On the investigation of resonances above and below the threshold in nuclear reactions of astrophysical interest using the Trojan Horse Method.

M. La Cognataa, C. Spitaleria,b, S. Cherubinia,b, M. Gulinoa,c, I. Indelicatoa,b, L. Lamiab, R.G. Pizzonea, S. Romanoa,b, O. Trippellad,e, A. Tuminoa,c

aLaboratori Nazionali del Sud - INFN, Catania, Italy
bDipartimento di Fisica e Astronomia, University of Catania, Catania, Italy
cFacoltà di Ingegneria e Architettura, Kore University of Enna, Enna, Italy
dDipartimento di Fisica e Geologia, University of Perugia, Perugia, Italy
eSezione INFN di Perugia, Perugia, Italy

E-mail: lacognata@lns.infn.it

Abstract. The occurrence of resonances in reactions of astrophysical interest might significantly enhance the astrophysical factor with respect to the direct reaction contribution, divert nucleosynthesis path and change the energy production, with significant impact on astrophysics. Moreover, the determination of resonance parameters, that is, energy, spin-parity and partial widths, allows one to perform nuclear structure studies leading, for instance, to determine the cluster structure of the state under investigation. However, nuclear reactions in stars take place at energies well below \sim1 MeV owing to the typical temperatures characterising these environments. Therefore, the Coulomb barrier exponentially suppressing the cross section and the electron screening effect, due to the shielding of nuclear charges by atomic electrons, make it very difficult to provide accurate astrophysical factors. The THM is an indirect method allowing to overcome such difficulties. It makes use of quasi-free reactions with three particles in the exit channel, $a + A \rightarrow c + C + s$, to deduce the cross section of the reaction of astrophysical interest, $a + x \rightarrow c + C$, under the hypothesis that A shows a strong $x + s$ cluster structure, right at astrophysical energies. By using a generalised R-matrix approach, the resonance parameters can be deduced from THM data allowing one to perform a full spectroscopic study of low-energy and sub-threshold resonances. In this work, we will discuss two examples of reactions of astrophysical interest, whose cross sections show a resonant behaviour: the 19F(p, α)16O cross section that displays resonances at energies above the particle emission threshold and the 13C(α, n)16O reaction, dominated by the \sim3 keV sub-threshold resonance due to the 6.356 MeV level in 17O.

1. Introduction

Nuclear astrophysics deals with the investigation of nuclear physics phenomena influencing astrophysical sites such as stars or the early universe. Nuclear reactions power many astrophysical processes like energy production and synthesis of the chemical elements, therefore, cross sections $\sigma(E)$ are among the main input parameters of the codes used to model these scenarios. However, in the case of many astrophysical phenomena, such as quiescent stellar burning, energies of interest are so low that for charged particles the Coulomb barrier strongly

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
diminishes cross sections making the measurement of such cross sections at energies of interest for astrophysics not always possible.

These energies (the so-called Gamow window \([1, 2]\)) usually vary between few keV and few hundreds of keV, therefore cross sections can be much smaller than 1 nb, making extrapolation from high energies the only way to estimate them at the energies of interest. Extrapolation is often performed by means of the astrophysical factor \([1, 2]\):

\[
S(E) = \sigma(E) E \exp(2\pi\eta),
\]

where \(\eta = Z_1 Z_2 e^2 / \hbar v\) is the Sommerfeld parameter, \(Z_1\) and \(Z_2\) the atomic number of interacting nuclei and \(v\) their relative velocity. \(S(E)\) is a smoothly varying function of energy because the gross of the Coulomb barrier penetration factor is compensated for owing to the presence of the inverse of the Gamow factor. In the case of resonant reactions, proceeding through an excited state of the intermediate compound nucleus, significant deviations from the smooth behaviour might be expected.

Therefore, extrapolation might introduce systematic errors since the occurrence of unknown or unpredicted resonances might dramatically enhance the astrophysical \(S(E)\)-factor, strongly influencing astrophysical models. These considerations apply to both low-energy resonances and sub-threshold resonances as they may produce sizeable modifications of the \(S\)-factor due to, for instance, interference with another resonance, especially in the case of broad resonances \([1, 2]\).

Great improvements in the experimental approach used to measure vanishingly small cross sections have been devised, making it possible to extend the measurements of some reactions down to astrophysical energies (see, for instance, \([3]\)). However, approaching interaction energies comparable with the electron binding energies in atoms the presence of atomic electrons cannot be neglected. Electron clouds determine an enhancement of the astrophysical factor related to the shielding of the nuclear charges by the surrounding negatively-charged electrons and not to nuclear interaction (see \([1, 2]\) for a general discussion and \([4, 5]\) for two examples). Even in those few cases when the reaction cross sections were measured inside the Gamow window, electron screening prevented the access to the bare-nucleus cross section, making extrapolation unavoidable.

Indeed, electron screening behaves differently in the laboratory and in astrophysical environments, as in the former projectile and target are in the form of ions and atoms or molecules, while in stars, for instance, matter is in the form of plasma. However, our present understanding of the electron screening effect is rather imperfect as experimental values often exceed theoretical upper limits \([6]\), thus potential systematic errors might be introduced in the evaluation of the bare-nucleus \(S(E)\) and, as a consequence, in its extrapolation to low energies.

Because of the problems affecting direct measurements at astrophysical energies, indirect techniques have been developed to bypass them and attain the astrophysical factor at low energies. For instance, the Trojan Horse Method (THM) \([7]\) is a valid technique to get information on the \(S(E)\) at astrophysical energies for reactions having charged particles and neutrons in the exit channel, with no Coulomb and centrifugal barrier suppression neither electron screening. In the case of radiative capture reactions, the Asymptotic Normalization Coefficient (ANC) \([8]\) approach has allowed to obtain the direct-capture zero-energy \(S(E)\) factor with very high accuracy. The Coulomb dissociation (CD) was also developed \([9]\) to determine the low-energy cross section of charged-particle induced reactions having a \(\gamma\)-ray in the exit channel.

2. The THM for resonant reactions
The THM has been established as a tool to investigate low-energy nuclear reactions by C. Spitaleri \([10, 11]\) following the pioneering work of G. Baur \([12]\). In more recent years, A.M. Mukhamedzhanov has strongly improved the theoretical formalism \([13, 14]\), introducing
simplicity, spins of the involved particles, the amplitude of the process with the corresponding direct (on-energy-shell, OES) cross section [13]. The modified R-matrix (QF) reaction yield, accounting for HOES effects. Approach has been introduced to extract the astrophysical S-factor of interest from the quasi-free reaction mechanism is dominant in the explored energy region, taking into account spins of the internal degrees of freedom of the transferred particle and neglecting, for sake of simplicity, spins of the interacting particles, considering only the s-wave bound state and relative momentum of i and j nuclei, \(\Psi^{(-)} \) is the wave function of the fragments b and B in the exit channel, F = b + B, \(V_{\text{xA}} \) is the interaction potential of x and the target nucleus A, \(\varphi_a \) and \(\varphi_A \) are the bound state wave function of nuclei a and A, respectively. If we assume that resonant reaction mechanism is dominant in the explored energy region, taking into account spins of the interacting particles, considering only the s-wave bound state a = s + x and neglecting the internal degrees of freedom of the transferred particle x, we get the prior PWA amplitude of the THM cross section in the form [14, 7]:

\[
M^{\text{PWA}(\text{prior})}(P, k_{aA}) = 2\pi \sqrt{\frac{1}{\mu_{bB}k_{bB}}} \varphi_a(p_{sx}) \times \sum_{J_F M_F j' m' j m} e^{i J_F M_F (j m j m | J_F M_F)} (j' m' j m | J_F M_F) \times \sum_{J_x M_x J_A M_A} e^{i J_x M_x (j m j m | J_x M_x J_A M_A)} \times \exp[-i\delta_{bB}^j] V_{m_j m_l} (-k_{bB}) \times \sum_{\nu r=1}^{N} \Gamma_{\nu bB j j' r}^{1/2} [A^{-1}]_{\nu r} Y_{m_j}^{m_l} (p_{x A}) \times \frac{R_{zA}}{\mu_{zA}} \Gamma_{\nu zA t j' r} (E_{x A})^{1/2} P_{r}^{-1/2} (k_{zA}, R_{zA}) \times \left[j_{\nu} (p_{x A} R_{zA}) \right] (B_{x A t j} (k_{zA}, R_{zA}) - 1) - D_{x A t j} (p_{x A}, R_{zA}) | \right] + 2Z_x Z_A e^2 \mu_{zA} \int_{R_{zA}}^{\infty} d\tau_{zA} \frac{O_{t} (k_{zA}, R_{zA})}{O_{t} (k_{zA}, R_{zA})} j_{\nu} (p_{x A} \tau_{zA}) \right). \tag{3}
\]

Figure 1. Sketch of the participant (x)-spectator (s) mechanism leading to the population of excited states of the intermediate nucleus F, necessary condition for the application of the THM formalism.
Here, p_{ij} is the $i-j$ relative momentum in the case of off-energy-shell particles, thus $E_{ij} \neq p_{ij}^2/2\mu_{ij}$ (while k_{ij} is calculated assuming the particles on-shell), δ_{bB1}^{hs} is the solid sphere scattering phase shift, $R_{x,A}$ the $x+A$ channel radius,

$$B_{x,A \nu}(k_{x,A}, R_{x,A}) = \frac{\frac{\partial O_{\nu}(k_{x,A}, R_{x,A})}{\partial r_{x,A}}|_{r_{x,A}=R_{x,A}}}{O_{\nu}(k_{x,A}, R_{x,A})}$$

(4)

is the logarithmic derivative as in the R-matrix method,

$$O_{\nu}(k_{x,A}, R_{x,A}) = \sqrt{k_{x,A}R_{x,A}} P_{l'}(k_{x,A}, R_{x,A}) \exp\left[-i\delta_{x,A \nu}^{hs}\right]$$

(5)

is the outgoing spherical wave, $P_{l'}(k_{x,A}, R_{x,A})$ the l'-wave penetrability factor,

$$D_{x,A \nu}(p_{x,A}, R_{x,A}) = \frac{\frac{\partial j_{\nu}(p_{x,A}, R_{x,A})}{\partial r_{x,A}}|_{r_{x,A}=R_{x,A}}}{j_{\nu}(p_{x,A}, R_{x,A})}$$

(6)

the logarithmic derivative and $j_{\nu}(p_{x,A}, R_{x,A})$ the spherical Bessel function, N the number of the levels included. This is a generalization of the R-matrix approach because we consider reactions with three particles in the exit channel, where the TH-nucleus a in the initial states carries the transferred particle x, which is off-energy-shell.

Eq.3 has four important consequences:

- A_{ν} is the same level matrix as in the conventional R-matrix theory [21]. Therefore, it depends on the entry and exit channels reduced width amplitudes γ, energy levels and energy shifts. All of them can be extracted by fitting the experimental THM cross section and then can be used to deduce the $A(x, b)B$ astrophysical factor. In this way, we have an exact parameterisation of the astrophysical factor with no need of extrapolation. HOES effects can affect the phases determining interference and the relative heights of the resonances, but the reduced widths γ, containing the nuclear structure effects, appear in the same way in THM and direct data.

- The presence of the factor $P_{\nu}^{-1/2}(k_{x,A}, R_{x,A})$ eliminates the penetration of Coulomb and centrifugal barriers in the $x+A$ channel, which is the entry channel of the reaction of astrophysical importance. The compensation of this penetrability factor is the main advantage of the THM, since it allows one to measure the astrophysical factor of the reaction of astrophysical interest down to zero energy. Moreover, resonances that can be populated with large l only are not suppressed by the centrifugal barrier, thus they can be observed even in those cases they are very weak in direct measurements, making the THM a powerful spectroscopic tool.

- The use of the PWA implies that normalisation is accomplished by extending the indirect measurement to an energy region where directly measured data are available and scaling the deduced γ-widths to match the values in the literature. This is because in PWA absolute values are greatly overestimated. However, Eq.3 can be modified as the $a-A$ and the $s-F$ interactions can be treated within the more advanced distorted waves (DWBA) and the CDCC formalisms [14]. This is a very important point as it opens the possibility to make unnecessary normalisation to direct data, at present a major drawback of THM. This is especially important in the investigation of reactions induced by radioactive ion beams, where direct data might be absent or scarce.

- In a THM experiments three particles are emitted in the exit channel. From the measurement of the energies and the angles of emissions of two out of three emitted
Figure 2. R-matrix calculated S(E)-factor of the 13C(α, n)16O reaction (red band) from Ref. [23]. The R-matrix S(E)-factor not including the threshold resonance is displayed by the blue line. Black symbols are used for direct data normalized as in [36]. Different marks are used for each data set, as specified in the inset. See Ref. [23] for more details.

particles, all the kinematic variables can be calculated. The most important parameter for astrophysical applications is the $x - A$ relative energy. Following [7], under the non essential hypothesis that the nucleus a undergoing breakup is at rest in the laboratory system (similar formula can be found for breakup of the projectile), the $x - A$ relative energy can be written as:

$$E_{x-A} = \frac{m_x}{m_x + m_A}E_A - \frac{p_s^2}{2\mu_{sF}} + \frac{P_s \cdot P_A}{m_x + m_A} - \epsilon_{sx},$$

(7)

where m_i, p_i, and E_i are the mass, momentum and energy of the i-th particle, μ_{sF} the $s - F$ reduced mass and ϵ_{sx} the $x - s$ binding energy. Part of the projectile energy is spent to break the impinging nucleus a and thanks to the $x - s$ inter cluster motion, astrophysical energies can be achieved in the $x - A$ channel of the TH reaction using beam energies of few tens of MeV, bypassing Coulomb barrier. Moreover, since high beam energies are used, the electron screening enhancement does not occur. Furthermore, negative E_{x-A} energies can be explored by choosing a suitable combination of beam energy, spectator momentum and target nucleus a. From the THM measurement of sub-threshold states, yielding the reduced widths γ, the ANC can be deduced, making it possible to connect the two indirect approaches [22, 23, 24].

In the past years, a number of studies have been accomplished to validate the THM approach, making the method very robust. For instance, the effect of momentum distribution variations on the deduced astrophysical factors was considered. The use of realistic distributions in the place of the simple Hulthén function in momentum space (in the case of deuteron) has been investigated in [25], while the influence of the experimental momentum distribution in the place of the theoretical one was evaluated in [26]. In both cases, changes comparable or lower than the statistical uncertainty were retrieved, since events in a momentum region of particle s below about 40 MeV/c are usually considered in the data analysis [27]. The use of DWBA in the place of the PWA was tested in [28], showing again significant changes in the deduced astrophysical factors. The method has been extended to measurements of neutron induced reactions [29] and to reactions involving radioactive nuclei [30, 31].

3. The sub-threshold resonance case: the 13C(α, n)16O reaction

In a class of evolved stars, those belonging to the so-called asymptotic giant branch (AGB), very peculiar conditions are present making it possible to synthesise nuclei heavier than iron.
through a succession of slow neutron captures, followed by decay of the formed unstable nuclei. This path to heavy nuclei is named s-process and it is responsible of the production of \(\sim 50\% \) of nuclei with \(A \gtrsim 56 \). In AGB stars, protons from the outer layers are mixed downward and quickly captured by carbon nuclei, eventually leading to the formation of a \(^{13}\text{C}\) pocket \[33\]. Then, \(^{13}\text{C}\) nuclei emits neutrons through the \(^{13}\text{C}(\alpha,n)^{16}\text{O}\) reaction, at temperatures varying between \(0.8 \times 10^8\) K and \(1 \times 10^8\) K \[34\], which can be captured by seed nuclei to build up heavier nuclei, later transported to the stellar surface.

At \(0.9 \times 10^8\) K, the energy range where the \(^{13}\text{C}(\alpha,n)^{16}\text{O}\) reaction is most effective, the Gamow window \[2\], is \(\sim 140 - 230\) keV. In such region, its direct measurement is very challenging because of the Coulomb barrier, exponentially suppressing the cross section, and the interplay between a threshold resonance determined by the population of the 6.356 MeV level in \(^{17}\text{O}\) and atomic electron screening. Indeed, at \(\sim 300\) keV the cross section of the \(^{13}\text{C}(\alpha,n)^{16}\text{O}\) reaction is already as low as \(\sim 10^{-10}\) b, thus direct measurements stopped at \(\sim 280\) keV \[35\]. Moreover, direct measurements show contradicting results also at MeV energies, owing to uncertainties in the absolute normalisation. Therefore, extrapolation is necessary at present to assess the astrophysical factor of the \(^{13}\text{C}(\alpha,n)^{16}\text{O}\) reaction at astrophysical energy, but large errors might be introduced owing to the systematic uncertainty affecting high energy data. Therefore, \[36\] employed a broad data set including renormalised \(^{13}\text{C}(\alpha,n)^{16}\text{O}\) astrophysical factors to perform an extensive R-matrix fit; a 140 keV astrophysical factor \(S(140\text{keV}) = 2^{+1.1}_{-0.8} \times 10^8\) MeVb was then obtained. We consider 140 keV as this is the smallest energy of interest for astrophysics, the hardest to reach by conventional approaches and the most subject to systematic effects in the case of extrapolation. The renormalised data-set is shown in Fig.2 as black symbols.

The THM S-factor is shown instead as a red band in Fig.2. Thanks to our approach, a very accurate result is obtained with no need of extrapolation down to zero energy, making it possible to supply a very accurate reaction rate for astrophysical modelling. This is possible since we could directly access the 6.356 MeV level in \(^{17}\text{O}\), sitting at \(-3\) keV in the \(^{13}\text{C} - \alpha\) relative energy spectrum. The recommended THM S-factor at \(E_{\text{c.m.}} = 140\) keV is \(3.2 \pm 0.5 \times 10^8\) MeVb, about 45% larger than the value provided by \[36\]. The most important result is a significant reduction of the uncertainty on the \(^{13}\text{C}(\alpha,n)^{16}\text{O}\) S-factor at the Gamow peak, which decreased from about 43% to about 16%. Recently, two works \[37, 38\] have determined new interesting spectroscopic information about the 6.356 MeV. The consequences on the \(^{13}\text{C}(\alpha,n)^{16}\text{O}\) S-factor are presently under investigation \[39\].

4. Resonances above the threshold: the \(^{19}\text{F}(p,\alpha_0)^{16}\text{O}\) reaction

Since the s-process is quite complicated, involving large nuclear physics input as well as peculiar astrophysical conditions, the possibility to constrain such boundary conditions is very appealing. Fluorine might represent a strong constraint of stellar internal structure since its abundance is very sensitive to the physical conditions in the inner layers of AGB stars \[40\]. This entails the understanding of fluorine nucleosynthesis, which is incomplete to date. A possible explanation is the poor accuracy of our present picture of the fluorine destruction due to extra-mixing processes \[40\], where fluorine is exposed to protons at temperatures \(\lesssim 4 \times 10^7\) K.

The \(^{19}\text{F}(p,\alpha)^{16}\text{O}\) reaction is the main destruction channel of fluorine in this scenario. However, only one set of direct data is available so far at the energies where fluorine burning is most effective (\(E_{\text{c.m.}} \leq 300\) keV, the Gamow energy \[2\]), still with quite large errors \[41\]. Furthermore, only the \(\alpha_0\) channel, corresponding to the emission of \(\alpha\)-particles off \(^{20}\text{Ne}\) compound system leaving \(^{16}\text{O}\) in its ground state, has been investigated, being considered the larger contributor to the total cross section \[41\]. Before, only extrapolations were available \[42\] below about 500 keV, showing a non resonant behaviour, sharply contradicting the trend of the astrophysical factor at higher energies. This very simple recommended extrapolation to astrophysical energies has triggered the reassessment of the nuclear reaction rates involved in
fluorine production and destruction, in particular by using the THM in its version modified to deal with resonant reactions [43, 44].

To this purpose, the QF $^2\text{H}(^{19}\text{F},\alpha^{16}\text{O})n$ reaction at 50 MeV beam energy was measured by means of a 19F beam impinging onto deuterated polyethylene targets, thus using deuterons to transfer protons and induce the 19F(p,α^{16}O) QF reaction. More details on the experiment are given in [43]. Here we underscored that by using Eq. 3 we derived the reduced widths of a number of resonances and, in particular, of a 113 keV peak sitting right inside the Gamow window, which was later confirmed by [41] and might have important consequences for astrophysics. The $p-^{19}\text{F}$ relative energy spectrum spanned an energy interval from 0 to about 1 MeV, making it possible to normalise the THM astrophysical factor to the existing direct data. In the original work [43], THM data were normalised to a weighed average of direct data in the energy window $0.6-0.8$ MeV [42]. Later, new direct data were made available in the normalisation energy region [45], leading to a reanalysis of the THM data [44].

Fig. 3 shows the S(E)-factor calculated with the resonance parameters from the fitting of THM data below 600 keV. The middle red curve marks the S(E)-factor computed using the parameters from the best fit, while the red band arises from the uncertainties on the resonance parameters, due to the combined statistical and systematic error. An average error of 20% is obtained. At present, the main source of uncertainty is due to the non resonant contribution to the astrophysical factor, since the one given in [42] is based on a very simple calculation. New direct measurements are of utmost importance to have a more realistic non-resonant contribution at low energies.

A new THM experiment has been recently performed to improve the energy resolution affecting THM data, which is a second important source of indetermination on the THM S-factor. Indeed, owing to the occurrence of many resonances below 600 keV, suitable energy resolution is at order to disentangle the occurring resonances. The poor energy resolution in the original experiment [43] prevented us to correctly identify resonances around 200 keV, where a small peak is apparent in Fig.3. Direct data [41] showed a peculiar behaviour at the lowest energies, demonstrating the occurrence of a broad 2^+ state at 251 keV, which was misidentified in the pioneering work [43] owing to the interplay between the poor energy resolution and its width (162 keV). Therefore, a direct comparison between the THM data [43, 44] and those in

![Figure 3](image-url)
Ref.[41] is presently impossible. This last work has triggered the new improved THM experiment mentioned above, aimed at passing the resolution of the pioneering work [43]. Preliminary results suggest an agreement between direct and indirect data and the manuscript is in preparation [46].

References
[1] Rolls C E and Rodney W S 1998 Cauldrons in the cosmos (Chicago: University of Chicago Press)
[2] Iliadis C 2007 Nuclear Physics of Stars (New York: Wiley)
[3] Best A et al. 2016 Eur. Phys. J. A 52 72
[4] Lamia L, Spitaleri C, Pizzone R G et al. 2013 The Astrophysical Journal 768 65
[5] Tumino A, Spitaleri C et al. 2014 The Astrophysical Journal 785 96
[6] Streed F, Rolls C, Spitaleri C and Corvisiero P. 2001 Naturwissenschaften 88 461
[7] Tribble R E, Bertulani CA, La Cognata M et al. 2014 Reports on Progress in Physics 77 106901
[8] Mukhamedzhanov A M, Clark HL, Gagliardi CA et al. 1997 Phys. Rev. C 56 1302
[9] Baur G and Rebel H 1994 Journal of Physics G Nuclear Physics 20 1
[10] Spitaleri C, Mukhamedzhanov A M, Blokhintsev, L D et al. 2011 Physics of Atomic Nuclei 74 1725
[11] Spitaleri C 1991 Proceedings of the 37th Winter School on Hadronic Physics: Problems of Fundamental Modern Physics II (Singapore: World Scientific) 21
[12] Baur G 1986 Physics Letters B 178 135
[13] Mukhamedzhanov A M, Blokhintsev LD, Irgaziev BF et al. 2008 Journal of Physics G Nuclear Physics 35 041016
[14] Mukhamedzhanov A M 2011 Phys. Rev. C 84 044616
[15] La Cognata M, Romano S, Spitaleri C et al. 2006 European Physical Journal A 27 249
[16] La Cognata M, Spitaleri C, Tribble R E et al. 2008 Journal of Physics G Nuclear Physics 35 014014
[17] La Cognata M, Goldberg VZ, Mukhamedzhanov AM et al. 2009 Phys. Rev. C 80 012801
[18] La Cognata M, Spitaleri C, Mukhamedzhanov A M et al. 2010 The Astrophysical Journal 723 1512
[19] Palmerini S, La Cognata M, Cristallo S. et al. 2011 The Astrophysical Journal 729 3
[20] Palmerini S, Sergi, M. L., La Cognata, M et al. 2013 The Astrophysical Journal 764 128
[21] Lane A M and Thomas R G 1958 Reviews of Modern Physics 30 257
[22] La Cognata M, Spitaleri C, Trippella O et al. 2012 Physical Review Letters 109 232701
[23] La Cognata M, Spitaleri C, Trippella O et al. 2013 The Astrophysical Journal 777 143
[24] La Cognata M, Spitaleri C, Cherubini S et al. 2016 Acta Physics Polonica B 47 681
[25] Lamia L, La Cognata M, Spitaleri C et al. 2012 Phys. Rev. C 85 025805
[26] Pizzone R G, Spitaleri C, Cherubini S et al. 2005 Phys. Rev. C 71 058801
[27] Spitaleri C, La Cognata M, Lamia L et al. 2016 European Physical Journal 52 77
[28] La Cognata M, Spitaleri C, Mukhamedzhanov A. et al. 2010 Nucl. Phys. A 834 658C
[29] Gulino M, Spitaleri C, Tang X D et al. 2013 Phys. Rev. C 87 012801
[30] Cherubini C, Gulino M, Spitaleri C et al. 2015 Phys. Rev. C 92 015805
[31] Pizzone R G, Roeder B T, McCleskey M et al. 2016 European Physical Journal A 52 24
[32] Hei M, Detwiler R, Azuma R E et al. 2008 Phys. Rev. C 78 025803
[33] Gallino R, Arlandini C, Busso M; et al. 1998 Astrophys. J. 497 388
[34] Bussol R, Gallino R, Wassberg G J et al. 1999 Annual Review of Astronomy and Astrophysics 37 239
[35] Drotleff H W, Denker H, Knee H et al. 1993 Astrophys. J. 414 735
[36] Hei M, Kaeppeler F, Uberseder E et al. 2008 Phys. Rev. C 78 025803
[37] Avila M L, Rogachev G V, Koschiy E et al. 2015 Phys. Rev. C 91 048801
[38] Faestermann T, Mohr P, Hertenberger R et al. 2015 Phys. Rev. C 92 052802
[39] Trippella O and La Cognata M 2017 Astrophys. J. 41 837
[40] Lugaro M, Ugalde C, Karakas AI et al. 2004 Astrophys. J. 615 934
[41] Lombardo I, Dell’Aquila D, Di Leva A et al. 2015 Phys. Lett. B 748 178
[42] Angulo C, Arnould M, Rayet M et al. 1999 Nuclear Physics A 656 3
[43] La Cognata M, Mukhamedzhanov A M, Spitaleri C et al. 2011 The Astrophysical Journal Letters 739 L54
[44] La Cognata M, Palmerini S, Spitaleri C et al. 2015 The Astrophysical Journal 805 128
[45] Lombardo I, Dell’Aquila D, Campajola L et al. 2013 Journal of Physics G Nuclear Physics 40 125102
[46] Indelicato I, La Cognata M, Spitaleri C et al. 2017 Astrophys. J., in preparation