SARS-CoV-2 as a trigger of neurodegeneration: thinking ahead

Tiago F. Outeiro, PhD1,2,3, and Anita Krisko, PhD1

1Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.
2Max Planck Institute for Experimental Medicine, Goettingen, Germany.
3Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.

Correspondence to: Prof. Dr. Tiago F. Outeiro or Dr. Anita Krisko,
Address: Department of Experimental Neurodegeneration, University Medical Center Goettingen, Waldweg 33, 37077 Goettingen, Germany.
Email: touteir@gwdg.de, anita.krisko@med.uni-goettingen.de

Keywords: Aging, SARS-CoV-2, COVID-19, proteostasis, neurodegenerative disease, Parkinson’s disease

Dear Editor,

We are excited our paper Lippi et al. (1) has attracted the attention of other colleagues, as we believe that, given the current COVID-19 pandemic, it is essential to consider the potential long-term implications of SARS-CoV-2 infections. In particular, as Gomez-Pinedo and colleagues point out, it is known that coronaviruses can be found in the central nervous system of elderly people and of patients with Alzheimer’s, Parkinson’s, or multiple sclerosis (2).

In the few months that SARS-CoV-2 has been storming the planet, our perception of the virus has evolved from a virus that causes a severe respiratory disease to a virus that can also severely impact the central nervous system, and that may likely trigger long-term consequences we cannot fully anticipate. Part of the deadly capability of SARS-CoV-2 is its tight binding to the human ACE2 receptor, with over 20-fold higher affinity (~15 nM) compared to its predecessor SARS-CoV (3,4). Interestingly, efforts to describe the mechanism of virus neutralization by antibodies have so far revealed that the antibodies bind the spike protein core, rather than the receptor binding domain (5,6). These observations may open new avenues in treatment and vaccine development (7).

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/mds.28178

This article is protected by copyright. All rights reserved.
As we wrote in Lippi et al., aging and several pre-existing health conditions remain as the main risk factors for the severity of COVID-19 (1). The common denominator to all these risk factors is the decreased performance of the immune system. Senescence of the immune system may shed light into the differences in COVID-19 adversity between young and old individuals, as well as between men and women. For example, B lymphocyte depletion is characteristic of old age, affecting predominantly men (8,9). Such changes in the immune system lead to "inflammaging", a term describing the presence of low-grade inflammation at an advanced age, also consistent with the gender bias of SARS-CoV-2 (10). The stronger age-dependent activation of the innate pro-inflammatory pathways in COVID-19 is observed in men (8), which is consistent with a higher rate of inflammaging also among men (11). Inflammaging may trigger the onset, and contribute to the progression of age-related diseases, including those involving the central nervous system (e.g. Alzheimer's disease) (12). Strikingly, in a very recent case report, the neuropathological analysis of the brain of a COVID-19 patient revealed a range of neuropathological lesions with features indicative of vascular and demyelinating alterations, consistent with parainfections processes affecting COVID-19 patients (13).

Therefore, we consider it will be critical to implement programs to follow individuals who survived SARS-CoV-2 infections over time, and those countries who are capable of implementing such programs will be better equipped to provide the best care for their populations.

Author roles
Both authors wrote the manuscript.

Financial disclosure
AK and TFO have received funding from DFG, in Germany.
References

1. Lippi A, Domingues R, Setz C, Outeiro TF, Krisko A. <scp>SARS-CoV</scp> - 2: At the Crossroad Between Aging and Neurodegeneration. Mov Disord [Internet]. 2020 May 24;35(5):716–20. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.28084

2. Gomez-Pinedo U, Matias-Guiu J, Sanclemente-Alaman I, Moreno-Jimenez L, Montero-Escribano P, Matias-Guiu JA. Is the brain a reservoir organ for SARS2-CoV2? J Med Virol [Internet]. 2020 May 21:jmv.26046. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.26046

3. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80-) [Internet]. 2020 Mar 13;367(6483):1260–3. Available from: https://www.sciencemag.org/lookup/doi/10.1126/science.abb2507

4. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (80-) [Internet]. 2020 Mar 27;367(6485):1444–8. Available from: https://www.sciencemag.org/lookup/doi/10.1126/science.abb2762

5. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect [Internet]. 2020 Jan 1;9(1):382–5. Available from: https://www.tandfonline.com/doi/full/10.1080/22221751.2020.1729069

6. Wang C, Li W, Drabek D, Okba NMA, van Haperen R, Osterhaus ADME, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun [Internet]. 2020 Dec 4;11(1):2251. Available from: http://www.nature.com/articles/s41467-020-16256-y

7. Nikolich-Zugich J, Knox KS, Rios CT, Natt B, Bhattacharya D, Fain MJ. SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. GeroScience [Internet]. 2020 Apr 10;42(2):505–14. Available from: http://link.springer.com/10.1007/s11357-020-00186-0

This article is protected by copyright. All rights reserved.
8. Márquez EJ, Chung C, Marches R, Rossi RJ, Nehar-Belaid D, Eroglu A, et al. Sexual-dimorphism in human immune system aging. Nat Commun [Internet]. 2020 Dec 6;11(1):751. Available from: http://www.nature.com/articles/s41467-020-14396-9

9. Bonafè M, Prattichizzo F, Giuliani A, Storci G, Sabbatinelli J, Olivieri F. Inflamm-aging: Why older men are the most susceptible to SARS-CoV-2 complicated outcomes. Cytokine Growth Factor Rev [Internet]. 2020 May; Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359610120300848

10. Franceschi C, Campisi J. Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. Journals Gerontol Ser A Biol Sci Med Sci [Internet]. 2014 Jun 1;69(Suppl 1):S4–9. Available from: https://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glu057

11. Bonafè M, Olivieri F, Cavallone L, Giovagnetti S, Marchegiani F, Cardelli M, et al. A gender-dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. Eur J Immunol [Internet]. 2001 Aug;31(8):2357–61. Available from: http://doi.wiley.com/10.1002/1521-4141%28200108%2931%3A8%3C2357%3A%3AAID-IMMU2357%3E3.0.CO%3B2-X

12. Giunta B, Fernandez F, Nikolic W V, Obregon D, Rrapo E, Town T, et al. Inflammaging as a prodrome to Alzheimer’s disease. J Neuroinflammation [Internet]. 2008;5(1):51. Available from: http://jneuroinflammation.biomedcentral.com/articles/10.1186/1742-2094-5-51

13. Reichard RR, Kashani KB, Boire NA, Constantopoulos E, Guo Y, Lucchinetti CF. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol [Internet]. 2020 May 24; Available from: http://link.springer.com/10.1007/s00401-020-02166-2