A HIERARCHICAL A-POSTERIORI ERROR ESTIMATOR
FOR THE REDUCED BASIS METHOD∗

STEFAN HAIN†, MARIO OHLBERGER‡, MLADJAN RADIC◆, AND KARSTEN URBAN◆

Abstract. In this contribution we are concerned with tight a posteriori error estimation for projection based model order reduction of inf-sup stable parameterized variational problems. In particular, we consider the Reduced Basis Method in a Petrov-Galerkin framework, where the reduced approximation spaces are constructed by the (weak) Greedy algorithm. We propose and analyze a hierarchical a posteriori error estimator which evaluates the difference of two reduced approximations of different accuracy. Based on the a priori error analysis of the (weak) Greedy algorithm, it is expected that the hierarchical error estimator is sharp with efficiency index close to one, if the Kolmogorov N-width decays fast for the underlying problem and if a suitable saturation assumption for the reduced approximation is satisfied. We investigate the tightness of the hierarchical a posteriori estimator both from a theoretical and numerical perspective. For the respective approximation with higher accuracy we study and compare basis enrichment of Lagrange- and Taylor-type reduced bases. Numerical experiments indicate the efficiency for both, the construction of a reduced basis using the hierarchical error estimator in a weak Greedy algorithm, and for tight online certification of reduced approximations. This is particularly relevant in cases where the inf-sup constant may become small depending on the parameter. In such cases a standard residual-based error estimator – complemented by the successive constrained method to compute a lower bound of the parameter dependent inf-sup constant – may become infeasible.

Key words. Reduced Basis Method, A-Posteriori Error Estimator, Hierarchical Error Estimator

AMS subject classifications. 65N30, 65N15, 65M15

1. Introduction. Model order reduction has become a field of great significance, both with respect to solving real world problems and with respect to mathematical research. In this article, we consider the Reduced Basis Method (RBM), which is a well-known projection based model order reduction technique for Parameterized Partial Differential Equations (PPDEs), for instance in multi-query and/or real time contexts, [23, 25, 37]. The key idea for the RBM is to construct a problem specific reduced order model – e.g. in a computationally expensive offline phase – and then use this reduced model to construct an approximation in an online phase extremely fast by solving very low-dimensional Petrov-Galerkin problems.

A posteriori error estimates play an important role within the RBM, at least for the following reasons: (1) The error estimator is used in a weak Greedy algorithm to construct the reduced model. This is e.g. done by maximizing the error estimator over a discrete number of reduced solutions with respect to a finite training set of parameters (‘sampling’) and to enrich the preliminary reduced basis by the truth solution (‘snapshots’) that corresponds to the worst approximated reduced solution. (2) After the online computation of a reduced approximation as a linear combination of the snapshots, an error estimator yields an upper bound for the error and thus certifies the reduced numerical approximation.

This shows that such error estimators need to satisfy a number of conditions: (i) The computation of the error estimator for some given parameter has to be very fast, i.e. with a complexity that only depends on the degrees of freedom of the reduced approximation space (for the basis generation, this allows a large and representative training set; in the online phase, the certification has to be at least as efficient as the computation of the reduced approximation itself); (ii) The error estimator has to be tight in order to yield an efficient and reliable estimate of the true error.

∗Date: February 12, 2018.
Funding: M.R. was supported by the European Union within the EU-MORNet project.
†Ulm University, Institute for Numerical Mathematics, Helmholtzstr. 20, 89081 Ulm, {stefan.hain, mladjan.radic, karsten.urban}@uni-ulm.de
‡University of Münster, Applied Mathematics, Einsteinstr. 62, 48149 Münster, mario.ohlberger@uni-muenster.de.
So far, the most common approach for constructing such a posteriori RB error estimators is residual-based. This usually involves an efficient computation of (an approximation of) the residual and the inverse of the inf-sup constant. As for many problems, the inf-sup constant cannot be computed or estimated in an efficient way, the Successive Constraint Method (SCM) [12, 13, 29] is used for the calculation of a lower bound. This involves at least two drawbacks, namely the computational complexity of the SCM, in particular if a very good approximation is needed and –related– the lower bound maybe very small (and thus almost useless for the residual-based error estimator) if the inf-sup constant is small. Moreover, it has numerically been observed, that the SCM may not always converge.

Hierarchical error estimators use the difference of two approximations of different order to bound the unknown error. This approach is well-known e.g. for ordinary differential equations [36] and adaptive finite elements [3, 14, 16, 28, 45, 46], just to mention a few. Within the RBM, such an approach has been used to measure the error of the empirical interpolation method (EIM) [4, 11, 17]. We also suppose that such estimators might have been in used in some real-world problems. However, to the very best of our knowledge, we are not aware of an article investigating its use for a posteriori error estimation for RB approximations.

We investigate two situations: (1) A family of reduced spaces \((X_N)_{N=1,...,N_{\text{max}}}\) is given. Then, we choose \(N < M\) and use the difference \(\|u_N - u_M\|_X\) of two RB approximations as error estimator in the online phase. We study the performance in particular in those cases, where the inf-sup constant is small or hard to access numerically. This is e.g. the case for the Helmholtz problem, where the inf-sup constant behaves like \(\mu^{-1/2}\), the wave number \(\mu \in \mathbb{R}^+\) being the parameter. Other examples (that will not be treated here) include transport and wave propagation problems, where one can may construct an optimal reduced space in a possibly costly offline stage but cannot use the residual online, since it cannot be computed efficiently, [6, 22]. (2) A residual-based error estimator cannot be used at all. In this case, one would like to construct the reduced basis with the aid of the hierarchical error estimator. This, however, is not completely straightforward, since \(X_M\) needs to be constructed for given \(X_N\). It turns out that a standard greedy procedure may not work in this case. This is the reason why we suggest to use a Taylor-type RB approach for constructing the reduced space of higher accuracy. Numerical experiments are given to demonstrate the efficiency of the resulting approach.

In both cases, (1) and (2), we investigate the effectiveness of the hierarchical error estimator, both theoretically and numerically. For the latter purpose, we suggest an offline procedure to determine sharp estimates for the effectivity that can also be used in the online stage.

The remainder of this paper is organized as follows: In Section 2, we collect some preliminaries on PPDEs and RBMs. Section 3 is devoted to the introduction of the hierarchical error estimator including the analysis and realization. We report on several numerical experiments in Section 4 for the standard thermal block problem and the Helmholtz problem in a high frequency regime, i.e. with quite small inf-sup constants. We mention that our RB hierarchical error estimate has recently been used in the scope of other problems [6, 21, 22].

2. Preliminaries. In this section, we collect the main facts and background material that is used in the sequel.

2.1. Parameterized Partial Differential Equations (PPDEs). Let \(P \subset \mathbb{R}^P, P \in \mathbb{N}\), be a compact parameter space. For suitable Hilbert (function) spaces \(X\) and \(Y\) consider the parameterized variational problem (e.g. a PDE):

\[
(2.1) \quad \text{For } \mu \in P \text{ find } u(\mu) \in X : \quad a(u(\mu), v; \mu) = f(v; \mu) \quad \forall v \in Y,
\]

where \(a : X \times Y \times P \to \mathbb{K} \subseteq \{\mathbb{R}, \mathbb{C}\}\) is a continuous sesquilinear form and \(f : Y \times P \to \mathbb{K}\) is a given continuous linear form. For ensuring the uniform well-posedness of (2.1) for any
\[\forall \mu \in \mathcal{P} \quad \frac{\sup_{u \in X} \sup_{v \in Y} |a(u, v; \mu)|}{\|u\|_X \|v\|_Y} \leq \gamma(\mu) \leq \gamma_{UB} < \infty, \quad (\text{continuity}) \]

\[\forall \mu \in \mathcal{P} \quad \inf_{u \in X} \sup_{v \in Y} |a(u, v; \mu)| \geq \beta(\mu) \geq \beta_{LB} > 0, \quad (\text{inf-sup condition}) \]

Even though these assumptions yield a uniform well-posedness (w.r.t. the parameter), we note, that particularly \(\beta_{LB} \) may be fairly small, which will be crucial below.

2.2. The 'Truth'.

Next, we require the availability of a detailed or fine discretization in terms of suitable conforming trial and test spaces \(X^N \subset X \) and \(Y^N \subset Y \), where (just for simplicity) \(\dim(X^N) = \dim(Y^N) = N < \infty \). The discretized parameterized problem then reads for any \(\mu \in \mathcal{P} \):

\[\text{Find } u^N(\mu) \in X^N: \quad a^N(u^N(\mu), v^N; \mu) = f^N(v^N; \mu) \quad \forall v^N \in Y^N, \]

where \(a^N : X^N \times Y^N \times \mathcal{P} \to \mathbb{K} \) and \(f^N : Y^N \times \mathcal{P} \to \mathbb{K} \) are appropriate discrete sesquilinear and linear forms. The discrete sesquilinear and linear forms are continuous with the same constants. To ensure the uniform well-posedness of (2.2) for every \(\mu \in \mathcal{P} \) it is a standard assumption to require

\[\forall \mu \in \mathcal{P} \quad \inf_{u^N \in X^N} \sup_{v^N \in Y^N} \frac{|a^N(u^N, v^N; \mu)|}{\|u^N\|_X \|v^N\|_Y} = \beta^N(\mu) \geq \beta^N_{LB} > 0. \]

Here \(\| \cdot \|_X \) and \(\| \cdot \|_Y \) may be numerical approximations to \(\| \cdot \|_X \) and \(\| \cdot \|_Y \), respectively, but may also be discrete norms (such as for discontinuous Galerkin -dG- methods). Such a detailed discretization can e.g. arise from Finite Element, Finite Volume, dG or Spectral Element discretizations.

It is a standard assumption that this detailed discretization is sufficiently fine so that the error \(\| u(\mu) - u^N(\mu) \|_X \) is negligible, which is the reason why \(u^N(\mu) \) is often called the 'truth'. In particular, we assume here that \(X^N \) and \(Y^N \) are the same for all parameters, but mention that adaptive discretizations may also be used (cf. [1, 24]).

2.3. The Reduced Basis Method (RBM).

We briefly recall the main ingredients of the Reduced Basis Method (RBM) which we need here and refer e.g. to [23, 25, 37] for more details. The aim of the RBM is to determine a highly reduced model of size \(N \ll N \) in terms of reduced trial and test spaces \(X_N \subset X^N, Y_N \subset Y^N \). Such a reduced model is typically determined in an offline phase, which might be computationally costly. This is done by selecting certain parameters \(\mathcal{S}_N := \{\mu_1, \ldots, \mu_N\} \), computing the corresponding (truth) snapshots \(\xi_i := u^N(\mu_i), i = 1, \ldots, N \), and setting \(X_N := \text{span}\{\xi_1, \ldots, \xi_N\}, N \ll N \). The basis may be orthonormalized for stability reasons.

The choice of the snapshot parameter set \(\mathcal{S}_N \) is usually based upon an efficiently computable a posteriori error estimator \(\Delta_N(\mu) \) which is then maximized in a greedy manner over a finite training set \(\mathcal{P}_{\text{train}} \subset \mathcal{P} \). This approach is called weak greedy. Sometimes, the error is used instead of an error estimator, which is then termed as strong greedy. Other approaches such as nonlinear optimization of an error estimator have also been investigated, e.g. [41].

In order to ensure well-posedness of the reduced problem, namely:

\[\text{For } \mu \in \mathcal{P} \text{ find } u_N(\mu) \in X_N: \quad a^N(u_N(\mu), v_N; \mu) = f^N(v_N; \mu) \quad \forall v_N \in Y_N, \]
the spaces X_N and Y_N have to be chosen such that

$$\inf_{u_N \in X_N} \sup_{v_N \in Y_N} \frac{|a_N^N(w_N, v_N; \mu)|}{\|w_N\|_{X_N} \|v_N\|_{Y_N}} =: \beta_{N}^{\alpha_N}(\mu) \geq \beta_{RB}^{\alpha_N} > 0, \quad \mu \in \mathcal{P}. \quad (2.5)$$

Let $u_N(\mu) = \sum_{i=1}^{N} u_{i,N}(\mu) \xi_i$ be the desired expansion of the RB approximation. It is easily seen that the unknown coefficient vector $u_N(\mu) = (u_{i,N}(\mu))_{i=1}^{N}$ arises from solving a linear system of equations $a_N(\mu)u_N(\mu) = f_N(\mu)$, where $(a_N(\mu))_{i,j} := a_N^N(\xi_i, \eta_j; \mu), (f_N(\mu))_{j} := f_N^N(\eta_j; \mu)$, and $Y_N := \text{span}\{\eta_1, \ldots, \eta_N\}$ is the reduced test space. Typically, $a_N(\mu)$ is a dense matrix so that the reduced approximation can be computed with ${\mathcal{O}}(N^3)$ operations. In order to setup the linear system in an online efficient manner, it is usually assumed that sesquilinear and linear forms are separable w.r.t. the parameter, i.e.,

$$a_N^N(w, v; \mu) = \sum_{q=1}^{Q^a} \theta_q^a(\mu) a_q^N(w, v), \quad \mu \in \mathcal{P}, w \in X_N, v \in Y_N, \quad (2.6)$$

$$f_N^N(v; \mu) = \sum_{q=1}^{Q^f} \theta_q^f(\mu) f_q^N(v), \quad \mu \in \mathcal{P}, v \in Y_N. \quad (2.7)$$

Sometimes (2.6) is also called affine decomposition. If (2.6) is not satisfied, the empirical interpolation method can be used to construct an affine approximation (see e.g. [4]). Using (2.6), one can precompute parameter-independent quantities in the offline stage allowing for an online efficient setup of the linear system. In fact, the parameter-independent matrices and vectors $(a_q^N)_{i,j} := a_q^N(\xi_i, \eta_j), i, j = 1, \ldots, N, q = 1, \ldots, Q^a$ and $(f_q^N)_{j} := f_q^N(\eta_j), j = 1, \ldots, N, q = 1, \ldots, Q^f$, can be computed offline and stored once. Then, for a given new parameter $\mu \in \mathcal{P}$

$$a_N(\mu) = \sum_{q=1}^{Q^a} \theta_q^a(\mu) a_q^N, \quad f_N(\mu) = \sum_{q=1}^{Q^f} \theta_q^f(\mu) f_q^N,$$

which is of complexity $\mathcal{O}(Q^a N^2)$ and $\mathcal{O}(Q^f N)$, respectively. As the complexity does not depend on N, it is online efficient.

The best possible rate of convergence for the error is given by the decay of the Kolmogorov N-width

$$d_N(\mathcal{P}) := \inf_{\mathcal{P}} \inf_{u_N \in X_N} \sup_{v_N \in X_N} \|u(\mu) - v_N\|_X. \quad (2.8)$$

It is known that $d_N(\mathcal{P})$ decays fast (even exponentially) for several PPDEs as $N \to \infty$ with smooth dependence of the solution on the parameter (see e.g. [32]).

2.4. The residual based a-posteriori error estimator.

As already mentioned above, an online efficient error estimator $\Delta_N(\mu)$ is often used within a weak greedy procedure to determine the snapshot index set S_N. Moreover, such a $\Delta_N(\mu)$ is used for online certification by computing an upper bound for the error induced by the RB approximation $u_N(\mu)$. In this paper, we will consider two examples for such a $\Delta_N(\mu)$. For the subsequent analysis, we will consider

$$e_N(\mu) := \|u(\mu) - u_N(\mu)\|_X, \quad e_N^V(\mu) := \|u^N(\mu) - u_N(\mu)\|_{X_N}.$$
which will be termed exact error and truth error, respectively. Also other error quantities or functions of the error can be considered using adjoint methods. It is fairly standard to use the (truth) residual \(R_N(w; \mu) \in (Y^N)' \) defined as

\[
R_N^N(w; \mu) := f^N(w; \mu) - a^N(u_N(\mu), w; \mu) = a^N(e_N^N(\mu), w; \mu), \quad w \in Y^N,
\]

to define the residual based a-posteriori RB error estimator as follows

\[
\Delta_N^{\text{Std}}(\mu) := \frac{\|R_N^N(\cdot; \mu)\|_{(Y^N)'} }{\beta^N(\mu)},
\]

which we will call standard RB error estimator in the sequel. It should be noted that the (truth) residual also admits an affine decomposition and can thus in fact be computed online efficient. The involved (truth) inf-sup constant \(\beta^N(\mu) \) can only be determined exactly in very specific cases. Usually, a lower bound \(\beta^{\text{LB}}_N(\mu) \) is computed for example by the Successive Constraint Method (SCM), \([13, 26, 29]\). However, even though the SCM is online efficient, the quantitative performance may be a severe problem in real-time applications, in particular if a good approximation of \(\beta^N(\mu) \) is required (which is the case, e.g., if \(\beta^N(\mu) \) is small).

The relation of the truth error and the residual is well-known and easily seen

\[
\frac{1}{\gamma^N(\mu)} \|R_N^N(\cdot; \mu)\|_{(Y^N)'} \leq \|e_N^N(\mu)\|_{X^N} \leq \frac{1}{\beta^N(\mu)} \|R_N^N(\cdot; \mu)\|_{(Y^N)'},
\]

(2.9)

Note, that this relation is w.r.t. the truth error, not w.r.t. the exact error \([1, 33, 34, 43, 44]\). Of course, one can replace \(\beta^N(\mu) \) and \(\gamma^N(\mu) \) in (2.9) by lower and upper bounds \(\beta_{\text{LB}} > 0, \gamma_{\text{UB}} < \infty \), respectively, even though these bounds may be numerically infeasible. Under the assumptions of the previous sections, it has been proven that weak greedy algorithms exhibit the same rate of convergence as \(d_N(P) \) if there exists rigorous lower and upper bounds for the error, like (2.9), see \([5, 7]\). Roughly speaking the RBM works well for a PPDE if \(d_N(P) \) decays sufficiently fast as \(N \) grows.

3. A Hierarchical Error Estimator.

In this section, we introduce the hierarchical error estimator. To this end, let \(X_N \subset X_M \subset X^N \), where \(\dim(X_M) = M > N = \dim(X_N) \), and \(u_N(\mu) \in X_N, u_M(\mu) \in X_M \), respectively. Then, we define the hierarchical error estimator by

\[
\Delta_{N,M}(\mu) := \|u_M(\mu) - u_N(\mu)\|_{X^N}.
\]

3.1. Error Analysis.

The analysis of hierarchical error estimators is pretty standard in various applications for ODEs or PDEs. Due to the specific framework of parameter-dependent problems, we detail it here. We indicate two approaches.

Asymptotic analysis. Using triangle inequality, we get by (2.9) and (2.5)

\[
\|u^N(\mu) - u_N(\mu)\|_{X^N} \leq \|u^N(\mu) - u_M(\mu)\|_{X^N} + \|u_M(\mu) - u_N(\mu)\|_{X^N}
\]

\[
= \|u^N(\mu) - u_M(\mu)\|_{X^N} + \Delta_{N,M}(\mu)
\]

\[
\leq \frac{1}{\beta^N(\mu)} \|R_N^N(\cdot; \mu)\|_{(Y^N)'} + \Delta_{N,M}(\mu) = \Delta_{M}^{\text{Std}}(\mu) + \Delta_{N,M}(\mu).
\]

Now, we recall from \([5]\) that one can construct \(X_M \) in such a way that \(\Delta_{M}^{\text{Std}}(\mu) \to 0 \) as \(M \to \infty \) for every \(\mu \in P \) provided that the Kolmogorov \(M \)-width decays, i.e., this is a term of higher order. This means that for any \(N \) and \(\epsilon > 0 \), we can choose an \(M = M(\epsilon) > N \) such that

\[
\|u^N(\mu) - u_N(\mu)\|_{X^N} \leq \epsilon + \Delta_{N,M}(\mu).
\]
Alternatively, we can choose M such that $\Delta_{M}(\mu) \leq \epsilon \Delta_{N,M}(\mu)$ yielding that

$$\|u_{N}(\mu) - u_{N}(\mu)\|_{X^{N}} \leq (1 + \epsilon) \cdot \Delta_{N,M}(\mu).$$

If, however, the assumption $\Delta_{M}(\mu) \leq \epsilon \Delta_{N,M}(\mu)$ is only satisfied on a training set $P_{\text{train}} \subset P$, there might exist parameters $\mu \in P \setminus P_{\text{train}}$ with $\Delta_{N,M}(\mu) = 0$ for all M, but $\|u_{N}(\mu) - u_{N}(\mu)\|_{X^{N}} \neq 0$. This may happen if X_{M} does not converge to X^{N}, which motivates a further assumption.

Saturation assumption. A way to analyze hierarchical error estimates is by showing or assuming a guaranteed error decay, typically called saturation property, see e.g. [3, 28, 42]. In order to formulate it, we recall that the reduced spaces $X_{N} := \text{span}\{\xi_{1}, \ldots, \xi_{N}\}$, $N \ll N$ are formed by snapshots $\xi_{i} := u^{N}(\mu_{i})$, $i = 1, \ldots, N$. Consider now a second reduced basis space X_{M} with $\text{dim}(X_{M}) = M > N = \text{dim}(X_{N})$. Then, we say that X_{N} and X_{M} satisfy the saturation property, if there exists a constant $\Theta_{N,M} \in (0, 1)$, s.t.

$$(3.2) \quad \|u_{N}(\mu) - u_{M}(\mu)\|_{X^{N}} \leq \Theta_{N,M} \cdot \|u_{N}(\mu) - u_{N}(\mu)\|_{X^{N}}$$

holds for all $\mu \in P$. We will show a numerical procedure to validate this assumption below. At this point we do not specify the particular construction of X_{M}, see §3.4 below. Then, following standard lines, we can easily prove the following estimates.

Proposition 3.1. If (3.2) holds, then

$$\frac{\Delta_{N,M}(\mu)}{1 + \Theta_{N,M}^{N}} \leq \|u_{N}(\mu) - u_{M}(\mu)\|_{X^{N}} \leq \frac{\Delta_{N,M}(\mu)}{1 - \Theta_{N,M}^{N}} =: \Delta_{\text{Hier}}(\mu). \quad (3.3)$$

Proof. For $\mu \in P$ with $\|u_{N}(\mu) - u_{N}(\mu)\|_{X^{N}} = 0$ the inequalities are obviously fulfilled. If $\|u_{N}(\mu) - u_{N}(\mu)\|_{X^{N}} \neq 0$, we use the reverse triangle inequality and the saturation assumption to obtain

$$\frac{\|u_{M}(\mu) - u_{N}(\mu)\|_{X^{N}}}{\|u_{N}(\mu) - u_{N}(\mu)\|_{X^{N}}} \geq \frac{\|u_{N}(\mu) - u_{N}(\mu)\|_{X^{N}} - \|u_{N}(\mu) - u_{M}(\mu)\|_{X^{N}}}{\|u_{N}(\mu) - u_{N}(\mu)\|_{X^{N}}}$$

$$\geq 1 - \|u_{N}(\mu) - u_{M}(\mu)\|_{X^{N}} \geq 1 - \sup_{\mu \in P} \|u_{N}(\mu) - u_{N}(\mu)\|_{X^{N}}$$

which proves the upper bound. The lower bound is proven by triangle inequality and saturation.

Remark 3.2. With a slight abuse of terminology, we sometimes call both $\Delta_{N,M}$ and Δ_{Hier} "hierarchical error estimator". Strictly speaking, only Δ_{Hier} is an upper bound for the error, whereas $\Delta_{N,M}$ requires the multiplicative constant $(1 - \Theta_{N,M}^{N})^{-1}$ in order to be an upper bound.

For the effectivity

$$\eta_{N,M}(\mu) := \frac{\Delta_{N,M}(\mu)}{(1 - \Theta_{N,M}^{N})\|u_{N}(\mu) - u_{N}(\mu)\|_{X^{N}}} \quad (3.4)$$
we obviously get that

\[
1 \leq \eta_{N,M}^\mathcal{V}(\mu) \leq \frac{1 + \Theta_{N,M}^\mathcal{V}}{1 - \Theta_{N,M}^\mathcal{V}}.
\]

The closer \(\Theta_{N,M}^\mathcal{V}\) is to zero, the better is the effectivity.

3.2. Realization. The hierarchical error estimator can be computed online-efficient as we are going to show now. In fact, let

\[
u_N(\mu) = \sum_{i=1}^N a_i^N(\mu) \xi_i, \quad u_M(\mu) = \sum_{i=1}^M a_i^M(\mu) \xi_i,
\]

be the expansions of the reduced basis approximations (in general \(a_i^N(\mu) \neq a_i^M(\mu)\) even for \(1 \leq i \leq N\)). Then, setting \(a_i^N(\mu) := 0\) for \(i = N + 1, \ldots, M\), we get

\[
\Delta_{N,M}(\mu)^2 = \left\| \sum_{i=1}^M (a_i^N(\mu) - a_i^M(\mu)) \xi_i \right\|^2_{\mathcal{V}} = \sum_{i,j=1}^M (a_i^N(\mu) - a_i^M(\mu))(a_j^N(\mu) - a_j^M(\mu)) (\xi_i, \xi_j)_{X\mathcal{V}}.
\]

Since the values \((\xi_i, \xi_j)_{X\mathcal{V}}\) (the entries of the Gramian matrix) can be precomputed and stored in the offline stage, the computation of \(\Delta_{N,M}(\mu)\) requires \(\mathcal{O}(M^2)\) operations independent of \(\mathcal{N}\), i.e., online efficient. Of course, we have the well-known square root effect, since the above reasoning yields \(\Delta_{N,M}(\mu)^2\) so that we loose half of the accuracy by taking the square root. This, however, is exactly the same for the standard estimator and there are suggestions how to deal with it (see e.g. [8]).

3.3. Offline approximation of \(\Theta_{N,M}^\mathcal{V}\). The main challenges for using the hierarchical error estimator are (i) the choice of an appropriate \(M\) and (ii) the determination of the multiplicative constant \(\rho\) with \(e_N^\mathcal{V}(\mu) \leq \rho \Delta_{N,M}(\mu)\) for all \(\mu \in \mathcal{P}\). Obviously, both issues are linked. In the case using the saturation assumption, we have that \(\rho = (1 - \Theta_{N,M}^\mathcal{V})^{-1}\), so that we start describing an offline procedure to approximate the saturation constant.

To this end, we use a result on nonlinear parametrized programming problems.

Theorem 3.3. [15] Let \(\mathcal{P} \subset \mathbb{R}^p\) be compact and connected, \(f, g : \mathcal{P} \to \mathbb{R}\) continuous such that \(g(\mu) > 0\) for all \(\mu \in \mathcal{P}\). Setting \(F(q) := \max_{\mu \in \mathcal{P}} \{ f(\mu) - q \cdot g(\mu) \}\), \(q \in \mathbb{R}\), it holds

\[
q_0 := \max_{\mu \in \mathcal{P}} \frac{f(\mu)}{g(\mu)} \text{ if and only if } F(q_0) = 0.
\]

We apply this result for the functions \(f(\mu) := \|u_N(\mu) - u_M(\mu)\|_{X\mathcal{V}}\) and \(g(\mu) := \|u_N(\mu) - u_M(\mu)\|_{X\mathcal{V}}\). Due to the requirement \(g(\mu) > 0\) for all \(\mu \in \mathcal{P}\), we decompose the parameter space \(\mathcal{P}\) in compact subsets \(\mathcal{P}_i\) in such a way, that on each subset the denominator is non-vanishing. In view of (2.9) this means here that \(\|R_N^\mathcal{V}(\cdot; \mu)\|_{X\mathcal{V}'} \neq 0\). Then, we proceed as follows: for fixed dimension \(N\) and for \(\mathcal{P}_i\) we solve the nonlinear problem

\[
\Theta_{N,M,i}^\mathcal{V} := \arg \min_{q_{\mathcal{P}_i} \geq 0} |F_i(q)| \quad \text{with} \quad F_i(q) := \max_{\mu \in \mathcal{P}_i} \{ f(\mu) - q \cdot g(\mu) \}
\]
and define $\Theta_{N,M}^N := \max_{i} \Theta_{N,M,i}^N$. For each i, we construct an iteration $\theta_i^{(k)}$, $k = 0, 1, 2, \ldots$, for which we need a good starting value $\theta_i^{(0)}$. Since
\[
\frac{\beta^N(\mu)}{\gamma^N(\mu)} \cdot \frac{\|R_M^N(\mu)\|_{\gamma \times \gamma'}}{\|R_N^N(\cdot;\mu)\|_{\gamma \times \gamma'}} \leq \frac{\|u^N(\mu) - u_M(\mu)\|_{\gamma \times \gamma'}}{\|u^N(\mu) - u_N(\mu)\|_{\gamma \times \gamma'}} \leq \frac{\gamma^N(\mu)}{\beta^N(\mu)} \cdot \frac{\|R_M^N(\cdot;\mu)\|_{\gamma \times \gamma'}}{\|R_N^N(\cdot;\mu)\|_{\gamma \times \gamma'}}.
\]
we use the following approximation as initial guess
\[
\Theta_{N,M,i}^N := \max_{\mu \in P_i} \frac{\|u^N(\mu) - u_M(\mu)\|_{\gamma \times \gamma'}}{\|u^N(\mu) - u_N(\mu)\|_{\gamma \times \gamma'}} \approx \max_{\mu \in P_i} \frac{\|R_M^N(\cdot;\mu)\|_{\gamma \times \gamma'}}{\|R_N^N(\cdot;\mu)\|_{\gamma \times \gamma'}} =: \theta_i^{(0)},
\]
which is reasonable provided that $\min_{\mu \in P_i} \frac{R_M^N(\mu)}{R_N^N(\mu)} \approx \max_{\mu \in P_i} \frac{R_M^N(\mu)}{R_N^N(\mu)}$. This results in the (offline) Algorithm 3.1. If this algorithm terminates with some $\Theta_{N,M}^N < 1$, the saturation property is in fact valid.

Algorithm 3.1 Computing $\Theta_{N,M}^N$

1: Choose $\text{tol} > 0$, fix $N \in \mathbb{N}$, choose $L \in \mathbb{N}$ compact subsets P_i, $1 \leq i \leq L$
2: for $i = 1 : L$ do
3: $f(\mu) := \|u^N(\mu) - u_M(\mu)\|_{\gamma \times \gamma'}$, $g(\mu) := \|u^N(\mu) - u_N(\mu)\|_{\gamma \times \gamma'}$
4: $F_i(q) := \max_{\mu \in P_i} \{ f(\mu) - q \cdot g(\mu) \}$
5: $k := 0$
6: $\theta_i^{(0)} := \max_{\mu \in P_i} \frac{\|R_M^N(\cdot;\mu)\|_{\gamma \times \gamma'}}{\|R_N^N(\cdot;\mu)\|_{\gamma \times \gamma'}}$
7: while $|F_i(\theta_i^{(k)})| \geq \text{tol}$ do
8: iteratively nonlinear problem $F_i(q) = 0 \Rightarrow \theta_i^{(k+1)}$
9: $k \rightarrow k + 1$
10: end while
11: $\Theta_{N,M,i}^N := \theta_i^{(k)}$
12: end for
13: return $\Theta_{N,M}^N := \max_{i=1,\ldots,L} \Theta_{N,M,i}^N$

At least quantitatively, the following might be more efficient instead of line 6:
6: $\mu_i^* := \arg \max_{\mu \in P_i} \frac{\|R_M^N(\cdot;\mu)\|_{\gamma \times \gamma'}}{\|R_N^N(\cdot;\mu)\|_{\gamma \times \gamma'}}$, $\theta_i^{(0)} := \frac{\|u^N(\mu^*) - u_M(\mu^*)\|_{\gamma \times \gamma'}}{\|u^N(\mu^*) - u_N(\mu^*)\|_{\gamma \times \gamma'}}$

3.4. Reduced Basis Generation

So far, we assumed that X_N and X_M are given, e.g. by a strong greedy method in an offline phase without using the hierarchical error estimator. One could also think of using the hierarchical part $\Delta_{N,M}(\mu)$ for this purpose. This, however, is at least not straightforward since one needs both N and M for the error estimator, where M has to be sufficiently large from the beginning. It would be a straightforward approach to start with $N = 1$, $M = 2$ for some parameters $\mu_1 \neq \mu_2$. Maximizing $\Delta_{1,2}(\mu)$ over a training set would yield μ_2 and we would set $N = 2$, $M = 3$, $S_3 = \{\mu_1, \mu_2, \mu_3\}$, etc. However, it can relatively easy be seen that this approach does not necessarily converge as snapshots may be selected repeatedly. Hence, we suggest a different approach.

Starting with X_N, the saturation property (3.2) is always valid as long as the Kolmogorov N-width decays and the reduced basis has been constructed with a weak greedy algorithm.
However, this only means that for each RB space X_N there exists an appropriate RB space X_M, s.t. (3.2) is satisfied – one is left with the question how to construct such a space X_M. We suggest to use the Taylor-RB method. If the solution $u(\mu)$ depends smoothly on the parameter μ, we can add derivatives of the snapshots w.r.t. the respective parameter to the basis, i.e., for $X_N = \text{span}\{u(\mu_1), \ldots, u(\mu_N)\}$ we set

$$X_M := \text{span}\left\{u(\mu_n), \frac{\partial^k}{\partial \mu_i^k}u(\mu_n) : k = 1, \ldots, K_n, i = 1, \ldots, P, n = 1, \ldots, N\right\}$$

for appropriately chosen $K_n \in \mathbb{N}_0$. This means that $M = \sum_{n=1}^N (1 + K_n \cdot P)$. It is well-known that these Taylor snapshots $u_i^{(k)}(\mu) := \frac{\partial^k}{\partial \mu_i^k}u(\mu)$ can easily be computed recursively by solving the following linear variational problem (see e.g. [37])

$$a(u_i^{(k)}(\mu); v; \mu) = \frac{\partial^k}{\partial \mu_i^k}f(v; \mu) - \sum_{m=1}^k \binom{k}{m} \frac{\partial^m}{\partial \mu_i^m}a(u_i^{(k-m)}(\mu); v; \mu).$$

In general, the partial derivatives appearing in (3.7) are Gâteaux derivatives. However, if the affine decomposition (2.6) holds, one just needs the derivatives of the involved functions $\theta^a_{q_i q_j} : \mathcal{P} \to \mathbb{R}$ in the classical sense. In this case one can ensure by standard arguments that for each N there exists some $M > N$, s.t. the results of §3.1 hold, provided that the solution is real-analytic with respect to μ. Finally, for stability reasons we orthonormalize the Taylor snapshots by a POD. The corresponding method is summarized in Algorithm 3.2.

Algorithm 3.2 (Weak) Greedy with Hierarchical Error Estimator

1. Choose tol > 0, N_{max}, $P_{\text{train}} \subset \mathcal{P}$, $\mu_1 \in \mathcal{P}$
2. $S_1 := \{\mu_1\}$, $\Xi^{(0)} := \{\xi_1 := u^{N}(\mu_1)\}$
3. for $N = 1, \ldots, N_{\text{max}}$ do
 4. $k = 1$
 5. repeat
 6. $\Xi^{(k)} := \{u_i^{(k)}(\mu_N) : i = 1, \ldots, P\}$ computed by (3.7)
 7. $\Xi^{(k)} := \text{ORTHONORMALIZE}(\Xi^{(k-1)}, \Xi^{(k)})$
 8. Set $X_N := \text{span}(S_N)$, $X_M := \text{span}(\Xi^{(k)})$ compute $\Theta^{N}_{N,M}$ by Algorithm 3.1
 9. $k \leftarrow k + 1$
10. until $\Theta^{N}_{N,M} < 1$
11. $K_N := k$
12. if $\max_{\mu \in P_{\text{train}}} \Delta_{N,M}(\mu) < \text{tol}$ then
 13. STOP
14. else
 15. $\mu_{N+1} := \arg \max_{\mu \in P_{\text{train}}} \Delta_{N,M}(\mu)$
 16. $S_{N+1} := S_N \cup \{\mu_{N+1}\}$, $\Xi^{(0)}_{N+1} := \Xi^{(0)} \cup \{\xi_{N+1} := u^{N}(\mu_{N+1})\}$
17. end if
18. end for
19. return S_{N}, $X_N := \text{span}(S_N)$ and $X_M := \text{span}(\Xi^{(k)}_{N,M}), \Theta^{N}_{N,M}$

Remark 3.4. It can be expected (and we have indeed confirmed this by several numerical experiments) that the saturation property (3.2) can be realized by decomposing the pa-
rameter space similar to [19] (there called “hp-RBM”). In addition to Algorithm 3.2 we have realized such an hp-RBM approach by modifying lines 5 to 10. We observed fast convergence.

4. Numerical Results. We investigate the quantitative performance of the RB hierarchical error estimator and focus on the sharpness and asymptotically correctness of (3.1). In particular, we want to investigate

1. How is the performance of $\Delta_{N,M}^{\text{Hier}}$ as compared to $\Delta_{N,M}^{\text{Std}}$?
2. How does the performance depend on the availability of a sharp lower inf-sup bound?
3. Since $\Delta_{N,M}$ is an upper bound for the error up to some multiplicative constant depending on M, what is a reasonable choice for that constant?
4. What is a good choice for X_M?

For that purpose, we report on experiments for two test problems. All experiments have been performed on iMac 2009 equipped with an Intel Core 2 Duo 3.06 GHz processor and 8 GB 1067 MHz DDR3 RAM.

The first example, the so-called ‘thermal block’ from [35], is a well-known benchmark problem for the RBM. In this case, the behavior of the inf-sup/coercivity constant is known and the performance of the SCM is very good such that $\Delta_{N,M}^{\text{Std}}$ is expected to yield good results. We expect that $\Delta_{N,M}^{\text{Hier}}$ should be less sharp for general X_M and we are particularly interested in a quantitative comparison. The second example is the Helmholtz problem which has also been investigated in the RB-context in [23]. In this case, it is known that the inf-sup constant has a poor behavior for large parameters [20] and -moreover- the computation of a decent approximation using the SCM is quite costly. Hence, this should be a good benchmark test for the hierarchical error estimator.

For the basis generation, we use both the strong and the weak greedy algorithm based upon $\Delta_{N,M}^{\text{Hier}}$ and $\Delta_{N,M}^{\text{Std}}$ w.r.t. the same training set P_{train}. For $\Delta_{N,M}^{\text{Hier}}$, we compare constructions of X_M using a Taylor and a Lagrange basis.

Remark 4.1. 1. For simplicity we compute $\Theta_{M,N}^{\text{train}}$ over a training set, i.e.

$$
\Theta_{N,M}^{\text{train}} := \max_{\mu \in P_{\text{train}}} \frac{\|u_{N}^{\ast}(\mu) - u_M(\mu)\|_{X_M}}{\|u_{N}^{\ast}(\mu) - u_N(\mu)\|_{X_N}}.
$$

instead of solving the nonlinear problem (3.6).

2. Although all problems considered here are stationary, the hierarchical error estimator can also be applied to instationary problems e.g. by using a space-time formulation, [39, 40].

4.1. Thermal-Block (see [35]). Let $\Omega := (0,1)^2$, divided into $B_1 \times B_2$ rectangular subblocks $\Omega_i \subset \Omega$, s.t. $\overline{\Omega} = \bigcup_{i=1}^{2} \overline{\Omega}_i$. Let $\mu \in P \subset \mathbb{R}^2$ and $a(x;\mu) := \mu_j x_{\Omega_j}(x)$ for $j \in \{1,2\}, 1 \leq i \leq B_1 \cdot B_2$, $\mu = (\mu_1, \mu_2) \in P$, where $j = 1$ if and only if i is odd. We consider stationary heat conduction

$$
\begin{align*}
-\nabla \cdot (a(x;\mu) \nabla u(x;\mu)) &= 0, & x \in \Omega, \\
u(x;\mu) &= 0, & x \in \Gamma_D := \{(x,1)^T \in \mathbb{R}^2 : 0 \leq x \leq 1\}, \\
a(x;\mu) \frac{\partial u}{\partial n}(x) &= g_N(x;\mu), & x \in \Gamma_N := \partial \Omega \setminus \Gamma_D.
\end{align*}
$$

Here, we choose $B_1 = B_2 = 3$ (see figure below) and set

$$
g_N(x;\mu) := \begin{cases} 1, & \text{on } \{(x,0)^T \in \mathbb{R}^2 : 0 \leq x \leq 1\}, \\
0, & \text{on } \{(0,y)^T \in \mathbb{R}^2 : 0 \leq y \leq 1\} \cup \{(1,y)^T \in \mathbb{R}^2 : 0 \leq y \leq 1\}.
\end{cases}
$$
Then, we have a coercive problem with identical trial and test space \(X = Y := H^1_D(\Omega) := \{ v \in H^1(\Omega) : v|_{\Gamma_D} = 0 \} \) as well as bilinear and linear forms defined as

\[
a(u, v; \mu) = \sum_{i=1}^{\lceil \frac{B_1 B_3}{2} \rceil} \mu_i \int_{O_{2i-1}} \nabla u \cdot \nabla v \, dx + \sum_{i=1}^{\lceil \frac{B_1 B_3}{2} - 1 \rceil} \mu_2 \int_{O_{2i}} \nabla u \cdot \nabla v \, dx,
\]

\[
f(v; \mu) = \int_{\Gamma_N} v \, dx.
\]

For the truth discretization, we used piecewise linear finite elements with a total number of 11.881 degrees of freedom. Further, we choose two different parameter spaces, namely

\[
\mathcal{P}^{(1)} = [0.5, 1]^2, \quad \mathcal{P}^{(2)} = [0.02, 1]^2, \quad |\mathcal{P}^{(1)}_{\text{train}}| = |\mathcal{P}^{(2)}_{\text{train}}| = 10.201.
\]

For the error plots, the discrete coercivity constant (replacing the inf-sup constant) was determined as the smallest eigenvalue of a generalized eigenvalue problem. For the online CPU-time for computing \(\Delta_N^{\text{Std}} \), we used the SCM.

For the thermal block problem, the solution depends only mildly on the parameter. Hence, the SCM converges after only 3 steps to numerical precision, even on the larger parameter space \(\mathcal{P}^{(2)} \). Therefore, we expect that \(\Delta_N^{\text{Std}} \) is quite sharp, which is confirmed by our experiments. Starting with the smaller parameter set \(\mathcal{P}^{(1)} \), we also found \(\Delta_N^{\text{Hier}} \) to be quite sharp even for \(M = N + 1 \). We omit the corresponding figures since \(\Delta_N^{\text{Std}} \) and \(\Delta_N^{\text{Hier}, N+1} \) turned out to be almost indistinguishable. Hence, we consider the larger parameter set \(\mathcal{P}^{(2)} \supset \mathcal{P}^{(1)} \).

The results are displayed in Figure 4.1 using the strong greedy and in Figure 4.2 for the weak greedy with \(\Delta_N^{\text{Std}} \) for the sampling. We do not see a significant difference between the different sampling methods to create the reduced basis spaces. In addition, we also did the parameter sampling by the hierarchical error estimator. We omit the corresponding figures since the results are quite similar to Figures 4.1 and 4.2.

In both figures, we use 100 test parameters and plot the true error in red solid lines. The dashed blue lines correspond to the average value of \(\Delta_N^{\text{Std}}(\mu) \) for these 100 test parameters. Finally, the dotted black lines indicate the average values of \(\Delta_N^{\text{Hier}} \) for \(M \in \{ N + 1, N + 2 \} \) using a Taylor-based construction with \(K_\mu = 1 \) and \(K_\eta = 2 \), respectively. We see a significant improvement for \(M = N + 2 \) and almost no difference to \(\Delta_N^{\text{Std}} \).

In the tables next to the figures, we monitor the constants \(\Theta_{N, M} \) for both choices. As expected, the value \(\Theta_{N, M} \) significantly improves for \(M = N + 2 \). However, in all cases the constant is below 1 and we can easily deduce online heuristics.

Online effectiveness. As we have seen that both \(\Delta_N^{\text{Std}} \) and \(\Delta_N^{\text{Hier}} \) (for appropriate values of \(M \)) are sharp, we investigate the online CPU time required to compute these error estimators. In order to do so, we consider the obtained effectiveness \(\eta \), i.e., the ratio of error estimator and true error for 100 test parameters. The results are shown in Figure 4.3, where the values of \(\eta \) are plotted over the required online time. The circles correspond to \(\Delta_N^{\text{Hier}} \) for different values of \(M \). The few circles with \(\eta > 5 \) correspond to quite small values of \(M \) and large parameter sets. All remaining values cluster for effectives below 2 and online CPU times of less than 0.1 seconds. As we can also see, the online CPU time is more or less independent of the choice of \(M \). This is compared to \(\Delta_N^{\text{Std}} \). The online timings include also the SCM in this case. The crosses in Figure 4.3 confirm the sharpness of the standard error estimator, but at the expense of CPU times which are about 15 times larger than for the hierarchical case.
Fig. 4.1: Thermal-Block, $P = [0.02, 1]^2$, strong greedy sampling. Average error over test set of parameters. Red, solid: true error; blue, dashed: residual error estimator; black, dotted: hierarchical error estimator, $M \in \{N + 1, N + 2\}$.

(a) Strong greedy, $M = N + 1$.

(b) Strong greedy, $M = N + 2$.

Fig. 4.2: Thermal-Block, $P = [0.02, 1]^2$, weak greedy with standard error estimator. Average error over test set of parameters. Red, solid: true error; blue, dashed: residual error estimator; black, dotted: hierarchical error estimator, $M \in \{N + 1, N + 2\}$.

(a) Weak greedy by $\Delta_{N}^{\text{Std}}, M = N + 1$.

(b) Weak greedy by $\Delta_{N}^{\text{Std}}, M = N + 2$.

Fig. 4.3: Online effectivity index η over online CPU-time for thermal block on P, strong greedy. Circles: Hierarchical error estimator for $M = N + 1, M = N + 2$ and $M = N + 3$; crosses: Standard error estimator.

4.2. Helmholtz Problem. The Helmholtz equation arises from the time-dependent wave equation in the time-harmonic case, see e.g. [2, 20, 31, 30] and references therein. Let $\Omega \subset \mathbb{R}^n$, $n \in \{1, 2, 3\}$, be a bounded Lipschitz domain with boundary $\Gamma := \partial \Omega$. For $\mu \in \mathcal{P} := [\mu_{\min}, \mu_{\max}] \subset \mathbb{R}$ with $1 \leq \mu_{\min} < \mu_{\max} < \infty$, the Helmholtz problem reads

\begin{equation}
-\Delta u(x) - \mu^2 u(x) = r(x), \quad x \in \Omega,
\end{equation}

\begin{equation}
u(x) = 0, \quad x \in \Gamma_D \subset \Gamma,
\end{equation}

\begin{equation}\frac{\partial u}{\partial n}(x) + i \mu u(x) = g(x), \quad x \in \Gamma_R \subset \Gamma,
\end{equation}
where $\Gamma_D \cup \Gamma_R = \Gamma$. The parameter $\mu \in \mathcal{P}$ denotes the wavenumber, defined by $\mu := \frac{\omega}{c}$ (SI unit: m^{-1}), where $\omega \in \mathbb{R}$ denotes the frequency and $c \in \mathbb{R}$ the wave propagation speed, $\ell := \sqrt{-1}$. In high frequency problems the wavenumber is quite large resulting in oscillations, see [20]. We use $\mu_{\text{max}} = 100$ here, since this suffices to show the desired effects. Test and trial spaces are again identical, $X = Y := H^1_0(\Omega; \mathbb{C}) := \{ v \in H^1(\Omega; \mathbb{C}) : v|_{\Gamma_D} = 0 \}$, but the sesquilinear form is no longer hermitean, i.e.,

$$
\langle a(u, v; \mu) \rangle := \int_\Omega \nabla u \cdot \nabla v \, dx - \mu^2 \int_\Omega u \overline{v} \, dx + \ell \mu \int_{\Gamma_R} u \overline{v} \, ds,
$$

$$
f(v; \mu) = \int_\Omega r \overline{v} \, dx + \int_{\Gamma_R} g \overline{v} \, dx.
$$

The affine decomposition in the form (2.6) is clear. Such problems are usually analyzed using the parameter-dependent norm given by

$$
\|v\|_{1,\mu}^2 := \mu^2\|v\|_0^2 + |v|_1^2, \quad v \in H^1(\Omega; \mathbb{C}),
$$

which is equivalent to $\| \cdot \|_1$, i.e., $\min\{1, \mu_{\text{min}}\}\|v\|_1 \leq \|v\|_{1,\mu} \leq \max\{1, \mu_{\text{max}}\}\|v\|_1$, $v \in H^1(\Omega; \mathbb{C})$, with coefficients, which depend on the parameter range, however. The well-posedness is proven e.g. in [20] by the Fredholm alternative. Moreover, there exists a constant $C_{\inf-sup} > 0$ such that

$$
\inf_{u \in X} \sup_{v \in Y} \frac{|a(w, v; \mu)|}{\|a\|_{1,\mu}} \geq \inf_{u \in X} \sup_{v \in Y} \frac{\text{Re} \{ a(w, v; \mu) \}}{\|a\|_{1,\mu}} \geq C_{\inf-sup} \mu^2.
$$

For our numerical experiments we consider three cases of parameter spaces, namely

$$
\mathcal{P}^{(1)} = [1, 5], \quad \mathcal{P}^{(2)} = [95, 100], \quad \mathcal{P}^{(3)} = [90, 100], \quad |\mathcal{P}^{(i)}_{\text{train}}| = 10^4 + 1, \quad i = 1, 2, 3.
$$

Thus, $\mathcal{P}^{(1)}$ is in the low-frequency domain so that the inf-sup constant is expected to be moderate, whereas $\mathcal{P}^{(2)}, \mathcal{P}^{(3)}$ will lead to oscillatory, high-frequency solutions. The latter choices allow to investigate the dependency on the size of the parameter set within the high-frequency regime. Our truth discretization is formed by spectral elements of degree 6 with 600 degrees of freedom for $\mathcal{P}^{(1)}$ (which turned out to be sufficient) and spectral elements of degree 16 with 16,000 degrees of freedom for $\mathcal{P}^{(2)}$ and $\mathcal{P}^{(3)}$.

In order to compare the results concerning the hierarchical estimator with the best possible standard one, we determined the involved discrete inf-sup constant $\beta_N^0(\mu)$ by computing the smallest eigenvalue of a generalized eigenvalue problem. As this is not online efficient, we used the SCM for the online comparisons in terms of CPU time. By (4.2), we expect fairly small inf-sup constants for large wavenumbers, which is expected to cause problems in Δ^Std_N. This fact is also mirrored by the poor convergence of the SCM shown in Figure 4.4. For a good performance of Δ^Std_N in terms of sharpness, one needs a good online approximation of $\beta_N^0(\mu)$ resulting in many SCM iterations and large CPU times.
We start by describing the result for the low-frequency parameter set $P^{(1)}$ and reduce ourselves to the strong greedy sampling since the results for the weak greedy with various error estimators turned out to be pretty much the same. As we can see in Figure 4.5 both standard and hierarchical error estimator are quite sharp and the constants $\Theta_{N,M}$ are small – overall a similar behavior as for the thermal block.

Fig. 4.5: Helmholtz equation, $P^{(1)} = [1,5]$, strong greedy. Average error over test set. Red, solid: true error; blue, dashed: residual error estimator; black, dotted: hierarchical error estimator for $M \in \{ N + 1, M = N + 2 \}$.

(a) Strong greedy, $M = N + 1$.

(b) Strong greedy, $M = N + 2$.

Next, we consider the (smaller) high frequency parameter set $P^{(2)}$ and again restrict ourselves to the strong greedy sampling (the results for different versions of the weak are again quite similar). First, we note that the minimal choice of $M = N + 1$ for the hierarchical error estimator is not sufficient in order to yield sharp estimates as can be seen in the left graph in Figure 4.6. We have also found that the saturation property cannot be guaranteed numerically in this case. In the right graph, we thus use a Lagrange basis with $M = N + 2$ and obtain bounds that are even better than for the standard estimator. Recall, that the blue dashed line for Δ^Std_N is w.r.t. to a high-fidelity approximation for the inf-sup constant, i.e., the best possible standard residual-based error bound. Also the values for $\Theta_{N,M}$ are quite good. Thus, $\Delta^\text{Hier}_{N,N+2}$ is a cheap and sharp error bound even for the high-frequency case.

Fig. 4.6: Helmholtz equation, $P^{(2)} = [95, 100]$, strong greedy. Average error over test set of parameters. Red, solid: true error; blue, dashed: residual error estimator; black, dotted: hierarchical error estimator with $M \in \{ N + 1, N + 2 \}$.

(a) Strong greedy, $M = N + 1$.

(b) Strong greedy, $M = N + 2$.

Finally, we consider $P^{(3)}$, which is a high frequency parameter set of doubled size as compared to $P^{(2)}$. The error plots for the strong greedy sampling are shown in Figure 4.7. In this case, the Lagrange-based space X_M for $M = N + 2$ only yields reasonable results for $N \geq 4$ (for smaller values, the saturation is not guaranteed), but then $\Delta^\text{Hier}_{N,N+2}$ outperforms Δ^Std_N in terms of accuracy. As we can see from the right-hand side of the figure, $M = N + 3$ gives quite sharp results for $N \geq 3$. Again, for smaller values of N, the saturation is not justified.

Due to the lack of saturation for the Lagrange-type construction, we also tested the Taylor approach. We obtained even better results for all parameter sets. For $P^{(3)}$, we display the results of a weak greedy sampling in Figure 4.8. Even for $K_n = 2$, we got good results as can
be seen by the fact that the values of $\Theta_{N,M}$ are close to zero. Moreover, $\Delta_{N,M}^{\text{Hier}}$ is quite sharp. The situation even improves for $K_n = 3$ in terms of sharpness for small N.

Online effectivity. As before in §4.1 for the thermal block, we compare the online efficiencies of standard and hierarchical error estimator, see Figure 4.9. First, note that we could not include values for the larger high-frequency parameter range $\mathcal{P}^{(3)}$ there, since the SCM required for $\Delta_{N,M}^{\text{Std}}$ did not converge, which means that the standard bound cannot be used in an online-efficient manner.\(^1\)

In Figure 4.9, we show the effectivity over the online CPU time, again for $\Delta_{N,M}^{\text{Std}}$ by crosses and for $\Delta_{N,M}^{\text{Hier}}$ (for different values of M) by circles. First, we note that the values of M almost do not influence the CPU times, so that we can easily adjust the accuracy, as before. Moreover, the accuracies of both bounds are quite comparable, but the computation of $\Delta_{N,M}^{\text{Hier}}$ is much faster.

4.3. Conclusions. Let us come back to the questions from the beginning of this section:

1. **How is the performance of $\Delta_{N,M}^{\text{Hier}}$ as compared to $\Delta_{N,M}^{\text{Std}}$?**

Even for those cases that are in favor of $\Delta_{N,M}^{\text{Std}}$ (stable with precise knowledge of the

\(^{1}\)In addition, the SCM did not converge at all using a discontinuous Galerkin truth discretization.
inf-sup constant), $\Delta_{N,M}^{\text{Hier}}$ turned out to yield a sharp error bound and to be online efficient. The potential becomes even more pronounced for problems with bad inf-sup behavior.

2. **How does the performance depend on a sharp lower inf-sup bound?**
 The poorer the inf-sup estimate is, the more Δ_{N}^{Std} is outperformed by $\Delta_{N,M}^{\text{Hier}}$ – in terms of sharpness and efficiency.

3. **What is a reasonable choice for the constant $\Theta_{N,M}$?**
 In all tested examples, we got very reasonable values for $\Theta_{N,M}$, provided that the saturation holds. However, even the determination via a test set requires the computation of possibly many truth solutions, the optimization problem (3.6) for the verification of the saturation and the computation of $\Theta_{M,N}^{\text{Std}}$ is quite costly, even though done offline. But our results show that it might be sufficient to do this on a fairly small test set since we got nice results in all case.

4. **What is a good choice for X_{M}?**
 In all investigated cases, M could be chosen quite moderate. This is due to the fact that our problems are of elliptic flavor even in the Helmholtz case. In [21, 6] for problems involving transport phenomena, X_{M} has to be chosen significantly larger. However, we have also seen that even for problems with very small inf-sup constant, X_{M} can be chosen reasonably small. Moreover, the online CPU-times seem almost independent on the choice of X_{M} and are much smaller as for computing Δ_{N}^{Std} using the SCM (if the SCM converges at all).

 We compared also Lagrange- and Taylor-type approaches to construct X_{M}. Trying to use the Lagrange approach within parameter sampling using a weak greedy approach resulted in multiple selections of snapshots and non-guaranteed saturation. Both problems could be resolved using the Taylor approach, which, however, requires a certain regularity of u with respect to the parameter. In this case, for a fixed N, we are able to improve the effectivity by increasing the order of derivatives.

REFERENCES

[1] M. Ali, K. Steih, and K. Urban. Reduced basis methods with adaptive snapshot computations. *Adv. Comp. Math.*, pages 1–38, 2016.

[2] I. M. Babuška and S. A. Sauter. Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? *SIAM J. Numer. Anal.*, 34(6):2392–2423, 1997.

[3] R. E. Bank and R. K. Smith. A posteriori error estimates based on hierarchical bases. *SIAM J. Numer. Anal.*, 30(4):921–935, 1993.

[4] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An 'Empirical interpolation’ method: Application to
efficient reduced-basis discretization of partial differential equations. *C.R. Acad. Sci. Math.*, 339(9):667 – 672, 2004.

[5] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk. Convergence rates for greedy algorithms in reduced basis methods. *SIAM J. Math. Anal.*, 43(3):1457–1472, 2011.

[6] J. Brunken, K. Smetana, and K. Urban. Parameterized first order transport equations: Realization of optimally stable petrov-galerkin methods. Ulm Univ., preprint, 2017.

[7] A. Buffa, Y. Maday, A. T. Patera, C. Prud’homme, and G. Turinici. A priori convergence of the greedy algorithm for the parametrized reduced basis method. *ESAIM Math. Model. Numer. Anal.*, 46(3):595–602, 2012.

[8] A. Buhr, C. Engwer, M. Ohlberger, and S. Rave. A numerically stable a posteriori error estimator for reduced basis approximations of elliptic equations. *11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014*, pages 4094–4102, 2014.

[9] C. Canuto. *Spectral methods: fundamentals in single domains*. Springer, Berlin; Heidelberg; New York, 2006.

[10] C. Canuto. *Spectral methods: evolution to complex geometries and applications to fluid dynamics*. Springer, Berlin; Heidelberg, 2007.

[11] C. Canuto, T. Tonn, and K. Urban. A posteriori error analysis of the reduced basis method for nonaffine parametrized nonlinear PDEs. *SIAM J. Numer. Anal.*, 47(3):2001–2022, 2009.

[12] Y. Chen, J. S. Hesthaven, Y. Maday, and J. Rodríguez. A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations. *C.R. Acad. Sci. Math.*, 346(23):1295 – 1300, 2008.

[13] Y. Chen, J. S. Hesthaven, Y. Maday, and J. Rodríguez. Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell’s problem. *ESAIM Math. Model. Numer. Anal.*, 43(6):1099–1116, 2009.

[14] J. R. Cho and J. T. Oden. A priori modeling error estimates of hierarchical models for elasticity problems for plate- and shell-like structures. *Math. Comput. Modelling, 23*(10):117–133, 1996.

[15] W. Dinkelbach. On nonlinear fractional programming. *Management Science*, 13(7):492–498, 1967.

[16] C. Dominguez, E. P. Stephan, and M. Maischak. A FE-BE coupling for a fluid-structure interaction problem: hierarchical a posteriori error estimates. *Numer. Methods Partial Differential Equations*, 28(5):1417–1439, 2012.

[17] M. Drohmann, B. Haasdonk, and M. Ohlberger. Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. *SIAM J. Sci. Comput.*, 34(2):A937–A969, 2012.

[18] J. L. Eftang, D. J. Knezevic, and A. T. Patera. An hp certified reduced basis method for parametrized parabolic partial differential equations. *Mathematical and Computer Modelling of Dynamical Systems, 17*(4):395–422, 2011.

[19] J. L. Eftang, A. T. Patera, and E. M. Ronquist. An ‘hp’ certified reduced basis method for parametrized elliptic partial differential equations. *In: SIAM J. Sci. Comput.*, 32(6):3170–3200, 2010.

[20] S. Esterhazy and J. M. Melenk. *On Stability of Discretizations of the Helmholtz Equation*, pages 285–324. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[21] J. Feinauer, S. Hein, S. Rave, S. Schmidt, D. Westhoff, J. Zausch, O. Iliev, A. Latz, M. Ohlberger, and V. Schmidt. MULTIBAT: Unified workflow for fast electrochemical 3D simulations of lithium-ion cells combining virtual stochastic microstructures, electrochemical degradation models and model order reduction. *ArXiv e-prints*, Apr. 2017.

[22] S. Glas, A. Patera, and K. Urban. Reduced basis methods for the wave equation. Unpublished manuscript, 2017.

[23] B. Haasdonk. Reduced Basis Methods for Parametrized PDEs — A Tutorial. In P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, editors, *Model Reduction and Approximation*, chapter 2, pages 65–136. SIAM, Philadelphia, 2017.

[24] B. Haasdonk, M. Ohlmann, and M. Ohlberger. A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space. *Math. Comput. Model. Dyn. Syst.*, 17(4):423–442, 2011.

[25] J. S. Hesthaven, G. Rozza, and B. Stamm. *Certified Reduced Basis Methods for Parametrized Partial Differential Equations*. Springer International Publishing, 2016.

[26] J. S. Hesthaven, B. Stamm, and S. Zhang. Certified Reduced Basis Method for the Electric Field Integral Equation. *SIAM J. Sci. Comput.*, 34(3):A1777–A1799, 2012.

[27] J. S. Hesthaven and T. Warburton. *Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications*. Springer Publishing Company, Incorporated, 1st edition, 2007.

[28] Y. Huang, H. Wei, W. Yang, and N. Yi. *A New a Posteriori Error Estimate for Adaptive Finite Element Methods*, pages 63–74. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[29] D. B. P. Huynh, G. Rozza, S. Sen, and A. T. Patera. A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. *C.R. Acad. Sci. Math.*, 345(8):473...
[30] F. Ihlenburg and I. Babuška. Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM. *Comp. Math. Appl.*, 30(9):9 – 37, 1995.

[31] F. Ihlenburg and I. Babuška. Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h-p Version of the FEM. *SIAM J. Numer. Anal.*, 34(1):315–358, 1997.

[32] M. Ohlberger and S. Rave. Reduced basis methods: Success, limitations and future challenges. *Proceedings of the Conference Algorithms*, pages 1–12, 2016.

[33] M. Ohlberger, S. Rave, and F. Schindler. True error control for the localized reduced basis method for parabolic problems. In *Model Reduction of Parametrized Systems*, pages 169–182. Springer International Publishing, Cham, 2017.

[34] M. Ohlberger and F. Schindler. Error control for the localized reduced basis multiscale method with adaptive on-line enrichment. *SIAM J. Sci. Comput.*, 37(6):A2865–A2895, 2015.

[35] A. Patera and G. Rozza. *Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations*. MIT, Cambridge (MA), USA, 2006. Version 1.0.

[36] P.J. Prince and J. R. Dormand. High order embedded Runge-Kutta formulae. *J. Comput. Appl. Math.*, 7(1):67–75, 1981.

[37] A. Quarteroni, A. Manzoni, and F. Negri. *Reduced basis methods for partial differential equations: An introduction*. Springer International Publishing, Cham; Heidelberg, 2016.

[38] B. Rivière. *Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations*. Society for Industrial and Applied Mathematics, 2008.

[39] C. Schwab and R. Stevenson. Space-time adaptive wavelet methods for parabolic evolution problems. *Mathematics of Computation*, 78(267):1293–1318, 2009.

[40] K. Urban and A. T. Patera. An improved error bound for reduced basis approximation of linear parabolic problems. *Mathematics of Computation*, 83(288):1599–1615, 2014.

[41] K. Urban, S. Volkwein, and O. Zeeb. Greedy sampling using nonlinear optimization. In *Reduced Order Methods for Modeling and Computational Reduction*, pages 137–157. Springer International Publishing, Cham, 2014.

[42] B. I. Wohlmuth. Hierarchical a Posteriori Error Estimators for Mortar Finite Element Methods with Lagrange Multipliers. *SIAM J. Numer. Anal.*, 36(5):1636–1658, 1999.

[43] M. Yano. A reduced basis method with exact-solution certificates for steady symmetric coercive equations. *Comput. Methods Appl. Mech. Engrg.*, 287:290–309, 2015.

[44] M. Yano. A minimum-residual mixed reduced basis method: exact residual certification and simultaneous finite-element reduced-basis refinement. *ESAIM Math. Model. Numer. Anal.*, 50(1):163–185, 2016.

[45] O. C. Zienkiewicz, D. W. Kelly, I. Gago, and I. Babuška. Hierarchical finite element approaches, error estimates and adaptive refinement. In *The mathematics of finite elements and applications, IV (Uxbridge, 1981)*, pages 313–346. Academic Press, London-New York, 1982.

[46] Q. Zou, A. Veerer, R. Kornhuber, and C. Gräser. Hierarchical error estimates for the energy functional in obstacle problems. *Numer. Math.*, 117(4):653–677, 2011.