A peer-reviewed version of this preprint was published in PeerJ on 20 December 2016.

View the peer-reviewed version (peerj.com/articles/2805), which is the preferred citable publication unless you specifically need to cite this preprint.

Silva PJ. (2016) Refining the reaction mechanism of O₂ towards its co-substrate in cofactor-free dioxygenases. PeerJ 4:e2805
https://doi.org/10.7717/peerj.2805
Refining the reaction mechanism of O$_2$ towards its substrate in cofactor-free dioxygenases

Pedro J Silva

Corresp. 1

1 FP-ENAS/Fac. de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal

Corresponding Author: Pedro J Silva
Email address: pedros@ufp.edu.pt

Cofactor-less oxygenases perform challenging catalytic reactions between singlet substrates and triplet oxygen, in spite of apparently violating the spin-conservation rule. In bacterial ring-cleaving 2,4-dioxygenase, the active site has been suggested by quantum chemical computations to fine tune triplet oxygen reactivity, allowing it to interact rapidly with its singlet substrate without the need for spin inversion, and in urate oxidase the reaction is thought to proceed through electron transfer from the deprotonated substrate to an aminoacid sidechain, which then feeds the electron to the oxygen molecule. In this work, we perform additional quantum chemical computations on these two systems to elucidate several intriguing features unaddressed by previous workers. These computations establish that in both enzymes the reaction proceeds through direct electron transfer from substrate to O$_2$ followed by radical recombination, instead of minimum-energy crossing points between singlet and triplet potential energy surfaces without formal electron transfer. The active site does not affect the reactivity of oxygen directly but is crucial for the generation of the deprotonated form of the substrates, which have redox potentials far below those of their protonated forms and therefore may transfer electrons to oxygen without sizeable thermodynamic barriers. This mechanism seems to be shared by most cofactor-less oxidases studied so far.
Introduction

Reactions where the number of unpaired electrons changes as reactants are transformed into products are not generally allowed by quantum mechanics due to Wigner’s spin-conservation rule. This rule prevents the dioxygen molecule, which has two unpaired electrons and a S=1 (triplet) ground state, from easily reacting with acceptors in the singlet state (S=0, like most organic molecules) to yield organic products without unpaired electrons. Such reactions are not, however, strictly impossible due to the intervention of spin-orbit coupling, which mixes both spin states. Understanding spin-forbidden reactions requires the characterization of the potential energy surfaces of the different spin-states involved in the reaction, and the location of the point where both surfaces touch each other (Harvey, 2007, 2014). At this specific geometry (the “minimum-energy crossing point”, henceforth abbreviated as MECP) the system may transition (or “hop”) between spin systems, with a probability which depends on the magnitude of the spin-orbit coupling and may be computed approximately according to the Landau-Zener equation (Nakamura, 1987). Since spin-orbit coupling is a relativistic effect which increases with the nuclear charge, formally spin-forbidden reactions become progressively easier as one descends down the periodic table, to the point that “spin-forbidden” transitions involving Ni, Cu or elements of the 5th (or lower) periods are as probable as “spin-allowed” transitions (Marian, 2001). Proteins which generate, use or transport dioxygen therefore usually rely on transition metals such as manganese, copper and iron (Ferguson-Miller & Babcock, 1996; Que & Ho, 1996; Sono et al., 1996; Wallar & Lipscomb, 1996; Yachandra, Sauer & Klein, 1996). A large class of enzymes devoid of metals (the flavoproteins) circumvents the problem with the help of flavin, which readily transfers one electron to oxygen yielding a separated radical pair consisting of a
superoxide anion and a flavin-based radical (Massey, 1994). This separated radical-pair readily
recombines after a “flip” of the spin in the superoxide anion, yielding a peroxide product with no
unpaired electrons.

Several enzymes catalyze the addition of oxygen to suitably (π-conjugated) substrates in spite
of lacking flavin or metals in their active sites, often through “substrate-assisted catalysis”
(Fetzner & Steiner, 2010) which takes advantage of the enhanced reactivity of these conjugated
system upon enzyme-promoted substrate deprotonation. Extensive computational details of the
reaction mechanisms of coproporphyrinogen oxidase (Silva & Ramos, 2008) and vitamin K.-
dependent glutamate carboxylase (Silva & Ramos, 2007) confirmed that substrate deprotonation
is indeed required for their catalytic action. Evidence for substrate deprotonation is also available
for urate oxidase (Bui et al., 2014), although in this instance a more complex mechanism
involving transient protein-based free radicals was proposed to be operative, based on EPR
measurements of anaerobic preparations of substrate-bound enzyme (Gabison et al., 2011).

Based on the reaction profile towards a superoxide-scavenging spin probe, flavin-like reactivity
towards O₂ has also been suggested to occur (Thierbach et al., 2014) in a bacterial ring-cleaving
2,4-dioxygenase active towards (1H)-3-hydroxy-4-oxoquinolines (EC 1.13.11.47), but recent
computational results (Hernández-Ortega et al., 2015) have been interpreted as contradicting this
hypothesis, as the computed reaction energy for the electron transfer from substrate to O₂ (8-11
kcal·mol⁻¹) would imply an “endothermic process […] unlikely to happen spontaneously in the
protein or in solvent” (Hernández-Ortega et al., 2015). As an alternative, these workers
computed the energetics of a pathway (Figure 1) consisting of addition of triplet oxygen to the
deprotonated substrate (yielding a triplet peroxide, ³I₁, 17 kcal·mol⁻¹ above the reactants),
followed by a transition to a singlet peroxide state (¹I₁, 8 kcal·mol⁻¹ below the triplet state, i.e. 9
47 kcal·mol$^{-1}$ above the reactant state). Minimum-energy crossing points between the singlet and triplet potential energy surfaces were not located in that work, but were predicted to lie around 10 kcal·mol$^{-1}$ above the reactant state.

Some of the conclusions of the computational work of Hernandéz-Ortega et al. seem problematic: on the one hand, the computed 8-11 kcal·mol$^{-1}$ endothermicity of the electron-transfer process from substrate to triplet oxygen does not seem enough to discard the possibility of an electron-transfer mechanism, since larger activation free energies of 17.4 kcal·mol$^{-1}$ are able, according to transition state theory, of sustaining reaction rates of 1s$^{-1}$ at room temperature; and on the other hand, the lack of data on the relative energies of the excited singlet state of the triplet peroxide intermediate and of the triplet state of the singlet peroxide intermediate leave open the possibility that those two potential energy surfaces do not cross between 3I$_1$ and 1I$_1$, and that the minimum-energy crossing point actually lies between the reactant state (3R) and the singlet intermediate 1I$_1$, thereby completely bypassing the putative triplet peroxide (3I$_1$). In this work we perform additional computational studies of the putative intermediates of this reaction and conclude that the triplet peroxide state is never formed: the reaction instead proceeds directly from 3R to 1I$_1$ either through low-lying minimum-energy crossing points or, most likely, through direct electron-transfer from substrate to oxygen in flavin-like fashion. Additional computations in model systems for other reactions catalyzed by cofactor-less oxygenases strongly suggest that such flavin-like reactivity should be the norm for inductively activated π-conjugated substrates.
Computational methods

Quantum chemical computations were performed with the Firefly (Granovsky, 2013) quantum chemistry package, which is partially based on the GAMESS (US) (Schmidt et al., 1993) source code. As in the original work (Hernández-Ortega et al., 2015), all computations were performed with the B3LYP density-functional (Lee, Yang & Parr, 1988; Becke, 1993; Hertwig & Koch, 1995). Optimized geometries of large models of intermediates 3R, 3I, and 1I were obtained from the Supporting information of (Hernández-Ortega et al., 2015). Solution energies (Tomasi & Persico, 1994; Mennucci & Tomasi, 1997; Cossi et al., 1998) in water ($\varepsilon=78.34$) and chlorobenzene ($\varepsilon=5.7$, mimicking the less polar environment of the protein active site) of the singlet and triplet states of these molecules were computed using the 6-31G(d,p) basis set complemented with diffuse functions on the oxygen atoms to allow a better description of the oxygen-based anionic species (henceforth referred to as basis set BS1).

Due to computational limitations, the search of minimum energy crossing points (MECP) between non-interacting singlet and triplet states required extensive trimming of the reaction model, which was reduced to the substrate, a water molecule, and the sidechains of the active-site dyad His$_{251}$/Asp$_{126}$ responsible for substrate deprotonation. MECP were located employing the methodology developed by (Harvey et al., 1998) at the B3LYP/BS1 level. Since MECP optimization in gas phase yield very different geometries from continuum MECP optimizations (Silva & Ramos, 2007), we performed this search with a PCM continuum model using water as the solvent. The C_β atoms of His251 and Asp126 were kept frozen to limit system flexibility to that possible in the enzyme active site. Investigation of CO release step were performed with the larger model suggested by Aitor-Hernández et al. (including the sidechains of...
His38, His100, Ser101, His102, Asp126, Trp160, His251, and the backbone amide linking Trp36 to Cys37), with several atoms kept fixed to prevent unrealistic movements. The fixed atoms were: C_β of His100 and His102, C_α of Ser101, Trp36 and Cys37, C_β and C_γ of His38, His251 and Trp160 and C_α and C_β of Asp126. Very fine two-dimensional scans of the potential energy surface at the B3LYP/6-31G(d) level were performed by simultaneously varying the C_3-C_4 and the O-O distances (while keeping the C_2-C_3 distance fixed to prevent hysteresis). While the size of the system prevented the numerical computation (and updating) of the hessians needed for saddle point optimization, this scanning procedure allowed the generation of smooth potential energy surfaces which enabled the location of high quality transition structure guesses.

The activation energy of the one-electron transfer between substrates and O_2 were estimated by applying Marcus theory for electron transfer, as suggested by Blomberg & Siegbahn (2003) and subsequently modified by Silva and Ramos (Silva & Ramos, 2008). As in previous works by our and other groups (Silva & Ramos, 2008, 2009; Silva, 2014; Wijaya et al., 2016) reorganization energies for every molecule in both oxidation states were computed using the water-optimized reactant geometries for the product state (and vice-versa) and activation energies were then computed by building appropriate Marcus parabolas using these reorganization energies. The smaller size of these models allowed us to increase the size of the basis set in these computations to 6-311G(d,p), while keeping the diffuse functions on the oxygen atoms to allow a better description of the oxygen-based anionic species (henceforth this basis set will be referred to as BS2). Atomic charge and spin density distributions were calculated with a Mulliken population analysis(Mulliken, 1955) based on symmetrically orthogonalized orbitals(Löwdin, 1970).

Computation of the binding modes of 2-methyl- and 2-butyl-(1H)-3-hydroxy-4-oxoquinoline towards 2,4-dioxygenase (PDB:2WJ4(Steiner et al., 2010)) were performed in YASARA
Structure (Krieger & Vriend, 2014) using its AutoDock VINA module with default parameters (Trott & Olson, 2010). The docking region was confined to a 39.8×34.8×34.8 Å box centered on residues Trp36, His38, His100, Ser101, His102, Asp126, Trp160, and His251. Residues Gly35, Trp36, His38, His100, Ser101, His102, Leu128, Phe136, Leu156, Trp160, Met177, Trp185, Ile192 and His251 were kept flexible during the docking procedure.

Results

Bacterial ring-cleaving 2,4-dioxygenase active towards (1H)-3-hydroxy-4-oxoquinolines

We started the search for minimum-energy crossing points between the triplet and singlet states of O$_2$ and deprotonated (1H)-3-hydroxy-4-oxoquinolines from the reported structures of the 3I$_1$ intermediate. To keep the computations tractable most of the surrounding amino acids were excised, and only the Asp-His dyad responsible for the initial deprotonation of substrate (Steiner et al., 2010; Hernandez-Ortega et al., 2014) and charge stabilization of the 3I$_1$/I$_1$ intermediates was kept. Table 1 shows that this truncation has very modest effects on the reaction energetics, and should therefore not introduce relevant errors.
Table 1: Comparison of the quality of the energies obtained with the truncated model which includes only the substrate and the Asp/His dyad vs. the energies obtained with the large model used by (Hernández-Ortega et al., 2015). All energies are computed vs. the respective reactant state at the B3LYP/BS1 theory level in water. The large model includes the sidechains of His38, His100, Ser101, His102, Asp126, Trp160, His251, and the backbone amide linking Trp36 to Cys37. All coordinates were taken from the Supporting information of (Hernández-Ortega et al., 2015) and used without further optimization.

Quinoline substituent	Model used	3I_1	1I_1
-F	Large model	5.5	-10.1
-F	His$_{251}$/Asp$_{126}$ +	5.3	-10.1
-CH$_3$	Large model	12.6	0.6
-CH$_3$	His$_{251}$/Asp$_{126}$ +	13.5	1.2
-(CH$_2$)$_4$CH$_3$	Large model	19.2	4.8
-(CH$_2$)$_4$CH$_3$	His$_{251}$/Asp$_{126}$ +	18.7	1.5
-NO$_2$	Large model	19.0	7.2
-NO$_2$	His$_{251}$/Asp$_{126}$ +	24.0	10.6
As in the work we criticize (Hernandez-Ortega et al., 2014), all computations were repeated for four different (1H)-3-hydroxy-4-oxoquinolines to ascertain the influence of different substituents (methyl, pentyl, fluor and nitro) in the reaction course. The minimum-energy crossing points found (Figure 2) were dramatically different from the $^{3}\text{I}_1$ intermediates postulated in the previous work, which contain extremely short (1.499-1.502 Å) substrate-oxygen bonds and longer O-O bonds (1.38 Å) than observed for free superoxide (1.334 Å). The sole exception was found to be the fluoro-substituted substrate, which presented a short (1.56 Å) C-O distance (Table 2) and where the spin distribution at the triplet state (Figure 2) was the most different from the initial reactant state. In spite of the large change relative to the initial state, the MECP for this substrate proved to be the most energetically accessible of all the tested quinolines. Geometry optimizations of the triplet state starting from these MECP geometries invariably yielded the triplet reactant state and optimizations of the singlet state starting from this same geometry invariably collapsed into $^{1}\text{I}_1$ intermediates. This entails that the reaction will most likely proceed directly through the MECP and thence to $^{1}\text{I}_1$ and that the $^{3}\text{I}_1$ intermediates, in spite of lower energies than the minimum-energy crossing points (Table 2), are unproductive.

Table 2: Characterization of the minimum-energy crossing points between the singlet and triplet surfaces of oxygen:(1H)-3-hydroxy-4-oxoquinoline systems in the presence of the His$_{251}$/Asp$_{126}$ catalytic dyad, at the B3LYP/BS1 level in a water continuum. The C_β atoms of His251 and Asp126 were kept frozen to limit system flexibility to that possible in the enzyme active site. a Large model, including the sidechains of His38, His100,Ser101,His102, Asp126, Trp160, His251, and the backbone of Trp36, at B3LYP/BS1 in a water continuum. For the large
model coordinates were taken from the Supporting information of (Hernández-Ortega et al., 2015) and used without further reoptimization.

Quinoline substituent:	-(CH$_2$)$_4$CH$_3$	-CH$_3$	-F	-NO$_2$
C-O distance (Å) at the MECP	2.308	2.23	1.568	1.968
O-O distance (Å) at the MECP	1.303	1.307	1.326	1.304
MECP Energy (kcal·mol$^{-1}$) vs. reactants	16.8	15.2	9.2	24.2
1I$_1$ Energy (kcal·mol$^{-1}$) vs. reactants	11.1	9.0	-3.4	15.6
3I$_1$ Energy (kcal·mol$^{-1}$) vs. reactantsa	19.2	12.6	5.5	19.0
Figure 2: Optimized B3LYP/BS1 geometries of the minimum-energy crossing points of \((1H)\)-3-hydroxy-4-oxoquinolines bearing pentyl (A), methyl (B), fluoro (C) and nitro (D) substituents. Spins on the oxygen atoms are shown for the triplet state at each of these geometries.

A preference for direct electron transfer to \(O_2\) instead of a pathway relying on minimum-energy crossing points between surfaces of different spin multiplicity has been postulated before (e.g. (Massey, 1994)) for the flavin:O\(_2\) system and confirmed by quantum chemical computations (Prabhakar et al., 2002). Such preference is not limited to flavins, and has also been confirmed computationally for the deprotonated pyrrole in the reaction catalyzed by the oxygen-dependent coproporphyrinogen oxidase (Silva & Ramos, 2008). We have therefore analyzed the
thermodynamic and kinetic feasibility of direct electron transfer from substituted quinolines to O$_2$ (Table 3). The reaction rate was found to be strongly correlated with the electron-donating capability of the quinoline substituent (Table 3). For electron-donating and weakly-withdrawing substituents the reaction rate can be extremely fast, regardless of the polarity of the solvent. Polar environments generally lower the activation energy of this electron-transfer, enabling it to occur at rates exceeding 0.1 s$^{-1}$ even for such electron-withdrawing substituents as acetyl, nitro or nitrile. Comparison of these activation energies to the energies of the minimum-energy crossing points (Table 2) shows that the direct electron transfer route is favored for all tested substituents, especially at higher dielectric constants. The generation of the peroxide intermediate 1I$_1$ is therefore most likely to proceed (in agreement with the proposal by (Thierbach et al., 2014) and in contrast to the mechanism postulated by (Hernández-Ortega et al., 2015)) through electron transfer from substrate to O$_2$, followed by recombination of the substrate-based radical with superoxide.

Table 3: Reaction energies and activation energies of the electron-transfer from substituted (1H)-3-hydroxy-4-oxoquinolines to dioxygen, at the B3LYP/BS2//B3LYP/BS1 level. Unless otherwise noted, the 3-hydroxyl group remained in the deprotonated state. Substituents are shows ordered by increased values of their Hammet σ_m parameters (Hansch, Leo & Taft, 1991).

Quinoline substituent	In chlorobenzene	In water		
	Activation Energy (kcal·mol$^{-1}$)	Reaction Energy (kcal·mol$^{-1}$)	Activation Energy (kcal·mol$^{-1}$)	Reaction energy (kcal·mol$^{-1}$)
Hernández-Ortega et al. have shown that the peroxide intermediate 1I$_1$ quickly becomes an endoperoxide (1I$_2$) through attack of the substrate C$_4$ by the terminal oxygen. Release of C=O from 1I$_2$ yields a carboxylate function on C$_4$ and occurs quickly due to the stabilization of the nascent negative charge by hydrogen bonding with Ser101 (1.51 Å) and strong interaction with the positively-charged His251 (2.16 Å). In their computational investigation of this reaction step with quinolines bearing the much longer pentyl substituent, these researchers observed a remarkable increase of the activation energy for CO release of almost 20 kcal·mol$^{-1}$. Inspection of the structure of the transition state of the transformation of 1I$_2$ into products reveals that the high activation energy of the pentyl-substituted quinoline is due to the use of the same binding mode for this quinoline as for the methyl-substituted quinoline, which introduces steric clashes between the pentyl-group and His38, His100 and the Trp36-Cys37 backbone. To avoid these clashes, the pentyl-substituted substrate is forced to rotate 30º around the axis perpendicular to the quinoline ring, thus increasing the separation between the substrate and Ser101 (to 1.85 Å)
and His251 (to 2.67 Å), and strongly decreasing the charge stabilization provided by these residues on the nascent carboxylate (Figure 3).
Figure 3: Proposed geometries of the transition states for the 1I$_2$→product reaction step for the A) methyl-, and B) pentyl-substituted 4-oxoquinolines. Coordinates taken from the Supporting information of (Hernández-Ortega et al., 2015). Trp160 has been omitted from images for clarity.

Although the 20 kcal·mol$^{-1}$ increase of activation energy for the CO release step in the pentyl-substituted was regarded by the original researchers (Hernández-Ortega et al., 2015) as “in agreement with the drop in [experimental] rate constant” reported earlier in the same paper for the butyl-substituted substrate, the observed 30% increase in k_{cat} and 10-fold decrease of k_{cat}/K_M are not consistent with the 14-15 orders of magnitude difference in k_{cat} expected from such a difference in activation energy. Additional evidence against the mechanistic relevance of the proposed binding mode for the pentyl-substituted substrate comes from the superposition of the transition state model coordinates with the crystallographic structure of the enzyme: even after this 30º rotation, the proposed position of pentyl group lies on the space occupied by the Pro35-Gly36 stretch of the enzyme, which had been left out of the active site model. Long hydrocarbon substituents may, however, be accommodated if a binding mode rotated by 240º is assumed,
which places the aliphatic chain in the entrance channel bordered by Leu128, Phe136, Leu165, Val159, Trp160, Gln221 and His251. This binding mode was confirmed as the best hit in docking computations using Autodock VINA. A subsequent two-dimensional scan of the coordinates involved in the $^{1}\text{I}_2$→product transition showed that in this binding mode a very low energy pathway for CO release is accessible through a transition structure stabilized through interactions with Ser101 and His251 (Figure 4B and Table 4). An identical scan was performed for the methyl-substituted quinolone in the original orientation (Table 4 Figure 4, panels C and D). The small differences in activation energies between both 4-oxoquinolines are fully consistent with the lack of dramatic differences in the experimentally-measured kinetic parameters.

Table 4: Comparison of the transition states of the CO release step for methyl- and butyl-substituted quinolones. a: structure obtained from very fine 2D-scans, with an active site model including the sidechains of His38, His100,Ser101,His102, Asp126, Trp160, His251, and the backbone of Trp36. b: structure obtained from a complete saddle-point optimization in a minimal model including only the substrate, a water molecule and a methanol molecule mimicking Ser101. Energies were computed at the B3LYP/BS2 level and do not include zero-point vibrational effects.

	Butyl quinoline^a	Methyl quinoline^a	Methyl quinoline^b
C₃-C₂ distance (Å)	1.71	1.77	1.749
O-O distance (Å)	1.99	2.09	2.055
TS energy vs. $^{1}\text{I}_2$ (kcal·mol⁻¹) in water	8.1	11.3	8.0
TS energy vs. $^{1}\text{I}_2$ (kcal·mol⁻¹) (ε=5.7)	8.0	11.4	8.4
Ser101 – O distance (Å) | 1.57 | 1.58 | 1.741
His251 – O distance (Å) | 1.89 | 1.83 | Not applicable

Figure 4: Newly-derived potential energy surfaces (at the B3LYP/6-31G(d) theory level) of the \(^1I_2 \rightarrow \text{product} \) reaction step for the A) butyl-, and C) methyl-substituted 4-oxoquinolines. Geometries of the transition states for the \(^1I_2 \rightarrow \text{product} \) reaction step for the B) butyl-, and D)
methyl-substituted 4-oxoquinolines are shown, with the substrate and sidechains of Ser101, Asp126 and His251 highlighted. Trp160 has been omitted from the images for clarity.
Other oxygenases

The experimental observation of EPR radical signals in anaerobic urate oxidase preparations upon incubation with uric acid (Gabison et al., 2011) is thought to support a reaction mechanism where urate dianion (generated through deprotonation of uric acid at the enzyme active site) transfers an electron to aminoacid sidechains (Lys, Arg or His) and reaction with O$_2$ occurs through electron transfer from these aminoacid radicals. Our DFT computations (Table 5) show that direct electron from the urate dianion to O$_2$ has such a low activation energy that no electron transfer to an active site aminoacid needs to occur to enable catalysis, and no minimum-energy crossing point between the singlet and triplet surfaces needs to be reached. The radical observed anaerobically (which may be His-based) should therefore play no role in the catalytic mechanism.

Finally, we computed the activation energy for the electron transfer between vitamin K and O$_2$. The value obtained (5.3 kcal·mol$^{-1}$ in chlorobenzene, 3.3 kcal·mol$^{-1}$ in water) is, again, inferior to the energy of the minimum-energy crossing point between the singlet and triplet surfaces (15.3 kcal·mol$^{-1}$ in water (Silva & Ramos, 2007)). It thus appears that for all cofactor-less oxidases studied computationally so far (urate oxidase, ring-cleaving 2,4-dioxygenase, coproporphyrinogen oxidase and vitamin K-dependent glutamate carboxylase) catalysis occurs through direct electron transfer from substrate to O$_2$ followed by radical recombination, instead of minimum-energy crossing points without formal electron transfer.
Table 5: Reaction energies and activation energies of the electron-transfer from urate dianion to dioxygen or aminoacid sidechains, at the B3LYP/BS2//B3LYP/BS1 level.

Electron acceptor	Activation Energy (kcal·mol⁻¹)	Reaction Energy (kcal·mol⁻¹)	Activation Energy (kcal·mol⁻¹)	Reaction energy (kcal·mol⁻¹)
O₂	0.8	-9.3	4.2	0.1
His⁺	18.8	17.0	48.1	47.5
Lys⁺	34.3	30.9	65.2	64.3
Arg⁺	24.5	20.5	51.5	51.4

Conclusions

The computations described in this paper show that the previously postulated triplet endoperoxide intermediate (³I₁) is most unlikely to play a role in the reaction mechanism of bacterial ring-cleaving 2,4-dioxygenase, as the minimum energy crossing point between the singlet and triplet surfaces directly connects the reactants to the singlet endoperoxide intermediate (¹I₁). Moreover, the computed activation energy for the direct electron transfer from substrate to O₂ is lower than the MECP energy for substrates bearing electron-donating or weak electron-withdrawing groups at the 2- position, enabling flavin-like reactivity only after the 3-hydroxy group in the substrate is suitably deprotonated by the His251/Asp126 dyad (Table2).
Reactivity with substrates bearing long alkyl chains on the 2-position is not possible in the originally postulated position: it instead relies on a different binding mode which enables catalysis of the CO release step by positioning the nascent negative charges in a suitably stabilizing environment.

References

Becke AD. 1993. Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 98:5648–5652.

Bui S., von Stetten D., Jambrina PG., Prangé T., Colloc’h N., de Sanctis D., Royant A., Rosta E., Steiner RA. 2014. Direct evidence for a peroxide intermediate and a reactive enzyme-substrate-dioxygen configuration in a cofactor-free oxidase. Angewandte Chemie (International ed. in English) 53:13710–4.

Cossi M., Mennucci B., Pitarch J., Tomasi J. 1998. Correction of cavity-induced errors in polarization charges of continuum solvation models. Journal of Computational Chemistry 19:833–846.

Ferguson-Miller S., Babcock GT. 1996. Heme/Copper Terminal Oxidases. Chemical Reviews 96:2889–2908.

Fetzner S., Steiner RA. 2010. Cofactor-independent oxidases and oxygenases. Applied microbiology and biotechnology 86:791–804.

Gabison L., Chopard C., Colloc’h N., Peyrot F., Castro B., Hajji M El., Altarsha M., Monard G., Chiadmi M., Prangé T. 2011. X-ray, ESR, and quantum mechanics studies unravel a spin well in the cofactor-less urate oxidase. Proteins: Structure, Function, and Bioinformatics 79:1964–1976.

Granovsky AA. 2013. Firefly 8.0.0.

Hansch C., Leo a., Taft RW. 1991. A Survey of Hammett Substituent Constants and Resonance and Field Parameters. Chemical Reviews 91:165–195.

Harvey JN. 2007. Understanding the kinetics of spin-forbidden chemical reactions. Physical chemistry chemical physics : PCCP 9:331–43.

Harvey JN. 2014. Spin-forbidden reactions: Computational insight into mechanisms and kinetics. Wiley Interdisciplinary Reviews: Computational Molecular Science 4:1–14.

Harvey JN., Aschi M., Schwarz H., Koch W. 1998. The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 99:95–99.
Hernandez-Ortega A., Quesne MG., Bui S., Heuts DPHM., Steiner RA., Heyes DJ., De Visser SP., Scrutton NS. 2014. Origin of the proton-transfer step in the cofactor-free (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase: Effect of the basicity of an active site his residue. Journal of Biological Chemistry 289:8620–8632.

Hernández-Ortega A., Quesne MG., Bui S., Heyes DJ., Steiner R a., Scrutton NS., de Visser SP. 2015. Catalytic Mechanism of Cofactor-Free Dioxygenases and How They Circumvent Spin-Forbidden Oxygenation of Their Substrates. Journal of the American Chemical Society 137:7474–7487.

Hertwig RH., Koch W. 1995. On the accuracy of density functionals and their basis set dependence: An extensive study on the main group homonuclear diatomic molecules Li2 to Br2. Journal of Computational Chemistry 16:576–585.

Krieger E., Vriend G. 2014. YASARA View--molecular graphics for all devices--from smartphones to workstations. Bioinformatics 30:2981–2982.

Lee C., Yang W., Parr RG. 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 37:785–789.

Löwdin P-O. 1970. On the nonorthogonality problem. In: Advances in Quantum Chemistry, Vol. 5. 185–199.

Marian C. 2001. Spin-orbit coupling in molecules. Reviews in computational chemistry 17:99–204.

Massey V. 1994. Activation of molecular oxygen by flavins and flavoproteins. The Journal of Biological Chemistry 269:22459–62.

Mennucci B., Tomasi J. 1997. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. Journal of Chemical Physics 106:5151–5158.

Mulliken RS. 1955. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. The Journal of Chemical Physics 23:1833.

Nakamura H. 1987. Semiclassical treatment of nonadiabatic transitions: Multilevel curve crossing and nonadiabatic tunneling problems. The Journal of Chemical Physics 87:4031.

Prabhakar R., Siegbahn PEM., Minaev BF., Ågren H. 2002. Activation of Triplet Dioxygen by Glucose Oxidase: Spin–Orbit Coupling in the Superoxide Ion. The Journal of Physical Chemistry B 106:3742–3750.

Que L., Ho RYN. 1996. Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Sites. Chemical Reviews 96:2607–2624.

Schmidt MW., Baldridge KK., Boatz JA., Elbert ST., Gordon MS., Jensen JH., Koseki S., Matsunaga N., Nguyen KA., Su S. et al. 1993. General atomic and molecular electronic structure system. Journal of Computational Chemistry 14:1347–1363.

Silva PJ. 2014. With or without light: comparing the reaction mechanism of dark-operative protochlorophyllide oxidoreductase with the energetic requirements of the light-dependent protochlorophyllide oxidoreductase. PeerJ 2:e551.

Silva PJ., Ramos MJ. 2007. Reaction Mechanism of the Vitamin K-Dependent Glutamate Carboxylase: A Computational Study. The Journal of Physical Chemistry B 111:12883–
Silva PJ., Ramos MJ. 2008. A comparative density-functional study of the reaction mechanism of the O2-dependent coproporphyrinogen III oxidase. Bioorganic & medicinal chemistry 16:2726–33.

Silva PJ., Ramos MJ. 2009. Computational studies on the reactivity of substituted 1,2-dihydro-1,2-azaborines. The Journal of Organic Chemistry 74:6120–6129.

Sono M., Roach MP., Coulter ED., Dawson JH. 1996. Heme-Containing Oxygenases. Chemical Reviews 96:2841–2888.

Steiner RA., Janssen HJ., Roversi P., Oakley AJ., Fetzner S. 2010. Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the alpha/beta-hydrolase fold. Proceedings of the National Academy of Sciences of the United States of America 107:657–62.

Thierbach S., Bui N., Zapp J., Chhabra SR., Kappl R., Fetzner S. 2014. Substrate-assisted O2 activation in a cofactor-independent dioxygenase. Chemistry & biology 21:217–25.

Tomasi J., Persico M. 1994. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chemical Reviews 94:2027–2094.

Trott O., Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry 31:455–61.

Wallar BJ., Lipscomb JD. 1996. Dioxygen Activation by Enzymes Containing Binuclear Non-Heme Iron Clusters. Chemical Reviews 96:2625–2658.

Wijaya IMM., Domratcheva T., Iwata T., Getzoff ED., Kandori H. 2016. Single Hydrogen Bond Donation from Flavin N 5 to Proximal Asparagine Ensures FAD Reduction in DNA Photolyase. Journal of the American Chemical Society 138:4368–4376.

Yachandra VK., Sauer K., Klein MP. 1996. Manganese Cluster in Photosynthesis: Where Plants Oxidize Water to Dioxygen. Chemical Reviews 96:2927–2950.