SYMMETRIC INVERSE TOPOLOGICAL SEMIGROUPS
OF FINITE RANK $\leq n$

OLEG GUTIK AND ANDRIY REITER

Abstract. We establish topological properties of the symmetric inverse topological semigroup of finite transformations \mathcal{I}^n_λ of the rank $\leq n$. We show that the topological inverse semigroup \mathcal{I}^n_λ is algebraically h-closed in the class of topological inverse semigroups. Also we prove that a topological semigroup S with countably compact square $S \times S$ does not contain the semigroup \mathcal{I}^n_λ for infinite cardinal λ and show that the Bohr compactification of an infinite topological symmetric inverse semigroup of finite transformations \mathcal{I}^n_λ of the rank $\leq n$ is the trivial semigroup.

In this paper all topological spaces will be assumed to be Hausdorff. We shall follow the terminology of [1, 2, 5, 11]. If A is a subset of a topological space X, then we denote the closure of the set A in X by $\text{cl}_X(A)$. By ω we denote the first infinite cardinal.

A semigroup S is called an inverse semigroup if every a in S possesses an unique inverse, i.e. if there exists an unique element a^{-1} in S such that

$$aa^{-1}a = a \quad \text{and} \quad a^{-1}aa^{-1} = a^{-1}.$$

A map which associates to any element of an inverse semigroup its inverse is called the inversion.

A topological (inverse) semigroup is a topological space together with a continuous semigroup operation (and an inversion, respectively). Obviously, the inversion defined on a topological inverse semigroup is a homeomorphism. If S is a semigroup (an inverse semigroup) and τ is a topology on S such that (S, τ) is a topological (inverse) semigroup, then we shall call τ a semigroup (inverse) topology on S.

If S is a semigroup, then by $E(S)$ we denote the band (the subset of all idempotents) of S. On the set of idempotents $E(S)$ there exists a natural partial order: $e \leq f$ if and only if $ef = fe = e$.

Let X be a set of cardinality $\lambda \geq 1$. Without loss of generality we can identify the set X with the cardinal λ. A function α mapping a subset Y of X into X is called a partial transformation of X. In this case the set Y is called the domain of α and is denoted by $\text{dom}\alpha$. Also, the set $\{x \in X \mid y\alpha = x \text{ for some } y \in Y\}$ is called the range of α and is denoted by $\text{ran}\alpha$. The cardinality of $\text{ran}\alpha$ is called the rank of α and denoted by $\text{rank}\alpha$. For convenience we denote by \emptyset the empty transformation, that is a partial mapping with $\text{dom}\emptyset = \text{ran}\emptyset = \emptyset$.

Let $\mathcal{I}(X)$ denote the set of all partial one-to-one transformations of X together with the following semigroup operation:

$$x(\alpha \beta) = (x\alpha)\beta \quad \text{if} \quad x \in \text{dom}(\alpha \beta) = \{y \in \text{dom}\alpha \mid y\alpha \in \text{dom}\beta\}, \quad \text{for} \quad \alpha, \beta \in \mathcal{I}(X).$$

The semigroup $\mathcal{I}(X)$ is called the symmetric inverse semigroup over the set X (see [2]). The symmetric inverse semigroup was introduced by V. V. Wagner [15] and it plays a major role in the theory of semigroups.

Put

$$\mathcal{I}^\infty_\lambda = \{\alpha \in \mathcal{I}(X) \mid \text{rank}\alpha \text{ is finite}\}, \quad \text{and} \quad \mathcal{I}^n_\lambda = \{\alpha \in \mathcal{I}(X) \mid \text{rank}\alpha \leq n\},$$

Date: December 1, 2009.

2000 Mathematics Subject Classification. Primary 22A15, 20M20. Secondary 20M18, 54H15.

Key words and phrases. Topological semigroup, topological inverse semigroup, symmetric inverse semigroup of finite transformations, algebraically h-closed semigroup, absolutely H-closed semigroup, H-closed semigroup, annihilating semigroup homomorphism, Bohr compactification.
for \(n = 1, 2, 3, \ldots \). Obviously, \(\mathcal{I}_\infty \) and \(\mathcal{I}_n^\alpha (n = 1, 2, 3, \ldots) \) are inverse semigroups, \(\mathcal{I}_\infty \) is an ideal of \(\mathcal{I}(X) \), and \(\mathcal{I}_n^\alpha \) is an ideal of \(\mathcal{I}_\infty \), for each \(n = 1, 2, 3, \ldots \). Further, we shall call the semigroup \(\mathcal{I}_\infty^\alpha \) the symmetric inverse semigroup of finite transformations and \(\mathcal{I}^\alpha_n \) the symmetric inverse semigroup of finite transformations of the rank \(\leq n \). The elements of semigroups \(\mathcal{I}_\infty^\alpha \) and \(\mathcal{I}_n^\alpha \) are called finite one-to-one transformations (partial bijections) of the set \(X \). By

\[
\begin{pmatrix}
 x_1 & x_2 & \cdots & x_n \\
 y_1 & y_2 & \cdots & y_n
\end{pmatrix}
\]

we denote a partial one-to-one transformation which maps \(x_1 \) onto \(y_1 \), \(x_2 \) onto \(y_2 \), \ldots, and \(x_n \) onto \(y_n \), and by 0 the empty transformation. Obviously, in such case we have \(x_i \neq x_j \) and \(y_i \neq y_j \) for \(i \neq j \) (\(i, j = 1, 2, 3, \ldots, n \)).

Let \(\lambda \) be a non-empty cardinal. On the set \(B_\lambda = \lambda \times \lambda \cup \{0\} \), where \(0 \notin \lambda \times \lambda \), we define the semigroup operation “\(. \)” as follows

\[
(a, b) \cdot (c, d) = \begin{cases}
(a, d), & \text{if } b = c, \\
0, & \text{if } b \neq c,
\end{cases}
\]

and \((a, b) \cdot 0 = 0 \cdot (a, b) = 0 \cdot 0 = 0 \) for \(a, b, c, d \in \lambda \). The semigroup \(B_\lambda \) is called the semigroup of \(\lambda \times \lambda \)-matrix units (see [2]). Obviously, for any cardinal \(\lambda > 0 \), the semigroup of \(\lambda \times \lambda \)-matrix units \(B_\lambda \) is isomorphic to \(\mathcal{I}_\lambda^1 \).

Definition 1 ([8, 13]). Let \(\mathcal{G} \) be a class of topological semigroups. A topological semigroup \(S \in \mathcal{G} \) is called \(H \)-closed in the class \(\mathcal{G} \) if \(S \) is a closed subsemigroup of any topological semigroup \(T \in \mathcal{G} \) which contains \(S \) as a subsemigroup. If \(\mathcal{G} \) coincides with the class of all topological semigroups, then the semigroup \(S \) is called \(H \)-closed.

We remark that in [13] \(H \)-closed semigroups are called maximal.

Definition 2. [9, 14] Let \(\mathcal{G} \) be a class of topological semigroups. A topological semigroup \(S \in \mathcal{G} \) is called absolutely \(H \)-closed in the class \(\mathcal{G} \) if any continuous homomorphic image of \(S \) into \(T \in \mathcal{G} \) is \(H \)-closed in \(\mathcal{G} \). If \(\mathcal{G} \) coincides with the class of all topological semigroups, then the semigroup \(S \) is called absolutely \(H \)-closed.

Definition 3. [9, 14] Let \(\mathcal{G} \) be a class of topological semigroups. A semigroup \(S \) is called algebraically \(h \)-closed in \(\mathcal{G} \) if \(S \) with the discrete topology \(\mathcal{G} \) is absolutely \(H \)-closed in \(\mathcal{G} \) and \((S, \mathcal{G}) \in \mathcal{G} \). If \(\mathcal{G} \) coincides with the class of all topological semigroups, then the semigroup \(S \) is called algebraically \(h \)-closed.

Absolutely \(H \)-closed semigroups and algebraically \(h \)-closed semigroups were introduced by Stepp in [14]. There they were called absolutely maximal and algebraic maximal, respectively.

Gutik and Pavlyk established in [10] topological properties of infinite topological semigroups of \(\lambda \times \lambda \)-matrix units \(B_\lambda \). They showed that an infinite topological semigroup of \(\lambda \times \lambda \)-matrix units \(B_\lambda \) does not embed into a compact topological semigroup, every non-zero element of \(B_\lambda \) is an isolated point of \(B_\lambda \), and \(B_\lambda \) is algebraically \(h \)-closed in the class of topological inverse semigroups.

Gutik, Lawson and Repovš in [7] introduced the conception of semigroups with a tight ideal series and there they investigated their closure in semitopological semigroups, partially inverse semigroups with continuous inversion. Also they derived related results about the nonexistence of (partial) compactifications of topological semigroups with a tight ideal series. As a corollary they show that the symmetric inverse semigroup of finite transformations \(\mathcal{I}_n^\alpha \) of the rank \(\leq n \) is algebraically closed in the class of inverse (semi)topological semigroups with continuous inversion. Since semigroups with a tight ideal series are not preserved by homomorphisms ([7, Lemma 19]), naturally arises the following question: is the symmetric inverse semigroup of
finite transformations I^k_λ of the rank $\leq n$ is algebraically h-closed in the class of topological inverse semigroups?

In this paper we shall show that for every infinite cardinal λ the finite symmetric inverse semigroup I^k_λ of the rank $\leq n$ has topological properties similar to the infinite semigroup of matrix units B_λ as a topological semigroup. We show that the topological inverse semigroup I^k_λ is algebraically h-closed in the class of topological inverse semigroups. Also we prove that a topological semigroup S with countably compact square $S \times S$ does not contain the semigroup I^k_λ for infinite cardinal λ and show that the Bohr compactification of an infinite topological symmetric inverse semigroup of finite transformations I^k_λ of the rank $\leq n$ is the trivial semigroup.

The main results of this paper were announced in \[12\].

Theorem 4. For any positive integer n the semigroup I^k_λ is algebraically h-closed in the class of topological inverse semigroups.

Proof. In the case $\lambda < \omega$ the assertion of the theorem is obvious. Suppose now that $\lambda \geq \omega$. We shall prove the assertion of the theorem by induction.

Theorem 14 from \[10\] implies that the semigroup I^1_λ is algebraically h-closed in the class of all topological inverse semigroups. We suppose that the assertion of the theorem holds for $n = 1, 2, \ldots, k - 1$ and we shall prove that it is true for $n = k$.

Suppose to the contrary, that there exist a topological inverse semigroup S and continuous homomorphisms h from the semigroup I^k_λ with the discrete topology into S such that $(I^k_\lambda)h$ is a non-closed subsemigroup of S. Since a homomorphic image of an inverse semigroup is an inverse semigroup, Proposition II.2 of \[4\] implies that $cl_S((I^k_\lambda)h)$ is a topological inverse semigroup. Therefore, without loss of generality we can assume that $(I^k_\lambda)h$ is a dense inverse subsemigroup of S.

Let $x \in S \setminus (I^k_\lambda)h$ and $W(x)$ be an open neighbourhood of the point x. Since the semigroup I^{k-1}_λ is algebraically h-closed in the class of topological inverse semigroups, without loss of generality we can assume that $W(x) \cap (I^{k-1}_\lambda)h = \emptyset$.

Suppose that x is an idempotent of S. Then there exists an open neighbourhood $V(x) \subseteq W(x)$ such that $V(x) \cdot V(x) \subseteq W(x)$. Then since the neighbourhood $V(x)$ contains infinitely many points from $(I^k_\lambda)h \setminus (I^{k-1}_\lambda)h$ we have that $(V(x) \cdot V(x)) \cap (I^{k-1}_\lambda)h \neq \emptyset$. A contradiction to the assumption $W(x) \cap (I^{k-1}_\lambda)h = \emptyset$. Therefore we have $x \cdot x \neq x$.

Since I^{k-1}_λ is an inverse subsemigroup of I^k_λ Proposition II.2 \[4\] implies that $x^{-1} \notin S \setminus (I^k_\lambda)h$. Since S is a topological inverse semigroup and the semigroup I^{k-1}_λ is algebraically h-closed in the class of topological inverse semigroups, there exist open neighbourhoods $V(x)$ and $V(x^{-1})$ of the points x and x^{-1}, respectively, such that

$$V(x) \cdot V(x^{-1}) \cdot V(x) \subseteq W(x), \quad V(x) \cap (I^{k-1}_\lambda)h = \emptyset, \quad V(x^{-1}) \cap (I^{k-1}_\lambda)h = \emptyset,$$

and

$$V(x) \subseteq W(x).$$

We observe that the set $V(x) \cap (I^k_\lambda)h$ is infinite, otherwise we have that $x \notin cl_S((I^k_\lambda)h)$.

Since S is a topological inverse semigroup, the set $V(x^{-1}) \cap (I^k_\lambda)h$ is infinite too. Let $V = (V(x) \cap (I^k_\lambda)h)^h$ and $V^* = (V(x^{-1}) \cap (I^k_\lambda)h)^h$. Then the sets V and V^* are infinite, and we have $V \cap I^{k-1}_\lambda = \emptyset$ and $V^* \cap I^{k-1}_\lambda = \emptyset$. Therefore $V \cdot V^* \cdot V \cap I^{k-1}_\lambda \neq \emptyset$ and hence $((V)h \cdot (V^*)h \cdot (V)h) \cap (I^{k-1}_\lambda)h \neq \emptyset$. But

$$((V)h \cdot (V^*)h \cdot (V)h) \subseteq V(x) \cdot V(x^{-1}) \cdot V(x) \subseteq W(x),$$

a contradiction to the assumption $W(x) \cap (I^{k-1}_\lambda)h = \emptyset$. The obtained contradiction implies the assertion of the theorem. \square

Theorem \[4\] implies
Corollary 5. Let n be any positive integer and let τ be any inverse semigroup topology on S^n. Then (S^n, τ) is an absolutely H-closed topological inverse semigroup in the class of topological inverse semigroups.

The following theorem generalizes Theorem 10 from [10].

Theorem 6. A topological semigroup S with countably compact square $S \times S$ does not contain an infinite countable semigroup of matrix units.

Proof. Suppose to the contrary: there exists a topological semigroup S with countably compact square $S \times S$ such that S contains an infinite countable semigroup of $\omega \times \omega$-matrix units B_ω. We numerate elements of a set X of cardinality ω by non-negative integers, i. e., $X = \{0, \alpha_1, \alpha_2, \ldots\}$. Then we consider the sequence $\{(\alpha_0, \alpha_n), (\alpha_n, \alpha_0)\}_{n=1}^\infty$ in $B_\omega \times B_\omega \subset S \times S$. The countable compactness of $S \times S$ guarantees that this sequence has an accumulation point $(a, b) \in S \times S$. Since $(\alpha_0, \alpha_n) \cdot (\alpha_n, \alpha_0) = (\alpha_0, \alpha_0)$, the continuity of the semigroup operation on S guarantees that $ab = (\alpha_0, \alpha_0)$. By Lemma 4 [10], every non-zero element of the semigroup of $\omega \times \omega$-matrix units B_ω endowed with the topology induced from S is an isolated point in B_ω. So, there exists a neighbourhood $O((\alpha_0, \alpha_0)) \subseteq S$ of the point $(\alpha_0, \alpha_0) \in B_\omega$ containing no other points of the semigroup B_ω. Since $ab = (\alpha_0, \alpha_0)$, the points a, b have neighborhoods $O(a), O(b) \subset S$ such that $O(a) \cdot O(b) \subset O((\alpha_0, \alpha_0))$. Since a is an accumulation point of the sequence (α_0, α_n), there exists a positive integer n such that $(\alpha_0, \alpha_n) \in O(a)$. Similarly there exists a positive integer $m > n$ such that $(\alpha_m, \alpha_0) \in O(b)$. Then $(\alpha_0, \alpha_n) \cdot (\alpha_m, \alpha_0) = 0 \in O(a) \cdot O(b) \cap B_\omega = (\alpha_0, \alpha_0)$, which is a contradiction. \square

Since every infinite semigroup of $\lambda \times \lambda$-matrix units B_λ contains the semigroup B_ω, Theorem 6 implies

Theorem 7. A topological semigroup S with countably compact square $S \times S$ does not contain an infinite semigroup of matrix units.

Theorem 6 implies

Corollary 8 ([10, Theorem 10]). An infinite semigroup of matrix units does not embed into a compact topological semigroup.

A semigroup homomorphism $h : S \to T$ is called annihilating if $(s)h = (t)h$ for all $s, t \in S$.

A semigroup S is called congruence-free if it has only two congruences: identical and universal [2]. Obviously, a semigroup S is congruence-free if and only if every homomorphism h of S into an arbitrary semigroup T is an isomorphism “into” or is an annihilating homomorphism.

Theorem 1 from [3] implies that the semigroup B_λ is congruence-free for every cardinal $\lambda \geq 2$ and hence Theorem 6 implies

Theorem 9. Every continuous homomorphism from an infinite topological semigroup of matrix units into a topological semigroup S with countably compact square $S \times S$ is annihilating.

Theorem 9 implies

Corollary 10 ([10, Theorem 12]). Every continuous homomorphism from an infinite topological semigroup of matrix units into a compact topological semigroup is annihilating.

Theorem 11. Let $\lambda \geq \omega$ and n be a positive integer. Then every continuous homomorphism of the topological semigroup S_λ^n into a topological semigroup S with countably compact square $S \times S$ is annihilating.

Proof. We shall prove the assertion of the theorem by induction. By Theorem 9 every continuous homomorphism of the topological semigroup S_λ^n into a topological semigroup S with countably compact square $S \times S$ is annihilating. We suppose that the assertion of the theorem holds for $n = 1, 2, \ldots, k - 1$ and we shall prove that it is true for $n = k$. \square
Obviously it is sufficiently to show that the statement of the theorem holds for the discrete semigroup \(J_k \). Let \(h: J_k \to S \) be arbitrary homomorphism from \(J_k \) with the discrete topology into a topological semigroup \(S \) with countably compact square \(S \times S \). Then by Theorem 9, the restriction \(h_{| J_1^i} : J_1^i \to S \) of homomorphism \(h \) onto the subsemigroup \(J_1^i \) of \(J_k \) is an annihilating homomorphisms. Let \((J_1^1) = h_{| J_1^1} = (J_1^1)h = e\), where \(e \in E(S) \). We fix any \(\alpha \in J_k \) with \(\text{ran}(\alpha) = i \geq 2 \). Let \(\alpha = \left(\begin{array}{ccc} x_1 & x_2 & \cdots & x_i \\ y_1 & y_2 & \cdots & y_i \end{array} \right) \) (where \(x_1, x_2, \ldots, x_i, y_1, y_2, \ldots, y_i \in X \) for some set \(X \) of cardinality \(\lambda \)). We fix \(y_1 \in X \) and define subsemigroup \(T_{y_1} \) of \(J_k \) as follows:

\[
T_{y_1} = \left\{ \beta \in J_k \mid \left(\begin{array}{c} y_1 \\ y_1 \end{array} \right) \cdot \beta = \beta \cdot \left(\begin{array}{c} y_1 \\ y_1 \end{array} \right) = \left(\begin{array}{c} y_1 \\ y_1 \end{array} \right) \right\}.
\]

Then the semigroup \(T_{y_1} \) is isomorphic to the semigroup \(J_k^{-1} \), the element \(\left(\begin{array}{c} y_1 \\ y_1 \end{array} \right) \) is zero of \(T_{y_1} \) and hence by induction assumption we have \(\left(\begin{array}{c} y_1 \\ y_1 \end{array} \right) h = (\beta)h \) for all \(\beta \in T_{y_1} \).

Since \(\left(\begin{array}{c} y_1 \\ y_1 \end{array} \right) \in J_1^1 \), we have that \((\beta)h = (0)h \) for all \(\beta \in T_{y_1} \). But \(\alpha = \alpha \gamma \), where \(\gamma = \left(\begin{array}{ccc} y_1 & y_2 & \cdots \\ y_1 & y_2 & \cdots \\ \vdots & \vdots & \ddots \end{array} \right) \in T_{y_1} \), and hence we have

\[
(\alpha)h = (\alpha \gamma)h = (\alpha)h \cdot (\gamma)h = (\alpha)h \cdot (0)h = (\alpha \cdot 0)h = (0)h = e.
\]

This completes the proof of the theorem. \(\square \)

Theorem 11 implies

Theorem 12. Let \(\lambda \geq \omega \) and \(n \) be a positive integer. Then every continuous homomorphism of the topological semigroup \(J_\lambda^n \) into a compact topological semigroup is annihilating.

Recall [3] that a Bohr compactification of a topological semigroup \(S \) is a pair \((\beta, B(S))\) such that \(B(S) \) is a compact semigroup, \(\beta: S \to B(S) \) is a continuous homomorphism, and if \(g: S \to T \) is a continuous homomorphism of \(S \) into a compact semigroup \(T \), then there exists a unique continuous homomorphism \(f: B(S) \to T \) such that the diagram

\[
\begin{array}{ccc}
S & \xrightarrow{\beta} & B(S) \\
g \downarrow & & \downarrow f \\
T & &
\end{array}
\]

commutes.

Theorem 12 and Theorem 2.44 [1, Vol. I] imply

Theorem 13. If \(\lambda \geq \omega \) and \(n \) is a positive integer, then the Bohr compactification of the topological semigroup \(J_\lambda^n \) is a trivial semigroup.

References

[1] J. H. Carruth, J. A. Hildebrant and R. J. Koch, *The Theory of Topological Semigroups*, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II, Marcel Dekker, Inc., New York and Basel, 1986.

[2] A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups*, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.

[3] K. DeLeeuw and I. Glicksberg, *Almost-periodic functions on semigroups*, Acta Math. 105 (1961), 99—140

[4] C. Eberhart and J. Selden, *On the closure of the bicyclic semigroup*, Trans. Amer. Math. Soc. 144 (1969), 115—126.

[5] R. Engelking, *General Topology*, 2nd ed., Heldermann, Berlin, 1989.

[6] L. M. Gluskin, *Simple semigroups with zero*, Doklady Akademii Nauk SSSR 103:1 (1955), 5–8 (in Russian).
[7] O. Gutik, J. Lawson and D. Repovš, *Semigroup closures of finite rank symmetric inverse semigroups*, Semigroup Forum (to appear).
[8] O. V. Gutik and K. P. Pavlyk, *H-closed topological semigroups and topological Brandt λ-extensions*, Math. Methods and Phys.-Mech. Fields **44**:3 (2001), 20—28 (in Ukrainian).
[9] O. Gutik and K. Pavlyk, *Topological Brandt λ-extensions of absolutely H-closed topological inverse semigroups*, Visnyk Lviv. Univ. Ser. Mekh.-Mat. **61** (2003), 98—105.
[10] O. V. Gutik and K. P. Pavlyk, *On topological semigroups of matrix units*, Semigroup Forum **71**:3 (2005), 389—400.
[11] M. Petrich, *Inverse Semigroups*, John Wiley & Sons, New York, 1984.
[12] A. Reiter and O. Gutik, *On a topological semigroup of finite transformations of a Hausdorff topological space*, International Conference “Analisyis and Topology”, Lviv, June 2-7, 2008. Abstracts. Part II. Topology. Lviv, 2008, P. 59—60.
[13] J. W. Stepp, *A note on maximal locally compact semigroups*, Proc. Amer. Math. Soc. **20**:1 (1969), 251—253.
[14] J. W. Stepp, *Algebraic maximal semilattices*, Pacific J. Math. **58**:1 (1975), 243—248.
[15] V. V. Wagner, *Generalized groups*, Dokl. Akad. Nauk SSSR **84** (1952), 1119—1122 (in Russian).

Department of Mechanics and Mathematics, Ivan Franko Lviv National University, Universytetska 1, Lviv, 79000, Ukraine

E-mail address: o_gutik@franko.lviv.ua, ovgutik@yahoo.com

Department of Mechanics and Mathematics, Ivan Franko Lviv National University, Universytetska 1, Lviv, 79000, Ukraine

E-mail address: reiter@i.ua, reiter_andriy@yahoo.com