Exact solutions for interacting boson systems under rotation

Thomas Papenbrock and George F. Bertsch
Institute for Nuclear Theory, Department of Physics, University of Washington, Seattle, WA 98195, USA

Abstract

We study a class of interacting, harmonically trapped boson systems at angular momentum L. The Hamiltonian leaves a L-dimensional subspace invariant, and this permits an explicit solution of several eigenstates and energies for a wide class of two-body interactions.

PACS numbers: 05.30.Jp, 03.75.Fi, 03.65.Fd, 67.40.Db
The study of vortices in Bose-Einstein condensates of trapped atomic vapors is of considerable experimental and theoretical interest. Present experiments and much theoretical work focus on the Thomas-Fermi regime of short coherence length. The opposite limit of perturbatively weak contact interactions is not yet realized experimentally but is of theoretical interest as well. The case of attractive interactions was studied by Wilkin et al. Mottelson developed a theory for repulsive interactions, and Kavoulakis et al. and Jackson et al. compared mean field and exact numerical results. Exact diagonalization techniques by us showed that the ground state energy depends linearly on angular momentum and led to an analytical expression for the ground state wave function. Recently, the form of this wave function and its eigenenergy were confirmed in analytic calculations. However, we still lack insight about why certain eigenstates turn out to be simple analytical functions.

We show in this paper that there is a subspace structure that explains these findings. Interestingly, this structure is not limited to the two-body contact interaction considered in previous investigations but present in a rather large class of Hamiltonians. Let us consider a system of \(N \) harmonically trapped bosons in two spatial dimensions at angular momentum \(L \). The trap Hamiltonian is

\[
\hat{H} = \frac{1}{2} \sum_{j=1}^{N} \left(-\nabla_j^2 + r_j^2 - 2 \right),
\]

where \(r_j^2 = x_j^2 + y_j^2 \). Let us use complex single-particle coordinates \(z_j = x_j + iy_j, \quad j = 1 \ldots N \) and fix the angular momentum to be \(L \). The eigenfunctions of the trap Hamiltonian are of the form

\[
\psi(z_1, \ldots, z_N) = \phi(z_1, \ldots, z_N) \exp \left(-\frac{1}{2} \sum_{j=1}^{N} |z_j|^2 \right)
\]

and have degenerate energy \(E = L \). In eq. the homogeneous polynomial of degree \(L \) that is totally symmetric under permutation of particle indices. Suitable basis functions for such polynomials are products

\[
\phi(z_1, \ldots, z_N) = e_{\lambda_1} e_{\lambda_2} \ldots e_{\lambda_k}
\]

where \(e_{\lambda} \) denotes the elementary symmetric polynomial

\[
e_{\lambda}(z_1, \ldots, z_N) = \sum_{1 \leq p_1 < p_2 < \ldots < p_\lambda \leq N} z_{p_1} z_{p_2} \ldots z_{p_\lambda},
\]

and \(\{\lambda_1, \lambda_2, \ldots, \lambda_k\} \) is a partition of \(L \) into at most \(N \) integers, e.g. \(\sum_{j=1}^{k} \lambda_j = L \) with \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k \geq 0 \) and \(k \leq N \). We set \(e_0 = 1 \). From here on we omit the notation of the ubiquitous exponentials in the wave function and restrict ourselves to the regime \(0 \leq L \leq N \). In this regime, \(N \) is simply a parameter of the problem, and the dimension of Hilbert space equals the number of partitions of \(L \) into integers.

\[\text{1}\text{The three dimensional problem is essentially two-dimensional, see e.g. ref. [13.]\]
The operator for the total angular momentum is

\[\hat{L} = \sum_{j=1}^{N} z_j \partial_j, \]

(3)

where \(\partial_j \) denotes the derivative with respect to \(z_j \) and acts only onto the polynomial part of the wave function. Another important observable is the angular momentum of the center of mass. Its operator is given by

\[\hat{L}_c \equiv z_c D_c, \]

(4)

where \(z_c = e_1/N \) denotes the center of mass and

\[D_c = \sum_{j=1}^{N} \partial_j. \]

(5)

Again, it is understood that derivatives act on the polynomial part of the wave function only.

\(L_c \) has eigenvalues 0, 1, 2, \ldots, \(L - 2 \), \(L \) and commutes with the harmonic trap Hamiltonian (1) and the angular momentum (3). We further have the following commutator relations

\[[\hat{L}, D_c] = -D_c, \quad [\hat{L}, z_c] = z_c, \quad [\hat{L}_c, D_c] = -D_c, \quad [\hat{L}_c, z_c] = z_c. \]

(6)

The introduction of perturbatively weak interactions lifts the degeneracy of the trap Hamiltonian. In what follows we are interested in two-body interactions of the form

\[\hat{V} = g \sum_{m=0}^{L} c_m \hat{A}_m, \]

\[\hat{A}_m = \sum_{1 \leq i < j \leq N} (z_i - z_j)^m (\partial_i - \partial_j)^m, \]

(7)

where the derivatives act only onto the polynomial part of the wave function. We choose \(gN \ll 1 \) to be in the perturbative regime. Note that a large class of two-body interactions is of the form (7). Consider for instance the two-body potential \(V(r) = r^{2n} \). Comparison of matrix elements shows that

\[\left\langle \sum_{i<j} (r_i - r_j)^{2n} \right
angle = \left\langle \sum_{i<j} [(z_i^* - z_j^*) (z_i - z_j)]^n \right
angle \]

\[= \left\langle \sum_{i<j} (\partial_i - \partial_j)^n (z_i - z_j)^n \right
angle \]

\[= \left\langle \sum_{m=0}^{n} \binom{n}{m} \frac{n!}{m!} 2^{n-m} \hat{A}_m \right
angle. \]

Thus, any potential that depends analytically on the squared inter-particle distance \(r^2 \) can be written in the form of eq. (7). Further examples include zero range potentials of the form

\[V(r) = 2\pi g \left[a_0 \delta(r) + a_1 \nabla^2 \delta(r) + a_2 \nabla^4 \delta(r) \right]. \]
For $c_m = (-1/2)^m/m!$ the interaction (7) corresponds to the two-body contact interaction $V = 2\pi g\delta(\vec{r})$. This can be seen by computing and comparing matrix elements of these two different representations of the interaction. It is also instructive to analyze the action of the operator (7) on the wave function. Inserting the appropriate coefficients for the contact interaction into the Hamiltonian (7) we obtain a Taylor series. Thus,

$$\sum_{m=0}^{L} \frac{1}{m!} \left(\frac{z_j - z_i}{2}\right)^m \partial_i \partial_j^m \phi(z_1, \ldots, z_i, \ldots, z_j, \ldots, z_N)$$

$$= \sum_{m,n=0}^{L} \frac{(-1)^n}{m!n!} \left(\frac{z_j - z_i}{2}\right)^{m+n} \partial_i^m \partial_j^n \phi(z_1, \ldots, z_i, \ldots, z_j, \ldots, z_N)$$

$$= \phi \left(z_1, \ldots, z_i - \frac{z_j - z_i}{2}, \ldots, z_j - \frac{z_j - z_i}{2}, \ldots, z_N\right)$$

$$= \phi \left(z_1, \ldots, \frac{z_i + z_j}{2}, \ldots, \frac{z_j + z_i}{2}, \ldots, z_N\right).$$

In ref. [17] we presented an alternative differential operator with this effect on wave functions. The operators \hat{A}_m commute with \hat{L}, \hat{L}_c, z_c and D_c. Eq.(6) thus implies that the application of z_c to eigenstates with with quantum numbers L, L_c and energy gE yields eigenstates with quantum numbers $L+1, L_c+1, gE$. Similarly, the application of D_c to such eigenstates yields eigenstates with quantum numbers $L-1, L_c-1, gE$. These properties are well known for the case of a two-body contact interaction [19,20] and generalize to the Hamiltonian (7). Note that the operators A_0 and A_1 are simply given by

$$\hat{A}_0 = \frac{1}{2} N(N-1),$$
$$\hat{A}_1 = N(\hat{L} - \hat{L}_c).$$

Applying the operators \hat{A}_m onto the elementary symmetric polynomials yields

$$\hat{A}_m e_1 = 0 \quad \text{for } m \geq 1$$

(9)

Thus, the one-dimensional space $\mathcal{V}_0 = \text{span}\{e_1^\lambda\}$ is an invariant subspace of the Hamiltonian and therefore an eigenstate. Further,

$$\hat{A}_m e_\lambda = 0 \quad \text{for } m \geq 3.$$

(10)

This immediately shows that the $(L-1)$-dimensional vector space

$$\mathcal{V}_1 = \text{span}\{e_{L-\lambda} e_1^\lambda : \lambda = 0, 1, 2, \ldots, L-2\}$$

(11)

is annihilated by A_m for $m \geq 3$. The space $\mathcal{W}_1 = \mathcal{V}_0 \cup \mathcal{V}_1$ is an invariant subspace of the Hamiltonian (7) since

$$\hat{A}_2 e_\lambda = 2\lambda N e_\lambda - 2(N - \lambda + 1) e_1 e_{\lambda-1},$$

(12)

and

$$\hat{A}_1 e_\lambda = N\lambda e_\lambda - (N - \lambda + 1) e_1 e_{\lambda-1}.$$
Eigenfunctions of the Hamiltonian \(H \) in the subspace \(\mathcal{W}_1 \) are obtained by constructing states with good \(L_c \) quantum numbers. To this purpose we project \(e_L \) onto the space with \(L_c = 0 \) and obtain
\[
e_L(z_1 - z_c, \ldots, z_N - z_c) = \sum_{m=0}^{L} \frac{1}{m!} (-z_c)^m D_c^m e_L(z_1, \ldots, z_N)
\]
\[
= \frac{(-1)^L}{L!} (\hat{L}_c - 1) (\hat{L}_c - 2) \ldots (\hat{L}_c - L) e_L(z_1, \ldots, z_N).
\]
(13)
The r.h.s. of the first line is the Taylor expansion yielding a shift in the single-particle coordinates by \(-z_c \). The second line is obtained by combining the operators \(D_c \) and \(z_c \) to the operator for the angular momentum of the center of mass \((\hat{L})_c \). This yields an operator that projects onto the subspace with \(L_c = 0 \). The expansion
\[
e_L(z_1 - z_c, \ldots, z_N - z_c) = \sum_{m=0}^{L} \left(\frac{N - m}{L - m} \right) (-z_c)^{L-m} e_m(z_1, \ldots, z_N).
\]
(14)
shows explicitly that only states of \(\mathcal{W}_1 \) are involved in the construction of a state with \(L_c = 0 \). The states
\[z^\lambda_c e_{L-\lambda}(z_1 - z_c, \ldots, z_N - z_c), \quad \lambda = 0, 1, 2, \ldots, L - 2, L\]
(15)
thus constitute an orthogonal basis of \(\mathcal{W}_1 \). Since they have different quantum numbers \(L_c = \lambda \) they are also eigenstates of the Hamiltonian \(H \). Note that these wave functions do not depend on the coefficients \(c_m \) in the Hamiltonian. The corresponding energies are obtained by applying the Hamiltonian \(H \) to the states \((13) \). Using eqs. (8),(12) and (14) yields
\[E_\lambda = g \left[\frac{1}{2} N(N - 1)c_0 + N(L - \lambda)(c_1 + 2c_2) \right], \quad \lambda = 0, 1, 2, \ldots, L - 2, L.
\]
(16)
The states \((15) \) thus form a ladder. Let us consider the important case of a two-body contact interaction. Analytical arguments showed that the ground state is obtained for \(\lambda = L \) in the case of attractive interactions \(g < 0 \). For repulsive interactions, a combination of analytical \((15) \) and numerical calculations \((14) \) showed that the ground state is obtained for \(\lambda = 0 \). It is interesting to note that the corresponding fermionic problem, i.e. the quantum Hall effect with zero range interaction potentials, also has an exact ground state solution – the Laughlin wave function \((21) \).

Note that the annihilation properties described in eq. (3) and eq. (10) may be generalized to further subspaces. Let
\[\mathcal{V}_k = \text{span} \left\{ e_{\lambda_1} e_{\lambda_2} \ldots e_{\lambda_k} e_1^m : m = 0, 1, \ldots, L - 2k; \sum_{j=1}^{k} \lambda_j = L - m; \lambda_j > 1 \right\}\]
(17)
denote the space of wave functions that contain products of \(k \) elementary polynomials different from \(e_1 \) and \(e_0 \). Using eq. (3) and eq. (11) one obtains
\[\hat{A}_m \mathcal{V}_k = 0 \quad \text{for} \quad m \geq 2k + 1.
\]
(18)
However, these spaces are not invariant subspaces of the Hamiltonian, since e.g. $e_3^2(z_1, \ldots, z_6) \in \hat{V}e_3^2(z_1, \ldots, z_6)$. Let us consider the space that is generated when acting with the Hamiltonian (7) onto \mathcal{V}_k for $k > 1$. A direct calculation shows that

$$(\partial_i - \partial_j)^\mu (z_m - z_n)^\sigma (\partial_m - \partial_n)^\nu \mathcal{V}_k = 0 \quad \text{for } \mu \geq \nu + 2k + 1.$$

Therefore,

$$\hat{A}_m \hat{V} \mathcal{V}_k = 0 \quad \text{for } m \geq 4k + 1.$$

Introducing the subspaces

$$\mathcal{W}_k = \bigcup_{j=0}^k \mathcal{V}_j$$

yields

$$\hat{V} \mathcal{W}_k \subset \mathcal{W}_{2k} \quad \text{for } k > 1.$$

The Hamiltonian matrix thus can be cast into a block-tridiagonal form. The invariant subspaces \mathcal{W}_0, and \mathcal{W}_1 yield a block-diagonal structure, and the remaining matrix is block-tridiagonal.

The knowledge of L eigenstates (15) permits us to determine two additional eigenstates that are independent of the specific coefficients in the Hamiltonian (7). For $L = 4$ and $L = 5$, there are two basis states with $L = 0$. One of them has already been determined above, i.e. $e_L(z_1 - z_c, \ldots, z_N - z_c)$. The other two wave functions in question are

$$\phi_4 = N \sum_{j=1}^N (z_j - z_c)^4 + 3 \left(\sum_{j=1}^N (z_j - z_c)^2 \right)^2,$$

$$\phi_5 = N \sum_{j=1}^N (z_j - z_c)^5 + 2 \sum_{j=1}^N (z_j - z_c)^2 \sum_{i=1}^N (z_i - z_c)^3.$$

These wave functions are polynomials of degree four and five, respectively. Therefore, one finds $\phi_4, \phi_5 \in \mathcal{W}_2$.

The results derived so far were obtained for $0 \leq L \leq N$. For $L > N$ the Hilbert space depends on both L and N. The definition of the spaces \mathcal{V}_k has to be modified correspondingly, e.g. $\mathcal{V}_1 = \text{span}\{e_{L-\lambda} e_1^\lambda : \lambda = \max(0, L - N), \ldots, L - 2\}$ to be compared with eq. (11). However, the annihilation property described in eq. (15) remains valid and the Hamiltonian matrix continues to be of block-tridiagonal form. Note that the wave functions (15) are restricted to parameter values $\lambda = \max(0, L - N), \ldots, L - 3, L - 2, L$ for $L > N$.

Quantum mechanical systems with invariant subspaces have received considerable attention in recent years, since (quasi) exactly solvable systems fall into this class. For a general discussion see, e.g. refs. [22–25]. In difference to the present work, the interest there is on infinite-dimensional Hilbert spaces with a nested sequence of finite dimensional subspaces, and most research has been limited to systems with a few degrees of freedom. Note finally that partially solvable many-body systems [23] or systems with partial dynamical symmetry [26–28] also permit the analytical computation of selected eigenstates.
In summary, we studied a large class of harmonically trapped, interacting boson systems at angular momentum L. The Hamiltonian leaves a L-dimensional subspace invariant, and the quantization of the angular momentum for the center of mass yields several eigenstates that are independent of the details of the two-body interaction. Important examples of suitable interactions are two-body potentials of zero range and interactions that are analytically in the squared inter-particle distance.

This research was supported by the U.S. Department of Energy under Grant DE-FG03-00-ER41132.
REFERENCES

a e-mail: papenbro@phys.washington.edu
b e-mail: bertsch@phys.washington.edu

[1] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 83 (1999) 2498.
[2] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[3] E. Lundh, C. J. Pethick, and H. Smith, Phys. Rev. A 55 (1997) 2126.
[4] D. A. Butts and D. S. Rokhsar, Nature 397, 327 (1999).
[5] J. E. Williams and M. J. Holland, Nature 401, 568 (1999).
[6] D. L. Feder, C. W. Clark, and B. I. Schneider, Phys. Rev. A 61, 011601 (2000); Phys. Rev. Lett. 82, 4956 (1999).
[7] A. Svidzinsky and A. L. Fetter, Phys. Rev. Lett. 84, 5919 (2000); arXiv:cond-mat/0007139.
[8] M. Linn and A. L. Fetter, Phys. Rev. A 60, 4910 (1999); Phys. Rev. A 61, 063603 (2000).
[9] N. K. Wilkin, J. M. Gunn, and R. A. Smith, Phys. Rev. Lett. 80, 2265 (1998).
[10] B. Mottelson, Phys. Rev. Lett. 83, 2695 (1999).
[11] G. F. Bertsch and T. Papenbrock, Phys. Rev. Lett. 83, 5412 (1999).
[12] G. M. Kavoulakis, B. Mottelson, and C. J. Pethick, arXiv:cond-mat/0004307.
[13] A. D. Jackson, G. M. Kavoulakis, B. Mottelson, and S. M. Reimann, arXiv:cond-mat/0004309.
[14] For a review see, e.g., F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).
[15] A. D. Jackson and G. M. Kavoulakis, arXiv:cond-mat/0005159.
[16] R. A. Smith and N. K. Wilkin, arXiv:cond-mat/0005230.
[17] T. Papenbrock and G. F. Bertsch, arXiv:cond-mat/0005480.
[18] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Clarendon Press, Oxford 1995.
[19] A. Perelomov, Generalized Coherent States and Their Applications, (Texts and monographs in physics), Springer Verlag, Berlin 1986.
[20] L.P. Pitaevskii and A. Rosch, Phys. Rev. A 55, R853 (1998).
[21] S. A. Trugman and S. Kivelson, Phys. Rev. B 31, 5280 (1985).
[22] A. Turbiner, Commun. Math. Phys. 118, 467 (1988); W. Rühl and A. Turbiner, Mod. Phys. Lett. A 10, 2213 (1995).
[23] M. A. Shifman, Int. J. Mod. Phys. A 4, 2897 (1989).
[24] A. G. Ushveridze, Quasi-exact solvability in quantum mechanics, Institute of Physics Publishing, Bristol and Philadelphia, 1993.
[25] F. Calogero, J. Math. Phys. 40, 4208 (1999).
[26] A. Leviatan, Phys. Rev. Lett. 77, 818 (1996).
[27] A. Leviatan and J. N. Ginocchio, Phys. Rev. C 61, 024305 (2000).
[28] J. Escher and A. Leviatan, Phys. Rev. Lett. 84, 1866 (2000).