Exclusion of known gene for enamel development in two Brazilian families with amelogenesis imperfecta

Maria CLG Santos*1, P Suzanne Hart2, Mukundhan Ramaswami3, Cláudia M Kanno4, Thomas C Hart5 and Sergio RP Line6

Address: 1PHD student, Department of Morphology, Dental School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil, 2PHD, National Human Genome Research Institute, NIH Bethesda MD, USA, 3student, National Institute for Dental and Craniofacial Research, Bethesda, MD, USA, 4School of Dentistry of Aracatuba, University of the State of Sao Paulo, UNESP, Brazil, 5PHD, National Institute for Dental and Craniofacial Research, Bethesda, MD, USA and 6PHD, Department of Morphology, Dental School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil

Email: Maria CLG Santos* - mariacristina@fop.unicamp.br; P Suzanne Hart - shart@mail.nih.gov; Mukundhan Ramaswami - mramaswami@nidcr.nih.gov; Cláudia M Kanno - cmkanno@uol.com.br; Thomas C Hart - thart@nidcr.nih.gov; Sergio RP Line - serglin@fop.unicamp.br

* Corresponding author

Abstract

Amelogenesis imperfecta (AI) is a genetically heterogeneous group of diseases that result in defective development of tooth enamel. Mutations in several enamel proteins and proteinases have been associated with AI. The object of this study was to evaluate evidence of etiology for the six major candidate gene loci in two Brazilian families with AI. Genomic DNA was obtained from family members and all exons and exon-intron boundaries of the ENAM, AMBN, AMELX, MMP20, KLK4 and Amelotin gene were amplified and sequenced. Each family was also evaluated for linkage to chromosome regions known to contain genes important in enamel development. The present study indicates that the AI in these two families is not caused by any of the known loci for AI or any of the major candidate genes proposed in the literature. These findings indicate extensive genetic heterogeneity for non-syndromic AI.

Background

Amelogenesis imperfecta (AI) is a group of inherited defects of dental enamel formation that show both clinical and genetic heterogeneity [1]. In its mildest form, AI causes discoloration, while in the most severe presentation the enamel is hypocalcified causing it to be abraded from the teeth shortly after their emergence into the mouth [2]. Both the primary and permanent dentitions may be affected. Enamel findings in AI are highly variable, ranging from deficient enamel formation to defects in the mineral and protein content [3]. Four main types of AI have been described: hypoplastic, hypocalcified, hypomutation and hypomutation-hypoplastic with taurodontism [4].

The AI phenotypes vary widely depending on the specific gene involved, the location and type of mutation, and the corresponding putative change at the protein level [5]. Different inheritance patterns such as X-linked, autosomal dominant and autosomal recessive types have been reported and 14 subtypes of AI are recognized [4].

The distribution of AI types is known to vary in different populations [3], suggesting allele frequency differences
between ethnic groups [6]. The combined prevalence of all forms of AI has been reported as 1:14000 in the U.S. [7], 1:8000 in Israel [6] and 1:4000 in Sweden [8]. The autosomal dominant form of AI is most prevalent in the United States and Europe, while autosomal recessive AI is most prevalent in the Middle East [6,7]. Different mutations in genes that encode principal matrix proteins and proteinases of enamel have been associated with the different phenotypes of AI.

The main structural proteins in forming enamel are amelogenin, ameloblastin, and enamelin. These proteins are proteolytically cleaved following their secretion. Some of the cleavage products accumulate in the enamel layer, while others are either degraded or reabsorbed by ameloblasts [9]. Different proteinases such as matrix metalloproteinase-20 and kallikrein-4, regulate the enamel matrix protein processing that ultimately defines the structure and composition of enamel [10].

Amelogenin, the protein product of the AMELX Xp22.3-p22.1 and AMELY Yp11 genes, is considered to be critical for normal enamel thickness and structure [11]. Amelogenin is the most abundant protein in developing enamel, accounting for more than 90% of total enamel protein [12], while ameloblastin and enamelin account for about 5% and 2% of total protein, respectively [9]. Amelogenin is thought to form a scaffold for enamel crystallites and to control their growth [11], but its exact functions are not fully known [13]. At least 14 mutations have been described in the X-chromosome amelogenin gene and are associated with hypoplastic and/or hypomineralization AI [12-19]. However, no cases of mutation in the Y-chromosome amelogenin gene have been reported [13], due to the fact that, the amino acid sequence of the X and Y chromosome amelogenin genes are not the same and only the X copy is critical for normal enamel development.

The chromosome 4q13 region contains at least 3 genes important in enamel development: enamelin, ameloblastin, and amelotin. Enamelin gene mutations have been identified in autosomal dominant AI [1,5,20,21]. Recently it was reported that transgenic mice overexpressing ameloblastin develop AI [22]. In ameloblastin null mutant mice, ameloblasts regain some early phenotypes of undifferentiated dental epithelial cells, and the abnormalities occur when the cells detach indicating that ameloblastin is an adhesion molecule key for enamel formation [23].

Recently a novel gene coding for an ameloblast-specific protein, amelotin, was mapped close to the amelobastin and enamelin genes. It was hypothesized that amelotin is involved primarily in the maturation of enamel and thus the formation of its unique biomechanical characteristics during tooth development [24,25].

Mutations in the predominant enamel proteinases [9] have also been associated with AI. MMP20 is secreted into the enamel matrix in the secretory and transition developmental stages [10,26,27]. This enzyme accounts for most of the proteolytic activity of the enamel matrix and is thought to be responsible for the processing of the amelogenin protein causing the tyrosine-rich amelogenin peptide (TRAP) to form [28,29]. Kallikrein-4 is thought to be the major enzyme responsible for the degradation of enamel proteins during the maturation stage, and has been shown to cleave amelogenin [30]. The human MMP20 and KLK4 genes map to chromosome 11 and 19, respectively [31]. Two different mutations in MMP20 gene and one in KLK4 gene confirm that mutations in theses genes have been associated with autosomal-recessive forms of AI [32,33].

The purpose of this study was to evaluate evidence for a genetic etiology for the six major candidate gene loci (ENAM, AMBN, AMELX, MMP20, KLK4, Amelotin) in two Brazilian families segregating AI. All exons and intron-exon junctions of these genes were sequenced, and polymorphic DNA loci spanning candidate genes in seven chromosomal regions were genotyped to evaluate support for linkage. Results of these studies provide further evidence for genetic heterogeneity of AI.

Materials and methods

Family and phenotype analyses

This study was carried out with the approval of the FOP/UNICAMP Ethics Committee (protocol 127/03) and informed consent was obtained from all subjects. Two families segregating AI were identified. All available family members were examined clinically and in some cases radiographically. Oral examinations included visual examination in a dental clinic using artificial light and dental mirror evaluations of teeth and supporting tissues. Affected and unaffected individuals were also evaluated clinically for the presence of skin, hair, fingernail and osseous abnormalities known to be associated with systemic or syndromic conditions that can be associated with enamel defects. No history of nutritional disturbances was reported by the affected members of the two families.

Affected status of family 1 was established clinically by the presence of a generalized yellow-brown discoloration of primary and permanent dentitions. The deficiency in the enamel mineral content was evidenced by a lack of radiographic enamel opacity and a pathological loss of enamel through wear and fracturing. The clinical phenotype and family history suggested an autosomal recessive hypocalcified AI (Fig 1).
The enamel of affected members of family 2 was thin with rough and pitted surface (hypoplastic AI, Family 2). Both primary and permanent dentitions were affected. The clinical phenotype and family history did not allow determining the pattern of gene inheritance (Fig 2).

Blood was obtained by venepuncture (Vacutainer system) and DNA extracted using Kit Puregene (Gentra Systems) for genotyping and sequence analysis.

Genotyping studies
Members of each family were evaluated for linkage to chromosomal regions known to contain genes important in enamel development at previously described [24,32-38]. Table 1 shows studied markers for linkage to chromosomal regions known to contain genes important in enamel development. The PCR reactions were performed using 20 ng of genomic DNA in a final volume of 7.5 μl, as reported previously [39]. All electrophoretic evaluations of the marker gene allele sizes were performed on an ABI 3100XL automated DNA sequencer using POP-7, 37 cm capillary and an internal size standard (ROX GS 400 standard (Applied Biosystems, Foster City, CA, USA)). Allele calling was done using the genescan software (Applied Biosystems, Foster City, CA, USA).

Mutation analysis
PCRs were carried out in a Perkin-Elmer GeneAmp 2400 thermal cycler and total volume of 50 μl, containing 500 ng genomic DNA, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl₂, 1 μM of each primer, 200 mM each dNTPs, and 1 units Taq DNA polymerase (Amersham Pharmacia Biotech AB, Uppsala, Sweden). PCR was performed by an initial denaturation at 95°C for 5 min, followed by 35 cycles of 1 min at 95°C, annealing for 1 min at temperature listed in Table 2, extension at 72°C for 1 min, and a final extension at 72°C for 7 min. The primer sequences and PCR conditions are shown in Table 2.

The PCR products were electrophoresed through 1% agarose gels and the amplicons extracted using GFX™ PCR DNA and Gel Band Purification Kit (Amersham Pharmacia Biotech AB, Uppsala, Sweden).

Figure 1
Clinical phenotype and pedigree of Family 1. Family 1: A phenotype demonstrating generalized yellow-brown discoloration of the dentition (A1 patient III-2, A2 patient III-5); B X-ray showing lack of enamel opacity and a pathological loss of enamel (B1 patient III-2, B2 patient III-5); C pedigree of Family 1.
Biotech). Extracted amplicons were sequenced using *dye* Big Dye Terminator Kit (Perkin Elmer) and an ABI Prism 377 DNA Sequencer™.

Results and Discussion

Examinations of all affected and unaffected members from both families studied indicated 4 of the 17 family members evaluated were affected (2 members affected in each family). Affected individuals showed no signs of syndromic conditions or systemic illnesses associated with defective enamel development. None of the unaffected family members had generalized enamel defects clinically and showed no evidence of radiographic enamel defects, taurodontism or dental abnormalities. There was variability in the severity of expression of the AI phenotype in family 2. Individual III-4 of family 2 showed more severe pitting than his mother (individual II-6). This difference in severity between males and females may be indicative of X-linked AI form. The presence of only one male and one female affected, however, did not allow confirming this pattern of inheritance. Additionally sequencing of amelogenin X gene did not reveal any mutations in this gene that could be associated with enamel phenotype. Radiographically, enamel was very thin but in some areas it was possible to note that enamel displayed a radiodensity similar to that of normal enamel (Fig. 2).

Affected individuals of family 1 reported variable dental hypersensitivity ranging from mild dental discomfort with thermal or chemical stimulation to normal dental sensitivity. Radiographically the teeth displayed enamel that had a radiodensity similar to that of dentin (Fig. 1).

A number of genes involved in enamel formation have been identified, and based on their expression and function, several of these genes have been proposed as candidates for AI. This study all available family members were genotyped for multiple short tandem repeat polymorphism (STRP) type markers spanning each AI candidate gene locus. Haplotyped genotype results did not show support for linkage to any of the chromosomal regions tested, clearly rejecting the linkage hypothesis throughout all six candidate regions.

The exons and intron/exon junctions of the *AMELX*, *ENAM*, *AMBN*, *MMP20*, *KLK4* and Amelotin genes were sequenced and no gene mutations were identified in any individuals. A novel polymorphism was identified in the amelotin gene next exon 5 this gene. This SNP is charac-

Table 1: Markers for linkage to chromosome regions known to contain genes important in enamel development

Markers	Label	ASR	Markers	Label	ASR	Markers	Label	ASR
D1S252	VIC	86–112	D19S902	FAM	237–273	DXS1060	NED	244–268
D1S498	NED	187–209	D19S904	FAM	213–229	DXS8051	NED	104–134
D1S305	FAM	156–176	D19S246	FAM	185–233	DXS987	FAM	267–293
D1S1153	VIC	270–404	D19S571	NED	289–319	DXS1226	NED	280–302
D4S719	FAM	250–300	D20S117	FAM	151–187	DXS1214	VIC	284–298
AMBN	VIC	250–280	D20S889	FAM	87–123	DXS1068	VIC	244–264
922H22	NED	350	D20S115	NED	234–246	DXS993	FAM	267–293
D4S2964	FAM	120	D20S186	VIC	113–139	DXS991	NED	313–341
D7S284	HEX	272–307	D20S112	FAM	213–237	DXS986	FAM	151–181
D7S272	VIC	211–261	D20S195	FAM	128–154	DXS990	FAM	122–132
D7S1837	FAM	193–210	D20S107	FAM	197–221	DXS1106	VIC	126–140
D7S1743	VIC	88–188	D20S178	NED	179–195	DXS8055	VIC	312–324
D1S898	FAM	141–165	D20S196	NED	259–295	DXS1001	VIC	191–211
D1S1391	TET	158–178	D20S100	VIC	209–235	DXS1047	VIC	156–172
D1S1347	HEX	177–203	D20S171	VIC	127–155	DXS1227	FAM	79–99
D1S908	VIC	172–190	D20S173	VIC	128–182	DXS8043	NED	146–180
D1S4090	FAM	161–189				DXS8091	VIC	80–102
						DXS1073	FAM	306–334

ASR: Allele Size Range (base pairs)
terized by a change of A to G in base 7125 (NCBI35:4:71564458:71579819:1). However, this SNP does not change the amino acid coded for by the triplet codon sequence and, therefore, does not appear to be associated with AI in the studied families. Figure 3 shows the position of this polymorphism.

While we did not find exon mutations, it is possible that others types of mutations may be involved, such as promoter or intron mutations or deletions that encompass whole exons. However, results of the genotyping analyses do not support genetic linkage to the interval, suggesting that these regions are not involved with AI in the studied families.

Others failed to show association between mutation in known genes involved in enamel formation and AI [40]. It has been known for some time that defects in known genes involved in enamel formation and AI [40].

Table 2: The primer sequences and PCR conditions

Gene	Primer (5’ – 3’)	AT bp	Gene	Primer (5’ – 3’)	AT bp
MMP20	F: AAGTGCACACTGCAGCTGC	68°C	ENAM	F: GAGACCTGACTGACTGCTCTAT	60°C
Exon 1	R: GGTGTTTTCAGGCAAGGAGG	170	Exon 1	R: TCTCTAATACCTCACCAGATG	413
MMP20	F: ACTCGCTGAGACGGCCTGA	58°C	ENAM	F: CAAAGACAAGCTAAAAGTCCTCA	58°C
Exon 2	R: CTCGAAATGATGAGCACTTGG	318	Exon 1 -3	R: GCGCCCTGACAGTCTTGTGCA	735
MMP20	F: GAAAACATGGCTCCTCCGTT	58°C	ENAM	F: GCAGCTGGAACACTCAGATGT	58°C
Exon 3	R: AGATGGAATGCAATCTGAC	201	Exon 4 e 5	R: ACTCTGGCTGGATGGAATTTA	573
MMP20	F: GAAGACTCAATCTGTTGG	62°C	ENAM	F: CACTGGGAAATGTTCAAGG	58°C
Exon 4	R: CAGCTTATGATGAGACTTGG	196	Exon 6	R: AACGAGTTTACTGATCAACAAG	212
MMP20	F: CCTGTGTTGATACGCTTTT	60°C	ENAM	F: CAGCCTGATACGCTCTTG	58°C
Exon 5	R: GGCTGTCTACACAAAGG	234	Exon 7	R: AGCAGCAGGGAAGTGGT	157
MMP20	F: CCCCACATCTTGTGACCA	60°C	ENAM	F: TTTACATTAGCTTGGGCTCTT	58°C
Exon 6	R: AAATAAAAGATAGATAGTA	232	Exon 9	R: AAACACATTGCTGGGAAACCAAG	58°C
MMP20	F: CATCTGACAAGCTAAGGAC	58°C	ENAM	F: ACAAATGACCTGCTTACAGA	60°C
Exon 9	R: GCAAAGCAAGGATTTTTTATG	223	Exon 10	R: ATTTGGTTTATACCTGCTAGTAAG	787
AMELX	F: GATTTGTTGTACAGATGCG	59°C	ENAM	F: CAAGAAACACTTTACCCATCTC	60°C
Exon 1	R: TGGGAGCAACTAAAGGTAAC	232	Exon 10.3	R: CATGGCAATGTCATGCACATCC	753
AMELX	F: TGTTTTTATGGAGGACCA	65°C	ENAM	F: AGCTGGGCTTCAGAAAAATCCAAT	60°C
Exon 2	R: TTACTCAGGCCATTGGAAGG	148	Exon 10.4	R: ATAGGCTTCTTGTGCTCCTC	709
AMELX	F: CCTCCCTGTAAAGAGCTAC	67°C	ENAM	F: CTCATTAGGCAAGGCTTAAA	60°C
Exon 3	R: TTTTCAAGCCAGGCAATTG	126	Exon 7	R: CCTCAAATCAGACGAGTACAGA	58°C
AMELX	F: GTGAACTCATTACCTACG	67°C	KLK4	F: GCAGCTTGGTACAGTCAAGG	58°C
Exon 4	R: AATGTCCACATACGCGTGGC	292	Exon 1	R: AGGAGCAAGAGGAGGATGG	150
AMELX	F: GTGAACTCATTACCTACG	67°C	KLK4	F: TGTCAGCTGCTGAGAATCT	58°C
Exon 5	R: GTGAACTCATTACCTACG	67°C	Exon 1	R: ATTTGGT GAGGGTTATTAGAAG	334
AMELX	F: GGCTTTGGGATTCAGG	994	Exon 2	R: ATGACCTCGATATAGCCGG	636
Exon 6	R: GTCTCAAAAATATCTACCACTTCC	994	Exon 3	R: TTTCACACCTTCCACTGAG	58°C
AMELX	F: CATCTACAACACGGAAAC	67°C	KLK4	F: GAATTCCCTGGAGCTTTCG	58°C
Exon 7	R: GCAAGCCAGGATTTTTATG	223	Exon 4 e 5	R: GTGATTTCTAGGCGTTTC	214
AMBN	F: TTTCAGAGGCAAGGATCGTAC	358	AMELX	F: CTGACGCTAATACCCACATGTA	58°C
Exon 1	R: TGGTGTGGTCTGAGTTCACT	358	Exon 2	R: CTGGTGTGGTCTGAGTTCACT	58°C
AMBN	F: CTCTTCTCCTCGACCAAGC	58°C	Exon 3	R: TTTTCACCTCCCACAACGA	437
Exon 3	R: TGCACTGAAATTATAAGCAGAACGT	385	Exon 2	R: ATTTGGT GAGGGTTATTAGAAG	306
AMBN	F: TCCACCTTTGCGTATGATGTT	58°C	AMELX	F: TGTCAGCTGCTGAGAATCT	496
Exon 4	R: TTGTGTTGCTGCTGCTGCA	376	AMELX	F: GGCATATGACGCGGAACT	58°C
AMBN	F: CTGGCGACAGACGACAGATT	58°C	AMELX	F: GGCATATGACGCGGAACT	58°C
Exon 5	R: TGCAATTGATGAGCAAAGG	370	AMELX	F: GGCATATGACGCGGAACT	58°C
AMBN	F: TCCATGAGCTCCTCCAGAT	58°C	AMELX	F: GGCATATGACGCGGAACT	58°C
Exon 6	R: TTATGCTGGAAGGTCTCACT	452	AMELX	F: GGCATATGACGCGGAACT	58°C
AMBN	F: TTGGTGTACATCCCTAAA	58°C	Exon 7	R: TAAGAAGATGACTGCTTCATCTACTTGA	373
Exon 7-9	R: TCACTGGAATAGGAGCAGATAGA	670	AMELX	F: CTGACGCTAATACCCACATGTA	58°C
AMBN	F: TCACTGGAATAGGAGCAGATAGA	58°C	AMELX	F: GGCATATGACGCGGAACT	58°C
Exon 10-12	R: CGATGGCTCAAATACCCACATGTA	950	AMELX	F: CTGACGCTAATACCCACATGTA	58°C
AMBN	F: CAGCAACCTCTCCTATTCCTCA	58°C	AMELX	F: GGCATATGACGCGGAACT	58°C
Exon 13	R: AAAGCAAGAGGGGAGCTCACA	842	AMELX	F: GGCATATGACGCGGAACT	58°C
candidate genes was insufficient to identify the causative
gene defect in most families studied, suggesting that
unknown genes/proteins that are critical for dental
enamel formation. Our results indicate that additional
locus coding for genes involved in ameloblast cytodiffer-
tentiation and function remain unidentified. Recently,
Mendoza et al. (2006) [42] have mapped a new locus for
autosomal dominant amelogenesis imperfecta on the
long arm of chromosome 8 at 8q24.3.

In this study, exclusion of six candidate genes suggests that
this common AI type is caused by alteration of a gene that
is either not known or not considered to be a major con-
tributor to enamel formation. Continued mutational
analysis of families with AI will allow a comprehensive
standardized nomenclature system to be developed for
this group of disorders that will include molecular deline-
ation as well as a mode of inheritance and phenotype.

Conclusion
The present study indicates that the autosomal recessive
hypocalcified and a hypoplastic form of AI in two distinct
families are not caused by mutations in any of the known
loci for amelogenesis imperfecta. This suggests that many
additional genes potentially contribute to the etiology of
AI.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Acknowledgements
This study was supported by FAPES grant 03/09128-8 and CAPES grant
BEX1914/05-7.

References
1. Rajpar MH, Harley K, Laing C, Davies RM, Dixon MJ: Mutation of
 the gene encoding the enamel-specific protein, enamelin,
causes autosomal-dominant amelogenesis imperfecta. Hum
 Mol Genet 2001, 10(16):1673-1677.
2. Wright JT, Deaton TG, Hall KJ, Yamauchi M: The mineral and pro-
 tein content of enamel in amelogenesis imperfecta. Connect
 Tissue Res 1995, 32(1–4):247-252.
3. Nusier M, Yassin O, Hart TC, Samimi A, Wright JT: Phenotypic
diversity and revision of the nomenclature for autosomal
recessive amelogenesis imperfecta. Oral Surg Oral Med Oral
Pathol Oral Radiol Endod 2004, 97(2):220-230.
4. Witkop Cj: Amelogenesis imperfecta, dentinogenesis imperfecta
 and dentin dysplasia revisited:problems in classification.
 J Oral Pathol 1988, 17:547-553.
5. Hart PS, Michalec MD, Seow WK, Hart TC, Wright JT: Identification
 of the enamelin (g.8344delG) mutation in a new kindred
 and presentation of a standardized ENAM nomenclature.
 Arch Oral Biol 2003, 48(8):589-596.
6. Chosack A, Eidelberg E, Wisotski I, Cohen T: Amelogenesis
 imperfecta among Israeli Jews and the description of a new
 type of local hypoplastic autosomal recessive amelogenesis
 imperfecta. Oral Surg Oral Med Oral Pathol 1979, 47(2):148-156.
7. Witkop C, Sauk JJ: Heritable defects of enamel. In Oral Facial
 Genetics Volume I. St. Louis: CV Mosby Company; 1976:151-1226.
8. Sundell S, Koch G: Hereditary amelogenesis imperfecta. I.
 Epidemiology and clinical classification in a Swedish child popu-
 lation. Swed Dent J 1985, 9(4):157-169.
9. Simmer JP, Hu JC: Expression, structure, and function of
 enamel proteinases. Connect Tissue Res 2002, 43(2–3):441-449.
10. Bartlett JD, Simmer JP, Xue J, Margolis HC, Moreno EC: Molecular
 cloning and mRNA tissue distribution of a novel matrix met-
 alloproteinase isolated from porcine enamel organ. Gene
 1996, 183(1–2):123-128.
11. Fincham AG, Lau EC, Simmer J, Zeichner-David M: Amelogenin
 biochemistry-form and function. Amsterdam: Elsevier Science
 1992, 1:187-201.
12. Fincham AG, Moradian-Ouldak J, Simmer JP: The structural biology
 of the developing dental enamel matrix. J Struct Biol 1999,
 126(3):270-299.
13. Hart PS, Aldred MJ, Crawford PJ, Wright NJ, Hart TC, Wright JT:
 Amelogenesis imperfecta phenotype-genotype correlations
 with two amelogenin gene mutations. Arch Oral Biol 2002,
 47(4):261-265.
14. Aldred MJ, Crawford PJ, Roberts E, Thomas NS: Identification of a
 nonsense mutation in the amelogenin gene (AMELX) in a
 family with X-linked amelogenesis imperfecta (AIH1). Hum
 Genet 1992, 90(4):413-416.
15. Lench NJ, Winter GB: Characterisation of molecular defects in
 X-linked amelogenesis imperfecta (AIH1). Hum Mutat 1995,
 5(3):251-259.
16. Kindelan SA, Brook AH, Gangemi L, Lench N, Wong FS, Fearne J,
 Jackson Z, Foster G, Stringer BM: Detection of a novel mutation
 in X-linked amelogenesis imperfecta. J Dent Res 2000,
 79(12):1978-1982.
17. Ravassipour DB, Hart PS, Hart TC, Ritter AV, Yamauchi M, Gibson C,
 Wright JT: Unique enamel phenotype associated with amelo-
 genin gene (AMELX) codon 41 point mutation. J Dent Res 2000,
 79(7):1476-1481.
18. Aldred MJ, Hall RK, Kilpatrick N, Bankier A, Savarirayan R, Lamande
 SR, Lench NJ, Crawford PJ: Molecular analysis for genetic coun-
 selling in amelogenesis imperfecta. Oral Dis 2002, 8(5):249-253.
19. Greene SR, Yuan ZA, Wright JT, Amjad H, Abrams WR, Buchanan JA,
 Trachtenberg DI, Gibson CW: A new frameshift mutation
 encoding a truncated amelogenin leads to X-linked amelo-
 genesis imperfecta. Arch Oral Biol 2002, 47(3):211-217.
20. Mardhk CK, Backman B, Simmons D, Golovleva I, Gu TT, Holmgren G,
 MacDougall M, Forsman-Semb K: Human ameloblastin gene:
 genomic organization and mutation analysis in amelogenesis
 imperfecta patients. Eur J Oral Sci 2001, 109(1):8-13.
21. Kida M, Ariga T, Shirakawa T, Oguchi H, Sakiyama Y: Autosomal-
 dominant hypoplastic form of amelogenesis imperfecta
 caused by an enamelin gene mutation at the exon-intron
 boundary. J Dent Res 2002, 81(11):1378-1382.
22. Paine ML, Wang HJ, Luo W, Krebsbach PH, Snead ML: A transgenic
 animal model resembling amelogenesis imperfecta related to
 ameloblastin overexpression. J Biol Chem 2003,
 278(21):19447-1952.
23. Fukumoto S, Kiba T, Hall B, Iehara N, Nakamura T, Longenecker G, et al: Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol 2004, 167(5):973-983.

24. Iwasaki K, Bajenova E, Somogyi-Ganss E, Miller M, Nguyen V, Nourkeyhani H, Gao Y, Wendel M, Ganss B: Ameloblastin---a Novel Secreted, Ameloblast-specific Protein. J Dent Res 2005, 84(12):1127-1132.

25. Mendoza G, Pemberton TJ, Lee K, Scarel-Caminaga R, Mehrian-Shai R, Gonzalez-Quevedo C, Ninis V, Hartlala J, Allayee H, Snead ML, Leal SM, Line SR, Patel PI: A new locus for autosomal dominant hypomaturation amelogenesis imperfecta on chromosome 8q24.3. Hum Genet 2007, 120(5):653-662.

26. Fukuoka M, Tanabe T, Uchida T, Lee SK, Ryu OH, Murakami C, Wakida K, Simmer JP, Yamada Y, Bartlett JD: Enamelysin (matrix metalloproteinase-20): localization in the developing tooth and effects of pH and calcium on amelogenin hydrolysis. J Dent Res 1998, 77(8):1580-1588.

27. Bartlett JD, Simmer JP: Proteinases in developing dental enamel. Crit Rev Oral Biol Med 1999, 10(4):425-441.

28. Ryu OH, Fincham AG, Hu CC, Zhang C, Qian Q, Bartlett JD, Simmer JP: Characterization of recombinant pig enamelysin activity and cleavage of recombinant pig and mouse amelogenins. J Dent Res 1999, 78(3):743-750.

29. Palosaari H, Pennington CJ, Larmas M, Edwards DR, Tjaderhane L, Salo T: Expression profile of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in mature human odontoblasts and pulp tissue. Eur J Oral Sci 2003, 111(2):117-127.

30. Ryu O, Hu JC, Yamakoshi Y, Villetain JL, Cao X, Zhang C, Bartlett JD, Simmer JP: Porcine kallikrein-4 activation, glycosylation, activity, and expression in prokaryotic and eukaryotic hosts. Eur J Oral Sci 2002, 110(5):358-365.

31. DuPont BR, Hu CC, Reveles X, Simmer JP: Assignment of serine protease 17 (PRSS17) to human chromosome bands 19q13.3-->q13.4 by in situ hybridization. Cytogenet Cell Genet 1999, 86(3-4):212-213.

32. Ozdemir D, Hart PS, Ryu OH, Choi SJ, Ozdemir-Karatas M, Farite E, Pesico N, Hart TC: MMP20 active-site mutation in hypomaturation amelogenesis imperfecta. J Dent Res 2005, 84(11):1031-1035.

33. Hart PS, Hart TC, Michalec MD, Ryu OH, Simmons D, Hong S, Wright JT: Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J Med Genet 2004, 41(7):545-549.

34. Collier PM, Saut JF, Rosenbloom SJ, Yuan ZA, Gibson CW: An amelogenin gene defect associated with human X-linked amelogenesis imperfecta. Arch Oral Biol 1997, 42(3):235-242.

35. MacDougall M, DuPont BR, Simmons D, Reus B, Krebsbach P, Karrman C, Holmgren G, Leach RJ, Forsman K: Ameloblastin gene (AMBN) maps within the critical region for autosomal dominant amelogenesis imperfecta at chromosome 4q21. Genomics 1997, 41(1):115-118.

36. Deutsch D, Palmon A, Dafni L, Mao Z, Leytin V, Young M, Fisher LW: Tuftelin—an apical protein and gene structure. Eur J Oral Sci 1998, 106(Suppl 1):315-323.

37. Vieira H, Gregory-Evans K, Lim N, Brookes JL, Brueton LA, Gregory-Evans CY: First genomic localization of oculo-oto-dental syndrome with linkage to chromosome 20q13.1. Invest Ophthalmol Vis Sci 2002, 43(8):2540-2545.

38. Luukusa T, Fryns JP: Syndrome of facial, oral, and digital anomalies due to 7q21.2-->q22.1 duplication. Am J Med Genet 1998, 72(1):54-58.

39. Zhang GW, Kotow M, Daggard G: A RAPD-PCR genotyping assay which correlates with serotypes of group B streptococci. Lett Appl Microbiol 2002, 35(3):247-250.

40. Hart PS, Wright JT, Savage M, Kang G, Bessen JT, Gorry MC, Hart TC: Exclusion of candidate genes in two families with autosomal dominant hypocalcified amelogenesis imperfecta. Eur J Oral Sci 2003, 111(4):326-331.

41. Kim JW, Simmer JP, Lin BP, Seymour F, Bartlett JD, Hu JC: Mutational analysis of candidate genes in 24 amelogenesis imperfecta families. Eur J Oral Sci 2006, 114(1):3-12.

42. Mendoza G, Pemberton TJ, Lee K, Scarel-Caminaga R, Mehrian-Shai R, Gonzalez-Quevedo C, Ninis V, Hartlala J, Allayee H, Snead ML, Leal SM, Line SR, Patel PI: A new locus for autosomal dominant amelogenesis imperfecta on chromosome 8q24.3. Hum Genet 2007, 120(5):653-662.