Verticillium wilt of *Ailanthus altissima* in Italy caused by *V. dahliae*: new outbreaks from Tuscany

Claudia Pisuttu, Alessandra Marchica, Rodolfo Bernardi, Antonella Calzone, Lorenzo Cotrozzi, Cristina Nali, Elisa Pellegrini, Giacomo Lorenzini

Verticillium spp., including *V. nonalfafae* and *V. dahliae*, are known vascular wilt pathogens of the invasive *Ailanthus altissima* (tree-of-heaven) in the United States and in Europe. Herein we provide evidence of the presence of a previously unreported wilt disease of *A. altissima* in Tuscany (Central Italy). Several isolates were collected from two locations and identified as *V. dahliae*, based on microscopical features of conidiophores, conidia and microsclerotia. Genomic DNA was extracted from the mycelium, the ITS region was amplified and the sequence was deposited in GenBank as VdGL16 (accession no. MK474459). BLASTn analysis showed 100% similarity with *V. dahliae*. To confirm pathogenicity of VdGL16, inoculations of *Ailanthus* seedlings were performed with the root dipping technique whereas mature trees were stem-inoculated. All inoculated seedlings exhibited wilt symptoms after 20 days, while mature *Ailanthus* trees showed wilting and dieback after six months. The pathogen was easily re-isolated from seedlings and re-identified as *V. dahliae*, thus satisfying Koch’s postulates. Results from intraspecific resistance screening of nine seed sources from across Italy revealed that *Ailanthus* prove-nances from all the six sampled regions were susceptible to *V. dahliae*. Stem inoculated adult plants exhibited abundant production of epicormic sprouts along the stem within six months, and most of these sprouts wilted following initial dieback of the main stem; furthermore, sprouting from the crown was intense. Petioles and rachises tissues of leaves fallen from infected trees were a good source for re-isolation of the pathogen; we proved that such petioles and rachises can effectively transfer the fungus to healthy *Ailanthus* seedlings via root infections. Host-specificity of the *V. dahliae* isolate VdGL16 was also determined on 40 non-target species/varieties/cultivars. The isolate caused disease in herbaceous species belonging to five botanical families: Asteraceae, Lamiaceae, Leguminosae, Linaceae and Solanaceae. Given the difficulties in countering *Ailanthus* invasion with mechanical and chemical methods, the biological control using *Verticillium* may provide an efficient, low cost and sustainable control of this invasive species.

Keywords: Tree-of-heaven, *Verticillium dahliae*, ITS Region, Accession Number MK474459, Koch’s Postulates, Biocontrol

Introduction
Rapid growth rate (Kasson et al. 2013), prolonged and prolific seed production (Wickert et al. 2017), allelopathy, clonal proliferation and resistance to herbivory combined with tolerance to environmentally stressful conditions (Kowarick & Säumel 2007) make *Ailanthus altissima* (Mill.) Swingle (also known as tree-of-heaven, Simaroubaceae) a highly invasive species. *Ailanthus* is an exceptional invader, able to quickly occupy transportation corridors and fallow lands, as well as of natural environments, displacing native vegetation important for biodiversity and damaging infrastructures and archaeological sites (Feret 1985, Hu 1979, Celesti-Grapow & Blasi 2004, Motard et al. 2015). Native from Eastern Asia, *Ailanthus* was first introduced into Europe around 1750 (Swingle 1916). This species became naturalized on nearly all continents, and now represents a widespread problem in areas where it occurs (Kowarick & Säumel 2007). Due to its un-palatability, it rapidly replaces the indigenous flora, jeopardizing the conservation of native biocenoses, and forcing difficult (and usually useless) eradication campaigns (Hu 1979, Feret 1985). The growth characteristics of tree-of-heaven make it particularly difficult to control. Cutting the trunk rapidly stimulates multiple root sprouts and young runners even at long distance from the parent tree, so to form clonal stands after disturbance. The above-mentioned actions usually have been accompanied by the periodical use of systemic (and non-selective) chemical herbicides, such as glyphosate, that can be transported to the root system and compromise (but usually only partly) future vegetative renewal (DiTomaso & Kyser 2007). The use of herbicides is expensive and laborious, requiring repetitive applications, often ineffective against the re-sprouting ability of *Ailanthus* (Badalamenti et al. 2015), not to mention the negative impact on non-target vegetation (Lewis &
Fret–Behge: control as a possible strategy to counteract the otherwise unrestrainable spread of Ailanthus (Sheppard et al. 2006).

Over the past five years, our group is conducting cursory field observations in Ailanthus populations in several Italian regions looking for candidate mycoherbicid(e)s (Lorenzini 2016). During summer 2016, dying Ailanthus suckers were observed in Leghorn (Tuscany, Central Italy, 3 m a.s.l.) that exhibited a typical wilt syndrome, with heavy defoliation and brownish vascular discoloration. Foliar symptoms ranged from slight or sectored yellowing to browning, necrosis and eventual leaf abscission. In spring 2019 a second outbreak was observed about 3.5 km far from the previous one, involving adult plants (Fig. 1a).

The objectives of the present study were to: (i) identify the pathogen involved in the aforementioned cases; (ii) compare the susceptibility of Ailanthus seedlings grown from seeds collected from various locations across Italy to the isolate; and (iii) evaluate the risk exposure by the pathogen for selected non-target species through artificial root inoculations.

Materials and methods

Pathogen isolation and morphological characterization

Stem samples were collected from symptomatic individuals and petioles and rachises were gathered from the ground around wilting plants in the field. Bark was removed from stem samples. Stem, petiole and rachis samples were cut into 1-cm pieces, surface sterilized with sodium hypochlorite (NaOCl) 0.5% in water for 5 min, and carefully rinsed in distilled sterile water. Small pieces of discolored tissues were excised with a lancet and placed in Petri dishes onto potato dextrose agar (PDA – Sigma-Aldrich, Milan, Italy) amended with streptomycin sulphate (0.1 g l⁻¹ – Gold Biotechnology, Saint Louis, MO, USA). Dishes were incubated at 23 °C under 12 h light/12 h dark, for 15 days. Morphological diagnosis was carried out by observing mycelium and reproductive structures under a stereo microscope (Leica S9®, Leica Microsystems, Bucinacaso, Italy) and under a transmitted light/fluorescence contrast microscope (Leica DM4000® B led). Photomicrographs were taken with a Canon PowerShot 550® camera.

Molecular identification

Total genomic DNA was extracted from fresh mycelial plugs, originating from mycelia grown on and harvested from PDA, using the cetyltrimethylammonium bromide (CTAB) protocol, according to the method of Doyle & Doyle (1987). Fungal tissue (0.1 g) was mixed with 0.5 ml of extraction buffer [1 M CTAB (pH 5); 1 M Tris-HCl (pH 8); 0.5 M ethylenediaminetetraacetic acid (EDTA; pH 8); 5 M NaCl and polyvinylpyrrolidone (PVP 40; 1 g l⁻¹) and incubated for 30 min at 65 °C. After adding 0.5 ml of chloroform/isooamyl alcohol (24:1 v/v), the mixture was centrifuged at 15,000 g for 15 min at 4 °C, and an equal volume of cold isopropyl alcohol was added to the obtained upper phase in order to favour DNA precipitation. The pellet obtained after centrifugation (15,000 g for 20 min at 4 °C) was washed twice with 70% ethanol (v/v) and dissolved in DNase-free water. DNA extracted was valued with electrophoresis in 1% (w/v) agarose gel and stained with Gel Red® Nucleic Acid Stain, then purified with Wizard® SV Gel and PCR Clean-Up® system (Promega, Madison, WI, USA) and sequenced according to the Sanger method (MWG Biotech, Eberberg, Germany). Identification was carried out with BLASTn software (NCBI, Bethesda, MD, USA).

Artificial inoculations

Liquid cultures in Czapek medium (250 ml in 500 ml Erlenmeyer flasks) of the pathogen isolated as described above were incubated on an orbital shaker (711 CT®, Asal, Milan, Italy – 150 rpm) under room conditions for three days. Conidia produced from these cultures were obtained by filtering through layers of sterile cheesecloth and counted with a Bürker chamber. Fi-
nally, inoculum concentrations were adjusted to approximately 0.8–1 × 10^7 conidia ml^(-1). These conidial suspensions were used for root and stem inoculations. Moreover, petioles and rachises were collected from the soil beneath wilting trees, stored for 3–4 weeks at room temperature, cut into 1.2 cm pieces and mixed thoroughly with a standard potting medium (peat: perlite = 1:1 in vol.). Ten six-month-old Ailanthus seedlings were transplanted into pots filled with this medium and grown in a greenhouse (Tab. 1).

Susceptibility of Ailanthus seedlings from various seed sources

Ailanthus mature seeds were collected during 2016 to 2018 from a total of nine locations in six Italian regions (Tab. S1 in Supplementary material). Upon arrival, seeds were air dried for 1–2 weeks, placed in paper bags, and stored at room temperature. Up to 50 seeds from each seed source were placed in terracotta bowls containing the standard potting medium described above. Containers were maintained in a greenhouse and regularly watered. Following germination, 10 to 15 seedlings from each seed source were singly transplanted into 500 ml-plastic pots containing the same substrate added with a commercial slow release fertilizer and grown for 4 to 6 months. Inoculation of seedlings was conducted using a root-dip method (Qin et al. 2006). Plants (eight individuals per source) were carefully uprooted from the original substrate, and their roots were thoroughly washed in tap water without intentional wounding, and then submerged in the inoculum suspension for 20 min. Plants were individually transplanted into 20 × 20 cm plastic pots, and 2 ml of additional inoculum suspension pipetted onto the base of each stem. Control plants were “inoculated” dipping them in sterile Czapek solution. Following inoculation, plants were watered as needed and disease severity was evaluated weekly (for around three months) using an ordinal 0-4 rating system, according to the percentage of affected leaves and twigs (0 = no symptoms; 1 = 1-33%; 2 = 34-66%; 3 = 67-99%; 4 = dead plant – Prieto et al. 2009). The infection index (or McKinney’s index), which incorporates both the incidence and severity of the disease, was expressed as the weighted means of the disease as a percentage of the maximum possible level (Agrios 2005). Symptomatic tissues were plated onto PDA amended with streptomycin sulphate for detection of Verticillium.

Susceptibility of mature Ailanthus trees

Five mature Ailanthus trees in a private garden were stem-inoculated at breast height. Trunk was horizontally punched with an electric drill with a sterilized drill bit, so to produce a 6 mm-hole that completely pierced the stem. Afterwards, ten ml of conidial suspension (see above) were injected with a syringe inside the hole. A rectangular Parafilm M® laboratory film sheet was used for impeding the outflow of the conidial suspension through the other side of the hole sealing it up by wrapping the stem. Other three plants were managed in the same way and “inoculated” with sterile Czapek solution. Ailanthus mature trees were monitored for around one year from inoculation.

Interspecific host range testing

To determine if fungal strain VdGL16 might be pathogenic on other species than Ailanthus, artificial inoculations were performed between May 2018 and August 2019 (i.e., at the same time or close to the inoculations of Ailanthus seedlings) in the greenhouse on potted seedlings/saplings of 40 species/varieties/cultivars (at least eight individuals of each species/variety/cultivar were tested for around three months from inoculation – Tab. 2). Herbsaceous plants were container-grown from seeds and the seedlings of woody species were obtained from a local tree nursery. The same procedures as described before were followed to grow plants, inoculate roots and to evaluate plant responses. Inoculations of species used for the host-range testing were performed under the same greenhouse conditions as inoculations of Ailanthus seedlings.

Results

Pathogen identification

Fungal isolates from symptomatic plants were identified morphologically as a putative pathotype of the genus _Verticillium_, based on microscopical observation of: (i) hyaline and non-septate hyphae; (ii) verticillate conidiophores; (iii) cylindrical or ellipsoid 1-celled conidia (mean ± SD: 3.8 ± 1.1 μm × 1.8 ± 0.6 μm, n = 50); and (iv) presence of melanized microsclerotia (20 to 100 μm) in woody tissues (Fig. 2) and on PDA dishes (Pegg & Brady 2002, Inderbitzin et al. 2011). BLASTn search at VertShield data-

Tab. 1 - Symptoms, defoliation and success of re-isolations of _Verticillium dahliae_ on six months-old Ailanthus seedlings inoculated with petiole and rachis tissues obtained from infected trees.

Seedling	Symptoms	Defoliation	Re-isolations
1	Yellowing	None	No
2	Wilting	Partly	Yes
3	No symptoms	None	No
4	Wilting	Partly	Yes
5	Yellowing	None	No
6	Yellowing	Partly	No
7	Death	Partly	Yes
8	Death	Totally	Yes
9	No symptoms	None	No
10	Death	Totally	Yes

Fig. 2 - Conidiophores (a) and microsclerotia (b) of _Verticillium dahliae_ developed on woody tissue of symptomatic Ailanthus tree.

Verticillium wilt of Ailanthus altissima in Tuscany, Italy
base, an online resource that supports Verticillium research and species identification, confirmed the putative Verticillium isolate (from now on identified as VdGL16) as V. dahliae, matching 100% similarity with other V. dahliae GenBank strains (e.g., MK093977, MH392569 and MG910491). ITS sequence has been deposited in GenBank with the accession number MK474459 (February 2019). A standard PCR using specific primers (designed with Primer 3 software) Vert-1F (Vert1F: 5′-GGTGGTTAAGACGCGAGGGG-3′) and Vert-1R (Vert1R: 5′-AGGGTGGAAACGACGCCTCGGA-3′) was carried out in order to check the match. PCR setup for amplification was: 2 min at 94 °C, 32 cycles of 19 sec at 94 °C (denaturation), 20 sec at 55 °C (annealing) and 60 sec at 75 °C (elongation); 6 min at 72 °C (final extension).

Microsclerotia and/or conidiophores and conidia of V. dahliae were microscopically detected in 16 out of 26 (61.5%) leaf peti- oles and Rachises collected from the soil beneath an infected tree.

Artificial inoculations of Ailanthus seedlings from different seed sources
Our results indicate that V. dahliae strain VdGL16 is pathogenic to Ailanthus with 9 of 9 seed sources from six regions showing susceptibility. All inoculated Ailanthus plants grown from seeds exhibited vascular discoloration, wilt symptoms and defoli- ation within 3-4 weeks while control individuals remained asymptomatic. The pathogen was consistently re-isolated from symptomatic seedlings, and morphological characteristics of the resulting colonies were identical to VdGL16.

Artificial inoculations of Ailanthus mature trees and seedlings inoculated with petioles
Within six months from stem inoculation with VdGL16, all five Ailanthus mature trees

Table 2 - Host range pathogenicity of Verticillium dahliae isolate VdGL16 following artificial inoculations by root dipping. The fourth column represents the McKinney's index (MI), based on an ordinal 0-4 rating system.

Family	Species / var. / cv	Susceptibility	MI (%)	Re-isolation
Asteraceae	Chichorium endivia var. Latifolium	No	-	No
Asteraceae	Chichorium intybus var. Pan di zucchero	No	-	No
Asteraceae	Diploctis tenuifolia	No	-	No
Asteraceae	Helianthus annuus	No	-	No
Asteraceae	Lactuca sativa cv Sant'Anna	No	-	Yes
Asteraceae	Leuchantemum vulgar	Yes	85	Yes
Asteraceae	Tagetes patula	No	-	Yes
Brassicaceae	Raphanus sativus	No	-	Yes
Brassicaceae	Sinapis alba	No	-	No
Caprifoliiaceae	Viburnum lantana	No	-	No
Cucurbitaceae	Citrullus lanatus cv Sugar baby	No	-	No
Cucurbitaceae	Cucurbita pepo var. Romanesco	No	-	No
Fagaceae	Quercus cerris	No	-	No
Fagaceae	Quercus ilex	No	-	No
Lamiaceae	Ocimum basilicum var. Citriodorum	No	-	No
Lamiaceae	Ocimum basilicum var. Napoletano	No	-	No
Lamiaceae	Ocimum basilicum var. Red Rubin	No	-	Yes
Lamiaceae	Ocimum basilicum var. Tigliolo	No	-	No
Lamiaceae	Ocimum basilicum var. Verde Italiano	Yes	59	Yes
Lamiaceae	Lavandula sativa	No	-	No
Leguminoseae	Cicer arietinum	Yes	94	Yes
Leguminoseae	Hedysarum coronarum	Yes	94	Yes
Leguminoseae	Medicago sativa cv Itaca	No	-	-
Leguminoseae	Phaseolus vulgaris var. Nano dolico dall'occhio	No	-	No
Leguminoseae	Trifolium repens	No	-	No
Leguminoseae	Trifolium subterraneum	Yes	91	Yes
Leguminoseae	Vicia faba var. major cv Aquadulce	No	-	No
Leguminoseae	Vicia faba var. minor	Yes	91	Yes
Linaceae	Linum usitatissimum	Yes	97	Yes
Lythraceae	Punica granatum cv Parfianca	No	-	No
Magnoliaceae	Liriodendron tulipifera	No	-	No
Oleaceae	Olea europaea cv Leccino	No	-	No
Sapindaceae	Acer rubrum	No	-	No
Solanaceae	Capsicum annuum cv Quadrato d'Asti	No	-	No
Solanaceae	Solanum lycopersicum cv Canestrino	No	-	No
Solanaceae	Solanum lycopersicum cv Roma	No	-	No
Solanaceae	Solanum melongena cv Violetta di Rimini	Yes	91	Yes
Solanaceae	Solanum melongena cv Black beauty	Yes	91	Yes
Solanaceae	Solanum melongena cv Viola lunga	Yes	84	Yes
Vitaceae	Vitis vinifera cv Sangiovese	No	-	No
Simaroubaceae	Ailanthus altissima	Yes	98	Yes
inoculated in a private garden exhibited abundant production of epicormic sprouts along the stem, and some of these sprouts wilted following initial dieback of the main stem (Fig. 1b). Vigorous sprouting from the base of the trunk of an inoculated mature tree was observed (Fig. 1c).

Artificial inoculations based on petioles and rachises as inoculum for six-month-old Ailanthus seedlings showed that after 3–4 weeks 8 out of 10 inoculated individuals showed typical symptoms such as wilt, defoliation and dieback (rate of mortality: 80%). *V. dahliae* was isolated successfully from 50% of these plants (Tab. 1).

Host range analyses

In addition to Ailanthus provenances, 40 woody and herbaceous species / varieties / cultivars were tested for susceptibility to artificial inoculations with *Verticillium dahliae* VdGL16. Results are summarized in Table 2. Ten (25%) of these sources exhibited vascular discoloration, wilt and dieback and *V. dahliae* was easily reisolated from them (Fig. S1 in Supplementary material). They belong to five botanical families: Asteraceae, Lamiaceae, Leguminosae, Linaceae and Solanaceae. All of the susceptible plants were herbaceous, whereas none of the woody species tested was responsive to VdGL16. The behaviour of Oicimum basilicum (sweet basil) deserves attention: five commercial varieties were tested, and one of them (*Verde italiano*) was susceptible (McKinney Index = 59%); another three (*Citrodorum*, *Napoli* and *Tigillio*) exhibited no outward symptoms and fungal re-isolation was not successful whereas a tolerant host response was observed in the variety *Red Rubin*, where Verticillium was recovered from apparently healthy inoculated individuals. In contrast, no cultivar-specific differential response was observed in *Solanum melongena* (eggplants: three cultivars tested, all of them highly susceptible) and in *Solanum lycopersicum* (tomato: two cultivars assayed, both non-responsive). From the two *Trifolium* species tested, *T. repens* proved to be resistant (no symptoms, no re-isolation), whereas *T. subterraneum* was highly susceptible (McKinney Index 91%).

Discussion and conclusive remarks

Verticillium wilt of tree-of-heaven has appeared sporadically in the past in the phytopathological literature. The first report of a disease causing Ailanthus decline and death in Europe was at the end of the XIX century, in Paris, but no pathogen was then recognized (Magin 1894 – *V. dahliae* was firstly described in 1913, cit. in Inderbitzin et al. 2011). The same outbreak was investigated in detail three decades later by Arnaud & Barthlet (1931), who ascribed the case to *V. dahliae* with an exhaustive treatise including chapters on histopathology, epidemiology and physiological plant pathology. In this context, the description of the presence of mycelium in the foliar petioles and rachises of infected plants is particularly noteworthy and an unprecedented aspect at the time. The very first report from Italy of Ailanthus decline is due to G. Goidánich, who in 1935 described the presence of two mature trees affected by *Verticillium* “near the railway station of Loano, in Liguria” (Goidánich 1935). In the meantime, the literature reports the first cases from Eastern United States, such as Pennsylvania, Virginia and New York (Rudolph 1931, Gravatt & Clapper 1932, cit. in Kasson et al. 2014), showing Ailanthus as one of the earliest known perennial hosts of *Verticillium* wilt (due to *V. albo-atrum sensu lato – Farr et al. 1989*) in the United States. During the 1990s, *Verticillium* wilt of Ailanthus was observed in Greece (caused by *V. dahliae* – Skarmoutsos & Skarmoutsou 1998) and in Austria (causal species not determined – Cech 1998). After that, the issue has been neglected until 2005, when the research team led by D. Davis started to study widespread mortality of *Verticillium* in the Eastern United States (Schall & Davis 2009), whose causal agent was identified as the newly described species *V. nonalfafae* previously classified as *V. albo-atrum* and morphologically indistinguishable from this (Inderbitzin et al. 2011). Ailanthus wilt caused by *V. nonalfafae* was also reported in Ohio and Virginia (Rebeck et al. 2013, Snyder et al. 2015). Results of a survey in eastern Austria (Maschek & Halsmacher 2016, 2017) indicated a widespread occurrence of *V. dahliae* and a rare occurrence of *V. nonalfafae* on declining *Ailanthus* natural stands. Recently, Longa et al. (2019) reported a lethal outbreak of *Verticillium* in Northern Italy (Eastern Italian Alps) and identified *V. dahliae* as the causal agent. A similar report was given from Izsei et al. (2018) from Hungary and the impact of *V. dahliae* on *A. altissima* was recently observed and assessed in Virginia, USA (Brooks et al. 2019).

Here, we provide the first evidence of *Verticillium* wilt on *A. altissima* in Central Italy (Tuscany). Several isolates were collected from two locations and identified as *V. dahliae*, based on morphological features of conidiophores, conidia and microsclerotia, as well as by molecular analysis (VdGL16 is the isolate deposited in GenBank). The detection of *V. dahliae* on wiltting Ailanthus in Italy supports the hypothesis of Inderbitzin & Subbarao (2014) that the natural spread of *V. nonalfafae* is likely confined to areas with temperate climate. However Maschek & Halsmacher (2017) have clearly demonstrated the co-existence of *V. dahliae* and *V. nonalfafae* in close vicinity. Furthermore, differences in detection frequency between the widely distributed *V. dahliae* and the rarely occurring *V. nonalfafae* might explain the fact that *V. nonalfafae* has not been detected yet on Ailanthus in Italy.

In our studies, Koch’s postulates were fulfilled using VdGL16, and both Ailanthus seedlings (from nine seed sources collected in six Italian regions) as well as mature trees inoculated with our isolates showed wilt symptoms and defoliation, with mature trees also showing formation of epicormics sprouts along the stem that also wilted (this does not seem to be a general rule, and this has sometimes been related to a high dosage of conidial inoculum – Pegg & Brady 2002). These symptoms were already described for both *V. dahliae* (Pegg & Brady 2002) and *V. nonalfafae* (Kasson et al. 2014).

Therefore, the potential of these *Verticillium* species as biocontrol agents to counteract the highly invasive Ailanthus might deserve attention, given the need of effective, affordable non-chemical biocontrol agents. To be clear: biological plant protection products also need to be registered according to EU legislation, and the application of these products/biological agents in the field requires authorisation of each study plot by the national plant protection authority as long as the product has not been officially approved as plant protection product. This should be positively evaluated in terms of “augmentative biological control” (Hoy 2008), with emphasis on endemic host-adapted pathogens such as *Verticillium* (e.g., the selected and thoroughly tested strains of *V. nonalfafae* or the *V. dahliae* VdGL16 described here), providing that its potential as a biocontrol agent is safeguarded as positive. The huge potential of selected strains of *V. nonalfafae* as biocontrol agents against invasive *A. altissima* was already demonstrated in the United States (Kasson et al. 2014, 2015, O’Neal & Davis 2015a, 2015b, Schall & Davis 2009) and in Austria (Maschek 2011, Maschek & Halsmacher 2016). Moreover, a commercial product based on a fairly specific strain of *V. nonalfafae* has been placed on the market in Austria in 2019 (Halsmacher & Maschek 2019).

According to Inderbitzin et al. (2011) *V. nonalfafae* is genetically related to *V. dahliae* but differs morphologically by the formation of resting mycelium (characterized by a shorter life-span) instead of the formation of microsclerotia (which can persist up to 14 years in the soil) that are found in *V. dahliae*. Furthermore, *V. nonalfafae* has a greater aggressiveness and effectiveness compared to *V. dahliae* (Heale & Isaac 1963, Sinclair & Lyon 2005, Schall & Davis 2009), and due to the short life-span of resting mycelium and a rapid host mortality there may be less opportunities to infect other susceptible hosts (Maschek & Halsmacher 2017, 2018). Up to now, *V. nonalfafae* has been found on a few host species such as cotton, hop, petunia, potato, soil, spinach, tomato and wild celery, although more work would be needed to expand knowledge on its host range and distribution (Inderbitzin & Subbarao 2014). Moreover, although intraspecific root grafts and clonal growth within Ailanthus stands have been easily demonstrated (O’Neal & Davis 2015b), natural spread of *V. nonalfafae*...
seems to be more difficult than in V. dahliae.

On the contrary, V. dahliae has the greatest economic impact and is among the most widespread plant diseases worldwide (Keykhasaber et al. 2018). Although no exact statistics exist on the number of species that are susceptible to V. dahliae, it was estimated that at least 400 plant species, ranging from annuals to woody perennials, are affected (Klotsman et al. 2009). Large spread of V. dahliae is due to the fact that its microsclerotia can survive in the soil for long periods during non-parasitic phase (Wilhelm 1955, cit. in Klotsman et al. 2009), either as dispersed propagules or embedded within plant debris, mainly in the upper layer of the soil from where they can be easily spread by wind, rain or irrigation water, human and animal activities, and agricultural tools and machines (Pegg & Brady 2002). Due to its wide host range and long lasting persistence of microsclerotia in soil plant debris, comprehensive risk analyses have to be carried out (preferably in enclosed environments such as a greenhouse) in order to assess the potential of V. dahliae strain VdGL16 for the biological control of Ailanthus in the warmer Mediterranean basin.

Differences in pathogenicity and symptoms development due to V. dahliae infections observed in different hosts might be attributed to: (i) differences in virulence as a pathogen attribute; (ii) different levels of tolerance in the plant/host; and/or (iii) a consequence of specific plant/pathotype interactions in the soil (Malcolm et al. 2015). Nevertheless, isolates of V. dahliae are considered host-adapted (rather than host-specific) since they were commonly pathogenic on different hosts but are more virulent to the host from which they are isolated (Malcolm et al. 2013). This was confirmed by the present study since the inoculated Ailanthus seedlings showed the highest disease severity (i.e., McKinney index), compared to the few non-target species that proved to be susceptible to VdGL16 strain in our host-range analyses. Among the 40 non-target species/varieties of cultivars on which the virulence of the V. dahliae isolate VdGL16 was tested, only 25% were susceptible, all being herbaceous species belonging to five botanical families (Asteraceae, Lamiaceae, Leguminosae, Linaeae and Solanaceae), whereas no tree species was affected yet, though more tree species have to be investigated. Another interesting outcome of the present study was the fact that some of the tested hosts (i.e., Lactuca sativa cv. SantAnna, Tagetes patula, Raphanus sativus, Ocimum basilicum var. Red Rubin) were successfully colonized by VdGL16 but were lacking disease symptoms. Asymptomatic infections of V. dahliae have been already reported in the past, mainly in cereal crops and weeds (Malcom et al. 2013) but also in other plant species (e.g., olive, red and sugar maple, and tulip-poplar trees – Kasson et al. 2015, Keykhasaber et al. 2018). This suggests that V. dahliae could colonize some plants without inducing visible symptoms, only becoming a reservoir of inoculum that could initiate epidemics of Verticillium wilt disease (Keykhasaber et al. 2018).

Petiole tissues of leaves fallen from infected trees were a good source for re-isolation of the pathogen in our case. In addition, we proved that some petioles and rachises can effectively transfer the fungus to healthy Ailanthus seedlings. Such a spread of V. dahliae from diseased plants to the surrounding area of healthy plants by means of leaf petioles and rachises that contain microsclerotia has been shown for several tree species, such as Acer spp. (Zimm 1918, Hiemstra 2000), Liriopendron tulipifera (Morehart & Melchior 1982), Olea europaea (Tijamos & Despina 1987, Prieto et al. 2009) and Fraxinus excelsior (Rijkers et al. 1992). As mentioned above, microsclerotia may survive for years in the soil and become available as inoculum for new infections (Keykhasaber et al. 2018). So, the role of windblown leaves originating from naturally or artificially infected Ailanthus plants in the medium-distance dispersal of V. dahliae deserves closer attention, because spread of the fungus might not only be limited to adjacent Ailanthus trees but might also occur to non-target species (as suggested by the fact that VdGL16 induced wilt disease in other ten tested species, in addition to Ailanthus).

To conclude, this study not only reports a Verticillium wilt disease of A. altissima in the warm Mediterranean basin, but also proposes to deserve attention to V. dahliae as a potential biological agent to counteract the highly invasive Ailanthus. Although V. dahliae is highly virulent, widely distributed and not host specific (contrary to V. nonalfalae), it has been the only pathogen isolated from dying A. altissima in the Mediterranean basin so far. At the moment, only some herbaceous species of horticultural and forage concern have been proved to be susceptible to our strain, but more investigations need to be carried out, especially on tree crops of economic importance in Italy and already resulted susceptible to Verticillium, such as olive (Prieto et al. 2009, Keykhasaber et al. 2018) and kiwifruit, on which infection caused by Verticillium dahliae was recently observed in Turkey (Turkcan et al. 2019). The response of non-target species must be evaluated in a forceful pest-risk analysis for regulatory issues associated with the use of the pathogen in the open field.

Acknowledgements

This research was supported by funding from the University of Pisa, PhD innovative projects. We thank Dr. Mariagrazia Tonelli for assistance in the microscopic investigations and Dr. Ferruccio Filippi and Ms Simona Giangherotti for helping in seed collection, running the greenhouse facilities and growing of test plants.

References

Agrios G (2005). Plant pathology (5th edn). Elsevier Academic Press, Amsterdam, Netherlands, pp. 952.

Arnaud G, Barthelet J (1931). Recherches sur les dépérissements des arbres d’alignement [Research on the decline of avenue trees]. Annales des Ephyrpes 17: 249-253. [In French]

Badalamenti E, Barone E, La Manta T (2015). Seasonal effects on mortality and respouting of stems treated with glyphosate in the invasive tree of heaven (Ailanthus altissima). Arboricultural Journal 37: 180-195. - doi: 10.1080/03071795.2015.1112163

Brooks RK, Snyder AL, Bush EA, Salom SM, Bau-doin A (2019). First report of verticillium wilt caused by Verticillium dahliae impacting Ailanthus altissima in Virginia. Plant Disease 104: 1558-1563. - doi: 10.1094/PDIS-19-20-2064-PDN

Celesti-Grapow L, Blasi C (2004). The role of alien and native weeds in the deterioration of arachnological remains in Italy. Weed Technology 18: 1508-1513. - doi: 10.1614/0890-037X(2004)018[1508:TROAAN]2.0.CO2

Cech TL (1998). Absterben von Götterbäumen (Ailanthus altissima) in der Süddeutschmark [Cases of dying Ailanthus altissima in Southern Styria]. Forstschutz Aktuell 22: 16-18. [In German]

Doyle JJ, Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15. [online] URL: http://www.cabdirect.org/abstract/19901142686

Diramos JM, Kyser GB (2007). Control of Ailanthus altissima using stem herbicide application techniques. Arboriculture and Urban Forestry 33: 55-63.

Farr DF, Bills GF, Chamuris GP, Rossman AM (1989). Fungi on plants and plant products in the United States. APS Press, St. Paul MN, USA, pp. 1525. [online] URL: http://www.cabdir ect.org/cabdirect/abstract/19990142686

Feret PP (1985). Ailanthus: variation, cultivation, and frustration. Journal of Arboriculture 11: 361-368. [online] URL: http://ugeb.pb/ailanthus_variation_cultivation_and_frustration.pdf

Goidànich G (1935). Nuovi casi di tracheomicosi in Italia [New cases of Verticillium wilt disease in Italy]. Stazione di Patologia Vegetale, Roma 15: 548-552.

Heale JB, Isaak I (1963). Wilt of lucerne caused by Verticillium dahliae in New Zealand. Proceedings of the New Zealand Institute 1375.2015.1112163

Harmschläger E, Maschek O (2019). Biologische Kontrolle des Götterbaums [Biological control of Tree-of-Heaven]. AWF-DerWald 8: 17-20. [In German]

Heale JB, Isaak I (1963). Wilt of lucerne caused by species of Verticillium IV. Pathogenicity of V. albostrum and V. dahliae to lucerne and other crops; spread and survival of V. albostrum in soil and in weeds, effect upon lucerne production. Annals of Applied Biology 52: 439-451. - doi: 10.1111/j.1744-7348.1963.tb03768.x

Hiemstra 2000

Hoy MA (2008). Augmentative biological con-
Verticillium wilt of Ailanthus altissima in Tuscany, Italy

Magin L (1894). Sur une maladie des Allantes, dans les parcs et promenades de Paris [About an Ailanthus disease, in parks and walks of Paris]. Comptes Rendus de l’Académie des Sciences 129: 658-661. [In French]

Malcolm GM, Kuldau GA, Gugino BK, Jiménez-Gasco MM (2013). Hidden host plant associations of soiborne fungal pathogens: an ecological perspective. Mycopathology 103: 538-544. - doi: 10.1007/s10535-012-0010-1

Meschke O (2011). Untersuchungen zur biologischen Bekämpfung von Verticillium altissima. Austriia [Studies on the biological control of Ailanthus altissima in Austria]. Master Thesis, University of Natural Resources and Life Sciences, Vienna, pp. 63. [In German] [online] URL: http://permlink.obvsg.ac.at/AC16371

Meschke O, Halschlagler E (2016). First report of Verticillium wilt on Ailanthus altissima in Europe caused by Verticillium nonalfalfae. Plant Disease 100: 529. - doi: 10.1094/PDIS-07-15-0733-PDN

Verticillium nonalfalfae (Ailanthus glandulosa) in Ohio. Disease 51: 197-209. - doi: 10.1007/s10530-014-0359-7

Sheppard AW, Shew RH, Sforza R (2006). Top 20 challenges of Glyphosate in the European Union. Frontiers in Environmental Science 6: 78. - doi: 10.3390/fes.605.0

Skezakis A, Darvas B (2018). Re-registration challenges of Glyphosate in the European Union. Frontiers in Environmental Science 6: 78. - doi: 10.3390/fes.605.0

Tajmas EG, Despina B (1987). Occurrence of Verticillium dahliae in leaves of Verticillium wilted olive-trees. Canadian Journal of Plant Pathology 9: 86.

Turkan M, Ozer G, Evgin Z, Yaman M, Erper I (2019). First report of Verticillium dahliae causing Verticillium wilt on kiwifruit in Ordu, Turkey. Journal of Plant Pathology 102: 221-222. - doi: 10.1007/s10530-019-00359-7

Wickert K, O’Neal E, Davis DD, Kasson MT (2017). Seed production, viability, and reproductive limits of the invasive Ailanthus altissima (tree-of-haven) within invaded environments. Forests 8: 226. - doi: 10.3390/f80200226

Wilhelm S (1995). Longevity of Verticillium wilt fungus in the laboratory and field. Phytopathology 85: 180-181.

White TJ, Bruns T, Lee S, Taylor J (1990). Amplifi-

Verticillium wilt of Ailanthus altissima in Hungary caused by Verticillium dahliae. Plant Disease 102: 1454. - doi: 10.1094/PDIS-12-17-1914-PDN

Verticillium nonalfalfae: potential biocontrol agent against the invasive Ailanthus altissima. Plant Disease 99: 823-835. - doi: 10.1094/PDIS-04-14-0391-RE

Verticillium wilt in leaves of Ailanthus glandulosa in Greece. Plant Disease 82: 129. - doi: 10.1094/PDIS.1998.82.11.98

Weidner AL, Melchior GL (1982). Influence of water stress on Verticillium wilt of yellow-poplar. Canadian Journal of Botany 60: 201-209. - doi: 10.1139/b82-027

Motard E, Dusz S, Geslin B, Akpa-Vinceslas M, Mecher-Salzat A (2015). How invasion by Ailanthus altissima transforms soil and litter communities in a temperate forest ecosystem. Biological Invasions 17: 187-183. - doi: 10.1007/s10530-014-0838-3

O’Neal ES, Davis DD (2015b). Intraspecific root genotyping of Verticillium non alfalfae (Verticillium nonalfalfae) in Ohio. Plant Disease 99: 197-209. - doi: 10.1094/PDIS-07-15-0733-PDN

Swiftle WT (1916). The early European history and the botanical name of the Tree of Heaven, Ailanthus altissima. Journal of the Washington Academy of Sciences 6: 490-498. [online] URL: http://www.jstor.org/stable/24521283

Széczek A, Darvas B (2018). Re-registration challenges of Glyphosate in the European Union. Frontiers in Environmental Science 6: 78. - doi: 10.3390/fes.605.00078

Tajmas EG, Despina B (1987). Occurrence of Verticillium dahliae in leaves of Verticillium wilted olive-trees. Canadian Journal of Plant Pathology 9: 86.

Turkan M, Ozer G, Evgin Z, Yaman M, Erper I (2019). First report of Verticillium dahliae causing Verticillium wilt on kiwifruit in Ordu, Turkey. Journal of Plant Pathology 102: 221-222. - doi: 10.1007/s10530-019-00359-7

Wickert K, O’Neal E, Davis DD, Kasson MT (2017). Seed production, viability, and reproductive limits of the invasive Ailanthus altissima (tree-of-haven) within invaded environments. Forests 8: 226. - doi: 10.3390/f80200226

Wilhelm S (1995). Longevity of Verticillium wilt fungus in the laboratory and field. Phytopathology 85: 180-181.

White TJ, Bruns T, Lee S, Taylor J (1990). Amplifi-
cation and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: “PCR Protocols: a guide to methods and applications” (Innis MA, Gelfand DH, Sninsky JJ, White TJ eds). Academic Press, New York, USA, pp. 315-322. [online] URL: http://msafungi2.org/wp-content/uploads/2019/03/February-2013-Inoculum.pdf

Zimm LA (1918). A wilt disease of maples. Phytopathology 8: 80-81.

Supplementary Material

Tab. S1 - Location, elevation and year of collection of seed sources used in the intra-specific screening.

Fig. S1 - Symptoms of Verticillium wilt on non-target species inoculated with Verticillium dahliae isolate VdGL16 versus control plants.

Link: Pisuttu_3238@suppl001.pdf