Supplementary Information

Electrochemical Sensing of Blood Proteins for Mild Traumatic Brain Injury (mTBI) Diagnostics and Prognostics: Towards a Point-of-Care Application

Nadezda Pankratova*, Milica Jović* and Marc E. Pfeifer*

University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Institute of Life Technologies, Diagnostic Systems Research Group, Route du Rawil 64, 1950 Sion, Switzerland

*nadezda.pankratova@hevs.ch, *milica.jovic@hevs.ch, *marc.pfeifer@hevs.ch

SI-1: Full list of published electrochemical strategies for the detection of blood protein biomarkers relevant to mTBI.

Publications related uniquely to a specific application other than blood analysis (e.g. measurements in saliva, sweat, urine, muscle-on-tissue designs etc.) or aimed specifically at electronics development have been omitted, with very few exceptions (detection of VCAM-1 in diluted urine\(^1\), sequentially multiplexed amperometry for IL-6 detection\(^2\), detection of CRP in synthetic urine using molybdenum-based electrode\(^3\)). The search has been limited to scientific publications in peer-reviewed journals with one exception: a patent by Kumta et al.\(^4\) has been included due to a very small amount of publications related to EC detection of UCH-L1. Research publications having accomplished multianalyte detection (a few biomarkers measured simultaneously or sequentially using the same sensing strategy) are denoted as ‘MuxT’ in *Column 5 (‘Label/Detection solution’)*, label-free approaches are marked as ‘Label-free’ in the same column. To note, ‘Label-free’ in indicates the assays that include no additional incubation step(s) with the label/labelled antibody after the final incubation with the target analyte (T). That is, either no redox label is required or the redox-label has been already incorporated into the design of the sensor. NOTE: Information about biotin/streptavidin labelling as well as blocking steps (in vast majority of cases using bovine serum albumine) is omitted in *Column 4 (‘Surface modification/Bioreceptor functionalization/Assay format’).*

Biomarker (Target, T)	Technique Publication year and reference	Transducer (or FED architecture)	Surface modification/ Bioreceptor functionalization/ Assay format	Label Detection solution Substrate/reaction mediator/catalyst/ signal enhancer/pH modulator etc.	Analysis time and Incubation parameters Volume/Target or Label/Time/Temperature/Flow rate/Other	Sample	Lower Detection Limit (1)	Range (2) Linear vs target concentration (c), if not stated otherwise (e.g., vs lgc.)	
BDNF	CPA 2018\(^5\)	Carbon SPE (DPI microfluidics, gap 19 µm)	AuNPs/pTTBA/(EDC+NHS)/Ab\(_2\)/T/Ab\(_2\)/[EDC+NHS]/TBO/pTTBPA/AuNPs/carbon SPE#2	TBO	T / 20 min, 35 °C	Buffer HS	0.015 ng mL\(^{-1}\) <0.1 ng mL\(^{-1}\) (1)	0.004–0.6 ng mL\(^{-1}\)	
Brain-derived									
neurotrophic	DPV \(^6\)	Au np-wrinkled film (electroless deposition)	Cystamine/GA/Ab/T	Label-free [Fe(CN)]\(^{3+/4-}\)	T / 30 min, 37 °C	Buffer HP	0.2 ng mL\(^{-1}\) <0.5 ng mL\(^{-1}\) (1)	0.1–2 ng mL\(^{-1}\)	
factor									
Biomarker (Target, T)	Technique	Transducer (or FED architecture)	Surface modification/ Bioreceptor functionalization/ Assay format	Label Detection solution	Analysis time and Incubation parameters	Sample	Lower Detection Limit (1)	Range (2)	Linear vs target concentration (cT), if not stated otherwise (e.g., vs lgCt)
----------------------	-----------	---------------------------------	---	-------------------------	--	--------	--------------------------	-----------	--
DPV	Graphene SPE	AuNPs/L-Cysteine/(EDC+NHS)/Ab/T/ Abc/(EDC+NHS)/AQ	AQ	Buffer HS	1.5 ng mL⁻¹	<20.7 µg mL⁻¹ (1)	0.01-150 µg mL⁻¹		
SWV	GCE	PDANS/Ab/T/BSA-Ab₂-Cu₂(PQ4)₂-NPs (nanoflowers)	BSA-Ab₂-Cu₂(PQ4)₂-NPs, Na₂MoO₄, SWV in 0.5 M H₂SO₄	Buffer HS	1.26 pg mL⁻¹	<0.3 µg mL⁻¹ (1)	5 pg mL⁻¹-1 ng mL⁻¹ (vs lgCt)		
EIS µPAD	Carbon SPE	CS/GA/CDP-choline/T	Label-free [Fe(CN)₆]³⁻	Buffer HP	0.001 mg L⁻¹	<0.1 mg L⁻¹ (1) (est. Fig. 5)	0.005-500 mg L⁻¹ (vs lgCt)		
SWV	Au IDEs microfab.	(4-ATP+cysteamine)/GA/Ab/T	Label-free [Fe(CN)₆]³⁻ /MuxT	T / 5 min	Buffer	<5.9 pM (1)	5.9 pM-58.9 nM (vs lgCt)		
EIS	Au (highly ordered wire arrays, microfab.)	MPA/(EDC+NHS)/Ab/T	Label-free [Fe(CN)₆]³⁻	Buffer	2.25 fg mL⁻¹	3 fg mL⁻¹ (EIS)	4.5 fg mL⁻¹ (SWV)		
EIS	Au	(microfluidic ID-zigzag biochip)	11-FcC/GRO/CBMA/(EDC+NHS)/Ab/T	Buffer (TBACIO₃ in CAN and H₂O) HS	18.3 pM	50-50’000 pM (vs lgCt)	5’000-500’000 pM (vs lgCt)		
DPV	Au DE	Fc-Peptide/(EDC+NHS)/Apt/T	Label-free	Buffer (TBACIO₃ in CAN and H₂O) HS	7.2 pM	10-5000 pM (vs lgCt)			
DPV	CPE	CPE-IL/ZnO-MPC*/(EDC+NHS)/Ab/T	Label-free [Fe(CN)₆]³⁻	Buffer (TBACIO₃ in CAN and H₂O) HS	5 pg mL⁻¹	<10 ng mL⁻¹ (1)	0.01-1000 ng mL⁻¹ (vs lgCt)		
DPV	CPE	Zr-tdc-IL (MOF)/(EDC+NHS)/Ab/T	Label-free [Fe(CN)₆]³⁻	Buffer (TBACIO₃ in CAN and H₂O) HS	0.2 ng mL⁻¹	Two linear ranges: (I) 0.5-50 ng mL⁻¹ (II) 50-600 ng mL⁻¹	Non-linear (vs lgCt) signal increase up to ca. 10⁻⁸ M		
Conductometry	CuPT-PPy nanowire mesh	NIPAAm-AM/Apt/CRP Polymer	Label-free	Buffer (TBACIO₃ in CAN and H₂O) HS	9.03 × 10⁻¹³ g mL⁻¹	<700 ng mL⁻¹ (1) (est. Fig. 6)	Non-linear (vs lgCt) signal increase up to ca. 10⁻⁸ M		
EIS/DPV	GCE	PEI-Fc/Ab/T	Label-free EIS redox probe: [Fe(CN)₆]³⁻/²⁻ DPV	20 µL T / 2 h, 4 °C	Buffer (RT plasma dil 1:1000)	2.5 ng mL⁻¹ (EIS)	0.5 ng mL⁻¹ (DPV)	0.005-150 ng mL⁻¹	

CRP C-reactive protein (2018-2020)
Biomarker (Target, T)	Technique Publication year and reference	Transducer (or FED architecture)	Surface modification/ Bioreceptor functionalization/ Assay format	Label Detection solution Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.	Analysis time and Incubation parameters Volume/Target or Label/Time/Temperature/Flow rate/Other	Sample	Lower Detection Limit (1)	Range (2)
CRP (2018-2020) C-reactive protein								
EIS μPAD (origami PAD) 2019	Au DE	NH2-Ni-MOF(c)/AuNSs/Ab/T/Apt/ssDNA2/ MeB-DNA2 duplex	Label-free [Fe(CN)]3/2-	Buffer HS dil: 1:10	15 ng mL-1	<5 µg mL-1 (1) (dilution 1:4)	0.05-100 µg mL-1 (vs IgC)	
EIS μPAD (origami PAD) 2019	Carbon SPE	AuNP s/L-cysteine/[EDC+NHS]/Ab/T	Label-free [Fe(CN)]3/2-	Buffer HS dil: 1:10	17 ng mL-1	<0.932 ng mL-1 (1)	0.047-23.6 µg mL-1	
CPA 2018	Carbon SPE	AuNP s/L-cysteine/[EDC+NHS]/Ab/T	Label-free [Fe(CN)]3/2-	Buffer HS dil: 1:10	17 ng mL-1	<0.932 ng mL-1 (1)	0.047-23.6 µg mL-1	
EIS 2018	[EDC+NHS]/Ab/T	Mo	Label-free	Buffer HS dil: 1:10	100 pg mL-1	0.1-1000 ng mL-1 (vs IgC), non-linear part incl.)		
Capacitive (impedance derived) 2020	Graphene nanoplate SPE	PANI-PA/Ab/T	Label-free; Reagentless	Buffer FB5, dil. 1:100	0.5 µg mL-1	Tested in 2 µg mL-1	145	
EIS (SFI) 2019	ZnO-CuO composite nano-surface	Ab/T	Label-free	Buffer <1 ng mL-1 (1)	n/a, ca. from <1 ng mL-1 to 10 ng mL-1 (vs IgC); (est. Fig. 7)			
EIS (SFI) 2019	Au IDEs microfab. (wave-shaped microgel. array)	DTSP/Ab/T	Label-free [Fe(CN)]3/2-	Buffer HS dil: 1:100	0.025 ng mL-1	0.01-10000 ng mL-1 (vs IgC)		
EIS (SFI) 2019	MHDA/[EDC+NHS]/Ab/T	Label-free [Fe(CN)]3/2-	Buffer* *Rabbit blood, dil. 1:10 only BNP-target	3 µg mL-1	Up to 10 µg mL-1 shown (vs IgC)			
EIS/CV 2020	Carbon film	MWNT4s (multiple-bent)/Ab/T	Label-free [Fe(CN)]3/2-	Buffer 40 pM (EIS) (~4.5 µg mL-1) similar (CV)	10-1000 ng mL-1 (EIS)			

Notes
- **FED (DG-ISET) 2018**
 - Sensing area: high-K HfO2
 - Sensing area: (a) H2O2/OH/APTES/GA/Ab/T/GOx-Ab2
 - (b) "Extended gate": Off-chip enzymatic reaction in a 96-well ELISA plate. [End-point H-ELISA]
- **EIS µPAD (or FED architecture)**
 - Sensing area: high-K HfO2
 - Sensing area: (a) H2O2/OH/APTES/GA/Ab/T/GOx-Ab2
 - (b) "Extended gate": Off-chip enzymatic reaction in a 96-well ELISA plate. [End-point H-ELISA]
| Biomarker | Technique Publication year and reference | Transducer | Surface modification/ Bioreceptor functionalization/ Assay format | Label Detection solution Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc. | Analysis time and Incubation parameters Volume/Target or Label/Time/Temperature/Flo w rate/Other | Sample | Lower Detection Limit \((\text{1}) \) | Range \((\text{2}) \) Linear vs target concentration \((c_T) \), if not stated otherwise (e.g., vs \(lgC_T \)) | |
|---|---|---|---|---|---|---|---|---|---|
| CRP C-reactive protein (2018-2020) | **EIS** 2020\(^{(3)}\) | Au DE | MUA/(EDC+NHS)/Ab/T | Label-free \([\text{Fe(CN)}_6]^{3/4-}\) | T / 30 min | Buffer | 3.7 pg mL\(^{-1}\) (32 FM) | 200-5000 ng mL\(^{-1}\) (vs \(lgC_T \)) |
| Dielectric voltammetry 2019\(^{(3)}\) | Microfluidic chip drive unit: Si/GaN/AIGaN Sensing area (separated gate): Si/GaN/Au | Sensing area: Thiolated Apt/T | Label-free MuxT | 4 \(\mu L \) / 5 min | Purified T (4\% BSA) HS dil. 1:1000 | 0.14 \(\mu g \) mL\(^{-1}\) \(<3 \mu g \) mL\(^{-1}\) \((\text{1}) \) | 0.1-0.5 \(\mu g \) mL\(^{-1}\) (vs \(lgC_T \)) |
| **FED (FET)** 2019\(^{(3)}\) | CTA/pHEMA/Ab/T | Label-free [Fe(CN)]\(^{3/4-}\) | T / 2 h; T / 15 min*: * dil. FBS, higher T concentrations | Buffer FBS undil. or dil. 1:10, 1:20 | 7.02 pg mL\(^{-1}\) (62 FM) <0.2 \(\mu g \) mL\(^{-1}\) \((\text{1}) \) | 0.2-3.15 \(\mu g \) mL\(^{-1}\) |
| CPA 2019\(^{(3)}\) | Carbon SPE (dual probe) | MBs/Ab\(_{1}\)/T/Ab\(_{2}\)-HRP | HRP, \(H_2O_2 \) MuxT | 50 \(\mu L \) / 5 min | Buffer HP dil. | 8 ng mL\(^{-1}\) \(<1.7 \mu g \) mL\(^{-1}\) \((\text{1}) \) | 0.01-5 \(\mu g \) mL\(^{-1}\) (working range, sigmoid vs \(lgC_T \)) |
| RPS (B) 2019\(^{(4)}\) | Nanocarriers: SPBs | Peptide-Apt/Non-binding DNA/T | Label-free MBs with Apt (or DNA) / 30 min / 1 h | Buffer | n/a | Low \(\mu M \) range: ca. 0.5-2.5 \(\mu M \) \((\text{estimated from Fig. 4}) \) |
| **FED (FET)** 2019\(^{(3)}\) | Si/SiO\(_2\)/CeO\(_2\) | Ab/T | Label-free | 20 \(\mu L \) / 30 min | Buffer HS | 0.1 \(\mu g \) mL\(^{-1}\) \(<1 \mu g \) mL\(^{-1}\) \((\text{1}) \) | 0.1-2.5 \(\mu g \) mL\(^{-1}\) (working range, not linear) |
| **PEC** 2019\(^{(3)}\) | GCE | PNS-777 MOF/AuNPs/Capture strand/ HT/Primer/Padlock probe+dNTPs/T4 ligase+T-phi29 polymerase | Zr-based MOF (PNS-777) as photopactive material | T: MBs+(EDC+NHS) / 1 h; MBs with amino Apt / 1 h; Primer / 2 h, 37 °C; 50 \(\mu L \) T / 30 min, 25 °C | Buffer HS dil. 1:50 | 16 FM | <100 FM \((\text{1}) \) | 50 FM–50 nM (vs \(lgC_T \)) |
| **PEC (CBP)** 2019\(^{(4)}\) | ITO | NiS/pCOFs/AgNPs/Apt/T | Label-free pCOFs (as photopactive material) \(H_2O_2 \) | 10 \(\mu L \) Apt / 30 min, 37 °C | Buffer HS dil. 1:10 | 0.1 \(ng \) mL\(^{-1}\) \(<20 \) ng mL\(^{-1}\) \((\text{1}) \) | 0.5-100 \(ng \) mL\(^{-1}\) \((3.5 \text{ pM-710} \text{ pM}) \) |
| CPA 2020\(^{(3)}\) | Carbon SPE (8 multiplexed units) | MBs/Ab\(_{1}\)/T/Ab\(_{2}\)-HRP | HRP, \(H_2O_2 \), HQ | MBs with Ab\(_{1}\) / 15 min T / 5 min Complete assay (after Ab\(_{1}\) immobilization): 15 min | Buffer Whole blood dil. 1:10 HP dil. 1:10 | 1.5 \(ng \) mL\(^{-1}\) \(<1 \mu g \) mL\(^{-1}\) \((\text{1}) \) | 0.005-1 \(\mu g \) mL\(^{-1}\) (vs \(lgC_T \), non-linear) |
| EIS non-farad. 2020\(^{(3)}\) | Nano-ZnO and ZnO/CuO nitrocellulose membrane | Ab/T | Label-free | 40 \(\mu L \) T / 10 min | Buffer | 2.5 \(ng \) mL\(^{-1}\) (nano-ZnO) | 16 \(ng \) mL\(^{-1}\) (nano-ZnO) | 0.1-15 \(ng \) mL\(^{-1}\) (vs \(lgC_T \), non-linear) |
| CPA 2020\(^{(3)}\) | Carbon SPE (microfluidic) | rGRO/NI/PtNPs micromotors/Ab\(_{1}\)/T/Ab\(_{2}\)-HRP | HRP, \(H_2O_2 \), HQ | 10 \(\mu L \) T / 5 min | Buffer HP HS | 0.8 \(\mu g \) mL\(^{-1}\) \(<3 \mu g \) mL\(^{-1}\) \((\text{1}) \) | 2–100 \(\mu g \) mL\(^{-1}\) (vs \(lgC_T \)) |
| SWV 2020\(^{(3)}\) | Carbon SPE | Aryldiazonium/(EDC+NHS)/Ab/T | Label-free \([\text{Fe(CN)}_6]^{3/4-}\) | T / 1h | Buffer | <0.1 \(\mu g \) mL\(^{-1}\) \((\text{1}) \) | 0.01–10 \(ng \) mL\(^{-1}\) |
| Biomarker (Target, T) | Technique Publication year and reference | Transducer (or FED architecture) | Surface modification/ Bioreceptor functionalization/ Assay format | Label Detection solution | Analysis time and Incubation parameters | Sample | Lower Detection Limit (1) | Range (2) |
|----------------------|--|----------------------------------|---|--------------------------|---|--------|--------------------------|----------|
| CRP | EIS 2020¹² | Au | Fc-Peptide/EDC+NHS/Ab | Label-free | Redox-tagged peptide / 16h; EDC+NHS / 30 min; Ab / 1h; T / 30 min | Buffer | 240 pM Peptide 2 300 pM Peptide 3 | 0.5-10 nM (non-linear) |
| GFAP | CPA 2020¹³ | GCE | Chitosan/AuNPs/IL-MoS₂T/Ab-ir NPs-GRO-DN | Label-free | 10 µL Ab / overnight T / 60 min at 37 °C | Buffer | HT dil. 1:1000 | 3.3 pg mL¹ <5 ng mL¹ (1) | 0.01–100 ng mL¹ |
| EIS | Au MDEA (a) Au MECS (b) (microfabrication) | DTSP/Ab/T | DTSP/Ab/T | Label-free | T / 30 min | Buffer | 1 pg mL¹ | 1 pg mL¹–100 ng mL¹ | 0.8–400 pg mL¹ |
| EIS | FED (OFET) 2014⁴⁵ | Si/SiO₂ | MIP-MWCNTs: [MWCNTs+AlBN+ DMAA+AEDEP+EGMA[GAPF]]/agarose film/(SDS+HCl)/EDTA | Label-free | 50 µL T / T accumulation (prior to EIS) | Buffer | 0.04 µg mL¹ | 0.2–10 µg mL¹ |
| EIS | Drive:Si/SiO₂/Pentacene/Au Sensing: Si | Sensing: (PS-MA+PEG)/Ab/T | Sensing: (PS-MA+PEG)/Ab/T | Label-free | Drain current almost constant after 30 min | Buffer | 1 ng mL¹ | 0.5–100 ng mL¹ |
| EIS | Graphene SPE | NaOH(OH)/PEI/GA/Ab/T | Label-free | T / 30 min | Buffer | Buffer | 1 pg mL¹ | 1 pg mL¹–100 ng mL¹ (vs IgG_C) |
| GM-CSF | CPA 1999¹³ | Carbon SPE | EDC/Ab/(free + ALP-labelled T) (competitive assay) | ALP | T / 30 min Complete assay: 35 min | Buffer | 0.1 µg mL¹ | 1.1–30 µg mL¹ |
| h-FABP | CPA 1996¹² | Pt (Clark type oxygen probe) | Immunosandwich on nitrocellulose: CDI/Ab/T/Ab₂-GOx | GOx | 100 µL T / 10 min, 37°C T / 10 min, 37°C | Buffer | 5 ng mL¹ | 5-80 ng mL¹ |
| Heart-fatty acidic binding protein | CPA 1997¹³ | Graphite SPE | Ab₂/Ab₁-ALP | ALP | Complete assay: 20 min | HP | 10 ng mL¹ (Fig. 5-7¹³) | 10–350 ng mL¹ |

Incubation parameters	Linear vs target concentration (c_T) if not stated otherwise (e.g., vs lgC_T)
# Biomarker (Target, T)	Technique Publication year and reference	Transducer (or FED architecture)	Surface modification/ Bioreceptor functionalization/ Assay format	Label Detection solution Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.	Analysis time and Incubation parameters Volume/Target or Label/Time/Temperature/Flow rate/Other	Sample	Lower Detection Limit (1)	Range (2) Linear vs target concentration (c), if not stated otherwise (e.g., vs lgC)
h-FABP Heart-fatty acidic binding protein…	CPA 2002	Carbon SPE	Ab₂/T/Ab₂-ALP	ALP PAPP	150 µL (T+Ab₂-ALP)/ 45 min, 37°C Complete assay: 50 min	Buffer	1 ng mL⁻¹	4-250 ng mL⁻¹ (vs lgCₚ) 10-250 ng mL⁻¹ (vs lgCₚ) 4-250 ng mL⁻¹ (vs lgCₚ)
	SWV 2012	GCE	GRONR₅/EDC-NHS/Ab₂/T/Ab₂/GA/TiP-Zn²⁺-probe	TiP-Zn²⁺-probe MuxT	20 µL T / 60 min; 20 µL Ab₂- TiP-Zn²⁺ probe / 60 min	Buffer	3 fg mL⁻¹	<1.7 µg mL⁻¹ (1)
	EIS 2012	Au (microfabrication)	MUA/[EDC+NHS]/Ab/T [mSAM] (MUA+MCOH)/[EDC+NHS]/Ab/T [hSAM]	Label-free [Fe(CN)₆]³⁻/²⁻	T / 30 min, 37°C	Buffer	117 pg mL⁻¹ [mSAM] 524 pg mL⁻¹ [hSAM] Similar, with decreased sensitivity	
	Capacitive EIS 2015	Au IDEs (microfabrication)	MUA/[EDC+NHS]/Ab/T [mSAM] (MUA+MPOH)/[EDC+NHS]/Ab/T [hSAM]	Label-free [Fe(CN)₆]³⁻/²⁻	Microfluidic platform: 50 µL T / 30 min	Buffer	0.836 ng mL⁻¹ [mSAM] 0.968 ng mL⁻¹ [hSAM] 98 pg mL⁻¹~100 ng mL⁻¹ (vs lgCₚ)	
	ASV (DPASV) 2017	GCE	CD-GS/Ab₂/T/Ab₂-ZnO-MWCNTs/CdS	ZnO-MWCNTs/CdS pH 5 prior to DPV MuxT	6 µL T /1 h, 37°C; 6 µL Ab₂-ZnO-MWCNTs / 40 min, 37°C; 8 µL [Cd(NO₃)₂ + TAA] / 15 min, 37°C	Buffer	0.3 fg mL⁻¹	<5 pg mL⁻¹ (1)
IL-6 Interleukin 6 (2018-2020)	EIS 2018	PPy-NWs layer	PPyPAC/[EDC+NHS]/Ab/T	Label-free	T / 30 min	Buffer	0.36 pg mL⁻¹	21
	DPV 2018	GCE	AMCs/CTIL/Ab₂/T/[OAMs+APTES]/ACP/[EDC+NHS]/Ab₂-HRP Ab₂-HRP/[EDC+NHS]/ACP /[OAMs+APTES] 1-NPP, H₂O₉	T / 30 min, 4 °C Ab₂-HRP/ACP/OAMs / 40 min, 4 °C	Buffer	0.32 fg mL⁻¹	10 fg mL⁻¹~90 ng mL⁻¹ (vs lgCₚ)	
	SWV 2018	GCE	CP[PPC/[EDC+NHS]/Ab₂/T/Ab₂-GRO-NB	NB MuxT	T / 30 min Ab₂-GO-NB / 30 min	Buffer	5 pg mL⁻¹	<50 pg mL⁻¹ (1)
	CPA (Bead-based ELISA) 2018	Au (microfabrication) Microfluidic multiplexed assay	WE: CTPEG₁₀/[EDC-NHS]/Ab₁ Recognition probe on MBs: Ab₂-HRP HRP TMB, H₂O₂ Suggested for MuxT	T with 10 µL bead solution / 30 min; MB-T mixture kept in each channel at the sensor / 10 min	Buffer	2.6 pg mL⁻¹	5 pg mL⁻¹ linear between ca. 40 and 1000 pg mL⁻¹ (vs lgCₚ) (estimated from Fig. 6)	
	FED (OECT) 2018	Drive: Kapton/PEDOT:PSS Sensing: Au wire	Sensing area: EG₄COOH/[EDC+NHS]/Ab/T rc-membrane: GA/protein G/glycine/Ab/T	Label-free	Re. preconc.: 1 mL of T/ 2h; T release in detection buffer: 30 min (100 µL) Gate with T / 1 h	Buffer	220 pg mL⁻¹	n/a
Biomarker (Target, T)	Technique Publication year and reference	Transducer (or FED architecture)	Surface modification/ Bioreceptor functionalization/ Assay format	Label Detection solution Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.	Analysis time and Incubation parameters Volume/Target or Label/Time/Temperature/Flow rate/Other	Sample	Lower Detection Limit (1)	Range (2)
---	---	---	---	---	---	---	---	---
IL-6	EIS 2018\(^{[3]}\)	Graphite SPE Magneto-immunosensors	Recognition probe on MBs: Protein G/[EDC+NHS]/Ab/T	Label-free [Fe(CN)]\(^{3-}\)	10 µL (T+MBs, suspension 1:1) /30 min, 20°C	Buffer	H2 dil. 1:100	0.3 pg mL\(^{-1}\) <100 pg mL\(^{-1}\) (1)
	EIS 2018\(^{[4]}\)	GCE	pABA/[EDC+NHS]/pATP/AuNPs/Apt/T	Label-free [Fe(CN)]\(^{3-}\)	15 µL T / 60 min	Buffer	H2 dil. 1:1	1.66 pg mL\(^{-1}\) <2 pg mL\(^{-1}\) (1)
	FED [GFET] 2019\(^{[5]}\)	Si/SiO\(_2\)/Graphene	PASE/Apt	Label-free [Fe(CN)]\(^{3-}\)	T / 10 min	Buffer	H2 dil. 1:1	2.78 pg mL\(^{-1}\) (139 FM)
	DPV 2019\(^{[6]}\)	Au (needle microelectrode)	Sulfo-LC-SPDP/DTT/Ab/T	Label-free [Fe(CN)]\(^{3-}\)	T / 2.5 min	Buffer	H2 <20 pg mL\(^{-1}\)	<100 pg mL\(^{-1}\) (1) (linear)
IL-8	EIS 2020\(^{[7]}\)	ITO	PPy-NHS/Ab/T	Label-free [Fe(CN)]\(^{3-}\)	T / 45 min	Buffer	H2 dil. 1:10	10.2 fg mL\(^{-1}\) <0.6 pg mL\(^{-1}\) (1)
	EIS 2020\(^{[8]}\)	ITO	PPCE/IL-6 receptor/T	Label-free [Fe(CN)]\(^{3-}\)	T / 30 min	Buffer	H2 dil. 1:10	6 fg mL\(^{-1}\) <0.9 pg mL\(^{-1}\) (1)
	EIS 2021\(^{[9]}\)	ITO	AB/epoxy-substituted-PPy/Ab/T	Label-free [Fe(CN)]\(^{3-}\)	T / 45 min	Buffer	H2 dil. 1:5	3.2 fg mL\(^{-1}\) <1 pg mL\(^{-1}\) (1)
	EIS (SFI) 2018\(^{[10]}\)	ITO	Star polymer SPGA-M@Super 9\(^{a}\) carbon black-PVDF composite/Ab/T	Label-free [Fe(CN)]\(^{3-}\)	T / 45 min	Buffer	H2 dil. 1:200	3.3 fg mL\(^{-1}\) <26 pg mL\(^{-1}\) (1)
	EIS 2018\(^{[11]}\)	ITO	NH\(_4\)OH:H\(_2\)O\(_2\):H\(_2\)O/PHA/[EDC+NHS]/Ab/T	Label-free [Fe(CN)]\(^{3-}\)	T / 30 min	Buffer	H2 dil. 1:50	6 fg mL\(^{-1}\) <26 pg mL\(^{-1}\) (1)
	SWV 2019\(^{[12]}\)	Carbon SPE	PEI-AuNPs/GA/Ab\(_T\)/PEI-AuNPs-Ab\(_2\)-Ag\(^{b}\)	PEI-AuNPs-Ab\(_2\)-Ag\(^{b}\) MuxT	2 µL T / 40 min; 2 µL PEI-AuNPs-Ab\(_2\)-Ag\(^{b}\) / 40 min	Buffer	pH (4.5)	1 fg mL\(^{-1}\) <2.5 pg mL\(^{-1}\) (1)
ASV (LSASV) 2018\(^{[13]}\)	SWV 2019\(^{[12]}\)	Carbon/MWCNTs AJPE	Ab\(_{2}\)/T/Ab\(_{2}\)-ALP/Ag\(^{c}\)	AgNO\(_3\), AA; Stv-ALP as catalyst for Ag\(^{+}\) reduction	T / 2 h, Ab\(_{2}\) / 2 h 10 s constant E before LSV	Buffer	0.3 ng mL\(^{-1}\)	1.25-10 ng mL\(^{-1}\)
	DPV 2020\(^{[14]}\)	ITO	β-Ag\(_{2}\)(MoO\(_4\))/[EDC+NHS]/Ab/T	Label-free [Fe(CN)]\(^{3-}\)	T / 10 min	Buffer	90 pg mL\(^{-1}\)	1 fg mL\(^{-1}\)-40 ng mL\(^{-1}\) (non-linear/two linear ranges)
ASV (SWASV) 2020\(^{[15]}\)	GCE (Hg film-modified)	MBs/[EDC+NHS]/Ab/T TCEP treated T	TCEP-treated T/ Maleimide-mod.DNA QDs	50 µL MBs/DNA-QD+250 µL HNO\(_2\) (RT) / 1 h; N\(_2\) / 15 min	Buffer	H2 dil. 1:10	3.36 fg mL\(^{-1}\) <5 fg mL\(^{-1}\) (1)	5-5000 fg mL\(^{-1}\) (vs IgC\(^{a}\))
	CV 2007\(^{[16]}\)	SiO\(_2\) nanowires Microfluidic chip	APTMS/Ab\(_{2}\)/T/ALP-Ab\(_{2}\)	ALP/pNPP/MuxT	3 µL T / 2 h; Ab\(_{2}\) / 2h; Stv-ALP / 30 min<; 30 µL pNPP / 20 min, RT	Buffer	Lung serum	~ ag mL\(^{-1}\) 1 pg mL\(^{-1}\) (1)
	SWV 2012\(^{[17]}\)	Au DE	(FRGG+TBAP/McCN)/[EDC+NHS]/Fc-Ab/T	Label-free MuxT	T / 15 min	Buffer	<1 pg mL\(^{-1}\)	0.001-50 ng mL\(^{-1}\) (vs IgC\(^{a}\))
Biomarker (Target, T)	Technique Publication year and reference	Transducer (or FED architecture)	Surface modification/ Bioreceptor functionalization/ Assay format	Label Detection solution Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.	Analysis time and Incubation parameters Volume/Target or Label/Time/Temperature/Flow rate/Other	Sample	Lower Detection Limit [1]	Range [2] Linear vs target concentration (\(c_0\), if not stated otherwise) (e.g., vs lgC_0)
-----------------------	--	----------------------------------	---	---	---	-------------	---------------------------	---
IL-10 Interleukin 10 Continuation >>	EIS 2012²⁹	HfO₂	TESUD/Ab/T	Label-free	T / 30 min, 4°C Total volume: 10 mL	Buffer	0.1 pg mL⁻¹	0.1-20 pg mL⁻¹ (vs lgC₀)
EIS 2015³⁰	Al₂O₃	APTES/MWCNTs/(EDC+NHS)/Ab/T	Label-free [Fe(CN)₆]^{3-/4-}	50 µL T / 30 min, 4°C	Buffer	<0.5 pg mL⁻¹ (1)	0.5-500 pg mL⁻¹ (vs lgC₀)	
EIS 2016³¹	Au (microfabrication) Microfluidic chip	MHD(A/EDC+NHS)/Ab/T	Label-free [Fe(CN)₆]^{3-/4-}	T / 30 min, 4°C	Buffer	n/a	1–15 pg mL⁻¹ (non-linear)	
EIS 2017³²	Au (microfabrication)	CMA/(EDC+NHS)/Ab/T	Label-free [Fe(CN)₆]^{3-/4-}/MuxT	T / 30 min, 4°C 15 min for detection	Buffer	0.3 pg mL⁻¹	1–15 pg mL⁻¹	
EIS 2020³³	Graphene ID AIP	EDC+NHS/T	Label-free [Fe(CN)₆]^{3-/4-}/MuxT	100 µL T / 30 min Complete assay: 33 min	BIS dil. 1:1000		46 pg mL⁻¹	0.1-2 g mL⁻¹ (vs lgC₀)
EIS 2020³³	Si/SiO₂/Si₃N₄-(Spy-PPy)	CMA/(EDC+NHS)/Ab/T	Label-free	T / 30 min, 4°C	Buffer	0.347 pg mL⁻¹	1-10 pg mL⁻¹	
DPV 2013³⁴	GCE	Au-NGR/Ab/T/HRP-Ab₂-GA-PDA-GRO	HRP Thi/H₂O₂	10 µL T / 1 h, 37°C; 50 µL HRP-Ab₂/PDA-GRO / 50 min, 37°C	Buffer	0.11 pg mL⁻¹	<0.4 ng mL⁻¹ (1)	0.0005-50 ng mL⁻¹ (vs lgC₀)
DPV 2013³⁴	Au DE	Thiolated DNA/MCH/Collagen-like Pept (5) (target-induced degradation)	Label-free [Fe(CN)₆]^{3-/4-} (5) APMA for T activation; Captopril for modulating T (T+APMA) / overnight, 37°C WE with activ; T / 2 h, 37°C	Captopril / 30 min, 37°C	Buffer	0.1 µg mL⁻¹	0.1-1 µg mL⁻¹	
ASV (SWASV) 2013³⁷	Au thin film (PDM-AuNPs composite)	Pept-SH/AuNPs-DNA-(EDC)-CdS₂Te_{0.6}QDs (target-induced cleavage)	CdS₂Te_{0.6}QDs; HNO₃; Bl²⁺ prior to SWV (pH 5.2)	100 µL T / 2h, 37°C 200 µL HNO₃ / 2h	Buffer (pH 5.2)	0.63 pg mL⁻¹	<1.7 ng mL⁻¹ (1)	1-500 pg mL⁻¹
FED (FET) 2013³⁸	SiO₂	APTES/CA/FN (target-induced degradation)	Label-free CaCl₂	Measurement 3 h after addition of (T+CaCl₂)	Buffer	<150 ng mL⁻¹ (1)	Only 150 ng mL⁻¹ executed	
FED (FET) 2013³⁸	SiNWs (zigzag structure)	TESBA/peptide)³⁹ TESBA/peptide/DNA/AuNPs⁴⁰ (target-induced cleavage)	Label-free	T / conductance change registered after 20 s² and 13 s²	Buffer	ca. 1 pM³⁹ ca. 0.1 pM⁴⁰	1 pM-100 nM (vs lgC₀), 100 FM-10 nM (vs lgC₀)	
PEC (CBP) 2014³¹	TiO₂-NTs	CdS:Mn/CdTe-QDs/Ab₂/T/Ab₂/SiO₂	Ab₂@SiO₂ label; TiO₂-NTs/ CdS:Mn/CdTe-QDs	20 µL T / T, 37°C 20 µL Ab₂@SiO₂ / 1 h, 37°C	Buffer	3.6 fg mL⁻¹	10 fg mL⁻¹-500 pg mL⁻¹ (vs lgC₀)	
DPV 2015⁴⁰	Au DE	9-MN/Fc-Pept (target-induced cleavage)	Label-free APMA for T activation	T in TCNB buffer; 20 µL T with APMA / 1 h, 37°C WE with activated T / 1 h, RT	Buffer	0.3 ng mL⁻¹	1-200 ng mL⁻¹ (vs lgC₀)	
DPV 2015⁴⁰	GCE	Au/issDNA₂-pPipNP-Pept-SH/issDNA₂ ssDNA₂-Thi (target-induced cleavage)	Label-free H₂O₂	T / 2 h, 37°C	Buffer	0.32 pg mL⁻¹	<0.1 pg mL⁻¹ (1)	1 pg mL⁻¹-10 pg mL⁻¹ (vs lgC₀)
Biomarker	Technique	Transducer (or FED architecture)	Surface modification/ Bioreceptor functionalization/ Assay format	Label Detection solution	Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.	Analysis time and Incubation parameters	Sample	Lower Detection Limit
-----------	-----------	-------------------------------	---	--------------------------	---	--	---------	----------------------
MMP-2	EIS	Au (microfabrication)	Microfluidic chip	Pept-SH (target-induced cleavage)	Label-free/MuxT (MMP-2, MMP-7)	Substrate/medium	Buffer	0.5 pg mL⁻¹
	DPV 2015¹⁴	GCE	Au/Pept-SH/Stv-Thi-Pt-Pd-mhCeO₂/NS-NPs (target-induced cleavage)	Thi-Pt-Pd-mhCeO₂/NS-NPs	H₂O₂	Buffer	0.078 pg mL⁻¹	<1 ng mL⁻¹ (1)
	DPV 2016²⁵	GCE	GCE: Au/CB[7]²⁻ released MεB Probe: MBs/(EDC+NHS)/Pept-SH/AuNPs-DNA (target-induced cleavage)	MeB-DNA²⁺/Exo III	20 µL (Probe+T)/ 40 min, 37°C (Cleaved-Pept/AuNPs-DNA, + MeB-DNA²⁺)/ 60 min, 37°C; Exo III / 60 min, 37°C;	Buffer	0.15 pg mL⁻¹	0.5 pg mL⁻¹:10 ng mL⁻¹ (vs lgC₇)
	DPV 2016²⁶	GCE	Au/Fc-Pept; Probe: (CB[7]⁻²⁻)-PtnPs with Fc-HRP)/(CB[7]⁻²⁻)-PtnPs with Fc-GOx	(target-induced cleavage)	T / 50 min, 37°C	Buffer	0.03 pg mL⁻¹	0.1 pg mL⁻¹:20 ng mL⁻¹ (vs lgC₇)
	CPA 2017²⁸	ITO	K-GS@CS@C₆H₅NBF₄/GA/Ab/T/GA/ ssDNA/	ssDNA,	ssDNA,	ssDNA,	ssDNA,	Buffer
	SWV 2018²⁹	GCE	Au-rGRO-pMeB-Pept-Sh/(EDC+NH₃)/PtnPs-amFc-BSA (target-induced cleavage)	Label-free/	60 µL T / 3 h	Buffer	<0.01 ng mL⁻¹	<0.5 ng mL⁻¹ (1)
	SWV 2019³⁰	GCE	PANI gel/AuNPs/Pept-Sh/CS-AuNPs-Pt(II)/ Na-tartrate gel (target-induced cleavage)	Label-free/	[Fe(CN)]₆³⁻/²⁻	Buffer	0.4 pg mL⁻¹	1 pg mL⁻¹:1 μg mL⁻¹ (vs lgC₇)
	PEC (CBP)	2020³¹	ITO	Fe₃O₄@SiO₂/(EDC+NH₃)/Ab/T/Ab₂/ TiO₂-AgNPs	TiO₂-Ag NPs/Ab₂	Buffer	0.34 fg mL⁻¹	1 fg mL⁻¹:100 pg mL⁻¹ (vs lgC₇)
	MT3	DPV 2013³²	GCE	K₀₂[Fe(CN)₆]₃⁻:CS-GA/C-dots+Nafion/Ab/T	Label-free/	T / 60 min, 37°C	Buffer	2.5 pg mL⁻¹
	NCAM	DPV 2020³³	GCE	MIP (pABA + PolySi₈)	[Fe(CN)]₆³⁻/²⁻	T in p-ABA solution (buffer, pH 9.0) / 60 min	Buffer	“Probe-type”: 4.74 ng mL⁻¹ (vs lgC₇); “Sandwich” 0.47 ng mL⁻¹ In SI, n/a

(2) Lower Detection Limits/
Range, if not stated otherwise (e.g., vs lgC₇)
Biomarker (Target, T)	Technique Publication year and reference	Transducer (or FED architecture)	Surface modification/ Bioreceptor functionalization/ Assay format	Label Detection solution Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.	Analysis time and Incubation parameters Volume/Target or Label/Time/Temperature/Flow rate/Other	Sample	Lower Detection Limit (1)	Range (2)	Linear vs target concentration (cT), if not stated otherwise (e.g., vs lgC_T)
NFL Neurofilament light	EIS 2020\(^{104}\) Au (microfabrication)	MAC/GMA/Ab/T	Label-free \([\text{Fe(CN)}_6]^{3-/4-}\)	n/a	KCl	5.21 ng L\(^{-1}\)	1-50 µg L\(^{-1}\)		
	PEC (no bias) 2020\(^{105}\) Pt NWs on FTO (biocathode)	(MUA+MCH)/Ab Photoanode: FTO/BiVO\(_4\)/FeODH	Label-free	60 µL T / 1 h, RT	Buffer HP dil. 1:10	38.2 fg mL\(^{-1}\)	n/a	0.1-1000 pg mL\(^{-1}\) (vs lgC\(_T\))	
NGB Neuroglobin	CV 2020\(^{106}\) Au DE	np-Au/MCH/TMSE/T (a)	H\(_2\)O\(_2\) and Cyt c as redox partners/substrates	n/a	Buffer	Qualitative study: strategy for exploring the molecular basis of NGB coupled with electron transfer			
		GCE	rep@POAP (electro-catalytic oxidation of T by NO)	NO (physiological level)	Detection: 1-2 min	Buffer	sub-µM	sub-µM-10 µM range	
	DPV 2018\(^{108}\) GCE	PC/AuNA/ MVIMBf\(_3\)/MIP-Poly(DPIMBr)/T	T / 15 min	Buffer HS dil. 1:100	2.6 pg mL\(^{-1}\)	<7.7 ng mL\(^{-1}\)	1 pg mL\(^{-1}\)		
		Graphite SPE	GR nanosheets/PpPD/AuNPs/Ab/T	Label-free AA	T / 60 min	Buffer HS	0.3 ng mL\(^{-1}\)	<11 ng mL\(^{-1}\)	
		Au DE (3D-SICPC-modified)	3Dm-gro-PANI/[EDC+NHS]/T	Label-free \([\text{Fe(CN)}_6]^{3-/4-}\)	10 µL T / 40 min, 37°C	Buffer HS dil.	0.1 µg mL\(^{-1}\)	<0.5 ng mL\(^{-1}\)	
		SWV 2018\(^{111}\) GCE	CS-Fc/AuPd-MWCNTs/GA/Ab/T	H\(_2\)O\(_2\)	20 µL T / 50 min, 37°C	Buffer (pH 6.5) HS	0.48 pg mL\(^{-1}\)	<1 ng mL\(^{-1}\)	
		SWV 2018\(^{112}\) Carbon SPE	pTMB-Au	PD-SA-AuNPs-Ca\(^{4+}\) hydrogel/Ab/T	Label-free H\(_2\)O\(_2\) / MuxT	10 µL T / 45 min, 37°C	Buffer (pH 6.5) HS	2.3 pg mL\(^{-1}\)	<1.7 ng mL\(^{-1}\)
			PANI hydrogel/AuNPs/Ab/T	Ab\(_2\)-AuNPs-THI-gRO-Hem/ H\(_2\)O\(_2\)	80 µL T / 45 min, 37°C; 40 µL Ab\(_2\)-AuNPs-THI-gRO-Hem / 37°C	Buffer HS	0.026 pg mL\(^{-1}\)	<1 ng mL\(^{-1}\)	
			Alginate/PANI/hydrogel/GA/Ab/T/ [Nanogel/Cu@AuNPs]	Probe: Cu@AuNPs	200 µL probe with T / 1 h	Buffer (pH 5.5) HS	4.6 pg mL\(^{-1}\)	<3.3 ng mL\(^{-1}\)	
			PPY-polTHI-hydrogel with GOGx/AuNPs/Ab/T	Label-free; H\(_2\)O\(_2\); Glucose; GOGx doping	T / 50 min	Buffer HS	0.65 pg mL\(^{-1}\)	<5.5 ng mL\(^{-1}\)	
			PPB-PEDOT-AuNPs/SH-Apt/T	Label-free MuxT	20 µL T / 1 h	Buffer HS	10 pg mL\(^{-1}\)	<1.25 ng mL\(^{-1}\)	

NOTE: The table provides a summary of various electrochemical detection methods used for biomarker detection, including the transducer type, surface modification techniques, detection solution, analysis time and incubation parameters, sample type, lower detection limit, and concentration range. Each method is detailed with specific parameters and detection limits, highlighting the versatility and precision in biomarker detection.
Biomarker (Target, T)	Technique Publication year and reference	Transducer (or FED architecture)	Surface modification/ Bioreceptor functionalization/ Assay format	Label Detection solution	Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.	Analysis time and Incubation parameters	Sample	Lower Detection Limit	Range (2)	Linear vs target concentration (cT), if not stated otherwise (e.g., vs lgC)	
DPV 2019117	GCE	AuNPs/Ab/T/TB/ WP6@PdPt PCONs/Ab2	**Label**	**Detection solution**	**Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.**	**Analysis time and Incubation parameters**	**Sample**	**Lower Detection Limit (1)**	**Range (2)**	**Linear vs target concentration (cT), if not stated otherwise (e.g., vs lgC)**	
SWV 2019118	Au wires	Au QCM chips	**Surface modification/ Bioreceptor functionalization/ Assay format	**Label**	**Detection solution**	**Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.**	**Analysis time and Incubation parameters**	**Sample**	**Lower Detection Limit (1)**	**Range (2)**	**Linear vs target concentration (cT), if not stated otherwise (e.g., vs lgC)**
SWV 2019119	GCE	**Label**	**Detection solution**	**Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.**	**Analysis time and Incubation parameters**	**Sample**	**Lower Detection Limit (1)**	**Range (2)**	**Linear vs target concentration (cT), if not stated otherwise (e.g., vs lgC)**		
SWV 2019120	GCE	**Label**	**Detection solution**	**Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.**	**Analysis time and Incubation parameters**	**Sample**	**Lower Detection Limit (1)**	**Range (2)**	**Linear vs target concentration (cT), if not stated otherwise (e.g., vs lgC)**		
SWV LFA (with SERS) 2019121	FTO	AgNPs/Au/ NBA/Ab/T	**Label**	**Detection solution**	**Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.**	**Analysis time and Incubation parameters**	**Sample**	**Lower Detection Limit (1)**	**Range (2)**	**Linear vs target concentration (cT), if not stated otherwise (e.g., vs lgC)**	
EIS 2019122	ITO	P(ThiPh-gMAm)/GA/ Ab/T	**Label**	**Detection solution**	**Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.**	**Analysis time and Incubation parameters**	**Sample**	**Lower Detection Limit (1)**	**Range (2)**	**Linear vs target concentration (cT), if not stated otherwise (e.g., vs lgC)**	
EIS (SFI) 2019123	Au DE	MHDA/(EDC+NHS)/Ab/T	**Label**	**Detection solution**	**Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.**	**Analysis time and Incubation parameters**	**Sample**	**Lower Detection Limit (1)**	**Range (2)**	**Linear vs target concentration (cT), if not stated otherwise (e.g., vs lgC)**	
EIS (SFI) 2019124	Au DE	MHDA/(EDC+NHS)/Ab/T	**Label**	**Detection solution**	**Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.**	**Analysis time and Incubation parameters**	**Sample**	**Lower Detection Limit (1)**	**Range (2)**	**Linear vs target concentration (cT), if not stated otherwise (e.g., vs lgC)**	
ASV (LSASV) 2019124	GCE	3D-GRS/CS/GA/Ab/T/Ab2-OMCSi-AuNPs/ 3D-GRS/AuNPs	**Label**	**Detection solution**	**Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.**	**Analysis time and Incubation parameters**	**Sample**	**Lower Detection Limit (1)**	**Range (2)**	**Linear vs target concentration (cT), if not stated otherwise (e.g., vs lgC)**	
Biomarker (Target, T)	Technique Publication year and reference	Transducer (or FED architecture)	Surface modification/ Bioreceptor functionalization/ Assay format	Label Detection solution Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.	Analysis time and incubation parameters Volume/Target or label/Time/Temperature/Flow rate/Other	Sample	Lower Detection Limit (1)	Range (2)	Linear vs target concentration (c), if not stated otherwise (e.g., vs lgC)		
-----------------------	--	---------------------------------	---	---	---	--------	---------------------------	--------	---		
NSE											
Neuron-specific enolase (2018-2020) Continuation =>											
	Poten. 2019[15]	pH electrode (commercial)	Immunoassay immobilization on PS-microplates: Ab₂/T/Ab₂-GOx-LS	GOx-LS; Triton X-100 (to release GOx), Glucose	[T + Ab₂-GOx-LS] [50+50 µL/well] / 35 min; Glucose / 10 min	Buffer	8.1 pg mL⁻¹ <0.5 ng mL⁻¹	0.01-100 ng mL⁻¹ (dynamic linear range: pH vs lgC)	0 2-100 ng mL⁻¹ (vs lgC)		
	PEC (CBP) 2019[16]	ITO	NiWO₄-NiStr/Ab/T	Label-free Uric acid	PEC measurement: 150 s with 20 s light on/off cycles	Buffer	0.12 ng mL⁻¹<10.7 ng mL⁻¹	77-723 ng mL⁻¹ (vs lgC)	10 90-300 ng mL⁻¹ (vs lgC)		
	DPV 2020[17]	GCE	Au@MOFs/(EDC+NHS)/Ab₂/T/Ab₂-Au@Pd⁺Pt NCbs/MnO₂ UNs	MnO₂ UNs/Au@Pd⁺Pt NCbs label* HQ, H₂O₂	6 µL MnO₂ UNs/Au@ Pd⁺Pt NCbs-Ab₂ / 1 h	Buffer	4.17 fg mL⁻¹<0.7 ng mL⁻¹	10 fg mL⁻¹–100 ng mL⁻¹ (vs lgC)	10 fg mL⁻¹–50 ng mL⁻¹ (vs lgC)		
	DPV 2020[18]	GCE	Fc-g-Au@Pd-P(BBY)/TCEP+APT₁/T/Apt₂/AuPt NA/T/Thr/GrO	Thi and Fc as signal probes	Fc-g-Au@Pd-P(BBY)/TCEP+APT₁ with T / 60 min, 37°C, Apt₂/AuPt NA/T/Thr/GrO / 60 min, 37°C	Buffer	30 fg mL⁻¹ n/a	100 fg mL⁻¹–50 ng mL⁻¹ (vs lgC)	100 fg mL⁻¹–100 ng mL⁻¹ (vs lgC)		
	SWV 2020[19]	Au wires	AuNPs-MIPs (epitope-mediated)	Label-free [Fe(CN)₆]³⁻₂⁻	2 mL T / 15 min	HS dill: 1:2	25 /200 pg mL⁻¹ (w/wo Au NPs)	25–4000 / 50–500 pg mL⁻¹ (w/wo Au NPs) (non-linear)	10 fg mL⁻¹–200 pg mL⁻¹ (vs lgC)		
	EIS 2020[20]	ITO	P(Pyr-Epx)/Ab/T	Label-free [Fe(CN)₆]³⁻₂⁻	T / 30 min	Buffer	6.1 fg mL⁻¹ <1.2 pg mL⁻¹	0.02-7.5 pg mL⁻¹	10 fg mL⁻¹–200 pg mL⁻¹ (vs lgC)		
	EIS 2020[21]	ITO	Str(PGMAs)/Ab/T	Label-free [Fe(CN)₆]³⁻₂⁻	T / 45 min	Buffer	9.1 fg mL⁻¹ <1.2 pg mL⁻¹	0.03-6 pg mL⁻¹	10 fg mL⁻¹–200 pg mL⁻¹ (vs lgC)		
	EIS 2020[22]	Au DE	Zr-TAPP/Ab/T	Label-free [Fe(CN)₆]³⁻₂⁻	T / 50 min	Buffer	7.1 fg mL⁻¹ <10 fg mL⁻¹	10 fg mL⁻¹–200 pg mL⁻¹ (vs lgC)	10 fg mL⁻¹–200 pg mL⁻¹ (vs lgC)		
	CPA 2021[23]	GCE	AuPt NSNs/Ab₂/Ab₂/ Au-CuO₂@CeO₂	Au-CuO₂@CeO₂/Ab₂ H₂O₂	6 µL T / 40 min, RT	Buffer	31.3 fg mL⁻¹ <15 ng mL⁻¹	50 fg mL⁻¹–100 ng mL⁻¹ (vs lgC)	50 fg mL⁻¹–100 ng mL⁻¹ (vs lgC)		
	DPV 2013[24]	Pencil graphite Microfluidic chip (PMMA)	WE (graphite): PMMA/OH(NaOH)/NH₃/PEI/GA/Ab₂/T/Ab₂/ALP-lg	ALP PAR	20 µL T / 30 min, 37°C; 20 µL Ab₂ / 20 min, 37°C (flow rate 120 µL h⁻¹)	Buffer	0.1 pg mL⁻¹ <0.1 pg mL⁻¹	0.1–100 pg mL⁻¹	10 fg mL⁻¹–200 pg mL⁻¹ (vs lgC)		
	SWV 2014[25]	Au DE	(Capture peptide+TCEP)/(T+CaCl₂)/(signal peptide+Cu²⁺)	OPD; Cu²⁺ as catalyst for OPD oxidation	T / 2.5 h, 30°C	Buffer	0.1 nM <0.2 nM	0.1–25.6 nM (vs lgC)	0.1–25.6 nM (vs lgC)		
	OSWV 2014[26]	Au DE	(DPTA+NAC)/Cu²⁺/His₂-RAGE VC1 or C2/T	Label-free	10 µL T / 30 min	Buffer	0.52 pM	1–100 µM	1–200 µM (vs lgC)		

S100B

S100B calcium-binding protein
Biomarker (Target, T)	Technique Publication year and reference	Transducer (or FED architecture)	Surface modification/ Bioreceptor functionalization/ Assay format	Label Detection solution Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.	Analysis time and Incubation parameters Volume/Target or Label/Time/Temperature/Flo w rate/Other	Sample	Lower Detection Limit (1)	Range (2)	Linear vs target concentration (cT), if not stated otherwise (e.g., vs lgCt)
S100β S100 calcium-binding protein	OSWV 2016[147]	Au DE	(DPM+NAC)/Cu2+/His2-RAGE VC1 or C2/T (a) (DPM+MBT)/Cu2+/His2-RAGE VC1 or C2/T (b)	Label-free	10 µL T Solutions deoxygenated	Buffer HP dil. 1:2	2.6 pm (a) 4.9 pm (b)	2.6-20 pm (a) 4.9-20 pm (b)	0.9 pm (a) 2.7 pm (b)
	DPV 2017[158]	Graphene SPE	Electrografted reduced FRGG/GA/Ab/T	Label-free [Fe(CN)6]3-/4-	T / 45 min, 4°C	Buffer HS (and CSF)	1 pg ml-1 1 pg ml-1	1 pg ml-1-10 ng ml-1 (vs lgCt)	1 pg ml-1-10 ng ml-1 (vs lgCt)
	EIS 2018[20]	Au IDE (microfluidic ID-zigzag biochip)	(4-ATP+cysteamine)/GA/Ab/T	Label-free [Fe(CN)6]3-/4-/MuxT	5 min (flow rate 25 µL min-1)	Buffer	10 ng ml-1 10 ng ml-1-10 µg ml-1 (vs lgCt)	10 ng ml-1-10 µg ml-1 (vs lgCt)	
	FED (FEED) 2018[160]	Carbon SPE	SWCNTs-Nafion-GA/Ab/T	HRP Reagentless	T / 60 min Ab2 / 40 min	HS	10 fg ml-1 10 fg ml-1-10 ng ml-1	10 fg ml-1-10 ng ml-1	
	SWV LFA (with SERS) 2019[21]	FTO	AgNPs/Au/4-MBA/Ab/T	Label-free MuxT	T / 30 min	Buffer (pH 6.5)	10 pg ml-1 50 pg ml-1-1 µg ml-1	50 pg ml-1-1 µg ml-1	
	EIS (SFI) 2019[46]	Au DE	MHDA/(EDC+NHS)/Ab/T	Label-free [Fe(CN)6]3-/4-/MuxT	Optimal Z-t measurement: 15 s	Buffer 5- 25 and 90% blood and plasma	2-5 pg ml-1 Recoveries; 14-67 pg ml-1 in 90% blood	0.1-2800 pg ml-1	
	PEC (CBP) 2019[60]	ITO	rGRO-AuNPs/3-ICT-sol-gel-film/Ab/T/Ab/(EDC+NHS)/CdS-QDs	Csds-QDs AA	5 µL T / 30 (45 min Buffer; 20 µL T / 30 min (HS) 6 µL Csds-QDs / 30 min	Buffer HS	0.15 pg ml-1 <100 pg ml-1 (1)	0.25-10000 pg ml-1 (vs lgCt)	
	CSV (DPCSV) 2020[24]	Au DE	Recognition probe: MBs/Au/Ab/T	Label-free	50 µL T / 30 min	Buffer Horse plasma	10 pM <250 pM (1)	10 pM-100 nM (non-linear)	
	EIS 2014[42]	Au DE	Lip-NHS/Tau-protein/T	Label-free [Fe(CN)6]3-/4-	5 µL T / 2h	Buffer	0.2 µM 0.1-1.0 µM	2N4R (tau441)	
	DPV 2017[43]	Carbon SPE	GRO/(ECD+NHS)+(+DMAP)/pPG/GA/Ab/T/Ab/(pP+S+MUA)/(ECD+NHS)/pPG	PbS-NCs-probe; HNO2 for NCs ionization/ MuxT	1 mL in a cell (Buffer); 10 µL T / 30 min (HS) 6 µL PbS-NCs drop-casted (HS); 15 min with HNO3	Buffer HS dil. 1:100	0.15 nM <0.5 nM (1)	0.15-250 nM (non-linear)	
	EIS 2017[44]	Au (microfabrication)	DTSSP/Protein G/Ab/T	Label-free [Fe(CN)6]3-/4-	T / 25 min	Buffer HS	0.03 µM 0.01 µM	0.01 pM-10 nM 2N4R (tau441)	

Continuation ->
Biomarker (Target, T)	Technique Publication year and reference	Transducer (or FED architecture)	Surface modification/ Bioreceptor functionalization/ Assay format	Label Detection solution Substrate/redox probe/ mediator/catalyst/ signal enhancer/pH modulator etc.	Analysis time and Incubation parameters Volume/Target or Label/Time/Temperature/Flo w rate/Other	Sample	Lower Detection Limit	Range (2) Linear vs target concentration (c_T), if not stated otherwise (e.g., vs lgC_T)
DPV 2018\(^{145}\) Au (microfabrication)	(SATA+Ab)/Thiolated pGluA/T (a) (SATA+Ab)/T (b)	Label-free \[^{[Fe(CN)]}_{3}^{3-}\]/MuxT	20 µL T / 30 min Buffer (pH 6.2)	0.968 pM (a) 9.68 pM (b) 0.968-454 pM (a,b) (vs lgC_T)				
DPV 2018\(^{146}\) Au DE	MPA/(EDC+NH3)/Ab/T/AuNPs-SH-Apt	Label-free \[^{[Fe(CN)]}_{3}^{3-}\]	T / 45 min Buffer HS dil. 1:100	0.42 pM <1.5 pM (1) 0.5-100 pM 1N3R (tau381)				
EIS 2018\(^{4}\) Multiarray of vertically aligned Pt wires	Cysteamine/ GA/Ab and(or) Apt/T	Label-free/[Fe(CN)]\(^{3-}\)/Suggested for MuxT	2 µL T / 5 min Buffer	0.001 pg mL\(^{-1}\) 0.001-10 pg mL\(^{-1}\)				
EIS 2018\(^{147}\) Au DE	Lipoic acid/(EDC+NH3)/Ab/n-butylamine/hexanethiol/T	Label-free/[Fe(CN)]\(^{3-}\)/Suggested for MuxT	T / 1h Buffer	0.7 pM <1 pM (1) 1-100 pM 2N4R (tau441)				
DPV 2019\(^{148}\) GCE	CGR/Thi/AuNPs/Apt/T	Label-free	20 µL T / 30 min Buffer HS dil. 1:100	0.7 pM <1 pM (1) 1-100 pM 2N4R (tau441)				
DPV 2020\(^{149}\) Au	MWNTs/rGRO/CS/Ab/T/AuNPs	Au NP \[^{[Fe(CN)]}_{3}^{3-}\]/T with AuNPs / 4 h, 4°C; T- AuNPs conjugate with WE / 30 min, 4°C Buffer HS	0.46 FM <1.5 fM (2) 0.5-80 FM (vs lgC_T) 2N4R (tau441)					
EIS 2020\(^{150}\) GCE	SL-rGRO@PTSA/Cu\(^{2+}\)/ (EDC+NH3)/Ab/T	Label-free/[Fe(CN)]\(^{3-}\)/Suggested for MuxT	6 µL T / 30 min, 4°C Buffer HS dil. 1:1000	75 FM <2.5 pM (1) 0.08-80 pM (vs lgC_T) 2N4R (tau441)				
SWV 2020\(^{151}\) Au (mini pillar-based sensor)	Au nanodendrites/Ab/T	Label-free Ru(NH\(_3\))\(^{3+}\)/MuxT	10 µL Ab / 4h at RT 10 µL T / 4h at RT Buffer HS	7.14 10\(^{-11}\) mg mL\(^{-1}\) 10\(^{-10}\)-10\(^{-7}\) mg mL\(^{-1}\) (vs lgC_T)				
EIS 2020\(^{152}\) PET-ITO	rGRO/Au NP/11-MUA/(EDC+NH3)/Ab/T	Label-free \[^{[Fe(CN)]}_{3}^{3-}\]	T / 60 min, dark Buffer HS	0.091 pg mL\(^{-1}\) <10 pg mL\(^{-1}\) (1) 1-500 pg mL\(^{-1}\) 2N4R (tau441)				
FED (FET) 2020\(^{153}\) Sensing : Glass/Ti/Au (microfluidic chamber)	Sensing area: Au/COOH-EG\(_{2}\)-thiol/PEG/(EDC+NH3)/Ab/T	Label-free Complete assay: 30 min Buffer (CSF)	1 pM (~10 pM)	1 pM-10 nM (Fig. 2) (1) 2N4R (tau441)				
CPA 2020\(^{154,155}\) Carbon SPE\(^{153}\) Dual SPCE\(^{153}\)	pABA/(EDC+NH3)/3D-Au-PAMAM/GA/Ab/T/Ab\(_{2}\)-HPR	Ab\(_{2}\)/HRP HO/\(\text{H}_2\)\(_{2}\) MuxT	T / 1h Ab\(_{2}\) / 60 min Buffer HP	1.7 pg mL\(^{-1}\) 2.3 pg mL\(^{-1}\) (>pg mL\(^{-1}\) (1) 8-5000 pg mL\(^{-1}\) 2N4R (tau441)				

\(^{1}\) Linear vs target concentration (c_T), if not stated otherwise (e.g., vs lgC_T).
Biomarker (Target, T)	Technique (or FED architecture)	Transducer	Surface modification/ Bioreceptor functionalization/ Assay format	Label Detection solution	Analysis time and Incubation parameters	Sample	Lower Detection Limit	Range (2)	
Tau protein(s) / T-Tau	ELA-PEC (2021)	Carbon paste electrode	AuNPs-MoSe₂/MCH/Apt/T/Ab/Protein G-AP	Protein G-AP AAP, Mg(NO₃)₂	35 µL T / 30 min, 37°C; 35 µL Ab / 60 min, 37°C; 35 µL Protein G-AP / 60 min, 37°C; [AAP+Mg(NO₃)₂] / 60 min, 37°C	Buffer	0.3 fM	0.5 fM-1.0 nM (vs lgCₜ)	
Total tau (P- + non-phosphor.)	DPV (2017)	Au (microfabrication)	MPA/(EDC+NHS)/Ab/T	Label-free [Fe(CN)₆]₃⁻/⁴⁻	T / 3h	Buffer	1000 pg mL⁻¹	1000-100000 pg mL⁻¹	
Continuation =>	PEC (2020)	FTO	Mo:BiVO₄/FeOOH/Ab₂/T/Ab₂-HRP	Ab₂-HRP DAB	70 µL T / 1h, RT; 30 µL Ab₂ / 1h DAB / 10 min	Buffer	1.59 fM	~fM to >10⁶ fM (vs lgCₜ) (Buffer, HP, Fig. 4)	
	FED (GFET) (2020)	Si/SiO₂	APMES/rGRO/PBASE/Ab/T	Label-free MuxT	20 µL T / 30 min	Buffer	n/a	100 fg mL⁻¹-100 ng mL⁻¹ (vs lgCₜ)	
	UCH-L1 Ubiquitin C-terminal hydrolase	EIS (2018)	Multiarray of vertically aligned Pt	Label-free [Fe(CN)₆]₃⁻/⁴⁻	The suggested array has been patented for the detection of UCH-L1, GFAP and tau-proteins. However, the array has been tested in detail for tau-protein detection only.				
	SWV (2019)	Graphene SPE	pNE/Ab (a) pDE/Ab (b)	Label-free [Fe(CN)₆]₃⁻/⁴⁻	50 µL T / 30 min	Buffer	1.91(a) 0.70 (b) pg mL⁻¹	0.1 pg mL⁻¹-100 ng mL⁻¹ (vs lgCₜ) (a)	
	VCAM-1 Vascular cell adhesion protein 1	EIS (2017)	DTSP/Ab/T or DTSP/Ab₂/T/Ab₂	Label-free	50-100 µL T / 15 min	Buffer	8 fg mL⁻¹	8 fg mL⁻¹-800 pg mL⁻¹ (vs lgCₜ)	
(1) Lowest reported LDL using EC detection methods; ‘<x’ corresponds to the lowest concentration analyzed within the working range of the sensor (employing standard addition method and/or a reference material/method for validation, with a decent recovery), actual LDL being possibly lower than the indicated value. Redox couple \([\text{Fe(CN)}_6^{3-/4-}]\) indicated if used. (2) The upper limit of the range indicated often presents the maximum concentration explored but not the upper detection limit. Please consult original paper for details. (3) Increase in diameter of a sub-micron latex colloid upon binding to an unlabelled specific antibody results in changes in pore resistance. Particles passing through the pore displace the conducting fluid in that pore. (4) Enzyme cascade amplification: GOx catalyses glucose to gluconic acid with concomitant formation of \(\text{H}_2\text{O}_2\) for accelerating the redox reaction of Fc in the presence of HRP and PtNPs. (5) Collagen in the complex is being degraded by MMP-2. The inhibition effect of captopril to MMP-2 can be revealed by the electrochemical signal. With the increase of MMP-2 concentration more collagen molecules will be digested, thus a larger amount of electrochemical probe \([\text{Fe(CN)}_6^{3-/4-}]\) can get closer to the electrode leading to an increase of the electrochemical signal. (6) Application for the target detection in urine has been exceptionally noted here, due to the fact that no other publications have been found on the electrochemical detection of VCAM-1 biomarker. For Column 7 ‘Sample’: Dilution factor (‘dil.’, if indicated) corresponds to the primary dilution of the sample to be analyzed and does not account for the further dilution steps implied by the suggested protocol (mixing with the redox probe/mediator/labelling solution/signal enhancer/detection buffer/etc.). pH of the (detection) buffer is indicated, if significantly different from clinical ranges in blood samples (ca. 7.5). ABBREVIATIONS: see last Page. For more detailed information on EC strategies for the detection of CRP biomarker readers should refer to the review articles by Bakirhan et al.161, Sohrabi et al.162, Dhara and Mahapatra163 and Chen et al.164. As of December 2020 no EC detection strategies have been found on the following biomarkers: BMX (bone marrow tyrosine kinase on chromosome X), CKBB (creatine kinase B type), ICAM-1 (intracellular adhesion molecule-1), MDA-LDL (malondialdehyde modified low density lipoprotein), NFM (neurofilament medium), Nogo-A (neurite outgrowth inhibitor protein), pNF-H (NF-H) ((phosphorylated) neurofilament heavy protein), E-selectin (E-selectin), SNTF (calpain-derived αII-spectrin N-terminal fragment) and Ub (ubiquitin).
Summary of Key Observations and Outstanding Challenges

A total number of 127 publications on EC techniques and protocols for 19 different mTBI protein biomarkers were compiled (Table 3 and SI-1).

- **Techniques**
 - EIS (35 entries) followed by DPV (29) and SWV (23) were the most frequent EC methods employed for determining mTBI relevant blood proteins concentrations.

- **Assay performance**
 - 99 publications report measurement data obtained in complex matrix (e.g., HS, HP, etc.), but the vast majority did so under significantly diluted sample conditions and/or compromised analytical performance characteristics. Sample dilution may be a feasible approach to reduce NSB (see SI-3), but this brings up additional requirements to sample preparation (e.g., microfluidic cartridge design) or operator usability aspects, the latter not being ideal for POC diagnostic testing. While reproducibility of results is indicated in many of the publications, only few have determined accuracy and precision data with real/clinical samples (e.g., goal of CV < 6% in laboratory medicine), with multiple reagent/sensor lots, with a statistically significant patient sample number and by systematically comparing performances against a reference method. In this context the question comes up to which degree the impressive detection limits (LDL) reported can be confirmed in real-world situations to reliably differentiate brain injured from healthy individuals based on physiological cutoffs (CO).

- **Diagnostic Specificity / Multiplexing**
 - It is primarily an mTBI biomarker discovery and validation rather than sensor development task to improve the diagnostic specificity (i.e., reduce the number of false positives). However, since no single protein biomarker provides sufficient specificity, the right combination (e.g., 5-plex?) may do so in the future. Therefore, enabling a multiprotein detection modality is likely to be crucial, especially for a POC diagnostic application. EC sensors seem technologically apt for (simultaneous) multiple protein mTBI biomarker target detection - in 26 publications authors report data on multiprotein detection within a single assay (MuxT). However, very limited information is provided in terms of multi-analyte panels (comprising various protein mixtures in complex matrix representing physiological situations) used to challenge sensor performances.

- **Sample Volume**
 - In many referenced publications sample volumes of 50 µL and less were used, which – being a design constraint in the context of mTBI POC diagnostic applications – is compatible with EC sensing.

- **Time-to-results**
 - Most of the reported EC sensor measurement times exceed acceptable time-to-results (< 15 min) requirements for POC diagnostic applications. It is conceivable that in the future, optimized assay and shortened incubation conditions will still be compatible with good assay performance, but this requires likely a significant R&D effort.

- **Manufacturability and Costs of Goods Produced (COGP)**
 - As pointed out in Figure 8, the small sample and reagent consumption anticipated as well as the low costs of the materials and fabrication make EC sensors attractive candidates for a future POC device for mTBI diagnostics. The main challenges, however, may be the difficulties and costs associated with electrode-bioreceptor functionalization (for multiple mTBI protein target analytes) and limited sensor stability and thus short shelf-life.
The process of non-specific binding (NSB) is a complex phenomenon that is extremely sensitive to the properties of both the sensing surface (e.g., heterogeneity, topography, functional groups, surface potential) and the protein(s) to be adsorbed (e.g., size, chemical and 3D structure, charges, apolar properties), as well as the sample media. The interaction between the surface and the protein defines its conformation and is strongly affected by the ionic strength and the pH value of the sample, specifically by the composition of the solution adjacent to the electrode. Integration of antifouling materials reducing NSB is crucial in order to enable reliable detection in a complex matrix and is typically achieved via one or more of the following mechanisms: (i) formation of a hydration layer, i.e. increasing the hydrophilicity of the sensing surface resulting in decreased adhesion of biofoulant; (ii) steric repulsion, e.g. via integration of polymers sterically preventing the foulants from reaching the electrode surface; (iii) electrostatic repulsion via attachment of molecules with anionic and/or cationic moieties (e.g. zwitterionic materials); (iv) optimized surface topography (altering the surface roughness on nanoscale level). Among most commonly applied strategies is the immobilization of ‘blocking’ proteins, e.g. avidin, streptavidin, neutravidin, casein or (most frequently) bovine serum albumin (BSA). This and other methods based on physical adsorption provide a relatively inexpensive and fast solution, however possess a few disadvantages, such as non-uniformity of the adsorbed layer and reversibility of the adsorption process. The latter is governed by the weak intermolecular interactions and is sensitive towards the experimental conditions (solvent polarity, ionic strength, temperature, pH). Furthermore, most protein blockers have a high lot-to-lot variability and cross-reactivity, alter original surface properties, and, as some studies have reported, e.g. a BSA layer does not always efficiently prevent protein adsorption. An NSB suppressing layer can be obtained or optimized using some other physical approaches to surface modification or combinations thereof: mechanical coatings (polymer films), integration of nanoporous structures (e.g. carbon nanotubes, graphene-based materials, metallic nanoparticles) and/or superhydrophobic surfaces. Chemical approaches present a more robust antifouling strategy for EC biosensing in comparison to physical approaches discussed above and are often accomplished via formation of SAMs containing antifouling moieties such as polyethylene glycol (PEG), oligo(ethylene glycol), zwitterionic peptide-based molecules or polymers. Furthermore, the thiolated alcohol compounds, such as e.g. 6-mercaptohexanol or 11-mercaptoundecanol, are often applied to gold surfaces in order to ‘block’ empty spots and stabilize the SAM conformation. However, the relatively poor stability of SAMs, narrow choice of transducer substrates (mainly applied to gold, less frequently to silver, copper and platinum) and grafting molecule types (mainly thiolated compounds) limit the application of SAMs for NSB reduction in EC sensing. As an alternative to SAMs, polymer brushes can be tethered on substrates using different grafting methods. Unlike SAMs, this strategy is not limited to gold surfaces and has been applied to numerous substrates such as carbon, ITO, graphene etc. A typical example would be electrodeposition of PEDOT or PANI films, with or without additional doping with PEG (or grafting of PEG) on a carbon- or graphite-based substrate. While grafting of non-conductive antifouling reagents with the long chains (such as PEG) directly onto transducer surface often results in the loss of sensitivity due high impedance of the polymeric layer, incorporation of PEG with conductive soft polymers such as PEDOT and PANI is one way to resolve this issue. However, in many cases CP layers have been shown to suffer from low mechanical and complex media stability. In another promising strategy the polymeric brushes are formed via reduction of diazonium salts providing a rapid single-step approach to polymeric brush immobilization. This approach ensures a low energy barrier for the injection of electrons at the contact between the metal and organic molecule, along with the improved stability due to covalent character of the formed bond. Despite the large number of strategies suggested in the literature for NSB reduction, hardly any of them are sufficient to completely overcome this problem in view of POC diagnostic applications in biological matrices. Further efforts are needed in this field in order to establish an effective combination of antifouling materials with surface modification strategies and to better understand the synergetic effect of the complex media and the antifouling probes on the properties of the biorecognition element.
ABBREVIATIONS for SI

µPAD: microfluidic paper-based analytical device; 1-NPP: 1-naphthyl phosphate; 11-FcC: 11-ferrocenyl-undecanethiol; 3D-GRS: porous three-dimensional graphene-starch architecture; 3DM: three dimensionally macroporous; 3D-SiPCC: three dimensional silica close-packed colloidal crystal; 3-ICT: (3-isocyanatopropyl)triethoxysilane; 4-ATP: 4-aminothiophenol; 4-MBA: 4-mercaptobenzoic acid; 9-MN: 9-mercaptopo-nonanol; AA: ascorbic acid; AAP: ascorbic acid 2-phosphate; Ab: antibody; AB: acetylene black; ACN: acetonitrile; ACP: acid phosphatase; AEDP: monomer, 2-acrylamidoethyl dihydrogen phosphate; AIBN: 2,2′-azobis(2-methylpropionitrile); AJPE: aerosol jet printed electrode; AM: acrylamide; AMCs: TiO2 (anatase) mesocages, here: Ru(bpy)32+@AMCs composite for dual response [DVP and ECL, Ru(bpy)32+: ruthenium (II) tris(bipyridine)]; ALP: alkaline phosphatase; amFc: aminoferrocene; APMA: 4-aminophenylmercuric acetate; Ap: (oligo)cationic aptamer for the target (T); APTES: 3-aminopropyl triethoxysilane; APTMS: 3-aminopropyl trimethoxy silane; AQ: anthraquinone; ASV: anodic stripping voltammetry; Au@Pd-P(BBY): core/shell Au nanoparticles @Pd nanoclusters-poly(bismarck brown Y); AuNA: gold nanoparticle; AuNPs: gold nanoparticles; AuNs: gold nanostars; AuPt NAS: hierarchical AuPt nanoassemblies; Av: avidin; Bis: bovine implant serum; BNP: B-type natriuretic peptide; BSA: bovine serum albumin; C6H4NBFe: 1-butylpyridine tetrafluoroborate; CB7: cucurbit[7] uril; CBMA: 2-[carboxy,N,N-dimethyl-(2’-methacryloyloxyethyl)amethanamine inner salt], zwitterionic monomer; CBP: constant bias potential; CD-GS: 4,4′-cyclohexylenedimethane-graphene sheets; CDI: carbonyldimidazol; CDP-choline: cytidine diphosphate-choline (cytidine 5′-diphosphocholine sodium salt dihydrate); CGR: carbonyl graphene; CMA: 4-carboxyethyl aryl diazonium; CMS: cysteine-modified epoxide; CNTS: carbon nanotubes; COF: covalent organic framework; CP: conductive polymer; CPA: constant potential amperometry; CPE: carbon paste electrode; CPT: 5-carboxy-1-panthenol; CP (PPE): mixed layers of 4-carboxyphenyl and 4-aminophenyl phosphorylcholine; CS: chitosan; CSV: cathodic stripping voltammetry; CT(PEG)2: carboxy-PEG12-thiol; CTIL: carboxyl-terminated liquid; CuPt: copper phthalocyanine-3,4,4′,4″-tetrasulfonic acid tetrasodium salt (as dopant counterion); Cy c: ferric cytochrome c; DAB: diaminobenzene; DG: dual gated (transistors); DG-ISFET: dual gated ion-sensitive field effect transistor; dil.: diluted; DMA: monomer, dimethylacrylamide; DMAP: 4-(dimethylamino)pyridine; DN: 1,5-diaminonaphthalene; dNTPs: deoxyribonucleoside triphosphate; DPASV: differential pulse anodic stripping voltammetry; DPI: dual probe immunosensor; DPMBr: 1,3-di(3-N-pyryl-propyl)imidazolium bromide; DP: differential pulse; DTSP: 3,3′-dithiobis(succinimidyl propionate); DPU: differential pulse voltammetry; EC: electrochemical; EDC: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide; EDTA: ethylene diamine tetraacetic acid disodium salt; EG, COOH: (11-mercaptopoundecyl)hexaethylene glycol) acetic acid terminated; EGDMMA: ethylene glycol dimethylacrylate; ELISA: enzyme-linked immunosorbent assay; Eo: ex: exunction level; FBS: fetal bovine serum; Fe: ferrocene; Fe-Cu-Au@Pd-P(BBY): ferrocene grafted Au@Pd-P(BBY); FED: field-effect based detection (voltage controlled current amplification); FN: fibronectin; FRGG: p-Nitrobenzene diazonium tetrafluoroborate (Fast Black GGI salt); fUb: free ubiquitin; GA: glutaraldehyde; GC: glassy carbon electrode; GNs: gold nanorods; GOx: glucose oxidase; GOx-LS: glucose oxidase loaded liposomes; GRONRs: graphene oxide nanoribbons; H-Er: elution; ELISA: enzyme-linked immunosorbent assay; Hem: hemin; His: histidine; HME: histidine-modified epoxide; HP: human plasma; hDNA: hairpin DNA; HP: horseradish peroxidase; HS: human serum; HT: hexanethiol; HQ: hydroquinone; hSAM: homogenous ordered self-assembled monolayer; IDE: interdigitated electrode; IL: ionic liquid; ITO: indium tin oxide; K-GS: K-modified graphene; LP-NHS: N-hydroxysuccinimide ester; LSASV: linear sweep ASV; M: N-methacroyl-lysine; MBS: magnetic beads; MBT: 4-mercaptopentanol; MCH: mercaptohexanol; MIDEA: microdisc electrode array; MeB: methylene blue; MeCN: acetonitrile; MECs: macroelectrode with a comb structure; mpCeO2: mesoporous-hollow ceria nanophosphates; MHDMA: mercaptohexadecanoic acid; microel.: microelectrode(s); microfab.: microfabricated MOF(s); metal-organic framework type c (particle size 300 nm); MOF: metal-organic framework; MPA: 3-mercaptopropionic acid; MCP: porous carbon matrix; MPOH: 3-mercaptopropanol; mSAM: mixed self-assembled monolayer; mTub: multibiquitin chains; MUA: 11-Mercaptoundecanecacid; MuxT: multiple protein biomarker targets detected within the same immunoassay; MVIMBF: 1-(3-mercapto-propyl)-3-vinyl-imidazolium tetrafluoroborate ionic liquid; MWCNts: multivalye carbon nanotubes; N: N-acetylcysteamine; NBS: Nile blue A; NCBs: nanocubes; NCs: nanocrystals; NGR: nitrogen-doped graphene; NHS: N-hydroxysuccinimide; NIPAM: N-Isopropylacrylamide; NiWO4-NS: saw-blade-like NiWO4 nanostructures; NPs: nanoparticles; NSNs: nanoblock spherical nanochip-conductors; NSs: nanospheres; NTCDI: naphthalenetetracarboxylic diimide; NTs: nanotubes; NWs: nanowires; OAMS: octadecahedral anatase TiO2 mesocrystals; OECD: organic electrochemical transistor; OFET: organic field effect transistor; OMCSi-AuNPs: gold nanoparticle incorporated ordered mesoporous carbon-silica; OPD: o-phenylenediamine; OSW: Osteryoung square-wave voltammetry; pABA: p-aminoanbenzoic acid; PAD: microfluidic paper-based device; PAMAM: poly(amidoamine); PAN: polyaniline; PANI-PA: phytic acid-doped polyaniline; PAPP: 4-aminoaryl phosphate; PASE: pyrenebutyluric acid succinimidyl ester; pATP: poly-aminothiophenol; PB: Prussian blue; PBASE: 1-pyrenecarbonylic acid N-hydroxysuccinimide ester; PB-PEDOT-AuNPs: Prussian blue poly(3,4-ethylenedioxythiophene)-AuNPs; PBS: phosphate buffer saline; PC: porous polycarbonate membrane; pCOF: porphyrin covalent organic framework; PDA: polydopamine; PDDANS: polydopamine nanospheres; PEC: photoelectrochemical (detection); PEDOT: poly(3,4-ethylenedioxythiophene); PEI: poly(ethyleneimine); PEG: polyethylene glycol; Peptide: thiolated peptide; pGluA: poly-glutamic acid; PHA: 6-phosphohexonic acid; pHEMA: poly(2-hydroxethyl methacrylate); pMeB: poly(methylene blue); PMMA: poly(methyl methacrylate); PMPC-SP: thiol-terminated poly(2-methacryloyloxyethyl phosphorylcholine); pNE: polynorolepinephine; pNP: p-nitrophenyl phosphate; PPCE: conjugated polypyrrole polymer containing epoxy active side groups; pPG: amine functionalized 1st generation trimethylolpropane tris(poly[propylene glycol]) dendrimers; pPnPD: poly(p-phenylenediamine); pPTNPs: porous platinum nanoparticles; PPy: polypyrrole; PPy-NWs: polypyrrole-nanowires; PPyPAC: polypyrrole electrodes modified by electrodeposition of diazonium salts using 4-aminophenylacetic acid (4APAC); precon.: preconcentration; Protein G AP: protein G labeled with alkaline phosphatase; PS: polystyrene; PS-MA: polystyrene-co-methylacrylic acid; PSS: polystyrene sulfonate; pTMB: poly (3,3′,5,5′-tetramethylbenzidine); PTSA: 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt; pTTBA: (2,2,5,5-19
