Self-dual Permutation Codes of Finite Groups in Semisimple Case *

Yun Fan, Guanghui Zhang
Department of Mathematics, Central China Normal University
Wuhan, 430079, China
Email: yunfan02@yahoo.com.cn

Abstract
The existence and construction of self-dual codes in a permutation module of a finite group for the semisimple case are described from two aspects, one is from the point of view of the composition factors which are self-dual modules, the other one is from the point of view of the Galois group of the coefficient field.

Key words. Finite group, permutation code, self-dual module, self-dual code.

1 Introduction
Let F be a finite field of order q which is a power of a prime integer; and let X be a finite set. By FX we denote the F-vector space with the basis X and with the usual scalar product as its standard inner product. Any subspace C of FX is just the usual linear code over F. In coding-theoretic notation, with respect to the standard inner product, the orthogonal subspace C^\perp of a linear code C is called the dual code of C; and C is called a self-orthogonal code if $C \subseteq C^\perp$; and C is called a self-dual code if $C = C^\perp$.

If X is a group, then FX is an algebra with multiplication induced by the multiplication of the group X, which is called the group algebra of the group X over F; and any left ideal C of FX is said to be a group code. It is an interesting question to find conditions such that a group algebra has a self-dual group codes. More generally, this question can be extended to the group algebras over finite rings.

In [9], finite abelian groups are considered and some results on the non-existence of self-dual group codes are shown. For the direct product of a finite 2-group and a finite 2'-group, reference [4] showed when the self-dual group codes do not exist. Using the representation theory of finite groups, for group algebras over finite Galois rings reference [11] gave a complete answer for this

*Supported by NSFC Grant No. 10871079.
question. In particular, it is an easy conclusion that there is no self-dual code for finite groups of odd order.

Thus it is reasonable to consider the self-dual extended group codes for finite groups of odd order. And [7] obtained some interesting conditions for the existence of such self-dual codes in characteristic 2: one is from the point of view of self-dual modules, another one is an elementary number-theoretical condition; and [7] also showed some constructions of such codes.

Extending group codes, [3] discussed the so-called permutation codes of finite groups. If G is a finite group and X is a finite G-set, then FX is called a permutation FG-module, which has the standard inner product with respect to the basis X; any FG-submodule C of FX is said to be an FG-permutation code. If X is a transitive G-set, the permutation codes of FX is called transitive permutation codes. View the base set of the group G as a left regular G-set, then the group codes are just the permutation codes of FG. Some important codes are permutation codes in natural ways, but may not be group codes; e.g. the so-called multiple-cyclic codes; see [3] for details. Moreover, the research of permutation codes is of interests from the point of view of automorphism groups of linear codes, for: any permutation automorphism of a linear code is just a permutation of the standard basis of the linear code. In [3] some conditions are obtained for the non-existence of the self-dual transitive permutation codes of finite groups. And it is also an easy conclusion that there is no self-dual transitive permutation code for finite groups of odd order.

In this paper we discuss the existence and construction of self-dual permutation codes for the semisimple case. The outline is as follows.

Throughout the paper, F denotes a finite field of order q, and G denotes a finite group of order coprime to q, and any FG-module is finite-dimensional.

In §2, we first make observations on the related module-theoretical aspects, and then turn to the permutation codes. Since FG is a semisimple algebra (Maschke’s theorem), any FG-module V is decomposed into a direct sum of irreducible FG-modules with the collection of the irreducible summands is unique determined up to isomorphism; any irreducible FG-module W which appears in the direct sum is called a composition factor of V, and the number of the direct summands which are isomorphic to W is called the multiplicity of W in V. The dual space $V^* := \text{Hom}_F(V,F)$ consisting of all the linear form of V is an FG-module with G-action: $(g\varphi)(v) = \varphi(g^{-1}v)$, $\forall g \in G$, $\varphi \in \text{Hom}_F(V,F)$, $v \in V$. We call V a self-dual FG-module if $V \cong V^*$. So, “self-dual module” and “self-dual code” are different concepts. After the module-theoretical results which we need are obtained, we turn to coding-theoretical notation, and show that, for even q and odd $|G|$, an FG-permutation module FX has self-dual permutation codes if and only if any self-dual composition factor of the FG-module FX has even multiplicity. For odd q, only a sufficient condition is obtained.

In §3, we discuss transitive permutation codes, i.e. codes of an permutation module FX with a transitive G-set X. We first reduce the existence of the so-called self-dual extended transitive permutation codes to the existence of such transitive permutation codes C of FX that $C^\perp = C \oplus F$. And we show that, for a transitive G-set X with length $n = |X|$, if the integer q as an element of the multiplicative group Z_n^* has odd order, then there is a permutation code C of FX such that $C^\perp = C \oplus F$. It is easy to see that this elementary number-theoretical condition is similar to that in [7]. However, the situation of transitive
permutation codes is more delicate than that of group codes, so that we take a way different from [7] to treat our cases; and we obtained no necessary and sufficient conditions, though some more results are shown in §3 which seem interesting.

2 Self-dual modules and self-dual codes

We adopt the usual notation about linear forms, bilinear forms etc. from the usual linear algebra. A bilinear form \(f(\cdot, \cdot) \) on an \(FG \)-module \(V \) is said to be \(G \)-invariant if

\[
f(g(u), g(v)) = f(u, v), \quad \forall u, v \in V.
\]

Let \(V \) be an \(FG \)-module with a \(G \)-invariant non-degenerate bilinear form \(\langle \cdot, \cdot \rangle \). Let \(U, W \) be submodules of \(V \). Denote

\[
\text{Ann}_W^U(u) = \{ w \in W \mid \langle w, u \rangle = 0, \forall u \in U \},
\]

\[
\text{Ann}_V^U(u) = \{ w \in W \mid \langle u, w \rangle = 0, \forall u \in U \}.
\]

in particular, denote \(U^\perp = \text{Ann}_V^U(U) \) and \(U^\perp = \text{Ann}_V^U(U) \). From the \(G \)-invariance of \(\langle \cdot, \cdot \rangle \), it is easy to see that \(\text{Ann}_W^U(U) \) and \(\text{Ann}_V^U(U) \) are \(FG \)-submodules. Note that \(\text{Ann}_W^U(U) = \text{Ann}_V^U(U) \) and \(U^\perp = U^\perp \) once \(\langle \cdot, \cdot \rangle \) is symmetric. For any \(v_0 \in V \) we have the linear form \(\langle \cdot, v_0 \rangle : V \rightarrow F, v \mapsto \langle v, v_0 \rangle \); and restricting it to \(U \), we have the linear form \(\langle \cdot, v_0 \rangle |_U \) on \(U \) and it is easy to check that

\[
V \rightarrow U^*, \quad v_0 \mapsto \langle \cdot, v_0 \rangle |_U
\]

is a surjective \(FG \)-homomorphism with kernel \(U^\perp \); thus we have an exact sequence of \(FG \)-homomorphisms:

\[
0 \rightarrow U^\perp \rightarrow V \rightarrow U^* \rightarrow 0; \tag{2}
\]

in particular, \(\dim V = \dim U + \dim U^\perp \) because \(\dim U = \dim U^* \). Restricting the bilinear form \(\langle \cdot, \cdot \rangle \) to the \(FG \)-submodule \(U \), we get a \(G \)-invariant symmetric bilinear form on \(U \). If the restricted bilinear form on \(U \) is non-degenerate (equivalently, \(\text{Ann}_V^U(U) = U \cap U^\perp = 0 \)), we say that \(U \) is a \textit{non-degenerate submodule}. On the other hand, if the restricted bilinear form on \(U \) is zero (equivalently, \(U \subseteq U^\perp \)), we say, in module-theoretical notation, that \(U \) is an \textit{isotropic submodule}.

Recall that any \(FG \)-module \(V \) is written into a direct sum of irreducible modules, and the irreducible direct summands are partitioned by isomorphism, hence \(V = V_1 \oplus \cdots \oplus V_h \), with every \(V_i \) consisting of the irreducible direct summands which are isomorphic to one and the same irreducible module \(W_i \), but \(V_i \) and \(V_j \) for \(i \neq j \) have no composition factors in common; thus \(V_i \cong m_i W_i \) with \(m_i \) being the multiplicity of \(W_i \) in \(V \), and \(V_i \) is called the \textit{homogeneous component} of \(V \) associated with the irreducible module \(W_i \), and \(V = V_1 \oplus \cdots \oplus V_h \) is called the \textit{canonical decomposition} (or \textit{homogeneous decomposition}) of \(V \), see [10] §2.6; the canonical decomposition of \(V \) is unique, so that for any submodule \(U \) of \(V \) we have

\[
U = (U \cap V_1) \oplus \cdots \oplus (U \cap V_h). \tag{3}
\]
Lemma 1. Let V be an FG-module with a G-invariant non-degenerate bilinear form; and U be an FG-submodule.

1. If U is non-degenerate then U is an self-dual FG-module.
2. If U is irreducible, then U is either non-degenerate or isotropic.
3. If U is a homogeneous component associated with an irreducible module W, then W is self-dual if and only if U is non-degenerate. W is not self-dual if and only if U is isotropic.

Proof. (1). The non-degeneracy of U implies $U \cap U^\perp = 0$; thus from that $\dim V = \dim U + \dim U^\perp$ we get $V = U^\perp \oplus U$, and it follows from the exact sequence (2) that $U \cong V/U^\perp \cong U^*$.

(2). Because $U \cap U^\perp$ is an FG-submodule of U, the irreducibility of U implies that either $U \cap U^\perp = 0$ or $U \cap U^\perp = U$.

(3). From the exact sequence (2) and the semi-simplicity, we have that $V = U^\perp \oplus U'$ with $U' \cong U^*$. Since FG is an Frobenius algebra, it is known (e.g. see [12]) that the dual modules of all the composition factors of U are just all the composition factors of U^*. Thus U' is a homogeneous component too. Thus the conclusions follows from the uniqueness of the homogeneous decomposition.

Remark. It is well-known that “there is a G-invariant non-degenerate bilinear form on a FG-module V if and only if V is a self-dual FG-module”. The necessity is a special case of Lemma 1(1); and the sufficiency follows that, with an FG-isomorphism $\alpha : V \to V^*$, the composition map

$$V \times V \longrightarrow V^* \times V \longrightarrow F, \quad (v, v') \mapsto (\alpha(v), v') \mapsto \alpha(v)(v').$$

is a G-invariant non-degenerate bilinear form on V. For more details, please see [6, Ch.VII, §8].

Lemma 2. Let V be an FG-module with a G-invariant non-degenerate symmetric bilinear form; let U be an isotropic FG-submodule of V. Then the following are equivalent:

1. $U^\perp = U$;
2. $\dim U = \dim V/2$;
3. the collection of the composition factors of U and the dual modules of the composition factors of U is the collection of the composition factors of V.

Proof. (i) \Leftrightarrow (ii) is obvious since $\dim V = \dim U^\perp + \dim U$.

(i) \Leftrightarrow (iii). Similar to the proof for Lemma 1(3), $V = U^\perp \oplus U'$ with $U' \cong U^*$; but now $U \subseteq U^\perp$ by hypothesis, so the equivalence is obvious.

Recall from the usual linear algebra that, for an FG-module V, any bilinear form f on V corresponds to exactly one linear form \bar{f} on the tensor product space $V \otimes_F V$: $\bar{f}(v \otimes v') = f(v, v')$; in other words, the dual space $(V \otimes_F V)^*$ is identified with the space of all the bilinear forms on V. As usually, $V \otimes_F V$ is an FG-module by diagonal action of G, hence $(V \otimes_F V)^*$ is also an FG-module by diagonal action of G; and the space of all the G-invariant bilinear forms is identified with the subspace of all the G-fixed points of $(V \otimes_F V)^*$, denoted by $((V \otimes_F V)^*)^G$.

4
On the other hand, G acts on the space $\text{Hom}_F(V, V)$ of all the linear transformations of V in the following way:

$$(ga)(v) = g(\alpha(g^{-1}v)), \quad \forall g \in G, \alpha \in \text{Hom}(V, V), v \in V;$$

and the subspace $\text{Hom}_{FG}(V, V)$ of all the FG-endomorphisms of V is just the set of all the G-fixed points of $\text{Hom}_F(V, V)$.

Lemma 3. Let V be an FG-module with a G-invariant non-degenerate symmetric bilinear form $\langle - , - \rangle$. For any linear transformation $\alpha \in \text{Hom}_F(V, V)$ define

$$\varphi_\alpha(u, v) = \langle \alpha(u), v \rangle, \quad \forall u, v \in V.$$

Then φ_α is a bilinear form on V, and

$$\varphi : \text{Hom}_F(V, V) \longrightarrow (V \otimes_F V)^*, \quad \alpha \mapsto \varphi_\alpha.$$

is an FG-isomorphism, and:

1. φ_α is G-invariant if and only if α is an FG-endomorphism;
2. φ_α is non-degenerate if and only if α is a non-degenerate transformation;
3. φ_α is a symmetric if and only if α is a symmetric transformation.

Proof. It is easy to check that φ_α is a bilinear form on V, and that φ is a linear map; and that φ is injective because $\langle - , - \rangle$ is non-degenerate, hence φ is bijective since $\dim \text{Hom}_F(V, V) = \dim (V \otimes_F V)^*$. Next, for any $g \in G$, any $\alpha \in \text{Hom}_F(V, V)$, and any $u, v \in V$, we have

$$\varphi_{ga}(u \otimes v) = \langle (ga)(u), v \rangle = \langle ga(g^{-1}u), v \rangle = \langle g^{-1}u, g^{-1}v \rangle = \varphi_\alpha(g^{-1}u \otimes g^{-1}v) = \varphi_\alpha(g^{-1}(u \otimes v)) = (g\varphi_\alpha)(u \otimes v).$$

So φ is an FG-isomorphism. Hence we have the following isomorphism

$$\text{Hom}_{FG}(V, V) \xrightarrow{\cong} ((V \otimes_F V)^*)^G, \quad \alpha \mapsto \varphi_\alpha; \quad (4)$$

that is, (1) holds. The (2) and (3) can be verified straightforwardly.

Let V and V' be FG-modules equipped with G-invariant bilinear forms f and f' respectively. We say that an FG-homomorphism $\alpha : V \rightarrow V'$ is compatible with the bilinear forms f and f' if $f'(\alpha(u), \alpha(v)) = f(u, v)$ for all $u, v \in V$.

If f is a non-degenerate bilinear form on V, then any FG-homomorphism $\alpha : V \rightarrow V'$ which is compatible with f and f' must be injective; for: $\alpha(u) = 0$ implies that for any $v \in V$ we have that $f(u, v) = f'(\alpha(u), \alpha(v)) = f'(0, \alpha(v)) = 0$, hence $u = 0$ by the non-degeneracy of the form f.

Lemma 4. Assume that q is even, and V is a self-dual irreducible FG-module. If both f and f' are G-invariant non-degenerate symmetric bilinear forms on V, then there is an FG-automorphism $\beta : V \rightarrow V$ which is compatible with f and f'.

Proof. Apply the isomorphism (4) to the FG-module V with the G-invariant non-degenerate symmetric bilinear form f. Since V is irreducible, by the Schur’s lemma, $\tilde{F} := \text{Hom}_{FG}(V, V)$ is a finite dimensional division F-algebra, hence \tilde{F} is a field extension of F as it is finite. By the commutativity
of \bar{F}, it is easy to check that the sum and the product of any two symmetric transformations in \bar{F} are still symmetric transformations, so all the symmetric transformations in \bar{F} form a subfield \hat{F} of \bar{F}.

By Lemma 3, for the G-invariant non-degenerate symmetric bilinear form f', there is an $\alpha \in \hat{F} - \{0\}$ such that

$$f'(u, v) = \varphi_\alpha(u, v) = f(\alpha(u), v), \quad \forall u, v \in V.$$

Since \hat{F} is a finite field of characteristic 2, the map $\lambda \mapsto \lambda^2$, is an automorphism of \hat{F}. So there is a $\beta \in \hat{F}$ such that $\beta^2 = \alpha^{-1}$. Then $\beta : V \to V$ is an FG-automorphism of V and a symmetric transformation with respect to the bilinear form f; and, noting that $\alpha \beta = \beta \alpha$, for any $u, v \in V$ we have

$$f'(\beta(u), \beta(v)) = f(\alpha(\beta(u)), \beta(v)) = f((\beta \alpha \beta)(u)), v) = f(u, v).$$

That is, β is compatible with the bilinear form f and f'.

Theorem 1. Let F be a finite field of characteristic 2 and G be a finite group of odd order. Let V be an FG-module with a G-invariant non-degenerate symmetric bilinear form. Then the following are equivalent:

(i) every self-dual composition factor of V has even multiplicity;

(ii) there is an FG-submodule U of V such that $U^\perp = U$.

Proof. We denote $\langle - , - \rangle$ for the G-invariant non-degenerate symmetric bilinear form on V.

(ii) \Rightarrow (i). This is an easy consequence of Lemma 2 (i)\Rightarrow(iii).

(i) \Rightarrow (ii). Let W be an irreducible FG-submodule of V.

Case 1: $W \subseteq W^\perp$. By the exact sequence (2), we have a submodule W' of V such that $V = W^\perp \oplus W'$ and the homomorphism Φ induces an isomorphism

$$W' \cong W^*, \quad w' \mapsto \langle \cdot, w' \rangle|_W.$$

Therefore, the matrix of the symmetric bilinear form $\langle - , - \rangle|_{W' \oplus W}$ restricted to $W' \oplus W$ is as follows

$$\left(\begin{array}{cc} 0 & A \\ A^T & 0 \end{array} \right)$$

where A is the matrix of the bilinear form $W' \times W \to F$, $(w', w) \mapsto \langle w', w \rangle$ and A^T denotes the transpose of A; so A is invertible, and hence $W' \oplus W$ is a non-degenerate submodule of V. Then

$$V = (W' \oplus W) \oplus (W' \oplus W)^\perp$$

and $(W' \oplus W)^\perp$ is also non-degenerate submodule.

If W is not a self-dual module, then $W' \cong W^*$ is not self-dual, and hence $(W' \oplus W)^\perp$ also satisfies the condition (i). Otherwise, W is a self-dual module, and $W' \cong W^* \cong W$ is a self-dual module too, hence $(W' \oplus W)^\perp$ still satisfies the condition (i). In a word, by induction, there is a submodule S of $(W' \oplus W)^\perp$ such that $\text{Ann}_{(W' \oplus W)^\perp}(S) = S$. Take $U = W \oplus S$; then it is easy to check that $U^\perp = U$ and (ii) holds.

Case 2: $W \not\subseteq W^\perp$. Then W is non-degenerate, i.e. $V = W \oplus W^\perp$, and W is a self-dual module, see Lemma 1(2). By the condition (i), there is a direct decomposition $W^\perp = \tilde{W} \oplus U$ such that $\tilde{W} \cong W$, and $V = W \oplus \tilde{W} \oplus U$.

If $\tilde{W} \subseteq \tilde{W}^\perp$, then it is reduced to Case 1 and the (ii) holds by induction. So we assume that $\tilde{W} \not\subseteq \tilde{W}^\perp$, and hence \tilde{W} is also non-degenerate. Since $W \perp \tilde{W}$, the submodule $W \oplus \tilde{W}$ is non-degenerate too.

Let f and \tilde{f} denote the restrictions of $\langle -, - \rangle$ on W and on \tilde{W} respectively; so f and \tilde{f} are G-invariant non-degenerate symmetric bilinear forms on W and \tilde{W} respectively. Let $\alpha : W \to \tilde{W}$ be an FG-isomorphism. Then α induces a G-invariant non-degenerate symmetric bilinear form f' on W as follows:

$$f'(u, w) := \tilde{f}(\alpha(u), \alpha(w)), \quad \forall u, w \in W.$$

By Lemma 4, there is an FG-automorphism $\beta : W \to W$ which is compatible with f and f', i.e.

$$f'(\beta(u), \beta(w)) = f(u, w), \quad \forall u, w \in W.$$

Let $\gamma = \alpha \beta$. Then $\gamma : W \to \tilde{W}$ is an FG-isomorphism, and for any $u, w \in W$ we have

$$\tilde{f}(\gamma(u), \gamma(w)) = \tilde{f}(\alpha(\beta(u)), \alpha(\beta(w))) = f'(\beta(u), \beta(w)) = f(u, w);$$

that is, γ is an FG-isomorphism compatible with the bilinear forms f and \tilde{f}.

Let

$$W' = \{w + \gamma(w) \mid w \in W\} \subseteq W \oplus \tilde{W}.$$

It is a routine to check that W' is a submodule and $W' \cong W$; but, noting that $W \perp \tilde{W}$ and char $F = 2$, for any $u + \gamma(u) \in W'$ and $w + \gamma(w) \in W'$ with $u, w \in W$ we have

$$\langle u + \gamma(u), w + \gamma(w) \rangle = \langle u, w \rangle + \langle \gamma(u), \gamma(w) \rangle = f(u, w) + \tilde{f}(\gamma(u), \gamma(w)) = f(u, w) + f(u, w) = 0.$$

So $W' \cong W$ is an irreducible FG-submodule of V and $W' \subseteq W^\perp$, and it is reduced to the Case 1 and (ii) holds by induction again.

Remark. In the proof of Theorem 1, Lemma 4 is quoted only in Case 2 where W and \tilde{W} are self-dual composition factors of V. Thus, as a consequence of the proof, we have the following conclusion.

Proposition 1. Let G be a finite group of order coprime to the characteristic (not necessary 2) of the finite field F, and V be an FG-module with a G-invariant non-degenerate symmetric bilinear form. If V has no self-dual composition factor, then V has a submodule U such that $U^\perp = U$.

Now we turn to permutation codes. Let X be a finite set; by Sym(X) we denote the group of all the permutations of X. If there is a group homomorphism $G \to$ Sym(X), then X is called a G-set. In that case, any $g \in G$ is mapped to a permutation: $X \to X, x \mapsto gx$. Hence, $(gg')x = g(g'x)$ for all $g, g' \in G$ and $x \in X$; and $1x = x$ for all $x \in X$.

7
Let $FX = \{ \sum_{x \in X} a_x \, x \mid a_x \in F \}$ be the vector space over F with basis X. Extending the G-action on X linearly, FX becomes an FG-module, called an FG-permutation module with permutation basis X, please cf. [1, §12].

We say that C is an FG-permutation code of FX, denoted by $C \leq FX$, if C is an FG-submodule of the FG-permutation module FX; and a permutation code C is said to be irreducible if C is an irreducible FG-submodule of FX. Further, if X is a transitive G-set, then any FG-permutation code C of FX is said to be a transitive permutation code.

Recall that, for a linear code C of length n over F, a permutation of the components of a word of length n is said to be a permutation automorphism of C if the permutation keeps every code word of C still a code word. By $\text{PAut}(C)$ we denote the automorphism group of C consisting of all the permutation automorphisms of C. It is easy to see that C is an FG-permutation code of a G-permutation set X of cardinality n if and only if there is a group homomorphism of G to $\text{PAut}(C)$.

There is a so-called scalar product of any two words of FX as follows:

$$\langle w, w' \rangle = \sum_{x \in X} w_x w'_x, \quad \forall \, w = \sum_{x \in X} w_x x, \ w' = \sum_{x \in X} w'_x x \in FX,$$

which is obvious a non-degenerate symmetric bilinear form on FX, we call it the standard inner product on FX with respect to the permutation basis X.

Moreover, the standard inner product is G-invariant, since for any $g \in G$ and any words $w = \sum_{x \in X} w_x x$ and $w' = \sum_{x \in X} w'_x x$ of FX, we have

$$\langle g(w), g(w') \rangle = \langle \sum_{x \in X} \ \ g(x) \ \ w_x x, \ \ \sum_{x \in X} \ \ g(x) \ \ w'_x x \rangle$$

$$= \sum_{x \in X} \ \ g(x) \ \ w_x w'_x$$

$$= \langle w, w' \rangle;$$

equivalently,

$$\langle g(w), g(w') \rangle = \langle w, g^{-1}(w') \rangle, \quad \forall \, g \in G, \ \forall \, w, w' \in FX.$$

Thus, FX is a self-dual FG-module. In fact, we can make the duality more precisely. Just like the formula (1), the standard inner product induces an isomorphism

$$FX \xrightarrow{\sim} (FX)^*, \quad u \mapsto u^* := \langle u, - \rangle,$$

where

$$u^*: \quad FX \to F, \quad w \mapsto u^*(w) = \langle u, w \rangle;$$

and

$$X^* := \{ x^* \mid x \in X \}$$

is a G-set with G-action

$$g(x^*) = (g^{-1}x)^*, \quad \forall \, g \in G, \ x^* \in X^*.$$
such that \((FX)^*\) is an \(FG\)-permutation module of the \(G\)-set \(X^*\), and \(u \mapsto u^*\) is a permutation isomorphism.

Let \(FX\) be an \(FG\)-permutation module. For any permutation code \(C\) of \(FX\), since \(C\) is an \(FG\)-submodule, \(C^\perp = \{ w \in FX \mid \langle c, w \rangle = 0, \forall c \in C \}\) is an \(FG\)-submodule again, i.e. \(C^\perp\) is a permutation code again. In coding-theoretical notation, \(C^\perp\) is said to be the dual permutation code of \(C\).

An \(FG\)-permutation code \(C \subseteq FX\) is said to be self-orthogonal if \(C \subseteq C^\perp\). And a permutation code \(C \subseteq FX\) is said to be self-dual if \(C = C^\perp\).

With the coding-theoretical notation introduced above, from Theorem 1 and Proposition 1, we have the following results at once.

Theorem 2. Let \(F\) be a finite field of characteristic 2, and \(G\) be a finite group of odd order, and \(X\) be a finite \(G\)-set. Then the following are equivalent:

(i) every self-dual composition factor of \(FX\) has even multiplicity;

(ii) there is a self-dual \(FG\)-permutation code \(C\) of \(FX\).

Proposition 2. Let \(G\) be a finite group of order coprime to the characteristic (not necessary 2) of the field \(F\), and \(X\) be a finite \(G\)-set. If \(FX\) has no self-dual composition factor, then there is a self-dual \(FG\)-permutation code of \(FX\).

3 Self-dual extended transitive permutation codes

If a \(G\)-set \(X = \{x_0\}\) contains of only one element, then \(X\) is said to be the trivial \(G\)-set and the permutation module \(FX \cong F\) is just the trivial \(FG\)-module, which is obviously a self-dual module.

An elementary known fact is that, in the semisimple case, for any transitive \(G\)-set \(X\) the trivial \(FG\)-module \(F\) is a composition factor of multiplicity 1 of the \(FG\)-permutation module \(FX\); e.g. see [3, Lemma 1]; we denote the unique trivial submodule of \(FX\) by \(F\) if there is no confusion, thus \(FX = F \oplus F^\perp\). By Theorem 1, \(FX\) has no self-dual codes.

Let \(X\) be a transitive \(G\)-set. Let \(\hat{X} = X \cup \{x_0\}\) be the disjoint union of \(X\) with a trivial \(G\)-set \(\{x_0\}\), i.e. \(x_0 \notin X\). Then \(F\hat{X} = FX \oplus Fx_0\), and any permutation code \(C\) of \(F\hat{X}\) is said to be an extended transitive permutation code of \(FX\).

Lemma 5. Notation as above, and let \(n = |X|\). The following are equivalent:

(i) there is a permutation code \(C\) of \(FX\) such that \(C^\perp = C \oplus F\) and, as an element of the field \(F\), \(\sqrt{-n}\) has a square root in \(F\);

(ii) there is a self-dual permutation code \(\hat{C}\) of \(F\hat{X}\).

Proof. Let \(e = \sum_{x \in X} x\); then \(Fe\) is the unique submodule of \(FX\) which is isomorphic to \(F\), so \(Fx_0 \oplus Fe\) is the homogeneous component of \(F\hat{X}\) associated with the trivial module \(F\). Noting that \(Fx_0 \perp Fe\) and \(\langle x_0, x_0 \rangle = 1\) and \(\langle e, e \rangle = n \neq 0\) (because \(n \mid |G|\) which is coprime to \(q = |F|\)), we see that \(Fx_0 \oplus Fe\) is a non-degenerate submodule of \(F\hat{X}\). Thus

\[F\hat{X} = (Fx_0 \oplus Fe) \oplus (Fx_0 \oplus Fe)^\perp \]
and

\[(Fx_0 \oplus F e)^\perp = (Fx_0)^\perp \cap (Fe)^\perp = FX \cap (Fe)^\perp = \text{Ann}_{FX}(Fe).\]

(ii) ⇒ (i). By the formula (3) we have

\[\hat{C} = (\hat{C} \cap (Fx_0 \oplus Fe)) \oplus (\hat{C} \cap \text{Ann}_{FX}(Fe)).\]

From the condition (ii) that \(\hat{C} \perp = \hat{C}\), by Lemma 2(ii), we have

\[\dim (\hat{C} \cap (Fx_0 \oplus Fe)) = 1, \quad \dim (\hat{C} \cap \text{Ann}_{FX}(Fe)) = \frac{n-1}{2}.\]

Set \(C = \hat{C} \cap \text{Ann}_{FX}(Fe)\); it is easy to check that, \(C\) is a permutation code of \(FX\) and \(C \perp = C \oplus Fe\) in \(FX\). On the other hand, for \(C \cap (Fx_0 \oplus Fe)\) which is a one-dimensional subspace, we assume that \(\lambda \in F\) such that

\[\hat{C} \cap (Fx_0 \oplus Fe) = F \cdot (\lambda x_0 + e);\]

then \(\langle \lambda x_0 + e, \lambda x_0 + e \rangle = 0\); i.e.

\[0 = \langle \lambda x_0, \lambda x_0 \rangle + \langle e, e \rangle = \lambda^2 + n;\]

that is, \(\lambda^2 = -n\).

(i) ⇒ (ii). In \(FX\), since \(\dim C + \dim C^\perp = n\), from the condition that \(C^\perp = C \oplus Fe\) we have that \(\dim C = \frac{n-1}{2}\). Turn to \(F\overline{X}\), set \(\lambda \in F\) such that \(\lambda^2 = -n\) and \(\hat{C} := F \cdot (\lambda x_0 + e) \oplus C\); as shown above, the 1-dimensional submodule \(F \cdot (\lambda x_0 + e)\) of \(Fx_0 \oplus Fe\) is isotropic, hence \(\hat{C}\) is an isotropic submodule. But \(\dim \hat{C} = \frac{n+1}{2}\), and by Lemma 2, \(\hat{C}\) is a self-dual permutation code of \(F\overline{X}\).

Remark. In the above lemma, the condition “\(-n\) has a square root in \(F\)" in (i) always satisfies for characteristic 2.

For any positive integer \(n\) we denote \(Z_n\) the residue ring of the integer ring \(Z\) modulo \(n\), and denote \(Z_n^*\) the multiplicity group consisting of all the invertible elements of \(Z_n\). So \(q\) is considered as an element of \(Z_n^*\), and we can speak of the order of \(q\) in the group \(Z_n^*\).

Lemma 6. Let \(n\) be an odd integer coprime to \(q\). The following are equivalent:

(i) The order of \(q\) in \(Z_n^*\) is odd.

(ii) For any prime \(p|n\) the order of \(q\) in \(Z_p^*\) is odd.

Proof. Let \(n = p_1^{m_1} \cdots p_k^{m_k}\). By Chinese Remainder Theorem we have the following isomorphism about the multiplicative groups:

\[\mathbb{Z}_n^* \xrightarrow{\cong} \mathbb{Z}_{p_1^{m_1}}^* \times \cdots \times \mathbb{Z}_{p_k^{m_k}}^*, \quad a \mapsto (a, \cdots, a)\]

The order of \(q \in \mathbb{Z}_n^*\) is odd if and only if the order \(q \in \mathbb{Z}_{p_i^{m_i}}^*\) is odd for every \(i = 1, \cdots, k\). Consider the exact sequence of multiplication groups:

\[1 \longrightarrow 1 + p_i \mathbb{Z}_{p_i^{m_i}} \xrightarrow{\text{incl}} \mathbb{Z}_{p_i^{m_i}}^* \xrightarrow{\rho} \mathbb{Z}_{p_i}^* \longrightarrow 1\]
where \(\text{incl} \) is the inclusion map and \(\rho \) is the natural map:

\[
\mathbb{Z}_{p_i}^\times \rightarrow \mathbb{Z}_{p_i}^\times, \quad a \mapsto a.
\]

Since the order \(|1 + p_i\mathbb{Z}_{p_i}^\times| = p_i^{m_i-1} \) is odd, the order of \(q \in \mathbb{Z}_{p_i}^\times \) is odd if and only if the order of \(q \in \mathbb{Z}_{p_i}^\times \) is odd.

Recall that \(F \) is a finite field of order \(q \). For any positive integer \(n \), in a suitable extension we can take a primitive \(n \)th root \(\xi_n \) of unity, and the extension \(F(\xi_n) \) is independent of the choice of \(\xi_n \); and the order of the Galois group \(|\text{Gal}(F(\xi_n)/F)| = |F(\xi_n) : F| \) is just the order of \(q \) in the multiplicative group \(\mathbb{Z}_q^\times \). As a consequence we have the following at once.

Corollary 1. Let \(n \) be an odd integer coprime to \(q \). The following are equivalent:

(i). The extension degree \(|F(\xi_n) : F| \) is odd.

(ii). For any prime \(p \) dividing \(n \) the extension degree \(|F(\xi_p) : F| \) is odd.

Let \(H \) be a subgroup of the group \(G \), and let \(Y \) be a finite \(H \)-set; then \(FY \) is an \(FH \)-permutation module. We have the induced \(FG \)-module

\[
\text{Ind}_H^G(FY) = FG \bigotimes_{FH} FY = \bigoplus_{t \in T} t \otimes FY,
\]

where \(T \) is a representative set of the left cosets of \(G \) over \(H \); and \(\text{Ind}_H^G(FY) \) is a vector space with basis

\[
X := \text{Ind}_H^G(Y) = \bigcup_{t \in T} t \otimes Y = \bigcup_{t \in T} \{ t \otimes y \mid y \in Y \}
\]

which is a \(G \)-set with \(G \)-action as follows:

\[
g(t \otimes y) = t_g \otimes t_g^{-1} g y, \quad \forall \ g \in G, \ t \in T, \ y \in Y,
\]

where \(t_g \) is the representative of the unique left coset \(t_g H \) such that \(gt \in t_g H \), or equivalently \(t_g^{-1} g t \in H \). We say that \(\text{Ind}_H^G(FY) \) is the induced \(FG \)-permutation module with the induced \(G \)-set \(\text{Ind}_H^G(Y) \).

Lemma 7. Notation as above; and let \(D \) be an \(FH \)-permutation code of the \(FH \)-permutation module \(FY \); then

\[
\text{Ind}_H^G(D^\perp) = \text{Ind}_H^G(FY) \bigotimes_{FH} D^\perp.
\]

Proof. It is obvious that the induced module \(C := \text{Ind}_H^G(D) \) is a submodule of \(\text{Ind}_H^G(FY) = \bigoplus_{t \in T} t \otimes FY \), and we have a direct decomposition of \(F \)-spaces:

\[
\text{Ind}_H^G(D) = \bigoplus_{t \in T} t \otimes D,
\]

where each \(t \otimes D \) is an \(F \)-subspace of \(t \otimes FY \). Each \(t \otimes FY \) is an \(F \)-space with bases \(t \otimes Y \), hence with the standard inner product:

\[
\left\langle \sum_{y \in Y} a_y (t \otimes y), \sum_{y \in Y} b_y (t \otimes y) \right\rangle = \sum_{y \in Y} a_y b_y.
\]
and
\[FY \rightarrow t \otimes FY, \quad \sum_{y \in Y} a_y y \rightarrow \sum_{y \in Y} a_y (t \otimes y), \]
is an isometric F-isomorphism. With respect to the isometries, it is clear that
\[(t \otimes D)^\perp = t \otimes D^\perp; \]
hence
\[\text{Ind}_H^G(D)^\perp = \bigoplus_{t \in T} (t \otimes D)^\perp = \text{Ind}_H^G(D^\perp). \]

\textbf{Lemma 8.} Let p be an odd prime which is coprime to q such that the order of q in \mathbb{Z}_p^\times is odd. Let A be a finite abelian p-group, and H be a finite group of odd order which acts on the group A. Then there is a group code $C \leq FA$ which is stable by the action of H and $C^\perp = C \otimes F$, where F denotes the unique trivial module of FA.

\textbf{Proof.} Let $|A| = n$ which is a power of p; take a primitive n’th root ξ of unity, and denote $\tilde{F} = F(\xi)$. Then $\tilde{F}A$ is a splitting semisimple commutative algebra. Let $\Gamma = \text{Gal}(\tilde{F}/F)$ denote the Galois group of $\tilde{F} = F(\xi)$ over F; by Lemma 6 and its corollary, $|\Gamma|$ is odd.

Let A^* denote the set of all the irreducible characters of A over \tilde{F} (i.e. all the homomorphisms $\chi : A \rightarrow \tilde{F}^\times$). With the usual multiplication of functions, A^* is an abelian group and $A^* \cong A$. Note that for any integer k,
\[\chi^k(a) = \chi(a^k), \quad \forall \chi \in A^*, \quad a \in A. \]
in particular, $\chi^{-1}(a) = \chi(a^{-1})$.

Each $\chi \in A^*$ corresponds exactly one irreducible module $\tilde{F}e_\chi$ of $\tilde{F}A$, where
\[e_\chi = \frac{1}{n} \sum_{a \in A} \chi(a^{-1})a \]
is a primitive idempotent of the algebra $\tilde{F}A$. And we have the direct decomposition of irreducible $\tilde{F}A$-modules:
\[\tilde{F}A = \bigoplus_{\chi \in A^*} \tilde{F}e_\chi. \]

For $\chi, \psi \in A^*$ and $\lambda, \mu \in \tilde{F}$, the standard inner product
\[\langle \lambda e_\chi, \mu e_\psi \rangle = n\lambda \mu \cdot (\chi|\psi^{-1}), \]
where $(\chi|\psi^{-1})$ denotes the usual inner product of characters:
\[(\chi|\psi^{-1}) = \frac{1}{n} \sum_{a \in A} \chi(a)\psi^{-1}(a^{-1}) = \frac{1}{n} \sum_{a \in A} \chi(a)\psi(a). \]

By the orthogonal relations of characters,
\[\langle \tilde{F}e_\chi, \tilde{F}e_\psi \rangle = \begin{cases} \tilde{F}, & \text{if } \chi = \psi^{-1}, \\ 0, & \text{otherwise.} \end{cases} \]
Any submodule \tilde{C} of $\tilde{F}A$ corresponds exactly to a subset $B \subseteq A^*$ such that
$$\tilde{C} = \bigoplus_{\chi \in B} \tilde{F}e_\chi.$$
Thus
$$\tilde{C}^\perp = \bigoplus_{\psi \notin B^{-1}} \tilde{F}e_\psi$$
where $B^{-1} := \{\chi^{-1} \mid \chi \in B\}$; in particular, \tilde{C} is self-orthogonal code if and only if $B \cap B^{-1} = \emptyset$.

Recall that $\Gamma = \text{Gal}(\tilde{F}/F)$ is a cyclic group generated by the following automorphism
$$\gamma : F(\xi) \longrightarrow F(\xi), \quad \lambda \longmapsto \lambda^q.$$
The group Γ acts on \tilde{F} hence acts on the ring $\tilde{F}A$ in the following way:
$$\gamma \left(\sum_{a \in A} \lambda_a a \right) = \sum_{a \in A} \gamma(\lambda_a) a, \quad \forall \sum_{a \in A} \lambda_a a \in \tilde{F}A.$$
We denote $(\tilde{F}A)^\Gamma$ the subring consisting of all the Γ-fixed elements of $\tilde{F}A$. It is obvious that $(\tilde{F}A)^\Gamma = FA$.

And Γ acts on the set $\{e_\chi \mid \chi \in A^*\}$ of the primitive idempotents of $\tilde{F}A$:
$$\gamma(e_\chi) = e_\chi q = e_{\gamma(\chi)},$$
where $\gamma(\chi) \in A^*$ is the composition homomorphism
$$A \xrightarrow{\chi} \tilde{F} \xrightarrow{\gamma} \tilde{F}, \quad a \longmapsto \gamma(\chi(a)) = (\chi(a))^q,$$
i.e. $\gamma(\chi) = \chi^q$. In this way, Γ acts on the abelian group A^*.

On the other hand, H acts on the ring $\tilde{F}A$:
$$h \left(\sum_{a \in A} \lambda_a a \right) = \sum_{a \in A} \lambda_a h(a), \quad \forall \sum_{a \in A} \lambda_a a \in \tilde{F}A.$$
Similarly, H acts on the set $\{e_\chi \mid \chi \in A^*\}$ of the primitive idempotents of $\tilde{F}A$:
$$h(e_\chi) = h \left(\frac{1}{n} \sum_{a \in A} \chi(a^{-1})a \right) = \frac{1}{n} \sum_{a \in A} \chi(a^{-1})h(a) = \frac{1}{n} \sum_{b \in A} \chi(h^{-1}(b^{-1}))b = e_{h(\chi)},$$
where $h(\chi) \in A^*$ is the composition homomorphism
$$A \xrightarrow{h^{-1}} A \xrightarrow{\chi} \tilde{F}, \quad a \longmapsto \chi(h^{-1}(a)).$$
In this way, H acts on the abelian group A^*.

In a word, $\Gamma \times H$ acts on the ring $\tilde{F}A$, and the action induces the action of $\Gamma \times H$ on the abelian group A^*.

Let $C \leq FA$ be an H-stable submodule; denote $\tilde{C} = \tilde{F} \otimes_F C$. Then \tilde{C} is a both H-stable and Γ-stable submodule of $\tilde{F}A$ such that $\tilde{C}^\Gamma = C$. Let $B \subset A^*$
be the subset such that $\tilde{C} = \bigoplus_{\chi \in B} \tilde{F} e_\chi$. Since \tilde{C} is H-stable, we see that B is H-stable; and similarly, B is Γ-stable. So B is a $(\Gamma \times H)$-stable subset of A^*.

Conversely, if B is a $(\Gamma \times H)$-stable subset of A^*, then $\tilde{C} = \bigoplus_{\chi \in B} \tilde{F} e_\chi$ is a $(\Gamma \times H)$-stable submodule of \tilde{FA}, and \tilde{C}^\perp is an H-stable submodule of FA.

Let Ω be a non-trivial $(\Gamma \times H)$-orbit of A^*, i.e. $1 \notin \Omega$. Let $\chi \in \Omega$, then $\chi \neq 1$ hence the order of χ is a power of p, say p^t (recall that $A^* \cong A$ is an abelian p-group). We claim that $\chi^{-1} \notin \Omega$. Suppose it is not the cases, then there is $\gamma^t \in \Gamma$ and $h \in H$ such that $\gamma^t h(\chi) = \chi^{-1}$, and

$$h(\chi) = \gamma^{-t}(\chi^{-1}) = \chi^{(-1)(-q^t)} = \chi^q;$$

thus $(\gamma) \times \langle h \rangle$ acts on the cyclic group $\langle \chi \rangle$ of order p^t, and $\gamma^t h$ acts on $\langle \chi \rangle$ as the involution $\chi \mapsto \chi^{-1}$; but the automorphism group Aut($\langle \chi \rangle$) is a cyclic group, hence the product $\gamma^t h$ of the two automorphisms γ^t and h of odd order still has odd order; it contradicts to that the $\chi \mapsto \chi^{-1}$ is an involution.

The involution $\tau : A^* \to A^*$, $\chi \mapsto \chi^{-1}$, commutes with both Γ and H clearly. So τ permutes all the $(\Gamma \times H)$-orbits of A^*. For any non-trivial orbit $\Omega \neq \{1\}$, since $\tau(\chi) \notin \Omega$ for any $\chi \in \Omega$, the subset $\tau(\Omega)$ is an orbit different from Ω. Thus we can partition all the non-trivial orbits into two collections B and $B^{-1} = \{\chi^{-1} \mid \chi \in B\}$, and we get the disjoint union

$$A^* = \{1\} \bigcup B \bigcup B^{-1}.$$

Then the code $\tilde{C} = \bigoplus_{\chi \in B} \tilde{F} e_\chi$ is H-stable and $\tilde{C}^\perp = \tilde{C} \oplus \tilde{F}$; hence the code $C = \tilde{C}^\perp$ of FA is H-stable and $C^\perp = C \oplus F$.

Theorem 3. Let G be a finite group of odd order, and X be a finite transitive G-set and $n = |X|$. Assume that $q = |F|$ is coprime to n, and the order of q in the multiplicative group \mathbb{Z}_n^\times is odd. Then there is a permutation code $C \leq FX$ such that $C^\perp = C \oplus F$.

Proof. We prove it by induction on the order of G. It is trivial for $|G| = 1$. Assume $|G| > 1$. Let $x_1 \in X$ and denote G_1 the stabilizer of x_1 in G. Then G_1 is a subgroup and $FX = \text{Ind}_{G_1}^G(F)$. Since G is solvable by Feit-Thompson Odd Theorem, a minimal normal subgroup A of G is an elementary abelian p-group, where p is a prime. Since A is normal, the product AG_1 is a subgroup of G.

There are three cases.

Case 1: $AG_1 = G_1$. Then $A \subseteq G_1$, and hence A is contained in every conjugate of G_1 as A is normal. Thus A acts trivially on X, and X is a G/A-set and FX is a permutation module over G/A. Since $|G/A| < |G|$, the conclusion holds by induction.

Case 2: $AG_1 = G$. Since $A \cap G_1$ is both normal in G_1 and in A, we have that $A \cap G_1$ is normal in $AG_1 = G$; but A is a minimal normal subgroup of G, so $A \cap G_1 = 1$. Then we have a bijection

$$\beta : A \rightarrow X, \ a \mapsto a(x_1).$$

Let A acts on A by left translation, and let G_1 acts on A by conjugation; hence $G = AG_1$ is mapped into the group Sym(A) of all the permutations of A:

$$(bh)(a) = bh a^{-1}, \quad \forall a, b \in A, \ h \in H.$$
Noting that G_1 stabilizes x_1, we have that
\[\beta((bh)(a)) = (bh^{-1})(x_1) = bha(x_1) = (bh)\beta(a). \]

Thus, mapping $bh \in G$ to the permutation $a \mapsto bhah^{-1}$ of A is an action of G on A, and β is an isomorphism of G-sets. Then $n = |A|$ hence $p|n$, so p is coprime to q, and by the assumption of the lemma, the order of q in \mathbb{Z}_n^* is odd (see Lemma 6). The conclusion is derived from Lemma 8.

Case 3: $G_1 \not\subseteq AG_1 \not\subseteq G$. In this case,
\[FX \cong \text{Ind}_{AG_1}^G(F) = \text{Ind}_{AG_1}^{AG_1}(F). \]

Let $Y = \{gx | g \in AG_1\}$, which is an AG_1-set and $\text{Ind}_{AG_1}^{AG_1}(F) \cong FY$. By induction, there is a code $D \leq FY$ such that $D^\perp = D \oplus Fe_Y$ where $e_Y = \sum_{y \in Y} y$. Turn to the permutation module $FX = \text{Ind}_{AG_1}^G(FY)$, by Lemma 7, we have
\[\text{Ind}_{AG_1}^G(D^\perp) = \text{Ind}_{AG_1}^G(D^\perp) = \text{Ind}_{AG_1}^G(D \oplus Fe_Y) = \text{Ind}_{AG_1}^G(D) \oplus \text{Ind}_{AG_1}^G(Fe_Y). \]

Noting that, Fe_Y is the unique trivial module of FY, and
\[\text{Ind}_{AG_1}^G(Fe_Y) = \bigoplus_{t \in G/AG_1} t \otimes Fe_Y; \]
by induction again, there is a code $E \leq \text{Ind}_{AG_1}^G(Fe_Y)$ such that
\[\text{Ann}_{\text{Ind}_{AG_1}^G(Fe_Y)}(E) = E \oplus Fe_X, \]
where $e_X = \sum_{x \in X} x$. So we can write $\text{Ind}_{AG_1}^G(Fe_Y) = E' \oplus E \oplus Fe_X$, and have
\[\text{Ind}_{AG_1}^G(D^\perp) = \text{Ind}_{AG_1}^G(D) \oplus \text{Ind}_{AG_1}^G(Fe_Y) = \text{Ind}_{AG_1}^G(D) \oplus E' \oplus E \oplus Fe_X. \]

Let
\[C = \text{Ind}_{AG_1}^G(D) \oplus E \]
which is a permutation code of FX and
\[C^\perp = \text{Ind}_{AG_1}^G(D^\perp) \cap E^\perp = \text{Ann}_{FX}(\text{Ind}_{AG_1}^G(D)) \cap \text{Ann}_{FX}(E) = \left(\text{Ind}_{AG_1}^G(D) \oplus E' \oplus E \oplus Fe_X \right) \cap \text{Ann}_{\text{Ind}_{AG_1}^G(D) \oplus E' \oplus E \oplus Fe_X}(E) = \left(\text{Ind}_{AG_1}^G(D) \oplus E' \oplus E \oplus Fe_X \right) \cap \left(\text{Ind}_{AG_1}^G(D) \oplus E \oplus Fe_X \right) = \text{Ind}_{AG_1}^G(D) \oplus E \oplus Fe_X = C \oplus Fe_X. \]

As a consequence of Theorem and Lemma 5 (cf. its remark), we get the followings at once.

corollary 2. Assume that $q = |F|$ is even and $|G|$ is odd and X is a transitive G-set and $n = |X|$. If the order of q in the multiplicity group \mathbb{Z}_n^* is odd, then there is a self-dual extended code of FX.

corollary 3. Assume that $|G|$ is odd and X is a transitive G-set and $n = |X|$. If $q = |F|$ is coprime to n and the order of q in the multiplicity group \mathbb{Z}_n^* is odd, and $−n$ has square root in F, then there is a self-dual extended code of FX.

15
References

[1] J. L. Alperin, R. B. Bell, Groups and Representations, GTM 13. Berlin Heidelberg New York: Springer-Verlag, 1995.

[2] F. Bernhardt, P. Landrock and N. J. A. Sloane, The extended Golay codes considered as ideals, J. Comb. Theory ser.A vol.55, (1990), 235-246.

[3] Yun Fan, Yuan Yuan, On self-dual permutation codes, Acta Math. Scientia 28B (2008), no.3, 633-638.

[4] G. Hughes, Structure theorems for group ring codes with an application to self-dual codes, Des, Codes Cryptogr, vol.24(2001), 5-14.

[5] B. Huppert, Endliche Gruppen I, Berlin Heidelberg New York: Springer-Verlag, 1967.

[6] B. Huppert, N. Blackburn, Finite Groups II, Berlin Heidelberg New York: Springer-Verlag, 1982.

[7] C. Martinez-P´ ez, W. Williems, Self-dual codes and modules for finite groups in characteristic two, IEEE Trans. Inform. Theory Vol. 50(2004), Issue 8, 1798-1803.

[8] Graham H. Norton and Ana Salagean, On the Hamming Distance of Linear Codes over a Finite Chain Ring, IEEE Trans. Inform. Theory, vol.46(2000), 1060-1067.

[9] B.S. Rajan, M.U. Siddiqi, A generalized DFT for abelian codes over Z_m, IEEE Trans. Inform. Theory vol.40 (1994), 2082-2090.

[10] J.-P. Serre, Linear Representations of Finite Groups, GTM42, New York, Heidelberg, Berlin, Springer-Verlag, 1977.

[11] W. Williems, A note on self-dual group codes, IEEE Trans. Inform. Theory vol.48 (2002), 3107-3109.

[12] J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121(3), 555-575, 1999.