Dimension-6 Operator Constraints from Boosted VBF Higgs

Ralph Edezhath

Physics Department, University of California,
Davis, California 95616

Abstract

We discuss the constraints on new physics from Higgs production through vector boson fusion in the context of an effective field theory that preserves Standard Model gauge symmetries. We find that the constraints on dimension-6 operators are significantly improved over those from the VBF signal strength by studying the Higgs transverse momentum distribution. Focusing on the O_{HW} operator, we find that boosted VBF decaying to photons yields constraints competitive with boosted WW production in the fully leptonic final state, and calculate projected limits for both at the 14 TeV LHC. The p_T cuts required to maximize the reach of VBF searches are substantially softer, making the use of the effective field theory more robust than in the case of WW production which requires very high p_T cuts to obtain similar limits. Boosted VBF Higgs is thus an important probe of new physics.
1 Introduction

Although the existence of the Higgs boson has been firmly established 1, the naturalness argument indicates that our understanding of electroweak symmetry breaking may be incomplete. Furthermore, the absence of any deviations of Higgs properties from Standard Model (SM) expectations suggests that new physics, if it exists, may be decoupled at some heavy scale. This motivates a comprehensive program of precision measurements of the Higgs interactions to detect hints of new physics. At energies below the heavy scale of new states, they can be integrated out giving rise to an effective field theory (EFT) of higher dimensional operators composed of SM fields. The EFT provides a model independent framework for interpreting precision measurements, which can be connected to specific UV models systematically; a recent discussion can be found in 4.

Constraints on these operators have been derived from electroweak precision measurements 5, from triple gauge couplings (TGC) 8, and various Higgs sector measurements 10,13. Global fits incorporating various searches have been performed using electroweak and TGC data 14 and later including Higgs sector constraints $^{15–18}$. Projected constraints from future lepton colliders were studied in 19,20. The constraints from the vector boson fusion (VBF) production of Higgs have been relatively unexplored. The use of angular correlations in VBF production to probe the spin and CP of the Higgs was studied in 21. The boosted signatures of dimension-6 operators were studied in 19,20 and Higgs plus vector boson production 16,24 but the constraints from boosted VBF have not been examined. The constraints on these operators from the signal strength ratio of VBF to gluon fusion $^{ww} \rightarrow \mu \mu$ was studied in 16, combining the signal strength likelihoods reported by CMS and ATLAS for $\gamma \gamma, \tau \tau, ZZ^*$ and WWW^*. We find that a stronger constraint can be obtained from boosted VBF than from the signal strength alone.

Many bases have been proposed for these operators 25,27; we use the ‘Strongly Interacting Light Higgs’ (SILH) basis which was first proposed in 28 and extended in 29. The bosonic operators which modify VBF in this basis are $\mathcal{O}_H, \mathcal{O}_W, \mathcal{O}_B, \mathcal{O}_{BB}, \mathcal{O}_{HW}$ and \mathcal{O}_{HB} which are respectively:

$$
\Delta \mathcal{L}_{VBF} = \frac{c_H}{2\Lambda^2} (\bar{\psi} \gamma^\mu |H|^2 \gamma_\mu \psi)^2 + i\frac{g_{cB}}{\Lambda^2} \left(H^\dagger \frac{\sigma^{\mu\nu}}{2} H \right) \partial^\nu B_{\mu\nu} + \frac{c_W}{2\Lambda^2} \left(H^\dagger \sigma^{\mu\nu} D^\mu H \right) D^\nu W^a_{\mu\nu} + \frac{c_{BB}}{\Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu} + \frac{i g_{cHW}}{\Lambda^2} (D^\mu H)^\dagger \sigma^{\mu\nu} (D^\nu H) W^a_{\mu\nu} + \frac{i g_{cHB}}{\Lambda^2} (D^\mu H)^\dagger (D^\nu H) B_{\mu\nu}.
$$

The operators \mathcal{O}_W and \mathcal{O}_B are tightly constrained by the S parameter while \mathcal{O}_{BB} is constrained by Higgs to diphoton decay 11, and \mathcal{O}_H modifies the Higgs propagator. The $\mathcal{O}_{HW} - \mathcal{O}_{HB}$ direction is constrained by the decay of Higgs to $Z\gamma$ 12, but this vanishes if the new physics giving rise to these operators obeys P_{LR} symmetry, thus it is important to probe these operators through other measurements. The $\mathcal{O}_{HW} + \mathcal{O}_{HB}$ direction contributes to anomalous triple-gauge couplings and the limits from TGC measurements at LEP and LHC have been studied in 7,11,16. The TGC limits relevant for this direction come from WW production, which is currently also the sole probe of the \mathcal{O}_{WWW} operator. An independent measurement of the effect of $\mathcal{O}_{HW} + \mathcal{O}_{HB}$ is necessary to disentangle it from \mathcal{O}_{WWW}. VBF Higgs is thus complementary to WW production searches and one of the few probes of the direction that is allowed by P_{LR} symmetry.

*The parity that interchanges $L \leftrightarrow R$ for $SU(2)_L \times SU(2)_R$. For a discussion of the behavior of these operators under custodial symmetry and P_{LR} see 10.
Fig. 1. Ratio of the cross section with O_{HW} over the SM cross section, for VBF and WW production at $\sqrt{s} = 14$ TeV

In the following sections, we study whether the current limits from VBF Higgs are competitive with TGC limits from diboson production and calculate projected from the 14 TeV LHC for both. We restrict our analysis to the effect of O_{HW}, as the operator O_{HB} has the same behavior but suppressed by $\tan^2 \theta_W$. We set $|c_{HW}| = 1$ so that Λ indicates the scale of new physics.

WW production has a significantly larger rate than VBF Higgs production, and hence the uncertainty in its signal strength is much lower. However the relative enhancement due to the dim-6 operators is much higher in VBF as shown in Fig. 1 thus it has the potential to set competitive limits. The momentum dependence in O_{HW} and O_{HB} will enhance VBF production at high Higgs p_T, and we examine whether this can be used to improve the limits. We will derive and compare the current and projected dim-6 operator limits for VBF Higgs decaying to photons and the fully leptonic decay of WW. We compare the CMS studies [30, 31] at 7 TeV since the limits for the full 8 TeV dataset have not yet been released. The projected VBF sensitivities for $\tau\tau$, ZZ and WW are similar to the diphoton channel [39] so we hope that the limits obtained through a study of the diphoton channel will be representative of the reach of the other channels.

2 Limits from WW production

So far the most stringent limits on the $O_{HW} + O_{HB}$ direction in LHC data have been derived from TGC measurements in WW production. The operators O_{HW} and O_{HB} contribute to triple-gauge couplings as follows

$$\Delta L_{TGC} = ig\delta g^Z_{\eta\nu} Z^{\mu} (W^-\nu W^{\mu+} - W^+\nu W^{\mu-}) + ig (\delta \kappa_Z c_{\theta_W} Z^{\mu\nu} + \delta \kappa_{\gamma}s_{\theta_W} A^{\mu\nu}) W^-_{\mu}W^{\nu}_{+}$$
where $V_{\mu\nu} \equiv \partial_\mu V_\nu - \partial_\nu V_\mu$ for $V = W^\pm, Z, A$ and the TGC parameters are defined as in [32] :

\[
\delta g_1^Z = c_{HW} \frac{m_w^2}{\Lambda^2} \\
\delta k_\gamma = (c_{HW} + c_{HB}) \frac{m_w^2}{\Lambda^2} \\
\delta k_Z = \delta g_1^Z - \tan^2 \theta_W \delta k_\gamma
\]

The backgrounds for the fully leptonic decay of WW are the following : $W + jets$ where one of the jets fakes a lepton, gluon induced WW production, $t\bar{t}, tW$, Drell-Yan production of leptons, WZ, ZZ and $W + \gamma$ where the photon fakes an electron. The event samples for gluon-induced WW production were generated using gg2VV [33], and for the other processes the events were generated with MadGraph5 v2.1.2 [34] interfaced with Pythia 6.4 [35] and Delphes 3.1.2 [36], and the UFO model implementation of dim-6 operators from [37]. We implement the following cuts from the CMS WW production search in the fully leptonic final state [31] : two oppositely charged leptons, with p_T of the dilepton system > 45 GeV are required, with an invariant mass of $|m_{\ell\ell} - m_Z| > 15$GeV , veto on b-jets or jets with $E_T > 15$ GeV and with azimuthal angle within 165° of the dilepton system (in the case of same-flavor leptons), no jets with $E_T > 30$ GeV and $|\eta| < 5$. The 'projected MET' as defined in [31] is required to be greater than 37.5 (20) GeV for same flavor leptons (opposite flavor) leptons. High p_T cuts on the leading lepton significantly reduces the non-WW background, and since we do not consider pileup we have not made further optimizations for 14 TeV. The cross sections for the WW and background processes after these cuts is given in Table 2.

Process	Passing inclusive cuts	With lepton $p_T^{max} > 760$GeV
SM $W^+W^- \rightarrow l^+\nu l^-\nu$	257	0.0017
SM $W^+W^- + \mathcal{O}_{HW}$ with $\Lambda =$1000GeV	257	0.007
$ gg \rightarrow WW$	19.9	8.2 \cdot 10^{-4}
$ tt + tW$	27.7	3.7 \cdot 10^{-4}
$W + jets$	20.5	1.9 \cdot 10^{-4}
$Z/\gamma^* \rightarrow l^+/l^-$	1.49	3.0 \cdot 10^{-4}
WZ and ZZ	3.33	1.4 \cdot 10^{-4}
$W\gamma^*$	6.8	2.5 \cdot 10^{-4}

Table 1. WW search cross sections (fb) at $\sqrt{s} = 14$TeV. The second column shows the significant reduction in the background processes and enhancement of \mathcal{O}_{HW} relative to SM-only WW production from a high p_T cut on the leading lepton.

The effect of the dim-6 operators are more pronounced at higher W boson p_T, thus the CMS search uses a maximum-likelihood fit for the p_T distribution of the leading lepton to set limits on TGCs. We approximate this with a p_T cut (shown in Table 2) on the leading lepton corresponding to the highest bin reported by the search, since this is the most sensitive to the effect of dim-6 operators. This yields a 95% CL limit of 320 GeV for Λ. The limit reported by the CMS search of $|\delta g_1^Z| \leq 0.095$, which corresponds to a limit on Λ of 295 GeV. We slightly overestimate the bound since we did not consider systematics, and consider only the Poisson statistical error. The dominant systematic error arises from the difference in the p_T spectrum between the $W + jets$ background...
Fig. 2. Cumulative plot for total events above given value of leading lepton p_T, for $\sqrt{s} = 14$ TeV and 300 fb$^{-1}$. The sum of the backgrounds from gluon induced WW production, $t\bar{t}$, tW, Drell-Yan production of leptons, WZ, ZZ and $W+$photon are shown along with WW production in the SM and with O_{HW}

and the QCD multijet spectrum, since the former is estimated from the latter. But at high p_T the yield from the non-WW background events is very small as shown in the Fig. 2 thus the effect of this error on the dim-6 operator limits should be small. We collect the 7 TeV and projected limits below, with the corresponding p_T cut required.

\sqrt{s} and Luminosity	p_T cut on leading lepton	95% CL Limit on Λ
7 TeV, 4.92 fb$^{-1}$	180 GeV	$c_{HW} = -1$ 320 GeV, $c_{HW} = 1$ 385 GeV
14 TeV, 300 fb$^{-1}$	760 GeV	$c_{HW} = -1$ 1000 GeV, $c_{HW} = 1$ 1200 GeV
14 TeV, 3 ab$^{-1}$	940 GeV	$c_{HW} = -1$ 1350 GeV, $c_{HW} = 1$ 1825 GeV

Since the p_T cut for the leading lepton is close to the naive scale of the new physics, it is important to check whether the theory violates unitarity in the high p_T region. Following [38], unitarity is violated for $q\bar{q} \to WW$ when $\frac{\sigma_{tot} \cdot m_{WW}^2}{2\pi} \geq 1$. The ratio $\frac{\sigma_{tot} \cdot m_{WW}^2}{2\pi}$ for the events with leading lepton p_T above 760 GeV (940 GeV) for O_{HW} with $\Lambda = 1000$ GeV (1300 GeV) is shown in Fig 3 and we find that the events are well below the unitarity violation threshold. As discussed in [7], the limits obtained with very high p_T cuts may not be valid since dimension-8 operators may become relevant at these energies. But since we focus on limits from VBF Higgs we use the most optimistic estimate of the limits from WW production, and as discussed in Sec. 3 similar limits can be obtained from VBF using much softer cuts thus avoiding the breakdown in validity of the EFT.
Fig. 3. Histogram of $\sigma_{\text{tot}} \cdot m_{WW}^2 / 2\pi$ for events passing the leading lepton p_T cut

3 VBF Higgs decaying to photons

The decay of Higgs to diphotons has a relatively smaller branching ratio; but being a very clean channel the projected sensitivities\(^{39}\) are similar to the other decay channels. Searches for VBF Higgs typically use a rapidity gap and high dijet mass requirement for the tagging jets to reduce the contribution of Higgs plus vector boson and gluon fusion Higgs plus jets, with the latter still remaining a substantial background. The other backgrounds in the diphoton decay channel are the continuum production of diphotons, and events where jets radiate non-prompt photons known as ‘fake photons’. Since the selection criteria used by CMS achieves over a 99% pure source of prompt photons\(^{30}\), we ignore the ‘fake photon’ background.

The Higgs signal and continuum diphoton background samples were generated using MadGraph5ab, interfaced with Pythia and Delphes. The background from gluon fusion higgs plus two jets was simulated with VBFNLO 2.7.040,41, interfaced with Pythia 8.242 and Delphes. For the 7 TeV search with 5.1fb-1 of data, we implement the kinematic cuts used by the CMS study43 and find that the operator O_{HW} with $\Lambda = 150$ GeV can be excluded at 95% CL. For the $\sqrt{s} = 14$ TeV analysis we use the following cuts from the updated CMS VBF study30.

Two jets with invariant mass of at least 500 GeV and $p_T > 30$ GeV are required, with $|\Delta \eta| > 3$ within $|\eta| < 4.7$. Two photons with $p_T > 30$ GeV, $|\eta| < 2.5$ are required and the azimuthal angle between the diphoton system and dijet system is required to be greater than 2.6. The leading (trailing) photon is required to have p_T greater than $m_{\gamma\gamma}/2$ (25 GeV) with $|\eta| < 2.5$. The Zeppenfeld variable $\eta(\gamma_1 + \gamma_2) - \eta_{j1} + \eta_{j2}/2$ is required to be less than 2.6. The tagging jets are required to have $\Delta R > 0.5$ from the photons. Taking advantage of the much higher event rates, we impose a cut on the diphoton invariant mass $|m_{\gamma\gamma} - 125| < 5$ GeV. Increasing the dijet mass and jet p_T requirements used in the 8 TeV search did not significantly improve the limits at 14 TeV. The signal and background yields passing these cuts for the SM and a benchmark point are given in Table 2.
Table 2. VBF Higgs search cross sections (fb) at $\sqrt{s} = 14$TeV. Second column shows improved enhancement from O_{HW} relative to SM with diphoton p_T cut

Process	VBF cuts (see text)	$p_T(\gamma\gamma) > 140$ GeV
SM VBF Higgs $\rightarrow \gamma\gamma$	1.27	0.408
SM VBF+O_{HW} $\Lambda =600$ GeV, $c_{HW} = -1$	1.35	0.534
Continuum diphoton	3.03	0.186
Gluon fusion plus two jets	0.237	0.055

The operator O_{HW} leads to a new Lorentz structure in the HVV vertices which does not occur in the SM. The vertex with W-bosons, which has the greatest contribution in VBF production is

$$\frac{g^2 v c_{HW}}{2\Lambda^2} (p_1^\mu p_2^\nu + p_1^\mu p_3^\nu - g^{\mu\nu}(p_1 \cdot p_2 + p_1 \cdot p_3)).$$

Due to this momentum dependence the relative enhancement from the operator O_{HW} is greater at high Higgs p_T, as shown in Fig. 4. Thus the limits can be improved with a cut on the p_T of the Higgs reconstructed from the diphoton system. Using a similar reasoning as in the case of WW production, we have checked that the use of the EFT does not violate unitarity with the given p_T cuts, as shown in Fig. 5. The strongest limit that can be obtained in each case with the corresponding p_T cuts are given in Table 3.

Table 3. 95% CL Limits on Λ from VBF diphoton search

\sqrt{s} and Luminosity	$c_{HW} = -1$	$c_{HW} = 1$		
	p_T cut	p_T cut	p_T cut	p_T cut
7 TeV, 5.1fb$^{-1}$	no p_T cut	150 GeV	no p_T cut	120 GeV
14 TeV, 300fb$^{-1}$	no p_T cut	510 GeV	no p_T cut	550 GeV
14 TeV, 300fb$^{-1}$	140 GeV	705 GeV	130 GeV	600 GeV
14 TeV, 3ab$^{-1}$	330 GeV	1200 GeV	275 GeV	1200 GeV
Fig. 5. Histogram of $\frac{\sigma_{\text{tot}} \cdot m_{qq}^2}{2\pi}$ for events with O_{HW} and $\Lambda = 705$ GeV (1200 GeV) passing Higgs p_T cut of 140 GeV (330 GeV) respectively.

We note an important feature of the results. The p_T cuts required to maximize the sensitivity to these operators are substantially lower than in the case of WW production. For example, to obtain a 95% CL limit of $\Lambda > 1200$ GeV (for $c_{HW} = 1$) with 3ab$^{-1}$ of data at the 14 TeV LHC, a p_T cut of 670 GeV is required on the leading lepton in WW production, while the same limit can be obtained from VBF with a p_T cut of 330 GeV on the diphoton system.

The constraints on these operators from the signal strength ratio of VBF to gluon fusion $\frac{\mu_{\text{VBF}}}{\mu_{ggF}}$ was studied in [16], using the likelihoods reported by CMS and ATLAS. They obtain a stronger limit on O_{HW} from 8 TeV data since they combine the signal strengths from $\gamma\gamma$, $\bar{\tau}\tau$, ZZ* and WW*. We have shown that a stronger limit can be obtained in the diphoton channel using a p_T cut, and this should apply to the other channels also.

4 Conclusion

One of the primary goals of the LHC is to probe deviations of the Higgs from SM expectations, and an effective field theory composed of dimension-6 operators is a particularly useful model-independent framework to parametrize effects from new physics. VBF Higgs measurements are an important probe that is complementary to other methods such as Higgs branching ratio and TGC measurements. As discussed in [7], in the high p_T tail of WW production, the contribution from dimension-8 operators becomes relevant and hence the limits from WW production derived in [17][44] may not be reliable. But VBF searches may avoid this issue, since the p_T cuts required to obtain comparable limits is substantially lower.

The combined limit from the various decay channels of VBF Higgs can be the most sensitive probe of the direction which is allowed by P_{LR} symmetry, $O_{HW} + O_{HB}$. We have shown that studying the p_T distribution can substantially increase the sensitivity of VBF measurements to new physics, and Higgs p_T cuts of up to 140 GeV (330 GeV) can maximize the reach of the 14 TeV LHC with 300fb$^{-1}$ (3 ab$^{-1}$) of data. Thus we advocate that CMS and ATLAS optimize and search for dimension-6 operator signals in boosted VBF Higgs.
Acknowledgements

We thank Markus Luty and Ennio Salvioni for helpful discussions and comments about the manuscript, and Nikolas Kauer for gg2VV event samples. This research was supported in part by the Department of Energy under grant DE-FG02-91ER40674.

References

[1] ATLAS Collaboration Collaboration, G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” [Phys.Lett. B716 (2012) 1–29] arXiv:1207.7214 [hep-ex]

[2] CMS Collaboration Collaboration, S. Chatrchyan et al., “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” [Phys.Lett. B716 (2012) 30–61] arXiv:1207.7235 [hep-ex]

[3] W. Buchmuller and D. Wyler, “Effective Lagrangian Analysis of New Interactions and Flavor Conservation,” [Nucl.Phys. B268 (1986) 621–653]

[4] B. Henning, X. Lu, and H. Murayama, “How to use the Standard Model effective field theory,” [arXiv:1412.1837 [hep-ph]]

[5] S. Alam, S. Dawson, and R. Szalapski, “Low-energy constraints on new physics revisited,” [Phys.Rev. D57 (1998) 1577–1590] arXiv:hep-ph/9706542 [hep-ph]

[6] H. Mebane, N. Greiner, C. Zhang, and S. Willenbrock, “Constraints on Electroweak Effective Operators at One Loop,” [Phys.Rev. D88 no. 1, (2013) 015028] arXiv:1306.3380 [hep-ph]

[7] A. Falkowski and F. Riva, “Model-independent precision constraints on dimension-6 operators,” [arXiv:1411.0669 [hep-ph]]

[8] B. Dumont, S. Fichet, and G. von Gersdorff, “A Bayesian view of the Higgs sector with higher dimensional operators,” [JHEP 1307 (2013) 065] arXiv:1304.3369 [hep-ph]

[9] T. Corbett, O. boli, J. Gonzalez-Fraile, and M. Gonzalez-Garcia, “Determining Triple Gauge Boson Couplings from Higgs Data,” [Phys.Rev.Lett. 111 no. 1, (2013) 011801] arXiv:1304.1151 [hep-ph]

[10] J. Elias-Miro, J. Espinosa, E. Masso, and A. Pomarol, “Higgs windows to new physics through d=6 operators: constraints and one-loop anomalous dimensions,” [JHEP 1311 (2013) 066] arXiv:1308.1879 [hep-ph]

[11] A. Pomarol and F. Riva, “Towards the Ultimate SM Fit to Close in on Higgs Physics,” [JHEP 1401 (2014) 151] arXiv:1308.2803 [hep-ph]

[12] A. Falkowski, F. Riva, and A. Urbano, “Higgs at last,” [JHEP 1311 (2013) 111] arXiv:1303.1812 [hep-ph]

[13] C. Englert, Y. Soreq, and M. Spannowsky, “Off-Shell Higgs Coupling Measurements in BSM scenarios,” [arXiv:1410.5440 [hep-ph]]
[14] Z. Han and W. Skiba, “Effective theory analysis of precision electroweak data,” *Phys.Rev.* D71 (2005) 075009 [arXiv:hep-ph/0412166 [hep-ph]]

[15] T. Corbett, O. Eboli, J. Gonzalez-Fraile, and M. Gonzalez-Garcia, “Robust Determination of the Higgs Couplings: Power to the Data,” *Phys.Rev.* D87 (2013) 015022 [arXiv:1211.4580 [hep-ph]]

[16] J. Ellis, V. Sanz, and T. You, “Complete Higgs Sector Constraints on Dimension-6 Operators,” *JHEP* 1407 (2014) 036 [arXiv:1404.3667 [hep-ph]]

[17] J. Ellis, V. Sanz, and T. You, “The Effective Standard Model after LHC Run I,” *arXiv:1410.7703 [hep-ph]*

[18] J. de Blas, M. Ciuchini, E. Franco, D. Ghosh, S. Mishima, et al., “Global Bayesian Analysis of the Higgs-boson Couplings,” *arXiv:1410.4204 [hep-ph]*

[19] N. Craig, M. Farina, M. McCullough, and M. Perelstein, “Precision Higgsstrahlung as a Probe of New Physics,” *arXiv:1411.0676 [hep-ph]*

[20] M. Beneke, D. Boito, and Y.-M. Wang, “Signatures of anomalous Higgs couplings in angular asymmetries of $H \rightarrow Z \ell^+ \ell^-$ and $e^+e^- \rightarrow HZ$, ” *arXiv:1411.3942 [hep-ph]*

[21] K. Hagiwara, Q. Li, and K. Matutari, “Jet angular correlation in vector-boson fusion processes at hadron colliders,” *Phys.Rev.* 0907 (2009) 101 [arXiv:0905.4314 [hep-ph]]

[22] C. Grojean, E. Salvioni, M. Schlaffer, and A. Weiler, “Very boosted Higgs in gluon fusion,” *JHEP* 1405 (2014) 022 [arXiv:1312.3317 [hep-ph]].

[23] D. Ghosh and M. Wiebusch, “The Dimension Six Triple Gluon Operator in Higgs+Jet Observables,” *arXiv:1411.2029 [hep-ph]*.

[24] A. Biekoetter, A. Knochel, M. Kraemer, D. Liu, and F. Riva, “Vices and Virtues of Higgs EFTs at Large Energy,” *arXiv:1406.7320 [hep-ph]*

[25] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, “Dimension-Six Terms in the Standard Model Lagrangian,” *JHEP* 1010 (2010) 085 [arXiv:1008.4884 [hep-ph]]

[26] K. Hagiwara, S. Ishihara, R. Szalapski, and D. Zeppenfeld, “Low-energy effects of new interactions in the electroweak boson sector,” *Phys.Rev.* D48 (1993) 2182–2203.

[27] C. Grojean, E. Jenkins, A. V. Manohar, and M. Trott, “Renormalization Group Scaling of Higgs Operators and $\Gamma(h \rightarrow \gamma\gamma)$,” *JHEP* 1304 (2013) 016 [arXiv:1301.2688 [hep-ph]].

[28] G. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi, “The Strongly-Interacting Light Higgs,” *JHEP* 0706 (2007) 045 [arXiv:hep-ph/0703164 [hep-ph]].

[29] R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner, and M. Spira, “Effective Lagrangian for a light Higgs-like scalar,” *JHEP* 1307 (2013) 035 [arXiv:1303.3876 [hep-ph]].

[30] CMS Collaboration Collaboration, “Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel,” Tech. Rep. CMS-PAS-HIG-13-001, CERN, Geneva, 2013.
[31] CMS Collaboration Collaboration, S. Chatrchyan et al., “Measurement of the W^+W^- Cross section in pp Collisions at $\sqrt{s} = 7$ TeV and Limits on Anomalous $WW\gamma$ and WWZ couplings,” Eur.Phys.J. C73 (2013) 2610 arXiv:1306.1126 [hep-ex]

[32] K. Hagiwara, R. Peccei, D. Zeppenfeld, and K. Hikasa, “Probing the Weak Boson Sector in $e^+ e^- \to W^+ W^-$,” Nucl.Phys. B282 (1987) 253

[33] N. Kauer, “Interference effects for $H \to WW/ZZ \to \ell\nu\ell\nu$ searches in gluon fusion at the LHC,” JHEP 1312 (2013) 082 arXiv:1310.7011 [hep-ph]

[34] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” JHEP 1407 (2014) 079 arXiv:1405.0301 [hep-ph]

[35] T. Sjostrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual,” JHEP 0605 (2006) 026 arXiv:hep-ph/0603175 [hep-ph]

[36] DELPHES 3 Collaboration, J. de Favereau et al., “DELPHES 3, A modular framework for fast simulation of a generic collider experiment,” JHEP 1402 (2014) 057 arXiv:1307.6346 [hep-ex]

[37] A. Alloul, B. Fuks, and V. Sanz, “Phenomenology of the Higgs Effective Lagrangian via FEYNRULES,” JHEP 1404 (2014) 110 arXiv:1310.5150 [hep-ph]

[38] C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane, et al., “Effective Field Theory: A Modern Approach to Anomalous Couplings,” Annals Phys. 335 (2013) 21–32 arXiv:1205.4231 [hep-ph]

[39] “Projections for measurements of Higgs boson cross sections, branching ratios and coupling parameters with the ATLAS detector at a HL-LHC,” Tech. Rep. ATL-PHYS-PUB-2013-014, CERN, Geneva, Oct, 2013.

[40] J. Baglio, J. Bellm, F. Campanario, B. Feigl, J. Frank, et al., “Release Note - VBFNLO 2.7.0,” arXiv:1404.3940 [hep-ph]

[41] K. Arnold, M. Bahr, G. Bozzi, F. Campanario, C. Englert, et al., “VBFNLO: A Parton level Monte Carlo for processes with electroweak bosons,” Comput.Phys.Commun. 180 (2009) 1661–1670 arXiv:0811.4559 [hep-ph]

[42] T. Sjstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, et al., “An Introduction to PYTHIA 8.2,” arXiv:1410.3012 [hep-ph]

[43] CMS Collaboration Collaboration, S. Chatrchyan et al., “Search for the standard model Higgs boson decaying into two photons in pp collisions at $\sqrt{s} = 7$ TeV,” Phys.Lett. B710 (2012) 403–425 arXiv:1202.1487 [hep-ex]

[44] ATLAS Collaboration Collaboration, G. Aad et al., “Measurement of W^+W^- production in pp collisions at $\sqrt{s}=7$?TeV with the ATLAS detector and limits on anomalous WWZ and WW? couplings,” Phys.Rev. D87 no. 11, (2013) 112001 arXiv:1210.2979 [hep-ex]