General properties of nonlinear mean field Fokker-Planck equations

P.H. Chavanis

Laboratoire de Physique Théorique, 118 route de Narbonne 31062 Toulouse, France

Abstract. Recently, several authors have tried to extend the usual concepts of thermodynamics and kinetic theory in order to deal with distributions that can be non-Boltzmannian. For dissipative systems described by the canonical ensemble, this leads to the notion of nonlinear Fokker-Planck equation (T.D. Frank, Non Linear Fokker-Planck Equations, Springer, Berlin, 2005). In this paper, we review general properties of nonlinear mean field Fokker-Planck equations, consider the passage from the generalized Kramers to the generalized Smoluchowski equation in the strong friction limit, and provide explicit examples for Boltzmann, Tsallis and Fermi-Dirac entropies.

Keywords: Nonlinear mean field Fokker-Planck equations, Generalized entropies

PACS: 05.10.Gg, 05.40.Jc, 05.45.-a, 05.90.+m

1. THE GENERALIZED KRAMERS EQUATION

1.1. Generalized stochastic processes

Nonlinear Fokker-Planck (NFP) equations have been the subject of recent activity [1, 2, 3, 4, 5]. Here, we consider a generalized Kramers equation of the form [6]:

$$\frac{\partial f}{\partial t} + v \cdot \frac{\partial f}{\partial r} - \nabla \Phi \cdot \frac{\partial f}{\partial v} = \frac{\partial}{\partial v} \left(Dh(f) \frac{\partial f}{\partial v} + \xi g(f) v \right),$$

where $h(f)$ and $g(f)$ are positive functions. For $h(f) = 1$ and $g(f) = f$, Eq. (1) reduces to the familiar Kramers equation where D is the diffusion coefficient and ξ the friction coefficient. Usually, $\Phi(r)$ is an external potential but we can also consider the case where the potential is produced by the density $\rho(r, t) = \int f(r, v, t) dv$ according to the relation

$$\Phi(r, t) = \int u(|r - r'|) \rho(r', t) dr',$$

where $u(|r - r'|)$ is a binary potential of interaction. The nonlinear mean field Fokker-Planck equation [2] is associated to the Ito-Langevin stochastic process

$$\frac{dr}{dt} = v, \quad \frac{dv}{dt} = -\xi(f)v - \nabla\Phi + \sqrt{2D(f)} R(t),$$

$$\xi(f) = \frac{\xi g(f)}{f}, \quad D(f) = \int_0^f h(x) dx,$$

where $R(t)$ is a white noise satisfying $\langle R(t) \rangle = 0$ and $\langle R_i(t) R_j(t') \rangle = \delta_{ij} \delta(t - t')$ where $i = 1, \ldots, d$ label the coordinates of space.
1.2. The H-theorem

We introduce the energy

\[E = \frac{1}{2} \int f v^2 d\mathbf{r} d\mathbf{v} + \frac{1}{2} \int \rho \Phi d\mathbf{r} = K + W, \]

(5)

where \(K \) is the kinetic energy and \(W \) is the potential energy. For an external potential, we have \(W = \int \rho \Phi d\mathbf{r} \). We define the temperature by

\[T = \frac{D}{\xi}. \]

(6)

Therefore, the Einstein relation is preserved in this generalized thermodynamical framework. We also set \(\beta = 1/T \). We introduce the generalized entropic functional

\[S = -\int C(f) d\mathbf{r} d\mathbf{v}, \]

(7)

where \(C(f) \) is a convex function (\(C'' > 0 \)) satisfying [3]:

\[C''(f) = \frac{h(f)}{g(f)}. \]

(8)

Since the temperature is fixed (canonical description), the relevant thermodynamical potential is the generalized free energy

\[F = E - TS. \]

(9)

The definition of the free energy (Legendre transform) is preserved in this generalized thermodynamical framework. A straightforward calculation then shows that [3]:

\[\dot{F} = -\int \frac{1}{\xi g(f)} \left(Dh(f) \frac{\partial f}{\partial \mathbf{v}} + \xi g(f) \mathbf{v} \right)^2 d\mathbf{r} d\mathbf{v}. \]

(10)

Therefore, \(\dot{F} \leq 0 \) (provided that \(\xi > 0 \)). This forms an \(H \)-theorem in the canonical ensemble. The free energy \(F \) plays the role of a Lyapunov functional. Note that the NFP equation (1) can be written

\[\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} - \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{v}} = \frac{\partial}{\partial \mathbf{v}} \left[\xi g(f) \frac{\partial}{\partial \mathbf{v}} \left(\frac{\delta F}{\delta f} \right) \right]. \]

(11)

1.3. Stationary solutions

The steady states of Eq. (1) must satisfy \(\dot{F} = 0 \) leading to a vanishing current

\[J \equiv Dh(f) \frac{\partial f}{\partial \mathbf{v}} + \xi g(f) \mathbf{v} = 0. \]

(12)
Using Eqs. (6) and (8), we get

\[C''(f) \frac{\partial f}{\partial v} + \beta v = 0, \quad (13) \]

which can be integrated into

\[C'(f) = -\beta \left[\frac{v^2}{2} + \lambda(r) \right], \quad (14) \]

where \(\lambda(r) \) is a function of the position. Since \(\frac{\partial f}{\partial t} = 0 \) and \(J = 0 \), the advective (Vlasov) term in Eq. (1) must also vanish leading to the condition

\[v \cdot \frac{\partial f}{\partial r} - \nabla \Phi \cdot \frac{\partial f}{\partial v} = 0. \quad (15) \]

Using

\[C''(f) \frac{\partial f}{\partial r} = -\beta \nabla \lambda, \quad C''(f) \frac{\partial f}{\partial v} = -\beta v, \quad (16) \]

we obtain \((\nabla \lambda - \nabla \Phi) \cdot v = 0 \) which must be true for all \(v \). This yields \(\nabla \lambda - \nabla \Phi = 0 \), so that

\[\lambda(r) = \Phi(r) + \alpha/\beta, \quad (17) \]

where \(\alpha \) is a constant. Therefore, the stationary solutions of Eq. (1) are determined by the relation [5]:

\[C'(f) = -\beta \varepsilon - \alpha, \quad (18) \]

where \(\varepsilon = \frac{v^2}{2} + \Phi(r) \) is the individual energy. Since \(C \) is convex, this equation can be reversed to give

\[f = F(\beta \varepsilon + \alpha), \quad (19) \]

where \(F(x) = (C')^{-1}(-x) \) is a decreasing function. Thus \(f = f(\varepsilon) \) is a decreasing function of the energy. We have \(f'(\varepsilon) = -\beta / C''(f) \leq 0 \).

\[1.4. \ \text{Minimum of free energy} \]

The critical points of free energy at fixed mass are determined by the variational problem

\[\delta F + T \alpha \delta M = 0, \quad (20) \]

where \(\alpha \) is a Lagrange multiplier. We can easily establish that

\[\delta E = \int \left(\frac{v^2}{2} + \Phi \right) \delta f \, dr \, dv, \quad \delta S = - \int C'(f) \delta f \, dr \, dv. \quad (21) \]
Therefore, the variational principle (20) gives [5]:

\[C'(f) = -\beta \varepsilon - \alpha, \]

equivalent to Eq. (18). Therefore, a stationary solution of the GK equation (1) is a critical point of free energy \(F[f] \) at fixed mass \(M \). Furthermore, it is shown in Ref. [1, 5] that it is linearly dynamically stable if and only if it is a minimum (at least local) of \(F \) at fixed mass. Note that when \(\Phi \) is an external potential, we have

\[\delta^2 F = -T \delta^2 S = \frac{1}{2} T \int C''(f)(\delta f)^2 dr dv \geq 0 \]

so that a critical point of \(F \) is always a minimum.

2. THE GENERALIZED SMOLUCHOWSKI EQUATION

We restrict ourselves to the case of a constant friction so that \(g(f) = f \) and \(h(f) = fC''(f) \). The generalized Kramers equation (1) then becomes

\[
\frac{\partial f}{\partial t} + v \cdot \frac{\partial f}{\partial r} - \nabla \Phi \cdot \frac{\partial f}{\partial v} = \frac{\partial}{\partial v} \left[\xi \left(T fC''(f) \frac{\partial f}{\partial v} + f v \right) \right].
\]

In that case, \(\xi(f) = \xi \) and \(D(f) = Df[C(f)/f]' \). Let us derive the hydrodynamic moments of this equation [5]. Defining the density and the local velocity by

\[\rho = \int f dv, \quad \rho u = \int f v dv, \]

and integrating Eq. (23) on velocity, we get the continuity equation

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0. \]

Next, multiplying Eq. (23) by \(v \), integrating on the velocity and using the continuity equation (25), we obtain the momentum equation

\[
\rho \left(\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} \right) = -\frac{\partial P_{ij}}{\partial x_j} - \rho \frac{\partial \Phi}{\partial x_i} - \xi \rho u_i,
\]

where we have defined the pressure tensor

\[P_{ij} = \int f w_i w_j dv, \]

where \(w = v - u(r,t) \) is the relative velocity. We now derive the generalized Smoluchowski (GS) equation from the generalized Kramers (GK) equation in the strong friction limit (see [7], Sec. 9). For \(\xi \to +\infty \) with fixed \(T \), the term in parenthesis in Eq. (23) must vanish at leading order

\[
T fC''(f) \frac{\partial f}{\partial v} + f v \simeq 0.
\]
Then, we find that the out-of-equilibrium distribution function \(f_0(r, v, t) \) is determined by

\[
C'(f_0) = -\beta \left[\frac{v^2}{2} + \lambda(r, t) \right] + O(\xi^{-1}),
\]

(29)

where \(\lambda(r, t) \) is a constant of integration that is determined by the density according to

\[
\rho(r, t) = \int f_0 dv = \rho[\lambda(r, t)].
\]

(30)

Note that the distribution function \(f_0 \) is isotropic so that the velocity \(u(r, t) = O(\xi) \) and the pressure tensor \(P_{ij} = p\delta_{ij} + O(\xi^{-1}) \) where \(p \) is given by

\[
p(r, t) = \int \rho v^2 dv = p[\lambda(r, t)].
\]

(31)

Eliminating \(\lambda(r, t) \) between Eqs. (30) and (31), we find that the fluid is barotropic in the sense that \(p = p(\rho) \), where the equation of state is entirely determined by the generalized entropy \(C(f) \). Now, considering the momentum equation (26) in the limit \(\xi \to +\infty \), we find that

\[
\rho u = -\frac{1}{\xi} (\nabla p + \rho \nabla \Phi) + O(\xi^{-2}).
\]

(32)

Inserting this relation in the continuity equation (25), we obtain the generalized Smoluchowski equation [5]:

\[
\frac{\partial \rho}{\partial t} = \nabla \cdot \left[\frac{1}{\xi} (\nabla p + \rho \nabla \Phi) \right].
\]

(33)

This equation can also be obtained from a Chapman-Enskog expansion in powers of \(1/\xi \) [6]. It monotonically decreases the free energy [5]:

\[
F[\rho] = \int \rho \frac{p(\rho')}{\rho'^2} d\rho' d\mathbf{r} + \int \rho \Phi d\mathbf{r},
\]

(34)

which can be deduced from the free energy (9) by using Eq. (29) to express \(F[f] \) as a functional \(F[\rho] \equiv F[f_0] \) of the density [6, 7]. A direct calculation leads to the \(H \)-theorem

\[
\dot{F} = -\int \frac{\xi}{\rho} (\nabla p + \rho \nabla \Phi)^2 d\mathbf{r} \leq 0.
\]

(35)

Moreover the stationary solutions of the generalized Smoluchowski equation (33) are critical points of the free energy \(F[\rho] \) at fixed mass, satisfying \(\delta F - \alpha \delta M = 0 \) where \(\alpha \) is a Lagrange multiplier. This yields \(\int \rho' p'(\rho')/\rho'^2 d\rho' = -\Phi \) leading to the condition of hydrostatic balance

\[
\nabla p + \rho \nabla \Phi = 0.
\]

(36)

After integration, we get \(\rho = \rho(\Phi) \) with \(\rho'(\Phi) \leq 0 \). This result can also be obtained by integrating \(f = f(\epsilon) \) on the velocity. Finally, a steady state of the GS equation (33) is linearly dynamically stable iff it is a (local) minimum of \(F[\rho] \) at fixed mass [1, 5].
3. EXPLICIT EXAMPLES

3.1. Isothermal systems: Boltzmann entropy

If we consider the Boltzmann entropy
\[S_B[f] = - \int f \ln f \, dr \, dv, \]
(37)
we get the ordinary Kramers equation
\[\frac{\partial f}{\partial t} + v \cdot \frac{\partial f}{\partial r} - \nabla \Phi \cdot \frac{\partial f}{\partial v} = \frac{\partial}{\partial v} \left[\xi \left(T \frac{\partial f}{\partial v} + f v \right) \right]. \]
(38)
The stationary solution is the Boltzmann distribution
\[f = A e^{-\beta \varepsilon}, \]
(39)
where \(A \) is determined by the conservation of mass. The equation of state is the isothermal one
\[p = \rho T. \]
(40)
In the strong friction limit, we recover the ordinary Smoluchowski equation
\[\frac{\partial \rho}{\partial t} = \nabla \cdot \left[\frac{1}{\xi} (T \nabla \rho + \rho \nabla \Phi) \right]. \]
(41)
The free energy is the Boltzmann free energy in physical space
\[F[\rho] = T \int \rho \ln \rho \, dr + \frac{1}{2} \int \rho \Phi \, dr. \]
(42)
The stationary solution is the Boltzmann distribution in physical space
\[\rho = A' e^{-\beta \Phi}, \]
(43)
where \(A' = (2\pi/\beta)^{d/2} A. \)

3.2. Polytropes: Tsallis entropy

If we consider the Tsallis \(q \)-entropy
\[S_q[f] = - \frac{1}{q-1} \int (f^q - f) \, dr \, dv, \]
(44)
we obtain the polytropic Kramers equation
\[\frac{\partial f}{\partial t} + v \cdot \frac{\partial f}{\partial r} - \nabla \Phi \cdot \frac{\partial f}{\partial v} = \frac{\partial}{\partial v} \left[\xi \left(T \frac{\partial f^q}{\partial v} + f^q v \right) \right]. \]
(45)
The stationary solution is the Tsallis (or polytropic) distribution

\[f = \left[\mu - \frac{(q-1)\beta}{q} \varepsilon \right]^{\frac{1}{q-1}}_+, \quad (46) \]

where \(\mu \) is determined by the conservation of mass. The index \(n \) of the polytrope is

\[n = \frac{d}{2} + \frac{1}{q-1}. \quad (47) \]

Isothermal distribution functions are recovered in the limit \(q \to 1 \) (i.e. \(n \to +\infty \)). We shall consider \(q > 0 \) so that \(C \) is convex. For \(q > 1 \), i.e. \(n > d/2 \), the distribution has a compact support (case 1) since \(f \) is defined only for \(\varepsilon \leq \varepsilon_m = q\mu / [q(q-1)] \). For \(\varepsilon \geq \varepsilon_m \), we set \(f = 0 \). For \(n = d/2 \), \(f \) is the Heaviside function. For \(q > 1 \), the distribution is defined for all energies (case 2). For large velocities, it behaves like \(f \sim v^{2n-d} \). Therefore, the density and the pressure are finite only for \(n < -1 \), i.e. \(d/(d+2) < q < 1 \). This fixes the range of allowed parameters. The equation of state is that of a polytrope \[8, 9\]

\[p = K \rho^n, \quad \gamma = 1 + \frac{1}{n}. \quad (48) \]

For \(n > d/2 \) (case 1) the polytropic constant is

\[K = \frac{1}{n+1} \left[A S_d 2^{d-1} \frac{\Gamma(d/2) \Gamma(1-d/2+n)}{\Gamma(1+n)} \right]^{-1/n}, \quad (49) \]

and for \(n < -1 \) (case 2), we have

\[K = -\frac{1}{n+1} \left[A S_d 2^{d-1} \frac{\Gamma(d/2) \Gamma(-n)}{\Gamma(d/2-n)} \right]^{-1/n}, \quad (50) \]

where \(A = [\beta |q-1| / q]^{1/(q-1)} \). In the strong friction limit, we get the polytropic Smoluchowski equation

\[\frac{\partial \rho}{\partial t} = \nabla \cdot \left[\frac{1}{\xi} (K \nabla \rho^n + \rho \nabla \Phi) \right]. \quad (51) \]

The free energy is the Tsallis free energy in physical space

\[F[\rho] = \frac{K}{\gamma-1} \int (\rho^n - \rho) d\mathbf{r} + \frac{1}{2} \int \rho \Phi d\mathbf{r}. \quad (52) \]

The stationary solution is the Tsallis distribution in physical space

\[\rho = \left[\lambda - \frac{\gamma-1}{K\gamma} \Phi \right]^{\frac{1}{\gamma-1}}_+. \quad (53) \]

We note that a polytropic distribution with index \(q \) in phase space yields a polytropic distribution with index \(\gamma = 1 + 2(q-1)/(2+d(q-1)) \) in physical space. In this sense, Tsallis distributions are stable laws. By comparing Eq. (46) with Eq. (53) or Eqs. (9) and (44) with Eq. (52), we note that \(K \) plays the same role in physical space as the temperature \(T = 1/\beta \) in phase space. It is sometimes called a “polytropic temperature” \[9\].
3.3. Fermions: Fermi-Dirac entropy

If we consider the Fermi-Dirac entropy

\[
S_{FD}[f] = -\eta_0 \int \left\{ \frac{f}{\eta_0} \ln \frac{f}{\eta_0} + \left(1 - \frac{f}{\eta_0} \right) \ln \left(1 - \frac{f}{\eta_0} \right) \right\} drdv, \tag{54}
\]

we obtain the fermionic Kramers equation

\[
\frac{\partial f}{\partial t} + v \cdot \frac{\partial f}{\partial r} - \nabla \Phi \cdot \frac{\partial f}{\partial v} = \frac{1}{\partial_v} \left[\xi \left(-T \eta_0 \frac{\partial}{\partial v} \ln \left(1 - \frac{f}{\eta_0} \right) + f v \right) \right]. \tag{55}
\]

The stationary solution is the Fermi-Dirac distribution function

\[
f = \frac{\eta_0}{1 + \lambda e^{\beta \epsilon}}, \tag{56}
\]

where \(\lambda > 0\) is determined by the conservation of mass. The Fermi-Dirac distribution function \((56)\) satisfies the constraint \(f \leq \eta_0\) which is related to the Pauli exclusion principle in quantum mechanics. The isothermal distribution function \((39)\) is recovered in the non-degenerate limit \(f \ll \eta_0\) (valid at high temperatures). On the other hand in the completely degenerate limit (valid at low temperatures) the distribution is a step function corresponding to a polytrope of index \(n = d/2\). The distribution in physical space associated with the Fermi-Dirac statistics is

\[
\rho = \frac{\eta_0 S_d 2^{d-1}}{\beta^{d/2} I_{d/2-1}} (\lambda e^{\beta \Phi}), \tag{57}
\]

where \(I_n\) is the Fermi integral

\[
I_n(t) = \int_0^{+\infty} \frac{x^n}{1 + te^x} dx. \tag{58}
\]

The quantum equation of state for fermions is given in parametric form by

\[
\rho = \frac{\eta_0 S_d 2^{d-1}}{\beta^{d/2}} I_{d/2-1}(t), \quad p = \frac{\eta_0 S_d 2^d}{d \beta^{d+1}} I_d(t). \tag{59}
\]

At high temperatures we recover the classical isothermal law \(p = \rho T\) and at low temperatures we get a polytropic equation of state \(p = K \rho^\gamma\) with \(\gamma = \frac{d+2}{2}\) and \(K = \frac{1}{d+2} \left(\frac{d}{\eta_0 S_d} \right)^{2/d}\).

REFERENCES
1. T.D. Frank, *Non Linear Fokker-Planck Equations*, Springer, Berlin, 2005.
2. A.R. Plastino, A. Plastino, *Physica A* 222, 347 (1995).
3. G. Kaniadakis, *Physica A* 296, 405 (2001).
4. E. Curado, F. Nobre, *Phys. Rev. E* 67, 021107 (2003).
5. P. H. Chavanis, *Phys. Rev. E* 68, 036108 (2003).
6. P. H. Chavanis, P. Laurençot and M. Lemou, *Physica A* 341, 145 (2004).
7. P. H. Chavanis, *Banach Center Publ.* 66, 79 (2004).
8. P. H. Chavanis, C. Sire *Phys. Rev. E* 69, 016116 (2004).
9. P. H. Chavanis, C. Sire *Physica A* 356, 419 (2005).