Optimisation of platelet concentrates therapy: Composition, localisation, and duration of action

Yuk-Lin Yung a,b, Sai-Chuen Fu a,b, Yau-Chuk Cheuk a,b, Ling Qin a,b, Michael Tim-Yun Ong c, Kai-Ming Chan a,b, Patrick Shu-Hang Yung a,b,*

a Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
b Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
c Department of Orthopaedics and Traumatology, Alice Ho Miu Ling Nethersole Hospital, Hong Kong Special Administrative Region

Received 11 August 2016; revised 6 November 2016; accepted 29 November 2016
Available online 30 January 2017

Abstract

Platelet concentrates (PC) generally refers to a group of products that are prepared from autologous blood intended to enhance healing activities. PC therapy is now very popular in treating musculoskeletal injuries; however, inconsistent clinical results urge the need to understand the working mechanism of PC. It is generally believed that the platelet-derived bioactive factors are the active constituents, and their bioavailability in the vicinity of the lesion sites determines the treatment efficacies. Therefore, the composition, localisation, and duration of the action of PC would be key determinants. In this review, we discuss how different preparations and delivery methods of PC would affect the treatment outcomes with respect to clinical evidence about PC therapy for osteoarthritis, tendinopathies, rotator cuff tears, anterior cruciate ligament injuries, and bone fractures. This review can be used as a quick guide for the use of PC therapy and provide insights for the further optimisation of the therapy in the near future.

© 2016, Asia Pacific Knee, Arthroscopy and Sports Medicine Society. Published by Elsevier (Singapore) Pte Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: composition; duration; localisation; platelet concentrates; platelet-rich plasma

Introduction

Platelet concentrates (PC) has currently attracted much attention in the field of regenerative medicine, with its high-safety profile, ease of preparation, and broad-application profile. The most common form of PC is platelet-rich plasma (PRP). In theory, the concept of PRP is to harness and concentrate the platelets, which have self-healing potential and are present in everyone's blood.

After wounding, platelet activation is regarded as the first line of events responding to injuries and initiating the healing responses, which involve release of sufficient bioactive factors that orchestrate various processes like angiogenesis and recruitment of healing cells to the lesion sites. PC therapy involves triggering the general natural healing process with a supplement of highly concentrated bioactive factors, regardless to the pathological processes or injury mechanisms. Thus, various forms of PC are used to boost up self-healing in a wide spectrum of musculoskeletal disorders or injuries, including osteoarthritis (OA), tendinopathies, rotator cuff tears, anterior cruciate ligament (ACL) injuries, and bone fractures. However, due to large variations in the preparation and administration methods, the clinical outcomes of PC therapies for musculoskeletal disorders or injuries are inconsistent.1–5 Factors that may affect its treatment efficacies are as follows: (1) composition of PC; (2) localisation of PC to the region of interest; and (3) keeping PC in situ for sufficient duration to achieve the
therapeutic effect. In the following sections, we will explore how different preparations and delivery methods of PC would affect these factors and examine whether these factors have been addressed in the currently available best clinical evidence about the PC therapy for OA, tendinopathies, rotator cuff tears, ACL injuries, and bone fractures.

Previous reviews or systematic reviews about PRP or PC chiefly covered the biology of PRP, preparation of PRP, or effects of PRP on particular type of soft tissue injuries. This review combined an overview of PRP and a systematic review of its treatment effect on five major applications in order to evaluate the operational factors that may affect treatment effects. While previous reviews chiefly focused on the issues of composition and activation of PRP, this is the first review addressing the importance of localisation and duration of action of PRP.

Composition of PC

Forms of PC

Numerous preparations of PC were developed, but the terminology and classification have not been standardised yet. Three classification systems for PC were proposed including four families,6 PAW,7 and DEPA systems,8 which are primarily based on composition (platelet, fibrin, activators, leucocytes, erythrocytes),6,7 injecting dosage,7 or preparation efficiency into account.8 PAW and DEPA systems involve grading of PC according to the platelet count and preparation efficiency; however, there is still no clear indication of the platelet dose that offers the best treatment effect. Therefore, we prefer to follow the classification simply based on the presence of individual components suggested by the four-family system (Table 1). The most common form of PC is PRP: pure (P-PRP) and leucocyte PRP (L-PRP), which are prepared by centrifuging whole blood with anticoagulants and optionally supplementing with platelet activators (Ca2+ or thrombin) before use. These PRP preparations are liquid and therefore injectable; however, activation will lead to the formation of blood clot. Alternatively, PC could be prepared in solid form as platelet-rich fibrin (L-PRF, P-LRF) which are only useful for topical application9 or surgical implantation.10

Preparation methods for PC

With the injectable nature and ease of preparation, PRP are most commonly used, and there are a number of commercially available PRP preparation devices (Table 2). Indeed, most commercially available devices are for PRP preparation, and fewer devices are available for PRF preparation. For PRP preparation, most of the devices involve the use of centrifugation to concentrate the platelets from blood with anticoagulants, and platelet activator is added before use. In some devices, special accessory to reduce the leucocyte counts is included. Most of the preparations use either closed or semi-closed systems. Compositional analyses of different PRP preparations revealed large variations in platelet and leucocyte counts. In order to determine the best kinds of preparations, further examination of the roles of individual components of PRP is necessary.

Commercial systems such as Cascade are commonly used for to generate P-PRF; while L-PRF is usually “homemade” by common centrifuge.18 Many commercial systems such as Magellan, Gravitational Platelet Sequestration System6 are developed to prepare PC as PRP. Their uses are more flexible since they can be applied by coating or immersion to the graft,24 by spraying topically to the wound,25 (e.g., with applicators CoAxial Spray Kit, Biomet Biologics), and most popularly by injection.

Constituents of PC

Platelet counts

The idea of using platelet supplementation to treat musculoskeletal injuries or disorder is primarily based on the ability of platelets to trigger healing response; however, the number of platelets required for efficacy remains unknown. A study of the concentration effect of platelet on ACL graft healing showed that the enhancement did not differ with 5-fold or 3-fold platelet concentration.20 The inhibitory effect on proliferation of dog alveolar bone cells27 and human oral fibroblasts and osteoblasts29 was even observed with high dose of platelets. Moreover, the required number of platelets may vary according to the tissue types,20 lesion size, and pathological conditions. Thus, it is difficult to define the quality standards for PRP simply based on platelet counts. As thrombocytopenia may not have direct impact on dermal healing26 or tendon healing,31 it is very likely that the absolute platelet count may not be the sole determinant for healing outcomes. It should also be noted that for PC to take a positive biological effect on different clinical conditions, the requirement for platelet conditions may be different. Other factors such as localisation and activation status should also be taken into considerations.

Leucocytes

As leucocytes express proinflammatory properties, their presence in PC is regarded as unfavourable, and it is speculated that L-PRP or L-PRF would have negative effects, especially for clinical conditions with chronic inflammation such as OA32,33 and tendinopathies.34 Moreover, L-PRP was found to be less effective than P-PRP in bone repair.35 In contrast, the putative antibacterial function of leucocytes is regarded as favourable for wound healing36; however, it
depends whether bacterial infection is a primary concern to affect healing outcomes. The proinflammatory properties of leukocytes may override the potential benefits of its antibacterial functions.32,37 Different leukocytes exhibit different roles. Lymphocytes and neutrophils are chiefly involved in adaptive and innate immune systems, respectively, whereas monocytes may take part in mediating healing responses. However, in most studies on PRP preparation involving leukocytes reduction, there are no further characterisations of different leukocytes.

Erythrocytes

Erythrocytes are removed in most preparation methods of PC; however, the extent of their removal is seldom reported. With respect to the observed treatment effects of autologous whole blood injection,38 the presence of erythrocytes in PC may not hinder the treatment efficacies. Recently, the roles of heme in erythrocytes to trigger healing were discussed with respect to the heme-heme oxygenase system.39 Nevertheless, during the injection or surgical implantation of PC, a certain degree of bleeding is unavoidable and the effect of erythrocyte contained in PRP may be negligible.

Platelet activation

It is believed that platelet-derived factors, such as transforming growth factor beta (TGF-β), platelet derived growth factor subunit B homodimer (PDGF-BB), and vascular endothelial growth factor (VEGF), are responsible for the beneficial effects of PRP to promote healing; thus, platelet lysate is used in some clinical trials.40,41 These growth factors are normally stored in alpha granules of platelets and released upon platelet activation, which is a part of natural blood clotting pathway. During preparation of PRP, spontaneous blood clotting and consequently platelet activation are suppressed by the addition of anticoagulant, such as citrate (calcium chelator); thus, the addition of calcium later to PRP triggers platelet activation. Alternatively, thrombin is also used to catalyse fibrin formation, which leads to platelet activation. Some clinicians used nonactivated PRP, and they believed that collagen or thrombin naturally existed in the body can activate PRP in a slower manner.32,43 The blood clot formation may also help to localise the growth factors to the target site. In essence, the functional form of PRP is a growth-factor-releasing platelet-fibrin clot. Current injection therapy with PRP thus requires post-injection clotting, while PRP can only be used for topical,44 or intraoperative administration.45–47 The platelet activation and clot formation should not be too rapid for PRP as it can hinder the injection process.

Fibrin clot

Fibrin clot is formed after platelet activation in PRP as loose meshwork and most of the growth factors are released within the 1st day of preparation.48-50 In contrast, fibrin polymerised under centrifugation in PRF results in strong and dense fibrin architecture that entraps platelets and their growth factors for constant release over a longer period of time.36,50

In vitro studies suggested that PRF was superior to PRP in

Table 2

PC class	System	Device name	Manufacturer	Reference
L-PRP	Closed	Haemomtestics MCS+ 9000 cell separator: 995-E platelet apheresis set	Haemomtestics Corp, Braintree, MA, USA	de Almeida et al., 201211
		Magellan Autologous Platelet Separator System	Arteriocyte Medical Systems, Inc., Hopkinton, MA, USA	Castillo et al., 201112
		MyoCells	Kaylight Technologies Ltd, Holon, Israel	Kushida et al., 201413
		RegenPRP	RegenLab, Le Mont-sur-Lausanne, Switzerland	Kaux et al., 201114
	Semi-closed	Dr. Shin’s System THROMBO KIT GenesisCS Component Concentrating System	Emcyte Corporation, Fort Myers, FL, USA	Keaney et al., 201315
		GLO PRP	Glofiff Oy, Salo, Finland	Kushida et al., 201416
		GPS III Platelet Concentrate System	Biomet Biologies, LLC, IN, USA	Castillo et al., 201112
		KYOCERA Medical PRP Kit	KYOCERA Medical Corporation, Osaka, Japan	Kushida et al., 201417
		Prosys PRS(PRIP) Bio Kit	Prodizen Inc., Seoul, Korea	Oh et al., 201518
		SmartPRP System	Harvest Technologies, Plymouth, MA, USA	Davenport et al., 201519
	Open	JP200	BS Medical Co., Ltd., Tokyo, Japan	Kushida et al., 201419
		Plaletex	PLATELEXT S.R.O., Praha, Czech Republic	Kaux et al., 201120
L-PRF	Open	A-PRF	Process, Nice, France	Dohan et al., 200621
P-PRP	Closed	COBE spectra LRS Turbo (with a leukoreduction set)	Caridian BCT, Lakewood, CO, USA	Jo et al., 201522
		IntraSpin-L-PRF	Intra-Lock, Boca Raton, FL, USA	Dohan et al., 200923
	Semi-closed	Arthrex ACP	Arthrex, Naples, FL, USA	Antufia et al., 201324
		SELPHYL	Cascade Medical Enterprises, LLC, Wayne, NJ, USA	Magalon et al., 201425
	Open	PRGF-Endoret	BTI Biotechnology Institute, Vitoria-Gasteiz, Spain	Kushida et al., 201426
P-PRF	Semi-closed	Cascade Autologous Platelet System	Musculoskeletal Transplant Foundation, NJ, USA	Castillo et al., 201112

L-PRF = leucocyte platelet-rich fibrin; L-PRP = leucocyte platelet-rich plasma; PC = platelet concentrates; P-PRF = pure platelet-rich fibrin; P-PRP = Pure platelet-rich plasma.
growth factor release and stimulation of cellular activities related to healing responses.

In summary, the extent of platelet enrichment may not be the sole determinant of the therapeutic effects of PC. Leucocyte count and the integrity of the fibrin clot after platelet activation are also influential.

Localisation of PC

Apart from variations in composition, the localisation of PC to the lesion site is another major attribute to the treatment effects which may be overlooked previously. Depending on the intended applications, the success of localisation will be determined by the methods of delivery and the anatomy of the sites of delivery.

Methods of delivery

There are three major types of delivery of PC— injection, invasive implantation, and topical application. Topical application is efficient for localised delivery; however, it is only applicable for skin wound and dental applications but not for most musculoskeletal applications. Injection is minimally invasive for internal use and widely used in nonoperative treatments for musculoskeletal degenerative diseases. Only PC in liquid forms is applicable for injection. Accurate delivery can be achieved by real-time medical imaging, such as ultrasound-guided intratendinous injection of PRP for tendinopathies. Injection during a surgical operation (rotator cuff repair, ACL reconstruction) is feasible, but its localisation is largely determined by the rate of fibrin clot formation. For intraoperative implantation, PC in solid form (PRF) is superior to liquid PRP in terms of localisation to the lesion sites, whereas PRP can also be used by applying onto the grafts before implantation, such as PRF forming more rigid fibrin clot after injection, whereas there is very limited space in the vicinity of Achilles tendon and extensor carpi radialis brevis tendon (in tennis elbow). In case of ACL reconstruction, there is a challenge to localise PC at the small graft tunnel interface and different methods have been attempted.1,56

In summary, it is still difficult to localise PRP to the lesion sites by injection, and the local anatomy of the lesion sites will limit the injection volume and affect spatial redistribution after injection. It is preferable to achieve instant solidification (e.g., fibrin clot formation) after injection.

Duration of action of PC

After PC is delivered to the lesion sites, the temporal availability of platelet-derived factors will be the key factor to determine the treatment effects. The required duration of action for PC treatment may vary across different musculoskeletal lesions. For example, OA and tendinopathies represent chronic lesions, which are less likely to heal with a single and brief PC exposure. However, for traumatic injuries, PC promotes healing safeguarded by surgical repair, thus it should fit into the normative recovery period of the surgical procedure. The retention of platelet/fibrin clot, the rate of release of platelet-derived factors, and the frequency of PRP applications will together define the duration of PRP action.

Retention of PC

For all forms of PC except platelet lysate, fibrin clot formation is resulted in the vicinity of lesion sites after application. Naturally, fibrin clot will be resorbed under the action of plasmin in around 5 days. PRF forms more rigid fibrin clot under centrifugation than PRP, which may result in a longer retention of platelets to the lesion site. In contrast, as PRP forms fibrin clot in situ, the rate of platelet activation and consequently fibrin clot formation will determine the initial retention of PC.

Rate of release of platelet content

The release of platelet content, including growth factors and small biomolecules, is triggered upon platelet activation from the platelet-fibrin clot. The alpha granules and dense granules from the platelets are secreted to the surrounding by exocytosis. It has been shown that the dense fibrin matrix in PRF can serve as a growth factor reservoir by enmeshing them and exhibit a slower release kinetics than PRP in which most of the platelet content is released rapidly within the 1st day of activation. Moreover, types of platelet activators also affect the rate of release of platelet content. Calcium and thrombin can induce a dose-dependent release of growth factors (PDGF-BB, TGF-β, and VEGF) immediately; however, collagen leads to a slower and more sustained release pattern. In addition to release kinetics, rapid clearance of
soluble bioactive factors in intra-articular space61 may further reduce the bioavailability of platelet content.

Frequency of PRP application

Owing to the short retention of PC in the form of fibrin clot, repeated injections of PRP may be necessary to achieve the treatment effects. There are good clinical evidences showing that repeated injections of PRP can offer better clinical outcomes than single injection for patients with knee OA62,63 and those with chronic patellar tendinopathy.64 It suggests that a longer exposure to PRP may be necessary to treat these chronic conditions as functional improvement of the PRP-treated groups had a tendency to decrease over time.60 However, the optimal frequency of PRP application for OA and tendinopathies may vary according to the disease conditions.

In summary, the brief retention of fibrin clot in the lesions site and the fast release of platelet content largely limit the bioavailability and treatment effects of PC. As repeated injections may cause extra microtrauma and irritation, a controlled delivery system for PRP may help to prolong the action of PRP with a single treatment.

Review of treatment effects of PC on musculoskeletal disorders

PC is a new treatment modality for various musculoskeletal injuries; however, a conclusive treatment effect is not yet reached. The inconsistent clinical outcomes were recorded in various systematic reviews,1-3,5,38,56,65-71 which may be resulted from differences in composition, localisation, and duration of actions of PC according to different preparations and applications. In order to evaluate whether these factors affect treatment effects of PC, we collected Level I and II clinical studies with respect to the treatment efficacy of PC on five major musculoskeletal lesions including OA, tendinopathy, ACL rupture, rotator cuff tear, and bone fracture from published systematic reviews with some recent reports. Literature search was performed using the Google scholar database with the following keywords: “platelet” or “platelet concentrates” or “platelet rich plasma” or “PRP” and the various terms for clinical conditions “osteoarthritis” or “tendinopathy” or “tendinopathies” or “epicondylitis” or “tennis elbow” or “jumper’s knee” or “rotator cuff” or “ACL” or “bone graft” or “bone fracture” up to April 2016. Only reports in English or Chinese were included. Information about treatment efficacy, leucocyte reduction, platelet activation, localised delivery of PC, as well as the use of repeated injection was extracted and tabulated in Table 3 for simpler interpretation. With respect to treatment efficacy, statistically significant positive or negative effect of PC in any of the measured outcomes was recorded as “positive” or “negative”, respectively, whereas “null” effect was recorded if there were no significant differences in all measured outcomes. Leucocyte reduction refers to the use of leucocyte reduction filter or single spin method33 with clear indication to exclude buffy

Use (Number of studies)	Effectiveness	Application conditions	Major AE	Remarks for localisation				
		Leucocyte reduction	Activation	Localisation	Repeated application			
Use (Number of studies)								
Osteoarthritis (18)	+ve	16	5/16	10/16	16/16	0	15/16	PC is injected intra-articularly
	-ve	2	0/2	1/2	2/2	2/2	0	so they are confined in a small space to action.
Tendinopathies (23)	+ve	11	1/11	3/11	0/11	3/11	0	Intratendinous injection is not regarded as localisation
	-ve	11	2/11	1/11	0/11	3/11	0	
Rotator cuff tear (17)	+ve	7	3/7	7/7	6/7	0/7	0	Localization in rotator cuff tear refers to clot formation of PC in the tear site or tendon–bone interface
	-ve	9	8/9	6/9	2/9	1/9	1	
ACL surgery (9)	+ve	5	1/5	4/5	4/5	5/5	2	Localization in ACL reconstruction refers to clot formation of PC on the graft or in bone tunnel
	-ve	4	1/4	3/4	1/4	0/4	0	
Fracture/bone graft (3)	+ve	2	1/2	2/2	2/2	0/2	0	PC was mixed with the bone graft material to fill the fracture site.
	-ve	1	0/1	1/1	1/1	0/1	0	

Note:
Effectiveness: A report with statistically significant positive/negative result in any of the measured outcomes is regarded as positive/negative.
Leucocyte reduction: This refers to the use of leucocyte reduction filter or single spin indicating clear precaution to avoid buffy coat in preparation process.
Activation: This refers to the activation of platelet concentrates before application.
Localisation: This refers to the use of carrier, solid form of platelet concentrates or platelet concentrates applied in confined area in respect to the injured site.
(Please refer to the individual remarks.)
Repeated application: This refers to any repeated application of platelet concentrates regardless of frequency.
Major adverse effect: This includes the report of any major complications in platelet concentrates group: allergy, infection. Minor side effect is not included: mild swelling, self-resolved pain, local heating.
ACL = anterior cruciate ligament; AE = adverse effects; PC = platelet concentrates.
coat in the preparation. Commercial products showing reduced level of leucocytes count in previous literatures were also included. Studies that involved the use of PRF or combine calcium and/or with PRP before application were regarded as PC with “Activation”. Studies that involved the implantation of solid form of PC to the designated healing sites or injection into a confined compartment, such as intra-articular injection, were regarded as “localised” delivery, otherwise the treatments were described as “without localisation”, such as peritendinous or intratendinous injection. Studies with repeated application of PC were regarded as treatments with longer duration of action as compared to single injection. Reports of major adverse effects are also included in Table 3.

OA

Out of 18 clinical studies, 16 reported a positive effect of PC treatments for OA, and no major adverse effect was reported. Leucocyte reduction was not included in the reports of null effects, yet only one-third of reports with positive effects included leucocyte reduction. The benefits of leucocyte reduction on treatment efficacies for OA were still not confirmed. However, it was reported that leucocyte-reduced PC exhibited a better treatment effect for knee OA and lower incident rate of minor adverse effects in the joint. Although intra-articular injection was regarded as application with good retention to the lesion sites, application of PC to larger joints was less effective as null effect was reported for hip OA. The majority of the positive reports included platelet activation and repeated injections. In fact, repeated injections of PC were found to be more effective than single injection. With the carryover effects up to 12 months post injection, it is likely that PC may also modify the disease process. Younger patients with OA showed a better positive response than older patients, which may be related to reduced platelet count or slower healing process in the elderly; however, detailed records of platelet counts and treatment efficacies were not available.

Tendinopathies

For tendinopathies, the therapeutic effects of PC were inconsistent (11 +ve, 11 null, and 1 –ve effect) and varied among different anatomical sites. The beneficial effect of PC was more prominent in patellar tendinopathy (3 +ve), but inconsistent in tennis elbow (7 +ve, 7 null) and rotator cuff tendinopathy (1 +ve, 1 null, 1 –ve). Achilles (2 null) and hamstring (1 null) tendinopathies was not responsive to PC treatment. PC was also less effective for noninsertional Achilles tendinopathy in aged patients.

Leucocyte reduction and platelet activation were not commonly employed for PC treatment to tendinopathies. Although ultrasound-guided injection is generally included in PRP treatment for tendinopathy in order to localise PRP to the affected sites precisely, there are limited spaces to hold PRP in most tendinopathies, except the infrapatellar space in case of patellar tendinopathy. It may help to explain the differences in treatment effects for tendinopathies in different anatomical sites. Repeated injection was found to be better than single injection for patellar tendinopathy in a Level II randomised prospective study, but the use of repeated injection was also noticed in three reports of null effects. Whether the injected PC could stay at the lesion sites would be more deterministic. There was only one negative report, i.e., co-application of leucocyte-rich PC did not improve clinical outcomes and may have potential deleterious effects on healing tendons.

Rotator cuff tear

Inconclusive clinical results on the efficacy of PC application on rotator cuff tear were found. Out of 17 reports, 7 showed positive effects, 9 showed null effects, and 1 showed negative effects. However, it is remarkable that most of the positive reports (6/7) were with the localised application of PC to the tear site and all of them (7/7) were with platelet activation. Some of the surgeons applied liquid form of PC by injection on top of or into the rotator cuff tendon. PC may not be able to stay at the tear site and this reduced their potential beneficial effect. PC was localised to the tear site by suturing or clot formation, and its efficacy became more promising. A patient treated by suturing PRF side-to-side to close the tear showed improvement in the range of motion and pain relief and decrease in the re-tear rates. Some other studies demonstrated early healing compared with a control group and acceleration of the recovery process after rotator cuff repair. In these studies, clot formation was checked after the intraoperative application of PC. Systematic reviews did not distinguish clinical outcomes with different PC application methods. This may be the source of the discrepancy.

ACL surgery

Nine clinical studies were found with respect to application of PC in ACL reconstructive surgery, and the treatment effects were inconsistent (5 +ve, 4 null effects). The use of leucocyte reduction and platelet activation did not differ between the reports of positive and null effects. However, most of the positive reports (4/5) involved procedures to ensure clot formation (activated platelet) on the graft, whereas only one out of the four null effect reports included clot formation step before graft fixation. It may suggest that the localisation of activated platelet on graft surface was essential to achieve positive treatment effects. Most reports agreed on the positive contribution of PC to graft maturation but not to tunnel healing. This may be due to the smaller space of bone tunnel to accommodate the PC than that of the graft so that less platelet-derived factors can be available to tunnel healing. All included studies only applied PC intraoperatively, and there is no information about the effects of repeated application of PC.
Due to the small number of Level I and II clinical studies, the efficacy of PC on bone fracture healing was not conclusive. Two out of three studies showed positive effect when PC was applied locally to the fracture site with the bone graft. One of the large-scale Level II studies (n = 276) compared the use of autograft and allograft with or without PC and found that surgery using allograft with PC showed similar result as surgery using autograft and significantly better result than that with allograft alone and lowered the infection rate for the use of allograft at 24- and 72-month evaluation.

Summary and further optimisation of PC therapy

After the usage of PC for over 2 decades, there is still no standard for its applications. It is important to gather and analyse the past experiences to determine the optimal formulation of PC. Based on the results of literature review, it is likely that PC treatments were beneficial, but its efficacies are largely dependent on the ways of PC preparation and applications. The current evidence does not support leucocyte reduction as an essential step to secure treatment effects of PC, although it might be advisable to use PC with leucocyte reduction for OA. Similarly, platelet activation is not mandatory for treatment effects, but clot formation accompanied with platelet activation may help the localisation of platelets. In fact, whether the PC preparation could be localised to the lesion sites may be a deterministic factor. As a general observation, treatments with intraoperative delivery of solid form of PC (either PRF or PRP after activation) are more effective, and injections into anatomical sites with confined space (i.e., joint cavity) to retain PRP showed more consistent outcomes. Repeated application is preferable if it is feasible, which is attributed to the prolonged duration of action of PC; however, obvious disadvantages of injection are the pain caused and the potential infection risk, and therefore, the number of injection should be kept to a minimum.

Several factors should also be considered in the future optimisation of PC therapy. First, the composition of PC such as the absolute platelet count and leucocyte count may need to be varied for different types of musculoskeletal disorders. Research can be focused on determining standard formulation for different diseases. Second, individual factors of the patients such as age, sex, exercise level, and genotype were shown to be related to the composition, and therefore, healing effect of the autologous PC should be taken into consideration. Finally, this review showed the importance of localisation and duration of action on the efficacy of PC therapy. Hence, a safe delivery system should be developed to localise and release the PC sustainably in the vicinity of the lesion sites, with considerations of the local anatomical features.

Conflicts of interest

All authors declare no conflicts of interest.

References

1. Andriolo L, Di Matteo B, Kon E, Filardo G, Venieri G, Marcacci M. PRP augmentation for ACL reconstruction. BioMed Res Int. 2015;2015:371476.
2. Roffi A, Filardo G, Kon E, Marcacci M. Does PRP enhance bone integration with grafts, graft substitutes, or implants? A systematic review. BMC Musculoskelet Disord. 2013;14:330.
3. Khoshbin A, Leroux T, Wasserstein D, et al. The efficacy of platelet-rich plasma in the treatment of symptomatic knee osteoarthritis: a systematic review with quantitative synthesis. Arthroscopy. 2013;29:2037–2048.
4. Chahal J, Van Thiel GS, Mall N, et al. The role of platelet-rich plasma in arthroscopic rotator cuff repair: a systematic review with quantitative synthesis. Arthroscopy. 2012;28:1718–1727.
5. Tsikopoulos K, Tsikopoulos I, Simeonidis E, et al. The clinical impact of platelet-rich plasma on tendinopathy compared to placebo or dry needling injections: a meta-analysis. Phys Ther Sport. 2016;17:87–94.
6. Ehrenfest DM, Rasmussen L, Albrektsen T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27:158–167.
7. DeLong JM, Russell RP, Mazzocca AD. Platelet-rich plasma–the PAW classification system. Arthroscopy. 2012;28:998–1009.
8. Magalon J, Chateau AL, Bertrand B, et al. DEPA classification: a proposal for standardising PRP use and a retrospective application of available devices. BMJ Open Sport Exerc Med. 2016;2:e000060.
9. Lacci KM, Dardik A. Platelet-rich plasma: support for its use in wound healing. Yale J Biol Med. 2010;83:1–9.
10. Del Toro M, Enea D, Panfoli N, Filardo G, Pace N, Chiusaroli M. Hamstrings anterior cruciate ligament reconstruction with and without platelet rich fibrin matrix. Knee Surg Sports Traumatol Arthrosc. 2015;23:3614–3622.
11. de Almeida AM, Demange MK, Sobrado MF, Rodrigues MB, Pedrinelli A, Hernandez AJ. Patellar tendon healing with platelet-rich plasma: a prospective randomized controlled trial. Am J Sports Med. 2012;40:1282–1288.
12. Castillo TN, Pouliot MA, Kim HJ, Dragoo JL. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am J Sports Med. 2011;39:266–271.
13. Kushida S, Kakudo N, Morimoto N, et al. Platelet and growth factor concentrations in activated platelet-rich plasma: a comparison of seven commercial separation systems. J Artif Organs. 2014;17:186–192.
14. Kaux JF, Le戈ff C, Seidel L, et al. [Comparative study of five techniques of preparation of platelet-rich plasma]. Pathol Biol (Paris). 2011;59:157–160.
15. Kearney RS, Parsons N, Costa ML. Achilles tendinopathy management: a pilot randomised controlled trial comparing platelet-rich plasma injection with an eccentric loading programme. Bone Joint Res. 2013;2:227–230.
16. Oh JH, Kim W, Park KW, Roh YH. Comparison of the cellular composition and cytokine-release kinetics of various platelet-rich plasma preparations. Am J Sports Med. 2015;43:3062–3070.
17. Davenport KL, Campos JS, Nguyen J, Saboeiro G, Adler RS, Moley PJ. Ultrasound-guided intrarticular injections with platelet-rich plasma or autologous whole blood for treatment of proximal hamstring tendinopathy: a double-blind randomized controlled trial. J Ultrasound Med. 2015;34:1455–1463.
18. Dohan DM, Chuokroun J, Diss A, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:e37–e44.
19. Dohan Ehrenfest DM, Rasmussen L, Albrektsen T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27(3):158–167.
20. Jo CH, Shin JS, Shin WH, Lee SY, Yoon KS, Shin S. Platelet-rich plasma for arthroscopic repair of medium to large rotator cuff tears: a randomized controlled trial. Am J Sports Med. 2015;43:2102–2110.
21. Antuña S, Barco R, Martínez Díez JM, Sánchez Márquez JM. Platelet-rich fibrin in arthroscopic repair of massive rotator cuff tears: a prospective randomized pilot clinical trial. Acta Orthop Belg. 2013;79:25–30.

22. Magalon J, Bausset O, Serratrice N, et al. Characterization and comparison of 5 platelet-rich plasma preparations in a single donor model. Arthroscopy. 2014;30:629–638.

23. Sánchez M, Anitua E, Azofra J, Prado R, Muruzabal F, Andia I. Ligation of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology. Arthroscopy. 2010;26:470–480.

24. Orrego M, Larraín C, Rosales J, et al. Effects of platelet concentrate and a bone plug on the healing of hamstring tendons in a bone tunnel. Arthroscopy. 2008;24:1373–1380.

25. Berghoff WJ, Rhodes RD. Platelet-rich plasma application during closure following total knee arthroplasty. Orthopedics. 2006;29:590–598.

26. Mastrandelo AN, Vavken P, Fleming BC, Harrison SL, Murray MM. Reduced platelet concentration does not harm PRP effectiveness for ACL repair in a porcine in vivo model. J Orthop Res. 2011;29:1002–1007.

27. Choi BH, Zhu SJ, Kim BY, Huh JY, Lee SH, Jung JH. Effect of platelet-rich plasma (PRP) concentration on the viability and proliferation of alveolar bone cells: an in vitro study. Int J Oral Maxillofac Surg. 2005;34:420–424.

28. Graziani F, Ivanovski S, Cei S, Ducci F, Tonetti M, Gabriele M. The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin Oral Implants Res. 2006;17:212–219.

29. Weibrich G, Hansen T, Kleis W, Buch R, Hitzler WE. Effect of platelet-rich plasma (PRP) concentration on the efficacy of platelet-rich plasma in promoting repair for the treatment of refractory lateral epicondylitis. Wound Repair Regen. 2012;2:5.

30. Dhurat R, Sukesh MS. Principles and methods of preparation of platelet-rich plasma: a review and author’s perspective. J Cutan Aesthet Surg. 2014;7:189–197.

31. Roussy Y, Bertrand Duchesne MP, Gagnon G. Activation of human platelets by collagen: a model to investigate the mechanism of action of autologous platelet concentrate in lateral epicondylitis in a double-blind, randomized, double-blinded controlled trial. Am J Sports Med. 2011;39:258–265.

32. Peerbooms JC, Sluimer J, Bruijn DJ, Gosens T. Positive effect of an autologous platelet concentrate in lateral epicondylitis in a double-blind randomized controlled trial: platelet-rich plasma versus corticosteroid injection with a 1-year follow-up. Am J Sports Med. 2010;38:255–262.

33. Lauritano D, Avantaggiato A, Candotto V, Zollino I, Carinci F. Is platelet-rich fibrin really useful in oral and maxillofacial surgery? Lights and shadows of this new technique. Ann Oral Maxillofac Surg. 2013;1:25.

34. Rizzo C, Vetro R, Vetro A, et al. The role of platelet gel in osteoarticular injuries of young and old patients. Immun Ageing. 2014;11:21.

35. Thanasa C, Papadimitriou G, Charalambidis C, Paraskevopoulos I, Papanikolaou A. Platelet-rich plasma versus autologous whole blood for the treatment of chronic lower limb epicondylitis: a randomized controlled clinical trial. Am J Sports Med. 2011;39:2130–2134.

36. Weibrich G, Hansen T, Kleis W, Buch R, Hitzler WE. Effect of platelet-rich plasma (PRP) concentration on the efficacy of platelet-rich plasma in promoting repair for the treatment of refractory lateral epicondylitis. Wound Repair Regen. 2012;2:5.

37. Wagener FA, Scharstuhl A, Tyrrell RM, et al. The heme-heme oxygenase system in wound healing: implications for scar formation. Curr Drug Targets. 2010;11:1571–1585.

38. Tan XX, Ju HY, Yan W, et al. Autologous platelet lysate local injections for the treatment of refractory lateral epicondylitis. J Orthop Surg Res. 2016;11:17.

39. Rizzo C, Vetro R, Vetro A, et al. The role of platelet gel in osteoarticular injuries of young and old patients. Immun Ageing. 2014;11:21.
double-blind, placebo-controlled trial. *Knee Surg Sports Traumatol Arthrosc.* 2015 [Epub ahead of print].

63. Kavadar G, Demircioglu DT, Celik MY, Emre TY. Effectiveness of platelet-rich plasma in the treatment of moderate knee osteoarthritis: a randomized prospective study. *J Phys Ther Sci.* 2015;27:3863–3867.

64. Zayni R, Thaunat M, Fayard JM, et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results. *Arthroscopy* 2012;13:229.

65. Cerza F, Carni S, Carcangiu A, et al. Comparison between hyaluronic acid and platelet-rich plasma injections in knee osteoarthritis: a systematic review. *Arthroscopy.* 2016;32:495–505.

66. Meheux CJ, McCulloch PE, Lintner DM, Varner KE, Harris JD. Efficacy of intra-articular platelet-rich plasma injections in knee osteoarthritis: a systematic review. *Arthroscopy.* 2016;32:495–505.

67. Andia I, Latorre PM, Gomez MC, Burgos-Alonso N, Abate M, Maffulli N. Platelet-rich plasma in the conservative treatment of painful tendinopathy: a systematic review and meta-analysis of controlled studies. *Br Med Bull.* 2014;110:99–115.

68. Warth RJ, Dornan GJ, James EW, Horan MP, Millett PJ. Clinical and radiological outcomes of arthroscopic repair of full-thickness rotator cuff tears with and without platelet-rich product supplementation: a meta-analysis and meta-regression. *Arthroscopy.* 2015;31:306–320.

69. Randelli P, Randelli F, Ragone V, et al. Regenerative medicine in rotator cuff injuries. *BioMed Res Int.* 2014;2014:129515.

70. Fu CJ, Sun JB, Bi ZG, Wang XM, Yang CL. Evaluation of platelet-rich plasma and fibrin matrix to assist in healing and repair of rotator cuff injuries: A systematic review and meta-analysis. *Clin Rehabil.* 2016;1:1–15.

71. Figueroa D, Figueroa F, Calvo R, Vaisman A, Ahumada X, Arellano S. Treatment with platelet-rich plasma injection improve function, pain and quality of life in patients with osteoarthritis of the knee? A randomized clinical trial. *Orthop Rev (Pavia).* 2014;6:5405.

72. Battaglia M, Guaraldi F, Vannini F, et al. Efficacy of ultrasound-guided intra-articular injections of platelet-rich plasma versus hyaluronic acid for hip osteoarthritis. *Osteopädie.* 2013;36:e1501–e1508.

73. Say F, Gürler D, Yener K, Bülbül M, Malkoc M. Platelet-rich plasma injection is more effective than hyaluronic acid in the treatment of knee osteoarthritis. *Acta Chir Orthop Traumatol Cech.* 2013;80:278–283.

74. Cönter Kiliç S, Gündoğmuş M, Sümübili M. Is arthrocentesis plus platelet-rich plasma superior to arthrocentesis alone in the treatment of temporomandibular joint osteoarthritis? A randomized clinical trial. *J Oral Maxillofac Surg.* 2015;73:1473–1483.

75. Dragoo JL, Wastler AM, Braun HH, Nead KT. Platelet-rich plasma as a treatment for patellar tendinopathy: a double-blind, randomized controlled trial. *Am J Sports Med.* 2014;42:610–618.

76. Filardo G, Kon E, Della Villa S, Vincentelli F, Fornasari PM, Maracci M. Use of platelet-rich plasma for the treatment of refractory jumper's knee. *Int Orthop.* 2010;34:909–915.

77. Vettrano M, Castorina A, Pulviani MC, Baldini R, Pavan A, Ferretti A. Platelet-rich plasma versus focused shock waves in the treatment of jumper's knee in athletes. *Am J Sports Med.* 2013;41:795–803.

78. Krogb TP, Fredbery U, Stengaard-Pedersen K, Christensen R, Jensen P, Ellingsen T. Treatment of lateral epicondylitis with platelet-rich plasma, glucocorticoid, or saline: a randomized, double-blind, placebo-controlled trial. *Am J Sports Med.* 2013;41:625–635.

79. Stenhouse G, Sookpok P, Watson M. Do blood growth factors offer additional benefit in refractory lateral epicondylitis? A prospective, randomized pilot trial of dry needling as a stand-alone procedure versus dry needling and autologous conditioned plasma. *Skeletal Radiol.* 2013;42:1515–1520.

80. Creaney L, Wallace A, Curtis M, Connell D. Growth factor-based therapies provide additional benefit beyond physical therapy in resistant elbow tendinopathy: a prospective, single-blind, randomized trial. *Am J Sports Med.* 2013;41:356–364.

81. Dallari D, Stagni C, Rani N, et al. Ultrasound-guided injection of platelet-rich plasma and hyaluronic acid, separately and in combination, for hip osteoarthritis: a randomized controlled study. *Am J Sports Med.* 2016;44:664–671.

82. Hegab AF, Ali HE, Elmasyr M, Khalilf MG. Platelet-rich plasma injection as an effective treatment for temporomandibular joint osteoarthritis. *J Oral Maxillofac Surg.* 2015;73:1706–1713.

83. Angoorani H, Mazaherinezhad A, Marjomaki O, Younespour S. Treatment of knee osteoarthritis with platelet-rich plasma in comparison with transcutaneous electrical nerve stimulation plus exercise: a randomized clinical trial. *Med J Islam Repub Iran.* 2015;29:223.

84. Illanii I, Guder N, Avci E. Is platelet-rich plasma a promising treatment in severe knee osteoarthritis? *Unifd J Med Sci Med.* 2015;1:1–5.

85. Rayegani SM, Raeesadat SA, Taheri MS, et al. Does intra articular platelet rich plasma injection improve function, pain and quality of life in patients with osteoarthritis of the knee? A randomized clinical trial.
36

Y.-L. Yang et al. / Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology 7 (2017) 27-36

99. Behera P, Dhillon M, Aggarwal S, Marwaha N, Prakash M. Leukocyte-poor platelet-rich plasma versus bupivacaine for recalcitrant lateral epicondylar tendinopathy. J Orthop Surg (Hong Kong). 2015;23:6-10.

100. Palacio EP, Schiavetti RR, Kanematsu M, Ikeda TM, Mizobuchi RR, Gabbiatti JA. Effects of platelet-rich plasma on lateral epicondylitis of the elbow: prospective randomized controlled trial. Rev Bras Ortop. 2016;51:90-95.

101. Yadav R, Kothari SY, Borah D. Comparison of local injection of platelet-rich plasma and corticosteroids in the treatment of lateral epicondylitis: clinical and ultrasonographic evaluation. J Orthop Surg (Hong Kong). 2015;23:1-5.

102. Hardy P, Le Goux P, Montalvan B, Klouche S, Borgel D, Breban M. Platelet-rich plasma in rotator cuff repair: a randomized controlled trial. J Shoulder Elbow Surg. 2013;22:86-90.

103. Rha DW, Park GY, Kim YK, Kim MT, Lee SC. Comparison of the non-insertional Achilles tendinopathy: the efficacy is reduced in 60-years old people compared to young and middle-age individuals. Front Aging Neurol. 2015;7:228.

104. Randelli PS, Arrigoni P, Cabitza P, Volpib P, Maffulli N. Autologous platelet rich plasma for arthroscopic rotator cuff repair. A pilot study. Disabil Rehabil. 2009;30:20-22.

105. Dallari D, Savarino L, Stagni C, et al. Enhanced tibial osteotomy and bone marrow stromal cells. Knee Surg Sports Traumatol Arthrosc. 2014;22:86-90.

106. Ruiz-Moneo P, Molano Muñoz J, Prieto E, Algora J. Plasma rich in growth factors in ACL surgery: preliminary study. Arthroscopy. 2009;25:1206-1213.

107. Sánchez Márquez JM, Diez JM, Barco R, Antuña S. Functional results after arthroscopic repair of massive rotator cuff tears; influence of the application platelet-rich plasma combined with fibrin. Revista Española de Cirugía Ortopédica y Traumatología (English Edition). 2011;55:282-287.

108. Wang A, McCann P, Colliver J, et al. Do postoperative platelet-rich plasma injections accelerate early tendon healing and functional recovery after arthroscopic supraspinatus repair? A randomized controlled trial. Am J Sports Med. 2015;43:1430-1437.

109. Hak A, Rajaratnam K, Ayeni OR, et al. A double-blinded placebo randomized controlled trial evaluating short-term efficacy of platelet-rich plasma in reducing postoperative pain after arthroscopic rotator cuff repair: a pilot study. Sports Health. 2015;7:58-66.

110. Maniscalco P, Gambera D, Lunati A, et al. The “Cascade” membrane: a new PRP device for tendon ruptures. Description and case report on rotator cuff tendon. Acta Biomed. 2008;79:223-226.

111. Barber FA, Hrnick SA, Snyder SJ, Hapa O. Rotator cuff repair healing influenced by platelet-rich plasma construct augmentation. Arthroscopy. 2011;27:1029-1035.

112. de Vos RJ, Weir A, van Schie HT, et al. Platelet-rich plasma injection for anterior cruciate ligament revascularization after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind, clinical trial. Eur J Orthop Surg Traumatol. 2013;23:3-12.

113. Vot et al. The impact of platelet-rich plasma construct augmentation. J Shoulder Elbow Surg. 2013;22:86-90.

114. Mirzatolooei F, Alamdari MT, Khalkhali HR. The impact of platelet-rich plasma versus bupivacaine for recalcitrant lateral epicondylitis of the elbow: prospective randomized controlled trial. Rev Bras Ortop. 2016;51:90-95.

115. Malavolta EA, Gracitelli ME, Ferreira Neto AA, Assunção JH, Bordalo-Rodrigues M, de Camargo OP. Platelet-rich plasma in rotator cuff repair: a prospective randomized study. Am J Sports Med. 2014;42:2446-2454.

116. Ruiz-Moneo P, Molano Muñoz J, Prieto E, Algora J. Plasma rich in growth factors in arthroscopic rotator cuff repair: a randomized controlled trial. Clin Rehabil. 2015;29:144-149.

117. Galbiatti JA. Effects of platelet-rich plasma on lateral epicondylitis of the humerus. J Clin Diagn Res. 2015;9:RC05-RC07.

118. Malavolta EA, Gracitelli ME, Ferreira Neto AA, Assunção JH, Bordalo-Rodrigues M, de Camargo OP. Platelet-rich plasma in rotator cuff repair: a pilot study. Disabil Rehabil. 2009;30:20-22.

119. Silva A, Sampiao R. Anatomic ACL reconstruction: does the platelet-rich plasma accelerate tendon healing? Knee Surg Sports Traumatol Arthrosc. 2009;17:676-682.

120. Barber FA, Hrnick SA, Snyder SJ, Hapa O. Rotator cuff repair healing influenced by platelet-rich plasma construct augmentation. Arthroscopy. 2011;27:1029-1035.

121. Maniscalco P, Gambera D, Lunati A, et al. The “Cascade” membrane: a new PRP device for tendon ruptures. Description and case report on rotator cuff tendon. Acta Biomed. 2008;79:223-226.

122. Barber FA, Hrnick SA, Snyder SJ, Hapa O. Rotator cuff repair healing influenced by platelet-rich plasma construct augmentation. Arthroscopy. 2011;27:1029-1035.

123. Ruiz-Moneo P, Molano Muñoz J, Prieto E, Algora J. Plasma rich in growth factors in arthroscopic rotator cuff repair: a randomized controlled trial. JAMA. 2010;303:144-149.

124. Galbiatti JA. Effects of platelet-rich plasma on lateral epicondylitis of the humerus. J Clin Diagn Res. 2015;9:RC05-RC07.

125. Kesikburun S, Tan AK, Yilmaz B, Yasar E, Yazicioglu K. Platelet-rich plasma injections in the treatment of chronic rotator cuff tendinopathy: a randomized controlled trial with 1-year follow-up. Arthroscopy. 2015;31:e17 [abstract].

126. de Vos RJ, Weir A, van Schie HT, et al. Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. JAMA. 2010;303:144-149.

127. Galbiatti JA. Effects of platelet-rich plasma on lateral epicondylitis of the humerus. J Clin Diagn Res. 2015;9:RC05-RC07.

128. Galbiatti JA. Effects of platelet-rich plasma on lateral epicondylitis of the humerus. J Clin Diagn Res. 2015;9:RC05-RC07.

129. Galbiatti JA. Effects of platelet-rich plasma on lateral epicondylitis of the humerus. J Clin Diagn Res. 2015;9:RC05-RC07.