Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

Maria Inés Marchesini1, Joseph Connolly2, Maria Victoria Delpino3, Pablo C. Baldi3, Cesar V. Mujer2, Vito G. DelVecchio2, Diego J. Comerci1*

1 Instituto de Investigaciones Biotechnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina, 2 Vital Probes, Inc., Mayfield, Pennsylvania, United States of America, 3 Instituto de Estudios de la Inmunidad Humoral, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina

Abstract

Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host’s conjugated bile salts. *Brucella* species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers *Brucella* the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in *B. abortus* virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (*Δcgh*) and found that it is defective in the internalization process. This defect along with the increased resistance of *Δcgh* to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of *Δcgh* cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that *Brucella* CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

Introduction

Bile acids are synthesized from cholesterol in hepatocytes. Prior to being exported from the liver, bile acids are conjugated by an amide bond to taurine or glycine to produce bile salts. In addition to their lipid-emulsifying function in the intestinal tract, bile acids serve to control bacterial overgrowth in the small intestine. Given their antimicrobial action, it has been proposed that intestinal microbiota has evolved a system that reduces the detergent properties of bile salts, promoting the survival and colonization of bacteria in the gut [1]. Bacterial metabolism of conjugated bile acids is initiated by bile salt hydrolase (E.C. 3.5.1.24), also referred to as choloylglycine hydrolase (CGH), which catalyzes the hydrolysis of amide bonds of conjugated bile acids, resulting in the release of free primary bile acids and amino acids.

Genes coding for CGH were identified in *Brucella* genomes [2]. They are highly conserved in all sequenced *Brucella* species, and multiple alignment analysis revealed that residues at the active site are highly conserved [2]. *Brucella* species are intracellular pathogens responsible for brucellosis, a worldwide distributed zoonosis. Pathogenic *Brucella* mainly infect cattle, swine, goats, sheep and dogs, causing abortion in females and sterility in males [3]. Although *Brucella* species do not reside in the gut of infected mammals, oral infection is one of the entry routes either through consumption of contaminated dairy products or contact with infected placental tissues [4]. Recently, we demonstrated that *B. abortus* CGH can deconjugate bile salts and that this enzymatic activity enhances *Brucella* survival in a bile-containing environment [2]. It was also observed that a cgh-deletion mutant is attenuated in intragastrically infected mice, demonstrating that CGH may help *Brucella* to resist the detergent action of bile salts upon oral route entry. The cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice; suggesting that CGH may be involved in activities other than hydrolysis of conjugated bile acids and may play a role during systemic infection. Interestingly, CGH has also been identified as a component of the *Brucella* containing vacuole (BCV), a membrane-bound compartment that contains the bacterium during its intracellular life cycle [5], reinforcing the idea that the enzyme could be important for these stages.

In this work, we demonstrate that *B. abortus* CGH mutant has several pleiotropic defects related to an altered membrane function and composition such as faster generation time during both vegetative and intracellular growth, resistance to polymyxin B, differential expression profile of several major outer membrane proteins and a defect in cellular adhesion and internalization in phagocytic and non-phagocytic cells. All these defects strongly suggest that CGH, besides its role as a bile-salt deconjugating enzyme, plays important and yet uncharacterized function.
related to the structure and composition of the *Brucella* cell envelope.

Materials and Methods

Bacterial strains and growth conditions

Bacterial strains used in this study are: smooth virulent wild-type *Brucella abortus* strain 2308 (S2308); unmarked deletion mutant *Agkh* (BAB1_1488); [2]; complemented *Agkh* mutant strain [2]; S2308 pGFP [6]; and *Agkh* pGFP. *B. abortus* strains were grown in tryptic soy agar (TSA) or in tryptic soy broth (TSB) (Difco/Becton-Dickinson, Sparks, MD) at 37°C on a rotary shaker for 16–20 h. Media acidification (pH 5.5) was achieved by addition of citrate buffered saline (PBS) and incubated for 60 min with fresh medium washed three times with PBS and lysed with 500 μg/ml kanamycin. At the indicated times, infected cells were either kanamycin.

Construction of strain Δagkh pGFP

pGFP [6] was introduced in strain Δagkh by biparental mating as described in [6].

Assessment of B. abortus resistance to bovine bile and polymyxin B

Wild-type *B. abortus* S2308 and Δagkh mutant strains were grown in TSB with antibiotic and harvested at late exponential phase. Bacterial pellets were washed twice with TSB and resuspended to an OD₆₀₀ of 1 in TSB with antibiotic and harvested at late exponential phase. In-gel trypsin digestion and MALDI-TOF MS

Bacterial infection and replication assays

The human epithelial cell line HeLa and the murine macrophage cell line J774.A1 (purchased from American Type Culture Collection, ATCC) were used. Cells lines were maintained and plated as previously described [7]. Cells (5×10⁵/well) were seeded on 24-well plates in media without antibiotics 24 h before infection. *B. abortus* infections were carried out at the indicated multiplicity of infection (MOI). Bacteria were centrifuged onto infection.

Preparation of cell envelope-associated proteins

Preparation of total membranes of *B. abortus* strains was carried out as described previously [9]. Total protein concentration was determined using the Bio-Rad (Hercules, CA) protein stain with bovine serum albumin (BSA) as a standard. All samples, including the BSA standards were dissolved in C7 resuspension buffer.

Two-dimensional gel electrophoresis (2DE)

All 2DE analyses were carried out with the ElectrophoreIQ² system (Proteome Systems). Supplies and reagents for 2DE were purchased from Proteome Systems and used according to manufacturer’s instructions. Two hundred μl (30 μg) of membrane protein mixture was separated by IEF on 11 cm (pH 4 to 7) linear immobilized pH gradient (IPG) strips. After 4 hours of rehydration, the following focusing parameters were applied: 50 μA per strip, linear voltage increase over 8 hours from 100 V to 10,000 V, and finally 10,000 V for 8 hours. After IEF, IPG strips were equilibrated in Equilibration Buffer and applied onto a 10% SDS-PAGE gel. After electrophoresis of 1.5 hours at 300 mA, weblotting was performed using mouse monoclonal antibodies (kindly provided by Dr. Axel Cloeckaert) against Omp25 (A39/05F01/C09), Omp26 (A63/ 05A07/A08), Omp31 (A50/10F09/G10), Omp1 (A53/10B02/ A01) and Omp19 (A76/18B02/D06).

Western blot analysis

To monitor the expression levels of outer membrane proteins in *B. abortus* strains, bacteria were grown in TSB and harvested at stationary phase. Equivalent bacterial pellets were resuspended in Laemmli buffer and samples were subjected to SDS-PAGE. Proteins were transferred onto nitrocellulose membranes using a semi-dry transfer procedure. Immunoblotting was performed using mouse monoclonal antibodies (kindly provided by Dr. Axel Cloeckaert) against Omp25 (A39/05F01/C09), Omp26 (A63/ 05A07/A08), Omp31 (A50/10F09/G10), Omp1 (A53/10B02/ A01) and Omp19 (A76/18B02/D06).

Gel Analysis

The experimental pI and Mr values of each protein were determined using the 2D Phoretix program by Nonlinear Dynamics (Newcastle upon Tyne, UK). Precision Protein Standards Plug purchased from Bio-Rad (Hercules, CA) was included during electrophoresis as molecular weight standards. Each sample was run in triplicate and an average gel was generated using the 2D Phoretix software. Spots present in at least two of the three subgels were included in the average gel.

In-gel trypsin digestion and MALDI-TOF MS

Protein spots were excised from the 2DE gels using the Xcise robotic workstation (Proteome Systems). Gel plugs were sequen-
tially washed with 50 mM ammonium bicarbonate and 50% acetonitrile, dried, and treated with 1.6 mg/mL of trypsin in 50 mM ammonium bicarbonate at 37°C overnight. Tryptic peptides were applied to MALDI-TOF MS target plate in a solution of 10 mg/mL α-cyano-4-hydroxycinnamic acid in 0.1% trifluoroacetic acid and 50% acetonitrile. MS spectra (100 profiles per spectrum) were obtained using an AXIMA-CFR plus (Shimadzu Biotech, Woburn, MA) in a positive ion reflectron mode with a source voltage of 24,000 V and a laser intensity of 55%. Peptide mass fingerprints were analyzed and searched against the theoretical spectra of B. melitensis 16 M or B. abortus S2308 using the Mascot Daemon software package (Matrix Science, London). The search parameters were: maximum of one missed cleavage by trypsin; fixed modification of oxidized methionine; charged state of +1; and mass tolerance of ±0.5 Da.

Results

In vitro characterization of B. abortus Δcgh deletion mutant

As revealed by a previous study, B. abortus CGH deconjugates bile salts and confers resistance to their antimicrobial action [2]. Consistent with these results, the growth of B. abortus Δcgh deletion mutant was impaired by bovine bile in a dose dependent manner, while growth of wild-type strain 2308 remained unaffected in the presence of 2.5% bile (Fig. 1A). To determine whether this increased sensitivity to bile salts may be a marker of a generalized sensitivity of Δcgh to substances with detergent action, we next assessed growth inhibition of wild-type and mutant strains grown in plates containing different concentrations of polymyxin B, a polycationic bactericidal agent with a detergent-like mode of action [10]. Contrary to the results obtained with bovine bile, growth of wild-type strain 2308 was completely impaired in presence of 1% polymyxin B, while Δcgh growth remained unaltered at 2.5% polymyxin B (Fig. 1B). Additionally, Δcgh growth impairment was also assessed in media containing either 1% sarkosyl, triton X-100, SDS or zwittergent. In contrast to the results obtained with bovine bile, the mutant strain behaved like the wild-type strain (not shown), indicating that the lack of CGH only affects B. abortus resistance to the detergent action of bile salts. Sensitivity to bovine bile and resistance to polymyxin B were not related to the integrity of the lipopolysaccharide (LPS) since no differences between the wild-type and the mutant strain were observed by Western blot analysis with monoclonal antibodies against Brucella rough and smooth LPS (not shown).

Next, we evaluated the growth performance of the mutant in comparison to wild-type B. abortus S2308. As shown in Fig. 1C and D, Δcgh exhibited a significantly faster growth rate than S2308 both at pH 7 and 5.5, as well as an increased resistance to acidic pH. Taken together, these results indicate that absence of B. abortus CGH results in sensitivity to bile salts, increased resistance to the cationic detergent polymyxin B, and a faster growth rate even under acidic conditions. The pleiotropic effects observed in Δcgh suggest that, besides its bile salt deconjugating activity, CGH plays an important role in B. abortus physiology.

B. abortus Δcgh is defective in adhesion and cellular internalization

Previous studies demonstrated that Δcgh mutant is attenuated in mice infected through both the oral and intraperitoneal routes [2]. To test whether Δcgh is also deficient in its ability to invade and replicate intracellularly, HeLa epithelial cells and J774.A1 macrophages were infected with the wild-type S2308, the Δcgh mutant or its complemented strain. The numbers of intracellular bacteria were scored at different times post-infection (p.i.). As shown in Fig. 2A, Δcgh showed a significant decrease in the intracellular CFU counts in comparison to the wild type (2 log10 units at 4 h p.i. \(P = 0.0012 \); 4.2 log10 units at 24 h p.i. \(P = 0.0024 \)). Afterward, the CFU increased exponentially with a higher growth rate than that of the wild type, thus indicating that the small fraction of internalized Δcgh were able to replicate. However, at 48 h p.i., the intracellular CFU of Δcgh remained significantly lower than that of the wild type (1 log10 units at 48 h p.i. \(P = 0.0030 \)). As expected, the complemented strain behaved like the wild-type strain during the time-course of the experiment, exhibiting similar numbers of CFUs retrieved from infected cells (Fig. 2A). When HeLa cells were infected, a similar, but less drastic phenotype was also observed for the Δcgh mutant (Fig. 2B).

To assess whether the observed behavior is the consequence of a defect in adhesion and/or internalization, the percentage of macrophages with associated bacteria and the distribution of bacteria (intracellular or extracellular) per infected cell were examined by immunofluorescence microscopy at different times post-infection. As shown in Fig. 3A, at 0.5 h after infection 15.93 ± 0.35% of macrophages were associated with wild-type bacteria whereas 35.12 ± 1.22% of macrophages were associated with large Δcgh aggregates (Fig. 3C), thus indicating that deletion of cgh affects the adherence of B. abortus. Even though the mutant had an increased adhesion capacity, its invasiveness was reduced. At 0.5 h after infection only 4.30 ± 0.42% of Δcgh were internalized in comparison with 14.60 ± 1.56% of intracellular wild type (Fig. 3B and C upper panel). At 24 h after infection, the majority of wild type bacteria were replicating within macrophages (72.90 ± 0.57%) while the Δcgh mutant remained extracellular-associated forming bacterial aggregates, with only a small percentage (30.70 ± 1.84%) intracellularly located (Fig. 3B and C). Consistent with the CFU counts, at 48 h after infection 91.10 ± 0.28% of the wild type were replicating compared to the 54.90 ± 0.57% of the mutant. Altogether, these results demonstrate that the absence of CGH results in altered adhesion and internalization phenotypes.

Next, we analyzed the biogenesis of the Brucella-containing vacuole (BCV) by scoring the recruitment kinetics of the late-endosome/lysosome glycoprotein LAMP-1 and the endoplasmic reticulum membrane marker calnexin. There were no significant differences in the recruitment and subsequent exclusion of LAMP-1 to the wild type and Δcgh BCVs (Fig. S1). At 24 h p.i., the small fraction of internalized Δcgh was able to promote maturation of the replicative BCV and multiplied in calnexin-positive organelles as the wild type, a fact that explains the observed increase in the intracellular CFU from 24 h to 48 h p.i. (Fig. S2). Thus, the absence of CGH affects the adhesion and internalization of B. abortus, but does not affect the intracellular traffic and replication capacity.

Cell envelope-associated proteins of Δcgh

The increased resistance to polycationic peptides as well as the defect in the internalization of Δcgh, both indicative of surface alteration, led us to analyze the cell-envelope associated proteins of this mutant strain in search of differences with S2308. Representative proteome maps at three overlapping narrow pH ranges (i.e., 3.9 to 5.1, 4.7 to 5.9 and 5.3 to 6.7) of B. abortus Δcgh mutant strain are shown in Fig. S3. A total of 374 protein spots were detected. Of these, 92 protein spots were successfully identified by MALDI TOF MS, representing 39 ORFs (Table S1).

i. Overexpressed cell envelope-associated proteins of Δcgh

Cell envelope-associated proteins whose amounts
Figure 1. *In vitro characterization of B. abortus ΔcgH deletion mutant.* Growth inhibition of wild-type *B. abortus* (S2308) and its isogenic deletion mutant ΔcgH in TSA plates containing different concentrations of bovine bile (A) and polymyxin B (B). Each determination is the mean ± SD of two independent experiments performed in duplicate and indicate the percentage of bacterial growth inhibition relative to the number of viable bacteria in TSA medium without the addition of bovine bile or polymyxin B. *B. abortus* (S2308) and its isogenic deletion mutant ΔcgH were grown in TSB pH 7 (C) or pH 5.5 (D). At the indicated times, growth was monitored by measuring the OD_{600} of the cultures. Each determination is the mean ± SD of two independent experiments performed in duplicate. Statistical analysis was performed with a *t*-test. *, *P* < 0.05; **, *P* < 0.01 (compared with strain S2308).

Figure 2. *B. abortus ΔcgH exhibits lower CFU counts during the early infection stages than the wild-type S2308.* Intracellular replication of wild-type *B. abortus* (S2308), its isogenic deletion mutant (ΔcgH) and the complemented mutant in J774.A1 macrophages (A) and HeLa cells (B). Monolayers of J774A.1 cells (MOI 10:1) or HeLa cells (MOI 100:1) were inoculated as described in the text and CFU counts were determined at the indicated times. Each determination is the mean ± SD of two independent experiments performed in duplicate. Statistical analysis was performed with a *t*-test. *, *P* < 0.05; **, *P* < 0.01 (compared with strain S2308).

doi:10.1371/journal.pone.0028480.g001
Figure 3. *B. abortus* Δcgh is defective in cellular adhesion and internalization. (A) Quantification of J774.A1 macrophages with associated bacteria (*B. abortus* S2308 pGFP or Δcgh pGFP) at 0.5 h p.i. (MOI 10:1). Each determination is the mean ± SD of two independent experiments performed in duplicate. Statistical analysis was performed with a t test. *, P<0.05; **, P<0.01 (compared with strain S2308). (B) Quantification of the
distribution (intracellular or extracellular) of bacteria per infected cell (J774.A1) at 0.5, 24 and 48 h after infection (MOI 10:1). Total bacteria (intracellular and extracellular) were visualized in green (B. abortus S2308 pGFP or Δcgh pGFP), while extracellular bacteria were stained using a rabbit polyclonal antibody against Brucella and a secondary antibody conjugated to Alexa Fluor 568 (red) in non-permeabilized cells. Each determination is the mean ± SD of two independent experiments performed in duplicate. Statistical analysis was performed with a t test. *, P<0.05; **, P<0.01 (compared with stain S2308). (C) Representative micrographs of J774.A1 macrophage-like cells infected for 0.5h (upper panel) and 24h (lower panel) with S2308 pGFP or Δcgh pGFP (MOI 10:1). Insets show total bacteria in green and extracellular bacteria in red. Merged images show extracellular bacteria in green with a red outline, while intracellular bacteria are visualized only in green.

doi:10.1371/journal.pone.0028480.g003

Expression of some major outer membrane proteins is altered in B. abortus Δcgh

The Brucella Omp25/Omp31 family is composed of seven homologous Omps: Omp25, Omp25b, Omp25c, Omp25d, Omp31 and Omp31b [11,12]. In order to confirm the composition of the cell envelope-associated proteome, we analyzed the expression of four Omps in the wild type and the Δcgh mutant strains. Protein expression levels of Omp2b (BAB1_0660), Omp25 (BAB1_0722), Omp25c (BAB1_0116) and Omp31b (BAB1_1639) were determined by Western blot analysis using monoclonal antibodies against these proteins. Protein levels of Omp1 and Omp19 were also determined to standardize the protein load. In agreement with the results obtained in the proteomic analysis, we did not detect expression of Omp2b in Δcgh (Fig. 4). Higher levels of Omp25 and Omp25c were detected in Δcgh when compared with S2308, and expression of Omp31b was only detected in the mutant (Fig. 4). These results confirm proteomic data of cell envelope-associated proteins and provide evidence of an overall alteration of Δcgh’s cell envelope composition. This finding could be related to the mutant’s impaired ability to be internalized into host cells as well as its increased resistance to polymyxin B.

Discussion

In a previous study, B. abortus CGH was shown to cleave glycocholate into glycine and cholate [2] and this activity was essential for B. abortus resistance to bile salts. These findings, together with the fact that a cgh-deletion mutant is attenuated in mice inoculated through the oral route, are in clear agreement with CGH role in B. abortus resistance to the action of these biological detergents. However, attenuation of the mutant strain in intraperitoneally inoculated mice suggested that CGH could play another relevant role for infection through the systemic route [2]. CGH, together with penicillin acylase and acid ceramidase, belong to the family of linear amide C-N hydrolases (Pfam 02275). Members of this family, which belong to the N-terminal nucleophil (Ntn) hydrolase superfamily, catalyze the hydrolysis of amide bonds, other than peptide bonds, in linear amides present in proteins, peptidoglycan or small molecules, raising the possibility that B. abortus CGH could hydrolyze amide bonds on substrates other than host’s bile salts.

In this work, we confirmed B. abortus CGH participation in bile salts resistance and presented additional evidence indicating that the enzyme is important for maintaining the composition and properties of the Brucella cell envelope.

We found an increased resistance of Δcgh mutant to the bactericidal action of polymyxin B as well as increased growth capability at both neutral and acidic pH. The requirement of CGH participation in bile salts resistance to the action of these biological detergents. However, attenuation of the mutant strain in intraperitoneally inoculated mice suggested that CGH could play another relevant role for infection through the systemic route [2]. CGH, together with penicillin acylase and acid ceramidase, belong to the family of linear amide C-N hydrolases (Pfam 02275). Members of this family, which belong to the N-terminal nucleophil (Ntn) hydrolase superfamily, catalyze the hydrolysis of amide bonds, other than peptide bonds, in linear amides present in proteins, peptidoglycan or small molecules, raising the possibility that B. abortus CGH could hydrolyze amide bonds on substrates other than host’s bile salts.

In this work, we confirmed B. abortus CGH participation in bile salts resistance and presented additional evidence indicating that the enzyme is important for maintaining the composition and properties of the Brucella cell envelope.

We found an increased resistance of Δcgh mutant to the bactericidal action of polymyxin B as well as increased growth capability at both neutral and acidic pH. The requirement of B. abortus CGH activity during the early phases of infection was demonstrated both in phagocytic and non-phagocytic cells. It was shown that Δcgh has an altered adhesion and internalization behavior. The mutant exhibits an increased adhesion to the host-cell, forming bacterial aggregates not observed in the parental wild type strain and shows a significant delay in the internalization
process. At 48 h after infection, about 45% of \(Dcgh\) were found associated to macrophages in extracellular clumps (Fig. 3). However, a small fraction of the mutant was able to invade and promote the maturation of the replicative LAMP1-negative, Calnexin-positive BCV where bacterial replication occurred even at a faster intracellular growth rate (Fig. 2 and Fig. S1 and S2). These results suggested altered outer membrane properties and composition of the mutant strain.

To evaluate this hypothesis, a proteomic analysis of cell envelope-associated proteins was performed in order to compare

Table 1. Overexpressed cell envelope-associated proteins in *B. abortus* \(Dcgh\) as compared with S2308.

pH Range and Spot N°	Annotation	Accession Number	pI	MW (kDa)	Difference	ORF	Subcellular Location*	
pH 3.9–5.1	Hypothetical Protein	gi	17986550	4.96	11.26	74.4 18.2 9.8	BAB1_1867	C
8	Peptidyl–prolyl cis-trans isomerase D	gi	1797128	4.60	4.84	66.1 68.1 4.7	BAB1_1162	U
9	25 kDa Omp 28	gi	1798733	4.91	8.58	64.5 23.2 11.0	BAB1_0722	OM
12	Pyruvate dehydrogenase, beta subunit	gi	17987138	4.62	4.73	63.5 49.0 3.1	BAB1_1151	C
19	25 kDa Omp 7	gi	1798753	4.90	8.58	57.4 23.2 9.1	BAB1_0722	OM
26	25 kDa Omp 15	gi	1798753	4.53	8.58	29.5 23.2 2.7	BAB1_0722	OM
42	25 kDa Omp 24	gi	1798732	4.85	8.58	58.1 23.2 2.3	BAB1_0722	OM
47	25 kDa Omp 1	gi	17988111	4.92	4.78	25.3 24.6 2.5	BAB1_0116	OM
52	25 kDa Omp 3	gi	17988112	4.76	4.78	29.1 24.6 5.8	BAB1_0116	OM
55	Hypothetical Protein	gi	17986825	4.68	4.83	27.4 30.0 2.7	BAB1_1489	U
69	25 kDa Omp 7	gi	1798753	4.90	8.58	57.4 23.2 9.1	BAB1_0722	OM
107	25 kDa Omp 5	gi	1798753	4.63	8.58	66.6 23.2 4.0	BAB1_0722	OM
113	25 kDa Omp 18	gi	1798753	4.74	8.58	26.2 23.2 3.0	BAB1_0722	OM
121	31 kDa Omp 9	gi	17989189	4.86	5.21	64.2 23.3 6.8	BAB1_1639	OM
126	Aldehyde dehydrogenase	gi	17988023	4.40	5.99	31.4 51.1 2.8	BAB1_0211	C
pH 4.7–5.9	10 25 kDa Omp 7	gi	3914203	5.15	8.58	55.4 23.2 2.1	BAB1_0722	OM
13	25 kDa Omp 4	gi	3914203	5.02	8.58	56.6 23.2 4.9	BAB1_0722	OM
19	25 kDa Omp 8	gi	3914203	5.12	8.58	43.6 23.2 4.0	BAB1_0722	OM
30	Malate dehydrogenase	gi	17986421	5.24	5.39	40.7 34.4 2.9	BAB1_1927	U
46	31 kDa Omp 4	gi	17989189	4.99	5.21	27.7 23.3 2.5	BAB1_1639	OM
52	31 kDa Omp 2	gi	17989189	4.84	5.21	26.8 23.3 4.0	BAB1_1639	OM
77	ATP synthase, beta subunit	gi	17986535	4.87	5.48	62.4 54.8 3.0	BAB2_0129	C
111	Cell division protein FtsZ	gi	23502296	5.39	5.34	83.2 60.7 3.6	BAB1_1444	U
pH 5.5–6.7	10 NADP-specific glutamate dehydrogenase	gi	17988006	5.94	5.77	47.6 45.6 3.0	BAB1_0228	C
17	Putative glycerol-3-phosphate acyltransferase, PLSX	gi	17987464	6.03	6.14	47.6 36.9 2.7	BAB1_0797	C
20	TolB translocation protein 2	gi	17986622	6.11	8.75	49.0 48.5 3.5	BAB1_1709	P
22	Glucose/ribitol dehydrogenase	gi	17986385	6.24	5.72	36.2 35.4 2.3	BAB1_1968	U
27	ATP synthase alpha chain 3	gi	17986533	6.42	6.1	64.3 54.9 2.2	BAB1_1809	U
38	Cell division inhibitor MinD	gi	17989271	6.32	5.42	29.3 27.1 5.7	BAB2_0883	C
39	3-ketoacyl-(acyl-carrier-protein) reductase	gi	17987760	6.44	6.44	26.7 26.0 3.1	BAB1_0483	C
51	Chaperone protein DNAJ	gi	17988284	6.34	6.51	42.6 41.1 2.3	BAB1_2130	C
59	Transcription antitermination protein NusG1	gi	17987027	5.99	6.64	20.9 19.7 2.6	BAB1_1269	U

Exp.: experimental; Theor.: theoretical; Omp: outer membrane protein; *as determined by PSORTb version 3.0.2 [23]; OM: outer membrane; C: cytoplasmic; P: periplasmic; U: unknown.

doi:10.1371/journal.pone.0028480.t001
Table 2. Underexpressed cell envelope-associated proteins in B. abortus Δchg as compared with S2308.

pH Range and Spot N	Annotation	Accession Number	Exp. MW (kDa)	Theor. MW (kDa)	Difference	ORF	Subcellular Location*		
pH 3.9–5.1	Omp2b porin 7	gi	17987588	4.38	4.61	45.1	40.4	-18.6	BAB1_0660 OM
	Omp2b porin 6	gi	17987588	4.41	4.61	40.7	40.4	-12.5	BAB1_0660 OM
24	LSU ribosomal protein L9P 2	gi	17987766	4.01	4.79	20.6	20.9	-0.7	BAB1_0477 C
98	LSU ribosomal protein L12P	gi	17987031	4.70	4.79	13.1	12.5	-0.6	BAB1_1265 U
pH 4.7–5.9	60 kDa chaperonin GroEL 2	gi	17989393	5.03	5.04	72.5	57.5	-15.0	BAB2_0189 C
7	SSU ribosomal protein S1P 1	gi	17988198	5.09	5.19	78.3	63.6	-14.7	BAB1_0025 C
8	SSU ribosomal protein S1P 4	gi	17988198	5.07	5.19	80.1	63.6	-16.5	BAB1_0025 C
15	LSU ribosomal protein GroEL 9	gi	17987064	4.95	4.85	47.3	37.3	-10.0	BAB1_1231 C
21	DNA-directed RNA polymerase alpha chain	gi	17987064	5.25	5.04	62.6	57.5	-5.1	BAB1_0477 C
28	LSU ribosomal protein GroEL 3	gi	17989393	4.98	5.04	62.6	57.5	-5.1	BAB1_0477 C
29	ATP synthase beta chain 3	gi	17986335	5.25	5.48	56.9	54.8	-2.1	BAB1_1807 U
36	Hypothetical protein	gi	17986886	5.23	5.18	25.9	21.0	-4.9	BAB1_1423 C
37	Hypothetical protein 1	gi	17987581	5.24	5.80	78.3	63.6	-14.7	BAB1_0025 C
42	LSU ribosomal protein L9P 2	gi	17987766	4.90	4.79	20.6	20.9	-0.3	BAB1_0477 C
44	LSU ribosomal protein L9P 1	gi	17987766	4.97	4.79	20.1	20.9	-0.8	BAB1_0477 C
45	LSU ribosomal protein L25P	gi	17986472	5.54	5.79	29.2	27.5	-1.7	BAB1_1875 C
55	DNA gyrase subunit B	gi	17986651	5.11	5.11	11.2	12.7	-1.5	BAB1_1675 U
62	LSU ribosomal protein S1P 1	gi	17988198	5.13	5.19	78.1	63.6	-14.5	BAB1_0025 C
63	LSU ribosomal protein S1P 2	gi	17987766	5.16	5.19	78.1	63.6	-14.5	BAB1_0025 C
65	DegT/Dnr/J/EryC1/StrS aminotransferase	gi	1798704	5.24	5.50	48.7	41.8	-6.9	BAB1_1616 U
69	3-demethylubiquinone-9 3-methyltransferase	gi	17986472	5.54	5.79	29.2	27.5	-1.7	BAB1_1875 C
70	Cell division inhibitor MinD	gi	17989271	5.49	5.42	27.7	27.1	-0.6	BAB1_0883 C
80	LSU ribosomal protein L25P	gi	17986472	5.54	5.79	29.2	27.5	-1.7	BAB1_1875 C
84	Co-chaperonin GroES	gi	2317143	5.06	5.41	11.5	10.4	-1.1	BAB2_0190 C
85	Hypothetical protein	gi	17987375	5.01	4.53	28.1	17.6	-10.5	BAB1_0893 U
97	Surface antigen	gi	17988178	5.35	5.57	82.8	67.2	-15.6	BAB1_0045 OM
106	Succinyl-CoA synthetase alpha chain A	gi	17986423	5.49	5.81	34.3	31.2	-3.1	BAB1_1925 C
109	Aspartyl/glutamyl-tRNA amidotransferase subunit A	gi	17931612	5.41	5.57	60.3	52.5	-7.8	BAB2_0646 C
pH 5.5–6.7	Transcription termination factor Rho	gi	17986287	5.76	5.87	57.3	47.0	-10.3	BAB1_2065 C
4	Transcription termination factor Rho 1	gi	17986287	5.89	5.87	56.3	47.0	-9.3	BAB1_2065 C
6	2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase	gi	17986449	5.96	6.29	53.3	46.6	-6.7	BAB1_1898 C
11	UDP-3-O-hydroxymyristyl glucosamine N-acyltransferase	gi	17987114	5.97	6.00	43.8	36.4	-7.4	BAB1_1175 U
16	Biphenyl-2,3-diol 1,2-dioxygenase III	gi	17984445	6.05	6.11	28.8	30.0	-1.2	BAB2_0231 C
25	Gliceraldehyde-3-phosphate dehydrogenase	gi	17986593	6.22	6.13	47.2	36.3	-10.9	BAB1_1741 C
31	3-ketoacyl-(acyl-carrier-protein) reductase	gi	17987760	6.25	6.44	25.0	26.0	-1.0	BAB1_0483 C
32	22 kDa Omp	gi	17987400	6.19	8.59	23.3	19.4	-4.9	BAB1_1302 OM
45	Argininosuccinate synthase	gi	17988153	6.15	6.06	57.9	45.3	-12.6	BAB1_0071 C
48	ATP synthase alpha chain 4	gi	17986533	5.92	6.10	63.1	54.9	-8.2	BAB1_1809 U
66	Tetratricopeptide repeat family protein	gi	17987814	5.74	5.75	76.5	66.5	-10.0	BAB1_0430 P

Exp.: experimental; Theor.: theoretical; Omp: outer membrane protein; *as determined by PSORTb version 3.0.2 [23]; OM: outer membrane; C: cytoplasmic; P: periplasmic; U: unknown.
doi:10.1371/journal.pone.0028480.t002

The Choloylglycine Hydrolase of Brucella abortus

PLoS ONE | www.plosone.org 8 December 2011 | Volume 6 | Issue 12 | e28480
the membrane composition of Δcgh mutant and wild-type B. abortus S2308. Among the observed differences, the most important differential expression profiles involved four major Omps: several isoforms of 25 kDa and 31 kDa Omps were significantly overexpressed in Δcgh while two isoforms of porin 2b were significantly underexpressed in the mutant strain. The opposite scenario was described in a previous study when the outer membrane proteome of a B. melitensis virB mutant was analyzed. virB genes code for a Type IV Secretion System (VirB), a membrane–associated multiprotein complex essential for Brucella intracellular survival and replication [13]. Proteomic analysis of a B. melitensis virB mutant showed reduced expression of several members of the Omp25/Omp31 family [14]. Interestingly, this mutant was more sensitive to polymyxin B, suggesting a role for Omp25/Omp31 members in resistance to this cationic detergent. In addition, the strong association of some of the members of this family with LPS suggests that they play an important structural role in the outer membrane [11,15], which may be central to the interactions between Brucella and the host cell. Regarding Omp2b, underexpression of this Omp may be the result of a compensatory mechanism necessary to restore the balance essential for the stability of the outer membrane [16]. Additionally, the tubulin-like protein FtsZ and MinD, involved in Z ring formation and inhibition of Z ring polymerization, respectively, showed altered membrane expression in Δcgh, which may be related to the

Table 3. Unique cell envelope-associated proteins in B. abortus Δcgh as compared with S2308.

pH Range and Spot N°	Annotation	Accession Number	pI	MW (kDa)	ORF	Subcellular Location*		
pH 3.9–5.1								
144	25 kDa Omp 10	gi	17987290	4.25	4.72	30.5	25.2	BAB1_0116 OM
162	25 kDa Omp 21	gi	17987532	4.95	8.58	47.2	23.2	BAB1_0722 OM
167	25 kDa Omp 9	gi	17987290	4.22	4.72	33.9	25.2	BAB1_0116 OM
196	Surface antigen	gi	1262291	4.31	8.40	32.9	86.5	BAB1_1176 OM
197	31 kDa Omp 6	gi	17986685	4.90	5.04	28.9	22.0	BAB1_1639 OM
198	25 kDa Omp 6	gi	17987532	4.66	8.58	65.8	23.2	BAB1_0722 OM
199	ND							
200	ATP synthase beta chain	gi	17986535	4.56	5.48	66.7	54.8	BAB1_1807 U
201	31 kDa Omp 11	gi	17986685	4.47	5.04	31.7	22.0	BAB1_1639 OM
217	ND							
219	ND							
220	ND							
221	ND							
222	ND							
pH 4.7–5.9								
131	31 kDa Omp 7	gi	17989189	4.94	5.21	61.8	23.3	BAB1_1639 OM
147	Surface antigen	gi	17987113	5.14	5.37	96.0	85.9	BAB1_1176 OM
189	Chaperonin ClpA/B	gi	23502870	5.27	5.40	39.8	36.7	BAB1_2023 C
190	31 kDa Omp 3	gi	17989189	4.92	5.21	29.9	23.3	BAB1_1639 OM
191	31 kDa Omp 5	gi	17989189	5.07	5.21	27.7	23.3	BAB1_1639 OM
198	31 kDa Omp 8	gi	17989189	5.01	5.21	62.0	23.3	BAB1_1639 OM
216	ND							
pH 5.5–6.7								
85	ND							
88	Chromosome partitioning protein PARBgi	17986294	6.11	5.81	36.1	32.6	BAB1_2059 C	

ND: not determined; Exp.: experimental; Theor.: theoretical; Omp: outer membrane protein; *as determined by PSORTb version 3.0.2 [23]; OM: outer membrane; C: cytoplasmic; U: unknown.
doi:10.1371/journal.pone.0028480.t003

Figure 4. B. abortus Δcgh shows an altered expression profile of some major Omps. Protein levels of Omp 2b, Omp25, Omp25c (*), Omp31b, Omp1 and Omp19 in wild-type B. abortus (S2308) and its isogenic deletion mutant Δcgh were determined by Western blot analysis with monoclonal antibodies. doi:10.1371/journal.pone.0028480.g004
increased growth performance of the mutant either during vegetative and intracellular stages.

Overall, we have shown that *B. abortus Aegh* has several pleiotropic effects characterized by resistance to polymyxin B, reduced generation time, altered adhesion and internalization into host-cell and modified cell envelope protein composition, all features indicating that CGH plays an important function in maintaining the *Brucella* outer membrane architecture. Since *B. abortus* CGH sequence contains a putative signal sequence [2], it is probable that the enzyme exerts its action on substrates located either in the cell envelope or in the extracellular medium. Moreover, recent studies identified *B. abortus* CGH as an extracellular protein released to the growth medium [17] and as an abundant component of the BCV [5], two findings that support extracellular activity of CGH.

Apart from enhancing *Brucella* survival during its transit through the host's gut, acting as bile salt deconjugating enzyme, the membrane architecture for the composition, will provide insight into the importance of the outer membrane proteome maps of laboratory grown *B. abortus Aegh* in the pH ranges of 3.9 to 5.1 (A), 4.7 to 5.9 (B) and 5.5 to 6.7 (C). Membrane enriched fractions (30 µg) were focused with IGP strips and run on 6–15% gradient SDS-PAGE. The gels were stained with SYPRO® Ruby and imaged at 470 nm. Protein spots successfully identified by MALDI-TOF MS are listed in Table S1. (TIF)

Table S1 Identified cell envelope-associated proteins in *B. abortus Aegh* as determined by 2-DE and MALDI-TOF MS. (DOC)

Acknowledgments

We are grateful to Dr. Axel Cloeckaert for kindly providing monoclonal antibodies against Omp25 (A59/03F01/C09), Omp2b (A63/05A07/A08), Omp31 (A59/10F09/G10), Omp1 (A53/10B02/A01) and Omp19 (A76/18B02/D06) and Dr. Carlos Arregui for kindly providing anti-calnexin rabbit polyclonal antibodies.

Author Contributions

Conceived and designed the experiments: MM DC. Performed the experiments: MM JC MD CM DC. Analyzed the data: MM CM PB VD. Wrote the paper: MM DC.

References

1. Jones BV, Begley M, Hill G, Gahan CG, Marchesi JR (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A 105: 15380–15385.
2. Delpino MV, Marchesi MJ, Estens SM, Comerci DJ, Casassaro J, et al. (2007) A bile salt hydrolase of *Brucella abortus* contributes to the establishment of a successful infection through the oral route in mice. Infect Immun 75: 299–305.
3. Corbel MJ (1997) *Brucellosis*: an overview. Emerg Infect Dis 3: 213–221.
4. Nicolet P (1989) *Brucellosis*: clinical and laboratory aspects. In: Corbel MJ, ed. *Brucellosis*. New York: Marcel Dekker, Inc. pp 41–51.
5. Springer PE, de Chadarevian P, Pophillat M, Muller A, et al. (2009) The *Choloylglycine Hydrolase* of *Brucella abortus* and its isogenic virB mutants. Arch Microbiol 191: 571–581.