Live-cell microscopy or fluorescence anisotropy with budded baculoviruses— which way to go with measuring ligand binding to M₄ muscarinic receptors?

Maris-Johanna Tahk¹,†, Jane Torp¹,†, Mohammed A. S. Ali², Dmytro Fishman², Leopold Parts²,³, Lukas Grätz⁴, Christoph Müller⁴, Max Keller⁴, Santa Veiksina¹, Tõnis Laasfeld¹,² and Ago Rinken¹

¹Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
²Department of Computer Science, University of Tartu, Narva Street 20, 51009 Tartu, Estonia
³Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
⁴Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany

†These authors contributed equally to this study.

Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.6002187.

M₄ muscarinic acetylcholine receptor is a G protein-coupled receptor (GPCR) that has been associated with alcohol and cocaine abuse, Alzheimer’s disease, and schizophrenia which makes it an interesting drug target. For many GPCRs, the high-affinity fluorescence ligands have expanded the options for high-throughput screening of drug candidates and serve as useful tools in fundamental receptor research. Here, we explored two TAMRA-labelled fluorescence ligands, UR-MK342 and UR-CG072, for development of assays for studying ligand-binding properties to M₄ receptor. Using budded baculovirus particles as M₄ receptor preparation and fluorescence anisotropy method, we measured the affinities and binding kinetics of both fluorescence ligands. Using the fluorescence ligands as reporter probes, the binding affinities of unlabelled ligands could be determined. Based on these results, we took a step towards a more natural system and developed a method using live CHO-K₁-hM₄R cells and automated fluorescence microscopy suitable for the routine determination of unlabelled ligand affinities. For quantitative image analysis, we developed random forest and deep learning-based pipelines for cell segmentation. The pipelines were integrated into the user-friendly open-source Aparecium software. Both image analysis methods were suitable for measuring fluorescence ligand saturation binding and kinetics as well as for screening binding affinities of unlabelled ligands.

1. Introduction

Muscarinic acetylcholine receptors (mAChR) are a group of G protein-coupled receptors (GPCRs) with five subtypes M₁–M₅ which play a crucial role in, for example, the regulation of memory, heart and bladder function, and dopaminergic neurotransmission [1–4]. Lately, the M₄ receptor has been suggested to be a potential drug target for the treatment of neurodegenerative and neuropsychiatric disorders like Alzheimer’s disease or schizophrenia [5,6]. Furthermore, as new links emerge between the M₄ receptor and alcoholism, as well as between M₄ receptor polymorphism and cocaine and heroin abuse, the M₄ receptor becomes an even more versatile drug target [7,8]. Despite the growing importance, the
development of novel drugs targeting the M4 receptor is difficult as the similarity of orthosteric binding sites of all mACHRs leads to low subtype selectivity of ligands [9]. One solution is the development of allosteric modulators, which may exhibit higher subtype selectivity but relatively lower affinities [10]. To find suitable drugs, ligand screening remains an important step in the drug development process. Screening for new drug candidates using fluorescence methods has become quite popular due to several advantages over radioligand-based assays [11]. However, until now, only a limited number of fluorescence ligands have been available for mACHRs, and to our knowledge, none have been extensively used to develop assays to study M4 receptors [12–14]. Recently, several novel low molecular weight fluorescently labelled ligands targeting mACHRs were described [15,16]. Of these ligands, TAMRA labelled UR-CG072 and UR-MK342 have already been successfully used for studying M2 receptors in NanoLuc luciferase bioluminescence resonance energy transfer (nanoBRET) and fluorescence anisotropy (FA) assays [17]. Even though these ligands show a slight preference for the M2 receptor, they still have a high affinity for M1 and M4 receptors. Therefore, the new fluorescent ligands should be suitable as probes for studying M4 receptors in drug candidate screening assays as well as in a large variety of fluorescence microscopy techniques from live tissue systems to single-molecule studies [18–20].

One of the most common options for characterizing fluorescent probe binding to proteins, including GPCRs, is the FA method [21–25]. For the successful development of FA assays, several unique aspects must be considered. Most importantly, FA is a ratiometric assay with its value depending on the ratio of bound and free ligand. Therefore, all experiments must be designed in a way that the probe and receptor concentrations are in a similar range, which means that ligand and receptor depletion should be taken into account [26]. The main advantage of the FA method is that there is no need to separate bound ligand from the free ligand, making it easy to continuously collect time-course data during ligand binding. These time-course data can be used to obtain kinetic parameters and to develop reaction kinetics models of ligand binding for more insight into the complicated regulation of signal transduction. In addition to cell membranes, budded baculovirus (BBV) particles can serve as a high-quality receptor source for FA assays. BBV particles are advantageous because they have a fixed cylindrical shape (approx. 50 nm × 300 nm) and homogeneous size distribution, resulting in minimal noise and small variability between replicates compared to membrane preparations [26–28]. Due to the small size and low sedimentation rate of BBV particles, they are well suited for performing homogeneous assays. However, downstream signalling cascades are not present in BBV particles. Furthermore, BBV particles are produced in Sf9 insect cells, where the membrane composition differs from mammalian systems.

Most of these problems can be avoided by using more natural live-cell assays for receptor display. Among multiple developed assays [29], NanoBRET has gained a lot of popularity in recent years due to its homogeneous format, the possibility of real-time measurements and relatively good compatibility with a wide array of fluorophores. However, it requires genetically modified receptors, which may have an influence on ligand binding and receptor activation [30]. Studying wild-type receptors is more difficult, as the receptor cannot be tagged, which in turn does not allow to take advantage of the high sensitivity of bioluminescence approaches. Further, the plate reader-based RET methods only provide cell population average statistics instead of single-cell resolution information, which may hide some important effects. One solution to both problems is flow cytometry, which can measure fluorescent ligand binding to individual cells. However, it cannot follow binding to a single cell over time nor spatially resolve from which part of the cell the fluorescence originates from [31]. By contrast, high-throughput microscopy can provide spatial information as well as time-course information for the same cells, making more detailed analysis possible. On the downside, extracting pharmacologically relevant quantitative information from the bioimages requires more complex data analysis algorithms. However, once an automated data analysis solution with user-friendly software exists, it can be reused in future studies.

Microscopy methods open many possibilities for assay setup, but performing time-resolved measurements with the cellular resolution is not trivial and existing methods have several potential issues [32]. In previously published works, the kinetics of ligand binding to live cells in an high-throughput screening (HTS) compatible manner have only been analysed by the fluorescence intensity of the whole image [33,34]. For these methods, it is necessary to seed cells consistently as a high confluence monolayer, but this is either difficult or practically impossible to achieve with some cell lines [35]. Furthermore, it is much more difficult to identify individual cells from a dense monolayer, thus reducing the number of parameters that can be studied. In addition, dense monolayers can significantly affect physico-chemical environmental parameters such as oxygen concentration which can also have more direct effects on muscarinic receptor signalling [36]. For example, transient hypoxic conditions lead to increased phosphorylation of M1 and M2 receptors [37]. Finally, dense cell monolayers can easily cause focusing problems as well as bioimage analysis specifically [38–40]. Therefore, each method has its own advantages and disadvantages. A better approach was developed with HEK-293-D4R cells, which uses a machine-learning algorithm for detecting only the fluorescence intensity originating from cell membranes in equilibrium conditions and does not rely on dense monolayers [35]. However, ligand-binding kinetics were not analysed in that study. Nevertheless, kinetic measurements should be possible with a similar setup after adjusting the experimental design and the image analysis pipeline.

The most difficult steps of microscopy image analysis are usually cell detection and segmentation, which is necessary for robust quantification of the fluorescence signal. Approaches for these tasks have gone through a paradigm shift from classical computer vision techniques to machine learning and especially deep-learning (DL) methods. Deep neural networks dominate most of the developed benchmark datasets for general problems as well as bioimage analysis specifically [38–40]. A large number of DL architectures have been developed over the past few years, but their wide application can be limited by compatibility issues with popular image analysis software and too complex design for comprehensive understanding for life scientists [41–48]. Therefore, a widely supported and well-known U-Net architecture is used in the present study for cell segmentation from bright-field images, as it has shown good results for similar microscopy images [43,49].

In this study, we developed new fluorescence-based ligand-binding assays for the M4 receptor. These assays use two recently developed 5-carboxytetramethylrhodamine (5-TAMRA) labelled dibenzodiazepinone derivatives, UR-MK342 and
UR-CG072 [16], and two different receptor sources. As both BBV particle-based FA and live cell-based microscopy assays have distinct advantages, we studied and compared the two options and discovered that both options are viable. To our best knowledge, this is the first detailed description of M4 receptor fluorescence ligand-binding assays, which opens up many new possibilities to study these receptors.

2. Material and methods

2.1. Materials

Assay buffer consisted of MilliQ water, 135 mM NaCl (AppliChem, Darmstadt, Germany), 1 mM CaCl₂ (AppliChem), 5 mM KCl (AppliChem), 1 mM MgCl₂ (AppliChem), 11 mM Na-HEPES (pH = 7.4) (Sigma-Aldrich, Taufkirchen, Germany), protease inhibitor cocktail (according to the manufacturer’s description, Roche, Basel, Switzerland) and 0.1% Phuronic F-127 (Sigma-Aldrich).

Muscarnic acetylcholine receptor ligands acetylcholine, arecoline, pirenzepine, pilocarpine, atropine and scopolamine were purchased from Sigma-Aldrich and carbachol from Tocris Bioscience (Abingdon, UK). The syntheses of the fluorescent ligands UR-MK342 and UR-CG072 [16] and the dualistic M₄R ligands UR-SK59 [50], UR-SK75 [50] and UNSW-MK259 [51], showing also high M₄R affinity, were described previously. All ligand stock solutions were prepared using cell culture grade DMSO (AppliChem) and stored at −20°C.

2.2. Cell culture

Spodoptera frugiperda S9 (Invitrogen Life Technologies, Schwerte, Germany) cells were maintained as a suspension culture in serum-free insect cell growth medium EX-CELL 420 (Sigma-Aldrich) at 27°C in a non-humidified environment.

Non-transfected Chinese hamster ovary cells (CHO-K1) were purchased from ATCC, LGC Standards (Wesel, Germany), and CHO-K1 expressing human M₄ receptor (CHO-K1-hM₄R cells) were obtained from Missouri S&T cDNA Resource Centre (Bloomsberg, USA). The M₄ receptor expression level has been previously determined to be 1 × 10⁵ (CHO-K1-hM₄R cells) were obtained from Missouri S&T cDNA Resource Centre (www.cdna.org), and manufacturing and production of BBV containing human M₄ receptor were performed as described in [25] with some modification. For cloning M₄ into pFastBac vector, BamH and XbaI sites were used with enzymes from (Thermo Fisher Scientific, Schwerte, Germany). To transform the bacmid into S9 cells, the transfection reagent FuGene 6 (Promega Corporation, Madison, USA) was used according to the manufacturer’s protocol. After the viruses were generated and collected, the amount of infectious viral particles per ml (IVP/ml) for all the baculoviruses was determined with the image-based cell size estimation assay [52].

To produce the BBV particles, S9 cells were infected with multiplicity of infection (MOI) = 3 and incubated for 4 days (end viability of S9 cells was 55%). The supernatant, containing BBV particles, was gathered by centrifugation for 15 min at 1600 g. Next, the BBV particles were concentrated 40-fold by high-speed centrifugation (48 000 g at 4°C) for 40 min followed by washing with the assay buffer and homogenization with a syringe and a 30G needle. The suspension was divided into aliquots and stored at −90°C until the experiments. BBV particle preparations were done several times. Receptor concentration for the BBV particle stocks was estimated R_stock = 9.7 ± 1.1 nM and R_stock = 5.5 ± 0.7 nM, using the model described in [27].

2.4. Fluorescence anisotropy experiments

FA experiments were carried out on black flat bottom half-area 96 well plates (Corning, Glendale, USA). A suitable combination of the fluorescent ligand, competitive ligand and BBV particle suspension was added to each well. Assay buffer was added so that the final liquid volume in each well was 100 µl.

In saturation binding experiments, two concentrations of fluorescent ligands were used, 2 nM and 20 nM for UR-CG072 and 1 nM and 6 nM for UR-MK342. For determination of non-specific binding, 2 µM or 20 µM UNSW-MK259 were used in the case of UR-CG072 and 1 µM or 6 µM scopolamine were used in the case of UR-MK342. Two-fold serial dilutions of BBV particle suspension was added starting from 60 µl. Wells without BBV particles were used as a free fluorescent ligand control.

For competition binding experiments, the concentrations of fluorescent ligands UR-CG072 and UR-MK342 were kept constant at 5 nM, and the volume of BBV particles was also kept constant at 20 µl (C_{final} = 1–2.2 nM). Five- or six-fold serial dilutions of the competitive ligands were used. Also, replicate wells with no competitive ligand were included, and for blank correction, replicate wells with only BBV particles was included. Measurements were carried out at 3 min intervals for 13–15 h at 27°C. A custom-made glass lid was used in all the experiments to minimize the evaporation from the wells. In all cases, BBV particles were added as the last component to initiate the ligand-binding process.

For kinetic experiments, 5 nM UR-CG072 or 6 nM UR-MK342 was used. In non-specific binding wells, 6 µM or 3 µM scopolamine was added, respectively. The reaction was initiated by the addition of 20 µl of M₄ receptor displaying BBV particles. After 180 min, the dissociation was
the well volume was kept at 200 µl. Before the measurement, the cell culture media was exchanged for DMEM/F-12 medium and incubated for 5 h. A stock solution of 1 mM 1,1'-diotadecl-3,3',3'-tetracrylonitocarbocyanine perchlorate (DiI) (Invitrogen, Eugene, Oregon, USA) in DMSO stored at −20°C was thawed and sonicated in an ultrasonic bath for 5 min to disrupt aggregates. Medium was removed and replaced with 200 µl per well of a µ-Plate 96 well Black plate (Ibidi, Gräfelfing, Germany) 5 h before the experiment. CHO-K1-hM4R cells were grown as described above and seeded with a density of 25 000 cells per well into a µ-Plate 96 well Black plate (Ibidi) at densities of 25 000 cells per well in 2 µM Dif in Dulbecco’s phosphate-buffered saline (DPBS) with Mg2+ and Ca2+ (Sigma-Aldrich) to stain the cell membranes.

CHO-K1-hM4R cells were seeded into µ-Plate 96 well Black plate (Ibidi, Gräfelfing, Germany) 5 h before the experiment. A stock solution of 1 mM 1,1'-diotadecl-3,3',3'-tetracrylonitocarbocyanine perchlorate (DiI) (Invitrogen, Eugene, Oregon, USA) in DMSO stored at −20°C was thawed and sonicated in an ultrasonic bath for 5 min to disrupt aggregates. Medium was removed and replaced with 200 µl per well of a µ-Plate 96 well Black plate (Ibidi, Gräfelfing, Germany) 5 h before the experiment. A stock solution of 1 mM 1,1'-diotadecl-3,3',3'-tetracrylonitocarbocyanine perchlorate (DiI) (Invitrogen, Eugene, Oregon, USA) in DMSO stored at −20°C was thawed and sonicated in an ultrasonic bath for 5 min to disrupt aggregates.

FA measurements were performed with multi-mode plate reader Synergy NEO (BioTek Instruments, Winooski, USA), which is equipped with a polarizing 530(25) nm excitation filter and 590(35) nm emission filter allowing simultaneous parallelly and perpendicularly polarized fluorescence detection. At least three individual experiments were carried out in duplicate.

2.5. Microscopy of DiI stained CHO-K1-hM4R cells

CHO-K1-hM4R cells were grown as described above and seeded with a density of 25 000 cells per well into a µ-Plate 96 well Black plate (Ibidi) at densities of 25 0000 cells per well in DMEM/F-12 medium and incubated for 5–7 h. Immediately before the experiment, the cell culture media was exchanged for the same cell culture media containing ligands. At all times, the well volume was kept at 200 µl.

For determining UR-CG072 affinity to the M4 receptor, saturation binding experiments were carried out using two-fold dilutions of UR-CG072 starting from 8 nM. Non-specific binding was measured in the presence of 3.7 µM scopolamine. The cells were incubated with ligands in Cytation 5 at 5% CO2 and 37°C for 2 h before imaging.

For measuring UR-CG072 binding kinetics to M4 receptor, 2 nM UR-CG072 was added to the cells, and imaging was immediately initiated. To achieve sufficient temporal resolution, only two wells were imaged in parallel. After approximately 3 h of association, 10 µl of 100 µM scopolamine (Cfinal = 5 µM) was added to start dissociation.

The competition binding assay was performed using 2 nM UR-CG072. The different competitive ligand concentrations were pipetted to the plate in randomized order to avoid a correlation between well imaging order and concentration. It was determined that 2 h was sufficient to reach equilibrium for IC50 value measurement as the IC50 values for scopolamine and carbachol at 2 and 5 h remained constant within uncertainty limits.

The imaging was performed with Cytation 5 as described above. Saturation binding experiments were performed with following imaging parameters in bright-field: LED intensity = 4, integration time = 110 ms, camera gain = 24 and in RFP fluorescence channel LED intensity = 1 or 2, integration time = 827 ms, camera gain = 24. For kinetic binding assays all the parameters were the same except for RFP fluorescence channel LED intensity = 5. For competition binding assays the imaging parameters used in bright-field were: LED intensity = 5, integration time = 1222 ms, camera gain = 0 and in RFP fluorescence channel: LED intensity = 5, integration time = 613 ms, camera gain = 24 or the same as for kinetic experiments. The cells were imaged in the montage mode (4 locations per well with Z-stack (10 planes, 4 planes below focal plane, 1 in focus and 5 planes above focal plane).

2.7. Cell segmentation with ilastik software

To develop a bright-field cell segmentation model based on the random forest (RF) algorithm, a total of three ilastik [53] pixel classification models were trained: RF-BF-1 (random forest-based fluorescence image cell segmentation), RF-BF-1 (random forest-based bright-field image cell segmentation model version 1) and RF-BF-2 (random forest-based bright-field image cell segmentation model version 2). Two of the models (RF-BF-1 and RF-BF-2) were immediate helper models used for training the final RF-BF-2 model. Here, the models are named by combining the model type (RF or U-Net3), an input imaging modality that the model used for cell detection (BF for bright-field images and FL for fluorescence images), followed by the index of the model of the particular type. For developing the RF-BF-1 model, a set of fluorescence images of CHO-K1-hM4R cells stained with fluorescent lipophilic dye DiI was generated. Thirty of these images were randomly chosen from different locations of the well for the training set. The images were in-focus (10 images), 3 µm above (10 images) or 3 µm below (10 images) the focal plane to increase the model robustness against focusing errors. The Gaussian smoothing, Laplacian of Gaussian, Gaussian gradient magnitude, difference of Gaussians, structure tensor eigenvalues and Hessian of Gaussian eigenvalues features were selected for sigma values of 0.70, 1.00, 1.60, 3.50, 5.00, 10.00, 15.00 and 20.00 pixels. In addition, the Gaussian smoothing feature with a sigma value of 0.30 pixels was selected in the ilastik feature selection stage.

RF-BF-1 was set up to perform binary pixel classification using cell and background classes. Some pixels of cells and background were manually annotated by adding annotations over the respective pixels of the in-focus images. More annotations were added at the fringe of cells to enhance the accuracy of the predictions. The annotations of the in-focus images were transferred to the respective out-of-focus images from the same field of view by warping the in-focus images to the out-of-focus images.
view. With these annotations, the RF-FL-1 was trained. Model export was set to generate simple binary segmentation. Then, the cells on the rest of the fluorescence images (186 images) were segmented in the batch processing mode creating a set of masks for 196 fields of view with the ten fields of view remaining in the training set. Next, the binary segmentation images were automatically reclassified into three classes: intracellular area (IC), membrane (MB) and near-membrane background (NMBG) with the rest of the pixels representing background (BG). IC class was generated by image erosion of the predicted cell masks by a 2-pixel radius disk structuring element. MB class was generated by image dilation of IC masks with a 3-pixel radius disk structuring element and pixels were assigned to the NMBG class by further image dilation of the MB images with a 7-pixel radius disk structuring element and excluding pixels already assigned to MB or IC classes. Next, a class balancing step was performed to obtain an equal number of pixels (MBs) for each of the classes. For that, all of the pixels from the class with the smallest MBs were selected and an equal number of pixels (MBs) for each of the classes. For the RF-BF-1 model, it was deemed that the model quality had reached a plateau, and further addition of data would not provide any significant model generalization. The model development pipeline is presented on figure 1a.

2.8. Cell segmentation with deep learning

For training the models for the DL pipeline, ten in-focus RFP fluorescence channel images of CHO-K1-hM3R cells stained with DiI dye were manually labelled using the ilastik pixel classification pipeline user interface. For that, pixels were classified as either cells or background. The manually generated annotations were exported. Next, a background correction step was used to remove systematic illumination differences from the fluorescence images. The ten images along with corresponding ground truth annotations were randomly sampled into training, validation and test sets as follows: six images in the training set, two images in the validation set and two images in the test set. The training and validation set images were cropped to the input size of the U-net (288 × 288 pixels) and augmented using a sequential augmenter with the augmentations (rescaling 0–5%, shearing 0–1 pixels, piecewise affine shearing 1–5%, random rotation ±45°, random left-right flip 50% probability and random up-down flip 50% probability) using the imgaug library [54]. A total of 6000 training tiles and 2000 validation tiles were generated (1000 augmented tiles of each image). The U-Net inspired fully convolutional U-Net3 architecture (figure 1c) was used to train a model, U-Net3-FL-1 (U-Net3 architecture-based fluorescence image cell segmentation), for cell detection from the fluorescence images [47,49]. The training was carried out using the following parameters: Adam optimizer [55], learning rate = 0.0002, beta 1 = 0.9, beta 2 = 0.999, epsilon = 10^{-8}, number of epochs = 20, loss

Table 1. Quality metrics of the developed machine-learning models.

Metric	U-Net3-FL-1	RF-FL-1	U-Net3-BF-1	RF-BF-1	RF-BF-2
Recall	0.94	0.91	0.86	0.75	0.72
Precision	0.88	0.94	0.93	0.77	0.74
F1 score	0.91	0.93	0.89	0.76	0.73
MCC	0.89	0.91	0.86	0.71	0.67
function = binary cross-entropy. The validation set loss was confirmed to have reached a minimum within 20 epochs. The model quality was assessed for the test set images. Next, the model was used to predict the masks for 191 DiI labelled fluorescence images. These images were again separated into training, validation and test sets along with the corresponding in-focus bright-field images of the same fields of view (133, 29 and 29 images, respectively). The focal plane had been manually chosen in a prior step. As it has been previously shown that similar DL network architectures require considerably more bright-field data to converge to an optimal solution compared to fluorescence data, a different strategy was chosen for training DL for cell detection from bright-field images [40,49,56]. As the training data volume was substantially larger, a data generator was used for cropping the images to the correct size (288 × 288 pixels) instead of predefined training and validation sets. A batch size of eight images was used during training. No augmentation was used for bright-field data. The same model architecture was used for the U-Net3-BF-1 (U-Net3 architecture-based bright-field image cell segmentation) model as for U-Net3-FL-1. In this training run, early stopping with patience = 20 was used, the model converged after 90 epochs. Also, learning rate reduction with a factor of 0.1 and patience = 10 was used. All other parameters were the same as for the fluorescence-based model. The final model U-Net3-BF-1 was used to predict the segmentation of the test set and equivalent metrics were calculated (table 1). The model development pipeline is presented on figure 1b.

2.9. Image analysis pipeline

To carry out cell segmentation from all microscopy images, a suitable image analysis pipeline was developed. For using ilastik based models, the same pipeline was used as in [35] with minor modifications. The ilastik segmentation label...
the image intensity was calculated only for the areas detected were removed from image quantification (figure 1 stage 1) as previously described [35] and areas of low quality receptor preparation (NBV) and fluorescent ligand, the inter-
fluorescence ligand (L), the receptor and the competitive unlabelled ligand (C), non-specific binding sites from the receptor preparation (NBV) and fluorescent ligand, the inter-action between non-specific binding sites on the microplate (N) and the fluorescent ligand. The corresponding reactions can be described by the following schemes:

\[
R + L \rightleftharpoons RL,
\]

\[
R + C \rightleftharpoons RC,
\]

\[
NBV + L \rightleftharpoons NBVL
\]

and

\[
N + L \rightleftharpoons NL
\]

The concentrations in this model are connected to the predicted FA values through the equation:

\[
FA(t) = \frac{[RL]_t + [L]_t + [L]_t + [NL]_t + [NBVL]_t + [FA]_t }{[RL]_t + [L]_t + [L]_t + [NL]_t + [NBVL]_t} \tag{2.2}
\]

where \([RL]_t, [L]_t, [NL]_t\) and \([NBVL]_t\) are the instantaneous concentrations of RL, L, NL and NBVL, respectively, at timepoint \(t\), and \([FA]_t\) are the intrinsic fluorescence anisotropies of the RL, L, NL and NBVL states, respectively.

All the uncertainties given are weighted standard error of the mean of at least three independent experiments if not stated otherwise.

2.12. Statistical analysis

For determining the quality of all machine-learning cell detection models, four metrics were considered:

\[
\text{Recall} = \frac{TP}{TP + FN} \tag{2.3}
\]

\[
\text{Precision} = \frac{TP}{TP + FP} \tag{2.4}
\]

\[
F_1 \text{ score} = \frac{2 \times TP}{2 \times TP + FP + FN} \tag{2.5}
\]

and

\[
MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}} \tag{2.6}
\]

where true positive (TP) denotes the number of correctly detected pixels belonging to cells, true negative (TN) is the number of correctly predicted pixels not belonging to cells, false positive (FP) is the number of non-cell pixels detected as cells, false negative (FN) is the number of cell pixels detected as non-cell pixels.

To compare U-Net3-BF-1 and RF-BF-2 model qualities for determining IC50 values from the live-cell microscopy assay, the \(R^2\) of the nonlinear fits were compared in a pairwise manner using one-tailed Mann–Whitney \(U\) test in GraphPad Prism 5.0 assuming that U-Net3-BF-1 is the superior model.

To determine the assay suitability for HTS applications, \(Z'\) values were calculated according to the formula [61]:

\[
Z' = 1 - \frac{3(\sigma_{\text{bottom}} + \sigma_{\text{top}})}{|\mu_{\text{bottom}} - \mu_{\text{top}}|} \tag{2.7}
\]

where \(\sigma_{\text{top}}\) and \(\sigma_{\text{bottom}}\) represent the standard deviations of blank wells (negative controls) and wells with a full displacement of the fluorescent ligand (positive controls), respectively. \(\mu_{\text{top}}\) and \(\mu_{\text{bottom}}\) correspond to means of negative and positive controls, respectively. The values from individual experiments were normalized to the respective top and bottom plateau values for each concentration-response curve separately to remove batch-to-batch variation effects of the receptor source.
3. Results

3.1. Determination of binding affinities of UR-CG072 and UR-MK342 to M₄ receptor displayed in BBV particles with FA

The FA method used here allows continuous measurement of receptor-fluorescence ligand complex formation or dissociation. FA depends on the ratios of free and bound fluorescence ligand states (equation (2.2)). The specific FA values of each state depend on the fluorescence lifetime as well as the rotational freedom of the fluorophore in the corresponding state. To observe significant changes in FA signal it is necessary that the mole ratios of both the free and bound fluorescence ligand change when receptor concentration, total fluorescence ligand concentration, competitive ligand concentration, time, or a combination of these factors is varied. This is best achieved when concentrations of the probe and its target protein are kept close to their binding K_d.

For these reasons, only certain fluorescence ligands with suitable fluorophores and binding affinities, usually from low picomolar to low nanomolar ranges, are considered as probe candidates for FA assay. Two 5-TAMRA labelled ligands, UR-CG072 and UR-MK342 from [16], were chosen for the development of FA assays due to a suitable label and high affinity to M₄ receptor determined by radioligand binding to whole cells.

First, the saturation binding experiments were carried out to determine fluorescence ligand-binding affinities to M₄ receptors displayed on BBV particles. Both ligands showed similar and high binding affinity (K_d) for UR-CG072 = 3.6 ± 1.1 nM, K_d UR-MK342 = 1.2 ± 0.5 nM; figure 2) which are in good agreement with the radioligand binding values (K_i, K_d) for UR-CG072 = 3.7 ± 0.6 nM, K_i UR-MK342 = 0.97 ± 0.07 nM [16]). However, UR-MK342 binding has a larger dynamic range of FA values compared to UR-CG072. The same tendency was also found in FA assays with the M₂ receptor [17]. As the effect is evident for both receptor subtypes, it might be attributed to the more flexible linker in UR-CG072. Nevertheless, high affinity and sufficient dynamic range mean that both ligands would be suitable for kinetic measurements as well as using these as probes for measuring competitive ligand-binding parameters.

Next, the ligand-binding kinetics of UR-CG072 and UR-MK342 to the M₄ receptor were studied. In contrast to similar affinities, the kinetic properties of UR-CG072 and UR-MK342 were quite different (figure 3). The faster association and dissociation kinetics of UR-CG072 make it more suitable for FA-based screening assays as this allows increasing the assay throughput by shortening the incubation times which reduces problems concerning potential receptor source sedimentation, liquid evaporation or even degradation of the ligands or the receptor [62]. Faster kinetics is also beneficial for live-cell microscopy assays, where too long experiments can lead to problems with cell culture such as detachment and changes in medium composition.

3.2. Affinity screening a panel of MR ligands with UR-CG072 and UR-MK342

Fluorescence ligands are often applied for determining the affinities of unlabelled ligands. Therefore, the suitability of both ligands was studied as reporter probes in competition with unlabelled M₄ receptor ligands. For that, a panel of common M₄ receptor ligands was chosen such that the expected affinities would cover a wide range of values and contain both agonists and antagonists. In addition, some unlabelled ligands, which are structurally similar to the fluorescence ligands [50,51,63], were chosen to assess the assay’s ability to work with dualistic compounds. The set of ligands was investigated in competition binding experiments with both UR-CG072 and UR-MK342 (figure 4).

Both fluorescent ligands can successfully be used as reporter ligands with a high signal-to-noise ratio and very good Z'-prime (Z'_i UR-CG072 = 0.52, Z'_i UR-MK342 = 0.67) making...
the assay compatible with HTS formats which generally require a minimum Z_0 of 0.5. However, as UR-CG072 has faster kinetics than UR-MK342, a longer incubation time is needed to determine the competitive ligand affinity using UR-MK342. To avoid possible under- or overestimation of IC50 values, it is important to wait until the equilibrium is reached [23].

To make the measurement values comparable, the pK_i values were calculated from the IC50 value for each ligand using the Cheng–Prussoff equation. While not all assumptions of the Cheng–Prussoff equation [60] are fulfilled, it has been previously shown that with these ligands the potential systematic error introduced by this operation is relatively small [17]. pK_i values obtained from experiments using the two different reporter ligands correlated very well ($R^2 = 0.96$), and the linear regression slope of the obtained pK_i values with both probes is very close to unity (0.97 ± 0.04) while the intercept is close to zero (0.3 ± 0.3) (figure 5a).

This validates that both probes can be used to determine the unlabelled ligand affinities in the FA assay.

Out of the tested ligands, UNSW-MK259, which represents the non-labelled analogue of UR-CG072, had the largest deviation from the best regression line (figure 5). The reason for this deviation is unknown but may be connected to potential dual-teric binding modes of UNSW-MK259, UR-MK342 and UR-CG072, which could alter the binding mechanism. However, explaining this effect remains the topic of future studies.

3.3. Adjusting live-cell microscopy assay for measuring UR-CG072 binding to M_4 receptor

To keep the cells viable and with normal morphology during imaging experiments, it is necessary to maintain specific conditions, like 5% CO2, 37°C, and sufficient nutrient concentrations in the media. These parameters may start to

Figure 3. Time course of FA change caused by UR-MK342 (a) or UR-CG072 (b) binding to M_4 receptors on the BBV particles. The reaction was initiated by the addition of 20 µl M_4 receptor displaying BBV particles to 6 nM UR-MK342 (a) or 5 nM UR-CG072 (b) in the absence (open black circle, filled blue circle) or presence (open black circle) of 6 µM (a) or 3 µM (b) scopolamine, respectively. After 180 min (indicated with an arrow) dissociation was initiated by the addition of 6 µM (a) or 3 µM (b) scopolamine (open blue square). An equivalent volume of assay buffer was added to association controls (filled blue circle). Representative experiments of at least three independent experiments are shown. ΔFA is calculated by subtracting the FA value of non-specific binding from the measured FA value of the corresponding measurement.

k_{on}	0.0028 ± 0.001 min$^{-1}$ nM$^{-1}$
k_{off}	0.0037 ± 0.0012 min$^{-1}$
$K_{d_{kinetic}}$	1.3 ± 0.4 nM

Figure 4. FA-based M_4 receptor competition binding experiments performed with 5 nM UR-MK342 (a) or 5 nM UR-CG072 (b) and reported muscarinic M_4 receptor ligands. BBV particles displaying the M_4 receptors ($V(BBV) = 20$ µl) were used as the receptor source. The 9 h measurement point is shown and used for analysis for all ligands. From the used competitive ligands, acetylcholine, carbachol, arecoline, pilocarpine are agonists, scopolamine, atropine, pirenzepine, UNSW-MK259, UR-SK75 and UR-SK59 are antagonists. A representative experiment of at least three independent experiments performed in duplicates is shown. Normalization was performed by taking the upper plateau value as 100% and lower plateau value as 0% separately for each displacement curve.
drift over long periods. Therefore, UR-CG072 was selected for the live-cell assay due to its faster binding and dissociation kinetics. First, it was confirmed that the binding of 2 nM UR-CG072 to CHO-K1-hM4R cells can be detected by fluorescence microscopy (figure 6a1). For non-specific binding controls, a similar experiment was performed in the presence of 5 μM scopolamine. As illustrated in figure 6 there is a significant difference in fluorescence intensity between total binding (figure 6a1) and non-specific binding (figure 6b1). To confirm that all the signal is specifically caused by ligand binding to M4 receptors, the binding of 2 nM UR-CG072 to CHO-K1 cells not expressing M4 receptor was measured. Under these conditions, there was no detectable accumulation of UR-CG072 to CHO-K1 cells (figure 6c1).

The results show that the differences between cell contour and cell body fluorescence intensities are smaller for the flatter CHO-K1 cells compared to HEK293 cells used in a previous study [35], which are elongated in the Z-direction. Therefore, it is necessary to analyse the fluorescence intensity of the whole cell body, which introduces an increased proportion of cell autofluorescence to the signal. Moreover, the imaging experiments were carried out in nutrient-rich cell culture media rather than DPBS buffer, as is suggested in [35]. This removes the need for more expensive special imaging media but increases background fluorescence levels. Combining these effects with using 5-TAMRA fluorophore instead of Cy3B as was used in [35], the overall signal level was greatly reduced in this assay compared to the previous one. However, as biological variability is still the main contributor to the assay uncertainty, reducing such variability at the cost of a reduced signal is still beneficial to the overall assay quality.
These images also reveal that the amount of M4 receptors on the cell membrane surface in all cells is different and that in some cells ligand binding could not be detected at all (figure 6a1,a2). This aspect should be considered when moving on to single-cell-based quantification using this particular cell line. However, the current microscopy method averages the signal from a large number of cells and all cells used on a single assay day are seeded from the same population. Furthermore, the absolute intensity values have no direct or systematic influence on the calculated ligand-binding parameters (K_d, k_{on}, k_{off} and K_p) and only lead to lowered signal-to-noise ratio. While a higher signal-to-noise ratio is beneficial in general, in the current case, it only has a limited impact on the overall measurement uncertainty.

3.4. Comparison of random forest and deep learning-based image analysis pipelines

Since the morphologies of HEK293 cells and CHO-K1 cells and the fluorescence probes are different, it was necessary to adjust the original pipeline previously developed for HEK293 cell analysis [35]. Due to a lower contour contrast of CHO-K1 cells compared to HEK293 cells, it was necessary to quantify the fluorescence intensity from the entire cell mask instead of only the cell contours.

A second adjustment to the original pipeline was needed due to the lower apparent brightness of the ligand–receptor complex. While the NAPS-Cy3B fluorescence signal in the dopamine D3 receptor system was close to twice as high as the image background intensity [35], the signal of CHO-K1–hM4R bound UR-CG072 was only 4% above the background signal. Due to the high absolute signal level in the D3 receptor system, it was not necessary to find the in-focus fluorescence plane in the original pipeline and instead the maximum intensity projection of the Z-stack could be used. In the current case, this approach is not suitable and leads to complete signal degradation (data not shown). Therefore, the fluorescence intensity must be quantified from the highest quality focal plane.

Improvements were also introduced into the model development and ground-truth generation process. The original pipeline relied on a human analyst to detect cell contours from bright-field images. Even though it was necessary to perform this step only once, it required significant manual labour and detecting cell contours from bright-field images is still more difficult compared to detection from fluorescence images. To address these issues, another approach was pursued. The cell membranes were stained with a lipophilic dye DiI and then imaged in both fluorescence and bright-field channels. For a small number of fluorescence images, cell masks were manually drawn. Next, machine-learning models RF-FL-1 and U-Net3-FL-1 were trained to generate cell masks from the DiI stained fluorescence images. These models were in turn used to predict the masks from a larger dataset of fluorescence images. The prediction masks then served as slightly lower quality, but significantly higher quantity ground truth for the next set of models (RF-BF-1, RF-BF-2 and U-Net3-BF-1), which predict the cell masks from bright-field images. The same conceptual approach was successful for training both the RF-based pipeline implemented in ilastik as well as the U-Net3 based DL pipeline developed using Jupyter notebooks [64] and Keras DL framework [57]. Considering all the aspects, both developed pipelines were superior to the original pipeline from the pipeline development perspective with a significantly reduced amount of manual annotation required.

3.5. Prediction quality comparison

The prediction quality of the DL models and ilastik based RF model were compared to determine the most suitable pipeline for analysis (figure 7 and table 1). Visually, all models can segment most of the cells from the bright-field images with good quality. The main difference between the models is that U-Net3-BF-1 (figure 7b) produces cells with more consistent and smooth shapes, similar to the ground truth (figure 7b) while RF-BF-2 (figure 7g) creates rugged edges and also detects many small fragmented objects far from the cells. Numerically, the quality of bright-field detection (table 1, F_1 score = 0.89) is somewhat lower than the current state of the art solutions in the cell tracking challenge [65] when compared to the most similar dataset of DIC-HeLa cells (F_1 score = 0.93) [65–68]. However, it must be noted that such small differences could be easily caused by differences in imaging modes, magnifications, cell line morphology or amount of training data.
among other parameters. The F_1 score of the fluorescence image-based predictions of both U-Net3-FL-1 (figure 7d) and RF-FL-1 (figure 7c) are already substantially lower than unity. At the same time, the U-Net3-BF-1 model has only slightly lower quality metrics compared to U-Net3-FL-1 but RF-BF-2 has substantially lower metrics compared to RF-FL-1. This may indicate that a large proportion of the errors made by DL pipeline originates from the training of the fluorescence model U-Net3-FL-1 rather than the bright-field model U-Net3-BF-1. Interestingly, when comparing the U-Net3-FL-1 model predictions and the U-Net3-BF-1 model predictions directly to one another instead of comparing these to the manually generated ground truth, the corresponding F_1 score is 0.87. This is lower than the similarity between either the U-Net3-FL-1 model and manual ground truth (F_1 score = 0.91) or U-Net3-BF-1 and manual ground truth (F_1 score = 0.89). It means that the U-Net3-BF-1 model can surpass the prediction quality of the U-Net3-FL-1 model predictions in some instances while failing to do so in other cases. The ability of U-Net3-BF-1 to avoid at least some of the mispredictions generated by the U-Net3-FL-1 model could mean that the proposed strategy of bright-field model generation is likely to work even with relatively small manually annotated datasets without the risk of overfitting. Interestingly, the RF-FL-1 model has a higher F_1 score and MCC value compared to U-Net3-FL-1 model. However, these numbers should not be used to make conclusions about the general power of a particular machine-learning approach since the training sets for models were not identical. Different training sets were used for practical considerations. For example, the datasets were chosen to be small enough that would allow training of the models within a few hours and without the need for unconventionally large computational resources while still achieving sufficiently high quality.

Furthermore, analysing the competition, saturation and kinetic experiments, with both U-Net3-BF-1 and RF-BF-2 models provides the opportunity to compare the pipeline performances not only on the image level but also on the pharmacological level. As the most commonly used metric for fit quality, the R^2 values of the nonlinear model from each experiment were compared in a pairwise manner. The analysis revealed that the R^2 values obtained from the DL pipeline are statistically significantly higher compared to the RF pipeline ($p = 0.03$) calculated as described in 'Material and methods'. U-Net3-BF-1 based cell detection had a higher average R^2 values ($mean = 0.93 ± 0.05$ and median = 0.939) compared to the RF-BF-2 based cell detection pipeline ($mean = 0.89 ± 0.09$ and median = 0.911). The relatively large standard deviation of the R^2 values shows that the algorithmic uncertainty is not the primary source of uncertainty, and instead, the variability is caused by biological factors. The high average R^2 values indicate that both pipelines work well in general, and the difference is not very large in absolute terms, but also that the small inaccuracies in the cell segmentation stage are not cancelled out during the post-processing steps. Instead, the errors are carried over and degrade the final fitting quality. Therefore, the U-Net3 based DL pipeline can still offer considerable advantages over RF-based approach at both image level and downstream nonlinear regression level. Thus, from the quality perspective, it is reasonable to prefer the DL pipeline with U-Net3-BF-1 over the RF pipeline using the RF-BF-2 model. As the U-Net3-BF-1 model showed higher overall quality, all the following presented results were obtained using the DL pipeline.

3.6. Usability of deep learning and ilastik pipelines for microscopy image analysis

In addition to model quality, the usability aspects of the developed pipelines were compared. The most relevant ones were general computational hardware requirements, pipeline speed, the convenience of using the pipelines in terms of user interfaces, and finally, the convenience of developing new machine-learning models in case of adapting the developed assay for a different microscope or cell line.

It was identified that the speed of the ilastik based RF models is substantially slower compared to the U-Net3 based DL models used for analysing the microscopy images. The difference was especially evident in the case when a GPU (graphical processing unit) was used for computations, which considerably speeded up the DL models. A modern computer was able to analyse the results with both DL and ilastik pipelines in a comparable time for preparing an experiment or performing the imaging, thus, making the analysis quite manageable. On average, analysing a single 904 × 1224 pixel image took 12 s with RF pipeline and 3.5 s with DL pipeline.

Compared to spectroscopy methods, large data volumes generated by the microscopy experiments may cause storage issues. Therefore, before using the proposed microscopy methods, the user should make sure that sufficient memory is available for the experiments.

Another aspect to consider is the analysis convenience, which in the case of image analysis software is related to the need of manually adjusting the algorithm parameters and performing some of the image analysis, pre-processing, or post-processing steps manually. For both DL and ilastik pipelines, no manual parameter adjustment is needed removing one common obstacle in image analysis. In addition to choosing convenient machine-learning models, it was necessary to choose a suitable interface for using the machine-learning models and performing the pre and post-processing steps. Many such interfacing software tools such as Fiji (Deeplimage) [69], CellProfiler [70] and ImJoy [71] allow almost unlimited flexibility for developing image analysis pipelines but also require that users have some knowledge of how image analysis pipelines work internally. These software currently also do not provide convenient out-of-the-box options for metadata handling required for pharmacological assays. Therefore, we chose Aparecium software (https://gpcr.ut.ee/aparecium.html) as the interfacing platform, as it is specifically designed for making image analysis pipelines as user-friendly as possible through graphical user interfaces (GUIs) while providing enough options for post-processing and metadata handling to carry out the biochemical analysis at the cost of less flexibility for general image analysis.

Finally, the aspect of machine-learning model development was considered as it is usually necessary to retrain the models from scratch or perform transfer learning if the method is used for widely different datasets [72,73]. In this study, two quite different model development environments were used. Model development in ilastik is relatively straightforward, requiring no programming skills and is done entirely through a GUI provided by the standalone ilastik software. Installing the software is very simple, and there are multiple tutorials available for using the GUI. Development of the DL models, including U-Net, is somewhat more difficult, requiring access to a python installation and preferentially to a...
The CHO-K1-hM4R cells (25000 cells per well) were incubated for 5 h with two-fold serial dilutions of UR-CG072 in the range of 0–8 nM to study the binding specificity to the M4 receptors. Supplementary material, figure S1) and thus all the observed fluorescence intensities were determined by the cell detection algorithm as described in ‘Material and methods’, and are presented as individual replicates from a representative experiment of three independent experiments performed in duplicate. Four images from different fields of view were taken from a single well.

Jupyter notebook server. However, this process is significantly simplified thanks to the recently developed ZeroCostDL4Mic framework [72]. ZeroCostDL4Mic reduces the training process to a point-and-click level without the need to adjust the code. Therefore, both ilastik and DL image analysis pipelines are sufficiently simplified that model training does not require extensive past experience with ilastik being the simplest option. Therefore, ilastik pipeline and the RF model is recommended for machine-learning applications where ease of use is more important than a slight loss in quality. These practical considerations are quite dynamic as software tools develop and are likely to change in the future.

3.7. Determination of binding affinities with UR-CG072 to M4 receptor in live-cell microscopy

For determining the binding affinity of UR-CG072, an assay design similar to the radioligand saturation binding experiment was used. From these data a K_d of 2.85 ± 0.10 nM was obtained (figure 8), which is also in good agreement with all previous results (table 2). Interestingly, there is a small decline in non-specific binding with increasing concentration (figure 8), but it is not of biological origin and is instead explained by a shadow-imaging effect which is caused by non-specific binding of UR-CG072 to the well surface, making the background brighter than the cells. This effect, however, does not interfere with the overall measurement, and the slope is not statistically significantly different from 0. A control saturation binding experiment with CHO-K1 cells not expressing M4 receptors shows that there is no ligand binding to the wild-type CHO-K1 cells (electronic supplementary material, figure S1) and thus all the observed binding is to the M4 receptors.

Due to the good photostability of the 5-TAMRA label and the moderate kinetic rates of UR-CG072 binding, the k_{on} and k_{off} of UR-CG072 could be measured with the described live-cell system. The binding of UR-CG072 (figure 9) is fully reversible by the addition of 10 µM scopolamine after 3 h of association (indicated by the arrow). Moreover, the K_d (2.6 ± 0.7 nM) obtained from kinetic data is in good agreement with previous values from both saturation binding assays as well as FA assays (table 2).

Lastly, competition binding experiments were carried out to confirm that the developed microscopy method is also suitable for screening novel unlabelled ligands in the future. Displacement curves were obtained for six ligands with varying structures, affinities and efficacies (figure 10). Regression analysis was used to obtain the IC$_{50}$ values from these data, which in turn were used to calculate pK_d values of the unlabelled ligands (table 3).

4. Discussion

The M4 receptor is connected to multiple diseases and is, therefore, an interesting target for drug development. In modern drug screening, the fluorescence-based methods have gained popularity, but the limited availability of fluorescent ligands for the M4 receptor has significantly hindered studies of this receptor. Recently, a set of new dibenzodiazepinone-type fluorescent ligands with high affinity to the M4 receptor was synthesized, of which UR-MK342 and UR-CG072 were labelled with TAMRA [16]. In previous studies, TAMRA label has been successfully used in FA assays, among other methods [90–92]. Therefore, these probes are promising candidates for developing new ligand-binding assays for the M4 receptor. Experimental results from the FA assay show that both UR-MK342 and UR-CG072 bind to M4 receptors with high affinity, and the K_d values are in good agreement with previous radioligand binding measurements. Although both ligands also have sufficiently high signals and $Z'*$ values to be compatible with HTS assay standards, UR-CG072 is preferred in screening assays due to its faster binding kinetics, which allows reduction of required incubation time and mitigates the effects of evaporation and potential sedimentation.

Since UR-CG072 and UR-MK342 have previously been studied in the M2 receptor FA assay system [17], similarities and differences in both receptor systems present an opportunity to gain more insight into their binding mechanism. Interestingly, the FA value of the receptor–ligand complex remains the same regardless of which receptor subtype, M2 or M4, is measured. This similarity is evident for both fluorescent ligands. By contrast, the receptor–ligand complex FA value depends on the fluorescent ligand is used and is consistently lower for UR-CG072 compared to UR-MK342 in complexes with both M2 and M4 receptor subtypes. This may indicate that the binding poses and the rotational freedom of the fluorophore moiety are similar between the two subtypes.

There are also some differences in the binding properties of these probes between the FA assays of M2 and M4 receptors. Both ligands seem to show a somewhat higher affinity towards the M2 receptor, but the differences are relatively small [17]. This is expected as orthosteric binding sites of M2 and M4 are structurally very similar [9]. However, there could be differences in the binding site accessibility since the association kinetics of both probes to the M2 receptor are faster compared to the M4 receptor. This is not surprising as ligand binding to muscarinic receptors is known to be a complex process even for somewhat smaller ligands. For example, N-methylscopolamine first binds to the allosteric site before binding to the orthosteric site of the M2 and M3...
particle stock. Therefore, the FA-based assay is a suitable option for HTS applications. However, there are also several differences between the BBV particle model system and in vivo or ex vivo conditions. For example, the live-cell systems allow studying G-protein and β-Arrestin signalling and other protein–protein interactions. Furthermore, cholesterol in the membrane has an effect on ligand binding to muscarinic receptors [97], thus using live mammalian cells allows obtaining more relevant measurement results. Therefore, a live cell-based assay system, although still having notable differences from in vivo systems, is a significant step closer to native systems. Live-cell assays also have some general disadvantages, such as slightly higher cost per experiment due to more advanced equipment required to perform the measurements and maintain cell culture. Additionally, live-cell measurements usually have higher uncertainty due to day-to-day variability. It must also be considered that the live-cell systems, which overexpress the receptors, do not fully reflect the natural system and may lead to considerable biases.

The results show that receptor–ligand complex formation on the surface of live cells can be studied by automated fluorescence
microscopy, which allows relatively fast measurements and high content spatio-temporal data collection. In addition, microscopy images can be used to study cell morphology, fluorophore localization, cell migration and cell death, which cannot be easily achieved with flow cytometry nor nanoBRET based measurement systems. These parameters can be useful for studying GPCR signalling [91]. Although a wide variety of advanced microscopy techniques allow measuring these parameters in great detail, high-end microscopy is often not automatic and, therefore, not suitable for high content studies. By contrast, automatic plate reader-based microscopes achieve a unique balance between the data volume and quality. This kind of automated live-cell microscopy has previously been used to study ligand binding to dopamine D2 receptors [35]. In the present study, this method was further developed to enable the quantification of receptor-ligand binding in both equilibrium and kinetic modes. Faster kinetics of UR-CG072 compared to UR-MK342 favour using it in live-cell assays as shorter experiment times avoid negative effects such as cell detachment, changes in nutrient and oxygen concentration and cell death.

Although microscopy methods also pose some challenges related to data volumes, data analysis speed and data analysis pipeline usability, the results of this study show that suitable software and machine-learning models overcome these problems. The model comparison shows that while DL pipeline provides higher quality results, the ilastik pipeline models are easier to retrain. As the final pharmacological parameters are comparable to physiological expression levels if a high brightness probe is available. Thus, the proposed approach to study ligand binding to receptors has a much wider application range than previously demonstrated. Finally, the current results prove the universality of this kind of microscopy assay, as switching to another receptor and cell line did not require major changes to the analysis pipeline or assay protocol.

The developed live-cell microscopy assay can be performed in the saturation binding mode, association and dissociation kinetic modes as well as in displacement experiments for measuring the affinity of unlabelled ligands. The kinetic measurements show that the fluorescence signal is quite stable once the equilibrium is reached after the association

unlabelled ligand	FA	microscopy	radioligand
	$pK_i \pm$ s.e.m.	$pK_i \pm$ s.e.m.	$pK_i \pm$ s.e.m.
carbachol	3.7 ± 0.2	3.46 ± 0.09	5.28 ± 0.05
arecoline	3.9 ± 0.2	3.52 ± 0.11	5.00 ± 0.03
acetylcholine	4.5 ± 0.2	4.55 ± 0.09	4.60 ± 0.13
pilocarpine	4.7 ± 0.2	4.56 ± 0.09	5.31 ± 0.12
pirenzepine	6.3 ± 0.2	6.16 ± 0.08	6.95 ± 0.07
scopolamine	8.30 ± 0.10	8.13 ± 0.09	9.18 ± 0.03
atropine	8.62 ± 0.16	8.64 ± 0.09	10.33 ± 0.16
UNSW-MK259	7.4 ± 0.2	8.64 ± 0.11	8.07 ± 0.03
UR-SK75	9.0 ± 0.2	8.65 ± 0.08	8.18 ± 0.03
UR-SK59	8.9 ± 0.2	8.51 ± 0.08	8.6 ± 0.06
phase. It is also evident that scopolamine induces full displacement of UR-CG072 from the M₄ receptor as the signal reaches the same level as was in the starting point (figure 9). Although the signal does not reach zero after dissociation, this is caused by autofluorescence, not by incomplete dissociation. UR-CG072 also has sufficiently fast kinetics for performing association and dissociation kinetics so that the morphology of CHO-K1-hM₄R cells remains normal and the cells remain attached to the plate for the entire experiment. Both the kinetic measurements and saturation experiments prove that UR-CG072 retains its high affinity towards the M₄ receptor in the live-cell system, as expected from previous radioligand binding studies [16], while having a very low level of non-specific binding to the cells. This makes UR-CG072 a promising fluorescent probe also for more advanced microscopy methods such as live-cell total internal reflection fluorescence (TIRF) microscopy. The displacement curves obtained with UR-CG072 and unlabelled ligands have quite high quality and, therefore, this assay is suitable for the determination of affinities of unlabelled ligand binding to M₄ receptor. The system remains stable for the duration of long experiments meaning that accurate endpoint measurements can be obtained for an entire microplate even if imaging the full plate is not instantaneous. These properties also suggest that the assay can be used for small scale screening of novel ligands, for example, to confirm binding affinities in a live-cell system. The live-cell system is also internally consistent as the K_d values obtained from saturation binding measurements and kinetic measurements are in excellent agreement.

Overall, the K_d values of UR-CG072 obtained from both saturation and kinetic FA and live-cell microscopy assays are in good agreement with each other (table 2 and figure 11). pK_i values of M₄ receptor ligands determined with the UR-CG072 using either FA or live-cell microscopy assay, were also in good agreement ($R^2 = 0.91$). The slope of the correlation was 0.84, while the intercept was 2.2. The live-cell method systematically estimates higher affinities for low-affinity ligands, while for high-affinity ligands in the nanomolar range, the estimated values are numerically more similar between the assays (figure 11). However, most low-affinity ligands are agonists, while high-affinity ligands are antagonists. Therefore, it is difficult to determine whether there is a systematic difference between assays for low-affinity ligands or simply agonists. Agonism causing the systematic difference is theoretically well-founded, as the high-affinity receptor state is usually stabilized by G-proteins, which are not present in the BBV particles. A similarly good correlation was previously found between nanoBRET assay and FA assay using the same probe with M₂ receptor ($R^2 = 0.94$) with the same systematic differences between the pK_i values measured in BBV particles and live cells [17]. This further supports that the systematic difference between the determined agonist pK_i values is caused by differences between BBV particle and live-cell systems.

The developed live-cell microscopy assay can be modified for wider applications in the future. One development direction is further automatization of the assay by removing the remaining manual steps from the data analysis process. This could also include an even more standardized pipeline for machine-learning model development or a larger set of pre-trained models that cover the detection of the most common cell lines. We believe that it can be further developed to an extent to which the live-cell microscopy could also be used in an HTS context. Another development direction is a shift towards more natural systems such as tissue preparations, live tissues or tumour spheroids and measuring additional downstream signalling events in addition to ligand binding. Using these more challenging systems requires finding suitable fluorophores to overcome tissue autofluorescence and ligands with suitable kinetic properties to slow down fluorescence ligand dissociation during washing steps. Additionally, more advanced DL models may be necessary. The present study serves as a solid foundation for such developments.

As for the more general unlabelled ligand screening, both FA and live-cell microscopy methods and fluorescence ligands could be used as rapid and convenient options for guiding the synthesis of novel M₄ receptor ligands and allosteric modulators. Both methods also allow for kinetic measurements, which may help uncover more detailed binding mechanisms. Overall, choosing the suitable method for a specific experiment highly depends on the required throughput and availability of equipment. While FA
method with BBV particles fulfills many requirements of HTS applications, live cells are a vastly more flexible option for studying complex signalling pathways. Therefore, live-cell microscopy-based ligand-binding assays are likely to have an ever-growing role in future of ligand-binding studies.

Data accessibility. The data that support the findings of this study are openly available from the repository of the University of Tartu. UT-GPCR001 microscopy data of ligand binding to M4 muscarinic receptor in live CHO-K1-hM4 cells: http://dx.doi.org/10.23673/re-306.

UT-GPCR002 machine-learning models for CHO-K1 cell segmentation from fluorescence and bright-field microscopy images: http://dx.doi.org/10.23673/re-304

UT-GPCR003 fluorescence anisotropy and microscopy measurements’ experimental metadata of ligand binding to M4 muscarinic receptors: http://dx.doi.org/10.23673/re-303

UT-GPCR004 CHO-K1 cell line bright-field and fluorescence microscopy and corresponding segmentation ground truth: http://dx.doi.org/10.23673/re-305.

Electronic supplementary material is available online [99].

Authors’ contributions. M.-J.T.: data curation, formal analysis, methodology, validation, visualization, writing—original draft; J.T.: data curation, formal analysis, investigation, methodology, software, validation, visualization, writing—original draft; M.A.S.A.: software, visualization, writing—review and editing; D.F.: resources, supervision, writing—review and editing; L.P.: conceptualization, funding acquisition, supervision, writing—review and editing; L.G.: resources, writing—review and editing; C.M.: resources, writing—review and editing; M.K.: conceptualization, funding acquisition, resources, writing—review and editing; S.V.: funding acquisition, resources, writing—review and editing; T.L.: conceptualization, data curation, formal analysis, investigation, methodology, software, visualization, writing—original draft; A.B.: conceptualization, funding acquisition, supervision, writing—original draft.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.

Conflict of interest declaration. The authors declare to have no competing interests.

Funding. This publication was supported by the University of Tartu ASTRA Project PER ASPERA, financed by the European Regional Development Fund, by the Enterprise Estonia Applied Research Programme 2021, financed by the European Regional Development Fund, by the Estonian Research Council grant (PG53180), by the COST Action CA 18133 ERNEST, by the Research Training Group GRK1910 of the Deutsche Forschungsgemeinschaft (DFG), Wellcome (206194) and the Estonian Centre of Excellence in IT (EXCITE) (TK148).

Acknowledgements. We would like to thank Dr Anni Allikalt for cloning the M₄ receptor into the pFastBac vector.

References

1. Jeon J et al. 2010 A subpopulation of neuronal M₄ muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J. Neurosci. 30, 2396–2405. (doi:10.1523/jneurosci.3843-09.2010)

2. Brodde O-E, Bruck H, Leineweber K, Seyfarth T. 2001 Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res. Cardiol. 96, 528–538. (doi:10.1007/s003950170003)

3. Moro C, Uchiyama J, Chess-Williams R. 2011 Role of M3 muscarinic receptors in mediating rate responses to stretch and carbachol. Ultrasound 78, 1442. (doi:10.1016/j.ultras.2011.08.039)

4. Haga T. 2013 Molecular properties of muscarinic acetylcholine receptors. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 89, 226–256. (doi:10.2183/pjab.89.226)

5. Chan WY et al. 2008 Allosteric modulation of the muscarinic M₄ receptor as an approach to treating schizophrenia. Proc. Natl Acad. Sci. USA 105, 10 978–10 983. (doi:10.1073/pnas.0805671105)

6. Felder CC, Goldsmith PJ, Jackson K, Sanger HE, et al. 2011 Acetylcholine muscarinic M4 receptors as a therapeutic target for alcohol use disorder: converging evidence from humans and rodents. Biol. Psychiatry 88, 898–909. (doi:10.1016/j.biopsych.2020.02.019)

7. Hoffman C, Castro M, Rinken A, Leurs R, Hill SJ, Voscher HE. 2015 Ligand residence time at G-protein-coupled receptors-why we should take our time to study it. Mol. Pharmacol. 88, 552–560. (doi:10.1124/ml.115.1109967)

8. Hulwiler KG, De Rosier T, Hanson B, Vogel KW. 2010 A fluorescence anisotropy assay for the characterization of ligand binding to M₃ muscarinic acetylcholine receptors. J. Med. Chem. 47, 4300–4315. (doi:10.1021/jm040800a)

9. Tahtaoui C, Parrot I, Klotz P, Guillier F, Galzi JL, Shi X, Simeonov A, Coussens NP. 2016 Fluorescence polarization assays in high-throughput screening and drug discovery: a review. Methods Appl. Fluoresc. 4, 020011. (doi:10.1088/2050-5026/4/2/020011)

10. Link R, Veiksina S, Rinken A. 2017 Exploration of the orthosteric/allosteric interface in human M1 muscarinic receptor. Acta Mol. Cell Res. 361. (doi:10.1523/jneurosci.3843-09.2010)

11. Hoffmann C, Castro M, Rinken A, Leurs R, Hill SJ, Voscher HE. 2015 Ligand residence time at G-protein-coupled receptors-why we should take our time to study it. Mol. Pharmacol. 88, 552–560. (doi:10.1124/ml.115.1109967)

12. Tahtaoui C, Parrot I, Klotz P, Guillier F, Galzi JL, Shi X, Simeonov A, Coussens NP. 2016 Fluorescence anisotropy assay for the characterization of ligand binding to M₃ muscarinic acetylcholine receptors. J. Med. Chem. 47, 4300–4315. (doi:10.1021/jm040800a)

13. Huwiler KG, De Rosier T, Hanson B, Vogel KW. 2010 A fluorescence anisotropy assay for the characterization of ligand binding to M₃ muscarinic acetylcholine receptors. J. Med. Chem. 47, 4300–4315. (doi:10.1021/jm040800a)

14. Daval SB, Kellenberger E, Bonnet D, Utrard V, Galzi JL, Illen B. 2013 Exploration of the orthosteric/allosteric interface in human M1 muscarinic receptors by bitopic fluorescent ligands. Mol. Pharmacol. 84, 71–85. (doi:10.1124/mol.112.005875)

15. She X et al. 2020 Red-Emitting dibenzodiazepine derivatives as fluorescent dualsteric probes for the muscarinic acetylcholine M₂ receptor. J. Med. Chem. 63, 4133–4154. (doi:10.1021/acs.jmedchem.9b02172)

16. Grätz L, Laasfeld T, Allikalt A, Gruber CG, Pegoli A, Tahk M-J, Tsaemant M-L, Keller M, Rinken A. 2020 BRET- and fluorescence anisotropy-based assays for real-time monitoring of ligand binding to M₂ muscarinic acetylcholine receptors. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118930. (doi:10.1016/j.bbamcr.2020.118930)

17. Shivasramu RV et al. 2016 Single-molecule analysis of the supramolecular organization of the M₂ muscarinic receptor and the Gzr1 protein. J. Am. Chem. Soc. 138, 11 583–11 598. (doi:10.1021/jacs.6b04032)

18. Nenasheva TA, Neary M, Mashanov G, Birdsalld NJM, Breckenridge RA, Molloy JE. 2013 Abundance, distribution, mobility and oligomeric state of M₂ muscarinic acetylcholine receptors in live cardiac muscle. J. Mol. Cell. Cardiol. 57, 129–136. (doi:10.1016/j.yjmcc.2013.01.009)

19. Hern JA, Baig AH, Mashanov G, Birdsalld B, Corrie JE, Lazareno S, Molloy J, Birdsalt NJ. 2010 Formation and dissociation of M₁ muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc. Natl Acad. Sci. USA 107, 2693–2698. (doi:10.1073/pnas.0907151017)

20. Allikalt A, Kopanchuk S, Rinken A. 2018 Implementation of fluorescence anisotropy-based assay for the characterization of ligand binding to dopamine D₁ receptors. Eur. J. Pharmacol. 839, 40–46. (doi:10.1016/j.ejphar.2018.09.008)

21. Hall MD, Vasgar A, Peryea T, Brasile JC, Jadhav A, Simeonov A, Coussens NP. 2016 Fluorescence polarization assays in high-throughput screening and drug discovery: a review. Methods Appl. Fluoresc. 4, 020011. (doi:10.1088/2050-6120/4/2/020011)

22. Link R, Veiksina S, Rinken A, Kopanchuk S. 2017 Characterization of ligand binding to melancortin 4
receptors using fluorescent peptides with improved kinetic properties. Eur. J. Pharmacol. 799, 58–66. (doi:10.1016/j.ejphar.2017.01.040)

24. Uri A, Nonga OE. 2020 What is the current value of fluorescence polarization assays in small molecule screening? Expert Opin. Drug Discov. 15, 131–133. (doi:10.1517/17464041.2020.1702966)

25. Veiksina S, Tahk M-J, Lasafeld T, Link R, Kopanchuk S, Rinken A. 2014 Budded baculovirus as a tool for a homogeneous fluorescence anisotropy-based assay of ligand binding to G protein-coupled receptors in budded baculoviruses. In G protein-coupled receptor screening assays: methods and protocols (eds SAM Martins, DMF Pazarres), pp. 119–136. New York, NY: Springer.

26. Rinken A, Lavogina D, Kopanchuk S. 2018 Assays with detection of fluorescence anisotropy: challenges and possibilities for characterizing ligand binding to GPCRs. Trends Pharmacol. Sci. 39, 187–199. (doi:10.1016/j.tips.2017.09.004)

27. Veiksina S, Kopanchuk S, Rinken A. 2014 Budded baculoviruses as a tool for a homogeneous fluorescence anisotropy-based assay of ligand binding to G protein-coupled receptors: the case of melancortin 4 receptors. Biochim. Biophys. Acta Mol. Biomembr. 1838, 372–381. (doi:10.1016/j.bbamem.2013.09.015)

28. Wang Q, Bosch BJ, Vlak JM, van Oers MM, Rottier PJ, van Lent JW. 2016 Budded baculovirus particle structure revisited. J. Invertebr. Pathol. 134, 15–22. (doi:10.1016/j.jip.2015.12.001)

29. Stoddart LA, White CW, Nguyen K, Hill SJ, Pfleger KDG. 2016 Fluorescence- and bioluminescence-based approaches to study GPCR ligand binding. Br. J. Pharmacol. 173, 3028–3037. (doi:1111/bph.13316)

30. Pfleger KDG, Seeber RM, Eidne KA. 2006 Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions. Nat. Protoc. 1, 337–345. (doi:10.1038/nprot.2006.52)

31. Adam A, Alizada G, Kinar Y, Baran Y, Nalbant A. 2017 Flow cytometry: basic principles and applications. Crit. Rev. Biotechnol. 37, 163–176. (doi:10.1080/07388551.2015.1128876)

32. Esner M, Meyenhofer F, Bickle M. 2018 Live-cell high content screening in drug development. In High content screening: a powerful approach to systems cell biology and phenotypic drug discovery (eds PA Johnston, DJ Trask), pp. 149–164. New York, NY: Berlin, Germany: Springer.

33. Stoddart LA, Vernall AJ, Denman JL, Bridon SJ, Kellam B, Hill SJ. 2012 Fragment screening at adenosine-A(3) receptors in living cells using a fluorescence-based binding assay. Chem. Biol. 19, 1105–1115. (doi:10.1016/j.chembiol.2012.07.014)

34. Lee PH, Miller SC, van Staden C, Cromwell EF. 2008 Development of a homogeneous high-throughput live-cell G protein-coupled receptor binding assay. J. Biomol. Screen. 13, 748–754. (doi:10.1177/1087057108317835)

35. Alilkait A, Lasafeld T, Illson M, Kopanchuk S, Rinken A. 2014 Quantitative analysis of fluorescent ligand binding to dopamine D3 receptors using live-cell microscopy. FEBS J. 288, 1514–1532. (doi:10.1111/febs.15519)

36. Place TL, Domann FE, Case AJ. 2017 Limitations of oxygen delivery to cells in culture: a underappreciated problem in basic and translational research. Free Radiic. Biol. Med. 113, 311–322. (doi:10.1016/j.freeradbiomed.2017.10.003)

37. Mou L, Gates A, Mosser V, Tobin A, Jackson DA. 2006 Transient hypoxia induces sequestration of M1 and M3 muscarinic acetylcholine receptors. J. Neurochem. 96, 510–519. (doi:10.1111/j.1471-4159.2005.05371.x)

38. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL. 2014 Year microsoft coco: common objects in context. In Computer vision – ECCV 2014 (eds D Fleet, T Pajdla, B Schiele, T Tuytelaars), pp. 740–755. Cham, Switzerland: Springer International Publishing.

39. Cao C, Awad S, Prusoff WH. 2015 M2 subtype preferring dibenzodiazepinone-type muscarinic receptor ligands: effect of chemical homo-dimerization on orthosteric (and allosteric) binding. Bioorg. Med. Chem. 23, 3970–3990. (doi:10.1016/j.bmcl.2015.01.015)

40. Lasafeld T, Kopanchuk S, Rinken A. 2017 Image-based cell-size estimation for baculovirus quantification. Biotechniques 63, 161–168. (doi:10.2144/000149545)

41. Berg S et al. 2019 ilastik: interactive machine learning for (bio)image analysis. Nat. Methods. 16, 1226–1232. (doi:10.1038/s41592-019-0582-9)

42. Jung AB. 2021 Imagga. See https://github.com/aleju/imagga (accessed 30 December 2021).

43. Kingma D, B. 2014 Adam: a method for stochastic optimization. arXiv, 1412.6980. (doi: 10.48550/arXiv.1412.6980)

44. Ali MAS, Mirko O, Salumaa S-O, Papkov M, Palo K, Fishman D, Larsen P. 2021 Evaluating very deep convolutional neural networks for nuclear segmentation from brightfield cell microscopy images. SEAS Discov. 26, 1125–1137. (doi:10.1016/j.seas.2020.07.004)

45. Chollet F. Keras. See https://github.com/keras-team/keras (accessed 30.12.2021).

46. Tartu U. o. UT Rocket. See https://share.neic.noa/
#marketplace-public-offering/c8107e145e0d4117a0

47. Lakowicz JR. 2006 Principles of fluorescence spectroscopy, 5th ed. Berlin, Germany: Springer.

48. Cheng Y-C, Prusoff WH. 1973 Relationship between inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108. (doi:10.1016/0006-2952(73)91916-2)

49. Zhang JH, Chung TD, Oldenburg KR. 1999 A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73. (doi:10.1177/108705719900400206)

50. Alilkait A, Rinken A. 2017 Budded baculovirus particles as a source of membrane proteins for radioligand binding assay: the case of dopamine D1 receptor. J. Pharmacol. Toxicol. Methods 86, 81–86. (doi:10.1016/j.vascpharm.2017.04.004)
63. Pegoli A, She X, Willing D, Hübner H, Bernhardt G, Gmeiner P, Keller M. 2017 Radiolabeled dibenzodiazepine-type antagonists give evidence of dualistic binding at the M2 muscarinic acetylcholine receptor. J. Med. Chem. 60, 3314–3334. (doi:10.1021/acs.jmedchem.6b01892)

64. Kluyver T et al. 2016 Jupyter notebooks: a publishing format for reproducible computational workflows. In Positioning and power in academic publishing: players, agents and agendas, pp. 87–90. Amsterdam, The Netherlands: IOS Press.

65. 2D-Time Datasets - Cell Tracking Challenge. See http://celltrackingchallenge.net/2d-datasets/.

66. Maška M et al. 2014 A benchmark for comparison of cell tracking algorithms. Bioinformatics 30, 1609–1617. (doi:10.1093/bioinformatics/btu080)

67. Scherr T, Löffler K, Böhlund M, Mikut R. 2020 Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy. PLoS ONE 15, e0243219. (doi:10.1371/journal.pone.0243219)

68. Scherr T, Löffler K, Neumann O, Mikut R. 2021 On Improving an Already Competitive Segmentation Algorithm for the Cell Tracking Challenge - Lessons Learned. bioRxiv. 2021.2006.2026.450019. (doi:10.1101/2021.06.26.450019)

69. Gómez-de-Mariscal E, García-López-de-Haro C, Ouyang W, Donatí L, Lundberg E, Hjelmare M, et al. 2017 Functional and pharmacological characterization of the expressed genes. Life Sci. 51, 955–971. (doi:10.1016/j.jconrel.2016.11.023)

70. Dong GZ, Kameyama K, Rinken A, Haga T. 1995 Ligand binding properties of muscarinic acetylcholine receptor subtypes (m1-m5) expressed in baculovirus-infected insect cells. J. Pharmacol. Exp. Ther. 274, 378–384. (doi:10.1124/jpet.2011.5198919.805275-4)

71. Ozenil M et al. 2020 Enhanced aercoline derivatives as muscarinic acetylcholine receptor M1 ligands for potential application as PET radiotracers. Eur. J. Med. Chem. 204, 112623. (doi:10.1016/j.ejmech.2020.112623)

72. Keow P, Valant C, Devine SM, Lane JR, Scammells PJ, Sexton PM, Christopoulos A. 2013 Reverse engineering of the selective agonist TBPB unveils both orthosteric and allosteric modes of action at the M1 muscarinic acetylcholine receptor. Mol. Pharmacol. 84, 425. (doi:10.1124/mol.112.087320)

73. Bolden C, Cusak B, Richelson E. 1992 Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J. Pharmacol. Exp. Ther. 260, 576–580.

74. Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR. 1991 Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J. Pharmacol. Exp. Ther. 256, 727–733. (doi:10.1111/j.1467-3381.1991.tb12161.x)

75. Huang F, Buchwald P, Browne CE, Farag HH, Wu W-M, Ji F, Hochhaus G, Bodor N. 2001 Receptor binding studies of soft anti-cholinergic agents. AAPS PharmSci. 3, 44–56. (doi:10.1208/s000390430)

76. Hegde SS, Choppan A, Bonhaus D, Briand S, Loeb M, Loyd T, Degen RM. 1997 Functional role of Ms and M5 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br. J. Pharmacol. 120, 1409–1418. (doi:10.1038/sj.bjp.0701048)

77. Cny CH, Chan WY, Castetter AM, Watt ML, Quets AI, Felder CC. 2016 Characterization of PC5055, a novel muscarinic M4 receptor antagonist. Eur. J. Pharmacol. 782, 70–76. (doi:10.1016/j.ejphar.2016.04.022)

78. Jolkkonen M, van Giersbergen PLM, Hellman U, Doležal V. 2017 Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors. Sci. Rep. 7, 40381. (doi:10.1038/srep40381)

79. Marango S, Ward RJ, Alvarez-Corto E, Milligan G. 2018 Muscarinic receptor oligomerization. Neuropharmacology 133, 401–410. (doi:10.1016/j.neuropharm.2017.11.023)

80. Park PS, Wells JW. 2004 Oligomeric potential of the M2 muscarinic cholinergic receptor. J. Neurochem. 90, 537–548. (doi:10.1111/j.1471-4159.2004.02536.x)

81. Paterzi LF, Jansma DB, Georgiou J, Woodside MJ, Chou JT-C, Angers S, Raico V, Wells JW. 2010 Oligomeric size of the M2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer. J. Biol. Chem. 285, 16723–16738. (doi:10.1074/jbc.M109.069443)

82. Michael P, Rudajev V, El-Fakahany EE, Doležal V. 2009 Membrane cholesterol content influences binding properties of muscarinic M2 receptors and differentially impacts activation of second messenger pathways. Eur. J. Pharmacol. 606, 50–60. (doi:10.1016/j.ejphar.2009.01.028)

83. Revankar CM, Vines CM, Cimino DF, Prossnitz ER. 2004 Arrestin block & protein–coupled receptor–mediated apoptosis. J. Biol. Chem. 279, 24 578–24 584. (doi:10.1074/jbc.M402121200)

84. Talha M-J et al. 2022 Live-cell microscopy or fluorescence anisotropy with budded baculoviruses—which way to go with measuring ligand binding to M1 muscarinic receptors? Figshare. (doi:10.6084/m9.figshare.c.6002187)