Oxide Spintronics

edited by Tamalika Banerjee

Oxide materials have been used in mainstream semiconductor technology for several decades and served as important components, such as gate insulators or capacitors, in integrated circuits. However, in recent years, this material class has emerged in its own right as a potential contender for alternative technologies, generally designated as Beyond Moore.

The 2004 discovery by Ohtomo and Hwang was a global trendsetter in this context and involved observing a two-dimensional, high-mobility electron gas at the heterointerface between two insulating oxides, LaAlO3 and SrTiO3. This investigation was supported by the rise of nascent deposition and growth-monitoring techniques, which was an important direction in materials science research. The quest to understand the origin of this unparalleled physical property and find other emergent properties has been an active field of research in condensed matter physics that has united researchers with expertise in diverse fields such as thin-film growth, defect control, advanced microscopy, semiconductor technology, computation, magnetism and electricity, spintronics, nanoscience, and nanotechnology. This book showcases the important scientific advances that have been made in this direction with new oxide materials interfaces or techniques.

The book discusses complex oxide materials, mainly perovskites comprising two different cations. It reviews new structural magnetic or electronic phases created by elastic strain developed at heterointerfaces that can be designed by choosing different cations. Using quantum mechanical calculations within density functional theory, it captures advances that have been made in the theoretical understanding of material properties on the atomic scale. It is an important handbook for oxide spintronics researchers and graduates and covers in great depth the recent research contributions in the field of complex oxides.

Tamalika Banerjee is professor at the Zernike Institute for Advanced Materials (ZIAM), University of Groningen, the Netherlands, since 2013. She studied physics at Presidency University, Kolkata, India, and received her PhD from the University of Madras, India. She subsequently joined the Francis Bitter Magnet Laboratory, MIT, USA, as a visiting scientist, and then the Tata Institute of Fundamental Research, Mumbai, India, as a postdoctoral fellow. In 2002, she was a postdoctoral researcher at MESA+ Institute for Nanotechnology, University of Twente, the Netherlands, where she developed a new technique to study spintronic devices on the nanometer scale that has been applied to different materials systems and their devices. In 2009, she joined ZIAM as a Rosalind Franklin fellow, tenure track, and has her own research group focusing on new approaches of fabricating spintronic materials and devices for Beyond-Moore technology and the Internet of things. Prof. Banerjee has published over 60 refereed articles and participated in 47 invited talks on spintronics. Her research focuses on spintronic materials and devices for Beyond-Moore applications such as spin logic, reconfigurable spintronics architecture, and bioinspired computing.
Oxide Spintronics
Oxide Spintronics

edited by
Tamalika Banerjee
Contents

Preface

1. Elastic Control of Magnetic Order at Oxide Interfaces 1
 Kathrin Dörr
 1.1 Oxide Interfaces 1
 1.1.1 Chemical Composition of the Interface 2
 1.1.2 Interfacial Lattice Structure 3
 1.1.3 Electrical Charge and Electron Orbitals 5
 1.1.4 Magnetic Order and Coupling across the Interface 6
 1.2 Elastic Control of Bulk Magnetism in Coherently Strained Films 7
 1.2.1 SrRuO$_3$ 7
 1.2.2 Manganites AMnO$_3$ 8
 1.2.3 Nickelates ANiO$_3$ 10
 1.2.4 Reversible Strain 11
 1.3 Elastic Control of Interface Magnetism 13
 1.3.1 Magnetic Oxide–Non-magnetic Oxide Interfaces 13
 1.3.1.1 Mn–Ti, Ga 14
 1.3.1.2 Ru–Ti, Ga, Sc 17
 1.3.1.3 Ni–Al, Ga, Sc 18
 1.3.2 Interfaces between Two Magnetic Oxides 20
 1.3.2.1 Mn–Fe 20
 1.3.2.2 Mn–Ru 22
 1.3.2.3 Mn–Ni 26

2. Interface Engineering in La$_{0.67}$Sr$_{0.33}$MnO$_3$–SrTiO$_3$ Heterostructures 33
 Hans Boschker, Zhaoliang Liao, Mark Huijben, Gertjan Koster, and Guus Rijnders
 2.1 Introduction 33
 2.2 Experiments 34
 2.3 Thin Film Growth and Characterization 36
Contents

2.4 Polar Discontinuities at the Interface 40
2.5 Order and Disorder 46
2.6 Octahedra Rotations at the Interface 52
2.7 Conclusions 59
2.8 Acknowledgments 59

3. Electron Transport across Oxide Interfaces on the Nanoscale 65
 Kumari Gaurav Rana, Saurabh Roy, and Tamalika Banerjee

3.1 Introduction 65
3.2 Experimental Techniques 68
 3.2.1 Growth of Thin Films 68
 3.2.2 Growth of SrRuO$_3$ Thin Films 68
 3.2.3 Growth of LSMO Thin Films 69
 3.2.4 Ballistic Electron Emission Microscopy 70
3.3 Nb-Doped SrTiO$_3$ as a Semiconductor 72
3.4 Macroscopic Electronic Transport: LSMO/Nb:STO 75
3.5 Hot Electron Transport in a Strongly Correlated Transition-Metal Oxide: La$_{0.67}$Sr$_{0.33}$MnO$_3$ 81
3.6 BEEM across the Steps and Edges 85
3.7 Control of Film-Substrate Interface in Electronic Transport across Magnetic Phase Transition 86
3.8 Engineering Interfacial Energy Profile across Non-polar Heterointerfaces 94
3.9 Conclusions 102

4. A Theoretical Overview of the Quantum Phenomena at Oxide Interfaces: The Role of Spin and Charge 107
 Carmine Autieri and Biplab Sanyal

4.1 Introduction 107
 4.1.1 Interface Control across the Magnetic Phase Transition in SrTiO$_3$/SrRuO$_3$ Film 109
 4.1.1.1 Film growth and device scheme 109
 4.1.1.2 Thickness and temperature-dependent BEEM transmission 110
Section	Title	Page
4.1.1.3	Influence of interface and film thickness on electronic transport	111
4.1.1.4	Ab initio study of SrRuO$_3$/SrTiO$_3$ (001) interfaces	112
4.1.1.5	Variation of the electronic and structural properties of the interface at LT and RT	113
4.1.2	Evolution of the Structural, Electronic, and Magnetic Properties in SrRuO$_3$/SrTiO$_3$ Ultrathin Films	116
4.1.2.1	Slab with one unit cell of SrRuO$_3$	117
4.1.2.2	Comparison between the single layer SrRuO$_3$ and the bulk Ca$_2$RuO$_4$	119
4.1.2.3	Multilayer slabs	119
4.2	Vertical Shift in Exchange Bias	123
4.2.1	First-Principles Calculations of Heterostructures	124
4.2.1.1	Superlattice: structural properties	124
4.2.1.2	Superlattice: magnetic properties	126
4.2.1.3	Superlattice: electronic properties	128
4.2.2	Bulk YMnO$_3$	130
4.2.2.1	Hopping parameters	131
4.2.2.2	Electronic properties	133
4.2.2.3	Magnetocrystalline anisotropy	133
4.2.3	Hysteresis Loops for Two Independent Ferromagnetic Phases	135
4.3	Artificial Multiferroics	138
4.3.1	The Ferroelectric–Ferromagnetic Interface in Fe/BTO	139
4.3.1.1	The Fe/FeO/BTO case	139
4.3.2	Possible Electrical Manipulation of the Exchange Bias	139
4.3.2.1	The Fe/(FeO)$_2$/BTO case	140
5. Domain Walls in Multiferroic Materials and Their Functional Properties 147
Saeedeh Farokhipoor

5.1 Introduction to Ferroic and Multiferroic Materials 147
5.1.1 Ferroics 147
5.1.1.1 Ferroelectricity 150
5.1.1.2 Ferromagnetism 153
5.1.1.3 Ferroelasticity 154
5.1.1.4 Ferrotoroidicity 154

5.2 Ferroelectrics and Multiferroics in Thin Film Form 155
5.2.1 Ferroelectrics and Ferromagnet 157
Sunder Epitaxial Strain
5.2.2 Multiferroics under Epitaxial Strain 159

5.3 Domain Formation in Ferroic and Multiferroic Materials 161

5.4 Domain Walls in Ferroic and Multiferroic Materials 165
5.4.1 Substrates and Surface Interfaces 165
5.4.2 Domain Walls 166

5.5 The Role of Vertical Interfaces in Multiferroics 168
5.5.1 Conduction through Domain Walls in Multiferroics 168
5.5.2 Multiferroics Domain Walls 171

5.6 Future Challenges 172

6. Spintronic Functionalities in Multiferroic Oxide-Based Heterostructures 183
I. Fina and X. Martí

6.1 Introduction 183

6.2 Tunnel Magnetoresistance 189
6.2.1 Single Phase 191
6.2.2 Composite Multiferroics 193

6.3 Giant Magnetoresistance 196

6.4 Anisotropic Magnetoresistance 198

6.5 Magnetoresistance or Electric-Field Modulation of Resistance and Magnetism 200
6.6 Spintronic Functionalities at BiFeO$_3$ Domain Walls 202
6.7 Conclusions and Perspectives 203

7. Novel Functionalities in Oxide Magnetic Tunnel Junctions: Spin Filtering by Interface-Induced Magnetism 213
Zouhair Sefrioui, Yaohua Liu, Carlos Leon, Suzanne G. E. te Velthuis, Manuel Bibes, Agnes Barthelemy, and Jacobo Santamaria

7.1 Introduction 214
7.2 Induced Magnetism at Oxide Interfaces 217
7.3 Spin Filtering by Barrier-Induced Magnetism: Generalities 220
7.4 Spin Filtering by Cuprate Barriers in Manganite Tunnel Junctions 224
 7.4.1 Electric Field Control of Magnetism 230
7.5 Spin Filtering by Imprinting Ferromagnetism in an Antiferromagnetic Barrier 233
7.6 Spin Filtering by Emerging Ferromagnetism in Phase-Separated Barriers 237
7.7 Conclusions 240

8. Orbital Symmetry and Electronic Properties of Two-Dimensional Electron Systems in Oxide Heterointerfaces 251
Gervasi Herranz

8.1 Introduction 251
8.2 The Electronic Band Structure at the LaAlO$_3$/SrTiO$_3$ Interface 254
 8.2.1 Preamble: The Band Structure of Bulk SrTiO$_3$ 254
 8.2.2 The Band Structure of SrTiO$_3$ Quantum Wells 259
 8.2.3 Quantum Wells at the LaAlO$_3$/SrTiO$_3$ Interface 265
8.3 Low-Temperature Transport and Orbital Symmetries at the (001)-Oriented LaAlO$_3$/SrTiO$_3$ Interface 268
 8.3.1 2D Superconductivity 268
 8.3.2 Spin–Orbit Coupling and Rashba Spin Fields 274
8.4 Orbital Reconstruction Induced by the Crystal Symmetry: the (110)-Oriented LaAlO$_3$/SrTiO$_3$ Interface 276
 8.4.1 Anisotropy of the 2D Superconductivity 276
 8.4.2 Spin–Orbit Rashba Fields 279
8.5 Perspectives and Outlook on the Physics of 2DESs at the LaAlO$_3$/SrTiO$_3$ Interface 281

Index 299
Oxide materials have been used in mainstream semiconductor technology for several decades, serving as important components such as gate insulators or capacitors in integrated circuits. However, in recent years this material class has emerged in its own right as a potential contender for alternative technologies, generally designated as ‘beyond Moore’. The 2004 discovery by Ohtomo and Hwang was a global trendsetter in this context—the observation of a two-dimensional high-mobility electron gas at the heterointerface between two insulating oxides (LaAlO$_3$ and SrTiO$_3$), supported by the rise of nascent deposition and growth monitoring techniques, was an important direction in materials science research. The quest to understand the origin of this unparalleled physical property and for finding other emergent properties has been an active field of research in condensed matter, uniting researchers with diverse expertise from thin film growth, defect control, advanced microscopy, semiconductor technology, computational experts, magnetism and electricity, spintronics, nanoscience, and nanotechnology. This book is an attempt to showcase the important scientific advances that have been made in this direction with new oxide materials interfaces or with new techniques.

Complex oxide materials discussed in this book are commonly perovskites with the general formula ABO$_3$, where A and B represent the two different cations. Heterointerfaces designed by choosing different cations causes elastic strain at the interface as discussed in Chapter 1 and leads to new structural magnetic or electronic phases. This is triggered not only by the mismatch in the in-plane lattice parameter but also by a mismatch of the oxygen octahedral rotation and of the polar interface charge. This chapter considers coherently strained films of SrRuO$_3$, manganites, and nickelates and shows how elastic strain can be used as a design tool for tuning their electronic and magnetic properties.

The significance of interface engineering at the interface between the half-metal La$_{0.67}$Sr$_{0.33}$MnO$_3$ on SrTiO$_3$ is discussed extensively in Chapter 2. The formation of a magnetic dead layer at this interface
has been reported earlier in several studies and is deleterious for device applications. The authors have systematically performed compositional engineering at the interface to investigate the different mechanisms that are responsible for its occurrence. They conclude that the tunability of the oxygen octahedral rotation is an important parameter that influences the magnetic dead layer at such interfaces.

Electronic transport (both charge and spin) are strongly influenced by defects, orbital reconfiguration, interdiffusion, and local inhomogeneities at the interface and govern device performance. The field of complex oxide devices gained momentum in recent years by the inclusion of a unique technique that has the ability to probe, at the nanometer scale, and with a high lateral resolution sub-surface features and buried interfaces that are fundamental to the analysis of electronic transport at (non-)engineered interfaces. Chapter 3 discusses one such probe, known as the ballistic electron emission microscope, and demonstrates its first application to the study of complex oxide heterointerfaces on SrTiO$_3$. Using a current-perpendicular-to-plane device geometry, transport parameters such as the mean free path across and close to the magnetic phase transition in ferromagnetic LaSrMnO$_3$ and SrRuO$_3$ are determined.

The advances that have been made in the theoretical understanding of material properties on the atomic scale have been captured in Chapter 4 by means of quantum mechanical calculations within density functional theory (DFT). Several important technological material interfaces are considered such as SrRuO$_3$/SrTiO$_3$, YMnO$_3$/LaMnO$_3$ and Fe/BaTiO$_3$ and experimental findings related to the unusual magnetic and electronic transport are analyzed using DFT-based ab initio electronic structure calculations.

Chapter 5 introduces ferroic and multiferroic materials, in particular, BiFeO$_3$. Displaying magnetism and ferroelectricity in the same material phase, such materials are of tremendous technological importance since they allow control of magnetization (polarization) of devices with an electric (magnetic) field. Demonstrations of domain wall conductivity in thin films of such multiferroics and others have ignited intense research with these materials. The broadly accepted phenomena responsible for the conductivity at the domain walls are the reduction of the band gap at the walls and the electrostatic potential changes due to structural variations. The
chapter also discusses the different mechanisms such as octahedral rotations, increased carrier density, and role of oxygen vacancies that are responsible for the observed conductivity at the domain wall in these material systems.

Spintronic functionalities such as magnetoresistance, anisotropic magnetoresistance, and giant or tunnel magnetoresistances are interesting to investigate in heterostructures based on multiferroics and have been discussed in Chapter 6. After describing the most commonly used phenomena in spintronics, the chapter discusses these effects as exhibited in different types of multiferroic tunnel junctions using the external control knobs of magnetic and electric field and suggests research directions for electrical control of spintronic functionalities.

Electronic and orbital reconstructions at oxide heterointerfaces provide an opportunity to trigger magnetic interactions that can be tailored by strain engineering. Chapter 7 reviews such interfacially induced magnetism in different spintronic devices. Spin reconstruction at the interfaces drives them into a novel magnetic state that acts as a spin filter and can lead to an increase in the tunneling magnetoresistance in tunnel junction devices. The chapter discusses different combinations of cuprate/manganite interfaces and observes a magnetoelectric effect that can be used to electrically switch the magnetization of the magnetic layers without an applied magnetic field. This alternative route of electric field control of magnetism is a functionality that is being actively pursued for the development of low-dissipation spintronics.

Finally, Chapter 8 reviews recent advances that have been made in the exploration of the most archetypal two-dimensional electron system (2DES) of LaAlO$_3$/SrTiO$_3$. This review focuses on the electronic properties of 2DESs such as 2D superconductivity and Rashba spin–orbit coupling at such heterointerfaces. The combined coexistence of 2D-superconductivity with a sizable spin–orbit coupling of the Rashba type, which is tunable by large electric fields, opens up new avenues in oxide electronics and oxide spintronics that utilize such engineered oxide heterointerfaces. The chapter also provides an outlook for future developments in the study of 2D superconductivity and spin–orbit fields using such oxide heterointerfaces.

In summary, the book provides a modest perspective on the vast scientific advances realized using complex oxide heterointerfaces
and demonstrates their recognition as a potential material class for defining new technologies. To drive complex oxides as the next frontier materials in electronics, combined efforts in different directions are needed such as (i) the availability of high-quality large-area substrates for integration with the existing semiconductor technology as well as compatible fabrication methods, (ii) tools for quantifying defects and their control, (iii) analytical tools that are non-destructive and nanoprobe that can non-destructively probe the device interface, (iv) predictive modeling and design of heterostructures, thereby establishing a strong link between experiments and theory, and last but not least (v) continuation of our exploration of new emerging properties across such heterointerfaces that can host new topological phases such as skyrmions and design novel methods to probe them.

The authors of this book expect that this fascinating class of materials will soon define future technologies of its own and play a prominent role in current research and technological programs involving quantum and neuromorphic computing. They also believe that the book will be of interest to researchers, engineers, and technologists working in academia or in industries and will propel many scientific explorations utilizing together the complex oxide materials and their devices. I would like to acknowledge the authors for their extensive contributions and patience and the Jenny Stanford Publishing team for their interest and support in this field.

Tamalika Banerjee
Groningen, The Netherlands
Spring 2019