Proper toric maps over finite fields

Mark Andrea A. de Cataldo*

2014

Abstract

We determine a strong form of the decomposition theorem for proper toric maps over finite fields.

Contents

1 Introduction, notation, basic toric geometry, statements 1
 1.1 Introduction ... 1
 1.2 Notation .. 2
 1.3 Some basic toric algebraic geometry 4
 1.4 The decomposition theorem for proper toric maps over finite fields 6

2 Decomposition theorem for proper toric maps over finite fields 7
 2.1 General DT package over finite fields 7
 2.2 First toric consequences of Proposition 2.1.1 8
 2.3 Proof of Theorem 1.4.1.c on proper toric fibrations 10
 2.4 Proof of Theorem 1.4.1.a on proper toric maps 11

1 Introduction, notation, basic toric geometry, statements

1.1 Introduction

For a general proper map of varieties over a finite field, the decomposition theorem in [BBD] predicts that the direct image of the intersection cohomology complex becomes semisimple after passage to an algebraic closure. In this paper, we prove Theorem 1.4.1 which establishes that, for proper toric maps of toric varieties, the above semisimplicity already occurs over the finite field. The simple direct summands are described explicitly. Recall that the semisimplicity is not known even for the cohomology of smooth projective varieties over finite fields.

*Partially supported by N.S.F. grant DMS-1301761 and by a grant from the Simons Foundation (#296737 to Mark de Cataldo)
If the proper toric fibration is surjective with connected fibers, then the direct sum-
mands appearing in the decomposition theorem are Tate-twisted intersection cohomology
complexes of closures of orbits on the target with constant coefficients; see Theorem 1.4.1.c.
For a general proper toric map \(f \), we first Stein factorize the map \(f = h \circ g \), we apply the
above to the proper toric fibration \(g \), we push forward each direct summand via the finite
toric map \(h \) and examine the result; see Theorem 1.4.1.a and Lemma 2.4.1.

In order to carry out what above, we first prove Theorem 1.4.1.b, which here we state
in the special case when the domain is smooth: the cohomology of the fibers over closed
points is trivial in odd degree, and in even degree is pure with eigenvalues of Frobenius
given by a suitable power of the cardinality of the finite field. The triviality in odd degree,
for example, implies that, in the context of proper toric maps, a plane cubic with a node
may not appear as a fiber of a proper toric map (of course, it may appear as the image of
one).

This paper is a companion paper to \([dMM]\), where the precise form of the decomposition
theorem for proper toric varieties over \(\mathbb{C} \), as well as an analogue of the purity statement
above, are proved with different methods. The main purpose of \([dMM]\) is to then introduce
a topological/combinatorial invariant of proper toric fibrations that detects, for example,
whether a given orbit contributes a direct summand to the decomposition theorem. This
turns out to be related to seemingly subtle combinatorial positivity questions.

The purpose of this paper is also to offer a sample computation in the context of
\(\mathbb{Q}_\ell \)-adic cohomology over finite fields in a manner which we hope is accessible to the non-
expert. There are two main differences with the situation over \(\mathbb{C} : 1 \) as mentioned above,
in general the conclusion of decomposition theorem over an algebraic closure of a finite
field does not seem to hold in its full-strength over a finite field (see §2.1); 2) even if toric
maps are defined over \(\mathbb{Z} \), the local systems appearing as coefficients in the decompositi-
on theorem depend on the characteristic of the ground field (see Remark 2.4.2).

1.2 Notation

This paper deals with proper toric maps of toric varieties over a finite field. Our main
references are \([BBD, Ful]\).

Toric varieties and toric maps are defined over the ring of integers, hence over any
ground field. We view a toric variety \(Z = Z(\Delta) \) as the one associated with a fan \(\Delta \) in
a lattice \(N \cong \mathbb{Z}^n \) so that \(\dim Z = n \). If helpful, we add subscripts: \(\Delta_Z \), etc. We view \(\Delta \)
also as a poset: \(\tau \leq \sigma \) iff the cone \(\tau \) is a face of the cone \(\sigma \) iff \(V(\tau) \supseteq V(\sigma) \) (reversed
inclusion for the closures of the orbits \(O(\tau) \) and \(O(\sigma) \)). The support of the fan \(\Delta \) in \(N \)
is denoted by \(|\Delta| \). The \(n \)-dimensional torus \(T \subseteq Z \) acts on \(Z \) with smooth action map
act : \(Z \times T \to Z \). Each orbit \(O(\sigma) \) carries a distinguished point \(z_\sigma \) which is rational over the
prime subfield of the ground field. We denote by \(\Omega \) the resulting partition \(Z = \bigsqcup_\sigma O(\sigma) \)
into locally closed smooth subvarieties.

A toric map is a toric map \(f : X \to Y \) of toric varieties, i.e. the one associated with a
map \(f_N : N_X \to N_Y \) of the lattices with the following property: every cone \(\sigma \in \Delta_X \) has
image contained inside a cone of \(\Delta_Y \). This gives rise to the map of posets \(f_\Delta : \Delta_X \to \Delta_Y \),
sending \(\sigma \mapsto \overline{\sigma} := \) the smallest cone in \(\Delta_Y \) containing the image \(f_N(\sigma) \). If \(\sigma \in \Delta_X \), then \(f(x_\sigma) = y_\sigma \).

A toric map is proper iff \(f_N^{-1}(|\Delta_Y|) = |\Delta_X| \). A proper toric fibration is a proper toric map \(f : X \to Y \) such that \(f_* \mathcal{O}_X = \mathcal{O}_Y \). If \(f \) is proper toric, then \(f \) is a proper toric fibration iff \(f_N \) is surjective. A proper toric fibration is surjective with connected fibers. A proper toric map which is surjective and with connected fibers is not necessarily a proper toric fibration (e.g., Frobenius).

Unless mentioned otherwise, we work with schemes (separated and of finite type) over a finite field \(\mathbb{F} \), of which we fix an algebraic closure \(\overline{\mathbb{F}} \).

We denote schemes over \(\mathbb{F} \) by using the pre-fix \(_0- \), which we remove after pulling-back to \(\overline{\mathbb{F}} \): e.g., if \(_0f : _0X \to _0Y \) is an \(\mathbb{F} \)-map, then we can pull it back to the \(\overline{\mathbb{F}} \)-map \(f : X \to Y \); similarly, for the complexes below. A standard notation is \(X_0 \) etc.; we depart from it for graphical reasons.

We work with the “derived” category of mixed complexes \(D_{mix}(\mathcal{O}_X, \overline{\mathbb{Q}}_\ell) \), endowed with the middle perversity \(t \)-structure [BBD], p.126, p.101, p.71, whose elements we simply call complexes.

By graded vector space \(M^* \), we mean \(\mathbb{Z} \)-graded: \(M^* = \bigoplus_{j \in \mathbb{Z}} M^j = M^{even} \oplus M^{odd} \). We say that \(M^* \) is even if \(M^{odd} = \{0\} \).

Given a finite extension \(_0\mathbb{F} \subseteq \mathbb{F} \subseteq \overline{\mathbb{F}} \), we have the open inclusion of Galois (pro-finite) groups \(1_1 \mathbb{G} := \text{Gal}(\mathbb{F}/_1\mathbb{F}) \subseteq 0\mathbb{G} := \text{Gal}(\mathbb{F}/_0\mathbb{F}) \). If \(0\mathbb{C} \) is a complex on \(_0X \), then the \(\mathbb{Z} \)-graded object \(H^*(X, \mathbb{C}) \) is a continuous \(1_1 \mathbb{G} \)-module. If \(x \in _0X(\mathbb{F}) \) is a closed point with residue field a finite extension \(1\mathbb{F} \), then the graded object \(H^*(C)_x \) is a \(1G \)-module. The weight-like properties of the cohomology groups and stalks we consider are well-defined independently of the finite field extension one works with; see [BBD], 5.1.12. Instead of insisting on \(0\mathbb{G} \), \(1\mathbb{G} \), etc., by abuse of notation, we simply talk about \(G \)-modules and their weights.

Given a variety \(_0X \), we have the associated shifted intersection complex \(I_{0X} \); if \(_0X \) is smooth, then \(I_{0X} = \overline{\mathbb{Q}}_\ell I_{0X} \). For convenience, we also use the intersection complex \(I_{0X} := I_{0X}[\dim _0X] \), which is a perverse sheaf on \(_0X \). The intersection cohomology groups of a variety \(_0X \) are \(IH^*(X) := H^*(X, I_X) \).

We have the notions of even, mixed, and pure \(G \)-module \(M^* \): e.g. \(M^* \) is said to be pure of weight \(w \) if \(M^j \) is pure of weight \(w + j \) for every \(j \).

A graded \(G \)-module \(M^* \) is said to be Tate if it is even and each \(M^{2k} \cong \overline{\mathbb{Q}}_\ell^{2s_k}(-k) \), for some \(s_k \in \mathbb{Z}^\geq 0 \).

A complex \(_0C \) on \(_0X \) is said to be punctually pure of weight \(w \) if the graded \(G \)-modules \(H^*(C)_x \) are pure of weight \(w \) for every closed point \(x \in _0X(\mathbb{F}) \). Similarly, we have the notion of \(_0C \) being even, and of \(_0C \) being Tate. In particular, we have the notion of \(_0C \) being pure, punctually pure, even and Tate; e.g., see Theorem 1.4.1.

By a result of O. Gabber, the intersection complex \(I_{0X} \) of a variety is pure of weight zero. The Tate-shifted \(I_{0X}(-k) \) is pure of weight \(2k \), and \(I_X \) is pure of weight \(\dim X \). By a result of P. Deligne, if \(_0f : _0X \to _0Y \) is a proper map of varieties, then \(R_0f_* I_{0X} \) is pure

\(^1\text{continuity will not be mentioned further}\)
of weight zero. However, in general, \mathcal{I}_{0X} and $R_0f_*\mathcal{I}_{0X}$ are neither punctually pure, even, nor Tate.

A complex on a toric variety is said to be Ω-constructible if its restriction to each orbit has lisse\(^2\) cohomology sheaves. A skyscraper constant sheaf at the origin of the affine line is Ω-constructible, whereas one at the point 1 is not. The intersection complex of a toric variety \mathcal{I}_0 is Ω-constructible. The direct image complex $R_0f_*\mathcal{I}_{0X}$ via a proper toric map $0f$, may fail to be Ω-constructible, e.g. the second closed embedding above (the first one is not a toric map, according to the definitions).

Given a toric map $0f : 0X \rightarrow 0Y$ define the cohomology graded sheaf on $Y R^* := \oplus jR^jf_*\mathcal{I}_X$. Denote the restriction of R^* to an orbit $O(\sigma) \subseteq Y$ by R^*_y, and its stalk at a closed point $y \in 0Y(\mathbb{F})$ by R^*_y—this is a graded G-module. If $0f$ is proper, then proper base change yields $R^*_y = H^*(f^{-1}(y), \mathcal{I}_X)$ (pull-back/restriction symbols are mostly omitted throughout the paper).

1.3 Some basic toric algebraic geometry

In this section, we work over an arbitrary ground field. Let $Z = Z(\Delta)$ be a toric variety and let $f : X \rightarrow Y$ be a toric map. We simply offer a list of the properties we need; for proofs and/or references, see [dMM].

1.3.1 Toric affine open cover, orbit closures and partial order. Z is covered by the open affine toric subvarieties $U_\zeta = \coprod_{\rho \leq \zeta} O(\rho)$, where $\zeta \in \Delta$. We have: $V(\zeta) := \mathcal{O}(\zeta) = \coprod_{\rho \geq \zeta} O(\rho)$, and $\tau \leq \sigma$ iff $V(\tau) \supseteq O(\zeta)$.

1.3.2 Toric varieties of contractible type. The toric variety Z is said to be of contractible type if it is of the form $(Z, z) = (U_\zeta, z_\zeta)$, where the cone ζ spans $N_\mathbb{R}$. In this case, z is the unique torus fixed point.

1.3.3 The local product structure of Z along orbits. Given $\zeta \in \Delta$, any splitting $N \cong N_\zeta \oplus N(\zeta)$ of lattices determines a splitting $T \cong T_\zeta \times T(\zeta)$ of tori, and an equivariant isomorphism of toric varieties:

$$U_\zeta \cong U_{\zeta'} \times O(\zeta),$$

where ζ' is the cone ζ, viewed in $N_\zeta \subseteq N$. One virtue of (1) is that $U_{\zeta'}$ is of contractible type and the product assertion is useful in the context of inductive arguments; the same is true for (2) below. The isomorphism (1) depends on the choices. The fan in $N_{\zeta'} := N_\zeta \subseteq N$ given by ζ' and its faces yields a canonical closed embedding $(U_{\zeta'}, z_{\zeta'}) \rightarrow (U_\zeta, z_\zeta)$, compatible with the non canonical (1).

1.3.4 The local product structure of a proper toric fibration over the U_σ. Let f be a proper toric fibration. Let $\sigma \in \Delta_Y$. There is a non canonical equivariant splitting

\(^2\)the notion of lisse sheaf is the \mathbb{Q}_l-adic analogue of a locally constant sheaf
as in (1), and a non canonical equivariant isomorphism of toric maps, compatible with (1):

\[(f^{-1}(U_\sigma) \to U_\sigma) \cong \left(f^{-1}(U'_\sigma) \times O(\sigma) \overset{f'_\sigma \times \text{Id}}{\to} U'_\sigma \times O(\sigma)\right).\] (2)

The resulting natural restriction-over-U'_σ-map f'_σ is a toric fibration onto a base of contractible type, and we have a natural identification $f^{-1}(y_\sigma) = f'^{-1}(y'_\sigma)$. In particular, we get a $(T_X \to T_Y(\sigma))$-equivariant non canonical decomposition:

\[f^{-1}(O(\sigma)) \cong f^{-1}(y_\sigma) \times O(\sigma).\] (3)

1.3.5 Canonical factorization of induced maps between orbits. Let $\xi \in \Delta_X$ and consider the natural map of tori $\phi: (O(\xi), x_\xi) \to (O(\overline{\xi}), y_{\overline{\xi}})$ induced by f. The image is a closed subtorus $i: (O'(\xi), y_{\overline{\xi}}) \to (O(\overline{\xi}), y_{\overline{\xi}})$, and there is the following canonical factorization into maps of tori:

\[\phi: O(\xi) \overset{a}{\to} A \overset{b}{\to} B \overset{c}{\to} O'(\xi) \overset{i}{\to} O(\overline{\xi}),\] (4)

where: a is a toric fibration (non canonically a product projection); b is a geometric quotient map, étale and Galois, by the action of a finite Abelian subgroup of the torus A; i is the natural closed embedding above; c is a universal homeomorphism.

1.3.6 The Stein factorization of a toric map. Let $f: X \to Y$ be a proper toric map. There is the canonical toric Stein factorization:

\[f: X \overset{g}{\to} Z \overset{h}{\to} Y,\] (5)

where g is a proper toric fibration ($g_* O_X = O_Z$; surjective with connected fibers), and h is toric finite. The normalization of the image $f(X)$ is a toric variety.

1.3.7 Toric resolutions, toric Chow envelopes, toric completions. There is a proper birational toric map $g: W \to X$ such that W is nonsingular; one can choose W to be quasi projective, so that g is then projective. In particular, if f is proper, then there is a projective toric map $g: W \to X$ such that $h := f \circ g$ is projective toric.

There is a toric completion of X, i.e. an open immersion $j: X \to \overline{X}$ such that j is a toric map and \overline{X} is toric complete.

There are toric completions $X \subseteq \overline{X}$ and $Y \subseteq \overline{Y}$ and a proper toric map $\overline{f}: \overline{X} \to \overline{Y}$ extending f.

1.3.8 Equivariant complexes. In what follows, we work over a field that is either finite or algebraically closed. Let act: $Z \times T \to Z$ be the torus action on a toric variety. A complex C on Z is equivariant if there is an isomorphism $\text{act}^* C \cong \pi_Z^* C$. We can extend this notion to the torus invariant subschemes of Z. The intersection complex $\mathcal{I}_V(\sigma)$ of the closure of an orbit is equivariant. Given $\nu \in N$, we have the associated co-character $\lambda_\nu: \mathbb{G}_m \to T$, and the associated notions of λ_ν-equivariance. If $f: X \to Y$ is a proper toric fibration, then Rf_* preserve equivariance.

3 the standard definition of equivariance requires the usual cocycle condition; we do not need it here.
1.4 The decomposition theorem for proper toric maps over finite fields

Let \(f : X \to Y \) be a proper toric map over a finite field \(F \). Let \(Y \to Z \) be the Stein factorization. For every \(\zeta \in \Delta_0 \), define, recalling (4):

\[
\text{Ev}_\zeta := \{ b \in \mathbb{Z} \mid b + \dim X - \dim V(\zeta) \text{ even} \}, \quad \beta_\zeta := \frac{b + \dim X - \dim V(\zeta)}{2},
\]

\[
o(0^\prime)_\zeta := oh(0^\prime(\zeta)), \quad \ell \zeta = oh_*(\frac{1}{2} \delta_0^\prime \zeta) \text{ a lisse sheaf on } 0^\prime(\zeta) \subset 0^\prime(\zeta).
\]

Theorem 1.4.1 (DT for proper toric maps over finite fields)

\(R_\ast f_\ast I_{oX} \cong \bigoplus_{\zeta \in \Delta_0} \bigoplus_{b \in \text{Ev}_\zeta} I_{o(0^\prime(\zeta))}^{s_{\zeta,b}}(0L_\zeta)(-\beta_\zeta)[-b], \)

where: \(0^\prime(\zeta) := oh(0^\prime(\zeta)) \); the sheaves \(0L_\zeta = oh_*(\frac{1}{2} \delta_0^\prime \zeta) \) on \(0^\prime(\zeta) \) are lisse, semisimple, pure of weight zero; the \(s_{\zeta,b} \in \mathbb{Z}_{\geq 0} \) are subject to:

i) \(s_{\zeta,b} = s_{\zeta,-b} \), for every \(b \in \text{Ev}_\zeta \);

ii) if \(f \) is projective, then \(s_{\zeta,b} \geq \sum_{l \geq 1} s_{\zeta,b+2l} \), for every \(b \geq 0 \) in \(\text{Ev}_\zeta \).

b) In particular: the pure weight zero \(R_\ast f_\ast I_{oX} \) is punctually pure, even and Tate; for every \(y \in 0Y(F) \), the \(G \)-module \((R_\ast f_\ast I_{oX})_y = H^\ast(f^{-1}(y), I_X) \) is pure, even and Tate.

c) Let \(f \) is a proper toric fibration and, for \(\sigma \in \Omega_Y \), let \(\text{Ev}_\sigma \), and \(\beta_\sigma \) as above. There is a DT isomorphism in \(D^b_{\text{SH}}(0Y, \mathbb{Q}_\ell) \):

\[
R_\ast f_\ast I_{oX} \cong \bigoplus_{\sigma \in \Omega_Y} \bigoplus_{b \in \text{Ev}_\sigma} I_{oV(\sigma)}^{s_{\sigma,b}}(-\beta_\sigma)[-b],
\]

where the \(s_{\sigma,b} \in \mathbb{Z}_{\geq 0} \) are subject to the conditions analogous to i) and ii) above.
Remark 1.4.2 Even though statement a) implies statements b) and c), we prove the three assertions in the following order: assertion b) is proved by Corollary 2.2.6; assertion c) is proved by Theorem 2.3.1; assertion a) is proved by Theorem 2.4.3, which builds on assertion c).

Remark 1.4.3 We may re-write the DT isomorphisms using the shifted I_X by setting $2k = 2\beta$, etc. In the case of a proper toric fibration we get, with $s_{\sigma,b}$ as in (9):

$$R_0 f_* I_{0X} \cong \bigoplus_{\sigma \in \Delta_0} \bigoplus_{k \in \mathbb{Z}} I_{0V(\sigma)}^{s_{\sigma,2k-\dim_0 X + \dim_0 V(\sigma)}(-k)}[-2k].$$

While (10) emphasizes duality, (11) emphasizes evenness.

Remark 1.4.4 (DT for proper toric maps over algebraically closed fields) Theorem 1.4.1 over finite fields implies the analogous results over any algebraically closed field (remove $0-$ and $(-\beta)$). In fact, assume that char $K \neq 0$ and form the tower of field extensions $0F \subseteq F \subseteq K$ given by the prime subfield of K and by its algebraic closure in K. Theorem 1.4.1 over a finite field implies immediately the desired conclusions for $K = F$. One then pulls-back further to K and concludes when char $K \neq 0$.

According to [BBD], §6, especially §6.1.10, Lema 6.2.6 and Théorème 6.2.5, relating the situation over an algebraically closed field of characteristic zero to the one over an algebraic closure of a finite field, the desired conclusion in characteristic zero follows from the one in positive characteristic.

If the ground field is \mathbb{C} and we use the classical topology, then one can reach analogous conclusions by using the theory of mixed Hodge modules.

2 Decomposition theorem for proper toric maps over finite fields

2.1 General DT package over finite fields

The following is surely well-known and follows easily from some of the results in [BBD]. We could not find an adequate explicit reference.

Proposition 2.1.1 (DT and RHL over $0\overline{F}$) Let $0f : 0X \to 0Y$ be a proper map of separated $0\overline{F}$-schemes of finite type, let $0P$ be a pure perverse sheaf of weight w on $0X$. Then: the direct image complex $R_0 f_* 0P$ is pure of weight w and splits non canonically into the direct sum $\bigoplus_b pH^b(R_0 f_* 0P)[-b]$ of its shifted perverse direct image complexes; the perverse sheaves $pH^b(R_0 f_* 0P)$ are pure of weight $w + b$ and admit the canonical decomposition by supports as the direct sum $\bigoplus IC_{0\overline{F}}(0L_{0Y})$ of finitely many intersection complexes of $0\overline{F}$-integral subvarieties $0Y \subseteq 0Y$, with coefficients pure lisse sheaves $0L_{0Y}$ of weight $w + b - d_{0Y}$ on suitable Zariski dense open subsets $0\overline{F} \subseteq 0\overline{F}$.

Assume, in addition, that $0f$ is projective and let 0η be the first Chern class of an $0f$-ample line bundle on $0X$. Then the relative hard Lefschetz theorem (RHL) holds: for every $i \geq 0$,
the cup product map \(\eta^!_i : \mathcal{H}^{-i}(R_0f_*oP) \to \mathcal{H}^i(R_0f_*oP)(i) \) on the perverse cohomology sheaves of the direct image is an isomorphism.

Proof. By Deligne’s fundamental result [BBD], 5.1.14, the direct image \(R_0f_*oP \) is pure of weight \(w \). The perverse sheaves \(\mathcal{H}^b(R_0f_*oP) \) are pure of weight \(w + b \) by [BBD], Thm. 5.4.1. They split as indicated by virtue of [BBD], Cor. 5.3.11, coupled with a straightforward Noetherian induction.

In the projective case, the RHL is [BBD], Theorem 5.4.10, and the splitting into the direct sum of shifted perverse cohomology sheaves is a formal consequence of RHL via the Deligne-Lefschetz criterion.

The DT for a proper map can be derived formally as follows. By using [BBD], Cor. 5.3.11, we first observe that we may assume that \(0P \) is the intermediate extension back to \(0X \) of its own restriction to any Zariski-open subvariety. We choose a Chow envelope \(0h : 0W \xrightarrow{ag} 0X \xrightarrow{af} 0Y \) of the map \(0f \), so that \(0g \) and \(0h \) are projective and there is a Zariski dense open subvariety \(0U \subseteq 0X \) over which \(0g \) is an isomorphism.

Let \(0P' \) be the corresponding intermediate extension to \(0W \). Since \(0g \) is projective, we can apply the Deligne-Lefschetz splitting and deduce that \(0P' \) is a direct summand of \(R_0g_*oP' \).

The conclusion follows by applying what we have already proved for the projective \(0g \) and to \(0h \), and then by using the relation \(R_0h_* = R_0f_* \circ R_0g_* \) to compare terms.

\[\square \]

Remark 2.1.2 The lisse sheaves \(0L \) on \(0\mathcal{Y}o \) become semisimple, after pull-back to each integral component of \(\mathcal{Y}o \). As we shall see, in the case of proper toric maps with \(0P := I_0X \), the subvarieties \(0\mathcal{Y} \), being torus orbits, are geometrically integral, and, in addition, the coefficients \(0L \) turn out to be already semisimple. See Theorems 2.3.1, 2.4.3. The indecomposable pure perverse sheaves on \(0Y \) are described in [BBD], Prop. 5.3.9. Due to my ignorance, I do not know if the pure lisse \(0L \) may admit indecomposable direct summands that present Jordan block-type factors of type \(E_n \) with \(n \geq 2 \); that would be the only obstacle to the semisimplicity of the pure lisse coefficients \(0L \).

2.2 First toric consequences of Proposition 2.1.1

Lemma 2.2.1 Let \(0Z \xrightarrow{aZ} 0U \xrightarrow{aJ} 0V \) be maps of schemes (separated and of finite type) over a finite field and let \(0C \) be a pure complex of weight \(w \) on \(0V \). Assume that: \(0Z \) is complete, \(0J \) is an open immersion, \(u^* : H^*(U, C) \to H^*(Z, C) \) is an isomorphism, \(0V \) is smooth. If the -automatically pure- submodule of lowest weight \(w \) of \(H^*(V, C) \) is even and Tate, then so is \(H^*(U, C) \).

Proof. This is standard; we freely use basic weight theory ([BBD], 5.1.14). It is enough to show that \(j^* \) is surjective. We have that: \(H^*(U, C) \cong H^*(Z, C) \) has weights \(\leq w \), because \(0Z \) is complete, so that the direct image coincides with the extraordinary direct image, under which the property of having weights \(\leq w \) is stable. \(H^*(U, C) \) has weights \(\geq w \) because the property of having weights \(\geq w \) is stable under direct image. By combining
the two weight inequalities above, we see that \(H^*(U,C) \) is pure of weight \(w \). Let \(\partial i \) the closed embedding complementary to \(\partial j \). In view of the fact that the property of having weight \(\geq w \) is stable under extraordinary inverse image, the long exact sequence of relative cohomology \(H^*(V,C) \rightarrow H^*(U,C) \rightarrow H^{*+1}(V,i!i!C) \) shows that \(j^* \) is surjective.

\[\square \]

Lemma 2.2.2 Let \(\partial X \) be a toric variety over a finite field. The intersection complex \(\mathcal{I}_{\partial X} \) is pure of weight zero and \(\Omega \)-constructible.

Proof. Both are well-known. We offer a proof of purity for toric varieties based on the DT. Of course, purity of the intersection complex for any Variety over a finite field is a result of O. Gabber. We also prove \(\Omega \)-constructibility as we need some of the details of the proof in the proof of Lemma 2.2.3.

Let \(\partial g : \partial W \rightarrow \partial X \) be a proper toric resolution of the singularities of \(\partial X \). Proposition 2.1.1 implies that \(\mathcal{I}_{\partial X} \), being a direct summand of the pure weight zero \(R\partial g_*=\mathbb{Q}_{\partial W} \), is pure of weight zero.

The proof of \(\Omega \)-constructibility is by induction on \(n := \dim \partial X \). If \(n = 0 \), then we are done. Assume the desired conclusion holds for every toric variety of dimension at most \(n - 1 \). Since the open sets of the form \(\partial U_\sigma \) are union of orbits and cover \(\partial X \) as \(\sigma \) ranges in \(\Delta_X \), we may assume that \(\partial X = \partial U_\sigma \). In view of the local product structure \(\partial U_\sigma \cong \partial U_{\sigma'} \times \partial O(\sigma) \), we may also assume that \((\partial X, \partial x) \) is of contractible type.

Since \(\partial x \) is now an orbit, we may replace \((\partial X, \partial x) \) with \(\partial X \setminus \partial x \). Now, \(\partial X \) is covered by the affine open sets of the form \(\partial U_\tau \cong \partial U_{\tau'} \times \partial O(\tau) \), with \(\tau < \sigma \), so that \(\dim \partial U_{\tau'} \leq n - 1 \), and we are done.

\[\square \]

Lemma 2.2.3 Let \(\partial f : \partial X \rightarrow \partial Y \) be a proper toric fibration over a finite field. The direct image complex \(R\partial f_* \mathcal{I}_{\partial X} \) is \(\Omega \)-constructible.

Proof. As in the proof of Lemma 2.2.2, we may assume that \(\partial Y = \partial U_\tau \).

According to (2), the intersection complex of \(\partial f^{-1}(\partial U_\sigma) \) is a pull-back from the factor \(\partial f^{-1}(\partial U_{\sigma'}) \). It follows that we may assume that \((\partial Y, \partial y) \) is of contractible type.

We conclude the proof by arguing by induction on the dimension of the base of contractible type as in the proof of Lemma 2.2.2.

\[\square \]

Lemma 2.2.4 Let \(\partial f : \partial X \rightarrow \partial Y \) be a proper toric fibration onto a base of contractible type \((\partial Y, \partial y) \), all over a finite field. Then we have natural isomorphisms of graded \(G \)-modules:

\[IH^*(X) = (R^*f_*\mathcal{I}_X)_y = H^*(f^{-1}(y), \mathcal{I}_X). \]

(12)

In particular, we have the natural isomorphism of graded \(G \)-modules:

\[IH^*(Y) = \mathcal{H}^*(\mathcal{I}_Y)_y. \]

(13)

The graded \(G \)-modules above are pure, even and Tate.
Proof. The first two assertions follow from the retraction lemma (7) and (8) and proper base change.

We turn to the proof that the \(G \)-modules (12) are pure even and Tate.

By taking a projective toric resolution of \(_0X \) as in the proof of Lemma 2.2.2, we may assume that \(_0X \) is smooth and quasi projective. In particular, we are now dealing with cohomology, instead of intersection cohomology.

Choose a toric open embedding \(j : _0X \to \overline{X} \) with \(\overline{X} \) toric smooth and projective.

It is well known that the graded \(G \)-module \(H^*(\overline{X}) \) is pure of weight zero, even and Tate: it is generated by algebraic cycle classes [Ful].

We conclude by applying Lemma 2.2.1 to \(_0f^{-1}(0y) \to _0X \to \overline{X} \).

Remark 2.2.5 (Description of \(H^*(f^{-1}(0y), \mathcal{I}_X) \), \(f \) proper toric) Let \(f : X \to Y \) be a proper toric map over an algebraically closed field and let \(y \in Y \) be a closed point. Let \(f = h \circ g : X \to Z \to Y \) be the toric Stein factorization. The fiber \(f^{-1}(y) \) is a disjoint union of the finitely many fibers \(g^{-1}(z_i) \), with \(\{ z_i \} = h^{-1}(y) \). Clearly, \(H^*(f^{-1}(0y), \mathcal{I}_X) = \bigoplus H^*(g^{-1}(z_i), \mathcal{I}_X) \). Fix \(z_i \) and take the \(U(\zeta) \) with \(z \in O(\zeta) \). By using the local product structure (2) over \(U_\zeta \), we may assume that \(z_1 = z_\zeta \) and that \((Z, z_\zeta) \) is of contractible type.

By combining the proofs of lemmata 2.2.4 and 2.2.2, we obtain the following description:

\[H^*(f^{-1}(0y), \mathcal{I}_X) \text{ is a finite direct sum of subquotients of the graded vector spaces } H^*(\overline{W}_l, \mathbb{Q}_\ell) \text{ given by the cohomology of nonsingular projective toric varieties } \overline{W}_l. \]

The description remains valid in the context of \(G \)-modules if the ground field is the algebraic closure of a finite field. Similarly, over \(\mathbb{C} \), in the context of the classical Euclidean topology with the rational mixed Hodge structures of the theory of mixed Hodge modules.

Corollary 2.2.6 Let \(_0f : _0X \to _0Y \) be a proper toric map over a finite field. Then the pure weight zero complexes \(\mathcal{I}_{_0X} \) and \(Rf_* \mathcal{I}_{_0X} \) are punctually pure, even and Tate.

Proof. The second statement implies the first one by taking \(_0f = \text{Id}_{_0X} \).

Since the desired conclusions are stable under direct images via finite toric maps, in view of the toric Stein factorization of the map \(_0f \), we may assume that \(_0f \) is a proper toric fibration.

Since the desired conclusions are statements about the stalks and the direct image complex is \(\Omega \)-constructible, it is enough to verify that for every distinguished point \(_0y_\sigma \) of any orbit \(_0O(\sigma) \subseteq _0Y \), the graded \(G \)-module \((R^*f_* \mathcal{I}_X)_{y_\sigma} \) is pure, even and Tate. This follows immediately from Lemma 2.2.4.

Remark 2.2.7 The punctual purity etc. of the intersection complex of a toric variety is proved in [DL]. The statement for the direct image seems new.

2.3 Proof of Theorem 1.4.1.c on proper toric fibrations

The following theorem proves Theorem 1.4.1.c.
Theorem 2.3.1 (Proper toric fibrations: DT semisimplicity and RHL over \(0|\mathbb{F}\))

Let \(0f : 0X \to 0Y\) be a proper toric fibration. There are isomorphisms in \(D^b_m(0Y, \mathbb{Q}_\ell)\):

\[
0Rf_*I_{0X} \cong \bigoplus_{\sigma \in \Delta_0Y} \bigoplus_{b \in \mathbb{Z}} 0J_{0,\sigma,b}[-b],
\]

where

\[
0J_{0,\sigma,b} \cong \begin{cases}
0 & b + \dim X - \dim V(\sigma) \text{ odd,} \\
0I_{0,\sigma,b}^{s_{\sigma,b}} \left(\frac{b + \dim X - \dim V(\sigma)}{2} \right) & b + \dim X - \dim V(\sigma) \text{ even.}
\end{cases}
\]

The integers \(s_{\sigma,b}\) are subject to the following relations:

i) \(s_{\sigma,-b} = s_{\sigma,-b}\) (Poincaré-Verdier duality); if \(b + \dim X - \dim V(\sigma)\) is odd, then \(s_{\sigma,b} = 0\).

ii) If \(0f\) is projective, then for every \(b \geq 0\), \(s_{\sigma,b} \geq \sum_{t \geq 1} s_{\sigma,b+2t}\) (RHL).

Proof. Proposition 2.1.1, coupled with the \(\Omega\)-constructibility of the direct image complex in Lemma 2.2.2, implies the existence of an isomorphism (14), where each \(0J_{0,b,\sigma}\) is of the form \(0I_{V(\sigma)}(0L_{0,\sigma})\), with \(0L_{0,\sigma}\) lisse, pure of weight \(b + \dim X - \dim V(\sigma)\) on \(0O(\sigma)\).

By \(\Omega\)-constructibility, for each \(j, \sigma\), the mixed sheaf \(0R_j^j\) (see the end of §1.2 on notation) is lisse on the orbit \(0O(\sigma)\).

The local product structure of \(0f\) (3) implies that \(0R_j^j\) is given by the continuous representation:

\[
\rho_j^j : \pi_1(0O(\sigma), y_\sigma) \to \pi_1(0O_{y_\sigma}, y_\sigma) \to \text{GL}_{\mathbb{Q}_\ell}(R_{y_\sigma}^j),
\]

where the first homomorphism stems from the natural constant \(0\mathbb{F}\)-map \(0O(\sigma) \to 0O_{y_\sigma}\), and the second one from the \(G\)-module structure on \(R_{y_\sigma}^j\); this means that the lisse sheaf \(0R_j^j\) is the pull-back of a lisse sheaf on \(0O_{y_\sigma}\), namely, the \(G\)-module \(R_{y_\sigma}^j\).

By combining with Corollary 2.2.6, we see that \(0R_j^j\) is zero for \(j\) odd and that, for \(j\) even, we have \(0R_j^j \cong \bigoplus_{t \in \mathbb{Z}} (0O(\sigma)_{-j/2})^r\), for some \(r \geq 0\).

The already-proved existence of an isomorphism (14) as above, implies that \(0L_{0,\sigma}\) is a direct summand of \(0R_j^j\) for \(j = b + \dim X - \dim V(\sigma)\), so that we have \(0L_{0,\sigma} \cong \bigoplus_{t \in \mathbb{Z}} \bigoplus_{\sigma \in \Delta_0Y} (0O(\sigma)_{-j/2})^r\), for some integer \(s\), equal to zero if \(j\) is odd. This proves (15), as well as the second part of assertion i).

Finally, given (14) and (15), assertion ii) and the first part of i) are immediate consequences of the relative hard Lefschetz theorem, and of Verdier duality, respectively. \(\square\)

2.4 Proof of Theorem 1.4.1.a on proper toric maps

Let \(0f : 0X \to 0Y\) be a proper toric map over a finite field \(0\mathbb{F}\) and let \(0f = 0h \circ 0g\) its Stein factorization. Since \(0g\) is a proper toric fibration, i.e. the subject of Theorem 2.3.1, we turn our attention to the finite map \(0g : 0Z \to 0Y\), with image \(0f(0X)\), a closed subvariety of \(0Y\).

Given \(\zeta \in \Delta_0Z\), we have the map of tori \(0h(\zeta) : 0O(\zeta) \to O(\zeta)\), with image \(0O'(\zeta) \subseteq O(\zeta)\). We denote the evident resulting finite map on the closures by \(0h(\zeta) : 0O(\zeta) \to 0O'(\zeta)\).
Lemma 2.4.1 The $\overline{\mathbb{Q}}_\ell$-adic sheaf $\mathcal{O}_\zeta \coloneqq h(\zeta)_*\overline{\mathbb{Q}}_\ell\otimes_{\mathcal{O}(\zeta)}$ on $\mathcal{O}(\zeta)$ is lisse, semisimple, pure, punctually pure of weight zero; the geometric monodromy has eigenvalues roots of unity.

The direct image $R_0h_*\mathcal{I}_{\mathcal{O}(\zeta)} = \mathcal{I}_{\mathcal{O}(\zeta)}(0\mathcal{L}_\zeta)$ is pure of weight zero, punctually pure, even and Tate.

Proof. The map of tori \mathcal{O}_ζ admits the canonical factorization (4). Recalling that the map being factored is finite: the map $\mathcal{O}_\mathcal{I}$ must be the identity. The map $\mathcal{O}_\mathcal{I}$ is a quotient by a finite abelian group, $\Gamma := \text{Ker} \mathcal{O}_\mathcal{I}$, whose order is not divisible by $\text{char} \mathcal{O}_\mathcal{F}$; in particular it is étale, and Galois. The map $\mathcal{O}_\mathcal{J}$ is a universal homeomorphism. The map $\mathcal{O}_\mathcal{i}$ is the evident closed embedding.

Since \mathcal{O}_α, $\mathcal{O}_\mathcal{c}$ and $\mathcal{O}_\mathcal{i}$ are universal homeomorphisms onto their image, they do not effect the direct image calculations and can be ignored.

It follows that \mathcal{L}_ζ is naturally identified the ordinary direct image sheaf $\mathcal{O}_\mathcal{I}h_\mathcal{l}$, with $\mathcal{O}_\mathcal{b}$ the étale quotient by the action of the finite abelian group Γ. All the listed properties of \mathcal{L}_ζ follows easily from this description.

The equality statement about the direct image complex follows by observing that we have the following natural identifications:

$$R_0h_*\mathcal{I}_{\mathcal{O}(\zeta)} = h_*\mathcal{I}_{\mathcal{O}(\zeta)} = \mathcal{I}_{\mathcal{O}(\zeta)}(0\mathcal{L}_\zeta) : (17)$$

the first one is because h is finite. The second one is because the third term is merely a re-writing of the second; the third identification follows from the fact that the direct image under the finite map $h(\zeta)$ is t-exact for the middle perversity t-structure and hence preserves intersection complexes with twisted coefficients; clearly, the coefficients of the direct image can be read on a Zariski-dense open subset, so that they are given by \mathcal{L}_ζ.

Finally, the last statement follows from the just-established equality and from Corollary 2.2.6, applied to $\mathcal{O}X := 0V(\zeta)$: for the properties in question are stable under finite direct image.

Remark 2.4.2 The rank of the local system \mathcal{L}_ζ is the cardinality of the abelian group Γ, which depends on the characteristic of the finite field \mathcal{O}_F.

We can now show that Theorem 2.3.1 for proper toric fibrations over \mathcal{O}_F has the following natural counterpart for proper toric maps over \mathcal{O}_F, which, in turn, establishes Theorem 1.4.1.a.

Theorem 2.4.3 (Proper toric maps: DT semisimplicity and RHL over \mathcal{O}_F) Let $\mathcal{O}f : \mathcal{O}X \to \mathcal{O}Y$ be a proper toric map over the finite field \mathcal{O}_F. There are isomorphisms in $D^b_m(\mathcal{O}Y, \overline{\mathbb{Q}}_\ell)$:

$$R\mathcal{O}f_*\mathcal{I}_{\mathcal{O}X} \cong \bigoplus_{\zeta \in \Delta_{\mathcal{O}, Z}} \bigoplus_{b \in \mathbb{Z}} \mathcal{O}J_{\zeta,b}[-b],$$

\[12 \]
\(0^f\zeta,b \cong \begin{cases}
0, & b + \dim X - \dim V(\zeta) \text{ odd}, \\
0IC_{0^{\zeta,b}}(0L_\zeta)\left(-\frac{b+\dim X-\dim V(\zeta)}{2}\right), & b + \dim X - \dim V(\zeta) \text{ even.}
\end{cases} \)

(19)

The complex \(R^f_*I_{0^f}X\) is pure of weight zero, punctually pure, even and Tate.

The integers \(s_{\zeta,b}\) are subject to the following relations:

i) \(s_{\zeta,b} = s_{\zeta,-b}\) (Poincaré-Verdier duality); if \(b + \dim Z - \dim V(\zeta)\) is odd, then \(s_{\zeta,b} = 0\).

ii) If \(0f\) is projective, then for every \(b \geq 0\), \(s_{\zeta,b} \geq \sum_{l \geq 1} s_{\zeta,b+2l\zeta}\) (RHL).

Proof. We have the Stein factorization \(0f = 0h \circ 0g\). We first apply Theorem 2.3.1.\(15\) to the proper fibration \(0g\). We form the \(R_0g_*\) of each resulting direct summand. We apply Lemma 2.4.1, which remains valid also after arbitrary Tate twists, to each resulting term.

\[
\]

References

[BBD] A. A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, in Analysis and topology on singular spaces, I (Luminy, 1981), 5–171, Astérisque, 100, Soc. Math. France, Paris, 1982.

[dMM] M. de Cataldo, L. Migliorini, M. Mustaţă, The combinatorics and topology of proper toric maps, preprint 2014.

[DL] J. Denef and F. Loeser, Weights of exponential sums, intersection cohomology, and Newton polyhedra, Invent. Math. 106 (1991), 275–294.

[Ful] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud. 131, The William H. Rover Lectures in Geometry, Princeton Univ. Press, Princeton, NJ, 1993.

Authors’ addresses:
Mark Andrea A. de Cataldo, Department of Mathematics, Stony Brook University, Stony Brook, NY 11794, USA. e-mail: mark.decataldo@stonybrook.edu