Structure and function of rhizosphere and non-rhizosphere soil microbial community respond differently to elevated ozone in field-planted wheat

Zhan Chen¹, Xiaoke Wang²,⁎, He Shang¹

1. Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment, State Forestry Administration, Beijing 100091, China. Email: chenchen323@163.com
2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

ARTICLE INFO

Article history:
Received 19 August 2014
Revised 23 December 2014
Accepted 23 December 2014
Available online 21 April 2015

Keywords:
O3
Wheat
Rhizosphere soil
Non-rhizosphere soil
CLPP
PLFA

ABSTRACT

To assess the responses of the soil microbial community to chronic ozone (O3), wheat seedlings (Triticum aestivum Linn.) were planted in the field and exposed to elevated O3 (eO3) concentration. Three treatments were employed: (1) Control treatment (CK), AOT40 = 0; (2) O3-1, AOT40 = 1.59 ppm•h; (3) O3-2, AOT40 = 9.17 ppm•h. Soil samples were collected for the assessment of microbial biomass C, community-level physiological profiles (CLPPs), and phospholipid fatty acids (PLFAs). eO3 concentration significantly reduced soil microbial carbon and changed microbial CLPPs in rhizosphere soil, but not in non-rhizosphere soil. The results of the PLFAs showed that eO3 concentrations had significant effects on soil community structure in both rhizosphere and non-rhizosphere soils. The relative abundances of fungal and actinomycetous indicator PLFAs decreased in both rhizosphere and non-rhizosphere soils, while those of bacterial PLFAs increased. Thus the results proved that eO3 concentration significantly changed the soil microbial community function and composition, which would influence the soil nutrient supply and carbon dynamics under O3 exposure.

© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Introduction

In the troposphere, particularly at the surface of the earth, O3 is a widespread phytotoxic air pollutant. O3 has been shown to be harmful to human health, vegetation and certain materials (Bytnerowicz et al., 2007; Serengil et al., 2011). Background concentrations of O3 in the troposphere have continuously increased since the preindustrial age, although control measures on the emission of its precursors have reduced O3 peaks (Vingarzan, 2004; Derwent et al., 2007). China has undergone rapid industrialization and urbanization in recent decades. Information on ground level O3 concentrations in China is limited, but the available data suggest that these concentrations may attain potentially damaging levels, exceeding the Chinese National Air Quality Standard (based on U.S. standards) of 80 nL/L for many hours during the summer (Zheng et al., 1998; Chen et al., 2013).

Current ambient O3 levels may cause severe effects on plants, including visible foliar injury or growth reduction, impairment of physiological traits and impacts on resource allocation and reproduction (Paoletti, 2007; Feng et al., 2008; Zhang et al., 2011; Niu et al., 2011; Chen et al., 2008). In recent
years, considerable (or increasing) attention has been paid to the below-ground effects of eO3 (Chen et al., 2009). This is because plants live in close association and interaction with soil microorganisms, particularly in their rhizospheres and during the decay of plant material (Kogel-Knabner, 2002). EO3 not only causes losses to crop yield but can also significantly reduce the allocation of assimilates into the root. This reduction in root biomass would influence the entry of organic matter into the soil (Andersen, 2003). EO3 reduces litter quality and rates of decay. The types and amounts of organic root exudates can be changed when the shoots are exposed to high levels of O3, and these changes may affect rhizosphere microbial activity, potentially altering the ecological and nutritional dynamics in the rhizosphere (McCrad and Andersen, 2000).

In the few cases where soil microbial community responses to O3 stress have been examined, these responses have been variable. The effects of EO3 on microbial functional diversity of both the rhizosphere and bulk soil in potted wheat were analyzed by using CLPPs, which showed that EO3 significantly affected the carbon degradative microbes in rhizosphere soil, while not in bulk soil (Chen et al., 2009). CLPP and PLFA analyses showed that carbon degradative microbes and the microbial structure of surface soil under paddy rice were altered in response to EO3, and PLFAs showed much more change than CLPPs (Chen et al., 2010). Seven meadow species were exposed to EO3 for three growing seasons, and the PLFA results of bulk soil showed that bacterial, actinobacterial, and fungal PLFAs and the fungal:bacterial PLFA ratio were decreased (Kanerva et al., 2008). In the same study, the decrease in the total microbial PLFA biomass in the bulk soil of Lathyurus pratensis under EO3 and eCO2 (elevated CO2) (both p = 0.050) arose from reductions in the PLFA biomass of indicator subgroups for actinobacteria (29% and 31%), bacteria (26% and 33%) and mycorrhiza (i.e., AM fungi) (31% and 35%) in particular. Active fungal biomass in bulk soil of Agrostis capillaris was also significantly reduced under EO3 and CO2 combined (21%), while this significant effect of O3 and CO2 was not found in the rhizosphere soil (Manninen et al., 2010). This insignificant effect of O3 on the overall functional structure of rhizosphere soil was also found in winter wheat, using an O3 FACE fumigation system (Li et al., 2013). In the study, functional genes in the wheat rhizosphere microbial community were analyzed using GeoChip 3.0, which showed that the overall functional diversity and structure of the rhizosphere microbial community appeared not to be significantly altered by EO3 (60 nL/L), while the results showed that the abundance of specific functional genes involved in C fixation and degradation, nitrogen (N) fixation, and sulfite reduction did significantly (p < 0.05) alter in response to EO3 (Li et al., 2013). These results showing no significant effect of O3 on the rhizosphere soil microbial community were in contradiction with common knowledge, which holds that EO3 affects the rhizosphere soil microbial community much more than bulk soil.

Wheat (T. aestivum Linn.) is one of the most O3-sensitive crops and is among the most important crops in China. Ground-level O3 pollution has already decreased global wheat yields by 8.5% to 14% (Wilkinson et al., 2012). A previous meta-analysis indicated that EO3 decreases wheat grain yield, grain weight, grain number per ear, ear number per plant and harvest index by 26%, 18%, 11%, 5% and 11%, respectively, relative to ambient air (Feng et al., 2009). Our previous results have shown that EO3 levels may alter microbial community function in the rhizosphere soil, but not in the bulk soil, under potted wheat (Chen et al., 2009). However, it remains unclear how the soil microbial community under field-planted wheat responds to EO3 and if this response is the same as that observed under potted wheat.

In this study, we hypothesize: (1) that soil carbon degradative microbes and soil microbial community structure would alter after wheat is exposed to EO3, (2) that the effects of EO3 on the rhizosphere soil community are more significant than for non-rhizosphere soil; and (3) that PLFA analysis could discriminate more differences between rhizosphere and non-rhizosphere soil community response to EO3 than CLPPs. To test these hypotheses, both rhizosphere and non-rhizosphere soils of field-planted wheat were analyzed for CLPPs and PLFAs.

1. Materials and methods

1.1. Experimental site

The experimental site was located at the Shuangqiao Farm (31°53′N, 121°18′E) in Jiaxing City, Zhejiang Province, approximately 100 km from Shanghai, China’s largest city. This site is in the center of the Yangtze Delta and represents one of the most important crop production areas in China. The area is influenced by the Asian monsoon climate system, with cold, dry winters and warm, wet summers. Mean temperature and annual precipitation are 15.5°C and 1199 mm, respectively. The prevailing cultivation rotations are wheat-rice and rape-rice.

1.2. Crop management

On 15 November, 2006, wheat (T. aestivum L. Jia 002) seeds were sown in the field. Open-top chambers were placed on blocks on 20 March, 2007. These plots consisted of three rows, with four plots in each row. Protective belts of approximately 3 m in width were established between the plots. Before transplanting, 60 kg/ha pure nitrogen (N), 60 kg/ha P2O5 and 60 kg/ha K2O were applied, and 69.3 kg/ha pure N was reapplied during the tillering stage and the jointing stage. The crops were harvested on 28 May.

1.3. O3 exposure and experimental design

The experiments were conducted in closed octagonal open-top chambers (OTCs), 2 m in diameter and 2.2 m in height. The boxes were connected to filter boxes, either without filters or with activated charcoal and a fan, and run at two air changes per minute.

An improved, innovative O3 distribution system was employed in this study. A rotatable transparent pipe with many small holes (diameter of 10 mm at intervals of 10 cm) released either charcoal-filtered air (CF air) or O3 above the crop canopy. The CF air or the O3 + CF air was driven from a centrifugal blower. O3 was generated from pure oxygen by high-voltage electric discharge (Yuyao Shenglete Company, Zhejiang, China). A series of solenoid valves, linked online with a programmable log controller (PLC K80S, LG, LSIS,
Gyeonggi-Do, Korea), were used to control the gas meters and provide oxygen based on the established relationship between the O₃ concentrations within the OTCs and oxygen volume. The O₃ concentrations within the OTCs were monitored by an O₃ analyzer (Model 9810B, Teledyne Monitor Labs, Englewood, USA). A data logger (21× (L), Campbell Scientific, Inc. Logan, Utah, USA) stored O₃ concentration data and the temperature within the OTCs, which was measured with a constantan–copper thermocouple.

According to the monitoring of ambient O₃ concentrations during March and May 2006 in the experimental site, the maximum instantaneous O₃ concentration was 108 nL/L, maximum hourly average O₃ concentration was 94 nL/L, maximum 8-hour average O₃ concentration was 68 nL/L, and 8-hour average O₃ concentration was 45 nL/L. Three different O₃ exposure scenarios were employed, consisting of charcoal-filtered air alone (CK) and filtered air with the addition of two levels of daily changing O₃ (O₃-1 and O₃-2). In the O₃-1 treatment, the expected O₃ changes were as follows: 9:00–10:00, 50 nL/L; 10:00–12:00, 100 nL/L; 12:00–14:00, 150 nL/L; 14:00–16:00, 100 nL/L; and 16:00–18:00, 50 nL/L. In O₃-2, the same O₃ change trend was used with higher concentrations of 100, 150, and 200 nL/L. O₃ was generated from 9:00 to 17:00 local time. Nine chambers were used, providing three replicates for each of the three O₃ treatments. The O₃ treatments began on 26 March 2007, and were terminated on 19 May 2007, covering the period from the three-leaf stage until maturity. Because ambient O₃ concentrations are generally low during extended rainy periods, fumigations were not carried out, and 30 full days of fumigation occurred. The AOT40 (accumulated exposure over a threshold of 40 ppb or nL/L) values were 0, 1585, and 9172 ppb during March and May 2006 in the experimental site, the Chinese red soils were collected at random using 2 cm cores, with ten pooled soil cores at each OTC. The soil that remained adhered to the root hairs after analysis.

1.4. Soil sampling

On 13 May, samples of non-rhizosphere soil from the surface layer (0–10 cm) of the Chinese red soils were collected at random using 2 cm cores, with ten pooled soil cores at each OTC. The soil that remained adhered to the root hairs after gentle shaking was sampled as the rhizosphere soil, as classified by the operational definition (Lynch, 1990). Field moist soils were sieved to <2 mm, and large pieces of plant material and soil animals were removed before further analysis.

1.5. Soil microorganism assessment

1.5.1. Microbial biomass

The fumigation–extraction method (Vance et al., 1987) was used to determine the soil microbial biomass C of the soil samples. The content of K₂SO₄-extracted C from the CHCl₃-treated and untreated soils was determined by an automated TOC analyzer.

1.5.2. Community-level physiological profiles (CLPPs) obtained by sole C source utilization tests

EIO plates, which are based on 31 different C sources and contain built-in triplicates for better replication, were employed in this study. Triplicate 10 g soil samples were combined with 90 mL 0.85% sterile NaCl solution and vibrated for 30 min, and the 10⁻³ dilutions were then used to inoculate the Biolog plates. A 150 μL dilution aliquot was inoculated into each well of a plate (Biolog Inc., Hayward, California, USA) and incubated at a constant 25°C. The plates were scanned twice daily at 590 nm on a special reader for 10 days. The raw absorbance data for each reading was converted to net absorbance data by subtracting the control well reading. The average well color development (AWCD) for each plate reading was calculated by averaging all responses as a measure of total activity as follows.

\[
\text{AWCD} = \sum \left(\frac{C-R}{n} \right)
\]

where, C is the value of absorbance in every well with a carbon source; R is the value of the absorbance in the blank well; and n is 31 carbon sources. For different C sources, n has different values: according to category, the values are 10, 7, 6, 2, 4, and 2 for carbohydrates, carboxylic acids, amino acids, amides/amines, polymers and miscellaneous compounds, respectively (Choi and Dobbs, 1999). In this study, only three main types of compounds, carbohydrates, carboxylic acids and amino acids, were used to indicate microbial activity.

Microtiter wells with optical densities of 0.1 or greater were considered positive for determining Biolog richness (total number of positive wells). The Shannon–Wiener diversity index (H') was calculated as follows:

\[
H' = -\sum (P_i \times \log P_i)
\]

where, \(P_i = \frac{(C-R) \sum (C-R)}{R} \). The functional richness index and diversity index were determined from the data gathered after 96 hr of incubation.

1.5.3. Ester-linked phospholipid fatty acid (PLFA) analysis

PLFA analyses were performed using the modified Bligh and Dyer method (Frostegård et al., 1993), as described in Chen et al. (2010).

Known amounts of methyl nonadecanoate (19:0) were added before analysis by GC–MS. The total PLFA was calculated using 19:0 as the internal standard. The PLFAs 18:0(10Me) was taken to indicate predominantly fungi. The PLFAs 18:0(10Me) were taken to indicate actinomycetes. The amount of bacterial PLFAs was calculated as the sum of the PLFAs 14:0, 15:0, a15:0, 16:0, i16:0, 16:1ω7, a17:0, 17:0, cy17:0, 18:0, 18:1ω7, 18:1ω9 and cy19:0, as according to Frostegård et al. (1996).

1.6. Statistical analyses

The O₃ effects on microbial biomass C, AWCD, Biolog richness, and Shannon–Wiener diversity were tested by Analysis of Variance (ANOVA) using SPSS 11.5 (SPSS Inc., Chicago, Illinois, USA). The LSD for the 95% confidence interval (LSD₀.₉₅) was used for multiple comparisons. Student’s t-test was used to compare the treatment means of microbial biomass C, functional diversity indices, PLFA% and the relative PLFA indicators. Differences were considered significant at \(p \leq 0.05 \). The values were normalized by dividing by the AWCD for the plate reading at 96 h of incubation, and these values were analyzed by principal component analysis (PCA). The PLFAs, expressed as percentages, were analyzed by PCA, and the effects of treatments on the different indicator PLFAs (%) were...
tested by ANOVA using SPSS 11.5 (SPSS Inc., Chicago, Illinois, USA). In order to find if PCs could discriminate between the treatments, the scores of PCs were analyzed by ANOVA using SPSS 11.5 (SPSS Inc., Chicago, Illinois, USA).

2. Results

2.1. Microbial biomass carbon

In the CK and low O3 treatments, the microbial biomass of rhizosphere soil is higher than for non-rhizosphere soil. In the high O3 treatment, however, the microbial biomass of rhizosphere soil decreased rapidly, and that of the non-rhizosphere soil did not decrease much. No significant effects of O3 were observed on the microbial biomass C of non-rhizosphere soil under field-planted wheat, while both O3 treatments significantly reduced the soil microbial C of rhizosphere soil (by 16% for O3-1 and 50.7% for O3-2) compared to the control treatment (Table 1).

2.2. Community level physiological profiles

2.2.1. Principal component analysis

Principal component analyses were conducted to determine the microbial community structures of wheat soils under the different O3 treatments. PC1 and PC2 explained 38.4% and 17.7% of the variance, respectively, and PC1 clearly discriminated between the treatments for rhizosphere soil (F = 20, p ≤ 0.002 for PC1); however, both PCs did not discriminate between the treatments for the non-rhizosphere soil (Fig. 1).

2.2.2. Functional diversity indices

In the CK and low O3 treatment, the functional diversity indices were similar between rhizosphere and non-rhizosphere soils, although the functional diversity indices were lower in rhizosphere than those in non-rhizosphere soil. High O3 treatment (O3-2) significantly reduced the Shannon-Wiener diversity of both non-rhizosphere and rhizosphere soils, but O3 only had an evident effect on richness in the rhizosphere soil (Table 2).

2.2.3. Utilization of main carbon sources

EO3 had no effects on the three main C sources of non-rhizosphere soil under field-planted wheat. However, the high O3 treatment (O3-2) had an obvious negative effect on the utilization of the main compounds compared to both the control and the low O3 treatments (Fig. 2).

2.3. Ester-linked phospholipid fatty acid analysis

2.3.1. PLFA profile expression

Sixteen total PLFAs, ranging from 14 to 19 Cs, were detected, including saturated, monounsaturated, polyunsaturated, branched and cyclopropyl fatty acids in all three treatments and both the rhizosphere and non-rhizosphere soils. The most abundant PLFAs were 15:0, 16:0, a17:0, 16:1ω7c and 18:1ω9c, which were characteristic of bacteria and comprised 60% of the total (Table 3).

2.3.2. Principal component analysis

In the field experiment, 57.7% of the total variance in the dataset was accounted for by PC1 and 24.8% by PC2, but only PC1 clearly discriminated among the PLFA profiles of non-rhizosphere soil from the different O3 treatments (F = 165, p ≤ 0.001). For rhizosphere soil, the two principal components captured 55% and 28.5% of the total variance, respectively, and PC1 significantly discriminated among the PLFA profiles of the different O3 treatments (F = 12, p ≤ 0.01) (Fig. 3).

2.3.3. Distribution of microorganism groups

The relative abundances of the microbial groups in the microbial community structure can be understood by examining the relative proportions of their characteristic fatty acids. The relative PLFA indicators of fungi, actinomycetes and bacteria can be calculated as percentages of the total. In non-rhizosphere soil, bacteria significantly increased and fungi increased after O3 exposure, while actinomycetes had no change. In rhizosphere soil, only high O3 treatment significantly increased bacteria and decreased fungi and actinomycetes (Table 4).

3. Discussion

O3 itself is a bactericide widely used for disinfection (Khurana, 2003). However, soil and vegetation remove O3 from the atmosphere, producing a vertical gradient of decreasing O3 concentrations towards the ground (Turner et al., 1974) and preventing any appreciable penetration of O3 into the soil (Blum and Tingey, 1977). Therefore, any direct effects of O3 on soil microorganisms can be of only minor importance, and the indirect effects of O3 on microbes arising from its impacts on plants are much more relevant. Among previous examinations of soil microbial communities, very few have considered rhizosphere soil microbial responses to O3. The rhizosphere is the microbial habitat in the soil that is most strongly influenced by plants (Dohrmann and Tebbe, 2005). In several studies, the composition of root exudates, which mainly serve as C and energy sources for soil microorganisms (especially rhizosphere microbes), has been shown to strongly influence the structural and functional diversity of the microbial community (Kowalchuk et al., 2002; Miethling et al., 2000; Schmalenberger and Tebbe, 2003). O3 has also been shown to change the quantity and quality of root exudates (McCready and Andersen, 2000), which primarily influence the microbial structure and function of the rhizosphere. In this study, the microbial community structures of both non-rhizosphere and rhizosphere soils were examined to determine if O3 had a greater effect in the rhizosphere.

| Table 1 - Microbial biomass carbon in rhizosphere and non-rhizosphere soil under different ozone treatments. |
|-----------------------------|-----------------------------|
| Treatments | Microbial biomass (mg C/kg dry soil) |
| | Non-rhizosphere soil | Rhizosphere soil |
| CK | 468.60 ± 1.6a | 594.20 ± 14a |
| O3-1 | 468.10 ± 12a | 499.50 ± 29b |
| O3-2 | 459.80 ± 7a | 292.80 ± 6.3c |

Data are presented as means ± SE (n = 3). Different letters within the column indicate significant differences among treatments (p ≤ 0.05).
In our study, eO₃ significantly reduced microbial biomass C in rhizosphere soil, but no effects of O₃ on this variable were observed in non-rhizosphere soil. This result is coincident with the soil microbial biomass response to eO₃ under potted wheat of the same species (T. aestivum L. Jia 002) (Chen et al., 2009). Another of our previous experiments also showed that eO₃ reduced soil microbial C under rice (Chen et al., 2010). O₃ significantly decreased soil microbial biomass in the fall, after one season of exposure, in a wheat (T. aestivum) and soybean (Glycine max) system (Islam et al., 2000). However, in ponderosa pine (Pinus ponderosa), the total fungal and bacterial biomasses increased at low O₃ levels, and the total microbial biomass decreased at high O₃ levels, compared to the biomasses under the control treatment (Scagel and Andersen, 1997). O₃ has also been reported as having only slight effects on soil biomass in field-grown silver birch exposed to eO₃ in OTCs for 3 years (Kasurinen et al., 2005). O₃ may shift microbial structure without altering total microbial biomass, as has previously been found under eCO₂ (Phillips et al., 2002). These inconsistent results require further investigation.

CLPP by sole C source utilization tests is a good method for assessing microbial community metabolic diversity using Biolog microplates (Garland, 1997). In this study, eO₃ did not change the C utilization pattern of non-rhizosphere soil microorganisms, but did significantly impact the utilization pattern of rhizosphere microbes. The effect of O₃ on the diversity index calculated from the Biolog plates was also significant in the rhizosphere soil, but not in the non-rhizosphere soil. O₃ also reduced the utilization of the three main substrates in rhizosphere soil but had no effect in non-rhizosphere soil. The CLPP results showed that the soil microbial community under field-planted wheat responds in the same manner to eO₃ as does that under potted wheat (Chen et al., 2009). All of these effects showed that O₃ has much greater effects on rhizosphere soil carbon degradative microbes than on those of non-rhizosphere soil. This difference may be due to the decreased C exudates from the roots of the O₃-exposed crop. The changes in root exudation may affect rhizosphere microbial activity, potentially altering the ecological and nutrient dynamics in the rhizosphere (Bardgett et al., 1999). Edwards’ study showed that the exudation of organic compounds from the roots of O₃-exposed plants declined due to the reduced translocation of photosynthate to the roots, thereby decreasing the nutrient supply to soil microorganisms and resulting in lower microbial metabolism (Edwards, 1991). The difference in utilization of C sources suggests a change in substrate availability between the CK and eO₃ treatments, as Biolog plates are capable of detecting changes in microbial community metabolic function resulting from actual C source availability (Grayston et al., 1998). The

Table 2 – Effects of ozone on soil microbial community functional richness and diversity.

Shannon–Wiener diversity	Non-rhizosphere soil	Rhizosphere soil	Non-rhizosphere soil	Rhizosphere soil
CK	1.34 ± 0.01a	1.32 ± 0.01a	24.70 ± 0.33a	24.00 ± 1.15a
O₃-1	1.31 ± 0.02ab	1.32 ± 0.01a	23.00 ± 1.53a	24.70 ± 1.20a
O₃-2	1.28 ± 0.01b	1.19 ± 0.03b	22.00 ± 0.00a	18.30 ± 0.67b

Data are presented as means ± SE (n = 3). Different letters within the column indicate significant differences among treatments (P ≤ 0.05).
results from the C utilization experiments showed that rhizo-
sphere soil microorganisms used fewer carbohydrates, carboxylic
acids and amino acids under eO3, which may be attributed to the
reduced exudation of these compounds from the roots when the
crops were exposed to eO3 concentrations. Indeed, McCool and
Menge (1983) have found that O3 treatment decreases the amount
of sugars and amino acids in root exudates.

CLPP is a simple and economical method for investigating
carbon degradative microbes, but it has the disadvantages of
being biased by cultural conditions and failing to consider the
contributions of fungi and slow-growing bacteria (Smalla et al.,
1998), which the PLFA method does not miss (Bååth et al., 1998;
White and MacNaughton, 1997). Biolog plates present functional-
rather than structural information about the soil microbial
community (Bossio and Scow, 1998), while PLFA results can
express both structural and quantitative information (Yao et al.,
2000). The relative abundances of the microbial groups in the
microbial community structure can be understood by examin-
ing the relative proportions of their characteristic fatty acids
(Bossio and Scow, 1998). In this study, the PLFA method was also
used to investigate the effects of O3 on microbial community
structure.

The bacterial indicator PLFAs were the most abundant in the
rhizosphere and non-rhizosphere soils. The patterns of the
PLFA profiles were significantly different between the three O3
treatments in both the rhizosphere and non-rhizosphere soils.
After the wheat was exposed to O3, the relative abundances of
fungi and actinomycetes decreased, and the relative abundance of
carbohydrates increased. These observations are consistent with
the results from an experimental platform of free-air O3
enrichment in which fungal PLFA and the fungi to bacteria
ratio decreased following exposure to eO3, especially in the
rhizosphere soil of O3-tolerant wheat (Li et al., 2012). Active bulk
soil fungal biomass and the ratio of active fungal to active
bacterial biomass increased with increasing exposure to O3 in
ponderosa pine (P. ponderosa) (Scagel and Andersen, 1997). In
another study, the relative proportions of gram-positive and
gram-negative indicator PLFAs of bulk soil beneath aspen, birch,
and maple trees (Populus tremuloides Michx., Betula papyrifera
Marsh., and Acer saccharum Marsh.) were not affected after
incubation at elevated levels of tropospheric O3 over a period of

Figs. 2 – The effect of ozone on utilization of three main carbon sources of non-rhizosphere soil and rhizosphere soil under field
wheat. Bars with different letters indicate differences (p ≤ 0.05) between treatments within each main carbon source in
non-rhizosphere or rhizosphere soil. The vertical thin bars are stand errors at 95% confidence intervals.

Table 3 – PLFA profiles (expressed as %) recovered from
wheat soil samples after shoot exposed to different ozone
dose.

PLFA a	Rhizosphere soil	Non-rhizosphere soil				
	CK	O3-1	O3-2	CK	O3-1	O3-2
14:0	3.73a	2.27b	2.75b	3.20a	0.00c	2.45b
15:0	10.83b	11.28a	11.43a	10.89b	8.88c	12.12a
16:0	14.07	15.98	15.97	13.21	11.29	15.14
17:0	3.12	2.67	3.21	3.14	3.27	2.61
18:0	2.76	1.86	3.61	1.65	2.59	3.07
19:0	2.39c	2.60b	2.81a	2.19b	2.59	3.07
20:0	1.82c	2.71a	3.07a	1.65b	2.59	3.07
21:0	2.52	2.47	2.72	2.84	2.81	2.85
22:0	5.04a	4.52b	2.72c	4.22a	2.97b	2.68b
23:0	2.52	2.47	2.72	2.84	2.81	2.85
24:0	2.91a	3.13a	1.54b	3.28ab	4.07a	2.03b
25:0	2.39c	2.60b	2.81a	2.19b	1.82c	2.71a
26:0	2.36	2.16	2.54	3.09	4.90	2.56

Different letters within the row indicate significant differences among treatments (p ≤ 0.05).

a Fatty acids are designated in terms of the total number of C atoms: number of double bonds, followed by the position of the double bond from the methyl end of the molecule. cis and trans configurations are indicated by c and t, respectively. The prefixes a and i indicate anteiso and iso branching, br indicates an unknown methyl branching position, 10Me indicates a methyl group on the 10th C atom from the carboxyl end of the molecule, and cy refers to cyclopropane fatty acids.
3 years (Phillips et al., 2002). In contrast, the abundance of fungal PLFAs in the same study declined with eO3 beneath aspen and aspen-birch, while O3 did not reduce fungal abundance beneath aspen-maple. This result indicated that fungi are possibly more responsive in the soil of O3-stressed abscopal than are bacteria. This minor aspen and aspen-birch, while O3 did not reduce fungal abundance beneath aspen-maple. This result indicated that fungi are possibly more responsive in the soil of O3-stressed abscopal. In that study, genetic profiling based on single-strand conformation polymorphisms (SSCP) revealed that the different SSCP profiles generated from the bacterial community of the rhizospheres from O3-stressed and control plants were very similar and were not distinguished by statistical methods, which indicated that elevated levels of O3 did not select for a different bacterial community composition. He et al. (2013) also analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0, MWG Biotech Inc., High Point, North Carolina, USA). The results showed that the overall functional composition and structure of the microbial community shifted under eO3. Key functional genes involved in C fixation, nitrogen fixation, denitrification and N mineralization were suppressed under eO3, and those involved in C degradation and CH4 generation remained unchanged under eO3 (He et al., 2013). These variable responses of the microbial community to eO3 may be attributed to numerous factors, including different species, different levels of O3 exposure and different sampling procedures at different growth stages.

The results of the present study showed that eO3 had similar effects on the soil microbial community under field and potted wheat (Chen et al., 2009), but some differences were observed between the field and potted experiments. The soil microbial biomass C in the field-planted wheat was much higher than that in the potted wheat, and the utilization of C sources in the field-planted wheat was also higher. Additionally, fungal Indicator PLFAs were not detected in non-rhizosphere soil in the potted experiment. In the potted wheat study, the AOT40 values for the two eO3 treatments were 21.4 ppm•h and 44.1 ppm•h, respectively, for O3-1 and O3-2, which were much higher than the levels for O3-1 (1.59 ppm•h) and O3-2 (9.17 ppm•h) employed in this field study. However, the effects of eO3 on the soil microbial community in the field experiment were considerably more significant than in the pot experiment. The pot experiment may therefore have masked the real harm of eO3 to vegetation. The effects of eO3 on soil microbes were definitely especially prominent in rhizosphere soil, which means that O3 affects the soil food web through the roots. In addition, the effect area is

![Fig. 3 – Biplot of soil microbial community structure generated by principal component analysis (PCA) of PLFA data under different ozone treatments. Fatty acids are designated in terms of the total number of C atoms: number of double bonds, followed by the position of the double bond from the methyl end of the molecule. cis and trans configurations are indicated by c and t, respectively. The prefixes a and i indicate anteiso and iso branching, br indicates an unknown methyl branching position, 10Me indicates a methyl group on the 10th C atom from the carboxyl end of the molecule, and cy refers to cyclopropane fatty acids.](image-url)

Table 4 – The effect of ozone on soil microbial community composition under wheat (expressed as % of total PLFA).

	Non-rhizosphere soil	Rhizosphere soil				
Bacteria	Actinomycete	Fungi	Bacteria	Actinomycete	Fungi	
CK	88.54 ± 1.16b	5.47 ± 0.04	3.09 ± 0.02a	91.81 ± 0.50b	5.63 ± 0.23a	2.86 ± 0.07a
O3-1	91.72 ± 1.01a	5.89 ± 0.80	2.40 ± 0.21b	91.61 ± 0.22b	5.73 ± 0.09a	2.66 ± 0.14ab
O3-2	93.03 ± 0.17a	4.74 ± 0.01	2.22 ± 0.17b	93.10 ± 0.04a	4.36 ± 0.05b	2.54 ± 0.01b

Data are presented as means ± SE (n = 3). Different letters within the column indicate significant differences among treatments (P ≤ 0.05).
limited, and further study is needed to determine whether the limited effect of O₃ on rhizosphere soil microbes would affect the nutrient utilization of vegetation.

4. Conclusions

This study showed that there is significant alteration in microbial biomass and community functions in rhizosphere soil, but not in rhizosphere soil, under eO₃ exposure. In addition, the microbial community structure of rhizosphere soil responds more significantly to eO₃ than non-rhizosphere soil. This strongly suggests that the effects detected in the rhizosphere microbial community came about due to the ozone effects on the plant, not as direct effects of ozone on the rhizosphere microbes. However, there are still some problems in this study. OTC can produce microclimates which might not reflect the real reaction of plant vegetation to O₃. Recent advances in molecular biological methods could provide more sophisticated tools to study the microbial community response to O₃ than the CLPP and PLFA methods used here. Many uncertainties remain in the soil microbial community response to O₃ stress. Long-term experiments should be carried on in order to determine if the O₃ impacts on the soil are accumulative.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 30670387), the Ministry of Environmental Protection (No. 200809152), and the Key Project of the Chinese Academy of Sciences (No. KZZXZ-YW-422-3).

REFERENCES

Andersen, C.P., 2003. Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol. 157 (2), 213–228.
Báath, E., Díaz-Raviña, M., Frostegård, Å., Campbell, C.D., 1998. Effect of metal-rich sludge amendments on the soil microbial community. Appl. Environ. Microbiol. 64 (1), 238–245.
Bardgett, R.D., Lovell, R.D., Hobbs, P.J., Jarvis, S.C., 1999. Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol. Biochem. 31 (7), 1021–1030.
Blum, U., Tingey, D.T., 1977. Study of potential ways in which ozone could reduce root growth and nodulation of soybean. Atmos. Environ. 11 (8), 737–739.
Bossio, D.A., Scow, K.M., 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35 (3-4), 265–278.
Bytnerowicz, A., Omasa, K., Paoletti, E., 2007. Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective. Environ. Pollut. 147 (3), 438–445.
Chen, Z., Wang, X.K., Feng, Z.Z., Zheng, F.X., Duan, X.N., Yang, W.R., 2008. Effects of elevated ozone on growth and yield of field-grown rice in Yangtze River Delta, China. J. Environ. Sci. 20 (3), 320–325.
Chen, Z., Wang, X.K., Feng, Z.Z., Xiao, Q., Duan, X.N., 2009. Impact of elevated O₃ on soil microbial community function under wheat crop. Water, Air, Soil Pollut. 198 (1-4), 189–198.
Chen, Z., Wang, X.K., Yao, F.F., Zheng, F.X., Feng, Z.Z., 2010. Elevated ozone changed soil microbial community in a rice paddy. Soil Sci. Soc. Am. J. 74 (3), 829–837.
Chen, P.F., Quan, J.N., Zhang, Q., Tie, X.X., Gao, Y., Li, X., et al., 2013. Measurements of vertical and horizontal distributions of ozone over Beijing from 2007–2010. Atmos. Environ. 74, 37–44.
Choi, K.H., Dobbs, F.C., 1999. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J. Microbiol. Methods 36 (3), 203–213.
Derwent, R.G., Simmonds, P.G., Manning, A.J., Spain, T.G., 2007. Trends over a 20-year period from 1987–2007 in surface ozone at the atmospheric research station, Mace Head, Ireland. Atmos. Environ. 41 (39), 9091–9098.
Dohrmann, A.B., Tebbe, C.C., 2005. Effects of elevated tropospheric ozone on the structure of bacterial communities inhabiting the rhizosphere of herbaceous plants native to Germany. Appl. Environ. Microbiol. 71 (12), 7750–7758.
Edwards, N.T., 1991. Root and soil respiration responses to ozone in Pinus sylvestris L. seedlings. New Phytol. 118 (2), 315–321.
Feng, Z.Z., Zheng, H.Q., Wang, X.K., Zheng, Q.W., Feng, Z.W., 2008. Sensitivity of Methylobacterium glycinae to ozone stress. Photosynthetica 46 (3), 465–468.
Feng, Z., Kobayashi, K., Wang, X., Feng, Z., 2009. A meta-analysis of responses of wheat yield formation to elevated ozone concentration. Chin. Sci. Bull. 54 (2), 249–255.
Frostegård, Å., Báath, E., Tunlid, A., 1993. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem. 25 (6), 723–730.
Frostegård, Å., Tunlid, A., Báath, E., 1996. Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol. Biochem. 28 (1), 55–63.
Garland, J.L., 1997. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol. Ecol. 24 (4), 289–300.
Grayston, S.J., Campbell, C.D., Lutze, J.L., Gifford, R.M., 1998. Impact of elevated CO₂ on the metabolic diversity of microbial communities in N-limited grass swards. Plant Soil 203 (2), 289–300.
He, Z., Xiong, J., Kent, A.D., Deng, Y., Xue, K., Wang, G., et al., 2013. Distinct responses of soil microbial communities to elevated CO₂ and O₃ in a soybean agro-ecosystem. ISME J. 8 (3), 714–726.
Islam, K.R., Mulchi, C.L., Ali, A.A., 2000. Interactions of tropospheric CO₂ and O₃ in an agro-ecosystem. New Phytol. 146 (3), 725–730.
Kanerva, T., Palojärvi, A., Rämö, K., Manninen, S., 2008. Changes in soil microbial community structure under elevated tropospheric O₃ and CO₂. Soil Biol. Biochem. 40 (10), 2502–2510.
Kasurinen, A., Keinänen, M.M., Kaipainen, S., Nilsson, L.O., Vappavuori, E., Kontro, M.H., et al., 2005. Belowground responses of silver birch trees exposed to elevated CO₂ and O₃ during three growing seasons. Glob. Chang. Biol. 11 (7), 1167–1179.
Khurana, A., 2003. Ozone Treatment for Prevention of Microbial Growth in Air Conditioning Systems. (A thesis for the degree of master of engineering). University of Florida, Florida.
Kogel-Knabner, I., 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 34 (2), 139–162.
Kowalchuk, G.A., Buma, D.S., de Boer, W., Klinkhamer, P.G.L., van Veen, J.A., 2002. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Anton. Leeuw. 81 (1-4), 509–520.
Li, Q., Bao, X.L., Lu, C.Y., Zhang, X.K., Zhu, J.G., Jiang, Y., et al., 2012. Soil microbial food web responses to free-air ozone enrichment can depend on the ozone-tolerance of wheat cultivars. Soil Biol. Biochem. 47, 27–35.
Li, X.Y., Deng, Y., Li, Q., Lu, C.Y., Wang, J.J., Zhang, H.W., et al., 2013. Shifts of functional gene representation in wheat rhizosphere microbial communities under elevated ozone. ISME J. 7 (3), 660–671.

Lynch, J.M., 1990. The Rhizosphere. Wiley, New York, N.Y.

Manninen, S., Aaltonen, H., Kanerva, T., Rämö, K., Paljärvi, A., 2010. Plant and soil microbial biomass in Agrostis capillaris and Lathyrus pratensis monocultures exposed to elevated O₃ and CO₂ for three growing seasons. Soil Biol. Biochem. 42 (11), 1967–1975.

McCool, P.M., Menge, J.A., 1983. Influence of ozone on carbon partitioning in tomato: potential role of carbon flow in regulation of the mycorrhizal symbiosis under conditions of stress. New Phytol. 94 (2), 241–247.

McCrady, J.K., Andersen, C.P., 2000. The effect of ozone on below-ground carbon allocation in wheat. Environ. Pollut. 107 (3), 465–472.

Miethling, R., Wieland, G., Backhaus, H., Tebbe, C.C., 2000. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb. Ecol. 40 (1), 43–56.

Niu, J.F., Zhang, W.W., Feng, Z.Z., Wang, X.K., Tian, Y., 2011. Impact of elevated O₃ on visible foliar symptom, growth and biomass of Cinnamomum camphora seedlings under different nitrogen loads. J. Environ. Monit. 13 (10), 2873–2879.

Paoletti, E., 2007. Ozone Impacts on Forests. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 2, No.068.

Phillips, R.L., Zak, D.R., Holmes, W.E., White, D.C., 2002. Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon oxide and ozone. Oecologia 131 (2), 236–244.

Scagel, C.F., Andersen, C.P., 1997. Seasonal changes in root and soil respiration of ozone-exposed ponderosa pine (Pinusponderosa) grown in different substrates. New Phytol. 136 (4), 627–643.

Schmalenberger, A., Tebbe, C.C., 2003. Genetic profiling of noncultivated bacteria from the rhizospheres of sugar beet (Beta vulgaris) reveal field and annual variability but no effect of a transgenic herbicide resistance. Can. J. Microbiol. 49 (1), 1–8.

Serigil, Y., Augustaitis, A., Bytnerowicz, A., Grulke, N., Kozovitz, A.R., Matyssek, R., et al., 2011. Adaptation of forest ecosystems to air pollution and climate change: a global assessment on research priorities. Forest 4, 44–48.

Smalla, K., Wachtendorf, U., Heuer, H., Liu, W.T., Forney, L., 1998. Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Appl. Environ. Microbiol. 64 (4), 1220–1225.

Turner, N.C., Waggoner, P.E., Riche, S., 1974. Removal of ozone from atmosphere by soil and vegetation. Nature 250 (5466), 486–489.

Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass. Soil Biol. Biochem. 19 (19), 703–707.

Vingarzan, R., 2004. A review of surface ozone background levels and trends. Atmos. Environ. 38 (21), 3431–3442.

White, D.C., MacNaughton, S.J., 1997. Chemical and molecular approaches for rapid assessment of the biological status of soils. In: Pankhurst, C.E., Doube, B.M., Gupta, V.V.S.R. (Eds.), Biological Indicators of Soil Health. CAB International, pp. 371–396.

Wilkinson, S., Mills, G., Illidge, R., Davies, W.J., 2012. How is ozone pollution reducing our food supply? J. Exp. Bot. 63 (2), 527–536.

Yao, H., He, Z., Wilson, M.J., Campbell, C.D., 2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb. Ecol. 40 (3), 223–237.

Zhang, W.W., Niu, J.F., Wang, X.K., Tian, Y., Yao, F.F., Feng, Z.Z., 2011. Effects of ozone exposure on growth and photosynthesis of the seedlings of Liriodendron chinense (Hemsl.) Sarg, a native tree species of subtropical China. Photosynthetica 49 (1), 29–36.

Zheng, Y., Stevenson, K.J., Barrowcliffe, R., Chen, S., Wang, H., Barnes, J.D., 1998. Ozone levels in Chongqing: a potential threat to crop plants commonly grown in the region? Environ. Pollut. 99 (3), 299–308.