Coverage Layer Phase Composition-Dependent Photoactivity of One-Dimensional TiO$_2$–Bi$_2$O$_3$ Composites

Yuan-Chang Liang * and Kai-Jen Chiang

Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan; ssdcjh972003@yahoo.com.tw
* Correspondence: yuan@mail.ntou.edu.tw

Received: 13 May 2020; Accepted: 22 May 2020; Published: 25 May 2020

Abstract: TiO$_2$–Bi$_2$O$_3$ composite rods were synthesized by combining hydrothermal growth of rutile TiO$_2$ rod templates and sputtering deposition of Bi$_2$O$_3$ thin films. The TiO$_2$–Bi$_2$O$_3$ composite rods with β-Bi$_2$O$_3$ phase and α/β-Bi$_2$O$_3$ dual-phase decoration layers were designed, respectively, via in situ radio-frequency magnetron sputtering growth and post-annealing procedures in ambient air. The crystal structure, surface morphology, and photo-absorption performances of the pristine TiO$_2$ rods decorated with various Bi$_2$O$_3$ phases were investigated. The crystal structure analysis reveals that the crystalline TiO$_2$–Bi$_2$O$_3$ rods contained β-Bi$_2$O$_3$ and α/β-Bi$_2$O$_3$ crystallites were separately formed on the TiO$_2$ rod templates with different synthesis approaches. The morphology analysis demonstrates that the β-Bi$_2$O$_3$ coverage layer on the crystalline rutile TiO$_2$ rods showed flat layer morphology; however, the surface morphology of the α/β-Bi$_2$O$_3$ dual-phase coverage layer on the TiO$_2$ rods exhibited a sheet-like feature. The results of photocatalytic decomposition towards methyl orange dyes show that the substantially improved photoactivity of the rutile TiO$_2$ rods was achieved by decorating a thin sheet-like α/β-Bi$_2$O$_3$ coverage layer. The effectively photoinduced charge separation efficiency in the stepped energy band configuration in the composite rods made from the TiO$_2$ and α/β-Bi$_2$O$_3$ explained their markedly improved photoactivity. The TiO$_2$–α/β-Bi$_2$O$_3$ composite rods are promising for use as photocatalysts and photoelectrodes.

Keywords: One-dimensional structure; Composites; Heterogeneous junction; Synthesis; Morphology; Photoactivity

1. Introduction

One-dimensional rods have been widely investigated for various binary oxides in photoactive applications because of their high surface-to-volume ratio and possibility for integration into diverse semiconductor nanodevices [1–4]. TiO$_2$ shows many excellent characteristics, such as low toxicity, easy fabrication, low cost, high stability and high photosensitivity [5]. As a result, it has been widely applied in photodegradation of organics and photocatalytic water splitting [3,6]. Compared to most commonly used TiO$_2$ nanoparticles or thin films, a vertically oriented TiO$_2$ nanorod prepared by a simple hydrothermal method possesses high photoactivity owing to its large surface area and excellent electron transport property and is promising for integration into diverse functional nanodevices [1,3]. However, the TiO$_2$ with a wide band gap was only excited by ultraviolet light contributing only 6% of the solar spectrum; moreover, the photogenerated charge carriers in the TiO$_2$ easily recombine, which adversely affects the practical photoactivated performance of the TiO$_2$. Recently, one-dimensional TiO$_2$ oxide coupled with other narrow wide band gap materials with a suitable band alignment was revealed as a promising approach to improve the intrinsic photoactivity of the TiO$_2$ [3,7]. In particular, construction of
oxide heterostructures with a type II band alignment is advantageous to suppress the recombination of photogenerated electron-hole pairs and improve the photocatalytic efficiency because of formation of an inner electric field at the heterointerface [8,9]. For example, the photoactivity of the sputtering-assisted decoration of ZnFe2O4 crystallites onto TiO2 nanorods improves the photodegradation performance towards methylene orange (MO) [3]. Furthermore, electrospinning-derived TiO2-WO3 nanofibers show the higher activity towards photodegrading MO dyes than that of the pristine TiO2 in ultraviolet (UV) light [7]. These examples visibly demonstrate heterogeneous TiO2 based hybrids could obviously suppress the recombination of photogenerated electron-hole pairs by transferring photogenerated electrons and holes in the heterojunctions, prolong their lifetime, and significantly enhance the photoactivity.

Bi2O3 is the simplest Bi-based oxide, and is used in extensive photoactivated applications due to its excellent properties [10,11]. The Bi2O3 has a direct band gap with a wide range from approximately 2.0–3.9 eV and several polymorphs [12]. The α-Bi2O3 and β-Bi2O3 have been reported to exhibit desirable photocatalytic activity to decompose organic pollutants under irradiation [13]. Therefore, integration of Bi2O3 into TiO2 to form a heterogeneous structure is a potential target system to investigate possible improvement in photodegradation efficiency towards organic pollutants. Recent work by Huo et al. synthesized Bi2O3/TiO2 film by sol-gel method and the degradation rate of MO achieved 70% at the given irradiation condition [14]. Other methods such as chemical bath deposition and dip-coating were also reported to have prepared TiO2–Bi2O3 composites for the purpose of photocatalytic and other applications [15,16]. However, these chemical solution routes are disadvantageous to modulate the phase content of Bi2O3 and this hinders the design of the suitable Bi2O3 polymorphs to be integrated into the one-dimensional TiO2 system with desirable photocatalytic functionality. Herein, we initially present a sputtering-assisted deposition technique to deposit Bi2O3 crystals with β-Bi2O3 phase and α/β-Bi2O3 dual phase as decoration thin layers. The Bi2O3 coverage layer phase composition, microstructures, and resultant effects in photoactivated performance of the TiO2–Bi2O3 composite rods are correlated in this study. The results herein show control of the Bi2O3 coverage layer phase composition via sputtering-assisted deposition is a promising method to design and tune one-dimensional TiO2–Bi2O3 composites with a desirable photoactivity.

2. Materials and Methods

One-dimensional aligned TiO2 rods were grown on F-doped SnO2 (FTO) glass substrates using a hydrothermal method. The detailed preparation of reaction solution for hydrothermal growth of the TiO2 rods has been described elsewhere [17]. Furthermore, TiO2–Bi2O3 composite rods were fabricated by radio-frequency magnetron sputtering Bi2O3 thin films onto the surfaces of the TiO2 rod templates. The bismuth metallic disc with a diameter of two inches was used as the target during the sputtering processes. The Bi2O3 coverage layers onto the surfaces of the TiO2 rods were fabricated through two different approaches. The first set of the Bi2O3 coverage thin layer was grown in mixed Ar/O2 ambient with a ratio of 1:1 at 425 °C. The working pressure during thin-film growth was maintained at 2.66 Pa and sputtering power of the bismuth metallic target was maintained at 30 W. The distance between the substrate and target is 7 cm. The second set of the Bi2O3 coverage thin layer was formed through post-annealing the sputtering deposited metallic Bi thin films at 325 °C in ambient air for 1 h. The Bi metallic thin films were grown at room temperature with a pure Ar atmosphere and transformed into Bi2O3 thin films after the post-annealing procedure. The as-synthesized TiO2–Bi2O3 composite rods with two different Bi2O3 coverage thin layers from in situ heating sputtering and post-annealing procedures were respectively denoted as TiO2/s–Bi2O3 composite rods and TiO2/a–Bi2O3 composite rods, in this study. The in situ sputtering formed s-Bi2O3 film has a layered coverage feature and the post-annealing formed a-Bi2O3 film has a sheet-like coverage feature on TiO2 templates.

Crystallographies of the samples were investigated by X-ray diffraction (XRD; D2 PHASER, Bruker, Karlsruhe, Germany) and the measurement at two theta range was set to 20°–60°. The surface features of the samples were characterized by scanning electron microscopy (SEM; S-4800, Hitachi, Tokyo, Japan), respectively. High-resolution transmission electron microscopy (HRTEM; JEM-2100F,
JEOL (Tokyo, Japan) was used to investigate the detailed microstructures of the TiO$_2$–Bi$_2$O$_3$ composite rods. The attached energy-dispersive X-ray spectroscopy (EDS) was used to investigate the elemental composition of the composite rods. X-ray photoelectron spectroscopy (XPS; ULVAC-PHI XPS, ULVAC, Chigasaki, Japan) was used to investigate elemental composition of the samples. An ultraviolet–visible (UV–Vis) spectrophotometer (V750, Jasco, Tokyo, Japan) was used to investigate the reflectance spectra of various rod samples. Photoelectrochemical properties (PEC) were performed in a three-electrode electrochemical system, where the as-synthesized rod sample on the FTO glass was used as the working electrode, a Pt wire was used as the counter electrode, and an Ag/AgCl (in saturated KCl) electrode was used as the reference electrode in an aqueous solution containing 0.5 M Na$_2$SO$_4$. The active area of the working electrode was 1 cm $\times$ 1 cm. The Nyquist plots of various rod samples were measured using electrochemical impedance spectroscopy (EIS, SP150, BioLogic, Seyssinet-Pariset, France).

3. Results and Discussion

Figure 1a displays the SEM micrograph of hydrothermally derived TiO$_2$ rods on the FTO substrate; these rods had a diameter in the range of approximately 80–110 nm. The TiO$_2$ rods showed tetragonal prismatic morphology. The top surfaces of these rods are uneven, containing numerous up and down edge sites, whereas the sidewalls are smoother. After the sputtering deposition of the s-Bi$_2$O$_3$ thin film onto the TiO$_2$ rods, a change in morphology was observed. The SEM image shown in Figure 1b confirms the coverage of the s-Bi$_2$O$_3$ thin film on the TiO$_2$ rods resulted in top surfaces and sidewalls of the TiO$_2$ rods becoming smooth. Figure 1c shows the SEM image of the TiO$_2$ rods decorated with the a-Bi$_2$O$_3$ thin film. After the decoration of the a-Bi$_2$O$_3$ thin film onto the TiO$_2$ rods, the change in surface morphology was substantial in comparison with the pristine TiO$_2$ rods. The sheet-like Bi$_2$O$_3$ crystals were decorated onto the surfaces of the top region and sidewalls of the TiO$_2$ rods, incurring undulated morphology of the TiO$_2$–Bi$_2$O$_3$ composite rods. It was also shown that the surfaces of the ZnO–Sn$_2$S$_3$ nanorods exhibited undulations and a visible sheet-like crystal texture via sputtering decoration of the Sn$_2$S$_3$ crystals [9]. The sheet-like crystallites on the surfaces of the one-dimensional rods improved specific surface area and is beneficial in enhancing their photoactivity [9]. The SEM images evidently demonstrated that the Bi$_2$O$_3$ crystals were successfully coated on the surfaces of the TiO$_2$ rods through a sputtering assisted method and the s-Bi$_2$O$_3$ and a-Bi$_2$O$_3$ thin films made the TiO$_2$–Bi$_2$O$_3$ composite rods with substantially different rod surface morphologies.

![Figure 1](image1.png)

**Figure 1.** Scanning electron microscope (SEM) images: (a) TiO$_2$ rods. (b) TiO$_2$/s-Bi$_2$O$_3$ rods. (c) TiO$_2$/a–Bi$_2$O$_3$ rods.

The XRD patterns of the pristine TiO$_2$ rods, TiO$_2$/s–Bi$_2$O$_3$ composite rods, and TiO$_2$/a–Bi$_2$O$_3$ composite rods are shown in Figure 2. In addition to Bragg reflections originated from FTO substrates in Figure 2a (marked with asterisks), distinct Bragg reflections centered at 27.4°, 36.1° and 54.3° can
be indexed to (110), (101) and (211) planes of rutile TiO$_2$ phase, respectively (JCPDS No.00-021-1276). The TiO$_2$ rods with a good crystalline phase were formed herein. Figure 2b exhibits the XRD pattern of the TiO$_2$/s–Bi$_2$O$_3$ composite rods. Five differentiable peaks centered at approximately 27.95°, 31.74°, 32.69°, 46.21° and 46.91° in Figure 2b can be assigned to (201), (002), (220), (222) and (400) planes of tetragonal β-Bi$_2$O$_3$ phase, respectively (JCPDS No.01-078-1793). The XRD result demonstrates the sputtering β-Bi$_2$O$_3$ thin film is in a polycrystalline phase. Moreover, the (201) Bragg reflection exhibited a substantially intense feature, revealing (201)-oriented crystals dominated the polycrystalline Bi$_2$O$_3$ thin film decorated onto the surfaces of the rutile TiO$_2$ rods in this study. A similar (201)-orientation dominated polycrystalline β-Bi$_2$O$_3$ has been observed in β-Bi$_2$O$_3$ nanoparticles with an average grain size of 100 nm synthesized by a sol-gel method [18]. Figure 2c exhibits the XRD pattern of the TiO$_2$/a–Bi$_2$O$_3$ composite rods. The major Bragg reflections at 2θ = 28.01° and 33.24°, corresponding to the (012) and (200) planes of the α-Bi$_2$O$_3$ phase were observed (JCPDS No.00-041-1449), revealing formation of a well crystallized monoclinic α-Bi$_2$O$_3$ phase. In addition to Bragg reflections originating from the α-Bi$_2$O$_3$ phase, several Bragg reflections associated with the β-Bi$_2$O$_3$ phase were also observed in Figure 2c. When the TiO$_2$ rods were decorated with a-Bi$_2$O$_3$ thin film, the crystalline composite rods consisted of TiO$_2$ rods and the α/β polymorphic Bi$_2$O$_3$ crystals were formed herein.

![Figure 2](image-url)

**Figure 2.** X-ray diffraction (XRD) patterns: (a) rutile TiO$_2$ rods. (b) TiO$_2$/s–Bi$_2$O$_3$ rods. (c) TiO$_2$/a–Bi$_2$O$_3$ rods. The asterisks denoted Bragg reflections from the F-doped SnO$_2$ (FTO) substrate.

Figure 3a shows a low-magnification transmission electron microscope (TEM) image of a single TiO$_2$/s–Bi$_2$O$_3$ composite rod. A thin and flat β-Bi$_2$O$_3$ layer was homogeneously covered on the surface of the TiO$_2$ rod. The high-resolution (HR) TEM images taken from the various regions of the composite rod are shown in Figs. 3b–d. The lattice fringe spacing of approximately 0.32 nm and 0.27 nm for the outer region of the composite rod corresponded to the interplanar distance of tetragonal β-Bi$_2$O$_3$ (201) and (220) crystallographic planes, respectively, revealing well the crystalline β-Bi$_2$O$_3$ phase formed on the outer region of the composite rod. However, the arrangement of lattice fringes in the inner region of the composite rod is not visibly distinguished because of the overlapped stack of the TiO$_2$ and Bi$_2$O$_3$ oxides. Figure 3e presents the selected area electron diffraction (SAED) pattern obtained from several TiO$_2$/s–Bi$_2$O$_3$ composite rods. It exhibited distinct diffraction spots arranged in circles with various radii. These centric diffraction patterns indicated the co-existence of the crystalline TiO$_2$ and β-Bi$_2$O$_3$ phases, demonstrating the successful growth of the crystalline TiO$_2$–Bi$_2$O$_3$ composite rods via sputtering decoration of β-Bi$_2$O$_3$ crystallites on to the surfaces of the TiO$_2$ rods herein. Figure 3f displays EDS line-scanning profiles across the composite rod. The Ti element was located inside the composite rod, demonstrating the position of the TiO$_2$ rod. The O element was distributed over the cross-sectional region of the whole rod. The Bi element distributed around the TiO$_2$ rod, revealing the successful coverage of the Bi$_2$O$_3$ film on the TiO$_2$. Furthermore, the corresponding HAADF-STEM image in Figure 3f shows the β-Bi$_2$O$_3$ crystals covered on the top region of the TiO$_2$ rod were thicker than that on the lateral region of the composite rod. Moreover, the β-Bi$_2$O$_3$ coverage film on the lateral region of the composite rod had a thickness in the range of approximately 15–28 nm.
Figure 3. Transmission electron microscopy (TEM) analysis of the TiO$_2$/s–Bi$_2$O$_3$ rods: (a) Low-magnification TEM image. (b–d) High-resolution (HR)TEM images taken from various regions of the composite rod. (e) Selected area electron diffraction (SAED) pattern of several TiO$_2$/s–Bi$_2$O$_3$ rods. (f) Energy-dispersive X-ray spectroscopy (EDS) line scanning profiles across the composite rod.

Figure 4a shows a low-magnification TEM image of the TiO$_2$/a–Bi$_2$O$_3$ rod. Unlike the composite rod as displayed in Figure 3a, the Bi$_2$O$_3$ coverage layer exhibited a morphology of randomly oriented sheet-like aggregates consisted of numerous tiny grains. In comparison with the surface morphology of the TiO$_2$/s–Bi$_2$O$_3$ composite rod, the surface crystal size distribution was more non-homogeneous for the TiO$_2$/a–Bi$_2$O$_3$ composite rod. The surface of the TiO$_2$/a–Bi$_2$O$_3$ composite rod was substantially undulated. Figure 4b–d show HRTEM images taken from the outer regions of the composite rod. Notably, many tiny grains were observed in the HR images. These tiny grains aggregated with each other to form the sheet-like crystals as exhibited in Figure 4a. Clear lattice fringes were observed in the constituent tiny grains; the lattice fringe spacing of approximately 0.318 nm is associated with lattice plane distance of the monoclinic α–Bi$_2$O$_3$ (012). Moreover, the lattice fringe spacing of 0.295 nm and 0.282 nm is ascribed to the crystallographic interplanar distance of the (211) and (002) of the β–Bi$_2$O$_3$ phase, respectively. A clear crystalline feature of the Bi$_2$O$_3$ crystals was exhibited in the HRTEM images. Figure 4e shows the SAED pattern of several TiO$_2$/a–Bi$_2$O$_3$ composite rods. The visible spots arranged in centric patterns demonstrate the good crystalline quality of the composite rods. The concentric rings could be attributed to diffraction from the (110) and (101) planes corresponding to the rutile phase of TiO$_2$ and the plane corresponding to the α and β phase Bi$_2$O$_3$. The SAED analysis herein agrees with the XRD pattern, revealing that crystalline TiO$_2$-based composite rods consisted of α/β dual-phase Bi$_2$O$_3$ were formed herein. The cross-sectional EDS line-scanning profiles (Figure 4f) reveal the Bi signals were substantially intense in the outer region and the marked Ti signal was confined to the inner region of the composite rod, indicating that the composite rod consisted of a TiO$_2$ core and a Bi$_2$O$_3$ coverage layer.
The light absorption properties of the rutile TiO$_2$ rods and various TiO$_2$–Bi$_2$O$_3$ composite rods are shown in Figure 6a. The inset shows the band gap of the TiO$_2$ rods is of approximately 3.03 eV by transferring Kubelka–Munk method [19]. Compared with the pristine TiO$_2$ rods, the construction of the TiO$_2$–Bi$_2$O$_3$ composite rods engendered red-shift of the absorption edge of the TiO$_2$ rods. The TiO$_2$–Bi$_2$O$_3$ composite rods exhibited a broader and stronger light absorption; the main reason for which is the synergistic absorption effect of the Bi$_2$O$_3$ photosensitizer and the formation of TiO$_2$–Bi$_2$O$_3$ heterojunction [20]. The visible light band-gap energy of the Bi$_2$O$_3$ could lead to the broader light absorption region and induce the red shift of the absorption edge of the TiO$_2$–Bi$_2$O$_3$ composite rods [21]. Notably, the absorption edge of the TiO$_2$–Bi$_2$O$_3$ composite rods showed a more intense red shift degree than that of the TiO$_2$–Bi$_2$O$_3$ composite rods. The reasons might be associated with the formation of the α/β heterogeneous Bi$_2$O$_3$ and undulated morphology in the decoration layer of the TiO$_2$ rod surface. For the Bi$_2$O$_3$ films, the transmittance spectra are recorded (Figure 6b,c).
The Tauc–Davis–Mott relationship is used to evaluate the bandgap of the thin film [22]. The extrapolated bandgap is approximately 2.75 and 2.80 eV for s-Bi$_2$O$_3$ and a-Bi$_2$O$_3$ thin films, respectively. Notably, the individual bandgap value of the α-phase in the a-Bi$_2$O$_3$ film cannot be separately evaluated in this study. The bandgap analysis herein revealed that the a-Bi$_2$O$_3$ film with an appearance of α-phase contributed to the blue shift of the bandgap energy from 2.75 eV to 2.80 eV in comparison with that of the pure β-phase s-Bi$_2$O$_3$ film (2.75 eV from Figure 6b). This result is supported with the previous reported bandgap of the α-Bi$_2$O$_3$ (2.85 eV) [23]. The formation of a homojunction consisted of the Bi$_2$O$_3$ polymorphs demonstrates a higher light harvesting ability than that of the single constituent counterpart [24]. Moreover, the sheet-like surface crystal feature in a one-dimensional composite has also been shown in several heterogeneous systems that is beneficial for light-harvesting enhancement [9,25].

Figure 6. (a) Absorbance spectra of various rod samples. (b) Absorbance spectrum of the s-Bi$_2$O$_3$ thin film. (c) Absorbance spectrum of the α-Bi$_2$O$_3$ thin film. The insets show the bandgap of the TiO$_2$ rods, s-Bi$_2$O$_3$ film, and a-Bi$_2$O$_3$ film.

Figure 7a displays photoresponse curves of the TiO$_2$, TiO$_2$/s–Bi$_2$O$_3$, and TiO$_2$/a–Bi$_2$O$_3$ rods at the 1 V under chopped light irradiation. The rod samples showed rapid photoresponse and recovery properties in Figure 7a. The photocurrent density of the pristine TiO$_2$ rod photoelectrode is 0.02 mA cm$^{-2}$. Furthermore, all TiO$_2$–Bi$_2$O$_3$ composite rods showed markedly enhanced photocurrent density with respect to the pristine TiO$_2$ rods. The photocurrent density of the TiO$_2$/s–Bi$_2$O$_3$ rod photoelectrode is approximately 0.61 mA cm$^{-2}$ and this photocurrent density is around 30 times higher than that of the pristine TiO$_2$ rod photoelectrode under irradiation. Notably, the TiO$_2$/a–Bi$_2$O$_3$ rod photoelectrode achieved the highest photocurrent density of approximately 0.92 mA cm$^{-2}$ in this study; this value is approximately 46 times higher than that of the pristine TiO$_2$ rod photoelectrode. A substantial increase in the photocurrent density of the TiO$_2$ rods sputter coated with α/β–Bi$_2$O$_3$ thin films is clearly demonstrated. The marked photocurrent intensity increase upon light irradiation indicates the efficient charge separation capability in the semiconductor oxides [2]. The photoresponse results herein demonstrated that the TiO$_2$/a–Bi$_2$O$_3$ composite rods exhibited the better photinduced electron-hole separation efficiency as compared with the TiO$_2$/s–Bi$_2$O$_3$ rods. One of the possible reasons is associated with the suitable band alignment between the α- and β- phase Bi$_2$O$_3$ in the Bi$_2$O$_3$ coverage layer of the composite rods and type II band alignments of the TiO$_2$/α- phase Bi$_2$O$_3$ and TiO$_2$/β- phase Bi$_2$O$_3$ in the composite rod system. The multi-junctions in the TiO$_2$/a–Bi$_2$O$_3$ composite rod system explained its superior electron-hole separation efficiency than the TiO$_2$/s–Bi$_2$O$_3$ rod system in which the Bi$_2$O$_3$ coverage layer was in a single β phase. A substantially increased photoactivity has been shown in the multilayered ZnO/ZnS/CdS/CulnS$_2$ core–shell nanowire arrays than that of the ZnO/ZnS nanowire. This is attributable to the formation of type II band aligned multi-junctions in the composite system which markedly enhances photoinduced charge separation efficiency [26]. A similar multi-junction effects has been shown in type II TiO$_2$/CdS–NiO$_3$ nanorod system, in which an NiO$_3$ layer coverage on the type II TiO$_2$/CdS nanorods substantially increases the photoactivity of the nanorods [27]. Moreover, in comparison with the flat s-Bi$_2$O$_3$ film coverage layer onto the TiO$_2$ rods, the sheet-like crystal feature of the a-Bi$_2$O$_3$ coverage layer in the TiO$_2$–Bi$_2$O$_3$ composite rods markedly increased the light-harvesting ability of the TiO$_2$. The multi-junctions and unique sheet-like surface crystal feature of the TiO$_2$/a–Bi$_2$O$_3$.
composite rods explained their superior photoactivity than that of the TiO$_2$/s–Bi$_2$O$_3$ composite rods herein. Figure 7b shows the Nyquist impedance plots of the TiO$_2$, TiO$_2$/s–Bi$_2$O$_3$, and TiO$_2$/a–Bi$_2$O$_3$ rod photoelectrodes under irradiation. It has been shown that a smaller semicircular radius in the high-frequency region represents a lower electron transport resistance and a higher separation efficiency of the photogenerated electrons and holes [28]. In Figure 7b, the radius of semicircular arc of the pristine TiO$_2$ rod photoelectrode is obviously larger than that of all the TiO$_2$–Bi$_2$O$_3$ composite rod photoelectrodes, revealing the composite structure can indeed accelerate the photoinduced electron-hole pair’s separation efficiency. Moreover, the arc radius in the Nyquist curve of the TiO$_2$/a–Bi$_2$O$_3$ photoelectrode is the smallest, implying this composite rod system had the lowest internal charge transfer resistance and can accelerate electron transfer and restrain e$^-$/h$^+$ recombination under light irradiation. A small arc radius and low internal charge transfer resistance for the heterogeneous structure facilitate the interfacial transfer of charges as well as the separation of charge carriers; this has been reported in TiO$_2$/β–Bi$_2$O$_3$ nanotube array composite films via electrodeposition [29]. Figure 7c exhibits the possible equivalent circuits for a quantitative analysis of interfacial charge transfer ability of various rod samples. A similar equivalent circuit for the heterogeneous system herein has been demonstrated in previous reported BiVO$_4$/BiOI and BiOI/BiOIO$_3$ heterogeneous systems [28,30]. As the illustrations show, the intercept of the semicircle in the high frequency region with real axis symbolizes the solution resistance $R_s$ and it depends on the concentration and conductivity of the electrolyte [31]. The C indicates the electric double layer capacitor and Q is the constant-phase element [32]. $R_{ct}$ represents the electron transfer resistance, and it can be estimated through the fitting of arc radii of the Nyquist curves. The $R_f$ represents the rod sample resistance [31]. In general, a small radius of the Nyquist curve indicates a small $R_{ct}$ value for the rod samples. In the current work, the separately evaluated $R_{ct}$ values of the TiO$_2$, TiO$_2$/s–Bi$_2$O$_3$, and TiO$_2$/a–Bi$_2$O$_3$ rods are approximately 7959, 97.97 and 77.46 Ohm. The results from the PEC and EIS experiments demonstrated that the separation and migration processes of photoinduced electron-hole pairs are greatly forwarded in the TiO$_2$/a–Bi$_2$O$_3$ composite rod system herein.

![Figure 7](image)

**Figure 7.** (a) Transient photocurrent density versus time curves of various rod samples under chopped irradiation at 1 V. (b) Nyquist plots of various rod samples under light irradiation. (c) The possible equivalent circuit used for $R_{ct}$ evaluation of various rod samples.

The photoactivities of various rod-like photocatalysts were performed through photocatalytic decomposition experiments involving MO dyes. The pristine TiO$_2$ rods were used in the comparative experiment as a photocatalytic reference to understand the improved photocatalytic activity of the TiO$_2$–Bi$_2$O$_3$ heterogeneous rods. As depicted in Figure 8a–c, the main absorption peaks of the MO solution decreased gradually in the presence of the various rod-like photocatalysts under solar light irradiation with different durations. Comparatively, the drop in absorbance spectrum intensity was more substantial for the MO solution containing TiO$_2$–Bi$_2$O$_3$ composite rods than that for the MO solution containing the pristine TiO$_2$ rods at the given irradiation duration. The photodegradation performance of the MO solution containing various rod samples was evaluated from the concentration ratio of C/C$_o$, in which C is the concentration of the MO solution containing the test samples after a given irradiation time, and C$_o$ is the initial concentration of the MO solution without irradiation. The C/C$_o$ vs. irradiation duration results for various rod-like photocatalysts are summarized in Figure 8d. Before irradiation, the rod-like photocatalysts were immersed in the MO solution for
32 min to reach adsorption–desorption equilibrium, and the decreased concentration of the MO solution reflected the dye absorptivity onto the surfaces of the rod-like photocatalysts. The $C/C_0$ value of the MO solution decreased approximately 6% for the TiO$_2$ and TiO$_2$/s–Bi$_2$O$_3$ photocatalysts and that value was markedly dropped by approximately 9% for the TiO$_2$/a–Bi$_2$O$_3$ photocatalyst at the given dark balance condition. This revealed that the TiO$_2$/a–Bi$_2$O$_3$ photocatalyst exhibited more intense dye absorptivity than other rod-like photocatalysts herein. The $C/C_0$ values of the MO solution containing the TiO$_2$, TiO$_2$/s–Bi$_2$O$_3$, and TiO$_2$/a–Bi$_2$O$_3$ rods after 32 min irradiation were approximately 0.76, 0.35 and 0.14, respectively; almost 86% MO dyes are photodegraded in the solution containing the TiO$_2$/a–Bi$_2$O$_3$ photocatalyst. Moreover, the discoloration of the MO solution containing the TiO$_2$/a–Bi$_2$O$_3$ photocatalyst with different irradiation durations is visibly observed in the insets of Figure 8f. The MO solution containing TiO$_2$/a–Bi$_2$O$_3$ photocatalyst became almost translucent after 32 min light irradiation; this is in agreement with the $C/C_0$ result. Notably, the construction of TiO$_2$–Bi$_2$O$_3$ heterostructures markedly enhanced the photodegradation efficiency of the TiO$_2$ rods. The kinetic analysis of the MO photodegradation processes containing various rod-like photocatalysts was performed to compare the photodegradation efficiencies of various rod-like photocatalysts. The kinetic linear simulation curves of the photocatalytic MO degradation with different rod-like photocatalysts demonstrated that the degradation reactions follow an apparent first-order kinetic model at low initial concentrations. The kinetic model follows the formula $\ln \left( \frac{C}{C_0} \right) = kt$ herein, where $k$ is the first-order rate constant (min$^{-1}$) and $t$ is irradiation duration [8]. The $k$ values determined for various rod-like photocatalysts are demonstrated in Figure 8e. The Bi$_2$O$_3$ thin coverage layer shows a significant influence on the photocatalytic degradation performance of the TiO$_2$ rods towards MO dyes. In comparison with the TiO$_2$ rods, the decoration of the $\beta$-phase Bi$_2$O$_3$ coverage layer enhanced the $k$ value to 0.0311 min$^{-1}$; moreover, the decoration of the $\alpha/\beta$ dual-phase Bi$_2$O$_3$ coverage layer substantially improved the $k$ value to 0.0582 min$^{-1}$, revealing more efficient enhancement in photoactivity of the TiO$_2$ rod-based photocatalyst using the dual-phase Bi$_2$O$_3$ film. It has been shown that $\alpha/\beta$ dual-phase Bi$_2$O$_3$ nanofibers demonstrate a higher photoactivity to photodegrade RhB dyes than that of the single-phase constituents [33]. Essentially superior photoactivity in the $\alpha/\beta$ dual-phase Bi$_2$O$_3$ than that of the $\beta$-phase Bi$_2$O$_3$ might explained the superior photocatalytic performance of the TiO$_2$/a–Bi$_2$O$_3$ photocatalyst herein. The possible band alignments between TiO$_2$ rod and a–Bi$_2$O$_3$ film is shown in Figure 8f. The conduction band (CB) and valence band (VB) positions of the TiO$_2$ are at $\sim$0.37 eV and 2.66 eV (vs. Normal Hydrogen Electrode, NHE), respectively [34]. The CB and VB positions of the a–Bi$_2$O$_3$ are at 0.03 eV and 2.88 eV (vs. NHE), respectively. Moreover, the CB and VB of $\beta$-Bi$_2$O$_3$ are at 0.23 eV and 2.98 eV (vs. NHE), respectively [35]. Furthermore, the type II heterojunctions formed from $\alpha$-Bi$_2$O$_3$/$\beta$-Bi$_2$O$_3$, TiO$_2$/$\alpha$–Bi$_2$O$_3$, and TiO$_2$/$\beta$–Bi$_2$O$_3$ in the TiO$_2$/a–Bi$_2$O$_3$ photocatalyst demonstrates a synergetic effect in the substantially improved photoactivity. The suitable band alignments at the three types of heterogeneous interfaces in the TiO$_2$/a–Bi$_2$O$_3$ photocatalyst improved the photoinduced charge separation efficiency in the composite rods. When the TiO$_2$/a–Bi$_2$O$_3$ photocatalyst was excited by light with photon energy higher or equal to the band gaps of the Bi$_2$O$_3$ and TiO$_2$ photoinduced electrons in the conduction band of TiO$_2$ might flow to that of $\alpha$-Bi$_2$O$_3$, then reach that of $\beta$-Bi$_2$O$_3$. A stepwise transfer of photoinduced electrons in the TiO$_2$/a–Bi$_2$O$_3$ photocatalyst with a stepped heterogeneous energy band structure reduced the recombination number of photoinduced electrons. Simultaneously, photogenerated holes in the valence band of the $\beta$-Bi$_2$O$_3$ transfer to that of $\alpha$-Bi$_2$O$_3$, then to that of TiO$_2$. In the TiO$_2$–Bi$_2$O$_3$ heterogeneous system, the TiO$_2$ acts as a pathway for the transportation of holes. The effective separation of photogenerated carriers in the composite rods herein leads to the enhancement of their photoactivity performance. A similar design of multijunctions with a stepped band alignment configuration formed in the composite structures with three constituent components to improve their photoactivity have been reported in TiO$_2$/CdS–NiO$_x$ nanorod and
NiO–CdO–ZnO systems [27,36]. The possible reactions involved in the photodegradation process of the MO solution containing the TiO$_2$/a–Bi$_2$O$_3$ photocatalyst are described below [1,2,37]:

\[
\begin{align*}
\alpha - Bi_2O_3 + hv & \rightarrow \alpha - Bi_2O_3 (e^-) + \alpha - Bi_2O_3 (h^+) \quad (1) \\
\beta - Bi_2O_3 + hv & \rightarrow \beta - Bi_2O_3 (e^-) + \beta - Bi_2O_3 (h^+) \quad (2) \\
TiO_2 + hv & \rightarrow TiO_2 (e^-) + TiO_2 (h^+) \quad (3) \\
OH^- + h^+ & \rightarrow \cdot OH \quad (4) \\
h^+ + H_2O & \rightarrow \cdot OH + H^+ \quad (5) \\
O_2 + e^- & \rightarrow \cdot O_2^- \quad (6) \\
\cdot O_2^- + H^+ & \rightarrow H_2O_2 \quad (7) \\
2HO_2^- & \rightarrow O_2 + H_2O_2 \quad (8) \\
H_2O_2 + \cdot O_2^- & \rightarrow \cdot OH + OH^- + O_2 \quad (9) \\
\cdot OH + MO & \rightarrow degradation products \quad (10)
\end{align*}
\]

The hydroxyl radical \(\cdot OH\) finally formed from the above possible series reactions can decompose MO dyes directly during the photodegradation process. The photoactivity stability of the TiO$_2$/a–Bi$_2$O$_3$ photocatalyst in photodegrading the MO solution under light irradiation was evaluated using the recycling tests as shown in Figure 8g. After five repeat test cycles, the TiO$_2$/a–Bi$_2$O$_3$ photocatalyst retained consistent photoactivity without apparent deactivation. The retained photoactivity after cycling tests considerably promotes the practical application of this composite structure in eliminating MO dye pollutants. In order to understand the visible light-driven photodegradation effects on the formed heterogeneous systems, control groups including the TiO$_2$/s–Bi$_2$O$_3$ and TiO$_2$/a–Bi$_2$O$_3$ photocatalysts photodegraded towards MO solution at the same irradiation duration but with visible light irradiation were conducted for a comparison. Figure 8h,i show the time-dependent absorbance spectra intensity variation of aqueous MO solution containing TiO$_2$/s–Bi$_2$O$_3$ and TiO$_2$/a–Bi$_2$O$_3$ photocatalysts under visible light irradiation, respectively. It is visibly observed that the intensity of absorbance spectra deceased with visible light irradiation duration. Comparatively, the drop degree of the absorbance spectra intensity is lower than that of the MO solution containing the same photocatalysts under solar light irradiation at the same given irradiation duration (Figure 8b,c). It is supposed that the contribution of photoexcited charges from TiO$_2$ because of its wide bandgap in the UV light region is prohibited to participate in MO dye photodegradation processes herein. The \(C/C_0\) vs. irradiation duration plots for the MO solution with two different composite photocatalysts are displayed in Figure 8j. The photodegradation degree decreased to approximately 39% and 60% for the MO solution with TiO$_2$/s–Bi$_2$O$_3$ and TiO$_2$/a–Bi$_2$O$_3$ photocatalysts, respectively after 32 min visible light irradiation. Although the MO solution photodegradation from TiO$_2$ was restrained (referred to the result from the \(C/C_0\) variation with irradiation duration in Figure 8j), the contribution of the Bi$_2$O$_3$ coverage layer under visible light irradiation is clearly visible. Furthermore, the TiO$_2$/a–Bi$_2$O$_3$ photocatalyst exhibited higher visible light photodegradation capability towards MO dyes than that of the TiO$_2$/s–Bi$_2$O$_3$. The effect of the aforementioned \(\alpha/\beta\) heterojunction in the a-Bi$_2$O$_3$ coverage layer film on photoactive performance is also clearly demonstrated in the visible light-driven MO photodegradation testes.
photoresponse, EIS, and organic dye photodegradation performance results demonstrate that the 
photodegradation tests of the MO solution containing TiO$_2$ rod templates. The insets show the discoloration of the MO solution containing various rod samples: (a) TiO$_2$ rods, (b) TiO$_2$/s–Bi$_2$O$_3$ rods, (c) TiO$_2$/α–Bi$_2$O$_3$ rods, (d) C/C$_o$ versus irradiation duration plot. The insets show the discoloration of the MO solution containing the TiO$_2$/α–Bi$_2$O$_3$ rods under various irradiation durations. (e) ln (C/C$_o$) versus irradiation duration plot. (f) The possible band alignments of the TiO$_2$/α–Bi$_2$O$_3$ composite structure. (g) Recycling photodegradation tests of the MO solution containing TiO$_2$/α–Bi$_2$O$_3$ composite rods under irradiation. The visible light irradiation time-dependent absorbance spectra intensity variation of the MO solution containing (h) TiO$_2$/s–Bi$_2$O$_3$ and (i) TiO$_2$/α–Bi$_2$O$_3$ photocatalysts. (j) C/C$_o$ vs. visible light irradiation duration plots of the MO solution containing various composite rods.

4. Conclusions

In conclusion, the rutile TiO$_2$ rod templates coated with various Bi$_2$O$_3$ phase layers were prepared by in situ sputtering crystal growth and post-annealing procedures in ambient air. The microstructural analysis results demonstrate crystalline TiO$_2$–β–Bi$_2$O$_3$ and TiO$_2$–α/β–Bi$_2$O$_3$ composite rods were formed in this study. In comparison to the flat layered morphology of the β–Bi$_2$O$_3$ coverage film, the α/β–Bi$_2$O$_3
coverage layer exhibited a sheet-like feature on the TiO$_2$ rod templates. The photoresponse, EIS, and organic dye photodegradation performance results demonstrate that the TiO$_2$ rod templates coated with the α/β-Bi$_2$O$_3$ thin layer substantially improved the photoactivity of the TiO$_2$ rod templates than the TiO$_2$ rod templates coated with β-Bi$_2$O$_3$ thin layer. The unique sheet-like surface crystal feature of the TiO$_2$–α/β-Bi$_2$O$_3$ composite rods increased their light-harvesting ability; moreover, the formation of multi-junctions in the TiO$_2$–α/β-Bi$_2$O$_3$ composite structure efficiently promotes separation of the photoexcited $e^{-}/h^{+}$ pairs and charge transfer ability as well as restrains recombination of the charge carriers. The results herein show that the construction of the TiO$_2$–α/β-Bi$_2$O$_3$ composite rods via the combinational methods consisted of the hydrothermal rod growth, and sputtering and post-annealing assisted thin-film growth is promising for photoactivated devices applications.

**Author Contributions:** Methodology, K.-J.C.; formal analysis, K.-J.C.; Writing—original draft preparation, Y.-C.L.; supervision, Y.-C.L. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research was funded by Ministry of Science and Technology of Taiwan. Grant No. MOST 108-2221-E-019-034-MY3.

**Conflicts of Interest:** The authors declare no conflict of interest.

**References**

1. Liang, Y.C.; Chiang, K.J. Design and tuning functionality of rod-like titanium dioxide–nickel oxide composites via a combinational methodology. *Nanotechnology* 2020, 31, 195709. [CrossRef] [PubMed]

2. Liang, Y.C.; Liu, Y.C. Sputtering control of Ag$_2$O decoration configurations on ZnO nanorods and their surface arrangement effects on photodegradation ability toward methyl orange. *Nanotechnology* 2019, 30, 495701. [CrossRef] [PubMed]

3. Liang, Y.C.; Liu, Y.C. Microstructures and Photodegradation Performance toward Methylene Orange of Sputtering-Assisted Decoration of ZnFe$_2$O$_4$ Crystallites onto TiO$_2$ Nanorods. *Nanomaterials* 2019, 9, 205. [CrossRef] [PubMed]

4. Liang, Y.C.; Lo, Y.R.; Wang, C.C.; Xu, N.C. Shell Layer Thickness-Dependent Photocatalytic Activity of Sputtering Synthesized Hexagonally Structured ZnO-ZnS Composite Nanorods. *Materials* 2018, 11, 87. [CrossRef]

5. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO$_2$ Photocatalysis: Mechanisms and Materials. *Chem. Rev.* 2014, 114, 9919–9986. [CrossRef]

6. Yuan, Y.J.; Ye, Z.J.; Lu, H.W.; Hu, B.; Li, Y.H.; Chen, D.Q.; Zhong, J.S.; Yu, Z.T.; Zou, Z.G. Constructing Anatase TiO$_2$ Nanosheets with Exposed (001) Facets/Layered MoS$_2$ Two-Dimensional Nanojunctions for Enhanced Solar Hydrogen Generation. *ACS Catal.* 2016, 6, 532–541. [CrossRef]

7. Odhiambo, V.O.; Ongarbayeva, A.; Kéri, O.; Simon, L.; Szilágyi, I.M. Synthesis of TiO$_2$/WO$_3$ Composite Nanoﬁbers by a Water-Based Electrospinning Process and Their Application in Photocatalysis. *Nanomaterials* 2020, 10, 882. [CrossRef]

8. Liang, Y.C.; Chung, C.C.; Lo, Y.R.; Wang, C.C. Microstructure-Dependent Visible-Light Driven Photoactivity of Sputtering-Assisted Synthesis of Sulfide-Based Visible-Light Sensitizer onto ZnO Nanorods. *Materials* 2016, 9, 1014. [CrossRef]

9. Liang, Y.C.; Lung, T.W.; Xu, N.C. Photoexcited Properties of Tin Sulfide Nanosheet-Decorated ZnO Nanorod Heterostructures. *Nanoscale Res. Lett.* 2017, 12, 258. [CrossRef]

10. Li, Y.; Zhao, Y.; Wu, G.; Zhao, J. Facile and Efficient Synthesis of Bismuth Nanowires for Improved Photocatalytic Activity. *Inorg. Chem.* 2016, 55, 4897–4905. [CrossRef]

11. Raza, W.; Haque, M.M.; Muneer, M.; Harada, T.; Matsumurab, M. Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle. *J. Alloy. Compd.* 2015, 648, 641–650. [CrossRef]

12. Sammes, N.M.; Tompsett, G.A.; Nääf, H.; Aldinger, F. Bismuth based oxide electrolytes-structure and ionic conductivity. *J. Eur. Ceram. Soc.* 1999, 19, 1801–1826. [CrossRef]

13. Qiu, Y.; Yang, M.; Fan, H.; Zuo, Y.; Shao, Y.; Xu, Y.; Yang, X.; Yang, S. Nanowires of α- and β-Bi$_2$O$_3$: Phase-selective synthesis and application in photocatalysis. *CryEngComm* 2011, 13, 1843–1850. [CrossRef]
14. Zou, Q.; Li, H.; Yang, Y.P.; Miao, Y.C.; Hsiao, Y.N. Bi$_2$O$_3$/TiO$_2$ photocatalytic film coated on floated glass ball for efficient removal of organic pollutant. *Appl. Surf. Sci.* 2019, 467-468, 354–360. [CrossRef]

15. Pang, Y.; Xu, G.; Fan, C.; Lv, J.; Liu, J.; Wu, Y. Photoelectrochemical detection performance and mechanism discussion of Bi$_2$O$_3$ modified TiO$_2$ nanotube arrays. *RSC Adv.* 2016, 6, 61367–61377. [CrossRef]

16. Zhao, X.; Liu, H.; Qu, J. Photoelectrocatalytic degradation of organic contaminants at Bi$_2$O$_3$/TiO$_2$ nanotube array electrode. *Appl. Surf. Sci.* 2011, 257, 4621–4624. [CrossRef]

17. Liang, Y.C.; Liu, Y.C. Design of Nanoscale Surface Morphology of TiO$_2$–Ag$_2$O Composite Nanorods through Sputtering Decoration Process and Their Low-Concentration NO$_2$ Gas-Sensing Behaviors. *Nanomaterials* 2019, 9, 1150. [CrossRef]

18. Chen, X.; Dai, J.; Shi, G.; Li, L.; Wang, G.; Yang, H. Visible light photocatalytic degradation of dyes by β-Bi$_2$O$_3$/graphene nanocomposites. *J. Alloys Compd.* 2015, 649, 872–877. [CrossRef]

19. Liang, Y.C.; Lung, T.W. Growth of Hydrothermally Derived CdS-Based Nanostructures with Various Crystal Features and Photoactivated Properties. *Nanoscale Res. Lett.* 2016, 11, 264. [CrossRef]

20. Ge, M.; Cao, C.; Li, S.; Zhang, S.; Deng, S.; Huang, J.; Li, Q.; Zhang, K.; Al-Deyab, S.S.; Lai, Y. Enhanced photocatalytic performances of n-TiO$_2$ nanotubes by uniform creation of p-n heterojunctions with p-Bi$_2$O$_3$ quantum dots. *Nanoscale* 2015, 7, 11552–11560. [CrossRef]

21. Tang, X.; Ma, C.; Liu, N.; Liu, C.; Li, S. Visible light β-Bi$_2$O$_3$/BiOCl heterojunction photocatalyst with highly enhanced photocatalytic activity. *Chem. Phys. Lett.* 2018, 709, 82–87. [CrossRef]

22. Liang, Y.C.; Lung, T.W. Growth of Hydrothermally Derived CdS-Based Nanostructures with Various Crystal Features and Photoactivated Properties. *Nanoscale Res. Lett.* 2016, 11, 264. [CrossRef]

23. Bera, K.K.; Majumdar, R.; Chakraborty, M.; Bhattacharya, S.K. Phase control synthesis of phase control synthesis of phase control synthesis of α-/β-Bi$_2$O$_3$ heterojunction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B under natural sunlight. *J. Hazard. Mater.* 2018, 352, 182–191. [CrossRef][PubMed]

24. Sun, Y.; Wang, W.; Zhang, L.; Zhang, Z. Design and controllable synthesis of α-/-β-Bi$_2$O$_3$ homojunction with synergistic effect on photocatalytic activity. *Chem. Eng. J.* 2012, 211–212, 161–167. [CrossRef]

25. Liang, Y.C.; Xu, N.C.; Chiang, K.J. Surface Morphology-Dependent Functionality of Titanium Dioxide–Nickel Oxide Nanocomposite Semiconductors. *Nanomaterials* 2019, 9, 1651. [CrossRef][PubMed]

26. Yu, Y.X.; Ouyang, W.X.; Liao, Z.T.; Du, B.B.; Zhang, W.D. Construction of ZnO/ZnS/CdS/CuInS$_2$ Core–Shell Nanowire Arrays via Ion Exchange: P–n Junction Photoanode with Enhanced Photoelectrochemical Activity under Visible Light. *ACS Appl. Mater. Interfaces* 2014, 6, 8467–8474. [CrossRef][PubMed]

27. Yoo, I.; Kalanur, S.S.; Seo, H. A nanoscale p–n junction photoelectrode consisting of an NiO$_x$ layer on a TiO$_2$/CdS nanorod core-shell structure for highly efficient solar water splitting. *Appl. Catal. B* 2019, 250, 200–212. [CrossRef]

28. Huang, H.; Xiao, K.; Liu, K.; Yu, S.; Zhang, Y. In Situ Composition-Transformation Fabrication of BiOCl/BiOBr$_3$ Heterostructure: Semiconductor p–n Junction and Dominantly Exposed Reactive Facets. *Cryst. Growth Des.* 2016, 16, 221–228. [CrossRef]

29. Guan, Z.C.; Wang, H.P.; Wang, X.; Hu, J.; Du, R.G. Fabrication of heterostructured β-Bi$_2$O$_3$–TiO$_2$ nanotube array composite film for photoelectrochemical cathodic protection applications. *Corrosion Science* 2018, 136, 60–69. [CrossRef]

30. Huang, H.; He, Y.; Du, X.; Chu, P.K.; Zhang, Y. A General and Facile Approach to Heterostructured Core/Shell BiVO$_4$/BiO$_3$ p–n Junction: Room-Temperature in Situ Assembly and Highly Boosted Visible-Light Photocatalysis. *ACS Sustainable Chem. Eng.* 2015, 3, 3262–3273. [CrossRef]

31. Ahila, M.; Subramanian, E.; Pathinettam Padiyan, D. Influence of annealing on phase transformation and specific capacitance enhancement in Bi$_2$O$_3$. *J. Electroanal. Chem.* 2017, 805, 146–158.

32. Atta, N.F.; Ibrahima, A.H.; Galal, A. Nickel oxide nanoparticles/ionic liquid crystal modified carbon composite electrode for determination of neurotransmitters and paracetamol. *New J. Chem.* 2016, 40, 662–673. [CrossRef]

33. Lim, G.D.; Yoo, J.H.; Ji, M.; Lee, Y.I. Visible light driven photocatalytic degradation enhanced by α/β dual phase heterojunctions on electrospun Bi$_2$O$_3$ nanofibers. *J. Alloys Compd.* 2019, 706, 1060–1067. [CrossRef]

34. Paola, A.D.; Bellardita, M.; Palmisano, L. Brookitoe the Least Known TiO$_2$ Photocatalyst. *Catalysts* 2013, 3, 36–73. [CrossRef]

35. Lebedev, A.; Anariba, F.; Li, X.; Leng, D.S.H.; Wu, P. Rational design of visible-light-driven Pd-loaded α/β-Bi$_2$O$_3$ nanorods with exceptional cationic and anionic dye degradation properties. *Solar Energy* 2019, 190, 531–542. [CrossRef]
36. Munawar, T.; Iqbal, F.; Yasmeen, S.; Mahmood, K.; Hussain, A. Multi metal oxide NiO-CdO-ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. *Ceram. Int.* **2020**, *46*, 2421–2437. [CrossRef]

37. Liu, X.; Deng, H.; Yao, W.; Jiang, Q.; Shen, J. Preparation and photocatalytic activity of Y-doped Bi$_2$O$_3$. *J. Alloys Compd.* **2015**, *651*, 135–142. [CrossRef]