An Outlook on Nanocarriers to Improve Drug Efficacy of Chloroquine against SARS-CoV-2

Manash Jyoti Kashyap, Runjun Sarma

1Technology Consultant, Bapuji Nagar, Bohatia Gaon Path, Jorhat – 785 006, Assam, India.
2Formerly Assistant Professor, Mehr Chand Mahajan DAV College for Women, Sector 36-A, Chandigarh – 160 036, India.

Abstract

The sudden emergence of SARS-CoV-2 at the end of last year and its subsequent attainment of pandemic proportions have not only paralyzed the healthcare system but also destabilized the world economy due to subdued human activity in the past few months. Scientists the world over have been fervently working on finding a cure for the viral infection. Chloroquine and hydroxychloroquine are amongst the most popular medicines that are being considered as a counter to the SARS-CoV-2. However, the clinical trials of the drug both as a preventive for frontline healthcare professionals and as a cure for the infected have yielded mixed results. This is mainly due to the cardiotoxicity induced by the drug via QT prolongation when administered in high dosages. The prescription of the drug is further inadvisable if patients have been prescribed other QT prolonging drugs like azithromycin or have a known cardiac history. The authors have extensively studied literature on chloroquine mechanistic action and the successful use of nanocarriers as drug delivery vehicles against different viruses, malarial infections and in cancer therapy. The combination of nano-carrier and chloroquine/hydroxychloroquine is expected to overcome the limitations of the use of free chloroquine/hydroxychloroquine via increased drug efficacy and thus decreased chances of lethality arising from cardiotoxicity.

1. Introduction

An outbreak of a mysterious pneumonia emerged in a local seafood market of Wuhan city, in the Hubei province of China on December 2019, having jeopardized the global healthcare infrastructure till date [1]. This pneumonia like disease previously known as Novel coronavirus (2019-nCoV), have been officially renamed "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)" by the International Committee on Taxonomy of Viruses (ICTV) and as "COVID-19" by World Health Organization (WHO) on 11th February 2020. Thereafter, due to the rapid spread of the disease worldwide, the World Health Organization (WHO) declared it a pandemic on 11th March, 2020 [2]. The pathogen causing the infection was categorized into the Coronaviridae family using electron-microscopic investigation of the isolated tissue cultures from the virion infected samples [3]. The whole-genome sequencing and the genetic analysis studies have revealed that SARS-CoV-2 is genetically related to SARS-CoV of the 2003 outbreak [4]. This infection has progressed in a highly destructive manner with uncontrolled proliferation amongst the world populace irrespective of climate, race and age groups. In this situation, it has become a challenge to produce effective and safe therapeutic drug(s) with known pharmacokinetics and optimal dosage, which can be used to treat or prevent SARS-CoV-2 infections. In this context, an innovative way of treating COVID-19 can be by the possible repositioning of drugs such as Interferon, Lopinavir/Ritonavir, Chloroquine Phosphate, Ribavirin, and Arbidol [5]. We will discuss here about the most frequently used drugs all over the world including chloroquine (CQ) and hydroxychloroquine (HCQ).

Chloroquine was discovered in 1934 and has been used to treat malaria since the late 1940s. Moreover, this antimalarial drug is shown to be effective in vitro in extensive use of virus disease therapy after many clinical trials [6-8]. In March 30, 2020 the antimalarial drug, CQ (C₂₄H₂₄N₄O₂) and its derivative HCQ (C₂₄H₂₄N₄O₂) have been identified as an emergency treatment for COVID-19 by the US Food and Drug Administration (FDA) [5] though, they have many associated side effects arising from excessive doses and long-term use. CQ/HCQ has multiple functions, including alkalinisation of phagolysosome which results in suppressing the low-pH-dependent stages of viral replication, including fusion and un-coating [8]. The interaction of nanoparticles with microorganisms is fast-revolutionizing the biotechnological field by offering advantages in both diagnostic and therapeutic applications including drug delivery [9,10]. This is because of the unique physico-chemical properties such as size, large surface to volume ratio and improved surface reactivity of the nanoparticles. The size of SARS-CoV-2 falls within the same size range (60-140 nm) as well as shape (spherical) [11] as the commonly studied synthetic nanoparticles. Therefore, research on nanoparticle conjugated Chloroquine can give an illuminating idea on the cellular uptake of the drug and its induced alterations in the SARS-CoV-2 [11].

2. Action of Chloroquine (CQ)/Hydroxychloroquine (HCQ)

Because of the various interesting biochemical effects of CQ and its derivative HCQ, they are potentially used as an antiviral drug apart from being used as an antimalarial agent. However, to reduce the effect of the novel SARS-CoV-2, it is very important to know the chemical behavior of CQ and HCQ and their precise mechanism of action at the cellular level.

Inhibition of biosynthesis of sialic acid is an important biochemical action shown by CQ which interferes with the pre entry step of the virion particle into the host cell. The sialic acids are acidic monosaccharides found at the terminal position of the sugar chains attached to the cell surface and cell transmembrane proteins. They play critical roles in cellular and molecular recognition [12]. However, the biosynthesis of sialic acid is a complex process. A nucleotide sugar, UDP-N-acetylglucosamine (UDP-GlcNAc), in particular UDP-GlcNAc 2-epimerase enzyme is the starting compound involved in the initial biosynthesis process of the sialic acid [13].

In case of SARS-CoV-2, sialic acid is attached at the end of the structural protein, spike (S) protein. S protein is one of the most important structural proteins of SARS-CoV-2. Other important structural proteins of the virus include membrane (M) protein, envelope (E) protein, and the nucleocapsid (N) protein. S protein plays an important role in the entry of the virion into the host cell and participates in the cell attachment and host (cell) membrane fusion process [14]. The S protein of SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) found in the cell membranes of the lungs, arteries, heart, kidneys and intestines, as the cellular receptor for the attachment of the virus [1-16]. CQ acts by inhibiting the enzyme...
quinoine reductase 2 (a structural neighbour of UDP-N-acetylgalactosamine 2-epimerase) and self-delivery mechanism based on the use of hydrophobic nanocarrier, while, the self-delivery mechanism depends upon the direct conjugation of the drug such as CQ onto the nanostructured material [41]. The self-delivery model can be designed by incorporating nanostructures onto the drug. These nanostructures are stimulated by pH, temperature, redox, magnetic and other types of environments at the intended intracellular locations affected by viral infection [38].

Hydrophilic behavior of CQ may interfere in its effective delivery to the infected areas if used in the free form i.e. without nano-carriers. It is reported that CQ have been used with a nano-carrier based on a hydrophobic and biodegradable polymer, PLA (poly-lactic acid) for the treatment of herpes virus type 1 (HSV-1) [34]. The use of PLA based drug-nanodrug delivery system in combination with CQ has helped overcome the limitation of the drug towards efficient intracellular delivery at the infected tissues thus avoiding multiple administration of the drug. This prevents the drug associated toxicity in the human body. The antiviral activity of the Chloroquine-nanoparticle (CQ-NP) conjugates significantly improved compared to free CQ. Greater uptake of the CQ by the viral particles have been observed when it was encapsulated with the nanoparticle (NP), providing slower release rate of the drug and higher cytotoxicity into the virus cells. For killing 50% virus cells the average concentration of free CQ (22.6 µg/mL) was found to be much higher than the CQ (6.79 µg/mL) in CQ-NP conjugates. The CQ-NP conjugate concentration of 50% was found to be 6.7 µg/mL and 4.3 µg/mL for CQ and CQ-NP respectively. The values for the 100% inhibition of viral replication were 30 µg/mL and 10 µg/mL. Though, with PLA encapsulation, the efficiency of CQ drug against HSV-1 improved in terms of reduced dosage of drug and controlled drug release, it was a challenging task for the encapsulation of the hydrophilic CQ with hydrophobic PLA NPs. Further, encapsulating CQ with polymeric NP can be a promising approach for increasing the efficiency of CQ in SARS-CoV-2 treatment.

With the conjugation of bio-derived Chitosan nanoparticle with CQ (i.e., CQ-NP) the efficiency of CQ was effectively increased in killing malarial parasites like Plasmodium berghei, in mice as compared to the treatment using free CQ. The percentage of killed Plasmodium berghei infected mice reduced to ~31% and ~3% of the original value on administration of CQ and CQ-NP respectively. This indicates the 10-fold efficacy of CQ-NP as compared to free CQ in killing the malarial parasite. CQ-NP was found to act against the severity of the malarial infection by promoting the production of antioxidant enzymes which helps in mitigating the adverse effects of reactive oxygen species (ROS) enzymes secreted by the malarial parasite. Thus, the action of CQ-NP helps in protecting the host cell from DNA damage [43].

Respiratory viruses like SARS-CoV-2 generate certain enzymes that enhance the ROS enzymes in the infected/morbid regions of the host. Several of these enzymes have been reported to induce stress in the host cells as a result of redox pathway triggered by the action of ROS enzymes secreted by the virus cells [44]. Thus, SARS-CoV-2 viral infection treatment can be potentially improved with CQ while conjugating with chitosan nanoparticle.

4. Reduced Cardiotoxicity Induced by CQ

Both CQ and HCQ along with quinidine and quinine are derivatives of quinoline and have been used against malarial infections caused by the Plasmodium parasites since a long time. However, an older use of quinidine and quinidine-based drugs has been for the treatment of abnormalities in heart rhythm as a Class 1A antiarrhythmic agent [45]. Quinidine controls the electrical impulses in the heart by blocking sodium and potassium ion channels; thus regulating the cardiac electrical activity. This helps in regularizing or slowing the erratic beating of the heart. The adverse effects from the administration of quinidine result in prolonged QTc interval have shown development of torsade de points which is a life-threatening arrhythmia. Further, co-medication of certain drugs, notably azithromycin has been reported to aggravate the risk of QTc prolongation, thus requiring patients to be closely monitored for cardiac activity in such cases [44]. The action of CQ/HCQ in blocking of potassium ion channels in the cardiac tissue can be considered similar to that of quinidine and its stereoisomer quinidine. Thus, this family of drugs can be a cause of potentially lethal arrhythmia if administered without proper medical supervision [46].

The cardiotoxicity arising from chloroquine or quinine family of drugs can be safely bypassed by the use of nano-carriers to deliver the drug at the affected regions of the human body. Size of the nanoparticles is an important advantage and helps in targeted administration to the virus infected cells. There are a wide range of options available amongst nano-carriers ranging from liposome, micellar to hydrophobic synthetically produced polymers such as PLA, PCL, PEG etc. [42]. The advantage of
liposomic nano-carriers are their inherent biocompatibility with the human cellular environment, while the organic polymers such as PLA and PCL help in controlled release of the drugs. Many nano-carriers also have the advantages of being responsive to certain stimuli like temperature, pH, redox environment and thus can be selectively used to release the drug at the intended place of virus infection [38]. Comparative studies on the use of chloroquine phosphate for the treatment of herpes simplex virus type 1 (HSV-1) have shown the potential of nanocapsulated CQ in successfully inhibiting 100% replication of the virus at one-third the concentration of CQ when administered without nano-carriers. Thus, the use of nano-carriers for chloroquine or quinidine family of drugs if used for the treatment of SARS-CoV-2 infections can be successful in preventing cardiotoxicity mainly due to reduction of overall dose given to the patient due to the utility of precision and sustained release of the drug at the site of virus infected cells.

Nanoparticles can also help in reducing drug induced cardiotoxicity for molecules other than quinidine, QP or HCQ. Halofantrine is an antimalarial drug prescribed to malarial infections resistant to CQ. Halofantrine, like CQ, leads to QTC prolongation and acute cardiotoxicity via potassium channel inhibition. Studies on encapsulation of halofantrine using PLA, PCL and PEG nanocapsules have shown positive response in cardiotoxicity reduction via modification of the drug distribution in the human body. Cardiological alterations were found to be greatly reduced on administration of halofantrine using nanocapsules as compared to that of drug alone, thus showing a higher availability of the drug for interaction with the cardiac tissues [47,48].

Quinidine, quinine and CQ are also known to cause hypotension due to alpha-blocking activity. A high plasma concentration of these drugs after administration, usually through the intravenous or intra-muscular routes is the cause of hypotension during the distribution phase of the drug. Many authorities have indicated a lower availability of the drug for interaction within nano-carriers can safely reduce the plasma concentration of the drug in the distribution phase, thus reducing the risk of hypotension.

4.3 Reduction of Virus Induced Apoptosis

Autophagy plays an important role in humans in the regulation of physiological and pathological processes. It is important for survival of the cell in some stress environments like starvation, mitochondrial damage, pathological infection etc. [50,51]. Autophagy is a basic mechanism in which, damaged unused cellular components are transported via an intermediate organelle, autophagosomes to lysosomes for degradation. In the autophagic (Macroautophagy) process, autophagosome and lysosome fuse together and forms autophagic lysosome. This is followed by the degradation of the transported unwanted cellular parts contained in it by lysosomal acid hydrolases [52]. However, cytoplasmic constituents after degradation are again recycled to nutrients for the normal survival of the cells. Though autophagy is of utmost importance for the normal survival of the cells, it supports in the progression of some diseases including neurodegeneration, aging, cancer etc.

In cancer, in the initial stage of tumor cell growth, autophagic mechanism is upregulated and prevents the initiation of the tumor formation. While after tumor formation, autophagy supports its growth, mechanism in cells where, damaged unused cellular components are destroyed by increasing its pH. These lysosomes would have otherwise suppressed the deposition of lysosomes by increasing its pH. These lysosomes would have otherwise acted as the end compartment for internalisation of the nanoparticles in the endosome process [63]. Thus, QP in combination with nanoparticles can be used as a therapeutic medicine against SARS-CoV-2 and at the same time suppress the deposition of nanoparticles by acting as macrophage-modulator with respect to the endocytosis of nanoparticles in the liver and spleen.

6. Conclusions

CQ and HCQ are the key drugs being investigated for the fight against the SARS-CoV-2. CQ acts by preventing the attachment of the virus particle onto the host cell through sialic acid present in the virus. The challenges of using CQ, mainly due to the administration of high dosage such as cardiotoxicity via QTC prolongation, decreased drug efficiency and development of acquired drug resistance by the virus and can be potentially overcome by the use of nano-carriers as a drug delivery vehicle. Nano-carriers have the unique advantages of keeping the CQ dosage intact and delivering the medicine at a programmed rate of controlled diffusion and the site of virus infection. There have been examples of successful use of nanotechnology for drug delivery such as CQ encapsulated with PLA nanoparticles against herpes simplex virus, silver nanoparticle-Amantadine conjugated systems against H1N1 virus infection, and chitosan nanoparticle encapsulated CQ against Plasmodium berghei parasite. The authors would strongly recommend further experimental investigation on the use of CQ/HCQ with nano-carriers so that the disadvantages of using CQ arising out of possible high dosage due to acquired drug resistance can be offset by the benefits of using nanocarriers for the drug. The ability of CQ in inhibiting the deposition of nanoparticles by mechanisms such as suppression of endocytosis and internalization in the liver and spleen further makes for a strong proposition for the CQ-NP combination in the fight against SARS-CoV-2.

References

[1] P. Zhou, X.L. Yang, X.G. Wang, B. Hu, L. Zhang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (2020) 270-273.
[2] https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen (Accessed on: 25.03.2020)
[3] T.G. Ksiazek, D. Erdman, C.S. Goldsmith, S.R. Zaki, T. Peret, et al., SARS Working Group, A novel coronavirus associated with severe acute respiratory syndrome, N. Engl. J. Med. 348 (2003) 1953-1966.
[4] Y. Chen, Q. Liu, D. Guo, Emerging coronaviruses: Genome structure, replication, and pathogenesis, J. Med. Virol. 92 (2010) 418-423.
[5] M. Tobaqiy, M. Qashqary, M. Al-Daheri, A. Mujalad, A.A. Hershon, M.A. Kann, N. Heimi, Therapeutic management of CQ-CoV-19: A case study review, Infect. Prevent. Pract. 2 (2020) 100061-1-1.
[6] P. Golson, M.R. Rolain, D. Raoult, Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int. J. Antimicrob. Agents 55 (2020) 105923-1-3.
[7] A. Savarino, L. I. Trani, I. Donatelli, R. Cauda, A. Cassone, New insights into the antiviral effects of chloroquine, Lancet. Infect. Dis. 6 (2006) 67-69.

As scientists carry out across the age-group clinical trials of CQ/HCQ to counter SARS-CoV-2 infections, while the natural polymers such as PLA and PCL help in controlled release of the drugs, many nano-carriers also have the advantages of being responsive to certain stimuli like temperature, pH, redox environment and thus can be selectively used to release the drug at the intended place of virus infection [38]. Comparative studies on the use of chloroquine phosphate for the treatment of herpetic disease have shown the potential of nanocapsulated CQ in successfully inhibiting 100% replication of the virus at one-third the concentration of CQ when administered without nano-carriers. Thus, the use of nano-carriers for chloroquine or quinidine family of drugs if used for the treatment of SARS-CoV-2 infections can be successful in preventing cardiotoxicity mainly due to reduction of overall dose given to the patient due to the utility of precision and sustained release of the drug at the site of virus infected cells.

5. CQ Inhibits Nanoparticles

Though different nano-platforms are found to enhance drug efficiency for the treatment of different diseases including cancer and viral treatments, it is reported that about 90% of the therapeutic nanoparticles used, gets deposited in the liver and spleen via endocytosis by the action of resident macrophages in liver [60]. Macrophages in the liver engulf foreign objects that do not have the type of proteins specific to healthy body cells on its surface. CQ works as an efficient inhibitor of nanoparticle deposition in the liver and spleen cells of mice by suppressing endocytosis [61]. In the early stages of endocytosis, CQ changes the level of proteins which are involved in the endocytosis process of the NPs [62]. As the final step of the inhibition of nanoparticle deposition in the liver, CQ induces dysfunction of the lysosomes by increasing its pH. These lysosomes would have otherwise acted as the end compartment for internalisation of the nanoparticles in the endosome process [63]. Thus, CQ in combination with nanoparticles can be used as a therapeutic medicine against SARS-CoV-2 and at the same time suppress the deposition of nanoparticles by acting as macrophage-modulator with respect to the endocytosis of nanoparticles in the liver and spleen.
