Review article

Electroanalytical techniques for the quantification of technology-critical elements in environmental samples

Antonio Cobelo-García¹ and Montserrat Filella²,*

There is an increasing demand for analytical techniques which are able to measure “technology-critical elements”, a set of elements increasingly used in technological applications (e.g. Pt-group elements, Nb, Ta, Te, In, Ga, Ge, Tl). For most of these their environmental and toxicological effects are unknown. Recent advances in voltammetric methods for determining these elements in environmental media are reviewed, mainly covering results published in the last decade. Methods ready to be applied, along with others which are promising, though in need of further development, have been critically evaluated and clearly identified. This review is a contribution from the COST Action TD1407: Network on technology-critical elements—from environmental processes to human health threats.

Addresses
¹ Instituto de Investigaciones Maríñas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain
² Institute F.-A. Forel, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland

*Corresponding author: Filella, Montserrat (montserrat.filella@unige.ch)

Introduction

The environmental implications and adverse effects on living organisms due to metal contamination are well documented [1] and have led to the development of a range of environmental guidelines, policies and laws (e.g. EU Water Framework Directive; WHO Drinking Water Guidelines) for several of these elements (e.g. As, Cd, Cr, Cu, Hg, Pb). However, there is a range of trace elements (e.g. Pt-group elements, Nb, Ta, Te, In, Ga, Ge, Tl) for which there is still a gap in our knowledge and understanding of their environmental levels and cycling as well as of their potential (eco)toxicological impact [2].

This is mainly explained by two factors: (i) their typical ultra-trace concentrations, making it extremely difficult and/or time-consuming to determine them analytically, and (ii) no significant previous industrial role, thus no apparent environmental implications. This situation is changing rapidly and substantially, since most of these trace elements are now key components in the development of new technologies, including information and telecommunications technology, semiconductors, electronic displays, optic/photonic or energy-related technologies [3]. These elements, labelled as ‘technology-critical elements’ (TCE), are shown in Figure 1.

Highly sensitive and selective analytical techniques are needed if we are to assess the extent to which these new and expanding technologies may influence the environmental impact of these TCE, which are present at ambient ultra-trace concentrations. The currently available analytical techniques (e.g. ICP-MS) are generally sensitive enough to analyse these elements in solid samples (e.g. sediments/soils and biota), although prior separation/preconcentration procedures sometimes need...
to be applied to eliminate potential interference that may lead to erroneous results (e.g. [4]). The situation is less favourable in waters, where the ultra-low environmental concentrations usually found can be under the detection limits or at concentrations suffering from severe interferences, thus often requiring previous preconcentration steps (e.g. [5]). Here, stripping voltammetry may offer some advantages for several of these elements in certain matrices due to (i) its inherent sensitivity derived from the electrochemical preconcentration of the analyte at the electrode surface, as well as (ii) the ability to discriminate between different redox species and/or labile from non-labile metal complexes, with applications for metal speciation studies [6**].

Here, we critically review the electroanalytical techniques available for analysing TCE in environmental matrices (soils and sediments, biota and waters). Rather than presenting a full list of published methods, we have focused largely on those with a successful track record in analysing real environmental samples. We also discuss methods that offer high capabilities but still require further development. In order to help the reader to evaluate the needs and capabilities of existing methods, a general overview of TCE concentrations in natural media is given in Table 1. Rare-earth elements (REE) have not been included despite being an important group of TCE (Figure 1). Although electroanalytical methods are available for several REE (e.g. La, Ce, Pr, Eu [17–19]), their current capabilities cannot compete with the commonly used ICP-MS technique, mainly because their detection limits are too high, but also because their single-element analysis capabilities are not well adapted to these elements for which most environmental studies require the full range of REE to be analysed.

Platinum-group elements (PGE)

Platinum has been successfully measured in natural waters, biological matrices, soils and sediments, even at ambient background levels (Table 2) using the highly sensitive catalytic method at the HMDE (e.g. [29**]). A similar approach has been employed to determine Rh in sediments, taking advantage of the improved detection obtained with the aid of the second derivative signal transformation of the stripping scans [30]. The low detection limit reported, 0.02 ng L⁻¹, using a relatively short deposition time (120 s), suggests that this method could also be useful in determining this element in natural waters.

The situation is certainly less favourable for Pd, Ir, Os and Ru; despite the availability of electroanalytical pro-
oxidation states, the concentrations of Thallium in natural environments are generally lower than the background levels in environmental matrices and therefore could have important implications for the determination of these elements down to natural levels needs to be checked.

Thallium

The determination of Thallium(I) can be carried out directly by ASV. Recent studies have mostly focused on the development of Hg-free, environmentally friendly electrodes: Ag–Au alloy electrode [33], BiFe [34–36], SbFe [37,38], SnFe [39], disposable screen-printed electrodes with Bi precursor compounds [40], modified carbon electrodes [41–43], etc. However, all these electrodes have detection limits at the ppb concentration level and, even if authors often claim otherwise, they are not adequate for the analysis of environmental samples. Table 3 (section “ppb detection limit level”) lists some of these studies and shows that applications are for CRM which contains Thallium concentrations which are not environmentally realistic, i.e. spiked or extremely polluted samples, etc. Only very few published methods have detection limits at the ppt level (Table 3, section “low ppt detection limit level”). Good detection limits are achieved with a flow injection mode that allows the medium to be exchanged between the deposition and the stripping steps, using a medium which is free from interfering species (EDTA-containing electrolyte) in the stripping stage. Lukaszewski et al. [52] achieved a detection limit of 2 ng L⁻¹ for 90 min pre-concentration by applying this approach, and it was subsequently improved to 0.05 ng L⁻¹ with a 60-min deposition time by the same group [49**]. Using a Bi bulk annular band electrode, Wegiel et al. [47] reported a detection limit of 1 ng L⁻¹, which should be enough for Thallium measurement in natural waters (Table 1). However, they

Table 1
Technology-critical elements concentrations in natural media.
Element

PGE
‘Less-studied’ TCE

¹ Ir, Os, Pd, Pt, Ru: [7]; Rh: [8]; Ga, Ge, In, Nb, Ta, Te, Th: [9].
² Values for ‘less-studied’ elements in freshwaters and soils come from FOREGS (Forum of European Geological Surveys) [10]. These values have been preferred over citation of values obtained in studies with a low number of samples and covering more limited geological catchments. Measurements were made by ICP-MS, after filtration (0.45 μm) in the case of freshwaters and total digestion in (<2.0 mm) soils. For PGE in waters, references are from Ir [11], Os [12], Pd [13], Pt [14]; for Rh and Ru, due to the lack of data in stream water, information values from oceanic waters are provided [15,16]. For PGE in soils, a value from a reference site in Austria is given [4].

Anne extremely sensitive technique using an electrochemical sensor based on a reduced graphene oxide film impregnated with Nb nanoparticles for determining Pd, Pt and Rh with detection limits of 0.00045, 0.00049, and 0.00049 ng L⁻¹, respectively, in model solutions has recently been reported [32**]. Such detection limits are a few orders of magnitude lower than the background levels in environmental matrices and therefore could have important applications for the determination of these three elements. However, the authors only checked the applicability of this technique in urban dust samples; therefore, the suitability of this electrochemical sensor for the determination of these elements down to natural levels needs to be checked.

The determination of Thallium(I) can be carried out directly by ASV. Recent studies have mostly focused on the development of Hg-free, environmentally friendly electrodes: Ag–Au alloy electrode [33], BiFe [34–36], SbFe [37,38], SnFe [39], disposable screen-printed electrodes with Bi precursor compounds [40], modified carbon electrodes [41–43], etc. However, all these electrodes have detection limits at the ppb concentration level and, even if authors often claim otherwise, they are not adequate for the analysis of environmental samples. Table 3 (section “ppb detection limit level”) lists some of these studies and shows that applications are for CRM which contains Thallium concentrations which are not environmentally realistic, i.e. spiked or extremely polluted samples, etc. Only very few published methods have detection limits at the ppt level (Table 3, section “low ppt detection limit level”). Good detection limits are achieved with a flow injection mode that allows the medium to be exchanged between the deposition and the stripping steps, using a medium which is free from interfering species (EDTA-containing electrolyte) in the stripping stage. Lukaszewski et al. [52] achieved a detection limit of 2 ng L⁻¹ for 90 min pre-concentration by applying this approach, and it was subsequently improved to 0.05 ng L⁻¹ with a 60-min deposition time by the same group [49**]. Using a Bi bulk annular band electrode, Wegiel et al. [47] reported a detection limit of 1 ng L⁻¹, which should be enough for Thallium measurement in natural waters (Table 1). However, they...
Method	Complexing ligand (adsorptive methods)	Working electrode	Accuracy test	Detection limit (deposition time)	Sample type	Values obtained	Reference
Iridium							
AdsCSV	CTAB	GCE	PGE ore (MINTEK-SARM 7)	0.6 ng g⁻¹ (420 s)	Contaminated (urban) atmospheric particulate matter	<DL-15.3 ng g⁻¹	20
AdsCSV	CTAB	GCE	Spiked fresh (NIST-SRM 1643d) and sea water (BCR-CRM 403)	3 ng L⁻¹ (240 s)	Contaminated water (urban waters)	<DL-27.5 ng L⁻¹	21
Osmium							
CSV	HMDE	HMDE	Spiked olive leaves (BCR-CRM 062) and tomato leaves (NIST-SRM 1573a)	2.5 ng g⁻¹ (210 s)	Contaminated (urban) laurel leaves	<DL-23.7 ng g⁻¹	22
CSV	HMDE	HMDE	PGE ore (MINTEK-SARM 7)	0.6 ng g⁻¹ (300 s)	Contaminated (urban) atmospheric particulate matter	<DL-13.6 ng g⁻¹	23
Palladium							
AdsCSV	DMG	SPCE/BIF	Not tested	8 ng L⁻¹ (180 s)	Freshwater close to PGE mining areas	2500–5000 ng L⁻¹	24
AdsCSV	DMG	HMDE	Spiked fresh (NIST-SRM 1643d) and sea water (BCR-CRM 403)	11–15 ng L⁻¹ (360 s)	Contaminated water (urban waters)	<DL-24 ng L⁻¹	25
AdsCSV	DMG	HMDE	Spiked olive leaves (BCR-CRM 062) and tomato leaves (NIST-SRM 1573a)	80–89 ng g⁻¹ (240 s)	Contaminated (urban) laurel leaves	<DL-96 ng g⁻¹	26

(continued on next page)
Table 2 (continued)

Method	Complexing ligand (adsorptive methods)	Working electrode	Accuracy test	Detection limit (deposition time)	Sample type	Values obtained	Reference
Platinum							
AdsCSV	Formazone	HMDE	River sediment (GSJ-JSd2)	0.09 ng g⁻¹ (90 s)⁷	Oysters	0.1–0.7 ng g⁻¹	[27]
AdsCSV	Formazone	HMDE	Road dust (BCR-CRM 723)	0.013 ng g⁻¹ (60 s)⁶	Sediments	0.07–40 ng g⁻¹	[28]
Catalytic AdsCSV	Formazone	HMDE	River (NRC-SLRS4), coastal (NRC-CASS4) and oceanic (NRC-NASS5) waters	0.004 ng L⁻¹ (300 s)⁶	Natural Waters	0.02–2.9 ng L⁻¹	[29**]
Rhodium							
Catalytic AdsCSV	Formaldehyde	HMDE	River sediment (GSJ-JSd2) and road dust (BCR-CRM 723)	0.014 ng g⁻¹ (120 s)⁴	Sediments	0.06–0.47 ng g⁻¹	[30]
AdsCSV	DMG	SPCE/BiF	Not tested	5 ng L⁻¹ (180 s)⁵	Freshwater close to PGE mining areas	140–380 ng L⁻¹	[24]
AdsCSV	Formaldehyde	HMDE	PGE ore (MINTEK-SARM 7)	0.033 ng g⁻¹ (120 s)⁶	Grass (unpolluted and polluted)	<0.03–2.1 ng g⁻¹	[31]
Ruthenium							
CSV		HMDE	Spiked olive leaves (BCR-CRM 062) and tomato leaves (NIST-SRM 1573a)	3.7 ng g⁻¹ (210 s)⁶	Contaminated (urban) laurel leaves	<DL-11.3 ng g⁻¹	[22]
		HMDE	PGE ore (MINTEK-SARM 7)	0.5 ng g⁻¹ (300 s)⁶	Contaminated (urban) atmospheric particulate matter	<DL-7.7 ng g⁻¹	[23]
		HMDE	Spiked fresh (NIST-SRM 1643d) and sea water (BCR-CRM 403)	11 ng L⁻¹ (300 s)⁶	Contaminated water (urban waters)	<DL-49.6 ng L⁻¹	[21]

* Obtained from the calibration plot in fresh and sea water using the method of standard addition.

⁷ Obtained from the calibration plot in the solid sample digest using the method of standard addition.

⁶ Obtained for MQ water containing the optimised electrolyte conditions.

⁸ Calculated as three times the standard deviation of the results from digestion blanks.
Method	Working electrode	Accuracy test	Detection limit\(^t\) (deposition time)	Sample type	Values obtained	References
Low ppt detection limit level						
DP ASV	BiABE	Surface water (SPS-SW1, SPS-SW2) CRM	1 ng L\(^{-1}\) (300 s)	Tap water	ND	[47]
ASV (double deposition and stripping)	2 BiF	Spiked natural waters	4.3 ng L\(^{-1}\) (2 \times 300 s)	Lake water	ND	[48]
FI DP ASV	MFE	Soil (GBW 07401) CRM	0.05 ng L\(^{-1}\) (3600 s)	Tap water	0.21 ng L\(^{-1}\)	[49**]
SW ASV	Graphite \(\mu\) electrode	Spiked synthetic samples	10 ng L\(^{-1}\) (300 s)	River water	430 ng L\(^{-1}\)	[50]
SW ASV	NMFE	Spiked natural waters	10 ng L\(^{-1}\) (300 s)	Ground water	480 ng L\(^{-1}\)	
FI DP ASV	MFE	Spiked synthetic and real water samples	2 ng L\(^{-1}\) (5400 s)	Tap water	5–2040 ng L\(^{-1}\)	[52]
ppb detection limit level						
DP ASV	Ex situ-SbSPCNFE + crown-6-SPCNFE	Spiked tap water	8.6 \(\mu\)g L\(^{-1}\) (120 s)	-	-	[44]
SW ASV	SnFE	Lake water (TM-24.3) CRM	1.1 \(\mu\)g L\(^{-1}\) (240 s)	-	-	[39]
DP ASV	Screen printed: Bi aluminate Bi oxide Bi zirconate	Lake water (TM-23.3) CRM	1.0 \(\mu\)g L\(^{-1}\) (120 s)	-	-	[40]
			0.9 \(\mu\)g L\(^{-1}\) (120 s)			
			1.1 \(\mu\)g L\(^{-1}\) (120 s)			

(continued on next page)
Method	Working electrode	Accuracy test	Detection limit^a (deposition time)	Sample type	Values obtained	References
DP ASV	DHC-MCPE	Freshwater (SRM 1643d) CRM	0.860 µg L⁻¹ (300 s)	Tap water	ND	[43]
			Well water	ND		
			Waste water	4.2 µg L⁻¹		
SW ASV	LB_{DCA}-GCE	Spiked samples	4 µg L⁻¹ (90 s)	Tap water	ND	[42]
			Lake water	ND		
SW ASV	RDBiFE	Not tested	2.2 µg L⁻¹ (120 s)	Polluted river water	2.2 µg L⁻¹	[35]
			Soil sample	15.0 ng g⁻¹		
ASV	MFE	Spiked samples	0.7 µg L⁻¹ (60 s)	Seawater	ND	[34]
			Hydrothermal fluid	ND		
	BiFE		5.1 µg L⁻¹ (60 s)	-	-	
Flow-ASV	BiFE	Rain water (TMRAIN-95) CRM	0.12 µg L⁻¹ (300 s)	-	-	[36]
SW ASV	AgAuE	Not tested	1.4 µg L⁻¹ (400 s)	Polluted moss Bottom sediment	2.85 µg g⁻¹	[33]
			Polluted moss Bottom sediment	15.1 µg g⁻¹		
DP ASV	LB_{ACA}-GCE	Spiked samples	1.0 µg L⁻¹ (150 s)	Tap water	ND	[41]
			Lake water	ND		
DP ASV	HMDE	Water (TMDA-54.3) and cabbage (BCR 679) CRM	0.7 µg L⁻¹ (400–600 s)	Sewage water	2.03, 2.45 µg L⁻¹	[45,46]
			Polluted sediments	0.41-15.3 µg g⁻¹		

^a Limit of detection values are not always comparable because different definitions are used. All studies use the signal-to-noise approach with S/N = 3, except [39,43] (LOD = 3 σ_b where σ_b is the standard deviation of the intercept and b the slope of the calibration plot), [43] (as before but with σ_b the standard deviation of the mean value of the current of the blank) and [50] (IUPAC upper limit approach).
were not able to detect Tl in tap or river water, only in certified surface waters with concentrations of 0.5 and 2.5 μg L⁻¹ (i.e. well above natural levels).

‘Less-studied’ TCE
Published studied are gathered in Table 4 and typical environmental levels are found in Table 1.

Gallium. Piech twice reported a similar method for determining Ga (as its catechol complex) using a mercury film silver-based electrode with detection limits of 7 and 25 ng L⁻¹ [55,56]. In the more recent of these studies, the method allowed for simultaneous determination of Ge. The method was applied to tap and river waters as well as to soil and sediment samples. Ga in food samples (at the 120–150 ng g⁻¹ level) were determined using cathodic adsorptive voltammetry of the Ga-Alizarin Red S complex at a carbon paste electrode with a detection limit of 10 ng L⁻¹ [65]. This low detection limit looks promising for the applicability of the method to environmental samples. Grabarczyk and co-workers have recently developed adsorptive methods for Ga determination with cupferron as the complexing agent and using different electrodes: HMDE [54], in situ plated Pb film [66] and Bi film [53] electrodes. The detection limit of the method using PbFME was disappointing (265 ng L⁻¹) but the other electrodes gave much better limits: 9 ng L⁻¹ (HMDE) and 7 ng L⁻¹ (BiFME). In spite of this, measurements were only possible in spiked freshwater samples [54] and in “strengthened” certificate reference material seawater (NASS-5) [53].

Germanium. A sensitive procedure for determining Ge is attained by means of adsorptive catalytic CSV at the HMDE in the presence of V(IV) and 3,4,5-trihydroxybenzoic acid (gallic acid) or 3,4-dihydroxybenzaldehyde (DHB) with detection limits as low as 1.4 [57**] and 3.6 ng L⁻¹ [67], respectively. These methods were successfully applied for the determination of Ge in ore and vegetable samples [57**,67] as well as in one mineral water sample [67]. Both methods look suitable for environmental measurements. Piech reported a method for the simultaneous determination of Ga and Ge (as their complexes with catechol) in the same scan using a mercury film silver-based electrode [55] but the detection limit for Ge (58 ng L⁻¹) is much less satisfactory than that of the abovementioned methods. Catalytic amplification of the reduction current appears to be needed to obtain low enough Ge detection limits [57**,67]. A series of potential oxidants (bromate, chlorate, hydrogen peroxide, V(V), V(IV) and nitrite) were tested by Li and co-workers [57**], with V(IV)-EDTA giving the best results.

Indium. A number of methods have been proposed for voltammetric determination of In [68] but their detection limits are mostly largely outside the values needed to determine this element in environmental samples. Even methods that claim to be able to measure In in natural waters (Table 4) show detection limits in the range 13–19 ng L⁻¹, which are higher than expected environmental concentrations in waters (Table 1). Accordingly, these studies could only detect In in spiked samples. Some older adsorptive methods not intended to be applied to environmental samples but with relatively low detection limits (17 ng L⁻¹ with oxine, [69]; 50 ng L⁻¹ with morin, [70]) probably deserve to be explored further together with some methods in Table 4. It should be mentioned that the lowest detection limit reported for In (0.5 ng L⁻¹) remains the one obtained more than 40 years ago with a MFE by Florence and co-workers [71]; the method included previous separation of In from Pb and Cd by coprecipitation on ferric hydroxide and separation by ion exchange chromatography from HCl solutions before measurements were taken.

Niobium, tantalum. A few voltammetric methods for Nb have been published [72], mostly in difficult to access old Chinese journals (referenced in the Chemical Abstracts) but none seem to have been applied to real natural samples. Nevertheless, these studies might be a useful starting point for developing new adsorptive methods for the element. The numerous colorimetric methods developed in the past for Nb and Ta [73] are another source of potentially interesting ligands.

Tellurium. This element is present in natural systems in the IV and VI oxidation states. The reduction of Te(IV) in an acidic medium involves a proton catalytic reduction, which has been used for the analytical determination of this element. Accordingly, Biver et al. [6**] reported a limit of detection of about 5 ng L⁻¹ in natural waters by means of catalytic CSV at the HMDE; such a low detection limit allowed Te to be determined in mineral, river and coastal sea waters at ambient levels [6**]. Using a similar approach, Ferri et al. [64] were able to determine Te in geochemical materials down to 5 ng g⁻¹. Since only Te(IV) is electroactive, special care must be taken during the reduction step of Te(VI) to Te(IV) when total Te is to be determined, but this opens the possibility for the determination of Te speciation [6**,64].

Summary
Accurate measurement of TCE concentrations in environmental samples using the current mainstream technique (ICP-MS) is far from as straightforward as generally perceived because of the presence of significant isobaric and polyatomic interferences for several of these elements (e.g. Ga, Ge, In, Pd, Rh, Te) and/or insufficient detection limits (e.g. Ge, In, Rh, Nb, Ta, Te). With lower running costs, speciation capabilities and the potential for in situ method development for all TCEs (with the exception of REE), electroanalytical techniques are a competi-
Table 4
Published voltammetric methods for the determination of ‘less-studied’ TCE in environmental samples.

Method	Complexing ligand (adsorptive methods)	Working electrode	Accuracy test	Detection limit† (deposition time)	Sample type	Values obtained	References	
Gallium	Cupferron	In situ plated BiFE	‘Strengthened’ seawater (NASS-5) CRM	7 ng L$^{-1}$ (180 s)	-	-	[53]	
AdsCSV	Cupferron	HMDE	Spiked natural water	9 ng L$^{-1}$ (30 s)	River water	ND	[54]	
AdsCSV	Catechol	MFE	Spiked water and soil samples	25 ng L$^{-1}$ (60 s)	Tap water, River waters	ND, 63, 81 ng L$^{-1}$	[55]	
AdsCSV	Catechol	MFE	Spiked natural water	7 ng L$^{-1}$ (90 s)	Tap water, River waters, Soil	15.2 µg g$^{-1}$	ND, 71, 83 ng L$^{-1}$, 20.9 µg g$^{-1}$	[56]
Germanium	Catechol	MFE	Spiked water and soil samples	58 ng L$^{-1}$ (60 s)	Tap water, River waters	ND, ND, 102 ng L$^{-1}$, 2.1 µg g$^{-1}$	[55]	
AdsCSV	Catechol	MFE	Spiked water and soil samples	1.4 ng L$^{-1}$ (120 s)	Soil, Mineral water	82 ng L$^{-1}$	[57**]	
Catalytic AdsCSV	Gallic acid	HMDE	Certified ore	17 ng L$^{-1}$ (2 × 300 s)	River water	ND	[58]	
Indium	Gallic acid	HMDE	Certified ore	1.4 ng L$^{-1}$ (120 s)	Soil, Mineral water	82 ng L$^{-1}$	[57**]	
SW ASV (double deposition and stripping)	2 BiFE	Spiked natural water	17 ng L$^{-1}$ (2 × 300 s)	River water	ND	[58]		
Table 4 (continued)

Method	Complexing ligand (adsorptive methods)	Working electrode	Accuracy test	Detection limit\(^a\) (deposition time)	Sample type	Values obtained	References
AdsCSV	Cupferron	In situ plated PbFE	Spiked natural water	19 ng L\(^{-1}\) (60 s)	Lake water	ND	[59]
AdsCSV	Cupferron	MFE	‘Strengthened’ wastewater (SPS-WW1) and surface water (SPS-SW-1 CRM)	17 ng L\(^{-1}\) (30 s)	River water Rain water Tap water	ND	[60]
AdsCSV	Cupferron	In situ plated BiFE	Spiked natural water	96 ng L\(^{-1}\) (90 s)	Lake water	ND	[61]
AdsCSV	Xylenol orange	HMDE	Spiked natural water	13 ng L\(^{-1}\) (300 s)	Well water	ND	[62]
ASV	Xylenol orange	NMGCE	Spiked natural water	86 ng L\(^{-1}\) (120 s)	River water\(^b\)	240 ng L\(^{-1}\) 6.1 µg L\(^{-1}\)	[63]
Tellurium	Catalyst CSV	HMDE	Comparison with published values	5 ng L\(^{-1}\) (300 s)	Mineral, river and sea water	10-44 ng L\(^{-1}\)	[6**]
DP CSV\(^c\)	-	HMDE	NIST SRM 2709 (soil), 1649a (sediment); USGS GRX 1 to 6 CRM	Not provided	-	-	[64]

\(^a\) Limit of detection values are not always comparable because different definitions are used. All studies use the signal-to-noise approach with S/N = 3, except \([62]\) (S/N = 2), \([58]\) (LOD = 3 \(\sigma_B/b\) where \(\sigma_B\) is the standard deviation for a low In(III) concentration and \(b\) is the slope of the calibration plot) and \([6**]\) (alternative method based on evaluating \(\sigma_B\) from the variance of the regression residuals of a set of calibration data).

\(^b\) Samples filtered with filter paper, preconcentrated by boiling, heated to dryness with \(\text{H}_2\text{SO}_4\) to destroy organic matter.

\(^c\) The method includes preconcentration with a chelating resin (Fe(III) loaded).
tive alternative to ICP-MS. At present, methods with adequate characteristics exist for determining environmental concentrations of Ga, Ge, Pt, Rh, Te and Tl in solid matrices requiring sample mineralisation. In waters, ready to use methods capable of measuring low, natural concentrations are available for Ge, Pt, Te and Tl. For Ru, Os and Ir, available methods are only capable of measuring contaminated (solid and water) samples with high concentrations. In the case of Ga and Rh, the existing analytical procedures for successfully determining them in solid sample digests appear to have the potential to be extended to their determination in natural waters. Further development is especially demanding in the case of In, Nb and Ta, where basically no electroanalytical methodologies are available (Nb, Ta) or the existing methods are not sensitive enough and are only applicable at elevated concentrations (In).

Acknowledgement
This work was funded by COST Action TD1407: Network on technology-critical elements—from environmental processes to human health threats.

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

- Paper of special interest
- Paper of outstanding interest

1. Fairbrother A, Wenstel R, Sappington K, Wood W: Framework for metals risk assessment. Ecotoxicol Environ Saf 2007, 68:145–227.
2. Cobelo-García A, Fillea M, Croot P, Frassolin C, Du Laing G, Ospina-Alvarez N, Rauch S, Salaru P, Schäfer J, Zimmermann S: COST action TD1407 network on technology-critical elements (NOTICE)—from environmental processes to human health threats. Environ Sci Pollut Res 2015, 22:15188–15194.
3. Gunn G (Ed): Critical Metals Handbook. Nottingham, UK: American Geophysical Union and Wiley; 2014.
4. Fritsche J, Meisel T: Determination of anthropogenic input of Ru, Rh, Pd, Re, Os, Ir and Pt in soils along Austrian motorways by isotope dilution ICP-MS. Sci Total Environ 2004, 325:145–154.
5. Firdaus MF, Nosruiye K, Sato T, Urushihara S, Nakagawa Y, Umetani S, Sohrin Y: Preconcentration of Zr, Hf, Nb, Ta and W in seawater using solid-phase extraction on TSK-8-hydroxyquinoline resin and determination by inductively coupled plasma-mass spectrometry. Anal Chim Acta 2007, 583:296–302.
6. Biver M, Quentin F, Fillea M: Direct determination of tellurium and its redox speciation at the low nanogram level in natural waters by catalytic cathodic stripping voltammetry. Talanta 2015, 144:1007–1013.
7. Rudnick R, Gao S: Composition of the continental crust. In The Crust. Edited by Rudnick RL. In Treatise on Geochemistry. Edited by Holland HD, Turekian KK, vol. 3. Oxford, Elsevier–Pergamon, 2003, pp. 1–64.
8. Wedepohl KH: The composition of the continental crust. Geochim Cosmochim Acta 1995, 59:1217–1236.
9. Hu Z, Gao S: Upper crustal abundances of trace elements: A revision and update. Chem Geol 2008, 253:205–221.
10. Salminen R (Chief-editor), Batista MJ, Bidovce M, Demetriaides A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregoraiuksiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klafer G, Klein P, Lis J, Locutura J, Marsina K, Mazrekz A, O’Connor PJ, Olsson SA, Ottesen R-T, Petersell V, Plant J, Reeder S, Salipetier I, Sandstrom H, SiwekJ U, Steenfett A, Tarvainen T: Geochemical Atlas of Europe. Part 1: Background Information, Methodology and Maps. Espoo, Geological Survey of Finland: 2005, 526 pages.
11. Anbar AD, Papansastassiu AD, Wasserburg GJ: Determination of iridium in natural waters by clean chemical extraction and negative thermal ionization mass spectrometry. Anal Chem 1987, 69:2444–2450.
12. Sharma M, Wasserburg GJ: Osmium in the rivers. Geochim Cosmochim Acta 1997, 61:5411–5416.
13. Angelone L, Pinto V, Nardi E, Cremisini C: Palladium in environmental matrices: a review. Palladium Emissions in the Environment. Edited by Zereini F, Alt F. Berlin: Springer; 1996:455–485.
14. Solyo-Erdene TO, Huh Y: Dissolved platinum in major rivers of East Asia: implication for the oceanic budget. Geochem Geophys Geosyst 2012, 13:Q06009.
15. Koide M, Stallard M, Hodge V, Goldberg ED: Preliminary studies on the marine chemistry of ruthenium. Netherlands J Sea Res 1986, 20:163–166.
16. Bertine KK, Koide M, Goldberg ED: Aspects of rhodium marine chemistry. Mar Chem 1993, 42:199–210.
17. Li J, Liu S, Yan Z, Mao X, Gao P: Adsorptive voltammetric studies on the cerium(III)-alizarin complexon system at a carbon paste electrode. Microchim Acta 2006, 154:241–246.
18. Yuan S, He Q, Yao S, Hu S: Mercury-free detection of europium(III) at a glassy carbon electrode modified with carbon nanotubes by adsorptive stripping voltammetry. Anal Lett 2006, 39:373–385.
19. Makombe M, van der Horst Ch, Silwana B, Iwuoha E, Somerset V: Antimony film sensor for sensitive rare earth metal analysis in environmental samples. J Environ Sci Health Part A 2016, 51:597–606.
20. Locatelli C: Use of peak area instrumental datum as possibility to improve the analytical sensitivity in the sequential determination of ultra-trace iridium and lead in vehicle emission particulate matter. Microchem J 2013, 110:99–106.
21. Locatelli C: Sequential voltammetric determination of ultratrace osmium, ruthenium and iridium. Application to superficial water. Electroanalysis 2011, 23:1329–1336.
22. Locatelli C: Square wave catalytic adsorptive voltammetric determination of osmium, ruthenium and lead in vegetable environmental bio-monitors. Int J Environ Anal Chem 2014, 94:277–290.
23. Locatelli C: Ultra-trace osmium, ruthenium and lead in airborne particulate matter: peak area as instrumental datum to improve their simultaneous voltammetric determination. Electroanalysis 2012, 24:2273–2282.
24. Silwana B, van der Horst Ch, Iwuoha E, Somerset V: Screen-printed carbon electrodes modified with a bismuth film for stripping voltammetric analysis of platinum group metals in environmental samples. Electrochim Acta 2014, 128:119–127.
25. Locatelli C: Simultaneous square wave stripping voltammetric determination of platinum group metals (PGM) and lead at trace and ultratrace concentration level. Application to surface water. Anal Chim Acta 2006, 557:70–77.
26. Locatelli C, Melucci D, Torsi G: Determination of platinum-group metals and lead in vegetable environmental bio-monitors by voltammetric and spectroscopic techniques: critical comparison. Anal Bioanal Chem 2005, 382:1567–1573.
27. Abdou M, Schäfer J, Cobelo-Garcia A, Neira P, Petit JCJ, Auger D,
An electrochemical sensor based on a reduced graphene oxide film impregnated with antimony nanoparticles was developed, achieving extremely high sensitivities for Pt, Pd and Rh at the sub-ng L\(^{-1}\) level, showing promising capabilities for the determination of PGE in environmental samples.

Krasnodebska-Ostrega B, Paldyna J, Golimowski J. Determination of thallium at a silver–gold alloy electrode by voltammetric methods in plant material and bottom sediment containing Cd and Pb. Electroanalysis 2007, 19:620–622.

Jorge EO, Neto MMM, Rocha MM: A mercury-free electrochemical sensor for the determination of thallium(II) based on the rotating-disk bismuth film electrode. Talanta 2007, 72:1392–1399.

Korolczuk M, Surmacz W, Tyszczuk K: Determination of thallium in a flow system by anodic stripping voltammetry at a bismuth film electrode. Electroanalysis 2007, 19:2217–2221.

Sophia H, Baldrianova L, Tesarova E, Hocevar SB, Svancara I, Ogorev B, Vytras K: Insights into the simultaneous chronopotentiometric stripping measurement of indium(III), thallium(II) and zinc(II) in acidic medium at the in situ prepared antimony film carbon paste electrode. Electrochim Acta 2010, 55:7929–7933.

Bobrowksi A, Putek M, Zarebski J: Antimony film electrode prepared in situ in hydrogen potassium tartrate in anodic stripping voltammetric trace detection of Cd(II), Pb(II), Zn(II), Ti(III), In(III) and Cu(II). Electroanalysis 2012, 24:1071–1078.

Kokkinos C, Economou A: Tin film sensor with on-chip three-electrode configuration for voltammetric determination of trace Ti(III) in strong acidic media. Talanta 2014, 125:215–220.

Lezi N, Kokkinos C, Economou A, Promodimos MI: Voltammetric determination of trace Ti(III) at disposable screen-printed electrodes modified with bismuth precursor compounds. Sens Actuat B 2013, 182:718–724.

Dong H, Zheng H, Lin L, Ye B: Determination of thallium and cadmium in water using a chemically modified electrode with Langmuir–Blodgett film of p-allylcalix[4]arene. Sens Actuat B 2006, 115:303–308.

Zou L, Zhang Y, Qin H, Ye B: Simultaneous determination of thallium and lead on a chemically modified electrode with Langmuir–Blodgett film of a p-tert-butylcalix[4]arene derivative. Electroanalysis 2009, 21:2563–2568.

Cheraghli S, Taher MA, Fazeliard H: Voltammetric sensing of thallium at a carbon paste electrode modified with a crown ether. Microchim Acta 2013, 180:1157–1163.

Pérez-Ráfols C, Serrano N, Díaz-Cruz JM, Ariño C, Estebar M: Simultaneous determination of Ti(III) and In(III) using a voltammetric sensor array. Sens Actuat B 2017, 245:18–24.

Krasnodebska-Ostrega B, Styrjewska E, Golimowski J: Voltammetric determination of thallium and lead in sediment samples. Chem Anal (Warsaw) 2005, 50:807–810.

Krasnodebska-Ostrega B, Styrjewska E: Voltammetric determination of thallium in water and plant material. Chem Anal (Warsaw) 2004, 49:519–526.

Węgiel K, Jedlińska K, Bas B: Application of bismuth bulk annular band electrode for determination of ultratrace concentrations of thallium(III) using stripping voltammetry. J Hazard Mater 2016, 310:199–206.

Rutyna I, Korolczuk M: Determination of ultratrace thallium(III) by anodic stripping voltammetry at bismuth film electrodes following double deposition and stripping steps. Electroanalysis 2014, 28:2639–2643.

Jakubowska M, Zembrzuski W, Łukasiewski Z: Thallium determination at the single picomole per liter level by flow-injection differential-pulse anodic stripping voltammetry. Electroanalysis 2003, 20:1073–1077.

Thallium was determined at the pM level in water extracts of soil samples by means of anodic stripping voltammetry using a flow injection device using a long accumulation time of 1 h.

Spano N, Panzanelli A, Piu GC, Pilo MI, Sanna G, Seiber R, Tapparo A: Anodic stripping voltammetric determination of traces and ultratrace of thallium at a graphite microelectrode. Method development and application to environmental samples. Anal Chim Acta 2005, 553:201–207.

Lu T-H, Yang H-Y, Sun IW: Square-wave anodic stripping voltammetric determination of thallium(III) at a Nafion/mercury film modified electrode. Talanta 1999, 49:59–68.

Łukasiewski Z, Zembrzuski W, Piela A: Direct determination of ultratrace of thallium in water by flow-injection differential-pulse anodic stripping voltammetry. Anal Chim Acta 1996, 318:159–165.

Grabarczyk M, Wasag J: Adsorptive cathodic stripping voltammetric method for determination of gallium using an in situ plated lead film electrode. Electroanalysis 2015, 27:2596–2600.

Grabarczyk M, Wardak C: A new voltammetric strategy for sensitive and selective determination of gallium using cupferron as a complexing agent. J Environ Sci Health A 2014, 49:1142–1148.

Piech R: Novel sensitive voltammetric detection of trace gallium(III) with presence of catechol using mercury film silver based electrode. Electroanalysis 2009, 21:1842–1847.

Piech R: Study on simultaneous measurements of trace gallium(III) and germanium(IV) by adsorptive stripping voltammetry using mercury film electrode. J Appl Electrochem 2011, 41:207–214.

Li Y-H, Chen X-H, Huang M-H, Zhou F-Q: Catalytic adsorptive stripping voltammetry of germanium(IV) in the presence of gallic acid and vanadion(IV)-EDTA. Electroanalysis 2007, 19:704–708.

A highly sensitive catalytic adsorptive cathodic stripping voltammetry determination of Ge in the presence of gallic acid, with a detection limit of 1.4 ng L\(^{-1}\) was optimized and shown to be applicable for the determination of this element in natural waters.
58. Gęca I, Korolczuk M: Sensitive anodic stripping voltammetric determination of indium(III) traces following double deposition and stripping steps. J Electrochem Soc 2017, 164:H183–H187.

59. Grabarczyk M, Wasag J: Application of a lead film electrode in adsorptive stripping voltammetry for the determination of indium trace in water samples. J Electrochem Soc 2016, 163:H465–H468.

60. Grabarczyk M, Wasag J: Ultra trace determination of indium in natural water by adsorptive stripping voltammetry in the presence of cupferron as a complexing agent. J Electrochem Soc 2016, 163:H218–H222.

61. Wasag J, Grabarczyk M: Adsorptive stripping voltammetry of In(III) in the presence of cupferron using an in situ plated bismuth film electrode. Anal. Methods 2016, 8:3605–3612.

62. Benvidi A, Ardakani MM: Subnanomolar determination of indium by adsorptive stripping differential pulse voltammetry using factorial design for optimization. Anal. Lett 2009, 42:2430–2443.

63. Xiang C, Zou Y, Xie J, Fei X, Li J: Nafion-modified glassy carbon electrode for trace determination of indium. Anal Lett 2005, 38:2045–2055.

64. Ferri T, Rossi S, Sangiorgio P: Simultaneous determination of the speciation of selenium and tellurium in geological matrices by use of an iron(III)-modified chelating resin and cathodic stripping voltammetry. Anal Chim Acta 1998, 361:113–123.

65. Li Y-H, Zhao Q-L, Huang M-H: Cathodic stripping voltammetry of the gallium-alizarin red S complex at a carbon paste electrode. Electroanalysis 2005, 17:343–347.

66. Grabarczyk M, Wasag J: Determination of trace amounts of Ga(III) by adsorptive stripping voltammetry with in situ plated bismuth film electrode. Talanta 2015, 144:1091–1095.

67. Sun C, Gao Q, Xi J, Xu H: Determination of germanium(IV) by catalytic cathodic stripping voltammetry. Anal Chim Acta 1995, 309:89–93.

68. Honeychurch KC: Recent developments in the stripping voltammetric determination of indium. World J Anal Chem 2013, 1:9–13.

69. Sun C, Wang J, Hu W, Mao X: On the adsorption voltammetry of indium(III) in the presence of oxine. J Electroanal Chem 1991, 306:251–258.

70. Farias PAM, Martins CML, Ohara AK, Gold JS: Cathodic adsorptive stripping voltammetry of indium complexed with morin at a static mercury drop electrode. Anal Chim Acta 1994, 293:29–34.

71. Florence TM, Batley GE, Farrar Y: The determination of indium by anodic stripping voltammetry. Application to natural waters. J Electroanal Chem Interf Electrochem 1974, 56:301–309.

72. Wang J, Lu J, Taha Z: Adsorptive stripping voltammetric measurements of trace niobium levels following chelation with cupferron. Electroanalysis 1992, 4:981–985.

73. Moshier RW: Analytical Chemistry of Niobium and Tantalum. New York: The Macmillan Company; 1964.