Session: P-16. COVID-19 Impact of Social Distancing/Mitigation Measures

Background: In April 2020, a COVID-19 outbreak at a rural, resource-limited Department of Corrections on a Native American reservation in Arizona led to multiple epidemiologically linked cases to household contacts of recently incarcerated individuals. We describe the role of a medical recovery site for isolation of recently released inmates with active COVID-19 infection in reducing household transmission of cases tied to the correctional facility.

Methods: On April 16th, an individual was contact traced to the correctional facility and was laboratory-confirmed positive, an asymptomatic index case in the jail. Testing of all inmates continued from April 16th-30th. On April 24th, decarceration began. All inmates released from facility April 24th-April 30th were contact traced for 14 days to monitor for new household cases. On April 30th, the tribe opened a medical recovery site for isolation. After opening, all individuals with active infection agreed to go to site after release.

Results: Between April 24th-30th, 16 inmates were released from facility, seven were laboratory-confirmed positive. Secondary infections only occurred in household positives. Of the seven households, four experienced secondary transmission of virus. There were 27 household contacts, six secondary infections (secondary attack rate of 30.0%). There were four hospitalizations and one death, though cause of death was not due to COVID-19 despite incidental finding. After opening of medical recovery site, all individuals with active infection (12 cases) agreed to isolation at site. This intervention resulted in no further epidemiologically linked cases from recently released incarcerated individuals to community.

Figure 1: Household Secondary Infections with Epidemiological Links to Previously Incarcerated Inmates Before and After Opening of Medical Recovery Site

Conclusion: Prior to establishment of a medical recovery site on a Native American reservation, a significant burden of disease in the community was linked to recently incarcerated individuals. After opening, all actively infected individuals agreed to isolation at site, resulting in no further household transmission of COVID-19 from an actively infected recently incarcerated case. This outbreak highlights porous boundaries between correctional facilities and surrounding communities, requiring attention and resources to limit transmission of disease to protect local populations.

Disclosures: All Authors: No reported disclosures

486. Understanding Public Perception of COVID-19 Social Distancing on Twitter

Samhe N. Saleh, MD; Christoph Lehmann, MD; Samuel McDonald, MD; Mujeeb Baat, MD; Richard J Medford, MD; Richard J Medford, MD; 1 UT Southwestern Medical Center, Dallas, Texas

Session: P-16. COVID-19 Impact of Social Distancing/Mitigation Measures

Background: Managing and changing public opinion and behavior are vital for social distancing to successfully slow transmission of COVID-19, preserve hospital resources, and prevent overwhelming the healthcare system’s resources. We sought to leveraging organic, large-scale discussion on Twitter about social distancing to understand public’s beliefs and opinions on this policy.

Methods: Between March 27 and April 10, 2020, we sampled 574,903 English tweets that matched the two most trending social distancing hashtags at the time, #socialdistancing and #stayathome. We used natural language processing techniques to conduct a sentiment analysis that identifies tweet polarity and emotions. We also evaluated the subjectivity of tweets and estimated the frequency of discussion of social distancing rules. We then identified clusters of discussion using topic modeling and compared the sentiment by topic.

Results: There was not positive sentiment toward both #socialdistancing and #stayathome with mean sentiment scores of 0.158 (standard deviation [SD], 0.292) and 0.144 (SD, 0.287) respectively. Tweets were also more likely to be objective (median, 0.40; IQR, 0 to 0.6) with approximately 30% of all tweets labeled as completely objective. Approximately half (50.4%) of all tweets primarily expressed joy and one-fifth expressed fear and surprise each (Figure 1). These trends correlated well with topic clusters identified by frequency including leisure activities and community support (i.e., joy), concerns about food insecurity and effects of the quarantine (i.e., fear), and unpredictability of COVID and its unforeseen implications (i.e., surprise) (Table 1).

Table 1. Topic clusters identified by topic modeling. Words contributing to the model are shown in decreasing order of weighting. The topics are labeled manually based on these words. The number of tweets primarily with that topic, mean sentiment, mean subjectivity, and sample tweets are also included.

Figure 1. Emotion analysis for all tweets and stratified by tweets with the hashtags #socialdistancing and #stayathome. Comparison between the two hashtags is done using Chi-squared testing. Bonferroni correction was used to define statistical significance at a threshold of \(p = 0.008 \) (0.05/n, where \(n = 6 \) since 6 comparisons were completed).

Conclusion: The positive sentiment, preponderance of objective tweets, and topics supporting coping mechanisms led us to believe that Twitter users generally supported social distancing measures in the early stages of their implementation.

Disclosures: All Authors: No reported disclosures

487. Patient Outcomes of Contact Tracing for COVID-19 in a Pediatric Hospital

Sarah Smathers, MPH, CIC, FAPIC; Regan Deming, MPH; Lauren Le Goff, MS, MLS (ASCP)CM; David Lenar, M. ED.; Cheryl Gelbeline-myers, MS; Jeanette Trella, PharmD, BCPPS; Susan E. Coffin, MD, MPH; Susan E. Coffin, MD, MPH; Julia S. Sammons, MD, MSCE; 1 Children’s Hospital of Philadelphia, Philadelphia, PA

Session: P-17. COVID-19 Infection Prevention

Background: Contact tracing is a critical component in controlling the spread of infectious diseases. During the COVID-19 pandemic, the demands for contract tracing far exceeded the resources available to infection prevention and control (IPC) programs. Leveraging our Poison Control Center, our organization established a Contact Tracing Center (CTC) with content expertise and oversight by IPC and Occupational Health. The CTC identifies exposed patients and employees, provides testing guidance and scheduling, and offers post-exposure recommendations for employees. We describe patient outcomes due to employee exposures in a pediatric healthcare system.

Exposure data about employee to patient exposures (EPE) were captured real-time by scripted telephone interviews by our CTC. Chart review was performed to determine outcomes of exposed patients. A concerning exposure from a direct patient care provider to a patient was defined as unprotected contact at less than 6 feet for greater than 5 minutes in the 24 hours prior to developing symptoms. Data were analyzed to determine COVID-19 conversion rates for children exposed to pre-symptomatic and symptomatic employees based upon exposure risk stratification, window of exposure, and employees who worked with symptoms.

Results: From March 2020 – present, we identified 38 EPE that involved 10 employees; 26 EPE were pre-symptomatic and 12 EPE symptomatic exposures. The average number of EPE per employee was 3.8 (SD 3.0). There were no secondary transmission events to patients from either pre-symptomatic or symptomatic