Pseudo and Strongly Pseudo 2–Factor Isomorphic Regular Graphs

M. Abreu,
Dipartimento di Matematica, Università della Basilicata,
C. da Macchia Romana, 85100 Potenza, Italy.
e-mail: marien.abreu@unibas.it

D. Labbate, *
Dipartimento di Matematica, Politecnico di Bari
I-70125 Bari, Italy.
e-mail: labbate@poliba.it

J. Sheehan,
Department of Mathematical Sciences, King’s College,
Old Aberdeen AB24 3UE, Scotland.
e-mail: j.sheehan@maths.abdn.ac.uk

Abstract

A graph G is pseudo 2–factor isomorphic if the parity of the number of cycles in a 2–factor is the same for all 2–factors of G. In [3] we proved that pseudo 2–factor isomorphic k–regular bipartite graphs exist only for $k \leq 3$. In this paper we generalize this result for regular graphs which are not necessarily bipartite. We also introduce strongly pseudo 2–factor isomorphic graphs and we prove that pseudo and strongly pseudo 2–factor isomorphic $2k$–regular graphs and k–regular digraphs do not exist for $k \geq 4$. Moreover, we present constructions of infinite families of regular graphs in these classes. In particular we show that the family of Flower snarks is strongly pseudo 2–factor isomorphic but not 2–factor isomorphic and we conjecture that, together with the

*This research was financially supported by the Engineering Faculty of Taranto of the Technical University of Bari (Politecnico di Bari), using funds of the Provincia di Taranto for the support of the faculty’s teaching and scientific activities.
Petersen and the Blanuša graphs, they are the only cyclically 4-edge-connected snarks for which each 2-factor contains only cycles of odd length.

1 Introduction

All graphs considered are finite and simple (without loops or multiple edges). We shall use the term multigraph when multiple edges are permitted.

A graph with a 2-factor is said to be 2–factor hamiltonian if all its 2–factors are Hamilton cycles, and, more generally, 2–factor isomorphic if all its 2–factors are isomorphic. Examples of such graphs are \(K_4, K_5, K_{3,3} \), the Heawood graph (which are all 2–factor hamiltonian) and the Petersen graph (which is 2–factor isomorphic).

Several recent papers have addressed the problem of characterizing families of graphs (particularly regular graphs) which have these properties. It is shown in [4, 8] that \(k \)-regular 2–factor isomorphic bipartite graphs exist only when \(k \in \{2,3\} \) and an infinite family of 3–regular 2–factor hamiltonian bipartite graphs, based on \(K_{3,3} \) and the Heawood graph, is constructed in [8]. It is conjectured in [8] that every 3–regular 2–factor hamiltonian bipartite graph belongs to this family. Faudree, Gould and Jacobsen in [7] determine the maximum number of edges in both 2–factor hamiltonian graphs and 2–factor hamiltonian bipartite graphs. In addition, Diwan [6] has shown that \(K_4 \) is the only 3–regular 2–factor hamiltonian planar graph.

In [3] the above mentioned results on regular 2–factor isomorphic bipartite graphs are extended to the more general family of pseudo 2–factor isomorphic graphs i.e. graphs \(G \) with the property that the parity of the number of cycles in a 2–factor is the same for all 2–factors of \(G \). Example of these graphs are \(K_{3,3} \), the Heawood graph \(H_0 \) and the Pappus graph \(P_0 \). In particular, it is proven that pseudo 2–factor isomorphic \(k \)-regular bipartite graphs exist only when \(k \in \{2,3\} \) and that there are no planar pseudo 2–factor isomorphic cubic bipartite graphs. Moreover, it is conjectured in [3] that \(K_{3,3} \), the Heawood graph \(H_0 \) and the Pappus graph \(P_0 \) are are the only 3-edge-connected pseudo 2–factor isomorphic cubic bipartite graphs together with their repeated star products and some partial results towards this conjecture are obtained.

In this paper, we extend the above mentioned results on regular pseudo 2–factor isomorphic bipartite graphs to the not necessarily bipartite case (cf. Section 3). We introduce strongly pseudo 2–factor isomorphic graphs (Definition 2.4(ii)) and we prove that pseudo and strongly pseudo 2–factor isomorphic \(k \)-regular digraphs and \(2k \)-regular graphs only exist for \(k \leq 3 \) (Theorems 3.1, 3.3 and Corollaries 3.2, 3.4). Moreover, we present four different constructions of infinite classes of regular graphs in these classes (cf.
Section 5). Finally, we deal with snarks and we show that the family of Flower snarks $J(t)$ is strongly pseudo 2–factor isomorphic but not 2–factor isomorphic (Proposition 4.2) and we conjecture that they are, together with the Petersen and the Blanuša2 graphs, the only cyclically 4–edge–connected snarks for which each 2–factor contains only cycles of odd length (Conjecture 4.3).

2 Preliminaries

Let G be a bipartite graph with bipartition (X,Y) such that $|X| = |Y|$, and A be its bipartite adjacency matrix. In general $|det(A)| \leq per(A)$. We say that G is det–extremal if G has a 1–factor and $|det(A)| = per(A)$. Let $X = \{x_1, x_2, \ldots, x_n\}$ and $Y = \{y_1, y_2, \ldots, y_n\}$ be the bipartition of G. For L a 1–factor of G define the sign of L, $\text{sgn}(L)$, to be the sign of the permutation of $\{1,2,\ldots,n\}$ corresponding to L. Thus G is det–extremal if and only if all 1–factors of G have the same sign.

Lemma 2.1 Let L_1, L_2 be 1–factors in a bipartite graph G and t be the number of cycles in $L_1 \cup L_2$ of length congruent to zero modulo 4. Then $\text{sgn}(L_1) \text{sgn}(L_2) = (-1)^t$.

Proof. This is a special case of [11, Lemma 8.3.1]. The proof is simple. □

A result of Thomassen [14, Theorem 5.4] implies:

Theorem 2.2 Let G be a 1–extendable det–extremal bipartite graph. Then G has a vertex of degree at most three. □

Another result of Thomassen [13, Theorem 3.2] implies:

Theorem 2.3 Let G be a det–extremal bipartite graph with bipartition A, B and $|A| = |B| = n$. Then G has a vertex of degree at most $\lfloor \log_2 n \rfloor + 1$. □

Definition 2.4 (i) Let G be a graph which contains a 2–factor. Then G is said to be pseudo 2–factor isomorphic if the parity of the number of cycles in a 2–factor is the same for all the 2–factors of G. (ii) Let G be a graph which has a 2–factor. For each 2–factor F of G, let $t_i^*(F)$ be the number of cycles of F of length $2i$ modulo 4. Set t_i to be the function defined on the set of 2–factors F of G by:

$$t_i(F) = \begin{cases} 0 & \text{if } t_i^*(F) \text{ is even} \\ 1 & \text{if } t_i^*(F) \text{ is odd} \end{cases} (i = 0, 1).$$

Then G is said to be strongly pseudo 2–factor isomorphic if both t_0 and t_1 are constant functions. Moreover, if in addition $t_0 = t_1$, set $t(G) := t_i(F)$, $i = 0, 1$.
By definition, if G is strongly pseudo 2–factor isomorphic then G is pseudo 2–factor isomorphic. On the other hand there exist graphs such as the Dodecahedron which are pseudo 2–factor isomorphic but not strongly pseudo 2–factor isomorphic: the 2–factors of the Dodecahedron consist either of a cycle of length 20 or of three cycles: one of length 10 and the other two of length 5.

In [3] we studied pseudo 2–factor isomorphic regular bipartite graphs. In the bipartite case, pseudo 2–factor isomorphic and strongly pseudo 2–factor isomorphic are equivalent.

Theorem 2.5 Let G be a pseudo 2–factor isomorphic bipartite graph with bipartition A, B and $|A| = |B| = n$. Then G has a vertex of degree at most $\lceil \log_2 n \rceil + 2$.

Proof. Since G is pseudo 2–factor isomorphic, it has a 2–factor X. Since G is bipartite, X can be partitioned into disjoint 1–factors L_0, L_1. Let t be the number of cycles of length congruent to zero modulo four in Y. By Lemma 2.1, $\text{sgn}(L)\text{sgn}(L_0) = (-1)^t$. Since G is pseudo 2–factor isomorphic, t is constant for all choices of L. Thus all 1–factors of G, disjoint from L_0, have the same sign. Hence $G - L_0$ is det–extremal. So by Theorem 2.3, $G - L_0$ has minimum degree at most $\lceil \log_2 n \rceil + 1$. Hence G has minimum degree at most $\lceil \log_2 n \rceil + 2$.

In what follows we will denote by HU, U, SPU and PU the sets of 2–factor hamiltonian, 2–factor isomorphic, strongly pseudo 2–factor isomorphic and pseudo 2–factor isomorphic graphs, respectively. Similarly, $HU(k), U(k), SPU(k), PU(k)$ respectively denote the k–regular graphs in HU, U, SPU and PU.

3 Existence theorems

In this section we generalize the results obtained in [3] for bipartite graphs proving results that extend those obtained in [1] and [2].

For v a vertex of a digraph D, let $d^+(v)$ and $d^-(v)$ denote the out–degree and in–degree of v respectively. We say that D is k–diregular if for all vertices v of D, $d^+(v) = k = d^-(v)$.

Theorem 3.1 Let D be a digraph with n vertices and X be a directed 2–factor of D. Suppose that either

(a) $d^+(v) \geq \lceil \log_2 n \rceil + 2$ for all $v \in V(D)$, or
(b) $d^+(v) = d^-(v) \geq 4$ for all $v \in V(D)$

Then D has a directed 2-factor Y with a different parity of number of cycles from X.

Proof. Suppose that all directed 2-factors Y of D have the same parity of number of cycles. Let $t = 0$ if such a number is even, and $t = 1$ if such a number is odd. Construct the associated bipartite graph G for the digraph D in the following way. For each vertex $u \in V(D)$ make two copies u' and u'' in $V(G)$. Each directed $(u, v) \in E(D)$ becomes the undirected edge $(u', v'') \in E(G)$. Additionally we add the edges (u', u'') to $E(G)$ for all $u \in V(D)$. Note that $L_0 = \{(u', u'') : u \in V(D)\}$ is a 1-factor of G, and that $\{(u', v'') : (u, v) \in X\}$ is a 1-factor of $G - L_0$.

Let L be a 1-factor of G disjoint from L_0. Then $Y' := L \cup L_0$ is a 2-factor in G in which each cycle has alternately edges of L and edges of L_0. This 2-factor gives rise to a directed 2-factor Y of D when we contract each edge of L_0. Now each cycle of Y' corresponds to exactly one cycle of Y but with twice the length. This implies that for any 1-factor L of G disjoint from L_0, the number of cycles in $L \cup L_0$ of length congruent to 0 modulo 4 is equal to the number of even cycles in Y, i.e. it is congruent to t modulo 2.

Using Lemma 2.1, we deduce that for any 1-factor L of G, disjoint from L_0, $\text{sgn}(L)\text{sgn}(L_0) = (-1)^t$. Since t is a constant, we conclude that all 1-factors of G, disjoint from L_0 have the same sign. Hence $G - L_0$ is det-extremal.

Now (a) and (b) follow directly using Theorem 2.5 and Theorem 2.2 respectively. Notice here that in case (b), because of regularity, G is 1-extendable.

Corollary 3.2

(i) $\text{DSPU}(k) = \text{DPU}(k) = \emptyset$ for $k \geq 4$;

(ii) If $D \in \text{DPU}$ then D has a vertex of out-degree at most $\lceil \log_2 n \rceil + 1$.

Theorem 3.3 Let G be a graph with n vertices and X be a 2-factor of G. Suppose that either

(a) $d(v) \geq 2(\lceil \log_2 n \rceil + 2)$ for all $v \in V(G)$, or

(b) G is a $2k$-regular graph for some $k \geq 4$
Then G has a 2-factor Y with a different parity of number of cycles from X.

Proof. Let $G_1 = G - X$ and U be the set of vertices of odd degree in G_1. Let M be a matching between the vertices of U. Let G_2 be the multigraph obtained by adding the edges of M to G_1. Each vertex of G_2 has even degree, and hence each component of G_2 has an Euler tour. Thus we can construct a digraph D_2 by orientating the edges of G_2 in such a way that $d^+(D_2(v)) = d^-(D_2(v))$ for all $v \in V(D_2)$. Let D_1 be the digraph obtained from D_2 by deleting the arcs corresponding to edges in M. Thus either

(i) $d^+(D_1(v)) \geq \lfloor \log_2 n \rfloor + 1$, $d^-(D_1(v)) \geq \lfloor \log_2 n \rfloor + 1$ for all $v \in V(D_1)$, or

(ii) $d^+(D_1(v)) = d^-(D_1(v)) \geq 3$ for all $v \in V(D_1)$.

Let X_1 be a 1–diregular digraph obtained by directing the edges of X and D be the digraph obtained from D_1 by adding the arcs of X_1. Then either

(iii) $d^+(D(v)) \geq \lfloor \log_2 n \rfloor + 2$, $d^-(D(v)) \geq \lfloor \log_2 n \rfloor + 2$ for all $v \in V(D)$, or

(iv) $d^+(D(v)) = d^-(D(v)) \geq 4$ for all $v \in V(D)$.

The result now follows from (iii),(iv) and Theorem 3.1. □

Corollary 3.4

(i) If $G \in PU$ then G contains a vertex of degree at most $2 \lfloor \log_2 n \rfloor + 3$;

(ii) $PU(2k) = SPU(2k) = \emptyset$ for $k \geq 4$. □

We know that $PU(3)$, $SPU(3)$, $PU(4)$ and $SPU(4)$ are not empty (cf. table in Section 5) and we conjectured in [1] that $HU(4) = \{K_5\}$. There are many gaps in our knowledge even when we restrict attention to regular graphs. Some questions arise naturally.

Problem 3.5 Is $PU(2k + 1) = \emptyset$ for $k \geq 2$?

In particular we wonder if $PU(7)$ and $PU(5)$ are empty.

Problem 3.6 Is $PU(6)$ empty?
Problem 3.7 Is K_5 the only 4–edge–connected graph in $PU(4)$?

In Section 5 we present examples of 2–edge–connected graphs in $PU(4)$.

Of course a major problem is to find some sort of classification of the elements of $PU(3)$. A general resolution of this problem is unlikely since we have no classification of the bipartite elements of $PU(3)$. A first step might be to attempt to classify the near bipartite elements of $PU(3)$ (a non-bipartite graph is near bipartite if it can be made bipartite by the deletion of exactly two edges). The cubic near bipartite graph obtained from the Petersen graph by adding an edge joining two new vertices in two edges at maximum distance apart is not in $PU(3)$. On the other hand, if a vertex of $K_{3,3}$ is inflated to a triangle the resulting graph is near bipartite and belongs to $PU(3)$.

Problem 3.8 Do there exist near bipartite graphs of girth at least four in $PU(3)$?

In section 4 we have taken a different direction in examining elements of $PU(3)$ which contain only ‘odd 2–factors’.

We close this section with some remarks on the operation of star products of cubic graphs.

Let G, G_1, G_2 be graphs such that $G_1 \cap G_2 = \emptyset$. Let $y \in V(G_1)$ and $x \in V(G_2)$ such that $d_{G_1}(y) = 3 = d_{G_2}(x)$. Let x_1, x_2, x_3 be the neighbours of y in G_1 and y_1, y_2, y_3 be the neighbours of x in G_2. If $G = (G_1 - y) \cup (G_2 - x) \cup \{ x_1 y_1, x_2 y_2, x_3 y_3 \}$, then we say that G is a star product of G_1 and G_2 and write $G = (G_1, y) \ast (G_2, x)$, or $G = G_1 \ast G_2$ for short, when we are not concerned which vertices are used in the star product. The set $\{ x_1 y_1, x_2 y_2, x_3 y_3 \}$ is a 3–edge cut of G and we shall also say that G_1 and G_2 are 3–cut reductions of G.

Star products preserve the property of being 2–factor hamiltonian, 2–factor isomorphic, pseudo 2–factor isomorphic and, obviously, strongly pseudo 2–factor isomorphic in the family of cubic bipartite graphs (cf. [8],[4],[3]). Note that the converse is not true for 2–connected pseudo 2–factor isomorphic bipartite graphs [3].

In general for graphs not necessarily bipartite, star products do not preserve the property of being 2–factor hamiltonian graphs, since it is easy to check that $K_4 \ast K_4$ is not 2–factor hamiltonian. Hence, 2–factor isomorphic, pseudo 2–factor isomorphic and strongly pseudo 2–factor isomorphic non–bipartite graphs are also not preserved under star products.

Still, it is easily proved that the cubic graph $G := (G_1, x) \ast (G_1, y)$ is 2–factor hamiltonian if and only if G_1 and G_2 are 2–factor hamiltonian and
the 3–edge cut $E_1(x, y) = \{x_1y_1, x_2y_2, x_3y_3\}$ is tight (i.e. every 1–factor of G contains exactly one edge of $E_1(x, y)$, c.f. e.g [11, p. 295])

However, if G_1, G_2 and $G := (G_1, x) \ast (G_2, y)$ are pseudo 2–factor isomorphic graphs for some $x \in V(G_1)$ and $y \in V(G_2)$, then $E_1(x, y)$ is not necessarily tight. For example, if $G_1 = K_4$ and G_2 is the Petersen graph, they are both pseudo 2–factor isomorphic, and so is their star product which contains 2–factors of type $(3, 9)$ and $(5, 7)$, but the 3–edge cut is not tight, since the 2–factor of type $(3, 9)$ contains no edges of the 3–edge cut.

4 Snarks

A snark (cf. e.g. [9]) is a bridgeless cubic graph with edge chromatic number four. (By Vizing’s theorem the edge chromatic number of every cubic graph is either three or four so a snark corresponds to the special case of four). In order to avoid trivial cases, snarks are usually assumed to have girth at least five and not to contain a non–trivial 3–edge cut. The Petersen graph P is the smallest snark and Tutte conjectured that all snarks have Petersen graph minors. This conjecture was confirmed by Robertson, Seymour and Thomas (unpublished, see [12]). Necessarily, snarks are non–hamiltonian.

We say that a graph G is odd 2–factored if for each 2–factor F of G each cycle of F is odd. By definition, an odd 2–factored graph G is strongly pseudo 2–factor isomorphic.

Lemma 4.1 Let G be a cubic 3–connected odd 2–factored graph then G is a snark.

Proof. Since G is odd 2–factored, the chromatic index of G is at least four. Hence, by Vizing’s Theorem, G has chromatic index 4. ∎

Question: Which snarks are odd 2–factored?

Let $t \geq 5$ be an odd integer. The Flower snark (cf. [10]) $J(t)$ is defined in much the same way as the graph $A(t)$ described in [1]. The graph $J(t)$ has vertex set

$$V(t) = \{h_i, u_i, v_i, w_i : i = 1, 2, \ldots, t\}$$

and edge set

$$E(t) = \{h_iu_i, h_iv_i, h_iw_i, u_iu_{i+1}, v_iv_{i+1}, w_iw_{i+1}, : i = 1, 2, \ldots, t - 1\}$$

$$\cup \{u_{i+1}v_1, u_1u_1, w_1w_1\}$$
For \(i = 1, 2, \ldots, t \) we call the subgraph \(IC_i \) of \(J(t) \) induced by the vertices \(\{h_i, u_i, v_i, w_i\} \) the \(i^{th} \) interchange of \(J(t) \). The vertices \(h_i \) and the edges \(\{h_iu_i, h_iv_i, h_iw_i\} \) are called respectively the hub and the spokes of \(IC_i \). The set of edges \(\{u_iu_{i+1}, v_{i+1}, w_iw_{i+1}\} \) linking \(IC_i \) to \(IC_{i+1} \) are said to be the \(i^{th} \) link \(L_i \) of \(J(t) \). The edge \(u_iu_{i+1} \in L_i \) is called the \(u \)-channel of the link. The subgraph of \(J(t) \) induced by the vertices \(\{u_i, v_i : i = 1, 2, \ldots, t\} \) and \(\{w_i : i = 1, 2, \ldots, t\} \) are respectively cycles of length \(2t \) and \(t \) and are said to be the base cycles of \(J(t) \).

Recall that in a cubic graph \(G \), a 2–factor, \(F \), determines a corresponding 1–factor, namely \(E(G) - F \). In studying 2–factors in \(J(t) \) it is more convenient to consider the structure of 1–factors.

Proposition 4.2 Let \(t \geq 5 \) be an odd integer. Then \(J(t) \) is odd 2–factored. Moreover, \(J(t) \) is strongly pseudo 2–factor isomorphic but not 2–factor isomorphic.

Proof. If \(L \) is a 1–factor of \(J(t) \) each of the \(t \) links of \(J(t) \) contain precisely one edge from \(L \). This follows from the argument in \([1]\) Lemma 4.7. Then, a 1–factor \(L \) may be completely specified by the ordered \(t \)–tuple \((a_1, a_2, \ldots, a_t)\) where \(a_i \in \{u_i, v_i, w_i\} \) for each \(i = 1, 2, \ldots, t \) and indicates which edge in \(L_i \) belongs to \(L \). Together these edges leave a unique spoke in each \(IC_i \) to cover its hub. Note that \(a_i \neq a_{i+1}, i = 1, 2, \ldots, t \). To read off the corresponding 2–factor \(F \) simply start at a vertex in a base cycle at the first interchange. If the corresponding channel to the next interchange is not banned by \(L \), proceed along the channel to the next interchange. If the channel is banned, proceed via a spoke to the hub (this spoke cannot be in \(L \)) and then along the remaining unbanned spoke and continue along the now unbanned channel ahead. Continue until reaching a vertex already encountered, so completing a cycle \(C_1 \). At each interchange \(C_1 \) contains either 1 or 3 vertices. Furthermore as \(C_1 \) is constructed iteratively, the cycle \(C_1 \) is only completed when the first interchange is revisited. Since \(C_1 \) uses either 1 or 3 vertices from \(IC_1 \) it can revisit either once or twice. If \(C_1 \) revisits twice then \(C_1 \) is a hamiltonian cycle which is not the case. Hence it follows that \(F \) consists of two cycles \(C_1 \) and \(C_2 \). Let \(k_1 \) and \(k_3 \) be respectively the number of interchanges which contain 1 and 3 vertices of \(C_1 \). Then the length of \(C_1 \) is \(k_1 + 3k_3 \). Since \(C_1 \) visits iteratively each of the \(t \) interchanges, \(k_1 + k_3 \) is odd. Thus, the length of \(C_1 \) is odd and so is the length of \(C_2 \). Hence \(J(t) \) is odd 2–factored and \(J(t) \in SPU(3) \).

Finally, \(J(t) \notin U(3) \) since it has 2–factors of types \((t, 3t)\) and \((t+4, 3t-4)\). Indeed, if \((a_1, a_2, \ldots, a_t)\) is such that \(a_i \in \{u_i, v_i\} \), we obtain a 2–factor of type \((t, 3t)\) in \(J(t) \). On the other hand, if \((a_1, a_2, \ldots, a_t)\) is such that \(a_j = w_j \), for some \(j \in \{1, \ldots, t\} \), and \(a_i \in \{u_i, v_i\} \), for all \(i \neq j \), we obtain a 2–factor of type \((t+4, 3t-4)\) in \(J(t) \). \(\square \)
A set S of edges of a graph G is a *cyclic edge cut* if $G - S$ has two components each of which contains a cycle. We say that a graph G is *cyclically m–edge–connected* if each cyclic edge cut of G has size at least m. We consider graphs without cyclic edge cuts to be cyclically m–edge–connected for all $m \geq 1$. Thus, for instance K_4 and $K_{3,3}$ are cyclically m–edge–connected for all $m \geq 1$.

We have the following information about some well–known snarks:

Snark	Odd 2–factored	2–Factor Types
Blanuša snark 1	No	(5, 5, 8) et al.
Blanuša snark 2	Yes	(5, 13) and (9, 9)
Loupekine snark 1	No	(5, 8, 9) et al.
Loupekine snark 2	No	(5, 8, 9) et al.
Celmins-Swart snark 1	No	(5, 5, 8, 8) et al.
Double Star snark	No	(7, 7, 16) et al.
Szekeres snark	No	(5, 5, 40) et al.

We have also checked all known snarks up to 22 vertices and all the named snarks up to 50 vertices and they are all not odd 2–factored, except for the Petersen graph, Blanuša 2, and the Flower snark $J(t)$. We tentatively and possibly wildly suggest the following:

Conjecture 4.3 A cyclically 4–edge–connected snark is odd 2–factored if and only if G is the Petersen graph, Blanuša 2, or a Flower snark $J(t)$, with $t \geq 5$ and odd.

5 Appendix: 2–edge–connected constructions

In this section we present some sporadic examples and some constructions for graphs in $HU(k), U(k), SPU(k)$ and $PU(k)$, for $k = 3, 4$. The sporadic examples will be presented in a table, and since some platonic solids belong to some of these classes we have included them all (even those that do not belong to any of these sets). Lists of numbers (if present), in the last column of the table, represent the types of 2–factors of the corresponding graph.
Some of these sporadic examples will be used as seeds for the following 2–edge–connected constructions. Firstly we describe a family of pseudo 2–factor isomorphic cubic graphs based on a construction used in [3] for 2–factor isomorphic bipartite graphs. Here we show that this construction preserves pseudo 2–factor isomorphic not necessarily bipartite graphs but not strongly pseudo 2–factor isomorphic ones. Then we present a specific construction of strongly pseudo 2–factor isomorphic cubic graphs which are not 2–factor isomorphic. Finally we present two infinite families of 2–edge–connected 4–regular graphs which are strongly pseudo 2–factor isomorphic.

(1) We construct an infinite family of graphs in $PU(3)$.
Let G_i be a cubic graph and $e_i = (x_i, y_i) \in E(G_i)$, $i = 1, 2, 3$. Let $G^* = (G_1, e_1) \circ (G_2, e_2) \circ (G_3, e_3)$ be the 3–regular graph called 3–joins (cf. [3] p. 440) defined as follows:

$$V(G^*) = \left(\bigcup_{i=1}^{3} V(G_i) \right) \cup \{u, v\}$$

$$E(G^*) = \left(\bigcup_{i=1}^{3} (E(G_i) - \{e_i\}) \right) \cup \left(\bigcup_{i=1}^{3} \{(x_i, u), (y_i, v)\} \right),$$

G^* is 2–edge–connected but not 3–edge connected. In [3] Proposition 3.18 we proved that if G_i are 2–factor hamiltonian cubic bipartite graphs, then G^* is 2–factor isomorphic.
Proposition 5.1 Let G_i $(i = 1, 2, 3)$ be pseudo 2–factor isomorphic cubic graphs. Then G^* is a cubic pseudo 2–factor isomorphic graph.

Proof. All the 2–factors F in G^* are composed from 2–factors F_1, F_2, F_3 of G_1, G_2, G_3 such that, for some $\{i, j, k\} = \{1, 2, 3\}$, we have $e_i \notin F_i$, $e_j \in F_j$, and $e_k \in F_k$. Let C_j and C_k be the cycles of F_j, F_k, containing the edges e_j, e_k respectively. Then the cycles of F are all the cycles from F_1, F_2 and F_3, except for C_j and C_k, and the cycle $C = (C_j \cup C_k) - \{e_j, e_k\} \cup \{x_ju, y_jv, x_kv, y_kv\}$. Therefore, the parity of the number of cycles in a 2–factor F of G^* is $t(F) = t(F_1) + t(F_2) + t(F_3) - 1 \pmod{2}$. Since $t(F_i)$ is constant for each $i = 1, 2, 3$, then $t(F)$ is also constant and G^* is pseudo 2–factor isomorphic. \hfill \square

A brief analysis of the values of t_0 and t_1 over all 2–factors of G^*, with respect to the values of t_0 and t_1 in G_i, for $i = 1, 2, 3$, gives rise to the following proposition.

Proposition 5.2 Let G_i be strongly pseudo 2–factor isomorphic graphs such that in any 2–factor of G_i all cycles have even length, $i = 1, 2, 3$. Then G^* is strongly pseudo 2–factor isomorphic. \hfill \square

However, in general, strongly pseudo 2–factor isomorphism is not preserved under this construction. A counterexample can be built from the Flower snark $J(5)$ (cf. Section 4). In fact, the graph $J(5)^*$, obtained as a 3–join of $G_i := J(5)$ and $e_i := v_7u_1$, $i = 1, 2, 3$, is not strongly pseudo 2–factor isomorphic since it contains 2–factors of types $(5, 5, 5, 15, 32)$ and $(5, 5, 11, 15, 26)$.

(2) We construct an infinite family of graphs $H(n)$ in $SPU(3)$.

Let $H(n)$, be the family of cubic graphs on $n \geq 14$ vertices, n even, defined as follows. Let $K^{*}_{3,3}$ and K^{*}_{4} be the graphs obtained by deleting exactly one edge from $K_{3,3}$ and K_{4} respectively. Set $n \equiv 2j \pmod{8}$, $j = 0, 1, 2, 3$. Set $\theta := j + 2 \pmod{4}$ where $0 \leq \theta \leq 3$. Then $H(n)$ is an infinite family of cubic graphs on $n \geq 14$ vertices, n even, obtained from a cycle of length $(n - 2\theta)/4$ by “inflating” θ of the vertices of the cycle into copies of $K^{*}_{3,3}$ and $(n - 6\theta)/4$ of the vertices of the cycle into copies of K^{*}_{4} (cf. e.g. picture below for $H(14)$).

Proposition 5.3 The family of cubic graphs $H(n)$ is strongly pseudo 2–factor isomorphic but not 2–factor isomorphic.

Proof. By construction $H(n)$ has 2–factors $F_1 := F_1(n)$, where F_1 consists of θ cycles of length 6 and $(n - 6\theta)/4$ cycles of length 4, and $F_2 := F_2(n)$, where F_2 consists of a cycle of length n (i.e. it is hamiltonian). Hence $H(n)$ is not 2–factor isomorphic.

First suppose $n \equiv 0 \pmod{4}$. Then $j = 0$ or 2 and $\theta = 2$ or 0, respectively. Therefore, θ is even and $(n - 6\theta)/4$ is odd. Thus, the number of cycles
in a 2–factor of $H(n)$ is odd, and all such cycles have even length. Thus $H(n) \in \mathcal{P}(3)$. Moreover, it is easy to check that t_0 and t_1 are constant. Hence $H(n) \in \mathcal{S}(3)$.

Now suppose $n \equiv 2 \pmod{4}$. Then $j = 1$ or 3 and $\theta = 3$ or 1, respectively. Therefore, θ is odd and $(n - 6\theta)/4$ is even. Thus, the number of cycles in a 2–factor of $H(n)$ is odd, and all such cycles have even length. Thus $H(n) \in \mathcal{P}(3)$. Again it is easily checked that t_0 and t_1 are constant. Hence $H(n) \in \mathcal{S}(3)$. \hfill \Box

(3) We construct an infinite family of graphs $H^*(5(2k+1))$ in $\mathcal{S}(4)$.

Let $K^*_5 = K^*_5 - e$. Take an odd cycle C_{2k+1}. Let $H^*(5(2k+1))$, $k \geq 1$ be the graph of degree 4 obtained by inflating each vertex of C_{2k+1} to a graph isomorphic to K^*_5. The 2–factors of $H^*(5(2k+1))$ are $F_1 = (5(2k+1))$ and $F_2 = (5, 5, \ldots, 5)$ with $2k+1$ cycles of size 5. Therefore, $t^*(H^*(5(2k+1))) = 0$ and $H^*(5(2k+1))$ is a 4–regular 2–edge–connected strongly pseudo 2–factor isomorphic but not 2–factor isomorphic (cf. e.g. picture below for $H^*(15)$). Notice that adding any edge to $H^*(5(2k+1))$ results in a graph which is not pseudo 2–factor isomorphic.

(4) We construct a second infinite family of graphs in $\mathcal{S}(4)$.

In [1, p. 400] we defined an edge e belonging to a 2–factor of a graph G to be loyal if for each 2–factor F containing e, the cycle to which e belongs had constant length, independently of the choice of F. We used graphs containing
a loyal edge to define an infinite family of 2-connected 4-regular 2-factor isomorphic graphs [1, Construction (1), p. 400]. We extend this construction to the strongly pseudo 2-factor isomorphic case.

Let G be a graph and let e be one of its edges such that there are 2-factors F, F' of G containing and avoiding e respectively. We now define e to be pseudo loyal if for each 2-factor F containing e, the cycle to which e belongs has constant length modulo 4, independently of the choice of F.

Let $G \in SPU(4)$ and let e be a pseudo loyal edge in G, and let c be the length (modulo 4) of the cycle containing e in a 2-factor of G containing e. Let G_1, G_2, G_3, G_4 be four isomorphic copies of G and $e_i = x_iy_i$ be the loyal edge in G_i corresponding to e. We construct a 4-regular graph G' called a 4-seed graft of G by taking

$$V(G') = \left(\bigcup_{i=1}^{4} V(G_i)\right) \cup \{u, v\}$$

and

$$E(G') = \left(\bigcup_{i=1}^{4} (E(G_i) - \{e_i\})\right) \cup \left(\bigcup_{i=1}^{4} \{(x_i, u), (y_i, v)\}\right)$$

We call the new vertices u, v clips and we refer to G as a seed for G'.

Proposition 5.4 Let $G \in SPU(4)$ and let e be a pseudo loyal edge in G. Then the 4-regular seed graft G' of G is strongly pseudo 2-factor isomorphic, has connectivity 2 and each edge of G' which is adjacent to a clip is pseudo loyal.

Proof. By construction G' is not 3-edge connected thus G' has connectivity 2. Let F be a 2-factor of G'. Relabeling if necessary, we may suppose that $\{ux_1, ux_2, vy_1, vy_2\} \subseteq F$. Then $(F \cap G_i) + e_i$ are 2-factors of G_i containing e_i for $i = 1, 2$, and $F \cap G_j$ is a 2-factor of G_j avoiding e_j for $j = 3, 4$. The cycle of F containing the clips is $C = (C_1 - e_1) \cup (C_2 - e_2) \cup \{x_1u, y_1v, x_2u, x_2v\}$ and it has constant length $2c + 2(\text{mod} 4)$, independently of the choice of F, where c is the length (modulo 4) of the cycle containing e in a 2-factor of G containing e. Then, each edge of G' adjacent to a clip is pseudo loyal. This also implies that the values t_0 and t_1 are constant over all 2-factors of G', independently of the choice of F. Hence, $G' \in SPU(4)$. \qed

Note: In [1, p. 400] the only seed we had for the family of graphs with loyal edges was $K_5 \in U(4)$, in which each edge is loyal. In the family $H^*(5(2k+1))$ the edges of the cycle C_{2k+1} are pseudo loyal, and if k is even, then all edges of the graph are pseudo loyal. Therefore, Proposition 5.4 gives rise to an infinite family of 2-connected graphs in $SPU(4)$ starting from $H^*(5(2k+1))$ for each value of k.

References

[1] M. Abreu, R. Aldred, M. Funk, B. Jackson, D. Labbate and J. Sheehan, Graphs and digraphs with all 2–factor isomorphic, *J. Combin. Th. Ser. B*, 92 (2004), no. 2, 395–404.

[2] M. Abreu, R. Aldred, M. Funk, B. Jackson, D. Labbate and J. Sheehan, Corrigendum to "Graphs and digraphs with all 2–factors isomorphic" [J. Combin. Theory Ser. B 92 (2) (2004), 395-404] *J. Combin. Th. Ser. B*, 99 (2009), no. 1, 271–273.

[3] M. Abreu, A. Diwan, B. Jackson, D. Labbate and J. Sheehan, Pseudo 2–Factor Isomorphic Regular Bipartite Graphs, *J. Combin. Th. Ser. B*, 98 (2008), no. 2, 432–442.

[4] R. Aldred, M. Funk, B. Jackson, D. Labbate and J. Sheehan, Regular bipartite graphs with all 2–factors isomorphic, *J. Combin. Th. Ser. B*, 92 (2004), no. 1, 151–161.

[5] J.A. Bondy and U.S.R. Murty, U. S. R. *Graph Theory*, Springer Series: Graduate Texts in Mathematics, Vol. 244, 2008.

[6] A.A. Diwan, Disconnected 2–factors in planar cubic bridgeless graphs, *J. Combin. Th. Ser. B*, 84, (2002), 249–259.

[7] R.J. Faudree, R.J. Gould, and M.S. Jacobson, On the extremal number of edges in 2–factor hamiltonian graphs, *Graph Theory - Trends in Mathematics*, Birkhäuser (2006), 139–148.

[8] M. Funk, B. Jackson, D. Labbate and J. Sheehan, 2–factor hamiltonian graphs, *J. of Combin. Th. Ser. B*, 87, (2003), no.1, 138–144.

[9] D.A. Holton and J. Sheehan, *The Petersen graph*, Australian Mathematical Society Lecture Series, 7. Cambridge University Press, Cambridge, 1993.

[10] R. Isaacs, Infinite families on nontrivial trivalent graphs which are not Tait colourable, *Amer. Math. Monthly*, 82 (1975) 221–239.

[11] L. Lovász and M.D. Plummer, *Matching Theory*, AMS Chelsea Publishing, vol. 367, Rhode Island, 2009.

[12] N. Robertson, P. Seymour and R. Thomas, Tutte’s edge-colouring conjecture, *J. Combin. Theory Ser. B*, 70 (1997), no. 1, 166–183.

[13] C. Thomassen, Even cycles in directed graphs, *European J. Combin.*, 6 (1985), no. 1, 85–89.

[14] C. Thomassen, The even cycle problem for directed graphs. *J. Amer. Math. Soc.*, 5 (1992), no. 2, 217–229.