Influences of the Interactions of Genetic Variations of Seven Core Circadian Clock Genes with Lifestyle Factors on Metabolic Parameters

Kimiko Yamakawa-Kobayashia Sayaka Ishikawaa Nagi Miyakea Yuya Ohharaa Toshinao Godab

aLaboratory of Human Genetics, School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan; bFuji-no-Kuni Center for Future Education, Center of Community (COC) for Healthy Longevity, Promoting Physical, Mental and Community Health, University of Shizuoka, Shizuoka, Japan

Keywords
Circadian rhythms · Circadian clock gene · Lifestyle factor · Metabolic parameter

Abstract

Introduction: In mammals, circadian rhythms regulate many behavioral and physiological processes. Genetic and epidemiological studies have shown that dysregulation of the circadian rhythm induces chronic metabolic diseases, such as obesity, diabetes, and dyslipidemia. We aimed to know the interactions of genetic variations of seven core circadian clock genes with lifestyle factors on the determination of metabolic parameters.

Methods: We have analyzed the impacts of genotype of seven core circadian clock genes (i.e., \textit{CLOCK}, \textit{BMAL1}, \textit{PER1}, \textit{PER2}, \textit{PER3}, \textit{CRY1}, and \textit{CRY2}) and lifestyle factors (i.e., physical activity and sleep duration) in 575 Japanese males on the determination of metabolic parameters (i.e., body mass index [BMI], serum glucose, glycated hemoglobin [HbA1c], low-density lipoprotein cholesterol [LDL-C], and high-density lipoprotein cholesterol [HDL-C] levels).

Results: We have detected the associations between genotypes of \textit{PER3} and serum HbA1c level and genotypes of \textit{CRY1} and serum LDL-C level. Additionally, the interactions of the genotypes of \textit{PER1} and \textit{PER3} with physical activity for determining BMI, the genotypes of \textit{CLOCK} with physical activity for determining serum HbA1c levels were observed. Furthermore, for determining serum HDL-C levels, the interactions of the genotypes of \textit{CRY2} with physical activity or sleep duration were observed.

Discussion/Conclusion: Our findings indicate that the interactions of genotypes for core circadian clock genes and lifestyle factors (i.e., physical activity and sleep duration) are important for determining metabolic parameters.

© 2022 The Author(s). Published by S. Karger AG, Basel

Introduction

Almost all living organisms from prokaryotes to mammals have circadian rhythms adapted to the 24-h rotation period of Earth. In mammals, circadian rhythms regulate many behavioral and physiological processes, including the sleep-wake cycle, feeding/fasting rhythm, hormonal axes regulation, immune responses, and metabolic homeostasis [1–5]. Genetic and epidemiological studies have shown that dysregulation of the circadian rhythm induces chronic metabolic diseases, such as obesity, dia-
Interactions of Genetic Variations of Clock Genes with Lifestyle Factors

Introduction

The circadian system is programmed by the master clock in the suprachiasmatic nuclei of the hypothalamus and many secondary clocks in the brain and peripheral organs [2, 8]. In mammals, the main circadian clocks are driven by transcription/translation feedback loops composed of positive transcriptional activators, including aryl hydrocarbon receptor nuclear translocator-like protein (ARNTL), which is also known as brain and muscle ARNT-like protein 1 (BMAL1), and circadian locomotor output cycle kaput (CLOCK), and negative repressors, such as cryptochromes (CRYs) and periods (PERs). CRYs form complexes with PERs that bind to the BMAL1/CLOCK complex and repress E-box-driven transcription of many genes associated with circadian rhythms [2, 5, 9]. Therefore, BMAL1, CLOCK, CRYs, PERs are regarded as products of the core circadian clock genes. The roles of core circadian clock genes in metabolic homeostasis have been extensively studied using mouse models of targeted gene deletions, which are regarded as useful makers for early detection and monitoring of metabolic disorders such as obesity, type 2 diabetes, and dyslipidemia. Furthermore, we analyzed the interactions of genotypes of seven core circadian clock genes with lifestyle factors (i.e., physical activity and sleep duration) for determining metabolic parameters in 575 apparently healthy Japanese male.

Subjects

The subjects in this study were 575 Japanese males (age range, 45–65 years; mean age, 54.2 ± 5.6 years). They were recruited from the participants in routine medical checkups at a medical center near the University of Shizuoka. The majority (71.3%) of participants in the medical checkups were male, and since some of the metabolic parameters are modulated sex hormones, we decided to analyze only males in this study.

A blood sample was collected from each subject after overnight fasting. The clinical characteristics of subjects are shown in Table 1. The fifty-five subjects with medications for diabetes and/or dyslipidemia were excluded from analyses concerning for various metabolic parameters (i.e., serum glucose, HbA1c, HDL-C, and LDL-C levels). Written informed consent was obtained from all subjects before participation in this study, and the study protocol was approved by the Ethics Committee of the University of Shizuoka (Approval No. 17-1).

Table 1. Characteristics of the study subjects

Parameter	Mean ± SD or Percentage
n	575
Age, years	54.2±5.6
BMI, kg/m²	23.6±2.8
Glucose, mg/dL	103.1±21.8
HbA1c, %	5.77±0.81
LDL-cholesterol, mg/dL	129.7±28.8
HDL-cholesterol, mg/dL	56.1±15.1
Medication for type 2 diabetes, %	7.3
Medication for dyslipidemia, %	2.4
Physical activity (≥1 h/week), %	52.3
Sleep duration (6 ± hours/day), %	49.6

Data are expressed as mean ± SD or percentage.

DNA Analysis

Genomic DNA was isolated from peripheral blood leukocytes by the phenol extraction method. We selected single nucleotide polymorphisms (SNPs) of seven core circadian clock genes (PER1-rs3027178, PER2-rs2304672, PER3-rs228697, CRY1-rs2287161, CRY2-rs7945565, CLOCK-rs1801260, and BMAL1-rs7950226) based on previous reports because these SNPs were used in multiple association studies, and their minor allele frequencies in the Japanese population were above 0.10 [10, 16, 18, 19]. The genotypes of each SNP were determined by polymerase chain reaction (PCR)-restriction fragment length polymorphisms methods.

Lifestyle Factor Assessment

Self-reported data obtained from the subjects were used to assess lifestyle factors (i.e., physical activity and sleep duration). Physical activity was classified as active (≥1 h/week of moderate to intense exercise) or inactive (<1 h/week of moderate to intense exercise). Sleep duration was classified as short (habitual sleep duration ≤6 h/day) or other (habitual sleep duration >6 h/day).

Statistical Analyses

Multiple linear regression analysis was used to assess the relationships among SNPs of seven core circadian clock genes and metabolic parameters (i.e., serum glucose, HbA1c, LDL-C, and HDL-C levels) by incorporating age and BMI as covariates and to assess the relationships among SNPs and BMI by incorporating age as covariate. The interactions of genotypes with lifestyle factors

References

[10, 16, 18, 19]
Table 2. Relationships between genotypes of seven SNPs in core circadian clock genes and metabolic parameters

Gene	N	BMI, kg/m²	Glucose, mg/dL	HbA1c, %	LDL-C, mg/dL	HDL-C, mg/dL
PER1						
rs3027178	AC	243	23.7±2.9	221	99.5±11.5	220
	CC	75	23.6±3.1	72	97.1±9.6	72
		p = 0.60	p = 0.12	p = 0.18	p = 0.018	p = 0.10
PER2						
rs2304672	CC	500	23.6±2.8	456	99.8±14.9	451
	CG + GG	67	23.7±3.3	57	99.9±10.0	57
		p = 0.77	p = 0.88	p = 0.67	p = 0.86	p = 0.58
PER3						
rs228697	CC	489	23.6±2.8	440	99.2±11.4	435
	CG + GG	72	23.7±3.0	68	102.8±26.9	68
		p = 0.75	p = 0.055	p = 0.0069	p = 0.029	p = 0.029
CRY1						
rs2287161	CC	389	23.5±2.8	349	99.9±15.7	344
	CG + GG	179	23.7±2.8	166	99.2±10.9	166
		p = 0.48	p = 0.48	p = 0.48	p = 0.0060	p = 0.52
CRY2						
rs7945565	AG + GG	195	23.8±2.9	173	100.4±16.1	172
		p = 0.33	p = 0.048	p = 0.83	p = 0.28	p = 0.08
CLOCK						
rs1801260	TT	400	23.7±2.9	363	99.8±15.3	359
	TC + CC	169	23.4±2.7	152	99.2±11.6	151
		p = 0.36	p = 0.74	p = 0.18	p = 0.26	p = 0.012
BMAL1						
rs7950226	AG	242	23.8±2.8	222	100.3±17.6	221
	GG	103	23.5±3.1	94	98.7±11.8	94
		p = 0.31	p = 0.78	p = 0.70	p = 0.31	p = 0.26

Values are shown as mean±SD. p values for BMI were calculated by multiple linear regression analysis incorporating age as covariate. p values for glucose, HbA1c, LDL-C, and HDL-C were calculated by multiple linear regression analyses incorporating age and BMI as covariates. Statistically significant p values (p < 0.05; Bonferroni correction) are indicated in bold. * The fifty-five subjects with medication for diabetes and/or dyslipidemia were excluded in analysis for glucose, HbA1c, LDL-C, and HDL-C.

(i.e., physical activity and sleep duration) for determining metabolic parameters were also calculated using multiple linear regression analysis.

Statistical analyses were performed using JMP software (SAS Institute, Cary, NC, USA). A p value of <0.007 (0.05/7 SNPs; Bonferroni correction for multiple testing) was considered significant for association studies, while a p value of <0.05 was considered nominally significant for interaction analysis.

Results

The relationships between SNPs of seven core circadian clock genes (PER1-rs3027178, PER2-rs2304672, PER3-rs228697, CRY1-rs2287161, CRY2-rs7945565, CLOCK-rs1801260, BMAL1-rs7950226) and metabolic parameters (BMI, serum glucose, HbA1c, LDL-C, and HDL-C levels) were examined in 575 Japanese males (age range, 45–65 years; mean age, 54.2 ± 5.6 years). In the five SNPs (PER2, PER3, CRY1, CRY2, CLOCK), we classified the subjects into two groups, as homozygotes for major alleles or carriers of minor alleles due to low minor alleles frequencies (<0.20). We have detected significant associations between genotypes of PER3 and serum HbA1c level (p = 0.0069) and genotypes of CRY1 and serum LDL-C level (p = 0.0060) after Bonferroni correction after adjusting for age and BMI, while serum levels of glucose, HDL-C, and BMI were not associated with the genotypes of these seven core circadian clock genes (Table 2).

Next, the effects of interactions of genotypes of seven core circadian clock genes with lifestyle factors (i.e., physical activity and sleep duration) on metabolic parameters (i.e., BMI, serum glucose, HbA1c, LDL-C, and HDL-C levels) were assessed using multiple linear regression analysis. Individually, physical activity and sleep duration were not associated with any of the metabolic parameters (Tables 3, 4). For determining BMI, we observed the in-
Table 3. Multiple linear regression analysis examining the interactions of genotypes of seven core circadian clock genes with physical activity for determining BMI, HbA1c, HDL-C levels

Determinant variables	BMI	HbA1c	HDL-C
R²	0.049	0.076	0.18
Intercept	24.7	5.06	90.3

Determinant variables	β-coefficient	SE	p value	β-coefficient	SE	p value	β-coefficient	SE	p value
Age	-0.017	0.022	0.43	0.0005	0.0046	0.91	0.21	0.11	0.065
BMI	-	-	-	0.025	0.0093	0.071	-1.94	0.23	<0.0001
Physical activity	-0.16	0.27	0.55	0.026	0.036	0.64	-1.22	1.37	0.37
PER1 genotype	-0.087	0.18	0.63	0.083	0.037	0.027	0.34	0.91	0.71
PER2 genotype	-0.056	0.19	0.77	0.027	0.040	0.50	-0.57	1.00	0.57
PER3 genotype	-0.097	0.19	0.60	-0.12	0.038	0.0028	1.71	0.94	0.072
CRY1 genotype	-0.091	0.13	0.49	0.020	0.028	0.48	0.68	0.84	0.40
CRY2 genotype	-0.15	0.13	0.27	0.0035	0.028	0.90	0.12	0.68	0.86
CLOCK genotype	0.066	0.14	0.63	0.030	0.028	0.29	-1.46	0.70	0.037
BMAL1 genotype	-0.04	0.18	0.82	0.0016	0.037	0.97	-0.015	0.91	0.99
PER1 genotype X physical activity	0.40	0.18	0.025	-0.0099	0.037	0.79	0.99	0.91	0.28
PER2 genotype X physical activity	0.11	0.19	0.57	0.038	0.040	0.35	0.18	1.00	0.99
PER3 genotype X physical activity	-0.39	0.19	0.035	-0.037	0.038	0.34	0.49	0.95	0.61
CRY1 genotype X physical activity	-0.17	0.13	0.19	0.049	0.028	0.074	0.54	0.68	0.43
CRY2 genotype X physical activity	0.047	0.13	0.72	-0.044	0.027	0.11	-1.35	0.67	0.046
CLOCK genotype X physical activity	-0.13	0.14	0.35	0.061	0.029	0.033	0.23	0.70	0.74
BMAL1 genotype X physical activity	0.22	0.18	0.21	-0.023	0.037	0.53	0.11	0.91	0.91

β-coefficient, standardized coefficient; SE, standard error of coefficient. Nominally significant p values (p < 0.05) for interaction are indicated in bold.

Table 4. Multiple linear regression analysis examining the interactions of genotypes of seven core circadian clock genes with sleep duration for determining serum HDL-C levels

Determinant variables	β-coefficient	SE	p value
R²	0.18		
Intercept	89.7		

Determinant variables	β-coefficient	SE	p value
Age	0.21	0.11	0.060
BMI	-1.93	0.22	<0.0001
Sleeping duration	0.86	1.37	0.53
PER1 genotype	-0.090	0.91	0.92
PER2 genotype	-0.52	1.00	0.61
PER3 genotype	1.46	0.92	0.12
CRY1 genotype	0.38	0.68	0.58
CRY2 genotype	0.25	0.67	0.70
CLOCK genotype	-1.31	0.70	0.064
BMAL1 genotype	0.060	0.90	0.95
PER1 genotype X sleep duration	-0.008	0.91	0.99
PER2 genotype X sleep duration	1.25	1.00	0.21
PER3 genotype X sleep duration	-0.65	0.93	0.49
CRY1 genotype X sleep duration	-0.020	0.68	0.98
CRY2 genotype X sleep duration	-1.66	0.67	0.014
CLOCK genotype X sleep duration	0.055	0.70	0.94
BMAL1 genotype X sleep duration	-0.13	0.90	0.88

β-coefficient, standardized coefficient; SE, standard error of coefficient. Nominally significant p values (p < 0.05) for interaction are indicated in bold.
interactions of PER1 or PER3 genotypes with physical activity (β ± SE = 0.40 ± 0.18, p = 0.025; β ± SE = −0.39 ± 0.19, p = 0.035, respectively). For determining serum HbA1c levels, we observed the interactions of CLOCK genotypes with physical activity (β ± SE = 0.061 ± 0.029, p = 0.033). Furthermore, we observed the interactions of CRY2 genotypes with physical activity or sleep duration for the determination of HDL-C levels (β ± SE = −1.35 ± 0.67, p = 0.046; β ± SE = −1.66 ± 0.67, p = 0.014, respectively), although the associations for each individual genotype of PER1 and PER3 to BMI, CLOCK genotypes to HbA1c, CRY2 genotypes to HDL-C were not observed (Table 2). These data indicate that the genetic effects due to PER1, PER3, CLOCK, or CRY2 genotypes are modified by physical activity or sleep duration. The remaining results after multiple linear regression analysis for interactions of each genotype and physical activity or sleeping duration are shown in online supplementary Tables 3 and 4 (see www.karger.com/doi/10.1159/000525859 for all online suppl. material), in which the interactions for each genotype and physical activity or sleeping duration were not observed.

Discussion

The prevalence of common chronic metabolic diseases, such as obesity, type 2 diabetes, and dyslipidemia, continues to increase worldwide. Such chronic metabolic diseases are complex multifactorial disorders that result from the interactions of genetic and environmental factors, including lifestyle habits [20–22]. It is necessary to understand how genetic and lifestyle factors interact to modulate the development of metabolic diseases. Many studies for finding the gene-lifestyle interactions for chronic metabolic diseases have been conducted; however, it is difficult to elucidate the precise biological mechanisms underlying gene-lifestyle interactions [20–24].

The internal circadian clock and lifestyle factors are important to maintain circadian rhythms and metabolic homeostasis [10, 17]. Therefore, combined analyses of variations of circadian clock genes and lifestyle factors may be a valuable model to analysis the gene-lifestyle interactions. In this study, we have detected the interactions of the genotypes of PER1 and PER3 with physical activity for determining BMI, that of the genotypes of CLOCK with physical activity for determining serum HbA1c (Table 3), and that of the genotypes of CRY2 with physical activity or sleep duration for determining serum HDL-C levels by multiple linear regression analysis (Tables 3, 4), although each individual genotype was not associated with such metabolic parameters (Tables 3, 4). At present, there is no evidence that physical activity or sleep duration directly affects the expression or function of these genes. In contrast, the genetic effects of PER3 and CRY1 for determining serum HbA1c or LDL-C levels were not modified by physical activity or sleep duration (online suppl. Tables 1, 2).

The associations of many SNPs in core circadian clock genes with metabolic diseases such as obesity, type 2 diabetes mellitus, and hyperlipidemia in various populations with different ethnicities or ages have been extensively studied, although all results have not always been consistent [10, 15, 16, 25]. On the other hand, the studies for interactions of genetic variations of circadian clock genes with lifestyle factors have been defined [26, 27]. Dashti et al. [26] reported the results of meta-analysis using 15 cohort studies of European descent for gene-environment interactions of circadian-related genes; in this meta-analysis, they found an interaction between CRY2 genotype and sleep duration for serum HDL-C levels, which was consistent with our findings.

Although our study population was small, we have detected some interactions of the genotypes of core circadian clock genes with lifestyle factors (i.e., physical activity and sleep duration) on determining metabolic parameters containing BMI, serum HbA1c, and HDL-C levels. This may be due to our study population consisting of relatively uniform population (Japanese males, age range, 45–65 years). We need to study the larger and varied populations to confirm the interactions of genetic and lifestyle factors in which we have detected in this study.

In addition, there are concerns that modern unhealthy lifestyles, such as inadequate physical activity, chronic sleep insufficiency, inappropriate sleep/wake schedules, and poor eating habits, contribute in numerous ways to disruptions of circadian rhythms and maintaining metabolic homeostasis. We need further studies to reveal a convincing link between circadian rhythms and human health.

Conclusions

In this study, we have detected the associations between genotypes of PER3 and serum HbA1c level and genotypes of CRY1 and serum LDL-C level. In addition, the interactions of the genotypes of PER1, PER3, or CLOCK with physical activity were observed for deter-
mining BMI or serum HbA1c levels, and for determining serum HDL-C levels, the interactions of the genotypes of CRY2 with physical activity or sleep duration were observed. These findings indicate that the interactions of genetic variations in circadian clock genes with lifestyle factors are important for maintaining metabolic homeostasis and human health.

Acknowledgments

We are grateful to all subjects for their participation in this study. We would like to thank Enago (WWW.enago.jp) for English language review.

Statement of Ethics

The study protocol was approved by the Ethics Committee of the University of Shizuoka (Shizuoka, Japan; approval No. 17-1) and conducted in accordance with the Ethical Principles for Medical Research Involving Human Subjects described in the Declaration of Helsinki. Written informed consent was obtained from each subject prior to participation in this study.

References

1. Crane BR, Young MW. Interactive features of proteins composing eukaryotic circadian clocks. *Annu Rev Biochem*. 2014 Jun;83:191–219.
2. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. *Nature*. 2002 Aug;418(6901):935–41.
3. Asher G, Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. *Cell*. 2015 Mar;161(1):84–92.
4. Roenneberg T, Merrow M. The circadian clock and human health. *Curr Biol*. 2016 May;26(10):R432–43.
5. Panda S. Circadian physiology of metabolism. *Science*. 2016 Nov;354(6315):1008–15.
6. Rijo-Ferreira F, Takahashi JS. Genomics of circadian rhythms in health and disease. *Genome Med.* 2019 Dec;11(1):82.
7. Kalsbeek A, Aa Fleur S, Fliers E. Circadian control of glucose metabolism. *Mol Metab.* 2014 Jul;3(4):372–83.
8. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. *Annu Rev Neurosci.* 2012 Apr;35:445–62.
9. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, et al. Role of the CLOCK protein in the mammalian circadian mechanism. *Science*. 1998 Jun;280(5369):1564–9.
10. Jagannath A, Taylor L, Wakaf Z, Vasudevan SR, Foster RG. The genetics of circadian rhythms, sleep and health. *Hum Mol Genet*. 2017 Oct;26(R2):R128–38.
11. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinemia and diabetes. *Nature*. 2010 Jul;466(7306):627–31.
12. Chaix A, Lin T, Le HD, Chang MW, Panda S. Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. *Cell Metab.* 2019 Feb;29(2):303–19.e4.
13. Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, et al. Brain and muscle arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. *Proc Natl Acad Sci U S A.* 2005 Aug;102(34):12071–6.
14. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. Obesity and metabolic syndrome in circadian clock mutant mice. *Science*. 2005 May;308(5724):1043–5.
15. Corella D, Asensio EM, Coltell O, Sorlí JV, Estruch R, Martínez-González MA, et al. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: dietary modulation in the PREDIMED randomized trial. *Cardiovasc Diabetol*. 2016 Jan;15:4.
16. Angelousi A, Kassi E, Nasiri-Ansari N, Weickert MO, Randeva H, Kaltas G. Clock genes alterations and endocrine disorders. *Eur J Clin Invest*. 2018 Jun;48(6):e12927.
17. Westerterp-Plantenga MS. Sleep, circadian rhythm and body weight: parallel developments. *Proc Nutr Soc.* 2016 Nov;75(4):431–9.
18. Kovanen L, Donner K, Kaunisto M, Partonen T. CRY1 and CRY2 genetic variants in seasonality: a longitudinal and cross-sectional study. *Psychiatry Res.* 2016 Aug;242:101–10.
19. Turco M, Biscontin A, Corrias M, Caccin L, Bano M, Chiaramonni F, et al. Diurnal preference, mood and the response to morning light in relation to polymorphisms in the human clock gene PER3. *Sci Rep.* 2017 Aug;7(1):6967.
20. Kilpeläinen TO, Bentley AR, Noordam R, Sung YI, Schwander K, Winkler TW, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. *Nat Commun*. 2019 Jan;10(1):376.
21. Ahmad S, Rukh G, Varga TV, Ali A, Kurbasic A, Shungin D, et al. Gene x physical activity interactions in obesity: combined analysis of 111,421 individuals of European ancestry. *PLoS Genet*. 2013;9(7):e1003607.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Funding Sources

This study was funded by a Grant for Special research project of faculty members in University of Shizuoka.

Author Contributions

All authors contributed to the design of the study. Kimiko Yamakawa-Kobayashi, Sayaka Ishikawa, and Nagi Miyake carried out the genetic analysis. Kimiko Yamakawa-Kobayashi and Yuya Ohhara performed the statistical analysis. Toshinoda Goda conducted the recruitment for study subjects. Kimiko Yamakawa-Kobayashi drafted the manuscript. All authors read and approved the final manuscript.

Data Availability Statement

All the datasets generated or analyzed during this study are shown in online supplementary Table 3. Further inquiries can be directed to the corresponding author.
22 Khera AV, Emdin CA, Drake I, Naturajan P, Bick AG, Cook NR, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. New Engl J Med. 2016 Dec;375(24):2349–58.

23 Noordam R, Bos MM, Wang H, Winkler TW, Bentley AR, Kilpeläinen TO, et al. Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration. Nat Commun. 2019 Nov;10(1):5121.

24 Rask-Andersen M, Karlsson T, Ek WE, Johansson Å. Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status. PLoS Genet. 2017 Sep;13(9):e1006977.

25 Meng Y, Lohse B, Cunningham-Sabo L. Sex modifies the association between the CLOCK variant rs1801260 and BMI in school-age children. PLoS One. 2020 Aug;15(8):e0236991.

26 Dashti HS, Follis JL, Smith CE, Tanaka T, Ga-raulet M, Gottlieb DJ, et al. Gene-environment interactions of circadian-related genes for cardiometabolic traits. Diabetes Care. 2015 Aug;38(8):1456–66.

27 Krishnan M, Shelling AN, Wall CR, Mitchell EA, Murphy R, McGowan LME, et al. Gene-by-environment interactions of the CLOCK, PEMT, and GHRELIN loci with average sleep duration in relation to obesity traits using a cohort of 643 New Zealand European children. Sleep Med. 2017 Sep;37:19–26.