Action Segmentation with Joint Self-Supervised Temporal Domain Adaptation

Min-Hung Chen 1* Baopu Li 2 Yingze Bao 2 Ghassan AlRegib 1 Zsolt Kira 1
1 Georgia Institute of Technology 2 Baidu USA

Abstract

Despite the recent progress of fully-supervised action segmentation techniques, the performance is still not fully satisfactory. One main challenge is the problem of spatio-temporal variations (e.g. different people may perform the same activity in various ways). Therefore, we exploit unlabeled videos to address this problem by reformulating the action segmentation task as a cross-domain problem with domain discrepancy caused by spatio-temporal variations. To reduce the discrepancy, we propose Self-Supervised Temporal Domain Adaptation (SSTDA), which contains two self-supervised auxiliary tasks (binary and sequential domain prediction) to jointly align cross-domain feature spaces embedded with local and global temporal dynamics, achieving better performance than other Domain Adaptation (DA) approaches. On three challenging benchmark datasets (GTEA, 50Salads, and Breakfast), SSTDA outperforms the current state-of-the-art method by large margins (e.g. for the F1@25 score, from 59.6% to 69.1% on Breakfast, from 73.4% to 81.5% on 50Salads, and from 83.6% to 89.1% on GTEA), and requires only 65% of the labeled training data for comparable performance, demonstrating the usefulness of adapting to unlabeled target videos across variations. The source code is available at https://github.com/cmhungsteve/SSTDA.

1. Introduction

The goal of action segmentation is to simultaneously segment videos by time and predict an action class for each segment, leading to various applications (e.g. human activity analyses). While action classification has shown great progress given the recent success of deep neural networks [41, 29, 28], temporally locating and recognizing action segments in long videos is still challenging. One main challenge is the problem of spatio-temporal variations of human actions across videos [17]. For example, different people may make tea in different personalized styles even if the given recipe is the same. The intra-class variations cause degraded performance by directly deploying a model trained with different groups of people.

Despite significant progress made by recent methods based on temporal convolution with fully-supervised learning [21, 7, 24, 9], the performance is still not fully satisfactory (e.g. the best accuracy on the Breakfast dataset is still lower than 70%). One method to improve the performance is to exploit knowledge from larger-scale labeled data [2]. However, manually annotating precise frame-by-frame actions is time-consuming and challenging. Another way is to design more complicated architectures but with higher costs of model complexity. Thus, we aim to address the spatio-temporal variation problem with unlabeled data, which are comparatively easy to obtain. To achieve this goal, we propose to diminish the distributional discrepancy caused by spatio-temporal variations by exploiting auxiliary unlabeled videos with the same types of human activities performed by different people. More specifically, to extend the framework of the main video task for exploiting auxiliary

*Work done during an internship at Baidu USA
data [48, 20], we reformulate our main task as an unsuper-
vised domain adaptation (DA) problem with the transduc-
tive setting [32, 6], which aims to reduce the discrepancy be-
tween source and target domains without access to the
target labels.

Recently, adversarial-based DA approaches [11, 12, 40, 47] show progress in reducing the discrepancy for images
using a domain discriminator equipped with adversarial
training. However, videos also suffer from domain dis-
crepancy along the temporal direction [4], so using image-
based domain discriminators is not sufficient for action
segmentation. Therefore, we propose **Self-Supervised Tem-
poral Domain Adaptation (SSTDA)**, containing two self-
supervised auxiliary tasks: 1) *binary domain prediction*,
which predicts a single domain for each frame-level feature,
and 2) *sequential domain prediction*, which predicts the per-
mutation of domains for an untrimmed video. Through
adversarial training with both auxiliary tasks, SSTDA can
jointly align cross-domain feature spaces that embed lo-
cal and global temporal dynamics, to address the spatio-
temporal variation problem for action segmentation, as
shown in Figure 1. To support our claims, we compare our
method with other popular DA approaches and show bet-
ter performance, demonstrating the effectiveness for align-
ing temporal dynamics by SSTDA. Finally, we evaluate
our approaches on three datasets with high spatio-temporal
variations: GTEA [10], 50Salads [37], and the Breakfast
dataset [18]. By exploiting unlabeled target videos with
SSTDA, our approach outperforms the current state-of-the-
art methods by large margins and achieve comparable per-
formance using only 65% of labeled training data.

In summary, our contributions are three-fold:

1. **Self-Supervised Sequential Domain Prediction**: We
 propose a novel self-supervised auxiliary task, which
 predicts the permutation of domains for long videos,
to facilitate video domain adaptation. To the best of
 our knowledge, this is the first self-supervised method
designed for cross-domain action segmentation.

2. **Self-Supervised Temporal Domain Adaptation
 (SSTDA)**: By integrating two self-supervised auxili-
ary tasks, *binary* and *sequential domain prediction*,
our proposed SSTDA can jointly align local and global
embedded feature spaces across domains, outperform-
ing other DA methods.

3. **Action Segmentation with SSTDA**: By integrating
 SSTDA for action segmentation, our approach out-
performs the current state-of-the-art approach by large
margins, and achieve comparable performance by us-
ing only 65% of labeled training data. Moreover, dif-
ferent design choices are analyzed to identify the key
contributions of each component.

2. Related Works

Action Segmentation methods proposed recently are built
upon temporal convolution networks (TCN) [21, 7, 24, 9]
because of their ability to capture long-range dependencies
across frames and faster training compared to RNN-based
methods. With the multi-stage pipeline, MS-TCN [9] per-
foms hierarchical temporal convolutions to effectively ex-
tact temporal features and achieve the state-of-the-art per-
formance for action segmentation. In this work, we utilize
MS-TCN as the baseline model and integrate the proposed
self-supervised modules to further boost the performance
without extra labeled data.

Domain Adaptation (DA) has been popular recently espe-
cially with the integration of deep learning. With the two-
branch (source and target) framework for most DA works,
finding a common feature space between source and target
domains is the ultimate goal, and the key is to design the
domain loss to achieve this goal [6].

Discrepancy-based DA [25, 26, 27] is one of the major
classes of methods where the main goal is to reduce the dis-
tribution distance between the two domains. Adversarial-
based DA [11, 12] is also popular with similar concepts
as GANs [13] by using domain discriminators. With care-
fully designed adversarial objectives, the domain discrimi-
nator and the feature extractor are optimized through min-
max training. Some works further improve the performance
by assigning pseudo-labels to target data [34, 44]. Fur-
thermore, Ensemble-based DA [36, 22] incorporates mul-
tiple target branches to build an ensemble model. Recently,
Attention-based DA [42, 19] assigns attention weights to
different regions of images for more effective DA.

Unlike images, video-based DA is still under-explored.
Most works concentrate on small-scale video DA
datasets [39, 46, 15]. Recently, two larger-scale cross-
domain video classification datasets along with the state-of-the-art approach are proposed [3, 4]. Moreover,
some authors also proposed novel frameworks to utilize
auxiliary data for other video tasks, including object detec-
tion [20] and action localization [48]. These works differ
from our work by either different video tasks [20, 3, 4] or
access to the labels of auxiliary data [48].

Self-Supervised Learning has become popular in recent
years for images and videos given the ability to learn in-
formative feature representations without human supervi-
sion. The key is to design an auxiliary task (or pretext
task) that is related to the main task and the labels can
be self-annotated. Most of the recent works for videos
design auxiliary tasks based on spatio-temporal orders of
videos [23, 43, 16, 1, 45]. Different from these works,
our proposed auxiliary task predicts temporal permutation
for cross-domain videos, aiming to address the problem of
spatio-temporal variations for action segmentation.
3. Technical Approach

In this section, the baseline model which is the current state-of-the-art for action segmentation, MS-TCN [9], is reviewed first (Section 3.1). Then the novel temporal domain adaptation scheme consisting of two self-supervised auxiliary tasks, binary domain prediction (Section 3.2.1) and sequential domain prediction (Section 3.2.2), is proposed, followed by the final action segmentation model.

3.1. Baseline Model

Our work is built on the current state-of-the-art model for action segmentation, multi-stage temporal convolutional network (MS-TCN) [9]. For each stage, a single-stage TCN (SS-TCN) applies a multi-layer TCN, G_f, to derive the frame-level features $f = \{f_1, f_2, \ldots, f_T\}$, and makes the corresponding predictions $\hat{y} = \{\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_T\}$ using a fully-connected layer G_y to calculate the prediction loss L_y. The SSTDA module is integrated with f to calculate the local and global domain losses, L_{ld} and L_{gd} for optimizing f during training (see details in Section 3.2). Here we only show one stage in our multi-stage model.

3.2. Self-Supervised Temporal Domain Adaptation

Despite the promising performance of MS-TCN on action segmentation over previous methods, there is still a large room for improvement. One main challenge is the problem of spatio-temporal variations of human actions [17], causing the distributional discrepancy across domains [6]. For example, different subjects may perform the same action completely differently due to personalized spatio-temporal styles. Moreover, collecting annotated data for action segmentation is challenging and time-consuming. Thus, such challenges motivate the need to learn domain-invariant feature representations without full supervision. Inspired by the recent progress of self-supervised learning, which learns informative features that can be transferred to the main target tasks without external supervision (e.g. human annotation), we propose Self-Supervised Temporal Domain Adaptation (SSTDA) to diminish cross-domain discrepancy by designing self-supervised auxiliary tasks using unlabeled videos.

To effectively transfer knowledge, the self-supervised auxiliary tasks should be closely related to the main task, which is cross-domain action segmentation in this paper. Recently, adversarial-based DA approaches [11, 12] show progress in addressing cross-domain image problems using a domain discriminator with adversarial training where domain discrimination can be regarded as a self-supervised auxiliary task since domain labels are self-annotated. However, directly applying image-based DA for video tasks results in suboptimal performance due to the temporal information being ignored [4]. Therefore, the question becomes: How should we design the self-supervised auxiliary tasks to benefit cross-domain action segmentation? More specifically, the answer should address both cross-domain and action segmentation problems.

To address this question, we first apply an auxiliary task binary domain prediction to predict the domain for each frame where the frame-level features are embedded with local temporal dynamics, aiming to address the cross-domain problems for videos in local scales. Then we propose a novel auxiliary task sequential domain prediction to temporally segment domains for untrimmed videos where the video-level features are embedded with global temporal dynamics, aiming to fully address the above question. Finally, SSTDA is achieved locally and globally by jointly applying these two auxiliary tasks, as illustrated in Figure 3.

In practice, since the key for effective video DA is to simultaneously align and learn temporal dynamics, instead of separating the two processes [4], we integrate SSTDA modules to multiple stages instead of the last stage only, and the single-stage integration is illustrated in Figure 2.

3.2.1 Local SSTDA

The main goal of action segmentation is to learn frame-level feature representations that encode spatio-temporal information so that the model can exploit information from multiple frames to predict the action for each frame. Therefore,
3.2.2 Global SSTDA

Although frame-level features f is learned using the context and dependencies from neighbor frames, the temporal receptive fields of f are still limited, unable to represent full videos. Solely integrating DA into f cannot fully address spatio-temporal variations for untrimmed long videos. Therefore, in addition to binary domain prediction for frame-level features, we propose the second self-supervised auxiliary task for video-level features: **sequential domain prediction**, which predicts a sequence of domains for video clips, as shown in the right part of Figure 3. This task is a temporal domain segmentation problem, aiming to predict the correct permutation of domains for long videos consisting of shuffled video clips from both source and target domains. Since this goal is related to both cross-domain and action segmentation problems, **sequential domain prediction** can effectively benefit our main task.

More specifically, we first divide f^S and f^T into two sets of segments $F^S = \{f^S_a, f^S_b, \ldots\}$ and $F^T = \{f^T_a, f^T_b, \ldots\}$, respectively, and then learn the corresponding two sets of segment-level feature representations $V^S = \{v^S_a, v^S_b, \ldots\}$ and $V^T = \{v^T_a, v^T_b, \ldots\}$ with **Domain Attentive Temporal Pooling (DATP)**. All features v are then shuffled and combined in random order and fed to a sequential domain classifier G_{gd} equipped with GRL (noted as G_{gd}) to predict the permutation of domains, as shown in Figure 4.

Domain Attentive Temporal Pooling (DATP): The most straightforward method to obtain a video-level feature is to aggregate frame-level features using temporal pooling. However, not all the frame-level features contribute the same to the overall domain discrepancy, as mentioned in [4]. Hence, we assign larger attention weights w_j (calculated using G_{gd} in local SSTDA) to the features which have larger domain discrepancy so that we can focus more on aligning those features. Finally, the attended frame-level features are aggregated with temporal pooling to generate the video-level feature v, which can be expressed as:

$$v = \frac{1}{T'} \sum_{j=1}^{T'} w_j \cdot f_j$$

where T' is the number of frames in a video segment. For more details, please refer to the supplementary.

Sequential Domain Prediction: By separately applying DATP to both source and target segments, respectively, a set of segment-level feature representations $V = \{v^S_a, v^S_b, \ldots, v^T_a, v^T_b, \ldots\}$ are obtained. We then shuffle all the features in V and concatenate them into a feature to represent a long and untrimmed video V', which contains video segments from both domains in random order. Finally, V' is fed into a sequential domain classifier G_{gd} to predict the permutation of domains for the video segments. For example, if $V' = \{v^S_a, v^S_b, v^T_a, v^T_b\}$, the goal of G_{gd} is to predict...
Figure 4: The overview of the proposed Self-Supervised Temporal Domain Adaptation (SSTDA). The inputs from the two domains are first encoded with local temporal dynamics using \(G_f\) to obtain the frame-level features \(f^S\) and \(f^T\), respectively. We apply local SSTDA on all \(f\) using binary domain prediction \(\hat{G}_{ld}\). Besides, \(f^S\) and \(f^T\) are evenly divided into multiple segments to learn segment-level features \(V^S\) and \(V^T\) by DATP, respectively. Finally, the global SSTDA is applied on \(V'\), which is generated by concatenating shuffled \(V^S\) and \(V^T\), using sequential domain prediction \(\hat{G}_{gd}\). \(\mathcal{L}_{ld}\) and \(\mathcal{L}_{gd}\) are the domain losses from \(\hat{G}_{ld}\) and \(\hat{G}_{gd}\), respectively. \(w\) corresponds to the attention weights for DATP, which are calculated from the outputs of \(\hat{G}_{ld}\). Here we use 8-frame videos and 2 segments as an example for this figure. Best views in colors.

the permutation as \([0, 1, 1, 0]\). \(G_{gd}\) is a multi-class classifier where the class number corresponds to the total number of all possible permutations of domains, and the complexity of \(G_{gd}\) is determined by the segment number for each video (more analyses in Section 4.3). The outputs of \(G_{gd}\) are used to calculate the global domain loss \(\mathcal{L}_{gd}\) as below:

\[
\mathcal{L}_{gd} = L_{gd}(G_{gd}(V'), yd)
\]

where \(L_{gd}\) is also a standard cross-entropy loss function where the class number is determined by the segment number. Through adversarial training with GRL, sequential domain prediction also contributes to optimizing \(G_f\) to align the feature distributions between the two domains.

There are some self-supervised learning works also proposing the concepts of temporal shuffling \([23, 45]\). However, they predict temporal orders within one domain, aiming to learn general temporal information for video features. Instead, our method predicts temporal permutation for cross-domain videos, which are shown with a dual-branch pipeline in Figure 4, and integrate with binary domain prediction to effectively address both cross-domain and action segmentation problems.

3.2.3 Local-Global Joint Training.

Finally, we also adopt a strategy from \([42]\) to minimize the class entropy for the frames that are similar across domains by adding a domain attentive entropy (DAE) loss \(\mathcal{L}_{ae}\). Please refer to the supplementary for more details.

By adding the global domain loss \(\mathcal{L}_{gd}\) (Equation (4)) and the attentive entropy loss \(\mathcal{L}_{ae}\) into Equation (1), the overall loss of our final proposed Self-Supervised Temporal Domain Adaptation (SSTDA) can be expressed as follows:

\[
\mathcal{L} = \sum_{y} \mathcal{L}_{y} - \sum_{y} (\beta_l \mathcal{L}_{ld} + \beta_g \mathcal{L}_{gd} - \mu \mathcal{L}_{ae})
\]

where \(\beta_g\) and \(\mu\) are the weights for \(\mathcal{L}_{gd}\) and \(\mathcal{L}_{ae}\), respectively.
Table 1: The statistics of action segmentation datasets.

	GTEA	50Salads	Breakfast
subject #	4	25	52
class #	11	17	48
video #	28	50	1712
leave-#-subject-out	1	5	13

Table 2: The experimental results for our approaches on three benchmark datasets. “SSTDA” refers to the full model while “Local SSTDA” only contains binary domain prediction. †We achieve higher performance than reported in [9] when using the released code, so use that as the baseline performance for the whole paper. ‡Global SSTDA requires outputs from local SSTDA, so it is not evaluated alone.

	GTEA	50Salads	Breakfast					
Source only (MS-TCN)†	86.5, 83.6, 71.9	81.3, 76.5	Source only (MS-TCN)†	75.4, 73.4, 65.2	68.9, 82.1	Source only (MS-TCN)†	65.3, 59.6, 47.2	65.7, 64.7
Local SSTDA	89.6, 87.9, 74.4	84.5, 80.1	Local SSTDA	79.2, 77.8, 70.3	72.0, 82.8	Local SSTDA	72.8, 67.8, 55.1	71.7, 70.3
SSTDA‡	90.0, 89.1, 78.0	86.2, 79.8	SSTDA‡	83.0, 81.5, 73.8	75.8, 83.2	SSTDA‡	75.0, 69.1, 55.2	73.7, 70.2

4. Experiments

To validate the effectiveness of the proposed methods in reducing spatial-temporal discrepancy for action segmentation, we choose three challenging datasets: GTEA [10], 50Salads [37], and Breakfast [18], which separate the training and validation sets by different people (noted as subjects) with leave-subjects-out cross-validation for evaluation, resulting in large domain shift problem due to spatio-temporal variations. Therefore, we regard the training set as Source domain, and the validation set as Target domain with the standard transductive unsupervised DA protocol [32, 6]. See the supplementary for more implementation details.

4.1. Datasets and Evaluation Metrics

The overall statistics of the three datasets are listed in Table 1. Three widely used evaluation metrics are chosen as follows [21]: frame-wise accuracy (Acc), segmental edit score, and segmental F1 score at the IoU threshold k%, denoted as $F1@k (k = \{10, 25, 50\})$. While Acc is the most common metric, edit and F1 score both consider the temporal relation between predictions and ground truths, better reflecting the performance for action segmentation.

4.2. Experimental Results

We first investigate the effectiveness of our approaches in utilizing unlabeled target videos for action segmentation. We choose MS-TCN [9] as the backbone model since it is the current state of the art for this task. “Source only” means the model is trained only with source labeled videos, i.e., the baseline model. And then our approach is compared to other methods with the same transductive protocol. Finally, we compare our method to the most recent action segmentation methods on all three datasets, and investigate how our method can reduce the reliance on source labeled data.

Self-Supervised Temporal Domain Adaptation: First we investigate the performance of local SSTDA by integrating the auxiliary task binary domain prediction with the baseline model. The results on all three datasets are improved significantly, as shown in Table 2. For example, on the GTEA dataset, our approach outperforms the baseline by 4.3% for $F1@25$, 3.2% for the edit score and 3.6% for the frame-wise accuracy. Although local SSTDA mainly works on the frame-level features, the temporal information is still encoded using the context from neighbor frames, helping address the variation problem for videos across domains.

Despite the improvement from local SSTDA, integrating DA into frame-level features cannot fully address the problem of spatio-temporal variations for long videos. Therefore, we integrate our second proposed auxiliary task sequential domain prediction for untrimmed long videos. By jointly training with both auxiliary tasks, SSTDA can jointly align cross-domain feature spaces embedding with local and global temporal dynamics, and further improve over local SSTDA with significant margins. For example, on the 50Salads dataset, it outperforms local SSTDA by 3.8% for $F1@10$, 3.7% for $F1@25$, 3.5% for $F1@50$, and 3.8% for the edit score, as shown in Table 2.

One interesting finding is that local SSTDA contributes to most of the frame-wise accuracy improvement for SSTDA because it focuses on aligning frame-level feature spaces. On the other hand, sequential domain prediction benefits aligning video-level feature spaces, contributing to further improvement for the other two metrics, which consider temporal relation for evaluation.

Learning from Unlabeled Target Videos: We also compare SSTDA with other popular approaches [12, 27, 34, 44, 36, 22, 45] to validate the effectiveness of reducing spatio-temporal discrepancy with the same amount of unlabeled target videos. For the fair comparison, we integrate all these methods with the same baseline model, MS-TCN. For more implementation details, please refer to the supplementary.

Table 3 shows that our proposed SSTDA outperforms all the other investigated DA methods in terms of the two metrics that consider temporal relation. We conjecture the main reason is that all these DA approaches are designed for cross-domain image problems. Although they are in-
Integrated with frame-level features which encode local temporal dynamics, the limited temporal receptive fields prevent them from fully addressing temporal domain discrepancy. Instead, the sequential domain prediction in SSTDA is directly applied to the whole untrimmed video, helping to globally align the cross-domain feature spaces that embed longer temporal dynamics, so that spatio-temporal variations can be reduced more effectively.

We also compare with the most recent video-based self-supervised learning method, [45], which can also learn temporal dynamics from unlabeled target videos. However, the performance is even worse than other DA methods, implying that temporal shuffling within single domain does not effectively benefit cross-domain action segmentation.

Comparison with Action Segmentation Methods: Here we compare the recent methods to SSTDA trained with two settings: 1) fully source labels, and 2) weakly source labels.

The first setting means we have labels for all the frames in source videos, and SSTDA outperforms all the previous methods on the three datasets with respect to all evaluation metrics. For example, SSTDA outperforms currently the state-of-the-art fully-supervised method, MS-TCN [9], by large margins (e.g. 8.1% for F1@25, 8.6% for F1@50, and 6.9% for the edit score on 50Salads; 9.5% for F1@25, 8.0% for F1@50, and 8.0% for the edit score on Breakfast), as demonstrated in Table 4. Since no additional labeled data is used, these results indicate how our proposed SSTDA address the spatio-temporal variation problem with unlabeled videos to improve the action segmentation performance.

Given the significant improvement by exploiting unlabeled target videos, it implies the potential to train with fewer number of labeled frames using SSTDA, which is our second setting. In this setting, we drop labeled frames from source domains with uniform sampling for training, and evaluate on the same length of validation data. Our experiment indicates that by integrating with SSTDA, only 65% of labeled training data are required to achieve comparable performance with MS-TCN, as shown in the “SSTDA (65%)” row in Table 4. For the full experiments about labeled data reduction, please refer to the supplementary.

4.3. Ablation Study and Analysis

Design Choice for Local SSTDA: Since we develop our approaches upon MS-TCN [9], it raises the question: How to effectively integrate binary domain prediction to a multi-stage architecture? To answer this, we first integrate G_{ld} into each stage and the results show that the best performance happens when the G_{ld} is integrated into middle stages, such as $S2$ or $S3$, as shown in Table 5. $S1$ is not a good choice for DA because it corresponds to low-level features with less discriminability where DA shows limited effects [25], and represents less temporal receptive fields for
Table 6: The experimental results for different segment numbers of sequential domain prediction (on GTEA).

Segment #	F1@{10, 25, 50}	Edit	Acc
1	89.4 87.7 75.4	85.3	79.2
2	90.0 89.1 78.0	86.2	79.8
3	89.7 87.6 75.4	85.2	79.2

Figure 5: The visualization of temporal action segmentation for our methods with color-coding (input example: make coffee). “MS-TCN” is the baseline model without any DA methods. We only highlight the action segments that are different from the ground truth for clear comparison.

Videos. However, higher stages (e.g., S4) are not always better. We conjecture that it is because the model fits more to the source data, causing difficulty for DA. In our case, integrating G_{ld} into S2 provides the best overall performance.

We also integrate binary domain prediction with multiple stages. However, multi-stage DA does not always guarantee improved performance. For example, $\{S1, S2\}$ has worse results than $\{S2\}$ in terms of F1@{10, 25, 50}. Since $\{S2\}$ and $\{S3\}$ provide the best single-stage DA performance, we use $\{S2, S3\}$, which performs the best, as the final model for all our approaches in all the experiments.

Design Choice for Global SSTDA: The most critical design decision for the sequential domain prediction is the segment number for each video. In our implementation, we divide one source video into m segments and do so for one target video, and then apply G_{gd} to predict the permutation of domains for these $2m$ video segments. Therefore, the category number of G_{gd} equals the number of all permutations $(2m)!/(mt)^2$. In other words, the segment number m determines the complexity of the self-supervised auxiliary task. For example, $m = 3$ leads to a 20-way classifier, and $m = 4$ results in a 70-way classifier. Since a good self-supervised task should be neither naive nor over complicated [31], we choose $m = 2$ as our final decision, which is supported by our experiments as shown in Table 6.

Segmentation Visualization: It is also common to evaluate the qualitative performance to ensure that the prediction results are aligned with human vision. First, we compare our approaches with the baseline model MS-TCN [9] and the ground truth, as shown in Figure 5. MS-TCN fails to detect some pour actions in the first half of the video, and falsely classify close as take in the latter part of the video. With local SSTDA, our approach can detect close in the latter part of the video. Finally, with full SSTDA, our proposed method also detects all pour action segments in the first half of video. We then compare SSTDA with other DA methods, and Figure 6 shows that our result is the closest to the ground truth. The others either incorrectly detect some actions or make incorrect classification. For more qualitative results, please refer to the supplementary.

5. Conclusions and Future Work

In this work, we propose a novel approach to effectively exploit unlabeled target videos to boost performance for action segmentation without target labels. To address the problem of spatio-temporal variations for videos across domains, we propose **Self-Supervised Temporal Domain Adaptation (SSTDA)** to jointly align cross-domain feature spaces embedded with local and global temporal dynamics by two self-supervised auxiliary tasks, binary and sequential domain prediction. Our experiments indicate that SSTDA outperforms other DA approaches by aligning temporal dynamics more effectively. We also validate the proposed SSTDA on three challenging datasets (GTEA, 50Salads, and Breakfast), and show that SSTDA outperforms the current state-of-the-art method by large margins and only requires 65% of the labeled training data to achieve the comparable performance, demonstrating the usefulness of adapting to unlabeled videos across variations. For the future work, we plan to apply SSTDA to more challenging video tasks (e.g. spatio-temporal action localization [14]).
6. Appendix

In the supplementary material, we would like to show more details about the technical approach, implementation, and experiments.

6.1. Technical Approach Details

Domain Attentive Temporal Pooling (DATP): Temporal pooling is one of the most common methods to aggregate frame-level features into video-level features for each video. However, not all the frame-level features contribute the same to the overall domain discrepancy. Therefore, inspired by [4, 5], we assign larger attention weights to the features which have larger domain discrepancy so that we can focus more on aligning those features, achieving more effective domain adaptation.

More specifically, we utilize the entropy criterion to generate the domain attention value for each frame-level feature \(f_j \) as below:

\[
\hat{w}_j = 1 - H(\hat{d}_j) \quad (6)
\]

where \(\hat{d}_j \) is the output from the learned domain classifier \(G_{ld} \) used in local SSTDA. \(H(p) = \sum_k p_k \log(p_k) \) is the entropy function to measure uncertainty. \(\hat{w}_j \) increases when \(H(\hat{d}_j) \) decreases, which means the domains can be distinguished well. We also add a residual connection for more stable optimization. Finally, we aggregate the attended frame-level features with temporal pooling to generate the video-level feature \(v \), which is noted as Domain Attentive Temporal Pooling (DATP), as illustrated in the left part of Figure 7 and can be expressed as:

\[
v = \frac{1}{T'} \sum_{j=1}^{T'} (\hat{w}_j + 1) \cdot f_j \quad (7)
\]

where \(+1\) refers to the residual connection, and \(\hat{w}_j + 1 \) is equal to \(w_j \) in the main paper. \(T' \) is the number of frames used to generate a video-level feature.

Local SSTDA is necessary to calculate the attention weights for DATP. Without this mechanism, frames will be aggregated in the same way as temporal pooling without cross-domain consideration, which is already demonstrated sub-optimal for cross-domain video tasks [4, 5].

Domain Attentive Entropy (DAE): Minimum entropy regularization is a common strategy to perform more refined classifier adaptation. However, we only want to minimize class entropy for the frames that are similar across domains. Therefore, inspired by [42], we attend to the frames which have low domain discrepancy, corresponding to high domain entropy \(H(\hat{d}_j) \). More specifically, we adopt the Domain Attentive Entropy (DAE) module to calculate the attentive entropy loss \(\mathcal{L}_{ae} \), which can be expressed as follows:

\[
\mathcal{L}_{ae} = \frac{1}{T} \sum_{j=1}^{T} (H(\hat{d}_j) + 1) \cdot H(\hat{y}_j) \quad (8)
\]

where \(\hat{d} \) and \(\hat{y} \) is the output of \(\hat{G}_{ld} \) and \(G_{gd} \), respectively. \(T \) is the total frame number of a video. We also apply the residual connection for stability, as shown in the right part of Figure 7.

Full Architecture: Our method is built upon the state-of-the-art action segmentation model, MS-TCN [9], which takes input frame-level feature representations and generates the corresponding output frame-level class predictions by four stages of SS-TCN. In our implementation, we convert the second and third stages into Domain Adaptive TCN (DA-TCN) by integrating each SS-TCN with the following three parts: 1) \(\hat{G}_{ld} \) (for binary domain prediction), 2) DATP and \(G_{gd} \) (for sequential domain prediction), and 3) DAE, bringing three corresponding loss functions, \(\mathcal{L}_{ld}, \mathcal{L}_{gd} \) and \(\mathcal{L}_{ae} \), respectively, as illustrated in Figure 8. The final loss function can be formulated as below:

\[
\mathcal{L} = \sum_{s=1}^{4} \mathcal{L}_{y(s)} - \sum_{s=2}^{3} \beta_s \mathcal{L}_{ld(s)} + \beta_g \mathcal{L}_{gd(s)} - \mu \mathcal{L}_{ae(s)} \quad (9)
\]

where \(\beta_s, \beta_g \) and \(\mu \) are the weights for \(\mathcal{L}_{ld}, \mathcal{L}_{gd} \) and \(\mathcal{L}_{ae} \), respectively, obtained by the methods described in Section 6.2. \(s \) is the stage index in MS-TCN.

6.2. Experiments

Datasets and Evaluation Metrics: The detailed statistics and the evaluation protocols of the three datasets are listed in Table 7. We follow [21] to use the following three metrics for evaluation:

1. Frame-wise accuracy (Acc): Acc is one of the most typical evaluation metrics for action segmentation, but it does not consider the temporal dependencies of the prediction, causing the inconsistency between qualitative assessment and frame-wise accuracy. Besides,
Figure 8: The overall architecture of the proposed SSTDA. By equipping the network with a local adversarial domain classifier \hat{G}_{ld}, a global adversarial domain classifier \hat{G}_{gd}, a domain attentive temporal pooling (DATP) module, and a domain attentive entropy (DAE) module, we convert a SS-TCN into a DA-TCN, and stack multiple SS-TCNs and DA-TCNs to build the final architecture. \mathcal{L}_{ld} and \mathcal{L}_{gd} is the local and global domain loss, respectively. \mathcal{L}_{y} is the prediction loss and \mathcal{L}_{ae} is the attentive entropy loss. The domain entropy $H(\hat{d})$ is used to calculate the attention weights for DATP and DAE. An adversarial domain classifier \hat{G} refers to a domain classifier G equipped with a gradient reversal layer (GRL).

Table 7: The statistics of action segmentation datasets.

	GTEA	50Salads	Breakfast
subject #	4	25	52
class #	11	17	48
video #	28	50	1712
avg. length (min.)	1	6.4	2.7
avg. action #/video	20	20	6
cross-validation	4-fold	5-fold	4-fold
leave-#-subject-out	1	5	13

long action classes have higher impact on this metric than shorter action classes, making it not able to reflect over-segmentation errors.

2. **Segmental edit score (Edit):** The edit score penalizes over-segmentation errors by measuring the ordering of predicted action segments independent of slight temporal shifts.

3. **Segmental F1 score at the IoU threshold k% ($F1@k$):** $F1@k$ also penalizes over-segmentation errors while ignoring minor temporal shifts between the predictions and ground truth. The scores are determined by the total number of actions but do not depend on the duration of each action instance, which is similar to mean average precision (mAP) with intersection-over-union (IoU) overlap criteria. $F1@k$ becomes popular recently since it better reflects the qualitative results.

Implementation and Optimization: Our implementation is based on the PyTorch [33, 38] framework. We extract I3D [2] features for the video frames and use these features as inputs to our model. The video frame rates are the same as [9]. For GTEA and Breakfast datasets we use a video temporal resolution of 15 frames per second (fps), while for 50Salads we downsampled the features from 30 fps to 15 fps to be consistent with the other datasets. For fair comparison, we adopt the same architecture design choices of MS-TCN [9] as our baseline model. The whole model consists of four stages where each stage contains ten dilated convolution layers. We set the number of filters to 64 in all the layers of the model and the filter size is 3. For optimization, we utilize the Adam optimizer and a batch size equal to 1, following the official implementation of MS-TCN [9]. Since the target data size is smaller than the source data, each target data is loaded randomly multiple times in each
epoch during training. For the weighting of loss functions, we follow the common strategy as [11, 12] to gradually increase β_l and β_g from 0 to 1. The weighting α for smoothness loss is 0.15 as in [9] and μ is chosen as 1×10^{-2} via the grid-search.

Less Training Labeled Data: To investigate the potential to train with a fewer number of labeled frames using SSTDA, we drop labeled frames from source domains with uniform sampling for training, and evaluate on the same length of validation data. Our experiment on the 50Salads dataset shows that by integrating with SSTDA, the performance does not drop significantly with the decrease in labeled training data, indicating the alleviation of reliance on labeled training data. Finally, only 65% of labeled training data are required to achieve comparable performance with MS-TCN, as shown in Table 8. We then evaluate the proposed SSTDA on GTEA and Breakfast with the same percentage of labeled training data, and also get comparable or better performance.

Table 8 also indicates the results without additional labeled training data, which contain discriminative information that can directly boost the performance for action segmentation. The additional trained data are all unlabeled, so they cannot be directly trained with standard prediction loss. Therefore, we propose SSTDA to exploit unlabeled data to: 1) further improve the strong baseline, MS-TCN, without additional training labels, and 2) achieve comparable performance with this strong baseline using only 65% of labels for training.

Comparison with Other Approaches: We compare our proposed SSTDA with other approaches by integrating the same baseline architecture with other popular DA methods [12, 27, 34, 44, 36, 22] and a state-of-the-art video-based self-supervised approach [45]. For fair comparison, all the methods are integrated with the same baseline model MS-TCN for fair comparison.

Table 8: The comparison of SSTDA trained with less labeled training data. m in the first row indicates the percentage of labeled training data used to train a model.

Dataset	m%	F1@{10, 25, 50}	Edit	Acc
50Salads	100%	83.0 81.5 73.8	75.8	83.2
SSTDA	95%	81.6 80.0 73.1	75.6	83.2
	85%	81.0 78.9 70.9	73.8	82.1
	75%	78.9 76.5 68.6	71.7	81.1
	65%	77.7 75.0 66.2	69.3	80.7
GTEA	100%	75.4 73.4 65.2	68.9	82.1
SSTDA	90.0 89.1 78.0	86.2	79.8	
	65%	85.2 82.6 69.3	79.6	75.7
MS-TCN	86.5 83.6 71.9	81.3	76.5	
Breakfast	100%	75.0 69.1 55.2	73.7	70.2
SSTDA	65%	69.3 62.9 49.4	69.0	65.8
MS-TCN	100%	65.3 59.6 47.2	65.7	64.7

Table 9: The comparison of different methods that can learn information from unlabeled target videos (on 50Salads and Breakfast). All the methods are integrated with the same baseline model MS-TCN for fair comparison.

Dataset	m%	F1@{10, 25, 50}	Edit
50Salads	100%	75.4 73.4 65.2	68.9
Source only (MS-TCN)	75.8 73.8 65.9		
VCOP [35]	79.2 77.8 70.3	72.0	
JAN [27]	80.9 79.4 72.4	73.5	
MADA [34]	79.6 77.4 70.0	72.4	
MSTN [44]	79.3 77.6 71.5	72.1	
MCD [36]	78.2 75.5 67.1	70.8	
SWD [22]	78.2 76.2 67.4	71.6	
SSTDA	83.0 81.5 73.8	75.8	
Breakfast	100%	65.3 59.6 47.2	65.7
Source only (MS-TCN)	68.5 62.9 50.1		
VCOP [35]	72.8 67.8 55.1	71.7	
JAN [27]	70.2 64.7 52.0	70.0	
MADA [34]	71.0 65.4 52.8	71.2	
MSTN [44]	69.6 63.6 51.5	69.2	
MCD [36]	70.4 65.1 52.4	69.7	
SWD [22]	68.6 63.2 50.6	69.1	
SSTDA	75.0 69.1 55.2	73.7	

1. **DANN [12]:** We add one discriminator, which is the same as G_{id}, equipped a gradient reversal layer (GRL) to the final frame-level features f.

2. **JAN [27]:** We integrate Joint Maximum Mean Discrepancy (JMMD) to the final frame-level features f and the class prediction \hat{y}.

3. **MADA [34]:** Instead of a single discriminator, we add multiple discriminators according to the class number to calculate the domain loss for each class. All the class-based domain losses are weighted with prediction probabilities and then summed up to obtain the final domain loss.

4. **MSTN [44]:** We utilize pseudo-labels to cluster the data from the source and target domains, and calculate the class centroids for the source and target domains separately. Then we compute the semantic loss by calculating mean squared error (MSE) between the source and target centroids. The final loss contains the prediction loss, the semantic loss, and the domain loss as DANN [12].

5. **MCD [36]:** We apply another classifier G'_{y} and follow
the adversarial training procedure of Maximum Classifier Discrepancy to iteratively optimize the generator (G_f in our case) and the classifier (G_y). The L_1-distance is used as the discrepancy loss.

6. SWD \[22\]: The framework is similar to MCD, but we replace the L_1-distance with the Wasserstein distance as the discrepancy loss.

7. VCOP \[45\]: We divide f into three segments and compute the segment-level features with temporal pooling. After temporal shuffling the segment-level features, pairwise features are computed and concatenated into the final feature representing the video clip order. The final features are then fed into a shallow classifier to predict the order.

The experimental results on 50Salads and Breakfast both indicate that our proposed SSTDA outperforms all these methods, as shown in Table 9.

The performance of the most recent video-based self-supervised learning method \[45\] on 50Salads and Breakfast also show that temporal shuffling within single domain without considering the relation across domains does not effectively benefit cross-domain action segmentation, resulting in even worse performance than other DA methods. Instead, our proposed self-supervised auxiliary tasks make predictions on cross-domain data, leading to cross-domain temporal relation reasoning instead of predicting within-domain temporal orders, achieving significant improvement in the performance of our main task, action segmentation.

6.3. Segmentation Visualization

Here we show more qualitative segmentation results from all three datasets to compare our methods with the baseline model, MS-TCN \[9\]. All the results (Figure 9 for GTEA, Figure 10 for 50Salads, and Figure 11 for Breakfast) demonstrate that the improvement over the baseline by only local SSTDA is sometimes limited. For example, local SSTDA falsely detects the pour action in Figure 9b, falsely classifies cheese-related actions as cucumber-related actions in Figure 10b, and falsely detects the stir milk action in Figure 11b. However, by jointly aligning local and global temporal dynamics with SSTDA, the model is effectively adapted to the target domain, reducing the above mentioned incorrect predictions and achieving better segmentation.

References

[1] Unaiza Ahsan, Rishi Madhok, and Irfan Essa. Video jigsaw: Unsupervised learning of spatiotemporal context for video action recognition. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2019.

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[3] Min-Hung Chen, Zsolt Kira, and Ghassan AlRegib. Temporal attentive alignment for video domain adaptation. CVPR Workshop on Learning from Unlabeled Videos, 2019.

[4] Min-Hung Chen, Zsolt Kira, Ghassan AlRegib, Jaekwon Woo, Ruxin Chen, and Jian Zheng. Temporal attentive alignment for large-scale video domain adaptation. In IEEE International Conference on Computer Vision (ICCV), 2019.

[5] Min-Hung Chen, Baopu Li, Yingze Bao, and Ghassan AlRegib. Action segmentation with mixed temporal domain adaptation. In The IEEE Winter Conference on Applications of Computer Vision (WACV), 2020.

[6] Gabriela Csurka. A comprehensive survey on domain adaptation for visual applications. In Domain Adaptation in Computer Vision Applications, pages 1–35. Springer, 2017.

[7] Li Ding and Chenliang Xu. Tricornet: A hybrid temporal convolutional and recurrent network for video action segmentation. arXiv preprint arXiv:1705.07818, 2017.

[8] Li Ding and Chenliang Xu. Weakly-supervised action segmentation with iterative soft boundary assignment. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[9] Yazan Abu Farha and Jurgen Gall. Ms-tcn: Multi-stage temporal convolutional network for action segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[10] Alireza Fathi, Xiaofeng Ren, and James M Rehg. Learning to recognize objects in egocentric activities. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

[11] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In International Conference on Machine Learning (ICML), 2015.

[12] Yaroslav Ganin, Evgeniya Ustinova, Hanja Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. The Journal of Machine Learning Research (JMLR), 17(1):2096–2030, 2016.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems (NeurIPS), 2014.

[14] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, et al. Ava: A video dataset of spatio-temporally localized atomic visual actions. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[15] Arshad Jamal, Vinay P Namboodiri, Dipti Deodhare, and KS Venkatesh. Deep domain adaptation in action space. In British Machine Vision Conference (BMVC), 2018.

[16] Da-hun Kim, Donghyeon Cho, and In So Kweon. Self-supervised video representation learning with space-time cubic puzzles. In AAAI Conference on Artificial Intelligence (AAAI), 2019.
Figure 9: The visualization of temporal action segmentation for our methods with color-coding on GTEA. The video snapshots and the segmentation visualization are in the same temporal order (from left to right). We only highlight the action segments that are significantly different from the ground truth for clear comparison. “MS-TCN” represents the baseline model trained with only source data.

[17] Yu Kong and Yun Fu. Human action recognition and prediction: A survey. arXiv preprint arXiv:1806.11230, 2018.

[18] Hilde Kuehne, Ali Arslan, and Thomas Serre. The language of actions: Recovering the syntax and semantics of goal-directed human activities. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[19] Vinod Kumar Kurmi, Shanu Kumar, and Vinay P Namboodiri. Attending to discriminative certainty for domain adaptation. In IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[20] Avisek Lahiri, Sri Charan Ragireddy, Prabir Biswas, and Pabitra Mitra. Unsupervised adversarial visual level domain adaptation for learning video object detectors from images. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2019.

[21] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager. Temporal convolutional networks for action segmentation and detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
Figure 10: The visualization of temporal action segmentation for our methods with color-coding on 50Salads. The video snapshots and the segmentation visualization are in the same temporal order (from left to right). We only highlight the action segments that are different from the ground truth for clear comparison. Both examples correspond to the same activity *Make salad*, but they are performed by different subjects, i.e., people.

2, 6, 9

[22] Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and Daniel Ulbricht. Sliced wasserstein discrepancy for unsupervised domain adaptation. In *IEEE conference on Computer*
Figure 11: The visualization of temporal action segmentation for our methods with color-coding on Breakfast. The video snapshots and the segmentation visualization are in the same temporal order (from left to right). We only highlight the action segments that are different from the ground truth for clear comparison.

References:

[23] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Unsupervised representation learning by sorting sequences. In *IEEE International Conference on Computer Vision (ICCV)*, 2017.

[24] Peng Lei and Sinisa Todorovic. Temporal deformable residual networks for action segmentation in videos. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018.

[25] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with deep adaptation networks. In *International Conference on Machine Learning (ICML)*, 2015.

[26] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised domain adaptation with residual transfer networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2016.
works. In *International Conference on Machine Learning (ICML)*, 2017. 2, 6, 7, 11

[28] Chih-Yao Ma, Min-Hung Chen, Zsolt Kira, and Ghassan AlRegib. Ts-lstm and temporal-inception: Exploiting spatiotemporal dynamics for activity recognition. *Signal Processing: Image Communication*, 71:76–87, 2019. 1

[29] Chih-Yao Ma, Asim Kadav, Iain Melvin, Zsolt Kira, and Hans Peter Graf. Attend and interact: higher-order object interactions for video understanding. In *IEEE conference on Computer Vision and Pattern Recognition (CVPR)*, 2018. 1

[30] Khoi-Nguyen C Mac, Dhiraj Joshi, Raymond A Yeh, Jinjun Xiong, Rogerio S Feris, and Minh N Do. Learning motion in feature space: Locally-consistent deformable convolution networks for fine-grained action detection. In *IEEE International Conference on Computer Vision (ICCV)*, 2019. 7

[31] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In *European Conference on Computer Vision (ECCV)*, 2016. 8

[32] Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. *IEEE Transactions on Knowledge and Data Engineering (TKDE)*, 22(10):1345–1359, 2010. 2, 6

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In *Advances in Neural Information Processing Systems Workshop (NeurIPSW)*, 2017. 10

[34] Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Multi-adversarial domain adaptation. In *AAAI Conference on Artificial Intelligence (AAAI)*, 2018. 2, 5, 9

[35] Alexander Richard, Hilde Kuehne, and Juergen Gall. Weakly supervised action learning with rnn based fine-to-coarse modeling. In *IEEE Conference on ComputerVision and Pattern Recognition (CVPR)*, 2017. 7

[36] Sebastian Stein and Stephen J McKenna. Combining embedded accelerometers with computer vision for recognizing food preparation activities. In *ACM international joint conference on Pervasive and ubiquitous computing (UbiComp)*, 2013. 2, 6

[37] Benoit Steiner, Zachary DeVito, Soumith Chintala, Sam Gross, Adam Paszke, Francisco Massa, Adam Lerer, Gregory Chanan, Zeming Lin, Edward Yang, et al. Pytorch: An imperative style, high-performance deep learning library. *Advances in Neural Information Processing Systems (NeurIPS)*, 2019. 10

[38] Waqas Sultani and Imran Saleemi. Human action recognition across datasets by foreground-weighted histogram decomposition. In *IEEE conference on Computer Vision and Pattern Recognition (CVPR)*, 2014. 2

[39] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain adaptation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017. 2

[40] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In *IEEE conference on Computer Vision and Pattern Recognition (CVPR)*, 2018. 1

[41] Ximei Wang, Liang Li, Weirui Ye, Mingsheng Long, and Jianmin Wang. Transferable attention for domain adaptation. In *AAAI Conference on Artificial Intelligence (AAAI)*, 2019. 2, 5, 9

[42] Donglai Wei, Joseph J Lim, Andrew Zisserman, and William T Freeman. Learning and using the arrow of time. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018. 2

[43] Shaoan Xie, Zebin Zheng, Liang Chen, and Chuan Chen. Learning semantic representations for unsupervised domain adaptation. In *International Conference on Machine Learning (ICML)*, 2018. 2, 6, 7, 11

[44] Weichen Zhang, Wanli Ouyang, Wen Li, and Dong Xu. Collaborative and adversarial network for unsupervised domain adaptation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018. 2

[45] Xiao-Yu Zhang, Haichao Shi, Changsheng Li, Kai Zheng, Xiaobin Zhu, and Lixin Duan. Learning transferable self-attentive representations for action recognition in untrimmed videos with weak supervision. In *AAAI Conference on Artificial Intelligence (AAAI)*, 2019. 1, 2