Complete Genome Sequence of the Subsurface, Mesophilic Sulfate-Reducing Bacterium *Desulfovibrio aespoeensis* Aspo-2

Karsten Pedersen,a,b Andreas Bengtsson,a Johanna Edlund,a Lisa Rabe,a Terry Hazen,c,d,e Romy Chakraborty,c Lynne Goodwin,f Nicole Shapirof

Microbial Analytics Sweden AB, Malmö, Sweden; Chalmers University of Technology, Göteborg, Sweden; Lawrence Berkeley National Laboratory, Berkeley, California, USA; Departments of Civil and Environmental Engineering, Earth and Planetary Sciences, Microbiology, University of Tennessee, Knoxville, Tennessee, USA; Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Joint Genome Institute, Walnut Creek, California, USA

Desulfovibrio aespoeensis Aspo-2, DSM 10631T, is a mesophilic, hydrogenotrophic sulfate-reducing bacterium sampled from a 600-m-deep subsurface aquifer in hard rock under the island of Åspö in southeastern Sweden. We report the genome sequence of this bacterium, which is a 3,629,109-bp chromosome; plasmids were not found.

Desulfovibrio aespoeensis was isolated from a borehole (KAS03) that intersected a water-conducting aquifer at 600-m depth (1). Knowledge about subsurface sulfate-reducing bacteria (SRB) is essential for evaluating adverse effects of their sulfate production on future spent nuclear fuel (SNF) waste repositories planned to be built 500 to 1,000 m underground. This is because metal canisters will be in use to encapsulate the SNF and many metals are susceptible to corrosion by sulfide (2). The safety case may consequently be challenged by subsurface SRB. Because *D. aespoeensis* readily reduces sulfate to sulfide with a very low K_m for hydrogen (3), this species and other hydrogenotrophic SRB may increase anoxic corrosion rates of iron in SNF repositories (4). It has previously been shown that *D. aespoeensis* forms biofilms of metallic copper (5), which indicates the presence of genes involved in copper homeostasis (6). Since the isolation, this species and closely related strains (>98% 16S rRNA gene identity) have been found repeatedly in deep groundwater, strongly suggesting the deep biosphere as the natural habitat for *D. aespoeensis* (7, 8).

The draft genome of *Desulfovibrio aespoeensis* Aspo-2 was generated at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) using a combination of Illumina and 454 technologies (project 4086336 [NCBI project 37869], principal investigator [PI] Terry C. Hazen). An Illumina GAii shotgun library was generated at the U.S. Department of Energy (DOE) Joint Genome Institute through the Office of Science, Office of Biological and Environmental Research (BER), of the U.S. Department of Energy under contract number DE-AC02-05CH11231. The Swedish Research Council supported the isolation and phenotypic and phylogenetic characterizations of *D. aespoeensis*.

Nucleotide sequence accession number. The complete annotated genome of *D. aespoeensis* is available in Genbank under the accession no. CP002431.1.

ACKNOWLEDGMENTS

This work was supported by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory, and the Joint Genome Institute through the Office of Science, Office of Biological and Environmental Research (BER), of the U.S. Department of Energy under contract number DE-AC02-05CH11231. The Swedish Research Council supported the isolation and phenotypic and phylogenetic characterizations of *D. aespoeensis*.

REFERENCES

1. Motamedi M, Pedersen K. 1998. *Desulfovibrio aespoeensis* sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Åspö.
1. Pedersen K. 2010. Analysis of copper corrosion in compacted bentonite clay as a function of clay density and growth conditions for sulfate-reducing bacteria. J. Appl. Microbiol. 108:1094–1104. http://dx.doi.org/10.1111/j.1365-2672.2009.04629.x.

2. Pedersen K. 2012. Influence of H(2) and O(2) on sulphate-reducing activity of a subterranean community and the coupled response in redox potential. FEMS Microbiol. Ecol. 82:653–665. http://dx.doi.org/10.1111/j.1574-6941.2012.01434.x.

3. Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F. 2012. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ. Microbiol. 14:1772–1787. http://dx.doi.org/10.1111/j.1462-2920.2012.02778.x.

4. Persson J, Lydmark S, Edlund J, Pääjärvi A, Pedersen K. 2011. Microbial incidence on copper and titanium embedded in compacted bentonite clay, R-11-22. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden. http://www.skb.se/upload/publications/pdf/R-11-22.pdf.

5. Mancini S, Abicht HK, Karnachuk OV, Solioz M. 2011. Genome sequence of Desulfovibrio sp. A2, a highly copper resistant, sulfate-reducing bacterium isolated from effluents of a zinc smelter at the Urals. J. Bacteriol. 193:6793–6794. http://dx.doi.org/10.1128/JB.06019-11.

6. Eydal HSC, Jägevall S, Hermansson M, Pedersen K. 2009. Bacteriophage lytic to Desulfovibrio aespoensis isolated from deep groundwater. ISME J. 3:1139–1147. http://dx.doi.org/10.1038/ismej.2009.66.

7. Jägevall S, Rabe L, Pedersen K. 2011. Abundance and diversity of biofilms in natural and artificial aquifers of the Äspö Hard Rock Laboratory, Sweden. Microb. Ecol. 61:410–422. http://dx.doi.org/10.1007/s00248-010-9761-z.

8. Nathalie Pradel N, Ji B, Gimenez G, Talla E, Lenoble P, Garel M, Tamburini C, Fourquet P, Lebrun R, Bertin P, Denis Y, Pophillat M, Barbe V, Ollivier B, Dolla A. 2013. The first genomic and proteomic characterization of a deep-sea sulfate reducer: insights into the piezophilic lifestyle of Desulfovibrio piezophilus. PLoS One 8:e551320. http://dx.doi.org/10.1371/journal.pone.0055130.

9. Ji B, Gimenez G, Barbe V, Vacherie B, Rouy Z, Amrani A, Fardeau M-L, Bertin P, Alaizad D, Leroy S, Talla E, Ollivier B, Dolla A, Pradeld N. 2013. Complete genome sequence of the piezophilic, mesophilic, sulfate-reducing bacterium Desulfovibrio hydrothermalis AM13. Genome Announc. 1(1):e00226-12. http://dx.doi.org/10.1128/genomeA.00226-12.