Volcanic air pollution and human health: recent advances and future directions

Carol Stewart1 · David E. Damby2 · Claire J. Horwell3 · Tamar Elias4 · Evgenia Ilyinskaya5 · Ines Tomášek6,7 · Bernadette M. Longo8 · Anja Schmidt9,10 · Hanne Krage Carlsen11,12 · Emily Mason13 · Peter J. Baxter14 · Shane Cronin15 · Claire Witham16

Received: 24 July 2021 / Accepted: 2 November 2021 / Published online: 21 December 2021
© The Author(s) 2021

Abstract
Volcanic air pollution from both explosive and effusive activity can affect large populations as far as thousands of kilometers away from the source, for days to decades or even centuries. Here, we summarize key advances and prospects in the assessment of health hazards, effects, risk, and management. Recent advances include standardized ash assessment methods to characterize the multiple physicochemical characteristics that might influence toxicity; the rise of community-based air quality monitoring networks using low-cost gas and particulate sensors; the development of forecasting methods for ground-level concentrations and associated public advisories; the development of risk and impact assessment methods to explore health consequences of future eruptions; and the development of evidence-based, locally specific measures for health protection. However, it remains problematic that the health effects of many major and sometimes long-duration eruptions near large populations have gone completely unmonitored. Similarly, effects of prolonged degassing on exposed populations have received very little attention relative to explosive eruptions. Furthermore, very few studies have longitudinally followed populations chronically exposed to volcanic emissions; thus, knowledge gaps remain about whether chronic exposures can trigger development of potentially fatal diseases. Instigating such studies will be facilitated by continued co-development of standardized protocols, supporting local study teams and procuring equipment, funding, and ethical permissions. Relationship building between visiting researchers and host country academic, observatory, and agency partners is vital and can, in turn, support the effective communication of health impacts of volcanic air pollution to populations, health practitioners, and emergency managers.

Keywords Volcanic emissions · Air pollution · Review · Health effects · Health hazard assessment · Risk management

Introduction
Globally, over a billion people are estimated to live within 100 km of an active volcano (Freire et al. 2019). Volcanic eruptions may cause injuries and fatalities via a range of hazardous phenomena (e.g., pyroclastic density currents, ballistics, lahars, lava flows, and localized accumulations or flows of asphyxiant gases such as CO2 and H2S), affecting communities within tens of kilometers of the vent (Brown et al. 2017). Eruptions may also displace large numbers of people temporarily or permanently (Cuthbertson et al. 2020) with cascading health and social impacts including disease outbreaks due to overcrowding, food insecurity, mental health issues, and violence (Connell and Lutkehaus 2017). Airborne volcanic emissions, often referred to as “volcanic air pollution” (Tam et al. 2016; Crawford et al. 2021), can also present chronic, far-reaching hazards which may have harmful and long-lasting effects on populations across large geographic areas (Oppenheimer et al. 2003). Here, we address the state of knowledge regarding volcanic air pollution and health. This includes a discussion of hazard assessment methods, a summary of reported human health effects, a review of risk assessment, population preparedness and

This paper constitutes part of a topical collection:
Looking Backwards and Forwards in Volcanology: A Collection of Perspectives on the Trajectory of a Science

Editorial responsibility: K.V. Cashman; Deputy Executive Editor: L. Pioli

* Carol Stewart
c.stewart1@massey.ac.nz

Extended author information available on the last page of the article
Volcanic emission hazards

Airborne volcanic emissions comprise variable mixtures of silicate ash, gases (H$_2$O, CO$_2$, SO$_2$, H$_2$S, CO, HF, and HCl), volatile metal vapors, and sulfate aerosol, formed through SO$_2$ gas-to-particle conversion (Fig. 1; Oppenheimer et al. 2003). Ash can be generated during a variety of eruptive processes and can contain substantial amounts of respirable-sized particles (<4 μm diameter) that can penetrate into the lungs (Horwell 2007). The physical and chemical properties of ash can vary significantly across eruptions and with distance (Jenkins et al. 2015). As volcanic gases cool and react in the atmosphere, they may condense into particles and/or adsorb to ash surfaces (Oppenheimer et al. 2003). Volcanic aerosol particles formed through gas condensation are extremely fine-grained, typically ~0.2–0.5 μm in diameter (Mather et al. 2003). Volcanic particulate matter (PM) thus encompasses a heterogeneous mixture of ash PM and acidic sulfate- and metal-bearing aerosol PM. A further airborne hazard is generated when lava flows into seawater, generating a “laze” (lava + haze) plume that contains HCl, volcanic glass fragments, and various metals (Mason et al. 2021; Fig. 1).

Sulfur gases (in particular SO$_2$), sulfate aerosol, and ash are the most important airborne hazards for population-scale, longer-term impacts and have been shown to affect air quality locally as well as hundreds to thousands of kilometers from source during large fissure or explosive eruptions (e.g., Schmidt et al. 2011, 2015; de Lima et al. 2012; Durant et al. 2012; Eychenne et al. 2015; Ilyinskaya et al. 2017). Many of the volatile trace elements emitted by volcanoes are classified as metal pollutants by environmental and health protection agencies (e.g., lead, zinc, arsenic, cadmium), and emission rates can reach levels comparable to anthropogenic fluxes from industrialized countries (Ilyinskaya et al. 2021). Near persistently degassing volcanoes, elevated levels of metals have been reported in air, soils, surface waters, and plants (Delmelle 2003), which are common exposure sources for humans (Prüss-Ustün et al. 2011), especially in areas where communities consume catchment or surface water and locally grown crops. Persistent degassing is also the source of fluoride contamination of water resources close to certain volcanoes, notably Ambrym and Tanna, Vanuatu (Cronin and Sharp 2002; Allibone et al. 2012; Webb et al. 2021). Acidified rainfall from persistent degassing can leach lead from plumbing fittings or roofing materials into roof catchment rainwater tanks (Macomber 2020). Ash deposition into water supplies can raise concentrations of fluoride and other potentially toxic elements (e.g., copper, manganese) as well as elements that impart an unpleasant taste or color to the water (Stewart et al. 2006, 2020).

1 https://uk-air.defra.gov.uk/networks/network-info?view=metals
Hazard and exposure assessment

In an eruption crisis, it is rare for there to be an immediate assessment of the health impact of exposure to volcanic air pollution. With limited resources, health agencies must prioritize ensuring sanitary conditions for evacuated communities and monitoring these communities for infectious disease outbreaks, as well as dealing with casualties. In lieu of data to directly measure the health impact, the physicochemical characteristics of the emissions, along with exposure concentrations and durations, may be assessed to get a first indication of whether they may be hazardous to human health.

For volcanic ash, characteristics that inform whether ash may cause harm if inhaled or ingested include particle size, particle shape, surface area, and the presence of leachable elements. Additional, specific hazards can vary according to magma composition and eruption dynamics. For lava dome-related or intermediate to felsic explosive ash samples, crystalline silica (quartz and its polymorphs) is important to quantify as it is the mineral of greatest health concern in ash due to its capacity to cause disease in industrial settings (Baxter et al. 1999; Greenberg et al. 2007). For mafic samples, reactive surface iron and associated generation of free radicals, which are implicated in respiratory diseases (Kelly 2003), can be determined (Horwell et al. 2007). Leachate analyses can determine concentrations of readily soluble elements on fresh ash particles relevant to inhalation or ingestion pathways. These methods may require adaptation for ash from hydrothermal system eruptions which typically contain fluoride in slowly soluble forms (Cronin et al. 2014; Stewart et al. 2020). Ash can also scavenge biologically potent organic pollutants from the atmosphere (Tomašek et al. 2021a). Toxicological assays can be used to assess whether the ash can trigger a biological response, which gives an indication of potential pathogenicity for humans (Damby et al. 2016).

The International Volcanic Health Hazard Network (IVHHN)\(^2\) has developed methods and protocols for rapid, standardized screening of ash samples (Le Blond et al. 2009; Horwell 2007; Horwell et al. 2007; Stewart et al. 2020; Tomašek et al. 2021b), which have been applied during various eruption crises. Table 1 presents post-2000 studies that have determined health-relevant characteristics of ash samples and whether they have used IVHHN methods or not. The major challenges associated with ash characterization relate to timely collection of ash samples, prior capacity building and training in suitable laboratories, funding analyses, and shipping of samples, given that transportation is often disrupted during an eruption. In practice, analyses are rarely completed within the days to weeks over which acute exposures may be occurring, so cannot be relied upon to inform decision-making. Thus, in advance of future eruptions, the hazard could be informed by study of archived ash samples from historic eruptions (Hillman et al. 2012; Horwell et al. 2010b, 2017; Damby et al. 2017).

Exposure to volcanic emissions rarely occurs in clean atmospheres, raising concerns about co-exposures of volcanic emissions and existing air pollution, particularly in urban areas. Preliminary work on these combined hazards indicates that the specific mixture may be important, with a heightened pro-inflammatory response (in laboratory in vitro tests) reported for simultaneous exposure to respirable ash and diesel exhaust particles (Tomašek et al. 2016) but not for ash and complete gasoline exhaust (Tomašek et al. 2018).

Real-time monitoring of airborne gas and PM concentrations can be used as a proxy for assessing population exposure during eruptions, for persistent degassing, and for post-eruption ash resuspension episodes (Wilson et al. 2011). Indoor and outdoor measurements may be made via fixed monitors or portable sensors. Ambient air quality limits exist for airborne contaminants common to volcanic emissions such as PM\(_{10}\), PM\(_{2.5}\), and SO\(_2\), and monitoring data can be used to help alert both healthy and sensitive populations. However, air quality monitoring equipment is not installed at many volcanic locations, and installing instrumentation following eruption onset can present significant challenges (Felton et al. 2019). This can hinder agencies in making evidence-based decisions on community protection. An additional challenge to characterizing volcanic air pollution is that SO\(_2\) and PM concentrations can vary significantly over short distances and durations (Holland et al. 2020). This issue has received significant attention recently with the introduction of low-cost fixed networks and hand-held, portable sensors that augment higher accuracy but costly regulatory air quality monitoring. These low-cost PM and SO\(_2\) sensors perform reasonably well for monitoring volcanic air pollution in communities, as demonstrated during the Kīlauea 2018 eruption (Whitty et al. 2020; Crawford et al. 2021) and in Iceland (Gislason et al. 2015). Air quality forecast models can complement ambient air monitoring and now play an important role in informing the public about current and predicted levels of volcanic pollution in some locations (Barsotti 2020; Holland et al. 2020).

Assessment of health effects

Post-2000 clinical and epidemiological studies conducted on communities affected by volcanic emissions are presented in Table 2. Collectively, these studies support pre-2000 findings, from studies conducted predominantly at Mount St. Helens, Soufrière Hills, and Sakurajima, that exposures to airborne volcanic emissions can exacerbate

\(^2\) www.ivhhn.org
Volcano and eruption year	Reference	Ash characterization	Bioreactivity¹	Leaching²							
		Particle size	Surface area	Particle morphology	Crystalline silica	Acellular	In vitro	In vivo	Water leach	Gastric leach	SLF leach
Kilauea 2018	Tomašek et al. (2021a)³	x	x	x	x	x	x	x	x	x	x
	Damby et al. (2018a)³	x	x	x	x	x	x	x	x	x	x
Ambae 2018	Tomašek et al. (2021a)³	x	x	x	x	x	x	x	x	x	x
Whakaari 2016	Tomašek et al. (2021a)³	x	x	x	x	x	x	x	x	x	x
	Stewart et al. (2021)³	x	x	x	x	x	x	x	x	x	x
Copahue 2016	Paez et al. (2021)	x	x	x	x	x	x	x	x	x	x
	Bia et al. (2020)	x	x	x	x	x	x	x	x	x	x
Kelud 2014	Tomašek et al. (2021b)	x	x	x	x	x	x	x	x	x	x
	Stewart et al. (2020)³	x	x	x	x	x	x	x	x	x	x
Sinabung 2014	Stewart et al. (2014)³	x	x	x	x	x	x	x	x	x	x
Tongaririr 2012	Cronin et al. (2014)³	x	x	x	x	x	x	x	x	x	x
Grímsvötn 2011	Horwell et al. (2013)³	x	x	x	x	x	x	x	x	x	x
	Olsson et al. (2013)	x	x	x	x	x	x	x	x	x	x
Cordón Caulle 2011	Tesone et al. (2018)	x	x	x	x	x	x	x	x	x	x
	Stewart et al. (2016)³	x	x	x	x	x	x	x	x	x	x
	Daga et al. (2014)	x	x	x	x	x	x	x	x	x	x
	Wilson et al. (2013)	x	x	x	x	x	x	x	x	x	x
Eyjafjallajökull 2010	Wygel et al. (2019)	x	x	x	x	x	x	x	x	x	x
	Horwell et al. (2013)³	x	x	x	x	x	x	x	x	x	x
	Monick et al. (2015)	x	x	x	x	x	x	x	x	x	x
Merapi 2010	Damby et al. (2016)	x	x	x	x	x	x	x	x	x	x
	Damby et al. (2013)³	x	x	x	x	x	x	x	x	x	x
	Damby (2012)³	x	x	x	x	x	x	x	x	x	x
	Budianta (2011)	x	x	x	x	x	x	x	x	x	x
Chaitén 2008	Tomašek et al. (2018)	x	x	x	x	x	x	x	x	x	x
	Daga et al. (2014)	x	x	x	x	x	x	x	x	x	x
	Horwell et al. (2010a)³	x	x	x	x	x	x	x	x	x	x
	Reich et al. (2009)	x	x	x	x	x	x	x	x	x	x
Oldoinyo Lengai 2007–2008	Bosshard-Stadlin et al. (2017)³	x	x	x	x	x	x	x	x	x	x
Rabaul 2007–2008	Le Blond et al. (2010)³	x	x	x	x	x	x	x	x	x	x
Langila 2007	Le Blond et al. (2010)³	x	x	x	x	x	x	x	x	x	x
Stromboli 2007	Cangemi et al. (2017)	x	x	x	x	x	x	x	x	x	x
El Reventador 2002	Horwell et al. (2007)³	x	x	x	x	x	x	x	x	x	x
Mt Cameroon 1999	Atanga et al. (2009)	x	x	x	x	x	x	x	x	x	x
Table 1 (continued)

Volcano and eruption year	Reference	Ash characterization	Bioreactivity	Leaching						
		Particle size	Surface area	Particle morphology	Crystalline silica	In vitro	In vivo	Water leach	Gastric leach	SLF leach
Yasur and Ambrym 1999	Cronin and Sharp (2002)	x	x	x						
Etna 2001–2013	Tomašek et al. (2021b)	x	x	x						
	Barone et al. (2021)	x	x	x						
	Cangemi et al. (2017)	x	x	x						
	Horwell et al. (2017)	x	x	x						
	Horwell et al. (2007)	x	x	x						
	Horwell (2007)	x	x	x						
Tungurahua 1999–2014	Tomašek et al. (2021b)	x	x	x						
	Horwell et al. (2007)	x	x	x						
	Horwell (2007)	x	x	x						
Soufrière Hills 1997–2010	Tomašek et al. (2019)	x	x	x						
	Damby et al. (2018b)	x	x	x						
	Tomašek et al. (2018)	x	x	x						
	Tomašek et al. (2016)	x	x	x						
	Damby et al. (2016)	x	x	x						
	Horwell et al. (2014)	x	x	x						
	Jones and Bérubé (2011)	x	x	x						
	Horwell et al. (2007)	x	x	x						
	Horwell (2007)	x	x	x						
	Bérubé et al. (2004)	x	x	x						
	Horwell et al. (2003a)	x	x	x						
	Horwell et al. (2003b)	x	x	x						
	Cullen et al. (2002)	x	x	x						
Popocatépetl 1994–2008	Ammienta et al. (2011)	x	x	x						
	Ammienta et al. (2002)	x	x	x						
	Nieto-Torres and Martin-Del Pozzo (2021)	x	x	x						
Fuego 1974–2018	Tomašek et al. (2021b)	x	x	x						
	Horwell et al. (2007)	x	x	x						
Sakurajima 1471–2013	Tomašek et al. (2021b)	x	x	x						
	Hillman et al. (2013)	x	x	x						
	Horwell (2007)	x	x	x						

1 Bioreactivity: Acellular, In vitro, In vivo
2 Leaching: Water leach, Gastric leach, SLF leach
Volcano and eruption year	Reference	Ash characterization	Bioreactivity¹	Leaching²								
		Particle size	Surface area	Particle morphology	Crystalline silica	Acellular	In vitro	In vivo	Water leach	Gastric leach	SLF leach	
Ancient samples												
Icelandic volcanoes: (Askja, Hekla, Katla, Grimsvötn, Öraefajökull, Reykjanes, Snæfellsjökull, Bárðarbunga) 4.2 ka BP to 1980	Damby et al. (2017)³	x	x	x	x	x						
Italian and Greek volcanoes: Vulcano (1888–1890), Santorini (Minoan, ~172 kA), Nea Kameni (1613 BCE), Milos (~480 kA)	Cangemi et al. (2017)	x	x	x	x	x						
Vesuvius 2710 ± 60 BP to 1944	Cangemi et al. (2017)	x	x	x	x	x						
	Horwell et al. (2010b)³	x	x	x	x	x						
	Horwell (2007)³	x										

¹Bioreactivity assays are divided into acellular tests (laboratory tests of particle reactivity without cells), in vitro tests (with cellular models), and in vivo tests (with animal models)

²Ash-leachate studies are categorized by the leachant used: water, gastric (intended to mimic the chemistry of the gut), and SLF (synthetic lung fluid, which mimics the chemistry of the airways)

³Study conducted using standardized IVHHN methods
Volcano, country, year/s of activity	Reference	Exposure	Subjects/population	Outcome(s)	Study design	Evidence level
Ambrym and Yasur, Vanuatu (2005 degassing)	Allibone et al. (2012)	HF gas, F in drinking water	Children (6–18 yrs) from islands Ambrym, Malekula, Tongoa and Tanna (N = 835)	Pediatric dental health survey: high prevalence of dental fluorosis especially in children exposed proximal to degassing or in volcanic plume pathway; no difference in prevalence related to gender	Epidemiological descriptive study: cross-sectional health screening of exposed population	Low to moderate
Asama, Japan (2004 eruption)	Shimizu et al. (2007)	Ashfall	Resident adult patients with asthma (N = 236)	Asthma disease management: reports of acute asthma symptoms, lung function effects, 43% had symptom exacerbations, patients with mild-moderate disease most at risk, behavioral interventions effective (e.g. staying indoors)	Descriptive comparative study: cross-sectional health screening	Moderate to low
Etna, Italy (2002 eruption)	Lombardo et al. (2013)	Ashfall PM$_{10}$ and PM$_{2.5}$	General population of Catania (N >4,000 visits)	Emergency visits for acute cardiorespiratory diseases: significant association for exposure and upper and lower respiratory, cardiovascular diseases and eye symptoms	Epidemiological retrospective cohort study: exposed vs unexposed time frames	Moderate
Etna, Italy (2002 eruption)	Fano et al. (2010)	Ashfall (proximal) PM$_{10}$	General population of Catania	Cardiorespiratory mortality and hospital admissions: No associations of exposure with mortality; hospital admissions increased for ischemic heart diseases and cerebrovascular diseases in the elderly	Epidemiological retrospective 3-month cohort study: exposed vs unexposed time frame	Moderate
Volcano, country, year/s of activity	Reference	Exposure	Subjects/population	Outcome(s)	Study design	Evidence level
------------------------------------	-----------	----------	---------------------	--	---	----------------
Eyjafjallajökull, Iceland (2010 eruption)	Hlodversdóttir et al. (2018)	Ashfall (proximal) PM$_{10}$	Children <18 yr. in proximal areas to the volcano ($N = 1,153$; data reported from parents)	Long-term physical and mental health sequelae: increased respiratory symptoms and anxiety/worries in exposed children; boys had sleep disturbances and headaches	Epidemiological prospective 3-yr. cohort study: exposed vs. unexposed	Moderate
Eyjafjallajökull, Iceland (2010 eruption)	Hlodversdóttir et al. (2016)	Ashfall (proximal) PM$_{10}$	Adult residents in proximal areas to the volcano ($N = 1,255$)	Long-term physical and mental health sequelae: exposure was associated with increased wheeze with cold, phlegm, skin rash or eczema, back pain, insomnia and use of asthma meds. PTSD symptoms decreased	Epidemiological prospective 3-yr. cohort study: exposed vs. unexposed	Moderate
Eyjafjallajökull, Iceland (2010 eruption)	Elliot et al. (2010)	Ashfall (distal) PM$_{10}$	General population of the UK and Scotland	Population syndrome surveillance for incidence of asthma, conjunctivitis, allergic rhinitis, wheeze, lower and upper respiratory tract infection, breathing problems, and cough; no unusual increases in the monitored conditions	Epidemiological surveillance study: 3-yr. compared to eruption time frame	Moderate
Eyjafjallajökull, Iceland (2010 eruption)	Carlsen et al. (2012a)	Ashfall (proximal) PM$_{10}$	Residents proximal to volcano to Vík village ($N = 207$)	Health symptoms, mental health and lung function: reported eye irritation, upper respiratory symptoms and asthma exacerbations. Mental health symptoms in 39% of residents >34 yr. age. No lung function effect	Epidemiological descriptive study: cross-sectional health screening of exposed population	Low to moderate
Volcano, country, year/s of activity	Reference	Exposure	Subjects/population	Outcome(s)	Study design	Evidence level
------------------------------------	-----------	----------	---------------------	--	--	----------------
Eyrjafjallajökull, Iceland (2010 eruption)	Carlsen et al. (2012b)	Ashfall (proximal) PM$_{10}$	Residents of unexposed Skagafjörður and southern exposed area of the island ($N = 1,658$)	Post-eruption symptoms (6–9 months): significant associations of exposure with cough, phlegm, eye irritation, and psychological symptoms; dose-response relationship noted	Epidemiological descriptive comparative study: cross-sectional health survey of exposed vs unexposed residents	Low to moderate
Furnas Volcano, Azores, Portugal (non-eruptive degassing)	Linhares et al. (2015)	CO$_2$	Subjects from villages of exposed Furnas and unexposed Ribeira Quente ($N = 505$)	Respiratory symptoms and lung function screening: significantly higher restrictive and obstructive disease (COPD) was associated with exposure	Quasi-experimental study: exposed vs unexposed	Moderate to high
Furnas Volcano, Azores, Portugal (1991–2001; active degassing)	Amaral and Rodrigues (2007)	CO$_2$, H$_2$S, and SO$_2$	General population of Furnas and Santa Maria ($N = 57$)	Chronic bronchitis: significantly higher risk of disease associated with exposure, especially in females	Epidemiological retrospective 10-yr. community-based cohort study: exposed vs unexposed residents	Low to moderate
Grimsvötn, Iceland (2011 eruption)	Oudin et al. (2013)	Ashfall (distal)	General populations of 21 regions in Sweden	All-cause mortality: no significant differences between the regions (mortality ratio; low statistical power due to short time frame of data, inconclusive findings)	Epidemiological descriptive comparative study: exposed vs unexposed regions and time frames	Low
Guagua Pichincha, Ecuador (2000 eruption)	Naumova et al. (2007)	Ashfall (proximal) PM$_{10}$	Children from Quito area ($N = 5,169$)	Pediatric emergency visits: 2.2x and 1.7x increases for lower and upper respiratory infections 3 weeks after eruption. Disease burden: 345 extra visits in 28 days	Time series study: before, during and after eruption over 1-yr	Moderate
Holuhraun, Iceland (2014–2015 eruption)	Carlsen et al. (2021a, b)	SO$_2$ and sulfate aerosols (PM$_{2.5}$) vog	General population of Reykjavík (250 km from eruption site)	Respiratory morbidity: exposure was associated with increase in healthcare and asthma medication use. Lack of public advisories is associated with increased clinic and emergency visits	Time series study: days with varied exposure over 4 months	Moderate
Volcano, country, year/s of activity	Reference	Exposure	Subjects/population	Outcome(s)	Study design	Evidence level
-------------------------------------	-----------	----------	---------------------	------------	-------------	---------------
Holuhraun, Iceland (2014–2015 eruption)	Carlsen et al. (2019)	SO$_2$	Eruption workers: earth scientists, technicians, law enforcement personnel ($N = 32$)	Respiratory health & lung function: lung function was normal both before and after exposure; eye and nasal irritation were reported	Quasi-experimental: pre-post exposure	Moderate to high
Kilauea, USA (2012; continuous summit eruption)	Longo (2013)	SO$_2$ and sulfate aerosols PM$_{2.5}$ (vog)	Adult residents of 2 Hawai`i Island areas for 7+ yr. ($N = 220$)	Cardiorespiratory signs and self-reported symptoms: significant associations of chronic exposure and increased cough, phlegm, sore/dry throat, shortness of breath, sinus congestion, wheezing, eye and skin irritation, hypertension. Significantly elevated BP and lower oxygenation	Mixed methods: epidemiological descriptive comparative: cross-sectional health survey of exposed vs unexposed residents Descriptive qualitative; interviews	Low to moderate
Kilauea, USA (2011; summit eruption)	Camara and Lagunzad (2011)	SO$_2$ and sulfate aerosols (distal) vog	Clinic patients, residents of O`ahu ≥7 yr. ($N = 45$)	Case descriptions of eye irritation attributed to vog exposure: conjunctival injection, clear mucous discharge, papillary reaction, itching and burning, respiratory symptoms	Case series study	Low
Kilauea, USA (2008; start of summit eruption)	Longo et al. (2010)	SO$_2$ and sulfate aerosols (vog)	Clinic patients in an exposed community, Hawai`i Island ($N = 1,189$)	Medically diagnosed acute illness morbidity: significant associations with high exposure and increased clinic visits for cough, headache, acute pharyngitis, and pediatric airway problems	Epidemiological retrospective 7-month cohort study	Moderate
Kilauea, USA (2006–2008; east rift and summit eruption)	Chow et al. (2010)	SO$_2$ and sulfate aerosols (vog)	Healthy adult subjects from 4 exposure zones on Hawai`i Island ($N = 72$)	Heart rate variability: no appreciable effects of vog exposure on the autonomic nervous system of the heart	Descriptive comparative study: cross-sectional health screening	Moderate
Volcano, country, year/s of activity	Reference	Exposure	Subjects/population	Outcome(s)	Study design	Evidence level
------------------------------------	-----------	----------	---------------------	------------	-------------	----------------
Kīlauea, USA (2004; continuous east rift eruption)	Longo (2009)	SO₂ and sulfate aerosols (vog)	Adult residents in Ka‘ū district (N = 16)	Descriptions of living with vog: 35% believed volcano affected health, asthmatics had difficulty managing their disease	Descriptive qualitative study: in-depth interviews	Low
Kīlauea, USA (2004–2006; continuous east rift eruption)	Longo and Yang (2008)	SO₂ (vog)	General population from 2 Hawai‘i Island communities (N = 683 visits)	Acute bronchitis ER/clinic visits: Significant elevated risk was associated with exposure. Highest risk in children and females	Epidemiological retrospective 3-yr. community cohort study: exposed vs unexposed	Moderate
Kīlauea, USA (2004; continuous east rift eruption)	Longo et al. (2008)	SO₂ and sulfate aerosols (vog)	Adult residents of 3 Hawai‘i Island areas for 7+ yr. (N = 335)	Cardiorespiratory signs and symptoms: significant associations of chronic exposure and increased cough, phlegm, sore/dry throat, sinus congestion, wheezing, eye irritation, bronchitis, pulse rate, and blood pressure	Epidemiological descriptive comparative study: cross-sectional health survey of exposed vs unexposed residents	Low to moderate
Kīlauea, USA (2002–2005; continuous eruption)	Tam et al. (2016)	SO₂ and sulfate aerosols (vog)	Hawai‘i Island school children in 4th and 5th grades (N = 1,957)	Respiratory symptoms and lung function: chronic exposure was associated with increased cough and possible reduced FEV₁/FVC, but not with asthma or bronchitis	Epidemiological prospective open cohort study: cross-sectional health survey, 4 exposure zones	Moderate
Kīlauea, USA (2000; lava ocean entry)	Heggie et al. (2009)	HCl aerosol (laze)	Tourists (N = 2)	Mortality: acute pulmonary edema from inhalation, burns	Case study	Low
Kīlauea, USA (1997–2001; near-continuous eruption)	Michaud et al. (2004)	SO₂ and sulfate aerosols; PM₁ (vog)	General population from Hilo area on Hawai‘i Island	Emergency visits for asthma/COPD, cardiac/respiratory issues and gastroenteritis: small significant association of exposure with asthma/COPD visits	Time series study: days with varied exposure over 4.5 yr.	Low
Volcano, country, year/s of activity	Reference	Exposure	Subjects/population	Outcome(s)	Study design	Evidence level
-------------------------------------	-----------	----------	---------------------	------------	-------------	---------------
Kīlauea, USA (1992–2002; near-continuous eruption)	Heggie (2005)	Volcanic gases	Tourists to national park	Acute injury morbidity and mortality: 7 deaths from inhalation of high levels of volcanic fumes. Most fatalities had previous asthma or heart problems	Case reports study	Low
Merapi, Indonesia (2010)	Trisnawati et al. (2015)	Ashfall (proximal, 10 km)	Male non-smoking worker, 25 yr. age with 10-month exposure	Lung effects: presented with breathing difficulty and pain. Diagnosis was anthrosilicosis	Case study	Low
Miyakejima, Japan (2010 eruption; continuous degassing)	Iwasawa et al. (2015)	SO₂	School-aged children of Miyakejima village (N = 59)	Respiratory symptoms and lung function: no lung function changes; dose-response relationship for respiratory symptoms	Quasi-experimental repeated measures 6-yr. study, annual health screen	Moderate to High
Miyakejima, Japan (2005; continuous degassing)	Ishigami et al. (2008)	SO₂	Healthy workers exposed for short time periods (1–15 days) (N = 611)	Incidence of respiratory symptoms: significant associations between exposure and cough, scratchy and sore throat, and breathlessness	Epidemiological prospective 6-month cohort study (varying exposure level)	Moderate
Miyakejima, Japan (2004–2006)	Iwasawa et al. (2009)	SO₂	Adult residents of Miyakejima village (N = 823)	Respiratory symptoms and lung function: no deterioration in lung function. Significant increase in cough, phlegm and chronic bronchitis-like symptoms after 2-yr	Quasi-experimental repeated measures 2-yr. study: health screening	Moderate to high
Miyakejima, Japan (2000 eruption; continued degassing)	Shiozawa et al. (2018)	SO₂	Newly returning adult resident patients of Miyakejima central clinic (N = 269)	General self-reported symptoms: 32% of patients reported symptoms from exposure, which may include throat irritation, headache, eye pain and tearing, dry cough, insomnia, or anxiety	Epidemiological descriptive cross-sectional health survey study, 3 exposure regions encircling volcano	Low to moderate
Volcano, country, year/s of activity	Reference	Exposure	Subjects/population	Outcome(s)	Study design	Evidence level
--------------------------------------	-----------	----------	---------------------	------------	-------------	----------------
Miyakejima, Japan (2000 eruption; continued degassing)	Kochi et al. (2017)	SO$_2$	Adult residents of Miyakejima village ($N = 168$)	Respiratory symptoms and lung function: No deterioration in lung function. Reported cough, eye & throat irritation continued after 6-yr.; dose-response relationship noted	Quasi-experimental repeated measures 6-yr. study: annual health screen	Moderate to high
Miyakejima, Japan (2000 eruption)	Shojima et al. (2006)	Ashfall	Female, 57 yr. old exposed for 1-month without mask wearing	Lung effects: presented with abnormality on X-ray, asymptomatic, diagnosed with lung inflammation that resolved	Case study	Low
Nyiragongo and Nyamulagira, Democratic Republic of Congo (2000–2010; episodic eruptions)	Michellier et al. (2020)	SO$_2$	General populations of region near volcanoes	Medically diagnosed acute respiratory illness morbidity: no consistent evidence for an association between yearly incidence and eruptions. Visits for medically diagnosed illnesses were significantly increased after some eruptions, especially in proximal areas (< 26 km)	Time series: months with varied exposure over a decade	Moderate
Piton de la Fournaise, Reunion Island (2005–2007; intermittent eruptions)	Viane et al. (2009)	SO$_2$ (vog)	General population of Réunion Island	Asthma hospitalizations: no overall island population associations with exposure; significant associations of increased hospitalizations in selected island areas	Time series study: days with varied exposure over 3 yr	Low to moderate
Popocatépetl, Mexico (1994–2008 explosive eruptions)	Nieto-Torres and Martin-Del Pozzo (2021)	Ashfall	General population of 98 municipalities adjacent to the volcano and two reference municipalities	Non-infectious respiratory disease (NIRD) healthcare visits: Consistently, the annual NIRD rates increased significantly in areas exposed to ashfall when compared to NIRD rates in non-exposed areas. As ash thickness increased so did annual rates of NIRD	Epidemiological descriptive comparative study over 17 years (15 exposed and 2 non-exposed) of 625 ashfall events	Moderate
Volcano, country, year/s of activity	Reference	Exposure	Subjects/population	Outcome(s)	Study design	Evidence level
-------------------------------------	-----------	----------	---------------------	------------	-------------	----------------
Popocatépetl, Mexico (1994–1995 explosive eruptions)	Rojas-Ramos et al. (2001)	Ashfall (exposed ≥ 80hr outdoors)	Non-smoking farmers proximal to the volcano (N = 35; 10% of population)	Respiratory symptoms and lung function: cough, runny nose, eye irritation and sore throat decreased post exposure. Acute effects noted in lung function but returned to normal over time except FEV₁/FVC; short exposure was associated with reversible inflammation of the airways	Quasi-experimental: baseline during exposure and 7 months post exposure	Moderate to high
Puyehue-Cordón Caulle, Chile (2011 eruption)	Balsa et al. (2016)	Ashfall (distal) PM₁₀ (exposure above WHO Guideline)	Mother-Baby Dyads in Montevideo, Uruguay (N = 79,328)	Prenatal exposure and live births: A 10-μg/m³ increase in PM₁₀ during 3rd trimester was associated with preterm birth. No associations between exposure and birth weight	Time series: days with varied exposure over 3 yr	Moderate to high
Rotorua, New Zealand (non-eruptive degassing)	Bates et al. (2015)	H₂S	Adult residents of Rotorua for 3+ yr. (N = 1,637)	Lung function screening: no evidence of long-term H₂S exposure associated with increased risk of COPD or asthma	Quasi-experimental study: high, medium and low exposure	Low to moderate
Rotorua, New Zealand (non-eruptive degassing)	Bates et al. (2013)	H₂S	Adult residents of Rotorua for 3+ yr. (N = 1,637)	Asthma symptoms: self-reported, doctor-diagnosed asthma and asthma symptoms were not associated with exposure	Cross-sectional health survey study	Low to moderate
Rotorua, New Zealand (non-eruptive degassing)	Durand and Wilson (2006)	H₂S	General population of Rotorua area (N = 12,215 admissions)	Hospital admissions for non-infectious respiratory illness: risk of hospitalization (especially COPD) was associated with exposure	Epidemiological 10-yr. open community-based cohort: varying levels of exposure	Moderate
Ruapehu, New Zealand (1996 eruption)	Newnham et al. (2010)	Ashfall (distal) PM₁₀	General population of Hamilton and Auckland, 166–282 km from the volcano; Wellington was reference city	Respiratory mortality: highest rates of respiratory mortality in a decade occurred in the month following the ashfall but concurrent with an influenza epidemic	Time series study: years of non-exposure compared with 1-month of ashfall	Moderate
Volcano, country, year/s of activity	Reference	Exposure	Subjects/population	Outcome(s)	Study design	Evidence level
-----------------------------------	-----------	----------	---------------------	------------	-------------	----------------
Sakurajima, Japan (1994 to 2003)	Kimura et al. (2005)	Ashfall (proximal) PM$_{10}$	School children, 6 to 15 yr. in areas near the volcano ($N = 19,585$)	Ocular signs and symptoms: high exposure (within 4-km of volcano) was associated with increased redness, discharge, foreign body sensation, and itching	Epidemiological prospective open 10-yr. cohort study: cross-sectional health survey, high vs low exposure	Moderate
Sakurajima, Japan (1968–2002 eruptions)	Higuchi et al. (2012)	Ashfall	General populations of Sakurajima and Taramizu	Respiratory mortality: elevated mortality risk of pre-existing lung cancer found in higher exposed Sakurajima City	Epidemiological retrospective community cohort: exposed vs. unexposed	Moderate
Soufrière Hills, Montserrat (2010 eruption)	Cadelis et al. (2013)	Ashfall (70 km)	Adult residents of archipelago of Guadeloupe, West Indies ($N = 70$ visits)	Emergency visits for acute asthma exacerbation: exposure was associated with increased visits during and after ashfall	Time series study: Days with varied exposure over 22-days	Moderate
Soufrière Hills, Montserrat	Forbes et al. (2003)	Ashfall PM$_{10}$	Resident school children in exposed areas of island ($N = 383$)	Respiratory symptoms and lung function: significant association of mod/high exposure with wheeze and decreased peak flow rates	Quasi-experimental	Moderate to high
Yasur, Vanuatu (1999 degassing)	Cronin and Sharp (2002)	HF gas, F in drinking water	General population of Tanna island near Yasur volcano	Subjective general health descriptions: no unusual increases in acute/chronic respiratory problems, eye infections or irritations, compared to other non-exposed areas; recommendations provided to decrease exposure of residents	Descriptive clinical reports and expert opinion from public health nurses	Low
Reviews	Doocy et al. (2013)	Volcanic air pollution (all types) and eruptive activity	Studies from 1900 to 2012	Morbidity, mortality, injury, and displacement study information. Changes in land use practices and population growth add to risk	Systematic literature review study	High
Volcano, country, year/s of activity	Reference	Exposure	Subjects/population	Outcome(s)	Study design	Evidence level
-----------------------------------	-----------	----------	---------------------	---	-----------------------------------	----------------
Global volcanoes	Horwell and Baxter (2006)	Volcanic ash	Number of studies = 60	Respiratory health effects: incidence of acute respiratory symptoms varies greatly after ashfalls. Research gaps noted; more systematic approach and multi-disciplinary studies are needed	Systematic literature review study	High
Global volcanoes	Hansell and Oppenheimer (2004)	Volcanic gases	Number of studies = 29	Health effects and mortality: limited body of knowledge, exposure associated with respiratory morbidity and mortality. Research gaps noted; need for more high quality and collaborative multi-disciplinary studies	Systematic literature review study	High
Icelandic volcanoes	Gudmundsson (2011)	Volcanic ash	Inclusive of available studies	Acute and chronic respiratory effects of volcanic ash exposure	Historical literature review and expert opinion	Low

1Study inclusion criteria for this table were peer-reviewed journal studies published between 2001 and mid-2021, which directly involved human subjects as focus of the research. Exclusion criteria were non-peer reviewed journal articles, technical governmental or NGO reports, conference abstracts, studies that only involved human tissues, animal subjects, and studies that estimated risk on populations from environmental data only.

2Evidence levels were subjectively assessed by the limitations of the study’s design (case study, descriptive, epidemiological, time series or experimental); and strength of methods employed (probability-based sampling for generalizability and reducing bias, subjective vs. objective measurements of health data, and statistical methods for controlling confounding effects and testing hypotheses).

3Abbreviations: COPD chronic obstructive pulmonary disease, FEV\textsubscript{1}: forced expiratory volume in 1 s, FVC Forced vital capacity, yr. year or years.
of the silica, and external factors, which may dampen its toxicity, such as chemical (e.g., aluminum) impurities in the crystal structure or the presence of the crystalline silica within an occluding complex mineral matrix (Horwell et al. 2012; Damby et al. 2014; Nattrass et al. 2017).

Conducting high-quality studies on health effects is challenging during an eruption crisis, and the need is often secondary to emergency response. Consequently, important opportunities to study population exposures and health impacts have been missed. Furthermore, many countries with frequent volcanism do not routinely gather public health statistics, or they may have low-quality population registers and no exposure monitoring in place. These conditions make health assessment and follow-up even more challenging. It is also extremely difficult to follow a cohort of people over decades, especially if exposures of study participants are curtailed due to evacuation or permanent migration following the eruption. Obtaining funding for longitudinal studies and having the long-term support of local healthcare professionals and facilities are also great challenges.

Risk assessment and management

Increased knowledge about the hazards posed by volcanic emissions now enables risk assessments (also known as Health Impact Assessments; HIA) to be conducted prior to, or during, eruptions. To date, three such assessments have been published: Hincks et al. (2006), on crystalline silica-rich ash exposures on Montserrat; and Schmidt et al. (2011) and Heaviside et al. (2021) on SO$_2$/sulfate exposures from a future Laki-style eruption.

Mueller et al. (2020a) recently reviewed the potential for conducting HIAs in volcanic locations to predict future morbidity and mortality due to ash exposures from eruptions, given knowledge of eruption scenarios, baseline health data, and expected exposures. They concluded that, given the scarcity of published clinical/epidemiological studies and exposure data from eruptions, the application of outdoor urban air pollution risk estimates (concentration-response functions) to eruption scenarios was the best way to estimate the impact from volcanic ash exposures. Local climate, socioeconomic status, and quality of healthcare facilities also influence vulnerability and should be included in risk calculations.

Progress is being made in integrating atmospheric, volcanological, and medical information for real-time risk management. For example, detailed modeling of volcanic plume chemistry and transport from the 2014 to 2015 Holuhraun eruption informed exposure assessment (Carlsen et al. 2021a). At Kilauea, characterizing vog (SO$_2$ and aerosol concentrations) has led to improved exposure assessments.
for studies seeking to understand vog health impacts (Tam et al. 2016).

Civil protection exercises for volcanic eruptions are now starting to include volcanic emissions (Holland et al. 2020; Witham et al. 2020). Such preparedness steps will help to identify where risks from volcanism need to be balanced against other local background issues and environmental hazards.

Due to the knowledge gaps, especially those related to the health effects of chronic exposures (e.g., to crystalline silica), a precautionary approach is generally taken to the management of health risks. Many agencies around the world will advise communities to reduce their exposures to volcanic air pollution. Little data exists on the efficacy of intervention strategies (air purifiers, dehumidifiers, or air conditioners) on indoor air quality in a volcanic environment. However, recent studies have provided an evidence base for the efficacy of wearing personal respiratory protection to reduce exposure to volcanic ash (Mueller et al. 2018; Steinle et al. 2018). The finding that industry-certified N95-style masks are most effective but hard to source and afford has led to some humanitarian organizations donating or crowdfunding such masks (Horwell et al. 2020). However, many government agencies distribute less-effective stockpiled masks, raising important ethical questions about the morality and legality of providing suboptimal protection (McDonald et al. 2020; McDonald and Horwell 2021). Provision of information on intervention effectiveness that is specific to local climates and cultures can help address such concerns. For example, IVHHN has produced informational products on protection from volcanic emissions, including on how to fit facemasks 3. In Hawai‘i, the advice has been tailored to local community lifestyles and published on a dedicated “vog dashboard” 4 that is a single, freely accessible source of information, supported by multiple agencies. In multiple locations, ash, gas, and aerosol dispersion forecasts are linked to health information and advice for ongoing eruptions (Businger et al. 2015; Shiozawa et al. 2018; Barsotti et al. 2020). In Iceland, volcanic air pollution forecasts have been broadcast via radio and television and are available online (including social media) (Barsotti et al. 2020).

Emerging themes, knowledge gaps, and future directions

In general, few studies of health hazards and impacts are conducted relative to the number of eruptions that occur globally. Since 2001, the Global Volcanism Program 5 has reported 124 eruptions of VEI ≥3, while Table 2 reports 48 primary medical studies (at 23 volcanoes) assessing physical health effects of volcanic emissions. However, most of these studies were conducted in advanced-economy countries, notably the USA, Japan, and Iceland. Indonesia, with a 2021 population of ~277 million 6 and recent sustained and/or major eruptions of Merapi, Sinabung, Agung, and Semeru volcanoes, is notably under-represented, with a single clinical case study (Triswamati et al. 2015). This inequality in attention, which relates to resources, opportunity, contacts, politics, and historical legacy, has meant that the health impacts of many major and sometimes long-duration eruptions near large populations have gone completely unstudied. Additionally, with a few exceptions (e.g., Kilauea, Holuhraun, and Miyakejima) where multiple studies of the health effects of exposure to SO2 and sulfate aerosol are reported (Table 2), effects of prolonged degassing have received little attention, relative to explosive eruptions, despite the chronic exposures and likely health effects.

A major research direction must be the development of methods for accurate exposure assessment. Further improvement of meteorological and dispersion models can help calculate ground-based pollutant concentrations at higher spatial and temporal resolution. Refining input parameters, plume models, and dynamic boundary layer representation, or incorporating advanced mathematical models such as Large Eddy Simulation, may also lead to much improved modeled concentrations (Barsotti et al. 2020; Burton et al. 2020, Holland et al. 2020; Filippi et al. 2021). Limitations in the accuracy and speciation of ground-level concentrations from models or space-based instruments will require the continuation of ground-based in situ measurements. Installation of networks of low-cost gas and particulate sensors is becoming increasingly feasible with a proliferation of technology in the past decade 7. Such networks provide exciting opportunities for collaborative science with local communities. However, there are challenges for deployment during crises in terms of procurement and delivery in humanitarian situations where agencies have other priorities, and transport and other critical infrastructure networks may be disrupted. Currently, the utility of low-cost sensors is much greater when they are benchmarked against reference-grade instruments, which may not be available, even regionally. Future improvements in sensor accuracy, calibration, and reliable global satellite internet may contribute to better exposure assessment (Kizel et al. 2018; Crawford et al. 2021).

3 https://www.ivhhn.org/information#printable
4 https://www.vog.ivhhn.org

5 https://volcano.si.edu/
6 https://www.worldometers.info/world-population/indonesia-population/
7 http://www.aqmd.gov/aq-spec
We also foresee that air pollution research, in general, will move beyond a reliance on PM mass concentrations to assess impact and towards an understanding of the distinct PM chemical constituents, including metals and organic compounds, as well as towards physicochemical (e.g., surface area) or biological (e.g., oxidative potential) exposure metrics.

Interactions between volcanic eruptions and the ambient atmosphere and climate are an important future research direction with respect to health impacts. Ambient conditions influence the atmospheric dispersion and lifetime of volcanic emissions (for example, the sulfur gas-to-particle conversion rate; Gislason et al. 2015), and ash remobilization in arid, windy climates may prolong population exposure (Jarvis et al. 2020). The consequences of global climate change for volcanic emission hazards are poorly understood but likely appreciable; for example, predicted weakening of Pacific trade winds will affect dispersion of emissions in Hawai‘i and Vanuatu (Collins et al. 2010).

The greatest overall barrier to advancing our understanding of volcanic air pollution effects on human health is the scarcity of epidemiological and clinical studies. To facilitate future studies, and support risk management, especially where local syndromic surveillance is absent, standardized epidemiological protocols (Mueller et al. 2020b) and crisis response resources8 have recently been developed. Instigating such studies will be facilitated by continued co-development of standardized protocols, supporting local study teams and procuring equipment, funding, and ethical permissions. Relationship building between visiting researchers and host country academic, observatory, and agency partners is vital for preserving host countries’ intellectual property and ensuring beneficial research outcomes for impacted communities. In turn, this can support the effective communication of health impacts of volcanic air pollution to populations, health practitioners, and emergency managers.

Acknowledgements The authors sincerely thank Pierre-Yves Tourngand for graphic design of the manuscript figure. We also thank two anonymous reviewers and John Ewert of the U.S. Geological Survey for their review comments, which have improved this manuscript. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author contribution CS formulated the initial proposal. CS and DED coordinated the content. CS, DED, CH, and TE wrote parts of, and extensively revised, the manuscript. EI, IT, AS, HKC, EM, BML, PJB, and CW wrote part of the manuscript and/or assisted with the preparation of tables and figures (Table 1 IT; Table 2 BML). SC contributed to conceptual development and review. All authors read and approved the final manuscript.

Funding CS acknowledges funding from New Zealand’s Resilience to Nature’s Challenges National Science Challenge. IT acknowledges the support received from the Agence Nationale de la Recherche of the French government through the program “Investissements d’Avenir” (16-IDEX-0001 CAP 20-25). AS acknowledges funding from Natural Environment Research Council grants NE/S00436X/1 and NE/T006897/1.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alibione R, Cronin SJ, Charley DT, Neall VE, Stewart RB, Oppenheimer C (2012) Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu: a novel exposure pathway. Environ Geochem Health 34:155–170. https://doi.org/10.1007/s10653-010-9338-2
Amaral AF, Rodrigues AS (2007) Chronic exposure to volcanic environments and chronic bronchitis incidence in the Azores, Portugal. Environ Res 103:419–423. https://doi.org/10.1016/j.envres.2006.06.016
Armienta MA, De la Cruz-Reyna S, Morton O, Cruz O, Ceniceros N (2002) Chemical variations of tephra-fall deposit leachates for three eruptions from Popocatépetl volcano. Journal of Volcanology and Geothermal Research 113:61–80. https://doi.org/10.1016/S0377-0273(01)00251-7
Armienta MA, Cruz-Reyna S, Cruz O, Ceniceros N, Aguayo A, Marin M (2011) Fluoride in ash leachates: environmental implications at Popocatépetl volcano, central Mexico. Natural Hazards and Earth System Sciences 11:1949–1956. https://doi.org/10.5194/nhess-11-1949-2011
Atanga MBS, Van der Meerve AS, Shemang EM, Sub CE, Kruger W, Njome MS, Asobe NE (2009) Volcanic Ash from the 1999 Eruption of Mount Cameroon volcano: characterization and implications to health hazards. Afr J Online 8:63–70. https://www.ajol.info/index.php/jcas/article/view/87049
Balsa AI, Caffera M, Bloomfield J (2016) Exposures to particulate matter from the eruptions of the Puyehue Volcano and birth outcomes in Montevideo, Uruguay. Environ Health Perspect 124:1816–1822. https://doi.org/10.1289/EHP235
Barone G, De Giudici G, Gimeno D, Lanzafame G, Podda F, Cannas C, Giumfrida A, Barchitta M, Agodi A, Mazzoleni P (2021) Surface reactivity of Etna volcanic ash and evaluation of health risks. Science of the Total Environment 761:143248. https://doi.org/10.1016/j.scitotenv.2020.143248
Barsotti S (2020) Probabilistic hazard maps for operational use: the case of SO2 air pollution during the Holuhraun eruption (Bárðarbunga, Iceland) in 2014–2015. Bull Volcanol 82:56. https://doi.org/10.1007/s00445-020-1393-3

8 https://www.ivhvn.org/crisis-management
Barsotti S, Oddsson B, Gudmundsson MT, Pfeffer MA, Parks MM, Öffigsson BG, Sigmundsson F, Reynisson V, Jónsdóttir K, Roberts MJ, Heiðarsson EP, Jónasdóttir EB, Einarsson P, Jóhannson T, Gyflason ÁG, Vogfjörd K (2020) Operational response and hazards assessment during the 2014–2015 volcanic crisis at Báðarbunga volcano and associated eruption at Holuhraun, Iceland. J Volcanol Geotherm Res 390:106753. https://doi.org/10.1016/j.jvolgeores.2019.106753

Bates MN, Garrett N, Crane J, Balmes JR (2013) Associations of ambient hydrogen sulfide exposure with self-reported asthma and asthma symptoms. Environ Res 122:81–87. https://doi.org/10.1016/j.envres.2013.02.002

Bates MN, Crane J, Balmes JR, Garrett N (2015) Investigation of hydrogen sulfide exposure and lung function, asthma and chronic obstructive pulmonary disease in a geothermal area of New Zealand. PLoS One 10:e0122062. https://doi.org/10.1371/journal.pone.0122062

Baxter PJ, Bonadonna C, Dupree R, Hards VL, Kohn SC, Murphy MD, Nichols A, Nicholson RA, Norton G, Searl A, Sparks RS, Vickers BP (1999) Cristobalite in volcanic ash of the Soufrière Hills volcano, Montserrat, British West Indies. Science 283:1142–1145. https://doi.org/10.1126.science.283.5405.1142

Baxter PJ, Searl AS, Cowie HA, Jarvis D, Horwell CJ (2014) Evaluating the respiratory health risks of volcanic ash at the eruption of the Soufrière Hills volcano, Montserrat, 1995–2010. Geological Society of London Memoirs 39:407–425. https://doi.org/10.1144/M39.22

BéruBé KA, Jones TP, Housley DG, Richards RJ (2004) The respiratory toxicity of airborne volcanic ash from the Soufrière Hills volcano, Montserrat. Mineralogical Magazine 68:47–60. https://doi.org/10.1188/0026461046810170

Bia G, Borgnino L, Zampieri G, Garcia MG (2020) Fluorine surface speciation in South Andean volcanic ashes. Chemical Geology 532:119402. https://doi.org/10.1016/j.chemgeo.2019.119402

Booshard-Stadlin SA, Mattsson HB, Stewart C, Reusser E (2017) Leaching of lava and tephra from the Oldoinyo Lengai volcano (Tanzania): remobilization of fluorine and other potentially toxic elements into surface waters of the Gregory Rift. Journal of Volcanology and Geothermal Research 332:14–25. https://doi.org/10.1016/j.jvolg.2017.01.009

Brown SK, Jenkins SF, Sparks RSJ, Odbert H, Auker MR (2017) Volcanic fatalities database: analysis of volcanic threat with distance and victim classification. J Appl Volcanol 6:15. https://doi.org/10.1186/s13617-017-0067-4

Budianta W (2011) The potential impact of ash Merapi Volcano eruption 2010 in Yogyakarta, Indonesia, for the environment and human health. Journal of Applied Geology 3:111-115. https://doi.org/10.22146/jag.7187

Burton RR, Woodhouse MJ, Gadian AM, Mobbs SD (2020) The use of a numerical weather prediction model to simulate near-field volcanic plumes. Atmosphere 11:594. https://doi.org/10.3390/atmos11060594

Businger S, Huff R, Horton K, Sutton AJ, Elias T (2015) Observing and forecasting vog dispersion from Kilauea Volcano, Hawai`i. Bull Amer Meteor Soc 96:1667–1686. https://doi.org/10.1175/BAMS-D-14-00150.1

Cadelis G, Tourres R, Molinie J, Petit RH (2013) Exacerbations of asthma in Guadeloupe (French West Indies) and volcanic eruption in Montserrat (70 km from Guadeloupe). Rev Mal Respir 30:203–214. https://doi.org/10.1016/j.rmr.2012.11.002

Camara JG, Lagunzad JK (2011) Ocular findings in volcanic fog induced conjunctivitis. Hawai`i Med J 70:262–265

Cangemi M, Speziale S, Madonia P, D’Alessandro W, Andronic D, Bellomo S, Brusca L, Kyriakopoulos K (2017) Potentially harmful elements released by volcanic ashes: examples from the Mediterranean area. Journal of Volcanology and Geothermal Research 337:16–28. https://doi.org/10.1016/j.jvolg.2017.03.015

Carlsen HK, Gislason T, Benediktsdóttir B, Kolbeinsson TB, Haukkadóttir A, Thorsteinsson T, Briem H (2012a) A survey of early health effects of the Eyjafjallajökull 2010 eruption in Iceland: a population-based study. BMJ Open 2:e000343. https://doi.org/10.1136/bmjopen-2011-000343

Carlsen HK, Haukkadóttir A, Valdimarsdóttir UA, Gislason T, Einarsdóttir G, Runolfsson H, Briem H, Finnbjörnsdóttir RG, Gudmundsson S, Kolbeinsson TB, Thorsteinsson T, Pétursson G (2012b) Health effects following the Eyjafjallajökull volcanic eruption: a cohort study. BMJ Open 2:e001851. https://doi.org/10.1136/bmjopen-2012-001851

Carlsen HK, Aspelund T, Briem H, Gislason T, Jóhannsson T, Valdimarsdóttir U, Gudnason T (2019) Respiratory health among professionals exposed to extreme SO2 levels from a volcanic eruption. Scand J Work Environ Health 45:312–315. https://doi.org/10.5271/sjweh.3783

Carlsen HK, Ilyinskaya E, Baxter PJ, Schmidt A, Thorsteinsson T, Pfeffer MA, Barsotti S, Dominci F, Finnbjörnsdóttir RG, Jóhannsson T, Aspelund T, Gislason T, Valdimarsdóttir U, Briem H, Gudnason T (2021a) Increased respiratory morbidity associated with exposure to a mature volcanic plume from a large Icelandic fissure eruption. Nat Commun 12:2161. https://doi.org/10.1038/s41467-021-22432-5

Carlsen HK, Valdimarsdóttir U, Briem H et al (2021b) Severe volcanic SO2 exposure and respiratory morbidity in the Icelandic population—a register study. Environ Health 20:23. https://doi.org/10.1186/s12940-021-00698-y

Chow DC, Grandinetti A, Fernandez E, Sutton AJ, Elias T, Brooks B, Tam EK (2010) Is volcanic air pollution associated with decreased heart-rate variability? Heart Asia 2:36–41. https://doi.org/10.1186/1366-8101-2-21

Collins M, An SI, Cai W et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci 3:391–397. https://doi.org/10.1038/ngeo868

Connell J, Lutkehaus N (2017) Escaping Zaria’s fire? The volcano resettlement problem of Manam Island, Papua New Guinea. Asia Pacific Viewpoint 58:14. https://doi.org/10.1111/apv.12148

Crawford B, Hagan DH, Grossman I, Cole E, Holland L, Heald CL, Krol JH (2021) Mapping pollution exposure and chemistry during an extreme air quality event (the 2018 Kilauea eruption) using a low-cost sensor network. PNAS 118:27. https://doi.org/10.1073/pnas.2025540118

Cronin SJ, Sharp DS (2002) Environmental impacts on health from continuous volcanic activity in Oceania. Prehospital and Disaster Medicine 17:120–125. https://doi.org/10.1007/s13679-001-0017-x

Cronin SJ, Sharp DS (2002) Environmental impacts on health from continuous volcanic activity at Yasur (Tanna) and Ambrym, Vanuatu. International Journal of Environmental Health Research 12:109–123. https://doi.org/10.1080/09603120201292974

Cronin SJ, Stewart C, Zernack AV, Brenna M, Procter JN, Pardo N, Christenson B, Wilson T, Stewart RB, Irwin M (2014) Volcanic ash leachate compositions and assessment of health and agricultural hazards from 2012 hydrothermal eruptions, Tongariro, New Zealand. Journal of Volcanology and Geothermal Research 286:233–247. https://doi.org/10.1016/j.jvolgeores.2014.07.002

Cullen RT, Jones AD, Miller BG, Tran CL, Davis JM, Donaldson K, Wilson M, Stone V, Morgan A (2002) Toxicity of volcanic ash from Montserrat. Institute of Occupational Medicine Research Report TM/02/01 April 2002. https://citeseerx.ist.psu.edu/viewd oc?doi=10.1.1.599.9295&rep=rep1&type=pdf

Cuthbertson J, Stewart C, Lyon A, Burns P, Telopo T (2020) Health impacts of volcanic activity in Oceania. Prehospital and Disaster Medicine 35:574–578. https://doi.org/10.1017/S1049023X200003X
D’Alessandro W (2006) Human fluorosis related to volcanic activity: a review. In: WIT Transactions on Biomedicine and Health 10:21–30. https://doi.org/10.2495/ETOIX060031

Daga R, Guevara SR, Poire DG, Arribére M (2014) Characterization of tephas dispersed by the recent eruptions of volcanoes Calbuco (1961), Chaitén (2008) and Cordón Caulle Complex (1960 and 2011), in Northern Patagonia. Journal of South American Earth Sciences 49:1–4. https://doi.org/10.1016/j.jsames.2013.10.006

Damby DE (2012) From dome to disease: The respiratory toxicity of volcanic cristobalite. Dissertation, Durham University. http://etheses.dur.ac.uk/7328/

Damby DE, Horwell CJ, Baxter PJ, Delmelle P, Donaldson K, Dunster C, Cubini B, Murphy FA, Nattrass C, Sweeney S, Tetley TD (2013) The respiratory health hazard of tepha from the 2010 Centennial eruption of Merapi with implications for occupational mining of deposits. Journal of Volcanology and Geothermal Research 261:376–387. https://doi.org/10.1016/j.jvolgeores.2012.09.001

Donaldson K, Borm PJA (1998) The quartz hazard: a variable entity. In: Donaldson K, Borm PJA (eds) The quartz hazard: a variable entity. Plenum Press, New York, pp 1–20

Eychenne J, Cashman K, Rust A, Durant A (2015) Impact of the lateral blast on the spatial pattern and grain size characteristics of the 18 May 1980 Mount St. Helens fallout deposit. J Geophys Res Solid Earth 120:6018–6038. https://doi.org/10.1002/2015JB012116

Fano V, Cernigliaro A, Scondotto S, Perucci CA, Forastiere F (2010) The fear of volcano: short-term health effects after Mount Etna’s eruption in 2002. Eur Respir J 36:1216–1218. https://doi.org/10.1183/09031936.00078910

Filton D, Grange G, Damby DE, Bronstein A, Spyker D (2019) Sulfur dioxide monitoring associated with the 2018 Kilauea Lower East Rift Zone Eruption. International Union of Toxicology (IUTOX) 15th International Congress of Toxicology, Honolulu, HI, USA

Filippi J-B, Durand J, Tulet P, Bielli S (2021) Multiscale modeling of convection and pollutant transport associated with volcanic eruption and lava flow: application to the April 2007 eruption of the Piton de la Fournaise (Réunion Island). Atmosphere 12:507. https://doi.org/10.3390/atmos12040507

Forsberg L, Jarvis D, Potts J, Baxter PJ (2003) Volcanic ash and respiratory symptoms in children on the island of Montserrat, British West Indies. Occup Environ Med 60:207–211. https://doi.org/10.1136/oem.60.3.207

Freire S, Florczyk AJ, Pesaresi M, Sliuzas R (2019) An improved global analysis of population distribution in proximity to active volcanoes, 1975–2015. ISPRS International Journal of Geo-Information 8:341. https://doi.org/10.3390/ijgi8080341

Fiskalson SR, Stefnisdstottir G, Pfeffer MA, Barsotti S, Johannsson Th, Gageleka I, Bali E, Sigmarsson O, Stefnissottir A, Keller NS, Sigurdsson Å, Bergsson B, Galle B, Jacobo VC, Arellano S, Auippa A, Jonsdottir EB, Eiriksdottir ES, Jakobsson S, Guðfinnsson GH, Hildurðóttir S, Gunnarsson H, Haddadi B, Jónsdottir I, Thordarson Th, Riishuus M, Högnaðóttir Th, Dúrigr T, Pedersen GBM, Höskuldsson Å, Guðmundsson MT (2015) Environmental pressure from the 2014-15 eruption of Bárðarbunga volcano, Iceland. Geochemoical Perspectives Letters 1:84-93. https://doi.org/10.7185/geochemlet.1509

Greenberg MI, Waksman J, Curtis J (2007) Silicosis: a review. Disease-a-Month 53:394–416. https://doi.org/10.1097/dsam.2007.09.020

Gudmundsson G (2011) Respiratory health effects of volcanic ash with special reference to Iceland: a review. Clin Respir J 5:2–9. https://doi.org/10.1111/j.2040-8159.2010.00231.x

Hansell A, Oppenheimer C (2004) Health hazards from volcanic gases: a systematic literature review. Arch Environ Health 59:628–639. https://doi.org/10.1080/000434504906902497

Heaviside C, Witham C, Vardoulakis S (2021) Potential health impacts of the Icelandic volcanic ash plume across the United Kingdom, April 2020. Euro Surveil 15:19583

Higuchi K, Koriyama C, Akiba S (2012) Increased mortality of respiratory diseases, including lung cancer, in the area with large amount of ashfall from Mount Sakurajima volcano. J Environ Public Health 2012:257831. https://doi.org/10.1155/2012/257831

Hillman SE, Horwell CJ, Densmore AL, Damby DE, Cubini B, Ishimine Y, Tomatis M (2012) Sakurajima volcano: a physico-chemical study of the health consequences of long-term exposure...
distributed air pollution sensor network. Environmental Pollution 233:900–909. https://doi.org/10.1016/j.envpol.2017.09.042
Koch T, Iwasawa S, Nakano M, Tsuboi T, Tanaka S, Kitamura H, Wilson DJ, Takebayashi T, Omae K (2017) Influence of sulfur dioxide on the respiratory system of Miyakejima adult residents 6 years after returning to the island. J Occup Health 59:313–326. https://doi.org/10.1539/joh.16-0256-0A
Le Blond JS, Cressey G, Horwell CJ, Williamson BJ (2009) A rapid method for quantifying single mineral phases in heterogeneous natural dusts using X-ray diffraction. Powder Diffrr 24:17–23. https://doi.org/10.1154/1.3077941
Le Blond JS, Horwell CJ, Baxter PJ, Michnowicz SA, Tomatis M, Fuhini B, Delmelle P, Dunster C, Patia H (2010) Mineralogical analyses and in vitro screening tests for the rapid evaluation of the health hazard of volcanic ash at Rabaul volcano, Papua New Guinea. Bulletin of Volcanology 72:1077–1092. https://doi.org/10.1007/s00445-010-0382-7
Lee SH, Richards RJ (2004) Montserrat volcanic ash induces lymph node granuloma and delayed lung inflammation. Toxicology 195:155–165. https://doi.org/10.1111/j.1471-0013.2003.00940.x
Linares D, Ventura Garcia P, Viveiros F, Ferreira T, dos Santos RA (2015) Air pollution by hydrothermal volcanism and human pulmonary function. Biomed Res Int 2015:326794. https://doi.org/10.1155/2015/326794
Lombardo D, Ciancio N, Campisi R, Di Maria A, Bivona L, Mather TA, Allen AG, Oppenheimer C et al (2003) Size-resolved characterization of soluble ions in the particles in the tropospheric plume of Masaya Volcano, Nicaragua: Origins and Plume Processing. J Atmos Chem 46:207–237. https://doi.org/10.1023/A:1026327502060
McDonald F, Horwell CJ (2021) Air pollution disasters: Liability issues in negligence associated with the provision of personal protective interventions (facemasks). Disaster Medicine and Public Health Preparedness 15:367–373. https://doi.org/10.1017/dmp.2020.37
McDonald F, Horwell CJ, Wecker R, Dominelli L, Loh M, Kamanyire R, Ugarte C (2020) Facemask use for community protection from air pollution disasters: an ethical overview and framework to guide agency decision making. International Journal of Disaster Risk Reduction 43:101376. https://doi.org/10.1016/j.ijdrr.2019.101376
Michaud JP, Grove JS, Krupitsky D (2004) Emergency department visits and “vog”-related air quality in Hilo, Hawai`i. Environ Res 95:11–19. https://doi.org/10.1016/S0013-9351(03)00122-1
Michellier C, Katoio PMC, Dramaix M, Nemory B, Kervyn F (2020) Respiratory health and eruptions of the Nyiragongo and Nyamulagira volcanoes in the Democratic Republic of Congo: a time-series analysis. Environ Health 9:62. https://doi.org/10.1186/s12940-020-00615-9
Monick MM, Baltrusaitis J, Powers LS, Borcharding JA, Caraballo JC, Mudunkotuwa I, Peate DW, Walters K, Thompson JM, Grassian VH, Gudmundsson G (2013) Effects of Eyjafjallajökull volcanic ash on innate immune system responses and bacterial growth in vitro. Environmental Health Perspectives 121:691–698. https://doi.org/10.1289/ehp.1206004
Mueller W, Horwell CJ, Apsley A, Steinele S, McPherson S, Cherrie JW, Galea KS (2018) The effectiveness of respiratory protection worn by communities to protect from volcanic ash inhalation: Part I. Filtration efficiency tests. Int J Hyg Environ Health 221:967–976. https://doi.org/10.1016/j.ijheh.2018.03.012
Mueller W, Cowie H, Horwell CJ, Hurley F, Baxter P (2020a) Health impact assessment of volcanic ash inhalation: a comparison with outdoor air pollution methods. GeoHealth 4:e2020GH000256. https://doi.org/10.1029/2020GH000256
Mueller W, Cowie H, Horwell CJ, Baxter PJ, McElvenny D, Booth M, Cherrie JW, Cullinan P, Jarvis D, Ugarte C, Inoue H (2020b) Standardised epidemiological protocols for populations affected by volcanic eruptions. Bull World Health Organ 98:362–364. https://doi.org/10.2471/BLT.19.244509
Nattrass C, Horwell CJ, Damby DE, Brown D, Stone V (2017) The effect of aluminium and sodium impurities on the in vitro toxicity and pro-inflammatory potential of cristobalite. Environ Res 159:164–175. https://doi.org/10.1016/j.envres.2017.07.054
Naumova EN, Yeps H, Griffiths JK, Semperetegui F, Khurana G, Jagai S, Jâitiva E, Estrela B (2007) Emergency room visits for respiratory conditions in children increased after Guagua Pichincha volcanic eruptions in April 2000 in Quito, Ecuador: observational study: time series analysis. Environ Health 6:21. https://doi.org/10.1186/1476-069X-6-21
Newnham RM, Dirks KN, Samaranayake D (2010) An investigation into long-distance health impacts of the 1996 eruption of Mt Ruapehu, New Zealand. Atmospheric Environment 44:1568–1578. https://doi.org/10.1016/j.atmosenv.2009.12.040
Nieto-Torres A, Martin-Del Pozzo AL (2021) Ash emission from a long-lived eruption at Popocatépetl volcano and mapped respiratory effects. Bulletin of Volcanology 83:68. https://doi.org/10.1007/s00445-021-01490-z
Olsson J, Stipp SL, Dalby KN, Gislason SR (2013) Rapid release of metal salts and nutrients from the 2011 Grimsvötn, Iceland volcanic ash. Geochimica et Cosmochimica Acta 123:134–149. https://doi.org/10.1016/j.gca.2013.09.009
Oppenheimer C, Pyle DM, Barclay J (2003) Volcanic Degasging. Geological Society of London, Special Publications 213. https://doi.org/10.1144/GSL.SP.2003.213
Oudin A, Carlsen HK, Forsberg B, Johansson C (2013) Volcanic ash and daily mortality in Sweden after the Icelandic volcano eruption of May 2011. Int J Environ Res Public Health 10:6909–6919. https://doi.org/10.3390/ijerph10126909
Paez PA, Cogliati MG, Caselli AT, Monasterio AM (2021) An analysis of volcanic SO2 and ash emissions from Copahue volcano.
Journal of South American Earth Sciences 103365. https://doi.org/10.1016/j.sajse.2021.103365

Prüss-Ustün A, Vickers C, Haefliger P, Bertollini R (2011) Knowns and unknowns on burden of disease due to chemicals: a systematic review. Environ Health 10:9. https://doi.org/10.1186/1476-069X-10-9

Reich M, Zúñiga A, Amigo A, Vargas G, Morata D, Palacios C, Parada MA, Garreault RD (2009) Formation of cristobalite nanofibers during explosive volcanic eruptions. Geology 37:435–438. https://doi.org/10.1130/G25457A.1

Rojas-Ramos M, Catalan-Vazquez M, Pozzo AL, Garcia-Ojeda E, Villalba-Caloca J, Perez-Neria J (2001) A seven month prospective study of the respiratory effects of exposure to ash from Popocatepetl volcano, Mexico. Environ Geochem Health 23:383–396. https://doi.org/10.1023/A:1012244311557

Schmidt A, Ostro B, Carslaw KS, Wilson M, Thordarson T, Mann GW, Simmons AJ (2011) Excess mortality in Europe following a future Laki-style Icelandic eruption. Proceedings of the National Academy of Sciences 108:15710–15715. https://doi.org/10.1073/pnas.1105869108

Schmidt A, Leadbetter S, Theys N et al. (2015) Satellite detection, long-range transport and air quality impacts of volcanic sulfur dioxide from the 2014–15 flood lava eruption at Bárðarbunga (Iceland). J Geophys Res Atmos JD02368. https://doi.org/10.1002/2015JD023638

Shimizu Y, Dobashi K, Hisada T, Ono A, Todokoro M, Iijima H, Utsugi M, Kakegawa S, Iizuka K, Ishizuka T, Morikawa A, Mori M (2007) Acute impact of volcanic ash on asthma symptoms and treatment. Int J Immunopathol Pharmacol 20:9–14. https://doi.org/10.1177/039463220702008203

Shiozawa M, Lefor AK, Sata N, Yasuda Y, Nagai H (2018) Effects of the Miyakejima volcano eruption on public health. Int J Crit Care Nursing 238:977–987. https://doi.org/10.1016/j.invcen.2018.01.115

Stewart C, Rosenberg MD, Kilgour GN (2021) Ash leachate characteristics of the 27 April 2016 and 13 September 2016 eruptions of Whakaari / White Island volcano. Lower Hutt (NZ): GNS Science. p 15. (GNS Science report; 2020/39)

Tesone AI, Vitar RML, Tan J, Maglione GA, Llesusy S, Tasat DR, Berra A (2018) Volcanic ash from Puyehue-Cordón Caulle Volcanic Complex and Calbuco promote a differential response of pro-inflammatory and oxidative stress mediators on human conjunctival epithelial cells. Environmental Research 167:87–97. https://doi.org/10.1016/j.envres.2018.07.013

Tomasek I, Horwell CJ, Damby DE, Barošíová H, Geers C, Petri-Fink A, Rothen-Rutishauser B, Clift MJ (2016) Combined exposure of diesel exhaust particles and respirable Soufrière Hills volcanic ash causes a (pro-)inflammatory response in an in vitro multicellular epithelial tissue barrier model. Part Fibre Toxicol 13:67. https://doi.org/10.1186/s12989-016-0178-9

Tomaszek P, Horwell CJ, Bisig C, Damby DE, Comte P, Czerwinski J, Petro-Fink A, Clift MJ, Drasler B, Rothen-Rutishauser B (2018) Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface. Environ Pollut 238:977–987. https://doi.org/10.1016/j.envpol.2018.01.115

Tomaszek I, Damby DE, Horwell CJ, Ayris PM, Delmelle P, Otlley CJ, Cubillas PC, Asis AS, Bisig C, Petri-Fink A (2019) Assessment of the potential for in-plume sulphur dioxide gas-ash interactions to influence the respiratory toxicity of volcanic ash. Environ Res 179:108798. https://doi.org/10.1016/j.envres.2019.108798

Tomaszek I, Damby DE, Andronicus D, Baxter PJ, Boonen I, Claes P et al (2021) Assessing the biological reactivity of organic compounds on volcanic ash: implications for human health hazard. Bull Volcanol 83:30. https://doi.org/10.1007/s00045-021-01453-4

Tomaszek I, Damby DE, Stewart C, Horwell CJ, Plumlee G, Otlly CJ, Delmelle P, Morman S, El Yazidi S, Claes P, Kervyn M, Elskens M, Leermakers M (2021b) Development of a simulated lung fluid leaching method to assess the release of potentially toxic elements from volcanic ash. Chemosphere 278:130303. https://doi.org/10.1016/j.chemosphere.2021.130303

Trisnawati I, Budiono E, Sumardi S, Setiadi A (2015) Traumatic inhalation due to Merapi Volcanic Ash. Acta Medica Indonesiana 47:3

Viane C, Bhugwant C, Sieja B, Staudacher T, Demoly P (2009) Comparative study of the volcanic gas emissions and the hospitalization due to Merapi Volcanic Ash. Acta Medica Indonesiana 158:296–306. https://doi.org/10.24772/cjvolg.20091307

Weh E, Stewart C, Sami E, Kelsey S, Fairbairn Dunlop P, Dennison E (2021) Variability of naturally occurring fluoride in diverse community drinking water sources, Tanna Island, Vanuatu. Water, Hygiene and Sanitation for Development 11:591–599. https://doi.org/10.2166/washdev.2021.270

Whitty RCW, Iljinyska E, Mason E, Wieser P, Liu EJ, Schmidt A, Roberts T, Pfeffer MA, Brooks B, Mathur TA, Edmonds M, Elias T, Schneider DJ, Oppenheimer C, Dybwad A, Nadeau PA, Kern C (2020) Spatial and temporal variations in SO2 and PM2.5 levels around Kilauea Volcano, Hawai‘i During 2007–2018. Front Earth Sci 8. https://doi.org/10.3389/feart.2020.00036

Wilson TM, Cole JW, Stewart C, Cronin SJ, Johnston DM (2011) Ash storms: impacts of wind-re-mobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bulletin of Volcanology 73:223–239. https://doi.org/10.1007/s00445-010-0396-1

Wilson T, Stewart C, Bickerton H, Baxter P, Outes AV, Villarosa G, Rovere E (2013) Impacts of the June 2011 Puyehue-Cordón Caulle volcanic complex eruption on urban infrastructure, agriculture and public health. GNS Science Report 2012/20, p 88. https://www.gns.cri.nz/publications/2012/SR%202012%20%20Print%20Copy.pdf

Witham C, Barsotti S, Dumont S, Oddson B, Sigmundsson F (2020) Practising an explosive eruption in Iceland: outcomes from a
European exercise. J Appl Volcanol 9:1. https://doi.org/10.1186/s13617-019-0091-7

World Health Organization (2013) Regional Office for Europe. Review of evidence on health aspects of air pollution: REVHAAP Project Technical Report, p 302

Wygel CM, Peters SC, McDermott JM, Sahagian DL (2019) Bubbles and dust: experimental results of dissolution rates of metal salts and glasses from volcanic ash deposits in terms of surface area, chemistry, and human health impacts. GeoHealth 3:338–355. https://doi.org/10.1029/2018GH000181

Authors and Affiliations

Carol Stewart1 · David E. Damby2 · Claire J. Horwell3 · Tamar Elias4 · Evgenia Ilyinskaya5 · Ines Tomašek6,7 · Bernadette M. Longo8 · Anja Schmidt9,10 · Hanne Krage Carlsen11,12 · Emily Mason13 · Peter J. Baxter14 · Shane Cronin15 · Claire Witham16

David E. Damby
ddamby@usgs.gov
Claire J. Horwell
claire.horwell@durham.ac.uk
Tamar Elias	
telias@usgs.gov
Evgenia Ilyinskaya
e.ilyinskaya@leeds.ac.uk
Ines Tomašek
ines.tomasek@uca.fr
Bernadette M. Longo
longo@unr.edu
Anja Schmidt
as2737@cam.ac.uk
Hanne Krage Carlsen
hanne.krage.carlsen@amm.gu.se
Emily Mason
e.m572@cam.ac.uk
Peter J. Baxter
pj21@medschl.cam.ac.uk
Shane Cronin
s.cronin@auckland.ac.nz
Claire Witham
claire.witham@metoffice.gov.uk

1 School of Health Sciences, Massey University, PO Box 756, Wellington 6021, New Zealand
2 U.S. Geological Survey, Volcano Science Center, Menlo Park, CA, USA
3 Institute of Hazard, Risk & Resilience, Department of Earth Sciences, Lower Mountjoy, Durham University, Durham DH1 3LE, UK
4 U.S. Geological Survey, Hawaiian Volcano Observatory, Hilo, HI, USA
5 School of Earth and Environment, University of Leeds, Leeds, UK
6 Laboratoire Magmas et Volcans (LMV), CNRS, IRD, OPGC, Université Clermont Auvergne, Clermont-Ferrand, France
7 Institute of Genetic Reproduction and Development (iGReD), Translational Approach to Epithelial Injury and Repair Team, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
8 Orvis School of Nursing, University of Nevada, Reno, NV, USA
9 Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge, UK
10 Department of Geography, University of Cambridge, Cambridge, UK
11 Department Environment and Natural Resources, University of Iceland, Reykjavík, Iceland
12 Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
13 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, Cambridgeshire CB2 3EQ, UK
14 Department of Public Health and Primary Care, University of Cambridge, Downing Street, Cambridge, Cambridgeshire CB2 3EQ, UK
15 School of Environment, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
16 Met Office, FitzRoy Road, Exeter EX1 3PB, UK