ESTIMATION AND TESTS FOR MODELS SATISFYING LINEAR
CONSTRAINTS WITH UNKNOWN PARAMETER

MICHEL BRONIATOWSKI* AND AMOR KEZIOU**

ABSTRACT. We introduce estimation and test procedures through divergence minimization for models satisfying linear constraints with unknown parameter. Several statistical examples and motivations are given. These procedures extend the empirical likelihood (EL) method and share common features with generalized empirical likelihood (GEL). We treat the problems of existence and characterization of the divergence projections of probability measures on sets of signed finite measures. Our approach allows for a study of the estimates under misspecification. The asymptotic behavior of the proposed estimates are studied using the dual representation of the divergences and the explicit forms of the divergence projections. We discuss the problem of the choice of the divergence under various respects. Also we handle efficiency and robustness properties of minimum divergence estimates. A simulation study shows that the Hellinger divergence enjoys good efficiency and robustness properties.

Key words: Empirical likelihood; Generalized Empirical likelihood; Minimum divergence; Efficiency; Robustness; Duality; Divergence projection.

MSC (2000) Classification: 62G05; 62G10; 62G15; 62G20; 62G35.

JEL Classification: C12; C13; C14.

1. INTRODUCTION AND NOTATION

A model satisfying partly specified linear parametric constraints is a family of distributions \(\mathcal{M}^1 \) all defined on a same measurable space \((\mathcal{X}, \mathcal{B}) \), such that, for all \(Q \) in \(\mathcal{M}^1 \), the following condition holds

\[
\int g(x, \theta) \, dQ(x) = 0.
\]

The unspecified parameter \(\theta \) belongs to \(\Theta \), an open set in \(\mathbb{R}^d \). The function \(g := (g_1, \ldots, g_l)^T \) is defined on \(\mathcal{X} \times \Theta \) with values in \(\mathbb{R}^l \), each of the \(g_i \)'s being real valued and the functions \(g_1, \ldots, g_l, 1_{\mathcal{X}} \) are assumed linearly independent. So \(\mathcal{M}^1 \) is defined through \(l \)-linear constraints indexed by some \(d \)-dimensional parameter \(\theta \). Denote \(\mathcal{M}^1 \) the collection of all probability measures on \((\mathcal{X}, \mathcal{B}) \), and

\[
\mathcal{M}_\theta^1 := \left\{ Q \in \mathcal{M}^1 \text{ such that } \int g(x, \theta) \, dQ(x) = 0 \right\}
\]

so that

\[
\mathcal{M}^1 = \bigcup_{\theta \in \Theta} \mathcal{M}_\theta^1.
\]

Assume now that we have at hand a sample \(X_1, \ldots, X_n \) of independent random variables (r.v.'s) with common unknown distribution \(P_0 \). When \(P_0 \) belongs to the model \(\mathcal{M}^1 \), we denote \(\theta_0 \) the value of the parameter \(\theta \) such that \(\mathcal{M}_{\theta_0} \) contains \(P_0 \). Obviously, we assume that \(\theta_0 \) is unique.

The scope of this paper is to propose new answers for the classical following problems

\textbf{Problem 1}: Does \(P_0 \) belong to the model \(\mathcal{M}^1 \)?

\textit{Date:} October 2008.
Problem 2: When \(P_0 \) is in the model, which is the value \(\theta_0 \) of the parameter for which \(\int g(x, \theta_0) \, dP_0(x) = 0 \)? Also can we perform simple and composite tests for \(\theta_0 \)? Can we construct confidence areas for \(\theta_0 \)? Can we give more efficient estimates for the distribution function than the usual empirical cumulative distribution function (c.d.f.)?

We present some examples and motivations for the model (1.1) and Problems 1 and 2.

1.1. Statistical examples and motivations.

Example 1.1. Suppose that \(P_0 \) is the distribution of a pair of random variables \((X, Y)\) on a product space \(X \times Y \) with known marginal distributions \(P_1 \) and \(P_2 \). Bickel et al. (1991) study efficient estimation of \(\theta = \int h(x, y) \, dP_0(x, y) \) for specified function \(h \). This problem can be handled in the present context when the spaces \(X \) and \(Y \) are discrete and finite. Denote \(X = \{x_1, \ldots, x_k\} \) and \(Y = \{y_1, \ldots, y_r\} \). Consider an i.i.d. bivariate sample \((X_i, Y_i), 1 \leq i \leq n \) of the bivariate random variable \((X, Y)\). The space \(M_\theta \) in this case is the set of all p.m.'s \(Q \) on \(X \times Y \) satisfying \(\int g(x, y, \theta) \, dQ(x, y) = 0 \) where \(g = (g_1^{(1)}, \ldots, g_k^{(1)}, g_1^{(2)}, \ldots, g_r^{(2)}, g_1^{(3)}) \), \(g_i^{(j)}(x, y, \theta) = 1_{\{x_i\} \times \{y_j\}}(x, y) - P_i(x_i), g_j^{(2)}(x, y, \theta) = 1_{X \times \{y_j\}}(x, y) - P_2(y_j) \) for all \((i, j) \in \{1, \ldots, k\} \times \{1, \ldots, r\}\), and \(g_1(x, y, \theta) = h(x, y) - \theta \). Problem 1 turns to be the test for “\(P_0 \) belongs to \(\bigcup_{\theta \in \Theta} M_\theta \)”, while Problem 2 pertains to the estimation and tests for specific values of \(\theta \). Motivation and references for this problem are given in Bickel et al. (1991).

Example 1.2. (Generalized linear models). Let \(Y \) be a random variable and \(X \) a \(l \)-dimensional random vector. \(Y \) and \(X \) are linked through

\[
Y = m(X, \theta_0) + \varepsilon
\]

in which \(m(., .) \) is some specified real valued function and \(\theta_0 \), the parameter of interest, belongs to some open set \(\Theta \subset \mathbb{R}^d \). \(\varepsilon \) is a measurement error. Denote \(P_0 \) the law of the vector variable \((X, Y)\) and suppose that the true value \(\theta_0 \) satisfies the orthogonality condition

\[
\int x(y - m(x, \theta_0)) \, dP_0(x, y) = 0.
\]

Consider an i.i.d. sample \((X_i, Y_i), 1 \leq i \leq n \) of r.v.'s with same distribution as \((X, Y)\). The existence of some \(\theta_0 \) for which the above condition holds is given as the solution of Problem 1, while Problem 2 aims to provide its explicit value; here \(M_\theta^1 \) is the set of all p.m.'s \(Q \) on \(\mathbb{R}^{l+1} \) satisfying \(\int g(x, y, \theta) \, dQ(x, y) = 0 \) with \(g(x, y, \theta) = x(y - m(x, \theta)) \).

Qin and Lawless (1994) introduce various interesting examples when (1.1) applies. In their example 1, they consider the existence and estimation of the expectation \(\theta \) of some r.v. \(X \) when \(E(X^2) = m(\theta) \) for some known function \(m(.) \). Another example is when a bivariate sample \((X_i, Y_i)\) of i.i.d. r.v.'s is observed, the expectation of \(X_i \) is known and we intend to estimate \(E(Y_i) \).

Haberman (1984) and Sheehy (1987) consider estimation of \(F(x) \) based on i.i.d. sample \(X_1, \ldots, X_n \) with distribution function \(F \) when it is known that \(\int T(x) \, dF(x) = a \), for some specified function \(T(.) \). For this problem, the function \(g(x, \theta) \) in the model (1.1) is equal to \(T(x) - \theta \) where \(\theta = a \) is known. This example with \(a \) unknown is treated in details in Section 3 of the present paper. We refer to Owen (2001) for more statistical examples when model (1.1) applies.

Another motivation for our work stems from confidence region (C.R.) estimation techniques. The empirical likelihood method provides such estimation (see Owen (1990)). We will extend this approach providing a wide range of such C.R.’s, each one depending upon a specific criterion, one of those leading to Owen’s C.R.
An important estimator of θ_0 is the generalized method of moments (GMM) estimator by Hansen (1982). The empirical likelihood approach developed by Owen (1988) and Owen (1990) has been adapted in the present setting by Qin and Lawless (1994) and Imbens (1997) introducing the empirical likelihood estimator (EL). The recent literature in econometrics focuses on such models, the paper by Newey and Smith (2004) provides an exhaustive list of works dealing with the statistical properties of GMM and generalized empirical likelihood (GEL) estimators.

Our interest also lies in the behavior of the estimates under misspecification. In the context of tests of hypothesis, the statistics to be considered is some estimate of some divergence between the unknown distributions of the data and the model. We are also motivated by the behavior of those statistics under misspecification, i.e., when the model is not appropriated to the data. Such questions have not been addressed until now for those problems in the general context of divergences. Schennach (2007) consider the asymptotic properties of the empirical likelihood estimate under misspecification. As a by product, we will prove that our proposal leads to consistent test procedures; furthermore, the asymptotic behavior of the statistics, under H_1, provides the fundamental tool in order to achieve Bahadur efficiency calculations (see Nikitin (1995)).

An important result due to Newey and Smith (2004) states that EL estimate enjoys optimality properties in term of efficiency when bias corrected among all GEL and GMM estimators. Also Corcoran (1998) and Baggerly (1998) proved that in a class of minimum discrepancy statistics, EL ratio is the only that is Bartlett correctable. However, these results do not consider the optimality properties of the tests for Problems 1 and 2. Also, in connection with estimation problem, they do not consider the properties of EL estimate with respect to robustness. So, the question regarding divergence-based methods remains open at least in these two instances.

The approach which we develop is based on minimum discrepancy estimates, which have common features with minimum distance techniques, using merely divergences. We present wide sets of estimates, simple and composite tests and confidence regions for the parameter θ_0 as well as various test statistics for Problem 1, all depending on the choice of the divergence. Simulations show that the approach based on Hellinger divergence enjoys good robustness and efficiency properties when handling Problem 2. As presented in Section 5, empirical likelihood methods appear to be a special case of the present approach.

1.2. Minimum divergence estimates. We first set some general definition and notation. Let P be some probability measure (p.m.). Denote $M^1(P)$ the subset of all p.m.’s which are absolutely continuous (a.c.) with respect to P. Denote M the space of all signed finite measures on $(\mathcal{X},\mathcal{B})$ and $M(P)$ the subset of all signed finite measures a.c. w.r.t. P. Let φ be a convex function from $[-\infty, +\infty]$ onto $[0, +\infty]$ with $\varphi(1) = 0$. For any signed finite measure Q in $M(P)$, the φ–divergence between Q and the p.m. P is defined through

\begin{equation}
\phi(Q, P) := \int \varphi \left(\frac{dQ}{dP} \right) dP.
\end{equation}

When Q is not a.c. w.r.t. P, we set $\phi(Q, P) = +\infty$. This definition extends R"uschendorf (1984)’s one which applies for φ–divergences between p.m.’s; it also differs from Csiszar (1963)’s one, which requires a common dominating σ–finite measure, noted λ, for Q and P. Since we will consider subsets of $M^1(P)$ and subsets of $M(P)$, it is more adequate for our sake to use the definition (1.2). Also note that all the just mentioned definitions of φ–divergences coincide on the set of all p.m.’s a.c. w.r.t. P and dominated by λ.

For all p.m. \(P \), the mappings \(Q \in M \rightarrow \phi(Q, P) \) are convex and take nonnegative values. When \(Q = P \) then \(\phi(Q, P) = 0 \). Further, if the function \(x \rightarrow \varphi(x) \) is strictly convex on neighborhood of \(x = 1 \), then the following basic property holds

\[
\phi(Q, P) = 0 \quad \text{if and only if} \quad Q = P.
\]

All these properties are presented in Csiszar (1963), Csiszar (1967) and Liese and Vajda (1987) Chapter 1, for \(\varphi \)-divergences defined on the set of all p.m.’s \(M^1 \). When the \(\phi \)-divergences are defined on \(M \), then the same arguments as developed on \(M^1 \) hold.

When defined on \(M^1 \), the Kullback-Leibler (KL), modified Kullback-Leibler (\(KL_m \)), \(\chi^2 \), modified \(\chi^2 \) (\(\chi^2_m \)), Hellinger \((H) \), and \(L^1 \) divergences are respectively associated to the convex functions

\[
\varphi(x) = x \log x - x + 1, \quad \varphi(x) = -\log x + x - 1, \quad \varphi(x) = \frac{1}{2}(x-1)^2, \quad \varphi(x) = \frac{1}{2}(x-1)^2/x, \quad \varphi(x) = 2(\sqrt{x} - 1)^2 \quad \text{and} \quad \varphi(x) = |x-1|. \]

All those divergences except the \(L^1 \) one, belong to the class of power divergences introduced in Cressie and Read (1984) (see also Liese and Vajda (1987) Chapter 2). They are defined through the class of convex functions

\[
x \in \mathbb{R}^*_+ \mapsto \varphi_\gamma(x) := \frac{x^\gamma - \gamma x + \gamma - 1}{\gamma(\gamma-1)}
\]

if \(\gamma \in \mathbb{R} \setminus \{0, 1\} \) and by \(\varphi_0(x) := -\log x + x - 1 \) and \(\varphi_1(x) := x \log x - x + 1 \). For all \(\gamma \in \mathbb{R} \), \(\varphi_\gamma(0) := \lim_{x \rightarrow 0} \varphi_\gamma(x) \) and \(\varphi_\gamma(+\infty) := \lim_{x \rightarrow +\infty} \varphi_\gamma(x) \). So, the \(KL \)-divergence is associated to \(\varphi_1 \), the \(KL_m \)-divergence to \(\varphi_0 \), the \(\chi^2 \)-divergence to \(\varphi_2 \), the \(\chi^2_m \)-divergence to \(\varphi_1 \) and the Hellinger distance to \(\varphi_1/2 \). For all \(\gamma \in \mathbb{R} \), we sometimes denote \(\phi_\gamma \), the divergence associated to the convex function \(\varphi_\gamma \). We define the derivative of \(\varphi_\gamma \) at 0 by \(\varphi_\gamma'(0) := \lim_{x \rightarrow 0} \varphi_\gamma'(x) \). We extend the definition of the power divergences functions \(Q \in M^1 \rightarrow \phi_\gamma(Q, P) \) onto the whole set of signed finite measures \(M \) as follows. When the function \(x \rightarrow \varphi_\gamma(x) \) is not defined on \((-\infty, 0]\) or when \(\varphi_\gamma \) is defined on \(\mathbb{R} \) but is not a convex function we extend the definition of \(\varphi_\gamma \) through

\[
x \in [-\infty, +\infty] \mapsto \varphi_\gamma(x) 1_{[0, +\infty]}(x) + (\varphi_\gamma'(0)x + \varphi_\gamma(0)) 1_{[-\infty, 0]}(x).
\]

For any convex function \(\varphi \), define the domain of \(\varphi \) through

\[
D_\varphi = \{x \in [-\infty, +\infty] \mid \varphi(x) < +\infty\}.
\]

Since \(\varphi \) is convex, \(D_\varphi \) is an interval which may be open or not, bounded or unbounded. Hence, write \(D_\varphi := (a, b) \) in which \(a \) and \(b \) may be finite or infinite. In this paper, we will only consider \(\varphi \) functions defined on \([-\infty, +\infty]\) with values in \([0, +\infty]\) such that \(a < 1 < b \), and which satisfy \(\varphi(1) = 0 \), are strictly convex and are \(C^2 \) on the interior of its domain \(D_\varphi \); we define \(\varphi(a), \varphi'(a), \varphi''(a), \varphi(b), \varphi'(b) \) and \(\varphi''(b) \) respectively by \(\varphi(a) := \lim_{x \rightarrow a} \varphi(x), \varphi'(a) := \lim_{x \rightarrow a} \varphi'(x), \varphi''(a) := \lim_{x \rightarrow a} \varphi''(x), \varphi(b) := \lim_{x \rightarrow b} \varphi(x), \varphi'(b) := \lim_{x \rightarrow b} \varphi'(x) \) and \(\varphi''(b) := \lim_{x \rightarrow b} \varphi''(x) \). These quantities may be finite or infinite. All the functions \(\varphi_\gamma \) (see (1.3)) satisfy these conditions.

Definition 1.1. Let \(\Omega \) be some subset in \(M \). The \(\varphi \)-divergence between the set \(\Omega \) and a p.m. \(P \), noted \(\phi(\Omega, P) \), is

\[
\phi(\Omega, P) := \inf_{Q \in \Omega} \phi(Q, P).
\]

Definition 1.2. Assume that \(\phi(\Omega, P) \) is finite. A measure \(Q^* \in \Omega \) such that

\[
\phi(Q^*, P) \leq \phi(Q, P) \quad \text{for all} \quad Q \in \Omega
\]

is called a \(\varphi \)-projection of \(P \) onto \(\Omega \). This projection may not exist, or may be not defined uniquely.

We will make use of the concept of \(\varphi \)-divergences in order to perform estimation and tests for the model (1.1). So, let \(X_1, ..., X_n \) denote an i.i.d. sample of r.v.’s with common distribution \(P_0 \). Let
Let P_n be the empirical measure pertaining to this sample, namely

$$P_n := \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$$

in which δ_x is the Dirac measure at point x. When P_0 and all $Q \in \mathcal{M}^1$ share the same discrete finite support S, then the ϕ-divergence $\phi(Q, P_0)$ can be written as

$$(1.7) \quad \phi(Q, P_0) = \sum_{j \in S} \phi(Q(j) / P_0(j)) P_0(j).$$

In this case, $\phi(Q, P_0)$ can be estimated simply through the plug-in of P_n in (1.7), as follows

$$(1.8) \quad \hat{\phi}(Q, P_0) := \sum_{j \in S} \phi(Q(j) / P_n(j)) P_n(j).$$

In the same way, for any θ in Θ, $\phi(M^1 \theta, P_0)$ is estimated by

$$(1.9) \quad \hat{\phi}(M^1 \theta, P_0) := \inf_{Q \in \mathcal{M}^1 \theta} \sum_{j \in S} \phi(Q(j) / P_n(j)) P_n(j),$$

and $\phi(M^1, P_0) = \inf_{\theta \in \Theta} \phi(M^1 \theta, P_0)$ can be estimated by

$$(1.10) \quad \hat{\phi}(M^1, P_0) := \inf_{\theta \in \Theta} \inf_{Q \in \mathcal{M}^1 \theta} \sum_{j \in S} \phi(Q(j) / P_n(j)) P_n(j).$$

By uniqueness of $\inf_{\theta \in \Theta} \phi(M^1 \theta, P_0)$ and since this infimum is reached at $\theta = \theta_0$, we estimate θ_0 through

$$(1.11) \quad \hat{\theta}_0 := \arg \inf_{\theta \in \Theta} \inf_{Q \in \mathcal{M}^1 \theta} \sum_{j \in S} \phi(Q(j) / P_n(j)) P_n(j).$$

The infimum in (1.9) (i.e., the projection of P_n on $\mathcal{M}^1 \theta$) may be achieved on the frontier of $\mathcal{M}^1 \theta$. In this case the Lagrange method is not valid. Hence, we endow our statistical approach in the global context of signed finite measures with total mass 1 satisfying the linear constraints.

$$(1.12) \quad \mathcal{M}_\theta := \left\{ Q \in \mathcal{M} \text{ such that } \int dQ = 1 \text{ and } \int g(x, \theta) dQ(x) = 0 \right\}$$

and

$$(1.13) \quad \mathcal{M} := \bigcup_{\theta \in \Theta} \mathcal{M}_\theta,$$

sets of signed finite measures that replace $\mathcal{M}^1 \theta$ and \mathcal{M}^1.

As above, we estimate $\phi(\mathcal{M}_\theta, P_0)$, $\phi(\mathcal{M}, P_0)$ and θ_0 respectively by

$$(1.14) \quad \hat{\phi}(\mathcal{M}_\theta, P_0) := \inf_{Q \in \mathcal{M}_\theta} \sum_{j \in S} \phi(Q(j) / P_n(j)) P_n(j),$$

$$(1.15) \quad \hat{\phi}(\mathcal{M}, P_0) := \inf_{\theta \in \Theta} \inf_{Q \in \mathcal{M}_\theta} \sum_{j \in S} \phi(Q(j) / P_n(j)) P_n(j),$$

and

$$(1.16) \quad \hat{\theta}_0 := \arg \inf_{\theta \in \Theta} \inf_{Q \in \mathcal{M}_\theta} \sum_{j \in S} \phi(Q(j) / P_n(j)) P_n(j).$$

Enhancing \mathcal{M}^1 to \mathcal{M} is motivated by the following arguments.
- For all \(\theta \) in \(\Theta \), denote \(Q^* \) and \(Q^\ast \) respectively the projection of \(P_n \) on \(\mathcal{M}_\theta^1 \) and on \(\mathcal{M}_\theta \), as defined in (1.9) and in (1.11). If \(Q^* \) is an interior point of \(\mathcal{M}_\theta^1 \), then, by Proposition 2.5 below, it coincides with \(Q^\ast \), the projection of \(P_n \) on \(\mathcal{M}_\theta \), i.e., \(Q^*_1 = Q^\ast \). Therefore, in this case, both approaches coincide.

- It may occur that for some \(\theta \) in \(\Theta \), \(Q^*_1 \), the projection of \(P_n \) on \(\mathcal{M}_\theta^1 \), is a frontier point of \(\mathcal{M}_\theta^1 \), which makes a real difficulty for the estimation procedure. We will prove in Theorem 3.4 that \(\hat{\theta}_\phi \), defined in (1.19) and which replaces (1.11), converges to \(\theta_0 \). This validates the substitution of the sets \(\mathcal{M}_\theta^1 \) by the sets \(\mathcal{M}_\theta \). In the context of a test problem, we will prove that the asymptotic distributions of the test statistics pertaining to Problem 1 and 2 are unaffected by this change.

This modification motivates the above extensions in the definitions of the \(\varphi \) functions on \([-\infty, +\infty] \) and of the \(\phi \)-divergences on the whole space of finite signed measures \(M \).

In the case when \(Q \) and \(P_0 \) share different discrete finite support or share same or different discrete infinite or continuous support, then formula (1.8) is not defined, due to lack of absolute continuity of \(Q \) with respect to \(P_n \). Indeed

\[
\hat{\varphi}(Q, P_0) := \varphi(Q, P_n) = +\infty.
\]

The plug-in estimate of \(\phi(\mathcal{M}_\theta, P_0) \) is

\[
\hat{\phi}(\mathcal{M}_\theta, P_0) := \inf_{Q \in \mathcal{M}_\theta} \varphi(Q, P_n) = \inf_{Q \in \mathcal{M}_\theta} \int \frac{dQ}{dP_n}(x) \, dP_n(x).
\]

If the infimum exists, then it is clear that it is reached at a signed finite measure (or probability measure) which is a.c. w.r.t. \(P_n \). So, define the sets

\[
\mathcal{M}_\theta^{(n)} := \left\{ Q \in M \text{ such that } Q \ll P_n, \sum_{i=1}^n Q(X_i) = 1 \text{ and } \sum_{i=1}^n Q(X_i)g(X_i, \theta) = 0 \right\},
\]

which may be seen as subsets of \(\mathbb{R}^n \). Then, the plug-in estimate (1.18) of \(\phi(\mathcal{M}_\theta, P_0) \) can be written as

\[
\hat{\phi}(\mathcal{M}_\theta, P_0) = \inf_{Q \in \mathcal{M}_\theta^{(n)}} \frac{1}{n} \sum_{i=1}^n \varphi(nQ(X_i)).
\]

In the same way, \(\phi(\mathcal{M}, P_0) := \inf_{\theta \in \Theta} \inf_{Q \in \mathcal{M}_\theta} \varphi(Q, P_0) \) can be estimated by

\[
\hat{\phi}(\mathcal{M}, P_0) = \inf_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \varphi(nQ(X_i)).
\]

By uniqueness of \(\inf_{\theta \in \Theta} \phi(\mathcal{M}_\theta, P_0) \) and since this infimum is reached at \(\theta = \theta_0 \), we estimate \(\theta_0 \) through

\[
\hat{\theta}_\phi = \arg \inf_{\theta \in \Theta} \inf_{Q \in \mathcal{M}_\theta^{(n)}} \frac{1}{n} \sum_{i=1}^n \varphi(nQ(X_i)).
\]

Note that, when \(P_0 \) and all \(Q \in \mathcal{M}_1^1 \) share the same discrete finite support, then the estimates (1.22), (1.21) and (1.20) coincide respectively with (1.16), (1.15) and (1.14). Hence, in the sequel, we study the estimates \(\hat{\phi}(\mathcal{M}_\theta, P_0) \), \(\hat{\phi}(\mathcal{M}, P_0) \) and \(\theta_\phi \) as defined in (1.20), (1.21) and (1.22), respectively. We propose to call the estimates \(\hat{\theta}_\phi \) defined in (1.22) “Minimum Empirical \(\phi \)-Divergences Estimates” (ME\(\phi \)DE’s). As will be noticed later on, the empirical likelihood paradigm (see Owen (1988) and Owen (1990)), which is based on this plug-in approach, enters as a special case of the statistical issues related to estimation and tests based on \(\phi \)-divergences with \(\varphi(x) = \varphi_0(x) = -\log x + x - 1 \), namely on \(KL_m \)-divergence. The empirical log-likelihood ratio
functions : denote
example, \(P \) the result by Qin and Lawless (1994), we give new estimates for the distribution function using

\[\text{Problem 2} \]

This paper is organized as follows: In Section 3, we study the asymptotic behavior of the proposed

\[\text{n}\text{amely} : \text{does there exist some} \quad \theta \]

Section 6, we focus on robustness and efficiency of the ME estimates. A simulation study aims at emphasizing the specific advantage of the choice of the Hellinger divergence in relation with

\[\text{Section 7.} \]

2. Estimation for Models satisfying Linear Constraints

At this point, we must introduce some notational convention for sake of brevity and clearness. For any p.m. \(P \) on \(\mathcal{X} \) and any measurable real function \(f \) on \(\mathcal{X} \), \(Pf \) denotes \(\int f(x) \, dP(x) \). For example, \(P \circ g_j(\theta) \) will be used instead of \(\int g_j(\theta, x) \, dP_0(x) \). Hence, we are led to define the following functions: denote \(\overline{g} \) the function defined on \(\mathcal{X} \times \Theta \) with values in \(\mathbb{R}^{l+1} \) by

\[\overline{g} : \mathcal{X} \times \Theta \to \mathbb{R}^{l+1} \]

\[(x, \theta) \mapsto \overline{g}(x, \theta) := (1_{\mathcal{X}(x)}, g_1(x, \theta), \ldots, g_l(x, \theta))^T, \]

and for all \(\theta \in \Theta \), denote also \(\overline{g}(\theta), g(\theta), g_j(\theta) \) the functions defined respectively by

\[\overline{g}(\theta) : \mathcal{X} \to \mathbb{R}^{l+1} \]

\[x \mapsto \overline{g}(x, \theta) := (g_0(x, \theta), g_1(x, \theta), \ldots, g_l(x, \theta))^T, \] where \(g_0(x, \theta) := 1_{\mathcal{X}(x)}, \)

\[g(\theta) : \mathcal{X} \to \mathbb{R}^l \]

\[x \mapsto g(x, \theta) := (g_1(x, \theta), \ldots, g_l(x, \theta))^T \]

and

\[g_j(\theta) : \mathcal{X} \to \mathbb{R} \]

\[x \mapsto g_j(x, \theta), \] for all \(j \in \{0, 1, \ldots, l\}. \)

We now turn back to the setting defined in the Introduction and consider model \(\text{(1.12)} \). For fixed \(\theta \) in \(\Theta \), define the class of functions

\[\mathcal{F}_\theta := \{g_0(\theta), g_1(\theta), \ldots, g_l(\theta)\}, \]
and consider the set of finite signed measures \mathcal{M}_θ defined by \((l + 1)\) linear constraints as defined in \((1.12)\)

$$\mathcal{M}_\theta := \left\{ Q \in M_{\mathbb{R}_+} \text{ such that } \int dQ(x) = 1 \text{ and } \int g(x, \theta) \, dQ(x) = 0 \right\}.$$

We present explicit tractable conditions for the estimates \((1.20),\) \((1.21)\) and \((1.22)\) to be well defined. This will be done in Propositions \((2.1),\) Remark \((2.1)\) Proposition \((2.2)\) and Remark \((2.3)\) below. First, we present sufficient conditions which assess the existence of the infimum in \((1.20),\) noted \hat{Q}_θ. The Fenchel-Legendre transform of φ will be denoted φ^*, i.e.,

\[(2.1)\]

$$t \in \mathbb{R} \mapsto \varphi^*(t) := \sup_{x \in \mathbb{R}} \{ tx - \varphi(x) \}.$$

Define

\[(2.2)\]

$$\mathcal{D}_\phi^{(n)} := \left\{ Q \in M \text{ such that } Q \ll P_n \text{ and } \frac{1}{n} \sum_{i=1}^{n} \varphi(nQ(X_i)) < \infty \right\},$$

i.e., the domain of the function

$$\left(Q(X_1), \ldots, Q(X_n) \right)^T \in \mathbb{R}^n \mapsto \frac{1}{n} \sum_{i=1}^{n} \varphi(nQ(X_i)).$$

We have

Proposition 2.1. Assume that there exists some measure R in the interior of $\mathcal{D}_\phi^{(n)}$ and in $\mathcal{M}_\theta^{(n)}$ such that for all Q in $\partial \mathcal{D}_\phi^{(n)}$, the frontier of $\mathcal{D}_\phi^{(n)}$, we have

\[(2.3)\]

$$\frac{1}{n} \sum_{i=1}^{n} \varphi(nR(X_i)) < \frac{1}{n} \sum_{i=1}^{n} \varphi(nQ(X_i)).$$

Then the following holds

(i) there exists an unique \hat{Q}_θ^* in $\mathcal{M}_\theta^{(n)}$ such that

\[(2.4)\]

$$\inf_{Q \in \mathcal{M}_\theta^{(n)}} \frac{1}{n} \sum_{i=1}^{n} \varphi(nQ(X_i)) = \frac{1}{n} \sum_{i=1}^{n} \varphi(n\hat{Q}_\theta^*(X_i))$$

(ii) \hat{Q}_θ^* is an interior point of $\mathcal{D}_\phi^{(n)}$ and satisfies for all $i = 1, \ldots, n$

\[(2.5)\]

$$\hat{Q}_\theta^*(X_i) = \frac{1}{n} \varphi \left(\sum_{j=0}^{i} c_j g_j(X_i, \theta) \right),$$

where $(\bar{c}_0, \bar{c}_1, \ldots, \bar{c}_I)^T := \bar{c}_\theta$ is solution of the system of equations

\[(2.6)\]

$$\begin{cases}
\int \varphi' \left(\bar{c}_0 + \sum_{i=1}^{I} \bar{c}_i g_i(x, \theta) \right) \, dP_n(x) = 1 \\
\int g_j(x, \theta) \varphi' \left(\bar{c}_0 + \sum_{i=1}^{I} \bar{c}_i g_i(x, \theta) \right) \, dP_n(x) = 0, \quad j = 1, \ldots, I.
\end{cases}$$

Example 2.1. For the χ^2-divergence, we have $\mathcal{D}_{\chi^2}^{(n)} = \mathbb{R}^n$. Hence condition \((2.3)\) holds whenever $\mathcal{M}_\theta^{(n)}$ is not void. Therefore, the above Proposition holds always independently upon the distribution P_0. More generally, the above Proposition holds for any ϕ-divergence which is associated to φ function satisfying $D_{\varphi} = \mathbb{R}$. (See \((1.6)\) for the definition of D_{φ}.)
Example 2.2. In the case of the modified Kullback-Leibler divergence, which turns to coincide with the empirical likelihood technique (see Section 5), we have $D_{KL}^{(n)} = \{0, +\infty]\}^n$. For α in Θ, define the assertion

$$
\text{there exists } q = (q_1, ..., q_n) \text{ in } \mathbb{R}^n \text{ with } 0 < q_i < 1 \text{ for all } i = 1, ..., n
$$

and $\sum_{i=1}^{n} q_i g_j(X, \alpha) = 0$ for all $j = 1, ..., l$.

A sufficient condition, in order to assess that condition (2.3) in the above Proposition holds, is when (2.7) holds for $\alpha = \theta$. In the case when $g(x, \theta) = x - \theta$, this is precisely what is checked in Owen (1990), p. 100, when θ is an interior point of the convex hull of $(X_1, ..., X_n)$.

Example 2.3. For the modified χ^2-divergence, we have $D_{\chi^2}^{(n)} = \{0, +\infty]\}^n$, and therefore, condition (2.7) for $\alpha = \theta$ is sufficient for the condition (2.3) to hold. So, conditions which assess the existence of the projection Q^θ_n are the same for the modified χ^2-divergence and the KL_m-divergence.

Remark 2.1. If there exists some $Q_0 \in M_\theta^{(n)}$ such that

$$
a < \inf_i nQ_0(X_i) \leq \sup_i nQ_0(X_i) < b,
$$

then applying Corollary 2.6 in Borwein and Lewis (1994), we get

$$
\inf_{Q \in M_\theta^{(n)}} \frac{1}{n} \sum_{i=1}^{n} \varphi(nQ(X_i)) = \sup_{t \in \mathbb{R}^{l+1}} \left\{ t_0 - \int \psi(t^T \varphi(x, \theta)) \, dP_n(x) \right\}
$$

with dual attainment. Furthermore, if

$$
\varphi'(a) < \inf_i \tilde{c}_\theta(X_i, \theta) \leq \sup_i \tilde{c}_\theta(X_i, \theta) < \varphi'(b),
$$

with \tilde{c}_θ a dual optimal, then the unique projection Q^θ_n of P_n on $M_\theta^{(n)}$ is given by (2.7).

We will make use of the dual representation of φ-divergences (see Broniatowski and Keziou (2006) theorem 4.4). So, define

$$
\mathcal{C}_\theta := \{ t \in \mathbb{R}^{l+1} \text{ such that } t^T \varphi(., \theta) \text{ belongs to } \text{Im } \varphi'(P_0 - a.s.) \},
$$

and

$$
\mathcal{C}_\theta^{(n)} := \{ t \in \mathbb{R}^{l+1} \text{ such that } t^T \varphi(X_i, \theta) \text{ belongs to } \text{Im } \varphi' \text{ for all } i = 1, ..., n \}.
$$

We omit the subscript θ when unnecessary. Note that both \mathcal{C}_θ and $\mathcal{C}_\theta^{(n)}$ depend upon the function φ but, for simplicity, we omit the subscript φ.

If P_0 admits a projection Q^θ_n on M_θ with the same support as P_0, using the second part in Corollary 3.5 in Broniatowski and Keziou (2006), there exist constants c_0, \ldots, c_l, obviously depending on θ, such that

$$
\varphi' \left(\frac{dQ^\theta_n}{dP_0}(x) \right) = c_0 + \sum_{j=1}^{l} c_j g_j(x, \theta), \text{ for all } x (P_0 - a.s.).
$$

Since Q^θ_n belongs to M_θ, the real numbers c_0, c_1, \ldots, c_l are solutions of

$$
\begin{cases}
\int \varphi^{-1} \left(c_0 + \sum_{j=1}^{l} c_j g_j(x, \theta) \right) \, dP_0(x) = 1 \\
\int g_j(x, \theta) \varphi^{-1} \left(c_0 + \sum_{j=1}^{l} c_j g_j(x, \theta) \right) \, dP_0(x) = 0, \text{ j } = 1, \ldots, l.
\end{cases}
$$
Since $Q \mapsto \phi(Q, P_0)$ is strictly convex, the projection Q^*_θ of P_0 on the convex set M_θ is unique. This implies, by Broniatowski and Keziou (2006) Corollary part 1, that the solution $c_\theta := (c_0, c_1, \ldots, c_l)^T$ of the system (2.11) is unique provided that the functions $g_i(\theta)$ are linearly independent. Further, using the dual representation of ϕ-divergences (see Broniatowski and Keziou (2006) Theorem 4.4), we get

$$\phi(M_\theta, P_0) :=\phi(Q^*_\theta, P_0) = \sup_{f \in \mathcal{F}} \left\{ \int f \, dQ^*_\theta - \int \varphi^*(f) \, dP_0 \right\},$$

and the sup is unique and is reached at $f = \varphi'(dQ^*_\theta/dP_0) = c_0 + \sum_{j=1}^l c_j g_j(\cdot, \theta)$, if it belongs to \mathcal{F}. This motivates the choice of the class \mathcal{F} through

$$\mathcal{F} := \{ x \mapsto t^T \varphi(x, \theta) \text{ for } t \text{ in } C_\theta \}.$$

It is the smallest class of functions that contains $\varphi'(dQ^*_\theta/dP_0)$ and which does not presume any knowledge on Q^*_θ. We thus obtain

$$\phi(M_\theta, P_0) = \sup_{t \in C_\theta} \int m(x, \theta, t) \, dP_0(x),$$

where $m(\theta, t)$ is the function defined on X by

$$x \in X \mapsto m(x, \theta, t) := t_0 - \varphi^* \left(t^T \varphi(x, \theta) \right) = t_0 - \left(t^T \varphi(x, \theta) \right) \varphi^{-1} \left(t^T \varphi(x, \theta) \right) + \varphi \left(\varphi^{-1} \left(t^T \varphi(x, \theta) \right) \right).$$

With the above notation, we state

$$\phi(M_\theta, P_0) = \sup_{t \in C_\theta} \int m(x, \theta, t) \, dP_0(x),$$

which coincides with the estimate defined in (1.20). Hence, we can write

$$\hat{\phi}(M_\theta, P_0) = \sup_{t \in C_\theta} P_0 m(\theta, t).$$

On the other hand, the sup in (2.12) is reached at $t_0 = c_0, \ldots, t_l = c_l$ which are solutions of the system of equations (2.11), i.e.,

$$c_\theta = \arg \sup_{t \in C_\theta} P_0 m(\theta, t).$$

So, a natural estimate of c_θ in (2.15) is therefore defined through

$$\hat{c}_\theta = \arg \sup_{t \in C_\theta} P_0 m(\theta, t).$$

This coincides with \hat{c}_θ, the solution of the system of equations (2.6). So, we can write

$$\hat{c}_\theta = \arg \sup_{t \in C_\theta} P_0 m(\theta, t).$$
Using (2.14), we obtain the following representations for the estimates \(\hat{\phi}(M, P_0) \) in (1.21) and \(\hat{\theta}_\phi \) in (1.22)

\[
\hat{\phi}(M, P_0) = \inf_{\theta \in \Theta} \sup_{t \in C_\theta} P_0 m(\theta, t)
\]

and

\[
\hat{\theta}_\phi = \arg \inf_{\theta \in \Theta} \sup_{t \in C_\theta} P_0 m(\theta, t),
\]

respectively.

Formula (2.12) also has the following basic interest: Consider the function

\[
t \mapsto P_0 m(\theta, t),
\]

in order for integral (2.20) to be properly defined, we assume that

\[
\int |g_i(x, \theta)| \, dP_0(x) < \infty, \text{ for all } i \in \{1, \ldots, l\}.
\]

The domain of the function (2.20) is

\[
D_\phi(\theta) := \{ t \in C_\theta \text{ such that } P_0 m(\theta, t) > \infty \}.
\]

The function \(t \mapsto P_0 m(\theta, t) \) is strictly concave on the convex set \(D_\phi(\theta) \). Whenever it has a maximum \(t^* \), then it is unique, and if it belongs to the interior of \(D_\phi(\theta) \), then it satisfies the first order condition. Therefore \(t^* \) satisfies system (2.11). In turn, this implies that the measure \(Q^* \) defined through \(dQ^* := \varphi^{-1} \left(t^* T \varphi(\theta) \right) \, dP_0 \) is the projection of \(P_0 \) on \(\Omega \), by Theorem 3.4 part 1 in Broniatowski and Keziou (2006). This implies that \(Q^* \) and \(P_0 \) share the same support. We summarize the above arguments as follows

Proposition 2.2. Assume that (2.21) holds and that

(i) there exists some \(s \) in the interior of \(D_\phi(\theta) \) such that for all \(t \) in \(\partial D_\phi(\theta) \), the frontier of \(D_\phi(\theta) \), it holds \(P_0 m(\theta, t) < P_0 m(\theta, s) \);

(ii) for all \(t \) in the interior of \(D_\phi(\theta) \), there exists a neighborhood \(V(t) \) of \(t \), such that the classes of functions \(\{ x \mapsto \frac{1}{r} m(x, \theta, r), \, r \in V(t) \} \) are dominated (\(P_0 \)-a.s.) by some \(P_0 \)-integrable function \(x \mapsto H(x, \theta) \).

Then \(P_0 \) admits an unique projection \(Q^*_0 \) on \(\mathcal{M}_\theta \) having the same support as \(P_0 \) and

\[
dQ_0^* = \varphi^{-1} \left(c_\theta T \varphi(\theta) \right) \, dP_0,
\]

where \(c_\theta \) is the unique solution of the system of equations (2.11).

Remark 2.2. In the case of KL-divergence, comparing this Proposition with Theorem 3.3 in Csiszár (1975), we observe that the dual formula (2.12) provides weaker conditions on the class of functions \(\{ \varphi(\theta), \, \theta \in \Theta \} \) than the geometric approach.

Remark 2.3. The result of Borwein and Lewis (1991), with some additional conditions, provides more practical tools for obtaining the results in Proposition 2.2. Assume that the functions \(g_j(\theta) \) belongs to the space \(L_p(X, P_0) \) with \(1 \leq p \leq \infty \) and that the following “constraint qualification” holds

\[
\text{there exists some } Q_0 \text{ in } \mathcal{M}_\theta \text{ such that: } a < \inf \frac{dQ_0}{dP_0} \leq \sup \frac{dQ_0}{dP_0} < b,
\]
with \((a,b)\) is the domain \(D_\phi\) of the divergence function \(\phi\) and \(\mathcal{M}_\theta\) is the set of all signed measures \(Q\) a.c. w.r.t. \(P_0\), satisfying the linear constraints and such that \(\frac{dQ}{dP_0}\) belong to \(L_q(X, P_0)\), \((1 \leq q \leq \infty \text{ and } 1/p + 1/q = 1)\). In this case, applying Corollary 2 in [Borwein and Lewis (1991)], we obtain

\[
\phi(\mathcal{M}_\theta, P_0) = \sup_{t \in \mathbb{R}^{l+1}} \left\{ t_0 - \int \phi^*(t^T \overline{g}(x, \theta)) \, dP_0(x) \right\}
\]

(with dual attainment). Furthermore, if for a dual optimal \(c_0\), it holds

\[
\lim_{y \to -\infty} \frac{\phi(y)}{y} < \inf_x c_0^T \overline{g}(x, \theta) \leq \sup_x c_0^T \overline{g}(x, \theta) < \lim_{y \to +\infty} \frac{\phi(y)}{y}
\]

for all \(x\) \((P_0 \text{ a.s.})\), then the unique projection \(Q_0^*\) of \(P_0\) on \(\mathcal{M}_\theta\) is given by

\[
(2.25) \quad dQ_0^* = \phi^*(c_0^T \overline{g}(\theta)) \, dP_0.
\]

Note that if \(\phi^*\) is strictly convex, then \(c_0\) is unique and

\[
\sup_{t \in \mathbb{R}^{l+1}} \left\{ t_0 - \int \phi^*(t^T \overline{g}(x, \theta)) \, dP_0(x) \right\} = \sup_{t \in \mathbb{C}_0} \left\{ t_0 - \int \phi^*(t^T \overline{g}(x, \theta)) \, dP_0(x) \right\},
\]

and

\[
\phi^*(c_0^T \overline{g}(\theta)) = \phi^{*\prime\prime}(c_0^T \overline{g}(\theta)) = (c_0^T \overline{g}(\theta)).
\]

Léonard (2001a) and Léonard (2001b) gives, under minimal conditions, duality theorems of minimum \(\phi\)-divergences and characterization of projections under linear constraints, which generalize the results given by Borwein and Lewis (1991) and Borwein and Lewis (1993). These results are used recently by Bertail (2004) and Bertail (2006) in empirical likelihood.

3. Asymptotic properties and Statistical Tests

In the sequel, we assume that the conditions in Proposition 2.1 (or Remark 2.2) and in Proposition 2.2 (or Remark 2.3) hold. This allows us to use the representations (2.14), (2.18) and (2.19) in order to study the asymptotic behavior of the proposed estimates (1.20), (1.21) and (1.22). All the results in the present Section are obtained through classical methods of parametric statistics; see e.g. van der Vaart (1998) and Sen and Singer (1993). We first consider the case when \(\theta\) is fixed, and we study the asymptotic behavior of the estimate \(\hat{\phi}(\mathcal{M}_\theta, P_0)\) (see (1.12)) of \(\phi(\mathcal{M}_\theta, P_0) := \inf_{Q \in \mathcal{M}_\theta} \phi(Q, P_0)\) both when \(P_0 \in \mathcal{M}_\theta\) and when \(P_0 \notin \mathcal{M}_\theta\). This is done in the first Subsection. In the second Subsection, we study the asymptotic behavior of the EM0D estimates \(\hat{\theta}_0\) and the estimates \(\tilde{\phi}(\mathcal{M}, P_0)\) both in the two cases when \(P_0\) belongs to \(\mathcal{M}\) and when \(P_0\) does not belong to \(\mathcal{M}\). The solution of Problem 1 is given in Subsection 3.3 while Problem 2 is treated in Subsections 3.1, 3.2, 3.3 and 3.4.

3.1. Asymptotic properties of the estimates for a given \(\theta \in \Theta\). First we state consistency.

Consistency. We state both weak and strong consistency of the estimates \(\hat{\theta}_0\) and \(\hat{\phi}(\mathcal{M}_\theta, P_0)\) using their representations (2.17) and (2.14), respectively. Denote \(\| . \|\) the Euclidian norm defined on \(\mathbb{R}^d\) or on \(\mathbb{R}^{l+1}\). In order to state consistency, we need to define

\[
T_\theta := \{ t \in C_\theta \text{ such that } P_0 m(\theta, t) > -\infty \},
\]

and denote \(T_\theta^c\) the complementary of the set \(T_\theta\) in the set \(C_\theta\), namely

\[
T_\theta^c := \{ t \in C_\theta \text{ such that } P_0 m(\theta, t) = -\infty \}.
\]

Note that, by Proposition 2.2 the set \(T_\theta\) contains \(c_0\).

We will consider the following condition

\[(C.1) \sup_{t \in T_\theta} |P_n m(\theta, t) - P_0 m(\theta, t)| \text{ converges to } 0 \text{ a.s. (resp. in probability)};\]
(C.2) there exists $M < 0$ and $n_0 > 0$, such that, for all $n > n_0$, it holds $\sup_{t \in T_\delta} P_n m(\theta, t) \leq M$ a.s. (resp. in probability).

The condition (C.2) makes sense, since for all $t \in T_\delta$ we have $P_0 m(\theta, t) = -\infty$.

Since the function $t \in T_\delta \mapsto P_0 m(\theta, t)$ is strictly concave, the maximum c_θ is isolated, that is

$$V(3.3) = (0, \ldots, 0)^T \in \mathbb{R}^l,$$

$$\Theta_d := (0, \ldots, 0)^T \in \mathbb{R}^d,$$

$$c = (l + 1)-vector defined by c := (0, \Theta_d)^T,$$

$$P_0 g(\theta) g(\theta)^T := [P_0 g_i(\theta) g_j(\theta)]_{i,j=1, \ldots, l}.$$

We will consider the following assumptions

(A.1) \hat{c}_θ converges in probability to c_θ;

(A.2) the function $t \mapsto m(x, \theta, t)$ is C^3 on a neighborhood $V(c_\theta)$ of c_θ for all x (P_0-a.s.), and all partial derivatives of order 3 of the function $\{t \mapsto m(x, \theta, t), t \in V(c_\theta)\}$ are dominated by some P_0-integrable function $x \mapsto H(x)$;

(A.3) $P_0 (||m'\theta, c_\theta||^2)$ is finite, and the matrix $P_0 m''\theta, c_\theta)$ exists and is invertible.

Theorem 3.2. Assume that assumptions (A.1-3) hold. Then

1. $\sqrt{n} (\hat{c}_\theta - c_\theta)$ converges to a centered normal multivariate variable with covariance matrix

$$V = [-P_0 m''\theta, c_\theta)^{-1} [P_0 m'\theta, c_\theta m'(\theta, c_\theta)^T] [-P_0 m''\theta, c_\theta)^{-1}].$$

In the special case, when P_0 belongs to M_θ, then $c_\theta = c$ and

$$V = \phi''(1)^2 \begin{bmatrix} 0 & \Theta^T \\ \Theta & [P_0 g(\theta) g(\theta)^T]^{-1} \end{bmatrix}.$$

2. If P_0 belongs to M_θ, then the statistics

$$\frac{2n}{\phi''(1)} \hat{\phi}(M_\theta, P_0)$$

converge in distribution to a χ^2 variable with l degrees of freedom.

3. If P_0 does not belong to M_θ, then

$$\sqrt{n} \left(\hat{\phi}(M_\theta, P_0) - \phi(M_\theta, P_0) \right)$$

converges to a centered normal variable with variance

$$\sigma^2 := P_0 m(\theta, c_\theta)^2 - (P_0 m(\theta, c_\theta))^2.$$

Remark 3.1. (a) When specialized to the modified Kullback-Leibler divergence, Theorem part (2) gives the limiting distribution of the empirical log-likelihood ratio $2n KL_m(M_\theta, P_0)$
which is the result in Owen (1990) Theorem 1. Part (3) gives its limiting distribution when
\(P_0\) does not belong to \(\mathcal{M}_0\).

(b) Nonparametric confidence regions \((CR_\phi)\) for \(\theta_0\) of asymptotic level \((1-\epsilon)\) can be constructed using the statistics

\[
\frac{2n}{\varphi''(1)} \tilde{\phi}(\mathcal{M}_\theta, P_0),
\]

through

\[
CR_\phi := \left\{ \theta \in \Theta \text{ such that } \frac{2n}{\varphi''(1)} \tilde{\phi}(\mathcal{M}_\theta, P_0) \leq q_{1-\epsilon} \right\},
\]

where \((1-\epsilon)\) is the \((1-\epsilon)\)-quantile of a \(\chi^2(l)\) distribution. It would be interesting to obtain the divergence leading to optimal confidence regions in the sense of Neyman (1937) (see Takaoka (1998)), or the optimal divergence leading to confidence regions with small length (volume, area or diameter) and covering the true value \(\theta_0\) with large enough probability.

3.2. Asymptotic properties of the estimates \(\hat{\theta}_\phi\) and \(\tilde{\phi}(\mathcal{M}, P_0)\). First we state consistency.

Consistency. We assume that when \(P_0\) does not belong to the model \(\mathcal{M}\), the minimum, say \(\theta^*\), of the function \(\theta \in \Theta \mapsto \inf_{Q \in \mathcal{M}_0} \phi(Q, P_0)\) exists and is unique. Hence \(P_0\) admits a projection on \(\mathcal{M}\) which we denote \(Q_{\theta^*}\). Obviously when \(P_0\) belongs to the model \(\mathcal{M}\), then \(\theta^* = \theta_0\) and \(Q_{\theta^*} = P_0\).

We will consider the following conditions

(C.3) \(\sup_{t \in T_a, t \in T_b} |P_n m(\theta, t) - P_0 m(\theta, t)|\) tends to 0 a.s. (resp. in probability);

(C.4) there exists a neighborhood \(V(c_{\theta^*})\) of \(c_{\theta^*}\) such that

(a) for any positive \(\epsilon\), there exists some positive \(\eta\) such that for all \(t \in V(c_{\theta^*})\) and all \(\theta \in \Theta\) satisfying \(\|\theta - \theta^*\| \geq \epsilon\), it holds \(P_0 m(\theta^*, t) - P_0 m(\theta, t) - \eta\);

(b) there exists some function \(H\) such that for all \(t\) in \(V(c_{\theta^*})\), we have \(|m(t, \theta_0)| \leq H(t) (P_0-a.s.)\) with \(P_0 H < \infty\);

(C.5) there exists \(M < 0\) and \(n_0 > 0\) such that for all \(n \geq n_0\), we have

\[
\sup_{\theta \in \Theta} \sup_{t \in T_a} P_n m(\theta, t) \leq M \text{ a.s. (resp. in probability)}.
\]

Proposition 3.3. Assume that conditions (C.3-5) hold. Then

(i) the estimates \(\tilde{\phi}(\mathcal{M}, P_0)\) converge to \(\phi(\mathcal{M}, P_0)\) a.s. (resp. in probability).

(ii) \(\sup_{\theta \in \Theta} \|\tilde{\phi}_\theta - \phi_\theta\|\) converge to 0 a.s. (resp. in probability).

(iii) The MLE estimates \(\hat{\theta}_{\phi}\) converge to \(\theta^*\) a.s. (resp. in probability).

Asymptotic distributions. When \(P_0 \in \mathcal{M}\), then by assumption, there exists unique \(\theta_0 \in \Theta\) such that \(P_0 \in \mathcal{M}_{\theta_0}\). Hence \(\theta^* = \theta_0\) and \(c_{\theta^*} = c_{\theta_0} = \epsilon_0\). We state the limit distributions of the estimates \(\hat{\theta}_\phi\) and \(\tilde{\phi}_\phi\) when \(P_0 \in \mathcal{M}\) and when \(P_0 \not\in \mathcal{M}\). We will make use of the following assumptions

(A.4) Both estimates \(\hat{\theta}_\phi\) and \(\tilde{\phi}_\phi\) converge in probability respectively to \(\theta^*\) and \(c_{\theta^*}\);

(A.5) the function \((\theta, t) \mapsto m(x, \theta, t)\) is \(C^3\) on some neighborhood \(V(\theta^*, c_{\theta^*})\) for all \(x\) \((P_0\text{-a.s.)},\) and the partial derivatives of order 3 of the functions

\(\{\theta, t \mapsto m(x, \theta, t), (\theta, t) \in V(\theta^*, c_{\theta^*})\}\)

are dominated by some \(P_0\)-integrable function \(H(x)\);

(A.6) \(P_0 \left(\|\frac{\partial}{\partial \theta} m(\theta^*, c_{\theta^*})\|^2\right)\) and \(P_0 \left(\|\frac{\partial}{\partial t} m(\theta^*, c_{\theta^*})\|^2\right)\) are finite, and the matrix

\[
S := \begin{pmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{pmatrix},
\]

with \(S_{11} := P_0 \frac{\partial^2}{\partial \theta^2} m(\theta^*, c_{\theta^*}), S_{12} = S_{21}^T := P_0 \frac{\partial^2}{\partial \theta \partial t} m(\theta^*, c_{\theta^*})\) and \(S_{22} := P_0 \frac{\partial^2}{\partial t^2} m(\theta^*, c_{\theta^*})\), exists and is invertible.
Theorem 3.4. Let P_0 belongs to \mathcal{M} and assumptions (A.4-6) hold. Then, both $\sqrt{n} \left(\hat{\theta}_\phi - \theta_0 \right)$ and $\sqrt{n} \left(c_{\hat{\theta}_\phi} - c_{\theta_0} \right)$ converge in distribution to a centered multivariate normal variable with covariance matrix,

$$V = \left\{ \left[P_0 \frac{\partial}{\partial \theta} g(\theta_0) \right] \left[P_0 \left(g(\theta_0)g(\theta_0)^T \right) \right]^{-1} \left[P_0 \frac{\partial}{\partial \theta} g(\theta_0) \right]^T \right\}^{-1},$$

and

$$U = \varphi'(1)^2 \left[\begin{bmatrix} 0 \\ [P_0 g(\theta_0)g(\theta_0)^T]^{-1} \end{bmatrix} - \varphi'(1)^2 \left[\begin{bmatrix} 0 \\ [P_0 g(\theta_0)g(\theta_0)^T]^{-1} \end{bmatrix} \right] \right] \times \left[\begin{bmatrix} 0_d, P_0 \frac{\partial}{\partial \theta} g(\theta_0) \end{bmatrix} \right]^T V \left[\begin{bmatrix} 0_d, P_0 \frac{\partial}{\partial \theta} g(\theta_0) \end{bmatrix} \right]^{-1},$$

and the estimates $\hat{\theta}_\phi$ and $c_{\hat{\theta}_\phi}$ are asymptotically uncorrelated.

Remark 3.2. When specialized to the modified Kullback-Leibler divergence, the estimate $\hat{\theta}_{KLm}$ is the empirical likelihood estimate (ELE) (noted $\hat{\theta}$ in Qin and Lawless (1994)), and the above result gives the limiting distribution of $\sqrt{n}(\hat{\theta}_{KLm} - \theta_0)$ which coincides with the result in Theorem 1 in Qin and Lawless (1994). Note also that all ME\textit{D}E’s including ELE have the same limiting distribution with the same variance when P_0 belongs to \mathcal{M}. Hence they are all equally first order efficient.

Theorem 3.5. Assume that P_0 does not belong to \mathcal{M} and that assumptions (A.4-6) hold. Then

$$\sqrt{n} \left(c_{\hat{\theta}_\phi} - c_{\theta_0} \right)$$

converges in distribution to a centered multivariate normal variable with covariance matrix

$$W = S^{-1} M S^{-1}$$

where

$$M := P_0 \left(\begin{bmatrix} \frac{\partial}{\partial \theta} m(\theta^*, c_{\theta_0}) \\ \frac{\partial}{\partial \theta} m(\theta^*, c_{\theta_0}) \end{bmatrix} \right) \left(\begin{bmatrix} \frac{\partial}{\partial \theta} m(\theta^*, c_{\theta_0}) \\ \frac{\partial}{\partial \theta} m(\theta^*, c_{\theta_0}) \end{bmatrix} \right)^T.$$

θ^* and c_{θ_0} are characterized by

$$\theta^* := \arg \inf_{\theta \in \Theta} \phi(M_\theta, P_0),$$

$$dQ^{\theta^*}_0 = \varphi^{-1}(c_{\theta_0}, \overline{\phi}(\theta)) dP_0 \quad \text{and} \quad Q^{\theta^*}_0 \in \mathcal{M}_{\theta^*}.$$

3.3. Tests of model. In order to test the hypothesis $H_0 : P_0$ belongs to \mathcal{M} against the alternative $H_1 : P_0$ does not belong to \mathcal{M}, we can use the estimates $\hat{\phi}(M, P_0)$ of $\phi(M, P_0)$, the ϕ–divergences between the model \mathcal{M} and the distribution P_0. Since $\phi(M, P_0)$ is nonnegative and take value 0 only when P_0 belongs to \mathcal{M} (provided that P_0 admits a projection on \mathcal{M}), we reject the hypothesis H_0 when the estimates take large values. In the following Corollary, we give the asymptotic law of the estimates $\hat{\phi}(M, P_0)$ both under H_0 and under H_1.

Corollary 3.6.

(i) Assume that the assumptions of Theorem 3.4 hold and that $l > d$. Then, under H_0, the statistics

$$\frac{2n}{\varphi'(1)} \hat{\phi}(M, P_0)$$

converge in distribution to a χ^2 variable with $(l - d)$ degrees of freedom.
(ii) Assume that the assumptions of Theorem 3.5 hold. Then, under H_1, we have:

$$\sqrt{n} \left(\hat{\phi}(M, P_0) - \phi(M, P_0) \right)$$

converges to centered normal variable with variance

$$\sigma^2 = P_0 m(\theta^*, c_{\theta^*})^2 - (P_0 m(\theta^*, c_{\theta^*}))^2$$

where θ^* and c_{θ^*} satisfy

$$\theta^* := \arg \inf_{\theta \in \Theta} \phi(M_{\theta}, P_0),$$

$$\varphi' \left(\frac{dQ_{\theta^*}}{dP_0}(x) \right) = c_{\theta^*}^T \mathfrak{g}(x, \theta^*)$$

and $Q_{\theta^*} \in \mathcal{M}_{\theta^*}$.

Remark 3.3. This Theorem allows to perform tests of model of asymptotic level α; the critical regions are

$$C_0 := \left\{ \frac{\sqrt{n}}{\varphi''(1)} \hat{\phi}(M, P_0) > q(1-\alpha) \right\},$$

where $q(1-\alpha)$ is the $(1-\alpha)$-quantile of the χ^2 distribution with $(l-d)$ degrees of freedom. Also these tests are all asymptotically powerful, since the estimates $\hat{\phi}(M, P_0)$ are n-consistent estimates of $\phi(M, P_0) = 0$ under H_0 and \sqrt{n}-consistent estimates of $\phi(M, P_0)$ under H_1.

We assume now that the p.m. P_0 belongs to \mathcal{M}. We will perform simple and composite tests on the parameter θ_0 taking into account of the information $P_0 \in \mathcal{M}$.

3.4. Simple tests on the parameter.

Let

$$H_0 : \theta_0 = \theta_1 \text{ versus } H_1 : \theta_0 \in \Theta \setminus \{\theta_1\},$$

where θ_1 is a given known value. We can use the following statistics to perform tests pertaining to

$$S_n^\phi := \hat{\phi}(M_{\theta_1}, P_0) - \inf_{\theta \in \Theta} \hat{\phi}(M_{\theta}, P_0).$$

Since

$$\phi(M_{\theta_1}, P_0) - \inf_{\theta \in \Theta} \phi(M_{\theta}, P_0) = \phi(M_{\theta_1}, P_0)$$

are nonnegative and take value 0 only when $\theta_0 = \theta_1$, we reject the hypothesis H_0 when the statistic S_n^ϕ take large values.

We give the limit distributions of the statistics S_n^ϕ in the following Corollary which we can prove using some algebra and arguments used in the proof of Theorem 3.4 and Theorem 3.5.

Corollary 3.7.

(i) Assume that assumptions of Theorem 3.4 hold. Then under H_0, the statistics

$$\frac{2n}{\varphi''(1)} S_n^\phi$$

converge in distribution to χ^2 variable with d degrees of freedom.

(ii) Assume that assumptions of Theorem 3.5 hold. Then under H_1,

$$\sqrt{n} \left(S_n^\phi - \phi(M_{\theta_1}, P_0) \right)$$

converges to a centered normal variable with variance

$$\sigma^2 = P_0 m(\theta_1, c_{\theta_1})^2 - (P_0 m(\theta_1, c_{\theta_1}))^2.$$
Remark 3.4. When specialized to the KL_m-divergence, the statistic $2nS^K_m$ is the empirical likelihood ratio statistic (see Qin and Lawless (1994) Theorem 2).

3.5. Composite tests on the parameter. Let

\[(3.9) \quad h : \mathbb{R}^d \to \mathbb{R}^k\]

be some function such that the $(d \times k)$-matrix $H(\theta) := \frac{\partial}{\partial \theta} h(\theta)$ exists, is continuous and has rank k with $0 < k < d$. Let us define the composite null hypothesis

\[(3.10) \quad \Theta_0 := \{ \theta \in \Theta \text{ such that } h(\theta) = 0 \} .\]

We consider the composite test

\[(3.11) \quad H_0 : \theta_0 \in \Theta_0 \text{ versus } H_1 : \theta_0 \notin \Theta_0,\]

i.e., the test

\[(3.12) \quad H_0 : P_0 \in \bigcup_{\theta \in \Theta_0} \mathcal{M}_\theta \text{ versus } H_1 : P_0 \in \bigcup_{\theta \in \Theta \setminus \Theta_0} \mathcal{M}_\theta.\]

This test is equivalent to the following one

\[(3.13) \quad H_0 : \theta_0 \in f(B_0) \text{ versus } H_1 : \theta_0 \notin f(B_0),\]

where $f : \mathbb{R}^{(d-k)} \to \mathbb{R}^d$ is a function such that the matrix $G(\beta) := \frac{\partial}{\partial \beta} g(\beta)$ exists and has rank $(d-k)$, and $B_0 := \{ \beta \in \mathbb{R}^{(d-k)} \text{ such that } f(\beta) \in \Theta_0 \}$. Therefore $\theta_0 \in \Theta_0$ is an equivalent statement for $\theta_0 = f(\beta_0), \beta_0 \in B_0$.

The following statistics are used to perform tests pertaining to (3.13):

\[T_n^\phi := \inf_{\beta \in B_0} \hat{\phi}(\mathcal{M}_{f(\beta)}, P_0) - \inf_{\theta \in \Theta} \hat{\phi}(\mathcal{M}_\theta, P_0).\]

Since

\[\inf_{\beta \in B_0} \phi(\mathcal{M}_{f(\beta)}, P_0) - \inf_{\theta \in \Theta} \phi(\mathcal{M}_\theta, P_0) = \inf_{\beta \in B_0} \phi(\mathcal{M}_{f(\beta)}, P_0)\]

are nonnegative and take value 0 only when H_0 holds, we reject the hypothesis H_0 when the statistics T_n^ϕ take large values.

We give the limit distributions of the statistics T_n^ϕ in the following Corollary.

Corollary 3.8.

(i) Assume that assumptions of Theorem 3.4 hold. Under H_0, the statistics T_n^ϕ converge in distribution to a χ^2 variable with $(d - k)$ degrees of freedom.

(ii) Assume that there exists $\beta^* \in B_0$, such that $\beta^* = \arg \inf_{\beta \in B_0} \phi(\mathcal{M}_{f(\beta)}, P_0)$. If the assumptions of Theorem 3.4 hold for $\theta^* = f(\beta^*)$, then

\[\sqrt{n} \left(T_n^\phi - \phi(\mathcal{M}_{\theta^*}, P_0) \right) \]

converges to a centered normal variable with variance

\[\sigma^2 = P_0 m(\theta^*, c_{\theta^*})^2 - (P_0 m(\theta^*, c_{\theta^*}))^2.\]
4. Estimates of the distribution function through projected distributions

In this Subsection, the measurable space \((X, B)\) is \((\mathbb{R}, B_{\mathbb{R}})\). For all \(\phi\)-divergence, by \((1.21)\), we have

\[
\hat{\phi}(\mathcal{M}, P_0) = \phi(\mathcal{M}, P_n) = \phi(\hat{Q}_{\theta_o}^\phi, P_n).
\]

Proposition \(2.4\) above provides the description of \(\hat{Q}_{\theta_o}^\phi\).

So, for all \(\phi\)-divergence, we estimate the distribution function \(F\) using \(\hat{Q}_{\theta_o}^\phi\) the \(\phi\)-projection of \(P_n\) on \(\mathcal{M}\), through

\[
\hat{F}_n(x) := \sum_{i=1}^{n} \hat{Q}_{\theta_o}^\phi(X_i) \mathbb{1}_{(-\infty, x]}(X_i)
\]

\((4.1)\)

Remark 4.1. When the estimating equation

\[(4.2)\]

\[
\frac{1}{n} \sum_{i=1}^{n} g(X_i, \theta) = 0
\]

admits a solution \(\hat{\theta}_n\), then \(P_n\) belongs to \(\mathcal{M}\). If the solution is unique then \(\hat{\theta}_\phi = \hat{\theta}_n\). Hence by Proposition \(2.4\)

for all \(i \in \{1, 2, \ldots, n\}\), we have \(\hat{Q}_{\theta_o}^\phi(X_i) = \frac{1}{n}\),

and \(\hat{F}_n(x)\), in this case, is the empirical cumulative distribution function, i.e.,

\[
\hat{F}_n(x) = F_n(x) := \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{(-\infty, x]}(X_i).
\]

So, the main interest is in the case where \((4.2)\) does not admit a solution, that is in general when \(l > d\).

Remark 4.2. The \(\phi\)-projections \(\hat{Q}_{\theta_o}^\phi\) of \(P_n\) on \(\mathcal{M}\) may be signed measures. For all \(\phi\)-divergence satisfying \(D_\phi = \mathbb{R}^*_+\), the \(\phi\)-projection \(\hat{Q}_{\theta_o}^\phi\) is a p.m. if it exists. (for example, \(KL_m, KL\), Hellinger, and \(\chi^2_m\) divergences all provide p.m.’s).

We give the limit law of the estimates \(\hat{F}_n\) of the distribution function \(F\) in the following Theorem. We will see that the estimate \(\hat{F}_n\) is generally more efficient than the empirical cumulative distribution function \(F_n(x)\).

Theorem 4.1. Under the assumptions of Theorem \(3.4\),

\[
\sqrt{n} \left(\hat{F}_n(x) - F(x) \right)
\]

converges in distribution to a centered normal variable with variance

\[
W(x) = F(x) (1 - F(x)) - \left[P_0 \left(g(\theta_0) \mathbb{1}_{(-\infty, x]} \right) \right]^T \Gamma \left[P_0 \left(g(\theta_0) \mathbb{1}_{(-\infty, x]} \right) \right],
\]

with

\[
\Gamma = \left[P_0 g(\theta_0) g(\theta_0)^T \right]^{-1} - \left[P_0 g(\theta_0) g(\theta_0)^T \right]^{-1} \left[P_0 \frac{\partial}{\partial \theta} g(\theta_0) \right]^T V \times \left[P_0 \frac{\partial}{\partial \theta} g(\theta_0) \right] \left[P_0 g(\theta_0) g(\theta_0)^T \right]^{-1},
\]
and

\[
V = \left\{ P_0 \frac{\partial}{\partial \theta} g(\theta_0) \right\} \left[P_0 \left(g(\theta_0)g(\theta_0)^T \right) \right]^{-1} \left[P_0 \frac{\partial}{\partial \theta} g(\theta_0) \right]^T \right\}^{-1}.
\]

5. Empirical likelihood and related methods

In the present setting, the empirical likelihood (EL) approach for the estimation of the parameter \(\theta_0 \) can be summarized as follows. For any \(\theta \) in \(\Theta \), define the profile likelihood ratio of the sample \(X := (X_1,...,X_n) \) through

\[
L_n(\theta) := \sup \left\{ \prod_{i=1}^n nQ(X_i) \mid Q(X_i) \geq 0, \sum_{i=1}^n Q(X_i) = 1, \sum_{i=1}^n g(X_i,\theta)Q(X_i) = 0 \right\}.
\]

The estimate of \(\theta_0 \) through empirical likelihood (EL) approach is then defined by

\[
\hat{\theta}_{EL} := \arg \sup_{\theta \in \Theta} L_n(\theta).
\]

The paper by Qin and Lawless (1994) introduces \(\hat{\theta}_{EL} \) and presents its properties. In this Section, we show that \(\hat{\theta}_{EL} \) belongs to the family of ME\(\phi \)D estimates for the specific choice \(\varphi(x) = -\log x + x - 1 \). We also discuss the problem of the existence of the solution of (5.1) for all \(n \).

When \(\varphi(x) = -\log x + x - 1 \), formula (1.22) clearly coincides with \(\hat{\theta}_{EL} \). For test of hypotheses given by \(H_0 : P_0 \in \mathcal{M}_\theta \) against \(H_1 : P_0 \notin \mathcal{M}_\theta \) or for construction of nonparametric confidence regions for \(\theta_0 \), the statistic \(2n\hat{KL}_m(M_\theta, P_0) \) coincides with the empirical log-likelihood ratio introduced in Owen (1988), Owen (1990) and Qin and Lawless (1994). We state the results of Section 3 in the present context. We will see that the approach of empirical likelihood by divergence minimization, using the dual representation of the \(KL_m \)-divergence and the explicit form of the \(KL_m \) estimates for the specific choice \(\varphi(x) \), yields to the limit distribution of the statistic

\[
\frac{T}{T} \quad \text{for test of hypotheses given}
\]

consider

\[
\hat{\theta}_{KL_m} = \arg \sup_{\theta \in \Theta} \hat{KL}_m(M_\theta, P_0)
\]

where

\[
\hat{KL}_m(M_\theta, P_0) = \sup_{t \in C_0} P_n m(\theta, t)
\]

with \(\varphi(x) = \varphi_0(x) = -\log x + x - 1 \). The explicit form of \(m(\theta, t) \) in this case is

\[
x \mapsto m(x, \theta, t) = t_0 - (t^T \mathbf{g}(x, \theta)) \frac{1}{1 - t^T \mathbf{g}(x, \theta)} + \log(1 - t^T \mathbf{g}(x, \theta)) = 1 - t^T \mathbf{g}(x, \theta).
\]

For fixed \(\theta \in \Theta \), the sup in (5.2), which we have noted \(\hat{c}_\theta \), satisfies the following system

\[
\begin{cases}
\int_{1-c_0 - \sum_{j=1}^l c_j g_j(x, \theta)}^{1} \frac{1}{g_j(x, \theta)} dP_n(x) = 1 \\
\int_{1-c_0 - \sum_{j=1}^l c_j g_j(x, \theta)}^{1} dP_n(x) = 0, \quad \text{for all } j = 1, \ldots, l
\end{cases}
\]

a system of \((l + 1) \) equations and \((l + 1) \) variables. The projection \(\hat{Q}_\theta \) is then obtained using Proposition 2.1 part (ii). We have for all \(i \in \{1, \ldots, n\} \)

\[
\frac{1}{\hat{Q}_\theta(X_i)} = n \left(1 - c_0 - \sum_{j=1}^l c_j g_j(X_i, \theta) \right)
\]
which, multiplying by \(\hat{Q}_n^\phi(X_i) \) and summing upon \(i \) yields \(c_0 = 0 \). Therefore the system \((5.3)\) reduces to the system \((3.3)\) in Qin and Lawless (1994) replacing \(c_1, \ldots, c_l \) by \(-t_1, \ldots, -t_l \). Simplify \((5.3)\) plugging \(t_0 = 0 \). Notice that \(2nKL_m(M_\theta, P_0) = l_E(\theta_0) \) in the notation of Qin and Lawless (1994), and that the function of \(t = (0, -\tau_1, \ldots, -\tau_l) \) defined by
\[
t \mapsto P_n m(\theta, t)
\]
coincide with the function
\[
\tau \mapsto P_n \log (1 + \tau^T g(., \theta))
\]
used in Qin and Lawless (1994). The interest in formula \((5.2)\) lays in the obtention of the limit distributions of \(2nKL_m(M_\theta, P_0) \) under \(H_1 \). By Theorem 3.2 we have
\[
\sqrt{n} \left(KL_m(M_\theta, P_0) - KL_m(M_\theta, P_0) \right)
\]
converges to a normal distribution variable, which proves consistency of the test; this results cannot be obtained by the Qin and Lawless (1994)’s approach.

The choice of \(\phi \) depends on some a priori knowledge on \(\theta_0 \). Hopefully, some divergences do not have such an inconvenient. We now clarify this point. For fixed \(\theta \) in \(\Theta \), let \(\mathcal{M}_\theta^{(n)} \) and \(\mathcal{D}_\phi^{(n)} \) be defined respectively as in \((1.19)\) and in \((2.2)\). Assume that \(\mathcal{M}_\theta^{(n)} \cap \mathcal{D}_\phi^{(n)} \) is not void. Then \(P_n \) has a projection \(\hat{Q}_n^\phi \) on \(\mathcal{M}_\theta^{(n)} \) and \(\phi(\hat{Q}_n^\phi, P_n) \) is finite. The estimation of \(\theta_0 \) is achieved minimizing \(\hat{\phi}(M_\theta, P_0) \) on the sets
\[
\Theta_n^\phi := \left\{ \theta \in \Theta \text{ such that } \mathcal{M}_\theta^{(n)} \cap \mathcal{D}_\phi^{(n)} \text{ is not void} \right\}.
\]
Clearly the description of \(\Theta_n^\phi \) depends on the divergence \(\phi \). Consider the following example, with \(n = 2, \ X = (X_1, X_2) \) and \(g(x, \theta) = x - \theta \). Then
\[
\mathcal{M}_\theta = \left\{ (q_1, q_2)^T \text{ such that } q_1 + q_2 = 1 \text{ and } q_1(X_1 - \theta) + q_2(X_2 - \theta) = 0 \right\}
\]
and
\[
\mathcal{D}_\phi^{(2)} = \left\{ (q_1, q_2) \text{ such that } \frac{1}{2} \sum_{i=1}^2 \varphi(2q_i) < \infty \right\}.
\]
When \(\phi = KL_m \), then \(\mathcal{D}_\phi^{(2)} = \mathbb{R}^+ \times \mathbb{R}^+ \). So, according to the value of \(\theta \), \(\mathcal{M}_\theta^{(n)} \cap \mathcal{D}_\phi^{(n)} \) may be void and therefore \(\Theta_n^{KL_m} \) has a complex structure. At the opposite, for example when \(\phi = \chi^2 \), then \(\mathcal{D}_\chi^{(2)} = \mathbb{R}^2 \). Hence \(\mathcal{M}_\theta^{(n)} \cap \mathcal{D}_\phi^{(n)} = \mathcal{M}_\theta^{(n)} \) which is not void for all \(\theta \) and hence \(\Theta_n^{\chi^2} = \Theta \).

On the other hand, we have for any \(\phi \)-divergence
\[
\hat{\phi} : = \arg \inf_{\theta \in \Theta} \inf_{Q \in \mathcal{M}_\theta^{(n)}} \hat{\phi}(Q, P_0)
\]
\[
= \arg \inf_{\theta \in \Theta} \inf_{Q \in \mathcal{M}_\theta^{(n)} \cap \mathcal{D}_\phi^{(n)}} \hat{\phi}(Q, P_0).
\]
When \(\mathcal{D}_\phi^{(n)} \neq \mathbb{R}^n \), the infimum in \(\theta \) above should be taken upon \(\Theta_n^\phi \) which might be quite cumbersome. Owen (2001) indeed mentions such a difficulty.

In relation to this problem, Qin and Lawless (1994) bring some asymptotic arguments in the case of the empirical likelihood. They show that there exists a sequence of neighborhoods
\[
V_n(\theta_0) := \left\{ \theta \text{ such that } \| \theta - \theta_0 \| \leq n^{-1/3} \right\}
\]
on which, with probability one as n tends to infinity, $L_n(\theta)$ has a maximum. This turns out, in the context of ϕ-divergences, to write that the mapping

$$\theta \mapsto \inf_{Q \in M_\theta} KL_m(Q, P_n)$$

has a minimum when θ belongs to $V_n(\theta_0)$. This interesting result does not solve the problem for fixed n, as θ_0 is unknown. For such problem, the use of ϕ-divergences, satisfying $D_\phi^{(n)} = \mathbb{R}^n$ (for example χ^2-divergence), might give information about θ_0 and localizes it through ϕ-divergence confidence regions (CR_{ϕ}'s).

The choice of the divergence ϕ also depends upon some knowledge on the support of the unknown p.m. P_0. When P_0 has a projection on M with same support as P_0, Proposition 2.2 yields its description and its explicit calculation. A necessary condition for this is that C_θ, as defined in (2.2), has non void interior in \mathbb{R}^{l+1}. Consider the case of the empirical likelihood, that is when $\phi(x) = -\log x + x - 1$; then $\text{Im} \phi' =]-\infty, 1[$. Consider $g(x, \theta) = x - \theta$, i.e., a constraint on the mean. Assume that the support of P_0 is unbounded. Then

$$C_\theta = \{ t \in \mathbb{R}^2 \text{ such that for all } x \ (P_0 - a.s.) , t_0 + t_1(x - \theta) \in]-\infty, 1[\}.$$

Therefore, $t_1 = 0$ and $C_\theta =]-\infty, 1[\times \{0\}$ which implies that the interior of C_θ is void. This results indicates that the support of Q^* is not the same as the support of P_0. Hence in this case we cannot use the dual representation of $KL_m(M_\theta, P_0)$. The arguments used in Section 3 for the obtention of limiting distributions cannot be used, if the support of P_0 is unbounded, in order to obtain the limiting distribution of the estimates $\hat{KL}_m(M_\theta, P_0)$ under H_1 (i.e., when P_0 does not belong to M_θ). We thus cannot conclude in this case that the tests pertaining to θ_0 are consistent.

6. Robustness and Efficiency of MEϕD estimates and Simulation Results

Lindsay (1994) introduced a general instrument for the study of the asymptotic properties of parametric estimates by minimum ϕ-divergences, called Residual Adjustment Function (RAF). We first recall its definition. Let $\{P_\theta : \theta \in \Theta\}$ be some parametric model defined on a finite set \mathcal{X}. Let X_1, \ldots, X_n a sample with distribution P_{θ_0}. A minimum ϕ-divergence estimate (MϕDE) (called also minimum disparity estimator) of θ_0 is given by

(6.1)
$$\tilde{\theta}_\phi := \arg \inf_{\theta \in \Theta} \sum_{x \in \mathcal{X}} \phi \left(\frac{P_\theta(x)}{P_n(x)} \right) P_n(x),$$

where $P_n(x)$ is the proportion of the sample point that take value x. When the parametric model $\{P_\theta : \theta \in \Theta\}$ is regular, then $\tilde{\theta}_\phi$ is solution of the equation

(6.2)
$$\sum_{x \in \mathcal{X}} \phi' \left(\frac{P_\theta(x)}{P_n(x)} \right) P_\theta(x) = 0,$$

which can be written as

(6.3)
$$\sum_{x \in \mathcal{X}} A_\phi(\delta(x)) \hat{P}_\theta(x) = 0.$$

In this display, $A_\phi(u) := \phi' \left(\frac{1}{u+1} \right)$ depends only upon the divergence function ϕ and

$$\delta(x) := \frac{P_n(x)}{P_\theta(x)} - 1$$

is the “Pearson Residual” at x which belongs to $]-1, +\infty[$. The function $A_\phi(.)$ is the RAF.
The points x for which $\delta(x)$ is close to -1 are called “inliers”, whereas points x such that $\delta(x)$ is large are called “outliers”. Efficiency properties are linked with the behavior of $A_\phi(.)$ in the neighborhood of 0 (see Lindsay (1994) Proposition 3 and Basu and Lindsay (1994)) : the smaller the value of $|A_\phi''(0)|$, the more second efficient the estimate $\tilde{\theta}_\phi$ in the sense of Rao (1961).

It is easy to verify that the RAF’s of the power divergences ϕ_γ, defined by the divergence functions in (1.4), have the form

$$\begin{align*}
A_\gamma(\delta) &= \frac{(\delta + 1)^{-\gamma} - 1}{(\gamma - 1)}.
\end{align*}$$

In particular, the Mϕ_γDE of (6.2) with the RAF in (6.4) corresponds to the maximum likelihood when $\gamma = 0$, minimum Hellinger distance when $\gamma = 0.5$, minimum χ^2 divergence when $\gamma = 2$, minimum modified χ^2 divergence when $\gamma = -1$ and minimum KL divergence when $\gamma = 1$.

From (6.3), we see that $A_\phi''(0) = \gamma$. Hence for the maximum likelihood estimate, we have $|A_\phi''(0)| = |A_\phi(0)| = 0$ which is the smallest value of $|A_\phi''(0)|$, $\gamma \in \mathbb{R}$. Therefore, according to Proposition 3 in Lindsay (1994), the maximum likelihood estimate is the most second-order efficient estimate (in the sense of Rao (1961)) among all minimum power divergences estimates.

Robustness features of $\tilde{\theta}_\phi$ against inliers and outliers are related to the variations of $A_\phi(u)$ or $\varphi(x)$ when u or x close to -1 and $+\infty$, respectively as seen through the following heuristic arguments.

Let φ_1 and φ_2 two divergences associated to the functions φ_1 and φ_2. If

$$\lim_{x \downarrow 0} \frac{\varphi_1(x)}{\varphi_2(x)} = +\infty,$$

then the estimating equation (6.2) corresponding to φ_1 is not as stable as that corresponding to φ_2, and hence the MEφ_2DE is more robust than MEφ_1DE against outliers. If

$$\lim_{x \uparrow +\infty} \frac{\varphi_1(x)}{\varphi_2(x)} = +\infty,$$

then the estimating equation (6.2) corresponding to φ_1 is not as stable as that corresponding to φ_2, and hence the MEφ_2DE is more robust than MEφ_1DE against inliers.

In all cases, the divergence associated to the divergence function having the smallest variations on its domain leads to the most robust estimate against both outliers and inliers.

It is shown also in Jiménez and Shao (2001) that no minimum power divergence estimate (including the maximum likelihood one) is better than the minimum Hellinger divergence in terms of both second-order efficiency and robustness.

In the examples below, we compare by simulations the efficiency and robustness properties of some MEϕDE’s for some models satisfying linear constraints. We will see that the minimum empirical Hellinger divergence estimate represents a suitable compromise between efficiency and robustness. A theoretical study of efficiency and robustness properties of MEϕDE’s is necessary and should enolve second-order efficiency versus robustness since all MEϕDE’s are all equally first-order efficient (see Remark 3.2 and Theorem 3.4).

Numerical Results. We consider for illustration the same model as in Qin and Lawless (1994) Section 5 Example 1. The model M_θ (see 1.12) here is the set of all signed finite measures Q...
linear constraints with unknown parameters

∫dQ = 1 and ∫g(x, θ) dQ(x) = 0,

with g(x, θ) = ((x - θ), (x^2 - 2θ^2 - 1))^T and θ, the parameter of interest, belongs to \(\mathbb{R} \).

In Examples 1.a and 1.b below, we compare the efficiency property of various estimates: we generate 1000 pseudorandom samples of sizes 25, 50, 75 and 100 from a normal distribution with mean \(θ_0 \) and variance \(θ_0^2 + 1 \) (i.e., \(P_0 = \mathcal{N}(θ_0, θ_0^2 + 1) \)) for two values of \(θ_0 \): \(θ_0 = 0 \) in Example 1.a and \(θ_0 = 1 \) in Example 1.b. Note that \(P_0 \) satisfies (6.5).

For each sample, we consider various estimates of \(θ_0 \): the sample mean estimate (SME), the parametric ML estimate (MLE) based on the normal distribution \(\mathcal{N}(θ, θ^2 + 1) \) and \(\text{ME}_φ^D \) estimates \(\hat{θ}_φ \) associated to the divergences: \(φ = \chi^2_m, H, KL, \chi^2 \) and \(KL_m \)-divergence (which coincides with the MEL one, i.e., \(\text{ME}_KL^m \text{E=ME}_LE \)).

For all divergence \(φ \) considered, in order to calculate the \(\text{ME}_φ^D \hat{θ}_φ \), we first calculate \(\hat{φ}(M_θ, P_0) \) for all given \(θ \) (using the representation (2.14)) by Newton’s method, and then minimize it to obtain \(\hat{θ}_φ \).

The results of Theorem 3.4 show that for all \(φ \)-divergence

\[
\sqrt{n}(\hat{θ}_φ - θ_0) \rightarrow \mathcal{N}(0, V)
\]

where \(V \) is independent of the divergence \(φ \); it is given in Theorem 3.4. For the present model, following Qin and Lawless [1994], \(V \) writes

\[
V = \text{Var}(X) - Δ^{-1} [m'(θ_0)\text{Var}(X) + θ_0 m(θ_0) - E(X^3)]^2
\]

where \(Δ = E\left[m'(θ_0)(X - θ_0) + m(θ_0) - X^2\right]^2 \) and \(m(θ) := 2θ^2 + 1 \). Thus \(V \leq \text{Var}(X) \) which is the variance of \(\sqrt{n}(\overline{X}_n - θ_0) \) with \(\overline{X}_n := \frac{1}{n} \sum_{i=1}^{n} X_i \), the sample mean estimate (SME) of \(θ_0 \). So, \(\text{EM}_φ^D \) estimates are all asymptotically at least as efficient as \(\overline{X}_n \).

6.1. Example 1.a. In this example the true value of the parameter is \(θ_0 = 0 \).

n	ME\(\chi^2_m \)DE mean	ME\(\chi^2_m \)DE var	ME\(KL_m \)DE-ME=MELE mean	ME\(KL_m \)DE-ME=MELE var	MEHDE mean	MEHDE var	MEKLDE mean	MEKLDE var
25	0.0089	0.0314	0.0086	0.0315	0.0084	0.0315	0.0082	0.0314
50	-0.0116	0.0209	-0.0118	0.0210	-0.0119	0.0210	-0.0119	0.0210
75	-0.0025	0.0171	-0.0024	0.0170	-0.0023	0.0170	-0.0022	0.0169
100	-0.0172	0.0112	-0.0174	0.0111	-0.0174	0.0111	-0.0175	0.0112

n	ME\(\chi^2_m \)DE mean	ME\(\chi^2_m \)DE var	PMLE mean	PMLE var	SME mean	SME var
25	0.0077	0.0313	0.0026	0.0318	0.0081	0.0394
50	-0.0125	0.0212	-0.0063	0.0196	-0.0040	0.0200
75	-0.0019	0.0167	-0.0011	0.0170	0.0013	0.0164
100	-0.0177	0.0112	-0.0158	0.0108	-0.0149	0.0102

Table 1. Estimated mean and variance of the estimates of \(θ_0 \) in Example 1.a.
We can see from Table 1 that all the estimates converge in a satisfactory way. The estimated variances are almost the same for all estimates. This is not surprising since the limit variance of all estimates in this Example (when \(\theta_0 = 0 \)) is close to \(V(X) \).

6.2. Example 1.b. In this example the true value of the parameter is \(\theta_0 = 1 \).

\(n \)	\(ME_{\chi^2} \) _DE mean	var	\(ME_{KL} m _DE_MELE \) mean	var	\(ME_{H} \) DE mean	var	\(ME_{KL} \) DE mean	var
25	0.9394	0.0310	0.9387	0.0312	0.9385	0.0313	0.9378	0.0316
50	0.9994	0.0186	0.9967	0.0186	0.9954	0.0186	0.9941	0.0187
75	1.0009	0.0156	0.9988	0.0154	0.9975	0.0154	0.9966	0.0153
100	0.9984	0.0113	0.9959	0.0112	0.9945	0.0112	0.99315	0.0112

Table 2. Estimated mean and variance of the estimates of \(\theta_0 \) in Example 1.b.

We can see from Table 2 and Figure 1 that the estimated bias of \(E \phi \) DE’s are all smaller than the SME one for moderate and large sample sizes. Furthermore, from Figure 2 we observe that the estimated variances of \(E \phi \) DE’s are all less than the SME one. They lie between that of the sample mean and that of the parametric maximum likelihood estimate. We observe also that the estimated variances of the MELE and MEHDE are equal and are the smallest among the variances of all \(ME \phi \) DE’s considered. It should be emphasized that even for small sample sizes, the MSE of the SM is larger than any of \(ME \phi \) DE’s.

In Examples 2.a and 2.b below, we compare robustness property of the estimates considered above for contaminated data : we consider the same model \(M_\theta \) as in (6.5).

6.3. Example 2.a. In this Example, we generate 1000 pseudo-random samples of sizes 25, 50, 75 and 100 from a distribution \(\tilde{P}_0 = (1 - \epsilon)P_0 + \epsilon \delta_5 \) where \(P_0 = \mathcal{N}(\theta_0, \theta_0^2 + 1) \), \(\epsilon = 0.15 \) and \(\theta_0 = 2 \). We consider the same estimates as in the above examples.

In this Example, we can see from Table 3 and Figure 3 that the \(ME_{\chi^2} \) DE estimate is the most robust and \(ME_{\chi^2} m \) estimate is the least robust. We observe also that the MELE which is the \(ME_{KL} m _DE \) is less robust than the \(ME_{KL} \) DE and that the MEHD estimate is more robust than MEL one.

6.4. Example 2.b. In this Example, we generate 1000 pseudo-random samples of sizes 50, 100, 150 and 200 from a distribution \(P_0 = \mathcal{N}(\theta_0, \theta_0^2 + 1) \) with \(\theta_0 = 2 \) and we cancel the observations in the interval \([4, 5]\). We consider the same estimates as in the above examples.

In this example, in contrast with Example 2.b, we observe that the \(ME_{\chi^2} m _DE \) is the most robust, \(ME_{\chi^2} \) DE is the least robust and \(ME_{KL} \) DE is less robust than \(ME_{KL} m _DE \) (=MELE). Generally,
if a MEφDE is more robust than its adjoint (i.e., MEφDE) against “outliers”, then it is less

1For all divergence φ associated to a convex function ϕ, its adjoint, noted φ~, is the divergence associated to the convex function, noted ϕ~, defined by : φ~(x) = xϕ(1/x), for all x.
robust then its adjoint against “inliers” (see Examples 2.a and 2.b). The Hellinger divergence has not this disadvantage since it is self-adjoint (i.e., \(H = H^\sim \)).

7. Proofs

7.1. Proof of Proposition 2.1. Proof of part (i). The function

\[
(Q(X_1), \ldots, Q(X_n))^T \in \mathbb{R}^n \mapsto \frac{1}{n} \sum_{i=1}^{n} \varphi(nQ(X_i))
\]
Table 4. Estimated mean and variance of the estimates of θ_0 in Example 2.b.

n	ME$\chi^2_{m\text{DE}}$ mean	var	ME$KL_{m\text{DE}}=\text{MELE}$ mean	var	MEDE mean	var	MEKLDE mean	var
50	1.9917	0.0451	1.9784	0.0431	1.9721	0.0426	1.9659	0.0423
100	1.9962	0.0362	1.9844	0.0346	1.9787	0.0341	1.9729	0.0336
150	2.0011	0.0150	1.9903	0.0142	1.9849	0.0139	1.9795	0.0137
200	1.9602	0.0162	1.9516	0.0158	1.9473	0.0157	1.9430	0.0156

n	MEχ^2DE mean	var	PMLE mean	var	SME mean	var
50	1.9522	0.0428	1.9705	0.0358	1.7750	0.1039
100	1.9590	0.0329	1.9687	0.0298	1.7365	0.0576
150	1.9671	0.0135	1.9781	0.0121	1.7456	0.0283
200	1.9325	0.0155	1.9420	0.0146	1.7247	0.0317

Figure 4. Estimated mean of the estimates of θ_0 in Example 2.b.
of $D_\theta^{(n)}$, and since \tilde{Q}_θ is in the interior of $D_\theta^{(n)}$, we can use the Lagrange method. This yields the explicit form \eqref{2.5} of the projection \tilde{Q}_θ in which \tilde{c}_0 is the Lagrange multiplier associated to the constraint $\sum_{i=1}^n Q(X_i) = 1$ and \tilde{c}_j to the constraint $\sum_{i=1}^l Q(X_i) g_j(X_i, \theta) = 0$, for all $j = 1, \ldots, l$. This concludes the proof of Proposition \ref{2.1}.

7.2. Proof of Proposition \ref{3.1} Define the estimates
\[
\tilde{c}_0 = \arg \inf_{t \in T_0} P_n m(\theta, t) \quad \text{and} \quad \tilde{\phi}(M_\theta, P_0) = \sup_{t \in T_0} P_n m(\theta, t).
\]
By condition (C.2), for all n sufficiently large, we have
\[
\tilde{c}_0 = \tilde{c}_0 \quad \text{and} \quad \tilde{\phi}(M_\theta, P_0) = \tilde{\phi}(M_\theta, P_0).
\]
We prove that $\tilde{\phi}(M_\theta, P_0)$ and \tilde{c}_0 converge to $\phi(M_\theta, P_0)$ and c_0 respectively. Since c_0 is isolated, then consistency of \tilde{c}_0 holds as a consequence of Theorem 5.7 in van der Vaart (1998). For the estimate $\tilde{\phi}(M_\theta, P_0)$, we have
\[
\left| \tilde{\phi}(M_\theta, P_0) - \phi(M_\theta, P_0) \right| = |P_n m(\theta, \tilde{c}_0) - P_0 m(\theta, c_0)| := |A|,
\]
which implies
\[
P_n m(\theta, c_0) - P_0 m(\theta, c_0) < A < P_n m(\theta, c_0) - P_0 m(\theta, \tilde{c}_0).
\]
Both the RHS and the LHS terms in the above display go to 0, under condition (C.1). This implies that A tends to 0, which concludes the proof of Proposition \ref{3.1}.

7.3. Proof of Theorem \ref{3.2} . Proof of part (1). Some calculus yield
\[
(7.1) P_0 m'(\theta, c_0) = P_0 \left(1 - \phi' \left(\tilde{c}_0^T g(\theta)\right), -g_1(\theta) \phi' \left(\tilde{c}_0^T g(\theta)\right), \ldots, -g_l(\theta) \phi' \left(\tilde{c}_0^T g(\theta)\right)\right)^T = \tilde{\Omega}^T.
\]
and
\[
(7.2) P_0 m''(\theta, c_0) = P_0 \left[-g_j g_j \left(\phi' \left(\tilde{c}_0^T g(\theta)\right)\right) \right]_{i,j=0,\ldots,l},
\]
which implies that the matrix $P_0 m''(\theta, c_0)$ is symmetric. Under assumption (A.2), by Taylor expansion, there exists $t_n \in \mathbb{R}^{l+1}$ inside the segment that links c_0 and \tilde{c}_0 with
\[
0 = P_n m'(\theta, \tilde{c}_0) = P_n m'(\theta, c_0) + (P_n m''(\theta, c_0))^T (\tilde{c}_0 - c_0) + \frac{1}{2} (\tilde{c}_0 - c_0)^T P_n m''(\theta, t_n)(\tilde{c}_0 - c_0),
\]
in which, $P_n m''(\theta, t_n)$ is a $(l+1)-$vector whose entries are $(l+1) \times (l+1)-$matrices. By (A.2), we have for the sup-norm of vectors and matrices
\[
\|P_n m''(\theta, t_n)\| := \left\|\frac{1}{n} \sum_{i=1}^n m''(X_i, \theta, t_n)\right\| \leq \frac{1}{n} \sum_{i=1}^n |H(X_i)|.
\]
By the Law of Large Numbers (LLN), $P_n m''(\theta, t_n) = O_P(1)$. So using (A.1), we can write the last term in the right hand side of \eqref{7.3} as $o_P(1) (\tilde{c}_0 - c_0)$. On the other hand by (A.3),
\[
P_n m''(\theta, c_0) := \frac{1}{n} \sum_{i=1}^n m''(X_i, \theta, c_0) converges to the matrix $\tilde{P}_0 m''(\theta, c_0)$. Write $P_n m''(\theta, c_0)$ as $P_0 m''(\theta, c_0) + o_P(1)$ to obtain from \eqref{7.3}
\[
(7.4) - P_n m'(\theta, c_0) = (P_0 m''(\theta, c_0) + o_P(1)) (\tilde{c}_0 - c_0).
\]
Under (A.3), by the Central Limit Theorem, we have $\sqrt{n} P_n m'(\theta, c_0) = O_P(1)$, which by \eqref{7.4} implies that $\sqrt{n} (\tilde{c}_0 - c_0) = O_P(1)$. Hence, from \eqref{7.4}, we get
\[
(7.5) \sqrt{n} (\tilde{c}_0 - c_0) = [-P_0 m''(\theta, c_0)]^{-1} \sqrt{n} P_n m'(\theta, c_0) + o_P(1).
\]
Under (A.3), the Central Limit Theorem concludes the proof of part 1. In the case when \(P_0 \) belongs to \(\mathcal{M}_\theta \), then \(c_0^\theta = (\varphi'(1), 0^T) := \xi \) and calculation yields
\[
P_0m'(\theta, \xi)m''(\theta, \xi)^T = \begin{pmatrix} 0 & 0^T \\ 0 & P_0g(\theta)g(\theta)^T \end{pmatrix}
\] and
\[
- \varphi''(1)P_0m''(\theta, \xi) = \begin{pmatrix} 1 & 0^T \\ 0 & P_0g(\theta)g(\theta)^T \end{pmatrix}.
\]
A simple calculation yields (3.3).

Proof of part (2). By Taylor expansion, there exists \(\tilde{t}_n \) inside the segment that links \(c_\theta \) and \(\hat{\ell}_\theta \) with
\[
\hat{\phi}_n(\mathcal{M}_\theta, P_0) = P_n(\theta, \hat{\ell}_\theta) = P_n(\theta, 0) + (P_n(\theta, \hat{\ell}_\theta))^T (\hat{\ell}_\theta - c_\theta)
\]
\[
+ \frac{1}{2}(\hat{\ell}_\theta - c_\theta)^T [P_n(\theta, \hat{\ell}_\theta)] (\hat{\ell}_\theta - c_\theta)
\]
\[
+ \frac{1}{3!} \sum_{1 \leq i, j, k \leq d} (\hat{\ell}_\theta - c_\theta)_i (\hat{\ell}_\theta - c_\theta)_j \times
\]
\[
(\hat{\ell}_\theta - c_\theta)_k P_n \frac{\partial^3}{\partial t_i \partial t_j \partial t_k} m(\theta, \tilde{t}_n).
\]
\[
(7.6)
\]

When \(P_0 \) belongs to \(\mathcal{M}_\theta \), then \(c_0^\theta = \xi \). Hence \(P_n(\theta, \hat{\ell}_\theta) = P_n(\theta, \xi) = P_n0 \) equals 0. Furthermore, by part (1) in Theorem 3.2, it holds \(\sqrt{n}(\hat{\ell}_\theta - c_\theta) = O_P(1) \). Hence, by (A.1), (A.2) and (A.3), we get
\[
\hat{\phi}_n(\mathcal{M}_\theta, P_0) = (P_n(\theta, \hat{\ell}_\theta) = (P_n(\theta, \xi))^T (\hat{\ell}_\theta - c_\theta) +
\]
\[
\frac{1}{2}(\hat{\ell}_\theta - c_\theta)^T [P_n(\theta, \xi)] (\hat{\ell}_\theta - c_\theta) + o_P(1/n),
\]
which by (7.3), implies
\[
\hat{\phi}_n(\mathcal{M}_\theta, P_0) = [P_n(\theta, \xi)]^T [\varphi''(1)P_n(\theta, \xi)]^{-1} [P_n(\theta, \xi)] +
\]
\[
\frac{1}{2}[P_n(\theta, \xi)]^T [\varphi''(1)P_n(\theta, \xi)]^{-1} [P_n(\theta, \xi)] + o_P(1/n)
\]
\[
= \frac{1}{2}[P_n(\theta, \xi)]^T [\varphi''(1)P_n(\theta, \xi)]^{-1} [P_n(\theta, \xi)] + o_P(1/n).
\]
This yields to
\[
(7.7) \quad \frac{2n}{\varphi''(1)} \hat{\phi}_n(\mathcal{M}_\theta, P_0) = [\sqrt{n}P_n(\theta, \xi)]^T [\varphi''(1)P_n(\theta, \xi)]^{-1} [\sqrt{n}P_n(\theta, \xi)] + o_P(1).
\]

Note that when \(P_0 \) belongs to \(\mathcal{M}_\theta \), then \(c_0^\theta = \xi \) and calculation yields
\[
P_0m'(\theta, \xi)m''(\theta, \xi)^T = \begin{pmatrix} 0 & 0^T \\ 0 & P_0g(\theta)g(\theta)^T \end{pmatrix}
\] and
\[
- \varphi''(1)P_0m''(\theta, \xi) = \begin{pmatrix} 1 & 0^T \\ 0 & P_0g(\theta)g(\theta)^T \end{pmatrix}.
\]
Combining this with (7.7), we conclude the proof of part (2).

Proof of part (3). Since \(\left(\hat{\ell}_\theta - c_\theta \right) = O_P(1/\sqrt{n}) \) and \(P_n(\theta, \hat{\ell}_\theta) = P_0m'(\theta, \xi) + o_P(1) = o_P(1) \), then, using (7.6), we obtain
\[
\sqrt{n} \left(\hat{\phi}_n(\mathcal{M}_\theta, P_0) - \phi(\mathcal{M}_\theta, P_0) \right) = \sqrt{n} \left(\hat{\phi}_n(\mathcal{M}_\theta, P_0) - P_0m(\theta, c_\theta) \right)
\]
\[
= \sqrt{n}(P_0m(\theta, c_\theta) - P_0m(\theta, c_\theta)) + o_P(1),
\]
and the Central Limit Theorem yields to the conclusion of the proof of Theorem 3.2.
7.4. Proof of Proposition 3.3

Define the estimates
\[
\tilde{\theta}_\phi := \arg \inf_{\theta \in \Theta} \sup_{t \in T_\theta} P_n m(\theta, t),
\]
\[
\tilde{\phi}(\mathcal{M}, P_0) := \inf_{\theta \in \Theta} \sup_{t \in T_\theta} P_n m(\theta, t)
\]
and for all \(\theta \in \Theta\),
\[
\tilde{c}_0 := \arg \sup_{t \in T_\theta} P_n m(\theta, t).
\]
By condition (C.5), for all \(n\) sufficiently large, it holds
\[
\tilde{\theta}_\phi = \tilde{\phi}(\mathcal{M}, P_0) = \tilde{\phi}(\mathcal{M}, P_0).
\]
We prove that \(\tilde{\phi}_\phi\) and \(\tilde{\phi}(\mathcal{M}, P_0)\) are consistent. First, we prove the consistency of \(\tilde{\phi}(\mathcal{M}, P_0)\). We have
\[
|\tilde{\phi}(\mathcal{M}, P_0) - \phi(\mathcal{M}, P_0)| = |P_n m(\tilde{\phi}_\phi, \tilde{c}_0) - P_0 m(\theta^*, c_0^*)| = |A|.
\]
This implies
\[
P_n m(\tilde{\phi}_\phi, c_0^*) - P_0 m(\tilde{\phi}_\phi, c_0) \leq A \leq P_n m(\theta^*, \tilde{c}_0^*) - P_0 m(\theta^*, \tilde{c}_0^*).
\]
By condition (C.3), both the RHS and LHS terms in the above display go to 0. This implies that \(A\) tends to 0 which concludes the proof of part (i).

Proof of part (ii). Since for sufficiently large \(n\), by condition (C.5), we have \(\tilde{c}_0 = \tilde{c}_0\) for all \(\theta \in \Theta\), the convergence of \(\sup_{\theta \in \Theta} \|\tilde{c}_0 - c_0\|\) to 0 implies (ii). We prove now that \(\sup_{\theta \in \Theta} \|\tilde{c}_0 - c_0\|\) tends to 0. By the very definition of \(\tilde{c}_0\) and condition (C.3), we have
\[
P_n m(\theta, \tilde{c}_0) \geq P_n m(\theta, c_0) \geq P_0 m(\theta, c_0) - o_P(1),
\]
which by (C.3), tends to 0. Let \(\epsilon > 0\) be such that \(\sup_{\theta \in \Theta} \|\tilde{c}_0 - c_0\| > \epsilon\). There exists some \(a_n \in \Theta\) such that \(\|\tilde{c}_0 - a_n\| > \epsilon\). Together with the strict concavity of the function \(t \in T_\theta \rightarrow P_0 m(\theta, t)\) for all \(\theta \in \Theta\), there exists \(\eta > 0\) such that
\[
P_0 m(a_n, c_0) - P_0 m(a_n, \tilde{c}_0) > \eta.
\]
We then conclude that
\[
P \left\{ \sup_{\theta \in \Theta} \|\tilde{c}_0 - c_0\| > \epsilon \right\} \leq P \left\{ P_0 m(a_n, c_0) - P_0 m(a_n, \tilde{c}_0) > \eta \right\},
\]
and the RHS term tends to 0 by (7.9). This concludes the proof part (ii).

Proof of part (iii). We prove that \(\tilde{\theta}_\phi\) converges to \(\theta^*\). By the very definition of \(\tilde{\theta}_\phi\), condition (C.4.b) and part (ii), we obtain
\[
P_n m(\tilde{\theta}_\phi, \tilde{c}_0) \leq P_n m(\theta^*, \tilde{c}_0^*) \leq P_0 m(\theta^*, \tilde{c}_0^*) - o_P(1),
\]
from which
\[
P_0 \left(\frac{\partial}{\partial t} m(\theta_0, \varphi) \right) - P_0 \left(\theta^*, \tilde{c}_{\theta_0} \right) \leq P_0 \left(\tilde{\theta}_\phi, \tilde{c}_{\theta_0} \right) - P_n m \left(\tilde{\theta}_\phi, \tilde{c}_{\theta_0} \right) + o_P(1)
\]
(7.10)
\[
\leq \sup_{\{\theta \in \Theta, t \in \mathcal{T}_n\}} |P_n m(\theta, t) - P_0 m(\theta, t)| + o_P(1).
\]
Further, by part (ii) and condition (C.4.a), for any positive \(\epsilon \), there exists \(\eta > 0 \) such that
\[
P \left\{ \| \tilde{\theta}_\phi - \theta^* \| > \epsilon \right\} \leq P \left\{ P_0 m \left(\tilde{\theta}_\phi, \tilde{c}_{\theta_0} \right) - P_0 m \left(\theta^*, \tilde{c}_{\theta_0} \right) > \eta \right\}.
\]
The RHS term, under condition (C.3), tends to 0 by (7.10). This concludes the proof of Proposition 3.3.

7.5. \textbf{Proof of Theorem 3.4} Since \(P_0 \in \mathcal{M} \), then \(c_\theta = \varsigma \). Some calculus yield
\[
\frac{\partial}{\partial t} m(\theta_0, \varphi) = [0, -g_1(\theta_0), \ldots, -g_l(\theta_0)]^T = -[0, g(\theta_0)^T]^T,
\]
(7.11)
\[
\frac{\partial^2}{\partial t^2} m(\theta_0, \varphi) = \begin{bmatrix}
 0 & -\frac{\partial}{\partial \theta} g_1(\theta_0), \ldots, -\frac{\partial}{\partial \theta} g_l(\theta_0) \\
-\frac{\partial}{\partial \theta} g_1(\theta_0), \ldots, -\frac{\partial}{\partial \theta} g_l(\theta_0)
\end{bmatrix} = -[\mathcal{O}_m, \mathcal{O}_m],
\]
and
\[
\frac{\partial^2}{\partial t^2} m(\theta_0, \varphi) = \frac{1}{\varphi''(1)} \begin{bmatrix} -g_1(\theta_0)g_j(\theta_0) \end{bmatrix}_{i,j=0,1,\ldots,l} := \frac{-1}{\varphi''(1)} \begin{pmatrix} \mathcal{O}_m \mathcal{O}_m \end{pmatrix}.
\]
Integrating w.r.t. \(P_0 \), we obtain
\[
P_0 \frac{\partial}{\partial t} m(\theta_0, \varphi) = \mathcal{O}_m, \quad P_0 \frac{\partial^2}{\partial t^2} m(\theta_0, \varphi) = \mathcal{O}_m,
\]
(7.13)
\[
P_0 \frac{\partial^2}{\partial t^2} m(\theta_0, \varphi) = \begin{bmatrix} P_0 \frac{\partial^2}{\partial t^2} m(\theta_0, \varphi) \end{bmatrix}^T = - \begin{bmatrix} \mathcal{O}_m & P_0 \frac{\partial}{\partial \theta} g(\theta_0) \end{bmatrix}^T,
\]
and
\[
P_0 \frac{\partial^2}{\partial t^2} m(\theta_0, \varphi) = \frac{-1}{\varphi''(1)} \begin{bmatrix} P_0 g_1(\theta_0)g_j(\theta_0) \end{bmatrix}_{i,j=0,1,\ldots,l} \leq \frac{-1}{\varphi''(1)} \begin{pmatrix} \mathcal{O}_m \mathcal{O}_m \end{pmatrix}.
\]
(7.15)
By the very definition of \(\tilde{\theta}_\phi \) and \(\tilde{c}_{\theta_0} \), they both obey
\[
\begin{cases}
 P_n \frac{\partial}{\partial t} m(\theta, t) = 0, \\
 P_n \frac{\partial}{\partial t} m(\theta, t(\theta)) = 0,
\end{cases}
\]
i.e.,
\[
\begin{cases}
 P_n \frac{\partial}{\partial t} m (\tilde{\theta}_\phi, \tilde{c}_{\theta_0}) = 0, \\
 P_n \frac{\partial}{\partial t} m (\tilde{\theta}_\phi, \tilde{c}_{\theta_0}) + P_n \frac{\partial}{\partial \theta} m (\tilde{\theta}_\phi, \tilde{c}_{\theta_0}) \frac{\partial}{\partial \theta} \tilde{c}_{\theta_0} \leq 0.
\end{cases}
\]
The second term in the left hand side of the second equation is equal to 0, due to the first equation. Hence \(\hat{c}_{\theta_o} \) and \(\hat{\theta} \) are solutions of the somehow simpler system

\[
\begin{align*}
\begin{cases}
P_n \frac{\partial}{\partial t} \bar{m}(\theta, \varphi) & = 0 \quad (E1) \\
P_n \frac{\partial}{\partial \varphi} \bar{m}(\theta, \varphi) & = 0 \quad (E2).
\end{cases}
\end{align*}
\]

Use a Taylor expansion in (E1); there exists \((\hat{\theta}, \hat{\varphi}) \) inside the segment that links \((\hat{\theta}, \hat{\varphi}) \) and \((\theta_0, \varphi) \) such that

\[
0 = P_n \frac{\partial}{\partial t} \bar{m}(\theta_0, \varphi) + \left[P_n \frac{\partial^2}{\partial t^2} \bar{m}(\theta_0, \varphi) \right]^T a_n
\]

with

\[
an_n := \left(c_{\theta_o} - \varphi \right)^T, \left(\hat{\theta} - \theta_0 \right)^T
\]

and

\[
A_n := \begin{pmatrix} P_n \frac{\partial^3}{\partial \theta^3} \bar{m}(\theta, \varphi) & P_n \frac{\partial^3}{\partial \varphi \partial \theta} \bar{m}(\theta, \varphi) \\ P_n \frac{\partial^3}{\partial \varphi^3} \bar{m}(\theta, \varphi) & P_n \frac{\partial^3}{\partial \varphi^2 \partial \theta} \bar{m}(\theta, \varphi) \end{pmatrix}
\]

By (A.5), the LLN implies that \(A_n = O_P(1) \). So using (A.4), we can write the last term in right hand side of (7.16) as \(o_P(1) a_n \). On the other hand by (A.6), we can write also

\[
\left[P_n \frac{\partial^2}{\partial t^2} \bar{m}(\theta_0, \varphi) \right]^T a_n = \left[P_n \frac{\partial^2}{\partial t^2} \bar{m}(\theta_0, \varphi), \left(P_n \frac{\partial^2}{\partial t^2} \bar{m}(\theta_0, \varphi) \right)^T \right] + o_P(1)
\]

from (7.16)

\[
(7.19) \quad -P_n \frac{\partial}{\partial t} \bar{m}(\theta_0, \varphi) = \left[P_n \frac{\partial^2}{\partial t^2} \bar{m}(\theta_0, \varphi) + o_P(1), \left(P_n \frac{\partial^2}{\partial t^2} \bar{m}(\theta_0, \varphi) \right)^T + o_P(1) \right] a_n.
\]

In the same way, using a Taylor expansion in (E2), there exists \((\tilde{\theta}, \tilde{\varphi}) \) inside the segment that links \((\hat{\theta}, \hat{\varphi}) \) and \((\theta_0, \varphi) \) such that

\[
0 = P_n \frac{\partial}{\partial \varphi} \bar{m}(\theta_0, \varphi) + \left[P_n \frac{\partial^2}{\partial \varphi^2} \bar{m}(\theta_0, \varphi) \right]^T a_n
\]

with

\[
B_n := \begin{pmatrix} P_n \frac{\partial^3}{\partial \theta^3} \bar{m}(\theta, \varphi) & P_n \frac{\partial^3}{\partial \varphi \partial \theta} \bar{m}(\theta, \varphi) \\ P_n \frac{\partial^3}{\partial \varphi^3} \bar{m}(\theta, \varphi) & P_n \frac{\partial^3}{\partial \varphi^2 \partial \theta} \bar{m}(\theta, \varphi) \end{pmatrix}
\]

As in (7.19), we obtain

\[
(7.21) \quad -P_n \frac{\partial}{\partial \varphi} \bar{m}(\theta_0, \varphi) = \left[\left(P_n \frac{\partial^2}{\partial \varphi^2} \bar{m}(\theta_0, \varphi) \right)^T + o_P(1), P_n \frac{\partial^2}{\partial \varphi^2} \bar{m}(\theta_0, \varphi) + o_P(1) \right] a_n.
\]
From (7.19) and (7.21), we get

\[
\sqrt{n}a_n = \sqrt{n} \left(\begin{array}{c}
P_0 \frac{\partial^2}{\partial \theta^2} m(\theta_0, c(\theta_0)) \\
(P_0 \frac{\partial^2}{\partial \theta^2} m(\theta_0, c(\theta_0)))^T
\end{array} \right)^{-1}
\times
\left(\begin{array}{c}
P_0 \frac{\partial}{\partial \theta} m(\theta_0, c(\theta_0), \ell) \\
(P_0 \frac{\partial}{\partial \theta} m(\theta_0, c(\theta_0), \ell))^T
\end{array} \right) + o_P(1).
\]

(7.22)

Denote \(S\) the \((l + 1 + d) \times (l + 1 + d)\)–matrix defined by

\[
S := \left(\begin{array}{cc}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array} \right) := \left(\begin{array}{cc}
P_0 \frac{\partial^2}{\partial \theta^2} m(\theta_0, c(\theta_0)) & (P_0 \frac{\partial}{\partial \theta} m(\theta_0, c(\theta_0), \ell))^T \\
(P_0 \frac{\partial^2}{\partial \theta^2} m(\theta_0, c(\theta_0)))^T & P_0 \frac{\partial}{\partial \theta} m(\theta_0, c(\theta_0), \ell)
\end{array} \right).
\]

We have

\[
S_{11} = \frac{-1}{\varphi''(1)} \begin{pmatrix} 1 \\ \frac{\varphi'}{\varphi} \end{pmatrix} P_0 g(\theta_0) g(\theta_0)^T
\]

(7.24)

\[
S_{12} = -\left[\frac{\varphi'}{\varphi} P_0 \frac{\partial g(\theta_0)}{\partial \theta} \right]^T,
\]

(7.25)

\[
S_{21} = -\left[\frac{\varphi'}{\varphi} P_0 \frac{\partial g(\theta_0)}{\partial \theta} \right]
\]

and

\[
S_{22} = P_0 \frac{\partial^2}{\partial \theta^2} m(\theta_0, \ell) = \begin{pmatrix} \varphi' & \ldots & \varphi' \end{pmatrix}.
\]

(7.26)

The inverse matrix \(S^{-1}\) of the matrix \(S\) writes

\[
S^{-1} = \left(\begin{array}{cc}
S_{11}^{-1} + S_{11}^{-1} S_{12} S_{22}^{-1} S_{21} S_{11}^{-1} & -S_{11}^{-1} S_{12} S_{22}^{-1} S_{22}^{-1} \\
-S_{22}^{-1} S_{21} S_{11}^{-1} & S_{22}^{-1}
\end{array} \right),
\]

where

\[
S_{22,1} = -S_{21} S_{11}^{-1} S_{12}
\]

\[
= \left[\frac{\varphi'}{\varphi} P_0 \frac{\partial g(\theta_0)}{\partial \theta} \right] [\varphi''(1)] \left(\begin{array}{c} 1 \\ \frac{\varphi'}{\varphi} \end{array} \right) \left(\begin{array}{c} \varphi''(1) \\ \varphi''(1) \end{array} \right)^{-1} \left[\frac{\varphi'}{\varphi} P_0 \frac{\partial g(\theta_0)}{\partial \theta} \right]^T
\]

(7.28)

From (7.22), using (7.28) and (7.27), we can write

\[
\sqrt{n} \left(\frac{\hat{\theta}_0 - \theta_0}{\theta_0 - \theta_0} \right) = \left(\begin{array}{cc}
S_{11}^{-1} + S_{11}^{-1} S_{12} S_{22}^{-1} S_{21} S_{11}^{-1} & -S_{11}^{-1} S_{12} S_{22}^{-1} S_{22}^{-1} S_{22}^{-1} \\
-S_{22}^{-1} S_{21} S_{11}^{-1} & S_{22}^{-1}
\end{array} \right) \times
\]

\[
\sqrt{n} \left(\frac{\varphi'}{\varphi} P_0 \frac{\partial g(\theta_0)}{\partial \theta} \right) + o_P(1).
\]

(7.29)

Note that

\[
\sqrt{n} \left(\begin{array}{c}
\varphi' \\
\varphi'
\end{array} \right)
\]

under assumption (A.6), by the Central Limit Theorem, converges in distribution to a centered multivariate normal variable with covariance matrix

\[
M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}
\]

(7.31)
Proof of Theorem 3.5.

From (7.33), we deduce that

\(\sqrt{n} \left(\frac{\hat{\theta}_\phi - \theta}{\theta_0 - \theta} \right) \)

converges in distribution to a centered multivariate normal variable with covariance matrix

\(C = S^{-1} M [S^{-1}]^T := \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \),

and using (7.32) and some algebra, we get

\[
C_{11} = \varphi''(1)^2 \left[\begin{array}{c} \frac{\partial^2}{\partial \theta^2} \left(P_0 g(\theta_0)g(\theta_0)^T \right) \\ \frac{\partial^2}{\partial \theta^2} \left(P_0 g(\theta_0)g(\theta_0)^T \right) \end{array} \right] - \varphi''(1)^2 \left[\begin{array}{c} \frac{\partial^2}{\partial \theta^2} \left(P_0 g(\theta_0)g(\theta_0)^T \right) \\ \frac{\partial^2}{\partial \theta^2} \left(P_0 g(\theta_0)g(\theta_0)^T \right) \end{array} \right] \times
\]

\[
\times \left[\begin{array}{c} \frac{\partial}{\partial \theta} g(\theta_0) \\ \frac{\partial}{\partial \theta} g(\theta_0) \end{array} \right] \left[\begin{array}{c} \frac{\partial}{\partial \theta} g(\theta_0) \\ \frac{\partial}{\partial \theta} g(\theta_0) \end{array} \right]^{-1}
\]

\[
C_{12} = [0, \ldots, 0] , \quad C_{21} = [0, \ldots, 0]
\]

and

\[
C_{22} = \left\{ \left[\begin{array}{c} \frac{\partial}{\partial \theta} g(\theta_0) \\ \frac{\partial}{\partial \theta} g(\theta_0) \end{array} \right] \left[\begin{array}{c} \frac{\partial}{\partial \theta} g(\theta_0) \\ \frac{\partial}{\partial \theta} g(\theta_0) \end{array} \right]^{-1} \right\}^{-1}
\]

From (7.33), we deduce that \(C_{11} \) and \(C_{22} \) are respectively the limit covariance matrix of \(\sqrt{n} \left(\frac{\hat{\theta}_\phi - \theta}{\theta_0 - \theta} \right) \) and \(\sqrt{n} \left(\frac{\hat{\theta}_{\phi} - \theta}{\theta_0 - \theta} \right) \), i.e., \(U = C_{11} \) and \(V = C_{22} \). (7.30) implies that \(\sqrt{n} \left(\frac{\hat{\theta}_\phi - \theta}{\theta_0 - \theta} \right) \) are asymptotically uncorrelated. This concludes the Proof of Theorem 3.4.

7.6. Proof of Theorem 3.5. Under assumptions (A.4-6), as in the proof of Theorem 3.4 we obtain

\[
\sqrt{n} \left(\frac{\hat{\theta}_\phi - \theta^*}{\theta_0 - \theta^*} \right) = \sqrt{n} S^{-1} \left(\begin{array}{c} -P_n \frac{\partial}{\partial \theta} m(\theta^*, \theta^*) \\ -P_n \frac{\partial}{\partial \theta} m(\theta^*, \theta^*) \end{array} \right) + o_P(1)
\]

and the CLT concludes the proof.

7.7. Proof of Theorem 4.1. Using Taylor expansion at \((\theta_0, \phi_0)\), we get

\[
\hat{F}_n(x) := \sum_{i=1}^{n} Q_{\phi_0}^{2} \mathbb{I}_{(-\infty,x]}(X_i) := \frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial \phi} \left(\hat{\phi}_\phi \varphi(X_i \hat{\theta}_\phi) \mathbb{I}_{(-\infty,x]}(X_i) \right)
\]

\[
= F_n(x) + \frac{1}{n} \left[\sum_{i=1}^{n} \varphi(X_i, \theta_0) \mathbb{I}_{(-\infty,x]}(X_i) \right]^{T} \frac{1}{n} \varphi''(1) \left(\hat{\phi}_\phi - \phi \right) + o_P(\delta_n),
\]

(7.38)
where \(\delta_n := \| \hat{c}_{\theta_n} - \ell \| + \| \hat{\theta}_n - \theta \| \), which by Theorem 3.3 is equal to \(O_P(1/\sqrt{n}) \). Hence, (7.38) yields

\[
\sqrt{n} \left(\hat{F}_n(x) - F(x) \right) = \sqrt{n} \left(F_n(x) - F(x) \right) + \\
+ \frac{1}{\varphi''(1)} \left[P_0 \left(\overline{g}(\theta_0) \mathbb{1}_{(-\infty,x]} \right) \right]^T \sqrt{n} \left(\hat{c}_{\theta_n} - \ell \right) + o_P(1).
\]

(7.39)

On the other hand, from (7.29), we get

\[(7.40) \]

\[\sqrt{n} \left(\hat{c}_{\theta_n} - \ell \right) = H \sqrt{n} \left(-P_n \frac{\partial}{\partial \theta} m(\theta, \ell) \right) + o_P(1) \]

with

\[(7.41) \]

\[H = S_{11}^{-1} + S_{11}^{-1} S_{12} S_{22}^{-1} S_{21} S_{11}^{-1}. \]

We will use \(f(.) \) to denote the function \(\mathbb{1}_{(-\infty,x]}(\cdot) - F(x) \), for all \(x \in \mathbb{R} \). Substituting (7.40) in (7.39), we get

\[(7.42) \]

\[\sqrt{n} \left(\hat{F}_n(x) - F(x) \right) = \sqrt{n} P_n f + \frac{1}{\varphi''(1)} \left[P_0 \left(\overline{g}(\theta_0) \mathbb{1}_{(-\infty,x]} \right) \right]^T H \times \\
\times \sqrt{n} \left(-P_n \frac{\partial}{\partial \theta} m(\theta, \ell) \right) + o_P(1). \]

By the Multivariate Central Limit Theorem, the vector

\[\sqrt{n} \left(P_n f, \left[P_n \frac{\partial}{\partial \theta} m(\theta, \ell) \right]^T \right) \]

converges in distribution to a centered multivariate normal variable which implies that \(\sqrt{n} \left(\hat{F}_n(x) - F(x) \right) \) is asymptotically centered normal variable. We calculate now its limit variance, noted \(W(x) \).

\[(7.43) \]

\[W(x) = F(x) (1 - F(x)) + \frac{1}{\varphi''(1)^2} \left[P_0 \left(\overline{g}(\theta_0) \mathbb{1}_{(-\infty,x]} \right) \right]^T U \left[P_0 \left(\overline{g}(\theta_0) \mathbb{1}_{(-\infty,x]} \right) \right] + \\
+ 2 \frac{1}{\varphi''(1)} \left[P_0 \left(\overline{g}(\theta_0) \mathbb{1}_{(-\infty,x]} \right) \right]^T H \left[P_0 \left(\frac{\partial}{\partial \theta} m(\theta, \ell) \mathbb{1}_{(-\infty,x]} \right) \right]. \]

Use the explicit forms of \(\frac{\partial}{\partial \theta} m(\theta, \ell) \), the matrices \(U \) and \(V \) and some algebra to obtain

\[W(x) = F(x) (1 - F(x)) - \left[P_0 \left(g(\theta_0) \mathbb{1}_{(-\infty,x]} \right) \right]^T \Gamma \left[P_0 \left(g(\theta_0) \mathbb{1}_{(-\infty,x]} \right) \right], \]

with

\[\Gamma = \left[P_0 g(\theta_0) g(\theta_0)^T \right]^{-1} - \left[P_0 g(\theta_0) g(\theta_0)^T \right]^{-1} \left[P_0 \frac{\partial}{\partial \theta} g(\theta_0) \right] \left[P_0 g(\theta_0) g(\theta_0)^T \right]^{-1}. \]

This concludes the proof of Theorem 4.1.

References

Baggerly, K. A. (1998). Empirical likelihood as a goodness-of-fit measure. *Biometrika*, **85**(3), 535–547.

Basu, A. and Lindsay, B. G. (1994). Minimum disparity estimation for continuous models: efficiency, distributions and robustness. *Ann. Inst. Statist. Math.*, **46**(4), 683–705.
Bertail, P. (2004). Empirical likelihood in nonparametric and semiparametric models. In *Parametric and semi-parametric models with applications to reliability, survival analysis, and quality of life*, Stat. Ind. Technol., pages 291–306. Birkhäuser Boston, Boston, MA.

Bertail, P. (2006). Empirical likelihood in some semiparametric models *Bernoulli*, 12(2), 299–311.

Bickel, P. J., Ritov, Y., and Wellner, J. A. (1991). Efficient estimation of linear functionals of a probability measure P with known marginal distributions. *Ann. Statist.*, 19(3), 1316–1346.

Borwein, J. M. and Lewis, A. S. (1991). Duality relationships for entropy-like minimization problems. *SIAM J. Control Optim.*, 29(2), 325–338.

Borwein, J. M. and Lewis, A. S. (1993). Partially-finite programming in L_1 and the existence of maximum entropy estimates. *SIAM J. Optim.*, 3(2), 248–267.

Broniatowski, M. and Keziou, A. (2006). Minimization of ϕ-divergences on sets of signed measures. *Studia Sci. Math. Hungar.*, 43(4), 403–442.

Broniatowski, M. and Keziou, A. (2009). Parametric estimation and testing through divergences. *Journal of Multivariate Analysis*, 43, 16–36.

Corcoran, S. (1998). Bertlett adjustment of empirical discrepancy statistics. *Biometrika*, 85, 967–972.

Cressie, N. and Read, T. R. C. (1984). Multinomial goodness-of-fit tests. *J. Roy. Statist. Soc. Ser. B*, 46(3), 440–464.

Csiszár, I. (1963). Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. *Magyar Tud. Akad. Mat. Kutató Int. Közl.*, 8, 85–108.

Csiszár, I. (1967). On topology properties of f-divergences. *Studia Sci. Math. Hungar.*, 2, 329–339.

Csiszár, I. (1975). I-divergence geometry of probability distributions and minimization problems. *Ann. Probability*, 3, 146–158.

Haberman, S. J. (1984). Adjustment by minimum discriminant information. *Ann. Statist.*, 12(3), 971–988.

Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. *Econometrica*, 50(4), 1029–1054.

Imbens, G. W. (1997). One-step estimators for over-identified generalized method of moments models. *Rev. Econom. Stud.*, 64(3), 359–383.

Jiménez, R. and Shao, Y. (2001). On robustness and efficiency of minimum divergence estimators. *Test*, 10(2), 241–248.

Keziou, A. (2003). Dual representation of ϕ-divergences and applications. *C. R. Math. Acad. Sci. Paris*, 336(10), 857–862.

Léonard, C. (2001a). Convex conjugates of integral functionals. *Acta Math. Hungar.*, 93(4), 253–280.

Léonard, C. (2001b). Minimizers of energy functionals. *Acta Math. Hungar.*, 93(4), 281–325.

Liese, F. and Vajda, I. (1987). *Convex statistical distances*, volume 95. BSB B. G. Teubner Verlagsgesellschaft, Leipzig.

Lindsay, B. G. (1994). Efficiency versus robustness: the case for minimum Hellinger distance and related methods. *Ann. Statist.*, 22(2), 1081–1114.

Newey, W. K. and Smith, R. J. (2004). Higher order properties of GMM and generalized empirical likelihood estimators. *Econometrica*.

Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. *Phil. Trans. Roy. Soc. Ser.*, A(236), 333–380.

Nikitin, Y. (1995). *Asymptotic efficiency of nonparametric tests*. Cambridge University Press, Cambridge.

Owen, A. (1990). Empirical likelihood ratio confidence regions. *Ann. Statist.*, 18(1), 90–120.

Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. *Biometrika*, 75(2), 237–249.
Owen, A. B. (2001). Empirical Likelihood. Chapman and Hall, New York.
Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations. *Ann. Statist.*, 22(1), 300–325.
Rao, C. R. (1961). Asymptotic efficiency and limiting information. In *Proc. 4th Berkeley Sympos. Math. Statist. and Prob.*, Vol. I, pages 531–545. Univ. California Press, Berkeley, Calif.
Rüschendorf, L. (1984). On the minimum discrimination information theorem. *Statist. Decisions*, (suppl. 1), 263–283. Recent results in estimation theory and related topics.
Schennach, S. M. (2007). Point estimation with exponentially tilted empirical likelihood. *Ann. Statist.*, 35(2), 634–672.
Sen, P. K. and Singer, J. M. (1993). *Large sample methods in statistics*. Chapman & Hall, New York.
Sheehy, A. (1987). Kullback-Leibler constrained estimation of probability measures. *Report, Dept. Statistics, Stanford Univ.*
Takagi, Y. (1998). A new criterion of confidence set estimation: improvement of the Neyman shortness. *J. Statist. Plann. Inference*, 69(2), 329–338.
vander Vaart, A. W. (1998). *Asymptotic statistics*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge.
Wilks, S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. *Ann. Math. Statist.*, 9, 60–62.

*LSTA-Université Paris 6. e-mail: michel.broniatowski@upmc.fr
**Laboratoire de Mathématiques (FRE 3111) CNRS, Université de Reims and LSTA-Université Paris 6., e-mail: amor.keziou@upmc.fr
