Abstract: Humans are generally exposed to a variety of pollutants present in the air they breathe, the food they eat or in the water they drink. Some of the most dangerous pollutants are metals and heavy metals. These are naturally occurring substances which are harmless when present in the environment at low levels. However, due to many pollutants such as industry processes or war activities, the heavy metal concentration can exceed the limit of tolerance and become very toxic for the natural environment and living organisms in it, including humans. Unlike organic pollutants, the heavy metals (as ions and as particulate matter) once introduced into the environment cannot be biodegraded and remain there indefinitely. By rainfall these pollutants can be partially transferred from air or soil into the rivers and drinking water sources, where they accumulate in even higher toxic levels. The high concentrations of heavy metals in contaminated natural water reservoirs have an impact on the microbial community composition which resides there. This type of water pollution can cause the changes in life cycles of natural bacterial populations, influence their metabolic processes and proliferation. The presence of pathogens in water is normally indirectly determined by the testing for “indicator organism” such as coliform bacteria. Coliforms are usually present in larger numbers in contaminated water and at the same time they are indicators of whether other pathogenic bacteria are present, too. In crisis situations, like war or some natural disasters, where trusted sources of drinking water are not available anymore, the military and residents of affected areas are forced to use some alternative water resources that cannot be tested for their microbial or metal contamination properly. Therefore, the existence of some fast test that would detect not only dangerous bacterial pathogens in water, but also the presence of metals and heavy metals as well, would be of great help and importance for the human health. Even though the number of pathogens can be drastically reduced by the boiling of water, the heavy metals are not destroyed by high temperature. Hence, the main objective of our work was to optimize the biosensor chip for microbial detection in contaminated water that would serve at the same time as an indicator for the chemical composition of the water, such as presence of metals and heavy metals, with potential to be used as a novel test tool in public health.

Keywords: Biosensor, Heavy Metals, Microbes, Water Pollutants.

I. INTRODUCTION

Routine control of microbiological food and water quality include both the total number of microorganisms and the presence of pathogens. Even non-pathogens, if present in large enough numbers, can cause deterioration of food products and distaste in water (1). Coliform bacteria can serve as indicators of fecal contamination (2). Coliforms are defined as “Gram-negative aerobic or facultative anaerobes, nonspore-forming, rod shaped bacteria that ferment lactose with acid and gas production. The coliform group includes the genera of Escherichia, Enterobacter, Klebsiella and Citrobacter (3).

Many metals serve as cofactors for enzymes which are excreted by bacteria, e.g. coliforms, which are commonly present in polluted water. Based on the fact that the biosensor technology that was used in this study is capable of detecting microbial enzymes as described in some our previous studies (4-7), manifestation and intensity of the signal was changing in dependence on which metal/heavy metal is present in a test sample. It was shown that presence of some metals in water, like zinc, manganese or calcium which are building up the active site of some microbial enzymes, can increase the sensitivity and functionality of the biosensor. On the other hand, some heavy metals like mercury can inhibit the metabolic activity of microorganisms and lower down the biosensor’s detection signal. Water contamination can include some radioactive elements like cesium and polonium which are generally released from explosives, and which are found in natural waters worldwide (8). Heavy metals are found naturally in the earth and are not treating to the environment if present in low trace. However, if their concentrations exceed the limit of tolerance, they can become very toxic to the natural environment and living organisms in it, including humans (9). Metals can be introduced in aquatic systems by weathering of soils or from different human factors including the war activities, the mining or some other industrial processes.
Unlike organic pollutants, the heavy metals once introduced into the environment cannot be biodegraded and remain there indefinitely (10, 11). Methods for remediation of heavy metals from contaminated environment are very complicated and time demanding, including physical removal, bioleaching and detoxification (11). In water, when the pH decreases, metal solubility and toxicity will increase and the metal particles can become more mobile. Since the habitats for aquatic organisms are usually the water or sediments, the captured heavy metals can accumulate in tissues of species residing there, including fish and macrophytes. Besides water, the heavy metals like zinc, cadmium, mercury, and chromium can pollute the air and soil, and contaminate the living forms present there. The sensitivity of individuals of a particular aquatic species to heavy metals may be influenced by factors such as age, sex, or size. The accumulation of heavy metals in plant or animal tissues can influence their life cycle and reproduction and through the food chain endanger the human health (12, 13).

For example, the concentration of metals in invertebrates is conversely related to their body mass. It is expected that the embryonic and larva stage of fish is the most sensitive to this type of pollution (12). Some of the water bacteria are capable of converting mercury to the toxic methyl mercury that accumulate in fish and can cause serious health problems for the human body (13). A long-term exposure to heavy metals can cause an acute or chronic damage of nervous system, renal dysfunction, lung disease and lately there is an increasing number of reports about stimulated effect of heavy metals on some types of human cancer (15-17).

The metabolic features of microorganisms (primarily bacteria), which were closely investigated in course of our study, were used to optimize the biosensor matrix, the biosensor’s setup, and the type of color change that is displayed as an optical detection signal. This biosensor technology enabled identification of the aquatic ecosystems in Bosnia and Herzegovina containing toxic amounts of heavy metals, which can endanger living organisms habiting there and human health as well. The study was proof of principal of optimized patented biotechnology chip (7) as a fast test for presence of microbiological and chemical contaminants in water.

II. MATERIALS AND METHODS

A. Collection of Water Samples

For our work we used the water samples of the largest rivers in Bosnia and Herzegovina: Bosna, Drina, Sava and Neretva. From all rivers the samples were taken in urban areas with approximately the same number of inhabitants per m2. After the water samples were taken in 1000 mL plastic bottles, they were analyze for their chemical and microbial status. First parameters being analyzed were: electrical conductivity, pH and temperature.

B. Determination of Heavy Metals Amount Using AES

The collected water samples were analyzed in laboratory for trace metals by Atomic Emission Spectrometer (AES). The following heavy metals were analyzed: zinc (Zn), lead (Pb), chromium (Cr), iron (Fe), manganese (Mn), barium (Ba), tin (Sn), thallium (Tl) and selenium (Se). The detection of traced metals was performed by AAS. It is known that heavy metals regularly form complexes with organic constituents. Therefore, it was important to digest the organic components by using a strong acid that would in contrary cause interference and an unreliable measuring value. Interfering were removed by using 37 % hydrochloric acid (HCl)- end concentration of 1% in water samples.

C. Microbiological Analysis of Water Samples and Recognition of Indicators for Microbial Water Quality

For the identifications of microorganisms we used ÖNOZ and Aero Pseudo Selective Agar (Himedia), and other conventional microbiological methods (MacConkey agar, Manitol salt agar from Merck).

D. Quantitative Monitoring of Microbial Enzymatic Activity

For testing of enzymatic activity we determined Leucine aminopeptidase (LAP) which is a common virulence factor of coliform bacteria such as Enterobacter spp, Escherichia spp. and Pseudomonas spp. A test samples was examined for the exopeptidase LAP activity that selectively releases N-terminal amino acid residues from polypeptides and proteins. Since the temperature plays very important role in activation of the enzyme, the enzyme dilutions must be incubated for 15 minutes at 37°C. A calibration line can be generated by means of increasing LAP activities. Therefore a stock of LAP with a specific activity of 10 U/mg must be prepared. The used LAP dilutions should be in the range of 10 to 1000 mU/mg. The reagents which will be used are:

 a) 60 mM Phosphate Buffer, pH 7.2 at 37 °C (Prepare 100 ml in deionized water using potassium phosphate, monobasic, anhydrous. Adjust to pH 7.2 at 37 °C with 1 M KOH).
 b) 1.66 mM L-Leucine p-Nitroanilide Solution (L-Leu NA) (Prepare 30 ml in Reagent a using L-leucine p-nitroanilide hydrochloride. Prepare fresh!).
 c) 10 mM TrisHCl Buffer with 1 mM MgCl2, pH 8.0 at 37 °C (Activation Buffer) (Prepare 20 ml deionized water using Trizma Base. Adjust to pH 8.0 at 37 °C with 1 M HCl and then add MgCl2 x 6H2O).
 d) Leucine Aminopeptidase Enzyme Solution, Non-Activated (Enz-Non Act); (Immediately before use, prepare a solution containing 0.3 unit/ml of leucine aminopeptidase in cold deionized water).
 e) Leucine Aminopeptidase Enzyme Solution, Activated (Enz-Act); (Immediately before use, prepare a solution containing 0.1 U/ml of leucine aminopeptidase in cold deionized water).

For testing of enzymatic activity we determined Leucine aminopeptidase (LAP) which is a common virulence factor of coliform bacteria such as Enterobacter spp, Escherichia spp. and Pseudomonas spp. A test samples was examined for the exopeptidase LAP activity that selectively releases N-terminal amino acid residues from polypeptides and proteins. Since the temperature plays very important role in activation of the enzyme, the enzyme dilutions must be incubated for 15 minutes at 37°C. A calibration line can be generated by means of increasing LAP activities. Therefore a stock of LAP with a specific activity of 10 U/mg must be prepared. The used LAP dilutions should be in the range of 10 to 1000 mU/mg. The reagents which will be used are:

 a) 60 mM Phosphate Buffer, pH 7.2 at 37 °C (Prepare 100 ml in deionized water using potassium phosphate, monobasic, anhydrous. Adjust to pH 7.2 at 37 °C with 1 M KOH).
 b) 1.66 mM L-Leucine p-Nitroanilide Solution (L-Leu NA) (Prepare 30 ml in Reagent a using L-leucine p-nitroanilide hydrochloride. Prepare fresh!).
 c) 10 mM TrisHCl Buffer with 1 mM MgCl2, pH 8.0 at 37 °C (Activation Buffer) (Prepare 20 ml deionized water using Trizma Base. Adjust to pH 8.0 at 37 °C with 1 M HCl and then add MgCl2 x 6H2O).
 d) Leucine Aminopeptidase Enzyme Solution, Non-Activated (Enz-Non Act); (Immediately before use, prepare a solution containing 0.3 unit/ml of leucine aminopeptidase in cold deionized water).
 e) Leucine Aminopeptidase Enzyme Solution, Activated (Enz-Act); (Immediately before use, prepare a solution containing 0.1 U/ml of leucine aminopeptidase in cold deionized water).

E. Development of the Polymer-Based Biosensor Chip

The presented biosensor setup consists of a reflective layer made up of e.g. Ni-Cr alloy which is covered with a polymer layer (substrate). The polymer layer is normally made up of PLGA (poly lactic-co-glycolic acid) dissolved in ethyl acetate containing varying amounts of desmodur.

Desmodur serves as a linker of the PLGA molecules influencing the viscosity and composition of the polymer, which can be additionally doped with various compounds mediating specific effects.
PLGA was approved in the year 2000 by the FDA (Food and Drug Administration) for in vivo use and applications in drug targeting.

When specific lytic enzymes such as those secreted by bacteria come into contact with the polymer layer (specific substrate), the polymer is topically degraded, leading to a color change due to altered refraction of visible light. The biosensor specifically identifies secreted lytic enzymes and therefore offers the possibility of detecting bacterial metabolic activity even in absence of the causative pathogen in the specimen analyzed. Microbes in total count of 10 000 CFU/ml in liquid, overnight culture, were incubated on the biosensor for different incubation times, and presence of metabolic activity of the microbes was detected due to color change of the biosensor.

III. RESULTS

A. In Situ Chemical Analysis of Water Samples and Determination of Heavy Metals Amount Using AES

All used water samples were analyzed with Hanna HI-9829 Multiparameter pH/ISE/EC/DO/Turbidity. Results of in situ measurement indicated existence of differences in analyzed parameters for all river samples, showing especially high values for water samples from river Bosna.

Elevated levels of TDS for river Bosnia can be connected to the fact that this river and its tributaries are passing through places with heavy industrial activities, which are main cause for environmental pollution.

Measured concentrations of heavy metals are listed in table 3. As we can see in table 3 the highest values in heavy metal concentration, from all nine heavy metals being analyzed, showed iron and strontium. The concentration of iron in river Sava was from 0,126 mg/mL and for strontium in concentration from 0,167 mg/mL.

Table 1. In situ measurements.

River	Temp.	pH	mV	ORP	EC	EC Abs.
Bosna	13,56	6,51	5,8	151,2	412	401
Drina	13,45	7,64	-56,6	140,2	209	203
Sava	13,90	7,82	-66,2	128,5	218	214
Neretva	9,33	7,66	-43,1	182,9	283	199

Table 2. Results of chemical analysis of water samples.

River	RES [Ohm-cm]	TDS [ppm]	Sal. [psu]	D.O. [%]	D.O. [ppm]
Bosna	2427	206	0,20	72,9	6,04
Drina	4785	104	9,82E02	72,7	6,04
Sava	4587	109	0,10	67,2	5,54
Neretva	3500	141	0,14	91,4	10,37

Table 3. Concentrations of heavy metals in mg/mL from water samples from rivers Bosna, Drina, Sava, and Neretva.

River	Ba	Cr	Fe	Mn	Pb
Bosna	0,008	0,004	0,087	0,029	0
Drina	0,002	0,006	0,085	0,033	0,005
Sava	0,005	0,004	0,126	0,022	0,006
Neretva	0,001	0,001	0,000	0,003	0,000

B. Identification of Microorganisms in Water Samples

Using conventional microbiological identification methods, from tested water samples it was possible to identify the following microorganisms as inhabitants in rivers Bosna, Drina, Sava and Neretva: Enterobacter spp., Esherichia spp., Pseudomonas spp. and Proteus spp.. Enterobacter spp., Esherichia spp and Pseudomonas spp. were found in every tested water sample.

C. Monitoring of Microbial Metabolic Activity by Leucine Aminopeptidase (LAP) Detection in Water Samples

For monitoring of microbial growth and metabolic activity testing, we used isolated strains of Enterobacter spp. and Esherichia spp., which were inoculated in tryptic soy broth for 24 hours at 37°C and their metabolic activity was measured after different incubation times (after 0h, 16h, 24h, 32h and 48h). Since the iron and strontium as representatives of heavy metals were the most present in tested water samples, they were chosen as substrates for addition to Enterobacter spp., Esherichia spp. and Pseudomonas spp. growing cultures, after which LAP activity was detected.

 LAP serves as virulent factor for these microbes and levels of its secretion were not constant in in vitro conditions, after various incubation times (figures 1-3). In order to monitor the impact of heavy metals, we used heavy metals Fe and Sr in two concentrations, as follows: Fe1 = 0.085 mg / L; Fe2 = 0.126 mg / L; Sr1 = 0.085 mg / L and Sr2 = 0.167 mg / L. As we can see from the figures 1-4, the presence of heavy metals had a stimulating effect on the virulence of microorganisms, and elevated excretion of LAP could be observed.
D. Proof of principle for biosensor chip detecting heavy metal pollutants and microbial contaminants in water ecosystems

![Image of biosensor setup](image)

Figure 4. A polymer-based, optical biosensor chip for detection of microbial and chemical contamination in an aquatic sample and its mechanism of action.

When lytic enzymes (e.g. secreted by bacteria) come into contact with the polymer layer of biosensor, the polymer will be degraded resulting in a topical color change of the biochip, for example from green to red (figure 4).

Some of the additives act as a carbon and/or energy source for specific microorganisms and provide the nutritional environment triggering the release of lytic enzymes, thus improving the efficacy of detection.

For functionality test we used biosensors with PLGA concentration in range between 18-23% PLGA with 1% Desmodur and substrate glucose, tryptone and inorganic salts. All the biosensors were incubate by 37°C for 4h and 24h.

Proof of principle of biosensor chip for monitoring of water pollution are carried out with microorganisms and water samples. (Ps- Pseudomonas spp., Ec- Esherichia spp., En- Enterobacter spp.)

The color changes shown in figure 5 and figure 6 are result of enzymatic degradation of the biomimetic polymer layer by lytic enzymes. The degradation is highly selective and clearly visible with naked eyes. The signal intensity correlates with increasing incubation time.

![Image of signal intensity](image)

Figure 5. Signal intensity after incubation for 4 h and temperature at 37°C.

![Image of signal intensity](image)

Figure 6. Signal intensity after incubation for 24 h and temperature at 37°C.

IV. CONCLUSIONS

Coliform bacteria are routinely used as an indicator of the microbiological quality of water. They are present in the environment and feces of all warm-blooded animals and humans.

The coliforms are unlikely to cause illness, but their presence in water reservoirs indicates that disease-causing organisms (pathogens) could be in the water system. Since the testing of water samples of different origin, for all possible pathogens is complex, time-consuming, and expensive, this problem is solved by testing for coliforms only, applying simple and inexpensive methodology, such as biosensor chip technology presented in our study. In our study we were also able to show that here presented patented biosensor technology can be optimized for detection of bacterial contamination in water and joined with heavy metal contamination.
Experiments with iron and stannium for strains Escherichia spp., Pseudomonas spp. and Enterobacter spp. showed that signal intensity on surface of biosensor is increasing due to addition of heavy metals as substrates, in comparison to bacteria alone. This means that presented biosensor chip can be used as dual detecting system for detection of bacteria, parallel with heavy metals, as commonly present pollutants in water ecosystems, and be used as a novel testing tool in protection of public health.

The water samples of the rivers Bosna, Drina, Sava and Neretva showed a clearly visible signal on the surface of the used biosensors that is visible to the naked eye, and based on these results we can conclude that the optimized design of biosensors can detect water pollution in the field in a very short time. The population of risk areas would be able to identify non-drinking water, because its consumption could be harmful to their health.

Since the optimized biosensor can detect metals and heavy metals in all types of accumulated water (groundwater, rivers, lakes, drinking water reservoirs, etc.), it can also be used as a rapid detection method for industrial wastewater, which generally contains a high level of heavy metal.

Due to the fact that most of the aquatic ecosystems we examined are geographically related to other aquatic systems (rivers) in Europe, the obtained data on chemical contamination and its impact on aquatic flora and fauna, including human health, is very important scientific contribution to European water systems as well.

ACKNOWLEDGMENT

This study was financially supported by Federal Ministry of Education and Science, Federation of Bosnia and Herzegovina.

REFERENCES

1. Majumdar, A., Pradhan, N., Sadasivan, J., Acharya, A., Ohja, N., Babu, S., & Bose, S. (2018). Food degradation and foodborne diseases: A microbial approach. In Microbial contamination and food degradation (pp. 109-148). Academic Press.
2. Khan, F. M., & Gupta, R. (2020, January). Escherichia coli (E. coli) as an Indicator of Fecal Contamination in Groundwater: A Review. In International Conference on Sustainable Development of Water and Environment (pp. 225-235). Springer, Cham.
3. Goodfellow, M., Kämpfer, P., Busse, H. J., Trujillo, M. E., Suzuki, K. I., Ludwig, W., & Whitman, W. B. (Eds.). (2012). Bergey’s manual® of systematic bacteriology: Volume five the actinobacteria, part a (pp. 171-206). Springer New York.
4. Ibrišimović, N., Ibrišimović, M., Barth, M., & Bohrm, U. (2010). Biomimetic PLGA sensor: proof of principle and application. Monatshefte für Chemie-Chemical Monthly, 141(1), 125-130.
5. Ibrišimović, N., Barth, M., Bohrm, U., Ibrišimović, M., & Pitner, F. (2009). Biomimetic sensor chip monitoring real-time food degradation: correlating chemical deterioration with microbiological status. Monatshefte für Chemie-Chemical Monthly, 140(8), 941-945.
6. Pitner, F., Bauer, M., Bauer, G., Donnrick, R., & Ibrišimović, N. (2011). U.S. Patent Application No. 12/747,835.
7. Ibrišimović, N., Ibrišimović, M., Barth, M., Bohrm, U., & Pitner, F. (2009). Device comprising a polymer layer and a reflecting layer. European Patent Application No. 12/747,835.
8. Sanguinarcis, T., Sukaworwat, V., Wiecek, R. J., Grudzenic, R. M., Fryxell, G. E., Addlemann, R. S., ..., & Yantasee, W. (2010). Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. Journal of hazardous materials, 182(1-3), 225-231.
9. Mudgetal, V., Madan, N., Mudgetal, A., Singh, R. B., & Mishra, S. (2010). Effect of toxic metals on human health. The Open Nutraceuticals Journal, 3(1).
10. Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals. Heavy metals, 10, 115-132.
11. RoyChowdhury, A., Datta, R., & Sarkar, D. (2018). Heavy metal pollution and remediation. In Green chemistry (pp. 359-373). Elsevier.
12. Sfakianakis, D. G., Renieri, E., Kentouri, M., & Tsatsakis, A. M. (2015). Effect of heavy metals on fish larval deformities: a review. Environmental research, 137, 246-255.
13. Zeitoun, M. M., & Mehana, E. E. (2014). Impact of water pollution with heavy metals on fish health: overview and updates. Global Veterinaria, 12(2), 219-231.
14. De, J., Ramaiah, N., & Vardanyan, L. (2008). Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Marine Biotechnology, 10(4), 471-477.
15. Matěj, J. M., Segura, J. A., Alonso, F. J., & Márquez, J. (2010). Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radical Biology and Medicine, 49(9), 1328-1341.
16. Romaniuk, A., Lyndin, M., Sikora, V., Lyndina, Y., Romaniuk, S., & Sikora, K. (2017). Heavy metals effect on breast cancer progression. Journal of Occupational Medicine and Toxicology, 12(1), 1-9.
17. Vigneri, R., Malandrino, P., Giani, F., Russo, M., & Vigneri, P. (2017). Heavy metals in the volcanic environment and thyroid cancer. Molecular and cellular endocrinology, 457, 73-80.

AUTHORS PROFILE

Nadira Ibrišimović Mehmedinović, is associate professor at Department of Chemistry, Faculty of Natural Sciences and Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina. Nadira Ibrišimović Mehmedinović is author of 23 scientific publications and four books, including two patents: 1. Ibrišimović, N., Pitner, F., Ibrišimović, M., Barth, M., Bohrm, U. (2009). Device comprising a polymer layer and a reflecting layer. EP2278300 A1, Europe and USA.
2. Fritz Pitner, Maria Bauer, Georg Bauer, Ralph Donnrick, Nadira Ibrišimović. „Device comprising two reflecting layers and a polymer layer for analyzing the age and/or quality of natural products“, U7098/DB, PCT/EP2007/063895 (2008). Selected publications:
1. Perspective potential of polymer-based biosensor chips in food industry and clinical diagnostics, N. Ibrišimović Mehmedinović, M. Ibrišimović, A. Kesić, S. Marić. Book: Biodegradable Polymers: Recent Developments and New Perspectives. May 2017 DOI: 10.5599/obp.14.9.
2. Original paper- Chromatographic isolation of superoxide dismutase enzyme from Calendula officinalis and its anticancer activity in vitro, N. Ibrišimović Mehmedinović, M. Ibrišimović, J. Dedić, European Journal of Scientific Research, Volume 144 Issue 2, 2017.
3. Original paper- Effects of various metal and drug agents on excretion of enzyme aspartyl proteinase in Candida albicans and its role in human physiological processes, M. Ibrišimović, N. Ibrišimović Mehmedinović, J. Dedić, A. Kesić, S. Marić, A. Šestan, CMBEBIH 2017, IFMBE Proceedings of the International Conference on Medical and Biological Engineering 2017, Volume 62, 2017, Springer Singapore DOI 10.1007/978-981-10-4166-5 110, ISBN: 978-981-10-4166-5.
4. Original paper- The Bioavailability of Manganese in the Marigold (Calendula officinalis L.) grown on alkaline soil, Z. Hodžić, M. Saletović, A. Šestan, European Journal of Applied Chemistry, ISSN:2330-8753 , Vol.6 Issue2, May-June 2016, pp.141-145.
5. Original paper- Distribution of Heavy Metals (Cr, Cu, Ni, Pb and Zn) in the sediment of some tributaries and the part of the river Spreča Flow presented by the Krigging geostatistical method, A. Šestan, E. Hadžimustafe, I. Šestan, A. Kesić, N. Ibrišimović Mehmedinović, International Journal of Research Methodology, Human Journals, Vol.1, Issue 4, 2019.
6. Original paper- Insulin Acts as Stimulatory Agent in Diabetes-Related Escherichia Coli Pathogenesis, Madacki-Todonorok K., Eminovic I., Ibrišimović Mehmedinović N., Ibrišimović M., International Journal of Diabetes and Clinical Research. Issue 4, Volume 5, December 2018.
7. Original paper- Optical activity, total phenolic content and color intensity of nectarian honey and honeydew A. Kesić, S. Čelan, N. Ibrišimović Mehmedinović, A. Šestan, European Journal of Food Science and Technology, Vol.8, No.1, pp.12-33, February 2020. Published by ECRTD UK. Print ISSN: 2056-5798, Online ISSN: 2056-5801.

© Copyright: All rights reserved.
Biosensor Chip for Monitoring of Water Pollution as Novel Test Tool in Public Health: Proof of Principle

Aldina Kesić, is associate professor at Faculty of Natural Science and Mathematics, at University in Tuzla, Bosnia and Herzegovina. Aldina Kesić is author of 42 scientific publications and seven books and book chapters. She was a mentor for the preparation of 6 master’s theses. She is the head of the chemistry department and the president of the Tuzla Canton Association of Chemists. Selected publications:

1. Almir Sestan,Aida Crnkic, Indira Sestan, Aldina Kesić, Emina Subašić Šalkić: Investigation of the heavy metals concentrations (Fe, Cu, Zn AND Pb) in the natural system of water/sediment of Spreča river and selected tributaries, Book of Abstracts 5th scientific symposium with international participation “Environmental resources, sustainable development and food production” November 16-17, 2017, Tuzla, Bosnia and Herzegovina. ISSN: 2566-3364.
2. Aldina Kesić, Indela Zainmović, Aida Crnkic, Nadira Ibršimović Mehmedinović, Almir Sestan, Suad Kunošić: Change of antioxidation activity of honey with influence of different temperatures, Book of Abstracts 5th scientific symposium with international participation “Environmental resources, sustainable development and food production” November 16-17, 2017, Tuzla, Bosnia and Herzegovina. ISSN: 2566-3364.
3. Almir Sestan, Edin Hadžimustafić, Indira Sestan, Aldina Kesić, Nadira Ibršimović Mehmedinović, Benjanin Ćatović: Distribution of Heavy Metals (Cr, Cu, Ni, Pb and Zn) in the Sediment of Some Tributaries and the Part of the River Spreča Flow Presented by the Kriging Geostatistical Method. JRBM International Journal of Research Methodology. Vol.1 Issue: 4, 2018.
4. Aldina Kesić, Bianka Smajlović, Nadira Ibršimović-Mehmedinović, Zorica Hodžić, Almir Sestan, Jasmina Dedić, Mirza Tupajić. The Content of Total Polyphenols of the Selected Red Wines from the Territory of Tuzla Canton in Correlation with Antioxidant Activity. IJRM International Journal of Research Methodology. Vol 2: Issue: 1, 2019.
5. Stipe Ćelan, Zora Pilic, Josipa Karačić, Aldina Kesić, Nadira Ibršimović Mehmedinović, Anamarija Jurkić:Kemijske i biološke analize meda. Book of Abstract, VI scientific-professional symposium with international participation,Environmental resources, sustainable development and food production–WATER FOUNTAINS FROM TUZLA AND SURROUNDING AREA.

Aldina Kesić, is associate professor at Faculty of Natural Science and Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina. Her research is in the field of food chemistry, environmental chemistry, and chemistry of medicinal plants. Aida Crnkic is author of 42 scientific publications. Selected publications:

1. Kesić, A., Crnkic, A., Hodžić, Z., Ibršimović, N., & Sestan, A. (2014). Effects of botanical origin and ageing on HMF content in bee honey. Journal of Scientific Research and Reports, 1057-1066.
2. Kesić, A., Crnkic, A., Hodžić, Z., Ibršimović, N., & Sestan, A. (2014). Effects of botanical origin and ageing on HMF content in bee honey. Journal of Scientific Research and Reports, 1057-1066.
3. Dozic, A., Selimbasic, V., Cipurkovic, A., Crnkic, A., Hodzic, Z., & Trumic, I. (2014). Heavy metals in dust deposition in the vicinity of coal ash disposal site Divkovic II. Journal of Life Sciences, 8(S5).
4. Hodžić, Z., Saletović, M., Crnkic, A., Kesić, A., Mehmedinović, N. I., & Sestan, A. (2016). The Bioavailability of Manganese in the Marigold (Calendula officinalis L.) Grown on Alkaline Soil. American Journal of Applied Chemistry, 4(4), 141-145.
5. Donlagić, N., Crnkic, A., & Divkovic, D. (2012). Determination of Speciation and Bioavailability of Copper in the Lake Modrac With Geochemical Biotic Ligand Model (BLM). Quality of life, 6(3-4).
6. Sestan, A., Crnkic, A., Sestan, I., Kesić, A., & Daubalić, A. CHEMICAL ANALYSIS OF WATER SAMPLES PUBLIC FOUNTAINS FROM TUZLA AND SURROUNDING AREA.

Mirza Ibršimović, is associate professor at Sarajevo Medical School, at University Sarajevo School of Science and Technology in Sarajevo, Bosnia and Herzegovina. Mirza Ibršimović is author of 22 scientific publications and four books, including one patent: Patent: Ibršimović, N., Pitter, F., Ibršimović, M., Barth, M., Bohrn, U. (2009). Device comprising a polymer layer and a reflecting layer. EP2278300 A1, Europe and USA. Selected publications:

1. Tinjic, S., Abazovic, D., Ljubic, D., Vojvodic, D, Bozanovic, T., Ibršimović, M., & Ljubic, A. (2021). Influence of autolysis in vitro activation of ovaries by stem cells and growth factors on endocrine and reproductive function of patients with ovarian insufficiency. International Journal of Fertility and Sterility.
2. Mehmedinović, N. I., Ibršimović, M., Dedić, J., Kesić, A., Hodžić, Z., & Hadžigrmić, N.(2020). Early detection of fungal pathogens in patients with immunodeficiency involving a novel biosensor technology. International Journal of Development Research, 10(04), 34939-34942.
3. Ibršimović, M., Markovic, S., & Tinjic, S.(2020) First-Trimester Placental Morphogenesis as Potential Marker for Early Diagnosis of Chromosomal Abnormalities. International Journal of Engineering Research and Technologa. Vol 9, Issue 9.
4. Tinjic, S.,and Ibršimović,M. (2019). Introduction of a rutine sperm DNA fragmentation test as a significant help in evaluating male fertility potential. Asian journal of science and technology. Vol. 10, Issue, 10, pp.10407-10410.
5. Tinjic, S., & Ibršimović, M. (2019) Pathophysiological Effect of Oxygen Free Radicals on Mitochondrial DNA Integrity of Human Seminal Spermatozooa. International Journal of Engineering Research and Technology. Volume 08, Issue 07.

Published By:
Blue Eyes Intelligence Engineering and Sciences Publication

© Copyright: All rights reserved.
6. Madacki-Todorović K., Eminović I., Ibrišimović Mehmedinović N., Ibrišimović M. Insulin Acts as Stimulatory Agent in Diabetes-Related Escherichia Coli Pathogenesis. International Journal of Diabetes and Clinical Research. Issue 4, Volume 5, December 2018.

7. Ibrišimović, M., Lion, T., Klein, R. (2013). Combinatorial targeting of 2 different steps in adenoviral DNA replication by herpes simplex virus thymidine kinase and artificial microRNA expression for the inhibition of virus multiplication in the presence of ganciclovir. BMC Biotechnol, 13:54.