ON THE EXISTENCE OF ORTHOGONAL POLYNOMIALS FOR OSCILLATORY WEIGHTS ON A BOUNDED INTERVAL

HASSAN MAJIDIAN

Abstract. It is shown that the orthogonal polynomials, corresponding to the oscillatory weight $e^{i\omega x}$, exists if ω is a transcendental number and $\tan \omega/\omega \in \mathbb{Q}$. Also, it is proved that such orthogonal polynomials exist for almost every $\omega > 0$, and the roots are all simple if $\omega > 0$ is either small enough or large enough.

Keyword. orthogonal polynomial; oscillatory weight; Gaussian quadrature rule
MSC 65D32; 65R10

1. Introduction

We consider the problem of existence of orthogonal polynomials and Gaussian quadrature rules (in the standard form) for the following inner product:

$$(f, g)_{\omega} = \int_{-1}^{1} f(x)g(x)e^{i\omega x} dx,$$ \hspace{1cm} (1)

with $\omega > 0$. More precisely, we seek a monic polynomial p_n^ω of a given degree n such that

$$\int_{-1}^{1} p_n^\omega(x)x^j e^{i\omega x} dx = 0, \quad j = 0, 1, \ldots, n - 1.$$ \hspace{1cm} (2)

The following results on the existence of p_n^ω are due to [1]:

Proposition 1: p_1^ω exists for any ω except when ω is a multiple of π;
Proposition 2: p_2^ω exists for all ω;
Conjecture 1: p_n^ω with n even exists for all ω;
Conjecture 2: p_n^ω with n odd does not exists for some ω.

In this paper, we give a sufficient condition on ω for which p_n^ω exists for all n. According to Conjecture 1, this condition is not necessary. We show that p_n^ω exists for almost every $\omega > 0$. If the existence of p_n^ω is assumed, it is shown that all of its roots are simple when $\omega > 0$ is either small enough or large enough.

Throughout the paper, we frequently suppress the dependence of objects on ω for simplification in notations.

2. Orthogonal polynomials

A necessary and sufficient condition for existence of the orthogonal polynomial p_n^ω is that the Hankel determinant

$$\Delta_n = \begin{vmatrix} \mu_0 & \mu_1 & \cdots & \mu_{n-1} \\ \mu_1 & \mu_2 & \cdots & \mu_n \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{n-1} & \mu_n & \cdots & \mu_{2n-2} \end{vmatrix}$$

(3)

does not vanish. The moment $\mu_k := \int_{-1}^{1} x^k e^{i\omega x} \, dx$ is defined recursively (see [1]):

$$\mu_0 = \frac{2 \sin \omega}{\omega},$$

(4a)

$$\mu_k = \frac{1}{k \omega} (e^{i\omega} - (-1)^k e^{-i\omega}) - \frac{k}{i \omega} \mu_{k-1}, \quad k \geq 1.$$

(4b)

It is easy to show that

$$\mu_k = \frac{(-1)^k k!}{(i \omega)^k} \sum_{\nu=0}^{k} \frac{(-i \omega)^\nu s_\nu}{\nu!},$$

(5)

where

$$s_\nu := \frac{1}{i \omega} (e^{i\omega} - (-1)^\nu e^{-i\omega}) = \begin{cases} \frac{2 \sin \omega}{\omega}, & \text{for } \nu \text{ even}, \\ \frac{2 \cos \omega}{i \omega}, & \text{for } \nu \text{ odd}. \end{cases}$$
Then we can expand (5) into

\[\mu_k = \frac{(1 \pm 1)k!}{((-1)^{k+1}k)!} \left(\cos \omega \sum_{\nu = 1}^{k} \frac{(-i\omega)^{\nu-1}}{\nu!} - \frac{\sin \omega}{\omega} \left(1 + \sum_{\nu = 2}^{k} \frac{(-i\omega)^{\nu}}{\nu!} \right) \right). \]

(6)

Now consider the matrix corresponding to the Hankel determinant \(\Delta_n \). If we take from the \(r \)th row the factor \(\frac{(-1)^{r-1}}{i\omega} \), and from the \(s \)th column the factor \(\frac{(-1)^{s-1}}{i\omega} \), then we arrive at a new Hankel determinant \(\tilde{\Delta}_n \) with the moments

\[\tilde{\mu}_k := -2k! \left(\cos \omega \sum_{\nu = 1}^{k} \frac{(-i\omega)^{\nu-1}}{\nu!} - \frac{\sin \omega}{\omega} \left(1 + \sum_{\nu = 2}^{k} \frac{(-i\omega)^{\nu}}{\nu!} \right) \right). \]

(7)

The relation between \(\Delta_n \) and \(\tilde{\Delta}_n \) is then

\[\Delta_n = \left(\frac{1}{i\omega} \right)^{n(n-1)} \tilde{\Delta}_n. \]

Thus, \(\tilde{\Delta}_n \neq 0 \) if and only if \(\Delta_n \neq 0 \). If \(\omega \) is such that each \(\tilde{\mu}_k \) is a polynomial in \(i\omega \) with rational coefficients, then \(\tilde{\Delta}_n \) is a polynomial in \(i\omega \) with rational coefficients. As the proof of Theorem 2.3 in [2], we employ the fact that transcendental numbers can not be zeros of a polynomial with rational coefficients. Then we seek a set \(S \) of transcendental \(\omega \), for which \(\tilde{\mu}_k \) is a polynomial in \(i\omega \) with rational coefficients. Clearly, any multiplier of \(\pi \) falls in \(S \).

If \(\omega \in S \), then \(\cos \omega \neq 0 \). Then the moments can be rewritten as

\[\mu_k = \frac{2(-1)^{k+1}k! \cos \omega}{(i\omega)^k} \left(\sum_{\nu = 1}^{k} \frac{(-i\omega)^{\nu-1}}{\nu!} - \frac{\tan \omega}{\omega} \left(1 + \sum_{\nu = 2}^{k} \frac{(-i\omega)^{\nu}}{\nu!} \right) \right). \]

(8)

Again using the above idea, it is enough to determine \(\omega > 0 \) not belonging to \(Q \) (the field of rational numbers) for which

\[\tilde{\mu}_k := -2k! \left(\sum_{\nu = 1}^{k} \frac{(-i\omega)^{\nu-1}}{\nu!} - \frac{\tan \omega}{\omega} \left(1 + \sum_{\nu = 2}^{k} \frac{(-i\omega)^{\nu}}{\nu!} \right) \right). \]

(9)
is a polynomial in $i\omega$. Thus, the problem is to find transcendental numbers $\omega > 0$ not belonging to $\{m\pi : m = 1, 2, \ldots\}$, such that $\tan \omega/\omega \in \mathbb{Q}$.

Transcendental numbers can be zeros of a polynomial with rational coefficients if and only if the polynomial is identically zero. Thus it is enough to show that Δ_n, Δ_n, as functions of $i\omega$, are not identically zero for $n > 1$. This can be shown by a discussion similar to that carried out in the proof of Theorem 2.3 in \cite{2}. Thus we have the following result.

Proposition 2.1. For any transcendental $\omega > 0$ with $\tan \omega/\omega \in \mathbb{Q}$, the orthogonal polynomial p_n^ω exists.

Remark 2.1. The converse is not necessarily true. There are examples of ω with $\tan \omega/\omega \notin \mathbb{Q}$ while $\Delta_n \neq 0$, i.e., the orthogonal polynomial p_n^ω exists. For example, p_2^ω exists for any $\omega > 0$ \cite{1}.

The set S determined in Proposition 2.1 is at most countable due to countability of \mathbb{Q}. However, our numerical experiences show that p_n^ω exists for almost every $\omega > 0$. In the following, we establish this result.

Theorem 2.2. p_n^ω exists for almost every $\omega > 0$.

Proof. By induction on the index k, we can show from (4) that the moments μ_k, as functions of ω, are analytic in D, an arbitrary connected neighborhood of the semi-axis $\omega > 0$. The same result holds then for the Hankel determinant $\Delta_n = \Delta_n(\omega)$. Since zeros of any analytic function (if it is not identically zero) are isolated, it is enough to show that $\Delta_n(\omega)$ is not identically zero in D. Since Δ_n is analytic and then continuous, it is enough to show that $\Delta_n(0) \neq 0$; and this can be done similar to the proof of Theorem 2.3 in \cite{2}. \hfill \square
3. Gaussian quadrature rules

Since the weight function in (1) is not positive, we can not readily claim that the roots of p_n^ω (if exists) are all simple. If p_n^ω have some multiple zeros, then the n-point Gaussian quadrature rule can be written in the following form:

$$G_n(g) = \sum_{\nu=1}^{n} \sum_{k=0}^{m_{\nu}-1} w_{\nu,k} f^{(k)}(x_{\nu}),$$

where m_{ν} is the multiplicity of the node x_{ν}, and the weights $w_{\nu,k}$ are such that the rule is exact if f is replaced by a polynomial of degree at most $2n-1$. Here in the notations, we suppressed the dependence of the nodes and the weights on n. This rule, however, is rarely of practical interest since determining the multiplicities of the nodes is not an easy task. Our numerical experiences show that the roots of p_n^ω (if exists) are all simple.

This result can be established if we assume the existence of p_n^ω for all $\omega > 0$. According to Conjecture 2, this result most probably holds for n even. From our numerical experiences, the same result can be drawn too. We have computed the absolute values of the Hankel determinant for $n = 2, 4, 6$; for each n, the graph has been drawn for some increasing ω (see Figure 1). As it is seen, the graphs never cut the horizontal axis, i.e., the Hankel determinants never vanish.

Lemma 3.1. For a given integer $n > 0$, assume that the orthogonal polynomial $p_n^\omega(x)$ exists for all $\omega > 0$. Then all coefficients of $p_n^\omega(x)$ as functions of ω are continuous.

Proof. If $p_n^\omega(x) = x^n + \sum_{k=0}^{n-1} a_k(\omega)x^k$, then the coefficients $a_0(\omega), \ldots, a_{n-1}(\omega)$ satisfy the linear system

$$[v_0(\omega), \ldots, v_{n-1}(\omega)] u_n(\omega) + v_n(\omega) = 0, \quad (10)$$
where

\[v_k(\omega) = [\mu_k, \mu_{k+1}, \ldots, \mu_{k+n-1}]^T, \quad u_n(\omega) = [a_0(\omega), \ldots, a_{n-1}(\omega)]^T. \]

Then

\[u_n(\omega) = -\frac{1}{\Delta_n} [V_n(\omega)]^T v_n(\omega), \quad (11) \]

where \(V_n(\omega) \) is the cofactor matrix of \([v_0(\omega), \ldots, v_{n-1}(\omega)]\). All entries of the matrix \(V_n(\omega) \) are continuous with respect to \(\omega \) due to the continuity of the moments \(\mu_k \), the entries of \([v_0(\omega), \ldots, v_{n-1}(\omega)]\). Since the denominator \(\Delta_n \) does not vanishes for any \(\omega > 0 \), the result follows from (11).

\[\square \]

Theorem 3.2. For a given integer \(n > 0 \), assume that the orthogonal polynomial \(p_n^\omega(x) \) exists for all \(\omega > 0 \). If \(\omega > 0 \) is small enough or large enough, then all of the roots of the orthogonal polynomial \(p_n^\omega(x) \) are simple.

Proof. It is well-known that the roots of a polynomial vary continuously as the coefficients of the polynomial change continuously. Thus, Lemma 3.1 implies that the trajectories of the roots of \(p_n^\omega(x) \), as \(\omega > 0 \) increases, are all continuous. Since the roots corresponding to \(\omega = 0 \) as well as \(\omega \to \infty \) are all distinct \([1]\), then the result follows. \[\square \]
We have shown that the orthogonal polynomial p^ω_n, corresponding to the oscillatory weight $e^{i\omega x}$, exists if ω is a transcendental number and $\tan \omega/\omega \in \mathbb{Q}$. The set of such ω is nonempty since it contains the multipliers of π. Determining other members is not an easy task, so the main problem is still unsolved: For which values of ω does p^ω_n exist?

We have also shown that p^ω_n exist for almost every ω.

In order to arrive at an n-point Gaussian quadrature rule of standard form, it is necessary that all the roots of p^ω_n (if exists) to be simple. The simplicity of the roots of p^ω_n is established only when $\omega > 0$ is small enough or when it is large enough. The problem is unsolved for an arbitrary $\omega > 0$. We believe that the more properties of p^ω_n one knows, the higher chance he has to solve the problem. For instance, the symmetricity of p^ω_n (cf. [1]) implies that the coefficients of $p^\omega_n(z)$ (starting from 1, the coefficient of z^n) are real and pure imaginary, alternatively. Also form the three-term recurrence relation,

$$p^\omega_k(z) = (z - \alpha_k-1)p^\omega_{k-1}(z) - \beta_k-1p^\omega_{k-2}(z),$$

(12)

and Theorem 3.3 of [1], it is easy to show that α_k and α'_k are pure imaginary numbers; β_k and β'_k are real. Here the prime sign indicates the derivative with respect to ω.

REFERENCES

[1] A. Asheim, A. Deano, D. Huybrechs, and H. Wang. A Gaussian quadrature rule for oscillatory integrals on a bounded interval. DCDSA, 34(3):883–901, 2014.

[2] G. V. Milovanović and A. S. Cvetković. Orthogonal polynomials and Gaussian quadrature rules related to oscillatory weight functions. J. Comput. Appl. Math., 179(1):263–287, 2005.

Department of Basic Sciences, Iranian Institute for Encyclopedia Research, PO Box 14655-478, Tehran, Iran.

E-mail address: majidian@iecf.ir