Łukasz Wargułaa, Piotr Krawieca, Mateusz Kukła, Bartosz Wieczoreka, Piotr Kaczmarzykb

a) Poznan University of Technology / Politechnika Poznańska
b) Scientific and Research Centre for Fire Protection – National Research Institute / Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tułiszowskiego – Państwowy Instytut Badawczy
* Corresponding author / Autor korespondencyjny: lukasz.wargula@put.poznan.pl

Innovations in Chainsaws Utilised as Mechanical Rescue Devices

ABSTRACT

Aim: The aim of the article is to identify innovative design solutions in chainsaws which are used in rescue and firefighting operations. The review concerns commercial solutions, scientific publications and patents. It enables to determine development trends of chainsaws utilised as mechanical rescue devices.

Project and methods: Although chainsaw evolution analysis is available in the literature, in the greatest part it concerns only timber harvesting conditions. It lacks a review of technical solutions adapted to rescue and firefighting operations which may involve: wood impurities, the need to work on unstable ground and in limited space, the need to maintain focus in stressful and unpredictable situations. Fire protection units operations are aimed at saving people’s health and life, therefore they should be carried out with the use of machines and devices with the best properties.

Conclusions: The solutions presented in the article may affect the development of rescue teams equipment, thereby increasing their efficiency and work safety. Currently, there is a trend toward the use of mobile chainsaws involving: increased durability for cutting wood with impurities, low-emission drives with limited impact on the operator, systems protecting the operator’s body against the chain blade during uncontrolled and unpredictable situations, biodegradable oils for chain lubrication. It is necessary to conduct research on innovative solutions towards the usefulness of chainsaws in rescue operations.

Keywords: chainsaw, mechanical rescue devices, mobile wood saws, petrol saws, electric saws

Type of article: review article

Received: 06.04.2020; Reviewed: 11.05.2020; Accepted: 08.06.2020;
Authors’ ORCID IDs: Ł. Warguła – 0000-0002-3120-778X; P. Krawiec – 0000-0003-3076-0337; M. Kukla – 0000-0003-3456-3824; B. Wieczorek – 0000-0003-0808-298X; P. Kaczmarzyk – 0000-0003-4310-6086;
Percentage contribution: Ł. Warguła – 40%; P. Krawiec – 15%; M. Kukla – 15%; B. Wieczorek – 15%; P. Kaczmarzyk – 15%;
Please cite as: SFT Vol. 55 Issue 1, 2020, pp. 142–153, https://doi.org/10.12845/sft.55.1.2020.9;
This is an open access article under the CC BY-SA 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/).

ABSTRAKT

Cel: Celem artykułu jest wskazanie innowacyjnych rozwiązań konstrukcyjnych w pilarkach łańcuchowych stosowanych w warunkach akcji ratowniczych i gaśniczych. Przegląd obejmuje rozwiązania komercyjne, publikacje naukowe oraz patenty. Umożliwia nakreślenie trendów rozwoju pilarek łańcuchowych stanowiących mechaniczne urządzenia ratownicze.

Projekt i metody: W literaturze dostępne są analizy ewolucji pilarek łańcuchowych, dotyczą one jednak głównie warunków pozyskiwania drewna. Brakuje przeglądu rozwiązań technicznych przystosowanych do akcji ratowniczych i gaśniczych, którymi towarzyszą specyficzne warunki: zanieczyszczenia ciętego drewna, praca na niestabilnym podłożu i w ograniczonej przestrzeni, potrzeba dużego skupienia operatorów w stresujących i nieprzewidywalnych sytuacjach. Ze względu na to, że prace prowadzone przez jednostki ochrony przeciwpożarowej służą ratowaniu zdrowia i życia ludzi, powinno się do nich wykorzystywać maszyny i urządzenia o jak najlepszych właściwościach.

Wnioski: Rozwiązania zaprezentowane w artykule mogą przyczynić się do rozszerzenia asortymentu zespołów ratowniczych, a tym samym poprawy ich efektywności i bezpieczeństwa pracy. Trendem w rozwoju wyposażenia jednostek ochrony przeciwpożarowej są przenośne pilarki charakteryzujące się: pilarni łańcuchowymi o podwyższonej trwałości podczas cięcia drewna zanieczyszczonego, niskoemisyjne i mało oddziaływujące napędy, układy
Introduction

A chainsaw is one of the basic tools used by fire protection units in a wide range of activities. Its main application involves works associated with wood, including: firebreaks formation, fallen trees removal, safety works during firefighting operations, as well as, cutting of wooden elements in structural collapse incidents. Especially, the latter example is considered to be the most adverse operation condition for the machines in question. It stems from the fact that the wood, cut during rescue operation may contain impurities which affect negatively the chain, and, in consequence, lead to the rapid blunting or damage of the links.

In order to increase the chainsaws durability and their range of applications, scientific units, researchers and manufacturers improve the chains of mobile saws. Tests associated with reducing the motor drive's negative impact on a chainsaw operator are also conducted. Their main objectives include the reduction of: tool weight, noise, vibration and toxic exhaust emissions.

Saws belong to the group of devices with an uncovered working part. It constitutes a great threat for their operators. This problem has been noticed by the institutions responsible for employee protection, hence these devices are subject to standardised safety requirements described in the Polish and European standard PN-EN ISO 11681-1. Also in this area new technologies are available.

In research articles, inventions and commercial solutions there are concepts which could support rescue operations in which chainsaws are applied. However, available reviews do not encompass new solutions that would significantly affect rescue teams work. This paper presents an overview of innovative design solutions concerning petrol saws and their cutting chains, drives and safety systems – with an indication of beneficial functions for rescue and firefighting works.

Wprowadzenie

Pilarka łańcuchowa to jedno z podstawowych narzędzi będących na wyposażeniu jednostek ochrony przeciwpożarowej (JOP). Jest wykorzystywana w szerokim zakresie działań realizowanych przez JOP. Stosuje się ją głównie do prac związanych z drewnem: formowania pasów przeciwpożarnych w lasach, usuwania wiatrołomów, zabezpieczenia akcji przeciwpożarowych oraz przecinania drewnianych konstrukcji w katastrofach budowlanych. Najbardziej niekorzystne warunki użytkowania tych maszyn dotyczą ostatniego z wymienionych przypadków. Wynika to z tego, że rocznicane drewno może zawierać zanieczyszczenia wywierające negatywny wpływ na piłę łańcuchową, prowadząc do jej szybkiego stępienia lub uszkodzenia ogini.

Aby zwiększyć trwałość i zakres zastosowań przenośnych pilarek, jednostki naukowe, wynalazcy oraz producenci udoskonaliły piły łańcuchowe tych urządzeń. Trwają również badania nad ograniczeniem negatywnego oddziaływania, jakie na operatorów pilarek wywierają napędy. Do głównych celów tych badań zaliczana jest redukcja: masy narzędzia, wydzielanego przez nie hałasu, dźwięku oraz emisji toksycznych związków spalin.

Pilarki są urządzeniami z odkrytą częścią roboczą, co stawia je pod duży na zgrożenie dla operatora. Problem ten jest dostrzegany przez instytucje odpowiedzialne za ochronę pracowników, stąd narzędzia te podlegają znormalizowanym wymogom bezpieczeństwa opisanym w polskiej i europejskiej normie PN-EN ISO 11681-1. Również w tym zakresie dostępne są nowe technologie.

W publikacjach naukowych, wynalazkach oraz rozwiązań komercyjnych pojawiają się innowacje mogące wspomóc działania ratowniczo-gaśnicze z wykorzystaniem pilarek łańcuchowych. W dostępnych zestawieniach brakuje jednak informacji o nowych rozwiązaniach, które w istotny sposób wpłynęłyby na efektywność pracy zespołów ratowniczych. W artykule przedstawiono przegląd innowacyjnych rozwiązań konstrukcyjnych pilarek spalinowych (w zakresie pił łańcuchowych, napędów oraz układów bezpieczeństwa) – ze wskazaniem funkcji przydatnych podczas prac ratowniczych i gaśniczych.
Cutting chains (saw chains)

The classic use for mobile chainsaws is to cut trees. This process is well recognised in forestry sciences. The trend in this area is heading towards replacement of mobile petrol chainsaw operators with tree harvesters equipped with cutting chains [1–2]. However, rescue operations demand a complex decision-making process. Moreover, often the use of heavy vehicles is not possible – and in these situations operators are still irreplaceable.

During rescue operations, the material being cut often contains metal, concrete, plastic and soil with stones. To meet challenges that come with it, the market offers cutting chains for mobile saws, designed for cutting: wood containing nails, reinforced glass, composites, concrete, brick structures, metal sheets, ferrous and non-ferrous metals (see Figure 1).

An example of a saw chain for wood with nails, reinforced glass, armoured glass, steel sheets up to 0.8 mm, bituminous felt, insulation materials, roller shutter doors and partition walls is Rapid Duro Rescue (RDR) produced by Stihl. In this model the chain’s cutting teeth blades are covered with a metal alloy, thus guaranteeing high strength and resistance to impact loads. Additionally, the cutting process is supported by 3-hump link which allows gentle guidance of the tool and reduced damage to the cutting teeth. According to the manufacturer’s specifications saws with such cutting chains – thanks do the applied technical solutions – are characterised by a minimum risk of kickback and low vibration level.

Przykładem piły łańcuchowej do drewna z gwoździami, szkła zbrojonego, szkła pancernego, blach stalowych do 0.8 mm, pap bitumicznych, materiałów izolacyjnych, bram roletowych oraz lekkich murów jest Rapid Duro Rescue (RDR) Stihl. Ostrza zębów tnących w tym modelu pokryte są w całości stopem trwałych metali, co gwarantuje dużą wytrzymałość oraz odporność na obciążenia udarowe. Dodatkowo proces cięcia wspomaga 3-garbowe ogniwo łączące, które umożliwia łagodne prowadzenie narzędzia, redukując uszkodzenie zębów tnących. Według specyfikacji producenta zastosowane rozwiązania techniczne sprawiają, że pilariki z takimi piłami łańcuchowymi wykazują minimalną skłonność do odbić oraz niski poziom wibracji.

Przykładem piły łańcuchowej do cięcia betonu, betonu zbrojonego, cegiel oraz asfaltu jest diamentowa piła 36 GBE Stihl do
Saw chains dedicated for cutting wood contaminated with sand and formwork boards contaminated with ceramic shell are characterised by increased durability (in comparison to a standard chainsaw). Examples of such tools are: Stihl's Rapid Duro 3 and Oregon saws, made with MultiCut technology.

The main research trends relate to the testing of mobile saw chains used for cutting wood. Analyses are carried out regarding: cutting performance [3–6], cutting force [7–8], cutting resistance [9], chain tension [10], blade geometry [11] and saw kickback depending on the wood type [12]. The authors have noticed the lack of research on chains intended for cutting wood contaminated with sand or steel elements in the aspect of cutting efficiency, operating costs and usability in rescue works.

Drives

Chainsaw drives are mainly combustion engines (see Figure 2a). They have many disadvantages related to their usage. The major ones include: extensive noise, vibration and dangerous exhaust gas emission. The engines are subject to exhaust emission regulations for non-road mobile machinery held in hands [13]. The requirements for the low weight of the structure (due to necessity of holding the device in hands), the position of the engine in three axes (according to the Cartesian coordinate system) as well as the resulting problems with engine lubrication, have led to the use of 2-stroke engines. In such engines, the crank-piston system lubrication is based on the oil supplied to the combustion chamber with the fuel-air mixture. It is burnt there, which increases the emission of toxic exhaust compounds. The carburettor fuel supply system is common in this type of engines [14–15]. Stihl for chain saw models with MTronic systems and Husqvarna for models with Auto-Tune systems have introduced carburettors with electric fuel valve (controlled electronically). This type of valve opens and closes the fuel supply channel, but the fuel is sucked by the force resulting from the vacuum in carburettor. This solution is more advantageous than the use of a classic mechanical carburettor, in which fuel suction is a continuous process, and the amount of supply dose depends on the pressure in the suction channel.

The latest innovation in fuel supply systems in petrol chainsaws is the use of a fuel injector. Contrary to the electric fuel valve – not only does it adjust the opening time, but also allows to supply fuel at a certain pressure, regardless of the suction force in the suction channel. In 2019, Stihl introduced to market the MS 500i model equipped with an electronic injection-ignition system. Such systems, in comparison to carburettor, are characterised by more accurate delivery of fuel to the cylinder. This solution reduces fuel consumption and the emission of toxic combustion products [16–20].

The dynamic development of electrical devices sourcing energy from batteries is also visible among chainsaws (see Figure 2b). The indisputable advantage of chainsaws with these devices is the lower noise level, reduced vibration and reduced fuel consumption. The latest innovation in modern chainsaws is the use of an electric drive, which allows for a more ergonomic use of the chainsaw and reduces the operator's effort. It is worth noting that the cost of such solutions is currently quite high, which is a limiting factor for their widespread use.

Napędy

Napędy pilarek łańcuchowych to głównie silniki spalinowe (zob. ryc. 2a), obarczone wieloma wadami związanymi z ich użytkowaniem. Wśród podstawowych można wyróżnić: hałas, drgania, emisję gazów spalinowych. Podlegają one przepisom emisji spalin dotyczących niedrogowych maszyn ruchomych z terytorialnych w rękach [13]. Wymagania w odniesieniu do niskiej masy konstrukcji (ze względu na trzymanie urządzenia w rękach) oraz pozyca pracy silnika w trzech osiach (zgodnie z karteraźińskim układem współrzędnych), a także wynikające z tego problemy przy smarowaniu silnika skłaniają do stosowania silników dwusuwowych. W takich silnikach smarowanie układu korbowo-tłokowego odbywa się z wykorzystaniem oleju dostarczanego do komora spalania z mieszanką paliwowo-powietrzną. Dochodzi wówczas również do jej spalania, co przyczynia się do zwiększonej emisji toksycznych związków spalin. Powszechne w tym typu silników jest gaźnikowy układ zasilania paliwem [14–15]. Firma Stihl w modelach pilarek z układami M-Tronic oraz firma Husqvarna w modelach z układami Auto-Tune wprowadziły gaźniki z elektrycznym zaworem paliwowym sterowanym elektronicznie. Zawór taki otwiera i zamyka kanał dostarczający paliwo, jednak pobieranie paliwa odbywa się przez siłę wynikającą z podciśnienia w gaźniku. Rozwiązanie to jest korzystniejsze od zastosowania klasycznego mechanicznego gaźnika, w którym zasysanie paliwa jest procesem ciągłym, zaś ilość dostarczanej dawki zależy do ciśnienia w kanale ssącym.

Najnowszą rewolucją w uzdajach zasilania paliwem w pilarkach spalinowych jest zastosowanie wtryskiwacza paliwa. Wtryskiwacz – w przeciwieństwie do elektrycznego zaworu paliwowego – poza funkcją regulacji czasu otwarcia umożliwia dostarczanie paliwa pod określonym ciśnieniem, niezależnie od siły ssącej w kanale ssącym. W 2019 roku firma Stihl wprowadziła na rynek model MS 550i wyposażony w elektroniczny układ wtryskowo-zapłonowy. Układy takie względem gaźnikowych cechują dynamicznie dostępność nośnika energii do cylindra. Zmniejsza to zużycie paliwa oraz emisję toksycznych związków spalin [16–20].
Drives is the lack of exhaust gas emission. In 2016, research realised by A. Colantoni [4] did not confirm the higher standards of using electric (battery) saws in relation to mass and generated vibrations. The results indicate that these parameters depend on the saw model and manufacturer. They showed, however, reduced noise in case of electric saws (84–96 dB) compared to petrol (97–109 dB). Also research carried out in 2017 by F. Neri and his team confirmed the lower noise emission while using electric chainsaws (81–91 dB) compared to ones driven by petrol engines [21]. Modern electric saws powered by batteries – through the use of lithium-ion batteries, which can be recycled in 97% – are characterised by a sufficiently high power level and durability [22–23].

Product life cycle tests conducted by A. Kristinsdóttir and D. Corredor in 2011 showed that electric chainsaws using batteries have a lower overall environmental impact than those powered by petrol [24]. On the other hand, vibration and noise emission tests carried out in 2018 by the research group led by W. Rukat proved that – regardless of the power unit type (electric, combustion) – noise and vibration emissions levels determined for a standard eight-hour working time are exceeded [25]. In the same year, comparative tests of petrol and electric (battery) saws were carried out in real working conditions while cutting trees. These tests confirmed the thesis that electric chainsaws can be a good alternative to petrol those powered by petrol [26]. Researchers have shown that electric chainsaws have lower levels of energy consumption, noise and vibration transmitted onto the operator hands. However, they noted that their disadvantage is the ‘powerful’ battery power which at this stage of device development is sufficient in forestry work, but only on a small scale. The improvement of this parameter will contribute to a wider range of applications for the tested tools. The electrification of devices in all branches of industry contributes to the dynamic development of batteries [27].

The authors of this article noted that there is no research on electric chainsaws powered by batteries with respect to firefighting and rescue applications. Devices used for such purposes are exposed to work in higher temperatures and irregular usage time affecting the charging cycles. This mode of operation can reduce battery life. In addition, there is neither any analysis of the battery replacement costs, nor any of its durability. Electric chainsaws batteries need to be charged or replaced, contrary to petrol chainsaws, where refuelling ensures continuous operation. In rescue and firefighting applications discharged battery does not constitute a major problem, because it can be charged in a rescue vehicle. The authors do not describe pneumatic-powered chainsaws requiring air ducts (see Figure 2c), since they consider them too complicated for rescue operations.
Security Systems

The hazards associated with working as a chainsaw operator can be divided into two types. The first results from the impact of the noise [28–32], hand and arm vibrations [28–36], dust exposure [28], combustion products exhaust [37–40] and improper use of the tool [41–43]. The second type of danger is attributed to chainsaw operators who participate in rescue operations. Haste, unstable ground, limited space, contaminated cut material of an unpredictable structure – all these factors can lead to injuries of people near the chainsaw.

To reduce the negative impact on operators, special protective personal equipment for mobile chainsaws is used. It involves for example: protective helmets, ear muffs, googles or face shield, protective gloves, pants, and footwear with steel and non-slip soles. Access to the handy first aid kit is also recommended at the scene. Security systems, mentioned in the crossheading above, consist of: chain brake, front cover (safety brake lever), throttle lever lock, chain saw gripper, right hand shield and anti-vibration system [44–47]. Additional safety systems intended for rescuers include a shield covering the chainsaw blade, which also limits the depth of cut. It protects against accidental contact with the operator’s body. The solution proposed by Cutters Edge in the MultiCut 16 model has the function of adjusting the depth of cut and easy operation mode – even when operator is working in protective gloves.

Figure 2. Chainsaws with drive: a) petrol, b) electric (battery), c) hydraulic

Rycina 2. Pilarki łańcuchowe z napędem: a) spalinowym, b) elektrycznym (akumulatorowym), c) hydraulicznym

Source: Poznan University of Technology archives.
Zródło: Archiwum własne Politechniki Poznańskiej.
One of the solutions developed by researchers – but not used commercially – is a system that recognises dangerous linear and angular acceleration of a chainsaw. Having recognised such a movement, the algorithm disconnects the drive or stops the saw chain [48]. This is one of the most effective methods of securing the operator in the case of a kickback.

Another factor indirectly affecting human health, and resulting from the use of chainsaws, is related to the pollution of the natural environment by chain and guide bar lubrications. Commercially, there are two types of oils. The first one is the mineral oil, which is a refined petroleum product that pollutes the environment with hydrocarbon compounds [49]. The second is easily degradable under the influence of microorganisms, otherwise known as biodegradable oil [50]. We may also distinguish synthetic (i.a. ester) and vegetable oils. Relative to minerals oils, they are characterised by higher density, higher flash point, lower freezing point [49], [51] and lower chain and guide bar noise [52]. A significant disadvantage is the oxidation of fatty acids causing the formation of a sticky or hard layer of dried oil, which increases the frictional resistance of the chainsaw [49].

Analyses of exhaust chainsaws damage show that their most defective parts are the saw’s body and the crank-piston (50% of all damage) [53]. One of the less damaged elements are safety systems [53]. Chain and guidance are the most prone to exploitation. The reason for this is the already mentioned friction.

Jednym z rozwiązań opracowanych przez naukowców – nie stosowanych komercyjnie – jest układ rozpoznający niebezpieczne przyspieszenia liniowe i kątowe pilarki łańcuchowej. Algorytm rozpoznający niebezpieczny ruch pilarki łańcuchowej rozłącza jej napęd lub blokuje ruch piły łańcuchowej [48]. Jest to jedna z najskuteczniejszych metod zabezpieczenia operatora w sytuacji odbicia piły.

Czynnikiem pośrednio wpływającym na zdrowie ludzi, w wyniku użycia pilarek łańcuchowych, są środki smarowe piły łańcuchowej i prowadnicy przedostające się do środowiska naturalnego. Komercyjnie dostępne są dwa rodzaje olei. Pierwszy to olej mineralny, który jest produktem rafinacji ropy naftowej, zanieczyszczającym środowisko związkami węglowodorowymi [49]. Drugi to oleje łatwo ulegające rozkładowi pod wpływem mikroorganizmów, inaczej nazywane biodegradowalnymi [50]. Można wśród nich wyróżnić oleje syntetyczne (m.in. estrowe) i roślinne. Względem mineralnych charakteryzują się większą gęstością, wyższą temperaturą zapłonu, niższą temperaturą zamarzania [49], [51], niższym hałasem związanym z poruszaniem się łańcucha po prowadnicy [52]. Znaczną wadą jest utlenianie kwasów tłuszczowych powodujące tworzenie się lepkiej lub twardej warstwy wyschniętego oleju, która to zwiększa opór tarcia przemieszczającej się po prowadnicy piły łańcuchowej [49].

Analizy uszkodzeń spalinowych pilarek łańcuchowych wykazują, że najbardziej wadliwymi elementami są korpus i układ korbowo-tłokowy (łączenie 50% uszkodzeń) [53]. Najmniej awaryjne są składowe układów bezpieczeństwa pracy [53]. Częściami najbardziej
The above-described innovative chainsaw materials and lubricants contribute to improving the durability of the cutting mechanism components. What is more, Oregon company proposes the use of chain links with an oil chamber to increase the service life of a saw chain. Such system, called LubriLink™, allows the oil to remain on the saw for a long time, limiting its shedding by centrifugal force. Another chain link system aimed at reducing friction and increasing efficiency through a unique design is LubriTec™. An alternative solution LubriWell™ supports oil distribution throughout the guide bar. It has a hole in the chain link, located in the least loaded part of the guide link. The lubricant in the hole is kept longer on the tool surface, reducing friction during start-up, before the saw lubrication system begins to be fully functional. In addition, the hole in the link reduces the total weight of the chain, thereby reducing the load on the engine. Another solution, introduced by Oregon, that improves lubrication of the cutting mechanism, is the LubriDam™ system. The system has a small threshold located at the bottom of the guide bar groove, just behind the lubrication hole. This solution allows to retain the oil, and thus it is more effectively distributed along the entire length of the guide bar and chain. In consequence, each subsequent chain link groove accumulates oil and distributes it around the guide bar. The manufacturer shows a 135% increase in oil film thickness. Another system called LubriJet™ uses angular lubrication hole in the guide bar to increase the dynamics of oil outflow. Taking above into account, this solution improves chain lubrication, but also more effectively removes dust and shavings from the outlet duct, thus reducing the possibility of blockage.

One of the problems when operating chainsaws is squeezing the guide bar by, e.g., a branch while cutting it from the bottom to top. In 2010, Y. Ishigure and his team presented a prototype solution, which is to counteract the chain blocking phenomenon. A guide with a movable part susceptible to clamping was presented [54]. Another innovation in the chainsaw design is the Oregon PowerSharp® system. In addition to the holes on the sharpening system, it has a mild rounding radius which reduces the kickback energy.

Chainsaw vibration is a disadvantageous phenomenon for operators. One of the sources of vibration in the chainsaw is the cutting mechanism. Oregon company has developed the Vibe-Ban™ system, which – according to the manufacturer specification – reduces vibration by 30%. Chainsaws cutting links made in this system are characterised by a reduced quantity of material in the back of the link part. That solution allows this part of the link to move freely over the edge of the guide bar. The space between the chain and guide bar enables the chainsaw to absorb shocks. When the working edge of the cutting link introduces into the wood surface, the back of the links is susceptible to slight movement. It stands in contrast to classic solutions in which wedging chain friction is observed over the whole surface.
Summary

Available in the literature analyses of the cutting chains and mobile chainsaws evolution are conducted mainly from logging conditions perspective [55–56]. The authors of the article indicated innovations in the chainsaws with respect to the rescue and firefighting activities. The solutions presented in the article can contribute to the development of rescue teams equipment, increasing their efficiency and safety at work. The article also indicates the need for research into solutions that can be used in rescue activities. The trend that can be observed in the rescue team equipment development is the use of petrol chainsaws equipped with chains of increased durability for cutting contaminated wood. Low-emission and low-impact drives, systems protecting the operator's body against the sawing machines during uncontrolled and unpredictable situations were also introduced. Using a biodegradable oils for chain lubrication is included in these trends too.

What needs to be underlined is that chainsaws are not subject to certification of admissibility process for the products used to assure public safety or to protect health, life and property. They are excluded from the list of the admittance regulation (Journal of Laws, Dz. U. No. 143, item 1002; Dz. U. No. 85 item 553; Dz. U. 2018 item 984), and as a result of these, fire protection units have freedom in their application. Therefore, it is important to publish information about these devices. This can be helpful for the operation of fire rescue units as well as may contribute to their greater awareness about the tools in question.

Literature / Literatura

[1] Aniszewska M., Brzózko J., Skarzyński J., Harwesty do pozyskiwania drewna stosowane w polskich lasach. Część 2. Głowice harwesterowe. „Technika Rolnicza Ogrodnicza Leśna” 2011, 2.
[2] Sowa J., Gieralowiec K., Gaj-Gieralowiec D., Characteristics and development of the construction of logging harvester heads, “Forestry Letters” 2013, 105, 3.
[3] Acosta F.C., Oliveira D.C.D., Arruda C., Garcia M.L., Melo R. R. D., Operational Performance of the Selective Cutting of Trees With Chainsaws, “Floresta e Ambiente” 2018, 25, 3.
[4] Colantoni A., Mazzocchi F., Cossio F., Cecchini M., Bedini R., Monarca D., Comparisons between battery chainsaws and internal combustion engine chainsaws: performance and safety, “Contemp Eng Sci” 2016, 9, 1315–1337.
[5] Halilović V., Musić J., Bajrić M., Sokolović D., Knežević J., Kupusović A., Fuel and lubricants consumption during timber felling and processing in the area of Plitvice forest park „Zavidović”, „Journal of the Forestry Society of Croatia” 2019, 143, 7–8, 337–345.
[6] Maciak A., Wpływ zużycia eksploatacyjnego płyty łańcuchowej na uzyskiwane efekty skrawania, „Zeszyty Problemowe Postępów Nauk Rolniczych” 2002, 486, 1.
[7] Maciak A., Kubuska M., Moskalik T., Instantaneous Cutting Force Variability in Chainsaws, “Forests” 2018, 9, 10, 660, https://doi.org/10.3390/f9100660.
[8] Kuvik T., Krilek J., Kováč J., Štefánik M., Dvorak J., Impact of the selected factors on the cutting force when using a chainsaw, “Wood Res” 2017, 62, 807–814.
[9] Gendek A., Parametry wpływające na zmienność oporów skrawania drewna płyta łańcuchową, „Zeszyty Problemowe Postępów Nauk Rolniczych” 2009, 543.
[10] Maciak A., Kubuska M., Wpływ napięcia wstępnego na szybkość stopiania się ogoni płyty łańcuchowej oraz wydajność skrawania, „Leśne Prace Badawcze” 2018, 79, 3.
[11] Komorowski J., Wpływ geometrii ostrza łożyskowego płyty łańcuchowej na skrawanie drewna sosnowego, „Prace Instytutu Badawczego Leśnictwa” 1990, 717–721.
[12] Kaliniewicz Z., Małeśzewski Ł., Krzysiak Z., Influence of saw chain type and wood species on the kickback angle of a chainsaw, “Technical Sciences” 2018, 21, 4, 323–334.
[13] Walusi K.J., Wargula Ł., Krawiec P., Adamiec J.M., Legal regulations of restrictions of air pollution made by non-road mobile machinery – the case study for Europe: a review, “Environmental Science and Pollution Research” 2018, 25, 4, 3243–3259.

Podsumowanie

Dostępne w literaturze analizy ewolucji pił łańcuchowych oraz przenośnych pilarek są prowadzone głównie dla warunków pozyskiwania drewna [55–56]. Autorzy artykułu wskazali innowacje w zakresie pilarek łańcuchowych ukierunkowanych na prace w zakresie działań ratowniczo-gaśniczych. Zaprezentowane rozwiązania mogą przyczynić się do zwiększenia asortymentu zespołów ratowniczych, korzystnie wpływając na ich efektywność i bezpieczeństwo pracy. Dostrzeżono również konieczność prowadzenia badań nad innowacyjnymi rozwiązaniami w kierunku ich przydatności w akcjach ratowniczych. Trendem, który można zaoferować w rozwoju wyposażenia zespołów ratowniczych, jest stosowanie pilarek spalinowych wyposażonych w łańcuchy o podwyższonej trwałości oraz technologie zapobiegające zanieczyszczeniu. Wdrożono również niskoemisyjne i mało oddziewające napędy, układy zabezpieczające ciało operatora przed ostrzami ogoni łańcuchowych oraz przenośnych pilarek są prowadzone głównie dla warunków niekontrolowanych i nieprzewidywalnych sytuacji, a także biodegradowalne oleje do smarowania łańcuchu.

Warto podkreślić, że pilarki łańcuchowe nie podlegają procesom dopuszczenia wyrobów służących zapewnieniu bezpieczeństwa publicznego lub ochronie zdrowia i życia oraz mienia. Nie uwzględnienie ich na liście dopuszczenia (Dz. U. Nr 143, poz. 1001; Dz. U. Nr 143, poz. 1002; Dz. U. Nr 85 poz. 553; Dz. U. 2018 poz. 984) oznacza, że jednostki ochrony przeciwpowżarowej mają dowolność w ich stosowaniu. Dlatego ważne jest publikowanie informacji pomagających zwiększać świadomość na temat tych urządzeń oraz usprawniać funkcjonowanie straży pożarnych.
The impact of the modernization of the injection-ignition system on the parameters of motion of the motorcycle, "Procedia Engineering" 2017, 177, 393–398.

Determining noise and vibration exposure in conifer cross-cutting operations by using li-ion batteries and electric chainsaws with different power systems. Göteborg, Sweden 2011.

In "MATEC Web of Conferences, Proceedings of the 17th International Conference on Diagnostics of Machines and Vehicles" 2018, 182, 02020, EDP Sciences, https://doi.org/10.1051/matecconf/201818202020.

Comparison of electric and petrol chainsaws in terms of efficiency and safety when used in young spruce stands in small-scale private forests, "Small-scale Forestry" 2018, 17(3), 411–422.

Alander L. J., Song C. H., Tracing the technological development trajectory in post-lithium-ion battery technologies: A patent-based approach. "Journal of Cleaner Production" 2019, 241, 118343, https://doi.org/10.1016/j.jclepro.2019.118343.

Lijewski P., Fuć P., Dobrzynski M., Markiewicz F., "Wpływ średnicy drewna oraz kąta napełniania płytki na drgania elektrycznej pilarki z piłą łańcułową "Przegląd Techniki Wytwarzania" 2012, 63, 1, 19–29.

Malinowska-Borowska J., Socholić V., Harazin B., Stan zdrowia pracowników leśnych narzuconych na hałas i wibracje miejscowe wytwarzane przez płyty łańcuchowe, "Medycyna Pracy" 2012, 63, 1, 19–29.

Wojtkowiak R., Kroluski J., Dubowski A., Measurements of noise resulting from cutting chain movements on a chainsaw bar, lubricated with different oils, "Acta Scientiarum Polonica. Silvarum Colendarum Ratio et Industria Lignaria" 2007, 6, 1, 85–93.

Górski J., Wstępne badania emisji akustycznej towarzyszącej skrawaniu drewna pila łańcułową, "Przegląd Techniki Rolniczej i Leśnej" 2000, 3, 17–19.

Kovač J., Krilek J., Dado M., Beño P., Investigating the influence of design factors on noise and vibrations in the case of chainsaws for forestry work. "FME Transactions" 2018, 46, 4, 513–519.

Wojcik K., Skarzynski J., Salek M., Wpływ średnicy sosnowego na drgania elektrycznej pilarki z piłą łańcułową Stihl E180 przy przerzynce, "Zeszyty Probleemowe Postępów Nauk Rolniczych" 2009, 543.

Stempski W., Jabłoński K., Wegner J., Relations between top-plate filling angle values of cutting chains and chain-saw vibration levels, "Acta Scientiarum Polonica. Silvarum Colendarum Ratio et Industria Lignaria" 2010, 9, 31–39.

Landekić M., Bačić M., Pandur Z., Ćušnjar M., Vibration Levels of Used Chainsaws, "Forests" 2020, 11, 2, 249.

Landekić M., Bačić M., Pandur Z., Vibration Levels of Used Chainsaws, "Forests" 2020, 11, 2, 249.

Feyzi M., Jafari A., Ahmad M., Investigation and analysis the vibration of handles of chainsaw without cutting, "Journal of Agricultural Machinery" 2016, 6, 1, 90–101.

Dimov V., Kantartzis A., Malesos C., Kasampalis E., Research of exhaust emissions by chainsaws with the use of a portable emission measurement system, "International Journal of Forest Engineering" 2019, 30, 3, 228–239.

Lijewska P., Fuć P., Dobrzynski M., Markiewicz F., Exhaust emissions from small engines in handheld devices, In MATEC Web of Conferences, VII International Congress on Combustion Engines, Poznań, Poland, 27–29 June 2017 , EDP Sciences: Lez III, France, 2017, Volume 118.

The comparison of vibro-acoustic impact of chainsaws with electric and combustion drives. In MATEC Web of Conferences, Proceedings of the 17th International Conference on Diagnostics of Machines and Vehicles, 2018, 182, 02020, EDP Sciences, https://doi.org/10.1051/matecconf/201818202020.
[39] Dimou V., Kantartzis A., Malesios C., Kasampalis E., Research of exhaust emissions by chainsaws with the use of a portable emission measurement system, “International Journal of Forest Engineering” 2019, 30, 3, 228–239.

[40] Hooper B., Parker R., Todoroki C., Exploring chainsaw operator occupational exposure to carbon monoxide in forestry, “Journal of occupational and environmental hygiene” 2017, 14(1), D1–D12.

[41] Dąbrowski A., Przyczyny wypadków powodowanych przez przenośne pilarki łańcuchowe. „Bezpieczeństwo Pracy: nauka i praktyka” 2001, 10–13.

[42] Cividino S.R.S., Gubiani R., Pergher G., Dell’Antonia D., Analysis and Laboratory Testing of Technical Injury Prevention Measures for Portable Combustion Chainsaws, “Forests” 2020, 11, 3, 276.

[43] Tobita K., Nitami T., Yoshioha T., Factors associated with injuries related to chainsaw tree felling in Japan, “International Journal of Forest Engineering” 2019, 30, 3, 190–194.

[44] Dąbrowski A., Przenośne pilarki łańcuchowe-ochrona operatora przed kontaktem z ruchomym narzędziem, „Bezpieczeństwo Pracy: nauka i praktyka” 2016, 22–25.

[45] Dąbrowski A., Upomnienia dotyczące technicznych środków ochrony przed urazami powodowanymi przez pilarki łańcuchowe, „Bezpieczeństwo Pracy: nauka i praktyka” 2019, 16–19.

[46] Dąbrowski A., Rozwiązywanie konstrukcyjne przenośnych pilarek łańcuchowych zwiększających bezpieczeństwo ich obsługi, „Bezpieczeństwo Pracy: nauka i praktyka” 2004, 11–14.

[47] Cividino S.R., Malev O., Gubiani R., An Improved Safety Device for Electric Chainsaws, “Contemporary Engineering Sciences” 2015, 27, 8, 1229.

[48] Wojtkowiak R., Tomczak R. J., Analiza porównawcza właściwości olejów smarujących układ tnący pilarki łańcuchowej, „Rosliny Oleistne-Oilseed Crops” 2013, 24, 1, 317–325.

[49] Zembrowski K., Dubowski A. P., Wojtkowiak R., Biodegradable technical solutions for machinery and equipment, „Technika rolnicza ogrodnicza leśna” 2010, 1, 23–28.

[50] Wojtkowiak R., Dubowski A., Badania porównawcze właściwości olejów smarowych układu tnącego pilarki łańcuchowej, „Zeszyty Problemowe Postępów Nauk Rolniczych” 2002, 486, 1.

[51] Wojtkowiak R., Kromulski J., Dubowski A., Measurements of noise resulting from cutting chain movements on a chain-saw bar, lubricated with different oils, “Acta Scientiarum Polonorum. Silvarum Colendar. Ratio et Industria Lignaria” 2007, 6, 1.

[52] Pilarek Z., Milnicki P., Causes of defects of power chainsaws, “Acta Sci. Pol., Silv. Co. Ind. Lignar.” 2008, 7(4), 45–54.

[53] Ishigure Y., Kachi H., Mori Y., Kashiwagi H., Pruning machine with a mechanism for preventing branch bite. In Proc. of Forest Engineering: Meeting the Needs of the Society and the Environment (FORMEC 2010), 1–9.

[54] Jelenek T., Evolution of chain saw – sawdust, „Studia i Materiały Ośrodka Kultury Leśnej” 2015, 14.

[55] Kranjec J., Porašnica T., History of chain saw development, “Nova Mehanizacija Šumarstva” 2011, 32, 23–37.

ŁUKASZ WARGUŁA, PH.D. ENG. – a graduate of the Faculty of Mechanical Engineering and Management at Poznan University of Technology. He obtained his Ph.D. in technical sciences in 2018 in the discipline of Mechanical Construction and Maintenance. Since 2016, he has been working at the Institute of Machine Design as an assistant professor. His scientific interests include machines and vehicles construction and operation as well as mechatronics in vehicles. He deals with the research and analysis the systems construction and designing effective solutions for the machines and vehicles drives.

PIOTR KRAWIEC, D.SC. ENG. PP PROF. – a graduate of the Faculty of Mechanical Engineering at the Poznan University of Technology. He obtained his doctoral degree in 2002 and in 2011 a postdoctoral degree. Since 1994, he has been working at the Department of Fundamentals of Machine Design. His specialisation includes: machine construction and operation, computer aided design, material testing, drive control, cargo transportation safety.

DR INŻ. ŁUKASZ WARGUŁA – ukończył studia na Wydziale Budowy Maszyn i Zarządzania na Politechnice Poznańskiej. W 2018 r. uzyskał stopień doktora nauk technicznych w dyscyplinie budowy i eksploatacji maszyn. Od 2016 r. pracuje w Instytucie Konstrukcji Maszyn na stanowisku adiunkt. Jego zainteresowania badawcze obejmują: konstrukcję i eksploatację maszyn oraz pojazdów oraz mechatronikę pojazdów. Zajmuje się badaniami i analizą budowy systemów oraz projektowaniem efektywnych rozwiązań w układach napędowych maszyn i pojazdów.

DR HAB. INŻ. PIOTR KRAWIEC, PROFESOR PP – ukończył studia na Wydziale Budowy Maszyn Politechniki Poznańskiej. Stopień doktora uzyskał w 2002 r., w 2011 r. stopień doktora habilitowanego. Od 1994 r. pracuje w Katedrze Podstaw Konstrukcji Maszyn. Specjalność – budowa i eksploatacja maszyn, komputerowe wspomaganie projektowania, badania materiałów, sterowanie napędami, bezpieczeństwo transportu ładunków.
MATEUSZ KUKLA, PH.D. ENG. – received his bachelor and master degrees in mechatronics from the Poznań University of Technology. In 2018 he obtained his Ph.D. in mechanical engineering. Since 2013 he has been employed at the Institute of Machine Design as an assistant professor. The area of his scientific interest covers issues related to non-classical engineering materials – magnetoreological elastomers. He conducts material research of these composites and engineering works related to their practical applications. In addition, he deals with issues related to the construction of machines and vehicles. He devotes particular interest to the construction of wheelchairs and their drive systems.

BARTOSZ WIECZOREK, PH.D. ENG. – a graduate of the Faculty of Construction Machinery and Transport at the Poznan University of Technology. Since 2015 he has been employed at the Institute of Machine Design in Poznań University of Technology. As part of his work, he deals with the methodology of designing and constructing rehabilitation devices dedicated to people with disabilities of the locomotor system. These works are directed towards the biomechanics of the human-wheelchair anthropotechnical system. His particular interest concerns the process of driving manual wheelchairs and its impact on the muscular system.

PIOTR KACZMARZYK, M.SC. ENG. – a graduate of the Faculty of Fire Safety Engineering at The Main School of Fire Service. Since 2015 he has been working in the Laboratory of Combustion Processes and Explosions at the Scientific and Research Centre for Fire Protection – National Research Institute. His professional activity is associated with reaction to fire of building materials, explosion and fire protection systems, fire ventilation systems effectiveness evaluation using CFD tools. He is an author of many publications, technical standards and elaboration associated with building fire safety.

DR INŻ. MATEUSZ KUKLA – ukończył studia licencjackie i magisterskie na kierunku mechatronika na Politechnice Poznańskiej. W 2018 r. uzyskał stopień doktora nauk technicznych w dyscyplinie inżynierii mechanicznej. Od 2013 r. pracuje w Instytucie Konstrukcji Maszyn na stanowisku adiunkta. Obszar zainteresowań badawczych autora obejmuje: niekласyczne materiały inżynierskie – elastomery magnetoreologiczne. Prowadzi badania materiałowe tych kompozytów i prace inżynieryjne związane z ich zastosowaniem praktycznym. Dodatkowo zajmuje się kwestiami związanymi z budową maszyn i pojazdów. Szczególną uwagę poświęca budowie wózków inwalidzkich i ich systemom napędowych.

DR INŻ. BARTOSZ WIECZOREK – ukończył studia na Wydziale Maszyn Roboczych i Transportu. Od 2015 r. pracuje w Instytucie Konstrukcji Maszyn. Zajmuje się między innymi metodologią projektowania i budowy urządzeń rehabilitacyjnych dla osób niepełnosprawnych ruchowo. Prace te skoncentrowane są na biomechanice systemów antropotechnicznych dla wózka inwalidzkiego. Szczególnie zainteresowania autora dotyczą poruszania się na manu alnych wózkach inwalidzkich i ich wpływu na system mięśniowy.

MGR INŻ. PIOTR KACZMARZYK – absolwent Wydziału Inżynierii Bezpieczeństwa Pożarowego w Szkole Głównej Służby Pożarniczej. Obecnie pracuje w Laboratorium Procesów Spalania i Wybuchowości w Centrum Naukowo-Badawczym Ochrony Przeciwpожаревой – Państwowym Instytucie Badawczym. Działalność zawodowa autora jest związana z takimi zagadnieniami jak: reakcja na ogień materiałów budowlanych, systemy zabezpieczeń przeciwpożarowych i przeciwybuchowych obiektów budowlanych, ocena skuteczności działania systemów wentylacji pożarowej wykorzystujących narzędzia CFD. Jest autorem wielu publikacji, standardów technicznych oraz opracowań związanych z bezpieczeństwem pożarowym budynków.