Smart homes: potentials and challenges

Rasha El-Azab*

Electrical Power and Machines Department, Faculty of Engineering at Helwan University, Cairo, Egypt

*Corresponding author. E-mail: r_m_elazab@yahoo.com

Abstract

Decentralized distributed clean-energy sources have become an essential need for smart grids to reduce the harmful effects of conventional power plants. Smart homes with a suitable sizing process and proper energy-management schemes can share in reducing the whole grid demand and even sell clean energy to the utility. Smart homes have been introduced recently as an alternative solution to classical power-system problems, such as the emissions of thermal plants and blackout hazards due to bulk plants/transmission outages. The appliances, sources and energy storage of smart homes should be coordinated with the requirements of homeowners via a suitable energy-management scheme. Energy-management systems are the main key to optimizing both home sources and the operation of loads to maximize home-economic benefits while keeping a comfortable lifestyle. The intermittent uncertain nature of smart homes may badly affect the whole grid performance. The prospective high penetration of smart homes on a smart power grid will introduce new, unusual scenarios in both generation and loading. In this paper, the main features and requirements of smart homes are defined. This review aims also to address recent proposed smart-home energy-management schemes. Moreover, smart-grid challenges with a high penetration of smart-home power are discussed.

Graphical Abstract

Keywords: smart homes; energy-management system; electrical tariff; smart-home infrastructure; load scheduling; power-quality control
Introduction

Smart homes provide comfortable, fully controlled and secure lifestyles to their occupants. Moreover, smart homes can save energy and money with the possibility of profiting from selling clean renewable energy to the grid. On the other hand, the probable decrease in total domestic energy loads encourages many governments to support promising smart-home technologies. Some countries have already put out many rules, laws and subsidy programmes to encourage the integration of smart homes, such as encouraging the optimization of the heating system, supporting building energy storage and/or deploying smart meters. For instance, the European Standard EN 15232 [1] and the Energy Performance of Buildings Directive 2010/31/ EU [2], which is in line with Directive 2009/72/EC as well as the Energy Road Map 2050 [3], encourage the integration of smart-home technologies to decrease power demand in residential areas.

To control the environment, a smart home is automated by controlling some appliances, such as those used for lighting and heating, based on different climatic conditions. Now, recent control schemes adapt many functions besides classical switching ones. They can monitor the internal environment and the activities of the home occupants. They also can independently take pre-programmed actions and operate devices in set predefined patterns, independently or according to the user’s requirements. Besides the ease of life, smart homes confirm efficient usage of electricity, lowering peak load, reducing energy bills and minimizing greenhouse-gas emissions [4, 5].

Smart homes can be studied from many points of view. The communication systems [6], social impacts [7], thermal characteristics [8], technologies and trends of smart homes [9] are reviewed individually. Moreover, the monitoring and modelling of smart-home appliances via smart meters are reviewed for accurate load forecasting, as in [10, 11]. Recently, power-grid authorities have modified residential electrical tariffs to encourage proper demand-side management by homeowners. Different from previous reviews, this paper introduces smart homes from the electrical/economic point of view. It also discusses smart-home energy-management systems (SHEMS) in two different modes, offline load scheduling and real-time management. The prospective impacts of unusual smart-home power profiles on future smart grids are also summarized.

After this introductory section, Section 1 describes the different definitions of smart homes within the last two decades. Smart-home communication schemes and other infrastructures of smart homes are discussed in Section 2. Section 3 discusses in more detail the existing functions of SHEMS, their pre-proposed optimization techniques and related technical/economical objective functions. The impacts of smart homes on modern grids are also discussed in Section 4. Finally, in Section 5, the main conclusions and contributions of the paper are highlighted.

1 Smart-home definition

The term ‘smart home’ has been commonly used for about two decades to describe houses with controlled energy schemes. This automation scheme confirms easier lifestyles for homeowners than normal un-automated homes, especially for elderly or disabled persons. Recently, the concept of ‘smart home’ has a wider description to include many applications of technologies in one place.

Sowah et al. [12] define smart homes as: ‘Houses that provide their occupants a comfortable, secure, and energy efficient environment with minimum possible costs regardless their occupants.’ The Smart Homes Association defines a smart home as: ‘The integration of technology and services through home networking for a better quality of living’ [13].

Makhadmeh et al. define them as: ‘Incorporated residential houses with smart technology to improve the comfort level of users (residents) by enhancing safety and healthcare and optimizing power consumption. Users can control and monitor smart-home appliances remotely through the home energy-management system (HEMS), which provides a remote monitoring system that uses telecommunication technology’ [14].

Smart homes can be defined as: any residential buildings using different communication schemes and optimization algorithms to predict, analyse, optimize and control its energy-consumption patterns according to preset users’ preferences to maximize home-economic benefits while preserving predefined conditions of a comfortable lifestyle.

Distributed clean energy generated by smart homes provides many benefits for prospective smart grids. Consequently, the effects of smart homes on future power grids should be extensively studied. In the near future, smart homes will play a major role as a power supplier in modern grids, not only as a power consumer.

2 Smart-home infrastructures

The general infrastructure of smart homes consists of control centres, resources of electricity, smart meters and communication tools, as shown in Fig. 1. Each component of the smart-home model will be discussed in the following subsections.

2.1 The control centre

The control centre provides home users with proper units to monitor and control different home appliances [15]. All real-time data are collected by SHEMS to optimize the demand/generation coordination and verify the predefined objectives. The main functions of the control centre can be summarized as follows [15]:
(i) collecting data from different meters, homeowners' commands and grid utility via a proper communication system;
(ii) providing proper monitoring and analysing of home-energy consumption for homeowners;
(iii) coordinating between different appliances and resources to satisfy the optimal solution for predefined objectives.

2.2 Smart meter
The smart meter receives a demand-response signal from power utilities as an input to the SHEMS system [16, 17]. Recently, advanced smart-metering infrastructures can monitor many home features such as electrical consumption, gas, water and heating [18].

2.3 Appliances
Smart-home loads can be divided according to their operating nature into two categories: schedulable and non-schedulable loads. Non-schedulable loads are operated occasionally according to the homeowner’s desires without any predictable operating patterns, such as printers, televisions and hairdryers, whereas schedulable loads have a predictable operating pattern that can be shifted or controlled via SHEMS, such as washing machines and air conditioners [19].

According to [19], controllable devices are also classified into interruptible and non-interruptible load according to the effect of supply interruption on their tasks. Electric vehicles (EVs) can be considered as an exceptional load [20, 21]. EVs have two operating modes: charging and discharging. Therefore, EVs are interruptible schedulable loads during the charging mode. Moreover, EV battery energy can also be discharged to supply power to the grid during critical events, which is known as vehicle-to-grid [22]. By SHEMS, EVs can participate in supplying loads during high-priced power periods. In low-priced power periods, EVs restore their energy from the grid [23, 24].

2.4 Resources of electricity
Solar and wind plants are the most mature renewable-energy sources in modern grids. Nowadays, many buildings have installed photovoltaic (PV) modules, thermal solar heaters or micro wind turbines. For smart homes, various functions can be supplied by solar energy besides generating electricity, such as a solar water heater (SWH), solar dryer and solar cooler [25]. Moreover, PV plants are cheap with low requirements of maintenance [26], whereas hot water produced by SWHs can be used in many home functions, such as washing and cooking, which increases the home-energy efficiency [27].

Energy storage may be considered as the cornerstone for any SHEMS. SHEMS are usually installed with energy-storage systems (ESSs) to manage their stored energy according to predefined objectives. Many energy-storage technologies are available in the power markets. Batteries and fuel cells are the most compatible energy-storage types of smart-home applications [28]. A fuel-cell structure is very similar to a battery. During the charging process, hydrogen fuel cells use electricity to produce hydrogen. Hydrogen feeds the fuel cell to create electricity during the discharging process. Fuel cells have relatively low efficiency compared to batteries. Fuel cells provide extra clean storage environments with the capability of storing extra hydrogen tanks. That perfectly matches isolated homes in remote areas [29].
Although wind energy is more economical for large-scale plants, it has a very limited market for micro wind turbines in homes. Typically, micro wind turbines require at least a wind speed of 2.7 m/s to generate minimum power, 25 m/s for rated power and 40 m/s for continuous generated power [30]. A micro wind turbine is relatively expensive, intermittent and needs special maintenance requirements and constraints compared to a solar plant [31].

Recently, biomass energy has been a promising renewable resource alternative for smart homes. Many pieces of research have recommended biomass energy for different types of buildings [32]. Heating is the main function of biomass in smart homes, as discussed in [33, 34]. In addition, a biomass-fuelled generation system is examined for many buildings [35, 36].

2.5 Communication schemes

Recently, communication systems are installed as built-in modules in smart homes. Both home users and grid operators will be able to monitor and control several home appliances in the near future to satisfy the optimum home-energy profile while preserving a comfortable lifestyle. Therefore, both wired and wireless communication schemes are utilized, which is known as a home area network (HAN), to cover remote-control signals as home occupants’ ones. Fig. 1 shows an example of a HAN that consists of Wi-Fi and cloud computing networks for both indoor and outdoor data exchange, respectively [37, 38].

Energy-management systems for homes require three main components: the computational embedded controllers, the local-area network communication middleware and the transmission control protocol/internet protocol (TCP/IP) communication for wide-area integration with the utility company using wide-area network communication [37].

According to home characteristics, many wired communication schemes can be selected, such as power-line communication (PLC), inter-integrated circuit (I2C) and serial peripheral interface or wireless technologies such as Zigbee, Wi-Fi, radio-frequency identification (RFID) and the Internet of Things (IoT) to develop HANs. A few of the most common techniques will be discussed briefly in the following subsections [38].

2.5.1 PLC

PLC is a technique that uses power lines to transmit both power and data via the same cable to customers simultaneously. Such wired schemes provide fast communication with low interference of data. Moreover, PLC provides many communication terminals, as all power plugs can be used for data transferring. As all electrical home devices are connected by power cables, PLC can communicate with all these devices via the same cable.

PLC set-up has a low cost, as it uses pre-installed power cables with minimum hardware requirements. With a PLC communication scheme, home controllers can also be integrated easily with a high speed of data transfer. On the other hand, PLC has a high probability of data-signal attenuation. Furthermore, data signals suffer from electromagnetic interference of transmitted power signals.

2.5.2 Zigbee

Zigbee is a wireless communication technique [37–46]. Zigbee follows the IEEE 802.15.4 standard as a radio-frequency wireless communication scheme. It does not require any licenses for limited zones such as homes [37]. Also, Zigbee is a low-power-consuming technique. Therefore, it is suitable for basic home appliances, such as lighting, alarm systems and air conditioners [39, 40]. Zigbee usually considers all home devices as slaves with a master coordinator/controller, which is known as a master–slave architecture.

Zigbee provides highly secured transferred data [38, 41] with high reliability and capacity [42]. It also has self-organizing capabilities [42]. Conversely, Zigbee is relatively expensive due to special hardware requirements with low data-transfer rates. Moreover, Zigbee is not compatible with many other protocols, such as internet-supported protocols and Wi-Fi.

2.5.3 Wi-Fi technology

Wi-Fi is a wireless communication technique that follows the IEEE 802.11 standard. Wi-Fi provides high-rate data transfer that is compatible with many information-based devices such as computers, laptops, etc. [43, 44].

Wi-Fi is a highly secured scheme with many of the familiar internet capabilities and low data-transfer delays (<3 ms) [45]. On the contrary, it is a relatively high-power-consuming scheme compared to Zigbee schemes [45]. Also, home devices can affect transmitted data signals by their emitted electromagnetic fields [46]. Wi-Fi can also suffer from interference from other communication protocols such as Zigbee and Bluetooth [43].

2.5.4 RFID

RFID is a wireless communication technique that conforms to the electronic product code protocol [47–52]. It can coincide with other communication schemes such as Wi-Fi and Zigbee. It can be utilized for a relatively wide-spread range of frequencies, from 120 kHz to 10 GHz. It also covers a wide range of distances, from 10 cm to 200 m [48]. Many researchers are investigating RFID home applications, such as energy-management systems [49], door locks [50] and lighting controls [51].

RFID operates on tags and reader-identification systems with a high data-transfer rate. Nevertheless, RFID has expensive chips with low bandwidth. The possibility of tag collision within the same zone decreases the accuracy of the RFID scheme.
2.5.5 IoT
This scheme connects home devices, users and grid operators via the internet to monitor and manage smart homes [6, 38, 53–65]. Consequently, the IoT and cloud computing have proven to be cheap, popular and easy services for smart homes. Moreover, IoT schemes are compatible with many other communication protocols, such as Zigbee, Bluetooth, etc., as listed in Table 1. Internet hacking is the main problem with IoT schemes. System security and privacy are critical challenges for such internet-based schemes.

3 Smart-home energy-management scheme
Today, building energy-management systems (BEMS) are utilized within residential, commercial, administration and industrial buildings. Moreover, the integration of variable renewable-energy sources with proper ESSs deployed in buildings represents an essential need for reliable, efficient BEMS.

For small-scale residential buildings or ‘homes’, BEMS should deal with variable uncertain load behaviours according to the home occupants’ desires and requirements, which is known as SHEMS. Throughout recent decades, many SHEMS have been presented and defined in many research studies.

In [66], SHEMS are defined as services that efficiently monitor and manage electricity generation, storage and consumption in smart houses. Nazabal et al. [67] include a collaborative exchange between smart homes and the utility as a main function of SHEMS. In [68], SHEMS are defined from the electrical-grid point of view as important tools that provide several benefits such as flattening the load curve, a reduction in peak demand and meeting the demand-side requirements.

Table 1: IoT protocols features

Protocol	Advantages	Disadvantages
5G [59]	Reliable with high speed and capable to manage a lot of devices simultaneously	Expensive with many problems related to security and privacy
Z-Wave [6, 38, 54–56]	Reliable, low data-transfer delay and without any interference with other communication schemes	Limited ranges and needs special networking requirements
6LoWPAN [57]	Low power consumer with large data-exchange capability	Complicated with low data-transfer rate
Zigbee [58, 59]	Low power consumer, simple and cheap	Limited range and incompatible with other communication schemes
Wireless HART [60–62]	Robust	Insecure with low data-transfer rate
Bluetooth [63]	Low power consumer	Insecure with low data-transfer rate. It can be interfered with other IEEE 802.11 WLANs
Bluetooth Low Energy (BLE) [63]	Simple, cheap with very low power-consuming rate	Limited range and low amount of data handling
Narrowband IoT (NB-IoT) [64, 65]	Simple, cheap with very low power-consuming rate	Low speed with high data-transfer delay

3.1 Functions of SHEMS
Adaptive SHEMS are required to conserve power, especially with the increasing evolution in home loads. SHEMS should control both home appliances and available energy resources according to the real-time tariff and home user’s requirements [4]. Home-management schemes should provide an interface platform between home occupants and the home controller to readjust occasionally the load priority [5].

As shown in Fig. 2, the majority of smart-home centres can be summarized as having five main functions [5], as follows:

(i) Monitoring: provides home residents with visual instantaneous information about the consumed power of different appliances and the status of several home parameters such as temperature, lights, etc. Furthermore, it can guide users to available alternatives for saving energy according to the existing operating modes of different home appliances.

(ii) Logging: collects and saves data pertaining to the amount of electricity consumed by each appliance, generated out of energy-conservation states. This functionality includes analysing the demand response for real-time prices.

(iii) Control: both direct and remote-control schemes can be implemented in smart homes. Different home appliances are controlled directly by SHEMS to match the home users’ desires, whereas other management functions are controlled remotely via cell phones or laptops, such as logging and controlling the power consumption of interruptible devices.

(iv) Management: the main function of SHEMS. It concerns the coordination between installed energy sources such as PV modules, micro wind turbines, energy storage and home appliances to optimize the total system efficiency and/or increase economic benefits.
3.2 Economic analysis

Economic factors affecting home-management systems are classified into two classes. First, sizing costs include expanses of smart-home planning. Second, operating costs consist of bills of consumed energy. These costs depend mainly on the electrical tariff.

3.2.1 Sizing costs

These include capital, maintenance and replacement costs of smart-home infrastructures, such as PV systems, wind turbines, batteries/fuel cells and communication systems. In most previous SHEMS, such planning costs usually are not taken into consideration, as management schemes usually concern the daily operating costs only [69].

3.2.2 Operating costs

The electricity tariff is the main factor that gives an indication of the value of saving energy, according to the governmental authority; there are many types of tariffs, as follows [70–74]:

(i) Flat tariffs: the cost of consumed energy is constant regardless of the continuous change in the load. Load-rescheduling schemes do not affect the electricity bills in this scheme. Therefore, homeowners are not encouraged to rearrange their consumed energy, as they have no any economic benefits from managing the consumption of their appliances.

(ii) Block-rate tariffs: in this scheme, the monthly consumed energy price is classified into different categories. Each category has its own flat-rate price. Therefore, the main target of SHEMS is minimizing the total monthly consumed energy to avoid the risk of high-priced categories.

(iii) Seasonal tariffs: in this scheme, the total grid-demand load is changed significantly from one season to another. Therefore, the utility grid applies a high flat-rate tariff in high-demand seasons and vice versa. SHEMS should minimize the total consumption in such high-priced seasons and get the benefit of consumption in low-priced seasons.

(iv) Time-of-use (TOU) tariff: there are two or three pre-defined categories of tariffs daily in this scheme. First, a high-priced-hours tariff is applied during high-demand hours, which is known as a peak-hours tariff. Second, an off-peak-hours tariff is applied during low-demand hours with low prices for energy consumption. Sometimes, three levels of pricing are defined by the utility grid during the day, i.e. off-, middle- and high-peak costs, as discussed in [75]. SHEMS shift interrumpitable loads with low priority to off-peak hours to minimize the bill.
By using a proper optimal scheduling algorithm, electricity bills can be reduced by shifting loads from high-priced to low-priced intervals [77, 78]. Many techniques have been proposed for home load scheduling, as will be discussed in the following subsections:

(i) Rule-based scheduling: in this algorithm, all home appliances and resources are connected to smart data-collector taps. By processing the collected data, different appliances are scheduled according to their priorities and based on the if/then rule. Also, some high-priority loads are supplied by home renewable sources/storage to maintain their function during predicted peak hours [79, 80].

(ii) Artificial intelligence (AI): many AI controllers have been proposed for home load scheduling, such as artificial neural networks (ANNs), fuzzy logic (FL) and adaptive neural fuzzy inference systems (ANFISs). Table 2 compares between the three types of scheduling scheme based on AI.

3.3 Pre-proposed SHEMS

Different SHEMS may be classified according to four features: operational planning of load-scheduling techniques, system objective functions, optimization techniques and smart-home model characteristics, as will be discussed in the following subsections.

3.3.1 Load-scheduling techniques

SHEMS concern the generation/load power balance to provide a comfortable lifestyle with the minimum possible costs. Scheduling loads according to their priority and the periods of renewable energy (solar, wind and EV state) can help in reducing the overall energy consumption daily. According to data collected by the management system, an initial load schedule is suggested daily to minimize the daily cost of consumed energy [76].

3.3.2 Objective functions

(i) Single-objective techniques: in these schemes, only one criterion is minimized or maximized according to the home-user requirements. Several minimization objective functions were proposed, as follows:

- lifetime degradation [47–49];
- life-cycle costs [93];
- gas emissions [94–96];
- both active and reactive losses [97, 98].

On the other hand, some research defined other single maximizing objective functions, such as:

- net present value [96];
- economic profits [97, 98];
- increased system reliability: according to many well-known reliability indices, such as loss of power supply probability, loss of load probability and others [99, 100];
- generated power [101, 102];
- loadability [103];

(ii) Multi-objective techniques: homeowners may have several criteria to be optimized together. Multi-objective optimization (MOO) problems consider many functions simultaneously. MOO finds a proper coordination that moderately satisfies the considered objectives. In [102], SHEMS with MOO techniques are summarized. Table 3 lists some examples of such multi-objective functions.
into two categories: classical and AI-based techniques. Table 4 lists various SHEMS optimization techniques and their main features.

Classical methods, especially linear programming types, have been usually applied in the last decade for smart homes with limited objective functions and simple model characteristics of tariff and home appliances. Recently, AI-based techniques have been proposed to cover more complicated models of smart homes with multi-objective functions with high levels of comfortable lifestyles.

3.3.4 Home-model characteristics

The smart-home model differs significantly according to three factors: installed variable energy sources, applied tariff and EV deployment. PV systems have been applied for nearly all studied smart homes due to their low price, simplicity of installation, low maintenance requirements and easily predicted daily power profile. On the other hand, a few pieces of research have considered micro wind turbines in their home models, such as [120]. Wind turbines are limited by high-wind-speed zones that are usually located in rural areas. In addition, homeowners usually do not prefer wind turbines due to their high prices, mechanical maintenance requirements and the unpredictable variation in wind power.

Dynamic tariffs are applied in most smart-home research. Specifically, the TOU tariff is analysed in a lot of studies, such as [121, 122], whereas little research uses RTP, such as [123, 124]. EV is studied as an energy source in the parking period or vehicle-to-grid (V2G) mode. In [75, 125], EV in V2G mode reduces the electricity bill in peak hours, whereas, in [126–130], ESSs are managed only to reduce the electricity usage from the grid.

4 Technical challenges of smart homes

Many technical challenges arise for modern grids due to the increasing mutual exchange between smart homes and utility grids, especially power-quality control. Electric-power-quality studies usually confirm the acceptable behaviour of electrical sources such as voltage limits and harmonics analysis. Recently, smart power grids have diverse generation sources from different technologies that depend mainly on power electronics devices that increase the difficulty in power-quality control. Power-quality constraints should be taken into consideration for any energy-management systems to provide harmony between modern sources and loads.

On the other hand, power-quality issues should not form an additional obstacle against the integration of new technologies in modern grids. Therefore, both advanced communication schemes and AI-based techniques make modern grids ‘smart’ enough to cope with selective power-quality management. Smart homes exchange power with utility grids. With the prospective increase in such smart homes, the effect of their behaviour should be studied and controlled. Smart homes affect the grid-power quality in three different areas, as will be discussed in the following paragraphs [154–156].

4.1 Generating equipment

Integrated micro generation schemes in smart homes are mainly single-phase sources based on inverters with high switching frequencies that reach to many kHz. Low-order harmonics of such a generation type can usually be disregarded. However, with the expected continuous increase in such micro generators, the harmonics of low-voltage networks may shift into a range of higher frequencies, perhaps from 2 to 9 kHz [157]. Therefore, more research is needed to re-evaluate the appropriate limits for generation equipment in smart homes. Moreover, single-phase...
generation increases the risk of an unbalanced voltage in low-voltage grids. Therefore, negative-sequence voltage limits should be re-evaluated particularly for weak distribution networks. Also, a need for zero-sequence voltage limits may arise [154].

4.2 Home appliances

Modern home appliances depend mainly on electronic devices, such as newer LED lighting systems, EV battery chargers, etc., with relatively low fundamental current and high harmonic contents compared to traditional ones. According to many power-system analysers, many harmonics will increase significantly to risky levels, particularly fifth-harmonic voltage, with increase in such new electronic appliances [155].

4.3 Distribution network

In future grids, significant unusual operating scenarios may be possible with high penetration of domestic generation, especially with the possibility of an islanded (self-balanced) operation of smart homes. Short-circuit power will differ significantly during different operating conditions compared to classical grids. Moreover, low-voltage networks may suffer from damping-stability problems due to the continuous decrease in resistive loads, in conjunction with the increase in capacitive loads of electronic equipment. In addition, resonance problems may occur with low frequencies according to the continuous change in the nature of the load [156].

Although smart homes have bad impacts on utility grids, there are no charges applied from the grid authority to homeowners based on their buildings’ effects on grid-power quality. Therefore, home planners and SHEMS designers are usually concerned only with the economic benefits of their proposed schemes.

5 Conclusion

Smart homes, using new revolutions in communication systems and AI, provide residential houses with electrical power of a dual nature, i.e. as producer and consumer or ‘prosumer’. The energy-management system includes many components that mainly depend on a suitable communication scheme to coordinate between available sources, loads and users’ desire. Among many proposed communication systems, the IoT has many advantages

Method	Objectives	Advantage	Drawbacks
Classic			
Geometric	Electricity consumption and minimizing bills	Simple	Difficult for users
programming			
Quadratic	Optimal operation for battery and engine	Fast	Limited real-time usage
programming			
Convex	Maximizing economic benefits with preserving comfortable lifestyle	High efficiency with real-time operation capability	Complicated
programming			
Linear	Battery-charging cost minimizing	Real-time operation capability	Valid for only one linear variable
programming			
MILP	Operating-cost minimizing	High accuracy	Sensitive to selected models
[138, 139]			
MINLP	Optimizing battery-charging/discharging processes	Simple modelling capability	Slow with low accuracy
[140–144]			
Markov decision	Minimizing consumption with preserving comfortable lifestyle	Good decision maker	Valid only for linear variable
[145]			
Artificial			
intelligence			
ANN	Simple load control	Suitable for forecasting	Limited number of nodes
Genetic algorithm			
algorithm	Minimizing emission and operating cost	Easy	Long computational time
Particle swarm	Minimizing operating cost	Easy with limited required inputs	Long computational time
algorithm			Complicated
Artificial bee	Minimizing operating cost	Robust and flexible	Unreliable
colony			
Simulated	Minimizing operating cost	Fast	Long computational time
annealing			
Fuzzy	Minimizing battery-charging/discharging processes and minimizing operating cost	Simple and flexible	
Model predictive	Minimizing emission and operating cost	Excellent predictive capabilities	Expensive and complicated
control			
[152]	Maximizing energy trading	Flexible with disturbances	
Robust			
[153]			

Table 4: Optimization techniques in SHEMS
and was chosen in many studies. Besides the popularity of the IoT, it does not need any special equipment installation and is compatible with many other communications protocols.

Many functions are applied by management systems such as monitoring and logging to facilitate a proper interaction between home occupants and the management scheme. Home security also should be confirmed via the management scheme by using different alarms corresponding to preset threats. Home users control different home appliances according their desires by SHEMS and via cell phones or manually.

The electricity tariff plays an important role in defining management-system characteristics. Tariffs vary from simple fixed flat rates to complicated variable dynamic ones according to the electrical-grid authority’s rules for residential loads. According to the tariff and selected objective functions, pre-proposed optimization techniques vary significantly from simple classical linear programming to sophisticated AI ones.

Modern electronic-based home appliances increase power-grid-quality problems, such as high harmonic contents, unbalanced loading and unpredictable short-circuit currents. On the other hand, power-grid authorities do not charge homeowners according to their buildings’ effects on the power quality. Therefore, all proposed energy-management systems are concerned mainly with the economic profits from reducing electricity consumption or even selling electrical power to the utility grids. In the future, price-based power-quality constraints should be defined by the grid authorities to confirm proper power exchange between both smart homes and grids. A possible future direction is behavior modeling of aggregated smart homes.smart cities in different operating scenarios to conclude probable power-grid scenarios for stability and quality.

Funding
This work was supported by the project entitled ‘Smart Homes Energy Management Strategies’, Project ID: 4915, JESOR-2015-Cycle 4, which is sponsored by the Egyptian Academy of Scientific Research and Technology (ASRT), Cairo, Egypt.

Conflict of Interest
None declared.

References
[1] Comité Européen de Normalisation. Energy Performance of Buildings—Impact of Building Automation, Control, and Building Management; European Technical Standard EN 15232; CEN: Brussels, Belgium. 2012. http://www.cres.gr/greenbuilding/PDF/prend/set4/WI_22_TC-approval_version_prEN_15232_Integrated_Building_Automation_Systems.pdf (20 December 2020, date last accessed).

[2] European Parliament. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings; Directive 2010/31/EU; The European Parliament and the Council of the European Union: Brussels, Belgium. 2010. https://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:en:PDF (20 December 2020, date last accessed).

[3] European Climate Foundation. Roadmap 2050 Project. http://www.roadmap2050.eu/ (20 December 2020, date last accessed).

[4] Al-Ali AR, El-Hag A, Bahadiri M, et al. Smart home renewable energy management system. Energy Procedia, 2011, 12:120–126.

[5] van Dam S, Bakker CA, Buiter J. Do home energy management systems make sense? Assessing their overall lifecycle impact. Energy Policy, 2013, 63:398–407.

[6] Kuzlu M, Pipattanasomporn M, Rahman S. Review of communication technologies for smart homes/building applications. In: 2015 IEEE Innovative Smart Grid Technologies—Asia (ISGT ASIA), Bangkok, Thailand, 3–6 November 2015, 1–6.

[7] Wilson C, Hargreaves T, Hauxwell-Baldwin R. Smart homes and their users: a systematic analysis and key challenges. Personal and Ubiquitous Computing, 2015, 19:463–476.

[8] Schieweck A, Uhde E, Salthammer T, et al. Smart homes and the control of indoor air quality. Renewable and Sustainable Energy Reviews, 2018, 94:705–718.

[9] Nacer A, Marhic B, Delahoche L. Smart home, smart HEMS, smart heating: an overview of the latest products and trends. In: 2017 6th International Conference on Systems and Control (ICSC), Batna, Algeria, 7–9 May 2017, 90–95.

[10] Yuan X, Han P, Duan Y, et al. Residential electrical load monitoring and modeling—state of the art and future trends for smart homes and grids. Electric Power Components and Systems, 2020, 48:1125–1143.

[11] Wang Y, Chen Q, Hong H, et al. Review of smart meter data analytics: applications, methodologies, and challenges. IEEE Transactions on Smart Grid, 2019, 10:3125–3148.

[12] Sowah RA, Ofoli AR, Tetteh MK, et al. Demand side management of smart homes using OpenHAB framework for interoperability of devices. In: 2018 IEEE 7th International Conference on Adaptive Science & Technology (ICAST), Accra, Ghana, 22–24 August 2018, 1–8.

[13] Robles RJ, Kim T. Applications, systems and methods in smart home technology: a review. Int. J. Adv. Sci. Technol., 2010, 15:37–48.

[14] Makhadmeh SN, Khader AT, Al-Betar MA, et al. Optimization methods for power scheduling problems in smart home: survey. Renewable and Sustainable Energy Reviews, 2019, 115:109362.

[15] Zhao Z, Lee WC, Shin Y, et al. An optimal power scheduling method for demand response in home energy management system. IEEE Transactions on Smart Grid, 2013, 4:1391–1400.

[16] Benzi F, Anglani N, Bassi E, et al. Electricity smart meters interfacing the households. IEEE Transactions on Industrial Electronics, 2011, 58:4487–4494.

[17] Depuru SR, Wang L, Devabhaktuni V, et al. Smart meters for power grid — challenges, issues, advantages and status. In: 2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ (USA), 20–23 March 2011, 1–7.

[18] Zheng J, Gao W, Lin L. Smart meters in smart grid: an overview. In: IEEE Green Technologies Conference, Denver, Colorado, USA, 4–5 April 2013, 57–64.

[19] Chavali P, Yang P, Nehorai A. A distributed algorithm of appliance scheduling for home energy management system. IEEE Transactions on Smart Grid, 2014, 5:282–290.
[20] Ma Y, Houghton T, Cruden A, et al. Modeling the benefits of vehicle-to-grid technology to a power system. IEEE Transactions on power systems, 2012, 27:1012–1020.

[21] Yiyun T, Can L, Lin C, et al. Research on vehicle-to-grid technology. In: International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, Hunan, China, 19–20 February 2011, 1013–1016.

[22] Kempton W, Tomić J. Vehicle-to-grid power fundamentals: calculating capacity and net revenue. Journal of Power Sources, 2005, 144:268–279.

[23] Makhadmeh SN, Khader AT, Al-Betar MA, et al. A novel hybrid grey wolf optimizer with min-conflict algorithm for power scheduling problem in a smart home. Swarm and Evolutionary Computation, 2021, 60:100793.

[24] Makhadmeh SN, Khader AT, Al-Betar MA, et al. Multi-objective power scheduling problem in smart homes using grey wolf optimizer. Journal of Ambient Intelligence and Human Computing, 2019, 10:3643–3667.

[25] Parida B, Iniyam S, Goic R. A review of a solar photovoltaic technologies. Renewable and Sustainable Energy Reviews, 2011, 15:1625–1636.

[26] Schwerin A. Analysis of the potential solar energy market in the Caribbean. REPOSITORIO NACIONAL CONACYT. 2010. https://www.solarthermalworld.org/sites/default/files/story/2015-04-06/solar_market_analysis_caribbean.pdf (20 December 2020, date last accessed).

[27] Brown CE. World Energy Resources. Berlin: Springer Verlag, 2002.

[28] Wan C, Zhao J, Song Y, et al. Photovoltaic and solar power forecasting for smart grid energy management. CSEE Journal of Power and Energy Systems, 2015, 1:38–46.

[29] Ewais AM, El-Azab R, Adma MAA. Stand-alone microgrid energy storage schemes: comparative study. In: 2018 Twentieth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 18–20 December 2018, 564–569.

[30] Fthenakis V, Kim HC. Land use and electricity generation: a life-cycle analysis. Renewable and Sustainable Energy Reviews, 2009, 13:1465–1474.

[31] Lei M, Shiyan L, Chuanwen J, et al. A review on the forecasting of wind speed and generated power. Renewable and Sustainable Energy Reviews, 2009, 13:915–920.

[32] Mazen R, Radwan M, Abdel-Samiea M. Utilization of biomass energy in high-rise buildings. In: 2013 4th International Youth Conference on Energy (IYCE), Siófok, Hungary, 6–8 June 2013, 1–3.

[33] Carpisc M, Zamorano M, Costa M. Impact of using biomass boilers on the energy rating and CO2 emissions of Iberian Peninsula residential buildings. Energy and Buildings, 2013, 66:732–744.

[34] Berković-Šubić M, Rauch M, Dović D, et al. Primary energy consumption of the dwelling with solar hot water system and biomass boiler. Energy Conversion and Management, 2014, 87:1151–1161.

[35] Huang Y, Wang Y, Rezvani S, et al. Biomass fuelled trigeneration system in selected buildings. Energy Conversion and Management, 2011, 52:2448–2454.

[36] Wu G, Yu X. Remote control system for energy efficient home. In: 2013 IEEE Energytech, Cleveland, OH, USA, 21–23 May 2013, 1–5.

[37] Safaric S, Malaric K. ZigBee wireless standard. In: Proceedings ELMAR 2006, Zadar, Croatia, 7–10 June 2006, 259–262.

[38] Huq MZ, Islam S. Home Area Network technology assessment for demand response in smart grid environment. In: 2010 20th Australasian Universities Power Engineering Conference, Christchurch, New Zealand, 5–8 December 2010, 1–6.

[39] Dou M, Mei Y, Yanjuan Z, Yan Z. The networking technology within smart home system—ZigBee technology. In: 2009 International Forum on Computer Science-Technology and Applications, Chongqing, China, 25–27 December 2009, 29–33.

[40] Aggaonkar P, Wang L, Alam M. Simulation studies on ZigBee communications for home automation and networking. In: 2010 IEEE AUTOTESTCON, Orlando, FL, USA, 13–16 September 2010, 1–6.

[41] Li Y, Zhang K, Zhang X. Research on application of ZigBee technology in flammable and explosive environment. In: 2009 First International Conference on Information Science and Engineering, Nanjing, China, 26–28 December 2009, 4074–4078.

[42] Khan SA, Khan FA, Shahid A, et al. Zigbee based reconfigurable clustered home area network. In: 2009 Third International Conference on Sensor Technologies and Applications, Athens, Greece, 18–23 June 2009, 32–37.

[43] Han T, Han B, Zhang L, et al. Coexistence study for WiFi and ZigBee under smart home scenarios. In: 2012 3rd IEEE International Conference on Network Infrastructure and Digital Content, Beijing, China, 21–23 September 2012, 669–674.

[44] Sarjari MA, Mo A, Abdullah MS, et al. Coexistence of heterogeneous and homogeneous wireless technologies in smart grid-home area network. In: 2013 International Conference on Parallel and Distributed Systems, Seoul, South Korea, 15–18 December 2013, 576–581.

[45] Kounev V, Tipper D. Advanced metering and demand response communication performance in Zigbee based HANs. In: 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Turin, Italy, 14–19 April 2013, 31–36.

[46] Batista NC, Melício X, Matias JCO, Catalão JPS. ZigBee wireless area network for home automation and energy management: field trials and installation approaches. In: 2013 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin, Germany, 14–17 October 2012, 1–5.

[47] Salazar J. Wireless Networks. 1st edn. Prague: Czech Technical University of Prague Faculty of electrical engineering, 2017.

[48] Phillips T, Karygiannis T, Kuhn R. Security standards for the RFID market. IEEE Security & Privacy, 2005, 3:85–89.

[49] Li Y. Design of a key establishment protocol for smart home energy management system. In: 2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks, Madrid, Spain, 5–7 June 2013, 88–93.

[50] Park YT, Shapit P, Pyun J. Smart digital door lock for the home automation. In: TENCON 2009—2009 IEEE Region 10 Conference, Singapore, 23–26 November 2009, 1–6.

[51] Hussain S, Schaffner S, Moseychuck D. Applications of wireless sensor networks and RFID in a smart home environment. In: 2009 Seventh Annual Communication Networks and Services Research Conference, Moncton, NB, Canada, 11–13 May 2009, 153–157.

[52] Yao W, Chu C, Li Z. The use of RFID in healthcare: benefits and barriers. In: 2010 IEEE International Conference on RFID-Technology and Applications, Guangzhou, China, 17–19 June 2010, 128–134.

[53] Wang C, Li X, Liu Y, Wang H. The research on development direction and points in IoT in China power grid. In: 2014 International Conference on Information Science, Electronics and Electrical Engineering, Sapporo, Japan, 2–4 July 2014, 245–248.

[54] Chettri L, Bera R. A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems. IEEE Internet of Things Journal, 2020, 7:16–32.

[55] Samuel SSI. A review of connectivity challenges in IoT-smart home. In: 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, Oman, 15–16 March 2016, 1–4.
Akhavan-Rezai E, Shaaban MF, El-Saadany EF, et al. New EMS to incorporate smart parking lots into demand response. IEEE Transactions on Smart Grid, 2016, 9:1376–1386.

Brahman F, Honarmand M, Jadi S. Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system. Energy and Buildings, 2015, 90:65–75.

Chen Z, Xia B, You C, et al. Optimal dispatching model for smart home energy management system. IEEE Transactions on Industrial Informatics, 2015, 11:1509–1519.

Hubert T, Grijalva S. Modeling for residential electricity optimization in dynamic pricing environments. IEEE Transactions on Smart Grid, 2012, 2:2224–2231.

Klein L, Kwak JY, Kavulya G, et al. Coordinating occupant behavior for building energy and comfort management using multi-agent systems. Automation in construction, 2012, 22:525–536.

Radosavljević J, Jevtić M, Klimenta D. Energy and operation management of a microgrid using particle swarm optimization. Engineering Optimization, 2016, 48:811–830.

Su W, Wang J, Roh J. Stochastic energy scheduling in microgrids with intermittent renewable energy resources. IEEE Transactions on Smart Grid, 2014, 5:1876–1883.

Alipour M, Zare K, Abapour M. MINLP probabilistic scheduling model for demand response programs integrated energy hubs. IEEE Transactions on Industrial Informatics, 2018, 14:79–88.

[124] Erdinc O, Paterakis NG, Catalão JPS, et al. Smart households and home energy management systems with innovative sizing of distributed generation and storage for customers. In: 2015 48th Hawaii International Conference on System Sciences, Kauai, HI, USA, 5–8 January 2015, 1462–1471.

[125] Asare-Bediako B, Kling WL, Ribeiro PF. Integrated agent-based home energy management system for smart grids applications. In: IEEE PES ISGT Europe 2013, Lyngby, Denmark, 6–9 October 2013, 1–5.

[126] Rajasekharan J, Koivunen V. Optimal energy consumption model for smart grid households with energy storage. IEEE Journal of Selected Topics in Signal Processing, 2014, 8:1154–1166.

[127] Xiong H, Lin Z, Fu M. A new decentralized algorithm for optimal load shifting via electric vehicles. In: 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017, 10708–10713.

[128] Chen Z, Xia B, You C, et al. A novel energy management method for series plug-in hybrid electric vehicles. Applied Energy, 2015, 145:172–179.

[129] Wu X, Hu X, Teng Y, et al. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle. Journal of Power Sources, 2017, 363:277–283.

[130] Hu X, Martinez CM, Yang Y. Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: a unified cost-optimal approach. Mechanical Systems and Signal Processing, 2017, 87:4–16.

[131] Menouzi AC, Savaedra-Montes AJ, Ramos-Paja CA. Energy management system for a isolated microgrid with photovoltaic generation. In: 2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Giardini Naxos, Greece, 12–15 June 2017, 1–4.

[132] Misra S, Bera S, Ojha T. D2P: distributed dynamic pricing policy in smart grid for PHEVs management. IEEE Transactions on Parallel and Distributed Systems, 2015, 26:702–712.

[133] Setulhaol D, Xia X. Combined residential demand side management strategies with coordination and economic analysis. International Journal of Electrical Power & Energy Systems, 2016, 79:150–160.

[134] Zhang H, Hu Z, Xu Z, et al. Evaluation of achievable vehicle-to-grid capacity using aggregate PEV model. IEEE Transactions on Power Systems, 2017, 32:784–794.

[135] Su W, Wang J, Roh J. Stochastic energy scheduling in microgrids with intermittent renewable energy resources. IEEE Transactions on Smart Grid, 2014, 5:1876–1883.

[136] Khodakarami A, Farahani H, Aghaei J. Stochastic characterization of electricity energy markets including plug-in electric vehicles. Renewable and Sustainable Energy Reviews, 2017, 69:112–122.

[137] Alipour M, Zare K, Abapour M. MINLP probabilistic scheduling model for demand response programs integrated energy hubs. IEEE Transactions on Industrial Informatics, 2018, 14:79–88.

[138] Klein L, Kwak JY, Kavulya G, et al. Coordinating occupant behavior for building energy and comfort management using multi-agent systems. Automation in construction, 2012, 22:525–536.

[139] Megahed TF, Abdellakder SM, Zakaria A. Energy management in zero-energy building using neural network predictive control. IEEE Internet of Things Journal, 2019, 6:5336–5344.

[140] Ruiz-Cortes M, Gonzalez-Romera E, Amaral-Lopes R, et al. Optimal charge/discharge scheduling of batteries in microgrids of prosumers. IEEE Transactions on Energy Conversion, 2018, 34:468–477.

[141] Elsied M, Oukacour A, Youssef T, et al. An advanced real time energy management system for microgrids. Energy, 2016, 114:742–752.

[142] Sousa T, Moreira H, Vale Z, et al. Intelligent energy resource management considering vehicle-to-grid: a simulated annealing approach. IEEE Transactions on Smart Grid, 2012, 3:535–542.

[143] Chaouachi A, Kamel RM, Andoulsi R, et al. Multiobjective intelligent energy management for a microgrid. IEEE Transactions on Industrial Electronics, 2013, 60:1688–1699.

[144] Marzband M, Ghazimirsaeid SS, Uppal H, et al. A real-time evaluation of energy management systems for smart hybrid home microgrids. Electric Power Systems Research, 2017, 143:624–633.

[145] Sousa T, Moreira H, Vale Z, et al. Intelligent energy resource management considering vehicle-to-grid: a simulated annealing approach. IEEE Transactions on Smart Grid, 2012, 3:535–542.

[146] Chauoachi A, Kamel RM, Andoulsi R, et al. Multiobjective intelligent energy management for a microgrid. IEEE Transactions on Industrial Electronics, 2013, 60:1688–1699.

[147] Solanki BV, Bhattacharya K, Cañizares CA. A sustainable energy management system for isolated microgrids. IEEE Transactions on Sustainable Energy, 2017, 8:1507–1517.

[148] Guo Y, Zhao C. Islanding-aware robust energy management for microgrids. IEEE Transactions on Smart Grid, 2018, 9:1301–1309.

[149] Viciana E, Alcyade A, Monyoga F, et al. An open hardware design for Internet of Things power quality and energy saving solutions. Sensors, 2019, 19:627.

[150] Bollen M, Zhong J, Zavoda F, et al. Power Quality aspects of smart grids. In: International Conference on Renewable Energies and Power Quality (ICREPQ’10), Granada, Spain, 23–25 March 2010, 1–6.

[151] Hartono BS, Mursid SP, Prajogo S. Home energy management system in a Smart Grid scheme to improve reliability of power systems. IOP Conference Series: Earth and Environmental Science, 2018, 105:012081.

[152] Nguyen DT, Le LB. Risk-constrained profit maximization for microgrid aggregators with demand response. IEEE Transactions on smart grid, 2014, 6:135–146.