Angiogenesis Inhibitors for the Treatment of Ovarian Cancer
An Updated Systematic Review and Meta-analysis of Randomized Controlled Trials

Haihong Wang, BS, Tie Xu, BS, Lifen Zheng, BS, and Guiling Li, MD

Background: Angiogenesis inhibitors showed activity in ovarian cancer, but preliminary data could not accurately reflect the survival benefit. We thus did a systematic review and meta-analysis of randomized controlled trials to reassess the efficacy and safety of angiogenesis inhibitors combined with chemotherapy for ovarian cancer.

Methods: We searched PubMed, EMBASE, Cochrane, and ClinicalTrials.gov for randomized controlled trials comparing angiogenesis inhibitors containing therapy with conventional chemotherapy alone or no further treatment. Our main outcomes were the progression-free survival (PFS), overall survival (OS), and common adverse events.

Results: Fifteen trials were included (N = 8721 participants). For newly diagnosed ovarian cancer, combination treatment with angiogenesis inhibitors and chemotherapy yielded a lower risk of disease progression (hazard ratio [HR], 0.83; 95% confidence interval [CI], 0.71–0.97) and no improved OS (HR, 0.95; 95% CI, 0.86–1.05). In the high-risk progression subgroup, the addition of bevacizumab significantly improved PFS (HR, 0.72; 95% CI, 0.65–0.81) and OS (HR, 0.84; 95% CI, 0.74–0.96). In recurrent patients, the combined HR was 0.58 (95% CI, 0.52–0.65) for PFS, and for OS, the combined HR was 0.86 (95% CI, 0.79–0.94). We found no significant improvement for either PFS (HR, 0.80; 95% CI, 0.63–1.01) or OS (HR, 1.06; 95% CI, 0.88–1.28) in the pure maintenance therapy.

In the overall population, angiogenesis inhibitors increased the incidence of gastrointestinal perforation (risk ratio [RR], 2.57; 95% CI, 1.66–3.97), hypertension (RR, 7.60; 95% CI, 2.79–20.70), arterial thromboembolism (RR, 2.27; 95% CI, 1.34–3.84), proteinuria (RR, 4.31; 95% CI, 2.15–8.64), and complication of wound healing (RR, 1.72, 95% CI, 1.12–2.63).

Conclusions: Combination treatment with angiogenesis inhibitors and chemotherapy significantly improved PFS and OS in both patients with high-risk of progression and recurrent ovarian cancer, with an increased incidence of common adverse events. Conversely, we detected no statistically significant survival benefit in the pure maintenance setting. The main limitation of the review is clinical heterogeneity across the studies.

Key Words: Ovarian neoplasms, Angiogenesis inhibitors, Chemotherapy, Systematic review, Meta-analysis

Received July 2, 2017, and in revised form December 23, 2017.
Accepted for publication January 4, 2018.

(Int J Gynecol Cancer 2018;28: 903–914)
Description of the Condition

Worldwide, ovarian cancer is the leading cause of gynecological cancer–associated death. It is the fifth leading cause of cancer-related deaths in female patients in developed countries. The poor prognosis is usually attributed to advanced stage at diagnosis and treatment resistance. Approximately 60% of women are diagnosed with late-stage disease that has already spread within the abdomen.

Platinum/taxane doublet chemotherapy is the upfront standard of care in advanced ovarian cancer and yields an objective response in up to 80% of patients, but almost all will experience multiple recurrences of disease, with ever shorter disease-free intervals.

Given the therapeutic limitations of conventional chemotherapy, recent investigations have explored molecularly guided therapies to target pathways of oncogenesis. A number of studies have shown that tumor growth and progression are partly dependent on angiogenesis.

Description of the Intervention

Angiogenesis is recognized as a hallmark of several types of tumors including ovarian cancer. One of the most important cytokines responsible for tumor-mediated angiogenesis is vascular endothelial growth factor (VEGF), which is secreted by tumor cells and binds to the VEGF receptor that is present on normal endothelial cells, stimulating new blood vessel formation. Hence, efforts to block this pathway, either by inhibiting VEGF or its receptor, have emerged as attractive strategies for cancer treatment.

Why it is Important to do This Review?

The good news is that there were clinical trials suggesting that angiogenesis inhibitors showed activity in ovarian cancer. However, the survival benefit was different in these trials. It is important to establish whether the addition of these new drugs to conventional chemotherapy regimens has additional survival benefit, if so, at what cost, and additional harmful effects. Moreover, there remain a lot of controversies. Should they be used as part of first-line therapy, recurrent setting, or to maintain patients with stable disease later in the course of their disease?

The most recently published meta-analysis indicated that antiangiogenic therapy showed clear progression-free survival (PFS) benefit with increased toxicity, but its role in overall survival (OS) was undefined for ovarian cancer. We therefore did a systematic review and meta-analysis of RCTs comparing angiogenesis inhibitors containing therapy with conventional chemotherapy alone or angiogenesis inhibitors to no further treatment.

Two investigators independently reviewed study titles and abstracts, and excluded those studies that clearly did not meet our inclusion criteria. We then obtained copies of the full text of potentially relevant references. Trials selected for detailed analysis and data extraction were analyzed by 2 investigators. We resolved disagreements by discussion between the 2 authors and documented the reasons for exclusion.

MATERIALS AND METHODS

Search Strategy and Selection Criteria

This systematic review and meta-analysis is reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement.

Study Selection and Data Extraction

We searched PubMed, EMBASE, Central (Cochrane clinical trials database) database, and clinicaltrial.gov. We searched the database from 1994 to March 2017. We sought articles in all languages and there were no translations necessary. We used the following combined text and MeSH terms: “Ovarian Neoplasms”, “Angiogenesis Inhibitors”, “Bevacizumab”, “Avastin”, “Pazopanib”, “GW786034”, “Votrient”, “Tesunanib”, “AMG386”, “Nintedanib”, “varganib”, “BBBF1120”, “cetricanib”, “AZD2171”, “recentin”, “Sorafenib”, “BAY 545-9085”, “BAY43-9006”, “Nexavar”, “NSC724772”, “sunitinib”, and “SU11248”.

FIGURE 1. Flow chart indicating the study selection procedure.
Year	Stage	Patients Enrolled	Sample Size	Control Arm	Experimental Arm	Primary Endpoint
Burger et al, 2011³	2011	Phase 3	Newly diagnosed, FIGO stage III or IV epithelial ovarian, primary peritoneal or fallopian tube cancer GOG PS 0-2	1248	Cycles 1–6: T (175 mg/m²) + C (AUC 6) + PL, q3w Cycles 7–22: Bev (15 mg/kg), q3w	PFS
Aghajanian et al, 2012²¹	2012	Phase 3	Platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube carcinoma ECOG PS 0-1	484	Cycles 1–10: G (1000 mg/m², days 1 and 8) + C (AUC 4, day 1) + PL (15 mg/kg, day 1), q3w	PFS
Oza et al, 2015²²	2015	Phase 3	Newly diagnosed, High-risk FIGO stage I–IIA or IIB–IV ovarian epithelial, fallopian tube, or primary peritoneal cavity cancer ECOG PS 0-2	1528	Cycles 1–6: T (175 mg/m²) + C (AUC 5 or 6), q3w	PFS
Pujade-Lauraine et al, 2014²³	2014	Phase 3	Platinum-resistant recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer ECOG PS 0-2	361	Cycles 1-PD: PLD (40 mg/m², day 1 q4w); PAC (80 mg/m² on days 1, 8, 15, and 22, q4w); or TOP (4 mg/m², days 1, 8, 15, q4w or 1.25 mg/m², days 1–5, q3w); + Bev (15 mg/kg, q3w or 10 mg/kg, q2w)	PFS
Coleman et al, 2015¹⁶	2015	Phase 3	Platinum-sensitive, recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer GOG PS 0-2	748	T (175 mg/m²) + C (AUC5),q3w	OS

(Continued on next page)
Year	Phase	Stage	Patients Enrolled	Sample Size	Control Arm	Experimental Arm	Primary Endpoint			
Bois et al, 2016	2016	Phase 3	Chemotherapy-naive, FIGO stage IIB-IV epithelial ovarian cancer, fallopian tube or primary peritoneal cancer ECOG PS 0-2	1366	Cycles1-6: T (175 mg/m²) + C (AUC5 or 6) + PL (200 mg, twice a day, days 2–21, q3w) followed by PL maintenance	Cycles1-6: T (175 mg/m²) + C (AUC5 or 6) + Nintedanib (200 mg twice a day, days 2–21), q3w followed by Nintedanib maintenance	PFS			
Ledermann et al, 2011	2011	Phase 2	Advanced ovarian carcinoma, fallopian tube carcinoma or primary peritoneal cancer of serous type with recurrent disease and who responded to second, third, or fourth line chemotherapy. ECOG PS 0-1	83	Cycles1-9: maintenance PL (250 mg, twice a day, q4w)	Cycles1-9: maintenance Nintedanib (250 mg twice a day, q4w)	PFS Rate at 36 Weeks			
Monk et al, 2016	2016	Phase 3	Recurrent partially platinum-sensitive or resistant epithelial ovarian, primary peritoneal or fallopian tube cancers GOG PS 0-1	919	Cycles1-PD: PAC (80 mg/m², days 1, 8, 15, q4w) + PL	Cycles1-PD: PAC(80 mg/m², days 1, 8, 15,q4w) + trebananib (15 mg/kg, qw)	PFS			
Karlan et al, 2012	2012	Phase 2	Recurrent epithelial ovarian (FIGO stage II–IV), fallopian tube or primary peritoneal cancer ECOG PS 0-1	161	PAC (80 mg/m², days 1, 8, 15, q4w) + AMG 386 placebo	PAC (80 mg/m², days 1, 8, 15, q4w) + AMG 386 (3 mg/kg, qw) or AMG386 (10 mg/kg, qw)	PFS			
Pignata et al, 2015	2015	Phase 2	Platinum-resistant or refractory ovarian cancer ECOG PS 0-1	73	Cycles1-PD: PAC (80 mg/m², days 1, 8, 15, q4w)	Cycles1-PD: PAC (80 mg/m², days 1, 8, 15, q4w) + pazopanib(800 mg, orally, once daily)	PFS			
Authors	Year	Phase	FIGO Stage	Type of Cancer	ECOG PS	Patients	Therapy	Maintenance Therapy	TTS	Results
-------------------------	--------	-------	------------	--	---------	----------	---	---------------------	-----	---------
du Bois et al, 2014	2014	3	II–IV	epithelial ovarian, fallopian tube or primary peritoneal carcinoma	0-1	940	Maintenance PL (800 mg, orally, once daily), for 104 wks (24 mos)	Maintenance Pazopanib (800 mg, orally, once daily for 104 wks (24 mos)	PFS	
Sehouli et al, 2016	2016	2	III, IV	platinum-resistant recurrent epithelial ovarian cancer, primary peritoneal	0-1	172	Cycles 1–6: TOP (1.25 mg/m², days 1–5, q3w) + PL (400 mg orally twice a day, days 6–15, q3w) followed by PL maintenance for 12 mos	PFS		
Herzog et al, 2013	2013	2	III–IV	ovarian epithelial cancer or primary peritoneal cancer who have achieved a	0-1	246	Cycles 1–6: TOP (1.25 mg/m², days 1–5, q3w) + Sorafenib (400 mg orally twice a day, days 6–15, q3w) followed by sorafenib maintenance for 12 mos	PFS		
Ledermann et al, 2016	2016	3	I–IV	platinum-sensitive relapsed epithelial ovarian cancer, primary peritoneal	0-1	282	Cycles 1–6: recommended chemotherapy (TC/GC/C), q3w cediranib (20 mg once daily) followed by cediranib maintenance (20 mg once daily) for 18 mos or PD	PFS		

(Continued on next page)
extracted the following data from each selected trial: participant characteristics, study interventions, and outcomes.

Assessment of Risk of Bias in Included Studies

Cochrane Collaboration's tool was used to assess the risk of bias in included RCTs. We had presented results in both a risk of bias graph and a risk of bias summary.

Data Analysis and Statistical Methods

We assessed the effect and safety of angiogenesis inhibitors–containing therapy on 3 outcomes: OS, PFS, and incidence of adverse events. For time-to-event data (OS and PFS), we pooled the hazard ratios (HRs) and two-sided 95% confidence interval (CI) using the generic inverse variance facility of RevMan 5.3. For dichotomous outcomes (toxicity), we used the risk ratio (RR). The Karlan 2012 trial had multiple treatment groups (3-arm trial), and so we divided the control group between the treatment groups (with different dose), and treated comparisons between each treatment group and a split control group as independent comparisons.

The χ² test and Cochran Q-test were used to evaluate heterogeneity among trials, and I² > 50% indicated a moderate-to-high heterogeneity. We used random-effects models for PFS and toxicity based on the large heterogeneity among the different trials. We pooled OS in a fixed effect model. Subgroup analysis was adopted to determine whether there is clinical benefit for patients in the subgroup classified by prognostic factors or different response to platinum-containing therapy. The meta-analysis software RevMan 5.3 provided by the Cochrane library was used for the data analysis.

We assessed the possibility of publication bias by constructing a funnel plot. We assessed funnel plot asymmetry using Begg and Egger tests, and defined significant publication bias as a P < 0.1. We used Stata (version 12.0) for the statistical analysis.

RESULTS

We initially identified 5440 articles from all searched database of which 15 trials (with data for 8721 participants) were retained after a full-text screening for inclusion in our review after excluding duplicates, reviews, case report, and phase I trials (Fig. 1). Two of the references were conference abstracts that described RCTs that met our inclusion criteria. The 15 trials were all published between 2011 and 2016.

The main characteristics of 15 RCTs were summarized in Table 1, and the data of outcomes were summarized in Table 2.

The assessment of risk of bias in the trials was shown in Figure 2. The risk of bias was unclear in the 2 studies that were published in an abstract form. Other RCTs reported sufficient information for randomization excluding 2 trials, for which “Randomize” was used in abstract and text, but further details were not reported, and none was stopped early. Moreover, 3 studies lacked blinding to participants and personnel, the other 2 trials did not specify whether data collectors and outcome assessors were masked to treatment allocation, and only 4 were not funded by industry.
References	Study Size	Patients Enrolled	Primary Endpoint	OS Median (mo)	HR	95% CI	HR	95% CI	
Burger et al, 2011	625	625	Newly diagnosed	16.6	0.65	0.41-1.2	NA	0.84	0.51-1.39
Aghajaniann et al, 2012 (OCEANS)	242	242	Platinum-sensitive recurrent	16.6	0.65	0.41-1.2	NA	0.84	0.51-1.39
Oza et al, 2015 (ICON 7)	764	764	Newly diagnosed	16.6	0.65	0.41-1.2	NA	0.84	0.51-1.39
Coleman et al, 2016 (GOG-0213)	374	374	Platinum-sensitive recurrent	16.6	0.65	0.41-1.2	NA	0.84	0.51-1.39
Karlan et al, 2016	53	53	Recurrent	16.6	0.65	0.41-1.2	NA	0.84	0.51-1.39
Pignata et al, 2015 (MTO-11)	36	36	Platinum-resistant recurrent	16.6	0.65	0.41-1.2	NA	0.84	0.51-1.39
du Bois et al, 2014	472	472	Pure maintenance	16.6	0.65	0.41-1.2	NA	0.84	0.51-1.39
Sehouli et al, 2016	86	86	Platinum-resistant or refractory recurrent	16.6	0.65	0.41-1.2	NA	0.84	0.51-1.39
Herzog et al, 2015 (TRINOVA-1)	123	123	Pure maintenance	16.6	0.65	0.41-1.2	NA	0.84	0.51-1.39
(Continued on next page)									
Overall Survival

Three studies (n = 4142 participants) assessed the risk of death in patients with newly diagnosed ovarian cancer, pooling the data of these studies showed no significant difference in OS when participants were treated with angiogenesis inhibitors and chemotherapy combination treatment compared with chemotherapy alone (HR, 0.95; 95% CI, 0.86–1.05; $I^2 = 0\%$). In contrast, subgroup analysis suggested antiangiogenics-containing combination therapies had a significantly better OS in the patients with a high risk of progression from 2 studies with a total of 1750 participants (HR, 0.84; 95% CI, 0.74–0.96; $I^2 = 0\%$).

Nine studies (n = 3310 participants) assessed the risk of death in the recurrent setting, pooling the data of these studies also found statistically significant lower risk of death in women who received antiangiogenics-containing combination therapies compared with those who received chemotherapy alone (HR, 0.86; 95% CI, 0.79–0.94; $I^2 = 0\%$).

In addition, further subgroup analysis showed angiogenesis inhibitors had significant survival benefits for both platinum-sensitive recurrent ovarian cancer from 3 trials with a total of 1514 participants (HR, 0.86; 95% CI, 0.76–0.98; $I^2 = 0\%$) and platinum-resistant recurrent ovarian cancer from 4 trials with a total of 661 participants (HR, 0.78; 95% CI, 0.65–0.94; $I^2 = 0\%$). Conversely, no significant difference in the risk of death was observed in the pure maintenance antiangiogenics therapy who achieved a good response to before chemotherapy (HR, 1.06; 95% CI, 0.88–1.28; $I^2 = 0\%$) based on the results of 3 studies with a total of 1269 patients (Fig. 3a).

The funnel plot for OS revealed almost symmetry (Fig. 4a), and we further assessed publication bias on Egger test ($P = 0.156$), thus indicating no significant publication bias for OS.

Progression-Free Survival

Angiogenesis inhibitors and chemotherapy combination treatment had significantly lower risks of disease progression compared with women with chemotherapy alone in both newly diagnosed setting (HR, 0.83; 95% CI, 0.71–0.97; $I^2 = 75\%$) and the recurrent setting (HR, 0.58; 95% CI, 0.52–0.65; $I^2 = 39\%$). Subgroup analysis for newly diagnosed patients with a high risk of progression indicated the PFS was significantly improved (HR, 0.72; 95% CI, 0.65–0.81; $I^2 = 0\%$). Moreover, further subgroup analysis comparing the benefit on PFS for platinum-sensitive recurrent ovarian cancer (HR, 0.56; 95% CI, 0.48–0.64; $I^2 = 31\%$) and platinum-resistant recurrent ovarian cancer (HR, 0.50; 95% CI, 0.42–0.60; $I^2 = 0\%$) both suggested significantly lower risks of disease progression. We detected no significant heterogeneity in both subgroups.

However, although pazopanib showed a significantly improved PFS (HR, 0.76; 95% CI, 0.64–0.91) from 1 trial, we found no significant improvement for PFS in the pure maintenance angiogenesis inhibitors therapy (HR, 0.80; 95% CI, 0.63–1.01; $I^2 = 37\%$), with no significant between-study heterogeneity (Fig. 3b).

The funnel plot for PFS revealed almost symmetry (Fig. 4b), and we further assessed publication bias on Egger test ($P = 0.185$), thus indicating no significant publication bias for PFS.
Adverse Events

Supplementary Figure A http://links.lww.com/IGC/A709 presents 7 common adverse events that are potentially associated with angiogenesis inhibitors during treatment. Among this updated analysis, the risks of adverse events (AEs) were significantly increased as follows: gastrointestinal perforation (G3; RR, 2.57; 95% CI, 1.66–3.97; I² = 63%), hypertension (G3; RR, 7.60; 95% CI, 2.79–20.70; I² = 74%), arterial thromboembolism (RR, 2.27; 95% CI, 1.34–3.84; I² = 0%), proteinuria (G3; RR, 4.31; 95% CI, 2.15–8.64; I² = 0%), and complication of wound healing (RR, 1.72; 95% CI, 1.12–2.63; I² = 1%). We found no significant increased risks for either neutropenia (G≥4; RR, 1.09; 95% CI, 0.93–1.28; I² = 46%) or venous thromboembolism (RR, 1.08; 95% CI, 0.79–1.48; I² = 26%).

DISCUSSION

This updated meta-analysis was derived from 3 new RCTs and final data to reassess the efficacy and safety of angiogenesis inhibitors and chemotherapy combination treatment in ovarian cancer. The conclusion is different from the previous meta-analysis, especially in the grouping of statistical analysis. Considering the clinical settings to use angiogenesis inhibitors may play a major role in the treatment benefit, we divided 15 trials into 3 groups.

For newly diagnosed ovarian cancer, the addition of angiogenesis inhibitors to chemotherapy was associated with a significant improvement on PFS with large heterogeneity, but there was no evidence of a benefit on OS. Considering the large heterogeneity, we performed further subgroup analysis in patients with a high risk of progression who were predefined in the ICON7 trial and matched all the recruited patients in the GOG-218 trial, the results of which showed bevacizumab-containing therapy had significant improvement in both PFS and OS, with no significant between-study heterogeneity. Hence, our analysis showed that bevacizumab plus chemotherapy, followed by maintenance bevacizumab therapy, could be considered a front-line treatment option for patients with high-risk features or high-postsurgical tumor burden, with evidence of both PFS and OS benefits for this subgroup. However, because the survival benefit of angiogenesis inhibitors in high-risk patients was concluded from subgroup analysis, the results should be noted as the consistency of patient characteristics and principle of randomization were not ensured.

Although women with advanced epithelial ovarian cancer responded to many available therapeutic agents, almost all die from recurrence, which makes the treatment of recurrent ovarian cancer important. In the present study, antiangiogenics-containing therapies significantly reduced the HR of progression by 42% and risk of death by 14%, compared with chemotherapy alone with no significant between-study heterogeneity. Further analysis of 2 subgroups (ie, platinum-sensitive recurrent ovarian cancer and platinum-resistant recurrent ovarian cancer) both showed improvement on PFS and OS, with no significant between-study heterogeneity. The results were encouraging among women with recurrent ovarian cancer no matter whether responded to previous platinum-containing chemotherapy or not, demonstrating that angiogenesis inhibitors combined with chemotherapy is a great
FIGURE 3. Forest plots: A, OS and B, PFS.
However, its activity in patients whose disease relapses after first-line bevacizumab-containing therapy is still unknown. Hence, further studies addressing this issue need to be performed.

Maintenance therapy has been one proposed strategy to improve outcomes, and incorporation of angiogenesis inhibitors had also been of interest. Recently, a number of clinical trials took combined strategies, using angiogenesis inhibitors in the maintenance setting. In the present study, we mainly analyzed the maintenance antiangiogenics monotherapy in the trials, which recruited patients who responded to previous chemotherapy (ie, a Partial Response or Complete Response according to the RECIST criteria in patients with measurable disease). In the trial, BIBF 1120 was not given to treat recurrent disease but to prolong the progression-free interval. It was evaluated after the completion of chemotherapy for relapsed ovarian cancer. The other 2 trials were designed to compare pazopanib or sorafenib to placebo as maintenance treatment after first-line therapy with systemic chemotherapy, and pazopanib showed a significant better PFS in the maintenance setting. However, pooled analysis of the 3 studies suggested no significant improvement in either PFS or OS. The lack of statistical significance may be because of lack of statistical power. In addition, more patients in the experience arm required dose modifications and discontinued treatment because of severe AEs, such as severe liver-related toxicity, severe gastrointestinal events, resulting in reduced dose of the planned dose. As a group, both short-term and longer-term adverse effects, the negative impact on quality of life associated with frequent visits to a physician or clinic and the cost may resulting in no significantly clinical benefit. Hence, further study should be performed to select patients who can really benefit from long-term maintenance treatment, particularly those who are at high risk of progression.

Adverse events were more common in the angiogenesis inhibitors-containing arm compared with the control arm, several significantly so (severe gastrointestinal events, severe hypertension, severe proteinuria, arterial thromboembolism, and complication of wound healing). It is necessary to monitor and manage these adverse events during the antiangiogenics therapy to minimize the risks. If severe adverse events such as gastrointestinal events can be controlled, angiogenics can be used safely.

This updated meta-analysis included 15 RCTs with 8721 patients, whereas the previous publication contained 12 RCTs with 7775 patients. One additional trial, NCT00327444, to our knowledge, was the first phase 2 study to show the effectiveness of VEGF blockade (aflibercept) in the reduction of malignant ascites for advanced chemoresistant ovarian cancer and recurrent symptomatic malignant ascites. The other 2 additional trials had final results published in abstract form from conference proceedings. Moreover, the most recent meta-analysis divided 12 trials into 3 groups: the bevacizumab group, the VEGFRs group, the trebananib group. Improvement on PFS was seen in all groups and only the trebananib group demonstrated a significant prolongation on OS. However, to assess the role of clinical setting to use angiogenesis inhibitors in the treatment benefit, we divided 15 trials into 3 groups: first-line setting, the recurrent setting, and pure maintenance setting. Our results indicated that combination treatment with angiogenesis inhibitors and chemotherapy improved PFS and OS in the recurrent setting and high-risk progression subgroup, with no statistically significant improvement in OS for newly diagnosed ovarian cancer. We detected no significant improvement for either PFS or OS in pure maintenance setting.

A limitation of this analysis is clinical heterogeneity across the studies, including the different chemotherapy regimens, the tumor stages, and the length of follow-up. Secondly, there are 2 trials, the data of which have thus far been published only as conference abstracts, and they must be judged as being at high risk of bias until further details are known. Thirdly, although most of the included studies were published in high-impact journals, there were study features that carry potential risk of bias such as pharmaceutical industry funding and open-label design. Fourthly, there are differences in angiogenesis inhibitors (which include VEGF blockade, VEGF-R tyrosine kinase inhibitors, angiopoietin inhibitor) that might dictate an optimal choice for combination with chemotherapy or other biological agents. Finally, issues such as the optimize duration and timing of treatment, the potential tumor or host biologic factors to identify, which patients will benefit most (and perhaps more importantly, those who are not likely to respond), have not been established.
CONCLUSIONS

Together, although there are significant differences of increased risks of adverse events with antiangiogenesis therapy, findings from our meta-analysis are relatively promising. Our findings clearly lend support to the use of angiogenesis inhibitors in combination with chemotherapy in the clinical management of patients with newly diagnosed (especially for high-risk patients) or recurrent ovarian cancer. However, no statistically significant clinical benefit was identified in the pure maintenance settings.

REFERENCES

1. Holmes D. Ovarian cancer: beyond resistance. Nature. 2015;527:5217. doi:10.1038/5278217a.

2. Swisher EM, Lin KK, Ozar AM, et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017;18:75–87.

3. Burger RA, Brady MF, Bookman MA, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365:2473–2483.

4. Jayson GC, Kohn EC, Kitchener HC, et al. Ovarian cancer. Lancet. 2014;384:1376–1388.

5. Gonzalez-Martin A, Bover I, Del Campo JM, et al. SEOM guideline in ovarian cancer 2014. Clin Transl Oncol. 2014;16:1067–1071.

6. Katsumata N, Yasuda M, Isonoishi S, et al. Long-term results of dose-dense paclitaxel and carboplatin versus conventional paclitaxel and carboplatin for treatment of advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer (IGOG 3016): a randomised, controlled, open-label trial. Lancet Oncol. 2013;14:1020–1026.

7. Pujade-Lauraine E. How to approach patients in relapse. Ann Oncol. 2012;23(suppl 10):x128–x131.

8. Kaimal R, Aljumaily R, Tressel SL, et al. Selective blockade of matrix metalloprotease-14 with a monoclonal antibody abrogates invasion, angiogenesis, and tumor growth in ovarian cancer. Cancer Res. 2013;73:2457–2467.

9. Eldridge L, Moldobaeva A, Zhong Q, et al. Bronchial artery angiogenesis drives lung tumor growth. Cancer Res. 2016;76:5962–5969.

10. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674.

11. Frumovitz M, Sood AK. Vascular endothelial growth factor (VEGF) pathway as a therapeutic target in gynecologic malignancies. Gynecol Oncol. 2007;104:768–778.

12. Hall M, Gourley C, McNeish I, et al. Targeted anti-vascular therapies for ovarian cancer: current evidence. Br J Cancer. 2013;108:250–258.

13. Eskander RN, Tewari KS. Incorporation of anti-angiogenesis therapy in the management of advanced ovarian carcinoma—mechanistics, review of phase III randomized clinical trials, and regulatory implications. Gynecol Oncol. 2014;132:496–505.

14. Li X, Zhu S, Hong C, et al. Angiogenesis inhibitors for patients with ovarian cancer: a meta-analysis of 12 randomized controlled trials. Curr Med Res Opin. 2016;32:555–562.

15. Gotlieb WH, Amant F, Advani S, et al. Intravenous alferibept for treatment of recurrent symptomatic malignant ascites in patients with advanced ovarian cancer: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Oncol. 2012;13:154–162.

16. Coleman RL, Brady MF, Herzog TJ, et al. A phase III randomized controlled clinical trial of carboplatin and paclitaxel alone or in combination with bevacizumab followed by bevacizumab and secondary cytoreductive surgery in platinum-sensitive, recurrent ovarian, peritoneal primary and fallopian tube cancer (Gynecologic Oncology Group 0213). Gynecol Oncol. 2015;137:3–4.

17. Sehouli J, Hilpert F, Mahner S, et al. Topotecan (T) ± sorafenib (S) in platinumresistant ovarian cancer (PROC): a doubleblind placebocontrolled randomized NOGGO-AGO intergroup Trial-TRIAS. J Clin Oncol. 2016;34.

18. Karlan BY, Oza AM, Richardson GE, et al. Randomized, double-blind, placebo-controlled phase II study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. J Clin Oncol. 2012;30:362–371.

19. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–1558.

20. Eng C, Kramer CK, Zinman B, et al. Glucagon-like peptide-1 receptor agonist and basal insulin combination treatment for the management of type 2 diabetes: a systematic review and meta-analysis. Lancet. 2014;384:2228–2234.

21. Aghajanian C, Blank SV, Goff BA, et al. OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotheraphy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J Clin Oncol. 2012;30:2039–2045.

22. Oza AM, Cook AD, Pfisterer J, et al. Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): overall survival results of a phase 3 randomised trial. Lancet Oncol. 2015;16:928–936.

23. Pujade-Lauraine E, Hilpert F, Weber B, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial. J Clin Oncol. 2014;32:1302–1308.

24. du Bois A, Kristsens G, Ray-Coquard I, et al. Standard first-line chemotherapy with or without nintedanib for advanced ovarian cancer (AGO-OVAR 12): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2016;17:78–89.

25. Ledermann JA, Hackshaw A, Kaye S, et al. Randomized phase II placebo-controlled trial of maintenance therapy using the oral triple angiokinase inhibitor BBIB 1120 after chemotherapy for relapsed ovarian cancer. J Clin Oncol. 2011;29:3798–3804.

26. Monk BJ, Poveda A, Vergote I, et al. Final results of a phase 3 study of trebananib plus weekly paclitaxel in recurrent ovarian cancer (TRINOVA-1): long-term survival, impact of ascites, and progression-free survival-2. Gynecol Oncol. 2016;143:27–34.

27. Pignata S, Lorusso D, Scambia G, et al. Pazopanib plus weekly paclitaxel versus weekly paclitaxel alone for platinum-resistant or platinum-refractory advanced ovarian cancer (MITO 11): a randomised, open-label, phase 2 trial. Lancet Oncol. 2015;16:561–568.

28. du Bois A, Floquet A, Kim JW, et al. Incorporation of pazopanib in maintenance therapy of ovarian cancer. J Clin Oncol. 2014;32:3374–3382.

29. Herzog TJ, Scambia G, Kim BG, et al. A randomized phase II trial of maintenance therapy with Sorafenib in front-line ovarian carcinoma. Gynecol Oncol. 2013;130:25–30.

30. Ledermann JA, Embleton AC, Raja F, et al. Cediranib in patients with relapsed platinum-sensitive ovarian cancer (ICON6): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016;387:1066–1074.