Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review article

A double edged-sword - The Complement System during SARS-CoV-2 infection

Lazara Elena Santiesteban-Lores, Thais Akemi Amamura, Tiago Francisco da Silva, Leonardo Moura Midon, Milena Carvalho Carneiro, Lourdes Isaac*, Lorena Bavia*

Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil

ARTICLE INFO

Keywords:
Complement System
SARS-CoV-2
COVID-19
Inflammation
Complement inhibitors

ABSTRACT

In the past 20 years, infections caused by coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2 have posed a threat to public health since they may cause severe acute respiratory syndrome (SARS) in humans. The Complement System is activated during viral infection, being a central protagonist of innate and acquired immunity. Here, we report some interactions between these three coronaviruses and the Complement System, highlighting the central role of C3 with the severity of these infections. Although it can be protective, its role during coronavirus infections seems to be contradictory. For example, during SARS-CoV-2 infection, Complement System can control the viral infection in asymptomatic or mild cases; however, it can also intensify local and systemic damage in some of severe COVID-19 patients, due to its potent proinflammatory effect. In this last condition, the activation of the Complement System also amplifies the cytokine storm and the pathogenicity of coronavirus infection. Experimental treatment with Complement inhibitors has been an enthusiastic field of intense investigation in search of a promising additional therapy in severe COVID-19 patients.

1. Introduction

In the past two decades, we have been affected by outbreaks of three severe acute respiratory syndrome (SARS) infections caused by coronaviruses. The first outbreak of SARS emerged in China in late 2002 caused by the coronavirus SARS-CoV [1]. Later, a different coronavirus was first isolated in 2012 in Saudi Arabia [2]. This virus (MERS-CoV) causes the Middle East respiratory syndrome and has led to substantial morbidity and mortality since its emergence. With a mortality rate of approximately 34%, MERS-CoV continues to emerge and spread, having been detected in 27 countries to date [3]. In late December 2019, the outbreak of SARS (COVID-19) caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a serious global health problem of rare proportions [4,5].

2. Structural aspects of coronavirus

Coronaviruses belong to the Coronaviridae family (order Nidovirales) and are enveloped positive-sense RNA viruses, containing four major structural proteins: (i) basic nucleocapsid (N) protein which complexes with RNA to form a helical capsid within the viral membrane; (ii) membrane spike (S) protein, a type I glycoprotein on the virion surface that gives the virus its crown-like morphology; (iii) membrane (M) protein, that spans the membrane three times and has a short N-terminal ectodomain and a cytoplasmic tail; and, (iv) a small highly hydrophobic membrane protein (E) [6].

S protein mediates the initial attachment of the virion to host cell receptors. SARS-CoV and SARS-CoV-2 employs angiotensin-converting enzyme 2 (ACE2) as receptor located on the surface of several cell types such as epithelial cells of alveoli, trachea, and bronchi, bronchial serous glands, and alveolar monocytes and macrophages. It is also expressed in the gastrointestinal tract and kidneys [7]. After membrane fusion and viral entry into susceptible target cells, the viral RNA genome is released into cytoplasm leading to translation of the two polyproteins, transcription of nested sub genomic RNAs and replication of the viral genome [8].

3. The Complement System and pathogen elimination

The Complement System is one of the central protagonists of innate
and acquired immunity, playing an important role against viral, bacterial, fungal and protozoan pathogens. This system can be activated during innate (Alternative and Lectin Pathways) and acquired (Classical Pathway) immune responses (Fig. 1). Once activated, the Complement System generates several important functions (Fig. 2). Some of the most important related to pathogen killing are: (i) enhancement of microorganism phagocytosis and killing after interaction of pathogen-bound C3b/iC3b fragments with Complement Receptors (CR) CR1, CR3 and CR4 present on the surface of phagocytic neutrophils and macrophages [9]; (ii) inflammatory leukocytes infiltrate attracted by the presence of C3a and C5a fragments [10,11]; (iii) C3a and C5a fragments can trigger mast cell and basophil degranulation and release of inflammatory mediators which increase local vasodilation and vascular permeability [11]; (iv) activation of the inflammasome complex and inflammatory cytokine secretion [12]; (v) B lymphocytes activation after C3d-bound antibodies [13]; (vi) activation of the inflammasome complex and inflammatory cytokine secretion [12]; (v) formation of the MAC that may lead to lysis of enveloped viruses [19,28]; and (vi) lysis of virus-infected cells [25,29,30].

4. The role of the Complement System during viral infection

All three Complement Pathways are triggered in the presence of viruses [19]. Several viruses can trigger the Classical Pathway in the presence of natural or antigen-induced antibodies [20]. Direct C1q binding to several viruses have been observed resulting in viral neutralization and lysis [21]. Collectins such as MBL and collectin-11, and ficolins may recognize viruses and activate the Lectin Pathway [22–24]. In addition the activation of the Alternative Pathway depends on the presence of glycosaminoglycans on the viral or infected cell membrane [25].

Therefore, the functions triggered by Complement activation against virus include: (i) virus neutralization by loss of viral infectivity due to binding of Complement molecules and/or antibody on the virus surface [26]; (ii) Complement-mediated opsonization leading to virus aggregation and phagocytosis through CRs present in phagocytes [26,27]; (iii) decrease in the total number of viral particles due to aggregation-mediated neutralization of viruses [27]; (iv) phagocytosis-mediated neutralization [26]; (v) formation of the MAC that may lead to lysis of enveloped viruses [19,28]; and (vi) lysis of virus-infected cells [25,29,30].

5. The controversial role of the Complement System during coronaviruses infections

Although it can be protective, the role of the Complement System during coronavirus infections seems to be contradictory. Here, we report some interactions between SARS-CoV, MERS-CoV, and SARS-CoV-2 and the Complement System.

5.1. SARS-CoV

The role of Complement System during experimental infection by SARS-CoV was investigated using C57BL/6J wild type and C3 deficient mice [31]. After intranasal infection, C3 deficient mice presented less weight loss and less respiratory dysfunction when compared to wild type mice. Similar viral loads were observed in the lungs of both mouse

Fig. 1. Complement System Activation. Alternative Pathway: Factor B (FB) bound to C3b is cleaved by Factor D (FD) into Ba and Bb fragments. The C3 convertase (C3bBb) cleaves C3 into C3a and C3b. The C5 convertase (C3bBbC3b) cleaves C5 into C5a and C5b fragments. For simplicity, the C3 convertase C3(H2O)Bb is not represented here. Classical Pathway: once C1q binds to the immunocomplex, C1r is activated and subsequently activates C1s. Activated C1s cleaves C4 and C2, generating the C3 convertase (C4b2a) which cleaves C3 into C3a and C3b. When C3b fragments bind to the C4b2a, a C5 convertase (C3b2aC3b) is formed. Lectin Pathway: once mannose binding lectin (MBL) or ficolins bind to targets, the MBL associated serine proteases (MASP)-1, MASP-2, MASP-3 are activated, which leads to the cleavage of C4 and C2, resulting in the formation of C3 convertase and later C5 convertase, similar to those generated in the Classical Pathway. Membrane Attack Complex (MAC; C5b-9); C5 convertase cleaves C5 into C5a and C5b fragments. C5b binds to C6 and later to C7. C8 binds to C5b6 and several C9 molecules are incorporated (C5b6789n). The production of MAC can be blocked by Complement inhibitors such as AMY 101 and APL-6 that interact with C3 and prevent its cleavage into C3a and C3b. Eculizumab, Zilucoplan, Ravulizumab and Tesidolumab are antibodies that blockage the cleavage of C5. Vilobelimab: anti-C5a antibody. Avdoralimab: anti-C5AR antibody. This figure was created using Servier Medical Art, licensed under a Creative Commons Attribution 3.0 Unported License: https://smart.servier.com. Adaptations from the original art were made on the cell membrane and macrophages.
groups. Furthermore, in the absence of C3, fewer neutrophils and inflammatory monocytes were observed in the lungs, followed by milder groups. Furthermore, in the absence of C3, fewer neutrophils and inflammatory monocytes were observed in the lungs, followed by milder

The role of MBL in SARS-CoV infection still remains inconclusive. MBL binds to SARS-CoV in dose- and calcium-dependent manner [32]. Furthermore, MBL bound to the SARS-CoV enhanced C4 deposition and inhibited viral infectivity in vitro. Zhou et al. [33] showed that MBL selectively binds to retroviral particles pseudo typed with SARS-CoV S protein. MBL also mediated viral neutralization, inhibiting infection of susceptible cell lines at concentrations within or below the range observed in the serum of healthy individuals. The interaction between MBL and S protein also blocked viral binding to the dendritic cell membrane-bound calcium-dependent (C-type) lectin DC-SIGN. DC-SIGN has been shown to bind to, or facilitate infection by, a diverse array of viruses [34] by binding high-mannose carbohydrates and related surface glycans. Therefore, the ability of MBL to interfere with interactions between SARS-CoV and DC-SIGN could help to limit viral spread. Interestingly, the binding to MBL did not affect the interaction of S protein with ACE2. N-linked glycosylation site N330 in coronavirus S protein may be critical for the specific interaction with MBL since a mutation at this site significantly reduced both MBL binding and MBL-mediated viral neutralization [35].

Paradoxically, recombinant S protein was not recognized by serum MBL in in vitro studies, while lung surfactant protein D (SP-D), a collectin found in lung alveoli effectively bound S protein in a dose- and carbohydrate moieties-dependent manner. This impairment in recognition of S protein could be caused by different sugar specificities between MBL and SP-D [35].

Wang et al. [36] observed that erythrocyte-bound CR1 could be involved in the immunopathogenesis of SARS-CoV infection. In a small cohort of 54 patients, CR1 expression in erythrocytes decreased as long as disease progressed and gradually returned close to normal levels in the convalescent phase. The magnitude of this decrease was consistent with the severity of SARS.

5.2. MERS-CoV

Several studies have shown that MERS-CoV can modulate the immune response to the same degree as that observed for SARS-CoV [37], including a decrease in the presentation of antigens by MHC molecules of both Classes I and II, resulting in reduced activation of lymphocytes [38].

Patients with severe cases of MERS present fever and lung damage as aggravating factors with Complement System proteins participating in an exacerbated inflammatory response. An increase in the deposition of Complement proteins and an increase in circulating C5a have been observed in patients infected with MERS-CoV [39]. To investigate the effects of these fragments on MERS-CoV infection, a monoclonal antibody to block the C5a cell receptor (C5aR) was used resulting in decreased secretion of several cytokines and viral load in mice [39].

Tissue damage caused by cell death known as pyroptosis has also been observed [40], and the inhibition of C5aR by monoclonal antibodies in mice and human monocytes and macrophage lineage cells (THP-1) resulted in a reduction in the expression of activated caspase 1, and thus a decrease in cell death due to pyroptosis. This suggests that inhibition of anaphylatoxins may represent a possible therapeutic target.
Complement activation has been observed on endothelial cells [55], consistent with a thrombotic microangiopathy. In parallel, strong thrombi [53,54] in the lungs and kidneys with endothelial swelling, 5.3. SARS-CoV-2

has been shown that C5a stimulates excess production of neutrophil and on endothelial cells [58]. The induction of endothelial P-selectin by neutrophils) [56], increases tissue factor activity both in circulation [57] ways by the virus itself and by damaged tissues. The generation of C5a, them and some evidence that Complement System activation is associ- tion and pathogenesis observed in COVID-19 patients [46].

However, there was no difference in C3 and C4 serum levels between intensive care unit (ICU) and non-ICU patients in a retrospective study with 57 COVID-19 positive patients at the moment of hospital admission [43]. In a different study, plasma C5a, C3c and MAC were significantly elevated in COVID-19 patients when compared to healthy controls. In addition, the plasma levels of C5a and MAC were higher in ICU when compared to non-ICU patients. However, similar plasma C3c levels were observed in both groups of COVID-19 patients [44]. In a similar way, Holter et al. [45] observed a systemic activation of the Complement System in COVID-19 patients with increased levels of C4d, C3bbBP, C3bc, C5a, and sc5b-9. The concentration of sc5b-9 was particularly associated with respiratory failure and systemic inflammation.

On the other hand, dimers of N-protein from three coronaviruses (SARS-CoV, MERS-CoV and SARS-CoV-2) bind MASp-2. This association potentiates MBL interaction, MASp-2 auto-activation and subsequently Lectin Pathway activation, leading to uncontrolled activation of the Complement cascade. This mechanism could be behind the inflamma- tion and pathogenesis observed in COVID-19 patients [46].

During the COVID-19 pandemic, special attention is being given to the procoagulant state observed in patients frequently associated with disease severity and a fatal outcome [42]. COVID-19 regularly manifests as a hyper-coagulable inflammatory condition, presenting high levels of inflammatory cytokines, D-dimers [47], fibrinogen [48,49] and mild thrombocytopenia [50]. Post-mortem pathology studies have confirmed high incidence of venous thromboembolism [51,52]; and micro vascular thrombi [53,54] in the lungs and kidneys with endothelial swelling, consistent with a thrombotic microangiopathy. In parallel, strong Complement activation has been observed on endothelial cells [55].

The Complement and coagulation systems exhibit cross-talk between them and some evidence that Complement System activation is associ- ated with thrombosis in COVID-19 patients. During the course of this infection, the Complement System can be activated via multiple path- ways by the virus itself and by damaged tissues. The generation of C5a, whose levels are highly elevated in symptomatic COVID-19 patients (accompanied by a strong expression of C5AR in monocytes and neu- trrophils) [56], increases tissue factor activity both in circulation [57] and on endothelial cells [58]. The induction of endothelial P-selectin by C5a [59] is important for the recruitment and aggregation of platelets. It has been shown that C5a stimulates excess production of neutrophil extracellular traps (NET) [60] which is pro-coagulant and traps platelets resulting in platelet aggregation, coagulation and thrombus formation. This is consistent with the fact that patients with severe COVID-19 have elevated serum markers of neutrophil activation and NET formation [61]. Endothelial cells are induced by MAC to secrete von Willebrand factor [62] which seems to be accompanied by an increase in pro-thrombinase activity. This may contribute to fibrin deposition and endothelial injury. It has been shown that MASp-1 and MASp-2 can cleave prothrombin [63] and activate fibrinogen and factor XIII [64]. In a recent study, Magro et al. [55] observed strong deposition of C4d, MASp-2 and MAC in the lung and in the dermal microvasculature from COVID-19 patients with acute respiratory distress syndrome (ARDS). Complement can also inhibit fibrinolysis through C1-INH that in its native state inhibits plasmin [65] leading to decreased fibrinolysis and increased thrombus formation. On the other hand, fibrinolysis factors are able to modify Complement components. For example plasmin can activate C3 and C5 independently of convertases [66,67]. The interplay between the Complement System and Coagulation Systems could induce, at least in part, the thrombi-inflammatory state in COVID-19 patients.

A parallel among the pathogenesis of COVID-19, atypical Hemolytic Uremic Syndrome (aHUS) and Paroxysmal Nocturnal Hemoglobinuria (PNH) has been established. The latter two are rare but lethal human diseases that result from defects in the Alternative Pathway, in the case of aHUS [68]; and absence of GPI-linked Complement regulatory pro- teins due to rare mutations, in the case of PNH [69]. Consequently, both are associated with Complement overactivation, dysfunctional coagulation and thrombotic microangiopathy [70] as seen in COVID-19. Both disorders are successfully treated with Eculizumab or Ravulizumab [71,72]. In fact, patients who were on anti-Complement therapy to treat PNH at the time they became infected with SARS-CoV-2 had relatively milder symptoms [73,74].

Although the precise mechanisms underlying the acute lung injury induced during SARS-CoV-2 infection are still undefined, inflammatory mediators of the cytokine storm have been recognized to cause damage to the host cells [75]. The term cytokine storm has been used to refer to dysregulation of the immune system, with a substantial release of pro-inflammatory cytokines (mainly IL-6, IL-1, TNF-a and interferon) by several immune cells, such as macrophages, dendritic cells, natural killer cells, T and B lymphocytes [76]. In SARS-CoV-2 infection, it has been proposed that four distinct axes might cross-talk with each other in multiple known and unknown interfaces to induce the cytokine storm. The axes are: (i) ACE/AngII/AT1R; (ii) ACE2/MasR; (iii) ACE2/DAKB/ BradykininB1 receptor; and, (iv) activation of the Complement [77]. In this last axial, while C5a through C5AR contributes to release of pro-inflammatory cytokines, neutrophil recruitment, smooth muscle contraction and vascular permeability, MAC complex induces cell lysis, apoptosis and cytokine production such as IL-6, monocyte chemo-attractant protein-1 (MCP-1), IL-1, IL-17, IL-21, IFN-g, IL-22, granuloctye-macrophage colony-stimulating factor (GM-CSF) [77].

6. The role of Complement in the pathogenicity of coronavirus infection

6.1. Lung pathology

Studies of the lungs of patients with COVID-19 [55,78] detected the presence of diffuse alveolar damage, formation of hyaline membranes, inflammation, edema and fibrosis - typical characteristics of the ARDS. Advanced age, smoking, and cardiovascular diseases are some of the risk factors for ARDS and COVID-19. It is known that alveolar macrophages and pulmonary alveolar type II can secrete several proteins of the Complement System. C5a can attract neutrophils, eosinophils, lymphocytes, and monocytes to the local of infection. Additionally, C5a can induce the formation of NETs and induce monocytes and neutrophils to release reactive oxygen species (ROS) [60,79]. In the lungs, excessive production of NETs and ROS
can damage the lung epithelium, increasing the permeability of the alveolar-capillary barrier, causing edema and hemorrhage [79].

Increased levels of C5a can lead to a cytokine storm, characterized by IL-1β, IL-7, IL-8, IL-9, TNF-α and many other factors [79,80]. C5a plasma levels are elevated in COVID-19 patients, especially those with pneumonia and ARDS. The C5aR1 molecule had its expression stabilized or increased for circulating monocytes and neutrophils, depending on the severity of disease. In the broncho-alveolar lavage fluid of ARDS COVID-19 patients, C5a was detected, along with inflammatory cytokines and chemokines, such as CCL2, CXCL8, CXCL9, IL-6, TNF-α and IL-1β. Monocytes and neutrophils expressing C5aR1 were also detected in the lavage [56].

Magro and colleagues [55] analyzed skin and lung tissues from 5 patients affected with severe symptoms of COVID-19. MAC deposition was observed in the lung capillaries of 2 deceased patients, as well as C4d deposition within the lung parenchyma. Vascular MAC deposits were also seen on the skin of 3 other patients, all affected by retiform purpura, indicating vascular compromised blood vessels and ischemia of the affected region [81].

Furthermore, COVID-19 patients with pneumonia presented increased CR3 levels in blood monocytes and granulocytes, distinguishing them from those patients with mild symptoms. These results suggest that CR3 in these cells of patients with respiratory failure may be a candidate effector of both the thrombotic and inflammatory features of COVID-19 pneumonia, especially since CR3 is important for leukocyte recruitment, cytokine release, lymphocyte hyperactivation and NET-release, as well functioning as a fibrinogen receptor [82].

6.2. Kidney pathology

Similar to lungs, kidneys also express the ACE2 protein [83] and can be a target for SARS-CoV-2 infection [84,85]. A recent study investigated the correlation between 634 patients with ARDS and the development of acute kidney injury (AKI) [86]. 68% of these patients developed AKI. The common risk factors were old age, obesity, diabetes and history of heart failure. Interestingly, Diao and colleagues [84] also analyzed six kidney autopsy samples from patients with COVID-19. They observed lymphocyte infiltration in five of those and varying degrees of acute tubular necrosis, as well as strong MAC deposition in tubules. The latter was not observed in normal kidney samples, suggesting that SARS-CoV-2 is triggering Complement activation and deposition in the kidneys.

C5a can favor platelet aggregation and adhesion [58] and MAC can induce the production of procoagulant conditions [87]. It is possible that the renal condition of COVID-19 patients is caused by the release of Complement bioactive molecules, especially C5a and MAC formation [88], and the subsequent cytokine storm. These molecules, together with newcomer inflammatory cells, can damage the kidney tubules, leading to AKI.

6.3. Other pathways

Other organs, such as heart and liver, and their respective endothelial cells can also express ACE2, and are susceptible targets for SARS-CoV-2 infection. Consequently, they are affected by Complement activation, which generates bioactive molecules such as C3a and C5a, attracting immune cells, and the MAC complex, causing a procoagulant state of the endothelium, resulting in ischemia and endotheliitis [89]. Recent reports showed an endothelial dysfunction of these organs, along with accumulation of immune cells and presence of apoptotic bodies in the heart and liver cell necrosis [90]. Blood clots were also common findings at these locations in COVID-19 patients [89].

7. Blockage of Complement System activation

Numerous lines of evidence point to an uncontrolled activation of the Complement System in severe COVID-19 cases. The intense inflammatory response and the deposition of proteins such as C3 and C5 observed in the lung tissues and in the patients’ serum open the possibility for a supplementary treatment with Complement inhibitors and several of them are being tested for the treatment of patients with COVID-19 (Table 1).

Eculizumab, a monoclonal anti-C5 antibody, was the first approved Complement inhibitor and is used in patients with PNH [72,91], aHUS [92] and myasthenia gravis [93]. The deposition of C5 and C5a in the lungs of patients makes the use of anti-C5 interesting. Clinical trials with Eculizumab and Ravulizumab (another C5 inhibitor) are being carried out to evaluate the possible effectiveness of the treatment in COVID-19 patients.

Some studies have demonstrated an intense correlation between the production of C5 fragments, such as C5a, with the exacerbated proinflammatory response and lung tissue injuries of patients with ARDS [79], similar to that observed in patients with severe SARS-CoV-2 infections. Blocking C5a could prevent an excessive inflammatory response without preventing the formation of MAC and a possible defense against the virus by the Complement System. Clinical trials to assess the efficacy of I邢1, an anti-C5a monoclonal antibody, and Avdoralimab, a C5a receptor blocking monoclonal antibody, anti-C5aR1, are also being performed as possible treatment in patients with COVID-19. Zelek et al. [94] observed that LFG316 (Tesidolumab), a C5-blocking monoclonal antibody that prevents generation of C5a and membrane attack complex, was efficient to decrease the excessive inflammatory response favoring the clinical recovery in severe COVID-19 patients.

Although inhibitors related to the C5 protein present themselves as important possibilities, studies have pointed to the attenuation of ARDS, and lung lesions, in C5 deficient mice infected with SARS-CoV, indicating that an elevated activation of the Complement System could cause a worsening of the condition [31]. As a result, the use of C3 inhibitors may result in more effective mediation of inflammation than C5 inhibitors [95]. Clinical trials with C3 blocking peptides, such as AMY-101 are in the process of elucidating a possible control in the exacerbated inflammatory response, lung injuries and even multiple organ failure, observed in some COVID-19 cases [96]. The cyclic peptide C3 inhibitor AMY-101 was first used as an experimental treatment in a patient with severe ARDS due to COVID-19. A remarkable resolution of the inflammatory response was observed 48 h after the initiation of treatment.

A comparative study by Mastellos et al. [97] of COVID-19 patients that were treated with two distinct Complement blockers, Eculizumab or AMY-101, showed promising results especially for C3 inhibitors. As Eculizumab treated patients exhibited high levels of C3a, it confirms that C5 inhibition did not affect C3 activation in SARS-CoV-2 infection. More complete C3 inhibition enables better inflammatory control of leukocyte recruitment, cytokine release, lymphocyte hyperactivation and NET-driven thrombi-inflammatory pathways. In two other studies, patients showed a substantial improvement of clinical parameters after treatment with Eculizumab [96,98]. However, the concomitant use of antiviral, anticoagulant and antibiotic therapies could limit the contribution of the observed effect to Eculizumab.

Regarding the Alternative Pathway activation by SARS-CoV-2, it was demonstrated that both subunit 1 and 2 from SARS-CoV-2 S protein directly activates this pathway [98]. Factor D inhibitor (ACH-145951) was used to block Complement activation by protein and prevented both C3c and C5b-9 accumulation induced by S protein. On the other hand, Ravulizumab prevented only the accumulation of C5b-9 [99].

As mentioned above, severe cases of COVID-19 commonly show arterial thrombosis and pulmonary endothelial damage and dysfunction which can lead to LecInt Pathway activation and inflammatory damage. Narsoplinab, a monoclonal MASP-2 antibody, is under study as an inhibitor of microvascular thrombosis and is being tested for the treatment of transplant-associated thrombotic microangiopathy and so may be
effective in the treatment of patients with COVID-19 [100].

C1-INH Berinert, an inhibitor of C1 esterase derived from human plasma, used in patients with Hereditary or Acquired Angioedema, acts in the regulation of the kinin-bradykinin system, coagulation and thrombolysis. Since all of these mechanisms are affected in patients with ARDS, C1-INH Berinert could also be considered as a possible regulator of pro-inflammatory responses triggered by coronavirus infection [101]. Heparin, an anticoagulant that is being used to treat some cases of pro-inflammatory responses triggered by coronavirus infection [101].

Considering that the unregulated activation of the Complement System in SARS-CoV-2 infection was pointed out as a double-edged sword. Although Complement activation is crucial to control infection in asymptomatic or mild cases, exacerbated activation can also contribute to several pathologies such as cytokine storm and tissue damage seen in patients with severe COVID-19 (Fig. 3).

Table 1

Target	Inhibitors	Status/phase	Type of study	Responsible party/sponsor	ClinicalTrials.gov Identifier
C1 esterase	Conestat alfa (Ruconest)	Recruiting Phase 2	Interventional (clinical trial)	University Hospital, Basel, Switzerland Pharmaing Technologies B.V.	NCT04414631
C3	AMY-101	Not yet recruiting	Interventiomal (clinical trial)	Pharmacing Technologies B.V.	NCT04530136
APL-9	Recruiting Phase 1	Interventional (clinical trial)	Apellis Pharmaceuticals, Inc.	NCT04095456	
C5	Eculizumab (Soliris)	Available	Interventiomal (clinical trial)	Alexion Pharmaceuticals	NCT04355494
Zilucoplan (RA101495)	Recruiting Phase 2	Interventional (clinical trial)	University Hospital, Ghent	NCT04382755	
Ravulizumab (Ultomiris)	Not yet recruiting Phase 3	Interventional (clinical trial)	Brigham and Women’s Hospital	NCT04570397	
C5a	Vilobelimab (FX-1)	Recruiting Phase 4	Interventional (clinical trial)	Cambridge University Hospitals NHS Foundation Trust	NCT04390464
C5aR	Avdoralimab (IPH5401)	Recruiting Phase 2	Interventional (clinical trial)	InflaRx GmbH	NCT04333420

Funding sources

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [grant numbers 141874/2012-0, 420553/2017-7]; the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [grant numbers 2017/12924-3, 2019/19800-3, 2019/01435-7, 2018/26574-7, 2017/10208-9]; and the Programa de Excelência Académica da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PROEX/CAPES) [grant number 88882.327978/2019-01].

CRedit authorship contribution statement

Lazara Elena Santiesteban-Lores: writing-original draft preparation. Thais Akemi Amamura: writing-original draft preparation. Tiago Francisco da Silva: writing-original draft preparation. Leonardo Moura Midon: writing-original draft preparation. Milena Carvalho
Acknowledgements

We thank Prof. Dr. Skaker Chuck Farah from Institute of Chemistry, University of Sao Paulo, for the critical reading of this text. We also thank Servier Medical Art (https://smart.servier.com) for permission to use images to prepare the three figures.

References

[1] N.S. Zhong, B.J. Zheng, Y.M. Li, et al., Epidemiology and cause of severe acute respiratory syndrome coronavirus in the world from 1.1.2017 to 17.1.2018: a cross-sectional study, BMC Infect. Dis. 19 (1) (2019), 351.

[2] A.M. Zaki, S. van Boheemen, T.M. Bestebroer, et al., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia, N. Engl. J. Med. 367 (19) (2012) 1814–1820.

[3] K. Mobarakhi, J. Ahmadzadeh, Current epidemiological status of Middle East respiratory syndrome coronavirus in the world from 1.1.2020 to 17.1.2020: a cross-sectional study, BMC Infect. Dis. 19 (1) (2019), 351.

[4] World Health Organization, Naming the coronavirus disease (COVID-19) and the virus that causes it, Available from, https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-19)-and-the-virus-that-causes-it, 2020.

[5] Q. Li, X. Guan, P. Wu, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, N. Engl. J. Med. 382 (13) (2020) 1199–1207.

[6] C.W. Bond, J.L. Leibowitz, J.A. Robb, Pathogenic murine coronaviruses. II. Characterization of virus-specific proteins of murine coronaviruses JHMV and A59V, Virology 94 (2) (1979) 371–384.

[7] I. Hamming, W. Timens, M.L. Bulthuis, et al., Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus, in normal and diseased human lungs, J. Pathol. 197 (1) (2002) 22–31.

[8] S. Perlman, J. Netland, Coronaviruses post-SARS: update on replication and pathogenesis, Nat Rev Microbiol 7 (6) (2009) 439–450.

[9] D. Ricklin, G. Hajishengallis, K. Yang, et al., Complement: a key system for immune surveillance and homeostasis, Nat. Immunol. 11 (9) (2010) 785–797.

[10] T.E. Hugli, Biochemistry and biology of anaphylatoxins, Complement 3 (3) (1986) 111–127.
L. E. Santiesteban-Loría et al.
Life Sciences 272 (2021) 119245
[73] D.J. Arten, H.M. Belmont, J. Schaefer-Cuttillo, et al., Mild clinical course of COVID-19 in 3 patients receiving therapeutic monoclonal antibodies targeting C5 complement for hematologic disorders, Am J Case Rep 21 (2020), 927-918.

[74] A.G. Kulasekararaj, I. Lazana, J. Large, et al., Terminal complement inhibition dampens the inflammation during COVID-19, Br. J. Haematol. 190 (3) (2020) 141-143.

[75] S.K. Chatterjee, S. Saha, M.N.M. Munoz, Molecular pathogenesis and immunopathogenesis and novel therapeutic strategy against COVID-19, Front. Mol. Biosci. 7 (2020) 196.

[76] D. Ragab, H. Salah Eldin, M. Taeimah, et al., The COVID-19 cytokine storm; what we know so far, Front. Immunol. 11 (2020) 1466.

[77] M. Mahmudpour, J. Roozbeh, M. Keshavarz, et al., COVID-19 cytokine storm: the anger of inflammation, Cytokine 133 (2020), 155151.

[78] H. Zhang, C.Y. Wang, P. Zhou, et al., Hirupathologic changes and SARS-CoV-2 Immunostaining in the lung of a patient with COVID-19, Am. Intern. Med. 173 (4) (2020) 324.

[79] R. Wang, H. Xiao, R. Guo, et al., The role of CSs in acute lung injury induced by highly pathogenic viral infections, Emerg Microbes Infect 4 (5) (2015) 28.

[80] H.A. Rothan, S.N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak, J. Autoimmun. 109 (2020), 102433.

[81] C. Georgesen, L.P. Fox, J. Harp, Retiform purpura: a diagnostic approach, J. Am. Acad. Dermatol. 82 (4) (2020) 783-796.

[82] R. Gupta, V.A. Gant, B. Williams, et al., Increased Complement Receptor-3 levels in monocytes and granulocytes distinguish COVID-19 patients with pneumonia from those with mild symptoms, Int. J. Infect. Dis. 99 (2020) 381-385.

[83] F. Caibin, L. Kai, D. Yanhong, et al., ACE2 expression in kidney and testis may cause kidney and tests damage after 2019-nCoV infection, MedRxiv (2020), https://doi.org/10.1101/2020.02.12.20022418.

[84] B. Diao, C. Wang, R. Wang, et al., Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, MedRxiv (2020), https://doi.org/10.1101/2020.03.04.20031120.

[85] H. Su, M. Yang, C. Wan, et al., Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China, Kidney Int. Res. 98 (1) (2020) 219-227.

[86] A. Panitchote, O. Mehkri, A. Hastings, et al., Factors associated with acute kidney injury in acute respiratory distress syndrome, Ann. Intensive Care 9 (1) (2019) 74 (Erratum in: Ann Intensive Care 2019; 9(1):84).

[87] P.J. Sims, E.M. Faioli, T. Wiedmer, et al., Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity, J. Biol. Chem. 263 (34) (1988) 18205-18212.

[88] M. Noris, A. Benigni, G. Remuzzi, The case of complement activation in COVID-19 multiorgan impact, Kidney Int. 98 (2) (2020) 314-322.

[89] S. Vinayagam, K. Sattu, SARS-CoV-2 and coagulation disorders in different organs, Life Sci. 260 (2020), 118431.

[90] Z. Varga, A.J. Flammer, P. Steiger, et al., Endothelial cell infection and endotheliitis in COVID-19, Lancet 395 (10234) (2020) 1417-1418.

[91] R.P. Rother, S.A. Rollins, C.F. Moijzik, et al., Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria, Nat. Biotechnol. 25 (11) (2007) 1256-1264.

[92] M. Noris, M. Galbusera, S. Gastoldi, et al., Dynamics of complement activation in aHUS and how to monitor eculizumab therapy, Blood 124 (11) (2014) 1715-1726.

[93] A. Uzawa, S. Kuwabara, Eculizumab treatment for refractory generalized myasthenia gravis, Brain Nerve 71 (6) (2019) 565-570.

[94] W.M. Zelek, J. Cole, M.J. Ponsford, et al., Complement inhibition with the C5 blocker LGP316 in severe COVID-19, Am. J. Respir. Crit. Care Med. 202 (9) (2020) 1304-1308.

[95] A.M. Risitano, D.C. Mantellos, M. Huber-Lang, et al., Complement as a target in COVID-19? Nat Rev Immunol 20 (6) (2020) 343-344 (Erratum in: Nat Rev Immunol 2020; 20(7):499).

[96] S. Mattaglio, A. Ruggeri, A.M. Risitano, et al., The first case of COVID-19 treated with the complement C3 inhibitor AMY-101, Clin. Immunol. 215 (2020) 108450.

[97] D.C. Mantellos, B.G.P. Fries da Silva, B.A.L. Fonseca, et al., Complement C3 vs C5 inhibition in severe COVID-19: early clinical findings reveal differential biological efficacy, ClinImmunol 108598 (2020) 220.

[98] E. Diano, F.G. Numis, G. Porta, et al., Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience, Eur. Rev. Med. Pharmacol. Sci. 24 (7) (2020) 4040-4047.

[99] J. Yu, X. Yuan, H. Chen, et al., Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition, Blood 136 (18) (2020) 2080-2089.

[100] A. Ramboldi, G. Gritti, M.C. Mirco, et al., Endothelial injury and thrombotic microangiopathy in COVID-19: treatment with the lectin-pathway inhibitor narsoplimab, Immunobiology 9 (2020), 152001.

[101] T.M. Thomson, E. Toscano, R. Casis, et al., CI-INH and the contact system in COVID-19-associated coagulopathy, Br. J. Haematol. 225 (6) (2020), 152001, https://doi.org/10.1111/bjh.152001.

[102] A.K. Schoenfeld, E. Lahrsen, S. Alban, Regulation of complement and contact activation in COVID-19, Front. Immunol. 11 (2020) 2072.

[103] P. Urwyler, S. Moser, P. Charitos, et al., Treatment of COVID-19 with conestat alfa, a regulator of the complement, contact activation and kallikrein-kinin system, Front. Immunol. 11 (2020) 2072.