Prevalence and Correlates of Cryptosporidium Infections in Kenyan Children With Diarrhea and Their Primary Caregivers

Emily L. Deichsel,1,8 Heidi K. Hillesland,2 Carol A. Gilchrist,3 Jaqueline M. Naulikha,4 Christine J. McGrath,5 Wesley C. Van Voorhis,5 Doreen Rwigi,6 Benson O. Singa,7 Judd L. Walson,5,7 and Patricia B. Pavlinac5

1University of Maryland, Baltimore, Maryland, USA, 2Hawai‘i Pacific Health, Lihue HI, 3University of Virginia, Charlottesville, Virginia, USA, 4Maasai Mara University, Narok, Kenya, 5University of Washington, Seattle, Washington, USA, 6Kenya Medical Research Institute, Nairobi, Kenya, and 7Child Acute Illness and Nutrition (CHAIN) Network, Nairobi, Kenya

Background. Cryptosporidium is a leading cause of diarrhea in Sub-Saharan Africa and is associated with substantial morbidity and mortality in young children.

Methods. We analyzed data from children aged 6–71 months presenting to 2 public hospitals in Western Kenya with acute diarrhea and their primary caregivers, including detection of Cryptosporidium by quantitative polymerase chain reaction (PCR) and immunoassay analysis in stool samples from both children and their caregivers. Associations between potential transmission sources and child/caregiver Cryptosporidium infection were evaluated using prevalence ratios (PRs). Secondary analyses evaluated host and clinical risk factors of child/caregiver Cryptosporidium infection.

Results. Among 243 child–caregiver pairs enrolled, 77 children (32%) and 57 caregivers (23%) had Cryptosporidium identified by either immunoassay or PCR. Twenty-six of the 243 child–caregiver pairs (11%) had concordant detection of Cryptosporidium. Cryptosporidium infection in children was associated with detection of Cryptosporidium in caregivers (adjusted PR [aPR], 1.8; 95% CI, 1.2 to 2.6; P = .002) and unprotected water source (aPR, 2.0; 95% CI, 1.3 to 3.2; P = .003). Risk factors for Cryptosporidium detection in caregivers included child Cryptosporidium infection (aPR, 2.0; 95% CI, 1.3 to 3.0; P = .002) as well as cow (aPR, 3.1; 95% CI, 1.4 to 7.0; P = .02) and other livestock ownership (aPR, 2.6; 95% CI, 1.1 to 6.3; P = .03) vs no livestock ownership. Recent diarrhea in caregivers and children was independently associated with child and caregiver Cryptosporidium infections, respectively.

Conclusions. Our results are consistent with the hypothesis that Cryptosporidium transmission can occur directly between child–caregiver dyads as well as through other pathways involving water and livestock. Additional research into caregivers as a source of childhood Cryptosporidium infection is warranted.

Keywords. caregiver; Cryptosporidium; diarrhea; infant; transmission.

Cryptosporidium is a leading cause of diarrhea among children in many resource-limited settings [1, 2]. Cryptosporidium is responsible for >60,000 child deaths per year [3] and is also associated with linear growth faltering [4–6]. No vaccine is available to prevent Cryptosporidium, and current treatment options are limited, particularly for children with malnutrition or HIV, conditions common in Sub-Saharan Africa [7, 8]. An improved understanding of Cryptosporidium epidemiology and transmission dynamics may illuminate opportunities for interventions to reduce Cryptosporidium-associated morbidity and mortality in young children.

Cryptosporidium is transmitted person-to-person (anthroponotic transmission) [9, 10], through contact with infected animals (zoonotic) [10], and through ingestion of contaminated water [11]. The predominance of anthropotically transmitted subtypes of Cryptosporidium observed in Sub-Saharan Africa suggests that person-to-person transmission may be a predominant transmission pathway in this region [10, 12]. Caregivers may be a source of Cryptosporidium infection in young children or may have secondary infections from children or other close contacts. In Western Kenya, caregiver HIV infection, a known risk factor of Cryptosporidium susceptibility and prolonged oocyst shedding [13, 14], was associated with child Cryptosporidium infection [15], even in the absence of child HIV infection. In addition, other factors such as childhood malnutrition, breastfeeding history, and environmental factors may dramatically affect risk of child Cryptosporidium infection [5, 6, 16].

Among children presenting with acute diarrhea at 2 hospitals in Western Kenya, we sought to determine the prevalence of Cryptosporidium in accompanying primary caregivers and to
identify risk factors for infections in both the children and their
caregivers.

METHODS

Study Design
Between March and December 2015, children aged 6 to
71 months presenting with acute diarrhea (2 or more loose
stools per 24-hour period and lasting <7 consecutive days) to 2
public hospitals in Western Kenya (Kisii Teaching and Referral
Hospital and Homa Bay County Referral Hospital) were en-
rolled in this cross-sectional study. Children were excluded
if they were not accompanied by a biological parent or legal
guardian, if they were unable to provide a stool sample, or if
the primary caregiver elected not to receive HIV counseling
and testing (if indicated). Sociodemographic characteristics,
breastfeeding history, and clinical history of the child and care-
giver were collected by a standardized questionnaire, and a brief
physical exam of the child was performed by study clinicians.
Study staff measured height (or length if <2 years) and weight
and assessed danger and dehydration signs according to the
World Health Organization (WHO) Integrated Management of
Childhood Illness (IMCI) algorithm. Children were managed
according to Kenyan Ministry of Health guidelines for diar-
rhea [17]. Height/length for age and weight for height/length
z-scores (HAZ and WHZ) were calculated for children using
WHO reference populations, and stunting and wasting were de-
efined as HAZ and WHZ <-2, respectively [18, 19]. A body mass
index (BMI) <18.5 kg/m² in adult caregivers was defined as un-
derweight. Moderate to severe diarrhea (MSD) was defined as
diarrhea with signs of dehydration (sunken eyes, loss of skin
turgor, intravenous hydration administered or prescribed), vis-
ible blood in stool, or hospital admission based on diarrhea or
dysentery, as defined elsewhere [20].

A whole stool sample was collected from enrolled children
before administration of antibiotic therapy or hospital admis-
sion (if applicable). Caregivers were asked to provide a stool
sample at the hospital before returning home. Stool samples
were accepted from caregivers up to 72 hours after child enroll-
ment. After collection, stool samples were immediately placed
in a cool box and maintained at 2–8°C until further processing.

Laboratory Methods
Stool was processed within 2 hours of receipt of the sample.
A small portion of the stool sample was used for immediate
Cryptosporidium testing using a point-of-care immunoassay
(Quik Chek, Alere). The Quik Chek enzyme-linked immu-
nosorbent assay (ELISA) was used in accordance with the
manufacturer's instructions [21]. The remaining stool sample
was aliquoted into 2-mL cryovial storage containers and frozen
to –80°C within 36 hours of enrollment. DNA extraction of stool
samples was performed using a QiaAmp stool DNA extraction
protocol that included bead-beating for oocyst lysing, and
extracted DNA was shipped to the University of Virginia for
quantitative PCR using previously described methods [22].

A small amount of blood (<0.5 mL) was collected from
caregivers if there was no documentation of HIV status in
the last 2 months. If the biological mother was HIV-infected
or had an unknown HIV status, blood was collected either by
heel or finger prick from the child. Adults and children over
18 months of age tested for HIV using antibody testing
(Abbott Determine rapid test kit) and confirmed using First
Response (Premier Medical Corporation). Both tests were
performed according to the manufacturer's instructions. HIV
DNA PCR assays were performed in children <18 months
of age. Children of known HIV-infected biological mothers
who were HIV-uninfected themselves were classified as HIV-
exposed uninfected (HEU).

Statistical Analysis
Cryptosporidium infection was defined as detection of
Cryptosporidium antibodies (by immunoassay) or DNA (by
PCR at the lower limit of detection [cycle threshold {CT} values
≤40]).

Univariate prevalence ratios (PRs) estimating the associa-
tion between child and caregiver Cryptosporidium infections
were estimated using Poisson regression with robust variance
estimates [23]. Multivariable models included detection of
Cryptosporidium in children and caregivers, as defined above,
as well as other potential transmission sources (water, livestock,
inadequate sanitation). As the primary aim of the analysis was
to determine potential sources of Cryptosporidium infection,
host and clinical characteristics were not included in the pri-
mary analyses. However, in exploratory analyses, we examined
general host and clinical risk factors for Cryptosporidium in-
fection, separately in children and caregivers, using Poisson re-
grression with robust variance estimates, respectively. Separate
multivariable models were constructed for each risk factor, each
adjusting for recruitment site as well as child and caregiver age
(in child and caregiver models, respectively). Student t tests
were used to assess mean CT values by immunoassay result.
All analyses were performed using Stata 15.1 (College Station,
TX, USA), with an alpha of .05 used to determine statistical
significance.

Minimum Detectable Effect
We calculated the minimal detectable effect for analyses exam-
imining risk factors for child Cryptosporidium infection. Using our
sample of 243 participants, we assumed that 31% of children
presenting to a health care facility with diarrhea would have
Cryptosporidium detected by ELISA or PCR. Assuming 10%,
25%, or 50% of participants without Cryptosporidium detection
have the risk factor, we had 80% power to detect a prevalence
ratio of 2.4, 1.8, and 1.4, respectively.
Patient Consent Statement
The study was approved by the Kenya Medical Research Institute Ethics and Research Committee and the University of Washington Institutional Review Board. Written informed consent was obtained from all primary caregivers for their and their child's participation in the study.

RESULTS

Study Population
Two hundred forty-three children with acute diarrhea and their caregivers were enrolled in the study (Figure 1). Fifty-three percent (129) of the children were enrolled from Kisii County Hospital, and 94% (227) were accompanied by their biological mother (Table 1). Forty-six percent (112) of the enrolled children were under 2 years of age. Of the enrolled children, 28% (68) had MSD and 27% (66) reported fever at the time of presentation. Two children (0.8%) were HIV-infected, and 26 (11%) were HEU. Caregivers were a median (interquartile range [IQR]) of 28 (23–32) years of age, 12% (28) were HIV-infected, and 3% (7) were underweight. Eight percent (20) of caregivers reported diarrhea in the previous 14 days.

Seventy-three percent (178) owned some type of livestock, with chickens being the most common (168), followed by cows (117). Ninety percent (219) also reported access to pit latrines (vs flush toilet or open defecation). Eighteen (7%) households reported having access to only unprotected water sources (unprotected well, tubewell, borehole, rainwater, surface water). Most caregivers did not report treating their drinking water with methods effective against Cryptosporidium oocyst contamination, boiling or filtering water (33% of caregivers reported boiling, and 2% reported filtering).

Detection of Cryptosporidium
Seventy-seven children (32%; 95% CI, 26% to 38%) had Cryptosporidium identified by either immunoassay or PCR, as did 57 (23%; 95% CI, 19% to 29%) caregivers. Among the 77 children with Cryptosporidium infection, Cryptosporidium was detected in 27 (35%; 95% CI, 25% to 46%) caregivers. The median CT values (IQR) among children and caregivers with positive detections by PCR were 35.1 (31.4–36.5) and 36.2 (35.3–37.2), respectively. Among children and caregivers with both immunoassay and PCR results available, the immunoassay captured 20% (15/76) and 4% (2/54) of PCR-detected Cryptosporidium, and the overall percent agreement of the 2 tests was 73% (162/223) and 77% (181/236), respectively. Two positive immunoassay tests for caregivers were negative by PCR (Table 2). In children with Cryptosporidium identified by PCR, those with a positive immunoassay result had a higher parasitic burden (lower CT values), on average, than children with a negative immunoassay result (26.0 vs 35.1; mean difference, 9.2; 95% CI, 7.3 to 11.0; P <.001). No difference in mean CT values was observed between caregivers with positive and negative immunoassay results (37.4 vs 35.7; mean difference, −1.7; 95% CI, −5.4 to 2.1; P =.367).

Risk Factors for Child Cryptosporidium
Risk factors for child Cryptosporidium infection included detection of Cryptosporidium among their caregiver and using an unprotected water source (Table 3). Children with a Cryptosporidium-infected caregiver were nearly 2 times more likely to have Cryptosporidium themselves (adjusted prevalence ratio [aPR], 1.8; 95% CI, 1.2 to 2.6; P =.002). In addition, living in a household with an unprotected water source was significantly associated with detection of Cryptosporidium in a child (aPR, 2.0; 95% CI, 1.3 to 3.2; P =.003). Livestock ownership did not appear to be an important predictor for child Cryptosporidium infections.

Age, HIV infection and HIV exposure status, malnutrition, breastfeeding history, and severity of diarrhea were not associated with child Cryptosporidium infection in adjusted analyses.

Figure 1. Eligibility flowchart. Abbreviations: ELISA, enzyme-linked immunosorbent assay; PCR, polymerase chain reaction.
However, younger caregiver age and caregiver-reported diarrhea were important for child Cryptosporidium infection. Children of caregivers <20 years of age were twice as likely to have Cryptosporidium detected than children with caregivers aged 20–29 years (aPR, 2.0; 95% CI, 1.3 to 3.1; \(P = .002 \)). In addition, children of caregivers reporting diarrhea within the last 2 weeks were twice as likely to have Cryptosporidium themselves (aPR, 2.2; 95% CI, 1.3 to 3.4; \(P = .001 \)). Caregiver HIV and BMI were not associated with child Cryptosporidium infection.

Risk Factors for Caregiver Cryptosporidium

Risk factors for detection of Cryptosporidium among caregivers included Cryptosporidium infection in their child (aPR, 2.0; 95% CI, 1.3 to 3.1; \(P = .003 \)) and livestock ownership: cow ownership vs none (aPR, 3.1; 95% CI, 1.4–7.0; \(P = .007 \)) and livestock other than cows vs none (aPR, 2.6; 95% CI, 1.1–6.3; \(P = .03 \)). Unprotected water source was not associated with caregiver Cryptosporidium detection. Consistent with other results, caregiver age and child diarrhea severity and duration were associated with detection of Cryptosporidium among caregivers, while malnutrition in the caregiver or child was not. Caregivers of children with MSD were one and a half times as likely to be positive for Cryptosporidium (aPR, 1.6; 95% CI, 1.0 to 2.5; \(P = .04 \)), and 1 additional day of child diarrhea duration was associated with increased risk of Cryptosporidium detection (aPR, 1.04; 95% CI, 1.00–1.08; \(P = .03 \)).
was associated with a 30% increased prevalence of caregiver *Cryptosporidium* infection (aPR per day, 1.4; 95% CI, 1.1 to 1.6; *P* = .001). Caregiver HIV infection was not associated with caregiver *Cryptosporidium* infection; however, HIV infection in the child was associated with caregiver *Cryptosporidium* detection (aPR, 5.4; 95% CI, 3.6 to 8.1; *P* < .001) (Table 4). Two children in the study were HIV positive without detection of a *Cryptosporidium* infection, and both caregivers were positive for PCR detection of *Cryptosporidium* and were HIV-infected and not on HAART.

DISCUSSION

In this cross-sectional study of children presenting to Kenya hospitals with acute diarrhea and their accompanying caregivers, we found that *Cryptosporidium* prevalence was high. The presence of *Cryptosporidium* infection in caregivers was a risk factor for infection in their children, and similarly the presence of *Cryptosporidium* in children was a risk factor for infection in their caregiver. Diarrhea and diarrhea severity were also associated with child and caregiver *Cryptosporidium* infections, respectively, consistent with possible person-to-person transmission within the child–caregiver pairs.

We describe a prevalence (~30%) of *Cryptosporidium* infection among children with diarrhea on the higher end of the range reported in other studies conducted in Sub-Saharan Africa (13–32%) [12, 24–26]. In this study, over a third of caregivers of *Cryptosporidium*-infected children with diarrhea also had *Cryptosporidium*. This prevalence (35%) is within the range of 2 recent studies evaluating *Cryptosporidium* infections in household contacts of children with *Cryptosporidium* in Bangladesh and in a multicountry study in Sub-Saharan Africa (Gabon, Ghana, Madagascar, and Tanzania) reporting prevalence rates of 51% and 31%, respectively [12, 27]. Taken together, these studies highlight that *Cryptosporidium* is likely present in 1 or more additional household members during episodes of *Cryptosporidium* diarrhea in a child, which presents challenges for prevention and control strategies.

Studies conducted in Norway [9], Brazil [28], Bangladesh [27], and, most recently, in a multicountry study in Gabon, Ghana, Madagascar, and Tanzania [12] have observed evidence...
Table 4. Host and Clinical Correlates of Cryptosporidium Infections Among Enrolled Children and Primary Caregivers (n = 243)

	Child Cryptosporidium Detection	Caregiver Cryptosporidium Detection						
	Prevalence Ratio (95% CI)	P Value	Adjusted^d Prevalence Ratio (95% CI)	P Value	Prevalence Ratio (95% CI)	P Value	Adjusted^e Prevalence Ratio (95% CI)	P Value
Child characteristics								
Age								
6–12 mo	0.9 (0.6 to 1.5)	.66	0.9 (0.6 to 1.4)	.64	0.6 (0.3 to 1.3)	.21	0.6 (0.3 to 1.3)	.21
>12–23 mo	Ref	–	Ref	–	Ref	–	Ref	–
24+ mo	0.7 (0.4 to 1.0)	.07	0.7 (0.5 to 1.1)	.11	0.8 (0.5 to 1.4)	.53	0.8 (0.5 to 1.3)	.33
Female	0.8 (0.6 to 1.2)	.27	0.8 (0.6 to 1.2)	.33	0.9 (0.6 to 1.5)	.73	0.9 (0.6 to 1.5)	.73
HIV-infected^f	Not estimable[*]				4.3 (3.4 to 5.5)	<.001	5.4 (3.6 to 8.1)	<.001
HIV-exposed uninfectedⁱ	1.3 (0.7 to 2.1)	.40	1.0 (0.6 to 1.7)	.97	0.8 (0.4 to 1.9)	.66	0.9 (0.4 to 2.3)	.86
Mid-upper arm circumference <12.5 cm	2.0 (1.3 to 3.2)	.003	1.3 (0.8 to 2.3)	.34	1.5 (0.7 to 3.1)	.33	1.7 (0.8 to 3.7)	.21
Stunting (HAZ < –2)^j	1.0 (0.6 to 1.6)	.94	0.9 (0.6 to 1.5)	.80	0.8 (0.4 to 1.5)	.49	0.9 (0.5 to 1.6)	.64
Wasting (WHZ < –2)^k	1.6 (1.1 to 2.5)	.03	1.5 (1.0 to 2.2)	.06	1.6 (0.9 to 2.7)	.10	1.6 (0.9 to 2.8)	.11
Currently breastfeeding (if <24 mo)<sup<l</sup>	1.1 (0.7 to 1.9)	.69	1.3 (0.7 to 2.3)	.40	1.6 (0.7 to 3.6)	.28	1.6 (0.7 to 3.6)	.29
No. of mo exclusively breastfed^m	1.0 (0.9 to 1.1)	.65	0.9 (0.8 to 1.0)	.18	0.9 (0.8 to 1.1)	.21	0.9 (0.8 to 1.1)	.32
Moderate to severe diarrhea	1.0 (0.7 to 1.5)	.89	1.0 (0.6 to 1.4)	.81	1.6 (1.0 to 2.5)	.04	1.6 (1.0 to 2.5)	.04
No. of loose stools in the last 24 h	1.0 (0.9 to 1.1)	.40	1.0 (0.9 to 1.1)	.77	1.0 (0.9 to 1.1)	.63	1.0 (0.9 to 1.1)	.87
Duration of diarrhea, d	1.2 (1.1 to 1.4)	.01	1.1 (1.0 to 1.3)	.17	1.2 (1.0 to 1.5)	.03ⁿ	1.4 (1.1 to 1.6)	.001
Caregiver characteristics								
Age								
<20 y	2.2 (1.4 to 3.5)	.001	2.0 (1.3 to 3.1)	.002^a	2.4 (1.2 to 4.7)	.01	2.5 (1.3 to 5.0)	.01
20–29 y	Ref	–	Ref	–	Ref	–	Ref	–
30+ y	1.1 (0.7 to 1.7)	.61	1.3 (0.9 to 1.9)	.22	1.6 (1.0 to 2.6)	.08	1.4 (0.9 to 2.4)	.15
HIV-infected^d	1.2 (0.7 to 2.0)	.62	0.9 (0.5 to 1.6)	.76	1.1 (0.6 to 2.2)	.78	1.2 (0.6 to 2.6)	.55
HIV-uninfected	Ref	–	Ref	–	Ref	–	Ref	–
HIV-infected on HAART	1.1 (0.5 to 2.3)	.86	0.9 (0.4 to 1.9)	.76	0.9 (0.3 to 2.4)	.78	0.9 (0.3 to 2.5)	.82
HIV-infected not on HAART	1.2 (0.6 to 2.5)	.57	1.0 (0.5 to 1.9)	.91	1.3 (0.6 to 3.1)	.52	1.6 (0.6 to 4.0)	.32
BMI <18.5 kg/m²	0.9 (0.3 to 3.0)	.86	0.9 (0.3 to 3.0)	.82	1.2 (0.4 to 4.1)	.74	1.2 (0.4 to 4.1)	.74
Diarrhea in last 14 d	1.9 (1.2 to 2.9)	.01	2.2 (1.3 to 3.4)	.001	1.1 (0.5 to 2.4)	.86	1.0 (0.5 to 2.3)	.97

Abbreviations: BMI, body mass index; HAART, highly active antiretroviral therapy; HAZ, height-for-age z-score; WHZ, weight-for-height z-score.

^aNot estimable because neither of the two HIV-infected children had Cryptosporidium detected.
^bTotal 77 child Cryptosporidium detections used.
^cTotal 57 caregiver Cryptosporidium detections used.
^dMultivariable model adjusts for child age and center.
^eMultivariable model adjusts for caregiver age and center.
^fn = 241.
^gn = 238.
^hn = 236.
ⁱn = 234.
^jn = 119.
^kn = 230.
^ln = 240.
of person-to-person transmission, further supporting our associative findings. *Cryptosporidium* is characteristically highly infectious and associated with persistent diarrhea [5, 28, 29] and continued *Cryptosporidium* oocyst shedding after diarrhea ceases [30, 31], providing a long duration of infectivity. We found diarrhea and diarrhea severity to be risk factors for child and caregiver *Cryptosporidium* infection, respectively, further substantiating a possible person-to-person transmission. Contact with a person with diarrhea has previously been noted as a risk factor for *Cryptosporidium* infection [32], particularly in outbreak investigations [9, 33]. While as much as 50% of *Cryptosporidium* infection may be asymptomatic, *Cryptosporidium* infection with diarrhea is more infectious, with increased exposure to the parasite through symptoms and higher parasitic burden relative to asymptomatic infection [5].

Person-to-person transmission is unlikely to be the only source of *Cryptosporidium* infection. We found livestock ownership and unprotected water source to be important risk factors for caregiver and child *Cryptosporidium* infection, respectively. Livestock ownership and contaminated water source are well documented as sources of transmission for *Cryptosporidium* in low-resource settings, although they are inconsistently identified as significant risk factors for *Cryptosporidium* infection in individual studies [6, 25, 29, 34]. Contaminated water is often associated with *Cryptosporidium* outbreaks [11, 32, 35, 36]; however, the source of sustained endemic transmission remains unclear and may include a combination of contaminated water, zoonotic, and person-to-person transmission depending on the setting and population.

Cryptosporidium infection is more common and more severe among immunocompromised hosts, particularly adults with HIV and young children with malnutrition [5, 37]. However, in this study, neither HIV infection in caregivers nor malnutrition among children was significantly associated with detection of *Cryptosporidium*. The lack of association may, in part, be due to the relatively small number of HIV-infected caregivers not on antiretroviral therapy (ART) and children with acute malnutrition, which limited our statistical power to detect an association. The use of antiretrovirals for treatment and improved immune function of people with HIV appears to have reduced the prevalence of *Cryptosporidium* infection among persons with HIV [38, 39]. Our results did show that 100% of the 2 HIV-infected children had caregivers with PCR-detected *Cryptosporidium* but, little can be drawn from such small numbers.

The concordance between the point-of-care ELISA test and PCR results was consistent with previous research. PCR is known to be more sensitive than most immunoassays, often detecting small quantities of *Cryptosporidium* DNA in diarrheal episodes likely caused by another pathogen [40]. In our study, *Cryptosporidium* was detected in samples from 2 asymptomatic caregivers by immunoassay and not by PCR. The 2 immunoassay positives may have been false positives or false negatives by PCR, both of which have been reported, although not frequently, in the literature [21, 40, 41].

This study has several important limitations. Due to the cross-sectional nature of the study design and lack of genotyping, we were unable to confirm transmission of *Cryptosporidium* infection within the child–caregiver pair, or the direction of the transmission. Further, household members other than the child and caregiver were not included in the study; as such, we are unable to make inferences about the caregiver–child pair relationship in context of other persons living in the household. Additional research should assess the importance of the primary caregiver relative to other household members as a source of *Cryptosporidium* infection for young children. Lower numbers of children with acute malnutrition and immunocompromised caregivers would explain our inability to detect a significant association between these host factors and *Cryptosporidium* infection.

The results of this study suggest that the child–caregiver dyad should be further explored as a source of household person-to-person transmission. If transmission between young children and their primary caregivers, which in this context is mostly biological mothers, is common, effective disease control strategies may need to focus on prevention and treatment of infection among caregivers to effectively reduce *Cryptosporidium*-associated disease, malnutrition, and mortality in children.

Acknowledgments

We would like to thank the caregivers, children, research personnel, clinic staff, and data management teams in Kisi, Homa Bay, and Nairobi, Kenya, as well as Seattle, who made this study possible. We thank the Kisi County and Homa Bay County Hospitals for providing structural support to conduct the study. We are very grateful to Dr. William Petri and Cecelia Burkley for their invaluable contributions to the molecular assays used in this study.

Financial support. This work was supported by a grant from the Bill & Melinda Gates Foundation (#OPP1122030) awarded to J.L.W. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Potential conflicts of interest. All authors: no reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Author contributions. P.B.P., H.K.H., J.L.W., J.M.N., C.A.G., and W.V. conceived and designed the research. H.K.M., C.A.G., J.M.N., C.J.M., D.R., and B.O.S. performed data collection and processing. E.L.D., H.K.H., and P.B.P. analyzed the data and drafted the manuscript.

References

1. Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 2013; 382:209–22.
2. Platts-Mills TA, Babji S, Rodrihadata I, et al. Pathogen-specific burdens of community diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). Lancet Glob Heal 2015; 3:564–75.
3. GBD Diarrhoeal Diseases Collaborators. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis 2017; 3099:1–40.
4. Checkley W, Epstein LD, Gilman RH, Black RE, Cabrera L, Sterling CR. Effects of Cryptosporidium parvum infection in Peruvian children: growth faltering and subsequent catch-up growth. Am J Epidemiol 1998; 148:497–506.

5. Korpe PS, Haque R, Gilchrist C, et al. Natural history of cryptosporidiosis in a longitudinal study of slum-dwelling Bangladeshi children: association with severe malnutrition. PLoS Negl Trop Dis 2016; 10:1–15.

6. Delahoy MJ, Omore R, Ayers TL, et al. Clinical, environmental, and behavioral characteristics associated with Cryptosporidium infection among children with moderate-to-severe diarrhea in rural Western Kenya, 2008–2012: The Global Enteric Multicenter Study (GEMS). PLoS Negl Trop Dis 2018; 12:1–18.

7. Amadi B, Mwiya M, Sianongo S, et al. High dose prolonged treatment with nitazoxanide is not effective for cryptosporidiosis in HIV positive Zambian children: a randomised controlled trial. BMC Infect Dis 2009; 9:1–7.

8. Abubakar I, Aliyu S, Arumugam C, Hunter P, Usmane N. Prevention and treatment of cryptosporidiosis in immunocompromised patients (review). Cochrane database Syst Rev 2007; 1:CD004932.

9. Johansen OH, Hanevik K, Thrana E, et al. Symptomatic and asymptomatic secondary transmission of Cryptosporidium parvum following two related outbreaks in schoolchildren. Epidemiol Infect 2015; 143:1702–9.

10. Xiao L. Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 2010; 124:80–9.

11. MacKenzie WR, Hope NJ, Proctor ME, et al. A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. N Engl J Med 1994; 331:161–7.

12. Krumkamp R, Aldrich C, Maiga-Ascofare O, et al. Transmission of Cryptosporidium spp. among human and animal local contact networks in Sub-Saharan Africa: a multi-country study. Clin Infect Dis. In press.

13. Hunter PR, Nichols G. Epidemiology and clinical features of Cryptosporidium infection in immunocompromised patients. Clin Microbiol Rev 2002; 15:145–54.

14. Ajjampur SS, Sankaran P, Kang G. Cryptosporidium species in HIV-infected individuals in India: an overview. Natl Med J India 2008; 21:178–84.

15. Pavlinac PB, John-Stewart GC, Naulikha JM, et al. High-risk enteric pathogens associated with HIV infection and HIV exposure in Kenyan children with acute diarrhea. AIDS 2014; 28:2287–96.

16. Aldeyari HM, Abu El-Ena NM, Karanis P. Cryptosporidium and cryptosporidiosis: the African perspective. Environ Sci Pollut Res Int 2016; 23:13811–21.

17. Kenya Ministry of Public Health Sanitation. Policy Guidelines on Control and Management of Diarrhoeal Diseases in Children Below Five Years in Kenya. Nairobi, Kenya: Kenya Ministry of Public Health Sanitation; 2010.

18. WHO Multicentre Growth Reference Study Group. WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. 2006. Available at: http://www.pedi.gr.jp/AAC/AAC/3562/.

19. Korpe PS, Valencia C, Haque R, et al. Epidemiology and risk factors for cryptosporidiosis in children from 8 low-income sites: results from the MAL-ED study. Clin Infect Dis 2018; 67:1660–9.

20. Xiao L. Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 2010; 124:80–9.

21. Minak J, Kabir M, Mahmud I, et al. Evaluation of rapid antigen point-of-care tests for use in the field diagnosis of cryptosporidiosis in children in rural Bangladesh. Clin Infect Dis 2018; 67:1347–55.

22. Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol 2004; 159:702–6.

23. Tumwine JK, Kekitiinwa A, Bakeera-Kitaka S, et al. Cryptosporidiosis and microsporidiosis in Ugandan children with persistent diarrhea with and without concurrent infection with the human immunodeficiency virus. Am J Trop Med Hyg 2005; 73:921–5.

24. Amadi B, Mwiya M, Sianongo S, et al. High dose prolonged treatment with nitazoxanide is not effective for cryptosporidiosis in HIV positive Zambian children: a randomised controlled trial. BMC Infect Dis 2009; 9:1–7.

25. Newman RD, Zu SX, Wuhib T, Lima AAM, Guerrant RL, Sears CL. Household epidemiology of Cryptosporidium parvum infection in an urban community in Northeast Brazil. Ann Intern Med 1994; 120:500–5.

26. Sarkar R, Ajjampur SR, Prabakaran AD, et al. Cryptosporidiosis among children in an endemic semiurban community in southern India: does a protected drinking water source decrease infection? Clin Infect Dis 2013; 57:398–406.

27. Stehr-Green JK, McGaig L, Remsen HM, et al. Shedding of oocysts in immune-competent individuals infected with Cryptosporidium. Am J Trop Med Hyg 1987; 36:338–42.

28. Jokipi I, Jokipii AM. Timing of symptoms and oocyst excretion in human cryptosporidiosis. N Engl J Med 1986; 315:1643–7.

29. Roy SL, DeLong SM, Stenzel SA, et al. Risk factors for sporadic cryptosporidiosis among immunocompetent persons in the United States from 1999 to 2001. J Clin Microbiol 2004; 42:2944–51.

30. Shirley D-AT, Chappell CL, Sterling CR, Okhuysen PC, Rose JB, Jakubowski W. The infectivity of Cryptosporidium parvum in healthy volunteers. N Engl J Med 1995; 332:855–9.

31. Kekitiinwa A, Bakeera-Kitaka S, et al. Transmission of Cryptosporidium parvum in feces. J Infect Dis 1993; 167:1056–60.

32. Tumwine JK, Kekitiinwa A, Bakeera-Kitaka S, et al. Cryptosporidiosis and microsporidiosis in Ugandan children with persistent diarrhea with and without concurrent infection with the human immunodeficiency virus. Am J Trop Med Hyg 2005; 73:921–5.

33. Sarkar R, Ajjampur SR, Prabakaran AD, et al. Cryptosporidiosis among children in an endemic semiurban community in southern India: does a protected drinking water source decrease infection? Clin Infect Dis 2013; 57:398–406.

34. DuPont HL, Chappell CL, Sterling CR, Okhuysen PC, Rose JB, Jakubowski W. The infectivity of Cryptosporidium parvum in healthy volunteers. N Engl J Med 1995; 332:855–9.

35. Roy SL, DeLong SM, Stenzel SA, et al. Risk factors for sporadic cryptosporidiosis among immunocompetent persons in the United States from 1999 to 2001. J Clin Microbiol 2004; 42:2944–51.

36. Egger M, Mausezahl D, Odermatt P, Marti HP, Tanner M. Symptoms and transmission of intestinal cryptosporidiosis. Arch Dis Child 1990; 65:445–7.

37. Carr A, Marriott D, Field A, et al. Treatment of HIV-1-associated microsporidiosis and cryptosporidiosis with combination antiretroviral therapy. Lancet 1998; 351:256–61.

38. Kabir M, Ahmed E, Hossain B, et al. Giardia/Cryptosporidium Quik Chek assay is more specific than quantitative polymerase chain reaction for rapid point-of-care diagnosis of cryptosporidiosis in infants in Bangladesh. Clin Infect Dis 2018; 67:1897–903.

39. Van den Bossche D, Cnops L, Verschueren J, Van Esbroeck M. Comparison of four rapid diagnostic tests, ELISA, microscopy and PCR for the detection of Giardia lamblia, Cryptosporidium spp. and Entamoeba histolytica in feces. J Microbiol Methods 2015; 110:78–84.