Switchable Primaries Using Shiftable Layers of Color Filter Arrays

Behzad Sajadi ∗
Aditi Majumder †
University of California, Irvine

Kazuhiro Hiwada‡
Toshiba Corporation

Atsuto Maki§
Toshiba Research Europe
Cambridge Laboratory

Ramesh Raskar¶
Camera Culture Group
MIT Media Lab

Abstract

We present a camera with switchable primaries using shiftable layers of color filter arrays (CFAs). By layering a pair of CMY CFAs in this novel manner we can switch between multiple sets of color primaries (namely RGB, CMY and RGBCY) in the same camera. In contrast to fixed color primaries (e.g. RGB or CMY), which cannot provide optimal image quality for all scene conditions, our camera with switchable primaries provides optimal color fidelity and signal to noise ratio for multiple scene conditions.

Next, we show that the same concept can be used to layer two RGB CFAs to design a camera with switchable low dynamic range (LDR) and high dynamic range (HDR) modes. Further, we show that such layering can be generalized as a constrained satisfaction problem (CSP) allowing to constrain a large number of parameters (e.g. different operational modes, amount and direction of the shifts, placement of the primaries in the CFA) to provide an optimal solution.

We investigate practical design options for shiftable layering of the CFAs. We demonstrate these by building prototype cameras for both switchable primaries and switchable LDR/HDR modes.

To the best of our knowledge, we present, for the first time, the concept of shiftable layering of CFAs that provides a new degree of freedom in photography where multiple operational modes are available to the user in a single camera for optimizing the picture quality based on the nature of the scene geometry, color and illumination.

Keywords: computational photography, color filters, capture noise

1 Introduction

Camera consumers are forced to live with several trade-offs originating from conflicting demands on the quality. For example, broad-band filters (e.g. CMY), being more light efficient than narrow-band filters (e.g. RGB), are desired for low-illumination scenes (e.g. night/dark scenes). But, they have lower color fidelity. Further, demultiplexing RGB values from the captured CMY values can result in more noise in brighter scenes. Hence, narrow-band filters are desired for high-illumination scenes (e.g. daylight/bright scenes). However, since current cameras come with fixed RGB or CMY CFAs, users have to accept sub-optimal image quality either for dark or bright scenes. Similarly, faithful capture of colorful scenes demand more than three primaries that trades off the spatial resolution making it not suitable for architectural scenes with detailed patterns and facades. However, since current cameras come with a fixed number of primaries, users cannot change the spatial and spectral resolution as demanded by the scene conditions.

Figure 1: Left: The CMY mode of our camera provides a superior SNR over a RGB camera when capturing a dark scene (top) and the RGB mode provides superior SNR over CMY camera when capturing a lighted scene. To demonstrate this, each image is marked with its quantitative SNR on the top left. Right: The RGBCY mode of our camera provides better color fidelity than a RGB or CMY camera for colorful scene (top). The ∆E deviation in CIELAB space of each of these images from a ground truth (captured using SOC-730 hyperspectral camera) is encoded as grayscale images with error statistics (mean, maximum and standard deviation) provided at the bottom of each image. Note the close match between the image captured with our camera and the ground truth.

Ground Truth Our Camera CMY Camera RGB Camera

8.14 15.87 17.57 21.49

(2.36, 9.26, 1.96) (8.12, 29.30, 4.93) (7.51, 22.78, 4.39)

*e-mail: bsajadi@uci.edu
†e-mail: majumder@ics.uci.edu
‡e-mail: kazuhiro.hiwada@toshiba.co.jp
§e-mail: atsuto.maki@crl.toshiba.co.uk
¶e-mail: raskar@media.mit.edu
Main Contributions: We present a technique of layering of a pair of CFAs with precise relative shifts between them to achieve cameras with multiple operational modes where both the number and transmittance of the primaries can be changed. The user will thus have the liberty to cater the primaries towards specific scene conditions. Following are our main contributions.

1. We present the first camera that can switch to three sets of color primaries on demand. Using different relative shifts during the layering of the pair of CFAs, both the number and transmittance of the primaries can be changed. The user can provide a camera with any three different capture modes: RGB, CMY and RGBCY (Section 2).

2. We extend the concept of shiftable layers of CFAs beyond switchable primaries showing that when applied to a different kind of CFA, it provides a camera that can switch between low dynamic range (LDR) and high dynamic range (HDR) modes (Section 3).

3. We show that the problem of finding the desired patterns and shifts of the CFAs to achieve switchable modes can be posed as a constraint satisfaction problem (CSP) (Section 4). We show the utility of this general framework to design an add-on device for existing LDR cameras that provides an additional HDR mode.

4. We present a quantitative analysis to show the benefits of a camera with switchable primaries: (a) significantly superior color fidelity than RGB or CMY cameras when operated in the RGBCY mode (Section 5.1); (b) optimal SNR, for both dark and bright scenes with switchable primaries showing that when applied to a different kind of CFA, it provides a camera that can switch between low dynamic range (LDR) and high dynamic range (HDR) modes (Section 5.2). Though using two CFAs marginally trades off the transmittance of each primary, the benefits far outweigh this shortcoming.

5. Finally, we propose several practical design options to embed such shiftable layers of CFAs in real cameras for multiple switchable operational modes (Section 6). We demonstrate the feasibility of such designs via rudimentary prototypes.

Related Work: Many different types of fixed CFAs have been invented and manufactured for photography [Lukac 2008], the most popular being the Bayer CFA [Bayer 1976]. Yamagami et al.; Gindele and Gallagher; Susano et al. 2009; Kumar et al. 2009] use RGBW CFAs with white filter elements to sense more light than cameras with traditional Bayer CFAs. Hirakawa and Wolfe 2008] considered the more general case of a custom designed CFA based on linear combinations of conventional RGB filters to achieve optimal spatial-spectral reconstruction using a sensor with a fixed number of pixels. Gu et al. 2010] introduced a universal demosaicing framework that can be used to reconstruct the image for any general CFA. Fixed CFAs with more than three colors have been proposed to capture multispectral images [Shogennji et al. 2004; Baone and Qi 2006] sacrificing the spatial resolution for higher spectral resolution. These provide much higher color fidelity, but are still less accurate than an order of magnitude more expensive hyperspectral cameras. In another line of work multi-spectral images with a low spatial resolution are combined with high resolution lightness images to achieve a high-resolution multi-spectral imaging system [Imai et al. 2000]. This is done using a priori spectral analysis, linear modeling techniques, and using the spatial properties of the human visual system. In contrast to all these works on fixed color primaries, our work is the first one that presents switchable color primaries by shiftable layers of CFAs.

Figure 2: Two CMY CFAs before shifting(a), after shifting the top layer one tile to the right(b), and after shifting the top layer by another tile in the vertical direction. The combinations of the layers, shown in the bottom, result in CMY(a), RGB(b), and RGBCY(c) modes.

Figure 3: Spectral transmittance of our primaries in (a) CMY mode, (b) RGB mode, and (c) RGBCY mode. In (c), the narrow band cyan and yellow are computed from the broad band CMY filters in (a) and the narrow band RGB filters in (b). (d) Spectral transmittance of the RGB channels demultiplexed from the CMY mode.

On the other hand, our work supplements an earlier set of work on computational color in photography. Dynamic modification of spectral transmittance has been proposed in agile-spectrum imaging [Mohan et al. 2008] by using of diffraction grating. In a completely orthogonal domain, limited flexibility in color primaries has been explored via tunable sensors [Langfelder et al. 2009]. These sensors do not require CFAs to capture color images. Instead, each wavelength is captured at a different depth of the sensor. The absorption depth can be changed by applying an electrical voltage to the sensor. Therefore, the spectral-bands that are sensed at each depth can be tuned slightly. This allows for limited flexibility in the amount of overlap between the spectral response of the eye (CIE primaries for the standard observer) and that of the sensors, leading to a little higher color fidelity. However, this only allows a small shift in the spectral transmittance of the narrow band primaries, but cannot achieve a completely different number of primaries with entirely different spectral transmissivity as is possible in our camera.

2 Camera with Switchable Primaries

We achieve switchable color primaries by layering a pair of CFAs that can be shifted precisely relative to each other. We use a pair of CMY CFAs (Figure 2(a)) where each row repeats the C, M, and Y tiles. But odd rows start with C while even rows with M. This results in the repetition of a 3 × 2 pattern of CMY tiles (Figure 2(a)).

When two such CMY CFAs are superimposed with no shift, tiles with similar spectral transmittance coincide and the combined effect is that of a CMY CFA, whose spectral transmittance is shown in 3(a). However, if the top layer is shifted by one tile horizontally, each C tile of the top layer superimposes a M tile of the bottom layer resulting in a B tile. Similarly, M and Y tiles of the top layer...
superimpose Y and C tiles of the bottom layer resulting in G and R tiles respectively (Figure 3(b)). Therefore, with such a horizontal shift, this layered CFA is similar to an RGB CFA except for the first and last columns (Figure 2(b)). Finally, if the top layer is shifted by another tile vertically, in the odd rows the C tiles superimpose Y tiles, M with C, and Y with M, resulting in RGB tiles as before. But, in the even rows the M tiles from the bottom layer superimpose with M tiles from the bottom layer, Y with Y and C with C resulting in broad-band CMY tiles (Figure 2(c)). Using these, we can compute narrow-band cyan and yellow primaries, \(C_n = C - B - G \) and \(Y_n = Y - R - G \) (Figure 3(c)). But, since M is very close to \(R + B \), we cannot similarly extract a sixth non-overlapping primary. This results in a capture mode with five almost non-overlapping primaries, namely \(R, G, B, C_n \), and \(Y_n \), leading to a five primary mode – RGBCMY. Thus, we achieve three different sets of color primaries in the same camera: (a) RGB, (b)CMY, and (c) RGBCMY.

Our camera with switchable color primaries has several advantages over cameras with fixed RGB or CMY CFAs. Narrow-band fixed RGB CFAs mimic the human eye but do not have the desired light efficiency to provide a good signal-to-noise-ratio (SNR) for dark scenes. Wide band CMY CFAs (Figure 3(a)), on the other hand, provide better SNR for dark scenes. However, images need to be converted to the more common RGB format using demultiplexing computations of \(R = M + Y - C, G = Y + C - M, \) and \(B = C + M - Y \). These computations introduce higher noise for bright scenes. Further, the effective spectral transmittance profiles of the \(R, G, B \) channels following this computation (Figure 3(d)) can be negative leading to lower color fidelity due to clamping artifacts [Cao and Kot 2008]. Thus, while CMY CFAs are better for dark scenes, RGB CFAs are preferred for bright scenes. In summary, our camera can provide optimal SNR by capturing dark scenes in the CMY and bright scenes in the RGB mode; and can also provide significantly higher color fidelity for colorful scenes in the RGBCMY mode.

We have demonstrated and evaluated the superior color fidelity and SNR of our camera using empirical results (Section 5) obtained from multiple prototypes designed and built in our lab (Section 6).

3 Camera with Switchable Dynamic Range

The concept of switchable CFAs can be used to create different operational modes, beyond just switchable primaries. When creating switchable primaries, we considered layers of CMY CFAs. Now, let us consider RGB filters that have a small transmittance over the entire spectrum (Figure 4(a)) except for peaks in the \(R, G, \) and \(B \) regions respectively. In this case, superimposition of unlike filters – i.e. \(B \) and \(G \) and \(R \) or \(G \) and \(R \) – result in very low transmittance cyan, magenta and yellow filters, \(C, M, \) and \(Y \), respectively.

Let us now consider two layers of RGB CFAs (Figure 5). Before shifting, similar tiles superimpose (Figure 5a) resulting in a low dynamic range (LDR) capture mode. But, with a relative horizontal shift of 2 tiles (Figure 5b) we get a column of RGB filters and another column of CMY filters with very low transmittance that are sensitive to a higher range of brightness. Hence, in this mode, we can capture high dynamic range (HDR) image while trading off the spatial resolution. Thus, we now get a camera which can switch between LDR and HDR capture modes. We describe prototypes for such a camera and results thereof in Section 6 and 5.

4 A General Framework

In general, we can pose the problem of designing appropriate CFA patterns and their relative shifts as a constraint satisfaction problem (CSP). We impose constraints on the combinations of the primaries and their proportions in each capture mode which are then solved by a CSP solver to return the patterns for both the CFAs.

Let us assume \(p \) different tiles/filters, \(F_k, 1 \leq k \leq p \). For example, in the context of Figure 2, there are 6 different tiles, \(\{ C, M, Y, B, R, G \} \). First, we define the set of valid combinations of the tiles that can be used in the design. This is a set, \(V \), of \(3 \)-tuples that define the tile in the top layer, bottom layer, and their combination. For Figure 2, \(V = \{ (M, Y, R), (Y, C, G), (C, M, B), (C, C), (M, M, M), (Y, Y, Y) \} \). In all the examples in this paper, switching the first two elements of the 3-tuple also result in valid combinations, but we omit those 3-tuples for compact representation. Next, for each capture mode, we define the desired proportion of each primary in the final combination. We assume \(m \) capture modes. For each mode \(l, 1 \leq l \leq m \), we define as a \(p \)-tuple, \(M_l \), which specifies the proportions of tile \(F_k \) in mode \(l \). For Figure 2, \(M_1 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0, 0) \), and defines the CMY mode; \(M_2 = (0, 0, 0, 0, 0, 1) \) and defines the RGB mode; and finally \(M_3 = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}) \) and defines the RGBCMY mode.

In order to find the CFA patterns, the CSP solver starts the search from the smallest possible number of tiles that can fit all the desired proportions defined by \(M_l \). Among different sizes with the same number of tiles, it starts the search from the one which is closest to a square in shape. Let’s assume the size of the pattern is \((n_x, n_y) \). Let’s define the tiles of the top and bottom layers as \(T(i, j) \), and \(B(i, j) \) respectively, where \(0 \leq i < n_x, 0 \leq j < n_y \). The combination of the layers, however, depends on the additional parameters of the direction and magnitude of the relative shift between the two layers. Therefore the solver also iterates on the possible shifts starting from the smallest one. Let us assume for mode \(l \) the shift is defined by \(\{ (x_l, y_l) \} \) and the superposition of the two layers as \(S_l(i, j) \). Consequently, we enforce the following combination constraints:

\[
(T((i+x_l) \mod n_x, (j+y_l) \mod n_y), B(i, j), S_l(i, j)) \in V
\]

(1)

Further, we also impose proportion constraints for each filter \(F_k \) assuming that its total number in the combined layer for mode \(l \) conforms to \(M_l \). This constraint is as follows.

\[
\sum_j S_l(i, j) = F_k = M_l(k)n_xn_y
\]

(2)

Since each of the above constraints only affects a few variables, they can be efficiently solved by standard CSP solvers. Further, we can impose constraints on the amount and direction of the shift. For
example, for a switchable CMY/RGB/RGBCMY camera, if we impose an additional constraint to limit the shift only in the horizontal direction, the CSP solver fails to find a pattern with only 6 tiles. However, after increasing the size of the pattern, it finds the 4 × 3 pattern in Figure 6 where the CMY, RGB and RGBCY modes are achieved by 0, 1 and 2 tiles shift respectively.

Further, we can impose constraints on one of the layers to have a specific pattern. For example, if we desire to build a switchable LDR/HDR camera using a commodity camera with an existing Bayer CFA, we can specify \(B(i, j) \) to form a Bayer pattern and let the solver find \(T(i, j) \). In this case we have 6 tiles \((R, G, B, C_h, M_h, Y_h) \) and the valid combinations are \(V = \{(R, R, R), (G, G, G), (B, B, B), (G, B, C_h), (B, R, M_h), (R, G, Y_h)\} \).

There are two capture modes. In the LDR mode, the Bayer pattern dictates \(M_h = (\frac{1}{2}, 0, 0) \). However, note that it is difficult to define specific proportions for the low transmittance tiles of \(C_h, M_h \) and \(Y_h \) since multiple combinations may produce acceptable results. But we can define a range of proportions instead of a specific one. For example, we can define \(M_2 = (\frac{1}{2}, \frac{1}{4}, 1, 0, 1) \). Finally, one can impose constraints on the patterns to enforce certain desired properties such as non-adjacency of similar filters, or equal number of other filters in the neighborhood of each filter.

However, note that a CSP solver may not always return a solution. For example, this is the case for the above set of constraints defined for the switchable LDR/HDR camera. One way to alleviate the situation is to provide more sets of valid combinations. For example, we can add constraints to denote that \(R, G \) and \(B \) can be generated differently than just superimposing two layers of \(R, G \) and \(B \). This can be achieved by adding \(\{Y, R, R\}, (C, G, G), (M, B, B) \) to \(V \). Further, we can also experiment with different filters. For example, instead of having \(C_h, M_h \) and \(Y_h \) as the low transmittance filters, we can have an equivalent set of \(C_b, I_b \), and \(Y_b \) where \(I_b \) is an intensity filter and replaces \(M_h \). Thus, in this case, we have a set of six different filters \((R, G, B, C_b, I_b, Y_b) \) where the valid superpositions for achieving \(I_b \) are given by \(\{(C, R, I_b), (M, G, I_b), (Y, B, I_b)\} \).

By doing these changes, the CSP solver can provide a solution for an add-on CFA to the Bayer CFA to achieve switchable LDR/HDR modes as shown in Figure 6. Note that the top layer consists of \(C, Y, R \) and \(B \) tiles, instead of having just CMY or RGB tiles. We build a sample prototype for this, as explained in Section 6. However, note that in the LDR mode, \(R \) can be formed both by superimposing two \(R \) tiles or a \(R \) and a \(Y \). Similarly, \(G \) and \(B \) can also be generated in two ways resulting in varying spectral transmittance of the same primary in this mode. However, we find in our prototype that this still produces acceptable results (Figure 14).

Another way to assure a solution from the CSP solver is to weigh some constraints to be more important than the others. For example uni-directional shift can be an important design constraint, while non-adjacency of similar filter may not be as critical. Allowing such weights in the CSP solver results in a Markov Random Field that can be solved efficiently using AI techniques for bounded search.

5 Results

For the proof of concept of our camera with switchable operational modes, we used a time sequential capture of images using different layers of color filters in front of a monochrome camera to simulate the switchable layers of CFAs (Figure 7). To demonstrate switchable primaries, we captured the images by superimposing pairs of CMY filters, both like \((C \) and \(M \) and \(M \) and \(Y \) and \(Y \)) and unlike \((C \) and \(M \) \) and \(Y \) \) and \(Y \)). To demonstrate switchable LDR/HDR modes, we captured images by superimposing RGB filters. Next, to simulate the effect of capturing all these in a single shot, we pick the pixels from the appropriate images in this temporally multiplexed sequence. The image thus created, records only one primary at every pixel simulating the effect of the layered CFAs. We demosaic the image in software (Section 7) to achieve the final full-resolution image. The setup of Figure 7 provides us with high quality and high resolution results to prove the concept of switchable layers of CFAs. However, practical designs for such a camera without time multiplexing are described in Section 6.

For the setup in Figure 7, we used a monochrome 2560 × 1920 sensor (EO-5012BL1) and dichroic filters from EdmundOptics2. The spectral transmittance of the filters (Figure 3) are obtained from the manufacturers website. For the LDR/HDR camera, we create RGB filters by exposing 35mm Kodak films to appropriate lighting. To allow some amount of light (at least 4%) to pass through in the HDR mode after the superposition of the shifted layers, we did not fully expose the films. Figure 4 shows the transmittance profiles of these filters captured using a SOC-730 hyperspectral camera.

Figure 8 shows the results for the switchable LDR/HDR modes. We use an adaptive logarithmic tone mapping operator [Drago et al. 2003] to show the HDR image. Figures 9, 10 and 11 show the results for the camera with switchable primaries. In the rest of the section, we quantify the advantages of our switchable cameras.

5.1 Superior Color Fidelity

First, we show the superior color fidelity of our camera with switchable primaries in the RGBCY mode compared to the RGB or CMY modes. We compared the images captured by each mode of our prototype camera against those captured by a SOC-730 hyperspectral

1http://www.edmundoptics.com/onlinecatalog/displayproduct.cfm?productID=1734
2http://www.edmundoptics.com/onlinecatalog/displayproduct.cfm?productID=2947

Figure 6: Results from CSP solver. (a),(b),(c): Layering of two CMY layers to create a camera with switchable primaries with the shift constrained to be in one direction – CMY before shifting (a), RGB after shifting the top layers one tile to right (b), and RGBCMY mode after shifting 2 tiles to right. (d),(e): Layering of an add-on CFA by constraining one layer to be a Bayer CFA to create a camera with switchable LDR/HDR modes – the add-on pattern does not considerably affect the transmittance when superimposed with a Bayer CFA without shifting giving the LDR mode (d), when shifted to the right, some of the tiles are similar to RGB filters and the rest become low transmittance ICY filters that capture HDR values (e). Note that unlike other CFAs in the paper, this has C, Y, R and B filters – not just CMY or RGB.

Figure 7: Our first prototype where color filters are temporally multiplexed.
Figure 8: Left: A scene captured with the HDR mode of our switchable LDR/HDR camera. Right: The same scene captured with the LDR mode (saturated sky and dark trees). In the zoomed-in view the resolution of the LDR image is higher than the HDR one, emphasizing the need for flexibility based on the scene and application.

Figure 9: Three examples of comparison between the ground truth images captured with a SOC-730 hyperspectral camera and images captured with our prototype with RGB, CMY, and RGBCY modes. The gray images show the CIELAB ΔE difference along with the error statistics (mean, maximum and standard deviation). Note the better color fidelity of the RGBCY mode especially in the red-purple and cyan-green colors. Also, note that in general the color fidelity of CMY mode is much lower than the RGB mode.

Figure 10: Three examples of comparison between the ground truth and simulated images for RGB, CMY, and RGBCY modes using the CAVE database. The gray images show the CIELAB ΔE difference along with the error statistics (mean, maximum and standard deviation). Note the superior color fidelity of the RGBCY mode especially in near-saturated shades of blue, green, and red.

For comparison, we generate four images in the CIE XYZ space. First, we compute a ground truth image from the captured hyperspectral image by finding the CIE XYZ values at each pixel via a scalar dot product of the spectral response at that pixel, $P(\lambda)$, with the standard human observer’s sensitivity, $x(\lambda)$, $y(\lambda)$ and $z(\lambda)$ respectively. Next, we convert the images captured by the three different modes of our prototype to CIE XYZ space. The XYZ values corresponding to the captured color are computed by a weighted sum of the captured values, where the weights for X, Y and Z are computed by finding the correlation of the known spectral transmittance profiles of the primaries (Figure 3) with $x(\lambda)$, $y(\lambda)$ and $z(\lambda)$. To quantify the perceptual difference of each of these camera captured images from the ground truth, we compute their ΔE differences in the CIELAB space. Further, to provide a feel of how these images would look on a standard sRGB display, we convert them to the sRGB space. Since the ΔE images do not involve errors due to clamping, they are better indicators of the differences. To align the images captured by our camera and those from the hyperspectral camera, we use standard rectification techniques.

Figure 9 shows a few examples from this set of 35 images along with the statistics (mean, maximum, and standard deviation from the mean) of the per-pixel ΔE error for each of these images. The average ΔE difference, over all the 35 images, for RGBCY mode was 1.95 units and 6.2 and 7.5 units for the RGB and CMY modes respectively. This is a perceptible difference of more than 1JND (3 units of ΔE = 1 JND). Further, note that the RGBCY mode reduces
the maximum deviation from the ground truth tremendously, when compared to the RGB and CMY modes – but some deviation still remains since five primaries are not sufficient to achieve the color fidelity of a hyperspectral camera with 30 spectral bands.

In order to confirm the same result for an existing database, we use the CAVE multi-spectral image database [Yasuma et al.] that includes 31 pictures sampling the range of the visible wavelengths from 400 nm to 700 nm at 10 nm increments at each pixel. We simulate the images captured by the camera in different modes using the spectral transmittance profile of the primaries (Figure 3) of that mode. Then, we compute the same \(\Delta E \) difference as mentioned above for the simulated camera images in different modes.

Figure 10 shows a few examples along with the error statistics of the \(\Delta E \) difference. The results are similar to the first set of experiments with an average \(\Delta E \) difference of 2.12, 6.5 and 7.6 units for the RGB, CMY and RGBCY modes respectively confirming a significantly improved color fidelity in the RGBCY mode.

5.2 Optimal Signal to Noise Ratio

The signal-to-noise-ratio (SNR) of an image is strongly related to the spectral properties of the color filters and the overall brightness of the scene. CMY CFAs are known to have higher SNR compared to RGB CFAs in dark scenes due to their higher spectral transmittance; but result in lower SNR for brighter scenes since the noise adds up when demultiplexing the RGB values from the captured CMY values. Our camera offers the best of both worlds by switching between RGB and CMY modes.

To demonstrate this, we present in the appendix a computational method to analyze the SNR of our camera. We compute two ratios, \(\frac{SNR_{CMY}}{SNR_{RGB}} \) and \(\frac{SNR_{g}}{SNR_{CMY}} \) (Equation 3), for both bright and dark scenes (Table 1) for captured color vectors \(g \) and for the intensity value \(g \), obtained by summing the captured values across the channels.

To validate the model in practice, we measure the same ratios for a set of images captured by our prototype (Section 6) and compare them with those predicted using our SNR model in Equation 3. We use images of 20 different scenes for each of the dark and bright conditions, and we capture each scene 25 times under the same illumination.

Table 1: Comparison of SNR ratios for \(C \) and \(g \) across CMY, RGB, and RGBCY capture modes. M denotes measured and P denotes predicted. Note that for all conditions, the measured ratios conform closely to the predicted ones validating our SNR model.

Scene	\(SNR_{CMY}(C) \)	\(SNR_{CMY}(g) \)	\(SNR_{RGB}(C) \)	\(SNR_{RGB}(g) \)	\(SNR_{RGBCY}(C) \)	\(SNR_{RGBCY}(g) \)
Dark	1.25	2.08	1.94	1.99	2.08	2.12
Bright	0.85	0.94	0.84	0.96	0.82	0.82

Figure 12: \(\Delta E \) difference from ground truth for RGB and CMY modes before and after the JBF. Longer exposure time is used for lower luminance levels such that the amount of light that reaches the sensor remains constant. The longest exposure is 2 seconds and the shortest is 1 millisecond. We used ISO 400. The graph demonstrates that for low luminance levels CMY capture mode is superior particularly after applying the JBF. On the other hand, for high luminance levels RGB capture mode without JBF results in superior fidelity while the JBF degrades the quality of the image.
estimators of the captured C and g at each pixel using the 25 images captured under the same illumination. From this, we can compute the per pixel noise-to-signal ratio which are then averaged across the pixels and inverted to find the average SNR.

Table 1 shows the predicted and measured SNR ratios for both C and g. The closeness of the predicted and measured values in this table validates the accuracy of our noise model and shows that for dark scenes the SNR is more than 20% higher in the CMY mode than the RGB mode. But, for bright scenes, the RGB capture mode shows similar SNR advantage over the CMY mode. Also, when compared to the RGBCY mode, the CMY mode has almost double the SNR for dark scenes. This is due to the very narrow band C_p and Y_p primaries in the RGBCY mode. Thus, the greater color fidelity of the 5 color mode comes at the cost of reduced SNR.

Joint Bilateral Filtering: Table 1 shows that the SNR for g is much superior than the SNR for C, especially in the CMY mode (almost twice), for both dark and bright scenes. Hence, we propose using the intensity image g, as a guidance image to apply joint bilateral filtering (JBF) on each channel of the image to improve the SNR. However, JBF can also degrade the image fidelity by blurring the high-frequency details. Hence, there is a trade off involved in the improvement in the SNR and the degradation in image fidelity.

To evaluate this, we find the SNR of a scene after applying JBF for a particular mode using the aforementioned SNR analysis using the same set of 20 scenes after applying JBF. We found that for dark scenes, JBF improves the SNR of the CMY mode dramatically but does not affect the SNR of the RGB mode as much. Hence, after JBF, the CMY mode provides almost 70% better SNR than RGB mode (as opposed to 20% improvement without JBF).

For bright scenes also, JBF improves the SNR. But this comes at the cost of degraded image fidelity. We measure this degradation using ΔE difference of the captured image, before and after applying the JBF, from a ground truth image. To find the ground truth for each scene, we average the 25 images captured under the same illumination. Finally, we average the ΔE difference over all the pixels for each mode. From this metric, we find that the degradation in the image fidelity due to the JBF, offsets the improvement in the SNR in RGB mode much more than the CMY mode (Figure 12). Hence, for bright scenes, the highest image fidelity is achieved in the RGB mode without applying the JBF.

6 Design Options and Prototypes

In this section, we provide design options for embedding shiftable layers of CFAs in a real camera. We build some prototypes based on these designs and show some preliminary results from them.

6.1 Mechanical Shift

The easiest way to achieve shiftable layers of CFA is to layer two CFAs on the CCD sensor during manufacturing. However, one of them should be equipped with a shift mechanism. This can be achieved using inexpensive (less than $175) linear staging devices (e.g. EdmundOptics Part Number NT56-416ootnote{http://www.edmundoptics.com/onlinestores/displayproduct.cfm?productID=1844}) some of which allow linear shifts with 1 μm accuracy.

To demonstrate the feasibility of this design, we used it to build a rudimentary prototype of our camera with switchable primaries. We opened up a monochrome 2560 × 1920 camera (EO-5012BL from EdmundOptics) to expose its sensor. We used printed 35mm digital slides for the CFAs. Such slides can be printed in professional photo labs such as Swan Photo Labootnote{http://www.swanphotolabs.com/swan08/} and cost about $4 for each slide. To implement the shifting, we used a Metric Bar-Type Lens Holderootnote{http://www.edmundoptics.com/onlinestores/displayproduct.cfm?productID=2190/} (price: $79). One of the CFA layers is mounted on the static part of the holder and the other one on the moving part (Figure 13). The screw on the moving part has 20 teeth each of height 0.5mm. Therefore, one turn of this screw results in 0.5mm shift of the moving CFA. Hence, by rotating the head of the screw by one degree we can move the CFA about 1.39μm.

However, this setup has a tremendous scope of improvement. Our cheap CFAs has neither the resolution nor the light efficacy of the CFAs of standard cameras. The pixel size of our printed CFAs is 8.8μm × 8.8μm resulting in 4 times bigger pixel size in each dimension than our sensor pixels (2.2μm × 2.2μm). Further, the CFAs are printed using light beams that do not produce rectangular pixels but gaussian blurs. Therefore, we printed a pattern with 2 times larger tiles and one black line between every two adjacent tiles to reduce the color bleeding. Consequently, a CFA tile becomes 12 times bigger compared to a sensor pixel. To alleviate this mismatch, we separate the CFAs from the sensor. The image is focused on the CFAs and refocused on the sensor using an achromatic lens (25mm diameter and 30mm effective focal length) that downsizes the CFA tiles by a factor of 3 making the resolution mismatch 4 in each direction. Even when considering the 4 × 4 pixels on the sensor that are considered as one pixel of the prototype, we observe considerable color bleeding between the adjacent pixels. This is due to the glass cover of the sensor that acts as a diffuser. We could not remove it due to the fragility of the sensor. Hence, to nullify its effect we only consider the 2 × 2 center pixels of the 4 × 4 groups of pixels on the sensor and average their values to get the captured values. All these result in degradation of the image quality and resolution (640 × 480 pixels). Figure 13 shows the picture of this prototype and some images captured with it. Further, in terms of size, note that 16cm length of our 19cm long prototype contributes to refocus the image from the CFA to the sensor that is unnecessary when the CFAs are mounted on the sensor. Finally, in terms of cost, the off-the-shelf devices used in our setup are not custom tailored for our application (for e.g. the Metric Bar-Type Holder can hold much heavier weight than is required by a camera). Devices designed specifically and mass produced for cameras can be considerably cheaper.

6.2 Optical Shift

We also designed an add-on device for DSLR cameras to achieve switchable modes. In this setup, the image is formed on the first CFA and then refocused on the second CFA, attached to the sensor, using two lenses of the same power. However, by making one lens slightly off-axis we can shift the image in the off-axis direction. A precise shift can be obtained by controlling the placement of the lenses between the CFA and the sensor (Figure 14).

Let us assume the first lens is α units off-axis and the desired shift is β units. The magnification of the two lenses are s_1 and s_2 respectively, where $s_1s_2 = 1$. Assuming the second lens is axis aligned, the total shifting of the image is $s_2\alpha = \frac{\beta}{\alpha}$. Hence, $s_1 = \frac{\alpha}{\beta}$. Using the standard thin lens equation, we find that in order to achieve this the first lens should be placed at distance $d_1 = \frac{(s_1+1)}{s_1}$ from the CFA. The resulting image will be at distance $\frac{(s_1+1)}{s_1}$ from the CFA. In order to make $s_2 = \frac{\alpha}{\beta}$, using thin lens equation, we find that the second lens should be at distance $f(s_1-1)$ behind the image of the first lens. Therefore the second lens should be placed at...
The main advantage of this setup is that the shifting can be pre-
1.39 1.28 1.17
1.63 1.48
1.16
0.88
0.71
1.16
0.92
0.83 0.79 0.74
1.39
0.70
1.39
0.73
0.73
0.73
Table 2: Comparison of the performance of several demosaic-
Fig 5-HDR
Bayer
0.92
0.92
0.88
0.71
0.88
1.16
1.16
0.70
1.39
1.39
1.41
1.39
0.73
0.73
patterns whose behavior to demosaicing is studied here. There are
Demosaicing: Our camera with switchable modes has novel CFA

Figure 13: Left: Picture taken from our sample preliminary prototype. Middle: Zoomed-in view of the shifting mechanism from a different angle. Right: Images taken with our prototype with RGB and CMY modes in different lighting conditions. Please note the better SNR of the CMY mode for the dark scene (left) and the better SNR of the RGB mode for the lighted scene (right) in the zoomed-in views.

Figure 14: Left: This figure shows the design of the add-on device that be added to a regular Bayer LDR camera to achieve a HDR mode. A pair of lenses, separated by a fixed distance, is put between the Bayer CFA on the camera sensor and the printed CFA. The lens which is close to the CFA is slightly off-axis. The amount of shift is controlled moving this two-lens ensemble on a rail. Right: We show the LDR and HDR images captured by this prototype. Note the saturated sky in the LDR mode is better captured in the HDR mode.

The main advantage of this setup is that the shifting can be pre-
be formed at $x_2 + \frac{f(x_2 - 1)}{x_1} = 4f$. Thus, irrespective of x_1 and x_2
distance between the lenses should be $2f$. β can be changed by moving
The image is not shifted when placing the first lens
is centered at $x_1 = \frac{f(x_1 - 1)}{x_1} = 3.3cm$. Thus, we
can achieve 26.4μm shift by moving the lenses 3mm away from the
Thus, we used this to design a prototype switchable LDR/HDR camera

We used this to design a prototype switchable LDR/HDR camera

7 Discussion

Demosaicing: Our camera with switchable modes has novel CFA

\begin{align*}
d_2 &= \frac{(x_1+1)^2}{x_1} - f(x_1 - 1) = 2f + x_1 \text{ and the image of this lens will be formed at } x_2 + \frac{f(x_2 - 1)}{x_1} = 4f. \text{ Thus, irrespective of } x_1 \text{ and } x_2 \text{ the distance between the CFA and sensor should be } 4f \text{ and the distance between the lenses should be } 2f. \beta \text{ can be changed by moving the lenses to different positions between the CFA and sensor.}
\end{align*}
CFA patterns in Figures 2, and 6. To quantify this, we find the average \(AE \) difference of the demosaiced image from the original non-mosaiced image in the CIELAB space (Table 2). We also compare this to the error due to demosaicing for a Bayer pattern.

Table 2 shows that though most methods work well for the different modes, each mode favors some demosaicing methods over others. Most importantly, demosaicing artifacts from the RGB mode of the pattern in Figure 2 is comparable to the Bayer pattern and even slightly better when considering the minimum error. However, the pattern in Figure 6 shows higher error in the same mode primarily due to adjacent tiling of similarly colored filters. Also, the CMY mode of both our patterns show more error than the RGB mode. Finally, the RGB mode shows more error than the CMY or RGB modes. This emphasizes the need for switchable primaries where lesser noise and demosaicing artifacts can be traded over color fidelity when it is not of critical importance. Further, like any single shot HDR camera, our switchable LDR/HDR camera compromises spatial resolution in HDR mode (Figure 8). This manifests itself as larger demosaicing errors for the HDR mode than the LDR mode.

Effects on Light Efficiency: Usually RGB CFAs are built using layered combinations of CMY dyes [Gunturk et al. 2005] in a fashion equivalent to our RGB mode. Hence, layering CFAs does not compromise the spectral transmittance in the RGB mode of the switchable camera. Since the current filters have light efficiency close to 90\%, even in the CMY mode, there is only a small loss in the light efficiency (around 10\%) that is outweighed by the 70\% improvement in the SNR in this mode.

In order to confirm this in practice we compared the performance of our camera with the raw images (to avoid post-processing) from a standard RGB camera with similar pixel size, Canon PowerShot S3 IS on the same set of test images used in Table 1 in similar lighting conditions. We found the SNR of this camera to be about 0.95 of the RGB mode of our camera for both dark and bright scenes. This can be attributed to the lower transmittance of the pigments in the Canon camera compared to the dichroic filters used in our prototype and also the slightly smaller pixel size of the Canon camera.

Practicality of the layered CFAs: Spectral bleeding due to the CFA misalignment is the main obstacle of our layered CFA design. This can be alleviated by the use of microlenses. Proper design of microlenses and photo-detectors, that consider the filter thickness, will be the key. Further, use of high precision actuators can reduce misalignment significantly. Certain recent SLR cameras already have actuators to shift the sensors for anti-blur or dust-removal. Also, in Sinar photography \(^{6}\) the CCD sensor is shifted three times laterally or vertically by exactly one pixel width from one exposure to the next, so that every pixel is covered by every primary color. Similar mechanism can be used for shiftable CFAs. Finally, since CFAs are printed using precise machinery, some of the issues can be alleviated during printing, for e.g. compensating for lens aberration in the second CFA layer in the optical shift setup. The micron level shifts achieved from inexpensive COTS components in our lab setting provides ample encouragement that manufacturers can do much better with the facilities in their disposal.

8 **Conclusion**

In summary, we present the concept of shiftable layering of CFAs to achieve multiple switchable operational modes within the same camera. We demonstrate two different cameras using this concept: a camera with switchable primaries that can operate in the RGB, CMY and 5-color RGBCY modes; and a camera with switchable LDR and HDR capture modes. The camera with switchable primaries can provide superior color fidelity for colorful scenes and the optimal SNR for both dark and bright scenes. The camera with LDR and HDR modes can trade off resolution to capture a higher dynamic range. Further, we show that the general idea of CFA layering can be posed as a constraint satisfaction problem to find CFA patterns based on the design constraints. Finally, we propose some simple designs to explore the practical feasibility of embedding such shifted layering of CFAs in real cameras in the future.

Acknowledgements

This project is supported by Majumder’s NSF CAREER award IIS-0846144. We would like to specially thank Alex Ihler, our colleague in UC Irvine (UCI), for useful discussions on formalizing the constraint satisfaction problem. We would also like to thank ex-student from our lab at UCI, Maxim Lazarov of Dreamworks for lending us his voice for the supplementary video. Raskar at MIT is supported by Alfred P. Sloan Research Fellowship and Darpa Young Faculty Award.

References

ALTER, F., MATSUSHITA, Y., AND TANG, X. 2006. An intensity similarity measure in low-light conditions. In ECCV, 267–280.

BAONE, G. A., AND QI, H. 2006. Demosaicking methods for multispectral cameras using mosaic focal plane array technology. Proc. SPIE 6062.

BAYER, B. Color imaging array. US Patent 3,971,065.

CAO, H., AND KOT, A. C. 2008. A generalized model for detection of demosaicking characteristics. In JCM, 1513–1516.

DRAGO, F., MYSZKOWSKI, K., ANNEN, T., AND CHIBA, N. 2003. Adaptive logarithmic mapping for displaying high contrast scenes. Computer Graphics Forum 22, 419–426.

FREEMAN, T. W. 1988. Median filter for reconstructing missing color samples. US Patent 4,724,395.

Gindele, E., AND Gallagher, A. Sparsely sampled image sensing device with color and luminance photosites. US Patent 6,476,865.

Gu, J., Wofle, P. J., AND Hirakawa, K. 2010. Filterbank-based universal demosaicking. 1981–1984.

Gunturk, B., Member, S., Altunbasak, Y., Member, S., AND Mersereau, R. M. 2002. Color plane interpolation using alternating projections. IEEE Trans. Image Processing 11, 997–1013.

Gunturk, B., Glotzbach, J., Altunbasak, Y., Schafer, R., AND Mersereau, R. 2005. Demosaicking: color filter array interpolation. IEEE Signal Processing Magazine.

Hamilton, J., AND Adams, J. 1997. Adaptive color plane interpolation in single sensor color electronic camera. US Patent 5,629,734.

Hirakawa, K., AND Wolfe, P. 2008. Spatio-spectral color filter spatio-spectral color filter array design for optimal image recovery. IEEE TIP 17, 10.

Imai, F. H., Berns, R. S., AND Tzeng, D.-Y. 2000. A comparative analysis of spectral reflectance estimated in various spaces using a trichromatic camera system. Journal of Imaging Science and Technology 44, 280–287.
Kumar, M., Morales, E., Adams, J., and Hao, W. 2009. New digital camera sensor architecture for low light imaging. *IEEE ICIP*, 2681–2684.

Langfelder, G., Zaraga, F., and Longoni, A. 2009. Tunable spectral responses in a color-sensitive cmos pixel for imaging applications. *Electron Devices, IEEE Transactions on*.

Li, X. 2005. Demosaicing by successive approximation. *IEEE Trans. Image Process*. 14, 3, 370–379.

Liu, W., and Tan, Y.-P. 2003. Color filter array demosaicing: new method and performance measures. *Image Processing, IEEE Transactions on*.

Lukac, R. 2008. Single-Sensor Imaging: Methods and Applications for Digital Cameras. CRC Press.

Mohan, A., Raskar, R., and Tumblin, J. 2008. Agile spectrum imaging: Programmable wavelength modulation for cameras and projectors. *Computer Graphics Forum* 27, 2, 709–717.

Ratner, N., and Schechner, Y. Y. 2007. Illumination multiplexing within fundamental limits. *Computer Vision and Pattern Recognition, IEEE Computer Society Conference on* 0, 1–8.

Schechner, Y. Y., Nayar, S. K., and Belhumeur, P. N. 2007. Multiplexing for optimal lighting. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 29, 8, 1339–1354.

Shogenji, R., Kitamura, Y., Yamada, K., Miyatake, S., and Tanida, J. 2004. Multispectral imaging using compact compound optics. *Opt. Exp*, 16431655.

Susano, G., Peterescu, S., Nanu, F., Capata, A., and Corcoran, P. 2009. Rgbw sensor array. *US Patent 2009/0,167,893*.

Yamagami, T., Sasaki, T., and Suga, A. Image signal processing apparatus having a color filter with offset luminance filter elements. *US Patent 5,323,233*.

Yasumasa, F., Mitsunaga, T., Iso, D., and Nayard, S. Generalized Assorted Pixel Camera: Post-Capture Control of Resolution, Dynamic Range and Spectrum. Tech. rep.

Appendix

Our SNR analysis is inspired by prior work on illumination multiplexing [Schechner et al. 2007]. To capture the effect of illumination from a single light source in a scene lit by multiple lights, images can be captured by illuminating the scene with one source at a time. However, this leads to considerable noise due to the low illumination, especially in the shadow regions. [Schechner et al. 2007] shows that acquiring images with multiplexed sources reduces the noise. The effect of each light source can then be recovered by demultiplexing the captured values. The scenario with cameras is analogous. The primaries of a narrow band camera are designed to capture each of the red, green or blue channels. Whereas, the primaries of a broad band camera multiplex these bands to improve the light efficiency. Hence, we propose a similar paradigm for analyzing the SNR of the multiplexed or non-multiplexed capture modes.

Modeling SNR: Let us consider a color basis with n channels whose spectral transmittances overlap minimally (e.g. RGB). Let the total number of photons reaching the camera from a spatial point before being filtered by the primaries be α. Hence, α changes spatially with the scene content and also with the change in aperture or shutter speed of the camera. For a general camera, let us assume m physical color filters that multiplex these n channels by transmitting or blocking each channel completely (e.g. a cyan primary transmits B and G but blocks R). Let the transmittance of these m primaries be $T = (t_1, t_2, \ldots, t_m)^T$. If we assume that the light is evenly distributed across all wavelengths, then the expected value of the amount of light passing through any primary is given by αT. Let us consider a $m \times n$ multiplexing matrix M such that $M(i, j)$ is 1 if channel i, $1 \leq i \leq n$, is passed and 0 otherwise. Hence, the expected values computed for each channel i, c_i, is given by $E(c_i) = \alpha M^{-1}$, where M^{-1} is the ith row of M^{-1}. We define the expected value $E(C)$ of $C = (c_1, \ldots, c_n)$ to be a vector given by $E(C) = (E(c_1), \ldots, E(c_n))$.

For the sake of simplicity we assume the noise level is always computed for the same sensor gain, i.e. ISO number. The sources of noise in an imaging pipeline can be categorized into signal-dependent or signal-independent noise [Schechner et al. 2007; Altet al. 2006; Ratner and Schechner 2007]. The signal-dependent noise can be expressed as a Poisson distribution of the photons that reach the sensor, i.e. each pixel. Since this is dependent on the number of photons, it is the dominant noise when the number of photons is high, i.e. for bright scenes. The variance of the signal-dependent noise for each primary j is therefore proportional to the expected captured values αt_j. We assume the variance of this signal-dependent noise is the same across all the primaries, S.

Hence, the total variance for channel i is given by $\sigma_i^2 = \sum_{j=1}^{m} (M_{ij}^{-1})^2 \alpha t_j + S$. For dark scenes, the signal-independent noise dominates and the above equation becomes $\sigma_i^2 = \sum_{j=1}^{m} (M_{ij}^{-1})^2 S$. For bright scenes, the signal-dependent noise dominates and the above equation becomes $\sigma_i^2 = \sum_{j=1}^{m} (M_{ij}^{-1})^2 \alpha t_j$. Now, we define the total variance for C as a vector $\sigma_C = (\sigma_1, \ldots, \sigma_n)$. Hence, the signal to noise ratio for C is given by

$$SNR(C) = \frac{|E(C)|}{|\sigma_C|}$$

(3)

However, note that defining the SNR for the intensity image g is much simpler. In this case, $E(g) = \alpha \sum_i \bar{t_i}$ and the $\sigma_g = \sqrt{\sum_i S + \bar{t_i}}$. For dark scenes, $\sigma_g = \sqrt{\sum_i S}$ and for bright scenes, $\sigma_g = \sqrt{\sum_i \bar{t_i}}$. Hence, the $SNR(g) = \frac{|E(g)|}{\sigma_g}$.

For any camera, we usually know the matrix M^{-1}. For example, the matrix M for an RGB camera is a 3×3 identity matrix since the channels and the filters are identical. Hence, M^{-1} is also identity. But, for CMY cameras with that capture multiplexed RGB channels, the matrix M and M^{-1} are as follows.

$$M_{CMY} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad M_{CMY}^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ -1 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix}$$

(4)

Or, when considering the 5-primary mode of our camera, $n = 5$ since we can capture 5 almost non-overlapping color channels as shown in Figure 3(d). However, $m = 6$. This means that M is not a square matrix, but a 6×5 matrix and M^{-1} is a non-unique pseudoinverse. M and one such pseudo inverse are shown below.

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}, \quad M^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

(5)

Further, note that when computing the ratios of the SNRs (e.g. RGB vs. CMY) for dark or bright scenes, we do not need to know α or S since they cancel out. Hence, as long as we know the transmittance of the primaries, Figure 3, we can predict the relative improvement or degradation of SNR. Since we know the transmittance of the primaries in our camera, we use this to predict two ratios, $\frac{SNR_{RGB}}{SNR_{CMY}}$ and $\frac{SNR_{Red}}{SNR_{GCMY}}$, for both bright and dark scenes (Table 1).