DENTAL MATERIALS

COMPARATIVE EVALUATION OF THE RELATIONSHIP OF TEETH COLOR AND SOFT TISSUE COLOR OF THE FACE IN INDIVIDUALS WITH NATURAL DENTITION

Derya Ortaç1, Mehmet Sonugelen1b, Muharrem Erhan Çömlekoğlu1c

1Department of Prosthodontics, Faculty of Dentistry, Ege University Izmir, TR-35100 Bornova-Izmir, Turkey
2DDS, Research Assistant; e-mail: deryortac@gmail.com; ORCIDID: https://orcid.org/0000-0002-0169-6674
3DDS, PhD, Professor; e-mail: mehmet.sonugelen@ege.edu.tr; ORCIDID: https://orcid.org/0000-0002-8002-9115
4DDS, PhD, Professor; e-mail: erhan.comlekoglu@ege.edu.tr; ORCIDID: https://orcid.org/0000-0002-0915-5821

ABSTRACT

Introduction The aim of this study is to make it easier for dentists to choose artificial tooth color in fully and partially edentulous patients by evaluating the relationship between the color of the soft tissues of the face and the color of the teeth.

Methodology The CIEL*a*b* color values of the maxillary central teeth of the volunteers participating in the study were measured by spectrophotometer, and skin, lip and eye color were measured from facial images containing ceramic blocks to standardize the light and color values using Adobe Photoshop software. The Kolmogorov-Smirnow test and Spearman Rank Correlation test were used to evaluate the data.

Results It was observed that there was a higher correlation between the L* values of the teeth and the L* and b* values of the skin. When the analysis between the color measurements taken from the lip photographs and the teeth was examined, it was seen that there was a statistically significant positive correlation between the L* values of the upper central teeth and the a* values of the lip.

Conclusion The results showed that the CIEL*a*b* parameters of skin color and lip color can be used in the selection of tooth color in case of loss of natural teeth or discoloration of existing teeth.

KEYWORDS

Color Measurement; Digital Camera; Spectrophotometer; Skin Color; Tooth Color.

1. INTRODUCTION

There is abundant and strong scientific evidence that the appearance of a person's face and teeth has a profound effect on perception and questioning by others [1–3]. It is also thought that the appearance of the face and teeth have a great impact on the development of the personality of the individual, getting a job, performing, believing in himself and being a victor. The social status of a personality and the attractiveness of a smile are related to each other [4]. While in the past, functional demands were taken into account in oral treatments, today the focus has shifted to aesthetic dentistry with the decrease in caries prevalence [5,6]. Establishing an appropriate balance between illusion and reality is the basis of aesthetic dentistry [7]. The ultimate purpose of aesthetic dentistry is to create beautiful smiles that are compatible with the teeth, gums, lips and face of the patient that complement each other in natural proportions [8]. One of the most important issues in aesthetic dentistry is color selection. Therefore, every dentist should know the color matching procedures for aesthetics [9].

For nearly a century, dentists have used tooth color shade guides for accurate color matching. This traditional way of picking colors is oversimplified and too subjective to constitute a standard [10]. While visual color selection with tooth color shade guides is the most common color matching system, it is considered inconsistent and subjective as it is affected by lighting, age, gender, eye fatigue [11]. In addition to the subject of color selection, which is a very challenging process in dentistry, dentists and technicians need to communicate about tooth colors during prosthesis production procedure. However, verbal communication of color differences is limited. A good color match is directly related to the quality of the prosthesis. The more precisely the tooth colors can be defined, the more accurate porcelain colors can be obtained [12–15].

To obtain the natural and harmonic restoration color, it is necessary to have an objective, precise and systematic method, from the color matching procedure in dentistry to its reproduction in the laboratory [16]. Color measuring instruments and systems such as spectrophotometers, colorimeters, spectroradiome-
2. METHODOLOGY

2.1. Sample Description
150 people aged 20-25, studying at Faculty of Dentistry, Ege University, Izmir participated in this study. Permission was requested from all individuals participating in the study to take photographs, the reason for the study and all necessary information were explained in detail, and an informed consent form was signed by all patients. Our study was approved by the Ege University Faculty of Medicine Research Ethics Committee No. 20-11T/51. The exclusion criteria of the patients are listed in the following items:
1. If over 25 years old,
2. If the maxillary central incisors are not fully erupted,
3. If there is any developmental defect in the maxillary central incisors,
4. If there is caries in the maxillary central incisors,
5. If any restoration, root canal treatment or teeth whitening procedures have been applied to the maxillary central incisors,
6. If extrinsic coloration is high in maxillary central incisors,
7. If there is any post-surgical scarring or malformation on the face,
8. If there is any skin disease and the presence of intense tan,
9. If the orthodontic treatment of the individual is continuing, the individuals were not included in the study.

2.2. Measurement of Tooth Color with Spectrophotometer
Tooth color was measured from the middle third of the labial portion of both maxillary central teeth. Before the color selection, dental prophylaxis was applied to the target teeth with a mixture of pumice and water in order to keep the measurement surface clean and free from stains. Before the measurement procedure, a lip retractor was placed in the mouths of the individuals participating in the study. The tooth shade selection was made using the Vita EasyShade Advance spectrophotometer (VITA Zahnfabrik GmbH, Bad Säckingen, Germany). All measurements were made under 112 cm wide LED fluorescent lighting with a temperature of 6500°K and a color rendering index (CRI) of 95 (Philips & Co, Netherlands).

It is known that the spectrophotometer device has a fixed enhanced light source from fiber optic light at the measuring end, so the device can record tooth tones in any light beam. For this reason, the lighting conditions of the environment were ignored with the recommendation of the manufacturer. The Vita EasyShade Advance spectrophotometer device, consisting of a base and a handpiece part, was calibrated using a ceramic calibration plate fixed to the device before data collection. The measuring handpiece part of the device was held on the ceramic plate prepared for the calibration of the device, and it was held until the sound indicating that the calibration was done was heard. Calibration was repeated before each tooth measurement.
Before each measurement, an infection protection barrier (VITA Easyspace Infection Control Shield, VITA Zahnfabrik, Bad Säckingen, Germany) was attached to the tip of the spectrophotometer to prevent cross-infection. The “Single Tooth Option” was selected from the color selection menu. The measuring tip of the device was placed at a 90° angle to the middle third of the labial surface of the tooth. Measurements were made in accordance with the manufacturer’s instructions and attention was paid to the correct positioning of the measuring tip.

All measurements were made by the same investigator to ensure standardization. The average of three consecutive measurements from the middle third of the labial surfaces of the targeted teeth was taken, and the CIE L* a* b* values and the values of the Vita 3D Master scale were recorded. All obtained values were recorded on previously prepared forms.

2.3. Standardization of the Area to Take Portrait, Eye and Lip Photographs and Camera Settings

In order to standardize the environment before the photo shoot, a room in the Ege University Faculty of Dentistry was designed to be used in this study as described below. All the windows of the room were closed with opaque thick black covers in order to prevent any light from leaking in and it was ensured that it was isolated from all light sources. All portrait, eye and lip photos were taken in this room.

A non-reflective black screen was used as the background for the portrait photos. A stool was placed 75 cm in front of the background so that the dark tones in the hair of the people to be photographed could not confused with the background. All shots were taken with the subject to be photographed sitting on a stool. Two speedlight overhead flashes (Godox TT685F, Fujifilm Compatible Top Flash, GODOX Photo Equipment Co., Ltd, Shenzhen, China) were used as light sources, angled 45 degrees in front of the person to be photographed. Two 10x10cm soft boxes were used to increase the light quality, to keep the light power standard and to provide a softer light spread. (Godox SB1010 10x10cm Flash Softbox, GODOX Photo Equipment Co., Ltd, Shenzhen, China) A randomly chosen ceramic block was fixed to a bracket on the end of a tripod to ensure its position remained the same across all photographs. A stationary system was designed by fixing the overhead flash on the other end of the bracket. The ceramic block was positioned to align the outer canthus of the subject’s right eye for each portrait and eye photograph, and the right commissura labiorum for all lip photographs. External light sources and ambient conditions were kept constant for all individuals.

All photos were taken with NIKON D90 digital lens adjustable camera (Digital Single-Lens-Reflex, DSLR camera) and Nikon AF-S DX Micro NIKKOR 85mm f/3.5G ED VR lens. Before the photo shoot, ISO 200 (International Standards Organization), aperture f/5.6, exposure time 1/125 sec. After the first photo was taken with a gray card, the white balance settings of the ceramic block in the photos were applied to the other photos. A tripod was used to ensure that images can be taken from the same distance for all portrait, eye and lip photos and to keep the camera stable during shooting.

2.4. Taking Portrait, Eye and Lip Photographs

After checking the standardization of the area to be photographed, the volunteers participating in the study were asked to gently wash their faces with warm water to remove dirt and cosmetics. The volunteers were kept at room temperature for 20 minutes after face washing. Volunteers sat on a stool 75 cm in front of a black background; The axis of the camera lens was kept at eye level of the patient. Prior to the photo shoot, the volunteers were asked to remove photographic distractors such as hats, jewelry, and glasses. During the photographing process, the Frankfort Horizontal plane of the individuals was positioned parallel to the ground, and the Midsagittal planes were positioned perpendicular to the ground. Before taking the photo, the auto focus feature was turned off in the camera settings, and all the photos were taken from 1.5 meters where the desired data could fit into the frame in the clearest way. The first photograph was taken with the aid of a standard gray reference card (Original White Balance Reference; Michael Tapes Design) with known color values. The photograph was taken in high resolution, flash and raw data format (Fig. 1).

The camera stored the images in NEF format because the image data was not processed intact.

2.5. Color Analysis of Photographs

2.5.1. Skin Color Analysis from Portrait Photographs

After taking the portrait photographs of the volunteers participating in the study, all the images were transferred to the computer. In order to ensure standardization control for each portrait photograph taken, the CIEL*a*b* value of the intersection point of the lines drawn from the four outer corners of the ceramic block to the center of the rectangle in the first photograph taken with a gray card was measured with the Adobe Photoshop program (Fig. 2).
In order to ensure that the ceramic block, whose CIEL*a*b value was measured as 94.0.0 with the spectrophotometer, gives this value for each photograph, the measurement point was selected using the white balance tool in the Adobe Photoshop program. The white balance values in all the photos were adjusted according to this point located in the middle of the ceramic block.

In order to standardize the skin color analysis of each volunteer participating in the study, four reference regions were determined in the portrait photographs (Fig. 3).

For the first region, the circular region with a width and height of 1 mm, where the vertical descending line from the outer canthus of the right eye and the ala nasii-tragus line intersect on the right cheek was taken as reference. For the second region, the circular region with a width and height of 1 mm, where the vertical descending line from the outer canthus of the left eye and the ala-tragus line intersect on the left cheek, was taken as reference. For the third region, the circular region with a width of 5 mm above the nasal bridge and a height of 1 mm was taken as reference. For the fourth region, the circular region with a width and height of 1 mm at the midpoint of the left earlobe was taken as reference.

To determine skin color, the average CIEL*a*b* value of these four different regions in the portrait photograph of each volunteer was taken. The Adobe Photosop (Adobe Inc., San Jose, CA, USA) program was used to determine the CIEL*a*b* value of four different regions of the face. The average of the CIEL*, a* and b* values of four different reference regions was automatically measured from a total of approximately 10,000 separate points in the selected regions. By using this method, it was aimed to prevent changes in the skin such as skin spots, mild skin inflammations and sunburn, which may cause deviations in the measurement results.

In all photographs, the absence of clipping was checked on the histogram showing the exposure levels. It was also checked with histogram whether the reference regions for the analysis of skin color remained in the overexposure or underexposure areas. After making sure that the four reference regions were in the areas where the exposure value of the light was normal, the measurements were carried out.

2.5.2. Eye Color Analysis from Eye Photographs

After taking the eye photographs of the volunteers participating in the study, all the images were transferred to the computer. In order to ensure that the light and color values of all photographs are the same, it was checked that the selected ceramic block gave the same CIEL*a*b* values for each eye photograph. In order to standardize the eye color analysis of each volunteer participating in the study, the reference region to be measured in the eye photographs was determined with the Adobe Photosop program.

The eye was divided into two equal hemispheres with a horizontal axis passing through the center of the pupil. By removing the pupil in the lower hemisphere, the iris in this hemisphere was taken as a reference for eye color analysis. Thus, the shadow areas formed by the eyelash in the upper hemisphere and the light reflections created by the ceramic block used for standardization were eliminated (Fig. 4).

The feature used to determine the average color value of a region in the Adobe Photosop program was used for the selected reference region in all eye photographs. Thus, different pigmented areas in the iris were prevented from affecting the measurement alone. The CIEL*a*b* value of the region from which the average color value was taken was measured...
Teeth color and soft tissue color of the face

using the Adobe Photoshop program and recorded on the pre-prepared forms.

2.5.3. Lip Color Analysis from Lip Photographs

All the lip photographs taken were transferred to the computer and it was checked that the ceramic block used to provide light and color standardization in all photographs gave the same CIEL*a*b* value for each photograph.

In order to analyze lip color from all lip photographs, a circular region with a width and height of 1 mm 2 mm below the philtrum was chosen as a reference (Fig. 5). CIE*L*a*b* values of the selected reference region were measured with the Adobe Photoshop program and recorded on previously prepared forms.

2.6. Statistical Analysis

The average of 3 measurements made from the middle third of the labial surfaces of 11 and 21 was recorded in the excel table. The average CIEL*a*b* value of 4 regions measured on the skin from portrait photographs was recorded as skin color, eye color obtained from eye photographs, and lip color obtained from lip photographs saved in the same Excel table. IBM SPSS Statistics for Windows, Version 25.0 package program 2017 (IBM Corp., Armonk, NY, USA) and Microsoft Office Excel 2019 (Microsoft Office Excel 2019 ®, Redmond, WA, USA) were used for all statistical analysis. The conformity of numerical variables to normal distribution was examined using the Kolmogorov-Smirnov Test. The linear relationship between the color values measured on the teeth and 18 independent variables from 6 different regions on the face was examined by the Spearman rank correlation analysis. Since the normal distribution harmony could not be obtained in the color variables obtained in the study, the Friedman Test was first applied for the multi-group difference in comparing the L, a and b levels between different regions. Dunn’s test with Bonferroni correction was used for pairwise comparisons, since the difference between regions was found to be significant as a result of this test. All hypothesis checks were performed at the 0.05 significance level.

3. RESULTS

According to the Spearman Rank Correlation made between tooth measurements and face measurements shown in Table 1; A positive, very weak and statistically significant correlation was found between the b measurement of tooth number 11 and the measurement of Y3.a with a correlation coefficient of 0.213, between the measurement of tooth no. 21 and the measurement of Y3.b with a correlation coefficient of 0.187 (p<0.05). A positive, very weak and statistically significant correlation was observed between the L measurement of tooth 11 and the measurement of Y4.L with a correlation coefficient of 0.187 (p<0.05). A positive, very weak and statistically significant correlation was found between the a measurement of tooth number 11 and the measurement of Y3.a with a correlation coefficient of 0.179, and the measurement of a tooth of tooth 21 and the measurement of Y3.b with a correlation coefficient of 0.187 (p<0.05). A positive, very weak and statistically significant correlation was observed between the L measurement of tooth 11 and the measurement of Y4.L, 0.203, with a correlation coefficient of 0.238 between the L measurement of tooth 21 and the measurement of Y4.L (p<0.05).

Table 1. The relationship between the measurements taken from the face and the measurements taken from the teeth.
Y1.L
Rho
p
Y1.a
Rho
p
Y1.b
Rho
p
Y2.L
Rho
p
Y2.a
Rho
p
Y2.b
Rho
p
According to the Spearman Rank Correlation made between tooth measurements and eye measurements shown in Table 2, it was found that there were correlations between the \(L^a*b^a\) measurements of tooth number 11 and the \(L^a*b^a\) measurements of the eye; no statistically significant relationship could be obtained between the measurements of tooth number 21 and any eye measurement.

Table 2. The relationship between the measurements taken from the eye and the measurements taken from the teeth.

	11. Teeth	21. Teeth3					
	\(L\)	\(a\)	\(b\)	\(L\)	\(a\)	\(b\)	
G.L	Rho	0.191	-0.183	-0.195	0.1445	-0.082	-0.089
	\(p\)	0.020*	0.025*	0.017*	0.079	0.318	0.281
G.a	Rho	0.110	-0.12	-0.163*	0.079	-0.074	-0.059
	\(p\)	0.181	0.139	0.046	0.334	0.368	0.474
G.b	Rho	0.163	-0.164	-0.174	0.100	-0.093	-0.063
	\(p\)	0.046*	0.045*	0.033*	0.225	0.258	0.447

\(*p<0.05\)

According to the Spearman Rank Correlation used to examine the relationships between lip measurements and tooth measurements shown in Table 3, a negative, very weak and statistically significant correlation was found between the \(b\) measurement of tooth number 11 and the \(L^a*b^a\) measurements of the eye; no statistically significant relationship could be obtained between the measurements of tooth number 21 and any eye measurement.

Table 3. The relationship between the measurements taken from the lip and the measurements taken from the teeth.

	11. Teeth	21. Teeth3					
	\(L\)	\(a\)	\(b\)	\(L\)	\(a\)	\(b\)	
D.L	Rho	0.064	-0.065	-0.173	0.181	0.071	-0.088
	\(p\)	0.434	0.432	0.035*	0.026*	0.390	0.282
D.a	Rho	0.176	0.063	-0.178	0.190	-0.045	-0.129
	\(p\)	0.031*	0.442	0.029*	0.020*	0.583	0.116
D.b	Rho	-0.089	0.103	-0.037	-0.084	0.159	0.003
	\(p\)	0.279	0.209	0.655	0.306	0.052	0.971

\(*p<0.05\)
A positive, very weak and statistically significant correlation was found with a correlation coefficient of 0.176 between the L measurement of tooth number 11 and the D.a measurement (p<0.05). A negative, very weak and statistically significant correlation was observed with a correlation coefficient of -0.178 between the b measurement of tooth number 11 and the D.a measurement (p<0.05). A positive, very weak and statistically significant relationship was found with a correlation coefficient of 0.181 between the L measurement of tooth number 21 and the D.L measurement (p<0.05). A positive, very weak and statistically significant correlation was obtained with a correlation coefficient of 0.190 between the L measurement of tooth number 21 and the D.a measurement (p<0.05).

4. DISCUSSION

The hypothesis of this study was the presence of a correlation between tooth color and the soft color of the face. According to the results obtained from our study, it was observed that there was a correlation between skin and lip color and tooth color, but there was no significant correlation between tooth and eye color. Therefore, the hypothesis that there would be a correlation between tooth color and soft tissue color of the face was partially accepted. The differences between the results of our study and similar subjects reported in the literature may be due to the fact that the color matching procedures were mostly performed with the help of visual methods in previous studies. Unlike other studies, a ceramic block was used in our study to ensure that all photographs were in standard color and light values. The fact that the color values of the ceramic block are the same for each photograph has been very supportive that we use a more standard and objective method.

Since it is often accepted that the concept of aesthetics determines the character of a person in modern societies, it has become a very important issue [5]. Through aesthetic dentistry, the physician can make the patient’s smile more beautiful while giving a younger appearance [29]. Accepting the smile as aesthetically compatible requires a perfect integration of the hard and soft tissues of the face and the teeth and gums. A smile aesthetics should always include evaluation and analysis of both facial and tooth formations [7,30].

Today, while tooth color can be better defined with developing technologies, it is difficult to define skin tone due to the lack of a well-categorized reference scale or guideline [31]. Most studies in the literature have categorized skin color visually [31–33]. In some studies in the literature, skin color was classified according to different cosmetic indices used to compare with samples such as NIVEA, LAKME or LOreal [34–36]. In most studies in the literature, eye color was determined by visual methods as well as skin color. In the study of Krasniqi et al. [37] in 2018 to determine a possible relationship between tooth color and skin color and eye color, and in the study of Hassel et al. [38] in 2008 evaluating the probability of predicting tooth color in the elderly according to hair, eye, face color and gender, eye color was determined visually, categorized as brown, green, blue and dark brown. In the study of Lagouvardos et al. [18] investigating the relationship between teeth, skin, hair and color in the Greek population, eye color measurement was made by matching the iris with the colors in the iris color scale suggested by Franssen et al. [39]. It is very difficult to standardize any visually determined classification. Since these subjective methods can vary from person to person, they cannot produce reproducible and reliable results.

The focus of our study is to investigate the existence of a possible relationship between L*a*b values obtained from teeth by spectrophotometer and L*a*b values obtained from face, eye and lip photographs using the Adobe Photoshop program. Previous studies in the literature on this subject do not have sufficient scientific information or reports that are in harmony. As a result of the findings obtained in our study, it was observed that the L* value was quite close for teeth 11 and 21. L* values taken from the malar areas of the face are close to each other, but it was found that the L* values taken from the earlobe had lower L* values, unlike the other measurement regions on the face. In the study of Krasniqi et al. [37] in 2018 to determine a possible relationship between tooth color and skin color and eye color, and in the study of Hassel et al. [38] in 2008 evaluating the probability of predicting tooth color in the elderly according to hair, eye, face color and gender, eye color was determined visually, categorized as brown, green, blue and dark brown. In the study of Lagouvardos et al. [18] investigating the relationship between teeth, skin, hair and color in the Greek population, eye color measurement was made by matching the iris with the colors in the iris color scale suggested by Franssen et al. [39]. It is very difficult to standardize any visually determined classification. Since these subjective methods can vary from person to person, they cannot produce reproducible and reliable results.

The results obtained from our study are compatible with recent studies on this subject [25,38,40–45].

In the study of Jahangiri et al. [35], it was stated that there was an inversely proportional correlation between teeth and skin color. The methodology in this study was completely different from our study, and both tooth and skin color were measured by visual methods. In the study of Esan et al. [41], both tooth and skin color were measured by visual
The eye had potential endpoints. The distribution of the b* values of the eye was quite wide. The fact that the L*a*b* values of the eyes are generally concentrated in an average range can be explained by the fact that most of the individuals participating in the study have darker eye colors. In the studies of Lagouvardos et al. and Hassel et al., it was stated that there is no linear relationship between tooth color and eye color, which is consistent with our study [38,43]. In the studies of Lila et al. and Krashniqi et al., it was concluded that there is a correlation between the upper central teeth and eye color, but there is no correlation between the color of the lateral and canine teeth and eye color [37,44].

There is no consistency between the results of the studies, since there is no accepted standard method to determine eye color and the determination of eye color in studies is based on subjective perception. In the statistical results obtained in our study, it was found that there were correlations between L*a*b* measurements of tooth number 11 and L*a*b* measurements of the eye but no statistically significant correlation was found between the measurements of tooth number 21 and any eye measurement (p>0.05). Although we did not reach the conclusion that there is a clear linear relationship between tooth color and eye color in our study, it is thought that some associations found may give an idea to dentists.

There is no study in the literature investigating the relationship between tooth color and lip color. According to the findings obtained in our study, the measurement of a* values in the lip has the highest and the measurement of b* values has the lowest median value compared to other variables. The fact that the lip color is more reddish than the color of the other soft tissues of the face explains the higher a* values and lower b values. When the analysis between the color measurements taken from the lip photographs and the color measurements taken from the teeth is examined, it is seen that there is a statistically significant positive correlation between the L* values of the upper central teeth and the a* values of the lip. According to this result, it is understood that the teeth of individuals with more reddish lips are brighter. According to the results obtained from our study, there is a partial relationship between the L* values and b* values of the lip and the upper central teeth.

The lack of literature to compare the results of our study, the limited skin color range of the individuals participating in the study, the low number of individuals with light-colored eyes, the measurement of tooth color only in the upper central teeth, are the points of the study that should be supported by other studies in this sense. More clinical and evidence-based studies can be done to detect the presence of a more precise, reliable relationship. In further studies, with the correlations between tooth color and soft tissue color of the face, the
color of the teeth can be easily determined with the double-stage calibration photographic technique used in our study, using macro software that can be developed.

5. CONCLUSION

The results in the present study are summarized as follows.

1. Within the limitations of the current study, significant correlations were found between tooth and skin color for CIEL*a*b* values. When the components of skin and tooth color are evaluated separately, it was observed that there was a higher correlation between L* values of teeth and L* and b* values of skin compared to other relations. The results showed that CIEL*a*b* parameters of skin color can be used in the selection of tooth color in case of loss of natural teeth or discoloration of existing teeth.

REFERENCES

1. Anderson JN. The value of teeth. Br Dent J. 1965 Aug 3;119:98-103. PMID: 14332072. PubMed

2. Newton JT, Prabhoo N, Robinson PG. The impact of dental appearance on the appraisal of personal characteristics. Int J Prosthodont. 2003 Jul-Aug;16(4):429-434. PMID: 12956500. PubMed

3. Peck H, Peck S. A concept of facial esthetics. Angle Orthod. 1970 Oct;40(4):284-318. doi: 10.1043/0003-3219(1970)040<0284:ACFE>2.0.CO;2. PMID: 4917993. Google Scholar

4. Van der Gelp P, Oosterveld P, Van Heck G, Kuijpers-Jagtman AM. Smile attractiveness. Self-perception and influence on personality. Angle Orthodont. 2007 Sep;77(5):759-65. doi: 10.2319/082606-340. PMID: 17685777. PubMed

5. Goldstein RE, Chu S, Stappert C, Lee E, Stappert CFJ. (Editors). Esthetics in Dentistry, 3rd edition. West Sussex, UK: John Wiley & Sons, Inc.; 2018. Google Scholar

6. Vadavadagi SV, Kumari KV, Choudhury GK, et al. Prevalence of tooth shade and its correlation with skin colour - a cross-sectional study. Pak Orthod J. 2016;7(2):76-82. doi:10.18173/poj.v7i2.2979. PubMed

7. Bhuvaneswaran M. Principles of smile design. J Conserv Dent. 2010 Oct;13(4):225-232. doi: 10.4103/0972-0707.73387. PMID: 21217950; PMCID: PMC3010027. PubMed

8. Sohal K, Nawaz E, Durrani O, et al. Comparison of perceptions of laypersons, dentists and orthodontists to altered smile aesthetics. Pak Oral J. 2016;7(2):76-82. PubMed

9. Rajan N, Krishna SR, Rajan A, et al. Shade selection – basic for esthetic dentistry. Literature review. Int J Contemp Res Rev. 2020;11(09):20863–20868. https://doi.org/10.15520/jicrr.v11i09.849. Google Scholar

10. Chu SJ, Devigus A, Paravina R, Mielezko A. Fundamentals of color: shade matching and communication in esthetic dentistry. 2nd ed. Batavia, IL: Quintessence Publishing Co Inc; 2011. doi: 10.1111/j.1352-8499.2005.060_1.x Google Scholar

11. Brewer JD, Wee A, Seghi R. Advances in color matching. Dent Clin North Am. 2004 Apr;48(2):341-358. doi: 10.1016/j.dcln.2004.01.004. PMID: 15172604. PubMed

12. Chu SJ, Truskowsky RD, Paravina RD. Dental color matching instruments and systems. Review of clinical and research aspects. J Dent. 2010;38 Suppl 2:e2-e16. doi:10.1016/j.jdent.2010.07.001. PMID: 20621154. PubMed

13. Feuerstein P. Can technology help dentists deliver better patient care? J Am Dent Assoc. 2004 Oct;135 Suppl:115-165. doi: 10.14219/jada.archive.2004.0414. PMID: 15543816. PubMed

14. Pan Q, Westland S. Tooth color and whitening - digital technologies. J Dent. 2018 Jul;74 Suppl 1:546. doi:10.1016/j.jdent.2018.04.023. PMID: 29929588. PubMed

15. Wu AG, Lindsey DT, Kuo S, Johnston WM. Color accuracy of commercial digital cameras: for use in dentistry. Dent Mater. 2006 Jun;22(6):553-559. doi:10.1016/j.dental.2005.05.011. PMID: 16198403; PMCID: PMC1808262. PubMed

16. Paravina R, Stankovi D, Aleksic L, et al. Problems in standard shade matching and reproduction procedure in dentistry: a review of the state of the art. Medicine (Baltimore). 1997;47(12):12-16. PubMed

17. Paul SJ, Peter A, Rodoni L, Pietrobon N. Conventional visual vs spectrophotometric shade taking for porcelain-fused-to-metal crowns: a clinical comparison. Int J Periodontics Restorative Dent. 2004 Jun;24(3):222-231. PMID: 15227770. PubMed

18. Lagouvardos FC, Fougia AG, Diamantopoulou SA, Polyzais GL. Repeatability and interdevice reliability of two portable color selection devices in matching and measuring tooth color. J Prosthodont. 2009 Jun;18(1):40-45. doi:10.11177/0022345198759450. PMID: 19105990. PubMed

19. Blatz MB, Chiche G, Bahat O, et al. Evolution of aesthetic dentistry. J Dent Res. 2019 Nov;98(12):1294-1304. doi:10.1177/00220345198759450. PMID: 31633462. PubMed

20. Guan YH, Lath DL, Lilley TH, et al. The measurement of tooth whiteness by image analysis and spectrophotometry: a comparison. J Oral Rehabil. 2005 Jan;32(1):7-15. doi:10.1111/j.1365-2642.2004.01340.x. PMID: 15634295. PubMed

21. Jarad FD, Russell MD, Moss BW. The use of digital imaging for tooth colour and whiteness: a review. J Dent. 2005 Jul 9;33(1):43-49; discussion 33. doi:10.1016/j.jdent.2005.03.006. PubMed

22. Clary JA, Ontiveros JC, Cron SG, Paravina RD. Influence of light source, polarization, education, and training on shade matching quality. J Prosthodont. 2016 Jul;25(6):531-540. doi:10.1111/j.1534-7560.2016.01172.x. PubMed

23. Joiner A, Luo W. Tooth colour and whiteness: a review. J Dent. 2017 Dec;67:S3-S10. doi: 10.1016/j.jdent.2017.09.006. Epub 2017 Sep 18. PMID: 28928097. PubMed

2. According to the statistical results obtained in our study, a definite correlation could not be established between tooth and eye color. It is thought that some associations between these two parameters can give an idea to dentists.

3. When the analysis between the color measurements taken from the lip photographs and the color measurements taken from the teeth was examined, it was seen that there was a statistically significant positive correlation between the L* values of the upper central teeth and the a* values of the lip.

CONFLICT OF INTEREST

The authors have no financial interest in any of the companies whose products are used in this study.

AUTHOR CONTRIBUTIONS

DO: conceptualization, methodology, software, writing - review & editing. MEÇ: investigation, visualization. MS: supervision, software.
Derya ORTAÇ
DDS, Research Assistant
Department of Prosthodontics
Faculty of Dentistry
Ege University
TR-35100 Bornova-Izmir, Turkey

Derya Ortac graduated from Faculty of Dentistry, İzmir Kâtip Çelebi University, İzmir, Turkey in 2018 and started her PhD programme at the Ege University, Faculty of Dentistry, Department of Prosthodontics, Bornova-Izmir, Turkey. She is still working as a research assistant at Department of Prosthodontics, Faculty of Dentistry, Ege University. Her fields of interest are dental materials, implant prostheses, adhesive and minimally invasive dental interventions, Temporomandibular Joint Disorders and Occlusion and Digital Dentistry.
Questions

1. Which of the following was used to determine tooth color in the study?
 a. Classic color guides;
 b. Spectrophotometer;
 c. Colorimeter;
 d. Digital camera.

2. Which of the following programs was used to determine skin, eye and lip color in the study?
 a. Canva;
 b. Adobe Photoshop;
 c. PhotoScape;
 d. GIMP.

3. Which of the following is a conclusion that can be drawn from this study?
 a. The standardization of the color matching process with the help of digital cameras provides very objective data in the analysis of the results;
 b. It has been shown that CIEL*a*b* parameters of skin color can be used in the selection of tooth color in case of loss of natural teeth or discoloration of existing teeth;
 c. Within the limitations of the present study, no significant correlations were found between tooth and skin color for CIEL*a*b* values;
 d. Spectrophotometer is not a successful device to measure tooth color.

4. What is the purpose of the study named "Evaluation of the relationship of teeth color and soft tissue color of the face"?
 a. Choosing artificial tooth color in fully and partially edentulous patients by evaluating the relationship between the color of the soft tissues of the face and the color of the teeth;
 b. Understanding of artificial tooth alignment in edentulous and partially edentulous cases;
 c. Comparison of the different eye, lip and skin color in the society;
 d. Examination of the relationship between lip, skin and eye color.