ANALYSIS OF ECONOMIC AND MATHEMATICAL MODELING OF INDUSTRIAL ENTERPRISE FUNCTIONING AT MULTICOLLINEARITY BASED ON PARAMETERIZATION

Purpose. Investigation of multicollinearity in multifactorial economic and mathematical regression models of activity of Inhulets Mining and Processing Plant and reduction of its negative influence based on application of the parameterization method.

Methodology. To reduce the negative impact of multicollinearity in multifactorial regression models, a technique is developed that is based on the transition from the function of several variables to its parametric representation by analyzing the correlation matrix between factors in order to eliminate mutual correlation.

Findings. Economic and mathematical modeling of the activity of the JSC Inhulets Mining and Processing Combine showed that the presence of multicollinearity when applying a multifactor regression model leads to a distortion of the obtained results, which reduces the practical value of the model. The application of the parameterization method made it possible to reduce the influence of multicollinearity by providing parametric representations of the economic-mathematical model of holding the real economic process. The application of the parameterization method makes it easier to construct an economic-mathematical model in the form of regression equations, to reduce the negative impact of multicollinearity in the implementation and meaningful analysis of features of economic and mathematical modeling using multivariate regression equations.

Originality. For the first time, the application of the parameterization method is proposed, which allows us to simplify the construction of an economic-mathematical model in the form of regression equations. Using the parameterization method allows reducing the uncertainty in the synthesis of multivariate regression equations, ensuring appropriate adequacy.

Practical value. The analysis of the obtained results of economic and mathematical modeling of the activity of the Inhulets Mining and Processing Plant based on significant statistical material using the developed algorithm of elimination of multicollinearity confirmed the effectiveness of the proposed approach. It is recommended to include the developed algorithm for elimination of multicollinearity by parametrization in the practice of management of economic activity of mining enterprises.

Keywords: mining, regression, multifactorial model, multicollinear, parameterization, financial activity

The complexity of the use of mathematical and statistical methods involves a more complete disclosure of the essence, patterns and trends of specific phenomena and processes in order to adequately display the properties, reserves and prospects of development and ways of improvement.
tributes to the formation of a model of their strategic development, is considered in [12]. Orientation to solving practical problems that can be described using a mathematical model is given in detail in [13].

Unsolved aspects of the problem. At the same time, attention is not fully paid to the influence of uncertainty and randomness in economic and mathematical modeling. In particular, this applies to the peculiarities of the application of multivariate regression models, where such an aspect as multicollinearity is quite simplified [14].

The purpose of the article is to investigate and eliminate the influence of multicollinearity on the result of economic and mathematical modeling when constructing a multivariate regression model by applying the parameterization method.

Results. There are various ways to identify multicollinearity using statistical methods. In particular, one such method is the Farrar-Glauber algorithm [4]. The peculiarity of the mentioned algorithm is that it allows identifying the presence of multicollinearity, but does not indicate an effective way to eliminate it. In this paper, an attempt is made to eliminate multicollinearity by presenting a multivariate regression model in a parametric form. Let us consider a linear three-factor regression model whose equation is

\[y = a_0 + a_1 \cdot x_1 + a_2 \cdot x_2 + a_3 \cdot x_3 + u, \]

where \(y \) is the output variable; \(x_1, x_2, x_3 \) are input variables (factors); \(a_0, a_1, a_2, a_3 \) are parameters; \(u \) is perturbation.

Let us suppose that there is certain multicollinearity, that is, there is a correlation between the factors. According to the Farrar-Glauber algorithm, based on the submitted statistical material and using Pearson’s criterion, the presence of multicollinearity is established. If there is no multicollinearity, then the parameters included in equation (1) are found, in particular by the ordinary least squares (OLS). In the presence of multicollinearity, options are possible. At the first stage, using the Farrar-Globe algorithm, we establish the existence of a correlation dependence of one factor on the other two. Let us consider the case where there is a correlation dependence of the factor \(x_1 \) on the factors \(x_2 \) and \(x_3 \); moreover, this dependence is confirmed by the statistical criterion, in this case, the Fisher criterion. Then it is natural to write a linear two-factor regression model in the form

\[x_3 = b_0 + b_1 \cdot x_1 + b_2 \cdot x_2 + u_3, \]

where \(b_0, b_1, b_2 \) are parameters; \(u_3 \) is perturbation.

Substituting (2) into equation (1), we obtain an equation that contains only two factors.

\[y = a_0 + a_1 \cdot x_1 + a_2 \cdot x_2 + \left(b_0 + b_1 \cdot x_1 + b_2 \cdot x_2 + u_3 \right) + u, \]
or

\[y = e_0 + e_1 \cdot x_1 + e_2 \cdot x_2 + u_4, \]

where

\[e_0 = a_0 + a_1 \cdot b_0; \quad e_1 = a_1 + a_2 \cdot b_1; \quad e_2 = a_2 + a_3 \cdot b_2; \quad u_4 = u + a_3 \cdot u_3. \]

The next step is to establish the existence of multicollinearity of the variables \(x_1 \) and \(x_2 \). To do this, we can use Student’s criterion according to the Farrar-Glauber algorithm. If there is no multicollinearity, then there is no correlation between the variables \(x_1 \) and \(x_2 \). In this case, we obtain a system of two equations depending on two variables.

\[\begin{align*}
 y &= c_0 + c_1 \cdot x_1 + c_2 \cdot x_2 + u_4 \\
 x_3 &= b_0 + b_1 \cdot x_1 + b_2 \cdot x_2 + u_3.
\end{align*} \]

(3)

The use of OLS allows estimating the values of the parameters included in (4). The result is a system of equations

\[\begin{align*}
 \hat{y} &= c_0 + c_1 \cdot \hat{x}_1 + c_2 \cdot \hat{x}_2 \\
 \hat{x}_3 &= b_0 + b_1 \cdot \hat{x}_1 + b_2 \cdot \hat{x}_2 + \hat{u}_3.
\end{align*} \]

(4)

where \(\hat{c}_0, \hat{c}_1, \hat{c}_2, \hat{b}_0, \hat{b}_1, \hat{b}_2 \) are values of the parameters found using OLS; \(\hat{y}, \hat{x}_1 \) are estimates of the source variable \(y \) and factor \(x_2 \).

If multicollinearity is present, there is a correlation between the variables \(x_1 \) and \(x_2 \). The specification of such dependency can be set by the correlation field of variables \(x_1 \) and \(x_2 \). If there is a linear correlation relationship, then the regression equation can be written as

\[x_2 = d_0 + d_1 \cdot x_1 + u_5, \]

(5)

where \(d_0, d_1 \) are parameters; \(u_5 \) is perturbation.

Substituting (5) into system (3) and taking into account (6), we obtain a system of three equations that depend on one variable

\[\begin{align*}
 y &= e_0 + e_1 \cdot x_1 + u_6 \\
 x_2 &= d_0 + d_1 \cdot x_1 + u_6, \\
 x_3 &= f_0 + f_1 \cdot x_1 + u_7.
\end{align*} \]

(6)

where \(e_0 = c_0 + c_1 \cdot d_0; \quad e_1 = c_1 + c_2 \cdot d_1; \quad f_0 = b_0 + b_2 \cdot d_1; \quad f_1 = b_1 + b_2 \cdot d_1; \quad u_6 = u_4 + u_5; \quad u_7 = u_3 + b_2 \cdot u_5.

The use of OLS allows estimating the values of the parameters included in (7). The result is a system of equations

\[\begin{align*}
 \hat{y} &= \hat{e}_0 + \hat{e}_1 \cdot \hat{x}_1 \\
 \hat{x}_2 &= \hat{d}_0 + \hat{d}_1 \cdot \hat{x}_1, \\
 \hat{x}_3 &= \hat{f}_0 + \hat{f}_1 \cdot \hat{x}_1.
\end{align*} \]

(7)

where \(\hat{e}_0, \hat{e}_1, \hat{d}_0, \hat{d}_1, \hat{f}_0, \hat{f}_1 \) are values of the parameters found using OLS; \(\hat{y}, \hat{x}_2, \hat{x}_3 \) are estimates of the source variable \(y \) and factors \(x_2 \) and \(x_1 \).

The systems of equations (5) and (8) allow representing the three-factor regression model (1) in parametric form, thus eliminating multicollinearity.

In the general case, if the \(n \)-factor regression model is considered, then, in the presence of multicollinearity, the transition to a parametric representation of the regression model sequentially from \(n - 1 \) parameters to one parameter is carried out in accordance with the above algorithm, if possible. Such representation of the \(n \)-factor regression model will eliminate the negative impact of multicollinearity.

The application of the developed algorithm on the example of financial activity analysis of Inhulets Mining Combine (InMC) of Kryvyi Rih city [15, 16] is presented below. Table 1 provides statistical material according to the InMC.

Based on economic considerations, the three-factor regression model of income (\(Y \)) dependence on three factors: labor costs (\(X_1 \)), current assets value (\(X_2 \)) and residual value (\(X_3 \)), is to be found in the form of a production function of power form.

\[y = a_0 \cdot x_1^{a_1} \cdot x_2^{a_2} \cdot x_3^{a_3} \cdot u, \]

(8)

where \(a_0, a_1, a_2, a_3 \) are parameters; \(u \) is perturbation.

We reduce equation (8) to a linear form by taking logarithms.

\[\ln y = \ln a_0 + a_1 \cdot \ln x_1 + a_2 \cdot \ln x_2 + a_3 \cdot \ln x_3 + \ln u. \]

(9)

In the new notations, equation (9) takes the form

\[z = a + a_1 \cdot t_1 + a_2 \cdot t_2 + a_3, \]

(10)

where

\[z = \ln y; \quad a = \ln a_0; \quad t_i = \ln x_i (i = 1, 2, 3); \quad w = \ln u. \]
We transform the data of Table 1 according to formulas (10) (Table 2) and use the OLS to find the parameters. As a result, model (10) will take the form:

\[z = 3.27 + 0.45 \cdot t_1 + 0.516 \cdot t_2 - 0.091 \cdot t_3. \]

In this case, the coefficient of determination amounted to \(R^2 = 0.973 \) and Fisher's criterion – \(F = 132 \). Given that the critical value of the Fisher criterion is equal to \(F = 132 > 3.59 \), we conclude that the regression equation is significant (10).

However, taking into account that the regression model (10) is multivariate, it is possible to distort the obtained results. First of all, this may be due to the existence of multicollinearity. Therefore, it is necessary to check for multicollinearity. For this purpose, we use the Farrar- Glauber algorithm. Let us present the initial data in a standardized form according to the formulas:

\[*t_jk = \frac{t_{jk} - k_t}{s_k} \]

where \(t_{jk} \) is the average value; \(s_k \) is standard deviation.

The results of the calculations are presented in Table 2.

Table 1

Years	Income (Y) (unit of currency)	Labor costs (X1) (unit of currency)	Current assets value (X2) (unit of currency)	Residual cost (X3) (unit of currency)
2001	796,086	72,498	378,681	821,313
2002	886,660	90,422	348,862	792,836
2003	11,364,600	118,874	525,939	915,598
2004	1,446,530	146,511	406,689	735,313
2005	2,053,653	207,203	835,021	812,229
2006	2,084,934	249,876	852,886	1,012,412
2007	2,998,135	306,953	1,617,929	1,228,221
2008	6,441,396	317,326	6,726,606	3,132,242
2009	4,384,200	287,365	5,632,716	4,117,950
2010	8,897,838	338,240	7,225,286	4,041,718
2011	9,875,431	342,604	11,822,216	4,361,040
2012	9,986,708	335,975	12,263,759	6,506,394
2013	10,352,257	355,995	17,185,530	6,626,622
2014	11,341,151	405,726	17,032,936	8,940,619
2015	9,489,519	469,718	25,161,471	10,461,594
2016	11,306,531	517,181	23,501,747	11,449,166
2017	15,711,286	667,177	35,096,304	11,570,129
2018	18,706,815	926,033	40,843,517	11,874,357

Years	z	t1	t2	t3	t1*	t2*	t3*	t1* t2*	t1* t3*	t2* t3*	
2001	13.59	11.19	12.84	13.62	-2.08	-1.28	-0.99	2.66	2.07	1.27	4.33
2002	13.70	11.41	12.76	13.58	-1.69	-1.33	-1.03	2.25	1.74	1.37	2.87
2003	13.94	11.69	13.17	13.73	-1.22	-1.07	-0.89	1.30	1.08	0.95	1.48
2004	14.19	11.90	12.92	13.51	-0.85	-1.23	-1.10	1.05	0.94	1.36	0.72
2005	14.54	12.24	13.64	13.61	-0.24	-0.78	-1.00	0.19	0.24	0.79	0.06
2006	14.55	12.43	13.66	13.83	0.09	-0.77	-0.79	-0.07	-0.07	0.60	0.01
2007	14.91	12.63	14.30	14.02	0.45	-0.37	-0.59	-0.17	-0.27	0.22	0.20
2008	15.68	12.67	15.72	14.09	0.51	0.52	-0.53	0.26	-0.27	-0.28	0.26
2009	15.29	12.57	15.54	15.23	0.33	0.41	0.61	0.14	0.20	0.25	0.11
2010	16.00	12.73	15.79	15.21	0.62	0.57	0.59	0.35	0.37	0.33	0.38
2011	16.11	12.74	16.29	15.29	0.64	0.88	0.67	0.56	0.43	0.58	0.41
2012	16.12	12.73	16.32	15.69	0.61	0.90	1.06	0.55	0.64	0.95	0.37
2013	16.15	12.78	16.66	15.71	0.71	1.11	1.08	0.79	0.77	1.20	0.50
2014	16.24	12.91	16.65	16.01	0.94	1.10	1.38	1.03	1.29	1.52	0.88
2015	16.07	13.06	17.04	16.16	1.19	1.35	1.53	1.61	1.83	2.07	1.43
2016	16.24	13.16	16.97	16.25	0.90	0.98	1.22	0.89	1.11	1.20	–
2017	16.57	13.41	17.37	16.26	1.29	1.21	1.23	1.56	1.59	1.49	–
2018	16.74	13.74	17.53	16.29	1.78	1.30	1.26	2.31	2.24	1.63	–
stand. deviation	1.04	0.66	1.72	1.11	–	–	k.cor	0.920	0.850	0.957	–
According to Table 2, we make up the correlation matrix
\[
\begin{pmatrix}
1 & 0.833 & 0.732 \\
0.833 & 1 & 0.878 \\
0.732 & 0.878 & 1
\end{pmatrix}.
\] (11)

We calculate the determinant of the correlation matrix
\[
|r| = 0.07.
\] (12)

Since the determinant is quite small, we can conclude that there are multicollinearity factors.

According to the Farrar-Glauber algorithm, we compute \(\chi^2 \) – the statistics according to formula (13). Given that \(n = 15 \), \(p = 3 \) and (12), we find
\[
\chi^2 = \left(n-1-\frac{1}{6}(2p+1) \right) \ln r.
\] (13)

Given that \(n = 15, p = 3 \) and (12), we find by formula (13)
\[
\chi^2 = 32.4.
\]

Critical value of the Pearson criterion is equal to
\[
\chi_{3.05}^2 = 7.81.
\]

Since the determinant is quite small, we can conclude that multicollinearity is present. Therefore, we can write the relation matrix takes the form
\[
\begin{pmatrix}
1 & 0.878 & 0.887 \\
0.878 & 1 & 0.887 \\
0.887 & 0.887 & 1
\end{pmatrix}.
\] (20)

The determinant of the matrix (20) is equal to
\[
|\mathbf{r}| = 0.229.
\] (21)

According to the Farrar-Glauber algorithm, we compute \(\chi^2 \) – the statistics according to formula (13). Given that \(n = 15, p = 3 \) and (21), by formula (13) we calculate \(\chi^2 = 17.9 \). According to the table, we find \((2; 0.05) = 4.303. \) Since 17.9 > 4.303, multicollinearity is present. Therefore, we can write the regression equation between \(t_2 \) and \(t_3 \). To specify the regression equation, we construct a correlation field (Figure).

Analysis of the correlation field in Figure shows that there is a linear correlation. This allows us to record the regression equation as
\[
t_3 = \gamma_0 + \gamma_1 \cdot t_2.
\] (22)

Using OLS, we find
\[
t_3 = 5.79 + 0.593 \cdot t_2.
\] (23)

Thus \(R^2 = 0.886, F = 100, F_{cor}(0.05; 13; 1) = 4.67. \) Since \(100 > 4.67, \) then equation (23) is significant. Substitute (22) into (19)
\[
z = c_0 + c_1 \cdot t_2 + c_2 \cdot (d_0 + d_1 \cdot t_2).
\] (24)

Considering (24), formula (17) takes the form
\[
t_2 = b_0 + b_1 \cdot t_2 + b_2 \cdot (d_0 + d_1 \cdot t_2).
\] (25)

Using OLS, we find
\[
t_2 = 7.64 + 0.318 \cdot t_2.
\] (26)

Thus \(R^2 = 0.797, F = 51, F_{cor}(0.05; 13; 1) = 4.67. \) Since \(51 > 4.67, \) then equation (26) is significant.

Finally, let us consider equation (28). Using OLS, we find
\[
z = 6.15 + 0.604 \cdot t_3.
\] (27)

Thus, \(R^2 = 0.956, F = 281, F_{cor}(0.05; 13; 1) = 4.67. \) Since \(281 > 4.67, \) then equation (27) is significant.

Thus, the system of equations (27, 26 and 23), which determines the model of regression of financial activity of InMC, is obtained.

We calculate the Fisher criterion by the formula
\[
F_k = (c_{kk} - \frac{n-p}{p-1}).
\] (15)

where \(c_{kk} \) is diagonal elements of the matrix (14).

Substituting in (15) the diagonal elements of the matrix (14), we find
\[
F_1 = 13.62; \quad F_2 = 33.87; \quad F_3 = 20.28.
\]

The critical value of the Fisher criterion is
\[
F_{kp}(\alpha, p-1, n-p) = F_{kp}(0.05; 2; 12) = 3.89.
\] (16)

Since \(F_1 = 13.62 > 3.89; \quad F_2 = 33.87 > 3.89; \quad F_3 = 20.28 > 3.89 \) then each factor correlates with the other two.

Given that \(t_2 \) correlates with \(t_3 \) and \(t_2 \), the regression equation can be written as
\[
t_2 = b_0 + b_1 \cdot t_2 + b_2 \cdot t_3.
\] (17)

Using OLS, we find
\[
t_2 = 9.24 + 0.482 \cdot t_2 - 0.277 \cdot t_3.
\] (18)

Thus, \(R^2 = 0.824, F = 28.1, F_{cor}(0.05; 12; 2) = 3.89. \) Since \(28.1 > 3.89, \) equation (18) is significant.

Substitute (17) into (10)
\[
z = a + a_2(b_0 + b_1 \cdot t_2 + b_2 \cdot t_3) + a_3 \cdot t_2 + a_3 \cdot t_3,
\]
or
\[
z = c_0 + c_1 \cdot t_2 + c_2 \cdot t_3.
\] (19)

Consider the correlation \(t_2 \) and \(t_3 \). In this case, the correlation matrix takes the form

```
Fig. Correlation field and regression line
```
It is clear that any of the variables that are more economically viable can be selected as the base parameter.

Given the substitution (10), the system (28) can be written in a power form

\[y = 469 - x_2^{0.604}, \quad (R^2 = 0.874, F = 90) \]
\[x_1 = 2076 - x_2^{0.318}, \quad (R^2 = 0.832, F = 64.4). \]
\[x_1 = 32 - x_2^{0.93}, \quad (R^2 = 0.858, F = 78.5). \]

Since each of the calculated values of the Fisher criterion in (29) is greater than this value, we conclude that the equations found are significant.

In conclusion, it should be emphasized that the construction of the model of multivariate regression allows not only taking into account the multicollinearity of the factors, but also calculating the values of these factors, depending on the value of the basic factor taken as a parameter.

Conclusions. Market relations in Ukraine require the use of modern management methods in the economy, which are based on economic and mathematical modeling. Particular attention should be paid to the adequacy of mathematical models, since their synthesis occurs when taking into account uncertainties. Considering that multivariate regression analysis is used in the construction of models, multicollinearity is significantly influenced by the correctness of the conclusions drawn. The elimination of multicollinearity by applying a parametric approach allowed avoiding this negative influence. In addition, the developed algorithm made it possible to simplify the regression model for its further application. The efficiency of the proposed algorithm is confirmed on the example of the economic activity analysis of Inhulets Mining Combine.

References.
1. Sheremet, A. D. (2014). A complex analysis of sustainable development indicators of an enterprise economics. *Ekonomicheskii analiz: teoriya i praktika*, 45(396), 2–10.
2. Sheremet, A. D., Saifulin, R. S., & Negashev, E. V. (2016). *The technique of financial analysis*. Moscow: INFRA-M.
3. Savitskaia, H. V. (2014). *Analysis of the effectiveness and risks of entrepreneurial activity: Methodological aspects: monograph*. Moscow: NYTs YNFRA.
4. Vitinskyi, V. V. (2017). Methodological principles of risk modeling in the system of economic security. *Modeliuvannia ta informatizni systemy v ekonomitsi*, 94, 14–27.
5. Kyzym, M., & Khautova, V. (2015). *Cluster format for arranging and implementing industrial policy*. *Acta Innovations*, 17, 30–40.
6. Ponomarenko, V. S., & Hontareva, I. V. (2015). Methodology of complex evaluation of enterprise development efficiency: monograph. Kharkiv: KhNEU im. S. Kuznetsea.
7. Trydied, O. M., & Dziebko, I. P. (2015). *Implementation of strategic management accounting as a tool for increasing the company’s competitiveness. Problems of Theory and Methodology of Accounting, Control and Analysis*, 1, 376–382.
8. Udalykh, O. O. (2016). *Budgeting as a method for economic management of the enterprise*. *Finansovi doslidzhennia*, 1, 56–100.
9. Leoh't'eva, L. S., & Orlova, L. N. (2016). Using the principles of matrix modeling for a comprehensive assessment of the effectiveness of institutional changes in entrepreneurship. *Mir. Modernizatsiia. Innovatsiia. Razvitie*, 7(1), 97–101.
10. Levecchko, O. M., Tkachuk, O. V., & Tsarenko, I. O. (2017). Innovation-integrated structures in the modern economy: their classification. *Efektyvna ekonomika*, (10). Retrieved from http://www.economy.nauka.com.ua/?p=1&c=5791.
11. Burkova, I. A. (2014). *Theoretical bases for assessing the efficiency of enterprises and ways of its improvement*. *Innovatsiia ekonomika*, 4, 145–153.
12. Beridze, T. M. (2016). *Statistical monitoring in the enterprise strategic management system: monograph*. Kremenchug: PP Scherbatykh O. V.
13. Takha, Khmendy A. (2019). *Operations research*. Moscow: Vyliams Y.D.
14. Beridze, T. M., Serebrenikov, V. M., & Lokhman, N. V. (2018). Monitoring of production activity of enterprises of Kryvyi Rih region. *Ekonomika ta suspilshtvo, 15*, 213–218.
15. State Statistics Service of Ukraine (n.d.). *Operating rate of Inhulets Mining Combine*. Retrieved from http://www.ukrstat.gov.ua/operativ/oper_new.html.
16. SMIDA (n.d.). *Operating rate of Inhulets Mining Combine*. Retrieved from http://smida.gov.ua/.

Аналіз економіко-математичного моделювання функціонування промислово-підприємства при мультиколінеарності на основі параметризації

Н. В. Лохман*, В. М. Серебреников*, Т. М. Берідзе**, А. В. Череп**, І. М. Дашко***

1 – Донецький національний університет економіки і торгівлі імені Михайла Туган-Барановського, м. Кривий Ріг, Україна
2 – Криворізький факультет Запорізького національного університету, м. Кривий Ріг, Україна, e-mail: beridzet2016@gmail.com
3 – Запорізький національний університет, м. Запоріжжя, Україна

Мета. Дослідження мультиколінеарності в багатофакторних регресійних економіко-математичних моделях діяльності Інгулецького гірничо-збагачувального комбінату та зменшення її негативного впливу на основі застосування методу параметризації.

Методика. Для зменшення негативного впливу мультиколінеарності в багатофакторних регресійних моделях розроблена методика, що заснована на переході від функції декількох змінних до її параметричного подання шляхом аналізу кореляційної матриці між факторами з метою усунення взаємної кореляції.

Результати. Економіко-математичне моделювання діяльності ПрАТ «Інгулецький гірничо-збагачувальний комбінат» показало, що наявність мультиколінеарності при застосуванні багатофакторної регресійної моделі призводить до спотворення отриманих результатів, це знижує практичну цінність моделі. Заосторожнування методу параметризації дозволило зменшити вплив мультиколінеарності, надавши параметричного подання економіко-математичній моделі утримання реального економічного процесу. Застосування методу параметризації дозволяє спростити побудову економіко-математичної моделі у вигляді регресійних рівнянь, зменшити негативний вплив мультиколінеарності при реалізації та змістовному аналізі особливостей економіко-математичного моделювання за допомогою багатофакторних регресійних рівнянь.

Наукова новизна. Уперше запропоноване застосування метода параметризації, що дозволяє спростити побудову економіко-математичної моделі у вигляді регресійних рівнянь, забезпечивши відповідну адекватність.

Практична значимість. Аналіз отриманих результатів економіко-математичного моделювання діяльності Інгулецького гірничо-збагачувального комбінату на значно му статистичному матеріалі із застосуванням розробленого алгоритму усунення мультиколінеарності підтверди дієвість запропонованого підходу. Рекомендується включити розроблений алгоритм із усунення мультико-
централства шляхом параметризації до практики управління економічною діяльністю гірничорудних підприємств.

Ключові слова: гірничорудна промисловість, регресія, багатофакторна модель, мультиколінеарність, параметризація, фінансова діяльність

Аналіз економіко-математичного моделювання діяльності промислового підприємства при мультиколінеарності на основі параметризації

Н. В. Лохман1, В. М. Серебренников1, Т. М. Беридзе2, А. В. Череп3, И. Н. Дашико2

1 – Донецький національний університет економіки і торгівлі імені Михаїла Туган-Барановського, м. Кривий Рог, Україна
2 – Криворізький факультет Запорізького національного університету, м. Кривий Рог, Україна, e-mail: beridzet2016@gmail.com
3 – Запорізький національний університет, м. Запоріжжя, Україна

Ціль. Існування мультиколінеарності в многофакторних регресійних економіко-математичних моделях діяльності Ингулецького горно-обогатительного комбінату і уменьшення її негативного впливу на основі використання метода параметризації.

Методика. Для усунення негативного впливу мультиколінеарності в многофакторних регресійних моделях розроблена методика, яка базована на переході від функції кількох змінних із її параметричного представлення на просте регресійне уравнення.

Результати. Економіко-математичне моделювання діяльності ЧАО «Інгулецький горно-обогатительний комбінат» показало, що виникнення мультиколінеарності при використанні многофакторної регресійної моделі призводить до захоплення отриманих результатів, це знижує практичну цінність моделі. Применення методу параметризації дозволяє усунути негативний вплив мультиколінеарності, при цьому параметричному представлінню економіко-математичної моделі здійснено реалізацію і зовнішнього аналізу особливостей економіко-математичного моделювання з допомогою многофакторних регресійних уравнень.

Наукова новизна. Вперше розроблено використання методу параметризації, що дозволяє усунути негативний вплив мультиколінеарності при використанні многофакторних регресійних уравнень, здійснила адекватність реалізації і зовнішнього аналізу особливостей економіко-математичного моделювання з допомогою многофакторних регресійних уравнень.

Практична значимість. Результати економіко-математичного моделювання діяльності ЧАО «Інгулецький горно-обогатительний комбінат» на великому експериментальному матеріалі з допомогою розробленого алгоритму усунення мультиколінеарності в ідеалічному використанні використання параметричного моделювання дозволяє здійснити контроль економіко-математичного моделювання с допомогою многофакторних регресійних уравнень.

Ключові слова: горно-обогатительна промисловість, регресія, багатофакторна модель, мультиколінеарність, параметризація, фінансова діяльність

Recommended for publication by A. A. Turilo, Doctor of Economic Sciences. The manuscript was submitted 17.05.19.