This is a repository copy of Demonstration of ThGEM-multiwire hybrid charge readout for directional dark matter searches.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/151644/

Version: Published Version

Article:
Ezeribe, A.C., Eldridge, C., Lynch, W. et al. (3 more authors) (2020) Demonstration of ThGEM-multiwire hybrid charge readout for directional dark matter searches. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 164847. ISSN 0168-9002

https://doi.org/10.1016/j.nima.2020.164847

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/
Demonstration of ThGEM-multiwire hybrid charge readout for directional dark matter searches

A.C. Ezeribe a, C. Eldridge, W. Lynch, R.R. Marcelo Gregorio, A. Scarff, N.J.C. Spooner

Department of Physics and Astronomy, University of Sheffield, Hounsfield Road S3 7RH, United Kingdom

ARTICLE INFO

Keywords:
ThGEM
Multiwire
Hybrid charge readout
Gas-TPC
SF6 target gas
Dark matter
WIMPs

ABSTRACT

Sensitivities of current directional dark matter search detectors using gas time projection chambers are now constrained by target mass. A ton-scale gas TPC detector will require large charge readout areas. We present a first demonstration of a novel ThGEM-Multiwire hybrid charge readout technology which combines the robust nature and high gas gain of Thick Gaseous Electron Multipliers with lower capacitive noise of a one-plane multiwire charge readout in SF6 target gas. Measurements performed with this hybrid detector show an ion drift velocity of 138 ± 10 m s⁻¹ in a reduced drift field E/N of 93 × 10⁻¹⁷ V cm² with an effective gas gain of 2470 ± 160 in 20 Torr of pure SF6 target gas.

1. Introduction

Detection and characterization of dark matter (DM) - thought to be Weakly Interacting Massive Particles (WIMPs) [1–3] in a direction sensitive nuclear recoil detector with a suitable target material, is a major goal of the DM search community [4–7]. This technology offers the potential to discriminate WIMP candidate events with galactic signature from terrestrial backgrounds/artefacts and hence, can probe below the so-called neutrino floor [8–10]. The use of low pressure gas Time Projection Chamber (TPC) technology, in which ionization electrons from the nuclear recoil tracks are drifted to a charge readout plane and recorded for reconstruction, offers a route to achieving this goal. This is with potentials for low energy threshold and low background operations, including active electron recoil discrimination in the low WIMP mass parameter space.

The CYGNUS consortium is extensively exploring the feasibility of this technology for a large-scale experiment with aim to search for WIMPs beyond the so-called neutrino floor [4,11]. This builds on previous R&D and DM search results by multiple directional efforts, including DRIFT [12], NEWAGE [13], MIMAC [14], D1 [15], DM-TPC [16] and CYGNO [17] collaborations. A feature of interest in DRIFT, for instance, is the use of CS2 gas for primary ionization charge transport through negative ions (NI) drift, rather than drifting electrons for minimal and thermal scale diffusion [7,18]. Primary ionization electrons from interactions in the TPC attach rapidly to the electronegative CS2 to form anions. These anions are drifted towards the readout plane where they are field ionized by the inhomogeneous high electric field in this region — thereby inducing signal amplification by electron avalanche [18]. The use of NI drift substantially reduces blurring of the tracks by diffusion [18–20], and hence saves cost by allowing the possibility for longer drift distances relative to the conventional electron drift concepts.

Recently, it has been discovered that SF6 [21,22], which has lower toxicity with improved handling over CS2 [23], can also serve as a negative ion TPC gas. This is with a further advantage of formation of a minority charge carrier species SF6⁻, in addition to the main SF6 charge carrier species [24]. Measurement of the arrival time difference between these charge species at the readout plane, allows for identification of the absolute perpendicular distance between an event interaction vertex and the charge readout plane. This characteristic is vital for full rejection of background events emanating from the surfaces of the detector materials. Such event fiducialisation power has been demonstrated using a controlled admixture of O2 gas in a CS2:CF4 based target gas [7,25].

The higher 19F content in SF6 (relative to CF4) offers a further advantage for improved WIMP-nucleon spin-dependent sensitivity [26,27]. Studies indicate that stronger avalanche fields are required near the readout planes to achieve field ionization of SF6 anions for electron avalanche due to the higher electron affinity of SF6 relative to the CS2 gas [24]. These strong avalanche fields are outside the operational range of more fragile electrode configurations in the conventional multiwire proportional counter (MWPC) geometry as used in DRIFT [28–30]. However, Thick Gaseous Electron Multipliers (ThGEMs) [31,32] have been demonstrated to produce gains of order 10³ in SF6 gas [24]. Initial results show that a gain of 10⁴ can be achieved with a triple thin GEM setup [33]. Studies are ongoing to develop more efficient SF6 gas purification [23] and recycling systems to ensure that minimal or no SF6 gas is released to the atmosphere.

* Corresponding author.
E-mail address: a.ezeribe@sheffield.ac.uk (A.C. Ezeribe).

https://doi.org/10.1016/j.nima.2020.164847
Received 30 September 2019; Received in revised form 24 October 2020; Accepted 6 November 2020
Available online xxxx
0168-9002/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
This is vital as the greenhouse effect from a given mass of SF₆ gas is \(\sim 4 \) orders of magnitude worse than an equal mass of CO₂ gas.

The combination of the high gas gain from ThGEMs and the low capacitance of the multiwires offers a route to achieving a lower operational threshold with potential for a 3-d track reconstruction ability if used with two-plane multiwire configuration. Hence, the possible signal-to-noise ratio that can be achieved in operations with non-hybrid ThGEM or MWPC based TPC technologies with SF₆ target gas can be surpassed.

In this work, we present for the first time, a demonstration of a ThGEM-Multiwire hybrid charge readout technology as a possible candidate for next generation large area, low threshold TPC-based directional dark matter detectors. In this hybrid configuration, field ionization of anions occur on the ThGEM while induced charge signals by the avalanche electrons are read out using wires coupled at a mm-scale distance behind the ThGEM.

2. Design and construction of the ThGEM-Multiwire hybrid detector

The ThGEM-Multiwire hybrid detector technology combines the robust nature and high gas gain of ThGEM readouts with low capacitive noise and the ability to achieve better event track granularity from multiwires. The hybrid detector used in this work was made from a circular, 1 mm thick GEM (sourced from CERN) of 5 cm fiducial diameter coupled to a 2 cm \(\times \) 2 cm, one-plane multiwire readout [34]. Hence, this setup allows for track reconstruction in 2-d by combining charge drift times with \(x \)-axis track information from the one-plane multiwires. An illustration of the detector configuration with typical operational voltages and a picture of the detector is shown in Fig. 1. Studies to use two-plane multiwires for full 3-d track reconstruction is topic of future work.

The diameter and pitch of the hexagonally arranged circular ThGEM holes was 0.56 mm and 0.8 mm, respectively. A cross section of the ThGEM is shown in Fig. 1(a). Either side of the ThGEM holes were
enclosed by an additional 0.04 mm rim, etched on the copper-clads to prevent electrostatic hole-edge discharges and ensure that electric field lines are centred on the ThGEM holes for optimal ion collection and field ionization for the avalanche process. The rim size can affect the performance of a ThGEM based detector. For instance, increasing the rim size of the ThGEM from 0.04 mm to 0.09 mm in a Garfield simulation [35], resulted in 86% loss of initial electrons into the copper cladding and dielectric FR4 material. It is important to point out that this is one of the early set of ThGEMs produced by CERN, so it does not represent an optimal design. The one-plane Multiwire readout was made using 100 μm diameter stainless steel wires, placed on a custom made printed circuit board at 1 mm pitch. The wire plane was then mounted on the induction side of the ThGEM at a ThGEM-Multiwire separation of 1 mm. The sensitivity of such hybrid detector configuration can be improved in future designs by ensuring that the wire pitch is equal to the ThGEM hole pitch.

A field cage was designed and constructed to maintain a uniform drift field [36,37] within the 2 cm × 2 cm × 5 cm detector volume as shown in Fig. 1(b). This was achieved by stepping down the high-voltage applied to the copper-plate cathode through a series of five, 33 MΩ resistors connected to four series of copper field rings. To complete the circuit, the last field cage ring was connected to ground through the fifth successive resistor. The detector was then built by mounting the ThGEM-Multiwire readout on the field-cage with the ThGEM (charge transfer) side of the readout facing the drift volume as shown in Fig. 1.

The full data flow path from the read-out wire to storage disk is shown in Fig. 2. During an operation, the charge transfer side of the ThGEM was biased to ensure that the drift field is maintained before the drifting anions are field-ionized for electron avalanche. The avalanche process and signal multiplication was induced by setting the opposite (induction) side of the ThGEM to a sufficient and more positive potential. By biasing the wire potential to 0 V, avalanche electrons induce equivalent current [36-39] on the wires as they follow the charge trajectories to the induction side of the ThGEM as shown in Fig. 3. For a simple case where an electrode is set to voltage V while other surrounding electrodes are grounded, the current i_t induced by a charge e moving along a trajectory x_t towards the electrode can be defined as [36]:

$$i_t = -\frac{e}{\mu} E_o[x_t] v_t,$$

(1)

where E_o is electric field of the electrode when the charge e is removed while v_t is the instantaneous velocity of the charge. The induced charge Q over a given time t can then be determined using:

$$Q = \int_0^t i_t dt.$$

(2)

Induced charge signals were used as avalanche electrons can reattach to SF$_6$ to form anions while drifting from the induction side of the ThGEM to the charge collection wires. To do this, gas gain obtained from charge signals collected on the induction side of the ThGEM were measured and compared to the effective gain from induced charge signals on the wires. This was found to be consistent at similar detector conditions. Garfield simulations were used to determine the operational voltage configurations for the detector. For instance, typical operational drift field range of −300 V cm$^{-1}$ to −700 V cm$^{-1}$, charge transfer ThGEM voltage of −450 V and induction ThGEM voltage of +600 V and wire bias voltage of 0 V were used. An electric field contour and the expected charge trajectory in this voltage configuration are shown in Fig. 3. The high electric field gradient around the vicinity of the charge transfer side of the ThGEM (see Fig. 3(a)) induces the field ionization process. Positive (inverted) charge signals were induced on the surrounding wires by electromagnetic distortions caused by the motion of avalanche electrons towards the wires as they proceed to the induction side of the ThGEM. These induced currents on the wires were successively amplified using Cremat CR-111 pre-amplifiers and CR-200-4μs gaussian
shaping amplifiers. As shown in Fig. 2, a pair of grounded inverse parallel FDH-300 diodes were added between the pre-amplifiers and the wires to protect the amplifiers from power surge. Amplified signals were digitized using an NI 5751 digitizer controlled through a NI PXI-7953R FlexRIO FPGA and saved to disk for analyses. Due to the capacity of the digitizer, only 16 wire channels were instrumented. An FPGA [40] and LabVIEW [41] based data acquisition system (DAQ) was developed for online data quality monitoring and run control. A picture of the experimental setup stand is shown in Fig. 4. The white dual channelled ISEG NHQ 238L NIM cassette high voltage power supply shown in Fig. 4 powered the copper-plate cathode and the charge transfer side of the ThGEM while the red dual channelled Bertan 377P power supply biased the induction side of the ThGEM and the read-out wires. The BST PSM 2/2A d.c. power supplies shown in Fig. 4 were used to bias the Cremat amplifiers which are located inside the vacuum vessel to minimize noise distortions. A Leybold Cercav CTR-101 pressure gauge was used to monitor the pressure of the 96 l vacuum vessel.

3. Detector calibration

Gain measurement was performed to investigate the detector performance using X-rays from the electron capture decay of 55Fe source to 55Mn. As shown in Fig. 1(a) the source was positioned close to the copper-plate cathode to irradiate the detector fiducial volume. To achieve this, the source was bonded to the tip of a 5 cm M6 nylon studding glued to a Neodymium disk magnet and attached to the inside wall of the vessel. This was magnetically coupled to a second magnet on the outside vessel wall which was used to control the source position in the vessel. Ionization electrons from X-ray interactions with the target gas through photoelectric effect — attach to the electronegative SF$_6$ to form anions. As described in Sections 1 and 2, these anions drift in a uniform field to the ThGEM for field ionization and electron avalanche. Signal pulses induced on the wires from this process were amplified and recorded to disk at a frequency of 1 MHz per channel, without any hardware trigger as the pulses were small (for instance, >5 mV in 30 Torr of SF$_6$). All signal pulses on each of the 16 wires with amplitude >5 mV threshold were analysed in the 55Fe runs to reject pedestal and electronic noise. Pulses with >3 V amplitude were not included in the analysis to remove sparks and events that saturated the amplifiers and the digitizer.

Background events due to radioactive decays from detector materials (at relevant energy) which could mimic the <2 wire channels trigger from the 55Fe X-ray interactions are expected to be minimal in the short exposure time (about 2 h) of this source run. To determine the pulse area, any charge that passed the analysis threshold on each of the signal channels were integrated from the 10 μs time before the pulse rising edge crosses the threshold to the 10 μs time after the pulse falling edge crosses the threshold. The energy spectrum of events that passed the analysis cuts is shown in Fig. 5. The peak of a gaussian fit on the observed spectrum of the X-ray data is 2062 ± 5 mV μs. To understand the detector gas gain, the amplifier gain was calibrated using test pulses of 14 mV (minimum output voltage of the pulser) and 20 mV to 90 mV amplitude at 10 mV interval. To do this, each of the test pulse signals was connected to the test input of the pre-amplifiers. The mV-scale test pulses were converted to charge signals through a 1 pF test capacitor of the pre-amplifiers. The charge output of the pre-amplifier was then coupled to the shaping amplifier for further amplification and shaping. The shaped pulse signals were then digitized, saved to disk and analysed using the same analyses algorithm used in the X-ray data shown in Fig. 5. As in the X-ray data, a gaussian was fitted on each of the amplifier calibration data and the peak of the fits were extracted and analysed as a function of the expected detector gas gain from 55Fe X-rays and 55Fe exposures. Results from the calibration pulse analyses are shown as a function of the expected detector gas gain in Fig. 6. The expected gas gain shown in Fig. 6 was determined by converting each of the observed test charge to their equivalent number of ion pairs (NIPs) using:

$$NIP = \frac{CV}{e},$$

where \(NIP\) is the expected number of ion pairs, \(C\) is the test capacitance of the amplifier, \(V\) is the test pulse in mV and \(e\) is the electronic charge. The expected number of ion pairs \(NIP\) from an 55Fe X-ray was determined using:

$$NIP = \frac{E}{W},$$

where \(E\) is the 5.9 keV energy of 55Fe X-rays and \(W\) is the mean energy required to create an electron–ion pair in SF$_6$ target gas — measured to be 35.45 eV in Ref. [42]. This implies that the 55Fe X-ray will produce 166.4 electron–ion pairs after an interaction with the target gas before the electron avalanche. Hence, the detector gas gain is defined as the ratio of the NIP to the NIP. Using parameters of the linear fit \(Q_a = 2G + 6\) in Fig. 6, where \(G\) and \(Q_a\) are the effective gas gain and the integral charge, respectively. These parameters and the observed integral charge from the 55Fe analyses yield a gain of 1028 ± 3. For details of drift and avalanche fields used in this detector calibration run, see Table 1. This is using a drift (avalanche) field of 600 V cm$^{-1}$ (10.6 kV cm$^{-1}$) in 30 Torr of pure SF$_6$ gas — equivalent to E/N and E$_a$/N of 62 × 10$^{-17}$ V cm$^{-2}$ and 1092 × 10$^{-17}$ V cm$^{-2}$, respectively. Here, E/N is the reduced drift field, E$_a$/N is the reduced avalanche field and N is the gas density computed to be 9.7 × 10$^{-17}$ cm$^{-3}$, for more on the N parameter, see Section 4.2. Hence, the calibration gain result does not represent the highest achievable gain of the detector as higher reduced avalanche fields with sufficient reduced drift field configurations can yield higher effective gas gains. The investigation of the highest achievable effective gain of the detector is beyond the scope this paper.

![Fig. 4](https://example.com/fig4.png)

Fig. 4. Picture of the experimental setup stand showing high voltage power supplies in NIM crates used to bias the copper-plate cathode, ThGEM and wires. The d.c. power supplies that power the amplifiers are also shown with the vacuum vessel, pressure gauge/monitor, NI digitizer and the data computer.
This small increase in the reduced avalanche field should increase the detector response to a higher E/N field. The expectation is that ion drift properties is of more importance to the work reported here. As discussed in Section 4.2, the source was placed few mm away from the cathode. As discussed in Sections 2 and 3, ionization electrons along the interaction track of the ionizing alpha, as it traverses the detector fiducial volume attach to the electronegative S_6F_6 to form anions. These anions were drifted in the uniform electric field to the high field region of the detector readout for field ionization and subsequent electron avalanche. Signal pulses induced on the wires by this process were pre-amplified, shaped, digitized and saved to disk for analyses.

4.1. Events pre-selection analysis and data quality

Seven alpha source runs were performed at different reduced drift fields to validate the dependency of the field ionization process on the gradient of the ThGEM charge transfer field relative to the drift field. This is using a constant reduced avalanche field of $1449\pm 1 \times 10^{-17}$ V cm$^{-2}$ as shown in Table 2, except in the seventh E_A/N field run where it was increased by $\sim1\%$ to $1461\pm 1 \times 10^{-17}$ V cm$^{-2}$ to investigate the detector response to a higher E_A/N field. The expectation is that this small increase in the reduced avalanche field should increase the effective gain of the detector.

An example of a raw alpha track oriented towards the cathode as seen on the LabVIEW based DAQ is shown in Fig. 7. The alpha track is preceded by a low-energy track, likely from radioactive decays in the detector materials within the opposite vicinity of the source location. For this alpha track, the source was placed few mm away from the ThGEM to observe a clear charge arrival time delay from tracks oriented towards the cathode. It can be seen that the low-energy track is oriented along the expected mean free path of the source-alphas hence, the resulting ionization charge arrived the readout at about same time. The clear observation of delays between induced charge signals on adjacent wires of the alpha track due to the expected slow negative ion drift properties is of more importance to the work reported here. The wire shown as Channel 0 on the DAQ is closer to the alpha source. The 210μs delay between channels 0 and 15 of the alpha track signal shown in Fig. 7 is due to the drift times of the anions which depends on the incident angle (within the source subtended solid angle) of the alpha track. The observed wiggle on each of the DAQ channel after the main alpha signal pulse is due to amplifier responses and so were not included in the analysis.

Events with >40 mV pulse amplitude threshold were analysed further. This is to remove pedestal and electronics noise from the analysis. As discussed in Section 3, events with >3 V pulse amplitude were also removed. Sparks and other noise pulses with short rise-times were rejected by selecting only events with $>9 \mu$s rise-time and full-width at half maximum (FWHM) of 8 μs to 60 μs. An example of the pulse amplitude and FWHM obtained from a 56×10^{-17} V cm$^{-2}$ reduced drift field run (see Table 2 for more details) in 20 Torr of pure S_6F_6 gas are shown in Fig. 8. The average pulse amplitude (FWHM) observed from this run is 181 ± 2 mV (36 ± 0.2 μs). This long FWHM and slow rise-time is consistent with expectations from negative ion drift in the electronegative S_6F_6 target gas.

As discussed in Section 3, the effective detector gas gain in each of these runs was measured using alpha events as in Ref. [32]. To do this, a cumulative integral charge in a fixed time window, around the trigger time for a given signal channel was computed. The maximum from this computation was recorded as the channel charge integral. The
sum of this charge integral over all 16 signal channels is the total integral charge for a given alpha track. This method helps to remove the effect of the pedestal noise from the integral charge computations. Samples of total integral charge distributions as observed from two of these ionization tracking runs are shown in Fig. 9. There are no visible pedestal noise in Fig. 9 as seen in Fig. 5(a) due to the lower exposure-times in the alpha runs because the source activity is 2 orders of magnitude higher than that of the X-ray runs in Section 3. Also, as described above, the charge threshold and cuts applied in the alpha analyses are more stringent for the pedestal noise than in the X-ray data analyses. As described in Section 3, the peak of the gaussian fits in Figs. 9(a) and 9(b) were extracted and used as the effective track integral charge for the effective gain computations. The mean integral charge extracted from the fits in Fig. 9, are $133 \pm 1 \text{ V} \mu\text{s}$ and $158 \pm 2 \text{ V} \mu\text{s}$ for reduced drift field runs of $68 \times 10^{-17} \text{ V cm}^2$ and $87 \times 10^{-17} \text{ V cm}^2$, respectively. Similar analyses were performed on the remaining 5 alpha runs taking at different reduced drift fields.

To convert these results to an effective gain measurement, a SRIM simulation was performed to determine the fraction of the 5.5 MeV alpha energy that was deposited within the detector fiducial volume as the tracks are expected to be longer than the detector width. This was found to be 0.22 MeV in average, which translates to 4% of the total alpha energy. Using this average alpha deposited energy and calibration results from analyses of the pulse calibration runs described in Section 3, the effective gas gain in each of the alpha runs was determined. The effective gain results from these measurements are shown as a function of the reduced drift fields in Fig. 10. The effective gas gain results shown in Fig. 10 increase with the reduced drift field as expected (at low reduced drift fields). This is due to a more positive field gradient in the charge transfer region of the ThGEM as the reduced drift field increases — resulting in better negative ion transparency. The observed effective gas gain in Fig. 10 plateaued from the $75 \times 10^{-17} \text{ V cm}^2$ to $87 \times 10^{-17} \text{ V cm}^2$ reduced drift field runs. This is consistent with expectations from reaching the optimal negative ion-drift transparency for the constant reduced avalanche field. The observed rise in the effective gas gain for the reduced drift field run of $93 \times 10^{-17} \text{ V cm}^2$ (at optimal ion-drift transparency) is due to the higher avalanche field in this run as shown in Table 2.
drift velocity and mobility of anions are independent of the effective gas gain so these observed plateau and rise in the detector gain should not affect our measurements. These results indicate that a gas gain of 2.5×10^3 is feasible with the ThGEM-multiwire hybrid setup in SF$_6$ target gas.

4.2. Drift velocity and mobility measurements for SF$_6$ anions

To extract the drift velocity and mobility of SF$_6$ anions, only alpha tracks that made angles of $> 81.5 \pm 1.5$° with the cathode were selected from each of the runs described in Section 4. For details of drift and avalanche field configurations for each of the runs, see Table 2. As shown in Fig. 11, these tracks were expected to induce signals only on the first 8 wires of the detector. Hence, events that recorded hits on these 8 wires, only were selected for further analysis. A hit here is charge induced on a wire that produced a pulse amplitude that passed the analyses threshold. Between 0.2% to 2.3% of the total events on disk in the ionization tracking runs passed these cuts and were used in the ion drift velocity and mobility measurements.

It can be seen in Fig. 11 that there is no drift distance for the most probable ionization charge that could end on the 7th and 8th wires due to the proximity of the interaction vertex to the field ionization region of the ThGEM and readout wire plane, respectively. Hence, signals on these two wires were not included in the drift velocity and mobility computation. The charge arrival time information from the 6th wire served as the reference for charge drift times recorded on the first 5 wires.

The vertical drift distances (d_1, d_2, d_3, d_4 and d_5) between the expected start positions of charge clusters arriving on the first 5 wires and the start position of charge cluster arriving on the 6th wire (after travelling a d_6 distance) was determined using $x_i \tan \theta$, see Fig. 11 for more details. Here, x_i is the horizontal distance of the first 5 wires relative to the 6th wire, so i is 1, 2, ..., 5 while θ is the track mean free path-cathode angle determined to be 81.5 ± 1.5°. Charge drift times (t_1, t_2, t_3, t_4 and t_5) for charge clusters arriving on these first 5 wires were computed as the temporal separation between their respective charge cluster arrival times and the arrival time, t_6, of the charge cluster recorded on the reference 6th wire. The gradient of a linear fit on a
Fig. 12. Drift velocity and reduced mobility for SF₆ anions shown as a function of reduced drift field. Only statistical uncertainties are quoted. See Tables 2 and 3 for more details on detector parameters used in these measurements and results, respectively.

E/N (10⁻¹⁷ V cm⁻¹)	G	\(\nu_d \) (m s⁻¹)	\(\mu_0 \) (cm² V⁻¹ s⁻¹)
56	1130 ± 90	80 ± 2	0.531 ± 0.013
62	1350 ± 100	89 ± 2	0.536 ± 0.012
68	1550 ± 100	99 ± 2	0.538 ± 0.011
75	1650 ± 100	108 ± 3	0.539 ± 0.015
81	1620 ± 90	117 ± 3	0.539 ± 0.016
87	1840 ± 110	129 ± 5	0.550 ± 0.020
93	2470 ± 160	138 ± 10	0.553 ± 0.041

5. Conclusion

A ThGEM-Multiwire based hybrid time projection chamber (TPC) detector was designed, built and tested for the first time. Effective gas gain measured from the performance tests of the hybrid detector are in the range of 1130 ± 90 to 2470 ± 160 at a reduced drift field E/N range of 56 × 10⁻¹⁷ V cm⁻² to 93 × 10⁻¹⁷ V cm⁻² in 20 Torr of pure SF₆ target gas. Using the hybrid detector, the drift velocity and reduced ion mobility of SF₆ anions were measured at this reduced drift field range. The observed drift velocity (reduced mobility) results were found to be between 80 ± 2 m s⁻¹ and 138 ± 10 m s⁻¹ (0.53 ± 0.01 cm² V⁻¹ s⁻¹ and 0.55 ± 0.04 cm² V⁻¹ s⁻¹) in this reduced drift field range. The drift velocity and reduced ion mobility results from these measurements are consistent within errors with other published measurements in Refs. [24,44–46].

CRediT authorship contribution statement

A.C. Ezeribe: Prepared the manuscript, designed the experiment, built the detector, conducted all the physics runs and analysed the data. C. Eldridge: Contributed in improving the work, read and accepted the manuscript. W. Lynch: Performed the garfield simulations, contributed in improving the work, read and accepted the manuscript. R.R. Marcelo Gregorio: Contributed in improving the work, read and accepted the manuscript. A. Scarff: Contributed in improving the work, read and accepted the manuscript. N.J.C. Spooner: Conceived and helped to design the experiment, contributed in improving the work, read and accepted the manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank K. Miuchi, D. Loomba and S. Vahsen for their helpful comments. This work was supported by the Science and Technology Facilities Council, United Kingdom through ST/P00573X/1 and ST/K001337/1 grants.
