SOME LEVIN-STEČKIN’S TYPE INEQUALITIES FOR OPERATOR CONVEX FUNCTIONS ON HILBERT SPACES

SILVESTRU SEVER DRAGOMIR

Abstract. Let f be an operator convex function on I and $A, B \in \mathcal{SA}_I(H)$, the class of all selfadjoint operators with spectra in I. Assume that $p : [0, 1] \to \mathbb{R}$ is symmetric and non-decreasing on $[0, 1/2]$. In this paper we obtained, among others, that

$$0 \leq \int_0^1 p(t) \, dt \int_0^1 f(tA + (1-t)B) \, dt - \int_0^1 p(t) \, f(tA + (1-t)B) \, dt$$

$$\leq \frac{1}{4} \left[p\left(\frac{1}{2}\right) - p(0) \right] \left[\frac{f(A) + f(B)}{2} - f\left(\frac{A + B}{2}\right) \right]$$

in the operator order.

Several other similar inequalities for either p or f is differentiable, are also provided. Applications for power function and logarithm are given as well.

1. Introduction

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if

$$f((1 - \lambda) A + \lambda B) \leq (\geq) (1 - \lambda) f(A) + \lambda f(B)$$

in the operator order, for all $\lambda \in [0, 1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if $-f$ is operator convex.

A real valued continuous function f on an interval I is said to be operator monotone if it is monotone with respect to the operator order, i.e., $A \leq B$ with $\text{Sp}(A), \text{Sp}(B) \subset I$ imply $f(A) \leq f(B)$.

For some fundamental results on operator convex (operator concave) and operator monotone functions, see [12] and the references therein.

As examples of such functions, we note that $f(t) = t^r$ is operator monotone on $[0, \infty)$ if and only if $0 \leq r \leq 1$. The function $f(t) = t^r$ is operator convex on $(0, \infty)$ if either $1 \leq r \leq 2$ or $-1 \leq r \leq 0$ and is operator concave on $(0, \infty)$ if $0 \leq r \leq 1$. The logarithmic function $f(t) = \ln t$ is operator monotone and operator concave on $(0, \infty)$. The entropy function $f(t) = -t \ln t$ is operator concave on $(0, \infty)$. The exponential function $f(t) = e^t$ is neither operator convex nor operator monotone.

In [8] we obtained among others the following Hermite-Hadamard type inequalities for operator convex functions $f : I \to \mathbb{R}$

$$f\left(\frac{A + B}{2}\right) \leq \int_0^1 f((1 - s) A + sB) \, ds \leq f\left(\frac{A}{2}\right) + f\left(\frac{B}{2}\right).$$

1991 Mathematics Subject Classification. 47A63, 26D15, 26D10.

Key words and phrases. Operator convex functions, Integral inequalities, Hermite-Hadamard inequality, Féjer’s inequalities, Levin-Stečkin’s inequality.
where A, B are selfadjoint operators with spectra included in I.

From the operator convexity of the function f we have

$$f\left(\frac{A + B}{2}\right) \leq \frac{1}{2} \left[f((1 - s)A + sB) + f(sA + (1 - s)B)\right]$$

for all $s \in [0, 1]$ and A, B selfadjoint operators with spectra included in I.

If $p : [0, 1] \to [0, \infty)$ is Lebesgue integrable and symmetric in the sense that $p(1 - s) = p(s)$ for all $s \in [0, 1]$, then by multiplying (1.3) with $p(s)$, integrating on $[0, 1]$ and taking into account that

$$\int_0^1 p(s) f((1 - s)A + sB) ds = \int_0^1 p(s) f(sA + (1 - s)B) ds,$$

we get the weighted version of (1.2) for A, B selfadjoint operators with spectra included in I

$$\left(\int_0^1 p(s) ds\right) f\left(\frac{A + B}{2}\right) \leq \int_0^1 p(s) f(sA + (1 - s)B) ds$$

which are the operator version of the well known Féjer’s inequalities for scalar convex functions.

For recent inequalities for operator convex functions see [1]-[2], [4], [6]-[14], and [21]-[26].

The following result is known in the literature as Levin-Stečkin’s inequality [16]:

Theorem 1. If the function $p : [0, 1] \to \mathbb{R}$ is symmetric, namely $p(1 - t) = p(t)$ for $t \in [0, 1]$ and non-decreasing (non-increasing) on $[0, 1/2]$, then for every convex function g on $[0, 1]$,

$$(LS) \quad \int_0^1 p(t) g(t) dt \leq \geq \int_0^1 p(t) dt \int_0^1 g(t) dt.$$

If the function g is concave on $[0, 1]$, then the signs of inequalities reverse in (LS).

For some recent results related to Levin-Stečkin’s inequality, see [18], [19] and [27].

Motivated by the above operator inequalities, we provide in this paper the operator version of Levin-Stečkin’s inequality as well as several reverses. Applications for power function and logarithm are also given.

2. Operator Inequalities

Let f be an operator convex function on I. For $A, B \in \mathcal{SA}_I(H)$, the class of all selfadjoint operators with spectra in I, we consider the auxiliary function $\varphi_{(A,B)} : [0, 1] \to \mathcal{SA}(H)$, the class of all selfadjoint operators on H, defined by

$$\varphi_{(A,B)}(t) := f((1 - t)A + tB).$$

For $x \in H$ we can also consider the auxiliary function $\varphi_{(A,B);x} : [0, 1] \to \mathbb{R}$ defined by

$$\varphi_{(A,B);x}(t) := \langle \varphi_{(A,B)}(t)x, x \rangle = (f((1 - t)A + tB)x, x).$$
We have the following basic fact [10]:

Lemma 1. Let \(f \) be an operator convex function on \(I \). For any \(A, B \in S\mathcal{A}_I(H) \), \(\varphi_{(A,B)} \) is well defined and convex in the operator order. For any \((A,B) \in S\mathcal{A}_I(H) \) and \(x \in H \) the function \(\varphi_{(A,B);x} \) is convex in the usual sense on \([0,1]\).

A continuous function \(g : S\mathcal{A}_I(H) \to \mathcal{B}(H) \) is said to be *Gâteaux differentiable* in \(A \in S\mathcal{A}_I(H) \) along the direction \(B \in \mathcal{B}(H) \) if the following limit exists in the strong topology of \(\mathcal{B}(H) \)

\[
\nabla g_A(B) := \lim_{s \to 0} \frac{g(A + sB) - g(A)}{s} \in \mathcal{B}(H).
\]

If the limit \((2.3) \) exists for all \(B \in \mathcal{B}(H) \), then we say that \(f \) is *Gâteaux differentiable* in \(A \) and we can write \(g \in G(A) \). If this is true for any \(A \) in an open set \(S \) from \(S\mathcal{A}_I(H) \) we write that \(g \in G(S) \).

If \(g \) is a continuous function on \(I \), by utilising the continuous functional calculus the corresponding function of operators will be denoted in the same way.

For two distinct operators \(A, B \in S\mathcal{A}_I(H) \) we consider the segment of selfadjoint operators

\[
[A, B] := \{(1 - t)A + tB \mid t \in [0, 1]\}.
\]

We observe that \(A, B \in [A, B] \) and \([A, B] \subset S\mathcal{A}_I(H) \).

We also have [10]:

Lemma 2. Let \(f \) be an operator convex function on \(I \) and \(A, B \in S\mathcal{A}_I(H) \), with \(A \neq B \). If \(f \in G([A,B]) \), then the auxiliary function \(\varphi_{(A,B)} \) is differentiable on \((0,1)\) and

\[
\varphi_{(A,B)}' (t) = \nabla f_{(1-t)A+tB} (B-A).
\]

Also we have for the lateral derivative that

\[
\varphi_{(A,B)}' (0+) = \nabla f_A (B-A)
\]

and

\[
\varphi_{(A,B)}' (1-) = \nabla f_B (B-A).
\]

and

Lemma 3. Let \(f \) be an operator convex function on \(I \) and \(A, B \in S\mathcal{A}_I(H) \), with \(A \neq B \). If \(f \in G([A,B]) \), then for \(0 < t_1 < t_2 < 1 \) we have

\[
\nabla g_{(1-t_1)A+t_1B} (B-A) \leq \nabla g_{(1-t_2)A+t_2B} (B-A)
\]

in the operator order.

We also have

\[
\nabla f_A (B-A) \leq \nabla g_{(1-t_1)A+t_1B} (B-A)
\]

and

\[
\nabla g_{(1-t_2)A+t_2B} (B-A) \leq \nabla f_B (B-A).
\]

In particular, we observe that:

Corollary 1. Let \(f \) be an operator convex function on \(I \) and \(A, B \in S\mathcal{A}_I(H) \), with \(A \neq B \). If \(f \in G([A,B]) \), then for all \(t \in (0,1) \) we have

\[
\nabla f_A (B-A) \leq \nabla f_{(1-t)A+tB} (B-A) \leq \nabla f_B (B-A).
\]
For two Lebesgue integrable functions \(h, g : [a, b] \to \mathbb{R} \), consider the Čebyšev functional:

\[
(2.11) \quad C(h, g) := \frac{1}{b-a} \int_a^b h(t)g(t) \, dt - \frac{1}{(b-a)^2} \int_a^b h(t) \, dt \int_a^b g(t) \, dt.
\]

In 1935, Grüss [15] showed that

\[
(2.12) \quad |C(h, g)| \leq \frac{1}{4} (M - m) (N - n),
\]

provided that there exists the real numbers \(m, M, n, N \) such that

\[
(2.13) \quad m \leq h(t) \leq M \quad \text{and} \quad n \leq g(t) \leq N \quad \text{for a.e. } t \in [a, b].
\]

The constant \(\frac{1}{4} \) is best possible in (2.11) in the sense that it cannot be replaced by a smaller quantity.

We have the following operator inequalities:

Theorem 2. Let \(f \) be an operator convex function on \(I \) and \(A, B \in \mathcal{SA}_I(H) \).

Assume that \(p : [0, 1] \to \mathbb{R} \) is symmetric and non-decreasing on \([0, 1/2], \) then we have the operator inequality

\[
(2.14) \quad 0 \leq \int_0^1 p(t) \, dt \int_0^1 f(tA + (1-t)B) \, dt - \int_0^1 p(t) f(tA + (1-t)B) \, dt\leq \frac{1}{4} \left[p\left(\frac{1}{2}\right) - p(0)\right]\left[\frac{f(A) + f(B)}{2} - f\left(\frac{A + B}{2}\right)\right].
\]

If \(p : [0, 1] \to \mathbb{R} \) is symmetric and non-increasing on \([0, 1/2], \) then

\[
(2.15) \quad 0 \leq \int_0^1 p(t) \, dt \int_0^1 f(tA + (1-t)B) \, dt - \int_0^1 p(t) f(tA + (1-t)B) \, dt\leq \frac{1}{4} \left[p(0) - p\left(\frac{1}{2}\right)\right]\left[\frac{f(A) + f(B)}{2} - f\left(\frac{A + B}{2}\right)\right].
\]

Proof. For \(x \in H \) we consider the auxiliary function \(\varphi_{(A,B);x} : [0, 1] \to \mathbb{R} \) defined by

\[
\varphi_{(A,B);x} (t) := \left< \varphi_{(A,B)}(t) x, x \right> = \left< (1-t) A + tB, x, x \right>.
\]

Since \(p \) is symmetric on \([0, 1]\), then

\[
\int_0^1 p(t) \frac{\varphi_{(A,B);x} (t) + \varphi_{(A,B);x} (1-t)}{2} \, dt
= \frac{1}{2} \left[\int_0^1 p(t) \varphi_{(A,B);x} (t) \, dt + \int_0^1 p(t) \varphi_{(A,B);x} (1-t) \, dt \right]
= \frac{1}{2} \left[\int_0^1 p(t) \varphi_{(A,B);x} (t) \, dt + \int_0^1 p(t) \varphi_{(A,B);x} (1-t) \, dt \right].
\]

By changing the variable \(1-t = s, \ s \in [0, 1] \) we have

\[
\int_0^1 p(1-t) \varphi_{(A,B);x} (1-t) \, dt = \int_0^1 p(s) \varphi_{(A,B);x} (s) \, ds
\]

and then

\[
\int_0^1 p(t) \frac{\varphi_{(A,B);x} (t) + \varphi_{(A,B);x} (1-t)}{2} \, dt = \int_0^1 p(t) \varphi_{(A,B);x} (t) \, dt.
\]
Also
\[
\int_0^1 \frac{\varphi(A,B;x)(t) + \varphi(A,B;x)(1-t)}{2} \, dt = \int_0^1 \varphi(A,B;x)(t) \, dt.
\]

Therefore
\[
\int_0^1 p(t) \, dt \int_0^1 \varphi(A,B;x)(t) \, dt - \int_0^1 p(t) \varphi(A,B;x)(t) \, dt = \int_0^1 p(t) \, dt \int_0^1 \varphi(A,B;x)(t) \, dt - \int_0^1 p(t) \varphi(A,B;x)(t) \, dt,
\]
where
\[
\hat{\varphi}(A,B;x)(t) := \frac{\varphi(A,B;x)(t) + \varphi(A,B;x)(1-t)}{2}, \quad t \in [0, 1]
\]
is the symmetrical transform of \(\varphi(A,B;x)\) on the interval \([0, 1]\).

Now, if we use the Levin-Stečkin's inequality for the symmetric function \(p\) and the convex function \(g = \varphi(A,B;x)^r\), then we obtain
\[
0 \leq \int_0^1 p(t) \, dt \int_0^1 \varphi(A,B;x)(t) \, dt - \int_0^1 p(t) \varphi(A,B;x)(t) \, dt,
\]
for all \(x \in H\).

Since, by Lemma 1, \(\varphi(A,B;x)\) is convex, then \(\hat{\varphi}(A,B;x)\) is symmetric and convex, which implies that
\[
\varphi(A,B;x) \left(\frac{1}{2} \right) = \hat{\varphi}(A,B;x) \left(\frac{1}{2} \right) \leq \hat{\varphi}(A,B;x)(t)
\]
\[
\leq \hat{\varphi}(A,B;x)(1) = \frac{\varphi(A,B;x)(0) + \varphi(A,B;x)(1)}{2}, \quad t \in [0, 1],
\]
for all \(x \in H\).

Also \(p(0) \leq p(t) \leq p \left(\frac{1}{2} \right), \quad t \in [0, 1]\) and by Grüss' inequality for \(h = p\) and \(g = \hat{\varphi}(A,B;x)\) we get
\[
0 \leq \int_0^1 p(t) \, dt \int_0^1 \hat{\varphi}(A,B;x)(t) \, dt - \int_0^1 p(t) \hat{\varphi}(A,B;x)(t) \, dt
\]
\[
\leq \frac{1}{4} \left[p \left(\frac{1}{2} \right) - p(0) \right] \left[\frac{\varphi(A,B;x)(0) + \varphi(A,B;x)(1)}{2} - \varphi(A,B;x) \left(\frac{1}{2} \right) \right]
\]

namely, by (2.16) and (2.17)
\[
0 \leq \int_0^1 p(t) \, dt \int_0^1 \varphi(A,B;x)(t) \, dt - \int_0^1 p(t) \varphi(A,B;x)(t) \, dt
\]
\[
\leq \frac{1}{4} \left[p \left(\frac{1}{2} \right) - p(0) \right] \left[\frac{\varphi(A,B;x)(0) + \varphi(A,B;x)(1)}{2} - \varphi(A,B;x) \left(\frac{1}{2} \right) \right]
\]
for all \(x \in H\).
The inequality (2.18) can be written in terms of inner product as
\[
0 \leq \left\langle \left(\int_0^1 p(t) dt \int_0^1 f((1-t)A + tB) dt \right) x, x \right\rangle \\
- \left\langle \left(\int_0^1 p(t) f((1-t)A + tB) dt \right) x, x \right\rangle \\
\leq \frac{1}{4} \left[p \left(\frac{1}{2} \right) - p(0) \right] \left[f \left(\frac{A + B}{2} \right) - \frac{f(A) + f(B)}{2} \right]
\]
for all \(x \in H \), which is equivalent to the operator inequality (2.14).

\[\square \]

Remark 1. If \(f \) is an operator concave function on \(I \) and \(A, B \in \mathcal{SA}_I(H) \), while \(p : [0,1] \rightarrow \mathbb{R} \) is symmetric and non-decreasing on \([0,1/2] \), then

\[
0 \leq \int_0^1 p(t) f((1-t)A + tB) dt - \int_0^1 p(t) dt \int_0^1 f((1-t)A + tB) dt dt \\
\leq \frac{1}{4} \left[p \left(\frac{1}{2} \right) - p(0) \right] \left[f \left(\frac{A + B}{2} \right) - \frac{f(A) + f(B)}{2} \right].
\]

Also, in this case, if \(p : [0,1] \rightarrow \mathbb{R} \) is symmetric and non-increasing on \([0,1/2] \), then

\[
0 \leq \int_0^1 p(t) f((1-t)A + tB) dt - \int_0^1 p(t) dt \int_0^1 f((1-t)A + tB) dt dt \\
\leq \frac{1}{4} \left[p(0) - p \left(\frac{1}{2} \right) \right] \left[f \left(\frac{A + B}{2} \right) - \frac{f(A) + f(B)}{2} \right].
\]

The following inequality obtained by Ostrowski in 1970, [20] also holds

\[
|C(h, g)| \leq \frac{1}{8} (b-a)(M-m)\|g'\|_{\infty},
\]
provided that \(h \) is Lebesgue integrable and satisfies (2.13) while \(g \) is absolutely continuous and \(g' \in L_{\infty}[a,b] \). The constant \(\frac{1}{8} \) is best possible in (2.21).

We have the following operator inequalities when some differentiability conditions are imposed.

Theorem 3. Let \(f \) be an operator convex function on \(I \) and \(A, B \in \mathcal{SA}_I(H) \) while \(p : [0,1] \rightarrow \mathbb{R} \) is symmetric and non-decreasing on \([0,1/2] \).

(i) If \(p \) is differentiable on \((0,1) \), then

\[
0 \leq \int_0^1 p(t) dt \int_0^1 f((1-t)A + tB) dt - \int_0^1 p(t) f((1-t)A + tB) dt \\
\leq \frac{1}{8} \|p'\|_{\infty} \left[f \left(\frac{A + B}{2} \right) - \frac{f(A) + f(B)}{2} \right].
\]

(ii) If \(f \in \mathcal{G}([A,B]) \), then

\[
0 \leq \int_0^1 p(t) dt \int_0^1 f((1-t)A + tB) dt - \int_0^1 p(t) f((1-t)A + tB) dt \\
\leq \frac{1}{16} \left[p \left(\frac{1}{2} \right) - p(0) \right] \|\nabla f_B(B - A) - \nabla f_A(B - A)\|.
\]
Proof: The inequality (2.22) follows by (2.21) for \(g = p \) and \(h = \varphi_{(A,B);x}, \ x \in H \) and proceed like in the proof of Theorem 2.

Now, by Lemma 2

\[
(2.24) \quad \left(\varphi_{(A,B);x} (t) \right)' = \left(\varphi_{(A,B);x} (t) \right)' + \left(\varphi_{(A,B);x} (1-t) \right)'
\]

\[
= \left(\varphi'_{(A,B)} (t) x, x \right) \frac{2}{2} - \left(\varphi'_{(A,B)} (1-t) x, x \right)
\]

\[
= \left(\nabla f_{(1-t)A+tB} (B-A) x, x \right) - \left(\nabla f_{tA+(1-t)B} (B-A) x, x \right)
\]

\[
= \left(\left[\nabla f_{(1-t)A+tB} (B-A) - \nabla f_{tA+(1-t)B} (B-A) \right] x, x \right)
\]

for all \(t \in (0,1) \) and any \(x \in H \),

Since \(\varphi_{(A,B);x} \) is convex on \((0,1) \), then

\[
\left(\varphi_{(A,B);x} (t) \right)'_{t=0+} \leq \left(\varphi_{(A,B);x} (t) \right)'_{t=1-}, \ t \in (0,1)
\]

namely, by Lemma 3

\[
\left\langle \left[\frac{\nabla f_A (B-A) - \nabla f_B (B-A)}{2} \right] x, x \right\rangle
\]

\[
\leq \left\langle \left[\frac{\nabla f_{(1-t)A+tB} (B-A) - \nabla f_{tA+(1-t)B} (B-A)}{2} \right] x, x \right\rangle
\]

\[
\leq \left\langle \left[\frac{\nabla f_B (B-A) - \nabla f_A (B-A)}{2} \right] x, x \right\rangle
\]

for all \(t \in (0,1) \) and any \(x \in H \).

Therefore

\[
\left| \left(\varphi_{(A,B);x} (t) \right)' \right| \leq \left| \left\langle \left[\frac{\nabla f_B (B-A) - \nabla f_A (B-A)}{2} \right] x, x \right\rangle \right|
\]

for all \(t \in (0,1) \) and any \(x \in H \), which implies that

\[
\sup_{t \in (0,1)} \left| \left(\varphi_{(A,B);x} (t) \right)' \right| \leq \left| \left\langle \left[\frac{\nabla f_B (B-A) - \nabla f_A (B-A)}{2} \right] x, x \right\rangle \right|
\]

\[
= \left| \left\langle \left[\frac{\nabla f_B (B-A) - \nabla f_A (B-A)}{2} \right] x, x \right\rangle \right|
\]

for any \(x \in H \), since by Corollary 1, we have \(f_B (B-A) \geq \nabla f_A (B-A) \).
If we use Ostrowski’s inequality (2.21) for $h = p$ and $g = \hat{\varphi}(A,B)x$, then we obtain

$$0 \leq \int_0^1 p(t) \, dt \int_0^1 \hat{\varphi}(A,B) : x \, (t) \, dt - \int_0^1 p(t) \, \hat{\varphi}(A,B) : x \, (t) \, dt$$

$$\leq \frac{1}{8} \left[p \left(\frac{1}{2} \right) - p(0) \right] \sup_{t \in (0,1)} \left| \left(\hat{\varphi}(A,B) : x \right)' \right|$$

$$\leq \frac{1}{8} \left[p \left(\frac{1}{2} \right) - p(0) \right] \left\langle \left[\frac{\nabla f_B (B - A) - \nabla f_A (B - A)}{2} \right] x, x \right\rangle,$$

namely

$$0 \leq \left(\int_0^1 p(t) \, dt \int_0^1 f ((1 - t) A + tB) \, dt - \int_0^1 p(t) \, f ((1 - t) A + tB) \, dt \right) x, x \rangle$$

$$\leq \frac{1}{8} \left[p \left(\frac{1}{2} \right) - p(0) \right] \left\langle \left[\frac{\nabla f_B (B - A) - \nabla f_A (B - A)}{2} \right] x, x \right\rangle,$$

which is equivalent to the operator inequality (2.23).

Another, however less known result, even though it was obtained by Čebyšev in 1882, [3], states that

$$|C(h,g)| \leq \frac{1}{12} \|h'\|_\infty \|g'\|_\infty (b - a)^2,$$

provided that h', g' exist and are continuous on $[a,b]$ and $\|h'\|_\infty = \sup_{t \in [a,b]} |h'(t)|$.

The case of euclidean norms of the derivative was considered by A. Lupaş in [17] in which he proved that

$$|C(h,g)| \leq \frac{1}{\pi^2} \|h'\|_2 \|g'\|_2 (b - a),$$

provided that h, g are absolutely continuous and h', $g' \in L_2[a,b]$. The constant $\frac{1}{\pi^2}$ is the best possible.

Further, we have:

Theorem 4. Let f be an operator convex function on I and $A, B \in S A_I (H)$ while $p : [0,1] \rightarrow \mathbb{R}$ is symmetric and non-decreasing on $[0,1/2]$.

(i) If p is differentiable on $(0,1)$ and $f \in G([A,B])$, then

$$0 \leq \int_0^1 p(t) \, dt \int_0^1 f (tA + (1 - t) B) \, dt - \int_0^1 p(t) \, f (tA + (1 - t) B) \, dt$$

$$\leq \frac{1}{24} \|p'\|_\infty \left[\nabla f_B (B - A) - \nabla f_A (B - A) \right].$$
(ii) If p is differentiable on $(0, 1)$ with $p' \in L^2[0, 1]$ and $f \in G([A, B])$, then

$$
0 \leq \int_0^1 p(t) \, dt \int_0^1 f(tA + (1 - t)B) \, dt - \int_0^1 p(t) f(tA + (1 - t)B) \, dt
$$

$$
\leq \frac{1}{2\pi^2} \|p'\|_2
\times \left(\int_0^1 \left\| \nabla f_{(1-t)A+tB}(B-A) - \nabla f_{tA+(1-t)B}(B-A) \right\|^2 \, dt \right)^{1/2}
$$

$$
\leq \frac{1}{\pi^2} \|p'\|_2 \left(\int_0^1 \left\| \nabla f_{(1-t)A+tB}(B-A) \right\|^2 \, dt \right)^{1/2}
$$

provided the last integral is finite.

Proof. The inequality (2.27) follows by (2.25) for $h = p$ and $g = \varphi_{(A,B),x}$, $x \in H$ and proceed like in the proof of Theorem 2.

From (2.24) we have

$$
\int_0^1 \left[\left(\varphi_{(A,B),x}(t) \right) \right]^2 \, dt
$$

$$
= \int_0^1 \left\| \left[\frac{\nabla f_{(1-t)A+tB}(B-A) - \nabla f_{tA+(1-t)B}(B-A)}{2} \right] x, x \right\|^2 \, dt
$$

$$
\leq \int_0^1 \left\| \nabla f_{(1-t)A+tB}(B-A) - \nabla f_{tA+(1-t)B}(B-A) \right\|^2 \, dt
$$

$$
\leq \frac{1}{4} \|x\|^2 \int_0^1 \left\| \nabla f_{(1-t)A+(1-t)B}(B-A) \right\|^2 \, dt
$$

for all $x \in H$, implying that

$$
\left(\int_0^1 \left[\left(\varphi_{(A,B),x}(t) \right) \right]^2 \, dt \right)^{1/2}
$$

$$
\leq \frac{1}{2} \|x\|^2 \left(\int_0^1 \left\| \nabla f_{(1-t)A+tB}(B-A) - \nabla f_{tA+(1-t)B}(B-A) \right\|^2 \, dt \right)^{1/2}
$$

for all $x \in H$.

By using (2.26) for $h = p$ and $g = \varphi_{(A,B),x}$, $x \in H$, we derive

$$
0 \leq \left\langle \left(\int_0^1 p(t) \, dt \int_0^1 f((1-t)A+tB) \, dt - \int_0^1 p(t) f((1-t)A+tB) \, dt \right) x, x \right\rangle
$$

$$
\leq \frac{1}{2\pi^2} \|p'\|_2 \|x\|^2 \left(\int_0^1 \left\| \nabla f_{(1-t)A+tB}(B-A) - \nabla f_{tA+(1-t)B}(B-A) \right\|^2 \, dt \right)^{1/2},
$$

which is equivalent to the first inequality in (2.28).
By the triangle inequality, we have
\[
\left(\int_0^1 \| \nabla f_{(1-t)A+tB} (B - A) - \nabla f_{tA+(1-t)B} (B - A) \|^2 \, dt \right)^{1/2} \\
\leq \left(\int_0^1 \| \nabla f_{(1-t)A+tB} (B - A) \|^2 \, dt \right)^{1/2} + \left(\int_0^1 \| \nabla f_{tA+(1-t)B} (B - A) \|^2 \, dt \right)^{1/2} \\
= 2 \left(\int_0^1 \| \nabla f_{(1-t)A+tB} (B - A) \|^2 \, dt \right)^{1/2},
\]
which proves the last part of (2.28).

Remark 2. If either \(p \) is non-increasing on \([0, 1/2]\) or \(f \) is an operator concave function on \(I \), then the interested reader may state similar results to the ones in Theorem 3 and Theorem 4. We omit the details.

3. **Some Examples**

The function \(f (t) = t^r \) is operator convex on \((0, \infty)\) if either \(1 \leq r \leq 2 \) or \(-1 \leq r \leq 0\). Assume that \(p : [0, 1] \to \mathbb{R} \) is symmetric and non-decreasing on \([0, 1/2]\), then we have by (2.14) the operator inequality
\[
0 \leq \int_0^1 p(t) \, dt \int_0^1 (tA + (1-t)B)^r \, dt - \int_0^1 p(t) \, dt \int_0^1 (tA + (1-t)B)^r \, dt \\
\leq \frac{1}{4} \left[p \left(\frac{1}{2} \right) - p(0) \right] \left[\frac{A^r + B^r}{2} - \left(\frac{A + B}{2} \right)^r \right]
\]
for all \(A, B > 0 \).

Moreover, if \(p \) is differentiable on \((0, 1)\), then by (2.22)
\[
0 \leq \int_0^1 p(t) \, dt \int_0^1 (tA + (1-t)B)^r \, dt - \int_0^1 p(t) \, dt \int_0^1 (tA + (1-t)B)^r \, dt \\
\leq \frac{1}{8} \| p' \|_{\infty} \left[\frac{A^r + B^r}{2} - \left(\frac{A + B}{2} \right)^r \right]
\]
for all \(A, B > 0 \).

The function \(f (x) = x^{-1} \) is operator convex on \((0, \infty)\), operator Gâteaux differentiable and
\[
\nabla f_T (S) = -T^{-1}ST^{-1}
\]
for \(T, S > 0 \).

If we use (2.23), then we get the inequality
\[
0 \leq \int_0^1 p(t) \, dt \int_0^1 (tA + (1-t)B)^{-1} \, dt - \int_0^1 p(t) \, dt \int_0^1 (tA + (1-t)B)^{-1} \, dt \\
\leq \frac{1}{16} \left[p \left(\frac{1}{2} \right) - p(0) \right] \left[\frac{1}{2} A^{-1} (B - A) A^{-1} - B^{-1} (B - A) B^{-1} \right]
\]
provided that \(p : [0, 1] \to \mathbb{R} \) is symmetric and non-decreasing on \([0, 1/2]\) and \(A, B > 0 \).
Moreover, if p is differentiable on $(0, 1)$ then by (2.27) we derive

\begin{equation}
0 \leq \int_0^1 p(t) \, dt \int_0^1 (tA + (1 - t) B)^{-1} \, dt - \int_0^1 p(t) \, dt \int_0^1 (tA + (1 - t) B)^{-1} \, dt
\leq \frac{1}{24} \|p'\|_{\infty} \left[A^{-1} (B - A) A^{-1} - B^{-1} (B - A) B^{-1} \right]
\end{equation}

for $A, B > 0$.

If we use the first and last term in (2.28), then we also have

\begin{equation}
0 \leq \int_0^1 p(t) \, dt \int_0^1 (tA + (1 - t) B)^{-1} \, dt - \int_0^1 p(t) \, dt \int_0^1 (tA + (1 - t) B)^{-1} \, dt
\leq \frac{1}{2} \|p'\|_2
\times \left(\int_0^1 \left\| \left((1 - t) A + tB \right)^{-1} (B - A) \left((1 - t) A + tB \right)^{-1} \right\|^2 \, dt \right)^{1/2} \frac{1}{16},
\end{equation}

provided that $p' \in L^2 [0, 1]$ and $A, B > 0$.

The logarithmic function $f(t) = \ln t$ is operator concave on $(0, \infty)$. Assume that $p : [0, 1] \to \mathbb{R}$ is symmetric and non-decreasing on $[0, 1/2]$, then we have by (2.14) the operator inequality

\begin{equation}
0 \leq \int_0^1 p(t) \ln (tA + (1 - t) B) \, dt - \int_0^1 p(t) \, dt \int_0^1 \ln (tA + (1 - t) B) \, dt
\leq \frac{1}{4} \left[p \left(\frac{1}{2} \right) - p (0) \right] \left[\ln \left(\frac{A + B}{2} \right) - \frac{\ln A + \ln B}{2} \right],
\end{equation}

for all $A, B > 0$.

Moreover, if p is differentiable on $(0, 1)$, then by (2.22)

\begin{equation}
0 \leq \int_0^1 p(t) \ln (tA + (1 - t) B) \, dt - \int_0^1 p(t) \, dt \int_0^1 \ln (tA + (1 - t) B) \, dt
\leq \frac{1}{8} \|p'\|_{\infty} \left[\ln \left(\frac{A + B}{2} \right) - \frac{\ln A + \ln B}{2} \right],
\end{equation}

for all $A, B > 0$.

We note that the function $f(x) = \ln x$ is operator concave on $(0, \infty)$. The ln function is operator Gâteaux differentiable with the following explicit formula for the derivative (cf. Pedersen [21, p. 155]):

\begin{equation}
\nabla \ln_T (S) = \int_0^\infty (s1_H + T)^{-1} S (s1_H + T)^{-1} \, ds
\end{equation}

for $T, S > 0$.

If we use inequality (2.23) for \ln we get for $A, B > 0$,

\begin{equation}
0 \leq \int_0^1 p(t) \ln (tA + (1 - t) B) \, dt - \int_0^1 p(t) \, dt \int_0^1 \ln (tA + (1 - t) B) \, dt
\leq \frac{1}{16} \left[p \left(\frac{1}{2} \right) - p (0) \right] \left[\int_0^\infty (s1_H + B)^{-1} (B - A) (s1_H + B)^{-1} \, ds
\right.
- \left. \int_0^\infty (s1_H + A)^{-1} (B - A) (s1_H + A)^{-1} \, ds \right],
\end{equation}

provided that $p : [0, 1] \to \mathbb{R}$ is symmetric and non-decreasing on $[0, 1/2]$.

If p is differentiable, then by (2.27) we

\begin{align}
0 & \leq \int_0^1 p(t) \ln(tA + (1-t)B) \, dt - \int_0^1 p(t) \, dt \int_0^1 \ln(tA + (1-t)B) \, dt \\
& \leq \frac{1}{24} \|p'\|_\infty \left[\int_0^\infty (s1_H + B)^{-1} (B - A) (s1_H + B)^{-1} \, ds \\
& \quad - \int_0^\infty (s1_H + A)^{-1} (B - A) (s1_H + A)^{-1} \, ds \right],
\end{align}

for $A, B > 0$.

A similar inequality can be derive from (2.28), however the details are omitted. The interested author can also state the corresponding operator inequalities for $f(t) = t \ln t$ that is operator convex on $(0, \infty)$.

Finally, if we take $p(t) = t (1 - t)$, then we observe that p is symmetric and non-decreasing on $[0, 1/2]$ and by (3.1) we obtain

\begin{align}
0 & \leq \frac{1}{6} \int_0^1 (tA + (1-t)B)^r \, dt - \int_0^1 t (1-t) (tA + (1-t)B)^r \, dt \\
& \leq \frac{1}{16} \left[A^r + B^r - \left(\frac{A + B}{2} \right)^r \right]
\end{align}

if either $1 \leq r \leq 2$ or $-1 \leq r \leq 0$ and $A, B > 0$.

From (3.3) we derive

\begin{align}
0 & \leq \frac{1}{6} \int_0^1 (tA + (1-t)B)^{-1} \, dt - \int_0^1 t (1-t) (tA + (1-t)B)^{-1} \, dt \\
& \leq \frac{1}{64} \left[A^{-1} (B - A) A^{-1} - B^{-1} (B - A) B^{-1} \right]
\end{align}

for $A, B > 0$.

From (3.6) we obtain the logarithmic inequality

\begin{align}
0 & \leq \int_0^1 t (1-t) \ln(tA + (1-t)B) \, dt - \frac{1}{6} \int_0^1 \ln(tA + (1-t)B) \, dt \\
& \leq \frac{1}{16} \left[\ln \left(\frac{A + B}{2} \right) - \ln A + \ln B \right],
\end{align}

while from (3.9), the inequality

\begin{align}
0 & \leq \int_0^1 t (1-t) \ln(tA + (1-t)B) \, dt - \frac{1}{6} \int_0^1 \ln(tA + (1-t)B) \, dt \\
& \leq \frac{1}{64} \left[\int_0^\infty (s1_H + B)^{-1} (B - A) (s1_H + B)^{-1} \, ds \\
& \quad - \int_0^\infty (s1_H + A)^{-1} (B - A) (s1_H + A)^{-1} \, ds \right]
\end{align}

for $A, B > 0$.

References

[1] R. P. Agarwal and S. S. Dragomir, A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. *Comput. Math. Appl.* **59** (2010), no. 12, 3785–3812.

[2] V. Bacak, T. Vildan and R. Türkmen, Refinements of Hermite-Hadamard type inequalities for operator convex functions. *J. Inequal. Appl.* **2013**, 2013:262, 10 pp.
[3] P. L. Chebyshev, Sur les expressions approximatives des intégrals définis par les autres prises entre les même limites, *Proc. Math. Soc. Charkov*, 2 (1882), 93-98.

[4] V. Darvish, S. S. Dragomir, H. M. Nazari and A. Taghavi, Some inequalities associated with the Hermite-Hadamard inequalities for operator h-convex functions. *Acta Comment. Univ. Tartu. Math.* 21 (2017), no. 2, 287–297.

[5] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, *J. Inequal. Pure & Appl. Math.*, Volume 3, Issue 2, Article 31, 2002. [Online https://www.emis.de/journals/JIPAM/article183.html?sid=183].

[6] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, *J. Inequal. Pure & Appl. Math.*, Volume 3, Issue 3, Article 35, 2002. [Online https://www.emis.de/journals/JIPAM/article187.html?sid=187].

[7] S. S. Dragomir, *Operator Inequalities of the Jensen, Chebyshev and Grüss Type*. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.

[8] S. S. Dragomir, Hermite-Hadamard’s type inequalities for operator convex functions. *Appl. Math. Comput.* 218 (2011), no. 3, 766–772.

[9] S. S. Dragomir, Some Hermite-Hadamard type inequalities for operator convex functions and positive maps. *Spec. Matrices* 7 (2019), 38–51. Preprint RGMIA Res. Rep. Coll. 19 (2016), Art. 80. [Online http://rgmia.org/papers/v19/v19a80.pdf].

[10] S. S. Dragomir, Reverses of operator Fejér’s inequalities, Accepted *Tokyo J. Math.*, Preprint RGMIA Res. Rep. Coll. 23 (2020), Art. 91 14 pp. [Online https://rgmia.org/papers/v22/v22a91.pdf].

[11] L. Fejér, Über die fourierreihen, II, *Math. Naturwise. Anz Ungar. Akad. Wiss.* 24 (1906) 369–390.

[12] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, *Mond-Pečarić Method in Operator Inequalities*. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.

[13] A. G. Ghazanfari, Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. *Complex Anal. Oper. Theory* 10 (2016), no. 8, 1695–1703.

[14] A. G. Ghazanfari, The Hermite-Hadamard type inequalities for operator s-convex functions. *J. Adv. Res. Pure Math.* 6 (2014), no. 3, 52–61.

[15] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx - \frac{1}{b-a} \int_{a}^{b} f(x)dx \cdot \frac{1}{b-a} \int_{a}^{b} g(x)dx$, *Math. Z.*, 39(1935), 215-226.

[16] V. I. Levin and S. B. Stečkin, Inequalities. *Amer. Math. Soc. Transl.* 14 (1960), 1–29.

[17] A. Lupaș, The best constant in an integral inequality, *Mathematica* (Cluj, Romania), 15 (38)(2) (1973), 219-222.

[18] P. R. Mercer, A note on the Fejér and Levin-Stečkin inequalities. *Anal. Math.* 43 (2017), no. 1, 99–102.

[19] P. R. Mercer, A note on inequalities due to Clausing and Levin-Stečkin. *J. Math. Inequal.* 11 (2017), no. 1, 163–166.

[20] A. M. Ostrowski, On an integral inequality, *Aequat. Math.*, 4 (1970), 358-373.

[21] G. K. Pedersen, Operator differentiable functions. *Publ. Res. Inst. Math. Sci.* 36 (1) (2000), 139-157.

[22] A. Taghavi, V. Darvish, H. M. Nazari and S. S. Dragomir, Hermite-Hadamard type inequalities for operator geometrically convex functions. *Monatsh. Math.* 181 (2016), no. 1, 187–203.

[23] M. Vivas Cortez, H. Hernández and E. Jorge, Refinements for Hermite-Hadamard type inequalities for operator h-convex function. *Appl. Math. Inf. Sci.* 11 (2017), no. 5, 1290–1307.

[24] M. Vivas Cortez, H. Hernández and E. Jorge, On some new generalized Hermite-Hadamard-Fejér inequalities for product of two operator h-convex functions. *Appl. Math. Inf. Sci.* 11 (2017), no. 4, 983–992.

[25] S.-H. Wang, Hermite-Hadamard type inequalities for operator convex functions on the coordinates. *J. Nonlinear Sci. Appl.* 10 (2017), no. 3, 1116–1125.

[26] S.-H. Wang, New integral inequalities of Hermite-Hadamard type for operator m-convex and (α, m)-convex functions. *J. Comput. Anal. Appl.* 22 (2017), no. 4, 744–753.

[27] A. Witkowski, Inequalities of Levin-Stečkin, Clausing and Chebyshev revisited. *Elem. Math.* 75 (2020), no. 1, 32–36.
1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.
E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa.