Re-Evaluation of the Effect of Daily and Within-Day Mixed Feeding Schedules of Varying Dietary Protein Content on the Growth Performance of Nile Tilapia Fry Using Constant Ingredient Composition

Ashraf Suloma¹, Osama El-Husseiny¹, Ehab El-Haroun¹, Heba Salim¹ and Al-Azab Tahoun²*

¹Fish Nutrition Laboratory (FNL), Animal Production Department, Faculty of Agriculture, Cairo University, Egypt, 12613, Giza, Egypt
²Aquaculture Department, Fish Resources Faculty, Suez University, Egypt

Abstract

Feeding schedules; Dietary protein; Growth performance; Nile tilapia

Introduction

Nutrition constitutes more than 50% of the total production costs in intensive fish culture systems [1-3]. Protein represents the most expensive part of fish diets. Consequently, considerable efforts have been directed towards the evaluation of protein sources that could provide an alternative to an expensive fish meal in formulated feeds for farmed fish [4-8]. Another approach to improve feed efficiency especially protein retention and reduce feed costs is to develop suitable feeding management strategies [1,9-12]. The concept of mixed feed schedules was developed by De Silva [9]. It was primarily based on the observations of the daily variation in apparent dry matter and protein digestibility of feed in the Asian cichlid and Nile tilapia [13,14]. The above observations led De Silva [9] to hypothesize that when the fish are provided with a high protein diet throughout the rearing period it might not be able to utilize the feed effectively to the same degree, day after day. This hypothesis was tested in many cultured species including Nile tilapia [9,15-17], common carp [18-21], Catla catla [22], Channa striata [23] and silver carp [24]. Fish exhibit a distinct diet pattern in feeding [25,26]. Previous studies reported that fish have different patterns in their feeding rhythms: photophase is the preferable feeding time for specific species and they called diurnal feeders such as goldfish, rainbow trout, sea bass and green black founder [27-32], while, other species consider scotophase is the preferable feeding time such as African catfish and Atlantic salmon [33,34]. However, fish farms continue to distribute feed during normal working hours, regardless of any feeding rhythm of the cultivated species. Thus, the incorrect feeding time of day could lead to low efficiency of feed utilization [35]. Earlier studies on mixed feed schedule were designed to feed the fish two diets alternatively in comparison with fish fed on one diet continuously, but no research has thus far been conducted to minimize the confounding effect of variables other than the mixed feeding schedules (e.g. ingredient quality, nutrients requirements, ingredients composition, etc.). Therefore the objectives of this study were: 1) re-evaluate the effect of mixed feeding schedules on optimized feed utilization by ensuring that the formulation, ingredients origin and chemical composition of the tested diets similar to the regular feeding (RF) diet composition, and 2) test the effects of different mixed feeding schedule within-day on growth performance and feed utilization.

Materials and Methods

Fish and feeding

Nile tilapia (Oreochromis niloticus) obtained from a local hatchery were adapted to experimental conditions for 2 weeks before the start

*Corresponding author: Al-Azab Tahoun, Aquaculture Department, Fish Resources Faculty, Suez University, Egypt, Tel: +201006279620; Fax: +20623674264; E-mail: azab.tahoun@suezuniv.edu.eg

Received December 15, 2015; Accepted January 19, 2017; Published January 21, 2017

Citation: Suloma A, El-Husseiny O, El-Haroun E, Salim H, Tahoun A (2017) Re-Evaluation of the Effect of Daily and Within-Day Mixed Feeding Schedules of Varying Dietary Protein Content on the Growth Performance of Nile Tilapia Fry Using Constant Ingredient Composition. J Aquac Res Development S2: 009. doi:10.4172/2155-9546.S2-009

Copyright: © 2017 Suloma A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Keywords: Feeding schedules; Dietary protein; Growth performance; Nile tilapia
of the experiment. During that period, they were fed a high-quality commercial tilapia twice daily. Twenty fish, each weighing (2.75 ± 0.01g) on average, were randomly distributed into 18 tanks and supplied with filtered well water at a rate of approximately 3/lin/min. The water was continuously aerated, and the temperature was controlled thermostatically at 28°C to 29°C. Each experimental diet was allocated to three tanks according to a completely randomized design. Each tank was considered an experimental unit. A pair-feeding protocol that matched protein, energy and vitamin/mineral content among all treatments was used. During the 8-week experimental period, the bulk weight of fish in each tank was recorded every 2 weeks. At the end of the experiment, a pooled sample of 18 fish was taken for determining chemical body composition (initial carcass sample). At the end of the experiment, five fish from each tank were sampled. Fish were killed with an excess concentration of anesthetic (t-amyl alcohol) and then weighed. The fish were then pooled per tank (final carcass sample) for chemical analyses. The pooled fish samples were cooked in an autoclave, ground into homogeneous slurry in a food processor, freeze dried, and stored at -20°C until analyzed.

Experimental diets

Three practical diets with different protein levels were used in both trials in order to design different feeding schedules: a low protein diet (20%, A), an intermediate regular protein diet (RF; 30% CP) and a high protein diet (40% CP, B). Although the intermediate protein diet (30%) was not used in the mixed feeding schedule, this diet was used in this trial as the control to compare the effect of growth and diet (30%) was not used in the mixed feeding schedule, this diet was used in this trial as the control to compare the effect of growth and feed utilization of the fry with the mixed feeding schedule. Diets were prepared using locally available feed ingredients. Formulation and proximate composition of the experimental diets are shown in Table 1. All the ingredients were mixed and the diets were pelleted using an electric home meat grinder. The pellets were then dried overnight under forced air at room temperature and stored at 4°C until used. Diets were crushed into crumble for easier acceptance by smaller fish. In mixed feed schedule treatments, fish were given the same ingredient Diets were crushed into crumble for easier acceptance by smaller fish. under forced air at room temperature and stored at 4°C until used. an electric home meat grinder. The pellets were then dried overnight proximate composition of the experimental diets are shown in Table 1. At the end of the experiment, all fish were individually weighed, euthanized and preserved at -80°C in a freezer until subsequent chemical analyses.

Chemical analysis

Diet and carcass samples were analyzed for dry matter (DM) and ash contents according to AOAC [36] methods, crude protein (N×6.25) by Kjeldahl method, fat (solvent extraction with petroleum ether, BP 40-60 Co 129 for 10-12 h), ash (oven incineration at 550°C), while nitrogen free extract was calculated by difference. Gross energy was calculated using conversion factors of 9.5, 5.6 and 4.2 Kcal g⁻¹ for fat, protein, and carbohydrate, respectively [37].

Calculations

Growth and feed utilization parameters were determined according to the following formulas:

\[
\text{Weight gain (WG)} = \frac{\text{Final body weight (g)} - \text{Initial body weight (g)}}{\text{Days}}
\]

\[
\text{Specific growth rate (SGR)} = \left(\frac{\text{ln (final body wt) } - \text{ln (initial body wt)}}{\text{feeding days}}\right) \times 100
\]

\[
\text{Feed conversion ratio (FCR)} = \frac{\text{feed intake (g)}}{\text{body weight gain (g)}}
\]

\[
\text{Protein efficiency ratio (PER)} = \frac{\text{body weight gain (g)}}{\text{protein intake (g)}}
\]

\[
\text{Energy retention (ER)} = \left(\frac{\text{energy content in fish body (g)}}{\text{energy content consumed (g)}}\right) \times 100
\]

Table 1: Formulation and chemical composition of the experimental diets.

Ingredient %	30% (RF)	40% (B)	20% (A)	Mix Fed schedules	Crude protein contribution from each ingredient
Fish meal	20	33	8	20.5	Fish meal
Soybean meal	39	47	30	38.5	
Corn	33	12	54	33.0	
Oil	6	6	6	6	
Vitamin-mineral premix	2	2	2	2	

Chemical composition determined

Ingredient	Dry Matter	Lipid	Crude protein	Ash	Gross Energy (Kcal/100g)
	92.4	94.6	94.0	94.3	476.8
	11.7	15.1	9.5	12.3	483.9
	29.4	38.5	22.6	30.6	487.6
	10.9	16.5	5.9	11.2	480.4

| | 1000 mg Tocopherol, 1000 mg Folic acid, 50 mg Biotin, 300 mg Iodine, 30000 mg Iron, 60000 mg Manganese, 40000 mg Copper, 100 mg Cobalt, 100 mg Selenium, 50000 mg Zinc, 3000g Calcium Carbonate |

The average formulation and composition of the feed offered to the fish in the mixed schedules, i.e., the average of the 40% and 20% feeds.

Vitamins and minerals mixture each 3kg of mixture contains: 10 000 000 IU vitamin A, 2500 000 IU vitamin D3, 10 000 mg vitamin E, 1000 mg vitamin K, 1000 mg vitamin B1, 5000 mg vitamin B2, 1500 mg vitamin B6, 10 mg vitamin B12, 30 000 mg Niacin, 10 000 mg Pantothenic acid, 1000 mg vitamin C, 100 mg thiamine, 100 mg riboflavin, 50 mg biotin, 300 mg iodine, 30 000 mg iron, 60 000 mg manganese, 4000 mg copper, 100 mg cobalt, 100 mg selenium, 50 000 mg zinc, 3000 g calcium carbonate.

Statistical analyses

Data were analyzed as a randomized complete block design (RCBD) using the GLM procedure of SAS [38] (SAS Inst., Inc., Cary, NC, USA). Tukey’s multiple range tests was used to compare differences among individual means. Treatment effects were considered significant at (P ≤ 0.05).

Results

In the first trial, the growth responses and feed utilization are presented in Table 2. Fish maintained on feeding schedules with constant protein content (RF) and feeding schedule 2A/2B followed by the daily feeding schedule 3A/3B showed a significantly better growth performance and nutrient retention. The lowest growth performance and feed efficiency response were observed for 1A/1B. The best significant FCR for tilapia fry was recorded for RF and the worst FCR was observed for 1A/1B. Energy retention showed a significant difference between the treatments groups Table 2. Meanwhile, an
noticed among daily feeding schedules in crude protein, lipid and ash utilization, and body chemical composition compared to the control feeding schedules had no superior influence on fish performance, feed conversion ratio 1A/1B had the lowest significant growth responses. Therefore, daily feeding schedule had no superior influence observed throughout the two trials. The results of Trial # 1 showed that there were significant differences in SGR, FER, NR or ER. Since the ingested feed intake was equal (~13g) among treatments, the low performance showed by 1A/1B could be attributed to poor food utilization, not to a decrease in food intake. The first experiment concluded that RF feeding schedule recorded the highest values for most parameters. Within the tested feeding schedules, 2A/2B showed the best values and 1A/1B had the lowest significant growth responses. Therefore, daily feeding schedule had no superior influence on fish performance, feed utilization, and body chemical composition compared to the control RF diet. In contrast, previous studies reported a positive effect of daily feeding schedules on growth performance and feed efficiency compared to fish fed on continuous normal protein diets. In line with this pattern, Nile tilapia fed continuously high protein diet were less efficient in terms of growth and nutrient utilization compared to fish fed a high protein diet [9]. Moreover, earlier studies found that fish responded well to some of the feeding strategies (i.e., high-protein feed alternated with low-protein feed) as those fish achieved growth responses match or exceed the performance of fish reared entirely on the high-protein feed [16,19,22]. The discrepancy between the current and previous results elevated trend in ER was observed with the increase of the feeding day’s number 1A/1B (12.5%), 2A/2B (16.5%) and 3A/3B (17.6%). Within the tested feeding schedules, 2A/2B showed the best values and 1A/1B had the lowest significant growth responses. Therefore, daily feeding schedules had no superior influence on fish performance, feed utilization, and body chemical composition compared to the control RF diet. In terms of body composition, no significant differences were noticed among daily feeding schedules in crude protein, lipid and ash content (Table 3). However, fish fed 3A/3B feeding schedule showed the highest value of lipid and gross energy content, while, those of 1A/1B recorded the lowest value. Meanwhile, moisture content showed the opposite trend to that of lipid content. In the second trial, growth performance and feed utilization are presented in Table 4. The best value for growth responses, feed efficiency, and nutrients utilization were recorded for feeding schedule (A am/B pm) and (RF am/ RF pm) followed by (B am/A pm) ranking third with significant differences among treatments (Table 4, P ≤ 0.05). In terms of body composition, no significant differences were observed among different treatments (Table 5).

Discussion

High growth rate and feed efficiency ratios were consistently observed throughout the two trials. The results of Trial # 1 showed that there were significant differences in SGR, FER, NR or ER. Since the ingested feed intake was equal (~13g) among treatments, the low performance showed by 1A/1B could be attributed to poor food utilization, not to a decrease in food intake. The first experiment concluded that RF feeding schedule recorded the highest values for most parameters. Within the tested feeding schedules, 2A/2B showed the best values and 1A/1B had the lowest significant growth responses. Therefore, daily feeding schedule had no superior influence on fish performance, feed utilization, and body chemical composition compared to the control RF diet. In contrast, previous studies reported a positive effect of daily feeding schedules on growth performance and feed efficiency compared to fish fed on continuous normal protein diets. In line with this pattern, Nile tilapia fed continuously high protein diet were less efficient in terms of growth and nutrient utilization compared to fish fed a high protein alternate with a low protein diet [9]. Moreover, earlier studies found that fish responded well to some of the feeding strategies (i.e., high-protein feed alternated with low-protein feed) as those fish achieved growth responses match or exceed the performance of fish reared entirely on the high-protein feed [16,19,22]. The discrepancy between the current and previous results.
could be attributed to different contribution (%) of the ingredients used in test diets formulation, and consequently, the unequal input of each ingredient in the chemical composition content like protein and energy occurred. In the current experimental design, this hypothesis is taken into consideration to achieve the similarity between feeding schedules treatments and regular feeding protocol to eliminate the impact of any variables other than mixed feeding schedules. In the second trial, the best value for growth responses, feed efficiency and nutrients utilization were recorded for feeding schedule (A am/B pm) with (RF am/ RF pm) followed by (B am/A pm) ranking third with significant differences among treatments (Table 4, P ≤ 0.05). The possible explanation of present results could be that the duration of 16 h between the afternoon meal and the next morning meal, in which tilapia was subjected to a certain level of fasting. Thus, delivering a low protein diet after this period of fasting may optimize the nutrient retention efficiency (FCR, PER, NR and ER) and thereby directing the fish to consume valuable protein in terms of growth and protein synthesis. These results are consistent with Gélinae et al. [30] who found that feeding trout at dawn may increase the channeling of amino acid into pathways for protein synthesis, or stimulate the hepatic activities of aminoacid RNA synthesis, resulting in the reduction in the rate of amino acid catabolism and consequently enhance growth and nutrient utilization. Furthermore, Boujard et al. [29] found that channel catfish, showed less fat deposition when fed at dawn. Another perspective, high growth responses of fish fed 40% CP, then 30% CP and followed by fish fed 20% CP ranking third in the afternoon phase, indicated that tilapia utilize high protein diets during the afternoon phase more efficiently than that in the morning (Table 4). These results may be explained in various ways; firstly, the low activity level of fish during the afternoon phase allowed partitioning of food resources into somatic growth rather than as an underlying substrate for immediate activity [39,40]. Secondly, high digestion enzymes productivity, efficiency and stomach fullness of Nile tilapia occurred during the afternoon phases and consequently support nutrient partition toward growth [41]. Thirdly, feeding at certain times of the day was conducive to lean body growth and at other times to fattening [42]. Furthermore, El-Husseiny et al. [43,44] reported that tilapia body metabolic system concentrated on the synthesis and deposition of fat when fish were delivered their diets in the morning, while in the afternoon, the body metabolic system focused on synthesis protein. Nitrogen retention results showed lower values (P ≥ 0.05) at feeding schedule treatments compared to the RF diet (Tables 4 and 5). The results are inconsistent with the findings of previous studies, De Silva [9]; De Silva and Anderson [45]; Nandeesh et al. [19,20]; Ali et al. [24]; El-husseiny et al. [46]; El-haroun et al. [47] who found that nitrogen waste output was decreased and consequently nitrogen retention increased by feeding schedules in Nile tilapia and carps. The lowest significant value of NR for the schedule (40 am/ 20 pm) could be attributed to the low utilization of protein to meet energy requirements in the morning, after a long duration (16 hours) without feeding, resulting in an increase in amino acids catabolism, which increased the nitrogen load in the system [48].

Conclusion

Using a proper feeding schedule through alternate low-protein and high-protein within-day achieved better growth and feed utilization of Nile tilapia rather than alternate days. Thus, within-day mixed feeding schedules could be considered promising for tilapia. The results open up a new avenue in the development of more efficient feeding schedules using two separate diets within a single day. Further research is needed to develop this new strategy. Collaboration among fish nutritionists, farmer, and feed manufacturers are needed to put the within-day mixed feeding schedules into practice.

References

1. Sehgal H, Toor H (1981) Comparison of feeding strategies for common carp based on biomass and biomass-pond interactions. Proceedings of the fourth Asian fish nutrition workshop. Asian Fish. Soc. Spec. Pub/. 5. Asian Fisheries Society, Manila, Philippines.
2. De Silva SS (1992) Fish nutrition research for semi-intensive culture systems in Asia. Asian Fisheries Science 5: 129-144.
3. Tahoun A, Suloma A, Hammouda Y, Abo-State H, El-Haroun E (2013) The effect of stocking different ratios of Nile tilapia Oreochromis niloticus, striped mullet Mugil cephalus, and thiripy grey mullet liza ramada in polyculture ponds on biomass yield, feed efficiency, and production economics. North American Journal of Aquaculture 75: 548-555.
4. Hardy RW (1989) Practical feeding: Salmon and trout. Nutrition and feeding of fish. Van Nostrand Reinhold, New York.
5. Hardy RW (1996) Alternate protein sources for salmon and trout diets. Animal Feed Science Technology 59: 71-80.
6. Hertrampf JW, Piedad-Pascual F (2000) Handbook on ingredients for aquaculture feeds. Kluwer Academic Publishers, Dordrecht, The Netherlands.
7. Suloma A, Mabroke R, El-Haroun E (2013) Meat and bone meal as a potential source of phosphorus in plant-protein based diets for Nile tilapia (Oreochromis niloticus). Aquaculture International 21: 375-385.
8. Suloma A, El-Husseiny OM, Hassane MI, Mabroke RS, El-Haroun ER (2014) Complementary responses between hydrolyzed feather meal, fish meal and soybean meal without amino acid supplementation in Nile tilapia Oreochromis niloticus diets. Aquaculture International 22: 1377-1390.
9. De Silva SS (1985) Performance of Oreochromis niloticus (L.) fry maintained on mixed feeding schedules of differing protein content. Aquaculture. Manage. 16: 331-340.
10. De Silva SS (1989) Reducing feed costs in semi-intensive aquaculture systems in the tropics. NAGA, ICARDF Quarterly 12: 6-7.
11. Suloma A, Ogata H (2006) Future of rice-fish culture, desert aquaculture and feed development in Africa: the case of Egypt as the leading country in Africa. Japan Agricultural Research Quarterly JARQ 40: 351-360.
12. Abo-Taleb M, El-Sherbiny M, Elnady M, Hassanien H, Suloma A, et al. (2014) Combined effects of periphyton substrate and alternate day feeding strategy on growth performance of Nile tilapia Oreochromis niloticus L. under green water tank culture. Egyptian. Journal of Aquaculture 4: 13-26.
13. De Silva SS, Perera MK (1983) Digestibility of an aquatic macrophyte by the cichlid Euploplus suratensis (Bloch) with observations on the relative merits of three indigenous components as markers and daily changes in protein digestibility. Journal of Fish Biology 23: 675-684.
14. De Silva SS, Perera MK (1984) Digestibility in Sarotherodon niloticus fry: Effect of dietary protein level and salinity with further observations on variability in daily digestibility. Aquacult Fish Manag 22: 397-403.
15. Santiago CB, Larom MA (2002) Growth and fry production of Nile tilapia, Oreochromis niloticus (L.), on different feeding schedules. Aquaculture Research 33: 129-136.
16. Patel AB, Yakuptiyage A (2003) Mixed feeding schedules in semi-intensive pond culture of Nile tilapia, Oreochromis niloticus, L.: is it necessary to have two diets of differing protein contents? Aquaculture Research 34: 1343-1352.
17. Bolivar RB, Jimenez EBT, Brown CL (2006) Alternate-day feeding strategy for Nile tilapia grow out in the Philippines: marginal cost-revenue analyses. North American Journal of Aquaculture 68: 192-197.
18. Srikanth GK, Nandeesh MC, Keshavanath P, Vargheese TJ, Shetty HPC, et al. (1989) On the applicability of a mixed feeding schedule for common carp, Cyprinus carpio var. Comminsis. In Aquacultural Research in Asia Management Techniques and Nutrition, Malang (Indonesia).
19. Nandeesh MC, De Silva SS, Krishnamurthy D, Dalhati K (1994) Use of mixed feeding schedules in fish culture. Aquacult Fisherman Manag 25: 659-670.
20. Nandeesh MC, De Silva SS, Krishnamurthy D (1995) Use of mixed feeding schedules in fish culture performance of common carp, Cyprinus carpio L., on plant and animal protein based diets. Aquaculture Research 26: 161-166.
21. Nandeeshah MC, Gangadhara B, Manisery JK (2002) Further studies on the use of mixed feeding schedules with plant- and animal based diets for common carp Cyprinus carpio (L). Aquaculture Research 33: 1157-1162.

22. Nandeeshah MC, Silva SS, de Krishna MD (1993) Evaluation of mixed feeding schedules in two Indian major carps, catla (Catla catla) and rohu (Labeo rohita). Fish nutrition in practice. INRA Editions, Paris, France.

23. Hashim R (1994) The effect of mixed feeding schedules of varying dietary protein content on the growth performance of Channa striata fry. Asian Fisheries Sci: 149-155.

24. Ali MZ, Hossain MA, Mazid MA (2005) Effect of mixed feeding schedules with varying dietary protein levels on the growth of sutchi catfish, Pangasius hypophthalmus (Sauvage) with silver carp, Hypophthalmichthys molitrix (Valenciennes) in ponds. Aquaculture Research 36: 627-634.

25. Fraser NHC, Metcalfe NB (1997) The cost of being nocturnal: feeding efficiency in relation to light intensity in juvenile Atlantic salmon. Functional Ecology 11: 385-391.

26. López-Olmeda JF, Noble C, Sanchez-Vazquez FJ (2012) Does feeding time affect fish welfare? Fish Physiology and Biochemistry 38: 143-152.

27. Spieler RE, Noeske TA (1981) Timing of a single daily meal and diet variations of serum thyroxine, triiodothyronine and cortisol in goldfish Carassius auratus. Life Sci 28: 2939-2944.

28. Boujdour T, Leatherland JF (1992) Circadian rhythms and feeding time in fishes. Environmental Biology of Fishes 36: 109-131.

29. Boujdour T, Gélineau A, Corraze G (1995) Time of single daily meal influence growth performance in rainbow trout, Oncorhyncus mykiss. Aquac Res 26: 341-349.

30. Gélineau A, Médale F, Boujdour T (1998) Effect of feeding time on postprandial nitrogen excretion and energy expenditure in rainbow trout. Journal of Fish Biology 52: 655-664.

31. Madrid JA, Azzaydi M, Zamora S, Sánchez-Vázquez FJ (1997) Continuous recording of uneaten food pellets and demand-feeding activity - A new approach to studying feeding rhythms in fish. Physiology & behavior 62: 689-695.

32. Chen WM, Purser J, Blyth P (1999) Diet feeding rhythms of greenback flounder Rhombosolea tapirina (Günther 1862): The role of light-dark cycles and food deprivation. Aquaculture Research 30: 529-537.

33. Kerdchuen N, Legendre M (1991) Influence de la fréquence et de la période de nourrissage sur la croissance et l’efficacité alimentaire d’un silure africain, Heterobranchus longifilis (Teleostei, Clariidae). Aquatic Living Resources 4: 241-248.

34. Jørgensen EH, Jobling M (1992) Feeding behavior and effect of feeding regime on growth of Atlantic salmon, Salmo salar. Aquaculture 101: 135-146.

35. Houlihan D, Boujard H, Jobling M (2001) Food intake. Blackwell Science Ltd. Bolliet V, Azzaydi M, Boujard, T. Effects of feeding time on feed intake and growth.

36. AOAC (Association of Official Analytical Chemists) (1990) Official methods of analysis of the Association of Official Analytical Chemists. Thirteenth edition. Association of Official Analytical Chemists (publisher), Washington, DC 20044, USA.

37. Young A, Morris P, Huntingford F, Sinnott R (2005) The effects of diet, feeding regime and catch-up growth on flesh quality attributes of large (1+ sea winter) Atlantic salmon, Salmo salar. Aquaculture 248: 59-73.

38. SAS Institute (1988) SAS/STAT User’s Guide, Release 6.03 ed. SAS Institute, Cary, North Carolina.

39. Baras E, Melard C, Thoureau X (1995) Influence of feeding time on growth and feed conversion rates in juvenile tilapia (Oreochromis niloticus), Cahiers D’ethologie Fondamentale Et Appliquee, Animale Et Humaine, Liège 15: 71-80.

40. Heilman MJ, Spieler RE (1999) “The daily feeding rhythm to demand feeders and the effects of timed meal-feeding on the growth of juvenile Florida pompano, Trachinotus carolinus. Aquaculture 180: 53-64.

41. Getachew T (1989) Stomach pH, feeding rhythm and ingestion rate in Oreochromis niloticus L. (Pisces: Cichlidiae) in Lake Awasa, Ethiopia,’ Hydrobiologia 174: 43-48.

42. Noeske-Hallin, TA, Spieler RE, Parker NC, Suttle AA (1985) Feeding time differentially affects fattening and growth of channel catfish. J Nutf 115:1229-1232.

43. El-Husseiny OM, Abdul-Adiz GEM, El Samei AM, Mabroke RS (2002) Influence of diet composition and feeding regime on Nile tilapia (Oreochromis niloticus) performance. M.Sc thesis. Animal Production Department, Faculty of Agriculture, Cairo University.

44. El-Husseiny OM, Abdul-Adiz GM, Goda AMS, Suloma A (2010) Effect of altering linoleic acid and linolenic acid dietary levels and ratios on the performance and tissue fatty acid profiles of Nile tilapia Oreochromis niloticus fry. Aquaculture international 18: 1105-1119.

45. De Silva SS, Anderson TA (1995) Fish nutrition in aquaculture. London, Chapman & Hall.

46. El-Husseiny OM, Goda AM, Hassan I, Suloma A (2013) Modelling digestibility coefficients of plant protein sources and levels in tilapia diets. Journal of the Arabian aquaculture society 3: 455-468.

47. El-Haroun ER, Suloma A, Mabroke RS, Salim H, Kumar V (2016) Trypsinoph supplemention of meat and bone meal in lysine-enriched diets improves growth performance and nutrient utilization by Nile Tilapia, Oreochromis niloticus. J Aquac Res Development 7: 439.

48. Lloyd LE, McDonald BE, Crampton EW (1978) Feeding time differentially affects fattening and growth of channel catfish. J Nutr 115: 1228-1232.