A Study on the Protective Effect of Antioxidants on Damage Induced by Liver Ischemia/Reperfusion in a Rat Model

Yong Ho Ahn1, Pu Reum Seok2, Su Jin Oh2, Jin Woo Choi2, Jae-Ho Shin2

1Department of Clinical Laboratory Science, Dongnam Health University, Suwon, Korea
2Department of Biomedical Laboratory Science, Eulji University, Sungnam, Korea

ORIGINAL ARTICLE

ABSTRACT

The hepatic ischemic model has recently been widely used for the epidemiological study of ischemic reperfusion injury. This study was carried out to investigate the protective effect of vanillin, which is known to have antioxidant and anti-inflammatory effects, against hepatic and renal injury using an ischemia–reperfusion rat model, and we also investigated the mechanism related to vanillin’s protective effect. The test material was administered at a concentration of 100 mg/kg for 3 days, followed by ligation of the liver for 60 minutes to induce ischemia reperfusion. As control groups, there was a negative control, sham control and ischemia–reperfusion-only ischemia reperfusion control, and the controls groups were compared with the drug administration group. In the vanillin group, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were significantly inhibited compared with the AST and ALT activities of the ischemia–reperfusion group, and histopathological examination showed significant reduction of both inflammation and necrosis. The malondialdehyde (MDA) and superoxide dismutase (SOD) levels were significantly different from the ischemia–reperfusion group. In conclusion, vanillin showed a hepatocyte protective action by alleviating the cellular inflammation and cell necrosis caused by hepatic ischemia–reperfusion, and vanillin mitigated inflammatory changes in the kidney glomeruli and distal tubules. The protective effect is considered to be caused by vanillin’s antioxidant function. Further studies such as on cell death and possibly vanillin’s same effect on damaged tissue will be necessary for clinical applications such as organ transplantation.

INTRODUCTION

Postoperative dysfunction and death are still serious problems, and the main cause is ischemia–reperfusion injury during surgery [1, 2]. It is reported that massive bleeding during surgical resection of hepatocellular carcinoma results in unstable cardiovascular events, and
that transfusion of hepatocellular carcinoma results in deterioration of liver function after surgery, increased recurrence rate of liver cancer and decreased survival after surgery [3-6]. In addition, because hepatic artery and portal vein are blocked at the same time, damage to liver ischemic injury and intestinal congestion can’t be avoided. This ischemic reperfusion injury is a major cause of mortality and morbidity in hepatectomy. Therefore, the long-term protective effects of drugs such as antioxidant substances or iron poisoning drugs in the ischemic reperfusion injury of the liver have been studied [7-10].

The exact mechanism of ischemic reperfusion injury has not been elucidated, but the production of oxygen free radicals by ischemia reperfusion has been reported to be one of the important factors [11]. Ischemic reperfusion injury is a pathophysiologic process that is exacerbated by resumption of blood flow and oxygen transport after hypoxic injury of the tissue. Clinical significance of this injury is more severe in the process of solid organ transplantation, spontaneous injury, hypoxic shock, and liver resection [12]. Reperfusion injury begins with direct physical damage by reactive oxygen species (ROS), inflammatory cytokines, etc., and is exacerbated by nonspecific and specific immune responses that are followed by these injuries [13]. In addition, pulmonary injury due to ischemia reperfusion in the tissues causes many problems, and clinically it is directly or indirectly related to severe shock. Vanillin (4-hydroxy-3-methoxy-benzaldehyde) is a widely used spice in the world and inhibits mutation prevention and carcinogenesis. In addition, it has been reported that inhibition of mutation by chemical and physical mutations and inhibition of invasion and metastasis of cancer cells have been reported. In the rat model, drug-induced effects were observed in liver cancer induction and cancer development in other organs [14-16]. Vanillin has been reported to inhibit the DNA-dependent protein kinase directly by inhibiting the non-kinetic DNA end-binding, the main pathway for the repair of double-stranded DNA breakdown in human cells [17]. Furthermore, vanillin has antimicrobial and antioxidant properties and has been used as a temporary preservative and therapeutic agent [18, 19]. Therefore, in this experiment, we examined the effect of vanillin on the damage of liver and kidney induced by ischemia reperfusion model in rats. In addition, antioxidant mechanisms and changes of each drug were observed by biochemical markers and immunohistopathologic methods.

MATERIALS AND METHODS

1. Experimental method

Five weeks old males Sprague-Dawley rats were divided into four groups: control group (N=6), sham group (N=6), ischemic reperfusion group (N=8), and vanillin group (N=8). The experiment was conducted in accordance with the guidelines of the Animal Screening Commission of the Eulji University were administered to the animal study group. The incubation environment was changed from 12 hours/day (9:00 am to 9:00 pm) to 12 hours/day, relative humidity is 50±10%, ventilation frequency is 10∼12 times/hour, lighting time of illumination 150∼300 Lux. The diet and drinking water were supplied for free consumption, and the daily intake was measured. After 1 week acclimation period, 100 mg/kg of vanillin (Aldrich Sigma Chemical, St. Louis, Mo., USA) was orally administered to vanillin group for 3 days. The rats were anesthetized by intraperitoneal injection of Zoletil (Virbac, Korea) and Rompun (Bayer, Korea) at a ratio of 1:2 in body weight of 0.1 mL/kg, followed by abdominal incision at 37°C. After ligation for 1 hour to induce ischemia, clips were removed and blood was collected from the tail 6 hours after reperfusion. After 24 hours from the day of induction of ischemia, rats were autopsied and samples were separated and stored at −80°C.

2. Liver function test and kidney function test

After 6 hours of ischemia reperfusion, the tail vein was collected, and after 24 hours, blood samples were collected from the abdominal aorta at the time of autopsy were centrifuged at 3,000 rpm for 15 minutes at 4°C, and then the serum were separated. Aspartate aminotrans-
ferase (ALT), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and creatinine were measured in the serum.

3. Histopathological examination

Liver and kidney tissues were fixed in 10% neutral formalin, embedded in paraffin, cut into 4 μm with a microtome, and stained with hematoxylin and eosin (H&E). Immunohistochemistry staining was performed on a γ-methacryloyloxypropyltrim ethoxysilane-coated-slide glass (Matsunami, Japan). Antigen resuspension was treated with 0.1% trypsin solution at 37°C for 30 minutes. To remove endogenous peroxidase, the slides were incubated with 0.3% H₂O₂ methanol solution at room temperature for 30 minutes. Then, the slides reacted with goat serum diluted 1:10 with PBS, and incubated with primary antibody interleukin-6 (IL-6, Abcam, USA) and tumor necrosis factor-α (TNF-α, Abcam, USA) overnight at 4°C. The biotinylated goat anti-rabbit IgG secondary antibody was reacted at room temperature for 30 minutes. Avidin-Biotin complex (Vector Laboratories, Burlingame, CA) solution the reaction was carried out at room temperature for 30 minutes. The slides were observed under a microscope.

4. Determination of malondialdehyde (MDA) content

MDA was tested by Esterbauer and Cheeseman [62], and hemoglobin components were removed from liver and kidney tissues preserved by freezing (−80°C) in heparin-added PBS solution. After homogenization with butylated hydroxytoluene (BHT) solution, centrifuge at 10,000 × g for 5 minutes to prepare supernatant. Samples and MDA standards were dispensed into microcentrifuge tubes, and 100 μL of SDS-solubilizing agent was added thereto, followed by reaction at room temperature for 5 minutes. After adding 250 μL of thiorbarbituric acid (TBA), the reaction was carried out at 95°C for 60 minutes. The mixture was cooled on ice for 5 minutes and then centrifuged at 3,000 rpm for 15 minutes. The supernatant was dispensed into 200 μL, and the MDA content was measured at 532 nm absorbance (OxiSelect TBARS assay kit, San Diego, USA).

5. Determination of Superoxide dismutase (SOD) content

SOD activity was performed according to Arthur and Boyne’s method [63]. The serum was diluted 1:5 with sample buffer, and SOD standards were prepared. 10 μL of
standard material and the diluted specimen into the sample well and add 200 µL of diluted Radical Detector. 20 µL of Xanthine Oxidase diluted in sample buffer was added to each well and shaken well at room temperature for 20 minutes. SOD content was measured at 460 nm (SOD assay kit, Cayman Chemical, Ann Arbor, MI, USA).

6. Statistics

One-way ANOVA and Tukey’s multiple comparison tests in the Prism 6 for Windows Version 6.01 (GraphPad software, Inc., California, USA) program were used to indicate the mean value of the mean error (mean ± SEM). A P-value less than 0.05 was considered statistically significant.

RESULTS

1. Results of serum AST and ALT measurements

The results of serum AST test after 6 hours of ischemia reperfusion showed that the ischemic reperfusion group had a significant difference (P<0.05) compared to negative control and sham group (P<0.01), and vanillin treated group tended to be lowered (Figure 1). After 24 hours serum AST showed a significant increase (P<0.01) in the ischemic reperfusion group compared to the negative control group and sham group vanillin treated group tended to be lowered (Figure 1). Serum ALT levels at 6 hours after ischemia reperfusion were significantly higher (P<0.01) in the ischemic reperfusion group compared to the negative control group and sham group. Serum ALT at 24 hours, compared to negative control group, ischemic reperfusion group was increased significantly (P<0.05) (Figure 1).

2. Serum blood urea nitrogen (BUN), creatinine measurement results

The results of serum BUN test after 6 hours of ischemia reperfusion was significantly increased (P<0.01) in the ischemic reperfusion group compared to the negative control group. Vanillin treated group showed no

![Figure 2. Effect of vanillin on histopathological changes in ischemia-reperfusion induced rat liver. H&E stain and immunohistochemical stain for IL-6 and TNF-α (×400).](image-url)
significant change. After 24 hours, serum BUN showed control and sham group was significantly increased ($P<0.05$) in compared with the ischemic reperfusion group. Vanillin treated group tended to decrease (Figure 1). After 6 and 24 hours, creatinine level was tended to decrease in the vanillin group compared to the ischemic reperfusion group. But there was no significant change (Figure 1).

3. Histological examination

1) H&E stain

In the liver tissue, control and sham group maintained normal structure of hepatocytes, portal vein, and bile duct tissue. In the ischemic reperfusion group, infiltration of inflammatory cells, partial necrosis and slight evidence of bleeding were observed around the portal vein. In the vanillin group, the pathological damages were significantly decreased (Figure 2). In kidney tissue, nuclear and cytoplasm of proximal tubules and small cubic cells with well-preserved corpuscles were well preserved in kidney tissue and granular cytoplasm. However, in ischemic reperfusion group, degeneration of glomeruli and disappearance of proximal tubule in the vanillin group, the degeneration of the glomeruli, the proximal tubule-like edge, and the area of the follicle were reduced with time (Figure 3).

2) IL–6 immunochemical staining findings

Immunohistochemical expression of IL–6 antibody was strongly detected in the necrotic area and inflammatory cells in the hepatic necrosis of liver tissue of ischemia-reperfusion group. However, antibody staining intensity decreased in vanillin group (Figure 2).

Immunohistochemical expression of IL–6 antibody was strongly observed in the glomeruli, proximal tubules and collecting tubules that were inflamed in the renal tissues of the ischemic reperfusion group, but the decrease of expression intensity was observed in the vanillin group (Figure 3).

Figure 3. Effect of vanillin on histopathological changes in ischemia-reperfusion induced rat kidney. H&E stain and immunohistochemical stain for IL–6 and TNF–α (×400).
3) TNF-α immunochemical staining

In the ischemic reperfusion group (Figure 2), the TNF-α immunoreactivity was strongly positive in the portal vein, periporal necrosis area, and inflammatory cells. In the vanillin group, the expression level of TNF-α antibody was decreased. In the renal tissues of the ischemic reperfusion group (Figure 3), TNF-α immunoreactivity was observed in proximal tubules and collecting tubules, and the expression of TNF-α immunochemical staining was decreased in the group treated with vanillin.

4) Malondialdehyde (MDA) content measurement

Twenty-four hours after ischemia reperfusion, liver tissue MDA was significantly increased ($P<0.01$) in the ischemic reperfusion group compared to the control group and the sham group, and decreased significantly ($P<0.05$) in the vanillin group compared to the ischemic reperfusion group. MDA in renal tissue 24 hours after ischemia reperfusion was significantly higher ($P<0.01$) in ischemic reperfusion group compared to control group and sham group (Figure 4).

5) Superoxide dismutase (SOD) content measurement

Six hours after ischemia reperfusion, the ischemic reperfusion group was increased compared to the control and sham group. Vanillin group was tended to be decreased compared to the ischemic reperfusion group. After 24 hours, serum SOD levels were significantly increased ($P<0.05$) in ischemic reperfusion group compared to sham group and vanillin group was significantly decreased ($P<0.01$) compared with ischemia-reperfusion group (Figure 4).

DISCUSSION

Hepatic ischemia reperfusion injury occurs inevitably during liver transplantation and hepatic resection. When blood flow is blocked, local ischemia occurs in the tissues, and organ failure and septicemia occur. During ischemia, anaerobic glucose degradation occurs, accumulating lactic acid in the tissues, which leads to acidification of body fluids, which promotes secretion of catecholamine, leading to cardiac tachycardia and vasoconstriction. Catecholamine and acidemia due to local ischemia cause systemic inflammatory response syndrome through secretion of inflammatory mediators resulting in systemic tissue damage and dysfunction [20]. Leukocytes stimulated by mediators also stimulate the systemic inflammatory response by promoting the secretion of cytokines, proteases, oxidants, etc., such as TNF-α, IL-6 and IL-1 [21]. Increased glutathione (GSH) deficiency and lipid peroxidation due to oxidative stress induce highly reactive free radicals and oxides and promote the oxidation of sulfhydryl groups and thioethers similar to the nitration and hydroxylation of aromatic compounds [22]. This reaction not only induces cell structure damage but also induces cellular responses through the activation of NF-κB mediated signal transduction [23]. Activation of
these transcription leads to the expression of various inflammatory mediator genes including cytokines and adhesion molecules. Cell damage can be divided histologically into cell death and cell necrosis. Cellular damage after ischemic reperfusion injury in the liver occurs most frequently in the first 3 to 6 hours after reperfusion, and cellular damage, which is expressed as cellular necrosis, is known to occur more than 3 hours after reperfusion injury [24]. In this study, morphological changes of hepatic tissue after ischemia reperfusion showed increase of inflammatory cells and partial necrosis around the portal vein, and hepatic function was significantly decreased. The ischemic reperfusion injury experienced during renal transplantation surgery is not only an acute renal failure due to acute tubular necrosis after transplantation, but also an important factor in chronic renal failure [25].

In addition to renal transplantation, ischemic reperfusion injury also causes renal dysfunction due to the same pathophysiological process in all surgical or traumatic procedures, such as abdominal aortic aneurysm surgery, which reduces blood flow to the kidneys [26, 27]. In the present study, after the ischemia reperfusion, the proximal end of the proximal tubule was disappeared, the coronary structures such as collecting tubules disappeared, and renal function was reduced. Dame and Juul [28] were expressed weakly in the glomeruli, distal tubules and collecting tubules during the development of IL-6 in human fetal kidneys, and not expressed in proximal tubules, and expression of IL-6 in renal injury and acute renal failure of the patients [29-32]. These results were consistent with the results of this study. Vanillin is a powerful antioxidant. This destroys free oxygen and inhibits protein oxidation and lipid peroxidation. These antioxidant properties eradicate free radicals and have anti-inflammatory and anti-angiogenic activity [33].

Vanillin inhibits peroxynitrite mediation in cells and inhibits enzymatic activity of metalloproteinase-9 secreted from cancer cells, inhibiting the migration and invasion of cancer cells [34]. In addition, it has been reported that inhibition of mutation by chemical and physical mutations and inhibition of invasion and metastasis of cancer cells have been reported [14-16]. In the rat model, drug-induced effects were observed in liver cancer induction and cancer development in other organs [35]. Furthermore, vanillin has antimicrobial and antioxidant properties and has been used as a temporary preservative and therapeutic agent [18, 19]. In the present study, liver function values were lowered in the vanillin group than in the ischemia-reperfusion group. BUN and creatinine levels were lower in the vanillin group than the ischemia-reperfusion group. Histologic findings showed similar results.

This radical is bound to oxygen and becomes lipid peroxide such as hydroperoxide, endoperoxide, and polyperoxide, and is decomposed into MDA. In the early stage of ischemic reperfusion injury, ROS was produced to over-produce free radicals, and MDA, which is the lipid peroxidation caused by destruction of unsaturated fatty acids, was increased in the cell membrane, and the endogenous It causes the reduction of the antioxidant GSH [36]. This study also showed that MDA was significantly decreased in the drug-treated group compared to the ischemia-reperfusion group. MDA in liver tissues is used as a substrate for glutathione peroxidase (GSH-Px) and glutathione sulfur transferase (GST), enzymes that protect against oxidative cell damage. Active oxygen, lipid peroxides and electrophilic substances, which is involved in the final detoxification process, and performs various functions such as removal of lipids, oxidants and foreign substances in the cells, amino acid transport and storage, and liver decryption [37].

SOD is the most powerful antioxidant enzyme produced in the human body and inhibits the harmful effects of active oxygen. Indeed, a considerable amount of SOD is present in the cells in the liver. Cataracts in the liver tissue were severely depleted by ischemia reperfusion injury, and adequate administration of antioxidants could significantly prevent such exhaustion. Biological defense systems that can protect biomaterials from ROS or free radicals are largely distinguished as enzymatic defenses by
enzymes such as SOD and nonenzymatic defense systems that terminate or terminate the chain reaction of ROS or free radicals [38], oxygen-bearing organisms have SOD, which converts superoxide anion to H2O2. Catalase is a radical scavenging enzyme that degrades H2O2 into water and oxygen to convert it into water [39]. In this process, SOD is exhausted. In this study, the SOD of the 24-hour ischemia-reperfusion group was significantly lower than that of the control group, consistent with the results of other investigators, such as the results of MDA [36, 40, 41]. In the group treated with vanillin, injury of organs due to ischemic reperfusion promoted SOD production and also used as an antioxidant to inhibit the production of oxygen free radicals and to protect against liver and kidney toxicity. In the future, further studies such as cell death and the same effect on damaged tissue will be necessary for clinical applications such as organ transplantation. This study was conducted to investigate the protective effect of vanillin on liver and kidney damage in rat liver ischemia reperfusion injury model. As a result, the protective effect was confirmed, which is thought to be due to the antioxidative effect of each substance.

Acknowledgements: None
Conflict of interest: None
Author’s information (Position): Ahn YH1, Professor; Seok PR2, Researcher; Oh SJ1, Researcher; Choi JW2, Researcher; Shin JH2, Professor.

REFERENCES
1. Champion HR, Jones RT, Trump BF. A clinicopathologic study of hepatic dysfunction following shock. Surg Gynecol Obstet. 1976;142:657-663.
2. Kanufman RP, Anner H, Kobzik L, Valeri CR, Shepro D, Hechman HB. Vasodilator prostaglandins prevent renal damage after ischemia. Ann Surg. 1987;205:195-198.
3. Stephensen KR, Steinberg SM, Hughes KS, Vetto JT, Sugarbaker PH, Chang AE. Perioperative blood transfusions are associated with decreased time to recurrence and decreased survival after resection of colorectal liver metastasis. Ann Surg. 1988;208:679-687.
4. Matsumata T, Kamematsu T, Shirabe K, Sonoda T, Furuta T, Sugimachi K. Decreased morbidity and mortality rates in surgical patients with hepatocellular carcinoma. Br J Surg. 1990;77:677-680.
5. Taniguchi H, Takahashi T. Analysis of 210 elective hepatic resections. Hepatogastroenterology. 1997;44:1624-1631.
6. Fujimoto J, Okamoto E, Yamanaka N, Tanaka T, Tanaka W. Adverse effect of perioperative blood transfusions on survival after hepatic resection for eptocellular carcinoma. Hepatogastroenterology. 1997;44:1390-1396.
7. Demetrios V, Nikolaos A, Georgia K, Sofia S, Loukas K, Dimitrios D, et al. Deferoxamine attenuates lipid peroxidation, blocks Interleukin-6 production, ameliorates sepsis inflammatory response syndrome, and confers renoprotection after acute hepatic ischemia in pigs. Artif Organs. 2012;36:400-408.
8. Lee HT, Park SW, Kim M, D'Agati VD. Acute kidney injury after hepatic ischemia and reperfusion injury in mice. Lab Invest. 2009;89:196-208.
9. Daeemen MA, Creis BD, Buurman WA. Apoptosis and inflammation in renal reperfusion injury. Transplantation. 2002;73:1693-1700.
10. Seifi B, Kadhodaei M, Delavari F, Mikaeli S, Shams S, Ostad SN. Pretreatment with pentoxifylline and N-acetylcysteine in liver ischemia reperfusion-induced renal injury. Ren Fail. 2012;34:610-615.
11. Korthuis RJ, Granger DN. Reactive oxygen metabolites, neutrophils, and the pathogenesis of ischemic-tissue/reperfusion. Clin Cardiol. 1995;18(Suppl 1):19-26.
12. Tsung A, Hiroyuki T, Nakao A, Fink MP, Lotze MT, Yang H, et al. The nuclear factor HMBG1 mediates hepatic injury after murine liver ischemiareperfusion. J Exp Me. 2005;201:1135-1143.

13. Brand K. Aerobic glycolysis by proliferating cells: protection against oxidative stress at the expense of energy yield. J Bioenerg Biomembr. 1997;29:355-364.

14. Lirdprapamongkol K, Sakurii H, Kawasaki N, Choo MK, Saitoh Y, Aozuka Y, et al. Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells. Eur J Pharm Sci. 2005;25:57-65.

15. Cheng WY, Wu SL, Hsiang CY, Li CC, Lai TY, Lo HY, et al. Relationship between San-Huang-Xie-Xin-Tang and its herbal components on the gene expression profiles in HepG2 cells. Am J Chin Med. 2008;36:783–797.

16. Liang JA, Wu SL, Lo HY, Hsiang CY, and Ho TY. Vanillin inhibits matrix metalloproteinase-9 expression through down-regulation of nuclear factor-B signaling pathway in human hepatocarcinoma cells. Mol Pharmacol. 2009;75:151–157.

17. Durant. S. and Kaman. P. Vanillin- a novel family of DNA-PK inhibitors. Nucleic Acids Res. 2003;31:5501-5512.

18. Fitzgerald DJ, Stratford M, Gasson MJ, Ueckert J, Bos A, Narbad A, Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J Appl Microbiol. 2004;97:104–113.

19. Santosh Kumar SS, Priyadarshini KJ, Sainis KB. Inhibition of peroxynitrite-mediated reactions by vanillin. J Agric Food Chem. 2004;52:139-145.

20. Roumen RM, Hendriks T, van der Ven-Jongekrijt J, Santosh Kumar SS, Priyadarshini KI, Sainis KB. Inhibition of peroxynitrite-mediated reactions by vanillin against Escherichia coli. J Appl Microbiol. 2004;97:104–113.

21. Kleinman SJ, Vadas MA, Harian JM, Sparks LH, Gamble JR, Agosi JM, et al. Stimulation of neutrophils by tumor necrosis factor alpha in vitro. J Immunol. 1986;136:4220-4225.

22. Gomez-Cambronero LG, Sabater L, Pereda J, Cassinello N, Camps B, Vina J, et al. Role of cytokines and oxidative stress in the pathophysiology of acute pancreatitis: therapeutic implications. Current Drug Targets Inflamm Allergy. 2002;1:393-403.

23. Zingarelli B, Sheehan M, Wong HR. Nuclear factor-kappa B as a target in critical care medicine. Critical Care Medicine. 2003;31(1 Suppl):105–111.

24. Sasaki H, Matsuno T, Tanaka N, Orita K. Activation of apoptosis during the reperfusion phase after rat liver ischemia. Transplant Proc. 1996;28:1908-1909.

25. Nankivel BJ, Chapman JR. Chronic allograft nephropathy: current concepts and future directions. Transplantation. 2006;81:643–654.

26. Wald R, Wallack SS, Liangos O, Pereira BL, Chertow GM, Laber BL. Acute renal failure after endovascular vs open repair of abdominal aortic aneurysm. J Vasc Surg. 2006;43:460–466.

27. Matas AJ, Payne WD, Simmons RL, Buselmeier TJ, Kiellstrand CM. Acute renal failure following blunt civilian trauma. Ann Surg. 1977;185:301–306.

28. Dame JB, Juul SE. The distribution of receptors for the pro-inflammatory cytokines interleukin (IL)-6 and IL-8 in the developing human fetus. Early Hum Dev. 2000;58:25–39.

29. Horii Y, Muraguchi A, Iwano M, Matsuda T, Hirayamami, Yamada H, et al. Involvement of IL-6 in mesangial proliferative glomerulonephritis. J Immunol. 1989;143:3949–3955.

30. Taniguchi Y, Yorioka N, Kurgaiji J, Katsutani M, Kuratsune M, Amimoto D, et al. Interleukin-6 localization and the diagnosis of IgA nephropathy. Nephron. 1999;81:94–98.

31. Homis E, Ribeiro-Alves MA, Lopes de Faria JB, Dias EP. Interleukin-6 stimulates tubular regeneration in rats with glycerol-induced acute renal failure. Nephron. 2002;92:192–199.

32. Ruiz-Ortega M, Ruperez M, Lorenzo O, Esteban V, Blanco J, Mezzano S, et al. Angiomyosin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kid Int Suppl. 2002;82:12–22.

33. Ahn EK, Jeon HJ, Lim EJ, Jung HJ, Park EH. Anti-inflammatory and anti-angiogenic activities of Gastrodia elata Blume. J Ethnopharmacol. 2007;110:476–482.

34. Lirdprapamongkol K, Sakurii H, Kawasaki N, Choo MK, Saitoh Y, Aozuka Y, et al. Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells. Eur J Pharm Sci. 2005;25:57–65.

35. Akagi K, Hirose M, Hoshiya T, Mizoguchi Y, Ito N, Shirai T. Interleukin-6 stimulates tubular regeneration in rats with glycerol-induced acute renal failure. Nephron. 2002;92:192–199.

36. Ruiz-Ortega M, Ruperez M, Lorenzo O, Esteban V, Blanco J, Mezzano S, et al. Angiomyosin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kid Int Suppl. 2002;82:12–22.

37. Nam JH, Park HS. Effect of quality and quantity of dietary fat on status of tocopherol and lipid peroxidation of plasma tissue in rats. Korean J Nutr. 1993;26:566–577.

38. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd ed. New York, USA: Oxford University Press; 1999.

39. Kang YH, Park YK, Ha TY, Moon KD. Effects of pine needle extract on enzyme activities of serum and liver and liver morphology in rats fed high fat diet. J Korean Soc Food Nutr. 1996;25:374–378.

40. Zaitone S, Hassan N, El-Orabi N, El-Awady S. Pentoxifylline and Meacamillin in combination with pioglitazone ameliorate experimental non-alcoholic fatty liver disease. Eur J Pharmacol. 2011;662:29–37.

41. Da Silveira M, Yoshida WB. Trimetazidine and Nacetylcysteine in attenuating hind-limb ischemia and reperfusion injuries: Experimental study in rats. Int Angiol. 2009;28:412–417.