Solvable Quotients of Kähler Groups

Alexander Brudnyi*

Department of Mathematics and Statistics
University of Calgary
Calgary, Canada

Abstract

We prove several results on the structure of solvable quotients of fundamental groups of compact Kähler manifolds (Kähler groups).

1. Introduction.

We first recall a definition from [AN].

Definition 1.1 A solvable group Γ has finite rank, if there is a decreasing sequence $\Gamma = \Gamma_0 \supset \Gamma_1 \supset \ldots \supset \Gamma_{m+1} = \{1\}$ of subgroups, each normal in its predecessor, such that Γ_i/Γ_{i+1} is abelian and $\mathbb{Q} \otimes (\Gamma_i/\Gamma_{i+1})$ is finite dimensional for all i.

In what follows F_r denotes a free group with the number of generators $r \in \mathbb{Z}_+ \cup \{\infty\}$. Our main result is

Theorem 1.2 Let M be a compact Kähler manifold. Assume that the fundamental group $\pi_1(M)$ is defined by the sequence

$$\{1\} \rightarrow F \rightarrow \pi_1(M) \xrightarrow{p} H \rightarrow \{1\}$$

where H is a solvable group of finite rank of the form

$$\{0\} \rightarrow A \rightarrow H \rightarrow B \rightarrow \{0\}$$

with non-trivial abelian groups A, B so that $\mathbb{Q} \otimes A \cong \mathbb{Q}^m$ and $m \geq 1$. Assume also that $p^{-1}(A) \subset \pi_1(M)$ does not admit a surjective homomorphism onto F_{∞}. Then all eigen-characters of the conjugate action of B on the vector space $\mathbb{Q} \otimes A$ are torsion.

In Lemma 2.3 we will show that the condition for $p^{-1}(A)$ holds if F does not admit a surjective homomorphism onto F_{∞}.

Using Theorem 1.2 we prove a result on solvable quotients of Kähler groups.

*1991 Mathematics Subject Classification. Primary 14F35. Secondary 32J27.

Key words and phrases. Kähler group, solvable group, torsion character.
Theorem 1.3 Assume that a Kähler group G is defined by the sequence

$$
\{1\} \xrightarrow{} F \xrightarrow{} G \xrightarrow{q} H \xrightarrow{} \{1\}
$$

where F does not admit a surjective homomorphism onto F_∞ and H is a solvable group of finite rank. Then there exist normal subgroups $H_1 \supset H_2$ of H so that

(a) H_1 has finite index in H;
(b) H_1/H_2 is nilpotent, and
(c) H_2 is torsion.

Remark 1.4 (1) Clearly the conclusion of Theorem 1.2 is valid for H being an extension of \mathbb{Z}^n by \mathbb{Z}^m, $n, m \geq 1$, and F being a finitely generated group. Assume that not all eigen-characters of the action of \mathbb{Z}^n on $\mathbb{Q} \otimes \mathbb{Z}^m$ are torsion. Then a semidirect product of such F and H (where F is a normal subgroup of this product) is not a Kähler group.

(2) Let G be a Kähler group. By $DG = D^1G$ we denote the derived subgroup of G, and set $D^iG = DD^{i-1}G$. Assume that $H := G/D^nG$, $n \geq 1$, is a solvable group of finite rank. Then it was proved in [AN, Th. 4.9] and [Ca, Th. 2.2] that H satisfies conditions (a)-(c) of Theorem 1.3. It is a consequence of the fact that G does not admit a surjective homomorphism onto F_r with $2 \leq r < \infty$.

2. Proof of Theorem 1.2.

In what follows $T_n(\mathbb{C}) \subset GL_n(\mathbb{C})$ denotes the Lie group of upper triangular matrices. Let $T_2 \subset T_2(\mathbb{C})$ be the Lie group of matrices of the form

$$
\begin{pmatrix}
 a & b \\
 0 & 1
\end{pmatrix} \quad (a \in \mathbb{C}^*, \ b \in \mathbb{C}),
$$

$D_2 \subset T_2$ and $N_2 \subset T_2$ be the groups of diagonal and unipotent matrices. Let M be a compact Kähler manifold. For a homomorphism $\rho \in Hom(\pi_1(M), T_2)$ we let $\rho_\alpha \in Hom(\pi_1(M), \mathbb{C}^*)$ denote the upper diagonal character of ρ. The main result used in our proofs is the following

Proposition 2.1 Assume that $\pi_1(M)$ is defined by the sequence

$$
\{1\} \xrightarrow{} F \xrightarrow{} \pi_1(M) \xrightarrow{} H \xrightarrow{} \{1\}
$$

where the normal subgroup F does not admit a surjective homomorphism onto F_∞. Assume that $\rho \in Hom(\pi_1(M), T_2)$ satisfies $F \subset Ker(\rho_\alpha)$ but $F \notin Ker(\rho)$. Then ρ_α is a torsion character.
Proof. Given a character $\xi \in \text{Hom}(\pi_1(M), \mathbb{C}^*)$, let \mathbb{C}_ξ denote the associated $\pi_1(M)$-module. We define $\Sigma^1(M)$ to be the set of characters ξ such that $H^1(\pi_1(M), \mathbb{C}_\xi)$ is nonzero. The structure of $\Sigma^1(M)$ was described in the consequent papers of Beauville [Be], Simpson [S], Campana [Ca].

BSC Theorem. There is a finite number of surjective holomorphic maps with connected fibres $f_i : M \to C_i$ onto smooth compact complex curves of genus ≥ 1 and torsion characters $\rho_i, \xi_j \in \text{Hom}(\pi_1(M), \mathbb{C}^*)$ such that

$$
\Sigma^1(M) = \bigcup_i \rho_i f_i^* \text{Hom}(\pi_1(C_i), \mathbb{C}^*) \cup \bigcup_j \{\xi_j\}
$$

Further, the group N_2 acts on T_2 by conjugation. Any two homomorphisms from $\text{Hom}(\pi_1(M), T_2)$ belonging to the orbit of this action will be called equivalent.

Let $\rho \in \text{Hom}(\pi_1(M), T_2)$ satisfy the conditions of Proposition 2.1. Then it is well known that the class of equivalence of ρ is uniquely defined by an element $c_\rho \in H^1(\pi_1(M), \mathbb{C}_{\rho_a})$ (see e.g. [A, Prop. 2]). In particular, if $c_\rho = 0$, ρ is equivalent to a representation into D_2. In our case, $c_\rho \neq 0$ because $F \not\subseteq \text{Ker}(\rho)$. Thus ρ_a satisfies the conditions of BSC Theorem. If ρ_a coincides with one of ξ_j then it is torsion by the above theorem. So assume that $\rho_a = \rho_i f_i^* \phi$ for some torsion character ρ_i and $\phi \in \text{Hom}(\pi_1(C_i), \mathbb{C}^*)$. Let $K := \text{Ker}(\rho_i) \subset \pi_1(M)$ and $p : M_1 \to M$ be the Galois covering of M corresponding to the finite abelian Galois group $\pi_1(M)/K$.

Let $M_1 \xrightarrow{\varrho} C \xrightarrow{h} C_1$ be the Stein factorization of $f_i \circ p$. Here g is a morphism with connected fibres onto a smooth curve C and h is a finite morphism. Assume, to the contrary, that ρ_a is not torsion. Then we prove

Lemma 2.2 $F \subset \text{Ker}(g_*)$.

Proof. Set $G := (f_i)_* F \subset \pi_1(C_1)$. According to the assumptions of Proposition 2.1 we have either (a) G is a subgroup of finite index in $\pi_1(C_1)$, or (b) G is isomorphic to F_ϱ with $r < \infty$. Let us consider (a). Since by definition $F \subset \text{Ker}(\rho_a)$ and ρ_i is torsion, $\phi(G)$ is a finite abelian group. Then $G_1 := \text{Ker} \phi \cap G$ is a subgroup of finite index in G. In particular, G_1 is a subgroup of finite index in $\pi_1(C_1)$ and so it is not free. But by our assumption, ϕ is not torsion and so $\text{Ker}(\phi) \cong F_\infty$. Thus G_1 is also free as a subgroup of F_∞. This shows that (a) is never happen.

Consider now (b). Using the fact that $(f_i)_*$ is a surjection, we conclude that G is a normal subgroup of $\pi_1(C_1)$. Let $S \to C_1$ be a regular covering corresponding to $Q := \pi_1(C_1)/G$. If $r \geq 2$ then the group $\text{Iso}(S)$ of isometries of S (with respect to the hyperbolic metric) is finite and since Q is infinite we have $r \leq 1$. If $r = 1$, any discrete subgroup of $\text{Iso}(S)$ is virtually cyclic and in particular does not act cocompactly on S. Thus $r = 0$ which means that $G = \{e\}$ and $F \subset \text{Ker}(f_i)_*$. Then the assumption of the proposition implies that $F \subset K = \pi_1(M_1)$.

Now consider $\tilde{\rho} := \rho_{\pi_1(M_1)}$ with the upper diagonal character $\tilde{\rho}_a := \rho_{a|\pi_1(M_1)}$. Since $\pi_1(M_1) \subset \pi_1(M)$ is a subgroup of finite index, $\tilde{\rho}_a$ is also not torsion. Set $\tilde{\phi} := h^* \phi$. Then $\tilde{\rho}_a = g^* \tilde{\phi}$. Let $G_1 := g_* F \subset \pi_1(C)$. Then the same argument for G_1 as above for G (with $\tilde{\rho}_a$ and $\tilde{\phi}$ instead of ρ_a and ϕ) yields $F \subset \text{Ker}(g_*)$. \hfill \square

According to Lemma 2.2 and the assumptions of Proposition 2.1 we have that $\tilde{\rho}|_{\text{Ker}(g_*)}$ is non-trivial and $\tilde{\rho}_a$ is the pullback of a character from $\text{Hom}(\pi_1(C), \mathbb{C}^*)$.

3
Then from [Br, Proposition 3.6] it follows that \(\tilde{\rho}_a \) is torsion. Therefore \(\rho_a \) is torsion, as well. This contradiction proves the proposition. \(\square \)

We are ready to prove Theorem [1.2]. According to the assumptions of the theorem there is a homomorphism \(i \) of \(H \) into the Lie group \(R \) of the form

\[
\{0\} \rightarrow \mathbb{C}^m \rightarrow R \rightarrow B \rightarrow \{0\}
\]

whose kernel is \(Tor(A) \). Here we identify \(\mathbb{C}^m \) with \(\mathbb{C} \otimes A \). Consider the action \(s : B \rightarrow GL_m(\mathbb{C}) \) by conjugation. Since, by the definition of \(\pi_1(M) \), \(B \) is a finitely generated abelian group, \(s = \oplus_{j=1}^d s_j \) where \(s_j \) is equivalent to a nilpotent representation \(B \rightarrow T_{m_j}(\mathbb{C}) \) with a diagonal character \(\rho_j \). Here \(\sum_{j=1}^d m_j = m \). From this decomposition it follows that there is an invariant \(B \)-submodule \(V_j \subset \mathbb{C}^m \) of \(dim_{\mathbb{C}}V_j = m - 1 \) such that \(W_j = \mathbb{C}^m/V_j \) is a one-dimensional \(B \)-module and the action of \(B \) on \(W_j \) is defined as multiplication by the character \(\rho_j \). By definition, \(V_j \) is a normal subgroup of \(R \) and the quotient group \(R_j = R/V_j \) is defined by the sequence

\[
\{0\} \rightarrow \mathbb{C} \rightarrow R_j \rightarrow B \rightarrow \{0\}.
\]

Here the action of \(B \) on \(\mathbb{C} \) is multiplication by the character \(\rho_j \). (As before the associated \(B \)-module is denoted by \(\mathbb{C}_{\rho_j} \).) Let us denote by \(t_j \) the composite homomorphism \(\pi_1(M) \rightarrow H \rightarrow R \rightarrow R_j \). Further, the equivalence class of extensions of \(B \) by \(\mathbb{C} \) isomorphic to \(R_j \) is defined by an element \(c_j \in H^2(B, \mathbb{C}_{\rho_j}) \). We assume that the character \(\rho_j \) is non-trivial (for otherwise, \(\rho_j \) is clearly torsion). Then \(H^2(B, \mathbb{C}_{\rho_j}) = 0 \) (for the proof see e.g. [AN, Lemma 4.2]). This shows that \(R_j \) is isomorphic to the semidirect product of \(\mathbb{C} \) and \(B \), i.e., \(R_j = \mathbb{C} \times B \) with multiplication

\[
(v_1, g_1) \cdot (v_2, g_2) = (v_1 + \rho_j(g_1) \cdot v_2, g_1 \cdot g_2), \quad v_1, v_2 \in \mathbb{C}, \ g_1, g_2 \in B.
\]

Let us determine a map \(\phi_j \) of \(R_j \) to \(T_2 \) by the formula

\[
\phi_j(v, g) = \begin{pmatrix}
\rho_j(g) & v \\
0 & 1
\end{pmatrix}
\]

Obviously, \(\phi_j \) is a correctly defined homomorphism with upper diagonal character \(\rho_j \). Hence \(\phi_j \circ t_j : \pi_1(M) \rightarrow T_2(\mathbb{C}) \) is a homomorphism non-trivial on \(p^{-1}(A) \subset \pi_1(M) \) by its definition. Also \(p^{-1}(A) \subset Ker(\rho_j \circ t_j) \). Since by our assumptions \(p^{-1}(A) \) does not admit a surjective homomorphism onto \(F_\infty \), Proposition [2.1] applied to \(\phi_j \circ t_j \) implies that \(\rho_j \) is torsion. This completes the proof of the theorem. \(\square \)

We prove now the following result.

Lemma 2.3 Assume that a group \(G \) is defined by the sequence

\[
\{1\} \rightarrow G_1 \rightarrow G \rightarrow G_2 \rightarrow \{1\}
\]

where \(G_1, G_2 \) do not admit surjective homomorphisms onto \(F_\infty \). Then \(G \) satisfies the similar property.
Proof of Lemma 2.3. Assume, to the contrary, that there is a surjective homomorphism \(\phi : G \to F_\infty \). Then \(\tilde{G}_1 := \phi(G_1) \) is a normal subgroup of \(F_\infty \) and \(\tilde{G}_2 := F_\infty / \tilde{G}_1 \) is a quotient of \(G_2 \). Now the assumption of the lemma implies that \(\tilde{G}_1 \cong F_r \) with \(r < \infty \). Let \(X \) be a complex hyperbolic surface with \(\pi_1(X) = F_\infty \) and \(S \to X \) be the regular covering corresponding to \(\tilde{G}_2 \). Assume first that \(r \geq 1 \). Since \(\pi_1(S) = \tilde{G}_1 \), any subgroup of the group \(\text{Iso}(S) \) of isometries of \(S \) (with respect to the hyperbolic metric) is finitely generated. In particular \(\tilde{G}_2 \) is finitely generated (as well as \(\tilde{G}_1 \)). This implies that \(F_\infty \) should be finitely generated which is wrong. Thus \(r = 0 \) and \(\tilde{G}_2 = F_\infty \). This contradicts to our assumption and shows that there is no such \(\phi \). \(\Box \)

3. Proof of Theorem 1.4.

For a group \(L \) set \(L^{ab} := L/\text{DL} \). We say that an \(L \)-module \(V \) is quasi-unipotent if there is a subgroup \(L' \subseteq L \) of finite index whose elements act unipotently on \(V \).

To prove the theorem we will check the following condition from [AN, Lemma 4.8].

Lemma 3.1 Let \(H' \subseteq H \) be a subgroup of finite index. Then \(H' \) acts quasi-unipotently on the finite-dimensional vector space \(\mathbb{Q} \otimes (H' \cap DH)^{ab} \).

Proof. We set \(K := H'/(H' \cap DH) \), \(G' := q^{-1}(H') \), \(S := D(H' \cap DH) \), and \(S' := q^{-1}(S) \). Here \(K \) is a finitely generated abelian group. Indeed, \(H' \) is finitely generated as a subgroup of finite index of the finitely generated group \(H (= \text{the image of the finitely generated group } G) \). Thus \(K \) is finitely generated as the image of \(H' \). The fact that \(K \) is abelian follows directly from the definition. Further, since \(H' \) is a subgroup of finite index in \(H \), \(G' \) is a subgroup of finite index in \(G \). In particular, it is Kähler. Moreover, we have

\[
\{1\} \to S' \to G' \to L \to \{1\}
\]

where \(L \) is a solvable group of finite rank defined by the sequence

\[
\{0\} \to (H' \cap DH)^{ab} \to L \to K \to \{0\}.
\]

Now the statement of the lemma is equivalent to the fact that all eigen-characters of the conjugate action of \(K \) on \(\mathbb{Q} \otimes (H' \cap DH)^{ab} \) are torsion. To prove that it suffices to show that \(S' \) does not admit a surjective homomorphism onto \(F_\infty \), and then to apply Lemma 2.3 and Theorem 1.2.

Note that \(S' \) is defined by the sequence

\[
\{1\} \to F \to S' \xrightarrow{q} S \to \{1\}
\]

where \(S \) is a solvable group of finite rank. By our assumption \(F \) does not admit a surjective homomorphism onto \(F_\infty \). Thus by Lemma 2.3, \(S' \) satisfies the same property. \(\Box \)

Now Theorem 1.3 is the consequence of Lemma 3.1 and [AN, Lemma 4.8]. \(\Box \)
References

[A] M.F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181-207.

[AN] D. Arapura and M. Nori, Solvable fundamental groups of algebraic varieties and Kähler manifolds, Comp. Math. 116 (1999), 173-188.

[Be] A. Beauville, Annulation du H^1 pour les fibrés en droites plats, Lecture Notes in Math., 1507, Springer Verlag (1992), 1-15.

[Br] A. Brudnyi, Solvable matrix representations of Kähler groups, preprint (2001), 27 pp.

[Ca] F. Campana, Ensembles de Green-Lazarsfeld et quotients resolubles des groupes de Kähler, J. Alg. Geom. 10 (2001), no. 4, 599-622.

[S] C.T. Simpson, Subspaces of Moduli Spaces of rank one local systems, Ann. Sc. ENS, 26 (1993), 361-401.