PHYTOCHEMICAL SCREENING AND ANTIMICROBIAL EFFECT OF SEEDS OF \textit{Monodora myristica} ON SELECTED MICROORGANISMS

1*F.A. Jimoh, 1A.T. Ajao, 2R.F. Zakariyah, 2M.B. Odebisi-Omokanye,1H. O. Abdulrahman

1Department Of Biosciences and Biotechnology, Microbiology Unit, College of Pure and Applied Sciences, Kwara State University, Malete
2Department of Microbiology, Faculty of Life Sciences, University of Ilorin

ABSTRACT

The increase in the prevalence of effects of many synthetic antimicrobial agents and incidence of multiple drug resistant microorganisms has spurred scientists on the research for plant-based antimicrobial of therapeutic potentials. The \textit{Monodora myristica} has been used in Nigeria traditionally as condiments and has been harnessed as a therapeutic agent in the treatment of skin infection and dysentery. Aqueous, n-hexane and ethanolic extracts of the seeds was screened for antimicrobial activity against pathogenic microorganisms implicated in causing vagina infections. This finding showed that the efficacy of the extracts was concentration dependent. Aqueous, ethanolic and N-hexane extract showed varying degree of inhibition with different magnitude against the test isolates. Ethanolic extract showed highest activities against \textit{Candida albicans}, followed by \textit{Staphylococcus aureus} and \textit{Klebsiella pneumoniae} with 21.5mm, 19.5 mm each respectively. The same patterns of inhibition was also observed in N-hexane extract. The antimicrobial effect of the two extracts were statistically not significant. The extracts had minimum concentration that ranged between 150mg/ml and 200mg/ml. The ethanolic extract showed more inhibitory effects compare to the aqueous and n-hexane extracts. The ethanolic extract found to contain highest quantity of phytochemicals while aqueous extract has lowest amount of the phytochemicals. It is therefore can be affirmed that \textit{Monodora myristica} seed extracts could be exploited as therapeutic agents to drug resistant microorganisms.

Keywords: \textit{Monodora myristica}, Therapeutic agents, Drug resistant microorganisms

Introduction

From time immemorial, plants have been utilized worldwide for the treatment of infectious diseases. Nearly 80% of the World’s populace relies on plant-based medicine for the care of their health (Singh and Bindhu, 2019). The plant parts or its products meet societal health need stems from the fact that indiscriminate use of commercial antimicrobial drugs commonly utilized in the treatment of infectious diseases has led to the development of multiple drug resistance (Osuagwu and Onwuegbuchulam, 2015), the use of plants is safe and cost effective in traditional as well as in modern medicine (Treasure et al., 2020). Most of these native plants possess bioactive compounds that exhibit physiological activities microorganisms and are also used as precursors for the production of useful drugs. Thus, the importance of these plant products in medicine is as a result of the

Corresponding Author: F.A. Jimoh
Biosciences and Biotechnology, Microbiology Unit, College of Pure and Applied Sciences, Kwara State University, Malete. Phone: +234-8062578129: Email: Jimohafausat08@gmail.com

©2020 Creative Common License Attribution 4.0 International
presence of bioactive compounds such as phenolics, alkaloids, flavonoids, tannins, resins, steroids, and other secondary metabolites which they contain and are capable of producing definite physiological action in the body (Bishnu et al., 2009). Phytochemicals carry out essential medicinal roles in the body. There is urgent need for discovery of new antimicrobial compounds with diverse chemical structures and novel mechanisms of action for new and re-emerging infectious diseases (Rojas et al., 2003; Olusimbo et al., 2011).

Hence, this study was aimed at assessing the antimicrobial effects of Monodora myristica seeds on selected human pathogens implicated in causing several infections.

Materials and Methods

Collection and Identification of Plant Material

Fresh seeds of Monodora myristica were collected from Oja-Tuntun market Ilorin. The seeds were authenticated as UILH/001/1255 at the Department of Plant Biology, University of Ilorin Kwara State.

Extraction of Monodora myristica Seeds

Fifty grams of Monodora myristica powder was dissolved in 250 ml sterile distilled water and mixed thoroughly before placing on a mechanical shaker for agitation for 72 hours at 200 rpm. The mixture was filtered using Whatman No. 1 filter paper into beakers, to obtain the filtrates; while 50 grams of the blended seed in 250ml of 70% ethanol and n-hexane in separate flasks, and was extracted using soxlet extractor. The extracts were concentrated using the rotary evaporator (Cole Parmer IKA RV 10 digital) at 50°C. The concentrates were lyophilized using a freeze-drier (model; U. therm international (H.K) limited FD-12-MR) at -4°C for few days and stored at 4°C until needed (Osuagwu and Eme, 2013).

Sterility Test of the Plant Extracts

This was done by weighing 0.2 grams/ 0.2 ml of each extracts and dissolved 9.8ml of sterile distilled water was added. Each of the aqueous, ethanol and n-hexane extract’s sterility was confirmed by inoculating a drop of each of the extracts on sterile Mueller Hinton agar plates each and incubated at 37°C for 24 hours.

Collection and Maintenance of Microbial Isolates

The microbial isolate used for this study were obtained from the Department of Microbiology, University of Ilorin. These include Staphylococcus aureus ATCC 6538, Streptococcus spp, Enterococcus faecalis ATCC 10231, Klebsiella pneumoniae, Escherichia coli ST2747, Escherichia coli ATCC 35218 and Candida albicans ATCC 334. The isolates were stock on nutrient agar and potato dextrose agar slant for bacteria and fungi respectively, and kept at 4°C. All the microbial isolates were sub-cultured for purification prior to biochemical identification.

Antimicrobial Susceptibility Testing

Agar diffusion method was adopted for this assay. The antimicrobial activity of the extracts against the test organisms was determined as described by Zakariyah et al. (2017) with slight modifications. A loopful of the standardized bacterial cell suspension (10^8 cfu/ml) was streaked evenly on each solidified Mueller Hinton agar plate. The seed extracts were reconstituted in 3% Di-methyl Sulfoxide (DMSO) to obtain the working concentrations of 50, 100, 150, and 200 mg/ml (Performance, 2006). 200 µl of each extract at different concentrations was inoculated aseptically into five wells (6 mm in diameter) earlier bored with sterile cork borer in each plate. The negative control was 200 µl of 3% DMSO; the plates were allowed to stand for 30 minutes for pre-diffusion of the extracts. The plates were incubated upright at 37°C for 24 hours for bacteria and 25°C for 48 hours for Candida.
albicans. The mean diameter of zones of inhibition was recorded in millimeters (mm).

Standard Antibiotic Testing

The antibiotic used were Gentamycin 40 mg/ml against bacteria, and 25 µg of fluconazole against fungi, 200 µl of each antibiotics at different concentrations was inoculated into four wells (6 mm diameter) bored with a sterile cork borer in each plate. 200 µl of sterile distilled water was used as a negative control; the plates were allowed to stand for 30 minutes. The plates in duplicates were incubated at 37°C and 25°C for 24 hours and 48 hours for bacteria and fungi respectively. The mean diameter of zones of inhibition was recorded in millimeters (mm) (Performance, 2006).

Antibiotic Disc Testing

The antibiotic disc were ciprofloxacin 5 µg, nitrofurantoin 300 µg against bacteria, and 25µg of fluconazole against fungi, The plates in duplicates were incubated at 37°C and 25°C for 24 hours and 48 hours for bacteria and fungi respectively. The mean diameter of zones of inhibition was recorded in millimeters (mm) (Bamidele et al., 2013).

Determination of the Minimum Inhibitory Concentration (MIC) and Minimum Cidal Concentration (MCC)

The minimum inhibitory concentrations (MIC) of the extracts were determined by dilution to various concentrations according to the (Nweze and Onyisi, 2010). Standardized inocula of each organism to be tested was added to series of sterile tubes of nutrient broth containing two fold dilution of the extract and incubated at 37°C for 24 hours. The MIC was read as the least concentration that inhibited the growth of the test organisms. The minimum bactericidal concentration (MBC) was determined by sub-culturing the test dilution onto fresh drug-free solid medium and incubating further for 18 to 24 hours. The highest dilution that yielded no single cell colony on the solid medium was taken as the minimum bactericidal concentration.

Phytochemical Screening of Seed Extracts

Qualitative Phytochemical Screening

The aqueous, ethanolic and n-hexane extracts Monodora myristica seeds were tested for the presence of phytochemicals such as, alkaloids, tannins, phenolics, glycosides, terpenoids, saponins, flavonoids, steroids and phlobatannins using the standard procedures (Ogukwe et al., 2004; Kar, 2007).

Statistical Analysis

All the results obtained were analyzed using simple statistics of one-way ANOVA (SPSS 20). The data were expressed as mean ± SD, difference between the means was considered significant at 95% Confidence Interval.
Results

Table 1 depicts that the aqueous extract of Monodora myristica seeds were insignificant at concentrations of 50, 100, and 150 mg/ml except 200 mg/ml, where it was mildly significant on S. aureus, Streptococcus spp, E. faecalis, Klebsiella pneumoniae, and Candida albicans.

Table 2 shows that the ethanol extracts of Monodora myristica seeds were highly significant on all the organisms at highest concentration of 200 mg/ml, except for Escherichia coli ST2747, which was slightly significant. As the concentrations of the extract decreases, the significances of the zones of inhibition decreases.

Table 3 portrays the n-hexane extract of Monodora myristica seeds were also significant but not as high as the ethanolic extract.

Table 4 compares the antimicrobial activity of the extracts against the standard antibiotics which was more effective than the plant extracts.

Table 5 shows that the aqueous extract possessed minimum inhibitory concentration against most of the test organisms at 200 mg/ml while ethanolic and n-hexane extracts showed minimum inhibitory concentration against most of the test organisms at 150 mg/ml.

Qualitative analyses of phytochemicals in aqueous, ethanolic and n-hexane extracts of Monodora myristica seeds showed the presence of alkaloids, phenolics, steroids and tannins in all extracts while terpenoids and flavonoids were absent in all but glycosides was present in only ethanolic extracts (Table 6).

Figure 1 shows that the ethanolic extract has the most significant level of phytochemical components amongst the three solvents used for the extraction of Monodora myristica seeds except in steroids with high concentration in n-hexane while the aqueous extracts had the lowest concentration in all.

Organisms	Concentrations / Zone of Inhibition (mm)			
	200 mg/ml	150 mg/ml	100mg/ml	50mg/ml
Staphylococcus aureus ATCC 6538				
	13·5±0·50a	11·0±1·00b	9·5±0·5bc	6·0±1·00c
Streptococcus spp	12·5±0·50 a	10·0±0·50 b	8·5±0·50c	6·0±0·00d
Enterococcus faecalis ATCC 10231				
	12·5±0·45 a	11·5±0·45 b	8·5±0·50c	6·5±0·45d
Klebsiella pneumoniae	13·5±0·50a	11·0±0·00b	10·5±0·50bc	10·5±0·50c
Escherichia coli ATCC 35218	9·0±0·00a	8·0±0·00a	6·0±0·00b	6·0±0·00b
Escherichia coli ST2747 (MDRs)	6·0±0·00a	6·0±0·00a	6·0±0·00c	6·0±0·00a
Candida albicans ATCC 334	12·5±0·50a	12·0±0·50a	11·5±0·50b	9·5±0·50c

Mean values with different superscripts in the same column are significant different. Mean values were separated using Duncan Multiple Range Test (DMRT) (N=3)
Table 2: Effect of Ethanolic Extract of *Monodora myristica* Seeds Extract on the Test Organisms Using Agar-well Diffusion Method

Organisms	Concentrations / Zone of Inhibition (mm)
	200 mg/ml
Staphylococcus aureus ATCC 6538	19·0±0·50^a
Streptococcus spp	18·5±0·50^a
Enterococcus faecalis ATCC10231	17·5±0·50^a
Klebsiella pneumoniae	19·5±0·50^a
Escherichia coli ATCC 35218	17·5±0·50^a
Escherichia coli ST2747 (MDRs)	14.5±0·50^a
Candida albicans ATCC 334	21·5±0·50^a
	150 mg/ml
Staphylococcus aureus ATCC 6538	16·0±1·00^b
Streptococcus spp	16·0±0·00^b
Enterococcus faecalis ATCC10231	15·5±0·45^b
Klebsiella pneumoniae	16·5±0·50^b
Escherichia coli ATCC 35218	16·0±0·00^a
Escherichia coli ST2747 (MDRs)	12·0±0·00^{ab}
Candida albicans ATCC 334	16·5±0·50^b
	100mg/ml
Staphylococcus aureus ATCC 6538	11·5±0·50^c
Streptococcus spp	12·5±0·50^{bc}
Enterococcus faecalis ATCC10231	13·5±0·50^{bc}
Klebsiella pneumoniae	14·5±0·50^{bc}
Escherichia coli ATCC 35218	9·0±0·00^c
Escherichia coli ST2747 (MDRs)	8·5±0·00^c
Candida albicans ATCC 334	11·5±0·50^c
	50mg/ml
Staphylococcus aureus ATCC 6538	9·0±1·00^d
Streptococcus spp	9·0±0·00^c
Enterococcus faecalis ATCC10231	10·5±0·45^c
Klebsiella pneumoniae	11·5±0·50^c
Escherichia coli ATCC 35218	6·0±0·00^c
Escherichia coli ST2747 (MDRs)	7·0±0·00^c
Candida albicans ATCC 334	9·5±0·50^c

Mean values with different superscripts in the same column are significant different. Mean values were separated using Duncan Multiple Range Test (DMRT) (N=3)

Table 3: Effect of N-hexane Extract of *Monodora myristica* Seeds Extract on the Test Organisms Using Agar-well Diffusion Method

Organisms	Concentrations / Zone of Inhibition (mm)
	200 mg/ml
Staphylococcus aureus ATCC 6538	18·0±0·50^a
Streptococcus spp	18·5±0·50^a
Enterococcus faecalis ATCC10231	16·5±0·50^a
Klebsiella pneumoniae	18·5±0·50^a
Escherichia coli ATCC 35218	17·0±0·00^a
Escherichia coli ST2747 (MDRs)	12·5±0·50^a
Candida albicans ATCC 334	20·5±0·50^a
	150 mg/ml
Staphylococcus aureus ATCC 6538	16·5±0·00^a
Streptococcus spp	14·5±0·00^b
Enterococcus faecalis ATCC10231	16·5±0·45^b
Klebsiella pneumoniae	16·5±0·50^b
Escherichia coli ATCC 35218	16·5±0·00^a
Escherichia coli ST2747 (MDRs)	11·5±0·05^a
Candida albicans ATCC 334	14·5±0·50^b
	100mg/ml
Staphylococcus aureus ATCC 6538	11·5±0·50^b
Streptococcus spp	12·5±0·50^{bc}
Enterococcus faecalis ATCC10231	13·5±0·50^{bc}
Klebsiella pneumoniae	14·5±0·50^{bc}
Escherichia coli ATCC 35218	9·0±0·00^c
Escherichia coli ST2747 (MDRs)	8·5±0·00^c
Candida albicans ATCC 334	11·5±0·50^c
	50mg/ml
Staphylococcus aureus ATCC 6538	9·0±1·00^c
Streptococcus spp	9·0±0·00^c
Enterococcus faecalis ATCC10231	10·5±0·45^c
Klebsiella pneumoniae	11·5±0·50^c
Escherichia coli ATCC 35218	6·0±0·00^c
Escherichia coli ST2747 (MDRs)	7·0±0·00^c
Candida albicans ATCC 334	7·5±0·50^c

Mean values with different superscripts in the same column are significant different. Mean values were separated using Duncan Multiple Range Test (DMRT) (N=3)
Table 4: Comparison of antimicrobial sensitivity of the extracts with antibiotics using agar-well and disc diffusion method

Organisms	Aqueous extract 200 mg/ml	Ethanol extract 200 mg/ml	N-hexane extract 200 mg/ml	Gentamicin 40mg/ml	Ciprofloxacin 5µg			
	A	D	A	D	A	D		
S. aureus ATCC 6538	13·5±0·50^a	13·0±0·00^a	19·5±0·50^a	18·0±0·50^a	18·5±0·50^a	24·5±0·50^a	27·5±0·50^b	
Streptococcus spp.	12·5±0·50^a	12·5±0·50^a	18·5±0·50^a	18·5±0·50^a	16·5±0·50^a	26·5±0·45^{ab}	26·0±0·00^a	
Enterococcus faecalis ATCC 10231	12·5±0·45^a	12·5±0·00^a	16·5±0·50^a	17·0±0·00^a	16·5±0·50^a	17·0±0·00^a	24·5±0·15^{ab}	28·5±0·50^b
Klebsiella pneumoniae	13·0±0·50^a	13·5±0·50^a	19·5±0·50^a	18·0±0·50^a	18·5±0·50^a	24·0±0·00^a	26·0±1·00^{ab}	
Escherichia coli ATCC 35218	9·0±0·00^a	9·5±0·50^a	17·5±0·50^a	17·0±0·00^a	17·5±0·50^a	20·5±1·00^a	27·0±0·5^b	
Escherichia coli ST2747 (MDRs)	6·0±0·00^a	6·0±0·00^a	12·5±0·50^a	11·0±0·00^a	12·5±0·50^a	12·0±0·00^a	26·0±0·00^a	25·5±0·5^a
Candida albicans ATCC 334	12·5±0·50^a	11·0±0·00^a	21·5±0·50^a	19·5±0·00^a	20·5±0·50^a	19·0±0·00^a	27·0±0·00^a	29·5±0·50^b

Mean values with different superscripts in the same column are significant different. Mean values were separated using Duncan Multiple Range Test (DMRT) (N=3)

Key: A- Agar diffusion, D- Disk diffusion, MDRs-Multi-Drug Resistant strain
Table 5: Minimum Inhibitory Concentration (MIC) and Minimum Cidal Concentration (MCC) of the Extracts

Organisms	Aqueous Extract	Ethanol Extract	N-Hexane Extract			
	MIC	MCC	MIC	MCC	MIC	MCC
Staphylococcus aureus ATCC 6538	150	200	150	200	150	200
Streptococcus spp	200	-	150	200	150	200
Enterococcus faecalis ATCC 10231	200	-	150	200	150	200
Klebsiella pneumoniae	150	200	150	200	150	200
Escherichia coli ATCC 35218	-	-	150	200	200	-
Escherichia coli ST2747 (MDRs)	-	-	200	-	200	-
Candida albicans ATCC 334	200	-	150	200	150	200

Key: MDRs- Multi-Drug Resistant strain

Table 6: Qualitative Analyses of *Monodora myristica* Seeds Extracts

Phytochemical Components	Aqueous	Ethanol	N-Hexane
Alkaloids	++	+++	+++
Tannins	+	++	+
Phenolics	++	+++	++
Glycosides	-	+	-
Terpenoids	-	-	-
Saponins	-	++	-
Flavonoids	-	-	-
Steroids	+	++	+++
Phlobatannins	-	+++	++

Key: +++ = Present in an appreciable amount ++ = Present in a moderate amount + = Present in a trace amount or minute amount - = Completely absent
Discussion

The emergence of multiple drug resistant microorganisms is presently a global problem and a major cause of failure of the treatment of diseases (Awad and Aboud, 2015).

This study investigated the effects of aqueous, ethanolic, and n-hexane extract of *Monodora myristica* on some selected pathogens; *Staphylococcus aureus*, *Streptococcus* spp, *Enterococcus faecalis*, *Klebsiella pneumoniae*, *E. coli* ST2747 (MDRs), *E. coli* ATCC S35218 and *Candida albicans*, found to be associated with various infections with significant risk of morbidity and mortality.

The efficacy of the aqueous extract of *Monodora myristica* seeds against test organisms was low which corroborated the work of Enabulele *et al.* (2014) this may be attributed to the absence and low phytochemical compounds as against the ethanolic and N-hexane extract. At the concentration of 200 mg/ml in (Table 2), it was observed that the aqueous extract of *Monodora myristica* seeds was mildly effective against *Staphylococcus aureus* and *Klebsiella pneumoniae* statistically insignificant (*P* < 0.05) as compared with other test organisms which affirmed the work of Osuagwu (2013). Ethanolic extract was found to be most effective again st all the test organisms at the 200 mg/ml as shown in Table 2. The n-hexane extract of *Monodora myristica* seeds was effective as ethanolic extract at the same concentrations, except against *Escherichia coli* ST2747 (MDRs), where it was mildly significant with 12.5 mm.

Antimicrobial susceptibility testing showed that the organisms had higher susceptibility only on all the test organisms at 200 mg/ml and 150 mg/ml concentrations of the extracts. In antibiotics sensitivity testing, all bacteria showed high
susceptibility to Gentamycin except for E. coli which showed moderate susceptibility, while for Ciprofloxacin; it was highly susceptible. Candida albicans showed high susceptibility to Fluconazole and Nystatin. Although none of the extract was effective as standard antibiotics but the ethanolic extract was highly effective against Staphylococcus aureus, Streptococcus spp, Enterococcus faecalis, and Candida albicans except E. coli ST2747 (MDRs). E. coli ATCC S35218 was moderately susceptible to the ethanolic and n-hexane extracts.

The presence of alkaloids, phenols, saponins, steroids and tannins in Monodora myristica seeds has been reported by Osuagwu, (2013). Also, high concentrations of phenols and phlobatannins with trace amount of tannins in ethanolic extract of Monodora myristica seeds might have accounted for its antimicrobial and astringent properties (Ijeh, 2004; Enabulele et al., 2014).

The ethanolic extract has the most significant level of phytochemical components amongst the three solvents used for the extraction of Monodora myristica seeds, this depict that ethanol has the capacity to extract more phytochemical components than other solvents used in this study. The presence of these phytochemicals components in the seeds of Monodora myristica, confer it for its medicinal value (NNMDA, 2008). This study reveals that the more the phytochemical components the more its antimicrobial activity, which in line with (Ajayi et al., 2008).

Conclusions

This study reveals that Monodora myristica seeds extract at the highest concentration of 200 mg/ml, showed varying degree of antimicrobial against test microorganisms associated with vagina infection. The phytochemical components of the seed extract found to be responsible for its antimicrobial activities. The n-hexane extracted pure oil with limited phytochemical components and it rendered moderate effectiveness a, while aqueous extract contains the lowest phytochemical components, and was the least effective against all pathogens, which is due oily nature of the seed; a non-polar solvent will be preferred for the extraction of Monodora myristica seeds, therefore, this study affirmed the efficacy of Monodora myristica seed extract against bacterial pathogens associated with vaginal infections.

Conflict of Interest:

The authors declare no conflicting interest in the publication No funding was obtained from any funding agency but the research was fully funded by the authors.

References

Adeyba, O.A., Adeoye, M.O., and Adesiji, Y.O. (2003). Bacteriological and parasitological vaginitis in pregnant women in iseyin, oyo state, Nigeria. *ClinExpMicrobiol*. 4:11–6.

Ajayi, I.A., Jonathan, S.G., Adewuyi, A., and Oderinde, R.A. (2008). Antimicrobial screening of the essential oil of some herbal plants from western Nigeria. *World Applied Science* 3 (1), 79-81.

American Institute of Cancer Research (2000). New Survey: Older Americans abandon healthy diets, turn to supplements for lower risks, August 31 (http/www aier. Org/r0331009 html) retrieved December 13, 2010.

Awad, A.I. and Aboud, E. A. (2015). Knowledge, attitude and practice towards antibiotic use among the public in Kuwait. *PLoS ONE* 10

Bamidele, F.A., Ogundipe, F.O., Adebayo-Oyetoro, A.O., Aromolaran, Odeyemi, O.A. and Omonigbeyin, E.A. (2013). In Vitro Antibacterial Activity and Preliminary Phytochemical Screening of Four Plants on Selected Clinical Pathogens. *International
Journal of Scientific and Research Publications 317-321.

Birt, D.A. (2006). Phytochemicals and cancer prevention: from epidemiology to mechanism of action. Journal of the American Dietetic Association 106: 20 – 24.

Bishnu, J.U., Sunil, L. and Anuja, S. (2009). Antibacterial properties of different medicinal plants; Ocimum sanctum, Cinnamomum zeylanicum, Xanthoxyllumarimatum and Origanum masorana. Kathmnda University Journal of Science, Engineering and Technology. 5:143-150.

Briskin, D.P. (2000). Medicinal plants and phytochemicals. Plant Physiology 124: 507 – 514.

Celtnet, R. (2011). "Calabash Nutmeg Information Page". ISBN 978-0-947643-01-0. Last visited April 22, 2017.5:35pm.

Chalechale, A. and Karimi, I. (2010). The prevalence of Trichomonas vaginalis infection among patients that presented to hospitals in the Kermanshah district of Iran in 2006 and 2007. Turk J Med Sci. 40(6):971–5.

Duyff, R.L. (2000). Nutrition and Wellness, Glencore/ Mc Graw-Hill, United State of America, 576 pp.

Edeoga, H.O., Okwu, D.E. and Mbaebie, B.O. (2005). Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology, (4):685 – 688.

Enabulele, S.A., Oboh, F.O.J. and Uwadiae, E.O. (2014). Antimicrobial, nutritional and phytochemical properties of monodora myristica seeds. IOSR Journal of Pharmacy and Biological Sciences. 9(4):3, p01-06

FAO/WHO (2006). Probiotics in food. Health and nutritional properties and guidelines for evaluation. FAO Food and Nutritional paper No. 85 (ISBN 92-51055130). http://www.fao.com. Last visited march 2017.8:35am.

Felden, B., Vandenesch, F., and Bouloc, P. (2011). Staphylococcus aureus and its commitment to virulence. PLoS Pathog. 7(3): e1002006.

Firn, R. (2010). Nature’s Chemicals. Oxford University Press, Oxford.74-75.

Go, V.F., Quan, V.M., Celentano, D.D., Moulton, L.H. and Zenilman, J.M. (2006). Prevalence and risk factors for reproductive tract infections among women in rural vietnam. Southeast Asian. J Trop Med Public Health.; 37:185–9. PubMedGoogle Scholar

Gow, N.A.R. and Hube, B. (2012). Importance of the Candida albicans cell wall during commensalism and infection. Curr. Opin. Microbiol.15: 406-412.

Gupta, C., Amar, P., Ramesh, G., Uriya, C. and Kumari, A. (2008). Antimicrobial activity of some herbal oils against common food-borne pathogens. African Journal of Microbial Research. (2) 258-261

Hacer, H., Reyhan, B. and Sibel, Y. (2012). To determine of the prevalence of Bacterial Vaginosis, Candida sp, mixed infections (Bacterial Vaginosis + Candida sp), Trichomonas Vaginalis, Actinomyces sp in Turkish women from Ankara, Turkey. Ginekol Pol.; 83:744–8.

Hayes, D.P. (2005). The protective role of fruits and vegetables against radiation – induced cancer. Nutrition Review 63: 303 – 322 ISBN-13: 9781555815394, pp: 11-25.

Kamba, A.S. and Hassan, L.G. (2010). Phytochemical screening and antimicrobial activities of Euphorbia balas amiferaleaves, stem and root against some pathogenic microorganisms. African Journal of
Pharmaceutical Sciences and Pharmacy, (1), 57-64.

Kar, A. (2007). Pharmacognosy and Pharmacobiotechnology (Revised-Expanded Second Edition). New Age International Limited Publishers New Delhi. (2):332-600.

Kuete, V. (2010). Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Medica, 76: 1479-1491.

Lamichhane, P., Joshi, D.R., Subedi, Y.P., Thapa, R. and Acharya, G.P. (2014). Lamsal, A., Study on types of vaginitis and association between bacterial vaginosis and urinary tract infection in pregnant women. IJBAR 05(06):305–7. Google Scholar

Manach, C., Scalbert, A., Morand, C. Remesy, C and Limenez, L. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition 79: 727-747

Milner, J.A. (2002). Functional foods and health: a US perspective. British Journal of Nutrition 88: S151 – S158.

NCCLS (2006). Performance Standards for Antimicrobial Disc Susceptibility Test, 4th Edition, Approved Standard M 2 – A 4, Villanova.

Nigeria Natural Medicine Development Agency (NNMA) (2008). Medicinal plants of Nigeria; South-East Nigeria. Vol.1. Lisida consulting Lagos Nigeria.204pp

Nwozo, S., Onyenibe E., Kasumu, T., Oyinloye, B. (2015). African Nutmeg (Monodora Myristica) lowers cholesterol And modulates lipid peroxidation in experimentally induced hypercholesterolemic male wistar rats. Int J Biomed Sci.; 11(2):86–92.

Okwu, D.E. (2001). Evaluation of the chemical composition of indigenous spices and flavouring agents. Global Journal of Pure and Applied Science 7 (3), 455-45.

Omobuwajo, T.O., Omobuwajo, O.R., and Sanni, L.A. (2003). Physical properties of calabash nutmeg (Monodoramyrystica) seeds. J. Food Eng.; 57:375-381.

Omoyeni, O.A., and Aluko, B.T. (2010). Qualitative determination of chemical and nutritional composition of Cissus petiolata leaves. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9 (2): 436–440.37.

Osuagwu, G. G. E. and Emeg, C. B. (2013). The Phytochemical Composition and Antimicrobial Activity of Dialium Guineense, Vitex Doniana and Dennettia Tripetala Leaves. Asian Journal of Natural and Applied Sciences, 2(3):169–181

Osuagwu, G.G.E. and Akomas, C.B. (2013). Antimicrobial activity of three Species of Nigerian Pterocarpus (Jacq.). International Journal of Medicinal and Aromatic Plants

Osuagwu, G. G. E. and Onwuegbuchulam, N.P. (2015). The Phytochemical Screening and Antimicrobial Activity of the Leaves of Monodora myristica, (Gaertn) Dunal, Acanthus montanus(Ness)T. Anders and Alstonia bonnie De Wild. International Journal of Pharmacy & Pharmaceutical Research. 2:4

Performance standards for antimicrobial disk susceptibility tests. (2006). Approved standards. Clinical and Laboratory Standards Institute document M2-9. Clinical and Laboratory Inst. 940, West Valley Road, Suite 1400, Wayne, Pa., 19087-1898 USA.

Prospero, F.D. (2014). Focus on candida, trichomonas, bacteria and atrophic vaginitis.
Ross, J., and Kasum, C. (2002). Dietary flavonoids: bioavailability, metabolic effects and safety. American Review on Nutrition 22: 19-34. Secreted aspartyl proteinases invirulence and pathogenesis. Microbiol. Mol. Biol. Rev., 67: 400-428.

Sarker, S.D. and Nahar, L. (2007). Chemistry for Pharmacy Students General, Organic and Natural Product Chemistry. England: John Wiley and Sons. 283-359.

Shariff, Z.U. (2001). Modern Herbal Therapy for Common Ailments. Nature Pharmacy Series. Spectrum Books Limited, Ibadan, Nigeria. In Association with Safari Books (Export) Limited, United Kingdom. 9-84.

Siddhuraju, P. and Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of Drumstick tree (Moringa oleifera Lam.) leaves, J Agric Food Chem. 51, 2144 –2155.

Spinillo, A., Bernuzzi, A.M., Cevini, C., Gulminetti, R., Luzi, S., and Santolo, A.D. (1997). The relationship of bacterial vaginosis, candida and trichomonas infection to symptomatic vaginitis in postmenopausal women attending a vaginitis clinic Maturitas. 27:253–60.

Treasure, I.O., Obaghwarhievwo, A.J. and Odigie, O. M. (2020). Ethnobotanical Survey of Medicinal Plants in Ughelli North Local Government Area of Delta State. Journal of Medicine: Study and Research. 3:014

UCSF (2014). McFarland Latex Standards from Hardy Diagnostics, measured at the UCSF DeRisi Lab http://www.McFarland nephelometer standard.

Uwakwe, A.A., and Nwaoguikpe, R.N. (2008). In Vitro antisickling effects of Xylopia-aethiopica and Monodora myristica. Journal of Medicinal plant Research. 2(6):119-124.

Visioli, F., Borsani, L. and Galli, C. (2000). Diet and prevention of coronary heart disease: the potential role of phytochemicals. Cancer Research 47: 419 – 429.

Weiss, E. A. (2002) Spice crops. Oxon: CABI Publishing. p. 102.

World Health Organization (2001). Essential Drugs and Medicines Policy; WHO Geneva.

Xu, B. J. and Chang, S.K.C. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food science72 (2): S159-66.

Xu, B.J. Yuan, S.H. and Chang, S.K.C. (2005). Comparative studies on the antioxidant activities of nine common legumes against copper-induced human low-density lipoprotein oxidation in vitro. Botanical Bulletin of Academia.

Zakariyah, R.F., Odebisi-Omokanye, M.B., Akolade, J.O., Ahmed, R.N., Jimoh, F.A. and Badmus, S.A. (2017). Screening of Prosopis Africana for antimicrobial activity against selected oral pathogens. Nigeria Journal of Pure & Applied Sciences.30(2): p3049