Hexian Wang*, Qiang Fan, Longlong Zhang, Danli Shi, Haibo Wang, Shoulian Wang, Bangjian Bian

Folate-targeted PTEN/AKT/P53 signaling pathway promotes apoptosis in breast cancer cells

https://doi.org/10.1515/pteridines-2020-0020
received June 14, 2019; accepted October 25, 2019.

Abstract: Objective Folate deficiency is closely related to the occurrence of human tumors and plays an important role in cell growth, differentiation, repair, and host defense. We studied the effects of folic acid on the apoptosis of breast cancer cells (MDA-MB-231) and on the activity of the PTEN/AKT/P53 signaling pathway in breast cancer cells.

Methods Breast cancer cells (MDA-MB-231) were treated with folate alone or in combination with a PTEN specific inhibitor, SF1670. Cell viability was detected by a MTT assay, and the expression levels of apoptosis-related proteins and PTEN/AKT/P53 signaling pathway were detected via Western blot analysis. Rate of apoptosis was measured via cytometry.

Results Folic acid inhibited the cell viability of MDA-MB-231 cells and the expressions of Bcl-2 and p-AKT proteins and upregulated the expression of Bax, PTEN, and P53 proteins, thereby inducing apoptosis in these cells. SF1670 treatment inhibited the expressions of Bcl-2 and p-AKT protein and upregulated Bax, PTEN, and P53 protein expression.

Conclusion Folic acid has cytotoxic effects on MDA-MB-231 cells and can induce apoptosis by targeting the PTEN/AKT/P53 signaling pathway.

Keywords: folic acid; breast cancer cell; apoptosis; PTEN; AKT/P53 signaling pathway.
consists of nine exons, which encodes a protein consisting of 403 amino acids with phosphatase activity; it is a tumor suppressor that is needed for maintaining normal cell survival [16-18]. As a tumor suppressor gene, PTEN plays a key role in the regulation of the tyrosine kinase receptor (RTK)/phosphatidylinositol-3-kinase (PI3K)/protein kinase B (PKB, also known as Akt) signaling pathway. The PI3K/Akt signaling pathway is over-activated in many types of human cancers, and the targeted regulatory factors of this pathway have enormous potential value. Cytoplasmic PTEN may be involved in the regulation of PI3K/Akt signaling pathway activation and inhibition of tumorigenesis. In 2019, studies have reported that the PTEN/Akt/P53 signaling pathway plays a key regulatory role in the proliferation of breast cancer cells [19, 20]. In this study MDA-MB-231 cells were treated with folic acid to analyze the inhibitory effect of folic acid on PTEN/AKT/P53 signaling pathway in breast cancer cell apoptosis.

Materials and methods

Main reagents and instruments

DMEM medium (Corning, USA); fetal bovine serum, double antibody, trypsin, DPBS (Gibco, USA); SF1670 (Abcam, USA); total protein extraction kit, protein concentration determination kit, ECL luminescence kit (Jiangsu Kaiji Biotechnology Co., Ltd.); BCL-2, BAX, PTEN, p-AKT, AKT, P53, β-actin primary antibody, secondary antibody against rabbit, secondary antibody against mouse (American R&D Systems); Death kit, MTT cell proliferation and cytotoxicity kit, cell cycle and apoptosis detection kit (Shanghai Biyuntian); CO\textsubscript{2}, constant temperature incubator, real-time PCR instrument, microplate reader (American Thermo); and protein Electrophoresis instrument, film transfer instrument (Bio-Rad, USA).

Cell processing

For the folic acid concentration gradient treatment, MDA-MB-231 cells were treated with folic acid at concentrations of 0, 1, 5, 10, and 20 μM for 24 h.

For the PTEN inhibitor (SF1670) combined with folic acid treatment, MDA-MB-231 cells were uniformly seeded into a six-well plate, cultured for 8–12 h overnight, pre-treated with 1 μM SF1670 for 2 h, and supplemented with 20 μM folic acid in the culture solution for 24 h.

Flow cytometry detection

MDA-MB-231 cells in logarithmic growth phase were uniformly seeded into six-well plates. After cell confluence to 80%, the cells were treated with 0, 1, 5, 10, and 20 μM folic acid for 24 h. Following the instructions, Annexin V and PI were added to the solution, mixed, and incubated for 15 min at room temperature in the dark. Flow cytometry was used to detect the rate of , and the percentage of apoptosis was analyzed using the Flowjo software.

Western Blot test

The treated cells were washed with pre-cooled PBS, and the processed samples were lysed using the protein collection system. Equal amounts of proteins were separated via 12% SDS-PAGE and then transferred to the PVDF membrane by using the wet transfer method. A 5% skim milk powder was used for blocking at room temperature for 1 h. The primary antibody was incubated at 4 °C overnight. TBST was used for cleaning every 10 min in three parallel treatments. The secondary antibody was incubated for 1 h at room temperature, washed thrice with TBST, and then developed.

Cell proliferation assay

MDA-MB-231 cells in logarithmic growth phase were inoculated into 96-well plates at 2×104 per well. The final concentrations of folic acid were 0, 1, 5, 10, and 20 μM. Three replicate measurements were obtained. Subsequent proliferation assays were performed according to the MTT instructions.
Data analysis was performed using the GraphPad Prism 5.0 software, and multiple statistical analysis was performed using two-tailed unpaired t-test and Tukey post-test. P < 0.05 was considered significant.

Results and analysis

Effects of folic acid treatment on the activity and apoptosis of MDA-MB-231 breast cancer cell

MDA-MB-231 breast cancer cells were treated with 0, 1, 5, 10, and 20 μM folic acid for 24 h. The results of MTT assay showed that folic acid had an inhibitory effect on the cell viability of MDA-MB-231 cells, and the inhibitory effect increased with increasing folic acid concentration (P<0.05) (Fig.1 A). The expression levels of apoptosis-related proteins BCL-2 and BAX were detected via Western blot analysis. The expression of BCL-2 protein in MDA-MB-231 cells decreased with increasing folic acid concentration, whereas the expression level of Bax protein increased in a concentration gradient (Fig.1 B-D). The rate of apoptosis was detected via flow cytometry. The rate of apoptosis of cells increased with increasing folic acid concentration (Table 1).

Table 1: The apoptosis rate of cells increased with the increase of folic acid concentration.

Group	N	Apoptotic rate
0 μM	3	2.36±0.1075
1 μM	3	11.56±0.397*
5 μM	3	20.99±1.444**
10 μM	3	30.67±2.032**
20 μM	3	37.98±1.563**

Effect of folic acid treatment on PTEN/Akt/P53 signaling pathway in breast cancer cells

MDA-MB-231 breast cancer cells were treated with 0, 1, 5, 10, and 20 μM folic acid for 24 h. Western blot analysis results show that folic acid can significantly upregulate the PTEN and P53 in MDA-MB-231 breast cancer cells and inhibit the phosphorylation level of AKT (Fig. 2 A-D).
Effect of folic acid combined with PTEN inhibitor (SF1670) on the apoptosis of breast cancer cells

To confirm the role of PTEN in folate-induced apoptosis of MDA-MB-231 breast cancer cells, we pretreated MDA-MB-231 cells with 1 μM PTEN inhibitor (SF1670) for 2 h, followed by 20 μM folic acid for 24 h. The expression of apoptosis-related protein BCL-2 and BAX was detected via Western analysis. The pretreatment of PTEN inhibitor (SF1670) reversed the inhibitory effect of folic acid on BCL-2 protein expression in MDA-MB-231 cells and the upregulation effect of BAX protein expression levels. Hence, the downregulation of PTEN expression significantly inhibited folate-induced apoptosis in breast cancer cells MDA-MB-231 (Fig. 3 A-C).

Effects of folic acid combined with PTEN inhibitor (SF1670) on PTEN/Akt/P53 signaling pathway in breast cancer cells

Over-activation of the PI3K/Akt signaling pathway is widespread in human cancer types, and is regulated by cytoplasmic. To confirm the role of PTEN/Akt/P53 in folate-induced apoptosis of breast cancer cells, MDA-MB-231 cells were pretreated with 1 μM PTEN inhibitor (SF1670) for 2 h. Folic acid was added to the culture medium for 24 h. The expression levels of PTEN, p-AKT, AKT, and P53 were detected via Western blot analysis. The PTEN inhibitor (SF1670) reversed the upregulation of PTEN and P53 in MDA-MB-231 cells and the downregulation of p-AKT expression levels by folic acid. Hence, the PTEN/Akt/P53 signaling pathway is involved in folate-induced apoptosis in breast cancer cells (Fig. 4 A-D).

Discussion

Breast cancer is the “first killer” that has threatened the health of women around the world. In recent years, it has occurred in young people and is the number one cause of death in women in Western developed countries [21]. The cause of breast cancer is very complicated. The abnormal expression of oncogenes or tumor suppressor genes is closely related to the occurrence and development of breast cancer. Therefore, the search for new and effective molecular markers or targets is essential for the diagnosis and treatment of breast cancer [22]. Folic acid, also known as pteroyl glutamic acid, consists of three parts,
namely, acridine nucleus, \(p \)-aminobenzoic acid, and glutamic acid. Mammals can only absorb exogenous folic acid through the gut and cannot synthesize folic acid by themselves [23]. Epidemiological investigations have shown that the lack of folic acid can lead to the occurrence of human tumors, such as breast, ovarian, colorectal, and pancreatic cancer. [24-29].

In 1972, Kerr and Wyllie proposed the concept of apoptosis, which is an active process involving the activation, expression, and regulation of a range of genes. Apoptosis is not a phenomenon of autologous injury under pathological conditions, but a death process that is actively sought for enhanced adaptation to the living environment; hence, it is also called programmed cell death (PCD).

Figure 3: SF1670 inhibits the up-regulated expression of Bax and down-regulated expression of Bcl-2 by folic acid in MDA-MB-231 cells. After pre-treatment of MDA-MB-231 cells with 1 \(\mu \)M SF1670 for 2 h, the cells were supplemented with 20 \(\mu \)M folic acid for 24 h, and the protein expression levels of Bcl-2 and Bax were detected by Western blot. \(\beta \)-Actin was used as an internal control.

Figure 4: SF1670 inhibits the up-regulated expression of PTEN and P53, and down-regulated expression of p-AKT by folic acid in MDA-MB-231 cells. After pretreatment of MDA-MB-231 cells with 1 \(\mu \)M SF1670 for 2 h, 20 \(\mu \)M folic acid was added to the culture medium for 24 h. The protein expression levels of PTEN, p-AKT, AKT and P53 were detected by Western blot, and \(\beta \)-Actin was used as an internal control.
DE GRUYTER

Folate-targeted PTEN/AKT/P53 signaling pathway promotes apoptosis in breast cancer cells

Acknowledgement: None

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016 Jan-Feb;66(1):7–30.
2. Streb J, Glanowska I, Streb A, Szpor J, Kryka K, Potocki P, et al. The relationship between breast cancer treatment, tumour type and vitamin D level in pre- and postmenopausal women. Neuro Endocrinol Lett. 2017 Dec;38(6):437–40.
3. Lee HJ, Seo NJ, Jeong SJ, Park Y, Jung DB, Koh W, et al. Oral administration of penta-O-galloyl-β-D-glucose suppresses triple-negative breast cancer xenograft growth and metastasis in strong association with JAK1-STAT3 inhibition. Carcinogenesis. 2011 Jun;32(6):804–11.
4. Bhoi AK, Das SK, Majhi D, Sahu PK, Nijamudeen A, N A, et al. Analyte interactions with a new ditopic dansylamide-nitrobenzoxadiazole dyad: a combined photophysical, NMR, and theoretical (DFT) study. J Phys Chem B. 2014 Aug;118(33):9926–37.
5. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016 Mar-Apr;66(2):115–32.
6. Abunimer AN, Mohammed H, Cook KL, Soto-Pantoja DR, Campos MM, Abu-Asab MS. Mitochondrial autophagosomes as a mechanism of drug resistance in breast carcinoma. Ultrastruct Pathol. 2018 Mar-Apr;42(2):170–80.
7. Choi SW, Mason JB. Folate and carcinogenesis: an integrated scheme. J Nutr. 2000 Feb;130(2):129–32.
8. van Guelpen B. Folate in colorectal cancer, prostate cancer and cardiovascular disease. Scand J Clin Lab Invest. 2007;67(5):459–73.
9. King WD, Ho V, Dodds L, Perkins SL, Casson RI, Massey TE. Relationships among biomarkers of one-carbon metabolism. Mol Biol Rep. 2012 Jul;39(7):7805–12.
10. Duthie SJ. Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull. 1999;55(3):578–92.
11. de Batlle J, Ferrari A, Chajes V, Slimalani N, McKenzie F, et al. Dietary folate intake and breast cancer risk: european prospective investigation into cancer and nutrition. J Natl Cancer Inst. 2014 Dec;107(1):367.
12. Salmena L, Carracedo A, Pandolphi PP. Tenets of PTEN tumor suppression. Cell. 2008 May;133(3):403–14.
13. Raftopoulou M, Etienne-Manneville S, Self A, Nicholls S, Hall A. Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science. 2004 Feb;303(5661):1179–81.
14. Zhang M. PTEN in action: coordinating with p53 to regulate aspin gene expression. Cell Cycle. 2009 Apr;8(8):1112–3.
15. Li AG, Plusso LG, Cai X, Wei G, Sellers WR, Liu X. Mechanistic insights into maintenance of high p53 acetylation by PTEN. Mol Cell. 2006 Aug;23(4):575–87.
16. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997 Apr;15(4):356–62.
17. Manna D, Bhardwaj N, Vora MS, Stahelin RV, Lu H, Cho W. Differential roles of phosphatidylserine, PtdIns(4,5)P2, and...
PtdIns(3,4,5)P3 in plasma membrane targeting of C2 domains. Molecular dynamics simulation, membrane binding, and cell translocation studies of the PKCalpha C2 domain. J Biol Chem. 2008 Sep;283(38):26047–58.

18. Haddadi N, Lin Y, Travis G, Simpson AM, Nassif NT, McGowan EM. PTEN/PTENP1: ‘Regulating the regulator of RTK-dependent PI3K/Akt signalling’, new targets for cancer therapy. Mol Cancer. 2018 Feb;17(1):37.

19. Li N, Miao Y, Shan Y, Liu B, Li Y, Zhao L, et al. MiR-106b and mir-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer. Cell Death Dis. 2017 May;8(5):e2796.

20. Wan W, Hou Y, Wang K, Cheng Y, Pu X, Ye X. The LXR-623-induced long non-coding RNA LIN01125 suppresses the proliferation of breast cancer cells via PTEN/AKT/p53 signaling pathway. Cell Death Dis. 2019 Mar;10(3):248.

21. Candido NM, de Melo MT, Franchi LP, Primo FL, Tedesco AC, Rahal P, et al. Combining Photodynamic Therapy and Chemotherapy: Improving Breast Cancer Treatment with Nanotechnology. J Biomed Nanotechnol. 2018 May;14(5):994–1008.

22. Li Z, Qiu Y, Lu W, Jiang Y, Wang J. Immunotherapeutic interventions of Triple Negative Breast Cancer. J Transl Med. 2018 May;16(1):147.

23. Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood). 2004 Nov;229(10):988–95.

24. Cao DZ, Sun WH, Ou XL, Yu Q, Yu T, Zhang YZ, et al. Effects of folic acid on epithelial apoptosis and expression of Bcl-2 and p53 in premalignant gastric lesions. World J Gastroenterol. 2005 Mar;11(1):1571–6.

25. Nan H, Lee JE, Rimm EB, Fuchs CS, Giovannucci EL, Cho E. Prospective study of alcohol consumption and the risk of colorectal cancer before and after folic acid fortification in the United States. Ann Epidemiol. 2013 Sep;23(9):558–63.

26. Guariento AH, Furtado KS, de Conti A, Campos A, Purgatto E, Carrilho J, et al. Transcriptomic responses provide a new mechanistic basis for the chemopreventive effects of folic acid and tributyrin in rat liver carcinogenesis. Int J Cancer. 2014 Jul;135(1):7–18.

27. Dai WM, Yang B, Chu XY, Wang YQ, Zhao M, Chen L, et al. Association between folate intake, serum folate levels and the risk of lung cancer: a systematic review and meta-analysis. Chin Med J (Engl). 2013;126(10):1957–64.

28. Larsson SC, Giovannucci E, Wolk A. Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. Gastroenterology. 2006 Oct;131(4):1271–83.

29. Lin HL, An QZ, Wang QZ, Liu CX. Folate intake and pancreatic cancer risk: an overall and dose-response meta-analysis. Public Health. 2013 Jul;127(7):607–13.

30. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar;267(5203):1456–62.

31. Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16(6):2129–44.

32. Matsuura K, Canfield K, Feng W, Kurokawa M. Metabolic Regulation of Apoptosis in Cancer. Int Rev Cell Mol Biol. 2016;327:43–87.

33. LoRusso PM. Inhibition of the PI3K/AKT/mTOR Pathway in Solid Tumors. J Clin Oncol. 2016 Nov;34(31):3803–15.

34. Ngeow J, Sesok K, Eng C. Breast cancer risk and clinical implications for germline PTEN mutation carriers. Breast Cancer Res Treat. 2017 Aug;165(1):1–8.

35. Economopoulou P, Dimitriadi G, Psyrri A. Beyond BRCA: new hereditary breast cancer susceptibility genes. Cancer Treat Rev. 2015 Jan;41(1):1–8.

36. Ma H, Brosens LA, Offerhaus GJ, Giardiello FM, de Leng WW, Montgomery EA. Pathology and genetics of hereditary colorectal cancer. Pathology. 2018 Jan;50(1):49–59.

37. McLoughlin NM, Mueller C, Grossmann TN. The Therapeutic Potential of PTEN Modulation: Targeting Strategies from Gene to Protein. Cell Chem Biol. 2018 Jan;25(1):19–29.

38. Zhao C, Tao T, Yang L, Qin Q, Wang Y, Liu H, et al. Loss of PDZK1 expression activates PI3K/AKT signaling via PTEN phosphorylation in gastric cancer. Cancer Lett. 2019 Jul;453:107–21.

39. Chan WY, Cheung KK, Schorge JO, Huang LW, Welch WR, Bell DA, et al. Bcl-2 and p53 protein expression, apoptosis, and p53 mutation in human epithelial ovarian cancers. Am J Pathol. 2000 Feb;156(2):409–17.

40. Hu F, He Z, Sun C, Rong D. Knockdown of GRHL2 inhibited proliferation and induced apoptosis of colorectal cancer by suppressing the PI3K/Akt pathway. Gene. 2019 Jun;700:96–104.