Spectroscopic Investigation of Light Strange S=-1 Λ, Σ and S=-2 Ξ Baryons

Chandni Menapara, and Ajay Kumar Rai
Department of Physics, Sardar Vallabhbhai National Institute of Technology, Surat-395007, Gujarat, India

Abstract: The present study is dedicated to light-strange Λ with strangeness $S=-1$, isospin $I=0$; Σ with $S=-1$, $I=1$ and Ξ baryon with $S=-2$ and $I=\frac{1}{2}$. In this article, hypercentral Constituent Quark Model with linear confining potential has been employed along with first order correction term to obtain the resonance masses for nearly upto 4 GeV. The calculated states include 1S-5S, 1P-4P, 1D-3D, 1F-2F and 1G (in few case) along with all the possible spin-parity assignments. Regge Trajectories have been explored for the linearity of the calculated masses for (n,M^2) and (J,M^2) respectively. Magnetic moments have been intensively studied for ground state spin $\frac{1}{2}$ and $\frac{3}{2}$, in addition to the configuration mixing for first negative parity state for Ξ. Lastly, transition magnetic moment and radiative decay width have been presented.

Keywords: Mass spectra, Strange baryon, Regge trajectory, Magnetic moment

PACS: 1 – 3 PACS codes (Physics and Astronomy Classification Scheme, https://publishing.aip.org/publishing/pacs/pacs-2010-regular-edition/)

1 Introduction

The objective for the study of hadrons is to reveal the possible degrees of freedom responsible for the way a given system appears. The quark confinement and asymptotic freedom has been the starting point of any theoretical and phenomenological study to understand quark dynamics. Hadron spectroscopy attempts to explore the excited mass spectrum along with the multiplet structure as well as spin-parity assignments. The light quark baryons form the basis of octet ($J=\frac{1}{2}$) and decuplet ($J=\frac{3}{2}$) as Ξ and Ξ^* respectively. The quark combination is uss for Ξ^0 and dss for Ξ^-. For mixed symmetry flavour wave-function in octet group,

$\Xi^0 \rightarrow \frac{1}{\sqrt{6}}(suss + uss - 2ssu)$

$\Xi^- \rightarrow \frac{1}{\sqrt{6}}(dss + sds - 2ssd)$

$\Xi^0 \rightarrow \frac{1}{\sqrt{2}}(uss - sus)$

$\Xi^- \rightarrow \frac{1}{\sqrt{2}}(dss - sds)$

For symmetric flavour wave-function in decuplet group,

$\Xi^{*0} \rightarrow \frac{1}{\sqrt{3}}(uss + sus + sss)$

$\Xi^{*-} \rightarrow \frac{1}{\sqrt{3}}(dss + sds + ssd)$

Similarly the Σ baryon with u, d and s constituent quarks have place in octet and decuplet with three possible combinations as uus, uds and udd.
Table 1: The Ξ listed by Particle Data Group (PDG\cite{1})

State	J^P	Status
$\Xi^0(1314)$	$\frac{1}{2}^+$	****
$\Xi^- (1321)$	$\frac{3}{2}^-$	****
$\Xi(1530)$	$\frac{1}{2}^+$	****
$\Xi(1620)$		*
$\Xi(1690)$		***
$\Xi(1820)$	$\frac{3}{2}^-$	***
$\Xi(1950)$		***
$\Xi(2030)$	$\frac{5}{2}^-$	***
$\Xi(2120)$		*
$\Xi(2250)$		**
$\Xi(2370)$		**
$\Xi(2500)$		*

The Λ baryon appearing in octet as I=0 has uds quark content however, it differs from Σ^0 based on the wave-function.

Experimental facilities across the world have been striving towards the study of strange hyperons. A recent study at CERN by ALICE Collaboration has established an attractive interaction of proton and Ξ^- \cite{3}. Activities in measuring weak decays of Ξ hyperon were reported by the KTeV Collaboration \cite{4} and by the NA48/1 Collaboration \cite{5} as well as BABAR Collaboration has been carrying out extensive studies \cite{6}. The photoproduction of Ξ has been observed by CLAS detector at Jefferson Lab \cite{7}. Also, recently JLab has proposed to explore the strange hyperon spectroscopy through secondary KL beam alongwith GlueX experiment \cite{8} and the findings shall expectantly give new directions and understanding of strange hyperons Σ, Λ and Ξ. The BESIII Collaboration observed $\Xi(1530)$ in baryon-antibaryon pair from charmonium decay \cite{9}. The upcoming experimental facility PANDA at FAIR-GSI has been highly expected to establish the whole spectrum of hyperons through proton-antiproton collisions \cite{10}. A Ξ dedicated study has been undertaken for mass, widths and decay modes by one of the PANDA group \cite{11,12}.

The excited states of hyperons have been investigated using phenomenological as well as theoretical approaches. Various models have attempted to reproduce the octet and decuplet ground states and a range of excited states. A recent review has summarized in details few of the states of strange baryons spectrum with theoretical and experimental aspects \cite{21}. L. Xiao et al. has intensively studied the strong decays of Ξ under Chiral quark model which may assist in determining possible spin-parity of a given state in strong decay \cite{22}. Some of the models have been summarized briefly in Section 3 which ranges from relativistic approach \cite{29}, instanton induced model \cite{30}, CI model \cite{31}, algebraic model \cite{32}, Skyrme model \cite{35}, etc. The present work has been lead on the phenomenological non-relativistic hypercentral Constituent Quark Model \cite{36}. Similar studies have been carried out for nucleons and delta baryons earlier which serve as a key to proceed towards exploring the strange baryons \cite{44,45}.

This paper is organized as follows: after the briefing of hadron spectroscopy and various experimental and applied coupled channel approach to study this dynamics \cite{15,16}. Also, two pole structure of $\Lambda(1405)$ is analyzed using chiral effective field theory \cite{17}. E. Klempt et al. has extensively reviewed the Λ and Σ hyperon spectrum based on experimental and theoretical studies focusing on all the known states of the spectrum \cite{18}. These spectrums are studied through photoproduction off the proton in ref \cite{19}. The study of strangeness S=−1, −2 becomes more interesting not only in high energy arena but also in astrophysical bodies as in neutron stars \cite{20}.

In case of Σ and Λ baryons, all the properties are not known completely. Most of the data for strange baryons have been based from earlier studies from bubble chamber for K^- reactions. The $\Lambda(1405)$ with $J^P = \frac{1}{2}^−$ is still a mysterious state in the lambda spectrum. This state is lower than the non-strange counterpart $N^*(1535)$. Recent studies have attempted to understand this state as some hadronic molecular \cite{13,14}. JPAC and Osaka-ANL group have

In case of Σ and Λ baryons, all the properties are not known completely. Most of the data for strange baryons have been based from earlier studies from bubble chamber for K^- reactions. The $\Lambda(1405)$ with $J^P = \frac{1}{2}^−$ is still a mysterious state in the lambda spectrum. This state is lower than the non-strange counterpart $N^*(1535)$. Recent studies have attempted to understand this state as some hadronic molecular \cite{13,14}. JPAC and Osaka-ANL group have
where m central Schrödinger equation is \[36\]

The Hamiltonian of the system is written with po-

tions based on them. Section 5 is dedicated to magnetic

dynamics of three body system

The hypercentral Constituent Quark Model (hCQM)

is based on a simple assumption of baryon as a system of three quarks

The hypercentral potential narrows down to hyperCoulomb

masses however this large mass parametrizes all the other

effects within a baryon. Thus, the CQMs have been em-

ployed for numerical solutions [28]. It undertakes the baryon as a

confined system of three quarks wherein the potential is

relativistic approach [23]. It undertakes the baryon as a

simple assumption of baryon as a system of three quarks

masses however this large mass parametrizes all the other

effects within a baryon. Thus, the CQMs have been em-

ployed for numerical solutions [28]. It undertakes the baryon as a

confined system of three quarks wherein the potential is

relativistic approach [23]. It undertakes the baryon as a

simple assumption of baryon as a system of three quarks

masses however this large mass parametrizes all the other

effects within a baryon. Thus, the CQMs have been em-

ployed for numerical solutions [28]. It undertakes the baryon as a

confined system of three quarks wherein the potential is

relativistic approach [23]. It undertakes the baryon as a

simple assumption of baryon as a system of three quarks

masses however this large mass parametrizes all the other

effects within a baryon. Thus, the CQMs have been em-

ployed for numerical solutions [28]. It undertakes the baryon as a

confined system of three quarks wherein the potential is

relativistic approach [23]. It undertakes the baryon as a

simple assumption of baryon as a system of three quarks

masses however this large mass parametrizes all the other

effects within a baryon. Thus, the CQMs have been em-

ployed for numerical solutions [28]. It undertakes the baryon as a

confined system of three quarks wherein the potential is

relativistic approach [23]. It undertakes the baryon as a

simple assumption of baryon as a system of three quarks

masses however this large mass parametrizes all the other

effects within a baryon. Thus, the CQMs have been em-

ployed for numerical solutions [28]. It undertakes the baryon as a

confined system of three quarks wherein the potential is

relativistic approach [23]. It undertakes the baryon as a

simple assumption of baryon as a system of three quarks

masses however this large mass parametrizes all the other

effects within a baryon. Thus, the CQMs have been em-

ployed for numerical solutions [28]. It undertakes the baryon as a

confined system of three quarks wherein the potential is

relativistic approach [23]. It undertakes the baryon as a

simple assumption of baryon as a system of three quarks

masses however this large mass parametrizes all the other

effects within a baryon. Thus, the CQMs have been em-

ployed for numerical solutions [28]. It undertakes the baryon as a

confined system of three quarks wherein the potential is

relativistic approach [23]. It undertakes the baryon as a

simple assumption of baryon as a system of three quarks

masses however this large mass parametrizes all the other

effects within a baryon. Thus, the CQMs have been em-

ployed for numerical solutions [28]. It undertakes the baryon as a

confined system of three quarks wherein the potential is

relativistic approach [23]. It undertakes the baryon as a

simple assumption of baryon as a system of three quarks

masses however this large mass parametrizes all the other

effects within a baryon. Thus, the CQMs have been em-

ployed for numerical solutions [28]. It undertakes the baryon as a

confined system of three quarks wherein the potential is

relativistic approach [23]. It undertakes the baryon as a

simple assumption of baryon as a system of three quarks

masses however this large mass parametrizes all the other

effects within a baryon. Thus, the CQMs have been em-

ployed for numerical solutions [28]. It undertakes the baryon as a

confined system of three quarks wherein the potential is

relativistic approach [23]. It undertakes the baryon as a

simple assumption of baryon as a system of three quarks

masses however this large mass parametrizes all the other

effects within a baryon. Thus, the CQMs have been em-

ployed for numerical solutions [28]. It undertakes the baryon as a

confined system of three quarks wherein the potential is

relativistic approach [23]. It undertakes the baryon as a

simple assumption of baryon as a system of three quarks

masses however this large mass parametrizes all the other

effects within a baryon. Thus, the CQMs have been em-

ployed for numerical solutions [28]. It undertakes the baryon as a

confined system of three quarks wherein the potential is

relativistic approach [23]. It undertakes the baryon as a

simple assumption of baryon as a system of three quarks

masses however this large mass parametrizes all the other

effects within a baryon. Thus, the CQMs have been em-

ployed for numerical solutions [28]. It undertakes the baryon as a

confined system of three quarks wherein the potential is

relativistic approach [23]. It undertakes the baryon as a

simple assumption of baryon as a system of three quarks

masses however this large mass parametrizes all the other

2 Theoretical Background

The Constituent Quark Model (CQM) is based on a

confined system of three quarks wherein the potential is

hypercentral one. The dynamics of three body system

are considered and calculated the respective contribu-

dence has also been added as \(\frac{1}{m} V^1(x) \) [27].

where \(C_F \) and \(C_A \) are Casimir elements of fundamental

and adjoint representation.

The resonance masses have been obtained with and

without the first order correction term. The constituent quark

masses have been taken to be \(m_q = m_s = 0.290 \text{ MeV} \) and

\(m_\pi = 0.500 \text{ MeV} \). Mathematica Notebook has been em-

ployed for numerical solutions [28].

3 Results and Discussion for the Resonance Mass Spectra

In the present work, the resonance masses are cal-

culated for radial and orbital states from 1S-5S, 1P-4P,

1D-3D and 1F-2F. Also, all the possible spin-parity con-

figuration for each state with \(\lambda = 0 \) to \(\lambda = 2 \) and \(\lambda = 1 \) have been considered and calculated the respective contribution based on the model discussed in section 2 including with and without first order corrections. For S-state, possible total angular momentum and parity are \(\frac{1}{2}^+ \) and \(\frac{3}{2}^+ \), for P-state the range goes from \(\frac{1}{2}^- \) to \(\frac{3}{2}^- \), for D-state the range is \(\frac{3}{2}^+ \) to \(\frac{7}{2}^+ \) and for F-state, it is \(\frac{5}{2}^- \) to \(\frac{9}{2}^- \). Only few experimentally established states with four star status available are mentioned in respective tables. In the tables, Masses_1 and Masses_2 represents resonance masses without and with first order correction respectively in the units of MeV.

An attempt has been made to summarize the cal-

culated masses in present article along with those by

Here \(\gamma \) replaces the angular momentum quantum number by the relation as \(l(l+1) \rightarrow \frac{l^2}{4} + \gamma \). The choice of hypercentral potential narrows down to hyperCoulomb one i.e. \(-\frac{e^2}{x}\). The confinement term here is chosen to be of linear nature.

\[V^0(x) = -\frac{\tau}{x} + \alpha x \] (5)

Here, \(\tau = \frac{2}{5} \alpha \) with \(\alpha \) being running coupling constant and \(\alpha \) is a parameter based on the fitting of ground state for a given system.

The \(V_{SD}(x) \) accounts for the spin-dependent terms leading to hyperfine interactions.

\[V_{SD}(x) = V_{SS}(x)(\mathbf{S}_p \cdot \mathbf{S}_\lambda) + V_{SS}(x)(\mathbf{S}_p \cdot \mathbf{S}_\lambda) \] (6)

where \(V_{SS}(x) \) and \(V_{SD}(x) \) and \(V_{DF}(x) \) are spin-spin, spin-orbit and tensor terms respectively [26]. In the present study, first order correction term to potential with \(\frac{1}{m} \) dependence has also been added as \(\frac{1}{m} V^1(x) \) [27].

\[V^1(x) = -C_F C_A \frac{a^2_s}{4x^2} \] (7)

The hyperradius and hyperangle are defined as

\[x = \sqrt{\rho^2 + \lambda^2}; \quad \xi = \arctan\left(\frac{\rho}{\lambda}\right) \] (2)

The Hamiltonian of the system is written with potential term solely depending on hyperradius \(x \) of three body systems

\[H = \frac{p^2}{2m} + V^0(x) + V_{SD}(x) \] (3)

where \(m = \frac{2m_p m_s}{m_p + m_s} \) is the reduced mass. Thus the hyper-

radial part of the wave-function as determined by hyper-

central Schrodinger equation is [30]

\[\left[\frac{d^2}{dx^2} + \frac{5}{x} \frac{d}{dx} - \frac{\gamma(\gamma+4)}{x^2} \right] \psi(x) = -2m[E - V(x)]\psi(x) \] (4)
Table 2: S-wave of Ξ baryon (in MeV)

State	J^P	$\text{Mass}_{\text{cal}1}$	$\text{Mass}_{\text{cal}2}$	Mass_{exp}
1S	$\frac{1}{2}^+$	1322	1321	1321
	$\frac{3}{2}^+$	1531	1524	1532
2S	$\frac{1}{2}^+$	1884	1891	
	$\frac{3}{2}^+$	1971	1964	
3S	$\frac{1}{2}^+$	2361	2372	
	$\frac{3}{2}^+$	2457	2459	
4S	$\frac{1}{2}^+$	2935	2954	
	$\frac{3}{2}^+$	3029	3041	
5S	$\frac{1}{2}^+$	3591	3620	
	$\frac{3}{2}^+$	3679	3702	

Table 3: P-wave of Ξ baryon (in MeV)

State	J^P	$\text{Mass}_{\text{cal}1}$	$\text{Mass}_{\text{cal}2}$	Mass_{exp}
$1^2P_{1/2}$	$\frac{1}{2}^-$	1886	1889	
$1^2P_{3/2}$	$\frac{3}{2}^-$	1871	1873	1823
$1^4P_{1/2}$	$\frac{1}{2}^-$	1894	1897	
$1^4P_{3/2}$	$\frac{3}{2}^-$	1879	1881	1823
$1^4P_{5/2}$	$\frac{5}{2}^-$	1859	1859	
$2^2P_{1/2}$	$\frac{1}{2}^-$	2361	2373	
$2^2P_{3/2}$	$\frac{3}{2}^-$	2337	2347	
$2^4P_{1/2}$	$\frac{1}{2}^-$	2373	2386	
$2^4P_{3/2}$	$\frac{3}{2}^-$	2349	2360	
$2^4P_{5/2}$	$\frac{5}{2}^-$	2318	2325	
$3^2P_{1/2}$	$\frac{1}{2}^-$	2929	2948	
$3^2P_{3/2}$	$\frac{3}{2}^-$	2894	2913	
$3^4P_{1/2}$	$\frac{1}{2}^-$	2946	2966	
$3^4P_{3/2}$	$\frac{3}{2}^-$	2912	2931	
$3^4P_{5/2}$	$\frac{5}{2}^-$	2865	2884	
$4^2P_{1/2}$	$\frac{1}{2}^-$	3577	3609	
$4^2P_{3/2}$	$\frac{3}{2}^-$	3532	3563	
$4^4P_{1/2}$	$\frac{1}{2}^-$	3599	3632	
$4^4P_{3/2}$	$\frac{3}{2}^-$	3554	3586	
$4^4P_{5/2}$	$\frac{5}{2}^-$	3494	3524	
Table 4: D-wave of Ξ baryon (in MeV)

State	J^P	Mass_{cal}1	Mass_{cal}2	Mass_{exp}[1]
1^2D_3/2	3/2^-	2270	2281	
1^2D_5/2	3/2^-	2234	2244	
1^4D_1/2	1/2^+	2310	2322	
1^4D_3/2	3/2^-	2283	2295	
1^4D_5/2	5/2^-	2247	2257	
1^4D_7/2	7/2^-	2203	2211	
2^2D_3/2	3/2^-	2819	2842	
2^2D_5/2	5/2^-	2771	2791	
2^4D_1/2	1/2^-	2874	2899	
2^4D_3/2	3/2^-	2838	2861	
2^4D_5/2	5/2^-	2790	2810	
2^4D_7/2	7/2^-	2729	2747	
3^2D_3/2	3/2^-	3455	3489	
3^2D_5/2	5/2^-	3391	3423	
3^4D_1/2	1/2^-	3527	3562	
3^4D_3/2	3/2^-	3479	3513	
3^4D_5/2	5/2^-	3415	3448	
3^4D_7/2	7/2^-	3336	3366	

Table 5: F-wave of Ξ baryon (in MeV)

State	J^P	Mass_{cal}1	Mass_{cal}2	Mass_{exp}[1]
1^2F_5/2	5/2^-	2713	2736	
1^2F_7/2	7/2^-	2647	2666	
1^4F_3/2	3/2^-	2786	2813	
1^4F_5/2	5/2^-	2733	2757	
1^4F_7/2	7/2^-	2667	2687	
1^4F_9/2	9/2^-	2588	2603	
2^2F_5/2	5/2^-	3333	3368	
2^2F_7/2	7/2^-	3249	3280	
2^4F_3/2	3/2^-	3426	3465	
2^4F_5/2	5/2^-	3358	3394	
2^4F_7/2	7/2^-	3274	3306	
2^4F_9/2	9/2^-	3173	3201	
Table 6: Comparison of masses with other predictions based on J^P value for Ξ baryon (in MeV)

J^P	Mass.cal1	Mass.cal2	Ref.1	Ref.2	Ref.3	Ref.4	Ref.5	Ref.6	Ref.7	Ref.8	Ref.9	Ref.10	Ref.11	Ref.12	Ref.13
$3/2^+$	1322	1321	1330	1310	1305	1334	1348	1317	1318	1325	1317	1303 ± 13			
	1884	1891	1886	1876	1840	1727	1805	1772	1932	1891	1750	2178 ± 48			
	2310	2322	1993	2062	2040	1932	1868				1980	2231 ± 44			
	2361	2372	2012	2131	2100	1874					2054	2408 ± 45			
	2874	2899	2091	2176	2130						2107				
	2935	2954	2142	2215	2150						2149				
	3527	3562	2367	2249	2230						2254				
	3591	3620										2345			
$3/2^-$	1531	1524	1518	1539	1505	1524	1528	1552	1539	1520	1526	1553 ± 18			
	1971	1964	1966	1988	2045	1878	1653	2120	1934	1952	2228 ± 40				
	2270	2281	2100	2076	2065	1979				1970	2398 ± 52				
	2283	2295	2121	2128	2115					2065	2574 ± 52				
	2457	2459	2122	2170	2165					2114					
	2819	2842	2144	2175	2170					2174					
	2838	2861	2149	2219	2210					2184					
	3029	3041	2421	2257	2230					2218					
	3455	3489	2279	2275						2252					
	3479	3513													
	3679	3702													
$1/2^+$	2234	2242	2108	2013	2045					1936	1959				
	2247	2295	2147	2141	2165					2025	2102				
	2771	2791	2213	2197	2230					2170					
	2790	2810	2217	2230						2205					
	3391	3423	2279	2240						2239					
	3415	3448													
$1/2^-$	2203	2211	2189	2169	2180					2035	2074				
	2729	2747	2289	2240						2189					
	3336	3366													
Table 7: Comparison of masses with other predictions based on J^P value Ξ baryon (in MeV)

J^P	Mass$_{cal1}$	Mass$_{cal2}$	[29]	[30]	[31]	[32]	[33]	[34]	[35]	[2]	[42]	[43]
1^-_1	1886	1889	1682	1770	1755	1869	1658	1725	1772	1716 ± 43		
	1894	1897	1758	1922	1810	1932	1811	1894	1837 ± 28			
	2361	2373	1839	1938	1835	2076	1926	1844 ± 43				
	2373	2386	2160	2241	2225				2758 ± 78			
	2929	2948	2210	2266	2285							
	2946	2966	2233	2387	2300							
	3577	3609	2261	2411	2320							
	3599	3632		2445	2380							
3^-_1	1871	1873	1764	1780	1785	1828	1792	1861	1820	1759	1801	1906 ± 29
	1879	1881	1798	1873	1880	1869	1971	1826	1918	1894 ± 38		
	2337	2347	1904	1924	1895	1932		1976	2497 ± 61			
	2349	2360	2245	2246	2240				2426 ± 73			
	2786	2813	2252	2284	2305							
	2894	2913	2350	2353	2330							
	2912	2931	2352	2384	2340							
	3426	3465		2416	2385							
	3532	3563										
	3554	3586										
5^-_1	1859	1859	1853	1955	1900	1881						
	2318	2325	2333	2292	2345					1883	1917	
	2713	2736	2411	2409	2350							
	2733	2757		2425	2385							
	2865	2884		2438								
	3333	3368										
	3358	3394										
	3494	3524										
7^-_1	2647	2666	2460	2320	2355							
	2667	2687	2474		2425							
	3249	3280		2464								
	3274	3306		2481								
9^-_1	2588	2603	2502	2505								
	3173	3201	2570									
different models. The following tables [6, 13, 19, 7, 14] and [20] depict the range of masses for a given \(J^P \) value irrespective of assigned state in increasing order. It is evident that the low lying resonance states are within considerable range for almost all the models and approaches listed. However, the higher states have huge variations possibly because of the fact that not a single model exactly predicts the spin-parity assignments and in addition to it there are no experimental evidence for the states. Also, the present calculations have included masses up to 4 GeV.

The Ref. [30] has employed relativistic quark-diquark model for the calculation of strange baryon mass spectra. As the model considers both ground and excited states of diquarks, the number of excited states are limited and only confined to lower states. The another relativistic approach based on three quark Bethe-Salpeter equation with instantaneous two and three body forces is described by Ref. [30]. It has introduced instanton induced hyperfine splitting of positive and negative parity states. Another approach is well known relativised Capstick-Isgur model with higher order spin-dependent potential terms in three quark system and has predicted masses for nearly 2 GeV [31].

The approach by R.Bijker et al. [32] uses the algebraic model. It is based on collective string-like qqq wherein the orbital excitations are treated as rotations and vibrations of the strings. Low-lying states are established by this model for octet and decuplet class but exact spin-parity are not assigned in the case of \(\Xi \). Ref. [33] has utilised relativistic constituent quark model (RCQM) with Goldstone-boson exchange. Another relativistic quark-diquark approach with Coulomb plus linear interaction along with an exchange term which is inspired by Gürsey-Radicati has been employed in Ref. [34] for low-lying resonance states of \(\Xi \). Y. Oh [34] has studied the cascade and omega baryons through Skyrme model which is based on the approximation of equal mass splitting of hyperon resonances. The mass formula is developed with isospin and spin in the soliton-kaon bound-state model. The \(\Xi \) has also been explored in large-\(N_c \) limit [37, 38] as well as through QCD-SUM Rule method [11]. M. Pervin [2] has obtained mass spectra using a non-relativistic quark model approach. Y. Chen et al. has implemented a different approach with non-relativistic quark model supplemented with hyperfine interaction of higher order \(O(\alpha_s^3) \) [42]. Some low-lying states have been exploited through dynamical chirally improved quarks by BGR Collaboration [43].

The ground state of \(\Xi \) has been very well established with known spin-parity at 1321 MeV and \(J^P = \frac{1}{2}^+ \) in the octet family. It is evident from table 5 that ground state fits well for nearly all the models owing the little variations to the assumptions of any given model. Another state is 1532 MeV with \(J^P = \frac{3}{2}^+ \) holding a place in decuplet. The mass for this state varies within 20 MeV among all the models discussed. The only negative parity state by PDG is 1823 MeV at \(J^P = \frac{3}{2}^- \) which is obtained as 1871 MeV and 1879 MeV for octet and decuplet \(\Xi \).

\(\Xi(1690) \) is fairly known state in the PDG database however the spin-parity assignments and exact mass predictions vary a lot. The BABAR Collaboration concluded the state to be spin \(\frac{5}{2}^- \) [6]. As shown in Table 6, various models have predicted this state in a comparatively higher mass from PDG the nearest being 1682 MeV. Also, due to intrinsic drawback of the present model, it could not provide conclusive assignment of this state. The \(\Xi(2030) \) with assigned angular momentum value to be \(\frac{5}{2}^+ \) is predicted here to be 2234 MeV with positive parity. Other models predictions vary within 200 MeV range for the same spin-parity. \(\Xi(1620) \) appears in PDG with one star status. However, any such state is not established in this work but one study throws the light on the existence of \(\Xi(1620) \) and \(\Xi(1690) \) [40].

The PDG states \(\Xi(1950), \Xi(2250) \) and \(\Xi(2370) \) are three and two starred however due to lack of spin-parity assignment, the comparison is not reasonable. In addition, one study depicts the states of cascade around \(\Xi(1950) \) within the range of 1900-2000 MeV into three different states [47]. Few of the states of our results are comparatively near to the BGR work [43] which don’t appear in other approaches.

For \(\Lambda \) baryon, the ground state mass is 1115 MeV and for \(\Sigma \) it is 1193 MeV and confinement parameters are determined accordingly. Here, the constituent quark mass for u and d quarks is similar so, the charges of \(\Sigma \) are not distinguished. The four star status states are in good agreement with the PDG masses as evident from the tables. As for excited states of \(\Lambda \) 2S(1600), the predicted masses are very near to almost all the models’ mass. However, the first negative parity state \(\Lambda(1405) \) \(J^P = \frac{1}{2}^- \) is not established by the present model but the next state with \(J^P = \frac{3}{2}^- \) 1520 MeV is varies by 15 MeV from PDG. The \(J^P = \frac{3}{2}^+ \) state of 1D(1769 MeV) too falls within the PDG mass range of 1750-1850. The \(J^P = \frac{3}{2}^+ \) for 1G is somewhat under-predicted owing to the limitations of the hCQM.

For the case of \(\Sigma \) baryon, the early negative parity states are just one star status. The later
Table 8: S-wave of Λ baryon (in MeV)

State	J^P	$Mass_{cal}1$	$Mass_{cal}2$	$Mass_{exp}[^1]$
1S	$\frac{1}{2}^+$	1115	1115	1115
2S	$\frac{1}{2}^+$	1592	1589	1600
3S	$\frac{1}{2}^+$	1885	1892	1810
4S	$\frac{1}{2}^+$	2202	2220	
5S	$\frac{1}{2}^+$	2540	2571	

Table 9: P-wave of Λ baryon (in MeV)

State	J^P	$Mass_{cal}1$	$Mass_{cal}2$	$Mass_{exp}[^1]$
$1^2P_{1/2}$	$\frac{1}{2}^-$	1546	1558	1670
$1^2P_{3/2}$	$\frac{3}{2}^-$	1534	1544	1520
$1^4P_{1/2}$	$\frac{1}{2}^-$	1553	1564	
$1^4P_{3/2}$	$\frac{3}{2}^-$	1540	1551	
$1^4P_{5/2}$	$\frac{5}{2}^-$	1524	1533	
$2^2P_{1/2}$	$\frac{1}{2}^-$	1834	1858	1800
$2^2P_{3/2}$	$\frac{3}{2}^-$	1819	1841	1690
$2^4P_{1/2}$	$\frac{1}{2}^-$	1841	1867	
$2^4P_{3/2}$	$\frac{3}{2}^-$	1827	1850	
$2^4P_{5/2}$	$\frac{5}{2}^-$	1807	1827	1830
$3^2P_{1/2}$	$\frac{1}{2}^-$	2149	2186	
$3^2P_{3/2}$	$\frac{3}{2}^-$	2131	2166	
$3^4P_{1/2}$	$\frac{1}{2}^-$	2158	2196	
$3^4P_{3/2}$	$\frac{3}{2}^-$	2140	2176	
$3^4P_{5/2}$	$\frac{5}{2}^-$	2116	2149	
$4^2P_{1/2}$	$\frac{1}{2}^-$	2484	2536	
$4^2P_{3/2}$	$\frac{3}{2}^-$	2464	2513	
$4^4P_{1/2}$	$\frac{1}{2}^-$	2495	2548	
$4^4P_{3/2}$	$\frac{3}{2}^-$	2474	2525	
$4^4P_{5/2}$	$\frac{5}{2}^-$	2447	2494	
Table 10: D-wave of Λ baryon (in MeV)

State	J^P	Mass_{cal}1	Mass_{cal}2	Mass_{exp}^1
1^2D_{3/2} \frac{3}{2}^+	1769	1789	1890	
1^2D_{3/2} \frac{5}{2}^+	1746	1767	1820	
1^4D_{1/2} \frac{3}{2}^+	1794	1814		
1^4D_{3/2} \frac{5}{2}^+	1777	1798		
1^4D_{5/2} \frac{5}{2}^+	1755	1776		
1^4D_{7/2} \frac{5}{2}^+	1727	1748		
2^2D_{3/2} \frac{3}{2}^+	2076	2113	2070	
2^2D_{5/2} \frac{5}{2}^+	2051	2085	2110	
2^4D_{1/2} \frac{3}{2}^+	2105	2144		
2^4D_{3/2} \frac{5}{2}^+	2086	2123		
2^4D_{5/2} \frac{5}{2}^+	2060	2096		
2^4D_{7/2} \frac{5}{2}^+	2029	2061	2085	
3^2D_{3/2} \frac{3}{2}^+	2408	2459		
3^2D_{5/2} \frac{3}{2}^+	2378	2426		
3^4D_{1/2} \frac{3}{2}^+	2441	2496		
3^4D_{3/2} \frac{3}{2}^+	2419	2471		
3^4D_{5/2} \frac{3}{2}^+	2389	2438		
3^4D_{7/2} \frac{3}{2}^+	2352	2398		

Table 11: F-wave of Λ baryon (in MeV)

State	J^P	Mass_{cal}1	Mass_{cal}2	Mass_{exp}^1
1^2F_{5/2} \frac{5}{2}^-	2005	2039		
1^2F_{7/2} \frac{7}{2}^-	1970	2002	2100	
1^4F_{3/2} \frac{3}{2}^-	2043	2079		
1^4F_{5/2} \frac{5}{2}^-	2015	2050		
1^4F_{7/2} \frac{7}{2}^-	1980	2013		
1^4F_{9/2} \frac{9}{2}^-	1939	1969		
2^2F_{5/2} \frac{5}{2}^-	2329	2380		
2^2F_{7/2} \frac{7}{2}^-	2291	2337		
2^4F_{3/2} \frac{3}{2}^-	2371	2427		
2^4F_{5/2} \frac{5}{2}^-	2341	2393		
2^4F_{7/2} \frac{7}{2}^-	2303	2350		
2^4F_{9/2} \frac{9}{2}^-	2257	2299		
3^2F_{5/2} \frac{5}{2}^-	2676	2741		
3^2F_{7/2} \frac{7}{2}^-	2632	2693		
3^4F_{3/2} \frac{3}{2}^-	2723	2793		
3^4F_{5/2} \frac{5}{2}^-	2689	2755		
3^4F_{7/2} \frac{7}{2}^-	2645	2707		
3^4F_{9/2} \frac{9}{2}^-	2593	2650		
Table 12: G-wave of Λ baryon (in MeV)

State	J^P	Mass$_{cal1}$	Mass$_{cal2}$	Mass$_{exp}$[1]
$1^2G_{7/2}$	7^-_1	2253	2302	
$1^2G_{9/2}$	9^-_1	2204	2246	2350
$1^4G_{5/2}$	5^-_2	2305	2363	
$1^4G_{7/2}$	7^-_2	2265	2316	
$1^6G_{9/2}$	9^-_2	2216	2260	
$1^8G_{11/2}$	11^-_2	2159	2195	

Table 13: Comparison of masses with other predictions based on J^P value for Λ baryon (in MeV)

J^P	Mass$_{cal1}$	Mass$_{cal2}$	29	30	31	32	33	34	39	40	42	43
$1/2^+$	1115	1115	1115	1108	1115	1133	1136	1116	1116	1112	1113	1149 ± 18
1592	1589	1615	1677	1680	1577	1625	1518	1600	1695	1606	1807 ± 94	
1794	1814	1799	1799	1666	1810	1764	2112 ± 54					
1885	1892	1901	1747	1830	1955	1880	2137 ± 68					
2105	2144	1972	1898	1910	1960	2013						
2202	2220	1986	2077	2010	2173							
2441	2496	2042	2099	2105	2198							
2540	2571	2099	2132	2120								
$3/2^+$	1769	1789	1854	1823	1900	1849	1896	1890	1903	1836	1991 ± 103	
1777	1798	1976	1952	1960	2000	1958	2058 ± 139					
2076	2113	2130	2045	1995	1993	2481 ± 111						
2086	2123	2184	2087	2050	2061							
2408	2459	2202	2133	2080	2121							
2419	2471					2134						
$5/2^+$	1746	1767	1825	1834	1890	1849	1896	1820	1846	1839		
1755	1776	2098	1999	2035	2074	2110	2132	2008				
2051	2085	2221	2078	2115	2103							
2060	2096	2255	2127	2115	2129							
2305	2363	2258	2150	2180	2155							
2378	2426											
2389	2471											
$7/2^+$	1727	1748	2251	2130	2120	2020	2064					
2029	2061	2471	2331									
2253	2302											
2265	2316											
2352	2398											
$9/2^+$	2204	2246	2360	2340	2357	2350	2360					
2216	2260											
$11/2^+$	2159	2195	2585									
Table 14: Comparison of masses with other predictions based on J^P value for Λ baryon (in MeV)

J^P	$Mass_{cal1}$	$Mass_{cal2}$	[29]	[30]	[31]	[32]	[33]	[34]	[39]	[40]	[42]	[43]	
$\frac{1}{2}^-$	1546	1558	1406	1524	1550	1686	1556	1650	1670	1679	1559	1416 ± 81	
	1553	1564	1667	1630	1615	1799	1682	1732	1830	1656	1546 ± 110		
	1834	1858	1733	1816	1675	1778	1969	1800	1791	1713 ± 116			
	1841	1867	1927	2011	2015	1854	2075 ± 249						
	2149	2186	2197	2076	2095	1928							
	2158	2196	2218	2117	2160								
	2484	2536											
	2495	2548											
	3$\frac{3}{2}$	1534	1544	1549	1508	1545	1686	1556	1650	1690	1683	1560	1751 ± 41
	1540	1551	1693	1662	1645	1682	1785	1520	1702	2203 ± 106			
	1819	1841	1812	1775	1770	1854	2325	1859	2381 ± 87				
	1827	1850	2035	1987	2030	1928							
	2043	2079	2319	2090	2110	1969							
	2131	2166	2322	2147	2185								
	2140	2176	2392	2259	2230								
	2371	2427	2454	2290	2275								
	2464	2513	2468	2313									
	2474	2525											
	2723	2793											
	5$\frac{1}{2}$	1524	1533										
	1807	1827	1861	1828	1775	1799	1778	1785	1830	1850	1803		
	2005	2039	2136	2080	2180								
	2015	2050	2350	2179	2250								
	2116	2149											
	2329	2380											
	2341	2393											
	2447	2494											
	2676	2741											
	2689	2755											
	7$\frac{1}{2}$	1970	2002	2097	2090	2150	2100	2087					
	1980	2013	2583	2227	2230								
	2291	2337											
	2303	2350											
	2632	2693											
	2645	2707											
	9$\frac{1}{2}$	1939	1969	2665	2370								
	2257	2299											
	2593	2650											
Table 15: S-wave of Σ baryon (in MeV)

State	J^P	$Mass_{cal1}$	$Mass_{cal2}$	$Mass_{exp}$	
1S $\frac{1}{2}^+$	2	1193	1193	1193	
	$\frac{3}{2}^-$	1384	1384	1385	
2S $\frac{1}{2}^+$	2	1643	1643	1660	
	$\frac{3}{2}^-$	1827	1827		
3S $\frac{1}{2}^+$	2	2083	2099		
	$\frac{3}{2}^-$	2229	2236		
4S $\frac{1}{2}^+$	2	2560	2589		
	$\frac{3}{2}^-$	2675	2693		
5S $\frac{1}{2}^+$	2	3067	3108		
	$\frac{3}{2}^-$	3159	3189		

Table 16: P-wave Σ baryon (in MeV)

State	J^P	$Mass_{cal1}$	$Mass_{cal2}$	$Mass_{exp}$	
$1^2P_{1/2}$ $\frac{1}{2}^-$	2	1720	1725	1620	
$1^2P_{3/2}$ $\frac{3}{2}^-$	2	1698	1702	1670	
$1^4P_{1/2}$ $\frac{1}{2}^-$	2	1731	1736	1750	
$1^4P_{3/2}$ $\frac{3}{2}^-$	2	1709	1713		
$1^4P_{5/2}$ $\frac{5}{2}^-$	2	1680	1683	1775	
$2^2P_{1/2}$ $\frac{1}{2}^-$	2	2128	2145	1900	
$2^2P_{3/2}$ $\frac{3}{2}^-$	2	2099	2114	1910	
$2^4P_{1/2}$ $\frac{1}{2}^-$	2	2142	2159		
$2^4P_{3/2}$ $\frac{3}{2}^-$	2	2114	2129		
$2^4P_{5/2}$ $\frac{5}{2}^-$	2	2076	2087		
$3^2P_{1/2}$ $\frac{1}{2}^-$	2	2580	2608		
$3^2P_{3/2}$ $\frac{3}{2}^-$	2	2545	2571		
$3^4P_{1/2}$ $\frac{1}{2}^-$	2	2598	2627		
$3^4P_{3/2}$ $\frac{3}{2}^-$	2	2563	2589		
$3^4P_{5/2}$ $\frac{5}{2}^-$	2	2516	2541		
$4^2P_{1/2}$ $\frac{1}{2}^-$	2	3068	3111		
$4^2P_{3/2}$ $\frac{3}{2}^-$	2	3027	3067		
$4^4P_{1/2}$ $\frac{1}{2}^-$	2	3088	3133		
$4^4P_{3/2}$ $\frac{3}{2}^-$	2	3047	3089		
$4^4P_{5/2}$ $\frac{5}{2}^-$	2	2994	3030		
$5^2P_{1/2}$ $\frac{1}{2}^-$	2	3588	3641		
$5^2P_{3/2}$ $\frac{3}{2}^-$	2	3541	3594		
$5^4P_{1/2}$ $\frac{1}{2}^-$	2	3612	3664		
$5^4P_{3/2}$ $\frac{3}{2}^-$	2	3565	3617		
$5^4P_{5/2}$ $\frac{5}{2}^-$	2	3502	3555		
Table 17: D-wave Σ baryon (in MeV)

State	J^P	$\text{Mass}_{\text{cal}1}$	$\text{Mass}_{\text{cal}2}$	Mass_{\exp}
$1^2D_{3/2}$	$\frac{3}{2}^+$	2040	2057	1940
$1^2D_{5/2}$	$\frac{3}{2}^+$	1998	2013	1915
$1^4D_{1/2}$	$\frac{1}{2}^+$	2086	2107	
$1^4D_{3/2}$	$\frac{3}{2}^+$	2055	2074	
$1^4D_{5/2}$	$\frac{5}{2}^+$	2014	2029	
$1^4D_{7/2}$	$\frac{7}{2}^+$	1962	1974	2025
$2^2D_{3/2}$	$\frac{3}{2}^+$	2481	2510	
$2^2D_{5/2}$	$\frac{5}{2}^+$	2432	2459	
$2^4D_{1/2}$	$\frac{1}{2}^+$	2536	2568	
$2^4D_{3/2}$	$\frac{3}{2}^+$	2499	2529	
$2^4D_{5/2}$	$\frac{5}{2}^+$	2451	2478	
$2^4D_{7/2}$	$\frac{7}{2}^+$	2390	2414	
$3^2D_{3/2}$	$\frac{3}{2}^+$	2962	3004	
$3^2D_{5/2}$	$\frac{5}{2}^+$	2905	2945	
$3^4D_{1/2}$	$\frac{1}{2}^+$	3027	3072	
$3^4D_{3/2}$	$\frac{3}{2}^+$	2984	3027	
$3^4D_{5/2}$	$\frac{5}{2}^+$	2926	2967	
$3^4D_{7/2}$	$\frac{7}{2}^+$	2855	2892	
$4^2D_{3/2}$	$\frac{3}{2}^+$	3476	3534	
$4^2D_{5/2}$	$\frac{5}{2}^+$	3410	3464	
$4^2D_{7/2}$	$\frac{7}{2}^-$	3549	3613	
$4^4D_{1/2}$	$\frac{1}{2}^+$	3500	3560	
$4^4D_{3/2}$	$\frac{3}{2}^+$	3435	3490	
$4^4D_{5/2}$	$\frac{5}{2}^+$	3353	3403	

Table 18: F-wave Σ baryon (in MeV)

State	J^P	$\text{Mass}_{\text{cal}1}$	$\text{Mass}_{\text{cal}2}$	Mass_{\exp}
$1^2F_{5/2}$	$\frac{5}{2}^-$	2386	2416	
$1^2F_{7/2}$	$\frac{7}{2}^-$	2318	2343	
$1^4F_{3/2}$	$\frac{3}{2}^-$	2461	2495	
$1^4F_{5/2}$	$\frac{5}{2}^-$	2406	2437	
$1^4F_{7/2}$	$\frac{7}{2}^-$	2338	2365	
$1^4F_{9/2}$	$\frac{9}{2}^-$	2257	2278	
$2^2F_{5/2}$	$\frac{5}{2}^-$	2858	2901	
$2^2F_{7/2}$	$\frac{7}{2}^-$	2781	2819	
$2^4F_{3/2}$	$\frac{3}{2}^-$	2943	2990	
$2^4F_{5/2}$	$\frac{5}{2}^-$	2881	2925	
$2^4F_{7/2}$	$\frac{7}{2}^-$	2804	2844	
$2^4F_{9/2}$	$\frac{9}{2}^-$	2712	2746	
$3^2F_{5/2}$	$\frac{5}{2}^-$	3363	3417	
$3^2F_{7/2}$	$\frac{7}{2}^-$	3278	3330	
$3^4F_{3/2}$	$\frac{3}{2}^-$	3456	3512	
$3^4F_{5/2}$	$\frac{5}{2}^-$	3388	3443	
$3^4F_{7/2}$	$\frac{7}{2}^-$	3303	3356	
$3^4F_{9/2}$	$\frac{9}{2}^-$	3202	3252	
Table 19: Comparison of masses with other predictions based on J^P value for Σ baryon (in MeV)

J^P	$Mass_{cal\ 1}$	$Mass_{cal\ 2}$	Ref.									
$\frac{1}{2}^+$	1193	1193	1187	1190	1190	1170	1180	1211	1193	1198	1192	1216 ± 15
	1643	1643	1711	1760	1720	1604	1616	1546	1660	1656	1664	2069 ± 74
	2083	2099	1922	1947	1915	1911	1668	1770	1924	2149 ± 66		
	2086	2107	1983	2009	1970	1801	1880	1986	2335 ± 63			
	2536	2568	2028	2052	2005	2022						
	2560	2589	2180	2098	2030	2069						
	3027	3072	2292	2138	2105	2172						
	3067	3108	2472									
	3549											
	3613											
$\frac{3}{2}^+$	1384	1384	1381	1411	1370	1382	1389	1334	1385	1381	1383	1471 ± 23
	1827	1827	1862	1896	1920	1865	1439	1560	1868	2194 ± 81		
	2040	2057	2025	1961	1970	1924	1690	1947	2250 ± 79			
	2055	2074	2076	2011	2010	1840	1993	2468 ± 67				
	2229	2236	2096	2044	2030	2039						
	2481	2510	2157	2062	2045	2075						
	2499	2529	2186	2103	2085	2098						
	2675	2693	2112	2115		2122						
	2962	3004				2168						
	2984	3027										
	3159	3189										
$\frac{5}{2}^+$	1998	2013	1991	1956	1995	1872	2061	1915	1930	1949		
	2014	2029	2062	2027	2030		2070	2028				
	2432	2459	2221	2071	2095							
	2451	2478										
	2905	2945										
	2926	2967										
	3410	3464										
	3435	3490										
$\frac{7}{2}^+$	1962	1974	2033	2070	2060	2012	2030	2039	2002			
	2390	2414	2470	2161	2125		2030	2039	2002			
	2855	2892										
	3353	3403										
Table 20: Comparison of masses with other predictions based on J^P value for Σ baryon (in MeV)

J^P	Mass$_{cal}1$	Mass$_{cal}2$	[29]	[30]	[31]	[32]	[33]	[34]	[39]	[40]	[42]	[43]
1/2^−	1720	1725	1620	1628	1630	1711	1677	1753	1620	1754	1657	1603 ± 38
	1731	1736	1693	1771	1675	1736	1868	1750	1746	1718 ± 58		
	2128	2145	1747	1798	1695	1759	1895	2000	1802	1730 ± 34		
	2142	2159	2115	2111	2110							2478 ± 104
	2580	2608	2198	2136	2155							
	2598	2627	2202	2251	2165							
	3068	3111	2289	2264	2205							
	3088	3133	2381	2288	2260							
	3588	3641										
	3612	3664										
3/2^−	1698	1702	1706	1669	1655	1711	1677	1753	1670	1697	1698	1861 ± 26
	1709	1713	1731	1728	1750	1974	1736	1868	1940	1956	1790	1736 ± 40
	2099	2114	1856	1781	1755	1759	1895	2250	1802	2394 ± 74		
	2114	2129	2175	2139	2120							2297 ± 122
	2416	2495	2203	2171	2185							
	2545	2571	2300	2203	2200							
	2563	2589										
	2943	2990										
	3027	3067										
	3047	3089										
	3456	3512										
	3541	3594										
	3565	3617										
5/2^−	1680	1683	1757	1770	1755	1736	1753	1775	1777	1743		
	2076	2087	2214	2174	2205							
	2386	2416	2347	2226	2250							
	2406	2437										
	2516	2541										
	2858	2901										
	2881	2925										
	2994	3030										
	3363	3417										
	3388	3443										
	3565	3617										
7/2^−	2318	2343	2259	2236	2245							2100
	2338	2365	2349	2285								
	2781	2819										
	2804	2844										
	3278	3330										
	3303	3356										
9/2^−	2257	2278	2289	2325								
	2712	2746										
	3202	3252										
state with \(J^P = \frac{1}{2}^- \) appearing as \(\Sigma(1750) \) is predicted well here as 1720 MeV within the range 1700-1800. The \(J^P = \frac{5}{2}^+ \Sigma(1915) \) is slightly higher predicted from most of the models. The other higher ranged states results from hCQM are comparable to those of BGR Collaboration results [43].

4 Regge Trajectories

Regge trajectories have been one of the useful tools in spectroscopic studies. The plot of total angular momentum \(J \) and principle quantum number \(n \) against the square of resonance mass \(M^2 \) are drawn based on calculated data. The non-intersecting and linearly fitted lines have been in accordance with theoretical and experimental data in many studies [38]. These plots might be helpful in predicting the correct spin-parity assignment of a given state.

\[
J = aM^2 + a_0 \quad \quad (8a)
\]
\[
n = bM^2 + b_0 \quad \quad (8b)
\]

As it is evident from the graphs [1, 4] and [7], the Regge trajectory for \(n \) against \(M^2 \) has been linearly fitted for the calculated resonance masses which follows the expected trend. The trajectories for \(J \) against \(M^2 \) for the natural parity also follows the linear nature which signifies that the spin-parity assignment for the obtained states are in agreement. The overall nature of the Regge trajectories observed for baryon studies agrees with the calculated results for few of the states.

5 Magnetic Moment

The study of electromagnetic properties of baryons is an active area for theoretical as well as experimental work. This intrinsic property help reveal the shape and other dynamics of transition in decay modes. In case of cascade \(\Xi \) and \(\Sigma \) baryon, magnetic moment is to be determined for both the spin configuration based on the respective spin-flavour wave-function. The generalized form of magnetic moment is

\[
\mu_B = \sum_q \langle \phi_{sf} | \mu_q | \phi_{sf} \rangle \quad (9)
\]

where \(\phi_{sf} \) is the spin-flavour wave function. The contribution from individual quark appears as

\[
\mu_q = \frac{e_q}{2m_q^{eff}} \sigma_{qz} \quad (10)
\]

\(e_q \) being the quark charge, \(\sigma_{qz} \) being the spin orientation and \(m_q^{eff} \) is the effective mass which may vary from model based quark mass due to interactions. Here, is it noteworthy that magnetic moment shall have contribution from many other effects within the baryon as sea quark, valence quark, orbital etc. Various models have contributed to obtaining the octet and decuplet baryons’ magnetic moment. The order of quarks in spin-flavour won’t be affecting the magnetic moment calculation. The final spin-flavour wave function along with calculated ground state magnetic moment in terms of nuclear magneton \((\mu_N) \) are mentioned in the following table [21].

Table [22] gives comparison of present magnetic moment with those of different approaches. H. Dahiya et al. have presented octet and decuplet baryon magnetic moments in chiral quark model with configuration mixing and generalizing the Cheng-Li mechanism. Effective mass and screened charge scheme has been employed in ref. [52] and both the results appear in the table. Light-cone sum rules [53] and lattice QCD [54] have also been employed for octet and decuplet magnetic moments. Recent study has focused on hypernons medium at a finite temperature using chiral mean field approach [55]. Our results are under-predicted compared to experimental values of PDG by 0.5 and 0.4 respectively for \(\Xi \) octet baryons, however, there are large variations in case of decuplet considering all the approaches. It is expected that experimental values for decuplet shall be the deciding factor. In case of \(\Lambda^0 \), the magnetic moment is nearly similar to those obtained by [1, 49] and [54]. For \(\Sigma^+ \) and \(\Sigma^- \), results are within 0.5\(\mu_N \) variation for all the approaches.

Here, an effort has been made to determine the magnetic moment of low-lying negative parity state of \(\Xi \) which has been inspired by studies based on N(1535). The hyperfine interactions between the constituent quarks induce linear combinations of two states with the same angular momentum value. The magnetic moment will now have contribution from spin as well as orbital angular momentum as [57]

\[
\mu = \mu^S + \mu^L = \sum \frac{Q_L}{m_q} S_q + \sum \frac{Q_L}{2m_q} l_q \quad (11)
\]

The \(J^P = \frac{1}{2}^- \), \(L=1 \) for \(S = \frac{1}{2} \) and \(S = \frac{3}{2} \), calculated resonance masses are 1886 MeV and 1894 MeV. These states are not experimentally established, however 1690 MeV is tentatively assigned by many predictions to this state. The physical eigenvalues will be

\[
|\Xi(1886)\rangle = \cos \theta |P_{1/2}\rangle - \sin \theta |P_{3/2}\rangle \quad (12)
\]
\[
|\Xi(1894)\rangle = \sin \theta |P_{1/2}\rangle + \cos \theta |P_{3/2}\rangle \quad (13)
\]

From the approach of NCQM described in Ref. [58], we directly write the final wave-function with mixing for
Fig. 1: Regge trajectory Ξ for $n \rightarrow M^2$

![Graph showing the Regge trajectory Ξ for $n \rightarrow M^2$.]

Fig. 2: Regge trajectory Ξ for $J^p \rightarrow M^2$

![Graph showing the Regge trajectory Ξ for $J^p \rightarrow M^2$.]
Fig. 3: Regge trajectory Ξ for $J^P \to M^2$

![Graph showing the Regge trajectory Ξ for $J^P \to M^2$.](image1)

Fig. 4: Regge trajectory Σ for $n \to M^2$

![Graph showing the Regge trajectory Σ for $n \to M^2$.](image2)
Fig. 5: Regge trajectory Σ for $J^P \to M^2$

![Graph 1](image1.png)

Fig. 6: Regge trajectory Σ for $J^P \to M^2$

![Graph 2](image2.png)
Fig. 7: Regge trajectory Λ for $n \to M^2$

![Graph showing Regge trajectory Λ for $n \to M^2$.](image)

Fig. 8: Regge trajectory Λ for $J^p \to M^2$

![Graph showing Regge trajectory Λ for $J^p \to M^2$.](image)
Table 21: Magnetic moment for ground states

Spin	Baryon	σ_{qz}	Mass (MeV)	μ (μ_N)
$\frac{1}{2}$	Ξ^0(uss)	$\frac{1}{3}(4\mu_s - \mu_u)$	1322	-1.50
$\frac{1}{2}$	Ξ^- (dss)	$\frac{1}{3}(4\mu_u - \mu_d)$	1322	-0.46
$\frac{1}{2}$	$\Xi^-(uss)$	$(2\mu_s + \mu_u)$	1531	0.766
$\frac{1}{2}$	$\Xi^-(dss)$	$(2\mu_u + \mu_d)$	1531	-1.962
$\frac{3}{2}$	$\Sigma^+(uss)$	$\frac{1}{3}(4\mu_u - \mu_s)$	1193	2.79
$\frac{3}{2}$	Σ^0(uds)	$\frac{1}{3}(2\mu_u + 2\mu_d - \mu_s)$	1193	0.839
$\frac{1}{2}$	$\Sigma^-(dss)$	$\frac{1}{3}(4\mu_d - \mu_u)$	1193	-1.113
$\frac{3}{2}$	$\Sigma^+(dss)$	$(2\mu_u + \mu_s)$	1384	2.877
$\frac{3}{2}$	$\Sigma^*(0)(uds)$	$(\mu_u + \mu_d + \mu_s)$	1384	0.353
$\frac{3}{2}$	$\Sigma^*(0)(dss)$	$(2\mu_d + \mu_s)$	1384	-2.171
$\frac{1}{2}$	Λ^0(uds)	μ_s	1115	-0.606

Table 22: Comparison of calculated magnetic moments with various models (All data in units of μ_N)

Baryon	μ_{cal}	Exp											
Ξ^0	-1.50	-1.25	-1.41	-1.39	-1.3	-1.25	-1.37						
Ξ^-	-0.46	-0.61	-0.50	-0.50	-0.7	-1.07	-0.82						
Ξ^{*0}	0.766	0.60	0.49	0.49	0.69	0.48	0.32	0.44	0.16	0.508	0.65		
Ξ^{*-}	-1.962	-2.11	-2.43	-2.27	-1.18	-1.9	-2.05	-2.27	-0.62	-1.805	-2.30		
Σ^+	2.79	2.458	2.61	2.64		2.46	2.87						
Σ^0	0.839												
Σ^-	-1.113	-1.16	-1.01	-1.28	-1.13	-1.16	-1.48						
Σ^{*+}	2.877	3.02	3.07	2.85		2.56	2.54	2.63	1.27	3.028			
Σ^{*0}	0.353	0.30	0.08	0.09		0.23	0.14	0.08	0.33	0.188			
Σ^{*-}	-2.171	-2.41	-2.92	-2.66	-2.10	-2.19	-2.43	-1.88	-2.015				
Λ^0	-0.606	-0.613	-0.59	-0.60	-0.11	-0.51	-0.70						
The transition magnetic moment as well as radiative decay width are also important in the understanding of internal structure of baryon as well as magnetic and electric transitions. Many approach have been utilized for the study of radiative decay over years including some recent ones \cite{59}. Similarly, for Ξ^- (1886), magnetic moment is obtained as $-0.193\mu_N$ as compared to $-0.315\mu_N$ \cite{58}. The variation relies on the fact that resonance mass is a model dependent and the effective mass used in the calculated ultimately depends on resonance mass.

6 Transition Magnetic Moment and Radiative Decay Width

Transition magnetic moment as well as radiative decay width are also important in the understanding of internal structure of baryon as well as magnetic and electric transitions. Many approach have been utilized for the study of radiative decay over years including some recent ones \cite{59}. Here, $\Xi^o \rightarrow \Xi^\gamma$ as well as $\Sigma^0 \rightarrow \Sigma^\gamma$ have been studied using the effective mass obtained using hCQM approach. The generalized form for transition magnetic moment is \cite{50},

$$\mu(B_{3/2} \rightarrow B_{1/2}) = \langle B_{3/2}, S_z = 1/2|\mu|B_{1/2}, S_z = -1/2 \rangle$$

(15)

The spin-flavour wave function obtained in a similar way as above mentioned for decuplet and octet Ξ is

$$\frac{2\sqrt{3}}{3}(\mu^\text{M}\mu^\text{L})$$

(16)

The effective mass here is a geometric mean of those for spin $1/2$ and $3/2$. Our result comes out to be $2.358\mu_N$ which is in good agreement with various models implemented in \cite{[52, 60]}. The radiative decay width is obtained as \cite{61},

$$\Gamma_R = \frac{q^2}{m_p^2 2J + 1} \frac{e^2}{4\pi} |\mu^z_{3/2} - \mu^z_{1/2}|^2$$

(17)

where q is the photon energy, m_p is the proton mass and J is the initial angular momentum giving $\Gamma_R = 0.214$ MeV. The total decay width available from experiment is 9.1 MeV. Thus, the branching ratio $\frac{\Gamma_R}{\Gamma_{total}}$ is 2.35% where the PDG data suggests $< 3.7\%$. Thus, it is in accordance with other results as well as from experimental data. The radiative decay of Σ baryons with transition magnetic moments are summarized in the following table \cite{23}. The obtained results are consistent with experimental data from PDG as well as few other theoretical approaches.

7 Conclusion

The present work has been aimed at studying the strangeness -1 Λ, Σ and -2 Ξ light baryon owing to its limited data. The non-relativistic hypercentral Constituent Quark Model (hCQM) has been a tool for obtaining large number of resonance masses with a linear term. The results have been compared for with and without first order correction terms as well wherein a few MeV difference for low-lying states and up to the order of 30 MeV for higher excited states for Ξ. The octet and decuplet states have not been exclusively distinguished due to lack of required data.

The mass-range have been compared to various theoretical approaches listed in section 3. The state-wise comparison is not possible because no approach has established spin-parity assignments. The overview of Tables \cite{[2, 52]} and \cite{32} shows that the low-lying resonance masses are in good agreement among each other especially the four star states of PDG. For higher excited states, present work over-estimates the results compared to other models. The $\Xi(1820)$ differs by 48 MeV from PDG mass. The $\Xi(2030)$ state with $J = \frac{3}{2}$ could find a place with either positive or negative parity a both have masses in that range. $\Xi(1620)$ and $\Xi(1690)$ are not obtained in present results. However, $\Xi(1690)$ which is likely $\frac{1}{2}^-$ by BABAR Collaboration, this study calculates it as 1886 MeV. Few differences in results owes to the model dependent factors. As for $\Lambda(1405)$, hCQM could not establish the mass but predicts the other negative parity state with good agreement. The four star states for Σ as well as Λ agree to a good extent with many approaches too.

The Regge trajectories based on some resonance mass are plotted. The principle quantum number n against the square of mass M^2 shows linear nature but fitted lines are not exactly parallel. The angular momentum J versus the square of mass M^2 plots also depicts the linearity of data points which validates our spin-parity assignments to a particular state as well as might be helpful in new experimental states.

The magnetic moment for spin $1/2$, Ξ^0 and Ξ^- vary by 0.25μ_N and 0.19μ_N from PDG as well as other results. For spin $3/2$, Ξ^0 and Ξ^-, our result vary from nearly 0.2μ_N to 0.4μ_N compared to all the approaches. The transition magnetic moment is obtained for Ξ^0 1886 MeV of our spectra which differs by 0.30μ_N and Ξ^- differs by 0.12μ_N from Ref \cite{58}. However, difference of magnetic moment follows due to difference of resonance masses used for the calculation. Similarly for Σ^+, Σ^- and Λ^0 results are very well in accordance with other approaches and PDG.

The transition magnetic moment has been ob-
tained as $2.378\mu_N$, which agrees with other models. Also, the radiative decay width branching fraction comes out to be 2.35% in our case which is well within the PDG range of < 3.7%. The transition magnetic moments and radiative decay widths for Σ falls similar to other results.

Thus, with some agreements and some discrepancies, this study with large number of predicted resonances along with important properties, might be find helpful for upcoming experimental facilities like PANDA which is expected to intensively study the light strange baryons [10, 12].

Acknowledgement

Ms. Chandni Menapara would like to acknowledge the support from the Department of Science and Technology (DST) under INSPIRE-FELLOWSHIP scheme for pursuing this work.

References

1. P.A. Zyla et al. [Particle Data Group], Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
2. M. Pervin and W. Roberts, Phys. Rev. C 77, 025202 (2008)
3. S. Acharya [ALICE Collaboration], Phys. Rev. Lett. 123, 112002 (2019), arXiv:1904.12198 [nucl-ex]
4. E. Abouzaid et al. [KTeV Collaboration], Phys. Rev. Lett. 95, 081801 (2005)
5. J. R. Batley et al. [NA48/I Collaboration], Phys. Lett. B 645, 36 (2007)
6. B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 97, 112001 (2006)
7. W. Price et al. [CLAS Collaboration], Phys. Rev. C 71, 058201 (2005)
8. M. Amaryan et al. [KLF Collaboration], arXiv:2008.08215 [nucl-ex] (2020)
9. M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 100, 051101(R) (2019)
10. B. Singh et al. [PANDA Collaboration], J. Phys. G: Nucl. Part. Phys. 46, 045001 (2019), Phys. Rev. D 95, 3, 032003 (2017), Eur. Phys. J. A 52 10, 325 (2016); Eur. Phys. J. A 51, 107 (2015)
11. J. Pütz et al. [PANDA Collaboration], EPJ Web Conf. 241 (2020) 03004
12. G. Barrua et al., [PANDA Collaboration], Eur. Phys. J. A 57, 1, 30 (2021); Eur. Phys. J. A 55, 42 (2019); arXiv:2009.11582 arXiv:2101.11877 arXiv:2012.01776
13. M. Mai, arXiv:2010.00056
14. D. Jido, J. A. Oller, E. Oset, A. Ramos, and U. G. Meissner, Nucl. Phys. A 725, 181 (2003)
15. C. Fernandez-Ramirez, I.V. Danilkin, D.M. Manley, V. Mathieu, A.P. Szczepaniak, Phys. Rev. D 93(3), 034029 (2016)
16. H. Kamano, S.X. Nakamura, T.-S.H. Lee, T. Sato, Phys. Rev. C 90(6), 065204 (2014).
17. Xi-Lei Ren, E. Epelbaum, J. Gegelia and U.-G. Meibner, arXiv:2102.00914v1 (2021)
18. E. Klemp, V. Burkert, U. Thoma, L. Tiator, R. Workman, and The Baryon@PDG Group, Eur. Phys. J. A 56, 261 (2020)
19. Sang-Ho Kim, K.P. Khemchandani, A. Martinez Torres, Seung-il Nam and Atsushi Hosaka, arXiv:2101.08689v1 (2021)
20. J. K. Ahn and Seung-il Nam. arXiv:2101.10114v1 (2021)
21. T. hyodo and M. Niyama, arXiv:2010.07592 [hep-ph] (2020)
22. Li-Ye Xiao and Xian-Hui Zhong, Phys. Rev. D 87, 094002 (2013)
23. B. Patel, A. K. Rai and P. C. Vinodkumar, J. Phys. G: Nucl. Part. Phys. 3, 6, 065001 (2008); Pramana 66, 953 (2006)
24. M. Ferraris, M. M. Giannini, M. Pizzo, E. Santopinto and L. Tiator, Phys. Lett. B 364, 231-238 (1995)
25. M. M. Giannini, E. Santopinto and A. Vassallo, Eur. Phys. J. A. 12, 447-452 (2001)
26. M. B. Voloshin, Prog. Part. Nucl. Phys. 61, 455-511 (2008), arXiv:0711.4556
27. Z. Shah and A. K. Rai, Eur. Phys. J. C 77, 129 (2017); Few-Body Syst. 59, 112 (2018); Few-Body Syst. 59, 76 (2018)
28. W. Lucha and F. scholeris, Int. J. Modern Phys. C. 10, 607 (1997)
29. R. N. Faustov and V. O. Galkin, Phys. Rev. D 92, 054005 (2015)
30. U. Löring, B. Ch. Metsch and H. R. Petry, Eur. Phys. J. A. 10, 447-486 (2001)
31. S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986)
32. R. Bijker, F. Iachello, and A. Leviatan, Ann. Phys. (N.Y.) 284, 89-113 (2000)
33. T. Melde, W. Plessas and B. Sengl, Phys. Rev. D 77, 114002 (2008)
34. E. Santopinto and J. Ferretti, Phys. Rev. C 92, 2, 025202 (2015)
35. Y. Oh, Phys. Rev. D 75, 074002 (2007)
36. M. M. Giannini and E. Santopinto, Chin. J. Phys. 53, 020301 (2015)
37. N. Matagne and Fl. Stancu, Phys. Rev. D 74, 034014 (2006)
38. J. L. Goity, C. L. Schat and N. N. Scoccola, Phys. Rev. D 66, 114014 (2002)
39. Y. Chen and Bo-Qiang Ma, Chin. Phys. Lett. 25, 3920 (2008)
40. A. Amiri, M. Ghapavari and M. A. Jafarizadeh, Eur. Phys. J. Plus 136, 141 (2021)
41. F. X. Lee and X. Liu, Phys. Rev. D 66, 014014 (2002)
42. Y. Chen and Bo-Qiang Ma, Nucl. Phys. A 831, 1-21 (2009)
43. G. P. Engel, C. B. Lang, D. Mohler and A. Schaefer [BGR Collaboration] Phys. Rev. D. 87, 074504 (2013)
44. C. Menapara, Z. Shah and A. K. Rai, Chin. Phys. C 45, 032102 (2021); AIP Conf.Proc. 2220, 140014 (2020); Proc. of the DAE Symp. on Nucl. Phys. 64, 673 (2019)
45. Z. Shah, K. Gandhi and A. K. Rai, Chin. Phys. C 43, 034012 (2019), arXiv:1812.04885 [hep-ph]
46. A. Ramos, E. Oset and C. Bennhold, Phys. Rev. Lett. 89, 252001 (2002)
47 M. Pavón Valderrama, Ju-Jun Xie and J. Nieves, Phys. Rev. D 85, 017502 (2012)
48 Z. Shah, K. Thakkar, and A. K. Rai, Eur. Phys. J. C 76, 530 (2016)
49 H. Dahiya and M. Gupta, Phys. Rev. D 67, 114015 (2003)
50 J. Linde, T. Ohlsson and H. Snellman, Phys. Rev. D 57, 5916-5919 (1998)
51 T. M. Aliev and V. S. Zamiralov, Adv. High Energy Phys. 2015, 406755 (2015); T. M. Aliev, A. Özpineci and M. Savci, Phys. Rev. D 66, 016002 (2002)
52 R. Dhir and R. C. Verma, Phys. Rev. D 66, 016002 (2002), Eur. Phys. J. A 42, 243 (2009)
53 S. Hong, Phys. Rev. D 76, 094029 (2007)
54 F.X. Lee, R. Kelly, L. Zhou, W. Wilcox, Phys. Lett. B 627, 71 (2005)
55 H. Singh, A. Kumar and H. Dahiya, Eur. Phys. J. Plus 135, 422 (2020)
56 A.J. Buchmann, J.A. Hester, R.F. Lebed, Phys. Rev. D 66, 056002 (2002)
57 J. Liu, J. He and Y. B. Dong, Phys. rev. D 71, 094004 (2005)
58 N. Sharma, A. Martinez Torres, K.P. Khemchandani and Harleen Dahiya, Eur. Phys. J. A 49, 11 (2013)
59 Fayyazuddin and M. J. Aslam, [arXiv:2011.06750] [hep-ph] (2020)
60 H. Dahiya, Chin. Phys. C 42, 9, 093102 (2018)
61 K. Thakkar, B. Patel, A. Majethiya and P. C. Vinodkumar, PRAMANA J of Physics 77, 1053-1067 (2011)