SUSY SHAPE-IN Variant Hamiltonians for the Generalized Dirac-Coulomb Problem

R. de Lima Rodrigues

Unidade Acadêmica de Educação, Universidade Federal de Campina Grande
Cuité - PB, 58.175-000 - Brazil

Centro Brasileiro de Pesquisas Físicas (CBPF)
Rua Dr. Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro, RJ, Brazil

Arvind Narayan Vaidya (In memory)

Instituto de Física - Universidade Federal do Rio de Janeiro
Caixa Postal 68528 - CEP 21945-970, Rio de Janeiro, Brazil

Abstract

A spin \(\frac{1}{2} \) relativistic particle described by a general potential in terms of the sum of the Coulomb potential with a Lorentz scalar potential is investigated via supersymmetry in quantum mechanics.

PACS numbers: 03.65.Fd, 03.65.Ge, 11.30.Pb

\(\beta \) e-mail: rafaelr@cbpf.br or rafael@df.ufcg.edu.br. This work was presented at XIV EVJAS, section particles and fields, from 21/January to 02/February (2007), in Campos do Jordão-SP, Brazil. Preprint CBPF-NF-028/08, www.cbpf.br.
Supersymmetry in Quantum Mechanics (SUSY QM) [1] is of intrinsic mathematical interest in its own as it connects otherwise apparently unrelated second-order differential equations.

The (1+3) and (1+1) dimensional Dirac equations with both scalar-like and vector-like potentials are well known in the literature for a long time [2]. The connection between position-dependent-effective-mass and shape invariant condition under parameter translation has been discussed in non-relativistic quantum mechanics [3, 4]. Recently, some relativistic shape invariant potentials have been investigated [5].

Exact solutions for the bound states in this mixed potential can be obtained by the method of separation of variables [6, 7, 8] and also by the use of the dynamical algebra $SO(2, 1)$ [9]. In a recent paper the solution of the scattering problem for this potential has been obtained by an analytic method and also by an algebraic method [10], the problem of a relativistic Dirac electron with a $1/r$ scalar potential, as well as a Dirac magnetic monopole and an Aharonov-Bohm potential has also been investigated [11], and the bound eigenfunctions and spectra of a Dirac hydrogen atom have been found via $su(1, 1)$ Lie algebra [12].

Recently exact solutions have been found for fermions in the presence of a classical background which is a mixing of the time-dependent of a gauge potential and a scalar potential [13]. Also, exactly solvable Eckart scalar and vector potentials in the Dirac equation have been investigated via SUSY QM [14], the S-wave Dirac equation has been solved exactly for a single particle with spin and pseudospin symmetry moving in a central Woods-Saxon potential [15].

The special case of the non-relativistic [16] and relativistic Coulomb problems have been treated recently via SUSY QM [17, 18, 19]. In this work, the relativistic Coulomb potential with a Lorentz scalar potential is investigated via shape invariance conditions of the SUSY QM.

The time independent Dirac equation may be written in the form $H \Psi = E \psi$, where the Hamiltonian is given by

$$H = \rho_1 \otimes \vec{\sigma} \cdot \vec{p} + \left(M - \frac{A_2}{r} \right) \rho_3 \otimes 1_{2x2} - \frac{A_1}{r} \otimes 1_{4x4},$$

and we have used a direct product notation in which ρ_i and $\sigma_i, (i = 1, 2, 3)$ are the Pauli spin matrices obeying $[\rho_i, \sigma_j]_- = 0$, with $\hbar = c = 1$.

2
We consider
\[\Psi = \begin{pmatrix} iG_{\ell j} \phi_{jm}^\ell \\ F_{\ell j} r \sigma \cdot \vec{n} \phi_{jm}^\ell \end{pmatrix}, \]
where \(\phi_{jm}^\ell = \phi_{jm}^{(\pm)} \) for \(j = \ell \pm \frac{1}{2} \). Next, using the relation \([1 + \vec{L} \cdot \sigma, \vec{n} \cdot \vec{l}]_+ = 0\) we obtain \(K \Psi = -k \Psi \) and the following radial equations
\[\begin{align*}
\frac{dG_{\ell j}}{dr} + \frac{k}{r} G_{\ell j} - \left(E + M - \frac{A_2}{r} + \frac{A_1}{r} \right) F_{\ell j} &= 0, \\
\frac{dF_{\ell j}}{dr} - \frac{k}{r} F_{\ell j} + \left(E - M - \frac{A_2}{r} + \frac{A_1}{r} \right) G_{\ell j} &= 0. \end{align*} \]
(2)
Note that the interaction in these two equations can be diagonalized so that we obtain
\[A^+ \hat{G} \propto \hat{F}, \quad A^- \hat{F} \propto \hat{G} \]
(3)
where
\[A^\pm = \pm \frac{d}{dr} + \frac{\lambda}{r} - \frac{EA_1 + MA_2}{\lambda}. \]
(4)
These relations are similar to the relations between the two components of the eigenfunctions of a "supersymmetric" Hamiltonian which satisfies the following Lie graded algebra
\[\mathcal{H} = [Q, Q^\dagger]_+ = QQ^\dagger + Q^\dagger Q, \quad [\mathcal{H}, Q^\dagger]_- = 0 = [\mathcal{H}, Q]_- \]
(5)
with the following representation
\[Q = \begin{pmatrix} 0 & 0 \\ A^- & 0 \end{pmatrix}, \quad \mathcal{H} = \begin{pmatrix} H_+ = A^+ A^- & 0 \\ 0 & H_- = A^- A^+ \end{pmatrix}, \quad \Phi_{\text{SUSY}} = \begin{pmatrix} F \\ G \end{pmatrix}. \]
(6)
Note that the supercharges are nilpotent operators, viz., \((Q^\dagger)^2 = 0 = Q^2\).

Thus, using the shape invariant Hamiltonians \(H_\pm \) we obtain the energy eigenvalues associated to the component \(\hat{F}^n \) given by
\[E_n = \sqrt{\frac{M^2}{1 + \left(\frac{\gamma_n^2}{(k^2 - \gamma_n^2 + n)^2} \right)}}, \quad n = 0, 1, 2, \cdots, \quad \gamma_n(E) = A_1 + \frac{MA_2}{E_n}. \]
(7)
In conclusion, we obtain the complete set of the energy eigenvalues of the Dirac equation for a potential which is the sum of the Coulomb potential with a Lorentz scalar potential inversely proportional to r via shape invariance property as applied in [17]. One of us (RLR) will make elsewhere a detailed analysis for this problem as applied to the relativistic Coulomb potential via SUSY shape-invariant potentials [17].

Acknowledgments

RLR was supported in part by CNPq (Brazilian Research Agency). He also thanks the staff of the CBPF and CES-UFCG.

References

[1] E. Witten, *Nucl. Phys.* **B185**, 513 (1981); See also, for example, R. de Lima Rodrigues, *The quantum mechanics SUSY algebra: an introduction review*, Monograph CBPF-MO-03/01, www.biblioteca.cbpf.br/index_2.html, hep-th/0205017.

[2] R. K. Su, Z. Q. Ma, *J. Phys. A: Math. Gen.* **19**, 1739 (1986).

[3] C. Quesne, V. M. Tkachuk, *J. Phys. A: Math. Gen.* **37**, 4267 (2004).

[4] B. Bagchi, A. Banerjee, C. Quesne, V. M. Tkachuk, *J. Phys. A: Math. Gen.* **38**, 2945 (2005); C. Quesne, *Ann. Phys. (N. Y.)* **321**, 1221 (2006); C. Quesne, arXiv:0705.0862[math-ph].

[5] A. D. Alhaidari, *Phys. Rev. Lett.* **87**, 210405 (2001); A. D. Alhaidari, *J. Phys. A: Math. Gen.* **34**, 9827 (2001), hep-th/0112007; A. N. Vaidya and R. de Lima Rodrigues, *J. Phys. A: Math. Gen.* **35**, 1 (2002), hep-th/0204022; A. N. Vaidya and R. de Lima Rodrigues, *Phys. Rev. Lett.* **89**, 068901-1 (2002), hep-th/0203067.

[6] W. Greiner, Relativistic Quantum Mechanics, Springer Verlag, New York (1990).

[7] R. S. Tutik, *J. Phys. A: Math. Gen.* **25**, L413 (1992).

[8] S. I. Ikhadir, O. Mustafa, R. Sever, *Hadronic J.* **16**, 57 (1993).

[9] S. Panchanan, B. Roy, R. Roychoudhury, *J. Phys. A* **28**, 6467 (1995).

[10] A. N. Vaidya, L. E. Silva Souza, *J. Phys. A: Math. Gen.* **35**, 6489 (2002).

[11] V. M. Villalba, *J. Math. Phys.* **36** 3332 (2005).

[12] R. P. Martínez-y-Romero, H. N. Núñez-Yépez, A.L. Salas-Brito, *Phys. Lett.* **A339**, 259 (2005).

[13] C. Y. Chen, *Phys. Lett.* **A339**, 283 (2005).

[14] Xia Zou, Liang-Zhong Yi, Chung-Seng Jia, *Phys. Lett.* **A346**, 54 (2005).
[15] Jian-You Guo, Zong-Qiang Sheng, *Phys. Lett.* **A338**, 90 (2005); H. Bíla, V. Jakubský, M. Znojil, *Phys. Lett.* **A338**, 421 (2006); Jian-You Guo, Zong-Qiang Sheng, *Phys. Lett.* **A350**, 425 (2006).

[16] E. Drigo Filho, M. A. Cândido Ribeiro, *Phys. Scripta* **64**, 348 (2001).

[17] R. de Lima Rodrigues, *Phys. Lett.* **A326**, 42 (2004).

[18] Tamari T. Khachidze and Anzor A. Khelashvili, *Mod. Phys. Lett.* **A20**, 2277 (2005).

[19] Hosho Katsura, Hideo Aoki, *J. Math. Phys.* **47**, 032301 (2006).

[20] J. D. Bjorken and S. D. Drell, *Relativistic quantum Mechanics*, McGraw Hill Book Company, N. Y. (1965).