Finiteness of the percolation threshold for inhomogeneous long-range models in one dimension

Peter Gracar
University of Leeds
P.Gracar@leeds.ac.uk

Lukas Lüchtrath
WIAS Berlin
lukas.luechtrath@wias-berlin.de

Christian Mönch
Johannes Gutenberg University Mainz
cmoench@uni-mainz.de

May 7, 2023

Abstract

We consider inhomogeneous spatial random graphs on the real line. Each vertex carries an i.i.d. weight and edges are drawn such that short edges and edges to vertices with large weights occur with higher probability. This allows the study of models with long-range effects and heavy-tailed degree distributions. We introduce a new coefficient δ_{eff} which quantifies the influence of heavy-tailed degrees on long-range connections. We show that $\delta_{\text{eff}} < 2$ is sufficient for the existence of a supercritical percolation phase in the model and that $\delta_{\text{eff}} > 2$ always implies the absence of percolation. In particular, our results complement those in Gracar et al. (Adv. Appl. Prob., 2021), where sufficient conditions were given for the soft Boolean model and the age-dependent random connection model for both the existence and the absence of a subcritical percolation phase. Our results further provide a criterion for the existence or non-existence of a giant component in large finite graphs.

AMS-MSC 2020: 05C80 (Primary), 60K35 (Secondary)
Key Words: Weight-dependent random connection model, spatial random graphs, scale-free degree distribution, soft Boolean model, age-dependent random connection model, scale-free percolation, phase transition, giant component
1 Introduction and overview of the results

Background and motivation

We study a large class of spatially inhomogeneous Bernoulli-type percolation models collectively known as the weight-dependent random connection model that was first described in [17] and further analysed in [16, 18]. The model is an extension of classical spatial percolation models in the same sense as the non-spatial inhomogeneous random graph model introduced by Bollobás et al. in [4] generalises the Erdős-Rényi random graph. Very broadly speaking, the framework we work in is as follows: Consider a family of graphs \(\mathcal{G}(\beta) : \beta \geq 0 \) on a countably infinite vertex set embedded into \(\mathbb{R}^d \). Here, \(\beta \) is some intensity parameter that controls connectivity in the sense that increasing \(\beta \) results in more connections on average and \(\beta = 0 \) corresponds to a graph without any edges. Common assumptions in this context are

(A) given the vertex set, edges occur independently of one another whenever they do not share a common vertex;

(B) the vertex set and the connection probabilities are translation invariant \(^1\);

(C) spatially close vertices are more likely to be connected by an edge than far apart vertices.

Note that assumption (A) covers i.i.d. Bernoulli site percolation as well as i.i.d. bond percolation on lattices. Typically, the vertex set in the models we have in mind is either given by \(\mathbb{Z}^d \) or by a homogeneous Poisson process on \(\mathbb{R}^d \). The classical subject of percolation theory is the following emergence phenomenon: Is there a critical intensity parameter \(\beta_c \in (0, \infty) \) such that the graph \(\mathcal{G}(\beta) \) contains an infinite connected component, or infinite cluster, for \(\beta > \beta_c \) and no infinite cluster for \(\beta < \beta_c \)? Assumptions (A) and (B) generally entail that the existence of an infinite cluster is a 0-1 event. Moreover, if an infinite cluster exists it is almost surely unique under very mild assumptions on the distribution of \(\mathcal{G}(\beta) \) [6].

This article is almost exclusively devoted to dimension \(d = 1 \) and \(\mathcal{G}(\beta) \) with finite mean degree. In the one-dimensional case, both in classical long-range Bernoulli percolation models and in Poisson-Boolean percolation (which are both special instances of the weight-dependent random connection model) we have that \(\beta_c = 0 \) if and only if \(\mathcal{G}(\beta) \) has infinite mean degree [33, 36]. This is not the case for the weight-dependent random connection model in general and in recent years several papers have identified parameter regimes for which \(\beta_c = 0 \) whilst \(\mathcal{G}(\beta) \) has finite mean degree for various instances of the model with heavy tailed degree distributions, e.g. [8, 9, 18, 42].

\(^1\)Since we cover both lattice models and models based on ergodic point processes we do not specify precisely the group of shifts involved, this will always be clear from the context.
In this work we address the complementary question whether $\beta_c < \infty$. The topological restrictions of the line make it rather hard to generate infinite clusters and many “natural” models admit no percolation phase. In nearest-neighbour percolation on \mathbb{Z}, either all edges/vertices are present or the graph contains only finite components [20]. Similarly, in the one dimensional Gilbert graph [13], all components are finite as well [33]. Generally, if each vertex can only have neighbours within bounded distance and if there is a modicum of independence in the connection probabilities then there will be no percolation. Moreover, the absence of a percolation phase extends to some models with unbounded interaction range, such as the Poisson-Boolean model with integrable radius distribution, even though the degree distribution of $\mathcal{G}(\beta)$ might be heavy-tailed in some instances, see [14, 21, 29, 33]. Conversely, if $d \geq 2$ then $\mathcal{G}(\beta)$ tends to contain an infinite component for large β in many cases, which is essentially a consequence of the existence of a supercritical percolation phase in nearest-neighbour Bernoulli percolation on \mathbb{Z}^2 [20, 33].

The picture for long-range Bernoulli bond percolation on \mathbb{Z} is different. Here, any pair of vertices x and y is connected independently with probability proportional to $\beta |x - y|^{-\delta}$ for some $\delta > 0$, we denote this model by LRP(δ). The case $\delta \leq 1$ yields graphs that have infinite expected degree and shall not interest us here. If, however, $\delta \in (1, 2)$ then we have $0 < \beta_c < \infty$ and if $\delta > 2$, then no infinite cluster exists for any $\beta > 0$ [11, 36, 41]. Our results suggest that the behaviour of LRP(δ) in these two regimes is paradigmatic for those instances of the weight-dependent random connection model that show genuine long-range interactions. The third regime, which for classical long-range percolation on \mathbb{Z} coincides with the boundary case $\delta = 2$ is more delicate. In fact, it is known that $\beta_c < \infty$ in LRP(2) and that there even exists an infinite cluster at the critical point $\beta = \beta_c$ [1, 11], which is rather atypical. We refer to this particular model as scale-invariant long-range percolation.

Our arguments rely on a renormalisation scheme, developed in Section 3, which is tailored to graphs with positively correlated edges and with vertex locations given by quite general point processes, cf. Definition 2.1. A similar approach was used by Duminil-Copin et. al. in [11] to study LRP(2) on \mathbb{Z}. The positive correlations between edges are built into our model by way of adding weights to the vertices. Dealing with the arising correlations is one of the key mathematical contributions of this paper. There are two major issues that have to be overcome: Firstly, we have to control the effect of the vertex weights on the number of connections of far apart sets of vertices, cf. Lemma 3.1. Secondly, we have to deal with the existence of well-connected clusters when going through the scales of the renormalisation. The information of existence of such clusters provides information about the connectivity in the model and thus influences the distributions of the vertex weights and edge probabilities, a problem which always arises when employing multi-scale arguments to inhomogeneous percolation models. In Lemma 3.3, we show how to decorrelate the
corresponding probabilities involved, using the FKG-inequality on suitably chosen sub-σ-fields. Our method formalises the intuition that a vertex in a large cluster should not have fewer neighbours than a ‘typical’ vertex and has been used in other contexts as well [35]. We apply our main result to a large class of models from the literature, cf. Lemma 1.3. Combined with results of [9, 18], this allows us to establish an almost complete phase diagram summarising the existence of percolation thresholds in many established models, see Figure 1 and Proposition 1.4. Finally, our main result yields information about the occurrence of giant components in finite version of our model, cf. Corollary 1.6.

1.1 Discussion of results

Our model has two principal components:

- the kernel, a symmetric function $g : (0, 1)^2 \to (0, \infty)$ which is non-decreasing in both arguments and satisfies
 $$\int_0^1 \int_0^1 \frac{1}{g(s,t)} \, ds \, dt < \infty;$$

- the profile, a non-increasing and integrable function $\rho : (0, \infty) \to [0,1]$.

For given $\beta > 0$, we now generate $\mathcal{G}(\beta)$ in two steps. Firstly, we sample vertices. In this introductory section, the vertex locations are always distributed according to a unit intensity Poisson process η on \mathbb{R}, we discuss more general choices later on in Section 2.1. Each vertex location $x \in \eta$ is endowed with an independent Uniform$(0,1)$ vertex mark t_x. The pairs $x = (x, t_x)$ form the vertices of $\mathcal{G}(\beta)$ and we use the notation \mathcal{X} for the collection of all vertices. Secondly, given \mathcal{X}, we connect any two vertices $x, y \in \mathcal{X}$ independently by an edge with probability
 $$\rho\left(\frac{1}{\beta} g(t_x, t_y | |x - y|)\right),$$
and we denote the presence of an edge between x and y by $x \sim y$. Due to our monotonicity assumptions on ρ and g, short edges and connections to vertices with small marks are more probable than long edges and edges between vertices of high mark. One can think of the marks as inverse vertex weights, which give the weight-dependent random connection model its name. The integrability assumptions on ρ and g assure that $\mathcal{G}(\beta)$ has finite mean degree. The parameter $\beta > 0$ directly affects the edge probability but can also be interpreted as controlling the density of Poisson points, since it rescales distances. In fact, our approach enables us to work with more general vertex locations than a Poisson process and we give a detailed construction of the model in Section 2. By construction, the kernel g determines the degree distribution of the model up to a multiplicative constant, whereas the profile specifies the geometric restrictions of the model [15, 17].

In the literature, two types of profile functions have attracted the most attention: profile
functions with bounded support, e.g. the indicator \(\rho = \mathbb{1}_{[0,1]} \), and profile functions with polynomial decay of index \(\delta > 1 \), i.e. if there exist constants \(0 < c < C \) such that

\[
c(1 \wedge r^{-\delta}) \leq \rho(r) \leq C(1 \wedge r^\delta), \quad \forall r > 0.
\]

Alternatively, one could also assume \(\rho \) to be regularly varying with index \(-\delta \). An application of standard Potter bounds \([2]\) shows that there is no qualitative change in the behaviour of existence of infinite clusters compared to the choice (1) in any of the concrete examples discussed in this paper. The decay index \(\delta \) measures how strict the geometric restrictions of the model are. Decreasing values of \(\delta \) lead to more and more long edges. On the contrary, the larger the value of \(\delta \), the stricter the geometric restrictions are, the extreme case being a profile \(\rho \) of bounded support. We therefore refer to models constructed with a profile of bounded support as hard models and to models with a polynomial decay of index \(\delta \in (1, \infty) \) as soft models. Profiles of unbounded support but with lighter tails than polynomial are included in our approach but show no qualitatively different behaviour in the existence of infinite components compared to the bounded support case, cf. \([16, 34]\). This article is primarily devoted to soft models with heavy-tailed degree distributions but our main results for any choices of \(\rho \) and \(g \) satisfying the monotonicity and integrability conditions stated above.

By tuning \(\rho \) and \(g \) one obtains (versions of) many previously studied percolation models such as the previously mentioned Poisson-Boolean model, the random connection model \([33]\), scale-free percolation \([8, 9]\) and the age-dependent random connection model \([15]\). A further closely related model class of similar generality is that of geometric inhomogeneous random graphs \([5, 26]\). A more comprehensive discussion of related models is given in \([17]\).

Existence of percolation threshold via effective decay exponents. We now formulate our main result which relates finiteness of \(\beta_c \) to certain decay exponents that characterise the overall long-range connectivity.

Theorem 1.1 (Finiteness vs. infiniteness of the percolation threshold). Consider the weight-dependent random connection model \(\mathcal{G}(\beta) : \beta > 0 \) as given above.

(a) The percolation threshold \(\beta_c \) is finite, whenever

\[
- \lim_{\mu \downarrow 0} \liminf_{n \to \infty} \frac{\log \left(\int_{n^{1-\mu}}^{1} \int_{n^{1-\mu}}^{1} \rho(g(s,t)n) \, ds \, dt \right)}{\log n} < 2.
\]

(b) The percolation threshold \(\beta_c \) is infinite, whenever

\[
- \lim_{\mu \downarrow 0} \limsup_{n \to \infty} \frac{\log \left(\int_{n^{1-\mu}}^{1} \int_{n^{1-\mu}}^{1} \rho(g(s,t)n) \, ds \, dt \right)}{\log n} > 2.
\]
Before we address the details of the proof of Theorem 1.1 in Section 2.2, we discuss some consequences and special instances of the result.

Remark 1.2.

(i) For many concrete choices of kernels and profiles discussed in the literature, the integrals appearing in the theorem are continuous in μ and, moreover, both limits coincide. If this is the case, we define

$$
\delta_{\text{eff}} := - \lim_{n \to \infty} \frac{\log \left(\int_1^{1/n} \int_1^{1/n} \rho(g(s, t)n) \, ds \, dt \right)}{\log n}
$$

and call δ_{eff} the *effective decay exponent* associated with ρ and g. Theorem 1.1 then simplifies to the two implications $\beta_c < \infty$ if $\delta_{\text{eff}} < 2$, and $\beta_c = \infty$ if $\delta_{\text{eff}} > 2$. In particular, continuous kernels and profiles of the form (1) lead to a well-defined δ_{eff}. For profile functions of the form (1), we further always have $\delta \geq \delta_{\text{eff}}$, i.e. the inclusion of weights helps to create long-range connections and for strict inequality it is necessary that g vanishes sufficiently fast at $(0, 0)$.

(ii) The order (in n) of the integrals appearing in the theorem is independent of β for ρ satisfying (1), except for the case when $g(s, s) \asymp s$ as $s \downarrow 0$ and $\rho = 1_{[0, 1]}$ (or any other ρ of bounded support). In that case we have for sufficiently large β

$$
\int_{n^{-1}}^{1} ds \int_{n^{-1}}^{1} dt \, 1_{[0, 1]}(\beta^{-1}g(s, t)n) \asymp \int_{n^{-1}}^{\beta/n} ds \int_{n^{-1}}^{\beta/n} dt \, 1 = (\beta - 1)^2 n^{-2}
$$

and hence $\delta_{\text{eff}} = 2$, thus this situation is not covered by our results. Here and throughout the remainder of the paper, we use the notation $f \asymp g$ to indicate that f/g is asymptotically bounded away from zero and infinity.

(iii) The monotonicity conditions on ρ and g can be relaxed by straightforward domination arguments: for the existence of a supercritical phase, it suffices that $\rho \geq \rho_0, g \leq g_0$ with ρ_0 and g_0 satisfying the assumptions of Theorem 1.1, and analogous but reversed bounds are sufficient for the absence of a supercritical phase.

Let us give an intuitive explanation of the occurrence of δ_{eff}. As n grows large, the minimum of n independent uniform random variables is roughly $1/n$ and consequently the double integral appearing in (2) is essentially the probability of two randomly picked vertices from vertex sets of size n at distance roughly n being connected by an edge. Ignoring additional correlations between edges arising from the introduction of vertex marks, the number of edges between the two vertex sets of size n is roughly given by a binomial with n^2 trials and connection probability $n^{-\delta_{\text{eff}}}$. If $\delta_{\text{eff}} < 2$ the probability of having an edge between
the two sets increases with n whereas for $\delta_{\text{eff}} > 2$ this probability decreases. The effective decay exponent δ_{eff} hence measures the occurrence of long edges in a way comparable to classical long-range percolation models, seen from a coarse-grained perspective. The truncation of the integral bounds in (2) is crucial to control the correlations arising from the vertex marks which is a necessity to identify the phase transition for the existence of a supercritical phase correctly. Indeed, at first glance, one might only want to calculate the decay exponent of the marginal distributions of single edges which is the rate at which the annealed probability of two typical vertices at distance n being connected decays. That exponent is

$$
\delta_{\text{marg}} := -\lim_{n \to \infty} \frac{\log \int_0^1 \int_0^1 \rho(g(s,t)n)}{\log n}
$$

(3)

In analogy with homogeneous long-range percolation one might now assume that the graph contains an infinite cluster if $\delta_{\text{marg}} < 2$ and does not contain an infinite cluster if $\delta_{\text{marg}} > 2$. However, this does not take the aforementioned correlations into account and hence does not capture the behaviour accurately. By construction, we have $\delta_{\text{marg}} \leq \delta_{\text{eff}}$ and hence the correlations on the edges make it harder to build an infinite component in dimension one than it is compared to the independent edges case. Below we give an example in which we have strict inequality, showing that δ_{marg} is indeed insufficient, see (5). It is an interesting observation that this is contrary to the physics literature mantra that positive correlations should facilitate percolation, see e.g. [40] for some simulations of a correlated long-range percolation model in two dimensions or [10] for a mathematical proof for percolation induced by the Gaussian free field level sets on supercritical Galton-Watson tress. However, it is important to note that in those models the vertex weights are positive correlated in contrast to our independent vertex weights and also the way how the geometry enters the construction differs considerably from approach.

The special case $\delta_{\text{eff}} = 2$. The case $\delta_{\text{eff}} = 2$ is a generalisation of LRP(2) and the $^{1/|x-y|^2}$-model of long-range percolation [1]; we call this case pseudo-scale-invariant based on the notion of scale-invariant long-range percolation. Indeed, if $g \equiv 1$ and $\rho(z) = 1 \land z^{-\delta}$, then $\delta_{\text{eff}} = \delta$ and for $\delta = 2$ we obtain a variant of LRP(2).

We do not attempt to cover the pseudo-scale-invariant case with the methods presented here, as it is clear that the existence of a percolation phase in this cannot be decided by looking at decay exponents alone: it is well known that the $^{1/|x-y|^2}$-model percolates for sufficiently large β [1, 11] while on the other hand, a straightforward first moment argument, cf. [41], yields that for any g bounded away from 0 the integrability condition

$$
\int_0^\infty \int_0^\infty \rho(|x-y|) \, dx \, dy < \infty
$$

alone is sufficient to imply $\beta_c = \infty$. Hence choosing, say, $\rho(z) = 1 \land (z^{-2} \log(1+z)^{-2})$ yields
Parameters	Names and references
$\gamma = 0, \alpha = 0, \delta = \infty$	random geometric graph [37, 38], Gilbert’s disc model [13]
$\gamma = 0, \alpha = 0, \delta < \infty$	random connection model [32, 39], long-range percolation [41]
$\gamma > 0, \alpha = 0, \delta = \infty$	Boolean model [14, 21], scale-free Gilbert graph [23]
$\gamma > 0, \alpha = 0, \delta < \infty$	soft Boolean model [16]
$\gamma = 0, \alpha > 1, \delta = \infty$	ultra-small scale-free geometric network [42]
$\gamma > 0, \alpha = \gamma, \delta \leq \infty$	scale-free percolation [8, 9], geometric inhomogeneous random graphs [5]
$\gamma > 0, \alpha = 1 - \gamma, \delta \leq \infty$	age-dependent random connection model [15]

Table 1: Various choices for γ, α and δ and the models they represent. Here, to shorten notation, $\delta = \infty$ represents profile functions of bounded support. We do not distinguish whether the models were originally constructed on the lattice or a Poisson process.

$\mathcal{G}(\beta : \beta > 0)$ with $\beta_c = \infty$, whilst $\delta_{\text{eff}} = \delta = 2$.

In the examples discussed below, the $\delta_{\text{eff}} = 2$ regime usually corresponds to a boundary case, but there is at least one interesting example of a non-trivial kernel which yields models in the scale-invariant regime for a large parameter range. This kernel corresponds to the age-dependent random connection model from [15]. It is an interesting open problem to identify the precise regime in which $\beta_c < \infty$ also for this kernel, but unfortunately there seems to be no easy way to adapt the method used in this paper to cover the pseudo-scale-invariant regime, even though the general approach does work for the scale-invariant homogeneous model LRP(2), see [11].

Analysis of concrete models from the literature. We introduce a new kernel that represents many of the established models for the right parameter choices and call it the interpolation kernel. It is defined for $\gamma \in [0, 1)$ and $\alpha \in [0, 2 - \gamma)$ and given by

$$g_{\gamma, \alpha}(s, t) := (s \land t)^\gamma (s \lor t)^\alpha. \quad (4)$$

In Table 1, we give various choices for γ and α and the models they represent, depending on the geometric restrictions. With a similar calculation as in [15] one can show that models constructed with the interpolation kernel have heavy-tailed degree distribution with power-law exponent $\tau = 1 + (1/\gamma + 1/(\alpha + \gamma - 1)^+)$. Let us calculate δ_{eff} for this kernel. Since $g_{\gamma, \alpha} \leq 1$, we only consider profile-functions as in (1) with $\delta > 2$. For $\delta \leq 2$, we have $\beta_c < \infty$ by a simple coupling argument with homogenous continuum long-range percolation.

Lemma 1.3. For the interpolation kernel $g_{\gamma, \alpha}$ and a profile function ρ fulfilling (1) for some $\delta > 2$, we have the following:
(a) If $\gamma < 1 - 1/\delta$ and

 (i) if $\alpha < 1 - \gamma$, then $\delta_{\text{eff}} > 2$ and

 (ii) if $\alpha = 1 - \gamma$, then $\delta_{\text{eff}} = 2$ and

 (iii) if $\alpha > 1 - \gamma$, then $\delta_{\text{eff}} < 2$.

(b) If $\gamma = 1 - 1/\delta$ and $\alpha \leq 1 - \gamma$, then $\delta_{\text{eff}} = 2$.

(c) If $\gamma > 1 - 1/\delta$, then $\delta_{\text{eff}} < 2$.

It is straightforward to extend the model to higher dimensions $d \geq 2$: the vertex locations η are now given by a unit intensity Poisson process on \mathbb{R}^d, and given the vertices and their i.i.d. marks, we connect any pair (x,t_x) and (y,t_y) of vertices independently with probability

$$\rho(\beta^{-1} g_{\gamma,\alpha}(t_x,t_y)|x - y|^d).$$

In [18] by Gracar et al., [9] by Deprez and Wüthrich and [42] by Yukich, the question of the existence of subcritical percolation phases for certain special cases of our model is addressed. A perusal of their arguments shows, that they can easily be extended to the whole parameter regime of the interpolation kernel. Hence, we can give a rather comprehensive answer to the question when the interplay between geometric restrictions and additional edges coming from the marks lead to a non-trivial phase transition, see Figure 1.

Proposition 1.4. Let $(\mathcal{G}(\beta) : \beta > 0)$ be the weight-dependent random connection model constructed with a profile-function ρ fulfilling (1) for some $\delta > 1$ and the interpolation kernel $g_{\gamma,\alpha}$ for $\gamma \in [0,1)$ and $\alpha \in [0,2 - \gamma]$.

(a) For $\alpha \leq 1 - \gamma$, we have:

 (i) If $\gamma > \frac{\delta}{\delta + 1}$, then $\beta_c = 0$.

 (ii) If $\gamma < \frac{\delta}{\delta + 1}$ and

 • either $d \geq 2$, or $d = 1$ and $\delta < 2$, or $d = 1$ and $\gamma > 1 - 1/\delta$, or $d = 1$ and $\alpha = 1 - \gamma$ and $\gamma \geq 1/2$, then $\beta_c \in (0, \infty)$;

 • $d = 1$ and $\alpha < 1 - \gamma$ and $\delta > 2$ and $\gamma < 1 - 1/\delta$, then $\beta_c = \infty$.

(b) For $\alpha > 1 - \gamma$, we have $\beta_c = 0$.

Proof. The proof of part (a)(i) is done in [18], (a)(ii) is a combination of [18], known results about the existence of supercritical percolation phases in $d \geq 2$ [33] and in long-range percolation in $d = 1$ when $\delta \in (1,2)$ [36], our main Theorem 1.1, and Corollary 1.5.
below. Part (b) can be easily proven by generalising the proof for $\alpha = \gamma > 1/2$ of [9] to all $\alpha > 1 - \gamma$.

By combining Lemma 1.3 and Proposition 1.4 we can see that the robust regime $\beta_c = 0$ for the interpolation kernel model is always contained in the regime where $\delta_{\text{eff}} < 2$. Moreover, during the preparation of the present manuscript, it was shown in [28] that robustness implies $\delta_{\text{eff}} \leq 2$ in any dimension for a large class of translation invariant inhomogeneous percolation models that includes the weight-dependent random connection model. We believe that there are in fact no robust instances of the weight-dependent random connection model in the pseudo-scale-invariant regime $\delta_{\text{eff}} = 2$, but currently have no proof of this conjecture.

To conclude this section, we further discuss two models of particular interest that can be represented by the interpolation kernel. Our focus is, again, on dimension $d = 1$ and profile functions satisfying (1) for $\delta > 2$.

Soft Boolean model: The soft Boolean model is a long-range variant of the classical (‘hard’) Poisson-Boolean model. It corresponds to the kernel $g_{\gamma,0}(s,t) = (s \land t)^{\gamma}$ for some $\gamma \in (0,1)$ and can be interpreted as follows. Each vertex x is assigned an independent radius $t_x^{-\gamma/d}$. Given all vertices, each potential edge $\{x,y\}$ is assigned an independent heavy-tailed random variable $R(x,y)$ with $P\{R(x,y) > r\} = r^{-\delta}$ (for $r > 1$) and any given pair of vertices x,y is connected if the vertex with the smaller assigned radius, say x, is
contained in the ball of radius \(\beta^{1/d}R(x, y)t_y^{-\gamma/d} \) centred in \(y \). That is

\[x \sim y \Leftrightarrow |x - y| \leq \beta^{1/d}R(x, y)(t_x^{-\gamma/d} \lor t_y^{-\gamma/d}), \]

see Figure 2. A variant closer to the classical Poisson-Boolean model is given by the sum kernel

\[g_{\text{sum}}(s, t) = (s^{-\gamma/d} + t^{-\gamma/d})^{-d} \]

where an edge is drawn if the ball with radius \(\beta^{1/d}R(x, y)t_y^{-\gamma/d} \) centred in \(x \) and the ball with radius \(\beta^{1/d}R(x, y)t_y^{-\gamma/d} \) centred in \(y \) intersect, cf. [16] for a more detailed discussion. As \(g_{\text{sum}} \leq g_{\gamma, 0} \leq 2^d g_{\text{sum}} \) both kernels show qualitatively the same behaviour in the question of existence of a non-trivial percolation phase transition. From Proposition 1.4 it follows that for \(\delta > 2 \) the one-dimensional soft Boolean model provides three open parameter regimes: one where the graph always contains an infinite component, an intermediate regime where an infinite component exists for large values of \(\beta \) and one where no infinite component can exist. Allowing \(\gamma = 0 \) this model also includes the homogeneous random connection model.

Let us further calculate the decay exponent of the marginal distribution of single edges as mentioned in the explanation around (3). If we choose \(\rho(x) \propto 1 \wedge x^{-\delta} \) for \(\delta > 2 \) and some \(1/2 < \gamma < 1 - 1/\delta \), we calculate

\[
\int_0^1 ds \int_0^1 dt \left(1 \wedge (s \wedge t)^{-\gamma/\delta} n^{-\delta} \right) \asymp n^{-1/\gamma} + n^{-\delta} \int_{n^{-1/\gamma}}^1 ds s^{-\gamma/\delta} \asymp n^{-1/\gamma}.
\]

(5)

Since \(\gamma > 1/2 \), we have \(\delta_{\text{marg}} < 2 \) and we have \(\beta_c < \infty \) for the independent edges model where each radius is resampled independently for any potential edge, but as \(\gamma < 1 - 1/\delta \), we have \(\delta_{\text{eff}} > 2 \) by Lemma 1.3 and hence \(\beta_c = \infty \) by Theorem 1.1 for the actual model where each radius is sampled just once.

Age-dependent random connection model: This model was introduced by Gracar et al. [15] as the weak local limit of an age-based spatial preferential attachment model and corresponds to the choice \(\gamma \in (0, 1) \) and \(\alpha = 1 - \gamma \). Here, the vertex marks play the role of vertex birth times and small marks correspond to early birth times and hence to old and thus influential vertices. By Proposition 1.4 we have \(\beta_c = 0 \) if \(\gamma > \delta/(\delta+1) \) and \(\beta_c \in (0, \infty) \) if \(\gamma \in \left(\frac{\delta-1}{\delta}, \frac{\delta}{\delta+1} \right) \). However, we have \(\delta_{\text{eff}} = 2 \) for the whole parameter regime.
0 < \gamma \leq 1 - \frac{1}{\delta}. This illustrates a scale-invariance property that is built into the model and is a result of the dynamics within the model coming from the role of vertex marks being birth times. Since our main theorem does not capture the pseudo-scale-invariant regime, we can only deduce results by comparing the age-dependent random connection model to models where the finiteness or infiniteness of \(\beta_c \) is known. To this end, we consider the scale-free percolation model, introduced by Deijfen et al. [8] also known later as infinite geometric inhomogeneous random graph [5], which coincides with the choice of \(\gamma = \alpha \) in our setting. Here, it is known that \(\beta_c = 0 \) if \(\gamma > \frac{1}{2} \) and \(\beta_c = \infty \) if \(\gamma < \frac{1}{2} \). Now note that both considered models coincide for \(\gamma = \frac{1}{2} \). In [5, 26, 30] it is shown that the 'KPKVB-model', a hyperbolic random graph model, has one-dimensional scale-free percolation as weak local limit (after a suitable change from hyperbolic to weighted Euclidean coordinates). Results from Bode et al. [3] for the KPKVB-model then show that there exists an infinite cluster in the infinite geometric inhomogeneous random graph for \(\rho(r) = \mathbb{1}_{[0,1]}(r) \), whenever \(\gamma = \frac{1}{2} \) and \(\beta \) is sufficiently large. By monotonicity in \(\gamma \) of \(g_{\gamma,1-\gamma} \), it follows that the same holds true for the age-dependent random connection model for any \(\gamma \geq \frac{1}{2} \) and any \(\rho \) that is bounded away from 0 in a neighbourhood of 0. It remains an interesting open problem to show whether there can be percolation for \(\gamma < \frac{1}{2} \) in this setting.

The discussion of this paragraph is summarised in the following corollary.

Corollary 1.5. Let \((\mathcal{G}(\beta) : \beta \geq 0)\) be the weight dependent random connection model in dimension \(d = 1 \), constructed with the interpolation kernel \(g_{\gamma,\alpha} \) and any non-trivial profile function \(\rho \) satisfying the upper bound in (1) for some \(\delta \in (2, \infty) \). If either \(\gamma = \alpha = \frac{1}{2} \), or \(\frac{1}{2} < \gamma < \frac{4}{(\delta+1)} \) and \(\alpha = 1 - \gamma \), we have \(\beta_c \in (0, \infty) \).

Giant components in finite versions of the model. Another application of our results is the existence of a component of linear size, also known as giant components, in finite intervals. The paper [26] elaborates how weight-dependent random connection-type models arise as weak local limits of models on finite domains. There, growing sequences of graphs \((\mathcal{G}_n(\beta) : n \in \mathbb{N})\) are constructed where \(\mathcal{G}_n(\beta) \) consists of \(n \) vertices which are independently placed into the unit interval \((-\frac{1}{2}, \frac{1}{2})\). Translated to our parametrisation each vertex carries an independent uniform mark and, given locations and marks, each pair \((x,t), (y,s)\) of vertices is connected independently with probability \(\rho(\beta^{-1}g(s,t)n|x-y|) \). The scaling factor \(n \) ensures that the graph remains sparse and the \(n \) vertices can hence be considered as being embedded into \((-\frac{n}{2}, \frac{n}{2})\). Our proofs yield the following corollary regarding finite versions of the weight-dependent random connection model.

Corollary 1.6. Let \((\mathcal{G}_n(\beta) : n \in \mathbb{N})\) be the above sequence of finite graphs on intervals with weak local limit \(\mathcal{G}(\beta) \) given by an instance of the weight-dependent random connection model with kernel \(g \) and profile \(\rho \). If \(\rho \) and \(g \) satisfy the assumptions of Theorem 1.1(a), then \((\mathcal{G}_n(\beta) : n \in \mathbb{N})\) contains a connected component that grows linearly in \(n \) for large.
enough \(\beta \). Conversely, if \(\rho \) and \(g \) satisfy the assumptions of Theorem 1.1(b), then there is no giant component in the above sense for any \(\beta > 0 \).

It is well-known (see for example [18, 25, 27]) that a graph sequence cannot have a giant component when its weak local limit does not percolate. Hence it remains to prove the first statement of Corollary 1.6 which is done at the end of Section 3.

Organisation of the remainder of the paper. In Section 2 we start with a precise mathematical construction of the model and introduce more general vertex sets. We then state in Section 2.2 two propositions: a sufficient condition for the existence of a supercritical phase, Proposition 2.3, and a sufficient condition for the non-existence of such a phase, Proposition 2.4. Combined, these will imply Theorem 1.1. We prove Proposition 2.3 in Section 3 and Proposition 2.4 in Section 4. Let us remark that we give the proof of Proposition 2.3 before the proof of Proposition 2.4 as it contains the main new contributions of the paper; both mathematically and from the point of view of specific model instances, particularly through Lemma 3.1 and Lemma 3.3. However, the proof of absence of percolation is conceptionally easier and the reader may want to start with Section 4 if they want to familiarise themselves with the model first.

Throughout the paper we use the following notation: we write \(f = o(g) \) as \(x \to \infty \) if \(\lim_{x \to \infty} f(x)/g(x) = 0 \), and \(f \asymp g \) if \(f/g \) is asymptotically bounded from zero and infinity. The number of elements in a finite set \(A \) is denoted as \(\#A \). We further indicate by \(a^− \) and by \(a^+ \) directional limits towards \(a \in \mathbb{R} \).

2 Generalisation and proof of Theorem 1.1

We now introduce our model in a rigorous way and define the properties we require of the underlying point process for our results to hold. We then formulate the Propositions 2.3 and 2.4, which imply Theorem 1.1.

2.1 Formal construction of the model

Let \(\eta \) be a stationary ergodic simple point process on \(\mathbb{R} \) with finite intensity \(\lambda \). We use the notation \(\eta_0 \) for its *Palm version* containing a point at \(0 \in \mathbb{R} \), see e.g. [7] for background on Palm distributions. We may and frequently shall represent \(\eta_0 = \{X_j : j \in \mathbb{Z} \text{ such that } X_k < X_\ell \text{ for } k < \ell \} \) with \(X_0 = 0 \) and think of the vertex in location 0 as the ‘root vertex’ of its cluster. The weight-dependent random connection model is constructed as a deterministic functional \(G_{\beta,\rho,g} \) of the points of \(\eta_0 \), and two independent i.i.d. sequences of edge and vertex marks as follows. Let \(T = \{T_j : j \in \mathbb{Z} \} \) be a family of i.i.d. random variables distributed uniformly on \((0,1) \) independent of \(\eta_0 \) and define the marked point
process
\[\mathcal{X}_0 := \{X_j = (X_j, T_j) \in \eta_0 \times T, j \in \mathbb{Z}\}. \]

Hence, \(\mathcal{X}_0 \) is a point process on \(\mathbb{R} \times (0,1) \) with intensity measure \(\lambda \otimes \text{Uniform}(0,1) \) and a distinguished, 'typical' point located at the origin. Let further \(\mathcal{U} = \{U_{i,j} : i < j \in \mathbb{Z}\} \) be a second family of i.i.d. \(\text{Uniform}(0,1) \) random variables, independent of \(\mathcal{X}_0 \), that we call edge marks. We use \(\mathcal{X}_0 \) and \(\mathcal{U} \) to define a point process
\[\xi_0 := \left\{ (\{X_i, X_j\}, U_{i,j}) \in \mathcal{X}_0^2 \times \mathcal{U} : i < j \in \mathbb{Z}\right\}, \tag{6} \]

where \(\mathcal{X}_0^2 \) denotes the set of all subsets of size two of \(\mathcal{X}_0 \). We call \(\xi_0 \) an independent edge marking of \(\eta_0 \) in accordance with [22]. Observe that that \(\mathcal{X}_0 \) as well as \(\eta_0 \) can be recovered from \(\xi_0 \). From now on, we work on the probability space on which \(\xi_0 \) lives and denote the underlying probability measure by \(\mathbb{P} \) and the corresponding expectation by \(\mathbb{E} \).

Now fix \(\beta > 0 \), a profile-function \(\rho \) and a kernel-function \(g \). Then \(\mathcal{G}_{\beta,\rho,g}(\xi_0) \) is the graph with vertex set \(\mathcal{X}_0 \) and edge set
\[\left\{ \{X_i, X_j\} : U_{i,j} \leq \rho \left(\frac{1}{\beta} g(T_i, T_j) \mid |X_i - X_j| \right), i < j \right\}. \]

To keep the notation concise, we write \(\mathcal{G}_\beta = \mathcal{G}_{\beta,\rho,g}(\xi_0) \). Due to our a priori ordering of the vertices by their locations, one may think of \(\mathcal{X}_0 \) as a marked lattice by considering the vertices' indices instead of their actual locations on the real line. Our proofs therefore apply immediately to \(\mathbb{Z} \)-based versions of the model as well. However, note that even though we define the model using a specific ordering of \(\eta_0 \), the distribution of \(\mathcal{G}_\beta \) is independent of the chosen order.

Our central requirement on the point process \(\eta \) is the following regularity condition:

Definition 2.1 (Evenly spaced point process). Let \(\eta \) be a stationary ergodic simple point process on \(\mathbb{R} \) and denote by \(P_0 \) the law of its Palm version \(\eta_0 \). We say that \(\eta \) (and also \(\eta_0 \)) is evenly spaced, if

(a) there exists a constants \(a_1 > 0 \) such that
\[P_0\{|X_{-n} - X_n| > a_1 n\} \leq o(n^{-2}), \]
as \(n \to \infty \) and

(b) there exists a constant \(a_2 > 0 \) such that, as \(n \to \infty \)
\[P_0\{|X_{-2n+1} - X_{2n}| < a_2 2^n\} = o(1). \]
Remark 2.2.

(i) Property (a) involves a stronger decay requirement than property (b), because to prove the existence of a supercritical phase we need that vertex locations are sufficiently dense uniformly over all scales whereas it suffices for the non-existence proof that vertices are sufficiently spaced out on each scale individually.

(ii) Theorem 1.1 holds true for the weight-dependent random connection model based on any evenly spaced point process as well as any deterministic point set satisfying the corresponding deterministic spacing conditions.

(iii) Examples of evenly spaced point processes are:

- A Poisson process of intensity $\lambda > 0$.
- The point process induced by performing i.i.d. Bernoulli(p) site percolation on \mathbb{Z} with retention probability $p \in (0, 1]$. Note that in this case, stationarity is with respect to shifts induced by \mathbb{Z}.
- Depending on the underlying random intensity measure, Cox processes may be evenly spaced, see [29, Section 3] for examples in a percolation context.

2.2 Strengthening Theorem 1.1

We begin by formalising the notion of percolation. For two vertices $X_i, X_j \in X_0$, we denote by $\{X_i \sim X_j \text{ in } G_\beta\}$ the event that X_i and X_j are connected by an edge in G_β. When the graph G_β is fixed, we simply write $\{X_i \sim X_j\}$. We define $\{0 \leftrightarrow \infty \text{ in } G_\beta\}$ as the event that the root X_0 is the starting point of an infinite self-avoiding path $(X_0, X_{i_1}, X_{i_2}, \ldots)$ in G_β, i.e. $X_{i_j} \neq X_{i_k}$ for all $j \neq k$, and $X_{i_j} \sim X_{i_{j+1}}$ for all $j \geq 0$. We denote by

$$\theta(\beta) = \mathbb{P}\{0 \leftrightarrow \infty \text{ in } G_\beta\}, \quad \beta > 0,$$

the probability that the root is the starting point of an infinite, self-avoiding path in G_β. If $\theta(\beta) > 0$, then G_β percolates almost surely by ergodicity. Conversely, if G_β contains an infinite component, X_0 is connected to it with positive probability and therefore $\theta(\beta) > 0$. We hence call $\theta(\beta)$ the percolation probability and define the percolation threshold β_c as

$$\beta_c := \inf\{\beta > 0 : \theta(\beta) > 0\}.$$

We now state two propositions which combined prove Theorem 1.1. We start with a sufficient condition for the existence of an infinite cluster.

Proposition 2.3 (Existence of an infinite component). Let η be an ergodic simple point process satisfying assumption (a) of Definition 2.1. Let ξ_0 be defined as above, ρ be a
profile-function and \(g \) be a kernel-function. Let \(K_n := (n!)^3 K^n, n \in \mathbb{N} \) for some fixed \(K \in \mathbb{N} \). Assume that there exists \(\mu \in (0, 1/2) \) such that

\[
\sup_{n \geq 2} n^3 K \exp \left(- K^2 n^{-1} \int_{[K_n^{-1}, 1-K_n^{-1}]^2} ds dt \rho(\varphi(s,t) K^n) \right) = o(1), \quad \text{as } K \to \infty. \tag{A1}
\]

Then for \((\mathcal{G}_{\beta, \rho, g}(\xi_0) : \beta > 0) \), we have \(\beta_c < \infty \).

The proof of Proposition 2.3 is given in Section 3 and follows a strategy similar to that of the proof of [11, Theorem 1(i)]. Condition (A1) can be seen as a generalised version of [11, Eq. (8)] and precisely quantifies the order of the probability that certain long edges are absent in the graph that we need for our proof to work. The analogous result for the non-existence of an infinite component is given next.

Proposition 2.4 (Finite Components). Let \(\eta \) be a ergodic simple Point process fulfilling condition (b) of Definition 2.1. Let \(\xi_0 \) be defined as above and let \(g \) be a kernel-function. Assume further, that \(\rho \) is a profile-function with \(\rho(0+) < 1 \) and that there exists \(\mu \in (0, 1/2) \) such that

\[
\sum_{n \in \mathbb{N}} 2^{2n} \int_{2^{-(1+\mu)n}}^1 ds \int_{2^{-(1+\mu)n}}^1 dt \rho(\varphi(s,t)2^n) < \infty. \tag{A2}
\]

Then for \((\mathcal{G}_{\beta, \rho, g}(\xi_0) : \beta > 0) \), we have \(\beta_c = \infty \).

The assumption \(\rho(0+) < 1 \) in Proposition 2.4 is a technical requirement needed in the proof of Proposition 2.4 below and can essentially be viewed as a continuum version of the analogous requirement in long-range percolation on \(\mathbb{Z} \) that not all nearest-neighbour-edges be present. If \(\eta \) is sufficiently random, the additional condition \(\rho(0+) < 1 \) can be dropped, we exemplify this with the following corollary that covers the important special case of the Poisson process.

Corollary 2.5. Let \(\eta \) be a standard Poisson point process. Let \(\xi_0 \) be as defined as above, \(g \) be a kernel and \(\rho \) be a profile-function such that assumption (A2) of Proposition 2.4 is fulfilled. Then for \((\mathcal{G}_{\beta, \rho, g}(\xi_0) : \beta > 0) \), we have \(\beta_c = \infty \).

Proposition 2.4 and Corollary 2.5 are proved in Section 4.

Proof of Theorem 1.1. Let us denote

\[
\delta^+_{\text{eff}}(\mu) := - \liminf_{n \to \infty} \frac{\log \left(\int_{n^{\mu n-1}}^{1} \int_{n^{\mu n-1}}^{1} \rho(\varphi(s,t) n) ds dt \right)}{\log n}
\]
and assume $\lim_{\mu \downarrow 0} \delta^+(\mu) < 2$. Observe that only the lower bound of the integral in (A1) is relevant for the order of the term and that $K_{n-1}^{\mu-1} = K_{n}^{\mu-1}(n^3K)^{1-\mu} \leq K_n^{\mu+\mu(K)-1}$ for a small power $\mu(K) \downarrow 0$ as $K \to \infty$. Choose K large and μ small enough such that $\delta^+_{\text{eff}}(\mu + \mu(K)) < 2$, then

$$K_{n-1}^2 \int_{[K_{n-1}^{\mu-1},1-K_{n-1}^{\mu-1}]} ds \, dt \, \rho(g(s,t)K_n) \geq cK_{n-1}^{2-\delta^+_{\text{eff}}(\mu + \mu(K))}$$

uniformly in n for some constant $c > 0$. Hence Assumption (A1) is satisfied and Theorem 1.1(a) is a consequence of Proposition 2.3. Similarly, define

$$\delta^-_{\text{eff}}(\mu) := -\limsup_{n \to \infty} \frac{\log \left(\int_{n-\mu-1}^{1} \int_{n-\mu-1}^{1} \rho(g(s,t)n) \, ds \, dt \right)}{\log n}$$

and assume $\lim_{\mu \downarrow 0} \delta^-_{\text{eff}}(\mu) > 2$. Then, for small enough μ and large enough n, we have for some constant $C > 0$

$$2^{2n} \int_{2^{-1+(1+\mu)n}}^{1} ds \int_{2^{-1+(1+\mu)n}}^{1} dt \, \rho(g(s,t)2^n) \leq C2^{n(2-\delta^-_{\text{eff}}(\mu))}.$$

Hence, Assumption A2 is satisfied and the proof of Theorem 1.1 is concluded by applying Corollary 2.5.

3 Proof of Propositions 2.3

We now proceed to prove the existence of an infinite component under the assumptions of Proposition 2.3. Our strategy is based on an approach developed in [11, Theorem 1(i)], where the existence of an infinite path in classical long range percolation on \mathbb{Z} is proven in the scale-invariant regime $\delta = 2$. The proof involves a multi-scale argument working roughly as follows: at stage n, the lattice is covered by half-way overlapping blocks of K_n lattice points. The overlap has the effect that if two adjacent blocks contain a rather dense connected component each, the two components must intersect by necessity, that is with probability 1. Since enough blocks at stage n have such components, a larger block of size K_{n+1} containing several K_n-blocks must also contain a component of positive (but ever so slightly smaller) density. If the loss of density at each stage can be kept sufficiently small, the desired result follows by iterating this construction and taking the limit $n \to \infty$.

Note that since one needs to be able to start the renormalisation with local clusters of a given (large) density, one cannot hope to obtain quantitative bounds for β_c from the technique.

In our model, we face the challenge of the additional randomness of the marks. We demon-
strate below that a modified version of the above strategy works under the assumptions of Proposition 2.3, i.e. in particular if \(\delta_{\text{eff}} < 2 \). Although we are able to control the influence of the marks by a carefully tailored argument, the error probabilities arising at each stage become too large if one moves into the pseudo-scale-invariant regime, hence the approach breaks down if \(\delta_{\text{eff}} = 2 \).

For \(N \in \mathbb{N} \) and \(i \in \mathbb{Z} \) let

\[
B_N^i := \{X_{N(i-1)}, \ldots, X_{Ni}, \ldots, X_{N(i+1)-1}\}
\]

and \(B_N := B_N^0 = \{X_{-N}, \ldots, X_{N-1}\} \). Each set \(B_N^i \) consists of precisely \(2N \) consecutive vertices. If \(\eta \) is the lattice, then \(X_j = j \) for each \(j \in \mathbb{Z} \) and \(B_N^i \) is simply the lattice interval \([N(i-1), N(i+1)] \cap \mathbb{Z}\), matching the notation of [11]. In the general setting, the sets \(B_N^i \) are blocks of vertices that all contain the same number of vertices but with random distances between consecutive vertices. Note that two consecutive blocks \(B_N^i \) and \(B_N^{i-1} \) overlap on half of their vertices. The blocks at stage \(n \) are then given by the blocks \(B_{K_n}^i \) for \(i \in \mathbb{Z} \). Note that all stage \(n \) blocks have the same marginal distribution by stationarity. However, they are not independent due to the overlapping property.

3.1 Connecting vertex sets that are far apart

To make sure that the strategy outlined at the beginning of this section works and that a \(K_{n+1} \)-block at stage \(n + 1 \) contains a “large” connected component (we will specify this shortly), it is necessary that two stage \(n \) blocks at a given distance are connected with a sufficiently high probability to overcome potentially bad regions.

Recall that \(K_n = (n!)^3K^n \) for some \(K \in \mathbb{N} \). For \(\vartheta^* \in (0, 1) \) and \(n \geq 2 \), we define the ‘leftmost’ and ‘rightmost’ parts of \(B_{K_n}^i \)

\[
V_{\ell}^n(\vartheta^*) := \{X_{-K_n}, \ldots, X_{-K_n + \lfloor \vartheta^*K_n - 1 \rfloor - 1}\} \quad \text{and} \quad V_{r}^n(\vartheta^*) := \{X_{K_n - \lfloor \vartheta^*K_n - 1 \rfloor}, \ldots, X_{K_n - 1}\}.
\]

Note that \(K_{n-1} \ll K_n \) and so \(V_{\ell}^n(\vartheta^*) \) (resp. \(V_{r}^n(\vartheta^*) \)) is only a relatively small number of vertices at the very left (resp. right) end of the block \(B_{K_n} \). Before calculating the probability of the two sets \(V_{\ell}^n(\vartheta^*) \) and \(V_{r}^n(\vartheta^*) \) being connected, we need to understand the behaviour of the vertex marks inside each set.

For \(\mu \in (0, 1/2) \), we denote for all \(i = 1, \ldots, \lfloor (\vartheta^*K_n - 1)^{1-\mu} \rfloor \) the empirical mark counts in \(V_{\ell}^n(\vartheta^*) \) by

\[
N_{\ell}^n(i) := \sum_{S: (X, S) \in V_{\ell}^n(\vartheta^*)} \mathbb{1}_{\{S \leq \lfloor (\vartheta^*K_n - 1)^{1-\mu} \rfloor \}}
\]
and we say that $V^\mu_\ell(\vartheta^*)$ has μ-regular vertex marks if

$$N^\mu_\ell(i) \geq \frac{i\vartheta^*K_{n-1}}{2[(\vartheta^*K_{n-1})^{1-\mu}]}$$

for all $i = 1, \ldots, \lfloor(\vartheta^*K_{n-1})^{1-\mu}\rfloor$. A simple calculation yields that

$$\mathbb{E}N^\mu_\ell(i) = \frac{\vartheta^*K_{n-1}i}{[(\vartheta^*K_{n-1})^{1-\mu}]}.$$

Hence, by using a Chernoff bound for Uniform(0,1) random variables, we have that

$$\mathbb{P}\{N^\mu_\ell(i) < \mathbb{E}N^\mu_\ell(i)/2\} \leq \exp\left(-c \cdot i(K_{n-1})^\mu\right)$$

for some constant $c > 0$, depending only on the value of ϑ^*. Therefore,

$$\mathbb{P}\{V^\mu_\ell(\vartheta^*) \text{ is } \mu\text{-regular}\} \geq 1 - K_{n-1}^{1-\mu} \exp(-cK_{n-1}^\mu).$$

(7)

The same holds mutatis mutandis for $V^\mu_r(\vartheta^*)$.

Hence, both sets are μ-regular with a stretched exponential error bound already in the first stage for a sufficient large K. We therefore focus on the case when both sets have μ-regular vertex marks when calculating the probability of both sets being connected, which we do in the next lemma, that also gives a first glance for the appearance of Assumption (A1). We take into account here that by the evenly spaced property the two sets are typically at distance roughly K_n. To make use of it, we call a configuration $\omega = (x_i : i \in \mathbb{Z})$ of vertex locations throughout the remainder of this section properly spaced if it fulfills

$$|x_{-K_n} - x_{K_{n-1}}| < a_1K_n, \quad n \in \mathbb{N},$$

(8)

where a_1 is the constant from Definition 2.1(a).

We denote by $\{V^\mu_\ell(\vartheta^*) \sim V^\mu_r(\vartheta^*)\}$ the event that the two sets are connected by a direct edge, i.e. there exist $X \in V^\mu_\ell(\vartheta^*)$ and $Y \in V^\mu_r(\vartheta^*)$ such that $X \sim Y$. We write $\{V^\mu_\ell(\vartheta^*) \not\sim V^\mu_r(\vartheta^*)\}$ for the event that there is no such edge. Furthermore, we say that two vertices (X_i, T_i) and (Y_j, T_j) are strongly connected if their corresponding edge mark satisfies

$$U_{i,j} \leq 1 - \exp(-\rho(\beta^{-1}g(T_i, T_j)a_1K_n)),$$

(9)

We denote this event by $\{X_i \Leftrightarrow X_j\}$ and also extend the notation to sets of vertices in the same fashion as ‘\sim’.
Lemma 3.1. Let \(\vartheta^* \in (0,1) \) and write \(v := v_n := \vartheta^* K_{n-1} \). There exists a constant \(C = C(g,\rho) > 0 \) such that for all \(\mu \in (0,1/2) \) and \(n \in \mathbb{N} \) we have

\[
\mathbb{P}\left(V^n_\ell(\vartheta^*) \neq V^n_r(\vartheta^*) \mid \{V^n_\ell(\vartheta^*) \text{ and } V^n_r(\vartheta^*) \text{ are } \mu\text{-regular}\}, \{|X_{-K_n} - X_{-K_n-1}| \leq aK_n\}\right)
\]

\[
\leq \mathbb{P}\left(V^n_\ell(\vartheta^*) \neq V^n_r(\vartheta^*) \mid \{V^n_\ell(\vartheta^*) \text{ and } V^n_r(\vartheta^*) \text{ are } \mu\text{-regular}\}\right)
\]

\[
\leq \exp\left(-Cv^2 \int_{\frac{1}{2} - \mu}^{1 - \mu} \frac{dt}{1 - t} \rho(\beta^{-1}g(s,t)aK_n)\right).
\]

Proof. To lighten notation, we write \(V_\ell = V^n_\ell(\vartheta^*) \), and \(V_r = V^n_r(\vartheta^*) \), and denote

\[
E := E(n) := \{V_\ell \mu\text{-regular}\} \cap \{V_r \mu\text{-regular}\}.
\]

Denote by \(F_i \) the empirical distribution function of the vertex marks corresponding to \(V_i \), where \(i \in \{\ell,r\} \). Writing \(h := [(\vartheta^* K_{n-1})^{1-\mu}] \), we have on the event \(E \) for \(t \in [0,1] \) by the definition of \(\mu\)-regularity

\[
v F_\ell(t) = \sum_{i=-K_n}^{-K_n + \left|\vartheta^* K_{n-1}\right|-1} \mathbb{1}\{T_i \leq t\} \geq \sum_{j=1}^{h} N^n_\ell(j - 1) \mathbb{1}\{(j - 1)/h < t \leq j/h\}
\]

\[
= N^n_\ell\left(\left|th\right|\right) \geq \frac{v|th|}{2h} \geq \frac{v}{2} (t - 1/h) \geq \frac{v}{3} (t - \mu^{-1}).
\]

The same holds verbatim for \(F_r \). Next, we write \(\mathbb{P}^{\vartheta_0} \) for the probability measure \(\mathbb{P} \) given the vertex locations \(\vartheta_0 \) which, by construction, is a product measure with \(\text{Uniform}(0,1) \) marginals. Recall that \(\mathbb{P}_0 \) denotes the law of \(\vartheta_0 \). We then have

\[
\mathbb{P}\left(V^n_\ell(\vartheta^*) \neq V^n_r(\vartheta^*) \mid E \cap \{|X_{-K_n} - X_{-K_n-1}| \leq aK_n\}\right)
\]

\[
= \int \mathbb{1}\{\vartheta \text{ properly spaced}\} \mathbb{P}^{\vartheta_\vartheta=\vartheta}(V^n_\ell(\vartheta^*) \neq V^n_r(\vartheta^*) \mid E) \mathbb{P}_0(d\vartheta).
\]

We focus on the inner probability in the numerator’s integral. By construction, under \(\mathbb{P}^{\vartheta_0=\vartheta} \), two vertices \((x_i, T_i) \in V_\ell \) and \((x_j, T_j) \in V_r \) are connected, whenever their corresponding edge mark satisfies

\[
U_{i,j} \leq 1 - \exp(-\rho(\beta^{-1}g(T_i, T_j)aK_n)),
\]

since \(\vartheta \) is properly spaced from which the first inequality of the lemma follows immediately.
In particular, there always exists a direct edge connecting \(V_\ell \) and \(V_r \) if
\[
\Sigma := \sum_{(x_i, T_i) \in V_\ell, (x_j, T_j) \in V_r} 1\{U_{i,j} \leq 1 - \exp(-\rho(\beta^{-1}g(T_i, T_j)aK_n))\} > 0.
\]

Since the edge marks are independent of the vertex marks and locations, we have
\[
E^{\eta_0 = \omega}(1_{\Sigma = 0} 1_E) \leq E^{\eta_0 = \omega}\left[1_E \prod_{(x,T) \in V_\ell, (y,S) \in V_r} \exp\left(-\rho(\beta^{-1}g(T,S)aK_n)\right) \right]
\]
\[
= E^{\eta_0 = \omega}\left[\exp\left(-\sum_{(x,T) \in V_\ell, (y,S) \in V_r} \rho(\beta^{-1}g(T,S)aK_n)\right) 1_E \right]
\]
\[
\leq E^{\eta_0 = \omega}\left[\exp\left(-\frac{v^2}{9} \int_{v^{\mu-1}}^{1-v^{\mu-1}} dt \int_{v^{\mu-1}}^{1-v^{\mu-1}} ds \, \rho\left(\beta^{-1}g(t,s)aK_n\right)\right) 1_E \right]
\]
\[
= P^{\eta_0 = \omega}(E) \exp\left(-\frac{v^2}{9} \int_{v^{\mu-1}}^{1-v^{\mu-1}} dt \int_{v^{\mu-1}}^{1-v^{\mu-1}} ds \, \rho\left(\beta^{-1}g(t,s)aK_n\right)\right),
\]
where we have used in the second inequality that on \(E \) and with (10)
\[
\sum_{(x,T) \in V_\ell, (y,S) \in V_r} \rho\left(\beta^{-1}g(T,S)aK_n\right) = v^2 \int_0^1 F_\ell(dt) \int_0^1 F_r(ds) \rho\left(\beta^{-1}g(t,s)aK_n\right)
\]
\[
\geq \frac{v^2}{9} \int_{v^{\mu-1}}^{1-v^{\mu-1}} dt \int_{v^{\mu-1}}^{1-v^{\mu-1}} ds \, \rho\left(\beta^{-1}g(t,s)aK_n\right).
\]
The proof now concludes with the observation that the established bound is uniform in all properly spaced configurations \(\omega \).

3.2 Renormalisation scheme

For \(N \in \mathbb{N}, i \in \mathbb{Z} \), we denote by \(\mathcal{C}_\beta(B_N^i) \) the largest connected component of the subgraph of \(\mathcal{G}_\beta \) on the vertices of \(B_N^i \). For \(\theta \in (0,1) \), we say a block \(B_N^i \) is \(\theta \)-good, if it contains a connected component of size at least \(2\theta N \); otherwise we call it \(\theta \)-bad. We denote by
\[
p_\beta(N, \theta) := P\{\# \mathcal{C}_\beta(B_N) < 2N\theta\} = P\{B_N \text{ is } \theta \text{-bad}\}
\]
the probability that the block \(B_N \) is \(\theta \)-bad. We will show that the probability of \(B_{K_n} \) being \(\theta \)-bad can be bounded by the probability that the smaller block \(B_{K_{n-1}} \) is bad with a slightly larger value of \(\theta \).
As a first step, we show that it is probable that the subgraph on B_{K_n+1} contains a connected component of size proportional to $\vartheta - \epsilon$, provided that B_{K_n} is ϑ-good with a sufficiently large probability. This is an adaptation of [11, Lemma 2] to our setting. Here, we have to deal with the positive correlations between clusters to make use of Lemma 3.1, cf. (12) and Lemma 3.3. Afterwards, we show that for a large enough K determining the initial scale, the subgraph on B_{K_1} contains a sufficiently large cluster whenever β is large enough. Combining both results yields Proposition 2.3.

Recall that we have $K_n = (n!)^3K^n$. Define a sequence $(C_n)_{n \in \mathbb{N}}$ as $C_n = n^3K$. Then $K = K_1 = C_1$ and $K_n = C_nK_n^{-1}$ for $n \geq 2$.

Lemma 3.2. Let $\vartheta^* \in (3/4, 1)$ and $\vartheta \in (\vartheta^*, 1)$. Under the assumptions of Proposition 2.3 there exists $M > 0$ such that for all $K \geq M$ and $n \geq 2$, we have $\vartheta - 2/C_n \geq \vartheta^*$, and

$$p_{\beta}(K_n, \vartheta - 2/C_n) \leq \frac{1}{100}p_{\beta}(K_{n-1}, \vartheta) + 2C_n^2p_{\beta}(K_{n-1}, \vartheta)^2.$$

Proof. Let $\vartheta' := \vartheta - 2/C_n$. We begin by considering the blocks $B_{K_{n-1}}^i$ for $|i| \in \{0, \ldots, C_n - 1\}$, which together form B_{K_n}, and their largest connected components $\mathcal{C}_\beta(B_{K_{n-1}}^i)$. Since $\vartheta > 3/4$, the cluster $\mathcal{C}_\beta(B_{K_{n-1}}^i)$ is unique if $B_{K_{n-1}}^i$ is ϑ-good. Furthermore, due to the overlapping property of neighbouring blocks, the largest components of two adjacent ϑ-good blocks have to intersect in at least one vertex. Hence, if all the blocks $B_{K_{n-1}}^i$ are ϑ-good, then B_{K_n} is ϑ'-good as well.

Define now for every $|i| \in \{0, \ldots, C_n - 1\}$ the event

$$E_i := E_i(n, \beta) := \{\#\mathcal{C}_\beta(B_{K_{n-1}}^i) < 2\vartheta K_{n-1}\} \cap \left[\bigcap_{|j|=0}^{C_{n-1}} \{\#\mathcal{C}_\beta(B_{K_{n-1}}^j) \geq 2\vartheta K_{n-1}\} \right].$$

That is, the set $B_{K_{n-1}}^i$ is ϑ-bad but all blocks $B_{K_{n-1}}^j$ with which it does not intersect are ϑ-good. If we write

$$F_i := F_i(n, \beta) := E_i \cap \{B_{K_n} \text{ is } \vartheta' \text{-bad}\},$$

then B_{K_n} being ϑ'-bad implies that either F_i occurs for some i or at least two disjoint stage $(n - 1)$ blocks are ϑ'-bad, since otherwise B_{K_n} would be ϑ- and therefore also ϑ'-bad.
Figure 3: The overlapping blocks of scale $n - 1$ that together form the scale n block. The cluster \mathcal{C}^- (resp. \mathcal{C}^+) on the left in blue (resp. on the right in red). The dark block is the bad block and in light gray are the non overlapping halves of the two neighbouring blocks. The dotted line indicates the existence of a direct edge connecting \mathcal{C}^- and \mathcal{C}^+ avoiding the bad region.

good. Consequently,

$$p_\beta(K_n, \vartheta') = p_\beta(C_n K_{n-1}, \vartheta') \leq \sum_{|i|=0}^{C_n-1} \mathbb{P}(F_i) + \left(\frac{C_n}{2} \right) p_\beta(K_{n-1}, \vartheta)^2$$

$$\leq p_\beta(K_{n-1}, \vartheta) \sum_{|i|=0}^{C_n-1} \mathbb{P}(B_{C_n} K_{n-1} \text{ is } \vartheta'-\text{bad} \mid E_i) + 2 C_n^2 p_\beta(K_{n-1}, \vartheta)^2.$$

To finish the proof it therefore remains to bound the sum of the conditional probabilities by $1/100$. To this end, define

$$\mathcal{C}^-(n, \beta) := \bigcup_{j=1-C_n}^{i-2} \mathcal{C}_j(B_{K_{n-1}}^i) \quad \text{and} \quad \mathcal{C}^+(n, \beta) := \bigcup_{j=i+2}^{C_n-1} \mathcal{C}_j(B_{K_{n-1}}^i). \quad (11)$$

Conditioned on E_i both sets \mathcal{C}^- and \mathcal{C}^+ are connected sets. Furthermore, if $i \in \{C_n - 2, C_n - 1\}$, then

$$\sharp \mathcal{C}^-(i, \beta) \geq 2(C_n - 2) \vartheta K_{n-1} \geq 2 \vartheta' C_n K_{n-1}$$

and hence B_{K_n} is ϑ'-good. The same holds true for \mathcal{C}^+ if $i \in \{1 - C_n, 2 - C_n\}$. Therefore, the bad block and any neighbouring block cannot be the left- or the right-most ones in B_{K_n}. This then guarantees that $\mathcal{C}^- \cup \mathcal{C}^+ \neq \emptyset$. Further, if \mathcal{C}^- and \mathcal{C}^+ are connected by a direct edge, it is the case that

$$\sharp \mathcal{C}^- + \sharp \mathcal{C}^+ \geq \vartheta K_{n-1}(C_n + i - 2) + \vartheta K_{n-1}(C_n - i - 2) = 2 \vartheta K_{n-1}(C_n - 2) \geq 2 \vartheta' C_n K_{n-1}.$$
and B_{K_n} is again ϑ'-good, see Figure 3. Writing

$$A_i := A_i(n, \beta) := \left[\bigcap_{|j|=0}^{C_n-1} \{ \chi_{\beta}(B_{K_n-1}^j) \geq 2\vartheta K_n-1 \} \right]_{j \notin \{i-1,i,i+1\}}$$

so that $E_i = \{ \chi_{\beta}(B_{K_n-1}^i) < 2\vartheta K_n-1 \} \cap A_i$ we have

$$P(B_{K_n} \text{ is } \vartheta'-\text{bad} \mid E_i) \leq P(\mathcal{C}_i^- \not\sim \mathcal{C}_i^+ \mid A_i)$$

since \mathcal{C}_i^- and \mathcal{C}_i^+ share no vertex or edge with the bad block B_{K_n-1} or its adjacent blocks. Since on A_i the clusters \mathcal{C}_i^- and \mathcal{C}_i^+ are the unique largest clusters on the left resp. on the right side of the bad block which gives positive information on the connectivity of the involved vertices together with the fact that for an evenly spaced point process being strongly connected, cf. (9), is harder to achieve than ‘normal’ connections, intuitively one might expect

$$P(\mathcal{C}_i^- \not\sim \mathcal{C}_i^+ \mid A_i) \leq \int_{\mathcal{C}_i^- \not\sim \mathcal{C}_i^+} P_0(\{\omega \mid \eta_0 = \omega\}) + o(K^{-2}). \quad (12)$$

We will make this rigorously below in Lemma 3.3. Let us first assume that (12) holds true. Then, we infer with Lemma 3.1, and μ-regularity (7) for sufficiently large $K = C_1$

$$\sum_{|i|=0}^{C_n-1} P(B_{C_nK_n-1} \text{ is } \vartheta'-\text{bad} \mid E_i)$$

\begin{align*}
\leq & 2n^3 C_1 \left[\exp \left(-Cv^2 \int_{[\mu^{-1},1-\mu^{-1}]} d(t,s) \rho(\beta^{-1}g(s,t)aK_n) \right) \\
& + K^{-1-\mu}_{n-1} \exp(-cK^{-2}_{n-1}) + o(K^{-2}) \right] \\
\leq & \frac{1}{100}.
\end{align*}

In the following lemma we prove (12) to formally conclude the proof of Lemma 3.2.

Lemma 3.3. For all $n \geq 2$ and $|i| \in \{0, \ldots, C_n-1\}$ we have

$$P(\mathcal{C}_i^-(n, \beta) \not\sim \mathcal{C}_i^+(n, \beta) \mid A_i(n, \beta))$$

\begin{align*}
\leq & \int_{\omega \text{ properly spaced}} P_0(\{\omega \mid V^n_{\ell}(\vartheta^*) \neq V^n_r(\vartheta^*)\}) P_0(d\omega) + o(K^{-2}).
\end{align*}
Proof. The idea is to bound the considered probability by first uniformly choosing subsets of size \(v := v_n := \#V_i^n(\partial^*) = \#V_i^\nu(\partial^*)\) among the vertices of \(C_i^-\) and \(C_i^+\) and only check whether these subsets are connected or not and to then compare this with the case when the same number is chosen uniformly among all vertices on the left and right of the box \(B_{K_{n-1}}^i\). To do so rigorously, we first have to extend our probability space. Let

\[L_i := L_i(n) := \{\ell_1, \ldots, \ell_v\} \subset \{1, \ldots, K_{n-1}, \ldots, K_{n-1}(i - 1) - 1\} \]

be indices chosen uniformly without replacement and ordered from smallest absolute value to largest, independently from everything else among all indices of the vertices on the left side of the block \(B_{K_{n-1}}^i\) and let

\[R_i := R_i(n) := \{r_1, \ldots, r_v\} \subset \{K_{n-1}(i + 1), \ldots, K_{n-1} - 1\} \]

be another independent set of indices chosen uniformly among the indices of the vertices on the right side. We call each index in \(L_i\) and \(R_i\) tagged. Note that these sets of indices are sampling from are deterministically given by construction so that there exists a probability measure \(\mathbb{P}\) for \((\xi_0, (L_i, R_i))\) with marginal distribution \(\mathbb{P}\) when integrated w.r.t. \(L_i\) and \(R_i\). First, we observe by use of Definition 2.1(a)

\[\mathbb{P}(C_i^- \not\subset C_i^+) \leq \int 1_{\{\omega \text{ properly spaced}\}} \mathbb{P}^{\nu_0=\omega}(\xi_0^i \not\subset \xi_0^i+ | A_i^\omega) \mathbb{P}_0(d\omega) + o(K_n^{-2}), \]

where we recall the definition of a properly spaced configuration (8). Here, \(A_i^\omega\) denotes the event that \(A_i\) occurs on the given configuration \(\omega\) of vertex locations. We note that \(A_i^\omega\) has a positive probability to occur for all evenly spaced configurations. To finish the proof, we need to bound the conditional probability on the right-hand side. Recall the definition of \(C_i^-\) and \(C_i^+\) as the union of the largest clusters in the blocks left and right of \(B_{K_{n-1}}^i\), cf. (11). To make this definition unique we define from here on out \(C_i^-(B_{K_{n-1}}^i)\) to be the largest cluster in \(B_{K_{n-1}}^i\) that contains the vertex with smallest mark if there is more than one largest cluster. Then \(C_i^-\) and \(C_i^+\) are almost surely unique but on \(A_i^\omega\) nothing has changed. We further denote by

\[I_i^- := I_i^-(n, \beta) := \{j \in \mathbb{Z} : X_j \in C_i^-\} \quad \text{and} \quad I_i^+ := I_i^+(n, \beta) := \{j \in \mathbb{Z} : X_j \in C_i^+\}, \]

the set of indices belonging to \(C_i^-\) resp. \(C_i^+\) and we consider both sets to be ordered from smallest absolute value to largest. Let us further introduce another (random) tagging. Let \(L_i := L_i(n)\) be a set of \(v\)-many indices chosen uniformly without replacement from \(I_i^-\), ordered from smallest absolute value to largest and \(R_i := R_i(n)\) the same but chosen among the indices in \(I_i^+\), independently of \(L_i\). If \(\#I_i^- < v\) (resp. \(\#I_i^+ < v\)), we simply set \(L_i = \emptyset\) (resp. \(R_i = \emptyset\)). Let us denote the joint distribution (given \(\eta_0 = \omega\)) of \(\xi_0\) and \((L_i, R_i)\) by \(\mathbb{P}^{\nu_0=\omega}\). Observe that on \(A_i^\omega\) both \(I_i^-\) and \(I_i^+\) always contain at least \(v\)-many elements.
Now, by the independence of \((L_i, R_i)\) from the vertex and edge marks and by the fact that uniformly sampling from a finite set \(S\) conditioned to be contained in an independently generated subset \(S' \subset S\) has the same distribution as uniformly sampling from \(S'\), we have
\[
\mathbb{P}^\eta_0 = \mathbb{P}^\eta_0((\xi_0, (L_i, R_i)) \in \cdot | A_0^\omega) = \mathbb{P}^\eta_0 = \mathbb{P}^\eta_0((\xi_0, (L_i, R_i)) \in \cdot | A_i^\omega, \{L_i \subset I_i^-, \{R_i \subset I_i^+\}). \tag{13}
\]

Now, we finally have everything in place to finish the proof. Recall the definition of vertices being strongly connected \((9)\). Further recall that we work on a given properly spaced vertex location configuration \(\omega\). Then, with \((13)\), we infer
\[
\mathbb{P}^\eta_0 = \mathbb{P}^\eta_0((C_i^- \not\subset C_i^+ | A_i^\omega) = \mathbb{P}^\eta_0 = \mathbb{P}^\eta_0((C_i^- \not\subset C_i^+ | A_i^\omega)
\leq \mathbb{P}^\eta_0 = \mathbb{P}^\eta_0\left(\bigcap_{\ell \in L_i, r \in R_i} \{X_\ell \neq X_r\} | A_i^\omega \right)
= \mathbb{P}^\eta_0 = \mathbb{P}^\eta_0\left(\bigcap_{\ell \in L_i, r \in R_i} \{X_\ell \neq X_r\} | A_i^\omega, \{L_i \subset I_i^-, \{R_i \subset I_i^+\}\} \right) \tag{14}
= \frac{\mathbb{P}^\eta_0 = \mathbb{P}^\eta_0(A_i^\omega, \{L_i \subset I_i^-, \{R_i \subset I_i^+\})}{\mathbb{P}^\eta_0 = \mathbb{P}^\eta_0(A_i^\omega, \{L_i \subset I_i^-, \{R_i \subset I_i^+\})}
\]

The probability in the last line’s numerator can be written using the independence of \((L_i, R_i)\) of the graph as
\[
\mathbb{P}^\eta_0 = \mathbb{P}^\eta_0\left(\bigcap_{\ell \in L_i, r \in R_i} \{X_\ell \neq X_r\}, A_i^\omega, \{L_i \subset I_i^-, \{R_i \subset I_i^+\}\} \right)
= \sum_{L, R} \mathbb{P}^\eta_0 = \mathbb{P}^\eta_0\left(\bigcap_{\ell \in L, r \in R} \{X_\ell \neq X_r\}, A_i^\omega, \{L \subset I_i^-, \{R \subset I_i^+\}\} \right) P\{L_i = L, R_i = R\}, \tag{15}
\]
where the sum goes over all subsets of size \(v\) of the sets from which \(L_i\) and \(R_i\) are drawn and we have written \(P\) for the law of \((L_i, R_i)\). Now, \(\mathbb{P}^\eta_0 = \omega\) is by construction a product measure with Uniform(0,1) marginals (the vertex and edge marks). Moreover, the event \(\bigcap_{\ell, r} \{X_\ell \neq X_r\}\) is clearly decreasing whenever involved vertex and/or edge marks are decreased (and potentially new edges are added to the graph). On the contrary, the event \(A_i^\omega \cap \{L \subset I_i^-\} \cap \{R \subset I_i^+\}\) is increasing whenever vertex and/or edge marks are decreased as additional edges only increase the size of the largest cluster. Hence, good boxes always remain good when an edge is added. Also, since on \(A_i^\omega\) the largest clusters on the left and right are uniquely determined and contain at least a \(\vartheta > 3/4\) proportion of the vertices, an additional edge can only make the sets \(I_i^-, I_i^+\) larger and whenever \(\{L \subset I_i^-\} \cap \{R \subset I_i^+\}\) occurs without the newly added edge it also occurs after the edge has been added. Hence,
we can apply the FKG-inequality [12] and infer
\[
P_{\eta_0}(\bigcap_{\ell \in L, r \in R} \{X_{\ell} \neq X_r\}) \leq P_{\eta_0}^{\omega}(A_0^\omega, \{L \subset I_i^-, \{R \subset I_i^+\})
\]
\[
= P_{\eta_0}^{\omega}\left(\bigcap_{\ell = -K_n}^{K_n} \bigcap_{r = K_n - v}^{K_n - 1} \{X_{\ell} \neq X_r\}\right) P_{\eta_0}^{\omega}(A_0^\omega, \{L \subset I_i^-, \{R \subset I_i^+\})
\]
\[
= P_{\eta_0}^{\omega}\left(\bigcap_{\ell = -K_n}^{K_n} \bigcap_{r = K_n - v}^{K_n - 1} \{X_{\ell} \neq X_r\}\right) P_{\eta_0}^{\omega}(A_0^\omega, \{L \subset I_i^-, \{R \subset I_i^+\})
\]
where the last equality follows from the fact that all vertex and edge marks are i.i.d..

Plugging this into (15), we infer
\[
\bar{P}_{\eta_0}^{\omega}\left(\bigcap_{\ell \in L, r \in R} \{X_{\ell} \neq X_r\}, A_0^\omega, \{L_i \subset I_i^-, \{R_i \subset I_i^+\}
\]
\[
\leq P_{\eta_0}^{\omega}(A_0^\omega, \{L \subset I_i^-, \{R \subset I_i^+\}) \times \sum_{L,R} P_{\eta_0}^{\omega}(A_0^\omega, \{L \subset I_i^-, \{R \subset I_i^+\}) P\{L_i = L, R_i = R\}
\]
\[
= P_{\eta_0}^{\omega}\left(\bigcap_{\ell = -K_n}^{K_n} \bigcap_{r = K_n - v}^{K_n - 1} \{X_{\ell} \neq X_r\}\right) P_{\eta_0}^{\omega}(A_0^\omega, \{L_i \subset I_i^-, \{R_i \subset I_i^+\})
\]
Combined with (14) this finally yields
\[
P_{\eta_0}^{\omega}(X_{\ell} \neq X_r | A_0^\omega) \leq P_{\eta_0}^{\omega}(V_{\ell}^{n}(\vartheta^*) \neq V_r^{n}(\vartheta^*)\}
\]

\[\Box \]

Remark 3.4. Instead of working only on properly spaced location configurations, one could also work with any given vertex configuration \(\eta_0 = \omega\). Then, in calculation (14) when the event of not being connected is replaced by not being strongly connected (i.e. the worst case distance bound in the connection probability), one could instead plug in pairwise the (given) vertex locations of the vertices in \(V_{\ell}^{n}(\vartheta^*)\) and \(V_r^{n}(\vartheta^*)\) as these are the vertices at the very left and very right and also maximise the considered distances. Continuing from here precisely as done and integrating with respect to the vertex locations at the end of the proof yields
\[
P(\bar{c}_i^- \neq c_i^+ | A_i) \leq P\{V_{\ell}^{n}(\vartheta^*) \neq V_r^{n}(\vartheta^*)\}
\]
However, writing this down properly involves even more notation and for these sets our
bounds for the event of not being connected and not being strongly connected coincide.

We close the section with the following lemma dealing with the first stage of the renormalisation scheme.

Lemma 3.5. Let \(\eta \) be a point process such that assumption (a) of Definition 2.1 is fulfilled. Then for every kernel \(g \), every profile-function \(\rho \) and every \(\vartheta \in (0, 1) \), there exist constants \(M > 0 \) and \(B > 0 \) such that for all \(K = C_1 > M \) and \(\beta > B \cdot C_1 \), we have

\[
p_\beta(\vartheta, C_1) \leq \frac{1}{400} C_1^{-2}.
\]

Proof. Denote by \(ER_n(\lambda/n) \) an Erdős-Rényi-graph on \(n \) vertices with edge probability \(\lambda/n \) and denote its law by \(P_{\lambda/n} \). If \(\lambda > 1 \), then \(ER_n(\lambda/n) \) is supercritical, i.e. for all \(\varepsilon_1 > 0 \), there exists \(c > 0 \) and \(N(\varepsilon_1, \lambda) > 0 \) such that

\[
P_{\lambda/n}\{\mu(ER_n(\lambda/n)) > cn\} \geq 1 - \varepsilon_1, \quad n \geq N(\varepsilon_1, \lambda),
\]

where \(\mu(ER_n(\lambda/n)) \) denotes the largest connected component of the graph \(ER_n(\lambda/n) \) [24]. The idea is to compare this behaviour with the behaviour of the finite graph in the finite block \(B_{C_1} \) by making use of the evenly spaced property. By Definition 2.1(a), we have for large enough \(C_1 \) with \(a_1 \) being the constant from the definition

\[
p_\beta(\vartheta, C_1) \leq P(B_{C_1} \text{ is } \vartheta\text{-bad} \mid |X_{-C_1} - X_{C_1-1}| \leq a_1 C_1) + o(C_1^{-2}).
\]

In the remaining proof we hence work conditionally on the event \(|X_{-C_1} - X_{C_1-1}| \leq a_1 C_1 \) and denote again by \(P^{\eta_0 = \omega} \) the probability measure, given a properly spaced point configuration \(\omega \), cf. (8). We assume without loss of generality that \(\rho(1) > 0 \). We further assume that \(g \) is bounded and remark on the unbounded case below. Now, fix \(\beta > a_1 ||g||_\infty C_1 \). Then, for all \((x_i, T_i), (x_j, T_j) \in B_{C_1} \), we have

\[
P^{\eta_0 = \omega}\{(x_i, T_i) \sim (x_j, T_j)\} \geq \rho(1)
\]

and we focus on the subgraph on \(B_{C_1} \) where only the edges with marks smaller than \(\rho(1) \) are present which is now independent of vertex marks and locations. For a fixed \(\lambda > 1 \), we set \(c \) accordingly as above, fix \(\varepsilon_2 < \vartheta/c \) and choose \(C_1 \) large enough such that

\[
2\varepsilon_2 C_1 \rho(1) \geq \lambda \text{ and } |2\varepsilon_2 C_1| \geq N(\varepsilon_1, \lambda).
\]
Denote by H the subgraph on the vertices $\{X_0, \ldots, X_{\lfloor 2\varepsilon_2 C_1 \rfloor} \} \subset B_{C_1}$. By (16), we have
\[
\mathbb{P}^\eta_0 = \omega \left\{ \#C_\beta(H) > c \cdot 2\varepsilon_2 C_1 \right\} \geq \mathbb{P}^\lambda_{2\varepsilon_2 C_1} \left\{ \#E_\beta(ER_{2\varepsilon_2 C_1}(\frac{1}{2\varepsilon_2 C_1})) > c \cdot 2\varepsilon_2 C_1 \right\} \\
\geq 1 - \varepsilon_1.
\]

On $\{\#C_\beta(H) > c \cdot 2\varepsilon_2 C_1 \}$, the block B_{C_1} is ϑ-good if enough of the remaining vertices in $B_{C_1} \setminus H$ are connected to $C_\beta(H)$. Each such remaining vertex is connected to $C_\beta(H)$ with a probability of at least
\[
q := q(C_1) := 1 - (1 - \rho(1))^{2\varepsilon_2 C_1}.
\]

For $\psi > (\vartheta - c\varepsilon_2)/(1 - \varepsilon_2)$ and C_1 large enough such that $q > \psi$, we have by writing $F_{\text{Bin}(n,p)}$ for the distribution function of a binomial random variable with parameters n and p that
\[
\mathbb{P}^\eta_0 = \omega \left\{ \#C_\beta(B_{C_1}) > 2\vartheta C_1 \right\} \geq (1 - \varepsilon_1)\mathbb{P}^\eta_0 = \omega \left(\#C_\beta(B_{C_1}) > 2\vartheta C_1 \mid \#C_\beta(H) > c(2\varepsilon_2 C_1) \right) \\
\geq (1 - \varepsilon_1) \left(1 - F_{\text{Bin}(2(1 - \varepsilon_2)C_1,q)}(2\psi(1 - \varepsilon_2)C_1) \right) \\
\geq 1 - \exp(-cC_1),
\]

for some $c > 0$ by a standard Chernoff bound. We conclude again with the observation that the established bound is uniform in all properly spaced configurations ω.

If g is not bounded we can instead do the following. We fix a small $\varepsilon > 0$ and only consider vertices with marks smaller than $1 - \varepsilon$ and therefore each vertex is removed independently with probability ε due to independence of marks and locations. However, the new block B_{C_1} still consists of order $(1 - \varepsilon)C_1$ vertices with an error term exponentially small in C_1 by Chernoff’s bound. Furthermore, the thinned process η is still evenly spaced and we can repeat the proof above since it holds that $g(s,t) \leq g(1 - \varepsilon, 1 - \varepsilon) < \infty$ for all remaining marks s and t.

3.3 Finalising the proof of Proposition 2.3

We are now ready to prove Proposition 2.3 which we do following the arguments of the proof of Theorem 1(i) of [11] in the following lemma.

Lemma 3.6. Let the assumptions of Proposition 2.3 be fulfilled. Then there exist $\beta_c \in (0, \infty)$ such that
\[
\theta(\beta) = \mathbb{P}\{0 \leftrightarrow \infty \text{ in } G_\beta\} \geq \frac{3}{8}
\]
for all $\beta > \beta_c$.

Proof. Fix $\vartheta^* \in (3/4, 1)$ and $\vartheta_1 \in (\vartheta^*, 1)$. Choose $K = C_1$ and afterwards β both large
enough, such that the assumptions of the Lemmas 3.2 and 3.5 are satisfied. Recall also that $C_n = n^3K$, $K_1 = C_1$ and $K_n = C_nK_{n-1}$. Define $\vartheta_n := \vartheta_1 - 2/C_{n+1}$ for $n \geq 2$. Since the assumptions of Lemma 3.2 are satisfied, we have $\vartheta_n > \vartheta^*$ for all n. We have by Lemma 3.5 that $p_\beta(C_1, \vartheta_1) \leq (400C_1^2)^{-1}$, and by Lemma 3.2 that

$$p_\beta(K_n, \vartheta_n) \leq \frac{1}{100} p_\beta(K_{n-1}, \vartheta_{n-1}) + 2C_n^2 p_\beta(K_{n-1}, \vartheta_{n-1})^2, \quad \forall n \geq 2.$$

Inductively, this yields $p_\beta(K_n, \vartheta_n) \leq (400C_n^2)^{-1}$. Hence, we have

$$\mathbb{P}\{B_{K_n} \text{ is } \vartheta_n\text{-good}\} \geq 1 - \frac{1}{400C_n^2} \geq \frac{1}{2}.$$

We derive from this

$$\frac{3}{4}K_n \leq \frac{3}{4}(2K_n) \mathbb{P}\{B_{K_n} \text{ is } 3/4\text{-good}\} \leq \mathbb{E}[\sharp\mathcal{C}_\beta(B_{K_n}) \mathbb{1}\{B_{K_n} \text{ is } 3/4\text{-good}\}]$$

$$\leq 2K_n \mathbb{P}_\beta\{\exists \text{ a cluster of size at least } \frac{3}{2}K_n\}.$$

Dividing both sides by $2K_n$ and then sending $n \to \infty$ together with the translation invariance yield the desired result. \qed

It remains in this section to prove Corollary 1.6 and specifically the existence of a component of linear size in the constructed graph sequence for large enough β if the assumption of Theorem 1.1(a) is fulfilled.

Proof of Corollary 1.6. We are interested in the limiting behaviour of the non-negative random variable $\frac{\#(\mathcal{C}_\beta)/n}{n}$ for a fixed β. First note that this is a translation invariant functional of the ergodic point process ξ_0. Hence, $\frac{\#(\mathcal{C}_\beta)/n}{n}$ converges almost surely towards a non-negative constant. Consider now for some $K \in \mathbb{N}$ the subsequence of graphs $(\mathcal{G}_{4K_n} : n \in \mathbb{N})$. Observe, that the vertices of the block B_{K_n} are contained in the interval $(-2K_n, 2K_n)$ with an error term going to zero when $K_n \to \infty$. Hence, we choose K and β large enough to fulfill the assumptions of the Lemmas 3.2 and 3.5 and n_0 large enough such that $\mathbb{P}_0(B_{K_{n_0}} \not\subset (-2K_n, 2K_n)) \leq 1/3$ for all $n \geq n_0$ and infer from the calculations in the proof of Lemma 3.6

$$\mathbb{P}\left\{\frac{\#(\mathcal{C}_\beta)/n}{4K_n} \geq \frac{3}{8}\right\} \geq \frac{1}{4}$$

uniformly for $n \geq n_0$. Hence, the considered sequence $(\frac{\#(\mathcal{C}_\beta)/n}{n} : n \in \mathbb{N})$ contains a subsequence with a strictly positive limit, finalising the proof. \qed

4 Proof of Proposition 2.4

Throughout the section, the vertex locations are assumed to belong to a simple and ergodic point process η that fulfills assumption (b) of Definition 2.1. We consider edges that connect
a vertex left of the origin to a vertex right of the origin and say that such an edge crosses the origin. We will show that the probability that there are no edges crossing the origin is bounded away from zero, and since by stationarity the same bound holds true for crossings of any arbitrary point, we get by ergodicity that there exist infinitely many points that are not crossed by an edge and all components must be finite. Technically, the root X_0 is neither right nor left but at the origin as we work on the palm version of η which allows the canonical ordering of the vertices. However, we declare without loss of generality X_0 to be to the right of the origin.

We define the disjoint sets of vertices

$$
\Gamma_{-k}^\ell := \{X_{-2k}, \ldots, X_{-1}\}, \quad \Gamma_{k}^{\ell \ell} := \{X_{-2k+1}, \ldots, X_{-2k-1}\}
$$

$$
\Gamma_{k}^r := \{X_0, \ldots, X_{2k-1}\}, \quad \Gamma_{k}^{rr} := \{X_{2k}, \ldots, X_{2k+1-1}\}
$$

for each $k \in \mathbb{N}$. We say that a crossing of the origin occurs at stage

$k = 1$, if any edge connects the sets $\Gamma_{-1}^\ell \cup \Gamma_{-1}^{\ell \ell}$ and $\Gamma_{1}^r \cup \Gamma_{1}^{rr}$ or at stage

$k \geq 2$, if any edge connects either $\Gamma_{k}^{\ell \ell}$ to Γ_{k}^{rr}, $\Gamma_{k}^{\ell \ell}$ to Γ_{k}^r or Γ_{k}^{ℓ} to Γ_{k}^{rr}. Note that any edges between Γ_{k}^{ℓ} and Γ_{k}^r have by necessity already been considered at a smaller scale.

We denote by $\chi(k) \in \{0,1\}$ the indicator of the event that a crossing of the origin occurs at stage $k \in \mathbb{N}$. The event that there is no edge crossing the origin is then given by $\bigcap_k \{\chi(k) = 0\}$. We write

$$
P\left\{ \bigcap_{k \in \mathbb{N}} \chi(k) = 0 \right\} = E_0\left[P^{\eta_0} \left\{ \bigcap_{k \in \mathbb{N}} \chi(k) = 0 \right\} \right], \quad (17)
$$

an focus on the right-hand side’s inner probability where again E_0 denotes the expectation of η_0 and P^{η_0} the probability measure P given the vertex locations η_0. Note that, given the vertex locations, P^{η_0} is a product measure with Uniform(0,1) marginals and that all these events are decreasing when vertex and/or edge marks are decreased (and therefore new edges are added) and therefore positively correlated by the FKG-inequality [12], implying that

$$
P^{\eta_0} \left(\bigcap_{k \in \mathbb{N}} \{\chi(k) = 0\} \right) \geq \prod_{k \in \mathbb{N}} P^{\eta_0} \{\chi(k) = 0\}.
$$

To show that the product on the right-hand side is bounded away from zero, it suffices to show the equivalent statement that

$$
\sum_{k \in \mathbb{N}} P^{\eta_0} \{\chi(k) = 1\} < \infty.
$$
which in particular implies that the probability in (17) is strictly larger than zero if
\[\sum_{k \in \mathbb{N}} \mathbb{E}_0[\mathbb{P}^{\eta}\{\chi(k) = 1\}] = \sum_{k \in \mathbb{N}} \mathbb{P}\{\chi(k) = 1\} < \infty. \]

For \(k \geq 2 \) we have by symmetry,
\[\mathbb{P}\{\chi(k) = 1\} = \mathbb{P}\{\Gamma_k^\ell - \Gamma_k^r\} + 2\mathbb{P}\{\Gamma_k^\ell - \Gamma_k^{rr}\} \leq 3 \mathbb{P}\{\Gamma_k^\ell - \Gamma_k^r\}. \]
The following lemma shows that for profile functions satisfying \(\rho(0+) < 1 \) the probability on the right hand side is bounded by the term bounded in Assumption (A2), which immediately implies Proposition 2.4.

Lemma 4.1. Assume that \(\rho \) satisfies \(\rho(0+) < 1 \). Then for all \(\beta > 0 \), there exist constants \(c > 0 \) and \(K \in \mathbb{N} \) such that for all \(k \geq K \), we have
\[\mathbb{P}\{\Gamma_k^\ell - \Gamma_k^r\} \leq c 2^{2k} \int_2^{1} ds \int_2^{1} dt \rho(\beta^{-1} g(s,t)2^{k}). \]

Proof. We begin by modifying the definition of \(\mu \)-regularity (cf. Section 3.1) since we are now interested in upper bounds on connection probabilities. Throughout this proof, we say a set \(\Gamma_k^o, o \in \{\ell, \ell, r, rr\} \), is \(\mu \)-regular if, for all \(i \in \{1, \ldots, [2^k(1-\mu)]\} \),
\[\begin{align*}
(i) & \sum_{T: (X,T) \in \Gamma_k^o} 1_{\{T \leq [2^{-(1-\mu)k}]\}} = 0, \\
(ii) & \sum_{T: (X,T) \in \Gamma_k^o} 1_{\{T \leq [2^{(1-\mu)k}]\}} \leq \frac{i2^{k+1}}{[2^{(1-\mu)k}].}
\end{align*} \]
Note, that the event of assumption (i) occurs with extremely high probability as the complementary event has probability \(O(2^{-k\mu}) \) for large \(k \). For assumption (ii), we use Chernoff bounds to deduce
\[\mathbb{P}\left\{ \sum_{T: (X,T) \in \Gamma_k^o} 1_{\{T \leq [2^{(1-\mu)k}]\}} > \frac{i2^{k+1}}{[2^{(1-\mu)k}]} \right\} \geq \frac{2(1-\mu)^k}{2^{(1-\mu)k}} \exp(-2^{2k}). \]

Applying a straightforward union bound, it follows that the event
\[\bigcap_{\alpha \in \{\ell, \ell, r, rr\}} \{ \Gamma_k^o \text{ is } \mu \text{-regular} \} \]
occurs with probability at least \(1 - \varepsilon \) for any \(\varepsilon \in (0,1) \), if \(k \) is sufficiently large. Using the
spacing condition (b) from Definition 2.1, we deduce that the event

\[E_k := \left(\bigcap_{o \in \{\ell, \ell \ell, r, rr\}} \{ \Gamma^o_k \text{ is } \mu\text{-regular}\} \right) \cap \{|X_{-2^{k+1}} - X_{2^k}| > a2^k\} \]

occurs with probability at least \(1 - \varepsilon\) for large enough \(k\).

We now argue as in the proof of Lemma 3.1. Here, a point configuration \(\omega = (x_i, i \in \mathbb{Z})\) is called properly spaced if it satisfies \(|x_{-2^{k+1}} - x_{2^k}| > a2^k, k \in \mathbb{N}\). The property of \(\mu\)-regularity is measurable with respect to vertex marks only and thus independent of the vertex locations and edge marks. Hence, denoting by \(\mathbb{P}^{\eta_0=\omega}\) the law induced on vertex and edge mark configurations given fixed properly spaced vertex locations \(\omega\), we obtain

\[
\mathbb{P}^{\eta_0=\omega}(\{\Gamma_{\ell \ell}^k \not\sim \Gamma_r^k\} \cap E_k) \geq \mathbb{P}^{\eta_0=\omega}(E_k) \geq \exp\left(-c 2^{k} \int_0^1 ds \int_0^1 dt \rho(\beta^{-1} g(s, t) a 2^k)\right)
\]

for some constant \(c > 0\), where the second to last inequality follows from the fact that \(\rho(x) \leq \rho(0+) < 1\) for all \(x > 0\) by assumption. Here, \(F_{\Gamma_{\ell \ell}^k}(t)\) denotes the empirical distribution function of the vertex marks in \(\Gamma_{\ell \ell}^k\). By \(\mu\)-regularity of the marks, we have by a similarly argument as used to derive (10) that

\[
2^{k} F_{\Gamma_{\ell \ell}^k}(t) \leq 2^{k} \sum_{j=1}^{[2^{k}(1+\mu)]} \frac{j}{2^{k}(1+\mu)}[1_{j-1 < t < j}] 2^k \leq \left[\frac{[2^{k}(1+\mu)]}{2^{k}(1+\mu)}\right] 2^k
\]

\[
\leq c' 2^{k}(t + 2^{-k(1+\mu)})
\]

for some \(c' \geq 2\) uniformly for all \(\mu\)-regular vertex mark configurations. Plugging this into (18), we infer

\[
\mathbb{P}^{\eta_0=\omega}(\{\Gamma_{\ell \ell}^k \not\sim \Gamma_r^k\} \cap E_k) \geq \exp\left(-c 2^{k} \int_0^1 ds \int_0^1 dt \rho(\beta^{-1} g(s, t) a 2^k)\right) \mathbb{P}^{\eta_0=\omega}(E_k).
\]

Since this bound is uniform in the properly spaced configuration \(\omega\) for large enough \(k\), we
conclude
\[
\mathbb{P}\{\Gamma^\ell_k \sim \Gamma^r_k\} \leq 1 - \exp\left(-c 2^{2k} \int_{2^{-k(1+\mu)}}^1 ds \int_{2^{-k(1+\mu)}}^1 dt \, \rho(\beta^{-1}g(s,t)a2^k)\right)
\]
\[
\times 2^{2k} \int_{2^{-k(1+\mu)}}^1 ds \int_{2^{-k(1+\mu)}}^1 dt \, \rho(\beta^{-1}g(s,t)a2^k).
\]

It remains to prove Corollary 2.5, i.e. the statement that the assumption \(\rho(0+) < 1\) can be dropped when the vertex locations are given by a standard Poisson process.

Proof of Corollary 2.5. Let \(\eta\) be a Poisson point process of intensity \(\lambda > 0\). In this case, \(\beta\) can be seen as a scaling parameter of the Euclidean distance between the vertices and therefore varying \(\beta\) is equivalent to varying the intensity of the Poisson process. To see this, one can perform a linear coordinate transform on the underlying space and applying the mapping theorem for Poisson processes [31, Theorem 5.1].

We now fix an arbitrarily \(\beta > 0\) and show that no infinite component exists in \(G_\beta\) constructed on the Poisson process \(\eta\), or rather on its Palm version \(\eta_0\). By Poisson thinning [31, Corollary 5.9], we can interpret \(G_\beta\) as the graph resulting from i.i.d. Bernoulli site percolation of the graph \(G_{\beta/p}\) for some arbitrary \(p < 1\). That is, each site and all its adjacent edges are independently removed from \(G_{\beta/p}\) with probability \(1 - p\). We perform Bernoulli bond percolation on the graph \(G_{\beta/p}\) with retention parameter \(p' \in (p,1)\) i.e. each edge is independently removed with probability \(1 - p'\). By construction, this coincides with constructing the graph \(G_{\beta/p}\) with the profile-function \(\rho\) replaced by \(p'\rho\). Hence, we are working with the graph \(G_{\beta/p,p',\rho,g}(\xi_0)\), its bond percolated version \(G_{\beta/p,p',\rho,g}(\xi_0)\) and its site percolated version \(G_{\beta,p,g}(\xi_0)\). Since site percolation removes at least as many edges from the graph as bond percolation, see e.g. [19], and \(p' > p\), we have
\[
\mathbb{P}\{0 \leftrightarrow \infty \text{ in } G_{\beta,p,g}(\xi_0)\} \leq \mathbb{P}\{0 \leftrightarrow \infty \text{ in } G_{\beta/p,p',\rho,g}(\xi_0)\}.
\]

Note that assumption (A2) is still satisfied and that we additionally have \(p'\rho(0+) < 1\). Hence, the right hand side equals zero by Proposition 2.4, finalising the proof.

Acknowledgement. We gratefully received support by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – grant no. 443916008 (SPP 2265) and by the Leibniz Association within the Leibniz Junior Research Group on *Probabilistic Methods for Dynamic Communication Networks* as part of the Leibniz Competition.
References

[1] M. Aizenman and C. M. Newman. “Discontinuity of the percolation density in one-dimensional $1/|x-y|^{2}$ percolation models”. Comm. Math. Phys. 107.4 (1986), pages 611–647. issn: 0010-3616.

[2] N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular variation. Volume 27. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1989, pages xx+494. isbn: 0-521-37943-1.

[3] M. Bode, N. Fountoulakis, and T. Müller. “On the largest component of a hyperbolic model of complex networks”. Electron. J. Combin. 22.3 (2015), Paper 3.24, 46. DOI: 10.37236/4958.

[4] B. Bollobás, S. Janson, and O. Riordan. “The phase transition in inhomogeneous random graphs”. Random Structures Algorithms 31.1 (2007), pages 3–122. issn: 1042-9832. DOI: 10.1002/rsa.20168.

[5] K. Bringmann, R. Keusch, and J. Lengler. “Geometric inhomogeneous random graphs”. Theoret. Comput. Sci. 760 (2019), pages 35–54. issn: 0304-3975. DOI: 10.1016/j.tcs.2018.08.014.

[6] R. M. Burton and M. Keane. “Density and uniqueness in percolation”. Comm. Math. Phys. 121.3 (1989), pages 501–505. issn: 0010-3616.

[7] D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Vol. I. Second. Probability and its Applications (New York). Elementary theory and methods. Springer-Verlag, New York, 2003, pages xxii+469. isbn: 0-387-95541-0.

[8] M. Deijfen, R. van der Hofstad, and G. Hooghiemstra. “Scale-free percolation”. Ann. Inst. Henri Poincaré Probab. Stat. 49.3 (2013), pages 817–838. issn: 0246-0203. DOI: 10.1214/12-AIHP480.

[9] P. Deprez and M. V. Wüthrich. “Scale-free percolation in continuum space”. Commun. Math. Stat. 7.3 (2019), pages 269–308. issn: 2194-6701. DOI: 10.1007/s40304-018-0142-0.

[10] A. Drewitz, G. Gallo, and A. Prévost. Generating Galton-Watson trees using random walks and percolation for the Gaussian free field. 2022. DOI: 10.48550/ARXIV.2208.01033.

[11] H. Duminil-Copin, C. Garban, and V. Tassion. Long-range models in 1D revisited. 2020. arXiv: 2011.04642 [math.PR].

[12] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre. “Correlation inequalities on some partially ordered sets”. Comm. Math. Phys. 22 (1971), pages 89–103. issn: 0010-3616.

[13] E. N. Gilbert. “Random plane networks”. J. Soc. Indust. Appl. Math. 9 (1961), pages 533–543. issn: 0368-4245.

[14] J.-B. Gouéré. “Subcritical regimes in the Poisson Boolean model of continuum percolation”. Ann. Probab. 36.4 (2008), pages 1209–1220. issn: 0091-1798. DOI: 10.1214/07-AOP352.

[15] P. Gracar, A. Grauer, L. Lüchtrath, and P. Mörters. “The age-dependent random connection model”. Queueing Syst. 93.3-4 (2019), pages 309–331. issn: 0257-0130. DOI: 10.1007/s11134-019-09625-y.
[16] P. Gracar, A. Grauer, and P. Mörters. “Chemical distance in geometric random graphs with long edges and scale-free degree distribution”. Comm. Math. Phys. 395.2 (2022), pages 859–906. issn: 0010-3616. doi: 10.1007/s00220-022-04445-3.

[17] P. Gracar, M. Heydenreich, C. Mönch, and P. Mörters. “Recurrence versus transience for weight-dependent random connection models”. Electronic Journal of Probability 27.none (2022), pages 1–31. doi: 10.1214/22-EJP748.

[18] P. Gracar, L. Lüchtrath, and P. Mörters. “Percolation phase transition in weight-dependent random connection models”. Adv. Appl. Probab. 53.4 (2021), pages 1090–1114. issn: 0001-8678. doi: 10.1017/apr.2021.13.

[19] G. R. Grimmett and A. M. Stacey. “Critical probabilities for site and bond percolation models”. Ann. Probab. 26.4 (1998), pages 1788–1812. issn: 0091-1798. doi: 10.1214/aop/1022855883.

[20] G. R. Grimmett. Percolation. Second. Volume 321. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999, pages xiv+444. isbn: 3-540-64902-6. doi: 10.1007/978-3-662-03981-6.

[21] P. Hall. “On continuum percolation”. Ann. Probab. 13.4 (1985), pages 1250–1266. issn: 0091-1798.

[22] M. Heydenreich, R. van der Hofstad, G. Last, and K. Matzke. Lace Expansion and Mean-Field Behavior for the Random Connection Model. 2020. arXiv: 1908.11356 [math.PR].

[23] C. Hirsch. “From heavy-tailed Boolean models to scale-free Gilbert graphs”. Braz. J. Probab. Stat. 31.1 (2017), pages 111–143. issn: 0103-0752. doi: 10.1214/15-BJPS305.

[24] R. van der Hofstad. Random graphs and complex networks. Vol. 1. Cambridge Series in Statistical and Probabilistic Mathematics, [43]. Cambridge University Press, Cambridge, 2017, pages xvi+321. isbn: 978-1-107-17287-6. doi: 10.1017/9781316779422.

[25] R. van der Hofstad. The giant in random graphs is almost local. 2021. doi: 10.48550/ARXIV.2103.11733.

[26] R. van der Hofstad, P. van der Hoorn, and N. Maitra. Local limits of spatial inhomogeneous random graphs. 2021. arXiv: 2107.08733 [math.PR].

[27] E. Jacob and P. Mörters. “Robustness of scale-free spatial networks”. Ann. Probab. 45.3 (2017), pages 1680–1722. issn: 0091-1798.

[28] B. Jahnel and L. Lüchtrath. Existence of subcritical percolation phases for generalised weight-dependent random connection models. 2023. arXiv: 2302.05396 [math.PR].

[29] B. Jahnel, A. Tóbiás, and E. Cali. “Phase transitions for the Boolean model of continuum percolation for Cox point processes”. Brazilian Journal of Probability and Statistics 36.1 (2022), pages 20–44. doi: 10.1214/21-BJPS514.

[30] J. Komjáthy and B. Lodewijks. “Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs”. Stochastic Processes and their Applications 130.3 (2020), pages 1309–1367. issn: 0304-4149. doi: https://doi.org/10.1016/j.spa.2019.04.011.

[31] G. Last and M. D. Penrose. Lectures on the Poisson Process. Cambridge University Press, Oct. 2017. doi: 10.1017/9781316104477.
[32] R. Meester, M. D. Penrose, and A. Sarkar. “The random connection model in high dimensions”. Statist. Probab. Lett. 35.2 (1997), pages 145–153. ISSN: 0167-7152. DOI: 10.1016/S0167-7152(97)00008-4.

[33] R. Meester and R. Roy. Continuum percolation. Volume 119. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996, pages x+238. ISBN: 0-521-47504-X. DOI: 10.1017/CBO9780511895357.

[34] R. Meester and J. E. Steif. “On the continuity of the critical value for long range percolation in the exponential case”. Comm. Math. Phys. 180.2 (1996), pages 483–504. ISSN: 0010-3616.

[35] C. Mönch. Inhomogeneous long-range percolation in the weak decay regime. 2023. arXiv: 2303.02027 [math.PR].

[36] C. M. Newman and L. S. Schulman. “One-dimensional $1/|j-i|^s$ percolation models: the existence of a transition for $s \leq 2$”. Comm. Math. Phys. 104.4 (1986), pages 547–571. ISSN: 0010-3616.

[37] M. D. Penrose. “On a continuum percolation model”. Advances in Applied Probability 23.3 (1991), pages 536–556. DOI: 10.2307/1427621.

[38] M. D. Penrose. Random geometric graphs. Volume 5. Oxford Studies in Probability. Oxford University Press, Oxford, 2003. ISBN: 0-19-850626-0. DOI: 10.1093/acprof:oso/9780198506263.001.0001.

[39] M. D. Penrose. “Connectivity of soft random geometric graphs”. Ann. Appl. Probab. 26.2 (2016), pages 986–1028. ISSN: 1050-5164. DOI: 10.1214/15-AAP1110.

[40] S. Prakash, S. Havlin, M. Schwartz, and H. E. Stanley. “Structural and dynamical properties of long-range correlated percolation”. Phys. Rev. A 46 (4 Aug. 1992), R1724–R1727. DOI: 10.1103/PhysRevA.46.R1724.

[41] L. S. Schulman. “Long range percolation in one dimension”. J. Phys. A 16.17 (1983), pages L639–L641. ISSN: 0305-4470.

[42] J. E. Yukich. “Ultra-small scale-free geometric networks”. J. Appl. Probab. 43.3 (2006), pages 665–677. ISSN: 0021-9002. DOI: 10.1239/jap/1158784937.