Calibration of Pre-trained Transformers

Shrey Desai and Greg Durrett
Department of Computer Science
The University of Texas at Austin
{shreyd, gdurrett}@cs.utexas.edu

Abstract

Pre-trained Transformers are now ubiquitous in natural language processing, but despite their high end-task performance, little is known empirically about whether they are calibrated. Specifically, do these models’ posterior probabilities provide an accurate empirical measure of how likely the model is to be correct on a given example? We focus on BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) in this work, and analyze their calibration across three tasks: natural language inference, paraphrase detection, and commonsense reasoning. For each task, we consider in-domain as well as challenging out-of-domain settings, where models face more examples they should be uncertain about. We show that: (1) when used out-of-the-box, pre-trained models are calibrated in-domain, and compared to baselines, their calibration error out-of-domain can be as much as 3.5 \times lower; (2) temperature scaling is effective at further reducing calibration error in-domain, and using label smoothing to deliberately increase empirical uncertainty helps calibrate posteriors out-of-domain.

1 Introduction

Neural networks have seen wide adoption but are frequently criticized for being black boxes, offering little insight as to why predictions are made (Benitez et al., 1997; Dayhoff and DeLeo, 2001; Castelvecchi, 2016) and making it difficult to diagnose errors at test-time. These properties are particularly exhibited by pre-trained Transformer models (Devlin et al., 2019; Liu et al., 2019; Yang et al., 2019), which dominate benchmark tasks like SuperGLUE (Wang et al., 2019; Kovaleva et al., 2019). One step towards understanding whether these models can be trusted is by analyzing whether they are calibrated (Raftery et al., 2005; Jiang et al., 2012; Kendall and Gal, 2017): how aligned their posterior probabilities are with empirical likelihoods (Brier, 1950; Guo et al., 2017). If a model assigns 70% probability to an event, the event should occur 70% of the time if the model is calibrated. Although the model’s mechanism itself may be uninterpretable, a calibrated model at least gives us a signal that it “knows what it doesn’t know,” which can make these models easier to deploy in practice (Jiang et al., 2012).

In this work, we evaluate the calibration of two pre-trained models, BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019), on three tasks: natural language inference (Bowman et al., 2015), paraphrase detection (Iyer et al., 2017), and commonsense reasoning (Zellers et al., 2018). These tasks represent standard evaluation settings for pre-trained models, and critically, challenging out-of-domain test datasets are available for each. Such test data allows us to measure calibration in more realistic settings where samples stem from a dissimilar input distribution, which is exactly the scenario where we hope a well-calibrated model would avoid making confident yet incorrect predictions.

Our experiments yield several key results. First, even when used out-of-the-box, pre-trained models are calibrated in-domain. In out-of-domain settings, where non-pre-trained models like ESIM (Chen et al., 2017) are over-confident, we find that pre-trained models are significantly better calibrated. Second, we show that temperature scaling (Guo et al., 2017), multiplying non-normalized logits by a single scalar hyperparameter, is widely effective at improving in-domain calibration. Finally, we show that regularizing the model to be less certain during training can beneficially “smooth” probabilities, improving out-of-domain calibration.

1Code and datasets available at https://github.com/shreydesai/calibration
2 Related Work

Calibration has been well-studied in statistical machine learning, including applications in forecasting (Brier, 1950; Raftery et al., 2005; Gneiting et al., 2007; Palmer et al., 2008), medicine (Yang and Thompson, 2010; Jiang et al., 2012), and computer vision (Kendall and Gal, 2017; Guo et al., 2017; Lee et al., 2018). Past work in natural language processing has studied calibration in the non-neural (Nguyen and O’Connor, 2015) and neural (Kumar and Sarawagi, 2019) settings across several tasks. However, past work has not analyzed large-scale, pre-trained models, and we additionally analyze out-of-domain settings, whereas past work largely focuses on in-domain calibration (Nguyen and O’Connor, 2015; Guo et al., 2017).

Another way of hardening models against out-of-domain data is to be able to explicitly detect these examples, which has been studied previously (Hendrycks and Gimpel, 2016; Liang et al., 2018; Lee et al., 2018). However, this assumes discrete notions of domains; calibration is a more general paradigm and gracefully handles settings where notions of domain are less quantized.

3 Posterior Calibration

A model is calibrated if the confidence estimates of its predictions are aligned with empirical likelihoods. For example, if we take 100 samples where a model’s prediction receives posterior probability 0.7, the model should get 70 of the samples correct. Formally, calibration is expressed as a joint distribution $P(Q, Y)$ over confidences $Q \in \mathbb{R}$ and labels $Y \in \mathcal{Y}$, where perfect calibration is achieved when $P(Y = y | Q = q) = q$. This probability can be empirically approximated by binning predictions into k disjoint, equally-sized bins, each consisting of b_k predictions. Following previous work in measuring calibration (Guo et al., 2017), we use expected calibration error (ECE), which is a weighted average of the difference between each bin’s accuracy and confidence: \[\sum_k \frac{b_k}{n} | \text{acc}(k) - \text{conf}(k) |. \] For the experiments in this paper, we use $k = 10$.

4 Experiments

4.1 Tasks and Datasets

We perform evaluations on three language understanding tasks: natural language inference, paraphrase detection, and commonsense reasoning. Significant past work has studied cross-domain robustness using sentiment analysis (Chen et al., 2018; Peng et al., 2018; Miller, 2019; Desai et al., 2019). However, we explicitly elect to use tasks where out-of-domain performance is substantially lower and a variety of domain shifts are exhibited. Below, we describe our in-domain and out-of-domain datasets.

Natural Language Inference

Stanford Natural Language Inference (SNLI) is a large-scale entailment dataset where the task is to determine whether a hypothesis is entailed, contradicted by, or neutral with respect to a premise (Bowman et al., 2015). Multi-Genre Natural Language Inference (MNLI) (Williams et al., 2018) contains similar entailment data across several domains, which we can use as unseen test domains.

Paraphrase Detection

Quora Question Pairs (QQP) contains sentence pairs from Quora that are semantically equivalent (Iyer et al., 2017). Our out-of-domain setting is TwitterPPDB (TPPDB), which contains sentence pairs from Twitter where tweets are considered paraphrases if they have shared URLs (Lan et al., 2017).

Commonsense Reasoning

Situations with Adversarial Generations (SWAG) is a grounded commonsense reasoning task where models must select the most plausible continuation of a sentence among four candidates (Zellers et al., 2018). HelLaSWAG (HWSWAG), an adversarial out-of-domain dataset, serves as a more challenging benchmark for pre-trained models (Zellers et al., 2019); it is

Table 1: Decomposable Attention (DA) (Parikh et al., 2016) and Enhanced Sequential Inference Model (ESIM) (Chen et al., 2017) use LSTMs and attention on top of GloVe embeddings (Pennington et al., 2014) to model pairwise semantic similarities. In contrast, BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) are large-scale, pre-trained language models with stacked, general purpose Transformer (Vaswani et al., 2017) layers.

Model	Parameters	Architecture	Pre-trained
DA	382K	LSTM	✗
ESIM	4M	Bi-LSTM	✗
BERT	110M	Transformer	✓
RoBERTa	110M	Transformer	✓

Table 1: Decomposable Attention (DA) (Parikh et al., 2016) and Enhanced Sequential Inference Model (ESIM) (Chen et al., 2017) use LSTMs and attention on top of GloVe embeddings (Pennington et al., 2014) to model pairwise semantic similarities. In contrast, BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) are large-scale, pre-trained language models with stacked, general purpose Transformer (Vaswani et al., 2017) layers.

2 Dataset splits are detailed in Appendix A. Further, out-of-domain datasets are strictly used for evaluating the generalization of in-domain models, so the training split is unused.
Table 2: Out-of-the-box calibration results for in-domain (SNLI, QQP, SWAG) and out-of-domain (MNLI, TwitterPPDB, HellaSWAG) datasets using the models described in Table 1. We report accuracy and expected calibration error (ECE), both averaged across 5 runs with random restarts.

Model	Accuracy	ECE
	ID	OD
	ID	OD
Task: SNLI/MNLI		
DA	84.63	57.12
ESIM	88.32	60.91
BERT	90.04	73.52
RoBERTa	91.23	**78.79**
Task: QQP/TwitterPPDB		
DA	85.85	83.36
ESIM	87.75	84.00
BERT	90.27	**87.63**
RoBERTa	91.11	86.72
Task: SWAG/HellaSWAG		
DA	46.80	32.48
ESIM	52.09	32.08
BERT	79.40	34.48
RoBERTa	**82.45**	41.68

distributionally different in that its examples exploit statistical biases in pre-trained models.

4.2 Systems for Comparison

Table 1 shows a breakdown of the models used in our experiments. We use the same set of hyperparameters across all tasks. For pre-trained models, we omit hyperparameters that induce brittleness during fine-tuning, e.g., employing a decaying learning rate schedule with linear warmup (Sun et al., 2019; Lan et al., 2020). Detailed information on optimization is available in Appendix B.

4.3 Out-of-the-box Calibration

First, we analyze “out-of-the-box” calibration; that is, the calibration error derived from evaluating a model on a dataset without using post-processing steps like temperature scaling (Guo et al., 2017). For each task, we train the model on the in-domain training set, and then evaluate its performance on the in-domain and out-of-domain test sets. The results are shown in Table 2. We remark on a few observed phenomena below:

Non-pre-trained models exhibit an inverse relationship between complexity and calibration. Simpler models, such as DA, achieve competitive in-domain ECE on SNLI (1.02) and QQP (3.37), and notably, significantly outperform pre-trained models on SNLI. However, the more complex ESIM, both in number of parameters and architecture, sees increased in-domain ECE despite having higher accuracy on all tasks.

However, pre-trained models are generally more accurate and calibrated. Rather surprisingly, pre-trained models do not show characteristics of the aforementioned inverse relationship, despite having significantly more parameters. On SNLI, RoBERTa achieves an ECE in the ballpark of DA and ESIM, but on QQP and SWAG, both BERT and RoBERTa consistently achieve higher accuracies and lower ECEs. Pre-trained models are especially adept out-of-domain, where on HellaSWAG in particular, RoBERTa reduces ECE by a factor of 3.4 compared to DA.

Using RoBERTa always improves in-domain calibration over BERT. In addition to obtaining better task performance than BERT, RoBERTa consistently achieves lower in-domain ECE. Even out-of-domain, RoBERTa outperforms BERT in all but one setting (TwitterPPDB). Nonetheless, our results show that representations induced by robust pre-training (e.g., using a larger corpus, more training steps, dynamic masking) (Liu et al., 2019) lead to more calibrated posteriors. Whether other changes to pre-training (Yang et al., 2019; Lan et al., 2020; Clark et al., 2020) lead to further improvements is an open question.

4.4 Post-hoc Calibration

There are a number of post-hoc techniques to correct a model’s calibration. Using our in-domain development set, we can, for example, post-process model probabilities via temperature scaling (Guo et al., 2017), where a scalar “temperature” hyperparameter T divides non-normalized logits before the softmax operation. As $T \to 0$, the distribution’s mode receives all the probability mass, while as $T \to \infty$, the probabilities become uniform.

Furthermore, we experiment with models trained in-domain with label smoothing (LS) (Miller et al., 1996; Pereyra et al., 2017) as opposed to conventional maximum likelihood estimation (MLE). By nature, MLE encourages models to sharpen the posterior distribution around the top prediction, a high confidence which is typically unwarranted in out-of-domain settings. Label smoothing presents one solution to over-confidence by maintaining uncertainty over the label space during training: we minimize the KL divergence with the distribution
Table 3: Post-hoc calibration results for BERT and RoBERTa on in-domain (SNLI, QQP, SWAG) and out-of-domain (MNLI, TwitterPPDB, HellaSWAG) datasets. Models are trained with maximum likelihood estimation (MLE) or label smoothing (LS), then their logits are post-processed using temperature scaling (§4.4). We report expected calibration error (ECE) averaged across 5 runs with random restarts. Darker colors imply lower ECE.

For each task, we train the model with either MLE or LS ($\alpha = 0.1$) using the in-domain training set, use the in-domain development set to learn an optimal temperature T, and then evaluate the model (scaled with T) on the in-domain and out-of-domain test sets. From Table 3, we draw the following conclusions:

MLE models with temperature scaling achieve low in-domain calibration error. MLE models always outperform LS models in-domain, which suggests incorporating uncertainty when in-domain samples are available is not an effective regularization scheme. Even when using with a small smoothing value (0.1), LS models do not achieve nearly as good out-of-the-box results as MLE models, and temperature scaling hurts LS in many cases. By contrast, RoBERTa with temperature-scaled MLE achieves ECE values from 0.7-0.8, implying that MLE training yields scores that are fundamentally good but just need some minor rescaling.

However, out-of-domain, label smoothing is generally more effective. In most cases, MLE models do not perform well on out-of-domain datasets, with ECEs ranging from 8-12. However, LS models are forced to distribute probability mass across classes, and as a result, achieve significantly lower ECEs on average. We note that LS is particularly effective when the distribution shift is strong.

Table 4: Learned temperature scaling values for BERT and RoBERTa on in-domain (SNLI, QQP, SWAG) and out-of-domain (MNLI, TwitterPPDB, HellaSWAG) datasets. Values are obtained by line search with a granularity of 0.01. Evaluations are very fast as they only require rescaling cached logits.

For example, on the adversarial HellaSWAG, when used out-of-the-box, RoBERTa-LS obtains a factor of 5.8 less ECE than RoBERTa-MLE.

Optimal temperature scaling values are bounded within a small interval. Table 4 enumerates the learned temperature values for BERT-MLE and RoBERTa-MLE. For in-domain tasks, the optimal temperature values are generally in the range 1-1.4. Interestingly, out-of-domain, TwitterPPDB and HellaSWAG require larger temperature values than MNLI, which suggests the degree of distribution shift and magnitude of T may be closely related.

5 Conclusion

Posterior calibration is one lens to understand the trustworthiness of model confidence scores. In this work, we examine the calibration of pre-trained Transformers in both in-domain and out-of-domain settings. Results show BERT and RoBERTa coupled with temperature scaling achieve low ECEs in-domain, and when trained with label smoothing, are also competitive out-of-domain.
Acknowledgments

This work was partially supported by NSF Grant IIS-1814522 and a gift from Arm. The authors acknowledge a DURIP equipment grant to UT Austin that provided computational resources to conduct this research. Additionally, we thank R. Thomas McCoy for answering questions about DA and ESIM.

References

Jose M. Benitez, Juan Luis Castro, and I. Requena. 1997. Are Artificial Neural Networks Black Boxes? IEEE Transactions on Neural Networks and Learning Systems, 8(5):11561164.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A Large Annotated Corpus for Learning Natural Language Inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 632–642, Lisbon, Portugal. Association for Computational Linguistics.

Glenn W. Brier. 1950. Verification of Forecasts Expressed in Terms of Probability. Monthly Weather Review, 78(1):1–3.

Davide Castelvecchi. 2016. Can We Open the Black Box of AI? Nature News, 538(7623):20.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. 2017. Enhanced LSTM for Natural Language Inference. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1657–1668, Vancouver, Canada. Association for Computational Linguistics.

Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie, and Kilian Weinberger. 2018. Adversarial Deep Averaging Networks for Cross-Lingual Sentiment Classification. Transactions of the Association for Computational Linguistics, 6:557–570.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. 2019. What Does BERT Look at? An Analysis of BERT’s Attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 276–286, Florence, Italy. Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. In International Conference on Learning Representations.

Judith E. Dayhoff and James M. DeLeo. 2001. Artificial Neural Networks: Opening the Black Box. Cancer: Interdisciplinary International Journal of the American Cancer Society, 91(S8):1615–1635.

Shrey Desai, Hongyuan Zhan, and Ahmed Aly. 2019. Evaluating Lottery Tickets Under Distributional Shifts. In Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019), pages 153–162, Hong Kong, China. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E Raftery. 2007. Probabilistic Forecasts, Calibration and Sharpness. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2):243–268.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On Calibration of Modern Neural Networks. In Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 1321–1330, International Convention Centre, Sydney, Australia. PMLR.

Dan Hendrycks and Kevin Gimpel. 2016. A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks. In International Conference on Learning Representations.

Shankar Iyer, Nikhil Dandekar, and Kornl Csernai. 2017. Quora Question Pairs.

Xiaoqian Jiang, Melanie Osl, Jihoon Kim, and Lucila Ohno-Machado. 2012. Calibrating Predictive Model Estimates to Support Personalized Medicine. In JAMIA.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. 2019. Revealing the Dark Secrets of BERT. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4365–4374, Hong Kong, China. Association for Computational Linguistics.

Aviral Kumar and Sunita Sarawagi. 2019. Calibration of Encoder Decoder Models for Neural Machine Translation. In Proceedings of the ICLR 2019 Debugging Machine Learning Models Workshop.

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. 2017. A Continuously Growing Dataset of Sentential Paraphrases. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1224–1234, Copenhagen, Denmark. Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Timothy Miller. 2019. Simplified Neural Unsupervised Learning of Language Representations. In International Conference on Learning Representations.

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. 2018. Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples. In International Conference on Learning Representations.

Shiyu Liang, Yixuan Li, and R. Srikant. 2020. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. In International Conference on Learning Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization. In International Conference on Learning Representations.

David J. Miller, Ajit V. Rao, Kenneth Rose, and Allen Gersho. 1996. A Global Optimization Technique for Statistical Classifier Design. IEEE Transactions on Signal Processing, 44:3108–3122.

Tim Palmer, Francisco Doblas-Reyes, Antje Weisheimer, and Mark Rodwell. 2008. Toward Seamless Prediction: Calibration of Climate Change Projections using Seasonal Forecasts. Bulletin of the American Meteorological Society, 89(4):459–470.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. 2016. A Decomposable Attention Model for Natural Language Inference. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2249–2255, Austin, Texas. Association for Computational Linguistics.

Minlong Peng, Qi Zhang, Yu-gang Jiang, and Xuanjing Huang. 2018. Cross-Domain Sentiment Classification with Target Domain Specific Information. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2505–2513, Melbourne, Australia. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.

Gabriel Pereyra, George Tucker, Jan Chorowski, ukasz Kaiser, and Geoffrey Hinton. 2017. Regularizing Neural Networks by Penalizing Confident Output Distributions. arXiv preprint arXiv:1701.06548.

Adrian E. Raftery, Tilmann Gneiting, Fadoua Balabdaoui, and Michael Polakowski. 2005. Using Bayesian Model Averaging to Calibrate Forecast Ensembles. Monthly Weather Review, 133(5):1155–1174.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to Fine-Tune BERT for Text Classification? arXiv preprint arXiv:1905.03583.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You Need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 5998–6008. Curran Associates, Inc.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2019. SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 3266–3280. Curran Associates, Inc.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference. In Proceedings of the 2018 Conference of the North American
Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rmi Louf, Morgan Funtowicz, and Jamie Brew. 2019. HuggingFace’s Transformers: State-of-the-art Natural Language Processing. arXiv preprint arXiv:1910.03771.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. XLNet: Generalized Autoregressive Pre-training for Language Understanding. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 5753–5763. Curran Associates, Inc.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. HellaSwag: Can a Machine Really Finish Your Sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4791–4800, Florence, Italy. Association for Computational Linguistics.

A Dataset Splits

Dataset splits are shown in Table 5.

Dataset	Train	Dev	Test
SNLI	549,368	4,922	4,923
MNLI	392,702	4,908	4,907
QQP	363,871	20,216	20,217
TwitterPPDB	46,667	5,060	5,060
SWAG	73,547	10,004	10,004
HellaSWAG	39,905	5,021	5,021

Table 5: Training, development, and test dataset sizes for SNLI (Bowman et al., 2015), MNLI (Williams et al., 2018), QQP (Iyer et al., 2017), TwitterPPDB (Lan et al., 2017), SWAG (Zellers et al., 2018), and HellaSWAG (Zellers et al., 2019).

B Training and Optimization

For non-pre-trained model baselines, we chiefly use the open-source implementations of DA (Parikh et al., 2016) and ESIM (Chen et al., 2017) in AllenNLP (Gardner et al., 2018). For SWAG/HellaSWAG specifically, we run the baselines available in the authors’ code.4 For BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019), we use bert-base-uncased and roberta-base, respectively, from HuggingFace Transformers (Wolf et al., 2019). BERT is fine-tuned with a maximum of 3 epochs, batch size of 16, learning rate of 2e-5, gradient clip of 1.0, and no weight decay. Similarly, RoBERTa is fine-tuned with a maximum of 3 epochs, batch size of 32, learning rate of 1e-5, gradient clip of 1.0, and weight decay of 0.1. Both models are optimized with AdamW (Loshchilov and Hutter, 2019). Other than early stopping on the development set, we do not perform additional hyperparameter searches. Finally, all experiments are conducted on NVIDIA V100 32GB GPUs.

C Visualizations

Reliability diagrams (Nguyen and O’Connor, 2015; Guo et al., 2017) visualize the alignment between posterior probabilities (confidence) and empirical outcomes (accuracy), where a perfectly calibrated model has \(\text{conf}(k) = \text{acc}(k) \) for each bucket of real-valued predictions \(k \) (§3). We show several reliability diagrams, each under different configurations, in Figures 1, 2, and 3.
Figure 1: In-domain calibration of BERT and RoBERTa when used out-of-the-box. Models are both trained and evaluated on SNLI, QQP, and SWAG, respectively. \textit{ZERO ERROR} depicts perfect calibration (e.g., expected calibration error = 0).

Figure 2: In-domain calibration of BERT and RoBERTa with temperature scaling (TS). Models are both trained and evaluated on SNLI, QQP, and SWAG, respectively, then are post-processed using temperature scaling (§4.4). \textit{ZERO ERROR} depicts perfect calibration (e.g., expected calibration error = 0).
Figure 3: Out-of-domain calibration of RoBERTa with different learning objectives. RoBERTa is trained on SWAG using either maximum likelihood estimation (RoBERTa-MLE) or label smoothing (RoBERTa-LS) and evaluated on HellaSWAG. ZERO ERROR depicts perfect calibration (e.g., expected calibration error = 0).