Mori-Zwanzig formalism for general relativity: a new approach to the averaging problem

Michael te Vrugt,1 Sabine Hossenfelder,2 and Raphaël Wittkowski1,2

1 Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
2 Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main, Germany

Cosmology relies on a coarse-grained description of the universe, assumed to be valid on large length scales. However, the nonlinearity of general relativity makes coarse-graining extremely difficult. We here address this problem by extending the Mori-Zwanzig projection operator formalism, a highly successful coarse-graining method from statistical mechanics, towards general relativity.

Using the Buchert equations, we derive a new dynamic equation for the Hubble parameter which captures the effects of averaging through a memory function. This gives an empirical prediction for the cosmic jerk.

General relativity [18] is a highly successful theory which has been used to model the universe on many different scales. On the “microscopic” scale of individual stars and stellar black holes, it has been tested and confirmed to great accuracy by a large number of experiments, ranging from the gravitational deflection of light by the sun [4] to the recent direct detection of gravitational waves by the LIGO and Virgo collaborations [5,6]. However, we also use general relativity on “macroscopic” scales in cosmology, where we interpret it as a coarse-grained description of the universe on the average.

This methodology is mathematically suspect. Einstein’s field equations are highly nonlinear, therefore they cannot hold for averaged quantities the same way as for the non-averaged ones. This means if those equations are valid on the scale of individual stars, then they should have correction terms on cosmological scales [7]. Finding a coarse-grained description for the lumpy universe is often referred to as the “averaging problem” [7,13], and the effect of inhomogeneities on averaged quantities is known as “backreaction” [7,14].

Some authors have suggested that backreaction can mimic effects of (and can therefore constitute an alternative to) dark energy, but the quantitative importance of such effects has remained controversial [7,13,17]. Understanding how to properly average Einstein’s field equations has only become more pressing with recent observations that indicate a tension between different measurements of the Hubble parameter (“Hubble tension”) [18,22]. A large variety of solutions for this issue have been discussed [23], including an explanation based on cosmic inhomogeneities [24,29].

Among the most popular theoretical approaches to the averaging problem are the Buchert equations [27,29], which provide a simple model for the time evolution of averaged scalar quantities. With them, an inhomogeneous universe can be described with an effective (non-equilibrium) equation of state [17]. Coarse-grained descriptions of nonequilibrium systems are of importance also in other fields of physics. There, systematic coarse-graining techniques have been developed, of which the Mori-Zwanzig projection operator formalism [30–35] is perhaps the most powerful one.

This formalism, which is the focus of this work, employs a projection operator to reduce the complete microscopic dynamics to that of a subset of a priori arbitrary “relevant variables”. The remaining “irrelevant variables” become encoded in a generalized Langevin equation as memory and noise terms. (For an introduction, see Refs. [30–32].) Applications of the Mori-Zwanzig formalism include the derivation of dynamical density functional theory [41–46], hydrodynamics [40,47], glassy systems [48], philosophy of physics [49–51], solid-state theory [52,53], and spin relaxation theory [54,55]. The formalism has also been successfully applied in high-energy physics and relativistic causal hydrodynamics [56–61]. Below, we will extend the Mori-Zwanzig formalism to general relativity.

We start by introducing the Mori-Zwanzig formalism following Ref. [37]. The microscopic equation of motion for an arbitrary variable \(A \) obeying Hamiltonian dynamics can be written as \(\dot{A} = i\mathcal{H}A \), where the over-dot denotes a derivative with respect to time \(t \), and \(\mathcal{H} \) is the Liouvillian defined as the Poisson bracket (or, in the quantum case, the commutator) with the Hamiltonian of the respective theory. We can formally integrate this equation to \(A(t) = e^{i\mathcal{H}t}A \) (assuming that \(\mathcal{H} \) is time-independent, otherwise one needs to time-order the exponent [33]). Here, \(A \) is the (time-independent) Schrödinger-picture observable and \(A(t) \) is the (time-dependent) Heisenberg-picture observable. At the reference time \(t = 0 \), Schrödinger and Heisenberg-picture observables agree [37,62]. Although the distinction between Schrödinger picture and Heisenberg picture is known mostly from quantum mechanics, it can be used also in the classical case [63].

We then choose an arbitrary set of relevant variables \(\{A_k\} \) and define the projection operator acting on a phase-space function \(X \) as

\[
P X = A_j(A_j, A_k)^{-1}(X, A_k),
\]
where \((X, Y)\) is a scalar product, often defined as \((X, Y) = \text{Tr}(\hat{\rho} XY)\) with the trace \(\text{Tr}\) (denoting an integral over phase space in the classical and a quantum-mechanical trace in the quantum case) and a probability distribution \(\hat{\rho}\). Indices appearing twice are summed over.

Next, we apply the Dyson identity

\[
e^{iLt} = e^{iQLt} + \int_0^t ds \, e^{iL(t-s)} P(t) L e^{iQLs} \tag{2}
\]

with the orthogonal projection operator \(Q = 1 - P\) to the expression \(Q_i L A_i\), which gives us the Mori-Zwanzig equation

\[
\dot{A}_i(t) = \Omega_{ij} A_j(t) + \int_0^t ds \, K_{ij}(s) A_j(t - s) + F_i(t) \tag{3}
\]

with the frequency matrix \(\Omega_{ij} = (A_j, A_k)^{-1} (i L A_i, A_k)\), the memory matrix \(K_{ij}(t) = (A_j, A_k)^{-1} (i L F_i(t), A_k)\), and the random force \(F_i(t) = e^{iQLt} Q L A_i\). Equation (3) is an exact transport equation for the relevant variable \(A_i\). We set the lower bound of the time integral in Eq. (3) to \(t = 0\), but different values are possible [69, 70]. In the Mori-Zwanzig formalism, the constraints have to be taken into account not only in the initial conditions, but also in the definition of the projection operator. If a constraint equation requires that \(A = B\) with two observables \(A\) and \(B\), \(P\) has to be defined in such a way that \(PA = PB\) holds (otherwise, one might group a part of the dynamics to the random force \(F_i\) that actually belongs to the organized drift \(\Omega_{ij} A_j\)). This can be ensured by choosing \(\hat{\rho}\) so that it assigns zero probability to configurations that do not satisfy the constraint equations. Apart from this, \(\hat{\rho}\) can be adapted to the problem at hand. For the problem we are interested in, a good choice for \(\hat{\rho}\) is a distribution that assigns equal probability to all configurations compatible with the observed present value of the Hubble parameter \(H_0\). Moreover, in general relativity, the phase-space integral in the definition of the scalar product becomes, for \(\gamma_{ij}\) and \(\pi_{ij}\), a functional integral. Finally, the lower limit of the time integral in Eq. (3) typically corresponds to the time of the preparation of the system, although later times can also be used [64]. In cosmological contexts, the “time of preparation” would be the big bang, which can be a problematic choice of the reference time due to singularities. Hence, a slightly later time might be more appropriate.

An earlier time should not be chosen, since otherwise the system would have to “remember” the values of the observables from times before the big bang.

We now demonstrate the usefulness of the Mori-Zwanzig formalism in general relativity by applying it to the cosmological averaging problem. Averaged scalar quantities in general relativity can be described using the Buchert equations [27–29]. For simplicity, we consider a universe filled with irrotational dust as done in Ref. [27], but since Buchert's formalism can also be applied to more general cases [29], our approach is not restricted to this simple example.

Let \(D \subset \Sigma_t\) be the domain of the hypersurface \(\Sigma_t\) we average over [71]. This domain has the volume \(V\). We introduce the effective scale factor \(a = (V/V_0)^{1/3}\), where \(V_0\) is the volume at the present time. Our relevant variables are the effective Hubble rate \(H = \dot{a}/a\), the squared effective Hubble rate \(H^2\), and the cosmological constant \(\Lambda\). The latter two are included since the contributions from \(H^2\) and \(\Lambda\) would otherwise be hidden in the memory kernel because Eq. (3) is linear in the relevant variables. Our relevant variables have to be functions of the phase-space variables. This is the case here since \(H\) can be written as \(H = -(\int \bar{r}^2 d^3r \sqrt{\gamma})/(6 \int \nu^2 d^3r \sqrt{\gamma})\), where \(\bar{r}\) is the position on the hypersurface \(\Sigma_t\), \(\pi = \gamma_{ij} \pi^{ij}\) the trace of the momentum \(\pi^{ij}\), and \(\gamma\) the determinant of the spatial metric \(\gamma_{ij}\). The expression for \(H\) follows from Buchert’s result \(H = -(\int \bar{r}^2 d^3r \sqrt{\gamma})/(6 \int \nu^2 d^3r \sqrt{\gamma})\) [27], together with \(\pi^{ij} = \sqrt{\gamma} (K^{ij} - K \delta^{ij})\) [72], where \(K^{ij}\) is the extrinsic curvature tensor and \(K = \gamma_{ij} K^{ij}\) its trace.

As shown in Ref. [27], the 3+1-decomposition with \(N^t = 0\) and \(N = 1\) gives the Buchert equations

\[
3(\dot{H} + H^2) + 4\pi G \bar{\rho} - \Lambda = Q_D, \tag{4}
\]

\[
3H^2 - 8\pi G \bar{\rho} + \frac{1}{2} R_D - \Lambda = -\frac{Q_D}{2}, \tag{5}
\]

where \(G\) is Newton’s gravitational constant, \(\bar{\rho}\) the averaged mass density (due to mass conservation given by \(\bar{\rho} = M/(V_0 a^3)\)) with the total mass \(M\), \(R_D\) the av-
eraged spatial Ricci scalar, and Q_D the backreaction term. Equation (4) is the averaged Raychaudhuri equation and Eq. (5) is an averaged Hamiltonian constraint. Q_D and R_D are related via the integrability constraint $\partial(a^6Q_D) + a^3\partial(a^3R_D) = 0$. The Buchert equations [4] and [5] are similar in form to the Friedmann equations [72, 73], which are the standard description of an isotropic homogeneous universe, and obtain the same form (for a flat universe) when setting $R_D = Q_D = 0$. We employ units in which the speed of light c is 1.

Equation (4) is the microscopic equation of motion for H. Next, we eliminate \bar{r} by solving Eq. (4) for \bar{r} and inserting the result into Eq. (4), which gives

$$\dot{H} = -\frac{3}{2}H^2 + \frac{1}{2}\Lambda + \tilde{F}$$

(6)

with $\tilde{F} = Q_D/4 - R_D/12$. Compared to Eq. (4), Eq. (6) has the advantage that the projection P (which has to respect the constraint (4)) is easier to apply. Applying $\exp(iLt)$ to Eq. (6) and using Eq. (2) gives

$$\dot{H}(t) = -\frac{3}{2}H^2(t) + \bar{\Omega}_{HH}H(t) + \bar{\Omega}_{HH3}H^2(t) + \frac{1}{2}\tilde{\Lambda}(t) + \int_0^t ds \left(K_{HH}(s)H(t-s) + K_{HH2}(s)H^2(t-s)\right) + F_H(t),$$

(7)

where we have introduced the frequencies

$$\bar{\Omega}_{HA_j} = (A_j, A_k)^{-1}(\bar{F}, \Lambda)$$

(8)

with $A_j \in \{H, H^2, \Lambda\}$, the shifted cosmological constant

$$\tilde{\Lambda}(t) = \Lambda \left(1 + 2\bar{\Omega}_{HA} + 2\int_0^t ds K_{HA}(s)\right),$$

(9)

the memory functions

$$K_{HA_j}(t) = (A_j, A_k)^{-1}(iLF_H(t), A_k),$$

(10)

and the random force (noise)

$$F_H(t) = e^{iQLt}Q\tilde{F}.$$

(11)

The noise F_H is related to the memory kernels via Eq. (10). These equations constitute a cosmological fluctuation-dissipation theorem (FDT), since they are analogous to the usual second FDT [53, 54]. Equation (7) is a special case of the general result (3). The tilde over the frequencies emphasizes that we have split off the terms appearing also in Eq. (6) to make them visible explicitly.

At first glance, it might appear as if Eq. (7) is no improvement compared to Eq. (6), since it contains significantly more terms. However, this impression is misleading. Equation (6) contains the function \tilde{F} about which (without further input) we know next to nothing. It could also depend on H. In Eq. (7) however, all contributions from the relevant variables are made explicit. The additional terms are simple and linear in the relevant variables, and the random force F_H really only contains the “irrelevant” part of the dynamics, such that (with some caveats, see Ref. [73]) it can be thought of as a noise term. (It can still depend on a, but even this dependence could be extracted by including a in the set of relevant variables. This is not done here since our main purpose is to explain the formalism.) Equations of the form (7) are well understood, and this understanding can now be exploited to understand better the effects of backreaction. In particular, there are well-established numerical methods for extracting the form of the memory functions from measured data of the observable of interest [55, 57].

To solve Eq. (7), we assume that the noise is small and can be omitted. (Alternatively, if we gave the random force a stochastic interpretation, Eq. (7) could be interpreted as giving rise to a probability distribution over possible universes, corresponding to different noise functions.) Next, we make a simple ansatz for the memory kernels of the form $K_{HH}(t) = -\kappa_i \exp(-\zeta_i t)$ with memory amplitude κ_i and damping coefficient ζ_i, where $i = 1, 2$. Such an ansatz is common in high-energy physics [78, 79]. It has the advantage that it allows to remove the convolution integral in Eq. (7) (see Refs. [78, 80]).

Finally, we make the, also common, assumption that K_{HA} relaxes quickly (Markovian approximation [39]), such that the third term on the right-hand-side of Eq. (9) is approximately constant. The backreaction then just changes the measured value of the cosmological constant compared to the “microscopic” case. In other applications of the Mori-Zwanzig formalism, the irrelevant dynamics typically contributes mainly to the linear memory term, such that we set $\bar{\Omega}_{HH} = 0$, $\bar{\Omega}_{HH2} = 0$, and $\kappa_2 = 0$ to focus on the dominant contribution. Then, one can rewrite Eq. (7) as

$$\ddot{H} = -3H\dot{H} - \xi_1 \left(\dot{H} + \frac{3}{2}H^2 - \frac{1}{2}\tilde{\Lambda}\right) - \kappa_1 H,$$

(12)

where we have suppressed the time-dependence.

We now link our results to astronomical parameters, in particular to the redshift z and the jerk j. If structures evolve sufficiently slowly, z is determined by the averaged quantity a through the relation $a = 1/(1 + z)$ [24]. It follows from the definition of H that

$$\dot{\tilde{H}} = \frac{\ddot{a}}{a} - 3H\dot{H} - H^3.$$

(13)

Using the definition of the jerk [31]

$$j = -\frac{\ddot{a}}{aH^3} = -1 + (1 + z)\left(H^2\right)^{\prime} - \frac{1}{2}(1 + z)^2\left(H^2\right)^{\prime\prime},$$

(14)

where $'$ denotes a derivative with respect to z (from now
on, we write $H = H(z)$, we find from Eqs. (12)-(14)

$$j = -\frac{\xi_1(\dot{H} + \frac{3}{2}H^2 - \frac{1}{2}\ddot{\Lambda}) - \kappa_1 H + H^3}{H^3}.$$

(Note that some authors define $j = +\dot{a}/(aH^3)$ instead [82].) With the plausible assumption that the universe behaves approximately Friedmannian on large scales, such that $\dot{H} \approx -\frac{3}{2}H^2 + \frac{1}{2}\ddot{\Lambda}$, Eq. (15) simplifies to

$$j = -1 + \frac{\kappa_1}{H^2}.$$

(16)

In the widely used ΛCDM model, the expansion of the universe is dominated by the cosmological constant (Λ) and by cold dark matter (CDM), and the jerk is $j = -1$ [81]. For this reason, measurements of j have been used to investigate possible deviations from the ΛCDM model [83-85], which were suggested by various recent studies [83-86]. Deviations of j from -1 have been linked to a non-standard equation of state for dark energy [81] or energy transfer from matter to dark energy [87]. Effects of backreaction on the jerk were also considered [88-90].

The functional form of Eq. (16) – derived here from first principles – has been proposed in Ref. [81] as a possible ad-hoc modification of ΛCDM. There, it was shown that the differential equation obtained by setting Eq. (16) equal to Eq. (14) has the solution $H^2/H_0^2 = c_1(1+z)^3 + 1 - c_1 + \frac{1}{2}\kappa_1 \ln(1+z)$ with an integration constant c_1 and $\kappa_1 = H_0^3$. This gives us

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{H_0^2 c_1}{a^3} + H_0^2(1-c_1) - \frac{2}{3}\kappa_1 \ln(a).$$

(17)

Essentially, we have converted a differential equation for $H(t)$ into a (analytically solvable) differential equation for $H(z)$ whose solution (Eq. (17)) is a differential equation for $a(t)$. The first two terms on the right-hand side of Eq. (17) will also be present in the ΛCDM model. The third term, on the other hand, is solely a consequence of backreaction.

In a homogeneous and isotropic universe, the Hamiltonian constraint $3H^2 = 8\pi G \rho + \Lambda$ (with mass density ρ) implies that $c_1 = 8\pi G \rho_0/(3H_0^2)$ [81], where ρ_0 is the present value of ρ, and $H_0^2(1 - c_1) = \Lambda/3$. (These relations follow directly from comparing the constraint with Eq. (17) using $\rho = \rho_0/a^3$, since $\kappa_1 = 0$ in the homogeneous case.) However, in the coarse-grained description considered here, we have to use the averaged constraint [5]. Hence, we cannot simply read off c_1, since it is possible that the backreaction also has a contribution $\propto a^{-3}$ (suggested in Ref. [17]). We thus proceed by treating c_1 as a constant that needs to be determined by measurement.

Based on fits to various data sets (supernova distance modulus data, observational Hubble data, baryon acoustic oscillation data, and cosmic microwave background shift parameter data), Mukherjee and Banerjee [81] have found the values $c_1 = 0.298 \pm 0.010$ and $j_1 = 0.078 \pm 0.140$. Hence, while the data is consistent with the standard result $j_1 = 0$ within a 1σ confidence region, the best fit value is $j_1 \neq 0$.

We have used this best-fit value to numerically integrate Eq. (17). The result is shown in Fig. 1 in comparison to the standard case without memory effects. In this figure, time is measured in units of the Hubble time $t_H = 1/H_0$ and $t = 0$ corresponds (here) to the present. We use $\kappa_1/H_0^2 = 0$ (standard Friedmann equations) and $\kappa_1/H_0^2 = 0.078$ (extension with memory), and set $c_1 = 0.298$ in both cases. As one sees, the backreaction-induced memory has the effect of slowing down the expansion of the universe.

In conclusion, we have extended the Mori-Zwanzig formalism to general relativity and demonstrated its usefulness by deriving an expression for the backreaction in general relativity from first principles. We have shown that this approach predicts a relation between the cosmological jerk and the Hubble rate. Given the relevance of the Mori-Zwanzig formalism in other fields, we hope that our work provides a useful starting point for further investigations in precision cosmology and other areas of astrophysics.

M.t.V. thanks Saul Perlmutter and Adam G. Riess for helpful discussions during the Lindau Nobel Laureate Meeting 2021 and the Studienstiftung des deutschen

FIG. 1. Time evolution of scale factor $a(t)$, obtained by solving Eq. (17), for $\kappa_1/H_0^2 = 0$ (standard Friedmann equations) and $\kappa_1/H_0^2 = 0.078$ (extension with memory). We show only the expanding solution. Since Eq. (17) is quadratic in \dot{a}, there exists a second solution that corresponds to a shrinking universe.
Volkes for financial support. S.H. and R.W. are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – grant numbers HO 2601/8-1 and WI 4170/3-1.

[1] A. Einstein, “Die formale Grundlage der allgemeinen Relativitätstheorie,” Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften SB II, 1030–1085 (1914), reprinted in: D. Simon, Albert Einstein: Akademie-Vorträge. (Wiley, Weinheim, 2006), pp. 8-64.

[2] A. Einstein, “Die Feldgleichungen der Gravitation,” Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften SB II, 844–847 (1915), reprinted in: D. Simon, Albert Einstein: Akademie-Vorträge (Wiley, Weinheim, 2006), pp. 88-92.

[3] A. Einstein, “Die Grundlage der allgemeinen Relativitätstheorie,” Annalen der Physik 354, 769–822 (1916).

[4] F. W. Dyson, A. S. Eddington, and C. Davidson, “A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of May 29, 1919,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 220, 291–333 (1920).

[5] B. P. Abbott and others (LIGO Scientific Collaboration and Virgo Collaboration), “Observation of gravitational waves from a binary black hole merger,” Physical Review Letters 116, 061102 (2016).

[6] B. P. Abbott and others (LIGO Scientific Collaboration and Virgo Collaboration), “GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence,” Physical Review Letters 116, 241103 (2016).

[7] C. Clarkson, G. Ellis, J. Larena, and O. Umeh, “Does the growth of structure affect our dynamical models of the universe? The averaging, backreaction, and fitting problems in cosmology,” Reports on Progress in Physics 74, 112901 (2011).

[8] D. L. Wiltshire, “Exact solution to the averaging problem in cosmology,” Physical Review Letters 99, 251101 (2007).

[9] D. L. Wiltshire, “What is dust? – Physical foundations of the averaging problem in cosmology,” Classical and Quantum Gravity 28, 164006 (2011).

[10] R. Zalaletdinov, “The averaging problem in cosmology and macroscopic gravity,” International Journal of Modern Physics A 23, 1173–1181 (2008).

[11] Y. B. Ginat, “Multiple-scales approach to the averaging problem in cosmology,” Journal of Cosmology and Astroparticle Physics 2021, 049 (2021).

[12] A. Paranjape, The averaging problem in cosmology, Ph.D. thesis, Tata Institute of Fundamental Research, Mumbai (2009), available at arXiv:0906.3165.

[13] T. Buchert, “Toward physical cosmology: focus on inhomogeneous geometry and its non-perturbative effects,” Classical and Quantum Gravity 28, 164007 (2011).

[14] S. Rässänen, “Backreaction: directions of progress,” Classical and Quantum Gravity 28, 164008 (2011).

[15] E. W. Kolb, “Backreaction of inhomogeneities can mimic dark energy,” Classical and Quantum Gravity 28, 164009 (2011).

[16] T. Buchert, M. Carfora, G. F. R. Ellis, E. W. Kolb, M. A. MacCallum, J. J. Ostrowski, S. Rässänen, B. F. Roukema, L. Andersson, A. A. Coley, and D. L. Wiltshire, “Is there proof that backreaction of inhomogeneities is irrelevant in cosmology?” Classical and Quantum Gravity 32, 215021 (2015).

[17] T. Buchert, “A cosmic equation of state for the inhomogeneous universe: can a global far-from-equilibrium state explain dark energy?” Classical and Quantum Gravity 22, L113 (2005).

[18] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, “Early dark energy can resolve the Hubble tension,” Physical Review Letters 122, 221301 (2019).

[19] K. V. Berghaus and T. Karwal, “Thermal friction as a solution to the Hubble tension,” Physical Review D 101, 083537 (2020).

[20] W. L. Freedman, “Cosmology at a crossroads,” Nature Astronomy 1, 0121 (2017).

[21] A. G. Riess, “The expansion of the universe is faster than expected.” Nature Reviews Physics 2, 10–12 (2020).

[22] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, “In the realm of the Hubble tension – a review of solutions,” Classical and Quantum Gravity 38, 153001 (2021).

[23] A. Heinesen and T. Buchert, “Solving the curvature and Hubble parameter inconsistencies through structure formation-induced curvature,” Classical and Quantum Gravity 37, 164001 (2020).

[24] K. Bolejko, “Emerging spatial curvature can resolve the tension between high-redshift CMB and low-redshift distance ladder measurements of the Hubble constant,” Physical Review D 97, 103529 (2018).

[25] H. J. Macpherson, P. D. Lasky, and D. J. Price, “The trouble with Hubble: local versus global expansion rates in inhomogeneous cosmological simulations with numerical relativity,” Astrophysical Journal Letters 865, L4 (2018).

[26] T. Buchert, “On average properties of inhomogeneous fluids in general relativity: dust cosmologies,” General Relativity and Gravitation 32, 105–125 (2000).

[27] T. Buchert, “On average properties of inhomogeneous fluids in general relativity: perfect fluid cosmologies,” General Relativity and Gravitation 33, 1381–1405 (2001).

[28] T. Buchert, P. Mourier, and X. Roy, “On average properties of inhomogeneous fluids in general relativity III: general fluid cosmologies,” General Relativity and Gravitation 52, 1–73 (2020).

[29] H. Mori, “Transport, collective motion, and Brownian motion,” Progress of Theoretical Physics 33, 423–455 (1965).

[30] R. Zwanzig, “Ensemble method in the theory of irreversibility,” Journal of Chemical Physics 33, 1338–1341 (1960).

[31] S. Nakajima, “On quantum theory of transport phenomena: steady diffusion,” Progress of Theoretical Physics
[72] A. Friedman, “Über die Krümmung des Raumes,” Zeitschrift für Physik 10, 377–386 (1922).
[73] A. Friedmann, “Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes,” Zeitschrift für Physik 21, 326–332 (1924).
[74] P. Español and H. C. Öttinger, “On the interpretation of random forces derived by projection operators,” Zeitschrift für Physik B Condensed Matter 90, 377–385 (1993).
[75] H. Meyer, P. Pelagejcev, and T. Schilling, “Non-Markovian out-of-equilibrium dynamics: a general numerical procedure to construct time-dependent memory kernels for coarse-grained observables,” Europhysics Letters 128, 40001 (2020).
[76] H. Meyer, S. Wolf, G. Stock, and T. Schilling, “A numerical procedure to evaluate memory effects in non-equilibrium coarse-grained models,” Advanced Theory and Simulations 4, 2000197 (2021).
[77] M. Berkowitz, J. D. Morgan, D. J. Kouri, and J. A. McCammon, “Memory kernels from molecular dynamics,” Journal of Chemical Physics 75, 2462–2463 (1981).
[78] T. Koide, G. Krein, and R. O. Ramos, “Incorporating memory effects in phase separation processes,” Physics Letters B 636, 96–100 (2006).
[79] T. Koide, G. S. Denicol, P. Mota, and T. Kodama, “Relativistic dissipative hydrodynamics: a minimal causal theory,” Physical Review C 75, 034909 (2007).
[80] M. te Vrugt, J. Jeggle, and R. Wittkowski, “Jerky active matter: a phase field crystal model with translational and orientational memory,” New Journal of Physics 23, 063023 (2021).
[81] A. Mukherjee and N. Banerjee, “Parametric reconstruction of the cosmological jerk from diverse observational data sets,” Physical Review D 93, 043002 (2016).
[82] M. Visser, “Jerk, snap and the cosmological equation of state,” Classical and Quantum Gravity 21, 2603 (2004).
[83] E. Lusso, E. Piedipalumbo, G. Risaliti, M. Paolillo, S. Bisogni, E. Nardini, and L. Amati, “Tension with the flat ΛCDM model from a high-redshift Hubble diagram of supernovae, quasars, and gamma-ray bursts,” Astronomy & Astrophysics 628, L4 (2019).
[84] Z.-X. Zhai, M.-J. Zhang, Z.-S. Zhang, X.-M. Liu, and T.-J. Zhang, “Reconstruction and constraining of the jerk parameter from OHD and SNe Ia observations,” Physics Letters B 727, 8–20 (2013).
[85] P. Mukherjee and N. Banerjee, “Non-parametric reconstruction of the cosmological jerk parameter,” European Physical Journal C 81, 36 (2021).
[86] G. Risaliti and E. Lusso, “Cosmological constraints from the Hubble diagram of quasars at high redshifts,” Nature Astronomy 3, 272–277 (2019).
[87] A. Perez, D. Sudarsky, and E. Wilson-Ewing, “Resolving the H0 tension with diffusion,” General Relativity and Gravitation 53, 7 (2021).
[88] C. S. Carvalho and S. Basilakos, “Angular distribution of cosmological parameters as a probe of inhomogeneities: a kinematic parametrisation,” Astronomy & Astrophysics 592, A152 (2016).
[89] B. Bochner, “Cosmic acceleration and concordance from causal backreaction with recursive nonlinearities,” International Journal of Modern Physics D 22, 1330026 (2013).
[90] B. Bochner, “Cosmic acceleration and a new concordance from causal backreaction,” arXiv:1109.5155v3 (2012).