Search for Resonances Decaying to Three W Bosons in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV

A. Tumasyan et al.*

(CMS Collaboration)

(Received 20 January 2022; accepted 31 May 2022; published 6 July 2022)

A search for resonances decaying into a W boson and a radion, where the radion decays into two W bosons, is presented. The data analyzed correspond to an integrated luminosity of 138 fb$^{-1}$ recorded in proton-proton collisions with the CMS detector at $\sqrt{s} = 13$ TeV. One isolated charged lepton is required, together with missing transverse momentum and one or two massive large-radius jets, containing the decay products of either two or one W bosons, respectively. No excess over the background estimation is observed. The results are combined with those from a complementary channel with an all-hadronic final state, described in an accompanying paper. Limits are set on parameters of an extended warped extra-dimensional model. These searches are the first of their kind at the LHC.

The existence of heavy resonances accessible at the CERN LHC is suggested by various theoretical models that try to address limitations of the standard model (SM). Searching for these resonances in decays to boson pairs (dibosons) has received much attention in recent years [1–6]. In the context of such searches, merged jet reconstruction and classification techniques that aim to identify the origin of a large-radius jet from a Lorentz-boosted hadronically decaying particle have been developed and exploited extensively [7]. Nonetheless, a direct search for a resonance decaying to three vector bosons, a triboson resonance, has never been performed at the TeV scale. In the sub-TeV range, a search for a heavy neutral Higgs boson in the ZWW channel has recently been published [8]. The TeV-scale diboson resonance searches [3–6] are potentially sensitive to a triboson signal. However, as only two of the three bosons are reconstructed, they have not been interpreted in this way. A search at the TeV scale is motivated by various theoretical scenarios including extended warped extra-dimensional models presented in Refs. [9–17] indicating a discovery potential within LHC reach. These models provide extensions of the SM that simultaneously address the problems of the Planck-electroweak hierarchy and the origins of flavor structure.

In this Letter and in an accompanying paper [18], we present the first searches for massive resonances decaying to three W bosons in cascade through $W_{KK} \rightarrow WR$ and $R \rightarrow WW$. The W_{KK} is a Kaluza-Klein (KK) [19–22] excited massive gauge boson and R is a scalar radion [23]. The W_{KK} and R bosons are postulated in the Randall-Sundrum extra-dimension scenario [19,20]. The size of the extra dimension is stabilized by introducing a potential with a modulus field [20], resulting in a bulk scalar boson, the radion.

We concentrate on the final-state topology comprising one isolated, charged lepton (ℓ), either electron (e), or muon (μ), missing transverse momentum (p_T^{miss}), and one or two massive large-radius jets. A similar topology without an isolated ℓ in the final state is considered in Ref. [18]. These two searches use common techniques for jet identification and calibration, which are detailed in Ref. [18], while the combination of the two results is presented in this Letter. The topology studied in this Letter originates from a W boson decaying to an isolated ℓ and its neutrino ν, and two other W bosons decaying into quarks forming hadrons, which are either reconstructed as two individual merged W boson jets, as shown in Fig. 1 (left), or—depending on the relative masses of the W_{KK} and R resonances—as a single jet containing the decay products of both W bosons, as shown in Fig. 1 (right). We also consider the case where one of the two merged W bosons originating from the radion decays leptonically, yielding a nonisolated ℓ inside the jet in addition to the isolated one from the separated W boson decay. The main backgrounds in this analysis are from $W + \text{jets}$ and top quark-antiquark pair ($t\bar{t}$) production. They are estimated using control regions (CRs) with kinematic properties similar to the corresponding signal regions (SRs). While the analysis is interpreted in terms of one specific model, the search is generic as it is sensitive to many resonant diboson and triboson signals. For example, resonances decaying into WW and WZ can also be detected.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
through this search, although with a lower efficiency than in the dedicated analyses [3,4]. Tabulated results are provided in the HEPData record for this analysis [24].

The analysis is based on proton-proton (pp) collision data at \(\sqrt{s} = 13 \) TeV collected by the CMS experiment at the LHC during 2016–2018, corresponding to an integrated luminosity of 138 fb\(^{-1} \) [25–27].

The CMS apparatus [28] is a multipurpose, nearly hermetic detector, designed to trigger on [29,30] and identify electrons, muons, photons, and (charged and neutral) hadrons [31–34]. A global reconstruction “particle-flow” (PF) algorithm [35] combines the information provided by the all-silicon inner tracker and by the crystal electromagnetic and brass-scintillator hadron calorimeters, operating inside a 3.8 T superconducting solenoid, with data from gas-ionization muon detectors interleaved with the solenoid return yoke, to build r leptons, jets, \(p_T^{\text{miss}} \), and other physics objects [36–38].

Signal events are selected at leading order (LO) using MADGRAPH5_aMC@NLO v2.4.2 [39] with the recommended parameters according to Refs. [11–13,15], i.e., the KK gravity coupling \(g_{\text{grav}} = 6 \), the KK gauge couplings \(g_{W_{KK}} = 3 \) and \(g_{\phi} = 6.708 \), and the confinement parameter \(\epsilon = 0.5 \). In the two-dimensional parameter space, \(W_{KK} \) masses \(m_{W_{KK}} \) from 1.5 to 5.0 TeV and \(R \) masses \(m_R \) from 6 to 90% of \(m_{W_{KK}} \) are covered. The decay branching fraction of \(W_{KK} \to WR \to WWW \) for these parameters typically exceeds 50% [13]. For the background simulation, \(t\bar{t} \) production is modeled at next-to-LO (NLO) with POWHEG v2 [40]. Quantum chromodynamics multijet production and \(W \) + jets production are simulated at LO with MADGRAPH5_aMC@NLO. The other backgrounds are generated at NLO with MADGRAPH5_aMC@NLO (WW, s-channel single \(t \)) and POWHEG (WZ, ZZ, t-channel single \(t, Wt \)).

The generated events are interfaced with PYTHIA 8.230 [41] to simulate the fragmentation, parton shower, and hadronization of partons in the initial and final states, along with the underlying event. The same simulation settings as for Ref. [18], where further details can be found, have been used. The interactions of all final-state particles with the CMS detector are simulated using GEANT4 [42]. Simulated events include the contribution of particles from additional pp interactions within the same or nearby bunch crossings (pileup) and are corrected to reproduce the distribution of the number of pileup interactions observed in data.

The events are collected with single-electron or single-muon triggers [29,30] and then undergo global event reconstruction based on the PF algorithm [35]. The PF candidates are corrected for the effect of pileup [43], and are clustered into jets with the anti-\(k_T \) algorithm [44] as implemented in the FASTJET package [45]. Two distance parameters are used: 0.4 for AK4 jets and 0.8 for large-radius AK8 jets. The AK4 jets are required to be well separated from any selected AK8 jet with \(\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2} > 0.8 \), where \(\eta \) is the pseudorapidity and \(\phi \) the azimuthal angle. The quantity \(p_T^{\text{miss}} \) is defined as the magnitude of the vector transverse momentum (\(p_T \)) sum of all reconstructed PF candidates in an event.

The AK4 jets arising from b quark hadronization and decay (b jets) are identified using the deep neural network (DNN) algorithm DEEPCSV, which takes as input tracks that are displaced from the primary vertex, secondary vertices, and jet kinematic variables [46]. A working point on the output of the DEEPCSV algorithm is chosen such that the efficiency of identifying a b jet is about 65%–75%, while the probability of misidentifying a light-flavor (q) or gluon (g) jet as a b jet is about 1%. To identify massive AK8 jets, a “modified mass-drop” correction algorithm [47,48], known as the “soft-drop” algorithm [49] (with parameters \(\beta = 0 \) and \(z_{\text{cut}} = 0.1 \), applied to remove soft and wide-angle radiation from the jet, and the resulting “groomed jet mass” \(m_j \) is used.

Events with exactly one isolated e (\(\mu \)) with \(p_T > 55 \) GeV and \(|\eta(e,\mu)| < 2.5(2.4) \) and no second isolated e (\(\mu \)) with \(p_T > 35(20) \) GeV are selected. Furthermore, we require \(p_T^{\text{miss}} > 80(40) \) GeV for the e (\(\mu \)) channel. The \(p_T \) of the reconstructed leptonically decaying W boson candidate must exceed 200 GeV. The neutrino is reconstructed as in Ref. [50] using \(p_T^{\text{miss}} \) and requiring the effective mass of the \(\ell\nu \) system to be consistent with the W boson mass. Jets overlapping with the selected isolated lepton within \(\Delta R_{\ell\nu} < 1.0 \) are removed. Selected events need to have one or two AK8 jets with \(p_T^j > 200 \) GeV and \(|\eta(j)| < 2.4 \). For events with only one jet, \(m_j \) is required to be greater than 60 GeV, while for events with two jets the jet with maximum \(m_j \) is required to have \(60 < m_{\text{miss}}^j < 100 \) GeV and the other jet mass is referred to as \(m_{\text{miss}}^{\text{jet}} \). Events with identified b jets or more than two AK4 jets are vetoed. The scalar \(p_T \) sum of the reconstructed leptonically decaying W boson and the selected AK8 jets is required to be greater than 1 TeV. The invariant mass of the reconstructed \(\ell\nu + \text{jet(s)} \) system, \(m_{\ell\nu+j} \) or \(m_{\ell\nu+jj} \).
Several different radion decay topologies are considered. A collimated radion decay into two merged hadronic W boson jets ($R \to WW \to 4q$) yields a single jet containing the decay products of either all four quarks (designated as R^{4q}) or only three of them (R^{3q}). A merged radion decay with one of the W bosons decaying leptonically ($R \to WW \to \ell\nu qqq$) yields a jet containing the decay products of two quarks from the $W \to qq'$ decay as well as an overlapping nonisolated charged lepton. This topology is designated as $R^{2q\ell}$. In rare cases where the decay $R \to WW \to \ell\nu qqq$ results in a lepton that still fulfills the isolation criteria even though it is overlapping with a jet, we remove the overlapping jet and consider the only remaining jet to correspond to the W boson from the W_{KK} resonance decay. Possibilities other than these contribute less than 5% of the signal yield and therefore are not considered.

To increase discrimination of signal from background, the substructure of the selected AK8 jets is analyzed using the DNN-based DEEPAK8 jet classification algorithm [51]. This algorithm has been trained using simulated events to identify hadronic decays of W and Higgs bosons (H, in the $4q$ mode), as well as top quarks, based on the reconstructed particles and secondary vertices associated with the corresponding jet. In the default training of the algorithm, the masses of the signal jets are used, and therefore signals with masses different to the ones mentioned above cannot be identified. Thus, we make use of the algorithm’s mass-decorrelated version to identify jets exhibiting substructure compatible with a merged radion decay (R^{4q}, R^{3q}, and $R^{2q\ell}$), but with arbitrary mass. For the identification of merged radion jet candidates, we combine the algorithm’s outputs to simultaneously discriminate $W \to qq'$ jets and signal jets similar to $H \to WW \to 4q$ from jets originating from the hadronization of a q or g. We call the resulting discriminants for merged radion decays “deep-WH” and for W bosons “deep-W.” Similarly, a discriminant named “deep-$t\bar{t}$” is formed to distinguish top quarks from q/g jets. The DEEPAK discriminant values peak towards unity for the selected type of jets and towards zero for the rejected q/g background jets. A detailed description of these variables together with their performance for different jet types can be found in Ref. [18].

Using the jet mass and the deep-WH and deep-W discriminants, selected events are split into six SRs based on the signal topology. Jets with $m_j > 100$ GeV ($60 < m_j < 100$ GeV) are considered as radion (W boson) candidates and thus required to pass a deep-WH (deep-W) selection, while for lower-mass jets with $m_j < 60$ GeV no such condition is applied. For events with one selected jet, targeting the merged radion jet topology, three regions (SR1–3) are defined using different m_j windows of 60–100, 100–200, and >200 GeV, respectively. For SR1 (SR2–3), we additionally demand deep-$W > 0.7$ (deep-$WH > 0.7$). Events with two jets, considered as candidates for the resolved radion topology, are categorized into SR4–6 as follows. The SR4 (SR5) categories have both jets with $60 < m_j < 100$ GeV and require exactly two (one) jets with deep-$W > 0.5$. Events with $60 < m_{jj}^{\text{max}} < 100$ GeV and deep-$W > 0.7$ for the higher-mass jet and $m_{jj}^{\text{min}} < 60$ GeV for the lower-mass jet are placed in SR6. Requiring deep-W(deep-WH) > 0.7 results in a background rejection of approximately 74 (67)%%, while maintaining a signal selection efficiency of about 65 (70)%.

The deep-W and deep-WH variables are both calibrated in the same data regions enriched in SM W + jets and top quark events. To serve as proxies, the SM events are split into various W, q/g, and top quark categories mimicking the signal decay structure. Both signal and proxy jets are categorized by geometrically matching parton-level information to the reconstructed jets. Jets from single W boson decays in SM events are used as proxy jets for resolved signal and merged $R^{2q\ell}$ events. As there is no direct correspondence to any SM event topology for R^{4q} and R^{3q} events, fully merged top quark jets ($t \to bqq$) serve as proxies in this case. By performing a simultaneous fit of the proxy templates to the data in regions with different relative compositions, we derive corresponding scale factors (SFs) and associated uncertainties. These SFs are applied per matched jet category to correct selection efficiencies in simulation for the deep-W and deep-WH spectra. This calibration procedure is validated in various jet samples. The detailed procedure is presented in Ref. [18].

The main backgrounds, W + jets, and $t\bar{t}$ production, are estimated using CRs. The $t\bar{t}$ CRs are defined by inverting the b jet veto, removing the deep-W(deep-WH) discriminant selection criteria defined for the SRs, and allowing for up to four additional AK4 jets to increase the number of selected events. Similarly, for the W + jets CRs, the deep-W(deep-WH) selection criteria are inverted, and $t\bar{t}$ events are vetoed by requiring deep-$t < 0.4$. All other backgrounds are estimated using simulation and are subtracted from the data for this procedure. A linear fit is performed to the ratio of the data to the background of interest (W + jets or $t\bar{t}$), using the m_{jj} or $m_{jj\ell}$ distributions, depending on the region, to extract a correction function for the background shape and normalization in the corresponding SR.

The final signal and background yields are determined simultaneously by performing a maximum likelihood fit to the m_{jj} and $m_{jj\ell}$ distributions in data for SR1–3 and SR4–6, respectively. Systematic uncertainties affecting signal and background yields are treated as nuisance parameters and profiled in the statistical interpretation using log-normal and Gaussian constraints for rate and shape uncertainties, respectively.

Uncertainties in the background normalization and shape are derived from the data in the CRs. In particular, the statistical uncertainty in the CR fits to the m_{jj} and $m_{ jj\ell}$
distributions is propagated to the SRs through constraints on modeling parameters common to the SR and CR. Both rate and shape uncertainties are evaluated separately for the $W +$ jets and top quark backgrounds, and are treated as uncorrelated across the SRs.

Several uncertainties are taken into account for the DEEPAK8 discriminants and are evaluated as functions of m_j and p_T^j. Residual differences between data and simulation observed in the validation regions result in a 10% uncertainty for all jet types. Additional uncertainties are derived by considering an alternative parton shower simulation and evaluating the effect on the SFs for signal and background jets. Since the objects used in the calibration procedure have a similar decay structure to the signal, but can exhibit features such as different color flow and quark flavor that affect the DEEPAK8 performance, additional uncertainties are considered for the signal. These uncertainties are evaluated based on the shape differences between signal and SM proxy jets in the deep-W and deep-WH spectra. They amount to 10%–40% for $R^{\ell\ell\ell}$, $R^{\ell\ell t}$, and $R^{\ell\ell q}$ events, and to 100% for signal events not matching these categories. To further account for the different p_T^j regimes of signal and proxy jets used in the derivation of the SFs, signal events are simulated with the HERWIG2.7 parton shower program [52]. The resulting differences in the SR yields of up to 25% are assigned as rate uncertainties. A detailed description of the uncertainty evaluation procedure can be found in Ref. [18].

Uncertainties due to pileup, integrated luminosity, trigger, lepton reconstruction, parton distribution functions (PDFs), renormalization and factorization scales, and jet energy scale and resolution, largely affecting signal only, are in total found to be less than 3% in the rate. They have negligible effect on the shape of the $\ell\ell +$ jets mass distributions.

The results of this search are statistically combined with those from the search in the fully hadronic final state [18]. The SF uncertainties are treated as correlated among the two channels. Uncertainties in pileup modeling, PDFs, renormalization and factorization scales, as well as the jet energy scale and resolution are also treated as correlated. All other uncertainties are treated as uncorrelated.

The background-only post-fit distribution of the reconstructed $\ell\ell +$ jets system $m_{jj\ell}$ for the most sensitive region for the resolved signal, SR4, is shown in Fig. 2. The results for the six SRs of this search are presented in Table 1. The results for the six SRs of this search are presented in the form of pull distributions $[(\text{Data-Prediction})/\sigma_{\text{stat}}]$ of the background-only fit in Fig. 3. Selected signals have been added on top of the background. The data are consistent with the background expectation.

The asymptotic approximation [53] of the CL$_s$ technique [54,55] is used to set limits. The lower mass limits at 95% confidence level (CL) of the $\ell\ell +$ jets analysis are shown in Fig. 4. An excess of events in data around $m_{jj\ell\ell} = 3.5$ TeV in SR6 results in a weaker than expected observed limit for the resolved signal. For the combination with the fully hadronic analysis [18], lower mass limits are also shown as well as upper limits on the product of the signal cross section and the branching fraction to three W bosons for a resonance with decay width significantly smaller than the detector resolution. For radion masses between 0.2 and 1.2 TeV, triboson resonances are excluded up to $m_{RKK} = 3.3$ and 3.7 TeV by the $\ell\ell +$ jets analysis and the combination, respectively.

![FIG. 2. Background-only post-fit distribution of the reconstructed $\ell\ell +$ jets system $m_{jj\ell\ell}$ in data and simulation for SR4. The shape of a triboson signal with $m_{WKK} = 2.5$ and $m_t = 1$ TeV is also shown as a violet solid line, normalized to the theoretical production cross section.](image)
In summary, a search has been presented for resonances decaying in cascade through $W_{\text{KK}} \rightarrow WR$ and $R \rightarrow WW$ to three W bosons, where W_{KK} is a massive Kaluza-Klein excitation of a gauge boson and R is a scalar radion. The analysis is performed using proton-proton collision data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The final states considered contain one isolated charged lepton, missing transverse momentum, and one or two massive large-radius jets. Radion decay configurations with two W bosons merged in a single jet and those with two separated W boson jets are simultaneously probed by combining jet substructure algorithms. These novel radion identification and calibration techniques are also applicable to Lorentz-boosted Higgs boson decays. Results agree with the predictions of the standard model and are combined with those of the analysis in the fully hadronic final state [18]. Limits are set on an extended warped extra-dimensional model. These are the first searches for the production of TeV-scale triboson resonances at the LHC.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); Minciencias (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT, and ERDF (Estonia); Academy of Finland, MECh, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEP Center, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

1. ATLAS Collaboration, Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Rev. D 98, 052008 (2018).
2. CMS Collaboration, Combination of CMS searches for heavy resonances decaying to pairs of bosons or leptons, Phys. Lett. B 798, 134952 (2019).
3. ATLAS Collaboration, Search for heavy diboson resonances in semileptonic final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Eur. Phys. J. C 80, 1165 (2020).
4. CMS Collaboration, Search for heavy resonances decaying to WW, WZ, or WH boson pairs in a final state consisting of a lepton and a large-radius jet in proton-proton collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. D 105, 032008 (2022).
5. CMS Collaboration, A multi-dimensional search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 80, 237 (2020).
6. ATLAS Collaboration, Search for diboson resonances in hadronic final states in 139 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, J. High Energy Phys. 09 (2019) 091; 06 (2020) 042(E).
7. R. Kogler, B. Nachman, A. Schmidt, L. Asquith, E. Winkels, M. Campanelli, C. Delitzsch, P. Harris, A. Hinzmann, D. Kar, C. McLean, J. Pilot, Y. Takahashi, N. Tran, C. Vernieri, and M. Vos, Jet substructure at the Large Hadron Collider, Rev. Mod. Phys. 91, 045003 (2019).
[8] ATLAS Collaboration, Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the $\ell\ell\ell\ell$ and $\ell\ell\ell\ell\ell$ final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Eur. Phys. J. C 81, 396 (2021).

[9] J. A. Aguilar-Saavedra and F. R. Joaquim, Multiboson production in W decays, J. High Energy Phys. 01 (2016) 183.

[10] J. A. Aguilar-Saavedra, Triboson interpretations of the ATLAS diboson excess, J. High Energy Phys. 10 (2015) 099.

[11] K. Agashe, P. Du, S. Hong, and R. Sundrum, Flavor universal resonances and warped gravity, J. High Energy Phys. 01 (2017) 016.

[12] K. Agashe, J. Collins, P. Du, S. Hong, D. Kim, and R. K. Mishra, LHC signals from cascade decays of warped vector resonances, J. High Energy Phys. 05 (2017) 078.

[13] K. Agashe, J. H. Collins, P. Du, S. Hong, D. Kim, and R. K. Mishra, Dedicated strategies for triboson signals from cascade decays of vector resonances, Phys. Rev. D 99, 075016 (2019).

[14] J. A. Aguilar-Saavedra, Profile of multiboson signals, J. High Energy Phys. 05 (2017) 066.

[15] K. Agashe, J. H. Collins, P. Du, S. Hong, D. Kim, and R. K. Mishra, Detecting a boosted diboson resonance, J. High Energy Phys. 11 (2018) 027.

[16] Y.-P. Kuang, H.-Y. Ren, and L.-H. Xia, Further investigation of the model-independent probe of heavy neutral Higgs bosons at LHC Run 2, Chin. Phys. C 40, 023101 (2016).

[17] Y.-P. Kuang, H.-Y. Ren, and L.-H. Xia, Model-independent probe of anomalous heavy neutral Higgs bosons at the LHC, Phys. Rev. D 90, 115002 (2014).

[18] CMS Collaboration, companion paper, Search for resonances decaying to three W bosons in the hadronic final state in proton-proton collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. D 106, 012002 (2022).

[19] L. Randall and R. Sundrum, A Large Mass Hierarchy from a Small Extra Dimension, Phys. Rev. Lett. 83, 3370 (1999).

[20] L. Randall and R. Sundrum, An Alternative to Compactification, Phys. Rev. Lett. 83, 4690 (1999).

[21] K. Agashe, H. Davoudiasl, G. Perez, and A. Soni, Warped gravitons at the LHC and beyond, Phys. Rev. D 76, 036006 (2007).

[22] A. L. Fitzpatrick, J. Kaplan, L. Randall, and L.-T. Wang, Searching for the Kaluza-Klein graviton in bulk RS models, J. High Energy Phys. 09 (2007) 013.

[23] W. D. Goldberger and M. B. Wise, Modulus Stabilization with Bulk Fields, Phys. Rev. Lett. 83, 4922 (1999).

[24] HEpdata record for this analysis, 2021, 10.17182/hepdata.102646.

[25] CMS Collaboration, Precision luminosity measurement in proton-proton collisions at $\sqrt{s} = 13$ TeV in 2015 and 2016 at CMS, Eur. Phys. J. C 81, 800 (2021).

[26] CMS Collaboration, CMS luminosity measurement for the 2017 data-taking period at $\sqrt{s} = 13$ TeV, CMS Physics Analysis Summary, Report No. CMS-PAS-LUM-17-004, 2018, https://cds.cern.ch/record/2621960.

[27] CMS Collaboration, CMS luminosity measurement for the 2018 data-taking period at $\sqrt{s} = 13$ TeV, CMS Physics Analysis Summary, Report No. CMS-PAS-LUM-18-002, 2019, https://cds.cern.ch/record/2676164.
C. McLean, D. Nguyen, J. Pekkanen, S. Rappoccio, A. Williams, G. Alversen, E. Barberis, Y. Haddad, A. Hortiangtham, J. Li, G. Madigan, B. Marzocchi, D. M. Morse, V. Nguyen, T. Orimoto, A. Parker, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood, S. Bhattacharya, J. Bueghly, K. A. Hahn, Y. Liu, N. Odell, M. H. Schmitt, M. Velasco, B. Marzocchi, T. Orimoto, A. Parker, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood, S. Bhattacharya, J. Lawrence, N. Loukas, D. Lutton, N. Marinelli, I. Mcalister, T. McCauley, F. Meng, K. Mohrman, Y. Musienko, R. Ruchti, P. Siddireddy, A. Townsend, M. Wayne, A. Wightman, M. Wolf, M. Zarucki, L. Zygala, B. Bylsma, B. Cardwell, L. S. Durkin, C. Hill, N. Parashar, A. Baty, M. Decaro, S. Dildick, K. M. Ecklund, S. Freed, P. Gardner, F. J. M. Geurts, A. Kumar, W. Li, B. P. Padley, R. Redjimi, W. Shi, A. G. Stahl Leiton, S. Yang, Z. Zhang, A. Bodek, P. de Barbaro, R. Demina, J. L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, T. Taus, B. Chiarito, J. P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, O. Karacheban, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S. A. Thyil, S. Thomas, H. Wang, H. Acharya, A. G. Delannoy, S. Spanier, O. Bouhali, M. Dalchenko, R. Eusebi, J. Gilmore, Y. Huang, T. Kamon, H. Kim, S. Luo, S. Malhotra, R. Mueller, D. Overton, D. Rathijens, A. Safovon, N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S. W. Lee, T. Mengke, S. Muthumuni, T. Peltola, I. Volobouev, Z. Wang, A. Whitbeck, E. Appelt, S. Greene, A. Gurrola, W. Johns, A. Melo, H. Ni, K. K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, M. W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovsky, A. Li, C. Neu, B. Tannenwald, S. White, E. Wolfe, N. Poudyal, K. Black, T. Bose, J. Buchanan, C. Caillol, S. Dasu, I. De Bruyn, P. Everaerts, F. Fienga, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, A. Mohammadi, D. Pinna, A. Savin, V. Shang, V. Sharma, W. H. Smith, D. Teague, S. Trembath-Reichert, and W. Vetens

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik, Vienna, Austria
3Institute for Nuclear Problems, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Ghent University, Ghent, Belgium
7Université Libre de Bruxelles, Bruxelles, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
10Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
11Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
12University of Sofia, Sofia, Bulgaria
13Beihang University, Beijing, China
14Department of Physics, Tsinghua University, Beijing, China
15Institute of High Energy Physics, Beijing, China
16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

PHYSICAL REVIEW LETTERS 129, 021802 (2022)
Institution	Location
Sun Yat-Sen University, Guangzhou, China	Guangzhou, China
Institute of Modern Physics and Key Laboratory of Nuclear Physics and	Shanghai, China
Ion-beam Application (MOE)—Fudan University	
Zhejiang University, Hangzhou, China	Hangzhou, China
Universidad de Los Andes, Bogota, Colombia	Bogota, Colombia
Universidad de Antioquia, Medellin, Colombia	Medellin, Colombia
University of Split, Faculty of Electrical Engineering, Mechanical	Split, Croatia
Engineering and Naval Architecture, Split, Croatia	
University of Split, Faculty of Science	Split, Croatia
Institute Rudjer Boskovic, Zagreb, Croatia	Zagreb, Croatia
University of Cyprus, Nicosia, Cyprus	Nicosia, Cyprus
Charles University, Prague, Czech Republic	Prague, Czech Republic
Escuela Politecnica Nacional, Quito, Ecuador	Quito, Ecuador
University San Francisco de Quito, Quito, Ecuador	Quito, Ecuador
Academy of Scientific Research and Technology of the Arab Republic of	Cairo, Egypt
Egypt, Egyptian Network of High Energy Physics	
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia	Tallinn, Estonia
Department of Physics, University of Helsinki	Helsinki, Finland
Helsinki Institute of Physics, Helsinki, Finland	
Lappeenranta University of Technology, Lappeenranta, Finland	Lappeenranta, Finland
IN2P3, ENS, Université Paris-Saclay, Gif-sur-Yvette, France	Gif-sur-Yvette, France
Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France	Strasbourg, France
Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France	Villeurbanne, France
Georgian Technical University, Tbilisi, Georgia	Tbilisi, Georgia
RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany	Aachen, Germany
RWTH Aachen University, III. Physikalisches Instituts A, Aachen, Germany	Aachen, Germany
RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany	Aachen, Germany
Deutsches Elektronen-Synchrotron, Hamburg, Germany	Hamburg, Germany
University of Hamburg, Hamburg, Germany	Hamburg, Germany
Karlsruher Institut fuer Technologie, Karlsruhe, Germany	Karlsruhe, Germany
Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos,	Athens, Greece
Aghia Paraskevi, Greece	
National and Kapodistrian University of Athens, Athens, Greece	Athens, Greece
National Technical University of Athens, Athens, Greece	Athens, Greece
University of Ioannina, Ioannina, Greece	Ioannina, Greece
MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd	Budapest, Hungary
University of Technology, Budapest, Hungary	Budapest, Hungary
Wigner Research Centre for Physics, Budapest, Hungary	Budapest, Hungary
Institute of Nuclear Research ATOMKI, Debrecen, Hungary	Debrecen, Hungary
Institute of Physics, University of Debrecen, Debrecen, Hungary	Debrecen, Hungary
Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary	Gyongyos, Hungary
Indian Institute of Science (IISc), Bangalore, India	Bangalore, India
National Institute of Science Education and Research, HBNI, Bhubaneswar,	Bhubaneswar, India
India	
Panjab University, Chandigarh, India	Chandigarh, India
University of Delhi, Delhi, India	Delhi, India
Saha Institute of Nuclear Physics, HBNI, Kolkata, India	Kolkata, India
Indian Institute of Technology Madras, Madras, India	Madras, India
Bhabha Atomic Research Centre, Mumbai, India	Mumbai, India
Tata Institute of Fundamental Research-A, Mumbai, India	Mumbai, India
Tata Institute of Fundamental Research-B, Mumbai, India	Mumbai, India
Indian Institute of Science Education and Research (IISER), Pune, India	Pune, India
Isfahan University of Technology, Isfahan, Iran	Isfahan, Iran
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran	Tehran, Iran
University College Dublin, Dublin, Ireland	Dublin, Ireland
INFN Sezione di Bari, Bari, Italy	Bari, Italy
Università di Bari, Bari, Italy	Bari, Italy
Politecnico di Bari, Bari, Italy	Bari, Italy
INFN Sezione di Bologna, Università di Bologna, Bologna, Italy	Bologna, Italy
INFN Sezione di Bologna, Bologna, Italy	Bologna, Italy
INFN Sezione di Catania, Università di Catania, Catania, Italy	Catania, Italy

021802-14
University of Colorado Boulder, Boulder, Colorado, USA
Cornell University, Ithaca, New York, USA
Fermi National Accelerator Laboratory, Batavia, Illinois, USA
University of Florida, Gainesville, Florida, USA
Florida State University, Tallahassee, Florida, USA
Florida Institute of Technology, Melbourne, Florida, USA
University of Illinois at Chicago (UIC), Chicago, Illinois, USA
The University of Iowa, Iowa City, Iowa, USA
Johns Hopkins University, Baltimore, Maryland, USA
The University of Kansas, Lawrence, Kansas, USA
Kansas State University, Manhattan, Kansas, USA
Lawrence Livermore National Laboratory, Livermore, California, USA
University of Maryland, College Park, Maryland, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Minnesota, Minneapolis, Minnesota, USA
University of Nebraska-Lincoln, Lincoln, Nebraska, USA
State University of New York at Buffalo, Buffalo, New York, USA
Northeastern University, Boston, Massachusetts, USA
Northwestern University, Evanston, Illinois, USA
University of Notre Dame, Notre Dame, Indiana, USA
The Ohio State University, Columbus, Ohio, USA
Princeton University, Princeton, New Jersey, USA
University of Puerto Rico, Mayagüez, Puerto Rico, USA
Purdue University, West Lafayette, Indiana, USA
Purdue University Northwest, Hammond, Indiana, USA
Rice University, Houston, Texas, USA
University of Rochester, Rochester, New York, USA
Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
University of Tennessee, Knoxville, Tennessee, USA
Texas A&M University, College Station, Texas, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin—Madison, Madison, WI, Wisconsin, USA

aDeceased.
bAlso at TU Wien, Wien, Austria.
cAlso at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
dAlso at Université Libre de Bruxelles, Bruxelles, Belgium.
eAlso at Universidade Estadual de Campinas, Campinas, Brazil.
fAlso at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
gAlso at University of Chinese Academy of Sciences, Beijing, China.
hAlso at Department of Physics, Tsinghua University, Beijing, China.
iAlso at UFMS, Nova Andradina, Brazil.
jAlso at The University of Iowa, Iowa City, Iowa, USA.
kAlso at Nanjing Normal University Department of Physics, Nanjing, China.
lAlso at University of Chinese Academy of Sciences, Beijing, China.
mAlso at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia.
Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at Helwan University, Cairo, Egypt.
Also at Zewail City of Science and Technology, Zewail, Egypt.
Also at Suez University, Suez, Egypt.
Also at British University in Egypt, Cairo, Egypt.
Also at Purdue University, West Lafayette, Indiana, USA.
Also at Université de Haute Alsace, Mulhouse, France.
Also at Tbilisi State University, Tbilisi, Georgia.
Also at Erzincan Binali Yıldırım University, Erzincan, Turkey.
Also at Istanbul Bilgi University, Istanbul, Turkey.
Also at Hacettepe University, Ankara, Turkey.
Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at Vrije Universiteit Brussel, Brussel, Belgium.
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
Also at IPPP Durham University, Durham, United Kingdom.
Also at Monash University, Faculty of Science, Clayton, Australia.
Also at Università di Torino, Torino, Italy.
Also at Bethel University, St. Paul, Minneapolis, USA.
Also at Karamanoğlu Mehmetbey University, Karaman, Turkey.
Also at Ain Shams University, Cairo, Egypt.
Also at Bingol University, Bingol, Turkey.
Also at Georgian Technical University, Tbilisi, Georgia.
Also at Sinop University, Sinop, Turkey.
Also at Erciyes University, Kayseri, Turkey.
Also at Texas A&M University at Qatar, Doha, Qatar.
Also at Kyungpook National University, Daegu, Korea.