FIRST RECORD OF OSTRACODS IN THE ESTIVA FORMATION (PERNAMBUCO BASIN, UPPER CRETACEOUS), NORTHEAST OF BRAZIL

Cecília de Lima Barros¹; Enelise Katia Piovesan²; Mário Ferreira de Lima Filho ³; Sonia Maria Oliveira Agostinho ⁴.

10.18190/1980-8208/estudosgeologicos.v31n1p16-26
¹ Pesquisadora e Pós-Doutoranda, Instituto de Geociências/Departamento de Geologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro/RJ, Brasil.
ORCID: https://orcid.org/0000-0001-6760-6988
Email: ceciliabarros@geologia.ufrj.br
² Professora, Doutora, Centro de Tecnologia e Geociências/Departamento de Geologia, Universidade Federal de Pernambuco (UFPE), Recife/PE, Brasil.
ORCID: https://orcid.org/0000-0002-0433-0395
Email: enelise.katia@ufpe.br
³ Professor, Doutor, Centro de Tecnologia e Geociências/Departamento de Geologia, Universidade Federal de Pernambuco (UFPE), Recife/PE, Brasil.
ORCID: https://orcid.org/0000-0002-8523-3457
Email: mario.limafo@ufpe.br
⁴ Doutora, Centro de Tecnologia e Geociências/Departamento de Geologia, Universidade Federal de Pernambuco (UFPE), Recife/PE, Brasil.
ORCID: https://orcid.org/0000-0003-3900-5741
Email: sonia@ufpe.br

RESUMO
O presente trabalho trata do primeiro registro de ostracodes na Formação Estiva, Bacia Pernambuco (Poço Cupe, 1 LABIO-PE1). A Bacia Pernambuco estende-se por todo o litoral sul do Estado de Pernambuco e está delimitada pela Zona de Cisalhamento de Pernabuco, a norte, e pelo Alto de Maragogi, a sul. A Formação Estiva é composta por carbonatos plataformais, datados como Cretáceo Superior. A análise e interpretação dos dados foram realizadas através de revisão bibliográfica, levantamentos de dados estratigráficos e coleta de amostras. A metodologia adotada para o tratamento das amostras estudadas consistiu na coleta, pesagem e desagregação de amostras; lavagem e secagem do material desagregado e triagem dos microfósseis carbonáticos. Foram registrados raros ostracodes, tentativamente atribuídos ao gênero mixohalino Fossocytheridea Swain & Brown, 1964. O reconhecimento da fauna de ostracodes e sua paleoecologia tem como objetivo contribuir na compreensão da evolução da Bacia Pernambuco.

Palavras chave: Fossocytheridea; Paleoambiente; Cretáceo Superior.

ABSTRACT
The present work deals with the first record of ostracods in the Estiva Formation, Pernambuco Basin (Cupe, 1 LABIO-PE1 borehole). The Pernambuco Basin extends throughout the southern coast of the state of Pernambuco and is limited by the Pernambuco Shear Zone, in the north and by the Maragogi High, in the south. The Estiva Formation consists of continental shelf carbonates dated as Upper Cretaceous. The analysis and interpretation of the data were performed through literature review,
stratigraphic data surveys, and sampling. The methodology used for the treatment of the samples consisted of the following steps: collection, weighing and fragmentation of the samples; washing and drying of the calcined materials; and screening and picking of the carbonatic microfossils. Rare ostracods were found, probably belonging to the brackish genus *Fossocytheridea* Swain & Brown, 1964. The recognition of the ostracod fauna and its paleoecology aims to contribute to the understanding of the Pernambuco Basin evolution.

Keywords: *Fossocytheridea*; Paleoenvironment; Upper Cretaceous.

INTRODUCTION

Paleontological studies in the Pernambuco Basin are scarce, including microfossils (Lima & Pedrão, 1987, 1989, 1994; Lima Filho & Santos, 2001) and macrofossils. Among the last ones, fish bones occurrences belonging to the *Diplomystus* genus stand out, which were tentatively correlated with Aptian deposits of the Cabo Formation (Costa et al., 1979). Gastropods and bivalves were recorded in limestones of the Estiva Formation by Maury (1930), Beurlen (1964), Beurlen & Cobra (1960) and Muniz & Almeida (1988). Regarding to the biostratigraphy of the Pernambuco Basin, palynological studies developed by Lima & Pedrão (1987, 1989) attributed a Cenomanian–Turonian age for the Estiva Formation deposits. Based on the presence of the bivalve *Neithrea sergipensis*, Beurlen & Cobra (1960) suggested that the Estiva Formation is correlated to the Albian of the Riachuelo Formation, from the Sergipe-Alagoas Basin.

With respect to the paleoecology, Lima & Pedrão (1987) suggested that the Estiva Formation was deposited in a coastal environment, with evident marine influence, under low oxygen conditions and during a warm and dry climate. According to Lima Filho & Silva Santos (2001) through palynological information in the SR-06 well (depth of 39 m) in the Pernambuco Basin, the sampling at this point showed an association of species considered restricted to Cenomanian (Psilitricolpites papilioniformis, Hexaporotricolpites coronatus) and Turonian (Tricolpites microstriatus, Tricolpites synstriatus).

Ferreira (2009) studied the organo-faciological variation of the Cenomanian-Turonian interval of the Pernambuco Basin, observing that in the four sedimentary sections, organic components from the phytoclasts group are predominant particulate organic components, followed by the palynomorphs group and, subordinately, by the amorphous organic matter group. These data indicated a typically coastal environment, with the influence of fluvial-deltaic environments.

The Pernambuco Basin extends all over the south coast of the Pernambuco state and is limited by the Pernambuco Shear Zone (PESZ), in the north, and by the Maragogi High, in the south (Barbosa & Lima Filho, 2006; Barbosa et al., 2008). Lima Filho (1998), Lima Filho & Szatmari (2002), and Lima Filho et al. (2005) pointed out differences between the basins to the south and north of the Pernambuco Lineament (Fig. 1). These works individualized and formalized the Paraíba Basin, which is located between the Pernambuco Lineament and the Touros High, subdivided into sub-basins according to Mabesoone & Alheiros (1988), and Pernambuco Basin the one of rift-type (formerly called Cabo Basin), located between the Pernambuco Lineament and the Maragogi-Barreiros High.
Later, based on stratigraphic data, Barbosa (2004) limited the Paraíba Basin to the area between the Pernambuco Lineament and the Mamanguape High. The Pernambuco Basin may be subdivided into two sectors. The first one occupies a narrow area along the Northeast coast, the Cupe Rift, while the second one is located in deep and ultra-deep water. The separation between these two sectors is the Maracatu High, according Almeida et al. (2005). The stratigraphy is well known in the emerged portion along the coast, although it is totally unknown in the offshore portion due to the scarce sampling (absence of drilling).

Oliveira & Leonardos (1943) first named the Estiva Formation, which was widely used to designate carbonate deposits that crop out in the several localities of the Pernambuco Basin (Beurlen & Cobra, 1960; Cobra, 1960; Maciel, 1968). The age for the Estiva Formation was firstly proposed by Maury (1930). Based on invertebrate macrofossils occurrences, the author suggested that the Turonian age for the formation (see data in Barbosa et al., 2008). The presence of carbonatic deposits in the Pernambuco Basin was already long known, being considered at the time to be correlated to levels of the same nature and Paleocene age occurring in the Paraíba Basin shore according to Branner (1902). In the Pernambuco Basin, the Estiva Formation comprises platformal carbonates of either Cenomanian–Turonian age or Albian–Cenomanian age according to Lima Filho et al. (2006).

The outcropping limestones from the Pernambuco Basin have been commonly treated as correlated and grouped into the Estiva Formation in recent works. The lithotype is a dolomitic limestone of grey color and massive aspect, frequently with clay and fossiliferous intercalations, comprising poorly preserved marine macrofossils and microfossils. Later, works kept this interpretation that groups the deposits in a big unit divided into three main lithofacies groups: basal or lower (alluvial proximal), medium (fluvial-alluvial), and distal (fluvial-lacustrine) (Cruz, 2002; Nascimento, 2003; Nóbrega & Lima Filho, 2003; Campello, 2004; Almeida et al., 2005).

The fossils scarcity in the Estiva Formation results in a poorly detailed biostratigraphic framework for the Pernambuco Basin. Until now, there was no record of ostracods in the basin, which shows the importance of developing such studies in it.
METHODOLOGY

The studied samples were collected from the Cupe 1-LABIO-PE1 core, drilled in the Pernambuco Basin (Estiva Formation). The drilling was executed in the scope of the research project “Micropaleontological and biostratigraphic analysis of the rift and post-rift sequences of the Pernambuco Basin, based on the main microfossiliferous groups”, with the financial support of PETROBRAS, process nº 401812/2010-3. The core is located in front of the Condomínio Privê Baia do Cupe, on the Cupe beach, Porto de Galinhas, Ipojuca Municipality (near 60 km from Recife).

One hundred samples were analyzed from the CUPE (1-LABIO-PE) core, collected at depth intervals of 5 to 10 cm (when possible).

The samples were processed on CENPES-PETROBRAS laboratory, in the Rio de Janeiro state, following classical technics for recovery of carbonate microfossils, as it is detailed below:

Sampling - The samples were collected from the CUPE (1 LABIO-PE) core;

Sample weighting - The amount established was 60 g;

Sample disaggregation - The fragmented samples were placed into a Becker recipient and submitted to attack using hydrogen peroxide (130 vol), aiming the disaggregation and oxidation of the organic matter. After intense chemical reaction, alcohol 70% was added at variable amounts. These procedures were carried out in CENPES-PETROBRAS laboratory, with constant monitoring until the reaction was ceased. The volume of hydrogen peroxide added was from 100 to 300 ml and the reaction time established was about 24 hours;

Figure 1 – A Map showing the location of the Pernambuco Basin and the Cupe, 1 LABIO-PE1 borehole. Source: Modified from Lima Filho (1998).
Sample washing and drying - Under running water, the samples were separated using mesh sieves (75, 180, and 250 µm). Each sieve content was transferred to glass beakers labeled with the core name, sample number, and granulometric fraction, and put to dry at 60 °C in a drying oven. To avoid contamination between different samples, the sieves were carefully washed, first using a brush and neutral detergent. Following, the sieves were rinsed off and immersed in a methylene blue solution;

Picking - The granulometric fractions were weighed and placed in properly labeled repositories to be used for the separation of microfossils. Screening is a meticulous part of the research that requires the use of a stereomicroscope and a specific plate. The microfossils found were glued on associative slides;

Systematic classification of fossils - This step included recognition of the ostracods, identifying the genus and species, consulting specialized literature (for example Liebau, 2005; Tibert et al., 2002, 2003 and 2009; Bergue et al., 2011; Piovesan et al., 2013, 2015). The specimens were photographed using the stereomicroscope Leica Model EZ4D and the Scanning Electron Microscope (SEM) from the Laboratório de Dispositivos e Nanoestruturas (LDN) – of the Department of Geology of the Federal University of Pernambuco (D GEO-UFPE). All fossil specimens are deposited in the Laboratório de Micropaleontologia Aplicada (LMA) of the Department of Geology of the Federal University of Pernambuco UFPE, identified as “Sample 48”.

RESULTS AND DISCUSSION

Class OSTRACODA Latreille, 1802
Subclass PODOCOPA Sars, 1866
Order PODOCOPIDA Sars, 1866
Family CYTHERIDEIDAE Sars, 1925

Genus Fossocytheridea Swain & Brown, 1964
(Figure 2)

Material: Five ostracod specimens preserved mainly as internal molds. Sample 48 (56.74 m depth)

Comments: Out of one hundred samples analyzed, only five registered ostracods, from the limestone sample 48 (56.74 m depth) poorly preserved. Three ostracod taxa were identified, tentatively attributed to the mixohaline genus Fossocytheridea Swain & Brown, 1964 (Fig. 2), kept in open nomenclature: Fossocytheridea sp. 1; Fossocytheridea sp. 2; and Fossocytheridea? sp. 3.
Figure 2- Ostracode specimens SEM images. A. *Fossocytheridea* sp. 1; B. *Fossocytheridea* sp. 2; C. and D. *Fossocytheridea?* sp. 3.

The recorded taxa, *Fossocytheridea* sp. 1, *Fossocytheridea* sp. 2, and *Fossocytheridea?* sp. 3, were not formally described due to poor preservation of the carapaces. However, it was possible to separate into different taxa based on the morphological features described as follows. *Fossocytheridea* sp. 1 presents a subrectangular carapace in the lateral view, with the bigger width positioned in the posterior third of its length and the bigger height positioned in the anterior cardinal angle. The right valve strongly overlaps the left valve all through the outline of the carapace. The posterior margin is asymmetrically round, the dorsal margin is slightly convex, and the ventral margin is straight.

Fossocytheridea sp. 2 differs from *Fossocytheridea* sp. 1 by presenting a subrectangular and elongated carapace in the lateral view, with a pronounced sulcus in the anterodorsal region. Besides, it presents valve reversal, with a less pronounced dorsal overlap. The anterior and posterior valves are subrounded. The dorsal margin is slightly convex, and the ventral margin is almost straight, with a concavity in the medium region of the left valve.

Fossocytheridea? sp. 3 is different from the other two by presenting a sub-rectangular to sub-triangular carapace in lateral view. The right valve overlaps the left one, which is less pronounced in the posterior region. The anterior and posterior margins are asymmetrically rounded, with a narrower posterior region. The dorsal margin is convex, the ventral margin of the right valve is slightly convex, and the left valve is almost straight. Anteromarginal and posteroventral regions are compressed into both valves. This last taxon is possibly a juvenile specimen.

Fossocytheridea Swain & Brown, 1964 is a genus that inhabits marginal
marine environments of the Late Cretaceous, widely distributed from the Aptian to the Maastrichtian of America, Europe, China, Africa and Middle East (Swain & Brown, 1964; Babinot & Colin, 1976; Tibert et al., 2003; Bergue et al., 2011). Previous works such as Colin et al. (1990) and Tibert et al. (2002, 2003 and 2009) already highlighted the importance of Fossocytheridea to characterize coastal marine environments.

The first record of Fossocytheridea in Brazil was pointed out by Viviers et al. (2000) for the Campanian of the Potiguar Basin. In that work, the recorded specimens were identified in the genus Sarlatina Babinot & Colin, 1976, which is currently considered a junior synonym of Fossocytheridea, according Tibert et al. (2003). An extensive study of Tibert et al. (2003) revised the representatives of the Cytherideidae family and some species of Fabanella Martin, Ovocytheridea Grekoff, Dolocytheridea Triebel, Antibythocypris Jennings and Cytheridea Bosquet, also relocated into the Fossocytheridea genus.

The Fossocytheridea record became frequent in the Cretaceous of Brazil, mainly in the marginal basins. Bergue et al. (2011) described four new species of Fossocytheridea, analyzing their ecological relationships and intraspecific variability. Piovesan et al. (2013) registered and described Fossocytheridea species for the Late Cretaceous of Santos Basin. Subsequently, Piovesan et al. (2014) proposed the species Fossocytheridea potiguarensis Piovesan, Cabral & Colin, 2014 and Fossocytheridea POT 1 for the Santonian–Campanian interval of the Potiguar Basin. These authors pointed that Fossocytheridea was the most abundant mixohaline genus of the Potiguar Basin in that time interval.

Piovesan et al. (2015) analyzed the paleoecological response of Fossocytheridea and Perissocytheridea in deposits from the Upper Cretaceous of Brazil and Portugal, observing that the two genera present different salinity tolerances. Comparatively, the two genera studied showed different behaviors in Brazil and Portugal: Perissocytheridea jandairensis seems to tolerate greater salinity conditions than Perissocytheridea estribeirensis. On the other hand, Fossocytheridea merlensis resists to considerable salinity variations, which does not seem to occur with the Fossocytheridea from the Potiguar Basin. The results suggest that, in the Late Cretaceous, both Fossocytheridea and Perissocytheridea were euryhaline and their tolerance to salinity gradients in the mixohaline context is related to the ecology of each species. The euryhaline character of Fossocytheridea is supported by its record in the Sanfranciscana Basin (Bittencourt et al., 2019), associated with species of Ilyocypris Brady & Norman, 1889, a genus typically registered in non-marine environments.

In terms of depositional environment, Tomé et al. (2006) suggested a shallow carbonate shelf, with terrigenous intervals due to the influence of tidal plains, on the Estiva formation. The great amount of organic matter and palynomorphs indicate sedimentation with terrigenous influence and warm and dry climate conditions. However, the presence of some dinoflagellates and foraminifera indicate a marine influence for the Estiva Formation of the Pernambuco Basin. Analysis performed by Barbosa et al. (2008) in outcrops and core samples, as well as petrographic analyzes, indicate that the deposition of carbonates, although still in the context of a shallow platform, should have occurred in coastal lagoon environment and reef banks, as suggested previously by Lima & Pedrão (1989, 1994). The recovery of Fossocytheridea...
in the Estiva Formation corroborates the paleoecological data previously obtained in the Pernambuco Basin, from a transitional to a shallow marine environment in the Late Cretaceous.

FINAL CONSIDERATIONS

Here, it is presented the first record of ostracods in the Cretaceous of the Estiva Formation, Pernambuco Basin, northeastern Brazil. Most of the specimens are preserved as molds, which limited a precise taxonomical identification. The ostracod specimens probably represent the mixohaline genus *Fossocytheridea*. Based on the previous studies, the recovered ostracod fauna allows to infer a transitional to a shallow marine paleoenvironment to the studied interval.

Acknowledgments

The authors thank the Research Project: "Micropaleontological and biostratigraphic analysis of the rift and post-rift sequences of the Pernambuco Basin, based on the main microfossiliferous groups", carried out in the Pernambuco Basin with the financial support of PETROBRAS, process nº 401812/2010-3. We thank CENPES-PETROBRAS, where the samples where treated, and to Ph.D. professor Edval Santos, from Laboratório de Dispositivos e Nanoestruturas da UFPE (LDN) for your support providing the Scanning Electron Microscope (SEM). We also thank Ph.D. Robbyson Mendes Melo for his help in the figures.

REFERENCES

Almeida, C.B., Cruz, L.R., Jardim De Sá, E.F., Vasconcelos, P.M.P., Medeiros, W.E. 2005. Tectônica e relações estratigráficas na Sub-Bacia Pernambuco, NE do Brasil: contribuição ao conhecimento do rifte Atlântico Sul. *Boletim de Geociências da Petrobras*, 13 (2): 167-180.

Barbosa, J. A., Evolução da Bacia Paraíba durante o Maastrichtiano–Paleoceno Formações Gramame e Maria Farinha, NE do Brasil. 2004. Dissertação (Mestrado em Geociências). Programa de Pós-graduação em Geociências, Universidade Federal de Pernambuco. Recife, PE. 219 p.

Barbosa, J.A.; Lima Filho, M.F. Aspectos estruturais e estratigráficos da faixa costeira Recife-Natal: observações em dados de poços. 2006. *Boletim de Geociências da Petrobras*, 14(1): 287-306.

Barbosa, J.A.; Pereira, P.J.F.; Lima Filho, M. Dente de um picnodontiforme (*Actinopterygii, Neopterygii*) da Formação Estiva, Cenomaniano–Turoniano da Bacia de Pernambuco, NE do Brasil. 2008. *Gaea Journal of Geoscience*, 4 (2): 43-48.

Babinot, J.-F. & Colin, J.-P. Sarlatina n.g. (Ostracoda): sa position dans l’évolution des Cyprideidini Kollmann, 1960. 1976. In: INTERNATIONAL SYMPOSIUM ON EVOLUTION OF POST-PALEOZOIC OSTRACODA. Proceedings, Hamburg NF, 5: 161-174.

Bergue, C.T.; Fauth, G.; Vieira, C.E.L.; Santos, A.S. & Viviers, M.C. New species of *Fossocytheridea* Swain & Brown, 1964 (Ostracoda, Crustacea) in the Upper Cretaceous of Santos Basin, Brazil. 2011. *Revista Brasileira de Paleontologia*, 14: 149-156.
Beurlen, K. & Cobra, R.Q. Novas localidades fossilíferas no litoral sul de Pernambuco. 1960. Anais da Academia Brasileira de Ciências, 32 (2): 7.

Beurlen, K. As espécies dos Cassiopinae, nova subfamília dos Turritelidae, no Cretáceo do Brasil. 1964. Arquivos de Geologia, 5 (1): 44.

Bittencourt, J. S.; Vieira, P. L. C. R.; Horta, R. M.; Vasconcelos, A. G.; Brandão, N. C. A.; Angelo Santos, A.; Knauer, L. G. Preliminary Report on the Lacustrine Strata of the Sanfranciscana Basin in Northern Minas Gerais, Brazil. 2019. Geonomos, 27 (1): 1-10.

Branner, J.C. Geology of the Northeast coast of Brazil. 1902. Geological Society of America Bulletin, 13: 41-98.

Brady, G.S., Norman, A.M., A monograph of the marine and freshwater Ostracoda of the North Atlantic and of North-Western Europe. 1889. Section I. Podocopa. The Scientific Transactions of the Royal Dublin Society, p. 63-270.

Campelo, F.C.A. Formação Cabo, Afloramento da Praia de Guadalupe. Caracterização de um Potencial Reservatório para Hidrocarbonetos. 2004. Dissertação (Mestrado em Geociências). Programa de Pós-Graduação em Geociências, Universidade Federal de Pernambuco. Recife, PE. 150 p.

Cobra, R.Q. Geologia da região do Cabo de Santo Agostinho, Pernambuco. 1960. Tese (Doutorado em Geologia).Programa de pós-graduação em Geologia, Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte, MG. 70 p.

Colin, J.-P.; Carbonel, P. & Olteanu, R. A review on the paleobiogeography and paleoecology of the closest groups of Cytherissa from the Mesozoic Fabanella and Vernoniella to the Cenozoic Cyprideis. 1990. Bulletin de l’Institut de Géologie du Bassin d’Aquitaine, 47/48: 119-133.

Costa, A.C., Mendes, V.A. & Rocha, D.E. 1979. Síntese preliminar da Geologia do Projeto Extremo Nordeste do Brasil. In: Bol. Núcleo Nordeste., Soc. Bras. Geol., 7: 421-440.

Cruz, L.R., 2002. Mapeamento geológico da região de Cabo (PE), Sub-bacia de Pernambuco. Natal: Departamento de Geologia, Universidade Federal do Rio Grande do Norte, Relatório de Graduação, 74 p.

Ferreira, J.A. Variação organofaciológica da sequência Cenomaniana–Turoniana da Bacia de Pernambuco. 2009. Dissertação (Mestrado em Geociências) Programa de Pós-graduação em Geociências, Universidade Federal de Pernambuco. Recife, PE. 160p.

Liebau A., 2005. A revised classification of the higher taxa of the Ostracoda (Crustacea). Hydrobiologia. 538: 115-137.

Lima, M.R. & Pedrão, E. 1987. Análise palinológica de sedimentos da Bacia do Cabo, Cretáceo do Estado de Pernambuco, Brasil. In: CONGRESSO BRASILEIRO DE PALEONTOLOGIA, 10, Rio de Janeiro, Anais, SBP, 46 p.

Lima, M.R. & Pedrão, E. 1989. Análise palinológica de sedimentos da Bacia do Cabo, Cretáceo do Estado de Pernambuco, Brasil. Anais da Academia Brasileira de Ciências, 61(1): 73-84.
Lima, M.R. & Pedrão, E. *The Cabo Basin*. 1994. *In:* G. Beurlen, D.A. Campos e M.C. Viviers (eds) Stratigraphic range of mega and microfossils of Brazil. Rio de Janeiro, UFRJ, p. 232-244.

Lima Filho, M. *Análise Estratigráfica e Estrutural da Bacia Pernambuco*. 1998. Tese Doutorado em Geociências) Programa de Pós-graduação em Geociências, Instituto de Geociências, Universidade de São Paulo, São Paulo, SP. 180 p.

Lima Filho, M. & Silva Santos, P.R. 2001. Biocronoestratigrafia da Bacia de Pernambuco: implicações ambientais e paleogeográficas. Revista Brasileira de Paleontologia, Porto Alegre, Sociedade Brasileira de Paleontologia, 2: 84.

Lima Filho, M. F. & Szatmari, P. Ar-Ar Geochronology of volcanic rocks of the Cabo magmatic province (CMP) – Pernambuco Basin. 2002. *In:* SIMPÓSIO SOBRE VULCANISMO E AMBIENTES ASSOCIADOS, BELÉM. Resumos 2: p. 59.

Lima Filho, M. F.; Barbosa, J.A.; Neumann, V.H.; Souza, E.M. Evolução estrutural comparativa da Bacia de Pernambuco e da Bacia da Paraíba. 2005. *In:* SIMPÓSIO NACIONAL DE ESTUDOS TECTÔNICOS, 10, Curitiba, *Boletim de resumos expandidos*, SBG, p. 45-47.

Lima Filho, M.F.; Barbosa, J.A.; Souza, E.M. Eventos tectônicos e sedimentares nas bacias de Pernambuco e da Paraíba: implicações no quebramento do Gondwana e correlação com a Bacia do Rio Muni. 2006. *Geociências*, 25 (1): 117-126.

Mabesoone, J. M. & Alheiros, M. M. Origem da bacia sedimentar costeira Pernambuco-Paraíba. 1988. *Revista Brasileira de Geociências*. São Paulo. 18 (4):476-482.

Maciel, E. *Contribuição à geologia geral de Ipojuca, PE*. 1968. Recife, UFPE, Relatório de Graduação, 57 p.

Maury, C.J. *O Cretáceo do Paraíba do Norte*. 1930. Rio de Janeiro, Serviço Geológico e Mineralógico, Monografia 8, 305 p.

Muniz, G.C.B. & Almeida, J.A.C. Contribuição ao reconhecimento da idade do calcário Ipojuca, Formação Estiva, Bacia do Cabo. 1988. *In:* CONGRESSO BRASILEIRO DE GEOLOGIA, 35, Belém, Anais, SBG, 6: 2371-2374.

Nascimento, M.A.L. Geologia, geocronologia, geoquímica e petrogrênese das rochas ígneas cretácicas da província magnmática do Cabo e suas relações com as unidades sedimentares da Bacia Pernambuco, NE do Brasil. 2003. Tese (Doutorado em Geodinâmica e Geofísica) Programa de Pós-graduação em Geodinâmica e Geofísica, Universidade Federal do Rio Grande do Norte, Natal, RN. 235 p.

Nóbrega, V.A., & Lima Filho, M. Estudos diagenéticos da sucessão de rochas silicilásticas do poço 2 CP-01-PE: uma contribuição aos reservatórios da Formação Cabo. 2003. *Estudos Geológicos*, 13: 71-88.

Oliveira, A.I. & Leonardos, O.H. Geologia do Brasil. 1943. *Boletim do Serviço de Informação Agrícola*, 813 p.

Piovesan, E. K.; Nicolaidis, D. D.; Fauth, G; Viviers, M. C. 2013. Ostracodes from the Aptian-Santonian of the Santos, Campos and Espirito Santo basins, Brazil.
Journal of South American Earth Sciences, 48: 240-254.
Piovesan, E.K.; Cabral, M.C.; Colin, J.-P.; Fauth, G. & Bergue, C.T. Ostracodes from the Upper Cretaceous deposits of the Potiguar Basin, Northeastern Brazil: taxonomy, paleoecology and paleobiogeography, part 2: Santonian-Campanian. 2014. Carnets de Géologie / Notebooks on Geology, 14:315-351.
Piovesan, E.K.; Cabral, M.C.; Boavida, E.A.; Colin, J.-P.; Fauth, G. Fossocytheridea Swain & Brown and Perissocytheridea Stephenson (Ostracoda): Insights into Paleosalinity gradients of Late Cretaceous deposits from Brazil and Portugal. 2015. Revista brasileira de paleontologia, 18 (1): 21-30.
Swain, F.M. & Brown, P.M. Cretaceous Ostracoda from wells in the southeastern United States. 1964. Bulletin of North Carolina Department of Conservation and Development, 78 (1): 55.
Tibert, N.; Leckie, R.M.; Eaton, J.G.; Kirkland, J.I.; Colin, J.-P.; Eithold, E. & McCormick, M.E. Recognition of relative sea-level change in Upper Cretaceous coal-bearing strata: a palaeological approach using agglutinated foraminifera and ostracodes to detect key stratigraphic surfaces. 2002. In: H. Olson &R.M. Leckie (eds.) Micropaleontologic Proxies for Sea Level Change and Stratigraphic Discontinuities. Tulsa, Society for Sedimentary Geology, (Special Publication 75), p. 263-299.
Tibert, N.E.; Colin, J.P.; Leckie, R.M. & Babinot, J.P. Revision of the ostracode genus Fossocytheridea Swain & Brown, 1964: Mesozoic ancestral root for the modern eurytopic Cyprideis Jones. 2003. Micropaleontology, 49: 205-230.
Tomé, M.E.T.R; Lima Filho, M.F.; Neumann, V.H.M.L. 2006. Análise Estratigráfica do Albiano-Turoniano da Bacia de Pernambuco: Considerações Sobre a Paleogeografia e Geração de Hidrocarbonetos. São Paulo, UNESP, Geociências, 25 (1): 49-58.
Viviers, M.C.; Koutsoukos, E.A.M.; Silva-Telles, A.C. & Bengtson, P. Stratigraphy and biogeographic affinities of the late Aptian-Campanian ostracods of the Potiguar and Sergipe basins in northeastern Brazil. 2000. Cretaceous Research, 21: 407-455.