The efficacy and safety of combined immune checkpoint inhibitors (nivolumab plus ipilimumab): a systematic review and meta-analysis

CURRENT STATUS: POSTED

Lihu Gu
Ningbo No 2 Hospital

Shengnan Li
Zhejiang Chinese Medical University

Nannan Du
Zhejiang Chinese Medical University

Qigu Yao
Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases

Xiaojun Fu
Ningbo No 2 Hospital

Yuanmei Lou
Zhejiang Chinese Medical University

Mengru Wang
Kaifeng University

Feiyan Mao
Ningbo No 2 Hospital

Danyi Mao
Zhejiang Chinese Medical University

Parikshit Asutosh Khadaroo
Monash University Faculty of Medicine Nursing and Health Sciences

Yingying Tang
Ningbo No 2 Hospital

Corresponding Author
Abstract
Background: Currently, nivolumab and ipilimumab are the most widely used immune checkpoint inhibitors. We performed a meta-analysis to evaluate the efficacy and treatment-related adverse events (TRAEs) of nivolumab-ipilimumab combination therapy in cancer treatment.

Methods: We examined data from PubMed, Web of science, EBSCO and Cochrane library. Eleven articles fulfilled our criteria, which we divided into 3 groups; nivolumab and ipilimumab versus ipilimumab, nivolumab and ipilimumab versus ipilimumab and nivolumab 1 mg/kg plus ipilimumab 3 mg/kg (N1I3) versus nivolumab 3 mg/kg plus ipilimumab 1 mg/kg (N3I1). We measured the complete response (CR), partial response (PR), objective response rate (ORR) and TRAEs in any grade and grade 3 or higher.

Results: Compared with ipilimumab alone, the combined immunotherapy had better CR (RR: 4.89, \(p <0.001 \)), PR (RR: 2.75, \(p <0.001 \)), and ORR (RR: 3.31, \(p <0.001 \)). The overall effect estimate favored the combined immunotherapy group in terms of the ORR (RR: 1.40, \(p <0.001 \)) and PR (RR: 1.50, \(p <0.001 \)) than nivolumab alone. Finally, N1I3 showed better PR (RR: 1.35, \(p =0.006 \)) and ORR (RR: 1.21, \(p =0.03 \)) than N3I1. The incidence of any TRAEs was similar between the both groups (RR: 1.05, \(p =0.06 \)). However, the incidence of serious adverse events (grade 3 or higher) were lower in group N3I1 than group N1I3 (RR: 1.51, \(p <0.001 \)).

Conclusion: This meta-analysis showed that the curative effect of nivolumab plus ipilimumab was better than that of ipilimumab or nivolumab monotherapy. In the combination group, N1I3 combination was more effective than N3I1. Although the side effects were slightly increased in group N1I3, the overall safety was acceptable.

Background
Cytotoxic T lymphocyte associated protein 4 (CTLA-4) is a receptor on the surface of activated T cells[1]. It mainly acts by binding B7 ligands on antigen presenting cells (APCs). The protein compete with the cluster of differentiation 28 (CD28) receptor for B7 ligands. During T cell activation, CD28 receptors on T-cells bind to B7 ligands on antigen presenting cells (APCs) and provide the essential second activation signal for T-cells[2-4]. Programmed cell death protein 1 (PD-1) is a cell-surface
receptor commonly found in T cells, B cells and NK cells. By inhibiting the phosphatidylinositol 3-kinase (PI3K) pathway, PD-1 signaling inhibits the activation of the cell survival factor Bcl-xL and the expression of transcription factors such as GATA-3, T-bet and Eomes, that regulate T cell functions. The CTLA-4 and PD-1, two common immuno-checkpoint inhibitors (ICIs) on activated T cells, are the most reliable targets for cancer treatment. To date, seven drugs targeting CTLA-4/PD-1 have been approved for treatment of different types of cancer, including melanomas, lung, breast, cervical and liver cancer.

In clinical studies, CTLA-4 and PD-1 monotherapy inhibitors have shown impressive, lasting effects, that have significantly prolong the survival of responsive patients. For example, colorectal cancer (CRC) is the third most common cancer in the United States. Despite advances in chemotherapy, survival rates in patients with metastatic CRC remains low. However, CRC patients treated with immunocheckpoint inhibitors showed better response. Hepatectomy is an important method to treat liver cancer, but up to 70% of patients may have a recurrence of liver diseases within 5 years, even after receiving treatment for hepatocellular carcinoma (HCC) at early stage. However, Immunotherapy has recently been shown to be effective against HCC, marking a milestone in the history of this intractable disease. Unfortunately though, the efficacy of immune-monotherapy is limited by low response rates, with only a small proportion of patients responding to treatment.

For example, more than 50% of patients with metastatic melanoma did not respond to monotherapy. Fortunately, a combination therapy (nivolumab with ipilimumab) has demonstrated numerically higher response rates and improved long-term clinical benefit relative to anti-PD-1/PD-L1 or anti-CTLA-4 monotherapy. Combinations of immunotherapies is one of the most promising new methods. Presently, nivolumab and ipilimumab are the most widely used immune checkpoint inhibitors against cancer. This meta-analysis aimed at investigating the role of nivolumab-ipilimumab combination therapy in cancer treatment.

Materials And Methods
Search and Selection
We did a meta-analysis of relevant articles, published before by June 2019. We searched through four
electronic databases; PubMed, Web of science, EBSCO and Cochrane library for data with relevant clinical trials, based on these key words; (nivolumab OR PD-1 OR programmed death 1) and (ipilimumab or CTLA-4 or cytotoxic T-lymphocyte-associated protein 4).

Selection Criteria
Studies in the selected articles were to meet four criteria; (1) Participants: solid tumor patients receiving combined ICIs (nivolumab and ipilimumab); (2) Intervention: combined ICIs including nivolumab and ipilimumab simultaneously; (3) Comparisons: nivolumab or ipilimumab alone; (4) Outcomes: objective response rate (ORR), partial response rate (PR), complete response (CR), and treatment-related adverse events (TRAEs), otherwise they were excluded.

Data Extraction
We focused on trial phases, tumor types, the number and characteristics of participants, the anti-tumour agents, dosage and frequency of drug administration with a keen interest on the prognoses, specifically the ORR, CR, and PR. The curative effects were assessed using the Response Evaluation Criteria in Solid Tumors (RECIST). Incidence of TRAEs, including any grade and grade 3 or higher was also evaluated, based on the National Cancer Institute’s Common Terminology Criteria for Adverse Events (CTCAE).

Quality Assessment
We evaluated the quality of data in the relevant articles using the Cochrane Collaboration tool based on the following domains; allocation concealment, masking of outcome assessors, blinding of participants, incomplete follow-up, and selective outcome reporting.

Statistical analysis
Statistical analyses were done by Review Manager software (RevMan5.3), at 95% confidence intervals (CI). Subgroup analyses were done based on the intervention; nivolumab plus ipilimumab versus ipilimumab alone, nivolumab plus ipilimumab versus nivolumab alone, nivolumab 1 mg/kg plus ipilimumab 3 mg/kg (N1I3) versus nivolumab 3 mg/kg plus ipilimumab 1 mg/kg (N3I1). All analyses (ORR, CR, PR, and all-grade and serious grade (grade 3-5) TRAEs were performed based on the fixed/random-effect. For meta-analysis, we used risk ratios (RR) to compare dichotomous variables. Heterogeneity in the meta-analysis results was done using the I-square (I^2) test. Statistically
significant was measured at P values of 0.05.

Results

Literature search
We identified 4361 studies in the literature search. We removed 2133 duplicates and further 2228 after careful evaluation. Although 56 articles met the inclusion criteria, 45 were removed besides qualifying for meta-analysis for a number of reasons. Some did not include the combination of nivolumab plus ipilimumab or non-prospective clinical trials while others did not include treatments, single arm study or did not have relevant outcome. In the end, 11 articles[18-28] qualified for the meta-analysis (Supplementary Fig. 1).

Study Characteristics
The characteristics of each study are shown in Supplementary Table 1. The 11 clinical trials included 2484 patients. Of these 879 received nivolumab 1 mg/kg plus ipilimumab 3 mg/kg (N1I3), 560 received nivolumab 3 mg/kg plus ipilimumab 1 mg/kg (N3I1), 688 received nivolumab alone, while 357 were put on ipilimumab alone. The selected studies had varied cases, from melanoma, metastatic urothelial carcinoma, small cell lung cancer (SCLC), esophagogastric cancer (EGC), malignant pleural mesothelioma (MPM), renal cell carcinoma (RCC), sarcoma, glioblastoma. There were two phase I clinical trials, two phase I-II clinical trials, four phase II clinical trials, two phase III clinical trials and one phase III-IV clinical trials.

Nivolumab Plus Ipilimumab Versus Ipilimumab Alone
Compared with ipilimumab alone, nivolumab-ipilimumab synergy caused a greater effect under CR (RR: 4.89, 95% CI: 2.91–8.23, p < 0.001), PR (RR: 2.75, 95% CI: 2.05–3.69, p < 0.001) and ORR (RR: 3.31, 95% CI: 2.60–4.20, p < 0.001) as shown in Fig. 1. Although incidence of any TRAEs was similar between the two groups (RR: 1.05, p = 0.44), ipilimumab monotherapy resulted in less serious cases, (grade 3 or higher) than nivolumab-nivolumab combination group (RR: 2.16, 95% CI: 1.78–2.61, p < 0.001) as shown in Fig. 2.

Nivolumab Plus Ipilimumab Versus Nivolumab Alone
Overall, nivolumab-ipilimumab combination showed better ORR (RR: 1.40, 95% CI: 1.22–1.61, p < 0.001) and PR (RR: 1.50, 95% CI: 1.23–1.83, p < 0.001) than nivolumab alone, however, there was no statistically significant difference in the CR (RR: 1.13, p = 0.39) between the two as shown in Fig. 3.
In terms of adverse effects, incidence of any TRAEs and serious TRAEs were elevated in nivolumab monotherapy than in nivolumab-ipilimumab combination (RR: 1.10, 95% CI: 1.00–1.21, p = 0.04; RR: 2.10, 95% CI: 1.57–2.81, p < 0.001, respectively) as shown in Fig. 4.

N1I3 Versus N3I1

Since the combined therapeutic effect was better than that of monotherapies, subgroup analysis of the combination therapy was further investigated. The N1I3 group showed better PR (RR: 1.35, 95% CI: 1.09–1.68, p = 0.006) and ORR (RR: 1.21, 95% CI: 1.02–1.44, p = 0.03), while there was no significant difference in CR (RR: 0.83, p = 0.40) between the two subgroups as shown in Fig. 5. There was no difference in TRAEs between the two groups as well (RR: 1.05, p = 0.06), however, N1I3 produced more serious adverse events (grade 3 or higher) than group N3I1 (RR: 1.51, 95% CI: 1.27–1.78, p < 0.001) as shown in Fig. 6.

Specific adverse treatment events by subgroup were also analyzed. Incidences of any grade adverse events were more elevated in group N1I3. These include increased alanine aminotransferase (ALT) (RR: 1.48, p = 0.02), increased aspartate aminotransferase (AST) (RR: 1.68, p = 0.004), diarrhea (RR: 1.47, p = 0.005), hypothyroidism (RR: 1.40, p = 0.04) and vomiting (RR: 1.77, p = 0.02). As shown in Table 1, adverse reactions, such as high ALT (RR: 2.25, p = 0.006) and diarrhea (RR: 2.90, p < 0.001), of grade 3 or above, were also high in group N1I3 than in group N3I1.
Table 1
Subgroup analysis of the treatment-related adverse events (TRAEs)

NIVO1 + IPI3 vs. NIVO3 + IPI1	No. of studies	RR	95%CI	p	Effect model	Heterogeneity (i^2)	p
Any grade increased ALT	6	1.48	1.06–2.06	0.02	Fixed	33%	0.19
Any grade increased AST	6	1.68	1.18–2.39	0.004	Fixed	41%	0.13
Any grade in pruritus	6	1.09	0.87–1.37	0.46	Fixed	0%	0.53
Any grade in diarrhoea	6	1.47	1.18–1.83	0.005	Fixed	23%	0.26
Any grade in fatigue	6	1.06	0.88–1.29	0.53	Fixed	19%	0.29
Any grade in nausea	5	1.34	0.99–1.81	0.06	Fixed	0%	0.63
Any grade in hypothyroidism	5	1.40	1.01–1.94	0.04	Fixed	0%	0.78
Any grade in decreased appetite	5	1.16	0.81–1.64	0.42	Fixed	11%	0.35
Any grade in vomiting	4	1.77	1.11–2.84	0.02	Fixed	27%	0.25
Any grade in rash	6	1.29	0.98–1.70	0.07	Fixed	19%	0.29
Grade 3 or higher increased ALT	6	2.25	1.26–4.00	0.006	Fixed	0%	0.45
Grade 3 or higher increased AST	6	1.89	0.91–3.91	0.09	Fixed	12%	0.34
Grade 3 or higher in pruritus	6	0.82	0.22–3.10	0.77	Fixed	0%	0.53
Grade 3 or higher in diarrhoea	6	2.90	1.63–5.15	<0.001	Fixed	0%	0.85
Grade 3 or higher in fatigue	6	1.37	0.53–3.54	0.51	Fixed	19%	0.29
Grade 3 or higher in nausea	5	2.45	0.71–8.51	0.16	Fixed	0%	0.41
Grade 3 or higher in vomiting	4	1.63	0.39–6.79	0.50	Fixed	0%	0.51

NIVO1 + IPI3, nivolumab 1 mg/kg plus ipilimumab 3 mg/kg, every 3 weeks for 4 doses (induction phase), followed by nivolumab 3 mg/kg, every 2 weeks until disease progression or unacceptable toxicity incidence of TRAEs (maintenance phase); NIVO3 + IPI1, nivolumab 3 mg/kg plus ipilimumab 1 mg/kg, every 3 weeks for 4 doses (induction phase), followed by nivolumab 3 mg/kg, every 2 weeks until disease progression or unacceptable toxicity incidence of TRAEs (maintenance phase).

Discussion
Immunotherapy plays an important role in controlling tumors. Combined immunotherapy is based on the use of more than one immunotherapy. It can intervene and regulate multiple processes of immune response through[29], chemoradiotherapy [30–32] and targeted therapy[33, 34] by promoting anti-
tumor immune response reduce the risk of drug resistance. The combination of immunotherapies is one of the most promising approaches being studied[35]. In particular, the combination of anti-PD-1 (nivolumab) and anti-CTLA-4 (ipilimumab) has shown positive results in tumor treatment and significant enhancement in patients with metastatic melanoma[36], advanced RCC[37], and metastatic CRC [16, 38]. Cope et al. reported that recurrent SCLC showed better response to nivolumab-ipilimumab compared to the current chemotherapy, interpreted as long-term survival benefits[39]. Ready et al. reported that a combination of nivolumab and low-dose ipilimumab was effective and tolerable as a first-line treatment of advanced/metastatic non-small cell lung cancer (NSCLC)[40]. Based on conditional survival analysis of first-line treatment, Shao[41] showed that patients with advanced RCC put on nivolumab plus ipilimumab therapy had high survival rate compared with sunitinib.

Recently, the combination therapy of ipilimumab and anti-PD-1 antibody showed promising clinical benefit in some malignant tumors[42], advanced melanoma[43], RCC and other tumors [44]. Combination therapy and ipilimumab or nivolumab monotherapy showed improved ORR, CR and PR [37, 41, 45, 46]. The present systematic review showed that the combination of nivolumab and ipilimumab had significantly high CR, PR and ORR compared with ipilimumab monotherapy. Complete response with nivolumab-ipilimumab therapy was 4.89 times higher than ipilimumab monotherapt, while the PR and ORR were 2.75 and 3.31 times than ipilimumab monotherapy, respectively. These findings show that the combination therapy was more effective than ipilimumab monotherapy.

Elsewhere, Postow et al[26] reported that nivolumab-ipilimumab combination therapy had a higher ORR and progression-free survival rate compared with ipilimumab monotherapy, in treatment-naive patients with advanced melanoma. Increased response rate and improved progression-free survival was reported in ipilimumab-nivolumab combination when compared with ipilimumab alone in a randomized phase III trial in treatment-naive patients with metastatic melanoma[47].

Nivolumab is a class of ICIs that PD-1 receptors that activate downstream signaling pathways by inducing FoxP3 expression[48] and promoting Treg (iTreg) cell differentiation[16]. The incidence of CR and PR and ORR in individuals on nivolumab-ipilimumab combination therapy was 1.13, 1.50 and 1.40
times respectively, as high than those on nivolumab monotherapy. These findings emphasize the effectiveness of the combination therapy. Antonia et al.[18] reported that nivolumab-ipilimumab combination therapy had a higher prolonged anti-tumour activity in previously treated patients than nivolumab monotherapy. Preliminary data on metastatic RCC, suggests that combination therapy had a higher ORR than nivolumab monotherapy in a different trials[20, 49]. Morse [14] reported that a combination therapy (nivolumab with low-dose ipilimumab) had numerically higher response rates and improved long-term clinical benefit relative to anti-programmed death-1 monotherapy. Principaly CTLA-4 binds B7 ligands (B7-1/CD80 and B7-2/CD86) on antigen presenting cells that compete with the CD28 receptor[16]. The CTLA-4 protein and its B7 ligand are mainly expressed on immune cells, suggesting that CTLA-4 pathway plays a major role in lymph nodes. PD-L1, the PD-1 ligand, is widely expressed, mainly on regulatory peripheral T cells [50]. Although CTLA-4 and PD-1 antibodies are both checkpoint inhibitors, their action mechanisms are neither the same nor complementary[51]. Therefore, higher anti-tumor activity was seen with a combination therapy than ipilimulab or nivolumab[52].

Based on our analysis, we can conclude that the combination of nivolumab and ipilimumab is more effective than nivolumab alone, consistent with previous findings [18, 19]. In contrast, Kreft [53] showed that there was no difference in action and outcome between nivolumab monotherapy and ipilimumab-nivolumab combination therapy in patients with melanoma. Elsewhere, checkpoint monotherapy inhibitors targeting PD-1 and PD-L1 were not effective in metastatic colorectal cancer patients with microsatellite stable tumors[54].

Many combination immunotherapies have been developed, nivolumab-ipilimumab being the most common[55]. There are two dosages of this combination; nivolumab 1 mg/kg plus ipilimumab 3 mg/kg (N1I3) and nivolumab 3 mg/kg plus ipilimumab 1 mg/kg (N3I1), however no studies have been done to determine their differential effectiveness, if any. This possibility should be evaluated.. Although there was no significant difference between N1I3 and N3I1 in CR, N1I3 yielded better results in PR and ORR than N3I1, suggesting that the efficacy of N1I3 may be better than that of N3I1. Sharma et al. [28] reported that with longer follow-up, N1I3 showed sustained antitumor activity than N3I1. Glutsch on
his part investigated the presence and extent of side effects in advanced melanoma cases on ipilimumab-nivolumab combined immunotherapy. Here, renal toxicity was tolerable, and three doses of nivolumab (1 mg/kg) in combination with ipilimumab (3 mg/kg) showed deep partial relief on chest and abdominal CT scans[56]. This result not only support our findings on N1I3, but emphasized on the potential benefit of combination immunotherapies in tumor.

We also analyzed all common adverse reactions of every grade. Adverse reactions of grade 3 or higher in group combination were elevated than those in monotherapies. Nivolumab-ipilimumab increased response rate with more side effects than ipilimumab monotherapy. Kref [53] reported that combined ipilimumab and nivolumab was associated with a higher TRAEs compared with the monotherapy, but N1I3 induced elevated grade 3 or higher TRAEs than N3I1, consistent with Antonia et al.[18]. When comparing treatment groups, common grade 3 or 4 TRAEs in the nivolumab-ipilimumab group arose early but resolved within the first 4–6 months of treatment [46]. In contrast, both early and chronic toxicity were apparent in the sunitinib group, despite dose adjustments. Most selected treatment-related adverse events occurring within 30 days of the last dose in the nivolumab-ipilimumab group were low-grade, and the majority resolved and were manageable using established algorithms[57]. Health-related quality life was maintained or significantly improved from baseline analysis of patients under nivolumab-ipilimumab compared those on sunitinib alone, further supporting the preference of the combination therapy.

The main TRAEs associated with nivolumab use include increased ALT and AST, pruritus, diarrhoea, fatigue, nausea, hypothyroidism, decreased appetite, vomiting, and rash. After extensive systematic review, Bajwa et al. found that the most common adverse effects encountered were colitis (14/139), hepatitis (11/139), adrenocorticotropic hormone insufficiency (12/139), hypothyroidism (7/139), type 1 diabetes (22/139), acute kidney injury (16/139) and myocarditis (10/139). The most common treatment approach was the cessation of the immune checkpoint inhibitor, initiation of steroids and supportive therapy[58, 59]. Motzer et al.[46] reported that among all patients treated, the most common TRAEs in the grade 3–4 nivolumab and ipilimumab groups were elevated lipase (57 of 547 [10%]), elevated amylase (31 [6%]) and elevated ALT (28 [5%])[35]. Reporting of corticosteroid use
for ICIs has been effective among various studies. There is an increasing number of immunotherapy and molecular targeting agents being evaluated in monotherapies as well as in various combinations, but the choice of right therapy, sequence and dosage of candidate agents and immunotherapies and treatment for patients that progress on immune checkpoint inhibitors remains a challenge.

Limitation
This meta-analysis only included four phase I clinical trials, which may reduce the credibility of the findings. In addition, this paper contains multiple tumor types, which may make the results of the study untargeted. It is necessary to point out that this paper was not able to extract hazard ratio (HR) as the effect size was insufficient, but this is the first meta-analysis to compare nivolumab plus ipilimumab with ipilimumab or nivolumab monotherapy.

Conclusions
This paper showed that the curative effect of nivolumab-ipilimumab combination therapy is better than ipilimumab or nivolumab monotherapy. In the combination group, N1I3 is more effective than N3I1. Although side effects were slightly increased in group N1I3, the overall safety was reliable.

Abbreviations
8-OHdG: 8-hydroxy-2'-deoxyguanosine; 95% CI: 95% confidence interval; CSS: Cancer-specific survival; DFS: Disease-free survival;

Declarations

Ethics approval and consent to participate
No animal or human participant was involved in this study.

Consent for publication
Not applicable.

Availability of data and materials
All data are available within the article.

Competing interests
There were no conflicting interests.

Funding
This study was funded by the Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province (No. 2019E10020) and Ningbo Clinical Research Center for Digestive System Tumors (No. 2019A21003).

Authors' contributions

Conceptualization: Yingying Tang; Data curation: Lihu Gu, Shengnan Li, and Nannan Du; Formal analysis: Lihu Gu, Qigu Yao; Investigation: Shengnan Li, Xiaojun Fu, and Yuanmei Lou; Writing original draft: Mengru Wang, Feiyan Mao, and Danyi Mao, Parikshit Asutosh Khadaroo.

Acknowledgements

Not applicable.

References

1. Rowshanravan B, Halliday N: CTLA-4: a moving target in immunotherapy. 2018, 131(1):58-67.
2. Fife BT, Bluestone JA: Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunological reviews 2008, 224:166-182.
3. Stamper CC, Zhang Y, Tobin JF, Erbe DV, Ikemizu S, Davis SJ, Stahl ML, Seehra J, Somers WS, Mosyak L: Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 2001, 410(6828):608-611.
4. Wing K, Onishi Y, Prieto-Martín P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S: CTLA-4 control over Foxp3+ regulatory T cell function. Science (New York, NY) 2008, 322(5899):271-275.
5. Hayashi H, Nakagawa K: Combination therapy with PD-1 or PD-L1 inhibitors for cancer. International journal of clinical oncology 2019.
6. Francisco LM, Sage PT, Sharpe AH: The PD-1 pathway in tolerance and autoimmunity. Immunological reviews 2010, 236:219-242.
7. Mahoney KM, Freeman GJ, McDermott DF: The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma. Clinical therapeutics 2015, 37(4):764-782.
8. Tay RY, Heigener D, Reck M, Califano R: Immune checkpoint blockade in small cell lung cancer. Lung cancer (Amsterdam, Netherlands) 2019, 137:31-37.

9. McArthur HL, Page DB: Immunotherapy for the treatment of breast cancer: checkpoint blockade, cancer vaccines, and future directions in combination immunotherapy. Clinical advances in hematology & oncology : H&O 2016, 14(11):922-933.

10. Liu YL, Zamarin D: Combination Immune Checkpoint Blockade Strategies to Maximize Immune Response in Gynecological Cancers. Current oncology reports 2018, 20(12):94.

11. Cheng H, Sun G, Chen H, Li Y, Han Z, Li Y, Zhang P, Yang L, Li Y: Trends in the treatment of advanced hepatocellular carcinoma: immune checkpoint blockade immunotherapy and related combination therapies. American journal of cancer research 2019, 9(8):1536-1545.

12. Rotte A, Bhandaru M, Zhou Y, McElwee KJ: Immunotherapy of melanoma: present options and future promises. Cancer metastasis reviews 2015, 34(1):115-128.

13. Rotte A, Jin JY, Lemaire V: Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Annals of oncology : official journal of the European Society for Medical Oncology 2018, 29(1):71-83.

14. Morse MA, Hochster H, Benson A: Perspectives on Treatment of Metastatic Colorectal Cancer with Immune Checkpoint Inhibitor Therapy. The oncologist 2019.

15. El Dika I, Khalil DN, Abou-Alfa GK: Immune checkpoint inhibitors for hepatocellular carcinoma. 2019, 125(19):3312-3319.

16. Rotte A: Combination of CTLA-4 and PD-1 blockers for treatment of cancer. Journal of experimental & clinical cancer research : CR 2019, 38(1):255.
17. Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim SW, Carcereny Costa E, Park K, Alexandru A, Lupinacci L, de la Mora Jimenez E et al: Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. The New England journal of medicine 2019.

18. Antonia SJ, Lopez-Martin JA, Bendell J, Ott PA, Taylor M, Eder JP, Jager D, Pietanza MC, Le DT, de Braud F et al: Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. The Lancet Oncology 2016, 17(7):883-895.

19. D'Angelo SP, Mahoney MR, Van Tine BA, Atkins J, Milhem MM, Jahagirdar BN, Antonescu CR, Horvath E, Tap WD, Schwartz GK et al: Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. The Lancet Oncology 2018, 19(3):416-426.

20. Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, Voss MH, Sharma P, Pal SK, Razak ARA et al: Safety and Efficacy of Nivolumab in Combination With Ipilimumab in Metastatic Renal Cell Carcinoma: The CheckMate 016 Study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2017, 35(34):3851-3858.

21. Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Cowey CL, Lao CD, Schadendorf D, Wagstaff J, Dummer R et al: Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. The Lancet Oncology 2018, 19(11):1480-1492.

22. Janjigian YY, Bendell J, Calvo E, Kim JW, Ascierto PA, Sharma P, Ott PA, Peltola K, Jaeger D, Evans J et al: CheckMate-032 Study: Efficacy and Safety of Nivolumab and
Nivolumab Plus Ipilimumab in Patients With Metastatic Esophagogastric Cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2018, 36(28):2836-2844.

23. Lebbe C, Meyer N, Mortier L, Marquez-Rodas I, Robert C, Rutkowski P, Menzies AM, Eigentler T, Ascierto PA, Smylie M et al: Evaluation of Two Dosing Regimens for Nivolumab in Combination With Ipilimumab in Patients With Advanced Melanoma: Results From the Phase IIIb/IV CheckMate 511 Trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2019, 37(11):867-875.

24. Long GV, Atkinson V, Lo S, Sandhu S, Guminski AD, Brown MP, Wilmott JS, Edwards J, Gonzalez M, Scolyer RA et al: Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. The Lancet Oncology 2018, 19(5):672-681.

25. Omuro A, Vlahovic G, Lim M, Sahebjam S, Baehring J, Cloughesy T, Voloschin A, Ramkissoon SH, Ligon KL, Latek R et al: Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143. Neuro-oncology 2018, 20(5):674-686.

26. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK, Agarwala SS et al: Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. The New England journal of medicine 2015, 372(21):2006-2017.

27. Scherpereel A, Mazieres J, Greillier L, Lantuejoul S, Do P, Bylicki O, Monnet I, Corre R, Audigier-Valette C, Locatelli-Sanchez M et al: Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): a multicentre, open-label, randomised, non-comparative, phase 2 trial. The Lancet Oncology 2019, 20(2):239-253.
28. Sharma P, Siefker-Radtke A, de Braud F, Basso U, Calvo E, Bono P, Morse MA, Ascierto PA, Lopez-Martin J, Brossart P et al: Nivolumab Alone and With Ipilimumab in Previously Treated Metastatic Urothelial Carcinoma: CheckMate 032 Nivolumab 1 mg/kg Plus Ipilimumab 3 mg/kg Expansion Cohort Results. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2019, 37(19):1608-1616.

29. Ghysen K, Vansteenkiste J: Immunotherapy in patients with early stage resectable nonsmall cell lung cancer. Current opinion in oncology 2019, 31(1):13-17.

30. Wrona A: Role of immunotherapy in stage III nonsmall cell lung cancer. Current opinion in oncology 2019, 31(1):18-23.

31. Lasinska I, Kolenda T, Teresiak A, Lamperska KM, Galus L, Mackiewicz J: Immunotherapy in Patients with Recurrent and Metastatic Squamous Cell Carcinoma of the Head and Neck. Anti-cancer agents in medicinal chemistry 2019, 19(3):290-303.

32. Tang Y, Li G, Wu S, Tang L, Zhang N, Liu J, Zhang S, Yao L: Programmed death ligand 1 expression in esophageal cancer following definitive chemoradiotherapy: Prognostic significance and association with inflammatory biomarkers. Oncology letters 2018, 15(4):4988-4996.

33. Blumenthal GM, Bunn PA, Jr., Chaft JE, McCoach CE, Perez EA, Scagliotti GV, Carbone DP, Aerts H, Aisner DL, Bergh J et al: Current Status and Future Perspectives on Neoadjuvant Therapy in Lung Cancer. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 2018, 13(12):1818-1831.

34. Tarhini A, Kudchadkar RR: Predictive and on-treatment monitoring biomarkers in advanced melanoma: Moving toward personalized medicine. Cancer treatment
35. Schadendorf D, Ascierto PA, Haanen J, Espinosa E, Demidov L, Garbe C, Guida M, Lorigan P, Chiarion-Sileni V, Gogas H et al: Safety and efficacy of nivolumab in challenging subgroups with advanced melanoma who progressed on or after ipilimumab treatment: A single-arm, open-label, phase II study (CheckMate 172). European journal of cancer (Oxford, England : 1990) 2019, 121:144-153.

36. Nomura M, Otsuka A, Kondo T, Nagai H, Nonomura Y, Kaku Y, Matsumoto S, Muto M: Efficacy and safety of retreatment with nivolumab in metastatic melanoma patients previously treated with nivolumab. Cancer chemotherapy and pharmacology 2017, 80(5):999-1004.

37. Cetin B, Kosar A: Game of thrones: immunotherapy versus molecular targeted therapy in renal cell cancer scenarios. International urology and nephrology 2019.

38. Ciardiello D, Vitiello PP, Cardone C, Martini G, Troiani T, Martinelli E, Ciardiello F: Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer treatment reviews 2019, 76:22-32.

39. Cope S, Keeping ST, Goldgrub R, Ayers D, Jansen JP, Penrod JR, Korytowsky B, Juarez-Garcia A, Yuan Y: Indirect comparison of nivolumab +/- ipilimumab (CheckMate 032) versus other treatments for recurrent small-cell lung cancer. Journal of comparative effectiveness research 2019, 8(10):733-751.

40. Ready N, Hellmann MD, Awad MM, Otterson GA, Gutierrez M, Gainor JF, Borghaei H, Jolivet J, Horn L, Mates M et al: First-Line Nivolumab Plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer (CheckMate 568): Outcomes by Programmed Death Ligand 1 and Tumor Mutational Burden as Biomarkers. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2019, 37(12):992-1000.

41. Shao N, Wan F, Zhu Y, Ye D: Conditional Survival in Patients with Advanced Renal
Cell Carcinoma Treated with Nivolumab. Medical science monitor : international medical journal of experimental and clinical research 2019, 25:6518-6522.

42. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowsk P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J, Dummer R et al: Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. 2019.

43. Valpione S, Campana LG: Immunotherapy for advanced melanoma: future directions. Immunotherapy 2016, 8(2):199-209.

44. Muto Y, Kitano S: [Clinical Significance of Ipilimumab and the Combination Therapy as Immune Checkpoint Inhibitor]. Gan to kagaku ryoho Cancer & chemotherapy 2019, 46(6):1011-1015.

45. Freeman M, Betts KA, Jiang S, Du EX, Gupte-Singh K, Lu Y, Rao S, Shoushtari AN: Indirect Treatment Comparison of Nivolumab Versus Observation or Ipilimumab as Adjuvant Therapy in Resected Melanoma Using Pooled Clinical Trial Data. Advances in therapy 2019.

46. Motzer RJ, Rini BI, McDermott DF, Aren Frontera O, Hammers HJ, Carducci MA, Salman P, Escudier B, Beuselinck B, Amin A et al: Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. The Lancet Oncology 2019, 20(10):1370-1385.

47. Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH, Jr., Lao CD et al: Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. The Lancet Oncology 2015, 16(4):375-384.

48. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH:
PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. The Journal of experimental medicine 2009, 206(13):3015-3029.

49. Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR, Vaishampayan UN, Drabkin HA, George S, Logan TF et al: Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized Phase II Trial. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2015, 33(13):1430-1437.

50. Neoadjuvant PD-1 Blockade in Resectable Lung Cancer; Nivolumab and Ipilimumab in Advanced Melanoma; Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma; Prolonged Survival in Stage III Melanoma with Ipilimumab Adjuvant Therapy; Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma; Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma; Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma; Rapid Eradication of a Bulky Melanoma Mass with One Dose of Immunotherapy; Genetic Basis for Clinical Response to CTLA-4 Blockade; Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma; Nivolumab plus Ipilimumab in Advanced Melanoma; Safety and Tumor Responses with Lambrolizumab (Anti-PD-1) in Melanoma; Hepatotoxicity with Combination of Vemurafenib and Ipilimumab. The New England journal of medicine 2018, 379(22):2185.

51. Ott PA, Hodi FS, Robert C: CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clinical cancer research : an official journal of the American Association for Cancer Research 2013, 19(19):5300-5309.

52. Buchbinder EI, Desai A: CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. American journal of clinical oncology 2016, 39(1):98-106.
53. Kreft S, Gesierich A, Eigentler T, Franklin C, Valpione S, Ugurel S, Utikal J, Haferkamp S, Blank C, Larkin J et al: Efficacy of PD-1-based immunotherapy after radiologic progression on targeted therapy in stage IV melanoma. European journal of cancer (Oxford, England : 1990) 2019, 116:207-215.

54. Ghiringhelli F, Fumet JD: Is There a Place for Immunotherapy for Metastatic Microsatellite Stable Colorectal Cancer? Frontiers in immunology 2019, 10:1816.

55. Fujimura T, Kambayashi Y, Sato Y, Tanita K, Amagai R, Hashimoto A, Hidaka T, Aiba S: Successful Treatment of Unresectable Advanced Melanoma by Administration of Nivolumab With Ipilimumab Before Primary Tumor Resection. Frontiers in medicine 2019, 6:140.

56. Glutsch V, Gran F, Weber J, Gesierich A, Goebeler M, Schilling B: Response to combined ipilimumab and nivolumab after development of a nephrotic syndrome related to PD-1 monotherapy. 2019, 7(1):181.

57. Wen X, Wang Y, Ding Y, Li D, Li J, Guo Y, Peng R, Zhao J, Zhang X, Zhang XS: Safety of immune checkpoint inhibitors in Chinese patients with melanoma. Melanoma research 2016, 26(3):284-289.

58. Bajwa R, Cheema A, Khan T, Amirpour A, Paul A, Chaughtai S, Patel S, Patel T, Bramson J, Gupta V et al: Adverse Effects of Immune Checkpoint Inhibitors (Programmed Death-1 Inhibitors and Cytotoxic T-Lymphocyte-Associated Protein-4 Inhibitors): Results of a Retrospective Study. Journal of clinical medicine research 2019, 11(4):225-236.

59. Pollack MH, Betof A, Dearden H, Rapazzo K, Valentine I, Brohl AS, Ancell KK, Long GV, Menzies AM, Eroglu Z et al: Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Annals of oncology : official journal of the European Society
Supplementary Figure & Table Captions

Supplementary Table 1 Characteristics of included clinical trials in the meta-analysis.

Figures

Figure 1

Forest plot of the overall effect between nivolumab combined with ipilimumab and ipilimumab alone. (A) complete response (CR), (B) partial response (PR), (C) objective response rate (ORR).
Figure 2

Forest plot of the adverse events between nivolumab combined with ipilimumab and ipilimumab alone. (A) Any grade TRAEs, (B) grade 3 or higher TRAEs.
Figure 3

Forest plot of the overall effect between nivolumab-ipilimumab combined therapy and nivolumab monotherapy. (A) complete response (CR), (B) partial response (PR), (C) objective response rate (ORR).
Figure 4

Forest plot of the adverse events between nivolumab combined with ipilimumab and nivolumab alone. (A) any grade TRAEs, (B) grade 3 or higher TRAEs.

Study or Subgroup	Nivolumab + Ipi	Nivolumab	Risk Ratio	Risk Ratio					
	Events	Total	Weight	M-H	Random	95% CI	M-H	Random	95% CI
Antonia 2016	88	115	98	9.5%	1.44	[1.17, 1.78]			
D’ Angelo 2018	42	42	42	16.5%	1.00	[0.96, 1.05]			
Hodi 2018	300	313	313	18.4%	1.11	[1.06, 1.17]			
Janjigian 2018	80	101	59	10.2%	1.14	[0.94, 1.39]			
Long 2018	43	51	46	6.0%	1.43	[1.05, 1.95]			
Omuro 2018	30	30	10	8.3%	1.14	[0.90, 1.45]			
Scherpereel 2019	54	61	56	14.2%	1.00	[0.88, 1.13]			
Sharma 2019	162	196	78	14.9%	0.98	[0.87, 1.10]			
Total (95% CI)	**893**	**688**	**100.0%**	**1.10**	**[1.00, 1.21]**				
Total events	788	552							
Heterogeneity: Tau²	0.01	Chi²	38.31	df = 7 (P < 0.00001); I² = 82%					
Test for overall effect: Z = 2.05 (P = 0.04)									

Study or Subgroup	Nivolumab + Ipi	Nivolumab	Risk Ratio	Risk Ratio					
	Events	Total	Weight	M-H	Random	95% CI	M-H	Random	95% CI
Antonia 2016	28	115	98	14.0%	1.84	[1.01, 3.34]			
D’ Angelo 2018	6	42	32	32.3%	2.00	[0.54, 7.47]			
Hodi 2018	39	313	313	28.5%	2.64	[2.11, 3.31]			
Janjigian 2018	185	10	10	13.4%	2.16	[1.16, 4.02]			
Long 2018	22	35	25	7.6%	3.93	[1.54, 9.99]			
Omuro 2018	15	30	0	1.1%	11.00	[7.20, 168.81]			
Scherpereel 2019	16	61	10	10.8%	1.84	[0.68, 3.84]			
Sharma 2019	68	196	78	20.3%	1.29	[0.85, 1.95]			
Total (95% CI)	**893**	**688**	**100.0%**	**2.10**	**[1.57, 2.81]**				
Total events	377	130							
Heterogeneity: Tau²	0.06	Chi²	12.41	df = 7 (P = 0.09); I² = 44%					
Test for overall effect: Z = 4.99 (P < 0.00001)									
Figure 5

Forest plot of the overall effect of the nivolumab-ipilimumab group therapy (N1I3 versus N3I1). (A) complete response (CR), (B) partial response (PR), (C) objective response rate (ORR).
Figure 6

Forest plot of the adverse events of the nivolumab combined with ipilimumab (N1I3 versus N3I1). (A) any grade TRAEs, (B) grade 3 or higher TRAEs.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Supplementary Table 1.docx
Supplementary Fig. 1.tif