Impact of resin uptake of core materials on buckling of wind turbine blades

The Science of Making Torque from Wind (TORQUE 2018)
Milano, Italy, June 20-22, 2018

Malo Rosemeier, Pablo Buritcá and Alexandros Antoniou
Content

• Introduction
• Core material model
• Full blade model benchmark
• Plate model benchmark
• Conclusions
Introduction

Sandwich construction in wind turbine rotor blades

- Sandwich constructions mainly used in panels and webs to prevent buckling
- Core materials used: PVC, PU, PET foam and balsa wood
Introduction

Sandwich failure modes

- Intracellular face dimpling (a)
- Symmetric and antisymmetric face wrinkling (b)
- Face wrinkling due to tensile rupture of bonding, core crushing, tensile rupture of core (c)
- Shear crimping (d) occurs when shear stiffness of core is low compared to bending stiffness of facings
Core material model

Modeling of infused properties

- Dry core (a) and resin infused slits (b)
- "Smeared" core properties were determined using Nickel's model
Core material model

Material properties

Property	Epoxy resin [11]	Dry core [10]	Infused core	Unit
E_x	3089.8	48.5	193.3	MPa
E_y	3089.8	48.5	50.9	MPa
E_z	3089.8	48.5	193.3	MPa
G_{xy}	1129.2	17.3	44.2	MPa
G_{xz}	1129.2	17.3	70.3	MPa
G_{yz}	1129.2	17.3	18.2	MPa
ν_{xy}	0.368	0.400	0.398	-
ν_{xz}	0.368	0.400	0.398	0.398
ν_{yz}	0.368	0.400	0.398	-

- Shear crimping dominating through-the-thickness shear modulus G_{xz} and in-plane stiffness E_x increased by a factor of 4
Full blade model benchmark

Finite element blade

- Shell model (a) and solid model (b)
- A zoom into spar cap region (red box) simplified as a plate (c)
- Shear forces introduced via rigid body elements (RBE3)
Full blade model benchmark

Finite strip element model (FINSTRIP) of cross section

- FINSTRIP model discretization
- Buckling mode shapes of critical cross-sections with dry and infused parametrization
Full blade model benchmark

Failure modes and buckling resistance

Model	Dry	Infused
FE shell (ANSYS)	0.85^a	1.59^c
FE solid (MSC Marc)	1.89^b	1.89^b
Finite strip (FINSTRIP)	1.93^a	1.96^c

(a) 25\%l_b

(b) 35\%l_b

(c) 32\%l_b
Plate model benchmark

Finite element plate

- Plate model (a)
- A zoom into solid (b) and shell model (c)
Plate model benchmark

\[k = \frac{p_{xcr}b^2}{(\pi^2 B_x B_y)} \]

A2: \(b = 0.5 \text{ m} \)

- Dry (AM, global buckling)
- Dry (AM, shear crimping)
- Infused (AM, global buckling)
- Infused (AM, shear crimping)
- Dry (FE shell)
- Infused (FE shell)
- Dry (FE solid)
- Infused (FE solid)

Length-to-width ratio \(a/b \)

(a)

(b)

(c)

© Fraunhofer IWES
Conclusions

- The impact of resin uptake of core materials in sandwich constructions is highlighted.
- Shear crimping is captured well by shells, but not by solids when one element is used though the laminate thickness.
- FINSTRIP captures failure mode location as identified in shell model. Safety reserve factor is, however, far too optimistic (factor of 2.3).
- It is recommended that designers verify the efficiency of the design tools to capture shear crimping.
- Taking resin uptake into account in design models could potentially reduce core material cost and lead to a more lightweight design.
- Experimental validation of the models' results is required.
Thank You For Your Attention

Any questions?

malo.rosemeier@iwes.fraunhofer.de