Astrophysics Uniquely Enabled by Observations of High-Energy Cosmic Neutrinos

Thematic Area: Multi-Messenger Astronomy and Astrophysics

Markus Ackermann, Deutsches Elektronen-Synchrotron (DESY) Zeuthen
Markus Ahlers*, Niels Bohr Institute, University of Copenhagen
Luis Anchordoqui, City University of New York
Mauricio Bustamante, Niels Bohr Institute, University of Copenhagen
Amy Connolly, The Ohio State University
Cosmin Deaconu, University of Chicago
Darren Grant, Michigan State University
Peter Gorham, University of Hawaii, Manoa
Francis Halzen, University of Wisconsin, Madison
Albrecht Karle†, University of Wisconsin, Madison
Kumiko Kotera, Institut d’Astrophysique de Paris
Marek Kowalski, Deutsches Elektronen-Synchrotron (DESY) Zeuthen
Miguel A. Mostafa, Pennsylvania State University
Kohta Murase‡, Pennsylvania State University
Anna Nelles§, Deutsches Elektronen-Synchrotron (DESY) Zeuthen
Angela Olinto, University of Chicago
Andres Romero-Wolf¶, Jet Propulsion Laboratory, California Institute of Technology
Abigail Vieregg‖, University of Chicago
Stephanie Wissel, California Polytechnic State University

*markus.ahlers@nbi.ku.dk, +45 35 32 80 89
†albrecht.karle@icecube.wisc.edu, +1 608 890 0542
‡murase@psu.edu, +1 814 863 9594
§anna.nelles@desy.de, +49 33762 77389
¶Andrew.Romero-Wolf@jpl.nasa.gov, +1 818 354 0058
‖avieregg@kicp.uchicago.edu, +1 773 834 2988

March 2019
Abstract

High-energy cosmic neutrinos carry unique information about the most energetic non-thermal sources in the Universe. This white paper describes the outstanding astrophysics questions that neutrino astronomy can address in the coming decade. A companion white paper discusses how the observation of cosmic neutrinos can address open questions in fundamental physics. Detailed measurements of the diffuse neutrino flux, measurements of neutrinos from point sources, and multi-messenger observations with neutrinos will enable the discovery and characterization of the most energetic sources in the Universe.

Endorsers

Kevork N. Abazajian 1, Sanjib Kumar Agarwalla 2, Juan Antonio Aguilar-Sánchez 3, Marco Ajello 7, Roberto Aloisio 6 6, Jaime Álvarez-Muñiz 7, Rafael Alves Batista 8, Hongjun An 9, Karen Andeen 10, Shin’ichiro Ando 11, Gisela Anton 12, Ignatios Antoniadis 13 14, Katsuaki Asano 16, Katie Auchettl 16, Jan Auffenberg 17, Hugo Ayala 18, Xinhua Bai 19, Gabriela Barenboim 20, Vernon Barger 21, Imre Bartos 22, Steve W. Barwick 1, John Beacom 23, James J. Beatty 23, Nicole F. Bell 24, José Bellido 25, Segev BenZvi 26, Douglas R. Bergman 27, José Bernabéu 20, Elisa Bernardini 28 29, Mario Bertaina 30, Gianfranco Bertone 11, Peter F. Bertone 31 32, Francesca Bisconti 33, Jonathan Biteau 33, Erik Blaufuss 34, Summer Blot 29, Julien Bolmont 35, Zeljka Bosnjak 36, Olga Botner 37, Federica Bradascio 29, Esra Bulbul 38, Alexander Burgman 37, Francesco Cafagna 39, Regina Caputo 40, Rossella Caruso 41, Marco Casolino 3, Karem Peñaló Castillo 42, Silvia Celli 43, S. Bradley Cenko 40, Andrew Chen 44, Yaocheng Chen 45, Talai Mohamed Cherif 46, Naifis Rezwan Khan Chowdhury 20, Eugene M. Chudnovsky 47, Brian A. Clark 23, Pablo Correa 48, Doug F. Cowen 18, Paschal Coyle 49, Linda Cremonesi 50, Jane Lixin Dai 51, Basudeb Dasgupta 52, André de Gouvêa 53, Sijbrand de Jong 55 56, Simon De Kockere 48, João R. T. de Mello Neto 54, Krijn D. de Vries 48, Gwenhaël de Wasseige 96, Valentin Decoene 57, Peter B. Denton 58, Tyce DeYoung 59, Rebecca Diesing 60, Markus Dittmer 61, Klaus Dolag 62, Michele Doro 28, Michael A. DuVernois 21, Toshikazu Ebisuzaki 63, Rikard Enberg 37, Ralph Engel 64, Johannes Eser 65, Arman Esmaili 66, Ke Fang 67, Jonathan L. Feng 1, Gustavo Figueiredo 68, George Filippatos 65, Chad Finley 69, Derek Fox 18, Anna Franckowiak 29, Elizabeth Friedman 34, Toshihiro Fujii 70, Daniele Gaggero 71, Alberto M. Gago 72, Thomas Gaisser 73, Shan Gao 29, Carlos García Canal 74, Daniel García-Fernández 29, Simone Garrappa 29, Maria Vittoria Garzelli 75 76, Christian Glaser 1, Allan Hallgren 37, Jordan C. Hanson 77, Andreas Haungs 64, John W. Hewitt 78, Jannik Hofestädt 12, Benjamin Hokanson-Fasig 21, Dan Hooper 79 60, Shunsaku Horiuchi 80, Feifei Huang 81, Patrick Huber 80, Tim Huege 64, Kaeli Hughes 60, Naoya Inoue 82, Susumu Inoue 63, Fabio Iocco 83, Kunihiro Ioka 70, Clancy W. James 84, Eleanor Judd 85, Daniel Kabat 47, Matthias Kadler 86, Fumiyoshi Kajino 87, Takaaki Kajita 15, Marc Kamionkowski 88, Alexander Kappes 61, Dimitra Karabali 47, Timo Karg 29, Tepepi Katorii 89, Uli F. Katz 12, Azadeh Keivani 90, John L. Kelley 21, Myoungchul Kim 91, Shigeo S. Kimura 18, Spencer Klein 92, Stefan Klepsner 29, David Koke 61, Hermann Kolanoski 93, Lutz Köpke 94, Joachim Kopp 94 95, Claudio Kopper 59,
Jason Koskinen, Dmitriy Kostunin, Antoine Kouchner, Ilya Kravchenko, John Krizmanic, Naoko Kurahashi Neilson, Michael Kuss, Evgeny Kuznetsov, Uzair Abdul Latif, John G. Learned, Jean-Philippe Lenain, Rebecca K. Leane, Shirley Weishi Li, Lu Lu, Francesco Longo, Andrew Ludwig, Cecilia Lunardini, Paolo Lipari, James Madsen, Keiichi Mase, Manuela Mallamaci, Karl Mannheim, Danny Marfatia, Raffaella Margutti, Cristian Jesús Lozano Mariscal, Szabolcs Marka, Olivier Martineau-Huyhn, Oscar Martínez-Bravo, Nikolaos E. Mavromatos, Frank McNally, Olga Mena, Kevin-Druis Merenda, Philipp Mertsch, Peter Mézérios, Hisakazu Minakata, Nestor Mirabal, Lino Miramonti, Omar G. Miranda, Razmik Mirzoyan, John W. Mitchell, Irina Mocioiu, Teresa Montaruli, Maria Elena Monzani, Roger Moore, Shigehiro Nagataki, Masayuki Nakahata, Jiwoo Nam, Kenny C. Y. Ng, Ryan Nichol, Valentin Niess, David F. Nitz, Samaya Nissanke, Eric Nuss, Eric Oberla, Stefan Ohm, Kouji Ohta, Foteini Oikonomou, Roopesh Ojha, Nepomuk Otte, Timothy A. D. Paglione, Sandip Pakvasa, Andrea Palladino, Sergio Palomares-Ruiz, Vasiliki Pavlidou, Carlos Pérez de los Heros, Christopher Persichilli, Piergiorgio Piccozza, Zbigniew Plebański, Vlad Popa, Steven Prohira, Bindu Rani, Brian Flint Rauch, Soebur Razzaque, Nicolas Renault-Tinacci, Mary Hall Reno, Elisa Resconi, Marco Ricci, Jarred M. Roberts, Nicholas L. Rodd, Juan Rojo, Carsten Rott, Iftach Sadeh, Benjamin R. Safdi, Naoto Sakaki, Jordi Salavdó, Dorothea Santl, Marcos Santander, Fred Sarazin, Konstancja Satalecka, Michael Schimp, Olaf Scholten, Harm Schoorlemmer, Frank G. Schröder, Fabian Schüssler, Sergio J. Sciutto, Valentina Scotti, David Seckel, Pasquale D. Serpico, Shashank Shalgar, Daniel Southall, Glenn Spiczak, Anatoly Spitkovsky, Maurizio Spurio, Juliana Stachurska, Krzysztof Z. Stanek, Floyd Stecker, Christian Stegmann, Robert Stein, Anna M. Suliga, Greg Sullivan, Jacek Szabelski, Yoshiyuki Takizawa, Irene Tamborra, Xerxes Tata, Todd A. Thompson, Charles Timmermans, Kirsten Tollefson, Diego F. Torres, Jorge Torres, Simona Toscano, Delia Tosi, Matías Tueros, Sara Turriziani, Elisabeth Unge, Michael Unge, Martin Unland Elorrieta, José Wagner Furtado Valle, Lawrence Wiencke, Nick van Eijndhoven, Jakob van Santen, Arjen van Vliet, Justin Vandenbroucke, Gary S. Varner, Tonia Venters, Matthias Vereecken, Alex Vilenkin, Francesco L. Villante, Aaron Vincent, Philip von Doetinchem, Alan A. Watson, Thomas Weiler, Christoph Welling, Nathan Whitehorn, Dawn R. Williams, Walter Winter, Hubing Xiao, Donglian Xu, Tokonatsu Yamamoto, Lili Yang, Gaurang Yodh, Shigeru Yoshida, Tianlu Yuan, Danilo Zavrtanik, Arnulfo Zepeda, Bing Zhang, Hao Zhou, Anne Zilles, Stephan Zimmer, Juan de Dios Zornoza, Renata Zukanovich Funchal, and Juan Zúñiga.
The Unique Tool of Neutrino Astronomy

Neutrino astronomy allows us to discover and characterize the most energetic non-thermal sources in the Universe. Despite observations of cosmic rays (charged nuclei), which reach energies that are ten million times higher than those achievable in the Large Hadron Collider [1,2], and observations of γ-rays [3] and astrophysical neutrinos [4–10], we do not yet know where or how these particles are accelerated. Neutrino astronomy is a key to directly answering the question of how particles are accelerated to these extreme energies. Cosmic rays can collide with gas and radiation in their sources or while propagating over cosmic distances until they reach Earth. A “smoking-gun” signal of such interactions is the production of high-energy neutrinos.

Astrophysical neutrinos provide insight into source characteristics not accessible through the observation of other messengers. Due to their low cross sections, neutrinos can escape dense astrophysical environments that are opaque to photons. In contrast to γ-rays, neutrinos travel almost unimpeded through the Universe, allowing direct observation of their sources at high redshifts with sub-degree-scale pointing. Unlike cosmic rays, neutrinos are not deflected in magnetic fields and can be observed in spatial and temporal coincidence with photons and gravitational waves [11,12], which is a key prerequisite to reap the scientific rewards of multi-messenger astronomy. In addition, neutrinos come in different flavors — electron, muon, and tau neutrinos (νₑ, νµ, & ντ) — and the flavor ratios observed at Earth give insight into the environment of cosmic-ray sources.

The last decade ushered in high-energy neutrino astronomy, with the discovery of an astrophysical neutrino flux in the 10 TeV – 10 PeV energy range [4–10]. The arrival directions of the most energetic neutrinos are shown in Fig. 1 and are consistent with a uniform distribution across the sky after accounting for detector acceptance. Neutrino emission at the observed flux level has been predicted from a variety of source classes, including γ-ray bursts, blazars, starburst galaxies, galaxy clusters, and others (see, e.g. [13,14]). Recently, coincident observations of neutrinos and γ-rays from the blazar TXS 0506+056 presented evidence of the first extragalactic neutrino source [15,16]. However, this cannot be the entire story: multiple independent analyses indicate that only a fraction of the diffuse neutrino flux can come from γ-ray blazars [17–22].

In the next decade, the development, construction, and operation of multiple neutrino detectors that cover complementary parts of the sky, have a wide range of neutrino energies, and have sensitivity to different flavors, will disentangle the complexities of the neutrino sky. Real-time multi-messenger campaigns, in collaboration with multi-wavelength (radio to γ-ray) and gravitational-wave astronomers, could prove crucial in unveiling the sources of the most energetic particles and the acceleration mechanisms at work. Neutrinos would provide insights into the physics of stellar explosions, compact object mergers, and relativistic jets, as well as particle acceleration processes.

Discovering and Characterizing the Most Energetic Sources in the Universe

The goal of discovering the most energetic non-thermal sources in the Universe can be approached through multiple observational avenues. Detailed observations of all cosmic messengers, including neutrinos, are needed to fully understand the processes at work. Precision measurements of the diffuse neutrino spectrum will shed light on the physics of the most energetic non-thermal sources and their host environments. High-resolution neutrino data from observatories with deep exposure and wide sky coverage will allow us to identify the source population(s) responsible for the diffuse neutrino emission. Combining observations of these neutrinos and other cosmic messengers will provide the optimal strategy of identifying these sources and determining the governing physics.
Arrival directions of most energetic neutrino events

Figure 1: Arrival directions of neutrino events from IceCube. Shown are upgoing track events [8,9] (⊙), the high-energy starting events (HESE) (tracks ⊗ and cascades ⊕) [6,7,10], and additional track events published as public alerts (⊙) [23,24]. The blue-shaded region indicates where the Earth absorption of 100-TeV neutrinos becomes important. The dashed line indicates the equatorial plane. We also indicate the location of the blazar TXS 0506+056 (⭐).

The current lack of established neutrino point sources — despite a firm detection of a diffuse neutrino flux — indicates a population of weak extragalactic sources. This is illustrated in Fig. 2, which shows a parametrization of the diffuse flux (magenta bands) in terms of the local density and luminosity of steady source populations [17] (left plot) or local density rate and bolometric energy for transient source populations [27] (right plot). The lack of neutrino sources after ten years of observations by IceCube translates into the dark-blue shaded exclusion regions. Source populations with sufficiently large local densities — like starburst galaxies [29–38], galaxy clusters and groups [31,32,41], low-luminosity AGN [42], radio-quiet AGN [43–45], or star-forming galaxies with AGN outflows [34,46–49] — or with high local rate densities — like (extragalactic) jet-powered SNe including hypernovae [50–53] and interaction-powered SNe [54,55] — are presently consistent with the observations. Observatories with improvements in point-source sensitivity over current detectors would greatly expand the discovery potential for the brightest sources of these candidate populations (see Fig. 2) and other candidate sources like TXS 0506+056.

Current measurements of the isotropic neutrino flux (φ) are shown in Fig. 3, along with the observed isotropic γ-ray background (IGB) and the UHE cosmic-ray flux. The correspondence among the energy densities, proportional to $E^2 \phi$, observed in neutrinos, γ-rays, and cosmic rays suggests a strong multi-messenger relationship that offer intriguing prospects for deeper observations with a new generation of instruments.

A) The simultaneous production of neutral and charged pions in cosmic-ray interactions suggests that the sources of high-energy neutrinos could also be strong 10 TeV –10 PeV γ-ray emitters. For extragalactic scenarios, this γ-ray emission is not directly observable because of the strong absorption of photons by $e^+ e^-$ pair production in extragalactic background photons. High-energy γ-rays initiate electromagnetic cascades of repeated inverse-Compton scattering and pair production that eventually contribute to the diffuse γ-rays below 100 GeV, which provides a theoretical upper limit to the diffuse neutrino flux [56,57]. The detected flux of > 100 TeV neutrinos with the hadronuclear origin is saturated by the diffuse γ-ray data [31] (see blue lines in Fig. 3). Intrigu-
Figure 2: **Left:** Comparison of the diffuse neutrino emission (solid magenta band) to the effective local density and luminosity of extragalactic neutrino source populations. We indicate several candidate populations (⭐) by the required neutrino luminosity to account for the full diffuse flux \[17\] (see also \[25\]). The lower (upper) edge of the band assumes rapid (no) redshift evolution. The dark-blue-shaded region indicates IceCube’s discovery potential of the closest source of the population \[E^2 \phi_{\nu_\mu + \bar{\nu}_\mu} \approx 10^{-12} \text{ TeV/cm}^2/s\] in the Northern Hemisphere \[26\]). **Right:** The same comparison for transient neutrino sources parametrized by their local density rate and bolometric energy \[27\]. The discovery potential of the closest source is based on 10 years of livetime \[E^2 F_{\nu_\mu + \bar{\nu}_\mu} \approx 0.1 \text{ GeV/cm}^2\] in the Northern Hemisphere \[28\]).

- **A)** The strong correspondence of high-energy messengers — suggested by the diffuse data in Fig.3 — provides excellent motivation for multi-messenger observations. Linking together observations of multiple messengers in time and space will allow direct correlation of neutrino sources.

 B) Precision measurements of the neutrino flux can test the idea of cosmic particle unification, in which sub-TeV \(\gamma\)-rays, PeV neutrinos, and UHE cosmic rays can be explained simultaneously \[17,41,60,61\]. If the neutrino flux is related to the sources of UHE cosmic rays, then there is a different theoretical upper limit (the dashed green line in Fig.3) to the neutrino flux \[62,63\]. UHE cosmic ray sources can be embedded in environments that act as “cosmic-ray reservoirs” where magnetic fields trap cosmic rays with energies far below the highest cosmic-ray energies. The trapped cosmic rays collide with gas and produce a flux of \(\gamma\)-rays and neutrinos. The measured IceCube flux is consistent with predictions of some of these models \[29,39,40\]; see, however, \[64\].

 C) The attenuation of UHE cosmic rays through resonant interactions with cosmic microwave background photons results in the production of UHE neutrinos. This mechanism, first pointed out by Greisen, Zatsepin and Kuzmin \[67,68\] (GZK), causes a suppression of the UHE cosmic ray proton flux beyond \(5 \times 10^{10} \text{ GeV} \) \[67,68\] and gives rise to a flux of UHE neutrinos \[69\], not yet detected, shown in Fig.3. The observation of these cosmogenic neutrinos at \(~\text{EeV}\), or a stringent upper limit on their flux, will severely restrict models of acceleration, source evolution, cosmic ray composition, and transition from Galactic to extragalactic components, and serve as a complement to cosmic-ray measurements to limit possible sources (e.g., \[56,69–87\]).

- **Figure Name:** Comparison of effective neutrino luminosity and effective local density.

- **Diagram Notes:**
 - The left diagram compares the diffuse neutrino emission (solid magenta band) to the effective local density and luminosity of extragalactic neutrino source populations.
 - The right diagram compares transient neutrino sources parametrized by their local density rate and bolometric energy.

- **Source and References:**
 - \[17\], \[25\], \[26\], \[27\], \[41\], \[60\], \[61\], \[62\], \[63\], \[64\], \[67\], \[68\], \[69\], \[56\], \[69–87\].
with specific sources of γ-rays and offers a wealth of information that is not available with neutrino astronomy alone. The most successful example so far is the multi-messenger flare of TXS 0506+056 [16], which demonstrated the feasibility of neutrino-triggered follow-up campaigns. However, there is no simple concordance picture of neutrino emission from this source [88–102], so further studies are required to establish blazar flares as sources of high-energy neutrinos.

High-energy neutrino observations will allow us to investigate the rich diversity of stellar explosions — ranging from core-collapse SNe [103,104], over trans-relativistic SNe [105,106] associated with low-luminosity γ-ray bursts [52,107–112], jet-powered SNe [50,113–117], and wind-powered SNe [118–120], to γ-ray bursts with ultra-relativistic jets [109,121–152]. Neutrino-triggered follow-up searches [107,153–157] and stacking analyses [158–160] are in reach of testing the predictions. Other candidate transient neutrino sources are jetted tidal disruption events (TDE) [161–167], flaring flat spectrum quasars [168–172], and compact object mergers [173–180]. The latter are also intriguing targets for coincident detection of neutrinos and gravitational waves [173,174], and models have been constrained for the recent merger event GW170817 [181].

Steady emission from Galactic neutrino sources could contribute a fraction of the observed diffuse flux [26,182–188] (e.g., stellar explosion remnants [182,189–195], γ-ray binaries [183,196–198], star-forming regions [182,199–202], Galactic center and ridge regions [182,203–210], diffuse emission [70,182,211–216], and quasi-isotropic halo emission [182,217–220]).

Observatory Requirements to Achieve the Science Goals

Meeting these science goals requires measurements of the neutrino flux density, the neutrino spatial distribution, neutrino flavor ratios, and requires linking neutrino observations with observations of complementary astrophysical messengers (see Fig. 4). This flows down to measurement requirements for astrophysical neutrino observatories in the coming decade. Measuring neutrino point-source and diffuse energy flux densities will require large detector arrays. As detector effective areas increase, it is imperative to maintain low backgrounds to achieve improved sensitivity.

The spatial distribution and clustering of high-energy neutrinos across the sky are key observables for revealing their origins. Source catalogue correlations require sub-degree pointing resoluc-
Figure 4: **Left:** Current experimental limits and detections in neutrino astronomy from IceCube \([9,10,221]\), the Pierre Auger Observatory \([222]\), and ANITA \([223]\). Also shown are low-luminosity GRB \([111]\) (see \([50,52]\) for similar spectra) and AGN models \([224]\), and an extrapolation of the IceCube flux, which suggests target sensitivities for the next observatories. **Right:** Observatory requirements for neutrino astronomy targeting different physical parameters.

...
References

[1] J. J. Beatty and S. Westerhoff, “The Highest-Energy Cosmic Rays,” Ann. Rev. Nucl. Part. Sci. 59 (2009) 319.

[2] L. Evans and P. Bryant, “LHC Machine,” JINST 3 (2008) S08001.

[3] S. Funk, “Ground- and Space-Based Gamma-Ray Astronomy,” Ann. Rev. Nucl. Part. Sci. 65 (2015) 245, 1508.05190.

[4] IceCube Collaboration, M. G. Aartsen et. al., “First observation of PeV-energy neutrinos with IceCube,” Phys. Rev. Lett. 111 (2013) 021103, 1304.5356.

[5] IceCube Collaboration, M. G. Aartsen et. al., “Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector,” Science 342 (2013) 1242856, 1311.5238.

[6] IceCube Collaboration, M. G. Aartsen et. al., “Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data,” Phys. Rev. Lett. 113 (2014) 101101, 1405.5303.

[7] IceCube Collaboration, C. Kopper, W. Giang, and N. Kurahashi, “Observation of Astrophysical Neutrinos in Four Years of IceCube Data,” PoS ICRC2015 (2016) 1081, 1510.05223.

[8] IceCube Collaboration, M. G. Aartsen et. al., “Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data,” Astrophys. J. 833 (2016) 3, 1607.08006.

[9] IceCube Collaboration, C. Haack and C. Wiebusch, “A measurement of the diffuse astrophysical muon neutrino flux using eight years of IceCube data,” PoS ICRC2017 (2018) 1005, 1710.01191.

[10] IceCube Collaboration, C. Kopper, “Observation of Astrophysical Neutrinos in Six Years of IceCube Data,” PoS ICRC2017 (2018) 981, 1710.01191.

[11] LIGO Scientific, Virgo Collaboration, B. P. Abbott et. al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116 (2016) 061102, 1602.03837.

[12] LIGO Scientific, Virgo Collaboration, B. Abbott et. al., “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett. 119 (2017) 161101, 1710.05832.

[13] F. Halzen, “High-energy neutrino astrophysics,” Nature Phys. 13 (2016) 232.

[14] M. Ahlers and F. Halzen, “Opening a New Window onto the Universe with IceCube,” Prog. Part. Nucl. Phys. 102 (2018) 73, 1805.11112.
[15] IceCube Collaboration, M. G. Aartsen et. al., “Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert,” Science 361 (2018) 147, 1807.08794.

[16] IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403 Collaboration, M. G. Aartsen et. al., “Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A,” Science 361 (2018) eaat1378, 1807.08816.

[17] K. Murase and E. Waxman, “Constraining High-Energy Cosmic Neutrino Sources: Implications and Prospects,” Phys. Rev. D 94 (2016) 103006, 1607.01601.

[18] S. Ando, M. R. Feyereisen, and M. Fornasa, “How bright can the brightest neutrino source be?,” Phys. Rev. D 95 (2017) 103003, 1701.02165.

[19] IceCube Collaboration, M. G. Aartsen et. al., “The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux,” Astrophys. J. 835 (2017) 45, 1611.03874.

[20] A. Neronov, D. V. Semikoz, and K. Ptitsyna, “Strong constraints on hadronic models of blazar activity from Fermi and IceCube stacking analysis,” Astron. Astrophys. 603 (2017) A135, 1611.06338.

[21] IceCube Collaboration, M. Huber and K. Krings, “Results of IceCube searches for neutrinos from blazars using seven years of through-going muon data,” PoS ICRC2017 (2018) 994, 1710.01179.

[22] D. Hooper, T. Linden, and A. Vieregg, “Active Galactic Nuclei and the Origin of IceCube’s Diffuse Neutrino Flux,” JCAP 1902 (2019) 012, 1810.02823.

[23] AMON Collaboration, M. W. E. Smith et. al., “The Astrophysical Multimessenger Observatory Network (AMON),” Astropart. Phys. 45 (2013) 56, 1211.5602.

[24] Gamma-ray Coordination Network (GCN). http://gcn.gsfc.nasa.gov/amon.html

[25] A. Silvestri and S. W. Barwick, “Constraints on Extragalactic Point Source Flux from Diffuse Neutrino Limits,” Phys. Rev. D 81 (2010) 023001, 0908.4266.

[26] IceCube Collaboration, M. G. Aartsen et. al., “Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data,” 1811.07979.

[27] K. Murase and M. Fukugita, “Energetics of High-Energy Cosmic Radiations,” 1806.04194.

[28] IceCube Collaboration, K. Meagher, “IceCube as a Neutrino Follow-up Observatory for Astronomical Transients,” PoS ICRC2017 (2018) 1007, 1710.01179.

[29] A. Loeb and E. Waxman, “The Cumulative background of high energy neutrinos from starburst galaxies,” JCAP 0605 (2006) 003, astro-ph/0601695.
[30] E. de Cea del Pozo, D. F. Torres, and A. Y. R. Marrero, “Multi-messenger model for the starburst galaxy M82,” *Astrophys. J.* 698 (2009) 1054, [0901.2688](http://arxiv.org/abs/0901.2688).

[31] K. Murase, M. Ahlers, and B. C. Lacki, “Testing the Hadronuclear Origin of PeV Neutrinos Observed with IceCube,” *Phys. Rev. D* 88 (2013) 121301, [1306.3417](http://arxiv.org/abs/1306.3417).

[32] R.-Y. Liu, X.-Y. Wang, S. Inoue, R. Crocker, and F. Aharonian, “Diffuse PeV neutrinos from EeV cosmic ray sources: Semirelativistic hypernova remnants in star-forming galaxies,” *Phys. Rev. D* 89 (2014) 083004, [1310.1263](http://arxiv.org/abs/1310.1263).

[33] B. Katz, E. Waxman, T. Thompson, and A. Loeb, “The energy production rate density of cosmic rays in the local universe is $\sim 10^{44-45}$ erg Mpc$^{-3}$ yr$^{-1}$ at all particle energies,” [1311.0287](http://arxiv.org/abs/1311.0287).

[34] I. Tamborra, S. Ando, and K. Murase, “Star-forming galaxies as the origin of diffuse high-energy backgrounds: Gamma-ray and neutrino connections, and implications for starburst history,” *JCAP* 1409 (2014) 043, [1404.1189](http://arxiv.org/abs/1404.1189).

[35] L. A. Anchordoqui, T. C. Paul, L. H. M. da Silva, D. F. Torres, and B. J. Vlcek, “What IceCube data tell us about neutrino emission from star-forming galaxies (so far),” *Phys. Rev. D* 89 (2014) 127304, [1405.7648](http://arxiv.org/abs/1405.7648).

[36] X.-C. Chang and X.-Y. Wang, “The diffuse gamma-ray flux associated with sub-PeV/PeV neutrinos from starburst galaxies,” *Astrophys. J.* 793 (2014) 131, [1406.1099](http://arxiv.org/abs/1406.1099).

[37] S. Chakraborty and I. Izaguirre, “Diffuse neutrinos from extragalactic supernova remnants: Dominating the 100 TeV IceCube flux,” *Phys. Lett. B* 745 (2015) 35, [1501.02615](http://arxiv.org/abs/1501.02615).

[38] N. Senno, P. Mészáros, K. Murase, P. Baerwald, and M. J. Rees, “Extragalactic star-forming galaxies with hypernovae and supernovae as high-energy neutrino and gamma-ray sources: the case of the 10 TeV neutrino data,” *Astrophys. J.* 806 (2015) 24, [1501.04934](http://arxiv.org/abs/1501.04934).

[39] K. Murase, S. Inoue, and S. Nagataki, “Cosmic Rays Above the Second Knee from Clusters of Galaxies and Associated High-Energy Neutrino Emission,” *Astrophys. J.* 689 (2008) L105, [0805.0104](http://arxiv.org/abs/0805.0104).

[40] K. Kotera, D. Allard, K. Murase, J. Aoi, Y. Dubois, T. Pierog, and S. Nagataki, “Propagation of ultrahigh energy nuclei in clusters of galaxies: resulting composition and secondary emissions,” *Astrophys. J.* 707 (2009) 370, [0907.2433](http://arxiv.org/abs/0907.2433).

[41] K. Fang and K. Murase, “Linking High-Energy Cosmic Particles by Black Hole Jets Embedded in Large-Scale Structures,” *Nature Phys.* 14 (2018) 396, [1704.00015](http://arxiv.org/abs/1704.00015).

[42] S. S. Kimura, K. Murase, and K. Toma, “Neutrino and Cosmic-Ray Emission and Cumulative Background from Radiatively Inefficient Accretion Flows in Low-Luminosity Active Galactic Nuclei,” *Astrophys. J.* 806 (2015) 159, [1411.3588](http://arxiv.org/abs/1411.3588).
[43] J. Alvarez-Muniz and P. Mészáros, “High energy neutrinos from radio-quiet AGNs,” *Phys. Rev. D* **70** (2004) 123001, [astro-ph/0409034](https://arxiv.org/abs/astro-ph/0409034).

[44] F. W. Stecker, “PeV neutrinos observed by IceCube from cores of active galactic nuclei,” *Phys. Rev. D* **88** (2013) 047301, [1305.7404](https://arxiv.org/abs/1305.7404).

[45] O. Kalashev, D. Semikoz, and I. Tkachev, “Neutrinos in IceCube from active galactic nuclei,” *J. Exp. Theor. Phys.* **120** (2015) 541, [1410.8124](https://arxiv.org/abs/1410.8124).

[46] X. Wang and A. Loeb, “Cumulative neutrino background from quasar-driven outflows,” *JCAP* **1612** (2016) 012, [1607.06476](https://arxiv.org/abs/1607.06476).

[47] A. Lamastra, N. Menci, F. Fiore, L. A. Antonelli, S. Colafrancesco, D. Guetta, and A. Stamerra, “Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy formation models,” *Astron. Astrophys.* **607** (2017) A18, [1709.03497](https://arxiv.org/abs/1709.03497).

[48] R.-Y. Liu, K. Murase, S. Inoue, C. Ge, and X.-Y. Wang, “Can winds driven by active galactic nuclei account for the extragalactic gamma-ray and neutrino backgrounds?,” *Astrophys. J.* **858** (2018) 9, [1712.10168](https://arxiv.org/abs/1712.10168).

[49] P. Padovani, A. Turcati, and E. Resconi, “AGN outflows as neutrino sources: an observational test,” *Mon. Not. Roy. Astron. Soc.* **477** (2018) 3469, [1804.01386](https://arxiv.org/abs/1804.01386).

[50] K. Murase and K. Ioka, “TeV–PeV Neutrinos from Low-Power Gamma-Ray Burst Jets inside Stars,” *Phys. Rev. Lett.* **111** (2013) 121102, [1306.2274](https://arxiv.org/abs/1306.2274).

[51] I. Tamborra and S. Ando, “Inspecting the supernova–gamma-ray-burst connection with high-energy neutrinos,” *Phys. Rev. D* **93** (2016) 053010, [1512.01559](https://arxiv.org/abs/1512.01559).

[52] N. Senno, K. Murase, and P. Mészáros, “Choked Jets and Low-Luminosity Gamma-Ray Bursts as Hidden Neutrino Sources,” *Phys. Rev. D* **93** (2016) 083003, [1512.08513](https://arxiv.org/abs/1512.08513).

[53] H.-N. He, A. Kusenko, S. Nagataki, Y.-Z. Fan, and D.-M. Wei, “Neutrinos from Choked Jets Accompanied by Type-II Supernovae,” *Astrophys. J.* **856** (2018) 119, [1803.07478](https://arxiv.org/abs/1803.07478).

[54] V. N. Zirakashvili and V. S. Ptsukin, “Type IIb supernovae as sources of high energy astrophysical neutrinos,” *Astropart. Phys.* **78** (2016) 28, [1510.08387](https://arxiv.org/abs/1510.08387).

[55] M. Petropoulou, S. Coenders, G. Vasilopoulos, A. Kamble, and L. Sironi, “Point-source and diffuse high-energy neutrino emission from Type IIb supernovae,” *Mon. Not. Roy. Astron. Soc.* **470** (2017) 1881, [1705.06752](https://arxiv.org/abs/1705.06752).

[56] V. S. Berezinsky and A. Yu. Smirnov, “Cosmic neutrinos of ultra-high energies and detection possibility,” *Astrophys. Space Sci.* **32** (1975) 461.

[57] K. Mannheim, R. J. Protheroe, and J. P. Rachen, “On the cosmic ray bound for models of extragalactic neutrino production,” *Phys. Rev. D* **63** (2001) 023003, [astro-ph/9812398](https://arxiv.org/abs/astro-ph/9812398).
[58] **IceCube** Collaboration, M. G. Aartsen *et al.*, “Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube,” *Phys. Rev. D* **91** (2015) 022001, [1410.1749](https://arxiv.org/abs/1410.1749).

[59] K. Murase, D. Guetta, and M. Ahlers, “Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos,” *Phys. Rev. Lett.* **116** (2016) 071101, [1509.00805](https://arxiv.org/abs/1509.00805).

[60] M. Kachelrieß, O. Kalashev, S. Ostapchenko, and D. V. Semikoz, “Minimal model for extragalactic cosmic rays and neutrinos,” *Phys. Rev. D* **96** (2017) 083006, [1704.06893](https://arxiv.org/abs/1704.06893).

[61] E. Resconi, P. Padovani, S. Coenders, A. Turcati, P. Giommi, and L. Caccianiga, “The neutrino filter: connecting blazars with ultra high energy cosmic rays and astrophysical neutrinos,” *PoS* ICRC2017 (2018) 1016.

[62] E. Waxman and J. N. Bahcall, “High-energy neutrinos from astrophysical sources: An Upper bound,” *Phys. Rev. D* **59** (1999) 023002, [hep-ph/9807282](https://arxiv.org/abs/hep-ph/9807282).

[63] J. N. Bahcall and E. Waxman, “High-energy astrophysical neutrinos: The Upper bound is robust,” *Phys. Rev. D* **64** (2001) 023002, [hep-ph/9902383](https://arxiv.org/abs/hep-ph/9902383).

[64] L. A. Anchordoqui, “Ultra-High-Energy Cosmic Rays,” [1807.09645](https://arxiv.org/abs/1807.09645).

[65] **Fermi-LAT** Collaboration, M. Ackermann *et al.*, “The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV,” *Astrophys. J.* **799** (2015) 86, [1410.3696](https://arxiv.org/abs/1410.3696).

[66] **Pierre Auger** Collaboration, I. Valino, “The flux of ultra-high energy cosmic rays after ten years of operation of the Pierre Auger Observatory,” *PoS* ICRC2015 (2016) 271, [1509.03732](https://arxiv.org/abs/1509.03732).

[67] K. Greisen, “End to the cosmic ray spectrum?,” *Phys. Rev. Lett.* **16** (1966) 748.

[68] G. Zatsepin and V. Kuzmin, “Upper limit of the spectrum of cosmic rays,” *JETP Lett.* **4** (1966) 78.

[69] V. Berezinsky and G. Zatsepin, “Cosmic rays at ultrahigh-energies (neutrino?),” *Phys. Lett. B* **28** (1969) 423.

[70] F. W. Stecker, “Diffuse Fluxes of Cosmic High-Energy Neutrinos,” *Astrophys. J.* **228** (1979) 919.

[71] C. T. Hill and D. N. Schramm, “Ultrahigh-Energy Cosmic Ray Neutrinos,” *Phys. Lett. B* **131** (1983) 247, [495 (1983)](https://link.springer.com/article/10.1016/0370-2693(83)90142-3).

[72] S. Yoshida and M. Teshima, “Energy spectrum of ultrahigh-energy cosmic rays with extragalactic origin,” *Prog. Theor. Phys.* **89** (1993) 833.

[73] R. Engel, D. Seckel, and T. Stanev, “Neutrinos from propagation of ultrahigh-energy protons,” *Phys. Rev. D* **64** (2001) 093010, [astro-ph/0101216](https://arxiv.org/abs/astro-ph/0101216).
L. A. Anchordoqui, H. Goldberg, D. Hooper, S. Sarkar, and A. M. Taylor, “Predictions for the Cosmogenic Neutrino Flux in Light of New Data from the Pierre Auger Observatory,” *Phys. Rev. D* **76** (2007) 123008, [0709.0734](https://arxiv.org/abs/0709.0734).

H. Takami, K. Murase, S. Nagataki, and K. Sato, “Cosmogenic neutrinos as a probe of the transition from Galactic to extragalactic cosmic rays,” *Astropart. Phys.* **31** (2009) 201, [0704.0979](https://arxiv.org/abs/0704.0979).

M. Ahlers, L. A. Anchordoqui, and S. Sarkar, “Neutrino diagnostics of ultra-high energy cosmic ray protons,” *Phys. Rev. D* **79** (2009) 083009, [0902.3993](https://arxiv.org/abs/0902.3993).

M. Ahlers, L. A. Anchordoqui, M. C. Gonzalez-Garcia, F. Halzen, and S. Sarkar, “GZK Neutrinos after the Fermi-LAT Diffuse Photon Flux Measurement,” *Astropart. Phys.* **34** (2010) 106, [1005.2620](https://arxiv.org/abs/1005.2620).

K. Kotera, D. Allard, and A. V. Olinto, “Cosmogenic Neutrinos: parameter space and detectability from PeV to ZeV,” *JCAP* **1010** (2010) 013, [1009.1382](https://arxiv.org/abs/1009.1382).

S. Yoshida and A. Ishihara, “Constraints on the origin of the ultra-high energy cosmic-rays using cosmic diffuse neutrino flux limits: An analytical approach,” *Phys. Rev. D* **85** (2012) 063002, [1202.3522](https://arxiv.org/abs/1202.3522).

M. Ahlers and F. Halzen, “Minimal Cosmogenic Neutrinos,” *Phys. Rev. D* **86** (2012) 083010, [1208.4181](https://arxiv.org/abs/1208.4181).

R. Aloisio, D. Boncioli, A. di Matteo, A. F. Grillo, S. Petrera, and F. Salamida, “Cosmogenic neutrinos and ultra-high energy cosmic ray models,” *JCAP* **1510** (2015) 006, [1505.04020](https://arxiv.org/abs/1505.04020).

J. Heinze, D. Boncioli, M. Bustamante, and W. Winter, “Cosmogenic Neutrinos Challenge the Cosmic Ray Proton Dip Model,” *Astrophys. J.* **825** (2016) 122, [1512.05988](https://arxiv.org/abs/1512.05988).

A. Romero-Wolf and M. Ave, “Bayesian Inference Constraints on Astrophysical Production of Ultra-high Energy Cosmic Rays and Cosmogenic Neutrino Flux Predictions,” *JCAP* **1807** (2018) 025, [1712.07290](https://arxiv.org/abs/1712.07290).

R. Alves Batista, R. M. de Almeida, B. Lago, and K. Kotera, “Cosmogenic photon and neutrino fluxes in the Auger era,” *JCAP* **1901** (2019) 002, [1806.10879](https://arxiv.org/abs/1806.10879).

K. Møller, P. B. Denton, and I. Tamborra, “Cosmogenic Neutrinos Through the GRAND Lens Unveil the Nature of Cosmic Accelerators,” [1809.04866](https://arxiv.org/abs/1809.04866).

A. van Vliet, R. Alves Batista, and J. R. Hörandel, “Determining the fraction of cosmic-ray protons at ultra-high energies with cosmogenic neutrinos,” [1901.01899](https://arxiv.org/abs/1901.01899).

J. Heinze, A. Fedynitch, D. Boncioli, and W. Winter, “A new view on Auger data and cosmogenic neutrinos in light of different nuclear disintegration and air-shower models,” [1901.03338](https://arxiv.org/abs/1901.03338).
[88] MAGIC Collaboration, S. Ansoldi et. al., “The blazar TXS 0506+056 associated with a high-energy neutrino: insights into extragalactic jets and cosmic ray acceleration,” Astrophys. J. Lett. 863 (2018) L10, [1807.04300].

[89] A. Keivani et. al., “A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-Energy Neutrino Emission and Cosmic Ray Acceleration,” Astrophys. J. 864 (2018) 84, [1807.04537].

[90] K. Murase, F. Oikonomou, and M. Petropoulou, “Blazar Flares as an Origin of High-Energy Cosmic Neutrinos?,” Astrophys. J. 865 (2018) 124, [1807.04748].

[91] N. Sahakyan, “Lepto-hadronic γ-ray and neutrino emission from the jet of TXS 0506+056,” Astrophys. J. 866 (2018) 109, [1808.05651].

[92] P. Padovani, P. Giommi, E. Resconi, T. Glauch, B. Arsioli, N. Sahakyan, and M. Huber, “Dissecting the region around IceCube-170922A: the blazar TXS 0506+056 as the first cosmic neutrino source,” Mon. Not. Roy. Astron. Soc. 480 (2018) 192, [1807.04461].

[93] M. Cerruti, A. Zech, C. Boisson, G. Emery, S. Inoue, and J. P. Lenain, “Lepto-hadronic single-zone models for the electromagnetic and neutrino emission of TXS 0506+056,” Mon. Not. Roy. Astron. Soc. 483 (2019) L12, [1807.04335].

[94] E. Kun, P. L. Biermann, and L. Gergely, “VLBI radio structure and radio brightening of the high-energy neutrino emitting blazar TXS 0506+056,” Mon. Not. Roy. Astron. Soc. 483 (2019) L42, [1807.07942].

[95] S. Gao, A. Fedynitch, W. Winter, and M. Pohl, “Modelling the coincident observation of a high-energy neutrino and a bright blazar flare,” Nat. Astron. 3 (2019) 88, [1807.04275].

[96] C. Righi, F. Tavecchio, and L. Pacciani, “A multiwavelength view of BL Lacs neutrino candidates,” [1807.04299].

[97] R.-Y. Liu, K. Wang, R. Xue, A. M. Taylor, X.-Y. Wang, Z. Li, and H. Yan, “A hadronuclear interpretation of a high-energy neutrino event coincident with a blazar flare,” [1807.05113].

[98] H. Zhang, K. Fang, and H. Li, “Variability and Optical Polarization Can Probe the Neutrino and Electromagnetic Emission Mechanisms of TXS 0506+056,” [1807.11069].

[99] K. Wang, R.-Y. Liu, Z. Li, X.-Y. Wang, and Z.-G. Dai, “Jet-cloud/star interaction as an interpretation of neutrino outburst from the blazar TXS 0506+056,” [1809.00601].

[100] A. Reimer, M. Boettcher, and S. Buson, “Cascading Constraints from Neutrino Emitting Blazars: The case of TXS 0506+056,” [1812.05654].

[101] X. Rodrigues, S. Gao, A. Fedynitch, A. Palladino, and W. Winter, “Models for the historical flare of TXS 0506+056,” [1812.05939].

[102] P. Padovani, F. Oikonomou, M. Petropoulou, P. Giommi, and E. Resconi, “TXS 0506+056, the first cosmic neutrino source, is not a BL Lac,” [1901.06998].
[103] K. Murase, T. A. Thompson, B. C. Lacki, and J. F. Beacom, “New Class of High-Energy Transients from Crashes of Supernova Ejecta with Massive Circumstellar Material Shells,” Phys. Rev. D 84 (2011) 043003, 1012.2834.

[104] K. Murase, “New Prospects for Detecting High-Energy Neutrinos from Nearby Supernovae,” Phys. Rev. D 97 (2018) 081301, 1705.04750.

[105] B. Katz, N. Sapir, and E. Waxman, “X-rays, gamma-rays and neutrinos from collisionless shocks in supernova wind breakouts,” 1106.1898.

[106] K. Kashiyama, K. Murase, S. Horiuchi, S. Gao, and P. Mészáros, “High energy neutrino and gamma ray transients from relativistic supernova shock breakouts,” Astrophys. J. 769 (2013) L6, 1210.8147.

[107] K. Murase, K. Ioka, S. Nagataki, and T. Nakamura, “High Energy Neutrinos and Cosmic-Rays from Low-Luminosity Gamma-Ray Bursts?,” Astrophys. J. 651 (2006) L5, astro-ph/0607104.

[108] N. Gupta and B. Zhang, “Neutrino Spectra from Low and High Luminosity Populations of Gamma Ray Bursts,” Astropart. Phys. 27 (2007) 386, astro-ph/0606744.

[109] K. Murase, K. Ioka, S. Nagataki, and T. Nakamura, “High-energy cosmic-ray nuclei from high- and low-luminosity gamma-ray bursts and implications for multi-messenger astronomy,” Phys. Rev. D 78 (2008) 023005, 0801.2861.

[110] B. T. Zhang, K. Murase, S. S. Kimura, S. Horiuchi, and P. Mészáros, “Low-luminosity gamma-ray bursts as the sources of ultrahigh-energy cosmic ray nuclei,” Phys. Rev. D 97 (2018) 083010, 1712.09984.

[111] D. Boncioli, D. Biehl, and W. Winter, “On the common origin of cosmic rays across the ankle and diffuse neutrinos at the highest energies from low-luminosity Gamma-Ray Bursts,” 1808.07481.

[112] B. T. Zhang and K. Murase, “Ultrahigh-energy cosmic-ray nuclei and neutrinos from engine-driven supernovae,” 1812.10289.

[113] P. Mészáros and E. Waxman, “TeV neutrinos from successful and choked gamma-ray bursts,” Phys. Rev. Lett. 87 (2001) 171102, astro-ph/0103275.

[114] S. Razzaque, P. Mészáros, and E. Waxman, “Neutrino tomography of gamma-ray bursts and massive stellar collapses,” Phys. Rev. D 68 (2003) 083001, astro-ph/0303505.

[115] S. Razzaque, P. Mészáros, and E. Waxman, “TeV neutrinos from core collapse supernovae and hypernovae,” Phys. Rev. Lett. 93 (2004) 181101, astro-ph/0407064. [Erratum: Phys. Rev. Lett. 94, 109903 (2005)].

[116] S. Ando and J. F. Beacom, “Revealing the supernova-gamma-ray burst connection with TeV neutrinos,” Phys. Rev. Lett. 95 (2005) 061103, astro-ph/0502521.
[117] F. Iocco, K. Murase, S. Nagataki, and P. D. Serpico, “High Energy neutrino signals from the Epoch of Reionization,” *Astrophys. J.* 675 (2008) 937, 0707.0515.

[118] K. Murase, P. Méészáros, and B. Zhang, “Probing the birth of fast rotating magnetars through high-energy neutrinos,” *Phys. Rev. D* 79 (2009) 103001, 0904.2509.

[119] K. Fang, K. Kotera, K. Murase, and A. V. Olinto, “Testing the Newborn Pulsar Origin of Ultrahigh Energy Cosmic Rays with EeV Neutrinos,” *Phys. Rev. D* 90 (2014) 103005, 1311.2044 [Phys. Rev. D 90, 103005 (2014)].

[120] K. Fang, B. D. Metzger, K. Murase, I. Bartos, and K. Kotera, “Multimessenger Implications of AT2018cow: High-Energy Cosmic Ray and Neutrino Emissions from Magnetar-Powered Super-Luminous Transients,” 1812.11673.

[121] E. Waxman and J. N. Bahcall, “High-energy neutrinos from cosmological gamma-ray burst fireballs,” *Phys. Rev. Lett.* 78 (1997) 2292, astro-ph/9701231.

[122] J. P. Rachen and P. Méészáros, “Photohadronic neutrinos from transients in astrophysical sources,” *Phys. Rev. D* 58 (1998) 123005, astro-ph/9802280.

[123] C. D. Dermer and A. Atoyan, “High energy neutrinos from gamma-ray bursts,” *Phys. Rev. Lett.* 91 (2003) 071102, astro-ph/0301030.

[124] D. Guetta, D. Hooper, J. Alvarez-Muniz, F. Halzen, and E. Reuveni, “Neutrinos from individual gamma-ray bursts in the BATSE catalog,” *Astropart. Phys.* 20 (2004) 429, astro-ph/0302524.

[125] S. Razzaque, P. Méészáros, and E. Waxman, “Neutrino signatures of the supernova-gamma-ray burst relationship,” *Phys. Rev. D* 69 (2004) 023001, astro-ph/0308239.

[126] K. Murase and S. Nagataki, “High energy neutrino emission and neutrino background from gamma-ray bursts in the internal shock model,” *Phys. Rev. D* 73 (2006) 063002, astro-ph/0512275.

[127] K. Murase, “Prompt High-Energy Neutrinos from Gamma-Ray Bursts in the Photospheric and Synchrotron Self-Compton Scenarios,” *Phys. Rev. D* 78 (2008) 101302, 0807.0919.

[128] X.-Y. Wang and Z.-G. Dai, “Prompt TeV neutrinos from dissipative photospheres of gamma-ray bursts,” *Astrophys. J.* 691 (2009) L67, 0807.0290.

[129] P. Baerwald, S. Hummer, and W. Winter, “Magnetic Field and Flavor Effects on the Gamma-Ray Burst Neutrino Flux,” *Phys. Rev. D* 83 (2011) 067303, 1009.4010.

[130] M. Ahlers, M. C. Gonzalez-Garcia, and F. Halzen, “GRBs on probation: testing the UHE CR paradigm with IceCube,” *Astropart. Phys.* 35 (2011) 87, 1103.3421.

[131] K. Murase, K. Asano, T. Terasawa, and P. Méészáros, “The Role of Stochastic Acceleration in the Prompt Emission of Gamma-Ray Bursts: Application to Hadronic Injection,” *Astrophys. J.* 746 (2012) 164, 1107.5575.
[132] Z. Li, “Note on the Normalization of Predicted GRB Neutrino Flux,” *Phys. Rev. D* **85** (2012) 027301, [1112.2240](http://arxiv.org/abs/1112.2240).

[133] S. Hummer, P. Baerwald, and W. Winter, “Neutrino Emission from Gamma-Ray Burst Fireballs, Revised,” *Phys. Rev. Lett.* **108** (2012) 231101, [1112.1076](http://arxiv.org/abs/1112.1076).

[134] H.-N. He, R.-Y. Liu, X.-Y. Wang, S. Nagataki, K. Murase, and Z.-G. Dai, “Icecube non-detection of GRBs: Constraints on the fireball properties,” *Astrophys. J.* **752** (2012) 29, [1204.0857](http://arxiv.org/abs/1204.0857).

[135] B. Zhang and P. Kumar, “Model-dependent high-energy neutrino flux from Gamma-Ray Bursts,” *Phys. Rev. Lett.* **110** (2013) 121101, [1210.0647](http://arxiv.org/abs/1210.0647).

[136] R.-Y. Liu and X.-Y. Wang, “Diffuse PeV neutrinos from gamma-ray bursts,” *Astrophys. J.* **766** (2013) 73, [1212.1260](http://arxiv.org/abs/1212.1260).

[137] S. Gao, K. Kashiyama, and P. Mészáros, “On the neutrino non-detection of GRB 130427A,” *Astrophys. J.* **772** (2013) L4, [1305.6055](http://arxiv.org/abs/1305.6055).

[138] M. Petropoulou, “The role of hadronic cascades in GRB models of efficient neutrino production,” *Mon. Not. Roy. Astron. Soc.* **442** (2014) 3026, [1405.7669](http://arxiv.org/abs/1405.7669).

[139] M. Petropoulou, D. Giannios, and S. Dimitrakoudis, “Implications of a PeV neutrino spectral cutoff in GRB models,” *Mon. Not. Roy. Astron. Soc.* **445** (2014) 570, [1405.2091](http://arxiv.org/abs/1405.2091).

[140] M. Bustamante, P. Baerwald, K. Murase, and W. Winter, “Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts,” *Nature Commun.* **6** (2015) 6783, [1409.2874](http://arxiv.org/abs/1409.2874).

[141] X.-Y. Wang, S. Razzaque, and P. Mészáros, “On the Origin and Survival of UHE Cosmic-Ray Nuclei in GRBs and Hypernovae,” *Astrophys. J.* **677** (2008) 432, [0711.2065](http://arxiv.org/abs/0711.2065).

[142] A. Calvez, A. Kusenko, and S. Nagataki, “The role of Galactic sources and magnetic fields in forming the observed energy-dependent composition of ultrahigh-energy cosmic rays,” *Phys. Rev. Lett.* **105** (2010) 091101, [1004.2535](http://arxiv.org/abs/1004.2535).

[143] N. Globus, D. Allard, R. Mochkovitch, and E. Parizot, “UHECR acceleration at GRB internal shocks,” *Mon. Not. Roy. Astron. Soc.* **451** (2015) 751, [1409.1271](http://arxiv.org/abs/1409.1271).

[144] D. Biehl, D. Boncioli, A. Fedynitch, and W. Winter, “Cosmic-Ray and Neutrino Emission from Gamma-Ray Bursts with a Nuclear Cascade,” *Astron. Astrophys.* **611** (2018) A101, [1705.08909](http://arxiv.org/abs/1705.08909).

[145] B. Paczynski and G. H. Xu, “Neutrino bursts from gamma-ray bursts,” *Astrophys. J.* **427** (1994) 708.

[146] I. Bartos, A. M. Beloborodov, K. Hurley, and S. Márka, “Detection Prospects for GeV Neutrinos from Collisionally Heated Gamma-ray Bursts with IceCube/DeepCore,” *Phys. Rev. Lett.* **110** (2013) 241101, [1301.4232](http://arxiv.org/abs/1301.4232).
[147] K. Murase, K. Kashiyama, and P. Mészáros, “Subphotospheric Neutrinos from Gamma-Ray Bursts: The Role of Neutrons,” Phys. Rev. Lett. 111 (2013) 131102, 1301.4236.

[148] K. Murase and S. Nagataki, “High Energy Neutrino Flash from Far-UV/X-ray Flares of Gamma-Ray Bursts,” Phys. Rev. Lett. 97 (2006) 051101, astro-ph/0604437.

[149] E. Waxman and J. N. Bahcall, “Neutrino afterglow from gamma-ray bursts: Similar to 10^{18} eV,” Astrophys. J. 541 (2000) 707, hep-ph/9909286.

[150] C. D. Dermer, “Neutrino, neutron, and cosmic ray production in the external shock model of gamma-ray bursts,” Astrophys. J. 574 (2002) 65, astro-ph/0005440.

[151] K. Murase, “High energy neutrino early afterglows gamma-ray bursts revisited,” Phys. Rev. D 76 (2007) 123001, 0707.1140.

[152] S. Razzaque, “Long-lived PeV–EeV neutrinos from gamma-ray burst blastwave,” Phys. Rev. D 88 (2013) 103003, 1307.7596.

[153] M. Kowalski and A. Mohr, “Detecting neutrino-transients with optical follow-up observations,” Astropart. Phys. 27 (2007) 533, astro-ph/0701618.

[154] IceCube, PTF, Swift, Pan-STARRS1 Science Consortium Collaboration, M. G. Aartsen et al., “The Detection of a SN IIn in Optical Follow-up Observations of IceCube Neutrino Events,” Astrophys. J. 811 (2015) 52, 1506.03115.

[155] ANTARES, TAROT, ROTSE, Swift, Zadko Collaboration, S. Adrián-Martínez et al., “Optical and X-ray early follow-up of ANTARES neutrino alerts,” JCAP 1602 (2016) 062, 1508.01180.

[156] IceCube Collaboration, M. G. Aartsen et al., “Multiwavelength follow-up of a rare IceCube neutrino multiplet,” Astron. Astrophys. 607 (2017) A115, 1702.06131.

[157] Pan-STARRS Collaboration, E. Kankare et al., “A search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1,” 1901.11080.

[158] IceCube Collaboration, R. Abbasi et al., “An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts,” Nature 484 (2012) 351, 1204.4219.

[159] N. Senno, K. Murase, and P. Mészáros, “Constraining high-energy neutrino emission from choked jets in stripped-envelope supernovae,” JCAP 1801 (2018) 025, 1706.02175.

[160] A. Esmaili and K. Murase, “Constraining high-energy neutrinos from choked-jet supernovae with IceCube high-energy starting events,” JCAP 1812 (2018) 008, 1809.09610.

[161] X.-Y. Wang and R.-Y. Liu, “Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: explaining the IceCube TeV-PeV neutrinos,” Phys. Rev. D 93 (2016) 083005, 1512.08596.
[162] L. Dai and K. Fang, “Can tidal disruption events produce the IceCube neutrinos?,” *Mon. Not. Roy. Astron. Soc.* **469** (2017) 1354, [1612.00011](https://arxiv.org/abs/1612.00011)

[163] N. Senno, K. Murase, and P. Mészáros, “High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events,” *Astrophys. J.* **838** (2017) 3, [1612.00918](https://arxiv.org/abs/1612.00918)

[164] C. Lunardini and W. Winter, “High Energy Neutrinos from the Tidal Disruption of Stars,” *Phys. Rev. D* **95** (2017) 123001, [1612.03160](https://arxiv.org/abs/1612.03160)

[165] B. T. Zhang, K. Murase, F. Oikonomou, and Z. Li, “High-energy cosmic ray nuclei from tidal disruption events: Origin, survival, and implications,” *Phys. Rev. D* **96** (2017) 063007, [1706.00391](https://arxiv.org/abs/1706.00391) [Addendum: *Phys. Rev. D* 96, 069902 (2017)].

[166] D. Biehl, D. Boncioli, C. Lunardini, and W. Winter, “Tidally disrupted stars as a possible origin of both cosmic rays and neutrinos at the highest energies,” *Sci. Rep.* **8** (2018) 10828, [1711.03555](https://arxiv.org/abs/1711.03555)

[167] C. Guépin, K. Kotera, E. Barausse, K. Fang, and K. Murase, “Ultra-High Energy Cosmic Rays and Neutrinos from Tidal Disruptions by Massive Black Holes,” *Astron. Astrophys.* **616** (2018) A179, [1711.11274](https://arxiv.org/abs/1711.11274)

[168] A. Atoyan and C. D. Dermer, “High-energy neutrinos from photomeson processes in blazars,” *Phys. Rev. Lett.* **87** (2001) 221102, [astro-ph/0108053](https://arxiv.org/abs/astro-ph/0108053)

[169] C. D. Dermer, K. Murase, and Y. Inoue, “Photopion Production in Black-Hole Jets and Flat-Spectrum Radio Quasars as PeV Neutrino Sources,” *JHEAp* **3-4** (2014) 29, [1406.2633](https://arxiv.org/abs/1406.2633)

[170] M. Kadler *et. al.*, “Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event,” *Nature Phys.* **12** (2016) 807, [1602.02012](https://arxiv.org/abs/1602.02012)

[171] F. Halzen and A. Kheirandish, “High Energy Neutrinos from Recent Blazar Flares,” *Astrophys. J.* **831** (2016) 12, [1605.06119](https://arxiv.org/abs/1605.06119)

[172] E. Kun, P. L. Biermann, and L. Gergely, “A flat spectrum candidate for a track-type high energy neutrino emission event, the case of blazar PKS 0723-008,” *Mon. Not. Roy. Astron. Soc.* **466** (2017) L34, [1607.04041](https://arxiv.org/abs/1607.04041)

[173] S. S. Kimura, K. Murase, P. Mészáros, and K. Kiuchi, “High-Energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves,” *Astrophys. J.* **848** (2017) L4, [1708.07075](https://arxiv.org/abs/1708.07075)

[174] K. Fang and B. D. Metzger, “High-Energy Neutrinos from Millisecond Magnetars formed from the Merger of Binary Neutron Stars,” *Astrophys. J.* **849** (2017) 153, [1707.04263](https://arxiv.org/abs/1707.04263)

[175] D. Biehl, J. Heinze, and W. Winter, “Expected neutrino fluence from short Gamma-Ray Burst 170817A and off-axis angle constraints,” *Mon. Not. Roy. Astron. Soc.* **476** (2018) 1191, [1712.00449](https://arxiv.org/abs/1712.00449)
[176] S. S. Kimura, K. Murase, I. Bartos, K. Ioka, I. S. Heng, and P. Mészáros, “Transejecta high-energy neutrino emission from binary neutron star mergers,” Phys. Rev. D 98 (2018) 043020, 1805.11613.

[177] D. Xiao, P. Mészáros, K. Murase, and Z.-g. Dai, “High-Energy Neutrino Emission from White Dwarf Mergers,” Astrophys. J. 832 (2016) 20, 1608.08150.

[178] K. Murase, K. Kashiyama, P. Mészáros, I. Shoemaker, and N. Senno, “Ultrafast Outflows from Black Hole Mergers with a Minidisk,” Astrophys. J. 822 (2016) L9, 1602.06938.

[179] K. Kotera and J. Silk, “Ultrahigh Energy Cosmic Rays and Black Hole Mergers,” Astrophys. J. 823 (2016) L29, 1602.06961.

[180] R. Moharana, S. Razzaque, N. Gupta, and P. Mészáros, “High Energy Neutrinos from the Gravitational Wave event GW150914 possibly associated with a short Gamma-Ray Burst,” Phys. Rev. D 93 (2016) 123011, 1602.08436.

[181] ANTARES, IceCube, Pierre Auger, LIGO Scientific, Virgo Collaboration, A. Albert et al., “Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory,” Astrophys. J. 850 (2017) L35, 1710.05839.

[182] M. Ahlers and K. Murase, “Probing the Galactic Origin of the IceCube Excess with Gamma-Rays,” Phys. Rev. D 90 (2014) 023010, 1309.4077.

[183] L. A. Anchordoqui, H. Goldberg, T. C. Paul, L. H. M. da Silva, and B. J. Vlcek, “Estimating the contribution of Galactic sources to the diffuse neutrino flux,” Phys. Rev. D 90 (2014) 123010, 1410.0348.

[184] ANTARES Collaboration, S. Adrian-Martinez et al., “Searches for Point-like and extended neutrino sources close to the Galactic Centre using the ANTARES neutrino Telescope,” Astrophys. J. 786 (2014) L5, 1402.6182.

[185] ANTARES, IceCube Collaboration, S. Adrian-Martinez et al., “The First Combined Search for Neutrino Point-sources in the Southern Hemisphere With the Antares and Icecube Neutrino Telescopes,” Astrophys. J. 823 (2016) 65, 1511.02149.

[186] ANTARES Collaboration, S. Adrian-Martinez et al., “Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope,” Phys. Lett. B 760 (2016) 143, 1602.03036.

[187] IceCube Collaboration, M. G. Aartsen et al., “Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data,” Astrophys. J. 849 (2017) 67, 1707.03416.

[188] ANTARES, IceCube Collaboration, A. Albert et al., “Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes,” Astrophys. J. 868 (2018) L20, 1808.03531.
M. D. Kistler and J. F. Beacom, “Guaranteed and Prospective Galactic TeV Neutrino Sources,” *Phys. Rev. D* **74** (2006) 063007, [astro-ph/0607082](https://arxiv.org/abs/astro-ph/0607082).

A. Kappes, J. Hinton, C. Stegmann, and F. A. Aharonian, “Potential Neutrino Signals from Galactic Gamma-Ray Sources,” *Astrophys. J.* **656** (2007) 870, [astro-ph/0607286](https://arxiv.org/abs/astro-ph/0607286). [Erratum: *Astrophys. J.* **661**, 1348 (2007)].

D. F. Torres, A. Y. R. Marrero, and E. de Cea del Pozo, “The GeV to TeV connection in the environment of SNR IC 443,” *Mon. Not. Roy. Astron. Soc.* **408** (2010) 1257, [1006.2963](https://arxiv.org/abs/1006.2963).

F. Vissani, F. Aharonian, and N. Sahakyan, “On the Detectability of High-Energy Galactic Neutrino Sources,” *Astropart. Phys.* **34** (2011) 778, [1101.4842](https://arxiv.org/abs/1101.4842).

D. B. Fox, K. Kashiyama, and P. Mészáros, “Sub-PeV Neutrinos from TeV Unidentified Sources in the Galaxy,” *Astrophys. J.* **774** (2013) 74, [1305.6606](https://arxiv.org/abs/1305.6606).

M. Mandelartz and J. Becker Tjus, “Prediction of the diffuse neutrino flux from cosmic ray interactions near supernova remnants,” *Astropart. Phys.* **65** (2015) 80, [1301.2437](https://arxiv.org/abs/1301.2437).

K. J. Andersen, M. Kachelrieß, and D. V. Semikoz, “High-energy Neutrinos from Galactic Superbubbles,” *Astrophys. J.* **861** (2018) L19, [1712.03153](https://arxiv.org/abs/1712.03153).

A. Levinson and E. Waxman, “Probing microquasars with TeV neutrinos,” *Phys. Rev. Lett.* **87** (2001) 171101, [hep-ph/0106102](https://arxiv.org/abs/hep-ph/0106102).

C. Distefano, D. Guetta, E. Waxman, and A. Levinson, “Neutrino flux predictions for known galactic microquasars,” *Astrophys. J.* **575** (2002) 378, [astro-ph/0202200](https://arxiv.org/abs/astro-ph/0202200).

D. F. Torres and F. Halzen, “LS I +61 303 as a potential neutrino source on the light of MAGIC results,” *Astropart. Phys.* **27** (2007) 500, [astro-ph/0607368](https://arxiv.org/abs/astro-ph/0607368).

L. A. Anchordoqui, J. F. Beacom, H. Goldberg, S. Palomares-Ruiz, and T. J. Weiler, “TeV γ-rays and neutrinos from photo-disintegration of nuclei in Cygnus OB2,” *Phys. Rev. D* **75** (2007) 063001, [astro-ph/0611581](https://arxiv.org/abs/astro-ph/0611581).

L. A. Anchordoqui, H. Goldberg, R. D. Moore, S. Palomares-Ruiz, D. F. Torres, and T. J. Weiler, “Present and Future Gamma-Ray Probes of the Cygnus OB2 Environment,” *Phys. Rev. D* **80** (2009) 103004, [0907.0395](https://arxiv.org/abs/0907.0395).

M. C. Gonzalez-Garcia, F. Halzen, and V. Niro, “Reevaluation of the Prospect of Observing Neutrinos from Galactic Sources in the Light of Recent Results in Gamma Ray and Neutrino Astronomy,” *Astropart. Phys.* **57-58** (2014) 39, [1310.7194](https://arxiv.org/abs/1310.7194).

A. M. Bykov, D. C. Ellison, P. E. Gladilin, and S. M. Osipov, “Ultrahard spectra of PeV neutrinos from supernovae in compact star clusters,” *Mon. Not. Roy. Astron. Soc.* **453** (2015) 113, [1507.04018](https://arxiv.org/abs/1507.04018).

A. Neronov, D. V. Semikoz, and C. Tchernin, “PeV neutrinos from interactions of cosmic rays with the interstellar medium in the Galaxy,” *Phys. Rev. D* **89** (2014) 103002, [1307.2158](https://arxiv.org/abs/1307.2158).
S. Razzaque, “The Galactic Center Origin of a Subset of IceCube Neutrino Events,” *Phys. Rev. D* **88** (2013) 081302, [1309.2756](https://arxiv.org/abs/1309.2756).

C. Lunardini, S. Razzaque, K. T. Theodoseau, and L. Yang, “Neutrino Events at IceCube and the Fermi Bubbles,” *Phys. Rev. D* **90** (2014) 023016, [1311.7188](https://arxiv.org/abs/1311.7188).

A. D. Supanitsky, “Gamma rays and neutrinos from a cosmic ray source in the Galactic Center region,” *Phys. Rev. D* **89** (2014) 023501, [1312.7304](https://arxiv.org/abs/1312.7304).

Y. Bai, A. J. Barger, V. Barger, R. Lu, A. D. Peterson, and J. Salvado, “Neutrino Lighthouse at Sagittarius A*,” *Phys. Rev. D* **90** (2014) 063012, [1407.2243](https://arxiv.org/abs/1407.2243).

Y. Fujita, S. S. Kimura, and K. Murase, “Hadronic origin of multi-TeV gamma rays and neutrinos from low-luminosity active galactic nuclei: Implications of past activities of the Galactic center,” *Phys. Rev. D* **92** (2015) 023001, [1506.05461](https://arxiv.org/abs/1506.05461).

L. A. Anchordoqui, “Neutrino lighthouse powered by Sagittarius A* disk dynamo,” *Phys. Rev. D* **94** (2016) 023010, [1606.01816](https://arxiv.org/abs/1606.01816).

K. Fang, M. Su, T. Linden, and K. Murase, “IceCube and HAWC constraints on very-high-energy emission from the Fermi bubbles,” *Phys. Rev. D* **96** (2017) 123007, [1704.03869](https://arxiv.org/abs/1704.03869).

L. A. Anchordoqui, H. Goldberg, M. H. Lynch, A. V. Olinto, T. C. Paul, and T. J. Weiler, “Pinning down the cosmic ray source mechanism with new IceCube data,” *Phys. Rev. D* **89** (2014) 083003, [1306.5021](https://arxiv.org/abs/1306.5021).

J. C. Joshi, W. Winter, and N. Gupta, “How Many of the Observed Neutrino Events Can Be Described by Cosmic Ray Interactions in the Milky Way?,” *Mon. Not. Roy. Astron. Soc.* **439** (2014) 3414, [1310.5123](https://arxiv.org/abs/1310.5123). [Erratum: *Mon. Not. Roy. Astron. Soc.* 446, 892 (2014)].

A. Neronov and D. Semikoz, “Neutrinos from Extra-Large Hadron Collider in the Milky Way,” *Astropart. Phys.* **72** (2016) 32, [1412.1690](https://arxiv.org/abs/1412.1690).

M. Kachelrieß and S. Ostapchenko, “Neutrino yield from Galactic cosmic rays,” *Phys. Rev. D* **90** (2014) 083002, [1405.3797](https://arxiv.org/abs/1405.3797).

D. Gaggero, D. Grasso, A. Marinelli, A. Urbano, and M. Valli, “The gamma-ray and neutrino sky: A consistent picture of Fermi-LAT, Milagro, and IceCube results,” *Astrophys. J.* **815** (2015) L25, [1504.00227](https://arxiv.org/abs/1504.00227).

P. B. Denton, D. Marfatia, and T. J. Weiler, “The Galactic Contribution to IceCube’s Astrophysical Neutrino Flux,” *JCAP* **1708** (2017) 033, [1703.09721](https://arxiv.org/abs/1703.09721).

A. M. Taylor, S. Gabici, and F. Aharonian, “Galactic halo origin of the neutrinos detected by IceCube,” *Phys. Rev. D* **89** (2014) 103003, [1403.3206](https://arxiv.org/abs/1403.3206).

O. Kalashev and S. Troitsky, “Fluxes of diffuse gamma rays and neutrinos from cosmic-ray interactions with the circumgalactic gas,” *Phys. Rev. D* **94** (2016) 063013, [1608.07421](https://arxiv.org/abs/1608.07421).
[219] R.-Y. Liu, H. Yan, X.-Y. Wang, S. Shao, and H. Li, “Gamma-ray Production in the Extended Halo of the Galaxy and Possible Implications for the Origin of Galactic Cosmic Rays,” *Astrophys. J.* **871** (2019) 40, [1805.03406](https://arxiv.org/abs/1805.03406)

[220] P. Blasi and E. Amato, “Escape of cosmic rays from the Galaxy and effects on the circumgalactic medium,” *Phys. Rev. Lett.* **122** (2019) 051101, [1901.03609](https://arxiv.org/abs/1901.03609)

[221] IceCube Collaboration, M. G. Aartsen *et. al.*, “Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data,” *Phys. Rev. D* **98** (2018) 062003, [1807.01820](https://arxiv.org/abs/1807.01820)

[222] Pierre Auger Collaboration, A. Aab *et. al.*, “Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory,” *Phys. Rev. D* **91** (2015) 092008, [1504.05397](https://arxiv.org/abs/1504.05397)

[223] ANITA Collaboration, P. W. Gorham *et. al.*, “Constraints on the diffuse high-energy neutrino flux from the third flight of ANITA,” *Phys. Rev. D* **98** (2018) 022001, [1803.02719](https://arxiv.org/abs/1803.02719)

[224] K. Murase, Y. Inoue, and C. D. Dermer, “Diffuse Neutrino Intensity from the Inner Jets of Active Galactic Nuclei: Impacts of External Photon Fields and the Blazar Sequence,” *Phys. Rev. D* **90** (2014) 023007, [1403.4089](https://arxiv.org/abs/1403.4089)

[225] M. Ahlers and F. Halzen, “Pinpointing Extragalactic Neutrino Sources in Light of Recent IceCube Observations,” *Phys. Rev. D* **90** (2014) 043005, [1406.2160](https://arxiv.org/abs/1406.2160)

[226] K. Fang, K. Kotera, M. C. Miller, K. Murase, and F. Oikonomou, “Identifying Ultra-high-Energy Cosmic-Ray Accelerators with Future Ultra-high-Energy Neutrino Detectors,” *JCAP* **1612** (2016) 017, [1609.08027](https://arxiv.org/abs/1609.08027)

[227] I. Bartos, M. Ahrens, C. Finley, and S. Marka, “Prospects of Establishing the Origin of Cosmic Neutrinos using Source Catalogs,” *Phys. Rev. D* **96** (2017) 023003, [1611.03861](https://arxiv.org/abs/1611.03861)

[228] M. D. Kistler and R. Laha, “Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance,” *Phys. Rev. Lett.* **120** (2018) 241105, [1605.08781](https://arxiv.org/abs/1605.08781)

[229] D. Wittkowski and K.-H. Kampert, “Predictions for the flux of high-energy cosmogenic neutrinos and the influence of the extragalactic magnetic field,” [1810.03769](https://arxiv.org/abs/1810.03769)

[230] L. A. Anchordoqui, H. Goldberg, F. Halzen, and T. J. Weiler, “Neutrinos as a diagnostic of high energy astrophysical processes,” *Phys. Lett. B* **621** (2005) 18, [hep-ph/0410003](https://arxiv.org/abs/hep-ph/0410003)

[231] M. Ackermann *et. al.*, “Fundamental Physics with High-Energy Cosmic Neutrinos,” White paper submitted to the Astro2020 decadal survey.