Protein Lipidation As a Regulator of Apoptotic Calcium Release: Relevance to Cancer

Jessica J. Chen and Darren Boehning*

Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States

Calcium is a critical regulator of cell death pathways. One of the most proximal events leading to cell death is activation of plasma membrane and endoplasmic reticulum-resident calcium channels. A large body of evidence indicates that defects in this pathway contribute to cancer development. Although we have a thorough understanding of how downstream elevations in cytosolic and mitochondrial calcium contribute to cell death, it is much less clear how calcium channels are activated upstream of the apoptotic stimulus. Recently, it has been shown that protein lipidation is a potent regulator of apoptotic signaling. Although classically thought of as a static modification, rapid and reversible protein acylation has emerged as a new signaling paradigm relevant to many pathways, including calcium release and cell death. In this review, we will discuss the role of protein lipidation in regulating apoptotic calcium signaling with direct therapeutic relevance to cancer.

Keywords: calcium, apoptosis, lipidation, Fas, cancer, inositol phosphates, kinases, statins

INTRODUCTION

Apoptotic cell death is important for embryonic development and tissue homeostasis, and dysfunction of this pathway can contribute to various disease states, including cancer. The intrinsic apoptosis pathway is activated by cellular stress and leads to Bcl-2 protein activation, mitochondrial membrane permeabilization, and release of proapoptotic proteins (1, 2). In addition to their roles in mitochondrial membrane permeabilization, Bcl-2 family proteins are also essential and direct regulators of intracellular calcium during apoptosis by binding to a surprising variety of channels, pumps, and exchangers (3–11). Elevated cytosolic calcium then contributes to the apoptotic program in a multitude of ways including mitochondrial permeabilization and further activation of proapoptotic Bcl-2 proteins (12).

The extrinsic apoptosis pathway is activated by ligand binding to death receptors of the tumor necrosis factor-α (TNFα) superfamily. Ligand binding to the death receptor results in the activation of the initiator caspases 8 and 10 (13–15). Caspase 8/10 can directly cleave and activate effector caspases and/or cleave the proapoptotic Bcl-2 family protein Bid. Truncated Bid leads to mitochondrial permeabilization and release of proapoptotic proteins (16). Cell which do not engage the mitochondrial pathway are called “type I” cells, and those which lead to mitochondrial permeabilization are called “type II” cells (17). Thus, in type II cells the extrinsic pathway converges with the intrinsic pathway at the mitochondria. Calcium also contributes to the progression of the extrinsic pathway (18–21); however, this is less well understood.

Recently, it has been found that multiple proteins which regulate apoptotic calcium release in both the intrinsic and extrinsic pathways are subject to lipidation. Protein lipidation is the cotranslational...
or posttranslational covalent addition of a variety of lipids, including fatty acids, isoprenoids, and cholesterol, to target proteins. Such modifications regulate protein localization and function in many signaling processes. Recent advances in detecting lipitated proteins by proteomic and targeted approaches have revealed that lipidation of signaling proteins is essential for regulating a wide variety of signaling pathways. Stimulus-dependent lipidation of the apoptotic machinery is likely a central regulator of cell death, and defects in this pathway may be contributing factors in cancer development. In this review, we will discuss how protein lipidation plays an essential role in apoptotic signaling and the relevance to cancer therapeutics.

TYPES OF LIPIDATION

Lipidation can be categorized into two types based on the location of the modified proteins: those that are modified in the ER lumen and secreted and those that are modified in the cytoplasm or on the cytoplasmic face of membrane (22). The former type includes glycosylphosphatidylinositol (GPI) anchor and cholesterylation, and the latter includes N-myristoylation, acylation, and prenylation.

Glycosylphosphatidylinositol anchor was first discovered in the parasite Trypanosoma brucei where the highly expressed variant surface glycoprotein is anchored to the cell surface via a glycolipid containing phosphatidylinositol (23–25). Since then, many proteins in mammals and lower eukaryotes such as protozoa have been shown to contain GPI anchors with enormous structural variety, most of which include an ethanolamine attached to the carboxyl terminus of the protein, a glycan core, inositol, and lipid moieties (26–28). GPI-anchored peptides often include a cleavable N-terminal signal sequence, which directs the peptide to ER lumen, and a hydrophobic C-terminal sequence that is cleaved at the time of GPI anchor addition (27, 29, 30). GPI anchors facilitate tethering of proteins to the extracellular face of the plasma membrane and are important for many cellular functions, including adhesion, membrane trafficking, and immune system signaling (31–33).

Cholesterylation is a characteristic of the mammalian Hedgehog family, which are secreted signaling proteins that regulate embryonic patterning of many tissues and structures (34, 35). The Hedgehog protein undergoes an autocatalytic processing that internally cleaves between the conserved Gly and Cys at the GCF motif and yields a ~20 kDa N-terminal signaling domain and a ~25 kDa C-terminal catalytic domain (36, 37). The N-terminal domain receives a cholesterol moiety and is active in signaling (35, 37, 38). Interestingly, multiple studies have detected other potentially cholesterylated proteins (35, 39). However, the identification of these potential cholesterylation targets remains to be elucidated.

N-myristoylation is the attachment of the 14-carbon myristic acid to an N-terminal Gly residue via an amide bond (40). It was first identified as a blocking group that prevents Edman degradation on the N-terminus of the catalytic subunit of cyclic AMP-dependent protein kinase and the calcium-binding β-subunit of calcineurin (41, 42). Many other proteins regulating key signaling pathways, including the Src family non-receptor protein tyrosine kinases (43, 44) and G protein (45, 46) were shown to be myristoylated. These proteins contain the N-terminal sequence Met–Gly– and often have a Ser/Thr/Cys at position 6 (40, 47). Myristoylation can happen cotranslationally following the removal of the initiator methionine residue (48). Although myristoylation is required for membrane targeting of many proteins, it is not sufficient for stable membrane anchoring due to its weak hydrophobic nature and often needs subsequent lipid modifications (49–51). Additionally, myristoylation can also happen posttranslationally during apoptosis following the caspase cleavage of substrate proteins that exposes an internal glycine (52–55). Many apopotic proteins, including Bid, gelsolin, and p21-activated kinase 2, require posttranslational myristoylation following caspase cleavage for proper subcellular localization and subsequent functions (52–54).

Acylation is the addition of various fatty acids, such as palmitic acid, oleic acid, and stearic acid, on different amino acid residues (56–58). One of the best studied types of acylation is S-palmitoylation, which is characterized by the reversible addition of the 16-carbon saturated palmitic acid to Cys residues via stable thioether bonds (58, 59). Despite the presence of multiple algorithms to predict palmitoylation sites, there is no validated consensus sequence for palmitoylation (60–62). One key aspect of palmitoylation is that its reversibility allows for a palmitoylation and depalmitoylation cycle that regulates the posttranslational trafficking and functions of target proteins, such as H- and N-Ras (63). Palmitoylation can also occur on large transmembrane proteins, including ion channels and G protein-coupled receptors (64–68). The roles of transmembrane protein palmitoylation include regulation of channel maturation/quality control and association with lipid rafts (69–72).

Prenylation is the addition of the 15-carbon farnesyl or the 20-carbon geranylgeranyl isoprenoid lipid on cysteine residues via stable thioether bonds (73, 74). It requires a C-terminal CAAX motif, where C is a cysteine, A is aliphatic amino acids, and X can be any amino acid. Prenylation at the CAAX motif is found in many proteins, including mammalian Ras proteins (75, 76). In addition to its role in membrane association, prenylation can also regulate protein–protein interaction and subcellular distribution of the modified targets (77, 78).

ENZYMATIC REGULATORS OF PROTEIN LIPIDATION

Protein lipidation is catalyzed by specific enzymatic regulators crucial for the addition (and removal in the case of S-acylation) of the lipid moieties. The GPI precursor, formed in ER lumen, is transferred to target proteins by GPI transamidase, a membrane-bound multi-subunit enzyme (79–82). GPI transamidase cleaves the C-terminal signal peptide of the target proteins, and forms an enzyme-substrate intermediate, allowing the nucleophilic attack by the terminal amino group of preformed GPI (83). On the other hand, cholesterylation of the N-terminal signaling domain of Hedgehog seems to be only dependent on the presence of the C-terminal catalytic domain, suggesting that this process is autocatalytic (35).
N-myristoylation is catalyzed by N-myristoyltransferases (NMTs) (84–86). NMTs bind first to myristoyl-CoA and then to the peptide, followed by a direct nuclophilic addition–elimination reaction and subsequent release of CoA and the myristoylated peptide (87). Studies in various tissues and cell types have shown that the enzymatic activity of NMTs is predominantly distributed in the cytosolic fraction (88–91). Some studies have shown that low levels of myristoyl-CoA may be rate limiting for NMT activity (92, 93). However, the transcriptional upregulation of NMT under pathological conditions suggests that this might not always be the case (94).

Protein S-acylation is regulated by palmitoyl acyltransferases (PATs) that catalyze lipid attachment to cysteine residues and acyl-protein thioesterases (APTIs), which remove them. There are 23 PATs in mammals, all of which share a common DHHC (Asp–His–His–Cys) motif within a cysteine-rich domain (95, 96). PATs are polytopic membrane proteins that are localized to distinct subcellular compartments, primarily the Golgi apparatus and the plasma membrane (97). Some DHHC enzymes show preference for certain types of proteins (i.e., transmembrane proteins), and in some cases the same substrates can be palmitoylated by multiple DHHC enzymes (95, 98–100). Compared to the large amount of studies on PATs, thioesterases are relatively poorly characterized. Two protein palmitoyl thioesterases (PPT1/2) and two APTs (APTI/2) have been identified (101–104). PPTs predominantly localize to the lysosomal lumen and are involved in depalmitoylation during protein degradation, whereas APTs have cytosolic localization and are shown to depalmitoylate and recycle signaling proteins such as Ras and growth associate protein (GAP-43) from the plasma membrane back to Golgi (102–105). Very recently, two independent groups found that the α/β hydrolase fold (ABHD) family of serine hydrolases is potent depalmitoylating enzymes for select substrates, including PSD-95 and N-Ras (106, 107).

Prenylation is catalyzed by the enzymes farnesyltransferase (FTase), geranylgeranyltransferase I (GGTase 1), and Rab geranylgeranyltransferase (GGTase 2) (108–110). The prenylating (FTase), geranylgeranyltransferase I (GGTase 1), and Rab geranylgeranyltransferase (GGTase 2) (108–110). The prenylating enzymes localize to the cytosol and conjugate isoprenoids generated from mevalonate/HMG-CoA reductase pathway to target proteins. Specifically, the isoprenoids farnesyl and geranylgeranyl are transferred to a C-terminal CAAX motif on target proteins. Unlike FTase and GGTase 1, geranylgeranyl transfer by GGTase 2 requires the co-factor REP (Rab escort protein) (111). GGTase 1 and FTase generally have high specificity for the protein targets, depending on the X residue (112–114). However, they can act on each other's substrates. One example is that K-Ras and N-Ras, usually targets of FTase, can be geranylgeranylated in Ras-mutant human cancer cells treated with FTase inhibitors (115, 116). Removal of the –AAX tripeptide and methylation of the prenyl-cysteine, catalyzed by the ER membrane proteins RCE1 and ICMT, respectively, are two post-prenylation steps required for maturation of prenylated proteins (117–119).

LIPIDATION AND APOPTOTIC CALCIUM RELEASE

As noted in the Section “Introduction,” calcium regulates many cellular processes and plays a prominent role in cell death signaling. Both intrinsic (12, 120–122) and extrinsic (18–21, 123) apoptotic stimuli lead to cytosolic, nuclear, and mitochondrial calcium elevations, which contribute to the execution of the apoptotic program. It is well known that many proteins that regulate cytosolic calcium and apoptotic calcium release are also subject to lipidation including pumps (124), exchangers (125), channels (126), and regulatory proteins (127). Perhaps best studied is protein palmitoylation due to the proliferation of proteomic studies using acyl-biotin exchange (ABE) to identify fatty-acylated proteins (128). Proteins are often assumed to be palmitoylated in ABE experiments, but clearly other lipids may also be conjugated with a thioester bond to target protein cysteine residues (129).

In order to understand how palmitoylation contributes to apoptotic calcium signaling, it is worthwhile to considering the kinetics of the enzymatic machinery. In many proteins which do not have a transmembrane domain, N-terminal myristoylation precedes palmitoylation (130). Over 15 years ago, it was shown that β-adrenergic stimulation resulted in rapid palmitoylation (130, 131) or depalmitoylation (132) of Gαs. The model was based upon availability of free Gαs dissociation from the βγ subunits allowed putative palmitoylating and depalmitoylating enzymes access to the protein. Under this model, regulated palmitoylation and depalmitoylation cycles would be restricted to proteins which, under physiologic conditions, had regulated exposure of potential palmitoylation sites. Indeed, Gαs is one of only a very select few proteins in which direct palmitoylation within minutes of cellular stimulation has been conclusively determined although other proteins such as PSD-95, eNOS, and Ras clearly have much higher turnover of palmitoyl groups in response to various stimuli, suggesting rapid cycling of lipid (133).

Many proteins associated with cell death signaling are modified by lipids. Our group (18) and others (134–137) have investigated the role of palmitoylation in regulating death receptor signaling. We found that components of the T cell receptor (TCR) complex, such as Lck, Zap-70, PLC-γ1 and other TCR components were required for apoptotic calcium release in T cells after engagement of the Fas receptor with Fas ligand (19). The Src kinase Lck is myristoylated and doubly palmitoylated on the N-terminus, and this regulates plasma membrane localization and partitioning into lipid rafts. It is known that the Fas macromolecular complex assembles and signals in lipid rafts (138), so we asked whether Fas stimulation resulted in rapid palmitoylation of Lck. Fas stimulation resulted in a rapid increase in de novo palmitoylation of Lck detectable within minutes of Fas receptor engagement (18). Unexpectedly, the lipid moiety was removed from Lck almost as quickly, and Lck palmitoylation was almost undetectable by 30 min. These kinetics closely matched the phosphorylation and de-phosphorylation of canonical TCR components, such as Zap-70 and PLC-γ1 (18). These findings strongly suggest that the enzymatic mechanisms controlling stimulus-dependent protein palmitoylation and depalmitoylation likely are directly activated by components of the Fas signaling pathway. In the case of Fas signaling, the plasma membrane-localized DHHC21 protein is essential (18). Presumably Fas stimulation rapidly activates DHHC21 and a yet unidentified acyl-protein thioesterase to regulate Lck lipidation.

Frontiers in Oncology | www.frontiersin.org June 2017 | Volume 7 | Article 138
Lipidation and Calcium-Dependent Tumor Progression

In addition to regulating cell death signaling, calcium is also a key factor in proliferative and pro-metastatic signaling. In many types of cancer, alterations in expression, localization, and functions of calcium pumps and channels are observed, resulting in ectopic calcium flux across the plasma membrane or intracellular organelles (154). Studies in prostate (155–157), colon (158), breast (159, 160), and ovarian (161) cancers demonstrated that multiple transient receptor potential (TRP) channels, a family of calcium permeable ion channels, are overexpressed and regulate proliferation in primary tumors. Additionally, TRP channels contribute to tumor cell migration by generating localized calcium signals that guide the direction of movement toward growth factors (162, 163). Another calcium-dependent pathway related to metastasis is the store-operated calcium entry (SOCE) mediated by ER calcium sensor stromal interaction molecule 1 and the plasma membrane calcium channel ORAI1. This pathway has been extensively studied in breast cancer, where it accelerates the turnover rate of focal adhesions by reorganizing the actin cytoskeleton in a Ras and Rac-dependent manner (164). The SOCE pathway is activated by G-protein coupled receptor-mediated activation of the phospholipase C-IP3R pathway, which results in calcium release from ER stores and contributes to metastasis by promoting actin assembly (165, 166).

Many proteins involved in the calcium-dependent proliferative and pro-metastatic pathways are regulated by lipidation (Figure 2). The Wnt signaling pathway is an extensively studied mediator of tumor progression. Immature Wnt proteins (with the exception of WntD) require N-glycosylation and lipidation, specifically palmitate/palmitoleic acylation on conserved C77/C93 and S209/S24 residues for proper secretion and subsequent recognition by Frizzled (Fzd) receptors (167–169). In addition to canonical β-catenin-dependent Wnt signaling, Wnt ligands such as Wnt5a bind Fzd receptors and activate PLC via G-proteins leading to IP3R-mediated increase in cytosolic calcium levels (170). Activation of the non-canonical Wnt/Ca2+ pathway has been implicated in multiple cancer types, including melanoma where it promotes invasion by initiating epithelial-to-mesenchymal transition (171, 172). Increasing in vitro data indicate that Wnt lipidation at the two sites is differentially regulated and activates distinct canonical versus non-canonical pathways (173), but their exact functions in different types of cancers remain unclear. Therefore, further characterization of Wnt lipidation and the mechanisms through which they regulate calcium-dependent proliferation and migration is necessary.

Another class of lipidated proteins that are involved in calcium-mediated cancer progression is the small GTPases,
including Ras, Rho and Rac, which are known regulators of the calcium-dependent cytoskeletal rearrangement (164, 188). All three major mammalian isoforms of Ras (H-Ras, N-Ras and K-Ras4B) are farnesylated at the C-terminus (189). Ras farnesylation is required for membrane localization and activation of downstream pathways to induce tumorigenesis (190). Additionally, H-Ras and N-Ras are palmitoylated in the Golgi and subsequently localized to the plasma membrane, where it can be depalmitoylated and cycled back to the Golgi, leading to spatial and temporal control of Ras signaling (191). Rho and Rac are geranylgeranylated near the C-terminus and blocking geranylgeranylation leads to reduced cancer cell proliferation and migration (186, 192).

LIPIDATION AS A DRUG TARGET IN CANCER

Many oncogenic proteins require lipidation for proper function. Indeed, Ras is one of the most commonly mutated proteins in cancer (193). As such, the enzymes that mediate these modifications are excellent targets for drug development. Inhibitors of prenylation enzymes GGTase 1 and FTase are being developed to treat cancer. The GGTase 1 inhibitor PTX-200 (GGTI-2418) is being tested in clinical trials by Prescient Therapeutics for breast cancer and multiple myeloma; however, the Phase I trial data has not been published. Many more drugs have been developed which target FTases. There have been several clinical trials conducted with FTase inhibitors, such as lonafarnib, and tipifarnib (194); however, the results have been mostly disappointing (195). Interestingly, positive clinical responses were not correlated to Ras mutation status, suggesting that the drugs target other pathways or substrates (196). Drugs targeting the post-prenylation processing enzymes RCE1 and ICMT are in pre-clinical development (195, 197–199).

As mentioned above, many oncogenic proteins require palmitoylation for proper function, including Ras and Src proteins. There are very few pharmacological tools to target the DHHC enzymes; however, the irreversible lipid-based inhibitor 2-bromopalmitate (200) and several non-lipid reversible...
inhibitors (201) are widely used as research tools to probe the role of palmitoylation in biological processes. There are no drugs sufficiently well developed to initiate clinical trials, most likely due to the fact that selective DHHC enzyme inhibitors would likely need to be developed. As there are so many enzymes with potentially overlapping substrates, this seems to be a very daunting task. However, new targeted screening strategies for therapeutically relevant substrates, such as Ras, show great promise (202).

As mentioned above, statins are potent inhibitors of the mevalonate pathway and thus may be an attractive target for further development as anti-cancer agents. Indeed, several prospective and retrospective studies have shown that statins have activity against a wide variety of cancers (203–209). There are a multitude of prospective clinical trials currently underway to evaluate the potential of statins as anti-cancer therapeutics. Indeed, several statins are now being considered for additional development as anti-cancer agents. As there are so many enzymes with potentially overlapping substrates, this seems to be a very daunting task. However, new targeted screening strategies for therapeutically relevant substrates, such as Ras, show great promise (202).

The content of this review was conceived by DB and written with equal effort by JC and DB.

FUNDING

This work is supported by National Institutes of Health (NIH) grant R01GM081685 (DB).
44. Linder ME, Burr JG. Nonmyristoylated p60v-src fails to phosphorylate.

43. Buss JE, Sefton BM. Myristic acid, a rare fatty acid, is the lipid attached to the.

42. Wilcox C, Hu JS, Olson EN. Acylation of proteins with myristic acid occurs cotranslationally.

41. Carr SA, Biemann K, Shoji S, Parmelee DC, Titani K. n-Tetradecanoyl is.

40. Xue Y, Chen H, Jin C, Sun Z, Yao X. NBA-Palm: prediction of palmitoylated proteins.

39. Utsumi T, Sakurai N, Nakano K, Ishisaka R. C-terminal 15 kDa fragment of.

38. Fan CM, Porter JA, Chiang C, Chang DT, Beachy PA, Tessier-Lavigne M. The.

37. Porter JA, von Kessler DP, Ekker SC, Young KE, Lee JJ, Moses K, et al. The.

36. Wilcox C, Hu JS, Olson EN. Acylation of proteins with myristic acid occurs cotranslationally.

35. Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog.

34. Fujita M, Kinoshita T. Structural remodeling of GPI anchors during bio-

33. Porter JA, Y oung KE, Beachy PA. Cholesterol modification of hedgehog.

32. Chatterjee S, Mayor S. The GPI-anchor and protein sorting.

31. Takeda J, Kinoshita T. GPI-anchor biosynthesis.

30. Takeda J, Kinoshita T. GPI-anchor biosynthesis.

29. Takeda J, Kinoshita T. GPI-anchor biosynthesis.

28. Paulick MG, Bertozzi CR. The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry (2008) 47(27):6991–7000. doi:10.1021/bi8006324

27. Englund PT. The structure and biosynthesis of glycosylphosphatidylinositol.

26. Thomas JR, Dwek RA, Rademacher TW. Structure, biosynthesis, and func-

25. Carr SA, Biemann K, Shoji S, Parmelee DC, Titani K. n-Tetradecanoyl is.

24. Wilcox C, Hu JS, Olson EN. Acylation of proteins with myristic acid occurs cotranslationally.

23. Englund PT. The structure and biosynthesis of glycosylphosphatidylinositol.

22. Caras IW, Weddell GN, Davitz MA, Nussenzwieg V, Martin DW Jr. Signal for attachment of a phospholipid membrane anchor in decay accelerating factor. Science (1987) 238(4831):1280–3. doi:10.1126/science.2446389

21. Takeda J, Kinoshita T. GPI-anchor biosynthesis. Trends Biochem Sci (1995) 20(9):367–71. doi:10.1016/S0968-0004(00)08707-7

20. Chatterjee S, Mayor S. The GPI-anchor and protein sorting. Cell Mol Life Sci (2001) 58(4):1969–87. doi:10.1007/PL00008331

19. Fergusson MAJ, Kinoshita T, Hart GW. Glycosylphosphatidylinositol anchors.

18. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al., editors. Essentials of Glycobiology. NY: Cold Spring Harbor (2009).

17. Fujita M, Kinoshita T. Structural remodeling of GPI anchors during bio-

16. Porter JA, von Kessler DP, Ekker SC, Young KE, Lee JJ, Moses K, et al. The.

15. Nusskn-Vallejo C, Wieschaus E. Mutations affecting segment number and
terminal cleavage product of human gelsolin.

14. Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog.

13. Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog.

12. Fujita M, Kinoshita T. Structural remodeling of GPI anchors during bio-

11. Fujita M, Kinoshita T. Structural remodeling of GPI anchors during bio-

10. Wilcox C, Hu JS, Olson EN. Acylation of proteins with myristic acid occurs cotranslationally.

9. Porter JA, von Kessler DP, Ekker SC, Young KE, Lee JJ, Moses K, et al. The.

8. Fujita M, Kinoshita T. Structural remodeling of GPI anchors during bio-

7. Fujita M, Kinoshita T. Structural remodeling of GPI anchors during bio-

6. Wilcox C, Hu JS, Olson EN. Acylation of proteins with myristic acid occurs cotranslationally.

5. Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog.

4. Wilcox C, Hu JS, Olson EN. Acylation of proteins with myristic acid occurs cotranslationally.

3. Fujita M, Kinoshita T. Structural remodeling of GPI anchors during bio-

2. Fujita M, Kinoshita T. Structural remodeling of GPI anchors during bio-

1. Fujita M, Kinoshita T. Structural remodeling of GPI anchors during bio-

70. Zheng H, Chu J, Qiu Y, Loh HH, Law PY. Agonist-selective signaling is determined by the receptor location within the membrane domains. Proc Natl Acad Sci U S A (2008) 105(27):9421–6. doi: 10.1073/pnas.0802253105

71. Gononod P, Delarasse C, Auger R, Benhoudh K, Prigent M, Catif MH, et al. Palmitoylation of the P2X7 receptor, an ATP-gated channel, controls its expression and association with lipid rafts. FASEB J (2009) 23(3):795–805. doi: 10.1096/fj.08-114637

72. Hayashi T, Thomas GM, Huganir RL. Dual palmitoylation of NR2 sub-units regulates NMDA receptor trafficking. Neuron (2009) 64(2):213–26. doi: 10.1016/j.neuron.2009.08.017

73. Kamiya Y, Sakurai A, Tamura S, Takahashi N. Structure of rhodotorucine containing Gaa1p, Gpi8p, Conzelmann A. Yeast of a completed GPI anchor onto proteins. Science (1995) 272(43):27456–63. doi: 10.1074/jbc.272.43.27456

74. Benghezal M, Lipke PN, Conzelmann A. Identification of six complemen- toruloides of a completed GPI anchor onto proteins. Biochim Biophys Acta (2002) 1550(3):365–56. doi: 10.1016/S0006-291X(02)008670-4

75. Wang TJ, Gastonguay AJ, Lorimer EL, Kuhnmuench JR, Li R, Fields AP, et al. Identification of PSD-95 palmitoylating enzymes. Neuron (2004) 46(6):987–96. doi: 10.1016/j.neuron.2004.12.005

76. Casey PJ, Solski PA, Der CJ, Buss JE. p21ras is modified by a farnesyl domain-containing proteins. J Biol Chem (1997) 272(3):15830–7. doi: 10.1074/jbc.272.3.15830

77. Ohno Y, Igarashi Y. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim Biophys Acta (2006) 1764(1):474–83. doi: 10.1016/j.bbalip.2005.10.002

78. Mukai K, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M. Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. J Biol Chem (2006) 281(3):369–77. doi: 10.1074/jbc.M510061200

79. Camp LA, Hofmann SL. Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras. J Biol Chem (1993) 268(30):22566–74.

80. McIlhinney RA, Hofmann SL. Molecular cloning and expression of palmitoyl-protein thioesterase 2 (PPT2), a homolog of lysosomal palmitoyl-protein thioesterase with a distinct substrate specificity. J Biol Chem (1997) 272(43):27456–63. doi: 10.1074/jbc.272.43.27456

81. Donato AJ, Gilman AG. A cytoplasmic acyl-protein thioesterase that regulates N-Ras palmitate turnover and subcellular localization. Elife (2015) 4:e11306. doi: 10.7554/eLife.11306

82. Gibb JB. Ras C-terminal processing enzymes – new drug targets? Cell (1991) 65(1):1–4. doi: 10.1016/0092-8674(91)90352-Y

83. Yoshida Y, Kawata M, Katayama M, Horiuchi H, Kita Y, Takai Y. A geranylgeranyltransferase for rhoA p21 distinct from the farnesyltransferase for ras p21. Biochem Biophys Res Commun (1991) 175(2):720–8. doi: 10.1016/0006-291X(91)91625-M

84. Maurer-Stroh S, Koranda M, Benetka W, Schneider G, Sirotta FL, Eisenhaber F. Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comput Biol (2007) 3(4):e66. doi: 10.1371/journal.pcbi.0030066

85. Andres DA, Seabra MC, Brown MS, Armstrong SA, Smeland TE, Cremers FP. et al. cDNA cloning of component A of Rab geranylgeranyl transferase and
demonstration of its role as a Rab escort protein. Cell (1993) 73(6):1091–9. doi:10.1016/0092-8674(93)90639-8
112. Taylor JS, Reid TS, Terry KL, Casey PJ, Beese LS. Structure of mammalian protein geranylgeranylationase type-I. EMBO J (2003) 22(22):5963–74. doi:10.1093/emboj/cdg571
113. Hartman HL, Hicks KA, Fierke CA. Peptide specificity of protein prenyltransferases: substrate identification, regulation, and disease interventions. Curr Opin Chem Biol (2012) 16(5–6):544–52. doi:10.1016/j.cbpa.2012.10.015
114. Orrenius S, Gogvadze V, Zhivotovsky B. Calcium and mitochondria in the regulation of cell death. Nat Rev Mol Cell Biol (2003) 5(12):1051–61. doi:10.1038/ncb1063
115. Dai Q, Choy E, Chiu V, Romano J, Slivka SR, Steitz SA, et al. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. Cell Calcium (2003) 33(12):1051–66. doi:10.1016/j.bpj.2015.01.137
116. Hartman HL, Fierke CA. Recent advances in protein prenyltransferases: substrate identification, regulation, and disease interventions. Curr Opin Chem Biol (2012) 16(5–6):544–52. doi:10.1016/j.cbpa.2012.10.015
117. Ahearn IM, Haigis K, Bar-Sagi D, Philips MR. Regulating the regulator: post-translational modification of Ras. Nat Rev Mol Cell Biol (2011) 13(1):39–51. doi:10.1038/nrm3255
118. Taylor JS, Reid TS, Terry KL, Casey PJ, Beese LS. Molecular basis of fatty acid selectivity in the dHHC family of S-acyltransferases revealed by click chemistry. Proc Natl Acad Sci U S A (2017) 114(8):E1365–74. doi:10.1073/pnas.1621254114
119. Munby SM, Kleuss C, Gilman AG. Receptor regulation of G-protein palmitoylation. Proc Natl Acad Sci U S A (1994) 91(7):2800–4. doi:10.1073/pnas.91.7.2800
case-control study. *Am J Obstet Gynecol* (2016) 215(6):750.e1–8. doi:10.1016/j.
ajog.2016.06.036

151. Nutt, J. A., Sosnowski, H., Wallwiener D. Inhibitory effect of statins on the
proliferation of human breast cancer cells. *Int J Clin Pharmacol Ther* (2004)
42(12):695–700. doi:10.5414/CPPI42695

152. Martirosyan A, Clendening JW, Goard CA, Penn LZ. Lovastatin induces apop-
tosis of ovarian cancer cells and synergizes with doxorubicin: potential ther-
apeutic relevance. *BMC Cancer* (2010) 10:103. doi:10.1186/1471-2407-10-103

153. Cho SJ, Kim JS, Kim JM, Lee JY, Jung HC, Song IS. Simvastatin induces apop-
tosis in human colon cancer cells and in tumor xenografts, and attenuates
colitis-associated colon cancer in mice. *Int J Cancer* (2008) 123(4):951–7.
doi:10.1002/ijc.23593

154. Monteith GR, Davis FM, Roberts-Thomson SJ. Calcium channels and pumps in
cancer: changes and consequences. *J Biol Chem* (2012) 287(38):31666–73.
doi:10.1074/jbc.R112.343061

155. Tsavaler L, Shapero MH, Morkowski S, Laus R. Trp-p8, a novel prostate-spe-
cific gene, is up-regulated in prostate cancer and other malignancies and
shares high homology with transient receptor potential calcium channel
proteins. *Cancer Res* (2001) 61(9):3760–9. Available from: http://cancerres.
aacrjournals.org/content/61/9/3760.long

156. Prevarka T, Midaux G, Thebaud S, Skryma R. Differential role of TRP channels in prostate cancer. *Biochem Soc Trans* (2007) 35(Pt 1):133–5. doi:10.1042/BST035133

157. Cifone G, Varga A, Grumezescu AM, Martincic R, Töth BL, Kovács I, et al. Increased
expressions of cannabinoid receptor-1 and transient receptor potential
calcium-1 in human prostate carcinoma. *J Cancer Res Clin Oncol* (2009)
135(4):507–14. doi:10.1007/s00432-008-0482-3

158. Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM, Hediger MA, et al. Inhibitory
effect of statins on the expression of cannabinoid receptor-1 and transient recep-
tor potential calcium channel proteins. *Calcium Selective Ion Channel, CaT1, is
Apically Localized in Gastrointestinal Tract Epithelia and is Aberrantly Expressed in
Human Malignancies*. *J Biol Chem* (2002) 277(12):9084–9092. doi:10.1074/jbc.
M101318200

159. Muck AO, Seeger H, Wallwiener D. Inhibitory effect of statins on the expres-
sion of cannabinoid receptor-1 and transient receptor potential calcium
channel proteins. *Calcium-selective ion channel, CaT1, is apically localized in
gastrointestinal tract epithelia and is aberrantly expressed in human malignancies.
Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal
tract epithelia and is aberrantly expressed in human malignancies.* *Cancer Res*
(2002) 62(12):3457–63. doi:10.1158/0008-5472.CAN-01-2452

160. Dhennin-Duthille I, Gautier M, Faouzi M, Guilbert A, Brevet M, Galli LM, Burrow.
S224 residues has overlapping and distinct consequences. *Plos One* (2011)
6(10):e26636. doi:10.1371/journal.pone.0026636

161. Medrano EE, Wnt5a and PKC, a deadly partnership involved in melanoma
invasion. *Pigment Cell Res* (2007) 20(4):258–9. doi:10.1111/j.1600-0749.
2007.00383.x

162. Yang S, Zhang JJ, Huang XY. Orai1 and STIM1 are critical for breast tumor
growth and tumorigenicity. *Cancer Res* (2009) 69(24):9217–25. doi:10.1158.
1078-0437.CRR-09-1544

163. Fiorio Pla A, Ong HL, Cheng KT, Brossa A, Bussolati B, Lockwich T, Yang S, Zhang JJ, Huang XY. Orai1 and STIM1 are critical for breast tumor
164. Yin S, Chidonic acid-activated actin remodeling.

165. Peng HH, Hodgson L, Henderson AJ, Dong C. Involvement of phospholipase
A2 in the release of cyclooxygenase 2 (COX-2) and prostaglandin E2 (PGE2) in
human breast cancer cells. *Int J Clin Pharmacol Ther* (2008) 46(10):485–92.
doi:10.2140/ijcpt.2008.46.485

166. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, et al.
Wnt signaling regulates bladder cancer growth and tumorigenicity. *Cancer Res*
(2012) 72(17):4449–58. doi:10.1158/0008-5472.CAN-11-4123

167. Burrus LW, McMahon AP. Biochemical analysis of murine Wnt proteins
continues. *Future Med Chem* (2011) 3(14):1787–808. doi:10.4155/fmc.11.
121

168. Sjogren AK, Andersson KM, Karlsson C, Ibrahim MX, Andersson KM, Dissanayake SK, Weeraratna AT. Detecting PKC phosphorylation as part of
the Wnt/calcium pathway in cutaneous melanoma. *Methods Mol Biol* (2008)
468:157–72. doi:10.1007/978-1-59745-249-6_12

169. Baines AT, Xu D, Der CJ. Inhibition of Ras for cancer treatment: the search
for new therapeutic targets. *Oncogene* (2003) 22(15):2016–21. doi:10.1080.
0261594031000147733

170. Siisarski DC, Yang-Snyder J, Busa WB, Moon RT. Modulation of embryonic intracellular Ca2+ signaling by Wnt-5a. *Dev Biol* (1997) 182(1):114–20.
doi:10.1006/dbio.1996.3847

171. Zunich SM, Douglas T, Valdovinos M, Chang T, Bushman V, Walterhouse D, et al. Paracrine sonic hedgehog signalling by prostate cancer cells induces osteoblast differentiation. *Mol Cancer* (2009) 8:12.
doi:10.1186/1476-4598-8-12

172. Sims-Mourtada J, Yang D, Tоворосова I, Larson R, Smith D, Tsao N, et al.
Detection of canonical hedgehog signaling in breast cancer by 131-i-labeled
derivatives of the sonic hedgehog protein. *J Biomed Biotechnol* (2012)
2012:639562. doi:10.1155/2012/639562

173. Fei DL, Sanchez-Mejias A, Wang Z, Flavory C, Long J, Singh S, et al. Hedgehog
signaling regulates bladder cancer growth and tumorigenicity. *Cancer Res*
(2012) 72(17):4449–58. doi:10.1158/0008-5472.CAN-11-4123

174. Guo Z, Linn JF, Wu G, Anzick SL, Eisenberger CF, Halachmi S, et al. CDC91L1
(Pig-U) is a newly discovered oncogene in human bladder cancer. *Nat Med*
(2004) 10(4):374–81. doi:10.1038/nm1004-1139b

175. Chen and Boehning
189. Gelb MH. Protein prenylation, et cetera: signal transduction in two dimensions. Science (1997) 275(5307):1750–1. doi:10.1126/science.275.5307.1750

190. Sun J, Qian Y, Hamilton AD, Sebti SM. Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene (1998) 16(11):1467–73. doi:10.1038/sj.onc.1201656

191. Rocks O, Peyker A, Kahms M, Vermeer PJ, Koerner C, Lumbierres M, et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science (2005) 307(5716):1746–52. doi:10.1126/science.1105654

192. Xiao H, Qin X, Ping D, Zuo K. Inhibition of Rho and Rac geranylgeranylation by atorvastatin is critical for preservation of endothelial junction integrity. PLoS One (2013) 8(3):e59233. doi:10.1371/journal.pone.0059233

193. Montalvo SK, Li L, Westover KD. Rationale for RAS mutation-tailored therapies. Future Oncol (2017) 13(3):263–71. doi:10.2217/fon-2016-0363

194. Moorthy NS, Sousa SF, Ramos MJ, Fernandes PA. Farnesyltransferase inhibitors: a comprehensive review based on quantitative structural analysis. Curr Med Chem (2013) 20(38):4888–923. doi:10.2174/0929867313206660262

195. Berndt N, Hamilton AD, Sebti SM. Targeting protein prenylation for cancer therapy. Nat Rev Cancer (2011) 11(11):775–91. doi:10.1038/nrc3151

196. Rocks O, Peyker A, Kahms M, Vermeer PJ, Koerner C, Lumbierres M, et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science (2005) 307(5716):1746–52. doi:10.1126/science.1105654

197. Winter-Vann AM, Casey PJ, Koerner C, Lumbierres M, et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science (2005) 307(5716):1746–52. doi:10.1126/science.1105654

198. Mohammed I, Hampton SE, Ashall L, Hildebrandt ER, Kutlik RA, Gelb MH. Protein prenylation, et cetera: signal transduction in two dimensions. Science (1997) 275(5307):1750–1. doi:10.1126/science.275.5307.1750

199. Lau HY, Ramanujulu PM, Guo D, Yang T, Wirawan M, Casey PJ, et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science (2005) 307(5716):1746–52. doi:10.1126/science.1105654

200. Parks O, Peyker A, Kahms M, Vermeer PJ, Koerner C, Lumbierres M, et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science (2005) 307(5716):1746–52. doi:10.1126/science.1105654

201. Rocks O, Peyker A, Kahms M, Vermeer PJ, Koerner C, Lumbierres M, et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science (2005) 307(5716):1746–52. doi:10.1126/science.1105654

202. Ganesan L, Shieh P, Bertozzi CR, Levental I. Click-chemistry based high throughput screening platform for modulators of Ras palmitoylation. Sci Rep (2017) 7:41147. doi:10.1038/srep41147

203. Hung MS, Chen IC, Lee CP, Huang RF, Chen PC, Tsai YH, et al. Statin improves survival in patients with EGFR-TKI lung cancer: a nationwide population-based study. PLoS One (2017) 12(2):e0171137. doi:10.1371/journal.pone.0171137

204. Wang A, Aragaki AK, Tang YJ, Kurian AW, Manson JE, Chlebowski RT, et al. Statin use and all-cancer survival: prospective results from the Women’s Health Initiative. Br J Cancer (2016) 115(1):129–35. doi:10.1038/bjc.2016.149

205. Habib M, Wroblewski K, Bradaric M, Ismael N, Yamada SD, Litchfield L, et al. Statin therapy is associated with improved survival in patients with non-seros-papillary epithelial ovarian cancer: a retrospective cohort analysis. PLoS One (2014) 9(8):e104521. doi:10.1371/journal.pone.0104521

206. Nayan M, Punjani N, Juurlink DN, Finelli A, Austin PC, Kulkarni GS, et al. Statin use and kidney cancer survival outcomes: a systematic review and meta-analysis. Cancer Treat Rev (2017) 52:105–16. doi:10.1016/j.ctrv.2016.11.009

207. Nevdadunsky NS, Van Arsdale A, Strickler HD, Spozak LA, Moadel A, Kaur G, et al. Association between statin use and endometrial cancer survival. Obstet Gynecol (2015) 126(1):144–50. doi:10.1097/AOG.0000000000000926

208. Kozak MM, Anderson EM, von Eyben R, Pai JS, Poultides GA, Visser BC, et al. Statin and metformin use prolongs survival in patients with resectable pancreatic cancer. Pancreas (2016) 45(1):64–70. doi:10.1097/MPA.0000000000000470

209. Lee HS, Lee SH, Lee HJ, Chung MJ, Park JY, Park SW, et al. Statin use and its impact on survival in pancreatic cancer patients. Medicine (Baltimore) (2016) 95(19):e3607. doi:10.1097/MD.0000000000003607

210. Ramkumar S, Raghunath A, Raghunath S. Statin therapy: review of safety and potential side effects. Acta Cardiol Sin (2016) 32(6):631–9. doi:10.6515/ACS201606611A

Conflict of Interest Statement: The authors declare that this review was written in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Chen and Boehning. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.