Synthesis, characterisation and biological screening of s-triazine based chalcones and its derivatization into phenyl pyrazolines, isoxazoles

Anjani Solanke*, Riki Tailor
Department of Chemistry, B. K. M. Science College, Valsad - 396001
(Affiliated to The Veer Narmad South Gujarat University, Surat) India

*E-mail address: dranjani_solankee@yahoo.com

ABSTRACT

Heterocyclic derivatives such as phenyl pyrazolines and isoxazoles were prepared from s-triazine based chalcones. Chalcones (A₁ - A₅) are synthesised by the reaction of compound (V) with various aromatic aldehydes. Moreover, further reaction of chalcones with phenyl hydrazine hydrochloride and hydroxylamine hydrochloride in the presence of alkali gives phenyl pyrazolines (A₆ - A₁₀) and isoxazoles (A₁₁ - A₁₅) derivatives respectively. The structures of the newly synthesised compounds were confirmed by spectroscopic (IR, ¹H NMR, ¹³C NMR) and elemental analysis. All the newly synthesised compounds have been screened for their antimicrobial activity against selected Gram - positive (S. aureus and S. pyogenus), Gram - negative (E. coli and P. aeruginosa) bacterial and fungal strains (C. albicans, A. niger and A. clavatus).

Keywords: Chalcones; phenyl pyrazolines; isoxazoles; spectral data; elemental analysis; antimicrobial activity

1. INTRODUCTION

The main fears for human beings are a variety of diseases. Scientists and doctors are still struggling to find solutions with various forms of medications. Today’s new medicines are results of inexorable effort made by human civilization time to time. The most common compounds of chalconoid group are the chalcones, which provide new class of medicines due to the pharmacologically active moiety and various biological activities. The chalcones are 1, 3 - diarylprop - 2 - en - 1 - one, form a broad class of compounds containing two aromatic rings bound with vinyl ketone fragment. Chalcones are useful intermediates for obtaining the variety of heterocycles [1-5]. Various chalcone derivatives are remarkable materials for their second harmonic generation [6]. They are naturally occurring plant metabolites possess a broad spectrum of biological activities such as cancer cell lines [7-8], antimitotic [9], anti-inflammatory [10], hepatoprotective [11], molluscicidal properties [12], heme oxygenase-1 [13], antimicrobial [14] etc.... So, this broad spectrum of applications encouraged us to search for another addition to the existed molecule.
Pyrazoline derivatives with a phenyl group at 5-position show good film-forming properties, excellent features of blue photoluminescence and electroluminescence [15]. Pyrazoline derivatives have a long history of application in agrochemicals and pharmaceutical industry as herbicides and active pharmaceuticals. Now days, a major portion of research in heterocyclic chemistry has been devoted to 2-pyrazolines containing diverse aryl groups as substituents. Pyrazoline derivatives are well known for their different biological activities such as antifeedant [16], anti-inflammatory [17], antiviral [18], antidepressant [19], antibacterial [20], antifungal [21] etc... Many class of chemotherapeutic agents containing pyrazoline nucleus are in clinical use such as orisul (antibacterial), antipyrine (antipyretic), butazolidine (anti-inflammatory). So based on the above biological activities exhibited by the pyrazoline compounds, we reported here, the synthesis and biological screening of some novel phenyl pyrazoline derivatives.

Among heterocycles, the isoxazole unit constitutes an easily accessible nucleus that is present in a number of natural and pharmacological compounds [22], display a wide range of organic reactivities and used as an effective means of preparing new molecular scaffolds [23]. Isoxazoles have been repeatedly shown as useful synthons in organic synthesis [24]. Isoxazoles shows a broad spectrum of biological properties like fungicidal [25], antimicrobial [26], antitubercular [27], antiviral [28] etc... So in this regard, we have synthesised some novel isoxazole derivatives and screened this compounds to antimicrobial activity.

2. EXPERIMENTAL

2.1. Material

All the chemicals and solvents which used for reaction were purified after getting from commercial suppliers. Melting points were taken in open capillaries using paraffin bath and were uncorrected. IR spectra were recorded on Shimadzu IR Affinity - 1 FTIR spectrometer (V_max-1), ¹H NMR were recorded on Bruker Avance - DPX 400 MHz NMR spectrometer using CDCl₃ as a solvent and TMS as internal reference and ¹³C NMR spectra were recorded on the same instrument at 100 MHz operating frequency using DMSO as a solvent and TMS as internal reference. The chemical shifts are expressed in parts per million (ppm) downfield from the internal standard and signals are quoted as s (singlet), d (doublet) and m (multiplet). The coupling constants (J) are given in Hertz (Hz). All the compounds were analyzed for carbon, hydrogen and nitrogen by the Perkin-Elmer 240 C H N elemental analyzer and the results were within ±0.4% of theoretical values. The purity of synthesised compounds were checked by thin layer chromatography conducted on Silica Gel 60 F-254 (Merck) plates of 0.25 mm thickness and the spots were located using toluene : methanol (12 : 6 v/v) eluents and visualized with UV (254 nm) light or keeping the plates in iodine chamber.

2.2. Method

2.2.A. General procedure for the compounds (III), (IV) and (V)

Compounds (III), (IV) and (V) were prepared by the reported method [29].
2.2.B. Preparation of 2 - (3' - trifluromethylphenylamino) - 4 - (tetrahydro - 1', 4' - oxazine) - 6 - [4' - {3'' - (4''- methoxyphenyl) - 2'' - propenon - 1'' - yl} phenylamino] - s - triazine (A₁)

In a round-bottomed flask, substituted acetophenone (V) (0.01 mol, 4.5g in 20 ml DMF) was dissolved in a dimethyl formamide and 4 - methoxybenzaldehyde (0.01 mol, 1.36g in 10 ml DMF) was added in it. To make this mixture alkaline 40% KOH (5 ml) was added as catalyst, then the reaction mixture was stirred for 24 hours at room temperature. The progress of reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and neutralise with HCl. Finally, the product was filtered, washed with water, dried and purified by recrystallization from ethanol. In the same way, the remaining compounds (A₂ - A₅) were prepared by this method. All the synthesised compounds (A₁ - A₅) were characterised by IR, ¹H NMR, ¹³C NMR spectroscopy, the characteristic data of the entire synthesised compounds are given in spectral analysis data (3) and physical data are given in Table - 1.

2.2.C. 2 - (3' - trifluromethylphenylamino) - 4 - (tetrahydro - 1', 4' - oxazine) - 6 - [4' - {1'' - phenyl 5''- (4''- methoxyphenyl) 2'' - pyrazolin 3''- yl} phenylamino] - s - triazine (A₆)

Chalcone (A₁) (0.01 mol, 5.76g in 30 ml alcohol) and phenyl hydrazine hydrochloride (0.01 mol, 1.44 g in 10 ml alcohol) was dissolved in alcohol. To make this mixture alkaline 40% KOH (5 ml) was added to the reaction mixture and refluxed for 8 hours. The progress of the reaction was monitored by using TLC. After completion of the reaction, the reaction mixture was poured into crushed and neutralise with dilute HCl. Finally, the product was filtered, washed with water, dried and recrystallization from ethanol to get product (A₆) in good yield with high purity. In the same way other remaining compounds (A₇ - A₁₀) were prepared by this method. All the synthesised compounds (A₆ - A₁₀) were characterised by IR, ¹H NMR, ¹³C NMR spectroscopy, the characteristic data of the entire synthesised compounds are given in spectral analysis data (3) and physical data are given in Table - 1.

2.2.D. Preparation of 2 - (3' - trifluromethylphenylamino) - 4 - (tetrahydro - 1', 4' - oxazine) - 6 - [4' - {5''- (4''- methoxyphenyl) 2'' - isoxazol - 3''- yl} phenylamino] - s - triazine (A₁₁)

Compound (A₁) (0.01 mol, 5.76g in 30 ml alcohol) and hydroxylamine hydrochloride (0.01 mol, 0.695g in 10 ml alcohol) was dissolved in methanol. To make this mixture alkaline 40% KOH (5 ml) was added to the reaction mixture and refluxed for 8 hours. The progress of the reaction was monitored by using TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and neutralise with dilute HCl. Finally, the product was filtered, washed with water, dried and recrystallization from ethanol to get product (A₁₁) in good yield with high purity. In the same way other remaining compounds (A₁₂ - A₁₅) were prepared by this method. All the synthesised compounds (A₁₂ - A₁₅) were characterised by IR, ¹H NMR, ¹³C NMR spectroscopy, the characteristic data of the entire synthesised compounds are given in spectral analysis data (3) and physical data are given in Table - 1.
2.3. Reaction Scheme

\[
\begin{align*}
\text{I} & \quad \text{II} \\
\text{Cl} & \quad \text{H}_2\text{N-} \quad \text{CF}_3 \\
\text{N} & \quad \text{OnH} \\
\text{N} & \quad \text{CF}_3 \\
\text{Cl} & \quad \text{NH}_2 \\
\text{Cl} & \quad \text{COCH}_3 \\
\text{N} & \quad \text{N} \\
\text{N} & \quad \text{H} \\
\end{align*}
\]

\[
\begin{align*}
\text{Acetone} & \quad 0 - 5 \degree \text{C} \\
\text{III} & \quad \text{H-N-O} \\
\text{Acetone} & \quad \text{Room Temp.} \\
\text{IV} & \quad \text{Acetone} \\
\text{Reflux} & \quad \text{Reflux} \\
\text{A}_1 - \text{A}_5 & \quad 0 - 5 \degree \text{C} \\
\text{I} & \quad \text{II} \\
\text{III} & \quad \text{IV} \\
\end{align*}
\]

\[
\begin{align*}
\text{R-CHO} & \quad \text{DMF} \\
\text{A}_1 - \text{A}_2 & \quad \text{A}_11 - \text{A}_15 \\
\text{Alkali} & \quad \text{Reflex} \\
\text{A}_6 - \text{A}_{10} & \quad \text{NH}_2\text{OH. HCl} \\
\text{Alkali} & \quad \text{Reflex} \\
\end{align*}
\]
Table 1. The physical data of synthesised compounds A₁- A₁₅.

Compd	R	Molecular Formula	Yield (%)	M. P °C	Elemental analysis Calculated (Found) %
A₁	4'- Methoxy phenyl	C₆H₅N₆F₃O₃	74	180	C 4.72 (4.67) H 14.15 (14.19) N 19.58 (19.54)
A₂	4'- Chloro phenyl	C₆H₅N₆F₃O₂Cl	69	125	C 4.16 (4.20) H 13.47 (13.45) N 18.67 (18.65)
A₃	3'- Phenoxyphenyl	C₆H₅N₆F₃O₃	71	148	C 4.57 (4.60) H 13.16 (13.12) N 18.78 (18.75)
A₄	2'- Nitrophenyl	C₆H₅N₆F₃O₃	70	105	C 4.09 (4.05) H 16.58 (16.55) N 15.38 (15.43)
A₅	Phenyl	C₆H₅N₆F₃O₂	65	108	C 4.61 (4.65) H 15.38 (15.43) N 18.79 (18.77)
A₆	4'- Methoxy phenyl	C₆H₅N₆F₃O₂	72	165	C 4.98 (4.95) H 16.81 (16.79) N 16.70 (16.72)
A₇	4'- Chloro phenyl	C₆H₅N₆F₃OCl	69	98	C 4.50 (4.53) H 16.70 (16.72) N 16.70 (16.72)
A₈	3'- Phenoxyphenyl	C₆H₅N₆F₃O₂	68	141	C 4.84 (4.87) H 15.38 (15.43) N 18.49 (18.47)
A₉	2'- Nitrophenyl	C₆H₅N₆F₃O₃	67	130	C 4.43 (4.46) H 14.49 (14.47) N 17.60 (17.58)
A₁₀	Phenyl	C₆H₅N₆F₃O	70	94	C 4.90 (4.87) H 17.60 (17.58) N 16.63 (16.62)
A₁₁	4'- Methoxy phenyl	C₆H₅N₆F₃O₂	74	109	C 4.44 (4.47) H 16.63 (16.62) N 17.60 (17.58)
A₁₂	4'- Chloro phenyl	C₆H₅N₆F₃O₂Cl	65	155	C 3.90 (3.87) H 16.51 (16.53) N 16.51 (16.53)
A₁₃	3'- Phenoxyphenyl	C₆H₅N₆F₃O₃	71	123	C 4.33 (4.31) H 15.05 (15.04) N 18.54 (18.51)
A₁₄	2'- Nitrophenyl	C₆H₅N₆F₃O₄	73	117	C 3.83 (3.86) H 18.54 (18.51) N 17.52 (17.55)
A₁₅	Phenyl	C₆H₅N₆F₃O₂	66	110	C 4.32 (4.35) H 17.52 (17.55) N 17.52 (17.55)

3. SPECTRAL ANALYSIS DATA

Compound A₁: 2 - (3'-trifluoromethylphenylamino) - 4 - (tetrahydro - 1', 4' - oxazine)

- 6 - [4'- {3" - (4"- methoxymethyl) - 2" - proponen - 1" - yl} phenylamino] - s - triazine. : IR (KBr) cm⁻¹ : 3307 (N-H str.), 3018 (-CH), 1624 (-C=O), 1578 (C=C str.), 1248 (C-O-C str.), 1025 (C-F), 807 (C-N str. s - triazine). ¹H NMR (δ ppm, CDCl₃) : 8.25 (s, 1H, -NH), 3.71 (t, 8H, -CH₂, oxazine ring), 3.89 (s, 3H, p-OCH₃), 6.89 (d, J = 9.36 Hz, IH, -CO-CH=), 8.21 (d, J = 8.6 Hz, 1H, Ar-CH=), 6.98 - 8.1 (m, 12H, Ar-H). ¹³C NMR (δ ppm, DMSO) : 48.7, 55.5, 66.3, 111.8, 115.1, 116.1, 121.1, 121.3, 124.1, 127.9, 128.7, 129.0, 129.8, 131.8, 132.0, 133.5, 133.7, 142.7, 144.7, 145.9, 159.8, 165.7, 168.9, 176.0, 189.7.

Compound A₂: 2 - (3'-trifluoromethylphenylamino) - 4 - (tetrahydro - 1', 4' - oxazine)

- 6 - [4'- {3" - (4"- chlorophenyl) - 2" - proponen - 1" - yl} phenylamino] - s - triazine. : IR (KBr) cm⁻¹ : 3323 (N-H str.), 3001 (-CH), 1652 (-C=O), 1569 (C=C str.), 1232 (C-O-C str.), 1019 (C-F), 798 (C-N str. s - triazine), 639 (C-Cl). ¹H NMR (δ ppm, CDCl₃) : 8.35 (s, 1H, -NH), 3.77 (t, 8H, -CH₂, oxazine ring), 6.13 (d, J = 9.8 Hz, IH, -CO-CH=),
7.91 (d, J = 9.4 Hz, 1H, Ar CH=), 7.0 - 8.2 (m, 12H, Ar-H). 13C NMR (δ ppm, DMSO) : 48.6, 63.1, 109.3, 110.9, 112.8, 113.1, 120.6, 121.6, 125.9, 127.1, 129.1, 130.5, 131.8, 132.7, 135.0, 138.2, 141.8, 145.7, 166.0, 172.4, 179.3, 186.3.

Compound A$_2$: 2 - (3'- trifluromethylphenylamino) - 4 - (tetrahydro - 1', 4'- oxazine)

- 6 - [4'] - {3'' - (3''- phenoxypyphenyl) - 2'' - propenon - 1'' - yl} phenylamino] - s - triazine. : IR (KBr) cm$^{-1}$: 3388 (N-H str.), 3035 (=CH), 1706 (C=O), 1540 (C=NO$_2$), 1505 (C=C str.), 1240 (C-O-C str.), 1016 (C-F), 800 (C-N str. s - triazine). 1H NMR (δ ppm, CDCl$_3$) : 8.2 (s, 1H, -NH), 3.83 (t, 8H, -CH$_2$, oxazine ring), 6.25 (d, J = 9.6 Hz, 1H, -CO-CH=), 7.12 (d, J = 8.9 Hz, 1H, Ar-CH=), 6.9 - 7.9 (m, 12H, Ar-H). 13C NMR (δ ppm, DMSO) : 43.2, 67.6, 109.5, 111.2, 118.0, 121.2, 124.8, 126.0, 127.5, 128.0, 130.2, 131.5, 133.1, 133.2, 134.5, 141.8, 143.8, 147.7, 166.4, 168.1, 175.1, 188.2.

Compound A$_3$: 2 - (3'- trifluromethylphenylamino) - 4 - (tetrahydro - 1', 4'- oxazine)

- 6 - [4'] - {3'' - (4''- nitrophenyl) - 2'' - propenon - 1'' - yl} phenylamino] - s - triazine. : IR (KBr) cm$^{-1}$: 3310 (N-H str.), 3035 (=CH), 1706 (C=O), 1540 (C=NO$_2$), 1505 (C=C str.), 1240 (C-O-C str.), 1016 (C-F), 800 (C-N str. s - triazine). 1H NMR (δ ppm, CDCl$_3$) : 7.9 (s, 1H, -NH), 3.76 (t, 8H, -CH$_2$, oxazine ring), 6.6 (d, J = 9.6 Hz, 1H, -CO-CH=), 7.3 (d, J = 9.9 Hz, 1H, Ar-CH=), 7.1 - 8.0 (m, 13H, Ar-H). 13C NMR (δ ppm, DMSO) : 46.4, 66.2, 110.2, 112.1, 115.2, 116.6, 122.1, 124.2, 126.1, 127.8, 130.0, 131.2, 132.9, 133.5, 135.9, 142.7, 144.3, 163.0, 167.6, 175.1, 188.0.

Compound A$_4$: 2 - (3'- trifluromethylphenylamino) - 4 - (tetrahydro - 1', 4'- oxazine)

- 6 - [4'] - {3'' - (phenyl) - 2'' - propenon - 1'' - yl} phenylamino] - s - triazine. : IR (KBr) cm$^{-1}$: 3265 (N-H), 3031 (=CH str.), 2912 (C-H str., pyrazoline moiety), 1645 (C-N, pyrazoline moiety), 1256 (C-O-C), 1100 (C-F). 1H NMR (δ ppm, CDCl$_3$) : 2.1 (dd, 1H, -CH$_3$-CH=), 3.2 (dd, 1H, -CH$_3$-CH=), 5.2 (dd, 1H, -CH-CH$_2$), 3.89 (s, 3H, p-OCH$_3$), 3.69 (t, 8H, -CH$_2$, oxazine ring), 6.9 to 8.2 (m, 18H, 17 Ar-Hand1-NH). 13C NMR (δ ppm, DMSO) : 40.6, 46.9, 57.1, 64.3, 66.3, 110.8, 111.0, 114.0, 115.6, 120.7, 123.9, 127.1, 130.0, 131.5, 133.6, 134.7, 140.4, 142.6, 144.8, 150.7, 157.9, 162.4, 164.1, 174.1.

Compound A$_5$: 2 - (3'- trifluromethylphenylamino) - 4 - (tetrahydro - 1', 4'- oxazine)

- 6 - [4'] - {1''- phenyl 5''- (4''- methoxyphenyl) 2'' - pyrazolin 3''- yl} phenylamino] - s - triazine : IR (KBr) cm$^{-1}$: 3146 (N-H), 3054 (=CH str.), 2936 (C-H str., pyrazoline moiety), 1640 (C=N, pyrazoline moiety), 1235 (C-O-C), 1067 (C-F), 663 (C-Cl). 1H NMR (δ ppm, CDCl$_3$) : 2.6 (dd, 1H, -CH$_3$-CH=), 2.9 (dd, 1H, -CH$_3$-CH=), 5.1 (dd, 1H, -CH-CH$_2$), 3.10 (t, 8H, -CH$_2$, oxazine ring), 7.0 to 8.2 (m, 18H, 17 Ar-Hand1-NH). 13C NMR (δ ppm, DMSO) : 39.2, 46.0, 62.9, 66.7, 109.2, 111.4, 112.5, 114.6, 116.3, 120.8, 121.9, 124.0, 126.3, 129.7, 132.2, 134.4, 136.9, 142.0, 144.3, 152.5, 164.6, 166.8, 173.5.

Compound A$_6$: 2 - (3'- trifluromethylphenylamino) - 4 - (tetrahydro - 1', 4'- oxazine)

- 6 - [4'] - {1''- phenyl 5''- (4''- chlorophenyl) 2'' - pyrazolin 3''- yl} phenylamino] - s - triazine : IR (KBr) cm$^{-1}$: 3376 (N-H), 2991 (=CH str.), 2949 (C-H str., pyrazoline moiety), 1542 (C=N, pyrazoline moiety), 1246 (C-O-C), 1049 (C-F). 1H NMR (δ ppm, CDCl$_3$) : 2.9 (dd, 1H, -CH$_3$-CH=), 3.2 (dd, 1H, -CH$_3$-CH=), 4.8 (dd, 1H, -CH-CH$_2$), 3.16 (t, 8H, -CH$_2$,
oxazine ring), 6.9 to 8.6 (m, 23H, 22 Ar-Hand1-NH). 13C NMR (δ ppm, DMSO): 40.0, 48.6, 61.0, 64.9, 110.5, 112.4, 114.3, 117.0, 119.6, 121.8, 123.1, 125.7, 127.0, 128.3, 130.0, 133.5, 141.4, 143.8, 149.7, 156.2, 157.1, 163.4, 165.0, 174.9.

Compound A₀ : 2 - (3'- trifluoromethylphenylamino) - 4 - (tetrahydro - 1', 4'- oxazine) - 6 - [4'- {1''- phenyl 5''- (2''- nitrophenyl) 2''- pyrazolin 3''- yl} phenylamino] - s - triazine : IR (KBr) cm$^{-1}$: 3302 (-NH), 3006 (=CH str.), 3000 (C-H str., pyrazoline moiety), 1589 (C=N, pyrazoline moiety), 1486 (C-NO$_2$), 1231 (C-O-C), 1061 (C-F). 1H NMR (δ ppm, CDCl$_3$) : 2.2 (dd, 1H, -CH$_3$-CH$_2$), 2.5 (dd, 1H, -CH$_2$-CH$_2$), 2.7 (dd, 1H, -CH$_2$-CH$_2$), 3.46 (t, 8H, -CH$_2$, oxazine ring), 7.0 to 8.3 (m, 18H, 17 Ar-Hand1-NH). 13C NMR (δ ppm, DMSO) : 38.0, 48.8, 65.7, 66.2, 111.2, 112.6, 115.0, 117.6, 118.4, 120.9, 122.2, 123.8, 126.1, 129.6, 131.9, 132.5, 140.7, 142.0, 145.1, 150.9, 163.0, 166.4, 173.8.

**Compound A₀: 2 - (3’- trifluoromethylphenylamino) - 4 - (tetrahydro - 1', 4'- oxazine) - 6 - [4'- {1''- phenyl 5''- (phenyl) 2''- pyrazolin 3''- yl} phenylamino] - s - triazine : IR (KBr) cm$^{-1}$: 3398 (-NH), 3102 (=CH str.), 2965 (C-H str., pyrazoline moiety), 1560 (C=N, pyrazoline moiety), 1221 (C-O-C), 1098 (C-F). 1H NMR (δ ppm, CDCl$_3$) : 2.4 (dd, 1H, -CH$_3$-CH$_2$), 2.6 (dd, 1H, -CH$_2$-CH$_2$), 5.7 (dd, 1H, -CH-CH$_2$), 3.78 (t, 8H, -CH$_2$, oxazine ring), 7.2 to 8.4 (m, 19H, 18 Ar-Hand1-NH). 13C NMR (δ ppm, DMSO) : 37.2, 46.6, 63.4, 68.6, 108.5, 110.2, 112.4, 119.1, 116.6, 118.0, 120.5, 124.3, 127.0, 128.3, 130.7, 131.4, 141.2, 144.9, 149.2, 162.5, 163.1, 174.8.

Compound A₁ : 2 - (3’ trifluoromethylphenylamino) - 4 - (tetrahydro - 1', 4'- oxazine) - 6 - [4'- {5''- (4''- methoxyphenyl) 2''- isoxazol - 3''- yl} phenylamino] - s - triazine : IR (KBr) cm$^{-1}$: 3304 (-NH), 3089 (=CH str.), 834 (C-H bending), 1608 (C=N str., isoxazolomoiety), 1253 (C-O-C), 1068 (C-F). 1H NMR (δ ppm, CDCl$_3$) : 3.79 (s, 3H, p-OCH$_3$), 3.56 (t, 8H, -CH$_2$, oxazine ring), 6.69 (1H, s, -CH$_2$), 6.7 to 8.1 (m, 13H, 12 Ar-H and1-NH). 13C NMR (δ ppm, DMSO) : 48.1, 56.7, 66.8, 98.4, 116.0, 116.9, 118.2, 121.3, 124.4, 127.0, 128.3, 129.8, 131.8, 138.9, 142.7, 160.6, 162.2, 165.7, 168.9, 169.3, 176.0.

Compound A₁ : 2 - (3’ trifluoromethylphenylamino) - 4 - (tetrahydro - 1', 4'- oxazine) - 6 - [4'- {5''- (4''- chlorophenyl) 2''- isoxazol - 3''- yl} phenylamino] - s - triazine : IR (KBr) cm$^{-1}$: 3373 (-NH), 3019 (=CH str.), 815 (C-H bending), 1645 (C=N str., isoxazolomoiety), 1249 (C-O-C), 1066 (C-F), 661 (C-Cl). 1H NMR (δ ppm, CDCl$_3$) : 3.47 (t, 8H, -CH$_2$, oxazine ring), 6.56 (1H, s, -CH$_2$), 6.9 to 8.2 (m, 13H, 12 Ar-H and1-NH). 13C NMR (δ ppm, DMSO) : 48.0, 66.8, 98.6, 112.1, 114.8, 120.6, 122.5, 123.7, 125.8, 127.9, 132.2, 133.8, 138.2, 142.9, 164.1, 166.3, 169.4, 173.2, 176.0.

**Compound A₂: 2 - (3’ trifluoromethylphenylamino) - 4 - (tetrahydro - 1', 4'- oxazine) - 6 - [4'- {5''- (3''- phenoxyphenyl) 2''- isoxazol - 3''- yl} phenylamino] - s - triazine : IR (KBr) cm$^{-1}$: 3390 (-NH), 3080 (=CH str.), 843 (C-H bending), 1640 (C=N str., isoxazolomoiety), 1250 (C-O-C), 1049 (C-F). 1H NMR (δ ppm, CDCl$_3$) : 3.72 (t, 8H, -CH$_2$, oxazine ring), 6.45 (1H, s, -CH$_2$), 6.7 to 8.3 (m, 18H, 17 Ar-Hand1-NH). 13C NMR (δ ppm, DMSO) : 47.9, 67.2, 99.4, 110.2, 112.5, 118.3, 121.4, 122.6, 124.2, 126.4, 127.0, 128.7, 132.1, 134.4, 137.2, 143.2, 156.7, 165.1, 168.8, 170.2, 171.5, 173.0.

Compound A₄ : 2 - (3’ trifluoromethylphenylamino) - 4 - (tetrahydro - 1', 4'- oxazine) - 6 - [4'- {5''- (2''- nitrophenyl) 2''- isoxazol - 3''- yl} phenylamino] - s - triazine : IR (KBr) cm$^{-1}$: 3311 (-NH), 3079 (=CH str.), 824 (C-H bending), 1631 (C=N str., isoxazolomoiety), 1481(C-NO$_2$), 1228 (C-O-C), 1097 (C-F). 1H NMR (δ ppm, CDCl$_3$) : 3.81 (t, 8H, -CH$_2$, oxazine ring), 6.51 (1H, s, -CH$_2$), 6.8 to 8.3 (m, 13H, 12 Ar-H and1-NH). 13C NMR (δ ppm, DMSO) : 48.7, 65.2, 96.4, 111.5, 115.7, 118.2, 121.0, 124.6, 126.5, 128.2, 131.4, 134.6, 137.0, 141.1, 146.8, 165.8, 167.5, 170.6, 172.1, 174.5.
Compound A_{15}: 2 - (3’- trifluromethyphenylamino) - 4 - (tetrahydro - 1’, 4’ - oxazine) - 6 - [4’ - {5’’- (phenyl) 2’’ - isoxazol - 3’’- yl} phenylamino] - s - triazine : IR (KBr) cm^{-1} : 3356 (-NH), 3032 (=CH str.), 867(C-H bending), 1608 (C=N str., isoxazole moiety), 1257 (C-O-C), 1067 (C-F). ^1H NMR (δ ppm, CDCl$_3$) : 3.24 (t, 8H, oxazine ring), 6.41 (1H, s, -CH=), 6.8 to 8.1 (m, 14H, 13 Ar-H and1-NH). 13C NMR (δ ppm, DMSO) : 46.1, 66.3, 98.2, 112.5, 114.1, 120.3, 123.1, 125.8, 127.2, 129.0, 131.7, 133.2, 138.4, 142.8, 164.6, 166.4, 169.0, 172.7, 174.2.

4. RESULT AND DISCUSSION

4.1. Antimicrobial evaluation

All the newly synthesised compounds were screened for antibacterial and antifungal activity by Broth dilution method [30] against a panel of selected Gram - positive (S. aureus MTCC 96 and Streptococcus pyogenes MTCC 442) and Gram - negative bacteria (E. coli MTCC 443 and P. aeruginosa MTCC 441) and selected fungal strains (C. albicans MTCC 227, A. niger MTCC 282 and A calavatus MTCC 1323). DMSO was used as a solvent. Ampicillin and Chloramphenicol was used as a standard drug for antibacterial activity while Greseofulvin and Nystatin was used as a standard drug for antifungal activity. The results are showed in Table - 2.

4.1.A. Antibacterial Activity

From the screening results (Table-2), it has been observed that, In Gram positive bacterial strains compounds A$_2$, A$_5$, A$_{15}$ (MIC =100 µg/ml) and A$_8$, A$_9$, A$_{10}$ (MIC =125 µg/ml) exhibited excellent activity, compounds A$_1$, A$_3$, A$_7$ and A$_{11}$ (MIC =200 µg/ml) showed significant activity while compounds A$_4$, A$_6$, A$_{12}$, A$_{13}$ and A$_{14}$ (MIC =250 µg/ml) exhibited equipotent activity against S. aureus (MTCC 96) compared to Ampicillin (MIC = 250 µg/ml). Compounds A$_7$ and A$_{10}$ (MIC =100 µg/ml) exhibited equipotent activity, whereas compounds A$_2$, A$_3$, A$_4$, A$_6$ and A$_{14}$ (MIC =200 µg/ml) were moderately active against S. pyogenes (MTCC 442) compared to Ampicillin (MIC = 100 µg/ml). In Gram negative bacterial strains compound A$_2$ (MIC = 62.5 µg/ml) exhibited excellent activity against E. coli (MTCC 443) compared to Ampicillin (MIC = 100 µg/ml) and modest to Chloramphenicol (MIC = 50 µg/ml) while compounds A$_3$, A$_7$, A$_8$ (MIC = 100 µg/ml) and A$_4$, A$_5$, A$_{12}$ and A$_{14}$ (MIC = 125 µg/ml) showed equipotent activity against E. coli (MTCC 443) compared to Ampicillin (MIC = 100 µg/ml). Compound A$_7$ (MIC = 62.5 µg/ml) exhibited excellent activity against P. aeruginosa (MTCC 441) compared to Ampicillin (MIC = 100 µg/ml) and comparable to Chloramphenicol (MIC = 50 µg/ml), whereas compounds A$_4$, A$_6$ (MIC = 100 µg/ml) and A$_2$, A$_{12}$ (MIC = 125 µg/ml) showed equipotent activity against P. Aeruginosa (MTCC 441) compared to Ampicillin (MIC = 100 µg/ml), while all other compounds were showed low to moderately active against all selected organisms.

4.1.B. Antifungal Activity

From the screening results (Table-2), it has been observed that, compound A$_2$ (MIC = 250 µg/ml) and A$_7$ (MIC = 100 µg/ml) exhibited excellent activity against C. albicans (MTCC 227) compared to Greseofulvin (MIC = 500 µg/ml) and equipotent to Nystatin (MIC = 100
while compounds A1, A5, A6, A10, A12, A13 and A15 (MIC = 500 µg/ml) showed comparable activity against C. Albicans (MTCC 227) compared to Greseofulvin (MIC = 500 µg/ml). Compounds A1 (MIC = 200 µg/ml) and A2 (MIC = 100 µg/ml) exhibited equipotent activity against A. niger (MTCC 282) compared to Greseofulvin (MIC = 100 µg/ml) and Nystatin (MIC = 100 µg/ml). None of the compounds showed promising antifungal activity against A. clavatus (MTCC 1323).

Table 2. Antibacterial and antifungal activity data of compounds A1 - A15.

Comp	Minimal bactericidal concentration µg/ml	Minimal fungicidal concentration µg/ml		
	Gram positive	Gram negative		
	S. aureus MTCC-96	S. pyogenus MTCC-442	E. coli MTCC-443	P. aerug MTCC-441
A1	200	250	200	200
A2	100	200	62.5	125
A3	200	200	100	200
A4	250	200	125	100
A5	100	250	125	200
A6	250	250	200	100
A7	200	100	250	100
A8	125	250	100	125
A9	125	200	250	100
A10	125	100	200	500
A11	200	500	200	500
A12	250	250	125	125
A13	250	250	250	500
A14	250	200	125	250
A15	100	250	250	250
A	250	100	100	100
B	50	50	50	50
C	-	-	-	500
D	-	-	-	100

Where A= Ampicillin, B = Chloramphenicol (Standard Drugs for antibacterial activity)
C = Greseofulvin, D = Nystatin (Standard Drugs for antifungal activity)

5. CONCLUSION

In outline, we have synthesised some bioactive chalcones and convert them into pyrazoline and isoxazole moiety by using conventional method. The method adopted for the synthesis of pharmacologically important molecules in this investigation is simple, efficient, and inexpensive. The IR, 1H NMR, 13C NMR spectral analysis and elemental analysis of all
the newly synthesised compounds confirmed that purity of the entire synthesised compound is good.

All the synthesised compounds were screened for antimicrobial activity. Majority of the synthesised compounds were found to potentially active against both selected Gram positive, Gram negative organisms and selected fungal organisms. From the results of antibacterial and antifungal activity, it can be concluded that compounds A_2, A_7 and A_{12} were found more active then the remaining compounds due to the present of chlorine atom. So overall it was revealed that the no substitution on phenyl ring showed no inhibition of the tested bacteria while the compounds that showed some inhibition was due to the presence of substitution of methoxy, chloro, phenoxy and nitro group on some position of the phenyl ring. These finding concluded that the titled compounds have the properties to kill the microbes in some extent when compared with standared drug. These result suggest that chalcone and their derivatives have an opportunity to behave as broad spectrum antimicrobial agents and have excellent scope for further development as commercial antimicrobial agents.

Acknowledgement

Authors are grateful to B. K. M. Science College, Valsad for providing research facilities, Atul Ltd. (Atul) for the IR analysis, RSIC Punjab University for the 1H-NMR, 13C NMR spectral analysis as well as elemental analysis and Microcare Laboratory, Surat, for antimicrobial activity screening.

References

[1] J. Quiroga, Y. Diaz, B. Insuasty, R. Abonia, M. Nogueras, J. Cobo, *Tetrahedron Letters* 51 (21) (2010) 2928 - 2930.
[2] N. Sunduru, Nishi, S. Palne, P. M. S. Chavhan, S. Gupta, *European Journal of Medicinal Chemistry* 44 (6) (2009) 2473 - 2481.
[3] T. Shah, V. Desai, *Journal of Serbian Chemical Society* 72 (5) (2007) 443 - 449.
[4] N. Kumar, S. Tiwari, A. K. Yadav, *Indian Journal of Chemistry* 46B (4) (2007) 702 - 706.
[5] W. J. Zhou, S. J. Ji, Z. L. Shen, *Journal of Organometallic Chemistry* 691 (7) (2006) 1356 -1360.
[6] P. S. Patil, S. M. Dhmaprakash, K. Ramakrishna, H. K. Fun, R. S. S. Kumar, D. N. Rao, *Journal of Crystal Growth* 303 (2) (2007) 520 - 524.
[7] M. T. Konieczny, W. Konieczny, M. Sabisz, A. Skladanowski, R. Wakiec, K. E. Augustynowicz, Z. Zwolska, *European journal of Medicinal Chemistry* 42 (5) (2007) 729 -733.
[8] D. Kumar, N. M. Kumar, K. Akamatsu, E. Kusaka, H. Harada, T. Ito, *Bioorganic Medicinal Chemistry Letters* 20 (13) (2010) 3916 - 3919.
[9] S. Ducki, R. Forrest, J. A. Hadfield, A. Kendall, N. J. Lawrence, A. T. McGown, D. Rennison, *Bioorganic Medicinal Chemistry Letters* 8 (9) (1998) 1051 - 1056.
[10] Z. Nowakowska, *European Journal of Medicinal Chemistry* 42 (2) (2007) 125 - 137.
[11] O. Sabzevari, S. Mahmoudian, B. Minaei, H. Paydar, *Toxicology Letters* 196 (2010) S213.

[12] F. F. Barsoum, H. M. Hosni, A. S. Girgis *Bioorganic Medicinal Chemistry* 14 (11) (2006) 3929 - 3937.

[13] R. Foresti, M. Hoque, D. Monti, C. J. Green, R. Motterlini, *Journal of Pharmacology and Experimental Therapeutics* 312 (2) (2004) 686 - 693.

[14] N. S. Mewada, D. R. Shah, K. H. Chikhalia, *International Letters of Chemistry, Physics and Astronomy* 17 (3) (2014) 281- 294.

[15] X. H. Zhang, S. K. Wu, Z. Q. Gao, C. S. Lee, S. T Lee, H. L. Kwong, *Thin Solid Films* 371 (1 - 2) (2000) 40 - 46.

[16] G. Thirunarayanan, *International Letters of Chemistry, Physics and Astronomy* 18 (2014) 47-56.

[17] M. Amir, H. Kumar, S. A. Khan, *Bioorganic and Medicinal Chemistry Letters* 18 (3) (2008) 918 - 922.

[18] M. I. Hussain, S. Shukla, *Indian Journal of Chemistry* 25B (1986) 983 - 986.

[19] A. A. Bilgin, E. Palaska, R. Sunal, and B. Gunnesel, *Pharmazie* 49 (1) (1994) 67 - 69.

[20] A. Solankee, S. Solankee, G. Patel, K. Patel, R. Patel, *Der Pharma Chemica* 3 (1) (2011) 300 - 305.

[21] M. Shekarchi, B. P. Hamedani, L. Navidpour, N. Adib, A. Shafiee, *Journal of Iranian Chemical Society* 5 (1) (2008) 150 - 158.

[22] J. Deng, T. Sanchez, N. Neamati, J. M. Briggs, *Journal of Medicinal Chemistry* 49 (5) (2006) 1684 - 1692.

[23] B. J. Wakefield, D. J. Wright, *Advance Heterocyclic Chemistry* 25 (1979) 147 - 186.

[24] C. Kashima, *Heterocycles* 12 (10) (1979) 1343 - 1368.

[25] M. M. M. Santos, F. Natalia, I. Jim, C. J. Simon, H. B. Michael, M. L. Martins, M. Rui, *Bioorganic Medicinal Chemistry Letters* 20 (1) (2010) 193 - 195.

[26] A. Solankee, K. Patel, R. Patel, *Elixir Organic Chemistry* 44 (2012) 7316 - 7319.

[27] V. Subash, B. Michael, U. Reaz, W. Baojie, F. G. Scott, P. A. Pavel, *Journal of Medicinal Chemistry* 51 (10) (2008) 1999 - 2002.

[28] J. A. Egan, R. P. Nugent, C. N. Filer, *Journal of Radioanalytical and Nuclear Chemistry* 279 (3) (2009) 935 - 936.

[29] A. Solankee, K. Kapadia, Anaciric, M. Sokovic, I. Doytchinova, A. Geronikaki, *European Journal of medicinal chemistry* 45 (2) (2010) 510 - 518.

[30] A. Rattan, *5th ed. B. Y. Churchill Livingstone* (2005) 85 - 90.

(Received 01 February 2015; accepted 12 February 2015)