ORIGINAL ARTICLE

Camarosporium arezzoensis on Cytisus sp., an addition to sexual state of Camarosporium sensu stricto

Saowaluck Tibpromma a,b,c,d, Nalin N. Wijayawardene a,b,c,d, Dimuthu S. Manamgoda a,b,c,d, Saranyaphat Boonmee a,b,c,d, Dhanushka N. Wanasinghe a,b,c,d, Erio Camporesi e,f,g, Jun-Bo Yang h, Kevin D. Hyde a,b,c,d,*

a Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
b School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
c World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, PR China
d Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
e A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy
f A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314, Brescia, Italy
g Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo, RA, Italy
h Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, PR China

Received 10 November 2014; revised 25 January 2015; accepted 25 January 2015
Available online 11 February 2015

KEYWORDS
Morphology; Multi-gene analysis; Sexual state

Abstract During a study of saprobic fungi from Bagno di Cetica Province, Italy, we collected a pleosporoid ascomycete on stems of Cytisus sp. In morphology, our collection is similar to Cucurbitaria species, but molecular analysis of SSU, LSU and ITS genes reveals it can be referred to Camarosporium. In this study we compare all other Cucurbitaria species from Cytisus sp. and based on both morphology and molecular data, we introduce our collection as a new species in Camarosporium viz. C. arezzoensis.

© 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The genus Camarosporium was introduced by Schulzer (1870) with Camarosporium quaternatum (Hazsl.) Schulz. as the type species. Index Fungorum (2015) lists 508 records as Camarosporium which was formerly recognised as asexual morphs in Botryosphaeriales, Cucurbitariaceae,
Phaeosphaeriaceae and related genera (Kirk et al., 2008; Wijayawardene et al., 2012; Doilom et al., 2013; Hyde et al., 2013). However, Wijayawardene et al. (2014a,b) showed that Camarosporum sensu stricto belongs to Pleosporineae, Pleosporales and has cucurbitaria-like sexual morphs.

During our on-going studies, we found a new taxon with bitunicate asci and muriform ascospores which is morphologically similar with members in Cucurbitariaceae, Pleosporales (Doilom et al., 2013; Hyde et al., 2013). The blast results of small subunit rDNA (SSU), large subunit rDNA (LSU) and internal transcribed spacer (ITS) showed this taxon is related to Camarosporum sp. Thus we have carried out molecular analyses viz. maximum-parsimony (MP) and confirmed its placement in Pleosporineae, Pleosporales. As our new collection groups with Camarosporum sensu stricto, we introduce it as a new species of Camarosporum viz. C. arezzoensis.

2. Materials and methods

2.1. Sample collection and morphological study

Fresh fungal specimens were obtained from recent collections made in Italy. Morphological structures were examined under a Carl Zeiss microscopy GmbH (AxioCam ERC 55) stereo microscope. To observe the fungal structures, ascomata were picked up and put into rehydrated water or lactoglycerol. For hand cross sections 5% KOH was added prior to examination. Microscopic fungal structures were mounted in water for observation under a Nikon ECLIPSE80i compound microscope. All micro morphologies were measured using Tarosoft® Image Framework program v.0.9.0.7.

2.2. Isolation

Single spore isolation was carried out following the method described in Chomnunti et al. (2014) on potato-dextrose agar (PDA). Germinated spores were transferred to fresh PDA media and incubated at 16 °C. Culture characteristics were observed after four weeks and these cultures were also used for molecular study. The specimens are deposited in the Mae Fah Luang University (MFLU) Herbarium, Chiang Rai, Thailand. Living cultures are deposited at the Mae Fah Luang University Culture Collection (MFLUCC) Chiang Rai, Thailand. Centraalbureau Voor Schimmelcultures, Netherlands (CBS) and International Collection of Microorganisms from Plants, New Zealand (ICMP).

2.3. DNA extraction, PCR amplification and sequencing

Mycelia grown on PDA media at 16 °C for four weeks were used for DNA extraction. Total DNA extraction was established by using a Biospin Fungus Genomic DNA Extraction Kit (Bioer Technology Co., Ltd., Hangzhou, PR China). The concentration of DNA was determined using an ultraviolet spectrophotometer. PCR reactions were carried out according to Telle and Thines (2008) with the primers ITS1-F (Gardes and Bruns, 1993) and ITS4 (White et al., 1990) to amplify the complete internal transcribed spacer (ITS) region. Twenty micro litres (20 µl) of the reaction mixture contained 2 Mix 10 µl, ITS1-F 0.35 µl, ITS4 0.35 µl, 50 ng/µl DNA 0.6 µl, dH2O 8.7 µl for each sample. The PCR programme was set according to Douanla et al. (2005) with the following modifications: an initial denaturation at 94 °C for 3 min, annealing at 55 °C for 45 s, and extension at 72 °C for 1 min, and a final elongation step of 7 min at 72 °C. To check the PCR products, 1% agarose gel electrophoresis (AGE) for 30 min at 220V was used. All PCR products were sent to Shanghai Majorbio Bio-Pharm Technology Co., Ltd. for purification and sequencing.

2.4. Molecular phylogenetic analysis

BLAST searches of LSU, SSU and ITS sequence data were carried out to reveal the closest taxa to our strain in GenBank (http://www.ncbi.nlm.nih.gov/). Combined analyses of LSU, SSU and ITS dataset of the closest relatives in Coniothyriaceae, Cucurbitariaceae and Pleosporaceae were used to carry out phylogenetic analyses. Bioedit v.7.2.5 (Hall, 2004), ClustalW v.1.6 (Thompson et al., 1997) and MAFFT v.6 (Katoh et al., 2002; Katoh and Toh., 2008) online sequence alignment editor under the default settings (mafft. cbc.jp/alignment/server/) were used for aligning the sequences separately for each gene region. The individual datasets were finally combined into one dataset and used PAUP v.4.0b10 (Swoford, 2002) to perform maximum-parsimony (MP) analysis by bootstrap analysis with 10,000 replicates. All multiple, equally parsimonious trees were saved and descriptive tree statistics for parsimony consistency index (CI), retention index (RI), rescaled consistency index (RC) and homoplasy index (HI) were calculated. The robustness of the best parsimonious tree was estimated by a bootstrap (BT) value with 10,000 replicates, each with 10 replicates of random stepwise addition of taxa (Liu et al., 2011; Phookamsak et al., 2013), and the trees were figured in Treeview v.1.6.6.

3. Results

3.1. Phylogenetic analysis

The combined gene data set of SSU, ITS and LSU rDNA consists of 23 taxa including our strain of IT 791 (MFLUCC 14-0238) and the outgroup taxon Leptosphaeria dolichum (CBS 541.66). The dataset consists of 2092 characters including coded alignment gaps; 1835 are constant, and 114 are parsimony informative in the MP analysis. A best scoring tree is shown in Fig. 1. Bootstrap support (BS) values of MP (equal to or above 50% based on 10,000 replicates) are shown above branches (TL = 447, CI = 0.694, RI = 0.700, RC = 0.486, HI = 0.306). Our strain of MFLUCC 14-0238 belongs to the genus Camarosporum sensu stricto and were separated from representative species of the genus with a relatively higher bootstrap values as circumscribed by Wijayawardene et al. (2014b).

3.2. Taxonomy

Camarosporium arezzoensis Tibpromma, Wijayawardene, Camporesi & K.D. Hyde, sp. nov.
Index Fungorum Number: IF550877; Facesoffungi number: 00382

Etymology: Refers to the name of the province in Italy where the fungus was collected.

Saprobic on decaying plant stems of *Cytisus* sp. Sexual morph: Ascomata 400–500 μm high, 450–550 μm diam. (x = 449 ± 482 μm, n = 10), black, semi-immersed, scattered beneath the host periderm or on decorticated wood, fully or partly erumpent, globose, rough or hairy, with an ostiole. Ostiole central, short, slightly sunken, minute and inconspicuous at the surface, smooth, ostiolar canal filled with hyaline cells.

Peridium 30–45 μm wide at the base, 35–70 μm wide in sides, thick, comprising 8–10 layers, outer layer heavily pigmented, thick-walled, comprising blackish to dark brown cells of textura angularis, inner layer composed of hyaline, thin-walled cells of textura angularis.

Hamathecium comprising numerous, 5.5 μm (n = 40) wide, filamentous, branched septate, pseudoparaphyses. Asci 180–240 × 10–15 μm (x = 199 ± 13 μm, n = 40), 8-spored, bitunicate, fissitunicate, cylindrical, short-pedicellate, apex rounded with a minute ocular chamber. Ascospores 19–28 × 9–15 μm (x = 26 ± 12 μm, n = 50), partially overlapping, mostly ellipsoidal, muriform, with 5–7 transverse septa, with 4–6 longitudinal septa, constricted at the central septum, initially hyaline, becoming brown at maturity, with slightly paler ends, conical and narrowly rounded at the ends, not surrounded by a mucilaginous sheath.

Culture characteristics: on PDA reaching 2 cm diam. after 4 weeks at 16 °C, later with dense mycelium, circular, rough margin white at first, iron-grey after 6 weeks, reverse cinnamon, flat on the surface, without aerial mycelium. Hyphae septate, branched, hyaline, thin (see Fig. 2).

Material examined: ITALY, Arezzo Province, Bagno di Cetica, on stems of *Cytisus* sp., 1 October 2012, Erio Camporesi IT791 (MFLU14-0636, holotype), extype living cultures, MFLUCC 14-0238, CBS, ICMP (see Table 1).

Notes: Mirza (1968) and Ellis and Ellis (1985) have listed *Cucurbitaria cytisi* Mirza, *Cucurbitaria laburni* (Pers.) De Not., *Cucurbitaria obduens* (Schumach.) Petr. and *Camarosporium spartii* (Nees ex Fr.) Ces. & De Not. on *Cytisus* sp. We compared our collection with those species (Table 2). Molecular data analysis confirms our stains groups with *C. quaternatum* Schulzer (Schulzer, 1870), the type species of *Camarosporium* and other *Camarosporium* spp. *C. arezzoensis* however, differs in having 180–240 × 10–15 μm asci and 19–28 × 9–15 μm brown ascospores. Our new species should be considered as *Camarosporium sensu stricto* and it is not congeneric with *Cucurbitaria sensu stricto* (*Cucurbitariaceae*) (Fig. 1).
Figure 2 *Camerosprium arezzoensis* (holotype). (a) Ascomata on host substrate. (b) Section of ascoma. (c) Section of peridium. (d) Light brown hyphae around ascomata. (e) Pseudoparaphyses. (f–i) Asci. (j–n) Ascospores. Scale bars: $b = 200 \mu m$, $c = 50 \mu m$, $d–i = 20 \mu m$, $j–n = 10 \mu m$.
Table 1 Strains used in this study (Type and ex-type strains are in bold, the new taxon is indicated with an asterisk).

Taxon	Culture collection number	GenBank Accession number	SSU	ITS	LSU
Alternaria alternata	EN24				
Camarosporium aloes	CPC 21572	KF77142			
Camarosporium clematidis	MFLUCC 13-0336	KJ589414	KJ562213	KJ562188	KF77198
Camarosporium elongata	AFTOL-ID 1568	DQ678009			DQ678061
Camarosporium elongata	MFLUCC 14-0260	–			KJ724249
Camarosporium arezzoensis*	MFLUCC 14-0238	KP120928	KP120926	KP120927	
Camarosporium quaternatum	CBS 483.95	GU296141			GU301806
Camarosporium robinium	MFLUCC 13-0527	KJ589415	KJ562214	KJ589412	KJ589413
Camarosporium spartii	MFLUCC 13-0548	–			–
Cochliobolus heterostrophus	ATCC 64121	–			–
Coniothyrium palmarum	CBS 400.71	EU754054			JX681084
Decorospora gaudefoyi	CBS 332.63	AF394542			–
Leptosphaeria doliolam	CBS 541.66	–			JF740206
Pleospora herbarum	CBS 191.86	GU238232	–		GU238160
Pleospora typica	CBS 132.69	JF740105	–		JF740325
Pyrenochaetopsis phaeocomes	AFTOL-ID283	–			–
Pyrenophora tritici-repentis	DAOM 226213	–			JF740721
Cucurbitaria berberidis	CBS 363.93	GQ387545			GQ387606
Cucurbitaria berberidis	MFLUCC 11-0387	KC506800	–		KC506796
Cucurbitaria berberidis	MFLUCC 11-0386	KC506799	–		KC506796
Pyrenochaeta nobilis	CBS 407.76	EU754107	–		EU754206
Pyrenochaetopsis decipiens	CBS 343.85	GQ387563	–		GQ387624
Pyrenochaeta quericina	CBS 115095	GQ387558	–		GQ387619

Table 2 Comparison of our strain with the morphologically similar species in Mirza (1968).

Name	Ascomata	Peridium	Hypostoma	Asci	Ascospore
Camarosporium arezzoensis	Black, semi-immersed,	Thick, comprising 8–10 layers,	Comprising numerous,	8-spored, bitunicate,	Partially overlapped, mostly
(In this study)	scattered beneath the host	outer layer heavily pigmented,	filamentous, branched	fissitunicate, cylindrical,	ellipsoidal, mutiform, with
	periderm or on decorticated	thick-walled, comprising	septate, pseudoparaphyses	short-pedicellate, apex	5–7 transverse septa, 4–6
	wood, fully or partly	blackish to dark brown cells of	overlapping uniseriately or	rounded with a minute ocular	longitudinal septa, constricted
	erumpent, globose, rough or	textura angularis, inner	biseriately	chamber	at the central septum, initially
	hairy, with an ostiole	layer composed of hyaline,			hyaline, becoming brown at
		thin-walled cells of textura			maturity, with slightly
		angularis			paler ends, conical and
					narrowly rounded at the ends,
					not surrounded by a mucilaginous
					sheath
Cucurbitaria ahmadi	Erumpent, globose to	Uniform on sides, made up of	Well developed, light-brown	Long stipitate, 4–8 spores,	Golden-brown, 3–7
	subgbose or obovate, papilla	dark-brown polygonal cells	densely interwoven hyphae	spore overlapped uniseriately	transverse septa, one
	bearing a comparatively wide		Poorly developed, a	or biseriately	longitudinal septum
	ostiole		subiculum of dark-brown		
Cucurbitaria ononidis	Globose to subgbose, forming	Slightly rough surface	Well developed, brown	Long stipitate, 4–8 spores,	Brown, 5–9 transverse septa,
	a slight depression bearing	sometimes provided with hair-like		spore overlapped uniseriately	1–3 longitudinal septa
	ostiole, papilla lacking	structures		or biseriately	
Cucurbitaria elaeagni	Erumpent, globose to	Slightly rough surface,	Well developed, brown	Long stipitate, 4–8 spores,	Golden to dull brown, 5–7
	subgbose	made up of elongated		spore overlapped uniseriately	transverse septa, up to 2
		polygonal cells, hyaline		or biseriately	longitudinal septa
4. Discussion

Pleosporales is the largest order of Dothideomycetes (Kirk et al., 2008) and several studies have been carried out using multigene phylogeny, providing the groundwork towards a natural classification of the class (Nelsen et al., 2009, 2011; Schoch et al., 2009; Boonmee et al., 2011, 2012, 2014; Chomnunti et al., 2011, 2014; Liu et al., 2011, 2012; Zhang et al., 2011, 2012, 2014; Chomnunti et al., 2009; Boonmee et al., 2011, 2012, 2014; Chomnunti et al., 2008). A recent molecular phylogenetic analysis by Kirk et al. (2009) recognised the suborders Camarosporium and Cucurbitaria providing the groundwork towards a natural classification of the class. Several studies have been carried out using multigene phylogeny, with high bootstrap support 71% (Fig. 1). We also show Camarosporium sensu stricto is not related to Cucurbitariaceae, Pleosporaceae or, and Leptosphaeriaceae.

Our combined LSU, SSU and ITS analyses show that our stain clusters with C. quaternatum, the type species of Camarosporium, with high bootstrap support 71% (Fig. 1). Recently introduced species of Camarosporium have been treated as host-specific (Wijayawardene et al. 2014a, b), but it is essential to re-collect and carry out generic revision. There are about 500 species epithets of Camarosporium and Cucurbitaria in Index Fungorum (2015) but most of the species lack good illustrations and descriptions, thus it is difficult to compare all the species with our collection. However, Mirza (1968) has accepted only 28 species based on morphological characteristics. We have compared our collection with accepted species in Mirza (1968) which have closer morphologies with our collection. In their molecular data analyses, Wijayawardene et al. (2014a,b) showed that Camarosporium sensu stricto clusters as a distinct phylogenetic lineage in Pleosporaceae. In our molecular data analyses (Fig. 1) we also show Camarosporium sensu stricto is not related to Cucurbitariaceae, Pleosporaceae or, and Leptosphaeriaceae.

Acknowledgements

Mae Fah Luang University Grant “Taxonomy and Phylogeny of selected families of Dothideomycetes (Grant number: 56101020032)” is thanked for supporting this study and

Characters	Cucurbitaria cytisi (Mirza, 1968)	Cucurbitaria laburni (Pers.) De Not. 1862	Cucurbitaria obducanus (Schumach.) Petr. 1927	Cucurbitaria spartii (Nees ex Fr.) Ces. & De Not. 1863	Camarosporium arezzoensis MFLUCC 14-0238
Fruiting bodies (Ascomata)	Pseudothecia 300–700 μm, gregarious in groups of 2–8, erumpent, papilla	Pseudothecia 500–700 μm, black, papillate, usually in large groups seated on a black hyphalsubiculum	Pseudothecia 300–500 μm, black, papillate, usually in large groups seated on a black hyphalsubiculum	Pseudothecia 300–700 μm × 350–610 μm diam., black or blackish brown, erumpent in clusters seated on a scantly brown subiculum	Pseudothecia 450 × 480 μm, black, semi-immersed, scattered beneath the host
Peridium	Prominently rough 55–100 μm	Prominently rough 60–100 μm	Prominently rough up to 130 μm	Prominently rough	Prominently rough 75–160 μm
Asci	Dark- to light-golden brown, 18–26 × 7.5–10 μm, muriform, 3 to 7 transverse septa, constricted at the central septum, longitudinal sepa 1 or continuous or dis-continuous	Prominently rough up to 130 μm	Prominently rough up to 130 μm	Prominently rough up to 130 μm	Prominently rough 30–70 μm
Spore	C. pendulinus, C. scoparius, C. sessilifolius	C. alpinss, C. laburnum, C. radiatus	C. scaparius	C. capitatus, C. scaparius, Cyttis sp.	Cytisus sp.
Host species (Cytisus sp.)	C. cytisi, C. laburni, C. obducens	C. scaparius	C. capitatus	C. capitatus	Cytisus sp.
Country	Portugal, Spain, France, Germany, England, Italy, Switzerland	Germany, England, Spain, Sweden	Germany, Portugal, Spain, Sweden	Germany, Portugal, Spain, Sweden	Italy
References	Mirza (1968), Ellis and Ellis (1985)	This study			
Plant Germplasm and Genomics Center in Germplasm Bank of Wild Species, Kunming Institute of Botany is thanked for the help with the molecular work. Erko Camporeis thanks Gigi Stagioni for his invaluable field assistance. Saowaluck Tibpromma would like to thank the Mushroom Research Foundation (MRF), Chiang Rai Province, Thailand for its continuous support. Dhanushka Udayangana, Samantha C. Karunarathna, Belle Damodara Shenoy, Jian-Kui Liu, and Hiran A. Ariyawansa are thanked for their valuable suggestions and help.

References

Boonmee, S., Zhang, Y., Chomnunti, P., Chukeatirote, E., Tsui, C.K.M., Bahkali, A.H., Hyde, K.D., 2011. Revision of lignonolous Tubefusae based on morphological re-examination and phylogenetic analysis. Fungal Divers. 51, 63–102.

Boonmee, S., Ko-Ko, T.W., Chukeatirote, E., Hyde, K.D., Chen, H., Cai, L., Mckenzie, E.H.C., Jones, E.B.G., Kodsueb, R., Hassan, B.A., 2012. Two new Kirschsteiniothelia species with Dermatophyton anamorphs cluster in Kirschsteiniothelieae fam. nov. Mycologia 104, 698–714.

Boonmee, S., Bhat, J.D., Maharachchikumbura, S.S.N., Hyde, K.D., 2014. Clavatiospora thailandica gen. et sp. nov., a novel taxon of Venturiales (Dothideomyctes) from Thailand. Phytotaxa 176, 90–101.

Chomnunti, P., Hongsanan, S., Hudson, B.A., Tian, Q., Perdoh, D., Dhami, M.K., Alias, A.S., Xu, J., Liu, X., Stadler, M., Hyde, K.D., 2014. The sooty moulds. Fungal Divers. 66, 1–36.

Chomnunti, P., Schoch, C.L., Aguirre-Hudson, B., Ko-Ko, T.W., Hongsanan, S., Jones, E.B.G., Kodsub, R., Chukeatirote, E., Bahkali, A.H., Hyde, K.D., 2011. Capnodiaeae. Fungal Divers. 51, 103–134.

Dolom, M., Liuk, J., Jaklitsch, W.M., Ariyawansa, H., Wijayawardene, N.N., Chukeatirote, E., Zhang, M., Mckenzie, E.H.C., Geml, J., Voglmayr, H., Hyde, K.D., 2013. An outline of the family Cucurbitariaceae. Sydowia 65, 167–192.

Douanla, M.C., Langer, E., Calonge, F.D., 2005. Geastrum pleosporus sp. nov., a new species of Geastraceae identified by morphological and molecular phylogenetic data. Mycol. Prog. 4 (3), 239–250.

Ellis, M.B., Ellis, J.P., 1985. Microfungi on Land Plants: An Identification Handbook. Richmond Publishing.

Gardes, M., Bruns, T.D., 1993. ITS primers with enhanced specificity for rhizae and rusts. Mol. Ecol. 2, 113–118.

Hall, T., 2004. Bioedit version 6.0.7. Available from: <http://www.mbio.ncsu.edu/bioedit/bioedit.html>.

Hyde, K.D., Jones, E.B.G., Liu, J.K., Ariyawansa, H., Boehm, E., Boonmee, S., Braun, U., Chomnunti, P., Crous, P.W., Dai, D.Q., Diederich, P., Dissanayake, A., Dolom, M., Doveri, F., Hongsanan, S., Jayawarden, R., Lawrey, J.D., Li, Y.M., Liu, Y.X., Lücking, R., Monka, J., Muggia, L., Nelsen, M.P., Pang, K.L., Phookamsak, R., Senanayake, I.C., Shearer, C.A., Suotrong, S., Tanaka, K., Thambubula, K.M., Wijayawardene, N.N., Wijayawardene, N., Wu, H.X., Zhang, Y., Hudson, B.A., Alias, A.S., Aptomto, A., Bahkali, A., Bezerra, J.L., Bhat, D.J., Camporeis, E., Chukeatirote, E., Gueidan, C., Hawskworth, A., Höyland, S.D., Kang, J.C., Knudsen, K., Li, W.J., Liu, X.H., Liu, Y., Mavorn, M., Mckenzie, E.H.C., Miller, A.N., Mortimer, P.E., Phillips, A.I.J., Raja, H.A., Scheuer, C., Schumm, F., Taylor, J.E., Tian, Q., Tibpromma, S., Wanasit, D.N., Wang, Y., Xu, J.C., Yachareon, S., Yan, J.Y., Zhang, M., 2013. Families of Dothideomyctes. Fungal Divers. 63, 1–313.

Katoh, K., Misawa, K., Kuma, K., Miyata, T., 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066. http://dx.doi.org/10.1093/nar/gkf436.

Katoh, K., Toh, H., 2008. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 276–285. http://dx.doi.org/10.1093/bib/bbn013.

Kirk, R.M., Cannon, P.F., Minter, D.W., Stalpers, J.A., 2008. Dictionary of the Fungi, 10th ed. CAB International. Wallingford.

Liu, J.K., Phookamsak, R., Jones, E.B.G., Zhang, Y., Ko-Ko, T.W., Hu, H.L., Boonmee, S., Dolom, M., Chukeatirote, E., Bahkali, A.H., Wang, Y., Hyde, K.D., 2011. Astrosphaeriella is polyphyletic, with species in Fissurina gen. nov., and Neoaestrophaeria gen. nov. Fungal Divers. 51, 135–154.

Liu, J.K., Phookamsak, R., Doilom, M., Wink, S., Mei, L.Y., Ariyawansa, H.A., Boonmee, S., Chomnunti, P., Dai, D.Q., Bhat, D.J., Romero, A.I., Xuang, W.Y., Monki, J., Jones, E.B.G., Chukeatirote, E., Ko-Ko, T.W., Zhao, Y.C., Wang, Y., Hyde, K.D., 2012. Towards a natural classification of Botryosphaeriaceae. Fungal Divers. 57, 149–210.

Mirza, F., 1968. Taxonomic investigations on the ascomycetous genus Cucurbita. Nova Hedwigia 16, 161–213.

Nelsen, M.P., Lücking, R., Grube, M., Mbatchou, J.S., Muggia, L., Rivas-Plata, E., Lumbsch, H.T., 2009. Unravelling the phylogenetic relationships of lichenised fungi in Dothideomycets. Stud. Mycol. 64, 135–144.

Nelsen, M.P., Lücking, R., Mbatchou, J.S., Andrew, C.J., Spielmann, A.A., Lumbsch, H.T., 2011. New insights into relationships of lichen-forming Dothideomycetes. Fungal Divers. 51, 155–162.

Phookamsak, R., Liu, J.K., Chukeatirote, E., McKenzie, E.H.C., Hyde, K.D., 2013. Phylogeny and morphology of Leptosphaerulina saccharicola sp. nov. and Pleosphaerula oryzae and relationships with Pitomyces. Cryptogam Mycol. 34 (4), 303–319.

Schoch, C.L., Sung, G.H., Lopez-Giraldez, F., Townsend, J.P., Miadlikowska, J., Hofstetter, V., Robbertse, B., Matheny, P.B., Kauff, F., Wang, Z., Gueidan, C., Andrie, R.M., Trippe, K., Ciufetti, L.M., Wynns, A., Fraker, E., Hodkinson, B.P., Bonito, G., Groenewald, J.Z., Arzanlou, M., De-Hoog, G.S., Crous, P.W., Hewitt, D., Pfister, D.H., Peterson, K., Gryzenhout, M., Wingfield, M.J., Aptomto, A., Suh, S.O., Blackwell, M., Hillisd, Griffith, G.W., Castlebury, L.A., Rossman, A.Y., Lumbsch, H.T., Lücking, R., Buder, B., Rauhut, A., Diederich, P., Erz, D., Geiser, D.M., Hosaka, K., Inderbitzin, P., Kohlmeyer, J., Volkmann-Kohlmeyer, B., Mostert, L., O’Donnell, K., Sipman, H., Rogers, J.D., Shoemaker, R.A., Sugayama, J., Summerbell, R.C., Untereiner, W., Johnston, P.R., Stenroos, S., Zuccaro, A., Dyer, P.S., Crittenden, P.D., Cole, M.S., Hansen, K., Trappe, J.M., Yahr, R., Lutzoni, F., Spatafora, J.W., 2009. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst. Biol. 58, 224–239.

Schulzer, S., 1870. Mykologiske Betræff. Verh. Zoologisch-Botanischen Ges. Wien. 20, 635–658.

Swofford, D.L., 2002. PAUP: Phylogenetic Analysis using Parsimony, Version 4.0 b10. Sinauer Associates, Sunderland, MA.

Telle, S., Thines, M., 2008. Amplification of cox2 (=620 bp) from 2 mg of up to 129 years old herbarium specimens, comparing 19 extraction methods and 15 polymerases. PLoS ONE 3, 3584.

Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876. http://dx.doi.org/10.1093/nar/25.22.4876.

White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic analysis of fungi from environmental samples. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press, New York, USA, pp. 315–322.
Wijayawardene, N.N., McKenzie, E.H.C., Hyde, K.D., 2012. Towards incorporating anamorphic fungi in a natural classification – checklist and notes for 2011. Mycosphere 3 (2), 157–228.
Wijayawardene, N.N., Hyde, K.D., Bhat, D.J., Camporesi, E., Schumacher, R.K., Chethana, K.W.T., Wikee, S., Bahkali, A.H., Wang, Y., 2014a. Camarosporium-like species are polyphyletic in Pleosporales; introducing Paracamarosporium and Pseudocamarosporium gen. nov. in Montagnulaceae. Cryptogamie Mycol. 35 (2), 177–198.
Wijayawardene, N.N., Bhat, D.J., Hyde, K.D., Camporesi, E., Wikee, S., Chethana, K.W.T., Tangthirasunun, N., Wang, Y., 2014b. Camarosporium sensu stricto in Pleosporinae, Pleosporales with two new species. Phytotaxa 183 (1), 16–26.
Wijayawardene, N.N., Crous, P.W., Kirk, P.M., Hawksworth, D.L., Boonmee, S., Braun, U., Chomnunti, P., Dai, D.Q., D’Souza, M.J., Diederich, P., Dissanayake, A., Doilom, M., Hongsanan, S., Jones, E.B.G., Groenewald, J.Z., Jayawardena, R., Lawrey, J.D., Liu, J.K., Lücking, R., Madrid, H., Manamgoda, D.S., Muggia, L., Nelsen, M.P., Phookamsak, R., Suetrong, S., Tanaka, K., Thambugala, K.M., Wikee, S., Zhang, Y., Aptroot, A., Ariyawansa, H.A., Bahkali, A.H., Bhat, J.D., Gueidan, C., DeHoog, G.S., Knudsen, K., McKenzie, E.H.C., Miller, A.N., Mortimer, P.E., Wanasinghe, D.N., Phillips, A.J.L., Raja, H.A., Slippers, B., Shivash, R.S., Taylor, J.E., Wang, Y., Woudenberg, J.H.C., Puget, M., Cai, L., Jaklitsch, W.M., Hyde, K.D., 2014c. Naming and outline of Dothideomycetes – 2014c. Fungal Divers. 68. http://dx.doi.org/10.1007/s13225-014-0309-2.
Zhang, Y., Crous, P.W., Schoch, C.L., Bahkali, A.H., Guo, L.D., Hyde, K.D., 2011. A molecular, morphological and ecological reappraisal of Venturiales a new order of Dothideomycetes. Fungal Divers. 51, 249–277.
Zhang, Y., Crous, P.W., Schoch, C.L., Hyde, K.D., 2012. Pleosporales. Fungal Divers. 52, 1–225.