Abstract

We study the nonresonant part of the $^7\text{Be}(p,\gamma)^8\text{B}$ reaction using a three-cluster resonating group model that is variationally converged and virtually complete in the $^4\text{He}+^3\text{He}+p$ model space. The importance of using adequate nucleon-nucleon interaction is demonstrated. We find that the low-energy astrophysical $S$-factor is linearly correlated with the quadrupole moment of $^7\text{Be}$. A range of parameters is found where the most important $^7\text{Be}$ and $^7\text{Li}$ properties are reproduced simultaneously; the corresponding $S$-factor at $E_{\text{cm}} = 20$ keV is $24.6 - 26.1$ eV·b.

PACS numbers: 25.40.Lw, 21.60.Gx, 27.20.+n, 95.30.Cq
The flux of high-energy neutrinos generated in the solar core is directly proportional to the $^7\text{Be}(p, \gamma)^8\text{B}$ reaction rate. Thus, knowledge of $S_{17}$, the $^7\text{Be}(p, \gamma)^8\text{B}$ S-factor at solar energies (center-of-mass energy $E \approx 20$ keV), is crucial to conclusions drawn from present (Homestake, Kamiokande) and future (SNO, Superkamiokande) solar neutrino experiments. Despite extensive experimental efforts, the $^7\text{Be}(p, \gamma)^8\text{B}$ cross section is still the most uncertain nuclear input to the standard solar model, due to a significant spread among the values of $S_{17}$ deduced from the various experiments (direct capture: $S_{17} = 18 - 28$ eV·b and Coulomb break-up: $S_{17} = 16.7 \pm 3.5$ eV·b). Theoretical estimates also vary ($S_{17} = 16 - 30$ eV·b), making these predictions rather unreliable.

The aim of this Letter is to constrain more tightly the theoretical value of $S_{17}$. To this end, we study the $^7\text{Be}(p, \gamma)^8\text{B}$ reaction in a microscopic three-cluster ($^4\text{He}^3\text{He}^p$) approach. This model is currently the closest approximation to a full solution of the microscopic eight-nucleon problem with a consistent treatment of bound and scattering states. As we will demonstrate below, our approach is superior to all previous studies of the low-energy $^7\text{Be}(p, \gamma)^8\text{B}$ reaction.

Adopting a microscopic three-cluster ($^4\text{He}^3\text{He}^p$) ansatz for the eight-nucleon system, our trial function reads

$$\Psi = \sum_{(i)k,S,l_1,l_2,L} \mathcal{A} \left\{ \left[ \Phi^i(\Phi^j\Phi^k) \right]_S \chi^{i(jk)}_{l_1,l_2,L}(\rho_1, \rho_2) \right\}_{JM}, \tag{1}$$

where the indices $i, j,$ and $k$ denote any of the labels $^4\text{He}, ^3\text{He},$ and $p$. In (1) $\mathcal{A}$ is the intercluster antisymmetrizer, the cluster internal states $\Phi$ are translationally invariant harmonic oscillator shell model states, the $\rho$ vectors are the intercluster Jacobi coordinates, and $[\ldots]$ denotes angular momentum coupling. In the sum over $S, l_1, l_2,$ and $L$ we include all angular momentum configurations of any significance. This same model was used in [7] in the study of the ground state of $^8\text{B}$; further details on the model space and other aspects can be found there. The intercluster dynamics is determined by inserting (1) into the eight-nucleon Schrödinger equation using the two-nucleon strong and Coulomb interactions. In addition to the full model space calculation, which contains all three possible arrangements of the three clusters, we also present a restricted calculation involving only ($^4\text{He}^3\text{He}^p$) configurations ($^7\text{Be}^p$ type model space), analogous to simple $^7\text{Be}^p$ potential model studies, e.g. [8].

It is well known that the low-energy $^7\text{Be}(p, \gamma)^8\text{B}$ cross section is strongly dominated by E1 capture. (Previous microscopic calculations have shown that M1 capture only plays a role in the vicinity of the $1^+$ resonance at $E = 640$ keV and is negligible at astrophysical energies [2], while E2 capture is tiny at $E < 500$ keV and can safely be ignored.) We have therefore calculated the E1 capture cross section into the $^8\text{B}$ ground state in perturbation theory (as outlined for example in [4]), describing the initial scattering states and the $^8\text{B}$ ground state by the many-body wave functions determined in our microscopic three-cluster approach.

The capture cross section contains the bound $^8\text{B}$ and the scattering $^7\text{Be}^p$ wave functions. At low energies, deep below the Coulomb barrier, the capture takes place at large $^7\text{Be}-p$ distances, which means that these wave functions must be accurate to distances of a few hundred fermis, which requires a reliable method to determine the unknown relative motion functions $\chi$ in (1). We expand these functions in terms of products of basis functions.
of the Jacobi coordinates, which allow us to reduce the three-cluster wave functions (1) to equivalent two-cluster forms [10]. For example, if we have \( N \) basis functions between the \(^4\text{He}\) and \(^3\text{He}\) clusters in the \((^4\text{He}, ^3\text{He})p\) partition, after this reformulation we get a \(^7\text{Be}+p\) two-cluster wave function with the \(^7\text{Be}\) ground state and \(N - 1\) (unphysical, continuum) excited states.

We use the variational Siegert method to determine the \(^8\text{B}\) boundstate [11]. The trial state contains tempered Gaussian functions [12] plus a term with the correct outgoing Whittaker asymptotics, \(W_{\eta,l}(k\rho)\), in the \(^7\text{Be}+p\) partitions. (Here \(k\) is the wave number corresponding to the \(^8\text{B}\) binding energy relative to the \(^7\text{Be}+p\) threshold.) Using such a trial function in a linear variational method leads to a transcendental equation for the binding energy, which can be solved iteratively. To be able to calculate every many-body matrix element analytically, we match the external Whittaker functions with internal Gaussians, using a modified version of the technique described in [13]. The accuracy of this procedure is better than 1-2\% in \(S_{17}\). For comparison, the uncertainty coming from the different possible ways of handling the proton-neutron mass difference is estimated to be 2.5\% [14].

The scattering wave functions were calculated using the variational Kohn-Hulthén method [13], which ensures the correct scattering asymptotics. To achieve high accuracy we avoid the use of complex wave functions and so neglect channel coupling between different angular momentum channels. Note that this approximation is certainly justified at astrophysical energies where the capture occurs far outside the range of the strong forces. The present scattering solution is numerically well-conditioned for \(E > 3\) keV, and its accuracy is better than 0.1\%. The technical details and further physical implications of the model will be published elsewhere [15].

The bulk of our calculations use the Minnesota (MN) effective nucleon-nucleon interaction [16], which contains central and spin-orbit terms. This force reproduces the most important properties of the low-energy \(N+N\) and \(^4\text{He}+N\) scattering phase shifts and, as we show below, appears to be best suited for the problem at hand. However, we will also compare these results to those obtained with other effective NN interactions. Note that the tensor component of the effective NN interaction in microscopic cluster models is not well constrained [7] and is usually ignored. Nevertheless we have also performed a calculation including a tensor force, which, at the least, gives the correct low-energy order of the triplet-odd \(N+N\) phase shifts [6]. As is customary, we will present our results in terms of the astrophysical S-factor

\[
S(E) = \sigma(E)E \exp\left[2\pi\eta(E)\right],
\]

where \(\eta\) is the Sommerfeld parameter.

The free parameters in our model are the size parameter \((\beta)\) in the \(^4\text{He}\) and \(^3\text{He}\) cluster model functions (technical reasons force us to use the same value for both \(^4\text{He}\) and \(^3\text{He}\)), the exchange mixture parameter of the central part of the effective NN interaction, and the strength of the spin-orbit force. It is generally preferable to adjust these parameters to independent data. However, a meaningful study of the \(^7\text{Be}(p, \gamma)^8\text{B}\) reaction at low energies requires the exact reproduction of the experimental \(^8\text{B}\) binding energy (137 keV), which we have guaranteed by the appropriate choice of the exchange mixture parameter. The strength of the spin-orbit force was adjusted to the experimental splitting between the \(3/2^-\) and \(1/2^-\) \(^7\text{Be}\) states. We have varied \(\beta\), thus changing our description of the \(^7\text{Be}\) properties.
As is demonstrated by the open circles in Fig. 1, $S_{17}$ scales linearly with the quadrupole moment of $^7$Be, $Q_{^7\text{Be}}$. This linear dependence can be understood as follows. As the capture process takes place at very large $^7$Be-$p$ distances, where the bound state wave function is proportional to the fixed Whittaker function, $\Psi_{^7\text{Be}}(\rho) \cdot \rho = \bar{c} W_{\eta,l}(k\rho)$, the low-energy cross section depends almost exclusively on the square of the asymptotic normalization factor $\bar{c}$. Let us compare calculations with different $^7$Be wave functions, which give different $^7$Be radius, quadrupole moment, etc., but with fixed binding energy of $^8$B. The effective local potentials between $^7$Be and $p$ have different radii, which means that the height of the Coulomb barrier is larger if the potential radius (and the $^7$Be radius) is smaller. Consequently, the probability of finding the proton in the outside region decreases as the size of the $^7$Be nucleus becomes smaller. But as the shape of the external wave function is fixed, this smaller probability must stem from a smaller normalization constant $\bar{c}$. It is easy to see that this leads $\bar{c}^2$, and consequently $S_{17}$, to be linearly proportional to either $r_{^7\text{Be}}^2$ or $Q_{^7\text{Be}}$. Note that this relation is not changed if a tensor component is added to the MN interaction (see triangle in Fig. 1). We find the same linear $S_{17}$-$Q_{^7\text{Be}}$ relation in our truncated calculation considering only the $^7\text{Be}$+$p$ model space. Results of these restricted calculations are shown in Fig. 1 as full circles.

Unfortunately the linear relation is not sufficient to determine $S_{17}$ indirectly by measuring the $^7$Be quadrupole moment, as this relation depends upon the effective NN interaction used. To demonstrate this we have performed calculations within the $^7$Be+$p$ model space using the Volkov force V2 and the modified Hasegawa-Nagata (MHN) force, both of which have been used in previous microscopic cluster calculations of the $^7\text{Be}(p,\gamma)^8\text{B}$ reaction at low energies [1,2,15]. While both forces also show the linear dependence between $S_{17}$ and the $^7$Be quadrupole moment, the V2 force yields larger values for $S_{17}$ for a given $Q_{^7\text{Be}}$ (diamonds in Fig. 1), while the MHN force yields smaller values (squares). These differences can be traced to the different quality of the description of the $N+N$ systems (phase shifts, energy and radius of the deuteron) by these forces. For example, while the MN force well reproduces the experimental deuteron energy and radius, the V2 force underbinds the deuteron by 1.6 MeV (however, it unphysically binds the singlet dinucleon states) and the MHN force overbinds it by 4.4 MeV. We note that the M3Y interaction, which was used in Ref. [19] in an external capture approach to predict a very small $^7\text{Be}(p,\gamma)^8\text{B}$ cross section ($S_{17} = 16.5$ eV-b), also overbinds the deuteron. From this discussion we conclude that the Minnesota force is by far the most carefully constructed force available in the cluster literature; we will adopt it in the following. Relatedly, cluster calculations using the MHN and V2 forces should be regarded with care.

Accepting the MN force as adequate for the eight-nucleon problem, our result for $S_{17}$ could be read off Fig. 1 if the $^7$Be quadrupole moment were known. Absent this information, we will estimate a best $S_{17}$ value by constraining the $^4\text{He}$ and $^3\text{He}$ cluster size parameter to reproduce (i) the binding energy of $^7$Be with respect to $^4\text{He}+^3\text{He}$; (ii) the squared sum of the $^4\text{He}$ and $^3\text{He}$ radii; (iii) the quadrupole moment of $^7\text{Li}$ (as a surrogate for the unknown quadrupole moment of the analog nucleus $^7\text{Be}$). These requirements ensure that both the $^7$Be bound states and the $^4\text{He}-^3\text{He}$ relative motion are well described. The second requirement is fulfilled by choosing $\beta = 0.4$ fm$^{-2}$. With this choice, the $^7$Be ground state is slightly underbound by 200 keV, while the quadrupole moment of $^7\text{Li}$ is calculated as $Q = -4.10$ e-fm$^2$, to be compared with the experimental value $-4.05 \pm 0.08$ e-fm$^2$ [20].
We conclude that the three requirements above can be reasonably fulfilled simultaneously. The corresponding $S_{17}$ value is then 26.1 eV·b, while the $^7\text{Be}$ quadrupole moment is $-6.9$ e·fm$^2$. Our approach then calculates the quadrupole moment of $^8\text{B}$ as $7.45$ e·fm$^2$, while the experimental value is $(6.83 \pm 0.21)$ e·fm$^2$ [21]. Even if one concludes from a comparison of our $^7\text{Li}$ and $^8\text{B}$ quadrupole moments with experiment that our $^7\text{Be}$ quadrupole moment is also slightly too large, we note that a 10% reduction in this quantity would only decrease $S_{17}$ to 23.5 eV·b.

If we use the same cluster size parameter in the restricted $^7\text{Be}+p$ space as in the full calculation ($\beta = 0.4$ fm$^2$), we find that the $^7\text{Be}$ nucleus is overbound (by 600 keV), while its quadrupole moment is reduced to $Q = -6.0$ e·fm$^2$. The quadrupole moments of $^7\text{Li}$ ($Q = -3.46$ e·fm$^2$) and $^8\text{B}$ ($Q = 6.55$ e·fm$^2$) are slightly smaller than the experimental values. In this restricted calculation we find $S_{17}$ to be 24.6 eV·b.

If we consider that both the full and restricted $^7\text{Be}+p$ model spaces predict the same linear dependence of $S_{17}$ on the $^7\text{Be}$ quadrupole moment and that these calculations bracket the experimental $^7\text{Li}$ and $^8\text{B}$ quadrupole moments, we conclude that the microscopic three-cluster calculations predict $S_{17}$ to be in the range between 24.6 and 26.1 eV·b. This does not support speculations that $S_{17}$ might be noticeably smaller ($S_{17} = 16.5, 16.9, \text{and } 17$ eV·b in [19], [22], and [23], respectively) than currently accepted in the standard solar model. We note, however, that $S_{17}$ deduced from our model is consistent with the value deduced from the direct capture data ($22 \pm 2$ eV·b [18], and $24 \pm 2$ eV·b [4], respectively).

Less elaborate microscopic cluster calculation have been presented in Refs. [9,24,18,17]. While the two earlier studies [9,24] were restricted to a simple $^7\text{Be}+p$ model space, Ref. [17] recently improved these studies by including a $^5\text{Li}+^3\text{He}$ rearrangement channel. However, in [17] the $^7\text{Be}$ nucleus is described by only one Gaussian basis function between $^4\text{He}$ and $^3\text{He}$, which means that the three-cluster wave function is not free for the variational method. Letting the trial function more flexible would result in the collapse of the artificially fixed wave function. Moreover, in [17] the description of the $^7\text{Be}$ nucleus is rather unphysical, as it is unbound relative to the $^4\text{He}+^3\text{He}$ threshold. In [18] there are two basis functions for $^7\text{Be}$, with carefully chosen parameters, and the most important angular momentum configurations of the $^7\text{Be}+p$ type partition are present. In the present model we use six states for $^7\text{Be}$ (and ten in the $^7\text{Be}–p$ relative motion, and six in all other relative motions) and include all relevant angular momentum channel. Our test calculations showed that the present three-cluster model space is virtually complete (see also the discussion in [7]), which means that our results do not contain the side-effects of an unconverged or incomplete model. Although the incompleteness of the previous works makes the comparison difficult, our results are qualitatively in good agreement with [17] and [18].

In Fig. 2 we show the energy-dependence of the $S$-factor, calculated with the $^7\text{Be}+p$ model space, the MN force, and $\beta = 0.4$ fm$^2$. At low energies our calculated $S$-factor is in rather close agreement with the direct capture data of Ref. [25]. Although our $S$-factor also agrees well with the data of [27] for $E > 1$ MeV, its energy dependence might change, if the coupling between the different angular momentum channels in the $^7\text{Be}+p$ scattering is taken into account.

In summary, we have studied the $^7\text{Be}(p, \gamma)^8\text{B}$ reaction in a microscopic model. At low energies this model is virtually complete in the three-cluster model space. We found that the low-energy astrophysical $S$-factor is strongly correlated with the properties of $^7\text{Be}$ (e.g.,
its quadrupole moment). For a set of parameters that reproduce simultaneously the most important properties of $^7$Be, $^7$Li and $^8$B we predict $Q_{^7}$Be to be between $-6.0 \text{ e.fm}^2$ and $-6.9 \text{ e.fm}^2$ and find $S_{^7} = 24.6 - 26.1 \text{ eV} \cdot \text{b}$, in good agreement with direct capture results and the currently accepted value in the standard solar model. Our calculation, thus does not support the recently suggested smaller values for $S_{^7}$ \cite{19,22}. If it turns out that the $S$-factor is considerably lower than our present value, then the present three-cluster approach is inappropriate and physics beyond our model (larger eight-body model space, improved effective interaction) has to be invoked. We have also shown that the NN interaction used in cluster models must be carefully chosen. Although we found that only the Minnesota force was suitable for the present work, the construction and use of other high quality interactions would be indispensable. We also note that a precise measurement of the $^7$Be quadrupole moment or radius could test the self-consistency of our conclusions.

This work was supported by the Fulbright Foundation (A. C.) and NSF Grant Nos. PHY90-13248 and PHY91-15574 (USA), and by OTKA Grant Nos. 3010 and F4348 (Hungary). We thank Dr. E. Kolbe for useful discussions and Dr. Z. Papp for his generous help in numerical methods.
REFERENCES

[1] J. N. Bahcall, *Neutrino Astrophysics* (Cambridge University Press, 1989).
[2] N. Hata, in Proceedings of the Solar Modeling Workshop, Seattle, March 1994, preprint.
[3] S. Turck-Chieze, W. Dappen, E. Fossat, J. Provost, E. Schatzman, and D. Vignaud, Phys. Rep. **230**, 57 (1993).
[4] B.W. Filippone, Ann. Rev. Nucl. Sci. **36**, 717 (1986), and references therein.
[5] T. Motobayashi *et. al.*, RIKEN preprint Rikkyo RUP 94-2, Submitted to Phys. Rev. Lett.
[6] K. Langanke, in Proceedings of the Solar Modeling Workshop, Seattle, March 1994, preprint, and references therein.
[7] A. Csótó, Phys. Lett. **B315**, 24 (1993).
[8] K. H. Kim, M. H. Park, and B. T. Kim, Phys. Rev. C **35**, 363 (1987); H. Krauss, K. Grün, T. Rauscher, and H. Oberhummer, Ann. Phys. **2**, 258 (1993).
[9] P. Descouvemont and D. Baye, Nucl. Phys. **A407**, 77 (1983); *ibid*. **A487**, 420 (1988).
[10] Y. Fujiwara and Y. C. Tang, Phys. Rev. C **28**, 1869 (1983).
[11] B. G. Giraud, M. V. Mihailovic, R. G. Lovas, and M. A. Nagarajan, Ann. Phys. (N.Y.) **140**, 29 (1982).
[12] A. Csótó, Phys. Rev. C **49**, 3035 (1994).
[13] M. Kamimura, Prog. Theor. Phys. Suppl. **68**, 236 (1980).
[14] T. Kajino, Nucl. Phys. **A460**, 559 (1986).
[15] A. Csótó *et. al.*, to be published.
[16] D. R. Thompson, M. LeMere and Y. C. Tang, Nucl. Phys. **A286**, 53 (1977); I. Reichstein and Y. C. Tang, *ibid*. **A158**, 529 (1970).
[17] P. Descouvemont and D. Baye, Nucl. Phys. **A567**, 341 (1994).
[18] C. W. Johnson, E. Kolbe, S. E. Koonin, and K. Langanke, Ap. J. **392**, 320 (1992).
[19] A. M. Mukhamedzhanov and N. K. Timofeyuk, Sov. J. Nucl. Phys. **51**, 431 (1990).
[20] P. Pyykkö, Z. Naturforsch. **47a**, 189 (1992).
[21] T. Minamisono *et. al.*, Phys. Rev. Lett. **69**, 2058 (1992).
[22] Y. E. Kim, R. A. Rice, and A. L. Zubarev, preprint PNTG-94-12, April (1994).
[23] F. C. Barker and R. H. Spear, Astrophys. J. **307**, 847 (1986).
[24] E. Kolbe, K. Langanke and H. J. Assenbaum, Phys. Lett. **B214**, 169 (1988).
[25] R. W. Kavanagh, T. A. Tombrello, J. M. Mosher, and D. R. Goosman, Bull. Am. Phys. Soc. **14**, 1209 (1969); R. W. Kavanagh, in *Cosmology, Fusion, and Other Matters*, edited by F. Reines (Colorado Associated University Press, Boulder, 1972).
[26] B. W. Filippone, A. J. Elwyn, C. N. Davids, and D. D. Koetke, Phys. Rev. Lett. **50**, 412 (1983); Phys. Rev. C **28**, 2222 (1983).
[27] F. J. Vaughn, R. A. Chalmers, D. Kohler, and L. F. Chase, Phys. Rev. C **2**, 1657 (1970).
FIGURES

FIG. 1. The astrophysical $S$-factor of the $^7$Be($p, \gamma$)$^8$B reaction as a function of the negative of the $^7$Be quadrupole moment. The symbols are explained in the text.

FIG. 2. Energy dependence of the $^7$Be($p, \gamma$)$^8$B astrophysical $S$-factor. The symbols denote the experimental data of Ref. [25] (open circles), Ref. [26] (filled circles), and Ref. [27] (squares). The inset shows the low-energy part on a magnified scale. See the error bars in the original references.
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/nucl-th/9408001v1
This figure "fig1-2.png" is available in "png" format from:

http://arxiv.org/ps/nucl-th/9408001v1