MULTIPLICITY UPON RESTRICTION TO THE DERIVED SUBGROUP

JEFFREY D. ADLER AND DIPENDRA PRASAD

Abstract. We present a conjecture on multiplicity of irreducible representations of a subgroup H contained in the irreducible representations of a group G, with G and H having the same derived groups. We point out some consequences of the conjecture, and verification of some of the consequences. We give an explicit example of multiplicity 2 upon restriction, as well as certain theorems in the context of classical groups where the multiplicity is 1.

1. Introduction

Suppose k is a nonarchimedean local field, G is a connected reductive k-group, G' is a subgroup of G containing the derived group, and π is a smooth, irreducible, complex representation of $G(k)$. In an earlier work \cite{1}, the authors showed that for many choices of G, the restriction $\text{Res}_{G'}^G \pi$ decomposes without multiplicity, and we stated a general conjecture for all groups G that are k-quasisplit.

A number of years ago, in the process of identifying situations where we could verify that our conjecture holds, one of us discovered an example of a depth-zero supercuspidal representation π of $GU(2d, 2d)$, a k-quasisplit group whose restriction to $SU(2d, 2d)$ decomposes with multiplicity two, and the other formulated a conjecture in the form of a reciprocity law involving enhanced Langlands parameters. In this paper, we present both the example and the conjecture, together with some consequences of the latter, and a verification of some of those consequences. Besides these, the paper proves several results by elementary means involving classical groups where multiplicity one holds. For example, we show that all representations of $GSO(n)$ decompose with multiplicity one upon restriction to $SO(n)$. (In an earlier work \cite{1}, we handled the case of restriction from $GO(n)$ to $O(n)$.)

A complete analysis of decomposition of the unitary principal series for $U(n, n)$ and its restriction to $SU(n, n)$ was done by Keys \cite{5}, who also phrased his results in terms of “reciprocity” theorems for R-groups; in particular, he found cases of multiplicity greater than one.

After presenting our conjecture (\S2), we give some of the heuristics behind it. The conjecture implies a relationship between characters of the component groups of Langlands parameters, a relationship that is not a priori obvious. In \S3 we verify that this relationship does indeed hold. We show (\S4) that if the conjecture is true for tempered representations, then via the Langlands classification it holds for all representations.

Date: 2018 June 10.
The conjecture implies multiplicity one in situations where parameters for G_1 have abelian component groups. We list a few such situations in $[5]$ and prove multiplicity one for restriction from GSO(n) to SO(n) ($[6]$) and from GU(n) to U(n) ($[7]$). Along the way, we prove multiplicity one in some other cases where it follows from elementary considerations. In $[8]$ we present an example of depth-zero supercuspidal representation of quasi-split GU($4d$) that decomposes with multiplicity two upon restriction to SU($4d$). Finally ($[9]$), we give a general procedure for constructing higher multiplicities.

2. The Conjecture on multiplicities

Let G_1 and G_2 be two connected reductive groups over a local field k, and $\lambda : G_1 \to G_2$ a k-homomorphism that is a central isogeny when restricted to their derived subgroups. The map λ gives rise to a “restriction” map from representations of $G_2(k)$ to those of $G_1(k)$, and from Silberger $[10]$ one knows that the restriction of an irreducible representation of $G_2(k)$ is a finite direct sum of irreducible representations of $G_1(k)$. In particular, we obtain a functor $\lambda^* : \mathcal{R}_{\text{fin}}(G_2(k)) \to \mathcal{R}_{\text{fin}}(G_1(k))$, where $\mathcal{R}_{\text{fin}}(H)$ denotes the category of smooth, finite-length representations of a group H.

The map λ also gives rise to a homomorphism of L-groups:

$$^{L^1} \Lambda : ^{L^1} G_2 \to ^{L^1} G_1.$$

Let $\varphi_2 : W'_k \to ^{L^1} G_2$, and $\varphi_1 = ^L \lambda \circ \varphi_2 : W'_k \to ^{L^1} G_1$ be associated Langlands parameters, where $W'_k = W_k \times \text{SL}_2(\mathbb{C})$, with W_k the Weil group of k. Then $^{L^1} \lambda$ gives rise to a homomorphism of centralizers of the images of our parameters, and also a homomorphism of the groups of connected components of these centralizers:

$$\pi_0(^{L^1} \lambda) : \pi_0(Z_{^L G_2}(\varphi_2)) \to \pi_0(Z_{^L G_1}(\varphi_1)).$$

This allows one to ‘restrict’ representations of $\pi_0(Z_{^L G_1}(\varphi_1))$ to representations of $\pi_0(Z_{^L G_2}(\varphi_2))$, and we will denote the restriction functor by $\lambda_* : K_0(\pi_0(Z_{^L G_1}(\varphi_1))) \to K_0(\pi_0(Z_{^L G_2}(\varphi_2)))$, where $K_0(H)$ denotes the Grothendieck group of finite-length representations of a group H.

The formulation of our conjecture below presumes that the local Langlands correspondence involving enhanced Langlands parameters has been achieved for all pure inner forms of quasi-split groups. This will be needed for both of the groups G_1 and G_2; it is possible on the other hand that one could reverse this role, and use the conjectural multiplicity formula to construct an enhanced Langlands parametrization for G_2, knowing it for G_1.

Conjecture 1. Let G_1 and G_2 be two reductive groups over a local field k (which are pure inner forms of their quasi-split inner forms), and $\lambda : G_1 \to G_2$ a k-homomorphism that is a central isogeny when restricted to their derived subgroups. For $i = 1, 2$, let $\pi_i = \pi(\varphi_i, \chi_i)$ be an irreducible admissible representation of $G_i(k)$ with Langlands parameter φ_i, and character χ_i of the component group $\pi_0(Z_{^L G_i}(\varphi_i))$. Let

$$m(\pi_2, \pi_1) := \dim \text{Hom}_{G_i(k)}(\pi_1, \lambda^* \pi_2) = \dim \text{Hom}_{G_i(k)}(\lambda^* \pi_2, \pi_1).$$

(a) Then $m(\pi_2, \pi_1) = 0$ unless $\varphi_1 = ^L \lambda \circ \varphi_2$.

(b) If $\varphi_1 = ^L \lambda \circ \varphi_2$, and each G_i is a pure inner form of a quasisplit group, then

$$m(\pi_2, \pi_1) = \dim \text{Hom}_{\pi_0(Z_{\varphi_2})}(\chi_2, \lambda^* \chi_1).$$
The main heuristic that goes in the conjectural multiplicity is the following.

(1) For any \(L \)-packet \(\{ \pi \} \) on any reductive group \(G(k) \) defined by a parameter \(\varphi \), thus \(\{ \pi \} = \{ \pi_{(\varphi,\chi)} \} \),

\[
\sum_{\chi} \chi(1) \Theta(\pi_{(\varphi,\chi)})
\]

is a stable distribution on \(G(k) \). Here, for any admissible representation \(\pi \) we are letting \(\Theta(\pi) \) denote its character, regarded as a distribution on \(G(k) \).

(2) For a homomorphism \(\lambda : G_1 \to G_2 \) of reductive groups over \(k \) which is an isogeny when restricted to their derived subgroups, the pullback of a stable distribution on \(G_2(k) \) is a stable distribution on \(G_1(k) \).

(3) The restriction to \(G_1(k) \) of an irreducible representation \(\pi_2 \) of \(G_2(k) \) is a finite-length (completely reducible) representation of \(G_1(k) \), whose irreducible components are all in the same \(L \)-packet. This \(L \)-packet on \(G_1(k) \) depends only on the \(L \)-packet for \(G_2(k) \) containing \(\pi_2 \). If the Langlands parameter of our \(L \)-packet on \(G_2 \) is \(\varphi_2 : W' \to \hat{L}G_2 \), then the Langlands parameters our \(L \)-packet for \(G_1 \) is \(\varphi_1 := L \lambda \circ \varphi_2 : W' \to \hat{L}G_1 \). (This is part (3) of the conjecture.)

(4) If Conjecture \(\mathbb{H} \) is true, then the pullback from \(G_2(k) \) to \(G_1(k) \) of the distribution

\[
\sum_{\chi_2} \chi_2(1) \Theta(\pi_{(\varphi_2,\chi_2)}),
\]

is a stable distribution on \(G_1(k) \) as we check now.

By Conjecture \(\mathbb{H} \) the pullback of the distribution \(\Theta_{\pi_2} = \Theta(\pi_{(\varphi_2,\chi_2)}) \) on \(G_2(k) \) to \(G_1(k) \) is

\[
\sum_{\pi_1} m(\pi_2,\pi_1) \Theta(\pi_1) = \sum_{\chi_1} \Theta(\pi_{(\varphi_1,\chi_1)}) \dim \text{Hom}_{\pi_0(Z(\varphi_2))}[\chi_2,\lambda \ast \chi_1].
\]

Therefore, the pullback to \(G_1(k) \) of the distribution \(\sum_{\chi_2} \chi_2(1) \Theta(\pi_{(\varphi_2,\chi_2)}) \) on \(G_2(k) \) is

\[
\sum_{\chi_1,\chi_2} \chi_1(1) \Theta(\pi_{(\varphi_1,\chi_1)}) \dim \text{Hom}_{\pi_0(Z(\varphi_2))}[\chi_2,\lambda \ast \chi_1],
\]

which (assuming Conjecture \(\mathbb{H} \)) is the same as

\[
\sum_{\chi_1,\chi_2} \Theta(\pi_{(\varphi_1,\chi_1)}) \dim \text{Hom}_{\pi_0(Z(\varphi_2))}[\chi_2(1)\chi_2,\lambda \ast \chi_1]
\]

which is the same as

\[
(*) \quad \sum_{\chi_1} \Theta(\pi_{(\varphi_1,\chi_1)}) \dim \text{Hom}_{\pi_0(Z(\varphi_2))}[R,\lambda \ast \chi_1],
\]

where \(R = \sum \chi_2(1) \chi_2 \) is the regular representation of \(\pi_0(Z(\varphi_2)) \).

By Schur orthogonality,

\[
\dim \text{Hom}[\chi_2,\lambda \ast \chi_1] = \frac{1}{[\pi_0(Z(\varphi_2))]_1} \sum_{g \in \pi_0(Z(\varphi_2))} \chi_1(\lambda \ast g) \chi_2(g),
\]
where here λ^* denotes the map $\pi_0(l^\lambda): \pi_0(Z(q_2)) \rightarrow \pi_0(Z(q_1))$. So

$$\dim \text{Hom}[R, \lambda \ast \chi_1] = \frac{1}{|\pi_0(Z(q_2))|} \sum_{g \in \pi_0(Z(q_2))} \chi_1(\lambda^*g)\chi_R(g),$$

where R is the regular representation of $\pi_0(Z(q_2))$ and χ_R its character, thus

$$\chi_R(g) = \begin{cases} 0 & \text{if } g \text{ is not the identity}, \\ |\pi_0(Z(q_2))| & \text{if } g \text{ is the identity}. \end{cases}$$

Therefore,

$$\dim \text{Hom}[R, \lambda \ast \chi_1] = \chi_1(1).$$

By (*) it follows that the pullback of $\sum_{\chi_2} \chi_2(1)\Theta(\pi_{(q_2,\chi_2)})$ to $G_1(k)$ is equal to $\sum_{\chi_1} \chi_1(1)\Theta(\pi_{(q_1,\chi_1)}).

Remark 2. A weaker version of our conjecture says that the pullback to $G_1(k)$ of the stable character $\sum_{\chi} \Theta(\chi)$ on $G_2(k)$ is $\sum_{\mu} \mu(1)\Theta(\mu)$ on $G_1(k)$, where both of the sums are over the characters of component groups defining fixed pure inner forms that are G_2 and G_1, respectively.

3. **Some remarks on the multiplicity formula**

Conjecture [1] relating $m(\pi_2, \pi_1)$ with $\dim \text{Hom}_{\pi_0(Z(q_2))}[^{\lambda \ast} \chi_1, \chi_2]$ can be considered as a set of assertions keeping π_2 fixed and varying π_1, or keeping π_1 fixed and varying π_2, say inside an L-packet on $G_2(k)$. It is easy to see that for G_1 and G_2 two reductive groups over a local field k, and $\lambda : G_1 \rightarrow G_2$ a k-homomorphism that is a central isogeny when restricted to their derived subgroups, the image of $G_1(k)$ inside $G_2(k)$ is a normal subgroup, and therefore every irreducible representation of $G_1(k)$ that appears inside a given irreducible representation π_2 of $G_2(k)$ does so with the same multiplicity (depending of course on π_2). This section aims to prove this as a consequence of our Conjecture [1]. Before doing so, let’s observe that the dual question when we fix π_1, an irreducible representation of $G_1(k)$, and vary π_2, say inside an L-packet of $G_2(k)$, the multiplicities $m(\pi_2, \pi_1)$ can be quite varied. For example if G_2 is quasi-split over k (in which case G_1 too is quasi-split over k), and π_2 has a Whittaker model, then the nonzero multiplicities $m(\pi_2, \pi_1)$ are all 1 by the uniqueness of Whittaker model, and this is also the case from our Conjecture [1] since we will be dealing with the trivial character χ_2 of $\pi_0(Z(q_2))$.

The rest of the section is meant to prove that $\dim \text{Hom}_{\pi_0(Z(q_2))}[^{\lambda \ast} \chi_1, \chi_2]$ remains constant when χ_2 is a fixed character of $\pi_0(Z(q_2))$ but χ_1 varies among characters of $\pi_0(Z(q_1))$. This is achieved by combining Corollary [4] with Lemma [5]. We begin with the following lemma whose straightforward proof will be omitted.

Lemma 3. Let N be a normal subgroup of a finite group G with $A = G/N$ an abelian group. Let π be an irreducible representation of \overline{N}. Then any two irreducible representations π_1 and π_2 of G containing π on restriction to N are twists of each other by characters of G/N, i.e.,

$$\pi_2 \cong \pi_1 \otimes \chi,$$

for $\chi : G/N \rightarrow \mathbb{C}^\times$.

Corollary 4. If \(N \) is a normal subgroup of a group \(G \) with \(A = G/N \) a finite abelian group, and \(\pi \) an irreducible representation of \(N \), then all irreducible \(G \)-submodules of \(\text{Ind}_{N}^{G}(\pi) \) appear in it with the same multiplicity.

Lemma 5. Let \(G_{1} \) and \(G_{2} \) be two reductive groups over a local field \(k \), \(\lambda: G_{1} \rightarrow G_{2} \) a \(k \)-homomorphism that is a central isogeny when restricted to their derived subgroups, and giving rise to a homomorphism \(L\lambda: LG_{2} \rightarrow LG_{1} \) of the \(L \)-groups. Let \(\varphi_{2}: W'_{k} \rightarrow LG_{2} \), and \(\varphi_{1} = L\lambda \circ \varphi_{2} : W'_{k} \rightarrow LG_{1} \) be associated Langlands parameters. Then for the associated homomorphism of finite groups \(\hat{\lambda}: \pi_{0}(Z_{G_{2}}(\varphi_{2})) \rightarrow \pi_{0}(Z_{G_{1}}(\varphi_{1})) \), the kernel is a central subgroup (in particular abelian), and the image is normal with abelian cokernel.

Proof. It suffices to prove the lemma separately in the two cases:

1. \(\lambda: G_{1} \rightarrow G_{2} \) is injective.
2. \(\lambda: G_{1} \rightarrow G_{2} \) is surjective.

We will do only the first case, the other being very similar.

Assume then that \(\lambda: G_{1} \rightarrow G_{2} \) is injective, and thus \(\hat{\lambda}: \hat{G}_{2} \rightarrow \hat{G}_{1} \) is surjective with kernel say \(\hat{Z} \). Use \(\varphi_{2}: W'_{k} \rightarrow LG_{2} \) and \(\varphi_{1} = L\lambda \circ \varphi_{2} : W'_{k} \rightarrow LG_{1} \) to give \(\hat{G}_{2} \) and \(\hat{G}_{1} \) a \(W'_{k} \)-group structure such that we have an exact sequence of \(W'_{k} \)-groups:

\[
1 \rightarrow \hat{Z} \rightarrow \hat{G}_{2} \rightarrow \hat{G}_{1} \rightarrow 1.
\]

This gives rise to a long exact sequence of \(W'_{k} \)-cohomology sets:

\[
1 \rightarrow \hat{Z}^{W'_{k}} \rightarrow \hat{G}_{2}^{W'_{k}} \rightarrow \hat{G}_{1}^{W'_{k}} \rightarrow H^{1}(W'_{k}, \hat{Z}) \rightarrow \cdots .
\]

Equivalently, we have the exact sequence of groups:

\[
1 \rightarrow Z_{G_{2}}(\varphi_{2})/\hat{Z}^{W'_{k}} \rightarrow Z_{G_{1}}(\varphi_{1}) \rightarrow A \rightarrow 1,
\]

where \(A \subset H^{1}(W'_{k}, \hat{Z}) \), a locally compact abelian group. Taking \(\pi_{0} \) of the terms in the above exact sequence which all fit together in a long exact sequence of \(\pi_{1} \)'s (higher homotopy groups), the assertion in the lemma follows.

4. Reduction of the conjecture to the case of tempered representations

As before, let \(G_{1} \) and \(G_{2} \) be two reductive groups over a local field \(k \), and \(\lambda: G_{1} \rightarrow G_{2} \) a \(k \)-homomorphism that is a central isogeny when restricted to their derived subgroups, giving rise to the restriction functor \(\lambda^{\ast}: \mathcal{R}_{\text{fin}}(G_{2}(k)) \rightarrow \mathcal{R}_{\text{fin}}(G_{1}(k)) \).

Lemma 6. Let \(V \) be a finite-length representation of \(G_{2}(k) \) with maximal semi-simple quotient \(Q \). Then \(\lambda^{\ast}Q \) is the maximal semi-simple quotient of \(\lambda^{\ast}V \).

Proof. It suffices to observe that a finite-length representation of \(G_{2}(k) \) is semisimple if and only if its image under \(\lambda^{\ast} \) as a \(G_{2}(k) \)-module. If \(Z(G_{1}(k)) \cdot G_{1}(k) \) is of finite index in \(G_{2}(k) \), such as when \(k \) is of characteristic zero, then this is well known. In general, since irreducible representations of \(G_{2}(k) \) remain finite-length semi-simple representations when restricted to \(G_{1}(k) \) by the theorem of Silberger [10], the lemma follows.
To set up the next result, let $P_2 = M_2N_2$ be a Levi factorization of a parabolic subgroup in G_2. If we let $P_1 = \lambda^{-1}(P_2)$, $M_1 = \lambda^{-1}(M_2)$, and $N_1 = \lambda^{-1}(N_2)$, then $P_1 = M_1N_1$ is a Levi factorization of a parabolic subgroup in G_1. Then $\lambda: M_1 \rightarrow M_2$ gives us a restriction functor $R_{\text{fin}}(M_2(k)) \rightarrow R_{\text{fin}}(M_1(k))$ that we will also denote by λ^\ast. Since λ gives an isomorphism $G_1/P_1 \rightarrow G_2/P_2$, we have that the following diagram commutes:

\[
\begin{array}{ccc}
R_{\text{fin}}(G_2(k)) & \xrightarrow{\lambda^\ast} & R_{\text{fin}}(G_1(k)) \\
\text{Ind}^{G_2(k)}_{P_2(k)} & \downarrow & \downarrow \text{Ind}^{G_1(k)}_{P_1(k)} \\
R_{\text{fin}}(M_2(k)) & \xrightarrow{\lambda^\ast} & R_{\text{fin}}(M_1(k))
\end{array}
\]

Lemma 7. Let σ_2 be an irreducible, essentially tempered representation of $M_2(k)$ with strictly positive exponents along $Z(M_2)$. Write

$$\lambda^\ast \sigma_2 = \sum_{\alpha} m_\alpha \sigma_{1,\alpha}$$

a sum of irreducible representations of $M_1(k)$ with multiplicities m_α. Let π_2 be the Langlands quotient of the standard module $\text{Ind}^{G_2(k)}_{P_2(k)} \sigma_2$, and $\pi_{1,\alpha}$ the Langlands quotients of $\text{Ind}^{G_1(k)}_{P_1(k)} \sigma_{1,\alpha}$. Then

$$\lambda^\ast \pi_2 = \sum_{\alpha} m_\alpha \pi_{1,\alpha}.$$

Proof. Since

$$\lambda^\ast \text{Ind}^{G_2(k)}_{P_2(k)} \sigma_2 = \text{Ind}^{G_1(k)}_{P_1(k)} \lambda^\ast \sigma_2 = \sum_{\alpha} m_\alpha \text{Ind}^{G_1(k)}_{P_1(k)} \sigma_{1,\alpha},$$

and since “taking maximal semi-simple quotient” commutes with direct sum, our result follows from Lemma 5. \qed

Corollary 8. If Conjecture 7 is true for tempered representations, then it is true in general.

Proof. Every representation π_2 of $G_2(k)$ can be realized as a Langlands quotient of the standard module $\text{Ind}^{G_2(k)}_{P_2(k)} \sigma_2$ of an essentially tempered representation σ_2. The Langlands parameter $\phi_2: \text{Ind}^{G_2(k)}_{P_2(k)} \sigma_2 \rightarrow L_{\text{G}_2}$ for π_2 is the same as the Langlands parameter for σ_2 considered as a map $\text{Ind}^{G_2(k)}_{P_2(k)} \sigma_2 \rightarrow L_{\text{G}_2}$. The component groups of these parameters, and thus the representations of these component groups, correspond as discussed in [9, §5]. Therefore, our result is a consequence of Lemma 7. \qed

5. **Consequences of the conjecture**

If the group of connected components $\pi_0(Z_{G_1}(\phi_1))$ is known to be abelian, as is the case when G_1 is any of the groups SL_n, U_n, SO_n, and Sp_n, then our conjecture predicts that for any homomorphism $\phi: G_1 \rightarrow G_2$ of connected reductive algebraic groups that is an isomorphism up to center (i.e., $\phi: G_1/Z_1 \rightarrow G_2/Z_2$ is an isomorphism, where Z_i is the center of G_i), then any irreducible representation of $G_2(k)$ when restricted via ϕ to $G_1(k)$ decomposes as a sum of irreducible representations of $G_1(k)$ with multiplicity ≤ 1.
We note that by our earlier work \[1\], we know that multiplicity is \(\leq 1\) whenever the pair \((G_1, G_2)\) is \((\text{SL}_n, \text{GL}_n)\), or (when the characteristic of \(k\) is not two) either \((\text{O}_n, \text{GO}_n)\) or \((\text{Sp}_n, \text{GSp}_n)\). In the next two sections, we will see that multiplicity \(\leq 1\) also holds for \((\text{SO}_n, \text{GSO}_n)\) and \((U_n, \text{GU}_n)\).

The parameters for Kaletha’s regular supercuspidal representations \[4\] should have abelian component groups, and thus these representations should restrict without multiplicity when the components of their restrictions are also regular. Nevins \[8\] has verified this for many cases. There are other cases that can now be handled, but we will address the matter elsewhere.

6. Restriction from GSO to SO

Proposition 9. Let

- \(G\) be a locally compact, totally disconnected group;
- \(G'\) a closed, normal subgroup with abelian quotient;
- \(H\) a normal subgroup of \(G\) such that \(G/H\) is finite abelian and \(H \cdot G' = G\);
- \(H' = H \cap G'\); and
- \(\widetilde{\pi}\) an irreducible representation of \(G\) such that \(\text{Res}^G_{G'} \widetilde{\pi}\) is multiplicity free.

Then for every irreducible component \(\pi\) of \(\text{Res}^G_{H} \widetilde{\pi}\), we have that \(\text{Res}^H_{H'} \pi\) is multiplicity free.

Before giving a proof, let us recall a well-known result that we will need to use several times.

Lemma 10. Let \(G\) be a locally compact, totally disconnected group, and \(H\) a normal subgroup of \(G\) of prime index \(\ell\). Let \(\widetilde{\pi}\) be an irreducible, admissible representation of \(G\), \(\pi\) an irreducible representation of \(H\) contained in the restriction \(\text{Res}^G_H \widetilde{\pi}\), and \(\varepsilon\) a non-trivial character of \(G\) trivial on \(H\). Then the following are equivalent:

(a) The representation \(\pi\) of \(H\) is invariant under the action of \(G/H\).
(b) \(\text{Res}^G_H \widetilde{\pi} \cong \pi\).
(c) The representations \(\widetilde{\pi} \otimes \varepsilon\) and \(\widetilde{\pi}\) of \(G\) are not isomorphic.
(d) \(\text{Ind}^G_H \pi \cong \sum_{i=0}^{\ell-1} \widetilde{\pi} \otimes e^i\), a sum of inequivalent irreducible representations.

In the case when the above equivalent conditions do not apply, then we have

(e) \(\text{Res}^G_H \widetilde{\pi} \cong \sum_{g \in G/H} (\pi)^g\), a sum of inequivalent irreducible representations.
(f) \(\text{Ind}^G_H \pi \cong \widetilde{\pi}\).

Proof. This is a special case of \[3\] Lemma 2.1 and Corollary 2.2].
Proof of Proposition9 Using an inductive argument, we can reduce to the case where $G/H \cong G'/H'$ is cyclic of prime order ℓ. Assume from now on that we are in this case, and let ε denote a nontrivial character of G/H, and the corresponding character of G'/H'.

Let π be an irreducible component of $\text{Res}_{H}^{G} \bar{\pi}$. From Lemma10 $\text{Ind}_{H}^{G} \pi$ must be equivalent to either $\bar{\pi}$ or $\sum_{j=0}^{\ell-1} \bar{\pi} \otimes \varepsilon^{j}$, and in either case is multiplicity free.

Case I: $\text{Ind}_{H}^{G} \pi = \bar{\pi}$. Then by the induction-restriction formula and the fact that $H \cdot G' = G$,

$$\text{Ind}_{H}^{G} \text{Res}_{H'}^{G} \pi \cong \text{Res}_{H}^{G} \text{Ind}_{H}^{G} \pi = \text{Res}_{G}^{G} \bar{\pi},$$

which is multiplicity free by hypothesis. Therefore, $\text{Res}_{H'}^{G} \pi$ is multiplicity free.

Case II: $\text{Ind}_{H}^{G} \pi \cong \sum_{j=0}^{\ell-1} \bar{\pi} \otimes \varepsilon^{j}$. Write $\text{Res}_{H'}^{G} \pi = \sum n_{i} \pi_{i}$, where the summands π_{i} are all distinct, irreducible representations of H'. We need to show that all $n_{i} \leq 1$. Let S denote the set of (equivalence classes of) irreducible representations σ of G' such that $\sigma \otimes \varepsilon \cong \sigma$. Then

$$\text{Res}_{G'}^{G} \bar{\pi} = \sum_{\sigma \in S} m_{\sigma} \sigma \otimes \sum_{\sigma \notin S} m_{\sigma} \sigma$$

where each $m_{\sigma} \leq 1$ by hypothesis. Therefore,

$$\text{Res}_{G'}^{G} \text{Ind}_{H}^{G} \pi \cong \text{Res}_{G'}^{G} \sum_{j=0}^{\ell-1} \bar{\pi} \otimes \varepsilon^{j} = \ell \left(\sum_{\sigma \in S} m_{\sigma} \sigma \right) \oplus \sum_{\sigma \notin S} m_{\sigma} \left(\sum_{j=0}^{\ell-1} \sigma \otimes \varepsilon^{j} \right).$$

But by the induction-restriction formula,

$$\text{Res}_{G'}^{G} \text{Ind}_{H}^{G} \pi \cong \text{Ind}_{H'}^{G'} \text{Res}_{H'}^{G} \pi = \sum n_{i} \text{Ind}_{H'}^{G'} \pi_{i}.$$

Therefore,

$$\sum n_{i} \text{Ind}_{H'}^{G'} \pi_{i} = \ell \left(\sum_{\sigma \in S} m_{\sigma} \sigma \right) \oplus \sum_{\sigma \notin S} m_{\sigma} \left(\sum_{j=0}^{\ell-1} \sigma \otimes \varepsilon^{j} \right).$$

Fix a component π_{i} (a representation of H'), and let $\bar{\pi}_{i}$ be a component of $\text{Res}_{G'}^{G} \bar{\pi}$ that contains π_{i} upon restriction to H'.

If $\bar{\pi}_{i} \notin S$, then the multiplicity of $\bar{\pi}_{i}$ in the right-hand side of $\text{Res}_{G'}^{G} \bar{\pi}$ is 1, so we must have $n_{i} = 1$.

On the other hand, if $\bar{\pi}_{i}$ is a representation of G' belonging to S, i.e., $\bar{\pi}_{i} \otimes \varepsilon \cong \bar{\pi}_{i}$, and if $\bar{\pi}_{i}$ appears in $\text{Ind}_{H'}^{G'} \pi_{i}$, then in fact $\bar{\pi}_{i} \subseteq \text{Ind}_{H'}^{G'} \pi_{i}$. It follows that the multiplicity of any such representation $\bar{\pi}_{i}$ in $n_{i} \text{Ind}_{H'}^{G'} \pi_{i}$ is a multiple of ℓn_{i}. Comparing with the right-hand side of $\text{Res}_{G'}^{G} \bar{\pi}$, and recalling that $m_{\sigma} \leq 1$, we conclude that $n_{i} \leq 1$. \hfill \Box

Corollary 11. Assume that k is not of characteristic two. Let V be a finite-dimensional vector space over k, equipped with a nondegenerate quadratic form. Then every irreducible representation of $\text{GSO}(V)$ restricts without multiplicity to $\text{SO}(V)$.

Proof. From [11, Theorem 1.4], we have multiplicity one upon restriction from $\text{GSO}(V)$ to $\text{O}(V)$. Now apply Proposition9 letting $G = \text{GSO}(V)$, $G' = \text{O}(V)$, $H = \text{GSO}(V)$, and $H' = \text{SO}(V)$. \hfill \Box
7. Generalities on restriction to unitary and special unitary groups

Let E/k denote a separable quadratic extension of nonarchimedean local fields, $N = N_{E/k}$ the norm map from E^\times to k^\times, and E_1 the kernel of this map.

Let B denote a nondegenerate E/k-hermitian form on some E-vector space V of some dimension r. Then we can form algebraic groups $\text{SU}(V, B)$, $\text{U}(V, B)$, and $\text{GU}(V, B)$ whose k-points consist respectively of the elements of $\text{SL}(r, E)$ that preserve B; the elements of $\text{GL}(r, E)$ that preserve B; and the elements of $\text{GL}(r, E)$ that preserve B up to a scalar in k^\times. The group $\text{GU}(V, B)$ comes equipped with a map $\mu: \text{GU}(V, B) \to \text{GL}_1$ called the similitude character. We will write our algebraic groups as $\text{SU}(r)$, $\text{U}(r)$, and $\text{GU}(r)$ when V and B are understood.

If G is a group, H is a subgroup, and $G/Z(G)H$ is cyclic, then every irreducible representation of G restricts to H without multiplicity. How far can we exploit this fact?

Theorem 12. Let p be the residual characteristic of k.

(a) All irreducible representations of $\text{GU}(r)(k)$ decompose without multiplicity upon restriction to $\text{U}(r)(k)$. Such a restriction is irreducible when r is odd, and has at most two components when r is even.

(b) All irreducible representations of $\text{U}(r)(k)$ decompose without multiplicity upon restriction to $\text{SU}(r)(k)$ when r is coprime to p, or $k = \mathbb{Q}_p$ (p odd).

(c) All irreducible representations of $\text{GU}(r)(k)$ decompose without multiplicity upon restriction to $\text{SU}(r)(k)$ when r is odd and coprime to p.

Proof. (a) Let $\mu: \text{GU}(r) \to \text{GL}(1)$ denote the similitude character. Clearly the group $\text{GU}(r)$ contains the scalar matrices eI_r for all $e \in E^\times$, and for such matrices the similitude character is $N_{E/k}(e)$. Therefore, the image under μ of the center of $\text{GU}(r)(k)$ is $N_{E/k}(E^\times)$, so μ thus gives an isomorphism

\[
\frac{\text{GU}(r)}{Z(\text{GU}(r))} \cong \frac{\text{U}(r)}{N(E^\times)}.
\]

A scalar $a \in k^\times$ is a similitude for some linear transformation g of V if and only if for all $v, w \in V$, we have that $B(gv, gw) = a \cdot B(v, w)$. That is, B and $a \cdot B$ are equivalent Hermitian forms. It is known that two Hermitian forms over a non-archimedean local field k are equivalent if and only if their discriminants, which are elements of $k^\times/N(E^\times)$, are the same. Therefore, B and aB are equivalent if and only if $\text{disc } B = a^r \text{disc } B$ in $k^\times/N(E^\times) \cong \mathbb{Z}/2$. Thus, if r is even, then B and aB are equivalent for a an arbitrary element of k^\times, but if r is odd, then a must lie in $N(E^\times)$. Thus,

\[
\frac{\text{GU}(r)}{Z(\text{GU}(r))} \cong \mathbb{Z}/2 \quad \text{or} \quad \{1\}.
\]

(b) Let R_E and P_E denote the ring of integers and prime ideal for E. The determinant character gives us an isomorphism

\[
\text{det}: \frac{\text{U}(r)(k)}{Z(\text{U}(r))(k)} \cong \frac{E_1}{(E_1)^r}.
\]

As an abstract group, E_1 inherits a direct product decomposition from $R_E^\times \cong k_E^\times \times (1 + P_E)$. Thus, E_1 is a direct product of a cyclic group (of order coprime to p) and a pro-p-group A, implying that E_1/E_1^r is cyclic if and only A/A^r.
is cyclic. But this latter quotient is trivial if \(r \) is coprime to \(p \), and is cyclic if \(k = \mathbb{Q}_p \) (\(p \) odd).

(c) This follows from the previous two parts of the theorem. \(\square \)

8. An example of multiplicity upon restriction

Let \(\omega \) be a uniformizer of \(k \), \(E/k \) an unramified quadratic extension, and \(R_k \) and \(R_E \) the rings of integers in \(k \) and \(E \), \(\mathfrak{f} \) and \(f_E \) the residue fields. Let \(V \) be a 4\(d \)-dimensional hermitian space over \(E \), with hyperbolic basis \(\{ e_1, f_1, \ldots, e_{2d}, f_{2d} \} \). Thus, \(\langle e_i, f_i \rangle = 1 \), all other products being 0. Let \(U(V) \) be the corresponding unitary group. Define the lattice \(\mathcal{L} \) in \(E \) by

\[
\mathcal{L} = \text{span}_{R_E} \{ e_1, f_1, \ldots, e_d, f_d, \omega e_{d+1}, f_{d+1}, \ldots, \omega e_{2d}, f_{2d} \}.
\]

Clearly, \(\mathcal{L}^- := \{ v \in V | \langle v, \ell \rangle \in R_E \text{ for all } \ell \in \mathcal{L} \} \) is given by

\[
\mathcal{L}^- = \text{span}_{R_E} \{ e_1, f_1, \ldots, e_d, f_d, e_{d+1}, \omega^{-1} f_{d+1}, \ldots, e_{2d}, \omega^{-1} f_{2d} \}.
\]

Observe that

\[
\omega \mathcal{L}^- \subseteq \mathcal{L} \subseteq \mathcal{L}^-, \notag
\]

and \(\mathcal{L}^- / \mathcal{L} \) and \(\mathcal{L} / \omega \mathcal{L}^- \) are 2\(d \)-dimensional hermitian spaces over \(f_E \) with natural hermitian structures. For example, given two elements \(\ell_1 \) and \(\ell_2 \) in \(\mathcal{L}^- \) with images \(\overline{\ell}_1 \) and \(\overline{\ell}_2 \) in \(\mathcal{L} \), we have \(\langle \overline{\ell}_1, \overline{\ell}_2 \rangle \) is the image of \(\omega \langle \ell_1, \ell_2 \rangle \) (which belongs to \(R_E \)) in \(f_E \).

Define \(K = U(\mathcal{L}) \) to be the stabilizer of the lattice \(\mathcal{L} \) in \(U(V) \), i.e., \(U(\mathcal{L}) = \{ g \in U(V) | g \ell \in \mathcal{L} \text{ for all } \ell \in \mathcal{L} \} \). If an element of \(U(V) \) preserves \(\mathcal{L} \), then it clearly preserves \(\mathcal{L}^- \) and \(\omega \mathcal{L} \), giving a map \(U(\mathcal{L}) \rightarrow U(2d, f) \times U(2d, f) \). Similarly, we have a map \(SU(\mathcal{L}) \rightarrow SU(2d) \times SU(2d) \).

Let \(g_0 \in GU(V) \) be defined by (for \(i \leq d \))

\[
e_i \mapsto e_{d+i} \quad f_i \mapsto \omega^{-1} f_{d+i} \quad e_{d+i} \mapsto \omega^{-1} e_i \quad f_{d+i} \mapsto f_i \quad \notag
\]

Clearly, \(g_0 \) has similitude factor \(\omega^{-1} \), and \(g_0 \mathcal{L} = \mathcal{L}^- \). Therefore, we have

\[
g_0 U(\mathcal{L}) g_0^{-1} = U(\mathcal{L}^-) \notag.
\]

Thus conjugation by \(g_0 \) induces an isomorphism of \(U(\mathcal{L}) \) into \(U(\mathcal{L}^-) \), making the following diagram commute:

\[
\begin{array}{ccc}
U(\mathcal{L}) & \xrightarrow{g_0} & U(\mathcal{L}^-) \\
\downarrow & & \downarrow \\
U(2d, f) \times U(2d, f) & \xrightarrow{j} & U(2d, f) \times U(2d, f)
\end{array}
\]

where \(j(x, y) = (y, x) \).

Theorem 13. Let \(\rho \) be any irreducible cuspidal representation of \(U(2d)(f) \) such that \(\rho \not\cong \rho \chi \), where \(\chi \) is a quadratic character of \(U(2d)(f) \) trivial on \(SU(2d)(f) \). Let \(\sigma := \text{infl}(\rho \otimes \rho \chi) \) denote the inflation of \(\rho \otimes \rho \chi \) from \(U(2d) \times U(2d)(f) \) to \(U(\mathcal{L}) \) and let \(\pi = c\text{-Ind}^{U(\mathcal{L})}_{U(\mathcal{L}^-)} \sigma \). Then \(\pi \oplus \pi^\ast \) extends to an irreducible representation \(\tilde{\pi} \) of \(GU(V) \) whose restriction to \(SU(V) \) decomposes with multiplicity two.
Proof. From Moy-Prasad [7, Proposition 6.6], π is an irreducible, supercuspidal representation of $U(V)$. Let π also denote one of its extensions to $Z(GU(V)) U(V)$. From the last sentence of [6, Theorem 5.2], $\pi^{\otimes 0} \not\cong \pi$, so the sum $\pi \oplus \pi^{\otimes 0}$ extends to an irreducible (also supercuspidal) representation $\tilde{\pi}$ of $GU(V)$. By the induction-restriction formula (observe that by the explicit description of $U(\mathcal{L})$, $\det : U(\mathcal{L}) \to E_1$ is surjective, and hence $U(\mathcal{L}) SU(V) = U(V)$),

$$\pi|_{SU(V)} = c\text{-Ind}_{SU(\mathcal{L})}^{SU(V)}(\sigma|_{SU(\mathcal{L})}),$$

$$\pi^{\otimes 0}|_{SU(V)} = c\text{-Ind}_{SU(\mathcal{L})}^{SU(V)}(\sigma^{\otimes 0}|_{SU(\mathcal{L})}).$$

Since $\rho \otimes \rho' \cong \rho' \otimes \rho$ as representations of $S(U(2d) \times U(2d))(f)$, we have that $\sigma \cong \sigma^{\otimes 0}$ as representations of $SU(\mathcal{L})$, so

$$\tilde{\pi}|_{SU(V)} = (\pi \oplus \pi^{\otimes 0})|_{SU(V)} = 2 \cdot c\text{-Ind}_{SU(\mathcal{L})}^{SU(V)}(\sigma|_{SU(\mathcal{L})}).$$

In order to have an example of multiplicity at least two, it is thus sufficient to find a representation ρ of $U(2d)(f)$ such that $\rho \not\cong \rho' \chi$, as in the theorem. In fact, most irreducible Deligne-Lusztig cuspidal representations of $U(2d)(f)$ will have this property, as they restrict irreducibly to $SU(2d)(f)$.

Remark 14. In a future work, we will expand upon the example given in the Theorem, whose essence is the following. Given a supercuspidal representation of $G_2(k)$ whose restriction to $G_1(k)$ has regular components (in the sense of Kaletha [4]), then the components occur with multiplicity one. If the components are not regular, then higher multiplicities can occur.

Our example begins with ρ, an irreducible cuspidal representation of $U(2d)(f)$ that arises via Deligne-Lusztig induction from a character θ of the group of f-points of an anisotropic torus $T \subset U(2d)$. Suppose also that the restriction of θ to $T(f) \cap SU(2d)(f)$ remains regular so that the restriction of ρ to $SU(2d)(f)$ remains irreducible. The torus $T \times T \subset U(2d) \times U(2d)$ lifts to give an unramified torus $T \subset GU(V)$, and the character $\theta \otimes \theta'\chi$ can be inflated and extended to give a character Θ of T. The representation $\tilde{\pi}$ of $GU(V)$ that we have constructed in the theorem is a regular supercuspidal representation in the sense of Kaletha [4], but the irreducible components of its restriction to $SU(V)$ are not since our character Θ of T, when restricted to $T \cap SU(V)$, is not regular because of the presence of the element $g_0 \in GU(V)$.

For depth-zero supercuspidal representations of quasi-split unitary groups, the parahorics that we have used is the only one that can lead to higher multiplicities.

9. Generalities on constructing higher multiplicities

In this section, we discuss some generalities underlying the example of the previous section, which will be useful for constructing higher multiplicities in general.

Let G be a group, and N a normal subgroup of G such that

$$G/N \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2.$$

A good example to keep in mind is $G = Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$, the quaternion group of order 8, and $N = \{\pm 1\}$. Let ω_1 and ω_2 be two distinct, nontrivial characters of G that are trivial on N.
Suppose π is an irreducible representation of G such that

$$\pi \cong \pi \otimes \omega_1 \cong \pi \otimes \omega_2.$$

By [3, §2], $\pi|_N$ must be one of the following:

1. a sum of four inequivalent, irreducible representations, or
2. a sum of two copies of an irreducible representation.

Deciding which of these two options we have is a subtle question, and this is what we wish to do here.

Let $N_1 = \ker\{\omega_1: G \to \mathbb{Z}/2\}$, so that $G \supset N_1 \supset N$. Since $\pi \cong \pi \otimes \omega_1$, $\pi|_{N_1} = \pi_1 \oplus \pi_2$, a sum of inequivalent, irreducible representations. Further, since $\pi \cong \pi \otimes \omega_2$, we have

$$(\pi_1 \oplus \pi_2) \cong (\pi_1 \oplus \pi_2) \otimes \omega_{21},$$

where $\omega_{21} = \omega_2|_{N_1}$, a nontrivial character of N_1 of order 2. Therefore, we have the following two possibilities

(i) $\pi_1 \cong \pi_1 \otimes \omega_{21}$,
(ii) $\pi_2 \cong \pi_1 \otimes \omega_{21}$.

In case (i), π_1, which is an irreducible representation of N_1, decomposes when restricted to N into two inequivalent irreducible representations, and therefore π has at least two inequivalent irreducible subrepresentations when restricted to N, hence in case (i),

$$\pi|_N = \text{a sum of 4 inequivalent, irreducible representations.}$$

In case (ii), clearly $\pi|_N$ is twice an irreducible representation.

How does one then construct an example of an irreducible representation π of G for which $\pi|_N$ is twice an irreducible representation? We start with an irreducible representation π_1 of N_1 such that the following equivalent conditions hold:

(i) π_1 does not extend to a representation of G;
(ii) $\pi_1^g \not\cong \pi_1$ for some $g \in G$.

Given such a representation π_1 of N_1, next we must ensure that

(iii) $\pi_1^g \cong \pi_1 \otimes \omega_{21}$ for $g \in G \setminus N$.

If we understand N_1, together with the action of G on the representations of N_1, then the condition

$$\pi_1^g \cong \pi_1 \otimes \omega_{21} \not\cong \pi_1$$

is checkable, constructing an irreducible representation $\pi = \text{Ind}^G_{N_1} \pi_1$ of G such that

$$\pi|_N = 2\pi_1|_N.$$

Acknowledgements. As mentioned in the introduction, most of this work is several years old. In the mean time, there is the recent work of K. Choiy [2] formulating the conjectural multiplicity formula quite independently of us, and proving it for tempered representations under the assumption that the Langlands correspondence has many of the expected properties.

For their hospitality, we thank the CIRM (Luminy), and the first-named author also thanks the Tata Institute of Fundamental Research (Mumbai). The final writing of this work was supported by a grant of the Government of the Russian Federation for the state support of scientific research carried out under the supervision of leading scientists, agreement 14.W03.31.0030 dated 15.02.2018.
MULTIPLICITY UPON RESTRICTION TO THE DERIVED SUBGROUP

References

[1] Jeffrey D. Adler and Dipendra Prasad, On certain multiplicity one theorems, Israel J. Math. 153 (2006), 221-245, available at arXiv:math.RT/0410002
[2] Kwangho Choiy, On multiplicity in restriction of tempered representations of p-adic groups, Math. Z., to appear, available at arXiv:1806.6118
[3] Stephen Gelbart and Anthony W. Knapp, L-indistinguishability and R groups for the special linear group, Adv. in Math. 43 (1982), no. 2, 101–121. MR646669 (83j:22009)
[4] Tasho Kaletha, Regular supercuspidal representations (February 9, 2016), available at arXiv:1602.03144
[5] C. David Keys, L-indistinguishability and R-groups for quasi split groups: unitary groups in even dimension, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 31–64. MR892141 (88m:22042)
[6] Allen Moy and Gopal Prasad, Unrefined minimal K-types for p-adic groups, Invent. Math. 116 (1994), no. 1–3, 393–408. MR1253198 (95f:22023)
[7] , Jacquet functors and unrefined minimal K-types, Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR1371680 (97c:22021)
[8] Monica Nevins, Restricting toral supercuspidal representations to the derived group, and applications, J. Pure Appl. Algebra 219 (2015), no. 8, 3337–3354, DOI 10.1016/j.jpaa.2014.10.018, available at arXiv:1409.3617
[9] Dipendra Prasad, Generalizing the MVW involution, and the contragredient, Trans. Amer. Math. Soc., to appear, available at arXiv:1705.03262
[10] Allan J. Silberger, Isogeny restrictions of irreducible admissible representations are finite direct sums of irreducible admissible representations, Proc. Amer. Math. Soc. 73 (1979), no. 2, 263–264. MR516475 (80f:22017)

Department of Mathematics and Statistics, American University, 4400 Massachusetts Ave NW, Washington, DC 20016-8050, USA
E-mail address: jadler@american.edu

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India

Laboratory of Modern Algebra and Applications, Saint-Petersburg State University, Russia
E-mail address: prasad.dipendra@gmail.com