GONG ClassicMerge: Pipeline and Product

Anna L. H. Hughes, Kiran Jain, Shukur Kholikov, and the NISP Solar Interior Group
National Solar Observatory

March 3, 2016

Technical Report No. NSO/NISP-2016-001

Abstract

A recent processing effort has been undertaken in order to extend the range-of-coverage of the GONG merged dopplergrams. The GONG-Classic-era observations have now been merged to provide, albeit at lower resolution, mrvzi data as far back as May of 1995. The contents of this document provide an overview of what these data look like, the processing steps used to generate them from the original site observations, and the outcomes of a few initial quality-assurance tests designed to validate the final merged images. Based on these tests, the GONG project is releasing this data product to the user community (http://nisp.nso.edu/data).
1 GONG Overview

The Global Oscillation Network Group (GONG) project began taking observations in 1995 with the aim of providing a large, continuous set of solar dopplergram observations for use in helioseismology. It uses a ground-based network of six sites located around the world and in both hemispheres to acquire observations (weather permitting) 24 hours a day. The GONG telescopes are of identical design and construction and are located in Learmonth, Australia (LE); Udaipur, India (UD); El Teide in the Canary Islands (TD); Cerro Tololo, Chile (CT); Big Bear, California USA (BB); and Mauna Loa, Hawaii USA (ML).

Originally intended as a three-year project, after multiple upgrades and extensions, GONG remains a valuable source of solar observations today. In 2001, the sites were each fitted with much higher resolution cameras that have square (rather than the formerly rectangular) pixels. The two epochs corresponding to the original and upgraded cameras have hence been referred to as GONG-Classic and GONG+, respectively. Beyond improved spatial resolution, the GONG+ observing strategy was optimized to produce additional data products that are subject to expanded data processing.
processing. An example of the latter is the ImageMerge code, which combines circularly registered GONG dopplergrams and magnetograms taken concurrently at different sites. The synoptic series of merged dopplergrams, in particular, is broadly useful for global helioseismology studies. A recent campaign to similarly merge the GONG-Classic dopplergrams was motivated by the desire to extend the time range of this dataset and is the subject matter of this technical report.

Merging GONG dopplergrams requires the coordination of a number of different observation-, calibration-, and intermediate-product types. Below, we provide a brief primer on the three-letter codes used to identify those types relevant to this product:

- **coy** - Tables of coefficients similar to the **hiy** files, but interpolated between **hiy** sets to provide smoothly varying curves for every GONG site day.

- **dft** - Calibration images taken with the telescope tracking turned off, allowing the solar disk to drift across the image (providing empirical evidence for the precise east-west line across the image at a given time of day).

- **hiy** - Tables of coefficients used to provide angles as a function of hour angle that correct for small, smoothly-varying offsets in the GONG images from strict solar-north image alignment. These alignment coefficients are computed from data compiled over an 8–30 day window, combing **dft** data with cross-correlation angles between images from all six network sites.

- **qac** - Image statistics data files, containing, e.g., mean-velocity values across the observed solar disks for all observations taken on a given site day.

- **vzi** - Standard, fully calibrated GONG dopplergrams. Merged dopplergrams are distinguished from individual site doppergrams with the ‘site’ code: ‘MR’, yielding a 5-letter observation prefix of **mrvzi** (as opposed to, e.g., **bbvzi**).

2 ClassicMerge: Basic Product

Archived solar dopplergrams created during the GONG-Classic epoch of the GONG program (1995–2001) were processed with the ClassicMerge pipeline. The GONG-Classic cameras had rectangular pixels (aspect ratio of 1.28:1) oriented with the longer (lower resolution) dimension aligned with the solar axis of rotation. The resulting images were 204 x 239 pixels across (for a pixel resolution of ∼10 x 8 arcseconds), as shown in Figure 1.

As in the GONG+ pipeline, during the image-merge processing, individual site observations are registered onto images with a circularized disk of fixed radius before being combined. To roughly match the resolution of the input images, GONG ClassicMerge images are set to a solar radius of 120 pixels, for an output image size of 251 x 251 pixels, as shown in Figure 2.

However, the merge process requires more than just the site observations by themselves, as the observations need to be calibrated and rotationally aligned before they can be merged. Therefore, the GONG ClassicMerge pipeline pulls additional data from the archives besides the observations, specifically:

- Archived **qac** files listing the mean velocities across the solar disk were ingested in order to (re)compute VELSCALE and VELBIAS, keywords which are used to correct observed-velocity curves (and therefore individual dopplergrams) to match the known ephemeris curves.

- Archived **coy** files used to provide daily coefficients for fine-scale rotational alignment between different network images ([Toner & Harvey, 1998](#)) were ingested to compute the rotational-shift measurement processed through the image-merge during image circularization.
While the \texttt{qac} and \texttt{coy} data could be recomputed using primarily the site observations themselves, the effort required to align such a reprocessing to the current GONG+ pipelines was deemed outside the scope of this project. Instead, the archived measurements were taken as given.

The final repository of merged dopplergrams produced by the GONG ClassicMerge pipeline covers nearly the full GONG-Classic timespan from May 7th, 1995 to June 13th, 2001, with a median duty cycle of 88%. The fractional duty cycle for each day covered is given in Figure 3.
3 Processing Code

This section presents the outline of the pipeline code operations in §3.1 then provides descriptions of specific functions in §3.2.

3.1 Code Layout

The flow map for the GONG ClassicMerge pipeline is as follows:

\texttt{gong_classicmerge_BatchRun.sh} \texttt{START STOP}

- Clears the working directory of all files between \texttt{START} - 2 days and \texttt{STOP} + 2 days.
- For each day from \texttt{START} to \texttt{STOP}:
 - Calls \texttt{gong_classicmerge_employ.sh} \texttt{DATE}
 - \texttt{coy}: For +/- 2 days around \texttt{DATE}, takes \texttt{coy} files from the GONG-Classic archive and copies them into the keep.
 - \texttt{qac}: For +/- 1 day around \texttt{DATE}, takes \texttt{qac} files from the GONG-Classic archive, copies them into the working directories, and unpacks them.
 - \texttt{vzi}: For +/- 1 day around \texttt{DATE}, if the working directory does not already contain \texttt{vzi} files:
 - Takes the \texttt{vzi} files from the GONG-Classic archive, copies them into the working directory, and unzips them.
 - Deletes files that won’t unzip or that have unreadable headers.
 - Calls \texttt{update_pangle2_classicmerge.sh} to add \texttt{OFFSET} to the headers.
 - Calls \texttt{gong_classicmerge_headeradd.cl} to add \texttt{ELEV} to the headers.
- Calls `gong_classicmerge_ha_scalecheck.cl` to assure HA in the headers is listed in the range of \(-\pi\) to \(+\pi\).
- Calls `gong_classicmerge_reject` for each retrieved `vzi` file and deletes the ones flagged as to-be-rejected.

- Calls `gong_classicmerge_employVEL.sh` `DATE`

 → Site-Day Lists: For the day-of and the day-before `DATE` (BB, CT, & ML) or the day-of and the day-after (LE, TD, & UD), if a list is not already present in the working directory:

 - Calls `gong_classicmerge_sdlist.sh` to output a list of files belonging to that site day.

 → `vzi`: For the day-of and the day-before `DATE` (BB, CT, & ML) or the day-of and the day-after (LE, TD, & UD), if a site-day list of files is available:

 - Checks whether the appropriate `qac` file is also available; if not, deletes the site-day list and all of the `vzi` files it listed (with an exception discussed in §[4.4]).

 - Calls `EPHEMINTERP` to add VCOR[1/2/3/4] to the headers.

- Calls `gong_classicmerge_immerge.sh` `DATE`

 - Creates a list of `vzi` files for UT-day `DATE`.

 - Calls `IMMERGE` to merge `vzi`’s.

 - Calls `FITSWASH` to clean-up the merged headers.

- For dates 4 days older than the current IMMERGE processing:

- Calls `gong_classicmerge_finishcompress.sh` `DATE`

 → `qac`: Re-compresses the `qac` files into a tarball and moves them from the working directories to the output directories.

 → `vzi`: For each site (including MR):

 - Calls `get_parm` to record all of the updated-header keyword-values to a set of files: OFFSET, ELEV, VCOR[1/2/3/4], VELSCALE, VEL_BIAS, & NSITES (NIMGMRG).

 - Re-gzips the `vzi` files and moves them from the working directories to the output directories.

- Finishes up by cleaning out any partially-processed data from the working directory.

gong_classicmerge_dutycycle.sh

- Loops backwards in time over the full span of GONG-Classic-merge dates:

 - 2001-06-13 → 1995-05-05

- For each date it:

 - Counts the number of entries where NIMGMRG ≠ 0 in the GCM_parm_mr_NSITES.dat file of the mrvzi data.

 - Compares that to 1440 entries for a 100% duty cycle.

 - Outputs the computed duty cycle to GCM_duty_cycle.dat.
3.2 Description of Functions

For functions named in the code layout in §3.1 above, function descriptions are provided below.

3.2.1 IMMERGE

This is the same IMMERGE as in the GONG+ pipeline (Toner, et al., 2003), which has recently been updated to make a slight improvement to the ellipse-to-circle image registration.

The basics of the IMMERGE image transformations are illustrated in the exaggerated Figures 4–7 below. These graphics use input images with the same resolution and pixel geometry as standard GONG+ (Figures 4–5) or GONG-Classic (Figures 6–7) data, but the ellipticity and tilt of the solar disk have been artificially increased to emphasize the nature of the transformations. Grids have also been overlain on the images to aid in assessing the nature of the IMMERGE-registration transforms, which include:

1. Flip the image about the lower-left–to–upper-right diagonal to convert from the orientation of the site images (solar-north at right, east-limb at bottom) to the more conventional orientation of the merged images (solar-north at top, east-limb at left). **Note:** The colored circles in the figures match grid-limb crossing points between the input and output images.

2. Scale and bias correct the site-observation velocities using VELSCALE, VELBIAS, and VCOR1 to account for the Earth’s motion and instrumental seeing effects. **Note:** The TD image used in the GONG+ example has a negative VELSCALE value, which is why the grey-scaling appears reversed between Figure 4 (site-input) and Figure 5 (IMMERGE output).

3. Isolate and remove the rotational velocity of the Sun by subtracting a surface fit to the dopplergram.

4. Interpolate to circularize the originally elliptical solar disk. In the GONG+ images, the ellipticity is ordinarily very slight and is due primarily to atmospheric refraction. In the GONG-Classic images, the ellipticity is ordinarily pronounced (but only along the input y-axis) and is due primarily to the rectangular shape of the GONG-Classic camera pixels.

Once these image transformations have been completed, IMMERGE takes the average of each registered-pixel measurement between all observations taken from different GONG sites at a given time and reports these averaged images as the merged mrvzi-file results.

The call to IMMERGE from the GONG ClassicMerge pipeline specifies a smaller output image size (251×251 pixels for a 120-pixel radius solar image) than for the merged GONG+ images (400-pixel radius), but otherwise uses the same input requirements and transform algorithms. Since some of those inputs include the keywords VELSCALE, VCOR1, and OFFSET (the latter being used to indicate the precise orientation of solar-north on the site-images) — and because much of the GONG-Classic data did not automatically include these keyword values in the image headers — upstream portions of the GONG ClassicMerge pipeline are set up to ensure that these keyword values get added to the GONG-Classic input files before IMMERGE is called.

3.2.2 gong_classicmerge_reject

This is the primary code for discarding bad GONG-Classic site images from the ClassicMerge pipeline, and it is intended to roughly replicate the functionality of the A.I.R. (Automated Image Rejection) code (Clark, et al., 2004), which operates on the GONG+ pipeline.
Figure 4: GONG+ input-image to IMMERGE for the exaggerated-ellipse test.

Figure 5: GONG+ output image from IMMERGE for the exaggerated-ellipse test.
Figure 6: GONG-Classic input-image to IMMERGE for the exaggerated-ellipse test.

Figure 7: GONG-Classic output image from IMMERGE for the exaggerated-ellipse test.
All of the checks `gong_classicmerge_reject` employs are listed below, and all operate solely based on keyword-values in the FITS-image headers:

1. Reject files that have the FILLED keyword in their headers (i.e., those observations already flagged for exclusion during previous processing).

2. Reject images with bad pointing. This is done using the keywords FCOL, LCOL, FROW, and LROW (which denote the first and last usable rows and columns of each image), and FNDLMBXC, FNDLMBYC, FNDLMBMI, FNDLMBMA, C_MI, and C_MA (which define the elliptical limb as returned by the FNDLMB and HGEOM routines). The horizontal and vertical pointing are checked separately, using the following requirements for acceptable pointing:
 - FNDLMBXC ± max(FNDLMBMI, C_MI) is within the bounds [FCOL – LCOL]
 i.e., \(x_{\text{center}} \pm \max(r_{\text{minor}}) \) falls within [FCOL – LCOL]
 - FNDLMBYC ± max(FNDLMBMA, C_MA) is within the bounds [FROW – LROW]
 i.e., \(y_{\text{center}} \pm \max(r_{\text{major}}) \) falls within [FROW – LROW]

 This check relies on the assumption that GONG-Classic images, due to their rectangular pixels, naturally have their ellipse-major-axis closely aligned with the y-axis of the input image, and their minor-axis along the x-axis of the image.

3. Reject images whose instrument-reported rotation deviates too far from the expected image rotation. The instrument-recorded rotation is given in each image header by the ROTATOR keyword, whereas the expected rotation, based on the pointing of the telescope, is given by:

 \[
 \text{ROT}_{\text{expected}} = \text{ROLL} - \text{PITCH} - \text{BETA} - \text{PA} .
 \]

 Here, ROLL and PITCH are the roll and pitch of the telescope, BETA is the parallactic angle, and PA is the position angle of the Sun. In the GONG+ A.I.R. code, the maximum allowed deviation is 0.005 radians. However, to allow for a bit more uncertainty in the GONG-Classic data, the `gong_classicmerge_reject` code uses a threshold of 0.01 radians.

The A.I.R. code for the GONG+ pipeline also compares the statistical properties of the solar disk pixels against empirically determined limits, as well as with those of the adjacent observations. However, as the GONG-Classic dataset is somewhat more limited than the GONG+ data, these checks are currently considered to be outside the scope of the `gong_classicmerge_reject` functionality, and are not included in that code.

3.2.3 velfit.cl

`velfit.cl` is a script that is available within the GRASP package of IRAF (GRASP being one of the primary packages used for processing GONG data). `velfit.cl` computes and adds the keywords VELSCALE and VEL_BIAS to GONG images using the same algorithm used in the QA stage of the pipeline VMBICAL processing of the GONG+ data (although the `velfit.cl` script itself is not used in the GONG+ pipeline). (Please see Appendix A.4 for basic documentation.)

As input, `velfit.cl` requires a list of observations taken on a given site day (i.e., observations from sunup to sundown for one site for one day) as well as a table of mean on-solar-disk velocity values for each of those observations. The script collects time stamps, hour angles, and ephemeris
velocities (VCOR1) from the input headers and computes the difference between the disk-mean observed and ephemeris velocities.

Next a straight line is fit to those velocity differences (for observations taken within ±60 degrees of local noon), and the slope and offset of that line are used to determine the scaling factor (VELSCALE) and bias (VELBIAS), respectively. Those values can then be used to rescale the observed velocity images so that their means match expected ephemeris values (i.e., to correct for instrumental, day-to-day, refraction-calibration variation in the observed velocities).

Note: The tables of mean-velocity values for each site day that the GONG ClassicMerge pipeline supplies to velfit.cl are the qac files that are taken directly from the GONG-Classic archive. When production of the qac files was originally implemented, velocity averages were taken across the solar disk from 0 to 99% of the solar radius. However, beginning in December of 1995, this was adjusted to cover only 0 to 95% of the solar radius, in order to avoid noise associated with near-limb velocities. This change was not concurrent for all sites; therefore, for data taken from December of 1995 through March of 1996, the averages used to compute VELSCALE for some sites cover 95% of the disk, while for others they still cover 99% of the disk. The last dates for which 99% was used are: UD: 1995-12-18; ML: 1996-01-20; LE/TD/BB: 1996-03-19; CT: 1996-03-26.

3.2.4 EPHEMINTERP

EPHEMINTERP is an IRAF routine within the GONG package, GRASP. It uses cubic interpolation of ephemeris tables to determine several important physical quantities that depend on an observation’s date, time, and geographic location. It then writes these values into the FITS header for each observation, including the keywords L0, B0, P_ANGE, SEMIDIAM, and VCOR[1-4]. The last are a set of coefficients designed to correct the observed solar velocities for the motion of the observer (i.e., the orbital and rotational motion of the Earth), and VCOR1 in particular is important as it defines (and allows other routines to correct for) the mean relative velocity at the center of the solar disk. In order to compute these values, it is necessary for the FITS header to already contain the keyword values for DATE-OBS, TIME-OBS, LAT, LON, ELEV, BAROMET, and TEMP_OUT; these keywords define the base observing conditions for each observation. (Please see Appendix A.2 for basic EPHEMINTERP documentation.)

3.2.5 gong_classicmerge_sdlist.sh

gong_classicmerge_sdlist.sh is a script that was written for the GONG ClassicMerge pipeline, which searches the ClassicMerge working area and outputs a list of available observations falling on a given site day. This allows the code to provide appropriate lists for use in EPHEMINTERP and velfit.cl.

The primary hurdle that this script must overcome is the fact that GONG observations are named and archived according to their UT time/date of observation, while the GONG sites at Big Bear (BB), Mauna Loa (ML) and Learmonth (LE) regularly have observing runs that cross the UT date boundary. All of the site-day-centric products (e.g., qac files) are named according to their site-local (rather than UT-based) dates, which means that a site-day list for LE will usually also include observations timestamped with the previous-day UT-date (in the UT-evening), while site-day lists for BB (often) and ML (usually) will also include observations timestamped with the following-day UT date (in the UT-morning).

This also has implications for the GONG ClassicMerge pipeline. Specifically, in order to merge one UT-day’s worth of data, data taken either the (UT) day before or the day after (depending
on the site) must also be pulled from the GONG-Classic archive (and processed up through the point of adding in the VELSSCALE and VCOR1 keywords) before IMMERGE can be called on the specified UT day.

3.2.6 update_pangle2_classicmerge.sh

update_pangle2_classicmerge.sh is a small variation on the script *update_pangle2.sh*, which was written by Sean McManus to compile the derived GONG-network image angles into a format familiar to the GRASP routine CAMOFFSET (see Appendix A.1 for basic documentation), and then to call CAMOFFSET to write the site/time-appropriate OFFSET-keyword values into the headers of all FITS files in an indicated directory. The two primary differences between the GONG ClassicMerge call to this script and the GONG+ pipeline call are that:

- **a)** The script is called with the -c flag to indicate that this is GONG-Classic data and, therefore, to direct CAMOFFSET not to include Ronchi corrections when computing the OFFSET angles.

- **b)** This ClassicMerge version only calls CAMOFFSET if the input FITS image does not have the FILLED keyword in its header. If, instead, the FILLED keyword is present, *update_pangle2_classicmerge.sh* deletes the file from the GONG ClassicMerge working directory. (This is done here in order to help streamline the early-stage processing.)

The OFFSET keyword in a GONG header indicates the computed residual misalignment (in degrees) between solar-north and the y-axis of an image. This keyword is used by IMMERGE to correct the rotation of input site images before merging them (therefore, by definition, merged images have OFFSET = 0.0).

While this script is set up to update the OFFSET values of all FITS files in a single directory (covering one UT-day for one site), CAMOFFSET does seek to provide appropriate OFFSET values based on each file’s site-local date. Therefore, in calling *update_pangle2_classicmerge.sh* in the GONG ClassicMerge pipeline, it is necessary to ensure that the coy (computed angles coefficients) files for days adjacent (depending on the site, as outlined in §3.2.5) to the of-interest UT date have also been pulled from the GONG-Classic archive and are available to the GONG ClassicMerge working directory.

3.2.7 Miscellaneous Small Functions

gong_classicmerge_headeradd.cl: This script is essentially just a copy of a code snippet sourced from *velfit.cl*, allowing the user to specify one header keyword, one value for that keyword, and a list of FITS files to which that header keyword and value should be added. In the GONG ClassicMerge pipeline, it is used to add the ELEV (site elevation) keyword to the image headers.

gong_classicmerge_ha_scalecheck.cl: This is a small script that a) takes in a list of FITS files, b) reads the value of the HA (hour angle) keyword in each file header, and c) rewrites that value as $\text{HA}_{\text{out}} = \text{HA}_{\text{in}} - 2\pi$ in the cases where $\text{HA}_{\text{in}} > \pi$. It is run on all of the GONG-Classic images after they have been pulled from the archive in order to ensure that *velfit.cl* can easily sort/exclude observations according to their HA values.

get_parm: This is a small command-line function available within the GONG pipelines via:

```
source std_bash_lib.sh.
```
Given the name of a FITS file (which may be compressed) and a header keyword, it will return the value of that keyword.

FITSWASH: This is a function used within the GONG pipelines to update and tidy processed images’ FITS headers, which, in the GONG ClassicMerge pipeline, gets applied to the *merged* images only. It requires an input FITS filename plus a FITS-header template file. For the GONG ClassicMerge pipeline, the template used is called “gong_classicmerge_velmerge_header.kw” and primarily differs from the standard GONG+ merged-magnetogram template in that it specifies these merged GONG-Classic data are *velocity* images.

4 Data Checks and Exceptions

4.1 Basic Checks

During the operation of the GONG ClassicMerge pipeline, the code performs various checks to determine which data to include in the final merged product. These checks include:

1. The first and most obvious check is one designed to gauge whether a given file has been corrupted or is otherwise unreadable. If an image file copied to the working directory could not be gunzipped, or if the NAXIS1 keyword could not be read out of the image header, then the observation is discarded. Out of the full six-years worth of GONG-Classic data, such discards were necessary on eight UT-dates:
 - One corrupted observation was removed from each of the following data directories: ctvzi961217, mlvzi970718, tdvzi981026, bbvzi000105, ctvzi001122, and levzi000830.
 - 464 corrupted observations were removed from tdvzi981027.
 - 472 corrupted observations were removed from tdvzi981028.

2. As the VELSCALE keyword is necessary for calibrating the site data before merging, and the qac files are necessary for computing VELSCALE values, the next check made is to ensure that the qac file is available for each site-day worth of observations. If for some reason a given qac file is not available, then all observations taken on that site day are removed from the GONG-Classic merging. An exception to this rule was made during the data processing for a swath of observations taken in the early fall of 1999, and is discussed in §4.4. Site days removed from GONG ClassicMerge processing due to missing qac files include:
 - 3 site days at Big Bear: bbqacV990806–990808
 - 5 site days at Cerro Tololo: ctqacV990801–990805
 - 14 site days at Learmonth: leqacV990803–990812, 990814–990817
 - 6 site days at Mauna Loa: mlqacV960910, 980328, 980424, 990801, 990803, 990805
 - 13 site days at Udaipur: udqacV970412–970419, 970421–970425

3. As discussed in §3.2.2 the *gong_classicmerge_reject* code was run on all of the input observations to check that basic standards in GONG telescope pointing were being met. As a result of those checks:
 - 1325 observations were excluded from the 1995 GONG-Classic merging (886 CT, 5 ML, 12 TD, and 422 UD observations).
- 3016 observations were excluded from 1996 (13 CT, 3 LE, 1 ML, 59 TD, and 2940 UD).
- 1137 observations were excluded from 1997 (1115 CT, 1 LE, 3 ML, and 18 UD).
- 2 observations were excluded from 1998 (1 LE, and 1 TD).
- 539 observations were excluded from 1999 (46 BB, 227 CT, 190 LE, 72 TD, and 4 UD).
- 26,377 observations were excluded from 2000 (25,266 BB, 473 LE, and 638 ML).
- 5955 observations were excluded from 2001 (all BB observations).

4.2 Instances of Problematic VELSCALE

Once the GONG ClassicMerge pipeline was run, a number of instances were discovered where the computed VELSCALE value was a clear outlier from the norm (in general, for GONG-Classic data, VELSCALE should be quite close to 1.0 ± 0.1). Inspection of some example images found no obvious cause for these discrepancies; however, the outlier VELSCALE values were not the correct values needed to calibrate those observations. Therefore, a second merge processing was performed on the 50 affected days, in which:

1. The site-day observations containing incorrect VELSCALE values in their headers were removed from the working directories.

2. IMMERGE was re-run on the remaining observations.

3. \texttt{get_parm} was re-run on the new mrvzi files to output a new GCM_parm_mr_NSITES.dat file, needed to compute the revised duty cycle.

In all, this re-processing was performed on:

- 2 UT days in 1995 (both due to UD VELSCALE values).
- 7 UT days in 1996 (3 due to CT, 1 due to LE, and 3 due to TD values).
- 7 UT days in 1997 (1 due to CT, 2 due to LE, 2 due to ML (single site day), 1 due to TD, and 1 due to UD values).
- 4 UT days in 1998 (1 due to LE, 2 due to TD, and 1 due to UD values).
- 27 UT days in 2000 (25 due to BB, 1 due to CT, and 1 due to ML values).
- 3 UT days in 2001 (2 due to BB and 1 due to LE values).

A large number of the cases where VELSCALE was computed incorrectly for a given site day reported very few observations available for that site day. Therefore, once the re-merge was completed, the duty cycle was found to have dropped by less than 2% in the majority of cases. The exceptions noted are:

- 951011: The duty cycle fell from 0.93 to 0.87 (6%).
- 960706: The duty cycle fell from 0.97 to 0.93 (4%).
- 960922: The duty cycle fell from 0.55 to 0.45 (10%).
- 970108: The duty cycle fell from 0.87 to 0.84 (3%).
- 980807: The duty cycle fell from 0.71 to 0.68 (3%).
- 000103: The duty cycle fell from 0.14 to 0.06 (8%).
- 000810: The duty cycle fell from 0.96 to 0.94 (2%).
4.3 Missing Angles from 1999

The duty cycle of the GONG ClassicMerge data (see Figure 3) drops to 0.0 for the period of 1999-05-30 through 1999-08-01. This is due to a complete lack of coy-angle files (necessary for computing the correct angular orientation of each observation) within this time-period. This lack is almost certainly due to a corresponding lack of driftscans calibration data (Toner, 2001) taken during this time. However, until such time as new coy-angles can be extrapolated, the GONG-Classic observations taken in June and July of 1999 cannot be merged. (As a side note, the qac files are also missing during this period, and continue so into October of 1999, as discussed in §4.4.)

4.4 Missing qac from 1999

In 1999, there are nearly three months (beginning of August through most of October) during which coy-angle results have returned (see §4.3), but there are still no qac files stored in the archive, with the exception of those for the site at Teide. However, beginning in early August, the archived site data begin to have VELSCALE values already written into their headers. Therefore, for the data processed from August through October of 1999, site-day observations that are missing a corresponding qac file are not discarded if they already have VELSCALE in their headers.

This means that, if there has been a change in the velfit algorithm between when those VELSCALE values were written and when the GONG ClassicMerge processing was done in 2015, then, depending on the date and site, the VELSCALE value used for image calibration may have been computed one of two ways. (This potential dichotomy is probably similar to the site-to-site variation in the VELSCALE computation that also happened at the beginning of 1996, as discussed in §3.2.3.) The epochs for VELSCALE in the GONG ClassicMerge data are as follows:

- Big Bear: Archived, in-header VELSCALE beginning 1999-08-06; returned to qac-velfit VELSCALE 1999-10-18.
- Cerro Tololo: Archived VELSCALE from 1999-08-02 to 1999-10-26.
- Learmonth: Archived VELSCALE from 1999-08-02 to 1999-10-24.
- Mauna Loa: Archived VELSCALE from 1999-08-03 to 1999-10-13.
- Teide: Standard qac VELSCALE throughout.
- Udaipur: Standard qac VELSCALE throughout (due to monsoon, there are no observations in this period until 1999-10-06).

5 Post-Processing Quality Checks

All merged dopplergrams were additionally subjected to the following post-processing quality checks:

1. Visual inspection of Mean and Powermap images: Movies of Mean and Powermap images made for each day of observations were visually inspected. For these images, the central regions of the merged images (lat_bound = ±78°; long_bound = ±56°) were remapped onto a sin(lat)-longitude grid, with tracking performed at the surface differential rotation rate relative to the noon time for each day (i.e., by selecting the image at 12:00:00 UT as the reference). These tracked cubes were used to generate daily image means and power maps, where:
Examples of Mean images at periods of low and high solar activity are shown in Figure 8. Careful visual inspection of the progression of these Mean and Powermap images allowed for identification of outlier pixels and/or errant spatial trends. After identifying a bad day, each corresponding input image was inspected separately, and bad images were replaced with a blank image in the final ClassicMerge product. Note that this technique was also used during the ClassicMerge code-development process to identify and correct early errors in our image-rejection algorithms (described in §4.1).

2. Inspection of daily ℓ-ν diagrams: Daily ℓ-ν diagrams were also inspected for anomalies. These diagrams were generated using the spherical harmonic time series only for those days when the duty cycle was $> 65\%$.

For this test, the first step was to perform spherical-harmonic decomposition on each merged image, using a setting of $\ell_{\text{max}} = 240$. Next, for each UT day inspected, the time series of spherical harmonic coefficients was Fourier transformed to produce m-ν power spectra. These m-ν spectra were corrected for solar rotation and averaged over m to produce an ℓ-ν diagram for that day. Two examples of ℓ-ν diagrams thus generated are shown in Figure 9. Finally, all of the generated ℓ-ν diagrams were stacked into a master time-series spanning the duration of GONG ClassicMerge observations, which was then visually inspected in cross-section at several ℓ values.

Only one bad image was found and discarded as a result of the ℓ-ν inspection test, which can be seen in the time-series map for $\ell = 50$ in Figure 10. A closer look reveals a horizontal line at about time sequence $= 1665$. This implies that there was high background noise present in the ℓ-ν diagram corresponding to that particular day. Follow-up inspection of that day’s individual input images yielded the dopplergram responsible. This image was replaced in the final ClassicMerge product with a blank image and given the header keyword FILLED, which is the standard GONG-pipeline
Figure 9: Example ℓ-ν diagrams used in our second-pass quality checks: 1995-06-01 (left) & 2001-01-24 (right).

Figure 10: Stack plots of ℓ-ν diagrams for $\ell = 50$. A faint horizontal line is clearly visible at the time sequence=1665. The left image is for the entire period of GONG-Classic data, and the right image covers the period around the horizontal line.
flag for image exclusion.

Based on these tests, the GONG project is releasing the ClassicMerge data product to the user community (http://nisp.nso.edu/data).

Acknowledgement

The authors would like to thank Manuel Diaz Alfar (IAC, Spain) for his feedback and help with early analysis of the quality of the ClassicMerge data.

References

“IRAF Help page for: CAMOFFSET.” gong.nso.edu. NSO Integrated Synoptic Program: GONG, National Solar Observatory, Aug. 1996. Web. 31 Dec. 2015.

Clark, R., Toner, C., Hill, F., Hanna, K., Ladd, G., Komm, R., Howe, R., Gonzalez-Hernandez, I., Kholikov, S. 2004. An Automated Image Rejection System for GONG in “Proceedings of the SOHO 14 / GONG 2004 Workshop (ESA SP-559).” 12-16 July, 2004. p.381, ed. D. Danesy, New Haven, Connecticut.

“IRAF Help page for: EPHEMINTERP.” gong.nso.edu. NSO Integrated Synoptic Program: GONG, National Solar Observatory, May 1996. Web. 14 Dec. 2015.

“IRAF Help page for: FNDLMB.” gong.nso.edu. NSO Integrated Synoptic Program: GONG, National Solar Observatory, Sep. 1994. Web. 31 Dec. 2015.

“IRAF Help page for: VELFIT.” gong.nso.edu. NSO Integrated Synoptic Program: GONG, National Solar Observatory, Feb. 1997. Web. 14 Dec. 2015.

Toner, C. G. 2001. On the absolute alignment of GONG images in “Helio- and Asteroseismology at the Dawn of the millennium”, ed. A. Wilson, Proceedings SOHO 10 / GONG 2000 Workshop, p.355-358. Also at: http://gong.nso.edu/data/DMAC_documentation/Copipe/sogo2000.pdf

Toner, C. G., Haber, D., Corbard, T., Bogart, R., Hindman, B. 2003. An Image Merge for GONG+ in “Proceedings of SOHO 12 / GONG+ 2002 Workshop (ESA SP-517).” 27 Oct. – 1 Nov., 2002, p.405, ed. H. Sawaya-Lacoste, Noordwijk, Netherlands.

Toner, C.G., & Harvey, J. 1998. Aligning the GONG network in “Sounding Solar and Stellar Interiors”, ed. J. Provost and F-X Schmider, Proceedings IAU Symp. 181, Poster Volume, Nice, France, 57. Also at: http://gong.nso.edu/data/DMAC_documentation/Copipe/IAU181_poster.pdf
A Appendix

A.1 CAMMOFFSET help page

Below is a transcription of the text that appears at: http://gong.nso.edu/data/iraf_help/camoffset.html as accessed on December 31st, 2015 (CAMOFFSET help page [1996]).

CAMOFFSET (Aug96) pipeline CAMOFFSET (Aug96)

NAME

camoffset -- Calculate camera offset angles using COPIPE or DRIFTSCAN results.

USAGE

camoffset input

PARAMETERS

input
List of input V, M, or I images for which the camera offset angle is to be determined.

drift_scan = no
Use Drift-Scan formulI only.

tables = "grasplib$SITES/"
Path to offset tables.

verbose = no
Verbose output to STDOUT.

DESCRIPTION

camoffset uses the hour angle from the input image headers (keyword: HA; units: radians) and empirical formula to determine the camera offset angle. The calculated offset angle in degrees is written into the image header as the value of the keyword OFFSET.

The GONG pipeline process COPIPE determines an internally consistent set of equations (maximum 6 term power law) describing how the camera offset angle changes with time at each site. The coefficients for these equations are stored in STSDAS binary tables located in tables. The table columns are:
Column	Format	Description
gps_date	CH*10	\%10s "GPS Date"
n_coeff	I	\%id "No. of Coefficients"
c1	R	\%f ""
c2	R	\%f ""
c3	R	\%f ""
c4	R	\%f ""
c5	R	\%f ""
c6	R	\%f ""
drift_scan	CH*2	\%2s "PM Driftscan"

The column "drift_scan" is blank except for those dates where a drift scan was taken, in which case the column contains "pm".

Cam offset uses the value of the header keyword SITE to determine ensure that the proper table is use. Accepted values of SITE are:

- tc ==> Tucson
- bb ==> Big Bear
- ml ==> Mauna Loa
- le ==> Leamonth
- ud ==> Udaipur
- td ==> Teide
- ct ==> CTIO

If drift_scan=yes, the coefficients used are those from the most recent drift scan (drift_scan == "pm") taken prior to the date in question.

If verbose=yes, the calculated offset angles are printed to STDOUT as the task executes.

EXAMPLES

1. Determine the camera offset angles for a set of Teide calibrated velocity images.

 pi> camoffset tdvci*.imh

2. Determine the camera offset angles for a set of Teide calibrated velocity images using only the drift scan results.

 pi> camoffset tdvci*.imh drift_scan+

TIME REQUIREMENTS
EPHEMINTERP (May96) ephem EPHEMINTERP (May96)

NAME
epheminterp -- Interpolate ephemeris tables to the date/time of observation.

USAGE
epheminterp input

PARAMETERS

input
Input image list.

ephem_dir = "$ephem$
Path to the directory containing the ephemeris tables subdirectories.
update_hdr = yes
 Update the image header to include B0, L0, P_ANGLE, SEMIDIAM, VCOR[1-4].

refraction = no
 Include atmospheric refraction in the velocity correction calculation.

verbose = no
 Output results to STDOUT.

DESCRIPTION

EPHEMINTERP uses cubic interpolation to determine the following quantities for each input image:
 L0, B0 - Heliographic coordinates of sub-earth point (degrees),
 P_ANGLE - Solar position angle (degrees),
 SEMIDIAM - Solar Semi-diameter (degrees),
 VCOR[1-4] - Observer’s velocity correction (m/s) coefficients.

If update_hdr = yes, these quantities are written into the image header using keywords B0, L0, P_ANGLE, SEMIDIAM, VCOR1, VCOR2, VCOR3 and VCOR4.

If verbose = yes, these results are also written to STDOUT.

If refraction = yes, atmospheric refraction is taken into account when the observer’s velocity correction is determined. The zenith distance (z = 90 - a, a = altitude) decreases by an amount R given by:

\[
R \text{ (degrees)} = 0.00452 \times P / ((273+T) \times \tan(a)) \quad a > 15 \text{ degrees}
\]

\[
R \text{ (deg)} = \frac{P \times (0.1594 + 0.0196a + 0.00002 \times a^2)}{((273 + T)(1 + 0.505a + 0.0845 \times a^2))} \quad a \leq 15 \text{ degrees}
\]

where P == Pressure in millibars
 T == Temperature in degrees Celsius
 a == altitude in degrees

The ephemeris tables are located in subdirectories of ephem_dir called jYYYY where YYYY is the year of observation. Each subdirectory contains three ephemeris files:
sunapp.dat - apparent geocentric position and velocity of the sun.
sunpbl.dat - heliographic coordinates, p-angle and semi-diameter.
utgmst.dat - UT to GMST time conversion.

These tables range from December 31 of the previous year to January 2 of the following year which allows cubic interpolation on January 1 and December 31 of the year of observation.

EPHEMINTERP requires the following header keywords be in the input images:

KEYWORD	FORMAT	Description
DATE-OBS	YYYY/MM/DD	GPS Date of observation.
TIME-OBS	HH:MM:SS.SSS	GPS Time of observation.
LAT	double	Latitude of observer (radians north).
LON	double	Longitude of observer (radians east).
ELEV	double	Elevation of observer (meters)(default = 0.).
BAROMET	real	Barometric pressure (millibars)(default = 0.).
TEMP_OUT	real	Temperature (degrees Celsius)(default = 0.).

Failure to access one of the above keywords will result in the default value being used, or if there is no default, termination of the EPHEMINTERP process.

The values of B0, LO, P_ANGLE and SEMIDIAM are obtained by direct cubic interpolation in the "sunpbl" table, which is indexed according to TDT (Terrestrial Dynamical Time) since the beginning of the year. TDT is obtained from the GPS date and time via the following relation:

\[TDT = GPS + 51.184 \text{ seconds} \]

The values of VCOR[1-4] are obtained by using an ephemeris program which requires as input the site latitude (radians north), longitude (radians east) elevation (meters), temperature (degrees C), pressure (millibars), P-angle (degrees), geocentric positions (au), geocentric velocities (au/day), and the Greenwich Apparent Sidereal Time (hours).

NOTE: The position angle is set to 0. for the velocity correction calculation. Since the GONG instrument is attempting to compensate for the P_ANGLE, the camera offset angle will need to be used to properly remove the velocity gradients.

To remove the observer’s velocity at each pixel, use the formula
\[vcor1 + vcor2*X + vcor3*Y + vcor4*(X**2 + Y**2)/2. \]

for -1 <= X <= +1; ABS(X)=1 at the limb
-1 <= Y <= +1; ABS(Y)=1 at the limb

This formula assumed that the Y-axis is aligned with Heliographic north. If there is a rotation about the line site away from this assumption then VCOR2 and VCOR3 must be adjusted accordingly:

\[
\begin{align*}
crot &= \cos(\text{rotation_angle}) \\
srot &= \sin(\text{rotation_angle}) \\
tmp2 &= vcor2*crot + vcor3*srot \\
tmp3 &= -vcor2*srot + vcor3*crot \\
vcor2 &= tmp2 \\
vcor3 &= tmp3
\end{align*}
\]

The geocentric positions and velocities of the sun are determined by interpolation the "sunapp" table which is to TDT. The GAST (Greenwich Apparent Sidereal Time) is obtained by looking up the GMST (Greenwich Mean Sidereal Time) for 0h and applying the following formula:

\[
gast = \text{gmst0} + \text{utc_hour} + \text{eqnxstrm}/3600.0d0
\]

where \(\text{gmst0} \) == Greenwich Mean Sidereal Time at 0h UT
\(\text{utc_hour} \) == Number of UT hours since 0h UT * 1.0027379093d0
\(\text{eqnxstrm} \) == Equation of equinoxes interpolated at utc_hour.

where the constant (1.0027379093d0) converts from solar to sidereal time.

The task uses UTC (Coordinated Universal Time) rather than UT (maximum difference is 1 second) because it is easier to determine. UTC may have a leap second introduced at the end of the months of December and June, depending on the evolution of UT1-TAI.

\[
\text{UTC} = \text{GPS} + 19s - \text{delta}
\]

where "delta" is an integral second offset determined by NEOS (National Earth Orientation Service), which has an email bulletin (Bulletin C) sent out every 6 months to confirm or deny the addition of a leap second.

EXAMPLES
1) Run EPHEMINTERP on all the Mauna Loa data in the current directory.

 ep> epheminterp ml*.imh

TIME REQUIREMENTS

It takes approximately 15 seconds clock time to do 680 images on a SPARCstation 20.

BUGS

None known.

REFERENCES

Astronomical Almanac, Section B (Time Scales).

SEE ALSO

ephvel, ephgeo

A.3 FNDLMB help page

Below is a transcription of the text that appears at: http://gong.nso.edu/data/iraf_help/fndlmb.html as accessed on December 31th, 2015 [FNDLMB help page](1994).

FNIDLMB (Sep94) gongcor FNIDLMB (Sep94)

NAME
fndlmb - Determine the figure of the limb of the solar image

USAGE
fndlmb input output usehdr updhdr
 xcenter ycenter minorax majorax angle
 nfit width thresh pcfit pixlenx pixleny prntsw nfndlmb

PARAMETERS

input
List of input pixel arrays containing full disk images of the sun.
If N1 and N2 are the dimensions of the images, then N1/4.LE.N2.LE.4*N1; i.e., the dimensions must be approximately equal.

output
List of second derivative (Laplacian) images. The number of output images may be zero or must be the same as the number of input images.
The output image names may not be equal to the input image names.

usehdr
If YES, the initial estimates for the ellipse parameters are taken from the values found in the input image header. The values of the five ellipse input parameters described below
 XCENTER YCENTER MINORAX MAJORAX ANGLE
are ignored.

updhdr
If YES, the values of the ellipse parameters in the header will be updated after the parameters are determined.

xcenter
Estimate for the x co-ordinate of the center of the ellipse describing the solar image. The x axis corresponds to the first dimension of the pixel array.
N1 is the first dimension of the image.
Nominal value might be 0.5*N1.
Units are pixels.
1.LE.XCENTER.LE.N1

ycenter
Estimate for the y co-ordinate of the center of the ellipse describing the solar image. The y axis corresponds to the
second dimension of the pixel array.
N2 is the second dimension of the image.
Nominal value might be 0.5*N2.
Units are pixels.
1.LE.YCENTER.LE.N2

minorax
Estimate for the semi-minor axis of the ellipse describing the solar image. N1,N2 are the dimensions of the image.
Nominal value might be 0.4*MIN(N1,N2).
Units are pixels.
2.LE.MINORAX.LE.N1-1

majorax
Estimate for the semi-major axis of the ellipse describing the solar image. N1,N2 are the dimensions of the image.
Nominal value might be 0.4*MIN(N1,N2).
Units are pixels.
2.LE.MAJORAX.LE.N2-1

angle
Estimate for the ellipse rotation angle. A counter-clockwise rotation of the y axis to the ellipse major axis is a positive angle.
Units are degrees.
-90.0.LE.ANGLE.LE.90.0

nfit
Number of parameters determined by the least squares fit.
If NFIT=4; XCENTER, YCENTER, MINORAX, MAJORAX are determined for an ellipse with rotation angle, ANGLE, the input parameter.
If NFIT=5; XCENTER, YCENTER, MINORAX, MAJORAX, and ANGLE are determined for the ellipse.
NFIT=4,5

width
Width of the band of second derivatives searched by the zero crossing algorithm.
If N1,N2 are the dimensions of the image.
A nominal value might be 0.03*MIN(N1,N2).
Units are pixels.
2.LE.WIDTH.LE.MIN(MINORAX,MAJORAX)-1

thresh
Threshold of the band of second derivatives searched by the zero crossing algorithm. A reasonable value may be determined by inspection or statistical analysis of the second derivative image.
A nominal value for 16-bit intensity images might be 1000. If THRESH=0; the value of THRESH will be automatically determined to be one-half of the maximum value of the second derivatives of the center row and center column of the image.

\[0.0 \leq \text{THRESH}\]

pcfit

Second derivative zero crossings within PCFIT percent of the ellipse determined by the first fit are retained for the second fit. This parameter is used to reject spurious points. A nominal value would be 1.0; i.e., 1%.

\[0.1 \leq \text{PCFIT} \leq 10.0\]

pixlenx, pixleny

Pixel length in x-direction and y-direction in arbitrary units. Used if USEHDR=NO, otherwise the task attempts to read these parameters from the image headers. If UPDHDR=YES, the task will update these parameters in the image headers.

prntsw

Switch that controls writing the locations (in pixels) of the zero crossings to the standard output. If NO, zero crossings are not output.

nfndlmb

The number of times the FNDLMB algorithm will be invoked. The limb parameters (XCENTER, YCENTER, MINORAX, MAJORAX, ANGLE) and the THRESH that were determined during the previous call are used as the estimates for the next call. NFIT, WIDTH, and PCFIT as specified by the input parameters are used for all invocations of the algorithm.

IMAGE HEADER WORDS

IF USEHDR = YES, the following header parameters are read from the input image header:

- \text{PIXLENX}, \text{x-direction size of the camera pixels}
- \text{PIXLENY}, \text{y-direction size of the camera pixels}
- \text{FNDLMBXC}, \text{x-coordinate of the center of the disk in pixels}
- \text{FNDLMBYC}, \text{y-coordinate of the center of the disk in pixels}
- \text{FNDLMBMI}, \text{length of the semiminor axis in pixels}
- \text{FNDLMBMA}, \text{length of the semimajor axis in pixels}
- \text{FNDLMBAN}, \text{ellipse rotation angle in degrees}

IF UPDHDR = YES, the following header parameters are written to the
input image header:
 PIXLENX = PIXLENX, an input parameter
 PIXLENY = PIXLENY, an input parameter
 FNDLMBXC, the x-coordinate of the center of the disk in pixels
 FNDLMBYC, the y-coordinate of the center of the disk in pixels
 FNDLMBMI, the length of the semiminor axis in pixels
 FNDLMBMA, the length of the semimajor axis in pixels
 FNDLMBAN, the ellipse rotation angle in degrees

IF UPDHDR = YES, the task writes the processing parameters into the
input header using 'gr_history' from 'grutil/'.

IF UPDHDR = YES and the fitting algorithm fails, FILLED = NO, is
added to the image header and the limb parameters are set to their
input values, the initial estimates.

DESCRIPTION

FNDLMB uses a modified version of Stuart Jefferies’ limb finding
algorithm (with the addition of the ellipse rotation angle) to
obtain an ellipse which best approximates (in a least squares
sense) the limb of the solar image.

In April, 1992, FNDLMB was modified to include features from Jesus
Patron’s version of the limb finder. These changes included
searching for zero-crossings in both the x and y directions
(previously, the search was in the x direction); searching from the
outside of the solar disk to the inside (previously, the search was
through increasing x coordinates); and some details of the logic
associated with detecting an acceptable zero-crossing were changed.

The ellipse (as described by the center co-ordinates and semi-minor
and semi-major axes and rotation angle) is written to the standard
output and to the image header.

If the input image consists of more than 1 2d array of pixels, the
2d arrays are summed into 1 2d array before the ellipse parameters
are determined.

Assume that the solar limb can be fit by an ellipse defined by
 XC - center x-coordinate in pixels, first pixel dimension.
 YC - center y-coordinate in pixels, second pixel dimension.
 AE - minor ellipse width along the rotated x-axis in pixels.
 BE - major ellipse width along the rotated y-axis in pixels.
 ANG - rotation angle in degrees
 clockwise rotation of the y-axis is a negative ANG.
Definitions:
N1,N2 - pixel array dimensions
DX=X-XC
DY=Y-YC
COSA=\cos(\text{ANG}*\pi/180.0)
SINA=\sin(\text{ANG}*\pi/180.0)
CXX=((\text{COSA}/\text{AE})**2+(\text{SINA}/\text{BE})**2)
CXY=-2*\text{COSA}\cdot\text{SINA}\cdot(1.0/\text{AE}**2-1.0/\text{BE}**2)
CYY=((\text{SINA}/\text{AE})**2+(\text{COSA}/\text{BE})**2)

Then the ellipse has the form
CXX\cdot DX**2-CXY\cdot DX\cdot DY+CYY\cdot DY**2=1.0

An initial estimate for the ellipse is provided by the input parameters:
XC,YC,AE,BE,\text{ANG}.

Determine a search band(two concentric ellipses) centered on the ellipse defined by the input parameters and the search band width, WIDTH:

The search band is defined for both the x and y coordinates. The band in terms of the x coordinates is discussed first.

For every Y index from 2 to N2-1 find
XOL—outside of search band, lower x value
XOH—outside of search band, higher x value
XIL—inside of search band, lower x value
XIH—inside of search band, higher x value

For XOL and XOH, use
\[\text{AEO} = \text{AE} + \text{WIDTH} \]
\[\text{BEO} = \text{BE} + \text{WIDTH} \]
to calculate \(C_{XXO}, C_{XYO}, C_{YYO} \).

For XIL and XIH, use
\[\text{AEI} = \text{AE} - \text{WIDTH} \]
\[\text{BEI} = \text{BE} - \text{WIDTH} \]
to calculate \(C_{XXI}, C_{XYI}, C_{YYI} \).

\[\text{ARGO} = (\text{CXYO} \cdot \text{DY} - \sqrt{\text{ARGO}})/(2 \cdot \text{CXXO}) \]
\[\text{ARGI} = (\text{CXYI} \cdot \text{DY} - \sqrt{\text{ARGI}})/(2 \cdot \text{CXXI}) \]

IF \(\text{ARGO} \leq 0 \) XOH & XOL are undefined
IF \(\text{ARGI} \leq 0 \) XIH & XIL are undefined

\[\text{DXOL} = (\text{CXYO} \cdot \text{DY} - \sqrt{\text{ARGO}})/(2 \cdot \text{CXXO}) \]
\[\text{DXOH} = (\text{CXYO} \cdot \text{DY} + \sqrt{\text{ARGO}})/(2 \cdot \text{CXXO}) \]
\[\text{XOL} = \text{DXOL} + \text{XC} \]
\[\text{XOH} = \text{DXOH} + \text{XC} \]
\[\text{XOL} = \text{FLOOR} \ (\text{XOL}) \]
\[\text{XOH} = \text{CEILING} \ (\text{XOH}) \]
\[\text{DXIL} = (\text{CXYI} \cdot \text{DY} - \sqrt{\text{ARGI}})/(2 \cdot \text{CXXI}) \]
\[\text{DXIH} = (\text{CXYI} \cdot \text{DY} + \sqrt{\text{ARGI}})/(2 \cdot \text{CXXI}) \]
\[\text{XIL} = \text{DXIL} + \text{XC} \]
\[\text{XIH} = \text{DXIH} + \text{XC} \]
\[\text{XIL} = \text{CEILING} \ (\text{XIL}) \]
\[\text{XIH} = \text{FLOOR} \ (\text{XIH}) \]

One of the x values defining the inside or outside of the search band must be in the pixel array.
IF \(\text{XOL} \lt \text{N1} - 1 \) XOH & XOL are undefined
IF \(\text{XIL} \lt \text{N1} - 1 \) XIH & XIL are undefined
IF \(\text{XOH} \lt \text{2} \) XOH & XOL are undefined
IF \(\text{XIH} \lt \text{2} \) XIH & XIL are undefined

If one is in the pixel array, make sure the other is as well.
IF \(\text{XOL} \lt \text{2} \) XOL = 2
IF \(\text{XIL} \lt \text{2} \) XIL = 2
IF \(\text{XOH} \gt \text{N1} - 1 \) XOH = N1 - 1
IF \(\text{XIH} \gt \text{N1} - 1 \) XIH = N1 - 1

For every X index from 2 to N1-1 find
YOL—outside of search band, lower y value
YOH - outside of search band, higher y value
YIL - inside of search band, lower y value
YIH - inside of search band, higher y value
using the same procedure that was used for the
x coordinates.

Calculate the Laplacian within the search band:
For every Y from Y=2,N2-1
IF((XOH & XOL are defined).AND.(XIH & XIL are undefined))
Calculate the Laplacian between XOL & XOH.
IF((XOH & XOL are defined).AND.(XIH & XIL are defined))
Calculate the Laplacian between XOL & XIL
For every X from X=2,N1-1
IF((YOH & YOL are defined).AND.(YIH & YIL are undefined))
Between YOL & YOH
if(the Laplacian is zero) calculate the Laplacian.
IF((YOH & YOL are defined).AND.(YIH & YIL are defined))
Between YOL & YIL and between YIH & YOH
if(the Laplacian is zero) calculate the Laplacian.

If the pixel aspect ratio is 1.0 (i.e., PIXLENX=PIXLENY),
the Laplacian is calculated as
\[
P(X,Y) - (P(X-1,Y-1)+P(X,Y-1)+P(X+1,Y-1)
+P(X-1,Y) +P(X+1,Y)
+P(X-1,Y+1)+P(X ,Y+1)+P(X+1,Y+1))/8.0
\]

If the pixel aspect ratio is not 1.0 (i.e., PIXLENX!=PIXLENY),
the Laplacian is calculated as
\[
P(X,Y) - (P(X-1,Y-1)+P(X+1,Y-1)+P(X-1,Y+1)+P(X+1,Y+1))/8.0
-(P(X,Y-1)+P(X,Y+1))*(2*DX**2-DY**2)/4/(DX**2+DY**2)
-(P(X-1,Y)+P(X+1,Y))*(2*DY**2-DX**2)/4/(DX**2+DY**2)
\]
where DX=PIXLENX and DY=PIXLENY

Search the Laplacian for the X,Y positions of the zero-crossings.
To qualify as a zero-crossing, the absolute value of the
Laplacian adjacent to the zero-crossing must be greater than a
threshold that is set by the input parameter, THRESH.

If the input parameter, THRESH, is not provided, i.e. = 0, THRESH
will be determined from the center line and center column of the
Laplacian:
\[
THRESH=0.5*MAX(MAX(ABS(W(I,N2/2)),I=1,N1),
MAX(ABS(W(N1/2,I)),I=1,N2))
\]
where W is the array of Laplacian values.

Using THRESH, the zero-crossings are determined:
NZC - the no. of zero-crossings
XZC,YZC - the X,Y locations of the zero-crossings
The search proceeds from XOL to XIL then from XOH to XIH for each Y from 2 to N_2-1. Next, the y direction is searched from YOL to YIL then from YOH to YIH for each X from 2 to N_1-1.

Let $W(I)$ represent a segment of a row or column from the Laplacian array that is being searched for the zero-crossings, with (I) increasing toward the center of the solar disk. If a zero-crossing occurs between $W(I)$ & $W(I+1)$, the exact position is determined by linear interpolation. The zero-crossing is used if

\[|W(I-N)| > \text{THRESH} \]
\[|W(I-N)| > |W(I-N+1)| > \ldots > |W(I)| \]
\[\text{where } N \text{ can be } \geq 0 \]
\[|W(I+1)| > 0.75 \times \text{THRESH} \]
\[|W(I+2)| > 0.75 \times \text{THRESH} \]

There is an Upper and Lower Limit for the no. of zero-crossings.

Lower Limit Test:
If the no. of zero-crossings is less than
\[0.75 \times (\text{AE} + \min(XC, \text{AE}) + \text{BE} + \min(YC, \text{BE})) \]
either
\[\text{THRESH is decreased to } \frac{\text{THRESH}}{10} \]
or if THRESH has previously failed the upper limit test
\[\text{THRESH} = 0.5 \times (\text{THRESH} + \text{value of THRESH at the time of the upper limit test}) \]
and the zero-crossings search is repeated.

Upper Limit Test:
If the no. of zero-crossings is greater than $4 \times (N_1+N_2)$, either
\[\text{THRESH is increased to } \text{THRESH} \times 10.0 \]
or if THRESH has previously failed the lower limit test
\[\text{THRESH} = 0.5 \times (\text{THRESH} + \text{value of THRESH at the time of the lower limit test}) \]
and the zero-crossings search is repeated.

The adjustment of THRESH and the search for zero-crossings will be repeated 10 times, after which the program will fail with an error message.

The least squares fit determines the parameters XC, YC, CXX, CXY, CYY for the ellipse
\[CXX \times (X-XC)^2 - CXY \times (X-XC) \times (Y-YC) + CYY \times (Y-YC)^2 = 1.0 \]
by minimizing
\[
E=\sum \left(\begin{align*}
(CXX*(XZCA(I)-XC)**2-CXY*(XZCA(I)-XC)*(YZCA(I)-YC) \\
+CYY*(YZCA(I)-YC)**2-1.0)**2 \\
\text{for } I=1,NZC
\end{align*} \right)
\]

The equations to determine the parameters are obtained by setting the derivatives of \(E \) with respect to the parameters equal to zero.

\[
\begin{align*}
XC: \quad & -CXX*DX+CXY*DY/2.0 \\
YC: \quad & -CYY*DY+CXY*DX/2.0 \\
AE: \quad & (-COSA**2*DX**2-2.0*SINA*COSA*DX*DY-SINA**2*DY**2)/AE**3 \\
BE: \quad & (-SINA**2*DX**2+2.0*SINA*COSA*DX*DY-COSA**2*DY**2)/BE**3 \\
ANG: \quad & +CXY*DX**2/2.0-(CXX-CYY)*DX*DY-CXY*DY**2/2.0
\end{align*}
\]

where \(DX=XZCA(I)-XC \) and \(DY=YZCA(I)-YC \)

and \(ANG \) above is in radians.

The matrix is preconditioned so that the equation solver will fit 5 parameters even if the limb is circular (i.e., \(ANG \) is undefined and if not preconditioned the equation solver will terminate with a divide by zero). This preconditioning consists of adding 0.005 times the average of the diagonal matrix elements for \(XC, YC, AE, \) and \(BE \) to the diagonal matrix element for \(ANG \).

Spurious points are then rejected.

The location of the zero crossings are compared to the new ellipse. The points for which

\[
\text{ABS(1.-R).le.PCFIT/100.0}
\]

are retained, where

\[
R=CXX*(XZCA(I)-XC)**2-CXY*(XZCA(I)-XC)*(YZCA(I)-YC) \\
+CYY*(YZCA(I)-YC)**2
\]

The least squares fit is performed a second time with the shorter list of zero-crossings.

The least squares fitting algorithm can fail for a variety of reasons. Often these failures are caused by a search zone that does not contain the limb of the SUN. Two failure modes are trapped: the maximum number of interactions is 50, and the semi-major and semi-minor axes determined from each interaction must be less than the maximum dimension of the image, \(\text{MAX(N1,N2)} \). If either of these two failure modes are detected, \(\text{FNDLMB} \) will set the limb parameters to the values of the input parameters and if \(\text{UPDHDR=YES} \), will add the parameter and value, \(\text{FILLED=NO} \), to the image header and will continue processing normally.

EXAMPLES
A.4 VELFIT help page

Below is a transcription of the text that appears at: http://gong.nso.edu/data/iraf_help/velfit.html as accessed on December 14th, 2015 (VELFIT help page 1997).

NAME
 velfit -- Fits the average solar observer motion to the ephemeris velocity.

USAGE
 velfit in_file aver_file

PARAMETERS

 in_file
 The filename of containing the list of input images.

 aver_file
 The qacV file containing the average velocity table. These files are produced by VMICAL and are available in the DSDS.

 sigma = 3
The clip value for the sigma filter.

passes = 2
 The number of passes through the sigma clip filter.

device
 Graphics output device for the qa plot. Setting device = "none" or "" suppresses output.

verbose
 Verbose output, useful for tracking the results through each pass of the filter.

DESCRIPTION

VELFIT is a procedure to correct the observed Earth - Sun relative velocity using a linear fit. The program extracts all the information it needs to perform the fit from the image headers and the qac file. Then it calculates a bias and scale factor to correct the images. These numbers are applied to the average velocities according to the equation:

 Ve = s * Va - B

Where Ve is the ephemeris velocity, Va is the average velocity, s is the scale factor and B is the bias correction.

All images whose hour angle is less than 30 degrees above the horizon are ignored. The sigma filter is used to isolate and remove anomalous images. After the bias and scale factor are computed, they are applied to the average velocities and their results are compared to the sigma clip value. Values that are higher than the clip value are removed before the next filter pass. The filter will not alter the image headers, the only way to know if an image was removed is using the verbose option.

VELFIT updates the header keywords VEL_BIAS and VELSCALE. It does not apply those numbers to the images.

NOTE: The values for sigma and passes should be left at their default.

EXAMPLES

1. Normal operation where printing is suppressed.
cl> files bbvzi960324* > inlist

cl> velfit inlist bbqacV960324 device="" verbose-

2. Direct the QA plot to a printer and give full verbose output.

cl> velfit inlist bbqacV960324 device=stdplot verbose+

TIME REQUIREMENTS

About 10 minutes on a Sparc 20/61.

BUGS

SEE ALSO

vfit