Neuro-PIMS-TS: a single case report and review of the literature

Antonio Scarcella*, Maria Vincenza Mastrolia*, Edoardo Marrani, Ilaria Maccora, Ilaria Pagnini and Gabriele Simonini

Abstract: Neurological manifestations related to SARS-CoV-2 infection in adults have been largely reported since the beginning of the pandemic. Subsequent large-scale studies involving children confirmed the occurrence of neurological symptoms associated with SARS-CoV-2 infection also among paediatric patients, especially in the context of paediatric inflammatory multisystem syndrome temporally associated with COVID-19 (PIMS-TS). At this regard, we report the challenging case of a 10-month-old baby with PIMS-TS complicated by acute cerebral oedema successfully treated with intravenous immunoglobulins, corticosteroids and anakinra. Our results, combined with the evidence of larger case series suggest that higher inflammatory burden is more frequent in patients with neuro PIMS-TS. As regards neuroimaging, neuroimmune disorders are found to be more common during acute COVID-19, MERS is more frequent during PIMS-TS. Distinct immune mechanisms may underlie these different types of neurological involvement, which are yet to be understood. Further studies are required to better define the physiopathology of neuro PIMS-TS and its possible therapeutical implications.

Keywords: Kawasaki disease, MIS-C, neurological manifestations, PIMS-TS

Introduction
Since the outbreak of coronavirus disease 2019 (COVID-19) pandemic, it was clear that children had an asymptomatic or mild infection course, with minimal hospitalization rate and mortality.1,2

However, starting from April 2020, several countries reported on children with an acute critical condition subsequent to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This new clinical entity was quite similar to other known inflammatory diseases [i.e. Kawasaki disease (KD), septic shock and toxic shock syndrome],3,4 although with peculiar findings. This condition was labelled paediatric inflammatory multisystem syndrome temporally associated with COVID-19 (PIMS-TS) by the Royal College of Paediatrics and Child Health.5 Subsequently, the Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) referred to this condition as Multisystem inflammatory syndrome in children (MIS-C).6,7

Neurological manifestations related to SARS-CoV-2 infection in adults have been largely reported since the beginning of the pandemic.8 Subsequent large-scale studies involving children confirmed the occurrence of neurological symptoms associated to SARS-CoV-2 infection also among paediatric patients, especially in the context of PIMS-TS.9

LaRovere et al.10 reported that 22% of 1695 children with acute COVID-19 or PIMS-TS in the United States presented a neurological involvement. PIMS-TS patients did not show a higher rate of neurological involvement (35% versus 37%) or life-threatening events (47% versus 53%) than acute COVID-19 patients. Transient symptoms (88%) such as fatigue, confusion, headache, loss of smell or taste and seizures were the most frequently reported (88%). Therefore, a minority of patients (12%) experienced life-threatening conditions: severe encephalopathy (34.9%), ischemic or haemorrhagic stroke (27.9%), acute central nervous system infection or acute disseminated
encephalomyelitis (ADEM; 18.6%), acute fulminating cerebral oedema (9.3%) and Guillain–Barré syndrome (9.3%). These symptoms were more frequent in patients with underlying neurologic disorders and an unfavourable outcome, including death or neurological disability at discharge, was observed in 65% of patients with severe manifestations.

A further prospective cohort study conducted in the United Kingdom involving 1334 patients detected a much lower rate of neurological manifestations (3.8%) among children with acute COVID-19 and PIMS-TS. In the PIMS-TS subgroup (25 patients) encephalopathy (88%), peripheral nervous system involvement (40%), headache or meningism (40%) behavioural changes (36%), hallucinations (24%) and seizures (16%) were observed. Abnormal neuroimaging consistent with mild encephalopathy with reversible splenial lesion (MERS) was detected in 28% of patients. Neuroimmune disorders were more frequently observed in the COVID-19 group (48%) compared with the PIMS-TS one (<1%).

At this regard, we report the challenging case of a 10-month-old baby with PIMS-TS complicated by acute cerebral oedema. Furthermore, we performed a narrative literature review of PIMS-TS cases with neurological involvement, in order to characterize the spectrum of neurological manifestations of this critical condition, to establish the temporal association between PIMS-TS and neurological symptoms as well as to understand the potential underlying mechanisms of neurological involvement during PIMS-TS clinical course.

Materials and methods
A written informed consent for patients’ information and images to be published and written consent to treatment were provided by the legally authorized representatives. CARE guidelines were followed for the case report drafting.

As regards the narrative review of PIMS-TS cases with neurological involvement, the search strategy was carried out in PubMed/Medline and Embase databases using in all fields the key terms [‘Paediatric inflammatory multisystem syndrome temporally associated with COVID-19’ OR ‘PIMS-TS’ OR ‘Multisystem Inflammatory Syndrome in Children Associated With SARS-CoV-2’ OR ‘MIS-C’] AND [‘Neurological’ AND ‘Nervous’ AND ‘encephalopathy’ AND ‘seizures’ AND ‘papilledema’ AND ‘stroke’ AND ‘headache’ AND ‘hallucination’ AND ‘intracranial hypertension’]. The review includes retrospective cohort, prospective cohort studies, case series and case reports. Only articles published in English were included. Studies reporting poor or not-extractable data were excluded, as well as papers published before May 2020 (first PIMS-TS reported case). Double-reported patients were excluded from the total account.

Case report
A previously healthy 10-month-old African infant developed high-grade fever and emesis with a subsequent widespread urticarial rash and bilateral non-secretive conjunctivitis.

He was admitted to our tertiary care hospital after 4 days of persistent fever. At the physical examination, the infant presented marked irritability with tense, wide and bulging anterior fontanelle, shallow breathing and a widespread macular erythematous rash on trunk and limbs. Brain ultrasound did not detect intracranial bleeding or meningitis signs. Blood tests evidenced a remarkable increase of inflammatory markers [C-reactive protein (CRP) 32.08 mg/dl, procalcitonin (PCT) 97.7 ng/ml], neutrophilic leucocytosis, NT-proBNP (92,230 pg/ml) and D-dimer (2547 ug/l FEU) elevation, and a high ferritin value (810 ng/ml). SARS-CoV-2 IgG antibodies were positive, while RT-PCR for SARS-CoV-2 on nasopharyngeal swab was negative. Echocardiography evidenced slight coronary arteries dilatation and hyperkinetic left ventricle, with normal systolic function. Empiric antibiotic and antiviral treatment was started. Clinical and laboratory findings suggested a PIMS-TS diagnosis. Therefore, a single 2 g/kg dose of intravenous immunoglobulin (IVIG) was administered, followed by intravenous continuous infusion of anakinra (10 mg/kg qd). Moreover, a prophylactic antithrombotic therapy with enoxaparine at 100 UI/kg qd was started because of D-dimer elevation and initial coronary arteries dilatation, according to American College of Rheumatology clinical guidelines for PIMS-TS.

Despite this prompt intervention, 24h after admission, a neurological deterioration was observed with drowsiness alternating with extreme irritability. Brain computed tomography (CT) reported an initial cerebral oedema, with
meningeal and cerebral herniation from the anterior fontanelle. The patient continued to get worse and severe hypotension rapidly occurred requiring the admission to the intensive care unit (ICU), hemodynamic support with amines and mechanical ventilation. In order to treat cerebral oedema, dexamethasone and mannitol were administered intravenously. Subsequent cardiological evaluation described increased coronary arteries ectasia.

On day 7 from admission, a new fever rise, and a leucocytosis rebound occurred during the slow tapering of anakinra, therefore, the immunomodulatory regimen was re-intensified. A second 2 g/kg dose of IVIG followed by three boluses of methylprednisolone was administered.

After the maximization of treatment, patient’s clinical conditions gradually improved. He was weaned from ventilation, sedation and vasoactive support. Antibiotics and antiviral therapy were discontinued since all infectious tests resulted negative (aerobic and anaerobic bacteria and fungal blood cultures; Cytomegalovirus, Epstein-Barr virus, Adenovirus, Neisseria meningitidis, Streptococcus pneumoniae, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Streptococcus agalactiae, Haemophilus influenzae, Human Herpesvirus-6, Human Herpesvirus-7, Enterovirus, Herpes Simplex virus-1, Herpes Simplex virus-2, Parvovirus on blood samples by real-time polymerase chain reaction (RT-PCR); QuantiFERON for the detection of Mycobacterium tuberculosis).

On day 10, the boy was back at his neurological baseline, with a normal anterior fontanelle. He was persistently afebrile, and the rash completely disappeared. Inflammation indexes slowly decreased, and the patient was moved to the paediatric ward. Dexamethasone regimen was suspended. Two weeks after the admission, the baby presented peeling of the extremities and remarkable thrombocytosis. Right coronary artery (RCA) demonstrated a residual deep aneurismatic remodelling (+5.5 SD). Anti-platelet therapy was started, while enoxaparin was discontinued. Anakinra was slowly tapered and shifted to subcutaneous administration, with no fever relapse.

Brain magnetic resonance imaging (MRI), performed on day 14, showed periventricular hyperintensities without restricted diffusion (Figure 1). Slight cerebral and cerebellar trophism reduction was observed, with mild peri encephalic subarachnoid spaces enlargement. Angiography, venography and post-contrast scan were normal.

Coronary arteries dilatation regressed at its normal size (proximal RCA: +2.2 DS; common trunk of left coronary artery +2 DS; proximal anterior interventricular coronary artery: +1.32 DS; circumflex branch of left coronary artery +1.2 DS) within 2 weeks after its peak (Figure 2). As regards neurological status, the infant presented a regular development without sequelae.

Results
We retrospectively reviewed the clinical history of 75 patients with neuro PIMS-TS reported in literature. We collected epidemiological, clinical, therapeutical, laboratory and instrumental data (Table 1).

Epidemiology
51.6% of patients (33/64) were male. The median age was 9 years. Among those with known ethnicity, the majority (59%, 23/39) were African descent. 28.2% was Asian (11/39); only 12.8% was Caucasian (5/39).

SARS-CoV-2 tests
85% of the patients (51/60) who underwent SARS-CoV-2 serology testing resulted positive, while RT-PCR on nasopharyngeal swab resulted positive in 42.6% of patients (26/61).

Signs and symptoms
Among neuro-PIMS-TS reported patients, fever was the most common finding (97.4%, 38/39). Vomiting (53.8%, 23/39), abdominal pain (53.8%, 21/39), and diarrhoea (41%, 16/39) were also frequent clinical signs, together with skin rash (53.8%, 21/39) and conjunctivitis (33.3%, 13/39). Dyspnoea was reported in 20.5% of these patients (8/39).

Blood tests
Among neuro PIMS-TS patients reported in case reports and case series, 75% (18/24) showed a CRP value higher than 20 mg/dl; a CRP value higher than 30 mg/dl was detected in 45.8% of cases (11/24). 46.6% (7/15) showed a PCT value higher than 30 ng/ml.
Ferritin levels resulted higher than 1000 ng/ml in 50% of these patients (10/20); a D-dimer elevation above 2500 ng/ml was reported in 73.7% of them (14/19).

NT-pro BNP was not routinely performed in neuro PIMS-TS children; 26.9% of cases reported a NT-pro BNP determination during the clinical course with a median value of 13,358 pg/ml.

Neurological manifestations

Encephalopathy was the most common neurological finding, involving 82.8% of neuro PIMS-TS patients (53/64). 43.8% of patients (28/64) experienced headache and/or meningism. Behavioural changes were described in 37.5% (24/64) and hallucinations in 21.9% of cases (14/64). Seizures were documented in 9.4% of patients (6/64). 4 stroke episodes (9.4%, 6/64) were also reported.

Signs of intracranial hypertension (abducens palsy 3/39, papilledema 2/39) were described in a minority of cases. Proximal and/or global weakness was sometimes reported, involving 18% of children (7/39). However, Ray et al. reported a higher rate of peripheral nervous system involvement among their patients (40%, 10/25).

Cardiac manifestations

Among neuro PIMS-TS patients, 30% (9/30) presented with tachycardia and 52.7% (29/55) with hypotension and/or shock. Indirect cardiovascular signs of intracranial hypertension (hypertension and bradycardia) were reported in two cases.

Coronary arteries dilatation and/or aneurysm were described in 25% of patients (6/24); ventricular dysfunction was reported in 48.6% of cases (18/37).

Neuro-imaging findings

Signal changes in the genu and/or splenium of the corpus callosum (consistent with MERS) were the most common imaging findings among all neuro PIMS-TS patients, accounting on 30.4%
of cases (21/69). 11.6% of them presented with radiological signs of stroke (8/69).

Among neuro PIMS-TS patients reported in case reports and case series, normal brain imaging was quite frequent, being documented in 42.4% of patients (14/33). Cerebral oedema and anomalies of optic nerves were both described in 2 cases. Lindan et al. also reported two cases of cranial nerve enhancement (18.2%, 2/11) among their patients; myositis of the facial or neck musculature was a common finding, involving 36.4% of children (4/11).

Treatment

A first-line immunomodulatory treatment with IVIG and methylprednisolone was received by 84.6% (33/39) of neuro PIMS-TS patients. 23.1% of them (6/26) also required the recourse to anakinra. Antibiotics were administered in 18% of patients (7/39). Vasooactive support was necessary in 34.3% of cases (9/26). 30.8% of patients (12/39) underwent anticoagulant treatment, while aspirin was administered in 10.3% (4/39).

Ray et al. reported a high rate of paediatric intensive care unit admission (80%, 20/25), with inotropic support in 52% of cases (13/25) and immunomodulatory treatment in 88% of patients (22/25).

Outcomes

A complete recovery without sequelae was reported in most cases (64%, 48/75). However, a variable degree of residual disability was observed, involving 32% of patients (24/75) and ranging from hemiparesis and wheelchair bounding to mild behavioural changes. Death was a rare adverse event (4%, 3/62).
Table 1. Neuro PIMS-TS previously reported cases.

Study	Age	Sex	Ethnicity	SARS-CoV-2 tests	Blood tests	Neurological manifestations	Cardiovascular findings	Other symptoms and signs	Neuro-Imaging	Lumbar puncture	Therapy	Outcome			
Abel et al.	33 months	M	NA	RT-PCR: negative/inde-terminate	PLT 23,000/dl CRP 25.2 mg/dl Ferritin 2000 ng/ml NT-pro-BNP 29.4 pg/ml	CNS Irritability Somnolence Hypotension PNS None	ECG: Sinus tachycardia	Fever Emsesis Rash	MRI: normal MRI (day 7): restricted diffusion in the bilateral lateral thalamic nuclei without T2/FLAIR changes MRI (day 15): normal	Normal	Antibiotics Anakinra Methylprednisolone Anticoagulants	Mild residual weakness requiring physical therapy			
Baccarella et al.	9 years	M	NA	RT-PCR: negative Serology: positive	CNS Headache Diplopia Right abducens palsy PNS None	Fever Abdominal pain	MRI and venography: normal	Elevated opening pressure: 34 cm H2O Sars-CoV-2: RT-PCR: negative Other CSF studies: normal		PIMS-TS protocol Acetazolamide	Complete recovery				
Becker et al.	14 years	F	NA	RT-PCR: negative Serology: positive	CNS Blurry vision Abducens palsy Bilateral papilledema PNS None	Tachycardia Hypotension US: Left ventricular dysfunction Right coronary artery dilatation (day 7): z score 3.15	Fever Dyspnea Headache Emsesis Diarrhoea Rash	MRI: restricted diffusion of optic nerve sheaths, flattening of the posterior sclera, and oedema of the optic discs Venography: flattening of the left transverse and sigmoid sinuses	Elevated opening pressure: >36 cm H2O Sars-CoV-2 RT-PCR: negative Other CSF studies: normal		PIMS-TS protocol Acetazolamide IVIG Anakinra Methylprednisolone Hydrocortisone	Recovery of papilledema after 5 months			
6 years	F	NA	RT-PCR: negative (day1)/positive (day 2) low viral load Serology: positive	CNS Altered mental status Irritability Nucal rigidity PNS None	US: Moderate left ventricular dysfunction	Fever Rash Conjuctisitis Emsesis Diarrhoea	MRI: restricted diffusion of optic nerve sheaths, flattening of the posterior sclera, and oedema of the optic discs Venography: flattening of the left transverse and sigmoid sinuses	Elevated opening pressure: 31 cm H2O Sars-CoV-2 RT-PCR: negative Pleocytosis		IVIG Anakinra Methylprednisolone Epinephrine Nor epinephrine	Discharged on day 12 at neurological baseline				
Study	Age	Sex	Ethnicity	SARS-CoV-2 tests	Blood tests	Neurological manifestations	Cardiovascular findings	Other symptoms and signs	Neuro-Imaging	Lumbar puncture	Therapy	Outcome			
-------	-----	-----	-----------	------------------	-------------	-----------------------------	------------------------	-------------------------	-----------------	----------------	----------	---------			
13 years	F	NA	RT-PCR: negative	Serology: positive	WBC 13,300/ul	N 94.8% L 3.5% PLT 107,000/ul CRP 23.2 mg/dl PCT 1.5 ng/ml NT-pro-BNP: normal Troponin: normal	CNS Headache Neck pain Waning mental status Nuchal rigidity Encephalopathy Intracranial hypertension PNS None	EEG: no seizures	CT: normal MRI: normal	Elevated opening pressure: > 38 cm H₂O Pleocytosis Elevated protein	Ceftazidime Doxycycline Hypertonic saline IVIG Hydrocortisone Methylprednisolone Tacrolimus Meprobamate Epinephrine Noradrenaline Vasopressin Milrinone Enoxaparin Aspirin	Discharged on day 27 at neurological baseline			
12 years	M	NA	RT-PCR: negative	Serology: positive	WBC 10,300/ul	N 84.6% L 6.7% PLT 204,000/ul CRP 22.4 mg/dl ESR 62 mm/h PCT 38.1 mg/dl NT-pro-BNP 230 pg/ml Troponin 4.4 mg/ml Na 123 mEq/l	CNS Waning mental status Nuchal rigidity PNS None	EEG: diffuse slowing, no seizures	CT: normal	Elevated opening pressure: 34 cm H₂O Epinephrine Milrinone IVIG Methylprednisolone Enoxaparin Aspirin	Discharged on day 16 at neurological baseline				
Tiwari et al.	9 years	F	RT-PCR: positive	Serology: positive (week 4 of admission)	PLT 250,000/ul	CRP 6.49 mg/dl ESR 50 mm/h Ferritin 614 ng/ml D-dimer 3570 ng/ml Troponin 1 normal Na 132 mEq/l ALT 126 UI/L LDH 1000 UI/L	CNS Right facial nerve palsy Frontal headache Right hemiparesis Brisk deep tendon reflexes Extension right plantar response Worsening GCS (day 3) PNS None	Hypertension Bradycardia Cardiac arrest US: normal ECG: normal	Fever (14 days)	Emesis Conjunctivitis	CT: infarcts in the genu and adjacent body of corpus callosum, (left basal ganglia and bilateral thalami; mild oedema and mild mass effect over the lateral ventricle CT angiography: multifocal smooth stenosis of both intracranial internal carotid arteries, right middle cerebral artery, and anterior cerebral arteries. Diffuse narrowing of the M2 and M3 segment branches of both middle cerebral arteries	Sars-CoV-2 RT-PCR: negative Pleocytosis (80% lymphocytes) Slightly increased protein	Mechanic ventilation Sedation Head elevation (30°) Glycerol 3% Hypertonic saline Mannitol Supportive care Ceftriaxone Vancomycin Azithromycin IVIG Methylprednisolone Dexame the sone Remdesivir LMWH	GCS 13 power: 2–3/5 On psychomotor rehabilitation	(Continued)
Study	Age	Sex	Ethnicity	SARS-CoV-2 tests	Blood tests	Neurological manifestations	Cardiovascular findings	Other symptoms and sings	Neuro-Imaging	Lumbar puncture	Therapy	Outcome			
-----------------------------	------	-----	-----------	-----------------------------	--	---	---	----------------------------------	--	----------------	--------------------------------	----------------------------------			
Kim et al.	7 yrs	M	NA	RT-PCR: positive (his parents had positive nasopharyngeal swab 4 weeks before)	CRP 22 mg/dl ESR 38 mm/h PCT 8.6 mg/l Fibrin: 1601.2 ug/l D-dimer 17,650 ng/ml	CNS: Headache Neck pain Allergic mental status	ECG: normal	Fever Emesis Abdominal pain	CT angiography: negative CT scan: diffuse cerebral oedema	Elevated opening pressure: 103.3 cm H2O	Levetiracetam Lorazepam Vancomycin	Brain death			
Shenker et al.	12 yrs	M	NA	RT-PCR: positive Serology: positive (day 9)	WBC: 28,000/ul PLT 109,000/ul CRP 42.14 mg/dl Ferritin 633 ng/ml D-dimer 816 ng/ml NT-pro-BNP 1067 pg/ml Troponin: negative	CNS: Hyperactivity Emotional lability Tangential speech Allergic mental status Decreased level of consciousness	Tachycardia Hypotension	Fever Right-sided neck swelling Conjunctivitis Abdominal rash Trismus	Neck CT: retropharyngeal fluid collection Head CT: normal MRI: normal MR angiography: normal	Normal SARS-CoV-2 RT-PCR: negative	Enoxaparin Clindamycin Ampicillin-sulbactam Vancomycin Furosemide IVIG Epinephrine Remdesivir Anakinra Levetiracetam Lorazepam Fosphenytoin Oxcarbazepine	Discharged on day 26 at neurological baseline			
Abdel-Mannan et al.	8 yrs	M	South Asian	RT-PCR: positive	CRP 44.8 mg/dl Ferritin 1414 ng/ml D-dimer 1,625,400 ng/ml ml LDH 1016 U/l	CNS: Agitation Meningism Headache Generalized proximal weakness	Circulatory shock US: —Mild to moderate left ventricular dysfunction ECG: pericarditis	Fever Abdominal pain Palmar rash Emesis	CT (day 3): hypodensity of the splenium of the corpus callosum (SCC) T2 MRI: persistent signal changes in the genu and SCC without restricted diffusion	Sars-CoV-2 RT-PCR: negative WBC 8,000 cell/ul Protein 2 g/dl	ICU admission IVIG Dexa methasone Methylprednisolone Anakinra	Encephalopathy resolved, wheelchair bound			
9 years	M	Afro-Caribbean	RT-PCR: positive	CRP 31.3 mg/dl Ferritin 1192 ng/ml D-dimer 494,500 ng/ml Na 129 mEq/L LDH 900 U/l	CNS: Confusion Ataxia Dysesthesia Dysphagia Bilateral proximal leg weakness Urinary retention	Circulatory shock US: —Mild to moderate parietal dysfunction ECG: supraventricular	Fever Palmar rash Emesis	T2 MRI (day 1): signal changes of the genu and SCC with restricted diffusion	Sars-CoV-2 RT-PCR: negative WBC: 2,000 cell/ul Protein 1.9 g/dl	ICU admission	Discharged on day 11 at neurological baseline	(Continued)			

(Continued)
Study	Age	Sex	Ethnicity	SARS-CoV-2 tests	Blood tests	Neurological manifestations	Cardiovascular findings	Other symptoms and signs	Neuro-Imaging	Lumbar puncture	Therapy	Outcome								
15 years	F	South Asian	RT-PCR: positive	Serology: positive	CRP 28.9 mg/dl	Ferritin 54,145 ng/ml	D-dimer 1,479,800 ng/ml	LDH 4331 U/V	CNS	Confusion	Dysarthria	Dizziness	Global flaccid weakness	Reduced reflexes	PNS	None	EEG: mild excess of slow activity over the anterior region	EMG: mild myopathic or neuromyopathic changes		
15 years	F	Afro-Caribbean	RT-PCR: positive	Serology: positive	CRP 32.8 mg/dl	Ferritin 1218 ng/ml	D-dimer 1,248,600 ng/ml	LDH 1168 U/V	CNS	Confusion	Disorientation	Headache	Global proximal weakness	Reduced reflexes	PNS	None	EMG: mild myopathic changes			
Bektaş et al.21	10 years	M	NA	RT-PCR: negative	Serology: positive 1 week after discharge	PLT 124,000/µl	CRP 39.2 mg/dl	Ferritin 341 ng/ml	D-dimer 595 ng/ml	NT-pro-BNP 15,800 pg/ml	Troponin I 324 ng/ml	Na 131 mmol/l	CNS	Hallucinations	Agitation	Disorientation	Personality changes	PNS	None	EEG: diffuse slowing
	11 years	NA	RT-PCR: negative	Serology: positive	PLT 133,000/µl	CRP 45.6 mg/dl	Ferritin 533 ng/ml	D-dimer 850 ng/ml	NT-pro-BNP 35,000 pg/ml	Troponin I 182 ng/ml	Na 132 mmol/l	CNS	Agitation	Personality changes	PNS	None	EEG: diffuse slowing			

(Continued)
Study	Age	Sex	Ethnicity	SARS-CoV-2 tests	Blood tests	Neurological manifestations	Cardiovascular findings	Other symptoms and sings	Neuro-Imaging	Lumbar puncture	Therapy	Outcome	
Sa et al.	14 years	M	African-American	RT-PCR: negative	CRP 30.8 mg/dl	CNS	Restlessness, Agitation, Confusion	Tachycardia, Hypotension, Circulatory shock	Fever, Abdominal pain, Truncal rash, Tachypnoea	MRI: normal	NA	Antibiotics, Fluid resuscitation, Noradrenaline, Ketamine, Midazolam, Doxome, Drotrecogin, LMWH, Methylprednisolone, Anakinra, Milrinone, Haloperidol, Lorazepam, Olanzapine, IVIG	Discharged on day 12 at neurological baseline
2 years	F	Afro-Caribbean	RT-PCR: positive, Serology: positive	CRP 18.9 mg/dl	Altered consciousness, PNS	US: Mild left ventricular dysfunction, Coronary atherosclerosis	Fever, Lymphadenopathy, Periorbital and lip oedema, Abdominal pain	Normal, SARS-CoV-2 RT-PCR: negative	MRI: normal	NA	IVIG, Methylprednisolone	Complete recovery at 3 months follow-up	
4 years	F	Caucasian	RT-PCR: negative, Serology: negative	CRP 28.3 mg/dl	CNS	US: Hyperchogenicity of coronary arteries, Ectasia of left anterior descending coronary artery	Fever, Abdominal pain, Diarrhoea, Vomits, Altered consciousness, Behavioural changes	MRI: normal	Normal, CSF: mixed oligoclonal bands (serum and CSF)	IVIG, Methylprednisolone	Behavioural changes at 3 months follow-up		
6 years	F	Asian	RT-PCR: positive, Serology: positive	CRP 8 mg/dl	CNS	Severe behavioural changes, PNS	US: Coronary atherosclerosis,	Fever, Rash, Face and feet Oedema, Abdominal pain, Vomits, Severe behavioural changes,	NA	NA	Oral prednisolone	Complete recovery at 4 months follow-up	
8 years	F	Afro-Caribbean	RT-PCR: negative, Serology: positive	CRP 57 mg/dl	CNS	Altered consciousness, Visual hallucinations, PNS	Circulatory shock, Ventricular dysfunction	Fever, Sore throat, Vomits, Diarrhoea	MRI: normal	NA	IVIG, Methylprednisolone	Complete recovery at 4 months follow-up	

Table 1. (Continued)
Study	Age	Sex	Ethnicity	SARS-CoV-2 tests	Blood tests	Neurological manifestations	Cardiovascular findings	Other symptoms and signs	Neuro-imaging	Lumbar puncture	Therapy	Outcome	
12 years M	Caucasian	RT-PCR: negative	Serology: negative	CRP 9.4 mg/dl	Persistent severe headache, Sleepiness	PNS	Hypotension	Pedal oedema, Conjunctivitis	MRI: normal	NA	IVIG, Methylprednisolone	Complete recovery at 3 months follow-up	
12 years F	Afro-Caribbean	RT-PCR: negative	Serology: positive	CRP 34.3 mg/dl	Behavioural changes, Cognitive dysfunction	PNS	Circulatory shock	Rash, Crackled lips	MRI: subtle cortical changes	NA	IVIG, Methylprednisolone, Infliximab	Mild behavioural changes/low mood at 4 months follow-up	
14 years M	Afro-Caribbean	RT-PCR: positive	Serology: positive	CRP 55.6 mg/dl	Headaches, Focal neurology with asymmetric pupils (stroke)	PNS	Circulatory shock	ARDS	CT: acute right anterior circulation infarct	NA	No treatment	Death	
15 years F	Afro-Caribbean	RT-PCR: negative	Serology: negative	CRP 9.9 mg/dl	Behavioural changes, Visual and auditory hallucinations	Seizures	Circulatory shock	ARDS	MRI: splenium of corpus callosum and hippocampal mild diffusion restriction	Normal	RT-PCR SARS-CoV-2: negative	IVIG, Methylprednisolone	Mild memory difficulties at 3 months follow-up
10 years M	Afro-Caribbean	RT-PCR: negative	Serology: positive	CRP 29.6 mg/dl	Left-sided facial weakness, Hypertension and bradycardia (raised intracranial pressure: stroke)	PNS	Hypertension	Dorsal, chest, and thighs pain (sickle cell crisis)	CT/MRI: right frontal intraparenchymal haemorrhage and infarction	NA	IVIG, Methylprednisolone, Tocilizumab	Left hemiparesis	
Study	Age	Sex	Ethnicity	SARS-CoV-2 tests	Blood tests	Neurological manifestations	Cardiovascular findings	Other symptoms and signs	Neuro-Imaging	Lumbar puncture	Therapy	Outcome	
-------	-----	-----	-----------	------------------	-------------	-----------------------------	------------------------	--------------------------	----------------	---------------	----------	---------	
Lacinel Gürlevik et al.	3 years	M	NA	RT-PCR: negative	Serology: positive	NA	CNS: Irritability, Lethargy, Headache, Meningism, Visual hallucinations, PNS, None	Hypotension	Fever, Rash, Conjunctivitis, Hepatospino-megaly	CT: normal	Glucose: 58 mg/dl, Protein: 40 mg/dl, Direct microscop-ic examination: no cell, CSF culture: negative, Viral encephalitis panel: negative	IVIG, Steroids, Immunomodulators, Plasma exchange, Prophylactic anticoagulation, Antiviral	Complete recovery
14 years	F	NA	RT-PCR: negative	Serology: positive	NA	CNS: Visual and auditory hallucinations, Delirium, Fluctuating attention and cognition, Blurred vision, PNS, None, EKG (1 month later): normal	Hemodynamic impairment	Fever, Rash, Abdominal pain, Diarrhea, Rash	MRI (day 25): multiple microhemor-rages and bilateral MCA stenosis consist-ent with small- and medium-vessel vasculitis, MRI (day 36): PRES, MRI (day 54): PRES regression	NA	IVIG, Steroids, Immunomodulators, Plasma exchange, ECMO, Prophylactic anticoagulation, Antiviral	Discharged with moderate muscle strength loss and need assistance for walking, Difficulty in climbing stairs and tremors onset to 6 months follow-up	
15 years	F	NA	RT-PCR: negative	Serology: positive	NA	CNS: Irritability, Visual hallucinations, Fluctuating cognition, Agitation, Delirium, PNS, None, EMG: myopathic changes	Hypotension	Fever, Rash, Abdominal pain, Conjunctivitis	CT: normal	NA	IVIG, Steroids, Immunomodulators, Plasma exchange, Prophylactic anticoagulation, Antiviral	Complete recovery	
6 years	F	NA	RT-PCR: negative	Serology: positive	NA	CNS: Headache, Irritability, Lethargy, Fluctuating cognition, Meningism, On extubation (26th day): weakness is lower > upper limbs, muscle atrophy, PNS, EMG (2 months later): motor axonal poly-neuropathy in lower extremities	Hypotension	Tachycardia	CT: normal	Glucose: 58 mg/dl, Protein: 23 mg/dl, Direct microscop-ic examination: no cell, CSF culture: negative	IVIG, Steroids, Immunomodulators, Plasma exchange, Prophylactic anticoagulation, Antiviral	Discharged with mild muscle strength loss and need assistance for walking	
17 years	M	NA	RT-PCR: negative	Serology: positive	NA	CNS: Headache, Irritability, Lethargy, Fluctuating cognition, Meningism, On extubation (26th day): weakness is lower > upper limbs, muscle atrophy, PNS, EMG (2 months later): motor axonal poly-neuropathy in lower extremities	Hypotension	Tachycardia, CT angiography: stenosis in the upper truncus of the right MCA and paucity of distal branches of the MCA	CT: normal	Glucose: 58 mg/dl, Protein: 23 mg/dl, Direct microscop-ic examination: no cell, CSF culture: negative	IVIG, Steroids, Immunomodulators, Plasma exchange, Prophylactic anticoagulation, Antiviral	Discharged with moderate muscle strength loss and need assistance for walking, Steppage gait, impaired vibra-tion sensation in the lower limbs on up to 5 months follow-up	
Table 1. (Continued)

Study	Age	Sex	Ethnicity	SARS-CoV-2 tests	Blood tests	Neurological manifestations	Cardiovascular findings	Other symptoms and signs	Neuro-Imaging	Lumbar puncture	Therapy	Outcome	
A Scarcella, MV Mastrolia et al.	13 years	M	NA	RT-PCR: negative	NA	CNS None PNS	NA	Fever Rash Conjunctionitis Diarrhoea Abdominal pain	NA	NA	IVIG Steroids Immunosuppressants	Recovered with gabapentin	
	5 years	M	NA	Serology: positive	↑ CRP ↑ PCT ↑ ESR ↑ D-dimer ↑ NT-pro BNP Troponin T: normal ↑ IL-6 ↓ PLT Hyponatremia Hyponatremia Hyponatremia Lyphocytopenia	CNS Headache Drowsiness Irritability Mood deflection Sleep disorder Photophobia Diffuse limb pain Lower limb weakness and areflexia Gait disorder Speech disorder Oculomotor apraxia PNS None	None	Mild dysfunction (EF 49-50%)	Fever Asthemia Abdominal pain Emesis Diarrhoea	Normal	Normal	IVIG Methylprednisolone	Full recovery
	3 years	F	NA	Serology: positive	↑ CRP ↑ PCT ↑ ESR ↑ D-dimer ↑ NT-pro BNP Troponin T: normal ↑ IL-6 ↓ PLT Hyponatremia Hyponatremia Hyponatremia Lyphocytopenia Proteinuria	CNS Irritability Mood deflection Drowsiness PNS None	None	None	Fever Rash Conjunctionitis Lower limb oedema	MRI: normal	Normal	IVIG Methylprednisolone	Full recovery
	3 years	F	NA	RT-PCR: positive	↑ D-dimer ↑ NT-pro BNP ↑ Troponin T ↑ PLT Neutrophilia Hyponatremia Hyponatremia Hyponatremia	CNS Generalized tonic-clonic seizures Irritability Drowsiness Hyporeactivity Mood deflection PNS None	None	Severe dysfunction (EF <35%)	Fever Abdominal pain Diarrhoea Femoral artery thrombosis Subpleural thickenings and pleural effusion	MRI: normal	Normal	ICU admission IVIG Methylprednisolone	Full recovery

(Continued)
Table 1. (Continued)

Study	Age	Sex	Ethnicity	SARS-CoV-2 tests	Blood tests	Neurological manifestations	Cardiovascular findings	Other symptoms and signs	Neuro-Imaging	Lumbar puncture	Therapy	Outcome
7 years	F	NA	Serology: positive	↑ CRP	Neutrophilia							
8 years	F	NA	Serology: positive	↑ CRP	Neutrophilia							
10 years	M	NA	RT-PCR: positive	↑ NT-pro BNP	Troponin T: normal							
Ray et al.	25 PIMS-TS patients	10 (1-17) years	White (3/25, 12%) Black (14/25, 56%) Asian (8/25, 32%)	RT-PCR positive: 11/25 (44%) Serology positive: 19/25 (76%)	CRP: 2 mg/dl (55.6) Elevated acute-phase reactants: 25/25 (100%) WBC: 20,000/μl (3000-44,400)							

CT or MRI: 23/25 (92%) Abnormal neuro-imaging: 17/23 (74%) —MERS: 7/23 (28%) —Stroke: 2/23 (8%) EEG: non-specific focal or generalized background slowing: 13/25 (52%) Pleocytosis: 3/25 (12%) PICU admission: 20/25 (80%) Inotropic support: 13/25 (52%) Immunomodulation: 22/25 (88%) Disability: 7/25 (28%) Death: 1/25 (4%)
Table 1. (Continued)

Study	Age	Sex	Ethnicity	SARS-CoV-2 tests	Blood tests	Neurological manifestations	Cardiovascular findings	Other symptoms and signs	Neuro-Imaging	Lumbar puncture	Therapy	Outcome	
Lindan et al.	25	11	PIMS-TS	NA	NA	CNS	NA	7/11 (64%): splenial lesion of the corpus callosum	NA	NA	NA	5/11 (45%): clinically normal at hospital discharge	
			patients	NA	NA	CNS	NA	4/11 (36%): enhancing myositis of the facial or neck musculature	NA	NA	NA	4/11 (55%): clinically improved at hospital discharge	
				NA	NA	PNS	NA	2/11 (18%): cranial nerve enhancement	1/11 (9%): cauda equina enhancement				
				NA	NA	NA	NA	1/11 (9%): myelitis					
				NA	NA	1/11 (9%): multiple microthrombi		5/11 (45%): clinically normal at hospital discharge					

ADEM, acute disseminated encephalomyelitis; ALT, alanine aminotransferase; ARDS, acute respiratory distress syndrome; CNS, central nervous system; CRP, C-reactive protein; CSF, cerebrospinal fluid; CT, computer tomography; ECG, electrocardiography; ECMO, extracorporeal membrane oxygenation; EEG, electroencephalography; EF, ejection fraction; EMG, electromyography; ESR, erythrocyte sedimentation rate; FLAIR, fluid-attenuated inversion recovery; GCS, glasgow coma scale; HFNC, high flow nasal cannula; ICU, intensive care unit; IVIG, intravenous immunoglobulin; L, lymphocytes; LDH, lactate dehydrogenase; LMWH, low molecular weight heparin; MCA, middle cerebral artery; MERS, Mild Encephalitis/Encephalopathy with Reversible Splenial Lesion; MRI, magnetic resonance imaging; N, neutrophils; Na, sodium; NA, not available; NT-pro-BNP, brain natriuretic peptide; PCT, procalcitonin; PICU, paediatric intensive care unit; PIMS-TS, pediatric inflammatory multisystem syndrome tempo rally associated with COVID-19; PLT, platelets; PNS, peripheral nervous system; PRES, posterior reversible encephalopathy syndrome; RT-PCR, real time polymerase chain reaction; US, ultrasonography; WBC, white blood cells.
Discussion

To the best of our knowledge, we reported the youngest PIMS-TS patient presenting a neurological involvement. Four case reports, five case series, one prospective cohort study and one multicentre study have previously described neuro PIMS-TS patients, recording a total amount of 75 children, with a median age of 9 years (Table 1).

As regards ethnicity, our infant was of African descent. It is well known that most of the PIMS-TS patients are African/Afro-Caribbean, Hispanic and South Asian, mainly in Western countries. Only few cases were described in East Asia, probably because of the lack of knowledge of this new clinical entity at the beginning of pandemic. African ancestry was also one of the most represented in neuro PIMS-TS.

Our patient presented a positive SARS-CoV-2 serology, with negative RT-PCR on nasopharyngeal swab. LaRovere et al. described a 22% of patients reporting neurological symptoms between COVID-19 and PIMS-TS patients and a concomitant positivity of both serology and RT-PCR was often reported making difficult to distinguish between acute hyperinflammatory COVID-19 and PIMS-TS. Patients with and without neurological involvement presented a similar rate of PIMS-TS diagnosis and life-threatening neurologic events did not show a predominance among neuro-PIMS-TS cases.

Considering clinical features, our patient presented high-grade fever, emesis and widespread skin rash as reported in previous cases.

In this group of patients, a severe neurological involvement was associated to a remarkable inflammatory state, similarly to KD patients. Our infant presented with acute cerebral oedema and deep increase of inflammatory markers. A CRP value >30 mg/dl, a PCT value >30 ng/ml and a ferritin level >1000 ng/ml were observed in about half of the reported neuro PIMS-TS cases.

Our patient presented with wide, tense and bulging anterior fontanelle, with a rapid subsequent neurological impairment and a deep increase of NT-pro BNP (92,230 pg/ml) at the clinical onset, without any sign of myocardial dysfunction. NT-pro BNP represents a marker of left ventricular dysfunction in heart failure patients since it regulates systemic fluid volume through vasodilatation and natriuresis. However, the wide distribution of BNP receptors in the brain may suggest a novel pathway between heart and brain and a potential additional role for NT-pro BNP in the development of cerebral oedema.

As regards the pathogenesis of the neurological involvement observed in our case and in the most of the neuro-PIMS-TS patients, it is reasonable to suppose that is due to an immune-mediated pathophysiological mechanism triggered by previous SARS-CoV-2 infection rather than a direct viral invasion. This hypothesis is supported by the fact that the neurological symptoms occurred during a post-infectious multisystem inflammatory condition. Moreover, cytopathological evaluation of cerebrospinal fluid samples of previous neuro-PIMS-TS cases were negative for SARS-CoV-2 RNA by RT-PCR and reported increased numbers of lymphocytes and macrophages suggesting that the production of cytokines induced by the inflammatory response is responsible of the neurological manifestations. This hypothesis is also supported by the excellent response to immunomodulatory treatment for neurological complications in this group of patients.

Encephalopathy, headache and/or meningism and behavioural changes (33.3%) were the most reported symptoms in neuro PIMS-TS patients. Signs of intracranial hypertension (abducens nerve palsy, papilledema) and cerebral oedema were observed in a minority of cases.

A clinical hallmark was the concomitant presence of myocardial disfunction. Cardiovascular impairment frequently coexists with neurological symptoms since hypotension and/or shock and ventricular dysfunction were frequently observed. Coronary arteries ectasia and/or aneurysm were also reported even if typically transient, usually occurring at the onset of fever and rarely progressing to aneurysms.

As regards neuroimaging, a non-specific periventricular hyperintensities and a slight cerebral and cerebellar atrophy was observed in our patient. According to previous data, MERS is a common finding in neuro PIMS-TS patients. MERS is a distinct radiological entity characterized by hyperintensities of the genu and/or the splenium of corpus callosum on MRI T2-weighted, fluid-attenuated inversion recovery and diffusion-weighted images. MERS may have different causes; primarily viral infections as most frequent triggers, although its exact
pathophysiology is still unknown. The most accredited hypothesis is that pro-inflammatory cytokines lead to glutamate release and oxidative stress in neurons, resulting in cytotoxic oedema.34 MERS cases following SARS-CoV-2 infection have been reported.35 Similarly, anecdotal cases of KD-associated MERS have reported,25,36 strengthening the hypothesis that MERS may be a consequence of systemic hyper-inflammation.

Lindan et al.25 collected 38 cases of neuroimaging abnormalities in COVID-19 and PIMS-TS children. In the acute COVID-19 subgroup, 50% of patients presented a neuroimmune disorder (ADEM-like and neuritis); 33.3% had fulminant co-infections (tuberculosis, chickenpox, bacterial sepsis) and rapidly died; one patient (8.3%) showed an aggressive necrotizing myelitis; a 27-weeks pregnant adolescent girl presented with posterior reversible encephalopathy syndrome and occipital infarction. In the PIMS-TS subgroup, 64% of patients presented splenial lesions; two patients (18%) had cranial nerve enhancement; one patient (9%) reported cauda equina enhancement and myelitis was observed in one case (9%). Four patients (36%) had enhancing myositis of the facial and neck muscles; one patient (9%) reported multiple brain microthrombi.

These results suggest that neuroimmune disorders (i.e. ADEM-like changes, neuritis, Guillain Barré syndrome) may be more frequently observed during acute COVID-19 and neurological symptoms during COVID-19 and PIMS-TS may be caused by different immune mechanisms.

Focusing on treatment, our patient presented with a refractory disease and maximal therapy was performed, including IVIG, steroids and anakinra. Considering previous data, IVIG and methylprednisolone were the most common adopted treatment. Anakinra was administered in 23% of these patients, mostly in case of first-line treatment-resistant cases.

As regards thromboprophylaxis, our patient was treated with enoxaparine, while in the subacute phase anti-platelet regimen was started. Anticoagulants were used in 23% of neuro-PIMS-TS patients, while aspirin was used in 15.3% of cases.

Despite being a life-threatening condition with high rates of ICU admission,10,11 PIMS-TS patients, if promptly treated, report a complete recovery. As regards neuro PIMS-TS subgroup, a complete recovery was observed in most of the patients although a significant rate of disability (32%) was reported, thus underlying the importance of a timely diagnosis and treatment.

In conclusion, neurological involvement may be frequent in PIMS-TS patients as expression of the hyperinflammatory state. Symptoms are acute and reversible in most of the patients with a favourable response to immunomodulatory treatment. Available data suggest that paediatric patients experience different types of neurological involvement during acute COVID-19 and PIMS-TS. Further studies are needed to better characterize these different neurological manifestations related to SARS-CoV-2 infection suggesting the opportunity of different patient-tailored therapeutic strategies.

Declarations

Ethics approval and consent to participate

Ethics approval was not required by our institution for case reports.

Consent for publication

Written informed consent for patients' information and images to be published were provided by the legally authorized representatives.

Author contributions

Antonio Scarcella: Data curation; Formal analysis; Investigation; Writing – original draft.

Maria Vincenza Mastrolia: Conceptualization; Methodology; Project administration; Supervision; Writing – review & editing.

Edoardo Marrani: Investigation; Validation.

Ilaria Maccora: Investigation; Validation.

Ilaria Pagnini: Investigation; Validation.

Gabriele Simonini: Conceptualization; Methodology; Supervision.

Acknowledgements

None.

Funding

The authors disclosed receipt of the following financial support for the research, authorship and/or publication of this article: ‘Registro COVASAKI: sorveglianza di casi di Sindrome di
Kawasaki e di Malattia Infiammatoria Multisistemica Pediatrica associata ad infezione da SARS CoV-2 tramite la Rete Pediatrica TOSCANA’ founded by Tuscany Region.

Competing interests
The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Availability of data and materials
The authors confirm that the data supporting the findings of this study are available at request.

ORCID iDs
Maria Vincenza Mastrolia https://orcid.org/0000-0002-9784-3543
Gabriele Simonini https://orcid.org/0000-0002-5919-4861

References
1. Castagnoli R, Votto M, Licari A, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatr 2020; 2: 882–889.
2. Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 among children in China. Pediatrics 2020; 145: e20200702.
3. Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet 2020; 395: 1771–1778.
4. Riphagen S, Gomez X, Gonzalez-Martinez C, et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020; 395: 1607–1608.
5. Royal College of Paediatrics and Child Health. Guidance: paediatric multisystem inflammatory syndrome temporally associated with COVID-19, www.rcpch.ac.uk/resources/guidance-paediatric-multisystem-inflammatory-syndrome-temporally-associated-covid-19 (accessed 15 January 2022).
6. Centers for Disease Control and Prevention. Emergency preparedness and response: health alert network, 14 May 2020, emergency.cdc.gov/han2020/han00432.asp (accessed 15 January 2022).
7. World Health Organization. Multisystem inflammatory syndrome in children and adolescents with COVID-19, www.who.int/publications-detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-withcovid-19 (accessed 15 January 2022).
8. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77: 683–690.
9. Chen TH. Neurological involvement associated with COVID-19 infection in children. J Neurol Sci 2020; 418: 117096.
10. LaRovere KL, Riggs BJ, Poussaint TY, et al. Neurologic involvement in children and adolescents hospitalized in the United States for COVID-19 or multisystem inflammatory syndrome. JAMA Neurol 2021; 78: 536–547.
11. Ray STJ, Abdel-Mannan O, Sa M, et al. Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: a prospective national cohort study. Lancet Child Adolesc Health 2021; 5: 631–641.
12. Gagnier JJ, Kienle G, Altman DG, et al. The CARE guidelines: consensus-based clinical case reporting guideline development. BMJ Case Rep 2013; 2013: bcr2013201554.
13. Henderson LA, Canna SW, Friedman KG, et al. American College of Rheumatology clinical guidance for multisystem inflammatory syndrome in children associated with SARS-CoV-2 and hyperinflammation in pediatric COVID-19: version 3. Arthritis Rheumatol 2022; 74: e1–e20.
14. Abel D, Shen MY, Abid Z, et al. Encephalopathy and bilateral thalamic lesions in a child with MIS-C associated with COVID-19. Neurology 2020; 95: 745–748.
15. Baccarella A, Linder A, Spencer R, et al. Increased intracranial pressure in the setting of multisystem inflammatory syndrome in children, associated with COVID-19. Pediatr Neurol 2021; 115: 48–49.
16. Becker AE, Chiotos K, McGuire JL, et al. Intracranial hypertension in multisystem inflammatory syndrome in children. J Pediatr 2021; 233: 263–267.
17. Tiwari L, Shekhar S, Bansal A, et al. COVID-19 associated arterial ischaemic stroke and multisystem inflammatory syndrome in children: a case report. Lancet Child Adolesc Health 2021; 5: 88–90.
18. Kim MG, Stein AA, Overby P, et al. Fatal cerebral edema in a child with COVID-19. Pediatr Neurol 2021; 114: 77–78.
19. Shenker J, Trogen B, Schroeder L, et al. Multisystem inflammatory syndrome in children...
associated with status epilepticus. *J Pediatr* 2020; 227: 300–301.

20. Abdel-Mannan O, Eyre M, Löbel U, *et al.* Neurologic and radiographic findings associated with COVID-19 infection in children. *JAMA Neurol* 2020; 77: 1440–1445.

21. Bektas G, Akçay N, Boydag K, *et al.* Reversible splenial lesion syndrome associated with SARS-CoV-2 infection in two children. *Brain Dev* 2021; 43: 230–233.

22. Sa M, Mirza L, Carter M, *et al.* Systemic inflammation is associated with neurologic involvement in pediatric inflammatory multisystem syndrome associated with SARS-CoV-2. *Neurol Neuroimmunol Neuroinflamm* 2021; 8: e999.

23. Laçinel Gürlevik S, Günbey C, Ozsurekci Y, *et al.* Neurologic manifestations in children with COVID-19 from a tertiary center in Turkey and literature review. *Eur J Paediatr Neurol* 2022; 37: 139–154.

24. Olivotto S, Basso E, Lavatelli R, *et al.* Acute encephalitis in pediatric multisystem inflammatory syndrome associated with COVID-19. *Eur J Paediatr Neurol* 2021; 34: 84–90.

25. Lindan CE, Mankad K, Ram D, *et al.* Neuroimaging manifestations in children with SARS-CoV-2 infection: a multinational, multicentre collaborative study. *Lancet Child Adolesc Health* 2021; 5: 167–177.

26. Sancho-Shimizu V, Brodin P, Cobat A, *et al.* SARS-CoV-2-related MIS-C: a key to the viral and genetic causes of Kawasaki disease? *J Exp Med* 2021; 218: e20210446.

27. Liu X, Zhou K, Hua Y, *et al.* Neurological involvement in Kawasaki disease: a retrospective study. *Pediatr Rheumatol Online J* 2020; 18: 61.

28. Cao Z, Jia Y and Zhu B. BNP and NT-proBNP as diagnostic biomarkers for cardiac dysfunction in both clinical and forensic medicine. *Int J Mol Sci* 2019; 20: 1820.

29. Taskesen M, Celik H, Yaramis A, *et al.* Role and clinical significance of plasma N-terminal brain natriuretic peptide measurement in children with brain edema. *Neuropediatrics* 2016; 47: 20–23.

30. Potter LR, Yoder AR, Flora DR, *et al.* Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. *Handb Exp Pharmacol* 2009: 341–366.

31. Dufort EM, Kounsams EH, Chow EJ, *et al.* Multisystem inflammatory syndrome in children in New York State. *N Engl J Med* 2020; 383: 347–358.

32. Davies P, Evans C, Kanthimathinathan HK, *et al.* Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the UK: a multicentre observational study. *Lancet Child Adolesc Health* 2020; 4: 669–677.

33. Jhaveri S, Ahluwalia N, Kaushik S, *et al.* Longitudinal echocardiographic assessment of coronary arteries and left ventricular function following multisystem inflammatory syndrome in children. *J Pediatr* 2021; 228: 290–293.

34. Tetsuka S. Reversible lesion in the splenium of the corpus callosum. *Brain Behav* 2019; 9: e01440.

35. Moreau A, Ego A, Vanderheynst F, *et al.* Cytotoxic lesions of the corpus callosum (CLOCCs) associated with SARS-CoV-2 infection. *J Neurol* 2021; 268: 1592–1594.

36. Sato T, Ushiroda Y, Oyama T, *et al.* Kawasaki disease-associated MERS: pathological insights from SPECT findings. *Brain Dev* 2012; 34: 605–608.