Biocomputational prediction of small non-coding RNAs in Streptomyces
Josef Pánek*, Jan Bobek, Karel Mikulík, Marek Basler and Jiří Vohradský

Address: Laboratory of Bioinformatics, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Email: Josef Pánek* - panek@biomed.cas.cz; Jan Bobek - bobek@biomed.cas.cz; Karel Mikulík - mikulik@biomed.cas.cz; Marek Basler - basler@biomed.cas.cz; Jiří Vohradský - vohr@biomed.cas.cz
* Corresponding author

Abstract

Background: The first systematic study of small non-coding RNAs (sRNA, ncRNA) in Streptomyces is presented. Except for a few exceptions, the Streptomyces sRNAs, as well as the sRNAs in other genera of the Actinomyces group, have remained unstudied. This study was based on sequence conservation in intergenic regions of Streptomyces, localization of transcription termination factors, and genomic arrangement of genes flanking the predicted sRNAs.

Results: Thirty-two potential sRNAs in Streptomyces were predicted. Of these, expression of 20 was detected by microarrays and RT-PCR. The prediction was validated by a structure based computational approach. Two predicted sRNAs were found to be terminated by transcription termination factors different from the Rho-independent terminators. One predicted sRNA was identified computationally with high probability as a Streptomyces 6S RNA. Out of the 32 predicted sRNAs, 24 were found to be structurally dissimilar from known sRNAs.

Conclusion: Streptomyces is the largest genus of Actinomyces, whose sRNAs have not been studied. The Actinomyces is a group of bacterial species with unique genomes and phenotypes. Therefore, in Actinomyces, new unique bacterial sRNAs may be identified. The sequence and structural dissimilarity of the predicted Streptomyces sRNAs demonstrated by this study serve as the first evidence of the uniqueness of Actinomyces sRNAs.

Background

Small untranslated RNAs (ncRNAs, sRNAs) with 50–1000 nts have been found to control a great variety of cellular processes in prokaryotic species [1]. Most bacterial sRNAs known to date act as post-transcriptional regulators by interacting with 5’ leader regions of mRNAs, modulating mRNA stability and the ability of mRNAs to be translated [2]. The sRNAs are also known to interact with cellular proteins to modulate their activities. A well known example widely conserved in prokaryotes is the 6S RNA interaction which modulates σ70-holoenzyme activity [3]. Also, a few sRNAs (e.g. tmRNA) that serve housekeeping functions in streptomycetes have been identified [4].

The first bacterial sRNAs were discovered experimentally in E. coli [5-9]. Their common structural and functional features were elucidated and parameterized, and used for biocomputational prediction of novel sRNAs [10-13]. These features included conservation of intergenic regions (IGRs) in closely related bacterial species, the presence of predicted Rho-independent terminators and promoters, and genomic arrangement. Based on these features, the
biocomputational searches identified new bacterial sRNAs in *E. coli* and closely related bacteria in the last few years.

The features originally used in biocomputational predictions in *E. coli* were applied to predict sRNAs in different bacterial species with various species-specific modifications. A consensus sequence for the σ^34^ promoter was used as a criterion for sRNA prediction in *Vibrio cholerae* [14]. Similarly, a consensus sequence for the Fur repressor binding site was applied in *Pseudomonas aeruginosa* [15].

Also, other characteristic features were used for prediction of sRNAs. In cyanobacteria, the sRNAs were predicted based on computationally inferred conservation of RNA secondary structure [16]. In *V. cholerae*, the sRNAs were predicted based purely on IGR conservation and predicted Rho-independent transcriptional terminators, when specific criteria, such as a distances of either terminator or flanking genes from the conserved sequence were applied to the genomic arrangement of the predicted sRNA genes [17]. These criteria were generalized and used for sRNAs prediction in 10 diverse pathogens using a high throughput algorithmic approach [2]. The prediction also included bacterial species distantly related to *E. coli*; however, in total, only a few bacterial species distantly related to *E. coli* were studied. Also, the number of sRNAs known in *Streptomyces* is much smaller than in *E. coli*, where more than 100 sRNAs are known so far [1].

Very little is known about sRNAs in *Actinomyces*, particularly *Streptomyces*, the largest genus of *Actinomyces* with a high genomic GC-content. *Actinomyces* produce a variety of secondary metabolites, including antibiotics, and have a complex developmental cycle including growth phases from spores to vegetative forms. The intricate life cycle, together with an exceptionally large genome, suggests a complex regulatory machinery with a high number of sRNAs. However, so far, only three *Streptomyces* sRNAs (SRP bact, tmRNA and RNAseP bact a) and seven cis-regulating riboswitches were reported in the Rfam sRNA database [18]. Therefore, we aimed to predict more *Streptomyces* sRNAs, and in this study we present thirty-two *Streptomyces* sRNAs. The prediction employed IGR sequence conservation, co-localization of transcription termination factors and genomic arrangement. Expression of the predicted sRNAs was examined by microarrays and RT-PCR.

Results

sRNA prediction using Rho-independent transcription terminators

The presented prediction was based on the work of Arga
man *et al.* [10], Wassarman *et al.* [19] and Rivas *et al.* [20]. It was based on sequence conservation in the intergenic regions (IGRs) of fully sequenced genomes, co-localized transcription terminators and genomic arrangement of the predicted sRNA genes.

In *Streptomyces*, two species have been fully sequenced to date, *S. coelicolor* and *S. avermitilis*, and their genomic sequences were used for the prediction. Using TIGR annotations, IGR sequences were identified in both genomes. There were 3753 and 4292 IGR sequences with lengths between 40 and 1000 nt identified in *S. coelicolor* and *S. avermitilis*, respectively. In these IGR sequences, the conservation was computed using BLAST [21]. BLAST databases were created for the *S. avermitilis* and *S. coelicolor* IGR sequences, and single IGR sequences were BLASTed against the database of the other species. The BLAST parameters were
- r -t -G I -E W -F "m D" -U -m 8.

For the conserved IGR sequences, co-localized Rho-independent terminators were identified. They had to start not farther than 50 nt downstream of the 3’ end of the conserved sequences, oriented appropriately. The terminators were predicted by TransTermHP [22] with confidence > 75%. TransTermHP identifies the terminators by searching for a common mRNA motif: a hairpin structure followed by a short uracil-rich region. For each terminator, a score is assigned reflecting hairpin stability and related to the likelihood that it arose by chance.

For estimation of the BLAST E-value cut-off for significant sequence conservation, three different cut-off values, 1 × 10^-5^, 1 × 10^-10^ and 1 × 10^-20^, were applied. They produced 1666, 1233 and 710 conserved IGR sequences, respectively. Among these, 63, 51 and 37 of the conserved IGR sequences had co-localized terminators. These decreased numbers showed that the screen was not sensitive to the terminator filter, but instead depended solely on the cut-off value, as more conserved sequences could have more co-localized terminators. Therefore, another indication for the cut-off estimate was required. To this end, the E-values between the three known *S. coelicolor* and *S. avermitilis* sRNAs, tmRNA, M1 RNA and 4.5S RNA, were computed. Their E-values were 2 × 10^-13^, 9 × 10^-34^ and 2 × 10^-42^, respectively. In our dataset, we also identified two tRNAs that could also be considered as sRNAs with conserved structures. They had E-values of 6 × 10^-26^ (tRNA ala) and 2 × 10^-27^ (tRNA gly) (Table 1). These E-values were relatively much higher, while still representing strong conservation. If the cut-off was derived from the E-values of the three known sRNAs, sRNAs between 6 × 10^-28^ and 2 × 10^-42^ could be missed by the prediction. Therefore, the three known *S. coelicolor* sRNAs were BLASTed against the corresponding *E. coli* sRNAs. The E-values were
- 1 × 10^-14^, 6 × 10^-6^ and 0.068 for M1 RNA, tmRNA and 4.5S RNA, respectively. Assuming that the sRNA conservation between *S. coelicolor* and *S. avermitilis* should be stronger
than between S. coelicolor and distantly related E. coli, the BLAST E-value cut-off was chosen to be 1×10^{-20}, lower than any of the three E-values.

Using the E-value cut-off of 1×10^{-20}, we obtained 710 conserved sequences in IGRs of the S. coelicolor and S. avermitilis genomes. Out of the 710 conserved IGR sequences,

Table 1: Streptomyces sRNAs predicted using Rho-independent terminators

ID#	Exp.	Length	Strand	Genomic coordinates	E-value	$5' \text{ flanking gene distance}$	$5' \text{ flanking gene termination\&}$	RNAz probability @
4	++	78	\leftrightarrow	3082276..3082354	7×10^{-25}	267	1	
17	-0	161	\leftrightarrow	6702716..6702877	4×10^{-53}	131	1	
36	-0	72	\leftrightarrow	7719646..7719718	2×10^{-30}	274	0.98	
73	++	53	\rightarrow	6800040..6800093	2×10^{-22}	122	0.91	
84	-0	32	\rightarrow	4153086..4153118	2×10^{-27}	111	0.59	
95	+.	312	\rightarrow	6412268..6412579	3×10^{-127}	10	0.7	
96	-0	92	\rightarrow	6393104..6393196	3×10^{-77}	0	-	
114	SS RNA	+0	132	\leftrightarrow	1916349..1916571	9×10^{-47}	0	1

† The first symbol stands for detection of expression by microarrays (expressed: '+', not expressed: '-'), the second one for RT-PCR confirmation of the expression (expressed: '+', not expressed: '-'). '0' stands for not applied.

* The double arrows represent sRNA gene, the arrows flanking genes. Right sided arrows show the complementary strand.

& Applicable only if the predicted sRNA and the gene flanking its 5' end are on the same strand. 'C-rich' and 'Rho-ind.' terms indicate the type of the transcription termination of the genes flanking 5' end of the predicted sRNAs. Genomic coordinates of the termination factors follow. The question mark for ID# 222 indicates a questionable C-rich stretch.

@ RNAz RNA-class probability. The higher this value, the more confident is the prediction of the functional RNA.
37, with co-localized terminators, were considered to be potential sRNA genes (Table 1 and Table S1 in Additional file 1). Two sRNAs were predicted within one IGR (denoted as ID # 413.1 and 413.2 in Table 1), since two Rho-independent terminators were localized within a single IGR sequence. The 37 predicted sRNAs included two known Streptomyces sRNAs (tmRNA, 4.5S RNA), three tRNAs (tRNAs for alanine, lysine and glycine) and a 5S rRNA (Table 1) that were not included in the annotations used for the prediction. They therefore could not be excluded from the prediction and served as standards.

sRNA prediction using alternative transcription termination

Two known Streptomyces sRNAs (tmRNA, 4.5S RNA) were identified in the previous section using Rho-independent terminators. However, the third known Streptomyces sRNA, M1 RNA, was not found. This was due to its lack of a Rho-independent terminator. Instead of the terminator, we found a C-rich stretch with C-content of 73% (Figure 1a). It also had a structure with properties similar to the stem-loop structure of Rho-independent terminators [10] (Figure 1c). The termination of the M1 gene differed in *S. coelicolor* and *S. avermitilis*, as in *S. avermitilis*, a Rho-independent terminator was found at genomic coordinates 7094081 – 7094112 (Figure 1b). The terminator was predicted by TransTermHP with a high confidence (87%).

These data suggested that Streptomyces sRNAs might be terminated by a C-rich stretch stem-loop different from the classical Rho-independent terminator. We thus searched the conserved IGR sequences that lacked the co-localized
Rho-independent terminators for the C-rich stem-loop. To this end, C-rich stretches were sought in 50 nt segments flanking the ends of the conserved IGR sequences. The stretches with G/C content > 75% and C content > 60% were folded using the RNAstructure program [23]. The structures were required to have at least 10 nt in the loop and 3 – 5 base pairs in the stem for them to be considered possible terminating factors. These properties were derived from the C-rich stem-loop of the M1 gene. Besides the M1 RNA gene, one gene was identified with such a C-rich stem-loop (ID # 60; Figure 1d). Together with the 31 sRNAs predicted using the Rho-independent terminator, the total of new predicted sRNAs was now 32.

Genomic arrangement of the predicted sRNAs

Out of the 32 new predicted sRNAs and known Streptomyces sRNAs left in the dataset as standards (three known Streptomyces sRNAs, three tRNAs and a 5S RNA), 10 were localized on the same strand as the genes that flanked their 5’ ends (5’-flanking genes) (Table 1). These 10 sRNAs needed to be distinguished from the 3’ UTRs of mRNAs. Therefore, their 5’-flanking genes were inspected for transcription termination. Either Rho-independent terminators or C-rich stretches indicating the Rho-dependent termination were considered. The Rho-independent terminators were predicted by TransTermHP [22] and they were required to be localized in between the 5’ end of the predicted sRNA and 100 nt upstream of the 3’ end of the 5’-flanking gene, oriented appropriately. Three predicted sRNAs were found with such a genomic arrangement: two newly predicted sRNAs (ID # 445 and 472) and the tRNA for lysine (ID # 482) (Table 1).

To detect the Rho-dependent transcription termination, C-rich 30-mers were sought in between the 5’ ends of the predicted sRNAs and 100 nt upstream 3’ ends of the 5’-flanking genes. The C-rich 30-mers with C content between 35% and 60% have been reported to be required for one type of Rho-dependent transcription termination between 35% and 60% have been reported to be required for one type of Rho-dependent transcription termination. Here, 30-mers with C content > 60% were required, as expected, the mismatches decreased the microarray signal by decreasing specificity of hybridization. Out of the 32 predicted sRNAs, 20 were found to be expressed (Table 1 and 2).

The expression of sRNAs was further verified using RT-PCR. The 20 predicted sRNAs whose expression was detected by microarrays were reverse-transcribed using primers (18-mers) designed to match the predicted sRNA sequences immediately upstream of the transcription terminators. RNA samples were acquired in those growth phases that corresponded to the highest microarray signal. The RT-PCR recognized expression of 9 predicted sRNAs (Figure 2, Table 1 and 2).

Table 2: Streptomyces sRNAs predicted using an alternative transcription termination.

ID#	Exp.†	Length Strand*	Genomic coordinates	E-value	5’-flanking gene distance	5’ flanking gene termination‡	RNAz probability @	
	++	252	← →	7243744..7243995	2 × 10⁻⁷⁴	17	C-rich, 2463157..2463177	0.99
60	++	320	← ← ←	2462901..2463220	9 × 10⁻⁹⁴	2		
544	M1 RNA	++	← ← ←	C-rich				

† The first symbol stands for detection of expression by microarrays (expressed: ‘+’, not expressed: ‘-’), the second one for RT-PCR confirmation of the expression (expressed: ‘+’, not expressed: ‘-’). ‘0’ stands for not applied.
* The double arrows represent sRNA gene, the arrows flanking genes. Right sided arrows show the complementary strand.
‡ Applicable only if the predicted sRNA and the gene flanking its 5’ end are on the same strand. ‘C-rich’ stands for C-rich stretch of possible Rho-dependent transcription termination. ‘Rho-ind.’ stands for a predicted Rho-independent terminator. The number following show the genomic coordinates of the termination factors.
@ In alignments with P < 0.5 a functional RNA is predicted. The higher this value, the more confident is the prediction.
or no prediction occurred because of too many gaps in their alignments. The 29 sRNAs were predicted to be functional sRNAs, for most of them (23) the probability was highly significant (> 0.9). The probabilities were included in the last column of Table 1.

To identify sequence similarities, the predicted sRNAs were computationally compared to sequences of known sRNAs of other species in Rfam database. The sequence similarity was computed using BLAST. The BLAST parameters were set as follows: -r 5 -q -4 -G 10 -E 6 -W 7 -F "m D" -U. The BLAST bit score cut-off for the Rfam database was 23.3 (the log2 of the size of the target database). The seven known Streptomyces sRNAs among the predicted sRNAs were identified correctly with bit scores > 100. Other BLAST hits (with bit scores between the cut-off and 100) were strongly ambiguous (except for one, as explained later), and they were most likely not biologically significant. Therefore, the biologically significant bit score cut-off was considered to be 100. No other BLAST hits with bit scores higher than this cut-off were found.

The predicted sRNAs were also matched against Rfam families using the Infernal package [28]. The Infernal method scores sequence and structure similarity at the same time. Moreover, Infernal uses consensus sequences and structures of the query sRNAs instead of single sequences. To this end, the sRNA sequences of S. coelicolor and S. avermitilis were aligned by ClustalW [29], and consensus structure was predicted using RNAalifold [30] from the alignments. Infernal was applied to the consensus structures in the local mode and without the HMM filter. The local mode was used since the Streptomyces sRNAs were supposed to have sequences and structures very different from most species in Rfam. Nevertheless, they might retain local similarities especially in the conserved functional sites. The local mode increases the probability of detection of such local similarities, as it allows for detection of partial similarities of the query model and target sequence. The HMM filter was not used in order to attain as sensitive a search as possible. The three known Streptomyces sRNAs, three tRNAs and the 5S RNA were among the predicted sRNAs that were identified correctly with bit scores > 50, and therefore the biologically significant bit score cut-off was estimated to be 50. However, no other hits with bit scores higher than this cut-off were found.

We identified function features within the predicted sRNAs. The function features were derived from the

Figure 2
RT-PCR of predicted Streptomyces sRNAs. Numbers above the lanes show the ID # of the predicted sRNAs (as in Table 1 and 2). Standards are shown in the M lane at the right side of the figure.
known sRNAs of other species that were also expected to function in Streptomyces. They were M1, tm, 4.5S, spot42, 6S, oxyS, csrB, rprA, rhyB, dicF and micF RNAs [31]. The function features were identified based on expert knowledge, and were characterized by local sequences and local structures. They were mostly localized in the function sites of the sRNAs. The characteristic sequences and structures were identified in the sequences and structures of the predicted Streptomyces sRNAs. Significant hits were obtained in four cases: the three known Streptomyces sRNAs and the predicted sRNA ID # 389. The ID # 389 sRNA and the 4.5S RNA are shown in Figures 4 and 3, respectively, to demonstrate their analogous similarities to the known sRNAs of other species. In the case of Streptomyces 4.5S RNA, the conserved function features were identified at nt 38 – 59 and nt 26 – 35 (Figure 3a). Analogously for the ID # 389 predicted sRNA, the conserved function features were identified at nt 75 – 90, 117 – 120, 124–128 and 148 – 161 (Figure 4a).

We therefore concentrated on the ID # 389 sRNA. It was the only unambiguous BLAST hit to the Rfam with a bit score (27.3) between the biologically significant and minimal significant bit score cut-offs. Its sequence corresponded to the only unambiguously identified promoter, when the promoters were sought manually for the predicted sRNAs. It was the Streptomyces σH transcription factor that corresponded to the σ70 factor that is specific in E. coli for 6S RNA. Based on the promoter position, the length of the ID # 389 sRNA was determined to be 181 nt, which was similar to the lengths of known 6S RNAs (188 and 184 nt for B. subtilis and E. coli, respectively).

Discussion

A systematic search for sRNAs in Streptomyces is reported. Thirty-two previously unknown Streptomyces sRNAs were predicted and their expression was experimentally examined by microarrays and RT-PCR. For most of the sRNAs, a high probability of functionality and high structure conservation were predicted using a computational analysis. Functional features were identified in one of the sRNAs, suggesting that it is a Streptomyces 6S RNA.

In two of the predicted sRNA genes, a terminating C-rich stretch was found instead of a Rho-independent terminator. The C-rich stretch might be related to the Rho-dependent transcription termination mechanism [24,25]. However, the secondary structure of the C-rich stretch resembled the stem-loop structure of Rho-independent terminators. This similarity suggested that the C-rich stem-loop might be a Streptomyces-specific Rho-independent transcription terminator that differs from the “classical” Rho-independent terminator in details, but not in the overall structure. Supporting evidence includes two sRNA genes terminated by the C-rich stretch in S. coelicolor that are terminated by Rho-independent terminators in S. avermitilis. Considering the strong homology between S. avermitilis and S. coelicolor, one might also expect homologous transcription termination of these two genes. Whether the C-rich stem-loop structure is significant or not in transcription termination requires experimental verification. Nevertheless, the C-rich stem-loop structure was successfully used in the presented prediction.

In the previous studies [10,19,20], promoters served for verification of the 5’ ends of the predicted sRNAs. We could not use the promoters because a large number of Streptomyces promoters are unknown [32,33]. Also, the binding site sequences of 155 known Streptomyces promoters [34] were found to be ambiguous. Therefore, instead of promoters, we checked for transcription termination of 5’ flanking genes, i.e. genes that flanked 5’ ends of the predicted sRNAs, when the predicted sRNAs and their 5’ flanking genes were localized on the same strand. Not only was such a criterion useful for distinguishing the predicted sRNAs from the 3’ UTRs, but it also helped to estimate the length of the predicted sRNAs, when the promoters were unavailable.

In-depth analysis was carried out to identify the sequence and structure similarity of the predicted Streptomyces sRNAs to known sRNAs. However, a significant similarity was identified for only one of the novel predicted sRNAs. Thus, 24 predicted sRNAs (out of the total 32) were found to be dissimilar from the known sRNAs. The number was surprisingly high, suggesting strong sequence and structural dissimilarity of Streptomyces sRNAs. The dissimilarity of the 24 predicted sRNAs served as the first evidence of the uniqueness of Streptomyces sRNAs. The uniqueness most likely is related to the phenotypic and genomic dissimilarity of Streptomyces.

In the presented prediction, the experimental detection of expression of the predicted sRNAs was accomplished by the combination of microarrays and RT-PCR. These methods were used instead of Northern blots, where the Northern blot had been employed in most of the previous predictions [1]. The combination of microarrays and RT-PCR proved to be more sensitive than the Northern blot and had a much higher throughput. This was useful, as a relatively high number (39) of predicted sRNAs in several Streptomyces growth phases were required to be examined. A similar approach has been used before to overcome the poor sensitivity and low throughput of conventional technologies including the Northern blot [35]. When Northern blot was applied here, expression of only 5S RNA and tmRNA was detected (not shown). 5S RNA and tmRNA are expressed during the entire life cycle of Streptomyces, and therefore available in amounts sufficient for detection by Northern blot [36]. However, the other predicted
Figure 3
Structural similarity of the predicted Streptomyces sRNA ID # 329 (a) to 4.5S RNA of Mycobacterium leprae (b) and E. coli (c).
sRNAs might be expressed in short specific growth phases in amounts that were under the detection threshold of the Northern blot. One may argue that agreement between the lengths of the Northern blot transcripts and lengths of the predicted sRNAs validated the prediction and that the PCR transcripts have lengths less similar to the lengths of the predicted sRNAs. However, it was shown here that the length differences allow for a clear discrimination of the transcripts from the 3' UTRs of the mRNAs. This was demonstrated in Figure 2. The discrimination of sRNAs from 3' UTRs also was addressed computationally as the predic-

tion required the transcription termination to be present in the genes flanking the 5' ends of the predicted sRNAs.

Results of the presented study suggested that the rules valid for sRNA prediction in other bacteria could be used only partly in *Streptomyces*. This is most likely a result of two factors: 1. the phenotypic and genomic uniqueness of *Streptomyces*, 2. the lack of data, such as binding sites of promoters and/or repressors. In light of the two facts, further (functional) characterization of the predicted sRNAs would be spurious. Namely, the function prediction, based on function of flanking genes, might be very risky in *Streptomyces*, as *Streptomyces* have a relatively complex genomic organization. Therefore, the functional characterization requires wet-lab experiments.

The presented prediction is – to our knowledge – the first systematic search for sRNAs in *Actinomyces*. Function of the predicted sRNAs will be characterized experimentally. It may be expected that unique RNA functions will be revealed, due to the genomic and phenotypic uniqueness of *Actinomyces*. To identify remaining sRNAs, *Streptomyces* genomes sequenced in the near future and other *Actinomyces* genomes will be used (genome sequence of *S. griseus* is about to be finished, *S. ambdociens* is almost 75% finished). Also, new prediction criteria and experimental validation delivered by the presented study will be employed.

Methods

Computational prediction

Streptomyces avermitilis and *S. coelicolor* genomic sequences were imported from the NCBI ftp site [40]. ORF annotations were obtained from TIGR Comprehensive Microbial Resource [41], including tRNAs and rRNAs ORFs. The computation and algorithms used in this study was made using MATLAB and Bioinformatics toolbox [37].

Experimental verification

Strains, growth conditions and RNA isolation

Cultures of *S. coelicolor* A3(2) strain M145 were grown in NMMP liquid medium [38] at 28°C with shaking at 150 rpm, either to exponential phase (24 hours), transition into stationary phase correlating with the beginning of antibiotic production (48 hours), or late stationary phase (6 days). Exponentially growing cells were inoculated on PPS solid agar medium (% W/V: malt extract 1, yeast extract 0.4, glucose 0.4, agar 2; pH 7.2) and cultivated until sporulation (10 days). Samples (0.3 g wet weight) from all different stages of cell development were homogenized with glass beads (0.1 mm) in 1 ml RNA Blue (Top-Bio), and were processed four times for 40 seconds each in the FastPrep machine at setting 5.5 with cooling between the stages. Total RNA was isolated using RNA Blue (Top-Bio) according to the manufacturer’s protocol.
Each RNA sample was treated with 5 U of RQ1 RNase-free DNase I (Promega) at 37°C for 15 min, and RNA was precipitated with 2.5 vol of ethanol. Washed RNA with 75% ethanol, it was solubilized in 10 mM Tris, pH 8.0, and the RNA concentration was estimated by measuring absorbance at 260 nm.

Microarray analysis

Internal DNA oligonucleotides (Table S1 in Additional file 1) were designed for the 52 predicted sRNAs using the Primer3 program [39] with general conditions set. The oligonucleotides were spotted on microarray slides. Cy3/Cy5-labelled cDNA was synthesized from 15 μg of the RNA sample using random hexamers and Superscript II reverse transcriptase (Invitrogen). To detect expressed transcripts, the spotted oligonucleotides were hybridized with cDNA for 4 h at 58°C. Hybridized slides were washed in 1× SSC, 0.2% SDS (10 min); 0.1× SSC, 0.2% SDS (10 min); and 0.1× SSC (1 min) according to the Array-It protocol, and scanned on an Affymetrix GeneArray Scanner. Hybridization efficiency was established by means of GeneChip 3.1 software.

RT-PCR

From the transcripts, expression of which was detected by microarrays, 13 were chosen randomly for verification by reverse transcription and PCR amplification (RT-PCR). First strand cDNA was synthesized from 15 μg of total RNA harvested at different stages of cell growth (Superscript II, Gibco/BRL) using 18-mer primers designed to be complementary to the part preceding the terminal hairpin of the applicable sRNA. The resulting cDNA was polyadenylated on its 3’ end by terminal transferase (400 U; Roche). PCR (25 μL), containing the corresponding primer (sense), T(18)VN primer (anti-sense) and the 3’ polyA-cDNA as a template, was performed using Taq DNA polymerase (1,25 U; Fermentas).

PCR cycling consisted of a single incubation at 95°C for 5 min, followed by 38 cycles of 95°C for 30 s, 38°C for 30 s and 72°C for 1 min with a final single extension step of 72°C for 7 min.

Authors’ contributions

JP and KM initiated and conceived the study. JP designed and carried out the biocomputational prediction, functional analysis of the predicted sRNAs, and wrote the manuscript. KM participated in functional analysis of the predicted sRNAs based on expert knowledge. JB designed and carried out the experimental validation of expression of the predicted sRNAs. MB participated in the experimental validation. JV participated in coordination of the study and writing the manuscript. JV and KM provided critical feedback for the final version of the manuscript. All authors read and approved the final manuscript.

Additional material

Additional file 1

Supplementary tables

Click here for file http://www.biomedcentral.com/content/supplementary/1471-2164-9-217-S1.doc

Acknowledgements

The authors would like to thank William Bourn for providing the sequences of the Streptomyces promoters, and to Tomáš Vomastek and Petra Palek-ová for help in preparing the manuscript.

The work was supported by the Grant Agency of the Czech Republic, grant no. 204/07/P361, 203/05/0106 and 310/07/1009, the Grant Agency of the Czech Academy of Sciences AV0Z50200510, and EC Integrated Project ActinoGEN, LSHM-CT-2004-005224.

References

1. Vogel J, Sharma CM: How to find small non-coding RNAs in bacteria. *Biochimica et Biophysica Acta* 2005, 1758(12):1219-1238.
2. Linny J, Bencic A, Lory S, Waldor MK: Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. *Nucleic Acids Res* 2006, 34(12):3484-3493.
3. Wassarman KM, Storz G: 65 RNA regulates E. coli RNA polymerase activity. *Cell* 2000, 101(6):613-623.
4. Mikulik K, Paleckova P, Felsberg J, Bobek J, Zidkova J, Halada P: SSR genes of streptomycetes and association of proteins to the tmRNA during development and cellular differentiation. *Proteomics* 2008, 8(7):1429-41.
5. Wassarman KM, Zhang A, Storz G: Small RNAs in Escherichia coli. *Trends Microbiol* 1999, 7(1):37-45.
6. Vogel J, Bartels V, Tang TH, Churakov G, Slagter-Jager JG, Hutton-hofer A, Wagner EG: RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. *Nucleic Acids Res* 2003, 31(22):6435-6443.
7. Kawano M, Reynolds AA, Miranda-Rios J, Storz G: Detection of 5’- and 3’-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli. *Nucleic Acids Res* 2005, 33(3):1040-1050.
8. Tjaden B, Haynor DR, Stolyar S, Rosenow C, Kolker E: Identifying operons and untranslated regions of transcripts using Escherichia coli RNA expression analysis. *Bioinformatics* 2002, 18 Suppl 1:S337-44.
9. Zhang A, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S: Global analysis of small RNA and mRNA targets of Hfq. *Mol Microbiol* 2003, 50(4):1111-1124.
10. Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H, Altuvia S: Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. *Curr Biol* 2001, 11(12):941-950.
11. Chen S, Lesnik EA, Hall TA, Sampath R, Griffey RH, Ecker DJ, Blyn LB: A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. *Biosystems* 2002, 65(2-3):157-177.
12. Lesnik EA, Sampath R, Levene HB, Henderson TJ, McNeil JA, Ecker DJ: Prediction of rho-independent transcriptional terminators in Escherichia coli. *Nucleic Acids Res* 2001, 29(17):3583-3594.
13. Saetrom P, Sneve R, Kristiansen KI, Sneve O Jr., Grunfeld T, Rognes T, Seeberg E: Predicting non-coding RNA genes in Escherichia coli with boosted genetic programming. *Nucleic Acids Res* 2005, 33(10):3263-3270.
14. Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL: The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. *Cell* 2004, 118(1):25-37.
15. Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S, Ochsner UA, Vasil ML: Identification of tandem duplicate regul-
15. Axnaxrii IM, Kensec P, Vogel J, Kohli S, Herzel H, Hess WR: Identification of
yanobacterial non-coding RNAs by comparative genome analysis. Genome Biol 2005, 6(9):R73.
16. Grivitt-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A: Pfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 2005, 33(Database issue):D121-4.
17. MWassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S: Transcription is governed primarily by the upstream Rho utilization (rut) sequences of a terminator. J Mol Biol 2007, 371(35):19963-19977.
18. Jobrins-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A: Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 2005, 33(Database issue):D121-4.
19. Wasserman KM, Repoila F, Rosenow C, Storz G, Gottesman S: Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 2001, 15(13):1637-1651.
20. Rivas E, Klein RJ, Jones TA, Eddy SR: Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr Biol 2001, 11(17):1369-1373.
21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(1):403-410.
22. Kingsford CL, Ayanbule K, Salzberg SL: Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 2007, 8(2):R22.
23. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH: Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 2004, 101(19):7287-7292.
24. Richardson LV, Richardson JP: Rho-dependent termination of transcription is governed primarily by the upstream Rho utilization (rut) sequences of a terminator. J Biol Chem 1996, 271(35):21597-21603.
25. Platt R: Rho and RNA: models for recognition and response. Mol Microbiol 1994, 11(6):983-990.
26. Washietl S: Prediction of structural noncoding RNAs with RNAz. Methods Mol Biol 2007, 395:503-526.
27. Gruber AR, Neubock R, Hofacker IL, Washietl S: The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures. Nucleic Acids Res 2007, 35(Web Server issue):W335-8.
28. Dowell RD, Eddy SR: Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics 2006, 7:400.
29. Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
30. Hofacker IL: RNA consensus structure prediction with RNAalifold. Methods Mol Biol 2007, 395:527-544.
31. Mikuiluk K: Structure and functional properties of prokaryotic small noncoding RNAs. Folia Microbiol (Praga) 2003, 48(4):443-468.
32. Mazurakova V, Sevcikova B, Rezuchova B, Kormaneck J: Cascade of sigma factors in streptomycetes: identification of a new extracytoplasmic function sigma factor sigmaI that is under the control of the stress-response sigma factor sigmaH in Streptomyces coelicolor A3(2). Arch Microbiol 2006, 186(6):435-446.
33. Sevcikova B, Mazurakova V, Kormaneck J: Characterization of the alternative sigma factor sigmaAG in Streptomyces coelicolor A3(2). Folia Microbiol (Praga) 2005, 50(1):47-58.
34. Bourne WR, Babb B: Computer assisted identification and classification of streptomycete promoters. Nucleic Acids Res 1995, 23(18):3696-3703.
35. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP: Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 2007, 3(1):12.
36. Mikuiluk K, Paleckova P: Activity of ribosomes and tmRNA of Streptomyces aureofaciens during development and stress conditions induces by changes in temperature and the presence of antibiotics. In Communicating Current Research and Educational Topics and Trends in Applied Microbiology Edited by: Mendez-Vilas A, Badajoz J, Formatec; 2007:11-18.