Micromanaging cardiac regeneration
Kamps, Jan A.A.M.; Krenning, Guido

Published in:
World Journal of Cardiology

DOI:
10.4330/wjc.v8.i2.163

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Kamps, J. A. A. M., & Krenning, G. (2016). Micromanaging cardiac regeneration: Targeted delivery of microRNAs for cardiac repair and regeneration. World Journal of Cardiology, 8(2), 163-179. https://doi.org/10.4330/wjc.v8.i2.163

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Micromanaging cardiac regeneration: Targeted delivery of microRNAs for cardiac repair and regeneration

Jan AAM Kamps, Guido Krenning

Abstract

The loss of cardiomyocytes during injury and disease can result in heart failure and sudden death, while the adult heart has a limited capacity for endogenous regeneration and repair. Current stem cell-based regenerative medicine approaches modestly improve cardiomyocyte survival, but offer neglectable cardiomyogenesis. This has prompted the need for methodological developments that create de novo cardiomyocytes. Current insights in cardiac development on the processes and regulatory mechanisms in embryonic cardiomyocyte differentiation provide a basis to therapeutically induce these pathways to generate new cardiomyocytes. Here, we discuss the current knowledge on embryonic cardiomyocyte differentiation and the implementation of this knowledge in state-of-the-art protocols to the direct reprogramming of cardiac fibroblasts into de novo cardiomyocytes in vitro and in vivo with an emphasis on microRNA-mediated reprogramming. Additionally, we discuss current advances on state-of-the-art targeted drug delivery systems that can be employed to deliver these microRNAs to the damaged cardiac tissue. Together, the advances in our understanding of cardiac development, recent advances in microRNA-based therapeutics, and innovative drug delivery systems, highlight exciting opportunities for effective therapies for myocardial infarction and heart failure.

Key words: Cardiac repair; Cellular plasticity; Targeted drug delivery; MicroRNA; Reprogramming

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Cardiac fibroblast reprogramming into cardiomyocytes holds great promise for future cardiac regenerative medicine therapies. Here, we discuss current advances in the state-of-the-art protocols for the direct reprogramming of cardiac fibroblasts into de novo cardiomyocytes in vitro and in vivo with an emphasis on...
microRNA-mediated reprogramming. Additionally, we discuss current advances on the state-of-the-art targeted drug delivery systems that can be employed to deliver these microRNAs to the damaged cardiac tissue.

INTRODUCTION

Ischemic cardiac disease is characterized by a chronic or acute reduction in myocardial perfusion and affects over 120 million people globally of which approximately 4% suffer from myocardial infarction (MI) annually [1,2]. MI is the process of cell death occurring after occlusion of a coronary vessel that supplies blood to a specific area of the heart and results in a massive loss (up to 11 billion cells) of viable muscle cells [3]. This loss of cardiac tissue may in turn lead to functional cardiac impairments and, if large enough, severe contractile dysfunction with an inability of the heart to maintain organ perfusion resulting in sudden death. Although the recognition of MI and the success rates of primary angioplasty have greatly improved in the past decades, treatment of MI is commenced after the cardiac damage response has already started. Cell death, either by apoptosis or necrosis, is the initial response of cardiomyocytes to the decreased oxygen supply and commences already 4 h after MI [4,5]. Cardiomyocyte cell death is followed by the influx of inflammatory cells that phagocytize the dead cells, resulting in thinning of the ventricle wall. Cytokines secreted by these inflammatory cells recruit myofibroblasts that secrete collagens and replace the lost cardiomyocytes [6,7]. This remodeling process culminates in the formation of a scar tissue that preserves the ventricle integrity, but possesses little cardiomyogenic effects are negligible and thereby reduces the infarct size and improves cardiac function long term [39]. Although these effects are beneficial to the survival of the myocardium, retention of therapeutic cells at the site of cardiomyocyte death is highly limited [41,42] and their cardiomyogenic effects are neglectable [43,44]. Hence, the regenerative effectiveness of transplantation of adult stem and progenitor cells is under debate [43,45].

Thus, MI results in a massive loss of cardiomyocytes that are replaced by scar tissue. Endogenous repair mechanisms, such as cardiomyocyte proliferation, are insufficient to efficiently regenerate the lost myocardial tissue and therapeutic approaches to induce cardiomyocyte proliferation using growth factors are ineffective. Current regenerative medicine approaches using a wide variety of growth factors (i.e., ERBB2 [21], FGF1 [22,23], IGF1 [24,25], IGF1 [25], NRG1 [26,27], MYDGF [28], and POSTN [29], reviewed in [30,31]) induce cardiomyocyte proliferation after MI, albeit relatively ineffectively.

The relative ineffectiveness of cardiomitogenic therapies using growth factors in restoring cardiomyocyte numbers following myocardial infarction warrants the need to increase cardiomyocyte numbers from exogenous sources. The effectiveness of adult stem and progenitor cells of various origins (i.e., bone marrow-derived cells [Mesenchymal stem cells (MSC) [52] and endothelial progenitor cells (EPC/ECFC) [23]), adipose tissue-derived regenerative cells (ADRC) [34] and cardiac-derived progenitor cells (CPC) [45] to induce cardiac regeneration has been assessed in numerous clinical studies (reviewed in [36-39]). In general, intramyocardial transplantation of adult stem and progenitor cells in the post-infarct myocardium induces neoangiogenesis and promotes cardiomyocyte survival [40] and thereby reduces the infarct size and improves cardiac function long term [39].

So, if the morbidity following MI is due to the massive loss of cardiomyocytes, would it not be logical to therapeutically induce cardiomyocyte proliferation to compensate for the lost myocytes?

Although most cardiomyocytes form terminally differentiated binucleated cells that withdraw from the cell cycle [13,14], limiting the myocardial regenerative capacity, some evidence exists for postnatal cardiomyocyte proliferation. Retrospective birth dating of human cardiomyocytes using carbon-14 in the DNA of cardiomyocytes demonstrated that human cardiomyocytes have a turnover rate of approximately 0.45%-1% per year [19]. During normal human wound healing, cell cycle activation occurs which compensates for the loss of tissue [16,17]. Indeed, a small number of cardiomyocytes enters the cell division cycle following myocardial infarction [18], however the level of proliferation is insufficient to regenerate the lost tissue.

The observation that the postnatal heart retains some proliferative capacity has inspired therapeutic approaches that aim to enhance the endogenous cardiomyocyte proliferation for regeneration. Indeed, forced expression of cell cycle activators such as Cyclin A2 and D2 promotes the proliferation of postnatal cardiomyocytes and limits damage following MI [19,20]. Additionally, regenerative medicine approaches using a wide variety of growth factors (i.e., ERBB2 [21], FGF1 [22,23], IGF1 [24,25], IGF1 [25], NRG1 [26,27], MYDGF [28], and POSTN [29], reviewed in [30,31]) induce cardiomyocyte proliferation after MI, albeit relatively ineffectively.

The relative ineffectiveness of cardiomitogenic therapies using growth factors in restoring cardiomyocyte numbers following myocardial infarction warrants the need to increase cardiomyocyte numbers from exogenous sources. The effectiveness of adult stem and progenitor cells of various origins (i.e., bone marrow-derived cells [Mesenchymal stem cells (MSC) [52] and endothelial progenitor cells (EPC/ECFC) [23]), adipose tissue-derived regenerative cells (ADRC) [34] and cardiac-derived progenitor cells (CPC) [45] to induce cardiac regeneration has been assessed in numerous clinical studies (reviewed in [36-39]). In general, intramyocardial transplantation of adult stem and progenitor cells in the post-infarct myocardium induces neoangiogenesis and promotes cardiomyocyte survival [40] and thereby reduces the infarct size and improves cardiac function long term [39]. Although these effects are beneficial to the survival of the myocardium, retention of therapeutic cells at the site of cardiomyocyte death is highly limited [41,42] and their cardiomyogenic effects are neglectable [43,44]. Hence, the regenerative effectiveness of transplantation of adult stem and progenitor cells is under debate [43,45].

Thus, MI results in a massive loss of cardiomyocytes that are replaced by scar tissue. Endogenous repair mechanisms, such as cardiomyocyte proliferation, are insufficient to efficiently regenerate the lost myocardial tissue and therapeutic approaches to induce cardiomyocyte proliferation using growth factors are ineffective. Current regenerative medicine therapies using stem and progenitor cells improve cardiomyocyte survival, but pose neglectable cardiomyogenesis. This warrants the development of new therapeutic strategies that focus on increasing the number of viable cardiomyocytes at the infarct site, reviewed below.
CELLULAR PLASTICITY AS THE NEW THERAPEUTIC OPPORTUNITY

Induced pluripotent stem cells and cardiomyogenesis

In 2006, Takahashi et al.[46] challenged the dogma of terminal cell differentiation. Probing the effects of transcription factors that are pivotal to embryonic stem cell maintenance in terminally differentiated skin fibroblasts, four transcription factors (i.e., Oct4, Sox2, Klf4 and c-Myc) were identified that could convert skin fibroblasts into a more primitive pluripotent stem cell resembling embryonic stem cells[46,47]. These data exemplify that cell fate is not fixed, but is determined by the available transcription factors and can be altered by the addition of alternative transcription factors. The obtained induced-pluripotent stem cells (iPSC) introduced a new era in regenerative medicine wherein cellular reprogramming is used to treat disease.

iPSC have been used in preclinical models of MI repair[48-51]. Transplantation of iPSC directly into the infarcted myocardium improves cardiac function [e.g., left ventricle ejection fraction (LVEF), fractional shortening, and contractility] and reduces infarct size[48-50]. Although transplanted iPSC contribute to cardiac repair, a major impediment to their clinical use in human patients lies in the inefficiency of transplanted iPSC to form cardiomyocytes (0.5%-2%)[48], their tumorigenicity[51], and their limited retention in the infarcted tissue. Yet, proof-of-concept that iPSC can differentiate into functional cardiomyocytes has tantalized researchers in studying cardiac embryology as iPSC differentiation into functional cardiomyocytes is merely a reiteration of embryology.

Embryonic cardiogenesis (Figure 1A) begins from the mesoderm that arises from the primitive streak during gastrulation. Gene regulation and cell movement that control cardiogenesis are spatially and temporally stringently regulated (reviewed in[53]). Bone morphogenetic protein (BMP)-4, activin A and fibroblast growth factor (FGF)-2 induce mesoderm specification[54-56] from pluripotent progenitors in the primitive streak by inducing Wnt3a expression, whereas Notch signaling inhibits the transition from mesodermal precursors into cardiac mesoderm[57].

MES1, the most early expressed marker of the cardiac lineage[58,59], is expressed by all cardiac precursors that arise from the cardiac mesoderm and drives further cardiac specification by the Dkk1-mediated repression of Wnt signaling[60], resulting in the formation of specialized cardiac progenitor cells. This pool of cardiac precursors gives rise to the endocardium, the first heart field (from which the atria, left ventricle and nodal conduction system are formed) and the second heart field (from which the right ventricle and outflow tract are formed)[61]. Specification of cardiac progenitors into cells of the first and second heart field is regulated by the complex interplay of transcription factors downstream of MES1[62,63]. Herein, GATA4, MEF2c, HAND2 and NKX2.5 represent common transcription factors to all cardiac precursors, whereas the expression of TBX5 is restricted to the first heart field[64] and ISL1 and TBX1 are restricted to the second heart field[65,66]. Once formed, cardiac cells of the first and second heart field proliferate in response to endocardial-derived Neuregulin (NRG1) and epicardial-derived retinoic acid and FGF2[67,68].

Indeed, reiteration of key steps in cardiogenesis by supplying iPSC with stage-specific pivotal signaling molecules efficiently differentiates iPSC into the cardiac lineage. Differentiation protocols rely on progressive sequential inductive signals using growth factors (Figure 1B). Monolayers of iPSC are stimulated with BMP4, Activin A and Wnt3a in the first 4 d of differentiation to induce cardiac mesoderm formation[69-72]. Inhibition of Wnt signaling using small molecule inhibitors after day 4 of differentiation advances mesodermal precursors to cardiac progenitors and reiterates the actions of Dkk1-mediated inhibition of Wnt signaling during embryology[69,70]. The addition of ascorbic acid[73] or G-CSF[74] at this stage enhances cardiomyocyte formation by stimulating proliferation of cardiac progenitor cells (Figure 1B). Culture of the obtained cardiac progenitor cells in the presence of NRG1 or IGF1 allows further maturation of cardiac progenitor cells into immature cardiac cells from the first and second heart field[75]. Modifications to this general protocol include embedding in extracellular matrix[76], mechanical[77] and electrical[78] stimulation of the immature cardiomyocytes. These modifications may influence the maturity of the iPSC-derived cardiomyocytes but do not increase the differentiation efficiency.

Direct reprogramming of cardiac fibroblasts into cardiomyocytes

In equivalence to the iPSC generation, where pluripotency-associated transcription factors are expressed in terminally differentiated cells, direct conversion of fibroblasts into the cardiac lineage has been attempted[79-83]. Although no single master regulator of cardiomyogenesis has been identified to date, in analogy to the pioneering iPSC work of Yamanaka, Ieda et al.[79] used a reductionist approach to test fourteen different transcription factors to induce cardiomyogenic gene expression in fibroblasts, and found that the combination of cardiac-specific transcription factors GATA4, Mef2c and Tbx5 successfully reprograms murine cardiac fibroblasts directly into immature cardiomyocytes (Figure 1C)[79]. Although the efficiency of fibroblast reprogramming is rather low, with only about 30% of transduced cells display spontaneous contraction (about 6% of the total fibroblast population)[79,84], the proof-of-concept that cardiac fibroblasts can be converted into cardiomyocytes by retroviral expression of GATA4, Mef2c and Tbx5 paved the way for in vivo delivery of these transcription factors.

Cardiac fibroblasts account for the majority of cells in the heart[85] and are therefore considered a viable cell population for reprogramming and restoration of cardiac function. Lineage tracing models[86,87], wherein the cardiac fibroblasts are genetically tagged with a marker protein, were subjected to cardiac damage (either coronary ligation[86,87] or cryoinjury[88]) and treated with GATA4, Mef2c and Tbx5 retroviruses. Up to three months...
after treatment, cardiac transcription factor delivery to the heart reduces infarct sizes and attenuates cardiac dysfunction[84,86,87], providing therapeutic proof-of-concept for in vivo cellular reprogramming, although efficiencies differ widely (1%-30%) between studies. Surprisingly, in vivo reprogrammed cardiomyocytes develop more characteristics (e.g., binucleation, assembled sarcomeres) of native cardiomyocytes as compared to their in vitro counterparts[87]. This improvement in reprogramming may be derived from microenvironmental clues, exposure to native extracellular matrix or mechanical forces during reprogramming and could provide clues for further improvements to the reprogramming protocols.

Additionally, it must be noted that reprogramming of cardiac fibroblasts into cardiomyocytes is efficient in mice, however the conversion of human fibroblasts into the cardiac lineage proves more difficult[80-83]. The expression of GATA4, Mef2c and TBX5 in human cardiac fibroblasts is insufficient for cardiac induction. The addition of MESP1 and Myocardin (MyoCD)[80], MyoCD and MyoCD-related transcription factor-A (Mrtf-a)[81], MESP1 and estrogen-related receptor beta (ESRRB)[82], or MESP1 and ETS2 (Figure 1C)[83] all increase reprogramming efficiency of human cardiac myocytes and underscore the need for further research in this area before a definite transcription factor cocktail can be put to the test in human trials.

Moreover, additional major impediments need to be addressed prior to clinical translation. Although issues such as tumorigenicity and retention encountered with iPSC and stem cell therapeutics, may be minimalized by the direct conversion of cardiac fibroblasts into cardiomyocytes, heterogeneity in reprogramming efficacy, leading to the formation of immature cardiomyocytes that do not properly couple to adjacent cardiomyocytes, may cause fatal arrhythmias. Furthermore, current strategies rely on the use of viruses integrating randomly in the genome of cells that undergo reprogramming, which may elicit tumorigenic events. It is evident that in vivo reprogramming protocols without the use of viruses are essential before clinical translation can commence.
MicroRNAs in cardiomyocytes reprogramming

The use of microRNAs in reprogramming strategies may overcome some of the limitations encountered in reprogramming fibroblasts into cardiomyocytes using viruses, since chemically synthesized microRNA mimics are easily transfected into cells and exhibit low toxicity in animal models. MicroRNAs are endogenous small (about 21-23 nucleotides in length) non-coding RNAs that function as repressors of gene translation. Endogenously, microRNAs are encoded in the genome either in extronic regions that form microRNA gene clusters or intronically in both protein-coding and non-coding genes. Regardless of their genomic location, microRNA transcription is initiated by the RNA Polymerase II, resulting in the generation of a pri-microRNA. Pri-microRNAs are processed into pre-microRNAs by the RNA-processing complex formed by Drosha and DGC8 and exported from the nucleus by Exportin 5. In the cytosol, pre-microRNAs undergo a second processing step, performed by the cytoplasmic endonuclease Dicer, which forms of the mature microRNA duplex. Next, one strand of the microRNA duplex is loaded into the RNA-induced silencing complex (RISC) that utilizes the microRNA to identify and silence its target genes extensively reviewed in the literature. The effects of microRNAs on cardiomyogenesis might be powerful, as a single microRNA may target multiple signaling pathways simultaneously, a phenomenon known as multiplicity of microRNA targets. Indeed, mice lacking the enzyme Dicer, which is essential to process microRNA precursors into their mature form, die at day E12.5 from cardiac failure.

Advances on iPSC and embryonic stem cell (ESC) differentiation into cardiomyocytes (described in sections "Induced pluripotent stem cells and cardiomyogenesis" and "Direct reprogramming of cardiac fibroblasts into cardiomyocytes") allowed Fu et al to identify microRNAs essential to cardiomyogenesis. ESCs were differentiated using exogenous growth factors into beating cardiomyocytes and their "microRNAome" were analyzed on array platforms. Next, these microRNA signatures were compared to genuine fetal and adult cardiomyocytes and adult cardiac fibroblasts. MicroRNAs that are differentially expressed in ESC-derived cardiomyocytes and native ESC and that are not expressed by cardiac fibroblasts were identified as cardiomyogenic microRNAs or "cardiomiRs". Although the two "cardiomiR" screens show limited overlap (46%) when considering all differentially expressed microRNAs between native ESC and ESC-derived cardiomyocytes, the overlap is greatly increased when only microRNAs with increased abundance are compared (85%). This comparison allowed the identification of 7 "cardiomiRs" whose expression is increased during cardiomyogenesis (Table 1).

MicroRNA-1 and microRNA-133 are pivotal regulators of muscle differentiation and loss of microRNA-1 or microRNA-133 results in embryonic lethality due to several cardiac failures, including defective morphology, electrical conduction and cardiomyocyte procreation. MicroRNA-1 and microRNA-133 are polycistronically transcribed from a duplicated locus in the human genome on chromosomes 18 and 20. MicroRNA-1 and microRNA-133 expression is under control of SRF and promotes cardiac mesoderm formation from naive ESCs.

MicroRNA-1 is highly conserved among mammals and its expression in ESC shifts their gene expression profile toward that of cardiomyocytes. The induction of the cardiomyogenic phenotype is mediated through several cooperative actions of microRNA-1. Inhibition of Notch signaling by microRNA-1-mediated direct repression of Dll1 and its downstream effector Hes1, liberates the expression of the cardiac transcription factors GATA4, Nkx2.5 and Myogenin, whereas repression of the histone deacetylase HDAC4 liberates the cardiac transcription factor MeF2c (Figure 2). Additionally, repression of Hand2 and the smooth muscle transcription factor Myocardin by microRNA-1 facilitate cardiomyocyte maturation through the repression of proliferation of mesenchymal progenitors and smooth muscle gene expression, respectively. Interestingly, the sole expression of microRNA-1 in cardiac fibroblasts is sufficient to induce cardiac reprogramming.

MicroRNA-133 aids in cardiomyogenesis, however, in contrast to microRNA-1, its sole expression is insufficient to differentiate ESC into spontaneously contracting cells. MicroRNA-133 promotes the actions of microRNA-1 through the suppression of smooth muscle specific genes in the myogenic precursors, thereby facilitating cardiomyocyte maturation. The direct repression of SRF and the mesenchymal transcription factor Snail during cardiac differentiation of ESC or reprogramming of cardiac fibroblasts into cardiomyocytes reduces smooth muscle and fibroblast associated genes, which allows for the maturation of cardiomyocytes.

The cardiac myosin genes, which facilitate cardiac contraction, house three additional cardiomiRs, namely microRNA-499 and the microRNAs-208a and b that are encoded by the Myh7b and Myh6/7, respectively. MicroRNA-499 facilitates expression of the cardiac transcription factor MeF2c through a Wnt/β-Catenin-mediated mechanism (Figure 2), which remains to be elucidated but appears to involve repression of the transcription factor Sox6 and the transcription inhibitor Regulator of differentiation (Rod-1). MicroRNA-208a and microRNA-208b are involved in cardiomyocyte maturation and orchestrate the expression of myosin fibers in the heart. In the adult heart, the abundance of myosin fibers is alpha fibers (or fast fibers) whereas in the developing heart the majority of myosin fibers are beta fibers (or slow fibers). The gene encoding alpha-MHC encodes a cardiac-specific microRNA (microRNA-208a) that targets the repressors of beta-MHC Sox6, Puri and SP5. MicroRNA-208a-mediated repression of these inhibitors thus facilitates the expression...
of beta-MHC by the developing cardiomyocyte. Moreover, the beta-MHC gene (encoded by Myh7) contains the related microRNA-208b. Expression of beta-MHC, induced by microRNA-208a, thus induces the expression of microRNA-208b that provides a feed forward mechanism that maintains the expression of beta-MHC.

Additionally, microRNA-208 targets myostatin, a known inhibitor of cardiac progenitor cell proliferation, which reduces the inhibitory effect of myostatin on cardiac progenitor cell propagation.

The other cardiomirs, microRNA-30a-e, microRNA-181a and microRNA-195, are less well characterized. Overexpression of microRNA181a in ESC increased proliferation of differentiated cardiomyocytes through unidentified mechanisms, whereas the expression of microRNA-195 decreases cardiomyocyte proliferation through the inhibition of cell cycle regulator cyclin D1. MicroRNA-30a-e regulate cardiogenesis by targeting Sna2 and Smarcd2, two known inducers of mesenchymal gene expression. Their inhibition by microRNA-30a-e thus favors maturation of the cardiac phenotype over the maintenance of the mesenchymal phenotype (Figure 2).

The non-cardiac restricted microRNAs let-7, microRNA-99, and the microRNA-17/92 cluster also facilitate cardiomyogenesis. MicroRNA-99 facilitates the transition from mesenchymal precursor to cardiac progenitor cells by the Smarca5-mediated repression of TGFβ signaling. Additionally, let-7 induces the expression of cardiogenic transcription factors GATA4, Mef2c, Nkx2.5 and Tbx5 by the repression of EZH2, a histone methyltransferase that epigenetically silences these genes in mesenchymal precursors. The microRNA-17/92 cluster subsequently facilitates ventricular myocyte generation from the first heart field. The microRNA-17/92 cluster targets Tbx1 and ISL1, the master transcription factors for second heart field development, thereby favoring differentiation of the first heart field (Figure 2).

Notably, Jayawardena et al. used the most abundantly expressed cardiomirs, i.e., microRNA-1, 133, 208 and 499, to reprogram cardiac fibroblasts directly into cardiomyocytes. Transient expression of these four microRNAs in vitro generated mature cardiomyocytes that spontaneous beat, albeit at low efficiency (1.5%-7.7% of all fibroblasts). The reprogramming efficiency could be increased to about 28% by the addition of a Janus Kinase inhibitor. Moreover, the four microRNAs reprogram cardiac fibroblasts in vivo in a mouse model of MI, providing therapeutic proof-of-concept for the microRNA-mediated reprogramming of fibroblasts to ameliorate damage following MI.

Thus, advances in iPSC biology and cardiac reprogramming have identified exogenous growth factors and endogenous transcription factors that drive cardio-
myogenesis, and have provided novel therapeutic approaches for the amelioration of damage from MI by the therapeutic expression of cardiac transcription factors. Moreover, these recent advances have provided a platform to study cardiogenesis in more detail. MicroRNAs can similarly induce fibroblast reprogramming into cardiomyocytes and can be delivered to the cardiac tissue without the use of randomly integrating viruses, and may thus improve safety of reprogramming in a clinical context. The question that remains is how to deliver these microRNAs safely and efficiently to the site of damage and cell type of choice to perform their function. This question is addressed in the next section.

TARGETING MICRONRNAS FOR CARDIAC REGENERATION

MicroRNA-mediated reprogramming of cardiac fibroblasts in vivo requires advanced delivery strategies. In the section below, we will describe general and targeted drug delivery strategies and discuss possibilities to specifically target microRNAs to cardiac fibroblasts.

A range of chemical modifications to enhance cellular uptake of microRNAs have been developed recently. Additionally, particulate drug delivery systems, including liposomes, polymeric micelles, polymeric vesicles, polymeric nanoparticles (NPs), and dendrimers have been investigated for targeted delivery of drugs\(^{[123]}\) including microRNAs in a variety of disease models outside the cardiac field and with varying degrees of success. Current advances in targeted drug delivery from these fields provide a solid basis for the burgeoning field of cardiac drug delivery.

In general, the prime reasons for targeted drug delivery is the modulation of the drug’s pharmacokinetics, the avoidance of toxicity of the drug in non-diseased tissue or cells and to alter the apparent physicochemical characteristics of a drug by making use of a carrier. An ideal drug delivery vehicle needs to be non-toxic, biocompatible, non-immunogenic and biodegradable\(^{[123]}\). Particle sizes of the drug delivery system have a preferred size between 10 and 200 nm. The lower limit is determined by the glomerular permselectivity in the kidney that captures particles below 10 nm and rapidly clears them through renal filtration\(^{[124]}\), whereas the upper limit is set by clearance through the reticuloendothelial system and uptake by the spleen and liver\(^{[125]}\). Additionally, surface charge and chemistry are key parameters in the design of drug delivery systems. Systems with a positive surface charge may electrostatically interact with the cell membrane or its associated negatively-charged proteoglycans and subsequently internalized through endocytosis\(^{[126,127]}\). Negatively charged systems are preferentially recognized by monocytes/macrophages and internalized via the cleftalveolar or clathrin endocytic
pathways[128-130].

Classes of drug targeting systems

Cardiac microRNA delivery poses huge challenges as unmodified microRNAs are rapidly degraded by systemic nucleases, secreted through renal filtration and phagocytosed by monocytes/macrophages, limiting their ability to reach their target cell[131,132]. A range of chemical modifications to enhance microRNA stability and cell permeability, including 2'-O-methyl modifications, locked nucleic acid chemistry, the conjugation of small molecules or cell penetrating peptides (Figure 3)[133] and peptide nucleic acids have been developed that increase therapeutic efficacy of microRNA therapies (reviewed in[133,134,135]), albeit they do not add cell or organ specificity. Hence, the development of targeted delivery systems for myocardial microRNA delivery is of the utmost importance.

As described above, various particulate drug delivery systems have been developed for cell and organ specific targeted delivery of drugs (Table 2). Liposomes[136], the related polymerosomes[137] and polymeric micelles[138] are a system of lipids or polymers that self-assemble into spherical structures with an aqueous core that can hold the microRNA payload[123,138,139]. Single or multiple types of lipids and polymers can be combined to generate liposomes, polymerosomes and polymeric micelles, which allows for additional flexibility in designing the physical and chemical properties of the drug delivery vehicle[140]. Liposomes and polymerosomes are internalized via endocytosis and destined for lysosomal degradation[141]. Endosomal escape from the liposomal content occurs through pH-sensitive fusion of the liposome and the endosomal membrane, resulting in drug release in the cytoplasm[142]. Although liposomes have a long history in drug delivery in basic and clinical medicine with FDA approval, some concerns regarding their clinical applicability are reported, such as the immunogenicity and toxicity of certain cationic lipid particles[143,144]. Regardless, liposomes and polymerosomes are highly promising for future clinical microRNA delivery.

Microbubbles (Table 2) are a second class of drug delivery systems that can be used for microRNA delivery in vivo and represent a specialized form of liposome that is sensitive to external clues, such as high powered ultrasound (described below). Microbubbles are gas-filled lipid spheres of various diameters (10–1000 nm)[145,146]. Cationic microbubbles can form complexes with anionic drugs, such as microRNAs, by electrostatic interaction[147,148]. The sensitivity of microbubbles to ultrasound, which destroys the microbubble, delivers the payload directly to its environment[145,147]. Hence, for efficient targeting of microRNAs into the tissue, additional modifications to the microRNA (described above) may be necessary to increase cellular uptake by the target cells[131,132].

Nanoparticles and nanospheres (Table 2) are a third class of drug delivery vehicles that consist of lipids or block co-polymers, respectively[149,150]. Nanoparticles and nanospheres are commonly produced using emulsion or precipitation techniques which form solid structures typically 10–100 nm in size[136,151]. Changing the composition of the block co-polymers that build up the nanoparticle allows tuning drug delivery rates[128], as drug delivery occurs through diffusion of the drug through the solid nanoparticle or via biodegradation of the particle[139,150,151]. The solid nature of nanoparticles confers great stability advantages in vivo and provides slow-release properties. Therefore, nanoparticles are more efficient in delivering proteinaceous and small molecule drugs than microRNAs, as cellular uptake and degradation properties are inferior to the delivery efficiency of liposomes and polymeric micelles.

Dendrimers[128,129], represent the last class of drug delivery systems are highly branched macromolecules with a controlled repeated branching around a central core that forms a small (1–10 nm), spherical and highly dense nanocarrier that holds many cavities that may contain drugs[152-155]. Targeting efficacy and extravasation of dendrimers can be controlled by their size, molecular weight and the functional groups present on their surface[153,156].

Passive drug targeting

Targeting of drug delivery systems can be achieved via two general concepts, namely passive or active targeting. Passive targeting is based on the so-called enhanced permeability and retention effect (EPR)[157]. At sites of inflammation, the integrity of the endothelial lining is often compromised, resulting in a defective or leaky vasculature. Circulating drug delivery systems are able to pass these leaky vessels and can thus enter the inflamed tissue. Hence, colloidal drug delivery systems passively accumulate at sites of inflammation, such as the infarcted heart[138,139]. An important prerequisite for passive targeting is a relatively long (hours-days) circulation time of the drug delivery system since extravasation occurs only by chance. Additionally, if passive drug delivery is to be used to target cardiac fibroblasts, detection by monocytes/macrophages needs to be avoided in order to reduce rapid clearance of the drug carriers from the cardiac tissue by these phagocytic cells.

Active drug targeting

Active targeting drug delivery systems are equipped with specific targeting devices that recognize or have affinity for certain cells. Although the recent identification of biomarkers that are differentially expressed in the diseased cardiac tissue has advanced the development of experimental therapies that can be employed for the targeted delivery of microRNAs, there is a huge challenge for active-targeting strategies to find specific target molecules for a certain disease process and to test its effectiveness in drug delivery therapies.

Active drug targeting of microRNAs to cardiac fibroblasts may be achieved in two distinct manners, depending on the interaction of the targeting device and the cell. Either the drug delivery system can be internalized by the cell where it releases the microRNAs subsequently (epitope targeted drug delivery, Figure 3), or the drug delivery system can
Heat, light, pH or ultrasound, will release their payload by the indicated external trigger if present at the disease site. Ultrasound-sensitive microbubbles (described in section “Classes of drug targeting systems”) have been used for cardiac microRNA delivery with high efficiency, although reports on targeting of cardiac fibroblast remain scarce. Gill et al. used liposomal ultrasound-sensitive microbubbles to deliver microRNA-133 into HL1 cardiomyocytes in vitro. Both encapsulated (inside the microbubble) and complexed (on the outer shell of the microbubble) microRNA formulations efficiently delivered the microRNA-133 mimic, without affecting cardiomyocyte viability, indicating that, although encapsulation increases the microRNA-carrying capacity of microRNAs, complexation strategies do not affect the ability of microbubbles to deliver microRNAs.[166] Using a similar approach, Liu et al. delivered microRNA-21 mimics into the hearts of swine without inflicting cardiac damage. Myocardial microRNA-21 expression levels were efficiently elevated in hearts treated with the microRNA-microbubble complex that received ultrasound activation compared to control conditions. Interestingly, the transfection efficiency of microRNA-microbubble complexes that were administered by intracoronary...
Table 2 Characteristics of particulate drug delivery systems

Carrier	Size range (nm)	Preparation method	Advantages for drug delivery	Disadvantages for drug delivery	Ref.
Liposomes and polymerosomes	10-2000	Self-assembly in aqueous solutions	High drug-carrying capacity; Good for hydrophobic and hydrophilic drugs; Surface functionalization possible	Batch-to-batch variability; Difficulties in sterilization	[123,135,138,141,143,150,161,178]
Microbubbles	10-1000	Various depending on type	Low drug-carrying capacity	Not good for hydrophobic drugs	[145-148,166,168,179]
Polymeric micelles	10-100	Direct organization or controlled aggregation in solvent	Long blood circulation time; Surface functionalization possible	Not good for hydrophobic drugs	[123,136,137,155,158]
Nanoparticles and nanospheres	10-100	Nanoparticles: Polymerization of monomers by emulsion; Nanospheres: Interfacial polymerization and phase inversion with polymeric emulsions	Shape, size and mechanical properties tunable; Possibility for controlled release	Toxicity of residual chemicals from preparation process; Limited cellular uptake and degradation	[123,126,128,139,150,151,155,180]
Dendrimers	1-10	Convergent or divergent synthesis	High functionalized surface	Difficult preparation process; Toxicity	[123,154,156]

The concept of cardiac fibroblast reprogramming into cardiomyocytes holds great therapeutic value for the treatment of MI and its associated cardiac failure. However, fibroblast reprogramming is a recent concept and although current studies have provided proof-of-concept, focus on its clinical translation is limited. A range of drug delivery systems are reported for the delivery of microRNAs outside the cardiac field that can easily be transposed onto the reprogramming paradigm. As this field evolves, clinically relevant delivery approaches and suitable targeting epitopes for fibroblast-specific drug delivery will be explored as will their clinical effectiveness.

SUMMARY AND FUTURE PERSPECTIVES

Deciphering the signaling pathways that underlie cardiac development has led to new therapeutic strategies that trigger cardiac regeneration. Vast progress is made in promoting cardiomyocyte proliferation and in direct reprogramming of cardiac fibroblasts into cardiomyocytes, which offer new perspectives on the possibility to advance from treating cardiac disease to curing cardiac disease. Additionally, advances in drug delivery have yielded a plethora of drug delivery systems that can selectively deliver therapeutic agents to relevant cell populations at the site of damage. However, many challenges remain to be addressed before clinical translation can commence.

During a MI, billions of cardiomyocytes are lost and although current reprogramming strategies using exogenous transcription factors or microRNAs have emerged as potential therapeutic strategies, they are vastly inefficient. Thus, to enhance cardiac regeneration it will be pivotal to develop procedures that increase the yield and efficiency of generating de novo cardiomyocytes. Advancing our mechanistic understanding of the reprogramming process, including the directed differentiation of subtypes of cardiomyocyte (i.e., ventricular, atrial or nodal), is key to the success of this promising therapy, however when subtype specification occurs during development and how these processes are regulated remain elusive. Moreover, in vivo efficacy and safety in large animals needs to be addressed before clinical translation can commence.

Additionally, it has been reported that the delivery of immature or heterogeneous populations of cardiomyocyte derived from progenitor cells or iPSC can lead to arrhythmias. Currently, reprogrammed cardiomyocytes are immature and phenotypically heterogeneous, which could contribute to arrhythmogenesis. Hence, it is crucial to promote maturation and integration of reprogrammed cardiomyocytes. Yet, our current understanding of these processes is limited and further research into these processes is highly warranted.

While an intense research focus has been on the
development of new drug delivery systems, efforts to identify epitopes that are differentially expressed in diseased cardiac tissue has received little attention, as the field of cardiac drug delivery is still in its infancy. The identification of target epitopes that discriminate between fibroblasts in the affected vs the healthy tissue is pivotal to clinical translation of targeted delivery of microRNAs using liposomes, polymeric micelles or microbubbles. In addition, the heart contains a large population of fibroblasts that are necessary for its normal function[173,174]. Therefore, it may be detrimental to the cardiac function to target all fibroblasts for reprogramming. Drug delivery systems may need to be comprised of multiple targeting mechanisms, e.g., ultrasound sensitive and fibroblast targeted, if a sufficiently selective molecular targeting epitope cannot be identified that distinguishes fibroblasts in the scar tissue from those elsewhere in the heart.

In summary, MI results in a massive loss of cardiomyocytes that are replaced by scar tissue. Endogenous repair mechanisms are insufficient to efficiently regenerate the lost myocardial tissue and therapeutic approaches to induce cardiomyocyte proliferation using growth factors are relatively ineffective. Advances in our basic understanding of cardiomyogenesis obtained from embryology and iPSC biology has led to the identification of factors that drive cardiomyogenesis, and have provided a novel therapeutic approach for the amelioration of damage from MI through the therapeutic delivery of microRNAs that reprogram cardioblasts into cardiomyocytes. These microRNAs can be delivered to the cardiac fibroblasts using advanced drug delivery systems. Although there are many challenges ahead in advancing this emerging technology, the opportunities and potential clinical benefits are substantial and we are confident that the field will continue to push this technology further in the years to come.

REFERENCES

1 Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Flaxman A, Murray CJ, Naghavi M. The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. Circulation 2014; 129: 1493-1501 [PMID: 24573351 DOI: 10.1161/circulationaha.113.004046]

2 Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 2015; 131: e29-322 [PMID: 25520374 DOI: 10.1161/cir.0000000000000157]

3 Hansson EM, Lindsay ME, Chien KR. Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell 2009; 5: 364-377 [PMID: 19796617 DOI: 10.1016/j.stem.2009.09.004]

4 Bialik S, Geenen DL, Sasson IE, Cheng R, Horner JW, Evans SM, Lord EM, Koch CJ, Kitnis RN. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 1997; 100: 1363-1372 [PMID: 9294101 DOI: 10.1172/JCI119656]

5 Hofstra L, Liem IH, Dumont EA, Boersma HH, van Heerde H, Steenbergen SG, van Rooijen N, Petersen AH, van Luyn MJ. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 2007; 170: 818-829 [PMID: 17232368 DOI: 10.2353/ajpath.2007.060054]

6 Sun Y, Weber KT. Infarct scar: a dynamic tissue. Cardiacaes Res 2000; 46: 250-256 [PMID: 10773228 DOI: 10.1161/01.01.hc.0000032-8]

7 Laffamme MA, Murray CE. Heart regeneration. Nature 2011; 473: 326-335 [PMID: 21593865 DOI: 10.1038/nature10147]

8 Steinhauser ML, Lee RT. Regeneration of the heart. EMBO Mol Med 2011; 3: 701-712 [PMID: 22095736 DOI: 10.1002/emmm.201100175]

9 Spoladore R, Maron MS, D’Amato R, Camici PG, Olivotto I. Pharmacological treatment options for hypertrophic cardiomyopathy: high time for evidence. Eur Heart J 2012; 33: 1724-1733 [PMID: 22719025 DOI: 10.1093/eurheartj/ehs600]

10 Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, Strömberg A, van Veldhuisen DJ, Atar D, Hoes AW, Keren A, Mebazaa A, Nieminen M, Priori SG, Swedberg K. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail 2008; 10: 933-989 [PMID: 18826876 DOI: 10.1016/j.ejheart.2008.08.005]

11 Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment. Circulation 2002; 105: 1503-1508 [PMID: 11914262 DOI: 10.1161/hi1202.105290]

12 Walsh S, Pontén A, Fleischmann BK, Jovinge S. Cardiomyocyte cell cycle control and growth estimation in vivo—an analysis based on cardiomyocyte nuclei. Cardiovasc Res 2010; 86: 365-373 [PMID: 20071355 DOI: 10.1093/eurcv/eq005]

13 Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996; 28: 1737-1746 [PMID: 8877783 DOI: 10.1006/jmcc.1996.0163]

14 Bergmann O, Bidhawaj RD, Bernard S, Zduneck S, Barnabé-Heider F, Walsh S, Zapichik Ja, Alkass K, Buchholz BA, Druh H, Jovinge S, Friess J. Evidence for cardiomyocyte renewal in humans. Science 2009; 324: 98-102 [PMID: 19342590 DOI: 10.1126/science.1164680]

15 Witte MB, Barbul A. General principles of wound healing. Surg Clin North Am 1997; 77: 509-528 [PMID: 9194878 DOI: 10.1016/S0039-6109(05)70566-1]

16 Mutsaers SE, Bishop JE, McGrouther G, Laurent GJ. Mechanisms of tissue repair: from wound healing to fibrosis. J Mol Cell Cardiol 1997; 29: 5-17 [PMID: 9076937 DOI: S1357-2725(96)00115-X]

17 Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P. Myocardial stem cells. Circ Res 2000; 87: e53 [PMID: 11396441 DOI: 10.1161/01.res.87.6.53}

18 Chauudy HW, Dishoosh HH, Tang H, Zhang L, Wang X, Wu EX, Wolgemuth DJ. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem 2004; 279: 35858-35866 [PMID: 15159393 DOI: 10.1074/jbc.M404975200]

19 Pasumarthi KR, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 2005; 96: 110-118 [PMID: 15576649 DOI: 10.1161/01.}

Kamps JAAM et al. Micromanaging cardiac regeneration
RES.0000152326.91223.4F

21 D’Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S, Weisinger K, Bassat E, Rajchman D, Yifa O, Lysenko M, Kontfino T, Hegesh J, Brenner O, Neeman M, Yarden Y, Leor J, Sarig R, Burgin P, Teaher E. ERBB2 promotes cardiac heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol 2015; 17: 627-638 [PMID: 25848746 DOI: 10.1038/ncb3149]

22 Formiga FR, Pelacho B, Garbayo E, Imbuluzqueta I, Diaz-Herrera P, Abizanda G, Gavira JJ, Simon-Jarpa T, Albaius A, Tamayo E, Prösser F, Bianco-Prieto MJ. Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration. J Control Release 2014; 173: 132-139 [PMID: 24200746 DOI: 10.1016/j.jconrel.2013.10.034]

23 Engel FF, Hsieh PC, Lee RT, Keating MT. FGFl/3 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 2006; 103: 15546-15551 [PMID: 17032753 DOI: 10.1073/pnas.0607382103]

24 Tao Z, Chen B, Zhao Y, Chen H, Wang L, Yong Y, Cao K, Yu Q, Ke D, Wang H, Wu Z, Yang Z. HGF percutaneous endocardial injection induces cardiomyocyte proliferation and rescues cardiac function in pigs. J Biomed Res 2010; 24: 198-206 [PMID: 23554631 DOI: 10.1016/j.sjmj.2010.06029-2]

25 Koudsalat S, Bastings MM, Feyen DA, Waring CD, van Schlochteren JF, Danckers PJ, Torella D, Shluter JP, Nadal-Ginard B, Doevendans PA, Elliston GM, Chamnienale SA. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J Cardiovasc Trans Res 2014; 7: 232-241 [PMID: 24395494 DOI: 10.1007/s12265-013-9518-4]

26 Cohen JE, Purcell BP, MacArthur JW, Mu A, Shado Y, Patel JB, Brusalis CM, Trubela J, Fairman AS, Edwards BB, Davis MS, Hung G, Hiesinger W, Atluri P, Margulies KB, Burdick JA, Woo YJ. A bioengineered hydrogel system enables targeted and sustained intramyocardial delivery of neuregulin, activating the cardiomyocyte cell cycle and enhancing ventricular function in a murine model of ischemic cardiomyopathy. Circ Heart Fail 2014; 7: 619-626 [PMID: 24902740 DOI: 10.1161/CIRCHEARTFAILURE.113.001273]

27 Berset R, Arab S, Haring B, Kühn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 2009; 138: 257-270 [PMID: 19632177 DOI: 10.1016/j.cell.2009.04.060]

28 Korf-Kühl B, Meischke A, Britsch K, Meier J, Vajravelu BN, Fathi H, Weisinger K, Bassat E, Carvalho S, Rajchman D, Yifa O, Lysenko M, Chen B, Zhao Y, Chen H, Wang L, Yong Y, Cao K, Yu Q, Ke D, Wang H, Wu Z, Yang Z. HGF percutaneous endocardial injection induces cardiomyocyte proliferation and rescues cardiac function in pigs. J Biomed Res 2010; 24: 198-206 [PMID: 23554631 DOI: 10.1016/j.sjmj.2010.06029-2]

29 Kühn B, del Monte F, Hajar RJ, Chang YS, Lebeche D, Arab S. Haring B, Kühn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 2009; 138: 257-270 [PMID: 19632177 DOI: 10.1016/j.cell.2009.04.060]

30 Segers VF, Lee RT. Protein therapeutics for cardiac regeneration after myocardial infarction. J Cardiovasc Trans Res 2010; 3: 469-477 [PMID: 20607468 DOI: 10.1007/s12265-010-9207-5]

31 Zacchigna S, Giacca M. Extra- and intracellular factors regulating cardiomyocyte proliferation in postnatal life. Cardiovasc Res 2014; 102: 312-320 [PMID: 24623280 DOI: 10.1093/cvr/cvu057]

32 Rodrigo SG, van Ramshorst J, Hoogslag GE, Boden H, Velders MA, Cannegeteles BC, Roelofs HJ, Al Younis I, Dibbets-Schneeert P, Fibbe WE, Zwaginska JJ, Bax JJ, Schalij MJ, Beers SL, Atsma DE. Intramyocardial injection of autologous bone marrow-derived cells alleviates post-myocardial infarction left ventricular dysfunction despite poor engulfment and negligible retention in the recipient heart. PLoS One 2014; 9: e95247 [PMID: 24919180 DOI: 10.1371/journal.pone.0095247]

33 van Berlo JH, Kanisicak O, Maileit M, Vagnozzi RJ, Karch J, Lin SC, Middleton RC, Marbán E, Molkentin JD. c-kit⁺ cells minimally contribute cardiomyocytes to the heart. Nature 2014; 509: 337-341 [PMID: 24805242 DOI: 10.1038/nature13309]

34 Squirers JJ, Hutcheson KA, Thatcher JE, DeMaio JM. Cardiac stem cell therapy: checkered past, promising future? J Thorac Cardiovasc Surg 2014; 148: 3188-3193 [PMID: 25433891 DOI: 10.1016/j.jtcvs.2014.10.077]

35 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 603-616 [PMID: 16904174 DOI: 10.1016/j.cell.2006.07.024]

36 Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861-872 [PMID: 18035408 DOI: 10.1016/j.cell.2007.11.019]

37 Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells.
DOI: 10.1161/CIRCRES.111.973420

79 Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneg BEG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010; 142: 375-386 [PMID: 20961899 DOI: 10.1016/j.cell.2010.07.002]

80 Wada R, Muraoa N, Inagawa K, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Kaneda R, Suzuki T, Kamiya T, Tohma S, Yusa S, Kokaji K, Aeba R, Yozu R, Yamagishi H, Kitamura T, Fukuda K, Ieda M. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci USA 2013; 110: 12667-12672 [PMID: 23861494 DOI: 10.1073/pnas.1300551110]

81 Nam YJ, Song K, Luo X, Daniel E, Lambeth K, West K, Hill JA, DiMaio JM, Baker LA, Bassel-Duby R, Olson EN. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci USA 2013; 110: 5588-5593 [PMID: 23487791 DOI: 10.1073/pnas.1301091110]

82 Fu JD, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, Delgado-Olguin P, Ding S, Bruneg BEG, Srivastava D. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Reports 2013; 1: 235-247 [PMID: 24319660 DOI: 10.1016/j.stemcr.2013.07.005]

83 Islas JF, Liu Y, Weng KC, Robertson MJ, Zhang S, Prejusa A, Harger J, Tikhomirova D, Chopra M, Iyer D, Mercola M, Oshima RG, Willerton JT, Potaman VN, Schwartz RJ. Transcription factors ET2S and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci USA 2012; 109: 13016-13021 [PMID: 22826236 DOI: 10.1073/pnas.1202991109]

84 Inagawa K, Miyamoto K, Yamakawa H, Muraoa N, Sadahiro T, Umei T, Wada R, Katsumata Y, Nakade K, Kurthara C, Obata Y, Miyake K, Fukuda K, Ieda M. Induction of cardiomyocyte-like cells in infant heart by gene transfer of Gata4, Mef2c, and Tbx5. Circ Res 2012; 111: 1147-1156 [PMID: 22931955 DOI: 10.1161/circresaha.112.271148]

85 Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 2010; 225: 631-637 [PMID: 20635995 DOI: 10.1002/jc.21322]

86 Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 2012; 485: 599-604 [PMID: 22660318 DOI: 10.1038/nature11139]

87 Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D. In vivo reprogramming of murine cardiac fibroblasts into induced cardiac lineages. Nature 2012; 485: 593-598 [PMID: 22522929 DOI: 10.1038/nature11044]

88 Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark SM, Conlon FL, Wang DZ. The role of miR-1 and miR-133 in skeletal muscle proliferation and differentiation. Circ Res 2013; 112: 1005-1017 [PMID: 20635395 DOI: 10.1161/j.circgenetics.109.934281]

89 Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of miR-1 and miR-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006; 38: 228-233 [PMID: 16380711 DOI: 10.1038/ng1725]

90 Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008; 22: 3242-3254 [PMID: 19015276 DOI: 10.1101/gad.1738708]

91 Kreps J, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of miR-1 and miR-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006; 38: 228-233 [PMID: 16380711 DOI: 10.1038/ng1725]

92 Ivey KN, Muth A, Arnold J, King FW, Yeh RF, Fish JE, Hsiao EC, Schwartz RJ, Conklin BR, Bernstein HS, Srivastava D. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2008; 2: 219-229 [PMID: 18371447 DOI: 10.1016/j.stem.2008.01.016]

93 Glass C, Singla DK. MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart. Am J Physiol Heart Circ Physiol 2011; 301: H2038-H2049 [PMID: 21856911 DOI: 10.1152/ajpheart.00271.2011]

94 Eulalio A, Hutzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell 2008; 132: 9-14 [PMID: 18191211 DOI: 10.1016/j.cell.2007.12.024]

95 Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21: 4663-4670 [PMID: 12196168 DOI: 10.1093/emboj/cdf476]

96 Korenik J, Schwindt FH, Rothblum H, Elagaly N, Kim VN. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432: 231-235 [PMID: 15531879 DOI: 10.1038/nature03049]

97 Landthaler M, Yalcin A, Tuschi T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 2004; 14: 2162-2167 [PMID: 15589161 DOI: 10.1016/j.cub.2004.11.001]

98 Lunts E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004; 303: 95-98 [PMID: 14631048 DOI: 10.1126/science.1090599]

99 Tsutsuami A, Kawamata T, Izuin N, Setz H, Tomari Y. Recognition of the pre-miRNA structure by Drosha/Dicer-1. Nat Struct Mol Biol 2011; 18: 1153-1158 [PMID: 21926993 DOI: 10.1038/nsmb.2125]

100 Leung W, Huang Y, Spencer CI, Foley A, Vedantham V, Hayashi Y, Bruneg BEG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010; 142: 375-386 [PMID: 20961899 DOI: 10.1016/j.cell.2010.07.002]

101 Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23: 4051-4060 [PMID: 15372072 DOI: 10.1038/sj.emboj.7600665]

102 Denli AM, Topk SH, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432: 231-235 [PMID: 15531879 DOI: 10.1038/nature03049]

103 Landthaler M, Yalcin A, Tuschi T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 2004; 14: 2162-2167 [PMID: 15589161 DOI: 10.1016/j.cub.2004.11.001]

104 Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004; 303: 95-98 [PMID: 14631048 DOI: 10.1126/science.1090599]
Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005; 436: 214-220 [PMID: 15951802 DOI: 10.1038/ nature03817]

Wystub K, Besser J, Bachmann A, Boettger T, Braun T. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development. PLoS Genet 2013; 9: e1003793 [PMID: 24086960 DOI: 10.1371/journal.pgen.1003793]

Jayanawarden TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotou S, Dzau VJ. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 2012; 110: 1465-1473 [PMID: 22539765 DOI: 10.1161/circresaha.112.269035]

Muraoka N, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Isomi M, Nakashima H, Akiyama M, Wada R, Inagawa K, Nishiyama T, Kaneda R, Fukuda T, Takeda S, Tohyania S, Hashimoto H, Kawamura Y, Goshima N, Aeba R, Yamagishi H, Fukuda K, Ieda M. MiR-133 promotes cardiac reprogramming by directly repressing Snail and silencing fibroblast signature. EMBO J 2014; 33: 1565-1581 [PMID: 24920580 DOI: 10.15252/embj.201387605]

van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Callis TE. Control of stress-dependent cardiac growth and gene expression by a microRNA. EN. Control of stress-dependent cardiac growth and gene expression by a microRNA mechanism. Kajstura J, Leri A. Human cardiac stem cell differentiation is regulated by a microRNA. EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. MiR-133 promotes cardiac reprogramming by directly repressing Snail and silencing fibroblast signature. EMBO J 2014; 33: 1565-1581 [PMID: 24920580 DOI: 10.15252/embj.201387605]

Lundberg M, Wikström S, Johansson M. Cell surface adhesion and endocytosis of protein transduction domains. Mol Ther 2003; 8: 143-150 [PMID: 12642347 DOI: 10.1016/s1525-0016(03)00135-7]

Wang J, Byrne JD, Napier ME, DeSimone JM. More effective nanomedicines through particle design. Small 2011; 7: 1919-1931 [PMID: 21695781 DOI: 10.1002/smll.201100442]

Harris JM, Chess RB. Effect of pattylation on pharmaceuticals. Nat Rev Drug Discov 2003; 2: 214-221 [PMID: 12612647 DOI: 10.1038/nrd1033]

Kamps JA, Morselt HW, Swart PJ, Meijer DK, Scherphof GL. Massive targeting of liposomes, surface-modified with anionized albumins, to hepatic endothelial cells. Proc Natl Acad Sci USA 1997; 94: 11681-11685 [PMID: 9326670]

White PJ. Barriers to successful delivery of short interfering RNA after systemic administration. Clin Exp Pharmacol Physiol 2008; 35: 1371-1376 [PMID: 18565190 DOI: 10.1111.j.1440-1681.2008.04902.x]

Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009; 8: 129-138 [PMID: 19180160 DOI: 10.1038/nrd2742]

Lehto T, KurkkoK, Langel U. Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv 2012; 9: 833-836 [PMID: 22594635 DOI: 10.1517/17425247.2012.689285]

Carey DR. Chemical modification: the key to clinical application of RNA interference? J Clin Invest 2007; 117: 3615-3622 [PMID: 18060019 DOI: 10.1172/JCI33483]

Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 2011; 44: 1094-1104 [PMID: 21812415 DOI: 10.1021/ar200105p]

Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006; 112: 630-648 [PMID: 16815554 DOI: 10.1016/j.pharmthera.2006.05.006]

Oerlemans C, Buit W, Bos M, Sterlyn G, Nijssen JF, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 2010; 27: 2569-2589 [PMID: 20725771 DOI: 10.1007/s11095-010-0323-4]

Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Anna Rev Biomed Eng 2006; 8: 343-375 [PMID: 16834560 DOI: 10.1146/annurev.bioeng.8.061505.095735]

Matoba T, Egashira K. Nanoparticle-mediated drug delivery system for cardiovascular disease. Int Heart J 2014; 55: 281-286 [PMID: 24942639 DOI: 10.1536/IJ.14-150] [PMID: 16888077 DOI: 10.1038/nm.1632]

Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 1987; 3: 123-193 [PMID: 3542245]

Asokan A, Cho MJ. Cytosolic delivery of macromolecules. II. Mechanistic studies with pH-sensitive morpholine lipids. Biochim Biophys Acta 2003; 1611: 151-160 [PMID: 12659956 DOI: 10.1016/S0005-2736(03)00050-6]

Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 2006; 114: 100-109 [PMID: 16831482 DOI: 10.1016/j.jconrel.2006.04.014]

Ma Z, Li J, He F, Wilson A, Pitt B, Li S. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochim Biophys Res Kamps JAAM et al. Micromanaging cardiac regeneration.

Am J Physiol 1978; 234: F455-F460 [PMID: 665772]

Moghimi SM, Hamad F. Factors controlling pharmacokinetics of intravenously injected nanoparticulate systems. In: de Villiers M, Aramwit P, Kwon G, editors. Nanotechnology in drug delivery. New York: Springer, 2009: 267-282 [DOI: 10.1007/978-3-642-77668-2_9]

Cho EC, Xie J, Wurm PA, Xia Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett 2009; 9: 1080-1084 [PMID: 19199477 DOI: 10.1021/ nl803487r]
The provided text contains numerous references, indicating it is likely a scientific or scholarly document. However, without the ability to link to external sources or interpret the specific context of each reference, I am unable to accurately transcribe the full content of the document. To ensure accuracy, please provide a more detailed or transcribed portion of the document, or use a text extraction service to capture the relevant sections.
Ge S, Lu CT, Wong HL. Functional and pathological improvements of the hearts in diabetes model by the combined therapy of bFGF-loaded nanoparticles with ultrasound-targeted microbubble destruction. *J Control Release* 2014; 186: 22-31 [PMID: 24815422 DOI: 10.1016/j.jconrel.2014.04.054]

P- Reviewer: Jankowski P, Williams DR S- Editor: Kong JX L- Editor: A E- Editor: Lu YJ
