Electronic Supplementary Materials

Unexpected polymerization mechanism of dilignol in the lignin growing

Yasuyuki Matsushita,*a Yuto Oyabu a Dan Aoki a and Kazuhiko Fukushima a

a Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan. E-mail: ysmatsu@agr.nagoya-u.ac.jp

Table of Contents

Fig. S1 NMR spectra of 2 P2
Fig. S2 NMR spectra of 3 P3
Fig. S3 NMR spectra of 4 P4
Fig. S4 NMR spectra of 5 P5
Fig. S5 NMR spectra of 6 P6
Fig. S6 NMR spectra of 8 P7
Fig. S7 NMR spectra of β-5 dilignol II. P8
Fig. S8 NMR spectra of 13C labeled β-5 dilignol 13C-II. P9
Fig. S1 NMR spectra of 2. a, 1H NMR spectrum, b, 13C NMR spectrum.
Fig. S2 NMR spectra of 3. a, 1H NMR spectrum, b, 13C NMR spectrum.
Fig. S3 NMR spectra of 4. a, 1H NMR spectrum, b, 13C NMR spectrum.
Fig. S4 NMR spectra of 5. a, 1H NMR spectrum, b, 13C NMR spectrum.
Fig. S5 NMR spectra of 6. a, 1H NMR spectrum, b, 13C NMR spectrum.
Fig. S6 NMR spectra of 8. a, 1H NMR spectrum, b, 13C NMR spectrum.
Fig. S7 NMR spectra of β-5 dilignol II. a, 1H NMR spectrum, b, 13C NMR spectrum.
Fig. S8 NMR spectra of 13C labeled β-5 dilignol 13C-II. a, 1H NMR spectrum, b, 13C NMR spectrum.