miRNA–mRNA Integrative Analysis Reveals the Roles of miRNAs in Hypoxia-Altered Embryonic Development- and Sex Determination-Related Genes of Medaka Fish

Keng Po Lai¹²³*, Nathan Yi Kan Tam², Yuelong Chen⁴, Chi Tim Leung², Xiao Lin⁵, Chau Fong Tsang², Yin Cheung Kwok², William Ka Fai Tse⁶, Shuk Han Cheng⁷, Tung Fung Chan¹ and Richard Yuen Chong Kong²³*

¹ Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China, ² Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China, ³ State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China, ⁴ State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, ⁵ Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States, ⁶ Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan, ⁷ Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China

Recent studies have shown hypoxia to be an endocrine disruptor that impairs sex differentiation and reproductive function, leading to male-biased F1 populations in fish. However, the molecular mechanisms through which hypoxia alters fish sex differentiation and therefore sex ratios remain poorly understood. In order to understand the potential role of miRNAs in mediating hypoxia-altered sex determination and differentiation in fish, we conducted small RNA sequencing and transcriptome sequencing on marine medaka (Oryzias melastigma) embryos that were exposed to hypoxia (2.0 ± 0.2 mg O₂ L⁻¹) for 40 h (encompassing a critical window of sex determination). We identified dysregulated miRNAs and mRNAs in the hypoxia-exposed embryo, and bioinformatic analysis of the integrative small RNA sequencing and transcriptome sequencing results revealed hypoxia to cause alterations of genes related to embryonic development through miRNA regulation. Importantly, we have identified miRNA–mRNA pairs that were reported to play roles in gonad development (novel miR-145-col9a3 and novel miRNA-94- arid5b), in sex hormone response (novel miRNA-210-ca2, novel miRNA-106-nr2f2, nhr-miR-29c-nr4a1, and ola-miR-92b-akr1d1), and in sex characteristic development (novel miRNA-145-mns1, nle-miR-20-sord, and ipu-miR-219b-abcc8). Our findings highlighted the possible roles of miRNA–mRNA in regulation of embryonic development and sex determination in response to hypoxic stress.

Keywords: hypoxia, fish, sequencing, miRNA, bioinformatics
INTRODUCTION

Hypoxia is a widespread and pressing environmental concern in aquatic habitats, causing severe habitat damage and major disruption to aquatic ecosystems worldwide. The occurrence of hypoxia in water bodies has increased globally over the past 30 years due to escalating eutrophication and organic pollution. Presently, over 500 hypoxic areas (<2 mg O₂ L⁻¹) spanning hundreds of thousands of square kilometers have been reported worldwide (Thrash et al., 2017), and is likely to worsen in the future, as a result of global warming and rapid coastal development, thereby threatening the sustainability of natural populations (Pörtner and Peck, 2010). Compared with mammals, fishes possess an exceptional range of sex determination and differentiation processes, which are modulated by a variety of environmental factors such as population density, social behaviors, pH, and dissolved oxygen (Baroiller et al., 2009; Reddon and Hurd, 2013; Yamamoto et al., 2014).

Previous studies from our group have shown that hypoxia is an endocrine disruptor that impairs reproductive activities and affects sexual differentiation in fish, leading to male-biased F1 rats (Reddon and Hurd, 2013; Yamamoto et al., 2014). Furthermore, studies which showed that the hypoxia in water bodies has increased globally over the past 30 years due to escalating eutrophication and organic pollution. Additionally, several recent studies have reported regulatory roles of miRNAs in sex differentiation. For example, let-7 and miR-202 were reported to control female fecundity by regulating medaka oogenesis (Fagegaltier et al., 2014), suggesting that tissue-specific miRNAs may play specific roles in gonadal functions. Using marine medaka embryos as a model, together with integrative omics analysis, including small-RNA sequencing and transcriptome sequencing, we investigated the role of specific hypoxia-responsive miRNAs in directly targeting sex determination genes. Our results identify miRNA–mRNA pairs that could be important for controlling sexual differentiation, resulting in hypoxia-altered sex ratios in fish.

MATERIALS AND METHODS

Fish Embryo Maintenance and Hypoxic Exposure

All animal research procedures were approved by the Animal Ethics Committee on Research Experiments involving Animal Subjects (A-0244) of the City University of Hong Kong. Oryzias melastigma embryos used in our experiments were obtained from State Key Laboratory of Marine Pollution, City University of Hong Kong. Embryos within 1 day old (< 24 h after fertilization) were collected from parental marine medakas that were maintained in seawater with salinity of 3.5% under optimal growth and breeding conditions (5.8 mg O₂ L⁻¹, 28 ± 2°C, pH 7.2 in a 14-h light: 10-h dark cycle). The collected embryos were randomly selected under a dissecting microscope. Filaments attached to the clustered embryos were carefully removed via constant rolling of the embryos on a net with fingertips and pulling of forceps until the embryo was fully separated and clean. Abnormal or unfertilized embryos were removed from the batch. The selected embryos were then distributed into 12 separate 50-mL beakers, each holding 30 embryos. Six beakers of embryos were exposed to normoxia (5.8 ± 0.2 mg O₂ L⁻¹; outside the hypoxic chamber) and six beakers of embryos were exposed to hypoxia (2.0 ± 0.2 mg O₂ L⁻¹; inside the hypoxic chamber) continuously for 40 h. The desired dissolved oxygen (DO) level was achieved by a constant flow of premixed air and nitrogen (0.5% oxygen) inside a hypoxic chamber. The DO level was measured and monitored using a DO meter (YSI model 580). After the exposure period, the DO level of the hypoxic water was measured again to ensure DO levels were maintained at 2.0 ± 0.2 mg O₂ L⁻¹. Water temperature was maintained at 26 ± 2°C by placing the hypoxic chamber inside an incubator.

Embryo Survivability and Hatchability

After the exposure to normoxic or hypoxic conditions, embryos from each condition were transferred back to normoxic
condition. The number of hatched eggs and dead eggs was recorded daily for 4 weeks. Temperature was maintained at 26 ± 2°C under a 14:10 light:dark photoperiod. Statistical analyses were performed using the paired t-test in GraphPad Prism 9.1.0 (GraphPad Software).

RNA Sample Preparation and Small RNA Sequencing

After the normoxic or hypoxic exposure, one beaker of embryos from each condition was used as one biological replicate for the RNA preparation, and there were three replicates per condition. Total RNA was extracted immediately using the mirVanaTM miRNA isolation kit (Applied Biosystems) following the manufacturer's instructions. RNA quality was assessed using the Agilent 2100 Bioanalyzer system and samples with an RNA Integrity Number (RIN) greater than 8 were used to construct the small RNA and complementary DNA (cDNA) libraries (Supplementary Table 1). Five µg of total RNA were used from each sample. Short RNA transcripts (18–30 nucleotides long) were resolved and isolated using polyacrylamide gel electrophoresis (PAGE) gels. The isolated small RNA molecules were ligated with 3′ and 5′ adapters, and single-stranded cDNA was synthesized using SuperScript II Reverse Transcriptase (Invitrogen). The cDNA was then amplified using indexing primers. Following quantitative real-time PCR (qRT-PCR) amplification, the library size was determined using the Bioanalyzer (Agilent Technologies 2100) and library concentrations were assessed using qRT-PCR (EvaGreen). The libraries were then processed by Novogene. Single-end reads [50 base-pair (bp) read length] were sequenced using the Illumina Novaseq 6000 sequencer to produce at least 20 M clean reads per sample. The adaptor sequences were trimmed and bases with a Phred quality score less than 20 were removed.

Prediction of Mature miRNA Sequences

Raw sequencing reads were trimmed to remove adapters using Cutadapt 2.8 software (Martin, 2011). Trimmed reads were processed using the mapper.pl function of miRDeep2 software (Friedländer et al., 2012) to remove reads shorter than 18 nucleotides and collapsed reads. The processed reads were then mapped onto the genome assembly of O. melastigma (Om_v0.7.RACA) with Bowtie 1.2.2 software (Langmead, 2010), using the following parameters: -n 1 -e 80 -l 18 -a -best –strata, producing mapped reads in BWT format. The BWT files were converted to miRDeep2 ARF format and parsed to remove unmatched nucleotides at the 3′ end, using the convert_bowtie_output.pl and parse_mappings.pl functions of miRDeep2 respectively. The parsed mapped reads were used to predict miRNA sequences using the miRDeep2.pl function of miRDeep2. The miRNA prediction results from all samples were merged and parsed into a single list of unique predicted mature miRNA sequences, which were then matched to known miRNAs by nucleotide BLAST to the miRBase database (Kozomara et al., 2018) using the blastn function of BLAST + 2.6.0 (Camacho et al., 2009) with the following parameters: -task blastn-short -strand plus -num_alignments 1. The BLAST hits were filtered using the following parameters: the first 2–7 nucleotides are identical between the predicted miRNA and known miRNA sequences, hit coverage was ≥90%, no indels present, and a maximum of two mismatches.

Expression Analysis of Small RNAs

Trimmed sequencing reads were remapped onto the mature miRNA sequences using Bowtie with the following parameters: -v 2 -a -m 1 -norc –best –strata, with mapped reads output in SAM format. The SAM files were converted to BAM format using samtools (Li et al., 2009). The number of reads mapped to each mature miRNA sequence was then counted, producing a read counts table. Differential expression analysis of the miRNA read counts was performed using DESeq2 (Love et al., 2014). Differentially expressed miRNAs (DEmiRNAs) were determined using cutoff values of $|\log_2 \text{fold change: treatment/control}| > 1$ and B&H corrected p-value < 0.05.

miRNA Target Genes Prediction

Target miRNAs of significant differentially expressed miRNAs were predicted using IntaRNA v2.3:1 (Camacho et al., 2009; Li et al., 2009; Langmead, 2010; Martin, 2011; Friedländer et al., 2012; Pagegaltier et al., 2014; Love et al., 2014; Wright et al., 2014; Mann et al., 2017; Busch et al., 2018; Kozomara et al., 2018; Raden et al., 2018)[20, 21] and miRanda v3:3a (John et al., 2005), with default parameters. Target miRNAs were treated as true targets when they met the following criteria: (1) targets were predicted by both tools; (2) interaction sites overlapped between predictions.

Transcriptome Sequencing and Bioinformatic Analysis

Total RNA extracted from the same set of embryos (three replicates each from normoxic and hypoxic conditions) were subjected to cDNA library construction. The libraries were processed by Novogene. Paired-end reads (150 bp × 2) were sequenced on the Illumina Novaseq 6000 sequencer to produce at least 23 M clean reads per sample. The raw sequencing reads were checked for quality using FastQC (Andrews, 2010). The sequence reads were then mapped onto the genome assembly of O. melastigma (Om_v0.7.RACA) using Spliced Transcripts Alignment to a Reference (STAR) 2.7.1a (Dobin et al., 2013), and aligned reads were output in BAM format. Aligned reads were annotated to exon features of the Om_v0.7.RACA gene annotation file using the htsseq-count function of HTSeq 0.11.2 (Anders et al., 2015), and the resulting read-count data were subjected to differential expression analysis using DESeq2. Genes with $|\log_2 \text{fold change: treatment/control}| > 1$ and B&H corrected p-value < 0.05 were considered differentially expressed genes (DEGs).

Assignment of Human Gene Symbols to Differentially Expressed Gene and Functional Analysis of Differentially Expressed Gene

Differentially expressed gene were assigned human gene symbols by reciprocal best hit (RBH) matching of the human and
Lai et al. miRNAs in Sex Determination

O. melastigma proteomes. Briefly, protein BLAST of the human (GRCh38.p12) protein sequences was performed against the medaka (Om_v0.7.RACA) protein sequences, and vice versa, using BLAST + 2.6.0 (Camacho et al., 2009). The top hit, with the lowest e-value, for each query sequence was extracted and compared between the two sets of BLAST queries; Protein sequences where the query and top hit matched in both directions were identified as RBHs. The DEGs were then subjected to gene ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis using DAVID 6.8, enriched biological processes and KEGG pathways ($p < 0.05$) were identified.

Complementary DNA Synthesis and Quantitative PCR Analysis

One µg of total RNA was converted to cDNA by using SuperScript™ VILO™ cDNA Synthesis Kit (Invitrogen). Then qPCR analysis was performed on the cDNA from normoxia and hypoxia groups using StepOnePlus™ Real-Time PCR System (Thermofisher). The primer sequencing was shown as Supplementary Table 2.

RESULTS

Exposure to Hypoxia Did Not Affect the Hatchability and Survival Rate of Medaka Embryos

Following normoxia or hypoxia exposure, the viability and hatchability of the embryos were measured for 4 weeks (28 days). Our results indicated that exposure to hypoxia did not affect the hatchability (Figure 1A) and survival rates (Figure 1B) of the medaka embryos, as compared to the normoxic group.

Hypoxia Was Predicted to Alter Embryonic Development Through miRNA Dysregulation

To identify changes to the miRNA profile in the hypoxia-exposed embryos, small RNA sequencing was employed. For this, we obtained 72.8 and 79.3 million quality-trimmed raw reads from normoxic and hypoxic-exposed embryos, respectively, translating to a total of 4.36 Gb of qualified data (Table 1). The clean sequencing reads were mapped to the O. melastigma genome to determine the miRNA content of marine medaka embryos. We identified 253 conserved miRNAs and 572 novel miRNAs (Supplementary Table 3) in the medaka embryo.

When we compared the expression level of these miRNAs in the normoxic and hypoxic-exposed embryos, we found 131 miRNAs with altered regulation, including 50 upregulated and 81 downregulated miRNAs (Figure 2A and Table 2). Of these, 75 and 56 dysregulated miRNAs were conserved and novel miRNAs, respectively (Table 2).

Bioinformatic analysis using the miRanda and IntaRNA algorithms was used to predict the dysregulated miRNA target genes. By combining the results of the 2 algorithms, we found that the hypoxia-dysregulated miRNAs were predicted to target 2466 genes in the embryo (Supplementary Table 4). The predicted target genes were subjected to Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8 analysis to further understand the effect of hypoxia-dysregulated miRNA. Our results showed that the hypoxia

FIGURE 1 | Hypoxia exposure has no effect on the hatchability and viability of medaka embryos. (A) Embryo hatchability was assessed continuously for 28 days after normoxia or hypoxia exposure. (B) Total embryo viability was determined at day 28 after normoxia or hypoxia exposure. n.s. represents not statistically significant ($p > 0.05$).

TABLE 1 | Statistics for small RNA sequencing.

Sample name	Normoxia 1	Normoxia 2	Normoxia 3	Hypoxia 1	Hypoxia 2	Hypoxia 3
Number of raw reads	26,132,796	25,721,292	21,373,916	22,951,657	34,874,183	21,931,340
Number of trimmed reads	26,059,732	25,589,068	21,114,713	22,877,502	34,752,221	21,650,001
Number of raw bases	1,306,639,800	1,286,084,600	1,068,695,800	1,147,582,850	1,743,709,150	1,096,567,000
Number of trimmed bases	746,846,191	755,768,344	609,584,250	659,360,186	984,978,164	604,696,719

1https://david.ncifcrf.gov
exposure could alter the gene cluster involved in many biological processes related to embryo development, such as cartilage development, microtubule cytoskeleton organization, liver development, neural crest cell migration, myelination in the peripheral nervous system, and pectoral fin development (Figure 2B). More importantly, fertility and sex determination-related cell signaling including the retinoic acid receptor signaling pathway and the steroid hormone-mediated signaling pathway were highlighted in our analysis (Figure 2B). Although, the hypoxia exposure had no effect on the GSI and HSI indexes (Supplementary Figure 1).

Hypoxia Altered Embryonic Development and Sex Determination Through the Regulation of miRNA–mRNA Pairs

As miRNAs are one of the major mediators of gene expression, we applied comparative transcriptomic analysis to determine the differential gene expression occurring as a result of hypoxia exposure. A total of 163.6 million quality-trimmed raw reads, translating to 8.18 Gb of data were obtained from the RNA sequencing (Table 3). In the comparative transcriptome analysis, we found 3009 DEGs, including 1543 upregulated genes and 1466 downregulated genes in the embryos exposed to hypoxia (Figure 3A and Supplementary Table 5).

We then integrated the miRNA and mRNA sequencing results to look at the reversed expression of miRNA and mRNA. Our results indicated that hypoxia could lead to the dysregulation of 167 miRNA–mRNA interaction pairs including 31 downregulated miRNA-upregulated mRNA pairs (Table 4) and 136 upregulated miRNA-downregulated mRNA pairs (Table 5). The miRNA-targeted mRNA was subjected to DAVID analysis to understand the effect of hypoxia-dysregulated miRNA–mRNA pairs in the embryo. Our results showed that hypoxia exposure could result in alterations to miRNA-mediated genes related to different developmental processes, such as adipose tissue development, skeletal muscle tissue growth, and post-embryonic development (Figure 3B). Additionally, hypoxia exposure altered the gene cluster related to neuron migration and amacrine cell differentiation, leading to the interference of brain development through the control of miRNA–mRNA interactions (Figure 3B). Finally, we further assessed the possible impact...

Conserved/novel miRNA	miRNA sequence	log2 fold change (hypoxia/normoxia)	Adjusted p-value
Novel miRNA_409	TGTGAAAGAGATGGTGCGACGGT	4.96	0.0035
Novel miRNA_428	TACATGCGATCTGTGTGCGCCGCG	4.93	0.016
Novel miRNA_569	TCTATCTGACTCTGGTGCCCTG	4.93	0.011
Novel miRNA_18	ACCCTCGAGATCGCTGCTCGGCC	4.72	0.0065
Novel miRNA_66	TCCGGTCTGTTGTGTTATACTC	4.29	0.0028
Novel miRNA_503	TGCCTGGAGGACGAGCTGG	4.24	0.0054
Novel miRNA_94	TGCCTCCCTGCTGGCTGCTG	4.17	0.0060
Novel miRNA_518	QTCTATGCGAAGACAGGCGGCC	3.97	0.043
Novel miRNA_296	TCCGGTCTGGCTGCTGCTG	3.89	0.00018
Novel miRNA_422	TCCCTGCGTCCTGCTGCTG	3.80	4.39E-05
Novel miRNA_349	CTGCTGCTGCTGACCTG	3.78	1.76E-11
Novel miRNA_565	TGCTTGATGGACGAGAAGAGGGC	3.49	0.125E-06
Novel miRNA_258	TGATTTGTGAAGGAGAAAAGG	3.42	0.043
Novel miRNA_311	AGGACGCGGCTGATAAGTGA	3.31	1.15E-07
Novel miRNA_380	TTACGCGGCTAATCTGGTTT	3.27	0.026
Novel miRNA_416	TGCTTGATGGACGAGAAGAGGGC	3.18	0.0033
Novel miRNA_338	TCCCGACTGCGTCTGCTG	3.16	1.58E-05
Novel miRNA_345	TCCCGACTGCGGCGCCCGCGC	2.89	0.040
Novel miRNA_106	TGAGTGTGCTGCTGAGCTGCG	2.77	0.00012
Novel miRNA_537	TGGAGAATGTGACGCGGGGAC	2.77	0.0030
xla-miR-210-5p	AAAGCCTGACTGCAACAGGAT	2.68	1.6E-07
Novel miRNA_319	TTATCGTGTATTGAGCTGCTGC	2.61	0.00067
Novel miRNA_494	GCTGTCTAGTCTGGCGCTG	2.61	0.0050
Novel miRNA_197	TGAGGATGGAGCTGAGGCGCC	2.53	0.0054
Novel miRNA_158	TCTGTGTGCTGCTGACGACGAG	2.33	0.00038
Novel miRNA_137	TTTTGAAGAATGCGACGCGGG	2.33	0.043
Novel miRNA_423	TCGAGATGTCCCCTGTAGCGAAG	2.15	0.041
Novel miRNA_145	TCGGTGCTCCTGGCGCTTGG	2.03	0.0024
Novel miRNA_510	TTTGGTGTGGCGCTTGGTGTC	2.02	0.0060
Novel miRNA_507	TTTGGTACGTGTGATTATCTCGTA	2.02	0.0076
Novel miRNA_320	TTGGATTAAGTCTGCTGTTACGTAGC	2.02	0.0022
Novel miRNA_450	TCAAGGACGTGGCMCTGGCAGAAGGG	1.96	0.011
Novel miRNA_154	TGAGATTGTGAGAGCCAGGG	1.95	0.0090
Novel miRNA_548	TCTGTTAAGAAGAGAGTGTTACGTAGC	1.90	0.0019
Novel miRNA_290	TCAGATCCTGACGAGCTGAGGCG	1.87	0.00028
Novel miRNA_207	TCAATTCTGAGGGTGAACACTCTTA	1.87	0.0065
Novel miRNA_417	TGAAGACTTTTGGATTATCTGAAA	1.86	0.017
Novel miRNA_414	TTGGCGGTGATGGGAGCCCTTGGG	1.83	4.39E-05
Novel miRNA_556	CGAGAATCTGGACGAGATTGTCAC	1.69	0.035
Novel miRNA_60	TTTCTGCTGCTGCTGATGACCTA	1.64	0.00012
Novel miRNA_292	TCAATCTGAGGATGGACACTTCTA	1.59	0.021
cli-miR-1388-3p	ATCTGAGGTTGGCTGACCCGATG	1.49	0.0085
Novel miRNA_62	TACAGACTGTACGGCTCTAAAGG	1.43	0.017
gmo-let-7d-5p	TGAAGTGGATGGGAGGATTTGTTATG	1.41	0.0079
Novel miRNA_360	TATTGTTGATTGTTGGAATCCA	1.37	0.016
Novel miRNA_44	ACCCGCAACTTGAACCCTTACT	1.37	0.0084
Novel miRNA_210	TGCTGAGAAGGGCTTGGGGGCCCTC	1.36	0.0040
Novel miRNA_31	CGTGAATCTGGTGATGCGAAC	1.34	0.040
oga-miR-25	CAGTCAGGTGCTGCTGCTG	1.16	0.017
Novel miRNA_344	AAAGTCTGCTTGGGGGTTG	1.15	0.0079
ocu-miR-183-5p	TATGCGACTGTTGAATCCCT	−1.03	0.0079

(Continued)
Conserved/novel miRNA	miRNA sequence	log2 fold change (hypoxia/normoxia)	Adjusted p-value
oga-miR-26b	TTCAAGTTACCCAGGATAGGTT	-1.18	0.042
Novel miRNA_247	CCGGAGATGGGACTTGGTGACT	-1.18	0.013
mmr-miR-204	TTTCCCTTTGATCATCATGTT	-1.18	0.014
gmo-miR-216b-5p	TAATCTGCGAGCGCACTTGTA	-1.19	0.042
oga-miR-17	CAAAGTGCTTCAGTGACGTAG	-1.25	0.041
xla-miR-27b-3p	TTTCAAGTGCTAAGTTTCTGCA	-1.25	0.016
ocu-miR-7a-5p	TGGAAAGACTAGTGAATTGTGT	-1.35	0.00078
xla-miR-203-3p	GTGAATAAGTTTGGCAAACCTTG	-1.36	0.0024
ons-miR-217	TACGTGACAGCACTGATTGCG	-1.36	0.017
oga-miR-16	TACCAAGCAGTAAATATTGCG	-1.37	0.0012
xla-miR-200b-3p	TAATCTGCTGGGTATATGT	-1.38	0.00029
Novel miRNA_139	TTTGATGGGCTTACCACTTG	-1.41	0.016
Novel miRNA_547	GCTGCTCAGCCTCAAAAACGCG	-1.50	0.011
Novel miRNA_363	GATTTCAAGTGATGGAGAGTA	-1.54	0.0020
ocu-miR-205-5p	TCCTTTGCTCAACCGAGTCTG	-1.54	0.0024
ccr-miR-10c	TACCCCTGATAGCAGATTGCG	-1.60	0.0013
gmo-miR-15b-5p	TACGAGCGACCATGTTGAAAC	-1.67	0.00027
nle-miR-30c	TGTAAACATCTCCTACCTCAGCT	-1.69	8.55E-06
cli-miR-455-5p	TATGTGCCCTTGAGCTACATGCT	-1.71	0.00010
hhh-miR-10d	TACCCCTGAGAAACCGAGATTG	-1.74	0.00078
mle-miR-1-3p	TGGAATTGAAAGGATAGTAT	-1.78	0.0060
ocu-miR-10b-5p	TACCCCTGGAACCCGAGATTG	-1.80	0.0019
nle-miR-454	TGTCAAACTTGTATTTAGGCTG	-1.82	0.00044
dre-miR-181a-5-3p	ACCATCGGCGGTGGCTTGGC	-1.83	0.00016
oga-miR-30d	TGTAACATCCCCGACTGAAAGCT	-1.84	1.40E-05
xla-miR-130c-5p	GCCCTTTTTCTGTGGCACTACT	-1.85	0.0022
gmo-miR-126-3p	TCCTGACGATGAAATATGCGA	-1.94	0.00066
pny-miR-725	TTGGACGTTGTTTCTGGTGCT	-1.97	2.56E-05
ocu-miR-107-3p	AGCAAGTGGTGACGGGCTACA	-2.01	0.0084
oga-miR-190	TGATTAGTTGATTATATAGG	-2.06	0.00021
ssa-miR-148a-3p	TCAGTGCAATACAGAGCTTGGT	-2.12	0.0061
gmo-miR-152-3p	TCAGTGCAATACAGAGCTTGGT	-2.13	1.39E-05
gmo-miR-20b-5p	AAAAGTCCCTACAGTGCAQATA	-2.14	0.00029
Novel miRNA_33	TGGGCTGCATCAACCTCCTTCTAC	-2.17	0.00076
nbr-miR-29c	ACTGATTTCCTTGCTGGCTAGTA	-2.18	0.0077
Novel miRNA_20	GCTTTTTTGAAGGTGCTGTTTCTGGT	-2.23	2.94E-05
pny-miR-7132a-3p	TGGAGGGTTTAGAAGAATGTTCA	-2.26	0.00037
nle-miR-20b	TAAATGGCCTATATGTCGGATTAG	-2.27	1.54E-05
oga-miR-181a	AACATCAAGCTGGCTGGTGAGT	-2.38	3.68E-06
Novel miRNA_135	CAAAACATAGTGCTGCCCTCT	-2.40	0.0069
ipu-miR-219b	GGAACTGTGGAGGACCATCAGG	-2.41	0.016
cli-miR-181a-2-3p	ACCATCGGCGGTGGCTGTTG	-2.44	2.17E-07
ola-miR-301b-5p	GCTCTGTAGACTGTGGCACTCT	-2.46	1.78E-05
Novel miRNA_168	CAGAAGTCTTTTCTTATGACGTA	-2.57	0.0024
ocu-miR-124-5p	CGTGTCCCAGGGGACCTGTATT	-2.62	8.60E-05
ola-miR-92b	TATGACCTGCTGGCCCGCTC	-2.68	0.0060
ola-miR-194-3p	CGGAGGAGGCTGGCTTTACCTG	-2.70	0.00010
pny-miR-218b	TTGGATCTGCTTACAACGGG	-2.74	0.033
sbo-miR-214	TACCAAGGCGACGACAGCC	-2.77	0.0071
ocu-miR-181b-5p	AACATTGAGGCTGGCTGGTG	-2.77	1.99E-08
gmo-miR-216a-3p	CACATGGCCCTGGAGATGAG	-2.78	4.39E-05
ocu-miR-499-5p	TTAAGACCTTGACGATGTTTA	-2.79	5.14E-05

(Continued)
of hypoxia on sex determination and differentiation through miRNA-mRNA regulation. Using gene ontology analysis, we identified miRNA-mRNA pairs that may be involved in biological functions related to sex determination and differentiation including novel miR-145-col9a3 and novel miRNA-94-arid5b in gonad development, novel miRNA-210-ca2, novel miRNA-106-nr2f2, nhr-miR-29c-nr4a1, and ola-miR-92b-akr1d1 in sex hormone response, and novel miRNA-145-mns1, nle-miR-20-sord, and ipu-miR-219b-abcc8 in sex characteristic development (Figure 3C). The differential gene expression was further validated by using quantitative PCR (qPCR), our data showed that the result of qPCR matched with the finding of RNA sequencing (Figure 3D). Taken together, our data suggest that hypoxia may alter sex determination and differentiation through the regulation of miRNA-mRNA pairs.

DISCUSSION

Using small-RNA sequencing analysis, we identified 253 conserved miRNA and 572 novel miRNAs in the medaka embryo. The larger number of novel miRNAs being identified in this study compared to conserved miRNAs suggests that many marine medaka miRNAs are yet to be identified. When we compared our results to the limited miRNAs previously identified in marine medaka which is approximately 200 novel miRNAs identified in different organs such as brain, liver, and gonads (Lai et al., 2016). Many novel miRNAs in embryos are important in fish embryonic development, such as bone and gonadal development (Hausser and Zavolan, 2014; Li et al., 2016).

We then looked at the miRNAs altered by hypoxia exposure by comparing the miRNA profile of normoxic...
FIGURE 3 | Hypoxia-induced miRNA–mRNA dysregulation, resulting in developmental defects and alteration of sex determination and differentiation in medaka embryos. (A) Volcano plot showing differential miRNA expression in embryos after hypoxia or normoxia exposure. mRNAs with $|\log_2 \text{fold change: hypoxia/normoxia}| > 1$ and $-\log B&H \text{corrected } p\text{-value} > 1.3$ were considered differentially expressed. Red dots represent upregulated mRNA, green dots represent downregulated mRNA, and black dots represent mRNA with no significant change. (B) Rich factor plots showing the biological processes altered by the miRNA–mRNA pairs using Gene Ontology (GO) enrichment analysis of Database for Annotation, Visualization and Integrated Discovery (DAVID). Dot size represents the number of genes. The color intensity of each dot represents the significance of the biological process. (C) Hypoxia-dysregulated miRNA–mRNA pairs related to gonad development, sex hormone response, male sex characterization. The complementary sequence shows the interaction between miRNA and mRNA. (D) Quantitative PCR validated the differential gene expression in embryo after the hypoxia exposure. * Represented a statistically significant different of gene expression between normoxia and hypoxia groups.
TABLE 4 | Hypoxia-induced downregulated miRNA-upregulated mRNA pairs in medaka embryos.

Downregulated miRNA	Upregulated mRNA
ccr-miR-10c	rimbp2
gmo-miR-93-5p	MPZL3
ocu-miR-199a-5p	ap3d1
sbo-miR-214	ngf
sbo-miR-214	atp10b
sbo-miR-214	hdac4
sbo-miR-214	best1
sbo-miR-214	GPR137B
gmo-miR-181d-5p	CDKL5
gmo-miR-181d-5p	grm1a
oga-miR-26b	ahcy1
oga-miR-7a-5p	si:000000000032
abu-miR-135a-5p	ifrl1.2
Novel miRNA_247	ablim2
Novel miRNA_247	poln
Novel miRNA_247	bmper
nbr-miR-29c	nr4a1
oga-miR-19b	CTSS
nie-miR-20	sord
mmr-miR-204	fnip1
mmr-miR-204	hikdc1
mmr-miR-204	titeb
ipu-miR-219b	abcc8
gmo-miR-449a-5p	FBNL2
gmo-miR-449a-5p	vwc2
gmo-miR-449a-5p	kncd2
ocu-miR-124-5p	shn1
ocu-miR-124-5p	efhc2
Novel miRNA_547	ppp1r9aib
ola-miR-92b	ahdc1
ola-miR-92b	AKR1D1

TABLE 5 | Hypoxia-induced upregulated miRNA-downregulated mRNA pairs in medaka embryos.

Upregulated miRNA	Downregulated mRNA
Novel miRNA_503	mdga1
Novel miRNA_503	dhrx57
Novel miRNA_503	ulk1a
Novel miRNA_503	nkain2
Novel miRNA_503	addck1
Novel miRNA_503	chp2
Novel miRNA_349	unmm_sal21
Novel miRNA_349	apobec2a
Novel miRNA_349	stk36
Novel miRNA_349	lrg1
Novel miRNA_349	PDZRN4
Novel miRNA_349	neuro1
Novel miRNA_349	cdh15
Novel miRNA_416	bnc2
Novel miRNA_416	mcm3
Novel miRNA_537	VAT1
Novel miRNA_537	CHRNA1
Novel miRNA_537	zgc:63963
Novel miRNA_414	JMY
Novel miRNA_414	tepsin
Novel miRNA_414	c1qbp
Novel miRNA_414	bnlba
Novel miRNA_565	atp6v0a2a
Novel miRNA_565	gmpr2
Novel miRNA_292	dhx36
Novel miRNA_292	WDR77
Novel miRNA_510	acp6
Novel miRNA_510	prmt9
Novel miRNA_510	chodi
Novel miRNA_510	ANXA2
Novel miRNA_510	asm1
Novel miRNA_510	lrp5
Novel miRNA_296	her8.2
Novel miRNA_338	ti5s3ip1
Novel miRNA_338	EPHA6
Novel miRNA_338	cccdc15
Novel miRNA_94	myom2a
Novel miRNA_94	spknap
Novel miRNA_94	ogfr1
Novel miRNA_94	mep1b
Novel miRNA_94	zmp:000000000760
Novel miRNA_94	lap3
Novel miRNA_94	ppoc1
Novel miRNA_94	ttit6
Novel miRNA_94	sema3c
Novel miRNA_94	pcsk2
Novel miRNA_94	map3k12
Novel miRNA_94	s1pr3a
Novel miRNA_94	itga10
Novel miRNA_94	adgra2
Novel miRNA_94	lhx4

and hypoxic exposed embryos. We observed some conserved miRNAs, which are reported to play important roles in embryonic development. For example, the downregulated miR-214 is a developmental regulator, which controls the polycomb protein, Ezh2, in skeletal muscle and embryonic stem cells (Gan et al., 2016). Additionally, an in vitro study demonstrated that miR-214 expression levels are controlled by the transcription factor Twist-1 in the development of specific neural cell populations (Presslauer et al., 2017). Another hypoxia-downregulated miRNA — miR-29c reportedly affects lateral development and cardiac circulation through the Wnt4/β-catenin signaling pathway in zebrafish (Juan et al., 2009). The involvement of miR-29c has also been implicated in bovine blastocyst development and embryo implantation of rats with endometriosis (Lee et al., 2009; Shen et al., 2020), suggesting the importance of hypoxia dysregulated miR-29c in embryonic development.

Our results also highlighted miR-19b, which was reduced following hypoxia exposure, and is reported to impair cardiac development in zebrafish by targeting
TABLE 5 | (Continued)

Upregulated miRNA	Downregulated mRNA
Novel miRNA_94	arid5b
Novel miRNA_94	casp2
Novel miRNA_94	clybl
Novel miRNA_94	fkdpl
Novel miRNA_94	gtf2f1
Novel miRNA_94	c1qtnf6b
Novel miRNA_94	trmem204
Novel miRNA_94	rab33a
Novel miRNA_94	uncx4.1
Novel miRNA_94	phf2
Novel miRNA_94	cass4
Novel miRNA_94	MARK1
Novel miRNA_94	adams14
Novel miRNA_94	SLC4A11
Novel miRNA_94	ppp1r9a
Novel miRNA_94	dis32
Novel miRNA_94	khh2
Novel miRNA_94	actr5
Novel miRNA_94	rbn24a
Novel miRNA_94	ino80
Novel miRNA_94	FRMFPD4
Novel miRNA_94	fam234b
Novel miRNA_94	tons1
Novel miRNA_94	smarc1b
Novel miRNA_94	ccne2
Novel miRNA_94	crb1
Novel miRNA_94	hic1
Novel miRNA_94	tox2
Novel miRNA_94	lrp3
Novel miRNA_94	cull2
Novel miRNA_94	nup93
Novel miRNA_197	vgl2b
Novel miRNA_197	fam124b
Novel miRNA_197	ino80da
Novel miRNA_197	RANGAP1
Novel miRNA_197	tprkb
Novel miRNA_197	carmi2
Novel miRNA_197	pkd3cd
Novel miRNA_197	ints6i
Novel miRNA_197	sicolkey-119f1.1
Novel miRNA_197	lpl
Novel miRNA_197	nwd2
Novel miRNA_197	iqsec1b
Novel miRNA_197	ints6
Novel miRNA_197	pik3ap1
Novel miRNA_197	zfr2
Novel miRNA_197	ca2
Novel miRNA_197	grla2
Novel miRNA_197	PLXNA2
Novel miRNA_197	sicolkey-175g6.2
Novel miRNA_197	bbtbx9
Novel miRNA_197	msh3

(Continued)

ctnmb1 (Goossens et al., 2013). Our results in medaka are also concordant with a bird study of miRNAs in great tits that found miRNA-19b to be a hypoxia-responsive miRNA, which regulated MAPK1 expression in embryonic fibroblasts (Cai et al., 2018). In addition, the expression level of miRNA-19b is also associated with embryo quality (Li et al., 2014). We also found hypoxia to suppress the expression of miR-204; this miRNA is reported to alter neuronal migration and cortical morphogenesis during embryonic development in mouse embryos (Chen et al., 2018), and both human and zebrafish studies have demonstrated miR-204-mediated control of developmental lymphangiogenesis (Abu-Halima et al., 2020). The reduction of these miRNAs by hypoxia is suggestive of the possible effects of hypoxia exposure on embryonic development through miRNA regulation. Following analysis of miRNAs for which expression was induced by hypoxia exposure, we found elevated expression levels in a large number of novel miRNAs, but not conserved miRNAs. This result made determining the possible effect of the novel miRNA profile change complex. Therefore,
we applied two algorithms (MiRanda and IntaRNA) to predict miRNA target genes. To strengthen our findings, we also conducted comparative transcriptome sequencing followed by the miRNA and mRNA integrative analysis, to further determine miRNA-mRNA interaction pairs. Hundred and ninety-nine miRNA-mRNA pairs were identified, and DAVID analysis was performed on the miRNA target genes to determine the effect of hypoxia-dysregulated miRNA-mRNA pairs. For the data analysis, we focused primarily on the endpoint of embryonic development and sex determination and differentiation. In the functional characterization, novel miRNA-145-col9a3 was reported to be involved in gonad development, as Col9a3 encodes the α3 chain of type IX collagen, which is expressed during mouse testis development (Venø et al., 2017; Jung et al., 2019). Another mouse study demonstrated the specified expression of Col9a3 in testicular cords during the early stages of gonadal differentiation (Hanson-Kahn et al., 2018). More importantly, Col9a3 expression was markedly upregulated in the male, but remained very low in the female during embryo development (Hanson-Kahn et al., 2018), suggesting the possible role of Col9a3 in sex differentiation.

Our findings also highlighted some hypoxia-dysregulated miRNA-mRNA pairs such as novel miRNA-210-ca2, novel miRNA-106-nr2f2, and nbr-miR-29c-nr4a1, which could contribute to sex-steroid hormone response. The novel miRNA, miRNA-210, mediates carbonic anhydrase II (CA2), which is a metalloenzyme responsible for the maintenance of the acid-base balance in body systems (McClive and Sinclair, 2003). Rat studies have demonstrated an association between CA2 and sex-steroid hormones, for example, CA2 expressed in the rat lateral prostate and seminal vesicles is under testosterone regulation (Perera et al., 2001), and it is involved in bicarbonate production—a function that particularly characterizes the rat lateral prostate (Perera et al., 2001). The expression level of CA2 is also differentially regulated by testosterone in the dorsal and lateral prostate in rats (Sanyanga et al., 2019). Other than male sex hormones, CA2 is also regulated by female sex hormones. Hepatic carbonic anhydrase is reportedly induced by estrogen in rat models (Härkönen and Väänänen, 1988), and estrogen and progesterone differentially regulate CA2 in ovariectomized rat uteri (Härkönen et al., 1991). The other hypoxia-altered miRNA-mRNA pair, novel miRNA-106-nr2f2, was also found to be associated with the development of sex organs. Nuclear Receptor Subfamily 2 Group F Member 2 (nr2f2), encodes a ligand-inducible transcription factor and is expressed during early ovarian development of embryogenesis in ovarian somatic cells (Garg, 1975). A review of genetic disease studies showed that rare disease differences or disorders of sex development (DSD) are associated with mutations in NR2F2 (Karim et al., 2016). Furthermore, a study of human genetic disorders demonstrated that NR2F2 loss of function caused defects in testis development in individuals with DSD (Rastetter et al., 2014).

As well as novel miRNAs, our result also highlighted the conserved mir-29c-nr4a1, which is also involved in sex differentiation. Nr4a1, an orphan nuclear receptor, is important for hormone-induced steroidogenesis in Leydig cells, where it plays a pivotal role in regulating the expression of several genes involved in male sex differentiation (Kremen and Chan, 2019). Nr4a1 can be activated by many transcription factors such as myocyte enhancer factor 2 to control Leydig cell gene expression (Bashamboo et al., 2018). It has also been reported that Nr4a1 is a regulator of Insulin-like 3 (INSL3) transcription (Garg, 1975), which is a hormone produced by fetal Leydig cells of the testis to regulate testicular descent during fetal life. In adults, Nr4a1 acts as a germ cell survival factor (Abdou et al., 2016).

Finally, novel miR-145-mns1 and nle-miR-20-sord pairs are reported to play roles in male sex characteristics. Meiosis-specific nuclear structural protein 1 (Mns1) is necessary for spermiogenesis and motile cilia function, such as sperm flagella, through its interaction with ciliary proteins (Robert et al., 2006; Daems et al., 2014). Studies of Mns1-deficient mice demonstrate that homozygous loss-of-function mutations in Mns1 resulted in laterality defects and male infertility (Boschen et al., 2018). This finding was supported by a human population study combining genome-wide SNP mapping and whole-exome sequencing analysis that identified MNS1 variant as a cause of male infertility in humans (Zhou et al., 2012). For nle-miR-20-sord, sorbitol dehydrogenase (Sord) expression is reported to be regulated by androgens in the human prostate, suggesting that this is the location of the physiological role of sord (Ta-Shma et al., 2018). Furthermore, Sord expression is induced to support epididymal sperm motility during spermatogenic differentiation in mouse spermatogenesis (Leslie et al., 2020). Accordingly, reduced expression of Sord in the mouse epididymis results in inhibition of sperm maturation through the impairment of secretory functions of the epididymis (Szabó et al., 2010).

CONCLUSION

Our integrative analysis of small RNA sequencing and transcriptome sequencing identified a cluster of miRNA-mRNA pairs that may involve in embryonic development. Our findings have also provided important insights into the molecular mechanisms through which miRNAs interact with different target genes that may regulate the reproductive axis and mediate hypoxia-altered plasticity of sex determination and differentiation in fish. But further studies are required to confirm the role of miRNA-mRNA pairs in physiological processes of hypoxia-altered sex biased in fish.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and
accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/, PRJNA706118.

ETHICS STATEMENT

The animal study was reviewed and approved by all animal research procedures were approved by the Animal Ethics Committee on Research Experiments involving Animal Subjects (A-0244) of the City University of Hong Kong.

AUTHOR CONTRIBUTIONS

KL, SC, and RK contributed to conception and design of the study. NT, YK, and WT organized the database. CT, CL, and YK performed the experiments. YC, XL, and TC performed the bioinformatics and statistical analysis. KL and RK wrote the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

FUNDING

This study was fully supported by a grant from the General Research Fund (CityU 11102918) of the Research Grants Council of Hong Kong SAR, People’s Republic of China. KL was supported by the Hong Kong SAR, Macao SAR, and Taiwan Province Talented Young Scientist Program of Guangxi.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmars.2021.736362/full#supplementary-material

REFERENCES

Abdou, H. S., Robert, N. M., and Tremblay, J. J. (2016). Calcium-dependent Nr4a1 expression in mouse Leydig cells requires distinct API/CRE and MEF2 elements. J. mol. Endocrinol. 56, 151–161. doi: 10.1530/JME-15-0202

Abu-Halima, M., Khaizaran, Z. A., Ayesh, B. M., Fischer, U., Khaizaran, S. A., Al-Battah, F., et al. (2020). MicroRNAs in combined spent culture media sterility. Fertil. Steril. 113, 970–980. doi: 10.1016/j.fertnstert.2019.12.028

Anders, S., Pyl, P. T., and Huber, W. (2015). HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England). 31, 166–169. doi: 10.1093/bioinformatics/btu638

Andrews, S. (2010). A Quality Control Tool for High Throughput Sequence Data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Baroiller, J. F., D’Cotta, H., and Saillant, E. (2009). Environmental effects on fish sex determination and differentiation. Sex Dev. 3, 118–135. doi: 10.1159/000223077

Bashamboo, A., Eoenzou, C., Jorgensen, A., Bignon-Topalovic, J., Siffroi, J. P., Hyon, C., et al. (2018). Loss of function of the nuclear receptor NR2F2, encoding COUP-TF2, causes testis development and cardiac defects in 46,XX children. Am. J. Hum. Genet. 102, 487–493. doi: 10.1016/j.ajhg.2018.01.021

Boschen, K. E., Gong, H., Murdacha, L. B., and Parnell, S. E. (2018). Knockdown of Mns1 increases susceptibility to craniofacial defects following gastrulation-stage alcohol exposure in mice. Alcohol. Clin. Exp. Res. 42, 2136–2143. doi: 10.1111/acer.13876

Bouchareb, A., Le Cam, A., Montfort, J., Gay, S., Bugeon, J., Bouchareb, A., Henry, L., Delahaye, C., Legeai, F., et al. (2009). Genome-wide identification of novel ovarian-predominant miRNAs: new insights from the medaka (Oryzias latipes). Sex Dev. 3, 402–414. doi: 10.1007/s11262-009-9119-4

Busch, A., Andreas, S. A., and Backofen, R. (2018). IntaRNA: eicient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24, 2849–2856. doi: 10.1093/bioinformatics/btn544

Cai, H., Zhu, X. X., Li, Z. F., Zhu, Y. P., and Lang, J. H. (2018). MicroRNA dysregulation and steroid receptor expression in uterine tissues of rats with endometriosis during the implantation window. Chin. Med. J. 131, 2193–2200. doi: 10.4103/0366-6999.240808

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi: 10.1186/1471-2105-10-421

Cheung, C. H., Chiu, J. M., and Wu, R. S. (2014). Hypoxia turns genotypic female medaka fish into phenotypic males. Ecotoxicology 23, 1260–1269. doi: 10.1007/s10646-014-1269-8

Daems, C., Martin, L. J., Brousseau, C., and Tremblay, J. J. (2014). MEF2 is restricted to the male gonad and regulates expression of the orphan nuclear receptor NR4A1. Mol. Endocrinol. (Baltimore, Md.) 28, 886–898. doi: 10.1210/me.2013-1407

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England) 29, 15–21. doi: 10.1093/bioinformatics/bts635

Eshel, O., Shirak, A., Dor, L., Band, M., Zak, T., Markovich-Gordon, M., et al. (2014). Identification of male-specific amh duplication, sexually differentially expressed genes and microRNAs at early embryonic development of Nile tilapia (Oreochromis niloticus). BMC Genomics 15:774. doi: 10.1186/1471-2164-15-774

Fagege Balt, D., Konig, A., Gordon, A., Lai, E. C., Gingeras, T. R., Hannon, G. J., et al. (2014). Genome-wide survey of sexually dimorphic expression of Drosophila miRNAs identifies the steroid hormone-induced miRNA let-7 as a regulator of sexual identity. Genetics 198, 647–668. doi: 10.1534/genetics.114.169286

Feng, Y. P., Chen, J. F., Huang, P., Wang, X., Wang, J., Peng, X. L., et al. (2014). Expression analysis of differentially expressed miRNAs in male and female chicken embryos. Genet. Mol. Res. 13, 3060–3068.

Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W., and Rajewsky, N. (2012). miRDeep2 accurately identiﬁes known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40, 37–52. doi: 10.1093/nar/gkr688

Gan, S., Huang, Z., Liu, N., Su, R., Xie, G., Zhong, B., et al. (2016). MicroRNA-140-5p impairs zebrafish embryonic bone development via targeting BMP-2. FEBS Lett. 590, 1438–1446. doi: 10.1016/j.febslet.2015.07.032

Garg, L. C. (1975). Induction of hepatic carbonic anhydrase by estrogen. J. Pharmacol. Exp. Ther. 192, 297–302.

Gay, S., Bugnon, F., Bouchareb, A., Henry, L., Delahaye, C., Legeai, F., et al. (2018). MiR-202 controls female fecundity by regulating medaka oogenesis. PLoS Genet. 14:e1007593. doi: 10.1371/journal.pgen.1007593

Gooosen, K., Mestdagh, P., Leever, S., Van Poucke, M., Van Zeveren, A., Van Soom, A., et al. (2013). Regulatory microRNA network identification in bovine...
blastocyst development. Stem Cells Dev. 1, 1907–1920. doi: 10.1089/scd.2012.0708

Hanson-Kahn, A., Li, B., Cohn, D. H., Nickerson, D. A., Bamshad, M. J., University of Washington Center for Mendelian Genomics, et al. (2018). Autosomal recessive Stickler syndrome resulting from a COL9A3 mutation. Am. J. Med. Genet. 176, 2887–2891. doi: 10.1002/ajmg.a.49647

Harkönen, P. L., Mäkelä, S. L., Valve, E. M., Karhukorpi, E. K., and Väänänen, H. K. (1991). Differential regulation of carbonic anhydrase II by androgen and estrogen in dorsal and lateral prostate of the rat. Endocrinology 128, 3219–3222. doi: 10.1210/endo-128-6-3219

Harkönen, P. L., and Väänänen, H. K. (1988). Androgen regulation of carbonic anhydrase II, a major soluble protein in rat lateral prostate tissue. Biol. Reprod. 38, 377–384. doi: 10.1095/biolreprod38.2.377

Hausser, J., and Zavolan, M. (2014). Identification and consequences of miRNA-target interactions beyond repression of gene expression. Nat. Rev. Genet. 15, 599–612.

Jing, J., Wu, J. J., Liu, W., Xiong, S. T., Ma, W. G., Zhang, J., et al. (2014). Sex-biased miRNAs in gonad and their potential roles for tests development in yellow catfish. PLoS One 9:e107946. doi: 10.1371/journal.pone.0107946

John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., and Marks, D. S. (2005). Human MicroRNA targets. PLoS Biol. 2:e363. doi: 10.1371/journal.pbio.0020363

Juan, A. H., Kumar, R. M., Marx, J. G., Young, R. A., and Sartorelli, V. (2009). Karim, K., Giribabu, N., Muniandy, S., and Salleh, N. (2016). Estrogen and Juanchich, A., Le Cam, A., Montfort, J., Guiguen, Y., and Bobe, J. (2013). Frontiers in Marine Science | www.frontiersin.org 14 Lai et al. miRNAs in Sex Determination Kozomara, A., Birgaouanu, M., and Griffiths-Jones, S. (2018). Mirbase: from miRNA sequences to function. Nucleic Acids Res. 46, D15–D16. doi: 10.1093/nar/gky1141

Jung, H. M., Hu, C. T., Fister, A. M., Davis, A. E., Castranova, D., Pham, V. N., et al. (2019). MicroRNA-mediated control of developmental lymphangiogenesis. eLife 8:e46007. doi: 10.7554/eLife.46007

Kang, L., Cui, X., Zhang, Y., Yang, C., and Jiang, Y. (2004). Identification of miRNAs associated with sexual maturity in chicken ovary by Illumina small RNA deep sequencing. BMC Genomics 14:352. doi: 10.1186/1471-2164-14-352

Karim, K., Giribabu, N., Muniandy, S., and Salleh, N. (2016). Estrogen and progesterone differentially regulate carbonic anhydrase II, III, IX, XII, and XIII in ovi夜croemated rat utei. Syst. Biol. Reprod. Med. 62, 57–68. doi: 10.3109/19396368.2015.1112699

Kozomara, A., Birgaouanu, M., and Griffiths-Jones, S. (2018). Mirbase: from miRNA sequences to function. Nucleic Acids Res. 47, D15–D16. doi: 10.1093/nar/gky1141

Kremen, J., and Chan, Y. M. (2019). Genetic evaluation of disorders of sex development: current practice and novel gene discovery. Curr. Opin. Endocrinol. Diabetes obes 26, 54–59. doi: 10.1097/MED.0000000000000452

Langmead, B. (2010). Aligning short sequencing reads with Bowtie. Bioinformatics 26, 2265–2270. doi: 10.1093/bioinformatics/btq422

Lai, K. P., Li, J. W., Tse, A. C. K., Chan, T. F., and Wu, R. S. S. (2016). Hypoxia alters miRNA expression profiles between adult mouse tests and ovary. Reproduction 151, 811–822.

Navarro-Martin, L., Viñas, J., Ribas, L., Díaz, N., Gutiérrez, A., Di Croce, L., et al. (2011). DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet. 7:e1001244. doi: 10.1371/journal.pgen.1001244

Pelley, J. (2006). Dead zones might masculinize fish. Environ. Sci. Technol. 40, 2862. doi: 10.1021/es0630137

Perea, E. M., Martin, H., Seherunvong, T., Kos, L., Hughes, I. A., Hawkins, J. R., et al. (2001). Tescalcin, a novel gene encoding a putative EF-hand Ca(2+)-binding protein, Col9a3, and renin are expressed in the mouse testis during the early stages of gonadal differentiation. Endocrinology 142, 455–463. doi: 10.1210/endo.142.1.7882

Pörtner, H. O., and Peck, M. A. (2010). Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J. Fish. Biol. 77, 1745–1779. doi: 10.1111/j.1151-0640.2010.02783.x

Presslauer, C., Tilahun Bizayahu, T., Kopp, M., Fernandes, J. M., and Babiak, I. (2017). Dynamics of miRNA transcriptome during gonadal development of zebrafish. Sci. Rep. 7:43850. doi: 10.1038/srep43850

Raden, M., Ali, S. M., Alkhnbashi, O. S., Busch, A., Costa, F., Davis, J. A., et al. (2018). Freiburg RNA tools: a central online resource for RNA-focused research and teaching. Nucleic Acids Res. 46, W25–W29. doi: 10.1093/nar/gky329

Rastetter, R. H., Bernard, P., Palmer, J. S., Chassot, A. A., Chen, H., Western, P. S., et al. (2014). Marker genes identify three somatic cell types in the fetal mouse ovary. Dev. Biol. 394, 242–252. doi: 10.1016/j.ydbio.2014.08.013

Reedon, A. R., and Hurd, P. L. (2013). Water pH during early development influences sex ratio and male morphin a West African cichlid fish, Pelvicachromis pulcher. Zoology (Jena) 116, 139–143. doi: 10.1007/j.zoole.2012.11.001

Robert, N. M., Martin, L. J., and Tremblay, J. J. (2006). The orphan nuclear receptor NR4A1 regulates insulin-like 3 gene transcription in Leydig cells. Biol. Reprod. 74, 322–330. doi: 10.1093/biolreprod.74.4.570

Sanyanga, T. A., Nizami, B., and Bishop, ÖT. (2019). Mechanism of action of non-synonymous single nucleotide variations associated with α-carbonic anhydrase ii deficiency. Molecules (Basel, Switzerland) 24, 3987. doi: 10.3390/molecules2413987

Shan, E. H. H., Yu, R. M. K., and Wu, R. S. S. (2006). Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environ. Sci. Technol. 40, 3118–3122. doi: 10.1021/es0525279

Shen, Y., Lu, H., Chen, R., Zhu, L., and Song, G. (2020). MicroRNA-29c aing Wnt4. Mol. Med. Rep. 22, 4675–4684. doi: 10.3892/mmr.2020.11584

Szabó, Z., Hámálláien, J., Loiikkamen, L., Moilanen, A. M., Hirvikoski, P., Vàisänen, T., et al. (2010). Sorbitol dehydrogenase expression is regulated by androgens.
in the human prostate. *Oncol. Rep.* 23, 1233–1239. doi: 10.3892/or_0000755

Ta-Shma, A., Hjeij, R., Perles, Z., Dougherty, G. W., Abu Zahira, I., Letteboer, S. J. F., et al. (2018). Homozygous loss-of-function mutations in MNS1 cause laterality defects and likely male infertility. *PLoS Genet.* 14:e1007602. doi: 10.1371/journal.pgen.1007602

Thomas, P., and Rahman, M. S. (2012). Extensive reproductive disruption, ovarian masculinization and aromatase suppression in Atlantic croaker in the northern Gulf of Mexico hypoxic zone. *Proc. Biol. Sci.* 279, 28–38. doi: 10.1098/rspb.2011.0529

Thrash, J. C., Seitz, K. W., Baker, B. J., Temperton, B., Gillies, L. E., Rabalais, N. N., et al. (2017). Metabolic roles of uncultivated bacterioplankton lineages in the northern Gulf of Mexico “Dead Zone. *mBio* 8, e1017–e1017. doi: 10.1128/mBio.01017–17

Venø, M. T., Venø, S. T., Rehberg, K., van Asperen, J. V., Clausen, B. H., Holm, I. E., et al. (2017). Cortical morphogenesis during embryonic development is regulated by miR-34c and miR-204. *Front. Mol. Neurosci.* 10:31. doi: 10.3389/fnmol.2017.00031

Wang, W., Liu, W., Liu, Q., Li, B., An, L., Hao, R., et al. (2016). Coordinated microRNA and messenger RNA expression profiles for understanding sexual dimorphism of gonads and the potential roles of microRNA in the steroidogenesis pathway in Nile tilapia (*Oreochromis niloticus*). *Theriogenology* 85, 970–978. doi: 10.1016/j.theriogenology.2015.11.006

Wright, P. R., Georg, J., Mann, M., Sorescu, D. A., Richter, A. S., Lott, S., et al. (2014). CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. *Nucleic Acids Res.* 42, W119–W123. doi: 10.1093/nar/gku359

Yamamoto, Y., Zhang, Y., Sarida, M., Hattori, R. S., and Strüssmann, C. A. (2014). Coexistence of genotypic and temperature-dependent sex determination in pejerrey *Odontesthes bonariensis*. *PLoS One* 9:e102574. doi: 10.1371/journal.pone.0102574

Zhou, J., Yang, F., Leu, N. A., and Wang, P. J. (2012). MNS1 is essential for spermiogenesis and motile ciliary functions in mice. *PLoS Genet.* 8:e1002516. doi: 10.1371/journal.pgen.1002516

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Lai, Tam, Chen, Leung, Lin, Tsang, Kwok, Tse, Cheng, Chan and Kong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.