Adaptive Finite-time Dynamic Surface Neural Network Control of an Uncertain Robot with Output Constraint and Input Saturation

Zhao Zhang
Guangzhou University

Lingxi Peng
Guangzhou University

Zhijia Zhao (zhjzhaoscut@163.com)
Guangzhou University
https://orcid.org/0000-0001-5893-0233

Research Article

Keywords: Neural network, Input saturation, Output constraints, Nussbaum function, Dynamic surface control, Finite-time

DOI: https://doi.org/10.21203/rs.3.rs-660414/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Adaptive Finite-time Dynamic Surface Neural Network
Control of an Uncertain Robot with Output Constraint and Input Saturation

Zhao Zhang, Lingxi Peng*, and Zhijia Zhao†

School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
*Co-first author, †Corresponding author: zhjzhaoscut@163.com

Abstract—In this study, a finite-time dynamic surface neural network control is developed for an uncertain n-link robot subject to input saturation and output constraints. First, a barrier Lyapunov function and a hyperbolic tangent function are applied to solve the system constraints using a dynamic surface control. Subsequently, a radial basis function neural network is utilized to handle system uncertainties. Then, a finite-time filter is employed in the design to achieve the fast convergence and a Nussbaum function is employed to optimize the design process. Finally, the simulation results show that the dynamic tracking error is proved to converging to zero, and the proposed control method is effective and never violates the constraints.

Index Terms—Neural network, Input saturation, Output constraints, Nussbaum function, Dynamic surface control, Finite-time.

I. INTRODUCTION

In recent years, the application scenarios of manipulator systems are constantly expanding, so the research on them is increasingly deepening [1]–[3]. Due to different application scenarios, the robot system is generally subjected to constraints [4]–[8], such as dead zone [9], saturation [10], [11], hysteresis [12], [13], specified performance [14]–[16], and so forth. Saturation as a common nonlinear characteristics is broadly found in the actuator of physical systems because of the upper limit of motor torques [17]–[21]. Ignoring saturation effects can lead to system performance degradation and even instability. Output constraints widely exist in consideration of safety or performance specifications [22]. Violating output constraints will result in output performance degradation and even bring serious consequences. Therefore, the synthetic influence of output constraint and input saturation in the robot system should be considered during the process of control design.

To address the output constraint or input saturation, many researchers have proposed diverse solutions
in recent years [23]–[30]. To list some examples, in [24], [26], a saturation function was employed to
describe the mathematical model of input saturation. In [27], the dead zone nonlinearity was applied
to replace the saturation nonlinearity in multi-agent systems, and the hyperbolic tangent function was
applied to the control law design of a flexible manipulator with input and rate constraints [30], which can
effectively solve the problem that the sharp corner of saturation function was not differentiable. In [31],
[32], the constrained system was transformed into the unconstrained case using the system transformation
technique and the system remained to be stable. A barrier Lyapunov function (BLF) was adopted to deal
with the control problems of state or output constrained systems in [2], [8], [33]–[36]. However, the above
methods only resolved the issue of output constraint or input saturation and cannot be applied to the
robot system simultaneously affected by output constraint and input saturation. In specific applications,
constraints generally exist in multiple forms, which will pose an increased challenge to the control design
and analysis.

Since the backstepping control is able to handle diverse nonlinearities during the design [37]–[42], it has
become a common design aid for the control of various nonlinear systems [30], [43]–[46]. The main idea
is to split the high-order system into several subsystems, and then use Lyapunov method to design the
appropriate virtual control law for each subsystem to achieve the overall control object, but the biggest
problem is that “term explosion” will occur in the process of frequent derivation, which makes the control
law design difficult. In order to solve this issue, the dynamic surface control (DSC) was presented in
[47] by designing a filter to obtain a first-order derivative approximation of the input signal based on
the definition of derivative, which greatly reduced the complexity of the design process. In [48], a radial
basis function neural network (RBFNN) based adaptive control approach was presented with a dynamic
surface technique for stochastic nonlinear pure-feedback constrained systems. In [49], [50], an adaptive
neural network based DSC was developed for nonlinear saturated systems. In [51], an adaptive DSC was
presented for hypersonic vehicles with dead zone. In [52], based on fuzzy control and DSC, a dynamic-
scaling adaptive fuzzy tracking controller was constructed to cope with unknown nonlinearities. However,
the above literatures were confined to the fixed-time DSC of nonlinear systems with input constraints,
and these schemes are ineffective for the finite-time convergence [53]–[57] DSC of the robot system with
output constraint and input saturation.

In this study, we tend to develop a finite-time adaptive neural network DSC for an n-link rigid robot system
with output constraint and input saturation. Compared with the existing work, the main contributions are:

(i) A hyperbolic tangent function and a Nussbaum function are introduced to tackle the input saturation
in the robot system, and the Moore Penrose inverse term and BLF are adopted to guarantee no transgression of output constraint.

(ii) An adaptive neural network DSC with a finite-time filter is designed to approximate the unknown dynamic model, improve the system robustness, ensure a good trajectory tracking performance, and make the output of the filter track the input signal in a finite-time.

(iii) The Lyapunov method is employed to demonstrate the stability of the system, and all the trajectory tracking errors will converge to zero.

II. PROBLEM FORMULATION

Lemma 1. [2] If the function $V(t) \geq 0$ is a continuous function for $\forall t \in R$ with a bounded $V(0)$, we have:

$$\dot{V}(t) \leq -c_1 V(t) + c_2$$

where $c_1, c_2 > 0$ are constants.

Lemma 2. The follow inequality holds for any vectors $x, y \in R^n$:

$$x^T y \leq \frac{\epsilon^p \|x\|^p}{p} + \frac{\|y\|^q}{q \epsilon^q}$$

where $\epsilon > 0, p > 1, q > 1$.

Lemma 3. [57] For the filter

$$\dot{x}_d + \alpha (x_d - x_e) + \beta (x_d - x_e)^{q/p} = 0$$

$$x_d(0) = x_e(0)$$

where x_d is the output signal, x_e is the input signal, α and β are positive constant, p, q are odd numbers and $p > q > 0$. If above conditions are true, then for any input signal $x_e \in [0, +\infty]$, the output signal can follow the input signal in a finite-time with the convergence upper bound satisfying the following:

$$t = \frac{p}{\alpha (p - q)} \ln \frac{\alpha (x_d(0) - x_{e,\text{max}})^{(p-q)/p} + \beta}{\beta}.$$

Based on the Lagrangian function, the mathematical model of the n-linked robot under study is formulated as follows

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q} + G(q) = u(v) - J(q)^T f(t)$$

where $q, \dot{q}, \ddot{q} \in R^n$ denote the position, velocity and acceleration vectors, respectively, $u(v) \in R^n$ is
the input of the system, and \(v \in \mathbb{R}^n \) is the intermediate variable. \(M(q), C(q, \dot{q}) \in \mathbb{R}^{n \times n} \), and \(G(q) \in \mathbb{R}^n \) represent the inertia matrix, Centripetal and Coriolis torques matrix, and gravitational force vector, respectively, with \(M(q) \) being a positive definite matrix. \(J(q) \) denotes the nonsingular Jacobian matrix, and \(f(t) \in \mathbb{R}^n \) denotes the vector of external disturbance.

Let \(x_1 = q \) and \(x_2 = \dot{q} \), then we obtain the following translation

\[
\begin{align*}
\dot{x}_1 &= \dot{x}_2 \\
\dot{x}_2 &= M^{-1}[u(v) - J(x_1)^Tf(t) - C(x_1, x_2)x_1 - G(x_1)].
\end{align*}
\]

For the convenience of the following text, we abbreviate notations of \(M(q), C(q, \dot{q}), G(q), J(q), \) and \(f(t) \) as \(M, C, G, J, \) and \(f \), respectively.

Property 1: The matrix \(M(q) \) is symmetric and positive definite.

Property 2: The matrix \(\dot{M}(q) - 2C(q, \dot{q}) \) is skew-symmetric.

In this study, the robot system subjected to the input saturation is considered and the saturation limit is \(u_M > 0 \) satisfying \(|u(v)| \leq u_M \). Hence, the hyperbolic tangent smoothing function is exploited for approximating the saturated nonlinearity designed as

\[
u(t) = g(v) = u_M\tanh\left(\frac{v(t)}{u_M}\right) = u_M \frac{e^{v(t)/u_M} - e^{-v(t)/u_M}}{e^{v(t)/u_M} + e^{-v(t)/u_M}}
\]

where \(v(t) \) is an intermediate variable, and we design auxiliary systems as

\[
\dot{v} = -cv + \omega,
\]

with \(c > 0 \), then the control design is translated into the design of \(\omega \).

III. Control Design

A. Adaptive Neural Dynamic Surface Controller Design

Step 1: First, a position error is defined as

\[
z_1 = x_1 - y_d.
\]

Then, the first virtual control variable \(a_1 \) is introduced and a second error variable is defined as \(z_2 = x_2 - a_1 \). We choose

\[
a_1 = -K_1z_1 + \ddot{y}_d
\]
where K_1 is the gain matrix satisfying $K_1 = K_1^T > 0$. We choose the first Lyapunov function as

$$ V_1 = \frac{1}{2} \sum_{i=1}^{n} \log \frac{b_{i1}^2}{b_{i1}^2 - z_{1i}^2}. $$

(11)

The differentiation of V_1 yields

$$ \dot{V}_1 = \sum_{i=1}^{n} (-\frac{K_{1ii} z_{1i}^2}{b_{i1}^2} + \frac{z_{1i} z_{2i}}{b_{i1}^2 - z_{1i}^2}). $$

(12)

Step 2: From (10), we obtain the following

$$ \dot{a}_1 = -K_1 \dot{z}_1 + \ddot{y}_d. $$

(13)

The derivative of z_2 is expressed as

$$ \dot{z}_2 = M^{-1} [u(v) - J(x_1)^T f(t)$$

$$ - C(x_1, x_2) \dot{x}_1 - G(x_1)] - \dot{a}_1. $$

(14)

Now, a new error signal z_3 is given as

$$ z_3 = g(v) - a_2c. $$

(15)

\dot{z}_2 is rewritten as

$$ z_2 = M^{-1} [z_3 + y_2 + a_2d - J^T f - Cx_2 - G] - \dot{a}_1. $$

(16)

Invoking the Moore Penrose inverse yields

$$ z_2^T (z_2^T)^+ = \begin{cases}
0, & z_2 = [0, 0, \ldots, 0]^T \\
1, & \text{Otherwise}
\end{cases} $$

(17)

Then, we design the virtual control law a_{2d} as

$$ a_{2d} = -K_2 z_2 - (z_2^T)^+ \sum_{i=1}^{n} \frac{z_{1i} z_{2i}}{b_{i1}^2 - z_{1i}^2} $$

$$ + C \dot{a}_1 + G + M \ddot{a}_1 + J^T f, $$

(18)

where K_2 is the gain matrix with $K_2 = K_2^T > 0$.

Since M, C, G, and f are uncertain, we use the RBFNN to approximate the unknown system parameters.
\(a_{2d} \) is then changed as

\[
a_{2d} = -K_2 z_2 - (z_2^T)^+ \sum_{i=1}^n \frac{z_{1i} z_{2i}}{b_{1i}^T - z_{1i}^2} - \text{sgn}(z_2^T) \odot J^T \bar{f} + \hat{W}^T S(Z),
\]

(19)

where \(\hat{W} \) is the estimated value of the weight vector \(W^* \) with the estimated error defined as \(\hat{W} = W^* - \hat{W} \), and \(S(Z) \) is the basis function vector.

Invoking (18) and (19), we have \(\hat{W}^T S(Z) = C a_1 + G + M \dot{a}_1 \). Then, we can further derive \(W^* S(Z) \) as

\[
W^* S(Z) = \hat{W}^T S(Z) - \varepsilon,
\]

(20)

with \(Z = [x_1^T, x_2^T, a_1^T, \dot{a}_1^T] \) being input variables of neural networks and \(\varepsilon \) being the approximation error.

And we design the updating law as

\[
\dot{\hat{W}}_i = -\Gamma_i [S_i(Z) z_{2i} + \sigma_i \hat{W}_i]
\]

(21)

where \(\Gamma_i \) is the constant gain matrix, and \(\sigma_i > 0 \) is a small positive constant.

Consider the second Lyapunov function candidate as

\[
V_2 = V_1 + \frac{1}{2} z_2^T M(x_1) z_2 + \frac{1}{2} \sum_{i=1}^n \hat{W}_i^T \Gamma_i^{-1} \hat{W}_i.
\]

(22)

Differentiating (22) leads to

\[
\dot{V}_2 \leq - \sum_{i=1}^n \frac{K_{1i} z_{1i}^2}{b_{1i}^T - z_{1i}^2} - z_2^T (K_2 - \frac{1}{2} I_{n \times n}) z_2

+ z_2^T y_2 + z_2^T z_3 - \sum_{i=1}^n \frac{\sigma_i}{2} \| \hat{W}_i \|^2

+ \sum_{i=1}^n \frac{\sigma_i}{2} \| W_i^* \|^2 + \frac{1}{2} \| \varepsilon \|^2.
\]

(23)

Step 3: Consider the Lyapunov function \(V_3 \) as

\[
V_3 = V_2 + \frac{1}{2} z_3^T z_3.
\]

(24)

In order to obtain the derivative of \(a_{2d} \), the virtual control signal \(a_{2d} \) is designed by the finite-time first
order filter with small positive constants α_2 and β_2 as

$$\dot{a}_{2c} = -\alpha_2(a_{2c} - a_{2d}) - \beta_2(a_{2c} - a_{2d})^{q/p}, a_{2c}(0) = a_{2d}(0).$$

(25)

In this part, a Nussbaum function is adopted to optimize the design process. The specific forms are given as

$$N_i(\chi_i) = \chi_i^2 \cos(\chi_i)$$

$$\dot{\chi}_i = \gamma_\chi z_i \bar{\omega}_i$$

$$\omega_i = N_i(\chi_i) \bar{\omega}_i$$

(26)

where $\gamma_{\chi i} > 0$ is a positive constant, and $\bar{\omega}$ is an auxiliary control signal vector.

$\bar{\omega}$ is constructed as

$$\bar{\omega} = -K_3 z_3 - z_2 + p_{gy} e v + \dot{a}_{2c},$$

(27)

where K_3 is the gain matrix and $K_3 = K_3^T > 0$, $p_{gy} = \text{diag} [\partial g, \partial g_2 \ldots]$.

Combining (24)-(27), we have

$$\dot{V}_3 \leq -\sum_{i=1}^{n} \frac{K_{1i} z_i^2}{b_{1i} - z_{1i}^2} - z_{2i} T K_2 z_2 - z_{3i} T K_3 z_3$$

$$- \sum_{i=1}^{n} \frac{\sigma_i}{2} \|\bar{W}_i\|^2 + \sum_{i=1}^{n} \frac{\sigma_i}{2} \|W_i^*\|^2 + \frac{1}{2} \|\bar{\epsilon}\|^2$$

$$+ \sum_{i=1}^{n} \frac{\dot{\chi}_i}{\gamma_{\chi i}} (p_{gy} N_i(\chi_i) - 1) + \frac{1}{2} y_2^T y_2.$$

(28)

B. Stability Analysis

For the error of first-order filter, we choose the Lyapunov candidate function as

$$V_4 = \frac{1}{2} y_2^T y_2.$$

(29)

Differentiating V_4, then we have

$$V_4 = -\alpha_2 y_2^T y_2 - \beta_2 \sum_{i=1}^{n} y_2(i)^{(p+q)/p} + y_2^T \eta_2,$$

(30)

with

$$|\dot{a}_{2d}| \leq \eta_2(z_1, z_2, \bar{W}_i, y_d, \dot{y}_d, \ddot{y}_d),$$

(31)
where η_2 is a nonnegative continuous function. According to Lemma 2, we have
\[
\dot{V}_4 \leq - (\alpha_2 - \frac{1}{2}) y_2^T y_2 + \frac{1}{2} \eta_2^T \eta_2. \tag{32}
\]

In [57], the author pointed out that in DSC system, the first-order differential estimation error of filter to input signal is also very important for system stability. Then, we choose the Lyapunov function as
\[
V_5 = \frac{1}{2} \xi_2^T \xi_2. \tag{33}
\]

The derivative of V_5 gives
\[
\dot{V}_5 = - \alpha_2 \xi_2^T \xi_2 - \beta_2 \frac{q}{p} \sum_{i=1}^{n} y_2(i)^{(q-p)/p} \xi_2^T \xi_2 + \xi_2^T \xi_2 \tag{34}
\]
\[
\leq - (\alpha_2 - \frac{1}{2}) \xi_2^T \xi_2 + \frac{1}{2} \xi_2^T \xi_2,
\]

with
\[
|\ddot{a}_{2d}| \leq \zeta_2(z_1, z_2, \hat{W}_i, y_d, \dot{y}_d, \ddot{y}_d), \tag{35}
\]

where ζ_2 is a nonnegative continuous function.

Choose the total Lyapunov candidate function as
\[
V = V_3 + V_4 + V_5. \tag{36}
\]

Differentiating V results in
\[
\dot{V} \leq - \sum_{i=1}^{n} K_{1i} \xi_2 i - \frac{z_2^T K_2 z_2 - z_3^T K_3 z_3}{b_{11}^2 - z_1^2 - \frac{1}{2}} \tag{37}
\]
\[
- \sum_{i=1}^{n} \frac{\sigma_i}{2} \|\tilde{W}_i\|^2 + \sum_{i=1}^{n} \frac{\sigma_i}{2} \|W_i^*\|^2 + \frac{1}{2} \|\tilde{e}\|^2
\]
\[
+ \sum_{i=1}^{n} \frac{\dot{\chi}_i}{\gamma \chi_i} (p_{g_i} N_i(\chi_i) - 1) + (1 - \alpha_2) y_2^T y_2
\]
\[
+ \frac{1}{2} - \alpha_2) \xi_2^T \xi_2 + \frac{1}{2} \eta_2^T \eta_2 + \frac{1}{2} \xi_2^T \xi_2.
\]

Let $\psi = \int_{\chi(t)}^{\chi(t)} (p_{g_i} N_i(s) - 1) ds$. First, for the Nussbaum function in the form of (26), if χ is a bounded function [58], ψ is bounded, which means that if its infinite integral exists, $\sum_{i=1}^{n} \frac{\dot{\chi}_i}{\gamma \chi_i} (p_{g_i} N_i(\chi_i) - 1)$ is bounded. Then, we can find a constant O such that $\sum_{i=1}^{n} \frac{\dot{\chi}_i}{\gamma \chi_i} (p_{g_i} N_i(\chi_i) - 1) \leq O$.

June 26, 2021 DRAFT
Based on the above analysis, we can obtain

\[\dot{V} \leq -\rho V + C, \quad (38) \]

where

\[\rho = \min[\min(2K_{1i}), \min(\lambda_{\min}(2K_2), \min(2K_{3i})), \min(\frac{\sigma_i}{\lambda_{\max}(\Gamma^{-1}_i)}), 2(1 - \alpha_2), 2(\frac{1}{2} - \alpha_2)], \]

\[C = \frac{1}{2} n^T \eta_2 + \frac{1}{2} \zeta_2 + O + \sum_{i=1}^{n} \frac{\sigma_i}{2} ||W_i^*||^2 + \frac{1}{2} ||\bar{\varepsilon}||^2, \quad (39) \]

where \(\lambda_{\min}(\bullet) \) and \(\lambda_{\max}(\bullet) \) represent the minimum eigenvalue and the maximum eigenvalue of the matrix \((\bullet) \), respectively, and \(\lambda(\bullet) \) is real. To ensure \(\rho > 0 \), \(\alpha_2 \) must satisfy the following condition

\[2\left(\frac{1}{2} - \alpha_2\right) > 0. \quad (40) \]

Multiplying (38) by \(e^{\rho t} \) yields

\[\frac{d}{dt} (Ve^{\rho t}) \leq Ce^{\rho t}. \quad (41) \]

Integrating the above inequality gives

\[V \leq \left(V(0) - \frac{C}{\rho} \right) e^{-\rho t} + \frac{C}{\rho} \leq V(0) + \frac{C}{\rho}. \quad (42) \]

Then we further have

\[\frac{1}{2} \sum_{i=1}^{n} \log \frac{b_{1i}^2}{b_{1i}^2 - z_{1i}^2} \leq V(0) + \frac{C}{\rho} \]

\[\frac{1}{2} ||z_2||^2 \leq \frac{V(0) + \frac{C}{\rho}}{\lambda_{\min}(M)} \]

\[\frac{1}{2} \sum_{i=1}^{n} (\tilde{W}_i^T \Gamma_i^{-1} \tilde{W}_i) \leq V(0) + \frac{C}{\rho}. \quad (43) \]

Finally, we can obtain

\[\Omega_{z_1} := \left\{ z_{1i} \in \mathbb{R}^n \mid ||z_{1i}|| \leq \sqrt{k_{\min}^2 (1 - e^{-D})} \right\} \]

\[\Omega_{z_2} := \left\{ z_2 \in \mathbb{R}^n \mid ||z_2|| \leq \sqrt{\frac{D}{\lambda_{\min}(M)}} \right\} \quad (44) \]

\[\Omega_{\tilde{W}_i} := \left\{ \tilde{W}_i \in \mathbb{R}^n \mid ||\tilde{W}_i|| \leq \sqrt{\frac{D}{\lambda_{\min}(\Gamma^{-1}_i)}} \right\} \]
where $D = 2(V(0) + C/\rho)$, and the closed-loop error signals z_1, z_2, and \tilde{W}_i will remain within the compact sets Ω_{z_1}, Ω_{z_2}, and $\Omega_{\tilde{W}_i}$, respectively. At this time, we conclude that all three signal errors will be maintained in closed sets, respectively, and all errors will converge to a neighborhood of zero under the proposed control with suitable parameter conditions.

IV. SIMULATIONS

A. Robot System

In this paper, the double joint rigid robot in [59] is used as the model, and the dynamical model description matrix of the robot system is defined as follows

$$M(q) = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$$ (45)

$$C(q, \dot{q}) = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$ (46)

$$G(q) = \begin{bmatrix} G_{11} \\ G_{21} \end{bmatrix}$$ (47)

and

$$M_{11} = m_1 l_1^2 + m_2 (l_1^2 + l_2^2 + 2l_1 l_2 \cos q_2) + I_1 + I_2$$

$$M_{12} = m_2 (l_2^2 + l_1 l_2 \cos q_2) + I_2$$

$$M_{21} = m_2 (l_2^2 + l_1 l_2 \cos q_2) + I_2$$

$$M_{22} = m_2 l_2^2 + I_2$$

$$C_{11} = -m_2 l_1 l_2 \dot{q}_2 \sin q_2$$

$$C_{12} = -m_2 l_1 l_2 (\dot{q}_1 + \dot{q}_2) \sin q_2$$

$$C_{21} = m_2 l_1 l_2 \dot{q}_1 \sin q_2$$

$$C_{22} = 0$$

$$G_{11} = (m_1 l_2 + m_2 l_1) g \cos q_1 + m_2 l_2 g \cos (q_1 + q_2)$$

$$G_{21} = m_2 l_2 g \cos (q_1 + q_2)$$.
TABLE I
PARAMETERS OF THE ROBOT

Parameter	Description	Value
m_1	Mass of link 1	2.00 kg
m_2	Mass of link 2	0.85 kg
l_1	Length of link 1	0.35 m
l_2	Length of link 2	0.31 m
I_1	Moment of inertia of link 1	$\frac{1}{4}m_1l_1^2$ kgm2
I_2	Moment of inertia of link 2	$\frac{1}{4}m_2l_2^2$ kgm2

The Jacobian matrix is written as

$$J(q) = \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix}$$ \hspace{1cm} (49)

and

$$J_{11} = -l_1 \sin q_1 + l_2 \sin (q_1 + q_2)$$

$$J_{12} = -l_2 \sin (q_1 + q_2)$$

$$J_{21} = l_1 \cos q_1 + l_2 \cos (q_1 + q_2)$$

$$J_{22} = l_2 \cos (q_1 + q_2).$$ \hspace{1cm} (50)

Fig. 1. Physical model of the robotic system.
The specific parameters of the robotic system are listed in Table I, with providing the following initial states

\[q_1(0) = 0, q_2(0) = 1, \dot{q}_1(0) = 1, \dot{q}_2(0) = 0. \]

(51)

The expected tracking trajectory is set as \(y_d = [\sin(t), \cos(t)]^T \) with \(t \in [0, t_s] \) and \(t_s = 20\text{s} \). The other conditions and parameters are taken as \(K_1 = \text{diag}[20, 50], K_2 = \text{diag}[20, 20], K_3 = \text{diag}[20, 20], c = 2, \) and \(k_1 = [0.5, 0.5]^T \).

B. Model-based control

For the model-based (MB) control, we examine the MB control designed in (18), the parameters of the finite-time filters are \(p = 15, q = 11, \alpha_2 = 50, \) and \(\beta_2 = 80 \).

The simulation results under the MB control are described in Figs. 2∼7. From Figs. 2∼5, it can be seen that good position and velocity tracking performance are achieved, and the input \(v \) and saturation input \(u(v) \) are shown in Figs. 6 and 7, which illustrate that the saturation constraint are never violated. In order to verify the efficacy of the designed control, we compare the backstepping control (BS) without output constraints and DSC control with the proposed finite-time DSC (FDSC), and the control law with input saturation based on backstepping control is designed as

\[
v = \theta_1 - z_2 - c_3 z_3 - \frac{\partial a_2}{\partial x_2} \cdot \tanh \left(\frac{z_3 \odot \frac{\partial a_2}{\partial x_2}}{\varepsilon} \right) \left| M(\dot{x}_1) \right| \hat{f} \]

(52)

where \(\theta_1 = \partial a_2/\partial t \), and the error comparison of the three case are shown in Figs. 8 and 9. It can be seen that after applying the output constraint, the DSC and FDSC can achieve a better performance in comparison with backstepping control, and the output error under FDSC can converge faster than that under DSC.
Fig. 2. x_{11} position trajectory and tracking error z_{11}.

Fig. 3. x_{12} position trajectory and tracking error z_{12}.
Fig. 4. x_{21} velocity trajectory and tracking error z_{21}.

Fig. 5. x_{22} velocity trajectory and tracking error z_{22}.
Fig. 6. Control input v and saturation input $u(v)$ for the first join.

Fig. 7. Control input v and saturation input $u(v)$ for the second join.
Fig. 8. Comparison of error z_{11} under three methods.

Fig. 9. Comparison of error z_{12} under three methods.

C. Adaptive Neural Network Control

For adaptive neural network control, a total of 256 nodes are chosen and the 8 centers of each layer node are selected in the area of $[-1, 1]$. The initial weights are $\hat{W}_{1,i} = 0, \hat{W}_{2,i} = 0, (i = 1, 2, 3...256)$. The variance of centers is set as $\eta^2_c = 1, \sigma = [0.01, 0.01]^T$, $\Gamma_1 = 10I_{256\times256}$, and $\Gamma_2 = 10I_{256\times256}$.

Simulation results are plotted in Figs. 10~17 under control law (19) (27) and updating law (21). Figs.10~13 display that x_1 and x_2 can successfully track the desirable trajectory. Figs. 14 and 15 depict
that the change of v and the input $u(v)$ is subjected to the input saturation. Figs. 16 and 17 show that the norms of the \hat{W}_i and z_1.

![Graph 1](image1.png)

Fig. 10. x_{11} position trajectory and tracking error z_{11}.

![Graph 2](image2.png)

Fig. 11. x_{12} position trajectory and tracking error z_{12}.
Fig. 12. x_{21} velocity trajectory and tracking error z_{21}.

Fig. 13. x_{22} velocity trajectory and tracking error z_{22}.
Fig. 14. Control input v and saturation input $u(v)$ for the first join.

Fig. 15. Control input v and saturation input $u(v)$ for the second join.
Fig. 16. Norms of the adaptation weights.

Fig. 17. Norms of the errors $||z_1||$.

D. Simulation Analysis

From simulation results, we can see that the presented control law (18), (19), and (27) can achieve a good trajectory tracking performance, the system constraints are never violated, compared with backstepping control (52), the complexity of the design is reduced, and the error of the system output converges faster by introducing a finite-time filter. For the control law (19), by introducing the neural network, the
unknown system dynamics model can be approximated only by updating one parameter, which reduces the complexity of design and has a good performance.

V. CONCLUSION

In this paper, an adaptive finite-time dynamic surface neural network control was presented for an uncertain manipulator system with unknown dynamics and constraints. The hyperbolic tangent function and BLF were employed to eliminate the constraints, and the RBF neural networks were applied to approximate the complicated robot dynamics. By utilizing the finite-time filter in the DSC, the system achieved the fast convergence. Finally, we concluded that the derived control was able to track a desired trajectory in finite-time, and the constraints were never violated.

ACKNOWLEDGMENT

Data availability statements: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Conflict of Interest: We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Funding: This study was funded by the National Natural Science Foundation of China (grant number 61803109).

REFERENCES

[1] C. Liu, Z. Zhao, and G. Wen, “Adaptive neural network control with optimal number of hidden nodes for trajectory tracking of robot manipulators,” Neurocomputing, vol. 350, pp. 136–145, 2019.

[2] W. He, H. Huang, and S. S. Ge, “Adaptive neural network control of a robotic manipulator with time-varying output constraints,” IEEE Transactions on Cybernetics, vol. 47, no. 10, pp. 3136–3147, 2017.

[3] W. He, C. Xue, X. Yu, Z. Li, and C. Yang, “Admittance-based controller design for physical human-robot interaction in the constrained task space,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 4, pp. 1937–1949, 2020.

[4] Z. J. Zhao, X. G. Wang, C. L. Zhang, Z. J. Liu, and J. F. Yang, “Neural network based boundary control of a vibrating string system with input deadzone,” Neurocomputing, vol. 275, pp. 1021–1027, 2018.

[5] W. He, Z. Yan, C. Sun, and Y. Chen, “Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer,” IEEE Transactions on Cybernetics, vol. 47, no. 10, pp. 3452–3465, 2017.

[6] W. He, D. O. Amoateng, C. Yang, and D. Gong, “Adaptive neural network control of a robotic manipulator with unknown backlash-like hysteresis,” IET Control Theory and Applications, vol. 11, no. 4, pp. 567–575, 2017.

[7] X. Shi, C.-C. Lim, P. Shi, and S. Xu, “Adaptive neural dynamic surface control for nonstrict-feedback systems with output dead zone,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 11, pp. 5200–5213, 2018.
[8] W. He, Z. Yin, and C. Sun, “Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier lyapunov function,” IEEE Transactions on Cybernetics, vol. 47, no. 7, pp. 1641–1651, 2017.

[9] L. Chen, Y. Zhu, and C. K. Ahn, “Novel quantized fuzzy adaptive design for nonlinear systems with sliding mode technique,” Nonlinear Dynamics, vol. 96, no. 2, pp. 1635–1648, 2019.

[10] M. Hussain, M. Rehan, C. K. Ahn, and Z. Zheng, “Static anti-windup compensator design for nonlinear time-delay systems subjected to input saturation,” Nonlinear Dynamics, 2018.

[11] C. K. Ahn and P. Shi, “Strict dissipativity and asymptotic stability of digital filters in direct form with saturation nonlinearity,” Nonlinear Dynamics, vol. 85, no. 1, pp. 453–461, 2016.

[12] P. T. Brewick, S. F. Masri, B. Carboni, and W. Lacarbonara, “Data-based nonlinear identification and constitutive modeling of hysteresis in nitinol and steel strands,” Journal of Engineering Mechanics, vol. 142, no. 12, p. 04016107, 2016.

[13] B. Carboni and W. Lacarbonara, “Nonlinear vibration absorber with pinched hysteresis: Theory and experiments,” Journal of Engineering Mechanics, vol. 142, no. 5, p. 04016023, 2016.

[14] L. Fang, S. Ding, J. H. Park, and L. Ma, “Adaptive fuzzy output-feedback control design for a class of p-norm stochastic nonlinear systems with output constraints,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 6, pp. 2626–2638, 2021.

[15] L. Liu, S. Ding, and X. Yu, “Second-order sliding mode control design subject to an asymmetric output constraint,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1278–1282, 2021.

[16] J. Yuan, S. Ding, and K. Mei, “Fixed-time sosm controller design with output constraint,” Nonlinear Dynamics, vol. 102, no. 3, pp. 1567–1583, 2020.

[17] Y. Chen and Z. Wang, “Local stabilization for discrete-time systems with distributed state delay and fast-varying input delay under actuator saturations,” IEEE Transactions on Automatic Control, vol. 66, no. 3, pp. 1337–1344, 2021.

[18] W. Song, Z. Wang, J. Wang, F. Alsaadi, and J. Shan, “Particle filtering for nonlinear/non-gaussian systems with energy harvesting sensors subject to randomly occurring sensor saturations,” IEEE Transactions on Signal Processing, vol. 69, pp. 15–27, 2021.

[19] J. Ni, L. Ling, W. He, and C. Liu, “Adaptive dynamic surface neural network control for nonstrict-feedback uncertain nonlinear systems with constraints,” Nonlinear Dynamics, vol. 94, no. 1, 2018.

[20] Ahn and C. Ki, “New passivity criterion for limit cycle oscillation removal of interfered 2d digital filters in the roesser form with saturation nonlinearity,” Nonlinear Dynamics, vol. 78, no. 1, pp. 409–420, 2014.

[21] C. Yang, D. Huang, W. He, and L. Cheng, “Neural control of robot manipulators with trajectory tracking constraints and input saturation,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–12, 2020.

[22] Z. Zhao, J. Shi, X. Lan, X. Wang, and J. Yang, “Adaptive neural network control of a flexible string system with nonsymmetric dead-zone and output constraint,” Neurocomputing, vol. 283, pp. 1–8, 2018.

[23] X. Yu, W. He, H. Li, and J. Sun, “Adaptive fuzzy full-state and output-feedback control for uncertain robots with output constraint,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–14, 2020.

[24] T.-T. Tran, S. S. Ge, and W. He, “Adaptive control for a robotic manipulator with uncertainties and input saturations,” in 2015 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1525–1530, 2015.

[25] Y. Gao, N. Wang, and Z. Zheng, “Disturbance observer-based trajectory tracking control of unmanned surface vehicles with unknown disturbances and input saturation,” in 2017 36th Chinese Control Conference (CCC), pp. 4859–4863, 2017.

[26] J. Li, T. Li, Z. Fan, R. Bu, Q. Li, and J. Hu, “Robust adaptive backstepping design for course-keeping control of ship with
parameter uncertainty and input saturation,” in 2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp. 63–67, 2011.

[27] J. Wang, X. Li, Y. Li, X. Li, and X. Luo, “Event-based consensus control of multi-agent systems with input saturation constraint,” in 2018 Chinese Control And Decision Conference (CCDC), pp. 4694–4699, 2018.

[28] Y. Zhang and Y. Zhao, “Control input saturation sliding-mode control system design for spacecraft based on neural network,” in 2014 Seventh International Joint Conference on Computational Sciences and Optimization, pp. 194–198, 2014.

[29] Z. Ruikun and C. Ronghu, “Iterative learning control for a class of mimo nonlinear system with input saturation constraint,” in 2017 36th Chinese Control Conference (CCC), pp. 3543–3347, 2017.

[30] L. Wang, Q. Shi, J. Liu, and D. Zhang, “Backstepping control of flexible joint manipulator based on hyperbolic tangent function with control input and rate constraints,” Asian Journal of Control: Affiliated with ACPA, the Asian Control Professors Association, vol. 22, pp. 1268–1279, 1 2020.

[31] W. Meng, Q. Yang, and Y. Sun, “Adaptive neural control of nonlinear mimo systems with time-varying output constraints,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 5, pp. 1074–1085, 2015.

[32] W. Meng, Q. Yang, J. Si, and Y. Sun, “Adaptive neural control of a class of output-constrained nonaffine systems,” IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 85–95, 2016.

[33] Z. L. Tang, K. P. Tee, and W. He, Tangent Barrier Lyapunov Functions for the Control of Output-Constrained Nonlinear Systems. Tangent Barrier Lyapunov Functions for the Control of Output-Constrained Nonlinear Systems, 2009.

[34] Z. Zhao, W. He, and S. S. Ge, “Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints,” IEEE Transactions on Control Systems Technology, vol. 22, no. 4, pp. 1536–1543, 2014.

[35] D. Won, W. Kim, D. Shin, and C. C. Chung, “High-gain disturbance observer-based backstepping control with output tracking error constraint for electro-hydraulic systems,” IEEE Transactions on Control Systems Technology, vol. 23, no. 2, pp. 787–795, 2015.

[36] W. He and S. S. Ge, “Vibration control of a flexible string with both boundary input and output constraints,” IEEE Transactions on Control Systems Technology, vol. 23, no. 4, pp. 1245–1254, 2015.

[37] I. Kanellakopoulos, P. Kokotovic, and A. Morse, “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Transactions on Automatic Control, vol. 36, no. 11, pp. 1241–1253, 1991.

[38] M. Wang, Z. Wang, H. Dong, and Q.-L. Han, “A novel framework for backstepping-based control of discrete-time strict-feedback nonlinear systems with multiplicative noises,” IEEE Transactions on Automatic Control, vol. 66, no. 4, pp. 1484–1496, 2021.

[39] C. Yang, C. Chen, W. He, R. Cui, and Z. Li, “Robot learning system based on adaptive neural control and dynamic movement primitives,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 3, pp. 777–787, 2019.

[40] Y. Jiang, Y. Wang, Z. Miao, J. Na, Z. Zhao, and C. Yang, “Composite-learning-based adaptive neural control for dual-arm robots with relative motion,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–12, 2020.

[41] C. Yang, G. Peng, L. Cheng, J. Na, and Z. Li, “Force sensorless admittance control for teleoperation of uncertain robot manipulator using neural networks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 5, pp. 3282–3292, 2021.

[42] C. Yang, C. Chen, N. Wang, Z. Ju, J. Fu, and M. Wang, “Biologically inspired motion modeling and neural control for robot learning from demonstrations,” IEEE Transactions on Cognitive and Developmental Systems, vol. 11, no. 2, pp. 281–291, 2019.
network-based adaptive gain scheduling,” *Journal of Systems Engineering and Electronics*, vol. 29, no. 3, pp. 580–586, 2018.

[44] W. Chen, S. S. Ge, J. Wu, and M. Gong, “Globally stable adaptive backstepping neural network control for uncertain strict-feedback systems with tracking accuracy known a priori,” *IEEE Transactions on Neural Networks and Learning Systems*, vol. 26, no. 9, pp. 1842–1854, 2015.

[45] T. Zhang, S. S. Ge, and C. C. Hang, “Adaptive neural network control for strict-feedback nonlinear systems using backstepping design,” *Automatica*, vol. 36, no. 12, pp. 1835–1846, 2000.

[46] Y. Li and S. Tong, “Adaptive fuzzy output-feedback control of pure-feedback uncertain nonlinear systems with unknown dead zone,” *IEEE Transactions on Fuzzy Systems*, vol. 22, no. 5, pp. 1341–1347, 2014.

[47] D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, “Dynamic surface control for a class of nonlinear systems,” *IEEE Transactions on Automatic Control*, vol. 45, no. 10, pp. 1893–1899, 2002.

[48] Z. Li, T. Li, G. Feng, R. Zhao, and Q. Shan, “Neural network-based adaptive control for pure-feedback stochastic nonlinear systems with time-varying delays and dead-zone input,” *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 50, no. 12, pp. 5317–5329, 2020.

[49] T. Zhang and S. Ge, “Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form,” *Automatica*, vol. 44, no. 7, pp. 1895–1903, 2008.

[50] J. Ma, Z. Zheng, and P. Li, “Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation,” *IEEE Transactions on Cybernetics*, vol. 45, no. 4, pp. 728–741, 2015.

[51] G. Zhu and J. Liu, “Adaptive dynamic surface control for hypersonic vehicle with input nonlinearity,” in *The 27th Chinese Control and Decision Conference (2015 CCDC)*, pp. 3004–3009, 2015.

[52] J.-T. Huang and Y.-C. Law, “Dynamic scaling adaptive fuzzy output feedback control of nonstrict-feedback systems,” in *2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)*, pp. 1–6, 2019.

[53] F. Wang, B. Chen, C. Lin, J. Zhang, and X. Meng, “Adaptive neural network finite-time output feedback control of quantized nonlinear systems,” *IEEE Transactions on Cybernetics*, vol. 48, no. 6, pp. 1839–1848, 2018.

[54] Y. Li, K. Li, and S. Tong, “Finite-time adaptive fuzzy output feedback dynamic surface control for mimo nonstrict feedback systems,” *IEEE Transactions on Fuzzy Systems*, vol. 27, no. 1, pp. 96–110, 2019.

[55] H. Hou, X. Yu, L. Xu, K. Rsetam, and Z. Cao, “Finite-time continuous terminal sliding mode control of servo motor systems,” *IEEE Transactions on Industrial Electronics*, vol. 67, no. 7, pp. 5647–5656, 2020.

[56] X. Yu and Z. Man, “Fast terminal sliding-mode control design for nonlinear dynamical systems,” *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, vol. 49, no. 2, pp. 261–264, 2002.

[57] Y.-c. Liu, Z. Jin, and M. Pu, “A finite-time back-stepping dynamic surface control,” *Journal of Beijing University of Posts and Telecommunications*, vol. 42, no. 02, pp. 74–80, 2019.

[58] C. Wen, J. Zhou, Z. Liu, and H. Su, “Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance,” *IEEE Transactions on Automatic Control*, vol. 56, no. 7, pp. 1672–1678, 2011.

[59] W. He, S. S. Ge, Y. Li, E. Chew, and Y. S. Ng, “Neural network control of a rehabilitation robot by state and output feedback,” *Journal Of Intelligent & Robotic Systems*, vol. 80, no. 1, pp. 15–31, 2015.