Asymptotic density of Motzkin numbers modulo small primes

Rob Burns

27th September 2018

Abstract

We establish the asymptotic density of the Motzkin numbers modulo 2, 4, 8, 3 and 5.

1 Introduction

The Motzkin numbers M_n are defined by

$$M_n := \sum_{k \geq 0} \binom{n}{2k} C_k$$

where C_k are the Catalan numbers.

There has been some work in recent years on analysing the Motzkin numbers M_n modulo primes and prime powers. This work has often been done in concert with and using the same methods as work analysing the Catalan numbers. Deutsch and Sagan [1] provided a characterisation of Motzkin numbers divisible by 2, 4 and 5. They also provided a complete characterisation of the Motzkin numbers modulo 3 and showed that no Motzkin number is divisible by 8. Eu, Liu and Yeh [2] reproved some of these results and extended them to include criteria for when M_n is congruent to $\{2, 4, 6\}$ mod 8. Krattenthaler and Müller [4] established identities for the Motzkin numbers modulo higher powers of 3 which include the modulo 3 result of [1] as a special case. Krattenthaler and Müller [3] have more recently extended this work to a full characterisation of M_n mod 8 in terms of the binary expansion of n. Their characterisation is rather elaborate and less susceptible to analysis than that provided in [2]. The results in [4] and [3] are obtained by expressing the generating function of M_n as a polynomial involving a special function. Rowland and Yassawi [5] investigated M_n in the general setting of automatic sequences. The values of M_n (as well as other sequences) modulo prime powers can be computed via automata.
Rowland and Yassawi provided algorithms for creating the relevant automata. They established results for \(M_n \) modulo small prime powers, including a full characterisation of \(M_n \) modulo 8 (modulo \(5^2 \) and \(13^2 \) are available from Rowlands website). They also established that 0 is a forbidden residue for \(M_n \) modulo 8, \(5^2 \) and \(13^2 \). In theory the automata can be constructed for any prime power but computing power and memory quickly becomes a barrier. For example, the automata for \(M_n \) modulo \(13^2 \) has over 2000 states. Rowland and Yassawi also went on to describe a method for obtaining asymptotic densities of \(M_n \).

We will use the above results to establish asymptotic densities of \(M_n \) modulo 2, 4, 8, 3 and 5. Here, the asymptotic density of a subset \(S \) of \(\mathbb{N} \) is defined to be

\[
\lim_{N \to \infty} \frac{1}{N} \# \{ n \in S : n \leq N \}
\]

if the limit exists, where \(\#S \) is the number of elements in a set \(S \). In contrast to the results for the Catalan numbers \(C_n \), the set of Motzkin numbers congruent to 0 mod \(n \) is not expected to have asymptotic density 1 for a general \(n \in \mathbb{N} \). The results here show that this expectation holds for small values of \(n \).

2 Asymptotic density of certain forms of numbers

The main method in the literature of characterising \(M_n \mod q \) is to divide the natural numbers into classes of the form

\[
S(q, r, s, t) = \{(qi + r)q^{sj+t} + c : i, j \in \mathbb{N}\}
\]

for various choices of \(r, s, t \) and \(c \). It will therefore be useful to know how these types of sets behave asymptotically. We can disregard the \(c \) term as this does not change the asymptotic behaviour. So the set of interest is

\[
S(q, r, s, t) = \{(qi + r)q^{sj+t} : i, j \in \mathbb{N}\}
\]

for integers \(q, r, s, t \).

Theorem 1. Let \(q, r, s, t \in \mathbb{Z} \) with \(q, s > 0 \), \(t \geq 0 \) and \(0 \leq r < q \). Then the asymptotic density of the set \(S \) is \((q^{s+1} - (q^s - 1))^{-1} \).

Proof. We have, for fixed \(j \geq 0 \),

\[
\# \{ i \geq 0 : (qi + r)q^{sj+t} \leq N \} = \frac{N}{q^{sj+t+1}} - \frac{r}{q} - E(j, N, q, r, s, t)
\]

where \(0 \leq E(j, N, q, r, s, t) < 1 \) is an error term introduced by not rounding down to the nearest integer. So, letting

\[
U(N, s, t) := \left\lfloor \frac{\log_q(N) - t - 1}{s} \right\rfloor
\]
, we have
\[
\#\{ n < N : n = (q_i + r) q_j \text{ for some } i, j \in \mathbb{N} \}
\]
\[
= \sum_{j \geq 0} \left(\frac{N}{q^{s_j+1}} - \frac{r}{q} - E(j, N, q, r, s, t) \right)
\]
\[
= \sum_{j=0}^{U} \left(\frac{N}{q^{s_j+1}} - \frac{r}{q} - E(j, N, q, r, s, t) \right)
\]
\[
= \frac{N}{q^{t+1}} \sum_{j=0}^{U} \left(\frac{1}{q^j} \right)^{j} - E'(N, q, r, s, t)
\]
where the new error term $E'(N, q, r, s, t)$ satisfies
\[
0 < E'(N, q, r, s, t) < 2(U + 1).
\]
Then
\[
\#\{ n < N : n = (q_i + r) q_j \text{ for some } i, j \in \mathbb{N} \}
\]
\[
= \left(\frac{N}{q^{t+1}} \right) \left(1 - \left(\frac{1}{q^s} \right)^{U+1} \right) \left(1 - \frac{1}{q^s} \right)^{-1} - E'.
\]
Since $\lim_{N \to \infty} \frac{E'(N, q, r, s, t)}{N} = 0$ and $\lim_{N \to \infty} \frac{1}{N} \left(\frac{1}{q^s} \right)^{U+1} = 0$ we have
\[
\lim_{N \to \infty} \frac{1}{N} \#\{ n < N : n = (q_i + r) q_j \text{ for some } i, j \in \mathbb{N} \}
\]
\[
= \left(q^{t+1-s} (q^s - 1) \right)^{-1}.
\]
\[
\square
\]
Remark. Sometimes we will need to consider the set
\[
S'(q, r, s, t) = \{(q_i + r) q_j : i, j \in \mathbb{N}, j \geq 1 \}
\]
for integers q, r, s, t. The asymptotic density of the set S' can be derived from theorem 1 as $\left(q^{t+1}(q^s - 1) \right)^{-1}$.

3 Motzkin numbers modulo 2, 4 and 8

The following result is established in [2]
Theorem 2. (Theorem 5.5 of [2]). The nth Motzkin number M_n is even if and only if

$$n = (4i + \epsilon)4^j + 1 - \delta$$

for $i, j \in \mathbb{N}, \epsilon \in \{1, 3\}$ and $\delta \in \{1, 2\}$.

Moreover, we have

$$M_n \equiv 4 \mod 8 \text{ if } (\epsilon, \delta) = (1, 1) \text{ or } (3, 2)$$

$$M_n \equiv 4y + 2 \mod 8 \text{ if } (\epsilon, \delta) = (1, 2) \text{ or } (3, 1)$$

where y is the number of digit 1s in the base 2 representation of $4i + \epsilon - 1$.

Remark. The 4 choices of (ϵ, δ) in the above theorem give 4 disjoint sets of numbers $n = (4i + \epsilon)4^j + 1 - \delta$.

Theorem 3. Each of the 4 disjoint sets defined by the choice of (ϵ, δ) in Theorem 2 has asymptotic density $\frac{1}{12}$ in the natural numbers.

Proof. Use the result of Theorem 1 for the set S with $q = 4, r = \epsilon, s = 1, t = 1$. \qed

Corollary 4. The asymptotic density of

$$\{n < N : M_n \equiv 0 \mod 2\}$$

is $\frac{1}{3}$.

The asymptotic density of

$$\{n < N : M_n \equiv 4 \mod 8\}$$

is $\frac{1}{6}$.

The asymptotic density of each the sets

$$\{n < N : M_n \equiv 2 \mod 8\} \text{ and } \{n < N : M_n \equiv 6 \mod 8\}$$

is $\frac{1}{12}$.

Proof. The first 2 statements of the corollary follow immediately from theorem 2 and theorem 3. The third statement follows from the observation that the numbers of 1’s in the base 2 expansion of i is equally likely to be odd or even and therefore the same applies to the the number of 1’s in the base 2 expansion of $4i + \epsilon - 1$. Since the asymptotic density of the 2 sets combined is $\frac{1}{6}$ (from theorem 3), each of the two sets has asymptotic density $\frac{1}{12}$. \qed

Remark. Rowland and Yassawi [5] proved the first two results of the corollary and also established that the asymptotic density of the sets of M_n congruent to 2 modulo 4 is $\frac{1}{6}$.

4
4 Motzkin numbers modulo 5

The following result is established in [1]

Theorem 5. (Theorem 5.4 of [1]). The Motzkin number M_n is divisible by 5 if and only if n is one of the following forms

$$(5i + 1)5^{2j} - 2, (5i + 2)5^{2j-1} - 1, (5i + 3)5^{2j-1} - 2, (5i + 4)5^{2j} - 1$$

where $i, j \in \mathbb{N}$ and $j \geq 1$.

Theorem 6. The asymptotic density of numbers of the first form in theorem 5 is $1/120$. Numbers of the fourth form also have asymptotic density $1/120$. The asymptotic density of numbers of the second and third forms in theorem 5 is $1/24$ each.

Proof. Firstly consider numbers of the form $(5i + r)5^{2j} - 2$. As we are interested in asymptotic density it is enough to look at numbers of the form $(5i + r)5^{2j}$. We can now use the remark 2 at the end of theorem 1 for the set S' with $q = 5, s = 2$ and $t = 0$. From the remark the asymptotic density of the set

$$\{ n \in \mathbb{N} : n = (5i + r)5^{2j} \text{ with } i, j \in \mathbb{N} \text{ and } j \geq 1 \}$$

is $(5 \times (5^2 - 1))^{-1} = \frac{1}{120}$. For numbers of the second and third forms we shift the j index so that it starts from 0 and use theorem 1 for the set S with $q = 5, s = 2$ and $t = 1$. From theorem 1 the asymptotic density of the set

$$\{ n \in \mathbb{N} : n = (5i + r)5^{2j+1} \text{ with } i, j \in \mathbb{N} \text{ and } j \geq 0 \}$$

is $(5^0(5^2 - 1))^{-1} = \frac{1}{24}$.

Corollary 7. The asymptotic density of $\#\{ n < N : M_n \equiv 0 \mod 5 \}$ is $1/10$.

Proof. The corollary follows immediately from theorem 5 and theorem 6 and the disjointness of the 4 forms of integers listed in theorem 5.

Remark. Numerical tests also show that roughly 22.5% of Motzkin numbers are congruent to each of $1, 2, 3, 4 \mod 5$.

5 Motzkin numbers modulo 3

The structure of the Motzkin numbers modulo 3 is based on a set $T(01)$ which was defined by Deutsch and Sagan in [1]. The set $T(01)$ is the set of natural numbers which have a base 3 expansion containing only the digits 0 and 1. The following theorem from [1] will be used in this section.
Theorem 8. (Corollary 4.10 of [1]). The Motzkin numbers satisfy
\[M_n \equiv -1 \mod 3 \text{ if } n \in 3T(01) - 1, \]
\[M_n \equiv 1 \mod 3 \text{ if } n \in 3T(01) \text{ or } n \in 3T(01) - 2, \]
\[M_n \equiv 0 \mod 3 \text{ otherwise.} \]

We will first examine the nature of the set \(T(01) \). We have,

Theorem 9. The asymptotic density of the set \(T(01) \) is zero.

Proof. Let \(N \in \mathbb{N} \) and choose \(k \in \mathbb{N} : 3^k \leq N < 3^{k+1} \). Then \(k = \lfloor \log_3(N) \rfloor \) and
\[
\frac{1}{N} \# \{ n \leq N : n \in T(01) \} \leq \frac{2^{k+1}}{N} \leq \frac{2^{k+1}}{3^k} \to 0 \text{ as } N \to \infty.
\]

Theorem 10. The asymptotic density of the set \(\{ n \leq N : M_n \equiv 0 \mod 3 \} \) is 1.

Proof. Since the asymptotic density of \(T(01) \) is zero, so is the asymptotic density of the sets \(3T(01) - k \) for \(k \in \{0, 1, 2\} \). Therefore theorem 8 implies that
\[
\lim_{N \to \infty} \frac{1}{N} \# \{ n \leq N : M_n \equiv \pm 1 \mod 3 \} = 0
\]
and the result follows.

References

[1] E. Deutsch and B.E. Sagan. Congruences for Catalan and Motzkin numbers and related sequences. *Journal of Number Theory*, 117(1):191–215, 2006. 1, 5, 6

[2] Sen-Peng Eu, Shu-Chung Liu, and Yeong-Nan Yeh. Catalan and Motzkin numbers modulo 4 and 8. *European Journal of Combinatorics*, 29:1449–1466, 2008. 1, 3, 4

[3] C. Krattenthaler and T. W. Müller. Motzkin numbers and related sequences modulo powers of 2. *ArXiv*, arXiv:1608.05657:28, 2016. 1

[4] Christian Krattenthaler and Thomas W. Müller. A method for determining the mod-3\(^k\) behaviour of recursive sequences. *ArXiv*, http://arxiv.org/abs/1308.2856, 2013. 1

[5] Eric Rowland and Reem Yassawi. Automatic congruences for diagonals of rational functions. *ArXiv*, https://arxiv.org/abs/1310.8635, 2013. 1, 4