Petri dish method to select yeasts able to produce more pigmented table olives

Andrea Caridi*

Department Agraria, Mediterranea University of Reggio Calabria, Via Feo di Vito, s/n., I-89122, Reggio Calabria, Italy. *Author for correspondence. E-mail: acaridi@unirc.it

ABSTRACT. The study of pigment adsorption of yeasts used for table olive fermentation may allow the protection of olive colour, by excluding those strains adsorbing phenolic compounds responsible for the colour. Fifty-one table olive yeasts were grown on Petri dishes using two olive-based screening media - 'olive pulp agar' and 'olive seed agar'; the red, green, and blue colour components of the yeast’s biomass were measured. Wide and significant differences among the yeasts were observed. Based on the statistical analysis, ten yeasts were selected, excluding all the strains exhibiting a too high pigment adsorption. The research proposes a simple analytical method to characterize yeasts for their pigment adsorption, thus allowing the enhancement of the table olive colour. The two media may be prepared using any olive cultivar, thus allowing a specific screening of the yeasts. The selection of those yeasts unable to adsorb olive pigments may allow the production of more pigmented table olives.

Keywords: fermentation; pigment adsorption; screening media; selection; table olives; yeasts.

Received on May 29, 2019. Accepted on July 18, 2019.

Introduction

Table olives have been a component of the Mediterranean diet for centuries, and their consumption is currently increasing worldwide; they are rich in bioactive molecules with nutritional, antioxidant, anti-inflammatory or hormone-like properties (Durante et al., 2018).

In order to improve this fermented product, different approaches were carried out.

One approach considered olive cultivars and their chemical characteristics, in order to implement antioxidant content, fatty acid and sugar profiles that are influenced by cultivar and processing (Issaoui et al., 2011).

Another approach considered autochthonous microflora; this was oriented towards the knowledge of the evolution of the microorganisms during table olive fermentation, according to the production technology used (Valenčič et al., 2010). Thus, lactic acid bacteria were selected to identify starter cultures able to control table olive production giving microbiological stability and prolonged shelf life (Alfonzo et al., 2018).

More recently, many studies on yeasts associated with table olives were carried out to identify adjunct cultures able to positively interact with lactic acid bacteria (Tufariello et al., 2019). Thus, the identification of the yeasts associated with table olives was carried out (Muccilli, Caggia, Randazzo, & Restuccia, 2011; Tofalo, Schirone, Perpetuini, Suzzi, & Corsetti, 2012).

A zymogram screening for certain technological characteristics, such as cellulase, polygalacturonase, β-glucosidase, peroxidase, lipase/esterase, glucanase, protease, polysaccharolytic (pectolytic and xylanolytic) activities can aid yeast selection (Bevilacqua, Beneduce, Sinigaglia, & Corbo, 2013; Tofalo, Perpetuini, Schirone, Suzzi, & Corsetti, 2013; Bonatsou, Benítez, Rodríguez-Gómez, Panagou, & Arroyo-López, 2015).

Obviously, in all the selection protocols it is essential to exclude all the harmful yeasts (Arroyo-López et al., 2012): a) the fermentative strains performing a vigorous production of gas (CO2) that may penetrate olives and damage the fruits, producing 'fish-eye' spoilage; b) the polysaccharolytic (pectolytic and xylanolytic) strains, that cause the degradation of the polysaccharides of the olive fruit cell wall; c) the strains possessing polygalacturonase activity, that can grow and form pellicles in olive brines, thus causing a softening of olives kept in storage; d) the strains affecting sensory attributes of table olives.

Recently, the colour shelf life of table olives was studied (Sánchez, López- López, Beato, Castro, & Montaño, 2017); at present no author has proposed the screening of olive yeasts for their ability to interact - in negative or positive way - with olive colour.
The aim of this research was to propose a new approach to select yeasts for table olive fermentation by studying their pigment adsorption activity by: a) growing yeasts in Petri dishes on two olive-based media, b) photographing the yeast biomass, c) measuring its red, green, and blue colour components, and d) performing the statistical analysis of the data. This approach would identify yeast strains able to produce more pigmented table olives.

Material and methods

A total of 51 different yeast strains - isolated from 18 samples of olive pulps and brines during spontaneous fermentation of Calabrian table olives - were used. Sample number, cultivar, kind - brine or olive pulp - and pH, and strain number, morphology, film forming ability and gas production are reported in Table 1.

The table olive varieties used were the following six: Carolea, Geracese, Nocellara, Ottobratica, Roggianella, and Sinopolese.

The proposed screening media ‘olive pulp agar’ and ‘olive seed agar’ were respectively based on homogenized olive pulps and homogenized olive seeds; they are designed to study the yeast parietal adsorption activity, similar to an existing chromogenic grape-skin-based medium (Caridi, 2013). To prepare the two media, 200 g of homogenized olive pulp or olive seed were suspended in 1 litre of distilled water, treated at 110°C for 5 min. to extract olive pigments, and filtered through gauze. The volume of the filtered extract was measured using a graduate cylinder and the corresponding amount of the following ingredients was added: citric acid monohydrate 100, disodium hydrogen phosphate 50, dextrose 40, casein peptone 15, and yeast extract 9 g L⁻¹. The solution was divided into test tubes (5 mL per tube) and heated at 110°C for 5 min. Agar 40 g L⁻¹ was dissolved in distilled water, divided into test tubes (5 mL per tube) and sterilized by autoclaving at 121°C for 15 min. Then, one test tube containing the medium and one containing the agar solution, both maintained at 50°C in a water bath, were poured together in Petri dishes (60×15 mm). After careful mixing with a sterile L-shaped plastic spreader, the medium was allowed to solidify. The yeast strains - pre-cultured in YPD agar for two days at 25°C - were inoculated in the Petri dishes containing the two media by spreading over the surface using a sterile L-shaped plastic spreader. After 10 days of incubation at 25°C, the biomass was carefully mixed and spread on a sterile loop to prepare a flat surface to be photographed.

The colour assessment was performed on the photographs of the yeast biomass spread on the loop, measuring their red, green, and blue components by Adobe Photoshop CS for Windows XP (Adobe Systems, Inc., San Jose, CA, USA). The region of interest of the photo was set to 5×5 pixels taking four replicates for each strain. Photoshop’s red-green-blue colour mode assigns an intensity value to each region. In a colour image, the intensity values ranges from zero (black) to 255 (white) for each of the red, green, and blue components. Accordingly, low olive pigment adsorption matched higher values of the red, green, and blue components; conversely, high olive pigment adsorption matched lower values. This is because strains with high adsorption activity have a more coloured biomass than strains with low adsorption activity.

All the analyses were performed in duplicate; data were subjected to statistical analysis using Stat Graphics Centurion XVI for Windows XP (Stat Point Technologies, Inc., Warrenton, VA, USA) according to Fisher’s LSD (Least Significant Difference) (p < 0.05).

Results and discussion

Table 2-4 report the strain and sample number, the biomass colour for the red (Table 2), green (Table 3), and blue (Table 4) components of the yeast biomass grown on olive pulp agar, as measured using Photoshop, and the distribution in homogeneous groups (p < 0.05) given by statistical analysis.

Regarding the red component (Table 2), the yeasts were distributed in 20 homogeneous groups showing a mean value of 138, with a minimum of 105 and a maximum of 164. The behaviour of 28 out the 51 strains is judged to be negative since they exhibit values inferior or equal to the mean; this indicates that their pigment adsorption activity is higher than the average level. However, since the red pigment is not always considered essential by producers or consumers, these strains have not been excluded.

Regarding the green component (Table 3), the yeasts were distributed in 23 homogeneous groups showing a mean value of 121, with a minimum of 85 and a maximum of 163. The behaviour of 28 out the 51
strains is judged to be extremely negative, since they exhibit values inferior or equal to the mean. This characteristic severely excludes their use as adjunct culture, particularly to produce green olives.

Regarding the blue component (Table 4), the yeasts were distributed in 28 homogeneous groups showing a mean value of 104, with a minimum of 70 and a maximum of 155. The behaviour of 29 out the 51 strains is judged to be negative. However, similar to the red pigment, blue pigment is not always considered essential so these strains have not been excluded.

Table 5-7 report the strain and sample number, the biomass colour for the red (Table 5), green (Table 6), and blue (Table 7) components of the yeast biomass grown on olive seed agar, as measured using Photoshop, and the distribution in homogeneous groups (p < 0.05) given by statistical analysis.

Table 1. Sample number, cultivar, kind - brine or olive pulp - and pH of all 18 samples; strain number, morphology, film forming ability and gas production of all 51 yeast strains.

Sample	Strain						
Number	Cultivar	Kind	pH	Number	Morphology	Film	Gas
I	Geracee	Brine	3.76	L852	Elliptic	+	+
I	Geracee	olive pulp	4.26	L844	Elliptic	+	+
II	Geracee	Brine	3.82	L845	Elliptic	-	+
II	Geracee	olive pulp	4.27	L835	Filamentous	+	-
II	Geracee	olive pulp	4.27	L834	Elliptic	-	+
III	Carolea	Brine	3.98	L854	Elliptic	+	+
III	Carolea	olive pulp	4.42	L835	Filamentous	+	-
III	Carolea	olive pulp	4.42	L836	Elliptic	+	+
IV	Geracee	Brine	3.66	L861	Filamentous	+	-
IV	Geracee	olive pulp	4.19	L877	Elliptic	+	-
IV	Geracee	olive pulp	4.19	L880	Filamentous	+	-
V	Carolea	Brine	3.86	L859	Filamentous	+	-
V	Carolea	olive pulp	4.43	L881	Elliptic	+	-
V	Carolea	olive pulp	4.43	L885	Filamentous	+	-
VI	Geracee	Brine	3.81	L864	Filamentous	+	-
VI	Geracee	olive pulp	4.25	L886	Filamentous	+	-
VII	Nocellara	Brine	4.18	L865	Filamentous	+	-
VII	Nocellara	olive pulp	4.73	L888	Filamentous	+	-
VII	Nocellara	olive pulp	4.73	L891	Filamentous	+	-
VIII	Geracee	Brine	3.87	L857	Elliptic	+	+
VIII	Geracee	olive pulp	4.38	L892	Elliptic	+	+
VIII	Geracee	olive pulp	4.38	L895	Elliptic	+	+
IX	Carolea	Brine	3.47	L867	Filamentous	+	-
IX	Carolea	olive pulp	4.00	L894	Filamentous	+	-
IX	Carolea	olive pulp	4.00	L895	Filamentous	+	-
X	Carolea	Brine	3.76	L870	Filamentous	+	-
X	Carolea	olive pulp	4.34	L898	Filamentous	+	-
XI	Carolea	Brine	3.71	L915	Filamentous	+	-
XI	Carolea	Brine	3.71	L916	Filamentous	+	-
XI	Carolea	olive pulp	4.28	L914	Filamentous	+	-
XII	Carolea	Brine	3.66	L871	Filamentous	+	-
XII	Carolea	Brine	3.66	L871	Filamentous	+	-
XII	Carolea	olive pulp	4.09	L900	Elliptic	+	-
XII	Carolea	olive pulp	4.09	L902	Filamentous	+	-
XIII	Carolea	Brine	3.57	L873	Filamentous	+	-
XIII	Carolea	Brine	3.57	L874	Filamentous	+	-
XIII	Carolea	olive pulp	4.19	L904	Elliptic	+	-
XIII	Carolea	olive pulp	4.19	L905	Elliptic	+	-
XIV	Nocellara	Brine	4.48	L875	Filamentous	+	-
XIV	Nocellara	olive pulp	4.97	L908	Filamentous	+	-
XIV	Nocellara	olive pulp	4.97	L909	Filamentous	+	-
XV	Ottobratica	Brine	4.23	L913	Filamentous	+	-
XVI	Roggiannella	Brine	5.77	L839	Filamentous	+	+
XVI	Roggiannella	olive pulp	6.22	L837	Filamentous	+	+
XVI	Roggiannella	olive pulp	6.22	L847	Filamentous	+	+
XVII	Sinopolese	Brine	4.34	L856	Filamentous	+	+
XVII	Sinopolese	olive pulp	4.80	L840	Elliptic	-	+
XVII	Sinopolese	olive pulp	4.80	L841	Elliptic	+	-
XVII	Sinopolese	olive pulp	4.80	L848	Elliptic	+	-
XVIII	Carolea	Brine	5.21	L850	Filamentous	+	-
XVIII	Carolea	olive pulp	5.75	L842	Filamentous	+	+
XVIII	Carolea	olive pulp	5.75	L849	Filamentous	+	-
Table 2. Strain and sample number, value of the red component of the biomass colour on olive pulp agar, as measured using Photoshop, and distribution in homogeneous groups (p < 0.05) given by statistical analysis; the values inferior or equal to the mean are in italics.

Strain and sample	Red component	Homogeneous groups
L841-XVII	105.50	a
L888-VII	110.25	a
L849-XVIII	122.75	b
L848-XVII	125.25	b
L850-XVIII	124.75	bc
L891-VII	127.00	bcd
L916-XI	127.00	bcd
L832-I	127.75	bcd
L842-XVIII	127.75	bcde
L885-V	128.50	bcde
L859-V	128.75	bcde
L881-V	129.25	bcde
L839-XVI	129.25	bcde
L833-II	130.00	bcdef
L836-III	130.25	bcdef
L835-III	130.50	bcdef
L905-XIII	131.25	bcdefgh
L864-VI	132.00	bcdefgh
L877-IV	132.25	bcdefghi
L847-XVI	135.75	cdefghij
L886-VI	134.00	cdefghij
L844-I	154.00	cdefghij
L908-XIV	154.50	cdefghijk
L893-VIII	154.75	defghijk
L892-VIII	157.00	efghijk
L856-XVII	157.75	fghijkl
L865-VII	158.00	fghijkl
L871-XII	158.25	fghijkl
L857-VIII	159.25	ghijklm
L854-III	141.00	hijklmn
L861-IV	141.25	ijklnn
L894-IX	142.50	jklmno
L875-XIV	142.50	jklmno
L857-XVI	143.50	jklmnop
L867-IX	144.00	klmnop
L902-XII	144.25	klmnop
L880-IV	145.75	lmnpq
L914-XI	146.75	lmnpq
L898-X	148.25	mnpq
L904-XIII	148.25	mnpq
L895-IX	149.00	mnpqr
L854-II	149.00	mnpqr
L874-XIII	149.30	nopqr
L909-XIV	150.25	nopqrs
L900-XII	150.75	nopqrs
L870-X	152.00	opqrs
L913-XV	153.25	pqrqs
L915-XI	154.75	qrst
L840-XVII	158.25	rst
L845-II	160.00	st
L875-XIII	164.00	t

Regarding the red component (Table 5), the yeasts were distributed in 30 homogeneous groups showing a mean value of 135, with a minimum of 101 and a maximum of 169. The behaviour of 27 out the 51 strains is judged to be negative.

Regarding the green component (Table 6), the yeasts were distributed in 21 homogeneous groups showing a mean value of 133, with a minimum of 90 and a maximum of 164. The behaviour of 24 out the 51 strains is judged to be negative.

Regarding the blue component (Table 7), the yeasts were distributed in 20 homogeneous groups showing a mean value of 130, with a minimum of 86 and a maximum of 159. The behaviour of 28 out the 51 strains is judged to be negative.
The main purpose of this research was to demonstrate that is possible to select yeasts for table olive fermentation according to their pigment adsorption activity; Table 8 summarizes the main characteristics of the 10 yeast strains selected on the base of their adsorption activity.

It is important to note that strains exhibiting the aptitude to highly adsorb the green component from olive pulp agar have obviously been excluded. The remaining strains have been examined based on the number of negative results.

In general, the tested yeasts showed wide and significant differences in their colour components in both the media. Statistical distribution of the yeasts in many homogeneous groups clearly stresses the presence of

Strain and sample	Green component	Homogeneous groups
L841-XVII	85.25	a
L847-XVI	96.50	b
L859-XVI	97.75	b
L888-VII	102.75	bc
L916-XI	105.25	bcd
L895-IX	110.00	cde
L848-XVII	111.50	cdef
L902-XII	111.75	cdefg
L904-XIII	111.75	cdefg
L849-XVIII	111.75	cdefg
L837-XVI	112.25	def
L905-XIII	112.50	def
L842-XVIII	113.00	def
L891-VII	115.25	efgh
L885-V	115.75	efghij
L867-IX	116.00	efghij
L864-VI	116.00	efghij
L893-VIII	116.50	efghijk
L881-V	117.25	efghijk
L908-XIV	117.50	efghijk
L854-III	118.75	efghijkkm
L850-XVIII	119.25	egfhijkkm
L900-XII	119.25	egfhijkkm
L892-VIII	119.50	fghijklmn
L857-VIII	119.50	fghijklmn
L835-III	119.75	fghijklmn
L886-VI	120.00	fghijklmn
L859-V	121.00	ghijklmnno
L894-IX	122.25	hijklmnno
L871-XII	122.25	hijklmnno
L909-XIV	124.00	ijklnopq
L877-IV	124.00	ijklnopq
L856-XVII	125.00	jklmnopq
L832-I	125.50	klnopq
L833-II	125.75	klnopq
L865-VII	125.75	klnopq
L874-XIII	125.75	klnopq
L836-III	126.00	lmnopq
L844-I	127.00	mnopq
L915-XI	127.00	mnopqr
L875-XIV	127.75	mnopqr
L914-XI	128.75	nopqrs
L861-IV	129.75	opqrst
L898-X	132.00	pqrstu
L870-X	133.25	qrstu
L840-XVII	136.50	rstu
L873-XIII	137.75	stu
L880-IV	139.00	tu
L915-XV	140.00	uv
L834-II	148.75	v
L845-II	162.75	w
significant differences in their ability to adsorb olive pigments. The present work proposes a new approach, based on microbial culturing techniques, to perform the study of the adsorption phenomena in olive yeasts.

One important implication is that the chromogenic media can be tailored to each olive cultivar by preparing the media using the individual cultivar with its specific pigments.

An enhanced knowledge of the effects that yeasts have on olive processing may allow the protection of olive colour, excluding the more adsorbing strains or those which degrade the phenolic compounds responsible for the colour. Although these strains may not be suitable for table olive production, they may find a use in the decolouration of olive wastewater. For example, *Geotrichum candidum* was identified in alpeorujo (Giannoutsou, Meintanis, & Karagouni, 2004), a residue of olive oil production, and its ability to discolour black olive mill wastewater has been reported (Assas, Ayed, Marouani, & Hamdi, 2002).

Table olives may be subjected to a progressive decrease in their greenish appearance (Gallardo-Guerrero et al., 2013); the fading of the green colour may occur mainly during the first months of storage (Romero-Gil et al., 2019).

Table 4. Strain and sample number, value of the blue component of the biomass colour on olive pulp agar, as measured using Photoshop, and distribution in homogeneous groups (p < 0.05) given by statistical analysis; the values inferior or equal to the mean are in italics.

Strain and sample	Blue component	Homogeneous groups
L841-XVII	69.75	a
L847-XVI	75.75	ab
L902-XII	80.50	bc
L839-XVI	82.75	bed
L904-XIII	86.00	cade
L900-XII	86.75	cde
L837-XVI	88.75	cdef
L916-XI	92.00	deef
L915-XI	92.50	efgh
L903-XIII	93.25	efghi
L895-IX	93.25	efghi
L842-XVIII	93.25	efghi
L874-XIII	93.50	efghi
L909-XIV	95.25	efghi
L888-VII	97.50	ghijkl
L886-XVII	97.75	ghijkl
L835-III	99.00	ghijkl
L908-XIV	100.00	ghijkl
L894-IX	100.50	ghijkl
L886-VI	101.50	ghijkl
L848-XVII	101.75	ghijkl
L871-XII	101.75	ghijkl
L891-VI	102.00	ghijkl
L881-V	102.75	ijklmnop
L864-VI	103.25	jklmnopq
L914-XI	103.50	jklmnopq
L834-III	104.00	jklmnopq
L840-XVIII	104.25	jklmnopq
L873-XIII	104.25	jklmnopq
L875-XIV	104.75	jklmnopq
L885-V	105.25	jklmnopq
L892-VIII	106.00	jklmnopq
L857-VIII	107.25	jklmnopq
L859-V	107.50	mnopqrstuvwxyz
L836-III	107.75	mnopqrstuvwxyz
L865-VII	108.50	mnopqrstuvwxyz
L867-IX	110.00	mnopqrstuvwxyz
L844-I	111.25	mnopqrstuvwxyz
L861-IV	112.00	mnopqrstuvwxyz
L913-XV	112.50	mnopqrstuvwxyz
L832-I	115.00	mnopqrstuvwxyz
L898-X	116.75	mnopqrstuvwxyz
L893-VIII	117.00	mnopqrstuvwxyz
L877-IV	117.25	mnopqrstuvwxyz
L833-II	117.75	mnopqrstuvwxyz
L870-X	118.25	mnopqrstuvwxyz
L849-XVIII	119.25	mnopqrstuvwxyz
L850-XVIII	120.25	mnopqrstuvwxyz
L880-IV	121.00	mnopqrstuvwxyz
L834-II	144.25	mnopqrstuvwxyz
L845-II	155.50	mnopqrstuvwxyz
Table 5. Strain and sample number, value of the red component of the biomass colour on olive seed agar, as measured using Photoshop, and distribution in homogeneous groups (p < 0.05) given by statistical analysis; the values inferior or equal to the mean are in italics.

Strain and sample	Red component	Homogeneous groups
L835-III	101.25	a
L836-III	114.00	b
L880-IV	115.00	b
L861-IV	115.25	bc
L877-IV	116.75	bcde
L840-XII	121.00	bcde
L881-V	121.25	bcde
L859-V	122.50	bcde
L886-VI	123.75	bcdeghi
L892-VIII	124.25	bcdeghi
L865-VI	124.25	bcdeghi
L877-VIII	124.75	bcdeghi
L880-V	125.00	bcdeghi
L861-V	125.25	bcdeghi
L886-VI	126.75	bcdeghij
L833-II	126.75	bcdeghijkl
L888-VII	127.00	bcdeghijklm
L832-I	127.50	bcdeghijklm
L854-III	128.00	bcdeghijklm
L848-XII	128.75	bcdeghijklm
L850-XVIII	130.25	bcdeghijklm
L844-I	131.00	bcdeghijklmnop
L834-II	131.25	bcdeghijklmnop
L890-XIV	132.25	bcdeghijklmnop
L891-VII	133.50	bcdeghijklmnop
L914-XI	133.75	bcdeghijklmnop
L849-XVIII	134.25	bcdeghijklmnop
L842-XIII	135.50	bcdeghijklmnop
L867-IX	136.75	bcdeghijklmnop
L839-XVI	137.00	bcdeghijklmnop
L845-II	137.50	bcdeghijklmnop
L856-XVII	138.50	bcdeghijklmnop
L837-XVI	139.25	bcdeghijklmnop
L900-XII	141.30	bcdeghijklmnop
L916-XI	141.50	bcdeghijklmnop
L893-VIII	142.25	bcdeghijklmnop
L874-XIII	142.50	bcdeghijklmnop
L896-X	143.75	bcdeghijklmnop
L847-XVI	144.25	bcdeghijklmnop
L913-XV	144.75	bcdeghijklmnop
L905-XIII	145.25	bcdeghijklmnop
L841-XVII	145.50	bcdeghijklmnop
L909-XIV	147.00	bcdeghijklmnop
L915-XI	147.75	bcdeghijklmnop
L870-X	148.00	bcdeghijklmnop
L871-XII	149.25	bcdeghijklmnop
L873-XIII	150.75	bcdeghijklmnop
L894-IX	153.25	bcdeghijklmnop
L904-XIII	154.00	bcdeghijklmnop
L895-IX	155.00	bcdeghijklmnop
L902-XII	167.75	bcdeghijklmnop
L875-XIV	169.50	bcdeghijklmnop

Table 6. Strain and sample number, value of the green component of the biomass colour on olive seed agar, as measured using Photoshop, and distribution in homogeneous groups (p < 0.05) given by statistical analysis; the values inferior or equal to the mean are in italics.

Strain and sample	Green component	Homogeneous groups
L855-III	90.25	a
L836-III	109.25	b
L880-IV	114.50	bcd
L877-IV	114.75	bcd
L861-IV	115.25	bcd
L881-V	119.25	cde
L859-V	121.25	cdefg
L865-VI	121.50	cdefg
L888-VII	122.00	cdefg
Table 7. Strain and sample number, value of the blue component of the biomass colour on olive seed agar, as measured using Photoshop, and distribution in homogeneous groups (p < 0.05) given by statistical analysis; the values inferior or equal to the mean are in italics.

Strain and sample	Green component	Homogeneous groups
L908-XIV	122.50	cdefg
L886-VI	122.75	cdefg
L840-XVII	123.75	defgh
L864-VI	124.75	efgh
L885-V	125.25	efghi
L849-XVIII	126.25	efghij
L854-III	127.50	efghijk
L892-VIII	128.50	efghijkl
L832-I	128.50	efghijkl
L833-II	128.75	fgijklk
L857-VIII	129.00	fgijklm
L850-XVIII	129.50	ghijklmn
L844-I	129.75	ghijklm
L848-XVII	130.00	ghijklmn
L834-III	133.00	hijklmn
L914-XI	134.25	ijklmno
L891-VII	134.75	jklmnop
L842-XVIII	135.00	jklmnop
L839-XVI	135.25	jklmnop
L898-X	136.50	klmnop
L837-XVI	136.75	klmnop
L900-XII	136.75	klmnop
L845-II	137.75	lnmnop
L867-IX	138.25	mnopq
L874-XIII	138.25	mnopq
L856-XVII	139.50	no pq
L841-XVII	140.00	no pq
L871-XII	140.25	nopq
L870-X	140.50	nopq
L847-XVI	140.50	nopq
L916-XI	140.75	nopq
L893-VIII	142.50	op qr
L913-XV	145.50	opqrs
L905-XIII	145.75	p qrs
L909-XIV	144.00	p qrs
L895-IX	146.25	qr st
L915-XI	146.75	qr st
L902-XII	150.75	rst
L894-IX	151.00	rst
L873-XIII	152.25	st
L904-XIII	154.00	t
L875-XIV	165.75	u

Strain and sample	Blue component	Homogeneous groups
L835-III	86.25	a
L908-XIV	111.75	b
L836-III	112.75	b
L840-XVII	115.50	b
L880-IV	116.25	bc
L861-IV	119.25	bcd
L850-XVIII	120.50	b c d e f
L877-IV	121.00	b c d e f
L914-XI	121.25	b c d e f
L881-V	123.50	cdef
L865-VII	123.50	cdef
L900-XII	123.50	cdef
L888-VII	123.75	cdef
L898-X	124.00	cdefg
L892-VIII	124.75	cdefghi
L854-III	125.50	cdefghij
L847-XVI	126.25	cdefghijkl
L886-VI	126.75	cdefghijkl
Many different technological characteristics may be studied in order to characterize and select olive yeasts as adjunct culture.

Considering the yeast’s ability to adsorb olive pigments, the results confirm that the proposed approach is easy, cheap, fast, and allows an efficacious selection of yeasts for potential use as adjunct cultures in table olive fermentation.

After this initial screening, only the strains remaining at the end of this selection will be further studied, with a great saving of time and money.

The two olive-based media can be prepared using any olive cultivar, thus allowing the specific selection of the most suitable strain of yeast for each olive variety.

Table 8. Summary of the main characteristics of the 10 pre-selected olive yeasts.

Sample	Strain	Colour of the biomass on olive pulp agar	Colour of the biomass on olive seed agar										
		Blue component	Homogeneous groups										
Number	Cultivar	Kind	pH	Number	Morphology	Film	Gas	Red	Green	Blue	Red	Green	Blue
IX	Carolea	olive pulp	4.00	L894	filamentous	+	-	142.50	122.25	100.50	153.25	151.00	146.00
X	Carolea	brine	3.76	L870	filamentous	+	-	152.00	133.25	118.25	148.00	140.50	133.25
X	Carolea	olive pulp	4.54	L898	filamentous	+	-	148.25	132.00	116.75	143.75	136.50	124.00
XI	Carolea	brine	3.71	L915	filamentous	+	-	154.75	127.00	92.50	147.75	146.75	146.75
XII	Carolea	brine	3.66	L871	filamentous	+	-	138.25	122.25	101.75	149.25	140.25	134.00
XIII	Carolea	brine	5.57	L873	filamentous	+	-	164.00	137.75	104.25	150.75	152.25	147.50
XIV	Nocellara	brine	5.79	L874	filamentous	+	-	149.50	125.75	93.50	142.50	138.25	128.25
XIV	Nocellara	olive pulp	4.97	L909	filamentous	+	-	142.50	127.75	104.75	169.50	163.75	159.00
XV	Ottobratica	brine	4.23	L913	filamentous	+	-	153.25	140.00	112.50	144.75	145.50	130.00

Conclusion

...
The research provides a useful tool to characterize olive yeasts in relation to pigment adsorption, allowing the improvement of olive colour.

Further studies will be carried out using the best yeast strains as adjunct cultures for the production of more pigmented table olives.

Acknowledgements

This research was supported by two grants of the Calabria Region: 1) PON 03 PE_00090_2 – Modelli sostenibili e nuove tecnologie per la valorizzazione delle olive e dell’olio extra vergine di oliva prodotto in Calabria; 2) POR Calabria FESR 2007/2013 - 1.1.1.2 Nuove tecnologie per la valorizzazione della filiera delle conserve: Conservo.

References

Alfonzo, A., Martorana, A., Settanni, L., Matraxia, M., Corona, O., Vagnoli, P., ... Francesca, N. (2018). Approaches to improve the growth of starter lactic acid bacterium OM15 during the early stages of green Spanish-style table olive production. *Grasas y Aceites, 69*(3), e265. doi: 10.3989/gya.0105181

Arroyo-López, F. N., Romero-Gil, V., Bautista-Gallego, J., Rodríguez-Gómez, F., Jiménez-Díaz, R., García-García, P., ... Garrido-Fernández, A. (2012). Yeasts in table olive processing: desirable or spoilage microorganisms? *International Journal of Food Microbiology, 160*(1), 42-49. doi: 10.1016/j.ijfoodmicro.2012.08.003

Assas, N., Ayed, L., Marouani, L., & Hamdi, M. (2002). Decolorization of fresh and stored-black olive mill wastewaters by *Geotrichum candidum*. *Process Biochemistry, 38*(3), 361-365. doi: 10.1016/S0032-9592(02)00091-2

Bevilacqua, A., Beneduce, L., Sinigaglia, M., & Corbo, M. R. (2013). Selection of yeasts as starter cultures for table olives. *Journal of Food Science, 78*(5), M742-M751. doi: 10.1111/1750-3841.12117

Bonatsou, S., Benítez, A., Rodríguez-Gómez, F., Panagou, E. Z., & Arroyo-López, F. N. (2015). Selection of yeasts with multifunctional features for application as starters in natural black table olive processing. *Food Microbiology, 46*, 66-73. doi: 10.1016/j.fm.2014.07.011

Caridi, A. (2013). Improved screening method for the selection of wine yeasts based on their pigment adsorption activity. *Food Technology and Biotechnology, 51*(1), 137-144.

Durante, M., Tufariello, M., Tommassi, L., Lenucci, M. S., Bleve, G., & Mita, G. (2018). Evaluation of bioactive compounds in black table olives fermented with selected microbial starters. *Journal of the Science of Food and Agriculture, 98*(1), 96-103. doi: 10.1002/jsfa.8443

Gallardo-Guerrero, L., Gandul-Rojas, B., Moreno-Baquero, J., López-López, A., Bautista-Gallego, J., & Garrido-Fernández, A. (2013). Pigment, physicochemical, and microbiological changes related to the freshness of cracked table olives. *Journal of Agricultural and Food Chemistry, 61*(15), 3757-3747. doi: 10.1021/jf400240e

Giannoutsou, E. P., Meintanis, C., & Karagouni, A. D. (2004). Identification of yeast strains isolated from a two-phase decanter system olive oil waste and investigation of their ability for its fermentation. *Bioresource Technology, 95*(3), 301-306. doi: 10.1016/j.biortech.2003.10.023

Issaoui, M., Dabbou, S., Mechri, B., Nakbi, A., Chehab, H., & Hammami, M. (2011). Fatty acid profile, sugar composition, and antioxidant compounds of table olives as affected by different treatments. *European Food Research and Technology, 232*(5), 867-876. doi: 10.1007/s00217-011-1455-5

Muccilli, S., Caggia, C., Randazzo, C. L., & Restuccia, C. (2011). Yeast dynamics during the fermentation of brined green olives treated in the field with kaolin and Bordeaux mixture to control the olive fruit fly. *International Journal of Food Microbiology, 148*(1), 15-22. doi: 10.1016/j.ijfoodmicro.2011.04.019

Romero-Gil, V., Rodríguez-Gómez, F., Ruiz-Bellido, M. A., Cabello, A. B., Garrido-Fernández, A., & Arroyo-López, F. N. (2019). Shelf-life of traditionally-seasoned *Aloreia de Málaga* table olives based on package appearance and fruit characteristics. *GrasasyAceites, 70*(2), e506. doi: 10.3989/ga.0708182

Sánchez, A. H., López-López, A., Beato, V. M., Castro, A., & Montaño, A. (2017). Stability of color in Spanish-style green table olives pasteurized and stored in plastic containers. *Journal of the Science of Food and Agriculture, 97*(11), 3651-3641. doi: 10.1002/jsfa.8222

Tofalo, R., Perpetuini, G., Schirone, M., Suzzi, G., & Corsetti, A. (2015). Yeast biota associated to naturally fermented table olives from different Italian cultivars. *International Journal of Food Microbiology, 161*(3), 203-208. doi: 10.1016/j.ijfoodmicro.2012.12.011
Tofalo, R., Schirone, M., Perpetuini, G., Suzzi, G., & Corsetti, A. (2012). Development and application of a real-time PCR-based assay to enumerate total yeasts and Pichia anomala, Pichia guillermondii and Pichia kluyveri in fermented table olives. *Food Control, 23*(2), 356-362. doi: 10.1016/j.foodcont.2011.07.032

Tufariello, M., Anglana, C., Crupi, P., Virtuosi, I., Fiume, P., Di Terlizzi, B., ... Bleve, G. (2019). Efficacy of yeast starters to drive and improve Picual, Manzanilla and Kalamàta table olive fermentation. *Journal of the Science of Food and Agriculture, 99*(5), 2504-2512. doi: 10.1002/jsfa.9460

Valenčič, V., Mavsar, D. B., Bučar-Miklavčič, M., Butinar, B., Čadež, N., Golob, T., ... Možina, S. S. (2010). The impact of production technology on the growth of indigenous microflora and quality of table olives from Slovenian Istria. *Food Technology and Biotechnology, 48*(3), 404-410.