The McKay Conjecture and central isomorphic character triples

Damiano Rossi

Abstract

We refine the reduction theorem of the McKay Conjecture proved by Isaacs, Malle and Navarro. Assuming the inductive McKay condition, we obtain a strong version of the McKay Conjecture that gives central isomorphic character triples.

1 Introduction

The McKay Conjecture is one of the leading problems in representation theory of finite groups. It states that, if p is a prime number and P is a Sylow p-subgroup of a finite group G, then

$$|\text{Irr}_{p'}(G)| = |\text{Irr}_{p'}(N_G(P))|,$$

where for any finite group X we denote by $\text{Irr}_{p'}(X)$ the set of irreducible complex characters of G whose degree is not divisible by p. In [IMN07] Isaacs, Malle and Navarro prove a reduction theorem for the McKay Conjecture and show that the conjecture holds for every finite group with respect to the prime p provided that the so-called inductive McKay condition holds for every non-abelian finite simple group with respect to the prime p.

The inductive McKay condition requires the existence of a bijection as the one predicted by the McKay Conjecture which gives central isomorphic character triples and is compatible with the action of automorphisms. Although this condition was originally thought for quasi-simple groups, it can be stated for arbitrary finite groups.

Conjecture A. Let $G \leq A$ be finite groups, p a prime and P a Sylow p-subgroup of G. Then there exists an $N_A(P)$-stable subgroup $N_G(P) \leq M \leq G$, with $M < G$ whenever P is not normal in G, and an $N_A(P)$-equivariant bijection

$$\Omega : \text{Irr}_{p'}(G) \to \text{Irr}_{p'}(M)$$

such that

$$(A, G, \chi) \simeq_c (M N_A(P) \chi, M, \Omega(\chi)),$$

for every $\chi \in \text{Irr}_{p'}(G)$.

Observe that the above statement could equivalently be stated by taking $M = N_G(P)$. However this additional flexibility is fundamental when proving the result for quasi-simple groups. It’s also worth noting that, by using [Spä18 Theorem 2.16], it’s no loss of generality to assume $A = G \rtimes \text{Aut}(G)$.

2010 Mathematical Subject Classification: 20C15.
Key words and phrases: McKay Conjecture, inductive McKay condition, character triples.

These results were obtained during the author’s PhD at the Bergische Universität Wuppertal funded by the research training group GRK2240: Algebra-geometric Methods in Algebra, Arithmetic and Topology of the DFG. This work is also supported by the EPSRC grant EP/T004592/1. The author would like to thank Britta Späth for a careful reading of an earlier version of this paper.
The reduction theorem of Isaacs, Malle and Navarro can now be stated by saying that if Conjecture A holds for every universal covering group of finite non-abelian simple groups, then the McKay Conjecture holds for every finite group.

The first attempt to prove a reduction theorem for Local-Global conjectures was made in Dade’s Projective Conjecture. According to Dade’s philosophy, there should exist a refinement of the conjecture that is strong enough to hold for every finite group when shown for quasi-simple groups. In the case of Dade’s Projective Conjecture such a refinement should be found in the inductive form of Dade’s conjecture [Dad97, 5.8] (see also [Spä17, Conjecture 1.2]). The aim of this paper is to show that Conjecture A provides the sought refinement in the case of the McKay Conjecture. We recall that a group S is said to be involved in G if there exists $N \leq K \leq G$ such that $S \cong K/N$.

Theorem B. Let G be a finite group and p a prime. Suppose that Conjecture A holds at the prime p for the universal covering group of every non-abelian simple group involved in G. Then Conjecture A holds for G at the prime p.

Notice that, by work of Malle and Späth [MS16], Conjecture A is known to hold at the prime $p = 2$ for every universal covering group of finite non-abelian simple groups. For odd primes p, Conjecture A is known for almost all quasi-simple groups except possibly in certain cases when considering groups of Lie type D and $2D$ (see [Mal08], [Spä12], [CS13], [CS17a], [CS17b], [CS19] and [Spä21]).

Corollary C. Conjecture A holds for the prime 2.

We mention that strong forms of the Local-Global conjectures that are compatible with isomorphisms of character triples are of great use in representation theory of finite groups. For instance, in [NS14] a reduction theorem for Brauer’s Height Zero Conjecture has been deduced from an analogue of Theorem B in the context of the Alperin–McKay conjecture.

The paper is structured as follows: in Section 2 we introduce some preliminary results on character triples while in Section 3, assuming the inductive McKay condition, we obtain good bijections for groups whose quotient over the centre is isomorphic to a direct product of non-abelian simple groups. In the final section we prove Theorem B by inspecting the structure of a minimal counterexample.

2 Preliminaries on character triples

Let G be a finite group, $N \not\leq G$ and $\vartheta \in \text{Irr}(N)$. If ϑ is G-invariant, then (G, N, ϑ) is a character triple. We are going to use the partial order relation \succeq on character triples as defined in [Nav18, Definition 10.14] and [Spä18, Definition 2.7]. Recall that this definition requires the existence of a pair of projective representations (P, P') associated with two character triples (G, N, ϑ) and (H, M, φ) satisfying certain properties. Whenever we want to specify the choice of the projective representations we say that (G, N, ϑ) $\succeq_c (H, M, \varphi)$ via (P, P') or that (P, P') gives $(G, N, \vartheta) \succeq_c (H, M, \varphi)$. In this case we say that (G, N, ϑ) and (H, M, φ) are central isomorphic character triples. First, we need the following version of [NS14, Theorem 3.14] which shows the compatibility of the order relation \succeq_c with the Clifford correspondence.

Lemma 2.1. Let $N \not\leq G$, $\mathcal{G} \leq G$ and $H \leq G$ such that $G = NH$, $H = \overline{H}M$ and $C_G(N) \leq H$. Set $M := N \cap H$, $\overline{H} := G \cap H$, $\overline{M} := G \cap M$ and $\overline{N} := G \cap N$. Let $\vartheta \in \text{Irr}(\overline{N})$ and $\varphi \in \text{Irr}(\overline{M})$ such that $\vartheta := \overline{\vartheta}^N \in \text{Irr}(N)$, $\varphi := \overline{\varphi}^M \in \text{Irr}(M)$ and $(\mathcal{G}, \overline{N}, \overline{\vartheta}) \succeq_c (\overline{H}, \overline{M}, \overline{\varphi})$. Assume that induction of characters gives bijections $\text{Ind}_{\overline{H}}^{\overline{J}} : \text{Irr}(J \mid \overline{\vartheta}) \to \text{Irr}(J \mid \vartheta)$ and $\text{Ind}_{\overline{M}}^{\overline{J}} : \text{Irr}(J \cap H \mid \overline{\varphi}) \to \text{Irr}(J \cap H \mid \varphi)$, for every $N \leq J \leq G$ where $\overline{J} := J \cap \mathcal{G}$, then $(G, N, \vartheta) \succeq_c (H, M, \varphi)$.

We also need another basic observation that follows directly from the definition of χ for every D (such that $\vartheta \subseteq S$).

Proof. Consider a pair of projective representations (\tilde{P}, \tilde{P}') associated to $(G, \tilde{N}, \tilde{\vartheta}) \geq_c (H, \tilde{M}, \tilde{\varphi})$. Arguing as in the proof of [NS14 Theorem 3.14], we construct the induced projective representations $P := (\tilde{P})^G$ of G and $P' := (\tilde{P}')^H$ of H associated respectively to ϑ and φ. Then (P, P') is associated to $(G, N, \vartheta) \geq_c (H, M, \varphi)$.

Next, we recall that the strong isomorphism of character triples associated to central isomorphic character triples (see [Spä18 Theorem 2.2] and [Nav18 Theorem 10.13 and Problem 10.4]) is compatible with the order relation \geq_c.

Proposition 2.2. Let $(G, N, \vartheta) \geq_c (H, M, \varphi)$ via (P, P') and consider the associated $N_H(J)$-equivariant bijection $\sigma : \text{Irr}(J \mid \vartheta) \to \text{Irr}(J \cap H \mid \varphi)$ (see [Spä18 Theorem 2.2]). Then

$$(\mathcal{N}_G(J)_\psi, J, \psi) \geq_c (\mathcal{N}_H(J)_\psi, J \cap H, \sigma_J(\psi)),$$

for every $\psi \in \text{Irr}(J \mid \vartheta)$.

Proof. Let (P, P') be associated with $(G, N, \vartheta) \geq_c (H, M, \varphi)$. By [Spä18 Theorem 2.2] or [Nav18 Theorem 10.13] there exists a projective representation Q of J with $\mathcal{N}_J \leq \ker(Q)$ such that $P_J \otimes Q$ and $P_{J \cap H} \otimes Q_{J \cap H}$ afford respectively ψ and $\sigma_J(\psi)$. By [Nav18 Theorem 5.5] there exists a projective representation D of G such that $D_J = P_J \otimes Q_J$ and, arguing as in [NS14 p. 707], relying on the proof of [Nav98 Theorem 8.16] we can find a projective representation \mathcal{Q} of G satisfying $D = P_{N_G(J)_\psi} \otimes \mathcal{Q}$. Set $D' := P_{N_H(J)_\psi} \otimes \mathcal{Q}_{N_H(J)_\psi}$.

Then (D, D') is associated to $(\mathcal{N}_G(J)_\psi, J, \psi) \geq_c (\mathcal{N}_H(J)_\psi, J \cap H, \sigma_J(\psi))$.

We also need another basic observation that follows directly from the definition of \geq_c.

Lemma 2.3. Let $(G, N, \vartheta) \geq_c (H, M, \varphi)$. Then $(J, N, \vartheta) \geq_c (J \cap H, M, \varphi)$, for every $N \leq J \leq G$.

Given a bijection between characters sets which is compatible with \geq_c, we now show how to obtain another bijection lying over the starting one and with similar compatibility properties. To do so we apply Lemma 2.3 and Proposition 2.2.

Proposition 2.4. Let $K \subseteq A$ and $A_0 \leq A$ such that $A = KA_0$. For every $H \leq A$ set $H_0 := H \cap A_0$. Let $S \subseteq \text{Irr}(K)$ and $S_0 \subseteq \text{Irr}(K_0)$ be A_0-stable subsets and assume there exists an A_0-equivariant bijection

$$\Psi : S \to S_0$$

such that

$$(A_\vartheta, K, \vartheta) \geq_c (A_\vartheta, K_0, \Psi(\vartheta)),$$

for every $\vartheta \in S$. Then, for every $K \leq J \leq A$, there exists an $N_{A_0}(J)$-equivariant bijection

$$\Phi : \text{Irr}(J \mid S) \to \text{Irr}(J_0 \mid S_0)$$

such that

$$(N_{A_0}(J)_\chi, J, \chi) \geq_c (N_{A_0}(J)_\chi, J_0, \Phi(\chi)),$$

for every $\chi \in \text{Irr}(K \mid S)$. Moreover, if $S \subseteq \text{Irr}_{P', Q}(K)$, $S_0 \subseteq \text{Irr}_{P', Q}(K_0)$ and $N_A(Q) \leq A_0$ for some $Q \in \text{Syl}_p(J)$, then Φ is a $N_A(Q, J)$-equivariant bijection

$$\Phi : \text{Irr}_{P'}(J \mid S) \to \text{Irr}_{P'}(J_0 \mid S_0).$$
Proof. Consider an $N_{A_0}(J)$-transversal S and define $S_0 := \{\Psi(\vartheta) \mid \vartheta \in S\}$. Since Ψ is A_0-equivariant, it follows that S_0 is an $N_{A_0}(J)$-transversal in S. For every $\vartheta \in S$, with $\vartheta_0 := \Psi(\vartheta) \in S_0$, we fix a pair of projective representations $(\mathcal{P}(\vartheta), \mathcal{P}_0(\vartheta_0))$ giving $(A_\vartheta, K, \vartheta) \simeq_c (A_{\vartheta_0}, K_0, \vartheta_0)$. Now, let T be an $N_{A_0}(J)$-transversal in $\text{Irr}(J \mid S)$ such that every character $\chi \in T$ lies above a character $\vartheta \in S$ (this can be done by the choice of S). Moreover, as $A = K A_0$, we have $J = K J_0$ and therefore every $\chi \in T$ lies over a unique $\vartheta \in S$ by Clifford’s theorem.

For $\chi \in T$ lying over $\vartheta \in S$, let $\varphi \in \text{Irr}(J_0 \mid \vartheta)$ be the Clifford correspondent of χ over ϑ. Set $\vartheta_0 := \Psi(\vartheta) \in S_0$ and consider the $N_{A_0}(J)_\vartheta$-equivariant bijection $\sigma_{J_0} : \text{Irr}(J_0 \mid \vartheta) \to \text{Irr}(J_0, \vartheta)$ induced by our choice of projective representations $(\mathcal{P}(\vartheta), \mathcal{P}_0(\vartheta_0))$. Let $\varphi_0 := \sigma_{J_0}(\varphi)$. Since Ψ is A_0-equivariant, we deduce that $J_{0,\vartheta} = J_{0,\vartheta_0}$ and therefore $\Phi(\chi) := \varphi_0$ is irreducible by the Clifford correspondence. Then, we define $\Phi(\chi^x) := \Phi(\chi)^x$, for every $\chi \in T$ and $x \in N_{A_0}(J)$. This defines an $N_{A_0}(J)$-equivariant bijection $\Psi : \text{Irr}(J \mid S) \to \text{Irr}(J_0 \mid S_0)$.

We now prove the statement on character triples. By hypothesis we know that $(A_\vartheta, K, \vartheta) \simeq_c (A_{\vartheta_0}, K_0, \vartheta_0)$ and Proposition 2.4 implies $(A_{J_0,\vartheta,\varphi}, J_{0,\vartheta}, \varphi) \simeq_c (A_{0,J_0,\vartheta}, J_{0,\vartheta_0}, \varphi_0)$. Noticing that $A_{J_0,\vartheta,\varphi} = A_{J_0,\vartheta,\chi}$ and that $A_{J_0,\vartheta,\chi} = A_{J_0,\vartheta,\chi}$ it follows from Lemma 2.1 that $(A_{J_0,\vartheta,\chi}, J_0, \varphi) \simeq_c (A_{J_0,\vartheta,\chi}, J_{0,\vartheta_0})$.

The last part of the statement follows immediately by Clifford theory.

The final result of this section allows to construct centrally ordered character triples when dealing with a situation similar to the one described in Gallagher’s theorem.

Proposition 2.5. Let $N \trianglelefteq G$ and $H \trianglelefteq G$ with $G = NH$ and set $M := N \cap H$. Let $K \trianglelefteq G$ with $K \leq M$ and consider a G-invariant $\zeta \in \text{Irr}_p(N)$ such that $\zeta_K \in \text{Irr}_p(K)$. Let $G := G/K$, $N := N/K$, $\overline{H} := H/K$ and $\overline{M} := M/K$ and suppose that $(\overline{G}, \overline{N}, \overline{\chi}) \simeq_c (\overline{H}, \overline{M}, \overline{\psi})$, for some $\overline{\chi} \in \text{Irr}_p(\overline{N})$ and $\overline{\psi} \in \text{Irr}_p(\overline{M})$. Then $(G, N, \chi \zeta) \simeq_c (H, M, \psi \zeta_M)$, where $\chi \in \text{Irr}(N)$ and $\psi \in \text{Irr}(M)$ are the lifts respectively of $\overline{\chi}$ and $\overline{\psi}$.

Proof. Let $(\overline{P}, \overline{P}')$ be a pair of projective representations associated to $(\overline{G}, \overline{N}, \overline{\chi}) \simeq_c (\overline{H}, \overline{M}, \overline{\psi})$ and consider the corresponding lifts \overline{P} and \overline{P}'. Let Q be a projective representation of G associated to ζ as in [Nav18 Definition 5.2]. Then $P \otimes Q$ and $P' \otimes Q_H$ are projective representations of G and H associated respectively to $\chi \zeta$ and $\psi \zeta_M$. Since $C_G(N)K/K \leq C_{G/K}(N/K)$, we conclude from the assumption that the pair $(P \otimes Q, P' \otimes Q_H)$ gives $(G, N, \chi \zeta) \simeq_c (H, M, \psi \zeta_M)$.

3 The inductive condition

Our aim in this section will be to show how to obtain good bijections for groups whose quotient over the centre is isomorphic to a direct product of (not necessarily isomorphic) non-abelian simple groups whose universal covering groups satisfy Conjecture A. This is done in Corollary 3.4 which will be the main result of this section. Observe that Corollary 3.4 is a slight generalization of [Nav18 Theorem 10.25] and of [Spa18 Corollary 3.14].
Lemma 3.1. Let S be a non-abelian simple group whose universal covering group satisfies Conjecture \mathcal{A} for the prime number p. Consider a non-negative integer n and let $\tilde{X} := X^n$ be the universal covering group of $\tilde{S} := S^n$. Let \tilde{P} be a Sylow p-subgroup of \tilde{X} and set $\tilde{\Gamma} := \text{Aut}(\tilde{X})_\tilde{P}$. Then, there exists a $\tilde{\Gamma}$-invariant subgroup $\tilde{N}(\tilde{P}) \leq \tilde{M} < \tilde{X}$ and a $\tilde{\Gamma}H$-equivariant bijection

$$\tilde{\Omega} : \text{Irr}_{\rho'}(\tilde{X}) \to \text{Irr}_{\rho'}(\tilde{M})$$

such that

$$(\tilde{X} \rtimes \tilde{\Gamma}, \tilde{\rho}, \tilde{\vartheta}) \succeq_c (\tilde{M} \rtimes \tilde{\Gamma}, \tilde{\omega}(\tilde{\vartheta})),$$

for every $\tilde{\vartheta} \in \text{Irr}_{\rho'}(\tilde{X})$.

Proof. This is [Spä18 Theorem 3.12].

Now, proceeding as the proof of [Nav18 Theorem 10.25] we obtain the following result. Notice that this is just a version of [Nav18 Theorem 10.25] adapted to the more general case where M does not need to coincide with the normaliser of a Sylow p-subgroup.

Proposition 3.2. Let $K \vartriangleleft A$ be finite groups with $K = [K, K]$ and $K/\text{Z}(K) = S^n$ for a non-abelian simple group S whose universal covering group satisfies Conjecture \mathcal{A}. Let P_0 be a Sylow p-subgroup of K. Then there exists a $N_A(P_0)$-invariant subgroup $N_K(P_0) \leq M < K$ and a $N_A(P_0)H$-equivariant bijection

$$\Omega : \text{Irr}_{\rho'}(K) \to \text{Irr}_{\rho'}(M)$$

such that

$$(A_\vartheta, K, \vartheta) \succeq_c (MN_A(P_0)\vartheta, M, \Omega(\vartheta)),$$

for every $\vartheta \in \text{Irr}_{\rho'}(K)$.

Proof. This follows from the proof of [Spä18 Theorem 10.25] by applying Lemma 3.1.

Finally, we consider the case where K is not necessarily perfect. To do so, we have to deal with characters of central products. By the assumption and applying Proposition 3.2 with $J := N \cdot C$ we obtain

$$(N_G(C)_{\vartheta \cdot \psi}, N \cdot C, \vartheta \cdot \psi) \succeq_c (N_H(C)_{\sigma_N \circ \vartheta \cdot \psi}, M \cdot C, \sigma_N \circ \vartheta \cdot \psi).$$

To conclude, notice that [IMN07 Lemma 5.1] implies that $\sigma_N \circ \vartheta \cdot \psi = \vartheta \cdot \psi$.

We are now ready to prove the main result of this section.
Corollary 3.4. Let $K \leq A$ be finite groups such that $K/Z(K)$ is a direct product of non-abelian simple groups whose universal covering groups satisfy Conjecture[A]. Let P_0 be a Sylow p-subgroup of K. Then there exists a $N_A(P_0)$-invariant subgroup $N_K(P_0) \leq M < K$ and a $N_A(P_0)$-equivariant bijection

$$\Omega : \mathrm{Irr}_p(K) \to \mathrm{Irr}_p(M)$$

such that

$$(A_{\vartheta}, K, \vartheta) \succeq_c (MN_A(P_0)\vartheta, M, \Omega(\vartheta)),$$

for every $\vartheta \in \mathrm{Irr}_p(K)$.

\textbf{Proof.} By hypothesis there exist non-isomorphic non-abelian simple groups S_1, \ldots, S_t that satisfy the inductive McKay condition and non-negative integers n_1, \ldots, n_t such that $K/Z(K) \cong S_1^{n_1} \times \cdots \times S_t^{n_t}$. Consider the subgroups $Z(K) \leq K_{0,i} \leq K$ such that $K_{0,i}/Z(K) \cong S_i^{n_i}$ and observe that $K_i := [K_{0,i}, K_{0,i}]$ is a perfect normal subgroup of A with $K_i/Z(K_i) \cong S_i^{n_i}$, for $i = 1, \ldots, t$. If $K_0 := Z(K)$, then $K = K_0 \cdot \cdots \cdot K_t$ is a central product of the subgroups K_i and $Z := \cap_{i=0}^t K_i$ satisfies $Z = Z([K, K]) = Z(K_i)$, for all $i = 1, \ldots, t$.

Let $\vartheta \in \mathrm{Irr}_p(K)$ and consider the unique irreducible constituent $\nu \in \mathrm{Irr}(Z)$ of ϑZ. By [LMN07, Lemma 5.1] there exist unique characters $\vartheta_i \in \mathrm{Irr}_p(K_i)$ such that $\vartheta = \vartheta_0 \cdot \cdots \cdot \vartheta_t$. Set $Q_i := P_0 \cap K_i \in \mathrm{Syl}_p(K_i)$ and $A_i := N_{Q_i}(Q_i)$. By Proposition [2] for every $i = 1, \ldots, t$, there exists an A_i-invariant subgroup $N_{K_i}(Q_i) \leq M_i < K_i$ and an A_i-equivariant bijection

$$\Omega_i : \mathrm{Irr}_p(K_i) \to \mathrm{Irr}_p(M_i)$$

such that

$$(A_{\vartheta_i}, K_i, \vartheta_i) \succeq_c (M_iA_i, \vartheta_i, M_i, \Omega_i(\vartheta_i)),$$

for every $\vartheta_i \in \mathrm{Irr}_p(K_i)$. For $i = 0$, set $M_0 := K_0$ and let Ω_0 be the identity map on $\mathrm{Irr}(K_0)$. Now, the subgroup $M := M_0 \cdot \cdots \cdot M_t$ is the central product of the M_i's and has the required properties. Moreover, the map

$$\Omega : \mathrm{Irr}_p(K) \to \mathrm{Irr}_p(M)$$

$$\vartheta_0 \cdot \cdots \cdot \vartheta_t \mapsto \Omega_0(\vartheta_0) \cdot \cdots \cdot \Omega_t(\vartheta_t)$$

is a well defined $N_A(P_0)$-equivariant bijection. It remains to check the statement on character triples. To do so, we are going to prove that

\begin{equation}
(A_{\vartheta_0 \cdot \cdots \cdot \vartheta_t}, K_0 \cdot \cdots \cdot K_t, \vartheta_0 \cdot \cdots \cdot \vartheta_t) \succeq_c (M_0 \cdot \cdots \cdot M_t, N_A(Q_0, \ldots, Q_t)_{\vartheta_0 \cdot \cdots \cdot \vartheta_t}, M_0 \cdot \cdots \cdot M_t, \Omega_0(\vartheta_0) \cdot \cdots \cdot \Omega_t(\vartheta_t)) \tag{3.1}
\end{equation}

by induction on $t \geq 1$. Let $t = 1$. By the previous section we know that

$$(A_{\vartheta_0}, K_1, \vartheta_0) \succeq_c (M_1A_1, \vartheta_0, M_1, \Omega_1(\vartheta_0))$$

and applying Lemma[23] with $C := K_0$ we deduce

$$(A_{\vartheta_0 \cdot \vartheta_1}, K_0 \cdot K_1, \vartheta_0 \cdot \vartheta_1) \succeq_c (M_1A_1, \vartheta_0 \cdot \vartheta_1, K_0 \cdot M_1, \vartheta_0 \cdot \Omega_1(\vartheta_0)),$$

here we used the fact that $A_{\vartheta_0 \cdot \vartheta_1} \leq A_{\vartheta_0} \cap A_{\vartheta_1}$. Because $K_0 = M_0$, $\Omega_0(\vartheta_0) = \vartheta_0$ and $M_1A_1, \vartheta_0 \cdot \vartheta_1 = (M_0 \cdot M_1)N_A(Q_0, Q_1)_{\vartheta_0 \cdot \vartheta_1}$ it follows that (3.1) holds for $t = 1$. Consider now $t > 1$. The inductive hypothesis yields

\begin{equation}
(A_{\vartheta_0 \cdot \cdots \cdot \vartheta_{t-1}}, K_0 \cdot \cdots \cdot K_{t-1}, \vartheta_0 \cdot \cdots \cdot \vartheta_{t-1}) \succeq_c (M_0 \cdot \cdots \cdot M_{t-1}, N_A(Q_0, \ldots, Q_{t-1})_{\vartheta_0 \cdot \cdots \cdot \vartheta_{t-1}}, M_0 \cdot \cdots \cdot M_{t-1}, \Omega_0(\vartheta_0) \cdot \cdots \cdot \Omega_{t-1}(\vartheta_{t-1})). \tag{3.1}
\end{equation}
We now apply Lemma 3.3 with \(C \) and apply \(\Spä 18, \text{Lemma 2.17} \) and Proposition 4.2.

On the other hand the fact that

\[(A_{\delta_{\ell}}, K^{\ell}, \partial_{\ell}) \succeq_c (M^{\ell}_{\epsilon}, \partial_{\ell}, M^{\ell}_{\epsilon}(\partial_{\ell}))\]

together with Lemma 2.3 (ii) implies

\[((M_0 \cdots M^{\ell}) N_A(Q_0, \ldots Q^{\ell-1})_{\delta_{\ell}}, K^{\ell}, \partial_{\ell}) \succeq_c ((M_0 \cdots M^{\ell}) N_A(Q_0, \ldots Q^{\ell})_{\delta_{\ell}}, M^{\ell}_{\epsilon}, \Omega^{\ell}_0(\partial_{\ell-1}) \cdot \partial_{\ell})]. \tag{3.2}\]

Now (3.1) follows from (3.2) and (3.3).

\[\square\]

4 The reduction

In this final section we prove Theorem [B] To do so, proceeding as in [NS14 Section 7], we analyse the structure of a minimal counterexample to Theorem [B].

Lemma 4.1. Let \(G \leq A \) be a minimal counterexample to Theorem [B] with respect to \(|G: \mathbf{Z}(G)| \). Let \(K \leq A, K \leq G \) such that \(|G: K| < |G: \mathbf{Z}(G)| \) and consider an \(\mathbf{A} \)-invariant \(\zeta \in \Irr_{\rho'}(K) \). Then there exists a \(N_A(P) \)-equivariant bijection

\[\Upsilon_{\zeta} : \Irr_{\rho'}(G \mid \zeta) \rightarrow \Irr_{\rho'}(KN_G(P) \mid \zeta)\]

such that

\[(A_{\tau}, G, \tau) \succeq_c (KN_A(P)_{\tau}, KN_G(P) \Upsilon_{\zeta}(\tau)),\]

for every \(\tau \in \Irr_{\rho'}(G \mid \zeta) \).

Proof. We proceed as in the proof of [NS14 Lemma 7.3] and we apply [Spä18 Lemma 2.17] and Proposition 2.5 in place respectively of [NS14 Theorem 4.5] and [NS14 Theorem 4.6].

Proposition 4.2. Let \(G \leq A \) be a minimal counterexample to Theorem [B] with respect to \(|G: \mathbf{Z}(G)| \). Let \(K \leq A, K \leq G \) such that \(|G: K| < |G: \mathbf{Z}(G)| \). Then there exists a \(N_A(P) \)-equivariant bijection

\[\Upsilon_K : \Irr_{\rho'}(G) \rightarrow \Irr_{\rho'}(KN_G(P))\]

such that

\[(A_{\tau}, G, \tau) \succeq_c (KN_A(P)_{\tau}, KN_G(P) \Upsilon_K(\tau)),\]

for every \(\tau \in \Irr_{\rho'}(G) \).
We are finally ready to prove Theorem B.

As an immediate consequence we obtain that, for a minimal counterexample G, we have $G = K \mathbb{N}_G(P)$ for any $K \leq A$ with $K \leq G$ and $|G : K| < |G : Z(G)|$.

Corollary 4.3. Let $G \leq A$ be a minimal counterexample to Theorem [B] with respect to $|G : Z(G)|$. Let $K \leq A$, $K \leq G$ such that $|G : K| < |G : Z(G)|$. Then $G = K \mathbb{N}_G(P)$.

Proof. Suppose that $G_1 := K \mathbb{N}_G(P)$ is a proper subgroup of G. Then every non-abelian simple group involved in G is also involved in G_1 and $|G_1 : Z(G_1)| < |G : Z(G)|$. Set $A_1 := K \mathbb{N}_A(P)$. By the minimality of G we can find a $\mathbb{N}_A(P)$-equivariant bijection

$$\Omega : \text{Irr}_{p'}(G_1) \rightarrow \text{Irr}_{p'}(\mathbb{N}_{G_1}(P))$$

such that

$$(A_1, \vartheta, G_1, \vartheta) \geq_c (\mathbb{N}_{A_1}(P) \vartheta, \mathbb{N}_{G_1}(P), \Omega_1(\vartheta)),$$

for every $\vartheta \in \text{Irr}_{p'}(G_1)$. Notice that $\mathbb{N}_{G_1}(P) = \mathbb{N}_G(P)$ and that $\mathbb{N}_{A_1}(P) = \mathbb{N}_A(P)$. Then, applying Proposition 4.2 and composing the obtained bijection with Ω_1 we obtain a contradiction. This proves that $G = K \mathbb{N}_G(P)$.

Next we want to show that, if G is a minimal counterexample and $K \leq A$ with $K \leq G$ such that K has a Sylow p-subgroup which is central in G, then $K \leq Z(G)$. To do so we use the following result.

Theorem 4.4. Let A be a finite group and $M, K \leq A$ such that $K \leq M$ and M/K is a p-group. Let P be a p-subgroup of M such that $M = KP$ and $P_0 := P \cap K \leq Z(M)$. Then there exists a $\mathbb{N}_A(P)$-equivariant bijection

$$\Lambda_P : \text{Irr}_{p'}(M) \rightarrow \text{Irr}_{p'}(\mathbb{N}_M(P))$$

such that

$$(A \vartheta, M, \vartheta) \geq_c (\mathbb{N}_A(P) \vartheta, \mathbb{N}_M(P), \Lambda_P(\vartheta)),$$

for every $\vartheta \in \text{Irr}_{p'}(M)$.

Proof. This follows directly from [NS14 Corollary 5.14].

Proposition 4.5. Let $G \leq A$ be a minimal counterexample to Theorem [B] with respect to $|G : Z(G)|$. Let $K \leq A$, $K \leq G$ and suppose that $P_0 := P \cap K \leq Z(G)$. Then $K \leq Z(G)$.

Proof. For the sake of contradiction assume $K \not\leq Z(G)$. Then $|G : KZ(G)| < |G : Z(G)|$ and Corollary 4.3 implies $G = KZ(G)\mathbb{N}_G(P) = K\mathbb{N}_G(P)$. Recall that $A = GN_A(P)$ by the Frattini argument. Then $A = K\mathbb{N}_A(P)$ and the subgroup $M := KP$ is normal in A and satisfies $P_0 := K \cap P \leq Z(M)$ by hypothesis. Now, Theorem 4.4 yields a $\mathbb{N}_A(P)$-equivariant bijection

$$\Lambda_P : \text{Irr}_{p'}(M) \rightarrow \text{Irr}_{p'}(\mathbb{N}_M(P))$$

such that

$$(A \vartheta, M, \vartheta) \geq_c (\mathbb{N}_A(P) \vartheta, \mathbb{N}_M(P), \Lambda_P(\vartheta)),$$

for every $\vartheta \in \text{Irr}_{p'}(M)$. Finally, after noticing that $\text{Irr}_{p'}(G) \subseteq \text{Irr}(G \mid \text{Irr}_{p',P}(M))$ and that $\text{Irr}_{p'}(\mathbb{N}_G(P)) \subseteq \text{Irr}(\mathbb{N}_G(P) \mid \text{Irr}_{p',P}(\mathbb{N}_M(P)))$, we obtain a contradiction by applying Proposition 4.4.

We are finally ready to prove Theorem [B].
Proof of Theorem\[E.\] Suppose, for the sake of a contradiction, that the result fails to hold and consider a counterexample $G \leq A$ minimal with respect to $|G : Z(G)|$. By Corollary 4.3 (applied with $K := Z(G)O_p(G)$) it follows that $O_{p'}(G) \leq Z(G)$. Furthermore, as $O_{p'}(G)Z(G) \cap D \leq Z(G)$, Proposition 4.5 yields $O_{p'}(G) \leq Z(G)$. As a consequence $Z(G) = F(G) < F^*(G)$, where $F^*(G) = F(G)E(G)$ is the generalized fitting subgroup of G which is the product of the Fitting subgroup $F(G)$ and the layer $K := E(G)$. Set $P_0 := P \cap K$ and observe that, replacing P with a G-conjugate, we may assume that P_0 is a Sylow p-subgroup of K. Since $K \notin Z(G)$, Proposition 4.3 shows that $P_0 := P \cap K \notin Z(G)$ and, as $Z(K) \leq F(G) = Z(G)$, we obtain $P_0 \notin Z(K)$. Now, we can apply Corollary 5.3 and find an $N_A(P_0)$-invariant subgroup $N_K(P_0) \leq M < K$ and a $N_A(P_0)$-equivariant bijection \[\Omega : \text{Irr}_{p'}(K) \to \text{Irr}_{p'}(M)\]
such that \[(A_{\vartheta}, K, \vartheta) \geq_c (N_A(P_0)_{\vartheta}, M, \Omega(\vartheta)),\]
for every $\vartheta \in \text{Irr}_{p'}(K)$. Next, observe that $N_A(P) \leq N_A(P_0)$, that $G = KN_G(P_0)$ by Corollary 4.3 and that $\text{Irr}_{p'}(G) \subseteq \text{Irr}(G | \text{Irr}_{p', P}(K))$ and $\text{Irr}_{p'}(MN_G(P_0)) \subseteq \text{Irr}(MN_G(P_0) | \text{Irr}_{p', P}(M))$. Applying Proposition 2.2 we obtain a $N_A(P)$-equivariant bijection \[\Pi_P : \text{Irr}_{p'}(G) \to \text{Irr}_{p'}(MN_G(P_0))\]
such that \[(A_{\tau}, G, \tau) \geq_c (MN_A(P_0)_{\tau}, MN_G(P_0), \Pi_P(\tau))_{\Pi_P},\]
for every $\tau \in \text{Irr}_{p'}(G)$. Finally, by the minimality of G, it follows that Theorem 5.3 holds for $MN_G(P_0)$ (recall that $M < K$). This fact gives us a bijection $\text{Irr}_{p'}(MN_G(P_0)) \to \text{Irr}_{p'}(N_G(P))$ which composed with Π_P leads to the final contradiction. \[\square\]

References

[CS13] M. Cabanes and B. Späth. Equivariance and extendibility in finite reductive groups with connected center. Math. Z., 275(3-4):689–713, 2013.

[CS17a] M. Cabanes and B. Späth. Equivariant character correspondences and inductive McKay condition for type A. J. Reine Angew. Math., 728:153–194, 2017.

[CS17b] M. Cabanes and B. Späth. Inductive McKay condition for finite simple groups of type C. Represent. Theory, 21:61–81, 2017.

[CS19] M. Cabanes and B. Späth. Descent equalities and the inductive McKay condition for types B and E. Adv. Math., 356:106820, 48, 2019.

[Dad97] E. C. Dade. Counting characters in blocks. II.9. In Representation theory of finite groups (Columbus, OH, 1995), volume 6 of Ohio State Univ. Math. Res. Inst. Publ., pages 45–59. de Gruyter, Berlin, 1997.

[IMN07] I. M. Isaacs, G. Malle, and G. Navarro. A reduction theorem for the McKay conjecture. Invent. Math., 170(1):33–101, 2007.

[Mal08] G. Malle. The inductive McKay condition for simple groups not of Lie type. Comm. Algebra, 36(2):455–463, 2008.

[MS16] G. Malle and B. Späth. Characters of odd degree. Ann. of Math. (2), 184(3):869–908, 2016.

[Nav98] G. Navarro. Characters and blocks of finite groups, volume 250 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1998.
[Nav18] G. Navarro. *Character theory and the McKay conjecture*, volume 175 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 2018.

[NS14] G. Navarro and B. Späth. On Brauer’s height zero conjecture. *J. Eur. Math. Soc. (JEMS)*, 16(4):695–747, 2014.

[Spä12] B. Späth. Inductive McKay condition in defining characteristic. *Bull. Lond. Math. Soc.*, 44(3):426–438, 2012.

[Spä17] B. Späth. A reduction theorem for Dade’s projective conjecture. *J. Eur. Math. Soc. (JEMS)*, 19(4):1071–1126, 2017.

[Spä18] B. Späth. Reduction theorems for some global-local conjectures. In *Local representation theory and simple groups*, EMS Ser. Lect. Math., pages 23–61. Eur. Math. Soc., Zürich, 2018.

[Spä21] B. Späth. Extensions of characters in type D and the inductive McKay condition, I. *arXiv:2109.08230*, 2021.

DEPARTMENT OF MATHEMATICS, CITY, UNIVERSITY OF LONDON, EC1V 0HB, UNITED KINGDOM.

Email address: damiano.rossi@city.ac.uk