Multiple Iterative Labeling by Antibody Neodeposition (MILAN)

CURRENT STATUS: POSTED

Giorgio Cattoretti
Cattoretti ImageLab, Universita' di Milano-Bicocca
giorgio.cattoretti@unimib.it

Francesca Maria Bosisio
Laboratory of Translational Cell and Tissue Research, KU Leuven, Minderbroederstraat 12, 3000 Leuven, Belgium.

Lukas Marcelis
Laboratory of Translational Cell and Tissue Research, KU Leuven, Minderbroederstraat 12, 3000 Leuven, Belgium.

Maddalena Maria Bolognesi
Department of Medicine and Surgery, Universitá degli Studi di Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy.

DOI: 10.21203/rs.2.1646/v3

SUBJECT AREAS
Biological techniques

KEYWORDS
multiplex, immunofluorescence, stripping, high-dimensional, FFPE,
Abstract
Multiplexing, labeling for multiple immunostains the very same cell or tissue section in situ, is of considerable interest. The major obstacles to the diffusion of this technique are high costs in custom antibodies and instruments, low throughput, scarcity of specialized skills or facilities.
We have validated and detail here a method based on common primary and secondary antibodies, diffusely available fluorescent image scanners and routinely processed tissue sections (FFPE). It entails rounds of four-color indirect immunofluorescence, image acquisition and removal (stripping) of the antibodies, before another stain is applied. The images are digitally registered and the autofluorescence is subtracted. Removal of antibodies is accomplished by disulphide cleavage. In excess of 50 different antibody stains can be applied to one single section from routinely fixed and embedded tissue. This method requires a modest investment in hardware and materials and uses freeware image analysis software.

Introduction
Staining a section with multiple antibodies satisfy two different requirements:
to assess multiple analytes when the limitation is the number of sections (e.g. a single one)
to classify single cells in tissue by high-dimensional methods, typically >15 markers.
Both requirements are accomplished by this method, which relies on controlled antigen retrieval
conditions (once, at the beginning), antigen retention over the staining cycles, six-color
immunofluorescent staining, bringing the total amount of stainings into the dozens.
It employs unconjugated primary antibodies, commercial secondary antibodies and IF microscopes
and scanners.
It has thus the power to bring the two requirements mentioned above to a vast public of scientists,
investigators, clinicians, etc.

2ME/SDS staining and stripping method
1 perform ARx on dewaxed sections affixed to postively charged glass slides
2 allow to cool to about 50C or lower
3 acquire the AF image for all the channels deemed necessary (optional)
4 perform the first IF stain in 100 mM Trehalose-containing dilution buffer
5 mount with 60% Glycerol in PBS, 0.2% N-propyl Gallate and 584 mM sucrose mounting medium containing DAPI

6 label the slide, acquire the images for all channels including DAPI and AF if not acquired before

7 unmount the slides in buffer/distilled water

8 transfer to Tris buffer

9 immerse for 30 min in pre-heated (56°C) 2ME/SDS buffer with agitation

10 transfer to Tris buffer and wash extensively with TBS-Ts buffer

11 repeat from #4 with additional positive and/or negative antibodies

12 store in 50% glycerol at -20°C/-80°C for extended storage, before returning to #4 or proceed as below

13 perform H&E or insoluble stainings if final

A different stripping method, based on Guanidinium Hydrochloride and heat-mediated refolding may be used (see Reference below).

(From Bolognesi MM, Manzoni M, Scalia CR, Zannella S, Bosisio FM, Faretta M, et al. "Multiplex Staining by Sequential Immunostaining and Antibody Removal on Routine Tissue Sections. Journal of Histochemistry & Cytochemistry." http://journals.sagepub.com/doi/full/10.1369/0022155417719419 2017 Aug;65(8):431–44; Figure 1)

Reagents

CHEMICALS

100x Tris-EDTA buffer, pH 8 (Sigma, T9285)

Trizma HCL (Sigma T3253) MW 157.60

Trizma base (Sigma T6066) MW 121.14

NaCl (Sigma 793566) MW 58.44

Sucrose (refined granulated sugar; NB check for vegetable particles, e.g. in cane sugar) MW 342.30

Tween-20 (Sigma P1379)

NaN₃ (Sigma 71290) MW 65.01

Bovine Serum Albumin (Sigma A2153) NB may substituted with gelatin.
Trehalose (Sigma 90210) MW 378.33
Glycerol (Sigma G9012)
N-propyl gallate (Sigma P3130) MW 212.20
N,N-dimethylformamide (Sigma D4551)
Phosphate buffered saline, tablets (Sigma P4417)
2-mercaptoethanol (Sigma M6250) MW 78.13
Sodium dodecyl sulphate, dust-free pellets (Sigma 74255)
DAPI dihydrochloride (D9542 Sigma) MW 350.25
Primary unconjugated antibodies (see attached table “Primary antibodies”)
Fluorochrome-conjugated secondary antibodies (see attached table “Secondary antibodies”)
Purified immunoglobulins (see attached table “Immunoglobulins”)

SOLUTIONS, PREPARATIONS AND BUFFERS

Washing Buffer (TBS-Ts) pH 7.5 stock solution 10X 1000ml

Component	Quantity
Tris-Buffered Saline	1000ml
Tween 20	2 ml
Sucrose	342.3 g
NaCl	90 g
Trizma base	11.8 g
Trizma HCL	63.5 g
NaN$_3$	0.1%
Distilled H2O	1000ml

Dilute in distilled water 1:10 to 1X before use.

NB: do not use this buffer for Peroxidase-based IHC because the NaN$_3$ will inhibit the reaction. OK for AP-based IHC.

What these chemical are there for? Tris is for buffering the solution; Salt is to weaken non-specific molecular interactions; Tween-20 is to reduce surface tension and evenly wet the slide, preventing section margin drying; sucrose is to prevent dehydration [6]

Antibody diluent 1x (100ml):

2 g BSA
90 ml Distilled H2O
50 mg or 1 ml NaN3 5% (stock)
3,8 g Trehalose (100mM)
10 ml TBS 10X

NB: Dissolve the BSA in distilled water first; then add the other chemicals.

Mounting fluid

100ml 60% glycerol / 40% distilled water x DAPI
60 ml Glycerol
10 ml PBS 10x pH 7.5
10 ml Sucrose saturated (200 g in 100 ml dist., 5.84M)
20 ml Distilled H2O

Add 0,2% n-propyl gallate from a 20% stock solution, prepared by dissolving the compound in N,N-dimethylformamide (store at -20C)

N.B.: Other (hardening) mounting media cause antigen re-masking[3]

To dissolve DAPI, use DAPI dihydrochloride (D9542 Sigma, 1 mg size, 2.85 µM). Resuspend in 285 µl of Dimethylformide. The solution (DAPI 10 µM) will be turbid and yellow. Mix equal volumes of DAPI in DMF and "methanol":http://cshprotocols.cshlp.org/content/2007/10/pdb.rec11127.full?text_only=true : the solution (DAPI 5 µM) will become clear transparent.

Dilute to 2-10 nM in either TBS-Ts or mounting fluid.

NB: concentrations above 10 nM on FFPE material will be A) unmanageable for exposure (too short), B) DAPI signal will bleed into the Autofluorescence, FITC, and TRITC filters (in order).

Stripping buffer

100ml 2x
20 ml SDS 10%
12,5 ml Tris HCl pH6,8 (0,5M)
67,5 ml Distilled H2O
0,8 ml 2-mercaptoethanol

Dilute 1:1 with distilled water

NB: Work under a fume hood

Storage Buffer (Glycerol 50%):

100ml 1x
50 ml glycerol (Sigma G9012)
10 ml Tris buffer 10x pH 7.5
10 ml 50% sucrose (half-saturated solution; 5%=300mM).
30 ml Distilled H2O

NaN₃ 100x (5%) stock solution

12.5 mg NaN₃
250 ml distilled H2O

50% Saturated Sucrose

100 ml Distilled H2O
100 g sucrose
0.5% NaN₃
refrigerate

Equipment

"Kartell slide boxes (50-100 slides)“:https://www.kartellabware.com/en/products/plastilab/microscopy-and-microbiology/microscope-slide-boxes/

Glassware

Shaking waterbath

Procedure

Step 1: GLASS SLIDES

Standard 75.5±05 x 25.5±0.5 mm “microscope slides“:https://en.wikipedia.org/wiki/Microscope_slide are required for all histopathology studies.

NB: Do not use slides with rounded smoothened corners because they tend to slip out of the scanner stage.

Step 2: SECTIONS (Figure 1)

See figure in Figures section.

Sections for multiplexing of 3±1 µm thickness need to be placed on positively charged slides (the ones used for immunohistochemistry) one section per slide, positioned toward the slide end opposite to the frosted end for label, at least 2-3 mm from the slide border.

The scanning speed is maximal across the slide, thus prefer a transversal or oblique, rather than a longitudinal placement of the section.

place sections on coated/charged glass slides

Bake overnight in an upright position in oven 40°C or lower

Dewax in Xylene (2 changes 10 min each) -> graded alcohol (99%-95%-70%-H2O)

NB. An Hexane overnight step before the xylene has been recommended for complete paraffin
extraction[1]: hexane is volatile and may dry the sections before entering xylene. An advantage in immunoreactivity is antigen-dependent and modest.

Step 3: ANTIGEN RETRIEVAL

See figure in Figures section.

Perform antigen retrieval with 10 mM EDTA in Tris-buffer pH 8; use 800 ml distilled water in a MWO-proof glass container, to which add 8 ml of a 100x Tris-EDTA buffer, pH 8.

Insert the slides in a radiotransparent slide holder (Figure 2)

Place in a household microwave oven (MWO), set to “high” or 850W: should boil vigorously in 8 min. Reduce power to “low” or 300W and allow 20-30 min. of intermittent radiation to maintain boiling.

This overcomes pH dependent retrieval[2]

Cool to 50°C or below to allow antigen refolding before transferring to washing buffer (TBS-Ts), by checking with a kitchen thermometer. (Figure 2)

Take precautions: hot fluid.

Slides can be stored in 50% glycerol-sucrose-TBS at this step (storage buffer[e]) [3]

Step 4: IF STAINING: Primary and Secondary Ab dilution and incubation

See figure in Figures section.

Dilute all primary Ab’s to 1 µg/ml (or equivalent by titration) in Antibody diluent [3]

Dilute all secondary Ab’s to 5 µg/ml (~1:200 – 1:300).

NB. Fluorochrome-conjugated antibodies used in double indirect IF [3] have different concentration/signal curves. Alexa 488 conjugates tend not to increase signal above 5µg/ml, because of self-quenching; Rhodamine RedX and Alexa 647 do increase. BV480 conjugates tend to have an exponential increase of signal with increased concentration above 2-3 µg/ml; however, anti-isotype conjugates are much brighter than species-specific ones. If using BV480, beware of A) non-specific background increase, B) spillover of BV480 signal into Autofluorescence and FITC channels.

By using unconjugated primary antibodies in indirect immunofluorescence, the following combinations are permitted, based on species- or isotype-specific secondary antibodies and a filter combination as depicted in Fig. 5:

One each of rabbit, mouse, rat and goat antibodies
One rabbit Ab plus one each of the mouse IgG1, IgG2a, IgG2b or IgG3, up to one Rb + 3 mouse Abs.

*NB: anti-isotype secondary antibodies are invariably raised in goat or rabbit; use secondary abs raised
in donkeys or lamas for the first combination exemplified (Rb, Mo, Rat, Gt).

Humid chamber Incubation (Figure 3)

See figure in Figures section.

check with a level/iPhone for perfectly horizontal placement of the chamber: this will prevent antibody solution slipping during prolonged incubations (e.g. O/N).

Do not let the slides touch each other.

Use a closed container (Kartell) with distilled water, Sodium Azide and a tissue to prevent floating.

use a minimum of 100µl of antibody for a section of 1x1 cm or less and the volume multiplied accordingly for larger sections.

NB: you can recover and re-use the antibody from the slide, however the small volume of antibody and the relatively larger residual fluid on the slide after washing may alter the Ab concentration uncontrollably. This will not happen with the mailers (see below).

Vertical 5-slide mailer Incubation (for high efficiency) (Figure 3 and 4)

See figure in Figures section.

Fill a standard 5 slide vertical mailer ("Kaltek":https://www.kaltek.it/en/histology/slides/slide-mailers-2/, "MLS":https://www.mls.be/products/?lang=en&category=08&subcategory=8.1.1.9 or others) with 12 ml antibody solution. You are supposed to stain five slides simultaneously, so that the fluid can completely cover each section. This setup can be re-used for a total of approx. 10 rounds of staining (= 50 slides total)[3]; thus 12 µg of antibody is enough for one 50-slides experiment and 1 vertical mailer.

Procedure

Incubate in primary Ab overnight at room T (manual) or at +4C (mailers).

NB: overnight incubation will increase the staining efficiency [3].

Wash 2x in 15 min. with TBS-Ts in a coplin jar

Incubate in secondary Ab 30 min.

Wash 2x in 15 min. with TBS-Ts in a coplin jar

Incubate in negative primary Ab → double indirect staining

NB: double indirect staining will double the fluorescence yield [3]. In order to save primary antibodies, use isotype- and species- matched irrelevant negative purified Ig.
Wash 2x in 15 min. with TBS-Ts in a coplin jar
Incubate in secondary Ab 30 min.
Wash 2x in 15 min. with TBS-Ts in a coplin jar
Stain with DAPI (2-10 nM) in TBS-Ts by immersing 1 min in a vertical mailer, then rinsing in TBS-Ts. If DAPI is in the mounting fluid, skip this step.
Mount slides with mounting fluid and 24x50 coverslips. Remove excess fluid from the edges, otherwise will interfere with the re-positioning of the slide on the stand.
Remove the disaccharide-containing fluid from the bottom of the slide with a distilled water-soaked pad, for smooth mechanical operations (may be performed just before step 10).
Affix a label containing a 2D barcode for file name reading by the instrument and with other metadata (date, experiment #, etc.){[3]}[3]

Step 5: STRIPPING [3, 5]
Coverslip removal by soaking in coplin jar with washing buffer or distilled water (either one, OK).
This is one of the steps where scratching of the tissue sections may occur when re-positioning back the slide in the presence of a coverslip. Act in a continuous vertical motion, expose the whole slide, transfer to a new coplin jar with buffer if the coverslip detached, reposition if unmoved, slip gently the coverslip if partially displaced with a continuous motion.
Transfer to Tris buffer pH 7.5, in order to remove disaccharides.
Preheat vertical containers with stripping buffer to exactly 56°C in closed, shaking water-bath.
Cave: tight temperature range for effective stripping!

Stripping buffers contains chemicals with offensive odor; work under hood!
Strip for 30 min. at 56°C with shaking
Transfer to TBS-Ts
Wash at least for one hour with washing buffer with several washes in the first quarter of an hour.

Step 6: STORAGE
Store at any step. If slides are not used for > 3 days store @ -20°C in storage buffer

Prefer storage of unstripped slides after the last staining; stripping will get rid of autofluorescence or background formed during storage.

Timing
Step 1-2: Tech Lab cutting time

Step 3: approx. 100 min.

Step 4: 1 overnight incubation plus approx. 4 hrs.

Step 5: 2 hrs.

Step 6: N/A

Troubleshooting
Inadequate or failure to remove antibodies (stripping) may occur because of these causes:
failed temperature control during stripping
dehydration (may not be obvious on inspection, see the Ref Boi G. et al)
light-source induced chemical modification and protein precipitation during exposure, particularly with powerful lasers (see the "Science":http://science.sciencemag.org/content/361/6401/eaar7042.long paper)

A repetition of the stripping, preceded by 1 min boiling in the AR solution may help.

Errors when investing a substantial amount of reagents in the vertical mailers method may be prevented by running a less crucial set of slides first.

Best to test with the MILAN IF method primary antibodies used before only in immunohistochemistry: enzymatic IHC is a non-linear, signal thresholding method quite different from the linear quantitative IF method, on which MILAN is based.

And in case of errors: **strip and repeat!**

With this method you can do it.

Anticipated Results
You should be able to sequentially stain a single FFPE section with antibodies raised in the same species, directed against close epitopes, on the very same subcellular structure, provided you space each staining by a stripping cycle.

Examples can be seen in the literature references provided.

References

1. Faolain, E.O., et al., *Raman spectroscopic evaluation of efficacy of current paraffin wax section dewaxing agents*. J Histochem Cytochem, 2005. 53(1): p. 121-9 doi: 10.1177/002215540505300114.

2. Scalia, C.R., R. Gendusa, and G. Cattoretti, *A 2-Step Laemmli and Antigen Retrieval Method Improves Immunodetection*. Appl Immunohistochem Mol Morphol, 2015. 24: p. 436-446 doi: 10.1097/PAI.0000000000000203.

3. Bolognesi, M.M., et al., *Multiplex Staining by Sequential Immunostaining and Antibody Removal on Routine Tissue Sections*. Journal of Histochemistry & Cytochemistry, 2017. 65(8): p. 431-444 doi: 10.1369/0022155417719419.
4. Dominguez-Sola, D. and G. Cattoretti, *Analysis of the Germinal Center Reaction in Tissue Sections*. Methods in molecular biology (Clifton, N.J.), 2017. 1623: p. 1-20 doi: 10.1007/978-1-4939-7095-7_1.

5. Gendusa, R., et al., *Elution of High Affinity (>10-9 KD) Antibodies from Tissue Sections: Clues to the Molecular Mechanism and Use in Sequential Immunostaining*. J Histochem Cytochem, 2014. 62(7): p. 519-531 doi: 10.1369/0022155414536732.

6. Boi, G., et al., *Disaccharides Protect Antigens from Drying-Induced Damage in Routinely Processed Tissue Sections*. J Histochem Cytochem, 2015. 64(1): p. 18-31 doi: 10.1369/0022155415616162.

Acknowledgements
We wish to thank Dr. Franco Ferrario for continuous support, Emanuele Martella (Nikon, Italia) and Giulio Simonutti (Hamamatsu Italia) for expert advice. The Hamamatsu S60 digital scanner was obtained as part of a clinical research project BEL114054 (HGS1006-C1121) of the University of Milano-Bicocca and GlaxoSmithKline, on which project Maddalena Maria Bolognesi is also supported. This work has been supported by Departmental University of Milano-Bicocca funds. MMB is employed by the Department of Medicine and Surgery of the University of Milano-Bicocca within a GlaxoSmithKline clinical research project BEL114054 (HGS1006-C1121). FMB is funded by the MEL-PLEX research training programme (‘Exploiting MELanoma disease comPLEXity to address European research training needs in translational cancer systems biology and cancer systems medicine’, Grant agreement no: 642295, MSCA-ITN-2014-ETN, Project Horizon 2020, in the framework of the MARIE SKŁODOWSKA-CURIE ACTIONS).

Figures
Fig. 1: slide setup for MILAN multiplexing

Slide setup for MILAN multiplexing.
Fig. 2: AR setup for MILAN multiplexing.

Figure 2

Antigen Retrieval setup for MILAN multiplexing
Fig. 3: bench setup for MILAN multiplexing

Figure 3

Bench setup for MILAN multiplexing
Fig. 4: vertical mailers setup for MILAN multiplexing. Each mailer contains four 1st Abs, 2nd Abs and isotype- and species-matched negative Abs. Note the grid to record the number of 5-slide runs each mailer has undergone. Max runs for 2nd Abs is five (2 passages each). This mailer is wrapped in aluminum foil.
Six-color filter combination for multiplexing. The figure represents filter combinations, housed in two 6-filter wheels and three turrets, to allow six independent fluorochrome acquisitions. The reference instrument is a S60 scanner from Hamamatsu. The composite
panel represents the excitation filters and fluorochrome spectra (top) and the emission filters, dichroic mirrors and fluorochrome spectra (bottom). Excitation spectra are represented by a dashed profile, emission spectra by a solid profile. The filter profiles are represented by solid lines, the dichroic ones by a dashed line. *1*: DAPI (359/461) [exc/em]; *2*: BV480 (437/478); *3*: Alexa 488 (499/519); *4*: Rhodamine RedX (570/590); *5*: Alexa 647 (652/668). The filter combination depicted are *DAPI*: 387/11- 435/40 [exc/em], *BV480*: 438/24 - 483/32; *FITC*: 480/17 - 520/28; *TRITC*: 556/20 - 617/73; *Cy5*: 650/13 - 694/44; *AutoFluorescence (AF)*: 438/24 - 617/73. The dichroic mirrors are: FF403/497/574-Di01 (triband), 458-Di02 and FF655-Di01. These filters can be obtained by companies like Semrock or Chroma. Alexa ® dyes are a Life Technologies patent. BV480 dye is a BD Biosciences patent. The spectra images are obtained with the Searchlight Semrock web application.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

SecondaryAbs.xlsx
Immunoglobulins.xlsx
PrimaryAntibodies-v3.xlsx
PinocchioBox.xlsx

Multiplex Staining by Sequential Immunostaining and Antibody Removal on Routine Tissue Sections

by Maddalena Maria Bolognesi, Marco Manzoni, Carla Rossana Scalia, +4 Journal of Histochemistry & Cytochemistry (26 August, 2018)
Elution of High-affinity (>10-9KD) Antibodies from Tissue Sections

by Rossella Gendusa, Carla Rossana Scalia, Serena Buscone, +1 Journal of Histochemistry & Cytochemistry (26 August, 2018)
Nephrosphere-Derived Cells Are Induced to Multilineage Differentiation when Cultured on Human Decellularized Kidney Scaffolds

by Silvia Bombelli, Chiara Meregalli, Carla Scalia, +9
Disaccharides Protect Antigens from Drying-Induced Damage in Routinely Processed Tissue Sections

by Giovanna Boi, Carla Rossana Scalia, Rossella Gendusa, +2

Journal of Histochemistry & Cytochemistry (26 August, 2018)