Nonapproximability Results for Partially Observable Markov Decision Processes

Christopher Lusena * and Judy Goldsmith † and Martin Mundhenk ‡

Abstract

We show that for several variations of partially observable Markov decision processes, polynomial-time algorithms for finding control policies are unlikely to or simply don’t have guarantees of finding policies within a constant factor or a constant summand of optimal. Here “unlikely” means “unless some complexity classes collapse,” where the collapses considered are \(P = NP \), \(P = \text{PSPACE} \), or \(P = \text{EXP} \). Until or unless these collapses are shown to hold, any control-policy designer must choose between such performance guarantees and efficient computation.

1. Introduction

Life is uncertain; real-world applications of artificial intelligence contain many uncertainties. In this work, we show that uncertainty breeds uncertainty: in a controlled stochastic system with uncertainty (as modeled by a partially observable Markov decision process, for instance), plans can be obtained efficiently or with quality guarantees, but rarely both.

Planning over stochastic domains with uncertainty is hard (in some cases PSPACE-hard or even undecidable, see Papadimitriou & Tsitsiklis, 1987; Madani, Hanks, & Condon, 1999). Given that it is hard to find an optimal plan or policy, it is natural to try to find one that is “good enough.” In the best of all possible worlds, this would mean having an algorithm that is guaranteed to be fast and to produce a policy that is reasonably close to the optimal policy. Unfortunately, we show here that such an algorithm is unlikely or, in some cases, impossible. The implication for algorithm development is that developers should not waste time working toward both guarantees.

The particular mathematical models we concentrate on in this paper are Markov decision processes (MDPs) and partially observable Markov decision processes (POMDPs). We consider both the straightforward representations of MDPs and POMDPs, and succinct representations, since the complexity of finding policies is measured not in terms of the size of the system, but in terms of the size of the representation of the system.

There has been a significant body of work on heuristics for succinctly represented MDPs (see Boutilier, Dean, & Hanks, 1999; Blythe, 1999 for surveys). Some of this work grows out of the engineering tradition (see, for instance, Tsitsiklis and Roy’s (1996) article on feature-based methods, which depends on empirical evidence to evaluate algorithms. While

* Dept. of Computer Science, University of Kentucky, Lexington KY 40506-0046, lusena@cs.engr.uky.edu. Supported in part by NSF grant CCR-9315354 and CCR-9610348.
† Dept. of Computer Science, University of Kentucky, Lexington KY 40506-0046, goldsmith@cs.engr.uky.edu. Supported in part by NSF grant CCR-9315354 and CCR-9610348.
‡ Universität Trier, FB IV – Informatik, D-54286 Trier, Germany, mundhenk@ti.uni-trier.de. Part of the work was performed at Dartmouth College. Supported in part by the Deutsche Akademische Austauschdienst (DAAD) grant 315/PPP/gu-ab.
there are obvious drawbacks to this approach, our work argues that this may be the most appropriate way to verify the quality of an approximation algorithm, at least if one wants to do so in reasonable time.

The same problems that plague approximation algorithms for uncompressed representations carry over to the succinct representations, and the compression introduces additional complexity. For instance, if there is no computable approximation of the optimal policy in the uncompressed case, then compression will not change this. However, it is easy to find the optimal policy for an infinite-horizon fully observable MDP (Bellman, 1957), yet EXP-hard (provably harder than polynomial time) to find approximately optimal policies (in time measured in the size of the input) if the input is represented succinctly (see Section 5).

Note that there are two interpretations to finding an approximation: finding a policy with value close to that of the optimal policy, or simply calculating a value that is close to the optimal value. If we can do the former and can evaluate policies, then we can certainly do the latter. Therefore, we sometimes show that the latter cannot be done, or cannot be done in time polynomial in the size of the input (unless something unlikely is true).

The complexity class PSPACE consists of those languages recognizable by a Turing machine that uses only \(p(n) \) memory for some polynomial \(p \), where \(n \) is the size of the input. Because each time step uses at most one unit of memory, \(P \subseteq \text{PSPACE} \), though we do not know whether that is a proper inclusion or an equality. Because, given a limit on the amount of memory used, there are only exponentially many configurations of that memory possible with a fixed finite alphabet, \(\text{PSPACE} \subseteq \text{EXP} \). It is not known whether this is a proper inclusion or an equality either, although it is known that \(P \neq \text{EXP} \). Thus, a PSPACE-hardness result says that the problem is apparently not tractable, but an EXP-hardness result says that the problem is certainly not tractable.

Researchers also consider problems that are P-complete (under logspace or other highly restricted reductions). For instance, the policy existence problem for infinite horizon MDPs is P-complete (Papadimitriou & Tsitsiklis, 1987). This is useful information, because it is generally thought that P-complete problems are not susceptible to significant speed-up via parallelization. (For a more thorough discussion of P-completeness, see Greenlaw, Hoover, & Ruzzo, 1995.)

We also know that NP \(\subseteq \text{PSPACE} \), so \(P = \text{PSPACE} \) implies \(P = \text{NP} \). Thus, any argument or belief that \(P \neq \text{NP} \) implies that \(P \neq \text{PSPACE} \). (For elaborations of this complexity theory primer, see any complexity theory text, such as Papadimitriou, 1994.)

In this paper, we show that there is a necessary trade-off between running time guarantees and performance guarantees for any general POMDP approximation algorithm — unless \(P = \text{NP} \) or \(P = \text{PSPACE} \). (Table 1 gives an overview of our results.) Note that (assuming \(P \neq \text{NP} \) or \(P \neq \text{PSPACE} \)) this tells us that there is no algorithm that runs in time polynomial in the size of the representation of the POMDP that finds a policy that is close to optimal for every instance. It does not say that no fast algorithm will ever be close on any input; there are many instances where the algorithms already in use or being developed will be both fast and close. We simply can’t guarantee that the algorithms will always find a close-to-optimal policy quickly.
policy	representation	horizon	problem	complexity
Partial observability				
stationary	-	n	ε-app.	not unless P=NP
stationary	-	n	above-avg. value	not unless P=NP
time-dependent	-	n	ε-app.	not unless P=NP
history-dependent	-	n	ε-app.	not unless P=PSpace
stationary	-	∞	ε-app.	not unless P=NP
time-dependent	-	∞	ε-app.	uncomputable

(Madani et al., 1999)

Unobservability				
time-dependent	-	n	ε-app.	not unless P=NP

Full observability				
stationary	2TBN	n	k-additive app.	P-hard

Table 1: Hardness for partially- and fully-observable MDPs

1.1 Heuristics and Approximations

The state of the art with respect to POMDP policy-finding algorithms is that there are three types of algorithms in use or under investigation: exact algorithms, approximations, and heuristics. Exact algorithms attempt to find exact solutions. In the finite horizon cases, they run in time at least exponential in the size of the POMDP and the horizon (assuming a straightforward representation of the POMDP). In the infinite horizon, they do not necessarily halt, but can be stopped when the policy is within ε of optimal (a checkable condition). Approximation algorithms construct approximations to what the exact algorithms find. (Examples of this include grid-based methods, Hauskrecht, 1997; Lovejoy, 1991; White, 1991.) Heuristics come in two flavors: those that construct or find actual policies that can be evaluated, and those that specify a means of choosing an action (for instance, “most likely state”) which do not yield policies that can be evaluated using the standard, linear algebra-based methods.

The best current exact algorithm is incremental pruning (IP) with point-based improvement (Zhang, Lee, & Zhang, 1999). Littman’s analysis of the witness algorithm (Littman, Dean, & Kaelbling, 1995; Cassandra, Kaelbling, & Littman, 1995) still applies: this algorithm requires exponential time in the worst case. The underlying theory of these algorithms (Witness, IP, etc.) for infinite-horizon cases depends on Bellman’s and Sondik’s work on value iteration for MDPs and POMDPs (Bellman, 1957; Sondik, 1971; Smallwood & Sondik, 1973).

The best known family of approximation algorithms is known as grid methods. The basic idea is to use a finite grid of points in the belief space (the space of all probability distributions over the states of the POMDP—this is the underlying space for the algorithms mentioned above) to define a policy. Once the grid points are chosen, all of these algorithms use value iteration on the points to obtain a policy for those belief states, then interpolate to the whole belief space. The difference in the algorithms lies in the choice of grid points. (An excellent survey appears in Hauskrecht, 1997.) These algorithms are called
approximation algorithms because they approximate the process of value iteration, which the exact algorithms carry out exactly.

Heuristics that do not yield easily evaluated policies are surveyed in (Cassandra, 1998). These are often very easy to implement, and include techniques such as “most likely state” (choosing a state with the highest probability from the belief state, and acting as if the system were fully observable), and minimum entropy (choose the action that gives the most information about the current state). Others depend on “voting,” where several heuristics or options are combined.

There are heuristics based on finite histories or other uses of finite amounts of memory within the algorithm (Sondik, 1971; Platzman, 1977; Hansen, 1998a, 1998b; Lusena, Li, Sittinger, Wells, & Goldsmith, 1999; Meuleau, Kim, Kaelbling, & Cassandra, 1999; Meuleau, Peshkin, Kim, & Kaelbling, 1999; Peshkin, Meuleau, & Kaelbling, 1999). None of these come with proofs of closeness, except for some of Hansen’s work. For the rest, the trade-off has been made between fast searching through policy space and guarantees.

1.2 Structure of This Paper
In Section 2 we give formal definitions of MDPs, POMDPs, two-phase temporal Bayes’ nets (2TBNs) and policies. In Section 3, we define ε-approximations and additive approximations, and show a relationship between the two types of approximability for MDPs and POMDPs.

We separate the complexity results for finite horizon policy approximation from those for infinite horizon policies. Section 4 contains nonapproximability results for finite horizon POMDP policies; Section 6 contains nonapproximability for infinite horizon POMDP policies. Although it is relatively easy to find optimal MDP policies, we consider approximating MDP policies in Section 5, since the succinctly represented case, at least, is provably hard to approximate.

Some of the more technical proofs are included in appendices, in order to make the body of the paper more readable. However, some proofs from other papers are sketched in the body of the paper, in order to motivate both the results and the proofs newly presented here.

2. Definitions
Note that MDPs are in fact special cases of POMDPs. The complexity of finding and approximating optimal policies depends on the observability of the system, so our results are segregated by observability. However, one set of definitions suffices.

2.1 Partially Observable Markov Decision Processes
A partially observable Markov decision process (POMDP) describes a controlled stochastic system by its states and the consequences of actions on the system. It is denoted as a tuple $M = (\mathcal{S}, s_0, \mathcal{A}, \mathcal{O}, t, o, r)$, where

- \mathcal{S}, \mathcal{A} and \mathcal{O} are finite sets of states, actions and observations,
- $s_0 \in \mathcal{S}$ is the initial state,
• \(t : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1] \) is the state transition function, where \(t(s, a, s') \) is the probability that state \(s' \) is reached from state \(s \) on action \(a \) (for every \(s \in \mathcal{S} \) and \(a \in \mathcal{A} \), either \(\Sigma_{s' \in \mathcal{S}} t(s, a, s') = 1 \), if action \(a \) can be applied on state \(s \), or \(\Sigma_{s' \in \mathcal{S}} t(s, a, s') = 0 \)),

• \(o : \mathcal{S} \rightarrow \mathcal{O} \) is the observation function, where \(o(s) \) is the observation made in state \(s \),

• \(r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{Q} \) is the reward function, where \(r(s, a) \) is the reward gained by taking action \(a \) in state \(s \).

If states and observations are identical, i.e. \(\mathcal{O} = \mathcal{S} \) and \(o \) is the identity function (or a bijection), then the MDP is called fully observable. Another special case is unobservable MDPs, where the set of observations contains only one element, i.e. in every state the same observation is made, and therefore the observation function is constant.

Normally, MDPs are represented by \(\mathcal{S} \times \mathcal{S} \) tables, one for each action. However, we will also discuss more succinct representations: in particular, two-phase temporal Bayes' nets (2TBNS). These will be defined in Section 5.

2.2 Policies and Performances

A policy describes how to act depending on observations. We distinguish three types of policies.

• A stationary policy \(\pi_s \) (for \(M \)) is a function \(\pi_s : \mathcal{O} \rightarrow \mathcal{A} \), mapping each observation to an action.

• A time-dependent policy \(\pi_t \) is a function \(\pi_t : \mathcal{O} \times \mathbb{N} \rightarrow \mathcal{A} \), mapping each pair \(\langle \text{observation}, \text{time} \rangle \) to an action.

• A history-dependent policy \(\pi_h \) is a function \(\pi_h : \mathcal{O}^* \rightarrow \mathcal{A} \), mapping each finite sequence of observations to an action.

Notice that, for an unobservable MDP, a history-dependent policy is equivalent to a time-dependent one.

Recent algorithmic development has included consideration of finite-memory policies as well (Hansen, 1998b, 1998a; Lusena, Li, Sitttinger, Wells, & Goldsmith, 1999; Meuleau, Kim, Kaelbling, & Cassandra, 1999; Meuleau, Peshkin, Kim, & Kaelbling, 1999; Peshkin, Meuleau, & Kaelbling, 1999; Hansen & Feng, 2000; Kee-Eung Kim & Meuleau, 2000). These are policies that are allowed some finite amount of memory; sufficient allowances would enable such a policy to simulate a full history-dependent policy over a finite horizon, or perhaps a time-dependent policy, or to use less memory more judiciously. One variant of finite-memory policies, which we call free finite memory policies, fixes the amount of memory \textit{a priori}.

More formally, a free finite memory policy with the finite set \(\mathcal{M} \) of memory states for POMDP \(\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{O}, t, o, r) \) is a function \(\pi_f : \mathcal{O} \times \mathcal{M} \rightarrow \mathcal{A} \times \mathcal{M} \), mapping each

1. Note that making observations probabilistically does not add any power to MDPs. Any probabilistically observable MDP can be turned into one with deterministic observations with only a polynomial increase in its size.
bounds (complexity class membership results) for stationary policies hold as well. The states of free memory policies appear in the constants of the algorithms, and in stationary policies apply to free memory policies as well. Because one can consider a Littman, (1994) are such examples: McCallum’s maze requires only 1 bit of memory to find an optimal policy. The maze instances such as McCallum’s maze (McCallum, 1993; Littman, 1994) are such examples: McCallum’s maze requires only 1 bit of memory to find an optimal policy.

Let \(M = (S, s_0, A, O, t, o, r) \) be a POMDP.

A trajectory \(\theta \) of length \(m \) for \(M \) is a sequence of states \(\theta = \sigma_0, \sigma_1, \sigma_2, \ldots, \sigma_m \) (\(m \geq 0 \), \(\sigma_i \in S \)) which starts with the initial state of \(M \), i.e., \(\sigma_0 = s_0 \). We use \(T_k(s) \) to denote the set of length-\(k \) trajectories which end in state \(s \).

The expected reward obtained in state \(s \) after exactly \(k \) steps under policy \(\pi \) is the reward obtained in \(s \) by taking the action specified by \(\pi \), weighted by the probability that \(s \) is actually reached after \(k \) steps,

- \(r(s, k, \pi) = r(s, \pi(s)) \cdot \sum_{(s_0, \ldots, s_k) \in T_k(s)} \prod_{i=1}^k t(\sigma_{i-1}, \pi(o(\sigma_{i-1})), \sigma_i) \), if \(\pi \) is a stationary policy,
- \(r(s, k, \pi) = r(s, \pi(s, k)) \cdot \sum_{(s_0, \ldots, s_k) \in T_k(s)} \prod_{i=1}^k t(\sigma_{i-1}, \pi(o(\sigma_{i-1}), i - 1), \sigma_i) \), if \(\pi \) is a time-dependent policy, and
- \(r(s, k, \pi) = \sum_{(s_0, \ldots, s_k) \in T_k(s)} r(s, \pi(o(\sigma_0), \ldots, o(\sigma_k))) \cdot \prod_{i=1}^k t(\sigma_{i-1}, \pi(o(\sigma_0), \ldots, o(\sigma_{i-1})), \sigma_i) \), if \(\pi \) is a history-dependent policy.

A POMDP may behave differently under optimal policies for each type of policy. The quality of a policy is determined by its performance, i.e., by the expected rewards accrued by it. We distinguish between different performance metrics for POMDPs that run for a finite number of steps and those that run indefinitely.

- The finite-horizon performance of a policy \(\pi \) for POMDP \(M \) is the expected sum of rewards received during the first \(|M| \) steps by following the policy \(\pi \), i.e., \(\text{perf}_f(M, \pi) = \sum_{i=0}^{M-1} \sum_{s \in S} r(s, i, \pi) \). (Other work assumes that the horizon is \(\text{poly}(|M|) \), instead of \(|M| \). This does not change the complexity of any of our problems.)

- The infinite-horizon total discounted performance gives rewards obtained earlier in the process a higher weight than those obtained later. For \(0 < \beta < 1 \), the total \(\beta \)-discounted reward is defined as \(\text{perf}_d(M, \pi) = \sum_{i=0}^{\infty} \sum_{s \in S} \beta^i \cdot r(s, i, \pi) \).

- The infinite-horizon average performance is the limit of all rewards obtained within the first \(n \) steps divided by \(n \), for \(n \) going to infinity: \(\text{perf}_{\text{av}}(M, \pi) = \lim_{n \to \infty} \frac{1}{n} \text{perf}_f(M, n, \pi) \).

Let \(\text{perf} \) be any of these performance metrics, and let \(\alpha \) be any type of policy, either stationary, time-dependent, or history-dependent. The \(\alpha \)-value \(\text{val}_\alpha(M) \) of \(M \) (under the
metric chosen) is the maximal performance of any policy \(\pi \) of type \(\alpha \) for \(M \), i.e., \(\text{val}_\alpha(M) = \max_{\pi \in \Pi_\alpha} \text{perf}(M, \pi) \), where \(\Pi_\alpha \) is the set of all \(\alpha \) policies.

For simplicity, we assume that the size \(|M| \) of a POMDP \(M \) is determined by the size \(n \) of its state space. We assume that there are no more actions than states, and that each state transition probability is given as a binary fraction with \(n \) bits and each reward is an integer of at most \(n \) bits. This is no real restriction, since adding unreachable “dummy” states allows one to use more bits for transition probabilities and rewards. Also, it is straightforward to transform a POMDP \(M \) with non-integer rewards to \(M' \) with integer rewards such that \(\text{val}_\alpha(M, k) = c \cdot \text{val}_\alpha(M', k) \) for some constant \(c \) depending only on the transformation, rather than the instance \((M, k) \).

We consider problem instances that are represented in a straightforward way. A POMDP with \(n \) states is represented by a set of \(n \times n \) tables for the transition function (one table for each action) and a similar table for the reward function and for the observation function. We assume that the number of actions and the number of bits needed to store each transition probability or reward does not exceed \(n \), so such a representation requires \(O(n^4) \) bits. (This can be modified to allow \(n^k \) bits without changing the complexity results.) In the same way, stationary policies can be encoded as lists with \(n \) entries, and time-dependent policies for horizon \(n \) as \(n \times n \) tables.

For each type of POMDP, each type of policy, and each type of performance the value problem is,

given a POMDP, a performance metric (finite-horizon, total discounted, or average performance), and a policy type (stationary, time-dependent, or history-dependent),
calculate the value of the best policy of the specified type under the given performance metric.

The policy existence problem is,

given a POMDP, a performance metric, and a policy type,
decide whether the value of the best policy of the specified type under the given performance metric is greater 0.

3. Approximability

In previous work (Papadimitriou & Tsitsiklis, 1986, 1987; Mundhenk, Goldsmith, & Allender, 1997; Mundhenk, Goldsmith, Lusena, & Allender, 2000), it was shown that the policy existence problem is computationally intractable for most variations of POMDPs. For instance, we showed that the stationary policy existence problems for POMDPs with or without negative rewards are NP-complete. Computing an optimal policy is at least as hard as deciding the existence problem. Instead of asking for an optimal policy, we might wish to compute a policy that is guaranteed to have a value that is at least a large fraction of the optimal value.

A polynomial time algorithm computing such a nearly optimal policy is called an \(\epsilon \)-approximation (for \(0 \leq \epsilon < 1 \)), where \(\epsilon \) indicates the quality of the approximation in the following way. Let \(A \) be a polynomial time algorithm which for every POMDP \(M \) computes
an α-policy $A(M)$. Notice that $\text{perf}(M, A(M)) \leq \text{val}_\alpha(M)$ for every M. The algorithm A is called an ε-approximation, if for every POMDP M,

$$\left| \frac{\text{val}_\alpha(M) - \text{perf}(M, A(M))}{\text{val}_\alpha(M)} \right| \leq \varepsilon.$$

(See e.g., Papadimitriou, 1994 for more detailed definitions.) Approximability distinguishes NP-complete problems: there are problems which are ε-approximable for all ε, for certain ε, or for no ε (unless $P = NP$).

An approximation scheme yields an ε-approximation for arbitrary $\varepsilon > 0$. If there is a polynomial time algorithm that, on input POMDP M and ε outputs an ε-approximation of the value, in time polynomial in the size of M and $\frac{1}{\varepsilon}$, then we say the problem has a Polynomial-Time Approximation Scheme (PTAS).

If there is a polynomial-time algorithm that outputs an approximation, v, to the value μ of M ($\mu = \text{val}_\alpha(M)$) with $\mu \geq v \geq \mu - k$ then we say that the problem has a k-additive approximation algorithm.

In the context of POMDPs, existence of a k-additive approximation algorithm and a PTAS are equivalent. This might seem surprising to readers who are more familiar with reward criteria that have fixed upper and lower bounds on the performance of a solution, for instance the probability of reaching a goal state. In these cases the fixed bounds on performance will give different results. However, we are addressing the case where there is no a priori upper bound on the performance of policies, even though there are computable upper bounds on the performance of a policy for each instance.

Proposition 3.1 A POMDP value problem is k-additive approximable if and only if there exists a polynomial-time approximation scheme (a PTAS) for that POMDP value problem.

Proof The proposition follows from the fact that, given POMDP with value μ we can construct another POMDP with value $\theta \cdot \mu$ just by multiplying all rewards in the former POMDP by θ. (Thus, the proposition generalizes beyond POMDP s.)

Let M be a POMDP with value μ, and let $\theta \cdot M$ be a new POMDP obtained from M by multiplying all its rewards by θ. Let A be a polynomial time k-additive approximation algorithm. ($A(M)$ outputs v, an approximation to the value of M, with $v > \mu - k$. Note that $\mu \geq v$, since μ is the maximum value.) Given ε, we need a θ such that $\theta \mu - k > (1 - \varepsilon)\theta \mu$ holds. Hence, $\varepsilon \theta \mu > k$. Since $v + k \geq \mu$, we compute $A(M) = v$ and choose $\theta = \left\lfloor \frac{k}{\varepsilon \cdot (v + k)} \right\rfloor + 1$; the desired ε-approximation is $A(\theta \cdot M)$, provided $\mu > 0$.

Suppose that $\mu = 0$, and $v = -k$. If this is the case then we know that $\mu = 0$ and we can output the value of μ. If $v > -k$ we can set θ as above, and find $v' = A(\theta \cdot M)$: If $v' > 0$ then $\mu > 0$, as in the above paragraph; otherwise $0 > v'$ and μ must be 0, so we can output the exact value of μ.

Suppose, instead, that we have a PTAS for optimal policies for this problem. Let $A(M, \varepsilon)$ be an algorithm that demonstrates this. Let $\mu = \text{val}_\alpha(M)$, and $A(M, 0.5) = v$, thus $\mu > v > \mu/2$. We wish to choose an ε such that $(1 - \varepsilon)\mu \geq \mu - k$, giving $\varepsilon \leq \frac{k}{\mu}$. Since $\frac{k}{2v} \leq \frac{k}{\mu}$, and $\frac{k}{2v}$ is polynomial sized and is polynomial time computable in $|M|$ (since v is the output of $A(M, 0.5)$), we can choose $\varepsilon < \frac{k}{2v}$, and run $A(M, \varepsilon)$. This gives a k-additive approximation. □
A problem that is not \(\varepsilon \)-approximable for some \(\varepsilon \) cannot have a PTAS. Therefore, any multiplicative nonapproximability result yields an additive nonapproximability result. However, an additive nonapproximability result only shows that there is no PTAS, although there might be an \(\varepsilon \)-approximation for some fixed \(\varepsilon \).

4. Non-Approximability for Finite Horizon POMDPs

This section focuses on finite-horizon policies. Because that is consistent throughout the section, we do not explicitly mention it in each theorem. However, as Section 6 shows, there are significant computational differences between finite and infinite horizon calculations.

The policy existence problem for POMDPs with negative and nonnegative rewards is not suited for \(\varepsilon \)-approximation. If a policy with positive performance exists then every approximation algorithm yields such a policy, because a policy with performance 0 or smaller cannot approximate a policy with positive performance. Hence, any \(\varepsilon \)-approximation straightforwardly solves the decision problem. Therefore, we concentrate on POMDPs with nonnegative rewards. Results for POMDPs with unrestricted rewards are stated as corollaries.

Consider a \(\varepsilon \)-approximation algorithm \(A \) that, on input a POMDP \(M \) with nonnegative rewards, outputs a policy \(\pi^M_\alpha \) of type \(\alpha \). Then it holds that

\[
\text{perf}(M, \pi^M_\alpha) \geq (1 - \varepsilon) \cdot \text{val}_\alpha(M).
\]

We first consider the question of whether an optimal stationary policy can be \(\varepsilon \)-approximated for POMDPs with nonnegative rewards. It is known (Littman, 1994; Mundhenk et al., 2000) that the related decision problem is NP-complete. We include a sketch of that proof here, since later proofs build on it. The formal details can be found in Appendix A.

Theorem 4.1 (Littman, 1994; Mundhenk et al., 2000) The stationary policy existence problem for POMDPs with nonnegative rewards is NP-complete.

Proof Membership in NP is straightforward, because a policy can be guessed and evaluated in polynomial time. To show NP-hardness, we reduce the NP-complete satisfiability problem 3SAT to it. Let \(\phi(x_1, \ldots, x_n) \) be such a formula with variables \(x_1, \ldots, x_n \) and clauses \(C_1, \ldots, C_m \), where clause \(C_j = (l_{v(j,1)} \lor l_{v(j,2)} \lor l_{v(j,3)}) \) for \(l_i \in \{x_i, \neg x_i\} \). We say that variable \(x_i \) appears in \(C_j \) with signum 0 (resp. 1) if \(\neg x_i \) (resp. \(x_i \)) is a literal in \(C_j \). Without loss of generality, we assume that every variable appears at most once in each clause. The idea is to construct a POMDP \(M(\phi) \) having one state for each appearance of a variable in a clause. The set of observations is the set of variables. Each action corresponds to an assignment of a value to a variable. The transition function is deterministic. The process starts with the first variable in the first clause. If the action chosen in a certain state satisfies the corresponding literal, the process proceeds to the first variable of the next clause, or with reward 1 to a final sink state \(T \) if all clauses were considered. If the action does not satisfy the literal, the process proceeds to the next variable of the clause, or with reward 0 to a sink state \(F \). A sink state will never be left. The partition of the state space into observation classes guarantees that the same assignment is made for every appearance of the same variable. Therefore, the value of \(M(\phi) \) equals 1 iff \(\phi \) is satisfiable. The formal reduction is in Appendix A. \(\square \)
Note that all policies have expected reward of either 1 or 0. Immediately we get the nonapproximability result for POMDPs, even if all trajectories have nonnegative performance.

Theorem 4.2 Let $0 \leq \varepsilon < 1$. An optimal stationary policy for POMDPs with nonnegative rewards is ε-approximable if and only if $P = \text{NP}$.

Proof The stationary value of a POMDP can be calculated in polynomial time by a binary search method using an oracle solving the stationary policy existence problem for POMDPs. Knowing the value, one can try to fix an action for an observation. If the modified POMDP still achieves the value calculated before, one can continue with the next observation, until a stationary policy is found which has the optimal performance. This algorithm runs in polynomial time with an oracle solving the stationary policy existence problem for POMDPs. Since the oracle is in NP, by Theorem 4.1, the algorithm runs in polynomial time if $P = \text{NP}$.

Now, assume that A is a polynomial-time algorithm that ε-approximates the optimal stationary policy for some ε with $0 \leq \varepsilon < 1$. We show that this implies that $P = \text{NP}$ by showing how to solve the NP-complete problem 3Sat. As in the proof of Theorem 4.1, given an instance ϕ of 3Sat, we construct a POMDP $M(\phi)$. The only change to the reward function of the POMDP constructed in the proof of Theorem 4.1 is to make it a POMDP with positive performances. Now reward 1 is obtained if state F is reached, and reward $\left\lfloor \frac{2}{1-\varepsilon} \right\rfloor$ is obtained if state T is reached. Hence ϕ is satisfiable if and only if $M(\phi)$ has value $\left\lfloor \frac{2}{1-\varepsilon} \right\rfloor$.

Assume that policy π is the output of the ε-approximation algorithm A. If ϕ is satisfiable, then $\text{perf}(M(\phi), \pi) \geq (1 - \varepsilon) \cdot \left\lfloor \frac{2}{1-\varepsilon} \right\rfloor = 2 > 1$. Because the performance of every policy for $M(\phi)$ is either 1 if ϕ is not satisfiable, or $\left\lfloor \frac{2}{1-\varepsilon} \right\rfloor$ if ϕ is satisfiable, it follows that π has performance > 1 if and only if ϕ is satisfiable. So, in order to decide $\phi \in 3\text{Sat}$, one can construct $M(\phi)$, run the approximation algorithm A on it, take its output π and calculate $\text{perf}(M(\phi), \pi)$. That output shows whether ϕ is in 3Sat. All these steps are polynomial-time bounded computations. It follows that 3Sat is in P, and hence $P = \text{NP}$. \hfill \square

Of course, the same non-approximability result holds for POMDPs with positive and negative rewards.

Corollary 4.3 Let $0 \leq \varepsilon < 1$. Any optimal stationary policy for POMDPs is ε-approximable if and only if $P = \text{NP}$.

Using the same proof technique as above, we can show that the value is non-approximable, too.

Corollary 4.4 Let $0 \leq \varepsilon < 1$. The stationary value for POMDPs is ε-approximable if and only if $P = \text{NP}$.

A similar argument can be used to show that a policy with performance at least the average of all performances for a POMDP cannot be computed in polynomial time, unless $P = \text{NP}$. Note that in the proof of Theorem 4.1, the only performance greater than or equal to the average of all performances is that of an optimal policy.
Corollary 4.5 The following are equivalent.

1. There exists a polynomial-time algorithm that for a given POMDP M computes a stationary policy under which M has performance greater than or equal to the average stationary performance of M.

2. $P = NP$.

Thus, even calculating a policy whose performance is above average is likely to be infeasible.

We now turn to time-dependent policies. The time-dependent policy existence problem for POMDPs is known to be NP-complete, as is the stationary one.

Theorem 4.6 (Mundhenk et al., 2000) The time-dependent policy existence problem for unobservable MDPs is NP-complete.

Papadimitriou and Tsitsiklis (1987) proved a theorem similar to Theorem 4.6. Their MDPs had only non-positive rewards, and their formulation of the decision problem was whether there is a policy with reward 0. The proof in (Mundhenk et al., 2000), like theirs, uses a reduction from 3SAT. We modify this reduction to show that an optimal time-dependent policy is hard to approximate even for unobservable MDPs.

Theorem 4.7 Let $0 \leq \varepsilon < 1$. Any optimal time-dependent policy for unobservable MDPs with nonnegative rewards is ε-approximable if and only if $P = NP$.

Proof We give a reduction from MAX3SAT (Given a 3CNF formula, what is the maximum number of simultaneously satisfiable clauses?) with the following properties. For a formula ϕ with m clauses we show how to construct an unobservable MDP $M_\varepsilon(\phi)$ with value 1 if ϕ is satisfiable, and with value $< (1 - \varepsilon)$ if ϕ is not satisfiable. Therefore, an ε-approximation could be used to distinguish between satisfiable and unsatisfiable formulas in polynomial time.

For formula ϕ, we first show how to construct an unobservable $M(\phi)$ from which $M_\varepsilon(\phi)$ will be constructed. (The formal presentation appears in Appendix B.) $M(\phi)$ simulates the following strategy. At the first step, one of the m clauses is chosen randomly. At step $i + 1$, the assignment of variable i is determined. Because the process is unobservable, it is guaranteed that each variable gets the same assignment in all clauses, because its value is determined in the same step. If a clause is satisfied by this assignment, a final state will be reached. If not, an error state will be reached.

Now, construct $M_\varepsilon(\phi)$ from m^2 copies M_1, \ldots, M_{m^2} of M, such that the initial state of $M_\varepsilon(\phi)$ is the initial state of M_1, the initial state of M_{i+1} is the final state T of M_i, and reward 1 is gained if the final state of M_{m^2} is reached. The error states of all the Ms are identified as a unique sink state F.

To illustrate the construction, in Figure 1 we give an example POMDP consisting of a chain of 4 copies of $M(\phi)$ obtained for the formula $\phi = (\neg x_1 \lor x_3 \lor x_4) \land (x_1 \lor \neg x_2 \lor x_4)$. The dashed arrows indicate a transition with probability $\frac{1}{2}$. The dotted (resp. solid) arrows are probability 1 transitions on action 0 (resp. 1).

If ϕ is satisfiable, then a time-dependent policy simulating m^2 repetitions of any satisfying assignment has performance 1. If ϕ is not satisfiable, then under any assignment at
least one of the \(m \) clauses of \(\phi \) is not satisfied. Hence, the probability that under any time-dependent policy the final state \(T \) of \(M(\phi) \) is reached is at most \(1 - \frac{1}{m} \). Consequently, the probability that the final state of \(M(\phi) \) is reached is at most \((1 - \frac{1}{m})^m \leq e^{-m} \). This probability equals the expected reward. Since for large enough \(m \) it holds that \(e^{-m} < (1 - \varepsilon) \), the theorem follows. \[\square \]

Note that the time-dependent policy existence problem for POMDPs with nonnegative rewards is NL-complete (Mundhenk et al., 2000). The class NL consists of those languages recognizable by Turing machines that use a read-only input tape and additional read-write tapes with \(O(\log n) \) tape cells. It is known that NL \(\subseteq \) P and that NL is properly contained in PSPACE. Unlike the case of stationary policies, approximability of time-dependent policies is harder than the policy existence problem (unless NL = NP).

Unobservability is a special case of partial observability. Hence, we get the same non-approximability result for POMDPs, even for unrestricted rewards.

Corollary 4.8 Let \(0 \leq \varepsilon < 1 \). Any optimal time-dependent policy for POMDPs is \(\varepsilon \)-approximable if and only if \(P = NP \).

Corollary 4.9 Let \(0 \leq \varepsilon < 1 \). The time-dependent value of POMDPs is \(\varepsilon \)-approximable if and only if \(P = NP \).

Note that the proof of Theorem 4.7 assumed a total expected reward criterion. The discounted reward criterion is also useful in the finite horizon. To show the result for a
discounted reward criterion, we only need to change the reward in the proof of Theorem 4.7 as follows: multiply the final reward by $\beta^{-m^2(n+1)}$, where β is the discount factor, m the number of clauses, and n the number of variables of the formula ϕ.

Papadimitriou and Tsitsiklis (1987) proved that a problem very similar to history-dependent policy existence is PSPACE-complete.

Theorem 4.10 (Papadimitriou & Tsitsiklis, 1987; Mundhenk et al., 2000; Mundhenk, 2000b) The history-dependent policy existence problem for POMDPs is PSPACE-complete.

To describe a horizon n history-dependent policy for a POMDP with c observations explicitly takes space $\sum_{i=1}^{n} c^i$. (We do not address the case of succinctly represented policies for POMDPs here. For an analysis of their complexity, see Mundhenk, 2000a.) If $c > 1$, this is exponential space. Therefore, we cannot expect that a polynomial time algorithm outputs a history-dependent policy, and we restrict consideration to polynomial time algorithms that approximate the history-dependent value – the optimal performance under any history-dependent policy – of a POMDP. Burago, Rougmont, and Slisskno (1996) considered the class of POMDPs with a bound of q on the number of states corresponding to an observation, where the rewards corresponded to the probability of reaching a fixed set of goal states (and thus was bounded by 1). They showed that for any fixed q, the optimal history-dependent policies for POMDPs in this class can be approximated to within an additive constant k. We show in Proposition 3.1 that every class of POMDPs for which the history-dependent value can be approximated to within an additive constant ε has polynomial time approximation schemes (Proposition 3.1), as long as there are no a priori bounds on either the number of states per observation or the rewards.

Notice, however, that Theorem 4.11 does not give us information about the classes of POMDPs that Burago et al. (1996) considered: because of the restrictions associated with the parameter q, our hardness results do not contradict their result.

Finally, we show that the history-dependent value of POMDPs with nonnegative rewards is not ε-approximable under total expected or discounted rewards, unless $P = \text{PSPACE}$. Consequently, the value has no PTAS or k-additive approximation under the same assumption.

The history-dependent policy existence problem for POMDPs with nonnegative rewards is NL-complete (Mundhenk et al., 2000). Hence, because NL is a proper subclass of PSPACE, approximability of the history-dependent value is strictly harder than the policy existence problem.

Theorem 4.11 Let $0 \leq \varepsilon < 1$. The history-dependent value of POMDPs with nonnegative rewards is ε-approximable if and only if $P = \text{PSPACE}$.

Proof The history-dependent value of a POMDP M can be calculated using binary search over the history-dependent policy existence problem. The number of bits to be calculated is polynomial in the size of M. Therefore, by Theorem 4.10, this calculation can be performed in polynomial time using a PSPACE oracle. If $P = \text{PSPACE}$, it follows that the history-dependent value of a POMDP M can be exactly calculated in polynomial time.
The set QSAT of true quantified Boolean formulae is one of the standard PSPACE complete sets. To conclude \(P = \text{PSPACE} \) from an \(\varepsilon \)-approximation of the history-dependent value problem, we use a transformation of instances of QSAT to POMDPs used in a proof of Theorem 4.10 in (Mundhenk, 2000b). This transformation is given in Appendix C.

The set QSAT can be interpreted as a two-player game: player 1 sets the existentially quantified variables, and player 2 sets the universally quantified variables. The goal of player 1 is to have a satisfying assignment to the formula after the alternating choices, and player 2 has the opposite goal. A formula is in QSAT if and only if player 1 has a winning strategy. This means player 1 has a response to every choice of player 2, so that in the end the formula will be satisfied.

The version where player 2 makes random choices and player 1’s goal is to win with probability \(> \frac{1}{2} \) corresponds to SSAT (stochastic satisfiability), which is also PSPACE complete. The instances of SSAT are formulas which are quantified alternatingly with existential quantifiers \(\exists \) and random quantifiers \(R \). The meaning of the random quantifier \(R \) is that an assignment to the respective variable is chosen randomly. A stochastic Boolean formula

\[
\Phi = \exists x_1 R x_2 \exists x_3 R x_4 \ldots \phi
\]

is in SSAT if and only if

there exists \(b_1 \) for random \(b_2 \) exists \(b_3 \) for random \(x_4 \ldots \text{Prob}[\phi(b_1, \ldots, b_n) \text{ is true}] > \frac{1}{2} \).

From the proof of \(\text{IP} = \text{PSPACE} \) by Shamir (1992) it follows that for every PSPACE set \(A \) and constant \(c > 1 \) there is a polynomial-time reduction \(f \) from \(A \) to SSAT such that for every instance \(x \) and formula \(f(x) = \exists x_1 R x_2 \ldots \phi_x \) the following holds.

- If \(x \in A \), then \(\exists b_1 \) for random \(b_2 \ldots \text{Prob}[\phi_x(b_1, \ldots, b_n) \text{ is true}] > (1 - 2^{-c}) \), and
- if \(x \notin A \), then \(\forall b_1 \) for random \(b_2 \ldots \text{Prob}[\phi_x(b_1, \ldots, b_n) \text{ is true}] < 2^{-c} \).

This means that player 1 either has a strategy under which she wins with very high probability, or the probability of winning (under any strategy) is very small. We show how to transform a stochastic Boolean formula \(\Phi \) into a POMDP with a large history-dependent value if player 1 has a winning strategy, and a much smaller value if player 2 wins. The basic construction of this POMDP \(M(\Phi) \) from a stochastic Boolean formula \(\Phi \) is the same as in the proof given in Appendix C, but with the negative rewards replaced by reward 0. If \(\Phi \in \text{SSAT} \), then \(M(\Phi) \) has value \(> 1 - 2^{-c} \). But this change of the rewards has as consequence that an inconsistent policy - i.e. one that “cheats” and gives a different assignment to a variable during the third (checking) stage than it did during the second stage - is no longer “punished” so hard that it has a lower performance than a consistent policy. Therefore, we cannot conclude that \(M(\Phi) \) has value \(< 2^{-c} \) if \(\Phi \notin \text{SSAT} \). In any case, an inconsistent policy is trapped on cheating on at least one assignment to one of the \(n \) variables of the formula, and therefore at least one of the \(2n \) parallel processes in stage 2 of \(M(\Phi) \) yields reward 0 on all trajectories that pass it. Hence, the performance of an inconsistent policy is at most \(1 - \frac{1}{2^n} \). Notice that a non-cheating policy has performance \(< 2^{-c} \), and \(1 - 2^{-c} < 1 - \frac{1}{2^n} \) for almost all \(n \).

\[\text{Note that it is sufficient for our proof that this holds for all but finitely many } n. \text{ For those finitely many lengths of input for which the algebra fails, it is sufficient to assume that the policy has stored explicit values in a finite look-up table.} \]
Now, we repeat the process k times (the exact value of k will be determined later). If in some repetition a trajectory is caught cheating, then it “dead-ends” and is not continued in the following repetitions. Hence, it cannot collect any more rewards. If $\Phi \in \text{SSat}$, then in each round (=repetition) expected rewards $> 1 - 2^{-c}$ can be collected, and hence the total expected reward is $> k \cdot (1 - 2^{-c})$ after k rounds. Consider a formula $\Phi \not\in \text{SSat}$. In each round where the policy cheats, only a fraction of $1 - \frac{1}{2n}$ of the trajectories continue to the next round. Hence, the number of trajectories that reach a given round depends on the number d of previous rounds during which the policy cheated. Let us consider one of the k rounds, where d is the number of previous rounds during which the policy cheated. The expected reward in the considered round is $< 2^{-c} \cdot (1 - \frac{1}{2n})^d$ for a policy that does not cheat in that round, and it is at most $(1 - \frac{1}{2n}) \cdot (1 - \frac{1}{2n})^d$ for a policy that cheats in the considered round. Summed up, after k rounds with cheating in d rounds we have expected rewards at most

$$(k - d) \cdot 2^{-c} + \sum_{i=1}^{d} \left(1 - \frac{1}{2n}\right)^i$$

because $2^{-c} \geq 2^{-c} \cdot (1 - \frac{1}{2n})^d$ for arbitrary $d > 0$. Since $\sum_{i=1}^{d} (1 - \frac{1}{2n})^i \leq \frac{1}{1 - (1 - \frac{1}{2n})} = 2n$, we get

$$k \cdot 2^{-c} + 2n$$

as an upper bound for the expected reward after k repetitions of $M(\Phi)$ for $\Phi \not\in \text{SSat}$.

Eventually, we have to fix the constants. We choose c such that $2^c > \frac{\varepsilon - 2}{\varepsilon - 1}$. This guarantees that

$$(1 - \varepsilon) \cdot (1 - 2^{-c}) - 2^{-c} > 0.$$

Next, we choose k such that

$$2n < k \cdot ((1 - \varepsilon) \cdot (1 - 2^{-c}) - 2^{-c}).$$

Let $\widehat{M}(\Phi)$ be the POMDP that consists of k repetitions of $M(\Phi)$ as described above. Because k is linear in the number of variables n of Φ and hence linear in the length of Φ, Φ can be transformed to $\widehat{M}(\Phi)$ in polynomial time. The above estimates guarantee that

$$\text{value of } \widehat{M}(\Phi) \text{ for } \Phi \not\in \text{SSat} \leq k \cdot 2^{-c} + 2n < (1 - \varepsilon) \cdot k \cdot (1 - 2^{-c}).$$

The right-hand side of this inequality is a lower bound for an ε-approximation of the value of $\widehat{M}(\Phi)$ for $\Phi \in \text{SSat}$. Hence,

- if $\Phi \in \text{SSat}$, then $\widehat{M}(\Phi)$ has value $> k \cdot (1 - 2^{-c})$, and

- if $\Phi \not\in \text{SSat}$, then $\widehat{M}(\Phi)$ has value $< (1 - \varepsilon) \cdot k \cdot (1 - 2^{-c})$.

Hence, a polynomial-time ε-approximation of the value of $\widehat{M}(\Phi)$ shows whether Φ is in SSat.

Concluding, let A be any set in PSPACE. There exists a polynomial-time function f which maps every instance x of A to a bounded error stochastic formula $f(x) = \Phi_x$ with error 2^{-c} and reduces A to SSat. Transform Φ_x into the POMDP $\widehat{M}(\Phi_x)$. Using the ε-approximate value of $\widehat{M}(\Phi_x)$, one can decide $\Phi_x \in \text{SSat}$ and hence $x \in A$ in polynomial time. This shows that A is in P, and consequently $P = \text{PSPACE}$. \qed
Corollary 4.12 Let $0 \leq \varepsilon < 1$. The history-dependent value of POMDPs with general rewards is ε-approximable if and only if $P = \text{PSPACE}$.

5. MDPs

Calculating the finite-horizon performance of stationary policies is in GapL (Mundhenk et al., 2000), which is a subclass of the class of polynomial time computable functions. The stationary policy existence problem for MDPs is shown to be P-hard by Papadimitriou and Tsitsiklis (1986), from which it follows that finding an optimal stationary policy for MDPs is P-hard. So it is not surprising that approximating the optimal policy is also P-hard. We include the following theorem because it allows us to present one aspect of the reduction used in the proof of Theorem 5.2 in isolation.

Theorem 5.1 The problem of k-additive approximating the optimal stationary policy for MDPs is P-hard.

The proof shows this for the case of non-negative rewards; the unrestricted case follows immediately. By Proposition 3.1, this shows that finding a multiplicative approximation scheme for this problem is also P-hard.

Proof Consider the P-complete problem CVP: given a Boolean circuit C and input x, is $C(x) = 1$? A Boolean circuit and its input can be seen as a directed acyclic graph. Each node represents a gate, and every gate has one of the types AND, OR, NOT; 0 or 1. The gates of type 0 or 1 are the input gates, which represent the bits of the fixed input x to the circuit. Input gates have indegree 0. All NOT gates have indegree 1, and all AND and OR gates have indegree 2. There is one gate having outdegree 0. This gate is called the output gate, from which the result of the computation of circuit C on input x can be read.

From such a circuit C, an MDP M can be constructed as follows. Because the basic idea of the construction is very similar to one shown in (Papadimitriou & Tsitsiklis, 1986), we leave out technical details. As an initial simplifying assumption, assume that the circuit has no NOT gates. Each gate of the circuit becomes a state of the MDP. The start state is the output gate. Reverse all edges of the circuit. Hence, a transition in M leads from a gate in C to one of its predecessors. A transition from an OR gate depends on the action and is deterministic. On action 0 its left predecessor is reached, and on action 1 its right predecessor is reached. A transition from an AND gate is probabilistic and does not depend on the action. With probability $\frac{1}{2}$ the left predecessor is reached, and with probability $\frac{1}{2}$ the right predecessor is reached.

Continue considering a circuit without NOT gates. If an input gate with value 1 is reached, a positive reward is gained, and if an input gate with value 0 is reached, a high negative reward is gained, which makes the total expected reward negative. If $C(x) = 1$, then the actions can be chosen at the OR gates so that every trajectory reaches an input gate with value 1; if this condition holds, then it must be that $C(x) = 1$. Hence, the MDP has a positive value if and only if $C(x) = 1$.

If the circuit has NOT gates, we need to remember the parity of the number of NOT gates on each trajectory. If the parity is even, everything goes as described above. If the parity is odd, then the role of AND and OR gates is switched, and the role of 0 and 1 gates is switched. If a NOT gate is reached, the parity bit is flipped. For every gate in the circuit,
we now take two MDP states: one for even and one for odd parity. Hence, if \(G \) is the set of gates in \(C \), the MDP has states \(G \times \{0, 1\} \). The state transition function is

\[
t((s, p), a, (s', p')) = \begin{cases}
1, & \text{if } (s \text{ is an OR gate and } p = 0) \text{ or } (s \text{ is an AND gate and } p = 1), \text{ } p = p', \text{ and } s' \text{ is predecessor } a \text{ of } s; \\
\frac{1}{2}, & \text{if } (s \text{ is an OR gate and } p = 1) \text{ or } (s \text{ is an AND gate and } p = 0), \text{ } p = p', \text{ and } s' \text{ is predecessor } 0 \text{ of } s; \\
\frac{1}{2}, & \text{if } (s \text{ is an OR gate and } p = 1) \text{ or } (s \text{ is an AND gate and } p = 0), \text{ } p = p', \text{ and } s' \text{ is predecessor } 1 \text{ of } s; \\
1, & \text{if } s \text{ is a NOT gate, } a = 0 \text{ and } p' = 1 - p; \\
1, & \text{if } s \text{ is an input gate or the sink state, and } s' \text{ is the sink state.}
\end{cases}
\]

Now we have to specify the reward function. If an input gate with value 1 is encountered on a trajectory where the parity of NOT gates is even, then reward \(2^{\left|C\right|+k+1} \) is obtained, where \(\left|C\right| \) is the size of circuit \(C \). The same reward is obtained if an input gate with value 0 is encountered on a trajectory where the parity of NOT gates is odd. All other trajectories obtain reward 0.

Thus each trajectory receives reward either 0 or \(2^{\left|C\right|+k+1} \). There are at most \(2^{|C|} \) trajectories for each policy. If a policy chooses the correct values for all the gates in order to prove that \(C(x) = 1 \), in other words if \(C(x) = 1 \), then the expected value of an optimal policy is \(2^{\left|C\right|+k+1} \). Otherwise, the expected value is at least \(2^{\left|C\right|+k+1} / 2^{\left|C\right|} = 2k \) lower than \(2^{\left|C\right|+k+1} \), i.e., at most \(2^{\left|C\right|+k+1} - 2k \).

Thus, if an approximation algorithm is within an additive constant \(k \) of the optimal policy, it will either give a value \(\geq 2^{|C|+k+1}-k \) or \(< 2^{|C|+k+1}-k \). By inspection of the output, one can immediately determine whether \(C(x) = 1 \). Thus, any \(k \)-additive approximation for this problem must take at least polynomial time.

In Figure 2, an example circuit and the MDP to which it is transformed are given. Every gate of the circuit is transformed to two states of the MDP: one copy for even parity of NOT gates passed on that trajectory (indicated by a thin outline of the state) and one copy for odd parity of NOT gates passed on that trajectory (indicated by a thick outline of the state). A solid arrow indicates the outcome of action “choose the left predecessor”, and a dashed arrow indicates the outcome of action “choose the right predecessor”. Dotted arrows indicate a transition with probability \(\frac{1}{2} \) on any action. The circuit in Figure 2 has value 1. The policy, which chooses the right predecessor in the starting state, yields trajectories which all end in an input gate with value 1 and which therefore obtains the optimal value.

\(\square \)

There have been several recent approximation algorithms introduced for structured MDPs, many of which are surveyed in (Boutilier et al., 1999). More recent work includes a variant of policy iteration by Koller and Parr (2000), and heuristic search in the space of finite controllers by Hansen and Feng (2000) and Kee-Eung Kim and Meuleau (2000). While these algorithms are often highly effective in reducing the asymptotic complexity and actual run times of policy construction, they all run in time exponential in the size of the structured representation. We show that this asymptotic complexity is necessary for any algorithm scheme that produces \(\varepsilon \)-approximations for all \(\varepsilon \). For this, we consider MDPs
represented by 2TBNs (Boutilier, Dearden, & Goldszmidt, 1995). Until now, we have
described the state transition function for MDPs by a function \(t(s, a, s') \) that computes the
probability of reaching state \(s' \) from state \(s \) under action \(a \). We assumed that the transition
function was represented explicitly. A two-phase temporal Bayes net (2TBN) is a succinct
representation of an MDP or POMDP. Each state of the system is described by a vector
of values called *fluents*. (Note that if each of \(n \) fluents is two-valued, then the system has
\(2^n \) states.) Actions are described by the effect they have on each fluent by means of two
data structures. They are a dependency graph and a set of functions encoded as condi-
tional probability tables, decision trees, arithmetic decision diagrams, or in some other data
structure.

The dependency graph is a directed acyclic graph with nodes \(\{v_1, \ldots, v_n\} \) and \(\{v'_1, \ldots, v'_n\} \).
The first set of nodes represents the state at time \(t \), the second at time \(t + 1 \). The edges
are from the first set of nodes to the second (asynchronous) or within the second set (syn-
chronous). The value of the \(k \)th fluent at time \(t_1 \) under action \(a \) depends probabilistically on
the values of the predecessors of \(v'_k \) in this graph. The probabilities are spelled out, for each
action, in the corresponding data structure for \(v'_k \) and \(a \). We will indicate that (stochastic)
function by \(f_k \).

Theorem 5.2 The problem of \(k \)-additive approximating any optimal stationary policy for
a MDP in 2TBN-representation is EXP-hard.

Proof The general strategy is similar to the proof of Theorem 5.1. We give a reduction
from the EXP-complete succinct circuit value problem to the problem for MDPs in 2TBN-
representation. An instance of the succinct circuit value problem is a Boolean circuit \(S \) that
describes a circuit \(C \) and an input \(x \), i.e. \(S \) describes an instance of the "flat" circuit value
problem. We can assume that in \(C \), all gates are predecessors to at most two other gates.
Then every gate in \(C \) has four neighbors, two of which output the input to \(C \), and two of
which get the output of \(C \) as input (if there are fewer neighbors, the missing neighbors are
set to a fictitious gate 0). Consider a gate \(i \) of \(C \). Say that the output of neighbors 0 and 1 is
the input to gate i, and the output of gate i is input to neighbors 2 and 3. Now, the circuit S on input (i, k) outputs (j, s), where gate j is the k^{th} neighbor of gate i, and s encodes the type of gate i (AND, OR, NOT, 0, and 1). The idea is to construct from C an MDP M as in the proof of Theorem 5.1. However, we do it succinctly. Hence, we construct from S a 2TBN-representation of an MDP $M(S)$. The actions of $M(S)$ are 0 and 1, for choosing neighbor 0 resp. 1 of the current state-gate. The states of $M(S)$ are tuples (i, p, t, r) where i is a gate of C, p is the parity bit — as in the proof of Theorem 5.1, t is the type of gate i, and r is used for a random bit. Every gate number i is given in binary using — say — l bits. Then, the 2TBN has $l + 3$ fluents $i_1, i_2, \ldots, i_l, p, t, r$. Let $f_1, f_2, \ldots, f_l, f_p, f_t, f_r$ be the stochastic functions that calculate $i'_1, i'_2, \ldots, i'_l, p', t', r'$. The simplest is f_r for the fluent r' that is used as random bit if from state $i = i_1 \cdots i_l$ the next state is chosen at random from one of the predecessors of gate i in C. This happens if the type t of gate i is AND and the parity p is 0, or if t is OR and p is 1. In these cases, r' determines its value 0 or 1 by flipping a coin. Otherwise, r' equals 1. Notice that r' is independent of the action.

The functions f_c for the fluents v'_c determine the bits of the next states. If t is an AND and the parity p is even, then “randomly” a predecessor of gate i is chosen. “Randomly” means here that the random bit r' determines whether predecessor 0 or predecessor 1 is chosen. Hence, v'_c is the c^{th} bit of gate j, where (j, s) is the output of S on input (i, r'). Accordingly, $t' = s$ is the type of the chosen gate, and $p' = p$ remains unchanged. The same happens if t is an OR and the parity p is odd. If t is a NOT, there is only one predecessor of i, and that one must be chosen for i' and t'. The parity bit p' is flipped to $1 - p$. If t is an OR and the parity p is even, then on action $a \in \{0, 1\}$, the predecessor a of gate i is chosen. Hence, v'_c is the c^{th} bit of j, where (j, s) is the output of S on input (i, a). Accordingly, $t' = s$ and $p' = p$. The same happens if t is an AND and the parity p is odd. Hence, the function f_c can be calculated as follows.

\[
\begin{align*}
\text{input } i, p, t, r', a \\
\text{if } (t = \text{OR} \text{ and } p = 0) \text{ or } (t = \text{AND} \text{ and } p = 1) \\
\quad \text{then calculate } S(i, a) = (j, s); \\
\text{else if } (t = \text{OR} \text{ and } p = 1) \text{ or } (t = \text{AND} \text{ and } p = 0) \\
\quad \text{then calculate } S(i, r') = (j, s) \\
\text{else if } t = \text{NOT} \\
\quad \text{then calculate } S(i, 0) = (j, s) \\
\text{else } j = 0
\end{align*}
\]

output the c^{th} bit of j

The state 0 is a sink state which is reached from the input gates within one step and which is never left. The type t' of the next state or gate is calculated accordingly.

One can also simulate the circuit S for function f_k in the above algorithm by a 2TBN. Note that, in general, circuits can have more than one output. We consider this more general model here.

Claim 1 Every Boolean circuit can be simulated by a 2TBN, to which it can be transformed in polynomial time.

Proof We sketch the construction idea. Let R be a circuit with n input gates and n' output gates. The outcome of the circuit on any input b_1, \ldots, b_n is usually calculated as
follows. At first, calculate the outcome of all gates that get input only from input gates. Next, calculate the outcome of all gates that get their inputs only from those gates whose outcome is already calculated, and so on. This yields an enumeration of the gates of a circuit in topological order, i.e., such that the outcome of a gate can be calculated when all the outcomes of gates with a smaller index are already calculated. We assume that the gates are enumerated in this way, and that g_1, \ldots, g_n are the input gates, and that g_1, \ldots, g_s are the other gates, where the smallest index of a gate which is neither an output nor an input gate equals $l = \max(n, n') + 1$.

Now, we define a 2TBN T simulating R as follows. T has a fluent for every gate of R, say fluents v_1, \ldots, v_s. The basic idea is that fluents v_1, \ldots, v_n represent the input gates of R. In one time step, values are propagated from the input nodes v_1, \ldots, v_n through all gate nodes v'_1, \ldots, v'_s, and the outputs copied to v_1', \ldots, v_n'. The dependency graph has the following edges according to the “wires” of the circuit R. If an input gate g_i ($1 \leq i \leq n$) outputs an input to gate g_j, then we get an edge from v_i to v'_j. If the output of a non-input gate g_i ($n < i < s$) is input to gate g_j, then we get an edge from v'_i to v'_j. Finally, the nodes v'_1, \ldots, v'_n stand for the value bits. If gate g_j produces the ith output bit, then there is an edge from v'_j to v'_i. Because the circuit R has no loop, the graph is loop-free, too.

The functions associated to the nodes v'_1, \ldots, v'_s depend on the functions calculated by the respective gate and are as follows. Each of the value nodes v'_i for $i = 1, 2, \ldots, n'$, which stands for the input bits has exactly one predecessor, whose value is copied into v'_i. Hence, f_i is the one-place identity function, $f_i(x) = x$ with probability 1, for $i = 1, 2, \ldots, n'$. Now we consider the nodes which come from internal gates of the circuit. If g_i is an AND gate, then $f_i(x, y) = x \land y$, where x and y are the predecessors of gate g_i. If g_i is an OR gate, then $f_i(x, y) = x \lor y$, and if g_i is a NOT gate, then $f_i(x) = \neg x$, all with probability 1.

By this construction, it follows that the 2TBN T simulates the Boolean circuit R. Notice that the number of fluents of T is at most the double of the number of gates of R. The transformation from R to T can be performed in polynomial time.

An example of a Boolean circuit and the 2TBN to which it is transformed as described above is given in Figure 3.

Now, we can construct from the circuit S that is a succinct representation of a circuit C a 2TBN T_S with fluents $i_1, i_2, \ldots, i_k, p, t, r$ as already defined, plus additional fluents for the gates of S, using the technique from the above Claim. Taking the action a, the parity p, the gate type t and the random bit r' into account, we can construct T_S — according to the description of function f_c above — so that fluent $v_{j'}$ contains the bits described by the function $f_c(i_1, i_2, \ldots, i_k, p, t, r')$ above. Notice that the function $f_{v_{j'}}$ for $v_{j'}$ is dependent only on the predecessors of the gate of S represented by $v_{j'}$, the fluents p, t, r', and the action a. Hence, it has at most 6 arguments and can be described by a small table. This holds for all fluents of T_S. Finally, the function f_c for T_S just copies the value of $v_{j'}$ into v'_{c}. Hence, from S we can construct a MDP in 2TBN representation similar to the MDP in the proof of Theorem 5.1. Next, we specify the rewards of this MDP. The reward is $2^{2(S+k+1)}$ if any action is taken on a state representing an input gate with value 1 and parity 0, or with value 0 and parity 1. Otherwise, the reward equals 0. This reward function can be represented by a circuit, which on binary input i, a, b outputs the b^{th} bit of the reward obtained in state i on action a. (Since it requires $2^{2(S+k+1)}$ bits to represent the reward, i can be represented using only $|S|+k+1$ bits.)
Figure 3: A Boolean circuit which outputs the binary sum of its input bits, and a 2TBN representing the circuit (only functions f_1, (the identity function), f_3 (simulating a NOT gate), and f_5 (simulating an AND gate), and f_8 (simulating an OR gate), are described).
If \(C(x) = 1\), then there is a choice of actions for each state that gives reward \(2^{2|S|+k+1}\) on every trajectory, similar to the proof of Theorem 5.1. However, if \(C(x) = 0\), any policy has at least one trajectory that receives a 0 reward. Now, there are at most \(2^{2|S|}\) trajectories, and therefore there is a gap of at least \(2^{2|S|+k+1}/2^{|S|} = 2k\) between possible values. As above, we conclude that any \(k\)-additive approximation to the factored MDP problem gives a decision algorithm for the succinct circuit value problem. Therefore, the lower bound of EXP-hardness for the factored MDP value problem holds for this approximation problem as well.

According to Theorem 3.1, we obtain the following Corollary to Theorem 5.2.

Corollary 5.3 Any approximation scheme for the factored MDP value problem requires time exponential in the size of the input.

A 2TBN-representation for an MDP can be polynomial-transformed to a representation by probabilistic STRIPs operators (PSOs) and vice versa (Littman, 1997). Thus, any upper bound and any lower bound on the complexity of MDP problems represented by 2TBNs translates immediately to a respective bound on the complexity of PSOs.

The following structured representation is more general than the representations more common to the AI/planning community. We say that an MDP has a succinct representation, or is a succinct MDP, if there are Boolean circuits \(C_t\) and \(C_r\) such that \(C_t(s, a, s', i)\) produces the \(i\)th bit of the transition probability \(t(s, a, s')\) and \(C_r(s, a, i)\) produces the \(i\)th bit of the reward \(r(s, a)\). Similar to the proof of Theorem 5.2 we can also prove non-approximability of MDP values for succinctly represented MDPs.

Theorem 5.4 The problem of \(k\)-additive approximating the optimal stationary policy for a succinctly represented MDP is EXP-hard.

6. Non-Approximability for Infinite Horizon POMDPs

The discounted value of an infinite-horizon POMDP is the maximum total discounted performance. When we discuss the policy existence problem or the average case performance in the infinite horizon, it is necessary to specify the reward criterion. We generalize the value function as follows.

The \(\alpha, \beta\)-value \(\text{val}_{\alpha, \beta}(M)\) of \(M\) is \(M\)'s maximal \(\beta\)-performance under any policy \(\pi\) of type \(\alpha\), i.e. \(\text{val}_{\alpha, \beta}(M) = \max_{\pi \in \Pi_{\alpha}} \text{perf}_{\beta}(M, \pi)\).

Note that a time-dependent or history-dependent infinite-horizon policy for a POMDP is not necessarily finitely representable. For fully-observable MDPs, it turned out (see e.g. Puterman, 1994) that the discounted or average value is the performance of a stationary policy. This means that no history-dependent policy performs better than the best stationary one. As an important consequence, an optimal policy is finitely representable. For POMDPs, this does not hold. Madani et al. (1999) showed that the time-dependent infinite-horizon policy-existence problem for POMDPs is not decidable under average performance or under total discounted performance. In contrast, we show that the same problem for stationary policies is NP-complete.
Theorem 6.1 The stationary infinite-horizon policy-existence problem for POMDPs under total discounted or average performance is NP-complete.

The hardness proof is essentially the same as for Theorem 4.1. Note that in that construction, every stationary policy obtains reward 1 for at most one step, namely when sink state \(T \) is reached, meaning that the formula is satisfied. All other steps yield reward 0. Therefore, for this construction, the total discounted value is greater than 0 if and only if the finite-horizon value is so. To make the construction work for average value, we have to modify it such that once the sink state \(T \) is reached, every subsequent action brings reward 1. Therefore, the average value equals 1 if the formula is satisfiable, and it equals 0 if it is unsatisfiable. Hence, both the problems are NP-hard.

Containment in NP for the total discounted performance follows from the guess-and-check approach: guess a stationary policy, calculate its performance and accept if and only if the performance is positive. The total discounted and the average performance can both be calculated in polynomial time.

In the same way, the techniques proving non-approximability results for the stationary policy in the finite horizon case (Corollary 4.2) can be modified to obtain non-approximability results for infinite horizons.

Theorem 6.2 The stationary infinite-horizon value of POMDPs under total discounted or average performance can be \(\varepsilon \)-approximated if and only if \(P = NP \).

The infinite-horizon time-dependent policy-existence problems are undecidable (Madani et al., 1999). We show that no computable function can even approximate optimal policies.

Theorem 6.3 The time-dependent infinite-horizon value of unobservable POMDPs under average performance cannot be \(\varepsilon \)-approximated.

The proof follows from the proof by Madani et al. (1999) showing the uncomputability of the time-dependent value. In Madani et al. (1999), from a given Turing machine \(T \) an unobservable POMDP is constructed having the following properties for arbitrary \(\delta > 0 \).

1. If \(T \) halts on empty input, then there is exactly one time-dependent infinite-horizon policy with performance \(\geq 1 - \delta \),
2. all other time-dependent policies have performance \(\leq \delta \), and
3. the average value is between 0 and 1. This reduces the undecidable problem of whether a Turing machine halts on empty input to the time-dependent infinite-horizon policy existence problem for unobservable POMDPs under average performance. Actually, assuming that the value of the unobservable POMDP were \(\varepsilon \)-approximable, we could choose \(\delta \) in a way that even the approximation enables us to decide whether \(T \) halts on empty input. Since this is undecidable, an \(\varepsilon \)-approximation is impossible.

Corollary 6.4 The time-dependent and history-dependent infinite-horizon value of POMDPs under average performance cannot be \(\varepsilon \)-approximated.

Acknowledgements

We would like to thank anonymous referees for catching errors in earlier versions of this paper.
References

Bellman, R. (1957). *Dynamic programming*. Princeton University Press.

Blythe, J. (1999). Decision-theoretic planning. *AI Magazine, 20*(2), 37–54.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: Structural assumptions and computational leverage. *Journal of AI Research, 11*, 1–94.

Boutilier, C., Dearden, R., & Goldszmidt, M. (1995). Exploiting structure in policy construction. In *Extending theories of action: Formal theory & practical applications: Papers from the 1995 aaai spring symposium* (pp. 33–38). AAAI Press, Menlo Park, California.

Burago, D., Rougemont, M. de, & Slasses, A. (1996). On the complexity of partially observed Markov decision processes. *Theoretical Computer Science, 157*(2), 161–183.

Cassandra, A. (1998). *Exact and approximate algorithms for partially observable Markov decision processes*. Unpublished doctoral dissertation, Brown University.

Cassandra, A., Kaelbling, L., & Littman, M. L. (1995). *Efficient dynamic-programming updates in partially observable Markov decision processes* (Tech. Rep. No. CS-95-19). Providence, Rhode Island: Brown University.

Greenlaw, R., Hoover, H. J., & Ruzzo, W. L. (1995). *Limits to parallel computation: P-completeness theory*. Oxford University Press.

Hansen, E. (1998a). *Finite-memory control of partially observable systems*. Unpublished doctoral dissertation, Dept. of Computer Science, University of Massachussets at Amherst.

Hansen, E. (1998b). Solving POMDPs by searching in policy space. In *Proceedings of aaai conference uncertainty in ai* (pp. 211–219).

Hansen, E., & Feng, Z. (2000). Dynamic programming for POMDPs using a factored state representation. In *Proceedings of the 5th international conference on artificial intelligence planning and scheduling* (pp. 130–149). Breckenridge, CO.

Hauskrecht, M. (1997). *Planning and control in stochastic domains with imperfect information*. Unpublished doctoral dissertation, Massachusetts Institute of Technology.

Kee-Eung Kim, T. L. D., & Meuleau, N. (2000). Approximate solutions to factored Markov decision processes via greedy search in the space of finite controllers. In *Proceedings of the 5th international conference on artificial intelligence planning and scheduling* (pp. 323–330). Breckenridge, CO.

Koller, D., & Parr, R. (2000). Policy iteration for factored MDPs. In *Proceedings of the sixteenth conference on uncertainty in artificial intelligence*.

24
Littman, M. L. (1994). Memoryless policies: Theoretical limitations and practical results. In D. Cliff, P. Husbands, J.-A. Meyer, & S. W. Wilson (Eds.), From animals to animats 3: Proceedings of the third international conference on simulation of adaptive behavior. MIT Press.

Littman, M. L. (1997). Probabilistic propositional planning: Representations and complexity. In Proc. 14th national conference on ai. AAAI Press / MIT Press.

Littman, M. L., Dean, T. L., & Kaelbling, L. P. (1995). On the complexity of solving Markov decision problems. In Proceedings of the 11th annual conference on uncertainty in ai (p. 394-402).

Lovejoy, W. S. (1991). Computationally feasible bounds for partially observed Markov decision process. Operations Research, 39(1), 192-175.

Lusena, C., Li, T., Sittinger, S., Wells, C., & Goldsmith, J. (1999). My brain is full: When more memory helps. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence (pp. 374-381).

Madani, O., Hanks, S., & Condon, A. (1999). On the undecidability of probabilistic planning and infinite-horizon partially observable Markov decision problems. In Proceedings of the sixteenth national conference on artificial intelligence (p. 541-548).

McCallum, R. A. (1993). Overcoming incomplete perception with utile distinction memory. In Proceedings of the tenth international conference on machine learning (pp. 190–196). Morgan Kaufmann Publishers.

Meuleau, N., Kim, K.-E., Kaelbling, L. P., & Cassandra, A. R. (1999). Solving POMDPs by searching the space of finite policies. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence (pp. 417-426).

Meuleau, N., Peshkin, L., Kim, K.-E., & Kaelbling, L. P. (1999). Learning finite-state controllers for partially observable environments. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence (pp. 427-436).

Mundhenk, M. (2000a). The complexity of optimal small policies. Mathematics of Operations Research, 25(1), 118-129.

Mundhenk, M. (2000b). The complexity of planning with partially-observable Markov decision processes (Tech. Rep. No. TR2000-376). Dartmouth College.

Mundhenk, M., Goldsmith, J., & Allender, E. (1997). The complexity of the policy existence problem for partially-observable finite-horizon Markov decision processes. In Proc. 25th mathematical foundations of computer sciences (p. 129-138). Springer-Verlag.

Mundhenk, M., Goldsmith, J., Lusena, C., & Allender, E. (2000). Complexity results for finite-horizon Markov decision process problems. Journal of the ACM. (To Appear)

Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley.
Papadimitriou, C. H., & Tsitsiklis, J. N. (1986). Intractable problems in control theory. *SIAM Journal of Control and Optimization, 24*(4), 639–654.

Papadimitriou, C. H., & Tsitsiklis, J. N. (1987). The complexity of Markov decision processes. *Mathematics of Operations Research, 12*(3), 441–450.

Peshkin, L., Meuleau, N., & Kaelbling, L. P. (1999). Learning policies with external memory. In *Proceedings of the sixteenth international conference on machine learning* (pp. 307–314). Morgan Kaufmann, San Francisco, CA.

Platzman, L. K. (1977). *Finite-memory estimation and control of finite probabilistic systems*. Unpublished doctoral dissertation, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA.

Puterman, M. L. (1994). *Markov decision processes*. John Wiley & Sons, New York.

Shamir, A. (1992). IP = PSPACE. *Journal of the ACM, 39*(4), 869–877.

Smallwood, R. D., & Sondik, E. J. (1973). The optimal control of partially observed Markov processes over the finite horizon. *Operations Research, 21*, 1071-1088.

Sondik, E. J. (1971). *The optimal control of partially observable Markov processes*. Unpublished doctoral dissertation, Stanford University.

Tsitsiklis, J. N., & Roy, B. V. (1996). Feature-based methods for large scale dynamic programming. *Machine Learning, 22*, 59–94.

White, C. C., III. (1991). Partially observed Markov decision processes: A survey. *Annals of Operations Research, 32*, 215–230.

Zhang, N. L., Lee, S. S., & Zhang, W. (1999). A method for speeding up value iteration in partially observable Markov decision processes. In *Proceedings of the fifteenth conference on uncertainty in artificial intelligence* (pp. 696–703).

Appendix A. Proof of Theorem 4.1

We present the reduction from *(Mundhenk et al., 2000)*. Let \(\phi(x_1, \ldots, x_n) \) be an instance of 3SAT with variables \(x_1, \ldots, x_n \) and clauses \(C_1, \ldots, C_m \), where clause \(C_j = (l_{v(1,j)} \lor l_{v(2,j)} \lor l_{v(3,j)}) \) for \(l_i \in \{x_i, \neg x_i\} \). We say that variable \(x_i \) appears in \(C_j \) with signum 0 (resp. 1) if \(\neg x_i \) (resp. \(x_i \)) is a literal in \(C_j \).

From \(\phi \) we construct a POMDP \(M(\phi) = (S, s_0, A, O, t, o, r) \) with

\[
S = \{ (i, j) : 1 \leq i \leq n, 1 \leq j \leq m \} \cup \{ F, T \}
\]

\[
s_0 = (v(1,1), 1), \quad A = \{0, 1\}, \quad O = \{x_1, \ldots, x_n, F, T\}
\]
We sketch the proof from (Mundhenk, 2000b). PSPACE-hardness is proven by giving a reduction from the PSPACE-complete set QSAT. For an instance \(\phi \) of QSAT, where \(\phi \) is a 3CNF formula with \(n \) variables \(x_1, \ldots, x_n \), we construct a POMDP \(M(\phi) \) as follows. \(M(\phi) \) has three stages. The first stage consists of one random step. The process randomly chooses...
one of the variables and an assignment to it, and stores the variable and the assignment. This means, from the initial state s_0, one of the states "$x_i = b$" ($1 \leq i \leq n$, $b \in \{0, 1\}$) is reached, each with probability $1/(2n)$. It is not observable which variable assignment was stored by the process. However, whenever that variable appears, the process checks that the initially fixed assignment is chosen again. If the policy gives a different assignment during the second stage, the process halts with reward 0. If this happens during the third stage, a very high negative reward is obtained, which ensures that the process has a negative performance. If eventually the whole formula is passed, reward 1 or reward $-2n \cdot 2^m$ (for m equal the number of universally quantified variables of ϕ) is obtained dependent on whether the formula was satisfied or not.

The second stage starts in each of the states "$x_i = b$" and has n steps, during which an assignment to all variables x_1, x_2, \ldots, x_n, one after the other, is fixed. Let $A_{c,b}$ denote the part of the process’ second stage during which it is assumed that value b is assigned to variable x_c. If a variable x_i is existentially quantified, then the assignment depends on the action chosen by the policy. If a variable x_i is universally quantified, then the assignment is randomly chosen by the process, independent of the action of the policy. In the second stage, it is observable, which assignment was made to every variable. If the variable assignment from the first stage does not coincide with the assignment made to that variable during the second stage, the trajectory on which that happens ends in an error state that yields reward 0. Starting from state "$x_i = b$", there are at most 2^m different trajectories up to the end of the second stage. On each of these trajectories, the last n observations are the assignments to the variables x_1, x_2, \ldots, x_n. These assignments are observable by the policy. Notice that x_i is assigned b.

In the third stage, it is checked whether ϕ is satisfied by that trajectory’s assignment. The process passes sequentially through the whole formula and asks one literal after the other in each clause after the other for an assignment to the respective variable. The case of a cheating policy, i.e., one that answers with different assignments at different appearances of the same variable, must be excluded. Whenever the variable appears the assignment to which is stored by the process during the first stage, the process checks that the stored assignment is chosen again. A very high negative reward is obtained otherwise, which ensures that the process has a negative performance. If eventually the whole formula is passed, reward 1 or reward $-2n \cdot 2^m$ is obtained dependent on whether the formula was satisfied or not.
satisfied or not. Let $C_{c,b}$ be that instance of the third stage where it is checked whether x_c always gets assignment b. It is essentially the same process as defined in the proof of Theorem 4.1, but whenever an assignment to a literal containing x_c is asked for, a huge negative reward is obtained in case that x_c does not get assignment b.

The overall structure of $M(\psi)$ is sketched in Figure 6.

Consider a formula $\phi \in \text{QSAT}$ with variables x_1, x_2, \ldots, x_n, and consider $M(\phi)$. In the first step, randomly a state $[x_k = a]$ is entered, and from the observation \ast it cannot be concluded which one it is. In the next n steps, an assignment to the variables x_1, x_2, \ldots, x_n is fixed. The observations made during these steps is the sequence of assignments made to each of the variables x_1, \ldots, x_n. Up to this point, each sequence of observations corresponding to an assignment (i.e., observations on trajectories with probability > 0 which do not reach the trap state s_{end}) appears for the same number of trajectories, namely for n many. Consequently, there are $2n \cdot 2^m$ trajectories – for m being the number of universally quantified variables of ϕ – which reach any of the initial states of $C_{k,b}$ and on which a reward not equal to 0 will be obtained. Each of these trajectories has equal probability. Because $\phi \in \text{QSAT}$, there exists a policy π such that all these trajectories represent assignments which satisfy ϕ. Now, assume that π is a policy, which is consistent with the observations from the n steps during the second stage – i.e., whenever it is “asked” to give an assignment to a variable, it does this according to the observations during the second stage and therefore it assigns the same value to every appearance of a variable in $C_{k,b}$. Then every trajectory eventually gets reward 1. Summarized, if $\phi \in \text{QSAT}$, then there exists a consistent policy π under which $M(\phi)$ has performance > 0.

Figure 5: The second stage of $M(\psi)$: $A_{3,0}$ for the quantifier prefix $\forall x_1 \exists x_2 \forall x_3 \exists x_4$.

Figure 6: The overall structure of $M(\psi)$.
If $\phi \notin \text{Qsat}$, then for every policy there is at least one trajectory that does not represent a satisfying assignment. If π is consistent, then such a trajectory obtains reward $-2n \cdot 2^m$. Because $M(\phi)$ has $2n \cdot 2^m$ trajectories which get reward other than 0, it follows that the performance of π is at most $\frac{(2n \cdot 2^m - 1) - 2n \cdot 2^m}{2n \cdot 2^m} = \frac{-1}{2n \cdot 2^m}$, and that is < 0.

It remains to consider the case that π is not a consistent policy. Hence, there is a state where x_k is observed, and π chooses an assignment a to x_k which differs from the assignment given to x_k on the $k+1$st step of the history. Then, on the trajectory through $C_{k,1} = b$ a reward of $-2n \cdot 2^m$ is obtained. As above, the performance of π turns out to be negative.

Concluding, we have that there exists a policy under which $M(\phi)$ has performance > 0 if and only if there exists a consistent policy under which $M(\phi)$ has performance ≥ 0 if and only if $\phi \notin \text{Qsat}$. The transformation of ϕ to $M(\phi)$ can be performed in polynomial time. Hence, the PSPACE-hardness of the history-dependent policy existence problem is proven.