ПОЛИМОРФИЗМ ГЕНА TNF КАК ФАКТОР РИСКА АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИИ У БОЛЬНЫХ ГАСТРОЭЗОФАГЕАЛЬНОЙ РЕФЛЮКСНОЙ БОЛЕЗНЮЮ

О.В. Хлынова1, Е.А. Шишкина1, В. Сахена1, А.В. Кривцов2, Г.Н. Спасенков3, Н.И. Абгарян3

1Пермский государственный медицинский университет имени академика Е.А. Вагнера, Россия, 614000, г. Пермь, ул. Сибирская, 84
2Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения, Россия, 614045, г. Пермь, ул. Петропавловская, 26
3Клинический кардиологический диспансер, Россия, 614002, г. Пермь, ул. Сибирская, 84

На протяжении последних десятилетий артериальная гипертензия (АГ) продолжает оставаться одним из наиболее распространенных и социально значимых сердечно-сосудистых заболеваний [1]. По данным эпидемиологических исследований повышенное артериальное давление (АД) регистрируется у 39–40 % населения Российской Федерации [2]. На сегодняшний день все большее количество пациентов с АГ имеют более одного ассоциированного заболевания, при этом коморбидность и полиморбидность прогрессируют с возрастом больного. Сопутствующая патология обусловливает вариабельность течения артериальной гипертензии и риска развития осложнений.

Несмотря на высокую распространенность коморбидности артериальной гипертензии (АГ) и гастроэзофагеальной рефлюксной болезни (ГЭРБ) (от 20,6 до 29,0 %), факторы риска формирования АГ у данной категории больных остаются до конца не исследованными. Как в развитии АГ, так и в патогенезе ГЭРБ обсуждается роль проповедственно-го цитокина фактора некроза опухоли альфа (TNF-α), активность которого во многом определяется полисомическим аллелей гена фактора некроза опухоли (TNF). Таким образом, исследование полиморфизма G308A гена TNF у больных с ассоциированным течением АГ и ГЭРБ представляется весьма актуальным.

Изучена распространенность и варианты ассоциации полиморфизма G308A гена TNF с риском развития артериальной гипертензии и коморбидностью больных.

Обследовано 38 больных АГ (29 пациентов с изолированной АГ, средний возраст 53 г. [46; 62], 29 пациентов с ассоциированным течением АГ и ГЭРБ, средний возраст 56 г. [51; 59]) пациенты обеих групп были сопоставимы по полу, возрасту, изучаемым факторам риска сердечно-сосудистых заболеваний. Определение полиморфизма G308A гена фактора некроза опухоли TNF проводили методом амплификационной полимеразной реакции с использованием тест-систем производства ООО «Синтез» (г. Москва). Для оценки ассоциации аллелей гена TNF с риском развития гипертензии вычисляли как отношение шансов (ОШ) с 95%-ным доверительным интервалом (ДИ).

В группе пациентов с ассоциированным течением АГ и ГЭРБ выявлены ассоциации полиморфного маркера G308A гена TNF с уровнем систолического АД и нарушением толерантности к глюкозе. Носительство неблагоприятной аллели A и генотипа G/A достоверно чаще выявлялось в группе пациентов с ассоциацией АГ и ГЭРБ (ОШ 5,14, 95%-ный ДИ = 1,06–24,95; p = 0,03, ОШ 6,08; 95 % ДИ = 1,18–31,25; p = 0,02 соответственно).

Показано, что полиморфизм G308A ассоциирован с развитием АГ у больных ГЭРБ. Эти данные подтверждают значимость эндотелиальной дисфункции в патогенезе АГ у данной категории больных.

Ключевые слова: артериальная гипертензия, гастроэзофагеальная рефлюксная болезнь, коморбидность, эндотелиальная дисфункция, фактор риска, полиморфизм гена TNF, фенотип артериальной гипертензии.

© Хлынова О.В., Шишкина Е.А., Сахена В., Кривцов А.В., Спасенков Г.Н., Абгарян Н.И., 2020

Хлынова Ольга Витальевна – член-корреспондент РАН, доктор медицинских наук, профессор, заведующий кафедрой госпитальной терапии (e-mail: olgakhlynova@mail.ru; тел.: 8 (342) 239-31-88; ORCID: https://orcid.org/0000-0003-4860-0112).

Шишкина Екатерина Андреевна – кандидат медицинских наук, ассистент кафедры госпитальной терапии (e-mail: doctor.shishkina@yandex.ru; тел.: 8 (342) 239-31-88; ORCID: http://orcid.org/0000-0001-6965-7869).

Сахена Викас – соискатель кафедры госпитальной терапии (e-mail: saxena.vikas@yandex.ru; тел.: 8 (342) 239-31-88; ORCID: https://orcid.org/0000-0002-7175-2264).

Кривцов Александр Владимирович – кандидат медицинских наук, заведующий лабораторией иммуногенетики (e-mail: Krivtsov@iirk.ru; тел.: 8 (342) 236-86-99; ORCID: http://orcid.org/0000-0001-7986-0326).

Спасенков Григорий Николаевич – заведующий отделением кардиологии и профилактики (e-mail: Spy5502@mail.ru; тел.: 8 (342) 216-99-09; ORCID: http://orcid.org/0000-0003-1085-5814).

Абгарян Наталья Ивановна – врач-кардиолог отделения кардиологии (e-mail: docnatashka01@mail.ru; тел.: 8 (342) 216-99-09; ORCID: http://orcid.org/0000-0001-6946-5465).
Полиморфизм гена TNF как фактор риска артериальной гипертонии ...

ность клинических симптомов основной патологии, оказывает влияние на прогноз и качество жизни пациентов, а в ряде случаев требует изменений в терапевтической тактике ведения [3]. Хорошо изучены и патогенетически обоснованы сочетания AG с сахарным диабетом, ишемической болезнью сердца, хронической болезнью почек. Вместе с тем проблема коморбидной патологии в отношении AG и других социально значимых заболеваний, в частности системы пищеварения, приобретает все большую актуальность.

Гастроэзофагеальная рефлюксная болезнь (ГЭРБ) по праву относится к самой часто встречающейся патологии гастроуденальной зоны, имеет широкую (до 60 %) распространенность в популяции взрослого населения нашей страны. Результаты многоцентрового исследования «Эпидемиология гастроэзофагеальной рефлюксной болезни в России» [4] показывают, что главный симптом ГЭРБ – изжогу – испытывают 61,7 % мужчин и 63,6 % женщин. При этом, по данным зарубежных исследователей, распространенность AG среди пациентов с ГЭРБ составляет от 20,6 до 29,0 % [5].

Представленные данные позволяют считать ассоциированное течение AG и ГЭРБ достаточно актуальным, а частое сочетание указанных нозологий предполагает наличие определенной патогенетической закономерности в их ассоциированном течении.

Помимо традиционных факторов риска возникновения и прогрессирования AG и ГЭРБ, активно изучается патогенетическая роль медиаторов воспаления, обсуждается и ассоциация провоспалительных цитокинов с развитием эндотелиальной дисфункции и увеличением жесткости сосудистой стенки [6, 7].

Фактор некроза опухоли альфа (TNF-α) представляет собой многофункциональный провоспалительный цитокин, участвующий в регуляции широкого спектра биологических процессов, активность которого во многом зависит от носительства определенных аллелей гена фактора некроза опухоли (TNF). Так же как гипертонический синдром, рефлюксная болезнь является многофакторным заболеванием, сопряженным с большим числом факторов риска, включая генетические. В)v

Изложенное выше определило цель исследования – изучить распространенность и варианты ассоциации полиморфизма G308A гена TNF с риском развития и фенотипическими особенностями AG у больных ГЭРБ.

Материалы и методы. В работе были включены 58 пациентов с установленным диагнозом AG, при этом у 29 человек (основная группа) сопутствующим заболеванием была ГЭРБ. Группу сравнения составили 29 пациентов с изолированной AG. Все обследованные были сопоставимы по полу, возрасту, длительности основного заболевания. Исследование проводилось на базе отделения кардиологи гии и профилактики ГБУЗ ПК «Клинический кардиологический диспансер» (г. Пермь). Все пациенты подписывали письменное информированное согласие на участие в исследовании. Также на проведение исследования было получено разрешение локального этического комитета ФГБОУ ВО «Пермский государственный медицинский университет имени академика Е.А. Вагнера» Минздрава России (протокол № 8 от 02.10.2018 г.).

Критерии невключения в исследование: вторичный характер AG, перенесенный инфаркт миокарда или стенокардия напряжения выше II ф. класса, сахарный диабет, хроническая болезнь почек после стадии С3а, печеночная недостаточность, хроническая сердечная недостаточность выше класса IIА по классификации Нью-Йоркской ассоциации кардиологов, злокачественные новообразования любой локализации, отсутствие письменного информированного согласия на участие в исследовании.

Диагноз AG устанавливали в соответствии с рекомендациями по AG Всероссийского научного общества кардиологов по диагностике и лечению AG (4-й пересмотр) [8]. Для первоначального скрининга ГЭРБ использовали опросник GerdQ (чувствительность метода 91,7 %, специфичность 65,4 %), который позволяет устанавливать диагноз ГЭРБ на этапе первичного контакта с пациентом [9]. В последующем диагноз ГЭРБ был подтвержден в соответствии с современными клиническими рекомендациями Российской гастроэнтерологической ассоциации [10].

Лабораторное и инструментальное обследование пациентов проводилось в соответствии со стандартами оказания медико-санитарной помощи при первичной AG (приложение к приказу Минздрава России № 708н от 09.11.2012 г.). Дополнительно всем пациентам до назначения антигипертензивной терапии выполнялось суточное мониторирование артериального давления (СМАД) с использованием приборов BPLab, Россия.

У всех участников исследования забирали диагностический материал со слизистой оболочки щеки с помощью сухого стерильного зонда с ватным тампоном. В последующем методом аллель-специфической полимеразной реакции с использованием тест-систем производства ООО «Синтол» (г. Москва) проводили определение полиморфизма G 308A (rs1800629) гена фактора некроза опухоли TNF. Статистическая обработка осуществлялась при помощи сертифицированных компьютерных программ. Полученные данные представлены в виде Me [25; 75], где Me – медиана, 25 и 75 – 25-й и 75-й процентили. Сравнение непараметрических величин проводили с помощью теста Манна – Уитни. Для проведения статистического анализа распределения частот аллелей и генотипов использовали таблицы сопряженности с расчетом критерия χ2. Различия считали достоверными при уровне p < 0,05. Оценку ассоциации аллелей и генотипов с риском развития
Распределение частот альлелей и генотипов полиморфного маркера 308GA (rs1800629) гена TNF в группах пациентов (мультитипликативная и аддитивная модель наследования), тест хи-квадрат, $df = 1$

Ген фактора некроза опухоли альфа (TNF). Аллели и генотипы	Распределение частот альлелей и генотипов	χ^2	p	ОШ	значение	ДИ		
основная группа (АГ и ГЭРБ), $n = 29$	группа сравнения (АГ), $n = 29$							
абс.	%	абс.	%					
G	49	84,5	56	96,6	4,92	0,03*	0,19	0,04–0,94
A	9	15,5	2	3,4	5,14	1,06–24,95		
G/G	20	69	27	93,1	0,16	0,03–0,85		
G/A	9	31	2	6,9	5,5	0,02*	6,08	1,18–31,25
A/A	0	0	1	0,02–52,10				

П р и м е ч а н и е: TNF – ген фактора некроза опухоли альфа; АГ – артериальная гипертензия; ГЭРБ – гастро-эзофагеальная рефлюксная болезнь; ОШ – отношение шансов; * – значимость различий.

Частота генотипов полиморфного маркера G308A гена TNF в группах пациентов с изолированной АГ и при ассоциации АГ и ГЭРБ представлена в таблице.

Генотип	Распределение абс. и %	χ^2	p	ОШ	значение	ДИ
G-альель	96,60	84,50	93,10			
A-альель	15,50					
G/G-генотип	90	60	30			
G/A-генотип	30	40	30			

Рис. Частота альлелей и генотипов полиморфного маркера G308A гена TNF у больных с изолированной AG и при ассоциации AG и ГЭРБ: TNF – ген фактора некроза опухоли альфа; ОШ – отношение шансов; * – значимость различий

Следующим этапом данного исследования был поиск возможных ассоциаций генотипа G308A гена TNF с клиническими особенностями и факторами риска АГ в исследуемых группах.

В обеих группах не были установлены ассоциации полиморфизма G308A гена TNF с ИМТ, показателями липидного обмена, плазменным уровнем TNF, С-реактивного протеина, эхокардиографическими параметрами. В то же время установлена ассоциация минорной аллели А с шансом развития нарушений углеводного обмена. В группе пациентов с ассоциированным течением АГ и ГЭРБ и нарушенной гликемией натощак (глюкоза плазмы натощак 6,1–6,9 ммоль/л) частота гетерозиготного генотипа G/A гена TNF оказалась выше (27,6 %), чем среди лиц с нормогликемией (6,7 %, $p = 0,03$). Риск выявить повышенный уровень глюкозы у пациентов с ассоциированным течением заболеваний оказался в пять раз выше среди носителей генотипа G/A по сравнению с носителями генотипа G/G (ОШ 5,33; 95%-ный ДИ – 1,02–27,76; $p = 0,03$). Для пациентов группы с изолированной АГ вышеуказанных различий не получено. Несмотря на то что пациенты обеих групп были сопоставимы по степени повышения заболевания включали как отношение шансов (ОШ) с 95%-ным доверительным интервалом (ДИ). Проверка соответствия распределения частот генотипов равновесию Харди – Вайнберга определялась с использованием программы «Калькулятор для расчета статистики в исследованиях “случай – контроль”».

Результаты и их обсуждение. Осуществлено простое открытое сравнительное исследование. Медиана возраста пациентов в основной группе лиц составила 56 лет [51; 59], в группе сравнения – 53 г. [46; 62], $p = 0,392$. В обеих группах преобладали мужчины (82 и 79 % соответственно). Пациенты были сопоставимы по индексу массы тела (ИМТ), статусу курения, длительности АГ ($p = 0,733$). В обеих группах преобладали пациенты со второй степенью повышения АД (51,21 % в группе с изолированной АГ и 55,55 % в группе с АГ и ГЭРБ), II стадии (56,09 и 59,25 % соответственно), 3-й степенью риска (48,14 и 43,9 %). При исследовании полиморфизма G308A распространенность генотипов G/G и G/A у пациентов с АГ составила 77,94 и 22,05 % соответственно, распределение частот не отличалось от равновесия Харди – Вайнберга ($\chi^2 = 0,79$, $p = 0,37$). Данные результаты сопоставимы с приведенными в работах других исследователей и существенно не отличаются от распределения генотипов в большинстве европейских популяций [11, 12].
АД и принимаемой лекарственной терапии, в группе с коморбидным течением АГ и ГЭРБ обнаружена ассоциация минорной аллели А гена TNF с шансом развития АГ выше 2-й степени (по систолическому АД). Риск выявить повышение систолического АД (САД) выше 150 мм рт. ст. был почти в четыре раза выше среди носителей генотипа G/A в сравнении с носителями генотипа G/G (ОШ 3,92; ДИ-ный 0,97–15,90; р = 0,04) у пациентов с сочетанным течением АГ и ГЭРБ. В группе пациентов с изолированной АГ подобные различия выявлены не были.

Ген TNF картирован на коротком плече хромосомы 6 (bp21.33) и относится к локусу генов главного комплекса гистосовместимости. Установлена взаимосвязь полиморфизма гена TNF с развитием сахарного диабета, инсулинорезистентности [13, 14], заболеваний органов дыхания, атеросклерозом [15, 16], онкологическими заболеваниями. Показана взаимосвязь полиморфного варианта G308A гена TNF с увеличением риска острого коронарного синдрома и больным риском неблагоприятных коронарных событий после перенесенного инфаркта миокарда [17]. Ряд работ посвящен уточнению взаимосвязи полиморфизма G308A с развитием АГ. В метаанализе, включающем 2244 участника [12], была показана ассоциация носительства аллели А полиморфного варианта G308A с увеличением уровня активности TNF-α [18, 19]. В этом же исследовании для генотипа AA гена TNF ассоциация с АГ увеличивалась более чем в два раза (ОШ 3,454). Следует отметить, что носительство аллельных вариантов гена TNF может регулировать экспрессию TNF-α [20]. Известно, что носительство аллельных вариантов гена TNF может регулировать экспрессию TNF-α. Роль TNF-α в формировании сердечно-сосудистой патологии не вызывает сомнений. Имеются данные о том, что в развитии АГ у больных ГЭРБ имеет значение носительство G/A-генотипа гена TNF. Допустимо предположить, что возникновение эндотелиальной дисфункции при прогрессировании метаплазии происходит уве-личением риска развития АГ у больных ГЭРБ [21]. Установлены в группе пациентов с АГ и ГЭРБ ассоциации полиморфизма с уровнем систолического АД и нарушением углеводного обмена позволяют предполагать влияние полиморфизма G308A гена TNF на формирование клинических и метаболических особенностей АГ у данной когорты больных.

Выводы. В связи с высокой распространенностью ассоциированного течения АГ и ГЭРБ существует необходимость дальнейшего поиска ассоциаций молекулярных патогенетических механизмов формирования АГ у данной категории больных. Результаты настоящего исследования дополняют уже имеющиеся данные о коморбидности ГЭРБ и АГ и подчеркивают значимость эндотелиальной дисфункции в патогенезе указанных нозологий. Носительство аллели А гена TNF (G308A) в виде гетерозиготы G/A позволяет считать этот генотип дополнительным маркером формирования особого фенотипа АГ у больных ГЭРБ. Определение генетического профиля может использоваться дополнительно при скрининговых обследованиях пациентов с ГЭРБ с целью выявления групп повышенного риска к развитию АГ. Представленные результаты позволяют не только расширить представление о генетической составляющей АГ у пациентов с ГЭРБ, но и создают предпосылки для разработки программ профилактики по снижению сердечно-сосудистого риска у пациентов с ГЭРБ.

Финансирование. Исследование не имело спонсорской поддержки.

Конфликт интересов. Авторы статьи заявляют об отсутствии конфликта интересов.
Список литературы

1. Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115 mm Hg, 1990–2015 / M.H. Forouzanfar, P. Liu, G.A. Roth, M. Ng, S. Biryukov, L. Marczak, L. Alexander, K. Etest et al. // JAMA. – 2017. – Vol. 317, № 2. – P. 165–182. DOI: 10.1001/jama.2016.19043

2. Артериальная гипертония среди лиц 25–64 лет: распространенность, осведомленность, лечение и контроль. По материалам исследования ЭССЕ / С.А. Бойцов, Ю.А. Балыкова, С.А. Шальнова, А.Д. Девяк, Г.В. Артамонова, Т.М. Гатаганова, Д.В. Дудыляков, А.Ю. Ефанов [и др.] // Кардиоваскулярная терапия и профилактика. – 2014. – Т. 13, № 4. – С. 4–14.

3. Верткин А.Л., Румянцев М.А., Скотовиков А.С. Коморбидность в клинической практике. Часть 1 // Архив внутренней медицины. – 2011. – № 1. – С. 16–20.

4. Результаты многоцентрового исследования «Эпидемиология гастроэзофагеальной рефлюксной болезни в России» (МЭГРЭ) / Л.Б. Лазебник, А.А. Машарова, Д.С. Бордюин, Ю.В. Васильев, Е.И. Ткаченко, Р.А. Абдулахов, М.А. Бутов, Е.Ю. Еремина [и др.] // Терапевтический архив. – 2011. – Т. 83, № 1. – С. 45–50.

5. Comorbidities are Frequent in Patients with Gastroesophageal Reflux Disease in a Tertiary Health Care Hospital Article in Clinics (Rio de Janeiro, Brazil) [Электронный ресурс] // SciElo. – 2009. – Vol. 64, № 8. – P. 785–790. – URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50502009000800013&lng=en&nrm=iso (дата обращения: 29.07.2019).

6. C-reactive protein makes human endothelium stiff and tight / K. Kusche-Vihrog, K. Urbanova, A. Blanquè, M. Weihelmi, H. Schillers, K. Kliche, H. Pavenstädt, E. Brand, H. Oberleithner // Hypertension. – 2011. – Vol. 57, № 2. – P. 231–237. DOI: 10.1161/HYPERTENSIONAHA.110.163444.

7. EFFECT OF INTERLEUKIN-10 AND LAMINAR SHEAR STRESS ON ENDOTHELIAL NITRIC OXIDE SYNTHASE AND NITRIC OXIDE IN AFRICAN AMERICAN HUMANS / M.D. Babbitt, J.S. Kim, S.J. Forrester, M.D. Brown, J.Y. Park // Ethnicity and Disease. – 2015. – Vol. 25, № 4. – P. 413–418. DOI: 10.18865/ed.25.4.143.

8. Диагностика и лечение артериальной гипертензии (Рекомендации Российского медицинского общества по артериальной гипертензии / III. Чапова, Н.Г. Радова, С.А. Бойцов, Д.В. Небесридзе, Ю.А. Карпов, Ю.Б. Белоусов, Э.Г. Волкова, А.С. Галявич [и др.] // Системные гипертензии. – 2010. – № 3. – С. 5–26.

9. Клинические рекомендации российской гастроэнтерологической ассоциации по диагностике и лечению гастроэзофагеальной рефлюксной болезни / В.Т. Ивашкин, И.В. Маве, А.С. Трухманов, Е.К. Баранская, О.Б. Дронова, О.В. Зайрачъян, Р.А. Абдулхаков, О.В. Хлынова, Е.А. Шишкина, В. Сахена, А.В. Кривцов, Г.Н. Спасенков, Н.И. Абгарян // Кардиоваскулярная терапия и профилактика. – 2017. – № 1. – С. 75–95.

10. Effect of Interleukin-10 and laminar shear stress on endothelial nitric oxide synthase and nitric oxide in African American human umbilical vein endothelial cells / D.M. Babbitt, J.S. Kim, S.J. Forrester, M.D. Brown, J.Y. Park // Ethnicity and Disease. – 2015. – Vol. 25, № 4. – P. 413–418. DOI: 10.18865/ed.25.4.143.

11. Полиморфизм гена фактора некроза опухолей альфа у больных эссенциальной артериальной гипертензией / Я.Р. Тимашев, Т.Р. Насибуллин, О.Е. Мустафина // Кардиоваскулярная терапия и профилактика. – 2007. – Т. 6, № 6. – С. 5–9.

12. Li Y.Y. Tumor necrosis factor-alpha G308A gene polymorphism and essential hypertension: a meta-analysis involving 2244 participants // Plos One. – 2012. – Vol. 7, № 4. – P. e35408. DOI: 10.1371/journal.pone.0035408.

13. The TNF-alpha-308G/A polymorphism is associated with type 2 diabetes mellitus: an updated meta-analysis / Y. Zhao, Z. Li, L. Zhang, Y. Zhang, Y. Tang, P. Fu // Molecular Biology Reports. – 2014. – № 41. – P. 73–83. DOI: 10.1007/s11033-013-2839-1.

14. The G-308A promoter variant of the tumor necrosis factor-alpha gene is associated with hypertension in adolescents harboring the metabolic syndrome / S. Sookoian, S.I. Garcia, T.F. Gianotti, G. Dieuzeide, C.D. Gonzalez, C.J. Pirolo // American Journal of Hypertension. – 2005. – Vol. 18, № 10. – P. 1271–1275. DOI: 10.1016/j.amjhyp.2005.04.014.

15. Inflammation and atherosclerosis: the role of TNF and TNF receptors polymorphisms in coronary artery disease / I. Sbarsi, C. Falcone, C. Boiocchi, I. Campo, M. Zorzetto, A.A. Shpirtz, M. Cuccia // International Journal of Immunopathology and Pharmacology. – 2007. – Vol. 20, № 1. – P. 145–154. DOI: 10.1177/089139670702000117.

16. Tumor necrosis factor-alpha gene polymorphisms and susceptibility to ischemic heart disease: A systematic review and meta-analysis / P. Zhang, X. Wu, G. Li, Q. He, H. Dai, C. Ai, J. Shi // Medicine (Baltimore). – 2017. – Vol. 95, № 14. – P. e6569. DOI: 10.1097/MD.0000000000006569.

17. Бражник В.А., Минуциева Л.Ю., Аверькова О.О. Полиморфизм гена TNF у больных острым коронарным синдромом: данные регистров Оракул I и Оракул II // Российский кардиологический журнал. – 2018. – Vol. 23, № 10. – С. 23–27.

18. Interleukin 1β and 10 polymorphisms influence erosive reflux esophagitis and gastritis in Taiwanese patients / O.В. Хлынова, Е.А. Шишкина, В. Сахена, А.В. Кривцов, Г.Н. Спасенков, Н.И. Абгарян // Кардиоваскулярная терапия и профилактика. – 2014. – № 35. – P. 1620–1628. DOI: 10.1177/039463201455659.

19. Association between TNF-α308G/A polymorphism and esophageal cancer risk: An updated meta-analysis and trial sequential analysis / F. Yang, K. Wei, Z. Qin, C. Shao, Y. Shu, H. Shen // Journal of Cancer. – 2019. – Vol. 10, № 5. – P. 1086–1096. DOI: 10.7150/jca.29390.

20. Haider S.H., Kwon S., Lam R. Predictive Biomarkers of Gastroesophageal Reflux Disease and Barrett's Esophagus in World Trade Center Exposed Firefighters: a 15 Year Longitudinal Study // Scientific Reports. – 2018. – № 8. – P. 3106. DOI: 10.1038/s41598-018-21334-9.

21. Loss of glutathione peroxidase 7 promotes TNF-alpha induced NF kappaB activation in Barrett’s carcinogenesis / D.F. Peng, T.L. Hu, M. Soutto, A. Belkhiri, W. El-Rifai // Carcinogenesis. – 2013. – № 35. – P. 1620–1628. DOI: 10.1093/carcin/bgu083.

22. TNF-alpha induces endothelial dysfunction in diabetic adults, an effect reversible by the PPAR-gamma agonist pioglitazone / F.M. Martens, T.J. Rabelink, J. Op’t Roodt, E.J.P. De Koning, F.L.G. Visseren // European Heart Journal. – 2006. – Vol. 27, № 13. – P. 1605–1609. DOI: 10.1093/eurheartj/ehl079.
Comorbidity of arterial hypertension (AH) and gastroesophageal reflux disease (GERD) is widely spread (from 20.6% to 29%); despite that fact, risk factors that can cause AH in patients suffering from GERD have still not been examined completely. Experts are discussing a role played by anti-inflammation cytokine of tumor necrosis factor alpha (TNF-α) both in AH occurrence and GERD pathogenesis as it is its activity that is to a great extent determined by a patient having certain alleles of tumor necrosis factor (TNF) gene. Therefore, it seems vital to study TNF gene G308A polymorphism in patients with combined AH and GERD.

Our research goal was to study frequency and variants of TNF gene G308A polymorphism relations with AH risk and AH phenotypic peculiarities in patients suffering from GERD.

We examined 58 people who had AH (29 patients with isolated AH, average age being 53 [46; 62], and 29 patients with combined AH and GERD, average age being 56 [51; 59]). Patients from both groups were comparable in terms of sex, age, and examined factors of cardiovascular diseases risks. We applied allele-specific polymerase reaction with test systems produced by “Sintol” LLC (Moscow) to determine G308A (rs1800629) polymorphism of TNF gene. To assess relations between alleles and genotypes and disease risks, we calculated odds ratio (OR) with 95% confidence interval (CI).

We revealed a relation between G308A polymorph marker of TNF gene and systolic blood pressure and disorders in tolerance to dextrose among patients with comorbid AH and GERD. Patients with combined AH and GERD had unfavorable allele A and G/A genotype authentically more frequently (OR 5.14; 95% CI – 1.06–24.95; p = 0.03, OR 6.08; 95% CI – 1.18–31.25; p = 0.02 accordingly).

We showed that G308A polymorphism was related to AH occurrence in patients suffering from GERD. These data confirm that endothelial dysfunction plays a significant role in AH pathogenesis among such patients.

Key words: arterial hypertension, gastroesophageal reflux disease, comorbidity, endothelial dysfunction, risk factor, genetic polymorphism, TNF gene, arterial hypertension phenotype.

References

1. Forouzanfar M.H., Liu P., Roth G.A., Ng M., Biryukov S., Marczak L., Alexander L., Estep K. [et al.]. Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115 mm Hg, 1990–2015. *JAMA*, 2017, vol. 317, no. 2, pp. 165–182. DOI: 10.1001/jama.2016.19043

2. Boitsov S.A., Bulanova Yu.A., Shal’nova S.A., Deev A.D., Artamonova G.V., Gatagonova T.M., Duplyakov D.V., Efanov A.Yu. [et al.]. Arterial hypertension among individuals of 25–64 years old: prevalence, awareness, treatment and control. By the data from ECCD. *Kardiovaskulyarnaya terapiya i profilaktika*, 2014, vol. 13, no. 4, pp. 4–14 (in Russian).

© Khlynova O.V., Shishkina E.A., Sakhena V., Krivtsov A.V., Spasenkov G.N., Abgaryan N.I., 2020

Olga V. Khlynova – Corresponding Member of the RAS, Doctor of Medical Sciences, Professor, Head of the Hospital Therapy Department (e-mail: olgakhlynova@mail.ru; tel.: +7 (342) 239-31-88; ORCID: https://orcid.org/0000-0003-4860-0112).

Ekaterina A. Shishkina – Candidate of Medical Sciences, Assistants at the Hospital Therapy Department (e-mail: doctor.shishkina@yandex.ru; tel.: +7 (342) 239-31-88; ORCID: http://orcid.org/0000-0001-6965-7869).

Vikas Sakhena – Seeker for an academic degree at the Hospital Therapy Department (not taking post-graduate course) (e-mail: saxena.vikas@yandex.ru; tel.: +7 (342) 239-31-88; ORCID: https://orcid.org/0000-0002-7175-2264).

Aleksandr V. Krivtsov – Candidate of Medical Sciences, Head of the Immunogenetics Laboratory (e-mail: krivtsov@fcrisk.ru; tel.: +7 (342) 236-86-99; ORCID: http://orcid.org/0000-0001-7986-0326).

Grigorii N. Spasenkov – Head of the Cardiology and Prevention Department (e-mail: Spy5502@mail.ru; tel.: +7 (342) 216-99-09; ORCID: http://orcid.org/0000-0003-1085-5814).

Natalya I. Abgaryan – Cardiologist at the Cardiology Department (e-mail: docnatashka01@mail.ru; tel.: +7 (342) 216-99-09; ORCID: http://orcid.org/0000-0001-6946-5465).
3. Vertkin A.L., Rumyantsev M.A., Skotnikov A.S. Komorbidnost’ klinicheskoi praktike. Chast’ 1 [Comorbidity in clinical practice. Part 1]. Arkhiv vnutrennei meditsiny, 2011, no. 1, pp. 16–20 (in Russian).

4. Lazebnik L.B., Masharova A.A., Bordin D.S., Vasilyev Yu.V., Tkachenko E.I., Abdulkhakov R.A., Butov M.A., Eremina E.Yu. [et al.]. Results of a multicenter trial «Epidemiology of Gastroesophageal Reflux Disease in Russia» (MEGRE). Terapevticheskii arkhiv, 2011, vol. 83, pp. 45–50 (in Russian).

5. Comorbidity and Mortality in Patients with Gastroesophageal Reflux Disease in a Tertiary Health Care Hospital Article in Clinics (São Paulo, Brazil). Sci. Eloc., 2009, vol. 64, no. 8, pp. 785–790. Available at: http://www.scielo.br/scielo.php?script = sci_arttext &pid = S1807-59322009000800013&lng = en&nrm = iso (29.07.2019).

6. Kusche-Vihrog K., Urbanova K., Blanquè A., Wilhelmi M., Schillers H., Kliche K., Pavenstädt H., Brand E., Oberleithner H. C-reactive protein makes human endothelium stiff and tight. Hypertension, 2011, vol. 57, no. 2, pp. 231–237. DOI: 10.1161/HYPERTENSIONAHA.110.163444

7. Babbitt D.M., Kim J.S., Forrester S.J., Brown M.D., Park.Y. Effect of Interleukin-10 and laminar shear stress on endothelial nitric oxide synthase and nitric oxide in African American human umbilical vein endothelial cells. Ethnicity and Disease, 2015, vol. 25, no. 4, pp. 413–418. DOI: 10.18865/ed.25.4.413

8. Chazova I.E., Ratova L.G., Boitsov S.A., Nefieridze D.V., Karpov Yu.A., Belousov Yu.B., Volkova E.G., Galavich A.S. [et al.]. Diagnostika i lechenie arterial’noi gipertenzii (Rekomendatsii Rossiskogo meditsinskogo obshestva po arterial’noi giperonitii i Vserossiskogo nauchnogo obshestva kardiologov) [Arterial hypertension: diagnoses and treatment (recommendations by the Russian Medical Society for Arterial Hypertension Studies of the Russian Scientific Society of Cardiologists)]. Sistemnye gipernepruzii, 2010, no. 3, pp. 5–26 (in Russian).

9. Kailysheva V.O., Kucheryavyi Yu.A., Trukhanov A.S., Storonova O.A., Korov M.Yu., Maev I.V., Ivashkin V.T. Results of multicenter observation study on application of international questionnaire GeroQ for diagnostics of gastroesophageal reflux disease. Rossiiskii zhurnal gastroenterologii, gepatologii, koloproktologii, 2013, vol. 23, no. 5, pp. 15–23 (in Russian).

10. Ivashkin V.T., Maev I.V., Trukhanov A.S., Baranskaya E.K., Dronova O.B., Zairyan’tsyan O.V., Saitutdinov R.G., Shpeltulin A.A. Diagnostics and treatment of gastroesophageal reflux disease: clinical guidelines of the Russian gastroenterological association. Rossiiskii zhurnal gastroenterologii, gepatologii, koloproktologii, 2017, vol. 27, no. 4, pp. 75–95 (in Russian).

11. Timasheva Ya.R., Nasibullin T.R., Zakirova A.N., Mustafina O.E. Tumor necrosis factor alpha gene polymorphism in patients with essential hypertension. Kardiokoskulkaynarna terapiya i profilaktika, 2007, vol. 6, no. 6, pp. 5–9 (in Russian).

12. Li Y.Y. Tumor necrosis factor-alpha G308a gene polymorphism and essential hypertension: a meta-analysis involving 2244 participate. Plos One, 2012, vol. 7, no. 4, pp. e35408. DOI: 10.1371/journal.pone.0035408

13. Zhao Y., Li Z., Zhang L., Zhang Y., Yang Y., Tang Y., Fu P. The TNF-alpha –308G/A polymorphism is associated with type 2 diabetes mellitus: an updated meta-analysis. Molecular. Biology Reports., 2014, no. 41, pp. 73–83. DOI: 10.1007/s11033-013-2839-1

14. Soksoxian S., Garcia S.I., Gianotti T.F., Dieuzeide G., Gonzalez C.D., Pirola C.J. The G-308A promoter variant of the tumor necrosis factor alpha gene is associated with hypertension in adolescents harboring the metabolic syndrome. American Journal of Hypertension, 2005, vol. 18, no. 10, pp. 1271–1275. DOI: 10.1016/j.amjhyep.2005.04.014

15. Sharihi I., Falcone C., Boioiocchi C., Campo I., Zorrizzo M., De Silvestri A., Cuccia M. Inflammation and atherosclerosis: the role of TNF and TNF receptors polymorphisms in coronary artery disease. International Journal of Immunopathology and Pharmacology, 2007, vol. 20, no. 1, pp. 145–154. DOI: 10.1177/039463200702000117

16. Zhang P., Wu X., Li G., He Q., Dai H., Ai C., Shi J. Tumor necrosis factor-alpha gene polymorphisms and susceptibility to ischemic heart disease: A systematic review and meta-analysis. Medicine (Baltimore), 2017, vol. 95, no. 14, pp. e5679. DOI: 10.1097/MD.0000000000005669

17. Brazyhnik V.A., Minushkina L.O., Averkova A.O. Polymorphism of TNF gene in acute coronary syndrome patients: data from the registries oracle I and oracle II. Rossiiskii kardiologicheskii zhurnal, 2018, vol. 23, no. 10, pp. 23–27 (in Russian).

18. Cheng H., Chang C.S., Wang H.J., Wang W.C. Interleukin 1β and 10 polymorphisms influence erosive reflux esophagitis and gastritis in Taiwanese patients. Journal of Gastroenterology and Hepatology, 2010, vol. 25, no. 8, pp. 1443–1451. DOI: 10.1111/j.1440-1746.2010.06310.x

19. Yang F., Wei K., Qin Y., Shao C., Shu Y., Shen H. Association between TNF-α-308G/A polymorphism and esophageal cancer risk: An updated meta-analysis and trial sequential analysis. Journal of Cancer, 2019, vol. 10, no. 5, pp. 1086–1096. DOI: 10.7150/jca.29390

20. Haider S.H., Kwon S., Lam R. Predictive Biomarkers of Gastroesophageal Reflux Disease and Barrett’s Esophagus in World Trade Center Exposed Firefighters: a 15 Year Longitudinal Study. Scientific Reports, 2018, no. 8, pp. 3106. DOI: 10.1038/s41598-018-21334-9

21. Peng D.F., Hu T.L., Soutto M., Belkhiri A., El-Rifai W. Loss of glutathione peroxidase 7 promotes TNF-alpha induced NF kappaB activation in Barrett’s carcinogenesis. Carcinogenesis, 2014, no. 35, pp. 1620–1628. DOI: 10.1093/carcin/bgu083

22. Martens F.M., Rabelink T.J., Op't Roodt J., De Koning E.J.P., Visseren F.L.G. TNF-alpha induces endothelial dysfunction in diabetic adults, an effect reversible by the PPAR-gamma agonist pioglitazone. European Heart Journal, 2006, vol. 27, no. 13, pp. 1605–1609. DOI: 10.1093/eurheartj/ehl079

Khlynova O.V., Shikhina E.A., Sakhena V., Kristsov A.V., Spasenk G.N., Abgaryan N.I. TNF gene polymorphism as a risk factor that can cause arterial hypertension in patients suffering from gastroesophageal reflux disease. Health Risk Analysis, 2020, no. 1, pp. 126–132. DOI: 10.21668/health.risk/2020.1.14.eng