The quiescin sulfhydryl oxidase (QSOX) family of enzymes generates disulfide bonds in peptides and proteins with the reduction of oxygen to hydrogen peroxide. Determination of the potentials of the redox centers in Trypanosoma brucei QSOX provides a context for understanding catalysis by this facile oxidant of protein thiols. The CXXC motif of the thioredoxin domain is comparatively oxidizing \( E'_o \) of \(-144\, \text{mV}\), consistent with an ability to transfer disulfide bonds to a broad range of thiol substrates. In contrast, the proximal CXXC disulfide in the ERV (essential for respiration and vegetative growth) domain of \( Tb\)QSOX is strongly reducing \( E'_o \) of \(-273\, \text{mV}\), representing a major apparent thermodynamic barrier to overall catalysis. Reduction of the oxidizing FAD cofactor \( E'_o \) of \(-153\, \text{mV}\) is followed by the strongly favorable reduction of molecular oxygen. The role of a mixed disulfide intermediate between thioredoxin and ERV domains was highlighted by rapid reaction studies in which the wild-type CGAC motif in the thioredoxin domain of \( Tb\)QSOX was replaced by the more oxidizing CPHC or more reducing CGPC sequence. Mixed disulfide bond formation is accompanied by the generation of a charge transfer complex with the flavin cofactor. This provides thermodynamic coupling among the three redox centers of QSOX and avoids the strongly uphill mismatch between the formal potentials of the thioredoxin and ERV disulfides. This work identifies intriguing mechanistic parallels between the eukaryotic QSOX enzymes and the DsbA/B system catalyzing disulfide bond generation in the bacterial periplasm and suggests that the strategy of linked disulfide exchanges may be exploited by other catalysts of oxidative protein folding.

Several pathways have been described for the introduction of disulfide bonds in the secretory pathway of higher eukaryotes. In protein-disulfide isomerase-first models of oxidative protein folding (1–3), a direct interaction between the oxidized forms of one or more of the protein-disulfide isomerases leads to the net oxidation of protein clients. The resulting reduced protein-disulfide isomerase may then be reoxidized by one of several enzymes including the flavin-linked Ero1 oxidases utilizing molecular oxygen \( (4–6) \) and peroxiredoxin \( 4 \) \( (7–9) \) or glutathione peroxidase 7/8 \( (10) \) using hydrogen peroxide as a co-substrate. Other reduced thioredoxin-like resident proteins of the endoplasmic reticulum are believed to deliver reducing equivalents to vitamin-K-epoxide reductase \( (11), \) thereby providing an additional pathway for oxidative protein folding. In contrast, oxidases of the QSOX \(^3\) family \( (1, 12–17) \) are capable of the direct oxidation of client proteins. In vitro studies with avian and recombinant human and protozoan QSOXs showed that oxidation of protein thiols is facile when substrates are unfolded or at least conformationally flexible \( (3, 18) \). The inclusion of micromolar levels of reduced protein-disulfide isomerase with low nanomolar levels of QSOX leads to the efficient oxidative refolding of a client protein with nine disulfide bonds and correspondingly more than \( 34 \) million potential disulfide pairings \( (2) \). Of the two human paralogs \( (14, 19) \), QSOX1 is better understood on a mechanistic and biological level \( (1, 15, 16) \). QSOX1 is highly expressed in tissues with a heavy secretory load \( (1, 14–16) \) and is markedly up-regulated in certain cancers including those of prostate \( (20, 21) \), pancreas \( (22) \), and breast \( (23, 24) \). Recent studies have revealed that QSOX peptides from plasma serve as a biomarker for acute decompensated heart failure \( (25) \) and pancreatic cancer \( (22, 26) \), and investigations probing the biological function of QSOX demonstrate that overexpression provides cancer cells with enhanced invasive potential \( (22, 23, 27) \).

A wide range of non-fungal unicellular eukaryotes (from the smallest free living eukaryote to a number of pathogenic protists) contain a single QSOX enzyme \( (1, 14–16, 19) \). This study deals with the QSOX found in \( T.\) brucei, the caus-
tive agent of one form of African sleeping sickness. TbQSOX proves especially tractable to express in *Escherichia coli* (28), and its three-domain structure represents the minimal architecture for this family of multidomain sulfhydryl oxidases (16, 19, 28, 29). Fig. 1A shows the domain organization of *TbQSOX* together with key catalytic steps deduced from studies of both metazoan (30–32) and protist (3, 28, 29) QSOXs. Crystal structures of *TbQSOX* in open and closed conformations are shown in Fig. 1, B and C (29). Catalysis is initiated with the transfer of reducing equivalents from the client protein to the CXXC motif of the thioredoxin (TRX) domain (Fig. 1A, step 1). The TRX domain appears to be capable of rapidly sampling multiple open conformations while tethered to the relatively rigid helix-rich region (HRR)-ERV domains (29) via a flexible linker (shown as a dashed line in Fig. 1, B and C). The crystal structures of *TbQSOX* show no obvious binding site for protein or peptide substrates (3, 29) in accord with the biochemical evidence for a “hit and run” mode of catalysis (3). After the reduced TRX domain has disengaged from its protein substrate, it docks at the interface of the HRR and ERV domains where it forms a Cys1-Cys33 mixed disulfide with the redox-active CXXCIV disulfide proximal to the flavin cofactor within the ERV domain (Fig. 1C). Step 2 is completed by resolution of this mixed disulfide with dissociation of the oxidized TRX domain, allowing reducing equivalents to migrate to the flavin and thence to molecular oxygen (steps 3 and 4, respectively (1, 16, 32)).

This study probes the mechanism of this proficient stand-alone catalyst of disulfide bond formation. Here, we determined the reduction potentials of the three redox centers in *TbQSOX* catalysis and investigated the consequence of modulating the redox potential of the TRX domain on catalytic proficiency using rapid reaction and steady state kinetics. These studies provide the first thermodynamic context for a QSOX family member, revealing a surprisingly unfavorable thermodynamic barrier in the catalytic mechanism. Finally, our analysis identified intriguing parallels with the DsbA/B proteins catalyzing oxidative protein folding in the bacterial periplasm and provides a rationalization for this striking example of mechanistic convergence.

**EXPERIMENTAL PROCEDURES**

**Materials and Reagents**—Unless noted, chemical reagents and bacterial culture components were obtained as described previously (28). Primers were from Integrated DNA Technologies. Reduced glutathione (GSH), oxidized glutathione (GSSG), and oxidized DTT were from Sigma. Reduced DTT and isopropyl β-thiogalactopyranoside were from GoldBio. Methyl-PEG24-maleimide (MM(PEG)24) was from Thermo Fisher Scientific. 5-Deaza-FAD was obtained as described previously (33).

**Spectrophotometry, Assays, and Kinetics**—Routine aerobic and anaerobic UV-visible spectrophotometric experiments, QSOX enzyme assays, and rapid reaction studies with an SF-61 DX2 double mixing stopped-flow spectrophotometer (Hi-Tech Scientific) were performed as described earlier (3, 28, 34).

**TbQSOX Constructs and Mutants**—A truncated form containing only the thioredoxin domain (*TbQSOX*-TRX; corresponding to residues 20–199 in the full-length protein) was subcloned using the *TbQSOX*-FL-Fwd (28) and Trx-Rev (GTCTTCGAGTTAGACAGAGGTTTGACCAG) primers. Mutants of the intervening XX dipeptide of the CXXC motif in the context of the *TbQSOX*-TRX or full-length *TbQSOX* constructs were obtained using the QuickChange II Mutagenesis kit (Stratagene) with appropriate primers. All final expression constructs in the pET-28a(+) vector contained N-terminal His tags and were sequenced to verify integrity.

**Expression and Purification of TbQSOX**—Full-length *TbQSOX* and truncated constructs were expressed and purified as before (3, 28) with the following minor modifications. The hydrophobic interaction chromatography step for full-length proteins utilized 35%, not 40%, saturated ammonium sulfate. This step was omitted for the purification of *TbQSOX*-TRX construct. Protein yields for all constructs were similar to that of wild-type *TbQSOX* (~7 mg/liter of cell culture (28)).

**Redox Potential Determinations**—All redox potential experiments were carried out at 25 °C in 50 mM potassium phosphate buffer, pH 7.0 containing 1 mM EDTA. Stock solutions of reduced and oxidized glutathione were adjusted to pH 7 using potassium hydroxide. Thiol-containing solutions were standardized using 5,5-dithiobis(2-nitrobenzoate). The fraction of protein containing a particular reduced redox center was plotted against the composition of the corresponding redox couple ([GSH]2/[GSSG] or [DTTred]/[DTTox]). Redox data were analyzed using non-linear curve fitting with the Hill equation in GraphPad Prism 6 (GraphPad Software) to obtain the equilibrium constant, *Kox*. Standard redox potentials were obtained via the Nernst equation using *E*0 values of ~240 mV for GSH/GSSG (35) and ~327 mV for DTTred/DTTox (36).

**Redox Potentials of Thioredoxin Domain CXXC**—Approximately 5 μM protein was incubated at 25 °C for 2 h in 1.5 mL centrifuge tubes containing a range of glutathione redox buffers comprising 5 mM GSSG and 0.05–75 mM GSH. The mixtures were then rapidly quenched by the addition of 100% (w/v) ice-cold trichloroacetic acid (TCA) while vigorously vortexing to give a final concentration of 20% TCA. The precipitated protein samples were recovered by centrifugation (6000 relative centrifugal force for 30 min at 4 °C), and the pellets were washed twice with ice-cold acetone and allowed to air dry for 30 min. The denatured samples were then resuspended in 10 mM MM(PEG)24 in 2× non-reducing Laemmli buffer before being analyzed by SDS-PAGE using 12% gels. Gels were imaged, and bands were quantitated using a FluorChem Q imaging system and the FluorChem Q software (Protein Simple).

**Redox Potential of the CXXCIV Proximal Disulfide**—The 5-deaza-FAD-substituted enzyme was first generated by reconstituting the apoprotein with the flavin analog. Wild-type *TbQSOX* (45 nmol in 50 mM phosphate buffer, pH 7.5) was bound to 0.5 mL of ProBond nickel-chelating resin (Invitrogen) retained in a small plastic capped column. Flavin release was initiated by the addition of 1.5 mL of 6 mM guanidine hydrochloride in 50 mM phosphate buffer adjusted to pH 7.5. The column was recapped and incubated with rocking for 15 min at room temperature. The column was then allowed to drain and was washed with 4 column volumes of the denaturant followed by 3 column volumes of phosphate buffer without guanidine hydrochloride. Washes were evaluated spectrophotometrically to follow loss of FAD from the resin. The resin was then rocked
Coupled Disulfide Exchange Reactions in QSOX

overnight at 4 °C with a 1.7-fold molar excess of 5-deaza-FAD in 1 ml of phosphate buffer, pH 7.5. 5-Deaza-FAD-TbQSOX was eluted from the column with 500 mM imidazole and exchanged into 50 mM phosphate buffer, pH 7.0 containing 1 mM EDTA using Amicon Ultra centrifugal filters (Millipore). Redox experiments were conducted in open cuvettes including 50 mM glucose oxidase and 10 mM glucose as a precaution to maintain dissolved oxygen concentrations to low levels. Aliquots of reduced DTT were added to 15 μM 5-deaza-FAD-enzyme in the presence of 20 mM oxidized DTT. Spectra were recorded immediately and found to be unchanged 30 s after mixing. Spectra were scatter-corrected over 490–800 nm and corrected for dilution. The maximum absorbance change was centered around 445 nm (see Fig. 3A, inset). However, the absorbance change over five consecutive wavelengths (443–447 nm) was averaged to minimize instrumental noise prior to calculation of the fraction of enzyme carrying the reduced C^{III}XXC^{IV} motif.

*TbQSOX-bound FAD Redox Potential—*Wild-type *TbQSOX* (30 μM in 1 ml of 50 mM phosphate buffer, pH 7.0 containing 1 mM EDTA, 10 mM GSSG, and 10 mM glucose) was deoxygenated by cycles of vacuum and nitrogen in an anaerobic cuvette (34) prior to the addition of 50 mM glucose oxidase to ensure continued anaerobiosis. A stock solution of GSH was delivered via a Hamilton gas-tight syringe, and UV-visible spectra were recorded immediately and 60 s after each addition. The 60-s spectra were scatter-corrected (over 700–850 nm), and the fraction of reduced enzyme FAD was calculated from the dilution-corrected absorbance at 456 nm.

RESULTS

Overview of Redox Potential Measurements—*We started this work by determining the redox potentials of the centers participating in the oxidation of protein substrates (Fig. 1A). Because the TRX domain of *TbQSOX* is linked by a mobile and disordered loop region to the HRR/ERV pseudodimer (Fig. 1B and Refs. 29 and 37), truncations of the protein allow them to be studied separately. It should be noted that there is an additional CVI disulfide. Hence, this third CXXC motif toward the C terminus of the ERV domain. Although this C^{V}XXC^{VI} motif is conserved in all QSOX sequences examined to date (1, 19), single or double mutations at this locus have an insignificant impact on the turnover of protein substrates in vitro using either human QSOX1 or *TbQSOX* (28, 32). Furthermore, the recent crystal structures of open and closed forms of *TbQSOX* (Fig. 1, B and C) do not provide an obvious rationale for a catalytic role of the C^{V}XXC^{VI} disulfide. Hence, this third CXXC motif will not be considered further in the present study.

Redox Measurement of C^{XII}XXC^{II} Motif—*Determining the redox potential of the C^{XII}XXC^{II} motif requires isolating the redox-active TRX domain from the HRR-ERV domains to prevent transfer of reducing equivalents from the C^{XII}XXC^{II} dithiol to the C^{III}XXC^{IV} and FAD centers of *TbQSOX* (Fig. 1A). The thioredoxin domain with an additional embedded α-helix (colored in blue in Fig. 1B) is tethered to the rigid and structurally independent HRR-ERV domains in *TbQSOX* by a flexible linker. This *TbQSOX*-TRX construct was expressed independently as described under “Experimental Procedures” and was found to contain no free thiols on 5,5-dithiobis(2-nitrobenzoate) titration. The small size of this construct (201 residues) allows the use of a gel shift procedure commonly used to determine the redox potentials of thioredoxin family members (38, 39). *TbQSOX*-TRX was equilibrated at pH 7.0 in redox buffers containing varying ratios of reduced and oxidized glutathione, the mixtures were quenched by TCA precipitation, and the reduced component was labeled with a small PEG-maleimide derivative (MM(PEG)_{24}; see “Experimental Procedures”), adding 1.24 kDa per thiol. Non-reducing SDS-PAGE revealed the expected gel shift for the introduction of two maleimide labels for the reduced protein. As observed by others (40), an intermediate band appeared (denoted with * in Fig. 2A), likely
mammalian protein-disulfide isomerase (∼−170 mV (43–45)) from the endoplasmic reticulum.

**Redox Measurement of C\textsuperscript{III}XXC\textsuperscript{IV} Motif**—Upon net transfer of reducing equivalents from protein clients to the C\textsuperscript{III}XXC\textsuperscript{IV} motif of QSOX family members, the mobile TRX domain then reduces the C\textsuperscript{III}XXC\textsuperscript{IV} proximal disulfide adjacent to the oxidized flavin cofactor within the ERV domain (Fig. 1A) (29, 31, 32). Several lines of evidence suggest that this proximal disulfide is significantly more reducing than the adjacent flavin. For example, dithionite titrations of full-length *Tb*QSOX in which the strongly oxidizing C\textsuperscript{III}XXC\textsuperscript{I} disulfide in the TRX domain is disabled with a C\textsuperscript{S} mutation showed that the FAD cofactor is stoichiometrically reduced after the addition of 2 electrons before any reduction of the proximal disulfide occurs (28). Comparable results were obtained in an HRR-ERV truncation construct of *Tb*QSOX in which the TRX domain is removed entirely (28). This behavior is not unique to *Tb*QSOX; it was previously encountered in an HRR-ERV fragment of avian QSOX1 that was generated by partial proteolysis (31) and is found in the ERV domains of several small stand-alone sulfhydryl oxidases including augmenter of liver regeneration and ERV2p (46, 47).

Because we wanted to determine the redox potential of the proximal disulfide in the context of an oxidized flavin, we explored the use of the highly reducing flavin analog 5-deaza-FAD (48, 49). Substitution of the flavin prosthetic group in full-length *Tb*QSOX with 5-deaza-FAD (see “Experimental Procedures”) yields an enzyme with undetectable activity (data not shown). This is to be expected because 5-deazaflavins are unreactive in their reduced forms toward oxygen (48). Although incubation of substituted *Tb*QSOX with 5 mM DTT leads to insignificant reduction of the bound deazaflavin, the oxidized flavin envelope is blue shifted by ∼5 nm (from 412 to 407 nm; Fig. 3A). Precedent for such blue shifts upon removal of a disulfide bond proximal to the flavin was previously observed in lipoamide dehydrogenase (50); augmenter of liver regeneration (51); and avian (52), human (32), and trypanosomal (28) QSOXs. Reduction of the proximal disulfide in 5-deaza-FAD-*Tb*QSOX is then conveniently followed by changes in absorbance centered around 445 nm (see Fig. 3A, inset, and “Experimental Procedures”) upon the incremental addition of reduced DTT in the presence of 20 mM oxidized DTT. A plot of the percentage of reduction as a function of the composition of the ratio $\text{DTT}_{\text{red}}/\text{DTT}_{\text{ox}}$ yields a redox potential of $\sim−273 ± 3$ mV for the proximal disulfide (Fig. 3B). Thus, the C\textsuperscript{III}XXC\textsuperscript{IV} proximal disulfide is much more reducing than the TRX domain; the $\sim130$-mV mismatch implies a more than $\sim10,000$-fold equilibrium bias in favor of reduction of the thioredoxin domain in *Tb*QSOX. A further discussion of the redox imbalance among the three redox centers in QSOX will be presented after determination of the redox potential of the flavin prosthetic group.

**Redox Measurement of the FAD Prosthetic Group**—To evaluate the third redox center, the bound FAD of *Tb*QSOX, we utilized the full-length protein and delivered reducing equivalents using the relatively weak thermodynamic reductant glutathione. Although this monothiol is a poor substrate of both protist and mammalian QSOX enzymes (28, 53, 54), communication between GSH and the C\textsuperscript{III}XXC\textsuperscript{I} disulfide is rapid enough to ensure equilibration with the FAD after several sec-
onds under rigorously anaerobic conditions (see “Experimental Procedures”). The corresponding spectra (Fig. 4A) show a progressive decline in absorbance at 456 nm when increasing concentrations of GSH are added to a solution of 10 mM GSSG and allowed calculation of a redox potential for the bound flavin of \(-153 \pm 1\) mV. Thus, the flavin and the TRX CXXCII motif are almost equipotential (\(E'_{\text{ox}} - E'_{\text{red}} = 9\) mV). This is consistent with the outcome of dithionite titrations of \(\text{TbQSOX}\) (28), implying that both the FAD and the CXXCII motif are of comparable redox potential.

Modulating Catalysis by Mutating the CXXCII Motif—Multiple studies have shown that the intervening dipeptide in CXXC motifs in thioredoxin superfamily members can modulate the redox potential in a predictable way (41, 55–59). Thus, when the dipeptide of \(E. coli\) thioredoxin is changed from GP to PH (a sequence found in the highly oxidizing DsbA protein), the redox potential becomes about 60 mV more positive (56, 57). Conversely, substitution of the PH sequence to a GP in the context of the DsbA protein effects a change of redox potential from the highly oxidizing –122 mV to the more reducing –214 mV (60, 61). One might expect that the potentials for each couple in an enzyme containing multiple redox centers would be optimized for its physiological roles. Here, we explore the catalytic impact of modulating the redox potential of the TRX CGAC motif in \(\text{TbQSOX}\) using CGPC and CPHC sequences.

Redox Potentials of Mutant TRX Domains and Steady State Kinetics of Corresponding Mutant \(\text{TbQSOX}\) Enzymes—We first determined the redox potentials of the \(\text{TbQSOX}\) TRX domain containing the CGPC and CPHC sequences following the gel shift procedure outlined earlier (see “Experimental Procedures”). As expected, the GP sequence is more reducing than the wild-type sequence (by 41 mV; Table 1). Again, in accord with the trends observed with previous thioredoxin family

| Redox center | Redox couple | \(K_{\text{ox}}\) | \(E'_{\text{ox}}\) | \(E'_{\text{red}}\) | \(E'_{\text{red}} - E'_{\text{ox}}\) |
|--------------|--------------|-----------------|-----------------|-----------------|----------------|
| \(\text{C}^{\text{GAC}}\) <sub>WT</sub> | GSH/GSSG | \(6.05 \times 10^{-4}\) M | \(-144 \pm 1\) mV |
| \(\text{C}^{\text{HKE}}\) <sub>WT</sub> | DTT<sub>red</sub>/DTT<sub>ox</sub> | \(1.23 \times 10^{-2}\) M | \(-273 \pm 3\) mV |
| FAD | GSH/GSSG | \(1.11 \times 10^{-2}\) M | \(-153 \pm 1\) mV |
| \(\text{C}^{\text{GPC}}\) | GSH/GSSG | \(1.35 \times 10^{-2}\) M | \(-185 \pm 4\) mV |
| \(\text{C}^{\text{PHC}}\) | GSH/GSSG | \(4.58 \times 10^{-2}\) M | \(-113 \pm 3\) mV |

*Redox potentials were calculated from the \(K_{\text{ox}}\) determined from the mean of two to four replicates. Uncertainty represents the 95% confidence limits.
TABLE 2
Kinetics of wild-type TbQSOX and C'XXCII mutants
Values for the wild-type protein were adapted from Kodali and Thorpe (28). Turnover numbers are expressed as thiols oxidized per second with substrate concentrations denoted in terms of total thiols. Uncertainty represents S.E.

| Mutant          | $k_{cat}$ | $K_m$ | $k_{cat}/K_m$ | $k_{cat}$ | $K_m$ | $k_{cat}/K_m$ |
|-----------------|----------|-------|---------------|-----------|-------|---------------|
|                 | s$^{-1}$ | mM    | s$^{-1}$ mM   | s$^{-1}$  | mM    | s$^{-1}$ mM   |
| C'GACII         | 45.1 ± 0.7 | 0.17 ± 0.01 | 2.6 × 10^4  | 21.9 ± 1.8 | 0.36 ± 0.06 | 6.0 × 10^4 |
| C'GPCII$^1$     | 13.7 ± 0.5 | 0.22 ± 0.02 | 6.2 × 10^4  | 11.0 ± 1.1 | 0.32 ± 0.08 | 3.5 × 10^4 |
| C'PHCII         | 0.9 ± 0.1  | 0.03 ± 0.01 | 7.2 × 10^4  | 0.79 ± 0.01 | 0.04 ± 0.01 | 1.8 × 10^4 |

FIGURE 5. Turnover number of the C'PHCII mutation of TbQSOX with DTT. The main panel represents turnover numbers up to 1 mM DTT. The inset shows the linear dependence of the turnover number of the mutant enzyme at concentrations above 1 mM DTT. Error bars represent S.E.

members, replacement of the CGAC sequence by CPHC generates a mutant that is 31 mV more oxidizing than the wild-type domain (Table 1).

Full-length TbQSOX constructs incorporating the C'GPII and C'PHCII sequences in the TRX domain were purified for kinetics characterization. The mutant oxidases showed flavin spectra, purities, and stabilities comparable with those of the wild-type protein (data not shown). Both proteins were assayed with the model substrate DTT and using reduced RNase as a tractable unfolded reduced protein substrate (3, 18). A comparison of steady state kinetic parameters is shown in Table 2. The GP enzyme shows very modest decreases in $k_{cat}/K_m$ for DTT and rRNase (4.2- and 1.7-fold, respectively) dominated by a small decrease in $k_{cat}$ (Table 2). In contrast, the more oxidizing TbQSOX shows correspondingly larger decreases in $k_{cat}$ values (of 50- and 28-fold, respectively), but these values are substantially offset by a 5.7- and 9-fold decrease in the $K_m$ term, again leading to a very small overall decrease in catalytic efficiency when compared with the wild-type enzyme. Although Michaelis-Menten behavior was observed for both DTT and rRNase using the three mutant enzymes, the behavior of the C'PHCII enzyme is distinctly anomalous at higher DTT concentrations (Fig. 5). The rates show a saturable initial phase giving the $K_m$ estimate in Table 2 followed by a linear dependence from 1 to 15 mM DTT. Strikingly, inactivation of the TRX domain using the C'S mutation in TbQSOX shows a linear dependence on DTT concentration but without the initial phase (28). Hence, the first phase involves saturation of the TRX domain by DTT, and the limiting rate constant of 0.9 s$^{-1}$ reflects an internal rate-limiting step that is more than 40-fold slower than observed with the WT enzyme (28). The subsequent linear phase reflects the ability of DTT to short circuit catalysis by reducing the CysIII-CysIV proximal disulfide without the obligatory participation of the thioredoxin domain. The protein substrate rRNase does not show this secondary phase because it cannot efficiently communicate with the ERV domain directly (28).

Monitoring Turnover with DTT in the Stopped-flow Spectrophotometer—Although the mutant TbQSOX enzymes show relatively modest decreases in catalytic efficiency, they demonstrate marked differences in the ratio of species populating the steady state during aerobic turnover with DTT. TbQSOX shows only modest levels of a charge transfer species in the steady state (28) as shown in Fig. 6A with the time course at 456 and 580 nm observed when the oxidase is mixed with 5 mM DTT in aerobic phosphate buffer, pH 7.5 depicted in Fig. 6B. The steady state is maintained for ~0.5 s before depletion of oxygen leads to the accumulation of the reduced enzyme. The two mutants show strongly contrasting behavior. The C'PHCII enzyme is almost completely oxidized in the steady state with no detectable charge transfer band at 580 nm (Fig. 6C). Significant reduction of this enzyme only occurs after a sharp transition at 5 s. During the subsequent accumulation of reduced enzyme, no long-wavelength spectral features are evident as oxygen is depleted from the solution.

In marked contrast, the C'GPII mutant shows an intense blue color during turnover; this strong charge transfer band (centered at 580 nm) remains almost unchanged for 1 s before reduced flavin begins to accumulate (Fig. 6D). This prominent species is also observed under anaerobic conditions when the C'GPII mutant is mixed with DTT in the stopped-flow spectrophotometer (Fig. 7). Here, the formation of the charge transfer band shows a limiting apparent rate constant of 936 ± 40 s$^{-1}$, which is some 3.3-fold faster than the 280 s$^{-1}$ observed for the wild-type protein (28). In contrast, conversion of the charge transfer species to yield reduced flavin is 7.1 ± 0.3 s$^{-1}$ for the GP mutant, which is about 2.6-fold slower than the wild-type protein. It is important to note that thiolate to flavin charge transfer species are undetectable in the absence of the TRX domain in both static and rapid reaction experiments (28). Thus, the charge transfer species observed during earlier rapid reaction studies of both the T. brucei and avian QSOXs (28, 30) is almost certainly dominated by the formation of a mixed disulfide intermediate in which the TRX domain is docked against the HRR-ERV fragment (Fig. 8A). The crystal structure of
the closed conformation of TbQSOX (Fig. 1C and Ref. 29) provides a structural approximation for this critical link between the two catalytic modules of QSOX catalysis. Although this work shows that the formation of this species is highly responsive to the sequence of the CXXC motifs within the TRX domain, it is clearly unwarranted to justify the differences in behavior in terms of redox potentials alone. Obviously, the insertion of a proline at the first or second position within the intervening XX dipeptide motif (from CGAC of the wild-type enzyme to CPHC and CGPC) may perturb the ability either of the CysI cysteinyl sulfur to serve as a nucleophile during the formation of the CysI-CysIII mixed disulfide intermediate or of the CysII sulfur to achieve the in-line geometry needed to resolve this interdomain disulfide (1, 16).

**DISCUSSION**

**TbQSOX in Thermodynamic Context: Redox Potentials of Thiol Substrates**—The trypanosomal enzyme (28), like other QSOXs (3, 18, 32, 54), is capable of oxidizing a very wide range of mono-, di-, and multithiol substrates. Conformationally flexible peptides and proteins containing two or more cysteine residues appear to be excellent substrates of the enzyme, although there is comparatively little data regarding their redox potentials. A series of di thiol-containing peptides and unfolded proteins show redox potentials of −190 to −220 mV (60, 62); these values are considerably more reducing than the −144 mV observed for the thioredoxin domain of TbQSOX. In terms of potential protein clients of QSOX, many structural proteins contain multiple disulfides, greatly complicating the determination of redox potentials. Thus, values for a particular disulfide bridge would likely depend on the number of disulfides that were already introduced and the degree to which those predecessors were correctly paired. Gilbert (63) has tabulated a wide range of redox potentials for intramolecular protein structural disulfides spanning −185 to −450 mV. In summary, the CXXC redox disulfide of the TRX domain appears to be much more oxidizing than the majority of di thiol substrates that QSOX is likely to encounter (1, 16, 27, 64). However, this strongly oxidizing couple must now serve as the reductant of the proximal disulfide in a reaction that appears to constitute a significant barrier to the overall reaction (Fig. 8A). Thereafter, transfer of reducing equivalents to the flavin and then to molecular oxygen is very energetically favorable.
**Coupled Disulfide Exchange Reactions Promote Efficient Catalysis**—Fig. 8 shows, somewhat surprisingly, that two evolutionarily unrelated catalysts of oxidative protein folding, QSOX and the bacterial DsbA/DsbB oxidoreductase enzyme system, appear to share a common mechanistic strategy. First, the oxidation of client proteins in both systems is initiated by a strongly oxidizing thioredoxin domain or subunit. After reduction, the soluble and highly oxidizing periplasmic DsbA (Fig. 8B) must dock with membrane-bound DsbB at the bacterial plasma membrane (65–67). In contrast, QSOX incorporates a tethered, and oxidizing, N-terminal thioredoxin domain (Fig. 1A). Second, both systems apparently show a strongly uphill mismatch associated with reoxidation of their cognate thioredoxin partners. Third, in both systems, a charge transfer interaction between a thiolate and the oxidized cofactor (flavin in QSOX and a quinone in DsbB) is the first observable intermediate in rapid reaction studies (28, 30, 68). Fourth, decomposition of this charge transfer intermediate to yield dihydroflavin or hydroquinone is rate-limiting in overall catalysis in both QSOX and DsbB, respectively (25, 27, 54). Finally, accumulation of these reduced enzyme species is believed to occur in both instances via thiol-cofactor covalent adducts (1, 69, 70).

In terms of charge transfer complex formation, one or two disulfide exchanges are required to form a path of communication from the reduced thioredoxin domain to the organic cofactor in QSOX and DsbA/B (Fig. 8). Thus, in TbQSOX, a CysI-CysIII mixed disulfide traps the closed conformation, thereby allowing CysIV to form a charge transfer complex with the flavin (Fig. 8A). Such thiolate to flavin charge transfer complexes can provide an additional thermodynamic stabilization favoring product formation (70). In the case of DsbB, a recent rapid reaction study showed that Cys30 of reduced DsbA efficiently captures Cys104 of DsbB in an interprotein mixed disulfide (68). The liberated cysteine Cys130 of DsbB can facilely attack Cys41 located on the second mobile periplasmic peptide loop of DsbB, thereby releasing the charge transfer thiolate to interact with the highly oxidizing quinone cofactor (68, 71).

It is important to note that an uphill mismatch in redox potential between dithiol/disulfide centers is not a disqualification for the efficient formation of mixed disulfide intermediates; differences in redox potential cannot be used to predict the thermodynamic stability of a mixed disulfide that may form between them. Hence, in the case of DsbA/B, a series of facile disulfide exchange reactions (66, 68, 71) provides a covalent pathway for thermodynamic coupling that can link the oxidation of a comparatively distal DsbA to a highly oxidizing quinone center in DsbB provided that DsbA does not dissociate prior to completion of this series of stepwise reactions. Subsequently, the Cys44 thiolate of DsbB likely forms a covalent adduct with the quinone (69) in analogy to the C4a adducts

**FIGURE 8.** Schematic of free energy coordinates and equilibria depicting overall catalysis by TbQSOX and DsbA/B. A shows a schematic free energy coordinate for TbQSOX. The transfer of electrons from reduced substrate to CXXC of TbQSOX is energetically favorable, whereas the subsequent intramolecular transfer of electrons to C'XXC’ is strongly unfavorable based on free energy coordinates alone. The reduction of the FAD prosthetic group and the final transfer from dihydroflavin to molecular oxygen (73) are both favored energetically. A also depicts the interconversion of selected 2-electron reduced forms in TbQSOX. B presents the corresponding schemes for DsbA/B. The redox potentials for DsbB disulfides in B are the average of those of Regeimbal and Bardwell (74) and Inaba and Ito (61). Cysteine residues are labeled by their position in the sequence of DsbA and DsbB.
believed to intervene in the final step of transfer of reducing equivalents to the flavin cofactor in QSOX (1). Indeed, both cofactor adducts may provide an additional thermodynamic drive toward the accumulation of the reduced cofactor, allowing electrons to be ultimately delivered to the respiratory chain or to molecular oxygen directly.

Inaba et al. (69) suggest that the relatively negative potentials of the two loop disulfides in DsbB (Cys130-Cys133) may restrict reactivity with non-cognate potential thiol substrates with the ERV domain. Such short circuiting only seems to be evident under forcing conditions with a small non-physiological substrate when communication between thioredoxin and ERV domains is significantly impaired as observed with the C^\beta PHC^b mutant of TbQSOX described earlier (Fig. 5).

In summary, the evolutionarily unrelated bacterial DsbA/B and eukaryotic QSOX systems have apparently adopted a common general strategy for disulfide bond formation. Both systems initially receive electrons from thiol-containing peptides via a strongly oxidizing CXXC motif in the context of a thioredoxin fold. Reducing equivalents are then transferred through a second redox-active disulfide motif in what appears to be a prohibitive thermodynamic mismatch, a strategy that likely evolved to restrict nonspecific oxidation of extraneous thiols. Rather than the full expression of this thermodynamic mismatch, a series of disulfide exchange reactions provides an alternate pathway that couples oxidation of the cognate thioredoxin donor with reduction of a distal oxidizing cofactor. It seems likely that examination of additional oxidoreductases of oxidative protein folding may provide further examples of this strategy to thermodynamically couple distal centers with a series of linked thiol-disulfide exchange reactions.

Acknowledgments—We thank Dr. Bruce Palfey for an insightful discussion of thiol-disulfide exchange reactions. Shawn Gannon provided help with the interpretation of redox titrations.

REFERENCES
1. Heckler, E. J., Rancy, P. C., Kodali, V. K., and Thorpe, C. (2008) Generating disulfides with the quinsec-sulphhydryl oxidase. Biochim. Biophys. Acta 1783, 567–577
2. Rancy, P. C., and Thorpe, C. (2008) Oxidative protein folding in vitro: a study of the cooperation between quinsec-sulphhydryl oxidase and protein disulfide isomerase. Biochemistry 47, 12047–12056
3. Coddington, J. D., Chau, J., and Thorpe, C. (2012) Protein substrate discrimination in the quinsec-sulphhydryl oxidase (QSOX) family. Biochemistry 51, 4226–4235
4. Cabibbo, A., Pagani, M., Fabbi, M., Rocchi, M., Farmery, M. R., Bulleid, N. J., and Sitia, R. (2000) Ero1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J. Biol. Chem. 275, 4827–4833
5. Pagani, M., Fabbi, M., Benedetti, C., Fassio, A., Pilati, S., Bulleid, N. J., Cabibbo, A., and Sitia, R. (2000) Endoplasmic reticulum oxidoreductin 1-lbf (ERO1-lbf), a human gene induced in the course of the unfolded protein response. J. Biol. Chem. 275, 23685–23692
6. Araki, K., and Inaba, K. (2012) Structure, mechanism, and evolution of Ero1 family enzymes. Antioxid. Redox Signal. 16, 790–799
7. Zito, E., Melo, E. P., Yang, Y., Wahlander, A., Neubert, T. A., and Ron, D. (2010) Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin. Mol. Cell 40, 787–797
8. Vandervelde, T. J., Springate, J. J., and Bulleid, N. J. (2010) Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum. EMBO J. 29, 4185–4197
9. Sato, Y., Kojima, R., Okumura, M., Hagiwara, M., Masui, S., Maegawa, K., Saiki, M., Horibe, T., Suzuki, M., and Inaba, K. (2013) Synergistic cooperation of PDI family members in peroxiredoxin 4-driven oxidative protein folding. Sci. Rep. 3, 2456
10. Nguyen, V. D., Saaranen, M. J., Karala, A. R., Lappi, A. K., Wang, L., Raykhel, I. B., Alanen, H. I., Salo, K. E., Wang, C. C., and Ruddock, L. W. (2011) Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation. J. Biol. Chem. 406, 503–515
11. Schulman, S., Wang, B., Li, W., and Rapoport, T. A. (2010) Vitamin K epoxide reductase prefer ER membrane-chondiated thioredoxin-like redox partners. Proc. Natl. Acad. Sci. U.S.A. 107, 15027–15032
12. Hooper, K. L., Glynan, N. M., Bumside, J., Coppeck, D. L., and Thorpe, C. (1999) Homology between egg white sulfhydryl oxidase and quiescin Q6 defines a new class of flavin-linked sulfhydryl oxidases. J. Biol. Chem. 274, 31759–31762
13. Benayoun, B., Esnard-Fève, A., Castella, S., Courty, Y., and Esnard, F. (2001) Rat seminal vesicle FAD-dependent sulfhydryl oxidase. Biochemical characterization and molecular cloning of a member of the new sulfhydryl oxidase/quiescin Q6 gene family. J. Biol. Chem. 276, 13830–13837
14. Thorpe, C., Hooper, K. L., Raje, S., Glynan, N. M., Bumsdie, J., Turi, G. K., and Coppeck, D. L. (2002) Sulfhydryl oxidases: emerging catalysts of protein disulfide bond formation in eukaryotes. Arch. Biochem. Biophys. 405, 1–12
15. Coppeck, D. L., and Thorpe, C. (2006) Multidomain flavin-dependent sulfhydryl oxidases. Antioxid. Redox Signal. 8, 300–311
16. Kodali, V. K., and Thorpe, C. (2010) Oxidative protein folding and the quiescin-sulphhydryl oxidase family of flavoproteins. Antioxid. Redox Signal. 13, 1217–1230
17. Sevier, C. (2012) Erv2 and quiescin sulfhydryl oxidases: Erv-domain enzymes associated with the secretory pathway. Antioxid. Redox Signal. 16, 800–808
18. Hooper, K. L., Sheasley, S. L., Gilbert, H. F., and Thorpe, C. (1999) Sulfhydryl oxidase from egg white: a facile catalyst for disulfide bond formation in proteins and peptides. J. Biol. Chem. 274, 22147–22150
19. Limor-Waisberg, K., Ben-Dor, S., and Fass, D. (2013) Diversification of quiescin sulfhydryl oxidase in a preserved framework for redox relay. BMC Evol. Biol. 13, 70
20. Ouyang, X., DeWeese, T. L., Nelson, W. G., and Abate-Shen, C. (2005) Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res. 65, 6773–6779
21. Song, H., Zhang, B., Watson, M. A., Humphrey, P. A., Lim, H., and Milbrandt, J. (2009) Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Oncogene 28, 3307–3319
22. Batchman, B. A., Liquori, G., Demeure, M. J., Watanabe, A., Becker, G. A., Miller, L. J., Von Hoff, D. D., and Lake, D. F. (2011) Quiescin sulfhydryl oxidase 1 promotes invasion of pancreatic tumor cells mediated by matrix metalloproteinases. Mol. Cancer Res. 9, 1621–1631
23. Soloviev, M., Estes, M. P., Amici, F., Crompton, M. R., and Rider, C. C. (2013) Elevated transcription of the gene QSOX1 encoding quiescin Q6 sulfhydryl oxidase 1 in breast cancer. PLoS One 8, e57327
24. Batchman, B. A., Ocal, I. T., Cunliffe, H. E., Chang, Y.-H., Hostetter, G., Watanabe, A., Lobello, J., and Lake, D. F. (2013) Expression of quiescin sulfhydryl oxidase 1 is associated with a highly invasive phenotype and correlates with a poor prognosis in Luminal B breast cancer. Breast Cancer Res. 15, R28
25. Megabaa, A., Vanpoucke, G., Thomas, G., Verleysen, K., Cohen-Solal, A., Vanderheyden, M., Bartunek, J., Mueller, C., Launay, J. M., Van Landuyt, N., D’Hondt, F., Verschuere, E., Vanhaute, C., Tuytten, R., Vanneste, L., Cremer, K., Wuyts, J., Davies, H., Moerman, P., Goldart, D., Collet, C.,
Coupled Disulfide Exchange Reactions in QSOX

(2007) Kinetic characterization of the disulfide bond-forming enzyme DsbB. *J. Biol. Chem.* **282**, 10263–10271

69. Inaba, K., Takahashi, Y. H., Ito, K., and Hayashi, S. (2006) Critical role of a thiolate-quinone charge transfer complex and its adduct form in de novo disulfide bond generation by DsbB. *Proc. Natl. Acad. Sci. U.S.A.* **103**, 287–292

70. Dmitrenko, O., and Thorpe, C. (2008) A computational analysis of the interaction between flavin and thiol(ate) groups. Implications for flavoenzyme catalysis. *J. Sulfur Chem.* **29**, 415–421

71. Inaba, K., Murakami, S., Suzuki, M., Nakagawa, A., Yamashita, E., Okada, K., and Ito, K. (2006) Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. *Cell* **127**, 789–801

72. Inaba, K., Murakami, S., Nakagawa, A., Iida, H., Kimjo, M., Ito, K., and Suzuki, M. (2009) Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbB. *EMBO J.* **28**, 779–791

73. Wood, P. M. (1988) The potential diagram for oxygen at pH 7. *Biochem. J.* **253**, 287–289

74. Regeimbal, J., and Bardwell, J. C. (2002) DsbB catalyzes disulfide bond formation *de novo*. *J. Biol. Chem.* **277**, 32706–32713