A Challenge Obfuscating Interface for Arbiter PUF Variants against Machine Learning Attacks

Yu Zhuang
Department of Computer Science
Texas Tech University
Lubbock, TX 79409, USA
Email: Yu.Zhuang@ttu.edu

Khalid T. Mursi
College of Computer Science and Engineering
University of Jeddah
Jeddah 21959, Saudi Arabia
Email: kmursi@uj.edu.sa

Li Gaoxiang
Department of Computer Science
Texas Tech University
Lubbock, TX 79409, USA
Email: gaoli@ttu.edu

March 2021

Abstract—Security is of critical importance for the Internet of Things (IoT). Many IoT devices are resource-constrained, calling for lightweight security protocols. Physical unclonable functions (PUFs) leverage integrated circuits’ variations to produce responses unique for individual devices, and hence are not reproducible even by the manufacturers. Implementable with simplistic circuits of thousands of transistors and operable with low energy, Physical unclonable functions are promising candidates as security primitives for resource-constrained IoT devices. Arbiter PUFs (APUFs) are a group of delay-based PUFs which are highly lightweight in resource requirements but suffer from high susceptibility to machine learning attacks. To defend APUF variants against machine learning attacks, we introduce challenge input interface, which incurs low resource overhead. With the interface, experimental attack study shows that all tested PUFs have substantially improved their resistance against machine learning attacks. To defend APUF variants against machine learning attacks, we introduce challenge input interface, which incurs low resource overhead. With the interface, experimental attack study shows that all tested PUFs have substantially improved their resistance against machine learning attacks.

Index Terms—Physical Unclonable Function, machine learning attack, arbiter PUF variants, challenge obfuscation

I. INTRODUCTION

Security is critically important for the Internet of Things (IoT) [1]. Key-based cryptographic protocols are popular choices for existing security applications. With conventional cryptographic protocols, there still remain two security challenges. First, many IoT devices are resource-constrained and support only a low level of operating power, making existing cryptographic protocols unsuitable, since, according to studies [2], [3], they are not lightweight enough in resources requirement. Second, cryptographic keys have to be stored in non-volatile memories. But many IoT devices are within close physical distances to the crowd, unlike data center servers which are locked in high-security rooms inaccessible to the crowd. Close physical distances make these IoT devices vulnerable even with security protocols, since any data stored in nonvolatile memories, including secret keys, can be exposed by side-channel attacks [4], [5], [6], [7], which are usually more effective within close distances.

Physical unclonable functions (PUFs) are an emerging class of hardware primitives for implementing security protocols. Small scale variations of integrated circuits exist in silicon chips. These variations are regarded as side effects for conventional integrated circuits [8], but they make each chip unique and can be exploited to prevent semiconductor re-fabrication. PUFs utilize such variations to produce responses unique for individual PUF circuits [2], [3], [7], [9], [10], [8] and hence are not reproducible even by the PUF manufacturers. These physical variations are hardware fingerprints that can be used for security purposes. Such features of PUFs present potential solutions for the two challenges.

Instead of storing secrets (e.g., cryptographic keys) in non-volatile memories, PUFs retrieve the secret information present in the inevitable physical variations to produce unique responses as signatures of silicon chips. With physical variations occurring at multiple locations of the circuit (e.g., different delays of different gates), some PUFs can create exponentially many combinations of these variations to produce circuit-dependent responses, leading to exponentially many secret keys. The huge number of keys enables each key to be used only once, promising an unlimited supply of one-time keys, namely keys that do not have to be stored in devices’ memories and have very low risks even when exposed. Implementable with simplistic circuits with only thousands of transistors, PUFs require low fabrication cost and consume very low operating energy, rendering them excellent candidates for resource-constrained IoT devices.

Though physically unclonable, some PUFs are “mathematically clonable” in the sense that the responses of a PUF can be predicted accurately by machine-learning methods. Attackers can eavesdrop on the communications between a PUF and its trusted partner, and the challenges sent to a PUF and the responses from the PUF to the challenges which are used in communication authentication can be collected by attackers to train machine learning models. Such models can accurately predict the responses of the PUFs after the models are trained with sufficient challenge-response pairs (CRPs).

When equipped with openly accessible interfaces, PUFs are even more vulnerable when each challenge can be repeatedly applied to a PUF to launch reliability-based machine learning attacks [11]. Such mathematical clonability allows adversaries to develop malicious software to launch spoofing attacks.

Thus, before being deployed in real applications, a PUF must be examined to identify all possible security vulnerabilities. Detected vulnerabilities will be useful to both application...
developers and PUF designers. Such information can guide PUF designers to develop new PUFs to overcome existing vulnerabilities, and IoT application developers can use the information of detected PUF vulnerabilities to avoid PUFs whose vulnerabilities cannot be eliminated at the application level, and use other PUFs with no risks or different risks that can be taken care of with application-specific techniques.

The arbiter PUF [1] and its variant are delay-based strong PUFs, which admit exponentially many challenge-response pairs (CRPs). The arbiter PUF and its variants, like XOR PUFs [8], Lightweight Secure PUFs (LSPUFs) [12], FF PUFs [13], [14], [15], multiplexer PUFs [16], and Interpose PUFs [17], are of low circuit complexity and hence highly lightweight in demanding implementation resources and operation power. But studies showed that they suffer from susceptibility to machine learning attacks [18], and the vulnerable ones include XOR PUFs [19], [20], [21], multiplexer PUFs [22], [23], LSPUFs with 6 or fewer component arbiter PUFs [22], FF PUFs [24], and Interpose PUFs [22], [25].

The vulnerability of PUFs to machine learning attacks has motivated us to look for defensive methods, having led us to a challenge input interface. The interface uses ghost input bits which are not fed to the PUF as challenge bits, and the ghost bit positions are randomized for different PUF instances to obfuscate the challenge. The defense interface works under the threat model that attackers cannot choose challenges but can obtain CRPs only through eavesdropping on the communications between the PUF and its trusted partner, which excluding the possibility of applying any challenge repeatedly to launch the reliability attack [11]. This threat model is achievable since the lockdown protocol [5] can be employed to prevent attackers from choosing challenges.

Our experimental study showed that with this interface, • arbiter PUFs, XOR PUFs, and FF PUFs have substantially increased their security against machine learning attacks, and • all 64-bit APUFs, XPUFs, and FFPUFs can withstand our neural network attacks when enough ghost bits are used by the interface.

II. THE ARBITER PUF AND ITS VARIANTS

For clarity of technical discussions in later sections, in the following we give a brief description of the circuit architectures of the Arbiter PUF and its variants.

A. The Arbiter PUF

An n-stage arbiter PUF consists of n pairs of 2-to-1 multiplexers (see Fig 1), where the two multiplexers at the same stage receive the same challenge bit. The two signals pass through gates of all stages of the paths, and slightly different delays are incurred when signals pass through different gates. An arbiter, usually implemented by a D-latch, determines the final output depending on which signal arrives first. For instance, if the top path arrives first, the output is 1, otherwise is 0. The challenge bit values at all stages determine the paths, and consequently the delays of the signals, leading to a total of 2^n possible paths.

The arbiter PUFs satisfy the additive delay model [15], which stipulates that the time it takes for each of the two signals to arrive at the arbiter are the summation of the delays incurred at all stages of the PUF. Based on the additive delay model, the response r of an arbiter satisfies

$$r = \text{Sgn}(v(n)) + \sum_{i=1}^{n} w(i)\phi(i),$$

where ϕ's are transformed challenge [15] given by

$$\phi(i) = (2c_i - 1)(2c_{i+1} - 1) \cdots (2c_n - 1),$$

with c_i being the challenge bit at stage i, v and w's being parameters quantifying gate delays at different stages, and $Sgn(\cdot)$ the sign function.

In (1), the term inside the $Sgn(\cdot)$ function is linear with respect to the transformed challenge ϕ's. The model represented by (1) is hence a linear classification problem with the separating hyperplane represented by equation

$$w(1)\phi(1) + w(2)\phi(2) + \cdots + w(n)\phi(n) + v(n) = 0,$$

which results from setting to 0 the term inside the $Sgn(\cdot)$ function in (1). The hyperplane is in the n-dimensional space of transformed challenges, which partitions the space into two regions, with 1 as the response to transformed challenges in one region and -1 as the response to transformed challenges in the other region. For a machine learning attack method that has accumulated enough CRPs, the CRPs are used to train the machine learning model so that the trained model can accurately predict the responses to other challenges. The linear classification model (1) describing the relationship between the response r and the transformed challenge ϕ makes arbiter PUFs vulnerable to machine learning attacks [18].

B. The XOR Arbiter PUF

An XOR arbiter PUFs [13], [8], or XOR PUFs for short, is built from multiple arbiter PUFs. As illustrated in Fig 2 the k-XOR arbiter PUF uses k arbriter PUFs as components, where all of the k arbiter PUFs use the same challenge C as the challenge input. The responses of all individual arbiter PUFs are XORed together to produce the final response r for the corresponding input challenge C. Thus, the response of the n-stage k-XOR arbiter PUF in Figure 2 can be expressed as:

$$r = \bigoplus_{j=1\ldots k} r_j,$$

where r_j is the internal output of the j^{th} component arbiter PUF.

The XOR operation increases non-linearity of the relationship between the response r and the transformed challenges ϕ's. It is obvious that adding arbiter PUFs increases the cost needed for silicon implementation of the PUFs. But, every additional arbiter PUF increases nonlinearity as well as the
dimensionality of the parameter space to be machine-learned by attackers [18], leading to higher resistance against machine learning attacks [26]. For more details on PUF designs, the types, and their specific variations, we refer the reader to [18], [2].

C. The Feed-Forward Arbiter PUF

The Feed-Forward Arbiter PUF (FF PUF) [13], [14], [15] was introduced to increase the complexity of the relationship between the challenge and response. An FF PUF resembles an arbiter PUF but with some of the challenge input bits taking the outputs of feed-forward arbiters, with each feed-forward arbiter receiving the output bits of the two multiplexers at an earlier stage of the PUF. Fig. 3 is an illustration of an FF PUF with one feed-forward loop. The use of internal signals as input challenge bits to multiplexers makes the function relationship between the response and the input challenge more complex than that of the arbiter PUF.

By adding feed-forward loops, the challenge input to an FF PUF at a loop-ending stage is the arbiter output of signal delay difference at an earlier stage, which can be modeled by an equation similar to (1). For a one-loop feed-forward PUF with \(n \) stages of multiplexers, if the loop starts at stage \(i_1 \) and ends at stage \(i_2 \) (assuming \(i_2 < n \)), then based on model (1) for arbiter PUFs, the response of a single-loop FF PUF can be modeled by

\[
 r = Sgn(v(n)) + \sum_{i \neq i_2} w(i)\phi(i) + w(i_2)\phi(i_2),
\]

(4)
where

\[
\begin{align*}
\phi(n) &= 2c_n - 1, \\
\phi(i) &= (2c_i - 1)\phi(i + 1) \text{ for } i \neq i_2 \text{ and } i < n \\
\phi(i_2) &= Sgn(v(i_1) + \sum_{i=1}^{m} w(i)\phi(i)) \\
\phi(i_1) &= 2c_{i_1} - 1, \phi(i) = (2c_{i-1})\phi(i + 1) \text{ for } i < i_1.
\end{align*}
\]

Since the sign function \(Sgn(\cdot)\) is nonlinear and non-differentiable, the transformed challenge bit \(\phi(i_2)\) at the loop-ending stage is a nonlinear non-differentiable function of challenge bits of earlier stages. This nonlinearity and non-differentiability turn the linearly separating hyperplane for the arbiter PUF into a nonlinear separating surface for the FF PUF. Since machine learning methods are in general less effective for modeling nonlinearly separated classes than linearly separated ones, the FF PUF is more resistant against machine learning attacks.

III. DEFENSIVELY INTERFACED STRONG PUFs

To defend PUFs against machine learning attack, we propose an interface for the input challenge which, as elaborated in the following bullets, requires the trusted partner of the PUF to send more bits than the number of challenge bits to the PUF.

The \(m+\)bits Interface

- For a PUF with \(n\)-bit challenge, the challenge input interface has \((n + m)\) input bits. Input bits are labeled as \(b_1, b_2, \ldots, b_n, \ldots, b_{n+m}\).
- A random selection of \(n\) input bits out of \((n + m)\) is chosen for each PUF instance. The \(n\) bits are supplied to the PUF instance as the challenge bits, and remaining \(m\) input bits, called ghost bits, are not used by the PUF.

Since the defensive interface selects a random subset of input bits as challenge bits for each PUF instance, attackers have no knowledge of which \(n\) bits of the \((n + m)\) input bits are used for the challenge and which input bits are not used, leading to an obfuscation of the challenge. But a trusted partner of the PUF, say a securely protected server partner of the PUF, knows which of the input bits are challenge bits and will be able to generate the response using a PUF model stored in the trusted partner to verify the PUF.

Also, we assume that attackers cannot use cannot choose challenges and apply them to the PUF to get responses, but can obtain CRPs only through eavesdropping on the communications between the PUF and its trusted partner. Without this assumption, an attacker can guess which bits of the challenge are not used by flipping one bit at a time but keeping all other bits of challenges fixed, and if the responses do not change, then the flipped bit is not used. But with this assumption, this type of guessing attacks cannot be employed. This assumption can be realized when the lockdown protocol [3] is employed.

It is obvious that this challenge-obfuscation interface incurs low resource overhead. To the best of our knowledge, all existing CRP obfuscating protocols require hardware resources for their implementations and require operations to perform the obfuscation, e.g. protocols [27], [12], [28], [29] requires TRNG and additional transistors to make use of TRNG, and fuzzy extractor is used in [30]. Our proposed interface requires only a small number of additional bits for the input and does not use any transistors, and is hence of low circuit overhead and low energy overhead.

IV. EXPERIMENTAL ATTACK STUDY OF INTERFACES PUFs

Earlier attack studies on PUFs [18], [20], [22], [21] show that neural networks have high modeling power of PUF behavior. To experimentally examine the effectiveness of our proposed interface against modeling attacks, we apply neural network attack methods on arbiter PUFs, XOR PUFs, FF PUFs, and their interfaced counterparts.

A. Attack Study on APUFs, XPUFs, and Their Interfaced Counterparts

To examine the effectiveness of the defensive interface for arbiter PUFs and XOR PUFs, we applied the same neural network attack method to arbiter PUFs and interfaced arbiter PUFs, and applied the neural network attack method to 3-XOR PUFs and interfaced 3XOR PUFs. All defensive interfaces use 16 ghost bits. The neural networks we used in the attack study follow the specification given in [21], and for the convenience of reading are listed in Table I where arbiter PUF is denoted by \(k\)-XPUPF with \(k = 1\). We implemented machine learning methods in Python code using the Keras machine learning library [31].

Parameter	Description
Optimizing Method	ADAM
Hidden Lyr. Actv. Fx.	tanh
Output Lyr. Actv. Fx.	Sigmoid
Learning Rate	Adaptive
Network Size	3 hidden lys. (32, 64, 32)
Loss Function	Binary cross entropy
Mini-batch Size	1000
Patience	5

In the tests, we generated 30 simulated arbiter PUF instances using the simulator pypuf [32] from the normal distribution with a mean of 0 and a standard deviation of 1, plus an noisiness value 0.01 for the generated PUFs. For each PUF instance 5 million CRPs are generated. With the CRPs ready, we carried out tests of the attack on a PC with a 3.6 GHz 6-Core AMD Ryzen 5 3600 processor and a memory capacity of 16 GB. Each machine learning method for each simulated PUF instance is optimized for up to 300 epochs with an early stopping of 5 patience. The experimental study used an 85-5-10 training-validation-testing split, where 85% of CRP data were used for training, 5% of data were used for validation, and 10% of data for testing the model. In each attack, the number of CRPs used in the attack started small and
TABLE II
RESULTS OF ATTACKS ON 64-STAGE k-XPUFS WITH AND WITHOUT 16+BITS INTERFACE

PUF Type	CRPs	Accuracy	Time
1-XPUF	5 K	98 %	0.9 sec
3-XPUF	9 K	98 %	2.8 sec
Interfaced 1-XPUF	4.5M	66 %	No convergence
Interfaced 3-XPUF	4.5M	51 %	No convergence

Other parameters of the neural network for attacking FF PUFs are listed in Table III.

TABLE III
PARAMETERS OF THE NEURAL NETWORK

Parameter	Description
Optimizing Method	ADAM
Hidden Lyr. Actv. Fx.	tanh
Output Lyr. Actv. Fx.	Sigmoid
Learning Rate	Adaptive
Network Size	4 hidden.lyrs. (64, 32, 32, 64)
Loss Function	Binary cross entropy
Mini-batch Size	3000
Patience	5

The CRPs we used for the attack were generated by simulated FF PUFs based on the additive delay model [13] implemented in our in-house C-code. The additive delay model stipulates that the traveling times for the two signals on the two paths of the PUF to arrive at the arbiter are the summations of the gate delays incurred at all stages of the PUF. For the gate delays, we sampled from the Gaussian distribution with a mean of 300 and a deviation of 40 [33], [20]. We created three 64-stage simulated FF PUF instances, with different loop patterns for the three PUF instances. We generated five million CRPs for each simulated PUF instance.

With the CRPs ready, we carried out tests of the attack on a MacBook Pro with a 2.6 GHz 6-Core Intel Core i7 processor and a memory capacity of 16 GB. The neural network model for each simulated or silicon PUF is optimized for up to 300 epochs with an early stopping of 5 patience. The experimental study used an 85-5-10 training-validation-testing split, where 85% of CRP data were used for training, 5% of data were used for validation, and 10% of data for testing the model.

When attacking each PUF instance, the number of CRPs used in the attack started small and gradually increasing until having reached a size (the size listed in the Column CRPs in Table II), which resulted in successful attacks for all 30 PUF instances. The experimental results of attacks on 64-bit FF PUFs without defensive interface are listed in Table IV. Results of attacks on interfaced FF PUFs are listed in Table V, where the number of ghost bits \(m \) was chosen to be the same as the number of feed-forward loops of the each FF PUF.

V. CONCLUSION

Many IoT devices are resource-constrained and demand security mechanisms implementable with low cost and operable with low energy. Leveraging integrated circuits’ internal variability as hardware fingerprints, physical unclonable functions (PUFs) have the potential as underlying primitives for implementing lightweight security protocols. The arbiter PUF and its variants are highly lightweight in resource requirements, presenting themselves good candidates for resource-constrained IoT devices. But many of the PUFs have succumbed to machine learning attacks. This paper introduces...
TABLE IV
ATTACKING 64-STATE FF PUFs WITH DEFENSIVE INTERFACES

FF Loops	CRPs	Avg. Accuracy	Training Time
4	70K	98%	3 min
5	180K	98%	7 min
6	440K	97%	21 min
7	520K	98%	31 min
8	600K	98%	42 min
9	770K	96%	63 min
10	1.0M	93%	73 min

TABLE V
ATTACKING DEFENSIVELY INTERFACED 64-STATE FF PUFs

FF Loops	CRPs	Avg. Accuracy	Training Time
4	370K	94%	31 min
5	4.5M	Lower 60%	No convergence
6	4.5M	Upper 50%	No convergence
7	4.5M	Lower 60%	No convergence
8	4.5M	Lower 60%	No convergence
9	4.5M	Lower 60%	No convergence
10	4.5M	Mid 50%	No convergence

a defensive interface for the arbiter PUF and its variants. With the interface, experimental attack studies showed that the resilience of the tested PUFs against machine learning attacks are substantially improved. The defensive interface incurs a low resource overhead, and hence can maintained in lightweightness of arbiter PUFs and its variants. With the low resource-requirement and the capability of substantially improving resistance to machine learning attack, the defensive interface is a promising candidate for the protection of arbiter PUF variants.

VI. ACKNOWLEDGEMENT

The research was supported in part by the National Science Foundation under Grant No. CNS-1526055.

REFERENCES

[1] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of things: Vision, applications and research challenges,” Ad hoc networks, vol. 10, no. 7, pp. 1497–1516, 2012.
[2] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical unclonable functions and applications: A tutorial,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1126–1141, 2014.
[3] M.-D. Yu, M. Hiller, J. Delvaux, R. Sowell, S. Devadas, and I. Verbauwhede, “A lockdown technique to prevent machine learning on pufs for lightweight authentication,” IEEE Transactions on Multi-Scale Computing Systems, vol. 2, no. 3, pp. 146–159, 2016.
[4] O. Kümmerling and M. G. Kuhn, “Design principles for tamper-resistant smartcard processors.” Smartcard, vol. 99, pp. 9–20, 1999.
[5] S. P. Skorobogatov, “Semi-invasive attacks: a new approach to hardware security analysis,” 2005.
[6] Y. Yarom and K. Falkner, “Flush+ reload: a high resolution, low noise, 13 cache side-channel attack,” in 23rd USENIX Security Symposium (USENIX Security Symposium), 2014, pp. 719–732.
[7] U. Rührmair and D. E. Holcomb, “Pufs at a glance,” in Proceedings of the conference on Design, Automation & Test in Europe. European Design and Automation Association, 2014, p. 347.
[8] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication and secret key generation,” in Design Automation Conference, 2007. DAC’07, 44th ACM/IEEE. IEEE, 2007, pp. 9–14.
[9] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Controlled physical random functions,” in 18th Annual Computer Security Applications Conference. IEEE, 2002, pp. 149–160.
[10] B. Gassend, D. Clarke, M. V. Dijk, and S. Devadas, “Silicon physical random functions,” in Proceedings of the 9th ACM conference on Computer and communications security, 2002, pp. 148–160.
[11] G. T. Becker, “The gap between promise and reality: On the insecurity of xor arbiter pufs,” in International Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2015, pp. 535–555.
[12] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure pufs,” in 2008 IEEE/ACM International Conference on Computer-Aided Design. IEEE, 2008, pp. 670–673.
[13] B. Gassend, D. Lim, D. Clarke, M. Van Dijk, and S. Devadas, “Identification and authentication of integrated circuits,” Concurrency and Computation: Practice and Experience, vol. 16, no. 11, pp. 1077–1098, 2004.
[14] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas, “A technique to build a secret key in integrated circuits for identification and authentication applications,” in 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No. 04CH37525). IEEE, 2004, pp. 176–179.
[15] D. Lim, “Extracting secret keys from integrated circuits in master thesis,” Massachusetts Institute of Technology, 2004.
[16] D. P. Sahoo, D. Mukhopadhyay, R. S. Chakraborty, and P. H. Nguyen, “A multiplexer-based arbiter puf composition with enhanced reliability and security,” IEEE Transactions on Computers, vol. 67, no. 3, pp. 403–417, 2017.
[17] P. H. Nguyen, D. P. Sahoo, C. Jin, K. Mahmood, U. Rührmair, and M. Van Dijk, “The interpose puf: Secure puf design against state-of-the-art machine learning attacks,” IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 243–290, 2019.
[18] U. Rührmair, F. Sehnke, J. Sölter, G. Sör, G. Dror, S. Devadas, and J. Schmidhuber, “Modeling attacks on physical unclonable functions,” in Proceedings of the 17th ACM conference on Computer and communications security. ACM, 2010, pp. 237–249.
[19] J. Tobisch and G. T. Becker, “On the scaling of machine learning attacks on pufs with application to noise bifurcation,” in International Workshop on Radio Frequency Identification: Security and Privacy Issues. Springer, 2015, pp. 17–31.
[20] A. O. Aseei, Y. Zhuang, and M. S. Alkatheir, “A machine-learning-based security vulnerability study on xor pufs for resource-constraint internet of things,” in The IEEE International Congress on Internet of Things (ICIOT 2018). IEEE, 2018.
[21] K. T. Mursi, B. Thapaliya, Y. Zhuang, A. O. Aseei, and M. S. Alkatheir, “A fast deep learning method for security vulnerability study of xor pufs,” Electronics, vol. 9, no. 10, 2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/10/1715
[22] P. Santikellur, A. Bhattacharyya, and R. S. Chakraborty, “Deep learning based model building attacks on arbiter puf compositions,” Cryptology ePrint Archive, Report 2019/566. 2019. Available online: https://…, Tech. Rep., 2019.
[23] K. T. Mursi and Y. Zhuang, “Experimental study of component-differentially-challenged xor pufs as security primitives for internet-of-things.” Journal of Communications, vol. 15, no. 10, 2020.
[24] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, “Puf modeling attacks on simulated and silicon data,” IEEE Transactions on Information Forensics and Security, vol. 8, no. 11, pp. 1876–1891, 2013.
[25] N. Wisiol, C. Mühl, N. Pirnay, P. H. Nguyen, M. Margraf, J.-P. Seifert, M. van Dijk, and U. Rührmair, “Splitting the interpose puf: A novel modeling attack strategy,” IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 97–120, 2020.
[26] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas, “Extracting secret keys from integrated circuits,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 10, pp. 1200–1205, 2005.
[27] Y. Yao, H. Ma, S. F. Al-Sarawi, D. Abbott, and D. C. Ranasinghe, “Puf-fsm: A controlled strong puf,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 5, pp. 1104–1108, 2017.
[28] M. Rostami, M. Majzoobi, F. Koushanfar, D. S. Wallach, and S. Devadas, “Robust and reverse-engineering resilient puf authentication and key-exchange by substring matching,” IEEE Transactions on Emerging Topics in Computing, vol. 2, no. 1, pp. 37–49, 2014.
[29] J. Ye, Y. Hu, and X. Li, “Rpuf: Physical unclonable function with randomized challenge to resist modeling attack,” in 2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST). IEEE, 2016, pp. 1–6.

[30] A. Van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-R. Sadeghi, I. Verbauwhede, and C. Wachsmann, “Reverse fuzzy extractors: Enabling lightweight mutual authentication for puf-enabled rfd,” in International Conference on Financial Cryptography and Data Security. Springer, 2012, pp. 374–389.

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alchê-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[32] N. Wisiol, C. Gräbnitz, C. Mühl, B. Zengin, T. Soroceanu, and N. Pirnay, pypuf: Cryptanalysis of Physically Unclonable Functions, June 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3904267

[33] M. S. Alkatheiri and Y. Zhuang, “Towards fast and accurate machine learning attacks of feed-forward arbiter pufs,” in Dependable and Secure Computing, 2017 IEEE Conference on. IEEE, 2017, pp. 181–187.