Comprehensive analysis of risk factors associating with Hepatitis B virus (HBV) reactivation in cancer patients undergoing cytotoxic chemotherapy

W Yeo*,1, B Zee1, S Zhong1, PKS Chan2, W-L Wong1, WM Ho1, KC Lam1 and PJ Johnson1

1Department of Clinical Oncology, Sir Y.K. Pao Centre for Cancer, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
2Department of Microbiology, Sir Y.K. Pao Centre for Cancer, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong

For cancer patients with chronic hepatitis B virus (HBV) infection, who receive cytotoxic chemotherapy, HBV reactivation is a well-described complication, which may result in varying degrees of liver damage. Several clinical features and the pre-chemotherapy HBV viral load have been suggested to be associated with an increased risk of developing the condition: (1) to assess the clinical and virological factors in a comprehensive manner and thereby identify those that are associated with the development of HBV reactivation; (2) to develop a predictive model to quantify the risk of HBV reactivation. In all, 138 consecutive cancer patients who were HBV carriers and undergoing chemotherapy were studied, of which 128 patients had sera available for real-time PCR HBV DNA measurement. They were followed up throughout their course of chemotherapy and the HBV reactivation rate was determined. The clinical and virological features between those who did and did not develop viral reactivation were compared. These included age, sex, baseline liver function tests, HBeAg status and viral load (HBV DNA) prior to the chemotherapy, and the use of specific cytotoxic agents. In all, 36 (26%) developed HBV reactivation. Multivariate analysis revealed pre-chemotherapy HBV DNA level, the use of steroids and a diagnosis of lymphoma or breast cancer to be significant factors. Based on real-time HBV DNA PCR assay, detectable baseline HBV DNA prior to the administration of cytotoxic chemotherapy, the use of steroids and a diagnosis of lymphoma or breast cancer are predictive factors for the development of HBV reactivation. A predictive model was developed from the current data, based on a logistic regression method.

British Journal of Cancer (2004) 90, 1306–1311. doi:10.1038/sj.bjc.6601699 www.bjcancer.com
Published online 9 March 2004
© 2004 Cancer Research UK

Keywords: hepatitis B virus reactivation; chemotherapy; risk factors

For cancer patients who have chronic hepatitis B virus (HBV) infection, there is a high rate of hepatic complications during cytotoxic chemotherapy, and this has mainly been attributable to HBV reactivation. The condition is manifested with abnormal liver function tests that show a hepatitic picture, and it is confirmed by raised levels of serum HBV DNA. The clinical spectrum ranges from asymptomatic hepatitis to fatal hepatic failure (Galbraith et al., 1975; Hoofnagle et al., 1982; Lok et al., 1991; Lok et al., 1996; Kumagai et al., 1997; Markovic et al., 1999; Yeo et al., 2000a). However, even in its mildest form with spontaneous recovery, a patient’s prognosis from cancer may still be impaired from the disruption in chemotherapeutic administration with treatment delay, or premature termination of the anticancer therapy. The incidence of HBV reactivation in hepatitis B surface antigen (HBsAg) seropositive cancer patients undergoing cytotoxic chemotherapy has been reported to be 20% or higher (Lok et al., 1991; Lok et al., 1996; Kumagai et al., 1997; Markovic et al., 1999; Yeo et al., 2000a). No preventive measures have been proven to prevent or reduce the incidence of HBV reactivation, although more recent reports have suggested that the prophylactic use of the antiviral agent lamivudine, prior to the start of chemotherapy, may reduce the occurrence of the condition (Rossi et al., 2001; Liao et al., 2002; Lim et al., 2002; Persico et al., 2002; Shibol et al., 2002; Yeo et al., 2002). There has also been concern about the emergence of viral mutant as a result of lamivudine therapy, and, to date, limited data are available on the clinical impact of these mutants in immunosuppressed subjects. Limiting the use of the prophylactic antiviral to patients who are at the highest risk of developing viral reactivation may reduce the potential complication of mutant emergence, and at the same time be more cost-effective.

Despite the wide recognition of HBV reactivation, there is still no consensus as to the associated risk factors. Clinical features such as young age, male sex, the diagnosis of lymphoma and the use of anthracyclines and/or steroids as part of the anticancer therapy have been suggested (Lok et al., 1991; Yeo et al., 2000a), while virological factors such as HBeAg positivity (Yeo et al., 2000a, b) and, more recently, the pre-chemotherapy HBV viral load (Lau et al., 2002) have also been associated.

The objectives of this study were: (1) to assess the clinical and virological factors in a comprehensive manner in order to identify those that are associated with the development of HBV reactivation; and (2) to develop a predictive model to identify patients more likely to develop HBV reactivation.

*Correspondence: Dr W Yeo; E-mail: winniedyo@cuhk.edu.hk
Received 8 August 2003; revised 11 November 2003; accepted 14 November 2003; published online 9 March 2004
PATIENTS AND METHODS

In all, 138 consecutive cancer patients who were chronic HBV carriers and planned for cytotoxic chemotherapy were consented and followed up throughout their course of treatment. The study was approved by the Clinical Research Ethics Committee of the Chinese University of Hong Kong.

Investigations

Prior to study entry, the following investigations were undertaken in all patients: hepatitis B s-antigen (HBsAg). hepatitis B e-antigen/antibody (HBeAg/anti-HBe) HBV DNA level (measured by commercially available Quantiplex HBV DNA assay (bDNA), Chiron, USA), complete blood picture (CBP, which included haemoglobin, red cell count, mean cell volume, white cell count and differential and platelet count), renal function tests (RFT, which included sodium, potassium, urea, creatinine and creatinine clearance), liver function test (LFT, which included total protein, albumin, total bilirubin, alanine transaminase, alkaline phosphatase) and clotting profile. In addition, one 3-ml serum sample was collected for later retrospective analysis of HBV DNA by a real-time PCR assay (Zhong et al., in press).

During the course of chemotherapy, on days 1 and 10 of each cycle, CBP, clotting profile, RFT and LFT were monitored together with clinical signs and symptoms. Monitoring of these parameters was continued for 8 weeks after completion of chemotherapy.

When a patient was found to have developed hepatitis (as defined below) during the course of chemotherapy, HBV DNA was performed (measured by Quantiplex bDNA assay), with immunoglobulin M (IgM) antibody to hepatitis A virus (IgM anti-HAV), HCV RNA, anti-HDV, ANA and other investigations as clinically indicated.

Hepatitis serology

Hepatitis A, B and D markers were detected by commercial enzyme immunoassays (Cobas Core Anti-HAV IgM ELA, Roche Diagnostics GmbH, Deutschland; Auszyme MC Dynamic (HBsAg), Abbott Laboratories, USA; Cobas Core Anti-HBc IgM ELA, Roche Diagnostics GmbH, Deutschland; MONOLISA HBe, Sanofi Diagnostics Pasteur, USA; Abbott Anti-Delta ELA, Abbott Laboratories, USA). HCV RNA was detected by reverse transcription polymerase chain reaction using primers 209, 211, 939 and 940 as previously described (Chan et al., 1992).

For routine use including establishment of the diagnosis of HBV reactivation, HBV DNA level was measured by using the branched DNA hybridisation assay (Quantiplex HBV DNA assay (bDNA), Chiron, USA), which has a lower detection limit of 0.7 × 10^6 genome equivalent ml⁻¹.

Real-time HBV DNA PCR assay

For the purpose of assessing the impact of viral load on HBV reactivation, we used the real-time PCR to quantify serum HBV DNA, which has a lower detection limit for HBV DNA of 2.9 × 10^6 g.e. ml⁻¹ (Zhong et al., in press). In total, 128 patients had sera available for real-time PCR analysis and these were tested in a single batch. Their serum samples were separated as soon as the blood was coagulated and stored at −80°C in RNase-free tubes.

Isolation of nucleic acids was performed using the High Pure Viral Nucleic Acid Kit (Roche, Mannheim, Germany). For each isolation, 200 μl of serum was used resulting in 50 μl of nucleic acid extract. For HBV DNA quantification by real-time PCR, PCR amplification was performed with PCR primers located at regions that are universally conserved among the six HBV genotypes (A–F) corresponding to the HBV X gene. The oligonucleotide sequences of primers were: ttx5 (1434–154), TCT CAT CTG CGG AAC CGT GT; xas1 (1668–148), AAT TTA TGC TTA CAG CCT CT. A volume of 5 μl equivalent of serum was used for real-time amplification in a final 10 μl reaction volume, using 1 × Fast Start SYBR Green I Master Mix (Roche), MgCl₂ (4 mM) and 0.3 μM concentration of each primer. The amplification procedure, utilising the LightCycler instrument (Roche), was as follows: 95°C for 10 min, followed by 45 cycles of 95°C for 15 s, 57°C for 10 s and 72°C for 12 s, followed by denaturation of amplification samples by slow increase of temperature (0.1°C s⁻¹) up to 95°C.

Definition of HBV reactivation

The following definitions, based on a definition of Lok et al. (1991), and subsequently modified by us (Yeo et al., 2000a), were applied. ‘Hepatitis’ was defined as a threefold or greater increase in serum ALT level that exceeded the reference range (>58 iu l⁻¹) or an absolute increase of ALT to over 100 iu l⁻¹. ‘HBV reactivation’ was defined as either one of the following: using the Quantiplex bDNA assay, Chiron assay, an increase in HBV DNA levels of 10-fold or greater when compared with the baseline level, or an absolute increase of HBV DNA level that exceeded 1000 × 10^6 g.e. ml⁻¹ during chemotherapy, in the absence of clinical or laboratory features of acute infection with hepatitis A, C and delta virus or other systemic infections.

Comprehensive assessment of the clinical and virological factors in association with the development of HBV reactivation

Among the 128 patients who had sera available for the real-time PCR analysis for HBV DNA, the following factors were compared between those who did and those who did not develop viral reactivation: age, sex, tumour type, use of steroids, anthracyclines and 5-fluorouracil, pre-chemotherapy liver functions (albumin, total bilirubin and alanine transaminase), HBeAg status, HBV DNA using real-time PCR measurement.

Statistical methods

Univariate analysis for detecting significant prognostic factors for HBV reactivation was done using χ² test or Fisher’s exact test. Prognostic factors for HBV reactivation were then determined by multivariate analysis using a stepwise logistic regression model based on a backward elimination procedure for model selection, with a significance level of <0.1 for a factor to enter into the logistic model; the same significance level was used to retain variables in the final model. A predictive model was obtained using the parameters of the final logistic model. The classification to the HBV reactivation group was based on the probability estimate from the logistic model, where an optimal cutoff point was determined using the ROC curve technique; the ROC curve refers to the receiver operating characteristic curve, which is a plot of the true-positive rate vs false-positive rate associated with the classification rules for all possible choices of critical values (Hanley, 1989).

RESULTS

In all, 36 patients were determined to have developed HBV reactivation (the ‘reactivation’ group) and 92 patients were determined not to have HBV reactivation (the ‘non-reactivation’ group) (Table 1).

There were 56 males and 72 females; 16 (28.6%) males and 20 (27.8%) females developed HBV reactivation (P = 1.000). Between the ‘reactivation’ and the ‘non-reactivation’ groups, the median ages were 46.5 and 49.0 years, respectively (P = 0.265). There were 39 patients with breast cancer, 29 with gastrointestinal
malignancies, 17 head and neck cancers, 13 lung cancers, 12 non-Hodgkin’s lymphoma and 18 other malignancies. Among these patients, 16 who had breast cancers (41.0% of the patients with this tumour type, \(P = 0.053\)), seven non-Hodgkin’s lymphoma (58.3%, \(P = 0.037\)), two gastrointestinal malignancies (6.9%, \(P = 0.0041\)), five head and neck (29.4%, \(P = 1.000\)), three lung cancers (23.1%, \(P = 1.000\)) and three (16.6%, \(P = 0.396\)) with other malignancies developed viral reactivation.

Of the 128 patients, 15 were HBeAg positive, of which four (26.7%) developed reactivation, while 32 of the 113 (28.3%) patients who were HBeAg negative/anti-HBe positive developed the condition (\(P = 1.000\)). Using the real-time PCR assay, 82 patients were detected to have HBV DNA, 31 (37.8%) of whom developed reactivation; in contrast, only five of the 41 (10.9%) patients who had undetectable HBV DNA developed the condition (\(P = 0.001\)).

There was no statistically significant difference in baseline liver function in terms of ALT, bilirubin and albumin between the two groups of patients. Out of 56 patients, 22 (39%) received steroids and developed reactivation; while 14 of 72 patients who did not receive the agent developed the condition (\(P = 0.017\)). Out of 41 patients, 19 (46.34%) received anthracyclines and developed reactivation, while 17 of the 87 (19.54%) patients who had no anthracyclines developed the condition (\(P = 0.0029\)). With respect to 5-fluorouracil, 61 received the drug, among whom 14 (23%) developed reactivation, while 22 of 67 patients (33%) who did not receive the agent developed the condition (\(P = 0.2419\)).

On multivariate analysis, the factors that were significantly associated with a higher risk of developing HBV reactivation were detectable HBV DNA levels based on real-time PCR measurement (\(P = 0.0003\), Odds ratio of 8.4 with 95% CI from 2.6 to 27.2), the use of steroid (\(P = 0.0465\), OR of 2.7 with 95% CI from 1.0 to 7.2), a diagnosis of lymphoma (\(P = 0.0419\), OR of 5.0 with 95% CI from 1.1 to 23.5) and breast cancer (\(P = 0.0041\), OR of 4.2 with 95% CI from 1.6 to 11.0).

Predictive model development

A predictive model was determined using the final logistic regression model, as shown in Table 2. The following is the

Characteristics of the 128 HBsAg seropositive cancer patients undergoing cytotoxic chemotherapy	Patients who had hepatitis B viral reactivation during chemotherapy	Patients who did not develop hepatitis B viral reactivation during chemotherapy	P-value
Total no. of patients	36	92	1.0000
Sex*			
Male	16 (28.6%)	40 (71.4%)	
Female	20 (27.8%)	52 (72.2%)	
Median age (years)			0.2654
Range	46.5	49	
Tumour type*			
Breast cancers	16 (41.0%)	23 (59.0%)	1.0000
Lymphomas	7 (18.9%)	5 (41.7%)	0.0041
Gastrointestinal cancers	2 (6.9%)	27 (93.1%)	
Head and neck cancers	5 (29.4%)	12 (70.6%)	0.0041
Lung cancers	3 (23.1%)	10 (76.9%)	
Other cancers	3 (16.6%)	15 (83.4%)	
Pretreatment (baseline) biochemistry:			
Median ALT levels (normal <58 iu l\(^{-1}\))	35 (range: 12–77)	27 (range: 10–96)	0.1025
Median total bilirubin levels (normal <15 \(\mu\)mol l\(^{-1}\))	7 (range: 2–26)	7 (range: 1–108)	0.9639
Median albumin levels (normal >40 g l\(^{-1}\))	35 (range: 22–43)	36 (range: 20–47)	0.8421
Use of anthracyclines			0.0029
Yes	19 (46.3%)	22 (53.7%)	
No	17 (19.5%)	70 (80.5%)	
Use of steroids			0.0174
Yes	22 (39.3%)	34 (61.2%)	
No	14 (19.4%)	58 (80.6%)	
Use of fluorouracil			0.2419
Yes	14 (23.0%)	47 (77.0%)	
No	22 (32.8%)	45 (67.2%)	
HBeAg status*			1.0000
Positive	4 (26.7%)	11 (73.3%)	
Negative	32 (28.3%)	81 (71.7%)	
HBV DNA-real-time PCR assay*			0.0010
Detectable	31 (37.8%)	51 (62.2%)	
Undetectable	5 (10.9%)	41 (89.1%)	

*Fisher’s exact two-sided test.
Risk factors of HBV reactivation during chemotherapy

W Yeo et al

Table 2 Logistic regression model

Parameter	Odds ratio	95% confidence interval
Intercept	3.6589	(0.6, 21.5)
Lymphoma (x1)	1.6086	(1.0, 25.3)
Breast (x2)	1.4264	(0.9, 11.0)
Steroid (x3)	0.9939	(0.8, 27.1)
HBV PCR (x4)	1.3399	(8.4, 27.1)

Figure 1 Logistic model with PCR_HBV, steroid, lymphoma and breast sites.

The mathematical formula that can be programmed into a personal computer or programmable calculator:

\[
\log \left(\frac{p_R}{1-p_R} \right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4
\]

where \(p_R \) is the probability of HBV reactivation, \(x_1, x_2, x_3 \) and \(x_4 \) are indicator variables for the presence of lymphoma (presence = 1, absence = 0), breast cancer (presence = 1, absence = 0), the use of steroids (presence = 1, absence = 0) and HBV virology load determined by PCR (detectable = 1; not detectable = 0). The parameters \(\beta_0, \beta_1, \beta_2, \beta_3, \beta_4 \) are parameters whose values are given in Table 2. We would classify a patient to the group with a higher likelihood of developing HBV reactivation if the estimated \(p_R \) from the above logistic model is higher than 0.3. A sensitivity of 75% and a specificity of 79.3% were obtained based on a cutoff point of 0.3 for the predictive probability of the logistic model. This optimal predictive probability cutoff point was determined using the ROC curve method (Figure 1).

DISCUSSION

Hepatitis B virus reactivation during cytotoxic chemotherapy is a particularly important clinical issue in areas of the world such as China, where chronic HBV infection is endemic. With the increasing incidence of neoplastic diseases (Lok et al., 1991), and the more widespread use of cytotoxic chemotherapy, the occurrence of HBV reactivation is likely to increase further.

In this study, the identified risk factors included detectable pre-chemotherapy HBV DNA load (using real-time PCR measurement), the use of steroids, a diagnosis of lymphoma or breast cancer, another suggested factor being the use of anthracyclines. Previous studies have reported factors including male sex (Liao et al., 1987; Liang et al., 1990; Lok et al., 1991), younger age (Yeo et al., 2000a), HBeAg positivity (Lok et al., 1991; Yeo et al., 2000a, b) and the presence of lymphoma (Yeo et al., 2000a). Although the reason remains unknown, male sex has consistently been reported to be a risk factor for the exacerbation of chronic HBV infection in cancer patients undergoing chemotherapy, as well as in non-cancer subjects (Lian et al., 1987; Liang et al., 1990; Lok et al., 1991). Although HBeAg positivity in immunocompromised cancer patients appears to be a risk factor for HBV reactivation (Liang et al., 1990; Yeo et al., 2000b), this has not been found to be universally the case (Lok et al., 1991; Nakamura et al., 1996), and an increased risk may be partly attributed to the presence of the core/core promoter HBV mutant (i.e. HBeAg negative/anti-HBe positive), which had been associated with severe fulminant hepatic failure (Omata et al., 1991; Liang et al., 1993; Eihata et al., 1993; Nakamura et al., 1996; Steinberg et al., 2000; Yeo et al., 2000a, b). In addition, consistent with other reports, the baseline (pretreatment) liver function including ALT, total bilirubin and albumin levels did not appear to be associated with the development of HBV reactivation.

Certain limitations are noted in this study. Of the 82 patients found to have detectable HBV DNA on real-time PCR assay, 67 were HBeAg seronegative, and the existence of precore mutants was not analysed. In addition, the diagnosis of HBV reactivation based on HBV DNA measurement upon the development of hepatitis could be suboptimal in two aspects. First, the commercially available assay (Quantiplex bDNA assay) used was relatively less sensitive, with a lower detection limit of 0.7 x 10^3 g.e. ml^-1.1^ Secondly, in the absence of serial monitoring HBV DNA, the true incidence of viral reactivation might have been underestimated, as the rise in HBV DNA might have preceded overt hepatitis in some cases (Yeo et al., 2001).

Several chemotherapeutic agents have been reported to be associated with the development of HBV reactivation in cancer patients. Apart from steroids and anthracyclines, other drugs that have been reported included vincristine, bleomycin, etoposide, methotrexate, actinomycin D, mercaptopurine, azathioprine, chlorambucil, cytosine arabinoside, leucovorin, cisplatin and gemcitabine (Galbraith et al., 1975; Hoofnagle et al., 1982; Thung et al., 1985; Bird et al., 1989; Lau et al., 1989; Liang et al., 1990; Pinto et al., 1990; Lok et al., 1991; Soh et al., 1992; Nakamura et al., 1996; Wong et al., 1996; Yeo et al., 2000a). In the present study, it is interesting to find that the use of steroids was an associated risk factor on multivariate analysis. Patients with lymphoma have more frequently been reported to develop HBV reactivation (Lok et al., 1991; Omata et al., 1991; Nakamura et al., 1996; Yeo et al., 2000a), and a recent report on breast cancer patients receiving chemotherapy has shown the viral reactivation rate to be as high as 41% (Yeo et al., 2003). The type of treatment and the type of tumour may be inter-related factors. Since disease site confounded with the use of certain cytotoxic agents, a separate stepwise logistic regression model without disease site was used for further analysis. The logistic model without considering the disease site revealed that anthracyclines (\(P = 0.0662, \) OR 2.44, 95% CI from 0.94 to 6.32), as well as steroids (\(P = 0.0557, \) OR 2.56, 95% CI from 0.98 to 6.69) and detectable HBV DNA (\(P = 0.0011, \) OR of 6.25, 95% CI from 2.08 to 18.8) were significant factors. Steroids and anthracyclines are commonly used as part of the cyclophosphamide/adriamycin/vincristine/prednisolone regimen (CHOP) regimen for patients with non-Hodgkin’s lymphoma; they also constitute adriamycin/cyclophosphamide (AC) combination chemotherapy commonly used for breast cancer patients (where steroid is generally administered in the anti-emetic pre-medication). Indeed, anthracyclines have mainly been administered to patients with non-Hodgkin’s lymphoma and breast cancer (Table 3). Although it is generally accepted that CHOP is an immunosuppressive regimen, only 4% of Western breast cancer patients receiving AC developed severe immunosuppression (Fisher et al., 1990). However, recent data from Chinese breast cancer patient population revealed the
In the context of chemotherapy, the degree of immunosuppression can be a significant factor in the reactivation of HBV. This is particularly relevant in patients undergoing cytotoxic therapy, where the combination of multiple chemotherapeutic agents can lead to a more profound immune suppression. The study by Lau et al. (2002) highlights the importance of the degree of immunosuppression in predicting HBV reactivation.

Using real-time PCR assays, this study demonstrated that detectable HBV DNA load prior to chemotherapy was a significant predictive factor for viral reactivation. The combination of baseline HBV viral load (using real-time PCR) and clinical features provided a more sensitive and specific method for identifying patients at risk. The use of prophylactic lamivudine, an antiviral nucleotide analogue, was shown to be effective in reducing the incidence of HBV reactivation (Rossi et al., 2001; Liao et al., 2002; Lim et al., 2002; Persico et al., 2002; Shibolet et al., 2002; Yeo et al., 2002). The proposed model may aid in identifying high-risk patients who stand to benefit most from the antiviral, which could in turn be administered in a cost-effective manner.

REFERENCES

Bird GL, Smith H, Portmann B, Alexander GJ, Williams R (1989) Acute liver decompensation on withdrawal of cytotoxic and immunosuppressive therapy in hepatitis B carriers. J Infect Dis 159: 795–802

Chan SW, McOmish F, Holmes EC, Dow B, Peutherer JF, Follett E, Yap PL, Marsden H (1992) Analysis of a new hepatitis C virus type and its phylogenetic relationship to existing variants. J Gen Virol 73: 1131–1141

Ehata T, Omata M, Chuang WL, Yokosuka O, Ito Y, Hosoda K, Ohto M (1993) Mutations in the core nucleoside sequence of hepatitis B virus correlate with fulminant and severe hepatitis. J Clin Invest 91: 1206–1213

Fisher B, Brown AM, Dimitrov NV, Poisson R, Redmond C, Margoese RG, Bowman D, Wolmark M, Wickerham DL, Kardinal CG (1990) Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with six months of cyclophosphamide, methotrexate and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from the National Surgical Adjuvant Breast and Bowel Project B-15. J Clin Oncol 8(9): 1438–1446

Galbraith RM, Eddleston AL, Williams R, Zuckerman AJ, Bagshawe KD (1975) Fulminating hepatic failure in leukemia and choriocarcinoma related to withdrawal of cytotoxic drug therapy. Lancet 2: 528–530

Hanley JA (1989) Receiver operating characteristic (ROC) methodology: the state of the art. Crit Rev Diagn Imaging 29: 307–335

Hoofngale JH, Dusheiko GM, Schafer DF, Jones EA, Mictech KC, Young RC, Costa J (1982) Reactivation of chronic hepatitis B virus infection by cancer chemotheraphy. Ann Intern Med 96: 447–449

Kumagai K, Takagi T, Nakamura S, Sawada U, Kura U, Kodama F, Shimano S, Kudoh I, Nakamura H, Sawada K, Ohnoshii T (1997) Hepatitis B virus carriers in the treatment of malignant lymphomas: an epidemiological study in Japan. Ann Oncol 8: 107–109

Lau GK, Leung YH, Fong DY, Au WY, Kwong YL, Lie A, Hou JL, Wen YM, Nanj A, Liang R (2002) High hepatitis B virus (HBV) DNA viral load as the most important risk factor for HBV reactivation in patients positive for HBV surface antigen undergoing autologous hematopoietic cell transplantation. Blood 99(7): 2324–2330

Lau VYN, Lai CL, Lin HJ, Lok ASF, Liang R, Wu PC, Chan TK, Todd D (1989) Fatal reactivation of chronic hepatitis B virus infection following withdrawal of chemotherapy in lymphoma patients. J Med 73: 911–917

Liang R, KS, Lai ASF, Lai CL, Chan TK, Todd O, Chiu EKW (1990) Hepatitis B virus infection in patients with lymphomas. Hematol Oncol 8: 261–270

Liang TL, Hasegawa K, Munoz SJ, Shapiro CN, Yoffe B, McMahon BJ, Feng C, Bei H, Alter MJ, Dienstag JL (1994) Hepatitis B virus pre-core mutation and fulminant hepatitis in the United States. J Clin Invest 93: 950–955

Liao CA, Lee CM, Wu HG, Wang MC, Lu SN, Eng HL (2002) Lamivudine for the treatment of hepatitis B virus reactivation following chemotherapy for non-Hodgkin's lymphoma. Br J Haematol 116(1): 166–169

Liaw YF, Tai DI, Chu CM, Pao CC, Chen TJ (1987) Acute exacerbation in chronic type of B hepatitis: comparison between HBeAg and antibody positive patients. Hepatology 7: 20

Lim LL, Wai CT, Lee YM, Kong HL, Lim R, Koay E, Lim SG (2002) Prophylactic lamivudine prevents hepatitis B reactivation in chemotherapy patients. Aliment Pharmacol Ther 16(11): 1919–1944

Lok ASF, Liang R, Chiu EKW, Wong KL, Chan TK, Todd D (1991) Reactivation of hepatitis B virus replication in patients receiving cytotoxic therapy. Report of a prospective study. Gastroenterology 100: 182–188

Ma B, Yeo W, Hui P, Ho WM, Johnson PJ (2002) Acute toxicity of adjuvant doxorubicin and cyclophosphamide for early breast cancer – a retrospective review of Chinese patients and comparison with a historic Western series. Radiother Oncol 62(2): 185–189

Markovic S, Drzozina G, Vovk M, Fidler-Jenko M (1999) Reactivation of hepatitis B but not hepatitis C in patients with malignant lymphoma and ACKNOWLEDGEMENTS

We thank research nurse Miss Jam Jun Lee and secretary Miss Candy Ho for their support in data collection.
immunosuppressive therapy. A prospective study in 305 patients. Hepatogastroenterology 46[29]: 2925–2930
Nokamura Y, Motokura T, Fujita A, Yamashita T, Ogata E (1996) Severe hepatitis related to chemotherapy in hepatitis B virus carriers with hematologic malignancies. Survey in Japan, 1987–1991. Cancer 78: 2210–2215
Omata M, Etha T, Yokosuka O, Hosoda K, Ohto M (1991) Mutations in the pre-core region of hepatitis B virus DNA in patients with fulminant and severe hepatitis. N Engl J Med 324: 1699–1704
Persico M, De Marino F, Russo GD, Severino A, Palmentieri B, Picardi M, Morante A, Rotoli B, Torella R, De Renzo A (2002) Efficacy of lamivudine to prevent hepatitis reactivation in hepatitis B virus-infected patients treated for non-Hodgkin lymphoma. Blood 99(2): 724–725
Pinto PC, Hu E, Bernstein-Singer M, Pinter-Brown L, Govindarajan S (1990) Acute hepatic injury after withdrawal of immunosuppressive chemotherapy in patients with hepatitis B. Cancer 65: 878–884
Rossi G, Pelizzari A, Motta M, Puoti M (2001) Primary prophylaxis with lamivudine of hepatitis B virus reactivation in chronic HBsAg carriers with lymphoid malignancies treated with chemotherapy. Br J Haematol 115(1): 58–62
Shibote O, Ilan Y, Gillis S, Hubert A, Shouval D, Safadi R (2002) Lamivudine therapy for prevention of immunosuppressive-induced hepatitis B virus reactivation in hepatitis B surface antigen carriers. Blood 100: 391–396
Soh LT, Ang PT, Sng I, Chua EJ, Ong YW (1992) Fulminant hepatic failure in non-Hodgkin’s lymphoma patients treated with chemotherapy. Eur J Cancer 28A: 1338–1339
Steinberg JL, Yeo W, Zhong S, Chan JYH, Tam JS, Chan PKS, Leung NWY, Johnson PJ (2000) Hepatitis B virus reactivation in patients undergoing cytotoxic chemotherapy for solid tumours: precore/core mutations may play an important role. J Med Virol 60: 249–255
Thung SN, Gerber MA, Klion F, Gilbert H (1985) Massive hepatic necrosis after chemotherapy withdrawal in a hepatitis B carrier. Arch Intern Med 145: 1313–1314
Wong GC, Tan P, Goh YT, Ng HS, Lee LH (1996) Exacerbation of hepatitis in hepatitis B carriers following chemotherapy for haematological malignancies. Annals of the Academy of Medicine. Singapore 25: 500–503
Yeo W, Chan PKS, Chan HLY, Mo FKF, Johnson PJ (2001) Hepatitis B virus reactivation during cytotoxic chemotherapy-enhanced viral replication precedes overt hepatitis. J Med Virol 65: 473–477
Yeo W, Chan PKS, Hui P, Ho WM, Lam KC, Kwan WH, Zhong S, Johnson PJ (2003) Hepatitis B virus reactivation in breast cancer patients undergoing cytotoxic chemotherapy: a prospective study. J Med Virol 70: 553–561
Yeo W, Chan PKS, Zee B, Ho WM, Lam KC, Hui P, Mok TSK, Chan ATC, Zhong S, Leung WT, Lei KIK, Johnson PJ (2002) Lamivudine prevents hepatitis B reactivation in HBV carriers undergoing cytotoxic chemotherapy – a prospective study. Program/Proc Am Soc Clin Oncol 21: 362a
Yeo W, Chan PKS, Zhong S, Ho WM, Steinberg JL, Tam JS, Hui P, Leung NWY, Zee B, Johnson PJ (2000a) Frequency of hepatitis B virus reactivation in cancer patients undergoing cytotoxic chemotherapy: a prospective study of 626 patients with identification of risk factors. J Med Virol 62: 299–307
Yeo W, Zhong S, Chan PKS, Ho WM, Wong HTM, Chan ASK, Johnson PJ (2000b) Sequence variations of precore/core and precore promoter regions of hepatitis B virus in patients with or without viral reactivation during cytotoxic chemotherapy. J Viral Hepatitis 7: 448–458
Zhong S, Yeo W, Schroder G, Chan PKS, Wong WL, Ho WM, Mo F, Zee B, Johnson PJ (2004) High hepatitis B virus (HBV) DNA viral load is an important risk factor for HBV reactivation in breast cancer patients undergoing cytotoxic chemotherapy. J Viral Hepatitis 11: 55–59