Touching multifunctions on a Hilbert space

Stephen Simons *

Abstract
We introduce the concept of the touching of two multifunctions on a real Hilbert space, and deduce that certain multifunctions on the space have a unique fixed point. These results are applied to the theory of generalized cycles and generalized gap vectors for the composition of the projections onto a finite number of closed convex space in a real Hilbert space.

2020 Mathematics Subject Classification: Primary 46C05; Secondary 46C07, 47H05, 47H10.
Keywords: Hilbert space, maximally monotone operator, Minty’s theorem, subdifferential.

1 Introduction
The analysis in this paper was originally motivated by [1], in which the geometry conjecture (originally formulated in 1977, about the fixed point set of the composition of projections onto a finite number of nonempty closed convex subsets) was resolved. The initial part of [1] contained some technical Hilbert space results, and the later part of [1] discussed some special cases and contained results on numerical computation. [5] contained a streamlining of the Hilbert space results in [1]. The techniques introduced in [5] were used in [2] to obtain further results on (classical and phantom) cycles and gap vectors. This paper contains Hilbert space results that extend the main results in [2].

Here is a brief plan of this paper. The analysis in Section 2 is about multifunctions on a real Hilbert space, which we will denote by \(Y \). In Definition 5, we define the concepts of touching multifunctions, and give results in Theorem 6 and Corollary 8 on certain multifunctions that touch every maximally monotone multifunction. Corollary 8 leads rapidly to Lemma 9 and Corollary 11. Lemma 9 is couched in terms of the fixed points of certain multifunctions on \(Y \). Corollary 11 is a restatement of [2, Lemma 3.1] in the notation of this paper.

In Section 3, \(Y \) is a closed subspace of a Hilbert space \(X \). Theorem 13 is a (not altogether immediate) consequence of Lemma 9. Theorem 13(b) is a restatement of [2, Theorem 4.10] in the notation of this paper and is generalized in Theorem 13(a).

*Department of Mathematics, University of California, Santa Barbara, CA 93106-3080, U.S.A. Email: stesim38@gmail.com.
2 Very unmonotone multifunctions

If M is a multifunction, we write $G(M)$ for the graph of M.

Definition 1. Let $\mu > 0$ and $Q : Y \rightrightarrows Y$. We say that Q is μ–unmonotone if
\[(y_1, q_1), (y_2, q_2) \in G(Q) \implies \langle y_1 - y_2, q_1 - q_2 \rangle + \mu \| (y_1 - y_2, q_1 - q_2) \|^2 \leq 0.\]

We write $\mathcal{B}(Y)$ for the set of all bounded linear operators from Y into Y, and $\mathbb{I}_Y \in \mathcal{B}(Y)$ for the identity map on Y.

Lemma 2. Let $\mu > 0$ and $Q : Y \rightrightarrows Y$ be μ–unmonotone. Then $-Q - \mu \mathbb{I}_Y$ is monotone.

Proof. For all $(y_1, q_1), (y_2, q_2) \in G(Q)$,
\[
\langle y_1 - y_2, (-q_1 - \mu y_1) - (-q_2 - \mu y_2) \rangle = \langle y_1 - y_2, -(q_1 - q_2) - \mu (y_1 - y_2) \rangle
\]
\[
= -\langle y_1 - y_2, q_1 - q_2 \rangle - \mu \| y_1 - y_2 \|^2
\]
\[
\geq -\langle y_1 - y_2, q_1 - q_2 \rangle - \mu \| (y_1 - y_2, q_1 - q_2) \|^2 \geq 0.
\]

This completes the proof of Lemma 2.

Theorem 6 depends on two results from the theory of maximally monotone multifunctions, Fact 4 and Fact 3. Fact 3 follows from the sum theorem, [3] Corollary 24.4(i), p. 353.

If M is a multifunction, we write $D(M)$ for the domain of M.

Fact 3. Let M_1 and M_2 be maximally monotone multifunctions on Y and $D(M_1) = Y$. Then $M_1 + M_2$ is maximally monotone.

Fact 4 is Minty’s theorem, [11], or [3] Theorem 21.1, pp. 311.

Fact 4. Let N be a maximally monotone multifunction on Y and $\mu > 0$. Then there exists $y \in Y$ such that $0 \in \mu y + Ny$.

Definition 5. Let $M, Q : Y \rightrightarrows Y$. We say that M and Q touch if $G(M) \cap G(Q)$ is a singleton in $Y \times Y$.

Theorem 6. Let $\mu > 0$, $Q : Y \rightrightarrows Y$ be μ–unmonotone and $D(Q) = Y$. Suppose also that $-Q - \mu \mathbb{I}_Y$ is maximally monotone. Then Q touches every maximally monotone multifunction on Y.

Proof. Let $M : Y \rightrightarrows Y$ be maximally monotone. We start off by proving that $G(M) \cap G(Q)$ contains at most one element of $Y \times Y$. To this end, let $(y_1, q_1), (y_2, q_2) \in G(M) \cap G(Q)$. Since $(y_1, q_1), (y_2, q_2) \in G(M)$,
\[
\langle y_1 - y_2, q_1 - q_2 \rangle \geq 0.
\]

(1)

On the other hand, since $(y_1, q_1), (y_2, q_2) \in G(Q)$, from Definition 1 and 11,
\[
\mu \| (y_1 - y_2, q_1 - q_2) \|^2 \leq -\langle y_1 - y_2, q_1 - q_2 \rangle \leq 0.
\]
and so \((y_1, q_1) = (y_2, q_2)\). Thus \(G(M) \cap G(Q)\) contains at most one point.

On the other hand, \(M\) and \(\mu y\) are both maximally monotone and \(D(\mu y) = Y\). From Fact \[3\] \(M - \mu y\) is maximally monotone, and Fact \[4\] provides \(y \in Y\) such that \(0 \in \mu y + (M - \mu y)y\), that is, \(0 \in (M - Q)y\). It follows easily from this that \(G(M) \cap G(Q) \neq \emptyset\), which completes the proof of Theorem \[6\].

We conclude this section with applications to bounded linear operators. Our analysis depends on the following result about monotone functions. See [3, Corollary 20.25, p. 298]

Fact 7. Any continuous (single-valued) monotone function from \(Y\) into \(Y\) is maximally monotone.

Corollary 8. Let \(Q \in B(Y)\), \(\lambda > 0\) and,

\[
\text{for all } y \in Y, \quad \langle y, Qy \rangle + \lambda \|y\|^2 \leq 0.
\]

Then \(Q\) touches every maximally monotone multifunction on \(Y\).

Proof. Let \(\mu := \lambda/(1 + \|Q\|^2)\). Let \((y_1, q_1), (y_2, q_2) \in G(Q)\). Then \(q_1 = Qy_1\) and \(q_2 = Qy_2\). Consequently,

\[
\langle y_1 - y_2, q_1 - q_2 \rangle + \mu \|y_1 - y_2\|^2 \\
\leq \langle y_1 - y_2, Q(y_1 - y_2) \rangle + \mu \|y_1 - y_2\|^2 \\
\leq \langle y_1 - y_2, Q(y_1 - y_2) \rangle + \mu (0 + \|Q\|^2) \|y_1 - y_2\|^2 \\
\leq \langle y_1 - y_2, Q(y_1 - y_2) \rangle + \lambda \|y_1 - y_2\|^2 \leq 0.
\]

Thus \(Q\) is \(\mu\)-unmonotone. From Lemma \[2\] and Fact \[4\] \(-Q - \mu I_Y\) is maximally monotone. The result now follows from Theorem \[6\].

Lemma 9. Let \(T \in B(Y)\) be surjective and bijective, \(\lambda > 0\) and

\[
\text{for all } x \in Y, \quad \langle x, Tx \rangle + \lambda \|Tx\|^2 \leq 0.
\]

Then, whenever \(M\) is a maximally monotone multifunction on \(Y\), the multifunction \(MT\) has a unique fixed point.

Proof. From the open mapping theorem, there exists \(Q \in B(Y)\) such that

\[
\text{for all } y \in Y, \quad y = T(Qy) \quad \text{and} \quad y = Q(Ty).
\]

Let \(M\) be maximally monotone. If \(y \in Y\), let \(x := Qy \in Y\). From \[1\], \(y = T(Qy) = Tx\). Thus, from \[3\], \(\langle y, Qy \rangle + \lambda \|y\|^2 = \langle Tx, x \rangle + \lambda \|Tx\|^2 \leq 0\), and Corollary \[8\] implies that \(M\) and \(Q\) touch. Let \(G(M) \cap G(Q) = \{(d, e)\} \subset Y \times Y\).

If \(y\) is a fixed point of \(MT\) then \(y \in M(Ty)\) and so \((Ty, y) \in G(M)\). From \[1\] again, \((Ty, y) \in G(Q)\), and so \((Ty, y) = (d, e)\), from which \(y = e\). Thus \(e\) is the only possibility as a fixed point of \(MT\).

On the other hand, since \((d, e) \in G(M) \cap G(Q)\), \(e = Qd\) and \(e \in Md\). From \[1\], \(d = T(Qd) = Te\), and so \(e \in M(Te) = (MT)e\). Thus \(e\) is, in fact, a fixed point of \(MT\).
The final result of this section, Corollary 11, is a restatement of [2, Lemma 3.1] which, in turn, generalizes [5, Lemma 16]. We will use Fact 10 below, see [3, Theorem 20.40, p. 304] and [3, Theorem 21.2, p. 312] for proofs.

If \(H \) is a real Hilbert space, we write \(\Gamma_0(H) \) for the set of all proper, convex, lower semicontinuous functions from \(H \) into \(]-\infty, \infty[\).

Fact 10. Let \(g \in \Gamma_0(Y) \). Then the subdifferential of \(g \), \(\partial g \), is maximally monotone.

The three quantities \(X, Y \) and \(Q \) used in Corollary 11 were defined in terms of three other quantities \(R, M \) and \(S \) in [2, Section 2]. The statement of Corollary 11 shows that this is unnecessary. We also note that [5] uses an equality, while [2] uses an inequality, which suffices for Corollary 8.

We write \(B(X,Y) \) for the set of all bounded linear operators from \(X \) into \(Y \).

Corollary 11. Let \(Y \) be a closed subspace of a Hilbert space \(X \), \(Q \in B(X,Y) \),

\[
\text{for all } y \in Y, \quad (y, Qy) + \frac{1}{2}\|y\|^2 = 0, \quad (5)
\]

\(f \in \Gamma_0(X) \) and \(f^*|_Y \in \Gamma_0(Y) \). Then there exists \((d, e) \in Y \times Y \) such that

\[
G(\partial(f^*|_Y)) \cap G(Q) = \{(d, e)\}.
\]

Proof. This follows from Fact 10, Corollary 8 and Definition 5 with the maximally monotone multifunction \(\partial(f^*|_Y) \).

Remark 12. In [2, Remark 3.6], \(e \) is called the generalized cycle of \(f \), and \(d \) is called the generalized gap vector of \(f \).

A comparison of the statements of Corollary 8 and Corollary 11 shows that \(X \) does not play a fundamental role in Corollary 11.

On the other hand, \(X \) does play a fundamental role in the results of the next section.

3 Hilbert subspaces

Theorem 13 is a restatement of [2, Theorem 4.10] which, in turn, generalizes [5, Lemma 16]. Theorem 13(b) follows easily from Theorem 13(a). We note that Theorem 13(a), does not require \(f \) to attain a minimum on \(X \), whereas Theorem 13(b) does.

Theorem 13. Let \(Y \) be a closed subspace of a Hilbert space \(X \), \(S \in B(X,Y) \), \(S|_Y \in B(Y) \) be surjective and injective and,

\[
\text{for all } x \in X, \quad (x, Sx) + \frac{1}{2}\|Sx\|^2 = 0. \quad (6)
\]

Let \(f \in \Gamma_0(X) \) and \(f^*|_Y \in \Gamma_0(Y) \). Then it follows that the multifunction \([\partial(f^*|_Y)] \circ S|_Y : Y \rightrightarrows Y \) has a unique fixed point, \(e \), and

\[
x \in X \text{ and } Sx \in \partial f(x) \quad \Rightarrow \quad Sx = Se. \quad (7)
\]
Furthermore:
(a) If \(x \in X \), \(f(x) \in \mathbb{R} \) and \(f(x) \leq (f^*|_{\mathcal{Y}})^*(e) \) then

\[
Sx \in \partial f(x) \iff f^*(Sx) + \frac{1}{2}\|Sx\|^2 + f(x) = 0 \iff Sx = Se. \tag{8}
\]

(b) If \(x \in X \) and \(f(x) = \min_X f \) then \([3]\) holds.

Proof. From Fact 10, \(\partial(f^*|_{\mathcal{Y}}) \) is maximally monotone, and so Lemma 3 (with \(\lambda := \frac{1}{2} \), \(T := S|_{\mathcal{Y}} \) and \(M := \partial(f^*|_{\mathcal{Y}}) \)) implies that \(\partial(f^*|_{\mathcal{Y}}) \circ S|_{\mathcal{Y}} \) has a unique fixed point, \(e \). Since \(e \in \partial(f^*|_{\mathcal{Y}})(S|_{\mathcal{Y}}) \), \(f^*(Se) = f^*|_{\mathcal{Y}}(Se) < \infty \), \((f^*|_{\mathcal{Y}})^*(e) < \infty \) and,

\[
(e, Se) = f^*(Se) + (f^*|_{\mathcal{Y}})^*(e). \tag{9}
\]

We now establish \([7]\). To this end, suppose that \(x \in X \) and \(Sx \in \partial f(x) \). Then \(f(x) < \infty \), \(f^*(Sx) < \infty \) and

\[
\langle x, Sx \rangle = f(x) + f^*(Sx). \tag{10}
\]

From the Fenchel–Young inequality:

\[
- \langle x, Se \rangle \geq - f(x) - f^*(Se) \quad \text{and} \quad - \langle e, Sx \rangle \geq - (f^*|_{\mathcal{Y}})^*(e) - f^*(Sx). \tag{11}
\]

Now \(\langle x - e, S(x - e) \rangle = \langle e, Se \rangle + \langle x, Sx \rangle - \langle x, Se \rangle - \langle e, Sx \rangle \). Consequently, by adding \([9] - [11]\), we see that \(\langle x - e, S(x - e) \rangle \geq 0 \). From \([6]\),

\[
- \frac{1}{2}\|Sx - Se\|^2 = - \frac{1}{2}\|S(x - e)\|^2 = \langle x - e, S(x - e) \rangle \geq 0.
\]

Thus \(Sx = Se \), which completes the proof of \([7]\).

(a) Suppose that \(x \in X \), \(f(x) \in \mathbb{R} \), \(f(x) \leq (f^*|_{\mathcal{Y}})^*(e) \) and \(Sx = Se \). Then, using \([6]\) twice and \([9]\),

\[
\langle x, Sx \rangle = - \frac{1}{2}\|Sx\|^2 = - \frac{1}{2}\|Se\|^2 = \langle e, Se \rangle = f^*(Sx) + (f^*|_{\mathcal{Y}})^*(e) \geq f^*(Sx) + f(x).
\]

Consequently, \(Sx \in \partial f(x) \), and \([8]\) follows from \([6]\) and \([7]\).

(b) We first note that \((f^*|_{\mathcal{Y}})^*(e) \geq (0, e) - (f^*|_{\mathcal{Y}})(0) = - f^*(0) = \inf_X f \). So if \(x \in X \), and \(f(x) = \min_X f \) then \([8]\) follows from (a).

Remark 14. The significance of \([4]\) is not only that it makes Theorem 13 possible. Since \(\langle x, Sx \rangle + \frac{1}{2}\|Sx\|^2 = 0 \iff \|x\|^2 + 2\langle x, Sx \rangle + \|Sx\|^2 = \|x\|^2 \) and \(\|x\|^2 + 2\langle x, Sx \rangle + \|Sx\|^2 = \|Sx + x\|^2 \), \([4]\) is equivalent to the statement that the linear map \(S + I_X \) is an isometry. Historically, this is backwards: in \([5]\) and \([2]\), the parameters of the geometry conjecture provided us with an isometry \(R \), and \(S \) was defined by \(S := R - I_X \).
References

[1] Salihah Alwadani, Heinz H. Bauschke, Julian P. Revalski and Xianfu Wang, *The difference vectors for convex sets and a resolution of the geometry conjecture*, Open Journal of Mathematical Optimization, Volume 2 (2021), Article 5 (18 pages). DOI: 10.5802/ojmo.7

[2] Heinz H. Bauschke and Xianfu Wang, *Roots of the identity operator and proximal mappings: (classical and phantom) cycles and gap vectors*, https://arxiv.org/abs/2201.05189v2 posted 22 Feb, 2022.

[3] Heinz H. Bauschke and Patrick L. Combettes, *Convex analysis and monotone operator theory in Hilbert spaces*. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer: New York, Dordrecht, Heidelberg, London.

[4] George J. Minty, *Monotone (nonlinear) operators in Hilbert space*, Duke Math. J. 29 (1962), 341–346.

[5] Stephen Simons, *mth roots of the identity operator and the geometry conjecture*, to appear in Proceedings of the AMS. Preprint version available at https://arxiv.org/abs/2112.09805v1 posted 17 Dec, 2021.