Uniform Rates for Kernel Estimators of Weakly Dependent Data

Juan Carlos Escanciano∗
Universidad Carlos III de Madrid

May 20th, 2020

Abstract

This paper provides new uniform rate results for kernel estimators of absolutely regular stationary processes that are uniform in the bandwidth and in infinite-dimensional classes of dependent variables and regressors. Our results are useful for establishing asymptotic theory for two-step semiparametric estimators in time series models. We apply our results to obtain nonparametric estimates and their rates for Expected Shortfall processes.

Keywords: Uniform-in-bandwidth; Kernel estimation; Empirical process theory; Mixing.

JEL classification: C14; C22.

∗Department of Economics, Universidad Carlos III de Madrid, email: jescanci@eco.uc3m.es. Research funded by the Spanish Programa de Generación de Conocimiento, reference number PGC2018-096732-B-I00.
1 Introduction

Kernel estimators were first introduced by Rosenblatt (1956) for density estimation and by Nadaraya (1964) and Watson (1964) for regression estimation. Uniform convergence for kernel estimators of weakly dependent stationary data has been considered in a number of papers, including Bierens (1983), Liero (1989), Roussas (1990), Peligrad (1991), Andrews (1995), Liebscher (1996), Masry (1996), Bosq (1998), Fan and Yao (2003), Ango Nze and Doukhan (2004), Hansen (2008), Kristenssen (2009), and Kong, Linton, and Xia (2010), among others. In this paper we provide a general uniform rate result for kernel estimators of absolutely regular stationary processes, where the uniformity is in the bandwidth and over possibly infinite-dimensional classes of dependent variables and regressors. Our results are useful for establishing asymptotic theory for two-step semiparametric estimators in time series models.

We generalize a number of uniform-in-bandwidth results that were obtained for independent and identically distributed observations by Einmahl and Mason (2005) and Escanciano, Jacho-Chavez and Lewbel (2014) to the weakly dependent stationary case. Our results complement related results given in Andrews (1995) and Kristenssen (2009). These authors permit more heterogeneity and different dependence concepts than ours. In contrast, we deal with unbounded dependent variables (unlike Andrews (1995)), infinite-dimensional classes of regressors and dependent variables, and provide uniform-in-bandwidth results (unlike Kristenssen (2009)). We provide primitive conditions for some of the equicontinuity assumptions required in Andrews (1995). Our conditions for infinite-dimensional classes are relatively easy to check.

We apply empirical processes tools developed in Doukhan, Massart and Rio (1995) to deal with the uniformity in the stochastic part of kernel estimators, replacing the use of the celebrated Talagrand’s inequality (see Talagrand, 1994) in the work of Einmahl and Mason (2005) and Escanciano, Jacho-Chavez and Lewbel (2014). This method of proof requires establishing some preliminary entropy bounds for classes indexed by the bandwidth, as in Einmahl and Mason (2005), but also over classes of dependent variables and regressors. The entropy bounds are for a special norm introduced in Doukhan et al. (1995), which accommodates the weak dependence structure.

We introduce notation from empirical processes theory that will be used throughout. For a class of measurable functions \mathcal{G} from \mathbb{R}^p to \mathbb{R}, let $\| \cdot \|$ be a generic pseudo-norm on \mathcal{G}, defined as a norm except for the property that $\|f\| = 0$ does not necessarily imply that $f \equiv 0$. Given two functions l, u, a bracket $[l, u]$ is the set of functions $f \in \mathcal{G}$ such that $l \leq f \leq u$. An ϵ-bracket with respect to $\|\cdot\|$ is a bracket $[l, u]$ with $\|l - u\| \leq \epsilon$, $\|l\| < \infty$ and $\|u\| < \infty$ (note that u and l not need to be in \mathcal{G}). The covering number with bracketing $N_{\|\cdot\|}(\epsilon, \mathcal{G}, \|\cdot\|)$ is the minimal number of ϵ-brackets with respect to $\|\cdot\|$ needed to cover \mathcal{G}. These definitions are extended to classes taking values in \mathbb{R}^d, with $d > 1$, by taking the maximum of the bracketing numbers of the coordinate classes. Let $\|\cdot\|_{L^2}$ be the $L_2(\mathbb{P})$ norm, i.e. $\|f\|_{L^2}^2 = \int f^2 d\mathbb{P}$. When \mathbb{P} is clear from
the context, we simply write \(\|\cdot\|_2 \equiv \|\cdot\|_{2,p}\). Let \(\cdot\) denote the Euclidean norm, i.e. \(|A|^2 = A^T A\) \((A^T \) denotes the transpose of \(A\)). Define for any vector \(a\) of \(p\) integers the differential operator \(\partial_x^a := \partial^{a_1}/\partial x_1^{a_1} \ldots \partial x_p^{a_p}\), where \(|a|_1 := \sum_{t=1}^{p} a_t\). Let \(S\) be a convex set of \(\mathbb{R}^p\), with non-empty interior. For any smooth function \(h : S \subseteq \mathbb{R}^p \to \mathbb{R}\) and some \(\eta > 0\), let \(\eta\) be the largest integer strictly smaller than \(\eta\), and

\[
\|h\|_{\infty,\eta} := \max_{|a|_1 \leq 2} \sup_{x \in X} |\partial_x^a h(x)| + \max_{|a|_1 = \eta} \sup_{x \neq x'} \frac{|\partial_x^a h(x) - \partial_x^a h(x')|}{|x - x'|^{\eta-2}}.
\]

Further, let \(C^n_M(S)\) be the set of all continuous functions \(h : S \subseteq \mathbb{R}^p \to \mathbb{R}\) with \(\|h\|_{\infty,\eta} \leq M\). The sup norm is \(\|h\|_{\infty} := \sup_{x \in S} |h(x)|\). Finally, throughout \(C\) denotes a positive constant that may change from expression to expression. Henceforth, we abstract from measurability issues that may arise (see van der Vaart and Wellner (1996) for ways to deal with lack of measurability).

2 Uniform Rate Results

Let \(Z_n := \{Y_t, X_t\}_{t=1}^n\) represent a sample of size \(n\) from a sequence of stationary and \(\beta\)-mixing process \(Z_t = (Y_t, X_t)\), where \(Y_t\) takes values in \(S_Y \subseteq \mathbb{R}^q\) and \(X_t\) takes values in \(S_X \subseteq \mathbb{R}^p\). Recall the definition of a \(\beta\)-mixing process. Let \(\mathcal{F}^t_s \equiv \mathcal{F}^t_s(Z_t)\) denote the \(\sigma\)-algebra generated by \(\{Z_j, j = s, \ldots, t\}\), \(s \leq t, s, t \in \mathbb{Z}\). Define the \(\beta\)-mixing coefficients as (see, e.g., Doukhan (1994))

\[
\beta_j = \sup_{m \in \mathbb{Z}} \sup_{A \in \mathcal{F}^j_{\infty}} \mathbb{E} \left[\mathbb{P}(A|\mathcal{F}^m_{\infty}) - \mathbb{P}(A) \right].
\]

Let \(\Upsilon\) be a class of measurable real-valued functions of \(Z_t\) and let \(\mathcal{W}\) be a class of measurable functions of \(X_t\) with values in \(\mathbb{R}^d\), \(d \leq q\). Define \(S_\Upsilon := \{W(x) \in \mathbb{R}^d : W \in \mathcal{W}, x \in X_X\}\). We denote by \(\psi := (\varphi, W)\) a generic element of the set \(\Psi := \Upsilon \times \mathcal{W}\). Let \(f_W(w)\) denote the Lebesgue density of \(W(X_t)\) evaluated at \(w\). Define the regression function \(m_\psi(w) := \mathbb{E}[\varphi(Z_t)|W(X_t) = w]\). Henceforth, we use the convention that a function evaluated outside its support is zero. Then, an estimator for \(T_\psi(w) := m_\psi(w)f_W(w)\) is given by

\[
\hat{T}_{\psi,h}(w) = \frac{1}{nh^d} \sum_{t=1}^{n} \varphi(Z_t) K \left(\frac{w - W(X_t)}{h} \right),
\]

where \(K(w) = \prod_{l=1}^{d} k(w_l)\), \(k(\cdot)\) is a kernel function, \(h := h_\eta > 0\) is a bandwidth and \(w = (w_1, \ldots, w_d)^T\). We consider the following regularity conditions on the data generating process, kernel, bandwidth and classes of functions.

Assumption 1 \(\{Z_t\}_{t \in \mathbb{Z}}\) is a strictly stationary and absolutely regular (\(\beta\)-mixing), with mixing coefficients of order \(O(j^{-b})\), for some \(b\) such that \(b > \delta/(\delta - 2)\), where \(2 < \delta < \infty\).
Assumption 2 For $\delta > 2$ as in Assumption 1 and each $1 > \varepsilon > 0$: (i) the class \mathcal{Y} satisfies $\log N(\varepsilon, \mathcal{Y}, \|\cdot\|_2) \leq C\varepsilon^{-v_\varphi}$, for some $v_\varphi < 2$, with an envelope $G(Z_t)$ such that $\mathbb{E}[G(Z_t)^h] < \infty$ and $\sup_{w \in \mathcal{S}_W} \mathbb{E}[G(Z_t)^2|W(X_t) = w] < C$; (ii) the class \mathcal{W} is such that (a) $\log N(\varepsilon, \mathcal{W}, \|\cdot\|_\infty) \leq C\varepsilon^{-v_w}$, for some $v_w < 1$, or (b) $\log N(\varepsilon, \mathcal{W}, \|\cdot\|_2) \leq C\varepsilon^{-v_w}$, for some $v_w < 1/2$.

Assumption 3 $T_\psi \in C_M^r(\mathcal{S}_W)$, where r is as in Assumption 4 below, and $f_{\mathcal{W}}(w)$ is uniformly bounded.

Assumption 4 The kernel function $k(t): \mathbb{R} \to \mathbb{R}$ is bounded, symmetric and satisfies the following conditions: $\int k(t)\,dt = 1$, $\int tk(t)\,dt = 0$ for $0 < l < r$, and $\int |t^r k(t)|\,dt < \infty$, for some $r \geq 2$. Moreover, either k is Lipschitz and has a truncated support or k is differentiable and satisfies $|\partial k(t)/\partial t| \leq C$ and for some $v > 1$, $|\partial k(t)/\partial t| \leq C|t|^{-v}$ for $|t| > L$, $0 < L < \infty$.

Assumption 5 The possibly data-dependent bandwidth h satisfies $\mathbb{P}(a_n \leq h \leq b_n) \to 1$ as $n \to \infty$, for deterministic sequences of positive numbers a_n and b_n such that $b_n \to 0$ and $na_n^d \to \infty$.

Assumption 1 requires that observations are strictly stationary and β-mixing, as in Doukhan, Massart and Rio (1995). As usual, there is a tradeoff between the moments and the dependence allowed. Assumption 2 restricts the “size” of the classes \mathcal{Y} and \mathcal{W}. There are numerous examples of classes satisfying Assumption 2, see, e.g., van der Vaart and Wellner (1996) and Nickl and Pötscher (2007). Note we do not require \mathcal{S}_X nor \mathcal{S}_W to be bounded. Assumption 3 is a standard assumption used for controlling the bias uniformly. Assumption 4 is taken from Hansen (2008), while Assumption 5 permits data dependent bandwidths, as in, e.g., Andrews (1995). In particular, our theory allows for plug-in bandwidths of the form $\hat{h}_n = \bar{c}h_n$ with \bar{c} stochastic and h_n a suitable deterministic sequence converging to zero as $n \to \infty$. Andrews (1995) points out that this condition holds in many common data dependent bandwidth selection procedures, such as cross-validation and generalized cross-validation.

Define the rate

$$d_n := \sqrt{\frac{1}{na_n^d}} + b_n^r.$$

Theorem 2.1 Let Assumptions 1–5 hold. Then, we have

$$\sup_{a_n \leq h \leq b_n} \sup_{\psi \in \mathcal{Y}} \sup_{w \in \mathcal{S}_W} |\hat{T}_{\psi,h}(w) - T_\psi(w)| = O_p(d_n).$$

We apply the previous result to obtain rates for Nadaraya-Watson kernel estimators. Define the kernel estimators

$$\hat{m}_{\psi,h}(w) := \frac{\hat{T}_{\psi,h}(w)}{\hat{f}_{W,h}(w)}, \text{ where }$$

$$\hat{f}_{W,h}(w) := \frac{1}{nh^{d}} \sum_{t=1}^{n} K\left(\frac{w - W(X_t)}{h}\right).$$
For a positive sequence c_n define also

$$
\tau_n = \inf_{|w| \leq c_n, W \in W} f_W(w) > 0.
$$

Corollary 2.1 Let Assumptions 1-5 and $\tau_n^{-1}d_n = o(1)$ hold. Then, we have

$$
\sup_{t_n \leq h \leq u_n, \psi \in \Psi} \sup_{|w| \leq c_n} |\hat{m}_{\psi,h}(w) - m_{\psi}(w)| = O_p(\tau_n^{-1}d_n).
$$

3 Application to Conditional Expected Shortfall Processes

There is an extensive literature on semiparametric and nonparametric estimation of Expected Shortfall (ES). Escanciano and Mayoral (2008) review the literature on parametric and semiparametric estimation of ES and provide a unified approach; see also Nadarajah, Zhang and Chan (2014). Nonparametric estimation of Conditional ES (CES) has been studied by Scaillet (2004). He proposed a kernel estimator for the quantity

$$
CES_{a,p} := \mathbb{E}[-a^\top Y_t - a^\top Y_t > VaR(a,p)],
$$

where the vector a are portfolio weights, $a \in \mathcal{A} \subseteq \{a \in \mathbb{R}^q : |a| = 1\}$, and $VaR(a,p)$ is the pth Value-at-Risk (VaR), $p \in (0,1)$, defined as

$$
\mathbb{P}(-a^\top Y_t > VaR(a,p)) = p.
$$

We introduce covariates and study nonparametric estimation of

$$
CES_{a,b,c,w}(w) := \mathbb{E}[-a^\top Y_t - a^\top Y_t > c(X), b^\top X_t = w],
$$

as a process in (a,b,c,w). Portfolio weights are often estimated. The motivation to consider $b^\top X_t$ is to reduce the dimensionality of the conditioning set. The motivation to consider a function $c(X)$ is to be able to obtain rates when a plugging estimator for the conditional VaR is considered. Fully nonparametric estimators for ES with covariates are proposed in Scaillet (2005), Cai and Wang (2008), and Linton and Xiao (2013). An application of the smoothed ES estimator of Scaillet (2004) with generated variables is given in Brownlees and Engle (2016).

To study $CES_{a,b,c}$, we use that

$$
CES_{a,b,c}(w) = \frac{\mathbb{E}[\varphi_1(Z_t) | W(X_t) = w]}{\mathbb{E}[\varphi_2(Z_t) | W(X_t) = w]},
$$

where $\varphi_1 \in \mathcal{F}_1$, $\varphi_2 \in \mathcal{F}_2$ and $W \in \mathcal{W}$, with

\[
\begin{align*}
\mathcal{F}_1 &= \{(y,x) \to -a^\top y 1(-a^\top y > c(x)) : a \in \mathcal{A}, c \in \mathcal{C}\} \\
\mathcal{F}_2 &= \{(y,x) \to 1(-a^\top y > c(x)) : a \in \mathcal{A}, c \in \mathcal{C}\} \\
\mathcal{W} &= \{x \to b^\top x : b \in \mathcal{B} \subseteq \mathbb{R}^p\}.
\end{align*}
\]
Here $1(E)$ is the indicator function of the event E, which equals one if E is true and zero otherwise. A kernel estimator for $CES_{a,b,c}$ is then

$$
\widehat{CES}_{a,b,c}(w) = \frac{1}{nh} \sum_{i=1}^n \varphi_1(Z_i) K \left(\frac{w-W(X_i)}{h} \right),
$$

To apply our previous results, write $CES_{a,b,c}(w)$ and its estimator as indexed by $\psi := (\varphi_1, \varphi_2, W) \in \Psi := \mathcal{F}_1 \times \mathcal{F}_2 \times \mathcal{W}$. Thus, we write $CES_{a,b,c}(w) = CES_\psi(w)$. Define the functions $m_{\psi_j}(w) := \mathbb{E}[\varphi_j(Z_i)|W(X_t) = w]$ and $T_{\psi_j}(w) := m_{\psi_j}(w) f_W(w)$ for $j = 1, 2$. Let $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$ denote the minimum and maximum eigenvalue for a positive definite symmetric matrix A. Then, consider the following assumptions:

Assumption 6 (i) $\mathbb{E}[|Y_t|^2] < \infty$ and uniformly in $b \in \mathbb{R}^p : 0 < \lambda_{\min}(\mathbb{E}[Y_t Y_t^T | b^T X_t]) \leq \lambda_{\max}(\mathbb{E}[Y_t Y_t^T | b^T X_t]) < C$ a.s.; (ii) the class \mathcal{C} is such that $\log N(\varepsilon, \mathcal{C}, \|\cdot\|_\infty) \leq C\varepsilon^{-v_c}$, for some $v_c < 1$; (iii) \mathcal{B} is compact and $\mathbb{E}[|X_t|^2] < \infty$.

Assumption 7 $T_{\psi_j} \in C^r_M(\mathcal{S}_W)$, where r is as in Assumption 4, and the conditional and marginal densities of $a^T Y_t$ given $b^T X_t$ and $b^T X_t$, respectively, are uniformly bounded (in $a \in \mathcal{A}$ and $b \in \mathcal{B}$).

Define the rate

$$
d_n := \sqrt{\frac{1}{na_n} + b^r_n}.
$$

For a positive sequence c_n define also

$$
\tau_n = \inf_{|w| \leq c_n, \psi \in \mathcal{F}_2} T_{\psi_2}(w) > 0.
$$

Theorem 3.1 Let Assumptions 1, 4, 5, 6, 7 and $\tau_n^{-1}d_n = o(1)$ hold. Then, we have

$$
\sup_{t_n \leq h \leq u_n} \sup_{\psi \in \Psi} |CES_\psi(w) - CES_{\psi}(w)| = O_p(\tau_n^{-1}d_n).
$$

4 Proofs

Proof of Theorem 2.1: Write

$$
\sup |\hat{T}_{\psi,h}(w) - T_\psi(w)| \leq \sup |\hat{T}_{\psi,h}(w) - \mathbb{E} \left[\hat{T}_{\psi,h}(w) \right]| + \sup |\mathbb{E} \left[\hat{T}_{\psi,h}(w) \right] - T_\psi(w)|
$$

$$
\equiv S_n + B_n,
$$

where henceforth the sup is over the set in the left hand side of (1). We start investigating the stochastic part S_n. Define the product class of functions $\mathcal{G}_0 := \mathcal{K}_0 \cdot \mathcal{Y}$, where

$$
\mathcal{K}_0 = \left\{ x \to K \left(\frac{w - W(x)}{h} \right) : w \in \mathcal{S}_W, W \in \mathcal{W}, h \in (0, 1] \right\}.
$$
From the boundedness of the kernel, and the squared integrable envelope in Assumption 2 it is straightforward to prove that, for some positive constant C,

$$N_{[;]}(\varepsilon, G_0, \| \cdot \|_2) \leq N_{[;]}(C\varepsilon, K_0, \| \cdot \|_2) \times N_{[;]}(C\varepsilon, \Upsilon, \| \cdot \|_2).$$

(2)

By Lemma B.3 in Escanciano, Jacho-Chávez and Lewbel (2014) K_0 satisfies

$$N_{[;]}(C\varepsilon, K_0, \| \cdot \|_2) \leq C\varepsilon^{-\alpha_K} N(\varepsilon^2, W, \| \cdot \|_\infty),$$

for some $\alpha_K \geq 1$. An by Lemma A1 in Escanciano and Zhu (2015)

$$N_{[;]}(C\varepsilon, K_0, \| \cdot \|_2) \leq C\varepsilon^{-\alpha_K} N(\varepsilon^4, W, \| \cdot \|_2).$$

An inspection of the proof of these two Lemmas reveals that S_W could be unbounded. Hence, by our assumptions on the classes Υ and W, we obtain that $\log N_{[;]}(\varepsilon, G_0, \| \cdot \|_2) \leq C\varepsilon^{-v}$, for some $v < 2$. Define the norm

$$\| f \|_{2,\beta}^2 = \int_0^1 \beta^{-1}(u) Q_f^2(u) du,$$

where β^{-1} is the inverse cadlag of the decreasing function $u \to \beta_{[u]}$ ($[u]$ being the integer part of u, and β_t being the mixing coefficient) and Q_f is the inverse cadlag of the tail function $u \to \mathbb{P}(|f| > u)$ (see Doukhan, Massart and Rio 1995). Note that

$$\mathbb{P}(|f - g| > z) \leq \frac{\mathbb{E}[|f - g|^2]}{z^2}$$

and hence, for an $\sqrt{b\varepsilon}$-bracket $[f, g]$ wrt $\| \cdot \|_2$

$$\| f - g \|_{2,\beta}^2 \leq \int_0^1 \beta^{-1}(u) \frac{b\varepsilon^2}{u} du \leq b\varepsilon^2 \int_0^1 u^{b-1} du = \varepsilon^2.$$

Therefore,

$$\log N_{[;]}(\varepsilon, G_0, \| \cdot \|_{2,\beta}) \leq \log N_{[;]}(\sqrt{b\varepsilon}, G_0, \| \cdot \|_2) \leq C\varepsilon^{-v}.$$

Theorem 3 in Doukhan, Massart and Rio (1995) applied to the class G_0 then implies

$$\sup_{t_n \leq h \leq u_n} \mathbb{E} [\hat{T}_h(\psi) - \mathbb{E} [\hat{T}_h(\psi)]] = O_p \left(\frac{1}{n\alpha_n^d} \right),$$

provided $\| f \|^2_{2,\beta} \leq C h^{d/2}$ for all $f \in G_0$. But by Assumption 4 and Pollard (1984, pg. 36)

$$\mathbb{P}(|f| > z) \leq \frac{\mathbb{E}[|f|^2]}{z^2} \leq \frac{Ch^d}{z^2},$$
where have used sup_{w \in S_W} E[G(Z_t)^2|W(X_t) = w] < C and the bounded density and kernel assumption. Hence,
\[\| f \|_{2, \beta}^2 \leq \int_0^1 \beta^{-1}(u) \frac{Ch^d}{u} du \leq Ch^d \int_0^1 u^{b-1} du = \frac{Ch^d}{b}, \]
where the latter inequality follows from Assumption 1.

We now study the bias part \(B_n \). By a multivariate Taylor expansion
\[T_{\psi}(w + uh) = \sum_{|\alpha| < r-1} \frac{\partial^u_{\alpha} T_{\psi}(w)}{\alpha!} (uh)^\alpha + \sum_{|\alpha| = r-1} \frac{R_{\alpha}(w + uh)}{\alpha!} (uh)^\alpha, \]
where the remainder satisfies
\[R_{\alpha}(w + uh) = (r-1) \int_0^1 (1 - \tau)^{r-2} \partial_{\alpha}^u T_{\psi}(w + \tau uh) d\tau. \]
Since \(T_{\psi} \in C^r_M(S_W) \),
\[|R_{\alpha}(w + uh) - \partial_{\alpha}^u T_{\psi}(w)| \leq (r-1) \int_0^1 (1 - \tau)^{r-2} [\partial_{\alpha}^u T_{\psi}(w + \tau uh) - \partial_{\alpha}^u T_{\psi}(w)] d\tau \]
\[\leq (r-1) M \int_0^1 (1 - \tau)^{r-2} |\tau uh| d\tau \]
\[\leq M |uh|. \]
Thus, by a standard change of variables and Assumption 4
\[\mathbb{E} \left[\hat{T}_{\psi,h}(w) - T_{\psi}(w) \right] = \left| \int [T_{\psi}(w + uh) - T_{\psi}(w)] K(u) du \right| \]
\[= \left| \int \sum_{|\alpha| = r-1} \frac{1}{\alpha!} [R_{\alpha}(w + uh) - \partial_{\alpha}^u T_{\psi}(w)] (uh)^\alpha K(u) du \right| \]
\[\leq h^r \sum_{|\alpha| = r-1} \frac{M}{\alpha!} \int |u \cdot K(u)|^r du. \]
Hence,
\[\sup \mathbb{E} \left[\hat{T}_{\psi,h}(w) - T_{\psi}(w) \right] = O \left(b_n^r \right). \]

Proof of Corollary 2.1: From Theorem 2.1
\[\sup_{l_n \leq h \leq u_n} \sup_{\psi \in \Psi} |\hat{T}_{\psi,h}(w) - T_{\psi}(w)| = O_{\mathbb{P}}(d_n) \]
and
\[\sup_{l_n \leq h \leq u_n} \sup_{W \in W} \sup_{|w| \leq c_n} |\hat{f}_{W,h}(w) - f_W(w)| = O_{\mathbb{P}}(d_n). \]
Therefore
\[
\sup_{l_n \leq h \leq u_n} \sup_{W \in \mathcal{W}} \sup_{|w| \leq c_n} \left| \frac{\tilde{f}_{W,h}(w) - f_W(w)}{f_W(w)} \right| = O_P(\tau_n^{-1}d_n)
\]
and
\[
\sup_{l_n \leq h \leq u_n} \sup_{W \in \mathcal{W}} \sup_{|w| \leq c_n} \left| \frac{\tilde{T}_{\psi,h}(w) - T_{\psi}(w)}{f_W(w)} \right| = O_P(\tau_n^{-1}d_n).
\]
Thus, uniformly in \(l_n \leq h \leq u_n\), \(\psi \in \Psi\) and \(|w| \leq c_n\)
\[
\hat{m}_{\psi,h}(w) = \frac{\hat{T}_{\psi,h}(w)}{f_{W,h}(w)} = \frac{m_{\psi}(w) + O_P(\tau_n^{-1}d_n)}{1 + O_P(\tau_n^{-1}d_n)} = m_{\psi}(w) + O_P(\tau_n^{-1}d_n).
\]
Q.E.D.

The following result is well-known in empirical processes theory. Define the generic class of measurable functions
\(\mathcal{F} := \{x \mapsto m(x, \theta, h) : \theta \in \Theta, h \in \mathcal{H}\}\), where \(\Theta\) and \(\mathcal{H}\) are endowed with the pseudo-norms \(|\cdot|_\Theta\) and \(|\cdot|_\mathcal{H}\), respectively.

Lemma 4.1 (Pollard; Chen, Linton and Van Keilegom) Assume that for all \((\theta_0, h_0) \in \Theta \times \mathcal{H}\), \(m(z, \theta, h)\) is locally uniformly \(\| \cdot \|_2\) continuous, in the sense that
\[
\mathbb{E} \left[\sup_{|\theta - \theta_0|_\Theta < \delta, |h - h_0|_\mathcal{H} < \delta} |m(Z, \theta, h) - m(Z, \theta_0, h_0)|^2 \right] \leq C\delta^s,
\]
for all sufficiently small \(\delta > 0\), some constant \(s \in (0, 2]\) and \(C > 0\). Then,
\[
N(\varepsilon, \mathcal{F}, \| \cdot \|_2) \leq N \left(\left(\frac{\varepsilon}{2C} \right)^{2/s}, \Theta, |\cdot|_\Theta \right) \times N \left(\left(\frac{\varepsilon}{2C} \right)^{2/s}, \mathcal{H}, |\cdot|_\mathcal{H} \right).
\]

Proof of Theorem 3.1: The proof proceeds as in Corollary 2.1 after checking the conditions of Theorem 2.1 to obtain, for \(j = 1, 2\),
\[
\sup_{l_n \leq h \leq u_n} \sup_{\psi_j \in \Psi} \sup_{|w| \leq c_n} |\hat{T}_{\psi_j,h}(w) - T_{\psi_j}(w)| = O_P(d_n),
\]
where
\[
\hat{T}_{\psi_j,h}(w) = \frac{1}{nh} \sum_{t=1}^n \varphi_j(Z_t) K \left(\frac{w - W(X_t)}{h} \right).
\]
To verify Assumption 3 with \(\Upsilon = \mathcal{F}_1\) we apply Lemma 4.1 with \(z = (y, x)\),
\[
m(z, \theta, h) = -\theta^\top y 1(-\theta^\top y > h(x))
\]
\(\Theta = A \) and \(\mathcal{H} = C \) with \(| \cdot |_H = \| \cdot \|_\infty \). We then obtain by triangle inequality

\[
\mathbb{E} \left[\sup_{\theta:|\theta - \theta_0|, h: |h_0 - h| < \delta} |m(Z, \theta, h) - m(Z, \theta_0, h_0)|^2 \right]
\leq 2\mathbb{E} \left[\sup_{\theta:|\theta - \theta_0|, h: |h_0 - h| < \delta} |m(Z, \theta, h) - m(Z, \theta_0, h)|^2 \right]
+ 2\mathbb{E} \left[\sup_{\theta:|\theta - \theta_0|, h: |h_0 - h| < \delta} |m(Z, \theta_0, h) - m(Z, \theta_0, h_0)|^2 \right]
\leq 2\delta^2 \mathbb{E} \left[|Y_i|^2 \right] + C\delta.
\]

where the last inequality uses that \(|m(z, \theta, h) - m(z, \theta_0, h)| \leq |\theta - \theta_0| |y| \) and

\[
\mathbb{E} \left[\sup_{\theta:|\theta - \theta_0|, h: |h_0 - h| < \delta} |m(Z, \theta_0, h) - m(Z, \theta_0, h_0)|^2 \right]
\leq \mathbb{E} \left[\left(\theta_0^\top Y_i \right)^2 1(h_0(X_t) - \delta < -\theta_0^\top Y_i + h_0(X_t) + \delta) \right]
\leq C\delta
\]

by Assumption 7. Then, Lemma 4.1 implies

\[
N_1(\varepsilon, \Gamma, \| \cdot \|_2) \leq N \left(\left(\frac{\varepsilon}{2C} \right)^2, \Theta, | |_\Theta \right) \times N \left(\left(\frac{\varepsilon}{2C} \right)^2, C, | |_\infty \right)
\leq C\varepsilon^{-v_\varphi},
\]

with \(v_\varphi = 2v_c < 2 \). The entropy condition on \(\mathcal{W} \) in Assumption 3(ii-b) follows from the compactness of \(\mathcal{B} \) and \(\mathbb{E} \left[|X_t|^2 \right] < \infty \). This concludes the verification of Assumption 3. The same arguments apply to \(\bar{\mathcal{Y}} = \mathcal{F}_2 \). Conclude as in Corollary 2.1. Q.E.D.

References

[1] Andrews, D. W. K. (1995), “Nonparametric kernel estimation for semiparametric models,” *Econometric Theory*, 11, 560–596.

[2] Ango N., P.and P. Doukhan (2004), “Weak dependence: models and applications to econometrics,” *Econometric Theory*, 20, 995-1045.

[3] Bierens, H.J. (1983), “Uniform consistency of kernel estimators of a regression function under generalized conditions,” *Journal of the American Statistical Association*, 78, 699-707.
[4] Bosq, D. (1998) *Nonparametric Statistics for Stochastic Processes: Estimation and Prediction*, Lecture Notes in Statistics 110, Springer-Verlag.

[5] Brownlees, C. and R.F. Engle (2016), “SRISK: A Conditional Capital Shortfall Measure of Systemic Risk,” *The Review of Financial Studies*, 30, 48-79.

[6] Cai, Z. & Wang, X. (2008), “Nonparametric estimation of conditional VaR and expected shortfall,” *Journal of Econometrics* 147, 120-130.

[7] Chen, S.X. (2008), “Nonparametric estimation of expected shortfall,” *Journal of Financial Econometrics* 6, 87-107.

[8] Doukhan, P., (1994) *Mixing. Properties and examples*. Springer, Lecture Notes in Statistics.

[9] Doukhan, P., Massart, P. and Rio, E. (1995), “Invariance principles for absolutely regular empirical processes,” *Annales de l’I.H.P. Probabilités et statistiques*, 31, 2, 393-427.

[10] Einmahl, J. H. J., and D. M. Mason (2005), “Uniform in bandwidth consistency of kernel-type function estimators,” *Annals of Statistics*, 33, 1380-1403.

[11] Escanciano, J.C and Mayoral, S. (2008), “Semiparametric Estimation of Dynamic Conditional Expected Shortfall Models,” *International Journal of Monetary Economics and Finance*, 1, 106-120.

[12] Escanciano, J. C., D. T. Jacho-Chávez and A. Lewbel (2014), “Uniform convergence of weighted sums of non and semiparametric residuals for estimation and testing,” *Journal of Econometrics*, 178, 426-443.

[13] Escanciano, J.C. and L. Zhu (2015), “A simple data-driven estimator for the semiparametric sample selection model,” *Econometric Reviews*, 34, 733-761.

[14] Fan, J. and Q. Yao (2003) *Nonlinear Time Series: Nonparametric and Parametric Methods*. Springer-Verlag.

[15] Hansen, B. (2008), “Uniform convergence rates for kernel estimation with dependent data,” *Econometric Theory*, 24, 726-748.

[16] Kong, E., O. Linton, and Y. Xia (2010), “Uniform Bahadur representation for local polynomial estimates of M-regression and its application to the additive model,” *Econometric Theory* 26, 1529-1564.

[17] Kristensen, D. (2009), “Uniform convergence rates of kernel estimators with heterogeneous dependent data,” *Econometric Theory* 25, 1433-1445.
[18] Liebscher, E. (1996), “Strong convergence of sums of α-mixing random variables with applications to density estimation,” Stochastic Processes and Their Applications 65, 69-80.

[19] Liero, H. (1989), “Strong uniform consistency of nonparametric regression function estimates,” Probability Theory and Related Fields 82, 587-614.

[20] Linton, O. and Xiao Z. (2013), “Estimation of and inference about the expected shortfall for time series with infinite variance,” Econometric Theory, 29(4): 771–807.

[21] Masry, E. (1996), “Multivariate local polynomial regression for time series: Uniform strong consistency and rates,” Journal of Time Series Analysis, 17, 571-599.

[22] Nadarajah, S., Zhang, B. and S. Chan, 2014, Estimation methods for expected shortfall. Quantitative Finance 14, 271-291.

[23] Nadaraya, E. A. (1964) “On estimating regression,” Theory of Probability and Its Applications 9, 141-142.

[24] Nickl, R. and B. M. Pötscher (2007), “Bracketing metric entropy rates and empirical central limit theorems for function classes of Besov- and Sobolev-Type,” Journal of Theoretical Probability, 20(2), 177-199.

[25] Peligrad, M. (1991) “Properties of uniform consistency of the kernel estimators of density and of regression functions under dependence conditions,” Stochastics and Stochastic Reports 40, 147-168.

[26] Pollard, D. (1984) Convergence of Stochastic Processes. Springer, Berlin.

[27] Rosenblatt, M. (1956) “Remarks on some non-parametric estimates of a density function,” Annals of Mathematical Statistics 27, 832-837.

[28] Roussas, G.G. (1990), “Nonparametric regression estimation under mixing conditions,” Stochastic Processes and Their Applications 36, 107-116.

[29] Scaillet, O. (2004), “Nonparametric estimation and sensitivity analysis of expected shortfall”, Mathematical Finance, 14, 115-129.

[30] Scaillet, O. (2005), “Nonparametric estimation of conditional expected shortfall,” Revue Assurances et Gestion des Risques/Insurance and Risk Management Journal, 74, 639-660.

[31] Talagrand, M. (1994), “Sharper bounds for Gaussian and empirical processes,” Annals of Probability, 22, 28-76.
[32] van der Vaart, A. W., and J. A. Wellner (1996) *Weak Convergence and Empirical Processes with Applications to Statistics*. Springer Series in Statistics. Springer-Verlag, New York.

[33] Watson, G. S. (1964), *Smooth regression analysis*, *Sankya, Series A*, 26, 359-372.