Abstract. Let π be a group. The aim of this paper is to construct the category of Yetter-Drinfeld modules over the quasi-Turaev group coalgebra $H = (\{H_\alpha\}_{\alpha \in \pi}, \Delta, \varepsilon, S, \Phi)$, and prove that this category is isomorphic to the center of the representation category of H. Therefore a new Turaev braided group category is constructed.

Keywords: Yetter-Drinfeld module; Quasi-Hopf group coalgebra; Turaev braided group category; Center construction.

Mathematics Subject Classification: 16W30.

Introduction

Given a group π, Turaev in [6] introduced the notion of a braided π-monoidal category which is called Turaev braided group category in this paper, and showed that such a category gives rise to a 3-dimensional homotopy quantum field theory. Meanwhile such a category plays a key role in the construction of Hennings-type invariants of flat group-bundles over complements of link in the 3-sphere, see [8].

For the above reasons, it becomes very important to construct Turaev braided group category. Based on the work of [4], more results have been obtained in [2] and [9], where the method used in [4] was applied to weak Hopf algebras and regular multiplier Hopf algebras. It is well-known that there is another approach to the construction, for instance, in [1] the authors introduced the notion of quasi-Hopf group coalgebras and proved that the representation category of quasitriangular quasi-Hopf group coalgebras is exactly a Turaev braided group category.

*Corresponding author: Daowei Lu, ludaowei620@126.com, Department of Mathematics, Southeast University, Nanjing, Jiangsu 210096, P. R. of China.
M. Zunino in [11] constructed the Yetter-Drinfeld category of crossed Hopf group coalgebra and showed that it is a Turaev braided group category. Motivated by this construction, in this paper, we will generalize this result to quasi-Turaev Hopf group coalgebra defined in [1]. The notion of Yetter-Drinfeld category of quasi-Turaev Hopf group coalgebra will be given, and the isomorphism between Yetter-Drinfeld category and the category of the center of representation category of quasi-Turaev Hopf group coalgebra will be established. Moreover, both of the categories are Turaev braided group categories.

This paper is organized as follows: In section 1, we will recall the notions of crossed T-category and its center and quasi-Turaev group coalgebra. In section 2, we will construct the Yetter-Drinfeld module over the quasi-Turaev group coalgebra and prove that the Yetter-Drinfeld category is isomorphic to the center of the representation category.

Throughout this article, let k be a fixed field. All the algebras and linear spaces are over k; unadorned \otimes means \otimes_k.

1 Preliminary

In this section, we will recall the definitions and notations relevant to Turaev braided group categories.

1.1 Crossed T-category

A tensor category $\mathcal{C} = (\mathcal{C}, \otimes, a, l, r)$ is a category \mathcal{C} endowed with a functor $\otimes: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ (the tensor product), an object $I \in \mathcal{C}$ (the tensor unit), and natural isomorphisms $a = a_{U,V,W} : (U \otimes V) \otimes W \to U \otimes (V \otimes W)$ for all $U, V, W \in \mathcal{C}$ (the associativity constraint), $l = l_U : I \otimes U \to U$ (the left unit constraint) and $r = r_U : U \otimes I \to U$ (the right unit constraint) for all $U \in \mathcal{C}$ such that for all $U, V, W, X \in \mathcal{C}$, the associativity pentagon

$$a_{U,V,W} \circ a_{U \otimes V,W,X} = (U \otimes a_{V,W,X}) \circ a_{U,V \otimes W,X} \circ (a_{U,V,W} \otimes X),$$

and the triangle

$$(U \otimes l_V) \circ (r_U \otimes V) = a_{U,V} ,$$

are satisfied. A tensor category \mathcal{C} is strict when all the constraints are identities.

Let π be a group with the unit 1. Recall from [11] that a crossed category \mathcal{C} (over π) is given by the following data:

- \mathcal{C} is a tensor category.
- A family of subcategory $\{\mathcal{C}_\alpha\}_{\alpha \in \pi}$ such that \mathcal{C} is a disjont union of this family and that $U \otimes V \in \mathcal{C}_{\alpha \beta}$ for any $\alpha, \beta \in \pi$, $U \in \mathcal{C}_\alpha$ and $V \in \mathcal{C}_\beta$.
- A group homomorphism $\varphi : \pi \to aut(\mathcal{C}), \beta \mapsto \varphi_\beta$, the conjugation, where $aut(\mathcal{C})$ is the group of the invertible strict tensor functors from \mathcal{C} to itself, such that $\varphi_\beta(\mathcal{C}_\alpha) = \mathcal{C}_{\beta \alpha \beta^{-1}}$ for any $\alpha, \beta \in \pi$.
We will use the left index notation in Turaev: Given $\beta \in \pi$ and an object $V \in C$, the functor φ_β will be denoted by $\beta(\cdot)$ or $V(\cdot)$ and $\beta^{-1}(\cdot)$ will be denoted by $\overline{V}(\cdot)$. Since $V(\cdot)$ is a functor, for any object $U \in C$ and any composition of morphism $g \circ f$ in C, we obtain $V(id_U) = id_{V(U)}$ and $V(g \circ f) = Vg \circ Vf$. Since the conjugation $\varphi : \pi \to aut(C)$ is a group homomorphism, for any $V, W \in C$, we have $V \otimes W(\cdot) = V(W(\cdot))$ and $1(\cdot) = V(\overline{V}(\cdot)) = id_C$. Since for any $V \in C$, the functor $V(\cdot)$ is strict, we have $V(f \otimes g) = Vf \otimes Vg$ for any morphism f and g in C, and $V(1) = 1$.

A Turaev braided π-category is a crossed T-category C endowed with a braiding, i.e., a family of isomorphisms

$$c = \{c_{U,V} : U \otimes V \to V(U \otimes V)\}_{U,V \in C}$$

obeying the following conditions:

- For any morphism $f \in Hom_{C_\alpha}(U,U')$ and $g \in Hom_{C_\beta}(V,V')$, we have
 $$(\alpha g \otimes f) \circ c_{U,V} = c_{U',V'} \circ (f \otimes g),$$

- For all $U, V, W \in C$, we have
 $$c_{U,V \otimes W} = a_{U,V,W,U}^{-1} \circ (U \otimes c_{U,W} \circ (c_{U,V} \otimes W)) \circ a_{U,V,W}^{-1}, \quad (1.1)$$
 $$c_{U \otimes V, W} = a_{U \otimes V, W,U} \circ (c_{U,V \otimes W} \circ (U \otimes c_{V,W} \circ (c_{V,W} \otimes V))) \circ a_{U,V,W}^{-1}. \quad (1.2)$$

- For any $U, V \in C$ and $\alpha \in \pi$, $\varphi_\alpha(c_{U,V}) = \varphi_\alpha(U) \circ \alpha V$.

1.2 The center of a crossed T-category

Let C be a crossed T-category. The center of C is the braided crossed T-category $\mathcal{Z}(C)$ defined as follows:

1. The objects of $\mathcal{Z}(C)$ are the pairs $(U, c_{U,\cdot})$ satisfying the following conditions:
 - U is an object of C.
 - $c_{U,\cdot}$ is a natural isomorphism from the functor $U \otimes \cdot$ to the functor $U(\cdot) \otimes U$ such that for any objects $V, W \in C$, the identity (1.1) is satisfied.

2. The morphism in $\mathcal{Z}(C)$ from $(U, c_{U,\cdot})$ to $(V, c'_{V,\cdot})$ is a morphism $f : U \to V$ such that for any object $X \in C$,
 $$(U X \otimes f) \circ c_{U,X} = c'_{V,X} \circ (f \otimes X). \quad (1.3)$$

The composition of two morphisms in $\mathcal{Z}(C)$ is given by the composition in C.

3
3. Given $Z_1 = (U, c_{U, -})$ and $Z_2 = (V, c_{V, -})$ in $\mathcal{Z}(\mathcal{C})$, the tensor product $Z_1 \otimes Z_2$ in $\mathcal{Z}(\mathcal{C})$ is the couple $(U \otimes V, (c \otimes c')_{U \otimes V, -})$, where for any object $W \in \mathcal{C}$, $(c \otimes c')_{U \otimes V, -}$ is obtained by

$$(c \otimes c')_{U \otimes V, W} = a_{U \otimes V, W} \circ (c_{U, V} \otimes V) \circ a_{U, V, W}^{-1} \circ (U \otimes c'_{V, W}) \circ a_{U, V, W}. \quad (1.4)$$

4. The unit of $\mathcal{Z}(\mathcal{C})$ is the couple (I, id_{-}), where I is the unit of \mathcal{C}.

5. For any $\alpha \in \pi$, the αth component of $\mathcal{Z}(\mathcal{C})$, denoted $Z_\alpha(\mathcal{C})$, is the full subcategory of $\mathcal{Z}(\mathcal{C})$ whose objects are the pairs $(U, c_{U, -})$, where $U \in \mathcal{C}_\alpha$.

6. For any $\beta \in \pi$, the automorphism $\varphi_{Z, \beta}$ is given by, for any $(U, c_{U, -}) \in \mathcal{Z}(\mathcal{C})$,

$$\varphi_{Z, \beta}(U, c_{U, -}) = (\varphi_{\beta}(U), \varphi_{Z, \beta}(c_{U, -})), \quad (1.5)$$

where $\varphi_{Z, \beta}(c_{U, -}) \varphi_{\beta}(U, c_{U, -}) = \varphi_{\beta}(c_{U, \varphi_{\beta}^{-1}(U)})$ for any $X \in \mathcal{C}$.

7. The braiding ε in $\mathcal{Z}(\mathcal{C})$ is obtained by setting $c_{Z_1, Z_2} = c_{U, V}$ for any $Z_1 = (U, c_{U, -}), Z_2 = (V, c_{V, -}) \in \mathcal{Z}(\mathcal{C})$.

1.3 Quasi-Turaev group coalgebras

Recall from [1], a family of algebras $H = \{H_\alpha\}_{\alpha \in \pi}$ is a quasi-semi-T-coalgebra if there exist a family of morphisms of algebra $\Delta = \{\Delta_{\alpha, \beta} : H_\alpha \otimes H_\beta \to H_\gamma\}_{\alpha, \beta \in \pi}$, a morphism of algebra $\varepsilon : H_1 \to k$ and a family of invertible elements $\{\Phi_{\alpha, \beta, \gamma} \in H_\alpha \otimes H_\beta \otimes H_\gamma\}_{\alpha, \beta, \gamma \in \pi}$ such that

$$(H_\alpha \otimes \Delta_{\beta, \gamma}) \Delta_{\alpha, \beta, \gamma}(h) \Phi_{\alpha, \beta, \gamma} = \Phi_{\alpha, \beta, \gamma} \Delta_{\alpha, \beta} \otimes H_\gamma \Delta_{\alpha, \beta, \gamma}(h), \quad (1.6)$$

$$(H_\alpha \otimes \varepsilon)(\Delta_{\alpha, 1}(a)) = a, \quad (\varepsilon \otimes H_\alpha)(\Delta_{1, \alpha}(a)) = a, \quad (1.7)$$

$$(1_\alpha \otimes \Phi_{\beta, \gamma, \lambda})(H_\alpha \otimes \Delta_{\beta, \gamma} \otimes H_\lambda)(\Phi_{\alpha, \beta, \gamma, \lambda})(\Phi_{\alpha, \beta, \gamma} \otimes 1_\lambda) = (H_\alpha \otimes H_\beta \otimes \Delta_{\lambda, \gamma})(\Phi_{\alpha, \beta, \gamma, \lambda})(\Delta_{\alpha, \beta} \otimes H_\gamma \otimes H_\lambda)(\Phi_{\alpha, \beta, \gamma, \lambda}), \quad (1.8)$$

$$(H_\alpha \otimes \varepsilon \otimes H_\beta)(1_\alpha \otimes 1_\beta \otimes 1_\gamma) = 1_\alpha \otimes 1_\beta \otimes 1_\gamma \quad (1.9)$$

for all $h \in H_{\alpha, \beta, \gamma}$ and $a \in H_\alpha$. Δ is called comultiplication, and ε the counit.

In our computations, we will use the Sweedler-Heyneman notation $\Delta_{a, b}(b) = b_{(1, a)} \otimes b_{(2, b)}$ for all $b \in H_{a, \beta}$ (summation implicitly understood). Since Δ is only quasi-coassociative, we adopt further convention

$$(id_\alpha \otimes \Delta_{\beta, \gamma}) \Delta_{\alpha, \beta, \gamma}(h) = h_{(1, \alpha)} \otimes h_{(2, \beta, \gamma)}(1, \beta) \otimes h_{(2, \beta, \gamma)}(2, \gamma),$$

$$(\Delta_{a, b} \otimes id_\gamma) \Delta_{\alpha, \beta, \gamma}(h) = h_{(1, a, \beta)}(1, \alpha) \otimes h_{(1, a, \beta)}(2, \beta) \otimes h_{(2, \gamma)},$$
for all $h \in H_{\alpha\beta\gamma}$. We will denote the components of Φ by capital letters, and the ones of Φ^{-1} by small letters, namely,

$$\Phi_{\alpha,\beta,\gamma} = Y_1^\alpha \otimes Y_2^\beta \otimes Y_3^\gamma = T_1^\alpha \otimes T_2^\beta \otimes T_3^\gamma = \cdots$$

$$\Phi_{\alpha,\beta,\gamma}^{-1} = y_1^\alpha \otimes y_2^\beta \otimes y_3^\gamma = t_1^\alpha \otimes t_2^\beta \otimes t_3^\gamma = \cdots$$

A quasi-Hopf group coalgebra is a quasi-semi-T-coalgebra $H = \{H_{\alpha}\}_{\alpha \in \pi}, \Delta, \varepsilon, S$ endowed with a family of invertible anti-automorphisms of algebra $S = \{S_{\alpha} : H_{\alpha} \to H_{\alpha}^{-1}\}_{\alpha \in \pi}$ (the antipode) and elements $\{p_{\alpha}, q_{\alpha} \in H_{\alpha}\}_{\alpha \in \pi}$ such that the following conditions hold:

$$S_{\alpha}(h_{(1,\alpha)})p_{\alpha^{-1}}h_{(2,\alpha^{-1})} = \varepsilon(h)p_{\alpha^{-1}}, \quad h_{(1,\alpha)}q_{\alpha}S_{\alpha^{-1}}(h_{(2,\alpha^{-1})}) = \varepsilon(h)q_{\alpha}, \quad (1.10)$$

$$Y_1^\alpha q_{\alpha}S_{\alpha^{-1}}(Y_2^\alpha p_{\alpha}Y_3^\alpha) = 1_{\alpha}, \quad \varepsilon \circ \Phi_{\alpha,\beta,\gamma} = \varepsilon \circ \Phi_{\alpha,\beta,\gamma}. \quad (1.11)$$

A quasi-Turaev π-coalgebra is a quasi-Hopf π-coalgebra $H = \{H_{\alpha}\}_{\alpha \in \pi}, \Delta, \varepsilon, \Phi$ with a family of k-linear maps $\varphi = \{\varphi_{\beta} : H_{\alpha} \to H_{\beta\alpha^{-1}}\}_{\alpha,\beta \in \pi}$ (the crossing) such that the following conditions hold:

• For any $\beta \in \pi$, φ_{β} is an algebra isomorphism.

• φ_{β} preserves the comultiplication and the counit, i.e., for any $\alpha, \beta, \gamma \in \pi$,

$$\varphi_{\beta} \circ \Delta_{\alpha,\gamma} = \Delta_{\beta\alpha^{-1},\beta\gamma^{-1}} \circ \varphi_{\beta},$$

$$\varepsilon \circ \varphi_{\beta} = \varepsilon.$$

• φ is multiplicative in the sense that $\varphi_{\beta} \varphi_{\beta'} = \varphi_{\beta\beta'}$ for all $\beta, \beta' \in \pi$.

• The family Φ is invariant under the crossing, i.e., for any $\Phi_{\alpha,\beta,\gamma}$,

$$(\varphi_{\eta} \otimes \varphi_{\theta} \otimes \varphi_{\theta})\Phi_{\alpha,\beta,\gamma} = \Phi_{\eta\alpha^{-1},\theta\beta^{-1},\theta\gamma^{-1}}.$$

2 Main results

In this section, we will give the main result of this paper. First of all, we need some preparations. For any Hopf group coalgebra $H = \{H_{\alpha}\}, \Delta, \varepsilon, S$, we obviously have the following identity

$$h_{(1,\alpha)} \otimes h_{(2,\beta)}S_{\beta^{-1}}(h_{(3,\beta^{-1})}) = h \otimes 1_{\beta},$$

for all $\alpha, \beta \in \pi$ and $h \in H_{\alpha}$. We will need the generalization of this formula to the quasi-Hopf group coalgebra setting. The following lemma will be given without proof.
Lemma 2.1. Let $H = (\{H_{\alpha}\}, \Delta, \epsilon, S)$ be a quasi-Hopf group coalgebra. Set

\begin{align*}
I_{\alpha,\beta}^R &= I_{\alpha}^1 \otimes I_{\beta}^2 = y_{\alpha}^1 \otimes y_{\beta}^2 q_{\beta^{-1}}(y_{\beta^{-1}}^3), \\
J_{\alpha,\beta}^R &= J_{\alpha}^1 \otimes J_{\beta}^2 = Y_{\alpha}^1 \otimes S_{\beta^{-1}}^{-1}(p_{\beta^{-1}} Y_{\beta^{-1}}^3) Y_{\beta}^2, \\
I_{\alpha,\beta}^L &= I_{\alpha}^1 \otimes I_{\beta}^2 = Y_{\alpha}^2 \Delta^{-1}(Y_{\alpha^{-1}}^1 q_{\alpha^{-1}}) \otimes Y_{\beta}^3, \\
J_{\alpha,\beta}^L &= J_{\alpha}^1 \otimes J_{\beta}^2 = S_{\alpha^{-1}}(y_{\alpha^{-1}}^1 p_{\alpha} y_{\alpha}^2 \otimes y_{\beta}^3).
\end{align*}

Then for all $h \in H_{\alpha}$ and $a \in H_{\beta}$, we have

\begin{align*}
\Delta_{\alpha,\beta}(h_{(1,\alpha\beta)}) I_{\alpha,\beta}^R [1 \otimes S_{\beta^{-1}}^{-1}(h_{(2,\beta^{-1})})] = I_{\alpha,\beta}^R [h \otimes 1], \\
[1 \otimes S_{\beta^{-1}}^{-1}(h_{(2,\beta^{-1})})] J_{\alpha,\beta}^R \Delta_{\alpha,\beta}(h_{(1,\alpha\beta)}) = [h \otimes 1] J_{\alpha,\beta}^R, \\
\Delta_{\alpha,\beta}(a_{(2,\alpha\beta)}) I_{\alpha,\beta}^L [S_{\alpha^{-1}}^{-1}(a_{(1,\alpha^{-1})}) \otimes 1] = I_{\alpha,\beta}^L [1 \otimes a], \\
[S_{\alpha^{-1}}^{-1}(a_{(1,\alpha^{-1})}) \otimes 1] J_{\alpha,\beta}^L \Delta_{\alpha,\beta}(a_{(2,\alpha\beta)}) = J_{\alpha,\beta}^L [1 \otimes a].
\end{align*}

And the following relations hold:

\begin{align*}
\Delta_{\alpha,\beta}(J_{\alpha,\beta}^1) I_{\alpha,\beta}^R [1 \otimes S_{\beta^{-1}}^{-1}(J_{\beta^{-1}}^2)] &= 1_{\alpha} \otimes 1_{\beta}, \\
[1 \otimes S_{\beta^{-1}}^{-1}(J_{\beta^{-1}}^2)] J_{\alpha,\beta}^R \Delta_{\alpha,\beta}(J_{\alpha,\beta}^1) &= 1_{\alpha} \otimes 1_{\beta}, \\
\Delta_{\alpha,\beta}(J_{\alpha,\beta}^2) I_{\alpha,\beta}^L [S_{\alpha^{-1}}^{-1}(J_{\alpha^{-1}}^1) \otimes 1_{\beta}] &= 1_{\alpha} \otimes 1_{\beta}, \\
[S_{\alpha^{-1}}^{-1}(J_{\alpha^{-1}}^1) \otimes 1_{\beta}] J_{\alpha,\beta}^L \Delta_{\alpha,\beta}(J_{\alpha,\beta}^2) &= 1_{\alpha} \otimes 1_{\beta}.
\end{align*}

In [11], M. Zunino defined the Yetter-Drinfeld module over the crossed group coalgebra, and S. Majid in [3] ingeniously constructed the Yetter-Drinfeld module over quasi-Hopf algebra. With these help, we have the following definition.

Definition 2.2. Fix an element $\alpha \in \pi$. An α-Yetter-Drinfeld module or YD_{α}-module is a couple $V = \{V, \rho_V = \{\rho_{V,\lambda}\}_{\lambda \in \pi}\}$, where $\rho_{V,\lambda} : V \to V \otimes H_\lambda$, $v \mapsto v_{(0)} \otimes v_{(1,\lambda)}$ is a k-linear morphism such that the following conditions are satisfied:

1. V is a left H_α-module,
2. V is counitary in the sense that
 \[(id \otimes \epsilon) \circ \rho_{V,1} = id.\]
3. For all $v \in V$,
 \[
 (y_{\alpha}^3 \cdot v_{(0)})_{(0,0)} \otimes (y_{\alpha}^3 \cdot v_{(0,0)})_{(1,\lambda_1)} y_{\lambda_1}^1 \otimes y_{\lambda_2}^3 v_{(1,\lambda_2)}
 = \Phi_{\alpha,\lambda_1,\lambda_2}^{-1} \cdot [(y_{\alpha}^3 \cdot v)_{(0)} \otimes (y_{\alpha}^3 \cdot v)_{(1,\lambda_1\lambda_2)} y_{\lambda_1}^1 \otimes (y_{\alpha}^3 \cdot v)_{(1,\lambda_1\lambda_2)(2,\lambda_2)} y_{\lambda_2}^3].
 \]
4. For all $h \in H_{\alpha\beta}$ and $v \in V$,
 \[
 h_{(1,\alpha)} \cdot v_{(0,0)} \otimes h_{(2,\beta)} v_{(1,\beta)} = (h_{(2,\alpha)} \cdot v)_{(0)} \otimes (h_{(2,\alpha)} \cdot v)_{(1,\beta)} \varphi_{\alpha^{-1}}(h_{(1,\alpha\beta^{-1})}).
 \]
Remark 2.3. Note that in the above definition, when the quasi-Hopf group coalgebra is trivial, i.e., \(\varphi_{\alpha, \beta, \lambda} = 1_\alpha \otimes 1_\beta \otimes 1_\lambda \) for any \(\alpha, \beta, \lambda \in \pi \), then we have a \(\text{YD}_\alpha \)-module over Hopf group coalgebra introduced in [11].

Given two \(\text{YD}_\alpha \)-modules \((U, \rho_U)\) and \((V, \rho_V)\), a linear map \(f : U \rightarrow V \) is said to be a morphism of \(\text{YD}_\alpha \)-module if \(f \) is \(H_\alpha \)-linear and for any \(\lambda \in \pi \),

\[
\rho_{V, \lambda} \circ f = (f \otimes H_\lambda) \circ \rho_{U, \lambda}.
\]

Let \(\text{YD}(H) \) be the disjoint union of the categories \(\text{YD}_\alpha(H) \) for all \(\alpha \in \pi \). The category \(\text{YD}(H) \) admits the structure of a braided \(T \)-category as follows:

- The tensor product of a \(\text{YD}_\alpha \)-module \((V, \rho_V)\) and a \(\text{YD}_\beta \)-module \((W, \rho_W)\) is a \(\text{YD}_{\alpha \beta} \)-module \((V \otimes W, \rho_{V \otimes W})\), where for any \(v \in V, w \in W \) and \(\lambda \in \pi \),

\[
\rho_{V \otimes W}(v \otimes w) = t_{\lambda}^1 Y_{\lambda}^1 (y_{\alpha}^2 \cdot v)(0,0) \otimes t_{\lambda}^2 (Y_{\beta}^2 y_{\beta}^3 \cdot w)(0,0) \otimes t_{\lambda}^3 (Y_{\lambda}^2 (y_{\alpha}^2 \cdot v)(1,\lambda) Y_{\lambda}^2 (y_{\alpha}^2 \cdot v)(1,\beta \lambda - 1)) y_{\lambda}^3. \tag{2.16}
\]

The unit of \(\text{YD}(H) \) is the pair \((k, \rho_k)\), where for any \(\lambda \in \pi \), \(\rho_{\lambda}(1) = 1 \otimes 1_\lambda \). Then the tensor product of arrows is given by the tensor product of \(k \)-linear maps.

- For any \(\beta \in \pi \), the conjugation functor \(\beta(\cdot) \) is given as follows. Let \((V, \rho_V)\) be a \(\text{YD}_\alpha \)-module and we set \(\beta(V, \rho_V) = (\beta V, \rho_{\beta V}) \), where for any \(\lambda \in \pi \) and \(v \in V \),

\[
\rho_{\beta V}(v) = \beta((\beta^{-1} v)(0,0)) \otimes \varphi_{\beta}(\beta^{-1} v)(1,\beta^{-1} \lambda) \lambda). \tag{2.17}
\]

For any morphism \(f : (V, \rho_V) \rightarrow (W, \rho_W) \) of \(\text{YD} \)-module and any \(v \in V \), we set \(\beta(f)(\beta v) = \beta(f(v)) \).

- For any \(\text{YD}_\alpha \)-module \((V, \rho_V)\) and any \(\text{YD}_\beta \)-module \((W, \rho_W)\), the braiding \(c \) is given by

\[
c_{V,W}(v \otimes w) = \alpha[J_{(1, \beta)}^1 y_{\beta}^1 S_{\beta - 1} (J_{(2, \beta)}^2 y_{\beta}^3 - 1) (I_{(1, \beta)}^2 v)(1, \beta - 1) I_{(1, \beta - 1)}^1 v)(1, \xi - 1)] y_{\lambda}^1 \otimes J_{(2, \alpha)}^1 y_{\alpha}^2 (I_{(2, \alpha)}^2 v)(0,0). \tag{2.18}
\]

Lemma 2.4. For a fixed element \(\alpha \in \pi \), let \((V, c_{V,-})\) be any object in \(Z_{\alpha}(\text{Rep}(H)) \). For any \(\lambda \in \pi \), define the linear map \(\rho_{V, \lambda} : V \rightarrow V \otimes H_\lambda \) by

\[
\rho_{V, \lambda}(v) = c_{V, H_\lambda}^1 (a_1 \lambda \otimes v). \tag{2.19}
\]

Then the pair \(V = (V, \rho_V = \{\rho_{V, \lambda}\}_{\lambda \in \pi}) \) is a \(\text{YD}_\alpha \)-module. Hence we have a functor \(F_1 : Z(\text{Rep}(H)) \rightarrow \text{YD}(H) \) given by \(F_1(V, c_{V,-}) = (V, \rho_V) \) and \(F_1(f) = f \), where \(f \) is a morphism in \(Z(\text{Rep}(H)) \).

Proof. We just need to verify that \((V, \rho_V)\) satisfies the axioms of \(\text{YD}_\alpha \)-modules.

First of all, for any \(\lambda_1, \lambda_2 \in \pi \), consider \(H_{\lambda_1} \) and \(H_{\lambda_2} \) as the modules over themselves. By [1,1], we have

\[
a_{V,H_{\lambda_1},H_{\lambda_2}}^{-1} c_{V,H_{\lambda_1} \otimes H_{\lambda_2}}^{-1} \circ a_{V,H_{\lambda_1},V,H_{\lambda_2}}^{-1} = (c_{V,H_{\lambda_1} \otimes H_{\lambda_2}}^{-1} \circ a_{V,H_{\lambda_1},V,H_{\lambda_2}}^{-1} \circ (V \otimes H_{\lambda_1} \otimes c_{V,H_{\lambda_2}}^{-1}).
\]

7
For all \(v \in V \), both of the sides evaluating at \(\alpha \lambda_1 \otimes \alpha \lambda_2 \otimes v \), we have

\[
(y^2_\alpha \cdot v(0,0))(0,0) \otimes (y^2_\alpha \cdot v(0,0))(1,\lambda_1) y^1_\lambda \otimes y^3_\lambda v(1,\lambda_2) \\
= y_{\alpha,\lambda_1,\lambda_2} \cdot [(y^3_\alpha \cdot v)(0,0) \otimes (y^3_\alpha \cdot v)(1,\lambda_1,\lambda_2)(1,\lambda_1) y^1_\lambda \otimes (y^3_\alpha \cdot v)(1,\lambda_1,\lambda_2)(2,\lambda_2) y^2_\lambda].
\]

The counitarity of \(V \) is obvious.

Secondly for all \(v \in V \) and \(h \in H_{\alpha,\lambda} \), we have on one hand,

\[
h \cdot c^{-1}_{V,H}(\alpha \lambda \otimes v) = h \cdot (v(0,0) \otimes v(1,\lambda)) = h_{(1,\alpha)} \cdot v(0,0) \otimes h_{(2,\lambda)} v(1,\lambda),
\]

and on the other hand,

\[
c^{-1}_{V,H}(h \cdot (\alpha \lambda \otimes v)) = c_{V,H}(h \cdot (1,\alpha,\lambda_{\alpha^{-1}}) \cdot \alpha \lambda \otimes h_{(2,\alpha)} \cdot v))
\]

\[
= c_{V,H}(\alpha (\varphi_{\alpha^{-1}}(h_{(1,\alpha,\lambda_{\alpha^{-1}})})) \otimes h_{(2,\alpha)} \cdot v))
\]

\[
= (h_{(2,\alpha)} \cdot v)(0,0) \otimes (h_{(2,\alpha)} \cdot v)(1,\lambda) \varphi_{\alpha^{-1}}(h_{(1,\alpha,\lambda_{\alpha^{-1}})}).
\]

Since the braiding \(c_{V,H} \) is \(H \)-linear, we obtain

\[
h_{(1,\alpha)} \cdot v(0,0) \otimes h_{(2,\lambda)} v(1,\lambda) = (h_{(1,\alpha)} \cdot v)(0,0) \otimes (h_{(2,\alpha)} \cdot v)(1,\lambda) \varphi_{\alpha^{-1}}(h_{(1,\alpha,\lambda_{\alpha^{-1}})}).
\]

Finally, let \(f : (V, c_{V,-}) \to (W, c_{W,-}) \) is a morphism in \(Z_\alpha(Rep(H)) \), then as the case of Hopf group coalgebra, \(f \) gives rise to a morphism of \(YD_\alpha \)-module. It is easy to see that \(F_1 \) is a functor. This completes the proof. \(\Box \)

Assume that \((V, \rho_V)\) is an object in the category \(YD_\alpha(H) \). For any \(\lambda \in \pi \) and left \(H_\lambda \)-module \(X \), give the linear map \(c_{V,X} : V \otimes X \to \alpha X \otimes V \) by

\[
c_{V,X}(v \otimes x) = \alpha_[(1,\lambda)] J_{(1,\lambda)}^1 y_{\lambda_{\alpha^{-1}}} \cdot (J_{\lambda_{\alpha^{-1}}}^2 y_{\lambda_{\alpha^{-1}}} (\tilde{F}_\alpha \cdot v)(1,\lambda_{\alpha^{-1}}) \tilde{J}_{\lambda_{\alpha^{-1}}}^1 \cdot x) \otimes J_{(2,\alpha)}^1 y_{\alpha} \cdot (\tilde{F}_\alpha \cdot v)(0,0),
\]

for all \(v \in V \) and \(x \in X \).

Lemma 2.5. The couple \((V, c_{V,-})\) is an object in \(Z(Rep(H)) \). Hence we have a functor \(F_2 : YD(H) \to Z(Rep(H)) \) given by \(F_2(V, \rho_V) = (V, c_{V,-}) \) and \(F_2(f) = f \), where \(f \) is a morphism in \(YD(H) \). The functors \(F_1 \) and \(F_2 \) are inverses.

Proof. Firstly for any \(\lambda \in \pi \) and left \(H_\lambda \)-module \(X \), we set a morphism \(\hat{c}_{V,X} : \alpha X \otimes V \to V \otimes X \) by

\[
\hat{c}_{V,X}(\alpha x \otimes v) = v(0,0) \otimes v(1,\lambda) \cdot x.
\]
Then
\[\hat{c}_{V,X} \circ c_{V,X} (v \otimes x) = \hat{c}_{V,X}(\ alpha J^1_{(\lambda_1)} y^{1}_{\lambda_1} S_{\lambda_1}^{-1} (J^2_{\lambda_1} - y^{3}_{\lambda_1} (\tilde{t}^2_{\lambda_1} \cdot v)(1,\lambda_1^{-1} \tilde{t}^1_{\lambda_1} \cdot x)) \otimes J^1_{(\alpha)} y^{2}_{\alpha} \cdot (\tilde{t}^2_{\alpha} \cdot v)(0,0)) = [J^1_{(\alpha)} y^{2}_{\alpha} \cdot (\tilde{t}^2_{\alpha} \cdot v)(0,0)](0,0) \otimes [J^1_{(\alpha)} y^{2}_{\alpha} \cdot (\tilde{t}^2_{\alpha} \cdot v)(0,0)](1,\lambda_1) \varphi_{\alpha}^{-1}(J^1_{(1,\alpha \lambda_1^{-1})}) \varphi_{\alpha}^{-1}(y^{1}_{\alpha \lambda_1^{-1}}) \cdot [S_{\lambda_1}^{-1} (J^2_{\lambda_1} - y^{3}_{\lambda_1} (\tilde{t}^2_{\lambda_1} \cdot v)(1,\lambda_1^{-1} \tilde{t}^1_{\lambda_1} \cdot x)] \]

(ii) \[\hat{c}_{V,X}(\alpha x \otimes v) = \hat{c}_{V,X}(\alpha (y^{2}_{\alpha} \cdot (\tilde{t}^2_{\alpha} \cdot v)(0,0)) \otimes \varphi_{\alpha}^{-1}(J^1_{(1,\lambda_1^{-1})}) \varphi_{\alpha}^{-1}(y^{1}_{\lambda_1^{-1}}) \cdot [S_{\lambda_1}^{-1} (J^2_{\lambda_1} - y^{3}_{\lambda_1} (\tilde{t}^2_{\lambda_1} \cdot v)(1,\lambda_1^{-1} \tilde{t}^1_{\lambda_1} \cdot x)] \]

\[\hat{c}_{V,X}(\alpha x \otimes v) = \hat{c}_{V,X}(\alpha (y^{2}_{\alpha} \cdot (\tilde{t}^2_{\alpha} \cdot v)(0,0)) \otimes \varphi_{\alpha}^{-1}(J^1_{(1,\lambda_1^{-1})}) \varphi_{\alpha}^{-1}(y^{1}_{\lambda_1^{-1}}) \cdot [S_{\lambda_1}^{-1} (J^2_{\lambda_1} - y^{3}_{\lambda_1} (\tilde{t}^2_{\lambda_1} \cdot v)(1,\lambda_1^{-1} \tilde{t}^1_{\lambda_1} \cdot x)] \]

Hence \(\hat{c}_{V,X} \circ c_{V,X} = id_{V \otimes X} \). Similarly \(\hat{c}_{V,X} \circ c_{V,X} = id_{X \otimes V} \). Therefore \(\hat{c}_{V,X} \) and \(c_{V,X} \) are inverses.

Secondly for any \(h \in H_{\alpha \lambda} \),
\[h \cdot c^{-1}_{V,X}(\alpha x \otimes v) = h_{(1,\alpha)} \cdot v(0,0) \otimes h_{(2,\alpha)} v(1,\lambda) \cdot x \]

That is, \(c^{-1}_{V,X} \) is \(H_{\alpha \lambda} \)-linear, so is \(c_{V,X} \). The naturality of \(c_{V,X} \) is straightforward to verify.

Next suppose that \(X_1 \) is an \(H_{\lambda_1} \)-module and \(X_2 \) an \(H_{\lambda_2} \)-module for all \(\lambda_1, \lambda_2 \in \pi \), and for any \(x_1 \in X_1, x_2 \in X_2 \),
\[a_{V,X_1, X_2} \circ (c^{-1}_{V,X_1} \otimes X_2) \circ a_{\alpha X_1, V,X_2} \circ (\alpha X_1 \otimes c^{-1}_{V,X_2} \circ a_{\alpha X_1, \alpha X_2, V}(\alpha x_1 \otimes \alpha x_2 \otimes v) \]

\[= T^1_{\lambda_1} \cdot [y^{2}_{\alpha} \cdot (Y^{3}_{\alpha} \cdot v)(0,0)](0,0) \otimes T^2_{\lambda_2} \cdot [y^{2}_{\alpha} \cdot (Y^{3}_{\alpha} \cdot v)(0,0)](1,\lambda_1) Y_{\lambda_1}^{-1} Y_{\lambda_1}^{1} \cdot x_1 \]

\[\otimes T^3_{\lambda_2} y^{2}_{\lambda_2}(Y^{3}_{\alpha} \cdot v)(1,\lambda_2) Y_{\lambda_2}^{1} \cdot x_2 \]

\[= (y^{3}_{\alpha} Y^{3}_{\alpha} \cdot v)(0,0) \otimes (y^{3}_{\alpha} Y^{3}_{\alpha} \cdot v)(1,\lambda_1 \lambda_2) (1,\lambda_1) Y_{\lambda_1}^{1} \cdot x_1 \otimes (y^{3}_{\alpha} Y^{3}_{\alpha} \cdot v)(1,\lambda_1 \lambda_2) (2,\lambda_2) Y_{\lambda_2}^{2} \cdot x_2 \]

\[= v(0,0) \otimes v(1,\lambda_1 \lambda_2)(1,\lambda_1) \cdot x_1 \otimes v(1,\lambda_1 \lambda_2)(2,\lambda_2) Y_{\lambda_2}^{2} \cdot x_2 \]

\[= c^{-1}_{V,X_1 \otimes X_2}(\alpha x_1 \otimes \alpha x_2 \otimes v) \].

9
Let V, W be YD$_\alpha$-modules, $f : V \to W$ be any morphism of YD$_\alpha$-module. For any H_λ-module X and $x \in X$,

$$c_{W,X} \circ (f \otimes \text{id})(v \otimes x) = c_{W,X}(f(v) \otimes x)$$

$$= \alpha[J^1_{(1,\lambda)} y_\lambda^1 S_{\lambda^{-1}}(J^2_{\lambda^{-1}} y_\lambda^2 (\tilde{I}_\alpha \cdot f(v)) (1,\lambda^{-1}) \tilde{I}_\lambda^{-1}) \cdot x] \otimes J^1_{(2,\alpha)} y_\alpha^2 \cdot (\tilde{I}_\alpha \cdot f(v))(0,0)$$

$$= \alpha[J^1_{(1,\lambda)} y_\lambda^1 S_{\lambda^{-1}}(J^2_{\lambda^{-1}} y_\lambda^2 (f(\tilde{I}_\alpha \cdot v)) (1,\lambda^{-1}) \tilde{I}_\lambda^{-1}) \cdot x] \otimes J^1_{(2,\alpha)} y_\alpha^2 \cdot (f(\tilde{I}_\alpha \cdot v))(0,0)$$

$$= \alpha[J^1_{(1,\lambda)} y_\lambda^1 S_{\lambda^{-1}}(J^2_{\lambda^{-1}} y_\lambda^2 (\tilde{I}_\alpha \cdot v)(1,\lambda^{-1}) \tilde{I}_\lambda^{-1}) \cdot x] \otimes J^1_{(2,\alpha)} y_\alpha^2 \cdot f((\tilde{I}_\alpha \cdot v))(0,0)$$

$$= \alpha(\text{id} \otimes f) c_{V,X}(v \otimes x).$$

That is, f is a morphism in $\mathcal{Z}(\text{Rep}(H))$. Finally by similar arguments in [11], we know that F_1 and F_2 are inverses. This completes the proof.

Theorem 2.6. The category YD(H) is isomorphic to the category $\mathcal{Z}(\text{Rep}(H))$. This isomorphism induces the structure of braided T-category on YD(H).

Proof. This isomorphism holds via the functors F_1 and F_2.

Let (V, ρ_V) be a YD$_\alpha$-module and (W, ρ_W) be a YD$_\beta$-module. Suppose that $(V, c_{V,-}) = F_2(V, \rho_V)$ and $(W, c'_{W,-}) = F_2(W, \rho_W)$ and set

$$(V, \rho_V) \otimes (W, \rho_W) = F_1(F_2(V, \rho_V) \otimes F_2(W, \rho_W)) = F_1(V \otimes W, (c \otimes c')_{V \otimes W,-}).$$

For any $v \in V, w \in W$, we have

$$\rho_{V \otimes W,-}(v \otimes w) = ((c \otimes c')_{V \otimes W,H}\lambda^{-1}(\alpha \beta 1 \otimes v \otimes w)$$

$$= a_{V,W,H}^{-1}(V \otimes c_{W,H}^{-1}) \circ a_{V,\beta H,W} \circ (c_{V,\beta H}^{-1} \otimes W) \circ a_{H,H,W}^{-1}(\alpha \beta 1 \otimes v \otimes w)$$

$$= y_a^1 Y_a^1 \cdot (t_{\alpha} a \cdot v)(0,0) \otimes y_\beta^2 \cdot (Y_\beta^2 t_{\beta} \cdot w)(0,0)$$

$$\otimes y_\lambda^3 (Y_\lambda^3 t_{\lambda} \cdot w)(1,\lambda) Y_\lambda^1 \nu_{\beta^{-1}}(t_{\alpha} a \cdot v)(1,\beta \lambda^{-1} t_{\lambda}^1)$$

where

$$(c_{V,\beta H}^{-1} \otimes W)(\alpha \beta t_{\lambda}^1 \otimes t_{\alpha} a \cdot v \otimes t_{\beta}^3 \cdot w)$$

$$= (t_{\alpha} a \cdot v)(0,0) \otimes \beta [\nu_{\beta^{-1}}(t_{\alpha} a \cdot v)(1,\beta \lambda^{-1} t_{\lambda}^1) \otimes t_{\beta}^3 \cdot w].$$

The part concerning the tensor unit of YD(H) is trivial. By similar arguments in [11], we can verify the condition (2.16)–(2.18). This completes the proof.

Acknowledgement

This work was supported by the NSF of China (No. 11371088) and the NSF of Jiangsu Province (No. BK2012736).

10
References

[1] X. Fang and S. Wang, New Turaev braided group categories and group corings based on quasi-Hopf group coalgebras, Comm. Algebra 41(2013), 4195–4226.

[2] L. Liu and S. Wang, Constructing new braided T-categories over weak Hopf algebras, Appl. Category Struct. 18(2010), 431–459.

[3] S. Majid, Quantum double for quasi-Hopf algebras, Lett. Math. Phys. 45(1998), 1–9.

[4] F. Panaite and M. D. Staic, Generalized (anti)-Yetter Drinfled modules as components of a braided T-category, Israel J. Math., 158(2007):349–366.

[5] V. G. Turaev, Homotopy field theory in dimension 3 and crossed group-categories, 2000: GT/0005291.

[6] V. G. Turaev, Crossed group-categories, Arabian Journal for Science and Engineering 33(2008), 483–503.

[7] A. Virelizier, Hopf group-coalgebras, J. Pure Appl. Algebra 177(2002), 75–122.

[8] A. Virelizier, Involutary Hopf group-coalgebras and flat bundles over 3-manifolds, Fund. Math. 188(2005), 241–270.

[9] T. Yang and S. Wang, Constructing new braided T-categories over regular multiplier Hopf algebras, Comm. Algebra 39(2011), 3073–3089.

[10] M. Zunino, Double construction for crossed Hopf coalgebras, J. Algebra 278(2004), 43–75.

[11] M. Zunino, Yetter-Drinfeld modules for crossed structures, J. Pure Appl. Algebra 193(2004), 313–343.