BLOOD INDICES IN COWS WITH DIFFERENT PHYSIOLOGICAL AND PATHOLOGICAL STATES OF THE OVARIIES

S. Kornyat, M. Sharan, D. Ostapiv, A. Korbetskyy, I. Jaremchuk, O. Andrushko
m_sharan@ukr.net

Institute of Animal Biology NAAS,
38 V. Stusa str., Lviv 79034, Ukraine

The purpose of this work was to study the functional morphology of cow reproduction system at such ovary’s pathologies as follicular cysts, luteal cysts, persistent corpus luteum, hypofunction of ovaries and during normal cycle (follicular or luteal phases). Blood samples were taken for biochemical studies during the diagnosis making process. In blood samples the activity of alanine and aspartate aminotransferase (ALT and AST); state of the antioxidant system: diene conjugates, the activity of superoxide dismutase (SOD), glutathione peroxidase (GP), hemoglobin content; progesterone and estradiol concentration were determined. The data received was statistically processed with Office Excel (Microsoft, USA). In cows with persistent corpus luteum high progesterone level (7.6±1.2 ng/ml) was observed while estradiol concentration was low (2.3±0.5 pg/ml) compared to the hormone levels in cows with available corpus luteum during normal ovarian cycle (P<0.01 and P<0.05, respectively). In cows with follicular cysts the concentration of progesterone in blood was 1.5±0.5 ng/ml, which was 5–8 times less compared to the result for luteal cysts. At the same time, the concentration of estradiol was the highest (26.3±4.0 pg/ml), which was 7.7–11.4 times higher than in cows with persistent corpus luteum and luteal cysts. Compared to the animals with follicles on the ovaries, the level of estradiol was significantly higher (P<0.01). The lowest concentrations of steroid hormones were detected in cows with ovarian hypofunction. The difference in progesterone level was significant in the group of cows with corpus luteum of the sexual cycle (P<0.001), while the difference in estradiol level was significant in the group of animals with available corpus luteum (P<0.001) and follicle (P<0.001). In cows with ovarian hypofunction the lowest level of the studied parameters was observed which were significantly different from the cows with corpus luteum of sexual cycle for diene conjugates (P<0.001), superoxide dismutase (P<0.05), glutathione peroxidase (P<0.01), hemoglobin (P<0.05), alanine aminotransferase (P<0.01) and aspartate aminotransferase (P<0.05). Comparing the group of cows with follicles in the ovaries, there were observed significant differences in the group of cows with hypofunction of the ovaries according to the indices such as diene conjugates (P<0.001), glutathione peroxidase (P<0.001), hemoglobin (P<0.05), alanine aminotransferase (P<0.01). When the follicular cysts in cows were present, the level of diene conjugates (P<0.05) and glutathione peroxidase (P<0.01) were significantly lower than in cows with follicles that developed during the normal sexual cycle. Changes of cow’s blood biochemical parameters in normal and pathological conditions of the ovaries (corpus luteum, follicle, persistent corpus luteum, hypofunction, follicular and luteal cysts) were established. In order to make a clear diagnosis of the functional state of the cow ovaries, complex examination should be carried out that would include rectal and ultrasound examination of the cows together with determination of steroid hormones and individual blood biochemical parameters.

Keywords: COWS, OVARIES, BLOOD, SEXUAL CYCLE, STEROID HORMONES

ПОКАЗНИКИ КРОВІ КОРІВ ЗА РІЗНИХ ФІЗІОЛОГІЧНИХ ТА ПАТОЛОГІЧНИХ СТАНІВ ЯЄЧНИКІВ

С. Корнят, М. Шаран, Д. Остапів, А. Корбецький, І. Яремчук, О. Андрушко
m_sharan@ukr.net

Інститут біології тварин НААН,
вул. В. Стуса, 38, м. Львів, 79034, Україна

Метою роботи було вивчити функціональні зміни системи відтворення корів за таких патологій яєчників, як фолікулярна кіста, лютеїнові кісті, персистуюче жовте тіло, гіпофункція яєчників та під час фізіологічного статевого циклу (фолікулярна або лютеїна фази). Проби крові для біохімічних досліджень брали у процесі постановки діагнозу. У зразках крові визначали: активність аланин- та аспартаттрансаміназ (ALT та AST); стан антіоксидантної системи: дієнові кон’югати, активність супероксиддисмутази (SOD), глутатіонпероксидази (GP), вміст гемоглобіну; концентрацію прогестерону та естрогену. Отримані дані були статистично оброблені Office Excel (Microsoft, США). У корів з персистуючим жовтим тілом спостерігали високий рівень прогестерону (7,6±1,2 нг/мл), тоді як концентрація естрогену була низькою (2,3±0,5 пг/мл).
найвищою (26,3±4,0 пг/мл), що в 7,7–11,4 разу вище, ніж у корів із стійкими жовтими тілами та лютеїновими кістами. Найменші концентрації стероїдних гормонів були виявлені у корів з гіпофункцією яєчників. Різниця в рівні прогестерона була значною порівняно з групою корів із жовтим тілом статевого циклу (P<0,001), тоді як різниця в рівні естрадіолу була прийнятною (P<0,001) порівняно з групою тварин з наявним жовтим тілом та фолікулом (P<0,001) на яєчниці. У корів з гіпофункцією яєчників спостерігали наявність різниці в рівні прогестерона в меншому статевому циклу для дієнових кон’югатів (P<0,001), СОД (P<0,05), ГП (P<0,01), гемоглобіну (P<0,05), ALT (P<0,01) та AST (P<0,05). Порівнюючи групу корів з фолікулами в яєчниках, спостерігали значні відмінності від групи корів з гіпофункцією яєчників за такими показниками, як дієнові кон’югати (P<0,001), ГП (P<0,001), гемоглобін (P<0,05), ALT (P<0,01). Рівень дієнових кон’югатів (P<0,05) та активність ГП (P<0,01) за наявності у корів фолікулярних кіст були значно нижчими, ніж у корів з фолікулами, які розвинулися під час нормального статевого циклу. Отже, встановлено зміни біохімічних показників крові корів при фізіологічних і патологічних станах яєчників (жовте тіло, фолікул, персистуюче жовте тіло, гіпофункція, фолікулярні та лютеїнові кісти). Для постановки чіткого діагнозу функціонального стану яєчників корів необхідно провести комплексне обстеження: ректальне та ультразвукове дослідження яєчників, ретроспективне дослідження їх функціонального стану, спостереження за змінами стероїдних гормонів та окремих біохімічних показників крові.

Ключові слова: КОРОВИ, ЯЄЧНИКИ, КРОВ, СТАТЕВИЙ ЦИКЛ, СТЕРОЇДНІ ГОРМОНИ

ПОКАЗАТЕЛИ КРОВИ КОРОВ ПРИ РАЗЛИЧНЫХ ФИЗИОЛОГИЧЕСКИХ И ПАТОЛОГИЧЕСКИХ СОСТОЯНИЯХ ЯЙЧНИКОВ

С. Корнят, М. Шаран, Д. Остапив, А. Корбецкий, И. Яремчук, А. Андрушко

m_sharan@ukr.net

Институт биологии животных НАН,
ул. В. Стуса, 38, Львов, 79034, Украина

Целью работы было изучить функциональные изменения системы воспроизводства коров при таких патологиях яйчников, как фолликулярная киста, лютеиновая киста, персистирующее желтое тело, гипофункция яичников и в период физиологического полового цикла (фолликулярная или лютеиновая фазы). Пробы крови для биохимических исследований брали в процессе постановки диагноза. В образцах крови определяли: активность аланин- и аспартатаминотрансферазы (ALT и AST), состояние антиоксидантной системы: диеновые конъюгаты, активность супероксиддисмутазы (СОД), глутатионпероксидазы (ГП), содержание гемоглобина; концентрация прогестерона и эстрадиола. Полученные данные статистически обработаны Office Excel (Microsoft, США). У коров с персистирующим желтым телом наблюдался высокий уровень прогестерона (7,6±1,2 нг/мл) при низкой концентрации эстрадиола (2,3±0,5 пг/мл) по сравнению с уровнем гормонов у коров с наявним жовтим тілом статевого циклу для дієнових кон’югатів (P<0,001), СОД (P<0,05), ГП (P<0,01), гемоглобіну (P<0,05), ALT (P<0,01) та AST (P<0,05). Порівнюючи групу корів з фолікулами в яєчниках, спостерігали значні відмінності від групи корів з гіпофункцією яєчників за такими показниками, як дієнові кон’югати (P<0,001), ГП (P<0,001), гемоглобін (P<0,05), ALT (P<0,01). Рівень дієнових кон’югатів (P<0,05) та активність ГП (P<0,01) за наявності у корів фолікулярних кіст були значно нижчими, ніж у корів з фолікулами, які розвинулися під час нормального статевого циклу. Отже, встановлено зміни біохімічних показників крові корів при фізіологічних і патологічних станах яєчників (жовте тіло, фолікул, персистуюче жовте тіло, гіпофункція, фолікулярні та лютеїнові кісти). Для постановки чіткого діагнозу функціонального стану яєчників корів необхідно провести комплексне обстеження: ректальне та ультразвукове дослідження яєчників, ретроспективне дослідження їх функціонального стану, спостереження за змінами стероїдних гормонів та окремих біохімічних показників крові.
У животных необходимо провести комплексное обследование: ректальное и ультразвуковое исследование коров вместе с определением стероидных гормонов и отдельных биохимических показателей крови.

Ключевые слова: КОРОВЫ, ЯИЧНИКИ, КРОВЬ, ПОЛОВОЙ ЦИКЛ, СТЕРОИДНЫЕ ГОРМОНЫ

Оценка функциональной морфологии репродуктивных органов сельскохозяйственных животных в норме и патологических состояниях является одним из наиболее сложных и актуальных задач в биологии и ветеринарии. Большой интерес к ней не ограничивается чисто теоретическими соображениями, так как достижения в этой области непосредственно связаны с основными задачами в сельском хозяйстве [8, 9, 13].

Отсутствие информации по морфологии и функции яичников коров в нормальных и патологических состояниях не позволяет эффективно решать ряд современных задач в производстве, таких как перенос эмбрионов, синхронизация охоты, профилактика симптоматической бесплодности, дифференциальная диагностика болезней репродуктивных органов, их профилактика и лечение, разработка лютеолитических средств [9].

Часто причинами бесплодия у коров являются гипофункция яичников, постоянный лютем и кисты яичников. Механизмы этих нарушений связаны с нарушениями гормонального регулирования полового цикла, обусловленного, в частности, эфемерическим фактором и другими факторами [3, 7]. Однако серьезным препятствием для интенсификации животноводства является симптоматическое бесплодие, которое в большинстве случаев является следствием функциональных нарушений яичников [3].

Функциональное состояние яичников, в частности, кисты яичников, является важной научной и практической проблемой, так как они являются причиной бесплодия у 1.7–60 % гинекологически больных коров [2, 4, 12]. Кисты яичников являются основной причиной бесплодия у высокопродуктивных молодых коров [5, 11], у которых не был реализован весь их потенциал.

Материалы и методы

Исследования проведены в ООО “Имен Волохов” (Ровенская область, Украина) на коровах украинской породы в возрасте 3–7 лет с продуктивностью 5–6 тыс. кг молока за лактацию. Шесть групп по 5 коров в каждой были сформированы с учетом функционального состояния яичников: фолликулярная киста, лютематические кисты, постоянный лютем и нормальное состояние (фолликулярный или лютематический фазы цикла). В анамнезе, клиническом осмотре животных, а также и в ректальном диагнозе был учтен функциональный статус яичников [3].

В исследованиях было выделено два вида кист: фолликулярный и лютематический, которые являются основными причинами симптоматического бесплодия [3, 7]. В крови были определены активность аланин-аминотрансферазы (АЛТ) и аспартат-аминотрансферазы (АСТ) методом К. Г. Капетанаки (1962); состояние антиоксидантной системы: диеновые конъюгаты методом И. Д. Стална (1977), активность супероксиддисмутазы (СОД) и глутатион пероксидазы (ГП) методом В. М. Муина (1986), концентрация прогестерона и эстрadiола методом ELISA [10]. Все полученные данные были статистически обработаны с использованием программы Microsoft Excel (Office Excel, США).

Результаты и обсуждение

В исследованиях мы учитывали клинические проявления заболеваний яичников и анамнез данных коров. В селекционных исследованиях было получено, что в нормальной фазе цикла у коров активность АЛТ и АСТ снижена, а также активность супероксиддисмутазы и глутатион пероксидазы. Однако при наличии кист у коров эти показатели были значительно выше. Это позволяет использовать эти маркеры как индикаторы воспалительных процессов в яичниках. В то же время, активность этих же ферментов была значительно ниже в кистозной фазе цикла, что свидетельствует о нарушении гормонального реагирования яичников на гонадотропные гормоны.

Выводы

На основании проведенных исследований можно сделать следующие выводы:

1. Кистозная фаза цикла является основной причиной симптоматического бесплодия у коров.
2. Учитывая повышенную активность АЛТ, АСТ, супероксиддисмутазы и глутатион пероксидазы, это позволяет использовать их как маркеры воспалительных процессов в яичниках.
3. Наличие кист у коров приводит к нарушению гормонального реагирования яичников на гонадотропные гормоны.

Таким образом, наши результаты показывают, что функциональное состояние яичников у коров является важной научной и практической проблемой, и требует дальнейшего изучения и разработки эффективных методов профилактики и лечения.
lar, the ovarian hypofunction was manifested by anapheosis or suppressed and irregular sexual cycles. Follicular cysts increase sexual excitation, sexual cycles were irregular, often shortened, prolonged sexual heat and nymphomaniac. Luteal cysts and persistent corpus luteum were accompanied by anaphrodisia or anovulatory sexual cycles.

Analyzing the concentration of steroid hormones in blood plasma of cows with different functional state of the ovaries, in some cases, there were significant differences between the groups of animals (table 1). In cows with persistent corpus luteum high progesterone level (7.6±1.2 ng/ml) was observed while estradiol concentration was low (2.3±0.5 pg/ml) compared to the hormone levels in cows with available corpus luteum during normal ovarian cycle (P<0.01 and P<0.05, respectively).

In cows with follicular cysts the concentration of progesterone in blood was 1.5±0.5 ng/ml, which is 5–8 times less compared to the result for corpus luteum (2.3±0.5 pg/ml) compared to the hormone levels in cows with available corpus luteum (P<0.001) and follicle (P<0.001).

Analyzing the state of the other blood indices in cows, certain changes were observed in different functional conditions of the ovaries (table 2). Thus, the content of diene conjugates in the blood of cows with corpus luteum and follicle of the ovary was twice as high as in cows with hypofunction of the ovarian glands. Similarly, the activity of SOD and GP was higher in the normal state of ovaries by 36.0 and 32.0 %, and by 24.6 and 25.2 % respectively compared to the cows with presence ovarian hypofunction. In particular, in cows with ovarian hypofunction, according to the studied parameters, the lowest level of antioxidant defense was observed and was significantly different from the cows with corpus luteum of sexual cycle for diene conjugates (P<0.001), superoxide dismutase (P<0.05), glutathione peroxidase (P<0.01), hemoglobin (P<0.05), alanineaminotransferase (P<0.01) and aspartateaminotransferase (P<0.05).

The presence of such ovarian pathologies as persistent corpus luteum, follicular and luteal cysts was accompanied by a slightly lower level of all investigated in this studied parameters than in normal

Concentration of steroid hormones in blood plasma of cows (M±m, n=5)

Functional state of ovaries	Progesterone, ng/ml	Estradiol, pg/ml
Persistent corpus luteum	7.6±1.2**	2.3±0.5*
Luteal cyst	12.2±5.5	3.4±1.5
Follicular cyst	1.5±0.5	26.3±4.0**
Hypofunction of ovary	1.2±0.05 (1)****	2.2±0.05 (1)***
Corpus luteum	2.6±0.14	0.9±0.12
Follicle	1.2±0.22	8.6±0.95

Note: in this and subsequent tables, the difference in groups with persistent corpus luteum, luteal cyst and hypofunction of the ovaries (1) compared with group of animals in which the physiological corpus luteum was found on the ovary, and in groups with follicular cysts of the ovary and ovarian hypofunction (2) compared to the group in cows the physiological follicle is found to be statically significant: * — P<0.05; ** — P<0.01; *** — P<0.001.

Indices of blood in cows (M±m, n=5)

Functional ovarian state	Diene conjugates, mkmol/l	SOD, % bloc. reac./1 g Hb	GP, mkmol/min/1g Hb	Hemoglobin, g/l	ALT, ncat/l	AST, ncat/l
Persistent corpus luteum	4.2±0.44	0.3±0.02	401.2±10.64	117.6±8.03	294.7±23.45	383.6±33.45
Luteal cyst	3.84±0.35**	0.28±0.02	387.3±11.87	112.3±8.67	255.8±26.32	378.1±29.33
Follicular cyst	3.91±0.41*	0.27±0.03	352.9±7.65**	114.9±6.18	300.2±28.94	461.5±32.18
Hypofunction of ovary	2.37±0.32 (1)***	0.25±0.02 (1)***	323.9±9.12 (1)***	97.2±3.47 (1)***	161.2±16.23	322.5±26.61
Corpus luteum	5.24±0.37 (1)***	0.34±0.03 (1)***	403.5±15.44	125.6±9.77	287.9±22.45	467.0±38.27
Follicle	5.36±0.46	0.33±0.03	405.1±12.23	124.6±10.33	283.6±19.75	411.4±33.67
physiological states of ovarian glands. However, they were significantly higher compared to the cows with presence of ovarian hypofunction. In the group of cows with persistent corpus luteum, compared to the group of cows with corpus luteum of sexual cycle, there were no significant differences despite of slightly lower values of all indices except alanine aminotransferase. Comparing cows with luteal ovarian cysts and cows with physiologic corpus luteum, there was also a lower level of all studied indices in this table, but the difference was significant for diene conjugates (P<0.05). In the presence of follicular cysts in cows, the level of diene conjugates (P<0.05) and glutathione peroxidase (P<0.01) were significantly lower than in cows with follicles that developed during the normal sexual cycle.

Conclusions

Changes in biochemical parameters of cow’s blood in normal and pathological conditions of ovaries (corpus luteum, follicle, persistent corpus luteum, hypofunction, follicular and luteal cysts) were established. In the presence of persistent corpus luteum, a high level of progesterone (7.6±1.2 ng/ml) was observed whilst some lower estradiol concentrations (2.3±0.5 pg/ml) compared to the level of hormone in cows with an available corpus luteum of sexual cycle (P<0.01 and P<0.05, respectively). In cows with follicular cysts the concentration of estradiol was significantly higher than in animals with ovarian follicles (P<0.01). The lowest concentrations of steroid hormones were detected in cows with ovarian hypofunction. The difference in progesterone level was significant compared to the group of cows with corpus luteum of sexual cycle (P<0.001), while the difference in estradiol level was significant compared to the groups of animals with available corpus luteum (P<0.001) and follicle (P<0.001). In order to make a clear diagnosis of functional state of the cow’s ovaries, complex examination should be carried out that would include rectal and ultrasound examination of cows together with determination of steroid hormones and individual biochemical parameters.

Perspectives of the future investigations. In this work changes of biochemical parameters of blood of cows at physiological and pathological conditions of ovaries (corpus luteum, follicle, persistent corpus luteum, hypofunction of ovaries, follicular and luteal cysts) are established. It is planned to work on a clear diagnosis of the functional status of the ovaries of cows by conducting a comprehensive examination of diseased and healthy animals, which would include rectal examination of the ovaries manually and with the help of an ultrasound scanner together with the determination of steroid hormones and individual biochemical parameters.

1. Bove S. E., Petroff M. G., Nishibori M., Pate J. L. Macrophage migration inhibitory factor in the bovine corpus luteum. Biology of reproduction, 2000, vol. 62, issue 4, pp. 879–885. DOI: 10.1095/biolreprod62.4.879.
2. Chomaev A. M. Diagnosis and treatment of cow follicular cysts. Reports of RAAS, 1997, vol. 4, pp. 36–37. (in Russian)
3. Dulger H. P. Cystic pathology of the ovaries in cows and the improvement of the methods for its differential diagnosis and therapy. Doctoral thesis, Moscow, 2008, 232 p. (in Russian)
4. Glaz A. V. Features of the functional disorders of the ovaries in cows. Academic records of Grodno Agrarian Institute, 1994, issue 4, 106 p.
5. Mahotkin A. H. The use of hormonal drugs for some functional disorders of the ovaries in cows. Improving the breeding and productive qualities of animals. Interuniversity collection of scientific papers, Kazan, 1995, pp. 95–99. (in Russian)
6. Murphy B. D. Models of luteinization. Biology of reproduction, 2000, vol. 63, issue 1, pp. 2–11. DOI: 10.1095/biolreprod63.1.2.
7. Nikulin A. V. Correction of metabolic and trophic processes in cows with ovarian dysfunction by biological placenta bio-normalizers. Doctoral thesis, Belgorod, 2005, 179 p. (in Russian)
8. Polancev N. I., Podberezny V. V. Veterinary obstetrics and biotechnology animal reproduction. Rostov-On-Don, Fenix, 2001, pp. 445–447. (in Russian)
9. Sharipov A. F. Functional morphology of corpus luteum ovarian cows in normal state and with pathologies. Doctoral thesis, Ufa, 2008, 158 p. (in Russian)
10. Vlizlo V. V. (ed.), Fedoruk R. S., Ratych I. B. Laboratory methods of investigation in biology, stock-breeding and veterinary. A reference book. Lviv, Spolom, 2012, 764 p. (in Ukrainian)
11. Zemlanikin V. V. Correction of reproductive function in cows with follicular ovarian cysts. Doctoral thesis, Saratov, 2004, 170 p. (in Russian)
12. Zöldág L., Vétési F., Soli L., Molnár L. A ciklikus sárgagést és a folliculus-luteincysta összehasonlító endokrinológiai és morfológiai tanulmányozása szarvasmarhában. Magyar Allatorvosok Lapja, 1986, vol. 41, issue 6, pp. 343–347. (in Hungarian)
13. Zvereva H. V., Homyn S. P. Gynecological diseases of cows. Kyiv, Urozhay, 1976, 152 p. (in Ukrainian)