Some remarks on the Pigola-Rigoli-Setti version of the Omori-Yau maximum principle

F. Fontenele* and A.P. Barreto

Abstract. We prove that the hypotheses in the version of the Omori-Yau maximum principle that was given by Pigola-Rigoli-Setti are logically equivalent to the assumption that the manifold carries a C^2 proper function whose gradient and Hessian (Laplacian) are bounded. In particular, this result extends the scope of the original Omori-Yau principle, formulated in terms of lower bounds for curvature.

2010 Mathematics Subject Classification: Primary 53C21; Secondary 35B50.
Key words and phrases: maximum principles, Omori-Yau maximum principle.

1 Introduction

The celebrated Omori-Yau maximum principle (3, 5, 8) states that if (M, g) is a complete Riemannian manifold with sectional curvature (resp. Ricci curvature) bounded below, then for every $f \in C^2(M)$ that is bounded above, there exists a sequence (q_k) in M such that

$$f(q_k) > \sup_M f - \frac{1}{k}, \ |
abla f|(q_k) < \frac{1}{k}, \ \text{Hess} f(q_k) < \frac{1}{k} g(q_k) \left(\text{resp. } \Delta f(q_k) < \frac{1}{k} \right),$$

(1.1)

for all $k \in \mathbb{N}$, where the third inequality above is in the sense of quadratic forms.

Pigola-Rigoli-Setti (6, Theorem 1.9) obtained a version of the Omori-Yau maximum principle where the hypothesis that the curvature is bounded below is replaced by the assumption that the manifold admits a smooth function with special properties. More precisely, they proved the following result:

Theorem 1.1. Let (M, g) be a Riemannian manifold. Assume that there exist a C^2 function $\gamma : M \to [0, +\infty)$, a compact set $K \subset M$ and constants $A, B > 0$ such that

(i) γ is proper, i.e., $\gamma(x) \to +\infty$ as $x \to \infty$,

*Work partially supported by CNPq (Brazil)
(ii) $|\nabla \gamma| \leq A\sqrt{\gamma}$ on $M \setminus K$,

(iii) $\text{Hess} \gamma \leq B\sqrt{\gamma}G'(\sqrt{\gamma}) g$ (resp. $\Delta \gamma \leq B\sqrt{\gamma}G(\sqrt{\gamma})$) on $M \setminus K$,

where $G : [0, +\infty) \to [0, +\infty)$ is a smooth function satisfying

$G(0) > 0$, $G'(t) \geq 0$ for all $t \geq 0$, (1.2)

$$\int_{0}^{+\infty} \frac{dt}{\sqrt{G(t)}} = +\infty$$ and $\limsup_{t \to +\infty} \frac{tG'(\sqrt{t})}{G(t)} < +\infty$. (1.3)

Then, for every $f \in C^2(M)$ that is bounded above, there exists a sequence (q_k) in M satisfying (1.1).

The function theoretic approach to the Omori-Yau maximum principle provided by Theorem 1.1 has been applied by several authors to obtain results in different contexts ([I], [2], [6]). In Section 2 of this work, we show that Theorem 1.1 is logically equivalent to a more conceptual statement:

Theorem 1.2. If a Riemannian manifold (M, g) admits a C^2 function $\phi : M \to \mathbb{R}$ satisfying, for some constants $C, D > 0$,

(i) ϕ is proper,

(ii) $|\nabla \phi| \leq C$,

(iii) $\text{Hess} \phi \leq Dg$ (resp. $\Delta \phi \leq D$),

then, for every $f \in C^2(M)$ that is bounded above, there exists a sequence (q_k) in M satisfying (1.1).

Under the assumption that a Riemannian manifold M is complete and has sectional curvature (resp. Ricci curvature) bounded below, Schoen-Yau ([7], Theorem 4.2) proved that, for every $p \in M$, there exists a smooth function $\phi : M \to \mathbb{R}$ satisfying, for some constants $C, D > 0$,

$$\phi(x) \geq d(x, p), \quad |\nabla \phi|(x) \leq C, \quad \text{Hess} \phi(x)(v, v) \leq D|v|^2 \quad (\text{resp. } \Delta \phi(x) \leq D),$$

for all $x \in M$ and $v \in T_xM$. In particular, ϕ satisfies (i), (ii) and (iii) in the statement of Theorem 1.2. This shows that Theorem 1.2 (and so Theorem 1.1) is a generalization of the original Omori-Yau maximum principle.

2 The arguments.

The proof below was inspired by the proof of a conceptual refinement of the Omori-Yau maximum principle stated in [4].
Proof of the Theorem 1.2. We will give the proof of the half of the theorem that refers to the Hessian. The proof of the other half is entirely analogous and will be left to the reader.

Multiplying \(\phi \) by a positive constant if necessary, we can assume that \(C = D = 1 \). Let \(f : M \to \mathbb{R} \) be a \(C^2 \) function satisfying \(\sup_M f < +\infty \) and \((p_k)\) a sequence in \(M \) such that

\[
f(p_k) > \sup_M f - \frac{1}{2k}, \quad k \in \mathbb{N}.
\]

(2.1)

For each \(k \in \mathbb{N} \), define a function \(f_k : M \to \mathbb{R} \) by

\[
f_k(x) = f(x) - \varepsilon_k[\phi(x) - \phi(p_k)],
\]

(2.2)

where \(\varepsilon_k = \min\{\eta_k, 1/2k\} \) and

\[
\eta_k = \begin{cases}
1/2[\phi(p_k) - \inf_M \phi], & \text{if } \phi(p_k) > \inf_M \phi, \\
1/2k, & \text{if } \phi(p_k) = \inf_M \phi.
\end{cases}
\]

Since \(\varepsilon_k > 0 \) and \(f \) is bounded above, from (i) one obtains that \(f_k(x) \to -\infty \) as \(x \to \infty \), and so \(f_k \) attains a global maximum at some point \(q_k \in M \). Hence, by (2.2) and the ordinary maximum principle,

\[
0 = \nabla f_k(q_k) = \nabla f(q_k) - \varepsilon_k \nabla \phi(q_k)
\]

(2.3)

and

\[
0 \geq \Hess(f_k(q_k))(v, v) = \Hess f(q_k)(v, v) - \varepsilon_k \Hess \phi(q_k)(v, v), \quad \forall v \in T_{q_k}M.
\]

(2.4)

From (ii), (2.3) and definition of \(\varepsilon_k \), one obtains

\[
|\nabla f(q_k)| = \varepsilon_k|\nabla \phi(q_k)| \leq \varepsilon_k \leq \frac{1}{2k} < \frac{1}{k}.
\]

By (iii) and (2.4), we have, for all \(v \in T_{q_k}M \) with \(v \neq 0 \),

\[
\Hess f(q_k)(v, v) \leq \varepsilon_k \Hess \phi(q_k)(v, v) \leq \varepsilon_k |v|^2 \leq \frac{1}{2k} |v|^2 < \frac{1}{k} |v|^2.
\]

Since \(f_k(p_k) = f(p_k) \), we also have

\[
f(p_k) = f_k(p_k) \leq f_k(q_k) = f(q_k) - \varepsilon_k[\phi(q_k) - \phi(p_k)]
\]

\[
= f(q_k) - \varepsilon_k[\phi(q_k) - \inf_M \phi] - \varepsilon_k[\inf_M \phi - \phi(p_k)]
\]

\[
\leq f(q_k) - \varepsilon_k[\inf_M \phi - \phi(p_k)] \leq f(q_k) + \frac{1}{2k}.
\]

Therefore, by (2.1),

\[
f(q_k) \geq f(p_k) - \frac{1}{2k} > \sup_M f - \frac{1}{2k} - \frac{1}{2k} = \sup_M f - \frac{1}{k}.
\]

Thus, we have shown that \(f(q_k) \to +\infty \) as \(k \to \infty \).
which completes the proof of the theorem.

The fact that Theorem 1.1 is equivalent to Theorem 1.2 is an immediate consequence of the following proposition.

Proposition 2.1. A Riemannian manifold \((M,g)\) admits a function \(\gamma : M \to \mathbb{R}\) as in the statement of Theorem 1.1 if and only if it admits a function \(\phi : M \to \mathbb{R}\) as in the statement of Theorem 1.2.

Proof. Let \(\gamma : M \to \mathbb{R}\) be a function as in the statement of Theorem 1.1. Define a (smooth) function \(u : (0, +\infty) \to (0, +\infty)\) by

\[
u(t) = \sqrt{tG(\sqrt{t})}.
\]

From (1.2), one obtains

\[
u'(t) = \frac{G(\sqrt{t}) + \frac{1}{2} \sqrt{t} G'(\sqrt{t})}{2 \sqrt{t} G(\sqrt{t})} > 0, \quad t > 0.
\]

Given \(C > \limsup_{t \to +\infty} tG(\sqrt{t})/G(t)\), there exists \(t_0 > 1\) such that

\[
\frac{tG(\sqrt{t})}{G(t)} < C, \quad t \geq t_0.
\]

From the above inequality and the fact that \(G\) is non-decreasing, we obtain

\[0 < tG(0) \leq tG(\sqrt{t}) < CG(t), \quad t \geq t_0,
\]

and so

\[
\frac{1}{\sqrt{tG(\sqrt{t})}} > \frac{1}{\sqrt{C} \sqrt{G(t)}}, \quad t \geq t_0.
\]

Hence

\[
\int_1^{+\infty} \frac{1}{u(s)} \, ds = \int_1^{+\infty} \frac{1}{\sqrt{sG(\sqrt{s})}} \, ds \geq \int_{t_0}^{+\infty} \frac{1}{\sqrt{sG(\sqrt{s})}} \, ds
\]

\[\geq \frac{1}{\sqrt{C}} \int_{t_0}^{+\infty} \frac{1}{\sqrt{G(s)}} \, ds = +\infty,
\]

where in the last equality we used (1.3).

Since \(u(t)\) and \(\sqrt{t}\) are non-decreasing, we can assume, adding a positive constant if necessary, that \(\gamma > 0\) and that (ii) and (iii) in the statement of Theorem 1.1 holds on all of \(M\). Therefore, for all \(x \in M\) and all \(v \in T_xM\) we have

\[
|\nabla \gamma(x)| \leq A \sqrt{\gamma(x)} = \frac{A}{\sqrt{G(0)}} \sqrt{\gamma(x)G(0)} \leq \frac{A}{\sqrt{G(0)}} \sqrt{\gamma(x)G(\sqrt{\gamma(x)})} \leq \frac{A}{\sqrt{G(0)}} u(\gamma(x))
\]

(2.6)
and
\[\text{Hess} \gamma(x)(v, v) \leq B \sqrt{\gamma(x)G(\sqrt{\gamma(x)})} \| v \|^2 = Bu(\gamma(x)) \| v \|^2. \] (2.7)

Let \(h : (0, +\infty) \to \mathbb{R} \) be defined by
\[h(t) = \int_1^t \frac{1}{u(s)} \, ds \]

Since \(u > 0 \) and \(u' > 0 \), we have, for all \(t > 0 \),
\[h'(t) = \frac{1}{u(t)} > 0, \quad h''(t) = -\frac{u'(t)}{u(t)^2} < 0. \] (2.8)

Let \(\phi = h \circ \gamma \), so that
\[\phi(x) = h(\gamma(x)) = \int_1^{\gamma(x)} \frac{1}{u(s)} \, ds, \quad x \in M. \] (2.9)

From (2.6) and (2.8), we have
\[|\nabla \phi(x)| = |h'(\gamma(x))\nabla \gamma(x)| = \frac{1}{u(\gamma(x))} |\nabla \gamma(x)| \leq \frac{A}{\sqrt{G(0)}}, \quad \forall x \in M. \] (2.10)

Using (2.7) and (2.8), we obtain, for all \(x \in M \) and all \(v \in T_x M \),
\[\text{Hess} \phi(x)(v, v) = h''(\gamma(x))\langle \nabla \gamma(x), v \rangle^2 + h'(\gamma(x))\text{Hess} \gamma(x)(v, v) \leq \frac{1}{u(\gamma(x))} \text{Hess} \gamma(x)(v, v) \leq B \| v \|^2. \] (2.11)

Moreover, from (2.5), (2.9) and the properness of \(\gamma \), we obtain that \(\phi \) is proper. This concludes the proof of the “only if” part of the proposition. The “if” part is easy and will be left to the reader. \(\square \)

Remark 2.2. The above proof shows that Theorem 1.1 (and so Theorem 1.2) is equivalent to saying that the Omori-Yau maximum principle holds on every Riemannian manifold \((M, g)\) that carries a positive proper \(C^2\) function \(\gamma \) satisfying, outside a compact set,
\[|\nabla \gamma| \leq u \circ \gamma \quad \text{and} \quad \text{Hess} \gamma \leq (u \circ \gamma)g \quad (\text{resp.} \Delta \gamma \leq u \circ \gamma), \]
where \(u \in C^1(0, +\infty) \) is a positive function with \(u' \geq 0 \) and \(\int_1^{+\infty} u(s)^{-1} \, ds = +\infty. \)
References

[1] L. Alias, G.P. Bessa and M. Dajczer, The mean curvature of cylindrically bounded submanifolds, Math. Ann. 345 (2009), 367-376.

[2] L. Alias and M. Rigoli, An introduction to the Omori-Yau maximum principle and its applications, XVI Escola de Geometria Diferencial, USP, São Paulo (Brazil), 2010.

[3] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., 28 (1975), 333-354.

[4] F. Fontenele and F. Xavier, Good shadows, dynamics and convex hulls of complete submanifolds, Asian J. Math., 15 (2011), 9-32.

[5] H. Omori, Isometric immersions of Riemannians manifolds, J. Math. Soc. Japan, 19 (1967), 205-214.

[6] S. Pigola, M. Rigoli and G. Setti, Maximum principles on Riemannian manifolds and applications, Memoirs of the American Mathematical Society, 174, Number 822 (2005).

[7] R. Schoen and S. T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, Vol. 1, International Press, 1994.

[8] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201-228.

Francisco Fontenele
Departamento de Geometria
Universidade Federal Fluminense
Niterói, RJ, Brazil
fontenele@mat.uff.br

Alexandre Paiva Barreto
Departamento de Matemática
Universidade Federal de São Carlos
São Carlos, SP, Brazil
alexandre@dm.ufscar.br