Biodiversity of Medicinal Plants Containing Essential Oil and Their Spreading in Adjara

Natela Varshanidze¹, Nazi Turmanidze¹, Ketevan Dolidze¹, Nana Zarnadze¹, Inga Diasamidze¹, Tinatin Epitashvili², Tamar Katcharava²*

¹Department of Biology, Faculty of Natural Sciences and Health, Batumi Shota Rustaveli State University, Batumy, Georgia
²Biotechnology Center, Georgian Technical University, Tbilisi, Georgia

Copyright©2018 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract Adjara (South Kolkheti), located in the southwestern part of Georgia, it is characterized by warm and humid climate and subtropical climate, which is due to the proximity of the Black Sea. Adjara is remarkably rich in the diversity of flora not only in Georgia, but throughout the Caucasus. At present there are 1837 plant species in the flora of Adjara, 72 of which contain essential oils, they are distributed in 22 families and in 52 genera. Plants containing essential oil belongs: Lamiaceae - 18 species, Asteraceae-17 types, Apiaceae - 9, Cupressaceae-3, Pinaceae-3, Myrtaceae-3. Vital forms are 7 species of trees, 5 species of bushes, 1 species of tree or bushes, 49 species of perennial grass, 6 species of annual grass. According to the geographical coordinates from the sea level up to 0-500 m are spread 36 species containing essential oils, from the sea level up to 500 -1000 m 28 species, from the sea level up to 1000 m 22 species. According to the origin of species, 48 species are wild relatives, 7 is cultivated as vegetables, 3 species are introduced, 3 species are invasive. According to the percentage content of essential oils there are: 1 species - 0,025-0,04%, 4 species - 0,1-0.44%, 37 species - 0,2-0,4%, 21 Species - 0,7-1,0%, 7 species - 1,0-3,0%, 3 species - 4,0-6,0%. In the studied species the essential oils structure is complex and diverse. Monoterpens are distributed in 10 species, Sesquiterpences in 5 species, α-pinene in 7 species, β-pinene in 3 species, α- and β-pinene in 16 species, cineol in 8 species, menthol in 6 species, lemonene in 3 species, in single species are found geraniol, borneol, apio, thuione, karvakoil and others. In the studied species has been identified 3 prospective invasive species, which are distinguished by great resource, not used Georgia as per officinal medicine, but in their home countries (USA, Japan, China) are valuable medicinal plants, these species produced oils containing quantitative analysis, analysis revealed that, Artemissia vulgaris of upper part of the ground contain 0,9% essential oils, with components korizin, tuion, cineol. Perilla nancinensis of upper part of the ground contain 0,88% essential oils; the main component of the essential oil are perilla-ceton and caraphylen, Erygeron canadensis upper part of the ground contain 0,93% essential oils and its main components are limonene and terpineol. It also contains alcaloids, flavonoids and tanner materials

Keywords Adjara Flora, Essential Oil, Family, Medicinal Plants, Biodiversity

1. Introduction Adjara is located in the south western part of Georgia. It is characterized by warm and humid subtropical climate. Flora of Adjara is unique, diversity and among them are many endemic. The distinguishing nature of the flora determines that Kolkheti was the shelter-refuge of ancient plant species (relics) during the ice age. Adjara also rich in invincible, invasive and wild relatives species. Adjara is a mountainous region and its flora is characterized by vertical lobes of spread. At present, there are 1837 species registered in the floristic region of Adjara, which include 159 families and 742 genera, from them used for medicinal purposes - 180 species. Among the medicinal plants, there are plants containing essential oils. They contain up to twenty organic compounds, including hydrocarbon mixtures and oxygen-containing components: alcohol, aldehydes, acute esters, phenols, carbonic acids, oxides and lactones. Essential oils are located in special glands, which are located in leaves, flowers, fruits, seeds, roots. The quantitative content of essential oils from 0.01% to several percent of the plant. Its content depends on the type of plant, on the development stage, on the natural conditions and the plant's age. At the end of vegetation, the content of essential oils are always reduced and collected in the seed. The function of essential oils in the plant is the drawing of insect suppressor, and they regulate the plant's heat transfer. Essential supplements in medicine are used as antibacterial and antimicrobial means, have sedative, spasmylytic and other effects. Thus, the study of plants containing essential
oil is one of the most important problems.

2. Method

The major method of the research is the traditional expedition-excursion method-collecting plants for herbarium and cameral processing. We identified plants according to the plant indexes of Adjara [3,4], Crops international descriptors (International crop descriptors), Peculiarities of crop international collecting (International collecting descriptors) [2,6]. We made the photochemical analysis according to the methods of hydro-distillation and air-liquid chromatography [1].

3. Results

Plants spreaded in Adjara and contain essential oils are Pterophyta which is belonged by 1 family with 2 races and 2 species; Pinophyta - 2 families, 4 races and 6 species; Magnoliophyta - 46 races and 64 species of 19 families. The richest families are Lamiaceae - 18 species, Asteraceae - 17 species, Apiaceae - 9 species. 7 species of plant containing essential oil are trees, 1 species - tree or bushes, 5 species of bushes, perennial grasses - 49 and annual grasses - 6 species.

We can find out 4 important species: Artemissia vulgaris, Erygeron Canadensis, Melissa officinalis, Perilla nancinensis.

4. Discussion

The above is strengthened by the fact that WWF’s initiative on “100 hotpots of European forests” (i.e. 100 unprotected forest plots requiring protection) priority was given to unique Kolkheti relict forests of Adjara [5]. Flora of Adjara includes 1837 wild relative species, which are united in 159 family and 742 genus. Ferns are 61 (3,32%), Gymnospermae - 8 (0,44 %), Angiospermae 1768 (96,24%), Dictotyledone are 1372 (74,67%), monocotiledone 396 (21,55%); wild relatives of grasses are 1660 species [3,4,7].

According to the analysis of flora of Adjara, we have established the fact that 72 types of plants in Adjara contain essential oils [8,9,10]. 7 species of plant containing essential oil are trees, 1 species - tree or bushes, 5 scpecies of bushes, perennial grasses - 49 and annual grasses - 6 species. With the high diversity of species are distinguished the following families: Lamiaceae - 18, Asteraceae - 17, Apiaceae - 9, Cupressaceae - 3, Pinaceae-3, Myrtaceae-3, Polypodiaeae - 2, Adoxaceae - 2, Fabaceae, Acoraceae, Aristolochiaceae, Cyperaceae, Geraniaceae, Oleaceae, Lauraceae, Oleaceae, Liliaceae, Ruscaceae, Primulaceae, Scrophulariaceae, Valerianaceae, Violaceae - 1. There are four species containing important peculiarities: Artemissia vulgaris, Erygeron Canadensis, Melissa officinalis, Perilla nancinensis. Their annotated list and meaning is given in the table 1.

#	Latin Name	Vital Form	Distribution from sea level, m	Part of essential oils	Phytochemical content	
1	Pterophyta	Perennial grass	50–1700	Underground part	0,025-0,045% Essential oils, carbohydrates, bitter substances, monoterpens	
2	Family Polypodiaeae	Perennial grass	50–1700	Underground part	0,144-0,2% Essential oils, tanning substances, sapons, flavonoids, phenolic compounds, organic acids. macroelements: K, C, Mg, Fe; Zn, Se, Ba, Al, Fe	
3	Family Cupressaceae	Evergreen bush	1700–2200	Needle, buds	0,16-0,44% Essential oils, sugar, phinephoside, fatty oils, apple acids, antibiotic, bicicular	
4	Family Cupressaceae	Evergreen bush	1700–2200	Cones	0,21-0,43% Essential oils, vitamin C, phytocytess, fatty oils, organic acids, α-pinen, cedrol	
5	Family Cupressaceae	Evergreen bush	1200–1450	Cones	0,21-0,42% Essential oils, fatty oils, vitamin C, organic acids, α-pinen 27.2%, β-pinen 22.4%, 3-Karen 7%, β-felandren 5.7%.	
6	Family Pinaceae	Evergreen tree	1800–2050	Cones	0,19-0,4% Essential oils, resins, phytochemicals, vitamins C and B, α-tuion, β- tuion, 1,4-cineol, cisocimen, α-pinen, β-pinen, terpin, metiltimol, longicklen, izoborneol	
7	Family Pinaceae	Evergreen tree	800–2100	Needle, buds, cones	0,2–0,4% Essential oils, phinephoside, resins, salts, α-pinen, karen, kampen, mireen, fellandren, myrcen, terminien, cineol, Cr, Mn, Cu, Al,	
No.	Family (Order)	Common Name	Plant Type	Stem Diameter	Parts Utilized	Main Constituents
-----	---------------	-------------	-------------	---------------	----------------	-------------------
8	Pinaeceae	Pinus sosnovskii	Evergreen tree	500–1100	Needle, buds	0.36% Essential oils tanning agents, vitamin C, carotenoids, flavonoids, α-pinene, β-pinene 40%, β-lemonene 40%
9	Magnoliophyta	Sambucus ebulus	Perennial grass	50–2200	Fruits	0.32%, essential oils, tissue substances, bitter substances, organic acids
10	Apiaceae	Anethum graveolens	Perennial grass	50–2000	Upper part of ground	0.2-0.4% Sensitivopenic essential oils, Vitamin C and B.
11	Apiaceae	Angelica adjarica	Perennial grass	1200–1700	Upper part of ground	0.1-0.2% Essential oils, bitter substances, alkaloids
12	Apiaceae	Apium graveolens	Long-standing grass	50–2000	All parts of the plant	0.1% essential oils, 3% sugars, glycosides, mucous, potassium, calcium, phosphorus and sodium salts, acidic acid, vitamins C, B, PP, glycosides, limonen (up to 70%), terpenic hydrocarbons
13	Apiaceae	Carum carvi	Perennial grass	50–1000	Upper part of ground	0.7-1% Essential oils, fats, 92% glycerides, 7.5% unconventional substances, alkaloids, vitamins A and C.
14	Apiaceae	Coriandrum sativum	Annual grass	50–2000	Upper part of ground	The fruits contain 4- 6.5% essential oils, 12-18% fats. The leaves contain 0.62-1.54% essential oils, vitamins C, B, nicotine and amber acid, mineral salts, microelements: Ca, K, P, seeds contain up to 18% fatty oil.
15	Apiaceae	Foeniculum vulgare	Annual grass	50–2000	Upper part of ground	The roots contain 0.1% of essential oils, mucus, microelements: potassium, calcium, iron, phosphorus. Seeds contain essential oils, fatty oils, vitamin C and provitamin A. Leaves contain tannins, ascorbic acid, difficult essential oils, flavonoids, mineral salts, microelements, vitamin K
16	Apiaceae	Petroselinum sativum	Annual grass	50–2000	All parts	0.84% essential oils, inulin, nitrates, organic acids, carotene, vitamins C, K, α-pinene, sabinen
17	Apiaceae	Peucedanum caucasicum (Bieb.)	Perennial grass	1200–1500	Upper part of ground	0.7-1% Essential oils, protein substances
18	Apiaceae	Trachyspermum ammi	Perennial grass	400–1000	Upper part of ground	0.2-0.4% Essential oils, glycosides, flavonoids, 20% fats, α-pinene
19	Acoraceae	Acorus calamus	Perennial grass	0–25	Radicel	1-2.2% of essential oils, bitter glycoside, ascorbic acid (150 mg%), tonsilitis, alkaloids
20	Aristolochiaceae	Asarum intermedium (C.A.Mey.) Grossh	Perennial grass	500–700	Upper part of ground	0.2-0.4% Essential oils, alkaloids, phenols, β-pinene, β-filandren
21	Asteraceae	Achillea bissarata	Perennial grass	400–1200	Flowers	0.85% essential oils, alkaloid, amylene, inulin, aspiragine, nitrates, organic acids, carotene, vitamins C, K, B
22	Asteraceae	Achillea biebertei	Perennial grass	500–2000	Flowers	0.83% Essential oils, alkaloid amylene, inulin, aspiragine, nitrates, organic acids, carotene, vitamins C, K, B
23	Asteraceae	Achillea nobilis	Perennial grass	500–2000	Flowers	0.84% essential oils, inulin, nitrates, organic acids, carotene, vitamins C, K, B, A, sabinen
24	Asteraceae	Achillea neilreichi	Perennial grass	500–2000	Flowers	0.7%, essential oils, alkaloid amylene, inulin, aspiragine, nitrates, organic acids, carotene, vitamins C, K, α-pinene, sabinen
#	Family	Type	Height	Part	Active Components	
----	------------------------	---------------------	--------	-----------	---	
26	Family Asteraceae	Perennial grass	500–2000	Flowers	0.6% essential oils, alkaloids, flavonoid, rutin, inulin, asparagine, nitrates, organic acids, vitamins C, K, B	
27	Achillea fillipendullina	Perennial grass	500–2000	Flowers	0.72% essential oils, alkaloid amylene, flavonoids, apple acid, carotene, vitamins C, K, sabinen	
28	Achillea latiloba	Perennial grass	500–2000	Flowers	0.85% essential oils, alkaloid, amylene, flavonoids, apple acid, carotene, vitamins C, K, α-pinene (3.6-8.0), β-pinene (18.4-33.9)	
29	Achillea millefolium	Perennial grass	50–800	Flowers	0.9% essential oils, alkaloid, amylene, flavonoids, apple acid, carotene, vitamin C, α-pinene, sabinene, β-pinene	
30	Achillea satacea	Perennial grass	50–200	upper part of ground	0.72% essential oils, alkaloid, amylene, flavonoids, apple acid, carotene, vitamins C, K	
31	Artemisia absinthum	Perennial grass	50–1800	upper part of ground	0.8% Essential oils, tanning and mucous substances, sugars, carotene, ascorbic acid	
32	Artemisia vulgaris	Perennial grass	50–1800	upper part of ground	1.1% Essential oils, alkaloids, flavonoids, monoterpenes, tansins, sesquiterpens, sabinen	
33	Erigeron Canadensis	Perennial grass	50–2000	upper part of ground	0.2-0.4% Essential oils, flavones and flavono glycosides, saponins, sterol, carotene, vitamins C and K, sodium, potassium, iron salts, monoterpen: α-pinene, β-pinene, limonene, sesquiterpen	
34	Helicrysum graveolens	Perennial grass	2000–2200	Flowers	0.2-0.4% Ethers, flavones and flavonogenic glycosides, saponins, sterol, carotene, vitamins C and K, tanning substances, microelements, cadinene, monoterapns	
35	Helicrysum poliphylum	Perennial grass	2000–2200	Flowers	0.2-0.4% Essential oils, lactones, inulin, starch, polysaccharides, resins, carbohydrates, sesquiterpenes, sabinen	
36	Inula helenium	Perennial grass	1700–2100	Underground part	0.2-0.4% Essential oils, lactones, inulin, starch, polysaccharides, resins, carbohydrates, sesquiterpenes, sabinen	
37	Matricaria chamomilla var. recuitita	Annual grass	600–1000	Flowers	0.8% - Essential oils, lactones, matricarin, organic acids, resins, polysaccharides, flavonoids, carotenoids, ascorbic acid	
38	Pyretrum parthenifolium	Annual grass	1500–1800	Flowers	0.6% Essential oils, lactones, matricarin, organic acids, resins, polysaccharides, flavonoids, carotenoids, ascorbic acid	
39	Pyretrum roseum	Perennial grass	600–1000	Flowers	0.8% Essential oils, matricarin, organic acids, resins, flavonoids, polysaccharides, carotenoids, ascorbic acid	
40	Capsella bursa-pastoris	Annual grass	50–2000	upper part of ground	0.16-0.44% Essentials, glycosides, saponins, alkaid, wine, apple and lemon acids, vitamin C (200 mg %), carotene, mineral salts, iciccular	
41	Raphanus sativus	Annual grass	25–500	Underground part	0.2-0.4% Essential oils, A, B, C vitamins, organic acids, simple carbohydrates, sesquiterpenes	
42	Cyperus radius	Perennial grass	23–500	Underground part	0.23-0.45% Essential substances, coumarines, β- selinen, α-cyperon, cyperen,	
43	Trifolium pretense	Perennial grass	25–1900	Upper part of ground	0.24-0.44% Essential oils, phenols, carbohydrates, monoterpenes, isoprenoid	
44	Geranium robertianum	Perennial grass	1000–2200	Upper part of ground	0.2-0.4% Essential oils, alkaloids, phenols, isoprenoid	
No.	Family	Species	Main Parts	Location	Main Chemical Constituents	
-----	--------	---------	------------	----------	---------------------------	
44	Lamiaceae	Calaminthia grandiflora	Perennial grass	1000–2200	Upper part of ground	0.3–0.8% Essential oils, carbohydrates, flavonoids
45	Lamiaceae	Glechoma hederacea	Perennial grass	50–2000	Upper part of ground	0.2–0.4% Essential oils, 8% tannins, bitter substances, choline
46	Lamiaceae	Lavandula vera	Evergreen bush	30–100	Upper part of ground	0.162–0.38% Essential oils, organic acids, carotine, flavonoid hepperidine
47	Lamiaceae	Leonurus quinquelobatus Gilib	Perennial grass	1600–1900	Upper part of ground	0.2–0.4% Essential oils, alkaloids, tanning agents, flavonoids, α-pinene, pipertion
48	Lamiaceae	Melissa officinalis	Perennial grass	25–1000	Upper part of ground	0.2% Essential oils, tissue substances, mucus, cytal
49	Lamiaceae	Mentha aquatica	Perennial grass	500–2400	Upper part of ground	0.4–0.8% Essential oils, carbohydrates, glycosides, α-pinene, β-pinene, pipertion, menthol, terpinen, menthofuran
50	Lamiaceae	Mentha longifolia	Perennial grass	500–2400	Upper part of ground	0.3–0.8% Essential oils, flavonoids, α-pinene, β-pinene, terpenin
51	Lamiaceae	Mentha pulegium	Perennial grass	50–1000	Upper part of ground	0.2–0.4% Essential oils, vitamins C, B, chromotids, simple carbohydrates, menthol, limonene
52	Lamiaceae	Mentha piperita	Perennial grass	50–200	Upper part of ground	2.5%–4.6% Essential oils, 40–70% organic acids, carotine and flavonoids, hepperidine, α-pinene, β-pinene, terpinen, menthol 40–70%
53	Lamiaceae	Origanum vulgare	Perennial grass	200–500	Upper part of ground	0.5–1.2% Essential oils, tissue substances, vitamin C 565 mg%, carvacrol, menthol
54	Lamiaceae	Osimum basilicum	Annual grass	50–1000	Upper part of ground	0.2–0.4% of essential oils, tannins, difficult carbohydrates, carotene, vitamins C, B2, K, linalol (17.7%), methyl chavicol (28.0%) and eugenol (36.2%)
55	Lamiaceae	Perilana nankinensis	Perennial grass	30–600	Upper part of ground	0.21–0.42% essential oils, flavonoids, procoumarines, carbohydrates,
56	Lamiaceae	Salvia glutinosa	Perennial grass	400–1200	Upper part of ground	0.23–0.44% Essential oils, organic acids, carotenoids, α-pinene, Sabinin, β-pinene, limonene, terpine
57	Lamiaceae	Salvia solarea	Perennial grass	1100–15000	Upper part of ground	1.2% essential oils, alkaloids, tissue substances, organic acids, vitamin B, pinene, linalol, thymol, carvacrol,
58	Lamiaceae	Satureia laxifloral.	Perennial grass	200–1300	Upper part of ground	0.17–0.41% Essential oils, procoumarines, ascorbic acid, terpinen, thymol, carvacrol, microelements,
59	Lamiaceae	Scutellaria galericulata	Perennial grass	500–1700	Upper part of ground	0.2–0.4% Essential oils, procoumarines, ascorbic acid, carbohydrates, carvacrol, microelements,
60	Lamiaceae	Thymus grossheimi	Perennial grass	500–1700	Upper part of ground	0.17–0.57% Essential oils, flavonoids, 1,8-cineole
61	Lamiaceae	Stachys sylvatica	Perennial grass	600–1700	Upper part of ground	0.2–0.4% Essential oils, flavonoids, procoumarines, mineral salts,
62	Lauraceae	Laurus nobilis	Evergreen tree or bush	50–1000	Leaf	4.5% Essential oils, organic acids, polysaccharides, 1,8-cineole (40%), pinene, linalol, limonene, eugenol,
63	Liliaceae	Allium ursinum	Perennial grass	130–1900	Bulbs, leaves	0.2–0.4% Essential Oils, vitamins C and B, phinocytens
64	Ruscaceae	Ruscus ponticus	Perennial grass	400–1000	Upper part of ground	0.2–0.4% Essential oils, sucrose, monotarpens
65	Myrtaceae	Eucaliptus cinerea	Evergreen tree	50–300	leaves	2.5% essential oils, tannins, procoumarines, organic acids, cineol, aldehydes
66	Myrtaceae	Eucaliptus globules	Evergreen tree	50–300	leaves	2.7% Essential oils, tannins, procoumarines, organic acids, cineol, aldehydes,
67	Myrtaceae	Eucalyptus wiminalis	Evergreen tree	50–300	leaves	2.5% essential oils, tannins, procoumarines, organic acids, cineol, aldehydes,
	Family	Type	Height	Part of Plant	Essential Oil Content	Active Constituents
---	--------	------------	--------	---------------	-----------------------	--
68	Oleaceae Jasminum officinale	Crawling bush	50–500	Flower	0.2-0.4% Essential oils, carotenoids, benzylacetate, benzyl alcohol, indoline, krezol, vitamin A, B, 4-terpineol	
69	Primulaceae Primula sibthorpia	Perennial grass	50–1000	Upper part of ground	0.2-0.4% Essential oils, carotenoids, saponins, vitamins C, B, cineol, aldehydes, mineral salts,	
70	Scrophulariaceae Linaria vulgaris	Perennial grass	1700–2300	Upper part of ground	0.2-0.4% Essential oils, flavonoids, alkaloids, α-pinene, limonen, piperiton, microelements,	
71	Valerianaceae Valeriana eriophylla	Perennial grass	2000–2100	Underground part	0.19-0.36% Essential oils, alkaloids, tannins, sugars, α-pinene, limonen, piperiton, cymol,	
72	Violaceae Viola arvensis Murr	Perennial grass	50–2000	Upper part of ground	Essential oils, flavonoid, carotenoids, polysaccharides, mucous substances, isobutanol, butanol,	

From the table 1, there is evident that 50 species contain essential oils are medical; they are used as sedative and digestive system of means. 17 - species have decorative quality, 13 - species are used as food, 9 - species are weeds, the essential oils are piling up in the ground parts and in the 38 species - in upper parts of the ground, 12 - in the flowers, 8 - in the leaves and 4 - species in the fruits.

5. Conclusions

In above mentioned species spread in the flora of Adjara we can distinguish 4 species having important peculiarities: Artemisia vulgaris, Erygeron Canadensis, Melissa officinalis, Perilla nancinensis. In order to study the content of essential oils of these species, we made the qualitative and quantitative photochemical analysis; afterwards we proved that: Melissa officinalis (upper ground part) contain 0.02-0.03% essential oils; Artemisia vulgaris (upper part of the ground) contain 0.5-0.7% essential oils; Perilla nancinensis (upper part of the ground) contain 0.28% essential oils; Erygeron canadensis (upper part of the ground) contain 0.33-0.66% essential oils.

REFERENCES

[1] Gogia V. (1979). Biochemistry of Subtropical plants. Tbilisi.160p.
[2] Delfan B. Bahmani M, Hassanzadazar H, Saki K, Rafieian-Kopaei M.Rashidipour, M. Bagheri, F, Sharifi, A. Ethnobotany. (1990). Study of effective medicinal plants on gastric problems in Lorestan province, West of Iran. Journal of Chemical and Pharmaceutical Research. (2). 2015. pp. 483-492
[3] Dmitrieva A. (1990). Identify the plant of Adjara, V.I.II.
[4] Identify the plant of Georgia. (1964, 1969). V.I.II. Tbilisi.
[5] Manvelidze Z, Memiadze N,Kharazishvili D, Varshamidze N., Diversityof flora lareaof Adjara. (Listof wild grown plants species). Annalis of Agrarian science, vol.8, No2, Tbilisi. 2010. pp. 93-164.
[6] Puri K. Ethnobotany in the New Europe: People, Health and Wild Plant Resources. Oxford, 2013. 92p.
[7] Varshamidze N. A Specific diversity of medical plants spread in Adjara. Publishing house “Batumi University”, Batumi, 2013. 192p.
[8] Kacharava T. (2015) - Sustainable Use Genetic Resources if Medicinal, Aromatic, Spicy, Poisonous Plants, International Conference, “Applied Ecology: Problems, Innovations” Tbilisi, ISBN 978-9941-0-7644-2, http://icae-2015.tsu.ge,p p.241-246;
[9] Kacharava T. (2009) - Medicine, Aromatic, Spicy and Poisonous Plants - Text-book, Publishing house, "universal", ISBN 978-9941-12-575-1, Tbilisi, 188 p.
[10] Kacharava T., Epitashvili T. (2016) - Medicinal, aromatic and spice plants’ genetic resources, protection in Georgia, Sustainable, Utilization of Plant Genetic Resources for Agriculture and Food, International scientific conference, Pieštany, Slovak Republic, 2016, pp. 34. http://www.vurv.sk/conference/.