Norovirus in cancer patients: A review

1. Divya Samantha Kondapi, M.D. (Alternate Corresponding Author)
 Infectious diseases fellow
 Affiliations
 1) Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
 2) Section of Infectious diseases, Baylor College of Medicine, Houston, Texas, USA
 Email: dskondapi@mdanderson.org
 Email: dkondapi@gmail.com
 Contact number: +1 314-681-9145
 Fax number: +1 713-745-6839

2. Sasirekha Ramani, Ph.D.
 Assistant Professor of Virology and Microbiology
 Affiliations
 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
 Email: ramani@bcm.edu
 Contact number: +1 713-798-4445

3. Mary K. Estes, Ph.D.
 Distinguished Service Professor
 Affiliations
 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
 Email: mestes@bcm.edu
 Contact number: +1 713-798-3585

4. Robert L. Atmar, M.D.
 Professor, Medicine and Infectious diseases
 Affiliations
 Section of Infectious diseases, Baylor College of Medicine, Houston, Texas, USA
 Email: robert.atmar@bcm.edu
 Contact number: +1 713-798-6849

© The Author(s) 2021. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Key points

Patients with leukemia and lymphoma, and hematopoietic stem cell transplantation recipients experience profound immunosuppression that places them at high risk for developing chronic NoV infection resulting in complications such as fluid and electrolyte imbalances, altered mucosal barrier, and malnutrition.
Abstract

Norovirus (NoV) is the leading cause of viral-related diarrhea in cancer patients in whom it can be chronic, contributing to a decreased quality of life, interruption of cancer care, malnutrition, and altered mucosal barrier function. Immunosuppressed cancer patients shed NoV for longer periods of time than immunocompetent hosts favoring quasispecies development and emergence of novel NoV variants. While nucleic acid amplification tests (NAATs) for NoV diagnosis have revolutionized our understanding of NoV burden of disease; not all NAATs provide information on viral load, or infecting genotype. There is currently no effective antiviral or vaccine for chronic NoV infections. Screening for inhibitors of NoV replication in intestinal organoid culture models and creation of NoV specific adoptive T cells are promising new strategies to develop treatments for chronic NoV in immunosuppressed patients. Herein we summarize data on the epidemiology, clinical manifestations, diagnostic challenges and treatment of NoV infection in patients with cancer.
Introduction

Diarrhea is a common side effect of cancer therapies including cytotoxic chemotherapy (e.g. fluorouracil and irinotecan), radiation, targeted therapies i.e. tyrosine kinase inhibitors, immune check point inhibitors, hematopoietic stem cell transplantation (HSCT) [due to mucositis, immunosuppression and acute and chronic graft-versus-host disease (GVHD)]. Diarrhea can also result from microbiome dysbiosis related to antibiotic therapy, cancer therapy as well as from infection. Due to the frequent use of antibiotics resulting in microbiome disruption, it is no surprise that *Clostridioides difficile* is the most common cause of nosocomial diarrhea. The most common cause of viral associated diarrhea is norovirus (NoV) and these two pathogens frequently occur together in patients with cancer. While cancer patients can experience self-limited diarrhea due to NoV, those with underlying immunosuppression can develop chronic diarrhea with dehydration, weight loss, and malnutrition. NoV can also interfere with cancer care by delaying or altering chemotherapy regimens. While there are several reviews on acute NoV gastroenteritis, there is limited information on chronic NoV disease in cancer patients.

Norovirus biology

NoVs are small, non-enveloped RNA viruses that belong to the *Caliciviridae* family. The open reading frames of the virus genome encode two structural proteins (VP1, VP2) and six nonstructural proteins. NoV particles have an icosahedral structure with 180 molecules of the capsid viral protein 1 (VP1), arranged as dimers, with each dimer bearing a shell (S) and a protruding domain (P). The P domain is divided into P1 and P2 subdomains, of which the latter is relevant to immune recognition and receptor binding.

The genetic diversity amongst NoV strains is high. Noroviruses are classified into 10 genogroups of which genogroups GI, GII, GIV, VIII and IX are known to cause infections in humans. Genogroups are further subdivided into genotypes, and some genotypes are further classified into variants. Within the five genogroups that cause human infections, there are 39 different genotypes; GIs and GIIls are the most prevalent and are divided into 9 and 27 genotypes, respectively. Classification of variants has been primarily used for viruses belonging to genogroup II, genotype 4 (GIll.4) pandemic lineages. GIll.4 is the most common cause of NoV outbreaks worldwide and has been responsible for 6 major NoV acute gastroenteritis pandemics in the last 2 decades (‘95/96, 2002, 2004, 2006b, 2009, 2012).

Epidemiology of norovirus

NoV is a leading cause of epidemic, acute gastroenteritis across all age groups worldwide, with most outbreaks in the US occurring between November to April. Infections in immunocompetent persons are self-limiting with virus shedding for 2-3 weeks while prolonged NoV shedding and illness have been reported in persons with congenital immunodeficiency, solid organ transplant (SOT) or HSCT recipients, cancer chemotherapy, and those with HIV without seasonal peaks. The global burden of NoV related
diarrheal disease results in over $4 billion in direct healthcare costs, and over $60 billion in societal costs.17

Humans are the major reservoir for NoV, with a few reports of human NoV in pigs and cattle.18,19 Antigenic drift and shift are responsible for emergence of new GII.4 NoV variants every 2-3 years, allowing re-infection of hosts that were infected with other strains or variants.13 A single major contemporaneous genotype dominates in immunocompetent people, whereas immunocompromised patients with chronic NoV can shed variants acquired in previous years and display wider genotype diversity.20 Given prolonged NoV shedding and reduced immune pressure restricting viral mutations in immunocompromised individuals, it has been speculated that these hosts may be reservoirs for emergence of new NoV variants.21 In a detailed molecular study, Doerflinger22 analyzed 186 NoV capsid sequences during a 13 month period from a single immunocompromised host who had been shedding NoV for over 6 years. A multitude of capsid quasispecies belonging to GII.4 were observed, sharing 90% identity to other GII.4 sequences in the database. However, these variants had not been previously reported as causing outbreaks, and immediate family members of the patient did not develop infection during this study period despite NoV viral loads in the patient’s stool being similar to viral loads seen in acute infections. Therefore, these variants were thought to have limited transmissibility; on the other hand, it is also possible that family members were immune to re-infection with GII.4 quasispecies based on exposure to NoV during the primary infection. In other studies, transmission of NoV from chronically-infected persons have been shown23 and continuous shedding of infectious virus has been detected based on the ability to replicate in human intestinal enteroid (HIE) cultures in vitro.24 Molecular epidemiology studies suggest that a substantial proportion of NoV infections in immunocompromised patients originally thought to be nosocomial were acquired in the community, and nosocomial outbreaks where persons with immunodeficiency disorders are the source, are rare.25,26

Immunity to norovirus

Human challenge studies in the 1970s first suggested a role for host genetic factors in susceptibility to NoV infection.27 The P2 domain of NoV binds to the carbohydrate moiety of histo-blood group antigens (HBGA) on mucosal cells of the gastrointestinal tract and facilitates viral entry.7 HBGAs involved in NoV recognition belong to Lewis, secretor and ABO families.28 Susceptibility to human NoV infection is determined by the variation in HBGA alleles. Patients who do not express (1,2) fucosylated HBGAs in saliva or intestinal epithelium are called non-secretors (found in 20% of Europeans), and are resistant to infection with the prototype human NoV Norwalk virus (genotype GI.1), and many GII viruses.29 Secretor status is controlled by the fucosyltransferase 2 (FUT2) gene.30 Given NoV diversity, people resistant to one strain may be susceptible to another, highlighting the effect of polymorphisms in receptor genes.10 A metanalysis of 17 articles (2,304 participants) suggested that blood types A, B and AB might not affect susceptibility to NoV infection, but blood type O appeared to be more susceptible.31
Human challenge studies32,33 have shown that the human infectious dose for GI.1 NV is low (18 viral particles)32 and secretor positive subjects with blood group A and O were more susceptible to infection, while none with blood group B became infected. Blood type-specific differences were however not noted in studies with other genotypes such as GII.434, demonstrating the role of secretor status and adaptive immunity in acquiring infection.

Reeck et al.35 have shown that subjects with serum HBGA-blocking antibodies (inhibiting NV virus-like particles from binding to HBGA H-type 1 or 3) were protected from developing clinical illness following infection with the isogenic strain35-39 and shed less NV than subjects with no pre-existing serum blocking antibody. This supports the hypothesis that HBGA-blocking antibodies maybe used as a surrogate measure of NV serum neutralizing antibodies. Indeed, with the establishment of virus neutralization assays in HIE cultures, a strong correlation between neutralizing antibody titers and HBGA-blocking antibodies has been observed.37

HBGA-blocking antibody data from challenge studies and vaccine trials come predominantly from studies in healthy adults. Few studies have investigated immune correlates of protection in children. In a prospective study of 43 Finnish children with NoV acute gastroenteritis in whom secretor status was not addressed, there was correlation between low acute-phase serum GII.4 New Orleans (NO)-specific IgG titer and a low antibody-blocking potential with susceptibility to GII.4 NO infection.40 High preexisting GII.4 NO antibody titer, measured by both ELISA and HBGA-blocking antibodies, did not protect children from infection with other GII genotypes, suggesting the importance of strain-specific immunity for NoV infection at least in young children.

In terms of mucosal and cellular immune responses, volunteer studies have shown pre-challenge levels of NV-specific salivary IgA correlated with protection from gastroenteritis.38 while pre-challenge levels of NV-specific fecal IgA correlated with a reduced viral load. Pre-challenge levels of NV-specific memory IgG cells correlated with protection from gastroenteritis and correlated with pre-existing serum HBGA blocking antibodies.

The role of T cell mediated immunity as a correlate of protection against NoV infection remains unclear. In a study investigating cell-mediated immunity to NoV in 10 healthy children, NoV-specific T cells were detected in 8/10 children, with higher response to GII.4 compared to GI.3. These responses were transient, with no correlation between cell mediated and antibody responses.41 In a case series of 13 HSCT recipient children with chronic NoV infection who needed enteral/parenteral nutritional support,42 CD3 recovery was associated with clearance of NoV from fecal samples; however the role of NoV-specific antibodies in clearance of NoV was not evaluated. In a study by Davis,24 NoV infection
continued despite white blood cell count recovery due to possibly continued use of immunosuppressives. The relevance of T cells in gut associated lymphoid tissue in controlling NoV infection is unknown.43

There is limited data on NoV-specific antibody responses following infection, role of secretor status and blood groups in immunocompromised hosts. In a case of chronic NoV disease following rituximab-bendamustine therapy for non-Hodgkin’s lymphoma, stool samples and serum antibodies that block GII.4-2009 interaction with carbohydrate ligand were examined at 6 and 8 months after chemotherapy completion. Serum samples at 6 months lacked blocking antibodies and the patient continued to have diarrhea. However, 2 months later blocking antibody titers developed resulting in reduced need for antidiarrheals.44 This suggests that in this patient population, NoV protective immunity can be restored following a rituximab-bendamustine regimen as its immunosuppressive effects wear off six months or more after the last dose.

Norovirus and the microbiome

There is new evidence suggesting a role for the intestinal microbiome in NoV infection. Both commensal and pathogenic bacteria can display HBGA-like molecules that bind NoV and form clusters or resist environmental stressors.45,46 In healthy individuals, secretor status and an abundance of Ruminococcaceae and *Faecalibacterium* spp. correlate with NoV seronegative status, showing that the microbiome, secretor status and susceptibility to NoV infection are interdependent.47 In a challenge study with NV, the pre-infection microbiomes from subjects with asymptomatic infection are enriched in *Bacteroidetes* and depleted of clostridia relative to symptomatic subjects.48 In vitro, *Enterobacter cloacae* facilitates NoV B-cell infection.49 It remains to be seen if these observations are relevant across genotypes and in immunocompromised and patients with cancer and which microbial components facilitate or help control infection.

Clinical manifestations

Immunocompetent patients with NoV gastroenteritis have a short incubation period (usually 24–48 h), with illness characterized by vomiting, nausea, abdominal cramps and diarrhea that typically resolves in <72 hours.50 Viral shedding usually lasts 2–3 weeks after symptom resolution but can last up to 8 weeks.51 The clinical course of disease for cancer patients with solid organ tumors with limited or no immunosuppression is similar to immunocompetent hosts. In contrast, immunosuppressed patients experience prolonged fecal NoV shedding.52 In a review of viral-associated diarrhea of 97 patients at a tertiary cancer center from 2005 to 2015, 49 patients had NoV.53 Of these, only 2 patients had solid organ cancers whereas most cases had underlying leukemia or lymphoma. Diarrhea >3 weeks was observed in 8/49 (16%) of patients with viral shedding ranging from 46-270 days.

Patients with leukemia experience functional or absolute neutropenia, disordered B-cell function with reduced production of immunoglobulins, as well as suppressed T-cell function.54 The latter two
immunodeficiencies may predispose patients to NoV infection and can occur as a direct result of leukemia or from chemotherapy received. Drugs used to treat chronic lymphocytic leukemia such as Rituximab, an anti-CD20 mAb or Alemtuzumab, an anti-CD52 antibody, which has profound effects on B and T cells have been associated as a risk factor for NoV gastroenteritis in pediatric allograft recipients. NoV post-allogenic HSCT affects 2.9 to 22% of recipients in the first post-transplant year partly from T cell directed immunosuppressive regimens, and is associated with significant morbidity and mortality.

Allogeneic transplant-associated NoV diarrhea can be protracted for months requiring enteral or total parenteral nutritional support. Clinical differentiation between NoV gastroenteritis and gastrointestinal GVHD (GI GVHD) is challenging and poses a management dilemma since GI GVHD entails intensification of immunosuppression which could worsen NoV infection. In these cases, intestinal biopsy of upper and lower GI tract could be of use. At the microscopic level, crypt apoptosis, the characteristic histologic feature of GVHD, can also be seen in NoV infection. One study suggested that GI-GVHD is characterized by crypt apoptosis at the base of the crypts, with partial loss of epithelial cells, and infiltration of lamina propria by CD8+ T cells whereas in NoV gastroenteritis, the crypt apoptosis was seen at the luminal surface with more villous atrophy and intraepithelial infiltration of CD8 T lymphocytes. Typically, GI-GVHD affects both small and large bowel whereas NoV causes small intestinal enteritis. In a study analyzing intestinal biopsies from NoV-infected and non-infected (control) transplant patients (HSCT and small bowel), NoV was associated with edema, gastric metaplasia along with flattening of epithelium from loss of villin. NoV antigen VP1 was detected in the affected areas of duodenum, jejunum (small bowel transplant) and ileum, as well as local macrophages, T cells and dendritic cells. Non-structural proteins RdRp and VPg, suggestive of viral replication were detected in the epithelial cells of duodenum and jejunum. However, NoV-related histopathological changes in jejunum and ileum of HSCT recipients can be missed on routine colonoscopy or upper gastrointestinal endoscopy.

Another potential tool to determine the contribution of NoV in cancer patients with overlapping causes of diarrhea is the estimation of viral burden. Vomiting and diarrhea have been linked to high viral loads in patients undergoing immunosuppressive therapy, compared to those with asymptomatic shedding. In 152 cancer patients with GII (86%) and GI (14%) NoV diarrhea, dehydration and ICU admission were associated with a higher NoV stool load. Interestingly GII viral loads were 1.2 log higher than GI. Adding complexity, co-existence of other enteropathogens is common in HSCT patients with diarrhea. In a cohort of adults and children, 10/63 patients were diagnosed either with adenovirus (3), Clostridiodes difficile (4), cytomegalovirus (2) or rotavirus (1).

Chimeric antigen receptor T cells (CAR T) are revolutionizing the management of refractory diffuse large B cell lymphoma, mantle cell lymphoma, acute lymphoblastic leukemia and are being deployed for the treatment of solid tumors. The use of conditioning cyclophosphamide, fludarabine and the effects of the CAR T against CD19 result in hypogammaglobulinemia, and prolonged cytopenias. CAR-T can cause cytokine release syndrome and neurotoxicity, which may require treatment with high dose corticosteroids or IL-6 antagonists. Patients receiving CAR-T cells have a history of being heavily pretreated with chemotherapy and have accumulated immunosuppression over time placing them at
risk for opportunistic infections. In a case series of 9 CAR-T recipients with NoV diarrhea, 6 patients were HSCT recipients of which 5 suffered GI-GVHD. Three patients had diarrhea lasting >14 days with NoV shedding lasting 81-546 days. These patients developed malnutrition warranting parenteral nutritional support.

Diagnostic approach

Commercial enzyme immunoassays used to detect NoV antigen have poor sensitivity. Therefore, NAATs are being adopted, either in stand-alone or multiplexed platforms. NoV probes are present in several FDA-approved multiplex platforms [Biofire’s Gastrointestinal panel (FilmArray), Luminex xTAG Gastrointestinal Pathogen Panel (GPP), Verigene Enteric Pathogens Test, and BioCode GPP.] While these platforms have excellent sensitivity and specificity [Table 2] for GI and GII NoV, they do not provide viral loads or genotype-specific results.

Single platform PCRs are simpler in design, implementation and avoid primer-primer competition. FDA-approved single platform PCRs are the RIDA Gene norovirus GI/GII real time RT-PCR (RGN-RT PCR) and the ‘Xpert Norovirus assay. However; single platforms are less desirable in immunocompromised patients since co-occurrence of other enteropathogens could be missed.

Treatment

Immunocompromised patients with chronic NoV infection have limited options beyond supportive care. When feasible, immunosuppression should be decreased. Blanco et al described a double HSCT recipient with chronic NoV diarrhea, who suffered from GVHD-related bronchiolitis obliterans. His GVHD therapy was switched from tacrolimus to sirolimus, an mTOR-I inhibitor with improvement of diarrhea and resolution of fecal NoV RNA. There is little data to support the widespread use of this strategy, but reducing immunosuppression, when feasible, would make clinical sense allowing the innate and adaptive immune response to control NoV infection.

Since seroprevalence rates of NoV among adults is 50–90%, oral administration of serum-derived human immunoglobulin has been used as adjunctive treatment for treatment with mixed results. One hypothesis is that oral IgG blocks adhesion of NoV to the intestinal epithelium preventing replication by forming a complex with the virus. Another possible mechanism involves immunoglobulin-induced increase in anti-inflammatory cytokines and reduction of proinflammatory cytokines. NoV HBGA blocking activity, neutralizing titers and genotypes bound by IgG in commercial preparations are unknown. Data supporting the bioavailability of oral IgG in the small bowel has been studied in 3 immunocompromised patients in whom IgG was found in stools as immune complexes with NoV. In a placebo-matched case control study with 24 cancer and SOT patients, trends towards the resolution of diarrhea and decreased stool output were observed with oral IG (25 mg/kg every 6 hours for 2 days).
Nitazoxanide (NTZ) has activity against anaerobic bacteria, protozoa and viruses, and is FDA approved for the treatment of pediatric cryptosporidiosis and giardiasis. Its antiviral activity is thought to be from potentiation of PKR, a host protein kinase which then phosphorylates the eukaryotic initiation factor 2 alpha (eIF2α), halting viral protein synthesis. There is limited in vitro data for NTZ inhibition of NoV. In a replicon model examining the antiviral potential of NTZ and its active metabolite tizoxanide on GI.1 NV, the latter activated cellular antiviral response and stimulated the expression of interferon-stimulated genes (ISGs), such as interferon regulatory factor 1 (IRF-1) in both infected and uninfected human intestinal organoids. Data on NTZ efficacy for NoV diarrhea is limited and anecdotal. In a retrospective report, 3 of 5 HSCT recipients with NoV diarrhea improved following treatment with 500mg NTZ twice daily for 3 to 18 days and 3 showed resolution of symptoms along with negative RT-PCR in the stool after completion of therapy. In a placebo-controlled clinical trial of 50 subjects with viral gastroenteritis due to adenovirus, rotavirus or NoV, patients were randomized to either NTZ 500 mg or placebo twice daily for 3 days. Duration of illness was significantly reduced in the entire population and in subsets of patients with NoV; however, the number of patients with NoV only was small (n=13, 6 actives, 7 placebo). NNITS (Nitazoxanide for NoV in Transplant Patients Study) is an ongoing phase 2 multi-center, double-blind, placebo-controlled study to determine clinical and virologic efficacy and safety of NTZ for the treatment of symptomatic NoV diarrhea in SOT and HSCT recipients.

Favipiravir has been studied in a single patient case report where it offered symptomatic improvement but was associated with rapidly developing viral variants and required dose interruption due to side effects. Other treatments including interferons, monoclonal antibodies and antivirals in development have been recently reviewed by others.

Adoptive T cell therapy with ex vivo expanded virus-specific T cells has been used in treating viral infections after HSCT such as cytomegalovirus, adenovirus, BK polyomavirus, and most recently progressive multifocal leukoencephalopathy (PML). They are being developed for NoV from seropositive donors with promising pre-clinical results. Peripheral blood mononuclear cells stimulated with NoV peptide mixes spanning the entire open reading frame were cultured for 10 days. After stimulation, 4.2 mean fold increase in cell yield was noted, and T cells were polyclonal (CD4+, CD8+ populations) with reactivity to multiple NoV antigens. Specificity of these T cells against NoV antigens were determined using IFN-γ ELISpot assay. NoV-specific T cell responses were highly cross-reactive against different strains and variable epitopes. This potential strategy could be tried in HSCT and CAR-T recipients with chronic NoV diarrhea.

Given the need for antimicrobial prophylaxis during episodes of neutropenia, the intestinal microbiome undergoes profound alterations during HSCT and CAR-T therapy. In the case of HSCT, loss of microbiome diversity and richness impacts post-transplant immune reconstitution...
and clinical outcomes such as risk of bacteremia95, relapse of hematologic malignancy96 onset of GVHD97 and death.98 Fecal microbial transplantation (FMT) has been shown to reverse intestinal dysbiosis following HSCT,99 and appeared to be safe and effective treating HSCT associated \textit{C. difficile} infection.100 In a recent case of a 68 year old renal transplant recipient with chronic NoV diarrhea of 2 months duration, FMT was performed with complete symptom resolution with negative NoV testing on serial stool samples over a follow-up period of 5 months.101 Further studies are needed to determine if FMT, probiotics or complex microbial communities with glycans with affinity to NoV could potentially be an approach to treat chronic HSCT associated NoV.

Infection prevention for immunocompromised patients

Transmission of NoV occurs primarily by person-to-person, foodborne, and waterborne routes,102 with some studies suggesting transmission through aerosolized vomitus particles. Some data suggests NoV G1.7 and GII.12 are more likely associated with foodborne disease, and GII.4 with inter-person spread.103 Spread is facilitated by thermal stability, relative resistance to alcohol sanitizers,104 persistence on multiple surfaces, a pre-symptomatic viral shedding and long shedding period. NoV outbreaks involve people of all ages and occur in a wide variety of settings (e.g., hospitals and long-term facilities, restaurants and catered events, schools and day-care centers, military, prisons and commonly cruise ships).

Patients at risk for severe NoV infection should wash hands with soap and water for at least 20 seconds, especially while handling food or after using the restroom. Complete inactivation of three GII.4 strains was seen with 50 ppm of chlorine and higher in HIEs.105 Hand sanitizers cannot substitute for hand washing and can only be an adjunct. Hand hygiene is crucial as NoV can be found in vomitus or stool prior to symptom development and can remain in stool for 2 weeks or longer.

Patients with NoV gastroenteritis need contact precautions (gowns and gloves for entry) for a minimum of 48 hours after symptom resolution.106 This becomes challenging in the immunocompromised population who have prolonged NoV shedding. All efforts must be made to ensure single occupancy rooms for such patients. It is recommended that patients with symptomatic NoV have limited movements in and around the ward and avoid group activities especially in the setting of an outbreak. Adherence to hand hygiene with soap and water107 is paramount among patients, healthcare personnel and visitors of patients with symptoms.

Vaccines in development

NoV display wide antigenic diversity and infections with one genogroup generally do not confer protection to other genogroups. It is unclear how long effective immunity against a genotype lasts.108 While people lacking functional FUT2 enzyme are resistant to GI.1 and GII.4 NoVs, they remain susceptible to infections from other NoV genotypes. Several immune correlates of protection against NoV have been postulated, but the aforementioned factors make NoV vaccine development challenging.
One challenge is a decision on which genotypes to include in the vaccine formulation. Considering that the first detected NoV was GI.1, a vaccine containing this virus was first developed. Following the identification of GII.4 as the most common cause of NoV acute gastroenteritis and low level of cross reactivity between GI.1 and GII.4, a combined vaccine was developed. Thus far, two NoV vaccines are in human clinical studies: Non-replicating virus-like particles (VLPs), and recombinant adenoviruses (Table 3). There are no data on NoV vaccinations in patients with cancer.

Areas of uncertainty

Given the burden of NoV infections in cancer patients, several key challenges and questions remain to be answered (Table 4). Answers to some questions will be aided using next generation sequencing and availability of HIEs as in vitro culture models. HIEs, derived from stem cells in intestinal tissues, support the growth of multiple GI/GII NoV strains. Studies in HIEs have demonstrated the requirement for bile acids for some strains and have confirmed HBGA restriction described previously in epidemiological studies. HIEs have also allowed the direct evaluation of virus neutralization assays and demonstrated strong correlation between serum neutralizing antibodies and HBGA blocking antibodies to GII.4 VLP in healthy adults that received bivalent NoV vaccine.

A bivalent (GI.1, GII.4) NoV vaccine study in healthy US adults described cross protection to GII.2, but there are limited data overall on cross-protection to different circulating NoV strains as well as duration of protection. Nitazoxanide and oral immunoglobulin need further studies to determine efficacy, and it is unclear whether differences in treatment outcomes correlate with virus genotype or viral load. There is a need to identify viral and host druggable targets that can eradicate NoV, mitigate clinical manifestations, as well as to better define the role of the microbiome in NoV infection. Effective strategies for NoV infection could have a substantial impact on clinical outcomes and improve quality of life in patients with cancer.
Conflicts of interest
Baylor College of Medicine (MKE and RLA as inventors) has a patent for norovirus cultivation in human intestinal enteroids. MKE has a patent on methods and reagents to detect and characterize Norwalk virus and related viruses. MKE and RLA have received grant support from Takeda Vaccines Business Unit.

PCO reports grants from Summit Pharmaceuticals, grants from Deinove, grants and personal fees from Napo Pharmaceuticals, grants from Merck & Co., personal fees from Ferring Pharmaceuticals, personal fees from Singulex, grants from Melinta Therapeutics, outside the submitted work;

DK and SR have no competing interests.

Acknowledgments
Funding: This work was supported by NIH/NIAID U19AI144297 (MKE, RLA, PCO), pilot funds from Baylor College of Medicine’s Precision Medicine and Population Health initiative (SR) and institutional funds from University of Texas MD Anderson cancer center (PCO).

Patient Consent: This manuscript does not include factors necessitating patient consent.
Tables

Table 1: Select studies of adult and pediatric hematopoietic stem cell transplant recipients with NoV diarrhea

Patient population	N	Concomitant GI Graft vs. Host Disease N (%)	Duration of Symptoms In Days, Median (range)	Need for Total Parenteral Nutrition N (%)	NoV Genotypes	Reference
Adult	12	8(67)	90(15-420)	6(50)	GII.4 (var.3,4,6,8), GII.3, GII.7	9
Adult	11	1(9)	2-36	..		
Pediatric	13	1(8)	150 (60-380)	12 (92.3)		25
Adult	6	3(50)	61.6€	..		42
Adult	10	2(20)	42(3-135)	..		57
Adult, pediatric	34, 29	22(35)	8(1-328)	10(16)		58
Adult	6	2(33)	22.5(6-33)	..	GII, GI	59
Pediatric	25	3(12)	12.5(1-324)	12(48)	GII.2, GII.3, GII.4, GII.6, GII.7	60

GI= Gastrointestinal

† Includes 9 solid organ transplant recipients

€ Mean duration of shedding

‡ Patient 13 had enteral nutritional support
Table 2: Nucleic acid amplification tests that include probes for Norovirus

Test	FDA Approved	Platform & Number of Pathogens tested	Turnaround Time (hour)	Genotypes Detected	NoV Sensitivity/Specificity (%)	Study Location	Reference
Biofire FilmArray	2014	Multiplex, 23	1	GI/GII	92.9/99.6	North America, Europe, Asia, Asia	67,68,69,70,71
TAG GPP	2013	Multiplex, 14	6	GI/II	94.6/88.3-95.3	North America, Europe, Asia, Asia	67,68,69,70,72, 73
Verigene	2014	Multiplex, 9	2.5	GI/GII	89/100	North America	67
BioCode Gastrointestinal Pathogen Panel	2018	Multiplex, 17	5 or less	GI/GII	85.7/100	North America	74
RIDA Gene Norovirus GI/GII RT-PCR (RGN-RT PCR)	2018	Single	4	GI/GII	82.8-94.8/98.6-99.1 ¥	North America	75
Cepheid Xpert Norovirus Assay	2014	Single	1.5 or less	GI/GII	85.2–98.7/97-100	Europe, North America, Asia	73,76,77

¥ For GI genogroup sensitivity/specificity 82.8/99.1%, for GII sensitivity/specificity 94.8/98.6%
Table 3: NoV vaccines clinical trials that have completed recruitment

Vaccine Candidate	National Clinical Trial No.	Country	Study Phase	Genotype, Dose & Route	Objective	Study Population	Reference
Bivalent recombinant virus like particles (VLP)	02153112	Columbia, Finland, Panama	Phase II	GI.1, GII.4 (15/15, 15/50, 50/150 ug), IM	Safety, immunogenicity	Children (4 to <9 yr.), Toddlers (1 to <4 yr.), and Infants (6 months to <1 yr.)	109
	01609257	US	Phase I-II	G1.1, GII.4 50 ug each IM	Safety and efficacy	Adults 18-49 yr.	39, 110,111
	02661490 NOR-204	US	Phase II	GI.1, GII.4 15/50 ug IM	Safety and efficacy	Adults, 60-102 yr.	112
	02038907	Belgium	Phase II	GI.1, GII.4(15/15, 15/50, 50/50)	Safety and immunogenicity	Adults, 18 – 64 yr.	113
	02142504	US	Phase II	GI.1, GII.4 15/50, 50/50,15/15, IM	Safety and Immunogenicity	Adults, 18-49 yr.	114
ID	Country	Phase	Target Group	Study Details	Age Groups	Code	
------------	---------	-------	--------------	---	------------	------	
01168401	US	Phase I	GI.1, GII.4 5/5,15/15,50/50,150/150, IM	Safety and Immunogenicity	Adults, 18 - 85 yr.	115	
00806962	US	Phase I	GI.1, 50,100mcg Intranasal	safety and immunogenicity	Adults, 18 - 50 yr.	116	
02669121	US	Phase IIb	GI.1/GII.4 15/50ug	Efficacy and Immunogenicity	Adults, 18 - 49 yr.	117	
02475278	US	Phase II	GI.1, GII.4 15/50 ug IM	Evaluate serologic assays to assess post vaccination immune response	Adults, 18-49 yr.	118	
Recombinant adenovirus	US	Phase I	GI.1	Safety and Immunogenicity	Adults, 19-49 yr.	119	
02868073	US	Phase I	GI.1	Safety of different dosing regimens	Adults 19-49 yr.	119,125	
03125473	US	Phase 1b	GI.1	Safety of different dosing regimens	Adults 19-49 yr.	119,125	
Table 4: Key challenges and questions in NoV in the immunocompromised

Question	Answer
How should a positive NoV NAAT result be interpreted in the setting of overlapping clinical conditions that cause diarrhea in immunocompromised and cancer hosts?	
Can fecal viral load and/or cycle threshold distinguish between diarrhea due to NoV and diarrhea from other causes?	
Do mutations that occur in those that shed virus chronically result in quasispecies that possess differences in virulence?	
What are the risks of secondary spread of infection in those that shed norovirus chronically?	
What is the role of co-occurrence of other pathogens in the pathogenesis of NoV diarrhea?	
Do NoV genotype, genogroups, variants, and viral load play a role in response to treatment?	
Does the presence of NoV quasispecies affect disease pathogenesis and treatment outcome?	
Do NoV quasispecies display differences in infectivity? How is this relevant to secondary spread in health care facilities and the community?	
References

1. Chau I, Norman AR, Cunningham D, et al. A randomised comparison between 6 months of bolus fluorouracil/leucovorin and 12 weeks of protracted venous infusion fluorouracil as adjuvant treatment in colorectal cancer. *Ann Oncol.* 2005;16(4):549-557.
2. Rugo HS, Di Palma JA, Tripathy D, et al. The characterization, management, and future considerations for ErbB-family TKI-associated diarrhea. *Breast Cancer Res Treat.* 2019;175(1):5-15.
3. Oble DA, Mino-Kenudson M, Goldsmith J, et al. Alpha-CTLA-4 mAb-associated panenteritis: a histologic and immunohistochemical analysis. *Am J Surg Pathol.* 2008;32(8):1130-1137.
4. van Kraaij MG, Dekker AW, Verdonck LF, et al. Infectious gastro-enteritis: an uncommon cause of diarrhoea in adult allogeneic and autologous stem cell transplant recipients. *Bone Marrow Transplant.* 2000;26(3):299-303.
5. Touchefeu Y, Montassier E, Nieman K, et al. Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. *Aliment Pharmacol Ther.* 2014;40(5):409-421.
6. Gorschlüter M, Glasmacher A, Hahn C, et al. Clostridium difficile Infection in Patients with Neutropenia. *Clinical Infectious Diseases.* 2001;33(6):786-791.
7. Bok K, Green KY. Norovirus gastroenteritis in immunocompromised patients. *N Engl J Med.* 2012;367(22):2126-2132.
8. Stokely JN, Niendorf S, Taube S, et al. Prevalence of human norovirus and Clostridium difficile coinfections in adult hospitalized patients. *Clin Epidemiol.* 2016;8:253-260.
9. Roddie C, Paul JP, Benjamin R, et al. Allogeneic hematopoietic stem cell transplantation and norovirus gastroenteritis: a previously unrecognized cause of morbidity. *Clin Infect Dis.* 2009;49(7):1061-1068.
10. Glass RI, Parashar UD, Estes MK. Norovirus gastroenteritis. *N Engl J Med.* 2009;361(18):1776-1785.
11. Bertolotti-Ciarlet A, White LJ, Chen R, Prasad BV, Estes MK. Structural requirements for the assembly of Norwalk virus-like particles. *J Virol.* 2002;76(8):4044-4055.
12. Zheng DP, Ando T, Fankhauser RL, Beard RS, Glass RI, Monroe SS. Norovirus classification and proposed strain nomenclature. *Virology.* 2006;346(2):312-323.
13. White PA. Evolution of norovirus. *Clin Microbiol Infect.* 2014;20(8):741-745.
14. Noel JS, Fankhauser RL, Ando T, Monroe SS, Glass RI. Identification of a distinct common strain of "Norwalk-like viruses" having a global distribution. *J Infect Dis.* 1999;179(6):1334-1344.
15. Hall AJ, Lopman BA, Payne DC, et al. Norovirus disease in the United States. *Emerg Infect Dis.* 2013;19(8):1198-1205.
16. Fishman JA. Infections in immunocompromised hosts and organ transplant recipients: essentials. *Liver Transpl.* 2011;17 Suppl 3:S34-37.
17. Bartsch SM, Lopman BA, Ozawa S, Hall AJ, Lee BY. Global Economic Burden of Norovirus Gastroenteritis. *PLoS One*. 2016;11(4):e0151219.
18. Chao DY, Wei JY, Chang WF, Wang J, Wang LC. Detection of multiple genotypes of calicivirus infection in asymptomatic swine in Taiwan. *Zoonoses Public Health*. 2012;59(6):434-444.
19. Mattison K, Shukla A, Cook A, et al. Human noroviruses in swine and cattle. *Emerg Infect Dis*. 2007;13(8):1184-1188.
20. Bull RA, Eden JS, Luciani F, McElroy K, Rawlinson WD, White PA. Contribution of intra- and interhost dynamics to norovirus evolution. *J Virol*. 2012;86(6):3219-3229.
21. Karst SM, Baric RS. What is the reservoir of emergent human norovirus strains? *J Virol*. 2015;89(11):5756-5759.
22. Doerflinger SY, Weichert S, Koromyslova A, et al. Human Norovirus Evolution in a Chronically Infected Host. *mSphere*. 2017;2(2).
23. Sukhrie FH, Siebenga JJ, Beersma MF, Koopmans M. Chronic shedders as reservoir for nosocomial transmission of norovirus. *J Clin Microbiol*. 2010;48(11):4303-4305.
24. Davis A, Cortez V, Grodzki M, et al. Infectious Norovirus Is Chronically Shed by Immunocompromised Pediatric Hosts. *Viruses*. 2020;12(6).
25. Schwartz S, Vergoulidou M, Schreier E, et al. Norovirus gastroenteritis causes severe and lethal complications after chemotherapy and hematopoietic stem cell transplantation. *Blood*. 2011;117(22):5850-5856.
26. Kaufman SS, Chatterjee NK, Fuschino ME, et al. Characteristics of human calicivirus enteritis in intestinal transplant recipients. *J Pediatr Gastroenterol Nutr*. 2005;40(3):328-333.
27. Parrino TA, Schreiber DS, Trier JS, Kapikian AZ, Blacklow NR. Clinical immunity in acute gastroenteritis caused by Norwalk agent. *N Engl J Med*. 1977;297(2):86-89.
28. Huang P, Farkas T, Zhong W, et al. Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. *J Virol*. 2005;79(11):6714-6722.
29. Lindesmith L, Moe C, Marionneau S, et al. Human susceptibility and resistance to Norwalk virus infection. *Nat Med*. 2003;9(5):548-553.
30. Currier RL, Payne DC, Staat MA, et al. Innate Susceptibility to Norovirus Infections Influenced by FUT2 Genotype in a United States Pediatric Population. *Clin Infect Dis*. 2015;60(11):1631-1638.
31. Liao Y, Xue L, Gao J, Wu A, Kou X. ABO blood group-associated susceptibility to norovirus infection: A systematic review and meta-analysis. *Infect Genet Evol*. 2020;81:104245.
32. Atmar RL, Opekun AR, Gilger MA, et al. Determination of the 50% human infectious dose for Norwalk virus. *J Infect Dis*. 2014;209(7):1016-1022.
33. Teunis PF, Moe CL, Liu P, et al. Norwalk virus: how infectious is it? *J Med Virol*. 2008;80(8):1468-1476.
34. Frenck R, Bernstein DI, Xia M, et al. Predicting susceptibility to norovirus GII.4 by use of a challenge model involving humans. *J Infect Dis*. 2012;206(9):1386-1393.
35. Reeck A, Kavanagh O, Estes MK, et al. Serological correlate of protection against norovirus-induced gastroenteritis. *J Infect Dis*. 2010;202(8):1212-1218.
36. Atmar RL, Bernstein DI, Harro CD, et al. Norovirus vaccine against experimental human Norwalk Virus illness. *N Engl J Med.* 2011;365(23):2178-2187.

37. Atmar RL, Ettayebi K, Ayyar BV, et al. Comparison of Microneutralization and Histo-Blood Group Antigen-Blocking Assays for Functional Norovirus Antibody Detection. *J Infect Dis.* 2020;221(5):739-743.

38. Ramani S, Neill FH, Opekun AR, et al. Mucosal and Cellular Immune Responses to Norwalk Virus. *J Infect Dis.* 2015;212(3):397-405.

39. Atmar RL, Bernstein DI, Lyon GM, et al. Serological Correlates of Protection against a GII.4 Norovirus. *Clin Vaccine Immunol.* 2015;22(8):923-929.

40. Malm M, Uusi-Kerttula H, Vesikari T, Blazevic V. High serum levels of norovirus genotype-specific blocking antibodies correlate with protection from infection in children. *J Infect Dis.* 2014;210(11):1755-1762.

41. Malm M, Hyoty H, Knip M, Vesikari T, Blazevic V. Development of T cell immunity to norovirus and rotavirus in children under five years of age. *Sci Rep.* 2019;9(1):3199.

42. Saif MA, Bonney DK, Bigger B, et al. Chronic norovirus infection in pediatric hematopoietic stem cell transplant recipients: a cause of prolonged intestinal failure requiring intensive nutritional support. *Pediatr Transplant.* 2011;15(5):505-509.

43. Wingfield T, Gallimore CI, Xerry J, et al. Chronic norovirus infection in an HIV-positive patient with persistent diarrhoea: a novel cause. *J Clin Virol.* 2010;49(3):219-222.

44. Knoll BM, Lindesmith LC, Yount BL, Baric RS, Marty FM. Resolution of diarrhea in an immunocompromised patient with chronic norovirus gastroenteritis correlates with constitution of specific antibody blockade titer. *Infection.* 2016;44(4):551-554.

45. Woodward JM, Gkrania-Klotsas E, Cordero-Ng AY, et al. The role of chronic norovirus infection in the enteropathy associated with common variable immunodeficiency. *Am J Gastroenterol.* 2015;110(2):320-327.

46. Miura T, Sano D, Suenaga A, et al. Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses. *J Virol.* 2013;87(17):9441-9451.

47. Rodriguez-Diaz J, Garcia-Mantrana I, Vila-Vicent S, et al. Relevance of secretor status genotype and microbiota composition in susceptibility to rotavirus and norovirus infections in humans. *Sci Rep.* 2017;7:45559.

48. Patin NV, Peña-Gonzalez A, Hatt JK, Moe C, Kirby A, Konstantinidis KT. The Role of the Gut Microbiome in Resisting Norovirus Infection as Revealed by a Human Challenge Study. *mBio.* 2020;11(6).

49. Jones MK, Watanabe M, Zhu S, et al. Enteric bacteria promote human and mouse norovirus infection of B cells. *Science.* 2014;346(6210):755-759.

50. Graves NS. Acute gastroenteritis. *Prim Care.* 2013;40(3):727-741.

51. Atmar RL, Opekun AR, Gilger MA, et al. Norwalk virus shedding after experimental human infection. *Emerg Infect Dis.* 2008;14(10):1553-1557.

52. Henke-Gendo C, Harste G, Juergens-Saathoff B, Mattner F, Deppe H, Heim A. New real-time PCR detects prolonged norovirus excretion in highly immunosuppressed patients and children. *J Clin Microbiol.* 2009;47(9):2855-2862.
53. Ghosh N, Malik FA, Daver RG, Vanichanan J, Okhuysen PC. Viral associated diarrhea in immunocompromised and cancer patients at a large comprehensive cancer center: a 10-year retrospective study. *Infect Dis (Lond)*. 2017;49(2):113-119.

54. Dasanu CA. Intrinsic and treatment-related immune alterations in chronic lymphocytic leukaemia and their impact for clinical practice. *Expert Opin Pharmacother*. 2008;9(9):1481-1494.

55. Robles JD, Cheuk DK, Ha SY, Chiang AK, Chan GC. Norovirus infection in pediatric hematopoietic stem cell transplantation recipients: incidence, risk factors, and outcome. *Biol Blood Marrow Transplant*. 2012;18(12):1883-1889.

56. Lemes LG, Correa TS, Fiaccadori FS, et al. Prospective study on Norovirus infection among allogeneic stem cell transplant recipients: prolonged viral excretion and viral RNA in the blood. *J Clin Virol*. 2014;61(3):329-333.

57. Ueda R, Fuji S, Mori S, et al. Characteristics and outcomes of patients diagnosed with norovirus gastroenteritis after allogeneic hematopoietic stem cell transplantation based on immunochromatography. *Int J Hematol*. 2015;102(1):121-128.

58. Swartling L, Ljungman P, Remberger M, et al. Norovirus causing severe gastrointestinal disease following allogeneic hematopoietic stem cell transplantation: A retrospective analysis. *Transpl Infect Dis*. 2018;20(2):e12847.

59. Doshi M, Woodwell S, Kelleher K, Mangan K, Axelrod P. An outbreak of norovirus infection in a bone marrow transplant unit. *Am J Infect Control*. 2013;41(9):820-823.

60. Ye X, Van JN, Munoz FM, et al. Noroviruses as a Cause of Diarrhea in Immunocompromised Pediatric Hematopoietic Stem Cell and Solid Organ Transplant Recipients. *Am J Transplant*. 2016;16(1):874-1881.

61. Karandikar UC, Crawford SE, Ajami NJ, et al. Detection of human norovirus in intestinal biopsies from immunocompromised transplant patients. *J Gen Virol*. 2016;97(9):2291-2300.

62. Ludwig A, Adams O, Laws HJ, Schrotten H, Tenenbaum T. Quantitative detection of norovirus excretion in pediatric patients with cancer and prolonged gastroenteritis and shedding of norovirus. *J Med Virol*. 2008;80(8):1461-1467.

63. He T, McMillen TA, Qiu Y, et al. Norovirus Loads in Stool Specimens of Cancer Patients with Norovirus Gastroenteritis. *J Mol Diagn*. 2017;19(6):836-842.

64. Neelapu SS. Managing the toxicities of CAR T-cell therapy. *Hematol Oncol*. 2019;37 Suppl 1:48-52.

65. Kondapi DS, Ramani S, Olvera A, Atmar RL, Estes MK, Okhuysen PC. 1098. Norovirus Infection in Cancer Patients Undergoing Chimeric Antigen Receptor T-cell Immunotherapy (CAR-T). *Open Forum Infectious Diseases*. 2020;7(Supplement_1):S578-S579.

66. Chan MCW, Kwok K, Hung TN, Chan PKS. Reduced Diagnostic Performance of Two Norovirus Antigen Enzyme Immunoassays for the Emergent Genogroup II Genotype 17 Kawasaki 2014 Variant. *J Clin Microbiol*. 2016;54(6):1650-1652.

67. Huang RS, Johnson CL, Pritchard L, Hepler R, Ton TT, Dunn JJ. Performance of the Verigene(R) enteric pathogens test, Biofire FilmArray gastrointestinal panel and Luminex xTAG(R) gastrointestinal pathogen panel for detection of common enteric pathogens. *Diagn Microbiol Infect Dis*. 2016;86(4):336-339.
Khare R, Espy MJ, Cebelinski E, et al. Comparative evaluation of two commercial multiplex panels for detection of gastrointestinal pathogens by use of clinical stool specimens. *J Clin Microbiol*. 2014;52(10):3667-3673.

Zhan Z, Guo J, Xiao Y, et al. Comparison of BioFire FilmArray gastrointestinal panel versus Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for diarrheal pathogen detection in China. *Int J Infect Dis*. 2020;99:414-420.

Zhang H, Morrison S, Tang YW. Multiplex polymerase chain reaction tests for detection of pathogens associated with gastroenteritis. *Clin Lab Med*. 2015;35(2):461-486.

Spina A, Kerr KG, Cormican M, et al. Spectrum of enteropathogens detected by the FilmArray GI Panel in a multicentre study of community-acquired gastroenteritis. *Clin Microbiol Infect*. 2015;21(8):719-728.

Wessels E, Rusman LG, van Bussel MJ, Claas EC. Added value of multiplex Luminex Gastrointestinal Pathogen Panel (xTAG(R) GPP) testing in the diagnosis of infectious gastroenteritis. *Clin Microbiol Infect*. 2014;20(3):O182-187.

McHugh MP, Guerendiaian D, Hardie A, Kenicer J, Mackenzie L, Templeton KE. Detection of Norovirus by BD MAX, Xpert((R)) Norovirus, and xTAG((R)) Gastrointestinal Pathogen Panel in stool and vomit samples. *J Clin Virol*. 2018;105:72-76.

Kanwar N, Hassan F, Barclay L, et al. Evaluation of RIDA((R))GENE norovirus GI/GII real time RT-PCR using stool specimens collected from children and adults with acute gastroenteritis. *J Clin Virol*. 2018;104:1-4.

Gonzalez MD, Langley LC, Buchan BW, et al. Multicenter Evaluation of the Xpert Norovirus Assay for Detection of Norovirus Genogroups I and II in Fecal Specimens. *J Clin Microbiol*. 2016;54(1):142-147.

Wong RS, Yeo F, Chia WT, et al. Performance evaluation of Cepheid Xpert Norovirus kit with a user-modified protocol. *J Med Virol*. 2018;90(3):485-489.

Boillat Blanco N, Kuonen R, Bellini C, et al. Chronic norovirus gastroenteritis in a double hematopoietic stem cell and lung transplant recipient. *Transpl Infect Dis*. 2011;13(2):213-215.

Gairard-Dory AC, Degot T, Hirschi S, et al. Clinical usefulness of oral immunoglobulins in lung transplant recipients with norovirus gastroenteritis: a case series. *Transplant Proc*. 2014;46(10):3603-3605.

Chagla Z, Quirt J, Woodward K, Neary J, Rutherford C. Chronic norovirus infection in a transplant patient successfully treated with enterally administered immune globulin. *J Clin Virol*. 2013;58(1):306-308.

Florescu DF, Hermsen ED, Kwon JY, et al. Is there a role for oral human immunoglobulin in the treatment for norovirus enteritis in immunocompromised patients? *Pediatr Transplant*. 2011;15(7):718-721.

Losonsky GA, Johnson JP, Winkelstein JA, Yolken RH. Oral administration of human serum immunoglobulin in immunodeficient patients with viral gastroenteritis. A pharmacokinetic and functional analysis. *J Clin Invest*. 1985;76(6):2362-2367.

Keeffe EB, Rossignol JF. Treatment of chronic viral hepatitis with nitazoxanide and second generation thiazolides. *World J Gastroenterol*. 2009;15(15):1805-1808.
84. Dang W, Xu L, Ma B, et al. Nitazoxanide Inhibits Human Norovirus Replication and Synergizes with Ribavirin by Activation of Cellular Antiviral Response. Antimicrob Agents Chemother. 2018;62(11).
85. Gorgeis J, Sizemore C, Bashey A, et al. Nitazoxanide Is Effective Therapy for Norovirus Gastroenteritis after Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation. 2017;23(3, Supplement):S197-S198.
86. Rossignol JF, El-Gohary YM. Nitazoxanide in the treatment of viral gastroenteritis: a randomized double-blind placebo-controlled clinical trial. Aliment Pharmacol Ther. 2006;24(10):1423-1430.
87. Nussbaum EZ, Azar MM, Cohen E, McManus D, Topal JE, Malinis M. Orally Administered Human Immunoglobulin Therapy for Norovirus Enteritis in Solid Organ Transplant Recipients: A Case Series at a Single Academic Transplant Center. Clin Infect Dis. 2020;71(8):e206-e209.
88. Mercorelli B, Palu G, Loregian A. Drug Repurposing for Viral Infectious Diseases: How Far Are We? Trends Microbiol. 2018;26(10):865-876.
90. Hanajiri R, Sani GM, Saunders D, et al. Generation of Norovirus-Specific T Cells From Human Donors With Extensive Cross-Reactivity to Variant Sequences: Implications for Immunotherapy. J Infect Dis. 2020;221(4):578-588.
99. Taur Y, Coyte K, Schluter J, et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. *Science translational medicine*. 2018;10(460).

100. Webb BJ, Brunner A, Ford CD, Gazdik MA, Petersen FB, Hoda D. Fecal microbiota transplantation for recurrent Clostridium difficile infection in hematopoietic stem cell transplant recipients. *Transpl Infect Dis*. 2016;18(4):628-633.

101. Barberio B, Massimi D, Bonfante L, et al. Fecal microbiota transplantation for norovirus infection: a clinical and microbiological success. *Therapeutic advances in gastroenterology*. 2020;13:1756284820934589.

102. Kirking HL, Cortes J, Burrer S, et al. Likely transmission of norovirus on an airplane, October 2008. *Clin Infect Dis*. 2010;50(9):1216-1221.

103. Vega E, Barclay L, Gregoricus N, Shirley SH, Lee D, Vinje J. Genotypic and epidemiologic trends of norovirus outbreaks in the United States, 2009 to 2013. *J Clin Microbiol*. 2014;52(1):147-155.

104. Keswick BH, Satterwhite TK, Johnson PC, et al. Inactivation of Norwalk virus in drinking water by chlorine. *Appl Environ Microbiol*. 1985;50(2):261-264.

105. Costantini V, Morantz EK, Browne H, et al. Human Norovirus Replication in Human Intestinal Enteroids as Model to Evaluate Virus Inactivation. *Emerg Infect Dis*. 2018;24(8):1453-1464.

106. LeBaron CW, Furutan NP, Lew JF, et al. Viral agents of gastroenteritis. Public health importance and outbreak management. *MMWR Recomm Rep*. 1990;39(RR-5):1-24.

107. Sickbert-Bennett EE, Weber DJ, Gergen-Teague MF, Sobsey MD, Samsa GP, Rutala WA. Comparative efficacy of hand hygiene agents in the reduction of bacteria and viruses. *Am J Infect Control*. 2005;33(2):67-77.

108. Esposito S, Principi N. Norovirus Vaccine: Priorities for Future Research and Development. *Front Immunol*. 2020;11:1383.

109. Masuda T, Lefevre I, Mendelman P, Sherwood J, Bizjajeva S, Borkowski A. 2276. Immunogenicity of Takeda’s Bivalent Virus-Like Particle (VLP) Norovirus Vaccine (NoV) Candidate in Children From 6 Months up to 4 Years of Age. *Open Forum Infectious Diseases*. 2018;5(suppl_1):S674-S674.

110. Sundararajan A, Sangster MY, Frey S, et al. Robust mucosal-homing antibody-secreting B cell responses induced by intramuscular administration of adjuvanted bivalent human norovirus-like particle vaccine. *Vaccine*. 2015;33(4):568-576.

111. Bernstein DI, Atmar RL, Lyon GM, et al. Norovirus vaccine against experimental human GII.4 virus illness: a challenge study in healthy adults. *J Infect Dis*. 2015;211(6):870-878.

112. Mattison CP, Cardemil CV, Hall AJ. Progress on norovirus vaccine research: public health considerations and future directions. *Expert Rev Vaccines*. 2018;17(9):773-784.

113. Leroux-Roels G, Cramer JP, Mendelman PM, et al. Safety and Immunogenicity of Different Formulations of Norovirus Vaccine Candidate in Healthy Adults: A Randomized, Controlled, Double-Blind Clinical Trial. *J Infect Dis*. 2018;217(4):597-607.

114. Atmar RL, Baehner F, Cramer JP, et al. Persistence of Antibodies to 2 Virus-Like Particle Norovirus Vaccine Candidate Formulations in Healthy Adults: 1-Year Follow-up With Memory Probe Vaccination. *J Infect Dis*. 2019;220(4):603-614.
115. Treanor JJ, Atmar RL, Frey SE, et al. A novel intramuscular bivalent norovirus virus-like particle vaccine candidate--reactogenicity, safety, and immunogenicity in a phase 1 trial in healthy adults. *J Infect Dis.* 2014;210(11):1763-1771.

116. El-Kamary SS, Pasetti MF, Mendelman PM, et al. Adjuvanted intranasal Norwalk virus-like particle vaccine elicits antibodies and antibody-secreting cells that express homing receptors for mucosal and peripheral lymphoid tissues. *J Infect Dis.* 2010;202(11):1649-1658.

117. Cortes-Penfield NW, Ramani S, Estes MK, Atmar RL. Prospects and Challenges in the Development of a Norovirus Vaccine. *Clin Ther.* 2017;39(8):1537-1549.

118. Atmar RL, Cramer JP, Baehner F, Han C, Borkowski A, Mendelman PM. An Exploratory Study of the Salivary Immunoglobulin A Responses to 1 Dose of a Norovirus Virus-Like Particle Candidate Vaccine in Healthy Adults. *J Infect Dis.* 2019;219(3):410-414.

119. Kim L, Liebowitz D, Lin K, et al. Safety and immunogenicity of an oral tablet norovirus vaccine, a phase I randomized, placebo-controlled trial. *JCI Insight.* 2018;3(13).

120. Ettayebi K, Crawford SE, Murakami K, et al. Replication of human noroviruses in stem cell-derived human enteroids. *Science.* 2016;353(6306):1387-1393.

121. Ettayebi K, Tenge VR, Cortes-Penfield NW, et al. New Insights and Enhanced Human Norovirus Cultivation in Human Intestinal Enteroids. *mSphere.* 2021;6(1):e01136-01120.

122. Murakami K, Tenge VR, Karandikar UC, et al. Bile acids and ceramide overcome the entry restriction for GII.3 human norovirus replication in human intestinal enteroids. *Proc Natl Acad Sci U S A.* 2020;117(3):1700-1710.

123. Haga K, Ettayebi K, Tenge VR, et al. Genetic Manipulation of Human Intestinal Enteroids Demonstrates the Necessity of a Functional Fucosyltransferase 2 Gene for Secretor-Dependent Human Norovirus Infection. *mBio.* 2020;11(2).

124. Sherwood J, Mendelman PM, Lloyd E, et al. Efficacy of an intramuscular bivalent norovirus GI.1/GII.4 virus-like particle vaccine candidate in healthy US adults. *Vaccine.* 2020;38(41):6442-6449.