Therapeutic prospects of mesenchymal stem/stromal cells in COVID-19 associated pulmonary diseases: From bench to bedside

Lei-Sheng Zhang, Yi Yu, Hao Yu, Zhong-Chao Han

Lei-Sheng Zhang, Qianfoshan Hospital & The First Affiliated Hospital, Shandong First Medical University, Jinan 250014, Shandong Province, China
Lei-Sheng Zhang, Yi Yu, Zhong-Chao Han, State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
Lei-Sheng Zhang, Hao Yu, School of Medicine, Nankai University, Tianjin 300071, China
Lei-Sheng Zhang, Zhong-Chao Han, Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
Yi Yu, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
Hao Yu, Zhong-Chao Han, Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin 300457, China

Corresponding author: Hao Yu, PhD, Associate Professor, School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China. yuhao-wuhan@hotmail.com

Abstract
The ongoing outbreak of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health. Two current studies have indicated a favorable role for mesenchymal stem/stromal cells (MSCs) in clinical remission of COVID-19 associated pulmonary diseases, yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction. In the present review, we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury, acute respiratory distress syndrome, and pulmonary fibrosis. Furthermore, we review the underlying mechanism of MSCs including direct- and trans-differentiation, autocrine and paracrine anti-inflammatory effects, homing, and neovascularization, as well as constitutive microenvironment. Finally, we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management.
before large-scale application in clinical practice. Collectively, this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.

Key Words: Mesenchymal stem/stromal cells; COVID-19; Acute lung injury; Acute respiratory distress syndrome; Pulmonary fibrosis; Molecular mechanism

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Coronavirus disease 2019 (COVID-19) is a global pandemic and seriously threatens people’s lives. Due to the limitation of current traditional remedies as well as the rapid disease progression, patients with severe pulmonary manifestations and accompanied comorbidities are inclined to worse outcomes. Herein, we review the latest updates of the mesenchymal stem/stromal cells-based cytotherapy for COVID-19 management, and discuss the principles and underlying molecular mechanisms as well, which will collectively benefit the novel comprehensive treatment for COVID-19 cases.

Citation: Zhang LS, Yu Y, Yu H, Han ZC. Therapeutic prospects of mesenchymal stem/stromal cells in COVID-19 associated pulmonary diseases: From bench to bedside. World J Stem Cells 2021; 13(8): 1058-1071

URL: https://www.wjgnet.com/1948-0210/full/v13/i8/1058.htm

DOI: https://dx.doi.org/10.4252/wjsc.v13.i8.1058

INTRODUCTION

The novel pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), designated as coronavirus disease 2019 (COVID-19), initially reported in Wuhan of China, has promptly spread around worldwide as the third coronavirus outbreak in mankind in the 21st century[1-3]. As of January 31, 2021, more than 2139183 of 99.7 million confirmed cases died from COVID-19 according to the dashboard by the Center for Systems Science and Engineering at Johns Hopkins University (www.arcgis.com/apps/opsdashboard/index.html), and the morbidity and mortality rates are congruously higher in elderly patients than in young patients[4,5]. Of them, the majority were diagnosed with pneumonia accompanied with acute lung injury (ALI), acute respiratory distress syndrome (ADRS), secondary pulmonary fibrosis, and even cytokine storm caused multiple system organ failure, which were confirmed by multifaceted analyses including epidemiological, clinicopathologic, and molecular pathogenetic detections[3,5,6].

Despite the distinguishable molecular phenotype and mild mortality rate compared with the SARS-CoV in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, COVID-19 caused by the SARS-CoV-2 displays similarities in efficient human-to-human transmission and pneumonia-associated ALI/ARDS characteristics[3,4]. However, COVID-19 has a more secluded latency for 3-14 d as well as the proportional asymptomatic carriers. Worse still, besides the virus itself and clinical therapeutics, the misleading of public policies (e.g., work resumption and group immunity) and misunderstanding of civilization as well as overzealous human rights and panicstricken psychological responses in facing with the life-threatening COVID-19 further disturb the precautionary measures and make the situation of prevention and control increasingly grim[4,7,8]. Currently, although comprehensive treatments have demonstrated efficaciously ameliorative outcomes of COVID-19 patients, including antibiotics and antiviral drugs, Chinese medicines, anti-inflammatory corticosteroids, and plasma and supportive therapeutics, the clinical grade targeted anti-SARS-CoV-2 drugs and vaccines are still far from reality[4,9]. Considering the serious side effects and contradictory efficacy of different drugs such as glucocorticoid and hydroxychloroquine, there is an urgency of developing novel therapeutic techniques in dealing with cytokine storm and pulmonary damage, especially the recently reported mesenchymal stem/stromal cell (MSC)-based cytotherapy[10,11].
MSCs, also acknowledged as medicinal signaling cells, are a heterogeneous multipotent population with splendid hematopoietic-supporting and immunoregulatory properties[12,13]. Since the first isolation in bone marrow (BM) by Friedenstein and colleagues in 1968, MSCs of multiple origins have been identified from adult tissues (e.g., adipose, dental pulp, and pancreatic tissue) and perinatal tissues [umbilical cord (UC), placenta chorionic villi, and amniotic membrane and fluid], or derived from human pluripotent stem cells [hPSCs] [e.g., human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs)][14-20]. For decades, we and other investigators have indicated the therapeutic potentials of MSC-based cyotherapy in regenerative medicine such as graft-versus-host disease (GVHD), aplastic anemia, diabetic disease/complication, and acute myocardial infarction (AMI), as well as chronic obstructive pulmonary disease (COPD) and pneumonia induced ALI/ARDS [10,12,13,21-24]. Generally, MSCs function through direct- and trans-differentiation, autocrine and paracrine anti-inflammatory effects, homing, and neoangiogenesis, as well as constitutive microenvironment, yet the accurate mechanism mediating the aforementioned roles remains to be further elucidated[13,23].

In this review, we summarize the current advances on MSCs in COVID-19 associated pulmonary diseases from the view of fundamental and clinical studies. Substantially, we further describe the modes of action as well as underlying molecular mechanism. Finally, we discuss the advantages and supervision of the current advancements in MSC-based therapeutics towards standardization and clinical application.

THERAPEUTIC POTENTIAL OF MSCS IN COVID-19

Pneumonia induced ALI

ALI is one of the major causes of acute respiratory failure with pulmonary manifestations such as diffuse alveolar damage, and the mortality rate of patients with ALI is approximately 40%[25]. Although the underlying therapeutic mechanisms remain incompletely understood, numerous preclinical studies have indicated that administration of MSCs ameliorated ALI. For instance, by utilizing the influenza virus influenza A (H1N1)-induced mice model, Bouvier et al[26] and Fukushima et al[27] found that the H1N1 virus mainly caused inflammatory lung injury, and dysfunction of congenital and adaptive immune responses followed by viral cytopathic effect, as well as secondary diffuse lung injury, which was further verified by Khatari et al[28] in an influenza virus-induced ALI pig model administered with MSC-derived extracellular vesicle (MSC-EVs)[26-28]. Studies on the underlying mechanism suggested that MSC-EVs with anti-inflammatory and anti-influenza properties could incorporate into the H1N1-infected lung epithelial cells and suppress influenza virus replication, virus-induced apoptosis, and the virus-induced accumulation of proinflammatory cytokines. Interestingly, by conducting pre-incubation with RNase enzyme, Khatari et al[28] found that the anti-influenza activity of MSC-EVs was abrogated, which indicated the pivotal role of transferred RNA from MSC-EVs to H1N1-infected lung lesions[26-28]. Thus, MSC-EVs were suffice to mimic the beneficial effects of MSCs and attenuate ALI caused by influenza virus and the newly generated COVID-19 via simultaneously restraining virus replication and the inflammatory response. In 2014, using a lipopolysaccharide (LPS)-induced ALI mouse model, we found that the pneumonia-induced ALI and immunodysfunction status of mice were efficaciously attenuated by intrapulmonary delivery of human UC-MSCs[29]. Furthermore, Rojas et al[30] took advantage of the BM-MSCs to demonstrate the ameliorative effect and no organ toxicity in an LPS-induced ALI sheep model, which are extremely important for clinical translation purposes[30]. In another study, Hao et al[31] compared the administration of MSCs derived from BM and embryonic stem cells (BM-MSCs, hESC-MSCs) in an endotoxin-induced ALI mouse model and found that both types of the aforementioned MSCs were sufficient for significantly reducing the cytokine storm-induced inflammation and injured alveolus. However, even with superiority in immunomodulation, hESC-MSCs seemingly did not show beneficial effects on lung protein permeability and pulmonary edema[31]. Hence, there is a crucial need for a disease-specific potency assay to detect the efficacy of MSC-based therapeutics in ALI.

ARDS

ARDS is acknowledge as a devastating pathogenetic process characterized by diffuse alveolar damage and severe hypoxemia, with a mortality rate of 40%, and there are no effective treatment strategies as well[32,33]. As to COVID-19, most patients have
symptoms such as fatigue, cough, and fever, in whom continued progression to ARDS and even death may occur[6,34]. To date, ARDS is considered the most common etiological factor of respiratory failure and the major cause of morbidity and mortality in critically ill patients[31]. For decades, preliminary clinical and preclinical studies have indicated involvement of virus in severe pneumonia and syndromes, and viral pneumonia induced direct lung injury is the progenumal cause of ARDS[33,35]. Generally, there are two major ARDS models, including the infectious model and sterile inflammatory model, which are derived by direct administration of Streptococcus pneumoniae and intratracheal administration of LPS, respectively[33]. As to MSC-based cytotherapy, Zheng et al[36] reported the first clinical trial of ARDS treatment with allogeneic adipose-derived MSCs in 12 adult patients at an intravenous dose of 1 × 10^6 cells/kg of body weight, but the clinical effect was weak and further optimization would be required to reduce alveolar epithelial injury in ARDS[36]. After that, Wilson et al[37] further reported a phase 1 clinical trial in 9 patients with moderate-to-severe ARDS with a single intravenous infusion of allogeneic BM-MSCs and confirmed the primary safety and effectiveness though with several highlighted drawbacks[37,38]. Very recently, the safety and efficacy outcomes of a prospective, double-blind, multicenter, randomized phase 2a safety trial conducted in 60 ventilated patients with moderate to severe ARDS were reported by Matthay et al[39]. Compared with those in the placebo group, patients with one intravenous dose of MSC administration manifested more reliable safety and effectiveness such as Acute Physiology and Chronic Health Evaluation III and minute ventilation[39]. Above all, of the state-of-art updates upon cell-based therapies including MSCs, endothelial progenitor cells (EPCs), and hPSCs, MSCs are recognized with the most considerable promise and override precedence for allogeneic therapy in clinical application for ARDS treatment[32].

Pulmonary fibrosis
Pulmonary fibrosis is a chronic, refractory, debilitating, and lethal lung disease with multidimensional characteristics such as myofibroblast activation, disruption of pulmonary function with interstitial fibrosis, extensive extracellular matrix (ECM) deposition, and hypoxemic respiratory failure, as well as a 20% survival within 5 years of diagnosis[40,41]. Etiological analyses of pulmonary fibrosis indicated the involvement of invasive immune cell- and secreted cytokine-induced inflammatory microenvironment after pulmonary injury[42,43]. Over the years, preclinical studies of lung fibrosis have enlightened the feasibility of MSCs in the treatment of idiopathic pulmonary fibrosis (IPF) by accelerating epithelial repair and inhibiting inflammation. In 2014, by conducting a single center, non-randomized, dose escalation phase 1b trial, Chambers and colleagues verified the inspiring feasibility and good short-term safety in patients with moderately severe IPF together with minimal acute adverse effects of intravenous MSC administration[44].

UNDERLYING MOLECULAR MECHANISMS

Direct- and trans-differentiation
For decades, pioneering investigators in the field have highlighted the homeostatic role of autogenous and allogeneic MSCs in repairing and replacing the damaged lung tissues[45]. Initial attempts on the mechanism studies for lung disease treatment with MSC administration mainly focused on the exploration of direct evidence for MSC-derived functional cells during rehabilitation of damaged lung tissues, whereas it subsequently proved to be difficult by most investigators in consideration of the insufficiency of the effective retention rate (< 5%)[46].

On the basis of the unique homing property, MSCs principally migrate to the damaged lung tissues through the bloodstream and exercise the restorative function by an orchestration of modulation, whereas only a tiny fraction of them are capable of differentiating into the pulmonary or bronchial epithelial cells. For instance, by utilizing the bleomycin-induced lung injury and fibrosis models together with the fluorescence in situ hybridization, Ortiz et al[47] demonstrated the significantly alleviated inflammation and collagen deposition of lung tissues were largely attributed to the homing features of MSCs as well as their trans-differentiation into an epithelium-like morphology in the areas of injured lungs in the recipient murine[47]. Similarly, in vitro models such as scratch wound assay and coculture experiments further confirmed the protective effects of MSCs on wound healing and primary small airway epithelial cells by increasing the migration and proliferation of epithelial cells.
Generally, in response to the circulating inflammatory cytokines and chemokines in the bloodstream, MSCs are purposefully recruited to the injured sites and thus initiate the therapeutic effects upon emphysema and pneumonia via benefiting the generation of small pulmonary vessels or accelerating the reconstruction of other functional cells[51].

To date, the research literature has indicated the beneficial effects of multiple released cytokines in neovascularization, including vascular endothelial growth factor (VEGF), stromal cell-derived factor (SDF-1), basic fibroblast growth factor (bFGF), and TGF. For instance, MSC-secreted VEGF is involved in the migration of trophoblast cells, microtubule formation, and development of angiogenesis by binding to the corresponding receptor VEGF-R and activating the signaling cascades, which also have an incentive role in recruiting angiogenic factors and accompanied counterparts of subcellular fractions. MSCs have been hypothesized to potentially act as an alternative option for ameliorating severe COVID-19 associated ARDS by putatively binding to pulmonary alveolar cells and neutralizing the free virus particles, as well as transferring mitochondria from MSCs to damaged lung epithelial cells[61,62].

Autocrine and paracrine anti-inflammatory effects

Intercellular communications among identical and/or different cell types are usually mediated by autocrine and paracrine mechanisms. EVs secreted by MSCs have been consecutively identified in the culture medium under physiological and pathological circumstances[17,28]. Among them, exosomes containing a genetic cargo of subcellular fractions such as mRNA, tRNA, microRNAs, circular RNAs, competing endogenous RNAs, proteins, and bioactive lipids are extensively explored[32,53]. For example, we recently demonstrated that exosomes derived from immune thrombocytopenia plasma played a critical role in impairing the megakaryocyte and platelet generation through a Bcl-xL/caspase signaling mediated apoptosis pathway[34].

Along with the existing effects of MSCs on endogenous progenitor cells in the lung, current paradigms of MSC application in clinical trials primitively focus on anti-inflammatory paracrine rather than structural repairment[9,55]. Cytokine release syndrome is a major underlying pathophysiological process in ARDS, which can be efficaciously suppressed in patients with critically illness associated disorders according to several prospective clinical studies[10,37,39]. As to ALI/ARDS, the therapeutic efficacy of MSCs in inpatients, including alveolar epithelium and lung endothelium repair, inflammation inhibition, and absorption of lung exudate, is largely attributed to the release of a variety of soluble factors, which is consistent with the preclinical models[39,56]. For instance, KGF[57,58] and angiopoietin-1[59] released by MSCs have been shown to protect the alveolar epithelium and endothelium from injury in terms of protein permeability and loss of alveolar fluid clearance during ALI[56,60]. Similarly, a cohort of soluble factors such as interleukin 10, prostaglandin-E2, and transforming growth factor β (TGF-β), together with antibiotic proteins (e.g., LL37) and antibacterial factors, congruously perform a constructive role in immunologic homeostasis by simultaneously suppressing inflammatory response and stimulating monocyte/macrophage phagocytosis, respectively[56]. Collectively, by secreting the aforementioned soluble factors and accompanied counterparts of subcellular fractions, MSCs have been hypothesized to potentially act as an alternative option for ameliorating severe COVID-19 associated ALI/ARDS by putatively binding to pulmonary alveolar cells and neutralizing the free virus particles, as well as transferring mitochondria from MSCs to damaged lung epithelial cells[61,62].

Homing and neovascularization

Renewal has also prompted the pivotal characteristics of MSCs during multisystem disorders including pulmonary and bronchial diseases by homing facilitating neovascularization in the damaged sites[56]. Generally, in response to the circulating inflammatory cytokines and chemokines in the bloodstream, MSCs are purposefully recruited to the injured sites and thus initiate the therapeutic effects upon emphysema and pneumonia via benefiting the generation of small pulmonary vessels or accelerating the reconstruction of other functional cells[51].

Constitutive microenvironment

Generally, the homeostasis and regeneration of stem cells and the concomitantly
derived cells are tightly regulated by the resident microenvironment[67]. Besides the aforementioned mode of action, MSCs functioned as the dominant component in the microenvironment for hematogenesis and coordinate contributions to multisystem disease occurrence[13,68]. For decades, we and other investigators in the field have verified the promising curative effects of MSC-based cytotherapy on recurrent and refractory disorder remodeling, such as acquired aplastic anemia[13,66], osteoarthritis [69], AMI[21,70], Crohn’s disease with enterocutaneous fistula[71], acute-on-chronic liver failure[72], COPD[22], and COVID-19 associated ALI/ARDS[10].

In the context of pulmonary infections, MSCs are adequate to maintain or replenish the stem cell pool in damaged tissues and reconstruct the microenvironment for the succeeding appropriate functioning. This is attributed to their resistance to cytotoxic substances and degraded signal cascades in response to pulmonary injuries as well as the release of multiple factors such as growth factors, ECM, anti-inflammatory cytokines, extracellular organelles, and vesicles, which collectively provide an instructive and permissive environment together with restrict the pneumonia-induced ALI/ARDS by substituting the abnormally regulatory signals in the niche[67,73]. Meanwhile, accumulated evidence has indicated the therapeutic effects of MSCs via recruiting or differentiating into functional cells, and even by accelerating the proliferation, dedifferentiation, and trans-differentiation of committed cells after lung injury.

Currently, emerging evidence has suggested the possibilities of MSC-based intervention iatreusis for COVID-19 pneumonia management, and in particular, the shortness of breath and respiratory failure caused by severe ARDS[3,74]. Interestingly, Hough and the colleagues verified that MSCs could transfer endothelial mitochondrial to impaired alveolar epithelial cells to increase alveolar adenosine triphosphate concentrations, which in turn reduced the endotoxin-induced alveolar injury and thus the increase in pulmonary fluid clearance[75]. Taken together, the multifaceted unique characteristics of MSCs in the niche have endowed rosy prospects and unlimited potential for COVID-19 associated pulmonary diseases (Figure 1).

STANDARDIZATION AND SUPERVISION

Cell products and standardization

Longitudinal progress in fundamental and clinical studies has indicated the preferable therapeutic potential of MSCs in respiratory disease treatment and remission, especially BM-MSCs and UC-MSCs with the most extensive application in clinical trials and the most robust multiplication capacity, respectively[32,68,71]. Distinguishing from other stem cell counterparts including the aforementioned EPCs and hPSCs with greater barriers for autologous therapy, MSCs hold advanced advantages on respiratory diseases[16,32]. However, there is a skeptical voice on the curative effects and variations in quality in considering the allogeneic cell sources and the probability of genetic variability[70,76]. For example, we and Zhang et al[14] recently confirmed the multifaceted alterations in efficacy on acute GVHD and acute liver failure, respectively[14,23].

Therewith, considering the discrepancy and potential uncertainty, there is an urgent need to clarify the safety, effectiveness, and reproducibility of MSC-based cytotherapy by systematically and meticulously dissecting the similarities and differences among various cell products, which is the prerequisite for large-scale clinical application as well[23]. For instance, we have reported the diverse variations of biological and genetic properties in UC-MSCs after continuous in vitro passages, which would help figure out the controversial effects on disease management and benefit the clinical practice[23].

Aiming to improve the feasibility of MSC-based application in multisystem diseases including COVID-19 caused pneumonia and comorbidities, concerns upon the standardization and scenario of cell products require to be further addressed. First, the convenience and rationalization of sources for large-scale industrial manufacturing should be carefully selected among perinatal tissues (e.g., UC and placenta)[71], adult tissues (e.g., BM, adipose tissue, and dental pulp)[77], and pluripotent stem cells (e.g., hESCs and hiPSCs)[17]. On the basis of the existing literature, it is of importance to launch the manufacture of large-scale, clinical-grade MSCs by building a public cell bank, which will vastly benefit the large-scale production of standardized cell source for regenerative medicine[78]. Second, the production engineering (e.g., pathogen-free conditions, automated or semi-automated operations, stasis or rotation, passage number, and hypoxia) and accompanied supplements (e.g., albumin, serum, and
Figure 1 Schematic model for management of coronavirus disease 2019 associated pulmonary disease by mesenchymal stem/stromal cell application. Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could result in multifaceted deteriorations of the infected lungs such as ground glass opacity, alveolar epithelial cell injury, inflammatory exudation, pro-inflammatory factor and chemokine accumulation, effector immunocyte abnormalities, and the accompanied cytokine storm. Systematic or partial infusion is adequate for the effective remission of the damaged lung tissues by simultaneously suppressing the abnormal immune response, secreting exosomes and micro-vesicles, and accelerating cell repair and the SARS-CoV-2 clearance. MSCs: Mesenchymal stem/stromal cells; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; COVID-19: Coronavirus disease 2019.

heparin) should be further optimized and standardized to satisfy the Good Manufacturing Practice (GMP) and quality appraisal guidelines[79]. Third, highly bioactive subpopulations from the heterogeneous MSCs should be identified and generated for different clinical purposes[80]. For instance, we and Stüdle et al[80] demonstrated the novel vascular cell adhesion molecule-1+ (CD106+) UC-MSCs and MSCA-1+CD56+ BM-MSCs with enhanced chondrogenesis and preferable immunomodulatory property, respectively[19,66,80]. Strikingly, Leng et al[10] figured out the superiority of angiotensin-converting enzyme 2 negative subsets in ameliorating the outcomes of patients with COVID-19 pneumonia[10]. Fourth, the stability and repeatability should be improved in generating homogeneous cellular constituents from MSCs for cell-free therapeutic purposes such as the aforementioned EVs and exosomes via physical and chemical approaches as well as antigen-binding based enrichment (e.g., CD73, CD105, CD9, and CD63)[54,81]. Additionally, the challenges of establishing appropriate indicators for the systematic and precise evaluation of GMP-grade or clinical grade MSCs and uncovering the detailed molecular mechanisms during preclinical studies are still formidable.

Clinical assessment and administrative management
In the past year, hundreds of millions of people presented with COVID-19 pneumonia and multiple comorbidities, and in particular, the elderly patients and those with severe ALI/ARDS manifested worse outcomes and higher mortality[3,5,82]. Due to the limitation of traditional remedies and the delayed clinical-grade vaccines, pioneering investigators and clinicians turned to the novel MSC-based cytotherapy on the basis of previous experiences upon coronaviruses such as SARS-CoV and MERS-CoV[10,74,83,84]. For instance, Liang et al[85] and Leng et al[10] reported the favorable prognosis of seven patients with mild and severe COVID-19 with adult tissue-derived MSC administration[10,85]. Subsequently, we further confirmed the efficacious clinical remission in critically ill elderly patients with COVID-19 and multiple comorbidities...
by systemic infusion of hUC-MSCs\cite{86,87}. Generally, with the aid of MSC administration, the inpatients revealed preferable clinical manifestations without deterioration and secondary infections, including decreased serum bilirubin, effective absorption of infiltration in injured lung tissues, ultimate resumption of the vital signs and blood contents, and sharp decline of pivotal proinflammatory factors, along with the ameliorative status of multiple organ dysfunction syndrome and accompanied multifaceted disease scores and comorbidities (e.g., coronary atherosclerotic heart disease and diabetes)\cite{74,83,88}.

According to the ClinicalTrials.gov website, a total of 70 clinical trials focus on MSC-based cytotherapy on COVID-19 pneumonia and ALI/ARDS were registered, which suggested the expectations of clinicians and investigators on MSC-based iateria for improving the therapeutic efficacy for COVID-19 (Figure 2 and Supplementary Table 1). Among them, the United States and China launched 16 and 10 clinical trials, respectively (Figure 3A). Unsurprisingly, most of the registered trials were before the phase 3 stage, which occupied a total proportion of over 90% (Figure 3B). In details, eight interventional trials in China, Turkey, United States, Indonesia, Pakistan, and Russian Federation have finished complete recruitments, which collectively indicates the intriguing perspectives of the ongoing MSC-based therapy in coronavirus infections. Notably, a certain subtype of MSCs and derivate were applied for COVID-19 treatment, such as UC-MSCs, adipose tissue-derived MSCs, dental pulp-derived stem cells, BM-MSCs, and exosomes (Figure 3C). Meanwhile, we found that most of the aforementioned trials focused on ARDS, pneumonia, and cytokine storm, which were the dominating causes of high mortality and morbidity of COVID-19 (Figure 3D).

Despite the inspiring outcomes of the existing prospective studies, the general applicability as well as the latent untoward reactions of the MSC-based cytotherapy for the treatment of large-scale patients hospitalized with COVID-19 should not be neglected\cite{74,83,87,89}. Meanwhile, according to the prevailing international practice, all registered studies ought to follow the principles of Declaration of Helsinki, obtain the informed consent from enrolled cases, and conform to the Centers for Disease Control and Prevention guidelines and World Health Organization recommendation as well\cite{90}.
CONCLUSION

Overall, the ongoing COVID-19 triggered by SARS-CoV-2 has become a global pandemic and severely threatened the public security and economic affairs. Patients with COVID-19 and the resultant pulmonary diseases, and in particular, the critical ill type with ALI/ARDS, are inclined to reveal faster disease progression and worse prognosis. Despite the application of multiple traditional remedies, their efficacy is far from satisfaction largely due to the deteriorative cytokine storm and severe pulmonary injury. Herein, on the basis of current progress in the scientific rationale and clinical practice, we systematically review the latest updates and highlight the robust prospect and principles of MSC-based cytotherapy, which would collectively benefit the development of novel comprehensive therapy for COVID-19 associated pulmonary disease management.
REFERENCES

1 Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A Novel Coronavirus Emerging in China - Key Questions for Impact Assessment. N Engl J Med 2020; 382: 692-694 [PMID: 31978295 DOI: 10.1056/NEJMmp2000929]

2 The Lancet. Emerging understandings of 2019-ncov. Lancet 2020; 395: 311 [PMID: 31986259 DOI: 10.1016/S0140-6736(20)30386-0]

3 Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020. 395. 497-506 [PMID: 31986264 DOI: 10.1016/S0140-6736(20)30183-5]

4 Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med 2020; 382: 1199-1207 [PMID: 31995857 DOI: 10.1056/NEJMoa2001316]

5 Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507-513 [PMID: 32007143 DOI: 10.1016/S0140-6736(20)30211-7]

6 Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in wuhan, china. JAMA 2020; 323: 1061-1069 [PMID: 32031570 DOI: 10.1001/jama.2020.1585]

7 Wang C, Pan R, Wan X, Tan Y, Xu L, Ho CS, Ho RC. Immediate Psychological Responses and Associated Factors during the Initial Stage of the 2019 Coronavirus Disease (COVID-19) Epidemic among the General Population in China. Int J Environ Res Public Health 2020; 17 [PMID: 32155789 DOI: 10.3390/ijerph17051729]

8 Stop the coronavirus stigma now. Nature 2020; 580: 165 [PMID: 32265571 DOI: 10.1038/d41586-020-01009-0]

9 Qu W, Wang Z, Hare JM, Bu G, Mallea JM, Pascual JM, Caplan AI, Kurtzberg J, Zubair AC, Kubrova E, Engelberg-Cook E, Nayefh T, Shah VP, Hill JC, Wolf ME, Prokop LJ, Murad MH, Sanfilippo FP. Cell-based therapy to reduce mortality from COVID-19: Systematic review and meta-analysis of human studies on acute respiratory distress syndrome. Stem Cells Transl Med 2020; 9: 1007-1022 [PMID: 32472653 DOI: 10.1002/scm.20146]

10 Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, Shan G, Meng F, Du D, Wang S, Fan J, Wang W, Deng L, Shi H, Li H, Hu Z, Zhang F, Gao J, Liu H, Li X, Zhao Y, Yin K, He X, Gao Z, Wang Y, Yang B, Jin R, Stambler I, Lim LW, Su H, Moskalenko A, Cano A, Chakrabarti S, Min KJ, Ellison-Hughes G, Caruso C, Jin K, Zhao RC. Transplantation of ACE2 Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis 2020; 11: 216-228 [PMID: 32255372 DOI: 10.14336/AD.2020.0228]

11 Magagnoli N, Narendran S, Pereira F, Cummings T, Hardin JW, Sutton SS, Ambati J. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. medRxiv 2020; Preprint [PMID: 32511622 DOI: 10.1101/2020.04.16.20065920]

12 Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med 2017; 6: 2173-2185 [PMID: 29076267 DOI: 10.1002/sctm.17-0129]

13 Huo J, Zhang L, Ren X, Li C, Li X, Dong P, Zheng X, Huang J, Shao Y, Ge M, Zhang J, Wang M, Nie J, Jin P, Zhang Y. Multifaceted characterization of the signatures and efficacy of mesenchymal stem/stromal cells in acquired aplastic anemia. Stem Cell Res Ther 2020; 11: 59 [PMID: 32054519 DOI: 10.1186/s13287-020-1577-2]

14 Zhang Y, Li Y, Li W, Cai J, Yue M, Jiang L, Xu R, Zhang L, Li J, Zhu C. Therapeutic Effect of Human Umbilical Cord Mesenchymal Stem Cells at Various Passages on Acute Liver Failure in Rats. Stem Cells Int 2018; 2018: 759465 [PMID: 30538751 DOI: 10.1155/2018/759465]

15 El Moshy S, Radwan IA, Rady D, Abbass MMS, El-Rashidy AA, Sadek KM, Dörfer CE, Fawzy El-Sayed KM. Dental Stem Cell-Derived Secretome/Conditioned Medium: The Future for Regenerative Therapeutic Applications. Stem Cells Int 2020; 2020: 7593402 [PMID: 32089709 DOI: 10.1155/2020/7593402]

16 Zhang L, Wang H, Liu C, Wu Q, Su P, Wu D, Guo I, Zhou W, Xu Y, Shi L, Zhou J. MSX2 Initiates and Accelerates Mesenchymal Stem/Stromal Cell Specification of hPSCs by Regulating TWIST1 and PRAE. Stem Cell Reports 2018; 11: 497-513 [PMID: 30033084 DOI: 10.1016/j.stemcr.2018.06.019]

17 Wei Y, Hou H, Zhang L, Zhao N, Li C, Huo J, Liu Y, Zhang W, Li Z, Liu D, Han Z, Song B, Chi Y. JNKs- and DAC-programmed mesenchymal stem/stromal cells from hESCs facilitate hematopoiesis and alleviate hind limb ischemia. Stem Cell Res Ther 2019; 10: 186 [PMID: 31234947 DOI: 10.1186/s13287-019-1302-1]

18 Soonttararak S, Chow L, Johnson V, Coy J, Wheat W, Regan D, Dow S. Mesenchymal Stem Cells (MSC) Derived from Induced Pluripotent Stem Cells (iPSC) Equivalent to Adipose-Derived MSC in
Promoting Intestinal Healing and Microbiome Normalization in Mouse Inflammatory Bowel Disease Model. *Stem Cells Transl Med* 2018; 7: 456-467 [PMID: 29635868 DOI: 10.1002/stcm.17-0305]

19 **Du W**, Li X, Chi Y, Ma F, Li Z, Yang S, Song B, Cui J, Ma T, Li J, Tian J, Yang Z, Feng X, Chen F, Lu S, Liang L, Han ZB, Han ZC. VCAM-1+ placenta chorionic villi-derived mesenchymal stem cells display potent pro-angiogenic activity. *Stem Cell Res Ther* 2016; 7: 49 [PMID: 27044447 DOI: 10.1186/s13287-016-0297-0]

20 **Friedenstein AJ**, Petrukova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. *Transplantation* 1968; 6: 230-247 [PMID: 5654988 DOI: 10.1097/00007890-196803000-00009]

21 **Lim M**, Wang W, Liang L, Han ZB, Li Z, Geng J, Zhao M, Jia H, Feng J, Wei Z, Song B, Zhang J, Li J, Liu T, Wang F, Li T, Fang Y, Gao J, Han Z. Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. *Stem Cell Res Ther* 2018; 9: 129 [PMID: 29751833 DOI: 10.1186/s13287-018-0888-z]

22 **Weiss DJ**, Casaburi R, Flannery R, LeRoux-Williams M, Taskin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. *Chest* 2013; 143: 1590-1598 [PMID: 23172272 DOI: 10.1378/chest.12.2094]

23 **Zhao Q**, Zhang L, Wei Y, Yu H, Zou L, Hao J, Yang H, Song B, Wei T, Wu D, Zhang W, Liu D, Li Z, Chi Y, Han Z. Systematic comparison of hUC-MSCs at various passages reveals the variations of signatures and therapeutic effect on acute graft-versus-host disease. *Stem Cell Res Ther* 2019; 10: 354 [PMID: 31779707 DOI: 10.1186/s13287-019-1478-4]

24 **Cho J**, D’Antuono M, Glicksman M, Wang J, Jonklaas J. A review of clinical trials: mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus. *Am J Stem Cells* 2018; 7: 82-93 [PMID: 30510843]

25 **Monsel A**, Zhu YG, Gennari S, Hao Q, Hu S, Rouby JJ, Rosenzweig M, Matthey MA, Lee JW. Therapeutic Effects of Human Mesenchymal Stem Cell-derived Microvesicles in Severe Pneumonia in Mice. *Am J Respir Crit Care Med* 2015; 192: 324-336 [PMID: 26067592 DOI: 10.1164/rcrm.201410-1765OC]

26 **Bouvier NM**, Lowen AC. Animal Models for Influenza Virus Pathogenesis and Transmission. *Viruses* 2010, 2: 1530-1563 [PMID: 21442033 DOI: 10.3390/20801530]

27 **Fukushi M**, Ito T, Oka T, Kitazawa T, Miyoshi-Akiyama T, Kirikae T, Yamashita M, Kudo K. Serial histopathological examination of the lungs of mice infected with influenza A virus PR8 strain. *PLoS One* 2011; 6: e21207 [PMID: 21705193 DOI: 10.1371/journal.pone.0021207]

28 **Khatri M**, Richardson LA, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induce acute lung injury in a pig model. *Stem Cell Res Ther* 2018; 9: 17 [PMID: 29378639 DOI: 10.1186/s13287-018-0774-8]

29 **Sun J**, Han ZB, Liao W, Yang SG, Yang Z, Yu J, Meng L, Wu R, Han ZC. Intrapulmonary delivery of human umbilical cord mesenchymal stem cells attenuates acute lung injury by expanding CD4+CD25+ Forkhead Boxp3 (FOXP3)+ regulatory T cells and balancing anti- and pro-inflammatory factors. *Cell Physiol Biochem* 2011; 27: 587-596 [PMID: 21691076 DOI: 10.1159/000329980]

30 **Rojas M**, Cárdenes N, Kocyildirim E, Tedrow JR, Cáceres E, Deans R, Ting A, Bermúdez C. Human adult bone marrow-derived stem cells decrease severity of lipopolysaccharide-induced acute respiratory distress syndrome in sheep. *Stem Cell Res Ther* 2014; 5: 42 [PMID: 24670268 DOI: 10.1186/scrt430]

31 **Hao Q**, Zhu YG, Monsel A, Gennai S, Lee T, Xu F, Lee JW. Study of Bone Marrow and Embryonic Stem Cell-Derived Human Mesenchymal Stem Cells in COPD. *Chest* 2014; 145: 82-840 [PMID: 25999518 DOI: 10.1378/chest.1590-1598] [PMID: 26067592 DOI: 10.1164/rcrm.201410-1765OC]

32 **Horie S**, Masterson C, Devaney J, Laffey JG. Stem cell therapy for acute respiratory distress syndrome: a promising future? *Curr Opin Crit Care* 2016; 22: 14-20 [PMID: 26645555 DOI: 10.1097/MCC.0000000000000276]

33 **D’Alessio FR**, Mouse Models of Acute Lung Injury and ARDS. *Methods Mol Biol* 2018; 1809: 341-350 [PMID: 29987799 DOI: 10.1007/978-1-4939-8570-8_22]

34 **Yu F**, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. *Microbes Infect* 2020; 22: 74-79 [PMID: 32017984 DOI: 10.1016/j.micinf.2020.01.003]

35 **Bauer TT**, Ewig S, Rodloff AC, Müller EE. Acute respiratory distress syndrome and pneumonia: a comprehensive review of clinical data. *Clin Infect Dis* 2006; 43: 748-756 [PMID: 16912951 DOI: 10.1086/506430]

36 **Zheng G**, Huang L, Tong H, Shu Q, Hu Y, Ge M, Deng K, Zhang L, Zou B, Cheng B, Xu J. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. *Respir Res* 2014; 15: 39 [PMID: 24708472 DOI: 10.1186/1465-9921-15-39]

37 **Wilson JG**, Liu KD, Zhuo H, Caballero L, McMillan M, Fang X, Cosgrove K, Vojnik R, Calfee CS, Lee JW, Rogers AJ, Levitt J, Wiener-Kronish J, Bajwa EK, Leavitt A, McKenna D, Thompson BT, Matthey MA. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. *Lancet Respir Med* 2015; 3: 24-32 [PMID: 25529339 DOI: 10.1016/s2221-2604(14)70291-7]

38 **Zhang GY**, Liao T, Zhou SB, Fu XB, Li QF. Mesenchymal stem (stromal) cells for treatment of
acute respiratory distress syndrome. *Lancet Respir Med* 2015; 3: e11-e12 [PMID: 25890654 DOI: 10.1016/S2213-2600(15)00049-1]

Matthay MA, Calfee CS, Zhuo H, Thompson BT, Wilson JG, Levitt JE, Rogers AJ, Gotts JE, Wiener-Kronish JP, Bajwa EK, Donahoe MP, McVerry BJ, Ortiz LA, Exline M, Christman JW, Abbott J, Delucchi KL, Caballero L, McMillan M, McKenna DH, Liu KD. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. *Lancet Respir Med* 2019; 7: 154-162 [PMID: 30455077 DOI: 10.1016/S2213-2600(18)30418-1]

NI K, Liu M, Zheng J, Wen L, Chen Q, Xiang Z, Lam KT, Liu Y, Chan GC, Lau YL, Tu W. PD-1/PD-L1 Pathway Mediates the Alleviation of Pulmonary Fibrosis by Human Mesenchymal Stem Cells in Humanized Mice. *Am J Respir Cell Mol Biol* 2018; 58: 684-695 [PMID: 29220578 DOI: 10.1165/comb.2017-0326OC]

Bourouas D. Pirfenidone for idiopathic pulmonary fibrosis. *Lancet* 2011; 377: 1727-1729 [PMID: 21573563 DOI: 10.1016/S0140-6736(11)60546-1]

Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. *Nat Med* 2012; 18: 1028-1040 [PMID: 22772564 DOI: 10.1038/nm.2807]

Liu M, Ren D, Wu D, Zheng J, Tu W. Stem Cell and Idiopathic Pulmonary Fibrosis: Mechanisms and Treatment. *Curr Stem Cell Res Treat* 2015; 10: 466-476 [PMID: 25986617 DOI: 10.2174/1574888x10666150519092639]

Chambers DC, Enever D, Ilic N, Sparks L, Whitelaw K, Ayres J, Yerkovich ST, Khalil D, Atkinson KM, Hopkins PM. A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. *Respirology* 2014; 19: 1013-1018 [PMID: 25039426 DOI: 10.1111/resp.12343]

Behnke J, Kremer S, Shahzad T, Chao CM, Böttcher-Friebertshäuser E, Morty RE, Bellusci S, Ehahrdt H. MSC Based Therapies-New Perspectives for the Injured Lung. *J Clin Med* 2020; 9 [PMID: 32138309 DOI: 10.3390/jcm9030682]

Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sarkis JI. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. *Cell* 2001; 105: 369-377 [PMID: 11348593 DOI: 10.1016/s0002-8764(01)00328-2]

Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. *Proc Natl Acad Sci USA* 2003; 100: 8407-8411 [PMID: 12815096 DOI: 10.1073/pnas.1432929100]

Akram KM, Samad S, Spiteri MA, Forsyth NR. Mesenchymal stem cells promote alveolar epithelial cell wound repair in vivo through distinct migratory and paracrine mechanisms. *Respir Res* 2013; 14: 9 [PMID: 23350749 DOI: 10.1186/1465-9921-14-9]

Yew TL, Hung YT, Li HY, Chen HW, Chen LL, Tsai KS, Chiou SH, Chao KC, Huang TF, Chen HL, Hung SC. Enhancement of wound healing by human multipotent stromal cell conditioned medium: The paracrine factors and p38 mapk activation. *Cell Transplant* 2011; 20: 693-706 [PMID: 21176394 DOI: 10.3272/096368910X550198]

Huh JW, Kim SY, Lee JH, Lee JS, Van Ta Q, Kim M, Oh YM, Lee YS, Lee SD. Bone marrow cells repair cigarette smoke-induced emphysema in rats. *Am J Physiol Lung Cell Mol Physiol* 2011; 301: L255-L266 [PMID: 21622846 DOI: 10.1152/ajplung.00253.2010]

Li J, Huang S, Zhang J, Feng C, Gao D, Yao B, Wu X, Fu X. Mesenchymal stem cells ameliorate inflammatory cytokine-induced impairment of AT-II cells through a keratinocyte growth factor-dependent PI3K/Akt/mTOR signaling pathway. *Mol Med Rep* 2016; 13: 3755-3762 [PMID: 27035760 DOI: 10.3892/mmr.2016.5004]

Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, Naaijens B, Perut F, Niessen HW, Baldini N, Pegtel DM. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinct microRNA and RNA species. *Stem Cell Res Ther* 2015; 6: 127 [PMID: 26129847 DOI: 10.1186/s13287-015-0116-z]

Eirin A, Zhu XY, Puranik AS, Woollard JR, Tang H, Dasari S, Lerman A, van Wijnen AJ, Lerman LO. Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells. *PLoS One* 2017; 12: e0174303 [PMID: 28333993 DOI: 10.1371/journal.pone.0174303]

Miao W, Song B, Shi B, Wan Q, Lv Q, Chen H, Zhu M, Zhang L, Han Y, Wu D. Immune thrombocytopenia plasma-derived exosomes impaired megakaryocyte and platelet production through an apoptosis pathway. *Thromb Haemost* 2021; 121: 495-505 [PMID: 33124021 DOI: 10.1055/s-0040-1718761]

Weiss DJ. Stem cells, cell therapies, and bioengineering in lung biology and diseases. Comprehensive review of the recent literature 2010-2012. *Ann Am Thorac Soc* 2013; 10: S45-S97 [PMID: 23869446 DOI: 10.1513/AnnalsATS.201304-090AW]

Lee JW, Fang X, Krasnodembskaya A, Howard JP, Matthay MA. Concise review: Mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. *Stem Cells* 2011; 29: 913-919 [PMID: 21506195 DOI: 10.1002/stem.643]

Lee JW, Fang X, Gupta N, Serikov V, Matthay MA. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. *Proc Natl Acad Sci USA* 2009; 106: 16357-16362 [PMID: 19721001 DOI: 10.1073/pnas.0907996106]

Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A, Qu JM, Matthay MA, Lee JW. Human
mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. *Stem Cells* 2014; 32: 116-125. [PMID: 23939814 DOI: 10.1002/stem.1504]

59 **Fang X**, Neyrinck AP, Matthey MA, Lee JW. Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. *J Biol Chem* 2010; 285: 26211-26222. [PMID: 20554518 DOI: 10.1074/jbc.M110.119197]

60 **Tang XD**, Shi L, Monsel A, Li XY, Zhu HL, Zhu YG, Qu JM. Mesenchymal Stem Cell Microvesicles Attenuate Acute Lung Injury in Mice Partly Mediated by Ang-1 mRNA. *Stem Cells* 2017; 35: 1849-1859. [PMID: 28376568 DOI: 10.1002/stem.2619]

61 **Krasnodembskaya A**, Song Y, Fang X, Gupta N, Serikov V, Lee JW, Matthey MA. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. *Stem Cells* 2010; 28: 2229-2238. [PMID: 20945332 DOI: 10.1002/stem.544]

62 **Islam MN**, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. *Nat Med* 2012; 18: 759-765. [PMID: 22504485 DOI: 10.1038/nm.2736]

63 **Ahn SY**, Park WS, Kim YE, Sung DK, Sung SI, Ahn JY, Chang YS. Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury. *Exp Mol Med* 2018; 50: 1-12. [PMID: 29650962 DOI: 10.1038/s12276-018-0055-8]

64 **Reiter J**, Drummond S, Sammour I, Huang J, Florea V, Dornas P, Hare JM, Rodrigues CO, Young KC. Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia. *Respir Res* 2017; 18: 137. [PMID: 28701189 DOI: 10.1186/s12931-017-0620-z]

65 **Muppala S**, Xiao R, Krukovets D, Verbovskaya D, Vendamuri R, Habib N, Raman P, Plow E, Stienstra-Agouarvi O. Thrombospondin-4 activates TGF-β-induced angiogenesis. *Oncogene* 2017; 36: 5189-5198. [PMID: 28481870 DOI: 10.1038/onc.2017.140]

66 **Wei Y**, Zhang L, Chi Y, Ren X, Gao Y, Song B, Li C, Han Z. High-efficient generation of vcam-1(+) mesenchymal stem cells with multidimensional superiorities in signatures and efficacy on aplastic anaemia mice. *Cell Prolif* 2020; 53: e12862. [PMID: 32597552 DOI: 10.1111/cpr.12862]

67 **Sagaradze GD**, Basalova NA, Efimenko AY, Tkachuk VA. Mesenchymal Stromal Cells as Critical Contributors to Tissue Regeneration. *Front Cell Dev Biol* 2020; 8: 576176. [PMID: 33102483 DOI: 10.3389/fcell.2020.576176]

68 **Wang L**, Zhang L, Liang X, Zou J, Liu N, Liu T, Wang G, Ding X, Liu Y, Zhang B, Liang R, Wang S. Adipose Tissue-Derived Stem Cells from Type 2 Diabetics Reveal Conservative Alterations in Multidimensional Characteristics. *Int J Stem Cells* 2020; 13: 268-278. [PMID: 32587133 DOI: 10.15283/ijsc20028]

69 **Zhang L**, Wei Y, Chi Y, Liu D, Yang S, Han Z, Li Z. Two-step generation of mesenchymal stem/stromal cells from human pluripotent stem cells with reinforced efficacy upon osteoarthritis rabbits by HA hydrogel. *Cell Biosci* 2021; 11: 6. [PMID: 33407870 DOI: 10.1186/s13578-020-00516-x]

70 **Meneschi P**. Cell therapy trials for heart regeneration - lessons learned and future directions. *Nat Rev Cardiol* 2018; 15: 659-671. [PMID: 29743563 DOI: 10.1038/s41569-018-0013-0]

71 **Hou H**, Zhang L, Duan L, Liu Y, Han Z, Li Z, Cao X. Spatio-temporal metabolokinetics and efficacy of human placenta-derived mesenchymal stem/stromal cells on mice with refractory crohn's-like enterocutaneous fistula. *Stem Cell Res Rep* 2020; 16: 1292-1304. [PMID: 33011925 DOI: 10.1007/s12015-020-10053-2]

72 **Lin BL**, Chen JF, Ou WH, Wang KW, Xie DY, Chen XY, Liu QL, Peng L, Li JG, Mei YY, Weng WZ, Peng YW, Cao HJ, Xie JQ, Xie SB, Xiang AP, Gao ZL. Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: A randomized controlled trial. *Hepatology* 2017; 66: 209-219. [PMID: 28370357 DOI: 10.1002/hep.29189]

73 **Kitade Y**, Jörg DJ, Tokue M, Maruyama A, Ichikawa R, Tsuchiya S, Segi-Nishida E, Nakagawa T, Uchida A, Kimura-Yoshida C, Mizo S, Sugiyafo A, Azumi T, Ema M, Noda C, Kobayashi S, Matsui I, Kanai Y, Nagasawa T, Sugimoto Y, Takahashi S, Simons BD, Yoshida S. Competition for Mitochondria Regulates Spermatic Stem Cell Homeostasis in an Open Niche. *Cell Stem Cell* 2019; 24: 79-92.e6. [PMID: 30588100 DOI: 10.1016/j.stem.2018.11.013]

74 **Golchin A**, SeyediJafari E, Ardestihylajimi A. Mesenchymal stem cell therapy for covid-19: Present or future. *Stem Cell Res Rep* 2020; 16: 427-433. [PMID: 32281052 DOI: 10.1007/s12015-020-09973-w]

75 **Hough RF**, Islam MN, Gusarova GA, Jin G, Das S, Bhattacharya J. Endothelial mitochondria determine rapid barrier failure in chemical lung injury. *JCI Insight* 2019; 4: [PMID: 30728333 DOI: 10.1172/jci.insight.124329]

76 **Loibl M**, Wuertz-Kozak K, Vadalal G, Lang S, Fairbank J, Urban JP. Controversies in regenerative medicine: Should intervertebral disc degeneration be treated with mesenchymal stem cells? *JOR Spine* 2019; 2: e1043. [PMID: 31463457 DOI: 10.1002/jsp2.1043]

77 **Kern S**, Eichler H, Stoeve J, Klotter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. *Stem Cells* 2006; 24: 1294-1301. [PMID: 16410387 DOI: 10.1634/stemcells.2005-0342]

78 **Chatzistamatiou TK**, Papasavvas AC, Michalopoulos E, Gamaloutsos C, Mallis P, Gontika I, Panagouli E, Kousoulakos SL, Stavropoulos-Giokas C. Optimizing isolation culture and freezing
methods to preserve Wharton's jelly's mesenchymal stem cell (MSC) properties: an MSC banking protocol validation for the Hellenic Cord Blood Bank. *Transfusion* 2014; 54: 3108-3120 [PMID: 24894363 DOI: 10.1111/trf.12743]

79 Van Pham P, Truong NC, Le PT, Tran TD, Vu NB, Bui KH, Phan NK. Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications. *Cell Tissue Bank* 2016; 17: 289-302 [PMID: 26679929 DOI: 10.1007/s10561-015-9541-6]

80 Stüdle C, Occhetta P, Greier M, Mehrkens A, Barbero A, Martin I. Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential. *Stem Cells Transl Med* 2019; 8: 194-204 [PMID: 30676001 DOI: 10.1002/sctm.18-0147]

81 Eirin A, Zhu XY, Puranik AS, Woollard JR, Tang H, Dasari S, Lerman A, van Wijnen AJ, Lerman LO. Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue-derived mesenchymal stem/stromal cells. *Sci Rep* 2016; 6: 36120 [PMID: 27786293 DOI: 10.1038/srep36120]

82 Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. *Asian Pac J Allergy Immunol* 2020; 38: 1-9 [PMID: 32105090 DOI: 10.12932/AP-200220-0772]

83 Meng F, Xu R, Wang S, Xu Z, Zhang C, Li Y, Yang T, Shi L, Fu J, Jiang T, Huang L, Zhao P, Yuan X, Fan X, Zhang JY, Song J, Zhang D, Jiao Y, Liu L, Zhou C, Maurer M, Zuniga A, Shi M, Wang FS. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: a phase 1 clinical trial. *Signal Transduct Target Ther* 2020; 5: 172 [PMID: 32855385 DOI: 10.1038/s41392-020-00286-5]

84 Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. *Immunity* 2020; 52: 583-589 [PMID: 32259480 DOI: 10.1016/j.immuni.2020.03.007]

85 Liang B, Chen J, Li T, Wu H, Yang W, Li Y, Li J, Yu C, Nie F, Ma Z, Yang M, Xiao M, Nie P, Gao Y, Qian C, Hu M. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells: A case report. *Medicine (Baltimore)* 2020; 99: e23429 [PMID: 32756149 DOI: 10.1097/MD.00000000000021429]

86 Wang L, Liu T, Liang R, Wang G, Liu Y, Zou J, Liu N, Zhang B, Ding X, Cai X, Wang Z, Xu X, Ricordi C, Wang S, Shen Z. Mesenchymal stem cells ameliorate β cell dysfunction of human type 2 diabetic islets by reversing β cell dedifferentiation. *EBioMedicine* 2020; 51: 102615 [PMID: 31918404 DOI: 10.1016/j.ebiom.2019.102615]

87 Zamula A, Wang FS, Ippolito G, Petrillo V, Agrati C, Azhar EI, Chang C, El-Kafrawy SA, Osman M, Zitvogel L, Galle PR, Locatelli F, Gorman E, Cordon-Cardo C, O’Kane C, Mauser M. Reducing mortality and morbidity in patients with severe COVID-19 disease by advancing ongoing trials of Mesenchymal Stromal (stem) Cell (MSC) therapy - Achieving global consensus and visibility for cellular host-directed therapies. *Int J Infect Dis* 2020; 96: 431-439 [PMID: 32425638 DOI: 10.1016/j.ijid.2020.05.040]

88 Rogers CJ, Harman RJ, Bunnell BA, Schreiber MA, Xiang C, Wang FS, Santidrian AF, Minev BR. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. *J Transl Med* 2020; 18: 203 [PMID: 32423449 DOI: 10.1186/s12967-020-02380-2]
