Lipidomics Study of the Therapeutic Mechanism of Plantaginis Semen in Potassium Oxonate-Induced Hyperuricemia Rat

Wenjun Shi
Beijing University of Chinese Medicine School of Chinese Materia Medica

Fei Yang
Beijing University of Chinese Medicine School of Chinese Materia Medica

Liting Wang
Beijing University of Chinese Medicine School of Chinese Materia Medica

Nankun Qin
Beijing University of Chinese Medicine School of Chinese Materia Medica

Chengxiang Wang
Beijing University of Chinese Medicine School of Chinese Materia Medica

Guang Xu
Beijing University of Chinese Medicine School of Chinese Materia Medica

Yuying Guo
Beijing University of Chinese Medicine School of Chinese Materia Medica

Xue Yu
Beijing University of Chinese Medicine School of Traditional Chinese Medicine

Qun Ma (maqun99@163.com)
Beijing University of Chinese Medicine https://orcid.org/0000-0003-2706-9051

Research

Keywords: Hyperuricemia, lipidomics, Plantaginis semen, lipid metabolism disorder, Lowering uric acid

Posted Date: November 5th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-101537/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Lipidomics study of the therapeutic mechanism of Plantaginis semen in potassium oxonate-induced hyperuricemia rat

Wenjun Shi\(^a\)\(^,\)\(^1\), Fei Yang\(^a\)\(^,\)\(^1\), Liting Wang\(^a\), Nankun Qin\(^a\), Chengxiang Wang\(^a\), Guang Xu\(^a\), Yuying Guo\(^a\), Xue Yu\(^b\), Qun Ma\(^a\)*

\(^a\)School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.

\(^b\)School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.

\(^1\) Equal contribution.

* Corresponding authors.

Email addresses: maqun99@163.com (Qun Ma).

Tel.: +86 13910186491 (Qun Ma)
Abstract

Background

Plantaginis semen has been widely used as folk medicine and health care food against hyperuricemia (HUA) and gout, but little was known about its pharmacological mechanism.

Methods

The model was established by potassium oxonate intragastric administration. 42 Sprague-Dawley (SD) male rats were randomly divided into the control group, model group, benzbromarone group (10 mg/kg) and three Plantaginis semen groups (n = 7). The Plantaginis semen groups were treated orally with Plantaginis semen at 0.9375, 1.875 and 3.75 g/kg for 28 days. The levels of serum uric acid (UA), creatinine (Cr), triacylglycerol (TG) and tumor necrosis factor-α (TNF-α) were detected using enzyme-linked immunosorbent assay kits. Ultra performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS) was used as the basis for serum lipidomics analysis, and orthogonal partial least squares discriminant analysis (OPLS-DA) was carried out for the pattern recognition and characteristic metabolites identification. The relative levels of critical regulatory factors of urate anion transporter 1(URAT1) and phosphatidylinositol 3-kinase/ protein kinases B (PI3K/Akt) were determined by quantitative real-time polymerase chain reaction (RT-qPCR).

Results

Compared with the model group, the levels of serum UA, Cr, and TG were significantly (p<0.01) decreased in benzbromarone and three Plantaginis semen groups and the level
of serum TNF-α was significantly (p<0.05) decreased in benzbromarone and low dose
of Plantaginis semen group. With lipidomics analysis, significant lipid metabolic
perturbations were observed in HUA rats, 13 metabolites were identified as potential
biomarkers and glycerophospholipid metabolism pathway was mostly affected. These
perturbations can be partially restored via treatment of benzbromarone and Plantaginis
semen. Additionally, the URAT1 and PI3K/Akt mRNA expression levels were
significantly decreased (p<0.05) after treatment with benzbromarone and high dose of
Plantaginis semen.

Conclusions

Plantaginis semen had significant anti-HUA, anti-inflammatory and renal protection
effects and could attenuate potassium oxonate-induced HUA through regulation of lipid
metabolism disorder.

Trial registration

Not applicable

Key words: Hyperuricemia; lipidomics; Plantaginis semen; lipid metabolism
disorder; Lowering uric acid
Background

Hyperuricemia (HUA), the cause of gout, is associated with cardiovascular diseases and metabolic diseases such as diabetes hypertension and dyslipidemia[1]. Elevated prevalent of HUA has been observed throughout the world, placing a considerable public health burden on the society[2]. Currently, two categories medicine commonly used for the treatment of HUA are uricosuric agents such as probenecid and benzbromarone and/or xanthine oxidase (XOD) inhibitors such as allopurinol[3]. However, allopurinol may produce a mild skin rash and severe cutaneous reactions and there are some unanswered questions about the pharmacological interactions of probenecid and the hepatotoxicity of benzbromarone[4, 5]. So alternative or complementary therapies are in need of reducing the risk of HUA attacks.

Traditional Chinese medicine (TCM) is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies[6]. Plantaginis semen, the dried ripe seed of Plantago asiatica L. or Plantago depressa Willd, has certain activities in anti-inflammatory, blood lipid lowering and immune regulatory actions and has been widely used as folk medicine and health care food against HUA and gout, but little was known about its pharmacological mechanism[7, 8].

It has been reported that HUA was concerned with the disorders of lipid metabolism, the results of an epidemiological survey showed that about 60% of patients with HUA had abnormal lipid metabolism and later developed HUA with hyperlipidemia[9]. However, current metabonomic studies associated with HUA are mainly pay attention
to the total relevant metabolites rather than lipids, and the lipid biomarkers should be subjected to further study[10, 11]. Lipidomics emphasis on the determination of lipid molecular composition in cells, biofluids, tissue, or whole organism and could be a puissant tool to provide a new insight into the change of lipid metabolism in HUA and the anti-HUA mechanism of Plantaginis semen[12].

URAT1 plays a central role in renal urate reabsorption and is the target of uricosuric drugs in treating HUA[13, 14]. It has also been reported that activation of PI3K/Akt pathway is able to trigger inflammatory and kidney injuries, causing renal excretion of uric acid impaired and HUA[15-21]. Both of them play an important role in the treatment of HUA.

In this study, we investigated the effects and mechanism of Plantaginis semen on HUA rats and preliminarily evaluate the actions of Plantaginis semen on URAT1 and PI3K/Akt pathway. Our findings shed light on the relationship between lipid metabolism and HUA and supplied evidences that Plantaginis semen may be used for the treatment of HUA in the clinic.

Methods

Chemicals and reagents

Benzbromarone tablets (50 mg/tablet) were provided by Excella GmbH & Co.KG (Nurnberger, Germany). Potassium oxonate was acquired from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). Pentobarbital sodium was provided by Tianjin Fuchen Chemical Technology Co., Ltd. (Tianjin, China). LC-MS grade acetonitrile, formic acid, ammonium formate, isopropyl alcohol, methanol were
supplied by America Thermo Fisher Scientific Co., Ltd. (Massachusetts, America).
Analytical grade ethanol was purchased from America Thermo Fisher Scientific Co., Ltd. (Massachusetts, America). Ultrapure water was made by America Millipore Co., Ltd. Milli-q ultra pure water machine (Massachusetts, America).

Preparation of plantaginis semen extract

Plantaginis semen was purchased from Tongrentang Chinese Medicine, (Beijing, China). 100g Plantaginis semen was taken and 65% ethanol of 8 times the amount of herbs was added to heat and reflux for 3 times, 2 h each time. The filtrate obtained from three reflux times was mixed and concentrated to 100 mL, containing crude drug content of 1.0g·mL\(^{-1}\). The filtrate was refrigerated for later use.

Animal care and experimental design

Specific pathogen free (SPF) grade Sprague-Dawley (SD) male rats (200±20g) were bought from Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China) and the certificate number is SCXK (Jing) 2016-0006. Rats were fed with a standard laboratory environment (humidity 40-70% and temperature 20-25°C) and hold on a 12 h/12 h light/dark cycle during the whole period. All experimental protocols were approved by the ethics committee of Beijing University of Chinese Medicine (Beijing, China).

After the acclimation period, rats were randomly separated out into six group equally (n=7), including control group (C), model group (M), benzbromarone group (Y), high dose group (CH), medium dose group (CM) and low dose group (CL). The rat HUA model was established by potassium oxonate intragastric administration. At 1h before
drug administration, the rats were given potassium oxonate by intragastric
administration according to 1.5g•kg$^{-1}$ dose, and the control group was given the
corresponding volume distilled water by intragastric administration. Then the CH, CM,
and CL groups were orally administered three dosages of Plantaginis semen
(0.9375g/kg, 1.875g/kg, 3.75g/kg), and the Y group was treated with benzbromarone
(10 mg/kg) once a day for 28 days.

Serum biochemical indicator measurements

On the 28th day of modeling, rats were anesthetized with 2% pentobarbital sodium (0.3
mL/100g, i.p. injection). The blood samples were taken from the abdominal aorta by a
vacuum blood collection tube, and centrifuged for 10 min (3000 rpm, 10°C). Serum
samples were stored at -80°C for analysis. The levels of serum UA, Cr, TG and TNF-α
were measured using commercially available kits (Jiancheng, Nanjing, China)
according to the manufacturer’s instructions.

Serum UPLC-Q-TOF/MS analysis

Serum samples were thawed at room temperature before data acquisition. 320 μL of
chloroform-methanol (3:1, V/V) was put into 80μL serum sample, vortex for 15s each
time and centrifuged (10000 r•min$^{-1}$) at room temperature for 10 min. The supernatant
was taken for UPLC–Q-TOF/MS analysis.

The UPLC column was Acquity CSH C18(2.1×100mm,1.7μm, Waters Corp., Milford,
MA, USA) with the column temperature maintained at 40 °C, flow rate 0.3mL•min$^{-1}$.
The gradient mobile phase was composed of acetonitrile-water-formic acid (60:40:0.1)
plus 10mmol·L$^{-1}$ ammonium formate (phase A) and isopropanol-methanol-formic acid
(90:10:0.1) plus 10mmol·L⁻¹ ammonium formate (phase B). The gradient elution programme was as follows: 0.0min, 60%A; 0.0~3.1min, 57%A; 3.1~4.1min, 30%A; 4.1~4.3min, 27%A; 4.3~8.0min, 23%A; 8.0~10.0 min, 60%A.

MS analysis was performed by Xevo G2 Q/TOF MS (Waters Corp., Milford, MA, USA) system. The optimized mass conditions were as follows: the ionization mode is electrospray ionization and was set in positive modes. The flow rate of the cone gas was 20 L/h. The capillary voltage was 2.5 kV in positive mode. The source temperature was 120 °C and the atomizing gas temperature is 450°C. MS data were collected in the full scan mode from m/z50–1200 amu.

Data processing

The raw data obtained by UPLC-Q/TOF-MS were imported into MassLynx V4.1 software (Waters Corp., Milford, MA, USA) to pretreat the data, including peak filtering and peak alignment. The resultant data matrices were introduced to SIMCA-P (version 13.0, Umetrics, Sweden) for orthogonal projection to latent structures (OPLS) analysis. The multivariate analysis results are expressed in the form of scores plot and S-plot to observe the global clustering trends of various groups and visualize their distributions. The model parameters including R^2 (goodness of fit) and Q^2 (goodness of prediction) calculated from the OPLS-DA models were used to evaluate the quality of these models. Finally, potential biomarkers were filtered by the results of variable importance for the projection (VIP) values (VIP>1) and t-test ($p<0.5$) values. The above-mentioned biomarkers are analyzed by m/z, retention time (RT) and fragment ion information, combined with HMDB (http://www.hmdb.ca/) and Lipid Maps.
Finally, the pathway analysis of potential biomarkers were performed with the Metabo Analyst (http://www.metaboanalyst.ca/), which was based on the database source including KEGG (http://www.genome.jp/kegg/) and a correlation metabolic networks for disturbed pathways in HUA rats was constructed.

RT-qPCR

RNA from kidney tissue was extracted by Hipure Total RNA Mini Kit (Magen, Guangzhou, China). RT-qPCR was carried out using TB Green Primix Ex TaqII kit (Takara, Kyoto-fu, Japan) in Bio-Rad CFX96 Real Time PCR System (BIO-RAD, Shanghai, China). The primers used in the study are: URAT1, Forward: 5’CTCTGCTGGTGTATGGAGTGG-3’, Reverse: 5’TTTCTTGATGTCTTGGATGGT-3’, PI3K, Forward: 5’GGTTCTTGCGAAGTGAGATAGCCC-3, Reverse: 5’ACCTGCTGCCTGAAGTGAGATAGCCC-3’, Akt, Forward: 5’TGTCTCGTGAGCGCGTGTTTT-3’, Reverse: 5’TGTTCTTGCGAAGTGAGATAGCCC-3’. Ct (cycle threshold) value was collected. Detected in triplicate and the relative expression levels of genes were determined by the \(^{2-\Delta\Delta C_t}\) method.

Results

Plantaginis semen decreased the level of serum UA in HUA rats

After 28 days, rats fed potassium oxonate change in the lever of serum UA (Fig.1a). As compared to the C group (92.84 ± 16.22 umol•L\(^{-1}\)), the lever of serum UA in the M group (186.44 ± 26.20 umol•L\(^{-1}\)) increased significantly (p<0.01), which represents the success of the mold. Conversely, the lever of serum UA in the Y (138.91 ± 15.41
Plantaginis semen exerted renal protection effect in HUA rats

Serum Cr is necessary to assess kidney function and can reflect the extent of renal injury[22]. The results depicted in Fig.1b show that the levels of serum Cr (45.79 ± 4.02 μmol•L⁻¹) in the M group were significantly (p<0.01) increased, as compared to serum Cr (35.28 ± 7.26 μmol•L⁻¹) observed for the C group. After receiving treatment for 28 days, the serum Cr levels (35.47±3.51, 39.72±5.55, 39.02±4.27 μmol•L⁻¹) in the CH, CM and CL groups were significantly (p<0.01) reduced, as compared to that of the M group. And the serum Cr of these 3 groups all lower than Y group, indicated that Plantaginis semen has a good protective effect on renal.

Plantaginis semen ameliorated serum TG accumulation in HUA rats

Serum level of TG was remarkably (p<0.01) elevation in the M group as compared with the control group. Then, over 28 days of treatment, the TG levels in the CH (0.18 ± 0.08 mmol/L), CM (0.17 ± 0.07 mmol/L), and CL (0.24 ± 0.06 mmol/L) groups all significantly (p<0.01) reduced compared to that in the M group (0.50 ± 0.17 mmol/L). The results were depicted in Fig.1c. The effect of CL group was close to that of Y group, and the effects of CM and CH group were better than Y and CL group and close to C group.

Plantaginis semen reduced the level of TNF-α in HUA rats
In our study, the levels of TNF-α in the serum were used to evaluate the anti-inflammatory effect of Plantaginis semen in vivo. As shown in Fig.1d, the level of TNF-α in the M group (117.10 ± 27.03 pg•mL$^{-1}$) significantly ($p<0.05$) higher than that in the C group (81.77 ± 17.08 pg•mL$^{-1}$). In the CL group, the level of TNF-α (85.30 ± 21.29 pg•mL$^{-1}$) was significantly ($p<0.05$) decreased compared to M group and are nearly to Y group (81.77 ± 17.08 pg•mL$^{-1}$). The levels of TNF-α in the CM and CH groups decreased but remained insignificant.

Metabolic perturbations and differential metabolites associated with HUA Rats

To investigate the effect of potassium oxonate on endogenous component changes, an OPLS-DA model was used to compare the serum samples obtained during 28 days from the model and control groups. As shown in the OPLS-DA score plots of serum samples (Fig.2a), a separation between the model group and the control group was clearly seen, indicating that the HUA model was successful and had completely different metabolic profiles compared with the healthy controls. The parameters of the OPLS-DA models were as follows: $R^2Y=0.936$ and $Q^2=0.737$. The R^2Y and Q^2 values reflect excellent predictability and explain the differences between the control and model groups. In addition, 200-iteration permutation tests were also performed to assess the robustness of OPLS-DA models (Fig.2b). The validation plots showed that the original OPLS-DA models were not random and overfitted as both permuted Q^2 and R^2 values were lower than the corresponding original values along with the Y-intercepts of the regression lines of the Q^2-points below zero.

Potential biomarkers were identified from the interactions between control and model
groups using the corresponding S-plot analysis under OPLS-DA model. The metabolites whose VIP values>1 and p values<0.05 of OPLS-DA were presumed as significant differences. Databases such as KEGG, METLIN, and HMDB were used to identify potential bio-markers, along with UPLC/Q-TOF-MS information. The results were shown in table 1. 13 metabolites were matched and identified, including 4 phosphatidylcholine (PC), 4 hemolytic phosphatidylcholine (LPC), 2 phosphatidylethanolamine (PE), 2 TG, 1 cholesterol ester (CE). Compared with the control group, the metabolic perturbations occurring in serum of the HUA rats were mainly characterized by increased levels of these lipids.

Table 1 Identification results of differential metabolites associated with HUA rats

No.	RT(min)	m/z	Formula	Metabolite	VIP	M vs. C	Y vs. M	CL vs. M	CM vs. M	CH vs. M
1	5.5875	898.7862	C_57H_100O_5	TG(18:2/18:1/18:2)	2.75	↑**	↓##	—	↓##	↓##
2	8.9231	931.7526	C_55H_92O_6	TG(20:4/14:0/18:3)	2.55	↑**	↓#	—	↓##	—
3	8.4467	925.7098	C_49H_92NO_8P	PC(24:1/16:1)	2.54	↑**	↓#	—	↓##	↓##
4	2.6081	496.3364	C_36H_40NO_7P	PC(24:1/18:2)	2.43	↑**	—	↓##	↓##	↓##
5	9.0509	264.9627	C_43H_82NO_8P	PC(15:0/18:0)	2.29	↑**	—	↓##	—	—
6	9.0937	326.9082	C_44H_82NO_8P	PC(24:1/22:2)	2.70	↑**	↓##	↓##	↓##	↓##
7	1.8681	516.3129	C_32H_60NO_7P	LPC(16:1/0:0)	2.35	↑**	—	↓##	—	—
8	2.0389	610.3188	C_36H_60NO_7P	LPC(22:4/0:0)	2.56	↑**	↓##	↓##	—	—
9	2.0460	542.3279	C_36H_60NO_7P	LPC(18:2/0:0)	2.37	↑**	↓##	↓##	↓#	—
No.	Mass Value	Charge Value	Molecule	p-Value	Regulation					
-----	------------	--------------	----------	---------	------------					
10	4.1085	273.6606	C₂₅H₄₂NO₇P LPC(18:0/0:0)	2.09	↑**					
11	9.3573	416.2983	C₄₅H₇₆NO₈P PE(18:3/22:4)	2.15	↑**					
12	9.0937	326.9082	C₅₃H₁₀₂NO₈P PE(24:1/24:1)	2.43	↑** ↓##					
13	9.0230	376.8943	C₅₁H₉₀O₂ CE(24:1)	2.60	↑** ↓##					

C, control group; M, model group; Y, benzbromarone group; CL, low dosage group; CM, medium dosage group; CH, high dosage group; **, p<0.01 vs. control group. *, p<0.05 vs. control group; ##, p<0.01 vs. model group; #, p<0.05 vs. model group. (↑): up-regulated and (↓): down-regulated. (-): no statistically significant difference.

Metabolic changes under the treatment of benzbromarone and Plantaginis semen

Fig.3 showed distinct metabolic profiles among different groups and there is a tendency to return to the normal group in benzbromarone-treated and different dose Plantaginis semen-treated groups. Heatmap analysis was produced to intuitively compare the relative content of 13 potential metabolites among 6 groups referring to table1 (Fig.4). Control group and model group clearly distinguished, the color depth of benzbromarone group and Plantaginis semen groups were close to control group, indicating that the performance on the callback of these metabolites is extraordinary obvious. 8, 7, 11 and 6 differential metabolites associated with HUA in serum of rats were significantly (p<0.05) reversed by benzbromarone, low dose Plantaginis semen, medium dose Plantaginis semen, high dose Plantaginis semen respectively (Fig.5). These findings suggested that the metabolic perturbations induced by HUA could be normalized by benzbromarone and Plantaginis semen treatment. Among them, the effect of normalizing differential metabolites in the middle dose Plantaginis semen group was
the best.

Metabolic pathways related to potential biomarker

The 13 potential biomarkers were found to be primarily involved in 6 disturbed metabolic pathways. Based on the impact value greater than 0.1 and p value less than 0.05, glycerophospholipid metabolism was considered as the most relevant pathways in potassium oxonate-induced HUA (Fig.6) and a global metabolic network was mapped (Fig.7).

Plantaginis semen downregulated the mRNA expression of PI3k, Akt, URAT1 in HUA rats

The mRNA expressions of PI3K, Akt and URAT1 in rat renal were shown in Fig.8. The contents of URAT1 and PI3K/Akt were significantly (P<0.05) increased in M group compared with those in C group. After 28 days administration, Y group and three Plantaginis semen groups all showed significantly (P<0.01) decrease in the expressions of URAT1 mRNA, while there were no significant differences (P>0.05) in the expressions of PI3K and Akt mRNA between M, CL and CM groups. The Akt expression of CH group was approximate to that of Y group and the PI3k expression of CH group was even lower than Y group (Fig.8 b, c).

Discussion

The study provides evidences that Plantaginis semen attenuates potassium oxonate-induced HUA through regulation of lipid metabolism disorder. This study also presents the change in lipid metabolism of HUA which helps to explain the relationship between lipid metabolism and HUA. Further, Plantaginis semen influenced URAT1 and
PI3K/Akt pathway to support its UA lowering efficacy in HUA rats.

Urate crystals deposit in the blood vessel walls and kidneys will cause chronic inflammatory damage and releasing large amounts of inflammatory factors, such as TNF-α, IL-6[23]. Elevated TNF-α levels will also further aggravate renal tubular and interstitial damage, resulting in UA excretion impaired[24, 25]. So long-term persistent HUA is closely related to inflammation and will lead to renal dysfunction and renal impairment[13]. In this experiment, by determining the levels of serum Cr, UA and serum TNF-α, we can evaluate the renal function of HUA rats and assess the anti-inflammatory and reducing uric acid effects of Plantaginis semen. While increasing the serum UA of the rats, the levels of serum TNF-α and Cr also increased, indicating that inflammatory factors are involved in the development and progression of HUA[26] and HUA rats had renal function injury and chronic low-grade inflammatory in a state of high uric acid. However, different dose of Plantaginis semen treatment could significantly decrease the levels of serum UA in HUA rats and reduce their serum Cr and TNF-α concentration simultaneously, indicating that the ethanol extract of Plantaginis semen could improve the renal injury and protect renal in HUA rats and may treat HUA via their anti-inflammatory effect.

The link between HUA and metabolic syndrome had been recognized, and a growing body of research indicated that there is a strong concurrence between dyslipidemia and hyperuricemia. Studies have indicated that elevated levels of SUA up regulates the concentration of TG[27]. Benzbromarone can regulate the expression of lipid metabolism genes, when benzbromarone was used in uric acid-lowering therapy on
hypercholesterolem and hypertriglyceridemia in gouty patients, the lever of TG modestly decreased[28, 29]. The level of serum UA increased accompanied with the increment of serum TG levels indicating that disorders of lipid metabolism occurred in HUA rats. After the treatment with benzbromarone and Plantaginis semen, the serum TG level was decreased which demonstrated that Plantaginis semen has similar effect to benzbromarone and the Plantaginis semen may via lowering accumulation of lipids and restoring lipid metabolism to ease HUA.

A lipidomics approach was also applied to describe the metabolic differences in this experiment. In our study, HUA rats in our study exhibited an elevated level of CEs, TGs, PCs, LPCs, PEs in serum compared with normal rat. CE (24:1) is a kind of cholesterol fatty acid ester and can be hydrolyzed by cholesterol esterase to produce cholesterol and free fatty acids[30]. Therefore, the increase of CE level will lead to the increase of serum total cholesterol (TC). Elevated serum TC is more common in nephrotic syndrome and cardiovascular and cerebrovascular diseases and the determination of serum TC has become a routine item for the analysis of blood lipids[31]. The serum CE level in HUA rats increased, indicating the occurrence of dyslipidemia. The synthesis of TG will need NADPH and produce uric acid[32], the increase of serum uric acid provides raw materials for TG synthesis, HUA maybe a causal factor for high TG, and the lipidomics result was consistent with the literature reports [33, 34]. LPCs are metabolites of PCs. LPC is an important lipid compound on oxidized low-density lipoprotein (ox-LDL), serum LDL cholesterol was positively correlated with uric acid levels[35]. Liu Ning et al. found that UA could activate the phospholipid-remodeling
enzymes LPCAT3 and LXRα in vivo and in vitro, and LPCAT3 possesses primary LPC acyltransferase activity and catalyzes the production of PCs[36], so the levels of PC and LPC were both up-regulated in HUA rats. PE is an early indicators for the risk of atherogenesis[37], and high serum UA levels have an independent association with increased arterial stiffness[38], the elevated serum PE level may be an intermediate process of hyperuricemia leading to atherosclerosis.

Glycerophospholipid metabolism was considered as the most relevant pathways in potassium oxonate-induced HUA. Glycerophosphatide is one of the most abundant phospholipids in the body. It is also one of the components of bile and membrane surfactant besides biofilm[39]. TG, PC, LPC and PE were mainly involved in glycerophospholipids metabolism and their levels were obviously increased in the serum of the HUA rats indicating glycerophospholipid plays a crucial role in the development of HUA and high uric acid will induce phospholipids metabolic disturbances. The results of lipidomics indicated that lipid metabolism disorder occurred in HUA rats, whereas, the change was reversed under the Plantaginis semen treatment. From a holistic perspective, variations in the metabolite profiles of different groups showed that Plantaginis semen could enhance the metabolism of endogenous substances in HUA rats, which may be the potential mechanism of Plantaginis semen in the treatment of HUA.

Plantaginis semen significantly inhibited the expression of URAT1 in the renal tissue of HUA rats, indicating that Plantaginis semen could achieve the effect of treating HUA by promoting uric acid excretion. PI3K/Akt pathway is closely related to...
inflammation[15, 40, 41], the inhibitory effect of Plantaginis semen on PI3k/Akt pathway indicated that the mechanism of protecting kidney and reducing serum UA may be related to its anti-inflammatory response. Huang Wenhui et al. found that the PI3K/Akt signaling pathway could regulate the expression of URAT1[42]. In this study, we also found that renal URAT1 mRNA, PI3K mRNA and Akt mRNA in the CH group showed a downregulation trend. It was speculated that Plantaginis semen mediated the PI3K/Akt signaling pathway to regulate the expression of URAT1. However, there were still some deficiencies in this study, and the relationship between PI3K/Akt and URAT1 needed to be further verified.

Conclusions

Plantaginis semen had uric acid reduction, anti-inflammatory, kidney protection and lipid-lowering pharmacological effects and a promising drug to treat HUA. 13 endogenic compounds were identified as HUA biomarkers. The mechanism of Plantaginis semen treating HUA might be attributed to its regulation of lipid metabolism disorder especially the regulation of glycerophospholipid metabolism pathway. In addition, Plantaginis semen may down-regulate URAT1 expression by inhibiting the PI3K/Akt pathway, but the mechanism needs to be further studied.
Figure legends:

Fig. 1 The levels of serum UA, Cr, TG, TNF-α in each group. C, control group; M, model group; Y, benzbromarone group; CL, low dosage group; CM, medium dosage group; CH, high dosage group; values are given as the mean ± SD (n=7), **, P<0.01 vs. control group. *, P<0.05 vs. control group; ##, P<0.01 vs. model group; #, P<0.05 vs. model group.

Fig. 2 OPLS-DA score plots (a) and the corresponding validation plots (b) with 200 times permutation tests obtained.
Fig. 3 Metabolic profiles of rat serum in the control, model, benzbromarone, and different dose Plantaginis semen groups. C, control group; M, model group; Y, benzbromarone group; CL, low dosage group; CM, medium dosage group; CH, high dosage group.

Fig. 4 Heat map analysis of relative contents of potential metabolites. (green through dark red corresponding to a progressive increase in concentration). C, control group; M, model group; Y, benzbromarone group; CL, low dosage group; CM, medium dosage group; CH, high dosage group.
Fig. 5 Comparison of 13 biomarkers peak relative signal intensities in 6 groups. The relative value of potential biomarkers in the control group was set as 1. C, control group; M, model group; Y, benzbromarone group; CL, low dosage group; CM, medium dosage group; CH, high dosage group; **, P<0.01 vs. control group. *, P<0.05 vs. control group; ##, P<0.01 vs. model group; #, P<0.05 vs. model group.
Fig. 6 six pathway related to changed biomarkers. a: Glycerophospholipid metabolism, b: Linoleic acid metabolism, c: Glycosylphosphatidylinositol (GPI)-anchor biosynthesis, d: alpha-Linolenic acid metabolism, e: Arachidonic acid metabolism, f: Steroid biosynthesis.
Fig. 7 KEGG global metabolic network related to changed biomarkers. The purple textboxes represented the pathways, the yellow and green textboxes represented the significant and no detection metabolites. The arrows in red represented the up regulated metabolites. The arrows in blue represented direct or indirect connections between two metabolites.

Fig. 8 Effects of Plantaginis semen on PI3k/Akt and UTAR1 mRNA expression. C, control group; M, model group; Y, benz bromarone group; CL, low dosage group; CM, medium dosage group; CH, high dosage group; values are given as the mean ± SD(n=7), **, P<0.01 vs. control group. *, P<0.05 vs. control group; ##, P<0.01 vs. model group; #, P<0.05 vs. model group.
List of abbreviations

CE: Cholesterol ester
Cr: Creatinine
HUA: Hyperuricemia
LPC: Hemolytic phosphatidylcholine
UA: Uric acid
UPLC−Q-TOF/MS: ultra performance liquid chromatography quadrupole time of flight mass spectrometry
OPLS-DA: Orthogonal partial least squares discriminant analysis
Ox-LDL: Oxidized low-density lipoprotein
PC: Phosphatidylcholine
PE: Phosphatidylethanolamine
PI3K/Akt: Phosphatidylinositol 3-kinase/ protein kinases B
Retention time: RT
RT-qPCR: Quantitative real-time polymerase chain reaction
SPF: Specific pathogen free
SD: Sprague-Dawley
TCM: Traditional Chinese medicine
TG: Triacylglycerol
TC: Total cholesterol
TNF-α: Tumor necrosis factor-α
URAT1: urate anion transporter 1
VIP: Variable importance in the projection

XOD: xanthine oxidase

Declarations

Ethics approval and consent to participate

The experimental protocol was approved by the ethics committee of Beijing University of Chinese Medicine (Beijing, China).

Consent for publication

Not applicable

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was supported by school-level vertical development funding of Beijing University of Chinese Medicine (Beijing, China).

Authors' contributions

FY and XY established hyperuricemia rat model and collected serum samples. LTW collected serum samples and measured serum biochemical indicators. NKQ collected and analyzed UPLC-Q-TOF/MS data. CXW used simca-p software for OPLS-DA analysis. YYG found and identified differential metabolites. GX conducted metabolic pathway enrichment analysis. WJS performed the RT-PCR examination of the kidney,
and was a major contributor in writing the manuscript. QM conducted trial design and
guidance. All authors have read and approved the final manuscript.

Acknowledgements

None

Authors' information

Wenjun Shi and Fei Yang contributed equally to this work.

Affiliations

School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing,
102488, China

Wenjun Shi, Fei Yang, Nankun Qin, Chengxiang Wang, Guang Xu, Yuying Guo & Qun
Ma.

School of Traditional Chinese Medicine, Beijing University of Chinese Medicine,
Beijing 100029, China.

Xue Yu.

Corresponding author

Correspondence to Qun Ma.

References

1. Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet. 2016; 388:2039-2052.

2. Smith E, March L: Global Prevalence of Hyperuricemia. A Systematic Review of
Population-Based Epidemiological Studies. Arthritis & Rheumatology. 2015;
67:3.

3. Otani N, Ouchi M, Kudo H, Tsuruoka S, Hisatome I, Anzai N. Recent approaches
490 to gout drug discovery: an update. Expert Opin Drug Discov. 2020; 15:943-954.

491 4. Strilchuk L, Fogacci F, Cicero AF. Safety and tolerability of available urate-
492 lowering drugs: a critical review. Expert Opin Drug Saf. 2019; 18:261-271.

493 5. Stamp LK, Haslett J, Frampton C, White D, Gardner D, Stebbings S, Taylor G,
494 Grainger R, Kumar R, Kumar S, et al. The safety and efficacy of benzbromarone
495 in gout in Aotearoa New Zealand. Intern Med J. 2016; 46:1075-1080.

496 6. Pan Y, Kong LD. High fructose diet-induced metabolic syndrome:
497 Pathophysiological mechanism and treatment by traditional Chinese medicine.
498 Pharmacol Res. 2018; 130:438-450.

499 7. Zhang XY, Cheng J, Zhao P, Chen KL, Li J. Screening the Best Compatibility of
500 Selaginella moellendorffii Prescription on Hyperuricemia and Gouty Arthritis
501 and Its Mechanism. Evid Based Complement Alternat Med. 2019;
502 10.1155/2019/7263034.

503 8. Sun X, Lan J, Tong R, Zhang H, Sun S, Xiong A, Wang Z, Yang L. An integrative
504 investigation on the efficacy of Plantaginis semen based on UPLC-QTOF-MS
505 metabolomics approach in hyperlipidemic mice. Biomed Pharmacother. 2019;
506 10.1016/j.biopha.2019.108907.

507 9. Guo LF, Chen X, Lei SS, Li B, Zhang NY, Ge HZ, Yang K, Lv GY, Chen SH. Effects and
508 Mechanisms of Dendrobium officinalis Six Nostrum for Treatment of
509 Hyperuricemia with Hyperlipidemia. Evid Based Complement Alternat Med.
510 2020; 10.1155/2020/2914019.

511 10. Huang CC, Lou BS, Hsu FL, Hou CC. Use of urinary metabolomics to evaluate
11. Zhang Y, Zhang H, Chang D, Guo F, Pan H, Yang Y. Metabolomics approach by (1)H NMR spectroscopy of serum reveals progression axes for asymptomatic hyperuricemia and gout. Arthritis Res Ther. 2018; 20:111.

12. Alex Brown H. Lipidomics: when apocrypha becomes canonical. Curr Opin Chem Biol. 2012; 16:221-226.

13. Xu L, Shi Y, Zhuang S, Liu N. Recent advances on uric acid transporters. Oncotarget. 2017; 8:100852-100862.

14. Terkeltaub R, Bushinsky DA, Becker MA. Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Res Ther 2006; 8 Suppl 1:S4.

15. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006; 124:471-484.

16. Braga TT, Foresto-Neto O, Camara NOS. The role of uric acid in inflammasome-mediated kidney injury. Curr Opin Nephrol Hypertens. 2020; 29:423-431.

17. Chen MQ, Wang HY, Shi WR, Sun YX. Estimate of prevalent hyperuricemia by systemic inflammation response index: results from a rural Chinese population. Postgrad Med. 2020; doi: 10.1080/00325481.2020.1809870.

18. Dragoș D, Manea MM, Timofte D, Ionescu D. Mechanisms of Herbal Nephroprotection in diabetes mellitus. J Diabetes Res. 2020; doi: 10.1155/2020/5710513.

19. Wang K, Zhang Y, Cao Y, Shi Z, Lin Y, Chen Y, Zhao H, Liu X. Glycyrrhetinic acid
alleviates acute lung injury by PI3K/AKT suppressing macrophagic Nlrp3 inflammasome activation. Biochem Biophys Res Commun. 2020; 532(4):555-562.

20. Dos Santos M, Veronese FV, Moresco RN. Uric acid and kidney damage in systemic lupus erythematosus. Clin Chim Acta. 2020; 508:197-205.

21. Wang Y, Chen C, Yan Y, Yuan Y, Wang KK, Chu C, Hu JW, Ma Q, Liao YY, Fu BW, et al. Association of uric acid in serum and urine with subclinical renal damage: Hanzhong Adolescent Hypertension Study. PLoS One. 2019; 14(11):e0224680.

22. Moore JF, Sharer JD. Methods for Quantitative Creatinine Determination. Curr Protoc Hum Genet. 2017; 93:A.3o.1-a.3o.7.

23. Luis-Rodríguez D, Donate-Correa J, Martín-Núñez E, Ferri C, Tagua VG, Pérez Castro A, Mora-Fernández C, Navarro-González JF. Serum urate is related to subclinical inflammation in asymptomatic hyperuricaemia. Rheumatology (Oxford). 2020; doi: 10.1093/rheumatology/keaa425.

24. Adachi T, Arito M, Suematsu N, Kamijo-Ikemori A, Omoteyama K, Sato T, Kurokawa MS, Okamoto K, Kimura K, Shibagaki Y, Kato T. Roles of layilin in TNF-α-induced epithelial-mesenchymal transformation of renal tubular epithelial cells. Biochem Biophys Res Commun. 2015; 467:63-69.

25. Xu D, Lv Q, Wang X, Cui X, Zhao P, Yang X, Liu X, Yang W, Yang G, Wang G, et al. Hyperuricemia is associated with impaired intestinal permeability in mice. Am J Physiol Gastrointest Liver Physiol. 2019; 317:G484-g492.

26. Isaka Y, Takabatake Y, Takahashi A, Saitoh T, Yoshimori T. Hyperuricemia-
induced inflammasome and kidney diseases. Nephrol Dial Transplant. 2016; 31:890-896.

27. Lippi G, Montagnana M, Luca Salvagno G, Targher G, Cesare Guidi G. Epidemiological association between uric acid concentration in plasma, lipoprotein(a), and the traditional lipid profile. Clin Cardiol. 2010; 33:E76-80.

28. Tutal E, Sayın B, Ertugrul DT, Ibis A, Sezer S, Ozdemir N. Is there a link between hyperuricemia, morning blood pressure surge, and non-dipping blood pressure pattern in metabolic syndrome patients? Int J Nephrol Renovasc Dis. 2013; 6:71-77.

29. Cai HY, Wang T, Zhao JC, Sun P, Yan GR, Ding HP, Li YX, Wang HY, Zhu WL, Chen KX. Benzbromarone, an old uricosuric drug, inhibits human fatty acid binding protein 4 in vitro and lowers the blood glucose level in db/db mice. Acta Pharmacol Sin. 2013; 34:1397-1402.

30. Tan Y, Liu X, Zhou K, He X, Lu C, He B, Niu X, Xiao C, Xu G, Bian Z, et al. The Potential Biomarkers to Identify the Development of Steatosis in Hyperuricemia. PLoS One. 2016; 11:e0149043.

31. Tao M, Wang HP, Sun J, Tian J. Progress of research on dyslipidemia accompanied by nephrotic syndrome. Chronic Dis Transl Med. 2020; 6:182-187.

32. Gu Q, Hu X, Meng J, Ge J, Wang SJ, Liu XZ. Associations of Triglyceride-Glucose Index and Its Derivatives with Hyperuricemia Risk: A Cohort Study in Chinese General Population. Int J Endocrinol. 2020; 2020:3214716.

33. Peng TC, Wang CC, Kao TW, Chan JY, Yang YH, Chang YW, Chen WL. Relationship
between hyperuricemia and lipid profiles in US adults. Biomed Res Int. 2015; 2015:127596.

34. Zhang X, Meng Q, Feng J, Liao H, Shi R, Shi D, Renqian L, Langtai Z, Diao Y, Chen X. The prevalence of hyperuricemia and its correlates in Ganzi Tibetan Autonomous Prefecture, Sichuan Province, China. Lipids Health Dis. 2018; 17:235.

35. Sato A, Yamanaka H, Oe K, Yokoyama I, Yamazaki Y, Ebina K. Highly stable, fluorescence-labeled heptapeptides substituted with a D-amino acid for the specific detection of oxidized low-density lipoprotein in plasma. Chem Biol Drug Des. 2015; 85:348-355.

36. Liu N, Sun Q, Xu H, Yu X, Chen W, Wei H, Jiang J, Xu Y, Lu W. Hyperuricemia induces lipid disturbances mediated by LPCAT3 upregulation in the liver. Faseb j. 2020; doi: 10.1096/fj.202000950R.

37. Kupke IR, Heller B, Weiss P, Zeugner S, Kather B, Wellern F. Early indicators for the risk of atherogenesis. A field test of a new methodology on kindergarten children in Düsseldorf. Atherosclerosis. 1983; 48:29-48.

38. Kang HH, Won KB, Heo R, Han D, Chang HJ. Independent association of serum uric acid levels with arterial stiffness in the absence of established cardiovascular disorders. Int J Clin Pract. 2020; doi: 10.1111/ijcp.13720.

39. Kuksis A, Marai L, Gornall DA. Direct gas chromatographic examination of total lipid extracts. J Lipid Res. 1967; 8:352-358.

40. Sinnberg T, Lasithiotakis K, Niessner H, Schittek B, Flaherty KT, Kulms D, Maczey
E, Campos M, Gogel J, Garbe C, Meier F. Inhibition of PI3K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide. J Invest Dermatol. 2009; 129:1500-1515.

Altman JK, Yoon P, Katsoulidis E, Kroczyńska B, Sassano A, Redig AJ, Glaser H, Jordan A, Tallman MS, Hay N, Platanias LC. Regulatory effects of mammalian target of rapamycin-mediated signals in the generation of arsenic trioxide responses. J Biol Chem. 2008; 283:1992-2001.

Huang WH, Liu J, Zhang Q, Tang Y, Li M, Liu J, Liu JX. Effect of High Insulin on URAT1 Expression in Cultured HK-2 Cells and the Role of PI3K/Akt1 Pathway. Diabetes-Metabolism Research and Reviews. 2015; 31:23-24.
Figure 1

The levels of serum UA, Cr, TG, TNF-α in each group. C, control group; M, model group; Y, benzbromarone group; CL, low dosage group; CM, medium dosage group; CH, high dosage group; values are given as the mean ± SD (n=7), **, P<0.01 vs. control group. *, P<0.05 vs. control group; ##, P<0.01 vs. model group; #, P<0.05 vs. model group.
Figure 2

OPLS-DA score plots (a) and the corresponding validation plots (b) with 200 times permutation tests obtained.
Figure 3

Metabolic profiles of rat serum in the control, model, benzbromarone, and different dose Plantaginis semen groups. C, control group; M, model group; Y, benzbromarone group; CL, low dosage group; CM, medium dosage group; CH, high dosage group.

Figure 4

Heat map analysis of relative contents of potential metabolites. (green through dark red corresponding to a progressive increase in concentration). C, control group; M, model group; Y, benzbromarone group; CL, low dosage group; CM, medium dosage group; CH, high dosage group.
Figure 5

Comparison of 13 biomarkers peak relative signal intensities in 6 groups. The relative value of potential biomarkers in the control group was set as 1. C, control group; M, model group; Y, benzbromarone group; CL, low dosage group; CM, medium dosage group; CH, high dosage group; **, P<0.01 vs. control group. *, P<0.05 vs. control group; ##, P<0.01 vs. model group; #, P<0.05 vs. model group.

Figure 6
six pathway related to changed biomarkers. a: Glycerophospholipid metabolism, b: Linoleic acid metabolism, c: Glycosylphosphatidylinositol (GPI)-anchor biosynthesis, d: alpha-Linolenic acid metabolism, e: Arachidonic acid metabolism, f: Steroid biosynthesis.

Figure 7

KEGG global metabolic network related to changed biomarkers. The purple textboxes represented the pathways, the yellow and green textboxes represented the significant and no detection metabolites. The arrows in red represented the up regulated metabolites. The arrows in blue represented direct or indirect connections between two metabolites.

Figure 8

[Graphs showing changes in mRNA levels of URAT1, PI3K, and AKT under different conditions]
Effects of Plantaginis semen on PI3k/Akt and UTAR1 mRNA expression. C, control group; M, model group; Y, benzbromarone group; CL, low dosage group; CM, medium dosage group; CH, high dosage group; values are given as the mean ± SD (n=7), **, P<0.01 vs. control group. *, P<0.05 vs. control group; ##, P<0.01 vs. model group; #, P<0.05 vs. model group.