ON THE COHOMOLOGY OF ACTIONS OF GROUPS
BY BERNOULLI SHIFTS

by

SORIN POPA* and ROMAN SASYK

ABSTRACT. We prove that if G is a countable, discrete group having infinite, normal subgroups with the relative property (T), then the Bernoulli shift action of G on

$\prod_{g \in G} (X_0, \mu_0)_g$, for (X_0, μ_0) an arbitrary probability space, has first cohomology group isomorphic to the character group of G.

1. Introduction

Let G be a countable discrete group and σ a measure-preserving, free, ergodic action of G on a probability space (X, μ). σ induces an action (also denoted by σ) of G on the abelian von Neumann algebra $A = L^\infty(X, \mu)$ by $\sigma_g(f) := f \circ \sigma_{g^{-1}}$. A common example of such actions are the Bernoulli shifts σ, defined by taking an arbitrary probability space (X_0, μ_0), then defining $(X, \mu) = \prod_{g \in G} (X_0, \mu_0)_g$, where $(X_0, \mu_0)_g$ are identical copies of (X_0, μ_0), and then letting σ_g act on (X, μ) by $\sigma_g((x_h)_h) = (x_{g^{-1} h})_h$.

A 1-cocycle for a free, ergodic measure-preserving, action σ of G on a probability space (X, μ) is a map $w : G \to U(A)$ satisfying the relations $w_{gh} = w_g \sigma_g(w_h), \forall g, h \in G_0$ and $w_e = 1$, where $U(A)$ is the group of \mathbb{T} valued functions in $A = L^\infty(X, \mu)$. For example, any character γ of G gives a 1-cocycle for σ by $w_g = \gamma(g)1, g \in G$. A 1-cocycle w is co-boundary if there exists $v \in U(A)$ such that $w_g = v \sigma_g(v^*), \forall g$. Denote by $Z^1(\sigma)$ the set of all 1-cocycles and by $B^1(\sigma)$ the set of co-boundaries. $Z^1(\sigma)$ is clearly a commutative group under multiplication, with $B^1(\sigma)$ a subgroup. The corresponding quotient group $H^1(\sigma) = Z^1(\sigma)/B^1(\sigma)$ is called the first cohomology group of σ, and is clearly a conjugacy invariant for σ.

In the early 80’s Klaus Schmidt proved that the group G has the property (T) of Kazhdan ([K]) if and only if $H^1(\sigma)$ is countable for any free, ergodic, measure preserving action σ of G ([S2]). He also showed that G is amenable iff the Bernoulli shift actions of G are non-strongly ergodic, and iff all measure-preserving actions of the group G are non-strongly ergodic. Related to these results, Connes and Weiss proved that G has the property (T) iff all its ergodic, free measure-preserving actions are strongly ergodic.

*Supported in part by nsf-grant 01000883
In this paper we obtain the first actual computations of cohomology groups $H^1(\sigma)$, in the case σ is a Bernoulli shift action and the group G is weakly rigid in the following sense: G contains infinite, normal subgroups $H \subset G$ such that (G, H) has the relative property (T) of Kazhdan-Margulis([M], [dHV]), i.e., any representation of G that weakly contains the trivial representation of G must contain the trivial representation of H. Note that any group G of the form $G = H \times \Gamma$ with H an infinite group with the property (T) of Kazhdan is weakly rigid.

Theorem. If G is a countable, weakly rigid discrete group and σ is a Bernoulli shift action of G then $H^1(\sigma)$ is equal to the character group of G.

Corollary. If Γ is an arbitrary countable discrete abelian group, $G = SL(n, \mathbb{Z}) \times \Gamma$, for some $n \geq 3$, and σ is a Bernoulli shift action of G then $H^1(\sigma) = \hat{\Gamma}$.

We mention that the similar result for (purely) non-commutative Bernoulli shifts was obtained in ([Po]). In fact, to prove the above Theorem we will follow the line of arguments in ([Po]), with the commutativity allowing many simplifications.

2. Preliminaries

Let G be a discrete group and σ a measure preserving action of G on a standard probability measure space (X, μ). The action it implements on the abelian von Neumann algebra $A = L^\infty(X, \mu)$, still denoted by σ, preserves the integral and thus extends to an action (or unitary representation) σ of G on the Hilbert space $L^2(X, \mu)$. We denote by $U(A)$ the group of unitary elements in A. Besides the notion of 1-cocycles for σ defined in the introduction we need the following:

2.1. Definition. A weak 1-cocycle for the action σ is a function $w : G \to U(A)$ satisfying $w_{gh} = w_g \sigma_g(w_h) \mod \mathbb{C}, \forall g, h \in G$, and $w_e = 1$. A weak cocycle w is a weak coboundary if there exist a unitary u in A such that $w_g = u \sigma_g(u^*) \mod \mathbb{C}, \forall g \in G$. Note that if w is a weak 1-cocycle for σ and $v \in U(A)$ then $w'_g = vw_g \sigma_g(v^*), g \in G$ is also a weak 1-cocycle for σ. Two weak 1-cocycles w, w' for which there exists v as above are called equivalent.

2.2. Remarks. 1°. Let w be a weak 1-cocycle for σ and denote by $\gamma(g, h) \in \mathbb{T}$ the scalar satisfying $w_{gh} = \gamma(g, h)w_g \sigma_g(w_h), \forall g, h$. Condition $w_e = 1$ then implies $\gamma(e, g) = \gamma(g, e) = 1, \forall g \in G$. Also, the associativity relation $w_g(w_hw_k) = (w_gw_h)w_k$ entails

$$\gamma(g, h)\gamma(gh, k) = \gamma(g, hk)\gamma(h, k), \forall g, h, k.$$

A function $\gamma : G \times G \to \mathbb{T}$ that verifies the previous conditions is called a scalar valued (or \mathbb{T}-valued) 2-cocycle for the group G. Thus any weak 1-cocycle w for the action σ has associated a scalar 2-cocycle $\gamma = \gamma_w$.
2°. If the weak 1-cocycle w is a weak coboundary and $w_g = \lambda_g \nu \sigma_g(v^*)$ with $\lambda_g \in \mathbb{C}$ then $\lambda_{gh} = \gamma(g,h)\lambda_g\lambda_h$. In particular if w is a genuine 1-cocycle then λ follows a character of G.

2.3. Lemma. Let w be a weak 1-cocycle for the action σ, with scalar 2-cocycle γ.

1°. For $g \in G$ and $\xi \in L^2(X,\mu)$ denote $\sigma_g^w(\xi) := w_g^* \sigma_g(\xi)$. Then σ^w is a projective representation of G on $L^2(X,\mu)$ with scalar 2-cocycle γ.

2°. Let $H\bar{S}$ the space of Hilbert-Schmidt operators on $L^2(X,\mu)$ and for each T in $H\bar{S}$ denote $\tilde{\sigma}^w_g(T) := \sigma^w_g T \sigma^w_g$. Then $\tilde{\sigma}^w$ is a unitary representation of G on $H\bar{S}$.

3°. If we identify an element $T \in H\bar{S}$ with an element a of $L^2(X,\mu) \otimes L^2(X,\mu) \simeq L^2(X \times X, \mu \times \mu)$ in the usual way, then $\tilde{\sigma}^w_g(T) = 1 \otimes w_g \cdot (\sigma_g \otimes \sigma_g)(a) \cdot w_g^* \otimes 1$.

Proof. 1°. We have:

$$\sigma_g^w \sigma_h^w(\xi) = \sigma_g^w(\sigma_h(\xi)) w_h^* = \sigma_g(\sigma_h(\xi)) \sigma_g^w(\xi) w_h^* = \sigma_{gh}(\xi) \gamma(g,h) w_{gh}^* = \gamma(g,h) \sigma_{gh}(\xi),$$

showing that σ^w is a projective representation.

2°. If $T \in H\bar{S}$ then

$$\tilde{\sigma}_g^w \tilde{\sigma}_h^w(T) = \sigma_g^w T \sigma_h^w = \gamma(g,h) \sigma_{gh}^w(\xi) \gamma(\xi) \sigma_{gh}^w = \tilde{\sigma}_{gh}^w(T).$$

3°. Since the space $H\bar{S}$ of Hilbert-Schmidt operators on $L^2(X,\mu)$ is isomorphic to $L^2(X,\mu) \otimes L^2(X,\mu)$ via the identification $x \otimes y^*(\xi) = (\xi|x) y$, we have:

$$\tilde{\sigma}_g^w(x \otimes y^*)(\xi) = (\sigma_g^w(\xi)|x) \sigma_g^w(y) = (\xi|\sigma_g^w(x)) \sigma_g^w(y) w_g^* = (\sigma_g^w(x) w_g^*) \otimes (\sigma_g^w(y))^*(\xi) = (1 \otimes w_g)(\sigma_g \otimes \sigma_g)(y^*)(w_g^* \otimes 1)(\xi).$$

Then extend by linearity. \qed

2.4. Lemma. With the notations of Lemma 2.3, the following are equivalent:

1. $\tilde{\sigma}^w$ contains a copy of the trivial representation.

2. σ^w has a non-trivial, invariant finite dimensional subspace $\mathcal{H}_0 \subset L^2(X,\mu)$.

3. There exist $a \neq 0$ in $L^2(X) \otimes L^2(X)$ such that $(1 \otimes w_g)(\sigma_g \otimes \sigma_g)(a) \cdot (w_g^* \otimes 1) = a$.

Proof. (1) \Rightarrow (2). First note that the action $\tilde{\sigma}^w$ can be extended to all $\mathcal{B}(L^2(X,\mu))$. Also note that if $T \in H\bar{S}$ is fixed by $\tilde{\sigma}^w$, so is T^*. Thus the trace class operator $TT^* \in \mathcal{B}(L^2(X,\mu))$ is fixed by $\tilde{\sigma}^w$. By the Borel functional calculus, all the spectral projections of TT^* are fixed by $\tilde{\sigma}^w$. As they have finite trace, it follows that they are projections on finite dimensional subspaces. Choose \mathcal{H}_0 a non-trivial finite dimensional subspace of $L^2(X,\mu)$ corresponding to some spectral projection P of TT^*, and note that $\tilde{\sigma}_g^w(P)$ is the projection of $L^2(X,\mu)$ onto $\sigma_g^w(\mathcal{H}_0)$. Then as $\tilde{\sigma}_g^w(P) = P$, it follows that $\sigma_g^w(\mathcal{H}_0) = \mathcal{H}_0$. Thus \mathcal{H}_0 is an invariant subspace for σ^w.
(2) ⇒ (1). If \(H_0 \) is an invariant subspace for \(\sigma^w \), take \(P \) the finite rank projection of \(L^2(X, \mu) \) onto \(H_0 \). Then \(P \) is invariant for the action \(\tilde{\sigma}^w \).

(2) ⇔ (3). Trivial by previous lemma.

Recall that the measure preserving action \(\sigma \) of \(G \) on the probability space \((X, \mu)\) is weakly mixing if and only if the only finite dimensional subspace of \(L^2(X, \mu) \) invariant to \(\sigma \) is \(\mathbb{C} \) (see e.g. [BMe]).

2.5. Lemma

Assume \(\sigma \) is weakly mixing and let \(w \) be a weak 1-cocycle for \(\sigma \). Then \(\tilde{\sigma}^w \) contains a copy of the trivial representation if and only if \(w \) is a weak coboundary. Moreover, if this is the case, then the unitary element \(u \in L^\infty(X, \mu) \) with \(w_g = u \sigma_g(u^*) \) mod \(\mathbb{C} \), \(\forall g \in G \), is unique up to a scalar multiple.

Proof. If \(w_g = \lambda_g u^* \sigma_g(u), \forall g \in G \), then \(\sigma_g^w(\mathbb{C}u) = \mathbb{C} \sigma_g(u) w_g^* = \mathbb{C}u \), thus \(H_0 = \mathbb{C}u \) is \(\sigma^w \)-invariant. Thus, by Lemma 2.4, the orthogonal projection onto \(H_0 \) is a fixed point for \(\tilde{\sigma}^w \).

Conversely, let \(H_0 \subset L^2(X, \mu) \) be a \(\sigma^w \)-invariant finite dimensional subspace. Choose an orthonormal basis \(\{ \xi_1, \ldots, \xi_n \} \) of \(H_0 \) and note that \(\{ \eta_i \} = \{ \sigma_g(\xi_i) w_g^* \} \) is also an orthonormal basis of \(H_0 \). But an easy computation shows that \(\Sigma_i \xi_i \xi_i^* = \Sigma_i \eta_i \eta_i^* \in L^1(X, \mu) \) for any two orthonormal basis of \(H_0 \). Thus, since

\[
\sigma_g(\Sigma_i \xi_i \xi_i^*) = \Sigma_i (\sigma_g(\xi_i) w_g^*) (w_g \sigma_g(\xi_i^*)) = \Sigma_i \eta_i \eta_i^* = \Sigma_i \xi_i \xi_i^*
\]

and since \(\sigma \) is ergodic on \((X, \mu)\), it follows that \(\Sigma_i \xi_i \xi_i^* \in \mathbb{C} \). In particular, all \(\xi_i \) are bounded elements, \(\xi_i \in L^\infty(X, \mu) \).

But since

\[
\sigma_g(\xi_i \xi_j^*) = \sigma_g(\xi_i) w_g^* w_g \sigma_g(\xi_j^*) = \sigma_g^w(\xi_i) (\sigma_g^w(\xi_j))^*,
\]

the finite dimensional subspace \(H_0 \cdot H_0^* \) of \(L^\infty(X, \mu) \) spanned by \(\{ \xi_i \xi_j^* \}_{i,j=1}^n \) is \(\sigma \)-invariant. Since \(\sigma \) is weakly mixing, it follows that \(H_0^\sigma H_0^* = \mathbb{C} \). Thus \(\xi_i \xi_j^* \in \mathbb{C}1, \forall i, j \), which implies that \(n = 1 \) and \(\xi_1 \) is a scalar multiple of a unitary element.

Finally, if \(w_g = u^* \sigma_g(u) \mod \mathbb{C} \) and \(w_g = u^* \sigma_g(u^*) \mod \mathbb{C} \), then \(u^* u^* = \sigma_g(u^* u^*) \mod \mathbb{C} \), i.e. the subspace \(\mathbb{C} u^* u^* \) is invariant to \(\sigma \), implying that \(u^* = u \mod \mathbb{T} \). □

3. The main result

Let \((X_0, \mu_0)\) be a nontrivial probability space and \(G \) an infinite discrete group. Denote \((X, \mu) := \prod_{g \in G}(X_0, \mu_0)\) and let \(\sigma \) be the action of \(G \) on \((X, \mu)\) by \(G \)-Bernoulli shifts, i.e., \(\sigma_g((x_h)_h) = (x_{g^{-1}h})_h \). This action is well known to be mixing. Note that if \(H \subset G \) is a subgroup of \(G \) then \(\sigma_H \) is a \(H \)-Bernoulli shift. Also, note that the (diagonal) product of two \(G \)-Bernoulli shifts is a \(G \)-Bernoulli shift.
Recall from ([dHV]) that an inclusion of discrete groups $H \subset G$ has the relative property (T) if the following condition holds true:

3.0. There exist a finite set of elements g_1, g_2, \ldots, g_n in G and $\epsilon > 0$ such that for any unitary representation π of G on a Hilbert space \mathcal{H} which has a unit vector ξ with $\|\pi(g_i)\xi - \xi\|_\mathcal{H} < \epsilon$ for all $1 \leq i \leq n$, there exists a unit vector fixed by $\pi|_\mathcal{H}$.

By a result of Jolissaint ([Jo]), the above condition is equivalent to the following:

3.0'. Given any $\epsilon > 0$ there exist a finite set of elements g_1, g_2, \ldots, g_n in G and $\delta > 0$ such that for any unitary representation π of G on a Hilbert space \mathcal{H} that has a unit vector ξ such that $\|\pi(g_i)\xi - \xi\|_\mathcal{H} < \delta$ for all $1 \leq i \leq n$ then $\|\pi(g)\xi - \xi\|_\mathcal{H} < \epsilon$ for all $g \in H$.

3.1. Theorem. Let G be a countable discrete group and $H \subset G$ a subgroup with the relative property (T). Given any weak 1-cocycle w for a G-Bernoulli shift σ, $w|_H$ is a weak coboundary.

Proof. We first prove the case when (X_0, μ_0) is non atomic, thus isomorphic to (\mathbb{T}, λ), the torus with its Haar measure.

Denote by A the abelian von Neumann Algebra $L^\infty(X, \mu)$. By Lemma 2.5, it is sufficient to prove that there exists $u \in \mathcal{U}(A \otimes A)$ such that $\tilde{\sigma}_h^w(u) = u, \forall h \in H$. We’ll prove this in the Lemmas 3.2-3.5 below.

3.2. Lemma. There exists a continuous action α of \mathbb{R} on $A \otimes A \simeq L^\infty(X \times X, \mu \times \mu)$, by automorphisms preserving the integral over $\nu \times \nu$, such that:

(3.2.1). α commutes with the Bernoulli shift $\tilde{\sigma} = \sigma \otimes \sigma$.

(3.2.1). $\alpha_1(A \otimes \mathbb{C}) = \mathbb{C} \otimes A$.

Proof. Denote $A_0 = L^\infty(\mathbb{T}, \lambda)$, $\tilde{A}_0 = A_0 \otimes A_0$ and τ_0 the functional on \tilde{A}_0 given by the integral over $\lambda \times \lambda$. We first construct a continuous action $\beta : \mathbb{R} \rightarrow \text{Aut}(\tilde{A}_0, \tau_0)$ such that $\beta_1(A_0 \otimes \mathbb{C}) = \mathbb{C} \otimes A_0$.

Let u (resp. v) be a Haar unitary generating $A_0 \otimes \mathbb{C} \simeq L^\infty(\mathbb{T}, \lambda)$ (resp. $\mathbb{C} \otimes A_0$). Thus, u, v is a pair of generating Haar unitaries for A_0, i.e., $\{u^n v^m\}_{n, m \in \mathbb{Z}}$ is an orthonormal basis for $L^2(\tilde{A}_0, \tau_0) \simeq L^2(\mathbb{T}, \lambda) \otimes L^2(\mathbb{T}, \lambda)$. We need to construct the action β so that $\beta_1(u) = v$.

Note that given any other pair of generating Haar unitaries u', v' for \tilde{A}_0, the map $u \mapsto u, v \mapsto v'$ extends to a τ_0-preserving automorphism of \tilde{A}_0. Also, note that v, uv is a pair of generating Haar unitaries for A_0. Thus, in order to get β, it is sufficient to find a continuous action $\beta' : \mathbb{R} \rightarrow \text{Aut}(\tilde{A}_0, \tau_0)$ such that $\beta_1'(v) = uv$.

Let $h \in \hat{A}_0$ be a self-adjoint element such that $\exp(2\pi i h) = u$. It is easy to see that for each t, u and $\exp(2\pi i t h)v$ is a pair of Haar unitaries. Denote by β'_t the automorphism $u \mapsto u, v \mapsto \exp(2\pi i t h)v$. We then clearly have $\beta'_t \beta'_s = \beta'_{t+s}$, $\forall t, s \in \mathbb{R}$ and $\beta'_1(v) = uv$.

Finally, we take α to be the product action $\alpha_t = \bigotimes_{g \in G}(\beta'_t)_g, t \in \mathbb{R}$. Since α acts identically on the components of the product of the G-shifts, it commutes with σ. Also, α_1 flips $A \otimes \mathbb{C}$ onto $\mathbb{C} \otimes A$ because each $(\beta'_1)_g$ takes $(A_0)_g \otimes \mathbb{C}$ onto $\mathbb{C} \otimes (A_0)_g$. □

For the next lemma, note that if K is a convex subset of the von Neumann algebra $A\overline{\otimes}A = L^\infty(X \times X, \mu \times \mu)$ which is bounded in the norm $\| \cdot \| = \| \cdot \|_\infty$, then its closure K in the w-operator topology on $A\overline{\otimes}A$ coincides with its closure in the norm $\| \cdot \|_2$ on $L^2(X \times X, \mu \times \mu)$ (with $A\overline{\otimes}A \supset K$ regarded as a subset of this Hilbert space).

3.3. Lemma. For each $t \in \mathbb{R}$ let x_t be the (unique) element of minimal norm-2 in $K_t := \overline{\sigma(t)\|w_h \otimes 1\|_2\{ (w_h \otimes 1)\alpha_t(w_h^* \otimes 1) \}}_{h \in H}$. Then $x_t \in A\overline{\otimes}A$ and it satisfies the following conditions:

1°. $(w_h \otimes 1)\tilde{\sigma}(h)x_t = x_t\alpha_t(w_h \otimes 1), \forall h \in H$.

2°. $x_t x_t^* \in \mathbb{C} \otimes \mathbb{C}$.

Proof. 1°. Since $w_h \sigma(h) w_k = w_{hk}$, mod \mathbb{C}, and the actions $\tilde{\sigma}, \alpha$ commute, it follows that for all $h, k \in G$ we have

$$(w_k \otimes 1)\tilde{\sigma}(h)(w_h \otimes 1)\alpha_t(w_h^* \otimes 1)\alpha_t(w_k^* \otimes 1) = (w_{kh} \otimes 1)\alpha_t(w_{kh}^* \otimes 1)$$

showing that for each fixed $k \in H$ the unitary operator on $L^2(X \times X, \mu \times \mu) = L^2(A\overline{\otimes}A)$ given by $x \mapsto (w_k \otimes 1)\tilde{\sigma}(k)x\alpha_t(w_k^* \otimes 1)$ takes K_t into itself. Thus, by the uniqueness of the element of minimal norm $\| \cdot \|_2$ in K_t, it follows that $x_t = (w_k \otimes 1)\tilde{\sigma}(k)(x_t\alpha_t(w_k^* \otimes 1), \forall k \in H$.

2°. From the proof of 1° and the commutativity of $A\overline{\otimes}A$ it follows that for $k \in H$ we have

$$\tilde{\sigma}(k)(x_t x_t^*) = (w_k \otimes 1)\tilde{\sigma}(k)(x_t x_t^*)(w_k^* \otimes 1) = x_t x_t^*.$$

But since $\sigma|_H$ is weakly mixing, $\tilde{\sigma}|_H$ is ergodic and thus $x_t x_t^*$ follows a scalar. □

3.4. Lemma. Assume (G, H) has the relative property (T). If x_t are defined as in Lemma 3.3, then there exists $t_0 > 0$ such that $x_t \neq 0$ and $u_t = x_t/\|x_t\|$ is a unitary element in $A\overline{\otimes}A$ for all $t \in [0, t_0]$.

Proof. Let $\epsilon > 0$. Let $g_1, \ldots, g_n \in G$ and $\delta > 0$ be given by condition (3.0'). By the continuity of the action α_t, there exists $t_0 > 0$ such that if $0 < t \leq t_0$ then

$$\| (w_{g_t} \otimes 1)\alpha_t(w_{g_t}^* \otimes 1) - 1 \|_2 < \delta, \forall i.$$

Fix $t \in (0, t_0]$. Since the action $\tilde{\sigma}$ commutes with the automorphism α_{t}, it follows that $\tilde{\sigma}_g \times \alpha^n_t$ implements an action of $G \times \mathbb{Z}$ on $A\overline{\otimes}A$ which preserves the functional τ given by the integral over $\mu \times \mu$.
3.5. Lemma. There exists $u \in \mathcal{U}(\mathcal{A} \rtimes \mathcal{G})$ such that

$$\tilde{\sigma}^w_h(u) = u, \forall h \in H.$$

Proof. Choose $n \in \mathbb{N}$ such that $1/n < t_0$, where t_0 is by 3.4. With u_t defined as in Lemma 3.4, we let $u = u_{1/n}a_{1/n}(u_{1/n}) \cdots a_{1/n}^{n-1}(u_{1/n})$. By 3.3.1° we have $(w_h \otimes 1)\tilde{\sigma}_h(u_{1/n}) = u_{1/n}a_{1/n}(w_h \otimes 1)$, which by applying on both sides $(a_{1/n})^k = a_{k/n}$, $k = 1, 2, ..., n - 1$, gives

$$a_{k/n}(w_h \otimes 1)\tilde{\sigma}_h(a_{k/n}(u_{1/n})) = a_{k/n}(u_{1/n})a_{(k+1)/n}(w_h \otimes 1).$$

By applying this repeatedly to u, we get

$$(w_h \otimes 1)\tilde{\sigma}_h(u) = u\alpha_1(w_h \otimes 1) = u(1 \otimes w_h), \forall h \in H,$$

or equivalently $\tilde{\sigma}^w_h(u) = u, \forall h \in H.$

This ends the proof of the nonatomic case. For the atomic case we need the following:

Lemma 3.6. Suppose (X_0, μ_0) is an atomic probability space. There exists an embedding of $L^\infty(X_0, \mu_0)$ into $L^\infty(\mathbb{T}, \lambda)$ with a sequence of diffuse von Neumann subalgebras $(B_n)_{n \in \mathbb{N}}$ of $L^\infty(\mathbb{T}, \lambda)$ such that $B_{n+1} \subseteq B_n$ and $L^\infty(X_0, \mu_0) = \bigcap_{n \in \mathbb{N}} B_n$.
Proof. Identify $L^\infty(\mathbb{T}, \lambda)$ with $\bigotimes_{n \geq 0} L^\infty(X_n, \mu_n)$, where $(X_n, \mu_n) = (X_0, \mu_0), \forall n \geq 0$. Also, identify the initial algebra $L^\infty(X_0, \mu_0)$ with $L^\infty(X_0, \mu_0) \bigotimes_1^\infty 1 \subset L^\infty(\mathbb{T}, \lambda)$ and put

$$B_n = L^\infty(X_0, \mu_0)(\mathbb{C} \bigotimes_1^n) \bigotimes_{j=n+1}^\infty L^\infty(X_j, \mu_j).$$

Then B_n are clearly diffuse and $\cap_n B_n = L^\infty(X_0, \mu_0)$.

With $L^\infty(X_0, \mu_0) \subset B_n \subset L^\infty(\mathbb{T}, \lambda)$ as in Lemma 3.6, denote $A = \bigotimes_{g \in G} L^\infty(\mathbb{T}, \lambda)_g$ with its subalgebras $A_0 = \bigotimes_{g \in G} L^\infty(X_0, \mu_0)_g$ and $A_n = \bigotimes_{g \in G}(B_n)_g, n \geq 1$.

The G-Bernoulli shift σ on A_0 extends to G-Bernoulli shifts on A and A_n, $n \geq 1$, still denoted σ. If $w : G \to \mathcal{U}(A_0)$ is a weak 1-cocycle for σ as a G-Bernoulli shift action on A_0, then w can also be regarded as a weak 1-cocycle for the G-Bernoulli shift action on $A_n, n \geq 1$. The non atomic case of Theorem 3.1 implies that $w|_H$ is a weak coboundary for $\sigma|_H$ as an action on A_n. Thus, for each $n \geq 1$ there exists a unitary element $u_n \in A_n$ such that $w_h = u_n \sigma_h(u_n^*) \mod \mathbb{C}$. By Lemma 2.5, u_n is unique up to a scalar multiple. Since $A_{n+1} \subset A_n$ and $\bigcap_{n \in \mathbb{N}} A_n = A_0$, it follows that $\mathbb{C}u_n = \mathbb{C}u_{n+1}$ and finally $\mathbb{C}u_n \in A_0$ for all $n \geq 1$. Thus $w|_H$ is a weak 1-cocycle for the action $\sigma|_H$ on A_0. □

4. Applications

As in the introduction, a group G is called weakly rigid if it contains infinite, normal subgroups $H \subset G$ such that the pair (G, H) has the relative property (T).

4.1. Theorem. If G is a weakly rigid group then any weak 1-cocycle for a G-Bernoulli shift is a weak coboundary.

Proof. By hypothesis, there exists an infinite normal subgroup $H \subset G$ such that (G, H) has the relative property (T). If w is a weak 1-cocycle for the G-Bernoulli shift σ, then by Theorem 3.1 there exists $v \in \mathcal{U}(A)$ such that $w_h = v \sigma_h(v^*), \mod \mathbb{C}, \forall h \in H$.

Let $w'_h = v^* w_g \sigma_g(v)$. Then w' is a weak 1-cocycle for σ and it satisfies $w_h \in T1, \forall h \in H$.

For $a \in A$, denote by $L_a \in \mathcal{B}(L^2(X, \mu))$ the (left) multiplication operator given by $L_a(\xi) = a \xi, \forall \xi \in L^2(X, \mu)$. Then we have

$$L_{w'_g} \sigma_g L_{w'_h} \sigma_h(\xi) = w'_g \sigma_g(w'_h) \sigma_g \sigma_h(\xi) = w'_g \sigma_g \sigma_h(\xi) \mod \mathbb{T}.$$

Thus

$$(L_{w'_g} \sigma_g)(L_{w'_h} \sigma_h) = L_{w'_g} \sigma_h \mod \mathbb{T}.$$

Similarly

$$(L_{w'_g} \sigma_g)^* = L_{w'_{g^{-1}}} \sigma_{g^{-1}} \mod \mathbb{T}.$$
This implies
\[(Lw'_g\sigma_g)(Lw'_h\sigma_h)(Lw'_g\sigma_g)^* = w'_{ghg^{-1}}\sigma_{ghg^{-1}} \pmod{T},\]
for all \(g, h \in G\). Since \(w'_h\) are scalars for \(h \in H\) and \(ghg^{-1} \in H\), \(\forall g\), this further implies
\[Lw'_g\sigma_{ghg^{-1}}Lw'_g = (Lw'_g\sigma_g)\sigma_h(Lw'_g\sigma_g)^* = \sigma_{ghg^{-1}} \pmod{T}.

Substituting \(h\) for \(ghg^{-1}\) and applying the first and last term of these equalities to the element \(\xi = w'_g \in L^2(X, \mu)\), it follows that \(\sigma_h(w'_g) \in \mathbb{C}w'_g, \forall h \in H, g \in G\). Since the action \(\sigma|_H\) is weakly mixing, it follows that \(Cw'_g = \mathbb{C}1\) for all \(g \in G\). Thus \(w_g = v\sigma_g(v^*)\), \(\mod{T}, \forall g \in G\), i.e., \(w\) is a weak coboundary. \(\square\)

4.2. Corollary. Under the same assumptions as in Theorem 4.1, if \(w\) is a genuine 1-cocycle then \(w\) is equivalent to a character of \(G\) and different characters give non equivalent 1-cocycles. In other words, \(H^1(\sigma) = \text{Char}(G)\).

Proof. Theorem 4.1 shows that there exist \(u \in \mathcal{H}\) such that \(w_g = \lambda_g u\sigma_g(u^*)\). On the other hand, by Remark 2.1, \(\lambda_g\) is a character of \(G\).

Moreover, if two characters \(\lambda_g, \lambda'_g\) are equivalent then there exists a unitary element \(u \in A\) such that \(\lambda_g 1 = \lambda'_g u\sigma_g(u^*), \forall g \in G\). Thus, \(\sigma_g(u) \in C\mathbb{C}, \forall g \in G\). But since \(\sigma\) is weakly mixing, the only finite dimensional \(\sigma\)-invariant subspace of \(A\) is \(C\mathbb{C}\), implying that \(u \in C\mathbb{C}\) and \(\lambda_g = \lambda'_g\). \(\square\)

4.3. Corollary. The first cohomology group \(H^1(\sigma)\) of a Bernoulli shift action \(\sigma\) of \(SL(n, \mathbb{Z})\), \(n \geq 3\) is trivial. More generally, if \(\Gamma\) is any abelian group, \(G = SL(n, \mathbb{Z}) \times \Gamma\) and \(\sigma\) is a \(G\)-Bernoulli shift, then \(H^1(\sigma) = \hat{\Gamma}\).

Proof. Indeed for \(n \geq 3\), \(SL(n, \mathbb{Z})\) has the property \(T\) of Kazhdan ([K]), and by the Nielsen Magnum theorem (see for instance [St]), for \(n \geq 3\) the commutator subgroup of \(G = SL(n, \mathbb{Z}) \times \Gamma\) is equal to \(SL(n, \mathbb{Z})\). Thus the group of characters of \(G\) is equal to \(\hat{\Gamma}\). \(\square\)

References

[BMe] B. Bekka, M. Meyer: "Ergodic Theory and Topological dynamics of group actions on Homogeneous Spaces", London Math Soc Lect. Notes 269, Cambridge University Press, 2000.

[CW] A. Connes, B. Weiss: Property (T) and asymptotically invariant sequences, Israel. J. Math. 37 (1980), 209-210.

[dHV] P. de la Harpe, A. Valette: "La propriété T de Kazhdan pour les groupes localement compacts", Astérisque 175, Soc. Math. de France (1989).

[Jo] P. Jolissaint: On the relative property T, preprint 2001.

[K] D. Kazhdan: Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. and its Appl. 1 (1967), 63-65.
[M] G. Margulis: *Finitely-additive invariant measures on Euclidian spaces*, Ergodic. Th. and Dynam. Sys. 2 (1982), 383-396.

[MvN] F. Murray, J. von Neumann: *Rings of operators IV*, Ann. Math. 44 (1943), 716-808.

[Po] S. Popa: *Some rigidity results for non-commutative Bernoulli shifts*, MSRI preprint, 2001-005.

[S1] K. Schmidt: *Asymptotically invariant sequences and an action of SL(2, Z) on the 2-sphere*, Israel. J. Math. 37 (1980), 193-208.

[S2] K. Schmidt: *Amenability, Kazhdan’s property T, strong ergodicity and invariant means for ergodic group-actions*, Ergod. Th. & Dynam. Sys. 1 (1981), 223-236.

[St] R. Steinberg: *Some consequences of elementary relations of SL(n)*, Contemporary Math., 45 (1985), 335-350.

Math Dept UCLA, Los Angeles, CA 90095-155505

E-mail address: popa@math.ucla.edu, rsasyk@math.ucla.edu