Fluctuations in a superconducting quantum critical point of multi-band metals

A Ramires1,3 and M A Continentino2

1 Instituto de Física, Universidade Federal Fluminense, Campus da Praia Vermelha, Niterói, RJ, 24.210-340, Brazil
2 Centro Brasileiro de Pesquisas Físicas, Rua Dr Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ, Brazil
E-mail: mucio@cbpf.br

Received 14 September 2010, in final form 15 February 2011
Published 10 March 2011
Online at stacks.iop.org/JPhysCM/23/125701

Abstract
In multi-band metals quasi-particles arising from different atomic orbitals coexist at a common Fermi surface. Superconductivity in these materials may appear due to interactions within a band (intra-band) or among the distinct metallic bands (inter-band). Here we consider the suppression of superconductivity in the intra-band case due to hybridization. The fluctuations at the superconducting quantum critical point (SQCP) are obtained by calculating the response of the system to a fictitious space- and time-dependent field, which couples to the superconducting order parameter. The appearance of superconductivity is related to the divergence of a generalized susceptibility. For a single-band superconductor this coincides with the Thouless criterion. For fixed chemical potential and large hybridization, the superconducting state has many features in common with breached pair superconductivity with unpaired electrons at the Fermi surface. The $T = 0$ phase transition from the superconductor to the normal state is in the universality class of the density-driven Bose–Einstein condensation. For a fixed number of particles and in the strong coupling limit, the system still has an instability to the normal state with increasing hybridization.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In heavy fermion materials superconductivity can be suppressed in different ways. Most commonly, this is accomplished by an external magnetic field, applied pressure or doping [1–9]. Recently, we have proposed a new mechanism for destroying superconductivity which is specific for multi-band materials such as heavy fermions [1, 10]. When extended to the d-wave case it gives a good description of the suppression of superconductivity by pressure in the heavy fermion compound CeCoIn\textsubscript{5−x}Sn\textsubscript{x} [1]. This occurs because the narrow band of quasi-particles that form the Cooper pairs is hybridized with a band of normal electrons. As hybridization increases by pressure or doping it turns out that a minimum attractive interaction is required to produce a superconducting ground state. This mechanism of suppression of superconductivity has been demonstrated using a mean-field approach. Starting in the superconducting phase as hybridization is turned on, T_C was shown to vanish at a critical value of the mixing (V_C). However, the mean-field approach does not include fluctuations. Although the normal state for $V > V_C$ is metallic, there are no critical fluctuations associated with the onset of superconductivity in this approximation. Here we go beyond the mean-field approximation to include fluctuations. We start in the normal phase, where either $V > V_C$ or the attractive interaction is not sufficiently strong to produce a superconducting ground state. As hybridization decreases, or U increases, the system has an instability to a superconducting ground state. This is shown using a new approach [11] based on a perturbation theory for retarded and advanced Green’s functions [12]. For

3 Present address: Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA.
the single-band case our results reduce to the well known Thouless criterion [13] for superconductivity. We relate the appearance of superconductivity in the multi-band metal to the divergence of a generalized susceptibility, very much like the Stoner criterion for the appearance of ferromagnetism.

We calculate the response of the system to a frequency- and wavevector-dependent fictitious external field which couples to the superconducting order parameter. For simplicity we consider here the case of s-wave superconductivity. Using a random phase approximation (RPA), equivalent to summing an infinite series of bubble diagrams, we obtain a generalized susceptibility \(\chi(q, \omega) \). At zero temperature, the static and homogeneous part of the susceptibility diverges at exactly the critical mean-field value of hybridization, which destroys superconductivity. This divergence implies that even in zero field the system can have a finite superconducting order parameter. The condition for the superconducting instability can be expressed in the form of a Stoner-like criterion, 1 - \(U \chi_0(V) = 0 \). In the case with a fixed chemical potential this determines either a critical value of the attractive interaction \(U_{c}(V) \) above which the system is a superconductor or a critical hybridization \(V_{c}(U) \) below which superconductivity sets in.

The approach developed here allows us to obtain the nature of the fluctuations close to the superconducting quantum critical point (SQCP). We find that at \(UC(V) \) (or \(Vc(U) \)) and for low frequencies and small wavevectors, the generalized frequency and wavevector susceptibility has poles at real frequencies \(\omega = \pm \varepsilon_{q} \). It turns out that the SQCP is in the universality class of the Bose–Einstein condensation [14]. From the nature of the quantum critical fluctuations, we obtain the dynamic critical exponent \(z \) using the Hertz approach to quantum phase transitions [15]. This allows us to obtain the thermodynamic properties when the system is close to the SQCP [16]. Our theory is equivalent to a quantum Gaussian approach and since the dynamic exponent turns out to be \(z = 2 \), it yields the correct description of the SQCP for dimensions \(d \geq 2 \). In our treatment the system is metallic in the non-superconducting side of the phase diagram. This arises due to quasi-particles which remain unpaired close to the Fermi surface. This is different from the predictions of disordered induced SQCP [17], where the normal state is insulating at \(T = 0 \) due to the presence of a gap. In the case of a single band and at zero temperature, the Thouless criterion for Bardeen–Cooper–Schrieffer (BCS) superconductivity implies a superconducting ground state for any finite value of \(U \).

It is interesting at this point to comment on the differences between the intra- and inter-band problems. We have learned from the mean-field approach [10] that in the former case, superconductivity is destroyed continuously through an SQCP as hybridization is increased. On the other hand for inter-band superconductivity, as hybridization increases superconductivity is suppressed discontinuously at zero temperature. This occurs at a first-order quantum phase transition [10, 18] with phase separation and metastable regions. For intra-band attractive interactions as one approaches the superconducting state from the normal phase, the instability of the normal metal is for a \(q = 0 \) BCS state and occurs at the same value of hybridization for which the homogeneous BCS state is destroyed. For the inter-band problem, the abrupt disappearance of superconductivity suggests that we look for other forms of superconductivity that can remain stable in the presence of a large Fermi wavevector mismatch. For inter-band attractive interactions, the normal metal becomes unstable to an inhomogeneous \(q \neq 0 \) superconducting state for a value of the Fermi wavevector mismatch larger than that for which superconductivity is destroyed through a first-order transition [6]. In a previous work, using the same approach proposed here, we could determine the universality class of the quantum phase transition from the normal to a pair density wave phase as the mismatch of the bands with inter-band interaction increases [11].

The study of the crossover from weak coupling to strong coupling has attracted considerable attention after the discovery of the high-temperature superconductors. More recently, new experiments in cold atom systems have further raised interest in this problem [19]. Introducing the concept of scattering length, \(1/k_Fa_\sigma \) [20], we are able to analyze the case with a fixed number of particles and the crossover between the weak and strong coupling for the two-band system with hybridization. This is necessary since the values of \(U \) for which there is a critical value of hybridization are in the strong coupling limit. In this case the gap equation must be solved simultaneously with the number equation and relations among \(\mu, \Delta, 1/k_Fa_\sigma \) can be obtained numerically. We find that the critical value of the hybridization increases with the increase in the coupling strength, tending to a saturation value.

2. The model

We start with the following Hamiltonian describing a two-band system [21], with a hybridization between the bands and an attractive interaction in one of the bands [10, 22],

\[
\mathcal{H}_0 = \sum_{i,j,\sigma} \hat{t}_{ij}^a a_i^\dagger a_j + \sum_{i,j,\sigma} \hat{t}_{ij}^b b_i^\dagger b_j - \frac{U}{2} \sum_{i,\sigma} n_{i\uparrow} n_{i\downarrow} - V_{ij} (\hat{b}_i^\dagger a_{j\uparrow} + a_{i\uparrow} b_{j\uparrow}),
\]

(1)

where \(a_i^\dagger, a_{j\sigma}, b_i^\dagger, b_{j\sigma} \) create and destroy electrons in the narrow a-band and the wide b-band, respectively. The attractive interaction \(U \) whose origin we do not specify acts only between the electrons in the narrow a-band. The hybridization \(V \) mixes the electrons of different bands and can be controlled by external pressure. In order to calculate the superconducting response of this system, we proceed with the approach proposed in [11], introducing a wavevector- and frequency-dependent fictitious field that couples to the superconducting order parameter [23],

\[
\mathcal{H}_1 = -g \sum_i e^{-i\mathbf{q}_i \cdot \mathbf{r}_i} \mathbf{e}^{\mathrm{wkl}} (a_i^\dagger a_i^\dagger + a_i a_i^\dagger),
\]

(2)

where the frequency \(\omega_0 \) has a small positive imaginary part to guarantee the adiabatic switching on of the field. The response of the system to the fictitious field will be obtained using perturbation theory for the retarded and advanced Green’s
functions [12]. We start in the normal phase where the superconducting order parameter is zero in the absence of the external field \(g \). We split the Green’s functions, normal and anomalous into two contributions. The first of order zero and the second of first order in the field \(g \). For the anomalous Green’s functions, we write

\[
\langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle \rightarrow \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(0)} + \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)}.
\]

In the normal phase and in the absence of the fictitious field, the relevant zero-order Green’s functions can be easily calculated [10]. They are given by

\[
G^{aa}(\omega, k) = \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(0)} = \frac{\langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(0)}}{2\pi(\omega - \epsilon_k^a)},
\]

\[
\langle \sigma_a | b_{a'}^\dagger | \sigma_{a'} \rangle^{(0)} = \frac{\langle \sigma_a | b_{a'}^\dagger | \sigma_{a'} \rangle^{(0)}}{2\pi(\omega - \epsilon_k^a)},
\]

\[
\langle \sigma_a | b_{a'}^\dagger | \sigma_{a'} \rangle^{(0)} = \frac{\langle \sigma_a | b_{a'}^\dagger | \sigma_{a'} \rangle^{(0)}}{2\pi(\omega - \epsilon_k^a)},
\]

\[
\langle \sigma_a | b_{a'}^\dagger | \sigma_{a'} \rangle^{(0)} = 0, \quad \langle \sigma_a | b_{a'}^\dagger | \sigma_{a'} \rangle^{(0)} = 0.
\]

(3)

The first-order propagators should be obtained more carefully due to the time dependence of the external field. Let us consider the equation of motion for the first-order anomalous Green’s function in the normal phase,

\[
\frac{\partial}{\partial t} \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} = -\sum_k U \delta_{\sigma} \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} + \frac{\langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)}}{2\pi(\omega - \epsilon_k^a)} - \sum_k U \delta_{\sigma} \langle \sigma_a | b_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} + \frac{\langle \sigma_a | b_{a'}^\dagger | \sigma_{a'} \rangle^{(1)}}{2\pi(\omega - \epsilon_k^a)} + g\delta \epsilon_{a'q} e^{i\mathbf{q}\cdot\mathbf{r}_d} \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)},
\]

where \(\delta = \pm 1 \) for \(\sigma = \uparrow, \downarrow \).

We decouple the higher-order Green’s function in the spirit of the RPA to obtain

\[
\frac{\partial}{\partial t} \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} = -\sum_k U \delta_{\sigma} \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} + \frac{\langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)}}{2\pi(\omega - \epsilon_k^a)} - \sum_k U \delta_{\sigma} \langle \sigma_a | b_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} + \frac{\langle \sigma_a | b_{a'}^\dagger | \sigma_{a'} \rangle^{(1)}}{2\pi(\omega - \epsilon_k^a)} + g\delta \epsilon_{a'q} e^{i\mathbf{q}\cdot\mathbf{r}_d} \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)},
\]

where, in the adiabatic approximation,

\[
\delta \Delta_{\sigma}(t) = \delta \Delta_{\sigma}^{aa} e^{-i\mathbf{q}\cdot\mathbf{r}_d} e^{i\mathbf{q}\cdot\mathbf{r}_d}.
\]

(4)

Next, we perform a Fourier transformation only in the time variable \(t \), using \(a_{a'}^\dagger(t) = \int d\omega a_{a'}^\dagger(\omega) e^{-i\omega t} \) and the same for \(b_{a'}^\dagger(t) \). Notice that the zero-order propagators are time translation invariant and depend only on the time difference \((t - t') \). The first-order propagators, however, are functions of both \(t \) and \(t' \). We can also Fourier transform in space, using \(a_{a'}^\dagger(t) = \sum_k a_{a'}^\dagger_k(t) e^{i\mathbf{k}\cdot\mathbf{r}_d} \). We get

\[
(\omega + \epsilon_k^a) \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} = U \delta \Delta_{\sigma}^{aa} \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(0)} - V_k \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} + g\delta \epsilon_{\sigma} \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)},
\]

(5)

Spatial translation invariance is lost due to the spatial dependence of the external field. Now, we go on to write the equations of motion for the new generated Green’s functions. Proceeding as above we arrive at the following system of equations,

\[
(\omega + \epsilon_k^a) \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} = U \delta \Delta_{\sigma}^{aa} \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(0)} - V_k \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} + g\delta \epsilon_{\sigma} \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)},
\]

(6)

\[
(\omega - \epsilon_k^a) \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} = -U \delta \Delta_{\sigma}^{aa} \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(0)} + V_k \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} + g\delta \epsilon_{\sigma} \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)},
\]

(7)

\[
(\omega - \epsilon_k^a) \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} = -V_k \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)},
\]

(8)

We notice from equation (7) that inter-band pairing can be induced by hybridization even in the absence of inter-band attractive interactions. In the case of purely inter-band interactions, the normal BCS superconductor transition is discontinuous and phase separation occurs [24, 25]. Here, however, these inter-band anomalous correlations induced by hybridization do not affect the nature of the transition [10].

The system of equations (5)–(8) can be easily solved. In particular we get, for the anomalous Green’s function,

\[
\langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} = \frac{\omega + \epsilon_k^a}{2\pi} \left[U \delta \Delta_{\sigma}^{aa} + g\delta \epsilon_{\sigma} \right] \left[\langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(0)} - V_k \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} \right] \times \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(0)}
\]

(9)

Notice that the index \((t') \) becomes redundant since the zero-order Green’s functions are time translation invariants. The anomalous first-order propagator can finally be written as

\[
\langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} = \frac{1}{2\pi} \left[U \delta \Delta_{\sigma}^{aa} + g\delta \epsilon_{\sigma} \right] \left[\langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(0)} - V_k \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)} \right] \times \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(0)}
\]

(10)

Then, the anomalous first-order Green’s function can be completely determined in terms of the zero-order equilibrium Green’s functions obtained previously. This allows us to use the fluctuation-dissipation theorem [12] to obtain the correlation function \(\delta \Delta_{\sigma}^{aa} \) from the above anomalous Green’s functions.

\[
\delta \Delta_{\sigma}^{aa} = \sum_k F_{\omega} \langle \sigma_a | a_{a'}^\dagger | \sigma_{a'} \rangle^{(1)}
\]

where \(F_{\omega} \) is the statistical average of the discontinuity of the Green’s functions \(G(\omega) \) on the real axis [12]. The function \(f(\omega) \) is
the Fermi–Dirac distribution. Defining the susceptibility (see equation (3)) as
\[\chi_0^{aa}(q, \omega_0) = -2\pi \sum_k F_\omega \{ \mathcal{G}^{aa}(-\omega, k) \mathcal{G}^{aa}(\omega + \omega_0, k - q) \}, \]
we can write the response to the fictitious field in the form
\[\delta \Delta_{\text{hh}} = \frac{\chi_0^{aa}(q, \omega_0)}{1 - U \chi_0^{aa}(q, \omega_0)} g. \] (11)

Then, the change of the order parameter due to the fictitious field is given by a generalized susceptibility \(\chi^{aa}(q, \omega_0) \), in the form \(\delta \Delta_{\text{hh}} = \chi^{aa}(q, \omega_0) g \). In the normal metallic phase, when parameters of the multi-band system such as the hybridization or the strength of the attractive interaction are changed, eventually the condition \(1 - U \chi_0^{aa}(q, \omega_0 = 0) = 0 \) is attained. This signals an instability of the system to a superconducting phase since, even in the absence of the field \(g \), the order parameter may be finite. So, the appearance of superconductivity is related to the divergence of a generalized susceptibility. If the above criterion is first satisfied for \(q = 0 \), the instability is towards a homogeneous superconducting phase, if it occurs first for a finite \(q = q_0 \), an inhomogeneous superconducting Fulde, Ferrell, Larkin and Ovchinnikov (FLO)-like phase \([26]\) sets in \([11]\). This is the case in general for inter-band interactions in the presence of a mismatch of the Fermi wavevectors of the non-hybridized bands, as shown in \([11]\). For intra-band interactions, the instability is towards a homogeneous superconducting phase when the condition \(1 - U \chi_0^{aa}(q = 0, \omega_0 = 0) = 0 \) is fulfilled \([10]\).

2.1. The generalized susceptibility

Making a change of variables, and writing in a more symmetric form, the frequency- and wavevector-dependent susceptibility of equation (11) is obtained as
\[\chi_0^{aa}(2q, \omega_0) = -\sum_k \frac{1}{(\omega^0_{k+q} - \omega^0_{k-q})} \left[1 - f(\omega^0_{k+q}) \right] \times \left(\frac{(\omega^a_{k+q} - \epsilon^b_{k+q})(\omega^a_{k+q} + \epsilon^b_{k-q} - \omega_0)}{(\omega^0_{k+q} - \omega^0_{k+q})(\omega^a_{k+q} + \omega^0_{k-q} - \omega_0)} + f(\omega^0_{k+q}) \left(\frac{(\omega^a_{k+q} - \epsilon^b_{k+q})(\omega^a_{k+q} + \epsilon^b_{k-q} - \omega_0)}{(\omega^0_{k+q} - \omega^0_{k-q})(\omega^a_{k+q} + \omega^0_{k-q} - \omega_0)} \right) \right] - \sum_k \frac{1}{(\omega^0_{k+q} + \omega^0_{k-q} - \omega_0)} \left[1 - f(\omega^0_{k+q}) \right] \times \left(\frac{(\omega^b_{k+q} - \epsilon^b_{k+q})(\omega^a_{k+q} + \epsilon^b_{k-q} - \omega_0)}{(\omega^0_{k+q} - \omega^0_{k+q})(\omega^a_{k+q} + \omega^0_{k-q} - \omega_0)} + f(\omega^0_{k+q}) \left(\frac{(\omega^b_{k+q} - \epsilon^b_{k+q})(\omega^a_{k+q} + \epsilon^b_{k-q} - \omega_0)}{(\omega^0_{k+q} - \omega^0_{k-q})(\omega^a_{k+q} + \omega^0_{k-q} - \omega_0)} \right) \right], \] (13)

where
\[\omega^a_k = \frac{\epsilon^a_k + \epsilon^b_k}{2} \pm \sqrt{\left(\frac{\epsilon^a_k - \epsilon^b_k}{2} \right)^2 + V^2_k}, \] (14)
are the energies of the hybrid bands. These bands are schematized in figure 1.

![Figure 1](image-url)
of the parameters used to obtain the curve are \(\alpha \). The system is a BCS superconductor for any value of \(T \).

For any finite interaction \(V \) there is a reorganization of the electronic structure. The bands repel each other and the Fermi wavevectors of the new hybrid bands eventually move out of the region of integration (see figure 2). In these conditions, the equation 1 avoiding the weak coupling logarithmic singularity.

Solving the equation 1 – \(U \chi_{a}^{aa}(q = 0, \omega_0 = 0) = 0 \) can be solved numerically for finite temperatures and a critical line as a function of hybridization, \(T_{C} \times V \), ending in an SQCP can be obtained [10]. Close to \(V_{BCS} \) the critical temperature vanishes as \(T_{C} \propto \sqrt{V_{C} - V} \), with a mean-field shift exponent \(\psi = 1/2 \).

Solving the equation 1 – \(U \chi_{a}^{aa}(q = 0, \omega_0 = 0) = 0 \) for \(T = 0 \), we obtain the zero temperature phase diagram of figure 2. It shows the critical value of the interaction versus hybridization. Below a value that we called \(V_{BCS} \) the system presents the usual BCS instability and is a superconductor for any finite \(U \). For values of \(V > V_{BCS} \), a finite value of the interaction is necessary for the existence of superconductivity. So, in this case, we have a quantum phase transition tuned by the strength of hybridization for a fixed value of the interaction or tuned by the strength of the interaction for a given value of hybridization. The value \(V_{BCS} \) is that for which the Fermi wavevectors of the new hybrid bands coincide with the limit of integration around the original Fermi wavevector. For homothetic bands \(V_{BCS} = 2\sqrt{\alpha_{F}k_{F}} \). As \(V \rightarrow V_{BCS} \) from above, the critical line vanishes as the inverse of \(\tanh^{-1}(V/V_{C}) \) (see dot–dashed line in figure 2). Notice that a smooth cut-off will never remove the BCS instability, no matter how fast it decays, and the ground state of the system will be a superconductor for any finite \(U \).

Although \(V_{BCS} \), like \(T_{C} \) in BCS theory, are dependent on the cut-off \(k_{C} \), there is a natural limit for this cut-off in our case, especially in the strong coupling limit. This is the

\[
\chi_{a}^{aa}(2q, \omega_0 + i\eta) = \frac{\chi_{a}^{aa}(2q, \omega_0)}{V - V_{C} + \omega_0 - Dq^2}.
\]
\[U = 0, \text{ and the quantum critical behavior all along the critical line in figure 2 for } V > V_{\text{BCS}} \text{ is governed by a strong coupling fixed point associated with the Bose–Einstein condensation of Cooper pairs. Since the effective dimension for this transition } d_{\text{eff}} = d + z \text{ is greater than the upper critical dimension in three spatial dimensions, its critical exponents assume Gaussian values. A scaling analysis [16] using } z = 2 \text{ and Gaussian exponents allows us to determine the thermodynamical properties of the system, in particular along the critical trajectory } (V = V_{C}, T \to 0). \text{ The critical line in } d = 3 \text{ approaches the SQCP as [16], } T_C \propto |V - V_{C}|^{2/3}. \text{ The contribution of the critical fluctuations for the specific heat along the critical trajectory [16] is given by } C \propto T^{3/2}. \text{ For disordered systems, the scattering of electrons by bosons with a parabolic dispersion relation yields a resistivity, } \rho \propto T \text{ and } \rho \propto T^{3/2} \text{ in } d = 2 \text{ and } d = 3 \text{ [28], respectively.} \]

2.2. Stability of the superconducting phase

The superconducting phase we obtain for \(V > V_{\text{BCS}} \) has interesting features. It has pairs of quasi-particles coexisting with gapless excitations at a Fermi surface. In some respects it resembles the breached pair superconducting phase proposed some time ago by Wilczek and Liu [29]. It is then natural to ask about the stability of the superconducting phase for large values of hybridization. For this purpose we study the difference between the ground state energy of the normal and superconducting phases as hybridization increases. The quasiparticle excitations in the superconducting phase have been obtained in [10] and are given by

\[
\Omega_{k}^{a,b} = \sqrt{A_{k} \pm \sqrt{B_{k},}} \tag{19}
\]

with

\[
A_{k} = \frac{\epsilon_{k}^{a2} + \epsilon_{k}^{b2}}{2} + V^{2} + \frac{(\Delta_{aa})^{2}}{2}, \tag{20}
\]

\[B_{k} = \left(\frac{\epsilon_{k}^{a2} - \epsilon_{k}^{b2} + (\Delta_{aa})^{2}}{2} \right)^{2} + V^{2}[(\epsilon_{k}^{a} + \epsilon_{k}^{b})^{2} + (\Delta_{aa})^{2}], \tag{21}\]

where \(\Delta_{aa} \) is the superconductor order parameter. The free energy due to condensation is given by

\[\Delta E = -\int_{k_{B} - k_{C}}^{k_{B} + k_{C}} (-|\alpha_{k}^{a}| - |\alpha_{k}^{b}| + \Omega_{k}^{a} + \Omega_{k}^{b}) \, dk + \frac{(\Delta_{aa})^{2}}{U}. \tag{22}\]

This vanishes in the normal state and its minimization with respect to the order parameter \(\Delta_{aa} \) yields the gap equation for the intra-band superconductor order parameter. In figure 4 we show this energy difference as the system crosses the phase transition line for a fixed \(V > V_{\text{BCS}} \) with increasing \(U \), as along the vertical dashed line in figure 2. The phase transition from the normal (\(\Delta = 0 \)) to the superconducting state with increasing \(U \) is continuous or second order. The quantum phase transitions at the critical line \(U_{C}(V) \) for \(V > V_{\text{BCS}} \) as shown before are in the universality of the density-driven quantum Bose–Einstein condensation. The superconducting phase is clearly associated with a minimum in the condensation energy, as shown in figure 4.

Figure 5 shows the energy difference \(\Delta E \) as the superconductor moves from the Bose–Einstein condensation regime at \(V > V_{\text{BCS}} \) to the BCS regime for \(V < V_{\text{BCS}} \) with decreasing hybridization. It is clear from the figure that this change of regime has a smooth behavior and nothing special occurs at \(V_{\text{BCS}} \) for a finite value of \(U \). As the BCS phase is stable for \(V < V_{\text{BCS}} \), this figure with the continuous behavior of the ground state along the change of regime implies also the stability of the Bose–Einstein condensate (BEC)-like phase for \(V > V_{\text{BCS}} \).

Our results are obtained with the superconducting pairs being formed close to the original Fermi wavevectors of the unhybridized bands. One may argue that as hybridization is turned on, we should integrate not around the original \(k_{F} \) but around \(k_{FB} \) of the new hybrid band, in which case mixing would never suppress superconductivity. However, in the...
process of diagonalization of the two-band problem, terms of the type $\alpha^\dagger \alpha^\dagger$, $\alpha^\dagger \beta^\dagger$, and $\beta^\dagger \beta^\dagger$ are generated. The operators α^\dagger, α, β^\dagger, β are the creation and annihilation operators of the new hybrid bands. Then all types of superconducting correlations among the hybrid bands appear and there is no particular reason to integrate around, say k_F. In order to expose the complexity of this problem, we calculate the difference between the ground state free energies of the superconducting states obtained integrating around k_F and k_{FB}. This difference is shown in figure 6. For the BCS-type states with $V < V_{BCS}$, this is always negative, showing that integration around k_F leads to a lower energy. For $V > V_{BCS}$, the breached pair type of superconducting state, has, at the value of Δ^{aa} for which the energy is a minimum, a lower energy than that of the BCS state obtained integrating around k_{FB} for $V < V_C(U)$.

3. The BCS–BEC crossover

From figure 2 one can see that for values of V slightly greater than V_{BCS} the value of U_C is already around E_F, so is important to study the transition in a formalism in which we are also able to reach the strong coupling limit. In this section we study the quantum phase transition tuned by hybridization in a range of the interaction strength. Previous studies in one-band systems have shown that the evolution between these two different regimes is continuous [30–32]. For the case of a two-band system with d-wave symmetry it was also found that this crossover is smooth [33].

We start with the generalized gap equation to describe the weak to strong coupling crossover extended for the two-band case with hybridization, $\Delta = \chi_0^{aa}(2q, \omega_0)$. In this equation $\chi_0^{aa}(2q, \omega_0)$ is given by equation (13) with the ω_0^{ab} being replaced by the dispersion relations in the superconducting state, equations (19)–(21).

In this case a BCS-type cut-off cannot be used to treat the strong coupling limit, in which all the particles must interact, and not just those around the Fermi surface as in the BCS limit. We thus introduce the concept of s-wave scattering length, a_s, to regulate the ultraviolet divergence in the gap equation that arises due to the sum over all energies [20]. It is related to the coupling strength U through

$$\frac{m}{4\pi a_s} = -\frac{1}{U} + \sum_k \frac{1}{2(\epsilon_k^b + \mu)}.$$

and can be positive or negative. When $1/k_F a_s \to -\infty$ one obtains the weak coupling regime, while $1/k_F a_s \to \infty$ gives the strong coupling limit.

Eliminating the coupling U from the gap equation using the relation above, we find

$$-\frac{m}{4\pi a_s} = \chi_0^{aa}(2q, \omega_0) - \sum_k \frac{1}{2(\epsilon_k^b + \mu)}.$$ (24)

For the purpose of solving this equation and determining V_C we can fix the chemical potential or the total number of particles. For the second case we need first to obtain the chemical potential as a function of the new coupling parameter $1/k_F a_s$. From the propagators in the superconducting phase given in [10] we can find the number equation that guarantees the conservation of the total number of particles through the variation of the chemical potential,

$$N = \sum_k \left[1 - \frac{1}{2(\Omega_k^a + \Omega_k^b)} \left[\frac{(\epsilon_k^a + \epsilon_k^b)(\Omega_k^a + V)}{\Omega_k^a} - \epsilon_k^a [\Delta^2 + \epsilon_k^a (\epsilon_k^a + \epsilon_k^b)] \right] - \epsilon_k^a [\Delta^2 + \epsilon_k^a (\epsilon_k^a + \epsilon_k^b)] \Omega_k^b \right].$$

For fixed chemical potential we can find $\Delta (= \Delta^{aa})$ versus $1/k_F a_s$ for different values of μ, as shown in figure 7. For a fixed number of particles equations (24) and (25) must be solved self-consistently. Figure 8 shows the behavior of the superconductor order parameter and the chemical potential as
functions of the coupling parameter at $T = 0$. One can see that in the BCS limit the chemical potential practically does not differ from the Fermi energy, and the superconducting gap is much smaller than E_F. Increasing the coupling, the pairs become more tightly bound and the chemical potential decreases and becomes negative.

The behavior of the critical value of the hybridization as a function of $1/k_Fa_s$ is shown in figure 9. An increase in hybridization for a fixed value of the interaction suppresses superconductivity continuously, as can be seen in figure 5. The critical value of hybridization increases with the coupling parameter and tends to a saturation value. Notice that in this case there is a critical value of hybridization only for strong couplings as the chemical potential becomes negative. It can be understood by analyzing figure 7, in which we find that the order parameter goes to zero for a definite value of $1/k_Fa_s$ just for negative values of the chemical potential (solid lines).

4. Uemura relation and scaling close to the SQCP

Close to a SQCP, the vanishing of the superfluid density at $T = 0$ is governed by the scaling relation [16], $\rho_S(T = 0) \propto |g|^{2-\alpha}r$, where α and ν are critical exponents associated with the SQCP and $|g| = |V - V_C|$ measures the distance to the transition.

We are interested in dimensions $d \geq 2$, such that, for the superconducting quantum phase transition considered here, which is in the universality class of the density-driven Bose–Einstein condensation with dynamic exponent $z = 2$, the effective dimension $d_{\text{eff}} = d + z \geq 4$. This coincides or is larger than the upper critical dimension $d_C = 4$ for this transition [14]. In this case using the mean-field values, $\alpha = 0$ and $\nu = 1/2$, we find that ρ_S scales linearly with the distance to the SQCP, $\rho_S(T = 0) \propto |g|$ as $g \to 0$.

On the other hand, close to the SQCP, as $|g| \to 0$, the superconducting critical temperature vanishes with the distance to the SQCP as, $T_C \propto |g|^\psi$ where ψ is the shift exponent. For $d + z \geq d_C = 4$, the interaction u between the bosons is irrelevant and the shift exponent is determined by the dynamic exponent and the dimension of the system [14, 16, 34], $\psi = z/(d + z - 2)$.

Finally, we can derive a Uemura relation [35] relating the $T = 0$ superfluid density and the critical temperature close to an SQCP. Due to the proximity to the SQCP this is completely determined by scaling. For $d + z \geq d_C$ this is given by $T_C \propto \rho_S^{\psi}$ with $\psi = z/(d + z - 2)$. In our case with $z = 2$, we find $T_C \propto \rho_S$ in $d = 2$ and $T_C \propto \rho_S^{2/3}$ in $d = 3$.

5. Conclusions

We have studied the normal–superconductor quantum phase transition induced by hybridization in a two-band system using a new method recently introduced to deal with systems that are coupled to a space-time-dependent perturbation. The results obtained are valid to first order in the perturbation and coincide with those of linear response theory. However, in our approach the basic elements to be calculated are single-particle Green’s functions and not the usual two-particle propagators of linear response theory. In the case of superconductivity, to calculate the superconducting response, we have to introduce a fictitious field that couples to the superconductor order parameter. Starting from the normal phase, we obtained a generalized wavevector- and frequency-dependent susceptibility. In the static and homogeneous limit, we argued that the divergence of this susceptibility signals the instability of the system to a superconducting state. For the standard BCS problem with a single attractive band, this condition is similar to the Thouless criterion for BCS superconductivity. For multi-band superconductors with intra-band interactions, we had found previously using a mean-field BCS approximation that superconductivity can be suppressed by increasing hybridization [10]. Here we further clarify the mechanism of suppression and extend the mean-field approach to include fluctuations close to the quantum superconductor–normal phase transition. We find that for finite attractive interactions, as hybridization increases, the BCS

4 For $d + z < d_C$, hyperscaling holds and yields $\psi = vz$ [36]. Also using the quantum hyperscaling relation $2 - \alpha = vz$ [16] valid for $d + z < d_C$, we get $\rho_S \propto |g|^{v(d + z - 2)}$. These expressions yield a relation between $\rho_S(T = 0)$ and T_C for the case $d < d_C$, see [36].
superconductor has a smooth crossover to a superconducting breached pair-like state before becoming normal. The quantum superconductor–phase transition is in the universality class of the density-driven Bose–Einstein condensation.

We have also investigated the case of a fixed number of particles in the presence of hybridization. We have determined the $T = 0$ phase diagram of the critical value of the hybridization versus the strength of the interaction given in terms of the scattering length. In this case superconductivity is also suppressed with the increase of hybridization, but only in the strong coupling limit for which the chemical potential becomes negative.

Acknowledgments

We would like to thank Igor Padilha and Catherine Pepin for useful discussions. We also thank the Brazilian agencies, CNPq and FAPERJ for partial financial support.

References

[1] Ramos S M et al 2010 Phys. Rev. Lett. 105 126401
[2] Mendonça Ferreira L et al 2008 Phys. Rev. Lett. 101 017005
[3] von Lohneysen H, Pfleiderer C, Schröder A and Stockert O 2000 J. Phys. Soc. Japan 69 (Suppl. A) 63–70
[4] Bianchi A, Movshovich R, Vekhter I, Pagni M G and Sarrao J L 2003 Phys. Rev. Lett. 91 257001
[5] Bud’ko S, Wilke R H T, Angst M and Canfield P C 2005 Physica C 420 83
[6] Chandrasekhar B S 1962 Appl. Phys. Lett. 17 Clogston A M 1962 Phys. Rev. Lett. 9 266
[7] Lortz R, Wang Y, Demuer A, Böttger P H M, Bergk B, Zwicknagl G, Nakazawa Y and Wosnitza J 2007 Phys. Rev. Lett. 99 187002
[8] Demuer A, Sheikin I, Braithwaite D, Fåk B, Huxley A, Raymond S and Flouquet J 2001 J. Magn. Magn. Mater. 226–230 17
[9] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186
[10] Continentino M A and Padilha I T 2008 Physica B 403 764 Continentino M A and Padilha I T 2008 J. Phys.: Condens. Matter 20 095216 Padilha I T and Continentino M A 2009 J. Magn. Magn. Mater. 321 3466 Padilha I T and Continentino M A 2009 J. Phys.: Condens. Matter 21 095603
[11] Ramires A and Continentino M A 2010 J. Phys.: Condens. Matter 22 485701
[12] Tyablikov S V 1967 Methods in the Quantum Theory of Magnetism (New York: Plenum) p 221 Zubarev D N 1960 Sov. Phys.—Usp. 3 320
[13] Thouless J J 1960 Ann. Phys. 10 553–88 see also Nozières P and Schmitt-Rink S 1985 J. Low Temp. Phys. 59 195–211
[14] Continentino M A 2006 J. Phys.: Condens. Matter 18 8395 Continentino M A 2007 J. Magn. Magn. Mater. 310 849
[15] Hertz J A 1976 Phys. Rev. B 14 1165
[16] Continentino M A 2001 Quantum Scaling in Many-Body Systems (Singapore: World Scientific) Continentino M A 1993 Phys. Rev. B 47 11587
[17] Ramazashvili R and Coleman P 1997 Phys. Rev. Lett. 79 3752 Mineev V P and Sigrist M 2001 Phys. Rev. B 63 172504 Galitski V 2008 Phys. Rev. Lett. 100 127001 Shah N and Lopatin A V 2007 Phys. Rev. B 76 094511
[18] Continentino M A and Ferreira A S 2004 Physica A 339 461 Ferreira A S and Continentino M A 2005 J. Stat. Mech. P05005 Continentino M A and Ferreira A S 2006 Physica B 378–380 129–30
[19] Sheehy D E and Radzihovsky L 2007 Ann. Phys. 322 1790–924
[20] Sá de Melo C A R, Randeria M and Engelbrecht J R 1993 Phys. Rev. Lett. 71 3202 Engelbrecht J R, Randeria M and Sá de Melo C A R 1997 Phys. Rev. B 55 15153
[21] Suhl H, Matthias B T and Walker L R 1959 Phys. Rev. Lett. 3 552 Kondo J 1963 Prog. Theor. Phys. 29 1
[22] Japiassu G M, Continentino M A and Troper A 1992 Phys. Rev. B 45 2986
[23] Côté R and Griffin A 1993 Phys. Rev. B 48 10404
[24] Sarma G 1963 J. Phys. Chem. Solids 24 1029
[25] Bedaque P F, Caldas H and Rupak G 2003 Phys. Rev. Lett. 91 247002 Caldas H 2004 Phys. Rev. A 69 063602 see also Sedrakian A, Clark J W and Allford M (ed) (2006) Pairing in Fermionic Systems (Singapore: World Scientific)
[26] Fulde P and Ferrell R A 1964 Phys. Rev. 135 A550 Larkin A I and Ovchinnikov Yu N 1965 Sov. Phys.—JETP 20 762 see also Casalbuoni R and Nardulli G 2004 Rev. Mod. Phys. 76 263
[27] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[28] Rivier N and Mensah A E 1977 Physica B 4 91 85
[29] Liu W V and Wilczek F 2003 Phys. Rev. Lett. 90 047002 Nozières P and Schmitt-Rink S 1985 J. Low Temp. Phys. 59 195
[30] Sá de Melo C A R, Randeria M and Engelbrecht J R 1993 Phys. Rev. Lett. 71 3202
[31] Sá de Melo C A R 2008 Phys. Today 61 45
[32] Dinola Neto F, Continentino M A and Lacroix C 2010 J. Phys.: Condens. Matter 22 07571
[33] Millis A J 1993 Phys. Rev. B 48 7183–96
[34] Uemura Y T et al 1989 Phys. Rev. Lett. 62 2317
[35] Kopp A and Chakravarty S 2005 Nat. Phys. 1 53