Review Article

Review of Compounds and Pharmacological Effects of Delphinium

Sitan Chen,1 Lijun Meng,1 Fatma M. El-Demerdash,2,3 Li Zhou,1,2 Syed Arif Hussian Rizvi,2,4 Lili Cui5,1,5 and Wenyi Kang6,1,2,5,6

1National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
2Joint International Research Laboratory of Food & Medicine Resource Function, Henan University, Kaifeng 475004, Henan Province, China
3Department of Environmental Studies Institute of Graduate Studies and Research Alexandria University Alexandria, Alexandria, Egypt
4Institute of Plant and Environmental Protection (IPEP), National Agriculture Research Center (NARC) Islamabad, Islamabad, Pakistan
5Functional Food Engineering Technology Research Center, Kaifeng 475004, Henan Province, China
6Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng 475004, Henan, China

Correspondence should be addressed to Lili Cui; cuill@vip.henu.edu.cn and Wenyi Kang; kangweny@hotmail.com

Received 15 June 2020; Revised 21 August 2020; Accepted 2 September 2020; Published 21 September 2020

Academic Editor: Pedro M. Mancini

Copyright © 2020 Sitan Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Plants of Delphinium are herbal medicine used in the Tibet region with whole grass as a drug, which have the effects of analgesic, antibacterial, antipyretic, and anticancer. The main bioactive compounds are alkaloids, flavonoids, and sterols. This review summarized the compounds and pharmacological effects of Delphinium and provides a reference for further research on Delphinium.

1. Introduction

Delphinium of the Ranunculaceae family is widely distributed in the North temperate zone, with about 350 species worldwide. 173 species (150 endemic) of Delphinium are distributed in China [1]. Delphinium is composed of subgen. Delphinastrum, subgen. Delphinium, and subgen. Oligophyllum, in the world, of which subgen. Delphinastrum has the most species [2]. In China, there are 18 species of Delphinium used as folk medicine, which are used to treat bruises, rheumatism, toothache, and enteritis. In addition, four species of Delphinium can be used as soil pesticides for their effects of killing lice, mosquitoes, and fly larvae [3]. The main compounds of Delphinium are diterpenoid alkaloids, and most of them have physiological activities [4]. In addition, Delphinium also contains chemical constituents such as flavonoids and sterols. In recent years, with the development of analysis methods and increasing focus on Delphinium, more and more chemical constituents and pharmacological activities of Delphinium had been researched. In this paper, the chemical constituents and pharmacological effects of Delphinium were reviewed in order to improve the development and utilization of the Delphinium resources.

2. Chemical Constituents

According to the research studies, the alkaloids are the main constituents with physiological activities in Delphinium and diterpenoid alkaloids are the most characteristic constituents with toxicity [5]. In addition, flavonoids and sterols are also present [6].

2.1. Diterpenoid Alkaloids. Diterpenoid alkaloids are derived from the amination of tetracycline diterpenoids or pentacyclic diterpenoids to heterocyclic systems containing...
β-aminoethanol, methylamine, or ethylamine nitrogen atoms [7]. There are abundant diterpenoid alkaloids in Delphinium, which can be classified into C-18 diterpenoid alkaloids, C-19 diterpenoid alkaloids, and C-20 diterpenoid alkaloids according to the carbon skeleton configuration [5]. Characteristic quaternary carbon signal and substituent signal are important information to distinguish different diterpenoid alkaloids.

C-18 diterpenoid alkaloids are the diterpenoid alkaloids whose C-18 are mostly substituted by C(4)-H/OH or the ester group, and a few of them contain 3,4-epoxide. According to the oxygen-containing groups on C-7, they can be sorted into two types (Figure 2): lappacinitine-type and ranaconitine-type, and C-7 of the ranaconitine-type has an oxygen-substituent group. C4 (δ 30–40, s), C5 (δ 73–84, s), and C11 (δ 47–55, s) are C-18’s characteristic signals [8]. Characteristic signal of the ranaconitine-type on C-7 is at δc 91–93 (s), and the characteristic signal of the lappacinitine-type on C-7 is at δc 45–48 (s).

Most C-19 diterpenoid alkaloids are natural diterpenoid alkaloids and belong to pentacyclic diterpenoid alkaloids. According to the oxygen-containing groups on C-7 and the difference of skeleton, they can be classified into six types (Figure 2): lycocotonine-type, aconitine-type, 7,17-seco type, atisine-type, veatchine-type, and hetisine-type [12]. The C-19 diterpene alkaloid skeletons are complex, and most of them have exocyclic double bond structures. At present, 22 types of C-20 diterpenoid alkaloids were found [12]. The C-20 diterpenoid alkaloids isolated from Delphinium mainly belong to atisine-type, veatchine-type, hetisine-type, hetidine-type, denudatine-type, delnudine-type [13], and vagnognantine-type (Figure 3) [14, 15]. C₁₁ (δ 30–40, s), C₈ (δ 30–50, s), C₁₁ (δ 30–40, s), C₁₆ (δ 143, s), and C₁₇ (δ 5–10, t) are C-20’s characteristic signals. C₁₆ (δ 17–20, s), C₁₇ (δ 13–15, s), C₁₄ (δ 46–49, s), C₁₅ (δ 25–26, s), and C₂₀ (δ 50–54, s) are characteristic signals of atisine-type, and C₁₂ (δ 50–43, s), C₁₉ (δ 48–51, s), C₁₄ (δ 36–53, s), and C₂₀ (δ 69, s) are characteristic signals of hetidine-type [16].

At present, 155 alkaloids were isolated from Delphinium, and the details are shown in Tables 1–3 and Figures 4–6. Based on the references listed in Tables 1–3, it can be summarized that D. antrhiscfolium varietas and D. elatum and its varietas have been further studied in chemistry.

2.2. Amide Alkaloids. The typical groups of amide alkaloids are acyl groups. 9 amide alkaloids were isolated from Delphinium, and the details are shown in Table 4 and Figure 7.

2.3. Other Alkaloids. Except diterpenoid alkaloids and amide alkaloids, one other alkaloid (No.155, antrhiscfoliolsine A, C₂₀H₁₃NO₇, [49]) was isolated from D. antrhiscfoliolum var. majus. The structure is shown in Figure 8.

2.4. Other Compounds. Delphinium also contains compounds such as flavonoids and sterols. In recent years, other compounds isolated from Delphinium had also been reported, and a total of 13 nonalkaloids (Table 5 and Figure 9) were isolated from Delphinium.

3. Biological Activities

Plants of Delphinium are used with whole grass as medicine. According to the ancient Tibetan medicine Jingzhubencao, plants of Delphinium had analgesic, anti-inflammatory, and insecticidal effects [9]. Literature studies showed that plants of Delphinium have many pharmacological effects including antibacterial, antiepileptic, detoxification, and Alzheimer’s disease treatment. In this section, this paper reviews the research studies on the antibacterial, analgesic, anti-inflammatory, antidepressant, and anticancer effects of Delphinium.

3.1. Antibacterial Activity. Hari et al. found that antrhiscfolioline C (5.0 mg/mL) from D. brounanianum had a good inhibiting effect on Bacillus subtilus, Escherichia coli, and Salmonella flexnari, and its MIC were 24.0 µM, 23.4 µM, and 24.2 µM, respectively, in vitro [61]. Ren et al. carried out the bacteriostatic test on the total alkaloids extracted from the roots of Delphinium and found that the MIC of the total alkaloids extracted on S. aureus and Aspergillus niger was 50 mg/mL in vitro [62].

3.2. Analgesic Activity. Zaheer et al. used the eddy current hot plate method and the tail flick reaction method to evaluate the analgesic activity of D. denudatum on Wistar albino rats. The experimental results showed that the response time of rats given D. denudatum ethanol extract and methanol fraction was longer than that of the propylene glycol group, and the effects of the high doses of the ethanol extract (600 mg/kg) and methanol fraction (400 mg/kg) were equal to that of the positive control group, indicating that
D. denudatum had a good analgesic activity [63]. Nesterova et al. investigated chronic immune inflammation which was induced by injecting 0.1 mL of complete Freund’s in outbred male rats, and the results showed that the 40% alcohol extract (0.12 mL/kg) and total alkaloids (0.05 mg/kg) of Delphinium could significantly reduce the frequency of joint

Figure 2: The skeleton structures of C-19 diterpene alkaloids.

Figure 3: The skeleton structures of C-20 diterpene alkaloids.
Table 1: C-18 diterpenoid alkaloids isolated from Delphinium.

No.	Compound	Type	Source	Molecular formula	Reference
1	Anthriscifolcine A	Ranaconitine	D. anthriscifolium var. savatieri	C₂₆H₃₈NO₇	[17]
2	Anthriscifolcine B	Ranaconitine	D. anthriscifolium var. savatieri	C₂₄H₃₇NO₆	[17]
3	Anthriscifolcine C	Ranaconitine	D. anthriscifolium var. savatieri	C₂₅H₃₇NO₇	[17]
4	Anthriscifolcine D	Ranaconitine	D. anthriscifolium var. savatieri	C₂₆H₃₉NO₇	[17]
5	Anthriscifolcine E	Ranaconitine	D. anthriscifolium var. savatieri	C₂₄H₃₇NO₆	[17]
6	Anthriscifolcine F	Ranaconitine	D. anthriscifolium var. savatieri	C₂₅H₃₇NO₈	[17]
7	Anthriscifolcine G	Ranaconitine	D. anthriscifolium var. savatieri	C₂₄H₃₇NO₆	[17]
8	Naviconine	Lappacinitine	D. naviculare var. lasiocarpum W. T. Wang.	C₃₅H₄₂N₂O₉	[19]
9	Anthriscifolcone A	Ranaconitine	D. anthriscifolium var. majus	C₃₀H₴₅NO₉	[20]
10	Anthriscifolcone B	Ranaconitine	D. anthriscifolium var. majus	C₂₈H₴₃NO₈	[20]
11	Grandifline A	Ranaconitine	D. grandiflorum Linn	C₂₂H₃₃NO₇	[21]
12	Tuguaconitine	Ranaconitine	D. grandiflorum	C₂₃H₃₅NO₇	[22]

Table 2: C-19 diterpenoid alkaloids isolated from Delphinium.

No.	Compound	Type	Source	Molecular formula	Reference
21	Anthriscifoldine A	Lycoctonine	D. anthriscifolium var. savatieri	C₂₅H₃₇NO₇	[17]
22	Anthriscifoldine B	Lycoctonine	D. anthriscifolium var. savatieri	C₂₅H₃₉NO₇	[17]
23	Anthriscifoldine C	Lycoctonine	D. anthriscifolium var. savatieri	C₂₇H₄₁NO₇	[17]
24	Naviculine	Lycoctonine	D. naviculare var. lasiocarpum W. T. Wang.	C₂₆H₄₂NO₇⁺	[19]
25	Naviculine	Aconitine	D. naviculare var. lasiocarpum W. T. Wang.	C₀₃H₄₆N₂O₉	[19]
26	Grandifline B	Lycoctonine	D. grandiflorum Linn	C₂₃H₃₉NO₈	[21]
27	Grandifline C	Lycoctonine	D. grandiflorum Linn	C₂₄H₄₀NO₇⁺	[21]
28	Olivimine	Lycoctonine	D. grandiflorum	C₂₄H₴₃NO₇	[22]
29	Hohenackeridine	Lycoctonine	D. grandiflorum	C₂₅H₴₁NO₇	[22]
30	14-O-Methylphilfolfine	Lycoctonine	D. grandiflorum	C₂₄H₴₃NO₇⁺	[22]
31	N-Deethylphilpallidine	Lycoctonine	D. grandiflorum	C₂₅H₴₁NO₇	[22]
32	Browniine	Lycoctonine	D. grandiflorum	C₂₅H₴₃NO₇	[22]
33	14-Dehydrobrowniine	Lycoctonine	D. grandiflorum	C₂₃H₴₃NO₇	[22]
34	Linearilobin	Aconitine	D. linearilobum (Trautv.) N. Busch	C₂₅H₴₆N₂O₉	[23]
35	Melpheline	Lycoctonine	D. elatum	C₂₃H₴₃NO₆	[26]
36	19-Oxoisodelpheline	Lycoctonine	D. elatum	C₂₃H₴₃NO₇	[26]
37	N-Deethyl-19-oxoisodelpheline	Lycoctonine	D. elatum	C₂₃H₴₃NO₇	[26]
38	N-Deethyl-19-oxidelpheline	Lycoctonine	D. elatum	C₂₃H₴₃NO₇	[26]
39	N-Formyl-4,19-secopacinine	Lycoctonine	D. elatum cv. Pacific Giant	C₂₃H₴₃NO₇	[27]
40	Iminoisodelpheline	Lycoctonine	D. elatum cv. Pacific Giant	C₂₃H₴₃NO₇	[27]
41	Iminodelpheline	Lycoctonine	D. elatum cv. Pacific Giant	C₂₃H₴₃NO₇	[27]
42	Iminopaciline	Lycoctonine	D. elatum cv. Pacific Giant	C₂₃H₴₃NO₇	[27]
43	6-Dehydrodelaladine	Lycoctonine	D. elatum cv. Pacific Giant	C₂₃H₴₃NO₇	[27]
44	Elapaciline	Lycoctonine	D. elatum cv. Pacific Giant	C₂₃H₴₃NO₇	[27]
45	Yunnanensine A	Rearranged-type	D. yunnanense	C₂₄H₴₈N₂O₉	[28]
46	Iliensine A	Lycoctonine	D. iliens	C₂₄H₴₃NO₁₄	[29]
47	Iliensine B	Lycoctonine	D. iliens	C₂₄H₴₁NO₈	[29]
48	Pseudophnine A	Lycoctonine	D. pseudoaemulans C. Y. Yang et B. Wang	C₂₃H₴₈NO₇⁺	[30]
49	Pseudophnine B	Lycoctonine	D. pseudoaemulans C. Y. Yang et B. Wang	C₂₄H₳₃NO₇⁺	[30]
No.	Compound	Type	Source	Molecular formula	Reference
-----	---------------------------	---------------	---	-------------------	-----------
50	Pseudophnine C	Lycoctonine	*D. pseudoaemulans* C. Y. Yang et B. Wang	C_{27}H_{42}NO_{7}	[30]
51	Pseudophnine D	Lycoctonine	*D. pseudoaemulans* C. Y. Yang et B. Wang	C_{28}H_{40}NO_{7}	[30]
52	Pseudorenines A	Lycoctonine	*D. pseudoaemulans* C. Y. Yang et B. Wang	C_{30}H_{38}NO_{11}	[30]
53	Pseudorenines B	Lycoctonine	*D. pseudoaemulans* C. Y. Yang et B. Wang	C_{30}H_{38}NO_{11}	[30]
54	Pseudonidine A	Lycoctonine	*D. pseudoaemulans* C. Y. Yang et B. Wang	C_{26}H_{40}NO_{7}	[30]
55	Pseudonidine B	Lycoctonine	*D. pseudoaemulans* C. Y. Yang et B. Wang	C_{26}H_{40}NO_{7}	[30]
56	Navicularine	Lycoctonine	*D. naviculare var. lasiocarpum*	C_{27}H_{42}NO_{8}	[31]
57	Shawurensine	Lycoctonine	*D. shawurense* W. T. Wang	C_{28}H_{40}NO_{7}	[32]
58	Sharwuphinine B	Lycoctonine	*D. shawurense* W. T. Wang	C_{28}H_{40}NO_{7}	[33]
59	Ajacisine A	Lycoctonine	*D. ajacis* L.	C_{29}H_{44}N_{2}O_{9}	[34]
60	Ajacisine B	Lycoctonine	*D. ajacis* L.	C_{30}H_{44}N_{2}O_{9}	[34]
61	Ajacisine C	Lycoctonine	*D. ajacis* L.	C_{30}H_{44}N_{2}O_{9}	[34]
62	Ajacisine D	Lycoctonine	*D. ajacis* L.	C_{30}H_{44}N_{2}O_{9}	[34]
63	Ajacisine E	Lycoctonine	*D. ajacis* L.	C_{30}H_{44}N_{2}O_{9}	[34]
64	Caerudelphinine A	Lycoctonine	*D. caeruleum* Jacq.ex Camb	C_{25}H_{40}N_{2}O_{8}	[35]
65	Grandifloridine B	Lycoctonine	*D. grandiflorum*	C_{26}H_{44}N_{2}O_{10}	[36]
66	Majusine A	Lycoctonine	*D. majus* W. T. Wang	C_{27}H_{42}N_{2}O_{9}	[37]
67	Majusine B	Lycoctonine	*D. majus* W. T. Wang	C_{28}H_{42}N_{2}O_{9}	[37]
68	Majusine C	Lycoctonine	*D. majus* W. T. Wang	C_{28}H_{42}N_{2}O_{9}	[37]
69	Davidisine A	Lycoctonine	*D. davidii* Franch.	C_{29}H_{44}N_{2}O_{9}	[38]
70	Davidisine B	Lycoctonine	*D. davidii* Franch.	C_{29}H_{44}N_{2}O_{9}	[38]
71	Laxicyminine 1	Lycoctonine	*D. laxicymosum var. pilostachyum* W. T. Wang	C_{29}H_{39}NO_{7}	[39]
72	Laxicyminine 2	Lycoctonine	*D. laxicymosum var. pilostachyum* W. T. Wang	C_{29}H_{39}NO_{7}	[39]
73	Laxicyminine 3	Lycoctonine	*D. laxicymosum var. pilostachyum* W. T. Wang	C_{29}H_{39}NO_{7}	[39]
74	Tiantaishansine	Lycoctonine	*D. tiantaishanense* W. J. Zhang et G. H. Chen	C_{22}H_{33}NO_{7}	[40]
75	Tiantaishannine	Lycoctonine	*D. tiantaishanense* W. J. Zhang et G. H. Chen	C_{22}H_{33}NO_{7}	[40]
76	Tiantaishanminine	Lycoctonine	*D. tiantaishanense* W. J. Zhang et G. H. Chen	C_{22}H_{33}NO_{7}	[40]
77	Trifoliolasine A	Lycoctonine	*D. trifoliolatum* Finet et Gagnep	C_{28}H_{38}N_{2}O_{9}	[41]
78	Trifoliolasine B	Lycoctonine	*D. trifoliolatum* Finet et Gagnep	C_{28}H_{38}N_{2}O_{9}	[41]
79	Trifoliolasine C	Lycoctonine	*D. trifoliolatum* Finet et Gagnep	C_{28}H_{38}N_{2}O_{9}	[41]
80	14-Demethyl-14-isobutyrylanhweidelphinine	Lycoctonine	*D. pentagynum* Lam.	C_{28}H_{48}N_{2}O_{11}	[42]
81	14-Demethyl-14-acetylanhweidelphinine	Lycoctonine	*D. pentagynum* Lam.	C_{28}H_{48}N_{2}O_{11}	[42]
82	Giraldine G	Lycoctonine	*D. giraldii*	C_{29}H_{37}N_{2}O_{11}	[43]
83	Giraldine H	Lycoctonine	*D. giraldii*	C_{29}H_{37}N_{2}O_{11}	[43]
84	Giraldine I	Aconitine	*D. giraldii*	C_{29}H_{37}N_{2}O_{11}	[43]
85	Giraldine D	Lycoctonine	*D. giraldii*	C_{29}H_{37}N_{2}O_{11}	[43]
86	Giraldine E	Lycoctonine	*D. giraldii*	C_{29}H_{37}N_{2}O_{11}	[43]
87	Giraldine F	Lycoctonine	*D. giraldii*	C_{29}H_{37}N_{2}O_{11}	[43]
88	Campylocine	Lycoctonine	*D. campylocentrum* Maxim.	C_{29}H_{37}N_{2}O_{11}	[44]
89	Campylotine	Lycoctonine	*D. campylocentrum* Maxim.	C_{29}H_{37}N_{2}O_{11}	[44]
90	Davidisine A	Lycoctonine	*D. davidii* Franch.	C_{30}H_{38}N_{2}O_{9}	[44]
91	Davidisine B	Lycoctonine	*D. davidii* Franch.	C_{30}H_{38}N_{2}O_{9}	[44]
92	Ajadelphine	Lycoctonine	*D. honanense var. piliteram* W. T. Wang	C_{29}H_{39}N_{2}O_{9}	[45]
93	Acconine	Aconitine	*D. honanense var. piliteram* W. T. Wang	C_{29}H_{39}N_{2}O_{9}	[45]
94	Siwanine E	Lycoctonine	*D. honanense var. piliteram* W. T. Wang	C_{29}H_{39}N_{2}O_{9}	[45]
Table 2: Continued.

No.	Compound	Type	Source	Molecular formula	Reference
95	Grandiflorine III	Aconitine	D. grandiflorum L.	C_{26}H_{39}NO_{9}	[48]
96	Isotalatizidine	Aconitine	D. grandiflorum L.	C_{23}H_{37}NO_{5}	[48]
97	14-O-Methyl isotalatizidine	Aconitine	D. grandiflorum L.	C_{23}H_{40}N_{5}O_{3}	[48]
98	Anthranoylycoctonine	Lycoctonine	D. grandiflorum L.	C_{26}H_{39}NO_{6}	[48]
99	Deoxylycoctonine	Lycoctonine	D. grandiflorum L.	C_{26}H_{39}NO_{6}	[48]
100	Umbrosine	Lycoctonine	D. grandiflorum L.	C_{24}H_{39}NO_{6}	[48]
101	Anthriscifoline A	Lycoctonine	D. anthriscifolium var. majus	C_{23}H_{37}NO_{5}	[49]
102	Anthriscifoline B	Lycoctonine	D. anthriscifolium var. majus	C_{27}H_{41}NO_{8}	[49]
103	Anthriscifoline C	Lycoctonine	D. anthriscifolium var. majus	C_{27}H_{41}NO_{8}	[49]
104	Anthriscifoline D	Lycoctonine	D. anthriscifolium var. majus	C_{27}H_{39}NO_{8}	[49]
105	Anthriscifoline E	Lycoctonine	D. anthriscifolium var. majus	C_{26}H_{39}NO_{8}	[49]
106	Anthriscifoline F	Lycoctonine	D. anthriscifolium var. majus	C_{24}H_{37}NO_{7}	[49]
107	Tianshanisine A	Lycoctonine	D. tianshanicum W. T. Wang	C_{30}H_{41}NO_{6}	[50]
108	Tianshanisine B	Lycoctonine	D. tianshanicum W. T. Wang	C_{23}H_{37}NO_{5}	[50]
109	Tianshanisine C	Lycoctonine	D. tianshanicum W. T. Wang	C_{25}H_{39}NO_{6}	[50]
110	Tianshanisine D	Lycoctonine	D. tianshanicum W. T. Wang	C_{25}H_{39}NO_{6}	[50]
111	Tianshanisine E	Lycoctonine	D. tianshanicum W. T. Wang	C_{25}H_{39}NO_{7}	[50]
112	Elapacigine	Lycoctonine	Delphinium elatum cv. Pacific Giant	C_{23}H_{37}NO_{7}	[51]
113	N-Deethyl-N-formylpaciline	Lycoctonine	Delphinium elatum cv. Pacific Giant	C_{25}H_{37}NO_{7}	[51]
114	N-Deethyl-N-formylpacinine	Lycoctonine	Delphinium elatum cv. Pacific Giant	C_{25}H_{37}NO_{7}	[51]
115	N-Formyl-4,19-secoyunnadelphinine	Lycoctonine	Delphinium elatum cv. Pacific Giant	C_{25}H_{37}NO_{7}	[51]

Table 3: C-20 diterpenoid alkaloids isolated from Delphinium.

No.	Compound	Type	Source	Molecular formula	Reference
116	Yunnanensine B	Hetisine	D. yunnanense	C_{28}H_{37}NO_{7}	[28]
117	Yunnanensine C	Hetisine	D. yunnanense	C_{26}H_{35}NO_{6}	[28]
118	Grandifloridine A	Hetisine	D. grandiflorum	C_{22}H_{28}N_{2}O_{3}	[36]
119	Majusimine A	Vakognavine	D. majus W. T. Wang	C_{26}H_{47}NO_{15}	[37]
120	Majusimine B	Vakognavine	D. majus W. T. Wang	C_{24}H_{45}NO_{14}	[37]
121	Majusimine C	Vakognavine	D. majus W. T. Wang	C_{24}H_{43}NO_{13}	[37]
122	Majusimine D	Vakognavine	D. majus W. T. Wang	C_{24}H_{43}NO_{12}	[37]
123	Majusidine A	Hetisine	D. majus W. T. Wang	C_{22}H_{29}NO_{5}	[37]
124	Majusidine B	Hetisine	D. majus W. T. Wang	C_{22}H_{29}NO_{4}	[37]
125	Tiantaishandine	Hetisine	D. tiantaishanense W. J. Zhang et G. H. Chen	C_{24}H_{31}NO_{7}	[40]
126	2-Dehydrodeacetyldelphinidine	Hetidine	D. pentagonum Lam.	C_{24}H_{33}NO_{5}	[42]
127	Davidiisine C	Hetidine	D. davidi Franc	C_{22}H_{32}N_{5}O_{14}	[46]
128	12-Epinapelline	Veatchine	D. honanense var. piliteram W. T. Wang	C_{22}H_{32}N_{5}O_{13}	[47]
129	Anthriscifolin B	Hetisine	D. anthriscifolium var. majus	C_{22}H_{32}N_{5}O_{12}	[49]
130	Anthriscifolin C	Hetisine	D. anthriscifolium var. majus	C_{20}H_{32}N_{5}O_{12}	[49]
131	Anthriscifolin A	Denudatine	D. anthriscifolium var. savatieri	C_{23}H_{32}NO_{8}	[52]
132	Anthriscifolin B	Denudatine	D. anthriscifolium var. savatieri	C_{23}H_{32}NO_{8}	[52]
133	Anthriscifolin C	Hetisine	D. anthriscifolium var. savatieri	C_{23}H_{32}NO_{8}	[52]
134	Trichodelphinines A	Hetisine	D. tichophorum Franch	C_{24}H_{32}NO_{5}	[53]
135	Trichodelphinines B	Hetisine	D. tichophorum Franch	C_{24}H_{32}NO_{5}	[53]
136	Trichodelphinines C	Hetisine	D. tichophorum Franch	C_{24}H_{32}NO_{5}	[53]
137	Trichodelphinines D	Hetisine	D. tichophorum Franch	C_{24}H_{32}NO_{5}	[53]
138	Trichodelphinines E	Hetisine	D. tichophorum Franch	C_{24}H_{32}NO_{5}	[53]
139	Trichodelphinines F	Denvudine	D. tichophorum Franch	C_{24}H_{32}NO_{4}	[53]
140	Flexiosine	Hetisine	D. flexuosum M. Bieb.	C_{24}H_{32}NO_{9}	[54]
141	Tatsienenseine A	Vakognavine	D. tatsienense Franch	C_{24}H_{45}NO_{13}	[55]
142	Tatsienenseine B	Hetisine	D. tatsienense Franch	C_{24}H_{32}NO_{5}	[55]
143	Tatsienenseine C	Hetisine	D. tatsienense Franch	C_{24}H_{32}NO_{5}	[55]
144	13-(2-Methyl butyryl) azitine	Atisine	D. scabrisforum	C_{24}H_{32}NO_{3}	[56]
145	Tatsienensine	Hetisine	D. tatsienense	C_{19}H_{32}NO_{2}	[57]
Figure 4: Continued.
swelling in outbred male rats. On the 14th day, the rats in the total alkaloids (0.05 mg/kg) treatment group of Delphinium had no pain when their joints were bended, which indicated a good analgesic effect of Delphinium [64]. Through the hot-plate method and the acetic acid writhing method, Suslov et al. found that the water extract (0.5 g/kg) and the alcohol extract (0.25 g/kg) of D. grandiflorum L. var. leiocarpum could prolong the pain threshold of mice, which was similar to the effect of acetaminophen (0.2 g/kg), and performed a good analgesic effect [65].

3.3. Anti-Inflammatory Activity. Nesterova et al. found that the alkaloids and flavonoids in Delphinium had a good inhibitory effect on the inflammatory response through the experiment of the mice peritonitis model in the inflammatory exudation phase in vivo. Aqueous fraction of flavonoids (25.0 mg/kg) had a good therapeutic effect on the edema reaction caused by histamine (0.1%), and alkaloids (0.05 mg/kg) showed a good anti-inflammatory effect on the inflammatory reaction caused by 5-hydroxytryptamine (0.5 mg/kg) [66]. Andreeva and Liu established an acute inflammation model with increased capillary permeability induced by acetic acid in ICR male mice, and the results showed that the high- (1.5 g/kg), medium- (1.0 g/kg), and low-dose groups (0.5 g/kg) of the total flavonoids extracted from D. grandiflorum with ethanol had good anti-inflammatory activity [67].

3.4. Spiritual Influence

3.4.1. Antidepressant Activity. Ebrahimzadeh et al. demonstrated that the extract (250 mg/kg, 500 mg/kg, and 1000 mg/kg) of D. elbursense had good antidepressant activity by using the forced swimming experiment and the tail suspension experiment in mice. The results revealed that the extract at 1000 mg/kg had the same inhibitory activity as imipramine at 15 mg/kg in the control group [68].

3.4.2. Antianxiety Activity. Mohammad et al. found that the D. denudatum extract (200 and 400 mg/kg) had a certain therapeutic effect on anxiety in Wistar albino rats and a better synergistic effect toward the Amaranthus spinosus extract (100 mg/kg) [69].

3.5. Anticancer Activity. Zheng et al. used the MTT method to determine the antithepataoma activity of the ethyl acetate extract from D. caeruleum in vitro. After giving 25, 50, 100, and 200 µg/mL of HepG2 cells for 12, 24, and 48 hours, they found that the ethyl acetate extract from D. caeruleum had good anti-tumor cancer activity and had a good dose-effect and time-effect relationship on HepG2 cells and had less toxicity to L-02 cells. IC_{50} of the ethyl acetate extract from D. caeruleum on HepG2 cells was 28.8 µg/mL [70].

3.6. Antipulmonary Fibrosis Activity. In the study on pulmonary fibrosis induced by bleomycin in SD rats, Lin et al. found that after 14 days of gavage with 4 g/kg, 2 g/kg, and 1 g/kg extracts of D. trichophorum, the expression of collagen in the tissues during the pathological process of pulmonary fibrosis could be inhibited and the symptoms of pulmonary fibrosis in rats could be improved [71].

3.7. Antifeedant Activity. Shan et al. determined the antifeed activity of 12 alkaloids isolated from D. naviculare var. lasiocarpum on Spodoptera exigua, and the results showed that the chemical shawurensine had a strong antifeed activity with an EC_{50} of 0.45 mg/cm^2 [31]. González and Guadano extracted 5 alkaloids from Delphinium for activity determination against Spodoptera littoralis and Leptinotarsa decemlineata by choice feeding assays, and the results showed that cardiopetamine had the strongest activity against S. littoralis with the EC_{50} of 5.48 nmol/cm^2 and 15-acetylcardiopetamine had the strongest activity against L. decemlineata with the EC_{50} of 12.86 nmol/cm^2 [72].

Figure 4: C-18 diterpenoid alkaloids isolated from Delphinium.
Figure 5: Continued.
Figure 5: C-19 diterpenoid alkaloids isolated from Delphinium.
Figure 6: Continued.
Figure 6: C-20 diterpenoid alkaloids isolated from Delphinium.
Table 4: Amide alkaloids isolated from *Delphinium*.

No.	Compound	Type	Source	Molecular formula	Reference
146	Benzoic acid 2-[(4-methoxy-2-methyl-1,4-dioxobutyl) amino]-methyl ester	Amide	*D. grandiflorum* Linn	C₁₄H₁₇N₅	[21]
147	N-Cinnamoyl-2-phenylethylamine	Amide	*D. grandiflorum* L.	C₁₇H₁₇N₅	[48]
148	Delamide A	Amide	*D. brunonianum*	C₁₃H₁₃N₄	[58]
149	Delamide B	Amide	*D. brunonianum*	C₁₄H₁₇N₆	[58]
150	Delamide C	Amide	*D. brunonianum*	C₁₃H₁₅N₅	[58]
151	Delamide D	Amide	*D. brunonianum*	C₁₃H₁₅N₅	[58]
152	Delamide E	Amide	*D. brunonianum*	C₁₃H₁₅N₅	[58]
153	Benzoic,4-[(3,4-dimethoxybenzoyl) amino]-3-hydroxy-methyl ester	Amide	*D. brunonianum* Royle	C₁₇H₁₇N₆	[59]
154	Benzoic acid 2-[(4-methoxy-3-methyl-1,4-dioxobutyl) amino]-methyl ester	Amide	*D. brunonianum* Royle	C₁₄H₁₇N₅	[59]

Figure 7: Amide alkaloids isolated from *Delphinium*.

Figure 8: Other alkaloids isolated from *Delphinium*.
No.	Compound	Type	Source	Molecular formula	Reference
156	β-Carotene		D. grandiflorum Linn	C_{34}H_{56}NO_{4}	[21]
157	3,5-Dihydroxy-4′-methoxyflavon-7-yl-O-β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranoside	Flavonoid	D. grandiflorum Linn	C_{21}H_{18}NO_{8}	[21]
158	β-D-Galactopyranoside,4-hydroxyphenyl	Sterol	D. honanense var. piliteram W. T. Wang	C_{11}H_{12}NO_{5}	[47]
159	β-Sitosterol				
160	4′,7-Dimethoxy-5-hydroxyflavone	Flavonoid	D. grandiflorum L.	C_{27}H_{34}O_{3}	[48]
161	Kaempferol-7-O-α-L-pyranorhamnoside	Flavonoid	D. grandiflorum L.	C_{23}H_{20}O_{10}	[60]
162	5,7,3′,4′-Tetrahydroxy-8-methoxyflavone	Flavonoid	D. grandiflorum L.	C_{16}H_{12}O_{7}	[60]
163	Tachioside	Phenolics	D. grandiflorum L.	C_{13}H_{18}O_{8}	[60]
164	6-Methoxycoumarin	Coumarin	D. grandiflorum L.	C_{10}H_{4}O_{3}	[60]
165	para-Hydroxybenzoic acid		D. brunonianum Royle	C_{7}H_{6}O_{3}	[59]
166	Benzoic acid		D. brunonianum Royle	C_{7}H_{6}O_{2}	[59]
167	Cinnamic acid		D. brunonianum Royle	C_{8}H_{8}O_{3}	[59]
168	Dibutyl phthalate		D. brunonianum Royle	C_{16}H_{12}O_{4}	[59]
3.8. Antiparasite Activity. Reina et al. found that delphi-graciline extracted from *D. gracile* had antileishmanicidal activity *in vitro*, and its IC$_{50}$ was 7.3 μg/mL [73].

4. Summary and Analysis

Delphinium is rich in germplasm resources and has a wide range of pharmacological effects. In recent years, 168 compounds were isolated from plants of *Delphinium*, including 155 alkaloids and 13 nonalkaloids. The alkaloids in the genus *Delphinium* are mainly diterpene alkaloids, including 20 C-18 diterpenoid alkaloids, 95 C-19 diterpenoid alkaloids, and 30 C-20 diterpenoid alkaloids. The study of chemical composition for *Delphinium* mainly focuses on *D. anthriscifolium* varietas, *D. elatum*, *D. grandiflorum*, *D. brunonianum*, *D. tiantaishanense*, and *D. pseudoaemulans.*
Although there are many research studies, the pharmacological effects on the antibacterial, analgesic, anti-inflammatory, antidepressant, anticancer, antipulmonary fibrosis, antifeeded, and antiparasite effects of Delphinium are mainly on the crude extracts and few on compounds.

5. Future Prospects

The genus Delphinium is rich in new and novel compounds, but the current research is only focused on several species. In the future, more new compounds should be investigated from other species in depth. The pharmacological effects of Delphinium are extensive, but the current research is limited to extracts, so it is necessary to focus on the effects of the compounds from Delphinium and the structure-activity relationship in the future.

Data Availability

The data supporting this article are from previously reported studies, which have been cited. The data are available from the corresponding author upon request.

Conflicts of Interest

All authors declare that they have no conflicts of interest.

Authors’ Contributions

Sitan Chen and Lijun Meng contributed equally to this work.

Acknowledgments

This work was supported by the Basic Project in Science and Technology Agency of Kaifeng City (1908007).

References

[1] W. C. Wang and J. W. Michael, Flora of China, pp. 223–274, Flora of China Editorial Committee of Chinese Academy of Sciences, Beijing, China, 2001.
[2] L. H. Shan, Studies on Diterpenoid Alkaloids Constituents of Four Herb Aconitum, Southwest Jiaotong University, Chengdu, China, 2017.
[3] Flora of China Editorial Committee of Chinese Academy of Sciences, Flora Retipublicae Popularis Sinicae, p. 326, Flora of China Editorial Committee of Chinese Academy of Sciences, Beijing, China, 1979.
[4] F. P. Wang, Q. H. Chen, and X. Y. Liu, “Diterpenoid alka-loid,” Natural Product Reports, vol. 27, no. 4, p. 529, 2010.
[5] Teaching and Research Office of Organic Chemistry, Department of Chemistry, Nanjing University, Organic chemistry, p. 329, Higher Education Press, Beijing, China, 1988.
[6] H. X. Kuang, Chemistry of Chinese Materia Medica, China Press of Traditional Chinese Medicine, Beijing, China, 2nd edition, 1998.
[7] F. P. Wang, Alkaloids Chemistry, pp. 410–429, Chemical and Industry Press, Beijing, China, 1st edition, 2008.
[8] T. P. Yin, Z. H. Luo, L. Cai, and Z. T. Ding, “Research progress and NMR spectral features of natural C19-diterpenoid alkaloids,” Chinese Journal of Magnetic Resonance, vol. 36, no. 01, pp. 113–126, 2019.
[9] Q. Zhang, B. Xu, Q. Jia, and Y. M. Li, “Advances in chemical constituents and pharmacological activities of C18 diterpenoid alkaloids,” Chinese Traditional Patent Medicine, vol. 38, no. 5, pp. 1109–1114, 2016.
[10] S. M. Xie, C. Z. Lin, D. W. Zeren et al., “Review of phytochemical and pharmacological researches of medicinal plants from Genus Delphinium of Rannunculaceae,” Pharmacy Today, vol. 21, no. 4, pp. 197–201, 2011.
[11] S. J. Wu, Chemical Constituents of Modern Medicinal Herb, pp. 936–948, Chinese Medical Science and Technology Press, Beijing, China, 1st edition, 2002.
[12] F.-P. Wang and X.-T. Liang, “C20-diterpenoid alkaloids,” The Alkaloids: Chemistry and Biology, vol. 59, pp. 1–280, 2002.
[13] K. B. m. Birnbaum, “X-ray crystal structure of delnudine, a novel alkaloid,” Tetrahedron Letters, vol. 10, no. 60, pp. 5245–5246, 1969.
[14] R. Y. Li, F. Feng, and J. H. Liu, “Advance in studies on structure-activity relationships of C20-Diterpenoid alkaloids,” Strait Pharmaceutical Journal, vol. 25, no. 12, pp. 1–4, 2013.
[15] Y. Liang, J. L. Wu, X. Li et al., “Anti-cancer and anti-inflammation new vakognavine-type alkaloid from the roots of Aconitum carmichaelii,” Tetrahedron Letters, vol. 57, no. 52, pp. 5881–5884, 2016.
[16] L. S. Ding and Y. Z. Chen, “Natural C20 diterpene alkaloids,” Natural Product Research and Development, vol. 2, no. 3, pp. 74–88, 1990.
[17] L. Song, X.-X. Liang, D.-L. Chen, X.-X. Jian, and F.-P. Wang, “New C18-Diterpenoid Alkaloids from Delphinium anthris-cifolium var. savatieri,” Chemical & Pharmaceutical Bulletin, vol. 55, no. 6, pp. 918–921, 2007.
[18] L. Jian, X.-Y. Liu, and Q.-H. Chen, “New C19- and C18-Diterpenoid Alkaloids from Delphinium anthris-cifolium var. savatieri,” Chemical & Pharmaceutical Bulletin, vol. 57, no. 2, pp. 158–161, 2009.
[19] W. J. Wang, B. Zhao, J. Y. Zhao et al., “Three new diterpenoid alkaloids from Delphinium naviculare var. lasiocarpum W. T. Wang,” Phytochemistry Letters, vol. 33, pp. 12–16, 2019.
[20] S. Wang, X. L. Zhou, X. M. Gong et al., “Norditerpenoid alkaloids from Delphinium anthis-cifolium,” Journal of Asian Natural Products Research, vol. 18, no. 2, pp. 1–6, 2015.
[21] Z. D. Nan, Studies on the Chemical Constituents of Delphinium grandiflorum linn, Lanzhou University, Lanzhou, China, 2010.
[22] Z. D. Nan, H. Z. Ren, X. A. Li et al., “Separation and iden-tification of diterpenoid alkaloids from Delphinium grandi-florum,” Chinese Journal of Experimental Traditional Medical Formulae, vol. 23, no. 24, pp. 71–77, 2017.
[23] U. Kolak, M. Oeztuerc, F. Oezgoekce et al., “Norditerpene alkaloids from Delphinium lineearilobum and antioxidant activity,” Phytochemistry, vol. 67, no. 19, pp. 2170–2175, 2006.
[24] L. H. Shan, J. F. Zhang, L. Chen et al., “Two new C18-diterpenoid alkaloids from Delphinium anthis-cifolium,” Natural Product Communications, vol. 10, no. 12, pp. 2067–2068, 2015.
[25] L.-H. Shan, J.-F. Zhang, F. Gao, S. Huang, and X.-L. Zhou, “C18-Diterpenoid alkaloids from Delphinium anthis-cifolium var. majus,” Journal of Asian Natural Products Research, vol. 20, no. 5, pp. 423–430, 2018.
[26] K. Huang, E. Asakawa, Y. Tosho et al., “Four new diterpenoid alkaloids from Delphinium elatum,” Phytochemistry Letters, vol. 17, pp. 190–193, 2016.
C.-Z. Wang, Z.-J. Liu, and Z.-D. Bairi, “A new diterpenoid alkaloids from Delphinium yunnanense,” *Helvetica Chimica Acta*, vol. 94, no. 2, pp. 254–260, 2011.

J.-F. Zhang, R.-Y. Dai, L.-H. Shan et al., “Iliensines A and B: two new C 19-diterpenoid alkaloids from *Delphinium ilinense*,” *Phytochemistry Letters*, vol. 17, pp. 299–303, 2016.

W. J. Xu, B. Zhao, Z. Ruzi et al., “Norditerpenoid alkaloids from Delphinium pseudoaemulans C. Y. Yang et B. Wang,” *Phytochemistry*, vol. 156, pp. 234–240, 2018.

L. Shan, L. Chen, and F. Gao, “Diterpenoid alkaloids from *Delphinium naviculare* var. lasiocarpum with their antifeedant activity on *Spodoptera exigua*,” *Natural Product Research*, vol. 33, no. 22, pp. 3254–3259, 2018.

D. Y. Zhou, H. A. Aisa, S. K. Usmanova, and “Shawurensine, “Shawurensine, a new C19-diterpenoid alkaloid from Delphinium shawurense,” *Chemistry of Natural Compounds*, vol. 43, no. 3, pp. 298–301, 2007.

B. Zhao, S. K. Usmanova, A. Yili, A. Kawuli, R. Abdulla, and H. A. Aisa, “New C19-norditerpenoid alkaloids from Delphinium shawurense,” *Chemistry of Natural Compounds*, vol. 51, no. 3, pp. 519–522, 2015.

L. Kawuli, Y. B. Zhang, L. Zhuang et al., “Diterpenoid alkaloids from *Delphinium ajacis* and their anti-RSV activities,” *Planta Medica*, vol. 83, no. 1-2, pp. 111–116, 2016.

C.-Z. Wang, Z.-J. Liu, and Z.-D. Bairi, “A new diterpenoid alkaloid isolated from *Delphinium caeruleum*,” *Chinese Journal of Natural Medicines*, vol. 15, no. 1, pp. 45–48, 2017.

N.-H. Zhu, Y.-B. Zhang, W. Li et al., “Grandifolodines A and B, two novel diterpenoid alkaloids from *Delphinium grandiflorum*,” *RSC Advances*, vol. 7, no. 39, pp. 24129–24132, 2017.

F.-Z. Li, D.-L. Chen, and Q.-H. Chen, “Diterpenoid alkaloids from *Delphinium majus*,” *Journal of Natural Products*, vol. 72, no. 1, pp. 18–23, 2009.

X. X. Wang, D. L. Chen, and F. P. Wang, “Two new C19-diterpenoid alkaloids from *Delphinium davidi* Franch,” *Chinese Chemical Letters*, vol. 17, no. 11, pp. 1473–1476, 2007.

P. Tang, D. L. Chen, Q. H. Chen et al., “Three new C19-diterpenoid alkaloids from *Delphinium laxycymosum* var. pilostachyum,” *Chinese Chemical Letters*, vol. 18, no. 6, pp. 700–703, 2007.

J. Li, D.-L. Chen, and X.-X. Jian, “New diterpenoid alkaloids from the roots of *Delphinium tiantaishanense*,” *Molecules*, vol. 12, no. 3, pp. 353–360, 2007.

X. L. Wang, Q. H. Chen, and F. P. Wang, “New C19-diterpenoid alkaloids from *Delphinium trifoliatum*,” *Chemical and Pharmaceutical Bulletin*, vol. 52, no. 4, pp. 381–383, 2004.

G. D. Jess, G. R. Juan, and H. Werner, “Alkaloids from *Delphinium pentagynum*,” *Phytochemistry*, vol. 65, no. 14, pp. 2123–2127, 2004.

X.-L. Zhou, Q.-H. Chen, and F.-P. Wang, “Three new C19-diterpenoid alkaloids from *Delphinium giraldii*,” *Chemical & Pharmaceutical Bulletin*, vol. 52, no. 4, pp. 456–458, 2004.

X. L. Zhou, Q. H. Chen, and F. P. Wang, “Three new lycocinone-type C19-diterpenoid alkaloids from *Delphinium giraldii*,” *Heterocycles*, vol. 63, no. 1, pp. 123–128, 2004.

L. P. Yan, D. L. Chen, and F. P. Wang, “Structure elucidation of diterpenoid alkaloids from *Delphinium campylocentrum*,” *Organic Chemistry*, vol. 27, no. 8, pp. 976–980, 2007.

X. X. Liang, *Studies on the Chemical Constituents of Alkaloids in Delphinium davidii*, Sichuan University, Chengdu, China, 2007.
[65] G. S. Suslov, Z. P. Jia, S. Z. Qiao et al., "Experimental studies on haemostasis and analgesic effect of Delphinium grandiflorum L. var. leiocarpum," Chinese Journal of Hospital Pharmacy, vol. 30, no. 11, pp. 898–900, 2010.

[66] Y. V. Nesterova, T. N. Poveteva, Y. G. Nagornyk, T. I. Andreeva, and N. I. Suslov, "Effects of bioactive substances from tall delphinium on the development of acute inflammation of different genesis," Bulletin of Experimental Biology and Medicine, vol. 145, no. 6, pp. 724–727, 2008.

[67] L. Andreeva and Y. J. Liu, "Study of Delphinium grandiflorum flavonoids on inhibition of inflammation in mice," China Modern Medicine, vol. 18, no. 32, p. 14+59, 2011.

[68] M. A. Ebrahimzadeh, S. F. Nabavi, S. M. Nabavi et al., "Biological and pharmacological effects of Delphinium elbusense," African Journal of Biotechnology, vol. 9, no. 34, pp. 5548–5555, 2010.

[69] A. Mohammad, G. A. Kumar, and A. K. Najam, "In vivo psychopharmacological investigation of Delphinium denudatum and Amaranthus spinosus extracts on Wistar rats," Basic and Clinical Neuroscience Journal, vol. 8, no. 6, pp. 503–512, 2017.

[70] S. J. Zheng, C. Xu, J. Yang et al., "In vitro anticancer screening of Tibetan medicines," Journal of Huazhong Normal University (Natural Sciences), vol. 51, no. 3, pp. 328–334, 2017.

[71] C. Z. Lin, C. C. Zhu, F. L. Liu et al., "The protective effects of extracts of Delphinium trichophorum on bleomycin-induced pulmonary fibrosis in rats," Journal of Chinese Medicinal Materials, vol. 41, no. 5, pp. 1181–1185, 2018.

[72] C. González and G. Guadano, "Antifeedant delphinium diterpenoid alkaloids. Structure–activity relationships," Journal of Agricultural and Food Chemistry, vol. 46, no. 1, 1998.

[73] M. Reina, R. Mancha, A. Gonzalez-Coloma, M. Bailen, M. L. Rodriguez, and R. A. Martinez-Diaz, "Diterpenoid alkaloids from Delphinium gracile," Natural Product Research, vol. 21, no. 12, pp. 1048–1055, 2007.