Unlike most of the crystals, graphene can be reversibly stretched beyond 10%. This unusual elastic response has made it suitable to modify its electronic and optical properties via strains, idea known as strain engineering [1, 2]. For instance, when graphene is uniformly deformed, its low-energy electronic band structure around the Dirac points becomes elliptical cones. This fact can be visualized as an anisotropy of the Fermi velocity [3]. As a consequence, the optical conductivity of graphene under uniform strain results anisotropic [4, 5], which produces a modulation of the optical transmittance as a function of the incident light polarization [6, 7]. The reported analytical results could be useful for understanding the nonuniform strain effects on scanning tunnelling spectra of graphene, as well as when it is exposed to an external magnetic field.

Keywords: graphene, strain, scanning tunnelling spectroscopy, position-dependent Fermi velocity, magnetic field

(Some figures may appear in colour only in the online journal)
Given that scanning tunnelling spectroscopy (STS) spectra provide the local density of states (LDOS), which depends on the Fermi velocity \(v_0 \) as \(\rho(E) \sim |E|/v_0^2 \) for pristine graphene, the slopes of V-shaped STS spectra present variations at different positions of the sample if the Fermi velocity is spatially varying. Based on this idea, evidence of the PDFV effect in strained graphene has been provided in a few experiments through STS [24, 25]. However, to obtain a local measurement of the Fermi velocity, typically \(v_0 \) is replaced by \(v(x) \) in \(\rho(E) \) leading to \(\rho(E, x) \sim |E|/v^2(x) \), where \(x \) is the measured position across the strain direction. According to this substitution, Fermi velocities at two different positions, \(v(x_1) \) and \(v(x_2) \), are related by the expression, \(v(x_1)/v(x_2) = [S(x_2)/S(x_1)]^{1/2} \), where \(S(x) \) is the STS spectrum slope at the position \(x \) [25]. A purpose of this work is to clarify that the appropriate expression is given by \(v(x_1)/v(x_2) = S(x_2)/S(x_1) \), at least when a space dependent Fermi velocity is due to a nonuniform uniaxial strain.

From the quantum field theory it has been pointed out that a PDFV (in curved graphene) becomes spatial modulations of LDOS [26]; nevertheless, a better description of strain-induced PDFV has been arrived at from low-energy expansions of the standard tight-binding model [23, 27–29]. The achievement of these last studies consists of determining the Fermi velocity tensor as a function of the position-dependent strain tensor. This fact has allowed to approximately calculate within the Dirac model the PDFV effect on the LDOS and, therefore, on STS measurements. However, the analytical expressions for the LDOS of strained graphene, reported in [27], have not been compared with results obtained from tight-binding calculations. Such a comparison will be presented in this article.

Moreover, STS experiments in the presence of a magnetic field can also be used to reveal local variations of the Fermi velocity, as performed in randomly strained graphene [30] as well as on the surface of a complex topological insulator [31]. Here, we report the first detailed study, to our best knowledge, of the PDFV effect on Landau-level spectroscopy using both approaches, tight-binding model and Dirac approximation, in order to provide a better understanding and a more complete theoretical framework for these types of experiments carried out in strained graphene under an external magnetic field.

1. PDFV effect on LDOS

For graphene, the electronic implications of strain can be investigated by means of the nearest-neighbor tight-binding Hamiltonian

\[
\mathcal{H} = -\sum_{\langle i,j \rangle} t_{ij} c_i^\dagger c_j,
\]

where the sum \(\langle i,j \rangle \) runs over nearest neighbors and \(c_i^\dagger \) \((c_i)\) is the creation (annihilation) field operator at the \(i \)th site. The strain-induced modification of the nearest-neighbor hopping parameter \(t_{ij} \) is captured by [32]

\[
t_{ij} = t_0 \exp[-\beta(d_{ij}/a_0 - 1)],
\]

where \(t_0 = 2.7 \text{ eV}, \beta = 3.37, a_0 = 0.142 \text{ nm} \) is the interatomic distance for unstrained graphene, and \(d_{ij} \) is the modified distance between atomic sites \(i \) and \(j \). It is relevant for the present discussion to note that the Hamiltonian (1) with constant \(t_{ij} \) is not capable to describe purely geometric effects on LDOS induced by nonuniform strain [23]. For example, if one assumes \(\beta = 0 \), equation (1) becomes \(\mathcal{H} = -t_0 \sum_{\langle i,j \rangle} c_i^\dagger c_j \) which has the same eigenenergies and eigenfunctions of pristine graphene even when the atoms move from their equilibrium positions.

In order to isolate PDFV effects, we consider a nonuniform uniaxial strain along the zigzag crystalline orientation, as shown in figure 1(a), which is generated by a displacement field of the form \(u(x, y) = u_0 \sin(2\pi x/\lambda)\epsilon_x \), with \(\epsilon_x \) being the unit vector in the \(x \)-direction. The parameters \(\lambda \) and \(u_0 \) fulfill conditions \(a_0/\lambda \ll 1 \) and \(2\pi u_0/\lambda \ll 1 \), allowing the comparison between discrete and continuous models. In fact, this particular nonuniform strain does not produce pseudomagnetic field \(B \). Because according to the considered displacement field \(u \), the components of the strain tensor defined by \(\epsilon_{xy} = (\partial u_x/\partial y - \partial u_y/\partial x)/2 \) result \(\epsilon_{xx} = (2\pi u_0/\lambda) \cos(2\pi x/\lambda) \) and \(\epsilon_{yy} = \epsilon_{xy} = 0 \); at the same time \(B \) is related to the strain tensor through \(B_x \sim (\partial \epsilon_{xy} - \partial \epsilon_{yx} + 2\partial \epsilon_{xx})/\lambda) \) [11], therefore \(B_x = 0 \). It is worth noting that for an out-of-plane displacement field \(h(x) \), e.g. a ripple along the zigzag direction, the physical situation is essentially the same as that studied here, since one has only PDFV effects within the linear approximation [29].

Within the tight-binding model, we calculate the LDOS at the atomic site \(n \) through \(\rho(E, n) = (-1/\pi) \text{Im} [G^+(n, n; E)] \), where \(G^+(n, m; E) \) is the retarded Green’s function evaluated using a uniform Monkhorst-Pack grid. Given the considered displacement field, the LDOS depends only the \(x \)-coordinate and, besides, it results \(\lambda \)-periodic if \(\lambda \) is a multiple of \(\sqrt{3}a_0 \).

Figure 1(b) shows the LDOS at low energies, for \(\lambda = 660\sqrt{3}a_0 \) and \(2\pi u_0 = 0.1\lambda \), at three distinct sites of the strained graphene sample which are labelled as \(x_1, x_2 \) and \(x_3 \), respectively. At \(x_1 \) the sample has a maximum local stretching along the zigzag direction of 10\% (\(\epsilon_{xx} = 0.1 \)), whereas that at \(x_3 \) it has a maximum local shrinking of 10\% (\(\epsilon_{xx} = -0.1 \)). In contrast, at \(x_2 \) the local strain is close to zero (\(\epsilon_{xx} \approx 0 \)). This change of strain along of the zigzag direction induces a variation of the LDOS observed in figure 1(b). In brief, the V-shape of LDOS at low energies is more widely opened in the shrunk region than in the stretched one.

This behavior is quantitatively registered by figure 1(c), where we present the positive slope of the V-shaped LDOS \(S(x) \), in units of the slope \(S_0 \) for unstrained graphene, as a function of the position \(x \) from three different approaches. The open circles correspond to our tight-binding calculations of \(S(x) \), whereas the solid circles are given by \(S(x) = S_0/[1 - \beta \epsilon_{xx}(x)] \), according to the Dirac approach [27]. Good agreement is observed for these two approaches, confirming that the LDOS variation is indeed induced by PDFV.

\footnote{3 We set the Monkhorst-Pack grid-spacing equal to 0.0013 \(\text{Å}^{-1} \).}
Let us explain the essence of the analytical expression derived within the Dirac approximation. For graphene under uniform strain, i.e. non-position dependent strain, the LDOS results \(\rho(E) = \rho_0(E)/\text{det}(v_f/v_0) \), where \(v_f = v_0(1 - \beta \epsilon_{xx} + \epsilon_y) \) is the strain-induced Fermi velocity tensor \([5]\) whose \(\beta \)-independent term \(v_0 \epsilon_y \) is purely a geometric consequence due to the lattice deformation \([29]\). Then for a sufficiently smooth spatially-varying strain, the LDOS can be approximately calculated by making the substitution \(\epsilon_{ij} \rightarrow \epsilon_{ij}(x,y) \). In consequence, for our problem \(\rho(E,x) = \rho_0(E)/[1 - \beta \epsilon_{xx}(x) + \epsilon_{xy}(x)] \), but disregarding geometric effects (given by the \(\beta \)-independent term) in order to compare with the tight-binding results, one finally get \(S(x) = S_0/[1 - \beta \epsilon_{xx}(x)] \).

In other words, the considered strain only modifies the Fermi velocity in the \(x \)-direction, whereas the Fermi velocity in the \(y \)-direction remains equal to \(v_0 \). Hence, the substitution \(v_0 \rightarrow v(x) \) in \(\phi(E) = 2|E|/(\pi \hbar^2 v_0^2) \) is not appropriate to obtain \(\rho_0(E,x) \) because when making such a substitution, one would be wrongly assuming that both components of the velocity are equally modified by strain. To visualize this fact, in figure 1(c) we illustrate with a dashed line the variation of slopes at two different positions, \(S(x_1) \) and \(S(x_2) \), are related by the expression

\[
S(x_1)/S(x_2) = v(x_2)/v(x_1). \tag{3}
\]

2. PDFV effect on LDOS in the presence of magnetic field

We now add a uniform magnetic field \(B \) to our previously discussed problem of strained graphene.

Within the tight-binding model, the Hamiltonian has the form \((1) \), but now the hopping parameter \(t_{ij} \) is evaluated by a generalized expression of equation \((2) \) as

\[
t_{ij} = t_0 \exp[-\beta(d_{ij}/a_0 - 1)] \exp[i \phi_{ij}], \tag{4}
\]

in which the magnetic field effect is introduced by the Peierls phase \(\phi_{ij} \), according to \([33, 34]\)

\[
\phi_{ij} = 2\pi \int_{r_i}^{r_j} A(r) \cdot dr, \tag{5}
\]

where \(\phi_0 \) is the magnetic flux quantum, \(A(r) \) is the vector potential and \(r_j (r_i) \) denotes the modified position of site \(i \) (\(j \)).

Unlike the case without magnetic field, the tight-binding Hamiltonian in the presence of magnetic field captures purely geometric effects due to strain. Even for \(\beta = 0 \), the resulting hopping parameter \(t_{ij} = t_0 \exp[i \phi_{ij}] \) depends on the position through the Peierls phase, leading to a spatial modulation of the LDOS.

Figure 2(a) is analogous to figure 1(b), but the shown LDOS were calculated by assuming a magnetic field of magnitude \(B = 10 \text{T} \). The most remarkable feature of figure 2(a) is the presence of a series of well defined peaks. For pristine graphene, the LDOS presents such peaks at the Landau level energies, given by \(E_{n}^{(0)} = \pm \sqrt{2eBn} \) \([35]\). For example, the first (positive) peak is at \(E_1^{(0)} \approx 0.1 \text{eV} \) for \(B = 10 \text{T} \). In figure 2(a) for nonuniformly strained graphene, the first peak of the LDOS, located at energy \(E_1(x) \), is around \(0.1 \text{eV} \) but it depends on the position \(x \). For instance, \(E_1(x_1) < 0.1 \text{eV} \) in
From equation (6), for a nonuniform strain as illustrated in figure 1(a), it follows that $E_1(x) = E_1^{(0)}[1 - (\beta - 1)\epsilon_{12}(x)/2]$. Thus, at a locally dilated region ($\epsilon_{12}(x, y) > 0$) the first positive peak of the LDOS is shifted to the left of $E_1^{(0)}$, whereas at a locally compressed region ($\epsilon_{12}(x, y) < 0$) the first positive peak of the LDOS is shifted to the right. Figure 2(b) with $\beta = 3.37$ and figure 2(d) with $\beta = 0$, it can be observed a good agreement between the results predicted by the last analytical expression, according to the Dirac approach, and those obtained from the tight-binding model. This fact confirms the concept of a PDFV for the understanding and description of LDOS variations induced by a nonuniform uniaxial strain. Moreover, in figures 2(b) and (d) we illustrate the dashed lines the consequence of substitution $v_0 \rightarrow v(x)$ in $E_1^{(0)}$, which leads to results notably different from those obtained by the tight-binding and Dirac approaches. In short, to evaluate approximately $E_1(x)$ for graphene under a nonuniform uniaxial strain (e.g. a ripple) and in the presence of a uniform magnetic field, the appropriate replacement should be $v_0 \rightarrow v(x)$ in $E_1^{(0)}$, hence one gets $E_1(x) = E_1^{(0)}\sqrt{v(x)/v_0}$, keeping in mind that $v(x)$ is the Fermi velocity along the strain direction. Therefore, using Landau-level spectroscopy measurements, Fermi velocities at two different positions, $v(x_1)$ and $v(x_2)$, are related by

$$v(x_1)/v(x_2) = [E_1(x_1)/E_1(x_2)]^{2}.$$

Equation (7) is certainly limited to a nonuniform uniaxial strain along the zigzag direction. For a situation beyond uniaxial strain, the PDFV effect on the LDOS peaks can be quantified by a more general expression as equation (6), which is valid whenever the strain-induced pseudomagnetic field $B_s(x, y)$ fulfills the condition $B_s(x, y)/B \ll \epsilon_{12}(x, y)$.

On the other hand, as illustrated in the inset of figure 2(a), the LDOS presents an inclination (slope) over an extended energy range. Furthermore, this inclination depends on the position in the same manner as occurred in figure 1(b), which

$\begin{align*}
\text{Energy (eV)} & \quad \text{LDOS (arb. units)} \\
-0.5 & \quad \frac{1}{2} \\
0.5 & \quad 2.5 \\
can be explained as a PDFV effect. For the case $\beta = 0$, see inset of figure 2(c), the mentioned position dependence of the LDOS inclination is less remarked because the PDFV effect is only introduced through the Peierls phase.

3. Conclusions

In closing, we have presented a numerical and analytical study of the LDOS of graphene under nonuniform uniaxial strain, either in absence or in presence of a uniform magnetic field. Our tight-binding results of the LDOS have been successfully explained by analytical expressions derived from the Dirac approximation in term of a PDFV. Moreover, we have clarified that the replacement $v_0 \to v(x)$ in expressions of pristine graphene (e.g. $\rho_0(E) \sim |E|/v_0^2$) could be inappropriate to evaluate PDFV effects on LDOS since such rough approach disregards the strain-induced anisotropy of the Fermi velocity.

In consequence, the analytical expressions (3) and (7) for the LDOS can be useful to appropriately describe effects of non-uniform uniaxial strains (e.g. ripples along the zigzag direction) on STS experiments of graphene, without and with the presence of a uniform magnetic field. It is important to mention that the analytical results reported in this article are valid for $\lambda \gg \ell_B \gg a_0$, where $\ell_B = \sqrt{\hbar/eB}$ is the magnetic length. In addition to the contribution of this work for understanding PDFV effects on Landau-level spectroscopy measurements of strained graphene, our results also suggest that PDFV effects should be considered in a complete description of transport signatures of strain-induced pseudomagnetic fields.

Acknowledgments

This work has been partially supported by CONACYT of Mexico through Project 252943, and by PAPIIT of Universidad Nacional Autónoma de México (UNAM) through Project IN106317. Computations were performed at Miztli de Materiales, UNAM. MOL acknowledges the postdoctoral fellowship project 252943, and by PAPIIT of UNAM. MOL acknowledges the postdoctoral fellowship Project IN106317. Computations were performed at Miztli and Universidad Nacional Autónoma de México (UNAM) through Project IN106317. Computations were performed at Miztli of UNAM.

References

[1] Amorim B et al 2016 Novel effects of strains in graphene and other two dimensional materials Phys. Rep. 617 1–54
[2] Naumis G G, Barraza-Lopez S, Oliva-Leyva M and Terrones H 2017 Electronic and optical properties of strained graphene and other strained 2D materials: a review Rep. Prog. Phys. 80 096501
[3] Oliva-Leyva M and Wang C 2017 Low-energy theory for strained graphene: an approach up to second-order in the strain tensor J. Phys.: Condens. Matter 29 165301
[4] Pellegrino F M D, Anglelli G G N and Pucci R 2010 Strain effect on the optical conductivity of graphene Phys. Rev. B 81 035411
[5] Oliva-Leyva M and Naumis G G 2014 Anisotropic AC conductivity of strained graphene J. Phys.: Condens. Matter 26 125302
[6] Pereira V M, Ribeiro R M, Peres N M R and Neto A H C 2010 Optical properties of strained graphene Europhys. Lett. 92 67001
[7] Oliva-Leyva M and Naumis G G 2015 Tunable dichroism and optical absorption of graphene by strain engineering 2D Mater. 2 025001
[8] Ni G-X, Yang H-Z, Ji W, Baeck S-J, Toh C-T, Ahn J-H, Pereira V M and Ozylmaz B 2014 Tuning optical conductivity of large-scale CVD graphene by strain engineering Adv. Mater. 26 1081–6
[9] Bae S-H, Lee Y, Sharma B K, Lee H-J, Kim J-H and Ahn J-H 2013 Graphene-based transparent strain sensor Carbon 51 236–42
[10] Oliva-Leyva M and Wang C 2017 Magneto-optical conductivity of anisotropic two-dimensional Dirac–Weyl materials Ann. Phys. 384 61–70
[11] Guinea F, Katsnelson M I and Geim A K 2010 Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering Nat. Phys. 6 30–3
[12] Guinea F, Geim A K, Katsnelson M I and Novoselov K S 2010 Generating quantizing pseudomagnetic fields by bending graphene ribbons Phys. Rev. B 81 035408
[13] Stegmann T and Szpak N 2016 Current flow paths in deformed graphene: from quantum transport to classical trajectories in curved space New J. Phys. 18 053016
[14] Sethnes M, Lecomte N, Barrios-Vargas J E, Juaho A-P and Roche S 2016 Quantum transport in graphene in presence of strain-induced pseudo-Landau levels 2D Mater. 3 034005
[15] Carrillo-Bastos R, León C, Faria D, Latgé A, Andrei E V Y and Sandler N 2016 Strained fold-assisted transport in graphene systems Phys. Rev. B 94 125422
[16] Georgi A et al 2017 Tuning the pseudospin polarization of graphene by a pseudomagnetic field Nano Lett. 17 2240–5
[17] Jones G W, Bahamon D A, Castro Neto A H and Pereira V M 2017 Quantized transport, strain-induced perfectly conducting modes, and valley filtering on shape-optimized graphene Corbino devices Nano Lett. 17 5304–13
[18] Sethnes M, Garcia H J and Roche S 2017 Valley-polarized quantum transport generated by gauge fields in graphene 2D Mater. 4 031006
[19] Naumis G G and Roman-Taboada P 2014 Mapping of strained graphene into one-dimensional Hamiltonians: quasicrystals and modulated crystals Phys. Rev. B 89 241404
[20] Tang H-K, Laksono E, Rodrigues J H, Sengupta P, Assaad F F and Adam S 2015 Interaction-driven metal-insulator transition in strained graphene Phys. Rev. Lett. 115 186602
[21] Kautpila V J, Aikebaier F and Heikkilä T T 2016 Flat-band superconductivity in strained Dirac materials Phys. Rev. B 93 214505
[22] López-Sancho M P and Brey L 2016 Magnetic phases in periodically rippled graphene Phys. Rev. B 94 165430
[23] de Juan F, Sturla M and Vozmediano M A H 2012 Space dependent Fermi velocity in strained graphene Phys. Rev. Lett. 108 227205
[24] Yan H et al 2013 Superlattice Dirac points and space-dependent Fermi velocity in a corrugated graphene monolayer Phys. Rev. B 87 075405
[25] Jang W-J, Kim H, Shin Y-R, Wang M, Jang S K, Kim M, Lee S, Kim S-W, Song Y J and Kahng S-J 2014 Observation of spatially-varying Fermi velocity in strained-graphene directly grown on hexagonal boron nitride Carbon 74 139–45
[26] de Juan F, Cortijo A and Vozmediano M A H 2007 Charge inhomogeneities due to smooth ripples in graphene sheets Phys. Rev. B 76 165409
[27] de Juan F, Mañes J L and Vozmediano M A H 2013 Gauge fields from strain in graphene Phys. Rev. B 87 165131
[28] Volovik G E and Zubkov M A 2014 Emergent Horava gravity in graphene Ann. Phys. 340 352–68
[29] Oliva-Leyva M and Naumis G G 2015 Generalizing the Fermi velocity of strained graphene from uniform to nonuniform strain Phys. Lett. A 379 2645–51
[30] Luican A, Li G and Andrei E Y 2011 Quantized Landau level spectrum and its density dependence in graphene Phys. Rev. B 83 041405
[31] Storz O et al 2016 Mapping the effect of defect-induced strain disorder on the Dirac states of topological insulators Phys. Rev. B 94 121301
[32] Pereira V M, Neto A H C and Peres N M R 2009 Tight-binding approach to uniaxial strain in graphene Phys. Rev. B 80 045401
[33] Luttinger J M 1951 The effect of a magnetic field on electrons in a periodic potential Phys. Rev. 84 814–7
[34] Torres L F, Roche S and Charlier J-C 2014 Introduction to Graphene-Based Nanomaterials (New York: Cambridge University Press)
[35] Andrei E Y, Li G and Du X 2012 Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport Rep. Prog. Phys. 75 056501