Supplemental Table 1 – Neat Standard Procurement and Storage Conditions

Vendor	Standard	CAS	Purity (%)	Physical State	Storage Condition
Acros Organics	Butanoic Acid	107-92-6	99+	Liquid	Chemical Shelf
Acros Organics	Isovanillin	621-59-0	98	Solid	Chemical Shelf
Acros Organics	L-Limonene	5989-54-8	96	Liquid	Chemical Shelf
Acros Organics	L-Menthol	2216-51-5	99.5	Solid	Chemical Shelf
Acros Organics	Maltol	118-71-8	99	Solid	Chemical Shelf
Acros Organics	Triacetin	102-76-1	99	Liquid	Chemical Shelf
Alfa Aesar	Benzyl Alcohol	100-51-6	99+	Liquid	Chemical Shelf
Alfa Aesar	D-Limonene	5989-27-5	97	Liquid	Chemical Shelf
Alfa Aesar	Ethyl Vanillin	121-32-4	98	Solid	Chemical Shelf
Alfa Aesar	Eucalyptol	470-82-6	99	Liquid	Chemical Shelf
Alfa Aesar	Vanillin	121-33-5	99	Solid	Chemical Shelf
Cambridge Isotopes	Acenaphthene-d10	15067-26-2	99	Solid	Chemical Shelf
Cambridge Isotopes	Benzene-d6	1076-43-3	99.5	Liquid	Chemical Shelf
Cambridge Isotopes	Chlorobenzene-d5	3114-55-4	99	Liquid	Chemical Shelf
Cambridge Isotopes	Pyridine-d5	7291-22-7	99.5	Liquid	Chemical Shelf
Santa Cruz Biotechnology	Acetoin	513-86-0	97	Solid	4-8°C
Santa Cruz Biotechnology	Naphthalene-d8	1146-65-2	NA	Solid	Chemical Shelf
Sigma Aldrich	Benzaldehyde	100-52-7	99.5	Liquid	Chemical Shelf, under argon
Sigma Aldrich	Eugenol	97-53-0	99	Liquid	Chemical Shelf
Sigma Aldrich	Furaneol	3658-77-3	99	Solid	4-8°C, under argon
Sigma Aldrich	Methyl Salicylate	119-36-8	99	Liquid	Chemical Shelf
TCI	(+)Pulegone	89-82-7	95	Liquid	Chemical Shelf
TCI	2,3,5-Trimethylpyrazine	14667-55-1	98	Liquid	Chemical Shelf
TCI	Ethyl Maltol	4940-11-8	99	Solid	Chemical Shelf
TCI	Ethyl Salicylate	118-61-6	99	Liquid	Chemical Shelf
TCI	trans-Cinnamaldehyde	14371-10-9	98	Liquid	Chemical Shelf
Supplemental Table 2 – Preparation Information for Calibration and Quality Control (QC) Standards

Standard ID	Volume of Neat Standard (μL)	Volume of 20mg/mL Working Solution² (μL)	Volume of Previous Calibration Level (μL)	Volume of 50:50 PG:VG (5% H2O) (μL)	Total Volume (μL)	Concentration (mg/mL)
C10	100, each¹	5000	NA	3700	10,000	10.0
C9	---	---	5000 (of C10)	5000	10,000	5.00
C8	---	---	5000 (of C9)	5000	10,000	2.50
C7	---	---	5000 (of C8)	5000	10,000	1.25
C6	---	---	5000 (of C7)	5000	10,000	0.63
C5	---	---	5000 (of C6)	5000	10,000	0.31
C4	---	---	5000 (of C5)	5000	10,000	0.16
C3	---	---	5000 (of C4)	5000	10,000	0.08
C2	---	---	5000 (of C3)	5000	10,000	0.04
C1	---	---	5000 (of C2)	5000	10,000	0.02
C0	---	---	---	5000	10,000	0.00
QC9	80, each¹	4000	NA	4960	10,000	8.00
QC8	---	---	5000 (of QC9)	5000	10,000	4.00
QC7	---	---	5000 (of QC8)	5000	10,000	2.00
QC6	---	---	5000 (of QC7)	5000	10,000	1.00
QC5	---	---	5000 (of QC6)	5000	10,000	0.50
QC4	---	---	5000 (of QC5)	5000	10,000	0.25
QC3	---	---	5000 (of QC4)	5000	10,000	0.13
QC2	---	---	5000 (of QC3)	5000	10,000	0.06
QC1	---	---	5000 (of QC2)	5000	10,000	0.03

¹Refer to Supplemental Table 1 for each liquid neat standard to be added

²Prepared by weighting 2.0000 ± 0.0005mg of each neat solid standard (see Supplemental Table 1) into 100mL of methanol and hand-vortex 5 min, or until visible granules are dissolved.
Chemical	Instrument Linear Range¹ (mg/mL)	Working Calibration Range² (mg/mL)	Calibration Curve Fit	Average³ Coefficient of Determination (r²)	Average³ RRF	Average³ RRT	Average³ RSE (%)	LLOQ (mg/mL)	S:N⁴ at LLOQ
Acetoin	0.31-10.00	0.31-10.00	Quadratic, 1/x²	0.995	0.03	1.24	6.9	0.31	715
Butanoic Acid	0.16-10.00	0.63-10.00	Quadratic, 1/x²	0.995	0.34	1.13	7.2	0.63	59
Benzaldehyde	0.02-10.00	0.02-10.00	Quadratic, 1/x²	0.996	0.56	1.12	6.7	0.02	45
2,3,5-Trimethylpyrazine	0.02-10.00	0.02-10.00	Quadratic, 1/x²	0.995	0.70	1.24	7.9	0.02	846
DL-Limonene	0.08-10.00	0.08-10.00	Quadratic, 1/x²	0.993	0.14	1.26	8.3	0.08	891
Eucalyptol	0.04-10.00	0.04-10.00	Quadratic, 1/x²	0.995	0.09	1.29	7.0	0.04	438
Benzyl Alcohol	0.02-5.00	0.02-5.00	Quadratic, 1/x²	0.995	0.54	1.35	7.1	0.02	164
Furaneol	0.02-5.00	0.02-5.00	Quadratic, 1/x²	0.994	0.25	1.37	7.8	0.02	35
Maltol	0.16-10.00	0.63-10.00	Quadratic, 1/x²	0.992	0.49	1.47	8.9	0.63	580
L-Menthol	0.08-10.00	0.08-10.00	Quadratic, 1/x²	0.997	0.08	1.51	5.6	0.08	631
Methyl Salicylate	0.08-10.00	0.08-10.00	Quadratic, 1/x²	0.993	0.36	1.00	8.5	0.08	2212
Ethyl Maltol	0.08-10.00	0.63-10.00	Quadratic, 1/x²	0.992	0.24	1.02	8.4	0.63	492
(+)Pulegone	0.02-10.00	0.02-10.00	Quadratic, 1/x²	0.995	0.19	1.04	6.5	0.02	1256
Ethyl Salicylate	0.02-10.00	0.02-10.00	Quadratic, 1/x²	0.993	0.37	1.06	8.2	0.02	1986
trans-Gingaldehyde	0.02-5.00	0.16-5.00	Quadratic, 1/x²	0.995	0.33	1.09	7.7	0.16	157
Triacetin	0.02-10.00	0.04-10.00	Quadratic, 1/x²	0.997	0.18	1.12	5.7	0.04	10
Eugenol	0.04-10.00	0.04-10.00	Quadratic, 1/x²	0.994	0.38	1.15	7.6	0.04	652
Vanillin	0.31-10.00	0.63-10.00	Quadratic, 1/x²	0.994	0.24	1.26	7.9	0.63	159
Ethyl Vanillin	0.04-10.00	0.31-10.00	Quadratic, 1/x²	0.995	0.14	1.32	7.3	0.31	1125
Isovanillin	0.04-10.00	0.31-10.00	Quadratic, 1/x²	0.994	0.28	1.02	7.7	0.31	162

¹Determined from percent recovery values (±20%) of each calibrator

²Determined from method validation parameters, including LLOQ and carryover analysis and represents calibration range applicable to quantitation of e-cigarette liquids

³Average of 7 independent batches analyzed across 7 days

⁴S:N = Signal/Noise ratio. Value calculated and provided by automated instrument software during data analysis. Acceptable peak identification from baseline noise is considered 10:1.
Supplemental Table 4 – Average Recovery and Coefficient of Variation (CV) Across 7 Calibration Batches

Level	Expected Concentration (mg/mL)	Initial Calibration	Quality Control
	0.02 0.04 0.08 0.16 0.31 0.63 1.25 2.5 5.0 10.0	0.0 0.1 0.3 0.2 0.5 1.0 2.0 4.0 8.0	
Acetoin	0 15 41 74	101 97 99 102 100 100	0 12 43 67
Butanoic Acid	30 26 88	102 95 97 99 106 107 96	25 26 78
Benzaldehyde	99 99 95 98 100 106 107 104 94	91 94 93 93 95 100 102 102 96	
2,3,5-Trimethylpyrazine	105 96 94 95 96 99 109 110 104 91	95 90 90 91 94 101 105 102 92	
DL-Limonene	55 90	97 99 99 98 98 98 108 97	58 81 102 100 105 103 102 111 105
Eucalyptol	87 99 99 100 98 100 101 101 102 99	90 99 96 98 99 98 98 102 96	
Benzyl Alcohol	93 102 100 95 98 97 105 108 104	67 102 94 92 94 96 102 108 107 71	
Furaneol	102 88 100 97 102 102 106 104 96 13	104 105 95 101 103 106 104 105 14	
Maltol	45 55 86	93 94 96 104 111 108 93	43 56 79
L-Menthol	73 82	100 100 101 98 102 101 101 101 100	
Methyl Salicylate	85 85	95 93 97 100 107 111 106 92	61 87 99 99 100 100 100 101 100
Ethyl Maltol	45 71	100 91 95 96 104 109 110 94	82 81 94 95 104 107 107 96
(+)Pulegone	98 99 103 95 100 97 101 104 106 96	98 93 95 93 98 105 109 113 100	
Ethyl Salicylate	99 95 94 97 97 100 107 112 107 94	104 94 103 98 98 101 103 104 104 99	
trans-Cinnamaldehyde	99 98 97 97 101 101 107 104 94 14	13 97 95 97 100 104 106 102 14	
Triacetin	100 98 98 99 98 100 101 104 104 97	93 94 95 93 96 96 99 102 97	
Eugenol	86 95 95 95 97 100 106 110 108 92	87 96 94 96 99 106 110 112 99	
Vanillin	71 70 70 81	96 101 101 105 108 95	67 65 66 80
Ethyl Vanillin	91 95 97 96 96 100 103 106 108 95	96 99 95 94 95 102 104 110 99	
Isovanillin	90 98 97 95 96 100 104 106 107 94	92 95 92 95 99 101 104 108 97	
Benzene-d6	107 104 103 103 102 103 100 101 101 107 94	95 95 94 95 94 95 95 94 96	
Pyridine-d5	105 104 102 102 102 101 100 100 100 100	97 98 97 96 96 96 94 95 95	
Chlorobenzene-d5	107 105 101 102 103 103 100 101 101 102 102 103 103 100 101 101 102 102		
Naphthalene-d8	106 104 101 101 101 102 100 100 98 97	96 97 96 96 97 96 95 94 93	
Acenaphthene-d10	107 105 102 102 103 102 100 101 101 100 99	98 98 98 98 97 98 98 96 95	

Coefficient of Variation (CV) (%)
Acetoin
Compound

Butanoic Acid
Benzaldehyde
2,3,5-Trimethylpyrazine
DL-Limonene
Eucalyptol
Benzylic Alcohol
Furaneol
Maltol
L-Menthol
Methyl Salicylate
Ethyl Maltol
(+)Pulegone
Ethyl Salicylate
trans-Cinnamaldehyde
Triacetin
Eugenol
Vanillin
Ethyl Vanillin
Isovanillin
Benzenedi6
Pyridined5
Chlorobenzened5
Naphthalened8
Acenaphthened10

1Averaged from 7 independent batches analyzed across 7 days
Italicized and grey indicates values outside of the instrument linear range where recovery is estimated. Bold indicates values outside of 80-120% percent recovery or ±20% CV.
Supplemental Table 5 – Method Validation Parameters for Mid-Range and Low-Range Fortified Matrix Samples Across 7 Batches

Method Validation Measure¹	Mid-Range Fortified Matrix Samples	LLOQ Fortified Matrix Samples									
	Expected Concentration (mg/mL)										
	0.04	0.10	0.88	1.75	3.5	7.0	0.01	0.04	0.07	0.10	0.27
Acetoin											
Within Batch Precision (%)											
Batch #											
1	8	19	4	7	4	2	---	21	29	7	5
2	27	4	9	6	3	1	---	33	3	20	11
3	9	8	3	4	3	4	---	8	4	9	10
4	6	38	4	6	1	3	---	41	50	19	14
5	---	5	6	2	6	7	---	---	---	---	20
6	---	92	5	6	2	5	---	5	---	---	9
7	---	---	7	4	9	2	---	---	5	29	4
Between Batch Precision (%)	68	33	6	6	6	5	---	50	53	29	12
Between Batch Bias (%)	37	17	2	1	1	1	---	48	0	9	5
Butanoic Acid											
Within Batch Precision (%)											
Batch #											
1	8	7	5	5	3	1	19	5	6	9	3
2	7	10	2	2	3	2	2	5	5	11	2
3	10	5	0	2	3	2	7	14	7	8	6
4	4	6	0	1	1	4	7	6	5	5	2
5	6	3	1	2	2	2	20	8	0	2	5
6	17	10	4	3	3	1	51	19	14	10	7
7	11	7	3	3	3	3	---	29	9	3	7
Between Batch Precision (%)	32	14	4	3	3	5	43	30	17	14	8
Between Batch Bias (%)	39	-2	-8	-2	4	1	252	36	4	-4	-13
Benzaldehyde											
Within Batch Precision (%)											
Batch #											
1	11	2	5	2	4	5	18	7	4	4	0
2	6	4	1	3	2	4	15	3	4	1	5
3	2	3	1	2	3	4	10	4	6	4	4
4	4	7	3	5	1	1	18	2	3	5	6
5	11	6	1	1	2	3	21	6	7	13	2
6	13	4	2	1	3	1	28	1	8	4	5
7	8	2	1	2	4	0	4	9	4	3	5
Between Batch Precision (%)	8	6	4	5	4	4	30	12	8	7	6
Between Batch Bias (%)	-5	-10	-5	-1	0	-2	-5	-5	-6	-5	-5
------------------------	----	-----	----	----	---	----	----	----	----	----	----
2,3,5-Trimethylpyrazine											
Within Batch Precision (%)											
Batch #	1	2	3	4	5	6	7	8	9	10	11
Between Batch Precision (%)											
Between Batch Bias (%)											

Between Batch Precision (%)	-5	-10	-5	-1	0	-2	-5	-5	-6	-5	-5
DL-Limonene											
Within Batch Precision (%)											
Batch #	1	2	3	4	5	6	7	8	9	10	11
Between Batch Precision (%)											
Between Batch Bias (%)											

Between Batch Precision (%)	-5	-10	-5	-1	0	-2	-5	-5	-6	-5	-5
Eucalyptol											
Within Batch Precision (%)											
Batch #	1	2	3	4	5	6	7	8	9	10	11
Between Batch Precision (%)											
Between Batch Bias (%)											

Between Batch Precision (%)	-5	-10	-5	-1	0	-2	-5	-5	-6	-5	-5
Benzyl Alcohol											
Within Batch Precision (%)											
Batch #	1	2	3	4	5	6	7	8	9	10	11
Between Batch Precision (%)											
Between Batch Bias (%)											
Batch #	Furaneol	Between Batch Precision (%)	Between Batch Bias (%)								
---------	----------	----------------------------	-----------------------								
1	4	13	-1								
2	4	11	-7								
3	4	11	2								
4	1	7	8								
5	2	6	-2								
6	1	2	12								
7	1	1	2								

Batch #	Maltol	Between Batch Precision (%)	Between Batch Bias (%)
1	5	13	6
2	5	11	-3
3	5	10	3
4	4	10	4
5	1	9	2
6	4	8	3
7	9	7	-4

Batch #	L-Menthol	Between Batch Precision (%)	Between Batch Bias (%)
1	27	18	8
2	13	12	-2
3	14	17	-
4	6	11	10
5	4	7	6
6	10	4	18
7	17	6	-29

Furaneol

Within Batch Precision (%)

Batch #	1	2	3	4	5	6	7	8	9
1	11	8	4	3	4	5	22	15	10
2	11	4	4	4	7	3	7	7	3
3	9	5	2	4	7	24	7	9	4
4	14	1	3	4	6	24	18	13	5
5	10	9	6	6	10	2	7	9	4
6	19	5	5	2	4	6	10	14	9
7	4	3	4	4	13	7	10	8	4

Maltol

Within Batch Precision (%)

Batch #	1	2	3	4	5	6	7	8	9
1	5	5	0	0	4	3	1	1	4
2	3	5	5	3	4	2	8	2	3
3	4	2	3	2	2	3	2	3	3
4	9	4	1	2	1	0	5	5	5
5	5	1	3	1	2	1	4	4	7
6	7	4	2	2	2	2	12	8	6
7	9	8	3	4	3	2	9	2	3

L-Menthol

Within Batch Precision (%)

Batch #	1	2	3	4	5	6	7
1	27	16	5	2	3	4	65
2	13	9	1	1	4	3	39
3	14	10	2	3	1	3	34
4	6	13	6	4	1	1	53
5	4	9	1	4	3	2	96
6	10	8	2	2	2	1	88
7	17	14	4	4	2	3	20

Between Batch Precision (%)

Furaneol	Between Batch Precision (%)
13	11
7	5
4	4
9	11

Between Batch Bias (%)

Furaneol	Between Batch Bias (%)
-1	-7
2	8
8	-2
12	1
2	0

Maltol

Between Batch Precision (%)

| 37 | 16 |
| 4 | 3 |

Between Batch Bias (%)

42	-2
-3	5
9	3

L-Menthol

Between Batch Precision (%)

18	12
4	3
4	4

Between Batch Bias (%)

8	0
-2	0
-29	6
0	-5
-8	-8
Methyl Salicylate																																																										
Within Batch Precision (%)	**Batch #**	**1**	**2**	**3**	**4**	**5**	**6**	**7**	**8**	**9**	**10**	**11**	**12**	**13**	**14**	**15**	**16**	**17**	**18**	**19**	**20**	**21**	**22**	**23**	**24**	**25**	**26**	**27**	**28**	**29**	**30**	**31**	**32**	**33**	**34**	**35**	**36**	**37**	**38**	**39**	**40**	**41**	**42**	**43**	**44**	**45**	**46**	**47**	**48**	**49**	**50**	**51**	**52**	**53**	**54**	**55**	**56**	**57**
Between Batch Precision (%)	**1**	**2**	**3**	**4**	**5**	**6**	**7**	**8**	**9**	**10**	**11**																																															
Between Batch Bias (%)	**1**	**2**	**3**	**4**	**5**	**6**	**7**	**8**	**9**	**10**	**11**																																															

Ethyl Maltol																																															
Within Batch Precision (%)	**Batch #**	**1**	**2**	**3**	**4**	**5**	**6**	**7**	**8**	**9**	**10**	**11**	**12**	**13**	**14**	**15**	**16**	**17**	**18**	**19**	**20**	**21**	**22**	**23**	**24**	**25**	**26**	**27**	**28**	**29**	**30**	**31**	**32**	**33**	**34**	**35**	**36**	**37**	**38**	**39**	**40**	**41**	**42**	**43**	**44**	**45**	**46**
Between Batch Precision (%)	**1**	**2**	**3**	**4**	**5**	**6**	**7**	**8**	**9**	**10**	**11**																																				
Between Batch Bias (%)	**1**	**2**	**3**	**4**	**5**	**6**	**7**	**8**	**9**	**10**	**11**																																				

(+)Pulegone																																															
Within Batch Precision (%)	**Batch #**	**1**	**2**	**3**	**4**	**5**	**6**	**7**	**8**	**9**	**10**	**11**	**12**	**13**	**14**	**15**	**16**	**17**	**18**	**19**	**20**	**21**	**22**	**23**	**24**	**25**	**26**	**27**	**28**	**29**	**30**	**31**	**32**	**33**	**34**	**35**	**36**	**37**	**38**	**39**	**40**	**41**	**42**	**43**	**44**	**45**	**46**
Between Batch Precision (%)	**1**	**2**	**3**	**4**	**5**	**6**	**7**	**8**	**9**	**10**	**11**																																				
Between Batch Bias (%)	**1**	**2**	**3**	**4**	**5**	**6**	**7**	**8**	**9**	**10**	**11**																																				

Ethyl Salicylate																																													
Within Batch Precision (%)	**Batch #**	**1**	**2**	**3**	**4**	**5**	**6**	**7**	**8**	**9**	**10**	**11**	**12**	**13**	**14**	**15**	**16**	**17**	**18**	**19**	**20**	**21**	**22**	**23**	**24**	**25**	**26**	**27**	**28**	**29**	**30**	**31**	**32**	**33**	**34**	**35**	**36**	**37**	**38**	**39**	**40**	**41**	**42**	**43**	**44**
Between Batch Precision (%)	**1**	**2**	**3**	**4**	**5**	**6**	**7**	**8**	**9**	**10**	**11**																																		
Between Batch Bias (%)	**1**	**2**	**3**	**4**	**5**	**6**	**7**	**8**	**9**	**10**	**11**																																		
	5	7	4	2	0	3	1	13	5	2	6	4																																	
------	---	---	---	---	---	---	---	----	---	---	---	---																																	
6	10	3	1	3	3	2	6	3	10	4	3																																		
7	13	4	2	2	1	1	10	4	4	4																																			

Between Batch Precision (%)

Between Batch Bias (%)	7	5	2	2	2	3	18	8	6	5	4
	-2	-6	0	4	8	1	8	-9	-10	-11	-10

trans-Cinnamaldehyde

	1	4	4	4	4	4	1	28	16	2	4	6
2	3	7	2	5	5	---	23	10	2	7	4	
3	1	4	4	2	5	13	18	13	4	4	3	
4	9	5	2	1	8	13	8	11	3	4		
5	5	5	2	2	11	---	7	2	5	8	5	
6	9	8	6	7	---	6	11	3	5	3		
7	9	4	2	2	11	---	29	9	4	9	4	

Within Batch Precision (%)

	-9	-18	-18	-19	-11	-21	-13	-12	-10	-12	-10

Triacetin

	1	4	3	1	3	2	2	28	16	2	4	6
2	3	4	4	1	2	1	40	4	3	5	5	
3	8	6	3	3	2	2	33	11	5	3	3	
4	16	8	5	4	1	3	36	9	7	9	0	
5	12	12	4	3	3	1	16	22	8	5	4	
6	20	8	6	1	3	1	40	12	7	9	9	
7	4	4	5	3	3	1	45	4	12	4	8	

Between Batch Precision (%)

Between Batch Bias (%)	16	7	4	3	3	3	41	19	11	8	8
	-6	-7	-4	-1	1	-2	-7	-8	-11	-8	-13

Eugenol

	1	0	4	4	3	2	3	7	8	2	8	2
2	1	6	1	2	1	3	3	7	3	4	3	
3	3	4	1	3	2	3	4	4	3	4	2	
4	4	5	2	3	3	2	13	4	7	8	7	
5	10	5	1	2	5	1	11	7	10	5	4	
6	5	4	3	1	2	5	5	8	6	4	4	
7	7	2	2	1	3	3	13	13	8	3	0	

Vanillin

	11	5	3	3	3	3	30	14	8	6	4
2	-1	-10	-1	5	9	0	13	-15	-20	-21	-22
Within Batch Precision (%)

Batch #	1	2	3	4	5	6	7
1	4	2	1	1	4	3	4
2	10	9	1	2	1	2	5
3	4	4	3	3	1	3	4
4	5	3	3	3	1	1	4
5	18	3	4	3	3	1	2
6	11	2	1	2	3	1	1
7	16	3	3	1	4	2	10

Between Batch Precision (%)	35	13	6	7	5	6	86
Between Batch Bias (%)	31	-3	-5	1	7	2	97

Ethyl Vanillin

Batch #	1	2	3	4	5	6	7
1	2	7	1	3	2	3	21
2	16	7	2	4	0	2	8
3	9	4	2	3	1	1	35
4	4	6	5	2	2	1	13
5	16	7	4	2	4	1	75
6	9	2	2	2	2	2	20
7	13	4	2	3	3	2	9

Between Batch Precision (%)	13	6	3	3	4	47	15
Between Batch Bias (%)	5	-6	1	5	9	2	9

Isovanillin

Batch #	1	2	3	4	5	6	7
1	14	2	3	3	2	4	5
2	1	1	1	5	6	4	10
3	2	7	4	5	7	2	57
4	11	8	5	6	5	6	39
5	9	8	1	5	2	6	14
6	3	1	4	2	5	6	27
7	11	3	6	1	6	3	23

Between Batch Precision (%)	12	5	4	5	5	49	10
Between Batch Bias (%)	1	-7	1	5	8	11	-6

1Averaged from 7 independent batches analyzed across 7 days

Italicized and grey indicates values outside of the instrument linear range where recovery is estimated. Bold indicates values outside of 80-120% percent recovery or ±20% CV.
Supplemental Table 6 – Carryover Assessment with 50:50 PG:VG and Methanol Matrix Blanks

	Matrix blank assessed	50:50 PG:VG	50:50 PG:VG	Methanol	Methanol
Standard concentration injected prior to matrix blank		8mg/mL	10mg/mL		
Acetoin	0.00	0.00	0.00	0.00	0.00
Butanoic Acid	**0.04**	**0.04**	0.00	0.00	0.00
Benzaldehyde	0.00	0.00	0.00	0.00	0.00
2,3,5-Trimethylpyrazine	0.00	0.00	0.00	0.00	0.00
DL-Limonene	0.00	0.00	0.00	0.00	0.00
Eucalyptol	0.00	0.00	0.00	0.00	0.00
Benzy1 Alcohol	0.00	0.00	0.00	0.00	0.00
Furaneol	0.00	0.00	0.00	0.00	0.00
Maltol	**0.04**	**0.04**	**0.03**	**0.03**	
L-Menthol	0.00	0.00	0.00	0.00	0.00
Methyl Salicylate	0.00	0.00	0.00	0.00	0.00
Ethyl Maltol	**0.03**	**0.03**	**0.02**	**0.01**	
(+)-Pulegone	0.00	0.00	0.00	0.00	0.00
Ethyl Salicylate	0.00	0.00	0.00	0.00	0.00
trans-Cinnamaldehyde	0.00	0.00	**0.01**	**0.01**	
Triacetin	0.00	0.00	0.00	0.00	0.00
Eugenol	0.00	0.00	0.00	0.00	0.00
Vanillin	**0.05**	**0.04**	**0.02**	**0.01**	
Ethyl Vanillin	**0.01**	**0.00**	**0.00**	**0.00**	
Isovanillin	0.00	**0.01**	**0.02**	**0.01**	

Average Carryover (mg/mL)
Supplemental Table 7 – Dilution Precision and Bias Determined from Four Dilution Factors

Dilution Factor	Fortified Matrix Sample Concentration (mg/mL)	Concentration after dilution (mg/mL)	Between Run Precision (CV%)	Between Run Bias (CV%)						
	2X	5X	10X	50X						
2X	5	10	18.6	5	10	18.6	10	18.6	10	18.6
5X	2.5	5	9.3	1	2	3.72	1	1.86	0.2	0.372
Between Run Precision (CV%)										
Acetoin	7	7	2	7	9	6	11	6	17	17
Butanoic Acid	14	16	19	15	13	4	20	5	16	14
Benzaldehyde	3	2	6	3	5	6	9	5	8	11
2,3,5-Trimethylpyrazine	5	6	10	7	6	5	7	4	9	16
DL-Limonene	10	7	16	13	13	14	19	8	11	7
Eucalyptol	4	3	10	4	5	4	9	7	8	
Benzyl Alcohol	10	4	14	26	18	7	23	21	41	46
Furaneol	11	17		11	19	27	18	17	10	23
Maltol	4	6	5	3	6	3	6	6	9	10
L-Menthol	3	5	10	4	5	4	6	6	5	14
Methyl Salicylate	4	3	9	6	4	4	7	6	6	16
Ethyl Maltol	4	4	3	5	6	5	7	7	12	13
(+)Pulegone	5	2	9	6	6	4	5	5	8	17
Ethyl Salicylate	3	5	10	3	3	5	6	5	6	13
trans-Cinnamaldehyde	4	12	---	9	15	13	19	17	15	23
Triacetin	4	4	8	7	6	5	7	6	13	20
Eugenol	4	4	7	5	5	4	6	3	8	17
Vanillin	9	7	9	7	7	8	8	9	16	19
Ethyl Vanillin	5	6	3	8	4	6	5	7	14	17
Isovanillin	5	2	19	5	4	13	9	5	11	23
Between Run Bias (CV%)										
Acetoin	9	6	-2	7	1	-7	17	-10	19	-14
Butanoic Acid	-11	-5	-14	-17	-14	-3	-14	-4	-14	-33
Benzaldehyde	16	16	0	14	16	7	25	6	16	-10
2,3,5-Trimethylpyrazine	14	8	-5	10	10	3	21	5	13	-15
DL-Limonene	**26**	**28**	-9	11	**42**	8	**41**	1	**45**	4
Eucalyptol	5	7	-9	3	5	-9	14	-10	8	-23
Benzyl Alcohol	**24**	10	-12	**33**	25	6	**47**	20	**54**	19
Furaneol	-11	-**21**	-**37**	-18	-26	-42	-14	-**38**	-11	-**39**
Compound	11	13	-3	0	9	5	14	1	-2	-26
-------------------	----	----	----	---	---	---	----	---	----	-----
Maltol	11	13	-3	0	9	5	14	1	-2	-26
L-Menthol	5	9	-4	5	7	-4	22	1	29	-6
Methyl Salicylate	13	12	-10	8	17	3	24	5	15	-13
Ethyl Maltol	13	13	-6	2	11	0	13	-4	-3	-28
(+)-Pulegone	9	7	-9	6	6	-5	17	-2	18	-11
Ethyl Salicylate	20	14	-9	16	21	6	31	10	20	-9
trans-Cinnamaldehyde	15	9	-8	7	-4	-13	7	-14	19	-17
Triacetin	6	5	-8	4	6	-7	15	-5	16	-15
Eugenol	15	10	-8	9	12	1	19	3	12	-14
Vanillin	-1	-8	7	-5	-13	1	-7	2	-8	-15
Ethyl Vanillin	6	-5	11	1	-7	8	2	9	-1	-6
Isovanillin	-2	-18	53	-4	-26	20	-21	17	-19	1

Italicized and grey indicates values outside of the instrument linear range where recovery is estimated. Bold indicates values outside of ±20% CV.
Supplemental Table 8 – Descriptive Summary of Twenty Flavoring Chemicals Detected in 215 Commercial E-Cigarette Liquids with Various Flavors

Flavor Category	Predominately Found	% Found in most Predominate Flavor Category
L-Menthol	Menthol/Mint	48
Ethyl Maltol	Fruit (tropical), Dessert	24, 19
Vanillin	Dessert	35
Triacetin	Fruit (tropical), Fruit (berries)	27, 16
Ethyl Vanillin	Dessert	36
Butanoic Acid	Fruit (berries)	44
Methyl Salicylate	Menthol/Mint, Fruit (tropical), Tobacco	33 each
Acetoin	Dessert	50
Maltol	Fruit (berries), Fruit (other)	30, 26
Benzyl Alcohol	Fruit (tropical), Fruit (berries)	26, 22
Furaneol	Candy, Dessert, Fruit (berries)	22, 20, 19
Benzaldehyde	Candy, Other Beverages	35, 25
DL-Limonene	Menthol/Mint	33
Eugenol	Fruit (tropical)	100
Eucalyptol	Menthol/Mint	100
(+)Pulegone	Menthol/Mint	83
2,3,5-Trimethylpyrazine	Tobacco	62
Ethyl Salicylate	---	---
trans-Cinnamaldehyde	---	---
Isovanillin	---	---
Supplemental Figure 1 – Calibration Curves for Twenty Flavoring Chemicals

(A) Acetoin

(B) Butanoic Acid

(C) Benzaldehyde

(D) 2,3,5-Trimethylpyrazine

(E) DL-Limonene

(F) Eucalyptol

(G) Benzyl Alcohol

(H) Furan-2-ol
(I) Maltol

Maltol - 5 Levels, 5 Levels Used, 5 Points, 5 Points Used, 4 QCs

$y = 0.06496 \times x^2 + 0.720615 \times x - 0.095732$

$R^2 = 0.99909397$

Type: Quadratic, Origin: Ignore, Weight: 1/x^2

(J) L-Menthol

L-Menthol - 8 Levels, 8 Levels Used, 8 Points, 8 Points Used, 7 QCs

$y = -0.001589 \times x^2 + 0.091434 \times x - 0.01726$

$R^2 = 0.99610914$

Type: Quadratic, Origin: Ignore, Weight: 1/x^2

(K) Methyl Salicylate

Methyl Salicylate - 8 Levels, 8 Levels Used, 8 Points, 8 Points Used, 7 QCs

$y = 0.003196 \times x^2 + 0.397547 \times x - 0.006466$

$R^2 = 0.99744189$

Type: Quadratic, Origin: Ignore, Weight: 1/x^2

(L) Ethyl Maltol

Ethyl Maltol - 5 Levels, 5 Levels Used, 5 Points, 5 Points Used, 4 QCs

$y = 1.578438E-004 \times x^2 + 0.336239 \times x - 0.033232$

$R^2 = 0.99675926$

Type: Quadratic, Origin: Ignore, Weight: 1/x^2

(M) (+)Pulegone

(+)-Pulegone - 10 Levels, 10 Levels Used, 10 Points, 10 Points Used, 9 QCs

$y = 0.006511 \times x^2 + 0.196289 \times x - 2.641118E-004$

$R^2 = 0.99816798$

Type: Quadratic, Origin: Ignore, Weight: 1/x^2

(N) Ethyl Salicylate

Ethyl Salicylate - 10 Levels, 10 Levels Used, 10 Points, 10 Points Used, 9 QCs

$y = 0.969839E-004 \times x^2 + 0.383340 \times x - 0.8391439E-004$

$R^2 = 0.99640183$

Type: Quadratic, Origin: Ignore, Weight: 1/x^2

(O) trans-Cinnamaldehyde

trans-Cinnamaldehyde - 6 Levels, 6 Levels Used, 6 Points, 6 Points Used, 5 QCs

$y = -0.06282 \times x^2 + 0.393074 \times x + 0.006493$

$R^2 = 0.99839879$

Type: Quadratic, Origin: Ignore, Weight: 1/x^2

(P) Triacetin

Triacetin - 9 Levels, 9 Levels Used, 9 Points, 9 Points Used, 8 QCs

$y = 0.002161 \times x^2 + 0.165733 \times x + 0.001615$

$R^2 = 0.99640183$

Type: Quadratic, Origin: Ignore, Weight: 1/x^2
Circles (black) indicate calibration standards within the working calibration range (Supplemental Table 3) and are included in the calculation of the curve and corresponding r^2 value.

Triangles (blue) indicate quality control standards within the working calibration range.