Non contiguous-finished genome sequence and description of *Enorma timonensis* sp. nov.

Dhamodaran Ramasamy†, Gregory Dubourg†, Catherine Robert†, Aurelia Caputo†, Laurent Papazian†, Didier Raoult† and Pierre-Edouard Fournier*

1Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Aix-Marseille Université
2Service de Réanimation Médicale, Hôpital Nord, Marseille, France
3Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia

*Correspondence: Pierre-Edouard Fournier (pierre-edouard.fournier@univ-amu.fr)

Keywords: *Enorma timonensis*, genome, culturomics, taxono-genomics

†These 2 authors contributed equally

Enorma timonensis strain GD5T sp. nov., is the type strain of *E. timonensis* sp. nov., a new member of the genus *Enorma* within the family *Coriobacteriaceae*. This strain, whose genome is described here, was isolated from the fecal flora of a 53-year-old woman hospitalized for 3 months in an intensive care unit. *E. timonensis* is an obligate anaerobic rod. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,365,123 bp long genome (1 chromosome but no plasmid) contains 2,060 protein-coding and 52 RNA genes, including 4 rRNA genes.

Introduction

Enorma timonensis strain GD5T (= CSUR P900 = DSM 26111) is the type strain of *E. timonensis* sp. nov. This bacterium was isolated from the stool of a 53-year-old French woman hospitalized 3 months in an intensive care unit for Guillain-Barre syndrome, as part of a culturomics study aiming at cultivating individually all species within human feces [1-3]. It is a Gram-positive, anaerobic, non-endospore forming, indole-negative, rod-shaped bacillus.

The human gut microbiota consists of billions of microorganisms that outnumber the human cells [4]. Advances in DNA sequence-based technologies and the development of 16S ribosomal RNA sequence-based metagenomic methods have been used to explore the complex gut microbial population, which has a crucial role in human health and disease development [5,6]. The currently used strategy for determining the taxonomic status of a bacterial isolate includes comparing it to its phylogenetically closest neighbors in terms of 16S rRNA gene similarity, G + C content and DNA–DNA hybridization (DDH) [7,8]. However, although considered “gold standards” in bacterial taxonomy, these criteria do not apply to all genera [9,10]. The development of high-throughput sequencing methods [11] enabled the generation of complete genomic sequences for most bacterial species of medical interest (more than 6,000 bacterial genomes sequenced to date). We recently proposed to describe new bacterial species using a polyphasic approach based on their genome sequence, MALDI-TOF spectrum and main phenotypic characteristics [12-34].

Here, we present a summary classification and a set of features for *E. timonensis* sp. nov. strain GD5T (= CSUR P900 = DSM 26111) as well as the description of the complete genome sequencing and annotation. These characteristics support the circumscription of the species *E. timonensis*.

The family *Coriobacteriaceae* (Stackebrandt et al. 1997) was created in 1997 [35] and presently consists of 13 validated genera [36]: Adlercreutzia (Maruo et al. 2008) [37], Asaccharobacter (Minamida et al. 2008) [38], Atopobium (Collins and Wallbanks 1993) [39], Collinsella (Kageyama et al. 1999) [40], Coriobacterium (Haas and König 1988) [41], Cryptobacterium (Nakazawa et al. 1999) [42], Denitrobacterium (Anderson et al. 2000) [43], Eggerthella (Wade et al. 1999) [44], Enterothrobacoides (Clavel et al. 2009) [45], Gordonibacter (Würdemann et al. 2009) [46], Olsenella (Dewhirst et al. 2001) [47], Paraeggerthella
organisms are anaerobic, Gram-positive, rod-shaped Enorma (Mishra et al. 2013) [29]. These microorganisms are anaerobic, Gram-positive, rod-shaped bacteria [42]. Members of the family Coriobacteriaceae are isolated from the fecal microbiota of humans or animals, and may cause infections such as bacteremia, wound infections and periodontal/endodontic infections. Members of this family also interfere with the metabolism of triglycerides, glucose, and glycogen in humans and animals [35-47].

Classification and features

A stool sample was collected from a 53-year-old woman living in Marseille, France and hospitalized for 3 months in an intensive care unit for Guillain-Barre syndrome. She received antibiotics at the time of stool sample collection. The patient gave an informed and signed consent, and the agreement of the local ethics committee of the Institut Federatif de Recherche 48 (Marseille, France) was obtained under agreement 09-022. The fecal specimen was preserved at -80°C after collection. Strain GD5T (Table 1) was isolated in 2012 by anaerobic cultivation at 37°C on 5% sheep blood-enriched Columbia agar (BioMerieux, Marcy l’Étoile, France), after 3 weeks of preincubation of the stool sample with clarified and sterile sheep rumen in an anaerobic blood culture bottle.

The 16S rDNA sequence (GenBank accession number JX424767) of E. timonensis strain GD5T exhibited the highest similarity (95.0%) with its phylogenetically closest published species, Enorma massiliensis (Figure 1). By comparison with the type species of genera from the family Coriobacteriaceae, E. timonensis exhibited a 16S rDNA sequence similarity ranging from 84 to 95%. This value was lower than the 98.7% 16S rDNA gene sequence threshold recommended by Stackebrandt and Ebers to delineate a new species without carrying out DNA-DNA hybridization [8].

Growth at different temperatures (25, 30, 37, 45°C) was tested. No growth was observed at 25°C or 30°C. Growth occurred at both 37 and 45°C, but optimal growth was observed at 37°C after 48 hours of incubation. Colonies were translucent grey and approximately 0.4 mm in diameter on 5% sheep blood-enriched Columbia agar (BioMerieux). Growth of the strain was tested in blood-enriched Columbia agar under anaerobic and microaerophilic conditions using GENbag anaer and GENbag microaer systems, respectively (BioMerieux), and under aerobic conditions, with or without 5% CO2. Growth was achieved only anaerobically. Gram staining showed Gram-positive and non-sporulated rods (Figure 2). A motility test was negative. Cells grown on agar have a mean diameter of 0.58 μm and a mean length of 1.32μm, and are mostly grouped in short chains or small clumps (Figure 3).

Strain GD5T exhibited neither catalase nor oxidase activities (Table 2). Using an API ZYM strip (BioMerieux), positive reactions were observed for leucine arylamidase, valine arylamidase, cystine arylamidase, naphthol-AS-BI-phospho-hydrolase, β-galactosidase, β-glucuronidase, α-glucosidase and β-glucosidase. Negative reactions were observed for acid phosphatase, nitrate reduction, urease alkaline phosphatase, esterase (C4), esterase lipase (C8), lipase (C14), trypsin, α-chymotrypsin, acid phosphatase, α-galactosidase, N-acetyl-β-glucosaminidase, α-mannosidase, α-fucosidase. Using an API Rapid ID 32A strip (BioMerieux), positive reactions were observed for proline arylamidase, phenylalanine arylamidase, histidin arylamidase, serine arylamidase. Negative reactions were observed for urease, arginine dihydrolase, tyrosin arylamidase, leucyl-glycyl arylamidase, alanine arylamidase, glycine arylamidase and arginine arylamidase. Using an API 50 CH strip (BioMerieux), negative reactions were recorded for fermentation of glycerol, erythritol, D-arabinose, L-arabinose, D-ribose, D-xylene, L-xylene, D-adenitol, methyl-βD-xylopranoside, D-galactose, D-glucose, D-fructose, D-mannose, L-sorbitose, L-rhamnoside, dulcitol, inositol, D-mannitol, D-sorbitol, methyl-α-D-xylpyranoside, methyl-α-D-glucopyranoside, N-acetylglucosamine, amygdalin, arbutin, esculin feric citrate, salicin, D-cellobiose, D-maltose, D-lactose, D-mellobiose, D-saccharose, D-trehalose, inulin, D-melezitose, D-raffinose, amidon, glycogen, xylitol, gentiobiose, D-turanose, D-lyxose, D-tagatose, D-fucoside, L-fucose, D-arabitol, L-arabitol, potassium gluconate, potassium 2-ketogluconate, potassium-5-ketogluconate. E. timonensis is susceptible to amoxicillin-clavulanic acid, metronidazole, imipenem, vancomycin, rifampicin, gentamicin and resistant to penicillin G, amoxicillin, ceftriaxon, erythromycin, and trimethoprim/sulfamethoxazole.

http://standardsingenomics.org
Table 1. Classification and general features of *Enorma timonensis* strain GD5\(^T\) according to the MIGS recommendations [48]

MIGS ID	Property	Term	Evidence code\(^a\)
		Domain Bacteria	TAS [49]
		Phylum Actinobacteria	TAS [50,51]
Current classification	Order **Coriobacteriales**	**Class** Actinobacteria	TAS [35]
		Family Coriobacteriaceae	TAS [29,52,53]
		Genus Enorma	TAS [53]
	Species	*Enorma timonensis*	IDA
	Type strain	GD5\(^T\)	IDA
Gram stain		positive	IDA
Cell shape		rod	IDA
Motility		non motile	IDA
Sporulation		non sporulating	IDA
Temperature range		mesophile	IDA
Optimum temperature		37°C	IDA
MIGS-6.3	Salinity	unknown	IDA
MIGS-22	Oxygen requirement	anaerobic	IDA
Carbon source		unknown	NAS
Energy source		unknown	NAS
MIGS-6	Habitat	human gut	IDA
MIGS-15	Biotic relationship	free living	IDA
MIGS-14	Pathogenicity	Unknown	IDA
Biosafety level		2	IDA
Isolation		human feces	IDA
MIGS-4	Geographic location	France	IDA
MIGS-5	Sample collection time	January 2012	IDA
MIGS-4.1	Latitude	43.296482	IDA
MIGS-4.1	Longitude	5.36978	IDA
MIGS-4.3	Depth	Surface	IDA
MIGS-4.4	Altitude	0 m above sea level	IDA

\(^a\)Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [54]. If the evidence is IDA, then the property was directly observed for a live isolate by one of the authors or an expert mentioned in the acknowledgements.
Figure 1. Phylogenetic tree highlighting the position of *Enorma timonensis* strain GD5^T relative to other type strains within the *Coriobacteriaceae* family. GenBank accession numbers are indicated in parentheses. Sequences were aligned using CLUSTALW, and phylogenetic inferences obtained using the maximum-likelihood method within the MEGA software. Numbers at the nodes are percentages of 500 bootstrap replicates supporting that node. The tree is a majority consensus tree. *Bifidobacterium bifidum* was used as outgroup. The scale bar represents a 2% nucleotide sequence divergence.
Enorma timonensis

Figure 2. Gram staining of *E. timonensis* strain GD5^T.

Figure 3. Transmission electron microscopy of *E. timonensis* strain GD5^T using a Morgani 268D (Philips) at an operating voltage of 60kV. The scale bar represents 200µm.
Table 2. Differential characteristics of *Enorma timonensis* GD5\(^T\), *Enorma massiliensis* strain phT\(^1\), *Collinsella aerofaciens* strain YIT 10235\(^T\), *Collinsella tanakei* strain YIT 12064\(^T\) and *Coriobacterium glomerans* strain PW2.

Properties	*E. timonensis*	*E. massiliensis*	*C. aerofaciens*	*C. tanakei*	*C. glomerans*
Cell diameter (µm)	0.58	0.57	0.3 – 0.7	0.5	NA
Oxygen requirement	anaerobic	anaerobic	anaerobic	anaerobic	anaerobic
Gram stain	+	+	+	+	+
Salt requirement	na	na	na	na	na
Motility	-	-	na	-	-
Endospore formation	-	-	-	na	-
Production of					
Alkaline phosphatase	-	-	-	+	na
Acid phosphatase	-	na	-	+	na
Catalase	-	-	na	-	na
Oxidase	-	-	na	-	na
Nitrate reductase	-	-	na	-	na
Urease	-	-	-	-	na
α-galactosidase	+	+	-	-	na
β-galactosidase	+	+	+	-	na
β-glucuronidase	-	-	-	+	na
α-glucosidase	+	+	+	-	na
β-glucosidase	+	+	-	+	na
Esterase	-	na	-	-	na
Esterase lipase	-	na	-	-	na
Indole	-	-	na	-	na
N-acetyl-β-glucosaminidase	-	-	-	-	na
6-Phospho-β-galactosidase	-	-	-	-	na
Arginine arylamidase	+	+	+	+	na
glutamic acid decarboxylase	-	-	-	-	na
Leucyl glycine arylamidase	-	-	+	+	na
Alanine arylamidase	-	-	-	-	na
Proline arylamidase	+	+	+	-	na
Serine arylamidase	+	-	-	-	na
Tyrosine arylamidase	-	-	-	-	na
Glycine arylamidase	-	-	+	+	na
Utilization of					
D-mannose	-	+	+	+	
Habitat	human gut	human gut	human gut	human gut	na

na: data not available

Matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) MS protein analysis was carried out as previously described [55] using a Microflex spectrometer (Bruker Daltonics, Leipzig, Germany). Twelve distinct deposits were done for strain GD5\(^T\) from twelve isolated colonies. The twelve GD5\(^T\) spectra were imported into the MALDI BioTyper software (version 2.0, Bruker) and analyzed by standard pattern matching (with default parameter settings) against the main spectra of 4,706 bacteria, which were used as reference data, in the BioTyper database. For strain GD5\(^T\), no significant score was obtained, thus suggesting that our isolate was not a member of a known species. We added the spectrum from strain GD5\(^T\) to our database (Figure 4, Figure 5).
Figure 4. Reference mass spectrum from *Enorma timonensis* strain GD5\(^T\). Spectra from 12 individual colonies were compared and a reference spectrum was generated.

Figure 5. Gel view comparing *Enorma timonensis* sp. nov strain GD5\(^T\) and other members of the *Coriobacteriaceae* family. The gel view displays the raw spectra of all loaded spectrum files arranged in a pseudo-gel like look. The x-axis records the m/z value. The left y-axis displays the running spectrum number originating from subsequent spectra loading. The peak intensity is expressed by a gray scale scheme code. The color bar and the right y-axis indicate the relation between the color a peak is displayed with and the peak intensity in arbitrary units. Displayed species are indicated on the left.
Genome sequencing information

Genome project history
The organism was selected for sequencing on the basis of its phylogenetic position and 16S rDNA similarity to *E. massiliensis* and other members of the family *Coriobacteriaceae* and is part of a study of the human digestive flora aiming at isolating all bacterial species within human feces [1-3]. It was the 2nd genome of an *Enorma* species and the first genome of *E. timonensis* sp. nov. The GenBank accession number is CAPF00000000 and consists of 105 contigs. Table 3 shows the project information and its association with MIGS version 2.0 compliance [48].

Table 3. Project information
MIGS ID

MIGS-31
MIGS-28
MIGS-29
MIGS-31.2
MIGS-30
MIGS-32
MIGS-13

Growth conditions and DNA isolation

Enorma timonensis sp. nov., strain GD57 (CSUR P900 = DSM 26111), was grown anaerobically on 5% sheep blood-enriched Columbia agar (BioMerieux) at 37°C. Four Petri dishes were spread and resuspended in 1ml TE buffer prior to being treated with 2.5 µg/µL lysozyme for 30 minutes at 37°C, and then with Proteinase K overnight at 37°C. The DNA was then purified by 3 successive phenol-chloroform extractions followed by an ethanol precipitation at -20°C overnight. Following centrifugation, the DNA was then resuspended in 305 µL TE buffer. The DNA was then concentrated and purified using a QIAamp kit (Qiagen). The yield and concentration was measured by the Quant-it Picogreen kit (Invitrogen) on the Genios Tecan fluorometer at 66.5 ng/µl.

Genome sequencing and assembly

DNA (5 µg) was mechanically fragmented on a Hydroshear device (Digilab, Holliston, MA, USA) with an enrichment size at 3-4kb. The DNA fragmentation was visualized through the Agilent 2100 BioAnalyzer on a DNA labchip 7500 with an optimal size of 4.4kb. A 3kb paired-end library was constructed according to the 454 GS FLX Titanium paired-end protocol (Roche). Circularization and nebulization were performed and generated a pattern with an optimal at 470 bp. After PCR amplification through 17 cycles followed by double size selection, the single stranded paired-end library was then quantified on the Agilent 2100 BioAnalyzer on a RNA pico 6000 LabChip at 136 pg/µL. The library concentration equivalence was calculated as 5.31E+08 molecules/µL. The library was stored at -20°C until further use.

The paired-end library was clonally amplified with 0.5cpb and 2cpb in 2 SV-emPCR with the GS Titanium SV-emPCR Kit (Lib-L) v2 (Roche). The yields of the emPCRs were 9.37 and 14.09%, respectively, in the range of 5 to 20% from the Roche procedure.

Approximately 790,000 beads were loaded on 1/4 region of a GS Titanium PicoTiterPlate PTP Kit 70x75 and sequenced with the GS-FLX Titanium Sequencing Kit XLR70 (Roche). The run was performed overnight and then analyzed on the cluster through the gsRunBrowser and gsAssembler (Roche). A total of 282,633 passed filter wells were obtained and generated 102.68Mb with a length average of 363 bp. The globally passed filter sequences were assembled using Newbler with 90% identity and 40bp as overlap. The final assembly identified 5 scaffolds and 105 large contigs (>1,500 bp) generating a genome size of 2.36 Mb which corresponds to a coverage of 43.5 genome equivalents.

http://standardsingenomics.org
Enorma timonensis

Genome annotation

Open Reading Frames (ORFs) were predicted using Prodigal [56] with default parameters. However, the predicted ORFs were excluded if they spanned a sequencing gap region. The predicted bacterial protein sequences were searched against the GenBank [57] and Clusters of Orthologous Groups (COG) databases using BLASTP. The tRNAs and rRNAs were predicted using the tRNAscanSE [58] and RNAmmer [59] tools, respectively. Lipoprotein signal peptides and numbers of transmembrane helices were predicted using SignalP [60] and TMHMM [61], respectively. ORFans were identified if their BLASTP E-value was lower than 1e-03 for alignment length greater than 80 amino acids. If alignment lengths were smaller than 80 amino acids, we used an E-value of 1e-05. Such parameter thresholds have already been used in previous works to define ORFans. Artemis [62] and DNA Plotter [63] were used for data management and visualization of genomic features, respectively. The Mauve alignment tool (version 2.3.1) was used for multiple genomic sequence alignment [64]. To estimate the mean level of nucleotide sequence similarity at the genome level between E. timonensis and five other members of the family Coriobacteriaceae (Table 6), we used the Average Genomic Identity Of gene Sequences (AGIOS) home-made software. Briefly, this software combines the Proteinortho software [65] for detecting orthologous proteins between genomes compared two by two, then retrieves the corresponding genes and determines the mean percentage of nucleotide sequence identity among orthologous ORFs using the Needleman-Wunsch global alignment algorithm. Enorma timonensis strain GD5T was compared to E. massiliensis strain pHl (GenBank accession number CAGZ00000000), C. aerofaciens strain ATCC 25986 (AAVN00000000), C. tanakaei strain YIT 12063 (ADLS00000000) and C. glomerans strain PW2 (NC_015389).

Genome properties

The genome is 2,365,123 bp long (1 chromosome, no plasmid) with a 65.8% G+C content (Figure 6 and Table 4). Of the 2,060 predicted chromosomal genes, 2,006 were protein-coding genes and 52 were RNAs, including a complete rRNA operon, an additional 55 rRNA and 48 tRNAs. A total of 1,384 genes (67.18%) were assigned a putative function. Fifty-five genes were identified as ORFans (2.74%) and the remaining genes were annotated as hypothetical proteins. The properties and statistics of the genome are summarized in Tables 3 and 4. The distribution of genes into COGs functional categories is presented in Table 5.

Genome comparison of E. timonensis with other members of the Coriobacteriaceae family

We compared the genome of E. timonensis strain GD5T with those of E. massiliensis pHl, Collinsella aerofaciens strain ATCC 25986, Collinsella tanakaei strain YIT 12063 and Coriobacterium glomerans strain PW2 (Table 6).

The draft genome sequence of E. timonensis strain GD5T is smaller than those of C. aerofaciens and C. tanakaei (2.36, 2.43 and 2.48 Mb, respectively), but larger than those of E. massiliensis and C. glomerans (2.26 and 2.11 Mb, respectively). The G+C content of E. timonensis is larger than those of E. massiliensis, C. aerofaciens, C. glomerans and C. tanakaei (65.80, 62.0, 60.54, 60.23 and 60.40%, respectively). The gene content of E. timonensis is smaller to those of E. massiliensis, C. aerofaciens, C. tanakaei and C. glomerans (2,006, 2,159 and 2,195, respectively) but larger than those of C. aerofaciens and C. tanakaei (1,901 and 1,768, respectively). The distribution of genes into COG categories was not entirely similar in all compared genomes (Figure 7).

In addition, E. timonensis shared 1,109, 1,026, 880 and 1,077 orthologous genes with E. massiliensis, C. aerofaciens, C. glomerans and C. tanakaei, respectively. The average genomic nucleotide sequence identity ranged from 66.37 to 79.44% among Coriobacteriaceae family members, and from 66.01 to 79.44% between E. timonensis and other species (Table 6 and Table 7).
Figure 6. Graphical circular map of the chromosome. From the outside in: genes on the forward strand (colored by COG categories), genes on the reverse strand (colored by COG categories), RNA genes (rRNAs green, tRNAs red), GC skew (purple: negative values, olive: positive values), and G+C content plot.

Table 4. Nucleotide content and gene count levels of the genome

Attribute	Value	% of totala
Genome size (bp)	2,365,123	
DNA coding region (bp)	2,061,753	87.17
DNA G+C content (bp)	1,556,250	65.8
Total genes	2,060	100
RNA genes	52	2.62
Protein-coding genes	2,006	97.37
Genes with function prediction	1,384	67.18
Genes assigned to COGs	1,518	73.68
Genes with peptide signals	88	4.27
Genes with transmembrane helices	466	22.62

aThe total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome

Table 5. Number of genes associated with the 25 general COG functional categories

http://standardsingenomics.org
Enorma timonensis

Code	Value	% of total^a	Description
J	140	6.98	Translation
A	0	0	RNA processing and modification
K	152	7.58	Transcription
L	90	4.48	Replication, recombination and repair
B	1	0.05	Chromatin structure and dynamics
D	20	1.0	Cell cycle control, mitosis and meiosis
Y	0	0	Nuclear structure
V	52	2.59	Defense mechanisms
T	61	3.04	Signal transduction mechanisms
M	92	4.58	Cell wall/membrane biogenesis
N	3	0.15	Cell motility
Z	0	0	Cytoskeleton
W	0	0	Extracellular structures
U	16	0.80	Intracellular trafficking and secretion
O	45	2.24	Posttranslational modification, protein turnover, chaperones
C	78	3.88	Energy production and conversion
G	224	11.16	Carbohydrate transport and metabolism
E	172	8.57	Amino acid transport and metabolism
F	50	2.49	Nucleotide transport and metabolism
H	40	1.99	Coenzyme transport and metabolism
I	38	1.89	Lipid transport and metabolism
P	71	3.54	Inorganic ion transport and metabolism
Q	13	0.65	Secondary metabolites biosynthesis, transport and catabolism
R	205	10.22	General function prediction only
S	118	5.88	Function unknown
-	488	24.32	Not in COGs

^aThe total is based on the total number of protein coding genes in the annotated genome

Table 6. Genomic comparison of *E. timonensis* and four other members of the *Coriobacteriaceae* family

Species	Strain	Genome accession number	Genome size (Mb)	G+C content
E. timonensis	GD5^T	CAPF00000000	2,365,123	65.80
E. massiliensis	phi	CAGZ01000000	2,263,008	62.0
C. aerofaciens	ATCC 25986	AAVN00000000	2,439,869	60.54
C. glomerans	PW2	NC_015389	2,115,681	60.40
C. tanakaei	YIT 12063	ADLS00000000	2,482,197	60.23
Table 7. Genomic comparison of *E. timonensis* and four other members of the *Coriobacteriaceae* family

	E. timonensis	E. massiliensis	C. aerofaciens	C. glomerans	C. tanakaei
E. timonensis	2,006	1109	1026	880	1077
E. massiliensis	79.44	1,901	1046	899	1103
C. aerofaciens	66.37	66.01	2,159	880	1062
C. glomerans	73.39	72.38	66.15	1,768	913
C. tanakaei	74.02	73.43	64.96	71.27	2,195

Upper right triangle: numbers of orthologous protein shared between genomes; lower left triangle: average percentage similarity of nucleotides corresponding to orthologous proteins shared between genomes; bold face: numbers of proteins per genome.

Figure 7. Distribution of functional classes of predicted genes in the *E. timonensis* (colored in light blue), *E. massiliensis* (dark blue), *Coriobacterium glomerans* (green), *Colinsella aerofaciens* (yellow) and *Colinsella tanakaei* (red) chromosomes, according to the clusters of orthologous groups of proteins.

Conclusion

http://standardsingenomics.org
On the basis of phenotypic, phylogenetic and genomic analyses (taxono-genomics), we formally propose the creation of *Enorma timonensis* sp. nov. that contains strain GD5^T. This bacterium has been found in France.

Description of *Enorma timonensis* sp. nov.

Enorma timonensis (ti.mo.nen'sis. L. gen. fem. timonensis, of Timone, the name of the hospital where strain GD5^T was cultivated). Colonies are translucent grey and 0.4 mm in diameter on blood-enriched Columbia agar. Cells are rod-shaped with a mean diameter of 0.58 µm and a mean length of 1.32 µm. Optimal growth is achieved in anaerobic conditions. No growth is observed in aerobic or microaerophilic conditions. Growth occurs between 37-45°C, with optimal growth being observed at 37°C on blood-enriched Columbia agar. Cells are Gram-positive, non-endospore forming, and non-motile. Cells are negative for catalase and oxidase. Using an API ZYM strip, positive reactions are observed for leucine arylamidase, valine arylamidase, cystin arylamidase, naphthol-AS-BI-phosphohydrolase, β-galactosidase, β-glucuronidase, α-glucosidase and β-glucosidase. Negative reactions are observed for acid phosphatase, nitrate reductase, urease alkaline phosphatase, esterase (C4), esterase lipase (C8), lipase (C14), trypsin, α-chemotrypsin, acid phosphatase, α-galactosidase, N-acetyl-β-glucosaminidase, α-mannosidase, α-fucosidase. Using an API Rapid ID 32A strip, positive reactions are observed for proline arylamidase, phenylalanine arylamidase, histidin arylamidase, serine arylamidase. Negative reactions are observed for urease, arginine dihydrolase, tyrosin arylamidase, leucyl-glycyl arylamidase, alanine arylamidase, glycine arylamidase and arginine arylamidase. Using an API 50 CH strip, fermentation or assimilation was not observed.

Cells are susceptible to amoxicillin-clavulanic acid, metronidazole, imipenem, vancomycin, rifampicin, gentamicin and resistant to penicillin G, amoxicillin, ceftriaxon, erythromycin, and trimethoprim/sulfamethoxazole. The 16S rDNA and genome sequences are deposited in GenBank under accession numbers JX424767 and CAPF00000000, respectively. The G+C content of the genome is 65.8%. The habitat of the organism is the human digestive tract. The type strain GD5^T (= CSUR P900 = DSM 26111) was isolated from the fecal flora of a 53-year old French patient hospitalized in an intensive care unit. This strain has been found in Marseille, France.

Acknowledgments

The authors thank the Xegen Company for automating the genomic annotation process. This study was funded by the Mediterranee Infection Foundation.

References

1. Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maranimichi M, et al. Microbial culturomics; paradigm shift in the human gut microbiome study. *Clin Microbiol Infect* 2012; 18:1185-1193. [PubMed]

2. Dubourg G, Lagier JC, Armougom F, Robert C, Hamad I, Brouqui P. The gut microbiota of a patient with resistant tuberculosis is more comprehensively studied by culturomics than by metagenomics. *Eur J Clin Microbiol Infect Dis* 2013; 32:637-645. [PubMed](http://dx.doi.org/10.1007/s10096-012-1787-3)

3. Pfleiderer A, Lagier JC, Armougom F, Robert C, Vilettes B, Raoult D. Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample. [Epub ahead of print]. *Eur J Clin Microbiol Infect Dis* 2013.

4. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. *Proc Natl Acad Sci USA* 1998; 95:6578-6583. [PubMed](http://dx.doi.org/10.1073/pnas.95.12.6578)

5. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. *Nature* 2010; 464:59-65. [PubMed](http://dx.doi.org/10.1038/nature08821)

6. Clemente JC, Ursell LR, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. *Cell* 2012; 148:1258-1270. [PubMed](http://dx.doi.org/10.1016/j.cell.2012.01.035)

7. Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kampfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. *Int J Syst Evol Microbiol* 2010; 60:249-266. [PubMed](http://dx.doi.org/10.1099/ijs.0.016949-0)

8. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. *Microbiol Today* 2006; 33:152-155.

9. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC,
Murray RGE, Stackebrandt E, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 1987; 37:463-464. http://dx.doi.org/10.1099/00207713-37-4-463

10. Rossello-Mora R. DNA-DNA Reassociation Methods Applied to Microbial Taxonomy and Their Critical Evaluation. In: Stackebrandt E (ed), Molecular Identification, Systematics, and Population Structure of Prokaryotes. Springer, Berlin, 2006; p. 23-50.

11. Welker M, Moore ER. Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 2011; 34:2-11. PubMed http://dx.doi.org/10.1016/j.syapm.2010.11.013

12. Kokcha S, Mishra AK, Lagier JC, Million M, Leroy Q, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Bacillus timonensis sp. nov. Stand Genomic Sci 2012; 6:346-355. PubMed http://dx.doi.org/10.4056/sigs.2776064

13. Lagier JC, El Karkouri K, Nguyen TT, Armougom F, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Anaerococcus senegalensis sp. nov. Stand Genomic Sci 2012; 6:116-125. PubMed http://dx.doi.org/10.4056/sigs.2415480

14. Mishra AK, Gimenez G, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Alistipes senegalensis sp. nov. Stand Genomic Sci 2012; 6:304-314. http://dx.doi.org/10.4056/sigs.2625821

15. Lagier JC, Armougom F, Mishra AK, Nguyen TT, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Alistipes timonensis sp. nov. Stand Genomic Sci 2012; 6:315-324. PubMed http://dx.doi.org/10.4056/sigs.2685971

16. Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Clostridium senegalense sp. nov. Stand Genomic Sci 2012; 6:386-395. PubMed http://dx.doi.org/10.4056/sigs.2766062

17. Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Peptoniphilus timonensis sp. nov. Stand Genomic Sci 2012; 7:1-11. PubMed http://dx.doi.org/10.4056/sigs.2956294

18. Mishra AK, Lagier JC, Rivet R, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Paenibacillus senegalensis sp. nov. Stand Genomic Sci 2012; 7:70-81. PubMed http://dx.doi.org/10.4056/sigs.3056450

19. Lagier JC, Gimenez G, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Herbaspirillum massilense sp. nov. Stand Genomic Sci 2012; 7:200-209. PubMed http://dx.doi.org/10.4056/sigs.3086474

20. Kokcha S, Ramasamy D, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Brevibacterium senegalense sp. nov. Stand Genomic Sci 2012; 7:223-245. PubMed http://dx.doi.org/10.4056/sigs.3256677

21. Ramasamy D, Kokcha S, Lagier JC, N’Guyen TT, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Aeromicrobium massilense sp. nov. Stand Genomic Sci 2012; 7:246-257. PubMed http://dx.doi.org/10.4056/sigs.3306717

22. Lagier JC, Ramasamy D, Rivet R, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Cellulomonas massilensis sp. nov. Stand Genomic Sci 2012; 7:258-270. PubMed http://dx.doi.org/10.4056/sigs.3316719

23. Lagier JC, Karkouri K, Rivet R, Cou dred C, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Senegalamassiliana anaerobia gen. nov., sp. nov. Stand Genomic Sci 2013; 7:343-356. PubMed http://dx.doi.org/10.4056/sigs.3246665

24. Mishra AK, Hugon P, Nguyen TT, Robert C, Cou dred C, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Peptoniphilus obesi sp. nov. Stand Genomic Sci 2013; 7:357-369. PubMed http://dx.doi.org/10.4056/sigs.32766871

25. Mishra AK, Lagier JC, Nguyen TT, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Peptoniphilus senegalensis sp. nov. Stand Genomic Sci 2013; 7:370-381. PubMed http://dx.doi.org/10.4056/sigs.3366764

26. Lagier JC, Karkouri K, Mishra AK, Robert C, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Enterobacter massilensis sp. nov. Stand Genomic Sci 2013; 7:399-412. PubMed http://dx.doi.org/10.4056/sigs.3396830

27. Hugon P, Ramasamy D, Rivet R, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Alistipes obesi sp. nov. Stand Genomic Sci 2013; 7:427-439. PubMed http://dx.doi.org/10.4056/sigs.3336746

28. Hugon P, Mishra AK, Nguyen TT, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Brevibacillus massiliosenegalensis sp. nov. Stand Genomic Sci 2013; 8:1-14. PubMed http://dx.doi.org/10.4056/sigs.3466975

29. Mishra AK, Hugon P, Nguyen TT, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Enorma massilissiensis gen. nov., sp. nov., a new member of the Family Coriobacteriaceae. Stand Genomic Sci 2013; 8:290-305. PubMed http://dx.doi.org/10.4056/sigs.3426906

30. Ramasamy D, Lagier JC, Gorlas A, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Bacillus massillosenegalensis sp. nov. Stand Genomic Sci 2013; 8:264-278. PubMed http://dx.doi.org/10.4056/sigs.3496899

31. Ramasamy D, Lagier JC, Nguyen TT, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Diefla fastidiosa gen. nov., sp. nov., a new member of the Family Erysipelotrichaceae. Stand Genomic Sci 2013; 8:336-351. PubMed http://dx.doi.org/10.4056/sigs.3567059

32. Mishra AK, Pfleiderer A, Lagier JC, Robert C, Raoult D, Fournier PE. Non contiguous-finished genome se-
Enorma timonensis

sequence and description of Bacillus massilanoaneroxicus sp. nov. Stand Genomic Sci 2013; 8:465-479. PubMed http://dx.doi.org/10.4056/sigs.4087826

33. Hugon P, Ramasamy D, Robert C, Couderc C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Kalliyoga massiliensis gen. nov., sp. nov., a new member of the family Clostridiales Incertae Sedis XI. Stand Genomic Sci 2013; 8:500-515. http://dx.doi.org/10.4056/sigs.4077819

34. Padmanabhan R, Lagier JC, Dangui NPM, Michelle C, Couderc C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Megasphaera massiliensis. Stand Genomic Sci 2013; 8:525-538. http://dx.doi.org/10.4056/sigs.4077819

35. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479-491. http://dx.doi.org/10.1099/00207713-47-2-479

36. List of Prokaryotic names with standing nomenclature (LPSN). http://www.bacterio.cict.fr.

37. Maruo T, Sakamoto M, Ito C, Toda T, Benno Y. Adlercreutzia equili bifaciens gen. nov., sp. nov., an equalo bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol 2008; 58:1221-1227. PubMed http://dx.doi.org/10.1099/ijs.0.65404-0

38. Minamida K, Ota K, Nishimukai M, Tanaka M, Abe A, Sone T, Tomita F, Hara H, Asano K. Asaccharobacter cellatus gen. nov., sp. nov., isolated from rat caecum. Int J Syst Evol Microbiol 2008; 58:1238-1240. PubMed http://dx.doi.org/10.1099/ijs.0.64894-0

39. Collins MD, Wallbanks S. Comparative sequence analyses of the 16S rRNA genes of Lactobacillus minu tus, Lactobacillus rima e and Streptococcus parvulus: proposal for the creation of a new genus Atopobium. FEMS Microbiol Lett 1992; 74:235-240. PubMed http://dx.doi.org/10.1111/j.1574-6968.1992.tb05372.x

40. Kageyama A, Benno Y, Nakase K. Phylogenetic and phenotypic evidence for the transfer of Eubacterium aerofaciens to the genus Collinsella as Collinsella aerofaciens gen. nov., comb. nov. Int J Syst Bacteriol 1999; 49:557-565. PubMed http://dx.doi.org/10.1099/00207713-49-2-557

41. Haas F, König H. Coriobacterium glomerans gen. nov., sp. nov. from the intestinal tract of the red soldier bug. Int J Syst Bacteriol 1988; 38:382-384. http://dx.doi.org/10.1099/00207713-38-4-382

42. Nakazawa F, Poco SE, Ikeda T, Sato M, Kalfas S, Sundqvist G, Hoshino E. Cryptobacterium curtum gen. nov., sp. nov., a new genus of gram-positive anaerobic rod isolated from human oral cavities. Int J Syst Bacteriol 1999; 49:1193-1200. PubMed http://dx.doi.org/10.1099/00207713-49-3-1193

43. Anderson RC, Rasmussen MA, Jensen NS, Allison MJ. Denitrobacterium detoxificans gen. nov., sp. nov., a ruminal bacterium that respires on nitrocompounds. Int J Syst Evol Microbiol 2000; 50:633-638.
52. Gupta RS, Chen WJ, Adeolu M, Chai Y. Molecular signatures for the class Coriobacteria and its different clades; proposal for division of the class Coriobacteriia into the emended order Coriobacteriales, containing the emended family Coriobacteriaceae and Atopobiaceae fam. nov., and Eggerthellales ord. nov., containing the family Eggerthellaceae fam. nov. Int J Syst Evol Microbiol 2013; 63:3379-3397. PubMed http://dx.doi.org/10.1099/ijs.0.048371-0

53. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009; 59:589-608. PubMed http://dx.doi.org/10.1099/ijs.0.65780-0

54. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25:25-29. PubMed http://dx.doi.org/10.1038/75556

55. Seng P, Drancourt M, Gouriet F, La SB, Fournier PE, Rolain JM, Raoult D. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009; 49:543-551. PubMed http://dx.doi.org/10.1086/600885

56. Prodigal. http://prodigalornl.gov/

57. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res 2012; 40:D48-D53. PubMed http://dx.doi.org/10.1093/nar/gkr1202

58. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955-964. PubMed

59. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100-3108. PubMed http://dx.doi.org/10.1093/nar/gkm160

60. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004; 340:783-795. PubMed http://dx.doi.org/10.1016/j.jmb.2004.05.028

61. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305:567-580. PubMed http://dx.doi.org/10.1006/jmbi.2000.4315

62. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B. Artemis: sequence visualization and annotation. Bioinformatics 2000; 16:944-945. PubMed http://dx.doi.org/10.1093/bioinformatics/16.10.944

63. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 2009; 25:119-120. PubMed http://dx.doi.org/10.1093/bioinformatics/btn578

64. Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394-1403. PubMed http://dx.doi.org/10.1101/gr.2289704

65. Lehner M, Findeib S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinortho: Detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124. PubMed http://dx.doi.org/10.1186/1471-2105-12-124

http://standardsingenomics.org