Nesting-driven multipolar order in CeB₆ from photoemission tomography

A. Koitzsch¹, N. Heming¹, M. Knupfer¹, B. Büchner¹, P.Y. Portnichenko², A.V. Dukhnenko³, N.Y. Shitsevalova³, V.B. Filipov³, L.L. Lev⁴,⁵, V.N. Strocov⁴, J. Ollivier⁶ & D.S. Inosov²

Some heavy fermion materials show so-called hidden-order phases which are invisible to many characterization techniques and whose microscopic origin remained controversial for decades. Among such hidden-order compounds, CeB₆ is of model character due to its simple electronic configuration and crystal structure. Apart from more conventional antiferromagnetism, it shows an elusive phase at low temperatures, which is commonly associated with multipolar order. Here we show that this phase roots in a Fermi surface instability. This conclusion is based on a full 3D tomographic sampling of the electronic structure by angle-resolved photoemission and comparison with inelastic neutron scattering data. The hidden order is mediated by itinerant electrons. Our measurements will serve as a paradigm for the investigation of hidden-order phases in f-electron systems, but also generally for situations where the itinerant electrons drive orbital or spin order.
Hidden-order phases have been observed in a variety of compounds containing 4f and 5f elements, for example, URu2Si2 (ref. 1), NpO2 (ref. 2), skutterudites3 and YbRu2Ge2 (ref. 4). They are characterized by a rich low-temperature phase diagram and it is assumed that the multipolar moments of the f-electrons in their specific crystal field environment play a decisive role.

CeB6 is a heavy-fermion material showing a mass enhancement of the order of 100 (ref. 7), which is due to the hybridization of the localized f-electrons with the itinerant conduction electrons. Magnetism of heavy fermion materials is determined by the competition of Kondo screening and the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction, the former quenching the local moments and favouring paramagnetic behaviour, the latter promoting magnetic order mediated by the conduction electrons.8,9 In CeB6, the usual paramagnetic response is found before antiferromagnetic order with a double-Q state at \(T_N = 2.3\) K. However, the phase diagram is more complex: the antiferromagnetism is preceded by a famous hidden order state at \(T_Q = 3.2\) K, the so-called antiferroquadrupolar phase (AFQ), which has been explained by the ordering of quadrupole moments with \(Q_{AFQ} = (\pi, \pi, 0)\)10,11. The latter has long been elusive to neutron diffraction experiments and was first directly visualized by X-ray scattering.2

Attempts were made to describe these observations by theories emphasizing the local character of the magnetic moments13,14. However, recently a magnetic resonance mode has been discovered at \(Q_{AFQ}\) below \(T_N\) in close resemblance to the ones in unconventional superconductors15, underlining the importance of itinerant spin dynamics for this compound.

In an itinerant picture, the strength of the magnetic interactions is mediated by the conduction electrons and depends on the low-energy electronic structure. It can be expressed within linear response theory by the Lindhard function.16 The latter quantifies the propensity of a given electronic structure towards nesting instabilities of the Fermi surface and the subsequent formation of a new, in our case magnetically ordered, state.17 An interesting question in this context is whether or not the AFQ state also is directly linked to the electronic structure in a similar way. It has been theoretically suggested that the interactions between multipolar moments in CeB6 is driven by a RKKY-type interaction.18 However, although CeB6 has been studied for more than 50 years,19 the three-dimensional (3D) electronic structure of CeB6 was not known so far neither from experiment nor from theory with sufficient accuracy to test this hypothesis. This deficiency calls for a detailed investigation of the band structure with sufficient accuracy to test this hypothesis. This hypothesis.

We use the latter to calculate the Lindhard function and compare it with neutron scattering data. From the consistency of both, we conclude that the magnetic excitations and the AFQ propagation vector in CeB6 are dictated by the Fermi-surface geometry.

Results

Electronic structure from photoemission tomography. The method of choice to map the electronic structure in general is ARPES. But CeB6 holds several obstacles in store for this technique: it has a cubic crystal structure, that is, is fully 3D. This requires photon energy-dependent measurements to capture the \(k\) dispersion perpendicular to the surface. Moreover the material is hard and difficult to cleave, which is the usual procedure to measure single crystals. Third, hexaborides are subject to surface reconstructions and possess surface states, which might mask the bulk electronic structure.23–26. Previous ARPES studies on CeB6 are therefore sparse27–29. The Fermi surface has also been studied by de-Haas–von Alphen measurements. The results are consistent with ellipsoids centred around the \(X\) point.30

CeB6 crystallizes in a CsCl-type simple cubic crystal structure shown in Fig. 1a. The \(B_6\) octahedron is situated in a cubic environment of Ce atoms. In Fig. 1c–e, we present Fermi surface maps taken for different cleavage planes as indicated in the figure. The symmetry of the Fermi surface contours mirrors one of the cleavage plane. The \((100)\) direction has a fourfold rotation axis, \((110)\) only twofold and three- or sixfold for \((111)\) depending on the used photon energy. The Fermi surface consists of ellipsoids centred at the \(X\) point. Figure 1f–h present 3D visualizations including the experimental cuts shown above. This Fermi surface agrees with previous measurements for CeB6 (refs 27–30). The ellipsoids are typical for the hexaborides in general28,29. Their orbital character is composed of extended Ce 5d states with admixtures of localized Ce 4f near the Fermi energy (EF; ref. 28), similar to other 4f systems exhibiting a resonance mode31,32.

The ellipsoidal bands are electron-like. Away from \(E_F\), their size shrinks (see Fig. 2). Far below the bottom of the ellipsoid band at \(E = -8.5\) eV, the constant energy contour consists of straight sections reflecting the symmetry of the Brillouin zone (Fig. 2d–f).

Figure 3a,b show the energy distribution maps along the two mirror axes of the ellipsoid in the \((100)\) plane. Along the \(\Gamma X\) direction, the band has a parabola-like or \(U\) shape, whereas the bottom of the band appears more cusp-like or \(V\) shaped along \(M X\). Figure 3c presents the \(k\)-integrated spectrum of panel 3a featuring the typical shape of Ce-based materials: Around \(E = -2.5\) eV, the \(f^0\) ionization peak is situated, which overlaps with the bottom of the ellipsoidal band. Near \(E_F\), the screened \(f^1\) states are found, which split due to the spin–orbit coupling in a \(J = 5/2\) and \(7/2\) component. The \(5/2\) state at \(E_F\) is relevant here and splits further into crystal field levels, namely a \(\Gamma_7\) doublet and a \(\Gamma_8\) quartet. One of the \(\Gamma_8\) levels is occupied, whereas the \(\Gamma_7\) intensity seen in the spectrum is a satellite. The energy separation of the \(\Gamma_7\) and \(\Gamma_8\) levels (\(\Delta E = 50\) meV) is in agreement with previous reports33,34. Note that the large ground state degeneracy distinguishes CeB6 from many other Ce-based heavy fermion materials.

The electronic structure derived here by soft X-ray photoemission from various cleavage planes is consistent with previous low photon energy studies from the \((100)\) plane. The band structure calculation in this region and enhanced quasiparticle intensity. Our data also deviate from this calculation in a similar fashion but it is difficult to compare the intensity at the lowest energies due to the different integration windows imposed by the different energy resolution.
Lindhard function and model description. To investigate the connection of the electronic structure with the magnetism and the AFQ phase, the experimental band structure has to be fitted to a suitable model which is then used to calculate the Lindhard function. In two-dimensional systems, nesting instabilities can be identified sometimes just by visual inspection of the Fermi surface. However, in three dimensions, this is not a viable procedure anymore and a rigorous treatment is required. For this purpose, we used a tight-binding-like model fitted to the experimental ARPES data. Figure 4a–f show the results of the fitting. Figure 4a,b compares the (100) and (111) Fermi surfaces to the model. Figure 4c presents the (100) Fermi surface at \(k_z = \pi/a\), where the ellipsoid is cut at 90° and gives almost a circular contour. The latter is superimposed by shadow-like structures arising from the nearby parts of the ellipsoids parallel to the cutting plane by remnant final state \(k_z\) broadening. Figure 4d shows a (100) \(k_z\) scan, that is, a photon energy-dependent measurement. In all cases, the experimental contours are well reproduced by the model. The same holds true for the comparison with the near \(E_F\) energy distribution maps in Fig. 4e,f. Note that the model electronic structure starts to deviate for \(E < -0.3\) eV from the data. However, the Lindhard function falls off rapidly away from \(E_F\).

The condition for the formation of a spin-density wave (SDW) is approximately given by\(^{16}\):

\[
V_q > \frac{1}{\chi_q}
\]

where \(V_q\) is the exchange interaction in the local approximation and \(\chi_q\) is the real part of the Lindhard function in the static limit:

\[
\chi_q = \sum_{\epsilon} \frac{n_F(\epsilon + q) - n_F(\epsilon)}{\epsilon - \epsilon_q + \frac{1}{2}q^2}
\]

(2)

Here \(n_F(\epsilon) = 1/\exp(\epsilon/k_BT) + 1\) is the Fermi distribution. The system may become unstable against the formation of a SDW in the vicinity of maxima of \(\chi_q\) that is, where the Fermi surface nesting is large.

Inelastic neutron scattering. The relevance of the calculated Lindhard function is confirmed by the experimental inelastic neutron scattering (INS) data as shown in Fig. 5a. The two pictures are remarkably similar. The calculation reproduces not only the maxima but also the qualitative shape of the magnetic diffuse scattering at \(R\) \((1/2, 1/2, 1/2) = (\pi, \pi, \pi)\) and \(X\) \((0, 0, 1/2) = (0, 0, \pi)\). Moreover, line structures appear in the calculation (for example, from \((1/2, 1/2, 0)\) to \((1/4, 1/4, 1/2)\)), which resemble the oval-shaped streaks connecting the \(R\) points in the neutron data, resulting in a weak local maximum around the propagation vector of the AFM2 order, \((1/4, 1/4, 1/2) = (\pi/2, \pi/2, \pi/2)\). In Fig. 5b, \(\chi_q\) is extracted along certain high symmetry directions. The maxima at \(\mathbf{Q}_{\text{AFM2}}\) and \(\mathbf{Q}_{\text{AFM1}}\) are clearly visible.

There is an additional broad maximum around \(X\) \((0, 0, 1/2)\), which has a significant spectral weight but does not correspond to any static ordering\(^{35}\). This possibly indicates proximity to another AFM instability with a propagation vector \((0, 0, 1/2)\), which loses
the energy competition with multiple other competing order parameters (possibly due to its broad width in Q). In fact, this type of order is realized in Ce$_{1-x}$Nd$_x$B$_6$ for $x>0.4$ (ref. 36). But here also, both neutrons and ARPES are in good agreement.

Discussion

The agreement between the Lindhard susceptibility derived from the measured electronic structure and the INS data proves the itinerant character of the magnetic excitations in CeB$_6$ and suggests that the propagation vector of the AFQ order is dictated by the Fermi-surface geometry. It is important to emphasize that this result does not contradict the AFQ nature of the hidden-order phase, as the itinerant electrons determine the RKKY interactions between the Ce $4f$ multipolar moments that can be still considered as local. To visualize the nesting condition, we show in Fig. 6 the 3D Fermi surface together with shifted replicas. Figure 6a presents the nesting by (π, π, π). This vector effectively shifts a given ellipsoid into the void formed in between the other four. This maximizes the overlap among the ellipsoids although nesting in the strict sense is not apparent. Figure 6b shows the $(\pi/2, \pi/2, 0)$ vector. Here, clear nesting between parallel segments of the Fermi surface is revealed.

Primordial signatures of the complex magnon spectrum of CeB$_6$ are already observed above T_N in the quasielastic neutron scattering response35. We show here that these signatures have their natural explanation in the low-energy electronic structure, establishing the importance of itinerant electrons for the spin dynamics. For CeB$_6$, a picture emerges where the propensity towards specific magnetic order roots in favourable nesting conditions of the Fermi surface. The exact way by which this is achieved could be quite complex. For example, a weak magnetic Bragg peak has been observed at Q_{AFQ} above T_N (refs 15,37). It has been ascribed to a SDW-type order associated with the

Figure 2 | Constant energy cuts for different cleavage planes. (a–c) at $E = -1$ eV and (d–f) at $E = -8.5$ eV for (100) plane in (a,d), (110) in (b,e) and (111) in (c,f)

Figure 3 | Band structure of CeB$_6$. Energy distribution maps along (a) ΓX and (b) $M X$ measured at 12 K. (c) k-integrated version of (a) with assignment of the f-levels. (d) The region near E_F measured separately with increased resolution at 1K. Crystal field levels are denoted.

Figure 6 | 3D Fermi surface with shifted replicas. (a) (π, π, π) vector effectively shifts a given ellipsoid into the void formed in between the other four. This maximizes the overlap among the ellipsoids although nesting in the strict sense is not apparent. (b) $(\pi/2, \pi/2, 0)$ vector. Here, clear nesting between parallel segments of the Fermi surface is revealed.
conduction electrons primarily of Ce 5d character37. (Note that the AFQ order itself is hidden to neutron diffraction10.) Although orders of magnitude weaker than the antiferromagnetic order observed below T_N, this itinerant SDW could break the degeneracy of the T_N crystal field ground state and promote the multipolar moments to order in the AFQ phase with the same propagation vector. The value of T_Q should then be associated with the low temperature evolution of the electronic structure, for example, the mass enhancement due to the formation of heavy quasiparticles. The latter could lead to an enhancement of the nesting-related energy gain. Intriguingly, this is indeed observed, as T_Q coincides in zero field with the formation of the heavy fermion liquid indicated by the drop in resistivity38. Another plausible scenario would involve an enhancement of the RKKY interaction between the multipolar moments18 at the R point due to the Fermi-surface nesting, analogous to that seen previously in rare-earth silicides17.

The ellipsoidal Fermi surface observed here for CeB$_6$ is also typical for other rare earth hexaborides, for example, the presumed topological Kondo insulator SmB$_6$ (refs 39–42). Interestingly, recent INS data of SmB$_6$ bear out similarities to CeB$_6$ as well, namely intensity maxima at the X and R points, for which Fermi surface nesting was discussed43. Our explicit observation of the relevance of nesting in CeB$_6$ strongly indicates that the same mechanism is operative in SmB$_6$ too.

Multipolar ordering phenomena have been suggested for other hidden order compounds, most prominently URu$_2$Si$_2$, which has so far even resisted proper characterization by conventional solid state probes1. CeB$_6$, on the other hand, is well characterized with regard to its low-temperature ordered phases and by now also to its electronic structure and the connection between both. Therefore, it may serve as a model compound for many heavy-fermion metals and thus help to elucidate the interplay between the electronic structure, itinerant magnetism and complex order in correlated electron systems in general.

Moreover our methodology, namely the precise modelling of the 3D electronic dispersion based on experimental ARPES data and subsequent usage of this model to calculate complex response functions, is applicable to a wide class of 3D materials, not restricted to f-systems.

Methods

Sample preparation. Single crystal samples of CeB$_6$ were prepared by floating zone method as described in ref. 15. Before the measurement, the crystals were oriented by Laue diffraction, and on the outside of the sample small notches were cut to create a predetermined cleavage plane along the desired direction. After that, the samples were cooled in ultrahigh vacuum with a base pressure of 1×10^{-10} mbar by a He flow cryostat to 12 K and cleaved for the measurement.

ARPES measurements. ARPES measurements have been done at the SX-ARPES end station of the Swiss Light Source44, ADRESS beamline45 in the photon energy range of 500–900 eV. The energy resolution was set to $\Delta E = 100$ meV. Angle resolution was better than 0.07°. The high resolution measurement of the crystal field splitting in Fig. 3d has been carried out at the 1st beamline at BESSY with $\Delta E = 10$ meV at a temperature of $T = 1$ K with a photon energy of $h \nu = 90$ eV.
INS measurements. INS data were collected using the cold-neutron time-of-flight spectrometer INS at the high-flux research reactor of the Institute Laue-Langevin. A large single crystal specially synthesized from isotope-enriched 11B to minimize neutron absorption was mounted in a standard cryocryostat with its (110) and (001) directions in the horizontal plane. The incident neutron wavelength was fixed at 5 Å (3.27 meV), yielding an energy resolution (full width at half maximum) of 0.08 meV at zero energy transfer. The measurements were taken while rotating the sample about the vertical axis and then combined and transformed into energy-momentum space using HORACE analysis software. The quasielastic intensity distribution shown in Fig. 5a was obtained by integrating the four-dimensional data set in a narrow slab parallel to the horizontal plane along the vertical direction of the momentum and in a broad energy window between 0.15 and 2.05 meV immediately above the elastic line and 0.4 meV, thus providing an estimate of the integral quasielastic spectral weight within the (HHL) plane.

Model description. The low energy electronic structure has been parametrized by the following tight-binding-like model:

$$E(k) = c \cdot (E_0 + \sum_{i} t_i A_i)$$

Where t_i are hopping parameters, A_i tight-binding expansions of the i-th order and c is a correction term with

$$A_1 = 16 \cdot [\cos(k_x) + \cos(k_y) + \cos(k_z)]$$

$$A_2 = 8 \cdot [\cos(k_x + k_y) + \cos(k_x - k_y) + \cos(k_z - k_y) + \cos(k_z + k_y)]$$

$$A_3 = 12 \cdot [\cos(k_x + k_z) + \cos(-k_x + k_y + k_z) + \cos(k_x - k_y - k_z) + \cos(-k_x - k_y + k_z)]$$

$$A_4 = 16 \cdot [\cos(2k_x) + \cos(2k_y) + \cos(2k_z)]$$

$$A_5 = 4 \cdot [\cos(2k_x + k_y + k_z) + \cos(2k_x + k_y - k_z) + \cos(2k_x - k_y + k_z) + \cos(2k_x - k_y - k_z) + \cos(2k_y + k_z) + \cos(2k_y - k_z) + \cos(2k_y + k_x) + \cos(2k_y - k_x) + \cos(2k_z + k_x) + \cos(2k_z - k_x)]$$

$$A_6 = 4 \cdot [\cos(k_x + 2k_y + 2k_z) + \cos(k_x + 2k_y - 2k_z) + \cos(k_x - 2k_y + 2k_z) + \cos(k_x - 2k_y - 2k_z) + \cos(2k_y + k_z) + \cos(2k_y + k_x) + \cos(2k_z + k_y) + \cos(2k_z + k_x) + \cos(2k_y - k_z) + \cos(2k_y - k_x) + \cos(2k_z - k_y) + \cos(2k_z - k_x)]$$

$$A_7 = 4 \cdot [\cos(k_x + 2k_y + 2k_z) + \cos(k_x + 2k_y - 2k_z) + \cos(k_x - 2k_y + 2k_z) + \cos(k_x - 2k_y - 2k_z) + \cos(2k_y + k_z) + \cos(2k_y + k_x) + \cos(2k_z + k_y) + \cos(2k_z + k_x) + \cos(2k_y - k_z) + \cos(2k_y - k_x) + \cos(2k_z - k_y) + \cos(2k_z - k_x)]$$

with $E_0 = 0.215\text{ eV}, t_1 = -0.091\text{ eV}, t_2 = 0.118\text{ eV}, t_3 = 0.0085\text{ eV}, t_4 = -0.011\text{ eV}, t_5 = 0.089\text{ eV}, t_6 = 0.077\text{ eV}, t_7 = -0.0039\text{ eV}, t_8 = 0.011\text{ eV}$; and

$$c(k) = \left| \frac{E_0}{E_0} + \sum_{i} t_i A_i \right|^{-1}$$

with $E_0 = 0.00604, t_i = 0.038, t_2 = -0.047, t_3 = -0.0054, t_4 = 0.000949, t_5 = 0.021, t_6 = 0.047, t_7 = 0.021, t_8 = -0.025$. The model is only valid for $E \geq -0.3\text{ eV}$.

Software availability. The open-source MATLAB-based HORACE software package is available from http://horace.issi.nl.ac.uk.

References
1. Mydosh, J. A. & Oppeneer, P. M. Colloquium: hidden order, superconductivity, and magnetism—the unsolved case of $\text{U}_{69}\text{Sr}_{22}$, Rev. Mod. Phys. 83, 1301–1322 (2011).
2. Paixão, J. A. et al. Triple-\tilde{j} octupolar ordering in NpO_2, Phys. Rev. Lett. 89, 187202 (2002).
3. Aoki, Y., Sugawara, H., Hisatomo, H. & Sato, H. Novel Kondo behaviors realized in the filled skutterudite structure, J. Phys. Soc. Jpn. 70, 209–221 (2001).
4. Jeevan, H. S., Geibel, C. & Hossain, Z. Quasiquartet crystal-electric-field ground state with possible quadrupolar ordering in the tetragonal compound Yb_2Ge_2, Phys. Rev. B 73, 020407 (2006).
5. Thalmeier, P., Takimoto, T., Chang, J. & Eremin, I. Multipolar order and superconductivity in F-electron compounds, J. Phys. Soc. Jpn. 77, 43–47 (2008).
6. Santini, P. et al. Multipolar interactions in f-electron systems: the paradigm of actinide dioxides. Rev. Mod. Phys. 81, 807–863 (2009).
7. Mueller, T. et al. Magnetic field dependence of the many-body enhancement on the Fermi surface of CeB_6, J. Magn. Magn. Mater. 7677, 35–36 (1988).
8. Kondo, I. Theory of dilute magnetic alloys, Solid State Phys. 23, 183–281 (1970).
9. Kittel, C. Quantum Theory of Solids (Wiley, 1963).
10. Efllant, J. M. et al. Magnetic phase diagram of CeB_6, J. Magn. Magn. Mater. 47–48, 145–148 (1985).
11. Kuramoto, Y., Kusunose, H. & Kiss, A. Multipole orders and fluctuations in strongly correlated electron systems, J. Phys. Soc. Jpn. 78, 072001 (2009).
12. Nakao, H. et al. Antiferro-quadrupole ordering of CeB_6 studied by resonant X-ray scattering, J. Phys. Soc. Jpn. 70, 1857–1860 (2001).
13. Thalmeier, P., Shinai, R., Shibata, H. & Sakai, O. Theory of multipolar excitations in CeB6. J. Phys. Soc. Jpn. 67, 2363–2371 (1998).

14. Fiebig, K. et al. Anomalous temperature dependence of the magnetic field induced antiferromagnetic moment in the antiferroquadrupolar ordered state of CeB6. Phys. Rev. Lett. 86, 1578–1581 (2001).

15. Friemel, G. et al. Resonant magnetic exciton mode in the heavy-fermion antiferromagnet CeB6. Nat. Commun. 3, 830 (2012).

16. Chan, S. K. & Heine, V. Spin density wave and soft phonon mode from nesting Fermi surfaces. J. Phys. F 3, 795 (1973).

17. Inosov, D. S. et al. Electronic structure and nesting-driven enhancement of the RKKY interaction at the magnetic ordering propagation vector in GdPdSi4 and TbPdSi4. Phys. Rev. Lett. 102, 046401 (2009).

18. Shibai, H., Sakai, O. & Shinai, R. Nature of Ce-Ce interaction in CeB6 and its consequences. J. Phys. Soc. Jpn. 68, 1988–1993 (1999).

19. Paderno, Y. U. B., Pokrzywinski, S. & Staliski, B. Magnetic properties of some rare earth hexaborides. Phys. Status Solidi B 24, K73–K76 (1967).

20. Strocov, V. N. et al. Soft-X-ray ARPES at the Swiss Light Source: from 3D materials to buried interfaces and impurities. Synchrotron Radiat. News 27, 31–40 (2014).

21. Powell, C. J., Jablonski, A., Tilinin, I. S., Tanuma, S. & Penn, D. R. Surface sensitivity of Auger-electron spectroscopy and x-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 98-99, 1–15 (1999).

22. Strocov, V. N. Intrinsic accuracy in 3-dimensional photoemission band mapping. J. Electron Spectrosc. Relat. Phenom. 130, 65–78 (2003).

23. Patil, S., Adhikary, G., Balakrishnan, G. & Maiti, K. Influence of 4f electronic states on the surface states of rare-earth hexaborides. Appl. Phys. Lett. 96, 092106 (2010).

24. Trenary, M. Surface science studies of metal hexaborides. Sci. Technol. Adv. Mater. 13, 023002 (2012).

25. Zhang, X. et al. Hybridization, inter-ion correlation, and surface states in the Kondo insulator SmB6. Phys. Rev. X 3, 011011 (2013).

26. Heising, N. et al. Surface properties of SmB6 from x-ray photoelectron spectroscopy. Phys. Rev. B 90, 195128 (2014).

27. Souma, S., Iida, Y., Sato, T., Takahashi, T. & Kunii, S. Band structure and fermi surface of studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 90, 195128 (2014).

28. Souma, S., Iida, Y., Sato, T., Takahashi, T. & Kunii, S. Band structure and fermi surface of studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 90, 155128 (2014).

29. Ramankutty, S. V. et al. Comparative study of rare earth hexaborides using high resolution angle-resolved photoemission. J. Electron Spectrosc. Relat. Phenom. (in the press).

30. Onuki, Y., Komatsubara, T., Rein-ders, P. H. P. & Springford, M. Fermi surface and cyclotron mass of CeB6. J. Phys. Soc. Jpn. 58, 3698–3704 (1989).

31. Stock, C., Broholm, C., Hudis, J., Kang, H. J. & Petrovic, C. Spin resonance in the d-wave superconductor CeCoIn5. Phys. Rev. Lett. 100, 087001 (2008).

32. Koitzsch, A. et al. Band-dependent emergence of heavy quasiparticles in CeCoIn5. Phys. Rev. B 88, 035124 (2013).

33. Zirngiebel, E. et al. Crystal-field excitations in CeB6 studied by Raman and neutron spectroscopy. Phys. Rev. B 30, 4052–4054 (1984).

34. Takahashi, T. et al. Crystal-field splitting in CeB6, as observed by high-resolution photoemission. Phys. Rev. B 52, 9140–9142 (1995).

35. Jang, H. et al. Intense low-energy ferromagnetic fluctuations in the antiferromagnetic heavy-fermion metal CeB6. Nat. Mater. 13, 682–687 (2014).

36. Migoni, J.-M., Robert, J., Andre, G., Sera, M. & Iga, F. Effect of Nd substitution on the magnetic order in Ce,Nd1−x,B6 solid solutions. Phys. Rev. B 79, 224426 (2009).

37. Plakhoty, V. P. et al. Itinerant magnetism in the Kondo crystal CeB6 as indicated by polarized neutron scattering. Phys. Rev. B 71, 104407 (2005).

38. Takase, A., Kojima, K., Komatsubara, T. & Kasuya, T. Electrical resistivity and magnetoresistance in CeB6. Solid State Commun. 36, 461 (1980).

39. Frantzeskakis, E. et al. Kondo hybridization and the origin of metallic states at the (001) surface of SmB6. Phys. Rev. X 3, 041024 (2013).

40. Jiang, J. et al. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6. Nat. Commun. 4, 2991 (2013).

41. Neupane, M. et al. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6. Nat. Commun. 4, 2991 (2013).

42. Xu, N. et al. Surface and bulk electronic structure of the strongly correlated system SmB6 and implications for a topological Kondo insulator. Phys. Rev. B 86, 121102 (2013).

43. Fuhrman, W. T. et al. Interaction driven subgap spin exciton in the Kondo insulator SmB6. Phys. Rev. Lett. 114, 036401 (2015).

44. Strocov, V. N. et al. Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications. J. Synchrotron Radiat. 21, 32–44 (2014).

45. Strocov, V. N. et al. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synchrotron Radiat. 17, 631–643 (2010).

46. Ollivier, J. & Mutka, H. INS cold neutron time-of-flight spectrometer, prepared to tackle single crystal spectroscopy. J. Phys. Soc. Jpn. 80, SB003 (2011).

Acknowledgements
We thank C.G.F. Blam for help with the crystal preparation. A.K. acknowledges support by the German Research Foundation (DFG) under grant No. KO 3831/3-1 and D.S.I. under grant No. IN 209/3-1. D.S.I. is grateful to A. Akbari and P. Thalmeier for enlightening the discussions.

Author contributions
A.K., N.H. and D.S.I. conducted the ARPES experiments with assistance from L.L.L. and V.N.S. P.Y.P. and D.S.I. conducted the INS experiments with assistance from J.O., A.V.D., M.K., B.B., P.Y.P., L.L.L., V.N.S., J.O. and D.S.I.

Additional information
Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article
Koitzsch, A. et al. Nesting driven multipolar order in CeB6 from photoemission tomography. Nat. Commun. 7:10876 doi: 10.1038/ncomms10876 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/