Numerical Solution of the 2-Hessian Equation by a Newton’s Algorithm

Haj EA, Khalil H and Hossein M*
Laboratory of Mathematics and Its Applications, Lebanese University, Badaro, Beirut, Lebanon

Abstract

The elliptic 2-Hessian equation is a fully nonlinear partial differential equation that is related, for example, to intrinsic curvature for three dimensional manifolds. We solve numerically this equation with periodic boundary condition and with Dirichlet boundary condition using a Newton’s algorithm. We verify numerically, by introducing finite difference schemes, the convergence of the algorithm which is obtained in few iterations.

Keywords: Numerical solution; Boundary; Matrix; Periodic function

Introduction

We are interested by the numerical approximations of the following 2-Hessian, which is a fully nonlinear elliptic partial differential equation in 3-dimensional space [1,2]:

\[S_2[w]=f \text{ such that } \lambda(D^2\psi) \in \Gamma_2 \] (1)

Where \(S_2[w] = \sigma_2(\lambda(D^2\psi)) = \sum_{ij} \lambda_i \lambda_j = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1 \) (2)

\(D^2\psi = \frac{\partial^2 \psi}{\partial x_i \partial x_j} \) is the Hessian matrix of \(\psi \), \(\lambda(D^2\psi) \) are the eigenvalues of \(D^2\psi \) and \(\Gamma_2 = \{ \lambda \in \mathbb{R} | \lambda_1 \lambda_2 \lambda_3 > 0, \sigma_2(\lambda)>0 \} \) [3]. The operator \(S_2 \) is not elliptic unless \(f=0 \) and \(\lambda(D^2\psi) \in \Gamma_2 \) [4,5].

In the periodic setting, in eqn. (1) reads as follows [2]: given a positive periodic function \(f \) on \(T^3 \to \mathbb{R} \), find a periodic function \(u : T^3 \to \mathbb{R} \) such that

\[M_t[u]=\sigma_2(\lambda(I+Du))=f \] on \(T^3 \) (3)

where \(M_t \) is the nonlinear differential operator defined by \(M_t:=\sigma_2[I+Du] \). This equation is none other than eqn. (1) with \(f \) being of the form \(\frac{1}{2} f = 1 \) [2].

In the next place, we solve numerically the Dirichlet problem

\[S_2[u]=f \text{ in } \Omega \subseteq [0,1]^3 \]
\[u = 0 \text{ on } \partial \Omega \] (4)

which obtained when treating computationally prescribed curvature problems.

Properties of the 2-Hessian Operator

Proposition 1.1.

We have

\[S_2[u] = u_{xx}u_{yy} + u_{xx}u_{zz} + u_{yy}u_{zz} - u_{xy}^2 - u_{xz}^2 - u_{yz}^2 \] (5)

\[M_t[u] = 2u_{xx} + 2u_{yy} + 2u_{zz} + u_{xy} + u_{xz} + u_{yz} - u_{xy}^2 - u_{xz}^2 - u_{yz}^2 \] (6)

Proof. For a 3 x 3 matrix \(M \), the characteristic polynomial is given by

\[\det(M) = c(M) \lambda^3 \]

where \(c(M) \), the sum of the principal minors of \(M \) is given by

\[c(M) = \frac{1}{2} \left(\text{trace}(M)^2 - \text{trace}(M^2) \right) \]

Then \(c(M) = \lambda_1 \lambda_2 \lambda_3 - \lambda_1 \lambda_2 \lambda_3 \)

where \(\lambda_1, \lambda_2, \lambda_3 \) are the eigenvalues of \(M \). Therefore, by expanding in eqn. (7) and using in eqn. (2), we obtain in eqns. (5 and 6).

Algorithm of Resolution

Using a global convergence Newton method [1], to linearize the eqn. (1), the algorithm we consider reads: Given \(u_n \), loop over \(n \in N \),

- Computation of \(f_n' \).
- Computation of \(\theta \) as solution of the linearized 2-Hessian equation

\[\nabla T_\tau u = \frac{1}{\tau} \left(f - f_n' \right) \] (8)

with the stabilization factor \(\tau \geq 1 \).

- Computation of \(u^{n+1} = u^n + \theta^\tau \).

Where \(T_{\tau} M_t \) for the periodic problem and \(T_{\tau} S_2 \) for the Dirichlet problem. For \(\tau = 1 \), we obtain the classical Newton’s method.

Linearization

Let \(s \) be a parameter in \(R \). We have

\[S_2[u+sv]=c(D^2u+sD^2v) = \frac{1}{2} \left(\text{trace}(D^2u) + s \text{trace}(D^2v) - \text{trace}(D^2uD^2v) + o(s) \right) \]

Then

\[\nabla S_2[u] \cdot v = \text{trace}(D^2u) \text{trace}(D^2v) - \text{trace}(D^2uD^2v) \] (9)

By expanding in eqn. (9) we obtain the linearization of \(S_2[u] \) and \(M_t[u] \). For \(u \in C^2 \):

\[\nabla S_2[u] = u_{xx}(v_{xx}+v_{yy}) + u_{yy}(v_{yy}+v_{zz}) + u_{zz}(v_{zz}+v_{xx}) - 2(u_{xy}v_{xy} + u_{xz}v_{xz} + u_{yz}v_{yz}) \]

\[\text{and} \]

*Corresponding author: Hossein M, Laboratory of Mathematics and Its Applications, Lebanese University, Badaro, Museum, Beirut, Lebanon, Tel: 961 1 612830; E-mail: mhdhossein@hotmail.com

Received October 16, 2017; Accepted February 26, 2018; Published March 06, 2018

Citation: Haj EA, Khalil H, Hossein M (2018) Numerical Solution of the 2-Hessian Equation by a Newton’s Algorithm. J Appl Comput Math 7: 393. doi: 10.4172/2168-9679.1000393

Copyright: © 2018 Haj EA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
\[\nabla M_2[u] v = u_{xx}(v_x + v_y) + u_{yy}(v_x + v_y) + u_{zz}(v_x + v_y) - 2(u_{xx} v_x + u_{yy} v_y + u_{zz} v_z) + 2v_x + 2v_y + 2v_z. \]

Proposition 2.1.

Let \(u \in C^2 \). \(\nabla S_2[u] \) and \(\nabla M_2[u] \) are elliptic if \(u \) is 2-admissible.

Proof. see [3].

Numerical Experiments

We discretize the problem's domain \([0,1]^3\) by dividing the domain into a uniform grid with grid space \(h \). We denote by \(D_{i_j_k} u \) the centered second order finite difference discretization of the operator \(u_{i_j_k} \), for \(i, j, k \in \{x,y,z\} \), and by \(D^3 u \) the discretization of the Hessian matrix. That is

\[
D^3 u = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix}
\]

The discretization of the 2-Hessian operators are then given by

\[
S_2^u[u] = \sigma_1 \left(\lambda(D^3 u) \right) = c(D^3 u)
\]

and

\[
M_2^u[u] = \sigma_2 \left(\lambda(I + D^3 u) \right) = c(I + D^3 u)
\]

Periodic problem

The numerical scheme connected to the problem in eqn. (3), obtained by using the global convergence Newton and the discrete operators described above, is given, in each iteration, by the following linear system of \((m+1)^3\) equations with \((m+1)^3\) unknowns, where \(m \) is the number of discretization points given by

\[
h = \frac{1}{m + 1} \]

\[
D_{x}u_{i_j_k} = \sum_{\text{neigbors}} \frac{1}{h} (u_{i+1,j,k} - u_{i,j,k}) + \sum_{\text{diagonals}} \frac{1}{h} (u_{i,j+1,k} - u_{i,j,k} + u_{i,j,k+1} - u_{i,j,k}) + \sum_{\text{four corners}} \frac{1}{h} (u_{i+1,j+1,k} - u_{i,j,k}) - \frac{1}{h} (f_{i,j,k} - f_{i,j_k}^0)
\]

\[
h \text{ for } i, j, k = 0, \ldots, m \text{ and } f_{i,j_k}^0 = M_2^u[u^0].
\]

The numerical tests are shown in the following two figures.

In Figure 1, we consider the function \(f = 1 + \sin(2\pi x)\sin(2\pi y) \sin(2\pi z) \) and we solve the problem in the tore \(T^3 \). Figure 1 shows the convergence of the error \(\| f - f^\tau \|_2 \). Different grids are used: \(m = 15, 20 \) and \(25 \). In all the cases, 10 iterations are enough to have an error of order \(10^{-12} \). In all the cases the curves are very close, that means that the convergence of the algorithm is almost independent from the grid space. Then the algorithm is efficient even on very coarse grid.

In Figure 2 shows the convergence of the error \(\| u - u^\tau \|_2 \) in terms of the number of iterations, where \(u^\tau \) is the solution of the eqn. (3) for \(f = M_2^u[u] \) with \(u(x,y,z) = 0.02\sin(2\pi x)\sin(2\pi y)\sin(2\pi z) \). Here we fix \(m = 15 \) and \(\tau = 1 \).

Dirichlet problem

We consider the 2-Hessian equation in \(\mathbb{R}^3 \) with Dirichlet boundary conditions:
Finally, Figure 4 shows the order of convergence of the algorithm for different values of τ. We remark that the order of convergence decrease very fast in terms of τ. Note that in practice we have taken $\tau=1$, for which value the order of convergence is close to 2.

Conclusion

We presented a Newton’s algorithm to solve the fully nonlinear 2-Hessian equation in the case where it is elliptic and the solution is smooth enough. The numerical experiments show that the convergence is very fast. Then we can solve the 2-Hessian in the cost of solving a few number of linear elliptic problems. The sparsity of the matrix of discretization allows us to solve quickly the linear problems. Moreover, the numerical tests show a good stability of this algorithm.

References

1. Bank RE, Rose DJ (1981) Global approximate Newton methods. Numerische Mathematik 37: 279-295.
2. Caffarelli L, Li Y (2004) Un theoreme de Liouville pour les solutions de l’equation de Monge-Ampere avec donnees periodiques. In Annales de l’Institut Henri Poincare/Analyse non lineaire 1: 97-120.
3. Froese BD, Oberman AM, Salvador T (2017) Numerical methods for the 2-Hessian elliptic partial differential equation. IMA Journal of Numerical Analysis 37: 209-236.
4. Loeper G, Rapetti F (2005) Numerical solution of the Monge-Ampère equation by a Newton’s algorithm. Comptes Rendus Mathematique 340: 319-324.
5. Hossein M (2009) Solutions entières d’équations hessiennes dans Rn. Comptes Rendus Mathematique 347: 1047-1050.