Analysis of the stellar population in the central area of the HII region Sh 2-284*.*

A. J. Delgado¹, A. A. Djupvik², and E. J. Alfarò¹

¹ Instituto de Astrofísica de Andalucía, CSIC, Apdo 3004, 18080 Granada, Spain
² Nordic Optical Telescope, Apado 474, 38700 Santa Cruz de La Palma, Spain

Received 22 July 2009 / Accepted 9 November 2009

ABSTRACT

Context. There is a lack of state-of-the-art information on very young open clusters with implications for determining the structure of the Galaxy.

Aims. Our main objective is to study the timing and location of the star formation processes which yielded the generation of the giant HII region Sh 2-284. This includes the determination of different physical variables of the stars, such as distance, reddening, age and evolutionary stage, including pre-main-sequence (PMS) stars.

Methods. The analysis is based on UBVRIc: CCD measurements of a field of 6.5′ × 6.5′ containing the cluster, and JHKs photometry in the 3.5′ × 3.5′ subfield, centered in the apparent higher condensation. The determination of cluster distance, reddening and age is carried out through a comparison with ZAMS, post-MS and PMS isochrones. The reference lines used are obtained from theoretical post-MS and PMS isochrones from the Geneva and Yale groups for a metallicity of Z = 0.004, which agrees with the spectroscopic metallicity determination published for several cluster members.

Results. The results amount to E(B − V) = 0.78 ± 0.02, DM = 12.8 ± 0.2 (3.6 kpc), Log Age(yr) = 6.51 ± 0.07 (3.2 Myr). The distance result critically depends on the use of low metallicity ZAMS and isochrones. A PMS member sequence is proposed, with an age of Log Age(yr) = 6.7 ± 0.2 (4.7 Myr) which is therefore coeval within the errors with the post-MS cluster age. The mass function for this population in the mass range above 1.3−3.5 Ms is well fitted by a Salpeter mass function. The presence of a different star generation in the cluster with a distinctly older age of around 40 Myr is suggested. On the other hand, the NIR photometry results indicate a large number of sources with (H − Ks) excess, practically distinct from the optical PMS candidate members.

Conclusions. The analysis of our deep UBVRIHJKS photometry of Dolidze 25 therefore reveals a young cluster with coeval MS and PMS populations of age 3.2−5 Myr. In addition, a distinctly older cluster member population of the age of 40 Myr is suggested. The distance determined for the cluster from quantitative fits to ZAMS and isochrones is distinctly lower than previously published values. This result originates in the consistent use of low metallicity models for ZAMS fitting, applying published metallicity values for the cluster.

Key words. open clusters and associations: individual: Dolidze 25 – stars: pre-main sequence

1. Introduction

The open cluster Dolidze 25 (06h 45m 06s, +00°14′00″, Epoch 2000) is one of the targets in our long term project on the search for and characterisation of PMS members in young open clusters (Delgado et al. 2007, and references therein, DAY-I in the following). The cluster was included in their series of photoelectric studies by Moffat & Vogt (1975) and Moffat et al. (1979). A UBV CCD photometric study was more recently published (Turbide & Moffat 1993).

In addition to the general objectives of this project (DAY-I), Dolidze 25 presents in principle two additional features of interest. It is located in the Galactic anticenter direction and has been claimed to have a metallicity distinctly lower than the solar value (Lennon et al. 1990; Fitzsimmons et al. 1992). The cluster is therefore of special interest in our project because of the expected finding of PMS stars with low metallicity and possibly at large Galactocentric distances.

The low metallicity of the cluster would contradict the value expected from the published values of the Galactic metallicity gradient. Any of the published values obtained from B-type stars, between −0.05 to −0.07 dex/kpc (Fu et al. 2009), would require too large Galactocentric distances for our cluster to reach the Lennon et al. (1990) metallicity value. On the other hand, recently published results (Przybilla et al. 2008; Przybilla 2008) with an improved method of spectroscopic analysis of B-type stars suggest a clearly tighter result for abundances of B-type stars in the solar neighbourhood than
those found in previous works. The accurate abundances could be considered to define the zero point of B-type stars metallicity at the solar Galactocentric distance, which would imply necessary corrections of previous values towards higher metallicities. We note however that local metallicity variations with respect to an average gradient have been reported several times (Fu et al. 2009; Pedicelli et al. 2009), and the possible presence of discontinuities and slope changes especially for large Galactocentric distances are still open. In this context, the analysis of cluster parameters and the eventual improvement of their values is of importance. The cluster was selected as a target for one of the COROT\(^1\) additional programs (Ripepi et al. 2006). These authors performed VIMOS observations at VLT, which revealed the presence of a large number of emission line objects in the region (partial report ftp://ftp.na.astro.it/pub/astrows06/presetazione-FCUSANO.ppt at http://www.na.astro.it/ http://earth-sciences.cnes.fr/COROT/A-corot-week.htm).

Fig. 1. Colour composite of 30’×30’ from AAO/UKST-H\(_\alpha\) survey (blue) and Spitzer/IRAC/8\(\mu m\) image (red). North up, east left. Dolidze 25 is located in the center of the bubble. In this paper we focus on the central area outlined by the larger and smaller squares representing the coverage of deep UBVRI and \(JHK_5\) photometry, respectively.

Finally, the cluster is located in the center of the giant H\(-\alpha\) bubble which encompasses the HII region Sh 2-284. Thus the analysis of the stellar content of this field could help to understand the connection between the star formation processes and the physics of the ionized gas better. The Sh 2-284 region has been the object of a mid-infrared study with Spitzer IRAC bands (Puga et al. 2007). The analysis of these observations (Puga et al. 2009, P09 in the following) includes Dolidze 25 and addresses the properties of massive star formation in the region.

In the present study we report UBVRIJHK observations centred in the Dolidze 25 cluster. In the next section we give an overview of the region. In Sect. 3 we describe the different data sets and the reduction procedures. Section 4 presents the optical results and a discussion of the determination of cluster parameters and cluster membership. Section 5 presents the near-IR results and IR-excess sources. Section 6 contains the discussion of the results, and finally the last section resumes the main conclusions.

2. Overview of the region

Dolidze 25 is located in the apparent centre of an IR dust bubble (P09). In this article we focus on a photometric study in UBVRIJHK of the central Dolidze 25 cluster and its immediate neighbourhood. In Fig. 1 we show the emission from the 8.0\(\mu m\) Spitzer band (red) obtained from the Spitzer archive and the H\(_\alpha\) emission (blue) from the AAO/UKST-H\(_\alpha\) survey (http://www.roe.ac.uk/ifa/wfau/halpha/) in a 30’×30’ area centred on the cluster. The fields covered by the UBVRI-ALFOSC and the \(JHK_5\)-NOTCam images are outlined by a larger and a smaller square, respectively. The projected circular structure is formed by several knots and clouds of H\(_\alpha\) emitting material, thoroughly discussed in P09. The image suggests a radial connection of several features to the cluster center. We recall here the presence of several arc-like structures, seen to the north and south, and two particularly interesting more defined features. To the north-east we see structures resembling broad arrow peaks, and to the west, a structure which very closely resembles a forefinger directly pointing to the central cluster, resembling the so-called elephant trunk features observed in some nearby star forming regions. All these structures seem to be geometrically related to the centre, the location where Dolidze 25 lies.

Deep UBVRI imaging was made with ALFOSC at the 2.6 m Nordic Optical Telescope (NOT) during available slots in the nights 25, 26 and 28 of December 2006, and the field was calibrated with photometric standards on the photometric night of the 21 of February 2007. The detector was a 13.5\(\mu m\)×2024\×2048 pixel back-illuminated E2V CCD, covering a FOV of 6.5’ with a pixel scale of 0.19’

The image reduction was carried out with adequate routines in the IRAF package. In every filter both short and long exposure times were secured to cover a brightness range as wide as possible. The long exposure times were 2700, 1800, 1800, 1800, and 3×900 s, for UBVRI, respectively. The final instrumental PSF magnitudes were obtained from the respective frames, computing average values for the stars in common in both exposures. These final magnitudes are then best calibrated by direct correlation to published UBV observations. In the present case, we used the published CCD UBV colors (Turbie & Moffat 1993) rather than the available photoelectric magnitudes by Moffat & Vogt (1975), which coincide only partially with our field. The \((V−R)\) and \((V−I)\) colour indices were calibrated with the catalogued values for eight standard stars observed in the Landolt (1992) region Rubin149. The uncertainties of our standard indices are calculated as the root mean squared deviations of the averaged O–C values for the different colour indices. They amount to 0.05 mag in \(V\), \((U−B)\) and \((B−V)\), 0.01 mag in \((V−R)\) and 0.02 mag in \((V−I)\).

3. Observations and models

3.1. UBVRI photometry

\(^1\) http://earth-sciences.cnes.fr/COROT/
3.2. JHK photometry

Deep near-IR imaging was obtained with NOTCam\(^2\) at the NOT on the 14 of January 2006. The detector, a 1024 × 1024 × 18 \(\mu\)m Hawaii array, the first Science Grade Array for NOTCam (SWIR2), was available in the period October 2005 to May 2006. Its gain was 2.2 \(e^-/\)adu and the readout noise 15 \(e^-\). The detector was found to be linear to within 1% up to 30000 adu, with saturation starting at 54000 adu. About 2% of the pixels were bad, but mainly along the edges of the detector. With this array the zeropoints for NOTCam were 24.02, 23.97, and 23.33 mag (for 1 \(e^-/s\), and Vega magnitudes) in the bands \(J\), \(H\), and \(K_s\), respectively. We used the wide field camera (0.234/\text{pix}, \text{fov} = 4′) and the broad band filters \(J\), \(H\) and \(K_s\) with central wavelengths at \(\lambda\lambda 1.247, 1.632, \text{and } 2.140\mu m\). We estimate completeness of the NOTCam images with an rms in RA and Dec of 0.15′′. Exposing 6×6 s × 9 pointings × 3 repetitions gave 162 images and a total on-source integration time of 972 s per filter.

We used the IRAF package and a set of our own scripts to mask bad pixels, subtract the sky background and flatfield the images using differential twilight flats taken on the same night. After image registration, combination and trimming, the final image size is reduced to 3.5′ × 3.5′ (see Fig. 6). Point sources were extracted from the final image of each filter using daofind, and aperture photometry was made with an aperture radius of the order of the \(FWHM\) of the PSF. The flux loss in the PSF wings was corrected for by evaluating an aperture correction for each band on a few bright and isolated stars (with errors <0.014 mag for all bands). Errors related to flat-fielding were found to be <0.012 and 0.015 mag in 3 repetitions gave 162 images and a total on-source integration time of 972 s per filter. We recall that the observations consist of a linear dependence on metallicity for a given \((B-V)\) colour (Vandenberg & Poll 1989). For the analysis of Dolidze 25, in absence of empirical or semi-empirical ZAMS for metallicities lower than solar, we use theoretical ZAMS and isochrones computed for the corresponding metallicity and transformed to the observational plane.

In addition to the differences between models, originating in the consideration and treatment of the various physical processes involved in the evolutionary calculations, it is this transformation to observable colours that introduces the largest differences between the different models (Lejeune & Schaerer 2001). To maximise the internal consistency of our results, we adopt reference lines transformed with the same calibration formulae to the observed colours. We use the post-MS Geneva isochrones (Lejeune & Schaerer 2001) and the Yale PMS isochrones (Yi et al. 2001) in the Y2\(^4\) model set, namely those translated to the observational plane with the colour transformation by Lejeune et al. (1998). In both cases, the metallicity tracks for \(Z = 0.004\) are used as given for the cluster by Lennon et al. (1990). Neither the Geneva nor the Y2 models contain a nominal ZAMS line. We use here a composite curve, obtained from the Geneva isochrone of age 1000 yr for colours bluer than \((B-V) = 0\), and the Y2 isochrone of the age of 40 Myr for a redder \((B-V)\) colour. We refer to this ZAMS line as ZAMS-Z004 in the considerations below. Finally, the Y2 models show that the colour–colour (CC) relation for PMS isochrones deviates from the ZAMS line, especially for spectral types later than B0, a deviation which is larger the younger the isochrone age. The particular \((U-B), (B-V)\) relation for each isochrone is then used to compute colour excess values, used afterwards in the computation of visual absorption and corresponding distance modulus with respect to this PMS isochrone.

4. Results of \(UBVRI\) imaging

4.1. reddening law towards dolidze 25

As explained in DAY-I, the determination of cluster parameters starts with the selection of bona-fide unevolved MS members on

\(^2\) See URL http://www.not.iac.es/instruments/notcam/ for details on NOTCam.

\(^4\) http://csaweb.yonsei.ac.kr/~kim/y2solarmixture.htm

the basis of the photometric colours with the help of membership assignments by other authors and the eventual use of spectroscopic observations. The application of the method requires an assumption of the reddening slope \(\alpha \equiv \frac{E(U-B)}{E(B-V)} \) used to shift the stars in the colour–colour (CC) \((U-B), (B-V)\) diagram. Once a reliable sample of non-evolved MS members is selected, they can be used to estimate the absorption coefficient \(R_V = A_V/E(B-V) \), appropriate for the extinction law in the direction of the observed field. This value of \(R_V \) is used in the calculation of distance modulus.

Turbide & Moffat (1993) derive \(\alpha = 0.8 \) from a simultaneous fit of solar metallicity isochrones to their selected members in the \((U-B)\) and \((B-V)\) CM diagrams, with distance modulus, age, \(E(U-B) \), and \(E(B-V) \) as fitting parameters.

We have performed a similar fit, but only to the ZAMS, and using stars that can be considered little evolved, constant reddening members. The sample consists of seven stars, five of them among the members by Turbide & Moffat (1993), and our four best candidates to non-evolved MS members (actually two of them are also included in the Turbide & Moffat (1993) members sample). Calculations are carried out for ZAMS of solar metallicity (Aller et al. 1982) and of \(Z = 0.004 \) (ZAMS-Z004 described above). Once a reference line and a reddening slope \(\alpha \) are chosen, the absolute magnitude \(M_V \), and color excesses \(E(B-V) \) and \(E(U-B) \) are determined. The average \(V - M_V \) and colour excesses are used to shift the ZAMS lines in the CM diagrams. For each \(\alpha \), we calculate the quantity \(\frac{\Sigma(e^2)}{N} \alpha / 2 \), where \(\delta \) is the distance of every star to the shifted ZAMS in either CM diagram and \(N \) is the number of stars. This quantity is plotted versus \(\alpha \) in Fig. 2. We see in this plot that a minimum is attained for \(\alpha = 0.72 \) when ZAMS-Z004 are used, whereas for the fitting to solar metallicity ZAMS, the result of Turbide & Moffat (1993) would be recovered.

The colour excesses of the unevolved MS stars, obtained with \(\alpha = 0.72 \) are then used to calculate \(E(V-I) \) from the \((V-I),(B-V)\) CC diagram and the absorption coefficient \(R_V = A_V/E(B-V) \). The result \(R_V = 3.10 \) coincides with the value characteristic for an average Galactic extinction (Cardelli et al. 1989), and is then adopted together with \(\alpha = 0.72 \) to calculate colour excesses and distances for the cluster stars.

4.2. MS membership, distance, and age

4.2.1. Unevolved MS members

To select reliable unevolved MS members we use a method that combines all colour indices from the \(UBVRI \) photometry (DAY-I). Figure 3 illustrates this selection. In the left panel we plot the upper part of the \((B-V)\) CM diagram, including all stars with measured values in all five \(UBVRI \) bands. A dashed-line ellipse describes the region of the diagram where the non-evolved MS cluster members are expected, if any. The simultaneous location of stars inside similar regions in all four CM diagrams, together with their consistent location in the CC diagram, results in the sample marked with circles in both panels of Fig. 3.

In the right panel we represent the quantities \(V - R_V \times E(B-V) \) versus \(M_V \), only for stars brighter than \(V = 18 \) to make the plot clearer. A straight line for \(DM = 12.8 \) is plotted as an indication. In this right panel we observe the presence of foreground and background star groups, respectively, below and above the distance modulus value described by the selected unevolved MS members. Three of these appear to have a relatively lower distance modulus and are no longer considered. The final sample considered for the calculation of cluster distance modulus are those stars plotted as filled circles. In both plots, crosses represent the stars adopted as post-MS members (Moffat et al. 1979; Turbide & Moffat 1993), to be considered in principle for the estimation of post-MS age.

4.2.2. Colour excess, distance, and post-MS age

The average values and rms deviations of colour excess and distance modulus for the unevolved MS members amount to \(E(B-V) = 0.78 \pm 0.02 \), \(DM = 12.8 \pm 0.2 \). They are used as
reference values to estimate membership for the remaining stars, following the procedure explained in detail in DAY-I.

An estimate of the post-MS cluster age is obtained from the comparison to post-MS isochrones, where we use the set of models from the Geneva-isochrones for $Z = 0.004$ and solar mixture. The comparison is illustrated in Fig. 4, where the upper CM diagrams $V_{\odot}(U-B)$, $V_{\odot}(B-V)$, $V_{\odot}(V-R)$, and $V_{\odot}(V-I)$ are plotted, with an indication of the selected unevolved MS- and post-MS members (see Fig. 2). To avoid the possible influence upon these diagrams of binarity (Golay 1974) or emission lines (Mermilliod 1982), we restrict our comparison to the two stars marked with crossed squares in the figure. The extrapolation in each diagram to the age value, which would exactly reproduce the locations of both stars, gives eight formal age values, one for each star in every one of the four CM diagrams. The average and rms deviation of these values amount to $\log \text{Age}(\text{yr}) = 6.51 \pm 0.07$, or $3.24 \pm 0.5\text{ Myr}$, in good agreement with the age values (3.8 Myr) for Dolidze 25 and its associated H II region, quoted in P09.

We note the significant difference between our distance result and the published distances for the cluster, which are around $D = 5.3\text{ kpc}$ (Moffat & Vogt 1975; Turbide & Moffat 1993), a difference which originates mainly in the use of low metallicity ZAMS in the distance estimate.

The effect of metallicity changes upon the cluster distance was discussed by Turbide & Moffat (1993), considering the expected variations due to a Galactocentric metallicity gradient. The key point here is however the low metallicity value obtained by Lennon et al. (1990), $Z = 0.004$, which does not follow the predictions of any gradient, as mentioned above. The question actually concerns absolute abundances rather than relative ones. We recall in this context the results by Przybilla et al. (2008), who obtain much tighter results than previous works for B-type stars abundances in the solar neighbourhood. These results suggest that previous metallicity measurements are systematically too low, but the precise value of this offset and its application to stars located far outside the Solar radius is not clearly established. We therefore prefer not to adjust the metallicity value. We note that a “best guess” offset would change our distance estimate from 3.6 to 4.0 kpc and leave the rest of our conclusions essentially unchanged.

4.2.3. PMS membership and age

The remaining stars are now studied on the basis of the adopted values of distance and colour excess. The method has been explained in detail in DAY-I. It consists in comparing colour excesses and distance moduli of each star with the average values obtained for the unevolved MS members. Distances are measured with respect to ZAMS and with respect to PMS isochrones from the Y2 set, for metallicity $Z = 0.004$, and ages from 1 to 10 Myr. In this way, each star is assigned several pairs of values of colour excess and distance and is considered as either an MS or PMS member, when one of these pairs agrees with those obtained for the unevolved MS members. Photometric uncertainties are considered in this assignment, and allowance is made for colour excesses well above the average of the values for unevolved MS members (see DAY-I).

From these comparisons, a star can be assigned as a member with respect to several PMS isochrones, whose mean age value provides an age estimate for the PMS candidate. The age and uncertainty of the candidate PMS sequence is then obtained from the average value of the ages obtained for all candidates and its rms deviation. This operation results in the value $\log \text{Age}(\text{yr}) = 6.7 \pm 0.2$. The observed PMS sequence seems therefore to be coeval with the more massive MS members, in contrast with evidence found in other young clusters (Delgado et al. 2004, 2006, 2007, and references therein), where cases of PMS sequences both younger and older than the corresponding MS members are found.
Fig. 5. The $J-H/H-K$ diagrams for the two near-IR datasets used. Left: the $3.5'\times3.5'$ central part of Dolidze 25 with deep NOTCam imaging and a total of 651 sources. Right: the 310 2MASS point sources with ABCD flags found in the $6.5'\times6.5'$ field of our optical study. Both diagrams: the bold curves outline the loci of main-sequence and giant stars. The reddening vector of an A0 star is shown as a dashed line. bona-fide IR-excess sources (filled circles) are located more than 2σ away from the reddening vector by a distance of between 1 and 2σ. IR-excess sources (filled triangles) are those separated by between 1 and 2σ only. The optically selected cluster members from Sect. 4 are marked with large open circles (MS stars) and large open squares (PMS stars) for reference.

5. Results of the JHK_s imaging

5.1. Near-IR excess sources

The $J-H/H-K$ diagram for 651 sources in the $3.5'\times3.5'$ field of deep JHK imaging with NOTCam (see Fig. 6) is shown in the left panel of Fig. 5. The loci of main-sequence, giant and supergiant stars (Koornneef 1983) are indicated with bold curves. A reddening slope of $E(J-H)/E(H-K) = 1.6$ is calculated based on the NOTCam JHK_s filter passbands (cf. Sect. 3.2) and using the $A_J \propto \lambda^{-1.7}$ parametrisation of the near-IR extinction law (Whittet 1988). The majority of the sources are clustered around the loci of main-sequence and giant stars and only marginally displaced along the reddening vector, which agrees with the average low extinction law as above, the reddening slope $E(J-K)/E(H-K)$ becomes 1.78 because of the slightly different JHK_s filter passbands for the 2MASS survey at $\lambda = 1.24, 1.66,$ and $2.16 \mu m,$ respectively. The $J-H/H-K$ diagram for the 310 sources with ABCD flags is shown in the right panel of Fig. 5. We have applied the same selection criterion for near-IR excess as above. For the $6.5'\times6.5'$ field we find using 2MASS a total of eight bona-fide and 20 probable IR-excess sources. In this diagram we also mark those cluster members found from optical photometry that have IR-excesses. In both samples the fraction of IR-excess sources with respect to total number is about 8–9%.

Sources located to the right and below the reddening line in the $J-H/H-K$ diagram – i.e. the above calculated reddening vector fixed for an A0 star – have excess emission in the near infrared. In order to account for the uncertainties in the observed colours, we define as bona-fide IR-excess sources those located in this area and separated from the reddening vector by more than 2σ of the individual errors in the colour indices $J-H$ and $H-K$ (see Sect. 3.2). Those sources that are separated from the reddening vector by a distance of between 1 and 2σ only are designated probable IR-excess sources. For the $3.5'\times3.5'$ deep field we extract a sample of 29 bona-fide and 26 probable IR-excess sources. With this relatively conservative criterion we will not sample all the IR-excess sources. Because deep JHK_s imaging was obtained only in part of the $6.5'\times6.5'$ field studied in the optical (see Sect. 4), we have used the 2MASS point source catalogue to search for IR-excess sources. Using the same near-IR extinction law as above, the reddening slope $E(J-H)/E(H-K)$ becomes 1.78 because of the slightly different JHK_s filter passbands for the 2MASS survey at $\lambda = 1.24, 1.66,$ and $2.16 \mu m,$ respectively. The $J-H/H-K$ diagram for the 310 sources with ABCD flags is shown in the right panel of Fig. 5. We have applied the same selection criterion for near-IR excess as above. For the $6.5'\times6.5'$ field we find using 2MASS a total of eight bona-fide and 20 probable IR-excess sources. In this diagram we also mark those cluster members found from optical photometry that have IR-excesses. In both samples the fraction of IR-excess sources with respect to total number is about 8–9%.

The 55 IR-excess sources found in the deep NOTCam field are in the magnitude range 12.6 < K < 19.2 with an average at $K = 17.1$ mag, and only five of these have 2MASS counterparts. Among these five only two have IR-excess according to the 2MASS dataset. The remaining three have failed to be detected as IR-excess sources in the 2MASS dataset. It is reasonable that the shallower 2MASS survey detected fewer excess sources, since the individual errors in the colours are larger. Only nine of the total of 28 2MASS IR-excess sources are located inside the NOTCam deep field. These are in the magnitude range of 12.6 < K < 15.5 and are all optically visible sources. Surprisingly, as it may seem at first, only two of them are confirmed to be IR-excess sources with the deeper NOTCam photometry. Looking in detail at the colour indices we find that for all the seven “non-confirmed” sources, the $J-H$ and $H-K$ indices vary by 0.25–0.6 mag between the two epochs Nov.-1999 for 2MASS data and Jan.-2006 for NOTCam data. For sources
without IR-excesses the median of the absolute differences between the two datasets is <0.07 mag in the colour indices. It is also worth mentioning that three of those seven “non-confirmed” IR-excess sources are optically selected cluster members (see Sect. 4).

We consider it a sufficient condition for an IR-excess source to have measurable IR-excess in one of the epochs, and we conclude that the combination of NOTCam and 2MASS data yields a total of 81 IR-excess sources (55 from NOTCam plus 28 from 2MASS minus 2 overlapping). Thus, the lack of overlap between the two sets of IR-excess sources is explained in terms of sensitivity difference (i.e., difference in error bars) and most importantly: intrinsic source variability. Variability is expected for young stars and is often used as a criterium of stellar youth; see e.g. Kaas (1999) for a study of the efficiency of this criterion compared to that of IR-excess for membership assignment in a young embedded cluster.

5.2. Cluster membership of near-IR excess sources

The excess emission in the near-IR is attributed to thermally radiating hot circumstellar dust. Determined by the temperature distribution of the dust particles, a superposition of blackbodies is produced, giving an excess flux at IR wavelengths compared to the spectral energy distribution (SED) of a naked star. Whether the dust is spatially distributed in a disc (typical for Classical T Tauri stars) or more spherically distributed (typical for protostars) is reflected in the shape of the SED towards the mid-IR. With only UBVRIJHK photometry for this region we cannot say much about the distribution of the dust, only about its possible presence. Because the typical number fraction of protostars with respect to PMS stars with discs is about 1/10 in young clusters, we statistically expect our population of IR-excess YSOs to be dominated by Class II sources. We cannot exclude, however, that some of our IR-excess sources may be protostars of Class I type.

In Fig. 7 we plot the K band histogram of all our observed sources in the deep $3.5' \times 3.5'$ field as well as that calculated from the Besançon model of our Galaxy (Robin et al. 2003). In order to compare these numbers to the expected K-band counts of extragalactic origin, we have used the average values of the deep fields presented in Table 4 of Barro et al. (2009). Their numbers were scaled down to the size of our field and corrected for cloud extinction ($A_K = 0.24$ mag) by shifting the values a quarter of a bin size to the right. From the figure it is evident that our observations are complete to around $K = 17.5$ mag. The level of extragalactic contamination in this bin is only ~7% and cannot explain the excess of observed counts compared to model counts. In the magnitude range of $18 < K < 19$ mag, however, it is possible that ~20% of our source detections are distant galaxies.

How the above percentages translate to percentages in the IR-excess sample is not obvious. Examining the map of cluster member candidates, however, we find that the faintest IR-excess sources are preferentially located in the central part of the image following the higher spatial density in general. Thus it is unlikely from the spatial distribution that the IR-excess sample in the magnitude range of $17 < K < 19$ consists of extragalactic sources, but we note that although we list our 81 IR-excess sources from Sect. 5.1 as YSO candidates, there is a probability in the faintest bins of extragalactic contamination possibly of the order of 10–20%.

5.3. Comparison with optically selected cluster members

A total of 104 pre-main-sequence (PMS) members were found in the $6.5' \times 6.5'$ area covered by our UBVRI photometry (see Sect. 4.2.3). There are 2MASS counterparts with ABCD flags in all bands for 57 of these, of which only five have IR excess (see right panel of Fig. 5). Thus less than 10% of the optically selected PMS members that are also detected in JHK with 2MASS are found to exhibit excess emission in the near-IR. Inside the $3.5' \times 3.5'$ small deep field there are 31 optically selected PMS stars, of which only three have IR excess.

Only 19 of the 62 IR-excess sources are optically visible in the V band – a necessary condition for our optical PMS selection. There are only three sources with both PMS and IR-excess classification in this field (these have ID numbers 468, 903, and 1563 in Table 1). Thus only 3/19 or 16% of the IR-excess sources that are optically visible are classified as PMS members in our optical study. It is clear from the left panel of Fig. 5 that practically all optically selected PMS stars are found quite near the loci of main-sequence stars in the $J - H/H - K$ diagram and definitely to the left of the reddening line.

The fact that most of the optically selected PMS stars are found without signs of optically thick circumstellar discs, is explained either because they are so evolved (or independently of age they have lost their circumstellar material), or because the IR imprints of the discs are not detectable in the near-IR. It is well known from mid-IR studies (e.g. Kaas et al. 2004) that only about 50% of the IR-excess sources in young embedded clusters show up with excesses in the $J - H/H - K$ diagram. In the case of Dolizde 25, which is not really embedded, it is possible that only around 16% of the optically visible PMS stars have discs, but this can only be assessed using mid-IR photometry.

Using two different photometric methods we have two samples of PMS cluster members with very little overlap. The optically selected PMS stars have a magnitude range of $12.6 < K < 16.6$, i.e. they are all relatively bright in the near-IR. The near-IR excess sources on the other hand span the larger magnitude range of $12.6 < K < 19.2$ with a median at $K = 17.8$ mag. Thus, in general they comprise a fainter population, see Fig. 8. Correcting for average extinction ($A_K = 0.24$ mag) and distance (DM = 12.8 mag) we get absolute magnitudes from $-0.4 < M_K < 6.2$ mag for the IR-excess sources. Assuming a typical age of 2–3 Myr for the IR-excess sources, the sub-stellar limit is around $M_K = 5.5$ mag according to PMS evolutionary tracks (Baraffe et al. 1998). The mass range of the IR-excess population extends thus to well beyond the brown dwarf limit,
while our completeness estimate at \(K = 17.5 \) mag corresponds to \(M_K = 4.5 \) mag only.

The statistical result shows that the optical photometric method and the near-IR excess method sample different PMS populations, possibly with an age difference, but not necessarily so. The multi-wavelength approach covering both optical and near-IR bands in photometric studies of clusters is advantageous because the two methods are complimentary. This same conclusion was drawn from a similar type of study of the double cluster NGC 6946 (Larsen et al. 2002; Sánchez Gil et al. 2009). The information has been suggested in large forming regions of the Small Magellanic Cloud (Sabbi et al. 2007; Carlson et al. 2007), and NGC 6946 (Larsen et al. 2002; Sánchez Gil et al. 2009). The interesting point in the present case, if confirmed, is the presence of two star generations in the same place.

The interpretation of the stars labeled a–d in Fig. 4 as evolved cluster members requires some comments. Their location in the \(V, (V - R) \) and \(V, (V - I) \) CM diagrams supports this hypothesis, which is however contradicted by the position of the stars in the \(U, (U - B) \) CM diagram (see Fig. 4). In this last diagram, the comparison to isochrones under the assumption that they are evolved cluster members, suggests an age of at most 15 Myr. One possibility to solve the discrepancy is to assume that they indeed are as young as indicated by their \((U - B) \) colour, while the other three colour indices would just reveal either simple reddening, with a peculiar reddening slope, or some colour excess, which increases towards redder indices.

In the line of considering these stars younger than proposed here, we might recall recent results on massive young clusters, where the presence of a noticeable supergiant population is argued (Clark et al. 2009; Alexander et al. 2009). The assumption that the brightest stars in our CM could indicate such a population would result in a distance from them of around 7 kpc, which would discard them as cluster members, even under a consideration of the largest distance estimates given for Dolidze 25 in the literature.

On the other hand, the presence in these stars of colour excesses which are larger for redder colours is also uncertain. It is contradicted in any case by our NIR results, in which none of the proposed post-MS candidates appear to exhibit NIR excess (see Sect. 5). This lack of NIR excess also weakens the suggestion of a redder binary companion which would show up in redder colour indices. The performance of adequate spectroscopic observations is needed to elucidate among these possibilities, including the one put forward here, which considers the presence of two generations of stars in the cluster.

6.3. Spatial distributions

The spatial distribution of the various cluster members is shown in Fig. 9, overlaid on an \(R \)-band image, the different colours and symbols distinguishing different populations. The MS and post-MS members have a clear zone of avoidance towards the
Fig. 9. Sky map of the observed field (north up and east left). V-band magnitude is coded with dot size. The location of MS and post-MS stars of the younger generation (cyan circles) and of the older generation (blue circles), optical PMS candidates (black squares), and IR-excess sources (red diamonds) are shown. Note that the IR-excess source selection has a higher sensitivity in the smaller area covered by NOTCam.

Fig. 10. V, (B − V) diagrams with indications in the cluster members assigned to two generations of stars at different ages. In both panels, all stars are represented with small dots. In the left panel, proposed young members (3–5 Myr) are plotted, with post-MS (crosses) and MS members (circles), and PMS members assigned in at least three CM diagrams (squares). In the right panel, optical PMS candidates assigned in at least three CM diagrams (squares), PMS sources of ages 1 and 10 Myr (broken) are plotted and labeled in the left panel. The same ZAMS and the 45 Myr isochrone are plotted in the right panel.

Table 2. The 35 MS and post-MS members found in our analysis of a 6.5′ wide field.

ID	WEBDA	2MASS	V (mag)	Age group
298	06445568+0015307	17.034 young		
513				old
649			19.839	old
761	06445984+0015311	17.128 young		
786			19.152	old
1022			19.775	old
1053	16	06450210+0013165	13.052	old
1060	15	06450217+0013294	11.490	old
1121	18	06450266+0014218	13.290	old
1179			18.549	old
1214			20.284	old
1243	19	06450356+0012569	12.532	young
1244			19.611	old
1329			19.058	old
1362	17	06450471+0013472	11.215	old
1371	197	06450477+0014379	16.479	old
1422	196		18.772	old
1441			20.068	old
1522			18.971	old
1560	123	06450680+0012549	15.539	young
1609	119	06450726+0013306	17.292	old
1865	110	06450966+0012217	15.291	young
1930	22	06451043+0011164	11.861	old
1943	174	06451066+0014281	17.221	young
2003	107	06451127+0012463	15.414	young
2095	102	06451246+0013096	14.402	young
2130			19.816	old
2157			18.982	old
2188			19.422	old
2289			19.450	old
2308			19.533	old
2499	06451724+0013054	16.519	young	
2533	06451767+0011292	16.421	young	
2581			20.097	old

The last column indicates the age group, where old means around 40 Myr and young 3–5 Myr. For fluxes, colours and coordinates we refer to Table 1 (only available at the CDS).

We calculate the distribution of separations of pairs of members within the different sub-groups, a way to quantitatively assess possible clustering properties (Kaas et al. 2004), although projected in the plane of the sky. In Fig. 11 we show in histograms the number of pairs versus separation (in arc seconds). Strong peaks in this distribution indicate the scale of clustering or sub-clustering of the population, or more correctly: the approximate size/diameter of the densest region. The upper panel shows the distribution of pairs of optically selected PMS stars (largest group), IR-excess sources (medium group), and all MS and post-MS sources (small group). For the optically selected PMS stars there is a small peak around 160″, translating to about 3 pc using our distance estimate of 3.6 kpc, but the distribution is broad and indicates that the optically selected PMS stars are in general quite scattered. The IR-excess sources, on the other hand, have a much more pronounced peak, located at 90″ or 1.6 pc. We note that the deep near-IR study was made in a smaller field, and only the shallower 2MASS survey could be used for the whole area, so that the histogram should not be considered beyond 210″ for this group. There seems to be a clear tendency of clustering of this population.
The number of pairs as a function of separation (in arc seconds), a measurement of the clustering properties of a population, is shown in histograms. Top: the optically selected PMS stars comprise the large population in the white/open histogram, the IR-excess sources are shown as red/filled histogram, and the total population of MS and post-MS stars in the small white/open histogram. Bottom: the total MS and post-MS population is shown in the white/open histogram, the older population in the orange/bold line histogram, and the younger population in the blue/filled histogram.

The MS and post-MS population, which is a comparatively small group, is seen to have a relatively flat distribution in the upper panel. When separating the total MS and post-MS population into the two age groups suggested in the previous section (approximately 5 Myr and 40 Myr), we see that the spatial distribution of the two is distinct. The younger generation (blue/filled histogram) is slightly more clustered, i.e. the distribution peaks at a smaller scale than the older generation (orange/bold line histogram). The young generation of MS and post-MS stars peaks around the same scale as the IR-excess population.

Although the number statistics is relatively small, this gives an independent support to the hypothesis of two different generations of MS and post-MS stars suggested by isochrone fitting and described in Sect. 6.2. The spatial distribution of a cluster population is expected to become more dispersed with time. Assuming a typical stellar velocity dispersion of ≈ 1.5 km s$^{-1}$ found for old ($>10^8$ Myr) open clusters (Lohmann 1972), one might expect 40 Myr old stars to have moved quite some distance away from their birth place. We also note that much larger velocity dispersions have been found for the young clusters NGC 2244 and NGC 6530 of 35 and 8 km s$^{-1}$, respectively (Chen et al. 2007). Thus, part of the older population could be located outside the 7 pc wide field studied by us, but only a proper motion study will reveal the velocity dispersion in Dolidze 25.

6.4. Mass function

The quantitative measurement of ages described in Sect. 4.2 above provides mass estimates for the assigned cluster members, both from the ZAMS and post-MS isochrones, and from the PMS isochrones as well. These mass values are averages of the values read from the corresponding reference lines, and are calculated in the same way as the age estimates.

We apply here these calculated mass values to illustrate the properties of the cluster mass function. In Fig. 12 we plot the logarithm of the number of stars of mass value versus the logarithm of the star mass, in units of solar masses. The break down of the function at masses below 1.3 solar masses is probably due to an underabundance of low mass stars, but other factors, such as the incompleteness of the detected sample could be present, and we do not discuss this feature further. On the other hand, the overabundance of massive stars is probably due to the consideration of all MS and post-MS stars in this function without distinction of the argued presence of two different star generations. In fact, no differences in mass function depending on metallicity are expected at these high masses (Bate 2005).

Fig. 12. Mass function for the candidate members in Dolidze 25. The models of Lejeune & Schaerer (2001) and Yi et al. (2001) for $Z = 0.004$ have been used to estimate membership and calculate masses for the assigned members. Mass functions of PMS candidates (dashed curve) and all members (dotted curve) are plotted. The continuous straight line reproduces the slope of the Salpeter IMF (-2.35), which is seen to very well fit the calculated mass function for PMS candidates of masses above $\log M/M_\odot = 0.2$.

The slope at masses above $1 M_\odot$ should otherwise be more reliable in view of the colour excess and distance derived for the cluster and the expected brightness range covered by these stars, which allow one to expect a higher degree of completeness in the cluster members detection. In this figure we note the present sequence of assigned candidate PMS members, with a mass function very well reproduced by a Salpeter mass function slope (-2.35 in the plot of the figure).
6.5. Comments on the age distribution

There are some cases in the recent literature of regions similar to this, where a central, ageing cluster has caused a set of structures around it, driving in some cases the formation of new stars (Yun et al. 2008; Deharveng et al. 2003). Here we could be witnessing a region similar to these, but some 10 million years later than those other regions.

In view of the possible presence of two generations of MS and post-MS stars in the central field, as suggested by our data in combination with isochrone fitting, we speculate that the bubble may have been shaped by the first generation of stars some 40 Myr ago. This population may be quite dispersed by now. The new generation, with ages approximately around 3–5 Myr found both for MS, post-MS, and PMS stars, may have been triggered by the first population, and although we see a cluster projected close to the centre of the bubble, its exact location may just as well be closer to the shell of the bubble in the line of sight towards us. As seen in Fig. 1 the red structures without bright rims at the edges are most likely cloud filaments and structure located on the near side of the bubble, and would be showing absorption relative to the Hα emission background. These structures contrast to the ones with bright rims, i.e. enhanced Hα emission at the edges. In this context, we may interpret the collection of Class I sources found by P09 in the direction of the cluster core. As suggested by these authors, they could indeed be embedded in the above mentioned Hα absorbing structure and be a part of the surrounding region.

All these indications enhance the view of Sh 2-284 as a region with past events of star formation at different ages, and a presently ongoing formation activity of new generations of stars, ranging in age from a few Myr down to very young objects in the first formation phases.

7. Summary and conclusions

- We obtained deep UBVIJHK photometry in the central 6.5’ part of the Dolidze 25 cluster, reaching the 10σ limiting magnitudes of $V = 23.3$, $J = 19.7$, and $K_s = 18.6$. Magnitudes, colours, and positions of all sources, as well as possible membership assignments, are published in Table 1, available on-line.
- The membership analysis revealed 214 candidate members, of which 35 are main-sequence or post-MS stars, and the rest are PMS candidates. The PMS candidates comprise optically selected sources as well as sources with IR excess.
- The use of low metallicity ZAMS and isochrones to estimate distance gives a new distance for the cluster to be 3.6 kpc.
- The ages of the optically selected PMS stars are likely around 5 Myr and those of the IR-excess sources possibly slightly younger.
- We find a possible existence of two generations of member stars, one with MS and PMS stars of age below 5 Myr, and another older population of an age of around 40 Myr. The spatial distribution of the two potential generations is found to be distinct, giving independent support to this suggestion.
- Dolidze 25 seems to be located in the centre of an ionized bubble which probably originated from the older generation of stars. We cannot exclude that the young cluster generation is located in the near side of the bubble shell, though.

In the previous presentation of results we have described the presence of post-MS cluster members at similar luminosity but different evolutionary states, as inferred from their colour indices. At the same time, we detect the presence of MS candidate members with masses below the presently PMS stars. This evidence adds to the indication of the presence in the field of a wide range in distances, with foreground and background groupings of stars (see Fig. 3) producing the general view of a region where star formation has been going on for a long time, both at different places of the Hii region, and in the same place at different epochs. At present, we observe this mixture of populations, with a star forming process which takes place in an already formed cluster, giving rise to the presence of two star generations of different age and being members of the same cluster. The evolved state of some of the most luminous cluster members, together with the presence of low mass MS member stars, can indeed be interpreted in this context. We can not exclude, though, that the younger population is seen in projection in front of the older one, possibly being formed in the shell of the bubble. Finally, we recall that the interpretation of two generations of member stars is furthermore favoured from inspection of the spatial distribution.

Acknowledgements. The NOT staff astronomers Tapiso Purisimo and John Telting are warmly acknowledged for the ALFOSC observations carried out during service-time/technical nights. Thanks to the referee, A. Moffat, for his comments and recommendations which resulted in an improvement of the article. We also wish to thank D. Lennon for his very valuable and useful comments. Part of the data presented here have been taken using ALFOSC, which is owned by the Instituto de Astrofísica de Andalucía (IAA) and operated at the Nordic Optical Telescope under agreement between IAA and the NBIFAP of the Astronomical Observatory of Copenhagen. This work has been supported by the Spanish MICINN through grants AYA2007-64052, and by the Consellería de Educación y Ciencia de la Junta de Andalucía, through TIC 101 and TIC 4075 grants. E.J.A. acknowledges the financial support from the Spanish MICINN under the Consolider-Ingenio 2010 Program grant CSD2006-00070: First Science with the GTC. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, the NASA ADS Abstract Service, and the WEBDA data base, developed by Jean-Claude Mermilliod at the Laboratory of Astrophysics of the EPFL (Switzerland), and further developed and maintained by Ernst Paunzen at the Institute of Astronomy of the University of Vienna (Austria). This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. We have also made use of the public data in the AAO/UKST Hα survey, and observations from the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

References

Alexander, M. J., Kobulnicky, H. A., Clemens, D. P., et al. 2009, AJ, 137, 4824
Aller, L. H., Appenzeller, I., Baschek, B., et al. 1982, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology – New Series/Group 6 Astronomy and Astrophysics, Schaffers/Voigt: Astronomy and Astrophysics / Astronomie und Astrophysik, Stars and Star Clusters / Sterne und Sternhaufen, Vol 2
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403
Barry, G., Gallego, J., Pérez-González, P. G., et al., 2009, A&A, 494, 63
Bate, M. R. 2005, MNRAS, 363, 363
Bhavya, B., Mathew, B., & Subramaniam, A. 2007, Bull. Astr. Soc. India, 35, 383
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Carlson, L. R., Sabbi, E., Sirianni, M., et al. 2007, ApJ, 665, L109
Chen, L., de Grijs, R., & Zhao, J. L. 2007, ApJ, 134, 1368
Clark, J. S., Negueruela, I., Davies, B., et al. 2009, A& A, 498, 109
Deharveng, L., Zavagno, A., Salas, L., et al. 2003, A&A, 399, 1135
Delgado, A. J., Miranda, L. F., & Alfaro, E. J. 1999, AJ, 118, 1759
Delgado, A. J., Miranda, L. F., Fernández, M., & Alfaro, E. J. 2004, AJ, 128, 330
Delgado, A. J., González-Martín, O., Alfaro, E. J., & Yun, J. 2006, ApJ, 646, 269
Delgado, A. J., Alfaro, E. J., & Yun, J. L. 2007, A&A, 467, 1397
Fitzsimmons, A., Brown, P. J. F., Dufton, P. L., & Rolleston, W. R. J. 1992, in The Atmospheres of Early-Type Stars, ed. U. Heber, & C. S. Jeffery (Berlin: Springer Verlag), Lecture Notes in Physics, 401, 41
