Relation between quality and production cost for pure biodiesel bases on the mixes of raw materials

C G Tsanaktsidis1,6, K G Spinthiropoulos2, Fariz Guliyev5, D Dimitriou3, K Euthaltsidou4 and G T Tzilantonis1

1 Department of Environmental Engineering and Pollution Control and Technologies Laboratory of Qualitative Fuel Control, Technological Education Institute of Western Macedonia, 501 00, Kila, Kozani, Greece
2 Department of European Studies, University of Macedonia, Egnatias Street, Thessaloniki, Greece
3 ELIN OIL A.C. Company, Industrial Area, Volos, Greece
4 Department of Accounting and Finance, Technological Education Institute of Western Macedonia, 501 00, Kila, Kozani, Greece
5 Department of Finance, Azerbaijan State University of Economics-Economics, Baku, Azerbaijan

E-mail: tsanaktsidis@teiwm.gr, k.tsanaktsidis@gmail.com

Abstract. Nowadays biodiesel has become more attractive because it is made from renewable resources. The main ingredients of industrial biodiesel are rap oil, sun oil, fat acid, olive oil cooked. In this study we verify that, the proportion of these components sets the qualitative composition and energy efficiency of the final product. Essential we link the raw materials (rap oil, sun oil, fat acid, olive oil cooked) used in the manufacture of industrial biodiesel the proportion of mixes, with the variation of physicochemical properties of biodiesel produced. According to the quantitative analysis we notice that the physiochemical properties which alter the value for example humidity, acidity, while a large number of physicochemical properties do not change their value depending on the ratio of raw materials in each mixture. The analysis of these changes seems that the presence of fat acids is negative for the quality of the mixture. From the analysis of the cost of the final mixtures that lower cost is achieved in the mixture was 10 and the highest cost was in the mixture 3. Based on a study of the cost of the mixtures can determine a basic relation between the quality and the cost of the final product.

1. Introduction
It is generally accepted that biodiesel as a renewable energy product is clean, non-toxic and biodegradable, contains no aromatic compounds and emissions of the pollutants sulfur oxides, carbon monoxide, unburned hydrocarbons and soot from the burning of the diesel engines are very low. The presence of sulfur in fuels is responsible oxides of sulfur in the exhaust gas which are one of the main pollutants of diesel. In biodiesel the sulfur density is very small, almost zero.

6 Address for correspondence: C G Tsanaktsidis, Department of Environmental Engineering and Pollution Control and Technologies Laboratory of Qualitative Fuel Control, Technological Education Institute of Western Macedonia, 501 00, Kila, Kozani, Greece. E-mail: tsanaktsidis@teiwm.gr, k.tsanaktsidis@gmail.com.
The biodiesel is commonly produced by the transesterification of the vegetable oil or fat acid feedstock. The material used for the production of fatty acid methylester is oil. This oil comes from various kinds of oils such as olive oil cooked and fat acids, vegetable oils which content sunflower, cottonseed, rapeseed, soybean and vegetable oil who comes from energy crops and is already prepared when they arrive at the plant as a raw material.

Nevertheless the problems which have to be solved, in relation to the production route, are many but the most important are the cost and the quality of the final products. Biodiesel is categorized as one of the liquid biofuels, an alternative diesel fuel, derived from renewable biological sources such as virgin oil feedstock, waste vegetable oil, algae, oil from halophytes and fat acids [1–3]. It is generally known that this approach comes from the period when Rudolf Diesel tested vegetable oil as fuel for his engine, more than one century ago[1].

During the decades of 1930s and 1940s vegetable oils were used as diesel fuels but usually only in emergency situations. Because of the continuous growing demand for energy, the scientific community, the oil companies as wells as the governments worldwide, are looking for new energy sources including the biofuels. In recent years up to 16 % of global final energy consumption comes from renewable sources [4] and this figure is continuously increasing.

Because of the way of the production of biodiesel inevitably the final mixture contain free fatty acids, phospholipids, sterols, water, odorants and other impurities. Even refined oils and fats contain small amounts of free fatty acids and water [5]. The diesel fuels, both conventional diesel fuels as well as biodiesel/diesel blends, need to satisfy a wide range of engine types. Alongside it must be on top for different operating conditions and duty cycles, as well as in variations of fuel system technology, at the engine temperatures and fuel system pressures. It must also be suitable for a variety of climates. The properties of each grade of diesel fuel must be balanced to provide satisfactory performance over an extremely wide range of circumstances. In some respects, the prevailing quality standards represent certain compromises so that all the performance requirements may be satisfied. By controlling specifications and properties, it is possible to satisfy the requirements of millions of compression ignition engines with a single grade of diesel fuel.

The study of physicochemical properties of biodiesel has become much written lately [6-13], but there are not references to the effect of mixing the raw materials on properties of biodiesel produced as well as the correct mixture that gives the balance between quality and production cost of the final product.

In this study it is easily understood that the values of the properties of pure biodiesel are dependent on the mix of raw materials. Specifically the quality of the final biodiesel is directly affected by the analogy of raw material such us fat acid and olive oil cooked. When the values are increased the final product is not good from qualitative point of view. With the methodology developed in this work is given the possibility to determine the blending limits of raw materials (rap oil, sun oil, fat acid, olive oil cooked) for the production of industrial biodiesel before the production process, identified and costs in relation to raw materials, the produced biodiesel.

The production of the mixtures made by mixing the raw materials which came from the energy plant oils, oils from fat acids and oils cooked. The finished biodiesel depends on the value of the acidity and the water present in the raw materials used for mixing.

2. Materials and methods

2.1. Materials

All the experiments were performed employing fuel samples from commercial sources. Especially, the vegetable and fat oil based biodiesel was procured from ELIN OIL A.C.company.

Oils from energy crops for the production of mixtures used, rap, sun oil, and oils from fat acid, fat acid, and olive oil cooked. Especially vegetable blends are derived from rapeseed and soybean oil. In particular were generated 10 mixtures of raw materials (rap oil, sun oil, fat acid, olive oil cooked) in various proportions as shown in table 1.
Table 1. Mixing of raw materials (rap oil, sun oil, fat acid, olive oil cooked) to create mixtures produced pure biodiesel

Properties	Unit	Mix 1	Mix 2	Mix 3	Mix 4	Mix 5
Olive oil cooked	%	50%	40%	37%	50%	30%
Rap oil	%	20%	42%	-	20%	25%
Sun oil	%	-	25%	16%	10%	-
Fat acid	%	30%	35%	5%	40%	50%

Then, after appropriate treatment of the mixtures were determined the values of the physicochemical properties of biodiesel produced by the method EN ISO [14-42]. These values are also the properties of the produced industrial pure biodiesel.

3. Results and discussion
After the creation of the mixtures were determined values of physicochemical properties and forming properties of the produced pure biodiesel industry, as shown in table 2 and table 3.

3.1. Physicochemical properties of mixtures.
In table 2: Prices physicochemical properties of raw material mixes (rap oil, sun oil, fat acid, olive oil cooked) in various ratios to prepare pure industrial biodiesel.

Table 2.A. Values physicochemical properties of raw material mixes (rap oil, sun oil, fat acid, olive oil cooked) in various ratios to prepare pure industrial biodiesel (remains stable during the experiment).
Table 2.B. Values physicochemical properties of raw material mixes (rap oil, sun oil, fat acid, olive oil cooked) in various ratios to prepare pure industrial biodiesel (remains stable during the experiment).

Properties	Unit	MIN	MAX	Method	Mix 6	Mix 7	Mix 8	Mix 9	Mix 10
Density	Kg/m³	860	900	ENISO 12185	881,2	881,5	881,5	881,1	881,1
Viscosity	mm²/s	3.5	5	ENISO 3104	4,5	4,5	4,5	4,5	4,5
Total sulfur	mg/kg	10		ENISO 20846	4,8	4,8	4,8	4,8	4,8
Carbon residue	%m/m	0,3		ENISO 10370	-	-	-	-	-
Sulphated ash	%m/m	0,02		ENISO 3987	<0,01	<0,01	<0,01	<0,01	<0,01
Solid	mg/kg	24		ENISO 12662	10	10	10	10	10
Phosphorus	mg/kg	4		ENISO 12185	1,2	1,2	1,2	1,2	1,2
Na	mg/kg	5		ENISO 12185	0,1	0,1	0,1	0,1	0,1
K	mg/kg	5		ENISO 12185	0,3	0,3	0,3	0,3	0,3
Ca	mg/kg	5		ENISO 12185	0,2	0,2	0,2	0,2	0,2
Mg	mg/kg	5		ENISO 12185	0,2	0,2	0,2	0,2	0,2
Methanol	%min	0,2		ENISO 12185	0,03	0,03	0,03	0,03	0,03
Table 3.A. Values physicochemical properties of raw material mixes (rap oil, sun oil, fat acid, olive oil cooked) in various ratios to prepare pure industrial biodiesel (change during the experiment).

Properties	Unit	MIN	MAX	Method	Mix 1	Mix 2	Mix 3	Mix 4	Mix 5
Ignition point	°C	101	-	ENISO 3679	180	164	172	176	178
Water	mg/kg	-	0,02	ENISO 12937	289,7	269	230	300,1	250,1
CFPP	°C	-	=5/-5	EN116	0	-1	0	0	0
Methylester	%m/m	96,5	-	EN1403	97,08	96,98	97,05	96,03	97
Acid methyl. His linolenikou acid	%m/m	-	12	EN1410 3	2,61	3,18	3,08	3,08	3,01
Acidity	mgKOH/g	-	0,5	EN1410 4	0,12	0,13	0,08	0,13	0,12
Iodine Value	g iodine / 100g	-	120	EN1411 1	99,5	99,7	99,7	99,4	99,6
Monoglycerides	%m/m	-	0,8	EN1410 5	0,285	0,329	0,305	0,3	0,299
Diglycerides	%m/m	-	0,2	EN1410 5	0,079	0,079	0,079	0,077	0,076
Triglycerides	%m/m	-	0,2	EN1410 5	0,087	0,087	0,088	0,088	0,087
Free glycerol	%m/m	-	0,02	EN1410 6	0,008	0,004	0,001	0,001	0,001
Total glycerol	%m/m	-	0,25	EN1410 5	0,101	0,108	0,1	0,1	0,101
Table 3.B. Values physicochemical properties of raw material mixes (rap oil, sun oil, fat acid, olive oil cooked) in various ratios to prepare pure industrial biodiesel (change during the experiment).

Properties	Unit	MIN	MAX	Method	Mix 6	Mix 7	Mix 8	Mix 9	Mix 10
Ignition point	°C	101	-	ENISO 3679	181	180	180	175	180
Water	mg/kg	-	0,02	ENISO 12937	257,9	279,9	249,9	305,9	232,9
CFPP	°C	-	-5/5	EN11 6	0	0	0	0	0
Methylester	%m/m	96,5	-	EN14 03	96,09	97,01	98,01	96	98
Acid methyl. His linolenikou acid	%m/m	12	3,03	EN14 103	3,03	3,01	3,01	3	3,01
Acidity	mgKOH	-	0,5	EN14 104	0,14	0,14	0,13	0,14	0,07
Iodine Value	g iodine / 100g	-	120	EN14 111	98,6	98,2	98,7	97,7	98,8
Monoglycerides	%m/m	-	0,8	EN14 105	0,382	0,389	0,229	0,399	0,231
Diglycerides	%m/m	-	0,2	EN14 105	0,091	0,094	0,094	0,294	0,097
Triglycerides	%m/m	-	0,2	EN14 105	0,087	0,087	0,087	0,087	0,087
Free glycerol	%m/m	-	0,02	EN14 106	0,001	0,001	0,001	0,003	0,001
Total glycerol	%m/m	-	0,25	EN14 105	0,101	0,101	0,101	0,102	0,101

From analysis of the above tables it is apparent that the physicochemical properties of table 3 are those which are altered by the creation of mixtures of blending raw materials. From these properties we observe that the greatest change occurs, humidity and acidity. These properties are expected to be altered because it is directly associated with the percentage of animal fatty acids that contained into fat acid (fat assets). The result of those that mentioned above is that with the increasing of the percentage of animal fats in the mixture we have a comparable change in the cost of the final product. This is a first conclusion from the analysis of the tables on the qualitative analysis as far as the final product.
4. Presentation of cost mixtures

Taking as a base the table 2A, table 2B and table 3A and table 3B we can observe the properties of the final product the values that remain constant or vary depending on the mix.

It will be very useful to investigate the effects on the total cost of the final product when specific properties change their values because we believe that this variation, based on the cost of raw materials, will define the price of the final product.

Alongside the purpose of this study is to ascertain what mixing ratio of raw materials will produce a final product of biodiesel based on the features of maximum quality and minimum cost. To do that we take the Greek Market in order to investigate the reaction of the minimum and maximum values in raw materials but it is obvious that this approach can be adapted to any country.

An analysis of table 2 and table 3 shows that mixing of raw materials for the creation of mixtures affect the physicochemical properties of ignition point, water, methylester and acidity which constitute essential characteristics of the suitability of the produced net biodiesel.

According with our methodology there is a relationship among growth limits of animal oils in order not to adversely affect the properties of mixtures and final cost. We know that animal oils are cheaper for biodiesel production but at the same time reduce the quality of biodiesel produced.

For the vegetable blends the production cost is a priori very high. The problem occurs in animal mixes, as we already mentioned above, where the product is cheaper but low quality product produced is observed. Depending on the prices of raw materials and the area where it operates the biodiesel industry may be, making use of the conclusions of this work and of the methodology that proposed, to carve the biodiesel production policy accordingly. We can observe from the Scatter plot in figure 1 the relation of between the mixtures and the production cost. At the same time by the diagrammatic illustration it is obvious that the increasing of % of fat acid gives cheaper final product but short on quality. We should mention that the use of vegetable oil meaning sun oil gives quality in product, but make it more expensive for the producer and consequently for the final consumer. In conclusion it is easily understood that with this resolution by changing the % of oils in the mixtures we can receive each time a different product from qualitatively point of view. Alongside we could know the cost of the final product by choosing the quality of our blends.

![Scatter plot of the mixtures](image)

Figure 1. Scatter Plot. Representation of the Mixtures mixtures costs in Euro/liters.
Based on the above values investigation table 4 shows, with regard to the final produced biodiesel, the relation between quality and cost.

Table 4. Relationship between quality and cost based on the mixing ratio of raw materials (in liters)

Mix 1	Mix 2	Mix 3	Mix 4	Mix 5						
Compositon measured on liters	50% Olive oil cooked	40% Olive oil cooked	37% Olive oil cooked	50% Olive oil cooked						
	20% Rape Oil	25% Sun Oil	16% Sun Oil	30% Olive oil cooked						
	30% Fat acid	35% Fat acid	5% Fat acid	10% Sun Oil						
Cost (€) / lit	Min	Max								
Olive oil cooked	0.325	0.375	0.260	0.195	0.241	0.278	0.330	0.380	0.195	0.225
Rape	€	€	€	€	€	€	€	€	€	€
Fat acid	0.160	0.190	0.000	0.000	0.336	0.399	0.000	0.000	0.160	0.190
Sun Oil	0.165	0.210	0.193	0.135	0.220	0.280	0.275	0.350		
Total Cost	€	€	€	€	€	€	€	€	€	€

While we are using larger precedence of raw materials the properties that determine the quality of the finished biodiesel are low acidity values for example water but we have large production cost as we can see on the mixes 1, 3 and 6 from the table 4. In contrast when we are using higher precedence of fat acids then we lower cost and at the same time low quality biodiesel produced because the values of the examined properties are undesirable high. This can be found on the mixes 2, 4, 8 and 10 from the table 4. This encourages, in general, finding the best mixing ratio of raw materials to ensure a balance between cost and quality of raw materials.

In the basis of the methodology was developed it becomes evident-clear that the presence of raw materials, fat acid, olive oil cooked, determines the change of physicochemical properties of mixtures and quality in the produced pure biodiesel.
materials. An explanation it can be given an explanation in the result of low quality in the final product of biodiesel when we are using higher precedence of animal raw materials because of the composition of raw materials, fat acid, olive oil cooked, since they contain a large proportion of unsaturated fatty organic acids with negatively affect to the quality of the fuel.

Table 5. Chemical composition of biodiesel

Caprylic	C8/0	CH3(CH2)6COOH
Capric	C10/0	CH3(CH2)8COOH
Lauric	C12/0	CH3(CH2)10COOH
Myristic	C14/0	CH3(CH2)12COOH
Palmitic	C16/0	CH3(CH2)14COOH
Palmitoleic	C16/2	CH3(CH2)14CH=CH(CH2)7COOH
Stearic	C18/1	CH3(CH2)16COOH
Oleic	C18/1	CH3(CH2)16CH=CH(CH2)7COOH
Linoleic	C18/2	CH3(CH2)16CH=CHCH2CH=CH(CH2)7COOH
Linolenic	C18/3	CH3(CH2)16CH=CHCH2CH=CHCH2CH=CH(CH2)7COOH
Arachidic	C20/0	CH3(CH2)18COOH
Eicosenoic	C20/1	CH3(CH2)18CH=CH(CH2)10COOH
Behenic	C22/0	CH3(CH2)20COOH
Eurcic	C22/1	CH3(CH2)20CH=CH(CH2)12COOH

In general we know that the presence of unsaturated carbon chains imparts non-stability in the fuels used. It is also known that conventional fuels such as diesel, there are unsaturated hydrocarbons in the final product. Their presence is detected only on biodiesel and thus the possible mixtures diesel-biodiesel. Thus, the higher rate will have to biodiesel, the higher rate will have the final mix and so therefore the low stability of fuel should I use with corresponding negative effects on the environment.

Since the unsaturated hydrocarbons are concentrated in the fat acid and cooking oil, we understand that as they are used as starting material, the above problems will be presented.

The main criterion for the quality of biodiesel is the agreement regarding the corresponding specifications (standards). Generally the quality of the fuel can be influenced by several factors including the quality of the raw materials, the content of fatty acids, oils or fats, the production process, other materials used in the process and the post-production parameters. Specifically these parameters are the physicochemical properties that certify the suitability of the product and directly related to the type of raw materials, for example, animal or vegetable biodiesel. Furthermore with this study we know which of the properties altered and therefore affects the production and the cost of biodiesel production.

Concluding our analysis we know that animal oils are cheaper for biodiesel production but at the same time reduce the quality of biodiesel produced. With the equations that we mention in this study we can know the percentage of animal biodiesel that can be used in order to reduce the production cost and alongside to have a suitable product produced.

5. Conclusions
The analysis in these tables is proved, that the results of each mixture biodiesel regarding the properties affected by the quality of raw materials purchased by the factory, as in laboratory biodiesel. Soybean oil, rapeseed oil and sunflower oil is of very good quality oil and therefore the biodiesel containing a large percentage of them have excellent results compared to those containing cooked oil and fat acid, which is lower class raw materials. In particular as far as the quality of the pure biodiesel the presence of raw materials derived from fats acids affect the quality because increase properties such as acidity, triglycerides, methylester and monoglyceride. Similarly, the cost analysis have showed that the raw materials derived from fats acids are cheaper but do not contribute to the quality of the finished product. Contrasting the use of vegetable raw materials enhances the quality but charged to the final cost. So on the
basis of cost analysis table we must find the mixture to be equilibrium between quality and cost to a finished biodiesel industry. Generally, the above methodology can be a manual production process in this direction.

Alongside biodiesel could be used with all the other forms of energy meaning supplementary energy for electricity generation, household applications and transportation modes in accordance with the European Directive 2020. According with this Directive by 2020 the use of biodiesel must get to 20%. Currently on the market the Industries are using 8% in order to produce biodiesel. Consequently the proposed application can be used as tool in order to cover the remaining 12% according with the European Directive.

References
[1] McKeon Thomas, Hayes Douglas, Hilderbrad David and Weselake Randall 2008 Industrial Oil Crops AOCS Press Published by Elsevier Inc, Director Janet Brown
[2] Gerpen J V 2005 Biodiesel processing and production Fuel Processing Technology. 86 1097–107
[3] Balat M and Balat H 2010 Progress in biodiesel processing Applied Energy. 87 1815–35
[4] REN21 2011 Renewables : Global Status Report 17–8
[5] Ma F and Hanna M A 1999 Biodiesel production: a review Bioresource Technology 70 1–15
[6] Naik S N, Goud V V, Rout P K and Dalai A K 2010 Production of first and second generation biofuels: A comprehensive review Renewable and Sustainable Energy Reviews 14 78–97
[7] Gomez L D, Steele-King C G, McQueen-Mason S J 2008 Sustainable liquid biofuels from biomass: the writing’s on the walls New Phytologist 178 473–85
[8] Kamm B and Kamm M 2004 Principles of biorefineries Applied Microbiology & Biotechnology 64 37–45
[9] Tyson K S, Bozell J, Wallace R, Petersen E and Moens L 2004 Biomass oil analysis: research needs and recommendations NREL\Technical Report
[10] Tsanaktsidis C G, Spinthiropoulos K G, Christidis S G, Basileiadis V M and Garefalakis A E 2012 A mathematic equation using statistical data for the determination of kinematic viscosity in blends of diesel fuel with biodiesel Computer Technology and Application 3 393-399
[11] Tsanaktsidis, C. G, Spinthiropoulos, K. G, Christidis, S. G, Sariannidis, N 2013 Mathematical Models for Calculating the Density of Petroleum Diesel Fuel/Biodiesel Blends Chemistry and Technology of Fuels and Oils 49 399-405.
[12] Tsanaktsidis CG, Scaltsoyiannes AV, Katsidi EX, Christidis SG, Tzilantonis GT 2014 Using resin, a natural product, in order to reduce humidity in diesel fuel, Chemistry and Technology of Fuels and Oils 49 497-501
[13] Tsanaktsidis CG, Vasiliadis V, Itziou A, Petrakis LA, Moisias SA 2013 Application of factor analysis for the study of physicochemical properties in different blends of diesel fuel with biodiesel International Journal of Soft Computing and Engineering 3 42-46.
[14] ENISO 12185:1996 Crude petroleum and petroleum products -- Determination of density -- Oscillating U-tube method.
[15] ENISO 3104:1994 Petroleum products -- Transparent and opaque liquids -Determination of kinematic viscosity and calculation of dynamic viscosity.
[16] ENISO 3679:2004 Determination of flash point -- Rapid equilibrium closed cup method.
[17] ENISO 20846:2004 Petroleum products -- Determination of sulfur content of automotive fuels -- Ultraviolet fluorescence method.
[18] ENISO 10370:1993 Petroleum products -- Determination of carbon residue -- Micro method.
[19] ENISO 3987:1994 Petroleum products -- Lubricating oils and additives -- Determination of sulfated ash.
[20] ENISO 12937:2000 Petroleum products -- Determination of water -- Coulometric Karl Fischer titration method.
[21] EN ISO/TR 12662:1997 Certification scheme for prestressing steels.
[22] BS EN 116:1998, BS 2000-309:1998 Diesel and domestic heating fuels. Determination of cold filter plugging point.
[23] EN 14103 Determination of Total FAME and Linolenic Acid Methyl Esters in biodiesel.
[24] BS EN 14112:2003 Fat and oil derivatives. Fatty acid methyl esters (FAME). Determination of oxidation stability (accelerated oxidation test).
[25] BS EN 14104:2003 Fat and oil derivatives. Fatty acid methyl esters (FAME). Determination of acid value.
[26] BS EN 14111:2003 Fat and oil derivatives. Fatty acid methyl esters (FAME). Determination of iodine value.
[27] BS EN 14105 Determination of Free and Total Glycerin in Pure biodiesel (B100) by GC in Compliance.
[28] BS EN 14105 Determination of Free and Total Glycerin in Pure biodiesel (B100) by GC in Compliance.
[29] BS EN 14106:2003 Fat and oil derivatives. Fatty acid methyl esters (FAME). Determination of free glycerol content.
[30] BS EN 14105 Determination of Free and Total Glycerin in Pure biodiesel (B100) by GC in Compliance.
[31] BS EN 14107:2003 Fat and oil derivatives. Fatty acid methyl esters (FAME). Determination of phosphorous content by inductively coupled plasma (ICP) emission spectrometry.
[32] BS EN 14108:2003 Fat and oil derivatives. Fatty acid methyl esters (FAME). Determination of sodium content by atomic absorption spectrometry.
[33] BS EN 14108:2003 Fat and oil derivatives. Fatty acid methyl esters (FAME). Determination of sodium content by atomic absorption spectrometry.
[34] BS EN 14538:2006, BS 2000-547:2006 Fat and oil derivatives. Fatty acid methyl ester (FAME). Determination of Ca, K, Mg and Na content by optical emission spectral analysis with inductively coupled plasma (ICP OES).
[35] BS EN 14538:2006, BS 2000-547:2006 Fat and oil derivatives. Fatty acid methyl ester (FAME). Determination of Ca, K, Mg and Na content by optical emission spectral analysis with inductively coupled plasma (ICP OES).
[36] Duvekot C and Technologies A Determination of methanol content in biodiesel using agilent select biodiesel for methanol with headspace sampling to EN-14110 Agilent Technologies
[37] Burton R 2008 An overview of ASTM D6751: biodiesel standards and testing methods, alternative fuels consortium.
[38] Lee S.Y, Hubbe M.A and Saka S 2006 Prospects for biodiesel as byproduct of wood pulping – a review. BioResources 1 150–171.
[39] Gerpen J V, Shanks B, Pruszko, Clements D and Knothe G 2004 Biodiesel production technology NREL/SR-510-36244 National Renewable Energy Laboratory, Colorado, USA.
[40] Stanfel C 2009 Fuel filtration: Protecting the diesel engine Filtration & Separation 46 22–5