Time-dependent differential expression of long non-coding RNAs following peripheral nerve injury

BIN PAN¹*, HENG-XING ZHOU¹*, YI LIU¹, JIA-YIN YAN¹, YAO WANG¹, XUE YAO¹, YAN-QIU DENG³, SHU-YI CHEN², LU LU¹, ZHI-JIAN WEI¹, XIAO-HONG KONG² and SHI-QING FENG¹

¹Department of Orthopaedics, Tianjin Medical University General Hospital; ²School of Medicine, Nankai University; ³Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P.R. China

Received February 22, 2016; Accepted April 11, 2017

DOI: 10.3892/ijmm.2017.2963

Abstract. Long non-coding RNAs (lncRNAs) are widely accepted as key players in various biological processes. However, the roles of lncRNA in peripheral nerve regeneration remain completely unknown. Thus, in this study, we performed microarray analysis to measure lncRNA expression in the distal segment of the sciatic nerve at 0, 3, 7 and 14 days following injury. We identified 5,354 lncRNAs that were differentially expressed: 3,788 lncRNAs were differentially expressed between days 0 and 3; 3,314 lncRNAs were differentially expressed between days 0 and 7; and 2,400 lncRNAs were differentially expressed between days 0 and 14. The results of RT-qPCR of two dysregulated lncRNAs were consistent with those of microarray analysis. Bioinformatics approaches, including lncRNA classification, gene ontology (GO) analysis and target prediction, were utilized to investigate the functions of these dysregulated lncRNAs in peripheral nerve damage. Importantly, we predicted that several lncRNA-mRNA pairs may participate in biological processes related to peripheral nerve injury. RT-qPCR was performed for the preliminary verification of three lncRNA-mRNA pairs. The overexpression of NONMMUG014387 promoted the proliferation of mouse Schwann cells. Thus, the findings of our study may enhance our knowledge of the role of lncRNAs in nerve injury.

Introduction

Peripheral nerve damage is common worldwide, and patients suffering from this type of injury may partially or completely lose motor, sensory and autonomic function (1). Nevertheless, the treatment of peripheral nerve injury (PNI) remains a major medical concern due to the lack of satisfactory treatments (2,3)

Following PNI in mammals, the nerve distal to the site of injury may undergo a process known as Wallerian degeneration, during which Schwann cells lose contact with axons and dedifferentiate into stem-like cells or repair cells that play a vital role in repairing PNI (4,5) by forming a bundle that provides a permissive microenvironment for axon regeneration. Along with Schwann cells, macrophages gather at the site of PNI to clear myelin debris. It has also been widely reported that Schwann cells may secrete trophic support molecules, such as neurotrophin-3 (NT-3), fibroblast growth factor (FGF) and nerve growth factor (NGF) (6). Once Schwann cells reach the regrowing axons, they begin to remyelinate the axon approximately 7 days following nerve injury (7,8). The molecular mechanism of the regenerative process has not yet been fully elucidated. A better understanding of the mechanisms of Wallerian degeneration would help us to improve the repair process after PNI.

Long non-coding RNAs (lncRNAs) are non-protein-coding RNA molecules ranging from 200 nt to approximately 100 kb in length (9,10). lncRNAs have been proven to regulate gene expression at almost every level of transcription and translation, including genomic imprinting, chromatin modification and cytoplasmic mRNA translation (11,12). Data from an increasing number of studies have indicated that lncRNAs are associated with important regulatory functions during many biological processes. In neurobiology, lncRNAs are well known to be related to neurodevelopmental disorders, neurodegeneration and brain cancers (13). For example, the knockdown of linc-Brn1b has been shown to result in the reduction of intermediate progenitor cells in the brain, indicating that this lncRNA may play an important role in cortical development (14). In another previous study, lincRNAs that were differentially expressed following sciatic nerve resection in rats were found to be involved in regenerating dorsal root ganglion (DRG) neurons, and the downregulation of lncRNA BC089918 was found to promote neurite regeneration in DRG neurons (15). Although lncRNA studies are now common in various fields, the lncRNA expression signature and the possible roles of lncRNAs following Wallerian degeneration in the distal end of the peripheral nerve have not yet been reported, at least to the best of our knowledge.

Correspondence to: Professor Shi-Qing Feng, Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin 300052, P.R. China
E-mail: sqfeng@tmu.edu.cn

*Contributed equally

Key words: long non-coding RNA, mRNA, microarray, peripheral nerve injury, regeneration
In this study, the expression of IncRNAs and mRNAs in the distal segment of the sciatic nerve following PNI was profiled using microarray analysis. We identified a group of IncRNAs that were significantly dysregulated at different time points during Wallerian degeneration. The classification of the IncRNAs, validation by RT-qPCR, target prediction, gene ontology (GO) analysis and target prediction were performed. In particular, we predicted several pairs of IncRNAs and their related mRNAs. RT-qPCR analysis was used for the preliminary verification of the IncRNA-mRNA pairs. The overexpression of NONMMUG014387 was also found to promote the proliferation of mouse Schwann cells (MSCs). This study may provide a basis for the further investigation of the function of IncRNAs in peripheral nerve regeneration following injury.

Materials and methods

The complete research process used in the present study is summarized and presented in Fig. 1.

Experimental animals. A total of 99 mice were used in this study; 15 mice were used for the functional assessment of sciatic functional index (SFI), 72 mice were used for microarray analysis and 12 mice were used for further PCR verification. All the mice were obtained from the Laboratory Animal Research Center, Academy of Military Medical Sciences, of the Chinese People's Liberation Army, Beijing, China.

Functional assessment of SFI. The right sciatic nerves of 15 C57Bl6 mice were crushed using an ultra-fine, smooth, straight hemostat (tip width, 0.6 mm, Fine Science Tools) for 20 sec, as previously described (16). After this procedure, the SFI was measured in each mouse daily for 28 days. The hind paws of the mice were immersed in non-toxic ink. The mice moved without assistance along a walking track and generated footprints were recorded. As previously described (17), several parameters were calculated for the SFI: print length (PL), toe spread (TS) and intermediate toe spread (ITS). All parameters were measured for normal (N) and experimental (E) animals. The SFI was determined according to the formula described by Inserra et al (17) as follows: SFI, 118.8 (ETS - NTS/NTS) - 51.2 (EPL - NPL/NPL) - 7.5, where NTS is normal toe spread, ETS is experimental toe spread, EPL is experimental print length, and NPL is normal print length.

Animal preparation and nerve lesion experiments. A total of 72 C57Bl6 mice, approximately 2 months of age were selected and randomly classified into 4 groups according to the time points of 0, 3, 7 and 14 days post-surgery. The 0 day group was used as a control, while all the other groups were the experimental groups. Due to the insufficient volume of a single sciatic nerve, 6 mice were pooled into one sample, and 3 samples for each time point. After the mice were anaesthetized via an intraperitoneal injection of chloral hydrate, an incision was created on the right lateral thigh to expose and lift the sciatic nerve. As described in a previous study (18), right sciatic nerve crush was performed at the upper thigh level using an acute-nuculum. The nerve was compressed for 30 sec to ensure that the axon was disconnected while the epineurium remained intact. The crush site was then ligated to generate a marker for the damage site. The incision was then closed. To relieve painful mechanical stimulation and discomfort, the mice were housed in clean cages with sawdust bedding. We provided free access to food and water. These experiments were performed according to the NIH Guidelines for the Care and Use of Laboratory Animals (http://oact.od.nih.gov/regs/index.htm). All procedures were approved by the Ethics Committee of Tianjin Medical University, Tianjin, China.

Microarray experiment. The microarray experiment was conducted using an Agilent-074622 Mouse IncRNA microarray (Agilent Technologies, Santa Clara, CA, USA). The mice were sacrificed by cervical dislocation. Tissue perfusion was performed to remove the blood in the sciatic nerve. Distal segments of crushed sciatic nerves (0.5 cm) were isolated and harvested from the mice of each group 0, 3, 7 and 14 days post-surgery. Total RNA was extracted using a Takara RNAiso Plus kit (9109) according to the manufacturer's instructions. The quality of the total RNA was assessed by the RNA integrity number (RIN) on an Agilent Bioanalyzer 2100 (Agilent Technologies). The total RNA was purified using an RNase-Free DNase kit and an RNasy easy micro kit (both Qiagen GMH, Hilden, Germany). The total RNA samples had a RIN of ≥7.0 and a 28S/18S ratio of ≥0.7.

The preparation of One-Color Spike Mix was performed using an Agilent One-Color RNA Spike-In kit. We amplified and labeled total RNA using a Low Input Quick Amp WT Labeling kit (Agilent Technologies) and purified cDNA using an RNasy easy mini kit (Qiagen GMH).

A total of 1.65 µg of Cy3-labeled cDNA was hybridized onto each microarray using a Gene Expression Hybridization kit in a hybridization oven (both from Agilent Technologies). Microarray slides were washed after a 17-h hybridization using a Gene Expression Wash Buffer kit (Agilent Technologies). All aforementioned procedures were performed in accordance with the manufacturer's instructions.

After scanning the microarrays with an Agilent Microarray Scanner we used Feature Extraction software v10.7 (both from Agilent Technologies) to extract the data. Raw data were normalized by a quantile algorithm in GeneSpring software v11.0 (Agilent Technologies).

Bioinformatics analysis. The microarray data generated in our study were deposited into the NCBI Gene Expression Omnibus (GEO) under accession no. GSE74087 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74087).

Raw data were extracted using Feature Extraction 10.7 software, and the quantiles were normalized using GeneSpring GX 11.0 software (Agilent Technologies). The global distribution characteristics of the sample data were normalized and visualized using a box plot. To comprehensively and clearly depict the associations and differences among the samples, clustering into expressed genes or differentially expressed genes was performed. Samples with similar characteristics may present in the same cluster after processing, and genes presenting in the same cluster may have similar biological functions. Following the normalization of the raw data, the fold change was determined, and multiple hypothesis testing was performed to identify differentially expressed genes. Genes with a fold change (linear) ≤0.5 or ≥2 and a
IncRNA gene and its neighboring known protein-coding gene, algorithms, including an ORF-Predictor and BLASTP pipeline were used to identify cis-regulating IncRNA-mRNA potential pairs. We selected 10 kb as the cut-off of the distance between IncRNAs and mRNAs based on a previous study (19).

For trans-regulating prediction, the RNAplex method (http://www.tbi.univie.ac.at/RNA/RNAplex.1.html) was applied to identify possible target genes for IncRNAs based on a previous study (20). RNAplex, which is specifically designed to rapidly identify possible hybridization sites for an RNA query in large RNA databases, adopts a slightly different energy model that reduces the computational time significantly.

To predict the function of differentially expressed IncRNAs, we selected predicted target genes that overlapped with the differentially expressed mRNAs for further GO analysis. GO analysis was performed to analyze the primary function of the target coding genes according to the GO database, which defines the terms ‘cellular components’, ‘molecular functions’, and ‘biological process’ for each gene. These analyses were used to determine the functional enrichment of the target mRNA to analyze the functions of the IncRNAs involved in the response to nerve injury.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To validate the microarray results, the expression level of three randomly selected IncRNAs, ENSMUSG00000087366, NONMMUG018386 and NONMMUG018381, were profiled at different time points after injury. For the preliminary validation of the IncRNA-mRNA pairs, the NONMMUG014387-Cthrc1, NONMMUG042364-Ntm and ENSMUSG00000097535-Icam1 pairs were detected. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a control. In total, 12 mice were used for PCR verification. Total RNA was extracted from the sciatic nerve as described above. Reverse-transcribed cDNAs were synthesized using a PrimeScript RT Reagent kit according to the manufacturer's instructions (Shanghai Biotechnology Corp., Shanghai, China). PCR reactions were performed using SYBR Premix Ex Taq according to the manufacturer’s instructions in a Rotor-Gene 6000 instrument. The PCR reaction used the following cycling conditions: 10 min at 95°C; 95°C (10 sec), 60°C (60 sec) and 95°C (10 sec) for a total of 40 cycles; and a final temperature 95°C. The relative quantity of RNA was calculated and analyzed using the 2ΔΔCq method. All experiments were performed in triplicate. The primer sequences are presented in Table I.

Cell culture. Mouse Schwann cells (MSCs) were purchased from Shanghai Cellbio Co. (Shanghai, China). The cells were inoculated in a new culture flask, prepared medium was added, 90% HyClone Dulbecco's modified Eagle's medium (DMEM) [10% fetal bovine serum (FBS); Gibco, Grand Island, NY, USA] 1-1.5% penicillin-streptomycin. The cells were then placed in an incubator chamber at 37°C over a period of 24 h and the density was observed under a microscope. The cells were passaged when they reached 80% confluence. The medium was then removed and the culture flask was washed with 3-5 ml D-Hanks or phosphate-buffered saline (PBS). This was followed by the addition of 0.5-1 ml trypsin with 0.25% EDTA for digestion. The digestion was terminated by
at 48 h post-transfection, the MSCs, and the MSC-GFP- and MSC-NONMMUG014387-transfected cells were digested into a single cell suspension. Each group of cells was equipped with a single cell suspension with 3x10^6 cells/ml concentration. Following cell adherence, 10 µl of CCK-8 (Hanjeng Biotechnology Corp., Shanghai, China) were added to the wells at 0, 24, 48, 72 and 96 h. The optical density (OD) was at 450 nm using a spectrophotometer.

Statistical analysis. The statistical methods employed in this study were performed using the SPSS 20.0 software packages (SPSS, Inc., Chicago, IL, USA). The statistical significance of the differential expression of various IncRNAs in the microarray analysis and RT-qPCR validation was determined using an independent sample t-test. GO and pathway analyses were conducted using Fisher's exact test. Our data are expressed as the means ± standard deviation (SD). Statistical significance was defined as P<0.01.

Results

Assessment of sciatic nerve function index. To assess the degree of functional impairment and recovery of locomotion following sciatic nerve injury in mice, the SFI was calculated daily for 28 days. The SFI values were almost -100 immediately following PNI; after 7 days, there was rapid neural recovery; however, after 14 days, nerve function recovery had decelerated (Fig. 2A).

Differential expression of IncRNAs. The Agilent-074622 mouse IncRNA microarray consisted of 64,221 IncRNA probes collected from public databases, including GENCODE v21/Ensembl, Noncode v4 and UCSC. A total of 26,531 mRNA probes were also present on this array. Based on the SFI results, microarray experiments were performed at 0, 3, 7 and 14 days after sciatic nerve crush to identify IncRNAs that were differentially expressed during Wallerian degeneration.

The 12 specimens shared a similar level of total characteristics, which is shown in a box plot (Fig. 2B). Sample clustering revealed that the samples from each time group were grouped into the same cluster (Fig. 2C). A total of 5,354 IncRNAs were identified as significantly differentially expressed among all groups following injury (P<0.01; fold change >2). We also compared IncRNA expression independently. A comparison between the 0 and 3 days data revealed that 3,788 IncRNAs were differentially expressed. Among these, 1,521 were upregulated, while 2,267 were downregulated. A comparison between the 0 and 7 days data revealed that 3,314 IncRNAs were differentially expressed. Among these, 1,754 were upregulated, while 1,560 were downregulated. A comparison of the data between 0 and 14 days revealed a total of 2,400 differentially expressed IncRNAs. 1,401 of which were upregulated and 999 downregulated (Fig. 2D). The top 10 downregulated and upregulated IncRNAs between the different groups are shown in Tables II-IV.

Construction of the recombinant adenoviruses used in this study. NONMMUG014387 was inserted into the pHBAd-MCMV-GFP vector. One day prior to transfection, 293 cells were seeded in a 60 mm dish and incubated at 37°C with 5% CO₂ overnight with Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% FBS. The cells were transfected pHBad-MCMV-GFP-NONMMUG014387 at 70-80% confluence. Following transfection, recombinant adenoviruses carrying NONMMUG014387 were harvested. All of the viral particles were purified by cesium chloride density gradient centrifugation and tittered by the TCID50 method.

Cell proliferation assay. The MSCs were plated in 6-well plate (cell/well), and different adenoviruses (Ad-GFP and Ad-NONMMUG014387) were added to each well at an MOI of 20.

Gene name and primer sequences (5'→3')
NONMMUG014387
Forward: AAAGGGATTACAGGGCACACG
Reverse: CCAGGCCATTTAATCACTAGCAT
Chc1
Forward: CGAAATAAAGCCCTGTAGCA
Reverse: TTAACTTTGCTTTTACCAGTCAGC
NONMMUG018381
Forward: GCTCTTCTAAAGGTCATGGGTTCA
Reverse: CTTGGCTCCTCCCTGGAACGTG
NONMMUG018386
Forward: GGTCACATTTCCACATCAGC
Reverse: GGTCACCTCGGGAATCTTGAA
ENSMUSG00000087366
Forward: ACATTATGTTGGACCCCCCTCT
Reverse: AACCACCAACACCACCTACCA
Ntm
Forward: AGTGCCCCCACCGTAAACA
Reverse: TTCTTGCTCTGTGCTTGTGTCTATG
NONMMUG042364
Forward: TCCTGAAGAGAAGCTGCAA
Reverse: TTCTCTACCCCGACTCTCA
ENSMUSG00000097535
Forward: TAAGACTCGGGGAATGTGGA
Reverse: GGCTTTGTCACACTGGAATGC
Icam1
Forward: GTTCTCTGCTCCTCCACATCCT
Reverse: GGCTGACATTGGGAAACAAAGTAG
Gapdh
Forward: CGTGTTCCTACCACCAATGT
Reverse: TGTCATCATACTTGCGAGTTCT

Gene name and primer sequences (5'→3')
NONMMUG014387
Forward: AAAGGGATTACAGGGCACACG
Reverse: CCAGGCCATTTAATCACTAGCAT
Chc1
Forward: CGAAATAAAGCCCTGTAGCA
Reverse: TTAACTTTGCTTTTACCAGTCAGC
NONMMUG018381
Forward: GCTCTTCTAAAGGTCATGGGTTCA
Reverse: CTTGGCTCCTCCCTGGAACGTG
NONMMUG018386
Forward: GGTCACATTTCCACATCAGC
Reverse: GGTCACCTCGGGAATCTTGAA
ENSMUSG00000087366
Forward: ACATTATGTTGGACCCCCCTCT
Reverse: AACCACCAACACCACCTACCA
Ntm
Forward: AGTGCCCCCACCGTAAACA
Reverse: TTCTTGCTCTGTGCTTGTGTCTATG
NONMMUG042364
Forward: TCCTGAAGAGAAGCTGCAA
Reverse: TTCTCTACCCCGACTCTCA
ENSMUSG00000097535
Forward: TAAGACTCGGGGAATGTGGA
Reverse: GGCTTTGTCACACTGGAATGC
Icam1
Forward: GTTCTCTGCTCCTCCACATCCT
Reverse: GGCTGACATTGGGAAACAAAGTAG
Gapdh
Forward: CGTGTTCCTACCACCAATGT
Reverse: TGTCATCATACTTGCGAGTTCT
Figure 2. (A) Mice exhibited severe functional impairment of the sciatic nerve. Dynamics of the sciatic nerve functional index of mice over 4 post-injury weeks (n=5, means ± SD). (B) Box plots show the symmetry of the data and the degree of dispersion. The abscissa shows the sample name. The ordinate represents the fold-change (log₂) in signal values of probes. (C) Twelve samples were subjected to sample clustering. (D) Venn diagram showing the overlap of dysregulated long non-coding RNAs (lncRNAs) between gene sets at different post-injury time points (0 vs 3 days, 0 vs 7 days and 0 vs 14 days). d, day.

Figure 3. Profile of the microarray data. (A, C and E) Variations in lncRNA expression between different time-points (0 vs 3 days, 0 vs 7 days and 0 vs 14 days) are shown as a scatter plot. The x and y values on the scatter plot are the average normalized signal values, shown in a log₂ scale. The red and green lines were set as fold change lines with a default change of 2.0. (B, D and F) Heatmap showing the long non-coding RNAs (lncRNAs) that were differentially expressed between the different groups. Each lncRNA is represented by a row, and each post-injury time-point is represented by a column. The color scale is used to depict the relative expression levels of lncRNAs. Red indicates increased expression, while green indicates decreased expression.
gated into different clusters (Fig. 3B, D and F). The results of RT-qPCR for NONMMUG018381, NONMMUG018386 and ENSMUSG00000087366 were consistent with those of the microarray analysis (Fig. 4).

Classification of differentially expressed lncRNAs. The dysregulated lncRNAs were characterized by their lengths and chromosomal distribution (Fig. 5A and B). Several cellular biological processes, such as dedifferentiation, demyelination, redifferentiation and remyelination, are involved in Wallerian degeneration, which results from a cut or crush injury (21-23). Furthermore, lncRNA expression in response to injury may be time-dependent. We therefore performed a time series analysis to classify these dysregulated lncRNAs. Consequently, 11 lncRNA profiles had significant P-values (Fig. 5C). Recent studies have demonstrated that lncRNA transcription is often initiated simultaneously with the expression of their overlapping or interspersed sequences (20,21). This finding implies that the lncRNAs that are associated with adjacent genes may be involved in regulating gene expression. To obtain a better understanding of this association, lncRNAs were crudely classified into five categories according to their association with adjacent genes: i) sense lncRNAs overlap with the exons of coding genes and are transcribed from the same strand; ii) antisense lncRNAs overlap with the exons of coding genes and are transcribed from the antisense strand; iii) bidirectional lncRNAs are transcribed with a coding transcript that is transcribed in close proximity on the opposite strand; iv) intronic lncRNAs are derived from the introns of coding genes; and v) intergenic lncRNAs are located within the interval between two genes (24). In this study, we analyzed the categorical distribution of the 5,354 lncRNAs that were differentially expressed following sciatic nerve injury (Fig. 5D).

lncRNA target prediction and functional analysis. To further explore the dysregulated lncRNAs, we predicted the target genes that would be regulated using cis and trans mechanisms. The target genes overlapped with mRNAs that were differentially expressed at different time-points. We chose the overlapping mRNAs for further GO analysis. For further analysis, we selected 9 classes of biological processes that are closely related to nerve regeneration following PNI, including stimulation responses, inflammatory responses, immune responses, cell proliferation, cell migration, axon guidance, myelination, extracellular matrix processes, protein kinase activity and growth factor activity. The numbers of dysregulated lncRNAs that were predicted to participate in these processes are shown in Fig. 6.

Table II. Top 10 differentially expressed lncRNAs post-injury at day 0 vs day 3.

lncRNA	P-value	Fold change	lncRNA	P-value	Fold change
NONMMUG032014	0.006677	365.7848	NONMMUG013007	6.48E‑05	172.2607
NONMMUG032012	0.000117	342.0147	150009C09Rik	0.000838	97.30048
NONMMUG032010	6.50E‑05	328.0504	NONMMUG013007	0.000995	83.27552
NONMMUG032016	0.000539	311.5205	NONMMUG042554	0.001978	82.2234
NONMMUG010768	0.001339	188.5556	NONMMUG027331	0.00012	80.19379
Gm11351	0.000147	176.1802	NONMMUG013007	9.24E‑07	63.55268
NONMMUG013417	1.50E‑06	166.4564	ENSMUSG000000101344	0.000463	56.43617
NONMMUG018385	0.000157	159.6788	NONMMUG025392	0.000777	55.75199
NONMMUG018386	1.29E‑05	138.9562	NONMMUG023470	0.000209	55.61781

Figure 4. The qRT-PCR results of the 3 chosen long non-coding RNAs (lncRNAs) compared with those of the microarray. (A) NONMMUG018381. (B) NONMMUG018386. (C) ENSMUSG00000087366. The heights of the columns in the chart represent the fold change (log2).
Functional prediction of lncRNA-mRNA pairs. Based on the classification of lncRNAs in relation to different biological processes, we predicted the lncRNA-mRNA pairs in the 9 biological processes that may be important for peripheral nerve regeneration following injury, according to the following criteria: i) the lncRNA was predicted to be involved in the biological processes according to the results described above; ii) the lncRNA was predicted to use a \textit{cis} or \textit{trans} mechanism to target mRNAs that have been reported to be involved in peripheral nerve regeneration; iii) the mRNA has been reported to be involved in peripheral nerve regeneration; iv) both the lncRNA and mRNA were differentially expressed in the microarray experiment. A list of these lncRNA-mRNA pairs is provided in Table V.

Validation of lncRNA-mRNA pairs by RT-qPCR. For the preliminary validation of the predicted lncRNA-mRNA pairs, we selected three lncRNA-mRNA pairs for RT-qPCR verification. NONMMUG0014387 was predicted to have \textit{cis}-regulating potential with Cthrc1, NONMMUG042364 was predicted to have \textit{cis}-regulating potential with Ntm, and ENSMUST00000180870 was predicted to have \textit{cis}-regulating potential with Icam1. The results of RT-qPCR and microarray analysis revealed that NONMMUG014387 and NONMMUG042364 were upregulated following PNI, and Cthrc1 and Ntm were also upregulated following PNI. The expression trends of the two lncRNAs at different time points were consistent with the separate trends of the two mRNAs. ENSMUSG00000097535 was downregulated following PNI, while Icam1 was upregulated following PNI, although in a different direction; the expression level of ENSMUSG00000097535 was mostly consistent with that of Icam (Fig. 7).

Overexpression of NONMMUG014387 enhances MSC proliferation. NONMMUG014387 was overexpressed through recombinant adenoviruses, the relative level of NONMMUG014387 was detected by RT-qPCR, and the value of the MSCs transfected with NONMMUG014387 was higher than that of the control MSCs or the MSCs + GFP group (Fig. 8A). CCK8 revealed that the overexpression of NONMMUG014387 in the MSCs increased cell proliferation compared with the control MSCs and the MSCs + GFP group (Fig. 8B).

Table III. Top 10 differentially expressed lncRNAs post-injury at day 0 vs day 7.

lncRNA	P-value	Fold change
NONMMUG002067	0.001319	265.9105
NONMMUG032016	6.48E-07	248.2987
NONMMUG032014	0.007602	225.2465
NONMMUG032010	0.000118	216.8008
NONMMUG032012	0.000162	203.7992
Bach2os	0.000424	143.7661
NONMMUG027492	0.000211	128.3399
NONMMUG018385	0.000129	125.3089
NONMMUG004899	3.19E-06	102.7997
150009C09Rik	0.001432	178.838
NONMMUG013117	0.001561	131.4498
NONMMUG042554	0.000353	109.4421
NONMMUG027331	0.001987	101.779
150009C09Rik	0.001267	98.69802
NONMMUG027426	0.00085	68.50972
NONMMUG027331	0.000138	66.7439
ENSMUSG00000101344	0.002055	63.9863
NONMMUG019812	0.000344	60.7132
ENSMUSG00000099137	5.63E-05	56.10263

Table IV. Top 10 differentially expressed lncRNAs at post-injury day 0 vs 14.

lncRNA	P-value	Fold change
NONMMUG032016	4.02E-06	92.85173
NONMMUG032010	0.000687	83.81547
Bach2os	0.000716	79.68822
NONMMUG018385	0.000206	78.50652
NONMMUG032012	0.00025	76.64838
NONMMUG018386	1.79E-05	73.27124
NONMMUG005793	0.00107	55.83829
NONMMUG010751	3.14E-06	48.46715
NONMMUG029505	0.00412	47.18979
NONMMUG005794	9.66E-05	47.10508
A330015K06Rik	0.00014	36.64583
150009C09Rik	0.00557	33.69628
150009C09Rik	0.006163	28.85862
NONMMUG027331	0.000373	28.00702
NONMMUG025427	0.002157	26.34975
NONMMUG043073	0.003822	24.84478
NONMMUG013117	0.006125	23.96197
ENSMUSG00000086253	0.001054	23.74235
NONMMUG010960	0.000317	22.64306
NONMMUG016086	0.007818	22.17701
Figure 5. Characteristics of differentially expressed long non-coding RNAs (lncRNAs). (A) Chromosomal distribution of differentially expressed lncRNAs indicating the variations in their chromosomal locations. (B) The length distribution of differentially expressed lncRNAs. (C) A time series analysis shows the post-injury temporal expression patterns of dysregulated lncRNAs in the sciatic nerve. Each box represents the time-dependent expression profile of a lncRNA. The upper numbers refer to the number of profiles, while the lower numbers indicate the P-value of the profiles in each box. (D) A pie chart shows the classification of a variety of differentially expressed lncRNAs based on their genomic location relative to neighboring or overlapping genes.

Figure 6. The number of differentially expressed long non-coding RNAs (lncRNAs) predicted to be involved in different biological processes including (A) axon guidance, (B) cell migration, (C) cell proliferation, (D) the extracellular matrix, (E) growth factor activity, (F) immune responses, (G) inflammatory responses, (H) myelination and (I) stimulus responses are shown. The x-axis represents the time after injury, and the y-axis represents the number of genes.
Discussion

To the best of our knowledge, this study is the first to obtain a genome-wide microarray profile of lncRNA expression at the distal end of the sciatic nerve 0, 3, 7 and 14 days following nerve crush injury and to further predict the possible lncRNA functions using bioinformatics approaches. A total of 5,354 lncRNAs were dysregulated following PNI, with 3,788, 3,314 and 2,400 lncRNAs dysregulated at 3, 7 and 14 days following nerve crush injury, respectively. Validation by RT-qPCR demonstrated that genes selected from the differentially expressed lncRNAs were dysregulated in a manner consistent with the microarray data at different time points. Therefore, many lncRNAs are predicted to target key mRNAs during peripheral nerve regeneration.

It has been demonstrated that transcriptional changes occur following sciatic nerve crush (25). Li et al demonstrated that the expression of immune response-related genes was significantly upregulated following nerve crush injury and rapidly peaked at 7 days post-crush (26). During the early stage of Wallerian degeneration, immune responses leads to debris clearance and cell death. They also found that the expression of genes associated with cell proliferation and migration showed a similar pattern to that of the immune response genes, and genes associated with guidance and regeneration were rapidly upregulated following nerve crush injury and were then upregulated between at 7 and 14 days post-injury. In this study, SFI indicated the rapid recovery of sciatic nerve function at 7 days post-injury. However, the speed of recovery decelerated after 14 days. Overall, the gene expression data at 0, 3, 7 and 14 days following injury may reflect the process of nerve regeneration.

Figure 7. Verification of three lncRNA-mRNA pairs by RT-qPCR and microarray analysis. (A) Comparison of the expression levels of NONMMUG014387 and Cthrc1 by microarray. (B) Comparison of the expression levels of NONMMUG014387 and Cthrc1 by RT-qPCR. (C) Comparison of the expression levels of NONMMUG042364 and Ntm by microarray. (D) Comparison of the expression levels of NONMMUG042364 and Ntm by RT-qPCR. (E) Comparison of the expression levels of ENSMUSG00000097535 and Icam1 by microarray. (F) Comparison of the expression levels of ENSMUSG00000097535 and Icam1 by RT-qPCR.

Figure 8. Overexpression of NONMMUG014387 increase mouse Schwann cell (MSC) proliferation. (A) NONMMUG014387 in MSC + lncRNA was higher than that of the control MSCs and the MSC + GFP group. (B) Overexpression of NONMMUG014387 in MSCs increased cell proliferation.
As mentioned above, lncRNA-mRNA pairs were predicted to be involved in peripheral nerve regeneration following injury. Several lncRNA-mRNA pairs caught our attention. Many key genes were cis-regulated by lncRNAs. Our analysis revealed that Jun was cis-regulated by lncRNA ENSMUSG00000087366). Jun is a protein encoded by an oncogene that combines with c-Fos to form the AP-1 transcription factor. A previous study demonstrated that Jun is a central regulator of Schwann cells in response to injury (27). The knockdown of Jun has been shown to result in strikingly compromised axonal regeneration and functional repair (28,29).

ENSMUSG00000007555, GM10863 and NONMMUG014942 were paired with SOX10. These three lncRNAs are located upstream of the SOX10 gene on the sense strand. Previous studies have shown that SOX10 plays an important role in the myelination of Schwann cells during development and is required for myelination maintenance in adults (30,31). Following sciatic nerve crush injury, SOX10 downregulation exerts a demyelination effect involved in the phenotypic transition of Schwann cells (30). In addition to the effects of SOX10, the downregulated expression of Sox2 also has an tight association with lncRNAs. As shown by our results, Sox2 was encompassed or overlapped by two differentially expressed lncRNAs (SOX2OT and NONMMUG026340). Sox2 has been reported to be a mediator of EphB signaling, which aids in Schwann cell sorting and guides axon regeneration (32).

Table V. Dysregulated lncRNA transcripts and their potential target mRNA transcripts.

Gene symbol	Chr	Start	End	TargetGene	Regulation type
NONMMUG036610	Chr6	125479051	125480980	CD9	Intrinsic sense
NONMMUG036611	Chr6	125493330	125507715	CD9	Exonic antisense
NONMMUG036609	Chr6	125476049	125478755	CD9	Intrinsic sense
LOC100504703	Chr10	127070480	127071101	Cdk4	Bidirectional
NONMMUG014387	Chr15	39076901	39079473	Cthrc1	Exonic sense
NONMMUG035232	Chr6	47586861	47588527	Ezh2	Intrinsic sense
ENSMUSG00000054779	Chr3	37335332	37349740	FG2	Exonic antisense
ENSMUSG00000097535	Chr9	21034290	21037782	Icam1	Exonic antisense
NONMMUG042235	Chr9	21034152	21036784	Icam1	Exonic antisense
ENSMUSG00000087366	Chr4	95052951	95060658	Jun	Bidirectional
NONMMUG020461	Chr18	82575341	82577314	MBP	Exonic sense
ENSMUSG0000100811	Chr1	62714723	62718073	Nrp2	Intrinsic sense
NONMMUG0424364	Chr9	29327912	29329715	Ntm	Intrinsic sense
ENSMUSG00000073394	Chr1	44735845	44737612	Runx2	Exonic antisense
NONMMUG026340	Chr3	34638297	34680814	Sox2	Exonic sense
SOX2OT	Chr3	34560380	3467993	Sox2	Exonic sense
NONMMUG014942	Chr15	79166059	79216796	SOX10	Exonic antisense
ENSMUSG00000075555	Chr15	79166066	79227524	SOX10	Exonic antisense
GM10863	Chr15	79166065	79216401	SOX10	Exonic antisense
NONMMUG027334	Chr3	96559498	96560013	TXNIP	Exonic sense
NONMMUG036332	Chr6	114683284	114685489	ATG7	trans regulation
NONMMUG036586	Chr6	125119767	125120865	CHD4	trans regulation
ENSMUSG00000085185	Chr17	24208861	24221547	FGD4	trans regulation
NONMMUG026576	Chr3	52349362	52353221	FOX01	trans regulation
ENSMUSG000003088	Chr10	14530916	14544995	Gpr126	trans regulation
NONMMUG04321	Chr10	87859068	87862787	IGF-1	trans regulation
ENSMUSG00000084785	Chr2	114654425	114697839	Mbp	trans regulation
NONMMUG022363	Chr2	26498155	26503824	Notch1	trans regulation
NONMMUG042365	Chr9	29941548	29963141	Ntm	trans regulation
NONMMUG045895	ChrX	136833251	136834685	Ptp1	trans regulation
NONMMUG010575	Chr13	28949083	28951671	Sox4	trans regulation
cells after sciatic nerve injury (35). NONMMUG036611, NONMMUG036609 and NONMMUG036610 were paired with CD9. CD9 promotes the migration of Schwann cells in vitro. CD9 has been shown to participate in the regulation of Schwann cells in response to PNI (36,37). NONMMUG027334 was paired with thioredoxin interacting protein (TXNIP). TXNIP expression is closely associated with the process of peripheral nerve regeneration in vivo. TXNIP is required for advanced glycation end products receptor (RAGE)-induced p38 mitogen-activated protein kinase (MAPK) activation. The silencing of TXNIP affects the migration of Schwann cells and blocks interleukin (IL)-1 and fibronectin (FN) expression (38). NONMMUG042364 was paired with neurotrimin (Ntm). Ntm is a member of the neural cell adhesion molecule (NCAM) family (39). The involvement of NCAMs in cell differentiation, growth and migration is widely accepted (40). Of note, miR-182 reduces the migration ability of Schwann cells by targeting Ntm at an early stage following sciatic nerve injury (41). Whether Ntm is targeted by both lncRNAs and microRNAs simultaneously in a competing endogenous RNA network remains to be clarified.

Although overlapping or neighboring locations of mRNAs and lncRNAs could establish a tight association through cis-regulation, many lncRNAs target mRNA through trans-regulation mechanisms (42,43). In contrast to cis-regulating lncRNAs, trans-regulating lncRNAs dissociate from the primary locus of transcription and influence gene expression from a great distance. In this study, we predicted several trans-regulatory lncRNA-mRNA pairs. ENSMUSG00000084785 was paired with myelin basic protein (MBP) through a trans-regulatory mechanism. MBP has been reported to promote nerve regeneration by cleaving the neural cell adhesion molecule L1 (44). NONMMUG004321 was paired with insulin-like growth factor-1 (IGF-1). IGF-I is not only an important mediator of growth hormone action, but is also a neurotrophic factor for a variety of neurons. Furthermore, IGF-I plays a key role in the development and growth of the peripheral nervous system; systemic IGF-I treatment can promote peripheral nerve regeneration (45). NONMMUG003088 was paired with G-protein-coupled receptor 126 (Gpr126). The knockdown of Gpr12 has been shown to result in limb posture abnormalities in mice, and Gpr126 is essential for peripheral nerve development in mice (46).

All the lncRNAs discussed above were closely associated with the target mRNAs. This study raises the possibility that these lncRNAs may promote nerve regeneration by targeting this set of coding genes. This study has some limitations. First, this study was limited by the disadvantages of microarray technology, which can only detect the expression of known sequences; therefore, some unknown but crucial lncRNAs involved in axon regeneration may have been omitted. Second, due to the properties of lncRNAs and their unclear functional mechanisms involving gene expression, it is not possible to accurately predict the role of a specific lncRNA in an overt biological process based on its expression level or sequence (47). Third, the predictions of the potential function of differentially expressed lncRNAs were not fully verified; the determination of the definite roles of lncRNAs depends on further experimental validation. Despite its limitations, this study describes the lncRNA expression levels in the distal end of the sciatic nerves for the first time; predictions of lncRNA function are essential for future investigations of the important role of lncRNAs in nerve regeneration.

In conclusion, the present study, to the best of our knowledge, provides the first evidence for temporally regulated genome-wide lncRNA expression patterns in the sciatic nerve following crush injury. We predicted the function of these altered lncRNAs based on their target mRNAs and identified lncRNAs that may play an important role in peripheral nerve regeneration.

Acknowledgements

This study was supported by the State Key Program of the National Natural Science Foundation of China (no. 81330042), the Special Program for Sino-Russian Joint Research Sponsored by the Ministry of Science and Technology, China (no. 2014DFR31210) and the Key Program Sponsored by the Tianjin Science and Technology Committee, China (nos. 13RCGFSY19000 and 14ZCZDSY00044). The authors would like to thank Xiong Hui of Tianjin Medical University (Department of Pathophysiology) and Wen-Yuan Shen of Nankai University (School of Medicine) for providing technical assistance.

References

1. Rochkind S: Phototherapy in peripheral nerve regeneration: From basic science to clinical study. Neurosurg Focus 26: E8, 2009.
2. Ertelm K, Ceylan F, Zorluademir S, Karakoc Y and Yolugu S: Impairment of peripheral nerve healing after nerve repair in rats chronically exposed to alcohol. Arch Med Res 40: 325‑330, 2009.
3. Gao Y, Wang YL, Kong D, Qu B, Su XJ, Li H and Pi HY: Nerve autografts and tissue-engineered materials for the repair of peripheral nerve injuries: A 5‑year bibliometric analysis. Neural Regen Res 10: 1005‑1008, 2013.
4. Thomas PK and King RH: The degeneration of unmyelinated axons following nerve section: An ultrastructural study. J Neurocytol 3: 497‑512, 1974.
5. Court FA and Alvarez J: Local regulation of the axonal phenotype, a case of metronomism. Biol Res 38: 365‑374, 2005.
6. Gao R, Wang L, Sun J, Nie K, Jian H, Gao L, Liao X, Zhang H, Huang J and Gan S: MiR-204 promotes apoptosis in oxidative stress‑induced rat Schwann cells by suppressing neuritin expression. FEBS Lett 588: 3225‑3232, 2014.
7. Fawcett JW and Keynes RJ: Peripheral nerve regeneration. Annu Rev Neurosci 13: 43‑60, 1990.
8. Akassoglou K and Strickland S: Nervous system pathology: The fibrin perspective. Biol Chem 383: 37‑45, 2002.
9. Lee JT: Epigenetic regulation by long noncoding RNAs. Science 338: 1435‑1439, 2012.
10. Cao G, Zhang J, Wang M, Song X, Liu W, Mao C and Lv C: Differential expression of long non‑coding RNAs in bleomycin‑induced lung fibrosis. Int J Mol Med 32: 355‑364, 2013.
11. Lee JT and Bartolomei MS: X‑inactivation, imprinting, and long noncoding RNAs in neurodevelopment, brain function and neurological disease. Philos Trans R Soc Lond B Biol Sci 369: 20130507, 2014.
12. Marchese FP and Huarte M: Long non‑coding RNAs and chromatin modifiers: Their place in the epigenetic code. Epigenetics 9: 21‑26, 2014.
13. Roberts TC, Morris KV and Wood MJ: The role of long non‑coding RNAs in neurodevelopment, brain function and neurological disease. Philos Trans R Soc Lond B Biol Sci 369: 20130507, 2014.
14. Mercer TR, Dinger ME, Sunkin SM, Mehler MF and Mattick JS: Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 105: 716‑721, 2008.
15. Yu B, Zhou S, Hu W, Qian T, Gao R, Ding G, Ding F and Gu X: Altered long noncoding RNA expressions in dorsal root ganglion after rat sciatic nerve injury. Neurosci Lett 534: 117‑122, 2013.
16. Morrison BM, Tsingalaria A, Vidensky S, Lee Y, Jin L, Farah MH, Lengacher S, Magistretti PJ, Pellerin L and Rothstein JD: Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush. Exp Neurol 263: 325-338, 2015.

17. Inserno MM, Bloch DA and Terris DJ: Functional indices for sciatic, peroneal, and posterior tibial nerve lesions in the mouse. Microsurgery 18: 119-124, 1998.

18. Stassart RM, Fledrich R, Velanac V, Brinkmann BG, Schwab MH, Meijer D, Sereda MW and Nave KA: A role for Schwann cell-devoid neuregulin-1 in remyelination. Nat Neurosci 16: 48-54, 2013.

19. Jia H, Osak M, Bogu GK, Stanton LW, Johnson R and Lipovich L: Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16: 1478-1487, 2010.

20. Tafer H and Hofacker IL: RNAplex: A fast tool for RNA-RNA interaction search. Bioinformatics 24: 2657-2663, 2008.

21. Duobles T, Lima Tde S, Levy Bde F and Chadi G: S100B and fibroblast growth factor-2 are present in cultured Schwann cells and may exert paracrine actions on the peripheral nerve injury. Acta Cir Bras 23: 555-560, 2008.

22. Órom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, et al: Long noncoding RNAs with enhancer-like function in human cells. Cell 143: 46-58, 2010.

23. Kartha RV and Subramanian S: Competing endogenous RNAs (ceRNAs): New entrants to the intricacies of gene regulation. Front Genet 5: 8, 2014.

24. Li D, Chen G, Yang J, Fan X, Gong Y, Xu G, Cui Q and Geng R: Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure. PLoS One 8: e77938, 2013.

25. Jiang N, Li H, Sun Y, Yin D, Zhao Q, Cui S and Yao D: Differential gene expression in proximal and distal nerve segments of rats with sciatic nerve injury during Wallerian degeneration. Neural Regen Res 9: 1186-1194, 2014.

26. Li S, Liu Q, Wang Y, Gu Y, Liu D, Wang C, Ding G, Chen J, Liu J and Gu X: LiS: Differential gene expression profiling and biological process analysis in proximal nerve segments after sciatic nerve transaction. PLoS One 8: e57000, 2013.

27. Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Parkison DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Mirsky R, et al: c-Jun is a negative regulator of myelination. Nat Neurosci 16: 48-54, 2013.

28. Tafer H and Hofacker IL: RNAplex: A fast tool for RNA-RNA interaction search. Bioinformatics 24: 2657-2663, 2008.

29. Duobles T, Lima Tde S, Levy Bde F and Chadi G: S100B and fibroblast growth factor-2 are present in cultured Schwann cells and may exert paracrine actions on the peripheral nerve injury. Acta Cir Bras 23: 555-560, 2008.

30. Órom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, et al: Long noncoding RNAs with enhancer-like function in human cells. Cell 143: 46-58, 2010.

31. Kartha RV and Subramanian S: Competing endogenous RNAs (ceRNAs): New entrants to the intricacies of gene regulation. Front Genet 5: 8, 2014.

32. Li D, Chen G, Yang J, Fan X, Gong Y, Xu G, Cui Q and Geng R: Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure. PLoS One 8: e77938, 2013.

33. Jiang N, Li H, Sun Y, Yin D, Zhao Q, Cui S and Yao D: Differential gene expression in proximal and distal nerve segments of rats with sciatic nerve injury during Wallerian degeneration. Neural Regen Res 9: 1186-1194, 2014.

34. Li S, Liu Q, Wang Y, Gu Y, Liu D, Wang C, Ding G, Chen J, Liu J and Gu X: LiS: Differential gene expression profiling and biological process analysis in proximal nerve segments after sciatic nerve transaction. PLoS One 8: e57000, 2013.

35. Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Mirsky R, et al: c-Jun is a negative regulator of myelination. Nat Neurosci 16: 48-54, 2013.

36. Tafer H and Hofacker IL: RNAplex: A fast tool for RNA-RNA interaction search. Bioinformatics 24: 2657-2663, 2008.

37. Duobles T, Lima Tde S, Levy Bde F and Chadi G: S100B and fibroblast growth factor-2 are present in cultured Schwann cells and may exert paracrine actions on the peripheral nerve injury. Acta Cir Bras 23: 555-560, 2008.

38. Órom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, et al: Long noncoding RNAs with enhancer-like function in human cells. Cell 143: 46-58, 2010.

39. Kartha RV and Subramanian S: Competing endogenous RNAs (ceRNAs): New entrants to the intricacies of gene regulation. Front Genet 5: 8, 2014.

40. Li D, Chen G, Yang J, Fan X, Gong Y, Xu G, Cui Q and Geng R: Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure. PLoS One 8: e77938, 2013.

41. Jiang N, Li H, Sun Y, Yin D, Zhao Q, Cui S and Yao D: Differential gene expression in proximal and distal nerve segments of rats with sciatic nerve injury during Wallerian degeneration. Neural Regen Res 9: 1186-1194, 2014.

42. Li S, Liu Q, Wang Y, Gu Y, Liu D, Wang C, Ding G, Chen J, Liu J and Gu X: LiS: Differential gene expression profiling and biological process analysis in proximal nerve segments after sciatic nerve transaction. PLoS One 8: e57000, 2013.

43. Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Mirsky R, et al: c-Jun is a negative regulator of myelination. Nat Neurosci 16: 48-54, 2013.

44. Tafer H and Hofacker IL: RNAplex: A fast tool for RNA-RNA interaction search. Bioinformatics 24: 2657-2663, 2008.

45. Duobles T, Lima Tde S, Levy Bde F and Chadi G: S100B and fibroblast growth factor-2 are present in cultured Schwann cells and may exert paracrine actions on the peripheral nerve injury. Acta Cir Bras 23: 555-560, 2008.

46. Órom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, et al: Long noncoding RNAs with enhancer-like function in human cells. Cell 143: 46-58, 2010.