Loss of the Thioredoxin Reductase Trr1 Suppresses the Genomic Instability of Peroxiredoxin tsa1 Mutants

Sandrine Ragu1,2a, Michèle Dardalhon1,2, Sushma Sharma3, Ismail Iraqui1,2, Géraldine Buhagiar-Labarchède1,2, Virginie Grondin1,2b, Guy Kienda1,2, Laurence Vernis1,2, Roland Chanet1,2, Richard D. Kolodner4, Meng-Er Huang1,2*, Gérard Faye1,2

1 Centre National de la Recherche Scientifique, UMR3348, Orsay, France, 2 Institut Curie, Centre de Recherche, Orsay, France, 3 Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden, 4 Ludwig Institute for Cancer Research, University of California School of Medicine San Diego, La Jolla, California, United States of America

Abstract
The absence of Tsa1, a key peroxiredoxin that scavenges H2O2 in Saccharomyces cerevisiae, causes the accumulation of a broad spectrum of mutations. Deletion of TSA1 also causes synthetic lethality in combination with mutations in RAD51 or several key genes involved in DNA double-strand break repair. In the present study, we propose that the accumulation of reactive oxygen species (ROS) is the primary cause of genome instability of tsa1Δ cells. In searching for spontaneous suppressors of synthetic lethality of tsa1Δ rad51Δ double mutants, we identified that the loss of thioredoxin reductase Trr1 rescues their viability. The trr1Δ mutant displayed a CanR mutation rate 5-fold lower than wild-type cells. Additional deletion of TRR1 in tsa1Δ mutant reduced substantially the CanR mutation rate of tsa1Δ strain (33-fold), and to a lesser extent, of rad51Δ strain (4-fold). Loss of Trr1 induced Yap1 nuclear accumulation and over-expression of a set of Yap1-regulated oxidoreductases with antioxidant properties that ultimately re-equilibrate intracellular redox environment, reducing substantially ROS-associated DNA damages. This trr1Δ -induced effect was largely thioredoxin-dependent, probably mediated by oxidized forms of thioredoxins, the primary substrates of Trr1. Thioredoxin Trx1 and Trx2 were constitutively and strongly oxidized in the absence of Trr1. In trx1Δ trx2Δ cells, Yap1 was only moderately activated; consistently, the trx1Δ trx2Δ double deletion failed to efficiently rescue the viability of tsa1Δ rad51Δ. Finally, we showed that modulation of the dNTP pool size also influences the formation of spontaneous mutation in trr1Δ and trx1Δ trx2Δ strains. We present a tentative model that helps to estimate the respective impact of ROS level and dNTP concentration in the generation of spontaneous mutations.

Citation: Ragu S, Dardalhon M, Sharma S, Iraqui I, Buhagiar-Labarchède G, et al. (2014) Loss of the Thioredoxin Reductase Trr1 Suppresses the Genomic Instability of Peroxiredoxin tsa1 Mutants. PLoS ONE 9(9): e108123. doi:10.1371/journal.pone.0108123

Editor: Luis Eduardo Soares Netto, Instituto de Biotecnologia - Universidade de São Paulo, Brazil

Received March 28, 2014; Accepted August 25, 2014; Published September 23, 2014

Copyright: © 2014 Ragu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: This study was funded by the Centre National de la Recherche Scientifique and the Institut Curie. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: meng-er.huang@curie.fr

a Current address: Institut Gustave Roussy, UMR8200, Villejuif, France

b Current address: INRA Versailles, Unité Pessac, Versailles, France

Introduction
Reactive oxygen species (ROS) are formed in all oxygen-consuming organisms. ROS can attack almost all cell components and can induce many types of DNA damage that can cause mutations and genome rearrangements. Yeasts like Saccharomyces cerevisiae and can induce many types of DNA damage that can cause consuming organisms. ROS can attack almost all cell components and GSH is the reductant of the glutaredoxins. The thioredoxin (Trx) pathways. The GSH pathway involving glutaredoxins is thought to provide a redox buffering function and GSH is the reductant of the glutaredoxins. The thioredoxin redox system comprising the thioredoxins (Trxs) and thioredoxin reductase (Trr) plays a major role in H2O2 metabolism through the peroxiredoxins [4]. The Trxs are the preferred reductants of the ribonucleotide reductase (RNR) [5] and the 3'-phosphoadenylylsulfate reductase (PAPS reductase) [6]. When S. cerevisiae cells experience endogenous or exogenous stresses that disturb redox homeostasis, they respond by altering their transcriptional program [7]. Two transcription factors are mainly involved: Yap1 and Skn7, which function in part cooperatively in the peroxide response [8]. Yap1 is the main regulator that controls the expression of S. cerevisiae genes encoding most antioxidants, components of glutathione and carbohydrate metabolism, and components of different metal and drug response pathways [8–10].
S. cerevisiae possesses five peroxiredoxins, which have different sub-cellular localizations. Among them, Tsa1 has the most potent ability to scavenge H$_2$O$_2$ [11]. In addition to its role in peroxide reduction, Tsa1 is also known to have chaperone activity [12]. Tsa1 is the only peroxiredoxin that causes an elevated CanR mutation rate when individually removed, indicating that Tsa1 is the most important peroxiredoxin for preventing ROS-induced mutations [13]. DNA lesions resulting from oxygen metabolism can lead to formation of mutations by action of replicative DNA polymerases and translesion DNA polymerases. ROS-induced DNA damage also activates checkpoint pathways which could stimulate dNTP production [14]. This up-regulation of dNTP synthesis facilitates the repair of DNA lesions but is associated with higher mutation rates resulting in part from more efficient translesion DNA synthesis [15]. Tang and collaborators [16] have shown that the accumulation of ROS in tsa1Delta cells accumulate DNA lesions which, by presumably activating the DNA damage checkpoint, stimulate dNTP production. However, it is not understood whether it is the accumulations of ROS and consequently accumulations of mutagenic DNA lesions or the overproduction of dNTPs that is the primary cause of the elevated CanR mutation rate in tsa1 mutants.

Homologous recombination is involved in repair of many types of DNA lesions. We have previously shown that combining a tsa1Delta mutation with a rad51Delta mutation or mutations inactivating other key genes that function in DNA double-strand break (DSB) repair results in cell death [17]. Oxygen metabolism likely takes part in the inviability of tsa1Delta rad51Delta double mutants since anaerobic conditions were found to restore the viability of tsa1Delta rad51Delta double mutants [18]. One explanation for this is that in cells growing in aerobic conditions, the absence of Tsa1 results in a high level of DNA damage that is lethal in the absence of key DNA repair pathways such as DSB repair. To better understand the cause of the elevated mutation rate of the tsa1Delta mutants and the synthetic lethality of tsa1Delta rad51Delta double mutants, we screened for spontaneous mutations that suppress synthetic lethality of tsa1Delta rad51Delta double mutants. We found that mutations in TRR1, which encodes the cytosolic thioredoxin reductase, are able to rescue the growth of tsa1Delta rad51Delta double mutant and suppress the genomic instability phenotype of tsa1Delta mutants. Our results support a model in which the majority of spontaneous mutations that occur in wild-type strains are formed from lesions generated by ROS.

Results

ROS are the primary cause of genome instability in tsa1Delta cells

Tsa1 plays a key role in preventing mutations and genome rearrangements [13]. The mutator phenotype of tsa1Delta cells might be primarily due to their inability to reduce H$_2$O$_2$. The endogenous concentrations of H$_2$O$_2$ and alkyl hydroperoxides in wild-type and tsa1Delta strains have so far not been precisely determined, because available ROS sensors were not selective or sensitive enough [19]. However, several laboratories have detected a significant increased intracellular ROS levels in tsa1Delta strains [16,20–23]. The conversion of this excess of endogenous H$_2$O$_2$ to hydroxyl radical through the Fenton reaction, believed to occur at or near DNA, could induce a variety of types of DNA damage [24]. Yet the increase of intracellular H$_2$O$_2$ in tsa1Delta cells versus wild-type cells was not high enough to change the nuclear and cytoplasmic GSH/GSSG redox state detectable by the genetically encoded redox sensor rxYFP [25] (Figure S1). It is generally accepted that the CanR mutation rate in cells is indicative of the level of DNA damage, which itself follows the variations of ROS concentration. One way to decrease endogenous ROS concentrations is to grow yeast cells under anaerobiosis. The CanR mutation rates of wild-type and tsa1Delta strains, grown in aerobic or anaerobic conditions, were measured by fluctuation analysis [26]. As shown in Table 1, the CanR mutation rates were similar for wild-type cells grown under both conditions. An identical observation was published by Northam et al. [27]. In contrast, the CanR mutation rate of the tsa1Delta strain decreased substantially under anaerobiosis and was the same as the CanR mutation rate of the wild-type strain. This observation supports the view that scavenging intracellular H$_2$O$_2$ is one of the major cellular functions of Tsa1 that protects the nuclear genome from damage by ROS. These results suggest that ROS in tsa1Delta mutant grown under aerobic conditions is a major source of DNA damage underlying the formation of CanR mutations. It may be not so surprising that the anaerobiosis does not reduce the basal level of CanR mutation rate in the wild-type strain. In fact, anaerobiosis was shown to invoke a stress response in yeast cells [28,29]. In addition, osmotic and DNA replication stress elicit mutagenesis [27,30,31]. Although the level of ROS is greatly reduced in anaerobic conditions and consequently the level of DNA damage generated, wild-type cells (as well as tsa1Delta cells) could sense and respond to anoxia. Indeed, hypoxia constitutes a profound cellular stress for mammalian cells that can promote genetic instability [32].

Yap1 is not activated in tsa1Delta mutant

Yap1 is a redox sensitive transcription factor, considered as a central node in the oxidative stress response network [33]. Yap1 regulates the expression of several hundreds of genes [http://www.yeastgenome.org] among which are genes coding for enzymes with antioxidant properties, numerous oxido-reductases and transcription factors. In non-stressed wild-type cells, Yap1 exists mainly in its reduced form and is distributed equally throughout the cytoplasm and nucleus [34]. In response to oxidative stress, Yap1 rapidly forms two disulfide bonds, resulting in the inhibition of the Yap1 interaction with the nuclear export protein Crm1, and consequently its accumulation within the nucleus [34]. Thus, an excess of H$_2$O$_2$ in tsa1Delta cells may increase endogenous oxidative stress, and Yap1 should be oxidized. Published results have proven the difficulties to distinguish by Western blotting oxidized and reduced forms of Yap1 in W303 derived strains [35,36]. As an alternative approach, we followed by qRT-PCR analysis the expression levels of several Yap1-target genes [8–10] in wild-type cells and in cells harboring deletions tsa1Delta, yap1Delta or both (Table 2). Yap1 was found not activated in the tsa1Delta strain, as only small variations were observed between wild-type and tsa1Delta strains. These variations are in no way comparable to those produced by exogenous oxidative stress [37].

What could be the cause of the non- or weak activation of Yap1 in wild-type cells? It has been proposed that the Gpx3 sensor regulates the cellular H$_2$O$_2$ homeostasis in S. cerevisiae and is necessary for Yap1 activation. Gpx3 senses H$_2$O$_2$ and converts this signal into a cysteine-based redox cascade that culminates in oxidation of Yap1 [38,39]. A third component, Ybp1 seems to be crucial for H$_2$O$_2$-induced Yap1 activation. Ybp1 forms an H$_2$O$_2$-induced complex with Yap1 and the transient Yap1-Gpx3 intermediate cannot be formed in the absence of Ybp1 [40,41], although this mechanism is not fully understood. Strains harboring the W303 genetic background contain a mutated YBP1 gene. In this context, Yap1 activation appears to be Gpx3-independent but requires Tsa1 [35]. The yeast strains used in this study are derived in part from W303 strain. We sequenced YBP1 gene of GF4729 strain and...
identified all the mutations previously described in allele ybp1–2 [35] (data not shown). Thus the absence of a functional Ybp1 protein might be responsible for the absence of Yap1 activation in the \textit{tsa1}\Delta strain. To test this hypothesis, we replaced the \textit{ybp1–2} allele by the \textit{YBP1} gene isolated from an S288c strain that is free of any mutation. We monitored by qRT-PCR analysis the expression level of six Yap1-target genes in GF4729 (wild-type, \textit{ybp1–2}), GF5652 (wild-type, \textit{YBP1}), GF5270 (\textit{tsa1}\Delta \textit{ybp1–2}) and GF5606 (\textit{tsa1}\Delta, \textit{YBP1}) strains. As shown in Figure 1, the expressions of these target genes were very similar between GF4729 (\textit{wild-type, ybp1–2}) and GF5270 (\textit{tsa1}\Delta \textit{ybp1–2}) strains. The expression of target genes changed within 2-fold between GF4729 (\textit{wild-type, ybp1–2}) and GF562 (\textit{wild-type, YBP1}) strains, and between GF5270 (\textit{tsa1}\Delta \textit{ybp1–2}) and GF5606 (\textit{tsa1}\Delta, \textit{YBP1}) strains. Yet, these small variations did not affect significantly the Can8 mutations rates (Table 3). However, as shown by Okazaki and coworkers [35], it remains possible that a strain like GF5606 (\textit{tsa1}\Delta \textit{YBP1}) can use preferentially the Ybp1/Gpx3 pathway to activate Yap1 in response to a strong exogenous oxidative stress.

Thioredoxins are thought to be the physiological reducing agents and are responsible for the negative regulation of the Yap1 transcriptional activity [42,44]. In non-stressed wild-type cells, Trxs are kept almost exclusively in their reduced forms [42,45,46]. An increase of endogenous H2O2 concentration leads to the oxidation of Tsal that will be reduced in turn at the expense of reduced Trxs [4]. We estimated the redox state of Trxs in \textit{tsa1}\Delta cells using rabbit anti-Trx1 and Trx2 antibodies and found that both Trxs were in a reduced state in \textit{tsa1}\Delta cells as in wild type cells (Figure 2A, lanes 1, 2; Figure 2B, lanes 8, 9). Taken together, we propose that an increased endogenous concentration of H2O2 in \textit{tsa1}\Delta cells could result from the combined effect of the absence of Tsal itself and the inhibition of Yap1 activation by the reduced Trxs.

Identification of a suppressor of the lethality of \textit{tsa1}\Delta \textit{rad51}\Delta double mutants

We previously observed that \textit{tsa1}\Delta \textit{rad51}\Delta double mutants were inviable under aerobic conditions but viable under anaerobic conditions [17,18]. To screen for spontaneous mutations that rescue the viability of \textit{tsa1}\Delta \textit{rad51}\Delta double mutants under aerobic conditions, \textit{tsa1}\Delta \textit{rad51}\Delta cells were grown under anaerobic conditions, harvested and about 4×10^6 cells were plated under aerobic conditions. Incubation under aerobic conditions resulted in massive cell death and the appearance of a small number of viable colonies. One viable colony from each of 20 independent experiments was selected and further characterized. These 20 strains each containing a potential suppressor mutation were then crossed with a \textit{tsa1}\Delta strain. Analysis of the meiotic segregants showed that the putative suppressor mutations (named \textit{sup1} to \textit{sup20}) were all single mutations, recessive and mapped at loci that were not linked to the starting \textit{rad51}\Delta mutation.

We used a cloning scheme employing the red/white sectored colony method described by Zhao and co-workers [47] to identify the suppressor genes. Briefly, \textit{ADE2} and \textit{ADE3} were disrupted in the \textit{tsa1}\Delta \textit{rad51}\Delta \textit{sup1} strain and the plasmid p1591 (\textit{GEN, URA3, TSA1, ADE3}) was introduced, yielding the strain GF5377. The presence of this plasmid, which is not needed for cell viability, confers a red color to the colonies on selective medium (SC-ura). Cells growing in the absence of selection for this plasmid can spontaneously lose it and form red/white sectored or white colonies. As the \textit{sup1} mutation was recessive, we expected that the introduction of a plasmid harboring the \textit{SUP1} wild-type gene into strain GF5377 would result in red colonies since the resident plasmid p1591 (\textit{GEN, URA3, TSA1, ADE3}) would now be required for growth. After transformation of strain GF5377 with a \textit{CEN-LEU2} plasmid-based genomic library, candidate \textit{SUP1} transformants were identified as solid red colonies on plates lacking leucine. After retesting 137 red colonies and then screening the resulting 21 strains for lack of growth on media containing 5-FOA, 7 plasmid-containing strains were obtained. Plasmids were rescued from these strains and sequenced which revealed that they each contained an ~10 kb-long insert with an overlapping region of chromosome IV containing two full-length ORFs, \textit{YDR352w} and \textit{TRR1}. Subcloning of these two ORFs and further analysis showed that only \textit{TRR1} could complement the \textit{sup1} mutation in the GF5377 strain. We then determined the DNA sequence of the \textit{TRR1} gene from each of the 20 independently isolated suppressor strains as well as that of the wild-type strain GF4729 revealing that each of the suppressor strains contained a mutation in \textit{TRR1} (Table S4). To further confirm that inactivation of \textit{TRR1} suppresses the inviability of the \textit{tsa1}\Delta \textit{rad51}\Delta double mutant, we deleted \textit{TRR1} in a \textit{tsa1}\Delta/\textit{TSA1} rad51\Delta/RAD51 diploid strain and showed by tetrad analysis that the \textit{TRR1} deletion restored the viability of double-mutant \textit{tsa1}\Delta \textit{rad51}\Delta in aerobic conditions (Table 4).

\textit{TRR1} encodes the cytosolic thioredoxin reductase, whose known major function is to reduce the oxidized forms of Trx1 and Trx2. Thioredoxin reductase and thioredoxins act as a disulfide reductase system and protect cells against both oxidative and reductive stress [4,48]. Our results therefore suggest that deregulation of the thioredoxin redox system resulting from the \textit{trr1} mutation may promote the mechanism suppressing lethality of \textit{tsa1}\Delta \textit{rad51}\Delta double mutants.

The oxidized thioredoxins in \textit{trr1}\Delta mutants contribute to Yap1 activation

It was previously reported that Yap1 is constitutively and partially oxidized and that the basal expression of Yap1 targets is elevated in \textit{trr1}\Delta mutants in absence of external stress [42,49]. Besides, \textit{Trr1} inactivation enhances Msn2 response to H2O2 [50].

Table 1. Can8 mutation rates of wild-type and tsa1\Delta strains grown in aerobic and anaerobic conditions.
Strain
GF4729
GF5270

Mutation rates were determined as described in Material and Methods and were calculated each from 19 parallel cultures, using fluctuation analysis. 95% confidence intervals are indicated.

doi:10.1371/journal.pone.0108123.t001
In fact, the transcriptional response to oxidative stress is known to depend on several transcription factors, including Yap1, Skn7, Msn2 and Msn4. Yap1 and Skn7 control independent but overlapping responses [8]; Msn2 and Msn4 mediate a transcriptional response which is common to many stress including oxidative stress [31]. We investigated whether a specific set of genes is transcriptionally regulated by Yap1/Skn7 and/or Msn2/ Msn4 in trr1Δ mutants. The expressions of 13 genes encoding oxido-reductases were monitored by quantitative RT-PCR (Table 5). These genes include TSA2 and AHP1 whose expression is regulated by Yap1/Skn7 and Msn2/Msn4; GLR1, GSH1, CCP1, YKL071w, TSA1, TRR1 and TRX2 regulated by Yap1 or Yap1/ Skn7; CIT1, GRX1 and GRX2 regulated by Msn2/Msn4, and finally TRX1 which is not regulated by any of these transcription factors (http://www.yeastgenome.org). YKL071w is a gene of unknown function encoding a member of the dehydrogenase/ reductase family [52]. Remarkably, the genes containing one or more Yap1 response elements (YRE) in their promoters were highly induced in the trr1Δ strain compared to the wild-type strain, especially TSA2 (>600-fold), TRX2 (30-fold), CCP1 (30-fold) and YKL071w (>70-fold). As expected, TRX1 was not up-regulated in trr1Δ strains. Interestingly, CIT1 which is a typical target of Msn2/Msn4 transcription factor [50] was not induced in trr1Δ strains. Taken together, these results suggest that the over-expression of the oxido-reductases tested is mainly due to the activation of Yap1. Consistently, we observed that Yap1 accumulated in the nucleus of trr1Δ cells (Figure 3).

To address the question of how trr1 mutations trigger the activation of Yap1, we investigated the involvement of the thioredoxins Trxl and Trx2 in this process. Thioredoxins are the primary substrates of Trr1 and are thought to be the physiological reducing agents responsible for negatively regulating Yap1 activity [42–44]. In unstressed wild-type cells, Trxs are found almost exclusively in their reduced form [42,45,46]. We therefore used quantitative RT-PCR to monitor the expression level of the above defined 13 genes coding for oxido-reductases in a set of strains containing different combinations of trr1Δ, trxlΔ and trx2Δ deletion mutations (Table 5, Figure 4). Globally, the tested genes were not over-expressed in strains harboring either trxlΔ ortrx2Δ individual deletion, they were moderately over-expressed in strains harboring the trxlΔ trx2Δ double deletion with or without trr1Δ, and they were highly over-expressed in strains harboring the trr1Δ deletion with either trxlΔ or trx2Δ. The double deletion trr1Δ trxlΔ or trr1Δ trx2Δ induced higher expression than trr1Δ with the highest effect in trr1Δ trx2Δ (Table 5, Figure 4). Different extents of Yap1 activation were most visible when comparing expression levels of genes TSA2, AHP1, CCP1 and YKL071w among these mutants. The fact that the tested genes were significantly more activated in a trr1Δ, trr1Δ trxlΔ, or trr1Δ trx2Δ strain than in trr1Δ trxlΔ trx2Δ strain suggest that the presence of Trxl or Trx2 largely contributes to the strong over-expression of the genes in trr1Δ cells. On the other hand, the moderate Yap1 activation in trxlΔ trx2Δ suggests the existence of some Trxl/Trx2-independent mechanisms.

We then analyzed the oxidation state of Trxl and Trx2 in the wild-type, trxlΔ, trx2Δ, trr1Δ, trr1Δ trxlΔ and trr1Δ trx2Δ contexts using anti-Trxl and anti-Trx2 antibodies. The anti-Trxl antibody (kind gift from Dr. Grant) was prepared against Trxl while slightly cross-reacting with Trx2 [45,53]. The anti-Trx2 antibody was prepared against Trx2 (see Materials and Methods). Western blots using anti-Trxl antibody revealed that Trxl was >90% reduced in wild-type and trx2Δ strains whereas no visible signal was observed with cell extracts from trxlΔ strains (Figure 2B, lanes 1, 4 and 3) [NB: The expression levels of

Strains	Genotype	TSA2	TRX2	GRX2	GRX1	CCP1	YKL071w	CIT1	GRX1	GRX2	CIT1	GRX1	GRX2
GF4729	wild-type	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
GF5265	tsa1Δ	0.2	0.5	0.3	0.4	0.5	0.4	0.4	0.35	0.4	0.4	0.35	0.9
GF5381	yap1Δ	1.2	0.5	0.4	0.4	0.25	0.9	0.9	0.35	0.4	0.4	0.35	0.9

The expression of six Yap1-regulated oxido-reductase genes was followed by quantitative RT-PCR. mRNA levels were calculated as ratios relative to that of the wild-type strain GF4729.

![Table 2](https://www.plosone.org/article/file/10.1371/journal.pone.0108123.t002.png)
TRX2 and TRXI in trr1Δ and trx2Δ strains respectively, were similar to that in wild-type (Table 5). The same anti-Trx1 antibody revealed that Trx1 is >90% oxidized in trr1Δ trx2Δ cell extracts (Figure 2B, lane 6) whereas oxidized (70–75%) and reduced (25–30%) forms were detected in trr1Δ and trr1Δ trx1Δ extracts (Figure 2B, lanes 2 and 5), which indicates that anti-Trx1 antibody cross-reacts with Trx2 when Trx2 is over-expressed (Table 5). Using anti-Trx2 antibody, western blots of trr1Δ trx2Δ cell extracts yielded no signal, (Figure 2A, lane 4) whereas in trr1Δ and trr1Δ trx1Δ cell extracts, Trx2 was at least 10-times more expressed than in the wild type strain and 40–50% Trx2 was in its oxidized form (Figure 2A, lanes 3 and 5). The fact that Trx2 is not completely oxidized in trr1Δ cells implies existence of an alternative electron donor. Indeed, recent data suggest that

Strain	Genotype	Mutation rate x 10^-7	95% confidence interval
GF4729	wild-type	4.20	3.98–4.82
GF5652	wild-type YBP1	3.76	3.44–4.40
GF5270	tsa1Δ	70.7	61.60–101.50
GF5606	tsa1Δ YBP1	65.57	52.76–77.23
GF5698	tsa2Δ	3.60	3.03–4.41
GF5965	tsa1Δ tsa2Δ	70.61	57.13–96.93
GF5505	trr1Δ	0.84	0.55–1.05
GF5499	trr1Δ tsa1Δ	2.15	1.88–2.78
GF6054	trr1Δ tsa2Δ	1.05	0.62–1.45
GF5967	trr1Δ tsa1Δ tsa2Δ	3.28	2.71–3.58
GF5668	trr1Δ trx2Δ	2.11	1.74–2.42
GF5898	trr1Δ trx1Δ trx2Δ	2.71	2.26–2.98
GF5674	trx1Δ trx2Δ tsa1Δ	5.75	5.21–7.05
GF6067	trx1Δ tsa2Δ tsa1Δ tsa2Δ	5.87	4.94–7.25
GF5675	rad51Δ	38.26	30.50–46.42
GF5506	trr1Δ rad51Δ	9.41	7.30–12.35
GF6020	trx1Δ trx2Δ rad51Δ	80.54	65.35–97.57
GF5494	tsa1Δ rad51Δ	25.53	20.89–35.09
GF5959	tsa1Δ tsa2Δ rad51Δ	73.43	67.41–77.85

Each mutation rate was calculated from 19 to 57 independent cultures. doi:10.1371/journal.pone.0108123.t003
GSH, directly or indirectly, is able to reduce oxidized Trxs [54,55].

These results raise the question of whether the over-expression of the Yap1-targeted genes in $trr1\Delta$ cells is due to a high concentration of oxidized Trxs or conversely the decreased level of reduced Trxs, since the latter form may impede Yap1 activation. If thioredoxins regulate Yap1 activity by the inhibitory effect of their reduced forms, then Yap1 activity in $trx1\Delta trx2\Delta$ mutant should be at least similar, if not higher, than in $trr1\Delta$ mutants, which was not the case (Table 5). Hence we conclude that, very probably, the

Figure 2. Oxidation state of Trx1 and Trx2 in different strains defective in maintaining redox homeostasis. Wild-type and mutated cells were processed for western blotting as described in Materials and Methods. Proteins were detected with rabbit polyclonal anti-Trx2 (A, C) and anti-Trx1 (B) antibodies. Extracts from wild-type cells, treated with 0.5 mM H$_2$O$_2$ for 5 min in YPG, was loaded as a control (B, lane 7).

doi:10.1371/journal.pone.0108123.g002

Table 4. trr1Δ deletion suppresses the lethality of tsa1Δ rad51Δ.

Segregant genotype	Number observed	Colony size
$tsa1\Delta rad51\Delta trr1\Delta$	17	m
$tsa1\Delta rad51\Delta trr1\Delta$	0	
$tsa1\Delta RAD51 trr1\Delta$	22	m
$tsa1\Delta RAD51 TRR1$	18	G
TSA1 $rad51\Delta trr1\Delta$	11	p
TSA1$rad51\Delta TRR1$	23	G
TSA1$RAD51trr1\Delta$	15	p
TSA1$RAD51TRR1$	17	G

Tetrad analysis of meiotic products of diploid strain $tsa1\Delta/TSA1 rad51\Delta/RAD51 trr1\Delta/TRR1$. These three loci are unlinked. 40 tetrads were dissected. 20 segregants of each type were expected. Colony size: p < m < G.

doi:10.1371/journal.pone.0108123.t004
oxidized thioredoxins intervene in Yap1 activation in trr1Δ trr1Δ trx1Δ or trr1Δ trx2Δ cells, directly or indirectly. Consistently, Yap1 activation is the strongest in GF5899 strain (trr1Δ trx2Δ) (Table 5) in which Trx1 is more than 90% oxidized (Figure 2). In trr1Δ tsa1Δ cells, Yap1 is about 40% less activated than in trr1Δ cells (Table 5) suggesting that Tsa1 might play a role in Yap1 activation [36].

The absence of Trr1 suppresses mutagenesis in tsa1Δ and rad51Δ strains

Loss of Trr1 can fully rescue the viability of tsa1Δ rad51Δ double mutants and is associated with over-expression of Yap1-controlled oxido-reductases. We reasoned that over-expression of oxido-reductases may reduce significantly intracellular ROS level and therefore suppress genomic instability of tsa1Δ and/or rad51Δ strains. As previously reported, TSA1 deletion resulted in significant increase in CanR mutation rate, 70.70×10⁻⁷, compared to the wild-type strain that was 4.20×10⁻⁷ (Table 3). CanR mutation rate for a rad51Δ was 38.26×10⁻⁷. The synthetic lethality between tsa1Δ and rad51Δ may mean that cells cannot cope with toxic levels of DNA damage in a tsa1Δ rad51Δ haploid strain grown in aerobic conditions. Furthermore, the CanR rate in a trr1Δ tsa1Δ strain was 2.15×10⁻⁷ that is a 33-fold reduction compared to a tsa1Δ single mutant and is lower than the CanR mutation rate of the wild-type strain. Similarly but to a lesser extent, CanR mutation rate for a rad51Δ trr1Δ mutant was 9.41×10⁻⁷ that is a 4-fold reduction compared to rad51Δ single mutant. These different effects of trr1Δ on tsa1Δ and rad51Δ may suggest that ba1Δ-induced increased mutagenesis results from increased ROS accumulation and can be efficiently attenuated by over-expression of oxido-reductases while rad51Δ-induced mutagenesis may be only partially linked to ROS accumulation. The CanR mutation rate in tsa1Δ rad51Δ trr1Δ strain was 25.53×10⁻⁷, corresponding to a multiplicative effect of mutations of tsa1Δ trr1Δ and rad51Δ trr1Δ (2.15×9.41). Taken together, our results suggest that trr1Δ rescues the viability of tsa1Δ rad51Δ double mutants through suppression of ba1Δ and rad51Δ-induced mutagenesis that is achieved by redox regulated over-expression of oxido-reductases.

Interestingly, the CanR mutation rate in a trr1Δ strain was 0.84×10⁻⁷, 5-fold lower than in a wild-type strain. Due to the over-expression of oxido-reductases, the ROS level in trr1Δ cells should be very low. We can estimate the respective contribution of Tsa1 and Tsa2 in ROS reduction in the trr1Δ context by comparing the CanR mutations rates. The mutation rates of trr1Δ tsa1Δ, trr1Δ tsa2Δ and trr1Δ tsa1Δ tsa2Δ strains were 2.15×10⁻⁷, 1.05×10⁻⁷ and 3.28×10⁻⁷, respectively. These data suggest that the over-expression of Tsa1 and Tsa2 in trr1Δ cells plays a role in reducing ROS level, but others oxido-reductases are also involved.

We analyzed the meiotic products of diploid strain trr1Δ/TRR1 tsa1Δ/TSA1 rad51Δ/RAD51 tsa2Δ/TSA2. Tsa2 was not essential for the viability of a mutant carrying the triple deletion trr1Δ tsa1Δ rad51Δ Table 6. Nevertheless, Tsa1 and Tsa2 contributed to suppress the CanR mutation formation of trr1Δ rad51Δ (9.41×10⁻⁷) since CanR mutation rate was 25.53×10⁻⁷ and 74.45×10⁻⁷ in trr1Δ tsa1Δ rad51Δ and trr1Δ tsa1Δ tsa2Δ rad51Δ strains respectively. Viability of trr1Δ tsa1Δ tsa2Δ rad51Δ could be attributed to the over-expression of other oxido-reductases. To further clarify the relationship between Tsa1/Tsa2 and thioredoxins, we analyzed the oxidation state of Trx2 in trr1Δ, trr1Δ tsa1Δ, trr1Δ tsa2Δ and trr1Δ tsa1Δ tsa2Δ strains using anti-Trx2 antibody. Constant ratios of the reduced and oxidized forms of Trx2 were found in trr1Δ, trr1Δ tsa1Δ and trr1Δ tsa2Δ cells (Figure 2C, lanes 2, 4, 5), whereas the ratio was slightly increased in the trr1Δ tsa1Δ tsa2Δ strain (Figure 2C, lane 6), suggesting that the reduced form of Trx2 is not consumed more by Tsa1 or Tsa2 in trr1Δ strains than in wild-type strains.

As trx1Δ trx2Δ double deletion exhibits only a moderate effect in inducing overexpression of oxido-reductases, we determined whether this double deletion has a significant effect on the mutation formation in tsa1Δ and rad51Δ strains and is capable of rescuing viability of tsa1Δ rad51Δ mutants. The CanR mutation rate of a trx1Δ trx2Δ strain was 2.11×10⁻⁷ (Table 3), that is 2-fold less than in a wild-type strain. The CanR rate in a trx1Δ trx2Δ tsa1Δ strain was 5.75×10⁻⁷ that is a 12-fold reduction compared to a tsa1Δ strain but is higher than that in trr1Δ tsa1Δ strain (2.15×10⁻⁷). Surprisingly, the CanR mutation rate of the rad51Δ

Figure 3. Localization of Yap1-GFP in TRR1 and trr1Δ cells. Living cells in exponential phase expressing the Yap1-GFP fusion protein under the control of native Yap1 promoter and stained by DAPI were analyzed by fluorescence microscopy. Overlay image of DAPI and GFP signal (merge) are also shown.

doi:10.1371/journal.pone.0108123.g003
Table 5. Expression of Yap1-regulated or -independent oxido-reductases in different strains.

| Strain | Genotype Set | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C |
|----------|--------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| GF4729 | wild-type | 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0|
| GF5630 | trx1 | 1.7| 1.4| 0.9| 1.0| 1.0| 1.1| 1.3| 1.2| 0.7| 1.5| 1.0| NA | 1.3| 1.3| NA | 1.2| 1.3|
| GF5643 | trx2 | 1.6| 1.4| 0.9| 1.2| 1.0| 1.3| 1.3| 0.8| 0.8| 0.8| 0.8| NA | 0.8| 0.8| NA | 0.8| 0.8|
| GF5668 | trx1 trx2 | 1.6| 1.4| 0.9| 1.2| 1.0| 1.3| 1.3| 0.8| 0.8| 0.8| 0.8| NA | 0.8| 0.8| NA | 0.8| 0.8|
| GF5719 | trx1 trx2 tsa1| 3.9| 1.2| 0.9| 1.2| 1.0| 1.3| 1.3| 0.8| 0.8| 0.8| 0.8| NA | 0.8| 0.8| NA | 0.8| 0.8|
| GF5898 | trr1 trx1 | 5.6| 1.2| 0.9| 1.2| 1.0| 1.3| 1.3| 0.8| 0.8| 0.8| 0.8| NA | 0.8| 0.8| NA | 0.8| 0.8|
| GF5911 | trr1 trx2 tsa1| 5.6| 1.2| 0.9| 1.2| 1.0| 1.3| 1.3| 0.8| 0.8| 0.8| 0.8| NA | 0.8| 0.8| NA | 0.8| 0.8|

The expression of 13 oxido-reductase genes in 12 strains was measured by quantitative RT-PCR. mRNA levels were calculated as ratios relative to that of the wild-type strain GF4729. Yeast strains were ordered according to their membership to the three sets (A, B and C) highlighted by correspondence analysis (Figure 4). Genes were analyzed the meiotic products of diploid strain D rad51 D tsa1 D deletions, while the D trx1 D trx2 D double deletion only reduces the mutagenic effect linked to D tsa1 D but increases DNA damage in D rad51 D. Consequently, the D tsa1 D rad51 D trx1 D trx2 D cells may not be able to cope with the high level of DNA damage still formed. Indeed, we determined whether D trx1 D trx2 D might rescue the synthetic lethality of a strain bearing D tsa1 D rad51 D D. We analyzed the meiotic products of diploid strain D tsa1 D TSA1 D rad51 D RAD51 D TRX1 D TRX2 D and obtained only 10 D tsal D rad51 D trx1 D trx2 D segregants instead of the 35 expected (Table 7). The severe slow growth of these segregants prevented us to assess their CanR mutation rates. Therefore, the different effects resulting from D TRR1 D deletion or D TRX1 D TRX2 D double deletion seem related to the expression levels of oxido-reductases in these different strains.

Impact of dNTP levels on the CanR mutation rates in D trr1 D and D trx1 D trx2 D cells

Thioredoxins are physiologically relevant electron donors for ribonucleotide reductase (Rnr) during DNA precursor synthesis. Yeast cells lacking both cytoplasmic thioredoxins (D trx1 D trx2 D) accumulate oxidized Rnr1, have a low dNTPs pool and a 3-fold longer S phase than wild-type cells [5]. Trx1 and Trx2 was constitutively strongly oxidized in the absence of Trr1. Furthermore, Trx2 expression was at least 10-times higher in the D trr1 D double deletion only reduces the D trx1 D trx2 D mutants than in wild-type cells and about 40–50% of Trxs was in oxidized form (Figure 2). These changes may directly or indirectly interfere with the activity of ribonucleotide reductase and affect dNTP synthesis. To estimate the impact of dNTP concentration on the CanR mutation rates in the wild-type, D trr1 D trx1 D trx2 D contexts, we increased ribonucleotide reductase activity by deleting SML1 gene whose product is a ribonucleotide reductase inhibitor [56], and by placing RNRI gene under the control of the strong TEF1 promoter. As shown in Figure 5 and Table S3, the dNTP levels of D trr1 D and D trx1 D trx2 D were approximately 2-fold lower than that of wild-type cells grown asynchronously in YPD medium. SML1 deletion and RNRI overexpression increased dNTP level from 1 to 5.22 in the wild-type cells (basal dNTP level...
in the wild type was set as 1), from 0.50 to 5.52 in the \(\text{trr1} \) \(D \) and from 0.52 to 3.93 in the \(\text{trx1} \) \(D \) \(\text{trx2} \) \(D \) context. In the \(\text{trr1} \) \(D \) and \(\text{trx1} \) \(D \) \(\text{trx2} \) \(D \) contexts, large increases of dNTP concentration produced 2.8-fold and 5.5-fold increases in the Can \(R \) mutation rate, respectively (Table 8). In contrast, the increase of dNTP concentration had almost no effect in wild-type cells. In \(E. \text{coli} \), lower dNTP levels correlate with a decreased spontaneous point mutation rate while higher dNTP levels correlate with an increased rate [57,58]. In \(S. \text{cerevisiae} \), such correlations were also observed in mutants affecting DNA damage checkpoints, RNR, replication factors or DNA repair components [14,59,60]. Taken together, dNTP fluctuations have more pronounced impact on the mutation formation in mutant cells than in wild-type cells.

Table 6. Effect of \(\text{tsa2} \Delta \) deletion on the lethality of \(\text{tsa1} \Delta \text{rad51} \Delta \text{trr1} \Delta \).

Segregant genotype	Number observed
\(\text{tsa1} \Delta \text{tsa2} \Delta \text{rad51} \Delta \text{trr1} \Delta \)	47
\(\text{tsa1} \Delta \text{tsa2} \Delta \text{rad51} \Delta \text{TRR1} \)	1
\(\text{tsa1} \Delta \text{tsa2} \Delta \text{RADS1} \text{trr1} \Delta \)	54
\(\text{tsa1} \Delta \text{tsa2} \Delta \text{RADS1} \text{TRR1} \)	53
\(\text{tsa1} \Delta \text{TS2} \text{rad51} \Delta \text{trr1} \Delta \)	42
\(\text{tsa1} \Delta \text{TS2} \text{rad51} \Delta \text{TRR1} \)	0
\(\text{tsa1} \Delta \text{TS2} \text{RADS1} \text{trr1} \Delta \)	44
\(\text{tsa1} \Delta \text{TS2} \text{RADS1} \text{TRR1} \)	48
\(\text{TS1} \Delta \text{tsa2} \Delta \text{rad51} \Delta \text{trr1} \Delta \)	37
\(\text{TS1} \Delta \text{tsa2} \Delta \text{rad51} \Delta \text{TRR1} \)	48
\(\text{TS1} \Delta \text{tsa2} \Delta \text{RADS1} \text{trr1} \Delta \)	34
\(\text{TS1} \Delta \text{tsa2} \Delta \text{RADS1} \text{TRR1} \)	46
\(\text{TS1} \Delta \text{RADS1} \text{rad51} \Delta \text{trr1} \Delta \)	34
\(\text{TS1} \Delta \text{RADS1} \text{rad51} \Delta \text{TRR1} \)	57
\(\text{TS1} \Delta \text{RADS1} \text{RADS1} \text{trr1} \Delta \)	43
\(\text{TS1} \Delta \text{RADS1} \text{RADS1} \text{TRR1} \)	55

Tetrad analysis of meiotic products of diploid strain \(\text{tsa1} \Delta / \text{TSA1} \text{tsa2} \Delta / \text{TSA2} \text{rad51} \Delta / \text{RAD51} \text{trr1} \Delta / \text{TRR1} \). These four loci are unlinked. 220 tetrads were dissected. 55 segregants of each genotype were expected. doi:10.1371/journal.pone.0108123.t006

Table 7. Effect of \(\text{trx1} \Delta \text{trx2} \Delta \) double deletion on the lethality of \(\text{tsa1} \Delta \text{rad51} \Delta \).

Segregant genotype	Number observed	Colony size
\(\text{tsa1} \Delta \text{rad51} \Delta \text{ trx1} \Delta \text{ trx2} \Delta \)	10	pp
\(\text{tsa1} \Delta \text{rad51} \Delta \text{ trx1} \Delta \text{ TRX2} \)	1	
\(\text{tsa1} \Delta \text{rad51} \Delta \text{ TRX1} \text{ trx2} \Delta \)	0	
\(\text{tsa1} \Delta \text{rad51} \Delta \text{ TRX1} \text{ TRX2} \)	0	
\(\text{tsa1} \Delta \text{RADS1} \text{ trx1} \Delta \text{ trx2} \Delta \)	28	G
\(\text{tsa1} \Delta \text{RADS1} \text{ trx1} \Delta \text{ TRX2} \)	29	G
\(\text{tsa1} \Delta \text{RADS1} \text{ TRX1} \text{ trx2} \Delta \)	39	G
\(\text{tsa1} \Delta \text{RADS1} \text{ TRX1} \text{ TRX2} \)	38	G
\(\text{TS1} \Delta \text{rad51} \Delta \text{ trx1} \Delta \text{ trx2} \Delta \)	28	p
\(\text{TS1} \Delta \text{rad51} \Delta \text{ trx1} \Delta \text{ TRX2} \)	32	m
\(\text{TS1} \Delta \text{rad51} \Delta \text{ TRX1} \text{ trx2} \Delta \)	34	G
\(\text{TS1} \Delta \text{rad51} \Delta \text{ TRX1} \text{ TRX2} \)	38	m
\(\text{TS1} \Delta \text{RADS1} \text{ trx1} \Delta \text{ trx2} \Delta \)	45	m
\(\text{TS1} \Delta \text{RADS1} \text{ trx1} \Delta \text{ TRX2} \)	28	m
\(\text{TS1} \Delta \text{RADS1} \text{ TRX1} \text{ trx2} \Delta \)	31	G
\(\text{TS1} \Delta \text{RADS1} \text{ TRX1} \text{ TRX2} \)	31	G

Tetrad analysis of meiotic products of diploid strain \(\text{tsa1} \Delta / \text{TSA1} \text{tsa2} \Delta / \text{TSA2} \text{rad51} \Delta / \text{RADS1} \text{TRX1} \text{trx2} \Delta / \text{TRX2} \). These four loci are unlinked. 140 tetrads were dissected. 35 segregants of each genotype were expected. Colony size: pp \(<p<\)m \(<m<\)G \(<G<\)G. doi:10.1371/journal.pone.0108123.t007
Low levels of dNTP in \textit{trr1}D and \textit{trx1}D \textit{trx2}D mutants compared to wild-type strains suggest that the decrease of CanR mutation rate in these mutants may be due to the combined effects of Yap1 activation and dNTP pool reduction. To estimate their relative contributions, we propose a tentative model which links the quantity of endogenous DNA lesion and the cellular dNTP concentration to the production of CanR mutations (Text S1). This model predicts that ROS level in \textit{trr1}D is about 21 times lower than that in \textit{trx1}D \textit{trx2}D cells. These estimations are consistent with the observation above that the oxido-reductases involved in the reduction of ROS are more actively synthesized in \textit{trr1}D than in \textit{trx1}D \textit{trx2}D cells (Table 5, Table S6). On the other hand, the model predicts that the impact of dNTP concentration on the CanR mutation rate is dependent on the level of lesions produced by ROS and processed by translesion polymerases. As more lesions are present in \textit{trx1}D \textit{trx2}D cells than in \textit{trr1}D cells, changes in dNTP concentration will have more impact in the generation of CanR mutations in \textit{trx1}D \textit{trx2}D than in \textit{trr1}D cells. We note that these proposals seem to contradict the fact that \textit{trr1}D cells are more sensitive to hydrogen peroxide than wild-type cells [45,49]. We compared the growth of wild-type, \textit{trr1}D and \textit{trr1}D \textit{trx1}D \textit{trx2}D strains on SC plates containing 0.10 and 0.25 mM H\textsubscript{2}O\textsubscript{2} (Figure 6). In these H\textsubscript{2}O\textsubscript{2} concentration ranges, \textit{trr1}D \textit{trx1}D \textit{trx2}D strain was almost as resistant as the wild-type strain, pointing to the possibility that the sensitivity of the \textit{trr1}D cells is primarily due

![Figure 5. dNTP concentrations in yeast strains.](image)

Figure 5. dNTP concentrations in yeast strains. dNTP levels were measured in wild-type, \textit{trr1}D \textit{trx1}D \textit{trx2}D, \textit{sml1}D \textit{RNR1}TEF1, \textit{trr1}D \textit{sml1}D \textit{RNR1}TEF1 and \textit{trx1}D \textit{trx2}D \textit{sml1}D \textit{RNR1}TEF1 strains. Values are the average of two experiments and error bars represent the standard error of the mean.

Table 8. Impact of dNTP levels on the CanR mutation rates.

Strain	Genotype	Yap1 activation	dNTP concentration*	CanR rate (x 10-7)
GF4729	wild-type	no	1	4.20 (3.98–4.82)
GF5270	\textit{tsa1}D	no	2.5**	70.70 (61.60–101.50)
GF5505	\textit{trr1}D	strong	0.50	0.84 (0.55–1.05)
GF5499	\textit{trr1}D \textit{tsa1}D	strong	ND	2.15 (1.88–2.78)
GF5668	\textit{trx1}D \textit{trx2}D	moderate	0.52	2.11 (1.74–2.42)
GF5674	\textit{trx1}D \textit{trx2}D \textit{tsa1}D	moderate	ND	5.75 (5.21–7.05)
GF6080	\textit{sml1}D \textit{RNR1}TEF1	ND	5.22	5.04 (4.34–6.13)
GF6084	\textit{trr1}D \textit{sml1}D \textit{RNR1}TEF1	ND	5.52	2.35 (2.08–2.54)
GF6129	\textit{trx1}D \textit{trx2}D \textit{sml1}D \textit{RNR1}TEF1	ND	3.93	11.53 (9.55–12.25)

* dNTP concentration in mutant strains relative to wild-type cells (set to be 1).

** Davidson et al. 2012; ND, not determined.

doi:10.1371/journal.pone.0108123.g005
Figure 6. Sensitivity of wild-type, trr1Δ and trr1Δ trx1Δ trx2Δ strains to H2O2. Equal numbers of cells were serially diluted (10-fold dilution) and spotted onto SC medium containing indicated concentrations of H2O2. Yeasts growth was assessed after 4 days at 30°C. doi:10.1371/journal.pone.0108123.g006

to the accumulation of toxic oxidized thioredoxins which disturb the cellular redox homeostasis, as previously suggested [4].

Discussion

Among the five \textit{S. cerevisiae} genes encoding peroxiredoxins, deletion of \textit{TSA1} causes the accumulation of a broad spectrum of mutations. The mutator phenotype of \textit{tsa1Δ} cells might be primarily due to the inability to reduce H2O2. The endogenous concentrations of H2O2 and alkyl hydroperoxides in wild-type and \textit{tsa1Δ} strains have so far not been precisely determined because of the lack of the selective, quantitative and sensitive ROS probes [19]. Nevertheless, several laboratories report an increased intracellular ROS in \textit{tsa1Δ} strains [16,20–23]. Importantly, Can1+ mutation rate of a \textit{tsa1Δ} strain decreases substantially under anaerobiosis, further suggesting that the increase of intracellular H2O2 concentration in \textit{tsa1Δ} cells is the primary cause of the genome instability of these cells under aerobiosis. In such conditions, mitochondria and other sources of ROS (peroxisome and endoplasmic reticulum) generate less ROS, due to the restricted availability of O2 which is a substrate for electrons [61,62]. Consistently, loss of Trr1 function reduces substantially the Can1+ mutation rate of \textit{tsa1Δ} strain, most probably through over-expression of Yap1-regulated oxido-reductases that reduce substantially ROS-associated DNA damages. On the other hand, the associated expansion of the dNTP pool in \textit{tsa1Δ} cells also contributes to its mutator phenotype [16,60]. The excess of ROS in \textit{tsa1Δ} cells increases the level of DNA lesions that in turn activates the DNA damage checkpoint pathway leading to the induction of RNR and the consequent overproduction of dNTPs. This double effect of increased ROS accumulation: elevation of DNA lesions level and stimulation of ribonucleotide reductase activity, may explain why the \textit{tsa1Δ} mutant deviates from a correlation linking the increased dNTP level with increased spontaneous mutagenesis [60]. All these evidences support the view that the increase of intracellular H2O2 concentration in \textit{tsa1Δ} cells is the primary cause of the genome instability of these cells under aerobic.

The transcription factor Yap1 is a central regulator of the response to oxidative stress in \textit{S. cerevisiae}. In yeast cells with functional Gpx3 and Ybp1 proteins, Gpx3 senses exogenous added H2O2 and mediates H2O2 signal into a cysteine-based redox cascade that culminates in the oxidation of Yap1 [38,39]. In strains harboring the W303 genetic background, the \textit{YBP1} gene is mutated and nonfunctional, and Yap1 activation appears to be Gpx3-independent but requires Tsa1 [33]. Thioredoxins are physiological reducing agents and are responsible for the negative regulation of the Yap1 transcription factor activity [42–44]. Indeed, thioredoxins should be able to reduce the activated disulfide form of Yap1, preventing its translocation to nucleus or facilitating its exit to cytoplasm. In the present study, we have shown that the loss of Trr1 induces Yap1 accumulation in nucleus and over-expression of a set of Yap1-regulated oxido-reductases. Several evidence strongly suggest that oxidized thioredoxins are a key activator of Yap1 in \textit{trr1Δ} mutants. First, as thioredoxins reduce the activated disulfide form of Yap1, highly oxidation of thioredoxins in \textit{trr1Δ} cells should prevent their capacity to reduce oxidized Yap1 and facilitate its accumulation in nucleus. Secondly, we observed that a set of Yap1-regulated genes is significantly more over-expressed in a \textit{trr1Δ}, \textit{trr1Δtrx1Δ}, or \textit{trr1Δtrx2Δ} strain than in \textit{trr1Δ trx1Δ trx2Δ} strain, suggesting that the presence of Trr1 and/or Trr2 largely contributes to the strong activation of the tested genes in \textit{trr1Δ} cells. Furthermore, as Yap1 activity in \textit{trx1Δ trx2Δ} mutants is lower than in \textit{trr1Δ} mutants, this suggests that Yap1 activation in \textit{trr1Δ} cells is due to a high concentration of oxidized thioredoxins but not the decreased level of reduced thioredoxins. In addition to the thioredoxins, Tsa1 contributes also to the Yap1 activation, as expression levels of Yap1-regulated genes are significantly lower in \textit{trr1Δ tsa1Δ} than in \textit{trr1Δ} mutants. Finally, a moderate but significant Yap1 activation is noteworthy in \textit{trx1Δ trx2Δ} cells suggesting the existence of some Trr1/Trr2-independent mechanisms. The precise mechanisms in which oxidized thioredoxins and Tsa1 or other factors are involved in Yap1 oxidation and activation remain to be determined in the contexts of present mutant strains.

The \textit{tsa1Δ rad51Δ} double mutant is not viable under aerobic conditions but viable under anaerobic conditions [18]. This observation suggests that a large excess of DNA lesions produced by ROS are the cause of lethality in the absence of efficient recombination repair. In searching for spontaneous suppressors of synthetic lethality of the \textit{tsa1Δ rad51Δ} double mutant, we identified that loss of thioredoxin reductase Trr1 rescues their viability. This unexpected effect seems to result from the strong impact of \textit{TRR1} deletion on mutation formation. Additional deletion of \textit{TRR1} in \textit{tsa1Δ} mutants reduces substantially the Can1+ mutation rate of \textit{tsa1Δ} strain [33-fold], and to a less extend, of \textit{rad51Δ} strain [4-fold]. We reason that the synthetic lethality of \textit{tsa1Δ rad51Δ} double mutant may result from excessive DNA damage. Substantial reduction of \textit{tsa1Δ} and \textit{rad51Δ} mutation rates in the \textit{trr1Δ} context rescues the viability of the double mutant.

In conclusion, we propose that the \textit{trr1Δ} -induced mutation suppression effect results from at least two distinct mechanisms both mediated by oxidized thioredoxins (Figure 7). Constitutive oxidation of thioredoxins strongly activates Yap1, induces over-expression of a set of Yap1-regulated oxido-reductases with antioxidant properties that ultimately reduces substantially intracellular ROS concentration and consequently ROS associated DNA damages. Besides, the oxidized thioredoxins may directly interfere with the activity of ribonucleotide reductase, leading to a reduction in the dNTPs synthesis and the translesion DNA synthesis (TLS), further reducing the mutagenesis. Although Yap1 could regulate the expression of several chaperones and components involved in post-replication repair (http://www.yeastact.org).
com), it remains to determine whether these elements could contribute significantly to suppress the mutator phenotype of tsa1Δ mutants. In combination with the model described in Text S1, we strengthen the view that in yeast cells, the large majority of spontaneous mutations originates from ROS-induced lesions.

Materials and Methods

Media

Complete medium (YPD) contained 1% (w/v) yeast extract, 1% (w/v) bactopeptone, 2% (w/v) glucose. Synthetic complete medium (SC) with 2% glucose was prepared as described by Sherman [63]. SPO2 sporulation medium contained 0.5% yeast extract, 0.5% bactopeptone, 2% potassium acetate. Canavanine-resistant mutants (CanR) caused by inactivation of the CAN1 gene were selected on SC-arginine dropout plates containing 60 mg/liter canavanine. 5-fluoroorotic acid (5-FOA) was used at 1 g/liter in SC medium.

Plasmid and strain constructions

The constructions of plasmids and strains used in this work are described in Text S2 and Text S3. All yeast strains used in this study are listed in Table S1. All oligonucleotides used for plasmid and strain constructions are listed in Table S2.

Fluctuation analysis

The rate of accumulation of CanR mutations in cell populations was determined by fluctuation analysis [26]. 2-ml cell cultures were incubated under aerobic conditions at 30°C for 3 days with agitation. The number of mutant cells per culture among 19–57 parallel cultures was calculated and the median of the distribution was used to determine the mutation rate of a given strain. The 95% confidence intervals for a median rate were calculated as ratios relative to that of a wild-type strain (set as 1).

Anaerobic growth conditions

YPD medium was supplemented with Tween 80 and ergosterol to a final concentration of 1.32 g/liter and 6.75 mg/liter, respectively. For determining mutations rates, 2-ml cell cultures were placed in an 8-litre airtight jar containing 3 disposable hydrogen- and carbon dioxide-generating envelopes (BD BBL GasPak Plus, Becton Dickinson) and grown anaerobically at 30°C for 5 days without agitation. Anaerobic conditions were monitored with the redox indicators Anaerotest (Merck, Darmstadt) and grown anaerobically at 30°C for 5 days without agitation. Anaerobic conditions were monitored with redox indicators Anaerotest (Merck, Darmstadt) placed inside the airtight jar. As controls, cell cultures were grown under the same conditions except aerobically.

Quantitative RT-PCR

Wild-type and mutated strains were grown to mid-exponential phase (OD 0.5, 600 nm) in YPD medium. Total RNA was extracted according to a protocol previously described [64]. To ensure the absence of trace DNA in the samples, extracted RNA were treated with DNase and verified by conventional PCR, using primers DAN2UP and DAN2DW. cDNA were generated using an iScript cDNA synthesis Kit (Bio-Rad). Appropriately diluted cDNA from each strain were amplified using iQ SYBR Green Supermix (Bio-Rad) and a set of 13 primer pairs (Table S3) to follow the expression of 13 oxido-reductases. Expression of ACT1, CDC11 and LRE1 were used as internal controls. Quantitative RT-PCR reactions were carried out in the CFX96 Bio-Rad Thermal cycler. mRNA relative levels were calculated with Bio-Rad CFX Manager software. The oxido-reductase mRNA levels were normalized with respect to the ACT1, CDC11 and LRE1 mRNA levels. mRNA levels of oxido-reductase genes were calculated as ratios relative to that of a wild-type strain (set as 1).

Trx2 polyclonal antibody

The BL21(DE3) E. coli strain (New England Biolabs) was transformed with plasmid p1672 (TRX2). Transformed cells were grown with shaking at 37°C in LB in the presence of kanamycin (30 mg/liter). When the OD (580 nm) of the culture reached 0.6, isopropyl-ß-D-thiogalactoside (IPTG) was added to a final concentration of 0.8 mM and growth was continued overnight at 18°C. Cell lysates were prepared using a French Press. Trx2-His was purified by affinity chromatography on a Ni-column (Qiagen). Then, the 6-His tag was cleaved off with tobacco etch virus protease (TEV) and the uncleaved material was purified by passage through a Ni-column. The Trx2 lacking the His tag was used for antibody production in rabbits by a commercial facility (Agro-Bio).

Western blotting

5 ml of cell cultures at logarithmic phase in complete medium were acid-quinched with 20% trichloroacetic acid (TCA, Sigma) at 4°C. Cells were harvested, resuspended in 1 ml of 20% TCA and pelleted by centrifugation. For protein extraction, the cell pellet was resuspended in 400 μl of 20% TCA and lysed with glass beads (200 μl) by vortexing for 5 min at 4°C. The lysed cells were centrifuged and the pellet was washed with cold acetone. The dry pellet was resuspended in 50 μl of TES buffer (100 mM Tris-Cl pH 8.8, 10 mM EDTA, 1% SDS) containing 30 mM 4-acetamido-4’-maleimididyldisilbene-2,2’-disulfonic acid, disodium salt (AMS, Molecular Probe) [38]. Following a 2 h incubation at 37°C with agitation in the dark, insoluble protein was removed by centrifugation. Each sample containing about 30 μg of protein was prepared with NuPAGE LDS sample buffer and was separated on a 12% NuPAGE Novex Bis-Tris gel with MES SDS buffer (Life Technologies). Upon transferring to a nitrocellulose membrane, Trx1 or Trx2 were probed with a rabbit anti-Trx1 antibody (a generous gift of C. Grant) or rabbit anti-Trx2 antibody, respectively and a secondary anti-rabbit IgG (IRDye, LI-COR).
and then analyzed by quantitative immunoblot using an Odyssey Infrared Imaging System (LI-COR).

Isolation of suppressors

Strains GF5297 and GF5305 (Table S1) were streaked out on YPD plates supplemented with Tween 80 and ergosterol and incubated under anaerobic conditions at 30°C. Ten single colonies from each strain were inoculated into YPD-Tween 80-ergosterol and grown anaerobically for 4 days. 100 μl of each culture were then plated onto YPD and incubated aerobically. About 3 to 40 colonies appeared on each plate after 3 days at 30°C. One colony from each plate was retained and these were named GF5297-1 to GF5297-10 and GF5305-1 to GF5305-10. To determine whether suppression was due to single mutations, the suppressor strains were crossed with strains GF5263 or GF5269 and the meiotic products of the diploids obtained were analyzed. The proportions of the three types of tetrads (tetatypes, parental ditypes and non-parental ditypes) suggested that the putative suppressor mutations were single mutations that were not linked to the RAD51 locus. For determining whether the 20 suppressor mutations were recessive or dominant, the suppressor strains were crossed individually with strains GF5265 or GF5269 and the meiotic products of the diploids obtained were analyzed. The suppressor mutations were recessive.

Identification of the suppressor mutation of strain GF5305–6

To clone the sup gene from the suppressor-containing strain GF5305–6, we used the red/white colony assay described by Zhao et al [47]. We first disrupted genes ADE2 and ADE3 of strain GF5305–6, yielding strain GF5374. Plasmid p1591 was introduced by transformation, yielding strain GF5377. GF5377 colonies were red on SC-leucine, 8% glucose medium but became white or sectored on YPD, 8% glucose plates because plasmid p1591 (TSA1, ADE3) was easily lost without selection. Strain GF5377 was transformed with a CEN-LEU2 plasmid-based genomic library (ATCC number 77162). Approximately 40,000 transformants were selected on SC-leucine, 8% glucose plates, of which 137 appeared red or pink. These 137 strains were restreaked on SC-leucine, 8% glucose plates and 21 strains continued to appear red or pink. These 21 strains were then checked for growth on SC-leucine, 5-FOA plates. Plasmids from the seven strains that failed to grow on SC-leucine, 5-FOA plates were recovered into E. coli using standard methods for further analysis.

Fluorescence microscopy

Exponentially growing cells expressing Yap1-GFP under the control of native Yap1 promoter were washed with PBS, resuspended in mounting solution (75% glycerol in PBS) containing 4',6-diamidino-2-phenylindole (DAPI) at concentration of 50 μg/ml, and mounted on a glass slide covered with polylysine (Sigma). Fluorescent images were captured with a Leica microscope (DMRXA) equipped with a cooled CCD camera MicroMAX (Princeton Instruments) under control of the MetaMorph software (Molecular Devices). Images obtained were processed using ImageJ software.

Determination of dNTP levels

Approximately 3.7 × 10^9 (as determined by the optical density at 600 nm [OD₆₀₀]) cells were harvested by filtration through 25-mm white AAWP nitrocellulose filters (0.3 mm; Millipore AB). The filters were immersed in 700 μl of ice-cold extraction solution (12% TCA, 15 mM MgCl₂) in Eppendorf tubes and frozen in liquid nitrogen. The following steps were carried out at 4°C. The tubes were vortexed for 30 s, incubated for 15 min, and vortexed again for 30 s. The filters were removed, and 700 μl supernatants were collected after centrifugation at 20,000 × g for 1 min and added to 800 μl of ice-cold Freon-trioctylamine mixture (10 ml of 99% pure Freon [1,1,2-trichlorotrifluoroethane; Sigma-Aldrich] and 2.8 ml of 98% pure trioctylamine [Sigma-Aldrich]). The samples were vortexed and centrifuged for 1 min at 20,000 × g. The aqueous phase was collected and added to 700 μl of ice-cold Freon-trioctylamine mixture. Volumes of 475 and 47.5 μl of the aqueous phase were collected. The 475-μl aliquots of the aqueous phase were ρH adjusted with 1 M NH₄HCO₃ (pH 8.9), loaded on boronate columns (Affi-Gel 60; Bio-Rad), and eluted with 50 mM NH₄HCO₃, pH 8.9, 15 mM MgCl₂ to separate dNTPs and NTPs. The eluates with purified dNTPs were adjusted to ρH 3.4 with 6 M HCl, separated on a Partisphere SAX HPLC column (125 mm×4.6 mm, HiChrom), under isocratic elution with 0.35 M potassium phosphate buffer (pH 3.4; containing 2.5% [vol/vol] acetonitrile) and quantified using a Lachrom Elite HPLC system (VWR International). The 47.5-μl aliquots of the aqueous phase were adjusted to pH 3.4 and used to quantify NTPs by HPLC in the same way.

Supporting Information

Figure S1 Cytoplasmic and nuclear GSH/GSSG redox status measured by rxYFP.

(DOC)

Table S1 Yeast strains used in this study.

(DOC)

Table S2 Oligonucleotides used for plasmid and strain constructions.

(DOC)

Table S3 Primer pairs used for quantitative RT-PCR.

(DOC)

Table S4 Characterization of mutations affecting gene TRRI in the 20 suppressors.

(DOC)

Table S5 dNTP levels in wild-type, try1Δ trx1Δ trx2Δ, sml1Δ RNR1TEFI, trr1Δ sml1Δ RNR1TEFI and trr1Δ trx2Δ sml1Δ RNR1TEFI strains.

(DOC)

Table S6 Average expression of TSA2, AHP1, CCP1 and YKL071w in Set A, B and C.

(DOC)

Text S1 A tentative model.

(DOC)

Text S2 Plasmid constructions.

(DOC)

Text S3 Strain constructions.

(DOC)

Acknowledgments

We thank Andrei Chabes for his generous help in the determination of dNTP levels, Chris Grant for his kind gift of anti-Trx1 antibody, Judith Souphron for providing TEV protease. We thank Chitranshu Kumar, Marie Dutreix, Dorothee Baille, Pierre-Marie Girard for helpful discussions.
Author Contributions
Conceived and designed the experiments: SR MEH GF. Performed the experiments: SR MD SS GK LV GF. Analyzed the data: SR MD RDK

References
1. Fu Y, Pastushok I, Xiao W (2008) DNA damage-induced gene expression in Saccharomyces cerevisiae. FEMS Microbiol Rev 32: 908–926.
2. Kemp M, Go YM, Jones DP (2008) Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 44: 921–937.
3. Lopes-Mirabal HR, Winther JR (2008) Redox characteristics of the eukaryotic cytosol. Biochim Biophys Acta 1783: 629–640.
4. Torellano MB, Kumar C, Le Moan N, Spector D, Tacnet F (2007) The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett 581: 3598–3607.
5. Camier S, Ma E, Leroy C, Pruvost A, Torellano M, et al. (2007) Visualization of ribonucleotide reductase catalyzed oxidation establishes thioredoxins as its major reducers in yeast. Free Radic Biol Med 42: 1008–1016.
6. Muller EG (1991) Thioredoxin deficiency in yeast prolings S phase and shortens the G1 interval of the cell cycle. J Biol Chem 266: 9194–9202.
7. Herrera E, Ross J, Bell G, Cabalcol E (2000) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1760: 1217–1235.
8. Lee J, Godon C, Lagniel G, Spector D, Garin J, et al. (1999) Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274: 16490–16498.
9. Godon C, Lagniel G, Lee J, Buhler JM, Kieffer S, et al. (1998) The H 2O 2 stimulation in Saccharomyces cerevisiae. J Biol Chem 273: 22480–22489.
10. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, et al. (2000) Gene expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241–4257.
11. Park SG, Cha MK, Jeong W, Kim IH (2000) Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J Biol Chem 275: 5729–5732.
12. Jung HHL, Lee KO, Chi YH, Jung BG, Park SK, et al. (2004) Two enzymes in one: two yeast peroxidases display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117: 625–635.
13. Huang ME, Rio AG, Nicolas A, Kolodner RD (2003) A genomewide screen in Saccharomyces cerevisiae for Msn2 and Msn4 mutants. Mol Cell 17: 709–720.
14. Park SG, Cha MK, Jeong W, Kim IH (2000) Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J Biol Chem 275: 5729–5732.
15. Dong BR, Wang CY (2007) Loss of yeast peroxiredoxin Tsa1p induces genome instability through activation of the DNA damage checkpoint genes in Saccharomyces cerevisiae. Eukaryot Cell 8: 1429–1438.
16. Tachibana T, Okazaki S, Murayama A, Naganuma A, Nomoto A, et al. (2009) Major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction-sensitive thiol redox systems and reveals a low level of transcriptional activation. J Biol Chem 284: 4464–4472.
17. Suh E, Fox CA, Broach JR (2013) The yeast environmental stress response regulates mutagenesis induced by proteostatic stress. PLoS Genet 9: e1003630.
18. Mihaylova VT, Birdra RS, Yuan J, Campisi D, Narayanam L, et al. (2003) Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol Cell Biol 23: 3263–3273.
19. Suh E, Fox CA, Broach JR (2013) The yeast environmental stress response regulates mutagenesis induced by proteostatic stress. PLoS Genet 9: e1003630.
20. Mihaylova VT, Birdra RS, Yuan J, Campisi D, Narayanam L, et al. (2003) Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol Cell Biol 23: 3263–3273.
21. Suh E, Fox CA, Broach JR (2013) The yeast environmental stress response regulates mutagenesis induced by proteostatic stress. PLoS Genet 9: e1003630.
53. Trotter EW, Grant CM (2003) Non-reciprocal regulation of the redox state of
the glutathione-glutaredoxin and thioredoxin systems. EMBO Rep 4: 184–188.
54. Kumar C, Igharia A, D’Autreaux B, Plasmon AG, Junot C, et al. (2011)
Glutathione revisited: a vital function in iron metabolism and ancillary role in
thiol-redox control. EMBO J 30: 2044–2056.
55. García-Santamarina S, Boronat S, Calvo IA, Rodríguez-Gabriel M, Ayté J, et al.
(2013) Is oxidized thioredoxin a major trigger for cysteine oxidation? Clues from
a redox proteomics approach. Antioxid Redox Signal 18: 1549–1556.
56. Tsapounia O, Barsoum E, Astrom SU, Chabes A (2011) Ixr1 is required for the
expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP
pools. PLoS Genet 7: e1002061.
57. Laureti L, Selva M, Dairou J, Matic I (2013) Reduction of dNTP levels enhances
DNA replication fidelity in vivo. DNA Repair (Amst) 12: 300–305.
58. Gon S, Napolitano R, Rocha W, Coulon S, Fuchs RP (2011) Increase in dNTP
pool size during the DNA damage response plays a key role in spontaneous and
induced-mutagenesis in Escherichia coli. Proc Natl Acad Sci U S A 108: 19311–
19316.
59. Datta A, Schneids JL, Amin NS, Lau PJ, Myung K, et al. (2006) Checkpoint-
dependent activation of mutagenic repair in Saccharomyces cerevisiae pol3-01
mutants. Mol Cell 6: 593–603.
60. Davidson MB, Katou Y, Keszei ZA, Sing TL, Xia T, et al. (2012) Endogenous
DNA replication stress results in expansion of dNTP pools and a mutator
phenotype. EMBO J 31: 895–907.
61. de Groot MJ, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulter
EA, et al. (2007) Quantitative proteomics and transcriptomics of anaerobic and
aerobic yeast cultures reveals post-transcriptional regulation of key cellular
processes. Microbiology 153: 3894–3878.
62. van den Brink J, Daran-Lapujade P, Pronk JT, de Winde JH (2008) New insights
into the Saccharomyces cerevisiae fermentation switch: dynamic transcriptional
response to anaerobiosis and glucose-excess. BMC Genomics 9: 100.
63. Sherman F (1991) Getting started with yeast. Methods Enzymol 194: 3–21.
64. Collart M, Oliviero S (1993) Preparation of yeast RNA. In: Current protocols in
molecular biology; supplement 23. John Wiley & Sons. unit 13.12.