Electrochemical analysis of the inhibition performance of glucobiogen on low-carbon steel in neutral chloride solution

R T Loto¹,³, M Fajobi¹, L Oluwole² and C A Loto¹

¹Department of Mechanical Engineering, Covenant University, Ogun State, Nigeria
²Department of Mechanical Engineering, University of Ibadan, Oyo State, Nigeria

E-mail: tolu.loto@gmail.com

Abstract. The inhibition performance of glucobiogen (GBN) on low-carbon steel (LCS) corrosion in neutral chloride solution (3.5% NaCl in H₂O) was evaluated by potentiodynamic polarization, metal weight loss measurement and optical microscopy characterization. Data obtained showed GBN effectively inhibited the LCS corrosion with inhibition efficiency exceeding 80 and 90% from potentiodynamic polarization test and weight loss measurement. GBN, at lowest concentration performed poorly with inhibition efficiency value below 50%. The inhibition performance of GBN showed mixed type inhibition effect with higher tendency for anodic inhibition from relative shift in corrosion potential. Inhibitor adsorption on LCS was determined to be physisorption with respect to the Langmuir and Frumkin adsorption isotherm. The optical microscopy characterization revealed that GBN hindered the formation of corrosion pits and general surface deterioration of LCS.

1. Introduction
Metallic corrosion is a major problem in petrochemical, mining and automobile industries etc. due to the extent of damage caused and the consequential cost of repair and maintenance. Carbon steels have extensive application across nearly all industries due to their relatively low cost, ease of fabrication and desirable mechanical and physical properties [1]. However, these steels have weak corrosion resistance which negatively impacts their versatility, application and operational lifespan [2,3]. Chemical compounds known as corrosion inhibitors have been proven to be effective in minimizing carbon steel corrosion [4-9]. Corrosion inhibitor modifies and suppresses the electrochemical properties and reaction mechanisms of corrosive environments in addition to their reaction with metallic surfaces [10-13]. Research performed previously has proven that non-toxic organic compound are long-term solution to toxic chemical compounds such as chromates, nitrates etc. [14-16]. Glucobiogen obtained from gluconic acid is a white needlelike crystalline solid, partially soluble in H₂O [17]. The compound has immense benefit medically and as health mineral supplements. Application of glucobiogen in acidic solutions, low chloride solutions and cooling water systems has produced mixed results necessitating further research for optimization of its corrosion inhibiting properties [18,19]. In contribution to research on the inhibition performance of glucobiogen, this article is focuses on the electrochemical analysis of the inhibition performance of the compound on low carbon steel in neutral chloride solution.

2. Materials and methods
Low-carbon steel (LCS) with 0.7 cm diameter was cut into 5 test specimens. Each specimen was embedded in hardened resin paste, grinded with emery abrasive papers (80, 120, 240, 320, 400, 600,
800 and 1000 grits), polished with diamond polishing paste and thereafter washed with distilled H₂O and acetone for potentiodynamic polarization technique. 7g of recrystallized NaCl was added to 200 ml of distilled H₂O to simulate neutral chloride solution (artificial seawater). Glucobiogen (GCN) obtained from Sigma Aldrich. USA was formulated in volumetric concentrations of 0.75%, 1.25%, 1.75% and 2.25% per 200 ml of the neutral chloride solution. GCN is non-toxic with molecular weight of 430.373 g/mol and molecular formular of C₁₂H₂₂CaO₁₄. Potentiodynamic polarization test was done with Digi-Ivy 2300 potentiostat at 25°C ambient temperature. Resin mounted LCS electrodes (exposed surface area of 0.38 cm²), Pt counter electrode and Ag/AgCl reference electrode were immersed in neutral chloride solution, and connected to the potentiostat-computer interface. Potentiodynamic measurement was performed between potentials of -1.5 V to 0.5 V at a scan rate of 0.0015 V/s. An Omax trinocular metallurgical microscope was used to study and capture images of LCS surface before corrosion and after corrosion test with and without GCN inhibitor.

3. Results and discussion

3.1. Potentiodynamic polarization and microscopy characterization

Potentiodynamic polarization curves of LCS corrosion in neutral chloride solution at 0% to 2.25% GCN is shown in figure 1. Table 1 depicts the results gotten from the polarization test. The optical morphology of LCS before corrosion and after corrosion test in neutral chloride solution at 0% GCN compound is shown in figures 2(a) and 2(b). Figures 3(a) and 3(b) shows the optical morphology of LCS surface after corrosion at 0.75% GCN and 2.25% GCN concentration. The corrosion rate of LCS at 0% GCN is 1.56 mm/y due to the oxidation of LCS surface as shown in figure 2(b). Corrosion pits and general surface deterioration are visible due to oxidation of the substrate Fe²⁺. LCS corrosion rate in the presence of GCN differs from the control solution (0% GCN) though at 0.75% GCN concentration the corrosion rate is 0.92 mm/y with corresponding inhibition efficiency of 40.72%. LCS surface morphology at this concentration (figure 3(a)) is a mild improvement of the image at figure 2(b). GCN inhibition efficiency at 1.25% to 2.25% GCN compound was generally above 80% due to effective inhibition of the corrosion reaction processes. The protective reaction product of Fe²⁺-GCN precipitate passivates on LCS as shown in figure 3(b) and the extended passivated region of the inhibited polarization plots in figure 1. The passivated regions of the polarization curves in the presence of specific concentrations of GCN extends further than the curve without GCN, confirming anodic inhibition effect of GCN on LCS surface. The degree of wear in figure 3(b) is much lower; the lines resulting from machining are still visible while corrosion pits are absent. The maximum corrosion potential shift in table 1 between the inhibited and non-inhibited steel is 75 mV in the anodic direction, confirming the inhibitor to be mixed type with dominant anodic inhibition effect.

Table 1. Potentiodynamic polarization data for LCS corrosion inhibition in neutral chloride solution at 0% - 2.25% GCN concentration.

Sample	GCN Conc. (%)	LCS C_r (mm/y)	GCN ðϕ	C_l (A)	C_i (A/cm²)	C_p (V)	R_p (Ω)	B_k (V/dec)	B_s (V/dec)
A	0	1.56	0	1.55E-04	1.37E-04	-0.989	119.30	-9.662	6.526
B	0.75	0.92	40.72	9.16E-05	8.10E-05	-0.975	358.90	-9.547	4.212
C	1.25	0.26	83.06	2.62E-05	2.32E-05	-0.931	981.50	-9.628	1.785
D	1.75	0.23	85.14	2.30E-05	2.03E-05	-0.926	1119.00	-9.785	1.358
E	2.25	0.31	80.25	3.05E-05	2.70E-05	-0.921	813.60	-9.463	2.042
Figure 1. Potentiodynamic polarization plots for LCS corrosion inhibition in neutral chloride solution at 0% - 2.25% GCN concentration.

Figure 2. Optical microscopic images of (a) LCS surface before corrosion test and (b) LCS surface after corrosion in artificial seawater at 0% GCN.

Figure 3. Optical microscopic images of GCN inhibited LCS surface in artificial seawater (a) at 0.75% GCN and (b) 2.25% GCN.

3.2. Weight loss measurement
Graphical curves of LCS corrosion rate against time of exposure is shown in figure 4(a) while figure 4(b) depicts the curve of GCN inhibition efficiency against exposure time. The results obtained from weight loss measurement at 216 h are shown in table 2. Corrosion rate of LCS at 0% GCN concentration is 0.0045 mm/y at 48 h due to onset of surface oxidation of LCS surface which subsequently decreased to 0.00104 mm/y at 216 h as a result of the weakened electrolyte. The corrosion rate value of LCS at 0% GCN significantly differs from the general corrosion rate value of LCS obtained at 0.75% GCN concentration. At this concentration, the corrosion rate at 48 h is 0.0008 mm/y and at 216 h, it peaked at 0.0007 mm/y. The corresponding inhibition efficiency of GCN at (0.75% GCN) is 33%. GCN
concentration at 1.25, 1.75, and 2.25% GCN decreased the corrosion rate values of LCS to 0.00009, 0.00002, and 0.00006 mm/y at 216 h, corresponding to inhibition efficiency of 90.97, 97.87, and 94.58%.

![Graph](image)

Figure 4. Graphical plot of (a) LCS corrosion rate versus exposure time and (b) GCN inhibition efficiency versus exposure time.

LCS specimen	LCS weight loss (g)	GCN concentration (%)	LCS corrosion rate (mm/y)	GCN inhibition efficiency (%)
A	0.1218	0	0.00104	0
B	0.0816	0.75	0.00070	33.00
C	0.0110	1.25	0.00009	90.97
D	0.0026	1.75	0.00002	97.87
E	0.0066	2.25	0.00006	94.58

Table 2. Data obtained from coupon measurement at 216 h.

3.3. **Adsorption isotherm studies**

GCN interaction and adsorption on LCS surface was also studied through adsorption isotherms. Langmuir and Frumkin isotherm models produced the best fit among the isotherms studied with high correlation coefficients values. Figure 5(a) shows the Langmuir plot of $\frac{c_{GCN}}{\theta}$ vs C_{GCN} with correlation coefficient of 0.9898. Figure 5(b) shows the Frumkin plots of $\log\left[\frac{\theta}{(1 - \theta)c}\right]$ versus θ with correlation coefficient of 0.9780.
3.4. Thermodynamics of inhibitor adsorption

Results for the Gibbs free energy are presented in table 3. The highest ΔG_{ads} value obtained for GCN is -27.37 KJmol$^{-1}$ while the lowest ΔG_{ads} value is -18.23 KJmol$^{-1}$. The highest and lowest ΔG_{ads} values obtained show the mechanism of GCN adsorption on LCS is through physisorption mechanism. Lateral interaction effect was shown to be insignificant due to the non-linear relationship between the ΔG_{ads} value and GCN concentration.

Table 3. Results for the Gibbs free energy (ΔG_{ads}), surface coverage (Θ) and equilibrium constant of adsorption (K_{ads}) for GCN adsorption on neutral chloride solution.

Sample	GCN concentration (M)	Surface coverage (Θ)	Equilibrium constant of adsorption (K_{ads})	Gibbs free energy, ΔG (KJmol$^{-1}$)
1	0	0	0	0
2	1.74E-02	0.330	28.3	-18.23
3	2.90E-02	0.910	346.8	-24.45
4	4.07E-02	0.979	1127.5	-27.37
5	5.23E-02	0.946	333.9	-24.35

4. Conclusion

Glucobiogen effectively suppressed the low-carbon steel corrosion in neutral chloride media with average inhibition efficiency above 80 and 90% from different electrochemical tests. Glucobiogen showed the mixed-type inhibition effect with dominant anodic properties. Thermodynamic calculations prove that glucobiogen was adsorbed through the physisorption mechanism, according to the Langmuir and Frumkin adsorption isotherms. Corrosion pits visible on the non-inhibited steel were absent on the inhibited steel.

Acknowledgment

The authors appreciate the financial support of this study by the Covenant University, Ogun State, Nigeria.

References

[1] Loto R T and Loto C A 2019 Data on the corrosion inhibition effect of non-toxic organic derivatives on high carbon steel in dilute acid media Chemical Data Collections 20 100214

[2] Ju H, Kai Z P and Li Y 2008 Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic media: A quantum chemical calculation Corros. Sci. 50
Ahamad I, Prasad R and Quraishi M A 2010 Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions Corros. Sci. 52 933-42

Loto C A, Loto R T and Popoola A P I 2011 Electrode potential monitoring of effect of plants extracts addition on the electrochemical corrosion behaviour of mild steel reinforcement in concrete Int. J. Electrochem. Sci. 6 3452-65

Zee M, Chikkam A K, Larkin E, Taheri P, Rezaie A and Campbell A 2019 Corrosion risk assessment, failure analysis and corrosion mitigation for aboveground storage tanks and case histories NACE Int Corrosion (Nashville, Tennessee, USA)

Loto R T 2018 Surface coverage and corrosion inhibition effect of Rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions Results in Phys. 8 172-79

Loto R T and Olowoyo O 2018 Corrosion inhibition properties of the combined admixture of essential oil extracts on mild steel in the presence of SO$_4^{2-}$ anions South Afr. J. Chem. Eng. 26 35-41

Loto R T and Loto C A 2018 Corrosion behaviour of S43035 ferritic stainless steel in hot sulphate/chloride solution J. Mater. Res. Tech. 7 231-9

Loto R T and Loto C A 2012 Effect of P-phenyldiamine on the corrosion of austenitic stainless steel type 304 in hydrochloric acid Int. J. Elect. Sci. 7(10) 9423-40

Papavinasam S 2013 Corrosion Control in the Oil and Gas Industry (Amsterdam: Elsevier)

Popoola L T, Grema A S, Latinwo G K, Guttì B and Balogun A S 2013 Corrosion problems during oil and gas production and its mitigation International Journal of Industrial Chemistry 4 35

Loto R T and Oghenerukewe, E 2016 Inhibition studies of rosmarinus officinalis on the pitting corrosion resistance 439LL ferritic stainless steel in dilute sulphuric acid Oriental J. Chem. 32(5) 2813-32

Rosli N R, Yusuf S M, Sauki A and Razali W M R W 2019 Musa sapientum (Banana) peels as green corrosion inhibitor for mild steel Key Engineering Materials 797 230-9

Furtado L B et al 2019 Eco-friendly corrosion inhibitors based on Cashew nut shell liquid (CNSL) for acidizing fluids J. Mol. Liq. 284 393-404

Rajendran S, Apparao B V and Palaniswamy N 1998 Technical note Calcium gluconate as corrosion inhibitor for mild steel in low chloride media British Corrosion Journal 33 315-7

Saremi M, Benehkohal N P, Dehghanian C and Zebardast H R 2009 Effect of calcium gluconate concentration and hydrodynamic effect on mild steel corrosion inhibition in simulated cooling water Corrosion 65 778-84

Akanji O L, Loto C A, Abdulwahab M and Kolesnikov A V 2016 Anti-corrosion and computational study of mild steel in hydrochloric acid using calcium gluconate as inhibitor Asian J. Chem.28