The Role of IL-36 in Infectious Diseases: Potential Target for COVID-19?

Xiaofang Wang1,2, Panpan Yi1* and Yuejin Liang2,3*

1 Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China, 2 Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States, 3 Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States

IL-36 is a member of the interleukin 1 cytokine family, which is currently experiencing a renaissance due to the growing understanding of its context-dependent roles and advances in our understanding of the inflammatory response. The immunological role of IL-36 has revealed its profound and indispensable functional roles in psoriasis, as well as in several inflammatory diseases, including inflammatory bowel disease (IBD), systemic lupus erythematosus, rheumatoid arthritis (RA) and cancer. More recently, an increasing body of evidence suggests that IL-36 plays a crucial role in viral, bacterial and fungal infections. There is a growing interest as to whether IL-36 contributes to host protective immune responses against infection as well as the potential implications of IL-36 for the development of new therapeutic strategies. In this review, we summarize the recent progress in understanding cellular expression, regulatory mechanisms and biological roles of IL-36 in infectious diseases, which suggest more specific strategies to maneuver IL-36 as a diagnostic or therapeutic target, especially in COVID-19.

Keywords: IL-36, IL-1 family, cytokine, infection, COVID-19

INTRODUCTION

Interleukin (IL)-36 is a member of the IL-1 cytokine family. It plays a role in the orchestration of innate and adaptive immunity and appears to have pro-inflammatory activities (1, 2). The IL-36 family includes three agonist ligands (IL-36α, β and γ, previously known as IL-1F6, IL-1F8, IL-1F9), which bind to heterodimeric receptor complexes, the IL-36 receptor (IL-36R, also known as IL-1Rrp2) and co-receptor IL-1 receptor accessory protein (IL-1RAcP) (3). The IL-36 receptor antagonist (IL-36Ra, formerly known as IL-1F5), an antagonist in the IL-36 family, inhibit IL-36-induced inflammation via competing with IL-36 receptor (4). The pro-inflammatory role of IL-36 is well studied in psoriasis (5–9), inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and cancer (5, 10–14). IL-36γ is a potential diagnostic marker of psoriatic inflammation (15). The success of treatment using a monoclonal antibody against IL-36 receptor in generalized pustular psoriasis patients highlights the promising potential strategy of blocking the IL-36/IL-36R signaling pathway in clinical therapy (7). IL-38 (previously known as IL-1F10), which shows the highest similarity of percentage amino acid identify with IL-1Ra and IL-36Ra, may act as an IL-36R antagonist (16, 17). Recent study demonstrated the inhibitory function...
of IL-38 on the phosphorylation of P38 MAPK and the subunit P65 of NF-κB induced by IL-36γ in human keratinocytes and endothelial cells (18). Besides, IL-38 was released from apoptotic cells and restricted human macrophage-dependent induction of IL-17 (19). IL-38 knockout mice had delayed disease resolution with exacerbated IL-17-mediated inflammation, which is reversed by the administration of matured IL-38 in a mouse model of psoriasis (20). Hence, IL-38 is considered an anti-inflammatory factor in the pathologies of autoimmune diseases.

Accumulating evidence suggests that IL-36 is also involved in infectious diseases, especially viral and bacterial infections. Using knockout mice for either IL-36 cytokines or receptor, researchers have revealed that IL-36 plays both protective and pathological roles in distinct animal models of infection (21–23). On one hand, IL-36 is beneficial for pathogen clearance by promoting protective immune responses (21). On the other hand, IL-36 amplifies inflammatory responses, leading to excessive immune infiltration and tissue damage (24). In this review, we first focus on the cellular source and target cells of IL-36, and then highlight the recent advances of the IL-36 research in infectious diseases. At the end, we discuss IL-36 as a potential therapeutic target for COVID-19.

PROCESSING OF IL-36 AND DOWNSTREAM SIGNALING PATHWAYS

Similar to other members of IL-1 family, the inactive precursors of IL-36 require proteolytic and post-translational processing for their maturation and pro-inflammatory activity, respectively (25, 26). Neutrophil granule-derived proteases cathepsin G (Cat G), elastase and proteinase-3 are involved in the processing (25–30). IL-36α is processed and activated by Cat G and elastase respectively via truncating at alanine 4 and lysine 3. IL-36β is selectively stimulated by Cat G through its cleavage at residue arginine 5 (28). IL-36γ can be activated by elastase or proteinase-3 by means of cleavage at the residue valine 15 (28). In addition, IL-36γ also can be cleaved between residues glutamic acid 17 and serine 18 by Cathepsin S (29). Removal of a small number of residues from the N termini of IL-36 increases the biological activity by more than 10,000-fold (26). Similarly, IL-36Ra is cleaved to become mature form by elastase through removal of its N-terminal methionine (30), and the matured IL-36Ra competes with IL-36 cytokines for IL-36 receptor binding to suppress IL-36 activity (26).

Binding of IL-36 agonists (IL-36α, -β and -γ) to IL-36R/IL-1RαCp heterodimer induces inflammatory mediators through MyD88-, MAPK- and NF-κB-dependent signaling pathways (31–33). It is demonstrated that *Staphylococcus aureus* (S. aureus) exposure drives murine skin inflammation, which is caused by the IL-36R/MyD88-mediated IL-17 (34). IL-36γ stimulation also promoted the expression of NF-κB target genes (TNFAIP3, NFKBIA, NFKB2, CXCL8, and BIRC3) in a MyD88-dependent manner in human epidermal keratinocytes (35). Besides, IL-36α employed NF-κB and STAT3 for IκBζ induction, and induced several psoriasis-related cytokines and chemokines in psoriatic skin (32). Additionally, activation of IL-36R/IL-36Ra axis enhanced the secretion of IL-6, IL-8, and granulocyte-macrophage colony-stimulating factor by activation of Erk1/2, MAPK and JNK (3), while IL-36Ra suppressed the IL-36 agonist-triggered IL-8 expression (26).

CELLULAR SOURCE AND FUNCTION OF IL-36

At steady-state, IL-36 is mainly expressed in epithelial cells and fibroblasts (36–41). Several kinds of cells, including epithelial cells, mouse T cells and myeloid cells can respond to IL-36 stimuli (37, 38, 41–43).

Epithelial Cells

IL-36 was predominantly expressed in epithelial cells in experimental colitis, allergic lung inflammation, chronic rhinosinusitis and influenza A virus infection (22, 36, 41, 44, 45) and was upregulated by proinflammatory cytokines, such as IL-17 (41, 46). Reproductive tract epithelial cells also increased IL-36γ and IL-36R expression following treatment with microbial products (47). It is notable that epithelial IL-36 could be expressed as a full-length form and required a cleavage to the biologically active form (41). Epithelial cells can secrete inflammatory cytokines in response to IL-36. Subcutaneous injection of IL-36α induced various inflammatory factors including IL-17, IL-20, IL-22, IL-23, interferon (IFN)-γ, TNF-α and KCs (48). IL-17 production by Th17 cells may upregulate all three IL-36 expression from human keratinocytes, creating a feedback loop that drives inflammation and disease development (49). Human keratinocytes were potent sources of chemokines following the exposure of IL-36 cytokines, leading to the recruitment of macrophages, T cells, and neutrophils (43). Notably, human keratinocytes upregulated type I and II IFN-responsive genes in response to IL-36, leading to potent cytokine production (35, 43). These findings indicate that IL-36 is critical for the early regulation of IFN and immune cell recruitment in the skin (50–52). Expression of IL-36R by skin-resident cells (e.g., keratinocytes and fibroblasts), but not the hematopoietic cells (e.g., T cells and DCs) is pivotal for the cutaneous pathology (51). Consistently, using a conditional knockout murine model, Goldstein et al. demonstrated that IL-36R signaling in keratinocytes played a major role in the induction of psoriasis-like dermatitis (52).

Myeloid Cells

Activated neutrophils were considered a source of IL-36 in various diseases such as experimental autoimmune encephalomyelitis (EAE), chronic rhinosinusitis and influenza infection (21, 41, 53), while neutrophils from naïve mice express low levels of IL-36γ (53). Importantly, IL-36R is abundant on murine neutrophils derived from bone marrow, spinal cord and spleen (38, 53). However, IL-36R was not detectable in blood neutrophils in both mice and patients with inflammatory
IL-36 IN INFECTIOUS DISEASES

There is mounting evidence for the crucial role of IL-36 in infectious diseases via regulation of type I IFN, induction of inflammatory cytokines, recruitment of immune cells, modulation of immune cell activation and differentiation, and maintenance of mucosal integrity and barrier function (Figure 1). In this section, we focus on the functional roles of IL-36 in various infectious diseases (Table 1).

Skin and Mucosal Barriers

IL-36 was first identified as an inducible inflammatory cytokine in mouse keratinocytes following herpes simplex virus type 1 (HSV-1) infection (75). IL-36β-deficient mice developed more severe secondary zosteriform lesions and succumbed more frequently to HSV-1 infection (65). IL-36γ treatment protected mice from lethal intravaginal challenge, as evidenced by limited vaginal viral replication, delayed disease onset, decreased disease severity, and significantly increased survival (66). Further analysis demonstrated that IL-36β promoted type I IFN production through upregulation of IFN-α receptor expression and activation of the STAT signaling pathway in animal model (76). Indeed, IL-36 also promoted type I IFN in IL-36R⁺ pDC (50). Therefore, these studies indicate that IL-36 plays a critical role in innate immunity by boosting type I IFN signaling, inducing pro-inflammatory cytokines, and attracting innate immune cells, such as neutrophils.

Using a murine epicutaneous infection model, Nakagawa and Liu et al. found that S. aureus induced IL-1 and IL-36α from
keratinocytes via secretion of S. aureus-expressed phenol-soluble modulin α, leading to the induction of IL-17 and recruitment of neutrophils in the skin (34, 69). Interestingly, IL-36α may not only regulate Th17 cell activity, but also modulate IL-17-production by γδ T cells and type 3 innate lymphoid cells (ILC3) (34, 69). Skin inflammation was dependent on IL-1R and IL-36R signals as well as their signaling adaptor MyD88. Satoh et al. also demonstrated that Cutibacterium acnes can induce IL-36γ through NF-κB in keratinocytes and subsequently IL-8, leading to cutaneous neutrophilia (77).

Fungal infection can induce IL-36 expression in epithelial cells and human PBMC (74, 78, 79). In oral candidiasis, IL-36α, β and γ transcript levels were all increased in the tongue of the sublingually challenged mice at 2 days post-injection (74). Candida albicans (C. albicans) infection resulted in increased IL-36 cytokines in human oral epithelial cells via NF-κB, MAPK and PI3K-dependent pathways (74). IL-36R-deficient mice were susceptible to acute oral candidiasis as evidenced by higher fungal loads and greater body weight loss, indicating the protective role of IL-36 in C. albicans infection (74).

Lung

Influenza virus infection can trigger epithelial cell-derived IL-36 cytokines (22, 46, 80), which activated NF-κB signaling and increased inflammatory cytokines (e.g. IL-6 and IL-8) in the lung (46). However, the role of IL-36 in influenza virus infection is incompletely understood. Aoyagi et al. reported that IL-36R-deficient mice were protected from influenza virus-induced lung injury and mortality accompanied by reduced lymphocyte activation, accumulation of myeloid cells, pro-inflammatory cytokines, and maintenance of mucosal integrity and barrier function in infectious diseases.

FIGURE 1 | The crucial role of IL-36 in induction of inflammatory cytokines, recruitment of immune cells, modulation of immune cell activation and differentiation, and maintenance of mucosal integrity and barrier function in infectious diseases.
Increased IL-36 signaling pathway may play a protective role in the lung with bacterial infection. The induction of IL-36 contributed to antimicrobial peptide production and
M. tuberculosis growth restriction through promoting the accumulation of Liver X Receptor and modulating cholesterol biosynthesis and efflux (82). Activation of autophagy in macrophages was considered another hallmark by IL-36γ in restricting *M. tuberculosis* growth (71). However, IL-36R deficiency showed negligible impact on *M. tuberculosis* infection in mice, as demonstrated by similar survival rates and bacterial loads (72). Additionally, IL-36γ-deficient mice were more susceptible to *S. pneumoniae* infection, as evidenced by increased mortality, ameliorated lung bacterial clearance and increased bacterial dissemination, which might be due to the reduced type-1 cytokine expression and impaired lung macrophage M1 polarization (23). Similarly, the protective effect of IL-36γ was also demonstrated in a *Klebsiella pneumoniae* (*K. pneumoniae*) mouse model (23). Interestingly, Sequeira et al. revealed that microbiota Bacteroidetes protected against *K. pneumoniae* colonization (83) via IL-36 signals and macrophages (83). In addition, administration of *Legionella pneumophila* to IL-36R-deficient mice resulted in more severe disease as evidenced by higher mortality, delayed lung bacterial clearance, increased bacterial dissemination to the spleen, and impaired innate immune responses compared to that in infected wild-type mice (73). In contrast, IL-36γ+/- and IL-36γ−/−, but not IL-36α−/−, mice were resistant to during influenza infection (22). However, IL-36γ was upregulated in the lungs and played a protective role in severe H1N1 and H3N2 influenza infection via modulating macrophage polarization and activity (21). Lack of IL-36γ resulted in increased viral titers, higher levels of IL-6, and more severe pathology in the lungs (21). Interestingly, macrophages in IL-36γ-deficient mice exhibited an M2-like phenotype and were likely to undergo apoptosis by infection, whereas adoptive transfer of WT alveolar macrophages protected increased cytokine and chemokine production (e.g., IL-6, IL-17, CXCL1, and CXCL10) and permeability of the alveolar epithelial barrier (22). However, IL-36γ was upregulated in the lungs and played a protective role in severe H1N1 and H3N2 influenza infection via modulating macrophage polarization and activity (21). Lack of IL-36γ resulted in increased viral titers, higher levels of IL-6, and more severe pathology in the lungs (21). Interestingly, macrophages in IL-36γ-deficient mice exhibited an M2-like phenotype and were likely to undergo apoptosis by infection, whereas adoptive transfer of WT alveolar macrophages protected increased cytokine and chemokine production (e.g., IL-6, IL-17, CXCL1, and CXCL10) and permeability of the alveolar epithelial barrier (22).

TABLE 1 | The functional role of IL-36 in infectious diseases.

Pathogen	Models or treatment	Experimental results and conclusion	References
HSV-1	IL-36β−/− mice	Increased mortality and weight loss; More severe skin lesions; Similar viral replication (65)	
HSV-2	Exogenous IL-36γ	Increased survival; Delayed disease onset and decreases disease severity; Diminished HSV-2 replication; Induction of the chemokines CCL20 and KC (66, 67)	
Influenza virus (Influenza A/Puerto Rico/8/34 virus)	IL-36γ−/− mice	Decreased mortality, but no change of body weight loss; Attenuated lung injury; Higher viral burden; Reduced neutrophils and monocytes/macrophages in BAL fluid (22)	
Influenza virus (Influenza A/HK-x31)	IL-36γ−/− mice	Increased mortality and weight loss; Higher viral burden; Increased IFN-β and IL-6 (21)	
Zika	Designed DNA-encoded IL-36γ	Increased survival rate and less weight loss; Increased IFN-γ and TNF-α expression (68)	
Staphylococcus aureus	IL-36γ−/− mice and IL-36R neutralizing Ab	Reduced skin inflammation, decreased disease scores and epidermal thickness; Comparable bacterial loads; Reduced neutrophil infiltration and impaired IL-17 and IL-22 responses (34, 69)	
Pseudomonas aeruginosa	IL-36γ−/− mice and IL-36γ−/− mice but not IL-36α−/− mice	Increased survival; Higher bacterial clearance and reduced bacterial dissemination; Reduced TNF-α, IL-6 and IL-10 expression (24)	
Pseudomonas aeruginosa	Exogenous IL-36γ	Alleviated keratitis; Killed and/or inhibited bacterial growth; Reduced bacterial dissemination; Reduced expression of type-1 and IL-17 cytokines (23)	
Streptococcus pneumoniae	IL-36γ−/− mice and Anti-IL-36γ Ab	Impaired lung bacterial clearance and increased dissemination; Reduced expression of type-1 and IL-17 cytokines (23)	
Klebsiella pneumoniae	IL-36γ−/− mice and Anti-IL-36γ Ab	Impaired lung bacterial clearance and increased dissemination; Less IL-12, IL-23, and IFN-γ production (23)	
Mycobacterium tuberculosis	Exogenous IL-36γ	Inhibited intracellular survival; Induction of WNT5A expression and autophagy (71)	
Mycobacterium tuberculosis	IL-36γ−/− mice	No alteration of survival and body weight loss; No alteration of bacterial burdens; Reduced inflammatory cytokine CXCL1, CXCL2, and IL-6 (72)	
Legionella pneumophila	IL-36γ−/− mice but not IL-36α−/− and -γ−/− mice	Increased mortality; Delayed lung bacterial clearance and increased bacterial dissemination; Reduced alveolar macrophage activation and decreased CXCL2/IFN-γ levels (73)	
Citrobacter rodentium	IL-36γ−/− mice	No alteration of body weight and clinical signs of inflammation; Increased bacterial colonization; Reduced KC, MPO and inflammatory cell (CD11b+F4/80+Gr-1+) recruitment; Increased Th17, but decreased Th1 and Treg cell associated cytokines (36)	
Candida albicans	IL-36α−/− mice	Greater weight loss; Higher fungal load; No alteration of IL-17 and IL-22, but decreased IL-23 expression (74)	
investigation is needed to determine the role of IL-36 in intracellular bacterial infection using various interfering methods, such as IL-36 cytokine knockout mice and neutralizing antibodies.

Gut

Clinical evidence showed that ulcerative colitis patients had higher IL-36α in the colonic mucosa (36). Lack of IL-36R resulted in defective recovery following DSS-induced damage and impaired closure of colonic mucosal biopsy wounds due to the profound reduction of IL-22 (84). Interestingly, IL-36 can also regulate Treg/Th9 balance and the IL-23/IL-22 network in infectious diseases and shed light on IL-36 in the next generation of vaccines.

Other Organs

Although IL-36 has been detected in hepatocytes (12, 63), the function of IL-36 in the liver remains unclear. Higher levels of IL-36α were observed in chronic hepatitis B virus (HBV) patients compared with that in healthy individuals (85). The positive correlation between IL-36α and HBV-DNA titers may indicate the potential involvement of IL-36 in antiviral immunity during chronic infection (85). Additionally, hepatitis C virus infection significantly increased the production of IL-36Ra but not IL-36 agonist ligands in human monocytes, leading to reduced NK cell activation (86). Further research is needed to dissect the role of IL-36 in liver resident cells (e.g., kupffer cells, hepatic stellate cells and sinusoidal endothelial cells) as well as in different liver disease models.

In addition to lung infections, IL-36α and IL-36γ were also upregulated in the mouse cornea in early responses to *P. aeruginosa* challenge (70). Exogenous IL-36γ treatment enhanced corneal innate immunity and alleviated *P. aeruginosa* keratitis. The protective role of IL-36γ required S100A9 and was partially dependent on the CXCL10/CXCR3 axis (70). On the contrary, IL-36Ra treatment exacerbated the outcome of *P. aeruginosa* keratitis (70).

Louis et al. reported that a truncated IL-36γ-encoded plasmid can act as a potent adjuvant for a DNA-encoded Zika virus (ZIKV) vaccine. Immunization with truncated IL-36γ promoted antiviral T cell responses and protected mice from ZIKV challenge (68). Moreover, co-delivery of truncated IL-36γ can also enhance antiviral immunity against HIV and influenza DNA vaccines (68). Besides, both *in vivo* and *in vitro* studies have proved that IL-36 treatment reduced HSV-2 replication in a lethal genital infection model and in human vaginal epithelial cells (66, 67). The absence of IL-36γ led to reduced mature neutrophil recruitment to the vaginal microenvironment at early times in HSV-2 infection (66). These findings set the stage for IL-36 in infectious diseases and shed light on IL-36 in the next generation of vaccines.

IL-36 AS A THERAPEUTIC TARGET OF COVID-19

Although several vaccines have been issued for the emergency use authorization for the prevention of coronavirus disease 2019 (COVID-19), intensive efforts are underway to investigate the immunopathology of this infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The majority of patients with COVID-19 are asymptomatic or mild flu symptoms, but in some individuals, who are critically ill with COVID-19, it can develop into severe pneumonia and life-threatening ARDS. The members of IL-1 family including IL-1β and IL-33 may contribute to the inflammation and antiviral immune regulation in COVID-19. In severe cases of COVID-19 patients, increased IL-1α and IL-1β have been detected (87, 88). SARS-CoV-2 may facilitate IL-1β activation and maturation, leading to the cytokine storm together with other pro-inflammatory mediators such as IL-6 and TNF-α (89). Blockage of IL-1 signals using IL-1 receptor antagonist Anakinra might be associated with clinical improvement in patients (87, 88). The alarmin cytokine IL-33 may also play a detrimental role in severe COVID-19 cases through expanding the pathogenic T cells, inducing hyperinflammation, and promoting the pro-fibrotic type 2 innate immune cells (90).

In patients with COVID-19, airway epithelial cells showed an average three-fold increase in expression of the SARS-CoV-2 entry receptor angiotensin-converting enzyme-2 ACE2 (91). Notably, bronchial epithelial cell ACE2 expression was correlated with IL-36β in bronchoalveolar lavage in asthma cohorts (92). Moreover, human basal lung epithelial cells exposed to poly(I:C) exhibited significant increase in protein concentrations of IL-36γ (55). SARS-CoV-2 viral RNA and viral nucleocapsid protein can be detected in gastrointestinal tissues from the patients (93, 94). This might be due to the highly expressed ACE2 in human gastrointestinal epithelial cells (95). IL-36γ was predominantly detected in human intestinal epithelium (44), and induced expression of chemokines, GM-CSF and IL-6 (44). Therefore, IL-36 may contribute to the ACE2 regulation and intestinal inflammation in COVID-19 patients. In addition, vasculopathy and lymphoid infiltrate of the superficial and deep dermis is main cutaneous manifestations in COVID-19 patient (96–99). It was reported that ACE2 and SARS-CoV-2 RNA can be detected in the blood vessels (100, 101), whereas IL-36 and IL-36R also expressed in human dermal microvascular endothelial cells (HDMEC) (18, 102, 103). It is likely that SARS-CoV-2 infection in endothelia cells may induce IL-36 secretion, leading to leukocytes infiltration and skin symptoms in COVID-19 patients. Furthermore, high expression of ACE2 was also found in keratinocytes (104), which can increase IL-
expression by Poly I:C stimuli (80, 105). Besides, IL-36 upregulated ACE2 expression in human keratinocytes according to publicly available RNAseq data (106). SARS-CoV-2 infection may promote IL-36 production from keratinocytes and exacerbate skin lesion. These findings suggest that IL-36 might be a potential biomarker of disease severity in COVID-19.

Profound pulmonary infiltration of myeloid cells including neutrophils and macrophages/monocytes have been found in COVID-19 patients with severe clinical progression (107–109). Local IL-36 may drive these myeloid cell recruitment and activation, resulting in pulmonary hyper-inflammation (37, 41, 55). Moreover, infiltrated neutrophils may produce high concentrations of neutrophil extracellular traps (NETs) (110–112), and induce lung epithelial cell death in COVID-19 patients (110). In addition, IL-36 can induce IL-6 and IL-8 expression and further increase inflammatory responses (3), while IL-1β and IL-6 are capable of inducing IL-36 expression (81). This proinflammatory positive loop may also contribute to immunopathogenesis of COVID-19. IL-36 was upregulated in the lungs after influenza virus infection (22, 46), and led to

FIGURE 2 | In COVID-19 patients, SARS-CoV-2 may promote hyperinflammation in the lung and exacerbate tissue damage. IL-36-activated inflammatory immune cells (e.g., monocytes, macrophages, neutrophils and pathogenic T cells) produce IL-6, IL-1, IL-17, TNF-α and GM-CSF to further amplify IL-36 responses. IL-36Ra and IL-38, as the natural antagonistic mediators in IL-36 family might be a promising therapeutic target for COVID-19 via inhibiting IL-36 signaling pathway and alleviating pulmonary hyperinflammation.
inflammatory cytokines production (22). GM-CSF, which is rapidly produced by pathogenic Th1 cells in COVID-19, can act with other inflammatory cytokines to form a cascade signature of inflammatory monocytes with high IL-6 expression (113). Importantly, IL-36 increases the secretion of GM-CSF by activation of Erk1/2, MAPK and JNK (3). IL-36γ cooperated with poly(I:C) in human macrophages also promoted GM-CSF expression (55). These findings indicate that IL-36 may contribute to the induction of IL-6-producing monocytes through GM-CSF. Moreover, IL-36, as a strong inducer of murine Th1 cells (14, 57), may play a role in human Th1 differentiation (56), and exacerbate lung pathogenesis by enhancing pathogenic Th1 responses and the following cytokine storm. In addition to Th1 responses, IL-36 is also a key regulator in IL-17 responses through regulating not only adaptive Th cells, but also γδ T cells and ILC3 (34, 69). Notably, elevated IL-17 levels have been reported in patients infected with coronavirus, including SARS-CoV, MERS and SAR-CoV-2 (89). Blockage of IL-36 signals may lead to proposals for a therapeutic approach to COVID-19 through modulating proinflammatory IL-17 responses.

The application of IL-1 receptor antagonist Anakinra has shown the potential therapeutic effect in COVID-19 patients (87, 88, 114). In addition to the agonistic ligands, IL-36Ra acts as an antagonist for IL-36 signaling pathway and may reduce IL-36-driven inflammation via competing with their receptor IL-36R. Additionally, IL-38, the newest member of IL-36 family, can downregulate poly(I:C)-induced IL-6, CCL5, and IL-1β expressions in bronchial epithelial cells, indicating the anti-inflammatory role of IL-38 in viral infection (115). Notably, it is reported that IL-38 increased significantly in influenza and COVID-19 patients and may function as a suppressor cytokine that inhibits IL-1, IL-6 and TNF-α in COVID patients (116, 117). Significant efforts are undergoing to develop neutralizing antibody targeting the IL-36R signaling axis for the therapy of IL-36-mediated diseases. Antibody-mediated blockade of IL-36R signaling reverses established fibrosis in chronic intestinal inflammation in mice (118). Chimeric antibodies MAB92 and MAB04, binding primarily to domain-2 of the human and mouse IL-36R proteins respectively, have been demonstrated to inhibit skin inflammation (69, 119). Anti-mouse IL-36R mAb M616 specific for murine IL-36R is also under experimental trials (120). Importantly, a single dose of BI 655130, a monoclonal antibody against the IL-36 receptor, reduced the severity of generalized pustular psoriasis in patients (7). Therefore, application of IL-36Ra, IL-38 and IL-36R mAbs might be a promising therapeutic way in COVID-19 patients via inhibiting IL-36-mediated hyperinflammation (Figure 2).

CONCLUSIONS AND PERSPECTIVES

The accumulated evidence during the past decade indicates that IL-36 plays a fascinating role in systemic inflammatory diseases and cancer (36, 51, 121). The genetic deficiency of IL-36Ra leads to generalized pustular psoriasis (GPP), while IL-36Ra was considered an effective treatment of psoriasis diseases (106). Inhibition of IL-36R with a single dose of BI 655130 monoclonal antibody reduced the severity of GPP in patients (7). Interestingly, direct intra-tumoral delivery of IL-36 mRNA led to robust anticancer responses in a broad range of tumor microenvironments (122). These studies highlight the clinical therapeutic potential of IL-36 in inflammatory diseases and cancer.

Several aspects of IL-36 are less understood and remain somewhat controversial. It is still not clear what the distribution of IL-36R is in immune cells, especially in humans (41, 42). Whether the receptor is inducible by other host factors or pathogens is still not well understood.

IL-36 may be more than just a general inflammatory marker but a pathogenic sensor due to its location at epithelial/environmental interface and its release and activation by pathogenic damage (123). It is less well elucidated what the crucial bioactive forms of IL-36 in vivo are or how they are generated in each infectious disease condition. Moreover, it is striking that the different isoforms of IL-36 are expressed differently under physiological as well as pathological conditions, and have different functions in the development of infection. Further investigations are needed to elucidate the molecular mechanisms underlying their biological functions, especially in COVID-19. In terms of clinical implications, future study of the functions of the IL-36/IL-36R pathway in disease pathogenesis may facilitate the development of therapeutics targeting these cytokines for the treatment of infectious diseases.

AUTHOR CONTRIBUTIONS

XW wrote the manuscript. PY and YL wrote and critically revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by grants from the National Natural Science Foundation of China 81800506 and Natural Science Foundation of Hunan Province of China 2019JJ40494 to PY. The NIH AI115386 and the UTMB IHII Data Acquisition Grant to YL.

ACKNOWLEDGMENTS

We thank Dr. Jiaren Sun and Dr. Sherry Haller for manuscript revision. All figures are created with BioRender.com.
REFERENCES

1. Garlanda C, Dinarello CA, Mantovani A. The Interleukin-1 Family: Back to the Future. *Immunity* (2013) 39(6):1003–18. doi: 10.1016/j.immuni.2013.11.010

2. Sims JE, Smith DE. The IL-1 Family: Regulators of Immunity. *Nat Rev Immunol* (2010) 10(2):89–102. doi: 10.1038/nri2691

3. Towne JE, Garka KE, Renshaw BR, Virca GD, Sims JE. Interleukin (IL)-1f6, IL-1f8, and IL-1f9 Signal Through IL-1rp2 and IL-1rcap to Activate the Pathway Leading to NF-Kappab and Mapks. *J Biol Chem* (2004) 279(14):13677–88. doi: 10.1074/jbc.M400117200

4. Mulero JJ, Pace AM, Nelken ST, Loeb DB, Correa TR, Drmanac R, et al. IL1H1Y1: A Novel Interleukin-1 Receptor Antagonist Gene. *Biochem Biophys Res Commun* (1999) 263(3):702–6. doi: 10.1006/bbrc.1999.1440

5. Boutet MA, Bart G, Penhoat M, Amiaud J, Brulin B, Charrier C, et al. Distinct Expression of Interleukin (IL)-36alpalpha, Beta and Gamma, Their Antagonist IL-36Ra and IL-38 in Psoriasis, Rheumatoid Arthritis and Crohn’s Disease. *Clin Exp Immunol* (2016) 184(2):159–73. doi: 10.1111/cei.12761

6. Todorovic V, Su Z, Putman CB, Kakavas SJ, Salte KM, McDonald HA, et al. IL-38 has an Anti-Inflammatory Role in Staphylococcus Aureus Epicutaneous Exposure Drives Skin Inflammation. *Cell Death Dis* (2018) 9(11):1104. doi: 10.1038/s41419-018-1143-3

7. Mora J, Schlemmer A, Wittig I, Richter F, Putsyris M, Frank AC, et al. Interleukin-38 is Released From Apoptotic Cells to Limit Inflammatory Macrophage Responses. *J Mol Cell Biol* (2016) 8(5):426–38. doi: 10.1093/jmcb/mjw006

8. Han Y, Mora J, Huard A, da Silva P, Wiechmann S, Putsyris M, et al. IL-38 Bolsters Skin Inflammation and Limits IL-17 Production From Gammadelta T Cells. *Cell Rep* (2019) 27(3):835–846 e5. doi: 10.1016/j.celrep.2019.03.082

9. Kovach MA, Singer B, Martinez-Colon G, Newstead MW, Zeng X, Mancuso P, et al. IL-36gamma is a Crucial Proximal Component of Protective Type-1-Mediated Lung Mucosal Immunity in Gram-Positive and -Negative Bacterial Pneumonia. *Mucosal Immunol* (2017) 10(5):1320–34. doi: 10.1038/mi.2016.132

10. Aoyagi T, Newstead MW, Zeng X, Nanjo Y, Peters-Golden M, Kaku M, et al. Interleukin-36gamma and IL-36 Receptor Signaling Mediate Inflamed Host Immunity and Lung Injury in Cytotoxic Pseudomonas Aeruginosina Pulmonary Infection: Role of Prostaglandin E2. *Plos Pathog* (2017) 13(11):e1006737. doi: 10.1371/journal.ppat.1006737

11. Lefrancis E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard J, et al. IL-33 is Processed Into Mature Bioactive Forms by Neutrophil Elastase and Cathepsin G. *Proc Natl Acad Sci USA* (2012) 109(5):1673–8. doi: 10.1073/pnas.1115884109

12. Towne JE, Renshaw BR, Douangganyia J, Lipsky BP, Shen M, Gabel CA, et al. Interleukin-36 (IL-36) Ligands Require Processing for Full Agonist (IL-36falpha, IL-36beta, and IL-36gamma) or Antagonist (IL-36Ra) Activity. *J Biol Chem* (2011) 286(49):42594–602. doi: 10.1074/jbc.M111.267922

13. Clancy DM, Sullivan GP, Moran HBT, Henry CM, Reeves EP, McElvany NG, et al. Extracellular Neutrophil Proteases are Efficient Regulators of IL-1, IL-33, and IL-36 Cytokine Activity But Poor Effectors of Microbial Killing. *Cell Rep* (2018) 22(11):2937–50. doi: 10.1016/j.celrep.2018.02.062

14. Henry CM, Sullivan GP, Clancy DM, Alonina IS, Kulms D, Martin SJ. Neutrophil-Derived Proteases Escalate Inflammation Through Activation of IL-36 Family Cytokines. *Cell Rep* (2016) 14(4):708–22. doi: 10.1016/j.celrep.2015.12.072

15. Ainscough JS, Macleod T, McGonagle D, Brakefield R, Baron JM, Alase A, et al. Cathepsin s is the Major Activator of the Psoriasis-Associated Proinflammatory Cytokine IL-36gamma. *Proc Natl Acad Sci USA* (2017) 114(13):E2748–57. doi: 10.1073/pnas.1620954114

16. Macleod T, Doble R, McGonagle D, Wasson CW, Alase A, Stacey M, et al. Neutrophil Elastase-Mediated Proteolysis Activates the Anti-Inflammatory Cytokine IL-36 Receptor Antagonist. *Sci Rep* (2016) 6:24880. doi: 10.1038/srep24880

17. Nguyen TT, Niyonsaba F, Ushio H, Akiyama T, Katsuyaraycon C, Smithirithe R, et al. Interleukin-36 Cytokines Enhance the Production of Host Defense Peptides Psoriasin and IL-37 by Human Keratinocytes Through Activation of Mapks and NF-Kappab. *J Dermatol Sci* (2012) 68(1):63–6. doi: 10.1016/j.jdermsci.2012.07.010

18. Muller A, Henning A, Lorscheid S, Grotzche-Osthoff K, Hallinger S, et al. Ikappabzeta is a Key Transcriptional Regulator of IL-36-Driven Psoriasis-Related Gene Expression in Keratinocytes. *Proc Natl Acad Sci USA* (2018) 115(40):10088–93. doi: 10.1073/pnas.1801377115

19. Debets R, Timans JC, Homey B, Zurawski S, Huen KR, Lo S, et al. Two Novel IL-1 Family Members, IL-1 Delta and IL-1 Epsilon, Function as an Antagonist and Agonist of NF-Kappa B Activation Through the Orphan IL-1 Receptor-Related Protein 2. *J Immunol* (2001) 167(3):1440–6. doi: 10.4049/jimmunol.167.3.1440

20. Liu H, Archer NK, Dillen CA, Wang Y, Ashbaugh AG, Ortlone RV, et al. Staphylococcus Aureus Epitopean Exposure Drives Skin Inflammation Correlates With Disease Severity and Therapeutic Response to Anti-IL-17A Treatment. *Cell Death Dis* (2018) 9(11):1104. doi: 10.1038/s41419-018-1145-3
Via IL-36-Mediated T Cell Responses. *Cell Host Microbe* (2017) 22(5):653–666 e5. doi: 10.1016/j.chom.2017.10.006

35. Swindell WR, Bean MA, Sarkar MK, Loftus S, Fullmer J, Xing X, et al. RNA-Seq Analysis of IL-1B and IL-36 Responses in Epidermal Keratinocytes Identifies a Shared Myd88-Dependent Gene Signature. *Front Immunol* (2018) 9:80. doi: 10.3389/fimmu.2018.00080

36. Russell SE, Horan RM, Stefanska AM, Carey A, Leon G, Aguilera M, et al. IL-36alpha Expression is Elevated in Ulcerative Colitis and Promotes Colonic Inflammation. *Mucosal Immunol* (2016) 9(5):1193–204. doi: 10.1038/immunol.2015.134

37. Dietrich D, Martin P, Flacher V, Sun Y, Jarrossay D, Brembilla N, et al. Interleukin-36 Potently Stimulates Human M2 Macrophages, Langerhans Cells and Keratinocytes to Produce Pro-Inflammatory Cytokines. *Cytokine* (2016) 84:88–98. doi: 10.1016/j.cyto.2016.05.012

38. Vigne S, Palmer G, Lamacchia C, Martin P, Talabot-Ayer D, Guzman AM, et al. IL-36gamma Augments Cytokine Proliferation. *Cytokine* (2016) 85:18–25. doi: 10.1016/j.cyto.2016.05.023

39. Foster AM, Baliwag J, Chen CS, Guzman AM, Stoll SW, Gudjonsson JE, et al. IL-36gamma Expression and IL-1F9 (IL-1H1) Actions in Brain Cells. *J Neuroimmunol* (2003) 139(1-2):36–43. doi: 10.1016/S0165-5728(03)01310-9

40. Berglof E, Andre R, Renshaw BR, Allan SM, Lawrence CB, Rothwell NJ, et al. IL-1Rrp2 Expression and IL-1F9 (IL-1H1) Actions in Brain Cells and Keratinocytes to Produce Pro-Inflammatory Cytokines. *Cytokine* (2016) 84:88–98. doi: 10.1016/j.cyto.2016.05.012

41. Wang H, Li ZY, Jiang WX, Liao B, Zhai GT, Wang N, et al. The Activation and Function of IL-36gamma in Neurophilic Inflammation in Chronic Rhinosinusitis. *J Allergy Clin Immunol* (2018) 141(5):1646–58. doi: 10.1016/j.jaci.2017.12.972

42. Penha R, Higgins J, Mutamba S, Barrow P, Mahida Y, Foster N, et al. The Interleukin-1-Related Cytokine IL-1F8 is Expressed in Glial Cells, But Fails to Induce IL-1beta Signalling Responses. *Cytokine* (2005) 29(6):245–50. doi: 10.1016/j.cyto.2004.12.002

43. Foster AM, Baliwag J, Chen CS, Guzman AM, Stoll SW, Gudjonsson JE, et al. IL-36 Promotes Myeloid Cell Infiltration, Activation, and Inflammatory Activity in Skin. *J Immunol* (2014) 192(2):6053–61. doi: 10.4049/jimmunol.1301481

44. Scheibe K, Backert I, Wirtz S, Hueber A, Schett G, Vieth M, et al. IL-36gamma Signaling Controls the Induced Regulatory T Cell-Th9 Cell Crosstalk. *Mucosal Immunol* (2017) 10(6):1455–67. doi: 10.1038/mi.2017.21

45. Schwimmer J, Dumas A, Patenaude A, Vallieres L. Interleukin-36gamma is Expressed by Neutrophils and can Activate Microglia, But has No Role in Experimental Autoimmune Encephalomyelitis. *J Neuroinflamm* (2015) 12:173. doi: 10.1186/s12974-015-0392-7

46. Harusato A, Abe H, Nao VL, Yi SW, Mitsutake K, Osuka S, et al. IL-36gamma Signaling Controls the Induced Regulatory T Cell-Th9 Cell Balance. *J Neurol Sci* (2016) 367:105–11. doi: 10.1016/j.jns.2016.07.020

47. Winkle SM, Post A, Nethercutt SE, Egan KF, Vazquez DR, et al. IL-36 Signaling Activates Intestinal Epithelial Cells and Fibroblasts and Promotes Mucosal Healing In Vivo. *Gut* (2017) 66(5):823–38. doi: 10.1136/gutjnl-2015-310374

48. Ramadas RA, Ewart SL, Medoff BD, LeVine AM. Interleukin-1 Family Member 9 Stimulates Chemokine Production and Neutrophil Influx in Mouse Lungs. *Am J Respir Cell Mol Biol* (2011) 44(2):134–45. doi: 10.1165/rcmb.2009-0315OC

49. Chustz RT, Nagarkar DR, Poposki JA, Favorito S Jr., Avila PC, Schleimer RP, et al. Regulation and Function of the IL-1 Family Cytokine IL-36gamma in Human Bronchial Epithelial Cells. *Am J Respir Cell Mol Biol* (2011) 45(1):145–53. doi: 10.1165/rcmb.2010-0057OC

50. Winkle SM, Throop AL, Herbst-Kralovetz MM. IL-36gamma Augments Host Defense and Immune Responses in Human Female Reproductive Tract Epithelial Cells. *Front Microbiol* (2016) 7:955. doi: 10.3389/fmicb.2016.00955

51. Blumberg B, Dinh H, Dean Cfr., Trueblood ES, Bailey K, Shows D, et al. IL-1RL2 and its Ligands Contribute to the Cytokine Network in Psoriasis. *J Immunol* (2010) 185(7):4354–62. doi: 10.4049/jimmunol.1000313

52. Carrier Y, Ma HL, Ramon HE, Napiereta L, Small C, O'Toole M, et al. Inter-Regulation of Th17 Cytokines and the IL-36 Cytokines In Vivo and In Vivo: Implications in Psoriasis Pathogenesis. *J Invest Dermatol* (2011) 131(12):2428–37. doi: 10.1038/jid.2011.234

53. Catapano M, Vergnano M, Romano M, Mahal SK, Choon SE, Burden AD, et al. IL-36 Promotes Systemic IFN-1 Responses in Severe Forms of Psoriasis. *J Invest Dermatol* (2020) 140(4):816–826 e3. doi: 10.1016/j.jid.2019.08.444

54. Tortola L, Rosenwald E, Abel B, Blumberg H, Schaper M, Coyle AJ, et al. Psoriasisform Dermatitis is Driven by IL-36-Mediated DC-Keratinocyte Crosstalk. *J Clin Invest* (2012) 122(11):3965–76. doi: 10.1172/JCI63451

55. Goldstein JD, Bassoy EY, Caruso A, Palomo J, Rodriguez E, Lemeille S, et al. IL-36 Signaling in Keratinocytes Controls Early IL-23 Production in Psoriasis-Like Dermatitis. *Life Sci Alliance* (2020) 3(6):e202000688. doi: 10.26508/lsa.202000688

56. Bozoyan L, Dumas A, Patenaude A, Vallieres L. Interleukin-36gamma is Expressed by Neutrophils and can Activate Microglia, But has No Role in Experimental Autoimmune Encephalomyelitis. *J Neuroinflamm* (2015) 12:173. doi: 10.1186/s12974-015-0392-7
85. Gong Y, Tingxi Z, Qing L, Guozhen Z, Bing T, Xiaoliang Y, et al. Elevated
84. Medina-Contreras O, Harusato A, Nishio H, Flannigan KL, Ngo V, Leoni G,
80. Lian LH, Milora KA, Manupipatpong KK, Jensen LE. The Double-Stranded
79. Gresnigt MS, Rosler B, Jacobs CW, Becker KL, Joosten LA, van der Meer JW, et al.
70. Gao N, Me R, Dai C, Seyoum B, Yu FX. Opposing Effects of IL-1Ra and IL-
36. Verma A H, Zafar H, Ponde N O, Hepworth O W, Sihra D, Aggor F E Y, et al. IL-36
53. doi: 10.1038/jid.2011.482
52. doi: 10.1002/path.1570
51. doi: 10.1002/jjci.2020.06.001
50. IL-36/LXR Axis Modulates Cholesterol Metabolism and Immune Defense
49. doi: 10.4081/1184
48. doi: 10.1080/21659587.2019.1648313
47. doi: 10.1016/j.jci.2020.05.051
46. doi: 10.4049/jimmunol.1800515
45. doi: 10.1016/j.jid.2020.05.087
44. doi: 10.1016/j.ad.2020.08.002
43. doi: 10.1002/doi.202102.056
42. doi: 10.1016/j.jaci.2020.05.051
41. doi: 10.1111/1365-2230.13802
40. doi: 10.1002/jbc.201242711
39. doi: 10.1053/j.gastro.2020.02.055
38. doi: 10.1186/s13054-020-15479-8
37. doi: 10.1016/j.cytogfr.2020.06.001
36. doi: 10.1016/S2665-9913(20)30127-2
35. doi: 10.1016/j.jcid.2019.06.003
34. doi: 10.1002/clin.21417
33. doi: 10.1002/jjhep.201502
32. doi: 10.1172/JC1128678
31. doi: 10.1038/146275.14.10308
30. doi: 10.1172/JI.2018.100.34
29. doi: 10.1016/j.jaad.2020.06.1016
28. doi: 10.1038/s41598-018-19476-x
27. doi: 10.1016/S2756-9913(19)30340-4
26. doi: 10.1002/eji.201242711
25. doi: 10.1038/jid.2019.154798. doi: 10.1016/j.cyto.2019.154798
24. doi: 10.1016/j.cytob.2019.101.086
23. doi: 10.1122/j1365-2230.13802
22. doi: 10.1020.1582.2135
21. doi: 10.1016/j.jciinsight.2019.07.008
20. doi: 10.1016/j.jciinsight.2019.07.008
19. doi: 10.1016/j.jci.2020.06.004
18. doi: 10.1128/IAI.00583-18
17. doi: 10.1371/journal.pone.0126058
16. doi: 10.1002/1365-2230.13802
15. doi: 10.1038/jid.2019.154798. doi: 10.1016/j.cyto.2019.154798
14. doi: 10.1016/j.jciinsight.2019.07.008
13. doi: 10.1038/s41598-018-19476-x
12. doi: 10.1172/JC1128678
11. doi: 10.1016/j.jci.2020.06.004
10. doi: 10.1016/j.jcid.2019.06.003
9. doi: 10.1111/j.1365-2230.13802
8. doi: 10.1038/s41598-018-19476-x
7. doi: 10.1002/doi.202102.056
6. doi: 10.1038/jid.2020.05.087
5. doi: 10.1002/doi.202102.056
4. doi: 10.1016/j.jci.2020.05.051
3. doi: 10.1016.jjhep.2017.07.028
2. doi: 10.1016/j.jid.2020.05.087
1. doi: 10.1016/j.jci.2020.05.051
105. Rana AA, Lucas AV, DeVoti J, Blanc L, Papoin J, Wu R, et al. Poly(I:C) Induces Controlled Release of IL-36gamma From Keratinocytes in the Absence of Cell Death. *Immunol Rev* (2015) 261(1-3):228–35. doi: 10.1111/imre.12144

106. Mahil SK, Catapano M, Di Meglio P, Dand N, Ahlfors H, Carr IM, et al. An Analysis of IL-36 Signature Genes and Individuals With IL1RL2 Knockout Mutations Validates IL-36 as a Psoriasis Therapeutic Target. *Sci Transl Med* (2017) 9(411):eaan2514. doi: 10.1126/scitranslmed.aan2514

107. Sanchez-Cerrillo I, Landete P, Aldave B, Sanchez-Alonso S, Sanchez-Azofra A, Marcos-Jimenez A, et al. COVID-19 Severity Associates With Pulmonary Redistribution of CD1c+ Dcs and Inflammatory Transitional and Nonclassical Monocytes. *J Clin Invest* (2020) 130(12):6290–300. doi: 10.1172/JCI110335

108. Laforge M, Elbim C, Frere C, Hemadi M, Massaad C, Nuss P, et al. Tissue Damage From Neutrophil-Induced Oxidative Stress in COVID-19. *Nat Rev Immunol* (2020) 20(9):515–6. doi: 10.1038/s41577-020-0407-1

109. Merad M, Martin JC. Pathological Inflammation In Patients With COVID-19: A Key Role for Monocytes and Macrophages. *Nat Rev Immunol* (2020) 20(6):355–62. doi: 10.1038/s41577-020-0331-4

110. Veras FP, Pontelli MC, Silva CM, Toller-Kawahisa JE, de Lima M, Nascimento DC, et al. SARS-Cov-2-Triggered Neutrophil Extracellular Traps Mediate COVID-19 Pathology. *J Exp Med* (2020) 217(12):e20211129. doi: 10.1084/jem.20211129

111. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical Features of 99 patients with 2019 Novel Coronavirus (COVID-19) infection in Wuhan, China. *Nat Med* (2020) 26(4):46–52. doi: 10.1038/s41591-020-0709-3

112. Conner KP, Pastuskovas CV, Soto M, Thomas VA, Wagner M, Rock DA. Preclinical Characterization of the ADME Properties of a Surrogate Anti-IL-36R Monoclonal Antibody Antagonist in Mouse Serum and Tissues. *Mabs* (2020) 12(1):1746520. doi: 10.1080/19420862.2020.1746520

113. Yuan ZC, Xu WD, Liu XY, Huang AF, Su LC. Biology of IL-36 Signaling and its Role in Systemic Inflammatory Diseases. *Front Immunol* (2019) 10:2532. doi: 10.3389/fimmu.2019.02532

114. Hewitt SL, Bai A, Bailey D, Ichikawa K, Zielinski J, Karp R, et al. Durable Anticancer Immunity From Intratumoral Administration of IL-23, IL-36gamma, and OX40L Mrnas. *Sci Transl Med* (2019) 11(477):eaat9143. doi: 10.1126/scitranslmed.aat9143

115. Macleod T, Ainscough JS, Hesse C, Konzok S, Braun A, Buhl AL, et al. The Proinflammatory Cytokine IL-36gamma is a Global Discriminator of Harmless Microbes and Invasive Pathogens Within Epithelial Tissues. *Cell Rep* (2020) 33(11):108515. doi: 10.1016/j.celrep.2020.108515

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Wang, Yi and Liang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.