Abstract

We introduce the graph theoretical parameter of edge treewidth. This parameter occurs in a natural way as the tree-like analogue of cutwidth or, alternatively, as an edge-analogue of treewidth. We study the combinatorial properties of edge-treewidth. We first observe that edge-treewidth does not enjoy any closeness properties under the known partial ordering relations on graphs. We introduce a variant of the topological minor relation, namely, the weak topological minor relation and we prove that edge-treewidth is closed under weak topological minors. Based on this new relation we are able to provide universal obstructions for edge-treewidth. The proofs are based on the fact that edge-treewidth of a graph is parametrically equivalent with the maximum over the treewidth and the maximum degree of the blocks of the graph. We also prove that deciding whether the edge-treewidth of a graph is at most k is an NP-complete problem.

Contents

1 Introduction 2
2 Characterizations of edge-treewidth 6
3 Obstructions 9
4 A parametric equivalence 11
5 Universal obstructions for edge-treewidth 13
6 On the complexity of computing edge-treewidth 17
1 Introduction

A vibrant area of research in graph algorithms is dedicated to the study of structural graph parameters and their algorithmic applications. Perhaps the most prominent graph parameter is treewidth (hereafter denoted by tw). The importance of treewidth resides on both its combinatorial and algorithmic applications. From the algorithmic point of view, treewidth has readily became important due to Courcelle’s theorem [14], asserting that every problem definable by some sentence φ in Monadic Second Order Logic (MSOL) can be solved in time $O(\text{tw}(G),|\varphi|(|G|))$.1 Using the terminology of parameterized complexity, this means that every MSOL-definable problem admits a fixed parameter algorithm (in short, an FPT-algorithm) when parameterized by treewidth.

Interestingly, there are several problems where Courcelle’s theorem does not apply. As mentioned in [23], problems such as Capacitated Vertex Cover, Capacitated Dominating Set, List Coloring, and Boolean CSP are $W[1]$-hard, when parameterized by tw, which means that an FPT-algorithm may not be expected for them. The emerging question for such problems is whether they may admit an FPT-algorithm when parameterized by some alternative structural parameter. As many problems escaping the expressibility power of MSOL are defined using certificates that are edge sets, the investigation has been oriented to edge-analogues of treewidth. The first candidate for this was the parameter of tree-cut width, denoted by twc, defined by Wollan in [45]. Indeed tree-cut width enjoys combinatorial properties that parallel those of treewidth and, most importantly, it yields FPT-algorithms for several such problems including the above mentioned ones [23]. Interestingly, this landscape appears to be more complicated when it comes to the Edge Disjoint Paths problem. Ganian and Ordyniak, in [24], proved that this problem is $W[1]$-hard when parameterized by twc. This means that some other, alternative to twc, parameter should be considered for this problem. This paper was motivated by this question. We give the definition of a different parameter, called edge-treewidth and denoted by etw. As we see, edge-treewidth is parametrically incomparable to tree-cut width and can be seen in a natural way as an “edge-analogue” of treewidth or as a “tree-analogue” of cutwidth, based on their layout definitions. Moreover, it seems that it is the right choice as a parameter for the Edge Disjoint Paths problem: this problem admits an FPT-algorithm when parameterized by etw.

Some definitions on graphs and on graph parameters. Before we proceed with the definition of edge-treewidth and its relation to other parameters, we need some definitions.

All graphs that we consider are finite, loop-less, and may have multiple edges. Given a graph G, we let $V(G)$ and $E(G)$ respectively denote its vertex set and edge set. As we permit multi-edges, $E(G)$ is a multiset and the multiplicity of each edge is the number of times that it appears in $E(G)$. We use $|G| = |V(G)|$ in order to denote the size of G. For a subset of vertices $S \subseteq V(G)$, we denote by $G[S]$ the subgraph of G induced by S. We also define $E_G(S)$ as the set of edges with one vertex in S and one vertex not in S and $N_G(S)$ as the set of all vertices not in S that are adjacent to a vertex in S. The vertex-degree (resp. edge-degree) of a vertex v is defined as $\text{vdeg}_G(v) = |N_G(\{v\})|$ (resp. $\text{edeg}_G(v) = |E_G(\{v\})|$). We also set $\Delta_v = \max\{\text{vdeg}_G(v) \mid v \in V(G)\}$ and $\Delta_e = \max\{\text{edeg}_G(v) \mid v \in V(G)\}$. Given a graph G, a set of vertices S and a vertex $v \in S$, we define $G_G(S,v)$ as the vertex set of the connected component of $G[S]$ containing the vertex v.

1Let $t = (x_1, \ldots, x_l) \in \mathbb{N}^l$ and $\chi, \psi : \mathbb{N} \rightarrow \mathbb{N}$. We say that $\chi(n) = O_t(\psi(n))$ if there exists a computable function $\varphi : \mathbb{N}^l \rightarrow \mathbb{N}$ such that $\chi(n) = O(\varphi(t) \cdot \psi(n))$.

2
Graph parameters. A graph parameter is any function mapping graphs to non-negative integers. Let \(p_1, p_2 \) be two graph parameters. We write \(p_1 = p_2 \) if, for every graph \(G \), \(p_1(G) = p_2(G) \). We say that \(p_1 \) is upper bounded by \(p_2 \), denoted by \(p_1 \preceq p_2 \), if there is a function \(f : \mathbb{N} \to \mathbb{N} \) such that for every graph \(G \), \(p_1(G) \leq f(p_2(G)) \). We also say that \(p_1 \) and \(p_2 \) are parametrically equivalent, denoted by \(p_1 \sim p_2 \), if \(p_2 \preceq p_1 \) and \(p_1 \preceq p_2 \). Also, we say that \(p_1 \) and \(p_2 \) are parametrically incomparable, denoted by \(p_1 \not\preceq p_2 \) if neither \(p_2 \preceq p_1 \) nor \(p_1 \preceq p_2 \).

Layouts. A layout of an \(n \)-vertex graph \(G \) is a linear ordering \(L = (x_1, \ldots, x_n) \) of its vertices. We define \(L(G) \) as the set of layouts of \(G \). For \(i \in \{1, \ldots, n\} \), we let \(L(i) \) denote the \(i \)-th vertex of \(L \). If clear from the context, \(L(i) \) may be denoted \(x_i \). For two vertices \(x \) and \(y \), we write \(x \prec_L y \) if \(x \) occurs before \(y \) in \(L \). Given \(L = (x_1, \ldots, x_n) \in L(G) \) and \(i \in \{1, \ldots, n\} \), we define \(S_i = \{x_i, \ldots, x_n\} \). Finally, if \(S \subseteq V(G) \), we denote by \(L[S] \) the layout of \(G[S] \) such that, for every \(x, y \in S \), \(x \prec_L[S] y \) if and only if \(x \prec_L y \).

Given an \(n \)-vertex graph \(G \) and a layout \(L = (x_1, \ldots, x_n) \in L(G) \), we call \((G, L)\)-cost function every function \(\delta_{G,L} : [n] \to \mathbb{N} \) that assigns a non-negative integer to each position of the layout \(L \). From now on, for simplicity, we will use \(\delta \) instead of the heavier notation \(\delta_{G,L} \). Given a \((G, L)\)-cost function \(\delta \), we set \(p_{\delta}(G, L) = \max\{\delta(i) \mid i \in \{1, \ldots, n\}\} \) and we define the following general graph parameter:

\[
p_{\delta}(G) = \min\{p_{\delta}(G, L) \mid L \in L(G)\}.
\]

Four cost functions on layouts of graphs that are of particular interest are presented in Figure 1.

\[
\begin{align*}
\delta^v(i) &= |N_G(S_i)| \\
\delta^e(i) &= |E_G(S_i)| \\
\delta^{vc}(i) &= |N_G(C_G(S_i, x_i))| \\
\delta^{ec}(i) &= |E_G(C_G(S_i, x_i))|
\end{align*}
\]

Figure 1: The four cost functions \(\delta^v, \delta^{vc}, \delta^e, \) and \(\delta^{ec} \). It follows that \(p_{\delta^v} = pw, p_{\delta^{vc}} = tw, p_{\delta^e} = cw, \) and \(p_{\delta^{ec}} = etw. \)

Notice that the cost functions in the left column are defined using the set \(S_i \), while those in the right column are defined by the set \(C_G(S_i, x_i) \), that instead of \(S_i \), takes into account the connected component of \(G[S_i] \) that contains \(x_i \). On the other side, the first line defines the cost as the number of vertices adjacent to this set, while the second line defines it by the number of edges incident to this set. See Figure 2 for an example of a layout of a graph and the corresponding cost functions.

The treewidth of a graph measures the topological resemblance of a graph to the structure of a tree \([2, 28, 36]\). The pathwidth of a graph, denoted by \(pw \), measures the topological resemblance of a graph to the structure of a path \([21, 35]\). It holds that \(p_{\delta^v} = pw \) \([32]\) and \(p_{\delta^{vc}} = tw \) \([17]\). Finally, the parameter \(p_{\delta^e} \) is known as the cutwidth of a graph \([13, 30]\), denoted \(cw \). From the layout characterization of pathwidth, we can consider the cutwidth as the edge-analogue of pathwidth. Likewise, we may see \(p_{\delta^{ec}} \) as the edge-analogue of treewidth. We call \(p_{\delta^{ec}} \) edge-treewidth and we denote it by \(etw \). Interestingly, this parameter is, so far, completely non-investigated. The purpose of this note is to initiate the study of edge-treewidth, as an “edge-analogue” of treewidth.

As we already mentioned, an alternative edge-analogue of treewidth is tree-cut width. The reason why tree-cut width can be seen as an edge-analogue of treewidth is that it is parametrically equivalent to the maximum size of a wall contained as an immersion in the same way that treewidth is parametrically equivalent to the maximum size of a wall contained as topological minor \([45]\) (see
\[\delta v, \delta vc, \delta e, \delta ec\]

Figure 2: A layout of a 6 vertex graphs and the four cost functions \(\delta v, \delta vc\) (at the top), \(\delta e, \delta ec\) at the bottom. In blue, we have the set \(C_G(S_i, x_i)\). In red, we have the vertices of \(N_G(S_i), N_G(C_G(S_i, x_i))\) and the edges of \(E_G(S_i), E_G(C_G(S_i, x_i))\).

Section 2 for the formal definitions of these graph containment relations. Using the terminology that we introduce in Section 5, the family of walls may serve as universal minor-obstruction for treewidth as well as universal immersion-obstruction for tree-cut width.

All four parameters \(tw, pw, cw, tcw\) have been extensively studied both from the combinatorial and the algorithmic point of view \([3–5,15,27,45]\). For all of them, the corresponding decision problem is NP-complete \([1,8,10,26,45]\). Moreover, all of them enjoy nice closeness properties under known partial ordering relations on graphs: treewidth and pathwidth are minor-closed, while cutwidth and tree-cut are immersion-closed. These closeness relations imply that all of them are fixed parameter tractable (in short, FPT) when parameterized by their values. In other words, for every \(p \in \{tw, pw, cw, tcw\}\), there is an algorithm computing \(p(G)\) in time \(O^{p(G)}(|G|)\) \([7,9,11,43,44]\).

(For more on parameterized algorithms and complexity, see \([16,20,22]\).)

Our results. Unfortunately, the above combinatorial/algorithmic properties do not copy for \(etw\). As we see in Section 2, none of the above closeness properties holds for edge-treewidth. In Section 2 we define a new partial ordering relation, namely the weak topological minor relation and we show that edge-treewidth is closed under this relation. Let \(G_k = \{G \mid etw(G) \leq k\}, k \in \mathbb{N}\). We consider the weak-topological minor obstruction set of \(G_k\) that is defined as the set \(\text{obs}(G_k)\) containing all weak-topological minor minimal graphs that do not belong in \(G_k\). In Section 3, we identify the (finite) \(\text{obs}(G_k)\) for \(k \leq 2\) and we show that, for \(k = 3\), \(\text{obs}(G_k)\) is infinite. This comes in (negative) contrast to the fact that the corresponding obstructions sets for the graphs of treewidth/pathwidth/cutwidth at most \(k\) is always finite because of the seminal results of Robertson and Semour in their Graph Minors series \([39]\). On the positive side, we prove that edge-treewidth admits a finite “long term” obstruction characterization. As our main combinatorial result (Theorem 12), we give a set of five parameterized graph families that can act as universal obstructions for edge-treewidth in the sense that edge-treewidth is parametrically equivalent to the maximum size of a graph in these families that is contained as weak-topological minor.

The algorithmic motivation of our study of edge treewidth is the following problem.

Edge Disjoint Path problem (EDP)

Input: A graph \(G\) and a set \((s_1, t_1), \ldots, (s_k, t_k)\) of pairs of vertices, called terminals, of \(G\).

Question: Does \(G\) contains pairwise edge disjoint paths between every pair of terminals?
The vertex disjoint counterpart of EDP is the Vertex Disjoint Path problem (VDP). Both EDP and VDP are known to be NP-Complete [31]. Both problems are FPT when parameterized by the number \(k \) of the terminals [38]. Another relevant question is whether (and when) VDP and EDP remain FPT when parameterized by certain graph parameters that are independent from the number of terminals. In other words, the question is for which parameter \(p \) the above problems can be solved in time \(|G|^{O_p(G)}(1) \) or, even better, in time \(O_p(G)(|G|^{O(1)}) \). In the former case, the corresponding parameterized problem is classified in the parameterized complexity class XP and, as we already mentioned, in the later in the parameterized parameterized complexity class FPT.

Naturally, the first parameter to consider is treewidth. It is known that VDP, parameterized by treewidth, is in FPT because of the time \(O_{tw(G)}(|G|) \) algorithm of Scheffler in [41]. However, this is not any more the case for EDP as it has been shown by Nishizeki, Vygen, and Zhou in [34] that the EDP is NP-hard even on graphs of treewidth two. Therefore, one may not expect that EDP, parameterized by treewidth, is in FPT or even in XP. This induces the question on whether there is some alternative graph parameter \(p \) such that EDP is FPT, when parameterized by \(p \). The first parameter to be considered was tree-cut width, seen as an edge-analogue of treewidth. In this direction Ganian and Ordyniak, in [24], proved that the first parameter to be considered was tree-cut width, seen as an edge-analogue of treewidth. In this direction Ganian and Ordyniak, in [24], proved that EDP, when parameterized by \(tcw \), is in XP, however, it is also \(W[1] \)-hard, therefore we may not expect that a time \(O_{tcw(G)}(|G|^{O(1)}) \) algorithm exists for this problem (i.e., an FPT-algorithm). This means that another graph parameter should be considered so as to derive an FPT algorithm for EDP. Also, as we next see, \(etw \) may play this role. Moreover, in the end of Section 4, we show that edge-tree width is parametrically incomparable to tree-cut width.

Given a graph \(G \), a block of \(G \) is either a bridge \(^2\) co of \(G \) or a maximal 2-connected subgraph of \(G \). We denote by \(bc(G) \) as the set of all blocks of \(G \). In Section 4, we prove that \(etw \) is parametrically equivalent to the graph parameter \(p \), where

\[
p(G) = \max \{ tw(B), \Delta_e(B) \mid B \in bc(G) \}
\]

It is not difficult to see that solving EDP on a graph \(G \) can be linearly reduced to the blocks of \(G \). Also by a simple reduction of EDP to the VDP, EDP can be solved in time \(O_{tw(G), \Delta_e(G)}(|G|) \) (see e.g., [25]). These facts together imply a time \(O_{etw(G)}(|G|) \) algorithm for EDP. These two facts imply that EDP is in FPT when parameterized by edge-treewidth. This indicates that edge-treewidth is the accurate edge analogue parameter to treewidth, when it comes to the study of EDP from the parameterized complexity point of view. As a byproduct of our results, it follows that an approximate estimation of \(etw \) can be found in FPT-time: there is an \(O_k(|G|) \) time algorithm that, given a graph \(G \) and an integer \(k \in \mathbb{N} \), outputs either a report that \(etw(G) > k \) or a layout \(L \in \mathcal{L}(G) \) certifying that \(etw(G) = O(k^4) \).

Our paper is organized as follows. In Section 2 we introduce the weak topological minor relation and we prove that the edge treewidth parameter is closed under this relation. In Section 3 we identify the obstruction set (with respect to weak topological minors) for the graphs with edge treewidth at most two. In Section 4 we prove the parametric equivalence of edge treewidth with the parameter defined in (1) and in Section 5 we use this equivalence in order to provide a universal obstruction set for edge treewidth, under the weak topological minor relation. In Section 6 we prove that checking whether \(etw(G) \leq k \) is an NP-complete problem.

\(^2\) An edge in a graph \(G \) is a bridge of its removal increases the number of connected components.
2 Characterizations of edge-treewidth

We denote by \(\mathbb{N} \) the set of non-negative integers. Given two integers \(p \) and \(q \), the set \([p, q]\) refers to the set of every integer \(r \) such that \(p \leq r \leq q \). For an integer \(p \geq 1 \), we set \([p] = [1, p] \).

Tree-width and edge-treewidth by means of tree layouts A rooted tree is a pair \((T, r)\) where \(T \) is a tree and \(r \) a distinguished node called the root. If \(u \) and \(v \) are two nodes (possibly equal) of a rooted tree \((T, r)\) such that \(u \) belongs to the path from \(r \) to \(v \), then \(u \) is an ancestor of \(v \) and \(v \) a descendant of \(u \) (with the convention that a node is an ancestor and a descendant of itself).

Definition 1 (Tree layout). Let \(G \) be a graph. A *tree layout* of \(G \) is a triple \(\mathcal{T} = (T, r, \tau) \) where \((T, r)\) is a rooted tree and \(\tau : V(G) \to V(T) \) is an injective mapping such that for every edge \(\{x, y\} \in E(G), \tau(x) \) is an ancestor of \(\tau(y) \) in \((T, r)\) or vice-versa. We let \(\mathcal{T}(G) \) denote the set of tree-layouts of \(G \).

Mimicking what we did with layouts, we can similarly define cost functions on tree-layouts. Given a graph \(G \) and a tree-layout \(\mathcal{T} = (T, r, \tau) \) of \(G \), such a function \(\lambda_{G, \mathcal{T}} : V(T) \to \mathbb{N} \) takes as input a node \(t \) of \(T \) and outputs a non-negative integer. Again we use \(\lambda \) as a shortcut of \(\lambda_{G, \mathcal{T}} \), when the pair \(G, \mathcal{T} \) is clear from the context. Analogously to the definition of \(p_{\lambda}(G, L) \), we define \(p_{\lambda}(G, \mathcal{T}) = \max \{ \lambda(u) \mid u \in V(T) \} \). This yields the definition of the following general parameter:

\[
p_{\lambda}(G) = \min \{ p_{\lambda}(G, \mathcal{T}) \mid \mathcal{T} \in \mathcal{T}(G) \}.
\]

Suppose that \(\mathcal{T} = (T, r, \tau) \) is a tree-layout of \(G \). For every node \(u \) of \(T \), we let \(T_u \) denote the subtree rooted at \(u \) induced by the descendants of \(u \) and define \(X_T(u) \subseteq V(G) \) as the set of vertices mapped to the nodes of \(T_u \), that is \(X_T(u) = \{ x \in V(G) \mid \tau(x) \text{ is a descendant of } u \text{ in } (T, r) \} \). Let us consider the following two cost functions defined on tree-layouts:

\[
\lambda^v(u) = |N_G(X_T(u))|, \quad \lambda^e(u) = |E_G(X_T(u))|.
\]

It is known that \(\text{tw}(G) = p_{\lambda^v}(G) \) [17, 42]. We prove the pendant equality for edge tree-width.

Theorem 2. \(\text{etw} = p_{\lambda^e} \).

Proof. Let \(G \) be a graph. We first prove that \(\text{etw}(G) \leq p_{\lambda^e}(G) \). Let \(\mathcal{T} = (T, r, \rho) \) be a tree layout of \(G \). Let also \(L = \langle x_1, \ldots, x_n \rangle \) be a layout of \(G \) obtained from a DFS ordering \(\sigma \) of \((T, r): \) for two vertices \(x \) and \(y \) of \(G \), we have \(x \prec_L y \) if and only if \(\tau(x) \prec_{\sigma} \tau(y) \). Observe that by construction of \(L \), for every \(i \in \{1, \ldots, n\} \), we have \(X_T(\tau(x_i)) \subseteq S_i \) and for every vertex \(x_j \in S_i \setminus X_T(\tau(x_i)) \), \(\tau(x_j) \) is neither an ancestor nor a descendant of \(\tau(x_i) \) in \(T \). It follows from the definition of a tree layout, that \(C_G(S_i, x_i) \subseteq X_T(\tau(x_i)) \), proving the inequality.

We now prove that \(p_{\lambda^e}(G) \leq \text{etw}(G) \). From a layout \(L = \langle x_1, \ldots, x_n \rangle \) of \(G \), we recursively construct a rooted tree \((T, r)\) and an injective mapping \(\tau : V(G) \to V(T) \) as follows. Initially \(T \) is composed of a single (root) node \(r \) and for every connected component \(C \) of \(G \), we create a child \(u_C \) of \(r \). If \(x_C \in C \) is such that for every \(y \in C \), \(x_C \prec_L y \) (\(x_C \) is the smallest vertex of \(C \) in \(L \)), then we set \(\tau(x_C) = u_C \). Then \((T, r)\) is completed by identifying for every connected component \(C \) the node \(u_C \) with the root of the rooted layout \(T_C = (T_C, r_C, \tau_C) \) of \(G[C \setminus \{x_C\}] \) constructed from \(L[C \setminus \{x_C\}] \). Moreover, for every \(x \in C \setminus \{x_C\} \), we set \(\tau(x) = \tau_C(x) \). The resulting triple
\(T = (T, r, \tau) \) is clearly a tree-layout of \(G \). Indeed if \(\{x_i, x_j\} \in E(G) \) such that \(x_i \prec_L x_j \), then \(x_j \in C_G(S_i, x_i) \) and thereby \(\tau(x_i) \) is an ancestor of \(\tau(x_j) \).

Let \(x_j, x_i, x_h \) be three distinct vertices of \(G \) such that \(x_j \prec_L x_i \prec_L x_h \) and \(\{x_j, x_h\} \in E_G(C_G(S_i, x_i)) \). As \(x_j \prec_L x_h \) and \(\{x_j, x_h\} \in E(G) \), \(\tau(x_j) \) is an ancestor of \(\tau(x_h) \). Moreover \(\{x_j, x_h\} \in E_G(C_G(S_i, x_i)) \) implies that \(x_i \) and \(x_h \) belongs to the same connected component of \(G[S_i] \). As \(x_i \prec_L x_h \), this implies that \(\tau(x_i) \) is an ancestor of \(\tau(x_h) \). Finally, as \(x_j \prec_L x_i \), we obtain that \(\tau(x_j) \) is an ancestor of \(\tau(x_i) \), which we just argued, is an ancestor of \(\tau(x_h) \). It follows that \(\{x_j, x_h\} \in E_G(X_T(\tau(x_i))) \), implying that \(p_{\tau}(G, T) \leq \max\{\delta^{es}_{x_L}(i) \mid i \in \{1, \ldots, n\}\} \).

Relations in graphs. Given some graph parameter \(p \) and a partial ordering \(\leq \) on graphs, we say that \(p \) is closed under \(\leq \) if for every two graphs \(H \) and \(G \), it holds that \(H \leq G \Rightarrow p(H) \leq p(G) \).

Given a vertex \(v \in V(G) \) of vertex-degree two and edge-degree two with neighbors \(u \) and \(w \), we define the dissolution of \(v \) to be the operation of deleting \(v \) and adding the edge \(\{u, w\} \) (here we agree that, in the case the edge \(\{u, v\} \) already exists, we increase its multiplicity by one). Given two graphs \(H, G \), we say that \(H \) is a dissolution of \(G \) if \(H \) can be obtained from \(G \) after dissolving vertices of \(G \). A graph \(H \) is a topological minor of a graph \(G \), denoted by \(H \leq_{tp} G \), if \(H \) is the dissolution of some subgraph of \(G \).

Contracting an edge \(e = \{x, y\} \) in a graph \(G \) results in the graph \(G \setminus e \) such that \(V(G \setminus e) = V(G) \setminus \{x, y\} \cup \{x_e\} \) and \(\{u, v\} \in E(G \setminus e) \) if and only if either \(u \neq x_e \), \(v \neq x_e \) and \(\{u, v\} \in E(G) \), or \(v = x_e \) and either \(\{x, u\} \in E(G) \) or \(\{y, u\} \in E(G) \) (in the later case, we agree that the multiplicities of \(\{x, u\} \) and \(\{y, u\} \) are summed up so to define the multiplicity of \(\{v, u\} \)). A graph \(H \) is a minor of a graph \(G \), by \(H \leq_{mn} G \), if \(H \) can be obtained from some subgraph of \(G \) after a (possibly empty) sequence of edge contractions. Notice that if \(H \leq_{tp} G \), then \(H \leq_{mn} G \).

Two edge in a graph are called incident if they share some endpoint. Given a graph \(G \) and two incident edges \(e_1 = \{x, y\} \) and \(e_2 = \{x, z\} \) where \(y \neq z \), the operation of lifting the pair \(e_1, e_2 \) in \(G \) removes the edges \(e_1 \) and \(e_2 \) and introduce the edge \(\{y, z\} \) (in case \(\{y, z\} \) already exists we increase by one its multiplicity). A graph \(H \) is an immersion of a graph \(G \), by \(H \leq_{im} G \), if its can be obtained by a subgraph of \(G \) after a sequence of incident edge lifting operations. Notice that if \(H \leq_{tp} G \), then \(H \leq_{im} G \).

\[\leq_{wtp} \]

\[\leq_{wtp} \]

\[\leq_{wtp} \]

Figure 3: Weak topological minor reduction rule. The path \(P_3 \) on three vertices is a weak topological minor of the path \(P_4 \). The cycle \(C_2 \) on two vertices is a weak topological minor of the cycle \(C_3 \).

It is known that \(tw \) and \(pw \) are closed under minors and also closed under topological minors. Also \(cw \) is closed under immersions. Interestingly, edge-treewidth does not enjoy any of the close-

ness properties of treewidth, pathwidth, or cutwidth. For instance, in Figure 4, the graph \(G_4 \) is a topological minor of the graph \(G_3 \), proving that edge-treewidth is not closed under topological minor (and therefore neither closed under minors). Likewise, \(G_2 \) contains \(G_1 \) as an immersion, showing that edge-treewidth is not closed under immersion.
The graph G_1 contains the graph G_2 as an immersion, while the graph G_3 contains the graph G_4 as a topological minor. The values of $\text{etw}(G_1)$, $\text{etw}(G_2)$, $\text{etw}(G_3)$ and $\text{etw}(G_4)$ are certified by the tree-layouts (in blue) drawn below the respective graphs. The lower bounds on the edge-treewidth of the above graphs have been verified by exhaustively considering all possible layouts (using a computer program).

Our next step is to introduce a new partial ordering relation on graphs and prove that etw is closed in this new relation. A graph H is a weak topological minor of a graph G, denoted by $H \leq \text{wtp} G$, if H is obtained from a subgraph of G by contracting edges whose both endpoints have edge-degree two and vertex-degree two (see Figure 3). We observe that the 2-cycle is a weak topological minor of the 3-cycle (and henceforth of every chordless cycle).

Theorem 3. Edge-treewidth is closed under taking weak topological minors.

Proof. Let $G = (V, E)$ be a graph and $e = \{x, y\}$ be an edge such that x, y are two vertices each of vertex-degree two and edge-degree two. Let $T = (T, r, \tau)$ be a tree layout of G. As $\{x, y\} \in E$, we can assume, without loss of generality, that $\tau(x)$ is an ancestor of $\tau(y)$. A tree layout $T' = (T, r, \tau')$ of $G \setminus e$ is obtained from T as follows. Let x_e be the vertex resulting from the contraction of e. For every vertex $z \in V(G \setminus e)$ such that $z \neq x_e$, we set $\tau'(z) = \tau(z)$, and $\tau'(x_e) = \tau(x)$.

Let us first argue $T' = (T, r, \tau')$ is a tree layout of $G \setminus e$. By construction, we have that for every edge $\{a, b\}$ not incident to x_e, either $\tau'(a)$ is an ancestor of $\tau'(b)$ or vice versa. Let w be the unique neighbor of x distinct from y in G and z be the unique neighbor of y distinct from x in G. Observe that in $G \setminus e$, the neighbors of x_e are z and w. As in T, $\tau(w)$ is an ancestor of $\tau(x)$ or vice versa and as $\tau'(x_e) = \tau(x)$, we have that $\tau'(w)$ is an ancestor of $\tau'(x_e)$ or vice versa. Suppose that $\tau(z)$ is a descendant of $\tau(y)$, then it is also a descendant of $\tau(x)$, implying that $\tau'(z)$ is a descendant of $\tau'(x_e)$. If on the contrary, $\tau(z)$ is an ancestor of $\tau(y)$, then it is either a descendant or an ancestor of $\tau(x)$. This, in turns, implies that $\tau'(z)$ is either a descendant or an ancestor of $\tau'(x_e)$.

It remains to prove that $p_{\lambda_e}(G, T') \leq p_{\lambda_e}(G, T)$. Recall that contracting $e = \{x, y\}$ amounts to removing the vertex y and its incident edges $\{x, y\}$ and $\{y, z\}$, identifying vertex x with x_e, adding the edge $\{z, x_e\}$. Let P the smallest subpath of T containing $\tau(x)$, $\tau(y)$ and $\tau(z)$. Observe that, by construction, for every node u not in P we have $E_G(X_T(u)) = E_G(X_T(u))$. So assume that u...
is a node of P. From the previous paragraph we know that one of the following three cases holds:

1. $\tau(x)$ is an ancestor of $\tau(y)$ that is an ancestor of $\tau(z)$: if u is an ancestor of $\tau(y)$, then we have that $E_G(X_{T}(u)) = E_G(X_{T}(u)) \setminus \{x, y\} \cup \{z, x_e\}$. Otherwise we have $E_G(X_{T}(u)) = E_G(X_{T}(u)) \setminus \{y, z\} \cup \{z, x_e\}$.

2. $\tau(x)$ is an ancestor of $\tau(y)$ that is an ancestor of $\tau(z)$: if u is an ancestor of $\tau(z)$, then we have that $E_G(X_{T}(u)) = E_G(X_{T}(u)) \setminus \{x, y\} \cup \{z, x_e\}$. Otherwise we have $E_G(X_{T}(u)) = E_G(X_{T}(u)) \setminus \{y, z\} \cup \{z, x_e\}$.

3. $\tau(z)$ is an ancestor of $\tau(x)$ that is an ancestor of $\tau(y)$: if u is an ancestor of $\tau(x)$, then we have that $E_G(X_{T}(u)) = E_G(X_{T}(u)) \setminus \{y, z\} \cup \{z, x_e\}$. Otherwise we have $E_G(X_{T}(u)) = E_G(X_{T}(u)) \setminus \{x, y\} \cup \{z, x_e\}$.

It follows that for every node u of T, we have that $\lambda^\text{etw}_{G,T}(u) = \tau^\text{etw}_{G,T}(u)$, concluding the proof.

3 Obstructions

Given a graph class \mathcal{G} and a partial relation \leq, we define the obstruction of \mathcal{G} with respect to \leq, denoted by $\text{obs}^\leq(\mathcal{G})$, as the set of all \leq-minimal graphs not in \mathcal{G}. Clearly, if \mathcal{G} is closed under \leq, then $\text{obs}^\leq(\mathcal{G})$ can be seen as a complete characterisation of \mathcal{G}, as $G \in \mathcal{G}$ iff $\forall H \in \text{obs}(\mathcal{G})$ $H \not\leq G$ Hereafter, for $i \in \mathbb{N}$, we denote by obs_i the weak-topological minor obstruction set of the family of graphs of edge treewidth at most i, in order words $\text{obs}_i = \text{obs}_{\text{etw}}((G \mid \text{etw}(G) \leq i))$.

We next prove that obs_3 is infinite, while obs_1 and obs_2 are finite and respectively characterize forests and cactus graphs.

Theorem 4. For a graph G, the following properties are equivalent:

1. $\text{etw}(G) \leq 1$;

2. G is a forest;

3. $\text{obs}_1 = \{C_2\}$.

Proof. (3. \Rightarrow 2.) Suppose that G contains a cycle. Then we have $C_2 \leq \text{wtp} G$. Finally, as $\text{etw}(C_2) = 2$, Theorem 3 implies $\text{etw}(G) \geq 2$.

(2. \Rightarrow 1.) Suppose that G is a forest. Consider the tree-layout (T, r, τ) where T is obtained from G by adding a root r adjacent to an arbitrary vertex of every component of G and where τ maps every vertex of G to its copy in T. Clearly we have that $p_G(T, T) = 1$.

(1. \Rightarrow 3.) Observe that C_2 is minimal for the weak topological minor relation and that $\text{etw}(C_2) = 2$. This means that $C_2 \notin \text{obs}_1$. Suppose that $C_2 \in \text{obs}_1$. Then C_2 contains a graph H distinct from C_2. It follows that H excludes every C_2 as a weak topological minor. But then H is a forest, implying that $\text{etw}(H) \leq 1$: contradiction.

A graph in which that every edge belongs to at most one cycle is called a cactus graph [29]. Equivalently, G is a cactus graph if and only if its blocks (biconnected components) are cycles. For a graph G, $\text{bc}(G)$ denote the set of its biconnected components, also called blocks, and $\text{cv}(G)$ denote the set of cut vertices of G. We define B_G as the graph in which the vertex set is one-to-one mapped to $\text{bc}(G) \cup \text{cv}(G)$ and two vertices x and y of B_G are adjacent if and only if x is mapped
Theorem 5. For a graph G, the following properties are equivalent:

1. $\text{etw}(G) \leq 2$;
2. G is a cactus graph;
3. $\text{obs}_2 = \{Z_i^2 \mid 1 \leq i \leq 4\}$ (see Figure 5).

![Diagram of weak topological minor obstruction set](image)

Figure 5: The weak topological minor obstruction set $\text{obs}_2 = \{Z_1^2, Z_2^2, Z_3^2, Z_4^2\}$ for the graphs of edge-treewidth at most 2.

Proof. (3. \Rightarrow 2.) Let G be a graph that is not a cactus graph. Then G has an edge $\{x, y\}$ that is contained in two cycles, say C_1 and C_2. This implies that the subgraph $G[C_1 \cup C_2]$ contains two vertices u and v and is composed of three edge-disjoint paths between u and v. It follows that $G[C_1 \cup C_2]$, and thereby H, contains one of the graphs $Z_i^2 \in \text{obs}_2$ ($1 \leq i \leq 4$) as a weak topological minor.

(2. \Rightarrow 1.) Let G be a cactus graph. As every block B of G is either an edge or a cycle, for every vertex $x \in B$, there exists a layout $L(B, x)$ of B starting at x such that $\text{p}_{\text{obs}}(B, L) \leq 2$.

We recursively construct $T = (T, r, \tau)$ from the block tree B_G of G. We root B_G at an arbitrary leaf. Let B_r be the block corresponding to that leaf. Observe that for every block B distinct from B_r, the parent of its corresponding vertex in B_G is mapped to a cut vertex $x_B \in B$. We choose an arbitrary vertex x_r of B_r and define $\tau(x_r)$ as the root r of T. Then for every vertices x and y of B_r, $\tau(y)$ is a child of $\tau(x)$ if and only if x immediately precedes y in $L(B_r, x_r)$. Suppose that B is a block of G containing a cut vertex x_B such that x_B is the unique vertex of B with $\tau(x_B)$ been defined. Then for every vertices x and y of B, $\tau(y)$ is a child of $\tau(x)$ if and only if x immediately precedes y in $L(B, x_B)$. This clearly defines a tree-layout of G. As every edge of G belongs to some block B of G and as for every block $\text{p}_{\text{obs}}(L, B) \leq 2$, we have that for every node u of T, $\lambda^e(G, T, u) \leq 2$, implying that $\text{etw}(G) \leq 2$.

(1. \Rightarrow 3.) We first prove that $\{Z_i^2 \mid 1 \leq i \leq 4\} \subseteq \text{obs}_2$. Observe that none of these graphs has an edge incident to two vertices each of vertex-degree and edge-degree two. So the graphs of obs_2 are minimal for the weak topological minor relation. Consider a layout $L \in L(G)$ such that $\text{etw}(G) = \text{p}_{\text{obs}}(L, G)$. Suppose that G contains some graph $H \in \text{obs}_2$ as a weak topological minor. Then G contains two vertices, say x_i and x_j with $x_i \prec_L x_j$, and 3 edge-disjoint paths P_1, P_2 and P_3 between x_i and x_j. Then $E_G(C_G(S_j, x_j))$ contains at least one edge from each of P_1, P_2 and P_3. This implies that $\text{etw}(G) \geq 3$.

Suppose for the sake of contradiction that there exists a graph $H \in \text{obs}_2 \setminus \{Z_2^i \mid 1 \leq i \leq 4\}$. It follows that H excludes every Z_2^i ($1 \leq i \leq 4$) as a weak topological minor. But then H is a cactus graph, implying that $\text{etw}(H) \leq 2$ and thereby $H \notin \text{obs}_2$. □

Lemma 6. The obstruction set obs_3 is infinite.

![Diagram](image)

Figure 6: The set $\{Z_2^3, Z_3^3, \ldots, Z_n^3, \ldots\} \subseteq \text{obs}_3$ forms an infinite antichain for the weak topological minor relation.

Proof. We define the graph Z_n^3 as the graph obtained from the cycle C_n by duplicating every edge once (see Figure 6). We observe that the set $\{Z_n^3 \mid n \geq 2\}$ forms an infinite antichain with respect to \leq_{wtp} and that for every $n \geq 2$, $\text{etw}(Z_n^3) = 4$. First, as for each of these graphs every vertex has degree 4, they are minimal for the weak topological minor relation. Second, let L be any layout of Z_n^3 (for $n \geq 2$). We remark that for u, the last vertex in L, we have $\delta_{G,L}(u) = 4$. Finally, observe that if $L = (x_1, \ldots, x_n)$ is a layout of Z_n^3 such that for every $i \in [2, n]$, x_i is adjacent to x_{i-1}, then $p_{\delta_{G,L}}(G, L) = 4$. It follows that $\{Z_n^3 \mid n \geq 2\} \subseteq \text{Z}_3$. □

4 A parametric equivalence

Our next step is to show that edge-treewidth can be parametrically expressed using the maximum edge-degree parameter. For this we will define a new parameter, using the edge-degree as basic ingredient, and we will prove its parametric equivalence with edge-treewidth.

Lemma 7. Let $G = (V, E)$ be a biconnected graph. For every vertex u of G, we have $\text{etw}(G, u) \leq \text{etw}(G)^2 + 2 \cdot \text{etw}(G)$, where $\text{etw}(G, u) = \max\{p_{\delta^e_{G,L}}(G, L) \mid L \in \mathcal{L}(G) \land L(1) = u\}$.

Proof. Let $L = (x_1, \ldots, x_n)$ be a layout of G. Suppose that $u = x_i$. Consider the layout $L' = (x_i, x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$. We observe that for every vertex $x \in \{x_{i+1}, \ldots, x_n\}$, we have $\delta^e_{G,L}(x) = \delta^e_{G,L'}(x)$. However, for a vertex $x \in \{x_1, \ldots, x_{i-1}\}$, we have that $\delta^e_{G,L'}(x) \leq \delta^e_{G,L}(x) + \ell$, where ℓ is upper bounded by the degree of x_i in G.

First observe that $|N(x_i) \cap \{x_1, \ldots, x_{i-1}\}|$ is at most $\delta^e_{G,L}(x_i) \leq p_{\delta^e_{G,L}}(G, L)$. It remains to bound $|N(x_i) \cap S_{i+1}|$. Let H be the subgraph of G induced by $C_G(S_i, x_i)$. As G is biconnected, every connected component of $H - x_i$ has at least one neighbor that appears prior to x_i in L. It follows that the number of connected components of $H - x_i$ is at most $\delta^e_{G,L}(x_i) \leq p_{\delta^e_{G,L}}(G, L)$. Let C be one of these connected components and x_C be the first vertex of C in L. Then observe that $|N(x_i) \cap C| \leq \delta^e_{G,L}(x_C) \leq p_{\delta^e_{G,L}}(G, L)$. It follows that $|N(x_i) \cap S_{i+1}| \leq p_{\delta^e_{G,L}}(G, L)^2$, and thereby $\ell \leq p_{\delta^e_{G,L}}(G, L)^2 + p_{\delta^e_{G,L}}(G, L)$, proving the result. □
Theorem 8. For every graph G, we have $\text{etw}(G) \leq \max \{ \text{etw}(B)^2 + \text{etw}(B) \mid B \in \text{bc}(G) \}$.

Proof. We compute a tree-layout treewidth in [6] is the following. Let L_B denote the layout starting at x_B used in the construction of T. Clearly, we have $p(B(G, T)) \leq \max \{ p(B, L_B) \mid B \in \text{bc}(G) \}$. It follows from Lemma 7 that $p(B(G, T)) \leq \max \{ \text{etw}(B)^2 + 2 \cdot \text{etw}(B) \mid B \in \text{bc}(G) \}$. □

Theorem 9. For every graph G, we have

$$\text{etw}(G) \sim \max \{ \{ \Delta_e(B) \mid B \in \text{bc}(G) \} \cup \{ \text{tw}(B) \mid B \in \text{bc}(G) \} \},$$

where $\Delta_e(G)$ stands for the maximum edge-degree in G.

Proof. For a graph $G = (V, E)$, we define $p(G) = \max \{ \{ \Delta_e(B) \mid B \in \text{bc}(G) \} \cup \{ \text{tw}(B) \mid B \in \text{bc}(G) \} \}$.

Let us first prove that $\text{etw}(G) \leq p(G)^4 + p(G)^2$. It is known that $\text{tw} = p_{\text{bc}}$ [17] and we defined $\text{etw} = p_{\text{bc}}$. It follows from the definition of p_{bc} and p_{bc} that, for every graph H, $\text{etw}(H) \leq \text{tw}(H) \cdot \Delta_e(H)$. Applying these inequalities to the blocks of G, Theorem 8 implies that $\text{etw}(G) \leq \max \{ \text{tw}(B)^2, \Delta_e(B)^2 + 2 \cdot \text{tw}(B) \cdot \Delta_e(B) \mid B \in \text{bc}(G) \}$, proving the upper bound.

Let us now prove that $p(G) \leq \text{etw}(G)$. It is trivially the case if $p(G) = \max \{ \text{tw}(B) \mid B \in \text{bc}(G) \}$. Indeed, then we have $p(G) \leq \text{tw}(G) \leq \text{etw}(G)$. So assume that $p(G) = \max \{ \Delta_e(B) \mid B \in \text{bc}(G) \}$. Let $T = (T, r, \tau)$ be a tree layout of G such that $p(G) = p(G, T)$. Let B_m be the block of G such that $\Delta_e(B_m) = p(G)$. Let x_m be a vertex of B_m with maximum edge-degree in B and N be its set of neighbors in B. We have different cases to consider depending on the position of node $u_m = \tau(x_m)$ in T.

- Suppose that there exists in T at most one child v of the node u_m such that $X_T(v) \cap N \neq \emptyset$. Observe that we have $p(G, T, v) \geq |X_T(v) \cap N|$ and $p(G, T, u_m) \geq \Delta_e(B_m) - |X_T(v) \cap N|$. This implies that $\Delta_e(B_m)/2 \geq p(G)/2 \leq \text{etw}(G)$.

- Let v_1, \ldots, v_{ℓ}, with $\ell > 1$, be the children of u_m in T such that for every $i \in [\ell]$, $X_T(v_i) \cap N \neq \emptyset$. Let n_i be the number of vertices of N in $X_T(v_i)$. Observe that for every $i \in [\ell]$, we have $p(G, T, v_i) \geq n_i$. Moreover as B_m is a block, x_m is not a cut vertex of B_m. Thereby for every pair i, j, $i \neq j$, there must exist a path from every vertex $x_i \in X_T(v_i) \cap N$ to every vertex of $x_j \in X_T(v_j) \cap N$ avoiding x_m. As T is a tree layout of G, such a path contains a vertex z such that $\tau(z)$ is an ancestor of u_m. It follows that $\text{p}(G, T, u_m) \geq \ell + \Delta_e(B_m) - \sum_{i \in [\ell]} n_i$. In other words, we have $\text{p}(G, T) \geq \max \{ n_1, \ldots, n_\ell, \ell + \Delta_e(B_m) - \sum_{i \in [\ell]} n_i \} \geq \sqrt{\Delta_e(B_m)}$. This lower bound is attained when $\ell = \sqrt{\Delta_e(B_m)} - 1$ and for every $i \in [\ell]$, $n_i = \sqrt{\Delta_e(B_m)}$. This implies that $\sqrt{p(G)} \leq \text{etw}(G)$.

So we proved that $\sqrt{p(G)} \leq \text{etw}(G) \leq p(G)^4 + 2 \cdot p(G)^2$. □

An algorithmic consequence of Theorem 9 and the linear FPT 5-approximation algorithm for treewidth in [6] is the following.

Corollary 10. One can construct a linear algorithm that, given a graph G and a non-negative integer k, either returns a layout of G certifying that $\text{etw}(G) = O(k^4)$ or reports that $\text{etw}(G) > k$.

It remains an open question whether there is an FPT-algorithm checking whether $\text{etw}(G) \leq k$.

12
5 Universal obstructions for edge-treewidth

Walls, thetas, and fans. Let \(k, r \in \mathbb{N} \). The \((k \times r)\)-grid is the graph whose vertex set is \([k] \times [r]\) and two vertices \((i, j)\) and \((i', j')\) are adjacent if and only if \(|i - i'| + |j - j'| = 1\). For \(i \geq 1\), we use \(\Gamma_i \) for the \((i \times i)\)-grid. An \(r\)-wall, for some integer \(r \geq 2\), is the graph, denoted by \(W_i \), obtained from a \((2r \times r)\)-grid with vertices \((x, y)\) \(\in [2r] \times [r]\), after the removal of the “vertical” edges \(\{(x, y), (x, y + 1)\}\) for odd \(x + y\), and then the removal of all vertices of degree one.

![Figure 7: The wall \(W_{6 \times 6}\).](image)

The \(i\)-theta, denoted \(\theta_i \), for \(i \in \mathbb{N}_{\geq 1}\), is the graph composed by two vertices, called poles, and \(i \) parallel edges between them. The \(i\)-fan, denoted \(\varphi_i \), for \(i \in \mathbb{N}_{\geq 1}\), is the graph obtained if we take a path \(P_i \) on \(i \) vertices plus a universal vertex, i.e., a new vertex adjacent with all the vertices of the path \(P_i \). The end vertices of the path are called extreme vertices of \(\varphi_i \).

Universal obstructions. By the grid minor theorem [36, 40] (see also [18]), we know that the treewidth is parametrically equivalent to the size of the largest wall contained as a topological minor. That way, we can claim that the walls as a set of “universal minor-obstructions” for treewidth. Before proving a similar result for edge-treewidth and the weak topological minor relation, let us formalize the notion universal obstructions.

Let \(\leq \) be some partial ordering relation. Given a set of graphs \(A \) and a graph \(G \), we say that \(A \leq G \) if \(\exists H \in A \, H \leq G \). A parameterized set of graphs is a set \(\mathcal{H} = \{ H_i \mid i \in \mathbb{N} \} \) of graphs, indexed by non-negative integers. Given an partial ordering relation \(\leq \), we say that \(\mathcal{H} \) is \(\leq \)-monotone if for every \(i \in \mathbb{N} \), \(H_i \leq H_{i+1} \). Let \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) be two \(\leq \)-monotone parameterized sets of graphs. We say that \(\mathcal{H}_1 \leq \mathcal{H}_2 \) if there is a function \(f : \mathbb{N} \rightarrow \mathbb{N} \) such that for every \(i \in \mathbb{N} \), \(H_1^i \leq H_2^{f(i)} \). We say that \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) are \(\leq \)-equivalent if \(\mathcal{H}_1 \leq \mathcal{H}_2 \) and \(\mathcal{H}_2 \leq \mathcal{H}_1 \). For instance, we may define the two parameterized sets of graphs \(\mathcal{W} = \{ W_i \mid i \in \mathbb{N} \} \) and \(\mathcal{G} = \{ \Gamma_i \mid i \in \mathbb{N} \} \) and observe that \(\mathcal{W} \) and \(\mathcal{G} \) are \(\leq_{mn} \)-equivalent. However, they are not \(\mathcal{W} \) are \(\leq_{tp} \)-equivalent as \(\mathcal{W} \leq_{tp} \mathcal{G} \), while \(\mathcal{G} \not\leq_{tp} \mathcal{W} \).

A set \(\mathfrak{A} \) of \(\leq \)-monotone parameterized sets of graphs is a \(\leq \)-antichain if for every two distinct \(\mathcal{H}_1 \in \mathfrak{A} \) and \(\mathcal{H}_2 \in \mathfrak{A} \), neither \(\mathcal{H}_1 \leq \mathcal{H}_2 \) nor \(\mathcal{H}_2 \leq \mathcal{H}_1 \). Given that \(\mathfrak{A} = \{ \mathcal{H}_1, \ldots, \mathcal{H}_r \} \), we define the \(i \)-th layer of \(\mathfrak{A} \), denoted by \(\mathfrak{A}_i \), as the set consisting of the \(i \)-th graph in each of the parameterized set of graphs in \(\mathfrak{A} \), that is \(\mathfrak{A}_i = \{ \mathcal{H}_i^1, \ldots, \mathcal{H}_i^r \} \). We also define the graph parameter \(p_{\mathfrak{A}, \leq} \) so that

\[
p_{\mathfrak{A}}(G) = \max\{ i \mid \mathfrak{A}_i \leq G \}.
\]

Definition 11. Let \(\leq \) be a graph inclusion relation, \(\mathfrak{A} \) be a \(\leq \)-antichain, and \(\mathbf{p} \) be a \(\leq \)-closed parameter. We say that \(\mathfrak{A} \) is a universal \(\leq \)-obstruction set of \(\mathbf{p} \) if \(\mathbf{p} \sim p_{\mathfrak{A}, \leq} \).
For instance $\text{tw} \sim p_{\leq mn,\{W\}} \sim p_{\leq mn,\{G\}}$, while $\text{tw} \sim p_{\leq im,\{W\}}$. Such type of results exist for all the parameters mentioned in the introduction. Let $\mathcal{B} = \{B_i, i \in \mathbb{N}\}$ be the set of all complete binary trees of height i and let $\mathcal{S} = \{S_i, i \in \mathbb{N}\}$ where S_i is the i-star graph, that is the graph $K_{1,i}$. It is also known that $p_{\text{pw}} \sim p_{\leq mn,\{B\}}$ [35] and that $c_{\text{cw}} \sim p_{\leq mn,\{B,S\}}$ [33]. Also, according to the result of Wollan in [45], $\text{tcw} \sim p_{\leq im,\{W\}}$. Also for a universal obstruction for the parameter of tree partition width, see [19].

In what follows, we give a family of five parameterized graphs that can serve as a universal $\leq \text{wtp}$-obstruction for edge-treewidth (see Figure 8). Given a graph $G = (V,E)$, the weak subdivision of G, denoted \hat{G}, is the graph obtained from G by subdividing once every edge $xy \in E$ such that both x and y have edge-degree at least 3 (the subdivision of an edge is its replacement by a path of length two on the same endpoints). The i-fan is the graph composed by a path of length i and a universal vertex.

1. $H^1 = \{\theta_{3+i} \mid i \in \mathbb{N}\}$, where θ_i is the graph on two vertices connected by i multiple edges;
2. $H^2 = \{\hat{\theta}_{3+i} \mid i \in \mathbb{N}\}$;
3. $H^3 = \{\bar{\varphi}_{3+i} \mid i \in \mathbb{N}\}$, where $\bar{\varphi}_i$ is obtained from the i-fan by subdividing once every edge incident to two vertices of vertex-degree 3;
4. $H^4 = \{\hat{\varphi}_{3+i} \mid i \in \mathbb{N}\}$, where $\hat{\varphi}_i$ is the weak subdivision of the i-fan;
5. $H^5 = \{\hat{W}_{(3+i) \times (3+i)} \mid i \in \mathbb{N}\}$.

![Figure 8: From left to right in the top row, we have the graph θ_5 and its weak subdivision $\hat{\theta}_5$, the graph $\bar{\varphi}_5$ and the graph $\hat{\varphi}_5$. The weak subdivision of the 6×6-wall is drawn at the bottom row.](image)

Theorem 12. The set $\mathfrak{A} = \{H^j \mid 1 \leq j \leq 5\}$ is a universal $\leq \text{wtp}$-obstruction set for edge-treewidth, that is $\text{etw} \sim p_{\leq \text{wtp},\mathfrak{A}}$.
Proof. We first prove that every H^j is a \leq_{wtp}-monotone parameterized set of graphs (Claim 13). Then we show that \mathcal{A} is a \leq_{wtp}-antichain (Claim 14). Finally, we establish the parametric equivalence between etw and p_3 (Claim 15 and Claim 16).

Claim 13. For every j, $1 \leq j \leq 5$, H^j is a \leq_{wtp}-monotone parameterized set of graphs.

Proof of claim. Observe that θ_i is obtained from θ_{i+1} by deleting one edge and that $\hat{\theta}_i$ is obtained from $\hat{\theta}_{i+1}$ by deleting one vertex of vertex-degree 2. We note that every graph H^j_{1+1} ($j \in \{3, 4\}$) in one of the two fan families H^3, H^4 has an induced path P of at least $4 + i$ vertices. Let x be one of the two extreme vertices of that path. To obtain H^j_i from H^j_{i+1}, we first delete x. If this generate edges between vertices of degree two in the resulting graph, then we contract these (one or two) edges. One can easily check that, in the weak subdivision W_{4+i} of the wall, performing vertex deletions and edges contraction between degree-two vertices along the top row and the left-most column, we can obtain $W_{(3+i) \times (3+i)}$. \hfill \diamond

Claim 14. $\mathcal{A} = \{H^j \mid 1 \leq j \leq 5\}$ is a \leq_{wtp}-antichain.

Proof of claim.

1. Consider $j \in [1, 4]$. It is well-known that the treewidth of any subdivision of $W_{i \times 1}$ is i. Observe that for every $i \in N$, $\text{tw}(H^j_i) = 2$. As $G \leq_{\text{wtp}} H$ implies that $\text{tw}(G) \leq \text{tw}(H)$, we have that $H^3 \not\leq_{\text{wtp}} H^3$. Moreover, if $G \leq_{\text{wtp}} H$, then $\Delta(G) \leq \Delta(H)$. This implies that $H^3 \not\leq_{\text{wtp}} H^1$.

2. We observe that a weak topological minor of θ_i is either the single vertex graph or a theta graph $\theta_{i'}$ for some $i' < i$. It follows that for every $j \in \{2, 3, 4\}$, $H^j \not\leq_{\text{wtp}} H^1$.

3. We observe that every weak topological minor of $\hat{\theta}_i$ that is biconnected is either the single vertex graph or $\theta_{i'}$ for some $i' < i$. It follows that for every $j \in \{1, 3, 4\}$, $H^j \not\leq_{\text{wtp}} H^2$.

4. We observe that for $j \in \{3, 4\}$, every weak topological minor of H^j_i that is biconnected is either the K_3, the fan φ_3 or contains an induced path on at least 5 vertices. It follows that for every $j' \in \{1, 2\}$, $H^j' \not\leq_{\text{wtp}} H^j$.

5. Finally, we observe that every weak topological minor of $\hat{\varphi}_j \in H^4$ that is biconnected contains a vertex whose neighbors belong to a common path. It follows that $H^4 \not\leq_{\text{wtp}} H^3$. We also observe that every biconnected weak topological minor of $\hat{\varphi}_j$ that is not K_3 nor the fan φ_3, contains a vertex of vertex-degree three whose neighbors all have vertex-degree two. This implies that $H^3 \not\leq_{\text{wtp}} H^4$. \hfill \diamond

Claim 15. For every j, $1 \leq j \leq 5$ and for every $i \in N$, $\text{etw}(H^j_i) \geq \sqrt{i}$.

Proof of claim. To see this, observe that for every $j \in [1, 5]$, the parameterized set of graphs H^j contains only biconnected graphs. Moreover for every graph $H^j_i \in H^j$, we have $\max\{\Delta(H^j_i), \text{tw}(H^j_i)\} \geq i$. It follows from Theorem 9 that $\text{etw}(H^j_i) \geq \sqrt{i}$. \hfill \diamond

Claim 16. There exists a function $f : N \rightarrow N$ such that if for every $j \in [1, 5]$, $H^j_k \not\leq_{\text{wtp}} G$, then $\text{etw}(G) \leq f(k)$.

15
Proof of claim. By the parametric equivalence between \(\text{etw}(G) \) and \(\mathbf{p}(G) = \max \{\{\Delta_e(B) \mid B \in \text{bc}(G)\} \cup \{\text{tw}(B) \mid B \in \text{bc}(G)\}\} \) (see Theorem 9), it suffices to prove that there exists a function \(f : \mathbb{N} \to \mathbb{N} \) such that if for every \(j \in [1, 5] \), \(\mathcal{H}_j \not\leq_{\text{wtp}} G \), then \(\mathbf{p}(G) \leq f(k) \). Let \(B \) be the block of \(G \) such that \(\mathbf{p}(G) = \max\{\Delta_e(B), \text{tw}(B)\} \). We have two cases to consider:

- Suppose first that \(\mathbf{p}(G) = \text{tw}(B) \). Observe that by the wall theorem (see [12, 37]), if \(B \) contains a subdivision of \(W_{k \times k} \) as a subgraph, then \(\text{tw}(G) \geq k^{O(1)} \).

- So let us consider the case where \(\mathbf{p}(G) = \Delta_e(B) \). Let \(x \) be a vertex of \(B \) such that \(\text{edeg}_B(x) = \Delta_e(B) \) and suppose that \(\text{edeg}_G(x) \geq k \cdot 2^{k-3} \). As by assumption, \(\theta_k \not\leq_{\text{wtp}} G \), we have that \(\text{vdeg}_B(x) \geq k^{2k-3} \). Let \(T' \) be a (simple) subtree of \(B \setminus \{x\} \) spanning all the neighbors of \(x \) in \(B \). We consider the tree \(T \) obtained from \(T' \) by dissolving every vertex of vertex-degree two that is not a neighbor of \(x \) in \(G \). It follows that every vertex of \(T \) is a neighbor of \(x \) or a branching vertex. Observe that every vertex \(y \) in \(T \) has vertex-degree \(\text{vdeg}_T(y) < k \), as otherwise we would have \(\theta_k \leq_{\text{wtp}} G \). It follows that \(T \) is a tree spanning at least \(k^{2k-3} \) vertices and its maximum vertex-degree \(\Delta_v(T) \) is at most \(k \). Moreover, the number of vertices in \(T \) is at most \((\Delta_v(T))^{\lceil \text{diam}(T) / 2 \rceil} \), where \(\text{diam}(T) \) is the diameter of \(T \). This implies that \(T \) contains a path \(P \) of length at least \(4k - 6 \). Observe that the vertex set \(V(P) \) of \(P \) is partitioned into \(P_x = V(P) \cap N(x) \) and \(P_y = V(P) \cap \overline{N}(x) \). Suppose that \(|P_x| \geq |P_y| \). Let \(Y \) be the subset of vertices of \(P \) containing every odd neighbor of \(x \) in \(P \). We have that \(|Y| \geq k \). Let \(H \) be the graph with vertex set \(V(P) \setminus \{x\} \) and containing the edges of \(P \) and the edges between \(x \) and the vertices of \(Y \). We observe that, by construction of \(T \) and definition of \(Y \), \(\tilde{\varphi}_k \) is a weak topological minor of \(H \) and of \(B \): contradiction. So let us assume that \(|P_x| < |P_y| \). Observe that, by construction of \(T \), every vertex \(y \in V(P) \cap \overline{N}(x) \) is a branching vertex. Thereby for every such vertex \(y \), \(T \) contains a path \(P_y \) of length at least 2 between \(x \) and \(y \). Let \(Y \) be the subset of vertices of \(P \) containing every odd vertex of \(V(P) \cap \overline{N}(x) \). We have that \(|Y| \geq k \). Let \(H \) be the graph containing the vertex \(x \), the path \(P \) and every path \(P_y \) between \(x \) and \(y \in Y \). Again, we observe that, by construction of \(T \) and definition of \(Y \), \(\tilde{\varphi}_k \) is a weak topological minor of \(H \) and of \(B \): contradiction. \(\circ \)

As \(\text{etw} \) is closed under weak topological minor (see Theorem 3), by Claim 15, we have that \(\mathbf{p}_{3}^\mathcal{A}(G) \leq \text{etw}(G)^2 \). By Claim 16, we have that \(\text{etw}(G) \leq \mathbf{p}_{\leq \text{wtp}, \mathcal{A}}(G)^4 \mathbf{p}_{\leq \text{wtp}, \mathcal{A}}(G)^{G+1} \). It follows that \(\text{etw} \sim \mathbf{p}_{\leq \text{wtp}, \mathcal{A}} \).

Let us discuss the exponential gap obtained above between \(\text{etw} \) and \(\mathbf{p}_{3} \). Consider the graph family \(G = \{G_{3+i} \mid k \in \mathbb{N}\} \) where \(G_{3+i} \) is defined as follows (see Figure 9) Let \(B \) be a tree of diameter \(2i + 1 \) such that every internal node has vertex-degree \(i + 2 \). Then \(G_{3+i} \) is obtained by adding a universal vertex \(x \) to the leaves of \(B \), and then by replacing every edge with \(i + 2 \) multiple edges.

Observation 17. For every \(k \in \mathbb{N} \), the graph \(G_{3+i} \) does not contain as weak topological minor any of \(\theta_{3+i}, \tilde{\varphi}_{3+i}, \varphi_{3+i}, \tilde{\varphi}_{3+i} \) and \(W_{(3+i) \times (3+i)} \).

Proof. As every edge has multiplicity \(i + 2 \), \(\theta_{3+i}, \tilde{\varphi}_{3+i} \not\leq_{\text{wtp}} G_{3+i} \). Since the vertex-degree of every vertex, but \(x \), is at most \(i + 2 \), we also have that \(\theta_{3+i}, \tilde{\varphi}_{3+i} \not\leq_{\text{wtp}} G_{3+i} \). The diameter of \(G_{3+i} - x \) is \(2i + 1 \) while the diameter of \(\tilde{\varphi}_{3+i} \) and of \(\varphi_{3+i} \) are \(2i + 2 \). It follows that that \(\tilde{\varphi}_{3+i}, \varphi_{3+i} \not\leq_{\text{wtp}} G_{3+i} \). Finally, observe that \(G_{3+i} \) is a series-parallel graph (it has treewidth 2). As a consequence, \(W_{(3+i) \times (3+i)} \not\leq_{\text{wtp}} G_{3+i} \). \(\square \)
We observe that $\Delta_e(G_{3+i}) = 2 \times (i+1)^{i+1}$. On one hand, as G_{3+i} is biconnected and $\text{tw}(G_{3+i}) = 2$, by Theorem 9, we have that $\text{etw}(G_{3+i}) \geq \sqrt{\Delta_e(G_{3+i})}$. On the other hand, by Observation 17, we have that $p_A(G_{3+i}) = 3 + i$. This proves that the exponential gap between etw and p_A is tight.

Incomparability between edge-treewidth and tree-cut width. We now prove that the parameters of edge-treewidth and tree-cut width are parametrically incomparable, i.e., $\text{tcw} \not\sim \text{etw}$. For this, we may avoid giving the (lengthy) definition of tree-cut width and use instead the main result of Wollan in [45] who proved that $\text{tcw} \sim p_{\leq im, \{W\}}$. Therefore it remains to show why $p_{\leq im, \{W\}} \not\sim \text{etw}$. Notice that $p_{\leq im, \{W\}}(\theta_i)$ is trivially bounded for every i, while the graphs in $\mathcal{H}^i = \{\theta_{3+i} \mid i \in \mathbb{N}\}$ have unbounded edge-treewidth, because of Theorem 12. This implies that $\text{etw} \not\leq p_{\leq im, \{W\}}$. Let Z_i be the graph obtained after taking $|E(W_i)|$ copies of θ_3 and then identifying one vertex of each copy to a single vertex. It is easy to see that $W_i \leq im Z_i$, therefore $p_{\leq im, \{W\}} \geq i$. On the other side, each of the $|E(W_i)|$ blocks of Z_i has maximum edge-degree three, and therefore Z_i has bounded edge-treewidth, because of Theorem 9, which implies that $p_{\leq im, \{W\}} \not\leq \text{etw}$.

6 On the complexity of computing edge-treewidth

We discuss the computational complexity of the following decision problem:

Edge-Treewidth

Input: A graph G and an integer k.

Question: Decide if $\text{etw}(G) \leq k$?

Theorem 18 (NP-completeness). The problem **Edge-Treewidth** is NP-complete.

Proof. Clearly, the problem **Edge-Treewidth** belongs to NP. Indeed given a layout L of G, one can check in polynomial time if $p_{\delta_e}(G, L) \leq k$. The NP-hardness proof is based on a reduction from the **Min-Bisection** problem.

Min-bisection problem

Input: A graph G and an integer k.

Question: Is there a bipartition V_1, V_2 of $V(G)$ such that $||V_1| - |V_2|| \leq 1$ and $|E_G(V_1)| \leq k$?
Let \((G, k)\) be an instance of \textsc{Min Bisection} where \(G\) is a graph on \(n\) vertices. We build an instance \((H, w)\) of \textsc{Edge-treewidth} as follows (see Figure 10):

- \(V(H) = V(G) \cup Q\), where \(Q\) is an independent set of size \(n^2\);
- \(E(H) = E(G) \cup \{\{x, y\} \mid x \in V(G), y \in Q\}\), that is we add to \(E(G)\) all possible edges between \(Q\) and \(V(G)\)
- and \(w = \frac{n^3}{2} + k\).

\textbf{Claim 19.} If \((G, k)\) is a \textsc{YES}-instance of \textsc{Min-Bisection}, then \((H, w)\) is a \textsc{YES}-instance of \textsc{Edge-treewidth}.

\textbf{Proof of claim.} Let \(V_1, V_2\) be a bipartition of \(V(G)\) such that \(||V_1|| - |V_2|| \leq 1\) and \(|E_G(V_1)| \leq k\).

Let us consider a layout \(L\) of \(H\) such that for every triple \(x, y, z \in V(H)\) such that \(x \in V_1, y \in Q, z \in V_2\), then \(x \prec_L y \prec_L z\), (in other words \(L = \langle V_1 \cdot Q \cdot V_2 \rangle\)) (here we use \(\cdot\) for the sequence concatenation operation). Observe that \(\delta^{ec}H,L(\frac{n}{2} + 1) \leq \frac{n^3}{2} + k = w\). Indeed, \(S_{\frac{n}{2} + 1} = Q \cup V_2\) induces a connected subgraph of \(G\), that is \(C_H(S_{\frac{n}{2} + 1}, x_{\frac{n}{2} + 1}) = Q \cup V_2\). Moreover, there are \(n^2 \cdot \frac{n}{2}\) edges between \(V_1\) and \(Q\) and at most \(k\) edges between \(V_1\) and \(V_2\). Let us prove that for every \(i \neq \frac{n}{2} + 1\), \(\delta^{ec}H,L,i \leq w\). We consider three cases:

- Suppose that \(i \leq \frac{n}{2}\) (i.e. \(x_i \in V_1\)). Observe that \(C_H(S_i, x_i) = S_i\) and thereby \(E_H(C_H(S_i, x_i))\) contains \((i - 1) \cdot n^2\) between \(V(H) \setminus S_i\) and \(Q\), and \(c\) edges between \(V(H) \setminus S_i\) and \(S_i \setminus Q\) with \(c \leq n^2\). All in all, we have that \(\delta^{ec}H,L,i \leq (i - 1) \cdot n^2 + \frac{n^2}{2} \leq \left(\frac{n}{2} - 1\right) \cdot n^2 + \frac{n^2}{2} = \frac{n^3}{2} - \frac{n^2}{2}\).

- Suppose that \(\frac{n}{2} + 1 < i \leq n^2 + \frac{n}{2}\) (i.e. \(x_i \in Q\)). Then \(E_H(C_H(S_i, x_i))\) contains at most \(k\) edges between the vertices of \(V_1\) and \(V_2\), \((i - \frac{n}{2}) \cdot \frac{n}{2}\) edges between the vertices of \(Q\) and \(V_2\), and \((n^2 + \frac{n}{2} - i) \cdot \frac{n}{2}\) edges between the vertices of \(V_1\) and \(Q\). In total, we obtain that \(\delta^{ec}H,L,i \leq w\).

So we proved that \(\delta^{ec}H,L \leq w\) and thereby \((H, w)\) is a \textsc{YES}-instance of \textsc{Edge-treewidth}. \(\diamond\)

\textbf{Claim 20.} If \((H, w)\) is a \textsc{YES}-instance of \textsc{Edge-treewidth}, then \((G, k)\) is a \textsc{YES}-instance of \textsc{Min-Bisection}.

18
Proof of claim. Let \(L \) be a layout of \(H \) such that \(\delta^e(H, L) \leq w = \frac{n^3}{2} + k \) with \(k \leq \frac{n^2}{2} \). Let \(i \) be the smallest index for which \(|(V(H) \setminus S_i) \cap V(G)| = |S_i \cap V(G)| = \frac{n}{2} \). We denote \(V_1 = (V(H) \setminus S_i) \cap V(G) \) and \(V_2 = S_i \cap V(G) \). Let us prove that the bipartition \(V_1, V_2 \) certifies that \((G, k)\) is a YES-instance of Min-Bisection.

We first argue that \(S_i \cap Q \neq \emptyset \). For the sake of contradiction, suppose that \(S_i \cap Q = \emptyset \). Let \(j < i \) be the largest integer such that \(x_j \in Q \). By the minimality of \(i \), we know that \(v_{i-1} \notin Q \) and thereby \(j < i - 1 \). We observe that \(C_H(S_{j-1}, x_j) = S_{j-1} \) and moreover \(Q \setminus \{v_j\} \subseteq V(H) \setminus S_j \) and \(|S_{i-1} \cap V(G)| \geq \frac{n}{2} + 1 \). It follows that \(E_H(S_{j-1}) \) contains at least \((n^2 - 1) \cdot \left(\frac{n}{2} + 1\right)\) edges, that is \(\delta^e(H, L, i) > \frac{n^3}{2} + \frac{n^2}{2} \), contradicting the assumption that \(\delta^e(H, L) \leq w = \frac{n^3}{2} + k \) with \(k \leq \frac{n^2}{2} \).

As a consequence of \(Q \cap S_i \neq \emptyset \), we have that \(C_H(S_i, x_i) = S_i \). This implies that at least half of the edges incident to a vertex \(q \) of \(Q \) belongs to \(E_H(C_H(S_i, x_i)) \). Suppose that \(q \in S_i \), then every edge between \(q \) and \(V_1 \) belongs to \(E_H(C_H(S_i, x_i)) \). Suppose that \(q \notin S_i \), then every edge between \(q \) and \(V_2 \) belongs to \(E_H(C_H(S_i, x_i)) \). It follows that \(\delta^e(H, L, i) \geq \frac{n^2}{2} + \frac{n^3}{2} = \frac{n^3}{2} + k \). As by assumption \(\delta^e(H, L, i) \leq \frac{n^3}{2} + k \), this implies that there are at most \(k \) edges between \(V_1 \) and \(V_2 \), certifying that \((G, k)\) is a YES-instance of Min-Bisection. \(\Box \)

Claim 19 and Claim 20 establish the \(\text{NP} \)-hardness of the Edge-treewidth problem.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a \(k \)-tree. *SIAM J. Algebraic Discrete Methods*, 8(2):277–284, 1987. doi:10.1137/0608024. 4

[2] U. Bertelè and F. Brioschi. On non-serial dynamic programming. *Journal of Combinatorial Theory, Series A*, 14(2):137 – 148, 1973. doi:10.1016/0097-3165(73)90016-2. 3

[3] H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In *International Colloquium on Automata, Languages and Programming (ICALP)*, volume 317 of Lecture Notes in Computer Science, pages 105–118, 1988. doi:10.1007/3-540-19488-6_110. 4

[4] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. *SIAM Journal on Computing*, 25:1305–1317, 1996. doi:10.1137/S0097539793251219. 4

[5] H. L. Bodlaender. A partial \(k \)-arboretum of graphs with bounded treewidth. *Theoretical Computer Science*, 209(1):1 – 45, 1998. doi:10.1016/S0304-3975(97)00228-4. 4

[6] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk. An \(O(c^k \cdot n) \) \(5 \)-approximation algorithm for treewidth. In *Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, pages 499–508, 2013. doi:10.1109/FOSC.2013.60. 12

[7] H. L. Bodlaender, M. R. Fellows, and D. M. Thilikos. Derivation of algorithms for cutwidth and related graph layout parameters. *Journal of Computer and System Sciences*, 75(4):231 – 244, 2009. doi:10.1016/j.jcss.2008.10.003. 4

[8] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. *Journal of Algorithms*, 18(2):238 – 255, 1995. doi:10.1006/jagm.1995.1009. 4
[9] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. *Journal of Algorithms*, 21(2):358 – 402, 1996. doi:10.1006/jagm.1996.0049.

[10] H. L. Bodlaender and D. M. Thilikos. Treewidth for graphs with small chordality. *Discrete Applied Mathematics*, 79(1):45 – 61, 1997. doi:10.1016/S0166-218X(97)00031-0.

[11] H. L. Bodlaender and D. M. Thilikos. Computing small search numbers in linear time. In *International Workshop on Parameterized and Exact Computation (IWPEC)*, volume 3162 of *Lecture Notes in Computer Science*, pages 37–48, 2004. doi:10.1007/978-3-540-28639-4_4.

[12] C. Chekuri and J. Chuzhoy. Polynomial bounds for the grid-minor theorem. *Journal of the ACM*, 63(5):40:1–40:65, 2016. doi:10.1145/2820609.

[13] F. R. K. Chung. On the cutwidth and the topological bandwidth of a tree. *SIAM Journal on Algebraic and Discrete Methods*, 6(2):268–277, 1985. doi:10.1137/0606026.

[14] B. Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs. *Information and Computation*, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

[15] B. Courcelle. The monadic second-order logic of graphs I. recognizable sets of finite graphs. *Information and Computation*, 85(1):12 – 75, 1990. doi:10.1016/0890-5401(90)90043-H.

[16] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. *Parameterized algorithms*. Springer, 2014. doi:10.1007/978-3-319-21275-3.

[17] N. D. Dendris, L. M. Kirousis, and D. M. Thilikos. Fugitive-search games on graphs and related parameters. *Theoretical Computer Science*, 172(1):233 – 254, 1997. doi:10.1016/S0304-3975(96)00177-6.

[18] R. Diestel. *Graph theory*. Springer-Verlag, 2005. doi:10.1007/978-3-662-53622-3.

[19] G. Ding and B. Oporowski. On tree-partitions of graphs. *Discrete Mathematics*, 149(1-3):45–58, 1996. doi:10.1016/0012-365X(94)00337-I.

[20] R. G. Downey and M. R. Fellows. *Parameterized complexity*. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

[21] J. A. Ellis, I. H. Sudborough, and J. S. Turner. The vertex separation and search number of a graph. *Information and Computation*, 113(1):50 – 79, 1994. doi:10.1006/inco.1994.1064.

[22] J. Flum and M. Grohe. *Parameterized complexity theory*. Texts in Theoretical Computer Science. Springer, 2006. doi:10.1007/3-540-29953-X.

[23] R. Ganian, E.J. Kim, and S. Szeider. Algorithmic applications of tree-cut width. In *International Symposium on Mathematical Foundations of Computer Science (MFCS)*, volume 9235 of *Lecture Notes in Computer Science*, pages 348–360. Springer, 2015. doi:10.1007/978-3-662-48054-0_29.
[24] R. Ganian and S. Ordyniak. The power of cut-bases parameters for computing edge-disjoint paths. *Algorithmica*, 83:726–752, 2021. doi:10.1007/s00453-020-00772-w. 2, 5

[25] R. Ganian, S. Ordyniak, and M.S. Ramamujan. On structural parameterization of the edge-disjoint paths problems. *Algorithmica*, 83:1605–1637, 2021. doi:10.1007/s00453-020-00795-3. 5

[26] M. R. Garey and D. S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. A Series of Books in the Mathematical Sciences. W. H. Freeman and Company, 1978. 4

[27] A. C. Giannopoulou, M. Pilipczuk, J.-F. Raymond, D. M. Thilikos, and M. Wrochna. Linear kernels for edge deletion problems to immersion-closed graph classes. In *International Colloquium on Automata, Languages, and Programming (ICALP)*, volume 80 of *LIPIcs*, pages 57:1–57:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.57. 4

[28] R. Halin. S-functions for graphs. *Journal of Geometry*, 8:171–186, 1976. doi:10.1007/BF01917434. 3

[29] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. *Fundamentals of Domination in Graphs*, volume 208 of *Pure and applied mathematics*. Marcel Dekker, 1998. doi:10.1201/9781482246582. 9

[30] S. B. Horton, R. G. Parker, and R. B. Borie. On minimum cuts and the linear arrangement problem. *Discrete Applied Mathematics*, 103(1):127 – 139, 2000. doi:10.1016/S0166-218X(00)00173-6. 3

[31] R. Karp. On the computational complexity of combinatorial problems. *Networks*, 5(1):45–68, 1975. doi:10.1002/net.1975.5.1.45. 5

[32] N. G. Kinnersley. The vertex separation number of a graph equals its path-width. *Information Processing Letters*, 42(6):345 – 350, 1992. doi:10.1016/0020-0190(92)90234-M. 3

[33] E. Korach and N. Solel. Tree-width, path-width, and cutwidth. *Discrete Applied Mathematics*, 43(1):97–101, 1993. doi:10.1016/0166-218X(93)90171-J. 14

[34] T. Nishizeki, J. Vygen, and X. Zhou. The edge-disjoint paths problem is NP-complete for series-parallel graphs. *Discrete Applied Mathematics*, 115(1):177 – 186, 2001. doi:10.1016/S0166-218X(01)00223-2. 5

[35] N. Robertson and P. D. Seymour. Graph minors I. excluding a forest. *Journal of Combinatorial Theory, Series B*, 35(1):39 – 61, 1983. doi:10.1016/0095-8956(83)90079-5. 3, 14

[36] N. Robertson and P. D. Seymour. Graph minors III. planar tree-width. *Journal of Combinatorial Theory, Series B*, 36(1):49 – 64, 1984. doi:10.1016/0095-8956(84)90013-3. 3, 13

[37] N. Robertson and P. D. Seymour. Graph minors. V. Excluding a planar graph. *Journal of Combinatorial Theory, Series B*, 41(1):92–114, 1986. doi:10.1016/0095-8956(86)90030-4. 16
[38] N. Robertson and P. D. Seymour. Graph minors VIII. the disjoint paths problem. *Journal of Combinatorial Theory, Series B*, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006. 5

[39] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner's conjecture. *Journal of Combinatorial Theory, Series B*, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001. 4

[40] N. Robertson, P. D. Seymour, and R. Thomas. Quickly excluding a planar graph. *Journal of Combinatorial Theory, Series B*, 62(2):323–348, 1994. doi:10.1006/jctb.1994.1073. 13

[41] P. Scheffler. A practical linear time algorithm for disjoint paths in graphs with bounded tree-width. Technical Report 396/1994, FU Berlin, Fachbereich 3 Mathematik, 1994. 5

[42] P. D. Seymour and R. Thomas. Graph searching and a min-max theorem for tree-width. *Journal of Combinatorial Theory, Series B*, 58(1):22–33, 1993. doi:10.1006/jctb.1993.1027. 6

[43] D. M. Thilikos, M. Serna, and H. L. Bodlaender. Cutwidth I: A linear time fixed parameter algorithm. *Journal of Algorithms*, 56(1):1 – 24, 2005. doi:10.1016/j.jalgor.2004.12.001. 4

[44] D. M. Thilikos, M. Serna, and H. L. Bodlaender. Cutwidth II: Algorithms for partial w-trees of bounded degree. *Journal of Algorithms*, 56(1):25 – 49, 2005. doi:10.1016/j.jalgor.2004.12.003. 4

[45] Paul Wollan. The structure of graphs not admitting a fixed immersion. *Journal of Combinatorial Theory Series B*, 110:47–66, 2015. doi:10.1016/j.jctb.2014.07.003. 2, 3, 4, 14, 17

22