Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor *

Francisco J. Calderón-Moreno

Fac. Matemáticas, Univ. de Sevilla, Ap 1160, 41080 Sevilla, España
E-mail: calderon@atlas.us.es

Introduction

In the present work we prove a structure theorem for operators of the 0-th term of the \mathcal{V}^Y_--filtration relative to a free divisor Y of a complex analytic variety X. As an application, we give a formula for the logarithmic de Rham complex in terms of \mathcal{V}^Y_0-modules, which generalizes the classical formula for the usual de Rham complex in terms of $\mathcal{D}X$-modules, and the formula of Esnault-Viehweg in the case that Y is a normal crossing divisor. Using this, we give a sufficient condition for perversity of the logarithmic de Rham complex. Now we comment on the contents of each part of the paper:

In the first section, we recall the concepts of logarithmic derivation and logarithmic form, as well as free divisor, all of them due to Kyogi Saito \[14\], and the definition of the ring $\mathcal{V}^Y_0(D_X)$ of logarithmic differential operators along Y.

In the second part, we study the logarithmic operators in the case that Y is free. We give a structure theorem in which we prove that the ring of logarithmic differential operators is the polynomial algebra generated by the logarithmic derivations over the sheaf $\mathcal{O}X$ of holomorphic functions. As a consequence, $\mathcal{V}^Y_0(D_X)$ is a coherent sheaf. Thanks to this theorem, we can prove the equivalence between $\mathcal{V}^Y_0(D_X)$-modules and $\mathcal{O}X$-modules with logarithmic connections. Therefore, an $\mathcal{V}^Y_0(D_X)$-module (or logarithmic $\mathcal{D}X$-module) \mathcal{M} defines a logarithmic de Rham complex $\Omega^X_*(\log Y)(\mathcal{M})$.

In the third part, we prove that the logarithmic de Rham complex is canonically isomorphic to the complex $R\mathcal{H}om\mathcal{V}^Y_0(D_X)(\mathcal{O}_X, \mathcal{M})$. To show this, we first construct a resolution of \mathcal{O}_X as $\mathcal{V}^Y_0(D_X)$-module, which we call the logarithmic Spencer complex and denote by $Sp^*(\log Y)$.

*Supported by DGICYT PB94-1435
Finally, we give a sufficient condition for perversity of the logarithmic de Rham complex, which is a perverse sheaf if the symbols of a minimal generating set of logarithmic derivations form a regular sequence in the graded ring associated to the filtration by the order on D_X. This condition always holds in dimension 2.

Some results of this paper have been announced in [4]. We give here the complete proofs of all of the results announced in that note and other new results.

Acknowledgements: I am grateful to David Mond for his interest and encouragement. I wish to thank my advisor Luis Narváez for introducing me to the subject of this work and for giving me suggestions for the proofs of some of the results.

1 Notations and Preliminaries

Let X be a complex analytic variety of dimension n, and Y a hypersurface of X defined by the ideal I. We will denote by D_X the sheaf of linear differential operators over X, $\text{Der}_\mathbb{C}(\mathcal{O}_X)$ the sheaf of derivations of \mathcal{O}_X, and $D_X[Y]$ the sheaf of meromorphic differential operators with poles along Y. Given a point x of Y, we will denote by $I_x = (f)$, \mathcal{O}_x, $\text{Der}_\mathbb{C}(\mathcal{O})$ and D the respective stalks at x. We will denote by F^\bullet the filtration of D_X by the order of the operators and $\Omega^\bullet_X[y]$ the meromorphic de Rham complex with poles along Y.

1.1 Logarithmic forms and logarithmic derivations.

Free divisors

We are going to recall some notions of [14] that we will use repeatedly:

A section δ of $\text{Der}_\mathbb{C}(\mathcal{O}_X)$, defined over an open set U of X, is called a logarithmic derivation (or vector field) if for each point x in $Y \cap U$, $\delta_x(I_x)$ is contained in the ideal I_x (if $I = I_x = (f)$, it is sufficient that $\delta_x(f)$ belongs to $(f)\mathcal{O}$). The sheaf of logarithmic derivations is denoted by $\text{Der}(\log Y)$, and is a coherent \mathcal{O}_X-submodule of $\text{Der}_\mathbb{C}(\mathcal{O}_X)$ and a Lie subalgebra. We denote by $\text{Der}(\log f)$, or $\text{Der}(\log I)$, the stalks at x of $\text{Der}(\log Y)$:

$$\text{Der}(\log f) = \{\delta \in \text{Der}_\mathbb{C}(\mathcal{O}) / \delta(f) \in (f)\}.$$

We say that a meromorphic q-form ω with poles along Y, defined in an open set U, is a logarithmic q-form along Y or, simply, a logarithmic q-form, if for every point x in U, $f \omega$ and $df \wedge \omega$ are holomorphic at x. The sheaf of logarithmic q-forms along Y in U is denoted by $\Omega^q_X(\log Y)(U)$. This definition gives rise to a coherent \mathcal{O}_X-module $\Omega^q_X(\log Y)$, whose stalks are:

$$\Omega^q(\log f) = \Omega^q_X(\log Y)_x = \{\omega \in \Omega^q_X[y]_x / f \omega \in \Omega^q, df \wedge \omega \in \Omega^{q+1}\}.$$
The logarithmic q-forms along Y define a subcomplex of the meromorphic de Rham complex along Y, that we call the logarithmic de Rham complex and denote by $\Omega^*_X(\log Y)$.

Contraction of forms by vector fields defines a perfect duality between the \mathcal{O}_X-modules $\Omega^1_X(\log Y)$ and $\mathcal{D}\text{er}(\log Y)$, that we denote by $\langle \ , \ \rangle$. Thus, both of them are reflexive. In particular, when $n = \dim \mathbb{C}X = 2$, $\Omega^1_X(\log Y)$ and $\mathcal{D}\text{er}(\log Y)$ are locally free \mathcal{O}_X-modules of rank 2.

We say that Y is free at x, or I is a free ideal of \mathcal{O}, if $\text{Der}(\log I)$ is free as \mathcal{O}-module (of rank n). If $f \in \mathcal{O}$, we say that f is free if the ideal $I = (f)$ is free. We say that Y is free if it is at every point x. In this case, $\mathcal{D}\text{er}(\log Y)$ is a locally free \mathcal{O}_X-module of rank n. We can use the following criterion to determine when an hypersurface Y is free at x:

Saito’s Criterion: The \mathcal{O}-module $\text{Der}(\log f)$ is free if and only if there exist n elements $\delta_1, \delta_2, \ldots, \delta_n$ in $\text{Der}(\log f)$, with $\delta_i = \sum_{j=1}^n a_{ij}(z) \frac{\partial}{\partial z_j}$ ($i = 1, \ldots, n$), where $z = (z_1, z_2, \ldots, z_n)$ is a system of coordinates of X centered in x, such that the determinant $\det(a_{ij})$ is equal to af, with $a \in \mathcal{O}$ a unit. Moreover, in this case, $\{\delta_1, \delta_2, \ldots, \delta_n\}$ is a basis of $\text{Der}(\log f)$.

When Y is free, we have the equality: $\Omega^p_X(\log Y) \overset{\gamma^p}{=} \Omega^1_X(\log Y)$. Using the fact that $\Omega^1_X(\log Y) \cong \text{Hom}_{\mathcal{O}_X}(\text{Der}(\log Y), \mathcal{O}_X)$, we can construct a natural isomorphism:

$$\Omega^p_X(\log Y) \cong \text{Hom}_{\mathcal{O}_X}(\text{Der}(\log Y), \mathcal{O}_X),$$

defined locally by $\gamma^p(\omega_1 \wedge \cdots \wedge \omega_p)(\delta_1 \wedge \cdots \wedge \delta_p) = \det(\langle \omega_i, \delta_j \rangle)_{1 \leq i, j \leq p}$.

1.2 \mathcal{V}-filtration

We define the \mathcal{V}-filtration relative to Y on \mathcal{D}_X as in the smooth case ([10], [9]):

$$\mathcal{V}^\mathcal{Y}_k(\mathcal{D}_X) = \{ P \in \mathcal{D}_X / P(I^j) \subset I^{j-k}, \forall j \in \mathbb{Z} \}, \quad k \in \mathbb{Z},$$

where $I^p = \mathcal{O}_X$ when p is negative. Similarly, $\mathcal{V}^\mathcal{Y}_k(\mathcal{D}) = \{ P \in \mathcal{D} / P(I^j) \subset I^{j-k}, \forall j \in \mathbb{Z} \}$, with k an integer, and $I^p = \mathcal{O}$ when $p \geq 0$. In the case of $I = (f)$, we note $\mathcal{V}^\mathcal{Y}_k(\mathcal{D}) = \mathcal{V}^\mathcal{Y}_k(f)$.

Definition 1.2.1. A logarithmic differential operator (or, simplify, a logarithmic operator) is a differential operator of degree 0 with respect to the \mathcal{V}-filtration.

We see that:

$$\text{Der}(\log Y) = \text{Der}_\mathbb{C}(\mathcal{O}_X) \cap \mathcal{V}^\mathcal{Y}_0(\mathcal{D}_X) = \mathcal{G}^1_1(\mathcal{V}^\mathcal{Y}_0(\mathcal{D}_X)),$$

$$F^1(\mathcal{V}^\mathcal{Y}_0(\mathcal{D}_X)) = \mathcal{O}_X \oplus \text{Der}(\log Y),$$

where the last expression is consequence of $F^1(\mathcal{D}_X) = \mathcal{O}_X \oplus \text{Der}_\mathbb{C}(\mathcal{O}_X)$.

3
Remark 1.2.2.– The inclusion $\text{Der}(\log Y) \subset \text{Gr}_{\mathcal{F}^\bullet} \left(\mathcal{V}_0^Y(D_X) \right)$ gives rise to a canonical graded morphism of graded algebras:

$$\kappa : \text{Sym}_{O_X}(\text{Der}(\log Y)) \longrightarrow \text{Gr}_{\mathcal{F}^\bullet} \left(\mathcal{V}_0^Y(D_X) \right).$$

Similarly, we have a canonical graded morphism of graded O-algebras:

$$\kappa_x : \text{Sym}_{O}(\text{Der}(\log I)) \longrightarrow \text{Gr}_{\mathcal{F}^\bullet} \left(\mathcal{V}_I^0(D) \right),$$

which is the stalk of κ at x.

2 Logarithmic operators relative to a free divisor

2.1 The Structure Theorem

We denote by $\{ , \}$ the Poisson bracket defined in the graded ring $\text{Gr}_{\mathcal{F}^\bullet}(D)$ (cf. [12], [8]). Given two polynomials F,G in $\text{Gr}_{\mathcal{F}^\bullet}(D) = O[\xi_1, \ldots, \xi_n]$:

$$\{F, G\} = \sum_{i=1}^n \frac{\partial F}{\partial \xi_i} \frac{\partial G}{\partial x_i} - \sum_{i=1}^n \frac{\partial F}{\partial x_i} \frac{\partial G}{\partial \xi_i}.$$

Proposition 2.1.1.– Let f be free. Consider a minimal system of generators $\{\delta_1, \delta_2, \ldots, \delta_n\}$ of Der(log f). Let R_0 be a polynomial in $\text{Gr}_{\mathcal{F}^\bullet}(D)$, homogeneous of order d, and such that there exist other polynomials R_k in $\text{Gr}_{\mathcal{F}^\bullet}(D)$, with $k = 1, \ldots, d$, homogeneous of order $d - k$ such that:

$$\{R_k, f\} = fR_{k+1}, \quad (0 \leq k < d)$$

(we will say that R_0 verifies the property (II) for R_1, R_2, \ldots, R_d). Then there exist polynomials H_j^k in $\text{Gr}_{\mathcal{F}^\bullet}(D)$, homogeneous of order $d - k - 1$, with $j = 1, \ldots, n$ and $k = 1, \ldots, d - 1$, such that:

a) $R_k = \sum_{j=1}^n H_j^k \sigma(\delta_j)$, where $\sigma(\delta_j)$ denotes the principal symbol of δ_j.

b) $\{H_j^k, f\} = fH_j^{k+1} \ (1 \leq j \leq n, \ 0 \leq k < d - 1)$. This is the same as saying: H_j^k verifies the property (II) for $H_j^{k+1}, \ldots, H_j^{d-1}$.

Proof: Let $A = (\alpha^j_i)$ be the square matrix whose rows are the coefficients of the basis $\{\delta_1, \delta_2, \ldots, \delta_n\}$ of Der(log f) with respect to the basis $\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \ldots, \frac{\partial}{\partial x_n}$ of $\text{Der}_{\mathbb{C}}(O_X)$:

$$\delta_j = \sum_{i=1}^n \alpha^j_i \frac{\partial}{\partial x_i} = \alpha^j \bullet \partial^j,$$

with $j = 1, \ldots, n$, where we write ∂ instead of $\left(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \right)$. We consider the ring $O_{2n} = \mathbb{C}\{x_1, \ldots, x_2, \xi_1, \ldots, \xi_n\}$. Thanks to the Saito’s Criterion, we know that the set

$$\{\delta_1, \ldots, \delta_n; \frac{\partial}{\partial \xi_1}, \ldots, \frac{\partial}{\partial \xi_n}\}$$

is regular.
is a basis of the O_{2n}-module $\text{Der}_{O_{2n}}(\log f)$. So, as we have, for $k = 1, \ldots, d$,

$$(f) \ni \{R_k, f\} = \sum_{i=1}^{n} (R_k)_{\xi_i} f_{x_i},$$

where f_{x_i} represents $\frac{\partial f}{\partial x_i}$ and $(R_k)_{\xi_i}$ represents $\frac{\partial R_k}{\partial \xi_i}$, then there exist homogeneous polynomials G^k_j in $\text{Gr}_F^\bullet(D)$, of degree $d - k - 1$, or null, with $j = 1, \ldots, n$ and $k = 1, \ldots, d - 1$, such that

$$((R_k)_{\xi_1}, (R_k)_{\xi_2}, \ldots, (R_k)_{\xi_n}) = \sum_{j=1}^{n} G^k_j \alpha^j.$$

Using the Euler relation $R_k = \frac{1}{d} \sum_{i=1}^{n} (R_k)_{\xi_i} \xi_i$, and as $\sigma(\delta_i) = \alpha^i \bullet \xi^t$, we obtain

$$R_k = \frac{1}{d} \sum_{i=1}^{n} \sum_{j=1}^{n} G^k_j \alpha_i^j \xi_i = \frac{1}{d} \sum_{j=1}^{n} G^k_j \sigma(\delta_j).$$

By Saito’s Criterion, the determinant of the matrix A is equal to uf, with $u \in O$ invertible. Let $B = (b_{ij}) = \text{Adj}(A)^t$. We have:

$$((R_k)_{\xi_1}, (R_k)_{\xi_2}, \ldots, (R_k)_{\xi_n}) = \left(G^k_1, G^k_2, \ldots, G^k_n\right) A,$$

so

$$((R_k)_{\xi_1}, (R_k)_{\xi_2}, \ldots, (R_k)_{\xi_n}) B = g \left(G^k_1, G^k_2, \ldots, G^k_n\right).$$

Now:

$$g\{G^k_j, f\} = \{gG^k_j, f\} = \sum_{i=1}^{n} f_{x_i} \frac{\partial (gG^k_j)}{\partial \xi_i} = \sum_{i=1}^{n} f_{x_i} \sum_{i=1}^{n} \frac{\partial (R_k)_{\xi_i}}{\partial \xi_i} b_{ij} =$$

$$\sum_{i=1}^{n} b_{ij} \sum_{i=1}^{n} \frac{\partial^2 R_k}{\partial \xi_i \partial \xi_i} f_{x_i} = \sum_{i=1}^{n} b_{ij} \frac{\partial ((R_k, f))}{\partial \xi_i} = f \sum_{i=1}^{n} b_{ij} \frac{\partial R_{k+1}}{\partial \xi_i} = f \sum_{i=1}^{n} b_{ij} (R_{k+1})_{\xi_i} =$$

$$f \sum_{i=1}^{n} b_{ij} \sum_{p=1}^{n} G^k_{p+1} \alpha^p_i = f \sum_{p=1}^{n} G^k_{p+1} \sum_{i=1}^{n} b_{ij} \alpha^p_i = f gG^{k+1}.\]

Therefore,

$$\{G^k_j, f\} = f G^{k+1},$$

with $k = 0, \ldots, d - 2$ and $j = 0, \ldots, n$. We conclude by setting $H^k_j = \frac{1}{d} G^k_j$, for $j = 1, \ldots, n$ and $k = 0, \ldots, d - 1$. □

Proposition 2.1.2.— Let be $\{\delta_1, \delta_2, \ldots, \delta_n\}$ a basis of $\text{Der}(\log f)$. If a polynomial R_0 of $\text{Gr}_F^\bullet(D)$ is homogeneous and verifies the property (5) of the last proposition, we can find a differential operator Q in $O[\delta_1, \delta_2, \ldots, \delta_n]$ such that R_0 is the symbol of Q.

5
Proof: We will do the proof by induction on the order of R_0. If $R_0 \in \mathcal{O}$, it is obvious. We suppose that the result holds if the order of R_0 is less than d. Now let R_0 of order d verifying (III). By the last proposition there exist n homogeneous polynomials H_j^0 of order $d - 1$ such that:

$$R_0 = \sum_{j=1}^{n} H_j^0 \sigma(\delta_j), \ H_j^0 \text{ verifies (III)} (j = 1, \ldots, n).$$

By induction hypothesis, there exist $Q_j \in \mathcal{O}[\delta_1, \delta_2, \ldots, \delta_n]$ such that $H_j^0 = \sigma(Q_j)$.

So
$$R_0 = \sum_{i=1}^{n} \sigma(Q_i)\sigma(\delta_i) = \sum_{i=1}^{n} \sigma(Q_i\delta_i) = \sigma(\sum_{i=1}^{n} Q_i\delta_i) = \sigma(Q)$$

and $Q = \sum_{i=1}^{n} Q_i\delta_i \in \mathcal{O}[\delta_1, \delta_2, \ldots, \delta_n]$. \qed

Remark 2.1.3.– Really, the previous argument proves that if R_0 verifies (III), then R_0 is a polynomial in $\mathcal{O}[\sigma(\delta_1), \ldots, \sigma(\delta_n)]$.

Theorem 2.1.4.– If f is free and $\{\delta_1, \delta_2, \ldots, \delta_n\}$ is a basis of the \mathcal{O}-module $	ext{Der}(\log f)$, each logarithmic operator P can be written in a unique way as a polynomial

$$P = \sum \beta_{i_1\ldots i_n} \delta_1^{i_1} \delta_2^{i_2} \cdots \delta_n^{i_n}, \quad \beta_{i_1\ldots i_n} \in \mathcal{O}.$$

In other words, the ring of logarithmic operators is the \mathcal{O}-subalgebra of \mathcal{D} generated by logarithmic derivations:

$$\mathcal{V}_0^f(\mathcal{D}) = \mathcal{O}[\delta_1, \delta_2, \ldots, \delta_n] = \mathcal{O}[\text{Der}(\log f)].$$

Proof: The inclusion $\mathcal{O}[\delta_1, \delta_2, \ldots, \delta_n] \subseteq \mathcal{V}_0^f(\mathcal{D})$ is clear. We will prove the other inclusion by induction on the order of $P_0 \in \mathcal{V}_0^f(\mathcal{D})$. If the order of P_0 is zero, then it is a holomorphic function and the result is obvious. We suppose the result is true for every logarithmic operator Q whose order is strictly less than d. Let P_0 be a logarithmic operator of order d. We know that:

$$[P_0, f] = f P_1,$$

with $P_1 \in \mathcal{V}_0^f(\mathcal{D})$. So, there exist several P_k, with $k = 0, \ldots, d$, such that $[P_k, f] = f P_{k+1}$. If we set $R_k = \sigma(P_k)$, in the case that P_k has order $d - k$, and $R_k = 0$ otherwise, we obtain:

$$\{R_k, f\} = \{\sigma_{d-k}(P_k), f\} = \sigma_{d-k-1}([P_k, f]) = f \sigma_{d-k-1}(P_{k+1}) = f R_{k+1}.$$

By the previous proposition, there exists Q in $\mathcal{O}[\delta_1, \delta_2, \ldots, \delta_n]$ of order d and such that $\sigma(P_0) = \sigma(Q)$. As the order of $P_0 - Q \in \mathcal{V}_0^f(\mathcal{D})$ is strictly less than d, we apply the induction hypothesis to $P_0 - Q$ and obtain

$$P_0 = P_0 - Q + Q \in \mathcal{O}[\delta_1, \delta_2, \ldots, \delta_n],$$

6
as we wanted.
On the other hand, using the structure of Lie algebra it is clear that we can write
a logarithmic operator as a \mathcal{O}-linear combination of the monomials $\{\delta_1, \ldots, \delta_n\}$. The uniqueness of this expression follows from the fact that these monomials are linearly independent over \mathcal{O}.

\[\text{Remark 2.1.5.--} \] As a immediate consequence of the theorem (see the previous remark), we obtain an isomorphism:

\[\text{Gr}_{F^*} \left(V^1_0(\mathcal{D}) \right) \cong \mathcal{O}[\sigma(\delta_1), \ldots, \sigma(\delta_n)]. \]

\[\text{Corollary 2.1.6.--} \] If Y is free at x, the morphism κ_x from the symmetric algebra $\text{Sym}_{\mathcal{O}X}(\text{Der}(\log f))$ to $\text{Gr}_{F^*} \left(V^0_0(\mathcal{D}) \right)$ (see remark 2.1.2) is an isomorphism of graded \mathcal{O}-algebras. As a consequence, if Y is a free divisor, the canonical morphism

\[\kappa : \text{Sym}_{\mathcal{O}X}(\text{Der}(\log Y)) \to \text{Gr}_{F^*} \left(V^0_0(\mathcal{D}_X) \right) \]

is an isomorphism.

Proof: Let x be in X and $f \in \mathcal{O}$ a local reduced equation of Y at a neighbourhood of x. Let $\{\delta_1, \ldots, \delta_n\}$ be a basis of $\text{Der}(\log f)$.

\[\text{Der}(\log f) = \oplus_{i=1}^n \mathcal{O}\delta_i \cong \oplus_{i=1}^n \mathcal{O}\sigma(\delta_i). \]

The symmetric algebra of the \mathcal{O}-module $\text{Der}(\log f)$ is isomorphic to a polynomial ring:

\[\text{Sym}_{\mathcal{O}}(\text{Der}(\log f)) \cong \mathcal{O}[\sigma(\delta_1), \ldots, \sigma(\delta_n)]. \]

We also have the inclusion:

\[\oplus_{i=1}^n \mathcal{O}\sigma(\delta_i) = \text{Gr}_{F^*}^1 \left(V^0_0(\mathcal{D}) \right) \subset \text{Gr}_{F^*} \left(V^0_0(\mathcal{D}) \right), \]

where $\sigma(\delta_i)$ is the image of δ_i by the morphism κ_x. Therefore we conclude that the morphism $\kappa_x = \alpha^{-1}\beta$ is an isomorphism (see remark 2.1.3). On the other hand, the inclusion

\[\text{Der}(\log Y) = \text{Gr}_{F^*}^1 \left(V^0_0(\mathcal{D}_X) \right) \subset \text{Gr}_{F^*} \left(V^0_0(\mathcal{D}_X) \right) \]

gives rise to a canonical graded morphism of graded \mathcal{O}_X-algebras (see remark 2.1.2): $\kappa : \text{Sym}_{\mathcal{O}_X}(\text{Der}(\log Y)) \to \text{Gr}_{F^*} \left(V^0_0(\mathcal{D}_X) \right)$, whose stalk at each point x of Y is the canonical graded isomorphism κ_x. So, κ is also an isomorphism. \[\square \]

Corollary 2.1.7.-- $V^0_0(\mathcal{D}_X)$ is a coherent sheaf of rings.

Proof: By theorem 9.16 of [1] (p. 83), we have only to prove that $\text{Gr}_{F^*} \left(V^0_0(\mathcal{D}_X) \right)$ is coherent, but this sheaf is locally isomorphic to the polynomial ring $\mathcal{O}_X[T_1, \ldots, T_n]$, which is coherent (\[3, \text{lemma 3.2, VI, pg. 205}\]). \[\square \]
2.2 Equivalence between \mathcal{O}_X-modules with a logarithmic connection and left $\mathcal{V}_Y^+(\mathcal{D}_X)$-modules.

Definition 2.2.1. (cf. [3]) Let \mathcal{M} be a \mathcal{O}_X-module. A connection on \mathcal{M}, with logarithmic poles along Y, (or logarithmic connection on \mathcal{M}), is a \mathbb{C}-homomorphism ∇,

$$\nabla : \mathcal{M} \rightarrow \Omega^1_X(\log Y) \otimes \mathcal{M},$$

that verifies Leibniz’s identity: $\nabla(hm) = dh \cdot m + h \cdot \nabla(m)$, where d is the exterior derivative over \mathcal{O}_X. We will note $\Omega^q_X(\log Y)(\mathcal{M}) = \Omega^q_X(\log Y) \otimes \mathcal{M}$.

If δ is a logarithmic derivation along Y, it defines a \mathbb{C}-morphism:

$$\text{Der}(\log Y) \rightarrow \text{End}_{\mathbb{C}}(\mathcal{M}), \quad \delta \mapsto \nabla_\delta$$

where $\nabla_\delta(m) = \langle \delta, \nabla(m) \rangle$

Remark 2.2.2. A logarithmic connection ∇ on \mathcal{M} gives rise to a morphism of \mathcal{O}_X-modules

$$\nabla' : \text{Der}(\log Y) \rightarrow \text{Hom}_{\mathbb{C}}(\mathcal{M}, \mathcal{M})$$

which verifies Leibniz’s condition: $\nabla'_\delta(fm) = \delta(f) \cdot m + f \cdot \nabla'_\delta(m)$.

Conversely, given ∇' verifying this condition, we define

$$\nabla : \mathcal{M} \rightarrow \Omega^1_X(\log Y)(\mathcal{M}),$$

with $\nabla(m)$ the element of $\Omega^1_X(\log Y)(\mathcal{M}) = \text{Hom}_{\mathcal{O}_X}(\text{Der}(\log Y), \mathcal{M})$ such that:

$$\nabla(m)(\delta) = \nabla'_\delta(m).$$

Definition 2.2.3. A logarithmic connection ∇ is integrable if, for each pair δ and δ' of logarithmic derivations, it verifies:

$$\nabla_{[\delta, \delta']} = [\nabla_\delta, \nabla_{\delta'}],$$

where $[\ , \]$ represents the Lie bracket in $\text{Der}(\log Y)$ and the commutator in $\text{Hom}_{\mathbb{C}}(\mathcal{M}, \mathcal{M})$.

Given a logarithmic connection ∇ and the exterior derivative d, we can construct a morphism:

$$\nabla^q : \Omega^q_X(\log Y)(\mathcal{M}) \rightarrow \Omega^{q+1}_X(\log Y)(\mathcal{M}),$$

for each $q = 1, \cdots, n$. If ω and m are sections of the sheaves $\Omega^q_X(\log Y)$ and \mathcal{M}:

$$\nabla^q(\omega \otimes m) = d\omega \otimes m + (-1)^q \omega \wedge \nabla(m).$$
The integrability condition is equivalent to $\nabla^q \circ \nabla^{q-1} = 0$, for every q (cf. [3]).

Definition 2.2.4.– Let \mathcal{M} be a \mathcal{O}_X-module, and ∇ an integrable logarithmic connection along Y on \mathcal{M}. With the above notation, we call the logarithmic de Rham complex of \mathcal{M}, and we denote by $\Omega^*_X(\log Y)(\mathcal{M})$, the complex (of sheaves of \mathbb{C}-vector spaces):

$$0 \to \mathcal{M} \xrightarrow{\nabla} \Omega^1_X(\log Y)(\mathcal{M}) \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \Omega^{q}_X(\log Y)(\mathcal{M}) \xrightarrow{\nabla} \Omega^{q+1}_X(\log Y)(\mathcal{M}) \to 0.$$

In the particular case where the \mathcal{O}_X-module \mathcal{M} is equal to \mathcal{O}_X and the logarithmic connection ∇ is equal to the exterior derivative $d : \mathcal{O}_X \to \Omega^1_X(\log Y)$, the morphisms

$$\nabla^q : \Omega^q_X(\log Y) \to \Omega^{q+1}_X(\log Y),$$

define the logarithmic de Rham complex of Saito.

We consider the rings $R_0 = \mathcal{O}_X \subset R_1$ and $R = \mathcal{O}^\vee_0(\mathcal{D}_X) = \bigcup_{k \geq 0} R_k$ ($1 \in R_0 \subset R$), with $R_k = F^k(\mathcal{O}^\vee_0(\mathcal{D}_X))$. The ring $\mathcal{G}r(R)$ is commutative and verifies

1) The canonical morphism $\alpha : \text{Sym}_{R_0}(\mathcal{G}r^1(R)) \to \mathcal{G}r(R)$, defined by $\alpha(s_1 \otimes \cdots \otimes s_t) = s_1 \cdots s_t$, is an isomorphism (see Corollary 2.1.6). With these conditions, R_1 is an (R_0, R_0)-bimodule, and a Lie algebra $[[x, y]] = xy - yx \in R_1$, because $\mathcal{G}r(R)$ is commutative. Moreover, R_0 is a sub-$\text{(R}_0, R_0\text{)}$-bimodule of R_1 such that the two induced structures of R_0-module over the quotient R_1/R_0 are the same.

Let $\mathbf{T}_{R_0}(R_1) = R_0 \oplus R_1 \oplus (R_1 \otimes R_0 R_1) \oplus \cdots$ be the tensor algebra of the (R_0, R_0)-bimodule R_1, and let $\psi : \mathbf{T}_{R_0}(R_1) \to R$ be the canonical morphism defined by the inclusion $R_1 \subset R$. We prove a reciprocal theorem of one Poincaré-Birkhoff-Witt theorem [3, theorem 3.1, p.198].

Proposition 2.2.5.– The morphism ψ induces an isomorphism:

$$\phi : \mathbf{S} = \frac{\mathbf{T}_{R_0}(R_1)}{J} \cong R, \quad \phi((i(x_1) \otimes \cdots \otimes i(x_t)) + J) = x_1 x_2 \cdots x_t,$$

where i the inclusion of R_1 in the tensor algebra, and J is the two sided ideal generated by the elements:

a) $a - i(a), \ a \in R_0 \subset R_1$,
b) $i(x) \otimes i(y) - i(y) \otimes i(x) - i([x, y]), \ x, y \in R_1$.

Proof: First, we check that the morphism $\phi : \mathbf{S} \to R$ is well defined:

$$\psi(a - i(a)) = a - a = 0, \ a \in R_0,$$

$$\psi(i(x) \otimes i(y) - i(y) \otimes i(x) - i([x, y])) = xy - yx - [x, y] = 0, \ x, y \in R_1.$$
The algebra $T_{R_0}(R_1)$ is graded, so it is filtered, and induces a filtration on the quotient. The induced morphism $\phi : S \to R$ is filtered:

$$\psi(a) = a \in R_0, \psi(i(x_1) \otimes \cdots \otimes i(x_t)) = x_1x_2 \cdots x_t \in R_t.$$

So, we can define a graded morphism of R_0-rings.

$$\pi : Gr(S) \to Gr(R),$$

$$\pi(\sigma_t(i(x_1) \otimes \cdots \otimes i(x_t) + J)) = \sigma'_t(x_1 \cdots x_t) = \overline{x_1} \cdots \overline{x_t},$$

where $x_i \in R_1$, $\overline{x_i} = \sigma'_t(x_1)$ is the class of x_i in R_1/R_0, $\sigma_t(P)$ is the class of $P \in S$ in $Gr^t(S)$, and $\sigma'_t(Q)$ the class of $Q \in R_t$ in $Gr^t(R)$. Note that $Gr(S)$ is commutative: it is generated by the elements $\sigma_0(a + J), \sigma_1(i(x) + J)$, with $a \in R_0$, $x \in R_1$, and

$$[i(x) + J, i(y) + J] = i([x, y]) + J,$$

$$[a + J, i(x) + J] = i(ax - xa) + J = b + J, \quad b = ax - xa \in R_0.$$

On the other hand, the image of $R_0 \subset R_1$ in S is exactly the part of degree zero of S, and then we obtain a morphism of R_0-modules from $Gr^1(R) = R_1/R_0$ to $Gr^1(S)$ which induces a morphism of R_0-algebras:

$$\rho : Sym_{R_0} \left(\frac{R_1}{R_0} \right) \to Gr(S),$$

$$\rho(\overline{x_1} \otimes \cdots \otimes \overline{x_t}) = \sigma_t(i(x_1) \otimes \cdots \otimes i(x_t) + J),$$

which is obviously surjective. The composition $\pi \rho$ is equal to α, and, by property (1) of R, we deduce that ρ is injective. As ρ and $\pi \rho$ are isomorphisms, π is as well, as we wanted to prove.

\textbf{Corollary 2.2.6.} Let Y be a free divisor. Let M be a O_X-module. An integrable logarithmic connection on M gives rise to a left $V_0^Y(D_X)$-structure on M, and vice versa.

\textbf{Proof:} A O_X-module M with an integrable logarithmic connection ∇ has a natural structure of left $V_0^Y(D_X)$-module defined by its structure as O_X-module. Let μ be the morphism of (O_X, O_X)-bimodules:

$$\mu : R_1 = O_X \oplus Der(\log Y) \to End_C(M), \quad \mu(a)(m) = am, \quad \mu(\delta)(m) = \nabla_\delta(m).$$

μ induces a morphism $\nu : T_{R_0}(R_1) \to End_C(M)$, and, as $\nu(J) = 0$, we have a morphism

$$V_0^Y(D_X) \simeq \frac{T_{R_0}(R_1)}{J} \to End_C(M),$$

which defines an structure of $V_0^Y(D_X)$-module on M.

10
On the other hand, a left \(V_0^Y(D_X) \)-module structure on \(M \) defines an integrable logarithmic connection \(\nabla \) on the \(O_X \)-module \(M \):

\[
\nabla : \text{Der}(\log Y) \to \mathcal{E}\text{nd}_C(M), \quad \nabla_{\delta}(m) = \delta \cdot m.
\]

\[\square\]

Remark 2.2.7. A left \(V_0^Y(D_X) \)-module structure on \(M \) defines a logarithmic de Rham complex. In local coordinates \((U; x_1, \cdots, x_n)\), with \(\{\delta_1, \cdots, \delta_n\} \) a local basis of \(\text{Der}(\log Y) \) and \(\{\omega_1, \cdots, \omega_n\} \) its dual basis, the differential of the complex is defined by:

\[
\nabla^p(U)(\omega \otimes m) = d\omega \otimes m + \sum_{i=1}^{n} ((\omega_i \wedge \omega) \otimes \delta_i \cdot m),
\]

for any sections \(\omega \in \Omega^1_X(\log Y) \) and \(m \in M \). In the particular case of the left \(V_0^Y(D_X) \)-module \(O_X \), defined as \(V_0^Y(D_X) \)-module in a natural way \((P \cdot g = P(g), \) with \(g \) a holomorphic function and \(P \) a logarithmic operator\), this canonical structure of \(O_X \) as left \(V_0^Y(D_X) \)-module is obviously equivalent to the integrable logarithmic connection over \(O_X \) defined naturally by the exterior derivative \((\nabla = d)\):

\[
\nabla_{\delta}(g) = \langle \delta, dg \rangle = \delta(g).
\]

3 The Logarithmic de Rham Complex

In this section, \(Y \) will be a free divisor.

3.1 The Logarithmic Spencer Complex

Definition 3.1.1. We call the logarithmic Spencer complex, and denote by \(\mathcal{S}p^\bullet(\log Y) \), the complex:

\[
\begin{align*}
0 \to V_0^Y(D_X) \otimes_{O_X} & \overset{n}{\wedge} \text{Der}(\log Y) \overset{\varepsilon_{-p}}{\to} \cdots \\
&
\overset{\varepsilon_{-2}}{\to} V_0^Y(D_X) \otimes_{O_X} \overset{1}{\wedge} \text{Der}(\log Y) \overset{\varepsilon_{-1}}{\to} V_0^Y(D_X),
\end{align*}
\]

where

\[
\varepsilon_{-p}(P \otimes (\delta_1 \wedge \cdots \wedge \delta_p)) = \sum_{i=1}^{p} (-1)^{i-1} P\delta_i \otimes (\delta_1 \wedge \cdots \wedge \hat{\delta_i} \wedge \cdots \wedge \delta_p) +
\]

\[
\sum_{1 \leq i < j \leq p} (-1)^{i+j} P \otimes ([\delta_i, \delta_j] \wedge \delta_1 \wedge \cdots \wedge \hat{\delta_i} \wedge \cdots \wedge \hat{\delta_j} \wedge \cdots \wedge \delta_p), \quad (2 \leq p \leq n).
\]
We can augment this complex of left $\mathcal{V}_0^Y(D_X)$-modules by another morphism:

$$\varepsilon_0 : \mathcal{V}_0^Y(D_X) \to \mathcal{O}_X, \quad \varepsilon_0(P) = P(1).$$

We call the new complex $\tilde{S}_p^\bullet(\log Y)$.

This definition is essentially the same as the definition of the usual Spencer complex S_p^\bullet of \mathcal{O}_X (cf. [11, 2.1]) and generalizes the definition given by Esnault and Viehweg [7, App. A] in the case of a normal crossing divisor. We denote by $S_p^\bullet[*Y] = D_X[*Y] \otimes_{D_X} S_p^\bullet$ the meromorphic Spencer complex of $\mathcal{O}_X[*Y]$.

Theorem 3.1.2. The complex $S_p^\bullet(\log Y)$ is a locally free resolution of \mathcal{O}_X as left $\mathcal{V}_0^Y(D_X)$-module.

Proof: To see the exactness of $\tilde{S}_p^\bullet(\log Y)$ we define a discrete filtration G^\bullet such that it induces an exact graded complex (cf. [1, lemma 3.16]):

$$G^k \left(\mathcal{V}_0^Y(D_X) \otimes \wedge^p \text{Der}(\log Y) \right) = F^{k-p} \left(\mathcal{V}_0^Y(D_X) \otimes \wedge^p \text{Der}(\log Y) \right),$$

$$G^k(\mathcal{O}_X) = \mathcal{O}_X.$$

We have

$$G_{r,G^\bullet} \left(\mathcal{V}_0^Y(D_X) \otimes \wedge^p \text{Der}(\log Y) \right) = G_{r,F^\bullet} \left(\mathcal{V}_0^Y(D_X) \right) [-p] \otimes \wedge^p \text{Der}(\log Y),$$

$$G_{r,G^\bullet}(\mathcal{O}_X) = \mathcal{O}_X.$$

As the above filtrations are compatible with the differential of the complex $\tilde{S}_p^\bullet(\log Y)$, we can consider the complex $G_{r,G^\bullet} \left(\tilde{S}_p^\bullet(\log Y) \right)$:

$$0 \to G_{r,F^\bullet} \left(\mathcal{V}_0^Y(D_X) \right) [-n] \otimes_{\mathcal{O}_X} \wedge \text{Der}(\log Y) \xrightarrow{\psi} \cdots$$

$$\xrightarrow{\psi^{-1}} G_{r,F^\bullet} \left(\mathcal{V}_0^Y(D_X) \right) [-1] \otimes_{\mathcal{O}_X} \wedge \text{Der}(\log Y) \xrightarrow{\psi^{-1}} G_{r,F^\bullet} \left(\mathcal{V}_0^Y(D_X) \right) \xrightarrow{\psi} \mathcal{O}_X \to 0,$$

where the local expression of the differential is defined by:

$$\psi_p(G \otimes \delta_{j_1} \wedge \ldots \wedge \delta_{j_p}) = \sum_{i=1}^{p} (-1)^{i-1} G\sigma(\delta_{j_i}) \otimes \delta_{j_1} \wedge \ldots \wedge \widehat{\delta_{j_i}} \wedge \ldots \wedge \delta_{j_p}, \quad (2 \leq p \leq n).$$

$$\psi_{-1}(G \otimes \delta_i) = G\sigma(\delta_i), \quad \psi_0(G) = G_0,$$

with $\{\delta_1, \ldots, \delta_n\}$ a (local) basis of $\text{Der}(\log Y)$. This complex is the Koszul complex of the ring

$$G_{r,F^\bullet} \left(\mathcal{V}_0^Y(D_X) \right) \cong \text{Sym}_{\mathcal{O}_X}(\text{Der}(\log Y)).$$
with respect to the \(G_{T^*} \left(\mathcal{V}_0^\vee (\mathcal{D}_X) \right) \)-regular sequence \(\sigma(\delta_1), \ldots, \sigma(\delta_n) \) in the ring \(G_{T^*} \left(\mathcal{V}_0^\vee (\mathcal{D}_X) \right) \). Consequently, it is exact. \(\square \)

Lemma 3.1.3.— For every logarithmic operator \(P \in \mathcal{V}_0^\vee (\mathcal{D}) \), there exist, for each integer \(p \), a logarithmic operator \(Q \in \mathcal{V}_0^\vee (\mathcal{D}) \) and an integer \(k \) such that \(f^{-p}P = Qf^{-k} \).

Proof: We will prove the lemma by induction on the order of the logarithmic operator. If \(P \) has order 0, it is in \(\mathcal{O} \), and it is clear that \(f^{-p}P = Pf^{-p} \). Let \(P \) be of order \(d \), and consider the logarithmic operator \([P, f^p] \), of order \(d - 1 \). By induction hypothesis, there exists an integer \(m \) such that:

\[
[P, f^{-p}]f^m \in \mathcal{V}_0^\vee (\mathcal{D}).
\]

Let \(k \) be the greatest of the integers \(m \) and \(p \). It is clear that:

\[
f^{-p}Pf^k = Pf^{k-p} - [P, f^{-p}]f^k \in \mathcal{V}_0^\vee (\mathcal{D}).
\]

This proves the result: \(Q = Pf^{k-p} - [P, f^{-p}]f^k. \) \(\square \)

Remark 3.1.4.— For every operator \(Q \) in \(\mathcal{D}_X [\star Y]_x \), we can always find a strictly positive integer \(m \) such that \(f^mQ \in \mathcal{V}_0^\vee (\mathcal{D}) \). Equivalently, for each meromorphic differential operator \(Q \), there exists a positive integer \(p \) and a logarithmic operator \(Q' \) such that we can write:

\[
Q = f^{-p}Q'.
\]

Now we introduce several morphisms that we will use later.

Lemma 3.1.5.— We have the following isomorphisms:

1. \(\mathcal{O}_X [\star Y] \otimes_{\mathcal{O}_X} \mathcal{V}_0^\vee (\mathcal{D}_X) \xrightarrow{\sim} \mathcal{D}_X [\star Y] \xrightarrow{\sim} \mathcal{V}_0^\vee (\mathcal{D}_X) \otimes_{\mathcal{O}_X} \mathcal{O}_X [\star Y] \).
2. \(\alpha : \mathcal{D}_X [\star Y] \otimes_{\mathcal{V}_0^\vee (\mathcal{D})} \mathcal{O}_X \cong \mathcal{O}_X [\star Y], \quad \alpha (P \otimes g) = P(g). \)
3. \(\rho : \mathcal{D}_X [\star Y] \otimes_{\mathcal{V}_0^\vee (\mathcal{D})} \mathcal{D}_X [\star Y] \cong \mathcal{D}_X [\star Y], \quad \rho (P \otimes Q) = PQ. \)

Proof:

1. The inclusions \(\mathcal{V}_0^\vee (\mathcal{D}_X), \mathcal{O}_X [\star Y] \subset \mathcal{D}_X [\star Y] \) give rise to the previous isomorphisms of \((\mathcal{V}_0^\vee (\mathcal{D}_X), \mathcal{O}_X [\star Y]) \)-modules. Locally:

\[
a f^{-k} \otimes P = a f^{-k} P = a Q \otimes f^{-p},
\]

with \(P \) and \(Q \) logarithmic operators such that \(f^{-k}P = Qf^{-p} \). We have seen how to obtain \(Q \) from \(P \) (lemma 3.1.3), and we can obtain \(P \) from \(Q \) in the same way. On the other hand, we saw in the previous remark how to express a meromorphic
defined locally in each degree by: P isomorphism of complexes: S of lemma 3.1.5, this complex is the same as

Composing both of them, we obtain a new inclusion:

\[
\mathcal{O}_X[\ast Y] \otimes_{\mathcal{O}_X} \mathcal{V}_0^Y(\mathcal{D}_X) \otimes_{\mathcal{V}_0^Y(\mathcal{D}_X)} \mathcal{O}_X \cong \mathcal{O}_X[\ast Y] \otimes_{\mathcal{O}_X} \mathcal{O}_X \cong \mathcal{O}_X[\ast Y].
\]

3. We obtain this isomorphism of $\mathcal{D}_X[\ast Y]$-bimodules from the composition of the following isomorphisms:

\[
\mathcal{O}_X[\ast Y] \otimes_{\mathcal{O}_X} \mathcal{V}_0^Y(\mathcal{D}_X) \otimes_{\mathcal{V}_0^Y(\mathcal{D}_X)} \mathcal{D}_X[\ast Y] \cong \mathcal{D}_X[\ast Y] \\
\mathcal{O}_X[\ast Y] \otimes_{\mathcal{O}_X} \mathcal{V}_0^Y(\mathcal{D}_X) \otimes_{\mathcal{O}_X} \mathcal{V}_0^Y(\mathcal{D}_X) \cong \mathcal{O}_X[\ast Y] \otimes_{\mathcal{O}_X} \mathcal{D}_X[\ast Y],
\]

where the isomorphism $\mathcal{O}_X[\ast Y] \otimes_{\mathcal{O}_X} \mathcal{O}_X \cong \mathcal{O}_X[\ast Y]$ sends (locally) the tensor product $g_1 \otimes g_2$ to the meromorphic function g_1, g_2.

\[\square \]

Proposition 3.1.6.— We have the following isomorphisms of complexes of $\mathcal{D}_X[\ast Y]$-modules:

(a) $\mathcal{D}_X[\ast Y] \otimes_{\mathcal{V}_0^Y(\mathcal{D}_X)} \mathcal{S}p^* \cong \mathcal{S}p^*[\ast Y]$.

(b) $\mathcal{D}_X[\ast Y] \otimes_{\mathcal{V}_0^Y(\mathcal{D}_X)} \mathcal{S}p^*(\log Y) \cong \mathcal{S}p^*[\ast Y]$.

Proof: (a) As $\mathcal{S}p^*$ is a subcomplex of \mathcal{D}_X-modules of $\mathcal{S}p^*[\ast Y]$, and $\mathcal{D}_X[\ast Y]$ is flat over $\mathcal{O}_X \otimes \mathcal{V}_0^Y(\mathcal{D}_X)$, the complex $\mathcal{D}_X[\ast Y] \otimes_{\mathcal{V}_0^Y(\mathcal{D}_X)} \mathcal{S}p^*$ is a subcomplex of $\mathcal{D}_X[\ast Y] \otimes_{\mathcal{V}_0^Y(\mathcal{D}_X)} \mathcal{S}p^*[\ast Y]$, (see lemma 3.1.5, 1.). But, by the third isomorphism of lemma 3.1.5, this complex is the same as $\mathcal{S}p^*[\ast Y]$. Hence, we have an injective morphism of complexes:

\[
\mathcal{D}_X[\ast Y] \otimes_{\mathcal{V}_0^Y(\mathcal{D}_X)} \mathcal{S}p^* \rightarrow \mathcal{S}p^*[\ast Y],
\]

defined locally in each degree by: $P \otimes Q \otimes \delta_1 \wedge \cdots \wedge \delta_p \mapsto P Q \otimes (\delta_1 \wedge \cdots \wedge \delta_p)$. This morphism is clearly surjective and, consequently, an isomorphism.

(b) We consider $\mathcal{V}_0^Y(\mathcal{D}_X)$ as a subsheaf of \mathcal{O}_X-modules of \mathcal{D}_X. Using the fact that $\mathcal{O}_X \otimes \mathcal{O}_X \mathcal{D}er(\log Y)$ is \mathcal{O}_X-free, we have an inclusion

\[
\mathcal{V}_0^Y(\mathcal{D}_X) \otimes_{\mathcal{O}_X} \mathcal{O}_X \mathcal{D}er(\log Y) \hookrightarrow \mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{D}er(\log Y).
\]

On the other hand, as Y is free, we have a natural injective morphism from $\mathcal{O}_X \mathcal{D}er(\log Y)$ to $\mathcal{O}_X \mathcal{D}er_\mathbb{C}(\mathcal{O}_X)$ (cf. [2, AIII 88, Cor.]). As \mathcal{D}_X is flat over \mathcal{O}_X, we have other inclusion:

\[
\mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{D}er(\log Y) \hookrightarrow \mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{D}er_\mathbb{C}(\mathcal{O}_X) \ (p \geq 0).
\]

Composing both of them, we obtain a new inclusion:

\[
\mathcal{V}_0^Y(\mathcal{D}_X) \otimes_{\mathcal{O}_X} \mathcal{D}er(\log Y) \hookrightarrow \mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{D}er_\mathbb{C}(\mathcal{O}_X),
\]

14
for \(p = 0, \ldots, n \). These inclusions give rise to an injective morphism of complexes of \(\mathcal{V}^Y_0(\mathcal{D}_X) \)-modules

\[
\mathcal{S}^p(\log Y) \hookrightarrow \mathcal{S}^p.*
\]

As \(\mathcal{D}_X[\ast Y] \) is flat over \(\mathcal{V}^Y_0(\mathcal{D}_X) \) (see lemma \[3.1.3\], 1.) we have an injective morphism of complexes of \(\mathcal{D}_X[\ast Y] \)-modules:

\[
\theta : \mathcal{D}_X[\ast Y] \otimes \mathcal{V}^Y_0(\mathcal{D}_X) \mathcal{S}^p(\log Y) \hookrightarrow \mathcal{D}_X[\ast Y] \otimes \mathcal{V}^Y_0(\mathcal{D}_X) \mathcal{S}^p. *
\]

defined by: \(\theta(P \otimes Q \otimes (\delta_1 \wedge \cdots \wedge \delta_p)) = P \otimes Q \otimes (\delta_1 \wedge \cdots \wedge \delta_p) \). This morphism is surjective, given \(P \) local section of \(\mathcal{D}_X[\ast Y] \), \(Q \) in \(\mathcal{D} \) and \(\delta_1, \cdots, \delta_n \) in \(\text{Der}_C(\mathcal{O}) \), we have:

\[
P \otimes Q \otimes (\delta_1 \wedge \cdots \wedge \delta_p) = \theta(P f^{-k}) \otimes Q' \otimes (f \delta_1 \wedge \cdots \wedge f \delta_p),
\]

with \(k > 0 \) and \(Q' \) a local section of \(\mathcal{V}^Y_0(\mathcal{D}_X) \) verifying \(f^k Q = Q' f^p \) (see lemma \[3.1.3\]). Composing \(\theta' \) with the isomorphism of (a), we obtain the isomorphism:

\[
\theta : \mathcal{D}_X[\ast Y] \otimes \mathcal{V}^Y_0(\mathcal{D}_X) \mathcal{S}^p(\log Y) \xrightarrow{\sim} \mathcal{S}^p(\ast Y),
\]

with local expression: \(\theta(P \otimes Q \otimes (\delta_1 \wedge \cdots \wedge \delta_p)) = PQ \otimes (\delta_1 \wedge \cdots \wedge \delta_p) \). \(\square \)

3.2 The Logarithmic de Rham Complex

For each divisor \(Y \), we have a standard canonical isomorphism:

\[
\mathcal{H}om_{\mathcal{O}_X} \left(\overset{p}{\wedge} \text{Der}(\log Y), \mathcal{O}_X \right) \cong \mathcal{H}om_{\mathcal{V}^Y_0(\mathcal{D}_X)} \left(\mathcal{V}^Y_0(\mathcal{D}_X) \otimes \mathcal{O}_X, \overset{p}{\wedge} \text{Der}(\log Y), \mathcal{O}_X \right),
\]

defined by: \(\lambda^p(\alpha)(P \otimes \delta_1 \wedge \cdots \wedge \delta_p) = P (\alpha(\delta_1 \wedge \cdots \wedge \delta_p)) \).

Composing this isomorphism with the isomorphism \(\gamma^p \) defined in section \[1.1\], we can construct a natural morphism \(\psi^p = \lambda^p \circ \gamma^p : \)

\[
\Omega^p_X(\log Y) \overset{\psi^p}{\cong} \mathcal{H}om_{\mathcal{V}^Y_0(\mathcal{D}_X)} \left(\mathcal{V}^Y_0(\mathcal{D}_X) \otimes \overset{p}{\wedge} \text{Der}(\log Y), \mathcal{O}_X \right),
\]

for \(p = 0, \cdots, n \). Locally:

\[
\psi^p(\omega_1 \wedge \cdots \wedge \omega_p)(P \otimes \delta_1 \wedge \cdots \wedge \delta_p) = P (\det(\langle \omega_i, \delta_j \rangle)_{1 \leq i,j \leq p}).
\]

with \(\omega_i \ (i = 1, \cdots, n) \) local sections of \(\Omega^1_X(\log Y) \) and \(P \) a logarithmic operator.

Similarly, if \(\mathcal{M} \) is a left \(\mathcal{V}^Y_0(\mathcal{D}_X) \)-module, given an integer \(p \in \{1, \cdots, n\} \), there exist the following canonical isomorphisms:

\[
\gamma^p_{\mathcal{M}} : \Omega^p_X(\log Y) \otimes_{\mathcal{O}_X} \mathcal{M} \overset{\sim}{\rightarrow} \mathcal{H}om_{\mathcal{O}_X} \left(\overset{p}{\wedge} \text{Der}(\log Y), \mathcal{M}_X \right),
\]
\[\lambda^p_M : \mathcal{H}om_{\mathcal{O}_X} \left(\hat{\kappa} \, \text{Der}(\log Y), \mathcal{M} \right) \twoheadrightarrow \mathcal{H}om_{\mathcal{V}_0^Y} \left(\mathcal{V}_0^Y(\mathcal{D}_X) \otimes_{\mathcal{O}_X} \hat{\kappa} \, \text{Der}(\log Y), \mathcal{M} \right), \]

\[\psi^p_M = \lambda^p_M \circ \gamma^p_M : \Omega^p_X(\log Y)(\mathcal{M}) \twoheadrightarrow \mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)} \left(\mathcal{V}_0^Y(\mathcal{D}_X) \otimes \hat{\kappa} \, \text{Der}(\log Y), \mathcal{M} \right). \]

Locally:

\[\psi^p_M(\omega_1 \wedge \cdots \wedge \omega_p \otimes m)(P \otimes \delta_1 \wedge \cdots \wedge \delta_p) = P \cdot \det(\langle \omega_i, \delta_j \rangle)_{1 \leq i, j \leq p} \cdot m. \]

Theorem 3.2.1. If \(\mathcal{M} \) is a left \(\mathcal{V}_0^Y(\mathcal{D}_X) \)-module (or, equivalently, is a \(\mathcal{O}_X \)-module with an integrable logarithmic connection), the complexes of sheaves of \(\mathbb{C} \)-vector spaces \(\Omega^p_X(\log Y)(\mathcal{M}) \) and \(\mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)}(\mathcal{S}^p(\log Y), \mathcal{M}) \) are canonically isomorphic.

Proof: The general case is solved if we prove the case \(\mathcal{M} = \mathcal{V}_0^Y(\mathcal{D}_X) \), using the isomorphisms:

\[\Omega^p_X(\log Y)(\mathcal{M}) \cong \Omega^p_X(\log Y)(\mathcal{V}_0^Y(\mathcal{D}_X)) \otimes_{\mathcal{V}_0^Y(\mathcal{D}_X)} \mathcal{M}, \]

\[\mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)}(\mathcal{S}^p(\log Y), \mathcal{M}) \cong \mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)}(\mathcal{S}^p(\log Y), \mathcal{V}_0^Y(\mathcal{D}_X)) \otimes_{\mathcal{V}_0^Y(\mathcal{D}_X)} \mathcal{M}. \]

For \(\mathcal{M} = \mathcal{V}_0^Y(\mathcal{D}_X) \), we obtain the right \(\mathcal{V}_0^Y(\mathcal{D}_X) \)-isomorphisms

\[\phi^p = \psi^p_{\mathcal{V}_0^Y(\mathcal{D}_X)} : \Omega^p_X(\log Y)(\mathcal{V}_0^Y(\mathcal{D}_X)) \rightarrow \mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)}(\mathcal{S}^p(\log Y), \mathcal{V}_0^Y(\mathcal{D}_X)), \]

whose local expression are:

\[\phi^p(\omega_1 \wedge \cdots \wedge \omega_p \otimes Q)(P \otimes (\delta_1 \wedge \cdots \wedge \delta_p)) = P \cdot \det(\langle \omega_i, \delta_j \rangle) \cdot Q. \]

To prove that these isomorphisms produce a isomorphism of complexes we have to check that they commute with the differential of the complex. Thanks to the isomorphism (b) of the proposition [3.1.0],

\[\mathcal{D}_X[\ast Y] \otimes_{\mathcal{V}_0^Y(\mathcal{D}_X)} \mathcal{S}^p(\log Y) \simeq \mathcal{S}^p(\log Y) \simeq \mathcal{V}_0^Y(\mathcal{D}_X[\ast Y]), \]

we obtain a natural morphism of complexes of sheaves of right \(\mathcal{V}_0^Y(\mathcal{D}_X) \)-modules:

\[\tau^\bullet : \mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)}(\mathcal{S}^p(\log Y), \mathcal{V}_0^Y(\mathcal{D}_X)) \rightarrow \mathcal{H}om_{\mathcal{D}_X[\ast Y]}(\mathcal{S}^p(\log Y), \mathcal{D}_X[\ast Y]), \]

locally defined by:

\[\tau^p(\alpha)(R \otimes (\delta_1 \wedge \cdots \wedge \delta_p)) = f^{-k} \alpha(R \otimes (f \delta_1 \wedge \cdots \wedge f \delta_p)), \]

(for any local sections \(\alpha \) of \(\mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)}(\mathcal{S}^p(\log Y), \mathcal{V}_0^Y(\mathcal{D}_X)) \), \(R \) of \(\mathcal{D}_X[\ast Y] \) and \(\delta_1, \ldots, \delta_p \) of \(\text{Der}_\mathbb{C}(\mathcal{O}_X) \)), where \(P \) is a local section of \(\mathcal{V}_0^Y(\mathcal{D}_X) \) such that \(Rf^{-p} = f^{-k}P \) (see lemma [3.1.3]). The morphisms \(\tau^i \) are injective, because:

\[\alpha(P \otimes (\delta_1 \wedge \cdots \wedge \delta_p)) = \tau^i(\alpha)(P \otimes (\delta_1 \wedge \cdots \wedge \delta_p)). \]
Let us see the following diagram commutes:

$$\Omega^p_X(\log Y)(V_0^\vee(D_X)) \xrightarrow{j^p} \Omega^p_X[*Y](D_X[*Y])$$

$$\downarrow \phi^p \quad \# \quad \downarrow \Phi^p$$

$$\mathcal{H}om_{V_0^\vee(D_X)}(S_p^p(\log Y), V_0^\vee(D_X)) \xrightarrow{\tau^p} \mathcal{H}om_{D_X[*Y]}(S_p^p[*Y], D_X[*Y])$$

for each $p \geq 0$, where the Φ^p are the isomorphisms:

$$\Phi^p : \Omega^p_X[*Y](D_X[*Y]) \rightarrow \mathcal{H}om_{D_X[*Y]}\left(D_X[*Y] \otimes \mathcal{P}er_C(\mathcal{O}_X), D_X[*Y]\right),$$

$$\Phi^p((\omega_1 \wedge \cdots \wedge \omega_p) \otimes Q) (P \otimes (\delta_1 \wedge \cdots \wedge \delta_p)) = P \cdot \det((\omega_i \cdot \delta_j)_{1 \leq i,j \leq p}) \cdot Q.$$

Given $\omega_1, \ldots, \omega_p$ local sections of $\Omega^1_X(\log Y)$, Q and R local sections of $D_X[*Y]$ and $\delta_1, \ldots, \delta_p$ local sections of $\mathcal{P}er_C(\mathcal{O}_X)$, we have

$$(\tau^p \circ \phi^p)((\omega_1 \wedge \cdots \wedge \omega_p) \otimes Q)[R \otimes (\delta_1 \cdots \delta_p)] =$$

$$f^{-k} \phi^p((\omega_1 \wedge \cdots \wedge \omega_p) \otimes Q)[P \otimes (f \delta_1 \wedge \cdots \wedge f \delta_p)] =$$

$$f^{-k} P \cdot \det(\langle \omega_i f \delta_j \rangle) \cdot Q = R \cdot f^{-p} \cdot \det(\langle \omega_i f \delta_j \rangle) \cdot Q = R \cdot \det(\langle \omega_i \delta_j \rangle) \cdot Q =$$

$$\Phi^p \circ j^p((\omega_1 \wedge \cdots \wedge \omega_p) \otimes Q)[R \otimes (\delta_1 \cdots \delta_p)],$$

with P a local section of $\mathcal{V}^\vee_0(D_X)$ such that $Rf^{-p} = f^{-k} P$.

But Φ^\bullet, j^\bullet and τ^\bullet are morphisms of complexes, and τ^\bullet is injective, hence we deduce that the ϕ^p commute with the differential and so define a isomorphism of complexes:

$$\phi^\bullet : \Omega^\bullet_X(\log Y)\left(V_0^\vee(D_X)\right) \rightarrow \mathcal{H}om_{V_0^\vee(D_X)}\left(S_p^\bullet(\log Y), V_0^\vee(D_X)\right),$$

as we wanted to prove.

\[\square\]

Corollary 3.2.2.— There exists a canonical isomorphism in the derived category:

$$\Omega^\bullet_X(\log Y)(\mathcal{M}) \cong R\mathcal{H}om_{V_0^\vee(D_X)}(\mathcal{O}_X, \mathcal{M}).$$

Proof: By theorem 3.1.2, the complex $S_p^\bullet(\log Y)$ is a locally free resolution of \mathcal{O}_X as left $V_0^\vee(D_X)$-module. So, we have only to apply the theorem 3.2.1. \[\square\]

Remark 3.2.3.— In the specific case that $\mathcal{M} = \mathcal{O}_X$, we have that the complexes $\Omega^\bullet_X(\log Y)$ and $\mathcal{H}om_{V_0^\vee(D_X)}(S_p^\bullet(\log Y), \mathcal{O}_X)$ are canonically isomorphic and so, there exists a canonical isomorphism:

$$\Omega^\bullet_X(\log Y) \cong R\mathcal{H}om_{V_0^\vee(D_X)}(\mathcal{O}_X, \mathcal{O}_X).$$
Remark 3.2.4.– A classical problem is the comparison between the logarithmic de Rham complex and the meromorphic de Rham complex relative to a divisor Y,

$$\Omega^*_X[Y] \cong \mathcal{R}\text{Hom}_{\mathcal{D}X}(\mathcal{O}_X, \mathcal{O}_X[Y]) \cong \mathcal{R}\text{Hom}_{\mathcal{O}_Y^*(\mathcal{D}X)}(\mathcal{O}_X, \mathcal{O}_X[Y]).$$

If Y is a normal crossing divisor, an easy calculation shows that they are quasi-isomorphic (cf. [6]). The same result is true if Y is a strongly weighted homogeneous free divisor [5]. As a consequence of theorem 2.1.4, if Y is an arbitrary free divisor, the meromorphic de Rham complex and the logarithmic de Rham complex are quasi-isomorphic if and only if:

$$0 = \mathcal{R}\text{Hom}_{\mathcal{D}X}(\mathcal{D}X \otimes \mathcal{V}_Y(\mathcal{D}X) \otimes \mathcal{O}_X, \mathcal{O}_X[Y]),$$

4 Perversity of the logarithmic complex

Now we consider the complex $\mathcal{D}X \otimes \mathcal{V}_Y(\mathcal{D}X) \mathcal{S}^{p,*}(\log Y)$:

$$0 \to \mathcal{D}X \otimes \mathcal{O}_X \xrightarrow{\varepsilon_1} \cdots \xrightarrow{\varepsilon_{n-1}} \mathcal{D}X \otimes \mathcal{S}^{1} \xrightarrow{\varepsilon_{n}} \mathcal{D}X,$$

where the local expressions of the morphisms are defined by:

$$\varepsilon_p(P \otimes (\delta_1 \wedge \cdots \wedge \delta_p)) = \sum_{i=1}^{p} (-1)^{i-1} P\delta_i \otimes (\delta_1 \wedge \cdots \wedge \hat{\delta}_i \wedge \cdots \wedge \delta_p) + \sum_{1 \leq i < j \leq p} (-1)^{i+j} P \otimes ([\delta_i, \delta_j] \wedge \delta_1 \wedge \cdots \wedge \hat{\delta}_i \wedge \cdots \wedge \hat{\delta}_j \wedge \cdots \wedge \delta_p), \quad (2 \leq p \leq n).$$

$$\varepsilon_{-1}(P \otimes \delta) = P\delta.$$

In the case that Y is a free divisor, we can work at each point x of Y with a basis $\{\delta_1, \cdots, \delta_n\}$ of $\text{Der}(\log f)$, with f a local reduced equation of Y at x.

Proposition 4.0.5.– If $\{\delta_1, \cdots, \delta_n\}$ is a basis of $\text{Der}(\log f)$, and the sequence $\{\sigma(\delta_1), \cdots, \sigma(\delta_n)\}$ is $\text{Gr}_{F^*}(\mathcal{D})$-regular, it verifies

$$\sigma(\mathcal{D}(\delta_1, \cdots, \delta_n)) = \text{Gr}_{F^*}(\mathcal{D})(\sigma(\delta_1), \cdots, \sigma(\delta_n)).$$

Proof: The inclusion $\text{Gr}_{F^*}(\mathcal{D})(\sigma(\delta_1), \cdots, \sigma(\delta_n)) \subset \sigma(\mathcal{D}(\delta_1, \cdots, \delta_n))$ is clair.

Let F be the symbol of an operator P of order d, with

$$P = \sum_{i=1}^{n} P_i \delta_i \in \mathcal{D}(\delta_1, \cdots, \delta_n).$$
We will prove by induction that $F = \sigma(P)$ belongs to $\text{Gr}_{F^*}(\mathcal{D})(\sigma_1, \cdots, \sigma_n)$, with $\sigma_i = \sigma(\delta_i)$. We will do the induction on the maximum order of the P_i ($i = 1, \cdots, n$), order that we will denote by k_0. As P has order d, k_0 is greater or equal to $d - 1$. If $k_0 = d - 1$, we have:

$$\sigma(P) = \sum_{i \in K} \sigma(P_i)\sigma_i,$$

with K the set of subindexes j such that P_j has order k_0 in \mathcal{D}. We suppose that the result holds when $d - 1 \leq k_0 < m$. Let $F = \sigma(P)$, with $P = \sum_{i=1}^{n} P_i \delta_i$ and $k_0 = m$. There are two possibilities:

1. $F = \sigma(P) = \sum_{i \in K} \sigma(P_i)\sigma_i \in \text{Gr}_{F^*}(\mathcal{D})(\sigma_1, \cdots, \sigma_n)$, as we wanted to prove.

2. $\sum_{i \in K} \sigma(P_i)\sigma_i = 0$.

In this last case, as $\{\sigma_1, \cdots, \sigma_n\}$ is a $\text{Gr}_{F^*}(\mathcal{D})$-regular sequence, if we call F_i the symbol $\sigma(P_i)$ in the case that $i \in K$ and 0 otherwise, we have:

$$(F_1, \cdots, F_n) = \sum_{i < j} F_{ij}(0, \cdots, 0, \sigma_j, 0, \cdots, 0, -\sigma_i, 0, \cdots, 0),$$

with $F_{ij} \in \text{Gr}_{F^*}(\mathcal{D})$ homogeneous polynomials of order $m - 1$. We choose, for $1 \leq i < j \leq n$, operators Q_{ij}, of order $m - 1$ in \mathcal{D}, such that $\sigma(Q_{ij}) = F_{ij}$, and define:

$$(Q_1, \cdots, Q_n) = (P_1, \cdots, P_n) - \sum_{i < j} Q_{ij} \left((0, \cdots, 0, \sigma_j, 0, \cdots, 0, -\sigma_i, 0, \cdots, 0) - \alpha_{ij} \right),$$

where α_{ij} are the vectors with n coordinates in \mathcal{O} defined by the relations:

$$[\delta_i, \delta_j] = \sum_{k=1}^{n} a_{ij}^k \delta_k = \alpha_{ij} \cdot \delta,$$

with $\delta = (\delta_1, \cdots, \delta_n)$. These Q_i, of order m in \mathcal{D}, verify

$$(\sigma_m(Q_1), \cdots, \sigma_m(Q_n)) =
(F_1, \cdots, F_n) - \sum_{i < j} F_{ij}(0, \cdots, 0, \sigma_j, 0, \cdots, 0, -\sigma_i, 0, \cdots, 0) = 0.$$

So, Q_i has order $m - 1$ in \mathcal{D}. Moreover,

$$\sum_{i=1}^{n} Q_i \delta_i = \sum_{i=1}^{n} P_i \delta_i - \sum_{i < j} Q_{ij} (\delta_i \delta_j - \delta_j \delta_i - [\delta_i, \delta_j]) = \sum_{i=1}^{n} P_i \delta_i = P.$$
We apply the induction hypothesis to \(F = \sigma(P) \), with
\[
P = \sum_{i=1}^{n} Q_i \delta_i,
\]
and obtain:
\[
\sigma(P) \in \text{Gr}_F^*(D)(\sigma_1, \cdots, \sigma_n).
\]
\[\blacksquare\]

Proposition 4.0.6.— Let \(\{\delta_1, \cdots, \delta_n\} \) be a basis of Der(log f). If the sequence \(\sigma(\delta_1), \cdots, \sigma(\delta_n) \) is a Gr\(_F^*\)(D)-regular sequence in Gr\(_F^*\)(D), the complex \(D \otimes_{\mathcal{O}}^\delta \mathcal{S}p^*(\log f) \) is a resolution of the quotient module \(D(D_{(\delta_1, \cdots, \delta_n)}) \).

Proof: We consider the complex \(D \otimes_{\mathcal{O}}^\delta \mathcal{S}p^*(\log f) \). We can augment this complex of \(D \)-modules by another morphism:
\[
\varepsilon_0 : D \to \frac{D}{D(\delta_1, \cdots, \delta_n)}, \quad \varepsilon_0(P) = P + D(\delta_1, \cdots, \delta_n).
\]
We denote by \(D \otimes_{\mathcal{O}}^\delta \mathcal{S}p^*(\log f) \) the new complex. To prove that this new complex is exact, we define a discrete filtration \(G^* \) such that the graded complex be exact (cf. [1, lemma 3.16]):
\[
G^k \left(D \otimes_{\mathcal{O}}^\delta \text{Der}(\log f) \right) = F^{k-p} \left(D \otimes_{\mathcal{O}}^\delta \text{Der}(\log f) \right),
\]
\[
G^k \left(\frac{D}{D(\delta_1, \cdots, \delta_n)} \right) = \frac{F^k(D) + D \cdot (\delta_1, \cdots, \delta_n)}{D(\delta_1, \cdots, \delta_n)}.
\]
Clairly the filtration is compatible with the differential of the complex. Moreover:
\[
\text{Gr}_{G^*} \left(D \otimes_{\mathcal{O}}^\delta \text{Der}(\log f) \right) = \text{Gr}_{F^*}^\circ(D)[-p] \otimes_{\mathcal{O}}^\delta \text{Der}(\log f),
\]
and, by the previous proposition,
\[
\text{Gr}_{G^*} \left(\frac{D}{D(\delta_1, \cdots, \delta_n)} \right) = \frac{\text{Gr}_{F^*}(D)}{\sigma(D \cdot (\delta_1, \cdots, \delta_n))} = \frac{\text{Gr}_{F^*}(D)}{\text{Gr}_{F^*}(D) \cdot (\sigma(\delta_1), \cdots, \sigma(\delta_n))}.
\]
We consider the complex \(\text{Gr}_{G^*} \left(D \otimes_{\mathcal{O}}^\delta \mathcal{S}p^*(\log f) \right) \):
\[
0 \to \text{Gr}_{F^*}(D)[-n] \otimes_{\mathcal{O}}^\delta \text{Der}(\log f) \xrightarrow{\psi} \cdots \xrightarrow{\psi^2} \text{Gr}_{F^*}(D)[-1] \otimes_{\mathcal{O}}^\delta \text{Der}(\log f) \xrightarrow{\psi^1} \text{Gr}_{F^*}(D) \xrightarrow{\psi_0} \frac{\text{Gr}_{F^*}(D)}{\text{Gr}_{F^*}(D) \cdot (\sigma(\delta_1), \cdots, \sigma(\delta_n))} \to 0,
\]
where the local expression of the differential is defined by:
\[
\psi_p(G \otimes_{\mathcal{O}}^\delta \delta_{j_1} \wedge \cdots \wedge \delta_{j_p}) = \sum_{i=1}^{p} (-1)^{i-1} G\sigma(\delta_{j_i}) \otimes_{\mathcal{O}}^\delta \delta_{j_1} \wedge \cdots \wedge \delta_{j_i} \wedge \cdots \wedge \delta_{j_p}, \quad (2 \leq p \leq n),
\]
\[\psi_{-1}(G \otimes \delta_i) = G\sigma(\delta_i), \]
\[\psi_0(G) = G + Gr(F) \cdot (\sigma(\delta_1), \ldots, \sigma(\delta_n)). \]

This complex is the Koszul complex of the ring \(Gr(F) \) with respect to the sequence \(\sigma(\delta_1), \ldots, \sigma(\delta_n) \). So we deduce that, if the sequence \(\sigma(\delta_1), \ldots, \sigma(\delta_n) \) is \(Gr(F) \)-regular in \(Gr(F) \), the complex \(Gr(G) \left(D \otimes V_f \theta \left(D \right) S p \left(\log f \right) \right) \) is exact. So, the complex \(D \otimes V_f \theta \left(D \right) S p \left(\log f \right) \) is exact too, and \(D \otimes V_f \theta \left(D \right) S p \left(\log f \right) \) is a resolution of \(\mathcal{D} \).

Corollary 4.0.7.— Let \(Y \) be a free divisor. With the conditions of the previous proposition (for each point \(x \) of \(Y \), there exists a basis \(\left\{ \delta_1, \ldots, \delta_n \right\} \) of \(\text{Der}(\log f) \) such that the sequence \(\sigma(\delta_1), \ldots, \sigma(\delta_n) \) is a \(Gr(F) \)-regular sequence), the sheaf \(\Omega_X \left(\log Y \right) \) is a perverse sheaf.

Proof: With the same conditions of the previous proposition, the homology of the complex \(D \otimes Y_f \theta \left(D \right) S p \left(\log Y \right) \) is concentrated in degree 0. All its homology groups are zero except the group in degree 0, which verifies:

\[h^0 \left(D \otimes Y_f \theta \left(D \right) S p \left(\log Y \right) \right) = \frac{D_X}{D_X \cdot \text{Der}(\log Y)} = \frac{D_X}{D_X \cdot (\delta_1, \ldots, \delta_n)} = \mathcal{E}, \]

where \(\left\{ \delta_1, \ldots, \delta_n \right\} \) is a local basis of \(\text{Der}(\log Y) \). But \(\mathcal{E} \) is a holonomic \(D_X \)-module because:

\[Gr(F) \left(\mathcal{E} \right) = \frac{Gr(F) \left(D_X \right)}{(\sigma(\delta_1), \ldots, \sigma(\delta_n))} \]

has dimension \(n \) (using the fact that \(\sigma(\delta_1), \ldots, \sigma(\delta_n) \) is a \(Gr(F) \)-regular sequence). So (using remark [3.2.3] for the first equality and theorem [3.1.2] for the last equality):

\[\Omega_X \left(\log Y \right) = R \text{Hom}_{D_X} \left(D_X \otimes Y_f \left(D_X \right) \mathcal{O}_X, \mathcal{O}_X \right) = R \text{Hom}_{D_X} \left(D_X \otimes Y_f \left(D_X \right) S p \left(\log Y \right), \mathcal{O}_X \right) = R \text{Hom}_{D_X} \left(\frac{D_X}{D_X \left(\delta_1, \ldots, \delta_n \right)}, \mathcal{O}_X \right) \]

is a perverse sheaf (as solution of a holonomic \(D_X \)-module, cf. [11]).

Corollary 4.0.8.— Let \(Y \) be any divisor in \(X \), with \(\text{dim}_C X = 2 \). Then \(\Omega_X \left(\log Y \right) \) is a perverse sheaf.

Proof: We know that, if \(\text{dim}_C X = 2 \), any divisor \(Y \) in \(X \) is free [14]. So, we have only to check that the other hypothesis of the previous corollary
holds. We consider the symbols \(\{\sigma_1, \sigma_2\} \) of a basis \(\{\delta_1, \delta_2\} \) of \(\text{Der}(\log f) \), where \(f \) is a reduced equation of \(Y \). We have to see that they form a \(\text{Gr}_{F^*}(D) \)-regular sequence. If they do not, they have a common factor \(g \in \mathcal{O} \), because they are symbols of operators of order 1. If \(g \) is a unit, we divide one of them by \(g \) and eliminate the common factor. If \(g \) is not a unit, it would be in contradiction with Saito’s Criterion, because the determinant of the coefficients of the basis \(\{\delta_1, \delta_2\} \) would have as factor \(g^2 \), with \(g \) not invertible, and this determinant has to be equal to \(f \) multiplied by a unit.

\[\square \]

Remark 4.0.9.— The regularity of the sequence of the symbols of a basis of \(\text{Der}(\log f) \) in \(\text{Gr}_{F^*}(D) \) is not necessary for the perversity of the logarithmic de Rham complex. For example, if \(X = \mathbb{C}^3 \) and \(Y \equiv \{ f = 0 \} \), with \(f = xy(x + y)(y + tx) \), \(f \) is a free divisor such that the graded complex

\[\mathcal{G}_{\mathcal{T}^*}(D_X \otimes_{Y_0^*}(D_X) S^p*(\log Y)) = K(\sigma(\delta_1), \sigma(\delta_1), \sigma(\delta_3); \mathcal{G}_{F^*}(D_X)) \]

is not concentrated in degree 0, but the complex

\[D_X \otimes_{Y_0^*}(D_X) S^p*(\log Y) \]

is. Moreover, in this case the dimension of \(S_{D_X(\delta_1, \delta_2, \delta_3)}^{D_X} \) is 3 and so, \(\Omega^*_{X}(\log Y) \) is a perverse sheaf.

References

[1] J.E. Björk. *Rings of Differential Operators*, North Holland, Amsterdam, 1979.

[2] N. Bourbaki. *Algèbre Commutative, Chapitres 3 et 4*, volume 1293 of *Actualités Scientifiques et Industrielles*, Hermann, Paris, 1967.

[3] C. Bănică and O. Stănăsilă. *Algebraic methods in the global theory of complex spaces*, John Wiley, New York, 1976.

[4] F.J. Calderón-Moreno. Quelques propriétés de la V-filtration relative à un diviseur libre. *Comptes Rendus Acad. Sci. Paris*, t. 323, Série I:377-381, 1996.

[5] F.J. Castro-Jiménez, D. Mond and L. Narváez-Macarro. Cohomology of the complement of a free divisor. *Transactions of the A.M.S.*, 348:3037–3049, 1996.

[6] P. Deligne. *Equations Différentielles à Points Singuliers Réguliers*, volume 163 of *Lect. Notes in Math.*, Springer-Verlag, Berlin-Heidelberg, 1970.

[7] H. Esnault and E. Viehweg. Logarithmic De Rham complexes and vanishing theorems. *Invent. Math.*, 86:161–194, 1986.
[8] C. Godbillon. *Géométrie Différentielle et Mécanique Analytique*. Collection Méthodes, Hermann, Paris, 1969.

[9] M. Kashiwara. Vanishing cycle sheaves and holonomic systems of differential equations. *Lect. Notes in Math.*, 1012:134–142, 1983.

[10] B. Malgrange. Le polynôme de Bernstein-Sato et cohomologie évanescente. *Astérisque*, 101-102:233–267, 1983.

[11] Z. Mebkhout. *Le formalisme des six opérations de Grothendieck pour les D_X-modules cohérents*, volume 35 of *Travaux en cours*, Hermann, Paris, 1989.

[12] F. Pham. *Singularités des systèmes de Gauss-Manin*, volume 2 of *Progress in Math.*, Birkhäuser, Boston, 1979.

[13] G.S. Rinehart. Differential forms on general commutative algebras. *Trans. A.M.S.*, 108:195-222, 1963.

[14] K. Saito. Theory of logarithmic differential forms and logarithmic vector fields. *J. Fac. Sci. Univ. Tokyo*, 27:265–291, 1980.