Abstract. For a closed immersed minimal submanifold M^n in the unit sphere S^N ($n < N$), we prove
\[
\text{Vol}(M^n) \geq \frac{m}{2}\text{Vol}(S^n) + \frac{\sqrt{n} + 1}{n}\text{Vol}(S^{n-1}),
\]
where m denotes the maximal multiplicity of intersection points of M^n in S^N and Vol denotes the Riemannian volume functional. As an application, if the volume of M^n is less than or equal to the volume of any n-dimensional minimal Clifford torus, then M^n must be embedded, verifying the non-embedded case of Yau’s conjecture. In addition, we also get volume gaps for hypersurfaces under some conditions.

1. Introduction

In 1984, Cheng-Li-Yau \cite{7} proved that if M^n is a closed minimal immersed submanifold in the unit sphere S^N ($N = n + l \geq n + 1$) and M^n is of maximal dimension (M^n does not lie on any hyperplane of \mathbb{R}^{N+1}), then the volume of M^n satisfies
\[
\text{Vol}(M^n) > \left(1 + \frac{2l + 1}{B_n}\right)\text{Vol}(S^n),
\]
where $B_n < 2n + 3 + 2\exp(2nC_n)$ and $C_n \leq \frac{1}{2}n^{n/2}\Gamma(n/2, 1)$. This means that there is a volume gap for minimal submanifolds in spheres. About the second smallest volume, Yau put forward the following famous conjecture in his Problem Section \cite{31}:

Conjecture 1.1 (Yau’s Conjecture \cite{31}). The volume of one of the minimal Clifford torus ($M_{k,n-k} = S^k(\sqrt{\frac{k}{n}}) \times S^{n-k}(\sqrt{\frac{n-k}{n}})$, $1 \leq k \leq n - 1$) gives the lowest value of volume among all non-totally geodesic closed minimal hypersurfaces of S^{n+1}.

For $n = 2$, Conjecture \cite{31} (also called the Solomon-Yau Conjecture \cite{13, 18}) is true, due to the following two results. On the one hand, Li and Yau \cite{21} proved that let $f : M^2 \hookrightarrow S^N$ be a minimal immersion of a closed surface into the unit sphere S^N.
If there exists a point such that its preimage set consists of \(m \) distinct points in \(M^2 \), then \(\text{Vol}(M^2) \geq m\text{Vol}(S^2) = 4\pi m \). More generally, Li and Yau \[21\] proved both of Yau’s Conjecture and Willmore’s Conjecture for non-embedded case in dimension 2. On the other hand, Marques and Neves \[22\] completely proved Willmore’s Conjecture and showed that any non-totally geodesic closed minimal embedded surface in \(S^3 \) has volume greater than or equal to \(2\pi^2 \), the volume of the Clifford torus \(M_{1,1} \). The equality holds only for the Clifford torus \(M_{1,1} \). This completes the proof for embedded case in dimension 2. Another related rigidity result is Lawson’s Conjecture (proved by Brendle \[2\]), i.e., the only embedded minimal torus in \(S^3 \) is the Clifford torus. For more details of minimal surfaces, please see \[1, 3, 23\], etc.

For \(n \geq 3 \), among minimal rotational hypersurfaces, Yau’s Conjecture was verified for \(2 \leq n \leq 100 \) by Perdomo and Wei \[26\], and for all dimensions by Cheng-Wei-Zeng \[6\]. Remarkably, in the asymptotic sense, Imanen and White \[18\] proved Yau’s Conjecture in the class of topologically nontrivial (at least one of the components of \(S^{n+1} \setminus M^n \) is not contractible) closed minimal embedded hypersurfaces whose hypercones are area-minimizing in \(\mathbb{R}^{n+2} \). Namely, they showed \(\text{Vol}(M^n) > \sqrt{2}\text{Vol}(S^n) \), where
\[
\sqrt{2} = \lim_{k \to \infty} \frac{\text{Vol}(M_{k,k})}{\text{Vol}(S^n)} = \lim_{k \to \infty} \frac{\text{Vol}(M_{k,k+1})}{\text{Vol}(S^n)} \quad \text{for} \quad n = 2k \quad \text{or} \quad n = 2k + 1 \text{ respectively.}
\]

In this paper, we study the monotonicity formula of Choe and Gulliver \[9\] (see Proposition 2.2) for any minimal submanifold in \(S^N \) similar to Euclidean space. For the classical monotonicity formula in Euclidean space, please see the excellent and elegant survey by Brendle \[4\]. As applications, we prove the following results. In particular, Theorem 1.2 generalizes the result of Li and Yau \[21\] for \(n = 2 \) to any dimension \(n \).

Theorem 1.2. Let \(f : M^n \hookrightarrow S^N \) be a closed minimal immersed submanifold in \(S^N \). If there exists a point such that its preimage set consists of \(m \) distinct points in \(M^n \), then
\[
\text{Vol}(M^n) \geq \frac{m}{2} \text{Vol}(S^n) + m\frac{\sqrt{n+1}}{n} \text{Vol}(S^{n-1}).
\]
Moreover, if \(M^n \) is invariant under the antipodal map, then \(\text{Vol}(M^n) \geq m\text{Vol}(S^n) \).

Corollary 1.3. Let \(M^n \) be a closed minimal non-embedded submanifold in \(S^N \). Then
\[
\text{Vol}(M^n) \geq (1 + p(n)) \text{Vol}(S^n),
\]
where \(p(n) = \frac{2\sqrt{n+1}}{\pi} \frac{\text{Vol}(S^{n-1})}{\text{Vol}(S^n)} \).

Remark 1.4. From Stirling’s approximation, we have
\[
\lim_{n \to +\infty} (1 + p(n)) = 1 + \sqrt{\frac{2}{\pi}} > 1.797.
\]
Besides, \(\text{Vol}(M_{k,n-k}) < (1 + p(n))\text{Vol}(S^n) \) for all \(1 \leq k \leq n-1 \).

By Corollary 1.3 and Remark 1.4, we have
Theorem 1.5. Let M^n be a closed minimal immersed submanifold in S^N. If
\[\text{Vol}(M^n) \leq \max_{1 \leq k \leq n-1} \text{Vol}(M_{k,n-k}), \]
then M^n must be embedded.

Remark 1.6. Theorem 1.5 shows that Yau’s Conjecture is correct for non-embedded hypersurfaces in S^{n+1}.

The preceding volume gaps make sense only for non-embedded submanifolds. In the following we give volume gaps that fit for embedded hypersurfaces, under some curvature conditions as in the famous Chern Conjecture (cf. [5, 25, 27, 30], etc), which is still open for $n > 3$ and states that a closed minimal immersed hypersurface in S^{n+1} with constant scalar curvature is isoparametric.

Theorem 1.7. Let M^n be a non-totally-geodesic closed minimal immersed hypersurface in S^{n+1} with constant scalar curvature. If the third mean curvature is constant (or M^n is Integral-Einstein, see Definition 4.3), then
\[\text{Vol}(M^n) \geq \frac{n+2}{n+1} \text{Vol}(S^n). \]

Theorem 1.8. Let M^n be a non-totally-geodesic closed minimal immersed hypersurface in S^{n+1} with constant scalar curvature. If M^n is invariant under the antipodal map, then
\[\text{Vol}(M^n) \geq \frac{2n}{2n-1} \text{Vol}(S^n). \]

In fact, Theorem 1.8 is a special case of Theorem 1.5 where minimal hypersurfaces with non-constant scalar curvature are also considered. As an application, a new pinching rigidity result is obtained in Corollary 4.7.

2. The monotonicity formula for minimal submanifolds in spheres

Let $f : M^n \imath \hookrightarrow S^N \subset \mathbb{R}^{N+1}$ be a closed minimal immersed submanifold in the unit sphere S^N. For any fixed unit vector $a \in S^N$, we consider the height function on M^n,
\[\varphi_a(x) = \langle f(x), a \rangle. \]

Then we have the following basic properties.

Proposition 2.1. [14, 29] For all $a \in S^N$, we have $-1 \leq \varphi_a \leq 1$, and
\[\nabla \varphi_a = a^T, \quad \Delta \varphi_a = -n \varphi_a, \quad \int_M \varphi_a = 0, \]
where $a^T \in \Gamma(TM)$ denotes the tangent component of a along M^n.

In the following monotonicity formula for minimal submanifolds, our notations are different from that of Choe and Gulliver [9], therefore we give here a simple proof. Denote the level sets by
\[\{ \varphi_a = t \} = \{ x \in \mathbb{R}^n : \varphi_a(x) = t \}, \quad \{ s \leq \varphi_a \leq t \} = \{ x \in \mathbb{R}^n : s \leq \varphi_a(x) \leq t \}. \]

Proposition 2.2. [9] For any fixed unit vector \(a \in \mathbb{S}^N\), if \(M \nsubseteq \{ \varphi_a = 0 \}\), then the function
\[r \mapsto -\int_{\{ \varphi_a \geq r \}} \frac{\varphi_a}{(1 - r^2)^\frac{N}{2}} \]
is monotone increasing for \(-1 < r \leq 0\) and monotone decreasing for \(0 < r < 1\).

Proof. By Proposition 2.1
\[\nabla \varphi_a = a^T, \quad \Delta \varphi_a = -n \varphi_a. \]
Due to the divergence theorem and (2.1)
\[|a^T|^2 + \varphi_a^2 \leq 1, \]
one has for all \(-1 < t < 1\),
\[\int_{\{ \varphi_a \geq t \}} \varphi_a \leq \int_{\{ \varphi_a \geq t \}} \frac{|a^T|}{n} \leq \int_{\{ \varphi_a \geq t \}} \frac{\sqrt{1 - \varphi_a^2}}{n} = \int_{\{ \varphi_a = t \}} \frac{\sqrt{1 - t^2}}{n}. \]
For all \(0 < s \leq r < 1\), by the Co-Area formula and (2.1, 2.2), we obtain
\[\int_{\{ s \leq \varphi_a \leq r \}} \varphi_a = \int_s^r dt \int_{\{ \varphi_a \geq t \}} \frac{\varphi_a}{|a^T|} \geq \int_s^r dt \int_{\{ \varphi_a = t \}} \frac{\varphi_a}{\sqrt{1 - \varphi_a^2}} \]
\[= \int_s^r dt \int_{\{ \varphi_a = t \}} \sqrt{1 - t^2} \]
\[\geq \int_s^r dt \int_{\{ \varphi_a \geq t \}} \frac{n t}{1 - t^2} \varphi_a. \]
Thus, by (2.3)
\[\frac{d}{dr} \int_{\{ \varphi_a \geq r \}} \varphi_a \leq -\int_{s \leq r} \frac{\varphi_a - \int_{\{ \varphi_a \geq r \}} \varphi_a}{r - s} \geq -\frac{nr}{1 - r^2} \int_{\{ \varphi_a \geq r \}} \varphi_a. \]
Since (2.1) and
\[\int_{\{ \varphi_a \geq 0 \}} \varphi_a = \int_{\{ \varphi_a \geq r \}} \varphi_a + \int_{\{ \varphi_a \geq 0 \}} \varphi_a, \]
we have
\[\frac{d}{dr} \int_{\{ \varphi_a \geq r \}} \varphi_a \leq -\frac{nr}{1 - r^2}. \]
Hence, for \(0 < s_1 \leq s_2 < 1\), one has
\[\int_{s_1}^{s_2} \frac{d}{dr} \int_{\{ \varphi_a \geq r \}} \varphi_a \leq -\int_{s_1}^{s_2} \frac{nr}{1 - r^2} dr = \frac{n}{2} \ln \left(\frac{1 - s_2^2}{1 - s_1^2} \right), \]
and
\[\int_{\{\varphi_a \geq s_1\}} \varphi_a \geq \int_{\{\varphi_a \geq s_2\}} \varphi_a. \]
This shows the monotonicity for \(0 < r < 1 \).

For \(-1 < r \leq 0\), we just need to change \(\varphi_a \) to \(-\varphi_a\). Similarly by the Co-Area formula and \([2.1, 2.2]\), for all \(-1 < s \leq r < 0\), we obtain
\[\int_{\{\varphi_a \leq s\}} -\varphi_a = \int_s^r dt \int_{\{\varphi_a = t\}} \frac{-\varphi_a}{|a|^2} \geq \int_s^r dt \int_{\{\varphi_a \geq t\}} \frac{-nt}{1-t^2} \varphi_a. \]
Hence
\[\frac{d\ln \int_{\{\varphi_a \geq r\}} \varphi_a}{dr} \geq -\frac{nr}{1-r^2}, \]
where \(\int_{\{\varphi_a \geq r\}} \varphi_a = -\int_{\{\varphi_a \leq r\}} \varphi_a > 0 \) for \(r > \min \varphi_a \). Thus, by integrating the above inequality we have the monotonicity: for \(-1 < s_1 \leq s_2 < 0\),
\[\frac{\int_{\{\varphi_a \geq s_1\}} \varphi_a}{(1-s_1^2)^{\frac{n}{2}}} \leq \frac{\int_{\{\varphi_a \geq s_2\}} \varphi_a}{(1-s_2^2)^{\frac{n}{2}}}. \]
\[\square \]

3. THE VOLUME GAP FOR CLOSED MINIMAL SUBMANIFOLDS

Let \(f : M^n \hookrightarrow S^N \subset \mathbb{R}^{N+1} \) be a closed minimal immersed submanifold in the unit sphere \(S^N \) and let \(B^n \) denote the unit ball in \(\mathbb{R}^n \).

Definition 3.1. We define a function \(\xi \) on \(S^N \) and a constant \(\Xi \) on \(M^n \):
\[\xi(a) = \liminf_{t \to 1^{-}} \frac{\text{Vol}\{\varphi_a \geq t\}}{(1-t^2)^{\frac{n}{2}}} \text{Vol}(B^n), \quad \Xi = \sup_{a \in f(M)} \xi(a). \]

By Proposition \([2.2]\) it is easy to show that \(\xi(a) \) and \(\Xi \) are well-defined. The following lemma gives a lower bound estimate for \(\xi(a) \) and \(\Xi \).

Lemma 3.2. For any point \(p \in f(M) \), if its preimage set consists of \(m(p) \) distinct points in \(M^n \), then \(\xi(p) \geq m(p) \). In particular, \(\Xi \geq 2 \) if \(f \) is not an embedding.

Proof. Since \(\varphi_p(x) = 1 \) if and only if \(f(x) = p \), it follows that
\[\{x \in M^n : \varphi_p(x) = 1\} = f^{-1}(p) \neq \emptyset. \]
The properties of compactness and local embedding of \(M \) show that \(f^{-1}(p) \) is a finite set, say, \(f^{-1}(p) = \{q_1, q_2, ..., q_{m(p)}\} \) and \(q_i \in M \). For each \(i \), there is a neighborhood \(U_i \) of \(q_i \) such that \(f \) is a diffeomorphism from \(U_i \) to \(f(U_i) \), and by shrinking the \(U_i \)'s
if necessary, we may assume that they are pairwise disjoint. For any sufficiently small
\(\delta > 0 \) and for any \(1 - \delta < t < 1 \), we have
\[\{ \varphi_p \geq t \} \subset \bigcup_{i=1}^{m(p)} U_i. \]

Note that the intrinsic distance between two points of the submanifold is always greater
than or equal to the distance of the ambient manifold. It follows that each \(\{ \varphi_p \geq t \} \cap U_i \)
contains a geodesic ball \(B_r(q_i) \subset M \) of radius \(r \), where \(r = \arccos t \) is the radius of the
geodesic ball \(\{ y \in S^N : \langle y, p \rangle \geq t \} \subset S^N \). Hence
\[\bigcup_{i=1}^{m(p)} B_r(q_i) \subset \{ \varphi_p \geq t \}. \]

Recalling the expansion formula of volume for the geodesic ball \(B_r(q_i) \) (cf. [16])
\[\Vol(B_r(q_i)) = \Vol(B^n)r^n \left[1 - \frac{R_M(q_i)}{6(n+2)}r^2 + O(r^4) \right], \]
where \(R_M \) is the scalar curvature of \(M \), we have
\[\xi(p) = \liminf_{t \to 1^-} \frac{\Vol \{ \varphi_p \geq t \}}{(1-t^2)^{\frac{n}{2}} \Vol(B^n)} \geq \liminf_{r \to 0^+} \sum_{i=1}^{m(p)} \frac{\Vol(B_r(q_i))}{\sum_{i=1}^{m(p)} \sin^n r \Vol(B^n)} \]
\[= \lim_{r \to 0^+} \sum_{i=1}^{m(p)} \frac{r^n (1 + O(r^2))}{\sin^n r} = m(p). \]

If \(f \) is not an embedding, we have
\[\Xi = \sup_{p \in f(M)} \xi(p) \geq \sup_{p \in f(M)} m(p) \geq 2. \]

\[\square \]

Lemma 3.3. For any fixed unit vector \(a \in S^N \), if \(M \not\subset \{ \varphi_a = 0 \} \), then
\[\Vol \{ s \leq \varphi_a \leq r \} \geq n \xi(a) \Vol(B^n) \int_s^r (1 - t^2)^{\frac{n-2}{2}} dt, \]
for all \(0 \leq s \leq r \leq 1 \).

Proof. By Proposition 2.2 for \(0 \leq s_1 < s_2 < 1 \), we have
\[\frac{\int_{\{\varphi_a \geq s_1\}} \varphi_a}{(1 - s_1^2)^{\frac{n}{2}}} \geq \frac{\int_{\{\varphi_a \geq s_2\}} \varphi_a}{(1 - s_2^2)^{\frac{n}{2}}}. \]
Let $s_1 = t \geq 0$ and $s_2 \to 1^-$, then we have
\begin{equation}
\int_{\{\phi_a \geq t\}} \phi_a \geq (1 - t^2)^n \liminf_{s_2 \to 1^-} \frac{\int_{\{\phi_a \geq s_2\}} \phi_a}{(1 - s_2^2)^{n/2}} \geq (1 - t^2)^n \liminf_{s_2 \to 1^-} \frac{\int_{\{\phi_a \geq s_2\}} s_2}{(1 - s_2^2)^{n/2}}
\end{equation}
(3.1)
\begin{align*}
&= (1 - t^2)^n \liminf_{s_2 \to 1^-} \frac{\text{Vol} \{\phi_a \geq s_2\}}{(1 - s_2^2)^{n/2}} \liminf_{s_2 \to 1^-} s_2 \\
&= \xi(a) \text{Vol}(B^n) (1 - t^2)^n.
\end{align*}

Thus, similar to (2.3), we derive
\begin{align*}
\int_{\{s \leq \phi_a \leq r\}} 1 &= \int_s^r \int_{\{\phi_a = t\}} \frac{1}{|a|^2} \geq \int_s^r \int_{\{\phi_a = t\}} \frac{1}{\sqrt{1 - \phi_a^2}} \\
&= \int_s^r \int_{\{\phi_a = t\}} \frac{1}{\sqrt{1 - t^2}} \geq \int_s^r \int_{\{\phi_a \geq t\}} \frac{n}{1 - t^2} \phi_a \\
&\geq n\xi(a) \text{Vol}(B^n) \int_s^r (1 - t^2)^{n/2} dt.
\end{align*}

\[\square\]

Proof of Theorem 1.2 and Corollary 1.3. Without loss of generality, suppose $M \not\subset \{\phi_a = 0\}$ for any $a \in S^N$. Setting $s = 0$ and $r = 1$ in Lemma 3.3, we derive from Lemma 3.2 that for any $p \in f(M)$,
\begin{equation}
\int_{\{\phi_a \geq 0\}} 1 \geq n\xi(p) \text{Vol}(B^n) \int_0^1 (1 - t^2)^{n/2} dt \geq \frac{m(p)}{2} \text{Vol}(S^n).
\end{equation}
(3.2)

If M^n is invariant under the antipodal map, then
\[\text{Vol}(M^n) = 2 \int_{\{\phi_a \geq 0\}} 1 \geq m(p) \text{Vol}(S^n).\]

For general case, we need to estimate the volume of $\{\phi_a \leq 0\}$. By Proposition 2.1, for any $a \in S^N$, $\int_M \phi_a = 0$, thus
\begin{equation}
\int_{\{\phi_a \geq 0\}} \phi_a = \int_{\{\phi_a \leq 0\}} -\phi_a.
\end{equation}
(3.3)

The divergence theorem shows that
\[\int_{\{\phi_a \leq 0\}} \Delta \phi_a^2 = 0,
\]
and by $\Delta \phi_a^2 = -2n\phi_a^2 + 2|a|^2$, one has
\begin{equation}
n \int_{\{\phi_a \leq 0\}} \phi_a^2 = \int_{\{\phi_a \leq 0\}} |a|^2.
\end{equation}
(3.4)

Then, due to (2.1) and (3.4), we have
\begin{equation}
(n + 1) \int_{\{\phi_a \leq 0\}} \phi_a^2 \leq \int_{\{\phi_a \leq 0\}} 1.
\end{equation}
(3.5)
By the Cauchy-Schwarz inequality and (3.5),

\[
\sqrt{\frac{1}{n+1}} \int_{\{\varphi_a \leq 0\}} 1 \geq \sqrt{\frac{1}{n+1}} \int_{\{\varphi_a \leq 0\}} \varphi_a^2 \geq \int_{\{\varphi_a \leq 0\}} -\varphi_a.
\]

Choose \(a = p \in f(M)\) and set \(t = 0\) in (3.1). Then

\[
\int_{\{\varphi_p \leq 0\}} \varphi_p \geq \xi(p) \Vol(B^n) \geq m(p) \Vol(B^n).
\]

Due to (3.3), (3.6) and (3.7), we get

\[
\sqrt{\frac{1}{n+1}} \int_{\{\varphi_p \leq 0\}} 1 \geq \int_{\{\varphi_p \leq 0\}} -\varphi_p = \int_{\{\varphi_p \geq 0\}} \varphi_p \geq m(p) \Vol(B^n).
\]

Hence, combining (3.2) and (3.8), we obtain

\[
\Vol(M^n) = \int_{\{\varphi_p \geq 0\}} 1 + \int_{\{\varphi_p \leq 0\}} 1 \geq \frac{m(p)}{2} \Vol(S^n) + m(p) \sqrt{n+1} \Vol(B^n).
\]

This completes the proof since \(\Vol(S^{n-1}) = n \Vol(B^n)\). If \(f\) is not an embedding, then \(m(p) \geq 2\) for some \(p \in f(M)\), which implies the corollary immediately. \(\Box\)

Proof of Remark 1.4 For all \(k \geq 1\), by [18] one has

\[
\Vol(S^k) = (k+1) \Vol(B^{k+1}) = (k+1) \frac{\pi^{(k+1)/2}}{\Gamma\left(\frac{k+3}{2}\right)},
\]

where \(\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt\). Thus

\[
p(n) = \frac{2\sqrt{n+1}}{n} \Vol(S^{n-1}) = \frac{2}{\sqrt{n+1}} \frac{\Gamma\left(\frac{n+3}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} < 1,
\]

\[
\Vol(M_{k,n-k}) = \left(\frac{k}{n}\right)^{\frac{1}{2}} \left(\frac{n-k}{n}\right)^{\frac{n-k}{2}} \Vol(S^k) \Vol(S^{n-k})
\]

\[
= (k+1)(n-k+1) \left(\frac{k}{n-k}\right)^{\frac{1}{2}} \left(\frac{n-k}{n}\right)^{\frac{n-k}{2}} \frac{\pi^{(n+2)/2}}{\Gamma\left(\frac{n+k+3}{2}\right)}.
\]

A direct calculation shows that

\[
\Vol(M_{k,n-k}) \leq \Vol(M_{1,n-1}), \quad 1 \leq k \leq n-1.
\]

Then for all \(n \geq 2\), one has

\[
\frac{(1 + p(n)) \Vol(S^n)}{\Vol(M_{k,n-k})} \geq \frac{(1 + p(n)) \Vol(S^n)}{\Vol(M_{1,n-1})}
\]

\[
= \frac{1}{\pi} \left(\frac{n+1}{n}\right)^{\frac{1}{2}} \left(\frac{n}{n-1}\right)^{\frac{n-1}{2}} \left(1 + \frac{1}{p(n)}\right)
\]

\[
> \frac{2}{\pi} \left(\frac{n+1}{n}\right)^{\frac{1}{2}} \left(\frac{n}{n-1}\right)^{\frac{n-1}{2}} > 1.
\]

\(\Box\)
4. The volume gap for closed minimal hypersurfaces

In this section, we give volume gaps for both immersed and embedded closed minimal hypersurfaces in S^{n+1} under some conditions. Firstly, we prove Theorem 1.7 and we need the following lemmas.

Lemma 4.1. [12] Let N^{n+1} be a complete, connected manifold with positive Ricci curvature. Let V^n and W^n be immersed minimal hypersurfaces of N^{n+1}, each immersed as a closed subset, and let V^n be compact. Then V^n and W^n must intersect.

Lemma 4.2. Let $f : M^n \to S^{n+1}$ be a closed minimal immersed hypersurface. There exists a unit vector $a \in f(M)$ such that

$$\int_M \varphi_a^2 \geq \frac{1}{n+1} \text{Vol}(S^n).$$

In particular, if M^n is invariant under the antipodal map, then (4.1) holds for any unit vector $a \in f(M)$.

Proof. By Lemma 4.1 (or Hsiang [17]), there exists a unit vector $a \in f(M)$ such that $-a \in f(M)$, since otherwise, we can find two disjoint minimal hypersurfaces by antipodal map. By the Co-Area formula, (2.2), Proposition 2.2 and Lemma 3.2, we have

$$\int_M \varphi_a^2 = \int_0^1 dt \int_{\{\varphi_a = t\}} \varphi_a^2 |a^T| \geq \int_0^1 dt \int_{\{\varphi_a = t\}} \varphi_a^2 |1 - \varphi_a^2|$$

$$= \int_0^1 dt \int_{\{\varphi_a = t\}} \frac{t^2}{\sqrt{1-t^2}} \geq \int_0^1 dt \int_{\{\varphi_a \geq t\}} \frac{n t^2}{1-t^2} |\varphi_a|$$

$$\geq n \lim_{u \to 1^-} \frac{\text{Vol}\{\{\varphi_a \geq u\}\}}{(1-u^2)^{\frac{n}{2}}} \int_0^1 t^2 (1-t^2) \frac{n-2}{2} dt$$

$$= (\xi(a) + \xi(-a)) n \text{Vol}(B^n) \int_0^1 t^2 (1-t^2) \frac{n-2}{2} dt$$

$$\geq 2n \text{Vol}(B^n) \int_0^1 t^2 (1-t^2) \frac{n-2}{2} dt$$

$$= \frac{1}{n+1} \text{Vol}(S^n).$$

□

Definition 4.3. [14] Let M^n ($n \geq 3$) be a compact submanifold in the Euclidean space \mathbb{R}^N. We call M^n an Integral-Einstein (IE) submanifold if for any unit vector $a \in S^{N-1}$,

$$\int_M \left(\text{Ric} - \frac{R}{n} g \right) (a^T, a^T) = 0,$$

where $a^T \in \Gamma(TM)$ denotes the tangent component of the constant vector a along M^n.

Proof. By Lemma 4.1 (or Hsiang [17]), there exists a unit vector $a \in f(M)$ such that $-a \in f(M)$, since otherwise, we can find two disjoint minimal hypersurfaces by antipodal map. By the Co-Area formula, (2.2), Proposition 2.2 and Lemma 3.2, we have

$$\int_M \varphi_a^2 = \int_0^1 dt \int_{\{\varphi_a = t\}} \varphi_a^2 |a^T| \geq \int_0^1 dt \int_{\{\varphi_a = t\}} \varphi_a^2 |1 - \varphi_a^2|$$

$$= \int_0^1 dt \int_{\{\varphi_a = t\}} \frac{t^2}{\sqrt{1-t^2}} \geq \int_0^1 dt \int_{\{\varphi_a \geq t\}} \frac{n t^2}{1-t^2} |\varphi_a|$$

$$\geq n \lim_{u \to 1^-} \frac{\text{Vol}\{\{\varphi_a \geq u\}\}}{(1-u^2)^{\frac{n}{2}}} \int_0^1 t^2 (1-t^2) \frac{n-2}{2} dt$$

$$= (\xi(a) + \xi(-a)) n \text{Vol}(B^n) \int_0^1 t^2 (1-t^2) \frac{n-2}{2} dt$$

$$\geq 2n \text{Vol}(B^n) \int_0^1 t^2 (1-t^2) \frac{n-2}{2} dt$$

$$= \frac{1}{n+1} \text{Vol}(S^n).$$

□

Definition 4.3. [14] Let M^n ($n \geq 3$) be a compact submanifold in the Euclidean space \mathbb{R}^N. We call M^n an Integral-Einstein (IE) submanifold if for any unit vector $a \in S^{N-1}$,
Proof of Theorem 1.7. For any \(a \in S^{n+1} \), the height functions (cf. [14, 15], etc) are defined as
\[
\varphi_a(x) = \langle f(x), a \rangle, \quad \psi_a(x) = \langle \nu, a \rangle,
\]
where \(\nu \) is the unit normal vector field along \(x \in M_n \). In [14], we have shown that for a non-totally-geodesic closed minimal immersed hypersurface \(M_n \) in \(S^{n+1} \) with constant scalar curvature, \(M \) is IE if and only if one of the following equivalent conditions holds:

- \(\int_M \varphi_a^2 = \frac{1}{n+2} \text{Vol}(M^n) \) for all \(a \in S^{n+1} \);
- \(\int_M \psi_a^2 = \frac{1}{n+2} \text{Vol}(M^n) \) for all \(a \in S^{n+1} \);
- \(\int_M \varphi_a^2 = \int_M \psi_a^2 \) for all \(a \in S^{n+1} \);
- \(\int_M \varphi_a \psi_a f_3 = 0 \) for all \(a \in S^{n+1} \), where \(f_3 = \text{Tr}(A^3) = 3(n)H_3 \), \(A \) is the shape operator with respect to the unit normal vector field \(\nu \) and \(H_3 \) is the third mean curvature.

If further \(M \) has the constant squared length of second fundamental form \(S := |A|^2 > n \) and has constant third mean curvature \(H_3 \), then by the fourth condition above, \(M \) is IE (cf. [14]). This is because \(\varphi_a \) and \(\psi_a \) are eigenfunctions of eigenvalues \(n \) and \(S \) respectively, and thus they are orthogonal. Hence, Lemma 4.2 and the first condition imply that for these IE hypersurfaces, there exists a unit vector \(a \in f(M) \) such that
\[
\text{Vol}(M^n) = (n+2) \int_M \varphi_a^2 \geq \frac{n+2}{n+1} \text{Vol}(S^n).
\]

On the other hand, Simons’ inequality [28] shows that if \(0 \leq S \leq n \), then either \(S \equiv 0 \) or \(S \equiv n \) on \(M \). The case of \(S \equiv n \) was characterized by Chern-do Carmo-Kobayashi [8] and Lawson [19] independently: the Clifford torus \(M_{k,n-k} (1 \leq k \leq n-1) \) are the only closed minimal hypersurfaces in \(S^{n+1} \) with \(S \equiv n \). It is easy to verify that \(\text{Vol}(M_{k,n-k}) \geq \frac{2n^2}{n+1} \text{Vol}(S^n) \) by the volume formulas in the proof of Remark 1.4. □

Without assuming constant scalar curvature, i.e., \(S \neq \text{Constant} \), we are able to obtain Theorem 4.5 which implies Theorem 1.8.

Suppose
\[
S_{\text{max}} = \sup_{p \in M^n} S(p), \quad S_{\text{min}} = \inf_{p \in M^n} S(p), \quad C(n, S) = \max\{\theta_1, \theta_2\},
\]
where
\[
\theta_1 = \frac{\int_M S}{2nS_{\text{max}} \text{Vol}(M^n)}, \quad \theta_2 = \frac{n}{4n^2 - 3n + 1} \frac{(\int_M S)^2}{\text{Vol}(M^n) \int_M S^2}.
\]

Lemma 4.4. [14] Let \(M^n \) be a closed minimal hypersurface in \(S^{n+1} \).

(i) If \(S \neq 0 \), then
\[
\frac{\int_M S}{2nS_{\text{max}}} \leq \inf_{a \in S^{n+1}} \int_M \varphi_a^2.
\]
The equality holds if and only if $S \equiv n$ and M is the minimal Clifford torus $S^1(\sqrt{\frac{1}{n}}) \times S^{n-1}(\sqrt{\frac{n-1}{n}})$.

(ii)
\[
\frac{n}{4n^2 - 3n + 1} \left(\int_M S \right)^2 \leq \int_M S^2 \inf_{a \in S^{n+1}} \int_M \phi_a^2.
\]

The equality holds if and only if M is an equator.

Theorem 4.5. Let $f : M^n \to S^{n+1}$ be a non-totally-geodesic closed minimal immersed hypersurface. If M is invariant under the antipodal map, then
\[
\text{Vol}(M^n) \geq \frac{1}{1 - C(n,S)} \text{Vol}(S^n) \geq \frac{2n S_{\max}}{2n S_{\max} - S_{\min}} \text{Vol}(S^n).
\]

In particular, if S is constant, then $C(n,S) = \frac{1}{2n}$.

Proof. By Proposition 2.1 similar to (3.4) one has
\[
n \int_M \phi_a^2 = \int_M |a^T|^2.
\]

Note that $|a^T|^2 + \phi_a^2 + \psi_a^2 = 1$ and (4.1) holds for all $a \in f(M)$ when $f(M)$ is symmetric about the origin. Then by (4.1) and (4.3), we have
\[
\int_M (1 - \psi_a^2) \geq \text{Vol}(S^n),
\]
for all $a \in f(M)$. Integrating $a = f(y)$ over $y \in M$ on both sides of (4.4), we have
\[
\text{Vol}(M^n) - \text{Vol}(S^n) \geq \frac{\int_{x \in M} \int_{y \in M} \langle \nu_x, f(y) \rangle^2}{\text{Vol}(M^n)} \geq \inf_{a \in S^{n+1}} \int_M \phi_a^2.
\]

By Lemma 4.4, we have
\[
\inf_{a \in S^{n+1}} \int_M \phi_a^2 \geq C(n,S) \text{Vol}(M^n) \geq \frac{\text{Vol}(M^n)}{2n S_{\max}} \geq \frac{S_{\min}}{2n S_{\max}} \text{Vol}(M^n).
\]

Combining (4.5) and (4.6) completes the proof. \qed

As applications, we obtain the following rigidity results.

Corollary 4.6. Let M^n be a closed minimal immersed hypersurface in S^{n+1} which is invariant under the antipodal map. For any $\delta \geq 0$, if $n \leq S \leq n + \delta$, then
\[
\text{Vol}(M^n) \geq \frac{2(n + \delta)}{2(n + \delta) - 1} \text{Vol}(S^n).
\]

Proof. Due to $n \leq S \leq n + \delta$, we have
\[
\frac{S_{\min}}{S_{\max}} \geq \frac{n}{n + \delta}.
\]
By Theorem 4.5, one has

\[\text{Vol}(M^n) \geq \frac{2nS_{\text{max}}}{2nS_{\text{max}} - S_{\text{min}}} \text{Vol}(S^n) \geq \frac{2(n + \delta)}{2(n + \delta) - 1} \text{Vol}(S^n). \]

\[\square \]

Corollary 4.7. Let \(M^n \) be a closed minimal immersed hypersurface in \(S^{n+1} \) which is invariant under the antipodal map. For any \(\delta \leq \frac{3}{8} n \), if the following conditions are satisfied:

(i) \(S \leq n + \delta \leq \frac{11}{8} n \),

(ii) \(\text{Vol}(M^n) \leq \frac{3(4n^2-3n+1)}{3(4n^2-4n+1)+8\delta} \text{Vol}(S^n) \),

then \(M \) is totally geodesic.

Proof. Without loss of generality, we suppose \(M^n \) is a non-totally geodesic closed minimal embedded hypersurface in \(S^{n+1} \) because of Corollary 1.3. Besides, if \(S \) is constant, then a contradiction follows directly from Theorem 4.5. Let \(h \) denote the second fundamental form of hypersurface with respect to the unit normal vector field \(\nu \). If \(\{\omega_1, \omega_2, \ldots, \omega_n\} \) is a local orthonormal coframe field, then \(h \) can be written as

\[h = \sum_{i,j} h_{ij} \omega_i \otimes \omega_j. \]

The covariant derivative \(\nabla h \) with components \(h_{ijk} \) is given by

\[\sum_k h_{ijk}\omega_k = dh_{ij} + \sum_k h_{kij}\omega_k + \sum_k h_{ijk}\omega_k, \]

and \(\{\omega_{ij}\} \) are the connection forms of \(M \) with respect to \(\{\omega_1, \omega_2, \ldots, \omega_n\} \), which satisfy the following structure equations:

\[d\omega_i = -\sum_j \omega_{ij} \wedge \omega_j, \quad \omega_{ij} + \omega_{ji} = 0, \]

\[d\omega_{ij} = -\sum_k \omega_{ik} \wedge \omega_{kj} + \frac{1}{2} \sum_{k,l} R_{ijkl} \omega_k \wedge \omega_l, \]

where \(\{R_{ijkl}\} \) are the coefficients of the Riemannian curvature tensor on \(M \). Hence

\[S = \sum_{i,j} h_{ij}^2, \quad |\nabla h|^2 = \sum_{i,j,k} h_{ijk}^2. \]

By the Cauchy-Schwarz inequality, one has

\[|\nabla S|^2 = 4 \sum_k \left(\sum_{i,j} h_{ij} h_{ijk} \right)^2 \leq 4 \sum_k \left(\sum_{i,j} h_{ij}^2 \sum_{i,j} h_{ijk}^2 \right) = 4S|\nabla h|^2. \]
By Simons’ identity [28], we have
\begin{equation}
\frac{1}{2} \Delta S = |\nabla h|^2 + S(n - S). \tag{4.8}
\end{equation}
Due to (4.8) and
\begin{equation}
\frac{1}{2} \Delta S^2 = S \Delta S + |\nabla S|^2,
\end{equation}
we obtain
\begin{equation}
\int_M |\nabla S|^2 = 2 \int_M (S^2(S - n) - S|\nabla h|^2). \tag{4.9}
\end{equation}
By (4.7) and (4.9), one has
\begin{equation}
\int_M S^2(S - n) \leq \frac{3}{4} \int_M |\nabla S|^2 \leq \frac{4}{3} (S_{\text{max}} - n) \int_M S^2. \tag{4.10}
\end{equation}
Since S is not constant, using Rayleigh’s formula, one has
\begin{equation}
\int_M |\nabla S|^2 \geq \lambda_1(M) \left(\int_M S^2 - \frac{(\int_M S)^2}{\text{Vol}(M^n)} \right), \tag{4.11}
\end{equation}
where $\lambda_1(M)$ is the first positive eigenvalue of the Laplacian. In addition, Choi and Wang [10] proved that $\lambda_1(M) \geq n/2$. A careful argument (see [3, Theorem 5.1]) showed that the strict inequality holds, i.e., $\lambda_1(M) > n/2$. By (4.10) and (4.11), we obtain
\begin{equation}
\left(\frac{4}{3} (S_{\text{max}} - n) \int_M S^2 \right) > \frac{n}{2} \left(\int_M S^2 - \frac{(\int_M S)^2}{\text{Vol}(M^n)} \right),
\end{equation}
Hence
\begin{equation}
\frac{(\int_M S)^2}{\text{Vol}(M^n)} \int_M S^2 > 1 - \frac{8}{3n} (S_{\text{max}} - n) \geq \frac{3n - 8\delta}{3n} \geq 0,
\end{equation}
and
\begin{equation}
C(n, S) \geq \theta_2 = \frac{n}{4n^2 - 3n + 1} \frac{(\int_M S)^2}{\text{Vol}(M^n)} \int_M S^2 \geq \frac{3n - 8\delta}{3(4n^2 - 3n + 1)}.
\end{equation}
By Theorem 4.5, we get
\begin{equation}
\text{Vol}(M^n) > \frac{3}{3(4n^2 - 3n + 1)} \text{Vol}(S^n),
\end{equation}
a contradiction to the assumption of volume. \hfill \Box

Remark 4.8. The following rigidity result is well known (cf. [11, 20, 25], etc):
Let M^n be a closed minimal immersed hypersurface in S^{n+1} with $n \leq S \leq n + \delta$. If $\delta \leq \frac{n}{18}$, then $S \equiv n$ and M^n is a Clifford torus.

In fact, due to some counterexamples of Otsuki [24], the condition $S \geq n$ is essential in the pinching result above. Comparing with Corollary 4.7, we have larger pinching constant $\frac{1}{4}n$ and do not need $S \geq n$, but we need to limit the symmetry and volume.
REFERENCES

[1] B. Andrews and H. Z. Li, "Embedded constant mean curvature tori in the three sphere," J. Differ. Geom. 99 (2015), 169–189.

[2] S. Brendle, "Embedded minimal tori in S^3 and the Lawson conjecture," Acta Math. 211 (2013), 177–190.

[3] S. Brendle, "Minimal surfaces in S^3: a survey of recent results," Bull. Math. Sci. 3 (2013), 133–171.

[4] S. Brendle, "Minimal hypersurfaces and geometric inequalities," arXiv:2010.03425v2.

[5] S. P. Chang, "On minimal hypersurfaces with constant scalar curvatures in $S^4," J. Differ. Geom. 37 (1993), 523–534.

[6] Q. M. Cheng, G. X. Wei and Y. T. Zeng, "Area of minimal hypersurfaces in the unit sphere," Asian J. Math. 25 (2021), 183–194.

[7] S. Y. Cheng, P. Li and S. T. Yau, "Heat equations on minimal submanifolds and their applications," Amer. J. Math. 106 (1984), 1033–1065.

[8] S. S. Chern, M. do Carmo, S. Kobayashi, "Minimal submanifolds of a sphere with second fundamental form of constant length," Functional Analysis and Related Fields, Springer-Verlag, Berlin (1970), 59–75.

[9] J. Choe and R. Gulliver, "Isoperimetric inequalities on minimal submanifolds of space forms," Manuscripta Math. 77 (1992), 169–189.

[10] H. I. Choi and A. N. Wang, "A first eigenvalue estimate for minimal hypersurfaces," J. Differ. Geom. 18 (1983), 559–562.

[11] Q. Ding and Y. L. Xin, "On Chern’s problem for rigidity of minimal hypersurfaces in the spheres," Adv. Math. 227 (2011), 131–145.

[12] T. Frankel, "On the fundamental group of a compact minimal submanifold," Ann. Math. 83 (1966), 68–73.

[13] J. Q. Ge, "Problems related to isoparametric theory," In: Surveys in Geometric Analysis 2019, pp. 71–85, Ed. by: G. Tian, Q. Han and Z. L. Zhang, Science Press Beijing, 2020.

[14] J. Q. Ge and F. G. Li, "Integral-Einstein hypersurfaces in spheres," arXiv:2101.03753.

[15] J. Q. Ge and F. G. Li, "A lower bound for L_2 length of second fundamental form on minimal hypersurfaces," Proc. Amer. Math. Soc. 150 (2022), 2671–2684.

[16] A. Gray, "The volume of a small geodesic ball of a Riemannian manifold," Michigan Math. J. 20 (1973), 329–344.

[17] W. Y. Hsiang, "Remarks on closed minimal submanifolds in the standard Riemannian m-sphere," J. Differ. Geom. 1 (1967), 257–267.

[18] T. Ilmanen and B. White, "Sharp lower bounds on density for area-minimizing cones," Camb. J. Math. 3 (2015), 1–18.

[19] H. B. Lawson, "Local Rigidity Theorems for Minimal Hypersurfaces," Ann. Math. 89 (1969), 187–197.

[20] L. Li, H. W. Xu and Z. Y. Xu, "On the generalized Chern conjecture for hypersurfaces with constant mean curvature in a sphere," Sci. China Math. 64 (2021), 1493–1504.

[21] P. Li and S. T. Yau, "A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces," Invent. Math. 69 (1982), 269–291.

[22] F. C. Marques and A. Neves, "Min-max theory and the Willmore conjecture," Ann. Math. 179 (2014), 683–782.
[23] R. Osserman, *Minimal surfaces, Gauss maps, total curvature, eigenvalue estimates, and stability*. The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), pp. 199–227, Springer, New York-Berlin, 1980.

[24] T. Otsuki, *Minimal hypersurfaces in a Riemannian manifold of constant curvature*, Amer. J. Math. **92** (1970), 145–173.

[25] C. K. Peng and C. L. Terng, *The scalar curvature of minimal hypersurfaces in spheres*, Math. Ann. **266** (1983), 105–113.

[26] O. Perdomo and G. Wei, *n-dimensional area of minimal rotational hypersurfaces in spheres*, Nonlinear Anal. **125** (2015), 241–250.

[27] M. Scherfner, S. Weiss and S. T. Yau, *A review of the Chern conjecture for isoparametric hypersurfaces in spheres*, In: Advances in Geometric Analysis, pp. 175–187, Adv. Lect. Math. (ALM), **21**, Int. Press, Somerville, MA, 2012.

[28] J. Simons, *Minimal varieties in Riemannian manifolds*, Ann. Math. **88** (1968), 62–105.

[29] T. Takahashi, *Minimal immersion of Riemannian manifolds*, J. Math. Soc. Japan **18** (1966), 380–385.

[30] Z. Z. Tang and W. J. Yan, *On the Chern conjecture for isoparametric hypersurfaces*, to appear in Sci. China Math. [arXiv:2001.10134](https://arxiv.org/abs/2001.10134)

[31] S. T. Yau, *Problem section*, In: Seminar on Differential Geometry, pp. 669–706, Ann. Math. Stud., **102**, Princeton Univ. Press, Princeton, NJ, 1982.

School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, P.R. CHINA.

Email address: jqge@bnu.edu.cn

1 China Beijing International Center for Mathematical Research, Peking University, Beijing 100871, P.R. CHINA.

Email address: faguili@bicmr.pku.edu.cn

2 School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, P.R. CHINA.

Email address: faguili@mail.bnu.edu.cn