EFEITO DA DISFUNÇÃO RENAL CRÔNICA SOBRE A PERMEABILIDADE DO CÔLON PARA ÁGUA E ELETRÓLITOS: ESTUDO EXPERIMENTAL EM RATOS

Effect of chronic renal dysfunction on the permeability of the colon to water and electrolytes: Experimental study in rats

Elionai Gomes Freire, José Cirlânio Sousa Albuquerque, Israel Pinto Leal, Nayara Alves Sousa, José Ronaldo Vasconcelos da Graça

ABSTRACT - Background: Renal insufficiency is a disease that affects several organs by provoking hypervolemia and uremia. The disease reaches more than 500 million people worldwide and few studies bring their influence on the gastrointestinal tract. Aim: To evaluate the influence of 5/6 nephrectomy-induced hypervolemia on colonic permeability to water and electrolytes. Method: Sixty male Wistar rats weighing between 280-300 g were divided into three groups: 3, 7 and 14 days after nephrectomy, each one having a false-operated/control and partially nephrectomized. For colonic permeability they were submitted to colonic perfusion with a solution of Tyroad containing phenolphthalein. Differences among the concentrations of Na+, K+ and Cl- were used to calculate the rate of colonic permeability for the electrolytes. Phenolphthalein concentrations were used to evaluate the rate of secretion and water absorption. Results: The colonic secretion of water and electrolytes occurred expressively in the group seven days after nephrectomy. Hemodynamic and biochemical assessments determined the progression of renal failure in all three groups and polyethylene glycol was shown to be effective in reversing the secretory capacity of the colon. Conclusion: The quadro de hipervolemia estabelecido a partir dos sete dias pós-nephrectomia 5/6 provocou acentuada secreção colônica para água e eletrólitos. O organismo apresenta secreção colônica progressiva a medida que aumenta a volemia sanguínea; por outro lado, o polietilenoglicol foi capaz de reverter esse quadro secretor do cólon para água e eletrólitos por reverter o quadro hipervolêmico.

RESUMO – Racional: A insuficiência renal é doença que afeta diversos órgãos por provocar hipervolemia e quadro urêmico ao organismo. A doença atinge mais de 500 milhões de pessoas em todo o mundo, e poucos estudos trazem sua influência sobre o trato gastrointestinal. Objetivo: Avaliar a influência da hipervolemia induzida pela nefrectomia 5/6 sobre a permeabilidade colônica para água e eletrólitos. Método: Foram utilizados 60 ratos machos Wistar, pesando entre 280-300 g divididos em três grupos: 3, 7 e 14 dias de pós-nefrectomia. Cada grupo foi formado por um controle e outro parcialmente nefrectomizado. Para os estudos de permeabilidade colônica, os animais foram submetidos à perfusão colônica com solução de Tyroad contendo fenolftaleína por 60 min. Diferenças entre as concentrações de Na+, K+, e Cl- foram utilizadas para calcular a taxa de permeabilidade colônica para os eletrólitos e as de fenolftaleína para avaliar a taxa de secreção e absorção de água. Resultados: A secreção colônica de água e eletrólitos ocorreu de forma expressiva no grupo 7 dias pós-nefrectomia. Avaliações hemodinâmicas e bioquímicas determinaram a evolução da insuficiência renal nos três grupos e o polietilenoglicol mostrou-se eficaz na reversão da capacidade secretora do cólon. Conclusão: O quatro de hipervolemia estabelecido a partir dos sete dias pós-nefrectomia 5/6 provocou acentuada secreção colônica para água e eletrólitos. O organismo apresenta secreção colônica progressiva à medida que aumenta a volemia sanguínea; por outro lado, o polietilenoglicol foi capaz de reverter esse quadro secretor do cólon para água e eletrólitos por reverir o quadro hipervolêmico.

ABCD Arq Bras Cir Dig 2019;32(4):e1472. DOI: /10.1590/0102-672020190001e1472

INTRODUÇÃO

Os rins são responsáveis pela regulação dos líquidos corporais e pela eliminação de produtos indesejáveis do organismo. Pacientes com insuficiência renal não mantém o equilíbrio metabólico e hidroelectrolítico resultando em hipervolemia plasmática que compromete o funcionamento de diversos sistemas ou órgãos.

A insuficiência renal é problema relevante de saúde pública por apresentar proporções epidêmicas. A doença atinge mais de 500 milhões de pessoas em todo o mundo. No Brasil, o número de dialíticos está em torno de 100 mil com taxa de...
internação hospitalar de 4,6% ao mês e mortalidade de 17% ao ano21. Observações clínicas demonstram que a hipervolemia plasmática em pacientes hemodialíticos está associada ao quadro de doenças gastrointestinal. Existe também forte associação entre a hipervolemia e o tempo de esvaziamento gástrico em pacientes com insuficiência renal terminal. Os resultados revelam que 68% dos pacientes renais apresentam dispneia e redução no tempo de esvaziamento gástrico, quando comparado aos sem a referida doença22.

Pesquisas com ratos submetidos à nefrectomia 5/6 demonstraram que há redução significativa do esvaziamento gástrico, e quando submetidos à nefrectomia bilateral apresentam intensa secreção intestinal de água e eletrólitos nos segmentos duodenais, jejunal e ileal10,11. Qualquer tipo de desequilíbrio eletrólítico é perigoso, uma vez que o funcionamento ideal do organismo depende dele. Baixo nível de sódio (hiponatremia), por exemplo, pode causar confusão e fraqueza muscular13.

O cólon é parte do intestino que sofre muitas influências de fatores intrínsecos comprometendo diretamente sua capacidade absorviva e secretora14,15. Neste aspecto, a hipervolemia causada pela insuficiência renal alteraria a permeabilidade do cólon provocando quadro de desidratação e desequilíbrio eletrólítico no organismo.

O objetivo deste estudo foi avaliar a influência da hipervolemia induzida pela nefrectomia 5/6 sobre a permeabilidade colônica para água e eletrólitos.

MÉTODO

O projeto foi aprovado pela Comissão de Ética no Uso de Animais da Universidade Federal do Ceará, com protocolo de n° 11/15. Foram utilizados ratos machos Wistar pesando entre 280-300 g. Os animais foram mantidos em gaiolas com máximo cinco animais em temperatura média de 24±2ºC em ciclos de alternância claro/escuro de 12 h, recebendo ração padrão (Nuvilab®) e água ad libitum.

Foram utilizados 60 animais divididos em três grupos: 3, 7 e 14 dias sendo cada grupo formado por um controle (SHAM) e outro parcialmente nefrectomizado (PNX).

Procedimentos cirúrgicos

Os animais foram anestesiados com xilasina (Virbaxil® 2%, Virbac, 20 mg/kg, IM) e ketamina (Sed omin®) ambos intramuscular. Inicialmente foram submetidos à lombotomia lateral esquerda, quando se procedeu a nefrectomia de 1/3 superior e inferior do rim esquerdo. Para isso a pelagem foi raspada na região do leito renal e a cavidade abdominal aberta a partir de uma incisão dorsal. Em seguida o rim esquerdo foi liberado, desencapsulado com especial cuidado para não danificar a glândula suprarrenal, e os dois polos, superior e inferior do rim esquerdo foram removidos mediante incisão com bisturi. O sangramento foi interrompido usando hemostático absorvível (Surgicel®, Ethicon), e a ferida cirúrgica fechada cuidadosamente por meio de suturas em dois planos com fio de náilon 4.0.

Decorridos sete dias, os animais foram novamente anestesiados como já descrito, e submetidos à lombotomia lateral direita. O rim direito foi desencapsulado, o hilo renal ligado, sendo o rim direito removido e a ferida cirúrgica fechada cuidadosamente por meio de suturas em dois planos com fio de náilon 4.0. O resultado final das duas operações foi uma nefrectomia parcial a 5/6.

Para todo grupo experimental, incluiu-se um grupo SHAM submetidos à mesma laparotomia e manipulação do pedículo renal, exceto pela subtração da massa renal.

Durante os 3º, 7º e 14º dias foi realizada nos animais SHAM e PNX uma laparomotia de aproximadamente 2 cm para visualização das vísceras abdominais. Após o isolamento do cólon, cânulas de polivinil (0,3 cm OD/0,2 cm OD) foram introduzidas em sua extremidade proximal e distal mediante criação cirúrgica de fístulas que foram ocluídas por meio de ligadura obstetria com fios cirúrgicos (seda 3.0) formando deste modo, entre as cânulas e o segmento colônico isolado, o circuito a ser perfundido. Após implante das cânulas, as alças foram reintroduzidas na cavidade abdominal.

Para perfusão foi utilizada solução modificada de Tyrode (NaCl 6,5 g/l; KCl 0,14 g/l; CaCl 0,12 g/l; NaHCO 0,2 g/l; NaHPO 0,01 g/l) e fenolfetaleína 50 mg/ml como marcador não absorvível. O líquido foi mantido aquecido em banho-maria a 37ºC sendo infundido por bomba peristáltica (Milan BP-200) em velocidade constante de 0,14 ml/min. Estabilizada a preparação por 30 min, o infundido foi coletado em tubos de ensaio a cada 20 min, durante 60 min (três amostras).

Para determinar o efeito da desidratação sob a permeabilidade colônica um grupo de animais com sete dias pós-nefrectomia 5/6 recebeu 4 h antes de proceder a perfusão colônica por via subcutânea, 2,5 ml da solução de polietilenoglicol PM 20.000 (30%) de cada lado do dorso do animal16.

Parâmetros hemodinâmicos por pleitismometria da cauda

Para medições de pressão arterial sistólica e frequência cardíaca durante os 3º, 7º e 14º dias, os ratos SHAM e PNX foram acondicionados em um tubo cilíndrico de acrílico aquecido e ventilado de maneira adequado a realização das medidas de pressão arterial sistólica. Para tal procedimento, a cauda foi encaixada a um manguito de borracha e adaptado à região proximal da cauda e ligado ao esfígmanomômetro para insuflar e desinsuflar automaticamente em intervalos fixos de aproximadamente 50 s. O sinal era captado e conectado a um amplificador de sinais, RTBP 2000 Rat Tail Blood Pressure System For Rats and Mice (Kent Scientific Corporation) e conectado a um conversor analógico digital PowerLab/400 (ADInstruments, Austrália).

Os animais foram mantidos por um período de adaptação e estabilização dos sinais; a partir daí foram iniciados os experimentos que tiveram duração de 30 min, sendo que os 10 primeiros minutos foram de adaptação e nos 20 seguintes foram feitas verificações da pressão arterial sistólica e da frequência cardíaca simultaneamente.

Pressão venosa central por canulação da jugular

Para medir a pressão venosa central, antes de proceder a perfusão colônica, os animais depois de anestesiados com uretana 1,2 mg/kg tiveram o vaso jugular direito canulado utilizando cânulas (PE50); as cânulas foram preenchidas com solução salina e heparina (500 UL/ml).

Por ocasião dos experimentos as cânulas eram previamente inseridas nos vasos e acopladas a um sistema de aquisição de sinais biológicos PowerLab/400 (ADInstruments, Austrália) de modo a obter registros hemodinâmicos contínuos, os quais foram armazenados em computador.

Volume sanguíneo

A determinação do volume sanguíneo foi feita após proceder a perfusão colônica pela técnica da hemodiluição. Para isso os animais receberam injeção intravenosa (0,2 ml) de solução de azul de Evans (40 mg%) via veia jugular direita. Por ocasião do sacrifício o sangue era coletado por meio de punção cardíaca e centrifugado a 2.800 rpm durante 20 min sendo a concentração de azul de Evans determinado por espectrofotometria (620 nm) o volume sanguíneo foi determinado a partir dos valores de hematócritos e do volume plasmático9.

Parâmetros bioquímicos

A concentração de fenolfetaleína foi determinada mediante espectrofotometria. As diferenças entre as concentrações foram empregadas para avaliar a taxa de secreção/absorção de água pelo segmento infundido12.

As concentrações de sódio, potássio e cloretos foram
medidas pelo ion seletivo AVL Roche® 9180. As diferenças entre os valores das suas concentrações foram utilizadas para calcular a taxa de transporte do clôn de eletrólitos. Testes colorimétricos-pado (Labtest) foram utilizados para determinar os valores de ureia e creatinina.

Avaliação estatística
Os dados relativos aos parâmetros hemodinâmicos e bioquímicos (ureia e creatinina) obtidos de cada um dos grupos foram estudados na forma média ± E.P.M. Utilizou-se teste t-Student seguidos de ANOVA para avaliar diferenças estatísticas entre os grupos e diferentes protocolos experimentais. Valores de p<0,05 foram considerados significativos.

RESULTADOS

Taxas de absorção e ou secreção colônicas de água revelaram níveis de absorção nos grupos SHAM (3, 7 e 14 dias) bem equidistantes (0,049±0,009 uEq/g/min, 0,050±0,008 uEq/g/min, 0,011±0,003 uEq/g/min, respectivamente, p<0,05) e secreção variável nos três grupos 3, 7 e 14 dias PNX (-0,07±0,007 uEq/g/min, -0,18±0,01 uEq/g/min, -0,16±0,01 uEq/g/min respectivamente, *p<0,05*); porém, o grupo sete dias parcialmente nefrectomizado apresentou a maior secreção colônica de H₂O (Figura 1A).

O sódio nos grupos SHAM (3, 7 e 14 dias) apresentou absorção semelhante (19,08±1,09 uEq/g/min, 22,38±1,42 uEq/g/min, 23,73±1,68 uEq/g/min respectivamente, p<0,05) e secreção nos grupos 3, 7 e 14 dias PNX (-8,27±0,65 uEq/g/min, -28,42±1,60 uEq/g/min, -24,85±1,61 uEq/g/min, respectivamente, *p<0,05*); entretanto, o grupo de animais com sete dias parcialmente nefrectomizado teve maior secreção colônica de Na⁺ em relação aos grupos 3 e 14 dias seguintes (Figura 1B).

O potássio nos grupos SHAM (3, 7 e 14 dias) teve absorção semelhante (18,96±1,63 uEq/g/min, 17,76±1,50 uEq/g/min, 16,9±1,95 uEq/g/min respectivamente, p<0,05). Os grupos 3, 7 e 14 dias PNX apresentaram as respectivas seguintes secreções: -1,8±0,46 uEq/g/min, -24,01±1,44 uEq/g/min, -17,24±1,81 uEq/g/min, α*#*p<0,05* nos animais com sete dias parcialmente nefrectomizado houve secreção acentuada de K⁺ (Figura 1C). O sódio nos grupos SHAM (3, 7 e 14 dias) foi absorvido com 16,04±1,37 uEq/g/min, 16,88±1,4 uEq/g/min, 17,33±1,58 uEq/g/min respectivamente, α*#*p<0,05* e secreção elevada nos grupos 3, 7 e 14 dias PNX (-9,42±1,03 uEq/g/min, -27,49±1,86 uEq/g/min, -18,23±1,71 uEq/g/min, respectivamente, α*#*p<0,05*; porém, animais com sete dias PNX tiveram maior secreção de Cl⁻ em relação aos grupos, 3 e 14 dias (Figura 1D).

A secreção de água pelo clôn nos animais 5/6 nefrectomizados foi proporcional à volemia sanguínea e pode ser representado por curva de regressão linear estabelecida com a seguinte equação Y = -0,02X + 0,13, onde Y representa a taxa de secreção e X o volume sanguíneo (r = 0,71, Figura 2A).

A secreção de sódio estabeleceu correlação ainda mais próxima com a volemia sanguínea do que a água onde formou uma curva de regressão linear estabelecida com a seguinte equação Y = -5,19X + 31,3, Y representa a taxa de secreção e X o volume sanguíneo (r = 0,86, Figura 2B).

O potássio estabeleceu forte correlação entre a volemia sanguínea com uma curva de regressão linear estabelecida pela seguinte equação Y = -5,69X + 44,85, onde Y representa a taxa de secreção, X o volume sanguíneo (r = 0,87, Figura 2C).

Quanto ao cloro, semelhante aos outros eletrólitos, também teve forte correlação entre a sua secreção e a hipovolemia sanguínea e pode ser representada por curva de regressão linear estabelecida com a seguinte equação Y = -4,7X + 26,6, onde Y representa a taxa de secreção, X o volume sanguíneo (r = 0,85, Figura 2D).

As variações hemodinâmicas - pressão arterial sistólica, frequência cardíaca, pressão venosa central e volume sanguíneo - foram significantes nos animais com 7 e 14 dias pós-nefrectomia.
diferenças entre animais com três dias PNX e animais SHAM (128,7±3,3 mmHg; 369,9±3,4 bpm; 1,2±0,13 cm H2O; 7,067±0,35 ml; respectivamente*; 116,1±1,7 mmHg; 370±2,9 bpm; 1,7±0,8 cm H2O; 6,22±0,38 ml; respectivamente; *p<0,05) não expressaram relevância (Tabela 1).

TABELA 1 - Avaliação hemodinâmica dos grupos SHAM e 3, 7 e 14 dias parcialmente nefrectomizados

Variável	SHAM	3 dias	7 dias	14 dias
PAS (mmHg)	116,1±1,7	128,7±3,3*	137,4±3,2*	149,6±2,1
Bat. cardíacos (batimentos/min)	370±2,9	369,9±3,4	383,5±3,3	388,8±1,4
O2 (cmHg)	1,7±0,8	1,2±0,13	3,5±0,17	4,1±0,19
Vol. sanguíneo (ml/100g)	6,22±0,8	7,067±0,35*	12,14±0,37*	14,83±0,82

Aumento da volemia sanguínea nos animais com sete dias PNX em relação aos com três PNX, 7,067±0,35 ml/100 g e 12,14±0,37 ml/100 g, foi expressiva, o mesmo pode ser observado em relação à pressão arterial, 128,7±3,3 mmHg e 137,4±3,2 mmHg, respectivamente.*

O polietilenoglicol promoveu retração porosa do volume sanguíneo pela desidratação em animais com sete dias parcialmente nefrectomizados. Ele foi capaz de reverter a capacidade secretora de água (-0,18±0,01 uEq/g/min vs. 0,70±0,09 uEq/g/min, respectivamente; *p<0,05) e sódio (-28,42±1,60 uEq/g/min vs. 0,53±6,35 uEq/g/min, respectivamente; *p<0,05) pelo cólon induzidos pela nefrectomia 5/6 (Figura 3). Neste trabalho demonstrou-se que há secreção colônica de água e eletrólitos durante os 3, 7 e 14 dias pós-nefrectomia 5/6, sendo que resultados mais significativos foram encontrados no grupo 7 dias seguindo pelo de 14. Durante os três dias pós-nefrectomia não foram encontrados resultados significantes para secreção de água e eletrólitos quando comparados ao grupo SHAM.

A relação entre a hipervolemia sobre a secreção colônica de água em animais parcialmente nefrectomizados pode ser confirmada por curva de regressão linear estabelecida na Figura 2. Este efeito secretagogo do cólon para água deve-se a dois fatores muito importantes. O primeiro é devido ao PNA inativar a renina e aldosterona, dois potentes hormônios que agem no cólon estimulando a absorção de água.*

O grupo três dias PNX (0,45±0,08 mg/dl) não foi muito diferente do grupo 3 dias PNX foi o que apresentou maior nível de creatinina, (1,3±0,07, *p<0,05), seguido do grupo sete dias PNX (0,95±0,02, *p<0,05). O grupo três dias PNX (0,45±0,08 mg/dl) não foi muito diferente em relação ao SHAM (0,30±0,07 mg/dl, *p<0,05, Tabela 2).

TABELA 2 - Análise bioquímica plasmática de ureia e creatinina dos grupos controle SHAM e experimental PNX 3, 7 e 14 dias pós-nefrectomia 5/6

Variáveis bioquímicas	SHAM	3 dias	7 dias	14 dias
Ureia	55,6±1,07	79,8±3,63	114,8±1,8	165,6±7,2
Creatinina	0,30±0,07	0,45±0,08	0,95±0,02	1,3±0,07

FIGURA 3 - No grupo sete dias parcialmente nefrectomizados (PNX), parcialmente nefrectomizados tratados com polietilenoglicol (PNX+PEG) e SHAM:

A) Absorção de água e sódio em relação ao SHAM.

B) Absorção de sódio em relação ao SHAM.

C) Absorção de sódio e Cl- em relação ao SHAM.

D) Absorção de Na+ e Cl- em relação ao SHAM.

Níveis de ureia plasmática entre os animais nefrectomizados mostrou-se elevados nos grupos 7 e 14 dias, PNX 114,8±1,8 mg/dl e 165,6±7,2 mg/dl respectivamente, *p<0,05. O grupo 3 dias PNX (79,8±3,63 mg/dl) não foi muito diferente da relação ao SHAM (79,8±3,63 mg/dl; *p<0,05).

Quantos ao nível de creatinina plasmática percebeu-se pequena evolução entre os animais nefrectomizados. O grupo 14 dias PNX foi o que apresentou maior nível de creatinina, (1,3±0,07, *p<0,05), seguido do grupo sete dias PNX (0,95±0,02, *p<0,05). O grupo três dias PNX (0,45±0,08 mg/dl) não foi muito diferente em relação ao SHAM (0,30±0,07 mg/dl, *p<0,05, Tabela 2).

DISCUSSÃO

Neste trabalho demonstrou-se que há secreção colônica de água e eletrólitos durante os 3, 7 e 14 dias pós-nefrectomia. O aumento da volemia é desencadeador de secreção colônica de água e eletrólitos quando comparados ao grupo SHAM. A relação entre a hipervolemia sobre a secreção colônica de água em animais parcialmente nefrectomizados pode ser confirmada por curva de regressão linear estabelecida na Figura 2. Este efeito secretagogo do cólon para água deve-se a dois fatores muito importantes. O primeiro é devido ao PNA inativar a renina e aldosterona, dois potentes hormônios que agem no cólon estimulando a absorção de água.*

O grupo três dias PNX (0,45±0,08 mg/dl) não foi muito diferente do grupo 3 dias PNX foi o que apresentou maior nível de creatinina, (1,3±0,07, *p<0,05), seguido do grupo sete dias PNX (0,95±0,02, *p<0,05). O grupo três dias PNX (0,45±0,08 mg/dl) não foi muito diferente em relação ao SHAM (0,30±0,07 mg/dl, *p<0,05, Tabela 2).

TABELA 2 - Análise bioquímica plasmática de ureia e creatinina dos grupos controle SHAM e experimental PNX 3, 7 e 14 dias pós-nefrectomia 5/6

Variáveis bioquímicas	SHAM	3 dias	7 dias	14 dias
Ureia	55,6±1,07	79,8±3,63	114,8±1,8	165,6±7,2
Creatinina	0,30±0,07	0,45±0,08	0,95±0,02	1,3±0,07

Existem pelo menos três peptídeos relacionados à natriurese nos intestinos e cólon: STa, Gn e UGn. Eles se ligam a um receptor presente na superfície da borda em escova do intestino e do cólon. Esses receptores foram identificados como membro da guanilatociclase, sendo designado GC-C. A sua atuação em vários órgãos, mas há destaque sobre o rim, ao elevar a secreção de água e sódio através da inibição da bomba de Na+/K+ ATPase e pela inibição da renina e aldosterona.*

O aumento da volemia é desencadeador de secreção colônica de água e eletrólitos porque promove a liberação de peptídeos natriureticos, um grupo de hormônios secretados por diferentes tecidos em especial pelo coração. Estes têm sua atuação em vários órgãos, mas há destaque sobre o rim, ao elevar a secreção de água e sódio através da inibição da bomba de Na+/K+ ATPase e pela inibição da renina e aldosterona.*

Existem pelo menos três peptídeos relacionados à natriurese nos intestinos e cólon: STa, Gn e UGn. Eles se ligam a um receptor presente na superfície da borda em escova do intestino e do cólon. Esses receptores foram identificados como membro da guanilatociclase, sendo designado GC-C. A sua atuação em vários órgãos, mas há destaque sobre o rim, ao elevar a secreção de água e sódio através da inibição da bomba de Na+/K+ ATPase e pela inibição da renina e aldosterona.*

FIGURA 3 - No grupo sete dias parcialmente nefrectomizados (PNX), parcialmente nefrectomizados tratados com polietilenoglicol (PNX+PEG) e SHAM: A) absorção colônica e secreção de H2O; B) absorção colônica e secreção de Na+; C) absorção colônica e secreção de K+; D) absorção colônica e secreção de Cl-. Barras verticais negativas representam valores médios de secreção colônica; barras verticais positivas representam valores médios de absorção; e linhas verticais indicam o erro-padrão da média. *p<0,05; n=5 a 8 animais por grupo.
da fibrose cística (CFTR), que promove aumento na secreção de cloro, bicarbonato e água no intestino. O polietilenoglicol é comumente usado para a redução experimental do volume plasmático, causando desidratação aguda nas células. Em estudos de esvaziamento gástrico em animais PNX, ele foi capaz de reverter o esvaziamento gástrico reduzindo a hipervolemia10 e neste estudo mostrou-se capaz de reverter a secreção colônica de água e sórdor retornando sua capacidade absorviva em animais parcialmente refrectomizados (Figura 3).

A retração aguda do volume sanguíneo pode ser obtida por desidratação, redução na ingestão de sódio ou hemorragia e resulta na maximização da absorção de líquidos e eletrolitos pelo epitélio intestinal. Isso ocorre pela ativação de receptores cardiovasculares, que desencadeiam uma flexão neural, levando à liberação de norepinefrina pelos nervos esplânchnico e mesêntrico16.

Portanto a hipervolemia seria a principal causa deste fenômeno secretagogo do cólon observado neste estudo. Muitos pesquisadores mediante observações clínicas e experimentais indicam que o trato gastrointestinal pode modificar seu padrão absorvtivo tornando-o até mesmo secretor quando submetidos às variações agudas de volemia plasmática17,21.

A elevada pressão arterial nos grupos 7 e 14 dias PNX em relação ao grupo três dias PNX é devida à sobrecarga volêmica que ocorreu durante este período. A volemia sanguínea dos grupos 7 e 14 dias (11,12±0,37 ml; 15,83±0,82 ml, respectivamente, p<0,05) mostrou-se também bem acentuada quando comparadas a do grupo três dias (8,067 ml±0,35).

As concentrações plasmáticas dos eletrolitos, Na+, K+ e Cl- (141,1±1,5 mEq/ml; 7,1±0,5 mEq/ml e 99,2±1,0 mEq/ml, respectivamente) em sete dias PNX foram maiores que aquelas em três dias PNX (138,0±1,7 mEq/ml; 3,8±0,1 mEq/ml e 102,5±1,2 mEq/ml, respectivamente, p<0,05). Isso explica a expansão do volume sanguíneo durante o período de insuficiência renal. Após a perda de 70% da massa renal, o corpo acumula sal e água ao longo do tempo, o que ocasiona hipertensão, devido à sobrecarga de volume plasmático. A sobrecarga volêmica promoveu também o aumento da pressão venosa central entre os grupos 7 e 14 dias PNX em relação ao três dias PNX (7,1±0,19 cmH2O, 5,2±0,17 cmH2O vs. 2,2±0,13 cmH2O, respectivamente, p<0,05).

A elevação progressiva nos níveis de uréia e creatinina nos grupos 3, 7 e 14 dias PNX (79,8±3,63, 114,8±1,8, 165,6±7,2, respectivamente, p<0,05) e (0,30±0,07, 0,45±0,08, 0,95±0,02, 1,3±0,07, respectivamente, p<0,05) serviram de base para determinar a evolução da insuficiência renal nos ratos submetidos à nefrectomia 5/6. As toxinas urérmicas, geradas na disfunção renal respondem pela progressão da doença renal crônica, através da indução da perda da função renal residual. Os mecanismos de secreção e absorção colônica para água e eletrolitos na situação hipervolêmica deverão ser mais bem estudados em humanos já que pacientes renais apresentam riscos de desequilíbrio eletrolítico e sua manifestação é de forma muito gradual, na maioria das vezes assintomática, podendo ser fatais.

CONCLUSÃO

O quadro de hipervolemia estabelecido nos ratos a partir dos sete dias pós-nefrectomia 5/6 provocou acentuada secreção colônica para água e eletrolitos. O organismo apresenta secreção colônica progressiva a medida que aumenta a volemia sanguínea; por outro lado, o polietilenoglicol foi capaz de reverter esse quadro secretor do cólon para água e eletrolitos por reverter o quadro hipervolêmico.