Neuroimaging Contributions to the Understanding of Neuropsychological Cognitive Processing for Numeracy and Mathematics

John Gountas* and Marcela Moraes2

1Department of neurology, Notre Dame University, Australia
2Department of neurology, Curtin University of Technology, Australia

*Corresponding author: John Gountas, Department of neurology, Notre Dame University, Fremantle, WA, Australia

Introduction

Numerical and mathematical processing skills have a long history from the ancient classical Greeks Plato, Aristotle, Frank Mendel [1] to the birth of modern psychology, with John Dewey [2], Conant [3], O’Shea [4], suggesting that children learn numerical concepts by reinforcement, not in an abstract way, by identifying similarities, differences of empirical individual units, forming general concepts. This essay follows through the recent evolution of neuroimaging studies debate, sets the theoretical context of three dominant theories that influenced the context of research tools/methods; and how neuroscientific research has contributed uniquely to the understanding of numerosity. The essay concludes with a cogent argument that alternative research tools are necessary, complimentary, and multidisciplinary research generates different types/levels of new hypotheses, ensuing more reliable and valid information which benefits individuals, educationalists and society at large. Numerical processing (referring to arithmetic, mathematics, geometry and advanced computation) is huge. The paper is an eclectic review of the neurotypical findings of general numerical processing only but excludes dyscalculia Menon [5].

Numeracy Importance

The overwhelming research suggest that, numeracy is essential for progress in all aspects of life. Understanding numbers is the basis for developing arithmetic and mathematical skills of all levels and types of applications Dehaene [6], Hurford [7]. Major longitudinal research studies in the UK Bynner, Parsons [8], Donato [9], documented the phenotypic and behavioural outcomes of poor numerical skills and highlight the negative consequences on men’s and women’s, employment opportunities, health outcomes, social-civic involvement and overall quality of life Parsons, Banner [10]. Finding out if specific numerical processing is actually an observable brain process or not, is important to make stronger correlational claims, regarding relationships of numerosity and language.

Theories and Neuroimaging

New neuroimaging tools are used to test existing and emerging new theories and collect data that are impossible with surveys, and experiments. However, without multimethod, multiparadigm comparisons to make valid, reliable and nomological evaluations of competing claims Goya, Pitre [11], Hsee [12], Hsee [13], Hagger [14]. Three theoretical strands attempt to explain the development of number processing, using different research approaches. The first theory suggests that language is innate, culturally constructed and absence impedes learning numerical concepts and knowledge Chomsky [15], Hurford [16], Wiese [17], Spelke [18]. Their position without neuroscientific data, is not supported empirically, of how, when, and where language underpins numerical development. The second theory suggests that children learn numerical concepts as part of lexical acquisition and development of Theory of Mind (TOM) Bloom [19], Clark [20-22]. TOM facilitates multiple perspective taking, conceptual differentiation, through social interactions, enabling nuanced meaning differentiation between words, symbols, and number associations. However, Bloom and Clark, provide weak empirical evidence that brain processing occurs this way, and fail to account for alternative hypotheses.

The third theoretical position postulates a biological, evolutionary, ontogenetic Carey [23], innate ability of 'number sense' and processed in distinct brain areas Dehaene [24]. Innate, numerical processing is present in all cultures with and without dedicated number words Pica et al., 2004; Lasne [25]. Dehaene and co-researchers, Dehaene [26], Dehaene & Cohen [27]. Dehaene [28] using neuroimaging data proposed that different numerical formats are processed in different brain regions. First, visual

Copyright © All rights are reserved by John Gountas.
Arabic numbers are processed by bilateral activity in inferior ventral occipito-temporal areas; secondly, the inferior parietal areas process analogical size, and approximate volume; and thirdly, word numbers are processed in the left perisylvian areas Dehaene [29]. Dehaene and colleagues, during a period of 20 years, carried out extensive neuroscience research to disentangle the effects of language-dominant or spatial iconic representation of numerical processing and whether there are specific brain regions innately dedicated to non-verbal numerical processing Dehaene [29], Dehaene [28], Pica et al., 2004; Agrillo [30], Lasne [25].

They claim that, innate numerical ability theory is evolutionary Dehaene [28] Pica et al., 2004, and studied systematically using different tasks to understand the conceptual processing of numerical approximation, estimation, and manipulation related to concrete examples, in non-numerically literate (Amazonian Munduruku tribe) and literate western cultures McCrink [31]. To support their theory, that numbers are language-independent representations, Dehaene and colleagues, focused on the dedicated biological brain networks, which are putatively responsible for basic number processing. Their multimethod research produced diverse but supporting evidence of evolutionary innate abilities in animals, infants and adult humans, independent of other abilities. Their neuroscientific research using a range of neuroscientific tools, fMRI, MEG, EEG, and brain legions, suggests that the inferior parietal region is implicated in number processing Dehaene [28]; King & Dehaene, 2014. This level of specificity of explanatory power which are impossible to test without neuroimaging (Table 1).

Table 1: Comparative context of research methods relevant to number processing.

Neuro-Psychological Research methods used for numerical processing	Validity of data for numerical ability testing	Reliability of data findings of numerical abilities.	Topographic accuracy (loci of brain/genes)	Temporal accuracy (of brain/gene function)	Overall assessment
Qualitative research methods 1. Observations 2. Focus groups and dept interviews	1.2. Very Weak non replicable	1.2. Unreliable, non-replicable	1.2. Impossible to identify brain regions or genes responsible for outcomes	1.2. Impossible to measure brain activity related to outcomes	Useful to identify general phenotypic and behavioural traits. Tentative hypothesis development
Quantitative Res tools 1. Surveys 2. Experiments 3. Behavioural tests	1.2.3. Weak inferential correlational	1.2.3. Reasonable but correlational	1.2.3. Impossible NA	1.2.3. Impossible NA	Useful to test individual and group trait correlational differences
Neuroscience research tools 1. EEG/ERP 2. MEG, fNIRS 3. fMRI, 4. TMS/DCS, tRNS 5. Single cell testing	1. Medium 2. Medium-High 3. High 4. High 5. Highest	1. High 2. High 3. High 4. High 5. Highest	1. Low 2. Medium 3. High 4. Medium-High 5. Highest	1. High 2. High 3. Medium 4. Medium-good 5. Highest	1.2. Good for temporal activity, RT, 3.fMRI is excellent for locating activity 4.tDCS/tRNS excellent for causal testing 5.SC testing excellent for causal res.
Genetic research tools 1. GWS Molecular	1. excellent	1. excellent	1. excellent	1. NA, but can predict long term effects	Excellent but pluripotency of single genes
Future Directions

The meta-analysis by Arsalidou [40], found that the core brain regions for numerical processing are indeed the parietal regions (IPS and precuneus), the insula, caudate nucleus, the frontal cortex (e.g., superior and medial frontal gyri), and cingulate. However, the developmentally changing networks and the function of typical and atypical brains regarding all interconnected areas (bilaterial frontal (DLIFC, VLPFC), parietal (IPS, AG, SMG), occipito-temporal and medial temporal, including HC areas) are not well understood yet, according to Peters and De Smedt [41]. New ways of investigating brain networks hubs using resting-state fMRI can fine tune our understanding of numerical connectivity Van Den Heuvel [42].

Educational Implications

The impressive neuroscience discoveries so far have identified more brain areas and networks involved using multimethod neuroimaging approaches to discover causal relationships (Amlaick et al., 2018). Glen [43] found that neuroplasticity and active epigenetic input of numerical exposure/talk, can improve and reverse some numerical deficiencies (Michels, et al., 2019). De Muoi, et al., (in press), eye tracking can help educationalists to identify appropriate individualised teaching methods to cope with time pressure. Dillon [44] suggest that developing relevant games to teach children numerical skills, and approximate number system have positive and long-lasting improvements (Amalrick et al., 2018). Glen [43] found that neuroplasticity and active epigenetic input of numerical exposure/talk, can improve and reverse some numerical deficiencies (Michels, et al., 2019). De Muoi, et al., (in press), eye tracking can help educationalists to identify appropriate individualised teaching methods to cope with time pressure. Dillon [44] suggest that developing relevant games to teach children numerical skills, and approximate number system have positive and long-lasting improvements (Amalrick et al., 2018).

References

1. Frank E (1940) The Fundamental Opposition of Plato and Aristotle. The American Journal of Philology 61(2): 166-185.
2. Dewey J (1896) Psychological Review 3(3): 326-329.
3. Conant LL (1896) The Number Concept: Its Origin and Development. Macmillan, New York and London.
4. O'Shea MV (1901) The psychology of number: a genetic view. Psychological Review 8(4): 371-383.
5. Menon V (2016) Working memory in children’s math learning and its disruption in dyscalculia. Current Opinion in Behavioral Science 10: 125-132.
6. Dehaene S (1997) The Number Sense: How the Mind Creates Mathematics. Oxford University Press, NY, USA.
7. Hurford JR (1987) Language and Number: The Emergence of a Cognitive System. Blackwell, Oxford, UK.
8. Byrner J, Parsons S (1997) Does Numeracy Matter? Evidence from the National Child Development Study on the Impact of Poor Numeracy on Adult Life. Basic Skills Agency, England, UK.
9. Donati G, Meaburn EL, Dumonthell I (2019) The specificity of associations between cognition and attainment in English, maths and science during adolescence. Learning and Individual Differences 69: 84-93.
10. Byrner J, Parsons S (2006) New Light on Literacy and Numeracy. National Research and Development Centre for Adult Literacy and Numeracy.
11. Gioia DA, Pitre E (1990) Multiparadigm Perspectives on Theory Building. Academy of Management Review 15(4): 584-602.
12. Hsee CK (1996) Attribute Evaluability: Its Implications for Joint-Separate Evaluation Reversals and Beyond. Organizational Behavior and Human Decision Processes 67(3): 247-257.
13. Hsee CK, Loewenstein GF, Blount S, Bazerman MH (1999) Preference reversals between joint and separate evaluation of options: A review and theoretical analysis. Psychological Bulletin 125(5): 576-590.
14. Hagger MS, Giscard DP, Chatzisarantis N (2017) On Nomological Validity and Auxiliary Assumptions: The Importance of Simultaneously Testing Effects in Social Cognitive Theories Applied to Health Behavior and Some Guidelines. Front Psychol 8: 1900-1933.
15. Chomsky N (1988) Language and the Problems of Knowledge. MIT Press, Cambridge, Massachusetts, London, England.
16. Wiese H (2003) Numbers, Language, and the Human Mind. Cambridge University Press, Cambridge, England.
17. Spelke ES (2017) Core Knowledge, Language, and Number. Language Learning and Development 13(2): 147-170.
18. Bloom P (2000) How Children Learn the Meanings of Words. MIT Press, Cambridge, England.
19. Clark EV (1990) On the pragmatics of contrast. Journal of Child Language 17: 417-431.
20. Clark EV (1993) The lexicon in acquisition. Cambridge University Press, Cambridge, England.
21. Clark EV (1997) Conceptual perspective and lexical choice in acquisition. Cognition 64(1): 1-37.
22. Carey S (1998) Knowledge of Number: Its Evolution and Ontogeny. Science 282(5389): 641-642.
23. Lasne G, Piazza M, Dehaene S, Kleinschmidt A, Eger E (2019) Discriminability of numerosity-evoked fMRI activity patterns in human intra-parietal cortex reflects behavioral numerical acuity. Cortex 114: 90-101.
24. Dehaene S (1992) Varieties of numerical abilities. Cognition 44(1-2): 1-42.
25. Dehaene S, Cohen L (1995) Towards an anatomical and functional model of number processing. Mathematical Cognition 1: 82-120.
26. Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three Parietal Circuits for Number Processing. Cogn Neuropsychol 20(3): 487-506.
27. Agrillo C, Piffer L, Bisazza A, Butterworth B (2012) Evidence for Two Number Processing. Cogn Neuropsychol 20(3): 487-506.
28. Cohen Kadosh R, Cohen Kadosh K, Kaas A, Henik A, Goebel R (2007) Notation-Dependent and -Independent Representations of Numbers in Common to Numerosities and Number Symbols in Human Intraparietal Cortex. Neuron 53(2): 293-305.
29. Cohen Kadosh R, Cohen Kadosh K, Kaas A, Henik A, Goebel R (2007) Notation-Dependent and -Independent Representations of Numbers in the Parietal Lobes. Neuron 53(2): 293-305.
30. Cohen Kadosh R, Cohen Kadosh K, Kaas A, Henik A, Goebel R (2007) Notation-Dependent and -Independent Representations of Numbers in the Parietal Lobes. Neuron 53(2): 293-305.
31. Jacob SN, Valentín D, Nieder A (2012) Relating magnitudes: the brain’s code for proportions. Trends in Cognitive Sciences 16(3): 157-166.
32. Nieder A, Diester L, Tuducut O (2006) Temporal and Spatial Enumeration Processes in the Primate Parietal Cortex. Science 313(5792): 1431-1435.
