Decarboxylative alkenylation

Jacob T. Edwards1*, Rohan R. Merchant1*, Kyle S. McIlvnom1, Kyle W. Knouse1, Tian Qin1, Lara R. Malins1, Benjamin Vokitis2, Scott A. Shaw2, Deng-Hui Bao3, Fu-Liang Wei3, Ting Zhou3, Martin D. Eastgate4 & Phil S. Baran1

Olefin chemistry, through pericyclic reactions, polymerizations, oxidations, or reductions, has an essential role in the manipulation of organic matter. Despite its importance, olefin synthesis still relies largely on chemistry introduced more than three decades ago, with metathesis being the most recent addition. Here we describe a simple method of accessing olefins with any substitution pattern or geometry from one of the most ubiquitous and variegated building blocks of chemistry: alkyl carboxylic acids. The activating principles used in amide-bond synthesis can therefore be used, with nickel- or iron-based catalysis, to extract carbon dioxide from a carboxylic acid and economically replace it with an organozinc-derived olefin on a molar scale. We prepare more than 60 olefins across a range of substrate classes, and the ability to simplify retrosynthetic analysis is exemplified with the preparation of 16 different natural products across 10 different families.

An analysis of available routes to olefin-containing sterol acetate points to retrosynthetic deficiencies that still exist (Fig. 1a). Seven conventional steps are required to convert steroid derivative 1 to 2a (ref. 3), only one of which forms a strategic C–C bond. The entire strategy is built around the Wittig transform, which requires redox-adjustment of the free carboxylate to the aldehyde, necessitating protecting-group manipulations. By this route only steroid 2a is accessible, because related methyl- and ethyl-containing sterol acetates (2b, 2c) would require more complex designs. The inefficiency of this sequence is a well-known problem that has yet to be solved despite the attraction of a hypothetical method that would directly convert acylated 1 to 2a.

Although olefins have the most richly developed reactivity and highest abundance (via the petrochemical industry), the diversity of alkyl carboxylic acid building blocks available is unmatched. If the aforementioned versatile olefin-based cross-coupling partners could be used in decarboxylative cross-coupling, novel synthetic pathways could be accessed. For example (Fig. 1b), one could envisage the total synthesis of diol-containing natural products such as 3 and 4 as arising from tartaric acid, perhaps the most inexpensive chiral building block available. This new disconnection could only be conceived in a decarboxylative fashion as the corresponding tartrate halides do not exist, and if they did, would most certainly not be stable.

Here we present the invention of a general, scalable, chemoselective method for decarboxylative alkenylation that exhibits broad scope across a range of both olefin (from mono-substituted to fully substituted) and carboxylic acid (primary, secondary and tertiary) coupling partners (>60 examples, Fig. 1c). Decarboxylative alkenylation dramatically simplifies retrosynthetic analysis. To demonstrate this, total syntheses of sixteen natural products across ten different natural product families spanning a range of steroids, polyketides, vitamins, terpenes, fragrances and prostaglandins are reported and directly compared to prior syntheses (see Methods for more information).

The optimization of decarboxylative alkenylation is briefly summarized in Fig. 1d. In general, the reaction proceeded smoothly when using the tetrachloro-N-hydroxyphthalimide (TCNHPI, commercially available) esters, an inexpensive Ni(ii) source, and the abundant ligand 2,2′-bipyridine (bipy, L1). Using the piperidine-derived redox-active ester (RAE) 6, cyclohexenylation could be achieved at room temperature with 10 mol% of Ni(acac)2•xH2O, 10 mol% bipy, and 2.0 equivalents (equiv.) of alkenylzinc reagent 7 to furnish olefin 8 in 75% isolated yield. As has been demonstrated in previous work7–9, the RAE could also be generated in situ (entry 1 in the table of Fig. 1d) without any purification or even solvent removal. TCNHPI appears to be the optimal RAE (entries 2 and 3), and Ni(acac)2•xH2O proved superior to the more air- and moisture-sensitive NiCl2•glyme (entry 4). In general, most common solvents were tolerated in this reaction (see Supplementary Information for details). Alternative ligands were also screened, and L1 was chosen as it is the least expensive (entries 5 and 6). Finally, as will be shown in several cases, the Fe-based catalytic system developed previously for RAE cross-coupling10,11 could be used as well (entry 7).

The scope of this new decarboxylative alkenylation reaction is striking because all possible classes of olefin coupling partners could be employed with exquisite control of olefin geometry. The scope of alkenylzinc reagents that can be used in this coupling are exemplified in Fig. 2a, b. Simple mono-, di-, tri-, and tetra-substituted olefins are easily accessible (9–12, 16, 17). From a strategic perspective, the cycloalkenyl products (8, 13, 14) would be challenging to make in a more direct way from either the same starting material or even from a piperidone. The selection of which method to use when constructing an olefin (for example, Wittig or metalization) is usually linked to the underlying mechanism of the process to enable production of the desired stereochemistry of the newly formed olefin. Decarboxylative alkenylation divorces the C–C bond-forming event from such stereochemical concerns. As such, conventional techniques can be used to produce the precise E or Z geometry of an alkynyl-organometallic, which can then be used without any isomerization. For example, olefin 12 is produced as a 1:1.5 mixture of E/Z isomers because the starting commercial Grignard reagent from which it was derived exists as a mixture. Similarly, styrenyl derivative 15 could be procured with high geometrical purity (>20:1 E/Z) as controlled by the starting alkenylzinc species (derived from lithium–halogen exchange of the corresponding styrenyl iodide). The power of stereocontrolled alkyn carbometallation can be coupled with this method to produce geometrically pure alkenyl iodides. Alkenylzinc reagents derived therefrom (lithium–halogen exchange/transmetallation) afford tri-substituted olefin products such as 18 and 24 that would be otherwise challenging to make in a single step (in situ RAE) with complete stereopurity. One-pot alkyn hydrozirconation/transmetallation12 can also be used to access stereodefined E-olefins such as 20, 25 and 26. Despite the presence of low-valent Ni-species, butadiene-containing products such as 21 do not inhibit the reaction, and the E/Z ratio of the starting dienyl species is maintained. Experience from this laboratory has taught that cross-couplings at the D-ring of a steroid can be challenging16, therefore the formation of

*These authors contributed equally to this work.
Decarboxylative alkenylation: strategic simplification

Previous approach, 7 steps
Redox-inefficient
Redox-economic
PG-free
Methylation
Protection
Oxidation
Multiple steps
Reduction
Wittig
Deprotection
Acylation
[Cross-coupling]

2a: R = H
2b: R = Me
2c: R = Et

Acylation

[Cross-coupling]

Figure 1 | Development of Ni- and Fe-catalysed decarboxylative alkenylation. a, Conventional route to sterol acetates (2a–2c). Red text highlights inefficiencies in the traditional approach. Green text refers to the carbon–carbon bond forming step in the synthetic sequence. b, Utilization of previously unavailable electrophiles in cross-coupling reactions. c, Decarboxylative alkenylation presents a potential solution. R\(^1\), R\(^2\) and R\(^3\) from the carboxylic acid are coloured blue, and R\(^4\), R\(^5\) and R\(^6\) from alkynylzinc reagent are coloured green. d, Optimization of decarboxylative alkenylation. \(^0.1\) mmol. \(^{1}\) Yield by \(^1\)H nuclear magnetic resonance (NMR) analysis with CH\(_2\)Cl\(_2\); internal standard. \(^0.25\) mmol scale, isolated. \(^{2}\) 1.5 equiv. TCNHPi, 1.1 equiv. DIC, CH\(_2\)Cl\(_2\) (0.2 M). \(^{3}\) 20 mol% [Ni] and 1. (L1, L2, or L3), 3.0 equiv. alkynylzinc. \(^{4}\) 10 mol% [Fe], 1.2 mol% dpfpBz, 1.5 equiv. dialkynylzinc. See Supplementary Information for additional details. PG, protecting group; [Fe], [Ni], general nickel or iron precatalyst; CO\(_2\)Et, ethyl ester; Ts, tosyl; X = Cl, Br, I, OTs, and so on.

Stereo-enriched diol natural products from tartaric acid

19 from the easily obtained alkynylzinc species bodes well for future applications in such contexts. Pioneering work from the Knochel group\(^{17}\) has provided robust methods for generating vinylogous zinc reagents for use in cross-coupling chemistry. These species could also be used in the decarboxylative sense (Fig. 2b) to furnish a range of functionalized building blocks that may be otherwise challenging to access. Both cis and trans alkynylzinc reagents can be prepared with high geometric purity, leading smoothly to 27 and 28. This method provides a complementary strategy to olefin cross-metathesis\(^{18}\) to access such structures. It is also worth noting that the alkynylzinc reagent for butenolide (29) has never been prepared before. Cross-coupling using butenolides, a motif often found in natural products, as a nucloephile has only been accomplished through a Stille-coupling of the corresponding stannylated species\(^{18}\). The adducts with dimedone (30–37) represent an orthogonal pathway to Stork–Danheiser type adducts\(^{19}\) that, in some cases, would not easily be accessed (31, 32, 35). The magnesium bromide diethyl ether complex (MBr\(_2\), Et\(_2\)O) was found to be an essential additive for reactions with alkynylzinc reagents derived from alkynyl iodides via lithiation-halogen exchange, direct zinc insertion of electron-withdrawn \(\alpha,\beta\)-unsaturated alkynyl iodides, and hydrozirconation/transmetallation of terminal alkynes. All alkynylzinc reagents were prepared as documented in Supplementary Information.

Figure 2c outlines decarboxylative alkenylations using eighteen different primary carboxylic acids, only six of which were not commercially available (41, 52/53, 54, 56, 57 and 58/59) but very easily prepared. In contrast, substantially fewer of these electrophiles are available as a halide or an alcohol (from which a tosylate or halide could be made), whereas some substrates would be unstable if they were obtainable (43–46, 49 and 51). This points again to the undeniable convenience of a cross-coupling that employs readily available starting materials. Amino-acid-derived (38, 39) with unprotected residues are competent coupling partners under the reaction conditions. Efficient synthesis of naftifine analogues (40, 52, 53), fusidane-based (52, 53), and heterocycle-containing (55) acids could be successfully transformed into olefins of various types. Even peptides (58, 59) with unprotected residues are competent coupling partners under the reaction conditions. Efficient synthesis of nafinile (57), an antifungal pharmaceutical, was accomplished in high yield with excellent selectivity. Amino-acid-containing substrates showed no base-mediated erosion of enantiomeric excess (38, 42) or epimerization (58, 59), and benzyl acid 50 showed no loss of the aromatic bromide. Similarly, other known coupling partners in low-valent Ni-chemistry\(^{20}\), such as aromatic C–O (48, 51) and C–Cl (45) bonds, and hydrolytically sensitive phenol acetate esters (54), remained untouched. Lewis-basic heteroatoms are tolerated (55, 57), and a formal synthesis of \((\beta\)-santalen could be accomplished in short order (addition of MeLi to ketone 56 and elimination leads to the natural product)\(^{21}\).

Secondary (60–69) and tertiary bridgehead (70) RAEs can be easily alkynylated, as well, as shown in Fig. 2d. Of note here is that diastereoselective alkenylations can be predictably incorporated into synthesis plans, as demonstrated with substrates 64, 65, 68 and 69.
Figure 2 | Substrate scope of decarboxylative alkenylation. The carboxylic acid component is shown in blue and the alkenylzinc reagent is shown in green. a–d, Cross-coupling using various alkenylzinc reagents (a, b) and different primary (c), secondary and tertiary (d) acids is evaluated. Yields refer to isolated yields of products after chromatography on SiO₂. e, Probing the presence of intermediate radical species in the decarboxylative alkenylation reaction. *In situ activation. †Reaction carried out on CrNC. ²Alkenylzinc derived from commercial Grignard, which exists as a mixture of olefin isomers. ³10 mol% Fe(acac)₃, 12 mol% dppBz, 1.5 equiv. dialkenylzinc. ⁴2 equiv. alkenylzinc, 2 equiv. MgBr₂·OEt₂. ⁵MeCN as solvent. ⁶60 °C. ⁷20 mol% Ni/L, 3 equiv. alkenylzinc, 3 equiv. MgBr₂·OEt₂. ⁸Alkenylzinc derived from OBO-ester; see Supplementary Information for the work-up details. ⁹3 equiv. alkenylzinc, 3 equiv. MgBr₂·OEt₂. §See Supplementary Information for details regarding peptide substrates. ¹²0 mol% Ni/L, 5 equiv. alkenylzinc, NMP. DCM, dichloromethane; OBO, 4-methyl-2,6,7-trioxo-bicyclo[2.2.2]octan-1-yl; TBS, tert-butyldimethylsilylethyl; CEHC, carboxethylhydroxycroman; d.r.; diastereomeric ratio; 4,4’-di-tBuBip, 4,4’-di-tert-butyl-2,2'-dipyridyl; NMP, 1-methylpyrrolidin-2-one.

Table 1

Primary acids	Mole scale	Source	
38	(62%)^a	1 mol (620 g)	DCM, 4,4′-di-tBuBip
39	R = Me (40%)	from 4,4′-di-tBuBip	
40	R = H (82%)	from DCM, 4,4′-di-tBuBip	
41	(53%)^a		

Table 2

Secondary and tertiary acids	Mole scale	Source
48	(60%)^b	from isosapac
49	(62%)^b, 59%^c	from isosapac
50	(42%)^b	from isosapac
51	(47%)^b	from isosapac

Table 3

Radical ring-opening	Mole scale	Source
71	41%	from isosapac
72	>20:1	from isosapac
73	65%	from isosapac

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
Figure 3 | Total synthesis enabled by decarboxylative alkenylation. a–h All decarboxylative alkenylations were performed with in situ activation of the carboxylic acid. See Supplementary Information for full synthetic details and schemes. LLS, longest linear sequence. HWE, Horner–Wadsworth–Emmons; TTH, tetrahydropyran; LAH, lithium aluminium hydride; MOM, methoxymethyl; [H], reduction.

Spirocyclic substrates 66 and 67 are of interest to a medicinal chemistry programme (Bristol-Myers Squibb). 67 highlights how ethylvinyl ether (zincated) can be used in this coupling as an alternative to Grignard/organolithium addition to an ester or Weinreb amide (see Supplementary Information for further details and comparison). To probe for the intermediacy of radical species in the decarboxylative alkenylation reaction, radical ring-opening experiments (Fig. 2e) were performed with 71 and 73, affording the corresponding ring-opened products 72 and 74, respectively.

Of the 65 substrates depicted in Fig. 2, several were also performed with an in situ protocol (especially in cases where the RAE was not stable) or using an Fe-based system. Supplementary Information
contains a detailed troubleshooting guide and a graphical user tutorial. The reaction has been field-tested at Bristol-Myers Squibb in many different contexts, and the robustness was demonstrated by conducting the reaction of 38 on the mole scale (63% yield, >600 g, >99% enantiomeric excess, carried out at Asymchem). As a testament to the robustness of this reaction, no substantial modifications to the general procedure were necessary when scaling this reaction up from the millimole to the mole scale. At present, there are not many obvious limitations for this method given that one can generally expect a serviceable yield across a range of substrates; there are relatively more limitations in the chemistry of preparing the alkenylzinc species.

To illustrate a few of the vast number of ways to apply this new transformation, Fig. 3 summarizes the total synthesis of fifteen different natural products (full details of these sequences can be found in Supplementary Information). As mentioned above (Fig. 1a), steroidal substrate 2a exemplifies the inefficiency of previous approaches to olefin synthesis as a consequence of chemoselectivity issues surrounding the Wittig reaction and the incorrect oxidation state of the starting material (1). With decarboxylative alkenylation (Fig. 3a), the same starting material can be used and the desired product 2a can be accessed in two steps. Of note is that the current method can be used to make not only 2a but also related sterol acetates that would be otherwise inaccessible (in a direct fashion) such as 2b and 2c.

The clerodane diterpene family consists of over 650 members that are broadly characterized as having a decalin framework appended to side chains with variegated substituents22. From a strategic perspective, it would be ideal if a single starting material could be used and divergently converted to multiple family members using a single reaction type. Decarboxylative alkenylation enables the synthesis of the same three natural isolates from 75, a material that is made in six steps from readily available (−)-5-methyl Wieland–Miescher ketone. Thus, in only nine steps from commercially available materials, a simple alkyne, an iodobutenolide and a bromofuran served as organozinc precursors that when coupled with 75, enabled access to (−)-kolavenol (76a), (−)-solidagolactone (76b), and (−)-annone (76c), respectively.

With decarboxylative alkenylation, one can access methyl trans-chrysanthemate (78, Fig. 2c) from commercially available caronic anhydride (77), which after one-pot methanolation and radical cross-coupling delivers 78 in 31% yield with excellent diastereoselectivity (>20:1).

Many applications of this methodology to polyketide synthesis can be envisaged where the decarboxylative approach allows for innovative uses of classic chiral building blocks in highly convergent ways. For example, tartaric acid is perhaps the cheapest enantiopure chemical that can be purchased (about US$1 per mole) and represents an ideal source of the 1,2-diol motif. The total syntheses of (−)-cladospolide B (3), (−)-iso-cladospolide B (83), and (±)-cladospolide C (4) illustrate how both enantiomers of tartaric acid can be used like simple ‘cassettes’, modularly incorporated to complete syntheses that are not only dramatically shorter than prior approaches but also more selective (Fig. 3d).

A design based on radical cross-coupling of tartrate derived acids 79 and 84 sets the stage for a triply convergent approach wherein alkyl–alkyl cross-coupling (with alkylzinc reagent 80) precedes decarboxylative alkenylation (with either 81 or 85) to furnish 82 and 86 in only five steps with excellent control of olefin geometry. If the steps are counted from alkylzinc reagent 80, the sequence is six steps long, indicating that the 1,2-diol motif is no longer the bottleneck of the synthesis. This approach is the most direct and inexpensive known. Similarly, monomethyl succinate (87), a commodity chemical, can be coupled to a stereodefined alkylzinc reagent to furnish 88 directly, which after deprotection and known macroalactonization, delivers (−)-phoracantholide J (89) in only three steps (eight steps including the synthesis of the alkylzinc reagent).

Prostaglandins are classic targets for total synthesis not only owing to their intriguing structures and exciting medicinal uses but also because they serve as a proving ground for the development of new methodologies (Fig. 3e)23. The commercially available Corey lactone (90) could be used in a four-step sequence wherein two steps are non-strategic (oxidation and one-pot hydrolysis/protection) and two install the key C–C bonds with the proper olefin geometry. Thus, sequential decarboxylative cross-coupling of E-(91) and Z-(92) alkenylzinc species to the requisite carboxylic acids provides a simple route not only to 93 but is also conceivably sufficiently flexible to access many new prostaglandin analogues in a combinatorial fashion.

Aureonitol (95) is a tetrahydruforan-containing natural product discovered in 1979 from Helichrysum aureonutens (Fig. 3f)24. A strategic decarboxylative dienylation of 94 delivers 95 in 32% yield with complete selectivity (>20:1 E/Z) as controlled by the chemistry used to fashion the diene nucelophile. Application of this transformation simplifies the synthesis because 94 can be made in seven simple steps from inexpensive (+)-xylene25,26. Tocotrienols, members of the vitamin E family, are dietary supplements and have been reported to have an array of beneficial health effects (Fig. 3g)27. Current extraction methods from plant materials provide these compounds as a mixture, which is both difficult and costly to separate. Synthesis offers direct access to specific members of the tocotrienol family but contemporary efforts lack selectivity in olefin formation or require concessionary redox manipulations. Trimethylhydroquinone (96) can be employed to furnish 99 with high selectivity (>20:1 E/Z) and in only four steps overall since the farnesyl group can be directly coupled as a single fragment. Lycnigic acid (102), an inhibitor of quorum sensing in cyanobacteria, was prepared by Noyori asymmetric hydrogenation28 of the commercial β-keto ester 100 followed by decarboxylative cross-coupling delivers 102 with complete selectivity (>20:1 E/Z) in 51% isolated yield (about 98% enantiomeric excess).

Olefins are ever-present functional groups that are found naturally and in every sector of chemical science. Their rich and robust chemistry make them integral to the planning, logic and reliable execution of multitstep synthesis. This operationally simple method harnesses the reliable and programmable synthesis of olefin-containing zinc species and the unparalleled commercial availability and stability of alkyl carboxylic acids to access olefins in a powerful new way. Numerous applications can be anticipated of both this method and the strategy it enables in the contexts of chemoselective fragment coupling (convergent synthesis), homologation (as an alternative to Wittig olefination and related transforms), and stereospecific olefin installation.

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 23 December 2016; accepted 20 March 2017.
Published online 19 April 2017.

1. Smith, M. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (Wiley, 2013).
2. Hoveyda, A. H. & Zhugranil, A. R. The remarkable metal-catalysed olefin metathesis reaction. Nature 450, 243–251 (2007).
3. Krupp, A. J. Problem-solving: Synthesis of natural products. Angew. Chem. Int. Ed. 36, 2169–2197 (1997).
4. Nicolaou, K. C., Härter, M. W., Gunzner, J. L. & Nadin, A. The Wittig and related reactions in natural product synthesis. Liebig Ann. 1997, 1283–1301 (1997).
5. Cornella, J. et al. Practical Ni-catalyzed allyl-allyl cross-coupling of secondary redox-active esters. J. Am. Chem. Soc. 136, 2174–2177 (2016).
6. Qin, T. et al. A general alkylic-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016).
7. Torigaya, F. et al. Redox-active esters in Fe-catalyzed C–C coupling. J. Am. Chem. Soc. 138, 11132–11135 (2016).
8. Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).
9. Huyhui, K. M. M. et al. Decarboxylative cross-electrophile coupling of N-hydroxysphthalimide esters with aryl iodosides. J. Am. Chem. Soc. 138, 5016–5019 (2016).
10. Noble, A., McCarver, S. J. & MacMillan, D. W. C. Merging photooxidation and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides. J. Am. Chem. Soc. 137, 624–627 (2015).
11. Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1995).
12. Hatakeyama, T. et al. Iron-catalysed fluoroaromatic coupling reactions under catalytic modulation with 1,2-bis(diphenylphosphino)benzene. Chem. Commun. 126, 1216–1218 (2009).
13. Bedford, R. B., Huwe, M. & Wilkinson, M. C. Iron-catalysed Negishi coupling of benzyl halides and phosphates. Chem. Commun. 12, 600–602 (2009).
14. Van Horn, D. E. & Negishi, E. Selective carbon-carbon bond formation via transition metal catalysts. 8. Controlled carbometalation. Reaction of acetylenes with organoalane-zirconocene dichloride complexes as a route to stereo- and regio-defined trisubstituted olefins. J. Am. Chem. Soc. 100, 2252–2254 (1978).
15. Hart, D. W., Blackburn, T. F., Schwartz, J. & Hydrozirconation, I. I. I. Stereoselective and regioselective functionalization of allylacetelylenes via vinylzirconium(IV) intermediates. J. Am. Chem. Soc. 97, 679–680 (1975).
16. Renata, H. et al. Development of a concise synthesis of ouabagenin and hydroxylated corticosteroid analogues. J. Am. Chem. Soc. 137, 1330–1340 (2015).
17. Sämann, C., Schade, M. A., Yamada, S. & Knochel, P. Functionalized alkynylzinc reagents bearing carbonyl groups: preparation by direct metal insertion and reaction with electrophiles. Angew. Chem. Int. Ed. 52, 9495–9499 (2013).
18. Yu, E. C., Johnson, B. M., Townsend, E. M., Schrock, R. R. & Hoveyda, A. H. Synthesis of linear (Z)-α,β-unsaturated esters by catalytic cross-metathesis. The influence of acetonitrile. Angew. Chem. Int. Ed. 55, 13210–13214 (2016).
19. Stork, G. & Danheiser, P. L. Regiospecific alkylation of cyclic β-diketone enol ethers. General synthesis of 4-alkylcyclohexenones. J. Org. Chem. 38, 1775–1776 (1973).
20. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).
21. Corey, E. J., Hartmann, R. & Vatakencherry, P. A. The synthesis of d-l-α-santalene and d-l-α-β-santalene by stereospecific routes. J. Am. Chem. Soc. 84, 2611–2614 (1962).
22. Merritt, A. T. & Ley, S. V. Clerodane diterpenoids. Nat. Prod. Rep. 9, 243–287 (1992).
23. Das, S., Chandrasekhar, S., Yadav, J. S. & Grée, R. Recent developments in the synthesis of prostaglandins and analogues. Chem. Rev. 107, 3286–3337 (2007).
24. Sacramento, C. Q. et al. Aureonitol, a fungi-derived tetrahydrofuran, inhibits influenza replication by targeting its surface glycoprotein hemagglutinin. PLoS One 10, e0139236 (2015); correction 10, e0142246 (2015).
25. Moravcová, J., Čapková, J. & Staněk, J. One-pot synthesis of 1,2-O-isopropylidene-α,β-d-xylofuranose. Carbohydr. Res. 263, 61–66 (1994).
26. Talekar, R. R. & Wightman, R. H. Synthesis of some pyrrolo[2,3-d]pyrimidine and 1,2,3-triazole isonucleosides. Tetrahedron 53, 3831–3842 (1997).
27. Sen, C. K., Khanna, S. & Roy, S. Tocotrienols: vitamin E beyond tocopherols. Life Sci. 78, 2088–2098 (2006).
28. Noyori, R. et al. Asymmetric hydrogenation of β-keto carboxylic esters. A practical, purely chemical access to β-hydroxy esters in high enantiomeric purity. J. Am. Chem. Soc. 109, 5856–5858 (1987).

Supplementary Information is available in the online version of the paper.

Acknowledgements Financial support for this work was provided by Bristol-Myers Squibb and the NIH/NIGMS (GM118176). The Department of Defense (DoD) supported a predoctoral fellowship to J.T.E. (National Defense Science and Engineering Graduate Fellowship (NDSEG) Program), and the NIH supported a postdoctoral fellowship to L.R.M. (F32GM117816). We thank D.-H. Huang and L. Pasternack for assistance with NMR spectroscopy; M. R. Ghadiri for access to preparative high-performance liquid chromatography equipment; M. Schmidt and E.-X. Zhang for discussions; and M. Yan for assistance in the preparation of the manuscript. We are grateful to LEO Pharma for the donation of fusidic acid and to R. Shenvi for providing Mn(dpm)3.

Author Contributions J.T.E., R.R.M. and P.S.B. conceived the work. J.T.E., R.R.M., K.S.M., K.W.K., L.R.M., T.Q., B.V., S.A.S., M.D.E. and P.S.B. designed the experiments and analysed the data. J.T.E., R.R.M., K.S.M., K.W.K., L.R.M., T.Q. and B.V. performed the experiments. D.-H.B., F.-L.W. and T.Z. performed molecule experiments. P.S.B. wrote the manuscript. J.T.E., R.R.M., K.W.M. and K.W.K. assisted in writing and editing the manuscript.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Correspondence and requests for materials should be addressed to P.S.B. (pbaran@scripps.edu).
METHODS

Alternative or classical routes to olefins. The vast majority of olefin syntheses commence from other unsaturated systems (such as olefin metathesis, Heck coupling and alkyne hydrogenation), rely on various condensations of carbonyl compounds (Wittig, Peterson, Tebbe, Nysted, Aldol, McMurry, and so on), or involve the elimination of an alcohol, amine or halide97. Although Negishi-, Kumada–Corriu–Tamao–, and Suzuki–Miyaura-type reactions enable the cross-coupling of olefin-containing organometallic species with alkyl halides with precise control of olefin geometry98, the limited availability of alkyl halides diminishes the utility of such a disconnection31–38.

Previous approaches to the total synthesis of natural products. Collectively, Fig. 3 represents a selection of excellent opportunities for organic synthesis as many previously unimagined pathways open up through the strategic application of this disconnection. Previous approaches39,40 to the clerodane diterpene natural products target each through a different strategy with, for example, the syntheses of 76a–76c ranging from 8 to 21 steps (Fig. 3b).

The naturally occurring insecticide methyl-trans-chrysanthemate (78) has previously been prepared in six steps using a cyclopropagation/Wittig olefination strategy41,42. Advanced intermediates 82 and 86 have been previously prepared en route to 3, 4 and 83 using a Wittig strategy from tartrates that proceeded in 14 steps with 1:5 Z/E olefin selectivity43. It is worth noting that other approaches to this class of natural products have used olefin-metathesis44. Evans aldol reaction45, and Os-catalysed dihydroxylation46 transforms. (−)-Phorcandiolide I (89) was previously constructed through either ring-closing metathesis or Ru-catalysed hydroalkynylation47,48.

Corey’s 1969 synthesis of (+)-PGF2α (93) and related family members required eight steps from the now commercially available lactone 90 (Corey lactone), with the strategy largely based on the use of two separate olefination steps (Wittig and Horner–Wadsworth–Emmons) to install the requisite side chains of 93 (coloured in green)49. A recent route to (+)-PGF2α has been developed50. Aureonol (95, Fig. 2f) was previously procured in 14 steps from (S)-serine featuring a non-selective Julia–Kocienski olefination to forge the C8–C9 linkage51.

One reported approach52 to 99 commences with trimethylhydroquinine (96) and employs a Wittig homologation of aldehyde 97 (10:1 E/Z) to install a small fragment of the farnesyl side chain. The remaining C–C bond is fashioned using an S–S displacement of an alkyl iodide by an alkyl sulfone, thus requiring extra redox and functional group manipulations to afford 99 in nine steps overall. The simple lipid tyngbic acid (102, Fig. 2h), an inhibitor of quorum sensing in cyanobacteria, has previously been made in three steps using an olefin cross-metathesis approach (9:1 E/Z) following the enantioselective allylation of an aldehyde using an allyltin reagent (Fig. 3h)53.

Data availability. Data generated in this study is available in Supplementary Information or on request from the authors.

29. Kürti, L. & Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis: Background and Detailed Mechanisms (Elsevier Academic, 2005).
30. Diederenf, F. & Stang, P. J. Metal-Catalyzed Cross-Coupling Reactions (Wiley-VCH, 1998).
31. Netherton, M. R. & Fu, G. C. Nickel-catalyzed cross-couplings of unactivated alkyl halides and pseudoaldohanes with organometallic compounds. Adv. Synth. Catal. 346, 1525–1532 (2004).
32. Frisch, A. C. & Beller, M. Catalysts for cross-coupling reactions with non-activated alkyl halides. Angew. Chem. Int. Ed. 44, 674–688 (2005).
33. Rudolph, A. & Lautens, M. Secondary alkyl halides in transition-metal-catalyzed cross-coupling reactions. Angew. Chem. Int. Ed. 48, 2656–2670 (2009).
34. Gong, H. & Gagné, M. R. Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated, fully oxygenated C-alkyl and C-aryl glycosides. J. Am. Chem. Soc. 130, 12177–12183 (2008).
35. Lou, S. & Fu, G. C. Enantioselective alkylation via nickel-catalyzed cross-coupling with organozinc reagents. J. Am. Chem. Soc. 132, 5010–5011 (2010).
36. Choi, J. & Fu, G. C. Catalytic asymmetric synthesis of secondary nitrites via stereconvergent Negishi arylations and alkylation of racemic α-bromonitriles. J. Am. Chem. Soc. 134, 9102–9105 (2012).
37. Choi, J., Martin-Gago, P. & Fu, G. C. Stereocongerent arylations and alkylation of unactivated alkyl electrophiles: catalytic enantioselective synthesis of secondary sultonides and sulfones. J. Am. Chem. Soc. 136, 12161–12165 (2014).
38. Hatakeyama, T., Nakagawa, N. & Nakamura, M. Iron-catalyzed Negishi coupling toward an effective olefin synthesis. Org. Lett. 11, 4496–4499 (2009).
39. Piers, E. & Roberge, J. Y. Total syntheses of the diterpenoids (−)-kolanol and (−)-agelassine B. Tetrahedr. Lett. 33, 6923–6926 (1992).
40. Šlûtsksiy, Y. et al. Short enantioselective total syntheses of trans-clerodane diterpenoids: convergent fragment coupling using a trans-decalin tertiary radical generated from a tertiary alcohol precursor. J. Org. Chem. 81, 7029–7035 (2016).
41. Devos, M.-J., Hevesi, L., Bayet, P. & Krief, A. A new design for the synthesis of chrysanthemic esters and analogs and for the “pear ester” synthesis. Tetrahedr. Lett. 17, 3911–3914 (1976).
42. Devos, M. J., Denis, J. N. & Krief, A. New stereospecific synthesis of cis and trans 1,1-chrysanthemic esters and analogs via a common intermediate. Tetrahedr. Lett. 19, 1847–1850 (1978).
43. Si, D., Sekar, N. M. & Kaliappan, K. P. A flexible and unified strategy for syntheses of cladospolides A, B, C, and iso-cladospolide B. Org. Biomol. Chem. 9, 6988–6997 (2011).
44. Banwell, M. G. & Loong, D. T. J. A chemoenzymatic total synthesis of the phytotoxigen undeconedolide (−)-cladospolide A. Org. Biomol. Chem. 2, 2050–2060 (2004).
45. Sharma, G. V. M., Reddy, K. L. & Reddy, J. J. First synthesis and determination of the absolute stereochemistry of iso-cladospolides-B and cladospolides-B and C. Tetrahedr. Lett. 47, 6537–6540 (2006).
46. Xing, Y. & O’Doherty, G. A. De novo asymmetric synthesis of cladospolide B–D: structural reassignment of cladospolide D via the synthesis of its enantiomer. Org. Lett. 11, 1107–1110 (2009).
47. Chénévert, R., Pelchat, N. & Morin, P. Lipase-mediated enantioselective acylation of alcohols with functionalized vinyl esters: acyl donor tolerance and applications. Tetrahedron Asymmetry 20, 1191–1196 (2009).
48. Avocetien, K. F. et al. De novo asymmetric synthesis of phorcandiolide. J. Org. Lett. 18, 4970–4973 (2016).
49. Corey, E. J., Weinshenker, N. M., Schaff, T. K. & Huber, W. Stereo-controlled synthesis of di-prostaglandins F2α, and E2. J. Am. Chem. Soc. 91, 5675–5677 (1969).
50. Coulthard, G., Erb, W. & Aggarwal, V. K. Stereoconvergent organocatalytic synthesis of prostaglandin PGF2α in seven steps. Nature 489, 278–281 (2012).
51. Jervis, P. J. & Cox, L. R. Total synthesis and proof of relative stereochemistry of (−)-auroneol. J. Org. Chem. 73, 7616–7624 (2008).
52. Pearce, B. C., Parker, R. A., Deason, M. E., Qureshi, A. A. & Wright, J. J. K. Hypocholesterolsteric activity of synthetic and natural tocotrienols. J. Med. Chem. 35, 3595–3606 (1992).
53. Knouse, K. W. & Wuest, W. M. The enantioselective synthesis and biological evaluation of chimeric promyosin analags facilitated by diverted total synthesis. J. Antibiot. 69, 337–339 (2016).