SMALL GALOIS GROUPS THAT ENCODE VALUATIONS

IDO EFRAT AND JÁN MINÁČ

ABSTRACT. Let p be a prime number and let F be a field containing a root of unity of order p. We prove that a certain relatively small canonical Galois group $(G_F)^3$ over F encodes the valuations on F whose value group is not p-divisible and which satisfy a variant of Hensel’s lemma.

1. Introduction

A repeated phenomena in Galois theory is that essential arithmetical information on a field is encoded in the group-theoretic structure of its canonical Galois groups. A prototype of this phenomena is the classical Artin–Schreier theorem: a field F has an ordering if and only if its absolute Galois group $G_F = \text{Gal}(F_{\text{sep}}/F)$ contains a (non-trivial) involution.

As shown by Becker [Bec74], the same holds when $G = G_F$ is replaced by its maximal pro-2 quotient $G(2)$. Moreover, the second author and Spira [MS90, Th. 2.7] established a similar correspondence for an even smaller pro-2 Galois group of F, the W-group of F.

In this paper we consider a generalization of the W-group to the pro-p context, and prove an analogous result for valuations. Here p is an arbitrary fixed prime number, and we assume that F contains a root of unity of order p (in particular, char $F \neq p$). We set $G^{(2)} = G_p[G, G]$ and $G^{(3)} = G_{3p}[G^{(2)}, G]$, where $\delta = 1$ if $p > 2$, and $\delta = 2$ if $p = 2$. The pro-p Galois group we consider is $G^{[3]} = G/G^{(3)}$. It has exponent δp, and when $p = 2$ it coincides with the W-group of F [EM11, Remark 2.1(1)].

Of course, a field always carries the trivial valuation, so one is only interested in valuations v satisfying certain natural requirements. In the pro-p context, such requirements on v are:

(i) $v(F^\times) \neq pv(F^\times)$;

(ii) $(F^\times)^p$-compatibility: $1 + m_v \leq (F^\times)^p$, where $1 + m_v$ is the group of 1-units of v, i.e., all elements x of F with $v(x - 1) > 0$.

Thus (i) is a strong form of non-triviality, whereas (ii) is a variant of Hensel’s lemma. Indeed, when the residue field F_v has characteristic not p, (ii) is

2010 Mathematics Subject Classification. Primary 12J10; Secondary 12E30.

Key words and phrases. valuations, Galois groups, Galois cohomology, Milnor K-theory, W-group, rigid elements.
equivalent to the validity of Hensel’s lemma relative to the maximal pro-p extension $F(p)$ ([Wad83, Prop. 1.2], [Efr06, Prop. 18.2.4]).

Our main result (Corollary 6.4) is that, under a finiteness assumption and the hypothesis that -1 is a square if $p = 2$, there exists a valuation v on F satisfying (i) and (ii) above if and only if the center $Z(G_{[3]})$ has a nontrivial image in $G^{[2]} = G/G^{(2)}$.

Note that when char $\overline{F} \neq p$, conditions (i) and (ii) give a description of the full maximal pro-p Galois group $G_F(p) = \text{Gal}(F(p)/F)$ of F as a semi-direct product $\mathbb{Z}_p^m \rtimes G_{\overline{F}_v}(p)$ where $m = \dim_{\mathbb{F}_p}(v(F^\times)/pv(F^\times))$ and the action is given by the cyclotomic character [Efr06, Example 22.1.6].

The proof of the main theorem is based on two key ingredients. First, results of Villegas, Spira and the authors (see Theorems 2.1 and 2.2 below) give an explicit list \mathcal{L}_p of small finite p-groups such that, for $G = G_F$ as above,

$$G_{[3]} = \bigcap \{N \leq G \mid G/N \in \mathcal{L}_p\}.$$

A second ingredient is the notion of p-rigid elements in F (see §3 for the definition). In a series of works by Arason, Elman, Hwang, Jacob, Ware, and the first author (see [Jac81], [War81], [AEJ87], [HJ95], [Efr99], [Efr06, Ch. 26], [Efr07]) it was shown that there exist valuations satisfying (i) and (ii) if and only if F has sufficiently many p-rigid elements. The dual notion in $G^{[2]}$ under the Kummer pairing can be interpreted, using certain Galois embedding problems, in terms of the groups in \mathcal{L}_p.

Connections between the group $G_{[3]}$ and valuations were earlier studied in [MMS04, §7–8] (for $p = 2$) and also announced in [Pop06b]. This is also related to works by Bogomolov, Tschinkel, and Pop ([Bog91], [Bog92], [BT08], [Pop06a]), showing that for function fields F over algebraically closed fields, such “tame” valuations can be recovered from the larger Galois group $G/[[G, G], G]$. For a nice survey with more references see [BT10]. Some other connections between rigidity and small Galois groups were previously also investigated in [AGKM01] and [LS02], and in connection with absolute or maximal pro-p Galois groups in, e.g., [Efr99], [Efr00], [EN94], and [Koc03].

Underlying our results is the fact, proved in [EM11] (extending earlier results in [CEM10]), that for $G = G_F$ with F as above, $G_{[3]}$ determines the Galois cohomology ring $H^*(G, \mathbb{Z}/q)$, and is in fact the minimal Galois group of F with this property.

For other works demonstrating the importance of the quotient $G_{[3]}$ in the Galois theory of algebraic number fields see, e.g., [Koc02], [Mor04], [Vog05].
2. Galois-theoretic preliminaries

We fix a prime number p. For $p > 2$ let

$$H_{p^3} = \langle r, s, t \mid r^p = s^p = t^p = [r, t] = [s, t] = [r, s] = 1 \rangle$$

be the nonabelian group of order p^3 and exponent p (the Heisenberg group). Also let D_4 be the dihedral group of order 8. To make the discussion uniform, we set

$$(2.1) \quad \bar{G} = \begin{cases} H_{p^3} & p > 2 \\ D_4 & p = 2. \end{cases}$$

In both cases, the Frattini subgroup of \bar{G} is its center $Z(\bar{G})$, and one has $\bar{G}/Z(\bar{G}) \cong (\mathbb{Z}/p)^2$. Moreover, this is the unique quotient of \bar{G} isomorphic to $(\mathbb{Z}/p)^2$. Also, every proper subgroup of \bar{G} is abelian.

From now on let F be a field containing a fixed root of unity ζ_p of order p, and let $G = G_F$ be its absolute Galois group. The following theorem was proved in [EM11, Thm. D].

Theorem 2.1. Assume that $p > 2$. Then $G(3)$ is the intersection of all normal open subgroups N of G such that G/N is isomorphic to $\{1\}$, \mathbb{Z}/p or H_{p^3}.

The analog of this fact for $p = 2$ was proved by Villegas [Vil88] and Mináč–Spira [MS96, Cor. 2.18] (see also [EM08, Cor. 11.3 and Prop. 3.2]):

Theorem 2.2. Assume that $p = 2$. Then $G(3)$ is the intersection of all normal open subgroups N of G such that G/N is isomorphic to $\{1\}$, $\mathbb{Z}/2$, $\mathbb{Z}/4$, or D_4.

Moreover, $\mathbb{Z}/2$ can be omitted from this list unless F is Euclidean [EM08, Cor. 11.4].

Let $H^i(G) = H^i(G, \mathbb{Z}/p)$ be the ith profinite cohomology group with the trivial action of G on \mathbb{Z}/p. Thus $H^1(G)$ is the group of all continuous homomorphisms $G \to \mathbb{Z}/p$. We write \cup for the cup product $H^1(G) \times H^1(G) \to H^2(G)$. For $a \in F^\times$ let $(a)_F \in H^1(G)$ correspond to the coset $a(F^\times)^p$ under the Kummer isomorphism $F^\times/(F^\times)^p \xrightarrow{\sim} H^1(G)$. One has $(a)_F \cup (a)_F = (a)_F \cup (-1)_F$ [Ber10, Prop. III.9.15(5)].

Next for a finite group K, we call a Galois extension E/F an K-extension if $\text{Gal}(E/F) \cong K$. We say that a $(\mathbb{Z}/p) \times (\mathbb{Z}/p)$-extension $F(\sqrt{a}, \sqrt{b})/F$ embeds inside a \bar{G}-extension E/F properly if either $p > 2$ or else $p = 2$ and $\text{Gal}(E/F(\sqrt{ab})) \cong \mathbb{Z}/4$.

We refer to [Led05, (6.1.8), (3.6.3), (3.6.2)] for the following well known facts; see also [GSS95] and [GS96].
Lemma 2.3. Let \(a, b \in F^\times \).

(a) When \((a)_F, (b)_F\) are \(\mathbb{F}_p\)-linearly independent, \(F(\sqrt[p]{a}, \sqrt[p]{b})/F\) embeds inside a \(G\)-extension properly if and only if \((a)_F \cup (b)_F = 0\).

(b) When \(p = 2\) and \((a)_F \neq 0\), the extension \(F(\sqrt{a})/F\) embeds inside a \(\mathbb{Z}/4\)-extension if and only if \((a)_F \cup (-1)_F = 0\).

3. Rigidity

The following key notion is a special case of [Efr06, Def. 23.3.1] and originates from [Szy77] and [War81]. Note however that our definition differs by sign from that of [War81].

Definition 3.1. An element \(a\) of \(F^\times\) is called \(p\)-rigid if \((a)_F \neq 0\) and there is no \(b \in F^\times\) such that \((a)_F \cup (b)_F = 0\) in \(H^2(G)\) and \((a)_F, (b)_F\) are \(\mathbb{F}_p\)-linearly independent.

To get an alternative description of \(p\)-rigid elements, we define subsets \(C, D\) of \(F^\times\) as follow.

When \((-1)_F = 0\) (resp., \((-1)_F \neq 0\)) let \(C\) be the set of all \(a \in F^\times\) for which there exists \(b \in F^\times\) such that \((a)_F \cup (b)_F = 0\) and \((a)_F, (b)_F\) (resp., \((a)_F, (b)_F, (-1)_F\)) are \(\mathbb{F}_p\)-linearly independent in \(H^1(G)\).

When \((-1)_F \neq 0\) (so \(p = 2\)) we set

\[
D = \{a \in F^\times \mid (a)_F \cup (-1)_F = 0\}.
\]

It is the subgroup of \(F^\times\).

Lemma 3.2. Let \(a \in F^\times\) such that \((a)_F \neq 0, (-1)_F\). The following conditions are equivalent:

(a) \(a\) is not \(p\)-rigid;

(b) either \(a \in C\) or both \((-1)_F \neq 0\) and \(a \in D\);

Proof. When \((-1)_F = 0\) this is immediate.

Next assume that \((a)_F \cup (-1)_F \neq 0\). Then \((-1)_F \neq 0, p = 2\) and \((a)_F \cup (a)_F \neq 0\). Thus, if \(b \in F^\times\) satisfies \((a)_F \cup (b)_F = 0\), then \((b)_F \neq (-1)_F, (a)_F\). Therefore \((-a)_F, (b)_F\) are \(\mathbb{F}_2\)-linearly independent if and only if \((a)_F, (b)_F, (-1)_F\) are \(\mathbb{F}_2\)-linearly independent. Conclude that in this case \(a\) is not 2-rigid if and only if \(a \in C\).

Finally, assume that \((-1)_F \neq 0\) but \((a)_F \cup (-1)_F = 0\) (i.e., \(a \in D\)). Then \(p = 2\) and, by the assumptions, \((-a)_F, (-1)_F\) are \(\mathbb{F}_2\)-linearly independent. Hence \(a\) is not 2-rigid.

Next let \(N_p\) be the subgroup of \(F^\times\) generated by all elements which are not \(p\)-rigid and by \(-1\).
We will need the following result of Berman and Cordes which simplifies the definition in the case \(p = 2 \) (see [War81, Example 2.5(i)], [Mar80, Ch. 5, Th. 5.18], and the related result [BCW80, Th. 1]):

Proposition 3.3. Let \(p = 2 \). Then \(N_2 \) is the set of all \(a \in F^\times \) such that \(a \) or \(-a\) is not \(2\)-rigid.

Corollary 3.4. One of the following holds:

1. \(N_p = \langle (F^\times)^p, C, -1 \rangle \);
2. \(p = 2, \) \(-1\) is not \(p\)-rigid and \(N_2 = \langle D, -1 \rangle \).

Proof. If \((-1)_F = 0\), then (1) holds by Lemma 3.2.

Next suppose that \((-1)_F \neq 0\) (so \(p = 2 \)). By Lemma 3.2, \(a \in F^\times \setminus ((F^\times)^2 \cup -(F^\times)^2) \) is not \(2\)-rigid if and only if it is in \(C \cup D \). Hence the subgroups \(\langle (F^\times)^2, C, -1 \rangle \) and \(\langle D, -1 \rangle \) of \(F^\times \) are contained in \(N_2 \). Conversely, by Proposition 3.3, \(N_2 \) is contained in the union of these two subgroups. Thus

\[
N_2 = \langle (F^\times)^2, C, -1 \rangle \cup \langle D, -1 \rangle.
\]

Since a group cannot be the union of two proper subgroups, (1) or (2) must hold. \(\square \)

Remark 3.5. Let \(K^*_M(F) \) be the Milnor \(K\)-ring of \(F \) ([Mil70], [Efr06, §24]). The Kummer isomorphism \(F^\times/(F^\times)^p \tilde\to H^1(G_F, a(F^\times)_F) \mapsto (a)_F \), induces the Galois symbol homomorphism \(K^*_M(F)/pK^*_M(F) \to H^*(G_F) \). By the Merkurjev–Suslin theorem ([MS82], [GS06, Ch. 8]), it is an isomorphism in degree 2 (in fact, by the more recent results of Rost and Voevodsky [Voe11], it is an isomorphism in all degrees, but we shall not need this very deep fact). Therefore, our notion of a \(p\)-rigid element \(a \) coincides with the notion of \((F^\times)^p\)-rigidity of \(a(F^\times)^p \) in \(K^*_M(F)/pK^*_M(F) \) given in [Efr06, Def. 23.3.1]. Consequently \(N_p \) coincides with the subgroup \(N_{(F^\times)^p} \), defined \(K\)-theoretically in [Efr06, Def. 26.4.5].

4. **The Kummer pairing**

Let \(\mu_p \) be the group of \(p\)th roots of unity in \(F \) and recall that \(G = G_F \) is the absolute Galois group of \(F \). Consider the Kummer pairing

\[
(\cdot, \cdot) : \quad G \times F^\times \to \mu_p, \quad (\sigma, a) \mapsto \sigma(\sqrt[p]{a})/\sqrt[p]{a}.
\]

Its left kernel is \(G^{(2)} \) and its right kernel is \((F^\times)^p \). We compute the annihilator of \(N_p \) under this pairing.

Let \(T = \bigcap_p \rho^{-1}(2\mathbb{Z}/4\mathbb{Z}) \), where \(\rho \) ranges over all epimorphisms \(\rho : G \to \mathbb{Z}/4 \), and \(2\mathbb{Z}/4\mathbb{Z} \) is the subgroup of \(\mathbb{Z}/4 \) of order 2.
Lemma 4.1. Assume that \((-1)_F \neq 0\). The annihilator of \(D\) with respect to the Kummer pairing is \(T\).

Proof. Let \(\sigma \in G\). Then \(\sigma \in T\) if and only if \(\sigma\) fixes \(\sqrt{a}\) for every \(a \in F^\times \setminus (F^\times)^2\) such that \(F(\sqrt{a})/F\) embeds inside a \(\mathbb{Z}/4\)-extension of \(F\). By Lemma 2.3(b), this means that \((\sigma, a) = 1\) whenever \((a)_F \cup (-1)_F = 0\), i.e., whenever \(a \in D\).

We define a subgroup \(\tilde{G}\) of \(G\) by \(\tilde{G} = G\) if \(p > 2\), and \(\tilde{G} = G_{F(\sqrt{-1})}\) when \(p = 2\). Thus \(\tilde{G} = G\) when \((-1)_F = 0\). Also let \(\tilde{G}\) be as in (2.1).

Proposition 4.2. The following conditions on \(\sigma \in \tilde{G}\) are equivalent:

(a) for every \(\tau \in \tilde{G}\) the commutator \([\sigma, \tau]\) is in \(G_{(3)}\);
(b) for every \(\tau \in \tilde{G}\) and every \(\tilde{G}\)-extension \(L\) of \(F\), the restrictions \(\sigma|_L, \tau|_L\) commute;
(c) \((\sigma, a) = 1\) for every \(a \in C\).

Proof. (a)\(\Leftrightarrow\)(b): Let \(\tau \in \tilde{G}\). By Theorem 2.1 and Theorem 2.2, \([\sigma, \tau] \in G_{(3)}\) if and only if \(\sigma|_L, \tau|_L\) commute in \(\text{Gal}(L/F)\) for every Galois extension \(L/F\) with Galois group in \(\{1, \mathbb{Z}/p, H_{p^3}\}\), when \(p > 2\), or in \(\{1, \mathbb{Z}/2, \mathbb{Z}/4, D_4\}\), when \(p = 2\). When \(\text{Gal}(L/F)\) is abelian, the commutativity is trivial, so it is enough to consider \(\tilde{G}\)-extensions \(L/F\).

(b)\(\Rightarrow\)(c): Let \(a \in C\) and take \(b \in F^\times\) as in the definition of \(C\). Then when \((-1)_F = 0\) (resp., \((-1)_F \neq 0\)) the Kummer elements \((a)_F, (b)_F\) (resp., \((a)_F, (b)_F, (-1)_F\)) are \(\mathbb{F}_p\)-linearly independent. Hence there exists \(\tau \in \tilde{G}\) such that \(\tau(\sqrt{a}) = \sqrt{a}\) and \(\tau(\sqrt{b}) \neq \sqrt{b}\). Moreover, \((a)_F \cup (b)_F = 0\), so Lemma 2.3(a) yields a \(\tilde{G}\)-extension \(L/F\) with \(F(\sqrt{a}, \sqrt{b}) \subseteq L\). By assumption, the restrictions \(\sigma|_L, \tau|_L\) commute. But \(G\) is non-commutative, so these restrictions belong to a proper subgroup of \(\text{Gal}(L/F)\). By the Frattini argument, their restrictions \(\sigma_1, \tau_1\) to \(\text{Gal}(F(\sqrt{a}, \sqrt{b})/F) \cong (\mathbb{Z}/p)^2\) belong to a proper subgroup, which is necessarily cyclic of order \(p\). Thus \(\sigma_1 \in \langle \tau_1 \rangle\), whence \(\sigma(\sqrt{a}) = \sigma_1(\sqrt{a}) = \sqrt{a}\), as desired.

(c)\(\Rightarrow\)(b): Let \(\tau \in \tilde{G}\) and let \(L\) be a \(\tilde{G}\)-extension of \(F\). Take \(a, b \in F^\times\) such that \(L_0 = F(\sqrt{a}, \sqrt{b})\) is a \((\mathbb{Z}/p)^2\)-extension of \(F\) which embeds properly in \(L\). By Lemma 2.3(a), \((a)_F \cup (b)_F = 0\). In view of the structure of \(\tilde{G}\), the center \(Z(\text{Gal}(L/F))\) is \(\text{Gal}(L/L_0)\).

Case 1: \(\sigma|_{L_0}, \tau|_{L_0}\) do not generate \(\text{Gal}(L_0/F)\). Then \(\sigma|_L, \tau|_L\) generate a proper subgroup of \(\text{Gal}(L/F) \cong \tilde{G}\), which is necessary commutative. Thus \(\sigma|_L, \tau|_L\) commute, as required.
Case 2: \(a, b \in C\). By assumption, \((\sigma, a) = (\sigma, b) = 1\). Therefore \(\sigma|_L \in \text{Gal}(L/L_0) = Z(\text{Gal}(L/F))\), and we are done again.

Case 3: \(\sigma|_{L_0}, \tau|_{L_0}\) generate \(\text{Gal}(L_0/F)\) and at least one of \(a, b\) is not in \(C\). By construction, \((a)_F, (b)_F\) are \(\mathbb{F}_2\)-linearly independent. Hence necessarily \((-1)_F \neq 0, p = 2,\) and \((a)_F, (b)_F, (-1)_F\) are \(\mathbb{F}_2\)-linearly dependent. Without loss of generality, \((a)_F \neq (-1)_F\). We obtain that

\[
\text{Gal}(L/F(\sqrt{a}, \sqrt{-1})) = \text{Gal}(L/L_0) = Z(\text{Gal}(L/F)).
\]

If \(\sigma(\sqrt{a}) = \sqrt{a}\), then \((\sigma|_L) = Z(\text{Gal}(L/F)).\)

Similarly, if \(\tau(\sqrt{a}) = \sqrt{a}\), then \(\tau|_L \in Z(\text{Gal}(L/F))\), and in both cases we are done.

Finally, if \(\sigma(\sqrt{a}) = \tau(\sqrt{a}) = -\sqrt{a}\), then \(\sigma, \tau\) coincide on \(F(\sqrt{a}, \sqrt{-1}) = L_0\). Hence \(\sigma|_L, \tau|_L\) generate a proper subgroup of \(\text{Gal}(L/F) \cong \tilde{G}\), which is necessarily abelian. Therefore they commute. \(\square\)

Corollary 4.3. The annihilator of \(N_p\) in \(G\) with respect to the Kummer pairing is

\[
\tilde{Z} = \begin{cases} \{T \cap \tilde{G} \mid \forall \tau \in \tilde{G} : [\sigma, \tau] \in G^{(3)}\} & \text{if } (-1)_F \neq 0 \text{ and } N_2 = \langle D, -1 \rangle \\ \{\sigma \in \tilde{G}\} & \text{otherwise.} \end{cases}
\]

Proof. First we note that, since \(-1 \in N_p\), the annihilator of \(N_p\) is contained in \(\tilde{G}\). Now in case (1) (resp., (2)) of Corollary 3.4, the assertion follows from Proposition 4.2 (resp., Lemma 4.1). \(\square\)

Next let \(\tilde{Z}\) be the image of \(\tilde{Z}\) under the natural projection \(G \to G^{[2]} = G/G^{(2)}\). Then \(Z \cong \tilde{Z}/(G^{(2)} \cap \tilde{Z})\). Note that if \((-1)_F = 0\), then \(Z\) is just the image of \(Z(G^{(3)})\) in \(G^{[2]}\).

Corollary 4.4. The Kummer pairing induces a perfect pairing

\[
Z \times (F^\times/N_p) \to \mu_p.
\]

Proof. The Kummer pairing induces a perfect pairing

\[
G^{[2]} \times (F^\times/(F^\times)^p) \to \mu_p.
\]

By Corollary 4.3 the annihilator of \(N_p/(F^\times)^p\) is \(\tilde{Z}\). The assertion now follows from general Pontrjagin duality theory. \(\square\)
5. Rigid fields

The field F is called p-rigid if all $a \in F^\times \setminus (F^\times)^p$ are p-rigid. The next result applies Corollary 4.4 to characterize these fields in terms of $G_{[3]}$. For $p > 2$ the equivalence $(a) \iff (e)$ was proved in [MN77, Th. 14]; see also [War92]. For $p = 2$ the equivalences $(a) \iff (c) \iff (d)$ where earlier proved in [MS90, Th. 3.13].

Theorem 5.1. Assume that $(-1)_F = 0$. The following conditions are equivalent:

(a) F is p-rigid;
(b) $N_p = (F^\times)^p$;
(c) $G_{[3]}$ is abelian;
(d) When $p > 2$ (resp., $p = 2$), $G_{[3]} \cong (\mathbb{Z}/p)^I$ (resp., $G_{[3]} \cong (\mathbb{Z}/4)^I$) for some index set I;
(e) F has no \bar{G}-extensions.

Proof. (a)\iff(b): Immediate.

(b)\iff(c): By Corollary 4.4, $N_p = (F^\times)^p$ if and only if $\bar{Z} \cong G^{[2]}$, i.e., the natural map $G_{[3]} \rightarrow G^{[2]}$ maps $Z(G_{[3]})$ surjectively. By the Frattini argument, this means that $G_{[3]} = Z(G_{[3]})$.

(c)\Rightarrow(d): When $p > 2$, we use that abelian profinite groups of exponent dividing p always have the form $(\mathbb{Z}/p)^I$. Similarly, when $p = 2$ the group $G_{[3]}$ has exponent dividing 4, and by assumption is abelian. Moreover, since $(-1)_F = 0$, every $\mathbb{Z}/2$-extension embeds in a $\mathbb{Z}/4$-extension (Lemma 2.3(b)). Hence $G_{[3]}$ has the form $(\mathbb{Z}/4)^I$.

(d)\Rightarrow(c)\Rightarrow(e): Immediate.

(e)\Rightarrow(c): Use Theorem 2.1 (when $p > 2$) and Theorem 2.2 (when $p = 2$). \hfill \Box

Remark 5.2. An analogous result was proved in [EM08, Prop. 12.1 and Prop. 3.2] for the larger quotient $G/G^{(3)}$, where $G^{(3)} = (G^{(2)})^p[G^{(2)}, G]$ is the third subgroup in the descending p-central filtration of $G = G_F$: namely, when $p > 2$ (resp., $p = 2$) $G/G^{(3)}$ is abelian if and only if F has no Galois extensions with Galois group M_{p^3} (resp., D_4), where M_{p^3} denotes the unique nonabelian group of odd order p^3 and exponent p^2. Note that indeed $G^{(3)} = G_{[3]}$ for $p = 2$, by [EM11, Remark 2.1(1)].
6. Valuations

Throughout this section we assume that \((-1)^{F} = 0\). As we mentioned earlier, existence of \((F^{\times})^p\)-compatible valuations \(v\) with \(v(F^{\times}) \neq pv(F^{\times})\) is related to \(p\)-rigid elements, and therefore to the group \(N_p\). Further, \(F^{\times}/N_p\) is dual to the image \(\tilde{Z}\) of \(Z(G^{[3]})\) in \(G^{[2]}\) (Corollary 4.4). Thus we can now detect these valuations from our Galois group \(G^{[3]}\) under some finiteness conditions discussed below.

Denote the exterior (graded) algebra of an \(R\)-module \(M\) by \(\bigwedge_{R}^* M\). There is a canonical graded ring epimorphism \(\bigwedge_{F_p}^*(F^{\times}/(F^{\times})^p) \rightarrow K^M_*(F)/pK^M_*(F)\).

We say that \((F^{\times})^p\) is totally rigid if this map is an isomorphism (see \[Efr06, \S 26.3 and Example 23.2.4\]).

Example 6.1. Suppose that \(F\) is equipped with an \((F^{\times})^p\)-compatible valuation \(v\) such that \(\bar{F}^{\times} = (\bar{F}^{\times})^p\) and such that the induced map \(F^{\times}/pv(F^{\times}) \rightarrow 0[v(F^{\times})/pv(F^{\times})]\) as graded rings \[Efr06, Example 23.2.4\]. Further, there is a natural isomorphism \(K^M_*(F)/pK^M_*(F) \rightarrow 0[v(F^{\times})/pv(F^{\times})]\) \[Efr06, Th. 26.1.2 and Example 26.1.1(2)\]. Hence \((F^{\times})^p\) is totally rigid. See also \[Efr06, \S 26.8\].

For a valuation \(v\) on \(F\) let \(\bar{F}_v\) be its residue field, and let \(O_v^{\times}\) be its group of \(v\)-units. We will need the following special cases of \[Efr06, Prop. 26.5.1, Th. 26.5.5(c), Th. 26.6.1\], respectively:

Proposition 6.2. (a) If \(v\) is an \((F^{\times})^p\)-compatible valuation on \(F\), then \(N_p \leq (F^{\times})^pO_v^{\times}\).

(b) If \((F^{\times})^p\) is not totally rigid, and either \(p = 2\) or \((F^{\times} : (F^{\times})^p) < \infty\), then there exists an \((F^{\times})^p\)-compatible valuation \(v\) on \(F\) with \(N_p = (F^{\times})^pO_v^{\times}\).

(c) If \((F^{\times})^p\) is totally rigid, then there exists an \((F^{\times})^p\)-compatible valuation \(v\) on \(F\) with \(((F^{\times})^pO_v^{\times} : N_p)/p\).

We obtain our main result:

Theorem 6.3. (a) If \(v\) is an \((F^{\times})^p\)-compatible valuation on \(F\), then \(v(F^{\times})/pv(F^{\times})\) is a quotient of the Pontrjagin dual \(\bar{Z}^{\times}\).
(b) Assume that \((F^\times)^p\) is not totally rigid, and that \(p = 2\) or \((F^\times : (F^\times)^p) < \infty\). Then there exists an \((F^\times)^p\)-compatible valuation \(v\) on \(F\) with \(v(F^\times)/pv(F^\times) \cong \hat{\mathbb{Z}}^v\).

(c) Assume that \((F^\times)^p\) is totally rigid. There exists an \((F^\times)^p\)-compatible valuation \(v\) on \(F\) and an epimorphism \(\hat{\mathbb{Z}}^v \to v(F^\times)/pv(F^\times)\) with kernel of order dividing \(p\).

Proof. By Corollary 4.4, \(\hat{\mathbb{Z}}^v \cong F^\times/N_p\). Every valuation \(v\) on \(F\) induces an isomorphism \(F^\times/(F^\times)^pO^\times_v \cong v(F^\times)/pv(F^\times)\). Now use Proposition 6.2 \(\square\)

From parts (a) and (b) we deduce:

Corollary 6.4. Assume that \((F^\times)^p\) is not totally rigid, and that \(p = 2\) or \((F^\times : (F^\times)^p) < \infty\). Then there exists an \((F^\times)^p\)-compatible valuation \(v\) on \(F\) with \(v(F^\times) \neq pv(F^\times)\) if and only if \(\hat{\mathbb{Z}} \neq \{1\}\).

Remark 6.5. The finiteness assumption for \(p \neq 2\) in Proposition 6.2(b) (and therefore in Theorem 6.3 and Corollary 6.4) originates from the chain argument in the proof of [Efr06, Prop. 26.5.4]. It is currently not known whether this assumption in Proposition 6.2(b) is actually necessary.

Acknowledgements. The first author was supported by the Israel Science Foundation (grant No. 23/09). The second author was supported in part by National Sciences and Engineering Council of Canada grant R0370A01. We also acknowledge the referee’s suggestions which we use in our exposition.

References

[AGKM01] A. Adem, W. Gao, D.B. Karagueuzian and J. Mináč, *Field theory and the cohomology of some Galois groups*, J. Algebra 235 (2001), 608–635.

[AEJ87] J.Kr. Arason, R. Elman and B. Jacob, *Rigid elements, valuations, and realization of Witt rings*, J. Algebra 110 (1987), 449–467.

[Bec74] E. Becker, *Euklidische Körper und euklidische Hüllen von Körpern*, J. reine angew. Math. 268/269 (1974), 41–52.

[Ber10] G. Berhuy, *An Introduction to Galois Cohomology and its Applications*, London Mathematical Society Lecture Notes, Vol. 377 (2010), Cambridge University Press, Cambridge.

[BCW80] L. Berman, C. Cordes, and R. Ware, *Quadratic forms, rigid elements, and power series fields*, J. Algebra 66 (1980), 123–133.

[Bog91] F.A. Bogomolov, *On two conjectures in birational algebraic geometry*, in: Algebraic Geometry and Analytic Geometry (Tokyo, 1990), ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, 26–52.
[Bog92] F.A. Bogomolov, *Abelian subgroups of Galois groups*, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 32–67 (in Russian); English transl.: Math. USSR, Izv. 38 (1992), 27–67.

[BT08] F. Bogomolov and Y. Tschinkel, *Reconstruction of function fields*, Geom. Func. Anal. 18 (2008), 400–462.

[BT10] F. Bogomolov and Y. Tschinkel, *Introduction to birational anabelian geometry* (2010), preprint, available at arXiv:1011.0883v1

[CEM10] S.K. Chebolu, I. Efrat and J. Mináč, *Quotients of absolute Galois groups which determine the entire Galois cohomology* (2010), to appear in Math. Ann., DOI: 10.1007/s00208-011-0635-6.

[Efr95] I. Efrat, *A Galois-theoretic characterization of p-adically closed fields*, Israel J. Math. 91 (1995), 273–284.

[Efr99] I. Efrat, *Construction of valuations from K-theory*, Math. Res. Lett. 6 (1999), 335–343.

[Efr00] I. Efrat, *The local correspondence over absolute fields: an algebraic approach*, Internat. Math. Res. Notices (2000), no. 23, 1213–1223.

[Efr06] I. Efrat, *Valuations, Orderings, and Milnor K-Theory*, Mathematical Surveys and Monographs 124, Amer. Math. Soc., Providence, RI, 2006.

[Efr07] I. Efrat, *Compatible valuations and generalized Milnor K-Theory*, Trans. Amer. Math. Soc. 359 (2007), 4695–4709.

[EM08] I. Efrat and J. Mináč, *On the descending central sequence of absolute Galois groups* (2008), Amer. J. Math. 133 (2011), 1503–1532.

[EM11] I. Efrat and J. Mináč, *Galois groups and cohomological functors* (2011), preprint, available at arXiv:1103.1508v1.

[EN94] A.J. Engler and J.B. Nogueira, *Maximal abelian normal subgroups of Galois pro-2-groups*, J. Algebra 166 (1994), 481–505.

[GS06] P. Gille and T. Szamuely, *Central Simple Algebras and Galois Cohomology*, Cambridge University Press, Cambridge, 2006.

[GS96] H.G. Grundman and T.L. Smith, *Automatic realizability of Galois groups of order 16*, Proc. Amer. Math. Soc. 124 (1996), 2631–2640.

[GSS95] H.G. Grundman, T.L. Smith and J.R. Swallow, *Groups of order 16 as Galois groups*, Expo. Math. 13 (1995), 289–319.

[HJ95] Y.S. Hwang and B. Jacob, *Brauer group analogues of results relating the Witt ring to valuations and Galois theory*, Canad. J. Math. 47 (1995), 527–543.
I. EFRAT AND J. MINÁČ

[Bac81] B. Jacob, *On the structure of Pythagorean fields*, J. Algebra 68 (1981), 247–267.

[Koc02] H. Koch, *Galois theory of p-extensions*, Springer Monographs in Mathematics, Springer-Verlag, Berlin 2002.

[Koe03] J. Koenigsmann, *Encoding valuations in absolute Galois groups*, in: Valuation Theory and its Applications, Part II, Conference on Valuation Theory (University of Saskatchewan, 1999), F.-V. Kuhlmann et al. (eds.), Fields Institute Communications, Vol. 33, Amer. Math. Soc., Providence, RI, 2003, 107–132.

[Led05] A. Ledet, *Brauer Type Embedding Problems*, Fields Institute Monographs, Vol. 21, Amer. Math. Soc., Providence, RI, 2005.

[LS02] D.B. Leep and T.L. Smith, *Multiquadratic extensions, rigid fields and Pythagorean fields*, Bull. London Math. Soc. 34 (2002), 140–148.

[MMS04] L. Mahé, J. Mináč and T.L. Smith, *Additive structure of multiplicative subgroups of fields and Galois theory*, Doc. Math. 9 (2004), 301–355.

[Mar80] M. Marshall, *Abstract Witt rings*, Queen’s Papers in Pure and Applied Mathematics, Vol. 57, Queen’s University, Kingston, Ont., 1980.

[MN77] R. Massy and T. Nguyen-quang-do, *Plongement d’une extension de degré p^2 dans une surextension non abélienne de degré p^3: étude locale-globale*, J. reine angew. Math. 291 (1977), 149–161.

[MS82] A.S. Merkurjev and A.A. Suslin, *K-cohomology of Severi-Brauer varieties and the norm residue homomorphism*, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 1011–1046 (in Russian); English transl.: Math. USSR Izv. 21 (1983), 307–340.

[Mil70] J. Milnor, *Algebraic K-theory and quadratic forms*, Invent. Math. 9 (1969/1970), 318–344.

[MS90] J. Mináč M. Spira, *Formally real fields, Pythagorean fields, C-fields and W-groups*, Math. Z. (205) (1990), 519–530.

[MS96] J. Mináč and M. Spira, *Witt rings and Galois groups*, Ann. Math. 144 (1996), 35–60.

[Mor04] M. Morishita, *Milnor invariants and Massey products for prime numbers*, Compositio Math. 140 (2004), 69–83.

[Pop06a] F. Pop, *Almost commuting elements in small Galois groups*, Abstract in Mathematisches Forschungsinstitut Oberwolfach report 25/2006, “Pro-p Extensions of Global Fields and pro-p Groups”.
[Pop06b] F. Pop, *Galois theory of Zariski prime divisors*, in: “Groupes de Galois arithmétiques et différentiels, D. Bertrand et al. (eds.), Séminaires et Congrès, Vol. 1 (2006), Soc. Math. de France, 293–312.

[Szy77] K. Szymiczek, *Quadratic forms over fields*, Dissert. Math. Rozprawy Mat. 52 (1977).

[Vil88] F.R. Villegas, *Relations between quadratic forms and certain Galois extensions*, a manuscript, Ohio State University, 1988, http://www.math.utexas.edu/users/villegas/osu.pdf.

[Voe11] V. Voevodsky, *On motivic cohomology with Z/l-coefficients*, Ann. Math. 174 (2011), 401–438.

[Vog05] D. Vogel, *On the Galois group of 2-extensions with restricted ramification*, J. reine angew. Math. 581 (2005), 117–150.

[Wad83] A.R. Wadsworth, *p-Henselian field: K-theory, Galois cohomology, and graded Witt rings*, Pacific J. Math. 105 (1983), 473–496.

[War81] R. Ware, *Valuation rings and rigid elements in fields*, Canad. J. Math. 33 (1981), 1338–1355.

[War92] R. Ware, *Galois groups of maximal p-extensions*, Trans. Amer. Math. Soc. 333 (1992), 721–728.

Mathematics Department, Ben-Gurion University of the Negev, P.O. Box 653, Be’er-Sheva 84105, Israel
E-mail address: efrat@math.bgu.ac.il

Mathematics Department, University of Western Ontario, London, Ontario, Canada N6A 5B7
E-mail address: minac@uwo.ca