Genetic Analysis for Combining Ability and the Gene Action in Sunflower (*Helianthus annuus* L.) Using Half Diallel Cross

H. J. Hammadi¹*, S. E. Faiath² and M. R. Azzam¹

¹Dept. of Biology - College of Education for Women-University Of Anbar
²Dept. of Environmental Biotechnology - Environmental and Biotechnology Center-University of Fallujah
*corresponding author’s Email: Hamdi.jasim1234@gmail.com

Abstract. A field experiment was carried out in the right side of the Euphrates in Ramadi city Anbar province - Iraq, used in the research six pure varieties of Sunflower. These items introduced one-way half diallel in the 2018 spring season to produce 15 single crosses. The seeds of the parents and their hybrid were planted in the fall season 2018 in the design of R.C.B.D with three replicates. To estimate the effects of GCA, SCA and the gene action and some genetic parameters in the Sunflower. The results showed that there were significant differences between the hybrids and its parents in all studied traits. Note that the GCA and SCA variation on the union was highly significant for all studied traits. It was found that the parent (5) is the best parent in terms of GCA in the individual plant yield, gave an effect of (8.83) while the hybrid (3 × 4) is the best hybrid in the effect of SCA for the weight of 1000 seeds and the individual plant yield, (28.84 and 28.46) respectively. While the highest value of the heterosis in the trait of the individual plant yield of the hybrid (4 × 6) gave a value of (57.29%). The GCA variance to SCA was less than one for all studied traits except plant height indicating that there is a dominance gene action controls heredity of traits. This was reflected in the increase in the degree of dominance of one for most of the studied traits. The percentage of inheritance in the broad sense ranged from (97.74%) for the individual plant status to (99.81%) for the number of seeds per disc, this is due to the high genetic variation and low environmental variability. The highest value of genetic improvement was given to the number of seeds disk with a value of 249.15. The new combinations can be used in the production of individual hybrids with high specific combining ability to produce high yields because most of their traits were controlled by the dominance gene.

1. Introduction

Sunflower (*Helianthus annuus* L.) is one of the world's most important oil-producing crops. To contain the seeds of a high proportion of oil up to 15% as well as it contains a percentage of unsaturated fatty acids [1].

Hybridization is one of the basic ways to breeding and improve the characteristics of the sunflower for the purpose of testing its GCA and SCA to obtain the genetic differences that are used in the selection of genotypes. So, the researchers turned to take advantage of the phenomenon of hybridization by producing hybrid seeds. The difficulties faced by many breeders are the of obtaining superiority pure lines in the yield to conduct hybridization between them and to obtain superior hybrids.

A number of researchers have adopted the method of half diallel hybridization [2, 3, 4, 5] to improve the varieties of the sunflower in order to identify the nature of the gene action in the individual hybrids that controls the inheritance of studied traits. One of the difficulties faced by plant breeders in testing the appropriate parents in their general combining ability to reach positive results is the compatibility of parents. The results obtained by [6,7] showed a positive hybridization based on the best parents of all crosses for seed Yield plant -¹.

The aim of this study is to evaluate the genetic behavior of the Sun Flower varieties with different origins by studying the general and specific combining ability, hybridization, gene action and some genetic parameters.
2. Materials and methods

2.1. Plant materials
In this study, six varieties of the sunflower crop were given. Numbers were given from 1 - 6: Enflower, Flower Iraq, Coban, Royal, Flamme and Shamus. The varieties were grown on lines in the spring season 20/2/2018 in the fields of one of at latitude °33.28 north and longitude ° 43.33, with six lines for each variety and a length of 5 m. Seeds were planted at a distance of 0.75 m between one line and another, and a distance of 0.20 m between plant and another [8].

At the beginning of the petals, use a 25 ml g L⁻¹ solution to spray the floral discs of the plants used as mothers and spray until full wetness. After three days, the procedure was repeated again to ensure that all the pollen found in the flower disc are killed. The floral tablets of the used plants covered mothers using insulating bags made of mulch cloth [7]. For this purpose, several brushes were used to transport the pollen from parents to mothers, by using the brush on the floral disc used to parent and scan the discs used as mothers, for each cross by using the one-way half diallel. Self-pollination was also carried out for parents to multiply their seeds. At the end of the season, 15 individual crosses and 6 parents were obtained, bringing the number of genotypes to 21, the road explained by [9, 10].

2.2. Field experiment
In the fall season 18/7/2018, the seeds of the parents and their hybrids were planted in the same location using the RCBD design and three replicates. So that the single replicate contains (21) genotypes and the experimental unit included two lines guarded for each genotype [11]. The seeds were planted with 3 seeds hole single and the same distances in the previous season, and the plants were reduced to one plant at the stage of four leaves. The experiment was fertilized with DAP fertilizer containing (P2O5 46%) before planting and 240 kg h⁻¹ and urea fertilizer (N% 46) at rate 280 kg/h [6]. Fertilizer was added in two doses.

2.3. Phenotypic data were collected
A random sample consisting of 10 plants from the middle lines of each experimental unit was studied at the beginning of the composition of the flowers discs, to study the following traits: Plant height (cm), Leaf area (cm), Diameter disc (cm), No. of seeds / disc, Weight of 1000 seed (gm), Yield per plant (gm).

2.4. Equations
used estimation the sum of general combining as in the following equation

\[SS \text{ gca} = \frac{1}{p+2} \left(\frac{\sum (x_i + x_j)^2}{p} - \frac{4}{p} (X..)^2 \right) \]

\[SS \text{ sca} = \left(\frac{\sum x_{ij}^2}{p} - \frac{1}{p+2} \left(\frac{\sum x_i + x_j}{p} \right)^2 \right) + \frac{2}{(p+1)(p+2)} (x..)^2 \]

estimates the variance of the GCA and SCA of the calculated as follows

\[2^2 \text{ gca} = (MSgca-MS^)/P+2 \]

\[2^2 \text{ Sca} = MS \text{ sca} - MS e \]

The values of additive variance \(2^2A\), dominance \(2^2D\) and environmental \(2^2E\) were estimated as follows

\[2^2e = MS e \]

\[2^2D = 2^2\text{ sca} \]

\[2^2A = 2^2\text{ gca} \]

The values of in the broad and narrow sense and the degree of dominance were estimated by the mean variance expected from [11] analysis

\[h^b,s = \frac{\sigma^2 G}{\sigma^2 P} \times 100 \]

\[h^n,s = \frac{\sigma^2 A}{\sigma^2 P} \times 100 \]

\[a^s = \sqrt{2\sigma^2D/\sigma^2A} \]

Where \(P\) = number of parents
MS \text{ gca} = mean variance of the general combining ability
MS \text{ sca} = The mean variance of the specific general combining ability
Data from parents and their hybrids were analyzed for the studied traits according to the design used. The data were analyzed according to the first model of the second method [12].

3. Results and Discussion

Table (1) shows that there are significant differences in all the studied traits. This indicates the importance of both the additive and Non additive effects in the studied traits. This indicates that dominance effects were more important than the additive effects of most traits. This indicates that there is a dominance gene action that controls inheritance of traits [4, 12, 13, 14].

Table 1. Analysis of variance of General and specific combining ability, for all studied traits.

SOV	DF	Plant height (cm)	Leaf area (cm)	Diameter disc (cm)	No. of seeds/disc	Weight of 1000 seed (gm)	yield per plant (gm)
REP.	2	30.5	62.13	14.22	235.4	52.41	55.2
Genotypes	20	520	1645	10.92	42152.6	855	869.12
		**	**	**	**	**	**
	5	**	**	**	**	**	**
G.C. A	5	761.250	8230.110	46.050	45620.000	380.160	338.240
S.C. A	15	52.420	6425.220	12.200	10582.200	215.620	230.140
MSE	40	12.6	152.21	1.31	122.5	12.6	21.15
2Gca/δ		1.962	0.160	0.485	0.540	0.222	0.186
2Sca δ							

Table (2) shows the average values of the parents and the hybrids resulting from the studied traits. There are significant differences between parents and hybrids. The parent (1) was the least value among the parents in the height of the plant and diameter of the disc if given values of (152.4) cm and (15) cm. respectively. While the superiority of the parent (6) in the trait of plant height and gave a height of (185.2 cm). parent (5) superiority the leave area and gave a value of (345.8 cm). While in the number of seeds in the disk superiority the parent (6) and gave a number of seeds amounted to (1068.2 seed). The seed weight and the plant yield (g) superiority the parent (2) gave the values (85.4 g) and (83.55 g) respectively. While the hybrid (3 × 4) recorded the highest average for the two traits, weight of 100 grains (92.2 g) and the seed yield was (92.016 g). This superiority is due to the superiority of both lines in most of the growth, yield and components. This is consistent with the findings [3, 4, 15]. This is due to the genetic diversity between the parents involved in the crossing.
Table 2. Means of parents and their F1s for different traits in half diallel cross

Characters	Genotypes	Plant height (cm)	Leaf area (cm)	Diameter disc (cm)	No. of seeds/disc	Weight of 1000 seed (gm)	yield per plant (gm)
1	152.4	338.2	15	1022.1	50.2	51.309	
2	168.2	309.4	15.2	978.4	85.4	83.555	
3	165.6	295	16.3	899.12	54	48.552	
4	178.2	333.2	16	1023.1	47.3	48.393	
5	175.4	345.8	17.2	1025.6	63.7	65.331	
6	185.2	315.4	15.8	1068.2	45.8	48.924	
1x2	172.1	345	17.5	1096.9	50.8	55.723	
1x3	160.2	316.9	17.2	1013.2	49.2	49.849	
1x4	180	360.4	18.4	1031.8	53.1	54.789	
1x5	188.4	362.4	20.4	1032.6	47.2	48.739	
1x6	177.5	330	20.2	1118.4	51.3	57.374	
2x3	180.2	315	16.8	898.2	38.5	34.581	
2x4	169.21	350.3	14.7	1015.4	60.2	61.127	
2x5	186.2	365.2	16.9	998.2	85.3	85.146	
2x6	172.5	315.4	18.2	1005.2	60.1	60.413	
3x4	184.6	320.2	19.8	998	92.2	92.016	
3x5	192.3	360.4	20.3	1012.4	76.6	77.55	
3x6	175.1	290.4	21.5	1045.1	70.4	73.575	
4x5	185.9	207.3	18.3	1230.6	72.2	88.849	
4x6	186.6	342.4	17.6	1128.4	68.2	76.957	
5x6	196.3	375.3	16.9	1332.4	68.3	91.003	
Means	177.719	328.266	17.628	1046.349	61.428	64.464	
L.S.D	2.212	7.693	0.713	6.901	2.212	2.867	

Table (3) shows the Heterobeltiosis for the hybrids of the basis of the first-generation deviation from the best parents in the hybrids diallel of the studied traits. Note that hybridization ranged between positive and negative values for most studied traits. Where the hybridization to the plant high significant and the desired direction of ten crosses, For the leave area, nine hybrids reached the highest value (8.53%) in the hybrid (5 × 6). The values of the hybridization for the number of seeds per disc ranged between positive and negative values. Seven hybrids showed positively values (24.73%) for the hybrid (5 × 6).

While in the weight of 1000 seeds showed seven positive hybrids with the highest value (70.74%) for the hybrid (3 × 4). As for seed yield, nine hybrids showed positive was highest values (89.52%) for the hybrid (3 × 4). Researchers from previous studies have obtained hybrids characterized by high hybrid hybridization and desirable for some of them [1, 13, 16, 17].
Table 3. Estimates of heterosis over best parent for all studied traits

Characters	Hybrids	Yield per plant (gm)	Weight of 1000 seed (gm)	No. of seeds/disc	Diameter disc (cm)	Leaf area (cm)	Plant height (cm)
	1x2	2.318	-40.515	15.131	7.318	2.011	2.318
	1x3	-3.261	-8.888	5.521	-0.871	4.8	4.8
	1x4	1.01	5.776	15	0.85	6.564	6.782
	1x5	7.412	25.902	18.604	0.682	4.8	15.131
	1x6	-4.157	2.191	27.848	4.699	1.01	2.318
	2x3	7.134	-54.918	3.067	-8.197	1.809	11.82
	2x4	-5.044	-29.508	-8.125	-0.752	5.132	-5.87
	2x5	6.157	-2.671	-1.744	-1.112	5.61	5.521
	2x6	-6.857	-29.625	15.189	-5.897	0	8.83
	3x4	3.591	70.74	21.472	-2.453	-7.403	89.52
	3x5	9.635	20.251	18.023	-1.287	4.222	18.98
	3x6	-5.453	30.37	31.901	-2.162	-7.926	50.386
	4x5	4.321	13.343	6.395	19.988	-40.052	35.998
	4x6	0.755	44.186	10	5.635	2.761	18.703
	5x6	5.99	18.023	1.479	-4.417	8.53	57.299
	S.E	1.296	4.321	0.417	4.041	4.504	1.679

Table (4) shows the estimation of the effects of general combining ability to each parent of the studied traits. The best parent 5 in the yield per plant (8.83), the weight of 1000 seeds (5.87), the diameter of the disc (0.47) and the Plant height (6.98), all its effects were positive and significant. This parent can be used to possess the desired genes and contribute great degree to the transfer of the character into a hybrid. This finding is consistent with the [2, 4]. This indicates that the general combining ability of to have significant and positive effects in some parents in the transfer of traits studied.

While followed by the parent (6), where all its effects were positive, except for the two trait of leave area and the weight of 1000 seeds, Where the effects were negative and gave the highest positive and significant effect in the number of seeds with the disc (55.18). This refers to the possibility of benefiting from this parent (6) in the transfer of desirable traits to his crosses and his contribution to a large extent in the transfer of traits to the hybrids resulting from his crosses. Agree this result with [18, 19, 20, 21].

Table 4. Estimates of GCA effects of each parent for all studied traits

Genotypes	Plant height (cm)	Leaf area (cm)	Diameter disc (cm)	No. of seeds/disc	Weight of 1000 seed (gm)	yield per plant (gm)
P1	-7.629	11.654	0.037	1.582	-9.750	-10.269
P2	-3.428	1.479	-1.112	-44.217	4.462	1.606
Table (5) shows the estimation of the specific combining ability effects for each hybrid in its studied characteristics. (1 × 5) was the best in plant height (11.32), and (5 × 6) was the best in the leaves area (40.68). (3 × 6) is the best in the disc diameter (2.94). While (4 × 5) the best number of seeds in the disc (126.88). (3 × 4), the best in the weight of 1000 seeds (28.84). And the yield per plant (28.46) in the crossing (3 x 4). This shows that some of the crosses showed a significant positive effect, while others showed a negative effect on the SCA to the studied traits.

There was a variation between some crosses of the effects on the specific combining ability. Where parents have a positive and significant impact of the general combining ability to a degree of traits, give the same effects in the same direction in the effects of their impact on the specific combining ability of the Union. This means showing the dominance influence of genes. While the effects of the general combining ability are positive and significant to the character from traits, there was no positive impact on the specific combining ability, this is caused by the effect of the additive gene action in the studied traits [22, 23, 24].

Characters	Plant height (cm)	Leaf area (cm)	Diameter disc (cm)	No. of seeds/disc	Weight of 1000 seed (gm)	yield per plant (gm)
1x2	5.438	3.6	0.946	93.186	-5.341	-0.077
1x3	-7.335	-9.9	-1.066	35.181	-3.091	-1.023
1x4	7.575	26.8375	1.059	-31.876	0.108	-1.814
1x5	11.327	14.4375	2.258	-56.951	-10.353	-14.292
1x6	3.114	-8.225	2.208	15.286	2.133	2.439
2x3	8.463	-1.625	-0.316	-34.018	-28.003	-28.167
2x4	-7.415	26.9125	-1.491	-2.476	-7.003	-7.352
2x5	4.925	27.4125	-0.091	-45.551	13.533	10.238
2x6	-6.086	-12.65	1.358	-52.113	-3.278	-6.397
Table (6) shows the genetic parameters of studied traits. It shows the values of the components of variance, inheritance ratios and the degree of dominance. When estimating the components of genetic variation, by analyzing correlation coefficient and path analysis between yield and its components. The values of the dominance variance were higher than the Non-dominance variance in the characteristics of leaf area, disc diameter, 1000 grain weight and yield plant. Indicate that the genes of dominance variation are more important than genes for additive variation in inheritance control of these traits. These results are agreed with the findings of both [7].

The lowest percentage of plant leaf area is 24.142

The ratio of inheritance in the broad sense was high for all studied traits, ranging from (97.74) for the individual plant yield and (99.81) for the number of seeds in the disc, this is due to the high value of genetic variation and low environmental variation. While the percentage of inheritance in the narrow sense ranged between the lowest percentage of plant leaf area is (24.142) and (78.31) for plant height. The degree of dominance was greater than one for all traits except the plant height and this indicates the existence of the effects of over-dominance of genes that control the inheritance of traits. The expected genetic improvement was high for the number of seeds with the disc (249.15) and ranged from (0.92) for the individual plant yield and (27.42) for the diameter disc. These results agreed [10,18,25].

Genetic parameters	Plant height (cm)	Leaf area (cm)	Diameter disc (cm)	No. of seeds/disc	Weight of 1000 seed (gm)	yield per plant (gm)
\(\delta^2 A\)	189.263	2056.47	11.403	11394.792	93.990	82.798
\(\delta^2 D\)	48.220	6421.02	11.763	10541.367	211.420	223.090
\(\delta^2 G\)	237.483	8419.327	23.167	21936.158	305.410	305.888
\(\delta^2 E\)	4.200	50.737	0.437	40.833	4.200	7.050
\(\delta^2 P\)	241.683	8470.063	23.603	21976.992	309.610	312.938
\(H^2_{b.s}\)	98.262	99.401	98.150	99.814	98.643	97.747
\(H^2_{n.s}\)	78.310	24.142	48.312	51.849	30.358	26.458
4. Conclusion

Due to variances among (Cytoplasm Meals Striated) CMS lines which used as lines, conclude from the above that the parent (6) is the best parents for its superiority in the traits of plant height and the number of seeds per disc. (3 × 4) was the best in the hybridization of the plant yield where it gave a value of (89.52%). And cross (5 × 6) is the best in the number of seeds per disk gave a hybridization value of (24.73%). While the parent (6) is the best in the effects of the General combining ability of the number of seeds in the disc, where gave a value of (55.18). The effects of the specific combining ability cross (5 × 6) was the best in the leaves area where it gave a value of (40.68) therefore for improving these traits, GCA effects of parents can be considered as suitable criteria for SCA prediction of the crosses.

References

[1] Abd El-Satar, M. A. 2017. Genetic analysis of half diallel matting with different methods and their comparisons for yield and its associated traits in sunflower under saline soil stress conditions. Helia, 40(66), 85.

[2] Abd El-Satar, M.A., Fahmy, R.M. & Hassan, T.H.A. 2015. Genetic control of sunflower seed yield and its components under different edaphic and climate conditions. The 9th Plant Breeding International Conference September 2015, Egyptian Journal of Plant Breeding 19(5), 103–123 (Special Issue).

[3] Ahmad, M. W., Ahmed, M. S., & Tahir, H. N. 2012. Combining ability analysis for achene yield and related traits in sunflower (Helianthus annuus L.). Chilean Journal of Agricultural Research, 72(1), 21.

[4] AL-Ani, Y. H. S., 2014. Genetic Analysis of Quantitative traits in Sun Flower (Helianthus annuus L.) PhD Thesis. Department of Field Crops Science. Collage of Agriculture and Forestry - University of Mosul.

[5] Alcala-Rico, J. S. G. J., Lopez-Benitez, A., Gayosso-Barragan, O., Ek-Maas, J. N., Hidalgo-Ramos, D. M., & Marroquin-Morales, J. A. 2019. Genetic parameters and yield potential of polyembryonic maize genotypes. Australian Journal of Crop Science, 13(9), 1540.

[6] Ali, Q., Ahsan, M., & Ali, F. 2015. Genetic advance, heritability, correlation, heterosis and Heterobeltiosis for morphological traits of maize (Zea mays L.). Albanian Journal of Agricultural Sciences, 12(4), 689-698.

[7] Al-Shahri, D. S. I., & Abdul S.A. M. A., 2013. Genetic Analysis of Some Characteristics of Sun Flower Helianthus annuus L. Using Full Hybridization. Journal of Iraqi Agriculture 5(2), 250-262.

[8] Andarkhor, S. A., Mastibege, N., & Rameeh, V. 2016. Combining ability of agronomic traits in Sunflower (Helianthus annuus L.) using line X tester analysis. International Journal of Biology, 4(1), 89.

[9] Andarkhor, S. A., Mastibege, N., & Rameeh, V. 2017. Combining ability of agronomic traits in Sunflower (Helianthus annuus L.) using line X tester analysis. International Journal of Biology, 4(1), 89.
[10] Ashok, S., Muhammad, S.N., Narayanan, S.L. 2000. Combining ability studies in sunflower (Helianthus annuusL.). Crop Research (Hisar) 20(3), 457–462.

[11] Bekeko, Z., Fininsa, C., Wegary, D., Hussien, T., Hussien, S., & Asalf, B. 2018. Combining ability and nature of gene action in maize (Zea mays L) inbred lines for resistance to gray leaf spot disease (Cercospora zeae maydis) in Ethiopia. Crop Protection, 112, 39-48.

[12] EL-Satar, M. A. 2016. Gene Action and Comparison Between Half Diallel Analysis Methods Under Saline Soil Stress Conditions in Sunflower. Journal of Plant Breeding and Genetics, 4(3), 77-92.

[13] Griffin, B. 1956. Concept of general and specific combining ability in relation to diallel cross system. Australian Journal of Biological Sciences 9: 462–493.

[14] Habib, H.; S. S. Mehdi; Abdul Rashid; S. Iqbal and Anjum M. A. 2016. Heterosis studies in sunflower (Helianthus annuus L.) crosses for agronomic traits and oil yield under Faisalabad conditions. Pak. J. Agri. Sci., 43 (3-4), 131 – 136.

[15] Hammadi H. J. and Abed A. A. 2018. Determination Heterosis, Combining Ability and Gene Action using Half Diallel Crosses in Maize. Iraqi Journal of Agricultural Sciences. 49(6),459-454.

[16] Jan, M.; G. Hassan; I. Hussain and Razi D. 2006. Combining ability analysis of yield and yield components in sunflower. Pakistan Journal of Biological Sciences. 9 (12) : 2328 – 2332.

[17] Khan, H., Ur Rahaman, H., Ahmad, H., Alliand, H., Alam, M. 2008. Magnitude of combining ability of sunflower genotypes in different environments. Pakistan Journal of Botany 40(1), 151–160.

[18] Machikowa, T., Saetang, C., & Funpeng, K., 2016. General and specific combining ability for quantitative characters in sunflower. Journal of Agricultural Science, 3(1), 91.

[19] Meena, C. R., Meena, H. P., & Sinha, B. 2013. Fertility restoration, combining ability effects and heterosis in sunflower (Helianthus annuus L.) using different CMS sources. Journal of Oilseeds Research, 30(1), 60-64.

[20] Meena, C. R., Meena, H. P., & Sinha, B. 2015. Fertility restoration, combining ability effects and heterosis in sunflower (Helianthus annuus L.) using different CMS sources. Journal of Oilseeds Research, 30(1), 60-64.

[21] Mohanasundaram, K., Manivannan, N., & Varman, P. V. 2010. Combining ability analysis for seed yield and its components in Sunflower (Helianthus annuus L.). Electronic Journal of Plant Breeding, 1(4), 864-868.

[22] Nasreen, S.; Z. Fatima; M. Ishaque; A. S. Mahmood; M. Khan; R. Khan and M. F. Chaudhary 2011. Heritability analysis for seed yield related components in sunflower (Helianthus annuus L.) based on genetic difference. Pak. J. Bot. 43(2), 1295-1306.

[23] Rahman, D. H.; I. H. Khalil; A. Farooqi and Habib R. 2006. Magnitude of heterosis for morphological and yield traits in sunflower. Pk. J. Pl. Sci., 12 (1), 55 – 64.

[24] Shams, M. A. J. I. D., Choukan, R. A. J. A. B., Majidi, E. S. L. A. M., & DARVISH, F. 2019. Estimation of combining ability and gene action in maize using line× tester method under three irrigation regimes.

[25] Zare, M., Choukan, R., Heravan, E. M., Bihamta, M. R., & Ordookhani, K. 2017. Gene action of some agronomic traits in corn (Zea mays L) using diallel cross analysis. African Journal of Agricultural Research, 6(3), 693-703.