Treatment with the Proteasome Inhibitor MG132 during the End of Oocyte Maturation Improves Oocyte Competence for Development after Fertilization in Cattle

Jinyoung You1, Eunsong Lee1, Luciano Bonilla2, Jasmine Francis2, Jin Koh3,5, Jeremy Block2,4, Sixue Chen3,5, Peter J. Hansen2*

1 College of Veterinary Medicine, Kangwon National University, Chunchon, Korea, 2 Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida, United States of America, 3 Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America, 4 Ovatech LLC, Gainesville, Florida, United States of America, 5 Dept. of Biology, University of Florida, Gainesville, Florida, United States of America

Abstract

Maturation of the oocyte involves nuclear and cytoplasmic changes that include post-translational processing of proteins. The objective was to investigate whether inhibition of proteasomes during maturation would alter competence of the bovine oocyte for fertilization and subsequent development. Cumulus-oocyte complexes were cultured in the presence or absence of the proteasomal inhibitor MG132 from either 0–6 h or 16–22 h after initiation of maturation. Treatment with MG132 early in maturation prevented progression to meiosis II and reduced fertilization rate and the proportion of oocytes and cleaved embryos that became blastocysts. Conversely, treatment with MG132 late in maturation improved the percentage of oocytes and cleaved embryos that became blastocysts without affecting nuclear maturation or fertilization rate. Optimal results with MG132 were achieved at a concentration of 10 μM – effects were generally not observed at lower or higher concentrations. Using proteomic analysis, it was found that MG132 at the end of maturation increased relative expression of 6 proteins and decreased relative expression of 23. Among those increased by MG132 that are potentially important for oocyte competence are GAPDH, involved in glycolysis, TUBA1C, needed for organellar movement, and two proteins involved in protein folding (P4HB and HYOU1). MG132 decreased amounts of several proteins that exert anti-apoptotic actions including ASNS, HSP90B1, PDI3 and VCP. Another protein decreased by MG132, CDK5, can lead to apoptotic actions including ASNS, HSP90B1, PDI3 and VCP. Another protein decreased by MG132, CDK5, can lead to apoptosis if aberrantly activated and one protein increased by MG132, P4HB, is anti-apoptotic. Finally, the pregnancy rate of cows receiving embryos produced from oocytes treated with MG132 from 16–22 h of maturation was similar to that for control embryos, suggesting that use of MG132 for production of embryos in vitro does not cause a substantial decrease in embryo quality.

Introduction

The proteasome, a multisubunit proteolytic complex involved in degradation of ubiquitinated proteins, plays a crucial role in assuring completion of meiosis and formation of a developmentally-competent embryo. Early in maturation, completion of meiosis I requires inactivation of maturation promoting factor (MPF) through a process mediated by proteasomal cleavage of ubiquitinated cyclin B1 [1]. Other aspects of oocyte function during maturation are also under control of the proteasome. In mice, for example, the proteasome is required for the initiation and maintenance of translation of mRNA for the RNA binding protein SLBP [2]. Abundance of another protein involved in RNA processing, CPEB, is under negative regulation by proteasomes in Xenopus [3]. In addition, cumulus cells encasing the oocyte require proteasomal activity for optimal function as indicated by negative effects of the proteasomal inhibitor MG132 on progesterone production and expression of genes involved in expansion of the extracellular matrix [4]. This peptide aldehyde, N-[benzyloxycarbonyl]leucinylleucinylleucinal, functions as a substrate analog and transition-state inhibitor of the chymotrypsin-like activity of the proteasome [5]. Late in the process of oocyte maturation, the proteasome may contribute to a reduction in the functional properties of the oocyte. Treatment with MG132 reduced the effect of in vitro aging on oocyte competence in the mouse [6]. Furthermore, treatment of oocytes with MG132 late in maturation increased abundance of specific transcripts and improved developmental competence of parthenogenetically-activated oocytes in the pig [7].

If inhibition of the ubiquitin-proteasome pathway late in maturation improves oocyte competence, it may be possible to improve the success rate of assisted reproductive technologies that
utilize in vitro matured oocytes. The purpose of the present series of experiments was to test the hypothesis that treatment of bovine oocytes with MG132 at the end of maturation would improve developmental competence of the oocytes and resultant embryos while addition of MG132 at the beginning of maturation would reduce oocyte competence. An additional goal was to assess specific proteins whose relative abundance in the oocyte was altered by MG132 late in maturation with the goal of identifying candidate molecules responsible for actions of MG132 on oocyte competence.

Materials and Methods

Use of animals was approved by the University of Florida Institutional Animal Care and Use Committee.

Culture Media

Chemicals were obtained from Sigma-Aldrich Chemical Company (St. Louis, MO, USA) or Fisher (Pittsburgh, PA, USA) unless otherwise stated. The base medium for oocyte maturation (OMM) was Tissue Culture Medium-199 (TCM-199; Invitrogen, Carlsbad, CA) with Earle’s salts supplemented with 10% (v/v) bovine serum albumin (BSA) (Sigma-Aldrich). The MG132 was purchased from Sigma-Aldrich. Minitube (Verona, WI, USA). Hoechst 33342 was purchased from Sigma-Aldrich.

Experiment 1

In Vitro Fertilization and Culture

Oocyte Collection and In Vitro Maturation (IVM)

Bovine ovaries were obtained from various breeds at a local abattoir (Central Packing, Center Hill, Florida) and transported to the laboratory. The owner provided permission to use the ovaries for the experiment, a proprietary culture medium called BBH7 from Sigma-Aldrich. The 22 µg/ml sodium citrate, 50 µg/ml gentamicin sulfate and 1 mM glutamine. Oocyte collection medium (OCM) was TCM-199 medium with Hank’s salts (Cellgro, Mediatech, Manassas, VA, USA) supplemented with 100 U/ml penicillin-G, 0.1 mg/ml streptomycin, 1 mM glutamine and 2% (v/v) bovine serum albumin containing 2 U/ml heparin. HEPES-Tyrodes albumin lactate pyruvate solution (TALP) was prepared as described previously [8]. The fertilization medium was in vitro fertilization (IVF)-TALP [8]. Percoll was from GE Healthcare Bio-Sciences AB (Uppsala, Sweden). Frozen semen from bulls of various breeds was donated by Southeastern Semen Services (Wellborn, FL, USA). The embryo culture medium was SOF-BE1 [9] or, for one experiment, a proprietary culture medium called BBH7 from Minitube (Verona, WI, USA). Hoechst 33342 was purchased from Sigma-Aldrich. The MG132 was purchased from Sigma-Aldrich.

OCOCs were collected by slicing superficial follicles (2–10 mm in diameter) with a scalpel blade and washing the ovaries into a beaker containing OCM. The OCOCs were harvested using a capillary pipette and washed three times in OCM. Groups of 10 were placed into 50 µl drops of OMM covered with mineral oil. The OCOCs were matured for 22 h at 38.5 °C in a humidified atmosphere of 5% (v/v) CO2, 5% O2 and 90% nitrogen. Cleavage and blastocyst formation were evaluated on Days 3 and 8 after IVF, respectively.

Examination of Nuclear Status of Oocytes after IVM

At 16 h and 22 h of IVM, OCOCs were transferred into HEPES-TALP containing 0.3% (w/v) hyaluronidase and then vortexed for 5 min to remove cumulus cells. Denuded oocytes were stained with 5 µg/ml Hoechst 33342 in 10 mM PBS (10 mM PO4, 0.9% (w/v) NaCl) containing 1% (w/v) polyvinylpyrrolidone (PVP-PBS) for 1 h at room temperature. Then, 10–15 oocytes were mounted on glass slides with a small amount of anti-fade solution (Life Technologies, Grand Island, NY, USA) and covered with a cover slip. Oocytes were examined using an Axioplan 2 epifluorescence microscope (Zeiss, Gottingen, Germany) with blue filter (excitation wavelength = 365/12 nm; emission wavelengths = 395–405 nm). Each oocyte was classified according to stage of nuclear maturation as germinal vesicle (GV), germinal vesicle breakdown (GVBD), pre-metaphase I, metaphase I (MI), anaphase I (A1), telophase I (T1) and metaphase II (MII).

Examination of Pronuclear Status of Oocytes after IVF

Inseminated oocytes were harvested from culture drops of SOF-BE1 at 10 h after fertilization, mounted on glass slides and nuclei visualized using Hoechst 33342 as described above for oocytes. Oocytes were classified as non-penetrated if the nucleus was at MI or MII without the presence of a sperm head or male pronucleus. An oocyte was classified as fertilized if one swollen sperm head or male pronucleus was detected inside the oocyte. Oocytes having more than one swollen sperm head or male pronuclei were classified as polyspermy.

Blastocyst Cell Number

Blastocysts were fixed for 1 h at room temperature in 4% (w/v) paraformaldehyde dissolved in PBS. After washing in PBS-PVP, embryos were incubated with 1 µg/ml Hoechst 33342 dissolved in PBS-PVP. Embryos were washed in PBS-PVP, placed on a microscope slide and number of nuclei counted using a Zeiss Axioplan 2 epifluorescence microscope (Zeiss, Gottingen, Germany).

Experiments on Oocyte Maturation, Fertilization and Development (Experiments 1–6)

The concentration-dependent effects of MG132 added at the end of oocyte maturation on embryonic development were tested in Experiments 1 and 2. OCOCs were matured in OMM that was supplemented with 0, 1, 5, 10 µM MG132 (Experiment 1) or 0, 10, 20 or 30 µM MG132 (Experiment 2) from 16 h to 22 h after initiation of maturation. Treatment was achieved by washing...
COCs after 16 h of maturation and placing them in fresh medium containing MG132 or vehicle. Endpoints were cleavage rate at day 3 after insemination, the proportion of oocytes and cleaved embryos that became blastocysts at Day 8, and blastocyst cell number. The experiments were replicated six times with 20–50 COCs per treatment for each replicate (Experiment 1) and four times with 20–30 COCs per treatment for each replicate (Experiment 2).

Experiment 3 was conducted to determine whether timing of MG132 treatment altered effects of the inhibitor on embryonic development. COCs were untreated or treated with 10 μM MG132 at two times [0–6 h of maturation (during the initiation of maturation) or 16–22 h of maturation (at the end of maturation)] using a 2 × 2 factorial arrangement of treatments. The COCs were placed in appropriate treatments at 0 h (vehicle or MG132), washed at 6 h, placed in fresh medium without MG132, washed at 16 h of maturation, and placed in fresh medium with appropriate treatment. Thus, some cultures received vehicle at 0–6 h and 16–22 h, some received MG132 from 0–6 h and 16–22 h, some received MG132 from 0–6 h and vehicle from 16–22 h, and some received vehicle from 0–6 h and MG132 from 16–22 h. Endpoints were cleavage rate at day 3 after insemination and the proportion of oocytes and cleaved embryos that became blastocysts at Day 8. The experiment was replicated six times with 20–50 COCs per treatment for each replicate.

Experiments 4–6 were conducted to determine effects of MG132 on oocyte nuclear maturation (Experiments 4 and 5) and fertilization rate (Experiment 6). For Experiment 4, COCs were treated with vehicle or 10 μM MG132 for the first 6 h of maturation and nuclear maturation was examined at 16 h after initiation of maturation. The experiment was replicated three times with 20–35 COCs per treatment for each replicate. For Experiments 5 and 6, COCs were untreated or treated with 10 μM MG132 at two times [0–6 h of maturation, 16–22 h of maturation, or at both times] using a 2 × 2 factorial arrangement of treatments and procedures as described for Experiment 3. The endpoints were nuclear maturation at 22 h of maturation (Experiment 5) or sperm penetration at 18 h after exposure to sperm (Experiment 6). Experiment 5 was replicated three times with 20–35 COCs per treatment for each replicate. Experiment 6 was replicated four times with 20–50 COCs per treatment for each replicate.

Data were analyzed statistically as follows. For each replicate, percentage data (for example, percentage of oocytes that cleaved and percentage of cleaved embryos that became blastocysts) were calculated for all oocytes or embryos within the same treatment. Thus, the group of oocytes treated alike within each replicate was the experimental unit. Statistical analyses were performed using the Statistical Analysis System (version 9.2; SAS Institute Inc., Cary, NC, USA). Data were analyzed using the General Linear Models procedure. For main effects with more than 1 degree of freedom, the pdiff mean separation procedure was used when main effects or interactions differed at P<0.10. Percentage data were arcsine-transformed prior to analysis to maintain homogeneity of variance. Results are expressed as least-squares means ± standard error of the mean (SEM) of the untransformed data.

Effect of MG132 on the Oocyte Proteome (Experiment 7)

Oocytes were matured as described above. After 16 h of maturation, COCs were placed in fresh medium containing 10 μM MG132 or vehicle. The COCs were denuded after 22 h of maturation by vortexing after treatment with hyaluronidase. Those oocytes in which a polar body was evident by light microscopy were retained and processed for protein extraction. The zona pellucida was removed by treatment for 5 min with 0.1% (w/v) protease from Streptomyces griseus followed by mechanical shearing.

Three biological replicates were included for both vehicle and MG132 groups. A biological replicate represented a pool of polar-body-extruded oocytes collected from several oocyte maturation procedures. The number of oocytes per pool was 225 for replicate 1, 225 for replicate 2 and 1000 for replicate 3. Oocytes were suspended in 10 mM KPO4, pH 7.4 containing 1 mg/ml polyvinyl alcohol and 1% (w/v) protease inhibitor cocktail (Sigma) and stored at −70°C until processing. Total protein was isolated from pooled oocytes and purified as described elsewhere [10]. The protein concentration was determined using the BCA® Protein Assay (Thermo, Rockford, IL, USA).

For each sample (regardless of the number of starting oocytes), 100 μg protein was dissolved in protein buffer [0.2% (w/v) sodium dodecyl sulfate, 8 M urea, and 10 mM Tris-Triton X-100]. The samples were reduced, alkylated, trypsin-digested, and labeled following the manufacturer’s instructions for the iTRAQ Reagents 4-plex kit (AB Sciex Inc., Foster City, CA, USA). To verify the tag efficiency of the iTRAQ method, iTRAQ tags 114 and 115 were used to label control samples and tags 116 and 117 were used to label MG132 groups. Two iTRAQ procedures were conducted. In Set 1, one control and one MG132 sample were analyzed twice to determine technical replication. In Set 2, two biological replicates of each treatment were analyzed. Proteins were identified using an off-line 2D liquid chromatography-MS/MS method with strong cation exchange (SCX) chromatography as a first step to fractionate the oocyte proteome (Figure S1). The tryptic peptide mixtures were hypophilized, dissolved in SCX solvent A [25% (v/v) acetonitrile, 10 mM ammonium formate, and 0.1% (v/v) formic acid, pH 2.8], and fractionated using an Agilent HPLC system 1260 with a polysulfoethyl A column (2.1 × 100 mm, 5 μm, 300 Å; PolyLC, Columbia, MD, USA). Tryptic peptides were separated with a LC Paking C18 Pep Map HPLC column (Dionex, San Francisco, CA, USA), and a hybrid quadrupole-TOF QSTAR Elite MS/MS system (AB Sciex Inc., Framingham, MA, USA) was used for data acquisition.

The MS/MS data were processed by a thorough search considering biological modification and amino acid substitution against the National Center for Biotechnology Information non-redundant Bos taurus fasta database (93,655 entries) and uniprot B. taurus database (33,808 entries) under the Paragon™ algorithm [11] using ProteinPilot v.4.2 software (Applied Biosystems). After searching MS/MS spectra against these databases, results were combined into each group. Animal species, fixed modification of methylation thiosulfate-labeled cysteine, fixed iTRAQ modification of amine groups in the N-terminus and lysine, and variable iTRAQ modifications of tyrosine were considered. The ProteinPilot cutoff score was set to 1.3 (a confidence level of 95%), and the false discovery rate (FDR) was estimated by performing the search against concatenated databases containing both forward and reverse sequences (Table S1).

For protein quantification, we only considered MS/MS spectra that were unique to a particular protein and where the sum of the signal-to-noise ratio for all of the peak pairs was >9 (software default settings, AB Sciex Inc.). The accuracy of each protein ratio was calculated by the ProGroup analysis in the software to determine whether the protein is significantly differentially expressed [12]. To be identified as being significantly differentially expressed, a protein must have been quantified with at least three spectra, the fold change was >1.2 or <0.8, and the P value for vehicle vs MG132 was <0.05 as determined with Fisher’s combined probability test [13] (Fisher, 1948). The strength of
the protein signal is referred to as relative expression because the
total amount of protein analyzed was similar for MG132 and
vehicle-treated oocytes. Differentially expressed proteins were
analyzed for GO terms by Blast2GO [14] and, after conversion to
official gene symbols, by the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID; DAVID Bioinformatics
Resources 6.7, http://david.abcc.ncifcrf.gov/) [15]. For DAVID,
genes were annotated using the bovine genome as a reference.
In addition, functional properties of differentially-abundant proteins
were determined by mining PUBMED using the Chilbot program
(www.chilibot.net) [16].

Pregnancy Rates after Transfer of Embryos Produced
using MG132 During Oocyte Maturation (Experiment 8)

Embryos were produced in vitro using Holstein COCs that
were collected from abattoir-derived ovaries (Central Packing,
Center Hill, FL). Maturation was carried out using conditions
similar to those for other experiments. At 16 h of maturation,
COCs were washed and then placed in fresh medium containing
10 μM MG132 or vehicle. Fertilization was carried out for 0 h in
SOF-IVF [17] using X-sorted semen from a single Holstein bull
(Accelerated Genetics, Baraboo, WI, USA and Select Sires, Plain
City, OH, USA). A total of 4 different bulls were used in the
experiment. Sperm were purified before fertilization as described
elsewhere [18]. The final sperm concentration in the fertilization
well was 1×10⁶ sperm/ml. Following fertilization, presumptive
zygotes were cultured in 50 μl microdrops of BBH7 culture
medium overlaid with mineral oil in groups of 25–30 in a
well was 1×10⁶ sperm/ml. Following fertilization, presumptive
zygotes were cultured in 50 μl microdrops of BBH7 culture
medium overlaid with mineral oil in groups of 25–30 in a
humidity of 5% CO₂ and 5% O₂ (balance N₂) at
38.5°C.

Grade 1 expanded blastocysts [19] were harvested at d 7 after
insemination and vitrified using the open-pulled straw method as
described elsewhere [18]. On the day of transfer, open-pulled
straws were thawed and contents emptied into a 2- well plate
(Agetech, Manhattan, KS, USA) filled with thaw medium (Tissue
Culture Medium 199 with Hank’s salts and supplemented with
10% (v/v) fetal bovine serum and 50 μg/mL gentamycin) containing
0.33 M sucrose. Immediately afterwards, embryos
were transferred to a fresh well of the same medium. Embryos
were then loaded individually into 0.25 mL embryo transfer straws
and transferred immediately thereafter (<5 min after thawing).

Embryos were transferred to lactating female Holsteins on four
occasions between June 10, 2011 and August 19, 2011 at the
University of Florida Dairy Unit (Hague, FL: 29.77904 N,
82.48001 W). Cows were housed in free-stall barns equipped with
fans and sprinklers. They were fed a total mixed ration and milked
twice per day. Cows were either first-service cows or cows that
had previously been inseminated or received an embryo during
that lactation and had been diagnosed non-pregnant. Cows were
subjected to the Ovsynch-56 timed ovulation protocol [20].
Specifically, cows received 100 μg gonadotropin releasing hor-
mones (GnRH), i.m., on d –10; 25 mg prostaglandin F₂α (PGF),
i.m., on d –3; and 100 μg GnRH, i.m., at 56 h after PGF.
For first-service cows only, the timed ovulation protocol was preceded
by a presynchronization protocol (two injections of 25 mg PGF,
i.m., 14 d apart), with the last injection 12 d before initiation of the
Ovsynch-56 protocol.

Embryos were transferred on day 7 of the above-mentioned
synchronization protocol to cows diagnosed by ultrasonography as
having a corpus luteum on the scheduled day for embryo transfer.
Each cow received a single embryo in the uterine horn ipsilateral
to the corpus luteum. Cows were paired and randomly assigned
within pair to receive an embryo produced with vehicle or
MG132. Transfer was achieved transcervically and cows received
an epidural block (5 mL 2% lidocaine, w/v) before transfer.
Pregnancy was diagnosed by ultrasound at d 32 and by rectal
apalpation at d 46 and 71. A total of 24 embryos produced with
vehicle and 30 embryos produced with MG132 were transferred.

Data on cleavage and blastocyst development were analyzed by
least-squares analysis of variance as described for Experiments 1–6
(n = 10 replicates) while data on pregnancy rate were analyzed by
chi-square analysis.

Results

Concentration-dependent Effect of MG132 from 16–22 h
of Maturation on Subsequent Embryonic Development
(Experiments 1 and 2)

In the first experiment, COCs were treated from 16 to 22 h of
maturation with 0, 1, 5 or 10 μM MG132 (Table 1). The highest
concentration of MG132 increased (P<0.05) the percentage of
oocytes that cleaved (i.e., that were ≥2 cells) and the percentage of
oocytes that became blastocysts. There was, however, no effect of
10 μM MG132 on the percentage of cleaved embryos that became
blastocysts or on the number of cells per blastocyst. There were
also no effects of lower concentrations of MG132 on any endpoint.

In Experiment 2, COCs were treated with 0, 10, 20 or 30 μM
MG132 (Table 2). As shown in Experiment 1, treatment of COCs
with 10 μM MG132 increased cleavage rate and the percentage of
oocytes becoming blastocysts (P<0.05). In addition, the percent-
age of cleaved embryos becoming blastocysts was increased
(P<0.05) by treatment with 10 μM MG132. As in Experiment
1, there was no effect of 10 μM MG132 on blastocyst cell number.
Treatment with 20 μM MG132 increased (P<0.05) cleavage rate
but did not affect other endpoints examined. Treatment with
30 μM MG132 had no effect on subsequent development.

Actions of MG132 During the First Six or Last Six Hours of
Maturation (Experiment 3)

Results of Experiments 1 and 2 indicated that the response of
COCs to MG132 occurred over a narrow range and that optimal
effects on maturation were achieved with 10 μM MG132.
Consequently, subsequent experiments were performed with
MG132 at this concentration. For Experiment 3, it was tested
whether MG132 would affect maturation differently when added
at 0–6 h of maturation, when proteasomes are necessary for
completion of meiois I, than when added at 16–22 h of
maturation (Table 3). When added from 0–6 h, addition of
MG132 reduced the proportion of oocytes that cleaved and the
proportion of oocytes and cleaved embryos that became blasto-
cysts (main effect of MG132, P<0.01 or less). Addition of MG132
from 16–22 of maturation increased (P<0.05) the percentage of
oocytes undergoing cleavage. MG132 from 16–22 h also increased
the proportion of oocytes and cleaved embryos developing to the
blastocyst stage provided COCs were not also treated with
MG132 from 0–6 h interaction, P<0.05). Addition of MG132
from 16–22 h increased (P<0.02) blastocyst cell number slightly
but differences were not detected using the pdiff mean separation
test.

Nuclear Maturation of Bovine Oocytes Treated with or
without MG132 from 0–6 h after Maturation (Experiment
4) or 16–22 h after Maturation (Experiment 5)

It was hypothesized that MG132 treatment from 0–6 h of
maturation reduced cleavage rate and the percentage of oocytes
becoming blastocysts because it blocked progression through
meiosis I. This hypothesis was examined in Experiment 4 (Table 4).
Indeed, MG132 treatment from 0–6 h of maturation increased (P<0.05) the proportion of oocytes that were at metaphase I at 16 h after maturation and tended (P>0.10) to decrease the number of oocytes that were at metaphase II. A second experiment (Experiment 5) was conducted in which MG132 was added at either 0–6 or 16–22 h of maturation (Table 5). In general, treatment effects were not significant except that there was an interaction (P<0.09) affecting the percentage of oocytes at metaphase I. In particular, the percentage of oocytes at metaphase I was increased by treatment with MG132 at 0–6 h while treatment from 16–22 h increased the percentage of oocytes at MI when MG132 was not also added at 0–6 h. While not significant, MG132 treatment from 0–6 h also tended to reduce the percentage of oocytes that were at metaphase II.

Fertilization Rates of Oocytes Treated with MG132 from 0–6 or 16–22 h of Maturation (Experiment 6)

Results are in Table 6. Addition of MG132 from 0–6 h of maturation reduced fertilization rate regardless of whether MG132 was also added at 16–22 h of maturation (P<0.05). There was no effect of MG132 from 16–22 h of fertilization rate. There was a tendency (P<0.07) for addition of MG132 from 0–6 h to decrease the percentage of oocytes with polyspermy.

The Effect of MG132 Treatment on Protein Expression of Matured Oocytes (Experiment 7)

Using iTRAQ labeling and the 2D LC-MSMS method, a total of 669 proteins was identified in matured oocytes with 653 having a reporter ion region. A list of these proteins and differences in relative amount between oocytes treated with MG132 and vehicle are shown in File S1. Relative expression of 7 distinct proteins increased in response to MG132 whereas relative expression of 24 distinct proteins was decreased (Table 7). Representative results for one differentially-expressed protein, CAND1, is shown in Figure 1, including mean ± SEM of CAND1 expression for control and MG132-treated oocytes (Figure 1A), example of reporter ion expression for the C peptide fragment of CAND1 from one iTRAQ procedure (Figure 1B), and an example of b and y ions and amino acid sequence from one peptide fragment of CAND1 (Figure 1C).

Analysis of molecular function GO terms using DAVID revealed that six proteins (all lower in MG132 treated oocytes) were classified in the regulation of apoptosis term (HSP90B1, Pdia3, VCP, ALB, ASNS, CDK5), 5 in the macromolecule catabolic process term (HSP90B1, VCP, UBA1, and CDK5 lower for MG132 and CAND1 higher for MG132) and 5 in the proteolysis term (HSP90B1, VCP, UBA1, and CDK5 lower for MG132 and CAND1 higher for MG132). Other GO terms were synonymous to these terms or included fewer proteins that were affected by MG132.

To determine the degree to which the proteome of the bovine oocyte matches published oocyte proteomes, we evaluated whether a subset of randomly-chosen proteins (minimum of 2 peptides detected) in the present database was present in a database of proteins identified in mouse oocytes [21]. Of the 125 proteins examined, 73 (58%) were identified in the mouse.

Table 1. Effects of MG132 (1–10 μM) added from 16–22 h of maturation on subsequent embryonic development (Experiment 1).a

MG132, μM	No. of oocytes	Percentage of oocytes developing to	Percentage of cleaved embryos developing to	No. of cells in blastocyst	
		≥2-cell	Blastocyst	the blastocyst stage	
0	241	74.5±1.3 b	35.9±2.8 b	48.6±3.4 b	146.5±1.7 b
1	232	75.9±1.3 b	32.9±2.7 b	43.9±3.2 b	147.2±1.7 b
5	224	75.6±1.3 b	31.7±2.7 b	42.7±3.2 b	146.6±1.7 b
10	259	86.6±1.3 c	49.8±2.7 c	54.8±3.2 b	146.9±1.7 b

aData are least-squares means ± SEM of values from six replicates.

Table 2. Effects of MG132 (10–30 μM) added from 16–22 h of maturation on subsequent embryonic development (Experiment 2).a

MG132, μM	No. of oocytes	Percentage of oocytes developing to	Percentage of cleaved embryos developing to	No. of cells in blastocyst	
		≥2-cell	Blastocyst	the blastocyst stage	
0	241	60.9±2.4 b	21.3±1.6 b	35.0±2.4 b	154.9±1.5 b
10	232	74.3±2.3 c	35.0±1.5 c	46.8±2.3 c	155.4±1.5 b
20	224	69.1±2.3 c	24.4±1.5 b	34.9±2.3 b	154.2±1.5 b
30	259	64.0±2.3 a	22.0±1.5 b	34.2±2.3 b	153.5±1.5 b

aData are least-squares means ± SEM of values from four replicates.

Values in the same column with different superscript letters are significantly different (P<0.05).

doi:10.1371/journal.pone.0048613.t001
Pregnancy Rates after Transfer of Embryos Produced with MG132 (Experiment 8)

Treatment of oocytes with MG132 from 16–22 h of maturation increased (P<0.06) cleavage rate from 48.8% to 62.6% (SEM = 4.8%). While numerically greater, the effect of MG132 on percentage of oocytes becoming blastocysts was not significant (12.4% vs 19.2% for vehicle and MG132, SEM = 3.3%). Note that the reduced cleavage and blastocyst rates in this experiment reflect the use of X-sorted sperm for fertilization.

As shown in Table 8, there was no significant effect of MG132 on pregnancy rate at 32, 46 or 71 d of gestation.

Discussion

Oocyte competence for nuclear maturation, fertilization and ability to support embryonic development was affected by addition of the proteasomal inhibitor MG132 during the maturation process. Actions of MG132 depended on the time of addition. Oocyte competence was improved when MG132 was added during the last 6 h of maturation (from 16–22 h of maturation) and reduced when added during the first 6 h of maturation.

It is well established that proteasomal activity is required for completion of meiosis I. Proteasomal cleavage of ubiquitinated cyclin B1 leads to the inactivation of MPF required for completion of meiosis I [1]. Inhibition of meiosis is likely a major cause for reduced oocyte competence caused by addition of MG132 from 0–6 h of maturation because MG132 treatment at this time tended to reduce the proportion of oocytes that reached MII at the end of maturation. Inhibition of other proteasome-mediated events early in maturation may also be involved in reduced oocyte competence. For example, in the pig, MG132 can affect cumulus cells by reducing progesterone production and expression of genes involved in expansion of the extracellular matrix [4].

The finding that treatment with MG132 late in maturation improves oocyte competence is consistent with other results showing beneficial effects of MG132 on aged mouse oocytes fertilized by intracytoplasmic sperm injection [6] and parthenogenetically activated pig oocytes [7]. Beneficial effects of MG132 on nuclear remodeling, transcript abundance and embryonic development have also been shown for embryos constructed by somatic cell nuclear cloning in mice [22,23], rats [24,25], goats [23] and pigs [7,26,27]. Unlike for addition from 0–6 h, MG132 added from 16–22 h did not improve oocyte competence by improving nuclear maturation because the percentage of oocytes that were MII at the end of maturation was not affected by MG132 later in maturation. Rather, some of the beneficial effect of MG132 from 16–22 h on the percentage of oocytes that
MG132 Improves Oocyte Competence

became blastocysts was due to 1) increased cleavage rate through actions not involving fertilization rate and 2) increased competence of the fertilized oocyte to develop to the blastocyst stage. Indeed, the potential of a newly formed embryo to become a blastocyst was improved by addition of MG132 from 16–22 h in two of three experiments evaluated, as indicated by a significant improvement in the percentage of cleaved embryos that became blastocysts.

The mechanism by which MG132 late in maturation improves competence of the oocyte to support development is likely to involve arrest of processes mediated by proteasomes that ordinarily compromise the oocyte. One result is likely to be increased transcript abundance for genes required for embryonic development, as shown in the pig oocyte [7]. In the mouse, MG132 improved oocyte competence in aged oocytes but did not affect non-aged oocytes [6]. It might be that MG132 blocked proteasome-mediated degenerative changes in a portion of maturing oocytes of inferior quality caused by prolonged culture during maturation or other reasons.

Proteomic analysis was performed to determine possible targets of proteasomal cleavage whose relative expression was altered by MG132 treatment from 16–22 h. Such proteins might be involved in the beneficial effects of MG132 on oocyte competence and may be important molecules for determining the ability of an oocyte to complete the first cleavage division and support development of the embryo to the blastocyst stage. One limitation to the experimental approach was that less abundant proteins were less likely to be detected by mass spectrometry. Nonetheless, a total of 653 proteins could be analyzed for differences in amount between oocytes treated with vehicle or MG132. Surprisingly, there were a greater number of proteins whose relative expression was decreased by MG132 than there were proteins that were increased. Regulation of intracellular proteins in the presence of MG12 is complex. In HEK293T cells, MG132 can increase ubiquitination of some proteins and decrease ubiquitination of others [28]. Some proteins in the bovine oocyte increase in abundance during oocyte maturation whereas others decline in amount [29]. It is possible that inhibition of the proteasome by MG132 late in maturation protected some proteins from proteolysis, which in turn hastened or exaggerated the maturation-dependent decline in other oocyte proteins. Six of the proteins that were decreased by MG132 (ADSL, AHCY, CDK5, GSTM3, STIP1, and THOP1) and two that were increased by MG132 (CAND1 and GAPDH) are encoded for by transcripts that decrease during nuclear maturation of bovine oocytes [30].

Table 5. Effect of treatment with 10 μM MG132 from 0–6 or 16–22 h of maturation on meiotic maturation at 22 h after initiation of maturation (Experiment 5).a

MG132, 0–6 h	MG132, 16–22 h	No. of oocytes	Nuclear status, %b
No	No	91	GVBD 14.2±0.8c
No	Yes	79	MI 0.0±1.2c
Yes	No	69	Ana-Telo 34.8±0.8c
Yes	Yes	69	MII 1.6±1.2c

Probability of treatment effects:

- MG132, 0–6 N.S. N.S. N.S. N.S.
- MG132, 16–22 N.S. N.S. N.S. N.S.
- Interaction N.S. P<0.09 N.S. N.S.

aData are least-squares means ± SEM of values from three replicates.

bGVBD: germinal vesicle break down; MI: metaphase I; Ana-Telo: anaphase – telophase; MII: metaphase II.

c,d,eValues in the same column with different superscript letters are significantly different (P<0.05 or, for).

fN.S. = non-significant (P>0.10).

Table 6. Effect of treatment with 10 μM MG132 from 0–6 or 16–22 h of maturation on fertilization rate (Experiment 6).a

MG132, 0–6 h	MG132, 16–22 h	No. of oocytes	Percentage of oocytes fertilized	Percentage polyspermy
No	No	136	72.1±2.5c	
No	Yes	138	81.7±2.5c	
Yes	No	110	59.3±2.5c	
Yes	Yes	120	57.8±2.5c	

Probability of treatment effects:

- MG132, 0–6 P<0.05 P<0.07
- MG132, 16–22 N.S. N.S.
- Interaction N.S. N.S.

aData are least-squares means ± SEM of values from four replicates.

bN.S. = non-significant (P>0.10).

doi:10.1371/journal.pone.0048613.t005
doi:10.1371/journal.pone.0048613.t006
Among the oocyte proteins regulated by the proteasome are proteins involved in RNA processing [2,3] so inhibition of proteasomal activity with MG132 could affect stability and translation of a variety of mRNA.

There were 6 annotated proteins identified whose relative expression was increased by MG132 (ACAT1, CAND1, TUBA1C, P4HB, HYOU1, and GAPDH). The increase in GAPDH may be a direct result of inhibition of the proteasome because intracellular amounts of GAPDH are regulated by ubiquitination [31,32]. Another mechanism may be involved in regulation of CAND1 by MG132. This protein interferes with ubiquitin ligase activity [33]. Perhaps, inhibition of cleavage of ubiquitinated proteins leads to increased synthesis or decreased degradation of CAND1 through feedback mechanisms. Other proteins involved in the ubiquitin pathway were decreased by MG132, notably HSP90B1, THOP1, UBA1, and VCP.

None of the 6 annotated proteins increased by MG132 have been identified as a marker of oocyte competence. Nonetheless, an increase in amounts of these proteins could potentially affect oocyte competence. GAPDH, for example, catalyzes an important step in glycolysis. Glycolysis in the bovine oocyte is low and most pyruvate for the oocyte is supplied by the surrounding cumulus cells [34]. There is some evidence, though, that rate of glycolysis in the bovine oocyte is proportional to developmental competence [35]. Another protein increased by MG132 was TUBA1C. Tubulins are important for organelle movement in the oocyte and completion of meiosis [36,37]. Two other upregulated proteins, P4HB and HYOU1, function in protein folding [38,39].

The maturing oocyte is capable of apoptosis [40]. While MG132 affected relative expression of several proteins involved in apoptosis, it is not clear whether such effects would make the oocyte more or less susceptible to pro-apoptotic signals. MG132 decreased amounts of several proteins that exert anti-apoptotic actions including ASNS [41], HSP90B1 [42], PDIA3 [43], and VCP [44]. Another protein decreased by MG132, CDK5, can lead to apoptosis if aberrantly activated [45] and one protein increased by MG132, P4HB, is anti-apoptotic [46].

One protein decreased by MG132, VCP, has been implicated as an oocyte-derived sperm attractant in ascidians [47]. It remains to be determined whether this protein plays a similar role in mammals. In any case, addition of MG132 from 16–22 h of maturation did not affect fertilization or alter the rate of polyspermy.

The dose-response curve for oocytes exposed to MG132 from 16–22 h of maturation was unusual. The optimal beneficial effect was achieved with 10 μM and lower or higher concentrations were not generally effective. Similar effects have been seen in mouse, goat and pig oocytes used for somatic cell nuclear transfer [22,26].
as well as for aged mouse oocytes fertilized using intracytoplasmic sperm injection [6]. One possibility is that residual amounts of MG132 in oocytes treated with high concentrations of MG132 interfere with fertilization or subsequent embryonic development. Indeed, functional proteasomes are required for fertilization [48]. One potential use of MG132 is to improve embryo yield from systems of embryo production based on in vitro maturation of oocytes.

Table 7. Proteins whose abundance was altered by 10 μM MG132 from 16–22 h of maturation.

Accession number	Gene symbol	Name	Fold change	P	
gi	85682743	GAPDH	RecName: Full = Glyceraldehyde-3-phosphate dehydrogenase	3.01	0.027
gi	32634826	HYOU1	hypoxia up-regulated protein 1	2.30	0.014
tr	E1B748	E1B748_BOVIN	Uncharacterized protein	1.99	0.004
tr	A6H7J6	A6H7J6_BOVIN	P4HB	1.72	0.027
sp	Q3ZCJ7	TBA1C_BOVIN	Tubulin alpha-1C chain	1.60	0.018
sp	A7M8U5	CAND1_BOVIN	Cullin-associated NEDD8-dissociated protein 1	1.44	0.004
sp	Q299Z0	THIL_BOVIN	Acetyl-CoA acetyltransferase, mitochondrial	1.36	0.016
gi	74355032	SLC25A5	Solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5	0.37	0.039
gi	78369310	STIP1	stress-induced-phosphoprotein 1	0.45	0.002
gi	296470781	UBA1	ubiquitin-activating enzyme E1	0.46	0.010
tr	F1MH60	F1MH60_BOVIN	Uncharacterized protein	0.48	0.013
sp	Q85QH5	ADT2_BOVIN	ADT2	0.48	0.021
tr	F1MF69	F1MF69_BOVIN	Uncharacterized protein (Fragment)	0.49	0.010
gi	29646956	ADSL	adenosylsuccinate lyase	0.49	0.024
sp	Q3ML45	SAH1H_BOVIN	Adenosylhomocysteinase	0.52	0.039
tr	F1N785	F1N785_BOVIN	Uncharacterized protein	0.53	0.044
tr	Q1JPA2	Q1JPA2_BOVIN	EEF1G	0.53	0.001
gi	3366842	ALB	bovine serum albumin	0.54	0.030
gi	296475166	PDLA3	protein disulfide-isomerase A3 precursor	0.54	0.021
gi	296489406	PLAA	phospholipase A2-activating protein	0.56	0.043
gi	5767537	THOP1	thimet oligopeptidase 1	0.58	0.011
sp	Q02399	CDK5_BOVIN	CDK5	0.59	0.021
tr	Q3TO7K	Q3TO7K_BOVIN	MFGE8	0.63	0.021
sp	Q1LZ13	ASNS_BOVIN	ASNS	0.63	0.016
tr	F1M68	F1M68_BOVIN	Uncharacterized protein	0.64	0.014
gi	7545448	MGP57/S3	MGP57/S3 glycoprotein antigen	0.64	0.021
tr	AS7E83	AS7E83_BOVIN	PDIA3	0.66	0.005
sp	Q3ZBT1	TERA_BOVIN	VCP	0.70	0.016
gi	75775556	HSP90B1	Tumor rejection antigen (gp96) 1	0.71	0.002
tr	E1B6C4	E1B6C4_BOVIN	Uncharacterized protein	0.73	0.021
tr	Q2K1V8	Q2K1V8_BOVIN	GSTM3	0.75	0.000

*MG132/vehicle.

doi:10.1371/journal.pone.0048613.t007

Table 8. Effect of treatment with 10 μM MG132 from 16–22 h of maturation ability on the ability of the resultant blastocysts to establish pregnancy after transfer to recipient females.

MG132 (μM)	Day 32	Day 46	Day 71
0	9/24 (38%)	7/24 (29%)	6/20 (30%)
10	12/30 (40%)	12/30 (40%)	7/23 (30%)

Pregnancy rate at various days of gestation, fraction and percentage.

doi:10.1371/journal.pone.0048613.t008
MG132 Improves Oocyte Competence

oocytes. Results of the embryo transfer experiment reported here indicates that embryos produced from oocytes treated with MG132 from 16–22 h of maturation have the ability to establish pregnancy after transfer to recipients that is generally similar to control embryos. Thus, even though MG132 did rescue some oocytes that might otherwise might not have been fertilized, there was no noticeable decrease in embryo competence for establishment of pregnancy. A larger study with more embryos is needed to verify this observation.

In conclusion, our results confirm previous findings that inhibition of proteasomal activity early in oocyte maturation can block progression through meiosis and provide new information that inhibition of proteasomes late in maturation can improve the competence of the oocyte to cleave and the resultant embryo to develop to the blastocyst stage. Such results imply that aging-like effects on the oocyte mediated by proteasomes at the end of maturation can compromise the function of the oocyte and implies that yield of embryos from in vitro embryo production systems can be improved by appropriately-timed treatment with MG132. Results from the embryo transfer experiment would suggest that embryo yield can be increased without a loss of competence to establish pregnancy after transfer to recipients.

Supporting Information

Figure S1 Chromatograms (280 nm detection) for Supporting Information

Results from the embryo transfer experiment would suggest that

References

1. Karabinova P, Kubelka M, Susor A (2011) Proteasomal degradation of ubiquitinated proteins in oocytes meiosis and fertilization in mammals. Cell Tissue Res 346: 1–9.
2. Yang Q, Allan E, Huang M, Zhang W, Clarke HJ (2010) Proteasomal activity is required to initiate and sustain translational activation of messenger RNA encoding the stem-loop-binding protein during meiotic maturation in mice. Biol Reprod 2010 82: 123–31.
3. Revere CG, Ahearn MD, Hake LE (2001) CPEB degradation during Xenopus oocyte maturation requires a PEST domain and the 26S proteasome. Dev Biol 231: 447–458.
4. Nagyova E, Scuskova S, Nemcova L, Mlynarcikova A, Yi YJ, et al. (2012) Inhibition of proteasomal protein turnover affects expression of extracellular matrix components and steroidogenesis in porcine oocyte-cumulus complexes. Domest Anim Endocrinol 42: 50–62.
5. Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8: 397–403.
6. Ono T, Minzani E, Li C, Yamagata K, Wakayama T (2011) Offspring from intracytoplasmic sperm injection of aged mouse oocytes treated with caffeine or MG132. Genesis 49: 460–471.
7. You J, Kim J, Lee B, Hyun SH, Hansen PJ, et al. (2012) MG132 treatment during oocyte maturation improves embryonic development after somatic cell nuclear transfer and alters oocyte and embryo transcript abundance in pigs. Mol Reprod Dev 79: 41–50.
8. Parrish JI, Suss-Parrish JL, Leahfried-Rutledge ML, Crisler ES, Eyestone WH, et al. (1986) Bovine in vitro fertilization with frozen-thawed semen. Theriogenology 25: 591–600.
9. Fields SD, Hansen PJ, Ealy AD (2011) Fibroblast growth factor requirements for in vitro development of bovine embryos. Theriogenology 75: 1466–1475.
10. Law ME, Corso I, Jahn SC, Davis JJ, Chen S, et al. (2012) Glucocorticoids and histone deacetylases inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms. Oncogene, in press.
11. Shih IV, Seymour SL, Patel AA, Loboda A, Tang WH, et al. (2007) The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 2007; 6: 1638–1653.
12. Koh J, Chen S, Zhu Y, Yu F, Sohns PS, et al. (2012) Comparative proteomics of the recently and recurrently formed natural allopolyploid Tragopogon mirus (Asteraceae) and its parents. New Phytologist. 196: 292–305.
13. Fisher RA (1946) Questions and answers #14. Am Stat 2: 30–31.
26. Whitworth KM, Li R, Spate LD, Wax DM, Rieke A, et al. (2009) Method of oocyte activation affects cloning efficiency in pigs. Mol Reprod Dev 76: 490–500.

27. You J, Lee J, Kim J, Park J, Lee E (2010) Post-fusion treatment with MG132 increases transcription factor expression in somatic cell nuclear transfer embryos in pigs. Mol Reprod Dev 77: 149–157.

28. Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, et al. (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10: M111.013284.

29. Berendt FJ, Frodlisch T, Bohbrinker P, Bodhanove M, Gungor T, et al. (2009) Highly sensitive saturation labeling reveals changes in abundance of cell cycle-associated proteins and redox enzyme variants during oocyte maturation in vitro. Proteomics 9: 550–564.

30. Mamo S, Carter F, Lonergan P, Leal CL, Al Naib A, et al. (2011) Sequential analysis of global gene expression profiles in immature and in vitro matured bovine oocytes: potential molecular markers of oocyte maturation. BMC Genomics 12: 151.

31. Blumenfeld N, Gonen H, Mayer A, Smith CE, Siegel NR, et al. (1994) Purification and characterization of a novel species of ubiquitin-carrier protein, E2, that is involved in degradation of non-“N-end rule” protein substrates. J Biol Chem 269: 9574–9581.

32. Yun JW, Kim SK, Kim H (2011) Prolonged protein turnover of glyceraldehyde-3-phosphate dehydrogenase by phospholipase C-gamma 1 is critical for anchorage-independent growth and ATP synthesis in transformed cells. Cancer Invest 29: 93–101.

33. Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N, et al. (2011) Structural regulation of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol 21: 257–264.

34. Sutton-McDowall ML, Gilchrist RB, Thompson JG (2010) The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 139: 685–695.

35. Kondoh E, Konno A, Inaba K, Oishi T, Murata M, et al. (2008) Valosin-containing protein/p97 interacts with sperm-activating and sperm-attracting factor (SAAF) in the ascidian egg and modulates sperm-attracting activity. Dev Growth Differ 50: 665–673.

36. Albertini DF (1992) Cytoplasmic microtubular dynamics and chromatin organization during mammalian oogenesis and oocyte maturation. Mutat Res 296: 57–68.

37. Rivera RM, Kelley KL, Erdos GW, Hansen PJ (2004) Reorganization of microfilaments and microtubules by thermal stress in two-cell bovine embryos. Biol Reprod 70: 1832–1862.

38. Noiva R (1999) Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. Semin Cell Dev Biol 10: 481–493.

39. Park J, Easton DP, Chen X, MacDonald JF, Wang XY, et al. (2003) The chaperoning properties of mouse grp170, a member of the third family of hsp70 related proteins. Biochemistry 42: 14893–14902.

40. Roth Z, Hansen PJ (2004) Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation. Biol Reprod 71: 1898–1906.

41. Cui H, Darmann S, Natsuiska M, Kondo T, Asaka M, et al. (2007) Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cancer Res 67: 3345–3355.

42. Usmani SZ, Bona RD, Chiosis G, Li Z (2010) The anti-myeloma activity of a novel parasite scaffold HSP90 inhibitor PU-H71 is via inhibition of both HSP90A and HSP90B1. J Hematol Oncol 3: 40.

43. Pahl HL (1999) Signal transduction from the endoplasmic reticulum to the cell nucleus Physiol Rev 79: 683–701.

44. Shiragami T, Fukuda T, Muller JM, Shimura DT, Hibi M, et al. (1999). Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 11: 709–719.

45. Lopes JP, Oliveira CR, Agostinho P (2010) Neurodegeneration in an Ab-induced model of Alzheimer’s disease: the role of Cdk5. Aging Cell 9: 64–77.

46. Hashida T, Kotake Y, Ohta S (2011) Protein disulfide isomerase knockdown-induced cell death is cell-line-dependent and involves apoptosis in MCF-7 cells. J Toxicol Sci 36: 1–7.

47. Kondoh E, Kono A, Inaba K, Oishi T, Murata M, et al. (2008) Valosin-containing protein/p97 interacts with sperm-activating and sperm-attracting factor (SAAF) in the ascidian egg and modulates sperm-attracting activity. Dev Growth Differ 50: 665–673.