Improved Skin Wound Healing Activity of Insulin Cream as Evidenced from the Morphological Evaluation in Guinea Pigs

By: Mohamed, NAH (Mohamed, Nur-Aliana H.); Mokhtar, RI (Mokhtar, Rafidah H.); Al-ANI, IM (Al-ANI, Imad M.); Ayob, A (Ayob, Aziz); Misran, M (Misran, Misri)

MAKARA JOURNAL OF HEALTH RESEARCH
Volume: 22 Issue: 2 Pages: 88-94
DOI: 10.7454/maks.v22i2.3714
Published: AUG 2018
Document Type: Article

Abstract
Background: There is no histological study evaluating the effects of insulin-containing cream on skin injury. The goal of this study was to examine the effects of insulin-containing creams on wound healing. Methods: Creams consisting of nine parts of oil and one part of aqueous phase (9:1) mixed with 1.5 ml human insulin were prepared. Eighteen male guinea pigs were divided into three groups; the control (9.1 G) group received cream without insulin. The experimental groups received Humulin N (9.1 N) and Humulin R (9.1 R) respectively. A 1 cm² wound of 1-2 cm thickness was created in the skin. Each animal received 0.5 g of the respective creams which was topically applied once a day for 14 days. The progress of wound healing was monitored daily. Skin tissues were excised at the 14th days from the wound sites and processed for light microscopy. Results: Skin wound treated with the long acting insulin Humulin N had an accelerated wound healing process with restoration of vascular network, increased collagen deposition and early complete wound remodeling. Conclusions: Insulin cream with long acting mechanism facilitates in normalizing cell permeability, promoting vasculization, reducing eduation and stimulate proliferation of cells. These properties render insulin cream suitable for expediting wound healing.

Keywords:
Author Keywords: inflammation; insulin cream; Guinea pigs; skin; wound healing
Keyword Plus: MONOCYTES; REPAIR

Author Information
Reprint Address: Al-ANI, IM (reprint author)

Addresses:
[1] Univ Teknol MARA, Ctr Clin Sci, Fac Dent, Selangor 40450, Malaysia
[2] Univ Sains Islam Malaysia, Fac Med & Hilth Sci, Kuala Lumpur 55100, Malaysia
[3] Int Islamic Univ Malaysia, Dept Basic Med Sci, Kuala Lumpur 25200, Pahang, Malaysia
[4] Int Med Univ, Sch Med, Kuala Lumpur 57000, Malaysia
[5] Univ Malaysia, Dept Chem, Fac Sci, Kuala Lumpur 50603, Malaysia

E-mail Addresses: imad_alani@yahoo.com

Funding

Funding Agency	Grant Number
RMC, International Islamic University Malaysia	
Research Endowment Fund	IIUM/504/RES/G/14/3/01/LT43
RIGS Project	RIGS16-2.98-0462

Publisher
UNIV INDONESIA, DIRECTORATE RESEARCH & PUBLIC SERV, UI CAMPUS, KAMUSUN INDONESIA, DEPOK, 16424, INDONESIA
1. Pathological axes of wound repair: Gastrulation revisited
 By: Alier, Maria-Angéles; Arias, Jose-Ignacio; Arias, Jaime
 THEORETICAL BIOLOGY AND MEDICAL MODELLING Volume: 7 Article Number: 37 Published: SEP 14 2010
 Times Cited: 19

2. Reactive Oxygen Species and NOX Enzymes Are Emerging as Key Players in Cutaneous Wound Repair
 By: Andre-Levigne, Dominik; Madorressi, Ali; Pepper, Michael S.; et al.
 INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES Volume: 18 Issue: 10 Article Number: 2149 Published: OCT 2017
 Times Cited: 8

3. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis
 By: Awojobi, Anthony O.; Ogle, Molly E.; Selick, Lauren S.; et al.
 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Volume: 110 Issue: 34 Pages: 13785-13790 Published: AUG 20 2013
 Times Cited: 56

4. Strategies for meloxicam delivery to and across the skin: a review
 By: Chen, Jianmin; Gao, Yunhua
 DRUG DELIVERY Volume: 23 Issue: 8 Pages: 3146-3156 Published: OCT 2016
 Times Cited: 9

5. Fibroblasts and myofibroblasts in wound healing
 By: Darby, Ian A.; Laverdet, Betty; Bente, Frederic; et al.
 CLINICAL COSMETIC AND INVESTIGATIONAL DERMATOLOGY Volume: 7 Pages: 301-311 Published: 2014
 Times Cited: 170

6. Wound healing - A literature review
 By: de Oliveira Gonzalez, Ana Cristina; Costa, Tila Fortuna; Andrade, Zilton de Araujo; et al.
 ANAIS BRASILEIROS DE DERMATOLOGIA Volume: 91 Issue: 5 Pages: 614-620 Published: SEP-OCT 2016
 Times Cited: 33

7. Corneal Nerve Fiber Structure, Its Role in Corneal Function, and Its Changes in Corneal Diseases
 By: Eguchi, Hiroshi; Hiura, Akio; Nakagawa, Hiroshi; et al.
 BIOMED RESEARCH INTERNATIONAL Article Number: 3242649 Published: 2017
 Times Cited: 1

8. Bilateral Comparison Study of Pimecrolimus Cream 1% and a Ceramide-Hyaluronic Acid Emollient Foam in the Treatment of Patients With Atopic Dermatitis
 By: Frankel, Amylyrne; Sohn, Andrew; Patel, Rita V.; et al.
 JOURNAL OF DRUGS IN DERMATOLOGY Volume: 10 Issue: 6 Special Issue: SI Pages: 666-672 Published: JUN 2011
 Times Cited: 19

9. Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries
 By: Gomes, Ana; Teixeira, Callia; Ferraz, Ricardo; et al.
 MOLECULES Volume: 22 Issue: 10 Article Number: 1743 Published: OCT 2017
 Times Cited: 7

10. CELL BIOLOGY OF ISCHEMIA/REPERFUSION INJURY
 By: Kalogeris, Theodore; Baines, Christopher P.; Krenz, Maite; et al.
 INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY, VOL 298 Book Series: International Review of Cell and Molecular Biology Volume: 298 Pages: 229-317 Published: 2012
 Times Cited: 418

11. Advances of Stem Cell Therapeutics in Cutaneous Wound Healing and Regeneration
 By: Kanji, Suman; Das, Hiranmoy
 MEDIATORS OF INFLAMMATION Article Number: 5217967 Published: 2017
 Times Cited: 12
12. **Cell and molecular mechanisms of keratinocyte function stimulated by insulin during wound healing**
By: Liu, Yan; Petreauc, Melissa; Yao, Min; et al.
BMC CELL BIOLOGY Volume: 10 Article Number: 1 Published: JAN 12 2009
Times Cited: 60

13. **Concise Review: Role of Mesenchymal Stem Cells in Wound Repair**
By: Maxson, Scott; Lopez, Erasmo A.; Yoo, Dana; et al.
STEM CELLS TRANSLATIONAL MEDICINE Volume: 1 Issue: 2 Pages: 142-149 Published: FEB 2012
Times Cited: 301

14. **Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration**
By: Mescher, Anthony L.
REGENERATION Volume: 4 Issue: 2 Pages: 39-53 Published: APR 2017
Times Cited: 14

15. **Title: [not available]**
By: Mohamed, NAH.
Novel insulin cream preparation in managing wound healing
Published: 2009
Thesis
Publisher: International Islamic University Malaysia, Kuantan
Times Cited: 2

16. **Macrophages and macrophages in tissue repair: Implications for immunoregenerative biomaterial design**
By: Ogle, Molly E.; Segar, Claire E.; Sridhar, Sridhar; et al.
EXPERIMENTAL BIOLOGY AND MEDICINE Volume: 241 Issue: 10 Pages: 1084-1097 Published: MAY 2016
Times Cited: 55

17. **The Role of the Extracellular Matrix Components in Cutaneous Wound Healing**
By: Olczyk, Pawel; Mencner, Francesc; Kandoth, Kandhare; et al.
BIOMED RESEARCH INTERNATIONAL Article Number: 747584 Published: 2014
Times Cited: 54

18. **Pharmacological evaluation of ethanolic extract of Daucus carota Linn root formulated cream on wound healing using excision and incision wound model**
By: Patil, Mithun Vishwanath K.; Kandhare, Amrit K.; Bhise, Sucheta D.
Asian Pacific Journal of Tropical Biomedicine Volume: 2 Issue: Suppl 2 Pages: S646-S655 Published: SEP 2012
Times Cited: 20

19. **Novel roles for insulin receptor (IR) in adipocytes and skeletal muscle cells via new and unexpected substrates**
By: Ramalingam, Latha; Oh, Eun-jin; Thurmond, Debbie C.
CELLULAR AND MOLECULAR LIFE SCIENCES Volume: 70 Issue: 16 Pages: 2815-2834 Published: AUG 2013
Times Cited: 13

20. **Insulin-like growth factor 1 receptor signaling regulates skin development and inhibits skin keratinocyte differentiation**
By: Sadagursky, M.; Yakar, S.; Weingarten, G.; et al.
MOLECULAR AND CELLULAR BIOLOGY Volume: 26 Issue: 7 Pages: 2675-2687 Published: APR 2006
Times Cited: 69

21. **An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration**
By: Selders, Gretchen S.; Fetz, Allison E.; Radic, Marko Z.; et al.
REGENERATIVE BIOMATERIALS Volume: 4 Issue: 1 Pages: 55-68 Published: FEB 2017
Times Cited: 30

22. **From inflammation to current and alternative therapies involved in wound healing**
By: Serra, MB; Barroso, WA; Neves daSilva, N.; et al.
Int J Inflamm. Volume: 2017 Article Number: 3406215 Published: 2017
[Show additional data]
Times Cited: 6

23. **WOUND CONTRACTION - A QUANTITATIVE INTERPRETATION**
By: SNOWDEN, JM
AUSTRALIAN JOURNAL OF EXPERIMENTAL BIOLOGY AND MEDICAL SCIENCE Volume: 59 Issue: APR Pages: 203-217 Published: 1981
Times Cited: 20

24. **Physiology of wound healing**
By: Strodtbeck, F.
Newborn and Infant Nurs Rev. Volume: 1 Pages: 43-52 Published: 2011
Times Cited: 1

25. **Insulin-like growth factor-I in wound healing of rat skin**
By: Todorovic, Vera; Pesko, Predrag; Micev, Marjan; et al.
REGULATORY PEPTIDES Volume: 150 Issue: 1-3 Pages: 7-13 Published: OCT 9 2008
Times Cited: 21
Anabolic action of insulin on skin wound protein is augmented by exogenous amino acids

By: Zhang, XJ; Chinkes, DL; Irtun, O; et al.

AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM Volume: 282 Issue: 6 Pages: E1308-E1315 Published: JUN 2002

Times Cited: 33

Showing 26 of 26

View All in Cited References page