Review

Malaria and Helminthic Co-Infection during Pregnancy in Sub-Saharan Africa: A Systematic Review and Meta-Analysis

Minyahil Tadesse Boltena 1,*, Ziad El-Khatib 2,3,*, Abraham Sahilemichael Kebede 4, Benedict Oppong Asamoah 5, Appiah Seth Christopher Yaw 6, Kassim Kamara 7, Phénix Constant Assogba 8, Andualem Tadesse Boltena 5, Hawult Taye Adane 1, Elifaged Hailemeskel 1,9,10 and Mulatu Biru 1,10

Abstract: Malaria and helminthic co-infection during pregnancy causes fetomaternal haemorrhage and foetal growth retardation. This study determined the pooled burden of pregnancy malaria and helminthic co-infection in sub-Saharan Africa. CINAHL, EMBASE, Google Scholar, Scopus, PubMed, and Web of Science databases were used to retrieve data from the literature, without restricting language and publication year. The Joanna Briggs Institute’s critical appraisal tool for prevalence studies was used for quality assessment. STATA Version 14.0 was used to conduct the meta-analysis. The I² statistics and Egger’s test were used to test heterogeneity and publication bias. The random-effects model was used to estimate the pooled prevalence at a 95% confidence interval (CI). The review protocol has been registered in PROSPERO, with the number CRD42019144812. In total, 24 studies (n = 14,087 participants) were identified in this study. The pooled analysis revealed that 20% of pregnant women were co-infected by malaria and helminths in sub-Saharan Africa. The pooled prevalence of malaria and helminths were 33% and 35%, respectively. The most prevalent helminths were *Hookworm* (48%), *Ascaris lumbricoides* (37%), and *Trichuris trichiura* (15%). Significantly higher malaria and helminthic co-infection during pregnancy were observed. Health systems in sub-Saharan Africa must implement home-grown innovative solutions to underpin context-specific policies for the early initiation of effective intermittent preventative therapy.

Keywords: co-infection; comorbidity; helminthic infections; pregnancy malaria; sub-Saharan Africa

1. Introduction

Globally, approximately 1.5 billion cases of infection from malaria and helminths pose a significant risk of mortality and morbidity to the population at risk including pregnant women and the foetus [1,2]. Recently, a total of 12 million incidences of gestational malaria were reported out of 33 million pregnancies in sub-Saharan Africa (SSA) [2].
Ten countries in SSA—Burkina Faso, Cameroon, The Democratic Republic of the Congo, Ghana, Mali, Mozambique, Niger, Nigeria, Uganda, and The United Republic of Tanzania—that were hard hit by malaria endorsed the “High Burden to High Impact Approach (HBHI)” [3]; this sets out four response mechanisms to malaria elimination—namely, a political will to reduce death associated with malaria, strategic information to deliver impact, better guidance and policies, and a coordinated national malaria response strategy [4–8]. However, the already fragile healthcare delivery in SSA has faced the doubled burden of malaria and the novel coronavirus (nCoV-2) pandemic, which has stalled the hard-won gains in the fight against malaria [9–11].

The burden of helminthic infection during pregnancy in SSA ranges from 11% to 31% [12]. The most common helminths associated with unintended pregnancy outcomes in SSA include *Hookworm* (32%) [13], *Ascaris lumbricoides* (52%) [14], *Trichuris trichiura* (2.9%) [15], and *Schistosomiasis* (13%) [16]. Concurrent infection for more than one helminthic species during pregnancy shows negative health consequences on birth and maternal outcomes similar to malaria parasitaemia [17,18].

The World Health Organisation (WHO) 2030 road map aims to establish an efficient helminths control program specifically for women of reproductive age. Nevertheless, helminths continue to constitute major public health problems for pregnant women in SSA [19–21]. Co-infection from malaria and helminths is a major indicator of global health inequality, and failure to tackle this health disparity slows down the race to realising universal health coverage and attainment of the Sustainable Development Goal (SDG)-3 [22–29].

1.1. Clinical Implications of Concurrent Malaria and Helminthic Infection in Pregnancy

Malaria during pregnancy increases the risk of miscarriage and stillbirth by 3 to 4 times, compared with pregnant women with no clinically confirmed malaria [30]. Helminths cause alterations in immune response and physiological changes that affect fecundity, due to induced immunological states, with resultant adverse effects on conception and pregnancy [31]. Anemia during pregnancy is the most common adverse health outcome caused by *Ascaris lumbricoides* [32,33], and *Hookworm* [34]. In addition, *Schistosoma mansoni* is also associated with anemia and undernutrition during pregnancy [34], while *A. lumbricoides* is implicated with gallbladder perforation [35]. Pregnancy malaria co-infection with *A. lumbricoides* and *Hookworm* has been associated with increased odds of *P. falciparum* infection [36,37], and the pathophysiology of pregnant women simultaneously infected with *Plasmodium* species and helminths revealed negative pregnancy outcomes such as anemia, fetomaternal haemorrhage, antepartum stillbirth syndrome, and low birth weight [38–40]. Malaria and helminths co-infection causes elevated and unregulated inflammatory biomarkers such as C-reactive protein and serum level Hepcidin, which results in reduced iron absorption during pregnancy [41–51]. In addition, comorbidity of *Plasmodium falciparum* and helminthiasis elucidates the incidence of cervical cancer among pregnant women [52–54]. Moreover, during pregnancy, malaria co-infection with *A. lumbricoides* has been associated with an increased odds of *P. falciparum* infection [55,56], and malaria–Hookworm co-infection is associated with risks of increased *Plasmodium* parasitaemia [57,58].

Currently, evidence on the burden of intestinal helminths and malaria co-infection, the nature of their interaction, and their impact on pregnancy is not well established in endemic countries [59–61]. Most of the studies conducted in SSA emphasized the negative health outcomes of infection from malaria and helminths among pre- and schoolchildren [62–66], while very limited attention has been given to the dire impact of concurrent maternal gestational nematode and *Plasmodium* species infection [67–70]. Therefore, this systematic review and meta-analysis synthesised the available data on the burden of malaria and helminthic co-infections and their interaction among pregnant women living in SSA. It will further highlight evidence-informed planning and implementation for the comprehensive elimination of co-endemic malaria and helminthic infections during pregnancy in SSA [71,72].
1.2. Operational Definitions

Malaria in pregnancy: This is an adverse clinical condition developed by pregnant women after being infected by Plasmodium species, which increases the risk of anemia, stillbirth, spontaneous abortion, low birth weight, and neonatal death [73]. Infants born to mothers living in endemic areas are vulnerable to malaria from approximately 3 months of age, which is when immunity acquired from the mother starts to wane [74–77].

Co-Infection: This is a clinical condition of particular human health importance caused by the simultaneous infection of a host (human being) by multiple pathogen species, for instance, multiple parasite infections [78–82].

Helminths: These are worms that infect the gastrointestinal tract of humans upon accidental ingestion of their infective eggs [83].

2. Materials and Methods
2.1. Reporting

The Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement guidelines were used to fully record and report the search results and the reasons for exclusion of studies [84] (Figure 1) (Supplementary File S1). The review protocol has been registered in PROSPERO with registration code CRD42019144812 [85]. An updated guideline for reporting systematic reviews (PRISMA checklist 2020) was used to report the corresponding section of the manuscript with its detailed contents and items [86,87] (Supplementary File S3).

![Figure 1. Flow diagram of the included studies. Moher, D. et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 2009, 6(7).](image-url)
2.2. Search Strategy and Information Sources

A robust search was performed on CINAHL, EMBASE, Google Scholar, Scopus, PubMed, and Web of Science databases to retrieve published and unpublished data from the literature. (Supplementary File S1). No restrictions were made regarding the language and years of all publications. The Boolean operators “AND” and “OR” were used to combine the MeSH terms “Hookworm Infections”[Mesh] OR “Ascaris”[Mesh] OR “Ascaris lumbricoides”[Mesh] OR “Ascariasis”[Mesh] OR “Trichuris”[Mesh] OR “Trichuriasis”[Mesh] OR “Schistosoma”[Mesh] OR “Schistosoma mansoni”[Mesh] OR “Schistosoma haematobium”[Mesh] OR “Intestinal helminthiasis” [Supplementary Concept] OR “Anemia”[Mesh] AND “Co-infection”[Mesh] OR “Comorbidity”[Mesh] OR “Malaria”[Mesh] OR “Malaria, Vivax”[Mesh] OR “Malaria, Falciparum”[Mesh] OR “Acute malaria” [Supplementary Concept] AND “Pregnancy”[Mesh] OR “Pregnant Women”[Mesh]” and text words “Hookworm Infections”[tw] OR Soil-transmitted helminthiasis OR Ascaris*[tw] OR Ascaris lumbricoides*[tw] OR Ascariasis*[tw] OR Trichuris*[tw] OR Trichuriasis*[tw] OR Schistosoma*[tw] OR Schistosoma mansoni*[tw] OR Schistosoma haematobium*[tw] OR Schistosomiasis mansoni*[tw] OR Schistosomiasis haematobia*[tw] OR Intestinal helminthiasis*[tw] OR Anemia*[tw] AND Co-infection*[tw] OR Comorbidity*[tw] OR Malaria*[tw] OR Malaria, Vivax*[tw] OR Plasmodium vivax*[tw] OR Malaria, Falciparum*[tw] OR Plasmodium falciparum*[tw] OR Acute malaria*[tw] AND Pregnancy*[tw] OR Pregnant Women*[tw]” to run key search topics. Potentially relevant studies were fully retrieved, including their citation details, and additional data were obtained from the reference lists of some of the articles selected for critical appraisal.

2.3. Study Selection

All the identified citations were exported into the EndNote version 15.0 reference manager. Two independent reviewers (M.T.B. and E.H.) rigorously screened the titles, abstracts, and the full text of selected literature against the inclusion criteria. The double-check of the included studies was performed by a third reviewer (H.T.A.). Discussions were made among the reviewers to resolve disagreements that arose at each stage of the study selection process.

2.4. Eligibility Criteria

Inclusion Criteria: Observational studies published in SSA, which reported the co-infection of malaria in pregnancy with helminths as their main outcome were eligible for inclusion. Studies published in all languages of SSA until 20 January 2022 were included.

Exclusion Criteria: Systematic reviews, studies with poor methodological quality after, and reports of studies conducted outside SSA were excluded. Studies that employed inappropriate sampling frames, inadequate sample sizes, and poor data analysis were excluded. Studies that reported malaria or helminthic infection alone during pregnancy were also excluded.

2.5. Quality Assessment

The Joanna Briggs Institute’s (JBI) standardised critical appraisal instrument for prevalence studies was used to assess the methodological quality of included studies [88]. The JBI checklist contains nine quality measurement items (Supplementary File S2). Studies scoring 6 and above out of the 9 criteria were considered to have high quality to be included in the meta-analysis (Table 1). Two reviewers (M.T.B. and H.T.A.) independently screened the eligible studies, and a third reviewer (E.H.) was involved to resolve the disagreement. The observed risk of bias in this study is low (93%) (Table 1). Studies that employed appropriate way of sampling procedures, had a clear description of settings and target population, appropriateness and adequacy of subject recruitment, reliability, and validity of methods used for the identification of outcomes of interest that included no co-infected
cases (numerator), and a clear description of the study population (denominator) were deemed quality articles for final meta-analysis (Table 2).

Table 1. Quality assessment of the eligible studies.

S. No	Author, Publication year	Total No.	Yes (Y)	Percentage of Yes (Y)
1	Hillier et al., 2008	9	100.00%	
2	Getachew et al., 2013	8	89.00%	
3	Joseph et al., 2017	9	100.00%	
4	Wanyonyi et al., 2018	8	89.00%	
5	Teklemariam A., 2018	8	89.00%	
6	Egwunyenga et al., 2001	8	89.00%	
7	Adegnika et al., 2010	9	100.00%	
8	Nelly et al., 2009	9	100.00%	
9	Shapiro et al., 2004	9	100.00%	
10	Thigpen et al., 2011	9	100.00%	
11	Olusola Ojurongbe	8	89.00%	
12	Olarewaju et al., 2016	9	100.00%	
13	Polycarp Uche Agu et al., 2013	9	100.00%	
14	Ndyomugyenyi et al., 2008	8	89.00%	
15	Anchang-Kimbi et al., 2017	8	89.00%	
16	Umeh et al., 2018	8	89.00%	
17	Nnah and Kasso, 2018	8	89.00%	
18	Akinbo et al., 2017	7	78.00%	
19	Ekejindu et al., 2011	9	100.00%	
20	Ifeanyi, 2014	9	100.00%	
21	Fairley, 2014	9	100.00%	
22	Fuseini et al., 2010	7	78.00%	
23	Masai, Rael Jepkogei, 2016	8	89.00%	
24	Honkpehedji et al., 2017	8	89.00%	

Average bias score (%Yes) 93.00%

Subtotal Yes (Y) 93%. Subtotal No (N) 6.5%. Subtotal Unclear (U) 0%. Overall risk of bias assessment score was 93%. Remark: The risk of bias for each eligible study was calculated from the domain of nice criteria.

2.6. Data Extraction

Data extraction was principally carried out by two reviewers (M.T.B. and E.H.). The validity and eligibility of the extracted data for the meta-analysis were cross-checked by a third reviewer (H.T.A.). Variables such as the name of the corresponding author and publication year, study design and data collection period, sample size and study setting, the test approaches for the diagnosis of malaria, and helminths were extracted (Table 2). In addition, data extraction tools were used to extract the percentage of infection from *Plasmodium falciparum*, *Hookworm*, *Ascaris lumbricoides*, *Trichuris trichiura*, Schistosomiasis, the burden of helminths, prevalence of malaria, and malaria–helminthic co-infections, respectively.

2.7. Outcome Measurement

Malaria and helminthic co-infection during the gestation period were considered to occur when a laboratory-confirmed case of at least one *Plasmodium* and helminth species identified from blood and faecal bio-specimens was obtained from pregnant women [63].
Table 2. Descriptive summary of the eligible studies.

S. No	Author, Year of Publication	Year Study Conducted	Country	Study Design	Sample Size	Trimester	Parity	Test Approach for Malaria Diagnosis	Test Approach for Helminthiases	Prevalence of Pf Infection	Prevalence of Pv Infection	Prevalence of Any Malaria Infection	Prevalence of Malaria-Associated Anemia	Overall Prevalence of Malaria/Helminthiases Co-infection	Overall Prevalence of Helminthiasis
1	Hillier et al., 2008	2003–2005	Uganda	Cross-sectional	2507	1st 2nd 3rd	Primigravida Multigravida	Microscopy	Kato-Katz thick smear	268 (11%)	264 (11%)	469 (18%)	54 (2%)	225 (8%)	69 (18%)
2	Getachew et al., 2013	2011	Ethiopia	Cross-sectional	388 156 167 95 133 285	Microscopy	McMaster concentration technique	45 (11.6%)	159 (41%)	30 (7.7%)	114 (29%)	58 (15%)	13 (3.4%)		
3	Joseph, R. et al., 2017	2015	Nigeria	Cross-sectional	252 63 169	Microscopy	Formalin-ether concentration technique + wet mount	51 (20.2%)	54 (21.4%)	16 (6.3%)	34 (29%)	58 (15%)	6 (3%)		
4	Wanyonyi et al., 2018	2016–2017	Kenya	Cross-sectional	750	Microscopy	Kato-Katz thick smear	21.60%	367 (48.9%)	24.70%	6.8%	116 (15.4%)	59 (7.8%)	42 (5.6%)	
5	Teklemariam A., 2018	2016	Ethiopia	Cross-sectional	460	Microscopy	Formalin-ether concentration techniques	27 (5.9%)	55 (12%)	84 (18.3%)	198 (43%)	46 (10%)	54 (11.7%)	77 (16.7%)	
6	Egwunyenga et al., 2001	1997–1998	Nigeria	Cross-sectional	2104	Microscopy	Formalin-ether concentration techniques	762 (36.2%)	816 (38.8%)	394 (48.3%)	116 (5.5%)	156 (7.4%)	57 (2.7%)	28 (1.3%)	
7	Adegnika et al., 2010	2003–2004	Gabon	Cross-sectional	388 111 277	Microscopy	Kato-Katz thick smear	98 (25%)	216 (64%)	15%	34 (8.8%)	112 (28.9%)	83 (21.4%)		
8	Nelly J et al., 2009	2006	Ghana	Cross-sectional	746 390 324 26 255 521	Malaria Antigen CELISA assay	Kato-Katz thick smear	271 (36.3%)	36.30%	192 (25.7%)	124 (16.6%)	59 (7.5%)	92 (12.3%)		
9	Shapiro et al., 2004	2003	Uganda	Cross-sectional	856	Microscopy	Kato-Katz thick smear	217 (49.9%	217 (49.9%)	405 (47.3%)	118 (54.8%)	275 (32.1%)	149 (17.4%)	70 (8.1%)	
10	Thigpen et al., 2011	2002–2004	Malawi	Cross-sectional	848 412 436	Microscopy	Kato-katz thick smear	667 (37.6%)	667 (37.6%)	691 (81.5%)	143 (16.8%)	81 (9.7%)	122 (14.4%)	21 (2.5%)	
11	Olusola Ojurongbe et al., 2018	2001	Nigeria	Cross-sectional	200 90 178 25	Microscopy	Formalin-ether concentration techniques	29.5% (59/200)	12% (24/200)	5% (10/200)	2.0% (4/200)	10.0% (20/200)			
12	Olarewaju AB et al., 2016	2015	Nigeria	Cross-sectional	300 32 116 152 185 115	Microscopy	Kato-Katz techniques	14 (4.6)	12 (4.0)	73 (24%)	11 (3.6)	15 (5.0)	12 (4.0)		
13	Polycarp Uche Agu et al., 2013	2013	Nigeria	Cross-sectional	226 65 113 47	Microscopy	Kato-Katz techniques	119	90 (40%)	60 (26.5%)	14 (6.2%)				
14	Nkoisongari et al., 2018	2007	Uganda	Cross-sectional	802	Microscopy	Kato-Katz techniques	281 (10%)	230 (90%)	31 (3.8%)	39 (4.9%)	21 (2.6%)			
15	Judah & Andrew, et al., 2017	2014	Cameroon	Cross-sectional	305	12 (41%)	120 (59%)	15 (49%)	Microscopy	Kato-Katz techniques	98 (32.3%)	38 (12.5%)	157 (51.4%)		
16	Linard et al., 2017	2017	Nigeria	Cross-sectional	308	Microscopy	Kato-Katz techniques	6 (11%)	2 (11%)	9 (3%)	1 (0.5%)	9 (3%)	1 (0.5%)		
17	E. F. Noah and U. Kise, 2018	2016	Nigeria	Cross-sectional	192	Microscopy	Kato-Katz techniques	47 (24.5%)	30 (15%)	1 (0.5%)	6 (3.1%)	14 (7.3%)			
18	Adikwu et al., 2014	2014	Nigeria	Cross-sectional	402	Microscopy	Kato-Katz techniques	110 (27.4%)	73 (18.2%)	175 (43.8%)	32 (8%)	18 (4.5%)			
19	Nachiska H et al., 2013	2013	Nigeria	Cross-sectional	310	Microscopy	Kato-Katz techniques	81 (26.5%)	17 (5.5%)	17 (5.5%)					
20	Obouage E. Hamza, 2015	2015	Nigeria	Cross-sectional	87	Microscopy	Kato-Katz techniques	11 (13%)	10 (12%)	6 (7%)	6 (7%)				
21	Symons B. Arley, 2016	2016	Kenya	Cross-sectional	456	Microscopy	Kato-Katz techniques	287 (63.7%)	214 (46.3%)	15 (3.3%)	4 (0.9%)				
22	Nnogha et al., 2015	2015	Ghana	Cross-sectional	308	Microscopy	Kato-Katz techniques	174 (56.5%)	89 (29%)	21 (7%)	21 (7%)	7 (2.3%)			
23	Moro S. Hendry, 2010	2015	Kenya	Cross-sectional	308	Microscopy	Kato-Katz techniques	24 (8%)	47 (15.2%)	90 (29%)	31 (10%)				
24	Honhyndly et al., 2015	2015	Gabon	Cross-sectional	678	Microscopy	Kato-Katz techniques	221 (32.5%)	239 (35%)	409 (60%)	21 (3%)				

Note: The table provides a summary of the prevalence of malaria and helminth infections in various studies. The data includes the sample size, methods used for diagnosis, and the prevalence rates of different types of malaria and helminth infections.
2.8. Statistical Analysis

A quantitative meta-analysis of eligible studies was performed to estimate the event rate (prevalence of malaria–helminthic co-infection during pregnancy) [89]. Based on the random distribution assumption, the prevalence of each disease condition was obtained from the individual study estimate (ES), which includes a standard error (seES) and lower and upper confidence intervals. The pooled estimates were calculated and reported with respect to the relative weight given for each study [90,91]. Egger’s regression test analyses were used to check the publication bias [92]. The standard chi-squared I² test was used to test heterogeneity [93]. A random-effects model using the double arcsine transformation approach was applied [94]. Decisions made regarding the included studies were checked by sensitivity analyses test. Funnel plot asymmetry visual examination and Egger’s regression tests were used to check for publication bias [95]. The pooled magnitude of co-infection of pregnancy malaria and helminths in SSA were estimated by computing a forest plot with 95%CI. Microsoft Excel 2019 workbook was used for data collection. The meta-analysis was performed using STATA version 14.0.3.

3. Results

3.1. Literature Search

A total of 1525 publications (Figure 1) were obtained from PubMed, CINAHL, EMBASE, Google Scholar, Scopus, and Web of Science databases, after removing 167 duplicates (Supplementary File S1). Following title and abstract screening, a total of 1367 articles were excluded. Furthermore, 27 studies were eligible for quality assessment, out of which 24 studies were included in the meta-analysis (Figure 1).

3.2. Characteristics of Included Studies

A total of 14,087 pregnant women from 24 eligible studies from SSA participated in this systematic review. Studies with the highest (n = 2,507) and lowest (n = 87) sample sizes were reported from Uganda and Nigeria, respectively (Table 2). Only six studies reported data on parity rate with primigravida (n = 1159) and multigravida (n = 1803). Ten studies were reported from Nigeria [96–106], and three studies were from Kenya [69,107,108] and Uganda [109–111]. Two studies were reported from Ethiopia [112,113], Gabon [114,115], and Ghana [116,117], respectively. The remaining studies were reported from Malawi [118] and Cameroon [119]. All of the studies included in the review were conducted using cross-sectional study designs (Table 2). The majority of the studies employed the Kato–Katz thick smear, followed by formalin-ether and MacMaster concentration techniques for the detection of helminthic infection from faecal specimens, while the conventional microscopic method was used for the detection of malaria parasites (Table 2). Funnel plot asymmetry visual examination indicated no publication bias (Figure 2).

Figure 2. Funnel plot with pseudo 95% confidence limit of individual study estimates attributed with prevalence of malaria and helminthic co-infection among pregnant women in sub-Saharan Africa.
3.3. Meta-Analysis

3.3.1. The Burden of Malaria Infection

The prevalence of malaria ranges from 4.6% to 36.2% (Table 2). The lowest and the highest pooled prevalence of malaria were 15% (95%CI: 12%, 17%) and 42% (95%CI: 39%, 45%) (Figure 3). The overall pooled prevalence of malaria was 33% (95%CI: 25%, 41%) (Figure 3).

![Forest plot for the overall and country-specific pooled prevalence of malaria among pregnant women in sub-Saharan Africa.](image)

3.3.2. The Burden of Helminthic Infection

The pooled prevalence of helminthiasis was 35% (95%CI: 25%, 45%) (Figure 4). The prevalence of *Hookworm* infection ranged from 2% to 69% (Table 2). The pooled prevalence of *Hookworm* infection was 48% (95%CI: 36%, 61%) (Figure 5). The lowest and the highest prevalence of infection from *Ascaris lumbricoides* were 2% and 75%, respectively (Table 2). The pooled prevalence of *Ascaris lumbricoides* was 37% (95%CI: 30%, 44%) (Figure 6). The prevalence of *Trichuriasis* ranged from 1% to 21.4% (Table 2). The pooled prevalence of *Trichuris trichiura* was 35% (95%CI: 25%, 45%) (Figure 7). Only six studies have descriptively reported the burden of *Schistosoma mansoni* with the lowest (1.3%) and highest (46.8%) levels (Table 2).
Figure 4. Forest plot for the overall and country-specific pooled prevalence of helminthic infection among pregnant women in sub-Saharan Africa.

Figure 5. The proportion of Hookworm estimated from the overall helminthic infection among pregnant women in sub-Saharan Africa.
Figure 5. The proportion of Hookworm estimated from the overall helminthic infection among pregnant women in sub-Saharan Africa.

Figure 6. The proportion of *Ascaris lumbricoides* estimated from the overall helminthic infection among pregnant women in sub-Saharan Africa.

Figure 7. The proportion of *Trichuris trichiura* estimated from the overall helminthic infection among pregnant women in sub-Saharan Africa.

3.3.3. The Burden of Malaria and Helminthic Co-Infection

The lowest and the highest prevalence rates of comorbidity with malaria and helminths were 3% and 69% (Table 2). The pooled prevalence of malaria and helminthic co-infection was 20% (95%CI: 15%, 26%) (Figure 8).
4. Discussion

This study estimated the pooled prevalence of co-infection of malaria and helminths during pregnancy from a total of 24 eligible studies and 14,087 pregnant women in SSA. The pooled prevalence of comorbidity of malaria and helminths among pregnant women in SSA was 20%, ranging from 9% in Ethiopia to 40% in Ghana. The burden of simultaneous infection from Plasmodium and helminthic species among pregnant mothers living in Uganda and Kenya was similar (16%). This could be attributed to the poor implementation of the intermittent preventive treatment of malaria during pregnancy, barriers to access to clean water, and inadequate sanitation in these three countries [120–123]. To tackle the impact of malaria and helminthic comorbidity on pregnant mothers, the WHO Africa region must establish a malaria data-sharing hub that can serve as a shared evidence-informing centre [124]. This will be a game changer by enabling the health systems in SSA to allocate scarce resources by applying a combination of updated tools for intervention and elimination strategies [125–127].

The burden of malaria in the gestational period among women immune-compromised by helminthic infection in SSA was 33%. This finding was higher than those of studies in Colombia (3.4%) [128] and Ethiopia (12.72%) [129]. This implicates the challenges to global malaria elimination efforts and calls for a collective concerted effort from countries in SSA to implement context-specific and tailored, evidence-based malaria elimination interventions [128,129]. Pregnant women’s poor adherence to the use of prescribed prophylactic antimalarial drugs and preventive measures puts strain on the malaria elimination goal [130–136].
This implies a concerted need to intensify malaria vaccine coverage in SSA to save the lives of pregnant mothers, in addition to having preventive, therapeutic, and control strategies in place to end malaria during pregnancy [137–165]. Countries in SSA must make changes in their malaria elimination strategies by adopting context-specific, home-grown innovative solutions, learning from grassroots experience, and strengthening public-private partnerships [142–151].

Our review revealed that the pooled prevalence of helminthiasis among pregnant mothers in SSA whose immunity is weakened by malaria was 35%. Uganda had a burden of helminthic infection in pregnancy (70%), which was higher than Cameron and Malawi combined (22%). Hookworm (48%), *Ascaris lumbricoides* (37%), and *Trichuris trichiura* (15%), respectively, were the pooled estimates of the most prevalent helminths associated with unintended pregnancy complications in SSA. The findings of our study were higher than those reported as global burden of helminthic infection during pregnancy in terms of the aggregate (3.6%) and species-specific Hookworm (19%), *Ascaris lumbricoides* (17%), and *Trichuris trichiura* (11%) [152]. This could be attributed to the inadequate availability of water, sanitation, and hygiene services in SSA, which remains below the global target of 80% [153–156]. The prevalence of *Schistosoma mansoni* and malaria was determined by narrative synthesis because only 6 studies from the eligible 24 articles were reported with (n = 692) pregnant women from five countries in SSA who were co-infected by malaria and *Schistosoma mansoni*. Only five countries in SSA have (n = 1159) and (n = 1803) pregnant women in primigravid and multigravida who were co-infected by malaria and helminths.

4.1. Optimisation of Anti-Malarial and Anti-Helminthic Infections in Endemic Areas

Although there are universal malaria interventions such as bed nets and access to prompt diagnosis and treatment for pregnant women in malaria-endemic settings, universal access to sanitation and hygiene should be implemented to prevent malaria and helminths co-infection in women of reproductive age and schoolchildren in endemic settings [157]. Moreover, improved diagnostic tools are required to better quantify the burden of malaria–helminth co-infection, as this might help understand the burden of these infections for evidence-based planning and implementation of integrated control and elimination of both malaria and helminthic infections in co-endemic areas [158]. Future malaria vaccine development efforts might also need to understand the immune modulation in malaria–helminth co-infection for better consideration of the effect of the helminth–malaria infection in vaccine immunogenicity [159].

4.2. Ending Preventable Maternal Mortality due to Malarial and Helminthic Co-Infection

The global effort to end the preventable death of the mother caused by the comorbidity of *Plasmodium* parasitaemia and helminthiasis requires a concerted global health leadership and commitment [160,161]. Sustainable implementation of the water, sanitation, and hygiene (WASH) programs, combined with improving the practice of early initiation of effective intermittent preventive therapy, can avert unintended health consequences as a result of malaria in pregnancy [162–167]. Unavailability of a platform for sharing real-time data, poor financing, and inadequate political commitment, coupled with the lack of an enabling and empowering environment to use state-of-the-art technology for the development of anti-malarial and anti-helminthic vaccines in the clinical and biomedical research and innovations in SSA, continue to hinder efforts to bring context-based solutions to achieve SDG3 [168–177].

4.3. Implications for Practice, Policy, and Future Research and Innovation

Ensuring adequate access and enforcing adherence to safety and hygiene practices among pregnant women and safeguarding gestational mothers from economically disadvantaged households by creating sustainable access to economic opportunities will be essential to meet the global effort to control, prevent, and eliminate helminthic infections in sub-Saharan Africa [178–186]. To meet the 2030 target of successful elimination of
helminthic infection, health systems in SSA and their international development partners must enhance the capacity and uptake of promising vaccine technology and innovation to improve maternal outcomes following gestational treatment of intestinal nematodes to help guide clinical decision making [187–196]. Sustainable and inclusive financing must be in place for the cutting-edge research and prudent innovation to deeply investigate the clinical outcomes of immunogenicity of comorbidity of malaria and helminths among gestational mothers in SSA [197–206]. Given the presence of sub-patent asymptomatic malaria burden that cannot be detected by microscopy [207], and *P. falciparum* parasites with histidine-rich protein 2 (pfhrp2) and histidine-rich protein 3 (pfhrp3) gene deletions that can escape the current HRP2 based-RDTs detection [208], the estimated burden of malaria–helminth co-infection might be underestimated in these 24 articles. Therefore, future studies that investigate the public health impact of asymptomatic malaria in pregnant women living in helminth co-endemic settings should be undertaken for better policy decision making.

5. Conclusions

Significantly higher levels of malaria and helminthic co-infection during pregnancy were observed. Existing interventions, such as deworming, prioritisation, and distribution of insecticide-treated bed nets and other control measures addressing pregnant women need to be highly encouraged. In addition, health systems strengthening gatekeepers and health policy framers in sub-Saharan Africa must implement home-grown, innovative solutions to underpin context-specific policies and practice for early initiation of effective intermittent preventive therapy for the prevention of malaria in pregnancy. Investments in reverse vaccinology to augment cutting-edge research and innovations in the comorbidity of gestational malaria and helminths through public–private partnerships must be implemented by sub-Saharan African countries and their international development partners. Tailored advocacy on focused antenatal care must be in place to inform and raise awareness among pregnant women regarding the health benefits of universal sanitation and hygiene coverage, together with the effective establishment of integrated community-level early detection and treatment of malaria and helminthic co-infection in sub-Saharan Africa.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ijerph19095444/s1.

Author Contributions: M.T.B., E.H., M.B. and H.T.A. took the principal role in the conception of the idea and research question, developing methodologies, and writing the article. M.T.B., E.H. and H.T.A. were involved in data extraction. B.O.A., M.T.B., M.B., H.T.A., E.H., A.S.C.Y. and K.K. were involved in the analysis and interpretation of the findings. A.T.B., P.C.A., A.S.K., B.O.A., M.T.B. and Z.E.-K. participated in analysis, interpretation, and writing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets during and/or analysed during the current study are available from the corresponding author on reasonable request.

Acknowledgments: The Armauer Hansen Research Institute for enabling us and granting access to the databases and The Joanna Briggs Institute (JBI), for helping us with access to the databases and development of the review protocol. The Evidence-Based Healthcare Centre at Jimma University in Ethiopia provided us with a comprehensive systematic review training opportunity.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. World Health Organization. World Malaria Report 2020—20 Years of Global Progress & Challenges; World Health Organization: Geneva, Switzerland, 2020.

2. World Malaria Report. 2020. Available online: https://www.wipo.int/amc/en/ (accessed on 11 March 2022).

3. Lubinda, J.; Bi, Y.; Hamainza, B.; Haque, U.; Moore, A.J. Modelling of malaria risk, rates, and trends: A spatiotemporal approach for identifying and targeting sub-national areas of high and low burden. PLoS Comput. Biol. 2021, 17, e1008669. [CrossRef] [PubMed]

4. World Health Organization. Report of the WHO Strategic Advisory Group on Malaria Eradication i Malaria Eradication: Benefits, Future Scenarios & Feasibility A Report of the Strategic Advisory Group on Malaria Eradication; World Health Organization: Geneva, Switzerland, 2020.

5. World Health Organization. Guideline WHO Guidelines for Malaria—16 February 2021. Available online: http://apps.who.int/bookorders (accessed on 11 March 2022).

6. Kumari, R.; Jayswar, H.; Dhingra, N. High Burden to High Impact (HBHI) approaches—Country perspective for adoption and adaptation in India. J. Commun. Dis. 2020, 52, 5–16. [CrossRef]

7. World Health Organization. A Strategic Framework for Malaria Prevention and Control During Pregnancy in the African Region; WHO Regional Office for Africa: Brazzaville, Congo, 2004.

8. World Health Organization. UHC in Africa: A Framework for Action. 2016. Available online: https://apps.who.int/iris/handle/10665/341157 (accessed on 11 March 2022).

9. Rogerson, S.J.; Beeson, J.G.; Laman, M.; Poeplopordjo, J.R.; William, T.; Simpson, J.A.; Price, R.N.; Anstey, N.; Fowkes, F.; McCarthy, J.; et al. Identifying and combating the impacts of COVID-19 on malaria. BMC Med. 2020, 18, 239. [CrossRef] [PubMed]

10. Foleke, S.M.; Reichert, E.N.; Mohammed, H.; Bhrane, B.G.; Mekete, K.; Mamo, H.; Petros, B.; Solomon, H.; Abate, E.; Hennelly, C.; et al. Plasmodium falciparum is evolving to escape malaria rapid diagnostic tests in Ethiopia. Nat. Microbiol. 2021, 6, 1289–1299. [CrossRef]

11. World Malaria Report 2021; World Health Organization: Geneva, Switzerland, 2021.

12. Montresor, A.; Mufpasoni, D.; Mikhailov, A.; Mwinzi, P.; Luciane, A.; Mekasha, S.; Woyessa, A.; Shafi, O.; Vercruysse, J.; Grimes, J.E.T.; et al. The global progress of soil-transmitted helminthiases control in 2020 and world health organization targets for 2030. PLoS Negl. Trop. Dis. 2020, 14, e0008505. [CrossRef]

13. Leta, G.T.; Mekete, K.; Wuletaw, Y.; Gebretsadik, A.; Sime, H.; Mekasha, S.; Woyessa, A.; Shafi, O.; Vercruysse, J.; Grimes, J.E.T.; et al. National mapping of soil-transmitted helmhnt and schistosomse infections in Ethiopia. Parasites Vectors 2020, 13, 437. [CrossRef]

14. van Eijk, A.M.; Lindblade, K.A.; Odhiambo, F.; Peterson, E.; Rosen, D.H.; Karanja, D.; Ayisi, J.G.; Shi, Y.P.; Adazu, K.; Slutsker, L. Geohelmint infections among pregnant women in rural western Kenya: A cross-sectional study. PLoS Negl. Trop. Dis. 2009, 3, e370. [CrossRef]

15. Bolk, A.; Gebremedhin, S. Prevalence of intestinal parasitic infection and its association with anemia among pregnant women in Wondo Genet district, Southern Ethiopia: A cross-sectional study. BMC Infect. Dis. 2019, 19, 483. [CrossRef]

16. Adam, I.; ALhabardi, N.A.; Al-Wutayd, O.; Khamis, A.H. Prevalence of schistosomiasis and its association with anemia among pregnant women: A systematic review and meta-analysis. Parasites Vectors 2021, 14, 133. [CrossRef]

17. Kamau, A.; Mogeni, P.; Okiro, E.A.; Snow, R.W.; Bejon, P. A systematic review of changing malaria disease burden in sub-Saharan Africa since 2000: Comparing model predictions and empirical observations. BMC Med. 2020, 18, 94. [CrossRef]

18. Moore, K.A.; Fowkes, F.J.I.; Wai, N.S.; Paw, M.K.; Pimanpanarak, M.; Carrara, V.I.; Raksuansak, J.; Simpson, J.A.; White, N.J.; et al. Mediation of the effect of malaria in pregnancy on stillbirth and neonatal death in an area of low transmission: Observational data analysis. BMC Med. 2017, 15, 98. [CrossRef] [PubMed]

19. Khurana, S.; Singh, S.; Mewara, A. Diagnostic Techniques for Soil-Transmitted Helminths—Recent Advances. Res. Rep. Trop. Med. 2021, 12, 181–196. [CrossRef] [PubMed]

20. Bangert, M.; Bancalari, P.; Mufpasoni, D.; Mikhailov, A.; Gabrielli, A.F.; Montresor, A. Provision of deworming intervention to pregnant women by antenatal services in countries endemic for soil-transmitted helminthiasis. PLoS Negl. Trop. Dis. 2019, 13, e0007406. [CrossRef] [PubMed]

21. Makaula, P.; Sadalaki, J.R.; Muula, A.S.; Kayuni, S.; Jemu, S.; Bloch, P. Schistosomiasis in Malawi: A systematic review. Parasites Vectors 2014, 7, 570. [CrossRef]

22. Mwinnyaa, G.; Hazel, E.; Maïga, A.; Amouzou, A. Estimating population-based coverage of reproductive, maternal, newborn, and child health (RMNCH) interventions from health management information systems: A comprehensive review. BMC Health Serv. Res. 2021, 21, 1083. [CrossRef]

23. Ferreira, L.Z.; Blumenberg, C.; Utazi, C.E.; Nilsen, K.; Hartwig, F.P.; Tatem, A.J.; Barros, A.J.D. Geospatial estimation of reproductive, maternal, newborn and child health indicators: A systematic review of methodological aspects of studies based on household surveys. Int. J. Health Geogr. 2020, 19, 41. [CrossRef]

24. Rios Quituizaca, P.; Gatica-Domínguez, G.; Nambiar, D.; Ferreira Santos, J.L.; Brück, S.; Ruas, L.V.; Barros, A.J.D. National and subnational coverage and inequalities in reproductive, maternal, newborn, child, and sanitary health interventions in Ecuador: A comparative study between 1994 and 2012. Int. J. Equity Health 2021, 20, 48. [CrossRef]
25. Boerma, T.; Requejo, J.; Victora, C.G.; Amouzou, A.; George, A.; Taylor, C.M.; Amouzou, A.; Jiwani, S.S.; da Silva, I.C.M.; Sidze, E.M.; et al. Countdown to 2030: Tracking progress towards universal coverage for reproductive, maternal, newborn, and child health. *Lancet* 2018, 391, 1538–1548. [CrossRef]

26. Faye, C.M.; Wehrmeister, F.C.; Melesse, D.Y.; Mutua, M.K.K.; Maïga, A.; Taylor, C.M.; Amouzou, A.; Jiwani, S.S.; da Silva, I.C.M.; Sidze, E.M.; et al. Large and persistent subnational inequalities in reproductive, maternal, newborn and child health intervention coverage in sub-Saharan Africa. *BJM Glob Health* 2020, 5, e002232. [CrossRef]

27. Barros, A.J.D.; Wehrmeister, F.C.; Ferreira, L.Z.; Vidaletti, L.P.; Hosseinpoor, A.R.; Victora, C.G. Are the poorest poor being left behind? Estimating global inequalities in reproductive, maternal, newborn and child health. *BJM Glob. Health* 2020, 5, e002229. [CrossRef]

28. Molyneux, D.H.; Lindsay, S.W.; Fitzpatrick, C.; Engels, D. The cross-cutting contribution of the end of neglected tropical diseases to the sustainable development goals. *Infect. Dis. Poverty* 2017, 6, 73.

29. WHO. *Monitoring the Health-Related Sustainable Development Goals (SDGs)*; WHO: Geneva, Switzerland, 2017; pp. 9–10.

30. Bakken, L.; Iversen, P.O. The impact of malaria during pregnancy on low birth weight in East-Africa: A topical review. *Malar. J.* 2021, 20, 348. [CrossRef] [PubMed]

31. Chetty, A.; Omondi, M.A.; Butters, C.; Smith, K.A.; Katawa, G.; Ritter, M.; Layland, L.; Horsnell, W. Impact of Helminth Infections on Female Reproductive Health and Associated Diseases. *Front. Immunol.* 2020, 11, 577516. [CrossRef] [PubMed]

32. Animaw, Z.; Melese, A.; Demelash, H.; Seyoum, G.; Abebe, A. Intestinal parasitic infections and associated factors among pregnant women in Ethiopia: A systematic review and meta-analysis. *BMC Pregnancy Childbirth* 2021, 21, 153–162. [CrossRef] [PubMed]

33. Demeke, G.; Mengistu, G.; Abebaw, A.; Toru, M.; Yigzaw, M.; Shiferaw, A.; Mengist, H.M.; Dihnessa, T. Effects of intestinal parasite infection on hematological profiles of pregnant women attending antenatal care at Debre Markos Referral Hospital, Northwest Ethiopia: Institution based prospective cohort study. *PLoS ONE* 2021, 16, e0250990. [CrossRef]

34. Brooker, S.; Hotez, P.J.; Bundy, D.A.P. Hookworm-related anaemia among pregnant women: A systematic review. *PLoS Negl. Trop. Dis.* 2008, 2, e291. [CrossRef] [PubMed]

35. Mosawi, S.H.; Dalimi, A.; Charkhi, M.A.; Baarae, O.; Darman, A.; Mosavi, M.; Baryal, M.W.; Stanikzai, H. Gallbladder perforation due to Ascaris lumbricoides in a pregnant woman and 6 year old girl from afghanistan: Case report. *Iran. J. Parasitol.* 2021, 15, 346–349. [CrossRef]

36. Righetti, A.A.; Glinz, D.; Adiossan, L.G.; Koua, A.Y.G.; Niamkpe, S.; Kpodonou, J.; Dossou, F. Acute appendicitis and appendiceal perforation due to Strongyloides stercoralis in a pregnant woman: A case report. *PLoS Negl. Trop. Dis.* 2021, 15, e0025251. [CrossRef] [PubMed]

37. Righetti, A.A.; Glinz, D.; Adiossan, L.G.; Koua, A.Y.G.; Niamkpe, S.; Kpodonou, J.; Dossou, F. Acute appendicitis and appendiceal perforation due to Strongyloides stercoralis in a pregnant woman: A case report. *PLoS Negl. Trop. Dis.* 2021, 15, e0025251. [CrossRef] [PubMed]

38. Hirst, J.; Villar, J.; Victora, C.; Papageorghiou, A.; Finkton, D.; Barros, F.; Gravett, M.; Giuliani, F.; Purwar, M.; Frederick, I.; et al. Antepartum stillbirth syndrome: Risk factors and pregnancy conditions identified from the INTERGROWTH-21st st Project. *BJOG Int. J. Obstet. Gynaecol.* 2018, 125, 1145–1153. [CrossRef]

39. Boel, M.; Carrara, V.L.; Rijken, M.; Proux, S.; Nacher, M.; Pimanpanarak, M.; Paw, M.K.; Moo, O.; Gay, H.; Bailey, W.; et al. Complex interactions between soil transmitted helminths and malaria in pregnant women on the thai-burmesse border. *PLoS Negl. Trop. Dis.* 2010, 4, e887. [CrossRef] [PubMed]

40. Adam, I.; Salih, M.M.; Mohmmed, A.A.; Rayis, D.A.; Elbashir, M.I. Pregnant women carrying female fetuses are at higher risk of placental malaria infection. *PLoS ONE* 2017, 12, e0182994. [CrossRef] [PubMed]

41. Mpairwe, H.; Tweeongyere, R.; Elliott, A. Pregnancy and helminth infections. *Parasite Immunol.* 2014, 36, 328–337. [CrossRef]

42. Ndibazza, J.; Webb, E.L.; Lule, S.; Mpairwe, H.; Akello, M.; Oduru, G.; Kizza, M.; Akurut, H.; Muhangi, L.; Magnussen, P.; et al. Associations between maternal helminth and malaria infections in pregnancy and clinical malaria in the offspring: A birth cohort in Entebbe, Uganda. *J. Infect. Dis.* 2013, 208, 2007–2016. [CrossRef] [PubMed]

43. Alarcón de Noya, B.; Ruiz Guevara, R. Pregnancy as a risk factor to disease and the vertical transmission to the fetus, of a host of parasitic ailments. *CientMed 2020*, 1, 1–16. [CrossRef] [PubMed]

44. Maestre, A.; Carmona-Forcina, J. Immune responses during gestational malaria: A review of the current knowledge and future trend of research. *J. Infect. Dev. Ctries.* 2014, 8, 391–402. [CrossRef]

45. Wilairatana, P.; Mahannop, P.; Tussato, T.; Hayeedoloh, I.M.; Boonhok, R.; Klangbud, W.K.; Mala, W.; Kotepui, K.U.; Kotepui, M. C-reactive protein as an early biomarker for malaria infection and monitoring of malaria severity: A meta-analysis. *Sci. Rep. 2021*, 11, 22033. [CrossRef]

46. Sarfo, B.O.; Hahn, A.; Schwarz, N.G.; Jaeger, A.; Sarpong, N.; Marks, F.; Adu-Sarkodie, Y.; Tamminga, T.; May, J. The usefulness of c-reactive protein in predicting malaria parasitemia in a sub-saharan african region. *PLoS ONE* 2018, 13, e0201693. [CrossRef]

47. Abrams, E.T.; Kwiek, J.J.; Mwapasa, V.; Kamwendo, D.D.; Tadesse, E.; Lema, V.M.; Molyneux, M.E.; Rogerson, S.J.; Meshnick, S.R. Malaria during pregnancy and foetal haematological status in Blantyre, Malawi. *Malar. J.* 2005, 4, 39. [CrossRef]

48. Sharma, L.; Shukla, G. Placental Malaria: A new insight into the pathophysiology. *Front. Med.* 2017, 4, 117. [CrossRef]

49. Brabin, B.; Tinto, H.; Roberts, S.A. Testing an infection model to explain excess risk of preterm birth with long-term iron supplementation in a malaria endemic area. *Malar. J.* 2019, 18, 374. [CrossRef] [PubMed]
99. Candela, E.; Goizueta, C.; Periago, M.V.; Muñoz-Antoli, C. Prevalence of intestinal parasites and molecular characterization of Giardia intestinalis, Blastocystis spp. and Entamoeba histolytica in the village of Fortín Mbororé (Puerto Iguazú, Misiones, Argentina). Parasites Vectors 2021, 14, 510. [CrossRef]

100. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 51, 264–269. [CrossRef]

101. NIHR. International Prospective Register of Systematic Reviews Registering a Systematic Review on PROSPERO What Does Registration Involve? Inclusion Criteria When to Register Your Review PROSPERO International Prospective Register of Systematic Reviews: NIHR: Southampton, UK, 2019; pp. 1–12.

102. Tafvik, G.M.; Dila, K.A.S.; Mohamed, M.Y.F.; Tam, D.N.H.; Kien, N.D.; Ahmed, A.M.; Huy, N.T. A step by step guide for conducting a systematic review and meta-analysis with simulation data. Trop. Med. Health 2019, 47, 46. [CrossRef]

103. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 2020–2021.

104. Joanna Briggs Institute. Checklist for Prevalence Studies; Joanna Briggs Institute: Adelaide, Australia, 2016; p. 7.

105. Naing, C.; Whittaker, M.; Nyunt-Wai, V.; Reid, S.; Wong, S.F.; Mak, J.W.; Tanner, M. Malaria and soil-transmitted intestinal helminth co-infection and its effect on anaemia: A meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 2013, 107, 672–683. [CrossRef] [PubMed]

106. Pei, Q.; Qiao, H.; Zhang, M.; Wang, G.; Feng, H.; Pan, J.; Shi, Y. Pocket-creation method versus conventional method of endoscopic submucosal dissection for superficial colorectal neoplasms: A meta-analysis. Gastrointest. Endosc. 2021, 93, 1038–1046. [CrossRef] [PubMed]

107. Tseng, T.Y.; Dahm, P.; Poolman, R.W.; Preminger, G.M.; Canales, B.J.; Montori, V.M. How to Use a Systematic Literature Review and Meta-Analysis. J. Urol. 2008, 180, 1249–1256. [CrossRef]

108. Ahn, E.; Kang, H. Introduction to systematic review and meta-analysis. Korean J. Anesthesiol. 2018, 71, 103–112. [CrossRef]

109. Phillips, C.V. Publication bias in situ. BMC Med. Res. Methodol. 2004, 4, 20. [CrossRef]

110. Ioannidis, J.P.A. Interpretation of tests of heterogeneity and bias in meta-analysis. BMJ 2008, 337, a1653. [CrossRef] [PubMed]

111. Lin, L.; Xu, C. Arcsine-based transformations for meta-analysis of proportions: Pros, cons, and alternatives. Health Sci. Rep. 2020, 3, e178. [CrossRef]

112. Copas, J.B.; Shi, J.Q. A sensitivity analysis for publication bias in systematic reviews. Stat. Methods Med. Res. 2001, 10, 251–265. [PubMed]

113. Joseph, R.; Chessed, G.; Daniel, L.; Haruna, Y.; Demshemin, M.; Bagula, R. Prevalence of malaria and geohelminth co-infection among antenatal women at the Federal Medical Centre and Specialist Hospital, Yola, Adamawa State, Nigeria. J. Appl. Sci. Environ. Manag. 2017, 21, 469. [CrossRef]

114. Egwunyenga, A.; Ajayi, J.; Nmorsu, O.; Duhlinska-Popova, D. Plasmodium/intestinal Helminth Co-infections among Pregnant Nigerian Women. Memórias Do Inst. Oswaldo Cruz. 2001, 96, 1055–1059. [CrossRef] [PubMed]

115. Ojurongbe, O.; Okorie, P.N.; Opatokun, R.L.; Ojurongbe, T.A.; Babamale, O.A.; Shittu, O.; Danladi, Y.K.; Abdulrahim, J.Y.; Ugbomoiko, I.; Adeyebi, O.A. Prevalence and associated factors of Plasmodium falciparum and soil transmitted helminth infections among pregnant women in Osun state, Nigeria. Afr. Health Sci. 2018, 18, 542–551. [CrossRef] [PubMed]

116. Babamale, O.A.; Shittu, O.; Danladi, Y.K.; Abdulrahim, J.Y.; Ugbomoiko, I.; Bagula, R. Impact of Plasmodium falciparum malaria and hookworm infection on the frequency of anaemia in pregnant women of rural communities in Enugu, South East Nigeria. Pan Afr. Med. J. 2013, 14, 28. [CrossRef] [PubMed]

117. Agu, P.U.; Ogbui, I.S.; Okpoigbe, K.; Okeke, T.; Ezugwu, E. Impact of plasmodium falciparum and hookworm infections on the frequency of anaemia in pregnant women in Ikwuano local government area, Abia State, Nigeria. Afr. Health Sci. 2014, 13, 104–111. [CrossRef]

118. Umeh, J.C.; Inyang-Etoh, P.C.; Okpokam, D.C.; Otu-Bassey, I.B. Malaria and Hookworm Co-Infection among Pregnant and Non-Pregnant Women in a High Transmission Zone of Malaria in Nigeria. Afr. Health Sci. 2017, 18, 6. [CrossRef]

119. Nnah, E.; Kasso, T. The Prevalence of Malaria and Helminth Infection in Pregnancy at Booking and Their Relationship to Anaemia at the University of Port Harcourt Teaching Hospital, Southern Nigeria. Int. J. Trop. Dis. Health 2018, 28, 1–9. [CrossRef]

120. Oyefabi, A.; Okpokam, D.C.; Okeke, T.; Ezugwu, E. Impact of Plasmodium falciparum malaria and hookworm infection on anaemia among pregnant women of ikwuano local government area, Abia state, Nigeria. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 2613484. [CrossRef]
200. Bloom, D.E.; Michael, K.; Klaus, P. Modern Infectious Diseases: Macroeconomic Impacts and Policy Responses; IZA Discussion Paper No. 13625; NBE: Cambridge, MA, USA, 2020. [CrossRef]

201. Nkengasong, J.N.; Tessema, S.K. Africa Needs a New Public Health Order to Tackle Infectious Disease Threats. Cell 2020, 183, 296–300. [CrossRef]

202. Quinn, S.C.; Kumar, S. Health inequalities and infectious disease epidemics: A challenge for global health security. Biosecurity and Bioterrorism 2014, 12, 263–273. [CrossRef]

203. Laxminarayan, R.; Malani, A. Economics of Infectious Diseases. In The Oxford Handbook of Health; Oxford University Press: Oxford, UK, 2012; pp. 1–20.

204. Co-infections and co-morbidities. In Proceedings of the EDCTP Stakeholder Meeting, The Hague, the Netherlands, 13 September 2017.

205. Lonnie, W. Sustaining Workforce Engagement: How to Ensure Your Employees Are Healthy, Happy, and Productive, 1st ed.; Productivity Press: New York, NY, USA, 2019. [CrossRef]

206. Mugabe, J.O. Science, Technology and Innovation in Africa’s Regional Integration: From Rhetoric to Practice; ACODE Policy Research Series; ACODE: Kampala, Uganda, 2011.

207. Agaba, B.B.; Yeka, A.; Nsobya, S.; Arinaitwe, E.; Nankabirwa, J.; Opigo, J.; Mbaka, P.; Lim, C.S.; Kalyango, J.N.; Karamagi, C. Systematic review of the status of pfhrp2 and pfhrp3 gene deletion, approaches and methods used for its estimation and reporting in Plasmodium falciparum populations in Africa: Review of published studies 2010–2019. Malar. J. 2019, 18, 355. [CrossRef]

208. Slater, H.C.; Ross, A.; Felger, I.; Hofmann, N.E.; Robinson, L.; Cook, J.; Gonçalves, B.P.; Björkman, A.; Ouedraogo, A.L.; Morris, U. The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density. Nat. Commun. 2019, 10, 1433. [CrossRef]