T-Stable-extending Modules and Strongly T-stable Extending Modules

Inaam Mohammed Ali Hadi*1, Farhan Dakhil Shyaa2
1Department of Mathematics, University of Baghdad, College of Education for Pure Sciences (Ibn-Al-Haitham), University Of Baghdad, Iraq
2Department of Mathematics, University of Al-Qadisiyah, College of Education, Al-Qadisiya, Iraq

Received: 28/4/ 2019 Accepted: 28/8/2019

Abstract
In this paper we introduce the notions of t-stable extending and strongly t-stable extending modules. We investigate properties and characterizations of each of these concepts. It is shown that a direct sum of t-stable extending modules is t-stable extending while with certain conditions a direct sum of strongly t-stable extending is strongly t-stable extending. Also, it is proved that under certain condition, a stable submodule of t-stable extending (strongly t-stable extending) inherits the property.

Keywords: extending modules, S-extending module, t-stable extending modules, and strongly t-stable extending modules.

المقاسات الموسعه المستقرة من النمط T والمقاسات الموسعه المستقرة قويه من النمط T

انعام هادي1*، فرحان دخيل شياع2
1قسم الرياضيات ، كلية التربية للعلوم الصرفة (ابن الهيثم)، جامعة بغداد، بغداد، العراق
2قسم الرياضيات ، كلية التربية، جامعة القادسية، العراق

In the previous paper, we defined the notions of t-stable extending and strongly t-stable extending modules. We explore properties and characterizations of each of these concepts. It is shown that a direct sum of t-stable extending modules is t-stable extending while with certain conditions a direct sum of strongly t-stable extending is strongly t-stable extending. Also, it is proved that under certain condition, a stable submodule of t-stable extending (strongly t-stable extending) inherits the property.

Keywords: extending modules, S-extending module, t-stable extending modules, and strongly t-stable extending modules.

Introduction
Let R be a ring with unity and M be a right R-module. A submodule \(N \) of \(M \) is called essential in \(M \) \((N \leq_{ess} M) \) if \(N \cap K = \{0\} \), \(K \leq M \) implies \(K = \{0\} \). A submodule \(N \) of \(M \) is called closed in \(M \) if it has no proper essential extension in \(M \), that means if \(N \leq_{ess} W \), where \(W \leq M \), then \(N = W \) [1, 2]. It is known that for any submodule \(N \) of \(M \), there exists a submodule \(H \) of \(M \), such that \(N \leq_{ess} H \), hence \(H \) is a closed submodule of \(M \), \(H \) is called a closure of \(N \) [3]. Asgari [4] introduced the notion of t-essential submodule, where a submodule \(N \) of \(M \) is called t-essential (denoted by \(N \leq_{tes} M \)) if whenever \(W \leq M \), \(N \cap W \leq Z_2(M) \) implies \(W \leq Z_2(M) \), where \(Z_2(M) \) is the second

*Email: innam1976@yahoo.com
singular submodule defined by $Z\left(\frac{M}{Z(M)}\right) = Z_2(M)Z(M)$ [1], where $Z(M) = \{x \in M: xl = 0\}$ for some essential ideal of R. Equivalently, $Z(M) = \{x \in M: ann(x) \leq_{ess} R\}$ and $ann(x) = \{r \in R: xr = 0\}$. M is called singular (nonsingular) if $Z(M) = M(Z(M) = 0)$. Note that $Z_2(M) = \{x \in M: xl = 0\}$ for some t-essential ideal I of R. M is called Z_2-torsion if $Z_2(M) = M$. Asgari introduced the concept of t-closed submodule where a submodule N is called t-closed ($\leq_{tc} M$) if N has no proper t-essential extension in M [4]. It is clear that every t-closed submodule is closed, but the converse is not true. However, under the class of nonsingular, the two concepts are equivalent. Asgari [5] stated that for any submodule N of M, there exists a t-closed submodule H of M such that $N \subseteq_{tes} H$. H is called a t-closure of N. A module M is called extending if for every submodule N of M there exists a direct summand $W(W \leq M)$ such that $N \leq W$ [6]. Equivalently, M is an extending module if every closed submodule is a direct summand. As a generalization of extending modules, Asgari [4] introduced the concept of t-extending module, where a module M is t-extending if every t-closed submodule is a direct summand. Equivalently, M is t-extending if every submodule of M is t-essential in a direct summand. The notion of a strongly extending module is introduced in another study [7], which is a subclass of the class of extending module, where an R-module is called strongly extending if every stable submodule of M is essential in a fully invariant direct summand of M, and a submodule N of M is called fully invariant if for each $f \in End(M)$, $f(N) \leq N$ [8]. A submodule N of an R-module M is called stable if for each R-homomorphism $f: N \rightarrow M, f(N) \leq N$ [9]. It is clear that every stable submodule is fully invariant but not conversely. An R-module M is fully stable if every submodule of M is stable [9]. An R-module M is called strongly t-extending if every submodule of M is t-essential in a stable direct summand. Equivalently, M is strongly t-extending if every t-closed submodule is a fully invariant direct summand [10]. Saad [7] introduced the stable extending (S-extending) modules as a generalization of FI-extending modules. An R-module M is called stable extending (S-extending) if every stable submodule of M is essential in a direct summand of M. A ring R is left (right) S-extending if R is S-extending left (right) R-module and M is called FI-extending if every fully invariant submodule of M is essential in a direct summand of M [11].

In this paper, we introduce the concepts of t-stable extending and strongly t-stable extending modules. The class of t-stable extending modules contains the class of stable extending, and the class of strongly t-stable contains the class of t-stable extending and it is contained in the class of strongly t-extending.

In section two we study t-stable extending modules and their relationships with other related modules. Among other results in this section, we prove that an R-module M is a t-stable-extending R-module if and only if for each stable submodule A of M, there is a decomposition $M = M_1 \oplus M_2$ such that $A \leq M_1$ and $A + M_2 \leq_{tes} M$. An R-module M is t-stable extending if and only if for each stable submodule K of M, there exist $e = e^2 \in End(E(M))$ such that $K \leq_{tes} e^2(E(M))$ and $e(M) \leq M$ where $E(M)$ is the injective hull of M. Let M be a stable injective relative to a stable submodule X. If M is t-stable extending, then so is X.

In section three, we study strongly t-stable extending modules. Many properties are given.

2. T-Stable-extending Modules

In this section we introduce the concept of t-stable extending modules which is a generalization of S-extending modules.

First we give the following definitions.

Definition 2.1: An R-module M is called t-stable extending if every stable submodule of M is t-essential in a direct summand. A ring R is called right t-stable extending if R is a right t-stable extending R-module.

Recall that an R-module is t-uniform if every submodule of M is t-essential in M [12]. As a generalization of t-uniform module, we present the following concept.

Definition 2.2: An R-module is called stable-t uniform if every stable submodule of M is t-essential in M.

Remarks and Examples 2.3:

1. It is clear that every S-extending module (or t-extending module) is t-stable extending, for example:
(i) For arbitrary Z-module M, $E(M)\oplus Z_2\oplus Z_8$ is t-extending [4], so it is t-stable extending. Also $Z_2\oplus Q$ as Z-module is S-extending, so it is t-stable extending.

Recall that an R-module M is called t-continuous if M satisfies the following: M is t-extending, and every submodule of M which contains $Z_2(M)$ and isomorphic to direct summand of M is itself a direct summand [3]. Hence, every t-continuous module is t-stable extending. Hence, we can give the following examples:

(I) By [6, Example 2.6(2)], Let R be a Z_2-torsion ring (e.g $R = \frac{Z}{p^2Z}$, for a prime number P) and set $T = (R_R, R_R, T, T_2)$. T_2 t-continuous T-module. It follows that T_2 is a t-stable extending module. However, T_2 is not stable extending. Hence T_2 is not stable extending.

(II) Let R be a ring and M be an R-module and $I \leq \text{ess} R$. The R-module $E(M)\oplus Z_2$ is t-continuous [6, Example 2.6(1)], so it is t-stable extending. In particular if $M = Z_p$ as Z-module. Then $Z_p\oplus \frac{Z}{<4>} \cong Z_p\oplus Z_4$ is t-stable.

(2) Let M be a nonsingular R-module. Then M is S-extending if and only if M is t-stable extending.

Proof: since M is non-singular, then the two concepts essential and t-essential coincide [5]. Hence the two concepts, S-extending and t-stable extending, are equivalent.

(3) If M is a singular module then M is t-stable extending.

Proof: since M is a singular module then $Z_2(M)=M$ and for every submodule N of $M, N+ Z_2 \cong N+M=MS_{\text{ess}} M$, hence $N \leq \text{tes} M$ by [5,Prop1.1]. But M is a direct summand of M, so every stable submodule of M is t-essential in a direct summand. Thus M is t-stable extending.

(4) Every FI-t-extending is t-stable-extending where M is FI-t-extending if every fully invariant is t-essential in a direct summand.

Proof: Let N be a stable submodule of M. Then N is fully invariant, hence N is t-essential in a direct summand.

(5) The converse of (4) holds if M is FI-quasi-injective, where an R-module M is called FI-quasi-injective if for each fully invariant submodule N of M, each R-homomorphism $f: N \rightarrow M$ can be extended to an R-endomorphism $g: M \rightarrow M$ [7].

Proof: Let N be a fully invariant submodule of M. By [7, Proposition 3.1.19] N is stable. Hence by t-stable extending property of M, N is t-essential in direct summand. Thus M is a FI-t-extending.

(6) t-stable extending module need not be extending, for example the Z-module $Z_6 \oplus Z_2$ is not extending but it is S-extending by [7, Remarks and Examples 3.1.3(3)] hence it is t-stable extending.

(7) Every stable t-uniform (hence every t-uniform) is t-stable extending.

Proof: Let N be a stable submodule of M. Hence $N \leq \text{tes} M$. But $M \leq \oplus M$, so N is t-essential in a direct summand.

Recall that an R-module M is called an S-indecomposable if (0), M are the only stable direct summand. M is S-extending and S-indecomposable if M is S-uniform. "An R-module M is called stable uniform (shortly, S-uniform) if every stable submodule of M is essential in $M"$ [7]. However we have:

Proposition 2.4: If M is t-stable extending and indecomposable, then M is stable t-uniform.

Proof: Let N be a stable submodule in M. Then $N \leq \text{tes} W$ for some $W \leq \oplus M$. Since M is indecomposable, $W = M$. Thus $N \leq \text{tes} M$ and so M is a t-stable uniform.

Note that a stable t-uniform module does not imply indecomposable, for example Z_6 as Z-module is stable t-uniform, but Z_6 is not indecomposable. Also, Z_6 is not S-indecomposable.

Proposition 2.5: Let M be an R-module. If M is t-stable extending, then every stable t-closed submodule is a direct summand and the converse holds if every t-closure of stable submodule is stable.

Proof: Let N be a stable t-closed submodule. Since M is t-stable extending, $N \leq \text{tes} W$ for some $W \leq \oplus M$. Hence $N = W \leq \oplus M$, since N is a t-closed. Now if N is a stable submodule of M, then $N \leq \text{tes} W$, where W is a t-closure of N [5, Lemma 2.3]. By hypothesis, W is stable, and so W is stable t-closed, which implies $W \leq \oplus M$. Thus N is t-essential in a direct summand and M is t-stable extending.
Proposition 2.6: Let M be an R-module which satisfies that the t-closure of any submodule is stable. Then M is t-stable extending if and only if M is t-extending.

Proof: Assume M is t-stable extending. Let K be a stable submodule of M. Then there exists $D \leq \operatorname{tes}M$ of M such that $K \leq \operatorname{tes}D$ and so there is $H \leq M$ such that $D = D \oplus H$. Hence $E(M) = E(D) \oplus E(H)$. Let $e : E(M) \to E(D)$ be the projection endomorphism from $E(M)$ onto $E(D)$. Clearly $e^2 = e$ (it is idempotent). Thus we have $e(M) \leq (D \oplus H)$. Also, $K \leq \operatorname{tes}D \leq \operatorname{ess}E(D)$ implies $K \leq \operatorname{tes}E(D) = e(E(M))$.

Let K be a stable submodule of M. By hypothesis, there exists $e \in \operatorname{End}(E(M))$, $e^2 = e$ such that $K \leq \operatorname{tes}e(E(M))$ and $e(M) \leq M$. Since $M \leq \operatorname{tes}M$, then $K \cap M \leq \operatorname{tes}e(E(M)) \cap M = e(M)$. It is easy to see that $e(E(M)) \cap M = e(M)$. Also, since $K \cap M = K$, hence $K \leq \operatorname{tes}e(M)$. But $e(M) \leq \operatorname{tes}M$ by Lemma 1.1.22, so K is t-essential in stable direct summand. Thus M is t-stable extending.

Theorem 2.9: An R-module M is t-stable extending if and only if for each stable submodule A of M, there is a decomposition $M = M_1 \oplus M_2$ such that $A \leq M_1$ and $A + M_2 \leq M$.

Proof: Suppose M is t-stable extending. Let A be a stable submodule of M. Then $A \leq \operatorname{tes}M_1 \leq \operatorname{tes}M$, hence $M_1 \oplus M_2 = M$ for some $M_2 \leq M$. It follows that $A \oplus M_2 \leq \operatorname{tes}M_1 \oplus M_2 = M$ (since $A \leq \operatorname{tes}M_1$ and $M_2 \leq \operatorname{tes}M_2$ [5, Corollary 1.3]).

Let A be a stable submodule of M. By hypothesis, there is a decomposition $M = M_1 \oplus M_2$ with $A \leq M_1$ and $A + M_2 \leq M = M_1 \oplus M_2$. It follows that $A \leq \operatorname{tes}M_1$ by [5, Corollary 1.3]. Thus $A \leq \operatorname{tes}M_1 \leq \operatorname{tes}M$. Therefore M is t-stable extending.

The following are another characterization of t-stable extending modules.

Theorem 2.10: An R-module M is t-stable extending if and only if each stable submodule K of M, there exists $e = e^2 \in \operatorname{End}(E(M))$ such that $K \leq \operatorname{tes}e(E(M))$ and $e(M) \leq M$ where $E(M)$ is the injective hull of M.

Proof: Assume M is t-stable extending. Let K be a stable submodule of M. Then there exists $D \leq \operatorname{tes}M$ of M such that $K \leq \operatorname{tes}D$ and so there is $H \leq M$ such that $D = D \oplus H$. Hence $E(M) = E(D) \oplus E(H)$. Let $e : E(M) \to E(D)$ be the projection endomorphism from $E(M)$ onto $E(D)$. Clearly $e^2 = e$ (it is idempotent). Thus we have $e(M) \leq (D \oplus H)$. Also, $K \leq \operatorname{tes}D \leq \operatorname{ess}E(D)$ implies $K \leq \operatorname{tes}E(D) = e(E(M))$.

Let K be a stable submodule of M. By hypothesis, there exists $e \in \operatorname{End}(E(M))$, $e^2 = e$ such that $K \leq \operatorname{tes}e(E(M))$ and $e(M) \leq M$. Since $M \leq \operatorname{tes}M$, then $K \cap M \leq \operatorname{tes}e(E(M)) \cap M = e(M)$. It is easy to see that $e(E(M)) \cap M = e(M)$. Also, since $K \cap M = K$, hence $K \leq \operatorname{tes}e(M)$. But $e(M) \leq \operatorname{tes}M$ by Lemma 1.1.22, so K is t-essential in stable direct summand. Thus M is t-stable extending.

Lemma 2.11: Let $M = \bigoplus_{i \in I} M_i$. Let N be a stable submodule of M. Then $N = \bigoplus_{i \in I} (N \cap M_i)$ where $N \cap M_i$ is stable in M_i, $\forall i \in I$.

Corollary 2.7: Let M be a fully stable R-module. Then the following statements are equivalent:
1. M is a t-stable extending module;
2. M is a t-extending module;
3. M is a strongly t-extending module.

Proof: Since M is a fully stable R-module, and the t-closure of any submodule of M is stable. Then (1) \implies (2) follows by Proposition 2.6.

(1)\implies (3) Let $N \leq M$. Since M is fully stable, then N is stable. Hence N is t-essential in a direct summand W. But W is stable in M. Then N is t-essential in a stable direct summand and so M is strongly t-extending.

(3)\implies (2) obvious.

Proposition 2.8: Let M be an R-module that satisfies that the t-closure of any submodule is stable. Then the following statements are equivalent:
1. M is a t-stable extending module;
2. Every stable t-closed submodule of M is a direct summand;
3. Every stable submodule is t-essential in stable direct summand.

Proof: (1)\implies (2) Let N be a stable t-closed submodule. Condition (1) implies N is t-essential in a direct summand W. Hence $N = W \leq M$ since N is a t-closed.

(2)\implies (3) Let N be a stable submodule in M. Then N has a t-closure W; such that $N \leq \operatorname{tes}W$ and W is a t-closed. But W is stable by hypothesis, so that W is t-closed stable. Then by condition (2) $W \leq M$ and hence N is t-essential in a stable direct summand.

(3)\implies (1) clear.

The following are characterizations of the t-stable extending modules.
Proof: Let \(W \) be a stable submodule. Then \(W = \bigoplus_{i \in I} (W \cap M_i) \) by [9, Proposition 4.5] we claim that \(N \cap M_i \) is stable in \(M_i \) for each \(i \in I \). To prove this, let \(g: W \cap M_i \rightarrow M_i \) be any \(R \)-homomorphism. Then \(g(W \cap M_i) \subseteq M_i \). Consider the following \(W = \bigoplus_{i \in I} (W \cap M_i) \subseteq W \cap M_i \), where \(\rho \) is the natural projection and \(i \) is the inclusion mapping. Then \((i \circ g \circ \rho)(W) \subseteq W \) (since \(W \) is stable in \(M \)). But \((i \circ g \circ \rho)(W) = i \circ g(W \cap M_i) = (g(W \cap M_i) = g(W \cap M_i) \subseteq M_i \). Thus \((W \cap M_i)(W) \subseteq W \). From above \(g(W \cap M_i) \subseteq M_i \), so we get \(g(W \cap M_i) \subseteq W \cap M_i \) and \(W \cap M_i \) is a stable submodule of \(M_i \), for each \(i \in I \).

Theorem 2.12: A direct sum of \(t \)-stable extending modules is \(t \)-stable extending.

Proof: Suppose that \(M = \bigoplus_{i \in I} M_i \), \(M_i \) is \(t \)-stable extending for each \(i \in I \). Let \(W \) be a stable submodule of \(M \). Then \(W = \bigoplus_{i \in I} (W \cap M_i) \) and \(W \cap M_i \) is stable in \(M_i \) for each \(i \in I \) by Lemma 2.11 and so by the \(t \)-stable extending property of \(M_i \), \(W \cap M_i \) is \(t \)-essential in a direct summand \(N_i \) of \(M_i \) for each \(i \in I \). Then \(\bigoplus_{i \in I} (W \cap M_i) \leq_{\text{tes}} \bigoplus_{i \in I} N_i \) by [5, Corollary 1.3]. Put \(N = \bigoplus_{i \in I} N_i \), so \(N \leq_{\Theta} M \). Thus \(N \leq_{\text{tes}} N \leq_{\Theta} M \) and \(\square \) is \(t \)-stable extending.

Note that any direct sum of extending is \(S \)-extending [7, Corollary 3.2.2], hence by Remarks and Examples 2.4(2), it is \(t \)-stable extending.

By applying Theorem 2.12, each of \(Z_p \otimes Z, Z_p \otimes Z \) (for each prime number \(P \)) \(Z \otimes Z, Z \otimes Z, Z \otimes Z \) ... as \(Z \)-module is \(t \)-stable extending. Not that \(Z_p \otimes Z \) and \(Z \otimes Z \) are not extending. Note that by [7, Corollary 3.2.4] every finitely generated \(Z \)-module is \(S \)-extending, hence it is \(t \)-stable extending.

Proposition 2.13: Let \(M \) be an \(R \)-module which satisfies that the \(t \)-closure of any submodule is stable. If \(M \) is \(t \)-stable extending, then every \(t \)-essential summand is \(t \)-stable extending.

Proof: Let \(N \leq_{\Theta} M \). Since \(M \) is \(t \)-stable extending, then \(M \) is \(t \)-extending by Proposition 2.6. Hence \(N \) is \(t \)-extending by [4, Proposition 2.14(1)]. It follows that \(N \) is \(F \)-extending and hence by Remarks and Examples 2.3(3), \(N \) is \(t \)-stable extending.

Corollary 2.14: Let \(M \) be a fully stable \(R \)-module. If \(M \) is \(t \)-stable extending, then every \(t \)-essential summand is \(t \)-stable extending.

Recall that an \(R \)-module \(M \) has the summand intersection property (SIP) if the intersection of two direct summands of \(M \) is a direct summand [13]. Since \(S \)-extending and \(t \)-stable extending are equivalent in the class of nonsingular modules, thus we have every direct summand of \(t \)-stable extending module \(M \) (where \(M \) is nonsingular with SIP) is \(t \)-stable extending module. Also, we have by [2, Corollary 3.2.7, Corollary 3.2.8 and Corollary 3.2.9] the following:

1. Let \(M \) be a nonsingular \(SS \)-module (that is every direct summand is stable). If \(M \) is \(t \)-stable extending, then every \(t \)-essential summand is \(t \)-stable extending.

2. Every direct summand right ideal of a nonsingular \(t \)-stable extending commutative ring is \(t \)-stable extending.

3. Every direct summand of nonsingular cyclic \(Z \)-module is \(t \)-stable extending.

An \(R \)-module \(M \) is called stable-injective relative to \(X \) (simply, \(S \)-X-injective) if for each stable submodule \(A \) of \(X \), each \(R \)-homomorphism \(f: A \rightarrow M \) can be extended to an \(R \)-homomorphism \(g: X \rightarrow M \).” [7, Definition 3.2.10].

By using the procedure of the proof of Theorem 2.14 [7], we have the following Lemma.

Lemma 2.15: Let \(M \) be a stable injective module relative to a stable submodule \(X \) of \(M \). If \(A \subseteq X \) such that \(A \) is a stable in \(X \), then \(A \) is stable in \(M \).

Proof: Let \(f \in Hom(A, M) \). Since \(M \) is stable injective relative to \(X \), there exists an \(R \)-homomorphism \(g: X \rightarrow M \) such that \(g \circ i = f \) where \(i \) is the inclusion mapping from \(A \) into \(X \). It follows that \(g(X) \subseteq X \), since \(X \) is stable in \(M \). So \(g \circ i(A) = g(A) \subseteq X \); that is \(g|_A : A \rightarrow X \). But \(A \) is stable in \(X \), so that \(g|_A (A) \subseteq A \). Thus \(f(A) \subseteq A \) and \(A \) is stable in \(M \).

Proposition 2.16: Let \(M \) be a stable injective relative to a stable submodule \(X \). If \(M \) is \(t \)-stable extending, then so is \(X \).

Proof: To prove \(X \) is \(t \)-stable. Let \(A \) be a stable submodule of \(X \). By Lemma 2.15, \(A \) is stable in \(M \). Since \(M \) is \(t \)-stable extending, there exists \(D \leq_{\Theta} M \) such that \(A \leq_{\text{tes}} D \) it follows that \(M = D \oplus D' \) for some \(D' \leq \Theta M \) and \(A = X \cap \leq_{\text{tes}} D \cap D' \leq_{\Theta} M \) by (5, Corollary 1.3).

3. Strongly \(t \)-stable extending modules
In this section, we extend the notion of t-stable extending modules into strongly t-stable extending modules. We study these classes of modules and their relations with some related concepts.

Definition 3.1: An R-module M is called strongly t-stable extending if each stable submodule N of M. N is t-essential in a stable direct summand.

Remarks and Examples 3.2:

(1) It is clear that every strongly t-stable extending is t-stable extending.

(2) Every strongly t-extending (hence every \mathbb{Z}_2- torsion) module is strongly t-stable extending. In particular, each of \mathbb{Z}-module $M = \mathbb{Z}_n \oplus \mathbb{Z}$ where n is a positive integer is strongly t-extending (see [10, Example 3.3]. Thus M is strongly t-stable extending.

(3) The converse of (2) is not true as the following example shows: Let M be the \mathbb{Z}-module $\mathbb{Z} \oplus \mathbb{Z}$. Let N be a stable submodule of M. Then $N = (\mathbb{Z} \cap \mathbb{Z}) \oplus (\mathbb{Z} \cap \mathbb{Z})$, where $\mathbb{Z} \cap \mathbb{Z}$ is stable in \mathbb{Z} by Lemma 2.11. Since the only stable submodules of \mathbb{Z} are \mathbb{Z}, (0), then $N = \mathbb{Z} \oplus \mathbb{Z}$ or $N = (0) \oplus (0)$ and hence $N \leq_{tes} N \leq^{\oplus} M$. Thus M is a strongly t-stable extending module. On the other hand, $N = \mathbb{Z} \oplus (0)$ is t-closed(closed) and N is not a fully invariant direct summand, since there exists $f: M \mapsto M$, such that $f(x, y) = (y, x)$ for each $(x, y) \in M$ and so $f(N) = f(\mathbb{Z} \oplus (0)) = (0) \oplus \mathbb{Z} \not\leq N$.

(4) Recall that an R-module M is called weak duo if every direct summand is fully invariant [14]. Let M be a week duo. Then M is strongly t-stable extending if and only if M is a t-stable extending module.

Proof: \Rightarrow It follows by (1)

\Leftarrow Let N be a stable submodule of M. Then $N \leq_{tes} W \leq^{\oplus} M$. Since M is weak duo, W is a fully invariant in M and then by [7, Lemma 2.1.6] W is stable. Thus M is strongly t-stable extending.

(5) Let M be a fully stable module. Then the following are equivalent:

(1) M is t-stable extending;

(2) M is t-extending;

(3) M is strongly t-stable extending;

(4) M is strongly t-extending;

(6) Every stable t-uniform module is strongly t-stable extending.

(7) If M is S-indecomposable and M is strongly t-stable extending, then M is a stable t-uniform.

Proof: Let N be a stable submodule of M. Since M is strongly t-stable extending, $N \leq_{tes} W \leq^{\oplus} M$. W is a fully invariant in M. Then by [7, Lemma 2.1.6], W is stable in M, but W is S-indecomposable, so $W = M$. Thus $N \leq_{tes} M$ and M is a stable t-uniform.

(8) If M is S-uniform, then M is strongly t-stable extending and M is S-indecomposable.

(9) Let M be an indecomposable module. Then M is strongly t-stable extending if and only if M is t-stable extending.

(10) If M is a FI-t-extending, then M is strongly t-stable extending. The converse holds if M is FI-quasi injective.

Proof: Let N be a stable submodule of M. Then N is fully invariant, hence by [11, Theorem 2.2 (1) \Rightarrow (7)] N is t-essential in a fully invariant direct summand, say W. By [7, Lemma 2.1.6] W is stable. Thus M is strongly t-stable extending.

Proposition 3.3: Let M be an R-module which satisfies that the t-closure of any submodule is equivalent. Then the following statements are equivalent:

(1) M is strongly t-stable extending;

(2) M is t-stable extending;

(3) M is t-extending;

(4) Every stable t-closed is a direct summand;

(5) M is strongly t-extending.

Proof: (1) \Rightarrow (2) Let N be a stable submodule of N. Then by definition of strongly t-stable extending, N is a t-essential in a fully invariant direct summand. Thus M is t-stable extending.

(3) \Rightarrow (4) Since M is t-extending, every t-closed is a direct summand, so it is clear that every stable t-closed is a direct summand.

(2) \Leftrightarrow (4) It follows by Proposition 2.8.

(2) \Leftrightarrow (3) It follows by Proposition 2.6.
(4) ⇒ (1) Let \(N \) be a stable submodule of \(M \). Then there exists a t-closure of \(N \) say \(W \) such that \(N \subseteq_{t\text{-}\text{ess}} W \). By hypothesis, \(W \) is stable t-closed of \(M \), hence \(W \subseteq \oplus M \). Thus \(M \) is strongly t-stable extending.

(5) ⇒ (1) It follows by Remarks and Examples 3.2(2).

(1) ⇒ (5) Let \(N \) be a t-closure of \(M \). Hence \(N \) is a t-closure of \(N \) and so by hypothesis \(N \) is stable. Since \(M \) is strongly t-stable extending, \(N \subseteq_{t\text{-}\text{ess}} W \) for some stable direct summand \(W \). It follows that \(N = W \), since \(N \) is t-closed. Thus \(N \) is a stable direct summand and \(M \) is strongly t-extending.

Recall that an \(R \)-module \(M \) is a multiplication module if for each \(N \leq M \), there exists an ideal \(I \) of \(R \) such that \(N = MI \) [15].

Proposition 3.4: Let \(M \) be a multiplication t-extending. Then \(M \) is strongly t-stable extending.

Proof: Let \(N \) be a stable submodule of \(M \). Since \(M \) is t-stable extending, then there exists \(H \leq \oplus M \) such that \(N \subseteq_{t\text{-}\text{ess}} H \leq \oplus M \). But \(M \) is a multiplication module implies \(H \) is a fully invariant submodule of \(M \) and so by [7, Lemma 2.1.6], \(H \) is stable. Thus \(M \) is t-essential in stable direct summand of \(M \). Therefore, \(M \) is strongly t-stable extending.

Corollary 3.5: Every cyclic t-stable extending module over a commutative ring is strongly t-stable extending.

Corollary 3.6: Every commutative t-stable extending ring is strongly t-stable extending.

The following is a characterization of strongly t-stable extending modules.

Theorem 3.7: Let \(M \) be an \(R \)-module. \(M \) is strongly t-stable extending if for each stable submodule \(A \) of \(M \), there is a decomposition \(M = M_1 \oplus M_2 \) such that \(A \leq M_1 \) and \(M_1 \) is a stable submodule of \(M \) and \(A + M_2 \leq_{t\text{-}\text{ess}} M \).

Proof: Let \(A \) be a stable submodule of \(M \). Since \(M \) is strongly t-stable extending, \(A \leq_{t\text{-}\text{ess}} M_1 \leq \oplus M \) and \(M_1 \) is stable in \(M \). Hence \(M = M_1 \oplus M_2 \) for some \(M_2 \leq M \). Since \(A \leq_{t\text{-}\text{ess}} M_1 \leq M_2 \leq_{t\text{-}\text{ess}} M_2 \), then \(A + M_2 \leq_{t\text{-}\text{ess}} M \), by [5, Corollary 1.3].

\(\Leftarrow \) Let \(A \) be a stable submodule of \(M \). By hypothesis, there is a decomposition \(M = M_1 \oplus M_2 \) such that \(A \leq M_1 \), \(M_1 \) is stable in \(M \) and \(A + M_2 \leq_{t\text{-}\text{ess}} M \). Since \(A + M_2 = A \oplus M_2 \leq_{t\text{-}\text{ess}} M = M_1 \oplus M_2 \), then \(A \leq_{t\text{-}\text{ess}} M_1 \). But \(M_1 \) is a stable direct summand of \(M \). Thus \(M \) is strongly t-stable extending.

Theorem 3.8: Let \(M = M_1 \oplus M_2 \), where \(M_1 \) and \(M_2 \) are \(R \)-module, such that \(M \) is an abelian module \((\text{ann}M_1 \oplus \text{ann}M_2 = R)\). If \(M_1 \) and \(M_2 \) are strongly t-stable extending, then \(\square = \square_1 \oplus \square_2 \) is strongly t-stable extending.

Proof: Let \(N \) be a stable submodule of \(M \). By Lemma 2.11, \(N = (N \cap M_1) \oplus (N \cap M_2) \) where \(N \cap M_1 \) is stable in \(M_1 \), \(N \cap M_2 \) is stable in \(M_2 \). Put \(N_1 = (N \cap M_1), N_2 = (N \cap M_2) \). Since \(M_1 \) and \(M_2 \) are strongly t-stable extending, there exist \(W_1 \leq \oplus M_1, W_2 \leq \oplus M_2 \) and \(W_i \) is stable in \(M_i \) for \(i = 1, 2 \) and \(N_i \leq_{t\text{-}\text{ess}} W_i \). It follows that \(N_1 \oplus N_2 \leq_{t\text{-}\text{ess}} W_1 \oplus W_2 \) by [5, Corollary 1.3]. Since \(W_1 \leq \oplus M_1, W_2 \leq \oplus M_2 \), then \(W_1 \oplus W_2 \leq \oplus M \). On other hand, \(M \) is abelian (or \(\text{ann}M_1 \oplus \text{ann}M_2 = R \)) implies \(\text{Hom}(M_1, M_2) = 0 \), \(\text{Hom}(M_2, M_1) = 0 \), by [14, Theorem 4.6]. Hence \(\text{End}(M) \cong \left(\begin{array}{cc} \text{End}(M_1) & 0 \\ \text{Hom}(M_1, M_2) & \text{End}(M_2) \end{array} \right) \bigoplus \left(\begin{array}{cc} 0 & \text{End}(M_2) \\ \text{Hom}(M_2, M_1) & 0 \end{array} \right) \). Hence for each \(f \in \text{End}(M) \), \(f = \left(\begin{array}{c} f_1 \\ 0 \end{array} \right), f_1 \in \text{End}(M_1) \), \(f_2 \in \text{End}(M_2) \) and \(f(W_1 \oplus W_2) = f(W_1) \oplus f(W_2) \). But \(W_1 \) and \(W_2 \) are stable in \(M_1 \), \(M_2 \) respectively and so that \(f(W_1) \subseteq W_1, f(W_2) \subseteq W_2 \). Thus \(f(W_1 \oplus W_2) \subseteq W_1 \oplus W_2 \), hence \(W_1 \oplus W_2 \) is a fully invariant in \(M \), \(W_1 \oplus W_2 \leq \oplus M \), then [2, Lemma 2.1.6] \(W_1 \oplus W_2 \) is stable in \(M \).

Now we ask the following: Is the property of being strongly t-stable extending inherit to a submodule?

Definition 3.9: An \(R \)-module \(M \) is said to be stable-injective if \(M \) is stable-injective to \(N(M) = S-N \)-injective, where \(N \) is any \(R \)-module.

Theorem 3.10: Let \(M \) be a stable-injective \(R \)-module. If \(M \) is strongly t-stable extending, then every stable submodule of \(M \) is strongly t-stable extending.

Proof: Let \(X \) be a stable submodule of \(M \). To prove \(X \) is strongly t-stable extending, let \(A \) be a stable submodule of \(X \). Since \(M \) is stable-injective, then \(M \) stable-injective relative to \(X \) and hence by Lemma 2.15, \(A \) is strongly t-stable extending and \(A \) is stable in \(M \) imply there
exists a stable direct summand D such that $A \leq_{\text{tes}} D \leq^{\oplus} M$. Thus $M = D \oplus D'$ for some $D' \leq M$.

Since X is stable in X, $X = (X \cap D) \oplus (X \cap D')$ where $X \cap D$ is stable of D, $X \cap D'$ is stable of D' by Lemma 2.11. Now $A \leq_{\text{tes}} D$ implies $A = X \cap A \leq_{\text{tes}} X \cap D$ by [3, Corollary 1.3]. But $(X \cap D) \leq^{\oplus} X$, so that $A \leq_{\text{tes}} X \cap A \leq^{\oplus} X$. We claim that $X \cap D$ is stable in X. Since $X \cap D$ is stable of $X \cap D$ and $X \cap D'$ is stable in M, then $X \cap D$ is stable of M by Lemma 2.15. But $X \cap D$ is stable in M and $X \cap D \subseteq X$ imply $X \cap D$ is stable in X.

Proposition 3.11: Let M be an R-module which satisfies that the t-closure of any submodule is stable. If M is strongly t-stable extending, then every direct summand is strongly t-stable extending.

Proof: Let $W \leq^{\oplus} M$. Since M satisfies that the t-closure of any submodule is stable, then by (Proposition 3.3) M is strongly t-extending and so by [8, Theorem 3.5] W is strongly t-extending. Thus by Remarks and Examples 3.2(2), W is strongly t-stable extending.

Corollary 3.12: Let M be a fully stable R-module. If M is strongly t-stable extending, then every direct summand is strongly t-stable extending.

References

1. Goodearl K.R. 1976. "Ring Theory, Non Singular Rings and Modules", Marcel Dekker, Inc. New York and Basel.
2. Lam, T. Y. 1998. "Lectures on Modules and Rings". Graduate Texts in Mathematics, Vol. 189, Springer-Verlag, New York/Berlin.
3. Asgari, Sh. 2017. "T-continuous modules". *Comm. Algebra*, 45(5)(2017): 1941-1952.
4. Asgari, Sh., Haghany, A. 2011. "t-Extending modules and t-Baer modules", *Comm. Algebra*, 39: 1605-1623.
5. Asgari, Sh. Haghany A. and Rezaei A. R. 2014. "Modules Whose t-closed submodules have a summand as a complement". *Comm. Algebra*, 42: 5299–5318.
6. Dung, N. V., Huynh, D. V., Smith, P. F. and Wisbauer, R. 1994. "Extending Modules". Pitman Research Notes in Mathematics 313, Longman, Harlow.
7. Al-Saadi, A. S. 2007. "S-Extending modules and related Concepts". Ph.D. Thesis, College of Science, Al-Mustansiriyah University.
8. Wisbauer R. 1991. "Foundations of Modules and Rings theory", reading: Gordon and Breach.
9. Abbas, M.S. 1991. "On Fully Stable Modules", Ph.D. Thesis, College of Science, University of Baghdad.
10. Ebrahimi S., Dolati Pish Hesari and Khoramdel, M. 2016. "strongly t-extending and strongly t-Baer". *International Electronic Journal of Algebra*, 20: 86-98.
11. Asgari, Sh., Haghany, A. 2012. "Generalizations of t-extending modules relative to fully invariant submodules". *J. Korean Math. Soc.*, 49(2012): 503–514.
12. El-Bast, Z.A., Smith, P.F. 1988. "Multiplication modules". *Comm. Algebra*, 16(1988): 755–779.
13. El-Bast, Z.A., Smith, P.F. 1988. "Multiplication modules". *Comm. Algebra*, 16(1988): 755–779.
14. Rizvi S.T., Roman C.S. 2007. "On K-nonsingular Modules and application." *Comm. In Algebra*, 35: 2960-2982.
15. Shyaa D. 2018. "A Study of Modules Related With t-Semisimple Modules", Ph.D., College of Education Ibn AL-Haitham, University of Baghdad.