ABSTRACT
The present study focused to the acute and subacute toxicity studies of ethanolic extracts of Oecophylla smaragdina (EEOS) using animal model. In the acute study, a single dose of 2000 mg/kg was administered to albino rat which were observed for 72 h. In sub-acute toxicity study repeated doses of the EEOS were administered. The rats were received two doses of EEOS (200 and 400 mg/kg p.o. respectively) for a period of 28 days. On the 28th day of the experiment, blood sample was collected by cervical decapitation after anaesthetizing using xylazine + ketamine (16 + 100 mg/kg i.m.) and it was used to identify the hematological and biochemical analysis. Throughout the study, behavior changes, mortality, body weight, food and water consumption were observed and then sacrificed to remove the liver for histopathological examination. Results: No morbidity and mortality were reported. In sub-acute toxicity study, there is no any significant changes were observed in haematological and biochemical parameters at 200 and 400 mg/kg/p.o. respectively. Conclusion: It was concluded that no toxicity was observed in ethanolic extracts of Oecophylla smaragdina (EEOS).

Keywords: Oecophylla smaragdina, ethanolic, acute, subacute

INTRODUCTION

In the 21st century is an era in which a tremendous deal of effort and assets are being invested in the research of medicinal plants round the arena. These studies are primarily based in particular on historic, ethnic and sources of information. The usage of animals in conventional medicinal purposes is more and more becoming extra applicable to discussion on conservation biology, public health regulations and sustainable control of natural sources, organic prospection and patents.

In accordance, to the World Health Organization, between 75 and 80 % of the human population uses conventional / traditional folk medicines. It's widely known that the annual worldwide trade in animal-primarily based medicinal products accounts for billions of dollars consistent with year.

Zoo therapy is a form of therapy or remedy which is defined as “the curing of human diseases through use of therapeutic substances obtained or derived from animals”. Animals do, indeed, possess an exceptionally wide variety of treatment options that play a significant role inside the curing of humans globally.

The phenomenon of zoo therapy is marked both through a broad geographical distribution and really deep ancient origins. A few authors have shown, animal-based totally drug treatments have been applied due to the fact antiquity. In Latin America as a minimum 584 animal species, disbursed in 13 taxonomic categories, had been utilized in conventional drugs. In India nearly 15-20 % of the Ayurvedic medicines are primarily based on animal derived materials.

The aim of the present research work is to study the toxicological studies of ethanolic extract of Oecophylla smaragdina (OS) (Weaver ant) using animal models.

MATERIALS AND METHODS

Taxonomical Identification
The Oecophylla smaragdina (OS) specimen was identified & authenticated by Dr. K. Vasudevan, Associate Professor, Department of Zoology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, India. The ant specimen was identified as Oecophylla smaragdina, Family: Formicidae. Voucher Number: OS-001/2016

Extraction method
The 200g OS were collected and frozen in refrigerator by keeping in polythene covers. The ants were subjected for reflux for 2 hours at 50°C using 70% ethanol by soxhlation. After filtration through Whatman filter paper No. 40, the filtrates were evaporated to dryness in vacuum at 35°C –
40°C. The dried EEOS extracts were stored separately in screw cap vial at 4°C until further use².

Experimental animals

Animals of both sex (male & female) Wistar rats were collected after ethical committee clearance from Sankaralingam Bhuvesswari College of Pharmacy, Sivakasi, Virudhunagar dist, Tamil Nadu. The studies were conducted in accordance with the ethical committee (SBCP/2015-2016/CPCSEA/ IAEC/li/l(c).) Rats weigh about 125-200g & mice 20-30g. The animals were maintained in a controlled temp 22±2°C on 12 hr light/dark cycle with free access to standard pellet diet and water ad libitum. After 7 days of acclimatization, the animal was randomly assigned for experimental groups. Each group containing 6 animals were housed individually in labelled cages¹⁰.

Preparation of formulation

The EEOS were formulated as suspension in distilled water with 2% tween 80 as a suspending agent individually. For all the studies freshly, prepared suspensions were used.

Acute toxicity study

Acute oral toxicity test was performed to identify the LD50 value of EEOS. The experiment was conducted on albino rats. Each group containing 3 animals were used individually. Animals were allowed free access to standard pellet diet (Sai enterprises pvt Ltd, Chennai, India) and water ad libitum. They were maintained in controlled laboratory conditions of 12 hrs dark/light cycle, 22±2°C temperatures and 45-60% humidity. Any toxic symptoms including mortality and morbidity of the animals were observed.

LD₅₀ study was performed as per OECD-423 guidelines for the EEOS to find out the maximum tolerate dose and minimum lethal dose. The EEOS were given individually, by oral route of rats and the LD₅₀ values were calculated. The animals were closely watched for 3 days and were kept for observation up to 14 days to found out delayed mortality.

Animals were fasted prior to administration of dosing. The food was withdrawn overnight and water also withdrawn 3 hrs before drug administration. It is a stepwise procedure, the animals were administrated in the dose of 5 mg/kg and the dose was increased to 50, 300 and 2000 mg/kg p.o. body weight. The mortality of the animals dosed at one step determined the next step. Animals were observed for behavioural changes, toxic symptoms & mortality up to 3 days and observations were made for 14 days to find out delayed mortality if any. If the animal survived, the second group of animals received a higher dose. If the first animal died or appeared moribund, the second animal received a lower dose¹¹.

Animals were observed individually for 3 days after dosing at the first 30 minutes, periodically and during the first 24 hrs. Observations include changes in respiration, writhing, tremor, convulsions, hind limb paralysis, sense of touch and sound salivation, urination, diarrhoea and mortality.

Sub-acute toxicity studies

The subacute toxicity procedure was followed by using OECD guidelines 407. Wistar albino rats of both sexes were randomly selected and put into three groups with six rats in each group. Food was withheld overnight but water made available. The animals were weighed prior to administration of the extract. First group served as solvent control (normal saline 10ml/kg p.o.) and other groups were administered EEOS at 200 mg and 400 mg/kg p.o. respectively. The test compounds were given once daily orally for 28 days. All the rats were observed for any physiological and behavioural changes and mortality if any. Organ weight, body weight, food and water consumption were checked every 7 days intervals. All animals were weighed once a week (1, 7, 14, 21 & 28 days). Animals were sacrificed by cervical decapitation under Xylazine + Ketamine (16 + 100 mg/kg i.m.) blood samples were collected, the liver was dissected out for pathological observation¹².

Gross behavioural studies

Gross behavioural studies were performed by using effective dose of 200 and 400mg/kg/oral of EEOS respectively in rats and following parameters like CNS, reflexes effect, ANS, effect after manipulations were observed¹³.

Haematological analysis

At the end of subacute toxicity studies experimental period, all surviving animals were fasted overnight. After anaesthetized with Xylazine + Ketamine (16 + 100 mg/kg i.m.), the Blood samples were collected retro-orbital sinus into heparinized tube for the analysis of haematological parameters like haemoglobin, total W.B.C count, total R.B.C count and platelet count.

RESULTS AND DISCUSSION

Table 1: Acute toxicity in rat treated with EEOS

Observation	1hr	4 hrs	24 hrs	48 hrs	7 days	14days
Respiration	N	N	N	N	N	N
Writting	-	-	-	-	-	-
Tremor	-	-	-	-	-	-
Convolusions	-	-	-	-	-	-
Hind limb paralysis	-	-	-	-	-	-

©Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.
From the acute toxicity study as shown in table 1, it was observed the EEOS at the dose of 2000mg/kg p.o. body weight in rats does not cause moribund and mortality. From the acute toxicity studies as per the OECD 423 guidelines in rat the LD₅₀ values was found to be 2000mg/kg p.o. body weight. At this dose level no change of respiration, writhing, tremor, convulsions, hind limb paralysis, sense of touch and sound salivation, urination, diarrhoea and mortality. Skin, fur, eyes, mucous membrane and behaviour pattern were normal. There was no moribund or mortality up to the dose level 2000mg/kg p.o. and the animals were alive up to the end of the study. The results were showed in table:1

SUB-ACUTE: Repeated dose 28-days oral toxicity studies

Table 2: Gross behaviour activity (200mg/kg/oral)

S. No	Effect on CNS	Time (hrs)										
		½	1 ½	2	2 ½	3	3 ½	4	5	6	12	24
1	Spontaneous motor activity:											
	Restlessness	-	-	-	-	-	-	-	-	-	-	-
2	Ataxic gait.	-	-	-	-	-	-	-	-	-	-	-
3	Lying flat on the belly	-	-	-	-	-	-	-	-	-	-	-
4	Grooming behaviour	-	-	-	-	-	-	-	-	-	-	-
5	Lying flat on the side	-	-	-	-	-	-	-	-	-	-	-
6	Lying flat on the back	-	-	-	-	-	-	-	-	-	-	-
7	Sleeping	-	-	-	-	-	-	-	-	-	±	±
8	Narcosis	-	-	-	-	-	-	-	-	-	-	-
9	Bizarre behaviour	-	-	-	-	-	-	-	-	-	-	-
10	Timidity	+	+	+	+	+	+	+	+	+	+	+
11	Straub’s phenomenon	-	-	-	-	-	-	-	-	-	-	-
12	Writhing	-	-	-	-	-	-	-	-	-	-	-
13	Tremors	-	-	-	-	-	-	-	-	-	-	-
14	Twitches	-	-	-	-	-	-	-	-	-	-	-
15	Opisthotonus	-	-	-	-	-	-	-	-	-	-	-
16	Chronic convulsions	-	-	-	-	-	-	-	-	-	-	-
17	Tonic convulsions	-	-	-	-	-	-	-	-	-	-	-
18	Rolling and jumping	-	-	-	-	-	-	-	-	-	-	-
19	Convolusions	-	-	-	-	-	-	-	-	-	-	-
20	Effect on reflexes:											
	Pinna reflex	-	-	-	-	-	-	-	-	-	-	-
21	Corneal reflexes	-	-	-	-	-	-	-	-	-	-	-
22	Pain following stimulation	-	-	-	-	-	-	-	-	-	-	-
23	Effect on autonomic nervous system: Pupil diameter	-	-	-	-	-	-	-	-	-	-	-
24	Eyelids (closure/ exophthalmus)	-	-	-	-	-	-	-	-	-	-	-
25	Secretion of sweat	-	-	-	-	-	-	-	-	-	-	-
26	Salivation	-	-	-	-	-	-	-	-	-	-	-
27	Lacrimation	-	-	-	-	-	-	-	-	-	-	-
28	Cyanosis	-	-	-	-	-	-	-	-	-	-	-
29	Piloerection	-	-	-	-	-	-	-	-	-	-	-
30	Defecation	-	-	-	-	-	-	-	-	-	-	-
Table 3: Gross behaviour activity (400mg/kg/oral)

S. No	Effect on CNS	Time (hrs)										
		½	1 ½	2	2 ½	3	3 ½	4	5	6	12	24
1	Spontaneous motor activity.											
	Restlessness	-	-	-	-	-	-	-	-	-	-	-
2	Ataxic gait.	-	-	-	-	-	-	-	-	-	-	-
3	Lying flat on the belly	-	-	-	-	-	-	-	-	-	-	-
4	Grooming behaviour	-	-	-	-	-	-	-	-	-	-	-
5	Lying flat on the side	-	-	-	-	-	-	-	-	-	-	-
6	Lying flat on the back	-	-	-	-	-	-	-	-	-	-	-
7	Sleeping	-	-	-	-	-	-	-	-	±	-	-
8	Narcosis	-	-	-	-	-	-	-	-	-	-	-
9	Bizarre behaviour	-	-	-	-	-	-	-	-	-	-	-
10	Timidity	+	+	+	+	+	+	+	+	+	+	+
11	Straub’s phenomenon	-	-	-	-	-	-	-	-	-	-	-
12	Strychnine	-	-	-	-	-	-	-	-	-	-	-
13	Tonic convulsions	-	-	-	-	-	-	-	-	-	-	-
14	Convulsions	-	-	-	-	-	-	-	-	-	-	-
15	Opisthotonus	+	+	+	+	+	+	+	+	+	+	+
16	Chronic convulsions	-	-	-	-	-	-	-	-	-	-	-
17	Ataxic gait.	-	-	-	-	-	-	-	-	-	-	-
18	Lying flat on the belly	-	-	-	-	-	-	-	-	-	-	-
19	Grooming behaviour	-	-	-	-	-	-	-	-	-	-	-
20	Pain following stimulation	-	-	-	-	-	-	-	-	-	-	-
21	Pinna reflex	-	-	-	-	-	-	-	-	-	-	-
22	Pinna reflex	-	-	-	-	-	-	-	-	-	-	-
23	Effect on autonomic nervous system:											
	Pupil diameter	-	-	-	-	-	-	-	-	-	-	-
24	Eyelids (closure/ exophthalmus)	-	-	-	-	-	-	-	-	-	-	-
25	Secretion of sweat	-	-	-	-	-	-	-	-	-	-	-
26	Salivation	-	-	-	-	-	-	-	-	-	-	-
27	Lacrimation	-	-	-	-	-	-	-	-	-	-	-
28	Cyanosis	-	-	-	-	-	-	-	-	-	-	-
29	Pinna reflex	-	-	-	-	-	-	-	-	-	-	-
30	Defecation	-	-	-	-	-	-	-	-	-	-	-
31	Urination	-	-	-	-	-	-	-	-	-	-	-

Gross behaviour activity in rat 400mg/kg/oral body weight.
The results of the subacute toxicity for various organ weight, body weight, food intake and water intake were shown in the table-4,5,6 and7. The weight of various organ weight, body weight, food intake and water intake for EEOS treated groups at 200 and 400mg/kg p.o. respectively were not altered significantly when compared to normal control group.

Sl. No	Drug Treatment	Brain (g)	Heart (g)	Kidney(g)	Liver (g)	Stomach(g)
1	Group I- Control (Normal saline 2ml/kg p.o.)	1.52±0.01	0.65±0.02	1.11±0.01	4.32±0.11	2.21±0.05
2	Group II (EEOS 200 mg/kg p.o)	1.55±0.01	0.68±0.03	1.09±0.05	4.24±0.16	2.29±0.012
3	Group II (EEOS 400 mg/kg p.o)	1.53±0.02	0.67±0.01	1.13±0.07	4.36±0.21	2.20±0.04

Values are mean ± SEM; n=6 in each group; Group –II & Group III was compared with Group –I. The values of various organ weights rats were not altered significantly.

Sl. No	Animal treatment	Body weight (g)				
1	Group I- Control (Normal saline 2ml /kg p.o.)	151.5±2.17	159.7±2.10	154.2±1.34	158.3±1.32	153.1±1.12
2	Group II (EEOS 200 mg/kg p.o)	150.5±2.17	155.5±3.57	157.2±3.24	162.1±1.51	166.1±1.32
3	Group III (EEOS 400 mg/kg p.o)	156.2±2.11	160.2±1.23	164.6±1.35	166.7±2.32	168.3±2.17

Values are mean ± SEM; n=6 in each group; Group –II & Group III was compared with Group –I. The values of body weights rats were not altered significantly.

Sl. No	Animal treatment	Food intake (g)			
1	Group I- Control (Normal saline 2ml /kg p.o.)	41.63±0.46	43.24±0.54	47.15±0.67	49.14±0.47
2	Group II – (EEOS 200 mg/kg p.o)	40.12±0.34	43.34±0.41	44.43±0.48	46.07±0.56
3	Group III (EEOS 400 mg/kg p.o)	41.14±0.53	42.46±0.40	42.14±0.21	44.04±0.55

Values are mean ± SEM; n=6 in each group; Group –II & Group III was compared with Group –I. The values of food intake rats were not altered significantly.

Sl. No	Animal treatment	Water Intake (ml)			
1	Group I- Control (Normal saline 2ml /kg p.o.)	54.32±2.32	53.21±1.86	49.54±2.53	51.45±2.12
2	Group II – (EEOS 200 mg/kg p.o)	50.25±1.25	49.36±1.56	51.78±2.03	51.31±1.96
3	Group III (EEOS 400 mg/kg p.o)	55.74±2.56	56.41±2.97	54.22±2.24	55.64±2.14

Values are mean ± SEM; n=6 in each group; Group –II & Group III was compared with Group –I. The values of water intake rats were not altered significantly.
The results of glucose level in group I were appearing in rats 86.21 mg/dl. The treated animals like Group II & Group III was compared with Group I. The values of biochemical parameters rats were not altered significantly.

The haematological parameters of EEOS like Haemoglobin, WBC, RBC and Platelet were not significant change when compared to Control group. The results of haematological parameters were mentioned in Table 8.

Table 8: Results of haematological parameters of EEOS treated in rats

Sl. No	Animal treatment	Haemoglobin gm %	WBC (×10^3/μl)	RBC (×10^6/μl)	Platelet (×10^9/μl)
1	Group I- Control (Normal saline 2ml/kg p.o.)	14.24±0.07	8.26±0.05	4.96±0.06	5.68±0.07
2	Group II (EEOS 200 mg/kg p.o)	14.47±0.11	8.96±0.11	4.31±0.09	5.71±0.08
3	Group III (EEOS 400 mg/kg p.o)	14.31±0.09	8.44±0.25	4.48±0.08	6.37±0.08

Values are mean ± SEM; n=6 in each group; Group –II & Group III was compared with Group –I. The values of haematological parameters rats were not altered significantly.

Table 9: Results of biochemical parameters of EEOS treated in rats

Sl. No	Animal treatment	Glucose (mg/dL)	Urea (mmol/L)	Creatinine (mg/dL)	Total protein (g/dL)
1	Group I- Control (Normal saline 2ml kg p.o.)	86.21±0.32	7.51±0.21	1.21±0.12	6.44±0.15
2	Group II (EEOS 200 mg/kg p.o)	88.35±0.12	6.94±0.46	1.35±0.09	6.23±0.14
3	Group III (EEOS 400 mg/kg p.o)	87.56±0.28	7.02±0.51	1.24±0.05	6.26±0.49

Values are mean ± SEM; n=6 in each group; Group –II & Group III was compared with Group –I. The values of biochemical parameters rats were not altered significantly.

Table 10: Results of biochemical parameters of EEOS treated in rats

Sl. No	Animal treatment	Albumin (g/dL)	Globulin (g/dL)	Bilirubin (mg/dL)
1	Group I- Control (Normal saline 2ml kg p.o.)	4.11±0.02	4.73±0.11	0.48±0.08
2	Group II (EEOS 200 mg/kg p.o)	4.58±0.12	4.51±0.34	0.56±0.10
3	Group III (EEOS 400 mg/kg p.o)	4.21±0.32	4.77±0.16	0.51±0.21

Values are mean ± SEM; n=6 in each group; Group –II & Group III was compared with Group –I. The values of biochemical parameters rats were not altered significantly.

Table 11: Results of biochemical parameters of EEOS treated in rats

Sl. No	Animal treatment	SGPT (Units/L)	SGOT (Units/L)	ALP (Units/L)
1	Group I- Control (Normal saline 2ml/ kg p.o.)	43.17±0.36	121.3±0.21	146.1±0.23
2	Group II (EEOS 200 mg/kg p.o)	46.85±0.66	126.4±0.34	150.32±1.56
3	Group III (EEOS 400 mg/kg p.o)	44.38±0.21	120.2±0.05	149.5±0.11

Values are mean ± SEM; n=6 in each group; Group –II & Group III was compared with Group –I. The values of biochemical parameters rats were not altered significantly.

Table 12: Results of biochemical parameters of EEOS treated in rats

Sl. No	Drug treatment	Cholesterol (mg/dL)	Triglycerides (mg/dL)
1	Group I- Control (Normal saline 2ml kg p.o.)	85.44±0.57	44.12±0.42
2	Group II (EEOS 200 mg/kg p.o)	82.27±0.58	42.25±0.26
3	Group III (EEOS 400 mg/kg p.o)	86.46±0.44	43.11±0.26

Values are mean ± SEM; n=6 in each group; Group –II & Group III was compared with Group –I. The values of biochemical parameters rats were not altered significantly.

The results of glucose level in group -I were appearing in rats 86.21 mg/dl. The treated animals like 200 and 400 mg/kg body weight were 88.35 and 87.56 mg/dl respectively. There were significant changes when compared to Group- I. The result of urea in group-I were appear 7.51 mmol/L. The treated group like 200 and 400 mg/kg body weight were 6.94 and 7.02 mmol/L respectively. The results of glucose and urea were mentioned in table 9.

The creatinine level of control group was appeared 1.21 mg/dL. The EEOS treated group 200 and 400 mg/kg were 1.35 and 1.24 mg/dL respectively. The total protein
level of control group 6.44g/dl and the treated of EEOS 200 and 400mg/kg were 623 and 6.26mg/dl respectively. In Creatinine and total protein, there are no significant changes were report when compared to normal group. The results of Creatinine and total protein were mentioned in table 9.

The EEOS treated groups at 200 and 400 mg/kg p.o. did not show any significant changes in albumin, globulin and bilirubin when compared to Group-I. The results were shown in Table 10.

The ethanolic extracts of *Oecophylla smaragdina* (200 & 400 mg/kg p.o respectively) treated groups were compared with Group-I. No significant changes were reported in SGPT, SGOT, ALP Cholesterol and Triglycerides. The results were shown in Table 11 & 12.

Control group, EEOS 200 and 400 mg/kg treated groups liver showed that normal hepatic cell has sinusoidal space, central vein showing normal architecture, absence of disarrangement, degeneration of hepatic cell, necrosis, sinusoidal haemorrhage and dilations. intact parenchymal cells and compactly arranged in the mucosal glands.

CONCLUSION

The extractive value of EEOS was 8.56% w/w. The preliminary chemical screening showed EEOS was rich in carbohydrates, free amino acids, alkaloids, lipid and steroids. The acute toxicity studies (as per OECD- 423 guidelines) results revealed that the LD$_{50}$ values of EEOS was 2000mg/kg/oral. The study revealed that there was no mortality up to the dose level of 2000mg/kg/oral till the end of the study. Histopathological studies of the slides of cardiac muscles and liver of the animals treated with 2000mg/kg/oral of EEOS showed normal architecture which confirms the safety of LD$_{50}$ doses.

EEOS was selected at two different dose levels of 200 and 400mg/kg for the pharmacological screening in animals. The selected dose of EEOS at two different dose levels was subjected to gross behavioural studies in animals. The parameters such as spontaneous motor activity, effect on reflexes, effect on autonomic nervous system and effect after manipulations parameters proved that the EEOS at the above dose levels were safe and the animals were normal.

For investigating various parameters like organ weight, body weight, food intake, water intake and haematological/biochemical parameters on the animals treated with EEOS at the selected dose of 200 and 400mg/kg/oral was given to rats for 28 days and using normal saline as control. Blood samples were collected and the following haematological parameters such as WBC count, RBC count, haemoglobin, lymphocytes, monocytes, were determined. Serum biochemical parameters such as glucose, cholesterol, creatinine, urea, triglycerides, bilirubin, total protein protein, albumin, globulin, ALP, AST and ALT were also determined. Histopathological studies on heart muscles and liver slices of the animals treated with the above extracts at the same dose level were studied. From the investigation various parameters like organ weight, body weight, food intake, water intake, haematological, serum biochemical and histopathological results, it has been observed that EEOS at 200 and 400mg/kg/oral dose did not alter the above parameters when compared to control group animals.

Acknowledgement: The authors are thankful to Mr. S. Sreeram Ashok, Correspondent, Sankaralingam Bhuvaneswari College of Pharmacy, Sivakasi, Tamil Nadu for providing the facilities to carry out the research work.

REFERENCES

1. Efraim Lev. Traditional healing with animals (zootherapy): medieval to present-day Levantine practice, *Journal of Ethnopharmacology*, 2003; 85: 107–11
2. Adeola M O. Importance of wild Animals and their parts in the culture, religious festivals, and traditional medicine of...
3. Alves RN, Rosa IL, Santana GG. The role of animal-derived remedies as complementary medicine in Brazil, *Journal of Biosciences*, 2007; 57: 49-95.

4. Kunin WE and Lawton JH. Does biodiversity matter? Evaluating the case for conserving species. In: Gaston KJ (Ed), *Biodiversity: a biology of numbers and differences*, Oxford: Blackwell Science, Springer, 1996; 1: 283–308.

5. Mirela Samfira1 and Ioan Petromanet. Therapeutic Value of the Human Being-Animal Relationship, Animal Science and Biotechnologies, 2011; 44 (2): 512-515

6. Anageletti, L.R., Agrimi, U., Curia, C., French, D., Mariani-Costantini R. Healing rituals and sacred serpents. *The Lancet*, 1992; 340(8813): 223–225.

7. Akalesh Kumar Verma, Surya bali prasad, Thengtom Rongpi, Jashodeb Arjun. Traditional healing with animals (zootherapy) by the major ethnic group of karbianglong district of Assam, India, *International Journal of Pharmacy and Pharmaceutical Sciences*, 2014; 6(8): 593-600

8. Harborne, J.B. *Textbook of Phytochemical Methods. A Guide to Modern Techniques of Plant Analysis*. 5th Edition, Chapman and Hall Ltd, London, 1998; 21-72.

9. Junping KOU, YunNi, Na Li, Jingrong Wang, Liang Liu, Zhi-Hong Jiang. An Algescic and Anti-inflammatory Activities of Total Extract and Individual Fractions of Chinese Medicinal Ants Polyrhachis lamellidens, Biological and Pharmaceutical Bulletin, 2005; 28(1): 176—180

10. Vinoth Prabhu V, Chidambaranathan N, Gopal. Evaluation of quantification of angiogenesis activity of Terminalia bellirica Roxy, by mice sponge implantation Method, *Journal of Young Pharmacists*, 2012; Vol.4(1): 22-27

11. OECD guidelines 423

12. OECD guidelines 407

13. Gerhard Vogel H. *Drug Discovery and Evaluation*, Springer, 2002; 2: 388-394.