EXTENSION OF WEAKLY AND STRONGLY F-REGULAR RINGS BY FLAT MAPS

IAN M. ABERBACH

§1. Introduction

Throughout this paper all rings will be Noetherian of positive characteristic p. Hence tight closure theory [HH1–4] takes a prominent place (see §2 for tight closure definitions and terminology). The purpose of this note is to help answer the following question: if R is weakly (resp. strongly) F-regular and $\phi : R \rightarrow S$ is a flat map then under what conditions on the fibers is S weakly (resp. strongly) F-regular. This question (among many others) is raised in [HH4] in section 7. It is shown there that if ϕ is a flat map of local rings, S is excellent and the generic and closed fibers are regular then weak F-regularity of R implies that of S (Theorem 7.24). One of our main results weakens the hypotheses considerably.

Theorem 3.4. Let $\phi : (R, m) \rightarrow (S, n)$ be a flat map. Assume that S/mS is Gorenstein and R is weakly F-regular and Cohen-Macaulay. Suppose that either

1. $c \in R^\circ$ is a common test element for R and S, and S/mS is F-injective, or
2. $c \in S - mS$ is a test element for S and S/mS is F-rational, or
3. R is excellent and S/mS is F-rational.

Then S is weakly F-regular.

We note that the Gorenstein assumption on the fiber is essential, even if R is regular. Even weakening the assumption on the fiber to \mathbb{Q}-Gorenstein is not strong enough to give a good theorem, as Singh [Si] gives an example of $R \rightarrow S$ flat, where R is a discrete valuation domain, S/mS is \mathbb{Q}-Gorenstein and strongly F-regular, yet S is not weakly F-regular!

We also prove a corresponding result for strong F-regularity.

Theorem 3.6. Let $(R, m, K) \rightarrow (S, n, L)$ be a flat map of F-finite reduced rings with Gorenstein closed fiber. Assume that R is strongly F-regular. If S/mS is F-rational then S is strongly F-regular.

In order to prove the first of these theorems we investigate how flat maps $\phi : (R, m) \rightarrow (S, n)$ with Gorenstein closed fibers affect tight closure for $I \subseteq R$ such that $l(R/I) < \infty$.

1991 Mathematics Subject Classification. 13A35.

The author was partially supported by the NSF.
and \(I \) is irreducible in \(R \). In general these results do not depend on the relationship of \(R/\mathfrak{m} \to S/\mathfrak{n} \) (e.g., separability or finiteness).

While not directly relevant to this paper, we note that other authors have recently investigated tight closure properties under good flat maps. For instance Enescu [En] and Hashimoto [Ha] have recently shown that for a flat map with \(F \)-rational base and \(F \)-rational closed fiber, the target is \(F \)-rational (in the presence of a common test element).

\section{Background for tight closure}

Let \(R \) be a Noetherian ring of characteristic \(p > 0 \). We use \(q = p^e \) for a varying power of \(p \) and for an ideal \(I \subseteq R \) we let \(I^{[q]} = \langle i^q : i \in I \rangle \). Also let \(R^c \) be the complement in \(R \) of the union of the minimal primes of \(R \). Then \(x \) is in the tight closure of \(I \) if and only if there exists \(c \in R^c \) such that \(cx^q \in I^{[q]} \) for all \(q \gg 0 \). If \(I^* = I \) then \(I \) is said to be tightly closed. We will say that \(I \) is Frobenius closed if \(x^q \in I^{[q]} \) for some \(q \) always implies that \(x \in I \).

There is a tight closure operation for a submodule \(N \subseteq M \), but we will not discuss this case in general. It is however useful to discuss tight closure in the case of a particular type of direct limit. Suppose that \(M = \varinjlim_t R/I_t \) for a sequence of ideals \(\{I_t\} \). Let \(u \in M \) be an element which is given by \(\{u_t\} \) where in the direct limit system \(u_t \mapsto u_{t+1} \). We will say that \(u \in 0^*_M \) if there exists \(c \in R^c \) and a sequence \(t_q \) such that for all \(q \gg 0 \), \(cu^q_{t_q} \in I_t^{[q]} \). We will say that \(u \) is in the finitistic tight closure of \(0 \) in \(M \), \(0^*_{fg} \), if there exists \(c \in R^c \) and \(t > 0 \) such that \(cu^q_t \in I_t^{[q]} \) for all \(q \). This definition of finitistic tight closure agrees with that in [HH2] for this case. Clearly \(0^*_{fg} \subseteq 0^*_M \).

A ring \(R \) in which every ideal is tightly closed is called weakly \(F \)-regular. If every localization of \(R \) is weakly \(F \)-regular then \(R \) is \(F \)-regular. When \(R \) is reduced then \(R^{1/p} \) denotes the ring of \(p \)-th roots of elements of \(R \). More generally, \(R^{1/q} \) is the ring of \(q \)-th roots. Clearly \(R \subseteq R^{1/q} \). If \(R \) is \(F \)-finite and reduced \((R^{1/p} \) is a finite \(R \)-module) then \(R \) is called strongly \(F \)-regular if for all \(c \in R^c \), there exists a \(q \) such that the inclusion \(Rc^{1/q} \subseteq R^{1/q} \) splits over \(R \). If \(R \) is \(F \)-finite and \(R_c \) is strongly \(F \)-regular for some \(c \in R^c \), then \(R \) is strongly \(F \)-regular if and only if there exists \(q \) such that \(Rc^{1/q} \subseteq R^{1/q} \) splits over \(R \) [HH1, Theorem 3.3]. Strongly \(F \)-regular rings are \(F \)-regular, and weakly \(F \)-regular rings are normal and under mild conditions (e.g., excellent) are Cohen-Macaulay.

The equivalence of the three conditions is an important open question. Let \((R, \mathfrak{m})\) be an excellent reduced local ring and let \(E \) be an injective hull of the residue field of \(R \). Then \(E \) can be written as a direct limit of the form above since \(R \) is approximately Gorenstein. Weak \(F \)-regularity of \(R \) is equivalent to \(0^*_{fg} = 0 \) [HH2, Theorem 8.23], while strong \(F \)-regularity is equivalent to \((F\text{-finiteness and}) \ 0^*_E = 0 \) [LS, Proposition 2.9].

By a parameter ideal in \((R, \mathfrak{m})\) we mean an ideal generated by part of a system of parameters. We say that \((R, \mathfrak{m})\) is \(F \)-rational if every parameter ideal is tightly closed, and \(F \)-injective if every parameter ideal is Frobenius closed (this is a slightly different notion of \(F \)-injectivity from that in [FW], but is equivalent for CM rings). \(F \)-rational rings are normal and under mild conditions are Cohen-Macaulay. In a Gorenstein ring, \(F \)-rationality is equivalent to all forms of \(F \)-regularity.

A priori, the multiplier element \(c \) in the definition of tight closure depends on both \(I \) and \(x \). If \(c \) works for every tight closure test then we say that \(c \) is a test element for \(R \).
If c works for every tight closure test for every completion of every localization of R then we say that c is a completely stable test element. It is shown in [HH4] that if (R, \mathfrak{m}) is a reduced excellent domain, $c \in R^\circ$, and R_c is Gorenstein and weakly F-regular then c has a power which is a completely stable test element for R.

In [HH2, HH3] it is shown that the multiplier c in the definition of tight closure need not remain constant. Let R be a domain. One may have a sequence of elements c_q such that $c_q x^g \in I^{[q]}$ where c_q must have “small order.” We can obtain a notion of order, denoted ord, by taking a \mathbb{Z}-valued valuation on R which is non-negative on R and positive on \mathfrak{m}. Let R^+ be the integral closure of R in an algebraic closure of the fraction field of R (R^+ has many wonderful properties, such as being a big Cohen-Macaulay algebra for R when R is excellent [HH5]). The valuation then extends to a function on R^+ which takes values in \mathbb{Q}. In particular, $\text{ord}(c^{1/q}) = \text{ord}(c)/q$. We will need to use the following theorem [HH3, Theorem 3.1]:

Theorem 2.1. Let (R, \mathfrak{m}) be a complete local domain of characteristic p, let $x \in R$ and let $I \subseteq R$. Then $x \in I^*$ if and only if there exists a sequence of elements $\epsilon_n \in (R^+)^\circ$ such that $\text{ord}(\epsilon_n) \rightarrow 0$ as $n \rightarrow \infty$ and $\epsilon_n x \in IR^+$.

In fact we would like to strengthen this theorem in order to apply it to tight closure calculations for non finitely generated modules which are defined by a direct limit system of ideals. The proof we give is just an altered version of the proof of Theorem 3.1 given in [HH3]. The key component is [HH3, Theorem 3.3]:

Theorem 2.2. Let (R, \mathfrak{m}, k) be a complete local domain. Let ord be a \mathbb{Q}-valued valuation on R^+ nonnegative on R (and hence on R^+) and positive on \mathfrak{m} (and, hence, on \mathfrak{m}^+. Then there exists a fixed real number $\nu > 0$ and a fixed positive integer r such that for every element u of R^+ of order $< \nu$ there is an R-linear map $\phi : R^+ \rightarrow R$ such that $\phi(u) \notin \mathfrak{m}^r$.

The generalization of Theorem 2.1 is given below.

Theorem 2.3. Let (R, m) be a complete local domain of characteristic p. Let $M = \varinjlim R/I_t$ be an R-module and let $x \in M$. Suppose that x comes from the sequence $\{x_t\}$ where $x_t \mapsto x_{t+1}$. Then $x \in 0^*_M$ if and only if there exists a sequence of elements $\epsilon_n \in (R^+)^\circ$ such that $\text{ord}(\epsilon_n) \rightarrow 0$ as $n \rightarrow \infty$ and for each n there exists t such that $\epsilon_n x_t \in I_t R^+$.

Proof. The “only if” part is trivial, as if $c x^g = 0$ for all $q \gg 0$ then we can take $\epsilon_q = c^{1/q}$.

To see the “if” direction, choose $\nu > 0$ and r as in Theorem 2.2. Fix $q = p^r > 0$. Choose n large enough that $\text{ord}(\epsilon_n) < \nu/q$. Let $\epsilon = \epsilon_n^r$. Then there exists t such that $\epsilon x_t^r \in I_t^{[q]} R^+$ and $\text{ord}(\epsilon) < \nu$. Applying an R linear map ϕ as in Theorem 2.2 we find that $c_q x_t^r \in I^{[q]} \subseteq (I_t^{[q]})^\circ$ with $c_q = \phi(\epsilon) \in R - \mathfrak{m}^r$. Thus, setting $J_q = \cup_t (I_t^{[q]})^\circ : R x_t^q$ we have $c_q \in J_q$ for all q.

The sequence J_q is nonincreasing. If for some t, $yx_t^q \in (I_t^{[pq]})^\circ$ then $c'(yx_t^{pq})q' \in (I_t^{[pq]})^{[q']} = (I_t^{[pq]})^{[q']} = (I_t^{[pq]})$ for all $q' \gg 0$ where $c' \neq 0$. But then $c'(yx_t^{pq})q' \in (I_t^{[q']})^{[pq]}$ for all $q' \gg 0$ and hence $yx_t^q \in (I_t^{[q]})^\circ$, as required.
Since the sequence \(\{J_q\}_q \) is nonincreasing, it cannot have intersection 0, or Chevalley’s theorem would give \(J_q \subseteq \mathfrak{m}^r \) for \(q \gg 0 \). As \(e_q \in J_q - \mathfrak{m}^r \) for all \(q \), we can choose a nonzero element \(d \in \cap_q J_q \). Then for each \(q \) there exists \(t \) such that \(dx_i^q \in \langle I_t^{[q]} \rangle^* \). If \(c \) is a test element for \(R \) then \(c dx_i^q \in I_t^{[q]} \). Thus \(x \in 0^*_M \). □

Proposition 2.4. Let \((R, \mathfrak{m})\) be an excellent local domain such that its completion is a domain. Let \(M = \lim_{t \to \infty} R/I_t \) be a direct limit system. Fix \(u \notin 0^*_M \). Then there exists \(q_0 \) such that \(J_q = \cap_q (I_t^{[q]} : u_t^q) \subseteq \mathfrak{m}^{[q/q_0]} \) for all \(q \gg 0 \) (where \(\{u_t\} \) represents \(u \in M \) and \(u_t \mapsto u_{t+1} \)). In particular if \(I \subseteq R \) we may take \(M = R/I \) where the limit system consists of equalities. Then \(u \notin I^* \) implies that \(\langle I^{[q]} : u^q \rangle \subseteq \mathfrak{m}^{[q/q_0]} \).

Proof. Suppose that we can show that the proposition holds in \(\hat{R} \). Then \((I_t^{[q]} : R \ u_t^q) \subseteq (I_t^{[q]} : R \ u_t^q) \cap R \subseteq \mathfrak{m}^{[q/q_0]} \hat{R} \cap R \subseteq \mathfrak{m}^{[q/q_0]} R \). Thus we may assume that \(R \) is complete.

For \(x \in R \) let \(f(x) \) be the largest power of \(\mathfrak{m} \) that \(x \) is in, and set \(f(x) = \lim_{n \to \infty} f(x^n/n) \). By the valuation theorem [Re, Theorem 4.16], there exist a finite number of \(\mathbb{Z} \)-valued valuations \(v_1, \ldots, v_k \) on \(R \) which are non-negative on \(\mathfrak{m} \) and positive on \(\mathfrak{m} \) and positive rational numbers \(e_1, \ldots, e_k \) such that \(f(x) = \min\{v_i(x)/e_i\} \). Furthermore, since \(R \) is analytically unramified, there exists a constant \(L \) such that for all \(x \in R \), \(f(x) \leq \lceil f(x) \rceil \leq f(x) + L \) ([Re, Theorem 5.32 and 4.16]).

Now, by Theorem 2.3, for each \(v_i \) there exists a positive real number \(\alpha_i \) such that if \(c \in (I_t^{[q]} : u_t^q) \) then \(v_i(c) \geq \alpha_i q \). Combined with the valuation theorem we see that \(f(c) \geq \min\{q v_i/e_i\} \). Let \(\alpha = \min\{\alpha_i/e_i\} \). Then \(f(c) \geq \alpha q - L - 1 \). Let \(s = \mu(\mathfrak{m}) \). Choose \(q_1 > 1/\alpha \), \(q_2 \geq L + 1 \), and \(q_3 \geq s \) (all powers of \(p \)). Set \(q_0 = q_1 q_2 q_3 \). Then \(f(c) \geq \alpha q - (L + 1) \geq q/q_1 - (L + 1) \geq q/q_1 q_2 - 1 \geq (q/q_0)s - 1 \). A simple combinatorial argument shows that \(\mathfrak{m}^{(q/q_0)s-1} \subseteq \mathfrak{m}^{[q/q_0]} \). Hence \(c \in \mathfrak{m}^{[q/q_0]} \). □

§3. Tight closure in flat extension maps

We show in this section that extending a weakly (respectively, strongly) \(F \)-regular ring by a flat map with sufficiently nice Gorenstein closed fiber yields another weakly (resp., strongly) \(F \)-regular ring. These results are Theorems 3.4 and 3.6 (see also Corollary 3.5 for the \(F \)-regular case).

By saying that \(\phi : (R, \mathfrak{m}) \to (S, \mathfrak{n}) \) is flat we mean that \(\phi \) is flat and that \(\phi(\mathfrak{m}) \subseteq \mathfrak{n} \). Since the map is flat we then know that given ideals \(A, B \subseteq R \) we have \(AS :_S BS = (A :_RB)S \) (\(B \) finitely generated). The next lemma merely asserts that modding out by elements which are regular in the closed fiber preserves flatness.

Lemma 3.1. Let \(\phi : (R, \mathfrak{m}) \to (S, \mathfrak{n}) \) be a flat map. Let \(z_1, \ldots, z_d \in S \) be elements whose images in \(S/\mathfrak{m}S \) are a regular sequence. Then for any ideal \(I \) generated by monomials in the \(z \)’s, the ring \(S/IS \) is flat over \(R \).

Proof. See, for example [HH4, Theorem 7.10a,b]. □

The next proposition shows that tight closure behaves well for irreducible \(\mathfrak{m} \)-primary ideals when extending to \(S \). Given a sequence of elements \(z = z_1, \ldots, z_d \) we will use \(z^{[2]} \) to denote \(z_1^2, \ldots, z_d^2 \).
Proposition 3.2. Let \(\phi : (R, m, K) \to (S, n, L) \) be a flat map with Gorenstein closed fiber. Let \(z = z_1, \ldots, z_d \in S \) be elements whose images form a s.o.p. in \(S/mS \). Let \(I \subseteq R \) be such that \(l(R/I) < \infty \) and \(\dim_K(0 :_{R/I} m) = 1 \). Suppose that either

1. \(R \) and \(S \) have a common test element and \(S/mS \) is F-injective, or
2. \(c \in S - mS \) is a test element for \(S \), and \(S/mS \) is F-rational, or
3. \(R \) is excellent, \(\hat{R} \) is a domain, and \(S/mS \) is F-rational.

Then \(I \) is tightly closed in \(R \) \(\iff \) for all \(t > 0 \), \(IS + (z)^{[t]}S \) is tightly closed in \(S \) \(\iff \) there exists \(t > 0 \) such that \(IS + (z)^{[t]}S \) is tightly closed in \(S \).

Proof. Let \(b \in S \) have as its image the socle element in \(S/mS + (z)S \). Let \(u \in R \) be the socle element mod \(I \). Then the socle element of \(S/(IS + (z)S) \) is \(ub \) since the map \(R/I \to R/I \otimes S = S/IS \) is flat with Gorenstein fibers (there is only one fiber).

Suppose that \(I \) is tightly closed. There is no loss of generality in taking \(t = 1 \). If \(IS + (z)S \) is not tightly closed in \(S \) then we have \(c(ub)^q \in (I^{[q]} + (z)^{[q]}S) \) for all \(q \). In case (1) we may take \(c \in R^c \), so that

\[
b^q \in (I^{[q]} + (z)^{[q]}S) :S \quad \text{for all } q > 0.
\]

The first equality is a consequence of flatness, while the inclusion follows since \(u \notin I^* \). By our assumption that \(S/mS \) is F-injective we reach the contradictory conclusion that \(b \in ((z) + m)S \). In case (2) we have

\[
cb^q \in (I^{[q]} + (z)^{[q]}S) :S \quad \text{for all } q > 0.
\]

As \(S/mS \) is F-rational, it is a domain, so \(c \neq 0 \) in \(S/mS \). This contradicts our hypothesis that \(S/mS \) is F-rational (in fact it is enough to assume that \(I \) is Frobenius closed to reach this conclusion). In case (3) we can choose \(q_0 \) as in Proposition 2.4, and then

\[
c(b^{q_0})^{q/q_0} \in (I^{[q]} + (z)^{[q]}S) :S \quad \text{for all } q/q_0 > 0.
\]

But then \(b^{q_0} \in (mS + (z)^{[q_0]})^* \). By persistence, the image of \(b^{q_0} \) is in \(((z)^{[q_0]}S/mS)^* \), which contradicts the F-rationality of \(S/mS \).

Suppose now that \(IS + (z)^{[t]}S \) is tightly closed in \(S \) for all \(t \), but \(I \) is not tightly closed in \(R \). Then \(u \in (IR)^* \subseteq (I + (z)^{[t]})^* \) (since \(R^c \subseteq S^0 \)). But then \(u \in \cap_t (IS + (z)^{[t]}S) \cap R \subseteq IS \cap R = IR \).

Finally, suppose that \((IS + (z)^{[t_0]}S \) is tightly closed for some \(t_0 \). Given any \(t \), the socle element of \((IS + (z)^{[t]}S \) is \((z_1 \cdots z_d)^{t-1}ub \). If \(c((z_1 \cdots z_d)^{t-1}ub)^q \in (IS + (z)^{[t]}S) \) then by flatness, \(c((z_1 \cdots z_d)^{t_0-1}ub)^q \in (IS + (z)^{[t_0]}S) \). Therefore, one such ideal tightly closed shows that all such ideals are tightly closed. \(\square \)

To deal with strong F-regularity we need to give a similar proposition with \(R/I \) replaced by the injective hull \(E_R(R/m) \). Suppose that we can write \(E = E_R(R/m) = \lim_n R/J_n \), the set \(\{u_t\} \subseteq R \) is a collection of elements such that \(u_t \to u_{t+1} \) in the map \(R/J_t \to R/J_{t+1} \) and the image of each \(u_t \) in \(E \) is the socle element of \(E \). It suffices that \(R \) be approximately Gorenstein \([Ho2]\) (e.g., excellent and normal, or even reduced) to obtain \(E \) in this manner. In particular an F-finite ring is excellent \([Ku]\), so a reduced F-finite ring is approximately Gorenstein.
Proposition 3.3. Let \((R, \mathfrak{m}, K) \to (S, \mathfrak{n}, L)\) be a flat map of \(F\)-finite reduced rings with Gorenstein closed fiber.

(1) If \(Rc^{1/q} \subseteq R^{1/q}\) splits for some \(q\) (over \(R\)) and \(S/\mathfrak{m}S\) is \(F\)-injective then \(Sc^{1/q} \subseteq S^{1/q}\) splits for some \(q\) (over \(S\)).

(2) If \(0\) is Frobenius closed in \(E_{R}(K)\), \(S/\mathfrak{m}S\) is \(F\)-rational and \(c \in S - \mathfrak{m}S\) then there exists \(q\) such that \(Sc^{1/q} \subseteq S^{1/q}\) splits (over \(S\)).

Proof. Choose \(z = z_{1}, \ldots, z_{d} \in S\) elements which generate a s.o.p. in \(S/\mathfrak{m}S\). By [HH4, Lemma 7.10] we have \(E_{S}(L) = \lim_{v \to} S/(z^{[v]}) \otimes_{R} E_{R}(K) = \lim_{t, \mathfrak{m} \to} S/(z^{[v]}) \otimes_{R} R/J_{t} = \lim_{t} S/(z^{[t]}, J_{t})S\). If \(b \in S\) generates the socle element in \(S/(\mathfrak{m} + (z))S\) then the image of \((z_{1} \cdots z_{d})^{t-1}bu_{t}\) in \(S/((z^{[t]}) + J_{t})S\) maps to the socle element of \(E_{S}\) (where \(u_{t}\) is as given above).

In case (1), if for all \(q\) the inclusion \(Sc^{1/q} \to S^{1/q}\) fails to split, by [Ho1, Theorem 1 and Remark 2] for all \(q\) there exists \(t_{q}\) such that

\[c(z_{1} \cdots z_{d})^{(t_{q}-1)q}b^{q}u_{t_{q}}^{q} \in ((z^{[t_{q}]}, J_{t_{q}})[q])S.\]

Hence \((z_{1} \cdots z_{d})^{(t_{q}-1)q}b^{q} \in ((z^{[t_{q}]}, J_{t_{q}})[q])S \cup cu_{t_{q}}^{q} \subseteq (J_{t_{q}}^{[q]} : R cu_{t_{q}}^{q})S + (z^{[t_{q}]})^{[q]}S \subseteq \mathfrak{m}S + (z^{[t_{q}]})^{[q]}S\) for \(q \gg 0\) (we are using here that if \(Rc^{1/q} \subseteq R^{1/q}\) splits for some \(q\) then \(Rc^{1/q} \subseteq R^{1/q}\) splits for all \(q' \geq q\)). Thus \(b^{q} \in \mathfrak{m}S + (z^{[q]})\) since \(S/\mathfrak{m}S\) is CM. This contradicts the \(F\)-injectivity of \(S/\mathfrak{m}S\).

To see (2), if there is no splitting we obtain

\[c(z_{1} \cdots z_{d})^{(t_{q}-1)q}b^{q} \in (z^{[t_{q}]}, J_{t_{q}})[q] : S cu_{t_{q}}^{q} \subseteq (J_{t_{q}}^{[q]} : R cu_{t_{q}}^{q})S + (z^{[t_{q}]})^{[q]}S \subseteq \mathfrak{m}S + (z^{[t_{q}]})^{[q]}S\]

and hence \(cub \in \mathfrak{m}S + (z)^{[q]}\). This contradicts the \(F\)-rationality of \(S/\mathfrak{m}S\). □

We can now give our main theorems on the extension of weakly and strongly \(F\)-regular rings by flat maps with Gorenstein closed fiber.

Theorem 3.4. Let \(\phi : (R, \mathfrak{m}) \to (S, \mathfrak{n})\) be a flat map. Assume that \(S/\mathfrak{m}S\) is Gorenstein and \(R\) is weakly \(F\)-regular and \(CM\). Suppose that either

(1) \(c \in R^{c}\) is a common test element for \(R\) and \(S\), and \(S/\mathfrak{m}S\) is \(F\)-injective, or

(2) \(c \in S - \mathfrak{m}S\) is a test element for \(S\) and \(S/\mathfrak{m}S\) is \(F\)-rational, or

(3) \(R\) is excellent and \(S/\mathfrak{m}S\) is \(F\)-rational.

Then \(S\) is weakly \(F\)-regular.

Proof. To see that \(S\) is weakly \(F\)-regular it suffices to show that there exists a sequence of irreducible tightly closed ideals of \(S\) cofinite with the powers of \(\mathfrak{n}\). As \(R\) is weakly \(F\)-regular (so normal) and \(CM\) it is approximately Gorenstein. Say that \(\{J_{t}\}\) is a sequence of irreducible ideals cofinite with the powers of \(\mathfrak{m}\). Let \(z = z_{1}, \ldots, z_{d} \in S\) be elements which form a s.o.p. in \(S/\mathfrak{m}S\). Then \((J_{t} + z^{[t]})S\) is a sequence of irreducible ideals in \(S\) cofinite with the powers of \(\mathfrak{n}\). By Proposition 3.2, in cases (1), (2), and (3), the ideals \((J_{t} + z^{[t]})S\) are tightly closed in \(S\) (in case (3), \(\tilde{R}\) is still weakly \(F\)-regular, so is a domain).
Therefore S is weakly F-regular. We note that in case (2) we may weaken the assumption that R is weakly F-regular to the assumption that R is F-pure (see the comment in the proof of Proposition 3.2, part (2)).

The next corollary should be compared with [HH4, Theorem 7.25(c)].

Corollary 3.5. Let $(R, m) \rightarrow (S, n)$ be a flat map of excellent rings with Gorenstein fibers. Suppose that the generic fiber is F-rational and all other fibers are F-injective. If R is F-regular then S is F-regular.

Proof. By hypothesis the generic fiber is Gorenstein and F-rational, therefore there is a $c \in R^e$ which is a common completely stable test element. F-regularity is local on the prime ideals of S and the fiber of such a localization is the localization of a fiber, hence Gorenstein and F-injective (the property of F-injectivity is easily seen to localize). Therefore Theorem 3.4(1) always applies. □

Theorem 3.6. Let $(R, m, K) \rightarrow (S, n, L)$ be a flat map of F-finite reduced rings with Gorenstein closed fiber. Assume that R is strongly F-regular. If S/mS is F-rational then S is strongly F-regular.

Proof. We must show that there exists an element $c \in S^0$ such that S_c is strongly F-regular and $S_{c^{1/q}} \subseteq S^{1/q}$ splits for some q.

If there exists $c \in R^e$ such that S_c is strongly F-regular (i.e., a power of c is a common test element for R and S) then we are done by Proposition 3.3(1). Even if R and S have no (apparent) common test element, however, we claim that there exists $c \in S - mS$ such that S_c is strongly F-regular. Once we have shown this, the theorem follows by Proposition 3.3(2).

Since the non-strongly F-regular locus is closed [HH1, Theorem 3.3] it suffices to show that S_{mS} is strongly F-regular, for then there exists an element $c \in S - mS$ such that S_c is strongly F-regular. Let $B = S_{mS}$. Then $R \rightarrow B$ is flat and the closed fiber is a field. In particular $E_B(B/mB) = E_R(K) \otimes_R B$. As R is strongly F-regular (so normal) it is approximately Gorenstein. Say $E_R = \lim_{\rightarrow q} R/J_t$ with socle element mapped to by u_t (as before). Then $u_t \in B/J_t B$ will still map to the socle element u in E_B. Suppose that $u \in 0_{E_B}$. This means there exists $b \in B_0$ such that for all q there exists t_q such that $bu_{t,q}^q \in J_{t,q}^q B$. Hence $b \in J_{t,q}^q :_B u_{t,q}^q = (J_{t,q}^q :_R u_{t,q}^q)B$. Note that R is an excellent normal domain, so its completion remains a domain. Thus by Proposition 2.4 we see that as $q \rightarrow \infty$, $(J_{t,q}^q :_R u_{t,q}^q)$ gets into larger and larger powers of the maximal ideal, since 0 is tightly closed in E_R. Thus $b \in \cap_N m^N B = 0$, a contradiction. □

References

[En] F. Eunesuc, *On the behavior of F-rational rings under flat base change*, J. of Alg. (to appear).

[FW] R. Fedder and K.I. Watanabe, *A characterization of F-regularity in terms of F-purity*, Commutative Algebra, MSRI Publications No. 15, Springer-Verlag, 1989, pp. 227–245.

[Ha] M. Hashimoto, *Relative Frobenius maps and Cohen-Macaulay F-injective homomorphisms*, preprint.

[Ho1] M. Hochster, *Contracted ideals from integral extensions of regular rings*, Nagoya Math. J. **51** (1973), 25–43.

[Ho2] M. Hochster, *Cyclic purity versus purity in excellent Noetherian rings*, Trans. A.M.S. **231** (1977), 463–488.
[HH1] M. Hochster and C. Huneke, *Tight closure and strong F-regularity*, Memoires Soc. Math. de France 38 (1989), 119–133.

[HH2] M. Hochster and C. Huneke, *Tight closure, invariant theory, and the Briançon-Skoda theorem*, J. Amer. Math. Soc. 3 (1990), 31–116.

[HH3] M. Hochster and C. Huneke, *Tight closure and elements of small order in integral extensions*, J. Pure Appl. Alg. 71 (1991), 233–247.

[HH4] M. Hochster and C. Huneke, *F-regularity, test elements, and smooth base change*, Trans. Amer. Math. Soc. 346 (1994), 1–62.

[HH5] M. Hochster and C. Huneke, *Infinite integral extensions and big Cohen-Macaulay algebras*, Annals of Math. 135 (1992), 53–89.

[Ku] E. Kunz, *On Noetherian rings of characteristic p*, Amer. J. Math 98 (1976), 999-1013.

[LS] G. Lyubeznik and K. E. Smith, *On the commutation of the test ideal with localization and completion*, Trans. A.M.S (to appear).

[Re] D. Rees, *Lectures on the asymptotic theory of ideals*, LMS Lecture Note Series 113, Cambridge University Press, Cambridge.

[Si] A. K. Singh, *F-regularity does not deform*, Amer. Jour. Math. 121 (1999), 919–929.

Department of Mathematics, University of Missouri, Columbia, MO 65211

E-mail address: aberbach@math.missouri.edu