The Phylogenetic Relationship Revealed Three New Wood-Inhabiting Fungal Species From Genus *Trechispora*

Wei Zhao1,2 and Chang-Lin Zhao1,2*

1 Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China, 2 College of Biodiversity Conservation, Southwest Forestry University, Kunming, China

Wood-inhabiting fungi play a significant role in wood degradation and the cycle of matter in the ecological system. In the present study, three new wood-inhabiting fungal species, Trechispora bambusicola, Trechispora fimbriata, and Trechispora fissurata spp. nov., are nested in Trechispora, which are proposed based on a combination of morphological features and molecular evidence. Sequences of internal transcribed spacer (ITS) and large subunit (nLSU) regions of the studied samples were generated, and the phylogenetic analyses were performed with maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogenetic analyses inferred from ITS showed that *T. bambusicola* was sister to *Trechispora stevensonii*, *T. fimbriata* grouped with *Trechispora nivea*, and *T. fissurata* grouped with *Trechispora echinospora*. The phylogenetic tree based on ITS + nLSU sequences demonstrated that *T. bambusicola* formed a single lineage and then grouped with *Trechispora rigida* and *T. stevensonii*. *T. fimbriata* was sister to *T. nivea*. *T. fissurata* grouped with *Trechispora thelephora*.

Keywords: Hydnodontaceae, phylogeny, taxonomy, wood-inhabiting fungi, Yunnan Province

INTRODUCTION

Trechispora P. Karst. (Hydnodontaceae, Trechisporales) was typified with *Trechispora onusta* P. Karst. (Karsten, 1890). It is characterized by the resupinate to effused basidiomata with smooth to hydnoid to poroid hymenophore, a monomitic or dimitic hyphal structure with clamped generative hyphae having typical ampullaceous septa, and short cylindric

Abbreviations: ITS, internal transcribed spacer; nLSU, large subunit; SWFC, herbarium of Southwest Forestry University, Kunming, China; KOH, 5% potassium hydroxide; CB, Cotton Blue; CB−, acyanophilous; IKI, Melzer’s reagent; IKI−, both inamyloid and indextrinoid; L, mean spore length (arithmetic average for all spores); W, mean spore width (arithmetic average for all spores); Q, variation in the L/W ratios between The studied specimens, n (a/b), number of spores (a) measured from given number (b) of specimens, spore measurements do not include ornamentation; CTAB, cetyltrimethylammonium bromide; DNA, deoxyribonucleic acid; PCR, polymerase chain reaction; MP, maximum parsimony; ML, maximum likelihood; BI, Bayesian inference; TBR, tree-bisection reconnection.
basidia and smooth to verrucose or aculeate basidiospores
(Karsten, 1890; Bernicchia and Gorjón, 2010). About 49 species
are currently known in *Trechispora* worldwide (Liberta, 1966,
1973; Larsson, 1994, 1995, 1996; Ryvarden, 2002; Trichèis and
Schultheis, 2002; Miettinen and Larsson, 2006; Ordynets et al.,
2015; Xu et al., 2019) and Index Fungorum1 and MycoBank2.

Larsson (2007) addressed the classification of corticioid fungi
and revealed that *Trechispora farinacea* (Pers.) Liberta grouped
with *Trechispora hymenocystis* (Berk. and Broome) K.H. Larss.,
in which both species nested within the family Hydnodontaceae
Jülich. Based on the large subunit nuclear ribosomal RNA gene
(nLSU) datasets, Albee-Scott and Kropp (2010) supported to
transfer *Hydnodon thelephorus* (Lév.) Banker to *Trechispora as
Trechispora telephora* (Lév.) Ryvarden. The order Trechisporales
was studied employing the internal transcribed spacer (ITS) and
nLSU regions, in which it suggested that *Porpomyces* Jülich, *Sistotremastrum* J. Erikss., *Subulicystidium* Parmasto, and
Trechispora belonged to a highly supported clade and
Trechispora belongs to Hydnodontaceae and was closely related
to *Breviceillicium* K.H. Larss. and Hjortstam (Telliera et al.,
2013). A phylogenetic study of *Trechispora* was addressed and
demonstrated that *Trechispora cyathae* Ordynets, Langer and
K.H. Larss. and *Trechispora echnicristallina* Ordynets, Langer and
K.H. Larss. clustered into *Trechispora* as new members, inferred
from the combined data of the ITS and LSU datasets
(Orderynets et al., 2015). The phylogeny of Trechisporales was
inferred from a combined dataset of ITS-nLSU sequences and
showed that *Porpomyces*, *Scytinopogon*, and *Trechispora*
grouped together and nested within family Hydnodontaceae (Liu
et al., 2019). Phylogram generated from analysis of ITS sequence
dataset of *Trechispora* showed that *Trechispora echnicristallina*
telliera was sister to the clade formed by *Trechispora araneosa*
(Hohn. and Litsch.) K.H. Larss., *T. farinacea*, *T. hymenocystis*,
and *Trechispora mollusca* (Pers.) Liberta with a low support
(Phookamsak et al., 2019). The ITS + nLSU dataset comprised
22 species and revealed that *Trechispora yunnanensis* C.L. Zhao
formed a monophyletic lineage within *Trechispora* and was
closely related to *Trechispora byssinella* (Bourdot) Liberta and
Trechispora laevis K.H. Larss. (Xu et al., 2019).

During the studies on wood-inhabiting fungi in southern
China, three species of *Trechispora* could not be assigned to
any described species. Obtaining sequences from the new
taxa, the authors examine taxonomy and phylogeny of three
new species within the genus *Trechispora*, based on the ITS
and nLSU sequences.

MATERIALS AND METHODS

Morphology

The studied specimens are deposited at the herbarium of
Southwest Forestry University (SWFC), Kunming, Yunnan
Province, China. Macromorphological descriptions were

1http://www.indexfungorum.org/Names/Names.asp
2https://www.mycobank.org/Biolomics.aspx?Table=Mycobank&Page=200&ViewMode=Basic
3http://lutzonilab.org/nuclear-ribosomal-dna/
4http://mafft.cbrc.jp/alignment/server/
5www.phylo.org
TABLE 1 | List of species, specimens, and GenBank accession numbers of sequences used in this study.

Species name	Sample no.	GenBank accession no.	References	
		ITS	nLSU	
Fibrodontia alba	TNMF 24944	KO928274	KO928275	Yurchenko and Wu (2014)
Fibrodontia gossypina	GEL 5042	DQ249274	AY646100	Unpublished
Trechispora araneosa	KHL 8570	AF347084	AF347084	Larsson et al. (2004)
Trechispora bambusicola	CLZhao 3302	MW544021	MW520171	This study
Trechispora bambusicola	CLZhao 3305	MW544022	MW520172	This study
Trechispora bispora	CBS 142.63	MH858241	MH869842	Yu et al. (2019)
Trechispora byssinella	UC 2023068	KP814481	–	Unpublished
Trechispora cohaerens	TU 110332	UDB008249	–	Ordynets et al. (2015)
Trechispora cohaerens	TU 115568	UDB016421	–	Ordynets et al. (2015)
Trechispora conitis	KHL 11064	AF347081	AF347081	Larsson et al. (2004)
Trechispora cyatheae	FR-0219442	UDB024014	UDB024014	Ordynets et al. (2015)
Trechispora cyatheae	FR-0219443	UDB024015	UDB024015	Ordynets et al. (2015)
Trechispora echinocristallina	FR-0219445	UDB024018	UDB024018	Ordynets et al. (2015)
Trechispora echinocristallina	FR-0219448	UDB024022	UDB024022	Ordynets et al. (2015)
Trechispora echinospora	E11/37-03	JX92845	JX928488	Telleria et al. (2013)
Trechispora echinospora	E09/60-06	JX92847	JX928488	Telleria et al. (2013)
Trechispora echinospora	E11/37-05	–	JX928498	Telleria et al. (2013)
Trechispora farinacea	KHL 8451	AF347082	AF347082	Unpublished
Trechispora farinacea	KHL 8793	AF347089	AF347089	Larsson et al. (2004)
Trechispora fissurata	CLZhao 995	MW544026	MW520176	This study
Trechispora fissurata	CLZhao 4571	MW544027	MW520177	This study
Trechispora fimbriata	CLZhao 4154	MW544023	MW520173	This study
Trechispora fimbriata	CLZhao 7969	MW544024	MW520174	This study
Trechispora fimbriata	CLZhao 9006	MW544025	MW520175	This study
Trechispora hymenocystis	KHL 8795	AF347090	AF347090	Unpublished
Trechispora hymenocystis	TL 11112	UDB000778	UDB000778	Ordynets et al. (2015)
Trechispora incisa	EH 24/98	AF347085	–	Unpublished
Trechispora kavinioides	KGN 981002	AF347086	AF347086	Larsson et al. (2004)
Trechispora laevis	TU 115551	UDB016468	–	Ordynets et al. (2015)
Trechispora mollusca	DILL 2010-077	JO673209	–	Ordynets et al. (2015)
Trechispora mollusca	DILL 2011-188	KJ140681	–	Ordynets et al. (2015)
Trechispora nivea	MA-Fungi 76238	JX92824	JX92825	Telleria et al. (2013)
Trechispora nivea	MA-Fungi 76257	JX92826	JX92827	Telleria et al. (2013)
Trechispora nivea	MA-Fungi 82480	JX92829	JX92830	Telleria et al. (2013)
Trechispora nivea	MA-Fungi 74044	JX92832	JX92833	Telleria et al. (2013)
Trechispora regularis	KHL 10881	AF347087	AF347087	Larsson et al. (2004)
Trechispora rigida	URM 85754	–	MH279999	Unpublished
Trechispora stevensonii	MA-Fungi 70669	JX92841	JX92842	Telleria et al. (2013)
Trechispora stevensonii	HJM 18087	–	MH290761	Unpublished
Trechispora stevensonii	KHL 14654	–	MH290762	Unpublished
Trechispora stevensonii	TU 115499	UDB016467	UDB016467	Ordynets et al. (2015)
Trechispora stellulata	UC 2022880	KP814437	–	Unpublished
Trechispora stellulata	UC 2023099	KP814451	–	Unpublished
Trechispora subsphaerocepora	KHL 8511	AF347080	AF347080	Larsson et al. (2004)
Trechispora thelephora	URM 85757	–	MH280001	Unpublished
Trechispora thelephora	URM 85758	–	MH280002	Unpublished
Trechispora yunnanensis	CLZhao 210	MN654918	MN654921	Xu et al. (2019)
Trechispora yunnanensis	CLZhao 214	MN654919	MN654922	Xu et al. (2019)
Trechispora yunnanensis	CLZhao 215	MN654920	MN654923	Xu et al. (2019)
MrModeltest 2.3 (Nylander, 2004) was used to determine the best-fit evolution model (GTR + I + G) for each data set for Bayesian inference (BI) of the phylogeny. BI was calculated with MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003). Four Markov chains were run for two runs from random starting trees for 1 million generations and trees were sampled every 100 generations; the first one-fourth of generations were discarded as burn-in. A majority rule consensus tree of all remaining trees was calculated. Branches were considered as significantly supported if they received ML BT values > 75%, MP BT values > 75%, or Bayesian posterior probabilities (PP) > 0.95.

RESULTS

Molecular Phylogeny
In the ITS dataset, the sequences from 43 fungal specimens representing 25 species were included. The dataset had an aligned length of 1034 characters, of which 521 characters...
are constant, 86 are variable and parsimony-uninformative, and 427 are parsimony-informative. MP analysis yielded 26 equally parsimonious trees (TL = 2048, CI = 0.4561, HI = 0.5439, RI = 0.6174, RC = 0.2816). Best model for the ITS dataset estimated and applied in the Bayesian analysis: GTR + I + G, lset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1,1,1,1). Bayesian analysis and ML analysis resulted in a similar topology to MP analysis, with an average standard deviation of split frequencies = 0.009985 (BI).

The phylogeny (Figure 1) inferred from ITS sequences showed that *Trechispora bambusicola* was sister to *Trechispora stevensonii* (Berk. and Broome) K.H. Larss, and *Trechispora fimbriata* grouped with *Trechispora nivea*. *T. fissurata* grouped with *T. echinospora* Telleria, M. Dueñas, I. Melo, and M.P. Martin.

In the ITS + nLSU dataset, it included sequences from 49 fungal specimens representing 27 species. The dataset had an aligned length of 2256 characters, of which 1387 characters are constant, 188 are variable and parsimony-uninformative, and 681 are parsimony-informative. MP analysis yielded 100 equally parsimonious trees (TL = 2811, CI = 0.4963, HI = 0.5037, RI = 0.6409, RC = 0.3180). Best model for the ITS dataset estimated and applied in the Bayesian analysis: GTR + I + G, lset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1,1,1,1). Bayesian analysis and ML analysis resulted in a similar topology to MP analysis, with an average standard deviation of split frequencies = 0.009991 (BI).

The phylogenetic tree (Figure 2) inferred from ITS + nLSU sequences demonstrated 27 species of *Trechispora* and revealed that *T. bambusicola* formed a single lineage and then grouped with *Trechispora rigidia* (Berk.) K.H. Larss. and *T. stevensonii*. **FIGURE 1** Maximum Parsimony strict consensus tree illustrating the phylogeny of three new species and related species in *Trechispora* based on ITS + nLSU sequences. Branches are labeled with maximum likelihood bootstrap values > 70%, parsimony bootstrap proportion values > 50%, and Bayesian posterior probabilities > 0.95, respectively.
Zhao and Zhao

T. fimbriata was sister to T. nivea. T. fissurata grouped with T. thelephora (Lév.) Ryvarden.

Taxonomy

Trechispora bambusicola C.L. Zhao, sp. nov.

MycoBank no.: MB 838612 (Figures 3, 4).

Holotype—China, Yunnan Province, Pu’er, Laiyanghe National Forest Park, on dead bamboo, 30 September 2017, CLZhao 3305 (SWFC).

Etymology—*Bambusicola* (Lat.): referring to occurrence on bamboo stump.

Basidiomata

Annual, adnate, soft, and fragile, without odor or taste when fresh, becoming granulose upon drying, up to 15 cm long and 5 cm wide, 50–300 µm thick. Hymenial surface odontoid, aculei cylindrical to conical, blunt, 0.3–0.5 mm long, white to cream when fresh, turn to cream to buff upon drying. Margin white to cream.

Hyphal structure

Monomitic, generative hyphae with clamp connections, hyaline, thick-walled, up to 0.7 µm, richly branched, 2–3 µm in diameter, IKI−, CB−; hyphae unchanged in KOH.

Hymenium

Cystidia and cystidioides absent; basidia shortly cylindrical to subclavate with median constriction, with 4 sterigmata and a basal clamp connection, 9–13 × 2.5–5 µm, basidioles dominant, in shape similar to basidia, but slightly smaller.

Basidiospores

Ellipsoid, hyaline, thick-walled, ornamented, sparse aculei, sharp, IKI−, CB−, (2.6−)2.9–3.5(−3.9) × 2–2.7 µm, $L = 3.18$ µm, $W = 2.41$ µm, $Q = 1.26–1.38$ (n = 60/2).

Type of rot

White rot.

Additional specimen examined

CHINA, Yunnan Province, Pu’er, Laiyanghe National Forestry Park, on dead bamboo, 30 September 2017, CLZhao 3302 (SWFC).

Trechispora fimbriata C.L. Zhao, sp. nov.

MycoBank no.: MB 838613 (Figures 5, 6).

Holotype—China, Yunnan Province, Puer, Jingdong County, Wuliangshan National Nature Reserve, on the angiosperm trunk, October 5, 2017, CLZhao 4154 (SWFC).

Etymology—*Fimbriata* (Lat.): refers to the fimbriate margin of the basidiomata.

Basidiomata

Annual, adnate, without odor or taste when fresh, becoming fragile upon drying, up to 10 cm long and 3 cm wide, 100–200 µm thick. Hymenial surface hydnoid, with aculei, cylindrical, blunt, 0.4–0.7 mm long, white to pink when fresh, turn to pink to buff upon drying. Margin white to cream, thinning out, fimbriate.

Hyphal system

Monomitic, generative hyphae with clamp connections, hyaline, thick-walled, up to 0.6 µm, branched, 2–4 µm in diameter, IKI−, CB−; hyphae unchanged in KOH.

Hymenium

Cystidia and cystidioides absent; basidia shortly cylindrical with median constriction, with 4–6 sterigmata and a basal clamp connection, 7–11.5 × 3.5–5 µm, basidioles dominant, in shape similar to basidia, but slightly smaller.

Basidiospores

Ellipsoid, hyaline, thick-walled, ornamented, sparse aculei, sharp, IKI−, CB−, (2.5−)3.6(−3.8) × 2.4–3.2 µm, $L = 3.25$ µm, $W = 2.63$ µm, $Q = 1.17–1.38$ (n = 90/3).

Type of rot

White rot.
FIGURE 4 | Microscopic structures of *Trechispora bambusicola* (drawn from the holotype): (A) Section of hymenium. (B) Basidiospores. (C) Basidia and basidioles. Bars: (A,C) 10 µm; (B) 5 µm.

Additional specimens examined
China, Yunnan Province, Yuxi, Xinping County, Mopanshan National Forestry Park, on living tree of angiosperm, August 9, 2018, CLZhao 7969 (SWFC); on angiosperm trunk, October 15, 2018, CLZhao 9006 (SWFC).

Trechispora fissurata C.L. Zhao, sp. nov.
MycoBank no.: MB 838614 (Figures 7, 8).

Holotype—China, Yunnan Province, Puer, Jingdong County, Wuliangshan National Nature Reserve, on angiosperm trunk, October 6, 2017, CLZhao 4571 (SWFC).

Etymology—*Fissurata* (Lat.): refers to the cracking fissures on hymenial surface.

Basidiomata
Annual, adnate, without odor or taste when fresh, becoming cracking upon drying, up to 8 cm long and 4.5 cm wide, 400–800 µm thick. Hymenial surface hydnoid, with aculei, cylindrical to conical, sharp, 0.5–0.9 mm long, cream to straw yellow when fresh, turn to cream to yellow upon drying. Margin cream to yellow.

Hyphal system
Monomitic, generative hyphae with clamp connections, hyaline, thick-walled, up to 0.8 µm, branched, 2.5–5 µm in diameter, IKI−, CB−; hyphae unchanged in KOH.

Hymenium
Cystidia and cystidioles absent; basidia shortly clavate to tubular, with 4-sterigmata and a basal clamp connection, 8–10.5 × 2.5–4.5 µm, basidioles dominant, in shape similar to basidia, but slightly smaller.
Basidiospores
Ellipsoid, hyaline, thick-walled, ornamented, dense aculei, sharp, IKI −, CB −, (3−)3.3−4(−4.3) × (2.5−)2.8−3.5(−3.9) µm, L = 3.67 µm, W = 3.19 µm, Q = 1.13−1.17 (n = 60/2).

Type of rot
White rot.

Additional specimen examined
CHINA, Yunnan Province, Yuxi, Xinpeng County, Mopanshan Forestry Park, on the fallen angiosperm branch, January 17, 2017, CLZhao 995 (SWFC).

DISCUSSION
Phylogenetically, Phookamsak et al. (2019) introduced the phylogram generated from BI analysis of ITS sequence dataset of Trechispora sequences and included most taxa in this genus, in which it implied the phylogenetic relationship among species of Trechispora. In the present study, based on the ITS sequences (Figure 1), T. bambusicola was sister to T. stevensonii (Berk. and Broome) K.H. Larss; T. fimbriata grouped with T. nivea; T. fissurata grouped with T. echinospora Telleria, M. Dueñas, I. Melo, and M.P. Martín. Further ITS + nLSU dataset (Figure 2) revealed that T. bambusicola formed a single lineage and then grouped with T. rigida and T. stevensonii; T. fimbriata was sister to T. nivea; T. fissurata grouped with T. thelephora. However, T. rigida differs in its dirty white to buff hymenophore (Larsson, 1996). T. stevensonii is separated from T. bambusicola by the smooth to hydnoid hymenophore and larger basidiospores (4−4.5 × 3−3.5 µm; Larsson, 1995). T. nivea differs from T. fimbriata by the white to light ochraceous hymenial surface (Persoon, 1794). T. echinospora differs from T. fissurata by the farinaceous to grandinioid hymenophore and larger, globose basidiospores (3.3−4 × 2.8−3.5 µm; Phookamsak et al., 2019) and T. thelephora differs in its pileate to stipitate
with light yellow brown surface and larger (4–5 × 3.4–4.5 μm; Albee-Scott and Kropp, 2010).

In the present study, three new species, *Trechispora bambusicola*, *T. fimbriata*, and *T. fissurata* spp. nov. are found from rotten wood. Morphologically, *T. bambusicola* is similar to *T. cyatheae* Ordynets, Langer and K.H. Larss. by sharing the characteristics of soft and fragile basidiomata. However, *T. cyatheae* differs from *T. bambusicola* by having farinaceous to granulose crystals (Bernicchia and Gorjón, 2010); *T. fimbriata* by the white to ochraceous hymenial surface and thinner-walled generative hyphae encrusted with granular crystals (Bernicchia and Gorjón, 2010); *T. fissurata* by the slightly cyanophilous and larger basidiospores (4–5 × 3.5–4.5 μm; Larsson, 1996).

Currently, eight species of *Trechispora* have been reported from China (Dai, 2011; Xu et al., 2019), *Trechispora alnicola*, *T. cohaerens*, *T. farinacea*, *T. microspora*, *T. nivea*, *T. polygonospora* Ryvarden, *T. subphaeospora* (Litsch.) Liberta, and *T. yunnanensis*, and one species of *T. yunnanensis* was found in Yunnan Province of China and it differs from three new species by having a smooth to farinaceous hymenial surface and larger basidiospores (7–8.5 × 5–5.5 μm; Xu et al., 2019). Three new taxa do not closely group together in phylogenetic trees, and morphologically, *T. bambusicola* differs from *T. fimbriata* and *T. fissurata* by having granulose basidiomata with cream to buff hymenial surface and growth on dead bamboo. *T. fimbriata* differs in its fimbriate margin of the basidiomata with pink to buff hymenial surface.

In addition, the ectomycorrhizal fungi (EcM) play an important role in ecosystems based on their mutualistic association with many groups of plants (Heijden et al., 2015). Vanegas-León et al. (2019) discovered the Trechisporales basidiomes and root colonization from *T. thelephora* basidiome. In the present study, *T. fissurata* was sister to *T. thelephora* based on ITS + nLSU phylogenetic analysis (Figure 2), which implied that both species have close evolutionary relationship. However, *T. fissurata* grows on deeply decayed wood, and *T. thelephora* is a soil-inhabiting fungus. Therefore, future investigations in both inhabiting types are needed to determine whether the natural selection or other factors pushes the different direction on inhabiting soil/wood among *Trechispora*.

In the habitat and distribution, Hibbett et al. (2014) revealed that most species of *Trechispora* is considered as soil-inhabiting. Later, some species were found on deeply decayed wood fungi (Bernicchia and Gorjón, 2010; Dai, 2011). However, some species in *Trechispora* are a typical feature of ectomycorrhizal fungi as frequently forming basidiomes on soil (Dunham et al., 2007; Vanegas-León et al., 2019). In the neotropical and subtropical region, the ectomycorrhizal basidiomes are found; however, the researches on the new taxa related to wood-decaying fungi of *Trechispora* from China are poorly reported. Further studies may focus on the relationships between...
Zhao and Zhao

Three Potential New Ectomycorrhizal Species

FIGURE 8 | Microscopic structures of *Trechispora fissurata* (drawn from the holotype). (A) Basidiospores. (B) Basidia and basidioles. (C) Section of hymenium. Bars: (A) 5 µm; (B, C) 10 µm.

the plants and species from *Trechispora* and try to better understand the evolutionary directions between soil-inhabiting and decayed wood fungi of *Trechispora*; many fungal studies on phylogeny and application were from these areas, which will be useful to push future researches for the genus *Trechispora* (Dai, 2011; Cui et al., 2019; Shen et al., 2019; Zhu et al., 2019; Richter et al., 2019; Angelini et al., 2020; Bao et al., 2020).

DISCLOSURE

All the experiments undertaken in this study comply with the current laws of the People's Republic of China.

DATA AVAILABILITY STATEMENT

The data presented in the study are deposited in the https://www.ncbi.nlm.nih.gov/GenBank and https://www.mycobank.org/page/Home/MycoBank repository accession number of GenBank (ITS MW544021-MW544027 and nLSU MW520171-MW520177) and MycoBank (MB 838612-MB 838614).

AUTHOR CONTRIBUTIONS

C-LZ collected the species. WZ performed the molecular phylogenetic analyses. Both authors were responsible for the morphological analysis and description of the collections, planned, organized, and evaluated critically the experimental parts, wrote the manuscript, contributed to the article, and approved the submitted version.

FUNDING

The research was supported by the Yunnan Fundamental Research Project (Grant No. 202001AS070043), the Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University (KLESWFU-202003), and the High-level Talents Program of Yunnan Province (YNQR-QNRC-2018-111).
REFERENCES

Albee-Scott, S., and Kropp, B. R. (2010). A phylogenetic study of Trechispora thelephora. Mycotaxon 114, 395–399. doi: 10.5248/114.395

Angelini, C., Vizzini, A., Justo, A., Bizzì, A., and Kaya, E. (2020). First report of a neotropical agaric (lapipta spiculata, agaricales, basidiomycota) containing lethal α-amamin at toxocolologically relevant levels. Front. Microbiol. 11:1833. doi: 10.3389/fmicb.2020.01883

Bao, D. F., Mckenzie, E. H. C., Bhat, D. J., Hyde, K. D., and Su, H. Y. (2012). Polypore diversity in China with an annotated checklist of species from La Réunion Island. MycoKeys 48, 97–113. doi: 10.3897/mycokeys.48.31956

Miettinen, O., and Larsson, K. H. (2006). Taxonomy of Polyporaceae (Basidiomycota) in China. Fungal Divers. 19, 137–392. doi: 10.1007/s11235-019-00427-4

Dai, Y. C. (2011). A revised checklist of corticioid and hydroid fungi in China for 2010. Mycologia 52, 69–79. doi: 10.1007/S10267-010-008-1

Dai, Y. C. (2012). Polytere diversity in China with an annotated checklist of Chinese polypores. Mycologia 53, 49–80. doi: 10.1007/s10267-011-0134-3

Dunham, S. M., Larsson, K. H., and Spatafora, J. W. (2007). Species richness and community composition of mat-forming ectomycorrhizal fungi in old- and second-growth Douglas-fir forests of the Hj Andrews Experimental Forest, Oregon, USA. Mycorrhiza 17, 633–645. doi: 10.1007/s00572-007-0141-6

Felsenstein, J. (1985). Confidence intervals on phylogenetics: an approach using bootstrap. Evolution 39, 783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98. doi: 10.1012/bk-1999-0734.ch008

Heijden, M. G. M., Martin, F. M., Selosse, M. A., and Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423. doi: 10.1111/nph.13288

Hibbett, D. S., Bauer, R., Binder, M., Giachini, A. J., Hosaka, K., and Justo, A. (2014). “14 Agaricomycetes,” in 1406–1423. doi: 10.1111/nph.13288

Kohl, T. A. (1999). The taxonomy of Trechispora farinacea and proposed synonyms I. Species with a granidioid or hydroid hymenophore. Symb. Bot. Ups. 30, 101–118.

Larsson, K. H. (1996). New species and combinations in Trechispora (Corticiaceae, Basidiomycotina). Nord. J. Bot. 16, 83–98. doi: 10.1111/j.1756-1051.1996.tb0018x

Larsson, K. H. (2007). Re-thinking the classification of corticioid fungi. Mycol. Res. 111, 1040–1063. doi: 10.1016/j.mycres.2007.08.001

Larsson, K. H., Larsson, E., and Koljalg, U. (2004). High phylogenetic diversity among corticioid homobasidiomycetes. Mycol. Res. 108, 983–1002. doi: 10.1017/S095375620000851

Lartey, A. (1973). The genus Chroogomphus (Corticiaceae, Basidiomycotina). Stud. Mycol. 6, 21ñ28. doi: 10.3767/persoonia.2013.04.01.03

Shen, L. L., Wang, M., Zhou, J. L., Yang, J. H., Cui, B. K., and Dai, Y. C. (2019). Taxonomy and phylogeny of Postia. Multi-genie phylogeny and taxonomy of the brown-rot fungi: Postia and its related genera. Persoonia 42, 101–126. doi: 10.3767/persoonia.2019.42.05

Swoford, D. L. (2002). PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.0b10. Sunderland, MA: Sinauer Associates.

Telleria, M. T., Melo, I., Dueñas, M., Larsson, K. H., and Paz Martin, M. P. (2013). Molecular analyses confirm Brevellicium in Trichisporales. J. Fungi 4, 21–28. doi: 10.5958/jafungi.2013.04.01.03

Trichie, G., and Schuhleis, B. (2002). Trechispora antipus sp. nov., une seconde espèce bisporique du genre Trechispora (Basidiomycotina, Stereales). Mycotaion 52, 453–458.

Vanegas-León, M. L., Sulzbacher, M. A., Rinaldi, A. C., Mélanie, Roy, and Neves, M. A. (2019). Are trechisporales ectomycorrhizal or non-ectomycorrhizal root endophytes? Mycol. Prog. 18, 1231–1240. doi: 10.1007/s11057-019-01519-w

Vu, D., Groenewald, M., de Vries, M., Gehrmann, T., Stielow, B., Eberhardt, U., et al. (2019). Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 92, 135–154. doi: 10.1016/j.simyco.2018.05.001

White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR Protocols: A Guide to Methods And Applications, eds M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, (San Diego, CA: Academic Press), 315–322. doi: 10.1016/S878-0-12-372180-8.50042-1

Xu, T. M., Chen, Y. H., and Zhao, C. L. (2019). Trechispora yunnanensis sp. nov. from China. Phytophata 424, 253–261. doi: 10.11646/phytophata.424.4.5

Yurchenko, E., and Wu, S. H. (2014). Fibrodontia alba sp. nov. (Basidiomycota) from Taiwan. Mycoscience 55, 336–343. doi: 10.1007/s10267-013.12004

Zho, C. L., and Wu, Z. Q. (2017). Ceriporiopsis kunmingensis sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. Mycol. Prog. 16, 93–100. doi: 10.1007/s11576-015-1259-8

Zhu, L., Song, J., Zhou, J. L., Si, J., and Cui, B. K. (2019). Species diversity, phylogeny, divergence time and biogeography of the genus Sanghongpurus (Basidiomycota). Front. Microbiol. 10:812. doi: 10.3389/fmicb.2019.0812

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhao and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.