Radioactive contamination of BaF₂ crystal scintillator

O.G. Polischuk, P. Belli, R. Bernabei, F. Cappella, V. Caracciolo, R. Cerulli, A. Di Marco, F.A. Danevich, A. Incicchitti, D.V. Poda, V.I. Tretyak

1Institute for Nuclear Research, MSP 03680 Kyiv, Ukraine
2INFN, Sezione di Roma, I-00185 Rome, Italy
3INFN, Sezione di Roma “Tor Vergata”, I-00133 Rome, Italy
4Dipartimento di Fisica, Università di Roma “Tor Vergata”, I-00133 Rome, Italy
5Dipartimento di Fisica, Università di Roma “La Sapienza”, I-00185 Rome, Italy
6INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi (AQ), Italy

Abstract. Barium fluoride (BaF₂) crystal scintillators are promising detectors to search for double beta decay processes in 130Ba ($Q_{2\beta} = 2619(3)$ keV) and 132Ba ($Q_{2\beta} = 844(1)$ keV). The 130Ba isotope is of particular interest because of the indications on 2β decay found in two geochemical experiments. The radioactive contamination of BaF₂ scintillation crystal with mass of 1.714 kg was measured over 113.4 hours in a low-background DAMA/R&D set-up deep underground (3600 m w.e.) at the Gran Sasso National Laboratories of INFN (LNGS, Italy). The half-life of 212Po (present in the crystal scintillator due to contamination by radium) was estimated as $T_{1/2} = 298.8 \pm 0.8$ (stat.) ± 1.4 (syst.) ns by analysis of the events pulse profiles.

1 Introduction

BaF₂ is a promising crystal scintillator for different applications (detection of high energy gamma rays [1] and neutrons [2]). The scintillation material is also widely used in medicine for positron emission tomography (PET) [3]. The compound looks a promising detector to search for double beta (2β) decay of barium [4]. Natural barium contains two potentially 2β active isotopes, 130Ba ($Q_{2\beta} = 2618.7(2.6)$ keV) and 132Ba ($Q_{2\beta} = 844.0(1.1)$ keV) [5, 6]. The 130Ba isotope is of particular interest because of the reports on the observation in geochemical experiments of double electron capture with a half-life $T_{1/2} = (2.2 \pm 0.5) \times 10^{21}$ yr [7] and $T_{1/2} = (6.0 \pm 1.1) \times 10^{20}$ yr [8].

The high level of radioactive contamination of BaF₂ scintillation crystal by uranium and thorium is the main source of background of the detectors [4], however, this feature allows to use the detector for measurements of some short-lived isotopes in U/Th chains (e.g. of 212Po). Results of measurements of radioactive contamination of a large volume BaF₂ crystal scintillator are presented here. We have also derived a half-life value of 212Po from the data by using pulse-shape analysis of 212Bi \rightarrow 212Po events.

2 Measurements, results and discussion

2.1 Experiments

Radioactive contamination of BaF₂ (3" × 3", 1.714 kg) was measured over 113.4 hours in a low-background DAMA/R&D set-up deep underground (3600 m w.e.) at the Gran Sasso National Laboratories of INFN (LNGS, Italy). The BaF₂ crystal scintillator was viewed through two light-guides (23" × 100 mm) by two low radioactive 3" photomultipliers (PMT, ETL 9302FLA). The detector was surrounded by Cu bricks and sealed in a low radioactive air-tight Cu box continuously flushed by high purity nitrogen gas (stored deep underground for a long time) to avoid the presence of residual environmental radon. The Cu box was surrounded by a passive shield made of high purity Cu, 10 cm of thickness, 15 cm of low radioactive lead, 1.5 mm of cadmium and 4 to 10 cm of polyethylene/paraffin to reduce the external background. The shield was contained inside a Plexiglas box, also continuously flushed by high purity nitrogen gas. An event-by-event data acquisition system recorded amplitude and pulse profile of events at the sampling rate of 1 GSPS over a time window of 4000 ns.

a Contribution to Proc. of Int. Workshop on Radiopure Scintillators RPSCINT 2013, 17-20.09.2013, Kyiv, Ukraine; to be published in EPJ Web of Conferences
b Corresponding author: polischuk@kinr.kiev.ua
The energy scale of the BaF$_2$ detector and its energy resolution in the range of interest have been determined by means of 22Na (511, 1275 keV), 137Cs (662 keV), 241Am (60 keV), 60Co (1173, 1333 keV), 133Ba (356 keV) and 228Th (239, 2615 keV) gamma sources. The energy resolution (full width at half maximum, FWHM) of 15.5% was obtained for 662 keV gamma quanta of 137Cs, while for 511 and 1275 keV gamma lines of 22Na source the energy resolution was 16.4% and 10.8%, respectively (see Fig. 1; in all figures, energy is given in gamma scale). The energy dependence of the energy resolution can be approximated as: FWHM (keV) = [397(54) + 15.6(3) $\times E_\gamma$]$^{1/2}$, where E_γ is energy of gamma quanta in keV.

2.2 Pulse-shape discrimination of α, β and Bi-Po events

The mean time method was used to separate alpha, gamma(beta) and Bi-Po events in the BaF$_2$ scintillator. The scatter plot of the mean time versus energy (see Fig. 2) demonstrates pulse-shape discrimination ability of the detector.

According to the fit, the α/β ratio for the BaF$_2$ scintillation detector depends on energy of α particles as $\alpha/\beta = 0.200(1) + 0.0245(1) \times E_\alpha$, where E_α is energy of α particles in MeV. The radioactive contamination of the
BaF$_2$ crystal obtained from the fit is presented in Table 1. One can conclude that the BaF$_2$ crystal is contaminated by radium.

Table 1. Radioactive contamination of the BaF$_2$ crystal.

Chain	Source	Activity, Bq/kg
232Th	232Th	< 0.004
228Th	228Th	$1.20(5)$
238U	238U	< 0.0002
226Ra	226Ra	$6.9(1)$
210Pb	210Pb	$0.88(1)$
235U	235U	< 0.0005
231Pa	231Pa	< 0.0006
227Ac	227Ac	< 0.06

2.3 Pulse-shape analysis of Bi-Po events

Events in the fast chains (212Bi–212Po from 232Th family and 214Bi–214Po from 238U) can be selected by the mean time method, as one can see in Fig. 2. The time intervals between β events (of 212Bi or 214Bi) and subsequent α events (of 212Po or 214Po) were obtained by analysis of the pulse profiles. An example of the 212Bi→212Po→208Pb event in the BaF$_2$ scintillator is presented in Fig. 5.

An energy spectra of the first events (beta decay of 212Bi with $Q_\beta = 2254$ keV and 214Bi with $Q_\beta = 3272$ keV) and of the second events (alpha decay of 212Po with $Q_\alpha = 8954$ keV and 214Po with $Q_\alpha = 7833$ keV) selected from the Bi-Po pulse profiles are presented in Fig. 6.

The time spectrum was fitted by the chi-square method in different time intervals from 100 ns to 1550 ns. To estimate a systematic error of the half-life value, we have analysed three time distributions with bins 1, 2 and 3 ns per channel. Only the fits with χ^2/n.d.f. values in the range of 0.92 – 1.15 (where n.d.f. is number of degrees of freedom) were taken into account in the analysis. The fits gave 45 values of 212Po half-life in the range of 297.4 – 299.8 ns with an average value $T_{1/2} = 298.8 \pm 0.8$ (stat.) ± 1.4(syst.) ns. The obtained half-life is an excellent agreement with the table value 299 ± 2 ns [9], and in a reasonable agreement with the recent result of the Borexino collaboration 294.7 ± 0.6(stat.) ± 0.8(syst.) ns [10].

We have also estimated activity of 228Th from the Bi-Po analysis as 1.04(10) Bq/kg, which is in a reasonable interval 3000–3800 keV (see lower part in Fig. 6). An energy threshold of 300 keV was chosen for the first events to decrease jitter of the event time determination.
agreement with the result obtained from the fit of the alpha spectrum presented in Fig. 6.

![Graph showing time between 1 and 2 events, ns](image)

Figure 7. The time distribution for the fast sequence of β (212Bi) and α (212Po) decays selected by the pulse-shape analysis of Bi-Po events from the data accumulated with the BaF$_2$ scintillation detector over 113.4 hours. The obtained half-life $T_{1/2} = 298.8 \pm 0.8\,(\text{stat.}) \pm 1.4\,(\text{syst.})$ ns is in good agreement with the table value 299 ± 2 ns [9].

4 Conclusions

The radioactive contamination of the BaF$_2$ crystal scintillator was estimated to be on the level of few Bq/kg for 226Ra and 228Th. Taking into account 3 orders of magnitude lower activity of 238U and 232Th (only limits <0.0002 Bq/kg for 238U and <0.004 Bq/kg for 232Th were obtained) and broken equilibrium in the chains, one can conclude that the BaF$_2$ crystal is contaminated by radium. The response of the BaF$_2$ crystal scintillator to α particles has been investigated in the wide energy interval and the capability of pulse-shape discrimination between α particles and γ quanta (electrons) has been demonstrated.

Analysis of the time intervals distribution between β and α decays in the fast Bi-Po chains allowed us to estimate half-life of 212Po as $T_{1/2} = 298.8 \pm 0.8\,(\text{stat.}) \pm 1.4\,(\text{syst.})$ ns, which is in agreement with the table value [9].

The contamination of the BaF$_2$ crystal by 226Ra and 228Th is the main problem in applications of this scintillator to search for double beta decay of barium. An R&D of methods to purify barium from radium traces is in progress at the Gran Sasso National Laboratories with an aim to develop radiopure BaF$_2$ crystal scintillators to search for double beta decay of 130,132Ba. Such a counting experiment is of particular interest, taking into account indications of two geochemical experiments on double beta decay of 130Ba.

References

1. S.E. Rathi et al., Nucl. Instr. Meth. A **482**, 355 (2002)
2. C. Guerrero et al., Nucl. Instr. Meth. A **608**, 424 (2009)
3. D.M. Seliverstov et al., Nucl. Instr. Meth. A **695**, 369 (2012)
4. R. Cerulli et al., Nucl. Instr. Meth. A **525**, 535 (2004)
5. M. Wang et al., Chinese Phys. C **36**, 1603 (2012)
6. V.I. Tretyak and Yu.G. Zdesenko, At. Data Nucl. Data Tables **61**, 43–90 (1995); ibid **80**, 83 (2002)
7. A.P. Meshik et al., Phys. Rev. C **64**, 035205 (2001)
8. M. Pujol et al., Geochim. Cosmochim. Acta **73**, 6834 (2009)
9. R.B. Firestone et al., *Table of isotopes* (John Wiley & Sons, N.Y., 1996) and 1998 CD update
10. G. Bellini et al., Eur. Phys. J. A **49**, 92 (2013)