SHORT COMMUNICATION

Antituberculosis, antioxidant and cytotoxicity profiles of quercetin: a systematic and cost-effective in silico and in vitro approach

Shasank S. Swaina,\footnote{Present address: School of Science and Technology, Department of Pharmacology, Nottingham Trent University, Nottingham, UK}, Sunil S. Routb, Alaka Sahooc, Sunday O. Oyedemid and Tahziba Hussaina

aDivision of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India; bNational Reference Laboratory for Tuberculosis, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India; cDepartment of Skin & VD, Institute of Medical Sciences & SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, Odisha, India; dDepartment of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Abia, Nigeria

ABSTRACT

The ineffectiveness and the slowdown of newer anti-TB drug approval rates directly indicate searching for potential alternative agents. However, validation of isolated phytochemicals through hit-and-trial experiments is more expensive and time-consuming. Simultaneously, cost-effective computational tools can recognize most potential candidates at an initial stage. The present study selected seven plant-derived polyphenols, then verified anti-TB and drug-ability profiles using advanced computational tools before the experimental study. Among all, the quercetin showed a potential docking-score within -8 to -11 kcal/mol than the standard isoniazid and ofloxacin, -5 to -10 kcal/mol. Additionally, quercetin exhibited a higher drug-ability score of 0.53 than isoniazid 0.19. Further, quercetin exhibited the minimum inhibitory concentration at 6 and 8 μg/mL, while ofloxacin showed at 2 μg/mL against InhA, and katG mutated Mtb-strains, respectively. Parallelly, quercetin showed promising free-radical-scavenging activity from nitric-oxide assay at IC$_{50}$ = 14.92 μg/mL, and lesser-cytotoxicity from cultured HepG2 cell lines at IC$_{50}$ = 159 μg/mL, respectively.

ARTICLE HISTORY

Received 28 August 2021
Accepted 6 November 2021

KEYWORDS

\textit{Mycobacterium tuberculosis}; isoniazid-resistant-Mtb; anti-TB polyphenols; antioxidant potency; cytotoxicity profile

CONTACT

Shasank S. Swain a swain.shasnksekar86@gmail.com; Sunday O. Oyedemi d silvanusdemi@gmail.com

Supplemental data for this article can be accessed online at \url{https://doi.org/10.1080/14786419.2021.2008387}.

© 2021 Informa UK Limited, trading as Taylor & Francis Group
1. Introduction

Mycobacterium tuberculosis (Mtb) is one of the most grievous infectious diseases with long-term morbidity and high mortality (Swain et al. 2020; WHO 2020). From the World Health Organization (WHO) records, approximately 8 to 10 million new cases and 1.4 million people died in 2019 were recorded globally (Swain et al. 2020; WHO 2020). In most cases, long-term anti-TB treatment with current medicines manifested from common nausea, vomiting to severe hepatotoxic and neurotoxic side effects (Mirlohi et al. 2016). Moreover, socio-economic factors such as illiteracy, poverty and malnutrition are significant barriers to completing the long-term anti-TB therapy and survival rate. As a result, a lack of awareness in early diagnosis and incomplete treatment courses directly added fuel to the rise of drug-resistant Mtb (Swain et al. 2020). Thus, there is an urgent requirement for newer anti-TB agents with high potency, less toxicity, fewer side effects with a short treatment course.

Alternatively, plant-crude extracts or individual phytochemicals bioactive and lesser toxicity profiles make them an ideal anti-TB agent (Amir et al. 2016; Sanusi et al. 2017; Mazlun et al. 2019). Comparatively, the multipotential polyphenolic class of phytoconstituents is safer and suitable for mainstream drug development with potential antioxidative and immune-modulating actions (Amir et al. 2016; Sytar et al. 2018; Wang et al. 2018; Mazlun et al. 2019). However, most active secondary metabolites are unable to fulfill the required drug-ability profiles during clinical validation. As a result, using such active candidates in mainstream medicine is a challenge (Shen et al. 2012; Ntie-Kang et al. 2019). Therefore, the present attempts to identify the most multi-potent polyphenol constituents on anti-TB, antioxidant, and cytotoxicity profiles by *in silico* and *in vitro* approaches (Figure S1).

2. Results and discussion

2.1. Ligand and target structures preparation for molecular docking

From docking analysis, quercetin (QUE) showed a higher docking score ranging from -8 to -11 kcal/mol than standard isoniazid (INH) (-5 to -7 kcal/mol), and ofloxacin (OFX) (-7 to -10 kcal/mol) against InhA and KatG enzymes of Mtb (Table S1). The molecular interactions also confirmed that the QUE strongly interacted by three H-bonds, ASP137, VAL230, and LEU265 (Figure S2) than the OFX by two H-bonds, LEU48 and LYS730 (Figure S3), with a mutated version of KatG (S315T). Thus, the computer-
aided drug design (CADD) could be a resource-saving protocol for identifying potential anti-TB phytochemicals before random experimental study with the traditional hit-and-trial method (Swain et al. 2018, 2019; Machado et al. 2018).

2.2. Physicochemical, pharmacokinetics and drug-likeness analyses

The physicochemical parameters of anti-TB drugs (INH and OFX) and selected eight polyphenols were recorded and analysed to observe the oral-drug suitability profiles (Table S2). Based on the prediction, the QUE exhibited a suitable druggable profile than INH but lesser than OFX (Table S2). Simultaneously, both anti-TB drugs and polyphenols showed comparatively similar ADME/T outlines. Overall, the QUE carries some suitable profiles for mainstream drug development (Table S2). Thus, the CADD tools are also helpful to assess physicochemical, possible activity, and drug-likeness profiles of any desired candidates before synthesis or experimental study.

2.3. Anti-TB potency of quercetin

The anti-TB potency of QUE with the positive control OFX and negative control dimethyl sulfoxide (DMSO) against INH-resistance strains (InhA and KatG mutated strains) were evaluated using the resazurin dye method. The MIC values of QUE, 6 and 8 µg/mL and OFX, 1 and 2 µg/mL respectively were recorded (Table S3). A natural product at this MIC value could be considered a productive result to use against INH-resistant strains individually or in combination with INH or OFX. The KatG mutated strain is more aggressive than the InhA mutated strain. The mutation at S315T in KatG is considered the universal mutation associated with 60–94% INH resistance, which was proved in silico in vitro herein, too (Aye et al. 2016).

2.4. Nitric oxide inhibition potency of quercetin

We have estimated the antioxidant potency of QUE using the pro-inflammatory mediator nitric oxide (NO) assay method. The IC50 at 20 and IC90 at 100 µg/mL from NO-assay were recorded (Figure S4). Mainly, NO-production influences tissue damage, chronic inflammation and plays a crucial role in the host-defence system during TB infection (Idh et al. 2012). Thus, the QUE proved as a potential anti-TB activity with antioxidant or free-radical scavenger activity.

2.5. Cytotoxicity profile of quercetin

The toxicity profile is directly proportional to the concentration of biological activity for a candidate or formulation (Machado et al. 2018). We have recorded the IC50 value of QUE at 159 µg/mL from cultured HepG2 cell lines (Figure S5). Mostly, INH and other front-line anti-TB drugs showed hepatotoxic activity; as a result, higher-dose treatment is not ideal (Li et al. 2016; Mirlohi et al. 2016). Thus, the immune-stimulant and lesser-toxic QUE could be an excellent alternative natural product-based drug candidate against Mtb.

Indian Ayurveda, Chinese traditional medicines, and Western regimens played a vital role in treating and controlling various human diseases, including TB from the primitive era
(Atanasov et al. 2015; Yuan et al. 2016). Polyphenolic secondary metabolites such as quercetin, fisetin, galangin, gossypetin, morin, myricetin, kaempferol, etc., are wildly distributed in the plant kingdom, and mostly from fruits, vegetables, herbs, cereals belong to Asteraceae, Rosaceae, and Lamiaceae plant family (USDA 2014; Anand David et al. 2016; Sytar et al. 2018). The advanced CADD with other multi-OMICS approaches are a suitable and cost-effective method to explore the anti-TB potency and other additive activity of phytochemicals and natural products (Mehralitabar et al. 2019; Goff et al. 2020). The WHO also motivates and supports the development of active natural/phytochemical-based anti-TB agents for the ‘END-TB’ mission. Thus, not only QUE, the selection and validation of most drug-able phytochemicals through combined computational and experimental approaches could be a cost-effective strategy in current anti-TB drug development.

3. Conclusions

The current anti-TB drugs are gradually becoming ineffective against emerging drug-resistant Mtb-strains and even showed several adverse or host-toxicity in long-term use. At this time, the systematic computational and experimental studies validated that QUE had a potential natural anti-TB regimen with MIC values of 6 and 8 μg/mL against InhA and KatG mutated strains. It also showed potential antioxidant activity from nitric oxide assay and lesser cytotoxicity in HepG2 cell lines. Thus, overall results concluded that the QUE could be considered as a potential alternative anti-TB agent for mainstream use.

Disclosure statement

The authors declare that they have no conflict of interests.

Funding

This work is supported by the ‘ICMR-Post Doctoral Research Grant awarded to Dr. Shasank S. Swain (No.3/1/3/PDF(21)/HRD-2019-2) from the Indian Council of Medical Research, Department of Health Research, Govt. of India.

ORCID

Shasank S. Swain http://orcid.org/0000-0001-5089-8304
Sunil S. Rout http://orcid.org/0000-0001-6544-6861
Alaka Sahoo http://orcid.org/0000-0002-6743-3885
Sunday O. Oyedemi http://orcid.org/0000-0002-0897-2598
Tahziba Hussain http://orcid.org/0000-0002-9430-5010

References

Amir M, Khan MA, Ahmad S, Akhtar M, Mujeeb M, Ahmad A, Khan SA, Al-Abassi FA. 2016. Ameliorating effects of *Tamarindus indica* fruit extract on anti-tubercular drugs induced liver toxicity in rats. Nat Prod Res. 30(6):715–719.
Anand David AV, Arulmoli R, Parasuraman S. 2016. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev. 10(20):84–89.
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schweiger S, Heiss EH, et al. 2015. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 33(8):1582–1614.

Aye KS, Nakajima C, Yamaguchi T, Win MM, Shwe MM, Win AA, Lwin T, Nyunt WW, Ti T, Suzuki Y. 2016. Genotypic characterization of multi-drug-resistant Mycobacterium tuberculosis isolates in Myanmar. J Infect Chemother. 22(3):174–179.

Goff A, Cantillon D, Muraro Wildner L, Waddell SJ. 2020. Multi-omics technologies applied to tuberculosis drug discovery. Appl Sci. 10(13):4629. doi.org/10.3390/app10134629.

Idh J, Mekonnen M, Abate E, Wedajo W, Werngren J, Ångeby K, Lerm M, Elias D, Sundqvist T, Aseffa A, et al. 2012. Resistance to first-line anti-TB drugs is associated with reduced nitric oxide susceptibility in Mycobacterium tuberculosis. PLoS One. 7(6):e39891.

Li F, Wang P, Liu K, Tarrago MG, Tarrago MG, Lu J, Chini EN, Ma X. 2016. A high dose of isoniazid disturbs endobiotic homeostasis in mouse liver. Drug Metab Dispos. 44(11):1742–1751.

Machado D, Girardini M, Viveiros M, Pieroni M. 2018. Challenging the drug-likeness dogma for new drug discovery in tuberculosis. Front Microbiol. 9:1367. 2018.01367.

Mazlun MH, Sabran SF, Mohamed M, Abu Bakar MF, Abdullah Z. 2019. Phenolic compounds as promising drug candidates in tuberculosis therapy. Molecules. 24(13):2449.

Mehralitabar H, Taghdir M, Naderi-Manesh H. 2019. A combination of bioactive and nonbioactive alkyl-peptides form a more stable nanofiber structure for differentiating neural stem cells: a molecular dynamics simulation survey. J Biomol Struct Dyn. 37(13):3434–3444.

Mirlohi MS, Ekrami A, Shirali S, Ghobeishavi M, Pourmotahari F. 2016. Hematological and liver toxicity of anti-tuberculosis drugs. Electron Physician. 8(9):3005–3010.

Ntie-Kang F, Nyongbela K, Ayimele G, Shekfeh S. 2019. “Drug-likeness” properties of natural compounds. Phys Sci Rev. 4(11):20180169.

Sanusi SB, Abu Bakar MF, Mohamed M, Sabran SF, Mainasara MM. 2017. Southeast Asian medicinal plants as a potential source of antituberculosis agent. Evid Based Complement Alternat Med. 2017:1–39.

Shen M, Tian S, Li Y, Li Q, Xu X, Wang J, Hou T. 2012. Drug-likeness analysis of traditional Chinese medicines: 1. Property distributions of drug-like compounds, non-drug-like compounds and natural compounds from traditional Chinese medicines. J Cheminform. 4(1):31.

Swain SS, Paidesetty SK, Dehury B, Sahoo J, Vedithi SC, Mahapatra N, Hussain T, Padhy RN. 2018. Molecular docking and simulation study for synthesis of alternative dapsone derivative as a newer antileprosy drug in multidrug therapy. J Cell Biochem. 119(12):9838–9852.

Swain SS, Paidesetty SK, Padhy RN. 2019. Synthesis of novel thymol derivatives against MRSA and ESBL producing pathogenic bacteria. Nat Prod Res. 33(22):3181–3189.

Swain SS, Sharma D, Hussain T, Pati S. 2020. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerg Microbes Infect. 9(1):1651–1663.

Sytar O, Hemmerich I, Zivcak M, Rauh C, Brestic M. 2018. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi J Biol Sci. 25(4):631–641.

USDA. 2014. Database for the flavonoid content of selected foods, release 3.1. Nutrient Data Laboratory Home. https://data.nal.usda.gov/dataset/usda-database-flavonoid-content-selected-foods-release-31-may-2014.

Wang TY, Li Q, Bi KS. 2018. Bioactive flavonoids in medicinal plants: structure, activity and biological fate. Asian J Pharm Sci. 13(1):12–23.

[WHO] World Health Organization. 2020. Global tuberculosis report-2020.

Yuan H, Ma Q, Ye L, Piao G. 2016. The traditional medicine and modern medicine from natural products. Molecules. 21(5):559.