POINT-COUNTERPOINT

Role of creatine and creatine kinase in UCP1-independent adipocyte thermogenesis

© Theo Wallimann, 1 Malgorzata Tokarska-Schlattner, 2 Laurence Kay, 2 and © Uwe Schlattner 1,3
1 Biology Department, ETH-Zurich, Switzerland; 2 University Grenoble Alpes and Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics & SFR Environmental and Systems Biology, Grenoble, France; and 3 Institut Universitaire de France (IUF), Paris, France

Submitted 15 July 2020; accepted in final form 8 September 2020

Targeting thermogenesis in brown and beige adipocytes for treating obesity and metabolic disease has sparked enormous interest even beyond the scientific community (4). Several more recent publications have added a new player in this field: the well-studied enzyme creatine kinase (CK) together with its substrates phosphocreatine (PCr) and creatine (Cr). These are best known for their eminent bioenergetic role in energy buffering and energy channeling via the so-called CK/PCr shuttle (3) or circuit (31) that link sites of ATP generation (e.g., mitochondria and glycolysis) with sites of ATP utilization (e.g., cytosolic and membrane bound ATPases) in tissues with high energy turnover, such as skeletal, cardiac and smooth muscle, brain, neural tissue, spermatozoa, inner ear hair cells, etc. (25, 27, 30, 31). As highly energy-dependent cells, adipocytes also express CK iso-enzymes and contain the CK substrates PCr and Cr (for review, see Ref. 28). In fact, a series of elegant and very comprehensive studies by Spiegelman, Kazak, and colleagues (2, 15, 16, 18), well summarized in a recent review (17), provides ample genetic and functional evidence for a direct involvement of the CK system in adipocyte thermogenesis with an increased Cr/PCr turnover being thermogenic. In beige or brown adipocytes, such Cr/PCr-dependent heat generation would work in parallel to uncoupling of mitochondrial respiration by uncoupling protein 1 (UCP1), a futile proton cycle that represents the canonical pathway of nonshivering thermogenesis. Since noncanonical UCP1-independent, but ATP- and Cr-dependent, thermogenesis is not only operational during short-term cold response and long-term cold acclimation, but also in diet-induced thermogenesis (16, 18), these recent advances open exciting new avenues for targeting obesity and metabolic disease.

What then is the exact molecular mechanism underlying Cr-dependent thermogenesis? For heat generation, increased Cr/PCr turnover has to be linked to a futile cycle, i.e., a metabolic pathway that is not generating useful work, but dissipates free energy as heat. The mechanism put forward so far has been futile Cr-cycling (15). Here, PCr generated by mitochondrial CK in the mitochondrial intermembrane space (IMS) (31) would be immediately hydrolyzed by a postulated PCr phosphatase, colocalizing in the IMS or eventually outside mitochondria, e.g., at the endoplasmic reticulum (ER) (17). However, CK is the only confirmed enzyme that can use PCr and Cr as substrates, while the existence and subcellular localization of the proposed PCr-phosphatase are still uncertain and ill-defined, respectively. Importantly, the presence of such a phosphatase would potentially disrupt PCr-based cell energetics by depleting cellular PCr and thus lowering local PCr/ATP and ATP/ADP ratios. This would be detrimental for proper Ca2+ homeostasis that depends on highly energy-demanding Ca2+ pumps (10, 12, 23, 29–31).

Based on our extensive research on the molecular structure, function, and localization of CK isoforms at specific subcellular microcompartments (6, 7, 24, 25, 27, 29–31), we propose here an alternative model for CK/PCr/Cr-mediated thermogenesis in adipocytes (Fig. 1). It combines the classical CK/PCr shuttle (3, 25, 31) with futile Ca2+ cycling at the ER. The latter has been described in detail in recent years in beige and brown adipocytes (10, 12). In this model, PCr fulfills its classical function by shuttling energy from mitochondria to the ER (1, 5, 8, 26, 29), where it is converted by membrane-associated cytosolic CK into ATP. Since the CK/PCr shuttle can also use glycolytic ATP for Cr generation, this pathway would also work in case the mitochondrial ATP would become limiting, which seems the case in adipocytes (11, 19). In fact, there is evidence for additional, noncanonical UCP1-independent nonshivering thermogenesis, fueled by enhanced glycolytic ATP generation (9), ER-localized, cytosolic CK then locally fuels the SR/ER Ca2+-ATPase2b (SERCA2b) (23), which is also expressed in adipocytes (12), for efficient Ca2+ uptake into the ER lumen. Requiring a very high ATP/ADP ratio for its function, this Ca2+ pump has a particular requirement for PCR-dependent fueling via CK (23, 29–31). Although such local ATP supply has not been specifically analyzed in adipocytes, it is well known and documented for skeletal and cardiac muscle, as well as for heater organs of fish (20, 31).

Futile Ca2+ cycling in brown/beige adipocytes is then induced by coupling Ca2+ uptake via SERCA2b to immediate Ca2+ release via different routes that may operate in parallel: adipocyte ryanodine receptor (RyR2), inositol 1,4,5-triphosphate receptor type 1 (IP3-R1), or more so type 3 (IP3-R3). All these constituents have been identified in beige/brown adipocytes, and they all rely on the stimulation of adrenergic receptors (1, β3) (10, 12, 13). Adipocyte Ca2+2+ cycling between SERCA2b and RyR2 occurs under cold exposure and/or adrenergic receptor stimulation (13), is accompanied by a significant increase of oxygen consumption rate (OCR) and heat generation, and improves cold tolerance and metabolic status (12, 13). Furthermore, evidence for an involvement of IP3-R in futile Ca2+ cycling is given by the fact that RyR2 blockage by high dose ryanodine or ruthenium red partially but not completely disrupts norepinephrine-induced thermogenesis.
in UCP1-knockout adipocytes (12). This is supported by earlier data (10) showing that elevated cytosolic Ca\(^{2+}\), caused by mitochondrial Ca\(^{2+}\) release, plus elevated IP3 levels, after \(\alpha_1\)-adrenergic stimulation of adipocytes together result in a Ca\(^{2+}\) release from the ER/SR via IP3 receptor (22). This event is likely to happen in parallel with Ca\(^{2+}\) release via RyR2 (12).

There is also evidence that the CK system and Ca\(^{2+}\) cycling via SERCA2b operate in the same pathway for UCP1-independent thermogenesis. When using UCP1-knockout beige adipocytes, both SERCA2b depletion and CK inhibition by \(\beta\)-guanidinopropionic acid (\(\beta\)-GPA) reduced OCR, but \(\beta\)-GPA treatment had no additional effect on OCR in already SERCA2b-depleted adipocytes (12).

In conclusion, the role of Cr and CK in thermogenesis of beige and brown adipocyte has attracted much attention. Their role in UCP1-independent, but ATP-dependent nonshivering thermogenesis is clearly emerging (15–18, 21), but the detailed molecular nature of the thermal energy generator is less evident.

It is our contention, however, that it does not necessarily require futile Cr cycling and the presence of a hypothetical, novel PCR phosphatase. It is proposed here that Cr and PCR may just operate as part of the classical energy shuttle, providing ATP to other thermogenic pathways, in particular for futile Ca\(^{2+}\) cycling at the ER. For the latter, ample evidence for its functioning in adipocytes is available (10, 12, 13). Much diligent experimentation, however, is still needed to clarify these issues before they can be harnessed for mechanism-based therapeutic approaches to combat obesity, type 2 diabetes, and metabolic syndrome (4).

GRANTS

For financial support of their projects on metabolic regulation and creatine kinase, the authors thank the French National Research Agency (Investissements d’Avenir program, ANR-15-IDEX-02) and the federal research structure (SFR) BEeSy at the University Grenoble Alpes. U.S. thanks the Institut Universitaire de France (IUF) for personal support. We thank Dr Shingo Kajimura, UCSF Diabetes Center, San Francisco, CA, for discussion.

AJP-Endocrinol Metab · doi:10.1152/ajpendo.00367.2020 · www.ajpendo.org
DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

T.W., M.T., L.K., and U.S. drafted manuscript; T.W., M.T., L.K., and U.S. edited and revised manuscript; T.W., M.T., L.K., and U.S. approved final version of manuscript.

REFERENCES

1. Andrienko T, Kuznetsov AV, Kaambre T, Usson Y, Oroso A, Appaix F, Tiivel T, Sikk P, Vendelin M, Margreiter R, Saks VA. Metabolic consequences of functional complexes of mitochondria, myo-fibrils and sarcoplasmic reticulum in muscle cells. J Exp Biol 206: 2059–2072, 2003. doi:10.1242/jeb.00242.

2. Bertholet AM, Kazak L, Chouchani ET, Bogaczyńska MG, Pananje P, Wainwright GL, Betourne A, Kajimura S, Spiegelman BM, Kirikhok Y. Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile cycling. Cell Metab 25: 811–822.e4, 2017. doi:10.1016/j.cmet.2017.09.007.

3. Kazak L, Cohen P. Creatine metabolism: energy homeostasis, immunity and cancer biology. Nat Rev Endocrinol 16: 421–436, 2020. doi:10.1038/s41574-020-0365-5.

4. Kazak L, Rahbani JF, Samborska B, Lu GZ, Jedrychowski MP, Lajoie M, Zhang S, Ramsay LC, Dou FY, Tenen D, Chouchani ET, Dzeja P, Watson IR, Tsai L, Rosen ED, Spiegelman BM. Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. Nat Metab 1: 360–370, 2019. doi:10.1038/s42255-019-0035-x.

5. Kramarova TV, Shabalina IG, Andersson U, Westerberg R, Carlborg I, Houstek J, Nedergraad J, Cannon B. Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-Fo subunit P1 isoform.FASEB J 22: 55–63, 2008. doi:10.1096/fj.07-8581com.

6. Morrisette J, Franck JP, Block BA. Characterization of ryomodulin receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans). J Exp Biol 206: 805–812, 2003. doi:10.1242/jeb.00158.

7. Müller S, Balaz M, Stefanicka P, Varga L, Amri EZ, Ukropiec J, Wollscheid B, Wolffram C. Proteomic analysis of human brown adipose tissue reveals utilization of coupled and uncoupled energy expenditure pathways. Sci Rep 6: 20030, 2016. doi:10.1038/srep20030.

8. Nánberg E, Putney J, Jr. Alpha 1-adrenergic activation of brown adipocytes leads to an increased formation of inositol polyphosphates. FEBS Lett 195: 319–322, 1986. doi:10.1016/0014-5793(86)80185-5.

9. Rossi AM, Eppenberger HM,Volpe P, Cotrufo R, Wallimann T. Muscle-type MM creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+ uptake and regulate local ATP/ADP ratios. J Biol Chem 265: 5258–5266, 1990.

10. Schlettner U, Eder M, Dolder M, Khuchua ZA, Strauss AW, Wallimann T. Divergent enzyme kinetics and structural properties of the two human mitochondrial creatine kinase isoenzymes. Biol Chem 381: 1063–1070, 2000. doi:10.1515/bc.2000.131.

11. Schlettner U, Kay I, Tokarska-Schlettner M. Mitochondrial proteolipid complexes of creatine kinase. Subcell Biochem 87: 365–408, 2018. doi:10.1007/978-981-10-7757-9_13.

12. Schlettner U, Klaus A, Ramirez Rios S, Guzun R, Kay L, Tokarska-Schlettner M. Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids 48: 1751–1774, 2016. doi:10.1007/s00726-016-2267-3.

13. Schlettner U, Tokarska-Schlettner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762: 164–180, 2006. doi:10.1016/j.bbadis.2005.09.004.

14. Wallimann T, Hemmer W. Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133-134: 193–220, 1994. doi:10.1007/BF01267955.

15. Wallimann T, Tokarska-Schlettner M, Neumann D, Epand RM, Epand RF, Andres RH, Widmer HR, Saks V, Agarkova I, Schlettner U. Phospho-creatine circuit: cellular and molecular mechanisms of creatine kinase system, sensitivity to free radicals and enhancement by creatine supplementation. In: Molecular Systems Bioenergetics. Energy for Life, edited by Saks V, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co KGaA, 2007. p. 195–264. doi:10.1007/9783527621095_ch.77.

16. Wallimann T, Tokarska-Schlettner M, Schlettner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40: 1271–1296, 2011. doi:10.1007/d10726-011-0877-3.

17. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochim J 281: 21–40, 1992. doi:10.1042/bj2810021.