Title

Phylogenomic analysis of Clostridium perfringens identifies isogenic strains in gastroenteritis outbreaks, and novel virulence-related features

Running title: Gastroenteritis-associated Clostridium perfringens

Author information

Affiliations

Raymond Kiu1,2, Shabhonam Caim1, Derek Pickard3, Anais Painset4, Craig Swift4, Gordon Dougan3, Alison E Mather5, Corinne Amar4, Lindsay J Hall1*

1 Gut Microbes & Health, Quadram Institute Bioscience, Norwich, United Kingdom
2 Norwich Medical School, University of East Anglia, Norwich, United Kingdom
3 Department of Medicine, University of Cambridge, Cambridge, United Kingdom
4 Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
5 Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom

Conflict of interest

The authors declare no conflict of interest.

*Corresponding author

Lindsay J Hall
Abstract

Clostridium perfringens is a major enteric pathogen known to cause gastroenteritis in human adults. Although major outbreak cases are frequently reported, limited Whole Genome Sequencing (WGS) based studies have been performed to understand the genomic epidemiology and virulence gene content of *C. perfringens*-associated outbreak strains. We performed both genomic and phylogenetic analysis on 109 *C. perfringens* strains (human and food) isolated from disease cases in England and Wales between 2011-2017. Initial findings highlighted the enhanced discriminatory power of WGS in profiling outbreak *C. perfringens* strains, when compared to the current Public Health England referencing laboratory technique of Fluorescent Amplified Fragment Length Polymorphism (fAFLP). Further analysis identified that isogenic *C. perfringens* strains were associated with nine distinct care home-associated outbreaks over the course of a 5-year interval, indicating a potential common source linked to these outbreaks or transmission over time and space. As expected the enterotoxin CPE gene was encoded in all but 4 isolates (96.4%; 105/109), with virulence plasmids encoding *cpe* (particularly pCPF5603- and pCPF4969-family plasmids) extensively distributed (82.6%;90/109). Genes encoding accessory virulence factors, such as beta-2 toxin, were commonly detected (46.7%; 50/109), and genes encoding phage proteins were also frequently identified, with additional analysis indicating their contribution to increased virulence determinants within the genomes of gastroenteritis-associated *C. perfringens*. Overall this large-scale genomic study of gastroenteritis-associated *C. perfringens* suggested that 3 major sub-types underlie these outbreaks: strains carrying (1) pCPF5603 plasmid, (2) pCPF4969 plasmid, and (3) strains carrying *cpe* on transposable element Tn5565 (usually
integrated into chromosome). Our findings indicate that further studies will be required to
fully probe this enteric pathogen, particularly in relation to developing intervention and
prevention strategies to reduce food poisoning disease burden in vulnerable patients, such as
the elderly.

Introduction

Clostridium perfringens is an important pathogen known to cause disease in humans and
animals (1, 2). Notably, the pathogenesis of *C. perfringens*-associated infections is largely
attributed to the wide array of toxins this species can produce, with >20 toxins currently
identified (3, 4). This Gram-positive spore former has been associated with foodborne and
non-foodborne diarrhoeal diseases in humans, and preterm-necrotising enterocolitis (5, 6).

C. perfringens-associated food poisoning, also termed acute watery diarrhoea, was first
documented in the UK and USA in the 1940s (7). Typical symptoms occur within 8-14 h
after ingestion of food contaminated with at least 10^6 CFU/g of live bacterial cells. These
include intestinal cramp, watery diarrhoea without fever or vomiting, which normally
resolves in 12-24 h (8). Importantly, *C. perfringens* is currently the second most common
foodborne pathogen in the UK after *Campylobacter*, with cases often under reported due to
the frequently self-limiting nature of the illness, with current estimates suggesting ~80,000
cases/annum (9-12).

In the UK, antibiotic-associated diarrhoea and non-foodborne outbreaks of *C. perfringens*
diarrhoea have been frequently reported since the 1980s amongst the elderly, particularly in
hospital settings (13). With this type of illness, symptoms are more severe than foodborne
diarrhoea and are longer lasting (>3 days to several weeks), often chronic, and infections are
more likely to be spread amongst cases (14). This type of *C. perfringens* infection has also
been reported in elderly patients, especially those residing in care homes in the North East of England between 2012-2014 (83% of the outbreaks reported from care homes) (10).

Although fatality due to *C. perfringens* diarrhoea is uncommon and hospitalisation rate is low, enterotoxigenic *C. perfringens* is reported to cause ~55 deaths/year in England and Wales according to the UK Food Standards Agency (15, 16).

The newly expanded and revised toxinotyping scheme classifies *C. perfringens* into 7 toxinotypes (type A-G) according to the combination of typing toxins produced, with this classification used in this article (17). Human cases of *C. perfringens* diarrhoea are primarily caused by type F strains (formerly classified as enterotoxigenic type A), which produce enterotoxin (CPE), encoded by the *cpe* gene (18). This potent pore-forming toxin is reported to disrupt intestinal tight junction barriers, which is associated with intestinal disease symptoms (19). *C. perfringens*, and associated encoded toxins, have been extensively studied with respect to disease pathogenesis, with a strong focus on animal infections (20-24). Recent studies analysing a range of diverse *C. perfringens* strains (from both animal and human-associated infections) indicates a plastic and divergent pangenome, with a significant proportion of accessory genes predicted to be involved in virulence mechanisms and metabolisms, linked to enhanced host colonisation and disease initiation (3, 25). However, studies describing human outbreak-associated *C. perfringens* infections are limited, and to date only one recent study (58 isolates) has utilised Whole Genome Sequencing (WGS) data to probe the genomic epidemiology of associated strains (3, 26).

We have applied in-depth genomics and phylogenetic analyses to whole genome sequences of 109 newly-sequenced *C. perfringens* isolates associated with outbreaks or incidents of *C. perfringens* diarrhoea in England and Wales, either foodborne or non-foodborne-derived. We also identified distribution of known virulence-related determinants including toxin and antimicrobial resistance (AMR) genes, virulence-associated plasmid contents within food and
case isolates and probed putative functional capabilities of the accessory genomes and virulence features within encoded phage genomes. Importantly, we determined that isogenic strains were associated with 9 care-home outbreaks in North East England between 2013-2017, and furthermore uncovered the significant involvement of virulence plasmid-carrying *C. perfringens* in these outbreaks.

Materials and methods

Bacterial isolates, PCR and genomic DNA extraction

C. perfringens isolated from clinical cases of diarrhoea and suspected foods when available, were referred to the reference laboratory at PHE, Gastrointestinal Bacteria Reference Unit (GBRU). Identification and characterisation of cultures was performed by detection of the *C. perfringens* alpha toxin and enterotoxin gene by duplex real time PCR as described elsewhere (27). Enterotoxigenic *C. perfringens*, when associated with an outbreak or incident, were then further typed for strain discrimination using fluorescent amplified fragment length polymorphism (fAFLP) as previously described (28). In this study, 109 cultures characterised and archived by the GBRU between 2011 and 2017 were selected, representing enterotoxigenic and non-enterotoxigenic isolates from sporadic cases and outbreaks of *C. perfringens* food poisoning and of non-foodborne *C. perfringens* diarrhoea (Table S1).

DNA was extracted from overnight *C. perfringens* cultures (maximum of 1 x 10⁷ cells) lysed with lysis buffer (200μl Qiagen Buffer P1, 20 μl lysozyme with concentration at 100mg/ml) and incubated at 37°C for 1 h before addition of 20 μl Proteinase K (QIAsymphony DSP DNA kit), and incubation at 56°C for 5 h until cells had visibly lysed. Following incubation at 96°C for 10 min, to inactivate proteases and any viable cells remaining, RNA was removed by adding 0.4 mg of RNase (Qiagen, Manchester) and incubation at 37°C for 15 min.
Genomic DNA was then purified using the QIAsymphony DSP DNA kit on a QIAsymphony
SP automated DNA extraction platform (Qiagen, Manchester) according to manufacturer
instructions.

Computing infrastructure

Computational analyses were performed on Norwich Biosciences Institute’s (NBI) High
Performing Computing cluster running Linux CentOS v7. Open-source software was utilised
for genomic analysis.

Genomic DNA sequencing

Pure bacterial DNA was subjected to standard Illumina library preparation protocol prior to
sequencing on in-house Illumina MiSeq (PH091-PH156) or HiSeq 2500 platforms (PH004-
PH090; at Wellcome Trust Sanger Institute, UK) with read length (paired-end reads) 2 x 101
bp and 2 x 151 bp respectively.

Genome assembly and annotation

Sequencing reads were assembled using SPAdes v3.11 (PH091-PH156) to generate draft
genomes, the remaining assemblies were generated at Wellcome Trust Sanger Institute
(Hinxton, UK) as described previously (for assembly quality see Table S2)(29, 30).
Assemblies were improved by scaffolding/gap filling using SSPACE v3.0 and GapFiller
v1.10 (31-33). Sequencing reads and coverage counts were calculated via in-house custom
script using FASTQ reads and FASTA assemblies. Genome assemblies were annotated by
Prokka v1.13 using in-house Genus-specific database that included 35 *Clostridium* species
retrieved from NCBI RefSeq database to construct genus-specific annotation database (Table
S3)(34). Sequences from very small contigs (contig size <200 bp) were removed prior to
coding region prediction. Assembly statistics were extracted from Prokka outputs using an in-
house script. Draft genomes were checked for sequence contamination using Kraken v1.1
(based on MiniKraken database) (35). All draft genomes containing >5% of contaminated
species sequences (other than C. perfringens), whole genome Average Nucleotide Identity
(ANI) < 95% (compared with reference genome NCTC8239; performed with Python module
pyani v0.2.4), and assemblies with >500 contigs (considered as poor assemblies) were all
excluded from further study (n=21)(36).

Reference genome

A newly sequenced historical foodborne isolate genome NCTC8239 under the NCTC3000
project\(^1\) was retrieved (accession: SAMEA4063013) and assembled in this study with Canu
pipeline v1.6 using PacBio reads (37). The final high-quality assembled genome consists of 3
08 497 bp in 2 contigs (contig 1 has 2 940 812 bp, contig 2 has 67 685 bp).

Pangenome and phylogenetic analyses

Pangenome of isolates was constructed using Roary v3.8.0 at BLASTp 90% identity, adding
option -s (do not split paralogs), and options -e and -n to generate core gene alignment using
MAFFT v7.3 (38, 39). Roary took GFF3-format annotated assemblies generated by Prokka.
The pangenome includes both the core and accessory genomes; core genome is defined as
genes present in at least 99% of the genomes, accessory genome as genes present in <99% of
the genomes. SNP-sites v2.3.3 was used to extract single nucleotide variants from the core
gene alignment for re-constructing a phylogenetic tree (40). Phylogenetic trees were
generated using FastTree v2.1.9 and annotated using iTOL v4.2 (41, 42). FastTree was run
using the Generalized Time-Reversible (GTR) model of nucleotide evolution on 1000
bootstrap replicates to generate maximum-likelihood trees (41). SNP distance between
genomes were computed using snp-dists (43). Population structure was analysed via the
Bayesian-based clustering algorithm hierBAPS to assign lineages, implemented in R using

\(^1\) https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
rhierbaps v1.0.1 (44, 45). The pangenome was visualised in Phandango while plots were generated using the associated R scripts in the Roary package (46).

Profiling virulence and plasmid-related sequences

Screening of toxin and AMR gene profiles, IS elements and plasmid tcp loci were performed via ABRicate with 90% identity and 90% coverage minimum cutoffs to infer identical genes based on a custom toxin database and the CARD database v2.0.0 (AMR) as described previously (47, 48). ARIBA v2.8.1 was used as a secondary approach to confirm detections of both toxin and AMR genes in raw sequence FASTQ files (49). Heat maps were generated in R using gplots and function heatmap.2 (50, 51).

In silico plasmid analysis

Sequencing reads were utilised for computational plasmid prediction via software PlasmidSeeker v1.0 (52). Plasmid prediction was based on 8 514 plasmid sequences available in NCBI Reference Sequence databases (RefSeq; including 35 C. perfringens plasmids, see Table S4). All reads were searched for matching k-mers at k-mer length of 20 and screening cutoff at P-value 0.05 based on FASTQ reads. The top predicted plasmids appearing in each ‘cluster’ (with highest k-mer identity; k-mer percentage ≥80% as the minimum cutoff) were extracted as predicted plasmids (Table S5). Binary heat maps were generated as described in the previous section. Plasmid sequences from high-sequencing-coverage assemblies (>200X; single contig; n=12) were extracted using in-house Perl scripts, identified by plasmid gene content. Plasmid annotation was performed via Prokka v1.13 using Clostridium genus-specific database as described in the previous section. Plasmid comparison and visualisation were performed using Easyfig v2.2.2.
Bacterial genome-wide association analysis

To associate subsets of genes with specific outbreaks or isolates, we used Scoary v1.6 to identify statistically-related genes based on Roary output (53). Cutoffs were set as ≥80% sensitivity and 100% specificity. Specifically, for a Care Home (CH) and Food Poisoning (FP) subset comparison, sensitivity cutoff was set at ≥50% and specificity at 100%.

Pangenome-wide functional annotation

Functional categories (COG category) were assigned to genes for biological interpretation via eggNOG-mapper v0.99.3 based on the EggNog database (bacteria) (54, 55). Genes of interest were extracted via in-house Perl scripts from Roary-generated pangenome references. Annotations and COG categories were parsed with in-house scripts. Bar plots were generated using GraphPad Prism v6.

Prophage mining

Web tool PHASTER was utilised for detection of intact prophage existing in bacterial genomes (Table S6). Annotated GenBank files were submitted manually to the PHASTER web server and annotated data parsed with in-house scripts. The detection of phage was based on the scoring method and classification as described previously (56). Only intact phage regions within the genomes of completeness score >100 (of maximum 150) were analysed further (extracted by default using PHASTER web tool), annotated and colour-coded using Prokka v1.13 and Artemis for visualisation in EasyFig v2.2.2 and R package gplots function heatmap.2 (57, 58). Bar plots were generated using GraphPad Prism v6.

Nucleotide sequence accession numbers

Sequence data in this study will be submitted to the European Nucleotide Archive (ENA) and made available under accession PRJEB25764 upon acceptance of manuscript.
Results

Whole-genome based phylogenetic analysis reveals potential epidemiological clusters

Initially we analysed the population structure of all strains sequenced. We defined general food poisoning isolates as Food Poisoning (FP, n = 74), and care home specific isolates as Care Home (CH, n = 35) (Fig. 1A-B). Quality of the genomic assemblies of draft genomes was also determined (Fig. 1C; Table S2), with > 70% of the isolate assemblies < 200 contigs.

Separate analysis of CH isolates indicated four distinct phylogenetic lineages relating to care home outbreaks (Fig. 2A). Lineage I contained the reference genome NCTC8239, a historical cpe-positive isolate (originally isolated from salt beef) associated with a FP outbreak, and three newly sequenced strains (7). The remaining isolates clustered within three lineages (i.e. II, III and IV), that were divergent from lineage I indicating these CH isolates might be genetically distinct from typical FP isolates as in Fig. 1A. Further analysis indicated that 18 closely-related strains obtained from 9 different outbreaks between 2013-2017 which occurred in the North East England, clustered within the same IVc sub-lineage (Fig. 2B).

SNP investigation on these IVc isolates determined within-sub-lineage pairwise genetic distances of < 80 SNPs (29.9 ± 16.6 SNPs; mean ± S.D.; Table S7), suggesting a close epidemiological link. Isolates associated with specific outbreaks within sub-lineage IVc (i.e. outbreaks 2, 7, 8, 9 and 10) showed very narrow pairwise genetic distances < 20 SNPs (6.6 ± 6.6 SNPs; mean ± S.D.; Fig. 2C), suggesting potential involvement of an isogenic strain (genetically highly similar) within these individual care home outbreaks (although a number of genetically dissimilar strains were also isolated from outbreaks 1, 2, 3, 6, 7 and 8 as shown in Fig. 2A).

This WGS analysis was also shown to have greater discriminatory power than the currently used fAFLP. The fAFLP typing (type CLP 63, yellow-coded) failed to discriminate isolates...
from 6 different outbreaks (CH outbreaks 2-7; Fig. 2A), while SNP analysis clearly
distinguished these strains (Fig. 2B) (59).

Analysis of FP isolates indicated clear separation between lineages (Fig. 3A), particularly
between lineage I, and remaining lineages II-VII (pairwise mean SNP distance lineage I vs
lineages II-VII: 35165 ± 492 SNPs; within lineage I: 5684 ± 2498 SNPs; within lineages II-
VII: 13542 ± 8675 SNPs). Isolates from three individual foodborne-outbreaks within lineage
VII appear to be highly similar even though these isolates demonstrated geographical
heterogeneity (Fig. 3A), and further analysis indicated two different outbreaks that occurred
in London (2013) were related, but somewhat distinct from isolates obtained in North East
England (2015) outbreaks (Fig. 3B). This suggests a geographical separation of a common
ancestor at an earlier time point and may also indicate the potential widespread distribution of
a genetically-related strain.

Isolates from individual FP outbreaks also appeared to be clonal and isogenic, as pairwise
genetic distances were between 0-21 SNPs (mean genetic distance: 2.6 ± 2.7 SNPs; Fig. 3C
and Table S8), when compared to same-lineage-between-outbreaks SNP distances of >1200
SNPs (Fig. 3D). In addition, outbreak-associated food source isolates were not
distinguishable from human clinical isolates (genetically similar, pair-wise SNP range: 0-16
SNPs) in 7 individual FP outbreaks (Fig. 3A). These findings are consistent with the
hypothesis that contaminated food is the main source of these C. perfringens food poisoning
outbreaks, which included all meat-based food stuffs e.g. cooked sliced beef, lamb, chicken
curry, cooked turkey and cooked meat (Table S1).

Virulence gene content

Diarrhoea symptoms associated with C. perfringens are primarily due to production of the
pore-forming toxin enterotoxin (CPE) by C. perfringens type F strains (2, 60). Additional
Virulence determinants implicated in diarrhoea include sialidase (NanI), which is linked to enhanced intestinal attachment and an accessory role in enhancing CPE cell-toxicity, and also pore-forming toxin perfringolysin (PFO), a toxin known to act synergistically with alpha-toxin (phospholipase produced by all *C. perfringens* strains) to inflict intestinal cell damage (24, 61, 62). Moreover, antibiotic-resistant *C. perfringens* are reported to be prevalent, particularly within poultry, thus antimicrobial resistance (AMR) profiles of *C. perfringens* may be linked with prolonged *C. perfringens* associated-infections, and may hamper downstream treatments strategies (63, 64). To probe these important virulence-associated traits we screened isolates for toxin and AMR genes, based on both genome assemblies and raw sequence reads.

Enterotoxin gene *cpe* was detected in all, but 4 isolates (PH017, PH029, PH045 and PH156 were *cpe*-negative), which was confirmed by PCR, with the exception of PH029 which was initially determined to be *cpe*-positive via PCR (96.4%; Table S1; Fig. S1B).

CH isolates (average 9.6 ± 1.0 toxin genes per isolate) encoded significantly more toxin genes (P<0.001) than FP isolates (7.3 ± 1.9 toxin genes per isolate; Fig. S1A). CH isolates in lineages II-IV generally possessed identical toxin profiles (Fig. 4A); colonisation-related sialidase-encoding genes *nanI, nanJ* and *nagH*, haemolysin PFO gene *pfo*, and *cpb2* (Fig. S1C-G), which produces a vital accessory toxin beta-2 toxin (CPB2) associated with CPE-mediated pathogenesis (65). However, CH isolates did not harbour many acquired AMR genes; only 6 isolates (out of 35; 17%) encoded tetracycline resistant genes *tet(P)*, one isolate encoded aminoglycoside resistant gene *APH(3′)*, with remaining isolates not encoding any acquired AMR genes, other than the intrinsic AMR gene *mprF*.

FP isolates had a more variable virulence gene profile (Fig. 4B). Isolates in lineage I had identical toxin genes, including *cpe*, but these isolates did not encode toxins such as PFO,
CPB2 and sialidase NanI, and only three isolates in this lineage carried tetracycline resistant
genes (19%). Most isolates within lineages II-VII (92%; 53/58) encoded \textit{tetA(P)}, with this
AMR gene significantly enriched in all FP isolates (74.3%; 55/74; \(P<0.0001; \textbf{Fig. S1H} \)),
when compared to CH isolates (17.1%; 6/35). Furthermore, most isolates in FP lineages II-
VII also encoded toxin genes \textit{cpe}, \textit{nanI} and \textit{pfo}, and 16 isolates (28%) possessed the
accessory toxin gene \textit{cpb2}. Statistically these FP isolates (8.0 ± 1.5 toxin genes) encoded
more toxin genes than those belonging to FP lineage I (4.9 ± 0.3 toxin genes; \(P<0.0001; \textbf{Fig. S1I} \)) which may suggest increased virulence. Initial plasmid detection indicated that virulence
plasmid pCPF5603 was associated with CH isolates (97% in CH plasmid-carrying isolates;
34/35; \(P<0.0001 \)), while plasmid pCPF4969 was linked to FP isolates (86.4% in FP plasmid-
carrying isolates; 51/59; \(P<0.0001; \textbf{Fig. S1J} \)).

Specific plasmid-associated lineages and potential CPE-plasmid transmission

The CPE toxin is responsible for the symptoms of diarrhoea in food poisoning, and non-
foodborne illnesses, in the latter usually lasting >3 days, and up to several weeks (2, 66).
Genetically, whilst chromosomal encoded \textit{cpe} strains are primarily linked to food-poisoning
(67, 68), non-foodborne diarrhoea is usually associated with plasmid-borne \textit{cpe} strains (66,
69, 70). We performed an in-depth plasmid prediction on our datasets and analysis indicated
that CH isolates predominantly harboured pCPF5603 plasmids (34/35 isolates; 97%)
encoding \textit{cpb2} and \textit{cpe} genes, whilst FP isolates carried primarily pCPF4969 plasmids (45/75
isolates; 60%) encoding \textit{cpe} but not \textit{cpb2} genes (\textbf{Fig. S1J}). We also performed a genome-
wide plasmid-specific sequence search to confirm our findings including \textit{IS1151}
(pCPF5603), \textit{IS1470}-like (pCPF4969) and plasmid conjugative system \textit{tcp} genes (\textbf{Fig. 4A-B})
(71-73).

To further examine and confirm the predicted plasmids, we extracted plasmid sequences
(complete unassembled single contig) from three isolates per CH or FP group, and compared
with reference plasmids (Fig. 5A-C). The extracted plasmid sequences closely resembled the respective reference plasmids, with near-identical nucleotide identity (>99.0%), plasmid size and GC content (Fig. 5B-C; Table S9), thus supporting the findings that these two intact plasmids (pCPF4969 and pCPF5603) are present in these isolates.

Although chromosomal-cpe strains are considered as the primary strain type to be associated with food poisoning, our dataset demonstrated that plasmid-cpe C. perfringens strains were predominantly associated with food poisoning (82.6%; 90/109), with only 17.4% FP isolates encoding a copy of cpe on the chromosome (no plasmid detected). Putatively, plasmid transfer may have occurred in CH outbreak 7 isolates (n=4; PH030, PH031, PH032, PH033), as two isolates reside within lineage IV, whilst the other two isolates nest within the genetically distant CH lineage I (genetic distance >10,000 SNPs), however all 4 isolates harboured plasmid pCPF5603 (Fig. 4A). CH outbreaks 1 and 8 also had dissimilar strains (nested within separate lineages) with identical plasmids. This analysis denotes that multiple distinct strains, but carrying the same cpe-plasmid, may be implicated in these CH outbreaks, with previous work showing in vitro plasmid transfer among C. perfringens strains via conjugation (cpe-positive to cpe-negative strains) (74).

Previous studies have demonstrated that C. perfringens with chromosomally-encoded cpe are genetically divergent from plasmid-cpe carriers. Within the FP phylogeny there was a distinct lineage of isolates (lineage I; n=17) that appear to encode cpe chromosomally. These isolates had significantly smaller genomes (genome size 2.95 ± 0.03 Mb vs 3.39 ± 0.08 Mb outside-lineage; n=93; P<0.0001; Table S10), were most similar to reference genome NCTC8239 (ANI ≥ 99.40%) and appeared to lack plasmids. This was further evidenced by historical chromosomal-cpe strain NCTC8239 nesting in this lineage with these newly sequenced strains (FP lineage I; Fig. 4) (70, 72, 75). To further investigate this hypothesis, the cpe-encoding region (complete single contig from high-coverage assemblies) was extracted from
representative isolates in lineage I (n=6), and comparative genomics was performed (Fig. 5D). These consistently smaller (~4.0-4.3 kb) contigs were almost identical in nucleotide identity (>99.9%) when compared with the cpe-encoding region of chromosomal-cpe strain NCTC8239, confirming that these isolates possessed the same cpe genomic architecture as NCTC8239 and confirmed as transposable element Tn5565 (Fig. 5E). In addition, PH029 was the only outbreak isolate not detected to encode cpe within the lineage I outbreak cluster, despite having a clonal relationship with PH028, PH104, PH105 and PH107 (FP outbreak 4; Fig. 4B). This suggests Tn5565 loss may have occurred due to extensive sub-culturing (this is supported by initial PCR results being cpe-positive; see Table S1). Analysis also indicates that cpe was closely associated with IS1469 independent of where it was encoded, as this insertion sequence was detected exclusively in all cpe-encoding genomes (100%; Fig. 4A-B).

Accessory genome virulence potentials

The 110 strain _C. perfringens_ pangenome consisted of 6,219 genes (including NCTC8239; Fig. S2); 1,965 core genes (31.5%), and 4,254 accessory genes (68.5%); with ~30-40% genes in any individual strain encoded within the accessory genome, potentially driving evolution and genome restructuring. Mobile genetic elements including plasmids, genomic islands and prophages could potentially contribute to virulence, given the plasticity of the genome. To explore this in more detail, we further analysed the accessory genomes, comparing different sub-sets of _C. perfringens_ isolates. We first identified subset-specific genes using a bacterial pan-GWAS approach, with these genes further annotated based on NCBI RefSeq gene annotations and categorised under COG classes into three comparison groups: (1) CH vs FP; (2) FP outbreaks; (3) FP lineage I, FP lineage II-VII and CH-FP plasmid-CPE isolates (Fig. S3A-C).

Phosphotransferase system (PTS)-related genes (n=4) were encoded exclusively in CH isolates (present in 26/35 CH isolates; Fig. S3A and Table S11). These genes may contribute
to the isolates’ fitness to utilise complex carbohydrates (COG category G) in competitive
niches, like the gastrointestinal tract (76). PTS genes have been linked to virulence regulation
in other pathogens including foodborne pathogen *Listeria monocytogenes* (77). Heat-shock
protein (Hsp70) DnaK co-chaperone was annotated in FP-specific accessory genome (present
in 57/74 FP isolates), which may be involved in capsule and pili formation which may
facilitate host colonisation (78-80).

Accessory genes specific to each FP outbreaks were variable (Fig. S3B-C and Table S12),
but 3 annotated functional classes were conserved; L (replication, recombination & repair), M
(cell wall/membrane/envelope biogenesis) and V (defense mechanisms). Prominent genes
detected in all isolates included phage-related proteins (n=49) (L, M and S),
glycosyltransferases (n=37) (M), restriction modification systems (n=16) (V), transposases
(n=9) (L) and integrases (n=8) (L). It was evident that most genes were associated with
phages, seemingly a major source of mobile genetic transfer.

Correspondingly, less group-specific accessory genes where present compared with other
isolates in lineages II-VII (Fig. S3C and Table S13). Notably, multidrug transporter ‘small
multidrug resistance’ genes were exclusively detected in FP lineage I isolates, whereas ABC
transporters were more commonly encoded in plasmid-carrying isolates (virulence plasmids
pCPF5603 and pCPF4969 carry various ABC transporter genes). The Mate efflux family
protein gene was detected solely in lineage II-VII isolates.

Prophage genomes linked to enhanced *C. perfringens* fitness

Phage are important drivers of bacterial evolution and adaptation, and presence of prophage
within bacterial genomes is often associated with enhanced survival and virulence e.g.
sporulation capacity and toxin secretion (81-83). Thus, mining phages in foodborne *C.
perfringens* genomes could reveal insights into the role of bacteriophage in modulating
diversity and pathogenesis traits (25). We identified through PHASTER a total of 7 prophages in all 109 genomes (Fig. S4A-B). Further exploration into virulence and survival-enhancing genes (Fig. S4C) encoded in these predicted prophage regions revealed the presence of virulence-related enzyme sialidase NanH (promotes colonisation), putative enterotoxin EntB, various ABC transporters (linked to multidrug resistance) and toxin-linked phage lysis holin (probable link to toxin secretion)(61, 84-86). No differences in number of prophages carried were detected between CH and FP isolates (Fig. S4D-E). These data suggested that phages could potentially contribute to increased accessory virulence within the genomes of food-poisoning associated C. perfringens, and indicates further research, using both experimental and genomic approaches, is required.

Discussion

C. perfringens is often associated with self-limiting or longer-term gastroenteritis, however our knowledge on the genomic components that may link to disease symptoms or epidemiological comparisons between outbreaks is limited. In this study, WGS data and in-depth genomic analysis on a representative sub-set of 109 gastrointestinal outbreak-associated C. perfringens isolates, revealed potential epidemic phylogenetic clusters linked to plasmid carriage, and specific virulence determinants, which were strongly associated with outbreak isolates.

In the context of disease control it is important to gain detailed genomic information to predict transmission modes for pathogens. Our analysis of care home isolates indicated a specific persistent clone may have been responsible for up to 9 individual gastrointestinal outbreaks in North East England over the 2013-2017 period, which represents the majority reported gastroenteritis outbreaks (>80%) in this area (10). Interestingly, a previous study
indicated presence of persistent identical *C. perfringens* genotypes within care home settings, with several individuals harbouring identical strains (as determined via PFGE profiling) throughout a 9-month sampling period, however none of these isolates were positive for the *cpe* gene (87). Furthermore, although care home isolates were defined as ‘non-foodborne’ according to local epidemiological investigations as no food samples were identified as *C. perfringens*-positive, these outbreaks may have resulted from contaminated food products not sampled. Indeed, a recent investigation into fresh meat products (>200 samples) demonstrated significant contamination; beef (~30%), poultry and pork (both ~26%), with 90% of strains *cpe*-positive, suggesting food chain(s) or farmed animals as potential reservoirs of enterotoxigenic *C. perfringens* (70, 88). Interestingly, 18% prevalence of *cpe*-positive *C. perfringens* strains had previously been reported in food handlers’ faeces (confirmed via PCR), denoting a potential role of the human reservoir in outbreaks (89). Determination of these potential reservoirs in the spread of *cpe*-positive *C. perfringens* to at-risk populations would necessitate a One Health approach, and large-scale WGS-based screening to ascertain the phylogenomics of strains isolated from diverse sources surrounding outbreak-linked vicinities.

Successful colonisation of invading *C. perfringens* is required for efficient toxin production, which ultimately leads to gastrointestinal symptoms. Through computational analysis we determined that plasmid-{	extit{cpe}} (specifically plasmids pCPF4969 and pCPF5603) carrying strains predominated within both non-foodborne and food-poisoning outbreak-related *C. perfringens* isolates (~82%). These two virulence plasmids, pCPF4969 and pCPF5603, encoded several important virulence genes including ABC transporter and adhesin (also known as collagen adhesion gene *cna*) that could contribute to enhanced survival and colonisation potential of *C. perfringens* within the gastrointestinal tract (90). Plasmid pCPF4969 also contained a putative bacteriocin gene that may allow *C. perfringens* to
outcompete other resident microbiota members, and thus overgrow and cause disease in the gut environment (73). Plasmid pCPF5603 encoded important toxin genes cpe and cpb2, plus additional toxins, many of which are linked to food poisoning symptoms, such as diarrhoea and cramping.

Interestingly, 4 out of 109 outbreak-associated strains were cpe-negative, suggesting secondary virulence genes (e.g. pfo and cpb2) may be associated with *C. perfringens*-associated gastroenteritis. A recent WGS-based study on FP *C. perfringens* outbreaks in France determined that ~30% of isolates were cpe-negative (13/42) (26), indicating this gene may not be the sole virulence determinant linked to *C. perfringens* gastroenteritis. Although we observed less cpe-negative strains in our collection in comparison to this study, this may be due to our targeted cpe-positive isolation strategy (standard practice at PHE). Thus, to determine the importance and diversity of cpe-negative strains in FP outbreaks this will require untargeted isolation schemes in the future.

Typical *C. perfringens*-associated food poisoning was previously thought to be primarily caused by chromosomal-cpe strains. This is linked to their phenotypic capacity to withstand high temperatures (via production of a protective small acid soluble protein), and high salt concentrations during the cooking process, in addition to the shorter generation time, when compared to plasmid-cpe carrying strains (68, 91). Previous studies have indicated that these strains commonly assemble into distinct clusters that lack the pfo gene, which we also noted in the FP lineage I data from this study (26, 92-94). Nevertheless, plasmid-borne cpe-carrying strains (pCPF4969 or pCPF5603) have also been associated with previous food poisoning outbreaks, with a previous study indicating that pCPF5603-carrying strains (encoding IS1151) were associated with food poisoning in Japanese nursing homes (7 out of 9 isolates) (71). However, these plasmid-cpe outbreaks have been described as a relatively uncommon occurrence, thus it is surprising that our findings indicate that most outbreak isolated strains
carried a cpe-plasmid (60, 67). The fact that plasmid-cpe strains can cause diverse symptoms including short-lived food poisoning, and long-lasting non-foodborne diarrhoea, implicates additional factors in disease pathogenesis. The gut microbiome may be one such host factor as previous studies have reported that care home residents have a less diverse and robust microbiota when compared to those residing in their own homes (including individuals colonised with C. perfringens), and thus impaired ‘colonisation resistance’ may mean certain C. perfringens strains can overcome these anti-infection mechanisms and initiate disease pathogenesis (64, 87, 95).

Chromosomal-cpe is reported to be encoded on a transposon-like element Tn.5565 (6.3 kb, with flanking copies of IS1470), which can form an independent and stable circular-form in culture extracts (losing both copies of IS1470) (72, 74). This transposition element Tn.5565 was commonly thought to be integrated into the chromosome at a specific site as a unit. The fact that our computational analysis failed to detect any cpe, IS1469 (cpe-specific), and IS1470 (Tn5565-specific) in the high-sequencing-coverage PH029 genome (317X sequencing depth/coverage) indicates that Tn5565 can be lost or may be passed on to other C. perfringens cells. However, it should be noted that flanking IS1470 of Tn5565 may not have been correctly assembled during the genome assembly process due to the repetitive nature of those sequences (short-read sequencing).

As WGS provides enhanced resolution to identify outbreak-specific clonal strains, our study highlighted the importance of implementing WGS for C. perfringens profiling in reference laboratories, in place of the conventional fAFLP (92, 93, 96). Routine C. perfringens surveillance of the care home environment and staff could prove critical for vulnerable populations, as outbreaks could rapidly spread, and this approach could potentially pinpoint the sources of contamination, and eventually eliminate persistent cpe-strains in the environment (87). In light of the potential rapid transmissibility of C. perfringens cpe-strains
responsible for food-poisoning outbreaks, real-time portable sequencing approaches such as the MinION, could facilitate the rapid identification of outbreak strains, which has been recently been reported to identify outbreak *Salmonella* strains in <2h (97, 98).

Our data highlights the genotypic and epidemiology relatedness of a large collection of *C. perfringens* strains isolated from food poisoning cases from across England and Wales, and indicates potential circulation of disease-associated strains, and the potential impact of plasmid-associated-*cpe* dissemination, linked to outbreak cases. This study indicates that further WGS phylogenetic and surveillance studies of diversely-sourced *C. perfringens* isolates are required for us to fully understand the potential reservoir of food poisoning-associated strains, so that intervention or prevention measures can be devised to prevent the spread of epidemiologically important genotypes, particularly in vulnerable communities, including older adults residing in care homes.

Electronic supplemental materials

- Supplementary Figure S1
- Supplementary Figure S2
- Supplementary Figure S3
- Supplementary Figure S4
- Supplementary Table S1
- Supplementary Table S2
- Supplementary Table S3
- Supplementary Table S4
Acknowledgments

This work was supported by a Wellcome Trust Investigator Award (100974/C/13/Z), and the Biotechnology and Biological Sciences Research Council (BBSRC); Institute Strategic Programme Gut Microbes and Health BB/R012490/1, and its constituent project(s) BBS/E/F/000PR10353 and BBS/E/F/000PR10356, and Institute Strategic Programme Gut Health and Food Safety BB/J004529/1 to LJH, and Institute Strategic Programme Microbes in the Food Chain BB/R012504/1 to AEM. This research was supported in part by the NBI Computing infrastructure for Science (CiS) group through the provision of a High-Performance Computing (HPC) Cluster. We also thank Dr. Andrew Page (Quadram Institute, UK) for the helpful discussion on computational analysis.

R.K., C.A. and L.J.H. designed the study. R.K. and A.P. processed the sequencing data. R.K. performed the genomic analysis and graphed the figures. S.C. and A. P. provided essential assistance in genome assembly and genomic analysis. A.M. contributed in genomic analysis.
tools and edited the manuscript. R.K., C.A. and L.J.H. analysed the data and co-wrote the manuscript. CS and CA managed the culture collection, genotyping, clinical data collection, and processed samples for sequencing.

References

1. Awad MM, Ellemor DM, Boyd RL, Emmins JJ, Rood JI. Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene. Infect Immun. 2001;69:7904-10.
2. Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerging Microbes & Infections. 2018;7(1):141.
3. Kiu R, Caim S, Alexander S, Pachori P, Hall LJ. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors. Front Microbiol. 2017;8:2485.
4. Revitt-Mills SA, Rood JI, Adams V. Clostridium perfringens extracellular toxins and enzymes: 20 and counting. Microbiology Australia. 2015:114-7.
5. Kim YJ, Kim SH, Ahn J, Cho S, Kim D, Kim K, et al. Prevalence of Clostridium perfringens toxin in patients suspected of having antibiotic-associated diarrhea. Anaerobe. 2017;48:34-6.
6. Sim K, Shaw AG, Randell P, Cox MJ, McClure ZE, Li MS, et al. Dysbiosis anticipating necrotizing enterocolitis in very premature infants. Clin Infect Dis. 2015;60(3):389-97.
7. Hobbs BC, Smith ME, Oakley CL, Warrack GH, Cruickshank JC. Clostridium welchii food poisoning. J Hyg (Lond). 1953;51(1):75-101.
8. DuPont HL. Clinical practice. Bacterial diarrhea. N Engl J Med. 2009;361(16):1560-9.
9. O’Brien SJ, Larose TL, Adak GK, Evans MR, Tam CC, Foodborne Disease Attribution Study G. Modelling study to estimate the health burden of foodborne diseases: cases, general practice consultations and hospitalisations in the UK, 2009. BMJ Open. 2016;6(9):e011119.
10. Dolan GP, Foster K, Lawler J, Amar C, Swift C, Aird H, et al. An epidemiological review of gastrointestinal outbreaks associated with Clostridium perfringens, North East of England, 2012-2014. Epidemiol Infect. 2016;144(7):1386-93.
11. Adak GK, Long SM, O’Brien SJ. Trends in indigenous foodborne disease and deaths, England and Wales: 1992 to 2000. Gut. 2002;51(6):832-41.
12. Tam CC, Rodrigues LC, Viviani L, Dodds JP, Evans MR, Hunter PR, et al. Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut. 2012;61(1):69-77.
13. Borriello SP, Larson HE, Welch AR, Barclay F, Stringer MF, Bartholomew BA. Enterotoxigenic Clostridium perfringens: a possible cause of antibiotic-associated diarrhoea. Lancet. 1984;1(8372):305-7.
14. Larson HE, Borriello SP. Infectious diarrhea due to Clostridium perfringens. J Infect Dis. 1988;157(2):390-1.
15. Food Standards Agency. Foodborne Disease Strategy 2010-2015. 2011 May 2011.
24. Food Standards Agency. Report of the study of infectious intestinal disease in England. Commun Dis Rep CDR Wkly. 2000;10(51):457.

25. Rood JI, Adams V, Lacey J, Lyras D, McClane BA, Melville SB, et al. Expansion of the *Clostridium perfringens* toxin-based typing scheme. Anaerobe. 2018.

26. Fernandez Miyakawa ME, Pistone Creydt V, Uzal FA, McClane BA, Ibara C. *Clostridium perfringens* enterotoxin damages the human intestine in vitro. Infect Immun. 2005;73(12):8407-10.

27. Shinoda T, Shinoya N, Ito K, Ohsawa N, Terada T, Hirata K, et al. Structural basis for disruption of claudin assembly in tight junctions by an enterotoxin. Sci Rep. 2016;6:33632.

28. Ronco T, Stegger M, Ng KL, Lilje B, Lyhs U, Andersen PS, et al. Genome analysis of *Clostridium perfringens* isolates from healthy and necrotic enteritis infected chickens and turkeys. BMC Res Notes. 2017;10(1):270.

29. Li C, Yan X, Lillehoj HS. Complete Genome Sequence of Clostridium perfringens LLY_N11, a Necrotic Enteritis-Inducing Strain Isolated from a Healthy Chicken Intestine. Genome Announc. 2017;5(44).

30. Gaucher ML, Perron GG, Arsenault J, Letellier A, Boulianne M, Quessy S. Recurring Necrotic Enteritis Outbreaks in Commercial Broiler Chicken Flocks Strongly Influence Toxin Gene Carriage and Species Richness in the Resident Clostridium perfringens Population. Front Microbiol. 2017;8:881.

31. Park JY, Kim S, Oh JY, Kim HR, Jang I, Lee HS, et al. Characterization of *Clostridium perfringens* isolates obtained from 2010 to 2012 from chickens with necrotic enteritis in Korea. Poultry Science. 2015;94(6):1158-64.

32. Verherstraeten S, Goossens E, Valgaeren B, Pardon B, Timmermont L, Vermeulen K, et al. The synergistics necrohemorrhagic action of *Clostridium perfringens* perfringolysin and alpha toxin in the bovine intestine and against bovine endothelial cells. Vet Res. 2013;44:45.

33. Lacey JA, Allnutt TR, Vezina B, Van TTH, Stent T, Han X, et al. Whole genome analysis reveals the diversity and evolutionary relationships between necrotic enteritis-causing strains of *Clostridium perfringens*. BMC Genomics. 2018;19(1):379.

34. Mahamat Abdelrahim A, Radomski N, Delannoy S, Djellal S, Le Négrate M, Hadjab K, et al. Large-Scale Genomic Analyses and Toxinotyping of *Clostridium perfringens* Implicated in Foodborne Outbreaks in France. 2019;10(777).

35. Amar CF, East CL, Grant KA, Gray J, Iturriza-Gomara M, Maclure EA, et al. Detection of viral, bacterial, and parasitological RNA or DNA of nine intestinal pathogens in fecal samples archived as part of the English infectious intestinal disease study: assessment of the stability of target nucleic acid. Diagn Mol Pathol. 2005;14(2):90-6.

36. Roussel S, Felix B, Grant K, Dao TT, Brisa ais S. Amar C. Fluorescence amplified fragment length polymorphism compared to pulsed field gel electrophoresis for *Listeria monocytogenes* subtyping. BMC Microbiol. 2013;13:14.

37. Saitoh Y, Suzuki H, Tani K, Nishikawa K, Irie K, Ogura Y, et al. Structural insight into tight junction disassembly by *Clostridium perfringens* enterotoxin. Science. 2015;347(6223):775-8.

38. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455-77.

39. Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J, Harris SR, et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genom. 2016;2(8):e000083.

40. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27(4):578-9.
33. Nadalin F, Vezzi F, Policriti A. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics. 2012;13 Suppl 14:S8.

34. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-9.

35. Davis MP, van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ. Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods. 2013;63(1):41-9.

36. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Analytical Methods. 2016;8(1):12-24.

37. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722-36.

38. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691-3.

39. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol. 2013;30(4):772-80.

40. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom. 2016;2(4):e000056.

41. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490.

42. Letunic I, Bork P. Interactive tree of life (iTOl) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44(W1):W242-5.

43. Seemann T, Klotzl F, Page AJ. snp-dist.s 0.2 ed2018. p. Convert a FASTA alignment to SNP distance matrix.

44. Cheng L, Connor TR, Siren J, Aanensen DM, Corander J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol Biol Evol. 2013;30(5):1224-8.

45. Tonkin-Hill G, John A. L, Stephen D. B, Simon D. W. F, Jukka C. RhierBAPS: An R Implementation of the Population Clustering Algorithm hierBAPS. Wellcome Open Research. 2018;3(July):93.

46. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM, Harris SR. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics. 2017.

47. Jia B, Raphenya AR, Alcock B, Wagner C, Guo P, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45(D1):D566-D73.

48. Seemann T. ABRicate. 0.5 ed2018. p. Mass screening of contigs for antimicrobial resistance or virulence genes.

49. Hunt M, Mather AE, Sanchez-Buso L, Page AJ, Parkhill J, Keane JA, et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom. 2017;3(10):e000131.

50. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria2010. Available from: http://www.R-project.org/.

51. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, et al. gplots: identification of known plasmids from bacterial whole genome sequencing reads. PeerJ. 2018;6:e4588.
53. Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biology. 2016;17.

54. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44(D1):D286-93.

55. Huerta-Cepas J, Forslund K, Pedro Coelho L, Szklarczyk D, Juhl Jensen L, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017.

56. Arndt D, Marcu A, Liang Y, Wishart DS. PHAST, PHASTER and PHASTEST: Tools for finding prophage in bacterial genomes. Brief Bioinform. 2017.

57. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, et al. Artemis: sequence visualization and annotation. Bioinformatics. 2000;16(10):944-5.

58. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009-10.

59. Amar C. Fluorescent amplified fragment length polymorphism (fAFLP) analysis of Listeria monocytogenes. Methods Mol Biol. 2014;1157:95-101.

60. Lahti P, Heikinheimo A, Johansson T, Korkeala H. Clostridium perfringens type A strains carrying a plasmid-borne enterotoxin gene (Genotype IS1151-cpe or IS1470-like-cpe) as a common cause of food poisoning. J Clin Microbiol. 2008;46(1):371-3.

61. Li J, McClane BA. Contributions of NanI sialidase to Caco-2 cell adherence by Clostridium perfringens type A and C strains causing human intestinal disease. Infect Immun. 2014;82(11):4620-30.

62. Theoret JR, Li J, Navarro MA, Garcia JP, Uzal FA, McClane BA. Native or Proteolytically Activated NanI Sialidase Enhances the Binding and Cytotoxic Activity of Clostridium perfringens Enterotoxin and Beta Toxin. Infect Immun. 2018;86(1).

63. Osman KM, Elhariri M. Antibiotic resistance of Clostridium perfringens isolates from broiler chickens in Egypt. Rev Sci Tech. 2013;32(3):841-50.

64. Larcombe S, Hutton ML, Lyras D. Involvement of Bacteria Other Than Clostridium difficile in Antibiotic-Associated Diarrhoea. Trends Microbiol. 2016;24(6):463-76.

65. Fisher DJ, Miyamoto K, Harrison B, Akimoto S, Sarker MR, McClane BA. Association of beta2 toxin production with Clostridium perfringens type A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene. Mol Microbiol. 2005;56(3):747-62.

66. Sparks SG, Carman RJ, Sarker MR, McClane BA. Genotyping of enterotoxigenic Clostridium perfringens fecal isolates associated with antibiotic-associated diarrhea and food poisoning in North America. J Clin Microbiol. 2001;39(3):883-8.

67. Tanaka D, Isobe J, Hosorogi S, Kimata K, Shimizu M, Katori K, et al. An outbreak of food-borne gastroenteritis caused by Clostridium perfringens carrying the cpe gene on a plasmid. Japanese Journal of Infectious Diseases. 2003;56(3):137-9.

68. Li J, McClane BA. Further comparison of temperature effects on growth and survival of Clostridium perfringens type A isolates carrying a chromosomal or plasmid-borne enterotoxin gene. Appl Environ Microbiol. 2006;72(7):4561-8.

69. Collie RE, McClane BA. Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with non-food-borne human gastrointestinal diseases. J Clin Microbiol. 1998;36(1):30-6.

70. Lindstrom M, Heikinheimo A, Lahti P, Korkeala H. Novel insights into the epidemiology of Clostridium perfringens type A food poisoning. Food Microbiol. 2011;28(2):192-8.

71. Tanaka D, Kimata K, Shimizu M, Isobe J, Watahiki M, Karasawa T, et al. Genotyping of Clostridium perfringens isolates collected from food poisoning outbreaks and
healthy individuals in Japan based on the cpe locus. Japanese Journal of Infectious Diseases. 2007;60(1):68-9.

72. Cornillot E, Saint-Joanis B, Daube G, Katayama S, Granum PE, Canard B, et al. The enterotoxin gene (cpe) of Clostridium perfringens can be chromosomal or plasmid-borne. Mol Microbiol. 1995;15(4):639-47.

73. Miyamoto K, Fisher DJ, Li J, Sayeed S, Akimoto S, McClane BA. Complete sequencing and diversity analysis of the enterotoxin-encoding plasmids in Clostridium perfringens type A non-food-borne human gastrointestinal disease isolates. J Bacteriol. 2006;188(4):1585-98.

74. Brynestad S, Sarker MR, McClane BA, Granum PE, Rood JI. Enterotoxin plasmid from Clostridium perfringens is conjugative. Infect Immun. 2001;69(5):3483-7.

75. Miyamoto K, Li JH, McClane BA. Enterotoxigenic Clostridium perfringens: Detection and Identification. Microbes Environ. 2012;27(4):343-9.

76. Gera K, Le T, Jamin R, Eichenbaum Z, McIver KS. The phosphoenolpyruvate phosphotransferase system in group A Streptococcus acts to reduce streptolysin S activity and lesion severity during soft tissue infection. Infect Immun. 2014;82(3):1192-204.

77. Mertins S, Joseph B, Goetz M, Ecke R, Seidel G, Sprehe M, et al. Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes. J Bacteriol. 2007;189(2):473-90.

78. Gera K, Le T, Jamin R, Eichenbaum Z, McIver KS. The phosphoenolpyruvate phosphotransferase system in group A Streptococcus acts to reduce streptolysin S activity and lesion severity during soft tissue infection. Infect Immun. 2014;82(3):1192-204.

79. Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B, Kanth A, et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci U S A. 2006;103(8):2857-62.

80. Arita-Morioka K, Yamanaka K, Mizunoe Y, Ogura T, Sugimoto S. Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK. Antimicrob Agents Chemother. 2015;59(1):633-41.

81. Boyd EF. Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv Virus Res. 2012;82:91-118.

82. Kinney DM, Bramucci MG. Analysis of Bacillus subtilis sporulation with spor-converting bacteriophage PMB12. J Bacteriol. 1981;145(3):1281-5.

83. Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4(5):354-65.

84. Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, et al. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci U S A. 2002;99(2):996-1001.

85. Andersen JL, He GX, Kakarla P, K CR, Kumar S, Lakra WS, et al. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health. 2015;12(2):1487-547.

86. Govind R, Dupuy B. Secretion of Clostridium difficile toxins A and B requires the holin-like protein TcdE. PLoS Pathog. 2012;8(6):e1002727.

87. Lakshminarayanan B, Harris HM, Coakley M, O'Sullivan O, Stanton C, Pruteanu M, et al. Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly Irish subjects. J Med Microbiol. 2013;62(Pt 3):457-66.

88. Hu WS, Kim H, Koo OK. Molecular genotyping, biofilm formation and antibiotic resistance of enterotoxigenic Clostridium perfringens isolated from meat supplied to school cafeterias in South Korea. Anaerobe. 2018;52:115-21.
89. Heikinheimo A, Lindstrom M, Granum PE, Korkeala H. Humans as reservoir for enterotoxin gene--carrying Clostridium perfringens type A. Emerg Infect Dis. 2006;12(11):1724-9.

90. Miyamoto K, Yumine N, Mimura K, Nagahama M, Li J, McClane BA, et al. Identification of novel Clostridium perfringens type E strains that carry an iota toxin plasmid with a functional enterotoxin gene. PLoS One. 2011;6(5):e20376.

91. Li J, McClane BA. A novel small acid soluble protein variant is important for spore resistance of most Clostridium perfringens food poisoning isolates. PLoS Pathog. 2008;4(5):e1000056.

92. Ashton PM, Nair S, Peters TM, Bale JA, Powell DG, Painset A, et al. Identification of Salmonella for public health surveillance using whole genome sequencing. PeerJ. 2016;4:e1752.

93. Schmid D, Allerberger F, Huhulescu S, Pietzka A, Amar C, Kleta S, et al. Whole genome sequencing as a tool to investigate a cluster of seven cases of listeriosis in Austria and Germany, 2011-2013. Clin Microbiol Infect. 2014;20(5):431-6.

94. Deguchi A, Miyamoto K, Kuwahara T, Miki Y, Kaneko I, Li J, et al. Genetic characterization of type A enterotoxigenic Clostridium perfringens strains. PLoS One. 2009;4(5):e5598.

95. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178-84.

96. Keto-Timonen R, Heikinheimo A, Eerola E, Korkeala H. Identification of Clostridium species and DNA fingerprinting of Clostridium perfringens by amplified fragment length polymorphism analysis. J Clin Microbiol. 2006;44(11):4057-65.

97. Gardy J, Loman NJ, Rambaut A. Real-time digital pathogen surveillance - the time is now. Genome Biol. 2015;16(1):155.

98. Quick J, Ashton P, Calus S, Chatt C, Gossain S, Hawker J, et al. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 2015;16:114.
Figure legends

Fig. 1 Population structure and sample distribution statistics for genome assemblies

(A) Population structure of 109 C. perfringens isolates analysed in this study. Mid-point rooted maximum-likelihood phylogeny inferred from 73 882 SNPs identified in 110 diarrhoea-associated C. perfringens isolates (including NCTC8239). The colour-coded rings indicated cohort-specific origins of isolates. Cluster VIII (green ring; clusters determined via hierBAPS clustering analysis) consists of primarily isolates obtained from multiple care home-associated outbreaks. Historical food poisoning isolate NCTC8239 was used as a public reference genome as indicated in the figure. Bootstrap values are represented in the tree. Branch lengths are indicative of the estimated nucleotide substitution per site (SNPs).

(B) Temporal distribution of all 109 C. perfringens genomes included in this study. (C) Contig count distribution of C. perfringens genome assemblies in this study. More than 70% of the total assemblies are <200 contigs.

Fig. 2 Phylogenomic analysis of care home-associated C. perfringens isolates

(A) Mid-point rooted maximum-likelihood phylogeny inferred from 64 560 SNPs (in core gene alignment) identified in 35 care home-associated C. perfringens isolates. The colour strips indicate diarrhoea outbreaks, location of outbreaks and fAFLP types respectively corresponding to the isolates. Branch lengths are indicative of the estimated SNP distance. Lineages and sub-lineages were determined via hierBAPS (level 1 & 2) clustering analysis. NCTC8239, a food poisoning isolate, was used as a public reference genome in this tree. Bootstrapping values are represented on the tree. (B) Unrooted maximum-likelihood tree (inferred from 191 SNPs in 18 genomes) of a sub-lineage IVc (excluding three genetically distant Welsh isolates) showing SNP distances in between 18 North-East England-derived
isolates of individual outbreaks (labeled in locations and years, and SNP range in outbreaks; branches are colour-coded corresponding to individual outbreaks). SNP distances between branches are indicated in red numbers. (C) Pairwise within-outbreak core-SNP distance between isolates. (D) Pairwise outside-sub-lineage (IVb vs IVc) SNP comparison between isolates. Data: Mann-Whitney test. **** P<0.0001.

Fig. 3 Phylogenomic analysis of 75 foodborne-associated *C. perfringens* isolates

(A) Mid-point rooted maximum-likelihood phylogeny of food-poisoning *C. perfringens* inferred from 70,613 SNPs (in core gene alignment) identified in 75 individual isolates. NCTC8239, a food poisoning strain isolated in 1949 (encodes *cpe* gene) is a RefSeq public reference genome. Lineages were determined via hierBAPS clustering analysis. Bootstrap values are represented in the tree. (B) Unrooted maximum-likelihood tree inferred from 2,505 SNPs in lineage VII (31 isolates). Four distinct clusters are identified in different outbreaks comprising genetically-similar strains (labeled in locations and years, and SNP range in outbreaks; branches are colour-coded corresponding to outbreak labels). (C) Pairwise core-SNP distance comparison in between isolates within outbreaks. (D) Pairwise core-SNP comparisons of within-major-lineage isolates in between individual outbreaks. Lineage I: outbreaks 1, 4, 13 and 14; Lineage IV: outbreaks 3 and 7; Lineage VII: outbreaks 2, 7 and 10. Data: Kruskal-Wallis test; **** P<0.0001.

Fig. 4 Full virulence profiles of *C. perfringens* isolates including virulence plasmids

Binary heatmaps displaying presence and absence of toxin genes, AMR genes, plasmids, plasmid-related sequences and *tcp* conjugative loci in corresponding isolates: (A) CH isolates (B) FP isolates. Outbreaks were colour-coded according to the colour system in previous
Fig. 5 Investigations on predicted plasmids carried by CH and FP isolates

(A) Comparative genomic visualisation of reference plasmids pCPF4969 and pCPF5603 with annotated features. (B) Genomic comparison of pCPF5603 reference plasmid and predicted plasmids from CH genomes. (C) Plasmid comparison in between pCPF4969 plasmid and FP-isolate predicted plasmids. (D) CPE-regions (Tn5565) extracted computationally from FP lineage I representative isolate genomes. (E) A computationally extracted 11-kbp region of NCTC8239 that encodes Tn5565 (including cpe and flanking IS1470 elements) compared to predicted Tn5565 from PH004. Figures were produced using Easyfig v2.2.2.
Fig. 1 Population structure and sample distribution statistics for genome assemblies

(A) Population structure of 109 *Clostridium perfringens* isolates analysed in this study. Mid-point rooted maximum-likelihood phylogeny inferred from 73 882 SNPs identified in 110 diarrhoea-associated *C. perfringens* isolates (including NCTC8239). The colour-coded rings indicated cohort-specific origins of isolates. Cluster VIII (green ring; clusters determined via hierBAPS clustering analysis) consists of primarily isolates obtained from multiple care home-associated outbreaks. Historical food poisoning isolate NCTC8239 was used as a public reference genome as indicated in the figure. Bootstrap values are represented in the tree. Branch lengths are indicative of the estimated nucleotide substitution per site (SNPs).

(B) Temporal distribution of all 109 *C. perfringens* genomes included in this study.

(C) Contig count distribution of *C. perfringens* genome assemblies in this study. More than 70% of the total assemblies are <200 contigs.
Fig. 2 Phylogenomic analysis of care home-associated *C. perfringens* isolates

(A) Mid-point rooted maximum-likelihood phylogeny inferred from 64 560 SNPs (in core gene alignment) identified in 35 care home-associated *C. perfringens* isolates. The colour strips indicate diarrhoea outbreaks, location of outbreaks and AFLP types respectively corresponding to the isolates. Branch lengths are indicative of the estimated SNP distance. Lineages and sub-lineages were determined via hierBAPS (level 1 & 2) clustering analysis. NCTC8239, a food poisoning isolate, was used as a public reference genome in this tree. Bootstrapping values are represented on the tree. (B) Unrooted maximum-likelihood tree (inferred from 191 SNPs in 18 genomes) of a sub-lineage IVc showing SNP distances in between 18 North-East England-derived isolates of individual outbreaks (labeled in locations and years, and SNP range in outbreaks; branches are colour-coded corresponding to individual outbreaks). SNP distances between branches are indicated in red numbers. (C) Pairwise within-outbreak core-SNP distance between isolates. (D) Pairwise outside-sub-lineage (IVb vs IVc) SNP comparison between isolates. Data: Mann-Whitney test. **** P<0.0001.
Fig. 3 Phylogenomic analysis of 75 foodborne-associated C. perfringens isolates

(A) Mid-point rooted maximum-likelihood phylogeny of food-poisoning C. perfringens inferred from 70 613 SNPs (in core gene alignment) identified in 75 individual isolates. NCTC8239, a food poisoning strain isolated in 1949 (encodes cpe gene) is a RefSeq public reference genome. Lineages were determined via hierBAPS clustering analysis. Bootstrap values are represented in the tree. (B) Unrooted maximum-likelihood tree inferred from 2 505 SNPs in lineage VII (31 isolates). Four distinct clusters are identified in different outbreaks comprising genetically-similar strains (labeled in locations and years, and SNP range in outbreaks; branches are colour-coded corresponding to outbreak labels). (C) Pairwise core-SNP distance comparison in between isolates within outbreaks. (D) Pairwise core-SNP comparisons of within-major-lineage isolates in between individual outbreaks. Lineage I: outbreaks 1, 4, 13 and 14; Lineage IV: outbreaks 3 and 7; Lineage VII: outbreaks 2, 7 and 10. Data: Kruskal-Wallis test; **** P<0.0001.
Fig. 5 Full virulence profiles of C. perfringens isolates including virulence plasmids

Binary heatmaps displaying presence and absence of toxin genes, AMR genes, plasmids, plasmid-related sequences and tcp conjugative loci in corresponding isolates: (A) CH isolates (B) FP isolates. Outbreaks were colour-coded according to the colour system in previous figures. Coloured cells represent presence of genes and white cells represent absence of genes. Heatmaps were generated in R.
Fig. 5 Investigations on predicted plasmids carried by CH and FP isolates

(A) Comparative genomic visualisation of reference plasmids pCPF4969 and pCPF5603 with annotated features. (B) Genomic comparison of pCPF5603 reference plasmid and predicted plasmids from CH genomes. (C) Plasmid comparison in between pCPF4969 plasmid and FP-isolate predicted plasmids. (D) CPE-regions (Tn5565) extracted computationally from FP lineage I representative isolate genomes. (E) A computationally extracted 11-kbp region of NCTC8239 that encodes Tn5565 (including cpe and flanking IS1470 elements) compared to predicted Tn5565 from PH004. Figures were produced using Easyfig v2.2.2.