Síndrome do desconforto respiratório agudo: como estão os pacientes após a unidade de terapia intensiva?

Acute respiratory distress syndrome: how do patients fare after the intensive care unit?

RESUMO

Os pacientes com síndrome do desconforto respiratório agudo requerem estratégias ventilatórias que demonstraram ser importantes na redução da mortalidade em curto prazo, como ventilação protetora e ventilação em posição prona. No entanto, os pacientes que sobrevivem têm permanência prolongada, tanto na unidade de terapia intensiva como no hospital, e experimentam redução na satisfação global com a vida (independência, aceitação e perspectiva positiva), na saúde mental (ansiedade, depressão e sintomas de transtorno de estresse pós-traumático), na saúde física (estado físico, atividades da vida diária, fadiga e fraqueza muscular), na saúde social e na capacidade de realização de suas atividades sociais (amigos ou relações familiares, hobbies e atividades sociais).

Descritores: Síndrome do desconforto respiratório do adulto; Qualidade de vida; Unidades de terapia intensiva.

INTRODUÇÃO

A síndrome do desconforto respiratório agudo (SDRA) é caracterizada por opacidades bilaterais, edema pulmonar não cardiogênico e hipoxemia com pressão parcial de oxigênio/fracção inspirada de oxigênio ($\text{PaO}_{2}/\text{FIo}_2$) < 300 com pressão positiva expiratória final (PEEP) $\geq 5\text{cmH}_2\text{O}$, que pode ocorrer em resposta a diferentes insultos, como sepse, trauma, pneumonia ou transfusão maciça.1,2 Devido à hipoxemia, os pacientes com SDRA requerem estratégias ventilatórias (ventilação protetora e ventilação em posição prona) que demonstram ser importantes na redução da mortalidade em curto prazo.3-5 No entanto, os pacientes que sobrevivem têm permanência prolongada, tanto na unidade de terapia intensiva (UTI) como no hospital, e experimentam redução na satisfação global com a vida (independência, aceitação e perspectiva positiva), na saúde mental (ansiedade, depressão e sintomas de transtorno de estresse pós-traumático - TEPT), na saúde física (estado físico, atividades da vida diária, fadiga e fraqueza muscular), na saúde social e na capacidade de realização de suas atividades sociais (amigos ou relações familiares, hobbies e atividades sociais).6-10 Esta associação de sequelas é chamada de “síndrome pós-terapia intensiva”, uma associação complexa de sintomas cognitivos, psicológicos e motores.11

O objetivo desta revisão foi descrever sobre os achados da síndrome pós-terapia intensiva nos pacientes com SDRA sobreviventes da UTI.
MORTALIDADE EM LONGO PRAZO

Ao contrário de outras doenças críticas, a SDRA confere risco substancial de mortalidade intra-hospitalar, mas um surpreendentemente baixo risco de mortalidade em longo prazo. Aparentemente, os primeiros 6 meses da alta caracterizam o período de maior letalidade desta população, e estima-se mortalidade de 12% em 1 ano, 15% em 2 anos e 19% no acompanhamento de 5 anos dos sobreviventes de SDRA. Estes dados são diferentes dos achados de estudos de coorte geral de pacientes respiratórios sobreviventes de UTI que relatam excessiva mortalidade dos pacientes nos primeiros 5 anos de acompanhamento. Essas coortes incluem pacientes com exacerbação aguda de doença pulmonar obstrutiva crônica (DPOC) ou com insuficiência respiratória secundária a choque séptico, situações clínicas com mecanismos fisiopatológicos de lesão pulmonar diferentes das encontradas na SDRA. Particularmente, pacientes com DPOC tendem a ter resultados ruins em longo prazo após doença grave, com mortalidade em 5 anos de 76%.

ESTADO FÍSICO E REALIZAÇÃO DE ATIVIDADES DIÁRIAS

Biehl et al. avaliaram o estado funcional (12-Item Health Survey - SF-12 e índice de Barthel) de sobreviventes de SDRA após 6 meses da alta da UTI demonstrando não haver diferenças quando comparados a pacientes críticos sem SDRA. A incapacidade na realização das atividades da vida diária prévia à internação na UTI parece ser importante marcador de declínio funcional nesta população. Já a gravidade da insuficiência respiratória não parece influenciar no prognóstico, conforme dados avaliados comparando pacientes submetidos ou não à oxigenação por membrana extracorpórea (ECMO).

O impacto da fraqueza muscular pós-UTI foi avaliado em 156 sobreviventes de SDRA na alta hospitalar. 38% dos sobreviventes apresentaram diagnóstico de fraqueza muscular e a mortalidade em 5 anos foi três vezes maior neste grupo. Cada ponto no Medical Research Council (MRC) foi associado ao aumento da sobrevivência (razão de risco - RR: 0,96; intervalo de confiança de 95% - ICR95% 0,94 - 0,98) e, após 5 anos, 50% dos sobreviventes ainda apresentavam fraqueza muscular. Interessante salientar que, mesmo aqueles que apresentaram recuperação da força muscular após a alta hospitalar mantiveram mortalidade significativamente elevada. Pacientes com fraqueza adquirida na UTI apresentam significativo dano muscular morfológico. Estudos com biópsias musculares dos sobreviventes de SDRA demonstram alterações miopáticas crônicas até 2 anos após o episódio agudo, sugerindo que a lesão muscular residual pode se correlacionar com a incapacidade funcional observada nestes pacientes. Além disso, há significativa perda de massa magra por parte destes pacientes.

Brosky et al. demonstraram que um terço dos sobreviventes de SDRA apresentam sintomas de disfagia no momento da alta hospitalar, porém com recuperação total dos sintomas após 5 anos de acompanhamento.

ESTADO MENTAL

A disfunção psiquiátrica da síndrome pós-UTI envolve ansiedade, depressão e TEPT. Os sintomas de TEPT são encontrados menos frequentemente que os de ansiedade e depressão, independentemente do tempo de acompanhamento dos pacientes, porém suas prevalências não diferem das populações de pacientes críticos sem SDRA. Na alta hospitalar, aproximadamente 40% dos pacientes com SDRA apresentam TEPT. Em 1 ano de acompanhamento, sintomas de ansiedade e depressão ocorrem em 66% dos casos (416/629 pacientes). Dois anos após a alta da UTI, a prevalência TEPT é de 22% a 24%, de ansiedade de 38% a 44%, e de depressão de 26% a 33%. Após 5 anos, 28% apresentavam diagnóstico de TEPT e, após 8 anos, 23,9%. Interessantemente, muitos pacientes apresentam sintomas em todos os três domínios psiquiátricos simultaneamente.

Assim como no aspecto físico, a maior gravidade da SDRA não parece se correlacionar com a prevalência dos sintomas psiquiátricos após a alta da UTI. Já a juventude, o desemprego, o sexo feminino e o uso de álcool foram relacionados com maior prevalência das síndromes psicológicas. Nestes subgrupos, sintomas clinicamente significativos, persistentes ou recorrentes de ansiedade (38%), depressão (32%) e TEPT (23%) foram comuns nos primeiros 5 anos após a SDRA.

A etiologia dos distúrbios psiquiátricos associados à SDRA é desconhecida. A maior parte da literatura sugere que as alterações fisiopatológicas relacionadas à doença crítica (hipoxemia, ativação do eixo hipotálamo-hipófise, citoquinas elevadas e disfunção orgânica) e ao uso de drogas (noradrenalina e sedativos) contribuem para o aparecimento dos distúrbios psicológicos em longo prazo. História prévia de depressão está fortemente associada à morbidade psiquiátrica pós-SDRA.
O impacto social da depressão é substancial, pois os pacientes com sintomas psiquiátricos moderados a graves apresentam maior dificuldade em retornar ao trabalho do que aqueles com sintomas leves a moderados. Os indivíduos com TEPT apresentam maior tendência à somatização e à ansiedade, além de grande comprometimento em algumas dimensões da qualidade de vida relacionada à saúde (QVRS), como saúde geral, função social e saúde mental. Uma correlação positiva foi encontrada entre o número de memórias traumáticas e de experiências de ansiedade com a gravidade do TEPT. Quanto aos aspectos relacionados a intervenções na UTI, a duração da sedação e da ventilação mecânica são consideradas preditoras de TEPT em longo prazo.

ESTADO COGNITIVO

Pouco se conhece sobre a fisiopatologia do comprometimento neurocognitivo após SDRA. É provável que diferentes mecanismos possam contribuir para o desenvolvimento da disfunção neurocognitiva (hipoxemia, delirium, alterações na glicemia, os efeitos dos sedativos e o comprometimento cognitivo preexistente). Cerca de 50% dos sobreviventes podem apresentar disfunção cognitiva em longo prazo (1 a 2 anos), principalmente no que se refere à atenção, memória, velocidade de processamento mental e função executiva. Biehl et al. não encontraram diferenças no componente mental do SF-12 entre os pacientes criticamente doentes com e sem SDRA na avaliação a longo prazo. O clássico estudo de Pandharipande et al. demonstrou que pacientes criticamente doentes com choque ou insuficiência respiratória aguda têm alto risco de comprometimento cognitivo no primeiro ano após a alta hospitalar. Além disso, um quarto dos pacientes idosos (> 65 anos) apresentava exame neurológico compatível com demência após 1 ano de acompanhamento.

FUNÇÃO PULMONAR

Nos pacientes com SDRA, a redução da função pulmonar não parece ser tão significativa quanto se pensava inicialmente. A spirometria (que avalia os volumes pulmonares estáticos e dinâmicos) e a capacidade de difusão (que avalia a capacidade de troca gásosa por meio da barreira alveolar) são as técnicas usadas para avaliação da função pulmonar. O teste de caminhada de 6 minutos (que avalia globalmente a função cardiopulmonar) também é usado para avaliação da função pulmonar isoladamente. Destes, a capacidade de difusão parece ser o parâmetro universalmente acometido agudamente e, embora tenha havido melhora de 62 - 63% para 72 - 77% do valor previsto, ele permaneceu no limite inferior da normalidade de durante o primeiro ano após SDRA. No estudo dos volumes pulmonares, há forte tendência ao retorno da normalidade após 3 a 6 meses da fase aguda. Myhren et al. demonstraram que 55% dos pacientes com SDRA previamente ativos retornaram ao trabalho ou à escola em 1 ano de acompanhamento. Um estudo recente, realizado com 922 sobreviventes de SDRA em 43 hospitais americanos, mostrou que 44% dos pacientes estavam desempregados após 1 ano da alta.

RETORNO AO TRABALHO E REOSPITALIZAÇÃO

A possibilidade de retorno ao trabalho é um indicador importante da qualidade de vida dos sobreviventes de doença crítica. Myhren et al. demonstraram que 55% dos pacientes com SDRA previamente ativos retornaram ao trabalho ou à escola em 1 ano de acompanhamento.
hospitalar. Redução nos ganhos monetários foi relatada por 71% dos pacientes, e as variáveis associadas ao desempenho foram o tempo de permanência hospitalar e a idade.

Ruhl et al. (34) demonstraram que 40% dos sobreviventes da SDRA apresentam pelo menos uma hospitalização após a alta durante os primeiros 12 meses de acompanhamento. O declínio físico ou psicológico foi associado à hospitalização subsequente.

QUALIDADE DE VIDA RELACIONADA À SAÚDE

Ainda existem muitas incertezas na avaliação da QVRS dos pacientes com SDRA após a alta da UTI. (35) Os diferentes momentos de avaliação e a heterogeneidade das escalas aplicadas nos estudos complicam a interpretação dos achados. (36)

Em metanálise, (35) a QVRS dos sobreviventes de SDRA era significativamente diminuída no primeiro ano após a alta da UTI em comparação com a população geral, especialmente devido à piora do domínio físico. Em análise secundária do estudo OSCAR (n = 795), (37) os sobreviventes de SDRA relataram QVRS significativamente menor do que a população de referência correspondente à idade e ao sexo. Esse achado foi mais marcante nos pacientes com idade inferior aos 65 anos. Bienvenu et al. (32) demonstraram que os pacientes apresentam pelo menos um diagnóstico psicológico associado a redução do domínio físico da QVRS na avaliação de 2 anos da alta hospitalar. Em análise multivariada, a melhora do desempenho físico foi associada a maior probabilidade de remissão dos sintomas psiquiátricos. Na avaliação da QVRS dos pacientes após 5 anos da alta da UTI, os sobreviventes de SDRA apresentavam 25% de redução da função física e 17,5% de redução na saúde geral, quando comparados com a população em geral. (38) Mesmo os indivíduos jovens (< 52 anos) (39) e com poucas comorbidades (39,40) apresentavam redução do domínio físico. Também na avaliação da QVRS, a gravidade da SDRA parece não influenciar nos desfechos em longo prazo. (10) Neste estudo, os sobreviventes de ECMO e não-ECMO tiveram QVRS semelhantes 1 ano após a alta da UTI; mas quando comparados com a população geral, ambos os grupos mostraram QVRS significativamente inferior.

Curiosamente, os sobreviventes de SDRA parecem apresentar quatro padrões evolutivos distintos em longo prazo: (a) saúde física e mental levemente prejudicada, (b) saúde física e mental moderadamente prejudicada, (c) saúde física gravemente prejudicada com saúde mental moderadamente prejudicada e (d) saúde física e mental gravemente prejudicadas. (41,42) Esta divisão fenotípica pode, em um futuro próximo, nos nortear nas definições terapêuticas pós-alta hospitalar.

Visando esclarecer a contribuição específica da SDRA nos resultados em longo prazo, alguns autores (14,43) compararam a QVRS dos sobreviventes de SDRA com sobreviventes de UTI sem SDRA, não demonstrando diferença na avaliação de 6 meses após a alta. No entanto, esses resultados devem ser interpretados com cautela, considerando a heterogeneidade da doença pulmonar aguda abrangida pela definição de SDRA ao longo dos anos e pelas diferentes características de linha de base das populações estudadas em termos de idade, doença pulmonar preexistente e número de comorbidades.

PREVENÇÃO DAS SEQUELAS

Um melhoramento na função física e a mobilização precoce baseada em protocolos ocorreu em uma coorte de pacientes cirúrgicos, (45) porém estes resultados positivos ainda não foram replicados em pacientes com insuficiência respiratória aguda. (46,47) O apoio aos familiares e cuidadores durante a internação na UTI e a reabilitação motora parecem prevenir o aparecimento do TEPT. (26,48)

COMENTÁRIOS FINAIS

Embora a mortalidade da SDRA tenha se reduzido nos últimos anos, aqueles que sobrevivem evoluem com alterações na função pulmonar, redução da qualidade de vida e do status funcional além do surgimento de distúrbios neuropsiquiátricos até 5 anos após a sua doença crítica. A causa, a manifestação fisiopatológica e o curso clínico em pacientes com SDRA podem ser diferentes daqueles de outras doenças críticas. A hipótese de um padrão diferente e característico de sequelas em longo prazo pode ser derivada de aspectos específicos da SDRA: a ventilação mecânica pode ser mais prejudicial na SDRA do que nas outras doenças críticas; a hipoxemia é uma complicação específica da SDRA, e os sobreviventes podem ser especificamente expostos a seus efeitos negativos; e pacientes com SDRA recebem terapias próprias (oxigenação por membrana extracorpórea, posição prona, bloqueio muscular e sedoanalgesia), que podem influenciar no desfecho em longo prazo. (49)
ABSTRACT

Patients with acute respiratory distress syndrome require ventilation strategies that have been shown to be important for reducing short-term mortality, such as protective ventilation and prone position ventilation. However, patients who survive have a prolonged stay in both the intensive care unit and the hospital, and they experience a reduction in overall satisfaction with life (independence, acceptance and positive outlook) as well as decreased mental health (including anxiety, depression and posttraumatic stress disorder symptoms), physical health (impaired physical state and activities of daily living; fatigue and muscle weakness), social health and the ability to participate in social activities (including relationships with friends and family, hobbies and social gatherings).

Keywords: Respiratory distress syndrome, adult; Quality of life; Intensive care units

REFERÊNCIAS

1. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526-33.
2. Bell RC, Coalson JJ, Smith JD, Johanson WG Jr. Multiple organ system failure and infection in adult respiratory distress syndrome. Ann Intern Med. 1983;99(3):293-8.
3. Acute Respiratory Distress Syndrome Network, Brower RG, Matthay RA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-8.
4. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, Malacrida R, Di Giulio P, Fumagalli R, Pelosi P, Brazi L, Latini R; Prone-Supine Study Group. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med. 2001;345(8):568-73.
5. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guerin C, Prat G, Morange S, Roch A; ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107-16.
6. Hashem MD, Nallagangula A, Nalamalapu S, Nunna K, Nausran U, Robinson KA, et al. Patient outcomes after critical illness: a systematic review of qualitative studies following hospital discharge. Crit Care. 2016;20(1):345.
7. Rawal G, Yadav S, Kumar R. Post-intensive care syndrome: an overview. J Transl Int Med. 2017;5(2):90-2.
8. Baldwin M, Wunsch H. Mortality after critical illness. In: Stevens RD, Hart N, Herridge MS, editors. Textbook of post-ICU medicine: the legacy of critical care. United Kingdom: Oxford University Press; 2014.
9. Biehl M, Kashyap R, Ahmed AH, Reniani MK, Ofoma UR, Wilson GA, et al. Six-month quality-of-life and functional status of acute respiratory distress syndrome survivors compared to patients at risk: a population-based study. Critical Care. 2015;19:356.
10. Wang ZY, Li T, Wang GT, Xu L, Gao XJ. Assessment of 1-year outcomes in survivors of severe acute respiratory distress syndrome receiving extracorporeal membrane oxygenation or mechanical ventilation: a prospective observational study. Chin Med J (Engl). 2017;130(10):1161-8.
11. Dinglas VD, Arondon Friedman L, Colantuoni E, Mendez-Tellez PA, Shanholz CB, Ciesla ND, et al. Muscle weakness and 5-year survival in acute respiratory distress syndrome survivors. Crit Care Med. 2017;45(3):446-53.
12. Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saifi F, Cooper AB, Guest CB, Mazer CD, Mehta S, Stewart TE, Barr A, Cook D, Slutsky AS; Canadian Critical Care Trials Group, et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med. 2003;348(8):683-93.
13. Herridge MS, Tansey CM, Matté A, Tomlinson G, Díaz-Granados N, Cooper A, Guest CB, Mazer CD, Mehta S, Stewart TE, Kudlow P, Cook D, Slutsky AS, Cheung AM; Canadian Critical Care Trials Group, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293-304.
14. Herridge MS, Moss M, Hough CL, Hopkins RO, Rice TW, Bienvenu OJ, et al. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Intensive Care Med. 2016;42(5):725-38.
15. Angel MJ, Bril V, Shannon P, Herridge MS. Neuromuscular function in survivors of the acute respiratory distress syndrome. Can J Neurol Sci. 2007;34(4):427-32.
16. Chan KS, Mourtzakis M, Arondon Friedman L, Dinglas VD, Hough CL, Ely EW, Morris PE, Hopkins RO, Needham DM; National Institutes of Health National Heart, Lung, and Blood Institute (NHLBI) Acute Respiratory Distress Syndrome (ARDS) Network. Evaluating muscle mass in survivors of acute respiratory distress syndrome: a 1-year multicenter longitudinal study. Crit Care Med. 2018;46(8):1238-46.
17. Brodsky MB, Huang M, Shanholz C, Mendez-Tellez PA, Palmer JB, Colantuoni E, et al. Recovery from dysphagia symptoms after oral endotracheal intubation in acute respiratory distress syndrome survivors. A 5-year longitudinal study. Ann Am Thorac Soc. 2017;14(3):376-83.
18. Angus DC, Mustapha AA, Clermont G, Griffin MF, Linde-Zwirble WT, Dremmizov TT, et al. Quality-adjusted survival in the first year after the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;163(6):1389-94.
19. Bienvenu OJ, Friedman LA, Colantuoni E, Dinglas VD, Sepulveda KA, Mendez-Tellez P, et al. Psychiatric symptoms after acute respiratory distress syndrome: a 5-year longitudinal study. Intensive Care Med. 2018;44(1):38-47.
20. Huang M, Parker AM, Bienvenu OJ, Dinglas VD, Colantuoni E, Hopkins RO, Needham DM; National Institutes of Health, National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. National Institutes of Health, National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. Psychiatric symptoms in acute respiratory distress syndrome survivors: a 1-year National Multicenter Study. Crit Care Med. 2016;44(5):954-65.
21. Chinuello D, Coppola S, Frasto S, Gatti M. What’s next after ARDS: long-term outcomes. Respir Care. 2016;61(5):889-99.
22. Bienvenu OJ, Colantuoni E, Mendez-Tellez P, Shanholz C, Dennis-Himmelfarb CR, Pronovost PJ, et al. Cooccurrence of and remission from general anxiety, depression, and posttraumatic stress disorder symptoms after acute lung injury: a 2-year longitudinal study. Crit Care Med. 2015;43(3):642-53.
23. Rattray J. Life after critical illness: an overview. J Clin Nurs. 2014;23(5-6):623-33.
24. Adhikari NK, McAndrews MP, Tansey CM, Matté A, Pinto R, Cheung AM, et al. Self-reported symptoms of depression and memory dysfunction in survivors of ARDS. Chest. 2009;135(3):678-87.
25. Pfoh ER, Chan KS, Dinglas VS, Girard TD, Jackson JC, Morris PE, Hough CI, Mendez-Tellez PA, Ely EW, Huang M, Needham DM, Hopkins RO, NIH NHLBI ARDS Network. Cognitive screening among acute lung injury survivors: a cross-sectional evaluation of the Mini-Mental State Examination. Crit Care. 2015;19(2):220.

26. Deja M, Denke C, Weber-Carstens S, Schröder J, Pillo CE, Hokema F, et al. Social support during intensive care unit stay might improve mental impairment and consequently health-related quality of life in survivors of severe acute respiratory distress syndrome. Crit Care Med. 2006;34(5):R147.

27. Kapfhammer HP, Rothenhäusler HB, Krauseneck T, Stoll C, Schelling G. Posttraumatic stress disorder and health-related quality of life in long-term survivors of acute respiratory distress syndrome. Am J Psychiatry. 2004;161(1):45-52.

28. Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, Brummel NE, Hughes CG, Vasilevskis EE, Shintani AK, Moons KG, Geyvarghese SK, Canonico A, Hopkins RO, Bernard GR, Dittus RS, Ely EW; BRAIN-ICU Study Investigators. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369(14):1306-16.

29. Pellegrino R, Viegli G, Brusasco V, Crapo R, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948-68.

30. Cooper AB, Ferguson ND, Hanly PJ, Meade MO, Kachura JR, Granton JT, et al. Long-term follow-up of survivors of acute lung injury: lack of effect of a ventilation strategy to prevent barotrauma. Crit Care Med. 1999;27(12):2616-17.

31. Orme J Jr, Romney JS, Hopkins RO, Pope D, Chan KJ, Thomsen G, et al. Pulmonary function and health-related quality of life in survivors of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2003;167(5):690-4.

32. Myhren H, Ekeberg Ø, Stokland O. Health-related quality of life and return to work after critical illness in general intensive care unit patients: a 1-year follow-up study. Crit Care Med. 2010;38(7):1554-61.

33. Kamdar BB, Huang M, Dinglas VS, Colantuoni E, von Wachter TM, Hopkins RO, Needham DM; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. Joblessness and lost earnings after acute respiratory distress syndrome in a 1-year national multicenter study. Am J Respir Crit Care Med. 2010;180(7):755-61.

34. Bein T, Weber-Carstens S, Apfelbacher C. Long-term outcome after the Acute Respiratory Distress Syndrome (ARDS) Collaborative Study Group. Chest. 2015;64 Suppl 1:1-26.

35. Brown SM, Wilson EL, Presson AP, Dinglas VS, Greene T, Hopkins RO, Needham DM; with the National Institutes of Health NHLBI ARDS Network. Understanding patient outcomes after acute respiratory distress syndrome: identifying subtypes of physical, cognitive and mental health outcomes. Thorax. 2017;72(12):1094-103.

36. Granja C, Morujo E, Costa-Pereira A. Quality of life in acute respiratory distress syndrome survivors may be no worse than in other ICU survivors. Intensive Care Med. 2003;29(10):1744-50.

37. Bein T, Bischoff M, Breuckner U, Gebhardt K, Hentzer D, Hermes C, et al. S2e guideline: positioning and early mobilization in prophylaxis or therapy of pulmonary disorders: Revision 2015: S2e guideline of the German Society of Anaesthesiology and Intensive Care Medicine (DGAI). Anaesthesist. 2015;64 Suppl 1:1-26.

38. Ruhl AP, Huang M, Colantuoni E, Karmarkar T, Dinglas VS, Hopkins RO, Needham DM; With the National Institutes of Health, National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. Healthcare utilization and costs in ARDS survivors: a 1-year longitudinal national US multicenter study. Intensive Care Med. 2017;43(7):980-91.

39. Dolowy DW, Eid MF, Dennison CR, Mendez-Tellez PA, Herridge MS, Guallar E, et al. Quality of life after acute respiratory distress syndrome: a meta-analysis. Intensive Care Med. 2006;32(8):1115-24.

40. McHorney CA, Ware JE Jr, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring health-related quality of life. Med Care. 1993;31(3):247-63.

41. Marti J, Hall P, Hamilton P, Lamb S, McCabe C, Lall R, et al. One-year resource utilization, costs and quality of life in patients with acute respiratory distress syndrome (ARDS): secondary analysis of a randomized controlled trial. J Intensive Care. 2016;4:56.

42. Schelling G, Stoll C, Vogelmeier C, Hummel T, Behr J, Kapfhammer HP, et al. Pulmonary function and health-related quality of life in a sample of long-term survivors of the acute respiratory distress syndrome. Intensive Care Med. 2000;26(9):1304-11.

43. Heyland DK, Groll D, Caeser M. Survivors of acute respiratory distress syndrome: relationship between pulmonary dysfunction and long-term health-related quality of life. Crit Care Med. 2005;33(7):1549-56.

44. Garland A, Dawson NV, Altmann I, Thomas CL, Phillips RS, Tsevat J, Desbiens NA, Bellamy PE, Knaus WA, Connors AF Jr; SUPPORT Investigators. Outcomes up to 5 years after severe, acute respiratory failure. Chest. 2004;126(6):1897-904.

45. Hopkins RO, Weaver LK, Collingridge D, Parkinson RB, Chan KJ, Orme JF Jr. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2005;171(4):340-7.

46. Moss M, Nordon-Craft A, Bleichner M, Hentzer D, Hermes C, et al. Social support during intensive care unit stay might improve mental impairment and consequently health-related quality of life in survivors of severe acute respiratory distress syndrome. Crit Care Med. 2006;34(5):R147.

47. Kapfhammer HP, Rothenhäusler HB, Krauseneck T, Stoll C, Schelling G. Posttraumatic stress disorder and health-related quality of life in long-term survivors of acute respiratory distress syndrome. Am J Psychiatry. 2004;161(1):45-52.

48. Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, Brummel NE, Hughes CG, Vasilevskis EE, Shintani AK, Moons KG, Geyvarghese SK, Canonico A, Hopkins RO, Bernard GR, Dittus RS, Ely EW; BRAIN-ICU Study Investigators. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369(14):1306-16.

49. Pellegrino R, Viegli G, Brusasco V, Crapo R, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948-68.

50. Cooper AB, Ferguson ND, Hanly PJ, Meade MO, Kachura JR, Granton JT, et al. Long-term follow-up of survivors of acute lung injury: lack of effect of a ventilation strategy to prevent barotrauma. Crit Care Med. 1999;27(12):2616-17.

51. Orme J Jr, Romney JS, Hopkins RO, Pope D, Chan KJ, Thomsen G, et al. Pulmonary function and health-related quality of life in survivors of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2003;167(5):690-4.

52. Myhren H, Ekeberg Ø, Stokland O. Health-related quality of life and return to work after critical illness in general intensive care unit patients: a 1-year follow-up study. Crit Care Med. 2010;38(7):1554-61.

53. Kamdar BB, Huang M, Dinglas VS, Colantuoni E, von Wachter TM, Hopkins RO, Needham DM; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. Joblessness and lost earnings after acute respiratory distress syndrome in a 1-year national multicenter study. Am J Respir Crit Care Med. 2017;196(8):1012-20.

54. Ruhl AP, Huang M, Colantuoni E, Karmarkar T, Dinglas VS, Hopkins RO, Needham DM; With the National Institutes of Health, National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. Healthcare utilization and costs in ARDS survivors: a 1-year longitudinal national US multicenter study. Intensive Care Med. 2017;43(7):980-91.

55. Dowdy DW, Eid MF, Dennison CR, Mendez-Tellez PA, Herridge MS, Guallar E, et al. Quality of life after acute respiratory distress syndrome: a meta-analysis. Intensive Care Med. 2006;32(8):1115-24.

56. McHorney CA, Ware JE Jr, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care. 1993;31(3):247-63.

57. Marti J, Hall P, Hamilton P, Lamb S, McCabe C, Lall R, et al. One-year resource utilization, costs and quality of life in patients with acute respiratory distress syndrome (ARDS): secondary analysis of a randomized controlled trial. J Intensive Care. 2016;4:56.