**3377**	**1404**
Observed	**3315**	**1411**
Analysis Strategy

1. Multivariate Techniques
- **Combine** many variables into one powerful discriminant
- **Optimize** different \((\ell, N_{\text{tag}}, N_{\text{jet}})\) sub samples individually

Both DØ and CDF use: Boosted Decision Trees, Matrix Elements, Neural Networks. CDF also uses: Likelihood Functions.

2. Measure Cross Section

Bayesian calculation using data and predicted discriminant distributions → posterior

3. Derive Significance

Significance derived from large ensemble of pseudo-experiments
Boosted Decision Trees

- Sequence of cuts
- Events failing cut continue to be analyzed
- Adding input variables doesn’t degrade performance
- Long list of variables used
 - DØ: 64 variables, CDF: 20
- **Boosting** – create forest of trees, improves performance and stability

BDT Results

\mathcal{L} [fb$^{-1}$]	Significance	σ_{s+t} [pb]
Data		
DØ	2.3	4.3σ
	4.6σ	
	3.7$^{+1.0}_{-0.8}$	
CDF Run II Preliminary	3.2	5.2σ
	3.5σ	
	2.1$^{+0.7}_{-0.6}$	
DØ: Bayesian NN (BNN)
- Weighted average of several hundred NNs
- 18-25 input variables

CDF: NeuroBayes Program
- Four separate NNs
- 11-18 input variables incl. jet flavour separator

NN Results

	L [fb⁻¹]	Significance	σ_{s+t} [pb]
DØ	2.3	4.1σ	5.2σ, 4.7^{+1.2}_{-0.9}
T3	3.2	5.2σ	3.5σ, 1.8^{+0.6}_{-0.6}
Matrix Element

- Use parton level matrix elements
 \[[s, t, Wb\bar{b}, Wcg, Wgg, t\bar{t}, Wugg, ggg, ...] \]
- given all reconstructed four-momenta: compute prob. for signal and bkg hypotheses
- To further improve performance:
 DØ: split sample by \(H_T \) to \(t\bar{t} \) & \(W+\text{jets} \) dominated subsets
 CDF: weight events by jet flavour separator

ME Results
\[
\begin{array}{llll}
\mathcal{L} & \text{Significance} & \sigma_{s+t} \\
\text{[fb}^{-1}] & \text{Exp.} & \text{Obs.} & \text{[pb]} \\
\text{DØ} & 2.3 & 4.1\sigma & 5.0\sigma & 4.3^{+1.0}_{-1.2} \\
\text{CDF} & 3.2 & 4.9\sigma & 4.3\sigma & 2.5^{+0.7}_{-0.6} \\
\end{array}
\]
Other Analyses (CDF only)

Likelihood Functions
derived using 7-10 variables
Separate likelihood optimized for the s-channel

NEW: $E_T+\text{jets}$ analysis
– Orthogonal to $\ell+\text{jets}$
– Recover events where ℓ not reconstructed
– Very large instrumental background!

Separate s and t-channel cross section measurement using NN

$E_T+\text{jets}$	L [fb$^{-1}$]	Significance	σ_{s+t} [pb]
	2.1	1.4σ	2.1σ
	3.2	4.0σ	2.4σ
LFS [†]	3.2	1.1σ	2.0σ

† This is for the s-channel only

$E_T+\text{jets}$ NN output
Combination

The individual MVs are combined using:

- **Bayesian Neural Network**
 - Discriminants of the three individual analyses used as input

- **NeuroEvolution of Augmenting Topologies**:
 - NN that optimizes expected p-value taking systematics and binning into consideration

All 3 analyses combined:
- $\rightarrow 5\sigma$ significance!
- \rightarrow Observation!

BLUE combination used as cross check

Sensitivity: $4.3\sigma \rightarrow 4.5\sigma$

All 6 analyses combined:
- $\rightarrow 5\sigma$ significance!
- \rightarrow observation!

Sensitivity: $5.2\sigma \rightarrow 5.9\sigma$

Combined Results

\mathcal{L} [fb$^{-1}$]	Significance	σ_{s+t} [pb]		
	Exp.	Obs.		
D0	2.3	4.5\sigma	5.0\sigma	$3.9^{+0.9}_{-0.9}$
D0	3.2	5.9\sigma	5.0\sigma	$2.3^{+0.6}_{-0.5}$

Dag Gillberg (SFU, Canada)
Discovery of Single Top – Moriond QCD, Mar 17, 2009
Closer look in the signal region

(BNN comb. output > 0.9)

\[(\text{BNN comb. output} > 0.9) \]

(Super Discriminant > 0.76)

D0 2.3 fb\(^1\)
e+\(\mu\) 2-4 jets
1-2 b-tags

Yield vs. Jet multiplicity

Yield vs. \(Q \times \eta\)

Yield vs. Missing \(E_T\) [GeV]

Yield vs. \(m_{\text{top}}\) [GeV]

CDF Run II Preliminary. \(L = 3.2\, \text{fb}^{-1}\)

All channels

Normalized to Prefit

\(Q \times \eta\)

Dag Gillberg (SFU, Canada) Discovery of Single Top – Moriond QCD, Mar 17, 2009 13 / 15
Candidate events

DØ Experiment Event Display
Single Top Quark Candidate Event, 2.3 fb^{-1} Analysis

Run 223473 Evt 27278544 Sun Jul 23 19:21:41 2006
ET scale: 28 GeV
Assuming $|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$ and pure $V-A$ and CP-conserving Wtb interaction

- No assumption about number of quark families or CKM unitarity
- Since the single top cross section proportional to $|V_{tb}|^2$, $|V_{tb}|$ essentially is measured as $\sqrt{\sigma_{\text{meas}}/\sigma_{\text{SM}}}$ but more systematic uncertainties need to be considered

\[|V_{tb}| = 1.07 \pm 0.12, \quad |V_{tb}| > 0.78 \text{ at 95\% CL} \]
Summary

First observation of single top production at the Tevatron by both DØ and CDF!

- Improved direct measurements of $|V_{tb}|$
- Results consistent with the standard model

![DØ logo]

DØ 2.3 fb⁻¹

Method	Cross Section (pb)
Decision Trees	3.74 ±0.95
Bayesian NNs	4.70 ±1.18
Matrix Elements	4.30 ±0.99
BLUE Combination	4.16 ±0.84
BNN Combination	3.94 ±0.88

March 2009

N. Kidonakis, PRD 74, 114012 (2006) $m_{top} = 170$ GeV

CDF Preliminary Single Top Summary

For $M_{top} = 175$ GeV/c²

Source	Value ± Error
S-Channel Likelihood Function (3.2 fb⁻¹)	1.5 ± 0.9
Neural Network (3.2 fb⁻¹)	1.8 ± 0.6
Matrix Element (3.2 fb⁻¹)	2.5 ± 0.7
Likelihood Function (3.2 fb⁻¹)	1.6 ± 0.8
Boosted Decision Tree (3.2 fb⁻¹)	2.1 ± 0.7
Combination (Lepton+Jets) (3.2 fb⁻¹)	2.1 ± 0.6
MET+Jets, (3.2 fb⁻¹)	4.9 ± 2.6
Combination (All Channels) (3.2 fb⁻¹)	2.3 ± 0.6

Single Top Production Cross Section (pb)

-5 0 5
The CDF Detector

- Central Muon
- Central Calorimeter (EH)
- Wall Calorimeter (H)
- Plug Calorimeter (EH)
- Forward Muon
- Forward Calorimeter (E)
- Luminosity Monitor
- Time of Flight
- Central Outer Tracker
- Silicon Vertex Detector

Dag Gillberg (SFU, Canada)
Discovery of Single Top – Moriond QCD, Mar 17, 2009

19 / 15
DØ

- One isolated lepton with $p_T > 15$ and $|\eta| < 1.1$ (2.0) for e (μ)
- Veto events with additional leptons
- 2-4 jets, with $p_T > 15$ GeV and $|\eta_{\text{det}}| < 3.4$
- 1-2 b-tagged jets
- Leading jet $p_T > 25$ GeV
- Leading b-tagged jet $p_T > 20$ GeV
- $\not{E}_T > 20$ (25) for events with 2 (3 or 4) jets
- Remove events with low $H_T(\text{alljets, } \mu, \not{E}_T)$ ($\sim < 120$ GeV) to reduce QCD
- Remove events where ℓ aligned/anti-aligned with \not{E}_T

CDF

- One isolated lepton with $p_T > 20$ and $|\eta| < 1.6$ (not for MJ)
- Veto additional leptons
- 2-3 jets, with $p_T > 20$ GeV and $|\eta_{\text{det}}| < 2.8$
- At least one b-tagged jet
- $\not{E}_T > 25$ (50) for LJ (MJ)
- MJ only: leading jet $p_T > 35$, second jet $p_T > 25$ GeV
- MJ only: Cut on NN trained to characterize QCD
Event Yields in 2.3 fb\(^{-1}\) of DØ Data

Source	2 jets	3 jets	4 jets
s-channel \(tb\)	62 ± 9	24 ± 4	7 ± 2
t-channel \(tqb\)	77 ± 10	39 ± 6	14 ± 3
\(W + bb\)	678 ± 104	254 ± 39	73 ± 11
\(W + c\bar{c}\)	303 ± 48	130 ± 21	42 ± 7
\(W + c\bar{j}\)	435 ± 27	113 ± 7	24 ± 2
\(W + j\bar{j}\)	413 ± 26	140 ± 9	41 ± 3
\(Z + \text{jets}\)	141 ± 33	54 ± 14	17 ± 5
Dibosons	89 ± 11	32 ± 5	9 ± 2
\(t\bar{t} \rightarrow \ell\ell\)	149 ± 23	105 ± 16	32 ± 6
\(t\bar{t} \rightarrow \ell + \text{jets}\)	72 ± 13	331 ± 51	452 ± 66
Multijets	196 ± 50	73 ± 17	30 ± 6
Total prediction	**2,615 ± 192**	**1,294 ± 107**	**742 ± 80**
Data	2,579	1,216	724
CDF Predicted Yields

Process	Number of Events in 3.2 fb$^{-1}$	
	$W + 2$ jets	$W + 3$ jets
s-channel	58.1 ± 8.4	19.2 ± 2.8
t-channel	87.6 ± 13.0	26.2 ± 3.9
$Wb\bar{b}$	656.9 ± 198.0	201.3 ± 60.8
$Wc\bar{c}$	292.2 ± 90.1	98.1 ± 30.2
Wcj	250.4 ± 77.2	52.1 ± 16.0
Mistags	501.3 ± 69.6	151.9 ± 21.4
non-W	89.6 ± 35.8	35.1 ± 14.0
WW	58.5 ± 6.6	21.2 ± 2.4
WZ	28.9 ± 2.4	8.5 ± 0.7
ZZ	0.9 ± 0.1	0.4 ± 0.0
$Z + jets$	36.5 ± 5.6	15.6 ± 2.4
$t\bar{t}$ dilepton	69.2 ± 10.0	60.2 ± 8.7
$t\bar{t}$ non-dilepton	134.9 ± 19.6	421.8 ± 61.1
Total signal	145.7 ± 21.4	45.4 ± 6.7
Total prediction	2265.0 ± 375.4	1111.5 ± 129.5
Observed in data	2229	1086
Systematics Uncertainties

Systematic	Rate	Shape
Jet energy scale	0...16%	✓
Initial state radiation	0...11%	✓
Final state radiation	0...15%	✓
Parton distribution functions	2...3%	✓
Monte Carlo generator	1...5%	—
Event detection efficiency	0...9%	—
Luminosity	6%	—
NN flavor separator	—	✓
Mistag model	—	✓
Non-W model	—	✓
ALPGEN Q²	—	✓
MC Modeling ($\Delta R, \eta(j_2)$)	—	✓
$W b\bar{b} + W c\bar{c}$ normalization	30%	—
$W c$ normalization	30%	—
Mistag normalization	17...29%	—
Top Mass - top-pair normalization	23%	✓

Components for normalization

- Integrated luminosity: 6.1%
- tt cross section: 12.7%
- $Z+$jets and dibosons cross section: 5.8%
- Branching fractions: 1.5%
- Parton distribution functions (signal only): 3.0%
- Triggers: 5.0%
- Instantaneous luminosity reweighting: 1.0%
- Primary vertex selection: 1.4%
- Lepton identification: 2.5%
- Jet fragmentation: (0.7–4.0)%
- Initial-state and final-state radiation: (0.6–12.6)%
- b-jet fragmentation: 2.0%
- Jet reconstruction and identification: 1.0%
- Jet energy resolution: 4.0%
- W+$jets$ and Z+$jets$ heavy flavor correction: 13.7%
- Multijets normalization to data: (30–54)%
- Monte Carlo and multijets statistics: (0.5–16)%

Components for normalization and shape

- Jet energy scale for signal: (1.1–13.1)%
- Jet energy scale for total background: (0.1–2.1)%
- b tagging for single-tagged: (2.1–7.0)%
- b tagging for double-tagged: (9.0–11.4)%

Component for shape only

- ALPGEN reweighting: —
DØ Systematics Uncertainties – all backgrounds

DØ Run II, 2.3 fb⁻¹

Total background uncertainty

Returned by Bayesian binned likelihood fit to data – all systematics and their correlations taken into account and constraints from the data
DØ Systematics Uncertainties – $Wb\bar{b}$

Returned by Bayesian binned likelihood fit to data – all systematics and their correlations taken into account and constraints from the data
Data-background agreement checked in $W+\text{jets}$ and $t\bar{t}$ enriched control samples
DØ Cross-checks and Linearity tests

DØ Run II Prelim. 2.3 fb⁻¹
p17+p20 e+μ channel
1 b-tags
2 jets

DØ Run II Prelim. 2.3 fb⁻¹
p17+p20 e+μ channel
1-2 b-tags
4 jets

Boosted Decision Trees
Slope = 6.994 ± 0.003
Intercept = −4.016 ± 0.018

Input t+b+q Cross Section [pb]

Bayesian Neural Networks
Slope = 0.593 ± 0.003
Intercept = 0.032 ± 0.018

Input t+b+q Cross Section [pb]

Matrix Elements
Slope = 0.086 ± 0.003
Intercept = −0.126 ± 0.018

Input t+b+q Cross Section [pb]
CDF “Golden Event”

Event taken
2007/05/27

light jet $E_T = 52$ GeV

electron $P_T = 66$ GeV/c

b-tagged jet $E_T = 38$ GeV

March 10th, 2009

Rainer Wallny - Observation of Electroweak Single Top Quark Production

Dag Gillberg (SFU, Canada)
CDF – Signal Enriched Region

Signal Features

SD > 0.72

Purity S/B ~ 1.2
Using a large ensemble of pseudo-datasets without any single top content:

Expected p-value
Fraction of 0-signal pseudo-datasets in which we measure at least the standard model cross section (2.86/3.46 pb)

Observed p-value
Fraction of 0-signal pseudo-datasets in which we measure at least the observed cross section
DØ Significance

Discovery of Single Top

- **67.8M pseudo experiments**
- 215 above SM cross section
- p-value: \((3.2 \pm 0.2) \times 10^{-6}\)
- Expected Significance:
 \(4.51^{+0.01}_{-0.01}\) sigma

DØ Combination

- **67.8M pseudo-datasets (background-only)**
- 17 above measured cross section
- p-value: \(2.5 \times 10^{-7}\)
- Observed significance:
 \(= 5.03 \sigma\)

\(\sigma_{\text{meas}} = 3.94 \text{ pb}\)
Measuring a cross section

Probability to observe data distribution D, expecting y:

$$y = \alpha l \sigma + \sum_{s=1}^{N} b_s \equiv a \sigma + \sum_{s=1}^{N} b_s$$

$$P(D|y) \equiv P(D|\sigma, a, b) = \prod_{i=1}^{nbins} P(D_i|y_i)$$

The cross section is obtained

$$Post(\sigma|D) \equiv P(\sigma|D) \propto \int_{a}^{b} \int_{b} P(D|\sigma, a, b) Prior(\sigma) Prior(a, b)$$

- Bayesian posterior probability density
- Shape and normalization systematics treated as nuisance parameters
- Correlations between uncertainties properly accounted for
- Flat prior in signal cross section
Bayesian posterior density
CDF Cross Section Measurement

CDF Run II Preliminary, $L = 3.2 \text{ fb}^{-1}$

$\sigma_{\text{Single Top}} = 2.3^{+0.6}_{-0.5} \text{ pb}$
Direct measurement of $|V_{tb}|$

- **General form of Wtb vertex:**

$$
\Gamma_{Wtb}^\mu = -\frac{g}{\sqrt{2}} V_{tb} \left\{ \gamma^\mu \left[f_1^L P_L + f_1^R P_R \right] - \frac{i\sigma^{\mu\nu}}{M_W} (p_t - p_b)_\nu \left[f_2^L P_L + f_2^R P_R \right] \right\}
$$

- **Assume**
 - SM top quark decay: $V_{td}^2 + V_{ts}^2 \ll V_{tb}^2$
 - Pure $V-A$: $f_1^R = 0$
 - CP conservation: $f_2^L = f_2^R = 0$

- **No need to assume only three quark families or CKM matrix unitarity**
 (unlike for previous measurements using tt decays)

- **Measure the strength of the $V-A$ coupling, $|V_{tb} f_1^L|$, which can be > 1**

Additional theoretical uncertainties

	tb	tqb
Top mass	13 %	8.5 %
Scale	5.4 %	4.0 %
PDF	4.3 %	10 %
α_s	1.4 %	0.01 %
DØ | V_{tb} | measurement

DØ 2.3 fb$^{-1}$

$|V_{tb}f_L^1| = 1.07 \pm 0.12$

flat prior ≥ 0

| $V_{tb}f_L^1|^{2}$

DØ 2.3 fb$^{-1}$

$|V_{tb}| > 0.78$

at 95% CL

$0 \leq$ flat prior ≤ 1

| $V_{tb}|^{2}$