GLOBAL WELL-POSEDNESS AND SCATTERING
FOR THE FOCUSING
NONLINEAR SCHRÖDINGER EQUATION
IN THE NONRADIAL CASE

Pigong Han

Abstract. The energy-critical, focusing nonlinear Schrödinger equation in the nonradial case reads as follows:

\[i \partial_t u = -\Delta u - |u|^{\frac{4}{N-2}} u, \quad u(x, 0) = u_0 \in H^1(\mathbb{R}^N), \quad N \geq 3. \]

Under a suitable assumption on the maximal strong solution, using a compactness argument and a virial identity, we establish the global well-posedness and scattering in the nonradial case, which gives a positive answer to one open problem proposed by Kenig and Merle [Invent. Math. 166 (2006), 645–675].

Keywords: critical energy, focusing Schrödinger equation, global well-posedness, scattering.

Mathematics Subject Classification: 35Q40, 35Q55.

1. INTRODUCTION AND THE MAIN RESULT

We consider the energy-critical nonlinear Schrödinger equation in \(\mathbb{R}^N (N \geq 3) \):

\[
\begin{cases}
 i \partial_t u = -\Delta u \pm |u|^{\frac{4}{N-2}} u & \text{in } \mathbb{R}^N \times \mathbb{R}, \\
 u(x, 0) = u_0 & \text{in } \mathbb{R}^N,
\end{cases}
\]

where \(u = u(x, t) : \mathbb{R}^N \times \mathbb{R} \to \mathbb{C} \) denotes the complex-valued wave function, \(i = \sqrt{-1} \).

The sign "-" corresponds to the focusing problem, while the sign "+" corresponds to the defocusing problem. Cazenave-Weissler [6, 7] showed that if \(\| \nabla u_0 \|_2 \) is suitably small, then there exists a unique solution \(u \in C(\mathbb{R}; H^1(\mathbb{R}^N)) \) of (1.1) satisfying \(\| u \|_{L^{2(N+2)}(\mathbb{R}; L^{2(N+2)}(\mathbb{R}^N))} < \infty \). In the defocusing case, if \(u_0 \in H^1(\mathbb{R}^N) \) is radial, Bourgain [1] proved the global well-posedness for (1.1) with \(N = 3, 4 \), and that for more regular \(u_0 \), the solution preserves the smoothness for all time. (Another
proof of this last fact is due to Grillakis [13] for $N = 3$.) Bourgain's result is then extended to $N \geq 5$ by Tao [29], still under the assumption that u_0 is radial. Subsequently, Colliander-Keel-Staffilani-Takaoka-Tao [8] obtained the result for general $u_0 \in H^1(\mathbb{R}^3)$. Ryckman-Visan [26] extended this result to $N = 4$ and finally to $N \geq 5$ by Visan [30]. In the focusing case, these results do not hold. In fact, the classical virial identity shows that if $E(u_0) < 0$ and $|x|u_0 \in L^2(\mathbb{R}^N)$, the corresponding solution breaks down in finite time.

Ginibre-Velo [11] considered a general case:

$$
\begin{aligned}
\left\{
\begin{array}{l}
 i\partial_t u = -\Delta u - |u|^{4N/(4N-2)} u \\
 u(x,0) = u_0
\end{array}
\right. \\
\text{in } \mathbb{R}^N \times \mathbb{R},
\end{aligned}
$$

(1.2)

and established the local well-posedness of the Cauchy problem (1.2) (focusing case) in the energy space $H^1(\mathbb{R}^N)$ with $1 < q < 1 + \frac{4}{N}$. Furthermore, they proved the global existence for both small and large initial data in the L^2-subcritical case: $1 < q < 1 + \frac{4}{N}$. In the L^2-supercritical case: $1 + \frac{4}{N} < q < 1 + \frac{4}{N-2}$, Glassey [12], Ogawa-Tsutsumi [24,25] showed that the strong solution of the Cauchy problem (1.2) blows up in finite time for a class of initial data, especially for negative energy initial data. Holmer-Roudenko [15] established sharp conditions on the existence of global solutions of (1.2) with $q = 3$. In the L^2-critical case: $q = 1 + \frac{4}{N}$, Weinstein [31] gave a crucial criterion in terms of L^2-mass initial data. Relevant work on the above topics of (1.2) is referred to [2,3,9,14,16,18,20,23,27] and the references therein.

Using the concentration compactness, which is obtained by Keraani [18], Kenig-Merle [19] considered problem (1.1) in the focusing case for $N = 3, 4, 5$, and discussed global well-posedness and blow-up for the energy-critical problem (1.1) in the radial case. Moreover, they expected their results could be extended to the case of radial data for $N \geq 6$, and believed that it remained an interesting problem to remove the radial symmetry assumption. Subsequently, Killip-Visan [22] considered the focusing problem (1.1) with dimensions $N \geq 5$, and proved that if a maximal-lifespan solution $u : I \times \mathbb{R}^N \to \mathbb{C}$ obeys $\sup_{t \in I} \|\nabla u(t)\|_2 < \|\nabla W\|_2$, then it is global and scatters both forward and backward in time. Here W denotes the ground state, which is a stationary solution of the equation of the focusing problem (1.1). In particular, if a local strong solution has both energy and kinetic energy less than those of the ground state W at some point in time, then the local strong solution is global and scatters in higher dimensions $N \geq 5$. Further results are referred to [10,17].

In the present paper, under a suitable assumption on the local strong solution, we establish the global well-posedness and scattering for the focusing problem (1.1) in the nonradial case, which gives a positive answer to one open problem proposed by Kenig-Merle in [19].

In order to state our main result conveniently, we rewrite the focusing problem (1.1) as follows:

$$
\begin{aligned}
\left\{
\begin{array}{l}
 i\partial_t u = -\Delta u - |u|^{4N/(4N-2)} u \\
 u(x,0) = u_0 \in H^1(\mathbb{R}^N),
\end{array}
\right. \\
\text{in } \mathbb{R}^N \times \mathbb{R},
\end{aligned}
$$

(1.3)
Theorem 1.1. Assume that \(u \) satisfies (1.3) defined on the maximal interval \((T_-(u_0), T_+(u_0)) \) obeys conservations of charge and energy:

\[
\int_{\mathbb{R}^N} |u(x,t)|^2 dx = \int_{\mathbb{R}^N} |u_0(x)|^2 dx, \quad \forall t \in (-T_-(u_0), T_+(u_0)),
\]

and

\[
E(u(t)) = E(u_0), \quad \forall t \in (-T_-(u_0), T_+(u_0)),
\]

where

\[
E(u(t)) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u(x,t)|^2 dx - \frac{1}{2} \int_{\mathbb{R}^N} |u(x,t)|^2 dx, \quad 2^* = \frac{2N}{N-2}.
\]

Talenti [28] proved that the function

\[
W(x) = \left(\frac{N(N-2)}{(1+|x|^2)^{\frac{N-2}{2}}} \right)
\]

satisfies \(|\nabla W| \in L^2(\mathbb{R}^N)\) and solves the elliptic equation

\[-\Delta W = |W|^{\frac{4}{4-N}} W \quad \text{in} \quad \mathbb{R}^N.\]

The main result of this paper reads as follows.

Theorem 1.1. Assume that \(u_0 \in H^1(\mathbb{R}^N), \ N = 3, 4, 5. \) Then there exists a unique solution \(u \) of (1.3) defined on the maximum existence of interval \((-T_-(u_0), T_+(u_0)) \) with \(u \in C((-T_-(u_0), T_+(u_0)), H^1(\mathbb{R}^N)), \) where \(0 < T_-(u_0), T_+(u_0) \leq +\infty. \) Let \(E(u_0) < E(W), \ ||u_0||_{L^2(\mathbb{R}^N)} < ||W||_{L^2(\mathbb{R}^N)}. \) Assume that there exists a non-negative real-valued function \(\varphi \in C^\infty(\mathbb{R}^N) \) such that

\[
\int_{\mathbb{R}^N} \varphi|u_0|^2 dx > 0 \quad \text{and} \quad \inf_{t \in (0, T_+(u_0))} f(t) \geq 0 \quad \left(\text{resp.} \sup_{t \in (-T_-(u_0), 0)} f(t) \leq 0 \right),
\]

where

\[
f(t) \triangleq \text{Im} \int_{\mathbb{R}^N} \bar{\varphi}(x,t) \nabla \varphi(x) \cdot \nabla u(x,t) dx.
\]

Then \(T_-(u_0) = T_+(u_0) = +\infty, \) the solution \(u \) belongs to \(C(\mathbb{R}^1, H^1(\mathbb{R}^N)), \) and there exists \(u_{0,+}, u_{0,-} \in H^1(\mathbb{R}^N) \) such that

\[
\lim_{t \to +\infty} \|u(t) - e^{it\Delta}u_{0,+}\|_{H^1(\mathbb{R}^N)} = 0, \quad \lim_{t \to -\infty} \|u(t) - e^{it\Delta}u_{0,-}\|_{H^1(\mathbb{R}^N)} = 0.
\]
Remark 1.2. (i) Let \(\varphi_R \in C_0^\infty(\mathbb{R}^N) \) be a cut-off function, which satisfies \(\varphi_R(x) \equiv 1 \) if \(|x| \leq R \); \(\varphi_R(x) \equiv 0 \) if \(|x| \geq 2R \); \(|\nabla \varphi_R(x)| \leq \frac{C}{R} \) for any \(x \in \mathbb{R}^N \). Then it follows from Lemma 2.2 below that

\[
\sup_{t \in (-\infty, T_\tau(u_0), T_\tau(u_0))} \left| \int_{\mathbb{R}^N} \nabla \varphi_R \cdot \nabla u(x, t) \, dx \right| \leq \frac{C}{R} \left\| u(t) \right\|_{L^2(R \leq |x| \leq 2R)} \left\| \nabla u(t) \right\|_{L^2(R \leq |x| \leq 2R)} \leq \frac{C}{R} \left\| u_0 \right\|_{L^2(\mathbb{R}^N)} \left\| \nabla u_0 \right\|_{L^2(\mathbb{R}^N)} \longrightarrow 0 \quad \text{as} \quad R \longrightarrow \infty,
\]

which implies that for any \(\epsilon > 0 \), there exists a large number \(R > 0 \) such that

\[
\inf_{t \in (0, T_\tau(u_0))} \int_{\mathbb{R}^N} \nabla \varphi_R \cdot \nabla u(x, t) \, dx \geq -\epsilon.
\]

However, this estimate does not work in obtaining (2.26) below because we have to let \(t = t_j \longrightarrow +\infty \) in (2.26). That is why we need the additional assumption (1.6) in Theorem 1.1.

(ii) If the initial datum \(u_0 \in \dot{H}^1(\mathbb{R}^N) \) \((N = 3, 4, 5)\) is radial. The global existence of the strong solution of (1.3) and the scattering in \(\dot{H}^1(\mathbb{R}^N) \) are proved in [19] without assumption (1.6). Here we do not need the radial symmetry assumption on \(u_0 \), which is replaced by (1.6). Therefore, our conclusion (i.e., Theorem 1.1) improves the results in [19] in some sense.

(iii) It is well known that if \(E(u_0) < 0 \), \(u_0 \in H^1(\mathbb{R}^N) \) with \(|x|u_0 \in L^2(\mathbb{R}^N) \), then the solution \(u \) of (1.3) blows up at some finite time. But it does not contradict Theorem 1.1. In fact, under the assumptions in Theorem 1.1, the initial energy \(E(u_0) \geq 0 \). Indeed, using the assumption \(\left\| \nabla u_0 \right\|_{L^2(\mathbb{R}^N)} < \left\| \nabla W \right\|_{L^2(\mathbb{R}^N)} \) and the Sobolev inequality, we get

\[
E(u_0) = \frac{1}{2} \left\| \nabla u_0 \right\|_{L^2(\mathbb{R}^N)}^2 - \frac{1}{2^*} \left\| u_0 \right\|_{L^{2^*}(\mathbb{R}^N)}^2 \geq \left(\frac{1}{2} - \frac{N - 2}{2N} C_N \frac{2}{N} \left\| \nabla u_0 \right\|_{L^2(\mathbb{R}^N)} \right) \left\| \nabla u_0 \right\|_{L^2(\mathbb{R}^N)} \geq \left(\frac{1}{2} - \frac{N - 2}{2N} C_N \frac{2}{N} \left\| \nabla W \right\|_{L^2(\mathbb{R}^N)} \right) \left\| \nabla u_0 \right\|_{L^2(\mathbb{R}^N)} = \frac{1}{N} \left\| \nabla u_0 \right\|_{L^2(\mathbb{R}^N)}^2,
\]

where \(C_N = \left\| \nabla W \right\|_{L^2(\mathbb{R}^N)}^{\frac{2}{N}} \) is the best Sobolev constant (see [28] for details).

Throughout this paper, we denote the norm of \(H^1(\mathbb{R}^N), \dot{H}^1(\mathbb{R}^N) \) by \(\| u \|_{H^1} = \left(\int_{\mathbb{R}^N} (|\nabla u(x)|^2 + |u(x)|^2) \, dx \right)^{\frac{1}{2}}, \| u \|_{\dot{H}^1} = \left(\int_{\mathbb{R}^N} |\nabla u(x)|^2 \, dx \right)^{\frac{1}{2}}, \) respectively, and positive constants (possibly different line to line) by \(C \).
2. PROOF OF THE MAIN RESULT

Lemma 2.1. Let \(u \in C((-T_-(u_0), T_+(u_0)), H^1(\mathbb{R}^N)) \) be a solution of (1.3), and let \(\varphi \in C^4([0, \infty)) \) with \(\varphi(s) \equiv \text{const} \) if \(s > 0 \) is large. Then for any \(t \in (-T_-(u_0), T_+(u_0)) \)

\[
\frac{d}{dt} \int_{\mathbb{R}^N} \varphi(|x|)|u(x, t)|^2 \, dx = 2 \text{Im} \int_{\mathbb{R}^N} \nabla \varphi(|x|) \cdot \nabla u(x, t) \overline{u}(x, t) \, dx
\]

and

\[
\frac{d^2}{dt^2} \int_{\mathbb{R}^N} \varphi(|x|)|u(x, t)|^2 \, dx = 4 \int_{\mathbb{R}^N} \varphi''(|x|)|\nabla u(x, t)|^2 \, dx - \frac{4}{N} \int_{\mathbb{R}^N} \Delta \varphi(|x|)|u(x, t)|^{2^*} \, dx -
\]

\[
- \int_{\mathbb{R}^N} \Delta^2 \varphi(|x|)|u(x, t)|^2 \, dx.
\]

Proof. Since the proof is similar to those of Lemma in [12] and Lemma 7.6.2 in [5], we omit the details here.

The following variational estimates are Theorem 3.9 and Corollary 3.13 in [19].

Lemma 2.2 ([19]). Suppose that

\[
\int_{\mathbb{R}^N} |\nabla u_0|^2 \, dx < \int_{\mathbb{R}^N} |\nabla W|^2 \, dx \quad \text{and} \quad E(u_0) < (1 - \delta_0)E(W), \quad \text{where} \quad \delta_0 \in (0, 1).
\]

Let \(I \ni 0 \) be the maximal interval of existence of the solution \(u \in C(I, H^1(\mathbb{R}^N)) \) of (1.3). Then there exists \(\overline{\delta} = \overline{\delta}(\delta_0, N) > 0 \) such that for each \(t \in I \)

\[
\int_{\mathbb{R}^N} |\nabla u(x, t)|^2 \, dx < (1 - \overline{\delta}) \int_{\mathbb{R}^N} |\nabla W|^2 \, dx,
\]

\[
\overline{\delta} \int_{\mathbb{R}^N} |\nabla u(x, t)|^2 \, dx < \int_{\mathbb{R}^N} (|\nabla u(x, t)|^2 - |u(x, t)|^2) \, dx,
\]

\[
E(u(t)) \geq 0.
\]

Furthermore, \(E(u(t)) \simeq \int_{\mathbb{R}^N} |\nabla u(x, t)|^2 \, dx \simeq \int_{\mathbb{R}^N} |\nabla u_0|^2 \, dx \), for all \(t \in I \) with comparability constants which depend only on \(\delta_0 \).

The following rigidity theorem plays a fundamental role in the proof of Theorem 1.1.

Theorem 2.3. Assume that \(u_0 \in H^1(\mathbb{R}^N) \) satisfies

\[
\int_{\mathbb{R}^N} |\nabla u_0|^2 \, dx < \int_{\mathbb{R}^N} |\nabla W|^2 \, dx \quad \text{and} \quad E(u_0) < E(W).
\]
Let \(u \) be the solution of (1.3) with the maximal interval of existence \((-T_-(u_0), T_+(u_0))\), and let the assumption (1.6) hold. Suppose that there exists \(\lambda(t) > 0 \), \(x(t) \in \mathbb{R}^N \) with the property that

\[
K = \left\{ v(x,t) = \frac{1}{\lambda(t)^{\frac{4}{N-2}}} u\left(\frac{x-x(t)}{\lambda(t)}\right) : t \in [0,T_+(u_0)) \right\}
\]

is such that \(K \) is compact in \(\dot{H}^1(\mathbb{R}^N) \). Then \(T_+(u_0) = +\infty \), \(u_0 \equiv 0 \) in \(\mathbb{R}^N \).

Remark 2.4. If \(x(t) \equiv 0 \) or \(\lambda(t) \geq A > 0 \) and \(|x(t)| \leq C_0 \), Theorem 2.3 is verified in [19] for \(u_0 \in \dot{H}^1(\mathbb{R}^N) \).

Proof of Theorem 2.3. Step 1. \(T_+(u_0) = +\infty \). If \(T_+(u_0) < +\infty \), then from Lemma 2.11 in [19], one has

\[
\|u\|_{S(0,T_+(u_0))} = +\infty, \quad \text{where} \quad \|u\|_{S(t)} = \left\| u \right\|_{L^{\frac{2(N+2)}{N-2}}(I; L^{\frac{2(N+2)}{N-2}}(\mathbb{R}^N))}.
\]

Now we claim that

\[
\lambda(t) \to +\infty \quad \text{as} \quad t \to T_+(u_0).
\]

Indeed if there exists a sequence \(\{t_j\} \), \(t_j \to T_+(u_0) \) such that \(\lambda(t_j) \to A < +\infty \) as \(j \to +\infty \).

Set \(v_j(x) = u(x,t_j) = \frac{1}{\lambda(t_j)^{\frac{4}{N-2}}} u\left(\frac{x-x(t_j)}{\lambda(t_j)}\right) \). It follows from the compactness of \(K \) in \(\dot{H}^1(\mathbb{R}^N) \) that there is a subsequence (still denoted by \(\{v_j\} \)) and \(v_0 \in \dot{H}^1(\mathbb{R}^N) \) such that

\[
v_j \to v_0 \quad \text{in} \quad \dot{H}^1(\mathbb{R}^N).
\]

Then it holds

\[
u\left(y - \frac{x(t_j)}{\lambda(t_j)} \right) = \lambda(t_j)^{\frac{N-2}{2}} v_j(\lambda(t_j)y) \to A^{\frac{N-2}{2}} v_0(Ay) \quad \text{in} \quad \dot{H}^1(\mathbb{R}^N).
\]

If \(A = 0 \), it follows from (2.3) that \(u(y - \frac{x(t_j)}{\lambda(t_j)} \to 0 \) in \(\dot{H}^1(\mathbb{R}^N) \). So

\[
\|\nabla u(t_j)\|_{L^2(\mathbb{R}^N)} \to 0 \quad \text{as} \quad t_j \to T_+(u_0).
\]

Using the conservation of energy (1.5), one has

\[
E(u_0) = E(u(t_j)) \to 0 \quad \text{as} \quad t_j \to T_+(u_0).
\]

In addition, (iii) in Remark 1.2 and the assumption: \(\|\nabla u_0\|_{L^2} < \|\nabla W\|_{L^2} \) yield

\[
\|\nabla u_0\|_{L^2}^2 \leq NE(u_0).
\]

Combining (2.5) and (2.6), we infer \(\|\nabla u_0\|_{L^2} = 0 \). So \(u_0 \equiv 0 \) in \(\mathbb{R}^N \). Using the conservation of charge (1.4), one has for \(t \in [0,T_+(u_0)) \)

\[
\int_{\mathbb{R}^N} |u(t,x)|^2 \, dx = \int_{\mathbb{R}^N} |u_0(x)|^2 \, dx = 0,
\]
which implies us that \(u \equiv 0 \) a.e. on \(\mathbb{R}^N \times [0, T_+(u_0)) \). This is a contradiction with (2.1).

If \(\lim_{j \to \infty} \lambda(t_j) = A \in (0, +\infty) \). Let \(h(x, t) \) be the solution of (1.3) (which is guaranteed by Remark 2.8 in [19]) on the interval \(I_{\eta} = (T_+(u_0) - \eta, T_+(u_0) + \eta) \), \(h(x, T_+(u_0)) = A^{\frac{2}{N-2}} v_0(Ax) \), \(\|h\|_{S(I_{\eta})} < +\infty \), where \(\eta = \eta(\|\nabla v_0\|_{L^2(\mathbb{R}^N)}) \).

Let \(h_j(x, t) \) be the solution of (1.3) with \(h_j(x, T_+(u_0)) = u(x - \frac{x(t_j)}{\lambda(t_j)}, t_j) \). Then the convergence in (2.3) and the continuous dependence on the initial data (see Remark 2.17 in [19]) imply that

\[
\|h_j - h\|_{S(I_{\eta}^2)} \to 0 \quad \text{as} \quad j \to +\infty.
\]

Then

\[
\sup_j\|h_j\|_{S(I_{\eta}^2)} < +\infty. \tag{2.7}
\]

In addition, the uniqueness theorem on the strong solution of (1.3) (see Definition 2.10 in [19]) yields

\[
h_j(x, t) = u\left(x - \frac{x(t_j)}{\lambda(t_j)}, t + t_j - T_+(u_0)\right) \quad \text{for every} \quad t \in I_{\eta}^2. \tag{2.8}
\]

Combining (2.7) and (2.8), we get

\[
+\infty > \sup_j\|h_j\|_{S(I_{\eta}^2)} \geq \lim_{j \to +\infty} \|u\|_{S(t_j - \frac{\eta}{2}, t_j + \frac{\eta}{2})} \geq \|u\|_{S(T_+(u_0) - \frac{\eta}{2}, T_+(u_0))} = +\infty,
\]

which contradicts (2.1).

From the above arguments, we know that (2.2) holds.

Let \(\psi \in C_0^\infty(\mathbb{R}^N), \psi(x) = \psi(|x|), \psi \equiv 1 \) for \(|x| \leq 1 \), \(\psi \equiv 0 \) for \(|x| \geq 2 \), \(|\nabla \psi| \leq 2 \).

Define \(\psi_R(x) = \psi\left(\frac{|x|}{R}\right) \) and

\[
y_R(t) = \int_{\mathbb{R}^N} |u(x, t)|^2 \psi_R(x) dx, \quad \forall t \in [0, T_+(u_0)].
\]

Then from Lemma 2.1 and the conservation of charge (1.4), one has

\[
|y_R'(t)| \leq 2\left|\text{Im} \int_{\mathbb{R}^N} \overline{u} \nabla u \cdot \nabla \psi_R(x) dx \right| \leq \frac{C}{R} \left(\int_{\mathbb{R}^N} |\nabla u(x, t)|^2 dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^N} |u(x, t)|^2 dx \right)^{\frac{1}{2}} \leq \frac{C}{R} \left(\int_{\mathbb{R}^N} |\nabla W(x)|^2 dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^N} |u_0(x)|^2 dx \right)^{\frac{1}{2}}. \tag{2.9}
\]
Note that \(u(x, t) = \lambda(t)^{N/2} v(\lambda(t) x + x(t), t) \), we deduce for any \(R > 0, \epsilon > 0 \)
\[
\int_{|x| < R} |u(x, t)|^2 dx = \lambda(t)^{-2} \int_{|y-x(t)| < R\lambda(t)} |v(y, t)|^2 dy = \\
= \lambda(t)^{-2} \int_{B(x(t), R\lambda(t)) \cap B(0, \epsilon R\lambda(t))} |v(y, t)|^2 dy + \\
+ \lambda(t)^{-2} \int_{B(x(t), R\lambda(t)) \setminus B(0, \epsilon R\lambda(t))} |v(y, t)|^2 dy.
\] (2.10)

Using Hölder inequality and the compactness property of \(K \) in \(\dot{H}^1(\mathbb{R}^N) \), we conclude from (2.2) that
\[
\lambda(t)^{-2} \int_{B(x(t), R\lambda(t)) \cap B(0, \epsilon R\lambda(t))} |v(y, t)|^2 dy \leq CR^2 \epsilon^2 \int_{|y| < R\lambda(t)} |v(y, t)|^2^* dy \leq CR^2 \epsilon^2 \int_{\mathbb{R}^N} |\nabla W|^2 dx
\] (2.11)

and
\[
\lambda(t)^{-2} \int_{B(x(t), R\lambda(t)) \setminus B(0, \epsilon R\lambda(t))} |v(y, t)|^2 dy \leq CR^2 \epsilon^2 \int_{|y| \geq R\lambda(t)} |v(y, t)|^2^* dy \rightarrow 0 \quad \text{as} \quad t \rightarrow T_+(u_0).
\] (2.12)

Combining (2.10), (2.11) and (2.12), we derive for all \(R > 0 \)
\[
\int_{|x| < R} |u(x, t)|^2 dx \rightarrow 0 \quad \text{as} \quad t \rightarrow T_+(u_0),
\]
and so
\[
y_R(t) \rightarrow 0 \quad \text{as} \quad t \rightarrow T_+(u_0). \] (2.13)

From (2.9), (2.13), we obtain for any \(t \in [0, T_+(u_0)) \) and \(R > 0 \)
\[
y_R(t) = |y_R(t) - y_R(T_+(u_0))| \leq \\
\leq \frac{C}{R}(T_+(u_0) - t) \left(\int_{\mathbb{R}^N} |\nabla W(x)|^2 dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^N} |u_0(x)|^2 dx \right)^{\frac{1}{2}}.
\] (2.14)

Let \(R \rightarrow +\infty \) in (2.14), we get
\[
\int_{\mathbb{R}^N} |u(t, x)|^2 dx = 0 \quad \text{for each} \quad t \in [0, T_+(u_0)),
\]
and then $u \equiv 0$ a.e. on $\mathbb{R}^N \times [0, T_+(u_0))$, which contradicts (2.1). Therefore, $T_+(u_0) = +\infty$.

Step 2. $u_0 \equiv 0$ in \mathbb{R}^N. If $u_0 \not\equiv 0$ in \mathbb{R}^N, it holds true that
\[\sup_{t \in [0, +\infty)} |x(t)| < +\infty. \]
(2.15)

In fact, assume that there exists an increasing sequence $\{t_j\}$, $t_j \to +\infty$ ($= T_+(u_0)$) as $j \to +\infty$ such that
\[|x(t_j)| \to +\infty \quad \text{as} \quad j \to +\infty. \]
(2.16)

It follows from the Hardy inequality and the compactness property of K in $\dot{H}^1(\mathbb{R}^N)$ that for any $\epsilon > 0$, there exists a large number $M(\epsilon) > 0$ such that for any $M \geq M(\epsilon)$
\[\sup_{t \in [0, +\infty)} \int_{|y| \geq M(\epsilon)} (|\nabla v(y, t)|^2 + |v(y, t)|^{2*}) dy < \epsilon. \]
(2.17)

Note that for any $Q > R > 0$ and $t \in [0, +\infty)$
\[\int_{R < |x| < Q} |\nabla u(x, t)|^2 dx = \int_{R(\lambda(t)) < |y - x(t)| < Q \lambda(t)} |\nabla v(y, t)|^2 dy. \]
(2.18)

In the next discussion, we analyze the three possible cases of the limit of the sequence $\{\frac{\lambda(t_j)}{|x(t_j)|}\}$ (select a subsequence if necessary).

(1) If $\lim_{j \to +\infty} \frac{\lambda(t_j)}{|x(t_j)|} = 0$, then for any $Q > 0$
\[\lim_{j \to +\infty} \left(|x(t_j)| - Q \lambda(t_j) \right) = \lim_{j \to +\infty} \left(|x(t_j)| \left(1 - \frac{Q \lambda(t_j)}{|x(t_j)|} \right) \right) = +\infty > M(\epsilon). \]

From (2.17) and (2.18), one has for any $Q > 0$
\[\lim_{j \to +\infty} \int_{|x| < Q} |\nabla u(x, t_j)|^2 dx \leq \lim_{j \to +\infty} \int_{|y| \geq |x(t_j)| - Q \lambda(t_j)} |\nabla v(y, t_j)|^2 dy \leq \sup_{t \in [0, +\infty)} \int_{|y| \geq M(\epsilon)} |\nabla v(y, t)|^2 dy \leq \epsilon. \]
(2.19)

Similarly, using the Sobolev inequality, we infer that for any $Q > 0$
\[\lim_{j \to +\infty} \int_{|x| < Q} |u(x, t_j)|^2 dx \leq \epsilon. \]
(2.20)

Combination of (2.19), (2.20) yields that (selecting a subsequence if necessary) for any $Q > 0$
\[u(x, t_j) \to 0 \quad \text{a.e. on} \quad \{ x \in \mathbb{R}^N; \ |x| < Q \} \quad \text{as} \quad j \to +\infty. \]
(2.21)
On the other hand, it follows from the conservation of charge (1.4) and Lemma 2.2 that
\[\sup_j \|u(t_j)\|_{H^1} < \infty. \]
Up to a subsequence if necessary,
\[u(x, t_j) \rightharpoonup \tilde{u} \quad \text{weakly in } H^1(\mathbb{R}^N) \quad \text{and} \quad L^2(\mathbb{R}^N) \quad \text{as } j \to +\infty; \quad (2.22) \]
and
\[u(x, t_j) \to \tilde{u} \quad \text{a.e. on } \mathbb{R}^N \quad \text{as } j \to +\infty. \quad (2.23) \]
From (2.21) and (2.23), we infer that
\[\tilde{u} = 0 \quad \text{a.e. on } \{ x \in \mathbb{R}^N : |x| < Q \} \quad \text{as } j \to +\infty; \quad (2.24) \]
and so
\[\tilde{u} = 0 \quad \text{a.e. on } \mathbb{R}^N \quad \text{due to the arbitrariness of } Q. \]
From (2.21)–(2.24), up to a subsequence if necessary, we derive
\[u(x, t_j) \to 0 \quad \text{strongly in } L^2_{\text{loc}}(\mathbb{R}^N) \quad \text{as } j \to +\infty. \quad (2.25) \]
Let \(\varphi \in C_0^\infty(\mathbb{R}^N) \) be the given real-valued function in (1.6). Then it follows from assumption (1.6) and Lemma 2.1 that for any \(t > 0 \)
\[\int_{\mathbb{R}^N} \varphi(x)|u(x, t)|^2 \, dx \geq \int_{\mathbb{R}^N} \varphi(x)|u_0(x)|^2 \, dx. \quad (2.26) \]
Letting \(t = t_j \to +\infty \) in (2.26), together with (2.25), we deduce that
\[\int_{\mathbb{R}^N} \varphi(x)|u_0(x)|^2 \, dx \leq 0, \]
which is a contradiction because of the assumption: \(\int_{\mathbb{R}^N} \varphi(x)|u_0(x)|^2 \, dx > 0. \)

(2) If \(\lim_{j \to +\infty} \frac{\lambda(t_j)}{|x(t_j)|} \in (0, +\infty) \), there exist \(R > 0 \) (which is independent of \(j, \epsilon \)) and \(j_1 = j_1(\epsilon) > 0 \) such that \(R \frac{\lambda(t_j)}{|x(t_j)|} \geq 2 \) and \(|x(t_j)| \geq M(\epsilon) \) for any \(j \geq j_1 \). Then from (2.17) and (2.18), one gets for any \(j \geq j_1 \),
\[\int_{|x| > R} |\nabla u(x, t_j)|^2 \, dx \leq \int_{|y| \geq (R \frac{\lambda(t_j)}{|x(t_j)|})^{-1}|x(t_j)|} |\nabla v(y, t_j)|^2 \, dy \leq \sup_{t \in [0, +\infty]} \int_{|y| \geq M(\epsilon)} |\nabla v(y, t)|^2 \, dy \leq \epsilon. \quad (2.27) \]
If \(\lim_{j \to +\infty} \frac{\lambda(t_j)}{|x(t_j)|} = +\infty \), there exists \(j_2 = j_2(\epsilon) > 0 \) such that \((\frac{\lambda(t_j)}{|x(t_j)|} - 1)|x(t_j)| \geq M(\epsilon) \) for any \(j \geq j_2 \). Then from (2.17) and (2.18), we derive for any \(j \geq j_2 \),

\[
\int_{|x| > 1} |\nabla u(x, t_j)|^2 dx \leq \int_{|y| \geq \left(\frac{\lambda(t_j)}{|x(t_j)|} - 1\right)|x(t_j)|} |\nabla v(y, t_j)|^2 dy \leq \sup_{t \in [0, +\infty)} \int_{|y| \geq M(\epsilon)} |\nabla v(y, t)|^2 dy \leq \epsilon.
\]

(2.28)

Set \(J = \max\{j_1, j_2\} \). From (2.27) and (2.28), we conclude that there exists a positive number \(R \), which is independent of \(j, \epsilon \), such that for any \(j \geq J \)

\[
\int_{|x| > R} |\nabla u(x, t_j)|^2 dx \leq \epsilon.
\]

(2.29)

Using the Sobolev inequality and the Hardy inequality, after a similar argument, we conclude for any \(j \geq J \)

\[
\int_{|x| > R} |u(x, t_j)|^2 dx \leq C(\epsilon), \quad \text{where} \quad C(\epsilon) \to 0 \quad \text{as} \quad \epsilon \to 0.
\]

(2.30)

Here we take the same symbols \(R, J \) in (2.29) and (2.30) for the sake of simplicity.

Let \(\varphi \in C_0^\infty(\mathbb{R}^N) \), \(\varphi(x) = \varphi(|x|) \), \(\varphi \equiv |x|^2 \) for \(|x| \leq 1 \); \(\varphi \equiv 0 \) for \(|x| \geq 2 \). Define \(\varphi_R(x) = R^2 \varphi\left(\frac{x}{R}\right) \) and

\[
z_R(t) = \int_{\mathbb{R}^N} |u(x, t)|^2 \varphi_R(x) dx, \quad \forall t \in [0, +\infty).
\]

It follows from Lemmas 2.1, 2.2 and the Hardy inequality that for any \(t \in [0, +\infty) \)

\[
|z'_R(t)| \leq 2 \left| Im \int_{\mathbb{R}^N} \bar{u} \nabla u \cdot \nabla \varphi_R(x) dx \right| \leq CR^2 \left(\int_{\mathbb{R}^N} |\nabla u(x, t)|^2 dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^N} \frac{|u(x, t)|^2}{|x|^2} dx \right)^{\frac{1}{2}} CR^2 \int_{\mathbb{R}^N} |\nabla u_0(x)|^2 dx.
\]

(2.31)

From (2.29), (2.30) and Lemma 2.2, one has for any \(j \geq J \)

\[
8 \int_{|x| \leq R} (|\nabla u(x, t_j)|^2 - |u(x, t_j)|^2) dx \geq C(\delta_0) \int_{\mathbb{R}^N} |\nabla u_0(x)|^2 dx,
\]

(2.32)

where \(R \) is independent of \(j \).
From (2.29), (2.30), (2.32) and Lemmas 2.1, 2.2, we obtain for any $j \geq J$

$$z''_R(t_j) = 4 \int_{\mathbb{R}^N} \phi_R''(|x|) |\nabla u(x, t_j)|^2 dx - \frac{4}{N} \int_{\mathbb{R}^N} \Delta \varphi_R(|x|) |u(x, t_j)|^2 dx -$$

$$- \int_{\mathbb{R}^N} \Delta^2 \varphi_R(|x|) |u(x, t_j)|^2 dx \geq$$

$$\geq 8 \int_{|x| \leq R} (|\nabla u(x, t_j)|^2 - |u(x, t_j)|^2) dx -$$

$$- C \int_{|x| > R} (|\nabla u(x, t_j)|^2 + |u(x, t_j)|^2) dx -$$

$$- C \int_{R \leq |x| \leq 2R} (|u(x, t_j)|^2 \phi_R) dx \geq C \int_{\mathbb{R}^N} |\nabla u_0(x)|^2 dx,$$

(2.33)

where R is given in (2.31), and independent of j.

Combining (2.31), (2.32) and (2.33), we conclude for any $j \geq J$

$$CR^2 \int_{\mathbb{R}^N} |\nabla u_0(x)|^2 dx \geq |z''_R(2t_j) - z''_R(t_j)| =$$

$$= t_j \int_0^1 z''_R(2st_j + (1-s)t_j) ds \geq C t_j \int_{\mathbb{R}^N} |\nabla u_0(x)|^2 dx,$$

from which we get a contradiction if $j \geq J$ is sufficiently large, because $t_j \to +\infty$ as $j \to +\infty$, and R is independent of j. Here we have used the fact: replacing t_j by any t with $t \geq t_j$, $j \geq J$, (2.33) still holds. This is not difficult to verify because the sequence $\{t_j\}$ is taken to be increasing on j.

Whence (2.15) holds. Now we claim that there exists a positive number C_0 (which is independent of t) such that

$$\lambda(t) \geq C_0 \quad \text{for any} \quad t \in [0, +\infty).$$

(2.34)

We present a proof by contradiction. Assume that there is a sequence $\{t_m\}$, $t_m \to +\infty$ as $m \to +\infty$ such that

$$\lambda(t_m) \to 0 \quad \text{as} \quad m \to +\infty.$$

Observe that $u(x, t) = \lambda(t)^{-\frac{N-2}{2}} v(\lambda(t)x + x(t), t)$. From the conservation of charge (1.4), one has

$$\int_{\mathbb{R}^N} |v(x, t_m)|^2 dx = \lambda(t_m)^2 \int_{\mathbb{R}^N} |u(x, t_m)|^2 dx = \lambda(t_m)^2 \int_{\mathbb{R}^N} |u_0(x)|^2 dx,$$
which implies that

\[v(x, t_m) \rightarrow 0 \text{ a.e. on } \mathbb{R}^N \text{ as } m \rightarrow \infty. \]

Whence from the compactness property of the set \(K \) in \(\dot{H}^1(\mathbb{R}^N) \), we can find a subsequence of \(\{ v(x, t_m) \} \) (still denoted by \(\{ v(x, t_m) \} \)) such that

\[v(x, t_m) \rightarrow 0 \text{ in } \dot{H}^1(\mathbb{R}^N) \text{ as } m \rightarrow \infty. \] (2.35)

However, one gets from Lemma 2.2

\[\int_{\mathbb{R}^N} |\nabla v(x, t_m)|^2 dx = \int_{\mathbb{R}^N} |\nabla u(x, t_m)|^2 dx \simeq \int_{\mathbb{R}^N} |\nabla u_0(x)|^2 dx > 0. \] (2.36)

This contradicts (2.35) by passing the limit \(m \rightarrow \infty \) in (2.36). Therefore (2.34) holds.

From (2.15) and (2.34), we conclude that for any \(t \in [0, +T_1(u_0)) \) and \(R > 0 \)

\[\int_{|x| > R} |\nabla u(x, t)|^2 dx = \int_{|y-x(t)| > R\lambda(t)} |\nabla v(y, t)|^2 dy \leq \int_{|y| > R\lambda(t)-|x(t)|} |\nabla v(y, t)|^2 dy \leq \int_{|y| > C R-C} |\nabla v(y, t)|^2 dy. \]

Whence it follows from (2.34) that for \(\epsilon > 0 \), there exists a large number \(R(\epsilon) > 0 \) such that for any \(t \in [0, +\infty) \)

\[\int_{|x| > R(\epsilon)} (|\nabla u(x, t)|^2 + |u(x, t)|^2^*) dx < \epsilon. \] (2.37)

In addition, Lemma 2.2 implies that

\[8 \int_{\mathbb{R}^N} (|\nabla u(x, t)|^2 - |u(x, t)|^2^*) dx \geq \tilde{C}_0 \int_{\mathbb{R}^N} |\nabla u_0(x)|^2 dx, \] (2.38)

It follows from (2.37) and (2.38) that there exists a sufficiently large number \(M_0 > 0 \) such that for all \(t \in [0, +\infty) \)

\[8 \int_{|x| \leq M_0} (|\nabla u(x, t)|^2 - |u(x, t)|^2^*) dx \geq C \int_{\mathbb{R}^N} |\nabla u_0(x)|^2 dx, \] (2.39)

where we take \(\epsilon = \epsilon_0 \int_{\mathbb{R}^N} |\nabla u_0(x)|^2 dx \) in (2.37) with \(\epsilon_0 > 0 \) suitably small.

Let \(z_R(t) \) be defined as in the above. From Lemma 2.1, one has for any \(t \in [0, +\infty) \)

\[|z'_R(t) - z'_R(0)| \leq C R^2 \int_{\mathbb{R}^N} |\nabla u_0(x)|^2 dx. \] (2.40)
From (2.40) and Lemmas 2.1, 2.2, we obtain for every $t \in [0, +\infty)$
\[
z_M''(t) = 4 \int_{\mathbb{R}^N} \varphi_M'(|x|) \nabla u(x,t)^2 \, dx - \frac{4}{N} \int_{\mathbb{R}^N} \Delta \varphi_M(|x|) |u(x,t)|^2 \, dx - \int_{\mathbb{R}^N} \Delta^2 \varphi_M(|x|) |u(x,t)|^2 \, dx \geq 8 \int_{\mathbb{R}^N} (|\nabla u(x,t)|^2 - |u(x,t)|^2^2) \, dx - C \int_{|x| > M_0} (|\nabla u(x,t)|^2 + |u(x,t)|^2^2) \, dx - C \int_{M_0 < |x| \leq 2M_0} (|u(x,t)|^2^2) \, dx \geq C \int_{\mathbb{R}^N} |\nabla u_0(x)|^2 \, dx.
\]
Combining (2.40) and (2.41), we obtain for every $t \in [0, +\infty)$
\[
CM_0^2 \int_{\mathbb{R}^N} |\nabla u_0(x)|^2 \, dx \geq |z_M'(t) - z_M'(0)| = \int_0^t z_M'(s) \, ds \geq Ct \int_{\mathbb{R}^N} |\nabla u_0(x)|^2 \, dx,
\]
from which we get a contradiction if $t > 0$ is large enough unless $\int_{\mathbb{R}^N} |\nabla u_0(x)|^2 \, dx = 0$.

From the above argument of Steps 1, 2, we complete the proof of Theorem 2.3. \(\square \)

Proof of Theorem 1.1. We first introduce notation (see [19]): $(SC)(u_0)$ holds if for the particular function u_0 with $\int_{\mathbb{R}^N} |\nabla u_0|^2 \, dx < \int_{\mathbb{R}^N} |\nabla W|^2 \, dx$ and $E(u_0) < E(W)$. Let u be the corresponding strong solution of problem (1.3) with maximal interval of existence I, then $I = (-\infty, +\infty)$ and $\|u\|_{\mathcal{S}((-\infty, +\infty))} < \infty$, where $\| \cdot \|_{\mathcal{S}(I)} = \| \cdot \|_{L^{\frac{2(N+2)}{N-2}}(J, L^{\frac{2(N+2)}{N-2}}(\mathbb{R}^N))}$. Note that if $\|\nabla u_0\|_{L^2(\mathbb{R}^N)} \leq \delta$, $(SC)(u_0)$ holds. Whence there exists a number E_C with $\delta \leq E_C \leq E(W)$ such that if u_0 is as in $(SC)(u_0)$ and $E(u_0) < E_C$, $(SC)(u_0)$ holds and E_C is optimal with this property.

From Remark 2.8 in [19] and the uniqueness theory on strong solutions of (1.3) (see Definition 2.10 in [19]), we know that problem (1.3) admits a unique maximal strong solution $u \in ((-T_- (u_0), T_+ (u_0)), H^1(\mathbb{R}^N))$. If $T_+ (u_0) < +\infty$ then by Lemma 2.11 in [19], $\|u\|_{\mathcal{S}(I_+)} = +\infty$, where $I_+ = [0, T_+(u_0)]$. By the definition of E_C, we infer that $E(u_0) \geq E_C$. If $E(u_0) = E_C$, then by Proposition 4.2 in [19], there exists $x(t) \in \mathbb{R}^N$ and $\lambda(t) \in \mathbb{R}^+$ such that
\[
K = \left\{ v(x,t) = \frac{1}{\lambda(t)^{\frac{2}{N-2}}} u \left(\frac{x - x(t)}{\lambda(t)} \right) : t \in I_+ \right\}
\]
has the property that \overline{K} is compact in $H^1(\mathbb{R}^N)$. Therefore it follows from Theorem 2.3 that $T_+(u_0) = +\infty$, $u_0 \equiv 0$ in \mathbb{R}^N, which is a contradiction (we may always
assume $u_0 \not= 0$ in \mathbb{R}^N. Otherwise, the uniqueness theory on strong solutions of (1.3) in Definition 2.10 in [19] implies that problem (1.3) has only a trivial (global) solution.

If $E(u_0) > E_C$. Note that $E(su_0) \to 0$ as $s \to 0$, there exists $s_0 \in (0, 1)$ such that $E(s_0u_0) = E_C$. Repeating the proof in the case $E(u_0) = E_C$, we also infer $u_0 \equiv 0$ in \mathbb{R}^N, which is a contradiction. Similarly, a contradiction appears if $T_-(u_0) < \infty$.

From the above arguments, we conclude that (SC) holds. That is, $T_-(u_0) = +\infty$ and $u \in C(\mathbb{R}, H^1(\mathbb{R}^N))$, $u \in L^{\frac{2(N+2)}{N-2}}(\mathbb{R}^N)$. Moreover from Remark 2.8 in [19] and following the proof of Theorem 2.5 in [19], $\nabla u \in L^{\frac{2(N+2)}{N-2}}(\mathbb{R}^N)$.

Note that

$$u(t) = e^{it\Delta}u_0 + i \int_0^t e^{i(t-s)\Delta}|u(s)|^{\frac{4}{N-2}}u(s)ds.$$

Set $F(t) = e^{it\Delta}$. Then the solution u can be rewritten as

$$u(t) = F(t)u_0 + i \int_0^t F(t-s)|u(s)|^{\frac{4}{N-2}}u(s)ds.$$

Let $v(t) = F(-t)u(t)$. It follows from the Strichartz estimates (see [4, 21]) that for any $0 < \tau < t$

$$\|v(t) - v(\tau)\|_{H^1} =$$

$$= \|F(t)(v(t) - v(\tau))\|_{H^1} = \|i \int_\tau^t F(t-s)|u(s)|^{\frac{4}{N-2}}u(s)ds\|_{H^1} \leq$$

$$\leq C \left(\|u\|_{L^\frac{2(N+2)}{N-2}(\mathbb{R})} \right)^4 \left(\|\nabla(u)|^{\frac{4}{N-2}}u\|_{L^\frac{4(N+2)}{N-2}(\mathbb{R})} \right) \leq$$

$$\leq C \|u\|_{S(\tau, t)} \left(\|u\|_{W(\tau, t)} + \|\nabla u\|_{W(\tau, t)} \right),$$

where $\|u\|_{S(\tau, t)} = \|u\|_{L^{\frac{2(N+2)}{N-2}}(\mathbb{R}^N)}$, $\|u\|_{W(\tau, t)} = \|u\|_{L^{\frac{2(N+2)}{N-2}(\mathbb{R})}}$, and the Sobolev inequality is used: $\|u\|_{S(\tau, t)} \leq C \|u\|_{W(\tau, t)} \forall \tau \in \mathbb{R}$.

Whence $\|v(t) - v(\tau)\|_{H^1} \to 0$ as $\tau, t \to +\infty$. Therefore, there exists $u_+ \in H^1(\mathbb{R}^N)$ such that $v(t) \to u_+$ in $H^1(\mathbb{R}^N)$ as $t \to +\infty$. So

$$\|u(t) - e^{it\Delta}u_+\|_{H^1(\mathbb{R}^N)} =$$

$$= \|F(t)(v(t) - u_+)\|_{H^1(\mathbb{R}^N)} = \|v(t) - u_+\|_{H^1(\mathbb{R}^N)} \to 0 \text{ as } t \to +\infty.$$

Similarly there exists $u_- \in H^1(\mathbb{R}^N)$ such that $\|u(t) - e^{it\Delta}u_-\|_{H^1(\mathbb{R}^N)} \to 0$ as $t \to -\infty$.
Acknowledgments
This work was completed with the support in part by the Key Laboratory of Random Complex Structures and Data Science, Chinese Academy of Sciences; National Natural Science Foundation of China under grant No. 11071239.

REFERENCES

[1] J. Bourgain, Global well-posedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc. 12 (1999), 145–171.

[2] D. Cao, P. Han, Inhomogeneous critical nonlinear Schrödinger equations with a harmonic potential, J. Math. Phys. 51 (2010), 043505, 24 pp.

[3] R. Carles, S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equations. II. The L^2-critical case, Trans. Amer. Math. Soc. 359 (2007), 33–6.

[4] T. Cazenave, Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10, New York UniversityCourant Institute of Mathematical Sciences, New York, 2003.

[5] T. Cazenave, A. Haraux, An introduction to semilinear evolution equations, Oxford Lecture Series in Mathematics and Its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998.

[6] T. Cazenave, F.B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in H^s, Nonlinear Anal. 14 (1990), 807-836.

[7] T. Cazenave, F.B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987), 18–29, Lecture Notes in Math., 1394, Springer, Berlin, (1989).

[8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R^3, Ann. Math. 167 (2008), 767–865.

[9] T. Duyckaerts, J. Holmer, S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett. 15 (2008), 1233–1250.

[10] T. Duyckaerts, F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal. 18 (2009), 1787–1840.

[11] J. Ginibre, G. Velo, On a class of nonlinear Schrödinger equations, J. Funct. Anal. 32 (1979), 1–71.

[12] R.T. Glassey, On the blowup of nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), 1794–1797.

[13] M.G. Grillakis, On nonlinear Schrödinger equations, Commun. Partial Differ. Equations. 25 (2000), 1827–1844.

[14] T. Hmidi, S. Keraani, Remarks on the blowup for the L^2-critical nonlinear Schrödinger equations, SIAM J. Math. Anal. 38 (2006), 1035–1047.
Well-posedness and scattering for nonlinear Schrödinger equation

[15] J. Holmer, S. Roudenko, On blow-up solutions to the 3D cubic nonlinear Schrödinger equation, Appl. Math. Res. Express. AMRX 2007, No. 1, Art. ID abm004, 31 pp.

[16] J. Holmer, S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys. 282 (2008), 435–467.

[17] D. Li, X. Zhang, Dynamics for the energy critical nonlinear Schrödinger equation in high dimensions, J. Funct. Anal. 256 (2009), 1928–1961.

[18] S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations. 175 (2001), 353–392.

[19] C.E. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166 (2006), 645–675.

[20] J. Krieger, W. Schlag, Non-generic blow-up solutions for the critical focusing NLS in 1-D, J. Eur. Math. Soc. 11 (2009), 1–125.

[21] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955–980.

[22] R. Killip, M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, arXiv:0804.1018v1 [math.AP].

[23] F. Merle, Nonexistence of minimal blow-up solutions of equation $iu_t = -\Delta u - k(x)|u|^4 u$ in \mathbb{R}^N, Ann. Inst. Henri Poincaré Physique Thérique 64 (1996), 33–85.

[24] T. Ogawa, Y. Tsutsumi, Blow-up of H^1-solution for the nonlinear Schrödinger equation, J. Differ. Equations 92 (1991), 317–330.

[25] T. Ogawa, Y. Tsutsumi, Blow-up of H^1-solution for the nonlinear Schrödinger equation with critic power nonlinearity, Proc. Amer. Math. Soc. 111 (1991), 487–496.

[26] E. Ryckman, M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in R^{1+4}, Amer. J. Math. 129 (2007), 1–60.

[27] W. Schlag, Stable manifolds for an orbitally unstable nonlinear Schrödinger equation, Ann. Math. 169 (2009), 139–227.

[28] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353–372.

[29] T. Tao, Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data, New York J. Math. 11 (2005), 57–80.

[30] M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J. 138 (2007), 281–374.

[31] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567–576.
Pigong Han
pghan@amss.ac.cn

Chinese Academy of Sciences
Academy of Mathematics and Systems Science
Beijing 100190, China

Received: June 8, 2011.
Revised: August 4, 2011.
Accepted: August 4, 2011.