Time-Dependent Ginzburg–Landau Simulation of Critical Current Density Including z-axis Anisotropy

Rina Yonezuka¹, Yusei Hamada¹, Kazunori Kamiji¹, Edmund Soji Otabe¹, Yasunori Mawatari² and Tetsuya Matsuno³

¹ Department of Computer Science and Electronics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
² Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
³ National Institute of Technology, Ariake College, 150 Higashihagio-Machi, Omuta, Fukuoka 836-8585, Japan

yonezuka.rina707@mail.kyutech.jp

Abstract. In this study, the three-dimensional time-dependent Ginzburg–Landau equations were numerically solved to visualize the motion of the flux lines in a superconductor under a transverse magnetic field. Pins were inserted into a superconducting rectangular parallelepiped, and the magnetic field dependence of the normalized critical current density J_c was calculated. Anisotropy γ_z of different magnitudes was introduced along the direction of the magnetic field (z-axis). Different pin shapes and orientations were also considered: columnar pins aligned parallel to the direction of either the magnetic field or the current flow, spherical pins, and a planar pin in the field–current plane. For the columnar pins aligned parallel to the field (along the flux lines), J_c showed almost no dependence on γ_z. Additionally, a peak in the J_c-B curve for this pin geometry was observed at normalized magnetic field, $B = 0.4$ for all considered γ_z. In contrast, J_c was dependent on γ_z for the columnar pins aligned parallel to the current flow (perpendicular to the flux lines) and the spherical pins. At low magnetic fields ($B = 0.1$), J_c increased with increasing γ_z in both these cases. In the case of the planar pin, J_c showed no dependence on γ_z. In conclusion, when a pin was inserted parallel to the normalized magnetic field B, J_c did not decrease even when the z-axis anisotropy γ_z was large.

1. Introduction
The motion of flux lines has been calculated with the time-dependent Ginzburg–Landau (TDGL) equations [1–3]. In a previous study, we reported the angular dependence of the normalized critical current density J_c in a superconductor with various pinning center shapes [1]. It was found that J_c has almost no angular dependence in the case of star-shaped pins.

It is well known that the coherence length of the ab-plane is very different from the direction of the c-axis in high-temperature superconductors [4]. Anisotropy control is considered to be key to the development of new high-temperature superconducting devices [5]. However, there have been few theoretical calculations that incorporate anisotropy. In this study, anisotropy was introduced in superconductor simulations using models for the effective mass and the effective conductivity [6]. The magnitude of the z-axis anisotropy γ_z was varied, and J_c was computed with various pinning center shapes. The effect of γ_z on J_c in the case of different pin shapes is discussed.
2. Calculation methods

Figure 1 shows a superconducting rectangular parallelepiped with dimensions of $20\xi \times 10\xi \times 10\xi$, where ξ is the coherence length. A magnetic field is applied in the direction of the z-axis, and a current with current density flows in the direction of the y-axis, as shown in Figure 1. Therefore, flux lines move in the direction of the x-axis.

Figure 2(a)–(d) shows schematics of the superconducting rectangular parallelepiped with spherical pins, planar pin in the yz-plane, columnar pins aligned parallel to the z-axis, and columnar pins aligned parallel to the y-axis, respectively. The diameters of the spherical pins in Figure 2(a) and the columnar pins in Figure 2(c) and (d) are all equal to ξ, and the thickness of the yz-planar pin in Figure 2(b) is 0.6ξ. The distance d between the spherical and columnar pins defined in Figure 2(a), (c), and (d) is 4ξ.

In this study, the time-dependent Ginzburg–Landau (TDGL) equations with a reduced number of constants were used to solve the motion of the flux lines. The reduced TDGL equations are given as follows [7]:

$$\frac{\partial \Psi}{\partial t} + iV\Psi + (\mathbf{-i\nabla - A})^2\Psi - \Psi + |\Psi|^2\Psi = 0$$ \hspace{1cm} (1)

$$\sigma \nabla^2 \Psi = \frac{i}{2} (\Psi^*\nabla^2\Psi - \Psi\nabla^2\Psi^*) - \nabla \cdot (|\Psi|^2\mathbf{A}),$$ \hspace{1cm} (2)

where Ψ is the order parameter, V is the scalar potential, \mathbf{A} is the vector potential, and σ is the normal conductivity.

In addition, anisotropy was included in the computation by applying models for the effective mass and effective conductivity [6]. The anisotropy parameters along the x-, y-, and z-axes are defined as γ_x, γ_y, and γ_z, respectively. The effective mass m^* and the effective conductivity σ are given respectively by the following:

$$m^* \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \gamma_z^2 \end{pmatrix} m^*$$ \hspace{1cm} (3)

$$\sigma \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \gamma_z^2 \end{pmatrix} \sigma.$$ \hspace{1cm} (4)

Equation (3) or (4) is then introduced into the third term on the left-hand side of Equation (1) and included in the left- and right-hand sides of Equation (2) [6]. In the case represented by Equations (3) and (4), γ_x and γ_y are unity, and only the value of γ_z is considered as a variable. In addition, the relationship between the anisotropy γ_z and I_c was investigated. Simulations were conducted with normalized external magnetic field ranging from $B = 0.10$ to 0.60 in intervals of 0.10 and anisotropies of $\gamma_z = 1, 8, 64$, and 512. Here, the magnetic field is normalized by the upper critical field B_{c2}. The normalized current densities is in the range of $J = 0.01$ to 0.385, with the upper limit here corresponding to the pair-breaking current density. The normalized critical current density I_c is determined by using a criteria in E-J curve.
3. Results and discussion

Figure 3 shows the magnetic field dependence of the critical current density for spherical pins with $\gamma_z = 1, 8, 64,$ and 512. The results indicate that J_c is weakly dependent on γ_z at low magnetic fields. The value of J_c at $\gamma_z = 512$ was larger than that at $\gamma_z = 1$ for $0 \leq B < 0.1$.

Figure 4 shows the magnetic field dependence of the critical current density in the case of the yz-planar pin with $\gamma_z = 1, 8, 64,$ and 512. In this case, J_c showed no dependence on γ_z.

Figure 5 shows the magnetic field dependence of the critical current density in the case of the z-axis columnar pins with $\gamma_z = 1, 8, 64,$ and 512. Once again, J_c showed no dependence on γ_z. However, a peak was observed at $B = 0.4$ for all γ_z. This is due to the peak effect [8], which occurs because the pin distance d and the spacing s of the flux lines are equal at $B = 0.4$.

Figure 6 shows the magnetic field dependence of the critical current density in the case of the y-axis columnar pins with $\gamma_z = 1, 8, 64,$ and 512. In this case, J_c showed weak dependence on γ_z at low magnetic fields. The value of J_c at $\gamma_z = 512$ was larger than that at $\gamma_z = 1$ for $0 \leq B < 0.1$. This is because the magnetic flux is connected in the x-direction at high γ_z, as shown in the inset of Figure 6. There was no significant difference among the J_c values with different anisotropies γ_z at high magnetic fields ($B \geq 0.4$).

The dependence of J_c on γ_z at a constant magnetic field was then compared for various pin shapes, as this comparison is not clearly observable from Figures 3–6. Figure 7 shows the critical current density J_c plotted against the z-axis anisotropy γ_z at $B = 0.1$ for the different pin shapes. In the case of the spherical pins, J_c was highest at $\gamma_x = 64$ and 512 and increased with increasing γ_x for $\gamma_x < 64$. This is because the magnetic flux is connected in the x-direction at high γ_x. This is shown in the inset of Figure 3. It is considered that the pinning effect becomes large with connected magnetic flux lines. J_c showed no γ_x dependence in the case of the z-axis columnar pins or the yz-planar pin. In the case of y-axis columnar pins, J_c increases as increasing γ_x. This is also explained by the connected magnetic flux along x-direction as shown in inset figure of Figure 6.

Figure 8 shows J_c plotted against γ_x at $B = 0.5$ for the different pin shapes. In the case of the spherical pins, J_c decreased for $\gamma_x < 64$ and was constant for $\gamma_x \geq 64$. Once again, J_c showed no γ_x dependence in the case of the z-axis columnar pins or the yz-planar pin. In the case of the y-axis columnar pins, J_c increases as increasing γ_x. This is also explained by the connected magnetic flux along x-direction as shown in inset figure of Figure 6.

Figure 1. Geometry of the superconducting rectangular parallelepiped.

Figure 2. Superconducting rectangular parallelepiped with pins of different shapes: (a) spherical pins, (b) yz-planar pin, (c) columnar pins parallel to the z-axis, (d) columnar pins parallel to the y-axis.
dependence in the case of the z-axis columnar pins or the yz-planar pin. This is because the effect of the anisotropy is lost if the pin is inserted parallel to the magnetic field. In the case of y-axis columnar pins, J_c shows similar tendency of spherical pins, i.e., J_c decreased as increasing γ_z.

In conclusion, it was confirmed that when a pin is inserted parallel to the magnetic field, J_c does not decrease even under a large z-axis anisotropy γ_z.

![Figure 3](image1.png)
Figure 3. Critical current density plotted against the magnetic field in the case of the spherical pins with $\gamma_z = 1, 8, 64, and 512$. The inset shows $\gamma_z = 512$ at $B = 0.1$.

![Figure 4](image2.png)
Figure 4. Critical current density plotted against the magnetic field in the case of the yz-planar pin with $\gamma_z = 1, 8, 64, and 512$.

![Figure 5](image3.png)
Figure 5. Critical current density plotted against the magnetic field in the case of the z-axis columnar pins with $\gamma_z = 1, 8, 64, and 512$.

![Figure 6](image4.png)
Figure 6. Critical current density plotted against the magnetic field in the case of the y-axis columnar pins with $\gamma_z = 1, 8, 64, and 512$. The inset shows $\gamma_z = 512$ at $B = 0.1$.

4. Conclusion

In this study, the z-axis anisotropy γ_z dependence of the critical current density J_c was numerically investigated using the three-dimensional TDGL equations.

In cases of the yz-planar pin and the z-axis columnar pins, J_c showed no dependence on γ_z. However, a peak was observed at $B = 0.4$ for all γ_z in the case of the z-axis columnar pins. In contrast, in the cases of the spherical and y-axis columnar pins, J_c did show dependence on γ_z. At low magnetic fields ($B = 0.1$), J_c increased with increasing γ_z for both of these pin types. The results for the two types of pins are similar because of the overlapping volume between the flux lines and the pins along x-direction.

Therefore, it was confirmed that J_c does not decrease even at high anisotropies if a pin is inserted parallel to the magnetic field. In conclusion, the magnetic field dependence of J_c in the presence of anisotropy was clarified by numerical simulation using the TDGL equations.

References

[1] Yonezuka R, Hamada Y, Kamiji K, Tanimura K, Yoshihara T, Otabe E S, Mawatari Y and Matsuno T 2019 J. Phys. Conf. Ser. 1293 5 – 7
[2] Kato R, Enomoto Y and Maekawa S 1991 Phys. Rev. B 44 6916
[3] Machida M and Kaburaki H 1993 Phys. Rev. Lett. 71 3206 – 09
[4] Matsushita T 2014 Flux Pinning in Superconductors (Springer) p 341
[5] Akoh H and Sato H 1994 Oyobuturi 63 379 (in Japanese)
[6] Sadovskyy I A, Koshelev A E, Phillips C L, Karpeyev D A and Glatz A 2015 J. Com. Phys. 294 639
[7] Sadovskyy I A, Koshelev A E, Glatz A, Ortalan V, Rupich M W and Leroux M 2016 Phys. Rev. Applied 5 014011
[8] Matsushita T 2014 Flux Pinning in Superconductors (Springer) pp 322 – 331

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 19H00771.