intuitionistic fuzzy pseudo ideals in Q-algebra

Habeeb Kareem Abdullah and mortda taeh shadhan
Department of Mathematics
University of Kufa
habeebk.abdullah@uokufa.edu.iq
Department of Mathematics
University of Kufa
alnbhanymrtdy05@gmail.com

Abstract
Present several types in this paper of intuitionistic fuzzy ideal in Q-algebra, called (intuitionistic fuzzy pseudo ideal, intuitionistic fuzzy k-pseudo ideal, intuitionistic fuzzy c-pseudo ideal, intuitionistic fuzzy complete-k-pseudo ideal). We have introduced and illustrated several ideas that evaluate their relationship in a Q-algebra.

1 Introduction
In 1966, K.Iseki and Y.Imai([7], [14]) introduced BCK-and BCI-algebras. In 2001 H.S.Kim([6]) introduced a new notion, known as Q-algebra, which is BCH / BCI / BCK-algebra generalization. At the same time, A.Iorgulescu and G.Georgescu ([3]) introduced pseudo BCK-algebras as an exemption from bck-algebras. In 2016, Y.B.jun, H.S.Kim and S.S Ahn([13])introduced pseudo Q-algebra as ageneralization of Q-algebra the concept of fuzzy set was introduced in 1969 by L. A. Zadeh ([10]). In 2005, J.Meng, X.Guo([5]) studied fuzzy ideals of BCK / BCI-algebras. W.A.Dudek and Y.B.Jun ([15]) in 2008, introduced pseudo-BCI-algebras as a natural generalization of BCI-algebras and pseudo-BCI-algebras. At the same time, K. J. Lee([8]) established the fuzzy ideals in pseudo BCI-algebras. In([4]) H. K. Jawad introduced the notion of fuzzy pseudo Ideals of pseudo Q-algebra. In K. ([9]) Intuitionistic Fuzzy Sets(1986) was introduced by T. Atanassov. In 2012 S.M. Abdelnaby and O.R.Elgendy applied the concept of Intuitionistic fuzzy sets on Q-algebra. In this article, we will describe some of the new types of I F pseudo ideal, called (I F pseudo ideal, I F K-pseudo ideal, I F complete ?k-pseudo ideal). Also, we introduced and illustrated the proposition that defines the relationship among them in Q-algebra.

2 Basic concept and notations
In this section, We define Q-algebra, pseudo Q-algebra, bounded, involutory, and some properties.

Definition (2.1) [11]
A Q-algebra is a set M with a binary operation * and constant 0 that fulfilled the following axioms:
1. \(m * m = 0 \quad \forall m \in M \)
2. \(m * 0 = m \quad \forall m \in M \)
3. \((m \ast b) \ast d = (m \ast d) \ast b, \quad \forall m, b, d \in M\)

Remark (2.2) [11]
In a Q-algebra \(M\), we can define a binary relation \(\leq\) on \(M\) by \(m \geq b\) if and only if \(m \ast b = 0\), \(\forall m, b \in M\).

Definition (2.3) [1]
A Q-algebra \((M, \ast, 0)\) is called bounded if there is an element \(e \in M\) that satisfies \(m \leq e\), \(\forall m \in M\), then \(e\) is said to be an unit. We denoted \(e \ast m\) by \(m^*\), for each \(m \in M\) in bounded Q-algebra.

Example (2.4)
Let \(M = \{0, \eta, \theta, \beta\}\) be a set with the following table:

	0	\(\eta\)	\(\theta\)	\(\beta\)
0	0	0	0	0
\(\eta\)	\(\eta\)	0	0	0
\(\theta\)	\(\theta\)	0	0	0
\(\beta\)	\(\beta\)	\(\beta\)	\(\beta\)	0

Thereafter \((M, \ast, 0)\) be a Q-algebra. Note that \(M\) is bounded by unit \(\beta\).

Remark (2.5) [1]
As stated in the following example, the unit in bounded Q-algebra is not unique in general.

Example (2.6)
A binary operation \(\ast\) with \(M = \{0, \eta, \theta\}\) can be shown in the table:

	0	\(\eta\)	\(\theta\)
0	0	0	0
\(\eta\)	\(\eta\)	0	0
\(\theta\)	\(\theta\)	0	0

Note that \(M\) is bounded with two units \(\eta, \theta\).

Proposition (2.7) [4]
In a bounded Q-algebra \(M\), for any \(m, b \in M\), the following are hold:
1. \(e^* = 0\), \(0^* = e\)
2. \(m^* \ast b = b^* \ast m\)
3. \(0 \ast b = 0\)
4. \(e^* \ast m = 0\)
5. \(m^{**} \leq m\)

Definition (2.8) [1]
For a bounded Q-algebra \(M\), If element \(m\) of \(M\) satisfies \(m^{**} = m\), then \(m\) is called an involution. If every element of \(M\) is an involution, we call \(M\) is an involutory Q-algebra.

Example (2.9)
Let \(M = \{0, \eta, \theta, \beta, \psi\}\), can be shown in table:
An intuitionistic fuzzy set (IFS for short) \(A \) in a set \(M \) is an object having the form
\[
A = \langle m, \mu_A(m), \nu_A(m) : m \in M \rangle
\]
satisfy the following axioms:

Definition (2.10) [9]

A pseudo Q-algebra is a non-empty set of \(M \) with constant 0 and two binary operations \(* \) and \(\# \) that
satisfy the following axioms:

1. \(A \subseteq B \) if and only if for all \(m \in M \) \(\mu_A(m) \geq \mu_B(m) \) and \(\mu_A(m) \geq \mu_B(m) \)
2. \(A = B \) if and only if for all \(m \in M \) \(\mu_A(m) = \mu_B(m) \) and \(\mu_A(m) = \mu_B(m) \)
3. \(A \cap B = \langle m, (\mu_A \cap \mu_B)(m), (\nu_A \cap \nu_B)(m) : m \in M \rangle \)
 where \((\mu_A \cap \mu_B)(m) = \min\{\mu_A(m), \mu_B(m)\} \)
 and \((\nu_A \cap \nu_B)(m) = \max\{\nu_A(m), \nu_B(m)\} \)
4. \(A \cup B = \langle m, (\mu_A \cup \mu_B)(m), (\nu_A \cup \nu_B)(m) : m \in M \rangle \)
 where \((\mu_A \cup \mu_B)(m) = \max\{\mu_A(m), \mu_B(m)\} \)
 and \((\nu_A \cup \nu_B)(m) = \min\{\nu_A(m), \nu_B(m)\} \)

Definition (2.11) [2]

If \(A = \langle m, \mu_A(m), \nu_A(m) : m \in M \rangle \) and \(B = \langle m, \mu_B(m), \nu_B(m) : m \in M \rangle \)
be any two IFS of a set \(M \) then

1. \(A \subseteq B \) if and only if for all \(m \in M \) \(\mu_A(m) \geq \mu_B(m) \) and \(\mu_A(m) \geq \mu_B(m) \)
2. \(A = B \) if and only if for all \(m \in M \) \(\mu_A(m) = \mu_B(m) \) and \(\mu_A(m) = \mu_B(m) \)
3. \(A \cap B = \langle m, (\mu_A \cap \mu_B)(m), (\nu_A \cap \nu_B)(m) : m \in M \rangle \)
 where \((\mu_A \cap \mu_B)(m) = \min\{\mu_A(m), \mu_B(m)\} \)
 and \((\nu_A \cap \nu_B)(m) = \max\{\nu_A(m), \nu_B(m)\} \)
4. \(A \cup B = \langle m, (\mu_A \cup \mu_B)(m), (\nu_A \cup \nu_B)(m) : m \in M \rangle \)
 where \((\mu_A \cup \mu_B)(m) = \max\{\mu_A(m), \mu_B(m)\} \)
 and \((\nu_A \cup \nu_B)(m) = \min\{\nu_A(m), \nu_B(m)\} \)

Definition (2.12)

An intuitionistic fuzzy set \(A = \langle m, \mu_A(m), \nu_A(m) : m \in M \rangle \) in a Q-algebra \(M \) is called an intuitionistic fuzzy ideal if

1. \(\mu_A(0) \geq \mu_A(m) \) \(\forall m \in M \)
2. \(\nu_A(0) \leq \nu_A(m) \) \(\forall m \in M \)
3. \(\mu_A(m) \geq \min\{\mu_A(m * b), \mu_A(b)\} \) \(\forall b, m \in M \)
4. \(\nu_A(m) \leq \max\{\nu_A(m * b), \nu_A(b)\} \) \(\forall b, m \in M \)

Definition (2.13) [13]

A pseudo Q-algebra is a non-empty set of \(M \) with constant 0 and two binary operations \(* \) and \(\# \) that
satisfy the following axioms:

1. \(m \# m = m * m = 0 \) \(\forall m \in M \)
2. \(m \# 0 = m * 0 = 0 \) \(\forall m \in M \)
3. \((m \# b) \# c = (m * c) \# b \) \(\forall m, b, c \in M \)
Remark (2.14) [13]
In pseudo Q-algebra M, we can define a binary relation \(\leq \) by
\[
\begin{align*}
 m \leq b & \text{ if and only if } m \# b = 0 \\
 & \text{ and } m \ast b = 0 \quad \forall m, b \in M
\end{align*}
\]

Remark (2.15) [13]
That Q-algebra is a pseudo Q-algebra but the converse is not true as shown in the example below

Example (2.16) Let \(M = \{0, \eta, \theta, \beta\} \)

Table 4: pseudo Q-algebra but not Q-algebra

*	0	\(\eta \)	\(\theta \)	\(\beta \)
0	0	0	0	0
\(\eta \)	\(\eta \)	0	0	0
\(\theta \)	\(\theta \)	\(\theta \)	0	\(\eta \)
\(\beta \)	\(\beta \)	\(\beta \)	0	0

Then \((M, *, 0)\) and \((M, \#, 0)\) are not Q-algebra, since \((\theta \ast \eta) \ast \beta \neq \eta \neq 0 = (\theta \ast \beta) \ast \eta\) and \((\theta \# \eta) \# \beta = 0 \neq \beta = (\theta \# \beta) \# \eta\), but \((M, *, 0)\) is pseudo Q-algebra.

Proposition (2.17) [12]
Let \((M, *, \#, 0)\) be a pseudo Q-algebra. Then the following hold:

1. \((m \ast (m \# b)) \# b = (m \# (m \ast b)) \ast b = 0 \quad \forall m, b \in M\)

Definition (2.18) [4]
A pseudo -Q-algebra M it is said to be bounded if there is an element \(n \in M \) satisfying \(m \leq n \quad \forall m \in M \) i.e. \(m \leq n \iff m \ast n = 0 \) and \(m \# n = 0 \) then \(n \) is called pseudo unit of M.

A pseudo-Q-algebra with a pseudo unit is called bounded.

Proposition (2.19) [4]
Let \((M, *, \#, 0)\) be a bounded pseudo Q-algebra. Then the following hold:

1. \(e \ast 0 = 0 = e \# \)
2. \(m \ast \# b = b \# \ast m \quad \forall m, b \in M \)
3. \(m \ast \# b \ast = (b \ast) \# \ast m \quad \forall m, b \in M \)
4. \(m \# \ast b \# = (b \# \ast \# m \quad \forall m, b \in M \)

Definition (2.20) [13]
Let \((M, *, \#, 0)\) be a bounded pseudo Q-algebra. A subset I of M is called the pseudo -ideal of M if it satisfies:

1. \(0 \in I \)
2. \(m \ast b, m \# b \in I \) and \(b \in I \) imply \(m \in I \) \(\forall m, b \in I \) whenever \(m, b \in I \)

Definition (2.21) [9]
Let \((M, *, \#, 0)\) be a bounded pseudo Q-algebra and let \(\phi \neq I \subseteq M \). I is called a pseudo subalgebra of M if \(m \ast b, m \# b \in I \) wenever \(m, b \in I \)

Definition (2.22) [4]
Let M be a pseudo Q-algebra. A fuzzy set \(\mu \) in M is called a fuzzy pseudo ideal of M if it satisfies:
1. \(\mu(0) \geq \mu(m) \), \(\forall m \in M \)

2. \(\mu(m) \geq \text{Min}\{\mu(m \ast b), \mu(m \# b), \mu(b)\} \) \(\forall m, b \in M \)

Example (2.23)

In Example (2.17), define the fuzzy set \(\mu \) by

\[
\mu(m) = \begin{cases}
0.8 & \text{if } m = 0, \eta \\
0.6 & \text{if } m = \theta, \beta
\end{cases}
\]

Then \(\mu \) is fuzzy pseudo ideal, since \(\mu(0) \geq \mu(m) \), \(\forall m \in M \) and

\[
\mu(m) = 0.6 \geq \text{Min}\{\mu(m \ast b), \mu(m \# b), \mu(b)\} = 0.6 \quad \forall m \in M \setminus \{\eta, 0\} \quad \text{and} \quad \forall b \in M
\]

While \(\varphi(m) = \begin{cases}
0.7 & \text{if } m = 0, \eta, \theta \\
0.5 & \text{if } m = \beta
\end{cases} \]

is not fuzzy pseudo ideal of \(M \), since \(\varphi(\beta) = 0.5 \not\geq \text{Min}\{\varphi(\beta \ast \theta), \varphi(\beta \# \theta), \varphi(\theta)\} = 0.7 \)

Definition (2.24)

A nonempty subset \(I \) of a pseudo Q-algebra \((M, \ast, \# , 0) \) is called complete pseudo ideal (briefly, c-pseudo ideal), if

1. \(0 \in I \)

2. \(m \ast b, m \# b \in I, \forall b \in I \) such that \(b \neq 0 \) implies \(m \in I \)

Definition (2.25)

A nonempty subset \(I \) of a bounded pseudo Q-algebra \((M, \ast, \# , 0) \) is called complete k-pseudo ideal (briefly, c-k-pseudo ideal), if

1. \(0 \in I \)

2. \(m \ast \ast b, b \# \ast m \in I \) (resp. \(m \# \ast b, b \# \# m \in I \)), \(\forall b \in I \) such that \(b \neq 0 \) imply \(m \ast \in I \) (resp. \(m \# \in M \)), \(\forall m \in M \)

Note that in bounded pseudo Q-algebra \(M \) there are trivial c-k-pseudo ideals, \(\{0\} \) and \(M \)

Proposition (2.26)

Any c-pseudo ideal from bounded pseudo Q-algebra is c-k-pseudo ideal.

Definition (2.27)

Let \(M \) be a bounded pseudo Q-algebra. An element \(m \in M \) satisfies \(m \ast = m = m \# \) then \(m \) is called pseudo involution (i.e. \(m \) is \(\ast \)-involution and \(\# \)-involution). If every element \(m \in M \) is pseudo involution, we call \(M \) is a pseudo Q-algebra.

Example (2.28)

Let \(M = \{0, \eta, \theta, \beta, \psi\} \) be a set with tables below

* \ 0 \ \eta \ \theta \ \beta \ \psi	\# \ 0 \ \eta \ \theta \ \beta \ \psi
0 \ 0 \ 0 \ 0 \ 0	0 \ 0 \ 0 \ 0 \ 0
\eta \ \eta \ 0 \ 0 \ 0	\eta \ \eta \ 0 \ 0 \ 0
\theta \ \theta \ \psi \ 0 \ 0	\theta \ \theta \ 0 \ 0 \ 0
\beta \ \beta \ \eta \ \psi \ 0 \	\beta \ \beta \ \psi \ \theta \ \eta
\psi \ \psi \ 0 \ 0 \ 0	\psi \ \psi \ 0 \ 0 \ 0

Then \((M, \ast, \#, 0) \) is bounded pseudo Q-algebra with unit \(\beta \). Notice that \(M \) is a pseudo involution.

Proposition (2.29)

If \(I \) be a c-k-pseudo-ideal in a pseudo-involutory pseudo-Q-algebra \(M \), then \(I \) is c-pseudo-ideal.
Proposition (2.30) [4]
Let μ be a fuzzy pseudo ideal of a pseudo Q-algebra M if $m \leq b$, then $\mu(m) \geq \mu(b), \forall m, b \in M$

Definition (2.31)
Let M be a pseudo Q-algebra. A fuzzy set μ in M is called a fuzzy pseudo subalgebra of M if it satisfies:

1. $\mu(m \ast b) \geq \min\{\mu(m), \mu(b)\} \quad \forall m, b \in M$
2. $\mu(m \# b) \geq \min\{\mu(m), \mu(b)\} \quad \forall m, b \in M$

3 Some types of intuitionistic fuzzy pseudo ideal

In this section, we define IF pseudo ideal and IF complete pseudo ideal, IF k-pseudo ideal, IF c-pseudo ideal and some properties among them.

Definition (3.1)
Let M be a pseudo Q-algebra. An intuitionistic fuzzy set A of M is called an intuitionistic fuzzy pseudo ideal if it satisfies:

1. $\mu_A(0) \geq \mu_A(m) \quad \forall m \in M$
2. $\nu_A(0) \leq \nu_A(m) \quad \forall m \in M$
3. $\mu_A(m) \geq \min\{\mu_A(m \ast b), \mu_A(m \# b), \mu_A(b)\} \quad \forall m, b \in M$
4. $\nu_A(m) \leq \max\{\nu_A(m \ast b), \nu_A(m \# b), \nu_A(b)\} \quad \forall m, b \in M$

Example (3.2)
In Example (2.23) define the intuitionistic fuzzy set A by

$\mu_A(m) = \begin{cases}
0.8 : & \text{if } m = 0, \eta \\
0.6 : & \text{if } m = \theta, \beta
\end{cases}$

$\nu_A(m) = \begin{cases}
0.2 : & \text{if } m = 0, \eta \\
0.4 : & \text{if } m = \theta, \beta
\end{cases}$

Then A is intuitionistic fuzzy pseudo ideal since,

$\mu_A(0) \geq \mu_A(m) \quad \text{and} \quad \nu_A(0) \leq \nu_A(m) \quad \forall m \in M,$

$\mu(b) = 0.6 \geq \min\{\mu_A(b \ast m), \mu_A(b \# m), \mu_A(m)\} = 0.6,$

$\nu_A(b) = 0.4 \leq \max\{\nu_A(b \ast m), \nu_A(b \# m), \nu_A(b)\} = 0.4 \quad \forall m \in M \quad \text{and} \quad \forall b \in M \setminus \{0, \eta\}$

Definition (3.3)
Let I be a c-pseudo ideal of a pseudo Q-algebra $(M, \ast, \#)$. An intuitionistic fuzzy set A is called intuitionistic fuzzy complete pseudo ideal at I (briefly, IF c-pseudo ideal), if

1. $\mu_A(0) \geq \mu_A(m) \quad \forall m \in M$
2. $\nu_A(0) \leq \nu_A(m) \quad \forall m \in M$
3. $\mu_A(m) \geq \min\{\mu_A(m \ast b), \mu_A(m \# b), \mu_A(b)\} \quad \forall m, b \in M, b \in I$
4. $\nu_A(m) \leq \max\{\nu_A(m \ast b), \nu_A(m \# b), \nu_A(b)\} \quad \forall b \in I, \forall m \in M$

Example (3.4)
Let $M = \{0, \eta, \theta, \beta\}$ be a set with the tables below
Then $(M, \ast, \#, 0)$ is pseudo Q-algebra, a subset $I = \{0, \eta, \theta\}$ is a c-pseudo ideal of M. Let A is the intuitionistic fuzzy c-ideal at I in M, then by definitin (2.22) we have,

$$\mu_A = \begin{cases}
0.5 & \text{if } m = 0, \eta, \beta \\
0.4 & \text{if } m = \theta
\end{cases} \quad \nu_A(m) = \begin{cases}
0.5 & \text{if } m = 0, \eta, \beta \\
0.6 & \text{if } m = \theta
\end{cases}$$

Then A is the intuitionistic fuzzy c-ideal at I in M, because

$\mu_A(0) \geq \mu_A(m) \quad \nu_A(0) \leq \nu_A(m) \quad \forall m \in M$

$\nu_A(\theta) = 0.4 \geq \min\{\mu_A(\theta \ast b), \mu_A(\theta \# b), \mu_A(b)\} = 0.4 \quad \forall b \in I$

$\nu_A(\theta) = 0.6 \leq \max\{\nu_A(\theta \ast b), \nu_A(\theta \# b), \mu_A(b)\} = 0.6 \quad \forall b \in I$

Proposition (3.5)

Every intuitionistic fuzzy pseudo ideal of a pseudo Q-algebra is an intuitionistic fuzzy c- pseudo ideal.

Proof

suppose that I be a c-pseudo ideal and A is intuitionistic fuzzy pseudo ideal of a pseudo Q-algebra M then by definitin (2.22) we have ,

1. $\mu_A(0) \geq \mu_A(m) \quad \forall m \in M$
2. $\nu_A(0) \leq \nu_A(m) \quad \forall m \in M$
3. $\mu_A(m) \geq \min\{\mu_A(m \ast b), \mu_A(m \# b), \mu_A(b)\} \quad \forall m, b \in M$
4. $\nu_A(m) \leq \{\nu_A(m \ast b), \nu_A(m \# b), \nu_A(b)\} \quad \forall m, b \in M$

since $I \subseteq M$, then $\mu_A(m) \geq \min\{\mu_A(m \ast b), \mu_A(m \# b), \mu_A(b)\}$ and

$\nu_A(m) \leq \max\{\nu_A(m \ast b), \nu_A(m \# b), \nu_A(b)\} \quad \forall b \in I$

Thus A is intuitionistic fuzzy c-pseudo ideal of M.

Remark (3.6)

The following example shows that the converse of proposition (3.5) is not true in general.

Example (3.7)

In example (3.2), notice that A is intuitionistic fuzzy c-pseudo ideal at I in M (When $I = \{0, \eta, \theta\}$, but its not is intuitionistic fuzzy pseudo ideal because

$\mu_A(\theta) = 0.4 \not\geq \min\{\mu_A(\theta \ast \beta), \mu_A(\theta \# \beta), \mu_A(\beta)\} = 0.5$

Proposition (3.8)

Let I be a c-pseudo ideal of a pseudo involutory pseudo Q-algebra M. An intuitionistic fuzzy set A is intuitionistic fuzzy c-pseudo ideal if and only if satisfies:

1. $\mu_A(0) \geq \mu_A(m) \quad \forall m \in M$
2. $\nu_A(0) \leq \nu_A(m) \quad \forall m \in M$
3. $\mu_A(m) \geq \min\{\mu_A(m \ast b), \mu_A(b \# m \ast), \mu_A(b)\}$
 $= \mu_A(m) \geq \min\{\mu_A(b \# m \# b), \mu_A(m \# b), \mu_A(b)\} \quad \forall m, b \in M$
4. \(\nu_A(m) \leq \text{Max}\{\nu_A(m^* \ast b), \nu_A(b^\# \ast m^*), \nu_A(b)\} \) and
\(\nu_A(m^\#) \leq \text{Max}\{\nu_A(m^\# b), \nu_A(b^\# m), \nu_A(b)\}. \ \forall m, b \in M \)

Proof
by definition(2.27) and definition(3.3)

Definition(3.9)
An intuitionistic fuzzy set \(A \) in bounded pseudo Q-algebra \((M, \#, *, 0)\) is called intuitionistic fuzzy k-pseudo ideal, if

1. \(\mu_A(0) \geq \mu_A(m) \ \forall m \in M \)
2. \(\nu_A(0) \leq \nu_A(m) \ \forall m \in M \)
3. \(\mu_A(m^*) \geq \text{Min}\{\mu_A(m^* b), \mu_A(b^* \ast m), \mu_A(b)\} \) and
\(\mu_A(m^\#) \geq \text{Min}\{\mu_A(m^\# b), \mu_A(b^\# m), \mu_A(b)\}. \ \forall m, b \in M \)
4. \(\nu_A(m^*) \leq \text{Max}\{\nu_A(m^* b), \nu_A(b^* \ast m), \nu_A(b)\} \) and
\(\nu_A(m^\#) \leq \text{Max}\{\nu_A(m^\# b), \nu_A(b^\# m), \nu_A(b)\}. \ \forall m, b \in M \)

Example(3.10)
1. Every intuitionistic fuzzy constant in bounded pseudo Q-algebra \(M \) is intuitionistic fuzzy k-pseudo ideal .
2. Let \(M = \{0, \eta, \theta, \beta, \psi\} \) be a set with the tables below

	0	\eta	\theta	\beta	\psi
0	0	0	0	0	0
\eta	\eta	0	0	0	\eta
\theta	\theta	0	0	\theta	\theta
\beta	\beta	0	\beta	\beta	\psi
\psi	\psi	0	\psi	\psi	0

then \((M, *, \#, 0)\) is bounded pseudo Q-algebra with unit \(\eta \) and define an intuitionistic fuzzy A by
\(\mu_A(m) = \begin{cases} 0.9 & \text{if } m = 0, \eta \\ 0.3 & \text{if } m = \theta, \beta, \psi \end{cases} \) & \(\nu_A(m) = \begin{cases} 0.1 & \text{if } m = 0, \eta \\ 0.7 & \text{if } m = \theta, \beta, \psi \end{cases} \)

then \(A \) is intuitionistic fuzzy k-pseudo ideal of \(M \), because
\(\mu_A(0) \geq \mu_A(m) \) and \(\nu_A(0) \leq \nu_A(m), \ \forall m \in M \)
\(\mu_A(m^*) = 0.9 \geq \text{Min}\{\mu_A(m^* b), \mu_A(b^* \ast m), \mu_A(b)\} \) is hold \(\forall m, b \in M \).
also \(\mu_A(m^\#) = 0.9 \geq \text{Min}\{\mu_A(m^\# b), \mu_A(b^\# m), \mu_A(b)\} \) is hold \(\forall m, b \in M \) also
\(\nu_A(m^*) = 0.1 \leq \text{Max}\{\nu_A(m^* b), \nu_A(b^* \ast m), \nu_A(b)\} \) and \(\nu_A(m^\#) = 0.1 \leq \text{Max}\{\nu_A(m^\# b), \nu_A(b^\# m), \nu_A(b)\} \)

Proposition(3.11)
Every intuitionistic fuzzy pseudo ideal of a bounded pseudo Q-algebra is an intuitionistic fuzzy k-pseudo ideal

Proof
Let \(A \) is an intuitionistic fuzzy pseudo ideal of a bounded pseudo Q-algebra then by definition (3.1) we have

1. \(\mu_A(0) \geq \mu_A(m) \ \forall m \in M \)
2. \(\nu_A(0) \leq \nu_A(m) \quad \forall m \in M \)

3. \(\mu_A(m) \geq \text{Min} \{ \mu_A(m \ast b), \mu_A(m \# b), \mu_A(b) \} \) then
 \[\mu_A(m^*) \geq \text{Min} \{ \mu_A(m^* \ast b), \mu_A(m^* \# b), \mu_A(b) \} \]
 \[= \text{Min} \{ \mu_A(m^* \ast b), \mu_A(b^* \# m), \mu_A(b) \} \quad \forall m, b \in M \]
 Also
 \[\mu_A(m^\#) \geq \text{Min} \{ \mu_A(m^\# \ast b), \mu_A(m^\# \# m), \mu_A(b) \} \]
 \[= \text{Min} \{ \mu_A(m^\# \# b), \mu_A(b^* \# m), \mu_A(b) \} \quad \forall m, b \in M \]

4. \(\nu_A(m) \leq \text{Max} \{ \nu_A(m \ast b), \nu_A(m \# b), \nu_A(b) \} \) then
 \[\nu_A(m^*) \leq \text{Max} \{ \nu_A(m^* \ast b), \nu_A(m^* \# b), \nu_A(b) \} \]
 \[= \text{Max} \{ \nu_A(m^* \ast b), \nu_A(b^* \# m), \nu_A(b) \} \quad \forall m, b \in M \]

Thus A is intuitionistic fuzzy K-pseudo ideal of M .

Remark(3.12)
In general, the converse of Proposition (3.11) needs not true as shown in the following example .

Example(3.13)
in Example (3.10 -2) A is intuitionistic fuzzy k-pseudo ideal in M , but not intuitionistic fuzzy pseudo ideal in M , because \(\mu_A(\theta) = 0.3 \geq \text{Min} \{ \mu_A(\theta \ast \eta), \mu_A(\theta \# \eta), \mu_A(\eta) \} = 0.9 \)

Proposition(3.14)
Every intuitionistic fuzzy k-pseudo ideal in a pseudo involutory pseudo Q-algebra M is intuitionistic fuzzy pseudo ideal .

Proof
Assume that A be an intuitionistic fuzzy k-pseudo ideal of M since M is pseudo involutory pseudo Q-algebra , then
\[\mu_A(m) = \mu_A(m^*) \geq \text{Min} \{ \mu_A(m^* \ast b), \mu_A(b^* \# m), \mu_A(b) \} \]
\[= \text{Min} \{ \nu_A(m \ast b), \nu_A(m \# b), \nu_A(b) \} \quad \forall m, b \in M \]

Proposition(3.15)
Let A be intuitionistic fuzzy k-pseudo ideal of a bounded pseudo Q-algebra M , then

1. \(\mu_A(m^*) \geq \mu_A(e) \quad \text{and} \quad \mu_A(m^\#) \geq \mu_A(e) \quad \forall m \in M \)
2. \(\nu_A(m^*) \leq \nu_A(e) \quad \nu_A(m^\#) \leq \nu_A(e) \quad \forall m \in M \)
3. \(m^* \leq b \), then \(\mu_A(b) \geq \mu_A(m^*) \) also \(\nu_A(b) \leq \nu_A(m^*) \)
4. \(m^\# \leq b \), then \(\mu_A(b) \geq \mu_A(m^\#) \) also \(\nu_A(b) \leq \nu_A(m^\#) \)

Proof
1. Since A is intuitionistic fuzzy k-pseudo ideal, we have
 \[\mu_A(m^*) \geq \text{Min} \{ \mu_A(m^* \ast e), \mu_A(e \ast m), \mu_A(e) \} \]
 \[= \text{Min} \{ \mu_A(0), \mu_A(e) \} = \mu_A(e) \quad \text{and} \quad \mu_A(m^\#) \geq \text{Min} \{ \mu_A(m^\# \ast e), \mu_A(e \# m), \mu_A(e) \} \]
 \[= \text{Min} \{ \mu_A(0), \mu_A(e) \} = \mu_A(e) \quad \forall m \in M \]

2. Since A is intuitionistic fuzzy k-pseudo ideal, we have
 \[\nu_A(m^*) \leq \text{Max} \{ \nu_A(m^* \ast e), \nu_A(e \ast m), \nu_A(e) \} \]
 \[= \text{Max} \{ \nu_A(0), \nu_A(e) \} = \nu_A(e) \quad \text{and} \quad \nu_A(m^\#) \leq \text{Max} \{ \nu_A(m^\# \ast e), \nu_A(e \# m), \nu_A(e) \} \]
 \[= \text{Max} \{ \nu_A(0), \nu_A(e) \} = \nu_A(e) \quad \forall m \in M \]
3. if $m^* \leq b$ i.e. $m^* * b = 0$ and $m^* \# b = 0$, then
\[
\mu_A(m^*) \geq \min \{ \mu_A(m^* * b), \mu_A(b^\# * m), \mu_A(b) \} \quad \forall m, b \in M
\]
(proof as intuitionistic fuzzy k-pseudo ideal)
\[
= \min \{ \mu_A(0_\#), \mu_A(b) \} = \mu_A(b)
\]
\[
\nu_A(m^*) \leq \max \{ \nu_A(m^* * b), \nu_A(b^\# * m), \nu_A(b) \} \quad \forall m, b \in M
\]
(proof as intuitionistic fuzzy k-pseudo ideal)
\[
= \max \{ \nu_A(0_\#), \nu_A(b) \} = \nu_A(b)
\]

4. is similar to the proof of (3)

Definition (3.16)

Let I be a c-k-pseudo ideal of a bounded pseudo Q-algebra $(M, *, \#, 0)$. An intuitionistic fuzzy set A is called intuitionistic fuzzy complete k-pseudo ideal (briefly, intuitionistic fuzzy c-k-pseudo ideal), if

1. $\mu_A(0) \geq \mu_A(m) \quad \forall m \in M$
2. $\nu_A(0) \leq \nu_A(m) \quad \forall m \in M$
3. $\mu_A(m^*) \geq \min \{ \mu_A(m^* * b), \mu_A(b^\# * m), \mu_A(b) \}$
 and $\mu_A(m^\#) \geq \min \{ \mu_A(m^\# * b), \mu_A(b^\# * m), \mu_A(b) \} \quad \forall m, b \in M, b \in I$
4. $\nu_A(m^*) \leq \max \{ \nu_A(m^* * b), \nu_A(b^\# * m), \nu_A(b) \}$
 and $\nu_A(m^\#) \leq \max \{ \nu_A(m^\# * b), \nu_A(b^\# * m), \nu_A(b) \} \quad \forall m, b \in M, b \in I$

Example (3.17)

In Example (2.16) let A be intuitionistic fuzzy set of M where $I = \{0, \eta, \theta\}$ be c-k-pseudo ideal defined by

\[
\mu_A(m) = \begin{cases}
0.6 & \text{if } m = 0, \eta, \beta \\
0.2 & \text{if } m = \theta
\end{cases} \quad \eta, \beta \quad \& \quad \nu_A(m) = \begin{cases}
0.4 & \text{if } m = 0, \eta, \beta \\
0.8 & \text{if } m = \theta
\end{cases}
\]

Then A is intuitionistic fuzzy complete k-pseudo ideal of M because

\[
\mu_A(0) \geq \mu_A(m) \text{ and } \nu_A(0) \leq \nu_A(m) \quad \forall m \in M,
\]
\[
\mu_A(0^*) = 0.2 \geq \min \{ \mu_A(0^* * b), \mu_A(b^\# * 0), \mu_A(b) \} = 0.2 \quad \forall b \in I
\]
\[
\mu_A(0^\#) = 0.2 \geq \min \{ \mu_A(0^\# * b), \mu_A(b^\# * 0), \mu_A(b) \} = 0.2 \quad \forall b \in I
\]
\[
\nu_A(0^*) = 0.8 \leq \max \{ \nu_A(0^* * b), \nu_A(b^\# * 0), \nu_A(b) \} = 0.8 \quad \forall b \in I
\]
\[
\nu_A(0^\#) = 0.8 \leq \max \{ \nu_A(0^\# * b), \nu_A(b^\# * 0), \nu_A(b) \} = 0.8 \quad \forall b \in I
\]

Proposition (3.18)

Every intuitionistic fuzzy k-pseudo ideal of a bounded pseudo Q-algebra is an intuitionistic fuzzy c-k-pseudo ideal

Proof

Let I be a c-k-pseudo ideal in bounded pseudo Q-algebra M and A be an intuitionistic fuzzy k-pseudo ideal of M, then

\[
\mu_A(m^*) \geq \min \{ \mu_A(m^* * b), \mu_A(b^\# * m), \mu_A(b) \} \quad \text{and}
\]
\[
\nu_A(m^*) \leq \max \{ \nu_A(m^* * b), \nu_A(b^\# * m), \nu_A(b) \} \quad \forall m, b \in M
\]

Since $I \subseteq M$ we have

\[
\nu_A(m^*) \leq \min \{ \nu_A(m^* * b), \nu_A(b^\# * m), \nu_A(b) \} \quad \forall b \in I
\]

Also

\[
\mu_A(m^\#) \geq \min \{ \mu_A(m^\# * b), \mu_A(b^\# * m), \mu_A(b) \} \quad \text{and}
\]
\[
\nu_A(m^\#) \leq \max \{ \nu_A(m^\# * b), \nu_A(b^\# * m), \nu_A(b) \} \quad \forall b \in I
\]

10
\[\nu_A(m^b) \leq \max \{ \nu_A(m^b \# b), \nu_A(b^\# m), \nu_A(b) \} \quad \forall m, b \in M \]

Since \(I \subseteq M \) we have
\[\mu_A(m^b) \geq \min \{ \mu_A(m^b \# b), \mu_A(m^b \# b), \mu_A(b) \} \quad \text{and} \]
\[\nu_A(m^b) \leq \max \{ \nu_A(m^b \# b), \nu_A(b^\# m), \nu_A(b) \} \quad \forall b \in I \]

Remark (3.19)

The converse of proposition (3.18) may not be true and the following example explainwd that.

Example (3.20)

In example (3.17) if \(A \) be intuitionistic fuzzy c-k-pseudo ideal in \(M \)

\(\text{(Where } I = \{0, \eta, \theta\} \text{ is c-k pseudo ideal) , since } \mu_A(0^#) = 0.2 \leq \min \{ \mu_A(0^# \# \beta), \mu_A(\beta^# 0), \mu_A(\beta) \} = 0.6 \)

Corollary (3.21)

Every intuitionistic fuzzy pseudo ideal of bounded pseudo Q-algebra is intuitionistic fuzzy c-k-pseudo ideal.

Proof

by proposition (3.11) and proposition (3.18).

Proposition (3.22)

Any intuitionistic fuzzy c-pseudo ideal from bounded pseudo Q-algebra is intuitionistic fuzzy c-k-pseudo ideal.

Proof

Let \(A \) be an intuitionistic fuzzy c-pseudo ideal from bounded pseudo Q-algebra \(M \) and \(I \) be c-pseudo ideal of \(M \).

then \(I \) is c-k pseudo ideal of \(M \) by proposition (2.26).

since \(A \) intuitionistic fuzzy c-pseudo ideal of \(M \), from definition (3.3) we have:

1. \(\mu_A(0) \geq \mu_A(m) \quad \forall m \in M \)
2. \(\nu_A(0) \leq \nu_A(m) \quad \forall m \in M \)
3. \(\mu_A(m) \geq \min \{ \mu_A(m \# b), \mu_A(m^b \#), \mu_A(b) \} \quad \forall b \in I \) thus
 \[\mu_A(m) \geq \min \{ \mu_A(m \# b), \mu_A(m^b \# b), \mu_A(b) \} \]
 \[= \min \{ \mu_A(m \# b), \mu_A(b^# m), \mu_A(b) \} \quad \forall b \in I \]
 also \(\mu_A(m^#) \geq \min \{ \mu_A(m^# \# b), \mu_A(m^b \#), \mu_A(b) \} \)
 \[= \min \{ \mu_A(m^# \# b), \mu_A(b^# m), \mu_A(b) \} \quad \forall b \in I \]
4. \(\nu_A(m) \leq \max \{ \nu_A(m \# b), \nu_A(m^b \#), \nu_A(b) \} \quad \forall b \in I \) thus
 \[\nu_A(m^b) \leq \max \{ \nu_A(m \# b), \nu_A(m^b \# b), \nu_A(b) \} \]
 \[= \max \{ \nu_A(m \# b), \nu_A(b^# m), \nu_A(b) \} \quad \forall b \in I \]
 also \(\nu_A(m^#) \leq \max \{ \nu_A(m^# \# b), \nu_A(m^b \#), \nu_A(b) \} \)
 \[= \max \{ \nu_A(m^# \# b), \nu_A(b^# m), \nu_A(b) \} \quad \forall b \in I \]

Hance \(A \) is intuitionistic fuzzy c-pseudo ideal of \(M \)

Example (3.23)

In example (3.10) if \(I = \{0, \beta, \psi\} \), then \(i \) is a c-k pseudo ideal and c-pseudo ideal of a bounded Q-algebra \(M \)

Example (3.23)

define the intuitionistic fuzzy set \(A \) by:

\[\mu_A(m) = \begin{cases} 0.9 & : \text{if } m = 0, \eta, \beta \\ 0.6 & : \text{if } m = \theta, \psi \\ \end{cases} \quad \& \nu_A(m) = \begin{cases} 0.1 & : \text{if } m = 0, \eta, \beta \\ 0.4 & : \text{if } m = \theta, \psi \\ \end{cases} \]

then \(A \) is intuitionistic fuzzy c-k pseudo ideal because

\(\mu_A(0) \geq \mu_A(m) \) and \(\nu_A(0) \leq \nu_A(m) \quad \forall m \in M \)
Also $\mu_A(m^*) = 0.9 \geq \min\{\mu_A(m^* \ast b), \mu_A(b^\# \ast m), \mu_A(b)\}$ is hold $\forall b \in I$, $\forall m \in M$ and $\mu_A(m^\#) = 0.9 \geq \min\{\mu_A(m^\#b), \mu_A(b^\#m), \mu_A(b)\}$ is hold too $\forall b \in I$, $\forall m \in M$ and $\nu_A(m^*) = 0.1 \leq \max\{\nu_A(m^* \ast b), \nu_A(b^\# \ast m), \nu_A(b)\}$ is hold $\forall b \in I$, $\forall m \in M$ and $\nu_A(m^\#) = 0.1 \leq \max\{\nu_A(m^\#b), \nu_A(b^\#m), \nu_A(b)\}$ is hold too $\forall b \in I$, $\forall m \in M$ but A is not intuitionistic fuzzy c-pseudo ideal because $\mu_A(\psi) = 0.6 \not\geq \min\{\mu_A(\psi \ast \beta), \mu_A(\psi^\#\beta), \mu_A(\beta)\} = 0.9$

Proposition (3.24)

Every intuitionistic fuzzy c-k-pseudo ideal in a pseudo involutory pseudo Q-algebra M is intuitionistic fuzzy c-pseudo ideal.

Proof

suppose that A is intuitionistic fuzzy c-k-pseudo ideal of M. Then I is c-pseudo ideal of M by (proposition (2.29)) since M is pseudo involutory, then

$\mu_A(m) = \mu_A(m^\#) \geq \min\{\mu_A(m^\#b), \mu_A(b^\#m), \mu_A(b)\} = \min\{\mu_A(m^\#b), \mu_A(m^\#b), \mu_A(b)\}$

$\forall b \in I$

Thus A is intuitionistic fuzzy c-pseudo ideal of M.

Remark (3.25):

The following diagram shows the relation among intuitionistic fuzzy pseudo ideal, intuitionistic fuzzy k-pseudo ideal, intuitionistic fuzzy c-pseudo ideal, intuitionistic fuzzy c-k-pseudo ideal in bounded Q-algebra:
In involutory Q-algebra

IF pseudo ideal

IF k- pseudo ideal

IF c-pseudo ideal

IF c-K-pseudo ideal
References

[1] H.K.Jawad, H.K.Abdullah., New types of Ideals in Q-algebra, Journal university of kerbala, Vol.16 No.4 scientific. 2018.

[2] B. Dudek . K. (2010) $(\alpha, \beta)−cut$ of Intuitionistic Fuzzy Ideals, Notes on Intuitionistic Fuzzy Sets, 16(3), 22 – 27.

[3] G.Georgescu and A. Iorgulescu, Pseudo-BCK-algebras: an extension of BCK-algebras, In:Proc.of DMTCS.01:Combinatorics, Computability and Logic, Springer, London (2001),pp.97-114.

[4] H. K.Jawad , Some Types of Fuzzy Pseudo Ideals of Pseudo Q-algebra ,Thesis , University of Kufa , 2019.

[5] J. Meng, X.Guo, On fuzzy ideals in BCK/BCI-algebras , Fuzzy Sets and Systems 149 (2005) ,pp.509-525.

[6] J.Neggers, S. S. Ahn and H.S. Kim , On Q-algebras , Int. J. Math. Math. Sci. 27 (12) (2001) ,pp.749-757.

[7] K. Iseki , An algebra related with a propositional culclus , Proc. Japan Academy 42 (1966) , pp.26-29.

[8] K. J. Lee, Fuzzy ideals of pseudo θBCI-algebras, J. Appl. Math and Informatics 27 (2009), pp.795-807.

[9] K. T. Atanassov,”Intuitionistic fuzzy sets ”, Fuzzy sets and Systems 35 (1986), 87?96.

[10] L.A.Zadeh , fuzzy sets , Information and Control , 8 (1965) , pp.338-353.

[11] Neggers J, Ahn SS, kim HS. on Q-algebra. International Journal of Mathematics and Mathematical Sciences (IJMMS). 2001; 27(12):749-757.

[12] S.A .Bajalan, S.A. Ozbal, Some Properties and homomorphism of pseudo θQ-algebras , journal of Contemporary Applied Mathematics, 6 (2) (2016),pp. 3-17

[13] Y. B. Jun, H.S Kim and S.SH. Ahn, structuctures of pseudo ideal and pseudo Atom in a pseudo θQ-algebra , Kyungpook Math. J.56 (2016),pp. 95-106.

[14] Y. Imai and K. Iseki, On axioms Systems of propositional calculi XIV, Proc. Japan Academy 42(1966),pp.19-22.

[15] W. A. Dudek and Y.B. Jun, pseudo -BCI-algebras , East Asian math J.24 (2008),pp.187-190.