Confined two-dimensional fermions at finite density

M. De Francia
H. Falomir
Departamento de Física, Facultad de Ciencias Exactas,
Universidad Nacional de La Plata,
c.c. 67, 1900 La Plata, Argentina.

M. Loewe
Facultad de Física,
Pontificia Universidad Católica de Chile,
Casilla 306, Santiago 22, Chile.

E. M. Santangelo
Departamento de Física, Facultad de Ciencias Exactas,
Universidad Nacional de La Plata,
c.c. 67, 1900 La Plata, Argentina.

December 14, 2017

Abstract
We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.

PACS: 03.65.Db, 11.10.Wx, 12.39.Ba.
1 Introduction

The thermodynamics of hadronic matter has recently received great attention [1], mainly in connection with the possible occurrence of a deconfining phase transition at finite temperature. The difficulty of studying this transition in the framework of QCD comes from the fact that confinement has not been deduced in this theoretical context.

Consequently, effective models as, for example, the bag models [2, 3] have been introduced to mimic the confining properties of strong interactions. In these models, fields are confined to bounded regions and subject to adequate boundary conditions. Finite volume effects turn out to be relevant, and they have been studied in the thermodynamical limit, for instance, in [4], and for a nonvanishing chemical potential in [5].

A complete analysis of the free energy for an MIT bag model at $T > 0$, with $\mu = 0$, has been performed in [6]. The corrections introduced by chiral boundary conditions have also been studied [7]. Functional methods have been used in these papers to isolate the finite temperature dependent pieces from the (divergent) Casimir energy.

The aim of the present paper is to study the possibility of introducing a nonvanishing chemical potential through “twisted” boundary conditions in the Euclidean time direction and treat it following the methods developed in [6, 8]. As a first approach to this problem we present here the evaluation of the Gibbs free energy for the simple model of massless 1 + 1-dimensional fermions confined to a segment, for T and $\mu \neq 0$.

Even though, for this toy model, the eigenvalue problem can be exactly solved, we will rather follow an alternative approach. We will relate differences of free energies of the system to the Green function satisfying adequate (spatial and temporal) boundary conditions. This approach is more likely useful in the realistic four dimensional case, where eigenvalues cannot be explicitly solved for. In section 4, we will reobtain the results in Section 2, making use of the functional method developed in [8], which is based on the evaluation of p-determinants.

2 Two-dimensional fermions with $\mu \neq 0$.

We consider a system of two-dimensional fermions confined in the segment $[0, L]$ and subject to given boundary conditions. As is well known, the chemical potential can be introduced as an imaginary constant temporal gauge field [9]. If the temperature is T and the chemical potential is μ, the Grand canonical...
partition function can be expressed as

$$\Xi(T, L, \mu) = e^{-\beta G(T, L, \mu)}$$

$$= \int D\bar{\psi} \int_0^t dt \int_0^1 dx \bar{\psi} (D(\beta, L) - i\mu \gamma^0) \psi$$

$$\sim Det (D(\beta, L) - i\mu \gamma^0)_{bc}$$

where

$$D(\beta, L) = \frac{i}{\beta} \gamma^0 \partial_t + \frac{i}{L} \gamma^1 \partial_x,$$ for $0 \leq t, x \leq 1,$ (2)

with

$$\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \gamma^1 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \gamma^5 = -i \gamma^0 \gamma^1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$ (3)

and "bc" means that we must evaluate the functional determinant of the differential operator defined on functions satisfying the boundary conditions:

$$B\psi(t, x) = 0, \text{ for } x = 0, 1,$$

$$\psi(1, x) = -\psi(0, x).$$ (4)

Here B denotes an elliptic boundary condition to be satisfied at the spatial edges.

So, we have the following relation for the Gibbs free energy:

$$-\beta \frac{\partial G}{\partial \mu}(\beta, L, \mu) = Tr \left\{ \frac{\partial}{\partial \mu} \ln (D(\beta, L) - i\mu \gamma^0)_{bc} \right\}$$

$$= Tr \left\{ -i \gamma^0 K_{bc}(t, x; t', x') \right\},$$ (5)

where $K_{bc}(t, x; t', x')$ is the Green function of the problem, satisfying

$$K_{bc}(t, x; t', x') = \delta(x - x') \delta(t - t'),$$

$$BK_{bc}(t, x; t', x') = 0, \text{ for } x = 0, 1,$$

$$K_{bc}(1, x; t', x') = -K_{bc}(0, x; t', x').$$ (6)

This can also be expressed in terms of

$$D(\beta, L) = e^{\mu \beta t} D(\beta, L) e^{-\mu \beta t},$$

$$K_{bc}(t, x; t', x') = e^{\mu \beta t} K(t, x; t', x') e^{-\mu \beta t},$$ (7)
where \(k(t, x; t', x') \) is the Green function of the problem

\[
D(\beta, L) k(t, x; t', x') = \delta(x - x')\delta(t - t')
\]

\[Be^{\mu \beta}k(t, x; t', x') = 0, \text{ for } x = 0, 1, \quad (8)
\]

\[k(1, x; t', x') + e^{-\mu \beta}k(0, x; t', x') = 0.
\]

This function has the development

\[
k(t, x; t', x') = \sum_{n=\infty}^{L} k_n(x, x') e^{-i\Omega_n \beta(t - t')},
\]

with the frequencies given by

\[
\Omega_n = \omega_n - i\mu,
\]

\[
\omega_n = \frac{(2n + 1)\pi}{\beta}, \text{ for } n \in \mathbb{Z}.
\]

The coefficients satisfy

\[
k_n(x, x') = e^{\gamma \Omega_n L x} k_n(0, x') - i\gamma e^{-\gamma \Omega_n L(x - x')} H(x, x'),
\]

with

\[
H(x) = \begin{cases}
1, & \text{for } x > 0, \\
0, & \text{for } x < 0.
\end{cases}
\]

Now, we must impose the boundary conditions on the spatial edges. We will adopt a static “bag-like” condition

\[
(B\psi)(t, x) = (1 + \gamma 1)\psi(t, x) = 0, \text{ for } x = 0, 1, \quad (13)
\]

such that, at \(x = 0, \)

\[
(1 - \gamma 1)k_n(0, x') = \begin{pmatrix} \frac{1}{i} & 1 \end{pmatrix} k_n(0, x') = 0. \quad (14)
\]

This implies that

\[
k_n(0, x') = \begin{pmatrix} 1 \\ i \end{pmatrix} \otimes \begin{pmatrix} f(x') \\ g(x') \end{pmatrix}.
\]

On the other hand, at \(x = 1, \)

\[
(1 + \gamma 1)k_n(1, x') = 0,
\]

\[4\]
which means that

\[
\begin{pmatrix} 1 & -i \end{pmatrix} \left[e^{\gamma_5 \Omega_n L x} \begin{pmatrix} 1 \\ i \end{pmatrix} \otimes \begin{pmatrix} f(x') & g(x') \end{pmatrix} - i \gamma^1 e^{-\gamma_5 \Omega_n L (1-x')} \right] = 0. \tag{17}
\]

This gives

\[
k(t, x; t', x') = i L \sum_{n=-\infty}^{\infty} \left[\frac{e^{\gamma_5 \Omega_n L x}}{2 \cosh(\Omega_n L)} \left(1 + \gamma^1 \right) e^{-\gamma_5 \Omega_n L (1-x')} \right.
\]

\[
- \gamma^1 e^{-\gamma_5 \Omega_n L (x-x')} H(x-x') \left. e^{-i \Omega_n \beta (t-t')} \right]. \tag{18}
\]

So, we have for the derivative of the free energy

\[
-\beta \frac{\partial G}{\partial \mu_0} (\beta, L, \mu) = Tr \left\{ -i \gamma^0 e^{\mu \beta t} k(t, x; t', x') e^{-\mu \beta t} \right\}
\]

\[
= L \int_0^1 \int_0^1 dt \, tr \left\{ \gamma^0 e^{\mu \beta (t-t')} \sum_{n=-\infty}^{\infty} \left[\frac{e^{-\gamma_5 \Omega_n L (1-x-x')}}{2 \cosh(\Omega_n L)} - e^{-\gamma_5 \Omega_n L (x-x')} H(x-x') \right] e^{-i \Omega_n \beta (t-t')} \right\} \big|_{(t', x')=(x, t)}. \tag{19}
\]

For \(0 < x, x' < 1\), the first term in the series converges absolutely and uniformly, even at \((t, x) = (t', x')\). So, it can be summed up in any order; in particular, one can first take the trace as a matrix, obtaining a vanishing result. This is not the case for the second term, containing the \(\gamma^1\)-matrix. In fact,

\[
\sum_{n=-\infty}^{\infty} \left(\frac{e^{-\gamma_5 \Omega_n L (1-x-x')}}{2 \cosh(\Omega_n L)} - e^{-\gamma_5 \Omega_n L (x-x')} H(x-x') \right) e^{-i \Omega_n \beta (t-t')} =
\]

\[
\sum_{n=0}^{\infty} \left[\frac{e^{-\gamma_5 \Omega_n L (1-x-x')}}{2 \cosh(\Omega_n L)} - e^{-\gamma_5 \Omega_n L (x-x')} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right] e^{-i \Omega_n \beta (t-t')} + \sum_{n=-\infty}^{-1} \left[\frac{e^{-\gamma_5 \Omega_n L (1-x-x')}}{2 \cosh(\Omega_n L)} - e^{-\gamma_5 \Omega_n L (x-x')} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right] e^{-i \Omega_n \beta (t-t')} \tag{20}
\]

\[
+ \sum_{n=0}^{\infty} e^{-\gamma_5 \Omega_n L (x-x')} \begin{pmatrix} -H(x-x') & 0 \\ 0 & H(x'-x) \end{pmatrix} e^{-i \Omega_n \beta (t-t')} + \sum_{n=-\infty}^{-1} e^{-\gamma_5 \Omega_n L (x-x')} \begin{pmatrix} H(x'-x) & 0 \\ 0 & -H(x-x') \end{pmatrix} e^{-i \Omega_n \beta (t-t')},
\]

where the first two terms in the right hand side are absolutely convergent even
at $x' = x$. For the last two terms in this equation we have, for $x' \neq x$,

$$S_+ = \sum_{n=0}^{\infty} e^{-\gamma \Omega_n L(x-x')} \left(\begin{array}{cc} -H(x-x') & 0 \\ 0 & H(x'-x) \end{array} \right) e^{-\Omega_n \beta(t-t')} =$$

$$\left(\begin{array}{cc} -H(x-x') \frac{e^{i(\mu-\pi/\beta)[L(x-x')+i\beta(t-t')]} - \frac{2\pi}{\beta} [L(x-x')L+i\beta(t-t')]}{1 - e^{\frac{2\pi}{\beta} [L(x-x')L+i\beta(t-t')]}}, & 0 \\ 0 & H(x'-x) \frac{e^{i(\mu-\pi/\beta)[L(x'-x)L+i\beta(t-t']]} - \frac{2\pi}{\beta} [L(x'-x)L+i\beta(t-t')]}{1 - e^{\frac{2\pi}{\beta} [L(x'-x)L+i\beta(t-t')]}}, \end{array} \right)$$

and

$$S_- = \sum_{n=-\infty}^{-1} e^{-\gamma \Omega_n L(x-x')} \left(\begin{array}{cc} H(x' - x) & 0 \\ 0 & -H(x - x') \end{array} \right) e^{-i\Omega_n \beta(t-t')} =$$

$$\left(\begin{array}{cc} H(x' - x) \frac{e^{-i(\mu+\pi/\beta)[L(x'-x)-i\beta(t-t')]} - \frac{2\pi}{\beta} [L(x'-x)-i\beta(t-t')]}{1 - e^{-\frac{2\pi}{\beta} [L(x'-x)-i\beta(t-t')]}}, & 0 \\ 0 & -H(x - x') \frac{e^{-i(\mu+\pi/\beta)[L(x-x)-i\beta(t-t')]} - \frac{2\pi}{\beta} [L(x-x)-i\beta(t-t')]}{1 - e^{-\frac{2\pi}{\beta} [L(x-x)-i\beta(t-t')]}}, \end{array} \right)$$

which are singular at $(t', x') = (t, x)$. Calling $z = L(x - x') + i\beta(t - t')$, $\bar{z} = L(x - x') - i\beta(t - t')$, we have

$$S_+ + S_- =$$

$$\frac{\beta}{2\pi} \left(\begin{array}{c} \frac{1}{z} + i\mu + \pi/\beta (H(x' - x) - H(x - x')) + O(z/\beta^2) \\ 0 \end{array} \right); \quad \frac{1}{\bar{z}} - i\mu + \pi/\beta (H(x' - x) - H(x - x')) + O(\bar{z}/\beta^2) \right),$$

$$\left(22\right)$$

Now, we can evaluate

$$L \text{ tr} \left\{ \gamma_0 e^{i\beta(t-t')} \gamma_1 (S_+ + S_-) \right\} =$$

$$= -iL\beta \frac{e^{i\beta(t-t')}}{2\pi} \left\{ \frac{1}{z} - \frac{1}{\bar{z}} + 2i\mu + O(|z|/\beta^2) \right\}$$

$$\rightarrow \frac{L\beta \mu}{\pi} + O(|x - x'|/L^2/\beta)$$

$$\left(24\right)$$

6
This correspond to the following (finite) contribution to $-\beta \frac{\partial G}{\partial \mu}(T, L, \mu)$:

$$L \int_0^1 dx \int_0^1 dt \text{tr} \left\{ e^{\gamma_0 e^{\beta (t-t')} \gamma_1} (S_+ + S_-) \right\}_{(t',x')=(t,x)} = \frac{\mu}{\pi} L \beta. \tag{25}$$

For the remaining terms in Eq.(20), we can put $t' = t$ and $x' = x$, and take the matrix trace inside the sum,

$$L \int_0^1 dx \int_0^1 dt \text{tr} \left\{ e^{\gamma_0 \gamma_1} \sum_{n=-\infty}^{\infty} \left[\frac{e^{-\gamma_0 \Omega_n L}}{2 \cosh(\Omega_n L)} - \begin{pmatrix} H(-n - 1/2) & 0 \\ 0 & H(n + 1/2) \end{pmatrix} \right] \right\} = -iL \sum_{n=-\infty}^{\infty} \{ \tanh(\Omega_n L) - \text{sign}(n + 1/2) \}. \tag{26}$$

We finally get

$$-\beta \frac{\partial G}{\partial \mu}(\beta, L, \mu) = \frac{\mu}{\pi} L \beta - iL \sum_{n=-\infty}^{\infty} \{ \tanh[(\omega_n - i\mu) L] - \text{sign}(n + 1/2) \}. \tag{27}$$

Notice that, while the first term in the r.h.s. of (27), coming from the singular behaviour of the Green function, is linear in μ, the second one, a π-periodic function of μL, contains the finite size effects (vanishing for $L \to \infty$). It is easy to see from this expression that, in the $\beta \to \infty$ limit, the mean value of the particle number is

$$\lim_{\beta \to \infty} \bar{N} = \left[\frac{\mu L}{\pi} \right], \tag{28}$$

where $[x]$ means the integer part of x.

Now, (27) can be integrated to obtain:

$$-\beta \{ G(\beta, L, \mu) - G(\beta, L, 0) \} = \frac{\mu^2}{2\pi} L \beta + \sum_{n=-\infty}^{\infty} \ln \left\{ \frac{\cosh[(\omega_n - i\mu) L]}{\cos[\omega_n L]} + i\mu L \text{sign}(n + 1/2) \right\}. \tag{29}$$

Taking into account that $\omega_{-n} = -\omega_{(n-1)}$ we have, for the piece of the free energy which depends on μ, the (finite) result

$$-\beta \{ G(\beta, L, \mu) - G(\beta, L, 0) \} = \frac{\mu^2}{2\pi} L \beta + \ln \left\{ \prod_{\omega} \left(\frac{1 + 2 \cos(2\mu L)e^{-2\omega L} + e^{-4\omega L}}{1 + 2e^{-2\omega L} + e^{-4\omega L}} \right) \right\} \tag{30}$$

$$= \frac{\mu^2}{2\pi} L \beta + \ln \left\{ \frac{\theta_3(\mu L, e^{-2\pi L/\beta})}{\theta_3(0, e^{-2\pi L/\beta})} \right\},$$
where $\theta_3(u,q)$ is the Jacobi theta function \[10\].

3 The free energy for $\mu = 0$

In order to have the complete Gibbs function, we will evaluate in this section the free energy of our system of two-dimensional fermions as a function of temperature, for $\mu = 0$. We take

$$\frac{\partial}{\partial \beta} \ln \text{Det} (D(\beta,L))_{bc} = Tr \left\{ \frac{-i}{\beta^2} \gamma^0 \partial_t k(t; x'; x') \right\}, \quad (31)$$

where the Green function of the operator is given by (18) with $\mu = 0$

$$k(t, x; t', x') = iL \sum_{n=-\infty}^{\infty} \left[\frac{e^{\gamma_5 \omega_n L x}}{2 \cosh(\omega_n L)} (1 + \gamma^1) e^{-\gamma_5 \omega_n L (1-x')} \right. $$

$$-\gamma^1 e^{-\gamma_5 \omega_n L (x-x')} H(x - x') \left. \right] e^{-i \omega_n \beta (t-t')} \quad (32)$$

As in Section 1, the term in the r.h.s. of Eq.(31) which does not contain γ^1 gives a vanishing contribution. For the remaining, we get two contributions to the trace: The first, coming from the absolutely convergent series (for $0 < x, x' < 1$)

$$\frac{L}{\beta} Tr \left\{ \gamma_5 \sum_{n=-\infty}^{\infty} \omega_n e^{-i \omega_n \beta (t-t')} e^{-\gamma_5 \omega_n L (x-x')} \left[\frac{e^{-\gamma_5 \omega_n L}}{2 \cosh(\omega_n L)} \right] - \left(H(-n - 1/2); 0 \right) \right\}$$

$$= \frac{L}{\beta} \sum_{n=-\infty}^{\infty} \omega_n \left(\tanh(\omega_n L) - \text{sign}(n + 1/2) \right)$$

$$= 2 \frac{\partial}{\partial \beta} \sum_{n=0}^{\infty} \ln \left\{ 1 + e^{-\gamma_5 \omega_n L} \right\}. \quad (33)$$
The second one turns out to be divergent, and therefore a regularization procedure is required. We will use a “point-splitting” prescription to get

\[\frac{iL}{\beta^2} \text{Tr} \left\{ \gamma_5 \partial_t \sum_{n=-\infty}^{\infty} e^{-i\omega_n \beta(t-t')} e^{-\gamma \omega_n L (x-x')} \times \right. \]

\[\left(H(x' - x)H(-n - 1/2) - H(x - x')H(n + 1/2); \quad 0 \right) \}\}

\[= 2 \frac{L}{\beta^2} \int_0^1 dx \int_0^1 dt \text{Im} \left\{ \partial_t \left(H(x - x') \sum_{n=0}^{\infty} e^{-(2n+1)\beta \left[L(x-x') + i\beta(t-t') \right]} + H(x' - x) \sum_{n=0}^{\infty} e^{-(2n+1)\beta \left[L(x-x') + i\beta(t-t') \right]} \right) \right\} \mid_{(t',x')=(t,x)} \]

\[= \frac{L}{\beta^2} \int_0^1 dx \int_0^1 dt \text{Im} \left\{ \frac{1}{\sinh \left(\frac{\pi}{\beta} \left[L \mid x - x' \mid + i\beta(t - t') \right] \right)} \right\} \mid_{(t',x')=(t,x)} \]

\[\rightarrow \begin{array}{c}
- \frac{\pi L}{\beta^2} \frac{\cosh(\pi \epsilon / \beta)}{[\sinh(\pi \epsilon / \beta)]^2} = \frac{\partial}{\partial \beta} \left\{ \frac{L \beta}{\pi \epsilon^2} - \frac{\pi L}{3 \beta^2} + O(\epsilon^2) \right\},
\end{array} \] (34)

for \(\epsilon = L \mid x' - x \mid \ll \beta \), which shows a singular piece proportional to \(L \).

So, we have for the free energy at \(\mu = 0 \)

\[F(\beta, L) = -\frac{2}{\beta} \sum_{n=0}^{\infty} \ln \left\{ 1 + e^{-2\omega_n L} \right\} + \frac{L}{\pi \epsilon^2} - \frac{\pi L}{3 \beta^2} + C \frac{\beta}{\beta}, \]

\[= -\frac{1}{\beta} \ln \left\{ \theta_3(0, e \frac{2\pi L}{\beta}) \right\} + \frac{1}{\beta} \sum_{n=1}^{\infty} \ln \left(1 - e^{-\frac{4\pi \beta}{\beta} \ln e^{-2\omega_n L}} \right) + \frac{L}{\pi \epsilon^2} - \frac{\pi L}{3 \beta^2} + C \frac{\beta}{\beta}, \]

with \(C \) an integration constant.

The Casimir energy is obtained through the limit of this expression for vanishing temperature,

\[\lim_{\beta \to \infty} F(\beta, L) = E_{\text{Cas}}(L) = -\frac{1}{\pi} \int_0^\infty d\omega \ln \left\{ 1 + e^{-2\omega L} \right\} + \frac{L}{\pi \epsilon^2} \]

\[= -\frac{\pi}{24L} + \frac{L}{\pi \epsilon^2}, \] (36)
where one can see that the singular $O(\epsilon^{-2})$ part can be eliminated through a renormalization of the vacuum energy density. The finite part of $E_{Cas.}(L), -\frac{\pi}{24L}$, coincides with the result obtained in ref.([11]), and gives rise to an attractive force between the edges of the segment where the fermions are confined.

Then, we get the finite result

$$F(\beta, L) - E_{Cas.}(L) =$$

$$-\frac{1}{\beta} \ln \left\{ \theta_3(0, e^{-\frac{2\pi L}{\beta}}) \right\} + \frac{1}{\beta} \sum_{n=1}^{\infty} \ln \left(1 - e^{-\frac{4\pi L n}{\beta}} \right) - \frac{\pi L}{3\beta^2} + \frac{C}{\beta} + \frac{\pi}{24L}.$$ \hspace{1cm} (37)

The undetermined constant C can be evaluated by imposing the vanishing of entropy at zero temperature. Since

$$S = \beta^2 \frac{\partial}{\partial \beta} F(\beta, L),$$ \hspace{1cm} (38)

for $\beta \to \infty$ the Poisson formula for the previous series allows us to write

$$S = \beta^2 \frac{\partial}{\partial \beta} \left\{ \frac{C}{\beta} + O(\beta^{-2}) \right\} = -C + O(\beta^{-1}),$$ \hspace{1cm} (39)

implying that $C = 0$.

We finally get for the free energy as a function of β, L, μ:

$$G(\beta, L, \mu) - E_{Cas.}(L) =$$

$$= -\frac{\mu^2 L}{2\pi} - \frac{1}{\beta} \ln \left\{ \theta_3(\mu L, e^{-\frac{2\pi L}{\beta}}) \right\} + \frac{1}{\beta} \sum_{n=1}^{\infty} \ln \left(1 - e^{-\frac{4\pi L n}{\beta}} \right) - \frac{\pi L}{3\beta^2} + \frac{\pi}{24L}.$$ \hspace{1cm} (40)

4 The chemical potential through a boundary value problem

In this section, we will show how the result in Section 1 can alternatively be obtained with the methods developed in ref. [8], by introducing the chemical potential through suitable boundary conditions.

As before, we will consider the differential operator

$$D(\beta, L) = \frac{i}{\beta} \gamma^0 \partial_t + \frac{i}{L} \gamma^1 \partial_x,$$ \hspace{1cm} (41)
with the dimensionless variables t, x taking values in the segment $[0, 1]$. We will take $D(\beta, L)$ to act on differentiable functions satisfying the boundary conditions

$$
(A(\eta)\chi) (x) \equiv \chi(t = 1, x) + e^{i\eta} \chi(t = 0, x) = 0,
$$

$$
(B\chi)(t, x) \equiv [1 + \gamma_5] \chi(t, x) = 0, \text{ for } x = 0, 1,
$$

and call this operator $(D(\beta, L))_{A(\eta), B}$.

The method requires a basis in the kernel of the differential operator, \ker $D(\beta, L)$. The calculation can be greatly simplified by choosing a complete system of functions satisfying the boundary conditions at the spatial edges. Such basis can be constructed from the eigenfunctions of the Hermitian operator $(-i\gamma_5 \frac{d}{dx})^B$ in $[0, 1]$

$$
-i\gamma_5 \frac{d}{dx}\chi_n(x) = \lambda_n \chi_n(x),
$$

$$
(B\chi_n)(0) = 0 = (B\chi_n)(1),
$$

which are given by

$$
\chi_n(x) = e^{i\pi(n+1/2)x\gamma_5} \begin{pmatrix} 1 \\ i \end{pmatrix}, \text{ with } \lambda_n = \pi(n + 1/2), \ n \in \mathbb{Z}.
$$

Now, a basis in \ker $D(\beta, L)$ is

$$
\psi_n(t, x) = e^{(n+1/2)x\gamma_5} \begin{pmatrix} 1 \\ i \end{pmatrix}, \text{ with } n \in \mathbb{Z}.
$$

The following step is to get the projected boundary values of $\psi_n(t, x)$ through the boundary operators $A(\eta)$ and B:

$$
H_n(t, x; \eta) = \begin{pmatrix} (A(\eta)\psi_n)(x) \\ (B\psi_n)(t, 0) \\ (B\psi_n)(t, 1) \end{pmatrix} = \begin{pmatrix} h_n(x; \eta) \\ 0 \\ 0 \end{pmatrix},
$$

$$
h_n(x; \eta) = \psi_n(t = 1, x) + e^{i\eta} \psi_n(t = 0, x) =
$$

$$
= [e^{(n+1/2)x\pi\beta/L} + e^{i\eta}] e^{i\pi(n+1/2)x\gamma_5} \begin{pmatrix} 1 \\ i \end{pmatrix}.
$$

Forman's operator, $\tilde{\Phi}(\eta', \eta)$, is defined as

$$
H_n(t, x; \eta') = \tilde{\Phi}(\eta', \eta) H_n(t, x; \eta),
$$

for any basis in \ker $D(\beta, L)$. Since the operator B does not depends on the parameter η, $\tilde{\Phi}(\eta', \eta)$ has the form

$$
\tilde{\Phi}(\eta', \eta) = \begin{pmatrix} \Phi(\eta', \eta) \\ \Phi'(\eta', \eta) \end{pmatrix} \begin{pmatrix} 0 \\ I_{d_2 \times 2} \end{pmatrix},
$$

(48)
and our election of basis allows us to determine \(\Phi(\eta', \eta) \) from

\[
h_n(x; \eta') = \Phi(\eta', \eta) h_n(x; \eta) = \left(\frac{e^{(n+1/2)\pi \beta/L} + e^{i\eta'}}{e^{(n+1/2)\pi \beta/L} + e^{i\eta}} \right) h_n(x; \eta). \tag{49}
\]

Note that the \(h_n(x; \eta) \sim \chi_n(x) \), for \(n \in \mathbb{Z} \), constitute a complete system in \(L^2(0,1) \), and \(\Phi(\eta', \eta) \) is diagonal in this basis:

\[
(\Phi(\eta', \eta))_{n,m} = \delta_{n,m} \left(\frac{1 + e^{i\eta'-(n+1/2)\pi \beta/L}}{1 + e^{i\eta-(n+1/2)\pi \beta/L}} \right). \tag{50}
\]

In what follows, we will need the quotient of \(\Phi \)'s for two sets of parameters, \((\beta, L)\) and \((\beta_0, L_0)\) respectively,

\[
(\Phi(\eta', \eta) \Phi_0^{-1}(\eta', \eta))_{n,m} = \delta_{n,m} \left(\frac{1 + e^{i\eta'-(n+1/2)\pi \beta/L}}{1 + e^{i\eta-(n+1/2)\pi \beta/L}} \right) \left(\frac{1 + e^{i\eta'-(n+1/2)\pi \beta_0/L_0}}{1 + e^{i\eta-(n+1/2)\pi \beta_0/L_0}} \right). \tag{51}
\]

It is easy to see that \([\Phi(\eta', \eta) \Phi_0^{-1}(\eta', \eta) - 1]\) is a trace class operator, so the determinant \(\det_1 (\Phi(\eta', \eta) \Phi_0^{-1}(\eta', \eta)) \) exists:

\[
\det_1 (\Phi(\eta', \eta) \Phi_0^{-1}(\eta', \eta)) = \prod_{0}^{\infty} \left| \frac{1 + e^{i\eta'-(n+1/2)\pi \beta/L}}{1 + e^{i\eta-(n+1/2)\pi \beta/L}} \right|^2 \left| \frac{1 + e^{i\eta'-(n+1/2)\pi \beta_0/L_0}}{1 + e^{i\eta-(n+1/2)\pi \beta_0/L_0}} \right|^2 \\
= \frac{\theta_3(\frac{\eta'}{2}, e^{-\frac{\pi \beta}{2L}})}{\theta_3\left(\frac{\eta}{2}, e^{-\frac{\pi \beta_0}{2L_0}}\right)} \frac{\theta_3\left(\frac{\eta'}{2}, e^{-\frac{\pi \beta_0}{2L_0}}\right)}{\theta_3(\frac{\eta}{2}, e^{-\frac{\pi \beta}{2L}})}. \tag{52}
\]

The result established in ref. \[\text{[3]}\] is

\[
\det_1 \left\{(D(\beta, L))_{A(\eta'), B} \ (D(\beta_0, L_0))_{A(\eta'), B} \ (D(\beta, L))_{A(\eta), B} \ (D(\beta_0, L_0))_{A(\eta), B}\right\} = \det_1 (\Phi(\eta', \eta) \Phi_0^{-1}(\eta', \eta)). \tag{53}
\]

Now, we choose the parameter \(\eta' = i \mu' \beta, \ \eta = i \mu \beta \) and noticing that

\[
(D(\beta, L))_{A(\eta), B} = (e^{-i\eta}D(\beta, L)e^{i\eta'})_{A(\eta), B} = \left(\frac{\gamma^0}{\beta} \partial_t + \hat{\gamma} \frac{1}{\beta} \partial_x - \frac{\gamma^0}{\beta} \right)_{A(\eta), B}, \tag{54}
\]
we can write

\[-\beta \, G(\beta, L, \mu') + \beta_0 G(\beta_0, L_0, \mu' \beta / \beta_0) - \beta_0 \, G(\beta_0, L_0, \mu / \beta_0) + \beta \, G(\beta, L, \mu) \]

\[= \ln \left\{ \frac{\theta_3(\frac{i\mu \beta}{2}, e^{-\frac{\pi \beta}{2L}})}{\theta_3(\frac{i\mu}{2}, e^{-\frac{\pi \beta}{2L}})} \cdot \frac{\theta_3(\frac{i\mu \beta}{2}, e^{-\frac{\pi \beta}{2L}})}{\theta_3(\frac{i\mu}{2}, e^{-\frac{\pi \beta}{2L}})} \right\}. \]

(55)

For \(\mu' = 0 \) this reduces to

\[\beta \left[G(\beta, L, \mu) - G(\beta, L, 0) \right] - \beta_0 \left[G(\beta_0, L_0, \mu / \beta_0) - G(\beta_0, L_0, 0) \right] \]

\[= \ln \left\{ \frac{\theta_3(0, e^{-\frac{\pi \beta}{2L}})}{\theta_3(\frac{i\mu \beta}{2}, e^{-\frac{\pi \beta}{2L}})} \cdot \frac{\theta_3(0, e^{-\frac{\pi \beta}{2L}})}{\theta_3(\frac{i\mu \beta}{2}, e^{-\frac{\pi \beta}{2L}})} \right\}, \]

(56)

and we are still free to choose the parameters \(\beta_0 \) and \(L_0 \) conveniently.

Notice that, for \(\beta / \beta_0 \ll 1 \), we can write

\[\beta_0 \left[G(\beta_0, L_0, \mu / \beta_0) - G(\beta_0, L_0, 0) \right] = \beta_0 \frac{\mu \beta}{\beta_0} \frac{\partial G}{\partial \mu_0}(\beta_0, L_0, \mu_0) \]

\[= -\mu \beta \, \bar{N}(\beta_0, L_0, \mu_0), \]

(57)

for \(0 < \mu_0 < \mu \beta / \beta_0 \), and \(\bar{N}(\beta_0, L_0, \mu_0) \) the mean value of the particle number.

So

\[\beta_0 \left[G(\beta_0, L_0, \mu / \beta_0) - G(\beta_0, L_0, 0) \right] \rightarrow 0. \]

(58)

On the other hand

\[\lim_{\beta_0 \rightarrow \infty} \frac{\theta_3(\frac{i\mu \beta}{2}, e^{-\frac{\pi \beta}{2L_0}})}{\theta_3(0, e^{-\frac{\pi \beta}{2L_0}})} = 1, \]

(59)

for any value of \(\frac{\mu \beta}{2} \). Then, we have

\[\beta \left[G(\beta, L, \mu) - G(\beta, L, 0) \right] = \ln \left\{ \frac{\theta_3(0, e^{-\frac{2\pi L}{\beta}})}{\theta_3(\frac{i\mu \beta}{2}, e^{-\frac{\pi \beta}{2L}})} \right\} \]

\[= -\frac{\mu^2 \beta L}{2\pi} + \ln \left\{ \frac{\theta_3(0, e^{\frac{2\pi L}{\beta}})}{\theta_3(\mu L, e^{\frac{2\pi L}{\beta}})} \right\}. \]

(60)
where we have used the inversion formula for the Jacobi θ_3-function,

$$
\theta_3\left(\frac{i\mu}{2}, e^{-\frac{\pi \beta}{2L}}\right) = e^{\frac{\mu^2 \beta L}{2\pi}} \theta_3(\mu L, e^{-\frac{2\pi L}{\beta}}).
$$

(61)

This result coincides with the one obtained in Eq.(30).

5 Conclusions

In this paper, we studied the possibility of simulating the presence of a chemical potential by imposing “twisted” boundary conditions in the Euclidean time direction. This mechanism allowed us to relate the free energy of a system of massless confined fermions to a functional determinant of the Dirac operator.

To study such determinant, we made use of two approaches. The first one is based on the knowledge of the Green function satisfying adequate boundary conditions. The other relies on functional techniques which allow to perform the calculation starting from boundary values of functions in the kernel of the Dirac operator.

In Section 2, the difference between Gibbs free energies with and without chemical potential was written in terms of the μ-integral of a trace involving the Green function. A careful treatment of this trace (which is not absolutely convergent), through point splitting regularization, put in evidence the presence of a μ^2-dependent term.

For completeness, in section 3, the Helmholtz free energy was computed by a similar method, employing this time the β-derivative. The constant of integration was fixed from the vanishing of entropy at zero temperature. Moreover, the $\beta \to \infty$ limit allowed us to identify the Casimir energy of the system.

Although the results of sections 2 and 3, i.e. the Gibbs free energy of this simple model, could also have been obtained directly from the eigenvalues of the Dirac Hamiltonian (which, in this case, can be exactly evaluated), the method developed in those sections can be applied to more complicated and realistic situations, e.g. the $3+1$-dimensional bag model.

In section 4, we made an alternative calculation following the techniques introduced in [8]. Starting from an adequately selected basis in the kernel of the Dirac operator, the Fredholm determinant of quotients of Forman’s operator could be easily constructed. Through an analytic extension in the parameter defining the twisted temporal boundary condition, we reobtained the μ-dependent piece of the Gibbs free energy of the system.

The calculational scheme explored in the present paper should allow for the introduction of a nonvanishing chemical potential in the $3+1$-dimensional chiral bag model, thus complementing the results in [4, 5].
Acknowledgements
This work was supported in part by Fundaciones Andes y Antorchas under Contract 12345/9, CONICET (Argentina) and FONDECyT (Chile) under Grant 0751/92.

References
[1] E. V. Shuryak, Phys.Rep. 61, 73 (1980)
[2] A. Chodos, R. L. Jaffe, C. B. Thorn and V. Weisskopf, Phys. Rev D9, 3471 (1974).
[3] A. Chodos and C. B. Thorn, Phys. Rev. D 12, 2733 (1975).
[4] H. Falomir, M. Loewe and C. Rojas, Phys. Lett B 300, 278 (1993).
[5] M. G. Mustafa, Z. Phys. C 57, 51 (1993)
[6] M. De Francia, Phys. Rev. D 50, 2908 (1994).
[7] M. De Francia, H. Falomir and E. M. Santangelo, Phys. Rev. D 45, 2129 (1992).
[8] O. Barraza, H. Falomir, R. E. Gamboa Saravi and E. M. Santangelo, J. Math. Phys. 33 (6), 2046 (1992). R. Forman, Invent. Math. 88, 447 (1987).
[9] A. Actor, Phys. Rev. D 27, 2548 (1983); Phys. Lett. B175, 53 (1985); H. A. Weldon, Nucl. Phys. B270, 79 (1986).
[10] I. S. Gradshtein and I. M. Ryzhyk, Table of Integrals, Series and Products (Academic, New York, 1980)
[11] M. De Francia and O. Trabocchi, Anales A.F.A. 2, 87 (1990).