Diabetes mellitus burden among people living with HIV from the Asia-Pacific region

Win M Han1,2, Awachana Jiamsakul2, Sasisopin Kiertiburanakul3, Oon T Ng4, Benedict LH Sim5, Ly P Sun6, Kinh Van Nguyen7, Jun Y Choi8, Man P Lee9, Wing W Wong10, Adeeba Kamarulzaman11, Fujie Zhang13, Junko Tanuma14, Cuong D Do15, Romanee Chaiwarith16, Sanjay Pujari19, Rossana Ditangco20, Suwimon Khusuwan21, Jeremy Ross22, and Anchalee Avihingsanon1,2 on behalf of IeDEA Asia-Pacific

Abstract

Introduction: Comorbidities including diabetes mellitus (DM) among people living with HIV (PLHIV) are of increasing clinical concerns in combination antiretroviral therapy (cART) era. We aimed to determine the incidence and risk factors of new-onset DM among PLHIV in Asian settings.

Methods: PLHIV from a regional observational cohort without DM prior to antiretroviral therapy (ART) initiation were included in the analysis. DM was defined as having a fasting blood glucose ≥126 mg/dL, glycated haemoglobin ≥6.5%, a two-hour plasma glucose ≥200 mg/dL, or a random plasma glucose ≥200 mg/dL. A Cox regression model, stratified by site, was used to identify risk factors associated with DM.

Results and discussion: Of the 1927 participants included, 127 were diagnosed with DM after ART initiation. Median follow-up time from ART initiation to DM diagnosis was 5.9 years (interquartile range (IQR): 2.8 to 8.9 years). The crude incidence rate of DM was 1.08 per 100 person-years (100 PYS), 95% confidence interval (CI) (0.9 to 1.3). In the multivariate analysis, later years of follow-up (2011 to 2013: HR = 2.34, 95% CI 1.14 to 4.79, p = 0.02; and 2014 to 2017: HR = 7.20, 95% CI 3.27 to 15.87, p < 0.001) compared to <2010, older age (41 to 50 years: HR = 2.46, 95% CI 1.39 to 4.36, p = 0.002; and >50 years: HR = 4.19, 95% CI 2.12 to 8.28, p < 0.001) compared to <30 years, body mass index (BMI) >30 kg/m2 (HR = 4.3, 95% CI 1.53 to 12.09, p = 0.006) compared to BMI <18.5 kg/m2, and high blood pressure (HR = 2.05, 95% CI 1.16 to 3.63, p = 0.013) compared to those without high blood pressure, were associated with developing DM. The hazard was reduced for females (HR = 0.47, 95% CI 0.28 to 0.80, p = 0.006).

Conclusions: Type 2 DM in HIV-infected Asians was associated with later years of follow-up, high blood pressure, obesity and older age. This highlights the importance of monitoring and routine screening for non-communicable diseases including DM as PLHIV age.

Keywords: diabetes mellitus; virologically suppressed PLHIV; non-communicable diseases; antiretroviral therapy; comorbidities; Asia-Pacific
probably due to insulin resistance caused by mitochondrial toxicities [10-12]. Moreover, DM is commonly associated with other comorbidities such as hypertension and dyslipidaemia, which can result in increased risk of developing cardiovascular diseases [10,13].

Non-communicable diseases including DM have been increased dramatically over the past few decades in Asia [14], of which more than half of the global DM population are located in this region [15]. However, DM prevalence data among PLHIV in Asia-Pacific region is still sparse. The incidence of DM varied among HIV population (0.5 to 1.31 cases per 100 persons-years of follow-up) in HIV population [8,10,16]. The incidence of DM in Asia varied from Western countries and the risk factors for the development of DM among PLHIV are understudied in the region. Hence, we assessed the incidence and risk factors of new-onset DM among PLHIV after cART initiation in a regional observational cohort in the Asia-Pacific region.

2 | METHODS

2.1 | Study design and participants

This study was a longitudinal analysis exploring the incidence of new-onset DM after cART initiation. The study participants were PLHIV enrolled in the TREAT Asia HIV Observational Database (TAHOD) between 2003 and 2017. The cohort and its methods have previously been characterized [17-19]. The TAHOD is a collaborative observational cohort study that involves 20 sites in the Asia and Pacific region. The participating countries are Cambodia, China and Hong Kong SAR, India, Indonesia, Japan, Malaysia, the Philippines, Singapore, South Korea, Taiwan, Thailand and Vietnam. The recruitment began in 2003. As of March 2017, there were 9160 participants enrolled. Data transfer occurs every six months in March and September. TAHOD does not mandate regular visit schedule and all tests/interventions are performed according to the site’s local practices. Participants were included in this analysis if they have been on cART for more than six months, did not have evidence of DM prior to start of cART, and had at least one of the following measurements after cART initiation: fasting blood glucose (FBG), glycated haemoglobin (HbA1C), two-hour plasma glucose after 75 g oral glucose tolerance test (OGTT), or a random plasma glucose (RPG). Participants without DM screening prior to cART initiation were excluded from the study. Participant consent was deferred according to the individual participating sites and their institutional review boards, and is not required for all participants.

2.2 | Outcomes

DM was defined as having a single measurement showing FBG ≥126 mg/dL, HbA1C ≥6.5%, a two-hour plasma glucose level after OGTT ≥200 mg/dL, or a RPG ≥200 mg/dL, modified from the standard criteria for DM diagnosis from American Diabetes Association [20]. However, we did not include data of hyperglycaemic symptoms for RPG ≥200 mg/dL. Also, we did not use secondary confirmation testing of FBG as our median FBG testing frequency was once per patient per year (interquartile range (IQR) 1 to 2).

2.3 | Covariates

Time-fixed covariates included age, sex, mode of HIV exposure, initial cART regimen, any exposure to stavudine or didanosine in their first-line ART regimen, hepatitis B and C co-infection, prior AIDS diagnosis, smoking and alcohol status. Time-updated covariates included calendar year of follow-up, viral load, CD4, body mass index (BMI), high blood pressure and dyslipidaemia. Dyslipidaemia was defined as a single laboratory result of a fasting cholesterol >200 mg/dL or triglycerides >150 mg/dL. High blood pressure was defined as having at least one measurement of systolic blood pressure >140 mmHg or diastolic blood pressure >90 mmHg. All variables were categorical in the regression analysis.

2.4 | Statistical analysis

Factors associated with DM diagnosis after cART initiation were analysed using a Cox regression model stratified by site, to account for clustering within each site. Risk time for DM started from cART initiation and ended on date of first DM diagnosis, among participants who have been on cART for at least six months. Participants without DM events were censored on the date of last measurement for DM markers. Since the study was an intention-to-treat analysis, we included cART regimen and individual ART drugs as time-fixed covariates. Pre-ART VL and CD4 cell count were defined as measurements taken within six months prior to start of cART. Prior AIDS diagnosis was defined as having a CDC disease stage C prior to cART initiation. All variables measured were entirely observational according to site’s local practices. Covariates from the univariate analysis with p < 0.10 were fitted in the multivariate model using backward stepwise selection process. Covariates with p < 0.05 in the multivariate model were considered significant.

Ethics approval were obtained from respective local ethics committees of all TAHOD-participating sites, the Kirby Institute (data management and statistical analysis centre), and TREAT Asia/amfAR (coordinating centre). All data management and statistical analyses were performed using SAS software version 9.4 (SAS Institute Inc., Cary, NC, USA) and Stata software version 14.2 (Stata Corp., College Station, TX, USA).

3 | RESULTS AND DISCUSSION

A total of 1927 PLHIV receiving cART with no evidence of prior DM were included from 20 sites from the participating countries in TAHOD cohort. Of participants with glucose parameters available prior to cART initiation, there were 228 participants with previous diagnosis of DM who were excluded from the study. Sites contributed a median of 61 participants (IQR 20 to 163 participants) in the analysis. The median age was 35 years (IQR 30 to 41) and the median CD4 cell count at ART initiation was 162 cells/µL (IQR: 59 to 248) (Table 1). The majority were males (74%) and acquired HIV via heterosexual route (57%). Hepatitis C virus co-infection occurred in 11% of total PLHIV. 1497 (78%) and 364 (19%) of the participants were on NRTIs plus NNRTI (non-nucleoside reverse transcriptase inhibitor) and NRTIs plus PI as initial cART regimen respectively.
| Characteristics                                      | Total patients (%) | Total DM  
N = 1927 (100) | N = 127 (7) |
|-----------------------------------------------------|--------------------|----------------|---------------|
| Median age at ART initiation (years)                 | Median = 35, IQR (30 to 41) | Median = 38, IQR (32 to 45) |
| Sex                                                 |                    |                |               |
| Male                                                | 1426 (74)          | 109 (86)       |
| Female                                              | 501 (26)           | 18 (14)        |
| HIV mode of exposure                                |                    |                |               |
| Heterosexual contact                                | 1102 (57)          | 70 (55)        |
| MSM                                                 | 554 (29)           | 34 (27)        |
| IDU                                                 | 105 (5)            | 12 (9)         |
| Other/Unknown                                       | 166 (9)            | 11 (9)         |
| Pre-ART Viral Load (copies/mL)                      | Median = 78,340, IQR (18,752 to 240,000) | Median = 72,865, IQR (16,397 to 490,000) |
| Pre-ART CD4 (cells/µL)                              | Median = 162, IQR (59 to 248) | Median = 125, IQR (42 to 201) |
| Initial cART regimen                                |                    |                |               |
| NRTI + NNRTI                                         | 1497 (78)          | 102 (80)       |
| NRTI + PI                                           | 364 (19)           | 22 (17)        |
| Other combination                                    | 66 (3)             | 3 (2)          |
| Stavudine in first-line ART                         |                    |                |               |
| No                                                   | 1382 (72)          | 80 (63)        |
| Yes                                                  | 545 (28)           | 47 (37)        |
| Didanosine in first-line ART                        |                    |                |               |
| No                                                   | 1879 (98)          | 120 (94)       |
| Yes                                                  | 48 (2)             | 7 (6)          |
| Hepatitis B co-infection                             |                    |                |               |
| Negative                                             | 1599 (83)          | 100 (79)       |
| Positive                                             | 142 (7)            | 16 (13)        |
| Not tested                                           | 186 (10)           | 11 (9)         |
| Hepatitis C co-infection                             |                    |                |               |
| Negative                                             | 1422 (74)          | 96 (76)        |
| Positive                                             | 204 (11)           | 13 (10)        |
| Not tested                                           | 301 (16)           | 18 (14)        |
| Prior AIDS diagnosis                                 |                    |                |               |
| No                                                   | 1367 (71)          | 79 (62)        |
| Yes                                                  | 560 (29)           | 48 (38)        |
| Ever smoked                                          |                    |                |               |
| No                                                   | 755 (39)           | 41 (32)        |
| Yes                                                  | 663 (34)           | 48 (38)        |
| Not reported                                         | 509 (26)           | 38 (30)        |
| Ever above moderate or low risk drinking             |                    |                |               |
| No                                                   | 324 (17)           | 20 (16)        |
| Yes                                                  | 107 (6)            | 10 (8)         |
| Not reported                                         | 1496 (78)          | 97 (76)        |
| Pre-ART BMI (kg/m²)                                  | Median = 21, IQR (19 to 23) | Median = 22, IQR (19 to 25) |
| Pre-ART systolic blood pressure (mmHg)               | Median = 112, IQR (100 to 123) | Median = 110, IQR (100 to 120) |
| Pre-ART diastolic blood pressure (mmHg)              | Median = 70, IQR (63 to 80) | Median = 70, IQR (60 to 80) |
| Pre-ART ALT (U/L)                                    | Median = 29, IQR (19 to 45) | Median = 34, IQR (21 to 54) |
| Pre-ART fasting blood glucose (mmol/L)               | Median = 4.9, IQR (4.5 to 5.4) | Median = 5.4, IQR (4.7 to 6.1) |
| Pre-ART random blood glucose (mmol/L)                | Median = 5.2, IQR (4.9 to 5.4) | N/A            |

ART, antiretroviral therapy; BMI, body mass index; IDU, injecting drug users; IQR, interquartile range; MSM, men who have sex with men; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitors; PI, protease inhibitor.
There were 127 PLHIV (7%) who had DM after cART with an incidence rate of 1.08 per 100 person-years (1/100PYS) under a median follow-up time of 5.9 years (IQR: 2.8 to 8.9 years). Of the 127 participants, 117 met the FBG criteria, 9 met the HbA1C criteria and 1 met the OGTT criteria for DM. The incidence rate for DM for those with HCV co-infection was 1.18/100PYS which was higher than 1.05/100PYS for HCV negative participants, however the HR was not statistically significant when included in the univariate Cox regression analysis (p = 0.219). Factors associated with development of DM after ART initiation are shown in Table 2. Calendar year of follow-up (p < 0.001), age (p < 0.001), sex (p = 0.004), BMI (p = 0.009), high blood pressure (p = 0.001) and dyslipidemia (p = 0.059) were significant in the univariate analysis and included in the multivariate model.

In the multivariate analysis, factors associated with DM diagnosis included later years of follow-up (years 2011 to 2013; HR = 2.34, 95% confidence interval (CI) 1.14 to 4.79, p = 0.02; and years 2014 to 2017; HR = 7.20, 95% CI 3.27 to 15.87, p < 0.001) compared to follow-up years before 2010; older age at cART initiation (41 to 50 years: HR = 2.46, 95% CI 1.39 to 4.36, p = 0.002; and ≥50 years: HR = 4.19, 95% CI 2.12 to 8.28, p < 0.001) compared to age <30 years; having BMI >30 kg/m² (HR = 4.3, 95% CI 1.53 to 12.09, p = 0.006) compared to BMI <18.5 kg/m²; and having high blood pressure (HR = 2.05, 95% CI 1.16 to 3.63, p = 0.013) compared to those without high blood pressure. The female sex was associated with 53% reduction in hazard for DM (HR = 0.47, 95% CI 0.28 to 0.80, p = 0.006) compared to males.

Overall incidence of new-onset DM is 1.08 per 100PYS in a median follow-up time of nearly six years after cART initiation among PLHIV from a cohort in the Asia-Pacific region. Risk factors associated with new-onset DM in this cohort includes older age, higher BMI and high blood pressure. The DM incidence is similar to previous studies [10,16] in the Asia-Pacific region, with a total of 11,798 person-years of follow-up among 1927 PLHIV in our multicenter cohort in the Asia-Pacific, which includes 20 sites from 12 different countries and territories. The incidence rate of DM was higher among males (1.22/100PYS) compared to females (0.63/100PYS). Traditional risks factors such as age, BMI and high blood pressure were found to be predictors of DM, reflecting the emergence of non-communicable disease comorbidities. In addition, we also found that the later years of follow-up was associated with higher DM incidence, compared to follow-up years before 2010. This could be partly due to the collection of OGTT, HbA1C and RGP results into the cohort after 2015, although the routine FBG median FBG testing frequency was the same as once per patient per year. We did not observe an association between DM and the use of baseline ARVs such as stavudine or didanosine in the initial regimen or the use of PIs- or NNRTI-based regimen as baseline ART.

Incident DM was more common in males, participants with increasing age and higher BMI, which are consistent with the risk factors among the general population. Moreover, there was no significant difference between HIV exposure risks (heterosexual, men who have sex with men (MSM) and injectable drug users) and incident DM in our study. DM incidence among PLHIV has varied by geographic region and country income level. The US Multicenter AIDS Cohort Study (MACS) [21] and Women's Interagency HIV Study (WIHS) [22], where the majority of the participants were African-American and Hispanic/Latino, have reported higher incidence rates of DM, with 4.7/100PYS and 3.4/100PYS among HIV-infected participants on ART in MACS and WIHS respectively. Our findings were similar to the incidence rates from the previous studies [10,16,23]. However, lower rates have been reported from other cohorts such as Swiss HIV Cohort [24] and D:A:D study [8], with incidence rates of 0.44/100PYS and 0.57/100PYS respectively. Differences in DM incidence rates among the cohorts are possibly due to different ethnic backgrounds since Asians are more prone to have more visceral adipose tissue accumulation than European population, which could lead to higher chances of insulin resistance [25,26]. Additionally, the differences in DM incidence among cohorts may also be contributed by the differences in the length of follow-up time and the definition of DM we used in the study which did not require a confirmation test of fasting blood sugar which can result in having lower specificity for detecting DM.

With regard to HIV- and ART-related factors, we did not observe associations between DM and time-updated CD4 cell counts, HIV viral load or prior AIDS-defining events. Previous reports have suggested that persistent inflammation due to chronic infection may have an impact on the pathogenesis of DM [27]. In addition to the effect of chronic inflammation of HIV infection on insulin resistance, past studies have shown an association of ART with DM development. Most of our participants (80%) who developed DM were on NNRTI-based regimen as initial cART. In this analysis, we did not find the link of either stavudine or didanosine with incident DM, even though the use of stavudine as initial cART regimen was high (28%) in our cohort. It is interesting to note that stavudine was suggested to have been associated with lipodystrophy [28] but not DM in the same population. Furthermore, certain PIs may contribute to the inhibition of glucose transporter (glucose transporter type 4 isoform, GLUT4) and the reduction in insulin sensitivity, which could lead to decreased glucose uptake in peripheral adipose tissues and consequently result in the development of insulin resistance [29]. Contrary to the previous studies [9,24], we found no association between DM and PI- versus NNRTI-based initial ART regimen.

It is noteworthy that high blood pressure was also associated with DM incidence in our cohort. This is consistent with the findings from the general population without HIV infection [30]. HIV-infected participants with high blood pressure and DM may also have risks for multiple comorbidities and polypharmacy. This will increase the pill burden and have a high possibility to have drug-to-drug interactions. Therefore, proper treatment and risk reduction strategies such as diet and exercise should be implemented in those who have higher BMI and abnormal blood pressure. Our findings showed that traditional risk factors were associated with DM development among Asian HIV-infected individuals, suggesting the needs for the importance of clinicians to timely diagnose and properly manage DM in HIV-infected individuals. Even though we did not observe the use of ARVs to be an additional risk for the occurrence of DM, however it remains crucial to monitor and evaluate the potential toxicities from different ARVs used.
Table 2. Factors associated with DM diagnosis after ART initiation

| Time to DM stratified by site | Number | Follow up (years) | No of DM | Incidence rate (/100PYS) | HR (95% CI) | p-value | HR (95% CI) | p-value |
|-------------------------------|--------|------------------|---------|--------------------------|-------------|---------|-------------|---------|
| Total                         | 1927   | 11,798           | 127     | 1.08                     |             |         |             |         |
| Calendar year of follow-upa   |        |                  |         |                          |             |         |             |         |
| ≤2010                         | 4936   | 19               | 0.38    | 1                        | <0.001      | 1       | 1           | <0.001  |
| 2011 to 2013                  | 3732   | 32               | 0.86    | 2.45 (1.21, 4.95)        | 0.013       | 2.34    | 1.14 (1.47, 0.79) | 0.020 |
| 2014 to 2017                  | 3131   | 76               | 2.43    | 7.76 (3.61, 16.66)       | <0.001      | 7.20    | 3.27 (15.87) | <0.001 |
| Age at ART initiation (years) |        |                  |         |                          |             |         |             |         |
| ≤30                           | 552    | 3246             | 22      | 0.68                     | 1           | <0.001  | 1           | <0.001  |
| 31 to 40                      | 847    | 5164             | 52      | 1.01                     | 1.45 (0.87, 2.43) | 0.157 | 1.28 (0.75, 2.17) | 0.363 |
| 41 to 50                      | 381    | 2482             | 37      | 1.49                     | 2.83 (1.62, 4.94) | <0.001 | 2.46 (1.39, 4.36) | 0.002 |
| >50                           | 147    | 906              | 16      | 1.77                     | 4.37 (2.26, 8.46) | <0.001 | 4.19 (2.12, 8.28) | <0.001 |
| Sex                           |        |                  |         |                          |             |         |             |         |
| Male                          | 1426   | 8949             | 109     | 1.22                     | 1           |         | 1           |         |
| Female                        | 501    | 2849             | 18      | 0.63                     | 0.47 (0.28, 0.78) | 0.004 | 0.47 (0.28, 0.80) | 0.006 |
| HIV mode of exposure          |        |                  |         |                          |             |         |             |         |
| Heterosexual contact          | 1102   | 6720             | 70      | 1.04                     | 1           | 0.391   |             |         |
| MSM                           | 554    | 3449             | 34      | 0.99                     | 1.48 (0.80, 2.73) | 0.207 |             |         |
| IDU                           | 105    | 477              | 12      | 2.51                     | 1.67 (0.78, 3.57) | 0.184 |             |         |
| Other/Unknown                 | 166    | 1152             | 11      | 0.96                     | 1.33 (0.64, 2.76) | 0.449 |             |         |
| HIV viral load (copies/mL)a   |        |                  |         |                          |             |         |             |         |
| ≤1000                         | 9326   | 94               | 1.01    | 1                        |             |         |             |         |
| >1000                         | 1000   | 12               | 1.20    | 1.56 (0.77, 3.16)        | 0.216       |         |             |         |
| Not done                      | 1472   | 21               | 1.43    |                          |             |         |             |         |
| CD4 cell count (cells/µL)a    |        |                  |         |                          |             |         |             |         |
| ≤200                          | 1732   | 23               | 1.33    | 1                        |             | 0.615   |             |         |
| 201 to 350                    | 2717   | 22               | 0.81    | 0.86 (0.44, 1.68)        | 0.651       |         |             |         |
| 351 to 500                    | 3014   | 26               | 0.86    | 0.70 (0.35, 1.42)        | 0.322       |         |             |         |
| >500                          | 4300   | 56               | 1.3     | 0.81 (0.42, 1.57)        | 0.529       |         |             |         |
| Not done                      | 35     | 0                | 0       |                          |             |         |             |         |
| Initial cART regimen          |        |                  |         |                          |             |         |             |         |
| NRTI + NNRTI                  | 1497   | 8403             | 102     | 1.21                     | 1           | 0.145   |             |         |
| NRTI + PI                     | 364    | 3066             | 22      | 0.72                     | 0.55 (0.27, 1.11) | 0.095 |             |         |
| Other combination             | 66     | 329              | 3       | 0.91                     | 1.54 (0.45, 5.23) | 0.487 |             |         |
| Stavudine in first-line ART?  |        |                  |         |                          |             |         |             |         |
| No                            | 1382   | 8682             | 80      | 0.92                     | 1           |         |             |         |
| Yes                           | 545    | 3116             | 47      | 1.51                     | 0.98 (0.61, 1.57) | 0.924 |             |         |
| Didanosine in first-line ART? |        |                  |         |                          |             |         |             |         |
| No                            | 1879   | 11,391           | 120     | 1.05                     | 1           |         |             |         |
| Yes                           | 48     | 406              | 7       | 1.72                     | 1.85 (0.79, 4.37) | 0.158 |             |         |
| Hepatitis B co-infection      |        |                  |         |                          |             |         |             |         |
| Negative                      | 1599   | 9791             | 100     | 1.02                     | 1           |         |             |         |
| Positive                      | 142    | 875              | 16      | 1.83                     | 1.58 (0.91, 2.73) | 0.102 |             |         |
| Not tested                    | 186    | 1132             | 11      | 0.97                     |             |         |             |         |
| Hepatitis C co-infection      |        |                  |         |                          |             |         |             |         |
| Negative                      | 1422   | 9131             | 96      | 1.05                     | 1           |         |             |         |
| Positive                      | 204    | 1106             | 13      | 1.18                     | 0.65 (0.33, 1.29) | 0.219 |             |         |
| Not tested                    | 301    | 1561             | 18      | 1.15                     |             |         |             |         |
| Prior AIDS diagnosis          |        |                  |         |                          |             |         |             |         |
| No                            | 1367   | 8311             | 79      | 0.95                     | 1           |         |             |         |
| Yes                           | 560    | 3486             | 48      | 1.38                     | 1.35 (0.91, 1.99) | 0.137 |             |         |
The limitations of the study include the unavailability of other indicators for central obesity such as abdominal fat and waist-hip circumference ratio. We therefore were not able to evaluate the effects of these indicators on the development of DM in our analysis. Also, another limitation of this study is that we did not include HIV-negative controls to compare the incidence rates of DM between the groups. Due to the limitations in DM testing data, such as FBG, we did not use a second confirmatory testing for DM, which could possibly lead to inaccurate estimation of our cohort’s DM incidence rate. As our cohort recruit participants based on the likelihood of remaining in care, the study population may not represent patients typically seen at the clinical sites. Finally, our study has limitations for inability to adjust all the unobserved confounding factors due to the observational nature of the cohort.

4 | CONCLUSIONS

Our analysis shows DM in PLHIV is common in settings from Asian countries. Traditional risk factors such as age, sex, high blood pressure and BMI were found to be associated with the development of DM in our cohort. Careful assessment and routine screening for DM and other co-existing comorbid conditions, especially among older and obese PLHIV, are essential.

AUTHORS’ AFFILIATIONS

1HIV-NAT/Thai Red Cross AIDS Research Centre, Bangkok, Thailand; 2The Kirby Institute, UNSW, Sydney, Australia; 3Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; 4Tan Tock Seng Hospital, Singapore, Singapore; 5Hospital Sungai Buloh, Sungai Buloh, Malaysia; 6National Center for HIV/AIDS, Dermatology & STDs, Phnom Penh, Cambodia; 7National Hospital for Tropical Diseases, Hanoi, Vietnam; 8Division of Infectious Diseases, Department of Internal Medicine, Yongsei University College of Medicine, Seoul, South Korea; 9Queen Elizabeth Hospital, Hong Kong SAR; 10Taipei Veterans General Hospital, Taipei, Taiwan; 11University Malaya Medical Centre, Kuala Lumpur, Malaysia; 12Chennai Antiviral Research and Treatment Clinical Research Site (CART CRS), YRG CARE Medical Centre, VHS, Chennai, India; 13Beijing Ditan Hospital, Capital Medical University, Beijing, China; 14National Center for Global Health and Medicine, Tokyo, Japan; 15Binh Mai Hospital, Hanoi, Vietnam; 16Research Institute for Health Sciences, Chiang Mai, Thailand; 17Faculty of Medicine, Udayana University & Sanglah Hospital, Bali, Indonesia; 18Faculty of Medicine, Universitas Indonesia – Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia; 19Institute of Infectious Diseases, Pune, India; 20Research Institute for Tropical Medicine, Muntinitula City, Philippines; 21Chiangrai

Table 2. (Continued)

| Time to DM stratified by site | Number | Follow up (years) | No of DM | Incidence rate (/100PYS) | HR (95% CI) | p-value | HR (95% CI) | p-value |
|-----------------------------|--------|------------------|---------|------------------------|-------------|---------|-------------|---------|
| BMI (kg/m²)² | | | | | | | | |
| <18.5 | 884 | 7 | 0.79 | 1 | 0.009 | 1 | 0.025 |
| 18.5 to 25.0 | 6816 | 68 | 1.00 | 1.32 (0.59, 2.95) | 0.491 | 1.06 (0.47, 2.38) | 0.892 |
| 25.0 to 30.0 | 1666 | 19 | 1.14 | 1.89 (0.76, 4.70) | 0.168 | 1.17 (0.46, 2.97) | 0.736 |
| >30.0 | 333 | 11 | 3.30 | 5.39 (1.94, 14.97) | 0.001 | 4.30 (1.53, 12.09) | 0.006 |
| Not reported | 2098 | 22 | 1.05 | | | | |
| High blood pressure³ | | | | | | | | |
| No | 7562 | 73 | 0.97 | 1 | 1 | 2.05 (1.16, 3.63) | 0.013 |
| Yes | 1211 | 24 | 1.98 | 2.64 (1.52, 4.59) | 0.001 | 2.05 (1.16, 3.63) | 0.013 |
| Not done | 3025 | 30 | 0.99 | | | | |
| Dyslipidaemia⁴ | | | | | | | | |
| No | 4703 | 34 | 0.72 | 1 | 1 | | |
| Yes | 6371 | 81 | 1.27 | 1.49 (0.99, 2.24) | 0.059 | | |
| Not reported | 724 | 12 | 1.66 | | | | |
| Ever smoked | | | | | | | | |
| No | 755 | 4674 | 41 | 0.88 | 1 | | |
| Yes | 663 | 4564 | 48 | 1.05 | 1.29 (0.83, 2.00) | 0.263 | | |
| Not reported | 509 | 2560 | 38 | 1.48 | | | |
| Ever above moderate or low risk drinking | | | | | | | | |
| No | 324 | 2256 | 20 | 0.89 | 1 | | |
| Yes | 107 | 694 | 10 | 1.44 | 1.15 (0.49, 2.73) | 0.743 | | |
| Not reported | 1496 | 8847 | 97 | 1.10 | | | |

p-values in bold represent significant covariates in the final model. Global p-values are test for heterogeneity excluding missing values. Dyslipidaemia was defined as a single laboratory result of a fasting cholesterol >200 mg/dl or triglycerides >150 mg/dl. High blood pressure was defined as having at least one measurement of systolic blood pressure >140 mmHg or diastolic blood pressure >90 mmHg. ART, antiretroviral therapy; cART, combination antiretroviral therapy; IDU, injecting drug users; MSM, men who have sex with men; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitors; PI, protease inhibitor. ³Calendar year of follow-up, CD4, VL, BMI, High blood pressure, dyslipidaemia are time-updated variables.
Prachanurak Hospital, Chiang Rai, Thailand; 25TREAT Asia, amfAR – The Foundation for AIDS Research, Bangkok, Thailand; 26Tuberculosis Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

COMPETING INTERESTS
The authors do not have any competing interests to declare.

AUTHORS’ CONTRIBUTIONS
WH, AJ and AA contributed to the concept development. SK, OTN, BS, LPS, KVN, JYC, MPL, WWW, AK, NK, FZ, JT, CDD, RC, TPM, EY, SP, RD, SK and AA contributed data for the analysis. AJ performed the statistical analysis. WH wrote the first draft of the manuscript. All authors commented on the draft manuscript and approved of the final manuscript.

ACKNOWLEDGEMENT

REFERENCES
1. Antiretroviral Therapy Cohort C. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 2008; 372(9635):293–9.
2. De La Mata NL, Kumarasamy N, Khol V, Ng OT, Van Nguyen K, Merati TP, et al. Improved survival in HIV treatment programs in Asia. Antivir Ther. 2016;21(6):517–27.
3. Boyd MA. Improvements in antiretroviral therapy outcomes over calendar time. Curr Opin HIV AIDS. 2009;4(3):194–9.
4. Deeks SG, Levin SR, Havlir DV. The end of AIDS: HIV infection as a chronic disease. Lancet. 2012;382(P903):1525–33.
5. Group ISS, Lunderd JD, Balikier AG, Gordin F, Emery S, Grund B, Sharma S, et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med. 2015; 373(9):795–807.
6. Hernandez-Romieu AC, Garg S, Rosenberg ES, Thompson-Paul AM, Skarinshi J. Is diabetes prevalence higher among HIV-infected individuals compared with the general population? Evidence from MMP and NHANES 2009–2010. BMJ Open Diabetes Res Care. 2017;5(1):e000304.
7. Samaras K. Prevalence and pathogenesis of diabetes mellitus in Asia. Lancet. 2013;382(9903):1525
8. De Wit S, Sabin CA, Weber R, Worm SW, Reiss P, Cazanave C, et al. Incidence and risk factors for new-onset diabetes in HIV-infected patients: the Data Collection on Adverse Events of Anti-HIV Drugs (D4A:D) study. Diabetes Care. 2008;31(6):1224–9.
9. Justman JE, Benning L, Danoff A, Minkoff H, Levine A, Greenblatt RM, et al. Protease inhibitor use and the incidence of diabetes mellitus in a large cohort of HIV-infected women. J Acquir Immune Defic Syndr. 2003;32(3):298–302.
10. Putcharoen O, Wattanacharya L, Sophonphan J, Siamngamsathan S, Sapsiriwat V, Gatchompl C, et al. New-onset diabetes in HIV-treated adults: predictors, long-term renal and cardiovascular outcomes. AIDS. 2017;31(11):1535–43.
11. Garcia-Benayas T, Rondon AL, Rodriguez-Nova S, Barrios A, Maida I, Blanco F, et al. Higher risk of hyperglycemia in HIV-infected patients treated with didanosine plus tenofovir. AIDS Res Hum Retroviruses. 2006;22(4):333–7.
12. Brambilla AM, Novatti R, Calori G, Meneghini E, Vacchini D, Luzi L, et al. Stavudine or indinavir-containing regimens are associated with an increased risk of diabetes mellitus in HIV-infected individuals. AIDS. 2003;17(13):1993–5.
13. Abebe SM, Getachew A, Fasika S, Bayisa M, Girma Demisse A, Mesfin N. Diabetes mellitus among HIV-infected individuals in follow-up care at University of Gondar Hospital, Northwest Ethiopia. BMJ Open. 2016;6(8):e011175.
14. Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, Ko SH, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006;368(9548):1681–8.
15. Ramachandran A, Snehalatha C, Shetty AS, Nanditha A. Trends in prevalence of diabetes in Indian states. World J Diabetes. 2012;3(6):110–7.
16. Lo YC, Chen MY, Sheng WH, Hsieh SM, Sun HY, Liu WC, et al. Risk factors for incident diabetes mellitus among HIV-infected patients receiving combination antiretroviral therapy in Taiwan: a case-control study. HIV Med. 2009;10(5):302–9.
17. Zhou J, Kumarasamy N, Ditanro G, Kumaralzaman A, Lee CK, Li PC, et al. The TREAT Asia HIV Observational Database: baseline and retrospective data. J Acquir Immune Defic Syndr. 2005;38(2):174–9.
18. Jung JY, Boettiger D, Wong WW, Lee MP, Kiertiburanakul S, Chawirath R, et al. The treatment outcomes of antiretroviral substitutions in routine clinical settings in Asia; data from the TREAT Asia HIV Observational Database (TAHOD). J Int AIDS Soc. 2017; 20(4):e25016.
19. Ahn JY, Boettiger D, Law M, Kumarasamy N, Yunisuate E, Chawirath R, et al. Implementation and operational research: effects of CD4 monitoring frequency on clinical end points in clinically stable HIV-infected patients with viral suppression. J Acquir Immune Defic Syndr. 2015;69(3):e85–92.
20. Classification and Diagnosis of Diabetes. Standards of Medical Care in Diabetes – 2018. Diabetes Care. 2018:41 Suppl LS1–2.
21. Brown TT, Cole SR, Li X, Kingsley LA, Paella FJ, Riddler SA, et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med. 2005;165(10):1179–84.
22. Tien PC, Schneider MF, Cole SR, Levine AM, Cohen M, DeHovitz J, et al. Antiretroviral therapy exposure and incidence of diabetes mellitus in the Women's Intergroup Study HIV. AIDS. 2007;21(13):1739–45.
23. McMahon CN, Petoumenos K, Hesse K, Carr A, Cooper DA, Saranaras K. High rates of incident diabetes and prediabetes are evident in men with treated HIV followed for 11 years. AIDS. 2017;32(4):451–9.
24. Ledgerber B, Furrer R, Rickenbach M, Lehmann R, Elb L, Hirschel B, et al. Factors associated with the incidence of type 2 diabetes mellitus in HIV-infected patients in the Swiss HIV Cohort Study. Clin Infect Dis. 2007;45(1):111–9.
25. Ramachandran A, Ma RC, Snehalatha C, Diabetes in Asia. Lancet. 2010;375(9712):409–18.
26. Lear SA, Humphries KH, Kohli S, Chockalingam A, Frohlich JJ, Birmingham CL. Visceral adipose tissue accumulation differs according to ethnic background: results of the Multicultural Community Health Assessment Trial (M-CHAT). Am J Clin Nutr. 2007;86(2):353–9.
27. Capeau J, Bouteloup V, Katlama C, Bastard JP, Guiyedi V, Salmon-Ceron D, et al. Prevention of and risk factors for lipodystrophy among HIV-infected patients receiving combined antiretroviral treatment in the Asia-Pacific region: results from the TREAT Asia HIV Observational Database (TAS) cohort. Endocr J. 2011;58(6):475–84.
28. Murata H, Hruz PW, Mueckler M. Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations. AIDS. 2002;16(1):859–63.
29. Mengesha AV. Hypertension and related risk factors in type 2 diabetes mellitus (DM) patients in Gaborone City Council (GCC) clinics, Gaborone, Botswana. Afr Health Sci. 2007;7(4):244–5.

APPENDIX

TAHOD study members: PS Ly* and V Khol, National Center for HIV/AIDS, Dermatology & STDs, Phnom Penh, Cambodia; FJ Zhang†, HX Zhao and N Han, Beijing Ditan Hospital, Capital Medical University, Beijing, China; MP Lee*, PCK Li, W Lam and YT Chan, Queen Elizabeth Hospital, Hong Kong SAR; N Kumarasamy*, S Saghaya and C Ezhilarasi, Chennai Antireviral Research and Treatment Clinical Research Site (CART CRS), YRG CARE Medical Centre, VHS,
Chennai, India; S Pujari*, K Joshi, S Gaikwad and A Chitalikar, Institute of Infectious Diseases, Pune, India; S Sangle*, V Mave and I Marbaniang, BJ Government Medical College and Sassoon General Hospital, Pune, India; TP Merati*, DN Wirawan and F Yuliana, Faculty of Medicine Udayana University & Sanglah Hospital, Bali, Indonesia; E Yunihasututi*, D Imran and A Widhani, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia; J Tanuma*, S Oka and T Nishijima, National Center for Global Health and Medicine, Tokyo, Japan; JY Choi*, Na S and JM Kim, Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; BLH Sim*, YM Gani, and NB Rudi, Hospital Sungai Buloh, Sungai Buloh, Malaysia; A Kamarulzaman*, SF Syed Omar, S Ponnampalamvanar and I Azwa, University Malaya Medical Centre, Kuala Lumpur, Malaysia; R Ditangco*, MK Pasayan and ML Matipong, Research Institute for Tropical Medicine, Muntinlupa City, Philippines; WW Wong*, WW Ku and PC Wu, Taipei Veterans General Hospital, Taipei, Taiwan; OT Ng* †, PL Lim, LS Lee and Z Ferdous, Tan Tock Seng Hospital, Singapore; A Avihingsanon*, S Gatechompol, P Phanuphak and C Phadungphon, HIV-NAT/Thai Red Cross AIDS Research Centre, Bangkok, Thailand; S Kiertiburanakul*, A Phuphuakrat, L Chumla and N Sanmeena, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; R Chaiwarith*, T Sirisantha, W Kotarithititum and J Praparattanapan, Research Institute for Health Sciences, Chiang Mai, Thailand; S Khusuwan*, P Kantipong and P Kambua, Chiangrai Prachanukroh Hospital, Chiang Rai, Thailand; KV Nguyen*, HV Bui, DTH Nguyen and DT Nguyen, National Hospital for Tropical Diseases, Hanoi, Vietnam; CD Do*, AV Ngo and LT Nguyen, Bach Mai Hospital, Hanoi, Vietnam; AH Sohn*, JL Ross* and B Petersen, TREAT Asia, amfAR - The Foundation for AIDS Research, Bangkok, Thailand; MG Law*, A Jiamsakul* and D Rupasinghe, The Kirby Institute, UNSW Sydney, NSW, Australia. * TAHOD Steering Committee member; † Steering Committee Chair; ‡ co-Chair.