Title
Stress-related alterations of visceral sensation: animal models for irritable bowel syndrome study.

Permalink
https://escholarship.org/uc/item/23z6778m

Journal
Journal of neurogastroenterology and motility, 17(3)

ISSN
2093-0879

Authors
Larauche, Muriel
Mulak, Agata
Taché, Yvette

Publication Date
2011-07-13

DOI
10.5056/jnm.2011.17.3.213

Peer reviewed
Stress-Related Alterations of Visceral Sensation: Animal Models for Irritable Bowel Syndrome Study

Muriel Larauche,* Agata Mulak and Yvette Taché
CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA

Stressors of different psychological, physical or immune origin play a critical role in the pathophysiology of irritable bowel syndrome participating in symptoms onset, clinical presentation as well as treatment outcome. Experimental stress models applying a variety of acute and chronic exteroceptive or interoceptive stressors have been developed to target different periods throughout the lifespan of animals to assess the vulnerability, the trigger and perpetuating factors determining stress influence on visceral sensitivity and interactions within the brain-gut axis. Recent evidence points towards adequate construct and face validity of experimental models developed with respect to animals’ age, sex, strain differences and specific methodological aspects such as non-invasive monitoring of visceromotor response to colorectal distension as being essential in successful identification and evaluation of novel therapeutic targets aimed at reducing stress-related alterations in visceral sensitivity. Underlying mechanisms of stress-induced modulation of visceral pain involve a combination of peripheral, spinal and supraspinal sensitization based on the nature of the stressors and dysregulation of descending pathways that modulate nociceptive transmission or stress-related analgesic response.

(J Neurogastroenterol Motil 2011;17:213-234)

Key Words
Irritable bowel syndrome; Models, animal; Pain

Introduction

Alterations of visceral sensation such as enhanced perception of physiological or experimental visceral stimuli along with hypervigilance to those, are at the origin of visceral hypersensitivity, a phenomenon commonly considered to play a major role in the pathophysiology of irritable bowel syndrome (IBS).1,2 Epidemiological studies have implicated stress of psychosocial, physical or immune origin as a trigger of first onset or exacerbation of IBS symptoms.3-5 Early adverse life events in the form of emotional, sexual, or physical abuse are major predisposing factors for the
development of IBS later in life. Childhood trauma, especially in genetically predisposed individuals, is thought to induce persistent changes in the brain arousal response system that impacts on the neuroendocrine hypothalamic-pituitary-adrenal (HPA) axis. In adult IBS patients, acute stress episodes, chronic social stress, anxiety disorders, and maladaptive coping style determine the illness experience, health care-seeking behavior as well as treatment outcome. Stress-related psychosocial factors such as somatization, neuroticism, and hypochondriasis are also important predictors in the development of post-infectious IBS. Emotional or physical stressors may cause disturbances at every levels of the brain-gut axis including the central, autonomic and enteric nervous systems and affect regulation of visceral perception and emotional response to visceral events.

Over the past 15 years, various animal models have been developed to get insight into the underlying mechanisms of visceral hypersensitivity and the influence of stress on visceral pain pathways. While in humans the evaluation of visceral sensitivity is predominantly based on the conscious perception to gut distension, the measurement of this subjective response cannot be performed in animal studies. Objective evaluation of responses to visceral stimulation in clinical studies includes the assessment of reflex activity (eg, a somatic nociceptive cutaneo-muscular flexion reflex can be inhibited by painful visceral stimulation) or evoked central processes (eg, changes in activation of the anterior cingulated cortex involved in pain inhibition). Indeed, during the last decade functional imaging techniques have been applied successfully to examine the human brain response to noxious visceral stimuli. In experimental animals, the pattern of brain and spinal circuitries activated by various stressors and colorectal distension (CRD) under basal or hypersensitive state have been early on mapped in a number of studies using the induction of the Fos protein expression as a direct marker of neuronal cell activation and double immunohistochemical labeling to identify the phenotype of Fos positive spinal and supraspinal neurons. Recently, preliminary reports applied imaging techniques to get insight into brain circuit activated by visceral stimulation in rodents. Similarity in some regional brain activation induced by CRD have been found when comparing Fos expression and functional magnetic resonance imaging. In addition this comparative study indicates that both methods are complementary as Fos immunohistochemistry provides a higher spatial resolution over imaging while imaging displays a higher sensitivity to detect a large number of brain area. Development of imaging in conscious animals with removal of additional stress linked with conditions of functional imaging monitoring will enable bridging the gap between the multidimensional nature of human pain experience and preclinical studies.

In this review we will outline some of the most relevant preclinical models that have been developed, comment on their contribution to our understanding of stress modulation of visceral pain mechanisms, and assess the clinical relevance of these preclinical studies to unravel potential molecular targets to alleviate visceral pain symptoms in IBS.

Stress Pathways: Corticotropin Releasing Factor Signaling as an End Point Effector

First coined by the endocrinologist Hans Selye, the term “stress” defines the physiological adaptive responses to real or perceived emotional or physical threats (“stresses”) to the organism homeostasis. When exposed to an acute threatening challenge, the body engages a “fight or flight” response driven by sympathetic activation leading to rapid heart rate and respiration, increased arousal, alertness, and inhibition of acutely non adaptive vegetative functions (feeding, digestion, growth and reproduction). Concurrently, a negative feedback is activated to terminate the stress response and bring the body back to a state of homeostasis or eustasis, that engages neural, neuroendocrine and immune components, a process called allostasis or “stability through changes”. However, persistence or chronicity of the stressors can overload this adaptive system which then becomes defective or excessive. The organism is no longer brought back to basal homeostasis leading to a state of allostatic load or “cacosostasis”. This state lies at the origin of a variety of stress-related diseases that develop in the context of a vulnerable genetic, epigenetic and/or constitutional background. The pathogenesis of stress-induced disorders affects the whole body, including the viscera of which the gastrointestinal (GI) tract is a sensitive target.

Over the past decades, important components of the stress-activated pathways whereby the brain translates stimuli into final integrated bodily response have been identified through the characterization of corticotropin releasing factor (CRF) signaling system. This is composed of the 41 amino acid peptide CRF, and related peptides, urocortin 1, urocortin 2 and urocortin 3 along with the CRF receptors CRF1 and CRF2 and their variants which display specific affinity for CRF and related agonists. The development of selective CRF receptor antago-
nists has also largely contributed to delineate the role of activation of CRF receptor subtypes in the stress response. In particular convergent reports indicate that the activation of CRF₁ receptor underlies the multiple faceted components of the stress response. CRF/CRF₁ signaling plays a primary neuroendocrine role in stimulating the HPA axis leading to the release of adrenocorticotrophic hormone and corticosterone in rodents and cortisol in humans. In addition the CRF signaling system also acts as a neurotransmitter/neuromodulator to coordinate the behavioral, immune, and visceral efferent limbs of the stress response. It does so via the activation of the locus coeruleus and its noradrenergic projections to the forebrain which contribute to arousal, alertness as well as the modulation of forebrain, hindbrain and spinal sites regulating the autonomic nervous system activity leading to the stimulation of the sympathetic nervous system and release of catecholamines, and sacral parasympathetic activity while decreasing vagal efferent output that influences immune and visceral function. In addition the brain CRF/CRF₁ signaling pathway is involved in stress-related induction of anxiety/depression and alterations of colonic motor and visceral pain while both central and peripheral CRF₁ receptor activation may exert a counteracting influence. Moreover recent experimental and clinical studies point to an equally important contribution of the peripheral CRF/CRF₁ signaling locally expressed in the gut to the GI stress response.

Visceral Pain Pathways

Pain perception in peripheral tissues depends on the signal transmission from the site of pain origin to the CNS. Nociceptors (receptors activated by noxious stimuli) located in 2 sets of primary small afferent fibers (C and Aδ afferents) innervating the viscera that project to distinct regions in the CNSs, are the primary pathways of pain transmission. From the esophagus to the transverse colon, the GI tract innervation is provided by vagal afferent fibers originating in the nodose ganglia and projecting centrally to the nucleus of the solitary tract. Pelvic nerve afferent fibers, which originate in the lumbosacral dorsal root ganglia, and project centrally to the lumbar 6 - sacral segments of the spinal cord innervate the remaining part of the large bowel (descending and sigmoid colon, rectum). The entire GI tract is also innervated by afferent fibers contained in the splanchnic nerves projecting to the thoracic 5 - lumbar 2 segments of the spinal cord. Even though visceral afferents constitute only 10% of all afferents, they are able to monitor changes in the gut milieu and participate in the transmission of visceral sensory information. Of note, vagal afferents do not encode painful stimuli however, changes in their activity can modulate nociceptive processing in the spinal cord and the brain.

Upon entering the dorsal horn, visceral primary afferents carried out by the pelvic and splanchnic nerves terminate in spinal cord laminae I, II, V and X converges onto spinal neurons in the lumbosacral segments and thoracolumbar segments respectively. Lumbosacral segments process reflex responses to acute visceral pain, while thoracolumbar segments' involvement in normal visceral sensation is uncertain, however, both segments process inflammatory stimuli. Subpopulations of neurons within the dorsal horn project to discrete nuclei within the thalamus (i.e., ventral posterior lateral thalamus) as well as other structures in the brain stem (parabrachial nucleus, periaqueductal gray, nucleus tractus solitarius). From the thalamus, the information is conveyed to cortical areas involved in sensory processing (such as the somatosensory cortex) or those involved in processing emotional or affective information (such as the anterior cingulate gyrus and insular cortex).

In addition to the ascending system, which enables pain perception described above, other neural circuits originating from supraspinal sites can influence nociceptive activity in the spinal cord and in primary afferents, a system referred to as descending pathways. There are 2 types of descending control pathways: inhibitory, which produce analgesia (periaqueductal gray, locus coeruleus) and facilitatory which produce hyperalgesia (rostroventral medulla and OFF and ON cells).
Figure 1. Differential influence of intermittent repeated stress on visceral response to colorectal distension (CRD) in rodents with or without surgical procedure for recording visceral pain (Adapted from Larauche et al.19,88). (A) Original and rectified representative electromyographic (EMG) and intraluminal colonic pressure (ICP) traces recorded simultaneously on the same mouse in response to CRD (45 mmHg, 10 seconds). When both raw EMG (upper line) and ICP (second line to the bottom) signals are analyzed in Spike 2 by computing “DC Remove” 1 second to exclude all slow events > 2 seconds (ie, colonic smooth muscle contractions) and “root mean square amplitude” to extract the area under the curve of the signal, the resulting EMG and phasic ICP signals (middle lines) present a significant overlap. (B) Mice were equipped with EMG electrodes or not and exposed to water avoidance stress for 1 hour per day for 10 days tested with ICP for visceromotor response (VMR) to CRD. (C) Intraperitoneal injection of the selective corticotropin releasing factor receptor subtype 1 agonist, cortagine-induced visceral hypersensitivity in C57BL/6 mice tested with ICP for VMR to CRD. Data are expressed as mean ± SEM, n = 10-14 per group as specified in graph legends. *P < 0.05 compared with baseline, **P < 0.05 vs. vehicle.
Stress-Related Alterations of Visceral Sensation

post-surgical treatments such as antibiotic, analgesics which can affect the visceral pain responses and still remain an objective and sensitive measure of abdominal contractions (Fig. 1). However, they require the animals to be partially restrained in Bollman cages, a context to which they need to be habituated and which by itself may bring a component of stress.

Behavioral approaches such as operant behavioral assays have also been used in early studies and capitalized on the learning and fear behaviors of animals in response to painful CRD. Visual monitoring of the abdominal withdrawal reflex has also been applied in a few studies, and while having the great advantage of being one of the less invasive technique employed to date, it is a very subjective method. Indirect endpoints such as Fos or extracellular signal-regulated protein kinase induction in the CNS, and functional brain imaging of integrated brain responses to nociceptive stimuli have also been utilized in some studies. These approaches allow for direct assessment of the neuronal circuitries recruited by the visceral pain stimulus and, in the case of functional brain imaging is very similar to the monitoring of CRD responses in healthy and IBS human subjects. Unfortunately, in animals these brain mapping techniques require euthanasia and limit the assessment to specific time points.

Figure 2. Animal models of stress-induced modulation of visceral sensitivity throughout the lifespan (Modified from Mayer et al). Experimental stress models have been developed that target different periods throughout the lifespan of animals to assess the vulnerability, trigger and perpetuation influences of stress on visceral sensitivity. During early life, trauma due to maternal neglect (neonatal maternal separation stress) or injury (neonatal chronic colonic inflammation or pain) can enhance the susceptibility of individuals to develop altered visceral pain responses at adulthood. During adulthood, life-threatening stressors (post-traumatic stress disorder model), psychosocial stressors (acute and chronic stress) or physical stressors (intestinal infection or inflammation, antibiotic administration and surgery) have all clearly been established as triggering factors to the development of visceral hypersensitivity in rats and mice. Lastly, the use of specific strains of rodents known to exhibit various levels of anxiety, depression or stress hyper-responsiveness (Wistar-Kyoto and Flinders Sensitive Line) help mimic the influence of perpetuating factors on symptoms of visceral pain. WAS, water avoidance stress; PRS, partial restraint stress; PTSD, post-traumatic stress disorder; DSS, dextran sodium sulfate.
However, as more stringent brain imaging approaches are developed in rodents, they will open new venues to parallel human studies.

Experimental Stress Models and Visceral Pain

By convention, stressors are categorized in exteroceptive (psychological or neurogenic) and interoceptive (physical or systemic) classes and both have been used in animal models to investigate the relationship between stress and visceral pain. Dual visceral pain responses: hyperalgesia and analgesia have been described in rodents exposed to exteroceptive stressors. Though only recently investigated, the analgesic response bears very relevant implications in the understanding of visceral pain-associated pathologies (detailed in section “Stress-induced visceral analgesia: how does it help us to model and understand pain-associated pathologies (detailed in section “Stress-induced hyperalgesia.”) In contrast, interoceptive stressors have been most consistently associated with the development of stress-induced hyperalgesia.

Stress modulates visceral pain in IBS patients as well as in healthy subjects, therefore experimental animal models, involving exposure to various clinically relevant stressors have been developed to recapture features of IBS symptoms, of which hyperalgesia to sigmoid distensions is a hallmark. Moreover clinical studies have stratified that the stress-related modulation of IBS symptoms may be occurring through (1) permanent enhancement of stress responsiveness, (2) transient symptom exacerbation and/or (3) symptom perpetuation. Consequently existing experimental stress models target different periods throughout the lifespan of animals to assess the vulnerability, the trigger and perpetuating factors determining stress influence on visceral hypersensitivity (Fig. 2).

Stress in the Perinatal Period: Genetic/Epigenetic Factors

Twin studies in IBS patients showed higher (but relatively low) concordance rates in monozygotic than dizygotic twins suggesting that although genetic factors are not dominant, they play a role in the occurrence of IBS. There is also a growing literature reporting the association between functional genetic polymorphisms and IBS at the level of serotonin transporter gene (associated with diarrhea in female IBS patients), or α2-adrenergic receptor gene (associated with constipation), and more recently, additional gene polymorphisms have been unraveled supporting the potential permissive role of genetics in IBS pathophysiology. Of interest, it has been postulated that epigenetic factors related to heritable changes in gene expression that occur without alteration in gene sequence, determine the manner in which gene activity may be altered either transiently or permanently in response to environmental challenges. Such epigenetic modifications could account for symptoms persistence, familial clustering and the transgenerational impact of IBS. However, experimental studies have not dwelled on strain differences in terms of stress responsiveness, anxiety and depression in rodents, to assess and compare how genetic predisposition together with perinatal (maternal prenatal stress) or early life stressors (neonatal maternal separation stress) could affect visceral pain responses at adulthood in the context of epigenetic modifications.

Stress in the Early-life Period: Vulnerability/Trigger Factors

Early life events and childhood trauma by biopsychosocial factors (neglect, abuse, loss of caregiver or life threatening situation) enhance the vulnerability of individuals later in life to develop affective disorders (depression, anxiety and emotional distress) and put them at a greater risk for developing IBS. In the context of epigenetic modifications, experimental studies showed that early developmental trauma decreases glucocorticoid receptor expression by hypermethylation of a key regulatory component and consequently affects the feedback regulation the HPA-axis with impact on the endocrine/behavioral adaptation and the susceptibility to stress-related disorders. In addition, experimental studies indicate that the newborn’s gut through stress-related changes in intestinal permeability may be exposed to a variety of factors resulting in mucosal inflammation and tissue irritation which could have long-term consequences at adulthood even though no longitudinal clinical studies exist showing that gut irritation in early life is a risk factor for IBS development at adulthood. Moreover, postnatal microbial colonization has also been suggested as a potential factor programming the
HPA-axis response to stress in mice. An experimental model commonly used as a stress model to mimic early stress/childhood trauma is the neonatal maternal separation in rodents. This is achieved by isolating pups from the dam for 2-3 hours/day during the first 2 weeks after birth from postnatal day (PND) 1-2 to PND 14. At adulthood, rats previously subjected to neonatal maternal separation exhibit visceral hypersensitivity to CRD under basal conditions which is further exacerbated by exposure to the acute psychological stressor in the form of water avoidance stress (WAS) consisting in placing rodents on a small platform surrounded by water for 1h. Other models used repeated intermittent colonic irritation during the neonatal period (PND 8-21) either in the form of daily noxious CRD (60 mmHg-60 seconds distension twice separated by 30-minute period of rest) or by performing daily intracolonic injection of mustard oil (5%), increases pain behavior to CRD from postnatal week 5 up to postnatal week 12. Likewise, an acute somatic injury (saline or carrageenan injections into the hind paw) performed during the critical period of postnatal development, ie, before PND 14, produces visceral analgesia to CRD in adult rats. Based on these studies and the extensive amount of evidence originating from somatic pain studies, it appears that neonatal insults either acute or repeated, somatic vs visceral occurring during the development of the organism contribute to induce a state of visceral hypersensitivity in adulthood which may reflect long-term changes in visceral sensory processing.

Stress in the Adult Period: Trigger Factors

Psychosocial stressors

Psychosocial stressors (eg, threat to social status, social esteem, respect and/or acceptance within a group; threat to self-worth) activate stress circuits within the emotional motor system and induce neuroendocrine response (CRF and cortisol) and autonomic response (norepinephrine and epinephrine) that result in the modulation of gut sensory, motor and immune function as well as intestinal permeability. In experimental studies, the 2 main acute stressors that are prominently used in visceral pain studies are WAS for 1 hour and partial restraint stress for 2 hours, a stressor with stronger psychological component than WAS, which entails taping the forelimb of rats in order to prevent their movements. Exposure of male Wistar rats to WAS for 1 hour leads to the development of a delayed visceral hyperalgesia to CRD, appearing 24 hours after the end of the stress, while exposure to partial restraint stress, induces an immediate hyperalgesia to CRD in male and female Wistar rats. However, in the context of clinical studies in which daily chronic stress predicts the intensity and severity of subsequent symptoms in IBS patients, a variety of chronic stress models divided in 2 categories have been recently developed in adult rodents. The first category consists in exposing animals repeatedly (over a few days to weeks) but intermittently (once or twice per day) to 1 or different stressors, with the aim of mimicking the daily exposure to psychosocial stress that humans can encounter through their personal and professional interactions. The second category consists in continuous exposure to stressors as part of change in internal state, for instance inflammation, or external milieu, for instance single housing, or social crowding which mimics the effect of social milieu in humans or using genetic rodent strains that have constitutive stress hyper-reactivity (Wistar Kyoto, Flinders Sensitive Line). In particular, repeated intermittent exposure to WAS is one of the first “chronic” stress model to have been adapted to the study of visceral hypersensitivity and is presently widely used. Initial studies in which the visceral pain response was monitored using EMG recording that entails surgical implantation of electrodes, male Wistar rats exposed to 10 consecutive days of WAS for 1 hour daily developed visceral hypersensitivity to CRD lasting up to 30 days after the end of the last session of WAS. In our laboratories however, we found that when naive male and female Wistar rats were exposed to a similar WAS schedule and their VMR was monitored by intraluminal colonic solid-state manometry, a technique that does not require surgery, animals developed visceral analgesia to CRD. Similar results have been obtained in C57BL/6 mice and analgesic vs hyperalgesic responses were established to be dependent upon preconditions (surgery and single housing) associated with the method of recording of VMR (Fig. 1). Therefore, the impact of repeated mild stress such as 1-hour exposure to WAS on visceral pain response to CRD is largely influenced by the basal state conditions of the animals before applying the repeated stressor (detailed in section “Stress-induced visceral analgesia: how does it help us to model and understand visceral hypersensitivity?” and reference). Repeated exposure to unpredictable sound stress has also been recently shown to provide a model of delayed visceral hyperalgesia in male Sprague-Dawley rats.

Because habituation can occur in response to repeated exposure to an homotypic stressor, heterotypic stress models with different and alternating modalities to induce stress have been recently developed. However male Wistar rats exposed ran-
domly to a combination of cold restraint stress (45 minutes), WAS (1 hour) or forced swimming (20 minutes), 1 stressor per day for 9 consecutive days develop visceral hypersensitivity only at 8 hours but not at 24 hours or 7 days after the end of the last stressor.137 Interestingly however, the same regimen of alternating stressors in a different strain of rats, Sprague-Dawley, led to a sustained visceral hypersensitivity lasting up to 2 weeks after the end of the stressor (S. Sarna and J. Winston, pers. comm.), suggesting that the strain and therefore genetic background of the animals, affects the visceral pain responses to repeated intermittent exposure to different stressors.

Life-threatening stressors

Retrospective clinical studies indicate that living through or seeing a traumatic event, such as war, environmental disasters, rape, physical abuse or a bad accident in adulthood can lead to post-traumatic stress disorder (PTSD).138-144 There is evidence of increased prevalence of GI symptoms, in particular IBS in PTSD sufferers including war veterans.138-142 Additionally, patients with IBS who have experienced traumatic events may be at higher risk for other co-morbid psychiatric disorders than IBS patients without a trauma history.141

In adult rats, treatment with a relatively short-lasting session of shocks or a social confrontation with a predator or aggressive conspecific animals induces long-lasting (weeks-months) conditioned fear-responses to trauma-related cues, and a generalized behavioral sensitization to novel stressful stimuli that persists or grows stronger over time.145-148 Repetitive balloon distention of the distal colon causes increased cardiovascular ‘pseudoaffective’ reflexes in pre-shocked rats compared to controls, 2 weeks after a single session of foot shocks.144,145 Of note, female rats appear to show a different pattern of sensitized behavioral responsiveness to the same challenge, possibly pointing to sex-related alterations in the neuronal substrates involved.149

Interceptive stressors

In approximately 10% of patients with IBS, the onset of symptoms began with an intestinal infectious illness.150 Bile salt malabsorption resulting from infectious damage with organisms such as *Salmonella* and *Campylobacter* within the terminal ileum and right colon may also underlie some forms of post-infectious IBS.151 Inflammation, antibiotic treatments, bladder infection and surgery may also contribute to the symptoms in some patients. Below are described some experimental models of interceptive stressors that have been used to mimic these clinical conditions.

Post-infectious irritable bowel syndrome model. Prospective studies have shown that 3% to 36% of enteric infections lead to persistent new IBS symptoms depending on the infecting organism. In addition, the coexistence of adverse psychological factors at time of infection is also an important determinant to the susceptibility to develop post-infectious IBS.152 Other risk factors include female sex and some psychological characteristics such as anxiety, depression and somatization.152 While viral gastro-enteritis seems to have only short-term effects, bacterial enteritis and protozoan and helminth infestations are followed by prolonged post-infectious IBS.152 The vast majority of human post-inflammatory hypersensitivity symptoms are observed after bacterial infection (*Campylobacter, Shigella, Salmonella* or *Escherichia coli* infections).

In preclinical models, long-lasting visceral hyperalgesia has been observed in mice after transient intestinal inflammation induced by *Trichinella spiralis* infection153,154 or in rats infected by *Nippostrongylus brasiliensis*.155 Recently, however, it was found that male C57BL/6 mice infected with *Citrobacter rodentium*, an attaching-effacing murine enteropathogen similar in its mechanisms of infection to enteropathogenic *Escherichia coli*, do not spontaneously develop visceral hypersensitivity symptoms assessed by the increase in EMG response to CRD156 unless exposed to a stressor (WAS, 1 hr/day for 9 days) during the time of infection (S. Vanner and N. Cenac, pers. comm.).

Post-inflammatory irritable bowel syndrome model. Despite some controversies on the origin of the symptoms,157,158 “IBS-like” symptoms appear to be common in patients in remission from ulcerative colitis.159 In rats, chemical irritants applied to the colon such as acetic acid,160 mustard oil161,162 and zymosan163,164 evoke short-term hyperalgesia associated with transmural tissue damage/colonic inflammation. Intracolonic trinitrobenzene sulfonic acid induces a severe colonic transmural inflammation and visceral hypersensitivity that develops at 4-5 days with the disappearance of symptoms by 14 days.165,166 Interestingly, in 24% of rats there is reoccurrence of visceral hyperalgesia 16 weeks after the induction of inflammation, while there is no evidence of microscopic inflammation in rat colonic tissues at this time point.166,167 In a similar manner, daily intracolonic instillation of bile acid deoxycholic acid for 3 days induces a mild, transient colonic inflammation within 3 days of administration that resolves within 3 weeks in adult male Sprague-Dawley rats. In this model, a persistent visceral hyperalgesia starts after 1 week of bile acid administration which lasts up to 4 weeks.168

Mild non-specific colitis and acute dextran sodium sulfate (DSS, 5% in drinking water for 5 days)-induced colitis have been
associated with increased responsiveness to CRD on days 5 or 60 after the induction of colitis in male Balb/c mice while chronic colitis induced by DSS (3 cycles of 5% DSS for 5 days/cycle and 15 days of normal drinking water in between each cycle) has not. These results are in contrast with another study showing that 4% DSS in drinking water for 5-7 days-induced colitis but failed to cause the development of visceral hypersensitivity in response to CRD in C37BL/6 or Balb/c mice when tested on days 5, 12, 16, 20, 30, 40 or 51 after the induction of colitis. These disparate findings suggest that inflammation alone may not always lead to visceral hypersensitivity and that the type of inflammatory insult and severity determine whether this will result in the development of postinflammatory hypersensitivity. The interaction between colonic inflammation and the development of visceral pain has to be substantiated in future investigations.

Antibiotics. Patients treated with antibiotics for non-GI complaints are 3 times more likely to report functional bowel symptoms. Antibiotic use disrupts the intestinal microbiota, facilitates the host’s intestinal homeostasis and integrity of intestinal defenses, and has been associated with IBS. In support of this hypothesis, administration to Balb/c mice of an oral combination of non-absorbable antibiotics (neomycin, bacitracin and pimaricin) which disturbed the commensal intestinal microflora results in visceral hypersensitivity to CRD in these animals. Paradoxically, clinical studies support that specific antibiotics (rifaximin or neomycin) are an effective treatment option in non-constipated IBS patients, over a 3-month period or even longer, thereby confirming the role of dysbiosis in developing IBS symptoms.

Surgery and somato-visceral convergence. Despite controversies, studies suggest that IBS is associated with an increased risk of abdominal and pelvic surgeries. Surgical procedure as both a visceral and psychological stressor can initiate a series of events that either disturb GI function and interactions within the brain-gut axis and/or alter gut microbiota, which consequently may lead to generation of IBS symptoms. Hind paw (plantar) incision or injection of low pH (4.0) sterile saline in the gastrocnemius muscle of adult male Sprague-Dawley rats induce a significant visceral hyperalgesia to CRD that lasts up to 2 weeks after the somatic injury occurred. As a model of postsurgical pain, the plantar incision model is particularly relevant because surgical procedures are relatively common and possible visceral hypersensitivity may also thus be a relatively common postsurgical event. The impact of somato-visceral convergence has to be considered in experimental models of visceral pain where animals are surgically equipped within the abdominal wall with EMG electrodes (detailed in section “Stress-induced visceral analgesia: how does it help us to model and understand visceral hypersensitivity?).

Viscero-visceral interactions: neonatal cystitis. A significant overlap is observed between IBS and urinary symptoms, in particular those resulting from interstitial cystitis (IC). Like IBS, IC predominantly affects female patients (90%) and shows a high comorbidity rate with psychological disorders. By analogy to IBS, an increased number of mast cells have been found in bladder biopsies in IC. Recurrent urinary tract infections during childhood correlate with the development of chronic pelvic pain, a condition that often overlaps with IBS. In an animal model of bowel-bladder cross-sensitization, acute bladder chemical irritation causes a significant decrease in colorectal sensory thresholds to CRD. Very recently, the induction of neonatal cystitis in female Sprague-Dawley rats at PND 14 was shown to result in colonic hypersensitivity to CRD during adulthood, supporting a potential key role for viscero-visceral convergence in IBS and comorbid disorders such as IC and chronic pelvic pain.

Stress in the Adult Period: Perpetuating Factors

There is a strong overlap between IBS and psychiatric disorders, as established by the high percentage (54% to even 94%) of IBS patients meeting the criteria for at least 1 primary psychiatric disorder, most notably mood and anxiety disorders. Although comorbid psychiatric disorders seem to be not directly connected with the occurrence of IBS, they strongly influence how the symptoms are experienced, the individual illness behavior, and ultimately the outcome. The influence of cognitive aspects as well as motivational and emotional components on the processing of sensory information is mediated by extensive neuro-anatomical network with a pivotal role of the insular and anterior cingulate cortices. Autonomous dysfunction, in particular decreased parasympathetic activity and increased sympathetic outflow observed in psychiatric disorders as well as in IBS, has been also suggested to have a relevant impact on the neurally mediated regulation of colonic sensory-motor and immune function. The neuroimmune cross-talk involving the stress-induced changes in vagal nerve activity and/or sensitization of mast-cells seems to play a critical role in altering visceral sensitivity and intestinal barrier.

Genetic models of anxiety and depression

In a comparative study using 3 strains of rats known to have...
varying levels of baseline anxiety, the high-anxiety Wistar-Kyoto rats had increased VMR to CRD compared to low-anxiety Sprague-Dawley and Fisher-344 animals suggesting a direct link between anxiety and visceral hypersensitivity.111 In addition, compared to low-anxiety strains of rats, the sensitivity of high-anxiety rats was highly exacerbated by peripheral sensitization of the colon with a small dose of acetic acid.111 Of note, Wistar-Kyoto rats are also considered as a model of depression,193,194 as are rats from the Flinders Sensitive Line which exhibit increased cholinergic sensitivity compared to control rats of the Flinders Resistant Line.191,196 Similarly to Wistar-Kyoto rats, Flinders Sensitive Line rats exhibit increased VMR to CRD as well as a blunted corticosterone response to acute noise stress compared to Flinders Resistant Line, suggesting a link between depression, HPA axis dysfunction and visceral hyperalgesia.197

Genetic models of chronic stress

Genetic models that blocked chronically the stress pathways by deleting CRF\textsubscript{1} receptors showed a decrease in anxiety and colonic sensitivity to CRD.198 Conversely, genetic models of chronic stress relying on the over-expression of CRF stress system in mice199 are available and could be useful to study IBS-like manifestations, but the visceral sensitivity of these transgenic animals has not been assessed yet. However, as CRF over-expressing mice display phenotypes of Cushing’s syndrome,200 new promising genetic models with more selective conditional and/or region-targeted genetic manipulations including RNAi gene silencing technology to modify CRF-related genes are continuously developed.201-206 These models will be suitable to explore specific stress circuitries in the context of targeted chronic CRF expression/deletion and the impact on visceral pain modulation which so far is lagging behind.

Stress-Induced Visceral Analgesia: How Does It Help Us to Model and Understand Visceral Hypersensitivity?

While extensively described in somatic pain field,207 to date activation of descending inhibitory pathways in stress-related visceral responses has received less attention. Opioids have been implicated in descending inhibition of visceral sensitivity following an acute stress as evidenced by the fact that naloxone unmasked WAS-induced hyperalgesia to CRD in normal Long-Evans rats and exacerbated the pain response to CRD in maternally-separated rats.117 In another study, a non-opioid, neuropeptide-Y-dependent visceral analgesic response was observed 6 hours after exposure to an acute session of WAS in Sprague-Dawley rats, with males exhibiting stronger analgesia than females as well as in wild-type but not in neurotensin knock-out mice.208 In another experimental model, a daily short period (15 minutes) of separation from PND 2 to 14, decreased VMR to CRD performed immediately after WAS and prevented the development of hyperalgesia 24 hours after WAS in adult male Long-Evans rats.209 These data suggest a potential upregulation of endogenous pain-modulatory systems by this short maternal separation stress.209 Similar findings in adult rats have been recently reported, such that Wistar rats handled daily for 9 days develop visceral hypoalgesia in response to CRD that becomes significant 7 days after the last handling.137

These studies point to the type of stress itself contributing to the differential recruitment of those descending inhibitory pathways. However, importantly, we recently demonstrated that mice that had undergone surgery for the placement of EMG electrodes on abdominal wall and were subsequently single housed to avoid deterioration of implanted electrodes by cage-mate, developed visceral hyperalgesia in response to repeated WAS (1 hr/day, 10 days) while mice tested for visceral pain using the non-invasive solid-state intraluminal pressure recording and kept group housed developed a strong visceral analgesia under otherwise similar conditions of repeated intermittent WAS.88 As mentioned before surgery per se is known to induce a long lasting visceral hyperalgesia and recent reports suggest that previous injury or exposure to opioids in male rats can switch stress influence on pain responses from analgesia to hyperalgesia.210 Collectively these data demonstrate that the state of the animal tested (naïve vs exposed to surgery), its social environment (group housing vs single housing, cage enrichment or not), the handling performed by the investigator, the methods used to record VMRs (EMG requiring surgery and antibiotic post surgery vs manometry not requiring surgery/antibiotic), as well as the sex of animals can significantly affect the response to exteroceptive stressors. Therefore these preconditions should be carefully detailed in describing the experimental conditions and taken into consideration in the design, conduct and interpretations of the data when investigating the influence of stress on visceral sensitivity in experimental animals.

Based on recent clinical findings demonstrating that IBS patients have compromised engagement of the inhibitory descending pain modulation systems,212,213,214 gaining a deeper understanding of the mechanisms involved in the expression of stress-induced visceral analgesia or lack thereof are promising.
Stress-Related Alterations of Visceral Sensation

Sex Differences in Stress-Induced Alterations of Visceral Sensitivity

Women are more susceptible to stress-related disorders which is consistent with female predominance in IBS patients (women to men ratio about 2:1).215,216 Sex differences in the stress response and stress-induced pain modulation have been documented in a number of human studies.217 Clinical trials have also revealed important sex-related differences in therapeutic efficacy of some serotonergic drugs used in IBS treatment (e.g., alosetron, 5-HT3 receptor antagonist) suggesting a conceivable link between estrogens and serotonergic mechanisms in the modulation of stress-related visceral hypersensitivity.218,219 Contrasting with this clinical evidence, most of the preclinical studies assessing stress-related alterations in visceral sensitivity have been conducted in male rodents.208,220 However, the few studies performed in female indicate that sex hormones have a significant effect on visceral sensitivity in rodents.220-224 Therefore, addressing the influence of sex and sex hormones in the modulation of visceral pain by stress appears critical to develop novel therapies relevant to sex difference in IBS.216,225

Mechanisms Involved in Stress-Induced Modulation of Visceral Pain

Maladaptive neuroplastic changes leading to persistent increased perception and responsiveness to noxious stimuli, or response to normally non-noxious stimuli are key for the expression of pathological pain (hyperalgesia and allodynia). Such neuroplastic changes can occur in primary afferent terminals (peripheral sensitization) but also in the spinal cord (central sensitization) and in the brain (supraspinal pain modulation) or in descending pathways that modulate spinal nociceptive transmission. Such alterations in the processing of sensory information are all considered as possible mechanisms of visceral hypersensitivity in IBS patients.66,226

Peripheral Sensitization: Corticotropin Releasing Factor System, Mast Cells, Gut Microbiota and Ion Channels

Several reports in both humans and rodents have well documented the key role played by the peripheral CRF signaling, via CRF1 receptors, in the development and expression of visceral pain.19,60,227-231 Stress and peripheral administration of CRF induce mast cells degranulation in the colon in experimental animals and humans,232,233 which contributes to the development of visceral hypersensitivity (Fig. 1) via the release of several preformed or newly generated mediators131,214-217 (histamine, tryptase, prostaglandin E2, nerve growth factor) that can stimulate or sensitize sensory afferents66,218 by activating a number of ion channels widely expressed in colonic afferents239-242 such as N-methyl-D-aspartate receptor,242 proteinase-activated receptor,236 and transient receptor potential vanilloid 1243-245 to name a few.

Stress can also disrupt the intestinal epithelial barrier thereby increasing the penetration of soluble factors (antigens) into the lamina propria, leading to nociceptors sensitization, a phenomenon which appears as a prerequisite for the development of visceral hypersensitivity in both humans and rodents.246-248 Alterations of epithelial permeability following stress involves the activation of the peripheral CRF system and may or may not be dependent from mast cell activation238,253 in a time-dependent manner. In addition to inducing a leaky epithelial barrier, stress can also change the composition of the intestinal and fecal microbiota of rodents.254-256 This can in turn have significant impact on the host and affect behavior, visceral sensitivity and inflammatory susceptibility.257-261

Spinal Cord Plasticity and Glia Activation: Central Processing of Peripheral Pain Perception

Once peripheral sensitization has occurred, it activates the release of mediators in the spinal cord including growth factors262,263 (nerve growth factor or brain-derived neurotrophic factor) and upregulates some key ion channels and receptors such as acid-sensing ion channels 1A and neurokinin 1 receptor contributing to the phenomenon of spinal sensitization which has been associated with visceral hypersensitivity.

Very recently, spinal cord glia activation has been suggested as being another potential mechanism through which spinal sen-
Supraspinal Pain Modulation: A Fine-tuning between Pain Facilitation and Inhibition

Various supraspinal sites are involved in the modulation of visceral pain signals. Rectosigmoid distension in humans activates sensory (insula and somatosensory cortex), and limbic and paralimbic regions (including anterior cingulate cortex, amygdala and locus coeruleus). Many of these brain regions were also found to be significantly activated by CRD in rats. The anterior cingulate cortex mediates key emotional-aversive aspects of pain and may also have a mnemonic role in which it allows transient storage of information during pain processing. Wistar-Kyoto rats, high-anxiety rats exhibiting visceral hypersensitivity have greater prefrontal cortex activation in response to CRD compared to Sprague-Dawley. Another key limbic system structure that has been implicated in the affective component of pain is the central amygdala. It is involved in the processing of visceral information, attention, emotion and integrating the physical and psychological components of the stress response. It has also been found to contribute to visceral hypersensitivity in rats. Of relevance in the context of stress response, the CRF gene expression in the amygdaloid nucleus is upregulated in a mouse model of visceral pain and such a response is attenuated under conditions of anesthesia. Likewise, the locus coeruleus is a well established target of stress that expresses CRF receptors, receives CRF innervation from nearby Barrington nucleus and increases firing in response to CRD that is mediated by CRF receptor activation as shown by the use of CRF receptor antagonists and the responsiveness of LC neurons to both CRD and to central injection of CRF. Therefore these limbic and pontine sites are well positioned to coordinate gut-brain interaction with visceral information from the gut impacting on cortical and limbic activities under conditions of stress-CRF signaling activation which may modulate the visceral pain responses.

Thalamic relay nuclei have a key role in gating, filtering and processing sensory information en route to the cerebral cortex and are subject to similar activity-induced plasticity processes as the spinal cord. Uregulation of CRF receptor in the thalamus is associated with visceral hyperalgesia in the rat model of neonatal maternal separation stress. Lastly, spinal visceral nociceptive reflexes are subject to facilitatory modulation from the rostroventral medulla, providing the basis for a mechanism by which visceral sensations can be enhanced from supraspinal sites under stress conditions associated with development of visceral hyperalgesia.

Compromised engagement of descending pain inhibitory pathways as observed in maternally-stressed rats may also contribute to increase the visceral pain responses in those animals.

Therapeutic Implications-Treatment Targeting Stress Reduction in Irritable Bowel Syndrome

The modulatory role of stress-related brain-gut interactions in the IBS pathophysiology, in particular neuroimmune modulation associated with psychological factors and emotional state has been confirmed by the encouraging outcome of non-pharmacologic and pharmacologic treatment modalities aimed at reducing stress perception. A broad range of evidence-based mind-body interventions including psychotherapy, cognitive behavioral therapy, hypnotherapy, relaxation exercises or mindfulness meditation has been shown to amend stress coping strategies, both at a cognitive level (catastrophic or self-defeating thoughts) and at a behavioral level (problem solving, especially interpersonal problems). The symptomatic improvement appears to result from the modulation of stress response, the autonomic nervous system balance restoration, and changes in the brain activation pattern in response to visceral stimuli. In addition to psychological mind-body approaches, clinical trials confirm the effectiveness of centrally-targeted pharmacological interventions such as with antidepressants, and anxiolytics, or combination of drugs from both groups in the treatment of chronic pain disorders. Many other pharmacological agents with anxiolytic and/or antidepressant properties, such as serotonergic and opioidergic agents, cannabinoid receptor 1 (CB1) and somatosta-
tin receptors agonists, CRF₁, tachykinin and cholecystokinin receptors antagonists, have been recently shown to modulate stress-induced visceral hyperalgesia in animal models (for detailed review see reference 304). Preliminary data suggest that anxiolytic activity of γ-aminobutyric acid-ergic agents (gabapentin) and α₂δ ligand (pregabalin) may be also efficient in reducing central sensitization in hyperalgesia in clinical setting as shown in experimental models. New centrally acting agents providing analgesic effects include dextofisopam (2,3-benzodiazepine receptor modulator) and quetiapine (atypical antipsychotic agent). 307

Recent developments showing the critical interdependence between the composition and stability of the microbiota and GI sensory-motor function indicate a novel approach to IBS treatment with a use of probiotics, prebiotics and antibiotics. 260,308 Specific modulation of the enteric microbiota in the context of neuroimmune interactions within the brain-gut axis opens a new promising strategy for stress-related disorders, particularly in the aspects of comorbidity in functional GI disorders such as IBS. 237

However, some of the encouraging data from animal models concerning efficiency in alleviating stress-induced visceral hypersensitivity of such agents as CRF₁ receptor antagonist, 309 CB₁/CB₂ receptor antagonist or somatostatin receptor agonist (octreotide), 311 are yet to be confirmed in clinical trials, especially with regard to global symptoms improvement and well-being. For example, CRF₁ receptor antagonists are being investigated in Phase II/III clinical trials for depression, anxiety and IBS. 312 In fact, a recent clinical trial confirmed CRF₁ receptor antagonist efficacy in an anxiety model in healthy participants (7.5% CO₂ model). 312 Some observed discrepancies between preclinical models and clinical trials may result from limited correlation between readout from animal studies being based on pseudoaffective reflex responses or unlearned behaviors and symptoms in IBS patients reflecting subjective pain experience highly modulated by cortical influences. As discussed in this review, the methods used to monitor visceral sensitivity in rodents by inducing some bias in the observed responses could also potentially contribute to the lack of clinical translation of some drugs.

Amelioration of animal models of visceral pain, in their construct and face validity, particularly through the development of non-invasive methods to monitor visceral sensitivity together with a recently emerging algorithm of drug screening based on pharmacological brain imaging techniques opens promising venues in establishing an adequate approach in identifying effective treatment for IBS symptoms as well as IBS-related quality of life impairment.

Acknowledgements

The authors thank Miss E. Hu for reviewing the manuscript.

References

1. Mayer EA, Bradesi S, Chang L, Spiegel BM, Bueler JA, Naliboff BD. Functional GI disorders: from animal models to drug development. Gut 2008;57:384-404.
2. Posserud I, Agerforz P, Ekman R, Björnsson ES, Abrahamsson H, Simrén M. Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress. Gut 2004;53:1102-1108.
3. Elsenbruch S, Rosenberger C, Bingel U, Forsting M, Schedlowski M, Giezierski ER. Patients with irritable bowel syndrome have altered emotional modulation of neural responses to visceral stimuli. Gastroenterology 2010;139:1310-1319.
4. Elsenbruch S, Rosenberger C, Einck P, Forsting M, Schedlowski M, Giezierski ER. Affective disturbances modulate the neural processing of visceral pain stimuli in irritable bowel syndrome: an fMRI study. Gut 2010;59:489-495.
5. Lackner JM, Brasel AM, Quigley BM, et al. The ties that bind: perceived social support, stress, and IBS in severely affected patients. Neurogastroenterol Motil 2010;22:893-900.
6. Choung RS, Locke GR 3rd, Zinsmeister AR, Schleck CD, Talley NJ. Psychosocial distress and somatic symptoms in community subjects with irritable bowel syndrome: a psychological component is the rule. Am J Gastroenterol 2009;104:1772-1779.
7. Shen L, Kong H, Hou X. Prevalence of irritable bowel syndrome and its relationship with psychological stress status in Chinese university students. J Gastroenterol Hepatol 2009;24:1885-1890.
8. Blanchard EB, Lackner JM, Jaccard J, et al. The role of stress in symptom exacerbation among IBS patients. J Psychosom Res 2008;64:119-128.
9. Mayer EA, Naliboff BD, Chang L, Coutinho SV. Stress and irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2001;280:G519-G524.
10. Dufton LM, Konik B, Colletti R, et al. Effects of stress on pain threshold and tolerance in children with recurrent abdominal pain. Pain 2008;136:38-43.
11. Chitkara DK, van Tilburg MA, Blois-Martin N, Whitehead WE. Early life risk factors that contribute to irritable bowel syndrome in adults: a systematic review. Am J Gastroenterol 2008;103:765-774.
12. Videckis EJ, Adeyemo M, Licudine A, et al. Childhood trauma is associated with hypothalamic-pituitary-adrenal axis responsiveness in irritable bowel syndrome. Gastroenterology 2009;137:1954-1962.
13. Leserman J, Drossman DA. Relationship of abuse history to functional gastrointestinal disorders and symptoms: some possible mediating mechanisms. Trauma Violence Abuse 2007;8:331-343.
14. Gwee KA, Leong YL, Graham C, et al. The role of psychological
Muriel Larauche, et al.

15. Spiller R, Garsed K. Infection, inflammation, and the irritable bowel syndrome. Dig Liver Dis 2009;41:844-849.

16. Mulak A, Bonaz B. Irritable bowel syndrome: a model of the brain-gut interactions. Med Sci Monit 2004;10:RA55-RA62.

17. Barreau F, Ferrier L, Fioramonti J, Bueno L. New insights in the etiology and pathophysiology of irritable bowel syndrome: contribution of neonatal stress models. Pediatr Res 2007;62:240-245.

18. Qin HY, Wu JC, Tong XD, Sung JJ, Xu HX, Bian ZX. The role of brain corticotropin-releasing factor 1 (CRF1) antagonist in the c-fos expression in brain nuclei by noxious and non-noxious colonic distension: role of afferent C-fibers and 5-HT3 receptors. Brain Res 2003;966:253-264.

19. Wang Z, Bradesi S, Maarek JM, et al. Regional brain activation in corticotropin-releasing hormone analogs-containing neurons in rat brain. Brain Res 2009;1247:79-91.

20. Akkermans LM, Wiegant VM. Long-lasting changes in central nervous system responsivity to colonic distention after stress in rats. J Neurogastroenterol Motil 2010;16:306-314.

21. Taché Y, Martinez V, Million M, Wang L. Stress and the gastrointestinal tract III. Stress-related alterations of gut motor function: role of brain corticotropin-releasing factor receptors. Endocrinology 2003;144:2396-2403.

22. Koob GF, Heinrichs SC. A role for corticotropin-releasing factor releasing factor and urocortin in behavioral responses to stressors. Brain Res 1990;516:141-152.

23. Bale TL, Vale WW. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004;44:525-557.

24. Turnbull AV, Rivier C. Corticotropin-releasing factor and their ligands. Pharmacol Rev 2003;55:21-26.

25. Bale TL, Vale WW. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004;44:525-557.

26. Turnbull AV, Rivier C. Corticotropin-releasing factor (CRF) and endocrine responses to stress: CRF receptors, binding protein, and related peptides. Proc Soc Exp Biol Med 1997;215:1-10.

27. Taché Y, Martinez V, Million M, Wang L. Stress and the gastrointestinal tract III. Stress-related alterations of gut motor function: role of brain corticotropin-releasing factor receptors. J Physiol Gastrointest Liver Physiol 2001;280:G173-G177.

28. Traub RJ, Silva E, Gebhart GF, Solodkin A. Noxious colorectal distention induced-c-fos protein in limbic brain structures in the rat. Neurosci Lett 1996;215:163-168.

29. Lazovic J, Wizos HF, Yang QX, et al. Regional activation in the rat brain during visceral stimulation detected by c-fos expression and fMRI. Neurogastroenterol Motil 2005;17:548-556.

30. Wang Z, Bradesi S, Maarek JM, et al. Regional brain activation in conscious, nonrestrained rats in response to noxious visceral stimulation. Pain 2008;138:233-243.

31. Traub RJ, Silva E, Gebhart GF, Solodkin A. Noxious colorectal distention induced-c-fos protein in limbic brain structures in the rat. Neurosci Lett 1996;215:163-168.

32. Lazovic J, Wizos HF, Yang QX, et al. Regional activation in the rat brain during visceral stimulation detected by c-fos expression and fMRI. Neurogastroenterol Motil 2005;17:548-556.
Stress-Related Alterations of Visceral Sensation

Acad Sci 1995;771:396-418.

50. Yorimitsu M, Okada S, Yamaguchi-Shima N, Shimizu T, Arai J, Yokotani K. Role of brain adrenergic receptors in the corticotropin-releasing factor-induced central activation of sympatho-adrenomedullary outflow in rats. Life Sci 2008;82:487-494.

51. Usui D, Yamaguchi-Shima N, Okada S, Shimizu T, Wakiyugi H, Yokotani K. Selective activation of the sympathetic ganglia by centrally administered corticotropin-releasing factor in rats. Auton Neurosci 2009;146:111-114.

52. Tsatsanis C, Dermitsaki E, Venihaki M, et al. The corticotropin-releasing factor (CRF) family of peptides as local modulators of adrenal function. Cell Mol Life Sci 2007;64:1638-1655.

53. Valentino RJ, Foote SL, Page ME. The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic media tion of stress responses. Ann N Y Acad Sci 1993;697:173-188.

54. Kosoyan HP, Wei JY, Taché Y. Intracisternal sauvagine is more potent than corticotropin-releasing factor to decrease gastric vagal efferent activity in rats. Peptides 1999;20:851-858.

55. Wiersma A, Bohus B, Koolhaas JM. Corticotropin-releasing hormone microinjection in the central amygdala diminishes a cardiac parasympathetic outflow under stress-free conditions. Brain Res 1993;625:219-227.

56. Friedman EM, Irwin MR. Modulation of immune cell function by the autonomic nervous system. Pharmacol Ther 1997;74:27-38.

57. Taché Y. The parasympathetic nervous system in the pathophysiology of the gastrointestinal tract. In: Bolis CL, Licinio J, Govoni S, eds. Handbook of autonomic nervous system in health and diseases. Chapter 15. New York: Marcel Dekker, Inc., 2002;463-503.

58. Hobooper F, Ising M. Central CRH system in depression and anxiety - evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 2008;583:330-337.

59. Fukuda S. Role of corticotropin-releasing hormone in irritable bowel syndrome and intestinal inflammation. J Gastroenterol 2007;42(suppl 17):S8-51.

60. Taché Y, Brunnhuber S. From Hans Selye's discovery of biological stress to the identification of corticotropin-releasing factor signaling pathways: implication in stress-related functional bowel diseases. Ann N Y Acad Sci 2008;1148:29-41.

61. Million M, Maillot C, Adelson DA, et al. Peripheral injection of sauvagine prevents repeated colorectal distension-induced visceral pain in female rats. Peptides 2005;26:1188-1195.

62. Million M, Wang L, Wang Y, et al. CRF2 receptor activation prevents colorectal distension induced visceral pain and spinal ERK1/2 phosphorylation in rats. Gut 2006;55:172-181.

63. Skórzewska A, Lehner M, Hamed A, et al. The effect of CRF2 receptor antagonists on rat conditioned fear responses and c-Fos and CRF expression in the brain limbic structures. Behav Brain Res 2011;221:155-165.

64. Larache M, Kiani C, Taché Y. Corticotropin releasing factor signaling in colon and ileum: regulation by stress and pathophysiological implications. J Physiol Pharmacol 2009;60(suppl 7):S3-46.

65. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009;139:267-284.

66. Sengupta JN. Visceral pain: the neurophysiological mechanism. Handb Exp Pharmacol 2009;194:31-74.

67. Robinson DR, Gebhart GF. Inside information: the unique features of visceral sensation. Mol Interv 2008;8:242-253.

68. Grundy D. Neuroanatomy of visceral nociception: vagal and splanchnic afferent. Gut 2002;51(suppl 1):i2-i3.

69. Blackshaw LA, Brooks SJ, Grundy D, Schernmann J. Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil 2007;19:1-19.

70. Ness TJ, Fillingim RB, Randich A, Backensto EM, Faught E. Low intensity vagal nerve stimulation lowers human thermal pain thresholds. Pain 2000;86:81-85.

71. Randich A, Gebhart GF. Vagal afferent modulation of nociception. Brain Res Brain Rev 1992;17:77-99.

72. Sugiuira Y, Terui N, Hosoya Y, Tonosaki Y, Nishiyama K, Honda T. Quantitative analysis of central terminal projections of visceral and somatic unmyelinated (C) primary afferent fibers in the guinea pig. J Comp Neurol 1993;332:313-325.

73. Wang G, Tang B, Traub RJ. Differential processing of noxious colonic input by thoracolumbar and lumbosacral dorsal horn neurons in the rat. J Neurophysiol 2005;94:3788-3794.

74. Price DD. Central neural mechanisms that interrelate sensory and affective dimensions of pain. Mol Int Rev 2002;2:392-403, 339.

75. Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res Rev 2009;60:214-223.

76. Tsuuruoka M, Wang D, Tamaoki J, Inoue T. Descending influence from the nucleus locus coeruleus/subcoeruleus on visceral nociceptive transmission in the rat spinal cord. Neuroscience 2010;165:1019-1024.

77. Zhou M, Gebhart GF. Facilitation and attenuation of a visceral nociceptive reflex from the rostroventral medulla in the rat. Gastroenterology 2002;122:1007-1019.

78. Ness TJ, Gebhart GF. Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudoafffective reflexes in the rat. Brain Res 1988;430:153-169.

79. Christianson JA, Gebhart GF. Assessment of colon sensitivity by luminal distraction in mice. Nat Protoc 2007;2:2624-2631.

80. Larsson M, Arvidsson S, Ekman C, Bayati A. A model for chronic stress to the identification of corticotropin-releasing factor signaling pathways: implication in stress-related functional bowel diseases. Ann N Y Acad Sci 2008;1148:29-41.

81. Bradesi S, Schwetz I, Ennes HS, et al. Repeated exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 2005;289:G42-G53.

82. Welting O, Van Den Wijngaard RM, De Jonge WJ, Holman R, Boeckxstaens GE. Assessment of visceral sensitivity using radio telemetry in a rat model of maternal separation. Neurogastroenterol Motil 2005;17:838-845.

83. Nijsen MJ, Ongena NG, Caille B, Meulmans AL. Telemetric animal model to evaluate visceral pain in the freely moving rat. Pain 2003;105:115-123.

84. Klueh U, Kreutzler DL. Murine model of implantable glucose sensors: a novel model for glucose sensor development. Diabetes Technol Ther 2005;7:727-737.

85. Marois Y, Roy R, Vidovszky T, et al. Histopathological and immunological investigations of synthetic fibres and structures used in three prosthetic anterior cruciate ligaments: in vivo study in the rat.
100. Bouin M, Larsson M, Larsson H, Lindstrom E, Martinez V. Assessment of visceral pain-related pseudo-affective responses to colorectal distension in mice by intracolonic manometric recordings. J Pain 2006;7:108-118.

101. Hotoleau C, Popp R, Trifa AP, Nedelu L, Dumitrascu DL. Genetic determination of irritable bowel syndrome. World J Gastroenterol 2008;14:6636-6640.

102. Camilleri M. Genetics and irritable bowel syndrome: from genomes to intermediate phenotype and pharmacogenetics. Dig Dis Sci 2009;54:2318-2324.

103. Zacchelli M, Camilleri M, Nixon Andreaus, A, et al. Association of TNFSF15 polymorphism with irritable bowel syndrome. Gut Published Online First: 2 June 2011. doi:10.1136/gut.2011.241877

104. Markoutski T, Karantanos T, Gazoul M, Amagou NP, Ladas SD, Karasmanis DG. Serotonin transporter and G protein beta3 subunit gene polymorphisms in Greeks with irritable bowel syndrome. Dig Dis Sci Published Online First: 11 May 2011. doi: 10.1007/s10620-011-1726-7

105. Vazquez-Roque MH, Camilleri M, Carlson P, et al. HLA-DQ genotype is associated with accelerated small bowel transit in patients with diarrhea-predominant irritable bowel syndrome. Eur J Gastroenterol Hepatol 2011;23:481-487.

106. Dinan TG, Cryan J, Shanahan F, Keeling PW, Quigley EM. IBS: An epigenetic perspective. Nat Rev Gastroenterol Hepatol 2010;7:465-471.

107. Wu HH, Wang S. Strain differences in the chronic mild stress animal model of depression. Behav Brain Res 2010;213:94-102.

108. Porterfield VM, Zimomra ZR, Caldwell EA, Camp RM, Gabella KM, Johnson JD. Rat strain differences in restraint stress-induced brain cytokines. Neuroscience 2011;188:48-54.

109. O'Mahony CM, Clarke G, Gibney S, Dinan TG, Cryan JF. Strain differences in the biochemical response to chronic restraint stress in the rat: relevance to depression. Pharmacol Biochem Behav 2011;97:690-699.

110. Shepard JD, Myers DA. Strain differences in anxiety-like behavior: association with corticotropin-releasing factor. Behav Brain Res 2008;186:239-245.

111. Gunter WD, Porterfield JD, Foreman RD, Myers DA, Green WD. Brain cytokines. Neuroscience 2011;188:48-54.

112. Meaney MJ, Szyf M, Seckl JR. Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med 2007;13:269-277.

113. Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization determines the stress-axis response in mice. J Physiol 2004;559:887-895.

114. O'Mahony SM, Hyland NP, Dinan TG, Cryan JF. Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacol (Berl) 2011;214:71-88.

115. Rosztochy A, Fiamonti J, Jarmay K, Barreau F, Wittmann T, Buino L. Influence of sex and experimental protocol on the effect of maternal deprivation on rectal sensitivity to distension in the adult rat. Neurogastroenterol Motil 2003;15:679-686.

116. Plotsky PM, Meaney MJ. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res 1993;18:195-200.

117. Coutinho SV, Plotsky PM, Sablad M, et al. Neonatal maternal sep-
aration alters stress-induced responses to visceral somatic nociceptive stimuli in rat. Am J Physiol Gastrointest Liver Physiol 2002; 282:G307-G316.

118. Barreau F, Carter C, Ferrier L, Fioramonti J, Baueno L. Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology 2004; 127:524-534.

119. Lin C, Al-Chaer ED. Long-term sensitization of primary afferents in adult rats exposed to neonatal colon pain. Brain Res 2003; 971:73-82.

120. Wang G, Ji Y, Lidow MS, Traub RJ. Neonatal hind paw injury alters processing of visceral and somatic nociceptive stimuli in the adult rat. J Pain 2004;5:440-449.

121. LaPrairie JL, Murphy AZ. Neonatal injury alters adult pain sensitivity by increasing opioid tone in the periaqueductal gray. Front Behav Neurosci 2009;3:31.

122. Bonaz B, Taché Y. Water-avoidance stress-induced c-fos expression in the rat brain and stimulation of fecal output: role of corticotropin-releasing factor. Brain Res 1994;641:21-28.

123. Enck P, Merlin V, Erckenbrecht JF, Wienbeck M. Stress effects on gastrointestinal transit in the rat. Gut 1989;30:455-459.

124. LaPrairie JL, Murphy AZ. Neonatal injury alters adult pain sensitivity by increasing opioid tone in the periaqueductal gray. Front Behav Neurosci 2009;3:31.

125. Bennett EJ, Tennant CC, Piesse C, Badcock CA, Kellow JE. Level of stress influences the expression of stress-induced behavioural sensitisation. J Psychopharmacol 2003;17:21-29.

126. Bennett EJ, Tennant CC, Piesse C, Badcock CA, Kellow JE. Level of stress influences the expression of stress-induced behavioural sensitisation. J Psychopharmacol 2003;17:21-29.

127. Chang L. Review article: epidemiology and quality of life in functional gastrointestinal disorders. Aliment Pharmacol Ther 2004;19:83-91.

128. Klooker TK, Braak B, Painter RC, et al. Exposure to severe wartime conditions in early life is associated with an increased risk of irritable bowel syndrome: a population-based cohort study. Am J Gastroenterol 2009;104:2250-2256.

129. Collins SM, Vallance B, Barbara G, Borgaonkar M. Putative inflammatory and immunological mechanisms in functional bowel disorders. Baillieres Best Pract Res Clin Gastroenterol 1999;13:429-436.

130. Green PG, Alvarez P, Gear RW, Mendoza D, Levine JD. Further validation of a model of fibromyalgia syndrome in the rat. J Pain Published Online First: 8 Apr 2011. doi:10.1016/j.jpain.2011.01.006

131. Zheng J, Babygirija R, Bullul M, Cercjak D, Ludwig K, Takahashi T. Hypothalamic oxytocin mediates adaptation mechanism against chronic stress in rats. Am J Physiol Gastrointest Liver Physiol 2010;299:G946-G953.

132. Patel S, Hillard CJ. Adaptations in endocannabinoid signaling in response to repeated homotypic stress: a novel mechanism for stress habituation. Eur J Neurosci 2008;27:2821-2829.

133. Winston JH, Xu GY, Sarna SK. Adrenergic stimulation mediates visceral hypersensitivity to colorectal distension following heterotypic chronic stress. Gastroenterology 2010;138:294-304.

134. Spiller RC. Postinfecctious irritable bowel syndrome. Gastroenterology 2003;124:1662-1671.
152. Spiller R, Garsed K. Postinfectious irritable bowel syndrome. Gastroenterology 2009;136:1979-1988.
153. Long Y, Liu Y, Tong J, Qian W, Hou X. Effectiveness of trimethobenzamide on modulating intestinal hypercontractility in a mouse model of postinfectious irritable bowel syndrome. Eur J Pharmacol 2010;636:159-165.
154. Bercik P, Wang L, Verdú EF, et al. Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology 2004;127:179-187.
155. McLean PG, Picard C, García-Villar R, More J, Fioramonti J, Buénó L. Effects of nematode infection on sensitivity to intestinal distension: role of tachykinin NK2 receptors. Eur J Pharmacol 1997;337:279-282.
156. Vergnolle N. Postinflammatory visceral sensitivity and pain mechanisms. Neurogastroenterol Motil 2008;20(suppl 1):73-80.
157. Keshane J, O'Mahony C, O'Mahony L, O'Mahony S, Quigley EM, Shanahan F. Irritable bowel syndrome-type symptoms in patients with inflammatory bowel disease: a real association or reflection of occult inflammation? Am J Gastroenterol 2010;105:1788, 1789-1794.
158. Long MD, Drossman DA. Inflammatory bowel disease, irritable bowel syndrome, or what?: a challenge to the functional-organic dichotomy. Am J Gastroenterol 2010;105:1796-1798.
159. Van Hoboken EA, Thijssen AY, Verhaaren R, et al. Symptoms in patients with ulcerative colitis remission are associated with visceral hypersensitivity and mast cell activity. Scand J Gastroenterol Published Online First: 30 May 2011. doi:10.3109/00365521.2011.579136
160. Burton MB, Gebhart GF. Effects of intracolonic acetic acid on responses to colorectal distension in the rat. Brain Res 1995;672:77-82.
161. Palecek J, Willis WD. The dorsal column pathway facilitates visceromotor responses to colorectal distension after colon inflammation in rats. Pain 2003;104:501-507.
162. Ji Y, Tang B, Traub RJ. Modulatory effects of estrogen and progesterone on colorectal hyperalgesia in the rat. Pain 2005;117:333-442.
163. Traub RJ, Murphy A. Colon inflammation induces fos expression in the thoracolumbar spinal cord increasing activity in the spinoparabrachial pathway. Pain 2002;91:93-102.
164. Coutinho SV, Meller ST, Gebhart GF. Intracolonic zymosan produces visceral hyperalgesia in the rat that is mediated by spinal NMDA and non-NMDA receptors. Brain Res 1996;736:7-15.
165. Gschossmann JM, Liebregts T, Adam B, et al. Long-term effects of transient chemically induced colitis on the visceromotor response to mechanical colorectal distension. Dig Dis Sci 2004;49:96-101.
166. Adam B, Liebregts T, Gschossmann JM, et al. Severity of mucosal inflammation as a predictor for alterations of visceral sensory function in a rat model. Pain 2006;123:179-186.
167. Zhou Q, Price DD, Caudle RM, Verne GN. Visceral and somatic hypersensitivity in a subset of rats following TNBS-induced colitis. Pain 2008;134:9-15.
168. Traub RJ, Tang B, Ji Y, Pandya S, Yiantis H, Sun Y. A rat model of chronic postinflammatory visceral pain induced by deoxycyclic acid. Gastroenterology 2008;135:2073-2083.
169. Verma-Gandhu M, Verdú EF, Bercik P, et al. Visceral pain perception is determined by the duration of colitis and associated neuro-peptide expression in the mouse. Gut 2007;56:338-364.
170. Larsson MH, Rapp-L, Lindström E. Effect of DSS-induced colitis on visceral sensitivity to colorectal distension in mice. Neurogastroenterol Motil 2006;18:144-152.
171. Wlodarska M, Willing B, Keeney KM, et al. Antibiotic treatment alters the colon mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun 2011;79:1536-1545.
172. Mendall MA, Kumar D. Antibiotic use, childhood affluence and irritable bowel syndrome (IBS). Eur J Gastroenterol Hepatol 1998;10:39-62.
173. Verdú EF, Bercik P, Verma-Gandhu M, et al. Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 2006;55:182-190.
174. Pimentel M, Chatterjee S, Chow EJ, Park S, Kong Y. Neomycin improves constipation–predominant irritable bowel syndrome in a fashion that is dependent on the presence of methane gas: sub-analysis of a double-blind randomized controlled study. Dig Dis Sci 2006;51:1297-1301.
175. Pimentel M, Lembó A, Chey WD, et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med 2011;364:22-32.
176. Pimentel M, Morales W, Chua K, et al. Effects of Rifaximin Treatment and Retreatment in Nonconstipated IBS Subjects. Dig Dis Sci 2011;56:2067-2072.
177. Salonen A, de Vos WM, Palva A. Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology 2010;156(5 Pt 1):3205-3215.
178. Minocha A, Johnson WD, Wigington WC. Prevalence of abdominal and pelvic surgeries in patients with irritable bowel syndrome: comparison between Caucasian and African Americans. Am J Med Sci 2008;335:82-88.
179. Li S, Yu Y, Prakash R. Possible pathogenetic roles of abdominal surgery in irritable bowel syndrome. Med Hypotheses 2011;76:497-499.
180. Miranda A, Peles S, Rudolph C, Shaker R, Sengupta JN. Altered visceral sensation in response to somatic pain in the rat. Gastroenterology 2004;126:1082-1089.
181. Cameron DM, Brennan TJ, Gebhart GF. Hind paw incision in the rat produces long-lasting colon hypersensitivity. J Pain 2008;9:246-253.
182. Whitehead WE, Palsson O, Jones KR. Systematic review of the co-morbidity of irritable bowel syndrome with other disorders: what are the causes and implications? Gastroenterology 2002;122:1140-1156.
183. Pang X, Boucher W, Triadafilopoulos G, Sant GR, Theoharides TC. Mast cell and substance P-positive nerve involvement in a patient with both irritable bowel syndrome and interstitial cystitis. Urology 1996;47:436-438.
184. Peters KM, Killinger KA, Ibrahim IA. Childhood symptoms and events in women with interstitial cystitis/painful bladder syndrome. Urology 2009;73:258-262.
185. Pezzone MA, Liang R, Fraser MO. A model of neural cross-talk and irritation in the pelvic: implications for the overlap of chronic pelvic pain disorders. Gastroenterology 2005;128:1953-1964.
186. Miranda A, Mickle A, Schmidt J, et al. Neonatal cystitis-induced colonic hypersensitivity in adult rats: a model of visceral-vascular...
Stress-Related Alterations of Visceral Sensation

convergence. Neurogastroenterol Motil 2011;23:683-e281.
187. Van Oudenhove L, Coen SJ, Aziz Q. Functional brain imaging of gastrointestinal sensation in health and disease. World J Gastroenterol 2007;13:3438-45.
188. Seminowicz DA, Mikulius DJ, Davis KD. Cognitive modulation of pain-related brain responses depends on behavioral strategy. Pain 2004;112:48-58.
189. Mayer EA, Tillisch K. The brain-gut axis in abdominal pain syndromes. Annu Rev Med 2011;62:381-396.
190. Jarrett ME, Burr RL, Cain KC, Hertig V, Weisman P, Heitkemper MM. Anxiety and depression are related to autonomic nervous system function in women with irritable bowel syndrome. Dig Dis Sci 2003;48:386-394.
191. Tougas G. The autonomic nervous system in functional bowel disorders. Gut 2000;47(suppl 4):iv78-iv80; discussion iv 87.
192. Keita AV, Söderholm JD. The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterol Motil 2010;22:718-733.
193. Elsenbruch S, Wang L, Hollerbach S, Schedlowski M, Tougas G. Non-nociceptive environmental stress induces hyperalgesia, not analgesia, in pain and opioid-experienced rats. Neuropsychopharmacology 2007;32:2217-2228.
194. Lemos JC, Zhang G, Walsh T, et al. Stress-hyperresponsive WKY rats demonstrate depressed dorsal raphe neuronal excitability and dysregulated CRF-mediated responses. Neuropsychopharmacology 2011;36:721-734.
195. Overstreet DH, Djuric V. A genetic rat model of cholinergic hypersensitivity: implications for chemical intolerance, chronic fatigue, and asthma. Ann N Y Acad Sci 2001;933:92-102.
196. Olson PD, Riddle SD, Chang L. Meta-analysis: do irritable bowel syndrome patient subgroups and healthy controls. Gastroenterology 2007;132:789-90.
197. Butler RK, Finn DP. Stress-induced analgesia. Prog Neurobiol 2009;88:184-202.
198. Gui X, Carraway RE, Dobner PR. Endogenous neurotransmitters mediate visceral nociception and is required for stress-induced anti-nociception in mice and rats. Neuroscience 2004;126:1023-1032.
199. Million M, Wang L, Stenzel-Poore MP, et al. Enhanced pelvic responses to stressors in female CRF-overexpressing mice. Am J Physiol Gastrointest Liver Physiol 2003;289:G704-G712.
200. Rifat C, Labourejeras E, Laulin JP, Le RG, Richebe P, Simonnet G. Non-nociceptive environmental stress induces hyperalgesia, not analgesia, in pain and opioid-experienced rats. Neuropsychopharmacology 2007;32:2217-2228.
201. Berman SM, Naliboff BD, Suyenobu B, et al. Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with enhanced brain response to the visceral stimulus in women with irritable bowel syndrome. J Neurosci 2008;28:349-359.
202. Piche M, Arsenault M, Potrais P, Rainville P, Bouin M. Widespread hyperalgesia is related to altered pain inhibition processes in irritable bowel syndrome. Pain 2010;148:49-58.
203. Song GH, Venkatraman V, Ho KY, Chee MW, Yeoh KG, Wilder-Smith CH. Cortical effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls. Pain 2006;126:79-90.
204. Wilder-Smith CH, Schindler D, Lovblad K, Redmond SM, Nirkko A. Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls. Gut 2004;53:1595-1601.
205. Heitkemper MM, Chang L. Do fluctuations in ovarian hormones affect gastrointestinal symptoms in women with irritable bowel syndrome? Gend Med 2009;6(suppl 2):152-167.
206. Adyeema YM, Spiegel BM, Chang L. Meta-analysis: do irritable bowel syndrome symptoms vary between men and women? Aliment Pharmacol Ther 2010;32:738-755.
207. Fillingim RB, King CD, Ribeiro-Dasilva MC, Rahim-Williams B, Riley JL 3rd. Sex, gender, and pain: a review of recent clinical and experimental findings. J Pain 2009;10:447-485.
208. Mulak A, Taché Y. Sex difference in irritable bowel syndrome: do gonadal hormones play a role? Gastroenterol Pol 2010;17:89-97.
209. Koch KM, Palmer JL, Noordin N, Tomlinson JJ, Baidoo C. Sex and age differences in the pharmacokinetics of alosetron. Br J Clin Pharmacol 2002;53:238-242.
210. Taché Y, Million M, Nelson AG, Lamy C, Wang L. Role of corticotropin-releasing factor pathways in stress-related alterations of colonic motor function and viscerosensitivity in female rodents. Gend Med 2005;2:146-154.
221. Aloisi AM, Affaitati G, Ceccarelli I, et al. Estradiol and testosterone differently affect visceral pain-related behavioural responses in male and female rats. Eur J Pain 2010;14:602-607.

222. Ji Y, Tang B, Traub RJ. The visceralomotor response to colorectal distention fluctuates with the estrous cycle in rats. Neuroscience 2008;154:1562-1567.

223. Holdcroft A, Sapsed-Byrne S, Ma D, Hammal D, Forsling ML. Sex and oestrous cycle differences in visceralomotor responses and vasopressin release in response to colorectal distension in male and female rats anaesthetized with halothane. Br J Anaesth 2000; 85:907-910.

224. Sapsed-Byrne S, Ma D, Ridout D, Holdcroft A. Estrous cycle phase variations in visceralomotor and cardiovascular responses to colorectal distension in the anaesthetized rat. Brain Res 1996;742:10-16.

225. Ouyang A, Wrozn HF. Contribution of gender to pathophysiology and clinical presentation of IBS: should management be different in women? Am J Gastroenterol 2006;101(suppl 12):S602-S609.

226. Azpiroz F, Bouin M, Camilleri M, et al. Mechanisms of hypersensitivity in IBS and functional disorders. Neurogastroenterol Motil 2007;19(suppl 1):62-88.

227. Lembo T, Plourde V, Shui Z, et al. Effects of the corticotropin-releasing factor (CRF) on rectal afferent nerves in humans. Neurogastroenterol Motil 1996;8:9-18.

228. Nozu T, Kudaira M. Corticotropin-releasing hormone induces rectal hypersensitivity after repetitive painful rectal distention in healthy humans. J Gastroenterol 2006;41:740-744.

229. Sagami Y, Shimada Y, Tayama J, et al. Effect of a corticotropin-releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut 2004;53: 958-964.

230. Taylor J, Sagami Y, Shimada Y, Hong M, Fukudo S. Effect of alpha-helical CRH on quantitative electromyoecephalogram in patients with irritable bowel syndrome. Neurogastroenterol Motil 2007;19(suppl 1):471-483.

231. La JH, Sung TS, Kim HJ, Kim TW, Kang TM, Yang IS. Peripheral corticotropin releasing hormone mediates post-inflammatory visceral hypersensitivity in rats. World J Gastroenterol 2008;14:731-736.

232. Barreau F, Cartier C, Leveque M, et al. Pathways involved in gut mucosal barrier dysfunction induced in adult rats by maternal deprivation: corticotropin-releasing factor and nerve growth factor interplay. J Physiol 2007;580(Pt 1):347-356.

233. Wallon C, Yang PC, Keita AV, et al. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 2008;57:50-58.

234. Barbara G, Wang B, Stanghellini V, et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritative bowel syndrome. Gastroenterology 2007;132:26-37.

235. Van den Wijngaard RM, Koolker TK, de Jonge WJ, Boeckxstaens GE. Peripheral relays in stress-induced activation of visceral afferents in the gut. Auton Neurosci 2010;153:99-105.

236. Cencac N, Andrews CN, Holzhausen M, et al. Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest 2007;117:636-647.

237. Gold MS, Zhang L, Wrigley DL, Traub RJ. Prostaglandin E(2) modulates TTX-R I(Na) in rat colonic sensory neurons. J Neurophysiol 2002;88:1512-1522.

238. Van den Wijngaard RM, Koolker TK, Welting O, et al. Essential role for TRPV1 in stress-induced (mast cell-dependent) colonic hypersensitivity in maternally separated rats. Neurogastroenterol Motil 2009;21:1107-1109.

239. Holzer P. Gastrointestinal afferents as targets of novel drugs for the treatment of functional bowel disorders and visceral pain. Eur J Pharmacol 2001;429:177-193.

240. Jones RC, Xu L, Gebhart GF. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 2005;25:10981-10989.

241. Cregg R, Momim A, Rugiero F, Wood JN, Zhao J. Pain channelopathies. J Physiol 2010;588:Pt 11:1897-1904.

242. McRoberts JA, Coutinho SV, Marvizon JC, et al. Role of peripheral N-methyl-D-aspartate (NMDA) receptors in visceral nociception in rats. Gastroenterology 2001;120:1737-1748.

243. Yu YB, Yang J, Zuo XL, Gao LJ, Wang P, Li YQ. Transient receptor potential vanilloid-1 (TRPV1) and ankyrin-1 (TRPA1) participate in visceral hyperalgesia in chronic water avoidance stress rat model. Neurochem Res 2010;35:797-803.

244. Winston J, Shenoy M, Medley D, Naniwadekar A, Pasricha PJ. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology 2007;132:615-627.

245. Ravnefjord A, Brusberg M, Kang D, et al. Involvement of the transient receptor potential vanilloid 1 (TRPV1) in the development of acute visceral hyperalgnesia during colorectal distension in rats. Eur J Pharmacol 2009;611:85-91.

246. Piche T, Barbara G, Aubert P, et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut 2009;58:196-201.

247. Ait-Belgaoui A, Bradesi S, Fioramonti J, Theodorou V, Bueno L. Acute stress-induced hypersensitivity to colonic distention depends upon increase in paracellular permeability: role of myosin light chain kinase. Pain 2005;113:141-147.

248. Zhou Q, Ziang B, Verne GN. Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome. Pain 2009;146:41-46.

249. Santos J, Yang PC, Soderholm JD, Benjamin M, Perdue MH. Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut 2001;48:630-636.

250. Soderholm JD, Yang PC, Ceposin P, et al. Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology 2002;123:1099-1108.

251. Yu LC, Perdue MH. Role of mast cells in intestinal mucosal function: studies in models of hypersensitivity and stress. Immunol Rev 2001;179:61-73.

252. Vicario M, Guaita M, Alonso C, et al. Chronicological assessment of mast cell-mediated gut dysfunction and mucosal inflammation in a rat model of chronic psychosocial stress. Brain Behav Immun 2010;24:1166-1175.

253. Demaude J, Salvador-Cartier C, Fioramonti J, Ferrier L, Buomo L. Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction. Gut 2006;55:655-661.
254. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav Immun 2011;25:397-407.

255. Bailey MT, Dowd SE, Parry NM, Galley JD, Schauer DB, Lyte M. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect Immun 2010;78:1509-1519.

256. O'Mahony SM, Marchesi JR, Scully P, et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 2009;65:263-267.

257. Cryan JF, O'Mahony SM. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 2011;23:187-192.

258. Bercik P. The microbiota-gut-brain axis: learning from intestinal bacteria? Gut 2011;60:288-289.

259. Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 2011;108:3047-3052.

260. Rhee SH, Pothoulakis C, Mayer EA. Role of spinal microglia activation in visceral hyperalgesia induced by neonatal maternal separation and psychiatric illnesses. Brain Behav Immun 2010;24:218-222.

261. Liaw WJ, Stephens RL Jr, Binns BC, et al. Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord. Pain 2005;115:60-70.

262. Lin Y, Tian G, Roman K, et al. Increased glial glutamate transporter EAAT2 expression reduces visceral nociceptive response in mice. Am J Physiol Gastrointest Liver Physiol 2009;296:G129-G134.

263. Svensson CI, Hua XY, Protter AA, Powell HC, Yaksh TL. Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE(2) release and thermal hyperalgesia. Neuroreport 2003;14:1153-1157.

264. Gosselin RD, O'Connor RM, Tramuillas M, Julio-Peiper M, Dinan TG, Cryan JF. Riluzole normalizes early-life stress-induced visceral hypersensitivity in rats: role of spinal glutamate reuptake mechanisms. Gastroenterology 2010;138:2418-2425.

265. Tjong YW, Ip SP, Lao L, et al. Neonatal maternal separation elevates thalamic corticotrophin releasing factor type 1 receptor expression response to colonic distension in rats. Neuro Endocrinol Lett 2010;31:215-220.

266. Tillisch K, Mayer EA, Labus JS. Quantitative meta-analysis identifies brain regions activated during rectal distension in irritable bowel syndrome. Gastroenterology 2011;140:91-100.

267. Zhang R, Zou N, Li J, et al. Elevated expression of c-fos in central nervous system correlates with visceral hypersensitivity in irritable bowel syndrome (IBS): a new target for IBS treatment. Int J Colorectal Dis Published Online First: 22 Feb 2011. doi:10.1007/j.j.1388-011.04.020

268. Chang L. Brain responses to visceral and somatic stimuli in irritable bowel syndrome: a central nervous system disorder? Gastroenterol Clin North Am 2005;34:271-279.

269. Dayas CV, Buller KM, Crane JW, Yiu X, Day TA. Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Eur J Neurosci 2001;14:1143-1152.

270. Greenwood-Van Meerveld B, Gilson M, Gunter W, Sheppard J, Foreman R, Myers D. Stereotaxic delivery of corticosterone to the amygdala modulates colonic sensitivity in rats. Brain Res 2001;893:135-142.

271. Myers B, Dittmeyer K, Greenwood-Van MB. Involvement of amygdaloid corticosterone in altered visceral and somatic sensation. Behav Brain Res 2007;181:163-167.

272. Myers B, Greenwood-Van Meerveld B. Corticosteroid receptor-mediated mechanisms in the amygdala regulate anxiety and colonic sensitivity. Am J Physiol Gastrointest Liver Physiol 2007;292:G1622-G1629.

273. Kim SH, Han JE, Hwang S, Oh DH. The expression of corticotropin-releasing factor in the central nucleus of the amygdala, induced by colorectal distension, is attenuated by general anesthesia. J Korean Med Sci 2010;25:1646-1651.

274. Nishii H, Nomura M, Aono H, Fujimoto N, Matsumoto T. Up-regulation of galanin and corticotropin-releasing hormone mRNAs in the key hypothalamic and amygdaloid nuclei in a mouse model of visceral pain. Regul Pept 2007;141:105-112.

275. Kosoyan HP, Grigoriadis DE, Taché Y. The CRF(1) receptor antagonist, NBI-35965, abolished the activation of locus coeruleus neurons induced by colorectal distension and intracisternal CRF in rats. Brain Res 2005;1056:85-96.
286. Curtis AL, Pavcovich LA, Grigoriadis DE, Valentino RJ. Previous stress alters corticotropin-releasing factor neurotransmission in the locus coeruleus. Neuroscience 1995;65:541-550.

287. Lechner SM, Curtis AL, Brons R, Valentino RJ. Locus coeruleus activation by colon distention: role of corticotropin-releasing factor and excitatory amino acids. Brain Res 1997;756:114-124.

288. Rouzade-Dominguez ML, Curtis AL, Valentino RJ. Role of Barrington’s nucleus in the activation of rat locus coeruleus neurons by colonic distension. Brain Res 2001;917:206-218.

289. Reyes BA, Glaser JD, Van Bockstaele EJ. Ultrastructural evidence for co-localization of corticotropin-releasing factor receptor and mu-opioid receptor in the rat nucleus locus coeruleus. Neurosci Lett 2007;413:216-221.

290. Reyes BA, Valentino RJ, Van Bockstaele EJ. Stress-induced intracellular trafficking of corticotropin-releasing factor receptors in rat locus coeruleus neurons. Endocrinology 2008;149:122-130.

291. Valentino RJ, Miselis RR, Pavcovich LA. Pontine regulation of pelvic viscera: pharmacological target for pelvic visceral dysfunctions. Trends Pharmacol Sci 1999;20:253-260.

292. Kuner R. Central mechanisms of pathological pain. Nat Med 2010;16:1258-1266.

293. Cheong E, Lee S, Choi BJ, Sun M, Lee CJ, Shin HS. Tuning thalamic firing modes via simultaneous modulation of T- and L-type Ca^{2+} channels controls pain sensory gating in the thalamus. J Neurosci 2008;28:13331-13340.

294. Ren Y, Zhang L, Lu Y, Yang H, Westlund KN. Central lateral thalamic neurons receive noxious visceral mechanical and chemical input in rats. J Neurophysiol 2009;102:244-258.

295. Zhuo M, Gebhart GF. Facilitation and attenuation of a visceral nociceptive reflex from the rostral ventromedial medulla in the rat. Gastroenterology 2002;122:1007-1019.

296. Sanoja R, Tortorici V, Fernandez C, Price TJ, Cervero F. Role of RVM neurons in capsaicin-evoked visceral nociception and referred hyperalgesia. Eur J Pain 2010;14:120.e1-9.

297. Martenson ME, Cetas JS, Heinricher MM. A possible neural basis for stress-induced hyperalgesia. Pain 2009;142:236-244.

298. Kearney DJ, Brown-Chang J. Complementary and alternative medicine for IBS in adults: mind-body interventions. Nat Clin Pract Gastroenterol Hepatol 2008;5:624-636.

299. Palsson OS, Drossman DA. Psychiatric and psychological dysfunction in irritable bowel syndrome: from animal models to clinical therapies. Exp Neurol Published Online First: 6 May 2011. doi:10.1016/j.expneurol.2011.04.020.

300. Blenckner B, Lackner JM, Sanders K, et al. A controlled evaluation of group cognitive therapy in the treatment of irritable bowel syndrome. Behav Res Ther 2007;45:633-648.

301. Blanchard EB, Lackner JM, Sanders K, et al. A controlled evaluation of group cognitive therapy in the treatment of irritable bowel syndrome. Behav Res Ther 2007;45:633-648.

302. Warrick JK, Clayton AH. Chronic episodic disorders in women. Psychiatr Clin North Am 2003;26:725-740.

303. Verdu B, Decoster J, Buclin T, Stiefel F, Berney A. Antidepressants for the treatment of chronic pain. Drugs 2008;68:2611-2632.

304. Larauche M, Mulak A, Taché Y. Stress and visceral pain: from animal models to clinical therapies. Exp Neurol Published Online First: 6 May 2011. doi:10.1016/j.expneurol.2011.04.020.

305. Camilleri M, Andresen V. Current and novel therapeutic options for irritable bowel syndrome management. Dig Liver Dis 2009;41:834-862.

306. Million M, Wang L, Adelson DW, Roman F, Dhop L, Taché Y. Pregabalin decreases visceral pain and prevents spinal neuronal activation in rats. Gut 2007;56:1482-1484.

307. Camilleri M. Review article: new receptor targets for medical therapy in irritable bowel syndrome. Aliment Pharmacol Ther 2010;31:33-46.

308. Collins SM, Denou E, Verdu EF, Bercik P. The putative role of the intestinal microbiota in the irritable bowel syndrome. Dig Liver Dis 2009;41:850-853.

309. Dukes GE, Mayer EA, Kelleher DL, Hicks KJ, Boardley RL, Alpers DH. A randomized, double blind, placebo (PLA) controlled, crossover study to evaluate the efficacy and safety of the corticotropin releasing factor 1 (CRF1) receptor antagonist (RA) GWS87608 in irritable bowel syndrome (IBS) patients (Pts). Neurogastroenterol Motil 2009;21(suppl 1):84.

310. Klooiker TK, Lutjens TK, van den Wijngaard RM, Boeckxstaens GE. The cannabinoid receptor agonist delta-9-tetrahydrocannabinol does not affect visceral sensitivity to rectal distension in healthy volunteers and IBS patients. Neurogastroenterol Motil 2011;23:30-35, e2.

311. Klooiker TK, Kuijken SD, Leu A, Boeckxstaens GE. Effect of long-term treatment with omeprazole on rectal sensation in patients with non-constipated irritable bowel syndrome. Aliment Pharmacol Ther 2007;26:605-615.

312. Bailey JE, Papadopoulos A, Diaper A, et al. Preliminary evidence of anxiolytic effects of the CRF1 receptor antagonist R317573 in the 7.5% CO2 proof-of-concept experimental model of human anxiety. J Psychopharmacol Published Online First: 9 May 2011. doi:10.1177/0269881111400650.