INTRODUCTION

The Staphylococcus aureus complex consists of opportunistic pathogens that can cause a wide spectrum of diseases in both humans and animals (Corpa et al., 2009). These pathogens are nonspore-forming, nonmotile, spherical organisms, appearing as grapelike clusters under a microscope. They are facultatively anaerobic, catalase-positive (Foster & Geoghegan, 2015), coagulase-positive and can produce...
protein A. In rabbits, infection with the S. aureus complex usually results in small dermal lesions; the invasion of subcutaneous tissue and the development of pododermatitis, subcutaneous abscesses, and mastitis. Abscesses in internal organs are sometimes observed, such as in the lungs, liver, and uterus. This gives rise to poor reproductive results, infertility, and death (Corpa et al., 2009; Vancraeynest et al., 2004; Viana et al., 2007).

Recently, a novel coagulase-positive Staphylococcus species, S. argenteus (S. aureus complex), was identified from clinical human and animal sources (Argudín et al., 2016; Chantratita et al., 2016; Schuster et al., 2017; Thaipadungpanit et al., 2015; Tong et al., 2015). Bacterial colonies were characterised by a nonpigmented, creamy white appearance and showed $eta$-hemolysis on blood agar. Moreover, the bacteria were shown to be gram-positive cocci in clusters and gave positive results in the catalase and coagulase tests, which are characteristic findings for S. aureus (Tong et al., 2015). Therefore, routine diagnostic analyses can lead to S. argenteus being misidentified as S. aureus. Moreover, identification by molecular methods, such as 16S rRNA sequencing, cannot differentiate S. argenteus from S. aureus (Tong et al., 2015). Other molecular techniques, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), nonribosomal peptide synthetase (NRPS) gene amplification, and multilocus sequence type (MLST) determination, were thus recommended in many publications as tools for the identification of S. argenteus (Chantratita et al., 2016; Schuster et al., 2017; Zhang et al., 2016). Some sequencing types of S. aureus were previously confirmed to be S. argenteus, such as ST2793, ST1223, and ST2250 (Chantratita et al., 2016; Schuster et al., 2017; Thaipadungpanit et al., 2015; Tong et al., 2015).

The aim of this study was to characterize S. argenteus and S. aureus isolated from rabbits with clinical abscesses.

2 | MATERIALS AND METHODS

2.1 | Specimen collection and bacterial isolation

Sixty-seven pus samples were collected from rabbits with clinical abscesses by a veterinarian at Prasu-Arthorn Animal Hospital, Thailand, during 2014–2016. They were transported to a microbiological laboratory within 24 hr after collection. Individual samples were inoculated on sheep blood and mannitol salt agar (Oxoid, Basingstoke, UK) and incubated at 37°C for 24–48 hr. After incubation, the suspected bacterial colonies were selected and identified by conventional methods, including Gram staining, catalase, mannitol fermentation, coagulase (Ramel; Oxoid), and commercial latex agglutination (Dryspot Staphytec Plus; Oxoid), to detect protein A for S. aureus identification. This study was approved by The Faculty of Veterinary Science Animal Care and Use Committee, Mahidol University (protocol number MUVS-2013-35).

2.2 | S. argenteus identification

2.2.1 | MALDI-TOF MS

Mass spectra were generated using a MALDI Biotyper 3.0 Ultraflex platform (Bruker Daltonics, Massachusetts, USA). For individual suspected S. argenteus isolates, with white colonies, 1 ml of crude protein extract or one colony was deposited on a 96-spot polished steel target plate (Bruker Daltonics), air-dried and covered with 1 ml of HCCA matrix solution (Bruker Daltonics) (Kolecka et al., 2013). As a positive control and calibration reference, 1 ml of Bacterial Test Standard (Bruker Daltonics) was used. The main spectrum was acquired using the MALDI Biotyper Automated Flex Control software v.3.0 (Bruker Daltonics). The identification of isolates was performed using the Bruker database and in-house databases from Chantratita et al. (2016) and Moradigaravand et al. (2017).

2.2.2 | NRPS gene amplification

Primer sequences and the PCR protocol for NRPS gene indels were in accordance with those of Zhang et al. (2016). The NRPS gene was amplified in a total reaction volume of 25 μl. The PCR reaction was performed using the thermal cycles (Bio-Rad, California, USA) with initial denaturation at 94°C for 4 min, followed by 35 cycles of 94°C for 30 s, 53°C for 30 s, and 72°C for 40 s and then final extension at 72°C for 10 min. Individual PCR amplicons were purified using the GenepHlow™ Gel/PCR purification kit (Geneaid, New Taipei, Taiwan) and submitted for sequencing. DNA sequences were analyzed for similarity with the GenBank database.

2.2.3 | MLST

MLST was used to analyze the suspected S. argenteus isolates through the amplification of seven S. aureus housekeeping genes, by a method developed by Enright et al. (2000) at Imperial College London for analyzing a query profile for MLST. Before sequencing, individual PCR amplicons were purified using the GenepHlow™ Gel/PCR purification kit (Geneaid). The allelic number queries and sequence types (STs) obtained from trimmed DNA sequencing results for seven genes were determined using the online S. aureus MLST database (https://pubmlst.org/saureus/). The suspected novel alleles or queried allelic profiles of novel STs that did not match the database were submitted to the curator of PubMLST (https://pubmlst.org/saureus/) to check and assign a novel allele or novel ST number.

2.3 | Antimicrobial susceptibility testing

Antimicrobial susceptibility testing and interpretation were performed by the disk diffusion in accordance to the Clinical and Laboratory Standards Institute (2012). A total of 13 antimicrobial drugs were tested: amikacin (30 μg), azithromycin (15 μg), cefazolin (30 μg), cefoxitin (30 μg), ceftriaxone (30 μg), chloramphenicol (30 μg), ciprofloxacin (5 μg), doxycycline (30 μg), gentamicin (10 μg),...
moxifloxacin (5 μg), norfloxacin (10 μg), penicillin (10 units), and trimethoprim/sulfamethoxazole (1.25 μg/23.75 μg). *S. aureus* ATCC®25923 was used as the control strain.

2.4 Detection of 16s rRNA, antimicrobial resistance, and enterotoxin and virulence genes

All isolated *S. aureus* samples were prepared for genomic DNA extraction using a DNA extraction kit (Geneaid). The extraction protocol involved the measurement of the OD 260/280 nm ratio using a spectrophotometer. Amplification with specific oligonucleotide primers was performed for 16s rRNA of the *S. aureus* complex group (McClure et al., 2006) and eight antimicrobial resistance genes representative of each antibiotic drug group: blaZ (Gómez-Sanz et al., 2010) and mecA (Vancraeynest et al., 2004) for β-lactam resistance, aacA-aphD (Laplana et al., 2007) for aminoglycoside resistance, mrsA (Gómez-Sanz et al., 2010) for macrolide resistance, tet(K) (Vancraeynest et al., 2004) for tetracycline resistance, dfrG (Lagier et al., 2009) for trimethoprim resistance, and cfr (Kehrenberg & Schwarz, 2006) for chloramphenicol resistance. PCR amplification for determined fluoroquinolone resistance, namely gyrA and grlA (Iihara et al., 2006) was performed. The PCR amplicon, namely the QRDR region, was sequenced and analyzed for resistance determining mutations. Deduced amino acid sequences of the PCR amplicons were aligned using the GenBank database with accession numbers AAC31138.1 for gyrA and WP075108737.1 for grlA. The PCR reaction mixture was subjected to the following thermal cycling conditions using Flexcycler® (Analytik Jena, Überlingen, Germany): 5 min of 95°C; then 30 cycles of amplification with denaturing at 95°C for 30 s, annealing at a temperature specific for each primer for 30 s and extension at 72°C for 60 s; followed by a final extension at 72°C for 10 min.

In *S. argenteus* isolates, further identification of the virulence genes was performed, including classical enterotoxin (sea, seb, sec, sed, and see) (Wu et al., 2011), hemolysin (hla and hlb) (Jarraud et al., 2002), clumping factor (clfA) (Tristan et al., 2003), protein A [spa x region (Frénay et al., 1996) and spa IgG-binding region (Seki et al., 1998)], coagulase (coa) (Aslanas et al., 2007), and Panton-Valentine leukocidin (pvl) (Jarraud et al., 2002), with specific oligonucleotide primers. PCR reactions were performed, involving initial denaturation at 95°C for 10 min; 35 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s and a final extension at 72°C for 10 min.

PCR amplicons were analyzed using 1.5% agarose gel electrophoresis and SYBR safe (Invitrogen, New York, USA) staining. The DNA bands were observed under a UV transilluminator (UVP Bioimaging System; Invitrogen). Control bacteria for the PCR included the strains *S. aureus* ATCC 19095 (sea and sec), ATCC 14458 (seb), ATCC 23235 (sed), ATCC 27664 (see), ATCC 13565 (coa, clfA, hla, hlb, spa x region, and spa IgG-binding region) and laboratory control strains, which were sequenced and analyzed as accession numbers KX371630.1 (pvl). For gene amplification with no reference control, the PCR product from positive samples was subjected to nucleotide sequencing and sequence analysis for gene confirmation.

TABLE 1 Prevalence of enterotoxin and virulence genes, MLST and MALDI-TOF MS for suspected *Staphylococcus argenteus* identification

Isolate no.	Enterotoxin and virulence genes detection	MLST identification	Size (bp)	BLAST results of NRPS PCR amplicon	Sequence identities (%)	MALDI-TOF MS identification
U27 OC2.1	ND	ST4209a Singleton	160	*S. aureus* strain K5 (CP020656.1)	97	*S. aureus*
U27 OC2.2	ND	ST4209a Singleton	160	*S. aureus* strain FDAARGOS (CP007539.3)	99	*S. aureus*
U27 OC2.3	ND	ST4209a Singleton	160	*S. aureus* strain K5 (CP020656.1)	96	*S. aureus*
U19 T10.1	sed, hla, hlb, clfA, pvl	ST4210ab Singleton	340	*S. argenteus* strain XNO106 (CP025023.1)	99	*S. argenteus*
U43 S18.1	sea, hla, hlb, clfA	ST4211ab Singleton	340	*S. argenteus* strain XNO106 (CP025023.1)	100	*S. argenteus*
U43 S18.3	sea, sec, sed, hla, hlb, clfA, pvl	ST4211ab Singleton	340	*S. argenteus* strain XNO106 (CP025023.1)	100	*S. argenteus*
U14 T6.2	ND	ST4212a Singleton	160	*S. aureus* strain FDAARGOS, 159 (CP014064.2)	95	*S. aureus*
U65 S3	ND	ST4213a Singleton	160	*S. aureus* strain NRS137 (CP026080.1)	92	*S. aureus*

Note: bp: base pair; BLAST: basic local alignment search tool; CC: clonal complex; MALDI-TOF MS: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; ND: not determine; MLST: multilocus sequence type; NRPS: nonribosomal peptide synthetase.

*a*Novel STs from this study.

b *S. argenteus* ST.
3 | RESULTS

3.1 | Detection of *S. argenteus* by MALDI-TOF MS

From 67 samples (total of 19 bacterial isolates), we obtained 11 *S. aureus* isolates and 8 suspected *S. argenteus* isolates. These suspected *S. argenteus* isolates were analyzed by MALDI-TOF MS. After visual inspection and obtaining the spectral results of their ionizable cell surface components, which were compared for similarity with the spectral data in the Bruker and in-house databases. The results showed that there are five isolates that match with the *S. aureus* database and three isolates that match with the *S. argenteus* database, with a high score (>2.3) (isolate no. U19 T10.1, U43 S18.1, and U43 S18.3; Table 1).

3.2 | NRPS gene amplification of *S. argenteus*

The NRPS gene was amplified for eight suspected *S. argenteus* isolates, as shown in Figure 1. The results showed that three isolates (U19 T10.1, U43 S18.1, and U43 S18.3) have a PCR product of approximately 340 bp, which was correlated with *S. argenteus* as reported by Zhang et al. (2016). In contrast, the five other suspected isolates had a PCR product of nearly 160 bp, which was reported to correlate with *S. aureus* (Zhang et al., 2016). The sequences of NRPS amplicons were analyzed for similarity using the GenBank database, which showed that bacterial isolate no. U19 T10.1, U43 S18.1, and U43 S18.3 have 99% identity with *S. argenteus* strain XNO106 (accession number: CP025023.1). In contrast, the other five isolates showed high identity with *S. aureus* strain K5 (accession number: CP020656.1), *S. aureus* strain FDAARGOS (accession number: CP007539.3), *S. aureus* strain FDAARGOS_159 (accession number: CP014064.2), and *S. aureus* strain NRS137 (accession number: CP026080.1). These results correlated with the MALDI-TOF MS results (Table 1).

3.3 | MLST of *S. argenteus*

All eight suspected *S. argenteus* isolates were further analyzed by MLST to define STs. Several isolates were shown to be novel STs of the *Staphylococcus* complex, which included ST4210 (isolate no. U27 OC2.1, U27 OC2.2, and U27 OC2.3), ST4210 (isolate no. U19 T10.1), ST4211 (isolate no. U43 S18.1 and U43 S18.3), ST4212 (isolate no. U14 T6.2), and ST4213 (isolate no. U65 S3), derived from the curator of the PubMLST *S. aureus* database (https://pubmlst.org), University of Oxford, UK, and the Wellcome Trust fund. The results showed that three isolates (isolate no. U19 T10.1, ST4210; isolates no. U43 S18.1 and U43 S18.3, ST4211) were identified as *S. argenteus*, which correlated with the results of MALDI-TOF MS and the NRPS gene. The neighbor-joining and maximum likelihood analyses yielded similar phylogenetic trees. Based on arcC, aroE, gmk, and pta, three bacterial isolates, ST4210 (isolate no. U19 T10.1) and ST4211 (isolates no. U43 S18.1 and U43 S18.3), showed close similarity to the *S. argenteus* group (ST1223, ST2250, ST2854, and ST2198) (Figure 2).

3.4 | Enterotoxin and virulence genes

Five classical enterotoxin genes and seven virulence genes, as mentioned in the Materials and Methods section, were investigated in the three *S. argenteus* isolates by PCR, the results of which are shown in Table 1. The detected enterotoxin genes were sea, sec, and sed. No isolate carried seb and see. Regarding the virulence genes, the most prevalent ones were hla, hlb, and clfA present at a rate of 100%, followed by pvl at 66.67%, whereas coa, spa (IgG-binding region) and spa (x region) were not detected in the *S. argenteus* isolates.

3.5 | Antimicrobial susceptibility testing

From bacterial identification, we obtained 16 *S. aureus* isolates and three *S. argenteus* isolates. Among the three *S. argenteus* isolates, one (isolate no. U19 T10.1) was susceptible to all the tested antimicrobial drugs, whereas the remaining two (isolate no. U43 S18.1 and U43 S18.3) were resistant to penicillin and doxycycline. Meanwhile, among the *S. aureus* isolates, six were resistant to penicillin and two were resistant to gentamicin. One *S. aureus* isolate (isolate no. U14 T6.2) was resistant to several antimicrobial classes, namely, β-lactams, aminoglycosides, macrolides, tetracyclines, and fluoroquinolones.

3.6 | Antimicrobial resistance genes

In the *S. aureus* and *S. argenteus* isolates, the presence of antimicrobial resistance genes was tested. We found that all *S. aureus* isolates carried blaZ, mecA, aacA-aphD, and mrs(A), but none carried dfrG, tet(K), and cfr, whereas all three *S. argenteus* isolates carried only the blaZ (isolate no. U43 S18.1 and U43 S18.3). Mutations of gyrA and grlA were found in the *S. aureus* isolate no. U14 T6.2. The mutations of gyrA occurred at codons 88 [GAA (Glu) → GAT (Asn)] and 96 [GAT (Asp) → ACA (Thr)], whereas the mutation of grlA occurred at codon 80 (TCC (Ser) → TTA (Leu)). The presence of antimicrobial resistance genes in *S. aureus* is shown in Table 2.
DISCUSSION

Staphylococci are considered the most important veterinary bacterial pathogens because they cause a multiplicity of infections and a wide range of diseases in many host species, including humans and animals (Holmes et al., 2016). This virulent group of pathogens is not only important for livestock, causing conditions such as bovine mastitis or lameness in chickens, but also for causing skin infections resulting in abscesses in pets, such as dogs, cats, and rabbits (Drougka et al., 2016; Goñi et al., 2004; Loncaric et al., 2014; Youn et al., 2014). Pathogenic strains of staphylococci that cause skin infections have been well studied and characterized. Moreover, in farm rabbits, abscesses in the lungs, liver, and uterus lead to poor production, infertility, and death (Corpa et al., 2009). This study revealed the presence of S. aureus, including a new member of the S. aureus complex, S. argenteus, which caused skin infections producing abscesses in rabbits.

Intriguingly, from the 19 S. aureus isolates, eight had white colonies, which differs from the normal colony color of S. aureus, which is golden or yellowish. The suspected eight isolates were further analyzed using MALDI-TOF MS, and bacterial diversity discriminated by NRPS amplification and MLST. The MALDI-TOF MS results revealed three S. argenteus isolates, which were investigated for enterotoxin and virulence genes. The enterotoxins detected were sea and sed. All three isolates carried the common virulence hla, hlb, and clfA. Surprisingly, previous studies have reported that S. argenteus is negative for the pvl (Thaipadungpanit et al., 2015), but we found the pvl in two S. argenteus isolates in this study. These three S. argenteus isolates, isolated from rabbits, had the ability to cause severe illness in these animals, particularly via the presence of clfA, which usually contributes to abscess formation in rabbits, as previously reported (Malachowa et al., 2016). Although S. argenteus is regionally distributed in animals other than humans, they have been misidentified as S. aureus; this has been suggested in several previous publications (Chantratita et al., 2016; Schuster et al., 2017; Thaipadungpanit et al., 2015; Tong et al., 2015).

The NRPS gene has been identified in studies of a diverse array of related S. aureus and S. argenteus. This study found that NRPS amplification can differentiate S. argenteus from S. aureus, as also reported previously (Zhang et al., 2016). The sequences

FIGURE 2 Phylogenetic neighbor-joining tree of suspected Staphylococcus argenteus. The tree is constructed from arcC, aroE, gmk, glpF, pta, tpi, and ygiL gene sequences from the suspected S. argenteus (ST4210*, ST4211*), S. aureus reference strain (ST75, ST152, ST121, ST8) and ST of published S. argenteus group (ST1223, ST2250, ST2854, ST2198). The phylogenetic analysis was performed using MEGA7.
of NRPS amplicons analyzed using the GenBank database also corresponded to the MALDI-TOF MS results. Furthermore, when we performed molecular identification using MLST, all eight isolates were found to have diverse novel STs belonging to \textit{S. aureus} (ST4209, ST4212, and ST4213) and \textit{S. argenteus} (ST4210 and ST4211). The results showed high heterogeneity among these pathogenic bacterial isolates from rabbits. Moreover, this study revealed a new pathogenic member of the \textit{S. aureus} complex, \textit{S. argenteus}, for the first time. These bacteria form a genetically diverse lineage from \textit{S. aureus} (Tong et al., 2015), being recently discovered in humans, in 2014. This study may be the first to report on \textit{S. argenteus} originating from rabbits. We found that one \textit{S. argenteus} isolate was susceptible to all the tested antibiotic agents and the other two \textit{S. argenteus} isolates were resistant to penicillin and doxycycline. These results could be useful for veterinarians who have difficulty treating rabbits successfully with penicillin. In this study, we found one \textit{S. aureus} isolate with mutations of \textit{gyrA} and \textit{grlA}, which indicated the possibility of quinolone resistance. Mutations in these genes have typically been found at codon 88 [GAA (Glu) → GAT (Asp)]. Comparing the antibiotic resistance pattern, the isolated \textit{S. argenteus} showed higher susceptibility to antibiotic agents than the isolated \textit{S. aureus}. However, it is necessary to monitor the development of drug resistance in \textit{S. argenteus} in the future. From the discovery of \textit{S. argenteus} in rabbits, further study of its virulence factors, pathogenesis, clinical manifestations, antimicrobial resistance, and severity or outcome should be performed to improve our knowledge for treating, controlling, or preventing this novel pathogen in exotic pets.

ACKNOWLEDGMENTS

We thank Prasu-Arthorn Animal Hospital for help with specimen collection. We appreciate Mr. Paul Adams for correcting grammatical and typing errors in this manuscript. This work was supported by the Annual Research Fund of the Faculty of Veterinary Science, Mahidol University 2014; and Thailand Research Fund (RSA5980048).

CONFLICT OF INTEREST

The authors state that there are no conflicts of interest.
REFERENCES

Aligholi, M., Mirsalehian, A., Halimi, S., Imaneini, H., Taherikalani, M., Jabalameili, F., ... & Dogruer, G. (2007). Coagulase gene polymorphism of Staphylococcus aureus isolated form subclinical mastitis. Turkish Journal of Veterinary and Animal Science, 31, 253–257.

Chantratita, N., Witakaiphat, C., Tandhavanant, S., Wongsuvan, G., Aslantas, O., Demir, C., Turutoglu, H., Cantekin, Z., Ergun, Y., & Dogruer, G. (2007). Coagulase gene polymorphism of Staphylococcus aureus isolated form subclinical mastitis. Turkish Journal of Veterinary and Animal Science, 31, 253–257.

Drougka, E., Fokaa, A., Koutinas, C. K., Jelastopulu, E., Giormezis, N., Farmaki, O., ... Spioliopoulou, I. (2016). Interspecies spread of Staphylococcus aureus clones among companion animals and human close contacts in a veterinary teaching hospital. Across-sectional study in Greece. Preventive Veterinary Medicine, 126, 190–198. https://doi.org/10.1016/j.prevetmed.2016.02.004

Enright, M. C., Day, N. P. J., Davies, C. E., Peacock, S. J., & Spratt, B. G. (2000). Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. Journal of Clinical Microbiology, 38, 1008–1015.

Foster, T. J., & Geoghegan, J. A. (2015). Staphylococcus aureus. Medical Microbiology and Immunology. https://doi.org/10.1016/B978-0-12-397169-2.00037-8

Frénay, H. M., Bunschoten, A. E., Schouls, L. M., Van Leeuwen, W. J., Vandenbroucke-Grauls, C. M., Verhoef, J., & Mooi, F. R. (1996). Molecular typing of methicillin-resistant Staphylococcus aureus on the basis of protein a gene polymorphism. European Journal of Clinical Microbiology and Infectious Diseases, 15, 60–64. https://doi.org/10.1007/BF01586186

Gómez-Sanz, E., Torres, C., Lozano, C., Fernández-Pérez, R., Aspíroz, C., Ruiz-Larrea, F., & Zarazaga, M. (2010). Detection, molecular characterization, and clonal diversity of methicillin-resistant Staphylococcus aureus CC398 and CC97 in Spanish slaughter pigs of different age groups. Foodborne Pathogens and Disease, 7, 1269–1277. https://doi.org/10.1089/fpd.2010.0610

Goñi, P., Vergara, Y., Ruiz, J., Albizu, I., Vila, J., & Gómez-Lus, R. (2004). Antibiotic resistance and epidemiological typing of Staphylococcus aureus strains from ovine and rabbit mastitis. International Journal of Antimicrobial Agents, 23, 268–272.

Griggs, D. J., Marona, H., & Piddock, L. J. V. (2003). Selection of moxifloxacin-resistant Staphylococcus aureus compared with five other fluoroquinolones. Journal of Antimicrobial Chemotherapy, 51, 1403–1407. https://doi.org/10.1093/jac/dkg241

Holmes, M. A., Harrison, E. M., Fisher, E. A., Graham, E. M., Parkhill, J., Foster, G., & Paterson, G. K. (2016). Genomic analysis of companion rabbit Staphylococcus aureus. PLoS ONE, 11, e0151458. https://doi.org/10.1371/journal.pone.0151458

Ilhara, H., Suzuki, T., Kawamura, Y., Okkusu, K., Inoue, Y., Zhang, W., ... Ezaki, T. (2006). Emerging multiple mutations and high-level fluoroquinolone resistance in methicillin-resistant Staphylococcus aureus isolated from ocular infections. Diagnostic Microbiology and Infectious Disease, 56, 297–303. https://doi.org/10.1016/j.diagmicrobio.2006.04.017

Jarraud, S., Mougel, C., Thioulouse, J., Lina, G., Meugnier, H., Forey, F., ... Vandeneces, F. (2002). Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infection and Immunity, 70, 631–641. https://doi.org/10.1128/IAI.70.2.631-641.2002

Kehrenberg, C., & Schwarz, S. (2006). Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrobial Agents and Chemistry, 50, 1156–1163. https://doi.org/10.1128/AAC.50.4.1156-1163.2006

Koleccka, A., Khayhan, K., Groenewald, M., Theelen, B., Araabitzis, M., Velegraki, O., ... Boekhout, T. (2013). Identification of medically relevant species of arthroconidial yeasts by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology, 51, 2491–2500. https://doi.org/10.1128/JCM.00470-13

Lagier, J., Fenollar, F., Hallé, O., Lepidi, H., & Raoult, D. (2009). Letters to the editor: Trimethoprim resistance genes in vancomycin-resistant Enterococcus faecium clinical isolates from France. International Journal of Antimicrobial Agents, 34, 390–391.

Laplana, L. M., Cepero, P. G., Ruiz, J., Zolezzi, P. C., Calvo, C. R., Ezaro, M. C., & Gómez-Lus, R. (2007). Molecular typing of Staphylococcus aureus clinical isolates by pulsed-field gel electrophoresis, staphylococcal cassette chromosome mec type determination and dissemination of antibiotic resistance genes. International Journal of Antimicrobial Agents, 30, 505–513. https://doi.org/10.1016/j.ija.2007.06.020

Loncaric, I., Künzel, F., Licka, T., Simhofer, J., & Rosengarten, R. (2014). Identification and characterization of methicillin-resistant Staphylococcus aureus (MRSA) from Austrian companion animals and horses. Veterinary Microbiology, 168, 381–387. https://doi.org/10.1016/j.jvm.2013.11.022

Malachowa, N., Kobayashi, S. D., Porter, A. R., Braughton, K. R., Scott, D. P., & Gardner, D. J. (2016). Contribution of Staphylococcus aureus coagulases and clumping factor A to access formation in a rabbit model of skin and soft tissue infection. PLoS ONE, 11, e0158293. https://doi.org/10.1371/journal.pone.0158293

McClure, J., Conly, J. M., Lau, V., Elsayed, S., Louie, T., Hutchins, W., & Zhang, K. (2006). Novel multiplex PCR assay for detection of the Staphylococcal virulence marker panto-va lentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from -resistant Staphylococci. Journal of Clinical Microbiology, 44, 1141–1144. https://doi.org/10.1128/JCM.44.3.1141-1144.2006

Mordagaravand, D., Jamrozy, M., Mostowy, R., Anderson, A., Nickerson, E. K., Thaipudungpanit, J., ... Wongsuvan, G. (2017). Evolution of the Staphylococcus argenteus ST2250 clone in Northeastern Thailand is linked with the acquisition of livestock-associated Staphylococcal genes. MBio, 8, e00802-17. https://doi.org/10.1128/mbio.00802-17

Schuster, D., Rickmeyer, J., Gadiss, M., Thye, T., Lorenzen, S., Reif, M., ... Liégeois, F. (2017). Differentiation of Staphylococcus argenteus (formerly: Staphylococcus aureus complex 75) by mass spectrometry from S. aureus using the first strain isolated from a wild African great...
Seki, K., Sakurada, J., Seong, H. K., Murai, M., Tachi, H., Ishii, H., & Masuda, S. (1998). Occurrence of coagulase serotype among Staphylococcus aureus strains isolated from healthy individuals-special reference to correlation with size of protein-A gene. Microbiology and Immunology, 42, 407–409.

Thaipadungpanit, J., Amronchai, P., Nickerson, E. K., Wongsuvan, G., Wuthiekanun, V., Limmathurotsakul, D., ... Peacock, S. J. (2015). Clinical and molecular epidemiology of Staphylococcus argenteus infections in Thailand. Journal of Clinical Microbiology, 53, 1005–1008. https://doi.org/10.1128/JCM.03049-14

Tong, S. Y. C., Schaumburg, F., Ellington, M. J., Corander, J., Pichon, B., Leendertz, F., ... Giffard, P. M. (2015). Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: The non-pigmented Staphylococcus argenteus sp. nov. and Staphylococcus schwitzi sp. nov. International Journal of Systematic and Evolutionary Microbiology, 65, 15–22. https://doi.org/10.1099/ijs.0.062752-0

Tristan, A., Ying, L., Bes, M., Etienne, J., Vandenesp, F., & Lina, G. (2003). Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. Journal of Clinical Microbiology, 41, 4465–4467. https://doi.org/10.1128/JCM.41.9.4465-4467.2003

Vancraeynest, D., Hermans, K., Martel, A., Vaneechoutte, M., Devriese, L. A., & Haesebrouck, F. (2004). Antimicrobial resistance and resistance genes in Staphylococcus aureus strains from rabbits. Veterinary Microbiology, 101, 245–251. https://doi.org/10.1016/j.vetmic.2004.03.021

Viana, D., Selva, L., Segura, P., Penades, J. R., & Corpa, J. M. (2007). Genotypic characterization of Staphylococcus aureus strains isolated from rabbit lesions. Veterinary Microbiology, 121, 288–298. https://doi.org/10.1016/j.vetmic.2006.12.003

Wu, D., Li, X., Yang, Y., Zheng, Y., Wang, C., Deng, L., ... Yu, S. (2011). Superantigen gene profiles and presence of exfoliative toxin genes in community-acquired meticillin-resistant Staphylococcus aureus isolated from Chinese children. Journal of Medical Microbiology, 60, 35–45. https://doi.org/10.1099/jmm.0.023465-0

Youn, J., Park, Y. H., Hang’ombe, B., & Sugimoto, C. (2014). Prevalence and characterization of Staphylococcus aureus and Staphylococcus pseudintermedius isolated from companion animals and environment in the veterinary teaching hospital in Zambia, Africa. Comparative Immunology, Microbiology and Infectious Diseases, 37, 123–130. https://doi.org/10.1016/j.cimid.2014.01.003

Zhang, D., Xu, X., Song, Q., Bai, Y., Zhang, Y., Song, M., & Shi, X. (2016). Identification of Staphylococcus argenteus in Eastern China based on nonribosomal peptide synthetase (NRPS) gene. Future Microbiology, 11, 1113–1121.

How to cite this article: Indrawattana N, Pumipuntu N, Suriyakhun N, et al. Staphylococcus argenteus from rabbits in Thailand. MicrobiologyOpen. 2019;8:e665. https://doi.org/10.1002/mbo3.665