WHAMR!: Noisy and Reverberant Single-Channel Speech Separation
Matthew Maciejewski1,2, Gordon Wichern1, Emmett McQuinn3, Jonathan Le Roux1

1Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA
2Johns Hopkins University, Baltimore, MD, USA
3whisper.ai, San Francisco, CA, USA

May 6, 2020

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL)
Cambridge, Massachusetts, USA
http://www.merl.com

This work was performed while M. Maciejewski was an intern at MERL.
What is speech separation?

- Producing multiple single-speaker recordings from a recording of overlapped speech
Why WHAMR!?
Why WHAMR!?
Why WHAMR!?
Pre-Existing MERL Datasets

wsj0-2mix

- Mixtures of WSJ0 corpus recordings (studio read speech)
- Standard corpus used in speech separation

WHAM!

(WSJ0 Hipster Ambient Mixtures)

- wsj0-2mix augmented with noise recorded from real environments in San Francisco
 - Noises recorded in coffee shops, restaurants, and bars
WHAMR! Dataset

• WHAM! augmented with synthetic reverberation
 – Room impulse responses generated using image-source method
 – Room parameters randomly generated to roughly match noise recordings

• Includes all combinations of sources, noise, and reverberation
WHAMR! Core Conditions

Clean (WSJ0)

Noisy (WHAM!)

Reverberant

Noisy and Reverberant

New to WHAMR!
Separation/Enhancement Methods

- Paired transforms between waveform and a time-frequency spectral domain
- Spectral mask is produced which suppresses interfering sources or noise/reverberation
Evaluated Model Configurations

Feature Transformations:
• Short-Time Fourier Transform (STFT)
• TasNet-style sliding-window learned basis projection

Internal Mask Production Architecture:
• Temporal Convolutional Network (TCN)
• Bi-directional Long Short-Term Memory (BLSTM)

All methods were trained with scale-invariant signal-to-distortions ratio (SI-SDR) loss.
SI-SDR of Core Separation Conditions using Single Model

Input	Conv-TasNet	TasNet-BLSTM				
Noise	Reverb	Input	Output	Δ	Output	Δ
✓		0.0	12.9	12.9	14.2	14.2
✓	✓	−4.5	7.0	11.5	7.5	12.0
✓	✓	−3.3	4.3	7.6	5.6	8.9
✓	✓	−6.1	2.2	8.3	3.0	9.2
Cascaded Systems

Noisy and reverberant two-speaker mixture → Enhancement Network → Separation Network → Enhancement Network → Separated, reverberant sources → Separated, anechoic speech

Enhancement Network

Denoised two-speaker mixture

Separation Network
Cascaded Systems

• Pre-train separate models for each subtask
 – Separation with noisy/reverberant targets
 – Enhancement of overlapping speech
• Cascade models together
SI-SDR of Enhancement of Overlapping Speech

Feature	Processor	Net	Net Δ	Denoise	Denoise Δ	Dereverb	Dereverb Δ
Learned	TCN	10.8	9.6	11.2	10.1	7.2	3.2
Learned	BLSTM					8.5	4.4
STFT	TCN	8.4	7.2			4.0	0.0
STFT	BLSTM	9.5	8.4			5.9	1.8

Input SI-SDR: 1.2 4.0
Cascaded Systems

• Chain appropriately-trained models together, with rescale factor:

\[\beta(\hat{s}|x) = \frac{\langle x, \hat{s} \rangle}{\| \hat{s} \|^2} \]

– Scale so residual is orthogonal to estimated source

– Necessary due to scale-invariant loss.
SI-SDR of Noisy Separation with Cascaded Models

	System	SI-SDR	
Pre-Enh.	Separate Speech		
Removes	while Removing		
×	noise	7.5	
noise	–	8.1	
Input SI-SDR:		−4.5	
Pre-Enh. Removes	Separate Speech while Removing	Post-Enh. Removes	SI-SDR
------------------	-------------------------------	-------------------	--------
×	rev.	×	5.6
rev.	–	×	6.4
×	–	rev.	6.6

Input SI-SDR: -3.3
SI-SDR of Noisy and Reverberant Separation with Cascaded Models

System	Pre-Enh. Removes	Separate speech while removing	Post-Enh. Removes	SI-SDR
	×	noise, rev. rev. – noise	×	3.0
	noise	rev. – noise rev.	×	3.5
	noise, rev. rev.	– noise rev.	×	3.6
	×	noise rev.	×	3.7
	noise	–	rev.	4.0

Input SI-SDR: -6.1
Tuned Cascaded Systems

- Additional training epochs of full end-to-end system
SI-SDR of Tuned Cascaded Systems

Input	Best System w/o Tuning	Tuned				
Noise	Reverb	Input	Output	Δ	Output	Δ
✓	✓	0.0	14.2	14.2	–	–
✓		−4.5	8.1	12.6	8.3	12.9
✓		−3.3	6.6	9.9	7.0	10.3
✓	✓	−6.1	4.0	10.1	4.7	10.8
Conclusions

• We introduced a new speech separation dataset featuring added noise and reverberation.

• Systems with learned basis features and BLSTM processing outperform systems with STFT features and TCN processing.

• Splitting separation into subtasks of pre-separation denoising, reverberant separation, and post-separation dereverberation improves performance.

Data and creation scripts available at: http://wham.whisper.ai/
