Title: Addition of prokinetics to PPI therapy in gastroesophageal reflux disease: A meta-analysis

Authors: Li-Hua Ren, Wei-Xu Chen, Li-Juan Qian, Shuo Li, Min Gu, Rui-Hua Shi

Abstract

AIM: To investigate the efficacy of adding prokinetics to proton pump inhibitors (PPIs) for the treatment of gastroesophageal reflux disease (GERD).

METHODS: PubMed, Cochrane Library, and Web of Knowledge databases (prior to October 2013) were systematically searched for randomized controlled trials (RCTs) that compared therapeutic efficacy of PPI alone (single therapy) or PPI plus prokinetics (combined therapy) for GERD. The primary outcome of those selected trials was complete or partial relief of non-erosive reflux disease symptoms or mucosal healing in erosive reflux esophagitis. Using the test of heterogeneity, we established a fixed or random effects model where the risk ratio was the primary readout for measuring efficacy.

RESULTS: Twelve RCTs including 2403 patients in total were enrolled in this study. Combined therapy was not associated with significant relief of symptoms or alterations in endoscopic response relative to single therapy (95%CI: 1.0-1.2, P = 0.05; 95%CI: 0.66-2.61, P = 0.44). However, combined therapy was associated with a greater symptom score change (95%CI: 2.14-3.02, P < 0.00001). Although there was a reduction in the number of reflux episodes in GERD [95%CI: -5.96-(-1.78), P = 0.0003] with the combined therapy, there was no significant effect on acid exposure time (95%CI: -0.37-0.60, P = 0.65). The proportion of patients with adverse effects undergoing combined therapy was significantly higher than for PPI therapy alone (95%CI: 1.06-1.36, P = 0.005) when the difference between 5-HT receptor agonist and PPI combined therapy and single therapy (95%CI: 0.84-1.39, P = 0.53) was excluded.

CONCLUSION: Combined therapy may partially improve patient quality of life, but has no significant effect on symptom or endoscopic response of GERD.
INTRODUCTION

Gastroesophageal reflux disease (GERD) is a common condition affecting 10%-20% of Europeans[1] and 3%-7% of Asian[2]. Based on an endoscopy study, the prevalence of erosive reflux esophagitis (RE), a chronic form of GERD associated with damage to the esophagus, ranges from 6% to 10% in Asia[2]. Since RE is more likely to be detected by endoscopy than non-erosive reflux disease (NERD), the incidence of RE is higher than that of NERD. Symptoms of GERD, which include heartburn, non-cardiac chest pain, acid regurgitation, chronic cough, bloating and belching, may seriously affect quality of life of some patients. Furthermore, GERD is linked with serious complications, such as hemorrhage, peptic stricture, Barrett's esophagus, and esophageal adenocarcinoma[3-5]. Both NERD and RE are subtypes of GERD. NERD presents clinically with acid reflux and heartburn with no mucosal break, whereas RE patients have mucosal damage detectable by endoscopy[6]. The mechanisms underlying GERD may include esophageal hypersensitivity and transient lower esophageal sphincter relaxation (TLESR)[7]. Studies show that changes in diet, physical activity, and BMI increase the risk for GERD[8]. NERD may be due to visceral hypersensitivity, prolonged contraction of the lower esophagus, and other psychological factors[8].

Proton pump inhibitors (PPIs) are generally accepted as the standard treatment paradigm for GERD. Although many patients with RE have symptomatic relief with this drug alone[9], many patients have no symptomatic resolution[10,11]. Overall, 30% of GERD patients, 10%-15% of RE patients, and 40%-50% of NERD patients do not experience symptom alleviation with conventional PPI therapy[8,12-15]. New PPI formulations and regenerative types of acid-suppressive drugs for GERD are urgently needed.

Prokinetics are agents that increase lower esophageal sphincter pressure (LES), enhance esophageal peristalsis, and augment gastric emptying. These include 5-hydroxytryptamine (5-HT) receptor agonists, GABA-B receptor agonists, dopamine receptor antagonists, and others. Five-HT receptor agonists increase acetylcholine release from parasympathetic nerve roots and promote gastric emptying and bowel motility[16,17], and are frequently used in combination with PPI therapy. Cisapride is a canonical prokinetic agent with equal efficacy as a 5-HT4 receptor agonist and a H2 histamine receptor antagonist. In addition to protecting the esophageal mucosa, it was reported that cisapride increased LEST and esophageal peristaltic amplitude; however, cisapride is now prohibited in Europe due to its detrimental side effects on the cardiac system[18]. Mosapride, another 5-HT4 agonist, is a structural analog of cisapride with less cardiac side effects[19,20]. It has been approved in Asia for the treatment of some functional gastrointestinal disorders, such as functional dyspepsia. Baclofen and lesogaberan (AZD 3355) were developed as selective GABA-B agonists based on their inhibition of TLESR and reflux episodes[21]. A phase II study reported that lesogaberan combined with PPI modestly improved GERD symptoms[22], but its efficacy and safety were not determined.

Although many studies have shown that addition of a prokinetic to PPI can improve the symptoms of GERD, there is still some controversy in the literature. The efficacy and safety profiles of combination prokinetics and PPI therapy regimens relative to PPI monotherapy for GERD remain unclear. Here, we performed a retrospective meta-analysis to identify the efficacy and safety of these two types of treatments in GERD.

MATERIALS AND METHODS

Literature search

All eligible articles in English published prior to October 2013 were searched from PubMed, Cochrane Library, and Web of Knowledge. The search strategy consisted of a combination of the following MESH terms and text words: gastroesophageal reflux diseases, GERD, non-erosive reflux diseases, NERD, reflux esophagitis, RE, proton pump inhibitors, PPI, prokinetics, and GABA-B receptor agonists. A Cochrane filter for identifying randomized controlled trials (RCTs) was applied to the search results, and all potentially relevant abstracts and citations were retrieved for further review. Furthermore, we searched the bibliographies of selected trials obtained through the electronic screen to identify additional studies of interest.

Criteria for inclusion

Articles were eligible for inclusion in this meta-analysis if they met the following criteria: (1) Participants were diagnosed with GERD (RE or NERD); (2) Participants were 18 years or older; (3) Participants receiving PPI monotherapy were compared with patients receiving combined prokinetic and PPI therapy; (4) The study was a RCT; (5) Criteria for successful treatment were clearly defined; and (6) Treatment lasted for two or more weeks.

Criteria for exclusion

Publications were excluded according to the following criteria: (1) Studies comparing H2 receptor antagonist plus prokinetic to H2 receptor antagonist; (2) Participants with complications in addition to GERD; and (3) Missing or unclear data for final outcomes of interest.

Data extraction

To avoid bias in the data abstraction process, two investigators (Ren LH and Chen WX) independently abstracted
the data, recorded the first author, year of study, study design, and study population characteristics, and compared the results. All data were checked by a third reviewer and disagreements were resolved by discussion.

Statistical analysis

Appropriate RCTs were included, and Review Manager Version 5.1 (The Cochrane Collaboration, Oxford, England) was used for preparation of the review. Stata 12.0 software (StataCorp, College Station, TX, United States) was used for statistical analysis. The risk ratio of data was estimated by the Mantel-Haenszel χ^2 method, where P values < 0.05 were considered significantly different. Study heterogeneity was evaluated by Cochrane I^2 statistics, where $I^2 < 50\%$ indicated a lack of heterogeneity. If significant heterogeneity was found, a random effects model was applied for evaluation of the pooled data; otherwise, a fixed effects model was used. Possible publication bias was assessed by Egger's and Begg's funnel plots, where P values < 0.05 indicated little publication bias.

RESULTS

Twelve RCTs met the inclusion criteria, and characteristics of each study are presented in Table 1. In total, there were 2403 enrolled participants in the trials who were treated with 5-HT agonists, GABA-B receptor agonists, dopamine-receptor antagonists, and placebo control. Combination 5-HT agonist and PPI therapy was given in seven trials, combination GABA-B receptor agonist and PPI therapy in four trials, and combination dopamine-receptor antagonist and PPI therapy in one trial. In all RCTs, monotherapy was directly compared with combination PPI therapy. In the 5-HT agonist studies, the doses of PPI and mosapride or cisapride were the same across patients. However, in the GABA-B receptor agonist studies, different kinds of PPI and variable doses of baclofen or lesogaberan were used. All trials included mild to moderate GERD patients, with severe participants divided into a subgroup. The primary endpoints evaluated in these trials were symptom or endoscopic remission, and the relief score was used to determine the symptomatic remission.

Symptom response

Table 2 details the symptom response in ten studies. Six trials compared the addition of mosapride or cisapride to PPI therapy to PPI alone therapy, and four trials compared baclofen or lesogaberan to placebo PPI control. There was no statistically significant difference in symptom response between combined therapy and single therapy in these ten trials (95% CI: 1.0-1.2, $P = 0.05$) (Figure 1A). Furthermore, we divided those ten trials into a 5-HT agonist group and a GABA-B recep-

Table 1 Characteristics of the 12 randomized controlled trials included in this meta-analysis of the effects of combined prokinetic and proton pump inhibitor therapy in gastroesophageal reflux diseases n (%)

Ref.	Country	Participants (n)	Duration of study	Female	Age (yr)	BMI (kg/m²)
Vakil et al., 2013	United States	460	6 wk	224	44	28
Cho et al., 2013	South Korea	50	4 wk	26	46	21
Shahen et al., 2013	United States	661	4 wk	376	48	28
Ndraha et al., 2011	Indonesia	60	2 wk	40	42	24
Hsu et al., 2010	Taiwan	96	8 wk	48	47	24
Breekxshaet et al., 2011	United States	244	4 wk	82	50	27
Miwa et al., 2011	Japan	200	4 wk	120	52	22
Beaumont et al., 2009	United States	16	2 wk	8	54	Not reported
Madan et al., 2004	India	68	8 wk	23	35	Not reported
Smythe et al., 2003	United Kingdom	23	4 wk	3	62	Not reported
van Rensburg et al., 2001	United Kingdom	350	8 wk	213	47	28
Vigneri et al., 1995	Italy	175	12 mo	58	45	Not reported

Table 2 Symptom response in ten studies

Ref.	Intervention	Combined therapy, improved/treated	Single therapy, improved/treated
Cho et al., 2013	Esomeprazole 40 mg/d + mosapride 30 mg bid	19/24	13/19
Hsu et al., 2010	Lansoprazole 30 mg/d + mosapride 5 mg bid	39/44	41/30
Madan et al., 2004	Pantoprazole 40 mg bid + mosapride 5 mg bid	25/28	23/33
Miwa et al., 2011	Omeprazole 10 mg/d + mosapride 5 mg bid	45/97	42/95
van Rensburg et al., 2001	Pantoprazole 40 mg/d + cispapride 20 mg bid	120/173	129/177
Vigneri et al., 1995	Omeprazole 40 mg/d + cispapride 10 mg bid	31/35	28/35
Beaumont et al., 2009	PPI + baclofen 20 mg bid	4/12	6/12
Breekxshaet et al., 2011	PPI + lesogaberan 65 mg bid	21/104	11/105
Shahen et al., 2013	PPI + lesogaberan 60/120/180/240 mg bd	110/458	22/122
Vakil et al., 2013	PPI + baclofen 20/40/60 mg bid	110/240	21/54

PPIs: Proton pump inhibitors.
tor agonist group and found that neither group displayed significant differences between combination and monotherapy for symptom response (95%CI: 1.0-1.2, P = 0.21; 95%CI: 0.8-1.7, P = 0.40) (Figure 1B and C).

Symptom score change

The 5-HT receptor agonist group showed a change in symptom score in the two treatment groups, even though the symptom assessments were different. Since Ndrah et al. and Hsu et al. used the frequency scale for the symptoms of gastroesophageal reflux (FSSG) score, we combined the two trials to assess the change in symptom score. Combination therapy yielded more symptomatic relief relative to monotherapy (95%CI: 2.1-3.0, P < 0.00001) (Figure 1D). Although symptom response in these two treatment groups was not statistically different, the clinical symptoms in the combination therapy group were relieved more than the single therapy group. Overall, these findings suggest that combined therapy may have improved patient quality of life.

Endoscopic response

To explore the mucosal healing in RE patients, we investigated the endoscopic response in two trials where endoscopic response was reported. Overall, the endoscopic response in RE patients was not significantly different between 5-HT agonist and PPI combined therapy and PPI single therapy (95%CI: 0.7-2.6, P = 0.44) (Figure 1E).

Reflux wave amplitude and wave duration

Two trials reported LESP, reflux wave amplitude, and wave duration. As shown in Figure 1F, combined therapy may reduce reflux wave amplitude (95%CI: -6.0-(-1.8), P = 0.0003) but not wave duration (95%CI: -0.4-0.6, P = 0.65) (Figure 1G). Taken together, these findings suggest that combined therapy in GERD may reduce the number of reflux episodes but not the duration of acid exposure time.

Proportion of adverse effects

Combined prokinetic and PPI therapy may be linked to additional side effects, such as reflux, abdominal pain, indigestion, diarrhea, chest pain, and constipation. Since only six of the 12 trials reported adverse effects, we only included these studies in our proportional analysis. The side-effects ratio demonstrated that side effects were elevated in patients with combined relative to single PPI therapy (95%CI: 1.06-1.36, P = 0.005) (Figure 1H). To further explore the side-effects of the 5-HT group, we excluded the GABA-B receptor agonists group. However, we found no difference between the two therapies for the 5-HT agonist group (95%CI: 0.84-1.39, P = 0.53) (Figure 1I). Single side-effects ratio in the GABA-B receptor agonist group was evaluated, and there were significantly more side effects in the GABA-B receptor agonists combined group than in the group with PPI therapy alone (95%CI: 1.1-1.5, P = 0.004) (Figure 1J).

Publication bias

As shown in Figure 2, no publication bias was detected in symptom response (Egger’s test P = 0.333; Begg’s test P = 0.721) or adverse event proportion (Egger’s test P = 0.246; Begg’s test P = 0.452).

DISCUSSION

Previous studies have reported that PPI therapy was more effective than H2R agonists and prokinetics for GERD, but none had investigated the efficacy of combined prokinetic and PPI therapy. In this systematic review and meta-analysis, we demonstrated that combination prokinetic and PPI therapy was no more efficacious than PPI alone for GERD. This therapy did improve patients’ reported symptoms score, suggesting that it may enhance patient quality of life.

Since the 1990s, PPIs have been the mainstay treatment for GERD, even though a large number of patients fail to improve with a standard single PPI therapy. Approximately 15% of eosinophilic esophagitis (EE) patients (mainly of Los Angeles grades C and D), 20% of Barrett’s esophagus (BE) patients, 40%-50% of NERD patients, and up to 40% of patients with extra-esophageal manifestations of GERD did not therapeutically benefit from standard PPI therapy. Recently, a number of studies found that PPIs are less effective for NERD than RE, but the underlying mechanism remains unknown.

Hiyama et al. evaluated whether *Heliobacter pylori* infection and sex may contribute to attenuated PPI efficacy in NERD. Miyamoto et al. identified younger age, constipation, and GI dysmotility as potential influencing factors of PPI non-responsiveness in NERD. Adding a prokinetic to PPI may partly alleviate symptoms of NERD, but there is little evidence available regarding an impact on mucosal healing. However, Koshino et al. demonstrated that mosapride (15 mg/d) did not change salivary secretion and esophageal motility in healthy volunteers.

There are available different PPIs for the treatment of GERD, including omeprazole, lansoprazole, rabeprazole, pantoprazole, esomeprazole, and others. Meta-analyses failed to reveal a difference in efficacy for symptom relief among various PPIs, but none had investigated the efficacy of combined prokinetic and PPI therapy. In this systematic review and meta-analysis, we demonstrated that combination prokinetic and PPI therapy was no more efficacious than PPI alone for GERD. This therapy did improve patients’ reported symptoms score, suggesting that it may enhance patient quality of life.
A Study or subgroup

Combined therapy	Single therapy	Weight	Risk ratio	Risk ratio		
Events (M-H, fixed, 95%CI)	Total (M-H, fixed, 95%CI)	Overall				
Beauumont et al, 2009	4	12	6	12	1.7%	0.67 [0.25, 1.78]
Boeckxstaens et al, 2011	21	104	11	105	3.1%	1.93 [0.98, 3.79]
Cho et al, 2013	19	24	13	19	4.1%	1.16 [0.80, 1.67]
Hsu et al, 2010	39	40	41	47	10.7%	1.12 [0.99, 1.26]
Madan et al, 2004	25	28	23	33	6.0%	1.28 [0.99, 1.66]
Miwa et al, 2011	43	86	33	77	9.9%	1.17 [0.84, 1.63]
Shaheen et al, 2013	110	458	22	122	9.9%	1.33 [0.88, 2.01]
Vakil et al, 2013	110	240	21	44	10.1%	0.96 [0.68, 1.35]
van Rensburg et al, 2001	120	173	129	177	36.3%	0.95 [0.83, 1.09]
Vigneri et al, 1995	31	35	28	35	8.0%	1.11 [0.90, 1.36]
Total (95%CI)	1200	671	100.0%	1.10 [1.00, 1.20]		
Total events	522	327				

Heterogeneity: $\chi^2 = 11.10, df = 9 (P = 0.27); I^2 = 19%$

Test for overall effect: $Z = 1.98 (P = 0.05)$

B Study or subgroup

Combined therapy	Single therapy	Weight	Risk ratio	Risk ratio		
Events (M-H, fixed, 95%CI)	Total (M-H, fixed, 95%CI)	Overall				
Cho et al, 2013	19	24	13	19	5.5%	1.16 [0.80, 1.67]
Hsu et al, 2010	39	40	41	47	14.3%	1.12 [0.99, 1.26]
Madan et al, 2004	25	28	23	33	8.0%	1.28 [0.99, 1.66]
Miwa et al, 2011	43	86	33	77	13.2%	1.17 [0.84, 1.63]
van Rensburg et al, 2001	120	173	129	177	48.4%	0.95 [0.83, 1.09]
Vigneri et al, 1995	31	35	28	35	10.6%	1.11 [0.90, 1.36]
Total (95%CI)	386	388	100.0%	1.06 [0.97, 1.15]		
Total events	277	267				

Heterogeneity: $\chi^2 = 6.05, df = 5 (P = 0.30); I^2 = 17%$

Test for overall effect: $Z = 1.26 (P = 0.21)$

C Study or subgroup

Combined therapy	Single therapy	Weight	Risk ratio	Risk ratio		
Events (M-H, random, 95%CI)	Total (M-H, random, 95%CI)	Overall				
Beauumont et al, 2009	4	12	6	12	10.6%	0.67 [0.25, 1.78]
Boeckxstaens et al, 2011	21	104	11	105	18.0%	1.93 [0.98, 3.79]
Cho et al, 2013	19	24	13	19	13.2%	1.17 [0.84, 1.63]
Hsu et al, 2010	39	40	41	47	41.6%	0.97 [0.79, 1.20]
Madan et al, 2004	25	28	23	33	100.0%	1.16 [0.81, 1.66]
Miwa et al, 2011	43	86	33	77	41.6%	0.97 [0.79, 1.20]
van Rensburg et al, 2001	120	173	129	177	100.0%	1.16 [0.81, 1.66]
Vigneri et al, 1995	31	35	28	35	41.6%	0.97 [0.79, 1.20]
Total (95%CI)	814	283	100.0%	1.16 [0.81, 1.66]		
Total events	299	70				

Heterogeneity: $\chi^2 = 0.07; \chi^2 = 6.88, df = 3 (P = 0.08); I^2 = 56%$

Test for overall effect: $Z = 0.80 (P = 0.43)$

D Study or subgroup

Combined therapy	PPI alone	Prokinetic add on PPI	Weight	Mean difference	Mean difference				
Events (IV, fixed, 95%CI)	Total (IV, fixed, 95%CI)	Combined therapy	Total	PPI	Total	Combined therapy	Total	PPI	
Hsu et al, 2010	13.42	1.16	44	10.85	1.03	50	96.7%	2.57 [2.12, 3.02]	
Ndreha et al, 2011	7.5	5.9	30	4.6	3.3	30	3.3%	2.90 [0.48, 5.32]	
Total (95%CI)	74	80	100.0%	2.58 [2.14, 3.02]					
Total events	299	70							

Heterogeneity: $\chi^2 = 0.07, df = 1 (P = 0.79); I^2 = 0%$

Test for overall effect: $Z = 11.53 (P < 0.00001)$

E Study or subgroup

Combined therapy	PPI	Prokinetic add on PPI	Weight	Odds ratio	Odds ratio		
Events (M-H, fixed, 95%CI)	Total (M-H, fixed, 95%CI)	Combined therapy	Total	PPI	Combined therapy	Total	PPI
Madan et al, 2004	12	17	6	11	15.0%	2.00 [0.41, 9.71]	
van Rensburg et al, 2001	123	136	135	152	85.0%	1.19 [0.56, 2.55]	
Total (95%CI)	153	163	100.0%	1.31 [0.66, 2.61]			
Total events	135	141					

Heterogeneity: $\chi^2 = 0.33, df = 1 (P = 0.56); I^2 = 0%$

Test for overall effect: $Z = 0.78 (P < 0.44)$

F Study or subgroup

Combined therapy	PPI	Prokinetic add on PPI	Weight	Mean difference	Mean difference				
Events (IV, fixed, 95%CI)	Total (IV, fixed, 95%CI)	Combined therapy	Total	PPI	Combined therapy	Total	PPI		
Cho et al, 2013	89.1	29.1	24	83.1	31	19	1.3%	6.00 [-12.16, 24.16]	
Smythe et al, 2003	44	2	12	48	3	11	98.7%	-4.00 [-6.10, -1.90]	
Total (95%CI)	36	30	100.0%	-3.87 [-5.96, -1.78]					
Total events	129	23							
G Study or subgroup Combined therapy Single therapy Weight Mean difference Mean difference

Study or subgroup	Combined therapy	Single therapy	Weight	Mean difference	Mean difference			
Cho et al[24], 2013	3.8	0.7	24	3.4	0.6	19	42.5%	0.40 [0.01, 0.79]
Smythe et al[25], 2003	2.9	0.1	12	3	0.1	11	57.5%	-0.10 [-0.18, -0.02]
Total (95%CI)	36	30	100.0%	0.11 [-0.37, 0.60]				

Heterogeneity: Tau² = 0.10; Chi² = 6.08, df = 1 (P = 0.01); I² = 84%
Test for overall effect: Z = 4.5 (P = 0.65)

H Study or subgroup Combined therapy Single therapy Weight Risk ratio Risk ratio

Study or subgroup	Combined therapy	Single therapy	Weight	Risk ratio	Risk ratio	
Booekstaensen et al[26], 2011	55	122	45	122	16.9%	1.22 [0.90, 1.66]
Miwa et al[27], 2011	11	98	11	97	4.2%	0.99 [0.45, 2.17]
Shaheen et al[28], 2011	216	521	43	140	25.5%	1.35 [1.03, 1.77]
Vakil et al[12], 2013	228	368	46	87	28.0%	1.17 [0.95, 1.45]
van Rensburg et al[29], 2001	72	173	66	177	24.6%	1.12 [0.86, 1.45]
Vigneri et al[30], 1995	1	35	2	35	0.8%	0.50 [0.05, 5.27]
Total (95%CI)	1317	658	100.0%	1.20 [1.06, 1.36]		

Total events | 583 | 213 |
Heterogeneity: Chi² = 1.86, df = 5 (P = 0.87); I² = 0%
Test for overall effect: Z = 2.79 (P = 0.005)

I Study or subgroup Combined therapy Single therapy Weight Risk ratio Risk ratio

Study or subgroup	Combined therapy	Single therapy	Weight	Risk ratio	Risk ratio	
Miwa et al[27], 2011	11	98	11	97	14.1%	0.99 [0.45, 2.17]
van Rensburg et al[29], 2001	72	173	66	177	83.3%	1.12 [0.86, 1.45]
Vigneri et al[30], 1995	1	35	2	35	2.6%	0.50 [0.05, 5.27]
Total (95%CI)	306	309	100.0%	1.08 [0.84, 1.39]		

Total events | 84 | 79 |
Heterogeneity: Chi² = 0.52, df = 2 (P = 0.77); I² = 0%
Test for overall effect: Z = 0.63 (P = 0.53)

J Study or subgroup Combined therapy Single therapy Weight Risk ratio Risk ratio

Study or subgroup	Combined therapy	Single therapy	Weight	Risk ratio	Risk ratio	
Booekstaensen et al[26], 2011	55	122	45	122	24.0%	1.22 [0.90, 1.66]
Shaheen et al[28], 2011	216	521	43	140	36.2%	1.35 [1.03, 1.77]
Vakil et al[12], 2013	228	368	46	87	39.7%	1.17 [0.95, 1.45]
Total (95%CI)	1011	349	100.0%	1.25 [1.08, 1.45]		

Total events | 499 | 134 |
Heterogeneity: Chi² = 0.68, df = 2 (P = 0.71); I² = 0%
Test for overall effect: Z = 2.91 (P = 0.004)

Figure 1 Meta-analysis. A: Symptom response in 5-hydroxytryptamine (5-HT) and GABA-B receptor therapies; B: Symptom response in the 5-HT receptor agonist group; C: Symptom response in the GABA-B receptor agonist group; D: Symptom score change (FSSG) in the two therapies; E: Endoscopic response in 5-HT and GABA-B receptor therapies; F: Wave amplitude in 5-HT and GABA-B receptor therapies; G: Wave duration in 5-HT and GABA-B receptor therapies; H: Adverse events proportion in 5-HT and GABA-B receptor therapies; I: Adverse events in 5-HT agonist group; J: Adverse events in GABA-B receptor agonist group.

Figure 2 Funnel plots for publication bias in meta-analysis. A: No publication bias was detected in symptom response (Egger's test P = 0.333; Begg's test P = 0.721); B: Adverse event proportion (Egger's test P = 0.246; Begg's test P = 0.452).
terms of symptom score change, combined therapy may improve patient quality of life by decreasing the number of reflux episodes, although acid exposure time was unaltered. There are some limitations of our meta-analysis to consider. First, PPI and prokinetic therapies in the 12 trials were not identical. Although one study found little impact on symptom response, we cannot rule out the possibility of treatment course affecting this measure. To limit this complication, we only chose studies for this analysis with a treatment course for GERD longer than two weeks. Second, an inherent weakness of all systematic reviews and meta-analyses is the possibility that some studies failed to find significant symptom improvement in the peer-reviewed literature, thereby leading us to underestimate the main effect. To overcome these limitations, long-term RCTs need to be performed with a larger quantity of participants to more effectively determine efficacy and safety profiles of combined prokinetic and PPI therapy.

In summary, patients with GERD respond to combined prokinetic and PPI therapy. Combination therapy may improve patient quality of life, although there was no significant difference in symptom or endoscopic responses. Side effects of combined therapy may be greater than single therapy, especially with GABA-B agonists. Whether prokinetic plus PPI is indeed therapeutically efficacious for GERD will require future trials.

COMMENTS

Background

Gastroesophageal reflux disease (GERD) is a common disease, affecting individuals of all nationalities. The standard treatment regimen is proton pump inhibitors (PPIs). Despite this therapy, many patients remain symptomatic. The addition of prokinetics to PPI therapy may improve the symptoms of GERD in these patients, but the efficacy and safety of prokinetics remain to be established.

Research frontiers

This meta-analysis was performed to assess the efficacy and safety of PPI mono-therapy versus combined therapy in patients with GERD. The main measured outcomes are as follows: symptom response, symptoms score change, endoscopic response, wave amplitude, wave duration, and adverse events.

Innovations and breakthroughs

Authors found with this meta-analysis no demonstrable effect of either combination therapy for relief of symptoms or alteration in endoscopic response. However, with combination therapy there was a greater symptom score change, suggesting that this therapy did improve patient quality of life.

Applications

Authors’ results suggest that combination therapy may have some advantages for symptomatic or endoscopic response relative to PPI alone. There is some evidence that combination therapy may partially improve patient quality of life. Until further randomized controlled trials with a large population number are carried out, authors suggest use of combination therapy on an individual basis.

Terminology

FSSG score: a questionnaire given to GERD patients in order to assess severity of symptoms, based on a frequency scale for symptoms of GERD.

Peer review

The efficacy and safety for the use of prokinetics plus PPI compared to PPI monotherapy for GERD remain unclear. Therefore, the authors conducted a meta-analysis to determine the efficacy and safety of these two treatment regimens for GERD. The authors concluded that combination therapy may partially improve the patient quality of life (symptoms score change, reflux wave amplitude, and wave duration).
hiatal hernia affect the efficacy of the reflux inhibitor baco-
clofen during add-on therapy? Am J Gastroenterol 2009; 104:
1764-1771 [PMID: 19491837 DOI: 10.1038/ajg.2009.247]

28 Shaheen NJ, Denison H, Björck K, Karlsson M, Sil-
berg DG. Efficacy and safety of lesogaberan in gastro-
esophageal reflux disease: a randomised controlled trial.
Gut 2013; 62: 1248-1255 [PMID: 22730470 DOI: 10.1136/
gutjnl-2012-302737]

29 Ndraha S. Combination of PPI with a prokinetic drug in
gastroesophageal reflux disease. Acta Med Indones 2011; 43:
233-236 [PMID: 22156354]

30 Smythe A, Bird NC, Troy GP, Ackroyd R, Johnson AG.
Does the addition of a prokinetic to proton pump inhibi-
tor therapy help reduce duodenogastro-oesophageal reflux
in patients with Barrett’s oesophagus? Eur J Gastroenterol
Hepatol 2003; 15: 305-312 [PMID: 12610326 DOI: 10.1097/01.
meg.0000050003.68425.a5]

31 Horn J. The proton-pump inhibitors: similarities and dif-
terences. Clin Ther 2000; 22: 266-280; discussion 265 [PMID:
10963280 DOI: 10.1016/s0149-2918(00)80032-6]

32 Moore JM, Vaezi MF. Extraesophageal manifestations of
gastroesophageal reflux disease: real or imagined? Curr
Opin Gastroenterol 2010; 26: 389-394 [PMID: 20473157 DOI:
10.1097/MOC.0b013e32833ad8d]

33 Miyamoto M, Manabe N, Haruma K. Efficacy of the addi-
tion of prokinetics for proton pump inhibitor (PPI) resistant
non-erosive reflux disease (NREFD) patients: significance of
frequency scale for the symptom of GERD (FSSG) on deci-
sion of treatment strategy. Intern Med 2010; 49: 1469-1476
[PMID: 20662676]

34 Hiyama T, Matsuoka Y, Urabe Y, Fukuhara T, Tanaka S, Yo-
shihara M, Haruma K, Chayama K. Meta-analysis used to
identify factors associated with the effectiveness of proton
pump inhibitors against non-erosive reflux disease. J
Gastroenterol Hepatol 2009; 24: 1326-1332 [PMID: 19702900 DOI:
10.1111/j.1440-1746.2009.05897.x]

35 Manzotti ME, Catalano HN, Serrano FA, Di Stilio G, Koch
MF, Guyatt G. Prokinetic drug utility in the treatment of
gastroesophageal reflux esophagitis: a systematic review of
randomized controlled trials. Open Med 2007; 1: e171-e180
[PMID: 21673949]

36 Gralnek IM, Dulai GS, Fennerty MB, Spiegel BM. Esome-
prazole versus other proton pump inhibitors in erosive esophagitis:
a meta-analysis of randomized clinical trials. Clin Gastroenterol
Hepatol 2006; 4: 1452-1458 [PMID: 17162239
DOI: 10.1016/j.cgh.2006.09.013]

37 Grossi L, Spezzaferro M, Sacco LF, Marzio L. Effect of
baclofen on oesophageal motility and transient lower oeso-
ophageal sphincter relaxations in GORD patients: a 48-h
manometric study. Neurogastroenterol Motil 2008; 20: 760-766
[PMID: 18537654 DOI: 10.1111/j.1365-2982.2008.01115.x]

38 Thornton A, Lee P. Publication bias in meta-analysis: its
causes and consequences. J Clin Epidemiol 2000; 53: 207-216
[PMID: 10729693]

P- Reviewer: Bener A S- Editor: Wen LL
L- Editor: Wang TQ E- Editor: Wang CH
