Multiloop calculations in HQET

A.G. Grozin

aBudker Institute of Nuclear Physics, Novosibirsk

Recently, algorithms for calculation of 3-loop propagator diagrams in HQET and on-shell QCD with a heavy quark have been constructed and implemented. These algorithms (based on integration by parts recurrence relations) reduce an arbitrary diagram to a combination of a finite number of basis integrals. Here I discuss various ways to calculate non-trivial bases integrals, either exactly or as expansions in \(\varepsilon \). Some integrals of these two classes are related to each other by inversion, which provides a useful cross-check.

I presented a review talk about multiloop calculations in HQET at this conference in Pisa in 1995 [1]. Methods of calculation of two-loop propagator diagrams in HQET [2] and on-shell massive QCD [3,4], based on integration by parts [5], were discussed there. Recently, three-loop HQET [6] and on-shell [7] algorithms have been constructed. Here I discuss this substantial progress.

1. Three-loop massless diagrams

First, I briefly remind you the classic method of calculation of 3-loop massless propagator diagrams. There are 3 generic topologies of such diagrams. They can be reduces, using integration by parts, to 6 basis integrals [5]. This algorithm is implemented in the package Mincer [5] (first written in SCHOONSCHIP [6] and later rewritten in FORM [10]), and in the package Slicer [11] written in REDUCE [12,13].

Four basis integrals are trivial. One is a two-loop diagram with a non-integer power of the middle line. It can be found as a particular case of a more general expression [5,3] for the the two-loop diagram with three non-integer powers via a hypergeometric \(_3F_2 \) function of the unit argument, with indices tending to integers at \(\varepsilon \to 0 \). There is a rather straightforward algorithm for expanding such functions in \(\varepsilon \), with coefficients expressed via multiple \(\zeta \)-values. I have implemented it in REDUCE in the summer of 2000, some results produced by this program are published in [16]. It is clearly presented as Algorithm A in [17]; this paper also contains other, more complicated, algorithms. The algorithms of [17] are implemented in the C++ library nestedsums [18] based on the computer-algebra library GiNaC [19]. This implementation is very convenient; unfortunately, it requires one to install an outdated version of GiNaC. The Algorithm A seems to be also implemented in FORM [20], but I could not understand how to use it. Using my REDUCE procedure or nestedsums [18], one can quickly find as many terms of expansion of this basis integral in \(\varepsilon \) as needed, in terms of multiple \(\zeta \)-values. They can be expressed, up to weight 9, via a minimum set of independent \(\zeta \)-values, using the results of [22,23].

The two-loop diagram with a non-integer power of the middle line can also be expressed [21] via an \(_3F_2 \) function of the argument \(-1\). Expanding this expression in \(\varepsilon \) (say, using nestedsums [18]), we encounter more general Euler–Zagier sums, which were also considered in [22]. Reducing them to the minimal basis, we obtain, of course, the same \(\varepsilon \)-expansion of our basis integral.

Using this expansion and integration-by-parts relations, it is easy to recover the well-known result for the 3-loop ladder diagram, which is finite \(\varepsilon = 0 \): \(20\zeta(5) + \mathcal{O}(\varepsilon) \). The last and most difficult basis diagram is non-planar. It is also finite at \(\varepsilon = 0 \). Using gluing of its external vertices [5], one can easily understand that it has the same value \(20\zeta(5) \) at \(\varepsilon = 0 \). There is no easy way to find further terms of its \(\varepsilon \)-expansion.
2. Three-loop HQET diagrams

There are 10 generic topologies of 3-loop HQET propagator diagrams. They can be reduced, using integration by parts, to 8 basis integrals [4]. This algorithm is implemented in the REDUCE package Grinder [4], available at http://www-ttp.physik.uni-karlsruhe.de/Progdata/ttp00/ttp00-01. Five basis integrals are trivial. Two can be expressed via $_3F_2$ hypergeometric functions of the unit argument [23,6]. Their expansions in ε can be obtained in the same way as in the massless case, the results are presented in [16]. The last and most difficult basis integral was found in [16] up to the finite term in ε, using direct integration in the coordinate space. More terms of its ε-expansion were recently obtained in [24] using inversion, as explained in the next Section.

3. Three-loop on-shell diagrams

Calculations of on-shell diagrams with massive quarks in QCD are necessary for obtaining coefficients in the HQET Lagrangian and $1/m$ HQET expansions of QCD operators by matching. There are 2 generic topologies of 2-loop on-shell propagator diagrams. They can be reduced, using integration by parts, to 3 basis integrals. This algorithm is implemented in the REDUCE package RECURSOR [3] and the FORM package SHELL2 [4]. Two basis integrals are trivial, and the third one is expressed via two $_3F_2$ hypergeometric functions of the unit argument. However, some of their indices tend to half-integers at $\varepsilon \to 0$, and the algorithm of expansion in ε discussed in Sect. 4 is not applicable. This approach was used for QCD/HQET matching of heavy-light quark currents [25] and chromomagnetic interaction [26].

The case when there is another non-zero mass was systematically studied in [27]. There are 4 basis integrals, 2 of them trivial, and 2 are expressed via $_3F_2$ hypergeometric functions of the mass ratio squared. Finite parts at $\varepsilon \to 0$ are expressed via dilogarithms. More terms of expansions of the general results [27] in ε were recently obtained [28]. The REDUCE package [27] is available at http://wwwthep.physik.uni-mainz.de/Publications/progdata/mzth9838/Mm.red.

There are 11 generic topologies of 3-loop on-shell propagator diagrams with a single non-zero mass (10 of them are the same as in HQET, and one involves a heavy-quark loop). They can be reduced, using integration by parts, to 18 basis integrals [7]. This algorithm is implemented as the FORM package SHELL3 [7]. The basis integrals are mostly known from QED [29]. Some on-shell diagrams are related to HQET ones by inversion of Euclidean integration momenta. One- and two-loop relations were pre-
presented in \[1\]. Three-loop relations are shown in \[2\]. The second of them was used in \[24\] to relate the convergent ladder HQET diagram at $\varepsilon = 0$ to the known on-shell ladder diagram.

REFERENCES

1. D.J. Broadhurst and A.G. Grozin, in *New computing techniques in physics research IV*, ed B. Denby and D. Perret-Gallix, World Scientific (1996) 217.
2. D.J. Broadhurst and A.G. Grozin, Phys. Lett. B267 (1991) 105.
3. N. Gray, D.J. Broadhurst, W. Grafe, K. Schilcher, Z. Phys. C48 (1990) 673; D.J. Broadhurst, N. Gray, K. Schilcher, Z. Phys. C52 (1991) 111; D.J. Broadhurst, Z. Phys. C54 (1992) 599.
4. J. Fleischer and O.V. Tarasov, Phys. Lett. B283 (1992) 129; Comput. Phys. Commun. 71 (1992) 193.
5. F.V. Tkachov, Phys. Lett. B100 (1981) 65; K.G. Chetyrkin and F.V. Tkachov, Nucl. Phys. B192 (1981) 159.
6. A.G. Grozin, J. High Energy Physics 03 (2000) 013; hep-ph/0002266.
7. K. Melnikov and T. van Ritbergen, Phys. Lett. B482 (2000) 99; Nucl. Phys. B591 (2000) 515.
8. S.G. Gorishny, S.A. Larin, F.V. Tkachev, Preprint INR P-0330, Moscow (1984); S.G. Gorishny, S.A. Larin, L.R. Surguladze, F.V. Tkachev, Comput. Phys. Commun. 55 (1989) 381; S.A. Larin, F.V. Tkachev, J.A.M. Vermaseren, Preprint NIKHEF-H/91-18, Amsterdam (1991).
9. M. Veltman, SCHOONSCHIP, CERN (1967); H. Strubbe, Comput. Phys. Commun. 8 (1974) 1.
10. J.A.M. Vermaseren, Symbolic manipulations with FORM, Amsterdam (1991): math-ph/0010025 (2002).
11. D.J. Broadhurst, Preprint OUT-4102-41 (1992), see in: D.J. Broadhurst, A.L. Kataev, O.V. Tarasov, Phys. Lett. B298 (1993) 445, and in: D.J. Broadhurst, hep-th/9909183.
12. A.C. Hearn, REDUCE User’s Manual, Version 3.7 (1999).
13. A.G. Grozin, Using REDUCE in High Energy Physics, Cambridge University Press (1997).
14. A.V. Kotikov, Phys. Lett. B375 (1996) 240.
15. D.J. Broadhurst, J.A. Gracey, D. Kreimer, Z. Phys. C75 (1997) 559.
16. A.G. Grozin, in *QCD: theory and experiment*, AIP conference proceedings 602 (2001) 271.
17. S. Moch, P. Uwer, S. Weinzierl, J. Math. Phys. 43 (2002) 3363.
18. S. Weinzierl, Comput. Phys. Commun. 145 (2002) 357.
19. C. Bauer, A. Frink, R. Kreckel, Preprint MZTH-00-17 (2000), hep-th/0004013.
20. J.A.M. Vermaseren, Int. J. Mod. Phys. A14 (1999) 2037.
21. D.I. Kazakov, Theor. Math. Phys. 62 (1985) 84.
22. D.J. Broadhurst, Preprint OUT-4102-62 (1996), hep-th/9604128.
J.M. Borwein, D.M. Bradley, D.J. Broadhurst, Electronic J. Combinatorics 4 No. 2 (1997) #R5, hep-th/9611004.
J.M. Borwein, D.M. Bradley, D.J. Broadhurst, P. Lisonek, Electronic J. Combinatorics 5 (1998) #R38, math.NT/9812020.
23. M. Beneke and V.M. Braun, Nucl. Phys. B426 (1994) 301.
24. A. Czarnecki and K. Melnikov, Phys. Rev. D66 (2002) 011502.
25. D.J. Broadhurst and A.G. Grozin, Phys. Rev. D52 (1995) 4082.
26. A. Czarnecki and A.G. Grozin, Phys. Lett. B405 (1997) 142.
27. A.I. Davydychev and A.G. Grozin, Phys. Rev. D59 (1999) 054023.
28. M. Argeri, P. Mastrolia, E. Remiddi, Nucl. Phys. B631 (2002) 388.
29. S. Laporta and E. Remiddi, Phys. Lett. B379 (1996) 283; K. Melnikov and T. van Ritbergen, Phys. Rev. Lett. 84 (2000) 1673.