A continuity method to construct canonical metrics

Gabriele La Nave
University of Illinois

Gang Tian*
Beijing University and Princeton University

Contents

1 Introduction 1
2 Maximal solution time 2
3 Proof of Theorem 1.2 6
4 Analytic Minimal Model Program revisited 8

1 Introduction

The Kähler-Ricci flow has played a fundamental role in the Analytic Minimal Model Program. There has been quite a bit of progresses and many very important results have been proven (e.g., [TZ06], [ST07], [ST08] et al). In this short paper, we introduce a new continuity method which provides an alternative way of carrying out the Analytic Minimal Model Program. This method may not be as natural as the Kähler-Ricci flow, but it has the advantage of having Ricci curvature bounded from below along the deformation, so many existing analytic tools, such as the compactness theory of Cheeger-Colding-Tian for Kähler manifolds and the partial C^0-estimate, can be applied.

Assume that M is a compact Kähler manifold with a Kähler metric ω_0. We consider the 1-parameter family of equations:

$$\omega = \omega_0 - t \text{Ric}(\omega).$$ \hspace{1cm} (1.1)

Clearly, the Kähler classes vary according to the linear relation: $[\omega] = [\omega_0] - t c_1(M)$, where $[\omega] \in H^2(M, \mathbb{R}) \cap H^{1,1}(M)$ denotes the Kähler class of ω.

*Supported partially by grants from NSF and NSFC
Our first theorem is:

Theorem 1.1. For any initial Kähler metric ω_0, there is a smooth family of solutions ω_t for (1.1) on $M \times [0, T)$, where

$$T = \sup \{ t \mid [\omega_0] - t c_1(M) > 0 \}.$$

(1.2)

This is an analogue of the sharp local existence theorem for the Kähler-Ricci flow due to Z. Zhang and the second author [TZ06] and it is not hard to prove.

If $T < \infty$, we need to examine the limit of ω_t as t tends to T. In general, this is highly non-trivial. However, we can still prove the following:

Theorem 1.2. Assume that $T < \infty$ and $([\omega_0] - T c_1(M))^n > 0$, where $n = \dim C M$, then ω_t converge to a unique weakly Kähler metric ω_T such that ω_T is smooth on $M \setminus S$, where S is a subvariety, and satisfies:

$$\omega_T = \omega_0 - T \Ric(\omega_T) \text{ on } M \setminus S.$$

(1.3)

Furthermore, S is the base locus of $[\omega_0] - T c_1(M)$, i.e., the set of points where $[\omega_0] - T c_1(M)$ fails to be positive.

For any ω_t above $(t < T)$, we have

$$\Ric(\omega_t) = t^{-1} (\omega_0 - \omega_t) \geq t^{-1} \omega_t.$$

In particular, the Ricci curvature of ω_t is bounded from below near T. We do expect a uniform bound on the diameter of ω_t for any $t \in (0, T)$ even if $T = \infty$. If so, by taking subsequences if necessary, we may assume that (M, ω_t) converge to a length space (M_T, d_T) in the Gromov-Hausdorff topology. Then one should be able to further prove that (M_T, d_T) is the metric completion of $(M \setminus S, \omega_T)$.

If $T = \infty$, we expect that ω_t, after appropriate scaling, converge to a weakly Kähler-Einstein metric or a generalized Kähler-Einstein metric – introduced by Song and the second author in [ST08] – on the canonical model of M. In fact, if $(-c_1(M))^n > 0$, we can verify this by using the same arguments in the proof of Theorem 1.2 (see Section 3).

The organization of this paper is as follows: In the next section, we prove Theorem 1.1 by using standard arguments for complex Monge-Ampère equations. In Section 3, we prove Theorem 1.2. In Section 4, we describe the Analytic Minimal Model Program by using this new continuity method. This is parallel to what has been done for the Kähler-Ricci flow (see [Ti02], [Ti07], [ST07] and [ST08]). We will also propose a number of problems for carrying out the program.

2 Maximal solution time

In this section, we prove Theorem 1.1. First we reduce (1.1) to a scalar equation. Choose a real closed $(1, 1)$ form ψ representing $c_1(X)$ and a smooth volume form
\(\Omega\) such that \(\text{Ric}(\Omega) = \psi\). This \(\Omega\) is unique up to multiplication by a positive constant.

Set \(\tilde{\omega}_t = \omega_0 - t\psi\) for \(t \in [0, T]\). One can easily show that \(\omega = \tilde{\omega}_t + t\sqrt{-1}\partial\bar{\partial}u\) satisfies (1.1) if \(u\) satisfies

\[
(\tilde{\omega}_t + t\sqrt{-1}\partial\bar{\partial}u)^n = e^{u}\Omega, \tag{2.1}
\]

where \(\tilde{\omega}_t + t\partial\bar{\partial}u > 0\). This equation depends on the choice of \(\psi\), but if we choose a different representative \(\tilde{\psi}\) of \(c_1(M)\), (2.1) changes in a simple way: Write \(\hat{\psi} = \psi + \sqrt{-1}\partial\bar{\partial}v\) and \(\hat{\omega}_t = \omega_0 - t\hat{\psi}\), then for any solution \(u\) of (2.1), \(\hat{u} = u - v\) solves

\[
(\hat{\omega}_t + t\sqrt{-1}\partial\bar{\partial}\hat{u})^n = e^{\hat{u}}\hat{\Omega}, \tag{2.2}
\]

where \(\hat{\Omega}\) is a volume form satisfying:

\[
\text{Ric}(\hat{\Omega}) = \hat{\psi}, \quad \int_M e^u\Omega = \int_M e^v\hat{\Omega}.
\]

This shows that the solvability of (2.1) is independent of the choice of \(\psi\).

On the other hand, it follows from the definition of \(T\) that for any \(\tilde{t} < T\), there is a \(\psi\) such that \(\omega_0 - \tilde{t}\psi > 0\). Thus, in order to prove Theorem 1.1, we only need to prove that (2.1) is solvable for such a \(\psi\) and any \(t \in [0, \tilde{t}]\). Put

\[
E = \{t \in [0, \tilde{t}] \mid (2.1) \text{ has a solution}\}.
\]

Clearly, \(0 \in E\) since \(u = \log(\frac{s}{t})\) is an obvious solution. So \(E\) is non-empty.

Lemma 2.1. The set \(E\) is open.

Proof. Assume that \(t_1 \in E\) and \(u_1\) be a solution of (2.1) with \(t = t_1\). We want to solve (2.1) for \(t\) close to \(t_1\). If \(t_1 > 0\), that is readily done. Write \(tu = t_1u_1 + w\) for some small \(w\). Then (2.1) becomes

\[
(\omega_1 - (t - t_1)\psi + \sqrt{-1}\partial\bar{\partial}w)^n = e^{\tilde{\psi} + \frac{(t - t_1)}{1}(\tilde{\omega}_1^n - u_1^n)},
\]

where \(\omega_1 = \omega_0 - t_1\psi + t_1\sqrt{-1}\partial\bar{\partial}u_1\). In fact, \(\Omega = e^{-u_1}\omega_1^n\) and \(\omega_2 = \omega_0 - t_1\psi - (t - t_1)\psi + \sqrt{-1}\partial\bar{\partial}(t_1u_1 + w) = \omega_1 - (t - t_1)\psi + \sqrt{-1}\partial\bar{\partial}w\) and finally we have used that \(e^{u}\Omega = e^{u_1}\omega_1^n\). Naturally, one still has that \(\omega_1 - (t - t_1)\psi > 0\) for \(t - t_1\) sufficiently small, and therefore, setting \(\tilde{\omega}_1 := \omega_1 - (t - t_1)\psi > 0\) and choosing \(F\) such that \(\tilde{\omega}_1^n = e^{F}\omega_1^n\), one can write the equation above as:

\[
(\tilde{\omega}_1 + \sqrt{-1}\partial\bar{\partial}w)^n = e^{\frac{(t - t_1)}{1}(\tilde{\omega}_1^n - u_1^n)} - F\tilde{\omega}_1^n,
\]

From now on, for the sake of notation we shall write \(\omega_1\) instead of \(\tilde{\omega}_1\).

Expanding in \(w\), we get

\[
\Delta_1 w - t^{-1}w = \frac{u_1(t_1 - t)}{t} + Q(\nabla^2 w),
\]

3
where Δ_1 denotes the Laplacian of ω_1 and $Q(a)$ denotes a polynomial in a starting with a quadratic term. Applying the Implicit Function Theorem, one can easily solve the above equation for w, consequently u, for $t-t_1$ sufficiently small.

If $t_1 = 0$, we need to work a bit more carefully since the left side of (2.1) is degenerate. Write
\[
u = \log \left(\frac{\omega^n_0}{\Omega} \right) + t^{-1}w.
\]
Then (2.1) becomes
\[
\Delta_0 w - t^{-1}w = -t \Delta_0 \log \left(\frac{\omega^n_0}{\Omega} \right) + Q \left(t \nabla \log \left(\frac{\omega^n_0}{\Omega} \right) + \nabla^2 w \right),
\]
where Δ_0 is the Laplacian of ω_0. Put
\[
A = \left\| \Delta_0 \log \left(\frac{\omega^n_0}{\Omega} \right) \right\|_{C^{1/2}}.
\]

Claim: There is a uniform constant C such that for any $f \in C^{1/2}$, there is a solution v satisfying:
\[
\Delta_0 v - t^{-1}v = tf \quad \text{and} \quad t^{-1}||v||_{C^0} + ||v||_{C^{1/2}} \leq C t^{1/2} ||f||_{C^{1/2}}.
\]

Proof. Let us prove this claim. First by the Maximum Principle, $|v| \leq At^2$, with $A := ||f||_{\infty}$. Then by standard elliptic theory, $||v||_{C^1} \leq C't$. We can deduce from these: $t^{-1}||v||_{C^{1/2}} \leq C''t^{1/2}$. Then by elliptic theory again, we get $||v||_{C^{1/2}} \leq C'''t^{1/2}$. The claim is proved. \hfill \square

Now we can complete the proof of this lemma by standard iteration: Set $w_0 = 0$ and construct w_i for $i \geq 1$ by solving the equation:
\[
\Delta_0 w_i - t^{-1}w_i = -t \Delta_0 \log \left(\frac{\omega^n_0}{\Omega} \right) + Q \left(t \nabla \log \left(\frac{\omega^n_0}{\Omega} \right) + \nabla^2 w_{i-1} \right),
\]
If $||w_{i-1}||_{C^{1/2}} \leq C(1 + A)t^{1/2}$, then for t sufficiently small, the right side of (2.4) is bounded by At, so by the above claim, we get
\[
||w_i||_{C^{1/2}} \leq C(1 + A)t^{1/2}.
\]
Moreover, by the above claim, we have
\[
t^{-1/2} ||w_{i+1} - w_i||_{C^{1/2}} \leq C t^{1/2} \left(t^{-1/2} ||w_i - w_{i-1}||_{C^{1/2}} \right).
\]
It follows that for sufficiently small t, w_i converge to a C^2-function w which solves (2.3), so we get a solution for (2.1) for t sufficiently small, i.e., E is open. \hfill \square

1Both C' and C'' are uniform constants.
It remains to prove that E is closed. Assume that $\{t_i\} \subset E$ is a sequence with $\lim t_i = \bar{t} > 0$ and u_i is the solution of (2.1) with $t = t_i$. We want to prove $\bar{t} \in E$. It amounts to getting an a priori $C^{2,1/2}$-estimate for u_i. By applying the Maximum Principle to (2.1), we have

$$\sup_M |u_i| \leq \sup_M \left| \log \left(\frac{\omega_0}{\Omega} \right) \right|.$$

So we have the C^0-estimate. For the C^2-estimate, it is easier to use the Schwartz-type estimate.

Using (2.1) or equivalently, (1.1), we have

$$\text{Ric}(\omega_i) = \frac{1}{t_i} (\omega_0 - \omega_i) \geq - \frac{1}{t_i} \omega_i,$$

where $\omega_i = \tilde{\omega}_t + t_i \sqrt{-1} \partial \bar{\partial} u_i$, then by standard computations, we have

$$\Delta_i \log \text{tr}_{\omega_i}(\tilde{\omega}_t) \geq - a \text{tr}_{\omega_i}(\tilde{\omega}_t) - \frac{1}{t_i},$$

where Δ_i is the Laplacian of ω_i and a_i is a positive upper bound of the bisectional curvature of $\tilde{\omega}_t$. Since $\lim t_i = \bar{t}$ and $\{\tilde{\omega}_t\}$ is a smooth family of Kähler metrics for t near \bar{t}, we have $a = \sup_i a_i < \infty$.

If we put

$$v = \log \text{tr}_{\omega_i}(\tilde{\omega}_t) - (a + 1) t_i u_i,$$

then it follows

$$\Delta_i v \geq e^{v-(a+1)t_i}c - n(a + 1) - \frac{1}{t_i},$$

where $c = \sup_i (-\inf_M u_i)$. Hence, by using the Maximum Principle, we can bound v from above, so there is a uniform constant C such that

$$C^{-1} \omega_0 \leq \omega_i.$$

Using (2.1), we derive

$$C^{-1} \tilde{\omega}_t \leq \omega_i \leq C \tilde{\omega}_t. \quad (2.5)$$

Next, by applying Calabi’s 3rd derivative estimate, (cf. [Ya78])\footnote{One may also use the $C^{2,\alpha}$-estimate (cf. [Ev82], [Ti84]).} for a uniform constant C', we have

$$\|u_i\|_{C^3} \leq C'.$$

Thus, by taking a subsequence if necessary, u_i converge to a C^3-solution of (2.1) with $= \bar{t}$, i.e., $\bar{t} \in E$ and E is closed. Theorem 1.1 is proved.

Corollary 2.2. If K_M is nef, then (2.1) has a unique solution for any $t > 0$.

5
3 Proof of Theorem 1.2

First we observe

Lemma 3.1. For any solution u of (2.1) with $t \in (0,T)$, we have

\[
\sup_M u \leq \sup_M \log \left(\frac{\omega_t^n}{\Omega} \right),
\]

i.e., u is uniformly bounded from above.

The proof of Theorem 1.2 is now quite standard. For simplicity, we assume that M is a projective manifold and $[\omega_0] = 2\pi c_1(L)$ for some line bundle L. Under this assumption, we can use the following lemma due to Kodaira (cf. [Ka84]). The general case can be proved in an identical way if we use instead Demailly-Paun’s extension [DP04] of Kodaira’s lemma to Kähler manifolds.

Lemma 3.2. Let E be a divisor in a projective manifold M. If E is nef and big, then there is an effective \mathbb{R}-divisor $D = \sum_i a_i D_i$, where D_i are divisors and a_i are positive real numbers, such that $E - [D] > 0$, where $[D] = \sum_i a_i[D_i]$ and each $[D_i]$ denotes the line bundle induced by D_i.

This follows from the openness of the big cone of M which clearly contains the positive cone and the fact that E is in the closure of the positive cone. Recall that the non-ample locus $B_+(E)$ of E is defined to be the intersection of $\text{Supp}(D)$, where D ranges over all effective \mathbb{R}-divisor such that $E - D$ is ample.

Now we take $E = L + TK_M$ which is nef and big, so by the above lemma, for any $x \in M \setminus B_+(E)$, there is an effective divisor $D = \sum_i a_i D_i$ as above such that $L + TK_M - [D]$ is ample.

For each i, let σ_i be the defining section of D_i and $\| \cdot \|_i$ be a Hermitian norm on $[D_i]$. Then $\sum_i a_i \log \| \sigma_i \|_i^2$ is a well-defined function outside $\text{Supp}(D) \subset M$. Since $L + TK_M - [D]$ is ample, we can choose $\| \cdot \|_i$ such that

\[
\omega_t^* + \sqrt{-1} \sum_i a_i \partial \bar{\partial} \log \| \sigma_i \|_i^2 > 0.
\]

For simplicity, we will write

\[
\log \| \sigma \|_i^2 = \sum_i a_i \log \| \sigma_i \|_i^2.
\]

Formally, we regard σ as a defining section of D and $\| \cdot \|$ as an norm on $[D]$.

Set

\[
\omega_{t,D} = \omega_t + \sqrt{-1} \partial \bar{\partial} \log \| \sigma \|_i^2.
\]

Then there is a $\delta = \delta(D)$, which may depend on D, such that $\omega_{t,D}$ is a smooth Kähler metric for any $t \in [T - \delta, T + \delta]$. For any solution u of (2.1) with $t \in [T - \delta, T]$, we put

\[
v = tu - \log \| \sigma \|_i^2.
\]
then \(\omega_t = \tilde{\omega}_{t,D} + \sqrt{-1} \partial \bar{\partial} v \) and \(v \) satisfies the following equation:

\[
(\tilde{\omega}_{t,D} + \sqrt{-1} \partial \bar{\partial} v)^n = e^{\frac{1}{2}(v + \log ||\sigma||^2)} \Omega.
\]

(3.1)

Applying the Maximum Principle to (3.1), we get \(v \geq -c \) for a uniform constant which may depend on \(D \). So by changing \(c \) if necessary, we have

\[-c \leq v \leq c - \log ||\sigma||^2.\]

In particular, \(v \) or equivalently \(u \), is bounded outside \(D \). Since \(\text{Ric}(\omega_t) \) is bounded below by \(-1/t\), as in last section, we can infer

\[
\Delta_t \log \text{tr}_{\omega_t}(\tilde{\omega}_{t,D}) \geq -a \text{tr}_{\omega_t}(\tilde{\omega}_{t,D}) - \frac{1}{t},
\]

where \(\Delta_t \) denotes the Laplacian of \(\omega_t \) and \(a \) is a positive upper bound on the bisectional curvature of \(\tilde{\omega}_{t,D} \) for all \(t \in [T - \delta, T] \). Put

\[
w = \log \text{tr}_{\omega_t}(\tilde{\omega}_{t,D}) - (a + 1)v.
\]

Then we have

\[
\Delta_t w \geq e^{w - (a+1)b} - n(a + 1) - \frac{1}{t},
\]

where \(b = -\inf_M v \). Hence, by using the Maximum Principle, we can bound \(w \) from above, so there is a uniform constant \(C \) such that

\[
C^{-1} ||\sigma||^{2(a+1)} \tilde{\omega}_{t,D} \leq \omega_t.
\]

Using (3.1), we derive

\[
C^{-1} ||\sigma||^{2(a+1)} \tilde{\omega}_{t,D} \leq \omega_t \leq C ||\sigma||^{-2(n-1)(a+1)+\frac{1}{2}} \tilde{\omega}_{t,D}.\]

(3.2)

Then by Calabi’s 3rd derivative estimate, for any compact subset \(K \subset M \setminus D \), we have \(||u||_{C^3(K)} \leq C_K \) for some uniform constant \(C_K \). It follows that any sequence \(\{t_i\} \) with \(t_i \to T \) has a subsequence, still denoted by \(t_i \) for simplicity, such that \(v_{t_i} \) converge a \(C^3 \)-function \(v_T \) on \(M \setminus D \) satisfying:

\[
(\tilde{\omega}_{T,D} + \sqrt{-1} \partial \bar{\partial} v_T)^n = e^{\frac{1}{2}(v_T + \log ||\sigma||^2)} \Omega.
\]

(3.3)

A priori, this limit may not be unique, so we still need to prove that \(v_T \) is unique, i.e., independent of the sequence \(\{t_i\} \).

Lemma 3.3. Let \(\dot{v} \) be the derivative of \(v \) in the \(t \)-direction and \(T < \infty \). Then there is a uniform constant \(C_T \), which may depend on \(T \), such that

\[
\int_M |\dot{v}|^2 \omega_t^n \leq C_T \quad \text{on} \quad t \in (T - \delta, T).
\]

(3.4)
Proof. Differentiating (3.1) on \(t \), we get

\[
\Delta_t \dot{v} = -\frac{1}{t^2} u + \frac{1}{t} \dot{v}.
\]

Note that \(\dot{v} \) is equal to \(t \dot{u} + u \) which is smooth on \(M \times (0, T) \) since \(\log ||\sigma||^2 \) is independent of \(t \). Since \(u \) is bounded from above, we deduce from (2.1)

\[
\int_M |u|^2 \omega^n_t = \int_M u^2 e^u \Omega \leq C,
\]

where \(C \) is a uniform constant. Then we have

\[
\int_M \left(|\nabla \dot{v}|^2 + \frac{1}{t} |\dot{v}|^2 \right) \omega^n_t = \frac{1}{t^2} \int_M \dot{v} u \omega^n_t.
\]

(3.5)

Then (3.4) follows easily from this and the Cauchy inequality.

For any compact subset \(K \subset M \setminus D \), by (3.2), we have that for some \(C_K > 0 \),

\[
C_K^{-1} \omega_0 \leq \omega_t \leq C_K \omega_0.
\]

Therefore, we have for \(T - \delta < t < t' < T \),

\[
\int_K |v(x,t) - v(x,t')|^2 \omega^n_0(x) \leq \int_t^{t'} \int_K |\dot{v}(\cdot,s)|^2 \omega^n_0 \, ds \leq C_T(C_K)^n |t' - t|.
\]

It follows that \(v(\cdot, t) \) and \(v(\cdot, t') \) converge to the same function \(v_T \) on \(M \setminus D \).

Since \(D \) is any divisor in the definition of \(B_+(E) \), where \(E = L + T K_M \), we have proved Theorem 1.2 with \(S = B_+(E) \).

4 Analytic Minimal Model Program revisited

In this section, we follow the lines of the approach towards the Analytic Minimal Model Program through Ricci flow (cf. [Ti07], [ST07], [ST08] et al) to list some problems and speculations. Some of these problems are doable by adapting arguments from what has been done for the Kähler-Ricci flow (cf. above citations). It is possible to get even stronger results because Ricci curvature is bounded from below in this new approach through the continuity method.

Let \(u_t \) be the maximal solution of (2.1) for \(t \in (0, T) \) and write

\[
\omega_t = \omega_0 - t \psi + \sqrt{-1} \partial \bar{\partial} u_t.
\]

First we assume \(T < \infty \).

Conjecture 4.1. As \(t \to T \), \((M, \omega_t) \) converges to a compact metric space \((M_T, d_T) \) in the Gromov-Hausdorff topology\(^4\) satisfying the following:

\(^4\)Since \(\omega_t \) has Ricci curvature bounded from below, this is equivalent to that the diameter of \((M, \omega_t) \) is uniformly bounded.
(1) M_T is a Kähler variety and there is a holomorphic fibration $\pi_T : M \mapsto M_T$;

(2) d_T is a “nice” Kähler metric ω_T on $M_T \setminus S_T$, where S_T is a subvariety of M_T containing all the singular points. If $([\omega_0] - Tc_1(M))^n > 0$, then it is the same as saying that ω_T is the limit given in Theorem 1.2 and (M_T, d_T) is the metric completion of $(M \setminus S, \omega_T)$;

(3) ω_t converge to ω_T on $\pi^{-1}(M_T \setminus S_T)$ in a much regular topology, possibly, the smooth topology.

It seems that the key for solving this conjecture is to bound the diameter of (M, ω_t), especially, in the non-collapsing case.

Next we want to examine how to extend our continuity method beyond T.

To this end, we propose:

Conjecture 4.2. The variety M_T has a partial resolution $\pi_T' : M' \mapsto M_T$, which may have “mild” singularity, such that the canonical sheaf $K_{M'}$ is well-defined and $\pi_T'(\pi_T^* \omega_T) + tK_{M'} > 0$ for $t > 0$ small. If $\dim M_T = \dim M$, i.e., in the non-collapsing case, M' should be a flip of M as defined in algebraic geometry.

This may be the most difficult part of the program as we have learned from the Analytic Minimal Model Program through Ricci flow. More precisely, by “mild” singularity, we mean the following

Conjecture 4.3. Let $\omega'_0 = \pi_T'^* (\pi_T^* \omega_T)$. Then we can solve (2.1) on M' for $t \in (0, T')$ with initial metric ω'_0, where

$$T' = \sup \{ t \mid \pi_T'^* (\pi_T^* \omega_T) + tK_{M'} > 0 \}.$$

By the work in [ST08], one knows that log-terminal singularities have the property in the conjecture above, for the Ricci flow. The same should be true for the new continuity method. In view of [ST08], it may be possible to solve Conjecture 4.3 by the current technology at hand.

If the above conjectures can be affirmed, for some initial Kähler metric ω_0 on M, we can construct a family of pairs (M_t, ω_t) ($0 \leq t < \infty$) together with a sequence of times $T_0 = 0 < T_1 < T - 2 < \cdots < T_k < \cdots$, satisfying:

(1) For $t \in [T_i, T_{i+1})$ ($i \geq 0$), $M_t = M_i$ is a fixed Kähler variety\footnote{M_i may be of smaller dimension or even an empty set.} and ω_t is a solution of (1.1) on M_i in a suitable sense. Moreover, $M_0 = M$;

(2) For $i \geq 1$, M_{i+1} is a “flip” of M_i as described in Conjecture 4.2. If we denote by $\pi_i : M_i \mapsto M_T$ and $\pi_{i+1} : M_{i+1} \mapsto M_T$ the natural projections in the flip process, then

$$\lim_{t \rightarrow T_i^-} \pi_i^* \omega_t = \lim_{t \rightarrow T_i^+} \pi_{i+1}^* \omega_t.$$

We also have $\lim_{t \rightarrow 0} \omega_t = \omega_0$.
(3) ω_t are smooth on the regular part of M_t and continuous on the level of potentials along t.

Such a family corresponds to the solution of the Kähler-Ricci flow with surgery.

As in the case of Kähler-Ricci flow, we call T_i a surgery time. We expect that for each initial Kähler metric ω_0, there are only finitely many surgery times, that is,

Conjecture 4.4. There are only finitely many surgery times $T_0 = 0 < T_1 < T_2 < \cdots < T_N < \infty$ such that $M_t = M_N$ for $t > T_N$ is either empty or a minimal model of M. If $M_N \neq \emptyset$, then K_{M_N} is nef, consequently, (1.1) admits a solution ω_t for all $t > T_N$. If $M_N = \emptyset$, M is birational to a Fano-like manifold and the converse os also true.

Next, assuming that M is a minimal model, smooth or with “mild” singularities, we need to analyze the asymptotic of solutions ω_t of (1.1) as t tends to ∞.

Conjecture 4.5. If the Kodaira dimension $\kappa(M) = 0$, then ω_t should converge to a Calabi-Yau metric ω_∞ on $M \setminus D$, where D is a subvariety, in the smooth topology. Furthermore, (M, ω_t) should converge to a compact metric space (M_∞, d_∞) in the Gromov-Hausdorff topology such that M_∞ is the metric completion of $(M \setminus D, \omega_\infty)$ and $d_\infty|_{M \setminus D}$ is induced by ω_∞.

Similarly, we expect

Conjecture 4.6. If $\kappa(M) = \dim M = n$, then $t^{-1}\omega_t$ should converge to a Kähler-Einstein metric ω_∞ with scalar curvature $-n$ on $M \setminus D$, where D is a subvariety, in the smooth topology. Furthermore, $(M, t^{-1}\omega_t)$ should converge to a compact metric space (M_∞, d_∞) in the Gromov-Hausdorff topology such that M_∞ is the metric completion of $(M \setminus D, \omega_\infty)$ and $d_\infty|_{M \setminus D}$ is induced by ω_∞.

In view of recent works of Jian Song [So14], we believe that the above two conjectures are solvable. The key should be a diameter estimate on (M, ω_1).

It remains to consider the cases: $1 \leq \kappa(M) \leq n - 1$. In these cases, we can not expect the existence of any Kähler-Einstein metrics (even with possibly singular along a subvariety) on M since $K^n_M = 0$. However, we expect

Conjecture 4.7. If $1 \leq \kappa(M) \leq n$, then $(M, t^{-1}\omega_t)$ should converge to a compact metric space (M_∞, d_∞) in the Gromov-Hausdorff topology such that M_∞ is a Kähler variety of complex dimension $\kappa(M)$ and d_∞ is induced by a generalized Kähler-Einstein metric ω_∞ (cf. [ST08]) on the regular part of M_∞. Moreover, $(M, t^{-1}\omega_t)$ should converge to ω_∞ in a stronger topology, such as in $C^{1,1}$-topology on Kähler potentials, on the regular part of M_∞.

The existence of generalized Kähler-Einstein metrics was established in [ST08].
References

[DP04] Demailly, J.P. and Paun, M., Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2) 159 (2004), no. 3, 1247-1274.

[Ev82] Evans, L.C., Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), no. 3, 333-363.

[Ka84] Kawamata, Y., The cone of curves of algebraic varieties, Ann. of Math. (2) 119 (1984), no. 3, 603-633.

[Ka95] Kawamata, Y., Pluricanonical systems on minimal algebraic varieties, Invent. Math. 79 (1985), no. 3, 567-588.

[Ko98] Kołodziej, S., The complex Monge-Ampère equation, Acta Math. 180 (1998), no. 1, 69-117.

[So14] Song, J., Riemannian geometry of Kähler-Einstein currents, preprint, arXiv:1404.0445

[ST07] Song, J. and Tian, G., The Kähler-Ricci flow on minimal surfaces of positive Kodaira dimension, Invent. Math. 170 (2007), no. 3, 609-653.

[ST08] Song, J. and Tian, G., Canonical measures and Kähler-Ricci flow, preprint, J. Amer. Math. Soc. 25 (2012), no. 2, 303-353.

[Ti84] Tian, G., On the existence of solutions of a class of Monge-Ampère equations, Acta Math. Sinica 4 (1988), no. 3, 250-265.

[Ti86] Tian, G., Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical aspects of string theory (San Diego, Calif., 1986), World Sci. Publishing, Singapore, 629–646.

[Ti97] Tian, G., Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1-39.

[Ti02] Tian, G., Geometry and nonlinear analysis, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing 2002), 475–493, Higher Ed. Press, Beijing, 2002.

[Ti07] Tian, G., New Progresses and Results on Kähler-Ricci Flow, Proceeding for J.P. Bourguignon’s 60 birthday conference.

[TZ06] Tian, G. and Zhang, Z., On the Kähler-Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179-192.
[Ya78] Yau, S.T. *On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I*, Comm. Pure Appl. Math. 31 (1978), 339-411.