Clinical evaluation of the sterilizing effect at different sampling times in the dental implants surgery using local air laminar flow system

Xifeng Wu¹, Yongbo Gao²*, Liwen Zhou², Liming Yang², Yanmin Zhou³
¹Department of Stomatology, Longgang People's Hospital of Shenzhen, Guangdong, (CHINA)
²Department of Stomatology, Longgang District Central Hospital of Shenzhen, Guangdong, (CHINA)
³School of Stomatology, Jilin university, Changchun, Jilin, (CHINA)
E-mail : gaoyongbo2007@sina.com

ABSTRACT

Objective: The purpose of the study was to determine the germicidal effect in the dental implant surgery using local air laminar flow system at different sampling times. Methods: The air samples were collected at different time points: 10min after laminar flow system turned on, 10min, 45min after operation and 10min before operation finished. Plate exposure method was used to detect the bacteria number. The samples collected at the same time points without the local laminar flow system open were taken as the control.. Results: When the local air laminar flow system was used, the bacterial concentration in the surgery was significantly lower (p<0.05). Meanwhile, the bacterial concentration in the laminar region was significantly lower than that among the peripheral region (p<0.05). The cleanliness at the time point of 45min after operation, in the laminar area reached the level of 10min after laminar flow system turned on. When compared with the laminar region, the bacterial concentration in peripheral areas were significantly increased both at time points of 10min after operation and 10min before operation finished (p<0.05). Conclusion: Local air laminar flow system can filter the air in the surgery, enabling the air cleanliness to reach ten thousand grade. There is close relationship between the cleaning time and the cleaning effect. To ensure the clean effect, the management of the staff and the materials should be strengthened. © 2013 Trade Science Inc. - INDIA

KEYWORDS

Local air laminar flow system; Bacterial concentration.

INTRODUCTION

Contemporarily, laminar flow is considered to be an effective way for air purification. However, high level clean surgery costs more in the daily use and mainte-
Clinical evaluation of the sterilizing effect at different sampling times

MATERIALS AND METHODS

Materials Air sampling occurred in the same implant surgery with ceiling-mounted the local air laminar flow system (Japan, Type AC-001). Nutrient agar (Composition: peptone 10g/L, beef gelatin 3g/L, sodium chloride 5g/L, agar 20g/L) was used to collect the air samples for bacterial cultivation.

Methods pre-operation

The system was turned on 10min before operation for air purification, and the number of staff present was limited. The surface of operation tables and surgical equipments were sterilized according to disinfection and isolation standard.

Sample collection and location

Three and four air samples were collected in the laminar region and peripheral region respectively. Sample collection sites were located at 0.8 meter above the ground, and 0.5 meter away from the wall. The air samples were collected at different time points: 10min after laminar flow system turned on, 10min, 45min after operation and 10min before operation finished. Plate exposure method was used to detect the bacteria number. The samples collected at the same time points without the local laminar flow system open were taken as the control.

RESULTS

As shown in TABLE 1, the average bacterium concentration in the laminar region was significantly lower than that in the peripheral region (p<0.05). The air cleanliness reached the peak at the time point of 45min after operation. Bacterial concentration rised up at two time points: 10min after operation and 10min before the end of operation both in the laminar region and the peripheral region.

As shown in TABLE 2 and Figure 1, the concentration of bacterium was significantly higher in the implant surgery without using the local air laminar flow system, (P<0.05), and the average concentration was over 200cfu/m which was higher than the demanded standard in a operating room. On the contrary, with the use of local air laminar flow system, the average bacterium concentration in the laminar region and the peripheral area is only a fraction of the former.

TABLE 1: Average concentration of bacterium in the air of the implant surgery with local air laminar flow system

Sample(N)	The system was on for 10min	10min after operation	45min after operation	10min before operation finished	
the laminar area	20	0	0.2	0.1	1
the peripheral area	20	1.7	1.5	1.0	2.1

TABLE 2: Concentration of bacterium in the air of the implant surgery with local air laminar flow system turned on or off (CFU/m3)

Sample numbers	Before system turned on	System was on for 10min	10min after operation	45min after operation	10min before operation finished					
System turned on	20	438	10	40	23	198	10	79	15	198
System turned off	20	448	491	554	386	579				
eral region was less than 10cfu/m3 and 200cfu/m3 respectively. As demonstrated in Figure 1, the bacteria number fluctuated during the implant surgery procedure, and it reached the peak level at the time points of 10min after operation and 10min before operation finished.

DISCUSSION

It was found that the air germ concentration in the implant surgery with local air laminar flow system off was significantly higher than that with local air laminar flow system on, and it also exceeded the standard level for a operation room. With the application of local air laminar flow system, the cleanliness of the air in the implant surgery can reach Grade ten thousand. The filtration system owns a HEPA filter in a honeycomb shape configuration and thus provide a vertical flow of clean-air [15m3/min\pm10%] from the filter to the operative area. This vertical flow works as a clean-air barrier that penetrates the operative area, preventing the influence of external air flows. The filtration system reaches an clarification degree of less than 0.5μm particle dust Grade ten thousand.

As shown in the curve graph, there was two peak bacteria concentration at the time spot of 10min after operation and 10min before operation finished. The current study demonstrated that the activity of the staff movement of the instruments at these moments may result in the higher numbers of bacterial, which is agreed with the previous study by Longchun Huang[6]. Accordingly, effective management of the staff reasonable work procedure can decrease of the useless activity and surface disinfection of the equipment instrument and articles are vital for the infection control.

The bacteria concentration in peripheral region was higher than that in the laminar area in this present experiment, indicating that we should take some effective actions in the laminar air region to decrease the infection incidence.

REFERENCES

[1] C.Chen, B.Zhao, Cui W, et al; The effectiveness of an air cleaner in controlling droplet/aerosol particle dispersion emitted from a patient’s mouth in the indoor environment of dental clinics, J R Soc Interface, 7, 1105-1118 (2010).

[2] A.Noro, Y.Suyama, E.Takahashi, et al.; The effectiveness of the Clean-Area-System for infection control in the dental clinic. Bull Tokyo Dent Coll., 39, 15-24 (1998).

[3] Chao Qin; Correlation Study on Persons’ Movement Frequency during Operation and Air Germ Content in Laminar Flow Operation Room, J. Modern nursing, 11, 1279-1280 (2005).

[4] Qinghua Xu; Different sterilization methods on the disinfection of clean air evaluation policy, J. Chinese journal of disinfection, 20, 23-24 (2003).

[5] Lianli Li; Application of air purification techniques in operating theatre, J.Jilin.Medical Journal, 31, 1146-1147 (2010).

[6] Longchun Huang.; A dynamic study on air cleaning time and effect of laminar flow in clean operating theatre, J.Chinese Journal of practical nursing, 2, 5-6 (2007).