On the Existence of Subharmonic Screech in Choked Circular Jets from a Sharp-Edged Orifice

Max Kandula
ESC-Team QNA, NASA Kennedy Space Center, USA
Email: max.kandula-1@nasa.gov

Abstract

Experiments are performed in choked circular hot and cold nitrogen jets issuing from a 2.44 cm diameter sharp-edged orifice at a fully expanded jet Mach number of 1.85 in an effort to investigate the character of screech phenomenon. The stagnation temperature of the cold and the hot jets are 299 K and 319 K respectively. The axial distribution of the centerline Mach number was obtained with a pitot tube, while the screech data (frequency and amplitude) at different radial and axial stations were obtained with the aid of microphones. The results reveal the existence of fundamental and subharmonic screech. For the fundamental, increased screech amplitude and frequency are noticed for the hot jet relative to the cold jet. For the subharmonic, reduced screech amplitude and an increased screech frequency are observed for the hot jet relative to the cold jet. It is concluded that temperature effects on the screech amplitude and frequency are manifested with regard to the fundamental and the subharmonic even at relatively small temperature range considered.

Keywords: Subharmonic Screech, Sharp-Edged Orifice, Circular Jets, Thermal Effects

1. Introduction

Supersonic jet screech represents an important consideration as the intensity (as high as 170 to 180 dB) in the nearfield with a significant upstream directivity can induce fatigue and cause structural damage to aircraft and launch vehicles [1-3]. The fundamental physics of screech was uncovered by Powell [4-5], who identified the mechanism of supersonic jet screech in terms of a resonant feedback loop. Several others followed it up with more details. For a detailed review of jet screech, see Raman [6].

It is generally believed that the screech tones are generated by the interaction between instability waves (vortices) developed from the nozzle lip area and the shock-cell structures [2]. It was recently shown that [7] that screech noise amplification is manifested by the interaction of shock-cell structures with acoustics waves. The existing data on the screech noise, which are primarily limited to convergent-divergent and choked nozzles, suggest that uncertainties persist concerning the nature of the temperature effects on the fundamental and higher harmonics [8].

To the author's knowledge, screech data from choked jets issuing from a sharp-edged orifice are relatively scarce. Such important practical applications typically arise in purge systems, where the screech from the purged jet can induce fatigue on neighboring electro-mechanical components. Some of the experimental works reported on the tonal noise from orifices are those of Anderson [9], Chanaud and Powell [10] and Succi [11]. In a somewhat related work, Ingard and Singhal [12] investigated the resonance of an open-ended duct. The majority of studies were concerned with screech frequency, and screech amplitude appears to be considered only by Succi [11], but this is only for a parallel orifice plate configuration.

The objective of the present work is to report measurements of screech frequency and amplitude for a cold and a hot jet issuing from a sharp-edge orifice at the same fully expanded jet Mach number. This work is based on the author's recent presentation [13], where preliminary interpretations of screech data for nitrogen jets from a sharp-edged orifice are recorded.

2. Experimental Setup

A schematic of the configuration is presented in Figure 1. Nitrogen flows from a long aluminium tube of 3.81 cm diameter through a sharp-edged orifice of 2.44 cm diameter. Table 1 identifies the flow parameters of the system.
The total pressure p_t is 0.65 MPa. The total temperature T_r for the hot jet and the cold jet are 319.4 K and 299 K respectively. The jet static pressure ratio (jet exit pressure to ambient pressure) is 3.18, and the ambient temperature T_a is 299 K. The fully expanded jet Mach number is 1.85. The jet exit Mach number M_d is 1.05. The jet Reynolds number (based on jet diameter) is about 2.5x10^6. Static pressure and total pressure are measured by pitot tubes, and the acoustic pressure is measured by B&K Model 4189 microphones with a frequency range of 6.3 to 20 kHz. Both axial and radial traversing in the jet is carried out. The three microphone locations are denoted by L1, L2, and L3. The local Mach number can be calculated using Rayleigh’s pitot tube formula [14].

3. Results

3.1. Jet Flowfield

Figure 2 displays the variation of the measured jet centre-line Mach number for the hot jet. The center-line Mach number displays the characteristic oscillations of the underexpanded jet on account of the presence of the shock cell structures. Mach number oscillations seem to be absent beyond about 10 jet diameters. The maximum center-line Mach number is about 1.78 occurring near the first shock cell. The magnitude of the measured Mach number is close to the theoretically fully expanded jet Mach number of 1.85, as is to be expected.

It is evident from the Mach number oscillations that the shock cell spacing is nearly uniform. From the data of Harper-Bourne and Fisher [15], the shock-cell spacing s may be taken as roughly uniform and given by

$$s/d \approx 1.25\beta$$

where d is the orifice diameter, the pressure ratio parameter β is defined by

$$\beta = \sqrt{M_f^2 - 1}$$

where M_f refers to the fully expanded jet Mach number.

Eq. (1) thus suggests a value of $s/d = 1.95$ or $s = 4.73$ cm. The measured shock-cell spacing is in close agreement with the data of Harper-Bourne and Fisher [15]. It is generally known that the strongest interaction usually occurs at the third through the fifth shock cell [7], the highest pressure amplification occurring at the first shock cell.

The pressure data and infrared photographs suggest a jet spread of about 7 deg. The jet shear layer growth is small compared with the incompressible case (12 degrees nominal) is primarily due to the effects of compressibility (Mach number effect) [16-18]. It is known that the shear layer growth rate decreases with Mach number and increases with jet temperature. Preliminary calculations show that at a fully expanded jet Mach number (1.85 in the present case) the jet growth rate is about 60% of that for the incompressible case.

3.2. Narrowband Acoustic Spectra

Figure 3 illustrates the narrow band spectral sound pressure level for the hot and the cold jet at an axial station of 48.3 cm from the jet exit, and at two radial locations (17.8 cm and 45.7 cm). These locations correspond to microphones L1 and L2 respectively. Figure 4 indicates the narrow band spectral sound pressure level for the hot and the cold jet at an axial station of 78.7 cm from the jet exit, and at a radial location of 40.6 cm (microphone L3). These data for the free jets reveal the presence of screech, and include the overall sound pressure level (OASPL).

As noticed from Figure 3, the OASPL is found to be 133 dB and 126 dB respectively for stations L1 and L2 respectively. The narrow band spectra for the cold and the hot jets at both these locations are close to each other, thus leading to OASPL that is nearly the same for both the cold and the hot jets.

Referring to Figure 4, the OASPL at station L3 is found to be 136 dB and 133 dB for the hot jet and the cold jet respectively. This deviation in OASPL is evident from the difference in the narrowband spectrum for the cold and the hot jet, particularly at low and high frequencies.
The narrowband spectra for the cold and the hot jets reveal the existence of a fundamental screech as well as a strong subharmonic screech.

Table 2 presents a summary of the measured screech frequencies and amplitudes of the subharmonic and the fundamental tones for both the cold and the hot jets at the three microphone locations. The subscript \(s \) refers to subharmonic. The measurements suggest that the fundamental screech amplitude and frequency for the hot jet are slightly increased relative to the cold jet. With regard to the subharmonic, the hot jet is generally characterized by decreased screech amplitude and an increased frequency compared with the cold jet.

3.3. Screech Frequency

Predictions are made for the fundamental screech frequency based on the following well-known correlation proposed by Tam et al. for convergent and convergent-divergent nozzles [19]:

\[
St = \frac{f d_j}{u_j} = 0.67 \frac{1}{\sqrt{M_j^2 - 1}} \left[1 + 0.7M_j \left(\frac{1 + \frac{\gamma - 1}{2} M_j^2}{\gamma M_j} \right)^{-1/2} \frac{T_r}{T_a} \right]^{-1}
\]

(2a)

In the preceding equation, \(St \) is the Strouhal number, \(u_j \) is the fully expanded jet velocity, \(M_j \) is the fully expanded jet Mach number (1.85 in our present case), \(M_d \) is the design (exit) Mach number (1.05 in our present case), \(T_r \) the reservoir temperature, \(T_a \) the ambient temperature, \(\gamma \) the isentropic exponent, and \(d_j \) the effective jet diameter (or the fully expanded jet diameter). The effective (fully expanded) jet diameter is evaluated from the relation [19]:

\[
\frac{d_j}{d} = \left[\frac{1 + \frac{\gamma - 1}{2} M_j^2}{1 + \frac{\gamma - 1}{2} M_d^2} \right]^{\frac{\gamma + 1}{\gamma - 1}} \left(\frac{M_d}{M_j} \right)^{1/2}
\]

(2b)

where \(d \) is the jet exit diameter. The preceding expression for the screech frequency is in excellent agreement with experimental data for convergent and convergent-divergent nozzles over a wide range of fully expanded jet Mach numbers. Eq. (2) suggests that the screech frequency is not strongly dependent on the jet temperature.

The predicted screech frequency of the fundamental from the foregoing correlation is found to be 3.62 kHz for the cold jet \((T_r / T_a = 1) \), which is compared with the measured value of 3.5 kHz (Table 2). The corresponding predicted fundamental screech frequency for the hot jet \((T_r / T_a = 1.067) \) is found to be 3.69 kHz, which compares with the measured value of 3.77 kHz. The measured and predicted fundamental screech frequencies for the hot jet are seen to slightly exceed that for the cold jet.

The results suggest the existence of subharmonic screech in both the cold and the hot jets with a frequency of about 1.6 kHz. Such subharmonic screech tones have been well-known in jets discharging from axisymmetric nozzles both from numerical and experimental work [20-22]. Subharmonics were also recently predicted by the Tolstykh and Shirobokov [23], who considered 2-D jet screech with the aid of a highly accurate multi-operators-based compact differencing scheme.

The fundamental mechanism for the generation of subharmonic screech in convergent-divergent is generally believed to be due to the formation of vortex pairing at the nozzle exit [22-24]. It is plausible that similar mechanism may be responsible for the subharmonic screech for the jet issuing from a sharp-edged orifice.

3.4. Screech Amplitude

The measured amplitudes suggest the existence of relatively strong subharmonics. The subharmonic screech amplitude is of comparable magnitude in relation to the fundamental, and thus it is important to characterize the subharmonic and take it into account concerning the system design. To the author’s knowledge, screech data for the subharmonic amplitude and its directivity is presently lacking in the literature insofar as jets issuing from sharp-
edged orifices are concerned. The subharmonics also appear to possess upstream directivity, see Loh and Hultgren [22].

It should be pointed out that a more comprehensive experimental investigation covering a wider range of jet temperature, Mach numbers and jet angles (directionality effect) is outside the scope of the present investigation.

4. Conclusions
The present experiments on choked circular jets emanating from a sharp-edged orifice reveal the existence of subharmonic tones along with the fundamental for both the cold and the hot jets, with no higher harmonics present. With regard to the screech amplitudes, the fundamental screech amplitude for the hot jet is generally somewhat larger relative to the cold jet, while the subharmonic amplitude for the hot jet is lower compared with the cold jet. The subharmonic screech amplitude is generally of comparable magnitude with respect to the fundamental for both the cold and the hot jets. The existing formulation proposed for convergent or convergent/divergent nozzles concerning screech frequency appears to be reasonably applicable to the conditions of screech from jets issuing from sharp-edged orifices.

5. Acknowledgements
The author thanks Geoffrey Rowe of ESC-Team Q with regard to data acquisition. Thanks are also due to Stanley Starr (Chief, Applied Physics Branch) of NASA Kennedy Space Center for review and helpful suggestions.
REFERENCES

[1] M. Kandula, “Broadband Shock Noise Reduction in Turbulent jets by waterinjection.” *Applied Acoustics*, Vol. 70, 2009, pp. 1009-1014.

[2] M. Kandula, “On the Scaling Laws and Similarity Spectra for Jet Noise in Subsonic and Supersonic Flow,” *International Journal of Acoustics and Vibration*, Vol. 16, 2008, pp. 3-16.

[3] M. Kandula, “Nearfield Acoustics of Clustered Rocket engines,” *Journal of Sound and Vibration*, Vol. 309, 2008, pp. 852-857.

[4] A. Powell, “On the Mechanism of Choked Jet Noise,” *Proceedings of the Physical Society of London B*, Vol. 66, 1953, pp. 1039-1056.

[5] A. Powell, “The Noise of Choked Jets,” *Journal of the Acoustical Society of America*, Vol. 25, 1953, pp. 385-389.

[6] G. Raman, “Supersonic Jet Screech: Half-Century from Powell to the Present,” *Journal of Sound and Vibration*, Vol. 225, 1999, pp. 543-571.

[7] M. Kandula, “Shock-Refracted Acoustic-Wave Model for Screech Amplitude in Supersonic Jets,” *AIAA Journal*, Vol. 40, 2008, pp. 682-689.

[8] A. Krothapalli, P.T. Soderman, C.S. Allen, J.A. Hayes and S.M. Jaeger, “Flight Effects on the Far-Field Noise of a Heated Supersonic Jet,” *AIAA Journal*, Vol. 35, 2007, pp. 952-957.

[9] A.B.C. Anderson, “A Jet-Tone Orifice Number for Orifices of Small Thickness-Diameter Ratio,” *Journal of the Acoustical Society of America*, Vol. 25, 1954, pp. 21-25.

[10] R.C. Chanaud and A. Powell, “Some Experiments Concerning the Hole and Ring Tones,” *Journal of the Acoustical Society of America*, Vol. 37, 1965, pp. 902-911.

[11] G.P. Succi, “Flow-Generated Noise in Circular Cavities or How teapots Whistle,” *Noise Control Engineering Journal*, Vol. 26, 1986, pp. 8-16.

[12] K.U. Ingard and V.K. Singhal, “Effect of Flow on the Acoustic Resonance of an Open-Ended Duct,” *Journal of the Acoustical Society of America*, Vol. 58, 1975, pp. 778-79.

[13] M. Kandula, “Measurements of thermal effects on acoustic screech in a choked circular jet emanating from a sharp-edged orifice,” *Proceedings of the 23rd International Congress on Theoretical and Applied Mechanics*, Beijing, China, August 19-24, 2012.

[14] A. Shapiro, “The Dynamics and Thermodynamics of Compressible Fluid Flow,” Vol. 1, McGraw-Hill, New York, 1953.

[15] M. Harper-Bourne and M.J., Fisher, “The Noise from Shock Waves in Supersonic Jets,” *Proceedings of the AGARD Conference on Noise Mechanisms*, AGARD CP-131, 11-1 to 11-13, 1973.

[16] S.G. Gloebe1 and J.C. Dutton, “Experimental Study of Compressible Turbulent Mixing Layers,” *AIAA Journal*, Vol. 29, 1991, pp. 453-477.

[17] H. Schlichting, “Boundary Layer Theory”, 7th Edition, McGraw-Hill, New York, 1979.

[18] M. Kandula and D.C. Wilcox, “An Examination of $k - \omega$ Turbulence Model for Boundary Layers, Free Shear Layers and Separated Flows.” AIAA Paper 1995-2317, 1995.

[19] C.K.W. Tam, J. Seiner and J.C. Wu, “Proposed Relationship between Shock and Screech Tones,” *Journal of Sound and Vibration*, Vol. 81, 1986, pp. 337-358.

[20] S.H. Walker and F.O. Thomas, “Experiments Characterizing Nonlinear Shear Layer Dynamics in a Supersonic Rectangular Jet,” *Physics of Fluids*, Vol. 9, 1997, p. 256.

[21] J. Berland J, C. Bogey and C. Bailly, “Numerical Study of Screech Generation in a Planar Supersonic Jet,” *Physics of Fluids*, Vol. 19, 2007, pp. 105-114.

[22] C.Y. Loh and L.S. Hultgren, “Jet Screech Noise Computation,” *AIAA Journal*, Vol. 44, 2006, pp. 992-998.
[23] A.I. Tolstykh and D.A. Shirobokov, “Fast Calculations of Screech Using Highly Accurate Multiprocessor-Based Schemes,” *Applied Acoustics*, Vol. 74, 2013, pp. 102-109.

[24] M. Samimy, J.-H. Kim, M. Kearney-Fischer and A. Sinha, “Acoustic and Flow Fields of an Excited High Reynolds Number Axisymmetric Supersonic Jet,” *Journal of Fluid Mechanics*, Vol. 656, 2010, pp. 507-529 (2010).

Table 1. Test conditions.

Parameter	Value
Orifice exit diameter, d (cm)	2.44
Total pressure, p_r (MPa)	0.65
Total temperature, T_r (cold jet/hot jet; K)	299/319
Jet static pressure ratio	3.18
Jet exit Mach number, M_d	1.05
Fully expanded jet Mach number, M_j	1.85
Jet Reynolds number, Re_j	2.5x10^6

Table 2. Summary of the screech frequencies and excess screech amplitudes.

Station	Cold jet (subharmonic)	Cold jet (fundamental)	Hot jet (subharmonic)	Hot jet (fundamental)
	f_s (kHz)	SPL (dB)	f_s	SPL
			f_s	
L1	1.525	9.5	3.500	8
			1.640	8
				3.770
				9
L2	1.525	5	3.500	8.5
			1.640	4.5
				3.770
				10
L3	1.525	8	3.500	9
			1.640	6
				3.770
				9.5
Figure 2. Distribution of jet center-line Mach number for the hot jet.

Figure 3. Narrowband acoustic spectrum for cold and hot jets for microphones 1 and 2.

Figure 4. Narrowband acoustic spectrum for cold and hot jets for microphone 3.