Role of Sirtuins in Tumor Angiogenesis

Lincy Edatt, Aswini Poyyakkara, Grace R. Raji, Vishnu Ramachandran, S. Sharath Shankar and V. B. Sameer Kumar*

Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, India

Generally, changes in the metabolic status of cells under conditions like hypoxia and accumulation of lactate can be sensed by various sensing mechanisms, leading to modulation of a number of signal transduction pathways and transcription factors. Several of the proangiogenic cytokines like VEGF, FGF, PDGF, TGF-β, Ang-2, ILs, etc. are secreted by cancer cells, under hypoxic microenvironment. These cytokines bind to their receptors on the endothelial cells and activates a number of signaling pathways including Akt/PIP3, Src, p38/MAPK, Smad2/3, etc., which ultimately results in the proliferation and migration of endothelial cells. Transcription factors that are activated in response to the metabolic status of tumors include HIFs, NF-κb, p53, El-2, and FOXO. Many of these transcription factors has been reported to be regulated by a class of histone deacetylase called sirtuins. Sirtuins are NAD⁺ dependent histone deacetylases that play pivotal role in the regulation of tumor cell metabolism, proliferation, migration and angiogenesis. The major function of sirtuins include, deacetylation of histones as well as some non-histone proteins like NF-κB, FOXOs, PPARα, PGC1-α, enzymes like acetyl coenzymeA and structural proteins like α tubulin. In the cell, sirtuins are generally considered as the redox sensors and their activities are dependent on the metabolic status of the cell. Understanding the intricate regulatory mechanisms adopted by sirtuins, is crucial in devising effective therapeutic strategies against angiogenesis, metastasis and tumor progression. Keeping this in mind, the present review focuses on the role of sirtuins in the process of tumor angiogenesis and the regulatory mechanisms employed by them.

Keywords: sirtuins, tumor angiogenesis, metabolism, histone deacetylases, endothelial cells, signaling pathways

INTRODUCTION

Angiogenesis, the process of formation of new blood vessels from pre-existing ones, is essential for the normal growth, development and wound healing. Apart from this, angiogenesis is also inevitable for tumor growth and metastasis (1–5). The expression and secretion of various modulators of angiogenesis is regulated by microenvironmental factors like hypoxia and accumulation of different metabolites (6–8). Under conditions like hypoxia, a number of signal transduction pathways and transcription factors like PPARα, PGC-1α, AMPK, FOXOs, etc. gets activated (9, 10). The expression and activation of these transcription factors has been reported to be regulated by a class of histone deacetylase called sirtuins or SIRT (11, 12). Sirtuins are NAD⁺ dependent histone deacetylases that play a vital role in the regulation of metabolism, aging, oncogenesis, angiogenesis and cancer progression (13, 14). It has been reported that SIRT1 can function as a redox sensor, and its activity might be dependent on the overall metabolic status of the
cell (15), since it has been shown to regulate the stabilization of transcription factors such as HIF1α under hypoxic conditions (16). Therefore, understanding the regulatory mechanisms employed by sirtuins to modulate tumor angiogenesis is essential for developing effective anti-cancer and anti-angiogenic therapeutic strategies.

SIRTUINS: MECHANISM OF ACTION AND CLASSIFICATION

In mammals, seven homologs of sirtuins, i.e., SIRT1–SIRT7 (17, 18) which were initially described as class III HDACs (Histone deacetylases), are now known as class III KDACs (Lysine deacetylases) (19). The proposed mechanism of Sirtuin deacetylation is reported to be ADP-ribose-peptidyl-imidate (20) where, Sirtuins catalyze NAD⁺-dependent deacetylation of acetyl lysine, producing nicotinamide, deacetylated lysine, and 2’-O-acetyl-ADP-ribose (21). The major function of sirtuins involve, removal of acetyl groups from the acetyl lysine-modified proteins (22, 23). The reaction gets initiated when, NAD⁺ binds to the catalytic site of sirtuin, with the C1 of NAD⁺ getting placed at the channel junction that, houses the acetyl lysine (24). To understand how increasing levels of NAD⁺ affects sirtuin activity, NAD⁺ synthesis was enhanced by supplementing different precursors for NAD⁺ like nicotinic acid to Preiss-Handler pathway and the result showed increased activation of sirtuins and other enzymes which are NAD⁺ dependent (25). Cellular [NAD⁺]/[NADH] ratio is reported to control deacetylation activity of the sirtuins where, NAD⁺ works as activator, and both nicotinamide and reduced nicotinamide adenine dinucleotide (NADH) acts as inhibitors (26, 27).

Sirtuins (SIRT1-3, 5, and 7) catalyze deacetylation reaction on lysine residues of target proteins (28) whereas, SIRT4 and SIRT6 catalyze ADP-riboseylation reaction, by transferring ribosyl moiety to the substrates (29). Sirtuins carry out transcriptional repression where acetylated histones H1, H3, and H4 act as substrates (30). In addition, a non-histone proteins like nuclear factor-κB (NFκB), forkhead box type O transcription factors (FOXO), peroxisome proliferator-activated receptor γ (PPARγ), coactivator 1α (PGC-1α), enzymes like acetyl coenzyme A (CoA) synthetase 2 (AceCS2), and structural proteins, such as α-tubulin are also deacetylated by sirtuins (29). In contrast to other KDACs, whose only function include deacetylation (31), sirtuins can also remove other groups like glutaryl (32), crotonyl (33), succinyl (34), palmitoyl (35), and myristoyl (36) groups. SIRT1-3 is reported to deacetyl hydrophobic (butyryl group) and SIRT5, acidic acyl group (Malonyl group) in histones (37, 38). Also, some non-histone proteins like IDH2, MnSOD and TSNfs have been reported to be deacylated by sirtuins (39). It is observed that SIRT4 has both, deacylase activity in leucine metabolism and lipoamidase activity in decarboxylation of pyruvate, to generate acetyl CoA (40, 41). The intracellular distribution of sirtuins differs. While SIRT1, 6 and 7 are located within the nucleus, SIRT2 is located in the cytoplasm and SIRT 3, 4, and 5 are located within mitochondria (42). In addition, SIRT1 and SIRT3 are known to shuttle to cytoplasm and nucleus, respectively (43, 44). These findings establish sirtuins as important players in epigenetic gene regulations.

SIRTUINS IN ENDOTHELIAL CELL FUNCTIONS

Different classes of sirtuins have been widely studied in endothelial cell growth and maintenance (45–47). While, blocking the function of SIRT1 reduced endothelial sprout formation, migration and the assembly of primitive vascular network (14) it was observed that, knockdown of SIRT1 altered the levels of sprouting angiogenesis due to reduction of MMP14 expression (48, 49). Potente et al. reported that SIRT1 deacetylates FOXO1, a negative regulator of angiogenesis, as SIRT1- deficient ECs showed abnormal angiogenic behavior due to FOXO1 activity (14). Nutrient deprivation and cellular energy shortage increase the levels of NAD⁺ and thus the expression and activation of sirtuins (50). It was observed that, endothelial tip cells employ anaerobic glycolysis for generating ATP (Warburg effect) rather than oxidative phosphorylation (51). In addition to promoting endothelial cell proliferation and angiogenesis, this makes ECs more resistant to hypoxia too (52, 53). Recent studies have established that SIRT1 modulates tip and stalk behavior through deacetylation of intracellular domain (NICD) of NOTCH1 in tumor associated endothelial cells (54). Interestingly, sirtuins also regulate, endothelial homeostasis by modulating the endothelial nitric oxide synthase (eNOS) (55). Recent studies reveal that endothelial SIRT1 deficiency, causes fibrosis due to aberrant secretion of ligands of Wnt and Notch pathways, as well as proteolytic fragments of glycolalix core protein (56). Some studies also reported that SIRT1 can mediate transcriptional repression in association with Hey2 and Hes1 during vascular development (57, 58). In ECs, over expression of SIRT1 prevents cellular senescence, enhances vasodilatory responses, and alleviates aging-induced vascular impairment (59, 60) whereas, SIRT1 deficiency results in reduced migration in response to chemoattractant (14). In addition to SIRT1, SIRT2 is reported to regulate the survival and energy metabolism of ECs. Studies by Zhang et al. demonstrated that SIRT2 inhibition reduce the survival rate of PECs as it causes mitochondrial depolarization (61). SIRT2 is also reported to promote Ang II-induced cytoskeletal remodeling in ECs (62). In addition, SIRT2 knock down studies revealed altered expression of migration associated genes like CALD1 (caldesmon) and CNN2 (calponin) (63, 64). SIRT3 was observed to increase survival of ECs especially during hypoxia through elevating the levels of deacetylation of FOXO3 (65). Recent studies also revealed that in SIRT3 deficient endothelial cells the expression of PKFB3 was downregulated causing attenuation of glycolysis and angiogenesis (66). SIRT4 however appears to inhibit mononuclear cell adhesion to pulmonary microvascular endothelial cells through repression of E-selectin and VCAM-1 (67). While, angiogenic capacity of endothelial progenitor cells were significantly reduced due to down regulation of CXCR4/JAK2/SIRT5 signaling (68), it was observed that, SIRT6
TABLE 1 | The substrates and pathways regulated by different classes of sirtuins.

Sirtuin	Enzyme activity	Substrates	Pathway Regulated	References
SIRT1	Deacetylase	Histone, p53, FOXO, Rb, p300, PPARγ, NF-κB, PGC-1α, UCP2, MnSOD, Acetyl-CoA synthetase 1, Smad7, eNOS	Cell survival, metabolism regulation, lifespan regulation, inflammation, oxidative stress response	(14, 46, 133–142)
SIRT2	Deacetylase	α-tubulin, Histone, FOXO, β-catenin	Cell cycle regulation, nervous system development	(101–103, 107)
SIRT3	Deacetylase	Histone, FOXO3a, Acetyl-CoA synthetase 2, MnSOD	Regulation of mitochondrial metabolism, ATP-production fatty acid oxidation	(83, 111, 112, 143)
SIRT4	ADP-ribosyl transferase/Deacetylase	Glutamate dehydrogenase	Regulation of mitochondrial metabolism, insulin secretion	(29, 144)
SIRT5	Deacetylase	Cytochrome c, Carbamoyl phosphate synthetase 1	Apoptosis, urea cycle, regulation of protein-protein interaction, protein stability	(32, 34, 37, 38, 145)
SIRT6	Deacetylase	Histone, HIF1α, TNF-α, NF-κB	Genome stability, DNA repair	(29, 35, 118, 127)
SIRT7	Deacetylase	Histone, p53	Regulation of rRNA transcription, cell cycle regulation	(130, 146)

 protects endothelial cells from DNA damage and telomere dysfunction (62, 69). Though various members of the SIRT family have been implicated in the regulation of EC biology, the role of SIRT-1 is the most widely studied ones.

SIRTUINS IN TUMOR ANGIOGENESIS AND THEIR REGULATORY STRATEGIES

Expression pattern of sirtuins varies in different types of cancers. While, SIRT1, 4, 5, and 7 have been reported to be upregulated in certain cancers (70–72), the same SIRT1 as well as SIRT2 and SIRT6 is shown to be downregulated in breast cancer, hepatic cell carcinoma (73), gliomas, gastric carcinomas (74, 75) and colon adenocarcinoma (76). SIRT1 mainly, mediates heterochromatin formation by deacetylation of histone H1 K26, histone H3 K9 and histone H4 K16, thereby causing deacetylation of non-histone proteins, like transcription factors (E2F1, p53, FOXO, BCL6, p53, Rb), DNA repair proteins and signaling factors (77). SIRT1 mediates regulation of gene expression in response to metabolic status by modulating FOXOs (78). Such a deacetylation of FOXOs by SIRT1 alters various signaling pathways, inhibit apoptosis and regulates mechanisms involved in oxidative stress (79, 80). In general, p53 negatively regulates angiogenesis either, by increasing the production of anti-angiogenic factors or inhibiting pro-angiogenic factors (81). SIRT1 has been reported to regulate neovascularization, through reducing the transcriptional activity of p53 by deacetylation of lysine (45, 46, 82). Apart from SIRT1, SIRT3 and SIRT7 has also been reported to deacetylate p53 thus, negating p53 activity (83, 84). SIRT1 also deacetylates other transcription factors like p73, E2F1, SMAD 7, NFKB and modulate apoptosis and inflammatory responses (45, 46, 85). It was observed that resveratrol, a SIRT1 activator reduced total VEGFR2 expression and inhibited phosphorylation of VEGFR2 by VEGF (86). Also, SIRT1 negatively modulates Delta-like ligand 4 (DLL4)/Notch pathway, inactivates elongation factor2 through activation of ELF2 kinase and ultimately inhibits the proliferation and migration of vascular endothelial cells (87, 88). It is reported that SIRT1 deacetylation at K14 and K20 of PH domain is necessary for binding of Akt to PI3 and further activation during tumor angiogenesis (89, 90). Several reports suggest that, SIRT1 deacetyl e eNOS, stimulate its activity and enhance NO production and tumor angiogenesis (91, 92). Also, FOXO1 and FOXO3 have been reported to repress eNOS, suggesting a link between SIRT1, FOXO and eNOS (93). Increase in SIRT1 deacetylase activity and a consecutive HIF2α activity in ECs, results in acidification and reprogramming toward glutamine metabolism during induction of angiogenesis (94, 95). Studies by Kunhiraman et al. and Edatt et al. reveal that glycolytic inhibition using 2-DG at a sublethal concentration increased the expression and activity of SIRT1, causing reduced expression of angiogenesis associated genes like VEGF and MMP9 (96, 97). Contrary to these reports, Portmann et al., Li et al., and Suzuki et al., report that SIRT1 and VEGF expression is positively correlated during hypoxia induced angiogenesis in breast cancer and lung cancer (98–100). It therefore appears that, the SIRT-1 mediated regulation of angiogenesis and factors regulating it, is largely context dependent.

Like SIRT1, SIRT2 also deacetylase proteins like α-tubulin and histones, being co-localized with tubulin (101–103). Hu et al., demonstrated that SIRT2 knockdown prevented STAT3 phosphorylation and translocation to nucleus, thus decreasing the secretion of VEGF (104, 105). In addition, SIRT2 is reported to directly interact with β-catenin thereby altering the expression of genes like MMPs during tumor angiogenesis (106, 107). Also, it is observed that, SerRS (seryl-tRNA synthetase) plays tumor suppressor and anti-angiogenic role by collaborating with SIRT2 to antagonize c-Myc, a known angiogenic and oncogenic gene (108). Another class of sirtuins, SIRT3 is
Edatt et al. | Sirtuins in Tumor Angiogenesis

FIGURE 1 | Role of sirtuins in Tumor Angiogenesis: SIRT1 mediates deacetylation of FOXO1, p53, AKT, eNOS, and the intra cellular domain of the Notch protein (NICD) leading to the reduced anti-angiogenic activity of FOXO1, reduced transcriptional activity of p53, induction of AKT signaling causing the transcriptional activation of pro angiogenic genes, enhanced endothelial NO production causing blood vessel relaxation and disassembly followed by the proteasomal degradation of Notch protein respectively. SIRT1 also modulates the expression of VEGF, VEGFR2, MMP9, MMP14, etc. directly by its histone deacetylase activity, miR-34a, miR-106a, miR-217, miR-23a, miR-212, and miR-138-5p targets SIRT1 at post transcriptional level. SIRT3 and SIRT7 catalyze the deacetylation of p53. SIRT4, 5, and 6 has been majorly reported to carry out ADP-ribosylation, desuccinylation and demalonylation rather than deacetylation (34, 116–118). ADP-ribosylation, regulate the activity of glutamate dehydrogenase and PARP (119, 120). Studies from our lab and others has demonstrated that PARPs can regulate the VEGF/VEGFR2 signaling circuit by either transactivation of VEGFR2 or poly ADP ribosylating VEGF to reduce its activity (7, 96, 121). Desuccinylation by SIRT5 suppresses the activities of pyruvate dehydrogenase complex and succinate dehydrogenase (117) leading to the accumulation of succinate and mitochondrial reactive oxygen species (ROS) in the mitochondria, leading to HIF-1α activation. SIRT3 negatively regulates mitochondrial ROS production and hence HIF-1α stabilization. SIRT3 mediates deacetylation of FOXO3, thereby promoting endothelial cell (EC) survival under hypoxia. This can be due to the regulation of various downstream genes such as Sirtuins, transcription factors/enzymes/signaling molecules, -β-catenin, and other molecules involved in angiogenesis.

Contrary to SIRT1 and SIRT2, SIRT3 is reported to have an opposing effect on angiogenesis, as loss of SIRT3 in human breast cancers, resulted in the upregulation of HIF-1α target genes like VEGF and genes involved in glycolysis (113, 114). Interestingly, it was observed that, SIRT3 overexpression reduced angiogenesis by negatively regulating ROS production, glycolysis as well as HIF-1α stabilization, ultimately resulting in a negative regulation of Warburg effect (115). SIRT4, 5, and 6 has been majorly reported to carry out ADP-ribosylation, desuccinylation and demalonylation rather than deacetylation (34, 116–118). ADP-ribosylation, regulate the activity of glutamate dehydrogenase and PARP (119, 120). Studies from our lab and others has demonstrated that PARPs can regulate the VEGF/VEGFR2 signaling circuit by either transactivation of VEGFR2 or poly ADP ribosylating VEGF to reduce its activity (7, 96, 121). Desuccinylation by SIRT5 suppresses the activities of pyruvate dehydrogenase complex and succinate dehydrogenase (117) leading to the accumulation of succinate and mitochondrial reactive oxygen species, thereby activating HIF1α (122). SIRT5 can also cause desuccinylation and negative regulation of S100A10, a protein that regulate invasion and motility (123). Generally, NAD+ levels influence the secretion of various cytokines...
by inflammatory cells (124). It was found that SIRT6 over expression in pancreatic cancer cells increased TNFα and IL8 production through ADP-riboseylation mediated Ca²⁺ responses (125) and elevated levels of IL8 led to local inflammation, angiogenesis, and EMT (126). Interestingly, Kawahara et al. demonstrated SIRT6 interaction with RELA subunit of NFkB to regulate the expression of its target genes involved in tumor progression through deacetylation of promoter region (127, 128). SIRT6 is also reported as a corepressor of HIF1α by deacetylating H3K9 causing downregulation of the expression of genes involved in energy metabolism (129). Furthermore, it is observed that SIRT7 can inhibit HIF1α through a mechanism that is independent of its catalytic activity and regulate the expression of downstream genes like VEGF A and erythropoietin (130). Also, downregulation of SIRT7 during breast cancer lung metastasis, caused activation of TGFβ signaling pathway and angiogenesis (131). Contrary to this, SIRT7 has been reported to promote angiogenic response by modulating endothelial cell function and VEGF like growth factor expression in mice (132). Altogether these contradicting roles played by sirtuins in tumorigenesis and angiogenesis, highlights the epigenetic regulations involved and unravels the therapeutic potential of sirtuin modulators in treatment of tumor progression by targeting tumor angiogenesis (Table 1).

POST TRANSCRIPTIONAL REGULATION OF SIRTUINS: IMPORTANCE OF miRNAs IN TUMOR ANGIOGENESIS

Along with cytokine and transcriptional factor mediated regulation, precise and effective post transcriptional level regulation are also employed by sirtuins through RNA binding proteins (RBPs) and small non-coding RNA molecules. Micro RNAs are a group of small non-coding RNAs, known as the micro regulators of gene expression. For e.g., miR-34a has been reported to retard endothelial progenitor cell (EPC) mediated angiogenesis by targeting SIRT1 and thereby elevating the levels of acetylated FOXO1, leading to endothelial cell (EC) senescence and cell cycle arrest (147, 148). Similarly, miR-217 has been reported to induce senescence of ECs by modulating the levels of acetylated FOXO1 in a SIRT1 dependent mechanism (149). However, miR-217 has also been reported to promote angiogenesis of Human cytomegalovirus infected endothelial cells by inhibiting SIRT1 and FOXO3A (150). Further, report from our group suggests that miR-106a regulates the expression of MMP9 during cell migration by directly targeting SIRT1 mRNA (151). Our group has also reported that the horizontal transfer of miR-23a from tumor cell colonies can induces angiogenesis by targeting SIRT1 in the recipient endothelial cells (152). Further, miR-212 has been reported to exhibit anti-angiogenic properties, by targeting SIRT1 and Gab1 in endothelial cells (153). SIRT1 has also been reported to inhibit the anti-angiogenic- Notch signaling pathway (54). In addition, TGFβ mediated suppression of SIRT1 expression leading to the activation of Notch signaling pathway in ECs was reported to be depended partly on miR-212 (153). Further, a key micro regulator of angiogenesis and hypoxia responses, miR-138-P_5P has been reported to target SIRT1 (154–156).

CONCLUSION: FUTURE PERSPECTIVES AND NOVEL THERAPEUTIC APPROACHES

During the past decade, sirtuins have emerged as critical regulators of endothelial cell behavior and have been directly linked to tumor angiogenesis through multiple signaling pathways and cross-talks (Figure 1). Lack of long-term therapeutic efficacy of current anti-angiogenic strategies requisite for novel angiogenesis inhibitors targeting sirtuins (157, 158). Recent discoveries suggest that employing sirtuin isoform specific modulators is a potent anti-angiogenic strategy. Endothelial microparticles enriched with Sirt6 mRNA induces EC angiogenesis, increases eNOS phosphorylation and prevents release of inflammatory chemokines in diabetic patients (159). Novel approaches like employing various metal (160–162) and inorganic NPs (163–165) have been reported to modulate angiogenesis. Many studies revealed that the shape, size and surface charge of the nanoparticles plays a crucial role in their angiogenic behavior (166, 167). Recently our group has reported that carbon-based nanoparticles (carbon quantum dots) with size <6 nm, inhibit angiogenic process and significantly reduce the expression level of VEGF, VEGFR2, and FGF (168). SirtuinsNano-particle based phytochemicals are reported to regulate sirtuins in cardioprotective treatment strategies (169). So far, no reports are available on the direct correlation with nano particles targeting sirtuins in tumor angiogenesis. Mechanistic studies are under progress on the development of NPs targeting sirtuins and further, tumor angiogenesis. Future studies that unveil the role of potent sirtuin modulators like CQDs at the crossroads of tumor angiogenesis will provide insights for designing novel anti-angiogenic therapies targeting sirtuin.

AUTHOR CONTRIBUTIONS

LE and VK contributed to conception and manuscript writing. VR, GR, and SS searched the literature. AP collected data and designed the scheme for the regulation of tumor angiogenesis by sirtuins. LE and VK participated in its coordination and modification. All the authors have read and approved the final manuscript.

ACKNOWLEDGMENTS

Financial assistance in the form of fellowships to LE, AP, GR, VR, and SS, received from DST-SERB, DBT, and KSCSTE is gratefully acknowledged.
REFERENCES

1. Stephenson JA, Goddard JC, Taan OA, Dennison AR, Morgan B. Tumor angiogenesis: a growth area—from John Hunter to Judah Folkman and beyond. J Cancer Res. (2013) 2013:895019. doi: 10.1155/2013/895019

2. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. (2000) 407:249–57. doi: 10.1038/35025220

3. Folkman J. Tumor angiogenesis: from bench to bedside. In: Marmé D, Fusseneg N, editors. Tumor Angiogenesis. Berlin; Heidelberg: Springer (2008). p. 3–28.

4. Hall AP. The role of angiogenesis in cancer. Comp Clin Path. (2005) 13:95–9. doi: 10.1007/s00580-004-0533-3

5. Hunter, J. (1861). Essays and Observations on Natural History, Anatomy, Physiology, and Geology. London: Van Voorst.

6. Ohno-Matsui K, Hirose A, Yamamoto S, Saikia J, Okamoto N, Gehlbach P, et al. ADP-ribose as novel metabolites derived from the Sir2 family of yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun. (2000) 273:793–8. doi: 10.1006.bbrc.2000.3000

7. Rane S, He M, Sanyal S, Xiao H, Okamoto A, Sadoshima J, et al. Kinetic and structural basis for acyl-group selectivity and NAD specificity of lysine malonylation substrates and its regulatory enzyme. Biochemistry. (2015) 54:3037–50. doi: 10.1021/acs.biochem.5b00150

8. Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Yan M, et al. The first identification of sirtuins in mammals. Biochemistry. (2014) 53:4315–22. doi: 10.1021/bi501926f

9. Niu Z, Zhou Y, Xie Z, et al. SIRT4 is a lysine deacylase that controls leucine metabolism and insulin secretion. Sci. (2017) 25:838–55. doi: 10.1016/j.cmet.2017.03.003

10. Mathias RA, Greco TM, Oberstein A, Budayeva HG, Chakrabarti R, Rowland EA, et al. Sirtuin 4 is a lipomamide dehydrogenase regulating pyruvate dehydrogenase complex activity. Cell. (2014) 159:1615–25. doi: 10.1016/j.cell.2014.11.046

11. Jing H, Liu H. Sirtuins in epigenetic regulation. Chem Rev. (2015) 115:2350–75. doi: 10.1021/acs.chemrev.5b00457

12. Jin Q, Yan T, Ge X, Sun C, Shi X, Zhai Q. Cytoplasm-localized SIRT1 enhances apoptosis. J Cell Physiol. (2007) 213:88–97. doi: 10.1002/jcp.21091
44. Scher MB, Vaquero A, Reinberg D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. *Genes Dev.* (2007) 21:920–8. doi: 10.1101/gad.1527307

45. Vaziri H, Dessain SK, Eaton EN, Imai SI, Fyre RA, Pandita TK, et al. hSIRT2/SIRT1 functions as an NAD-dependent p53 deacetylase. *Cell.* (2001) 107:149–59. doi: 10.1016/S0092-8674(01)00527-X

46. Luo J, Nikolaev AV, Imai SI, Chen D, Su F, Shiloh A, et al. Negative control of p53 by Sir2p promotes cell survival under stress. *Cell.* (2001) 107:137–48. doi:10.1016/S0092-8674(01)00524-4

47. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. *Science.* (2004) 303:111–5. doi: 10.1126/science.1094637

48. Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysis. *Cell.* (1998) 95:365–77. doi:10.1016/S0092-8674(00)81768-7

49. Yana I, Sagara H, Takaki S, Tsuchi K, Nakamura K, Nakao K, et al. Crossstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. *J Cell Sci.* (2007) 120:1607–14. doi:10.1242/jcs.000679

50. Cantó C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, et al. The NAD+-precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. *Cell Metab.* (2012) 15:838–47. doi: 10.1016/j.cmet.2012.04.022

51. Culic O, Gruwel ML, Schrader J. Energy turnover of vascular endothelial cells. *Am J Physiol Cell Physiol.* (1997) 273:C205–13. doi: 10.1152/ajpcell.1997.273.1.C205

52. DE BK, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. *Cell.* (2013) 154:651–63. doi:10.1016/j.cell.2013.06.037

53. Fitzgerald GA, Soro AL, De Bock K. The Warburg effect in endothelial cells and its potential as an anti-angiogenic target in cancer. *Front Cell Dev Biol.* (2018) 6:100–17. doi: 10.3389/fcell.2018.00100

54. Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. *Front Cell Dev Biol.* (2018) 6:100–17. doi: 10.3389/fcell.2018.00100

55. Culic O, Gruwel ML, Schrader J. Energy turnover of vascular endothelial cells. *Am J Physiol Cell Physiol.* (1997) 273:C205–13. doi: 10.1152/ajpcell.1997.273.1.C205

56. DE BK, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. *Cell.* (2013) 154:651–63. doi:10.1016/j.cell.2013.06.037

57. Ferrari A, Schumacher N, Maier M, Sendtner M, Gessler M. The Warburg effect in endothelial cells. *J Cell Sci.* (2001) 104:2697–704. doi: 10.1242/jcs.1042697

58. Guo S, Long M, Li C, Kim HS, Cao L, Xiao C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. *Cancer Cell.* (2008) 14:312–23. doi: 10.1016/j.ccr.2008.09.001

59. Inoue T, Hiratsuka M, Osaki M, Yamada H, Kishimoto I, Yamaguchi S, et al. The histone deacetylase SIRT2 functions as an NAD-dependent p53 deacetylase. *Nature.* (2007) 449:98–103. doi: 10.1038/nature06133

60. Liu J, Wu X, Wang X, Zhang Y, Bu P, Zhang Q, et al. Sirtuins in Tumor Angiogenesis. *Frontiers in Oncology* [www.frontiersin.org] 7 January 2020 | Volume 9 | Article 1516
84. Vakhruševa O, Smolka C, Gajawada P, Kostin S, Boetger T, Kubin T, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. (2008) 102:703–10. doi: 10.1161/CIRCRESAHA.107.164588

85. Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA. (2003) 100:10794–9. doi: 10.1073/pnas.1934713100

86. Zhang H, He S, Spee C, Ishikawa K, Hinton DR. SIRT1 mediated PI3K/AKT/PTEN signaling as a molecular target in leukemia angiogenesis. Drug Targets. (2008) 10:791–800. doi: 10.1080/15680090873497122

87. Khan AA, Dace DS, Ryazanov AG, Kelly J, Apte RS. Resveratrol regulates β-catenin to inhibit Wnt signaling output in response to radiation-induced stress. Mol Cancer Res. (2014) 12:1244–53. doi: 10.1158/1541-7786.MCR-14-0223-T

88. Shi Y, Xu X, Zhang Q, Fu G, Mo Z, Wang GS, et al. tRNA synthetase c-Myc to develop functional vasculature. Elife. (2013) 2:e02349. doi: 10.7554/eLife.02349

89. Jiang BH, Liu LZ. AKT signaling in regulating angiogenesis. Curr Cancer Drug Targets. (2008) 8:19–26. doi: 10.2174/156800908783497122

90. Ota H, Eto M, Ogawa S, Iijima K, Akishita M, Ouchi Y. SIRT1/eNOS axis as a mediator of reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy. Cancer Cell. (2011) 19:416–28. doi: 10.1016/j.ccr.2011.02.014

91. Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kustin T, et al. Intracellular NAD levels regulate tumor necrosis factor protein

92. Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, et al. Oligodendrocyte lineage cells associate with the tumor microenvironment to facilitate metastatic colonization. J Cell Sci. (2013) 126:866–79. doi: 10.1242/jcs.121036

93. Liu C, Wang L, Zheng L, Zhan X, Xu B, Jiang J, et al. SIRT1 expression is linked to tumor angiogenesis. Cell Death Dis. (2015) 6:e1677. doi: 10.1038/cddis.2015.132

94. Finley LWS, Carracedo A, Lee J, Souza A, Egia A, Zhang J, et al. Involvement of Foxo transcription factors in angiogenesis and postnatal lung growth in mice. Mol Cell Biol. (2010) 30:2986–96. doi: 10.1074/mcbl.2010.100836

95. Wu K, Wang L, Chen Y, Pirooznia M, Singh K, Walde S, et al. GCN5L1 interacts with αTAT1 and RanBP2 to regulate hepatic α-tubulin acetylation and lysosome trafficking. J Cell Sci. (2018) 131:jcs21036. doi: 10.1242/jcs.21036

96. Kunhiraman H, Edatt L, Thekkeveedu S, Poyyakkara A, Raveendran V, Kiran JA. Atheroscler Thromb. Circ Res. (2010) 17:431–5. doi: 10.1161/jat.3525

97. Hu F, Sun X, Li G, Wu Q, Chen Y, Yang X, et al. Inhibition of SIRT2 limits tumor angiogenesis via inactivation of the STAT3/VEGFA signalling pathway. Cell Death Dis. (2018) 9:10–23. doi: 10.1038/s41419-018-1260-z

98. Li C, Wang L, Zheng L, Zhan X, Xu B, Jiang J, et al. SIRT1 expression is linked to tumor angiogenesis. Cell Death Dis. (2015) 6:e1677. doi: 10.1038/cddis.2015.132

99. Khan AA, Dace DS, Ryazanov AG, Kelly J, Apte RS. Resveratrol regulates β-catenin to inhibit Wnt signaling output in response to radiation-induced stress. Mol Cancer Res. (2014) 12:1244–53. doi: 10.1158/1541-7786.MCR-14-0223-T

100. Shi Y, Xu X, Zhang Q, Fu G, Mo Z, Wang GS, et al. tRNA synthetase c-Myc to develop functional vasculature. Elife. (2013) 2:e02349. doi: 10.7554/eLife.02349

101. Edatt et al. Sirtuins in Tumor Angiogenesis
synthesis in a sirtuin-dependent manner. *Nat Med.* (2009) 15:206–10. doi: 10.1038/nm.1906

125. Bauer I, Grozio A, Lasiglicié D, Basille G, Sturla L, Magnone M, et al. The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+-responses. *J Biol Chem.* (2012) 287:49024–37. doi: 10.1074/jbc.M112.408337

126. Fernando RJ, Castillo MD, Litzinger M, Hamilton DH, Palena C. IL-8 signaling plays a critical role in the epithelial–mesenchymal transition of human carcinoma cells. *Cancer Res.* (2011) 71:5296–306. doi: 10.1158/0008-5472.CAN-11-0156

127. Kawahara TLA, Michishita E, Adler AS, Damian M, Berber E, Lin M, et al. SIRT6 links histone H3 lysine 9 deacetylation to NFB-dependent gene expression and organisinal life span. *Cell.* (2009) 136:62–74. doi: 10.1016/j.cell.2008.10.052

128. Basercs DS, Baldwin AS. Nuclear factor-kB and inhibitor of kB kinase pathways in oncogenic initiation and progression. *Oncogene.* (2006) 25:6817–30. doi: 10.1038/sj.ong.1209942

129. Zhong L, D’Ursio A, Toiber D, Sebastian C, Henry RE, Vadysiriack DD, et al. Sirtuin-7 inhibits the enzyme deacetylation. *Nature.* (2009) 458:6091–7. doi: 10.1038/nm.1906

130. Hubbi ME, Hu H, Gilkes DM, Semenza GL. Sirtuin-7 inhibits the deacetylation of acetyl-coenzyme A synthetase 1. *J Biol Chem.* (2009) 284:16456–60. doi: 10.1074/jbc.M108520200

131. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Fye RA, et al. Modulation of NF-kB-dependent transcription and cell survival by the SIRT1 deacetylase. *EMBO J.* (2004) 23:3639–80. doi: 10.1038/sj.emboj.7600244

132. Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. *Mol Cell.* (2003) 12:51–62. doi: 10.1016/S1097-2765(03)00226-0

133. Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, et al. Horizontal transfer of miR-23a from hypoxic tumor cell colonies can induce angiogenesis. *J Cell Physiol.* (2018) 233:2498–514. doi: 10.1002/jcp.26202

134. Kumaraswamy R, Vollmann I, Beermann J, Napp LC, Jabs O, Bhayadia R, et al. Vascular importance of the miR-212/123 cluster. *Eur Heart J.* (2014) 35:3224–31. doi: 10.1093/eurheartj/ehu344

135. Zhang Y, Du X, Li W, Sang H, Qian A, Sun L, et al. Resveratrol improves endothelial progenitor cell function through miR-138 by targeting focal adhesion kinase (FAK) and promotes thrombus resolution in vivo. *Med Sci Monit.* (2018) 24:951. doi: 10.12659/MSM.906116

136. Zheng Z, Zhao B. Astrapagal polysaccharide protects hypoxia-induced injury by up-regulation of miR-138 in rat neural stem cells. *Biomed Pharmacother.* (2018) 102:295–301. doi: 10.1016/j.biopha.2018.01.049

137. Tian F, Yuan C, Yue H. MiR-138/SIRT1 axis is implicated in impaired learning and memory abilities of cerebral ischemia/reperfusion injured rats. *Exp Cell Res. (2018) 367:232–40.* doi: 10.1016/j.yexcr.2018.03.042

138. Vernucci E, Tomino C, Molinari F, Limongi D, Aventaggiato M, Sansone L, et al. Mitophagy and oxidative stress in cancer and aging: focus on sirtuins and nanomaterials. *Oxid Med Cell Longev.* (2019) 2019:638735. doi: 10.1155/2019/6387357.

139. Christovac AM, Theodoro V, Mendonça FAS, Esquisatto MAM, Santos GMT, Amaral MEC. Activators of SIRT1 in wound repair: an animal model study. *Arch Dermatol Res.* (2019) 311:193–201. doi: 10.1007/s00004-019-01901-4

140. Jing T, Ya SK, Xue JW, Han JH, Yan L, Yi AY, et al. Sirt6 mRNA- incorporated endothelial microparticles (EMPs) attenuates DM patient-derived EMP-induced endothelial dysfunction. *Oncotarget.* (2017) 8:114300–13. doi: 10.2147/ocr.a123529

141. Arvizio RR, Saha S, Wang E, Robertson JD, Bhattacharya R, Mukherjee P. Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. *Proc Natl Acad Sci USA.* (2013) 110:6709–5. doi: 10.1073/pnas.1215471110

142. Yang T, Yao Q, Cao F, Liu Q, Liu B, Wang XH. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis. *Int J Nanomed.* (2016) 11:6679. doi: 10.2147/IJN.S109695
162. Li W, Zhao X, Du B, Li X, Liu S, Yang XY, et al. Gold nanoparticle-mediated targeted delivery of recombinant human endostatin normalizes tumour vasculature and improves cancer therapy. *Sci Rep.* (2016) 6:30619. doi: 10.1038/srep30619

163. Xu Y, Wen Z, Xu Z. Chitosan nanoparticles inhibit the growth of human hepatocellular carcinoma xenografts through an antiangiogenic mechanism. *Anticancer Res.* (2009) 29:5103–9.

164. Jin H, Pi J, Yang F, Wu C, Cheng X, Bai H, et al. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor. *Appl Microbiol Biotechnol.* (2016) 100:6643–52. doi: 10.1007/s00253-016-7360-8

165. Hu H, You Y, He L, Chen T. The rational design of NAMI-A-loaded mesoporous silica nanoparticles as antiangiogenic nanosystems. *J Mater Chem B.* (2015) 3:6338–46. doi: 10.1039/C5TB00612K

166. Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello VM, Mukherjee P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. *Nanomed Nanotechnol Biol Med.* (2011) 7:580–7. doi: 10.1016/j.nano.2011.01.011

167. Shi X, Zhou K, Huang F, Wang C. Interaction of hydroxyapatite nanoparticles with endothelial cells: internalization and inhibition of angiogenesis in vitro through the PI3K/Akt pathway. *Int J Nanomed.* (2017) 12:5781–95. doi: 10.2147/IJN.S140179

168. Shereema TM, Sruthi TV, Kumar VBS, Rao TP, Shankar SS. Angiogenic profiling of synthesized carbon quantum dots. *Biochemistry.* (2015) 54:6352–6. doi: 10.1021/acs.biochem.5b00781

169. Treviño NS, Rivas GG. Regulation of sirtuin-mediated protein deacetylation by cardioprotective phytochemicals. *Oxid Med Cell Longev.* (2017) 2017:1750306. doi: 10.1155/2017/1750306

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Edatt, Poyyakkara, Raji, Ramachandran, Shankar and Kumar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.