The U-shaped association of serum iron level with COVID-19 severity: Is iron a potential therapeutic target?

Kentaro Tojo MD, PhD; Yoh Sugawara MD, PhD; Yasufumi Oi MD, PhD; Fumihiro Ogawa MD, PhD; Takuma Higurashi MD, PhD; Yukihiro Yoshimura MD; Nobuyuki Miyata MD; Hajime Hayami MD; Yoshikazu Yamaguchi MD; Yoko Ishikawa MD; Ichiro Takeuchi MD, PhD; Natsuo Tachikawa MD; Takahisa Goto MD, PhD

1 Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan

2 Department of Intensive Care, Yokohama Municipal Citizen’s Hospital, Yokohama, Kanagawa, Japan

3 Department of Emergency Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan

4 Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan

5 Department of Infection Medicine, Yokohama Municipal Citizen’s Hospital, Yokohama, Kanagawa, Japan

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
The work was performed at Yokohama City University Hospital and Yokohama Municipal Citizen’s Hospital.

Correspondence to: Kentaro Tojo, Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
e-mail: ktojo-cib@umin.net
Fax: +81-45-787-2916; Tel: +81-45-787-2918

Conflicts of Interest and Source of Funding:
The authors have declared no specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors. The authors have disclosed that they do not have any potential conflicts of interest.

Keywords:
COVID-19; SARS-COV-2; Pneumonia; Respiratory Insufficiency; Iron; Transferrin;

Word Count: 2019 words
Abstract

Objective:

To evaluate the association between iron metabolism indicators and disease severity in hospitalized patients with coronavirus disease 2019 (COVID-19).

Design:

Two-center observational study

Setting:

A university hospital and a core hospital in Yokohama, Japan

Patients:

Adults with COVID-19 whose serum iron levels were measured within the first 5 days of hospitalization were included. Patients who refused mechanical ventilation were excluded from the study.

Measurements and Main Results:

One hundred thirty-six patients were included in this study. We analyzed the association between COVID-19 severity and serum iron, total iron binding capacity (TIBC), and transferrin saturation (TSAT) levels. Disease severity was defined as the worst respiratory status during hospitalization. Serum iron levels were significantly lower in patients with mild respiratory failure (RF) (n=55, median serum iron level: 24 [interquartile range: 19–42] mg/dL) than in the non-RF group (n=44, 40 [24–80] mg/dL) and the severe RF group (n=37, 60
[23.5–87] mg/dL); however, there were no significant differences in iron levels between the non-RF and severe RF groups (non-RF vs. mild RF: p=0.019, non-RF vs. severe RF: p>0.999, and mild RF vs. severe RF: p=0.009). That is, there was a U-shaped association between serum iron levels and disease severity. TIBC levels decreased significantly with increasing severity; consequently, TSAT was significantly higher in patients with severe RF than in other patients. Multivariate analysis including only patients with RF adjusted for age and sex demonstrated that higher serum iron or TSAT levels were independently associated with development of severe RF.

Conclusions:

A U-shaped association between serum iron level and RF severity in hospitalized COVID-19 patients was observed. Higher serum iron levels in COVID-19 patients with RF are associated with the development of severe RF, indicating that inadequate response to lower serum iron might be an exacerbating factor for COVID-19.
Introduction

Coronavirus disease 2019 (COVID-19) is an emerging infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), provoking worldwide pandemic emergencies. The main organ system affected by SARS-CoV-2 infection is the lungs, and in severe cases, life-threatening respiratory failure occurs. Although the pathophysiology of COVID-19 has not been fully elucidated, complex interactions between the virus and host responses seem to account for disease severity(1).

A host’s exposure to viral infection triggers multiple responses to mitigate the pathogen load and tissue damages, which are termed “resistance” and “tolerance”, respectively(2). Immunological responses exerted by innate and acquired immune systems are among the best-known host resistance responses. Another strategy of host resistance is the deprivation of molecules necessary for the pathogens to survive or replicate. Iron ions are among the nutrients necessary for viral replication(3, 4). When a host is infected with the virus, hepcidin is released from the liver and lowers serum iron levels to limit iron availability(3, 5). Moreover, iron overload induces oxidative stress and subsequent tissue damages(6). Therefore, lowering iron levels also engages host tolerance responses to protect the host itself.

Several previous reports have shown that a decreased serum iron level is observed in patients with severe COVID-19, and serum iron levels can be a prognostic marker (7–10).
However, it is not clear whether the lower iron level is the result of severe infection or the
mediator of disease deterioration. In this study, we evaluated the association between iron
metabolism indicators and disease severity in hospitalized COVID-19 patients with or
without respiratory failure.

Materials and Methods

Study Design

In this two-center retrospective and prospective observational study, we analyzed the
concentrations of total iron, total iron binding capacity (TIBC), transferrin saturation
(TSAT), and ferritin in the serum of patients with COVID-19. Data from patients
admitted to Yokohama City University Hospital (YCUH) from April 1st to August 7th,
2020 and data from those admitted to Yokohama Municipal Citizen’s Hospital (YMCH)
from April 1st to September 11th, 2020 were retrospectively collected. Whereas data from
patients admitted to YCUH from August 8th, 2020 to January 26th, 2021 were
prospectively collected. The study protocol was reviewed and approved by the
institutional review boards of YCUH (Yokohama City University Certified Institutional
Review Board, approval number: B200700099) and YMCH (Yokohama Municipal
Citizen’s Hospital Institutional Review Board, approval number: 20-09-04). The need for
informed consent was waived by the institutional review boards because of the observational design of the study.

Patients

The inclusion criteria were as follows: 1) aged ≥18 years, 2) a diagnosis of COVID-19 by positive results of real-time polymerase chain reaction or SARS-CoV-2 antigen test, and 3) serum iron level measured within first 5 hospital days. Patients who refused mechanical ventilation were excluded from the study.

Outcome

Patient outcomes were classified into three categories according to their worst respiratory status during hospitalization as follows: non-respiratory failure (non-RF), not requiring oxygen therapy or mechanical ventilation (MV) throughout their hospitalizations; mild RF, requiring oxygen therapy or MV but with the worst arterial oxygen partial pressure / fractional inspired oxygen (P/F) ratio measured with MV or high-flow nasal oxygen therapy (HFNO) maintained above 200; severe RF, the worst P/F ratio measured with MV or HFNO was ≤ 200.

Statistical Analysis
All data are represented as median ± interquartile range (IQR). We compared iron metabolism indicators among the three groups using the Kruskal-Wallis test followed by Dunn’s multiple comparison test. Clinical characteristics and laboratory values were analyzed with the Kruskal-Wallis test (continuous values) or the chi-square test (categorical values). Moreover, we analyzed the effect of serum iron level or TSAT on disease severity among only patients with RF using a multivariate logistic regression model adjusting for patients’ age and sex. The statistical significance level was set at p < 0.05. All statistical analyses were performed using Prism software (version 9.0; GraphPad Software, San Diego, CA, USA).

Results

Patient Characteristics

One hundred thirty-six patients were included in the study among 204 patients with COVID-19 admitted to YCUH (59 patients) or YMCH (77 patients) (Fig.1). Patient characteristics are shown in Table 1. Fifty-five patients were in the non-RF group, and 44 and 37 patients had mild and severe RF, respectively. The patients with mild or severe RF had higher age and more comorbidities than those without RF. Moreover, severe RF patients showed high neutrophil counts and CRP levels and low lymphocyte counts.
Iron metabolism in the hospitalized COVID-19 patients

Serum iron and ferritin concentrations were measured in all patients within the first 5th days of hospitalization. However, TIBC and TSAT data were missing for 16 patients (4 with mild-moderate RF and 12 with severe RF).

Serum iron levels were significantly lower in the mild RF group (median serum iron level: 24 [interquartile range: 19–42] mg/dL) than in the non-RF (40 [24–80] mg/dL, p=0.019) or severe RF groups (60 [23.5–87] mg/dL, p=0.009) (Fig.1A). No significant difference in iron levels was observed between the severe RF and non-RF groups (p>0.999) (Fig.2A). The TIBC levels significantly decreased with increasing severity (Fig.2B). Consequently, TSAT was significantly higher in patients with severe RF (32.7 [13.9–47.6] %) than in those with non-RF (14.0 [8.4–24.9] %, p=0.012) and mild RF (11.8 [7.8–22.2] %, p<0.001) (Fig.2C). Ferritin levels were significantly increased in patients with RF than in those without RF (Fig.2D), probably due to inflammation, irrespective of iron metabolism.

Single logistic regression analysis including only patients with RF also demonstrated that higher serum iron (odds ratio 1.93 [95% CI: 1.24–3.15] per 2 folds increase in serum iron level, p=0.005) or TSAT (odds ratio 1.97 [95% CI: 1.38–3.04] per 10 % increase in TSAT, p<0.001) levels were associated with the development of severe RF. Finally, we performed multivariate analysis including only patients with RF, adjusting for age and
sex, because it is known the serum iron level is affected these parameters. Either higher serum iron (odds ratio 2.02 [95% CI: 1.26–3.36] per 2 folds increase in serum iron level, p=0.005) or TSAT (odds ratio 2.00 [95% CI: 1.38–3.16] per 10 % increase in TSAT, p=0.001) levels were independently associated with severe RF among patients with RF.

Discussion

In the present study, we evaluated the association between serum iron metabolism and COVID-19 disease severity. Serum iron levels were significantly lower in patients with mild RF than in those without RF. However, there were no significant differences in iron levels between the non-RF and severe RF groups; that is, we observed a U-shaped association between serum iron levels and disease severity. Additionally, TSAT was significantly higher in patients with severe RF than in other patients. Finally, logistic regression analysis including only patients with RF revealed that a higher serum iron level or TSAT was independently associated with the development of severe RF. Thus, severe RF induced by COVID-19 is characterized by paradoxically higher serum iron levels and TSAT, suggesting that the derangement of iron metabolic responses is associated with the deterioration of COVID-19.

Previous studies have demonstrated that serum iron levels are decreased in patients with severe COVID-19 (7–10). In fact, the COVID-19 patients with RF (including both
mild and severe RF) in this study tended to have lower serum iron levels compared to patients without RF. However, in evaluating only patients with RF, higher serum iron levels and TSAT were associated with the development of severe RF. Our study has some strengths compared to other previous studies. First, we analyzed the association between the worst respiratory status and serum iron levels, whereas some previous studies evaluated disease severity on hospital admission. The severity on admission might not necessarily reflect the true disease severity throughout the disease duration. Second, we defined the patients’ outcomes based on a reliable objective criterion, the P/F ratio measured with MV or HFNO. Therefore, we believe that our analysis reflects the true association between serum iron metabolism and COVID-19 severity.

Iron is required for several viruses to replicate in the host cells(3). Iron overload is known to be associated with a poor prognosis of hepatitis virus B/C(11–13) and human immunodeficiency virus infection(14). Moreover, iron overload induces oxidative stress and tissue damages(6) accompanied with viral infection. Although the requirement of iron for SARS-CoV-2 replication is not known, it is expected that iron deprivation can inhibit SARS-CoV-2 replication(4). Our observation of the U-shaped association of serum iron and severity of COVID-19 indicates that the inadequate decrease in serum iron level relative to disease severity may lead to deterioration of COVID-19.
Serum iron levels are also associated with the hypoxic pulmonary vasoconstriction (HPV)(15). It has been reported that iron overload impairs HPV, while chelating serum iron augments HPV(16, 17). Several reports have shown that acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection is characterized by severe arterial oxygenation impairment with relatively high lung compliance(18–20). Therefore, it is assumed that inappropriate pulmonary vascular responses to hypoxia might be involved in the pathophysiology of COVID-19 ARDS(18). Our observation of higher iron levels in severe COVID-19 cases might be associated with the impairment of HPV and resultant hypoxemia. This suggests that lowering serum iron levels might potentially improve arterial oxygenation in severe RF with COVID-19.

Serum iron levels can be lowered by the administration of iron chelators such as deferoxamine(21). These iron chelators are already used for the treatment of iron overload, and drug safety has been established. It is noteworthy that we found three trials to evaluate the efficacy of deferoxamine for COVID-19 registered in the clinical trial registration database as of January 2021. In particular, one study was planned to evaluate the preventive effect of deferoxamine on ARDS development. Our data support the rationale of these trials.

This study has some limitations. First, although we performed multivariate analysis adjusting for age and sex, there might be other confounders in the association between
serum iron levels and disease severity. Second, we could not obtain the patients’ serum iron levels before SARS-COV-2 infection, although it is possible that the iron status before the infection might affect the serum iron levels on admission and the disease severity.

Conclusions

We observed a U-shaped association between serum iron levels and RF severity in hospitalized patients with COVID-19. The higher serum iron levels in COVID-19 patients with RF are associated with the development of severe RF, indicating that inadequate response to lower serum iron might be an exacerbating factor for COVID-19.

Acknowledgements

The authors wish to thank Ms. Satsuki Kusu at Yokohama City University Center for Novel and Exploratory Clinical Trials for supporting the development of the study protocol. We also thank Dr. Takahiro Mihara at Yokohama City University Graduate School of Data Science for providing expert advice on the statistical analysis.
References

1. Tay MZ, Poh CM, Rénia L, et al.: The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020; 20:363–374

2. Soares MP, Teixeira L, Moita LF: Disease tolerance and immunity in host protection against infection. Nature reviews Immunology 2017; 17:83–96

3. Drakesmith H, Prentice A: Viral infection and iron metabolism. Nat Rev Microbiol 2008; 6:541–552

4. Liu W, Zhang S, Nekhai S, et al.: Depriving Iron Supply to the Virus Represents a Promising Adjuvant Therapeutic Against Viral Survival. Curr Clin Microbiol Reports 2020; 7:13–19

5. Nemeth E, Tuttle MS, Powelson J, et al.: Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization. Science 2004; 306:2090–2093

6. Galaris D, Barbouti A, Pantopoulos K: Iron homeostasis and oxidative stress: An intimate relationship. Biochimica Et Biophysica Acta Bba - Mol Cell Res 2019; 1866:118535

7. Shah A, Frost JN, Aaron L, et al.: Systemic hypoferremia and severity of hypoxemic respiratory failure in COVID-19. Critical Care Lond Engl 2020; 24:320

8. Bolondi G, Russo E, Gamberini E, et al.: Iron metabolism and lymphocyte characterisation during Covid-19 infection in ICU patients: an observational cohort study. World J Emerg Surg 2020; 15:41

9. Hippchen T, Altamura S, Mucken Thaler MU, et al.: Hypoferremia is Associated With Increased Hospitalization and Oxygen Demand in COVID-19 Patients. Hemasphere 2020; 4:e492-1–9

10. Zhao K, Huang J, Dai D, et al.: Serum Iron Level as a Potential Predictor of Coronavirus Disease 2019 Severity and Mortality: A Retrospective Study. Open Forum Infect Dis 2020; 7:ofaa250

11. Fujita N, Sugimoto R, Urawa N, et al.: Hepatic iron accumulation is associated with disease progression and resistance to interferon/ribavirin combination therapy in chronic hepatitis C. J Gastroen Hepatol 2007; 22:1886–1893
12. Sartori M, Andorno S, Pagliarulo M, et al.: Heterozygous β-globin gene mutations as a risk factor for iron accumulation and liver fibrosis in chronic hepatitis C. *Gut* 2007; 56:693

13. Gao Y-H, Wang J-Y, Liu P-Y, et al.: Iron metabolism disorders in patients with hepatitis B-related liver diseases. *World J Clin Cases* 2018; 6:600–610

14. Gordeuk VR, Delanghe JR, Langlois MR, et al.: Iron status and the outcome of HIV infection: an overview. *J Clin Virol* 2001; 20:111–115

15. Tarry D, Powell M: Hypoxic pulmonary vasoconstriction. *Bja Educ* 2017; 17:208–213

16. Smith TG, Balanos GM, Croft QPP, et al.: The increase in pulmonary arterial pressure caused by hypoxia depends on iron status. *J Physiology* 2008; 586:5999–6005

17. Smith TG, Talbot NP, Privat C, et al.: Effects of Iron Supplementation and Depletion on Hypoxic Pulmonary Hypertension: Two Randomized Controlled Trials. *Jama* 2009; 302:1444–1450

18. Gattinoni L, Coppola S, Cressoni M, et al.: Covid-19 Does Not Lead to a “Typical” Acute Respiratory Distress Syndrome. *Am J Resp Crit Care* 2020; 0:1299–1300

19. Chiumello D, Busana M, Coppola S, et al.: Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study. *Intens Care Med* 2020; 46:2187–2196

20. Grasselli G, Tonetti T, Protti A, et al.: Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. *Lancet Respir Medicine* 2020; 8:1201–1208

21. Chaston TB, Richardson DR: Iron chelators for the treatment of iron overload disease: Relationship between structure, redox activity, and toxicity. *Am J Hematol* 2003; 73:200–210

Table. 1

Patient clinical characteristics. *p<0.05.

	all (years)	non-RF (years)	mild RF (years)	severe RF (years)	p-value
Age (years)	63 (46-73)	46 (34-59)	68 (56-75)	70 (66-78)	*<0.0001
Females/Male	46/90	23/32	14/30	9/28	0.208
Body Mass Index	22.9 (20.7-25.5)	22.5 (20.2-25.0)	22.5 (20.3-25.2)	23.7 (22.6-26.9)	*0.035
	5.9 [8]	0.0 [0]	0.0 [0]	21.6 [8]	*<0.0001
---------------------	-----------	-----------	-----------	-----------	----------
Death (percent [number])					
Commorbidities (percent [number])					
Hypertension	35.3 [48]	21.8 [12]	45.5 [20]	43.2 [16]	*0.008
Diabetes	27.2 [37]	12.7 [7]	36.4 [16]	37.8 [14]	*0.008
Asthma	9.6 [13]	9.1 [5]	4.5 [2]	16.2 [6]	0.203
Cardiac Diseases	11.0 [15]	9.1 [5]	13.6 [6]	10.8 [4]	0.772
Hepatic Diseases	6.6 [9]	7.3 [4]	6.8 [3]	5.4 [2]	0.938
Renal Diseases with Hemodyalysis	11 [15]	7.3 [4]	13.6 [6]	13.5 [5]	0.515
Laboratory data on admission					
WBC count (/μL)	6040	5360	5750	7600	*<0.0001
	(4325-8115)	(3720-7080)	(3925-7965)	(6050-11060)	
Neutrophil count (/μL)	4603	3692	4070	6445	*<0.0001
	(2852-6331)	(2422-5411)	(2604-5789)	(4956-9665)	
Lymphocyte count (/μL)	834	1026	788	612	*<0.0001
	(579-1109)	(789-1527)	(623-934)	(270-809)	
Platelet count (x1000/μL)	188	193	165	208	*0.048
	(142-243)	(151-247)	(123-217)	(152-270)	
Hemoglobin (g/dL)	13.6	14	13.6	12.9	*0.026
	(12.0-15.0)	(13.2-15.4)	(11.5-17.8)	(11.5-14.5)	
D-dimer (μg/mL)	1.2	1.06	1.27	1.24	*0.014
	(1.0-1.6)	(0.86-1.41)	(1.04-2.06)	(1.15-1.47)	
CRP (mg/dL)	4.1	1.3	5.6	8.7	*<0.0001
	(0.9-9.3)	(0.3-4.5)	(1.7-10.8)	(4.2-15.4)	
Total bilirubin (mg/dL)	0.5	0.5	0.7	0.5 (0.4-0.7)	0.305
	(0.4-0.8)	(0.3-0.8)	(0.4-0.8)		
Creatinine (mg/dL)	0.82	0.78	0.94	0.82	0.141
	(0.64-1.17)	(0.61-0.91)	(0.63-1.50)	(0.68-1.70)	
Received Treatment (percent [number])					
Mechanical Ventilation Use	28.7 [39]	0.0 [0]	6.8 [3]	97.3 [36]	*<0.0001
Drug	Percentages	p-values			
-----------------------------	-------------	----------			
High-Flow Nasal Oxygenation Use	0.7 [1]	0.0 [0]	0.0 [0]	2.7 [1]	0.270
Systemic Steroids	58.1 [79]	27.3 [15]	72.7 [32]	86.5 [32]	*<0.0001
Ciclesonide	56.6 [77]	52.7 [29]	50.0 [22]	70.3 [26]	0.140
Remdesivir	34.6 [47]	3.6 [2]	43.2 [19]	70.3 [26]	*<0.0001
Favipiravir	27.2 [37]	7.3 [4]	36.4 [16]	45.9 [17]	*<0.0001
Tocilizumab	5.9 [8]	0.0 [0]	0.0 [0]	21.6 [8]	*<0.0001
Chlorquine	12.5 [17]	16.4 [9]	6.8 [3]	13.5 [5]	0.353
Figure Legend

Figure 1. Flow diagram of the patient inclusion.

Figure 2. Iron metabolism indicators in hospitalized patients with coronavirus disease 2019. (A) serum iron, (B) total iron binding capacity (TIBC), (C) transferrin saturation (TSAT), and (D) ferritin levels. All the values were measured within the first 5 days of hospitalization. Data are presented as median ± interquartile range (IQR). *p<0.05.
204 adult patients (≥18 years old) with COVID-19 who were admitted to Yokohama City University Hospital (YCUH) or Yokohama Municipal Citizen’s Hospital (YMCH) (YCUH n=79, YMCH n=125)

63 patients without serum iron data

141 patients whose serum iron levels were measured within first 5 hospital days

5 patients who refused mechanical ventilation

136 patients included in analysis (YCUH n=59, YMCH n=77)
