Multidimensional tunneling between potential wells at non degenerate minima

Anatoly ANIKIN
Moscow Institute of Physics and Technology, Moscow, Russia; e-mail: anikin83@inbox.ru

Michel ROULEUX
Aix Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France, Université de Toulon, CNRS, CPT, UMR 7332, 83957 La Garde, France; e-mail: rouleux@univ-tln.fr

We consider tunneling between symmetric wells for a 2-D semi-classical Schrödinger operator for energies close to the quadratic minimum of the potential V in two cases: (1) excitations of the lowest frequency in the harmonic oscillator approximation of V; (2) more general excited states from Diophantine tori with comparable quantum numbers.

1 Tunneling between double wells: a short review

Tunneling for Schrödinger type operators involves various scenarios which depend on the details of the dynamics, ranging from integrable or quasi-integrable systems, to ergodic or chaotic ones.

Assume that V is a smooth function, symmetric with respect to $\{x_1=0\}$, and $\{V(x) \leq E\}$ consists in 2 connected components $\{U_L\} \cup \{U_R\}$ (the potential wells), while $\limsup_{|x| \to \infty} V > E$. We are interested in the semi-classical spectrum of Schrödinger operator $P = -\hbar^2 \Delta + V$ on $L^2(\mathbb{R}^2)$ near energy E, which consists in pairs $E^\pm(h) = E^\pm_k(h)$ exponentially close to eigenvalues $E(h) = E_k(h)$ of the Dirichlet realization of P in some neighborhood of a single well. We will always assume $\{U_L\} \cup \{U_R\}$ that $E(h)$ are simple (non degenerate) and asymptotically simple. As a general rule, the energy shift $\Delta E(h) = E^+(h) - E^-(h)$ (or splitting of eigenvalues) is related to so called Agmon distance $S(E)$ between the wells, associated with the degenerate, conformal metric $ds^2 = (V-E)^+ dx^2$ that measures the life-span of the particle in the classically forbidden region $V(x) \geq E$. Much is known in the 1-D case, even for excited states, or in several dimensions for the lowest eigenvalues.

At the higher level of generality, we only require that $V(x) \neq 0$ on $\{V = E\} = \partial U_L(E) \cup \partial U_R(E)$. In the 1-D case, Landau-Lifshitz formula reads

$$\Delta E(h) = 2\frac{\omega h}{\pi} e^{-(S(E)/\hbar)h(1+o(1))}$$ \hspace{1cm} (1)

where $\omega = \frac{\partial V}{\partial p}$ is the frequency of the periodic orbit at energy E, and $2S(E) = 1 = 2\pi^{-1} \frac{1}{2}(E-V)^+ dx$. In higher dimensions, the structure of the classical flow plays an essential rôle, so that we are left with the following equivalence (see [15] for a precise statement): Assume V is analytic. Then the splitting $\Delta E(h)$ is non exponentially small with respect to Agmon distance (i.e. for all $\varepsilon > 0$, larger than a constant times $e^{-(S(E)+\varepsilon)/h}$, $0 < h \leq h_c$) iff the eigenfunctions of P, with eigenvalues $E^\pm(h)$, are non exponentially small (i.e. for all $\varepsilon > 0$, larger, in local L^2 norm, than a constant times $e^{-\varepsilon/h}$, $0 < h \leq h_c$) in an open set where minimal geodesics, connecting the 2 wells, meet their boundary.

Here are two propositions hold true. Let V have non degenerate minima $a_{L/R}$ with $V(a_{L/R}) = 0$, and $V_0 = \sum \lambda_j^2\tilde{z}_j^2$, $\lambda_1 < \lambda_2$ be the harmonic approximation (in local coordinates z) around $a_{L/R}$ and $p_0(x,\xi) = \xi^2 + V_0$, the quadratic part of $p(x,\xi)$ near 0.

In 1-D the splitting between the lowest eigenvalues is found to be

$$\Delta E(h) = 2\sqrt{\frac{\pi \omega h}{\epsilon}} e^{-S_h/\hbar(1+o(1))} \hspace{1cm} (2)$$

$\omega = \lambda_1$ is the harmonic frequency, and S_h half the action of the periodic orbit for the Hamiltonian with reversed potential $q = \xi^2 - V$ at energy $E = \omega h/2$. For higher energies we have

$$\Delta E_m(h) = 2b_m\frac{\omega h}{\pi} e^{-S(E)/\hbar(1+o(1))},$$

where

$$E = (2m+1)\omega h, \hspace{1cm} b_m = \sqrt{\frac{\pi(2m+1)^{m+1/2}}{2^{m}m!e^{m+1/2}}} \hspace{1cm} (3)$$
so long $mh \leq c$, $c > 0$ small enough, which somehow “interpolates” between (??) and (??) since $b_m \to 1$ as $m \to \infty$.

In several dimensions, the splitting between the two lowest eigenvalues $[6, 1, 2]$ is again of the form

$$\Delta E(h) = 2\frac{\sqrt{\pi} \lambda_1 h}{e} e^{-S_\lambda/h} (1 + o(1))$$

Further, such formulas hold between any low-lying eigenvalues, i.e. for any N, there is $h_N > 0$ such that for each principal quantum number $m \leq N$, the splitting $\Delta E_m(h)$ has an asymptotic of the form $\Delta E_m(h) \sim d_m(h) e^{-S_\lambda/h}$ provided $0 < h < h_N$ [11, 12]. See also [16] for degenerate minima.

In this report we restrict our attention to KAM states, i.e. supported near a Diophantine torus and with quantum numbers (k_1, k_2) such that $|k| \leq c$, or semi-excited states in the limit $c \to 0$, i.e. when $|k| \to \infty$ and $h \to 0$ are related by $|k|h \leq h^\delta$, $0 < \delta < 1$. Further we shall only consider states (or approximate eigenfunctions) microlocalized on isotropic (generally Lagrangian) manifolds whose analytic continuation in the momentum space (i.e. in the classically forbidden region) are in a generic position. Lagrangian manifolds of 2 types are relevant to our analysis: (1) the flow-out of the boundary of the wells (2) the quasi-invariant tori making a local fibration of the energy surface inside the wells. They have a (singular) limit as $E \to 0$.

2 Energy surfaces and librations

The Lagrangian manifolds of the first type are the integral manifold of q passing above $(\partial U_E)_{L/R}$. From now on we assume that in local coordinates near $a_{L/R}$, $p(x, \xi) = p_0(x, \xi) + O(|z|^2)$. Consider first a single well U_E then locally

$$\Lambda^E = \{ \exp(iH_q(p) : p \in \partial U_E \times 0, q(p) = -E, t \in \mathbb{R} \}$$

is a smooth real Lagrangian submanifold of the form $\xi = \pm \nabla E(x)$, $x \notin U_E$, with a fold along ∂U_E. Here $d_E(x) = d_E(x, \partial U_E)$ is Agmon distance from x to ∂U_E and satisfies (locally) the eikonal equation $(\nabla E(x))^2 = V(x) - E$. As $E \to 0$, Λ^E tends to the union of the outgoing/incoming Lagrangian manifolds Λ^\pm (called separatrices in 1-D) with a conical intersection at the origin.

We shall assume that $(\Lambda^E)_{L/R}$, as integral manifolds of Hamiltonian flow, extend away from the wells as Lagrangian manifolds intersecting in the energy surface $\{q(p) = -E\}$ along a curve γ_E.

This curve projects onto \mathbb{R}^2 precisely as a libration Lib_E between $U_L(E)$ and $U_R(E)$, i.e. a periodic orbit with end points at $\partial U_{L/R}(E)$ [3]. We assume for simplicity there is exactly one such family of curves. We call also Lib_E a minimal geodesic between $U_L(E)$ and $U_R(E)$ for Agmon distance $ds^2 = \sqrt{V(x) - E} \, dx^2$. Assuming PT symmetry (i.e. V symmetric with respect to $\{x_1 = 0\}$), we denote by $\{x_1 \} = \text{Lib}_E \cap \{x_1 = 0\}$.

Then $d_E(x_1, U_L^E) = d_E(x_1, U_R^E) = S_E/2$, and Lib_E intersects $\{x_1 = 0\}$ at x_1 with a right angle. A neighborhood of x_1 in $\{x_1 = 0\}$ can be thought of as Poincaré section, intersecting γ_E transversally. The γ_E are (unstable) periodic orbits of hyperbolic type, with real Floquet exponent $\beta(E)$. Of course, because of focal points, $(\Lambda^E)_{L/R}$ doesn’t extend smoothly everywhere but only in a neighborhood of librations when the system is not integrable.

As $E \to 0$ the libration degenerates to an instanton γ_0. Parametrized as a biharmonic of $q(x, \xi)$ at $E = 0$, it takes an infinite time to reach the equilibria a_L or a_R along γ_0. We shall assume that the stable outgoing and incoming manifolds $\Lambda^E_{L/R}$ at 0 intersect transversally at γ_0.

3 Quasi-invariant Liouville tori

Lagrangian manifolds of the second type are the invariant tori foliating (locally) the energy surface in the integrable case, or KAM tori, or corresponding quasi-invariant tori in the quasi-integrable case. In the Section 6, we shall also allow these Lagrangian manifolds to shrink to periodic orbits.

We can have already a good insight into the problem in replacing V by its quadratic approximation. This is what we call the model case. When frequencies λ_j are rationally independent, we can essentially reduce to the model case by resorting to Birkhoff normal forms (or KAM theorem).

So assume for simplicity that $p = p_0$ near $a_{L/R}$. Then for small $E > 0$, the energy surfaces are foliated by invariant tori Λ_E, $E = 2\lambda_1t_1 + 2\lambda_2t_2$ which can be extended in the complex domain along complex times, e.g. as integral leaves Λ_E of $q(x, \xi) = \lambda^2 - \lambda_1^2 z_1^2 - \lambda_2^2 z_2^2$, with purely imaginary time.

The caustics of Λ_E can be viewed as a rectangle shaped fold line delimiting the zone of pure oscillations of the quasi-modes, and touching the boundary of the wells $\partial U_E, E = 2\lambda_1t_1 + 2\lambda_2t_2$ at 4 vertices, the hyperbolic umbilic points (HU) points, section of the torus by the plane $\xi = 0$ in \mathbb{R}^3. We
We say also that if there are tunnel bicharacteristic q with clean intersection. A Diophantine condition on cycle ∂U can identify y with ι. At the umbilic y, we have $T_y\tilde{\Lambda}_i = T_y\Lambda_i = T_y(\text{fiber})$, $T_y\Lambda_i \cap T_y\Lambda_\tilde{E} = RH_y$, where $E = 2\lambda_1\iota_1 + 2\lambda_2\iota_2$. More generally tori Λ_i continue analytically in the ξ variables as a multidimensional Riemann sheet structure, with a number of sheets corresponding to the choice of the sign of momentum, glued along the caustics, and all intersecting at the HU’s. On the other hand, $\Lambda_\tilde{E}$ has the fibre bundle structure $\Lambda_\tilde{E} = \bigcup_{\gamma \in \Omega_E} \gamma_y$ where γ_y is the bicharacteristic of $q(x, \xi)$ at energy $-E$ issued from ∂U_E at the point y. We have

$$\gamma_y = \tilde{\Lambda}_i \cap \Lambda_\tilde{E}, \quad E = 2\lambda_1\iota_1 + 2\lambda_2\iota_2$$

(4)

with clean intersection.

Of course, in the general case (not model case), tori Λ_i or $\tilde{\Lambda}_i$ make only sense as asymptotic objects (via Birkhoff normal form) because they are not invariant under the Hamilton vector flow. Assuming a Diophantine condition on λ_1/λ_2 we can also select a dense family of such invariant tori.

4 THE TUNNEL CYCLE AND TUNNEL BICHARACTERISTICS

If the system were integrable near 0, because of PT symmetry, the extension of $(\tilde{\Lambda}_i)_L$ would usually coincide with $(\Lambda_i)_R$, the decaying branch of $(\Lambda_i)_R$. For a general, non integrable system, there is no reason for this holds and $\tilde{\Lambda}_L$ intersects Λ_R along a one dimensional manifold.

Definition 1 Assume again there is only one libration Lib_E. We call the lift γ_E of Lib_E the tunnel cycle. We call the bicharacteristic $\tilde{\gamma} \subset q^{-1}(-E)$ a tunnel bicharacteristic if there are $\rho_L, \rho_R \in \tilde{\gamma}$, with $E = 2\lambda_1\iota_1 + 2\lambda_2\iota_2$ and $\rho_L \in (\tilde{\Lambda}_i)_L$, $\rho_R \in (\tilde{\Lambda}_i)_R$. We say also that ρ_L, ρ_R are in correspondence along $\tilde{\gamma}$.

The tunnel cycle is a tunnel bicharacteristic for which ρ_L, ρ_R are umbilics, but it carries generally no interaction between wells, unless ρ_L, ρ_R belong to quantized tori. But in a small, h-dependent neighborhood of γ_E there are tunnel bicharacteristics that carry interaction between wells (but generally do not close). Non degeneracy of the tunnel cycle then implies the following:

Proposition 1 Consider the model case. When $E = 2\lambda_1\iota_1 + 2\lambda_2\iota_2$ we have

$$\gamma_E = (\Lambda_\tilde{E})_L \cap (\Lambda_\tilde{E})_R = (\tilde{\Lambda}_i)_L \cap (\tilde{\Lambda}_i)_R$$

(5)

with a clean intersection.

It follows from (??) that along the tunnel cycle Lib_E we have simultaneously $\gamma_E = (\Lambda_\tilde{E})_L \cap (\Lambda_\tilde{E})_R = (\tilde{\Lambda}_i)_L \cap (\tilde{\Lambda}_i)_R$ and $\gamma_E = (\Lambda_i)_L \cap (\Lambda_i)_R = (\tilde{\Lambda}_i)_L \cap (\tilde{\Lambda}_i)_R$ with clean intersections.

Unlike ∂U_E, the caustics of $\Lambda_\tilde{E}$ which is a smooth set, the caustics of $\tilde{\Lambda}_i$ issued from y is a stratified set consisting of the umbilic y, and lines $C_1(y)$, $C_2(y)$ tangent at y to the principal directions of V''. These caustics sets are the envelopes of Lissajous figures, whose lifts are (real) bicharacteristics of q.

Non degeneracy of the tunnel cycle γ_E implies also the following splitting from (??):

Claim 1 Let γ_E be a minimal tunnel cycle, with end points $y_{L/R}^E$, intersecting $\{x_1 = 0\}$ at Ω_E, with $x_E = \pi(\Omega_E)$. For $y \in \mathbb{R}^2$ close to $y_{L/R}^E$, let $E(y) = V(y)$ and $\tilde{\Lambda}_{(i)}(y)$ denote the Lagrangian manifold as above with $HU y$. Then for all y close enough to $y_{L/R}^E$, we have:

1) $(\Lambda_{\tilde{E}})_{L} \cap (\Lambda_{\tilde{E}})_{R}$ is a curve $\gamma(y)$ whose projection is the libration $\text{Lib}_{E(y)}$, that intersects the caustics $\partial U_{E(y)}$ of $\Lambda_{\tilde{E}}$ at some $y'(y)$ (both for L and R).

2) $(\tilde{\Lambda}_{(i)}(y))_{L} \cap (\tilde{\Lambda}_{(i)}(y))_{R}$ is a tunnel bicharacteristic $\tilde{\gamma}(y)$ transverse to $\pi^{-1}(\{x_1 = 0\})$, $\tilde{\gamma}(y) \cap \pi^{-1}(\{x_1 = 0\}) = \{\tilde{\sigma}(y)\}$, and $\pi(\tilde{\gamma}(y))$ intersects orthogonally $\{x_1 = 0\}$ at $\tilde{x}(y) = \pi(\tilde{\sigma}(y))$. Moreover $\tilde{\gamma}(y)$ projects at some $\tilde{\rho}(y) \in \Lambda_{(i)}(y)$ to $\tilde{y}(y)$ tangentially to the caustics $C(y)$ (both for L and R).

Thus γ_E, which was common to both $(\Lambda_{\tilde{E}})_{L} \cap (\Lambda_{\tilde{E}})_{R}$ and $(\tilde{\Lambda}_{(i)}(y))_{L} \cap (\tilde{\Lambda}_{(i)}(y))_{R}$, splits into 2 distinct curves: (1) the lift of the libration at energy $E(y)$, (2) a tunnel bicharacteristic passing through the regular part of $C(y)$. Because the action along $\tilde{\gamma}(y)$ gives the tunneling rate when $\Lambda_{(i)}(y)$ supports a quasi-mode we introduce the:
Definition 2 The action \(\int_{y(y_{\omega})} \xi \, dx \) computed on \(\gamma(y) \) is called the tunnel distance between \((\Lambda_j(y))_L \) and \((\Lambda_j(y))_R \) (it equals Agmon distance when \(\gamma(y) = \gamma_E \)).

Let \(y \in \partial E(y) \). Integrating \(\xi \, dx \) along \(\gamma_y \) gives (locally) Agmon distance to the well:

\[
d_E(x) = \int_y^x \xi \, dx = \sum_j \lambda_j \int_{y_j}^{x_j} \sqrt{t^2 - y_j^2} \, dt, \quad x \in \gamma_y
\]

Denote by \(F^E_y(x) \) the RHS of this equation; provided \(y \in \partial U_E \) is not too close to both \(z \)-axis, one can show that \(F^E_y(x) - d_E(x) \) is estimated by the square of the (Euclidean) distance of \(x \) to its orthogonal projection on \(\gamma_y \), for \(x \) in a neighborhood of \(\text{Lib}_E \). Similarly, we consider variations from the regular part of the caustics \(C(y) \) inf \(\{ \int_0^1 (V(\gamma(s)) - E)^{1/2} \xi | \gamma(s) \rangle ds \} \), with \((\gamma(0), \gamma(1)) \in T \mathcal{C}(y), \gamma(1) = x \), and write the critical value as \(G^E_{C(y)}(x) = \int_{y(x)}^x \xi \, dx \), or simply \(G^E_{C(y)}(x) = \int_{y(x)}^x \xi \, dx \). Again \(G^E_{C(y)}(x) = d_E(x) + \int_{y(x)}^x \xi \, dx = F^E_y(x) - d_E(x), \) where \(\int_{y(x)}^x \xi \, dx, \xi \in C(y) \) is a small error term essentially independent of \(x \) in a neighborhood of \(\text{Lib}_E \).

The next step consists in constructing quasi-modes. First we construct quasi-modes microlocalized on the \(\Lambda_i \) selecting a sequence \(\iota = i_k(h) \) from Bohr-Sommerfeld-Maslov (or EBK) quantization rules. As a rule, these (oscillating) quasi-modes extend in the shadow zone near \(y_k(h) \) with exponential decay. They can further be extended to \(u_L \) and \(u_R \) along \(\gamma(y_k(h)) \) using WKB expansions, or the “Gaussian beams” method. The eigenvalue splitting is given by the usual formula

\[
\Delta E_k(h) \sim 4L^2 h^2 \int_{\Sigma} u_L(0, x_2) \frac{\partial u_R}{\partial x_1}(0, x_2) \, dx_2
\]

where \(\Sigma \) is a neighborhood of \(x_E \) in \(\{ x_1 = 0 \} \). We now treat some specific cases in more detail.

5 TUNNELING NEAR A PAIR OF DIOPHANTINE TORI

Assume \(c > 0 \) is so small that KAM theory ensures existence of a family invariant tori in the well \(U_E = U_L(E) \) for \(E \leq c \). We are interested in \(\Delta E_k(h) \) for \(E_k(h) \) near such fixed \(E > 0 \). Assume that \(\text{Lib}_E \) starts at umbilic \(y_{E} \) away from the \(z \)-axis, and for simplicity, that \(y_E \in \Lambda_i \) with \(i \) in the KAM set, i.e. such that the motion on \(\Lambda_i \) is quasi-periodic with Diophantine frequency vector \(\omega \) (this assumption seems to be generic, varying slightly \(E \)). In [8], we proved the following: Let \(0 < \delta < 1 \). Then in a \(h^{\delta/2} \)-neighborhood of \(\Lambda_i \) in \(T^{\ast}M \), there is a family \(\tilde{\Lambda}_i \) of tori, labelled by their action variables \(J = J_k(h) \) for \(k \in \mathbb{Z}^d \) satisfying \(|kh - \iota| \leq h^\delta \), which verify Bohr-Sommerfeld-Maslov quantization condition, and are quasi-invariant under \(H_p \) with an accuracy \(\mathcal{O}(h^\infty) \). At first approximation, the umbilics \(y_k(h) \in \tilde{\Lambda}_j \) have the form \(y \sim (\lambda_1^{-1} \sqrt{2\lambda_1 k_1}, \lambda_2^{-1} \sqrt{2\lambda_2 k_2}) \) or \(y \sim (\lambda_1^{-1} \sqrt{2h\lambda_1 k_1}, \lambda_2^{-1} \sqrt{2h\lambda_2 k_2}) \), \(k = (k_1, k_2) = k(h) \in \mathbb{N}^2 \) so the typical neighboring distance between \(y_k(h) \) is \(h^{E - 1/2} \) when \(y_E \) stays away from the \(z \)-axis. Using Maslov canonical operator, we obtain from these tori a sequence of quasi-modes for \(P \) near \(E \). By complex contour integrals ([9, 12]) they extend in a \(|h \log h|^{2/3} \)-neighborhood of \(U_E \), as states microlocalized on \(\tilde{\Lambda}_j \), and decaying exponentially as \(\exp[-F^E_y(x)/h] \), or \(\exp[-G^E_{C(y)}(x)/h] \). This decay propagates all along \(\tilde{\gamma}(y_k(h)) \) and nearby bicharacteristics, which stay in the purely decaying branch \(\tilde{\Lambda}_j \) of \(\Lambda_j \).

Next we need to compare the tunnel distance with Agmon distance which coincide only on the tunnel cycle. Let \(S_L - S_R \) be the tunnel action between \(y_L \) and \(y_R \), we have at \(\{ x_1 = 0 \} \) (see Fig.1)

\[
S_L - S_R - 2S_0(E) = 2(F^E_y(\tilde{x}(y)) - d_E(\tilde{x}(y))) + 2(d_E(y)(\tilde{x}(y)) - d_E(\tilde{x}(y))) + 2(d_E(\tilde{x}(y)) - d_E(x_E))
\]

Evaluating each error term on the RHS, we arrive at \(S_L - S_R - 2S_0(E) = o(1), h \to 0 \). Then \(S_L - S_R \) has a non degenerate critical point at \(\tilde{x}(y_k(h)) \) belonging to the tunnel bicharacteristic \(\tilde{\gamma}(y_k(h)) \) common to \((\tilde{\Lambda}_j(h))_L \) and \((\tilde{\Lambda}_j(h))_R \). The integral can be computed by standard stationary phase expansion around \(x_k(h) \). Since the amplitude of \(u_R \) (and \(u_L \)) is non vanishing, we obtain eventually [5]

\[
\Delta E_k(h) \sim B_k(h) e^{-(S_L - S_R)/h}
\]

with \(B_k(h) \sim \frac{h^{3/2}}{\sqrt{\tau_L h_R}} \). Here \(H_L/R \) are Hamilton vector fields transverse to \(\gamma_E \), and \(\tau_L/R \) suitable Jacobians computed on \((\tilde{\Lambda}_j(h))_L/R \).

6 THE QUASI 1-D CASE

In this section we shall assume that frequencies \(\lambda_1, \lambda_2 \) are non-resonant, with \(2\lambda_1 < \lambda_2 \), and the
instanton γ_0 approaches the node singularity of the outgoing and incoming manifolds $\Lambda^\pm_{L/R}$ at $a_{L/R}$ in a regular direction (associated with λ_1). We consider eigenstates with quantum vector $(m,0)$ for $m \in \mathbb{N}$, i.e. $E_m = h(\lambda_1(2m + 1) + \lambda_2) + O(h^2)$, and compute asymptotics for the energy splitting ΔE_m (as $h \to 0$, while m stays fixed, and probably also when $hm \leq h^3$, $0 < h < 1$.) This amounts to let Λ, shrink to an isotropic torus.

Theorem 1 Under the assumptions above
\[\Delta E_m = 2b_m \omega_1 \hbar e^{-\frac{S_L}{h}} (1 + o(1)), \quad h \to 0, \]
where b_m is found from (??), $S(\tilde{E})$ is half the action on $\text{Lib}_{\tilde{E}}$ at energy $\tilde{E} = \tilde{E}(h)$ which we determine as the solution of:
\[\tilde{E} + \hbar \beta(\tilde{E}) = h \left(\lambda_1(1 + 2m) + \lambda_2 \right). \]
Here $\beta(\tilde{E})$ is positive Floquet exponent of $\text{Lib}_{\tilde{E}}$.

In the case $m = 0$ Theorem 1 was proved, first, in [4] when γ_0 is a straight line $x_2 = 0$, and then in [1,2] in full generality (see also [6]). We want to show that passing to an arbitrary $m > 0$ is quite simple.

Sketch of proof: We express (6) with the instanton phase ($E = 0$). The tunnel WKB approximation for the normalized quasimodes reads
\[u_{L/R} = \hbar^{-\frac{m+1}{2}} A_{L/R} e^{-S_{L/R}} (1 + O(h)), \]
where $S_{L/R} = d_0(x, a_{L/R})$ (distance along the instanton), and the amplitudes $A_{L/R}$ are solution of the transport equation
\[A \left(\lambda_1(2m + 1) + \lambda_2 - D \right) + 2\nabla A \nabla S = 0. \]
Inserting it into (??) and applying asymptotic stationary phase, we obtain:
\[\Delta E_m \sim 4h^{\frac{1}{2} - m} \sqrt{\pi} D^{-\frac{1}{2}} A_L^2(x_0) P_0 e^{-\frac{S_0}{h}}, \]
where $x_0 = x_E|_{E=0}$, $D = \frac{\partial S}{\partial x_2}(x_0)$, $P_0 = \frac{\partial S_{L/R}}{\partial x_1}(x_0)$, and $S_0 = 2S_{L}(x_0)$.

Thus, we arrived to the same formula as for $m = 0$, but for the numerical factor b_m. The rest of proof is similar to the case $m = 0$, its main ingredient is the following (see [6]):

Proposition 2
\[\beta(E) = \lambda_2 - \frac{4\log T}{T(E)}(1 + o(1)), \]
where $T(E)$ denote the period of Lib_E.

Note that proof of this Proposition uses assumption $2\lambda_1 < \lambda_2$. When the instanton γ_0 is not a straight line, we resort to special coordinates (proposed in [7,4]): s denotes arclength along γ_0, while q is a coordinate along a normal to γ_0. But these coordinates are ill-behaved when Euclidean curvature of γ_0 tends to infinity near $a_{L/R}$, which can happen, if $\frac{1}{\lambda_1} \leq 2$. On the other hand, we can use harmonic oscillator approximation for $b(t)$ as $t \to \infty$. Therefore
\[b(t) \sim \sqrt{\lambda_1 + 2m} \lambda_2 2^{\gamma/2} \left(\xi_1(t) \right)^m, \quad t \to +\infty \]
where $\xi_1(t)$ is a ξ_1-coordinate of $\gamma_0(t)$. Defining $\sigma = \lim_{t \to +\infty} e^{\lambda_1 t} \xi_1(t)$ and $J = J(\xi_1)$ we see that
\[\Delta E_m \sim \frac{2^{m+1} \hbar^{\frac{1}{2} - m} \sqrt{\lambda_1}}{m!} \rho e^{-\frac{S_0}{h}}. \]

(10)

Let now S_E be a half of the action along Lib_E. In [1] we proved:
\[S_E - S_0 = E(1 + \log 2) + ET_E + o(E), \]
where T_E stands for time to move along γ_0 between the intersections with ∂U_E. Inserting (??) with $E(h) = h(1 + 2m)\lambda_1$ into (??), we get
\[\Delta E_m \sim \frac{2^{1-m} \sqrt{\pi} \hbar \lambda_1}{m!} \rho \sqrt{D} e^{-\frac{S_0}{h}}, \]
where
\[\rho = \frac{\sigma \sqrt{\lambda_1}}{\sqrt{\hbar}} e^{-\lambda_1 T_E}. \]

One can easily see that $\rho \sim \sqrt{2^{m+1}}$, hence
\[\Delta E_m \sim b_m \frac{h \omega_1}{\rho} T e^{-\frac{S_0}{h}}. \]
(12)
Acknowledgements

The authors thank S. Dobrokhotov and J. Sjöstrand for their valuable comments.

References

[1] A. Yu. Anikin. Asymptotic behaviour of the Maupertuis action on a libration and a tunneling in a double well. I. Rus. J. of Math. Phys. 2013. V. 20. No. 1. p.1-12.

[2] A. Yu. Anikin. Libration and splitting of the ground state in multidimensional double well problem. Theoret. and Math. Phys. 2013. V. 175. No. 2. p.609-619.

[3] V. Arnold, V. Kozlov, A. Neishtadt. Mathematical aspects of classical and celestial mechanics. Encyclopaedia of Math. Sci., Dynamical Systems III, Springer, 2006.

[4] J. Brüning, S. Yu. Dobrokhotov, E. S. Semenov. Unstable closed trajectories, librations and splitting of the lowest eigenvalues in quantum double well problem. Regul. Chaotic Dyn. 2006. V. 11. No. 2. p.167-180.

[5] S.C. Creagh. Tunneling in two dimensions. Proc. on “Tunneling in Complex systems” (INT 97-1) Seattle, April 30-May 30, 1997.

[6] S. Yu. Dobrokhotov, A. Yu. Anikin, Tunneling, librations and normal forms in a quantum double well with a magnetic field, pp. 85–110 in Nonlinear physical systems, Spectral analysis, stability and bifurcations. Edited by O.N. Kirillov and D.E. Pelinovsky. ITSE. Wiley. 2014.

[7] S. Yu. Dobrokhotov, V. N. Kolokol’tsov. Splitting amplitudes of the lowest energy levels of the Schrödinger operator with double-well potential. Theoret. and Math. Phys. 1993. V. 94. No. 3. p.300-305.

[8] S. Yu. Dobrokhotov, M. Rouleux. The semi-classical Maupertuis-Jacobi correspondence for quasi-periodic Hamiltonian flows with applications to linear water waves theory. Asympt. Analysis, Vol.74 (1-2), p.33-73, 2011.

[9] S. Fujiié, A. Lahmar-Benbernou, A. Martinez. Width of shape resonances for non globally analytic potentials. J. Math. Soc. Japan 63(1), p.1-78, 2011.

[10] E. Harrell. Double wells. Comm. Math. Phys. 119, p.291-331, 1984.

[11] B. Helffer, J. Sjöstrand. 1. Multiple wells in the semi-classical limit I. Comm. Part. Diff. Eqn. 9(4) p.337-408, 1984. 2 Multiple wells in the semi-classical limit III -interaction through non-resonant wells. Math. Nachr. 124, 1985.

[12] N. Kaidi, M. Rouleux. Quasi-invariant tori and semi-excited states for Schrödinger operators I. Asymptotics. Comm. Part. Diff. Eq., Vol.27, Nos 9 and 10, p.1695-1750, 2002.

[13] L.D. Landau, E.M. Lifshitz. Quantum Mechanics: Non-Relativistic Theory. 1977. Pergamon Press.

[14] A. Martinez. Estimations de l’effet tunnel pour le double puits I. J. Math. Pures Appl. 66, p.195-215, 1987.

[15] A. Martinez. Estimations de l’effet tunnel pour le double puits II. Bull. Soc. Math. France 116 (2), p.199-219, 1988.

[16] A. Martinez, M. Rouleux. Effet tunnel entre puits dégénérés. Comm. Part. Diff. Eq., Vol.13, (9), p.1157-1187, 1988.

[17] T.F. Pankratova. 1. Quasimodes and splitting of eigenvalues. Doklady Akademii Nauk USSR 276(4) p.795-798. 2. Annales Inst. H.Poincaré 62(3), 1995, p.361-382.

[18] M. Wilkinson. Tunneling between tori in phase-paze. Physica 21D, p.341-354, 1986.

[19] M. Wilkinson, J.H. Hannay. Multidimensional tunneling between excited states. Physica 27D, p.201-212, 1987