Data Article

Dataset for the NMR structure of the intrinsically disordered acidic region of XPC bound to the PH domain of TFIIH p62

Masahiko Okuda, Yoshifumi Nishimura*

Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan

A R T I C L E I N F O

Article history:
Received 13 October 2015
Received in revised form 4 December 2015
Accepted 9 December 2015
Available online 2 January 2016

A B S T R A C T

The global genome nucleotide excision repair factor XPC firstly detects DNA lesions and then recruits a ten-subunit complex TFIIH through binding to the subunit p62 to unwind the damaged DNA for excision repair. This data article contains detailed nuclear magnetic resonance (NMR) restraints (nuclear Overhauser enhancement (NOE)-derived distance restraints, dihedral angle restraints, and hydrogen bond restraints) used for the structure determination of the complex formed between the intrinsically disordered acidic region of XPC and the pleckstrin homology (PH) domain of TFIIH p62, related to the recent work entitled “Structural insight into the mechanism of TFIIH recognition by the acidic string of the nucleotide excision repair factor XPC” [1].

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Structural biology
More specific subject area	Nuclear magnetic resonance, NMR
Type of data	NMR restraints, table, figure

* Corresponding author.
E-mail address: nisimura@tsurumi.yokohama-cu.ac.jp (Y. Nishimura).
How data was acquired
Solution NMR

Data format
Analyzed

Experimental factors
No sample pretreatment applied

Experimental features
NMR samples were 170–190 μl of 400 μM protein complex (13C,15N-protein: unlabeled protein = 1.0: 1.2 M ratio) solution in 20 mM potassium phosphate (pH 6.8), 5 mM deuterated DTT, and either 10.0% D2O or 99.9% D2O; All data was acquired at 305 K.

Data source location
Yokohama City University, Yokohama, Japan

Data accessibility
Data is provided as Supplementary material directly with this article. The structural coordinates have been deposited to RCSB Protein Data Bank (http://www.rcsb.org) (PDB: 2RVB).

Value of the data

- The dataset helps researchers to design their NMR experiments.
- The dataset is useful for the trial calculation of a protein complex structure.
- The detailed NMR restraint dataset is useful for evaluation of structure simulation procedures of a protein complex by using a limited amount of data from the data set.
- The dataset provides structural insights into intrinsically disordered regions.

1. Data

We prepared the XPC fragment (residues 109–156) and the p62 PH domain (residues 1–108) from Escherichia coli expression systems [1,2]. The XPC fragment contains an intrinsically disordered acidic region (residues 124–141), which forms an elongated string-like structure upon binding to the p62 PH domain [1]. We used four samples for the structure determination by NMR, namely:

(a) complex of 400 μM 13C,15N-labeled XPC with 480 μM unlabeled p62 PH domain in 10.0% D2O (XPC-p62_H2O),
(b) complex of 400 μM 13C,15N-labeled XPC with 480 μM unlabeled p62 PH domain in 99.9% D2O (XPC-p62_D2O),
(c) complex of 400 μM 13C,15N-labeled p62 PH domain with 480 μM unlabeled XPC in 10.0% D2O (p62-XPC_H2O), and
(d) complex of 400 μM 13C,15N-labeled p62 PH domain with 480 μM unlabeled XPC in 99.9% D2O (p62-XPC_D2O).

NMR data were acquired on Bruker AVANCE III HD 600 MHz, AVANCE III HD 700 MHz, and AVANCE III HD 800 MHz spectrometers, each equipped with a cryogenic probe. NMR experiments used are summarized in Table 1.
Table 1
NMR experiments used for the structure determination.

	13C,15N-XPC/unlabeled p62	13C,15N-p62/unlabeled XPC
Backbone assignment	CBCANH^c	CBCANH^c
	[6.6(t1,13C), 14.5(t2,15N), 148.7(t3,1Hn)]	[6.6(t1,13C), 9.9(t2,15N), 148.7(t3,1Hn)]
	CBCA(CO)NH^d	CBCA(CO)NH^d
	[6.6(t1,13C), 14.5(t2,15N), 148.7(t3,1Hn)]	[6.6(t1,13C), 9.9(t2,15N), 148.7(t3,1Hn)]
	HNCA^a	HN(CA)CO^b
	[20.2(t1,13C), 15.5(t2,15N), 148.7 (t3,1Hn)]	[18.3(t1,13C), 10.5(t2,15N), 148.7 (t3,1Hn)]
	HN(CO)CA^a	HN(CO)CA^a
	[20.2(t1,13C), 15.5(t2,15N), 148.7 (t3,1Hn)]	[18.3(t1,13C), 10.5(t2,15N), 148.7 (t3,1Hn)]
Side-chain assignment	HBBANH^c	HBBANH^c
	[8.7(t1,1H), 14.5(t2,15N), 148.7(t3,1Hn)]	[8.7(t1,1H), 9.9(t2,15N), 148.7(t3,1Hn)]
	HBBAC(CO)NH^d	HBBAC(CO)NH^d
	[8.7(t1,1H), 14.5(t2,15N), 148.7(t3,1Hn)]	[8.7(t1,1H), 9.9(t2,15N), 148.7(t3,1Hn)]
	HCCCONH^e	HCCCONH^e
	[9.3(t1,1H), 13.5(t2,15N), 148.7(t3,1Hn)]	[9.3(t1,1H), 12.2(t2,15N), 148.7(t3,1Hn)]
	CCCONH^e	CCCONH^e
	[5.4(t1,13C), 15.5(t2,15N), 148.7(t3,1Hn)]	[5.2(t1,13C), 14.5(t2,15N), 148.7(t3,1Hn)]
	HCCH-TOCSY^e	HCCH-TOCSY^e
	[12.2(t1,1H), 2.9(t2,13C), 174.1(t3,1H)]	[12.2(t1,1H), 2.8(t2,13C), 174.1(t3,1H)]
	HCCH-COSY^e	HCCH-COSY^e
	[12.2(t1,1H), 2.9(t2,13C), 174.1(t3,1H)]	[12.2(t1,1H), 2.8(t2,13C), 174.1(t3,1H)]
Stereo-specific assignment	HNHB^b	HNHB^b
	[7.1(t1,1H), 14.5(t2,15N), 148.7(t3,1Hn)]	[7.1(t1,1H), 9.8(t2,15N), 148.7(t3,1Hn)]
	HN(CO)HB^b	HN(CO)HB^b
	[7.1(t1,1H), 14.5(t2,15N), 148.7(t3,1Hn)]	[7.1(t1,1H), 9.8(t2,15N), 148.7(t3,1Hn)]
	HNCG^e	HNCG^e
	[5.2(t1,13C), 14.5(t2,15N), 148.7(t3,1Hn)]	[5.2(t1,13C), 9.8(t2,15N), 148.7(t3,1Hn)]
	HN(CO)CG^e	HN(CO)CG^e
	[5.2(t1,13C), 14.5(t2,15N), 148.7(t3,1Hn)]	[5.2(t1,13C), 9.8(t2,15N), 148.7(t3,1Hn)]
Distance restraints	13C NOESY-HSQC (r_{m}, 50 ms)^i	13C NOESY-HSQC (r_{m}, 100 ms)^i
	[13.1(t1,1H), 2.6(t2,13C), 111.4(t3,1H)]	[13.1(t1,1H), 3.0(t2,13C), 111.4(t3,1H)]
	15N NOESY-HSQC (r_{m}, 50 ms)^i	15N NOESY-HSQC (r_{m}, 100 ms)^i
	[7.0(t1,1H), 11.6(t2,15N), 111.4(t3,1Hn)]	[7.0(t1,1H), 11.3(t2,15N), 111.4(t3,1Hn)]
Dihedral restraints	(φ,ψ): Backbone assignment	(φ,ψ): Backbone assignment
	(ζ1,ζ2): Stereo-specific assignment	(ζ1,ζ2): Stereo-specific assignment

^a: filtered 15N-edited NOESY-HSQC (r_{m}, 50 ms)
^b: filtered 15N-edited NOESY-HSQC (r_{m}, 100 ms)
^c: NOESY-HSQC (r_{m}, 50 ms)
^d: NOESY-HSQC (r_{m}, 150 ms)
^e: NOESY-HSQC (r_{m}, 120 ms)
^f: NOESY-HSQC (r_{m}, 150 ms)
^g: NOESY-HSQC (r_{m}, 100 ms)
^h: NOESY-HSQC (r_{m}, 150 ms)
^i: NOESY-HSQC (r_{m}, 120 ms)
Table 2

NMR restraints used for the structure determination.

XPC	p62
Hydrogen bond restraints	
\(^{15}\)N-HSQC (H–D exchange) \([22.5(t_1,^{15}\)N), 111.4(t_2,\(^{1}\)H\(_{\alpha}\)])^e	\(^{15}\)N-HSQC (H–D exchange) \([22.5(t_1,^{15}\)N), 111.4(t_2,\(^{1}\)H\(_{\alpha}\)])^e
Intramolecular NOEs	
Intraresidue \((i−j=0)\)	73^b
Sequential \((i−j=1)\)	7^b
Medium-range \((1 < i−j < 5)\)	48^b
Long-range \((i−j ≥ 5)\)	0^b
Intermolecular NOEs	
\(^{15}\)N-edited NOESY-HSQC \((\tau_m, 150 \text{ ms})\)	109^d
Intraresidue \((i−j=0)\)	10^d
Sequential \((i−j=1)\)	10^d
Medium-range \((1 < i−j < 5)\)	13^d
Long-range \((i−j ≥ 5)\)	0^d
\(^{15}\)C,\(^{15}\)N-XPC/unlabeled p62 \(^{15}\)C,\(^{15}\)N-p62/unlabeled XPC	
Dihedral restraints	
\(\Phi\)	9^h
\(\Psi\)	9^h
\(\chi_1\)	3^h
\(\chi_2\)	0^i
Hydrogen bond restraints	
	0

\(a\) Distance restraints were obtained from analyses of NOE intensities by using NMRView [3].

\(b\) Sample of XPC-p62_H\(_2\)O.

\(c\) Maximum evolution times used in each dimension (ms).

\(d\) Sample of p62-XPC_H\(_2\)O.

\(e\) Sample of XPC-p62_D\(_2\)O.

\(f\) Sample of p62-XPC_D\(_2\)O.

\(g\) Sample of XPC-p62_H\(_2\)O.

\(h\) Sample of p62-XPC_H\(_2\)O.

\(i\) Sample of XPC-p62_D\(_2\)O.

\(j\) Sample of p62-XPC_D\(_2\)O.
2. Experimental design, materials and methods

2.1. NOE-derived distance restraints

In total, 182 and 2545 NOE-derived distance restraints were obtained for, respectively, XPC \textsubscript{109–156} and TFIIH p62 PH domain (Table 2) [1].

Fig. 1. Intermolecular NOEs between the 13C,15N labeled XPC \textsubscript{109–156} and the unlabeled p62 PH domain. Left: the strip of Val136 H\textgamma of XPC extracted from the 13C-edited NOESY-HSQC spectra. Right: the strip from the 13C,15N-filtered, 13C-edited NOESY-HSQC spectra.
2.1.1. Distance restraints from the intramolecular NOEs

For XPC109-156 in complex, 73 NOEs (7 intraresidue NOEs; 48 sequential NOEs; 18 medium-range NOEs; 0 long-range NOE) were obtained from the 13C-edited NOESY-HSQC (mixing time (τ_m) 100 ms) using the sample of XPC-p62_D$_2$O (Table S1) and 109 NOEs (10 intraresidue NOEs; 86 sequential NOEs; 13 medium-range NOEs; 0 long-range NOE) were obtained from the 15N-edited NOESY-HSQC (τ_m, 150 ms) using the sample of XPC-p62_H$_2$O (Table S2). In the 13C-edited NOESY-HSQC we used τ_m of 100 ms, shorter than τ_m of 150 ms used in the 15N-edited NOESY-HSQC to avoid spin-diffusion problems.

For the p62 PH domain in complex, 1367 NOEs (171 intraresidue NOEs; 204 sequential NOEs; 233 medium-range NOEs; 759 long-range NOEs) were obtained from the 13C-edited NOESY-HSQC (τ_m, 100 ms) using the sample of p62-XPC_D$_2$O (Table S3) and 1178 NOEs (197 intraresidue NOEs; 419 sequential NOEs; 223 medium-range NOEs; 339 long-range NOEs) were obtained from the 15N-edited NOESY-HSQC (τ_m, 150 ms) using the sample of p62-XPC_H$_2$O (Table S4).

Note that we chose the intraresidue NOEs from only residues whose side-chains were stereo-specifically assigned.

2.1.2. Distance restraints from the intermolecular NOEs

The 13C,15N-filtered, 13C-edited NOESY-HSQC (τ_m, 120 ms) for the sample of XPC-p62_D$_2$O provided 162 intermolecular NOEs (Fig. 1). The 13C,15N-filtered, 15N-edited NOESY-HSQC (τ_m, 150 ms) for the sample of XPC-p62_H$_2$O provided 54 intermolecular NOEs.

The 13C,15N-filtered, 13C-edited NOESY-HSQC (τ_m, 120 ms) for the sample of p62-XPC_D$_2$O provided 107 intermolecular NOEs. The 13C,15N-filtered, 15N-edited NOESY-HSQC (τ_m, 150 ms) for the sample of p62-XPC_H$_2$O provided 49 intermolecular NOEs.

Removing duplicated restraints, we acquired 199 intermolecular NOEs from the 13C-edited NOESY (Table S5) and 100 intermolecular NOEs from the 15N-edited NOESY (Table S6).

2.2. Dihedral angle restraints

The analysis of the backbone chemical shift (15N, 13C$_\alpha$, 13C$_\beta$, 13C, and Hα) with TALOS+ [4] generated 9 ϕ and 9 ψ for XPC109-156 in complex (Tables 2 and S7), and 96 ϕ and 95 ψ for the p62 PH domain in complex (Tables 2 and S8).

The side-chain torsion angles were analyzed by the HNHB, HN(CO)HB, HNCG, HN(CO)CG, 13C-edited NOESY-HSQC (τ_m, 50 ms) and 15N-edited NOESY-HSQC (τ_m, 50 ms), and 3 χ_1 for XPC109-156 in complex (Tables 2 and S7) and 63 χ_1, 10 χ_2 for the p62 PH domain in complex were determined (Tables 2 and S8).

2.3. Hydrogen bond restraints

We performed the H/D-exchange experiment to obtain hydrogen bond restraints. As a reference spectrum, a 1H, 15N HSQC spectrum was taken for the sample of p62-XPC_H$_2$O. We prepared the lyophilized sample of p62-XPC_H$_2$O, and then immediately after adding D$_2$O to the lyophilized sample, a series of 1H,15N HSQC spectra were taken. Hydrogen-bond donors were identified by comparing those spectra with the reference spectrum. Hydrogen-bond donor–acceptor pairs were determined based on the final structure.

The H/D-exchange experiment provided 96 (48 x 2) hydrogen bond restraints for the p62 PH domain in complex (Tables 2 and S9). No hydrogen bond restraints were available for XPC109-156 because of the fast H/D-exchange.

Acknowledgments

This work was supported by the Grants-in-Aid for Scientific Research 21113003 (Y.N.), the Grants-in-Aid for Scientific Research on NMR platform 07022019 (Y.N.), and the Platform for Drug Discovery,
Informatics, and Structural Life Science 12743018 (Y.N.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2015.12.034.

References

[1] M. Okuda, M. Kinoshita, E. Kakumu, K. Sugasawa, Y. Nishimura, Structural insight into the mechanism of TFIIH recognition by the acidic string of the nucleotide excision repair factor XPC, Structure 23 (10) (2015) 1827–1837.
[2] M. Okuda, A. Tanaka, M. Satoh, S. Mizuta, M. Takazawa, Y. Ohkuma, Y. Nishimura, Structural insight into the TFIIE–TFIIH interaction: TFIIE and p53 share the binding region on TFIIH, EMBO J. 27 (7) (2008) 1161–1171.
[3] B.A. Johnson, R.A. Blevins, NMRView: a computer program for the visualization and analysis of NMR data, J. Biomol. NMR 4 (5) (1994) 603–614.
[4] G. Cornilescu, F. Delaglio, A. Bax, Protein backbone angle restraints from searching a database for chemical shift and sequence homology, J. Biomol. NMR 13 (3) (1999) 289–302.