Cognitive correlates of neuroimaging abnormalities in the onset of schizophrenia: A case report

Silvia Grassi, Giulia Orsenigo, Marta Serati, Elisabetta Caletti, Alfredo Carlo Altamura, Massimiliano Buoli

Abstract

Increasing evidence shows that cognitive impairment and brain abnormalities can appear early in the first episodes of schizophrenia, but it is currently debated how brain changes can correlate with clinical presentation of schizophrenic patients. Of note, this report describes the case of a young schizophrenic male presenting parietal magnetic resonance/positron emission tomography abnormalities and cognitive impairment, documented by specific neuropsychological tests. In our knowledge only few studies have investigated if neuropsychological abnormalities could be concomitant with both structural and functional neuroimaging. This case shows that impairment in specific cognitive domains is associated with structural/functional brain abnormalities in the corresponding brain areas (frontal and parietal lobes), supporting the hypothesis of disconnectivity, involving a failure to integrate anatomical and functional pathways.

Key words: Positron emission tomography; Magnetic resonance; Schizophrenia; Neuropsychology

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Schizophrenia is associated with impairment in executive function, verbal memory, verbal fluency and attention. Neuropsychological tests are associated with structural and functional brain alterations. This
case report is an example of the potential correlation between clinical symptoms (e.g., cognitive impairment) and brain changes. These data may help in the prediction of possible outcome of schizophrenia patients.

Grassi S, Orsenigo G, Serati M, Caletti E, Altamura AC, Buoli M. Cognitive correlates of neuroimaging abnormalities in the onset of schizophrenia: A case report. World J Psychiatr 2017; 7(2): 128-132 Available from: URL: http://www.wjgnet.com/2220-3206/full/v7/i2/128.htm DOI: http://dx.doi.org/10.5498/wjp.v7.i2.128

INTRODUCTION

A number of data would indicate schizophrenia as a progressive neurodegenerative disorder[1-3] whose outcome is influenced by many biological and clinical factors[4,5]. Of note, recent literature shows that neuropsychological deficits at onset may predict the clinical course of illness[6], being often associated with frontal and parietal lobe dysfunctions[7-9]. Moreover, a recent trial found that brain abnormalities of schizophrenic patients change according to age at onset. In particular, early onset patients show parietal abnormalities, while adult onset patients exhibit frontal and temporal ones[10].

To our knowledge there are few studies[8-10] associating cognitive frontal and parietal deficits with structural [magnetic resonance (MR)] and functional neuroimaging [positron emission tomography (PET)] and the anatomical and functional relationships underlying this deficit remain to be elucidated. Dysconnectivity, a failure in functional integration, is considered a key mechanism in the pathophysiology of cognitive impairments (in particular working memory performance) in individuals with schizophrenia[11].

The present paper deals with a recent diagnosed schizophrenic patient showing frontal and parietal lobe MR/PET abnormalities clinically associated with deficits in the corresponding cognitive domains.

CASE REPORT

The patient was a 19-year-old man admitted in our department. The patient showed nor psychiatric comorbidity with an Axis I disorder neither personality disorders. A neurological exam, performed by a neurologist, was negative. Diagnosis of undifferentiated schizophrenia and exclusion of comorbid conditions were assessed through the administration of semi-structured interviews based on DSM-IV criteria (SCID I and II). Patient had family history for psychiatric disorders: The father was an alcohol abuser, one schizophrenic uncle (father’s brother) committed suicide and the grandmother in mother line was affected by bipolar disorder. At the admission in our ward the patient was drug-naïve and showed persecutory delusion, auditory hallucinations, thought/behavioural disorganization and a duration of untreated psychosis of 9 mo[12]. Baseline score at Positive and Negative Syndrome Scale[13] was 84, while baseline score at Brief Psychiatric Rating Scale was 55[14]. In the first days of admission patient underwent to neuropsychological tests, cerebral MR and cerebral PET.

A neuropsychological battery was designed to encompass the areas believed to be affected by Schizophrenia[15]. Results and standard scores are summarized in Table 1. Patient’s neuropsychometric performances provided evidence for impairment in the following domains: Executive function (Cognitive Estimation, Verbal fluency, Trail Making Test), verbal memory, verbal ability (Boston Naming Test, phonemic Verbal Fluency) and attention (Visual Search, Trail Making Test). In addition, the patient failed in two Wechsler Adult Intelligence Scale[16] subscales: Verbal Comprehension Index and Perceptual Organization Index.

MR was performed using a circular polarized head coil and included Turbo Spin-Echo T1-weighted sequences, T2-weighted sequences and FLAIR. Imaging in three planes was performed using 5-mm slice thickness. MR revealed normal-sized ventricles, normal-sized subarachnoidal spaces, no abnormalities in gray matter, but bilaterally soft hyper-intensities in superior parietal lobe[17] periventricular white matter.

Fluorodeoxyglucose (FDG) was injected in condition of rest and fasting and after 30 min three-dimensional scan was performed. The images were compared to a cohort of normal ones. Fluoro-D-Glucose PET (Figures 1 and 2) showed glucose frontal and parietal lobes hypometabolism bilaterally. No further abnormalities in FDG distribution were observed.

MR and PET were performed by neuroradiologists collaborating within our department.

Of note, neuropsychological results are consistent with outlined MR abnormalities and PET images (fronto-parietal abnormalities)[17].

DISCUSSION

The present case report confirms data from literature of early cognitive deficits in the course of schizophrenia[18,19] and neuroimaging parietal abnormalities in early onset schizophrenic patients[20,21]. In addition, the correspondence between cognitive deficits and morphological/functional brain alterations[22] contributes to clarify the influence of brain changes in schizophrenia clinical presentation as well as to support the hypothesis of schizophrenia as a neurodegenerative disorder[23,24]. Recent trials found that brain abnormalities are more severe in patients with a longer duration of illness[25-27], novel antipsychotics are promising molecules for their efficacy in stopping the neurodegenerative process[28,29]. In this context cognitive and neuroimaging follow-up of our case can be useful to discriminate if neurodegenerative process of schizophrenia progresses in the course of illness or it is specific of early stages[24,30,31]. Finally, it would be important in the future to define the role of neuroimaging abnormalities in influencing outcome. MR
Table 1 Neuropsychological results

Test	Patient score	Normal value	Result	Z-score
Mini-mental state examination	27.19	24-29.19	Normal	0.45
Executive functions: Tower of London	25	20-36	Normal	-0.75
Frontal assessment battery	15.98	13.5-17.3	Normal	-0.95
Cognitive estimation task	19.97	0-18	Failed	2.43
Bizarreness	6	0-4	Failed	4
Problem solving: Raven’s progressive matrices	29.05	18.6-33.05	Normal	0.89
Assessment of cognitive impairment in memory				
Verbal memory and learning				
Digit Span	5.75	3.75-8.75	Normal	-0.4
Verbal Learning	10.50	6.50-21.50	Normal	-0.93
Recall of prose: Immediate and after 10 min	3.50	8.00-27.50	Failed	-2.92
Spatial short-term memory (Corsi test)	4.50	3.50-8.50	Normal	-1.20
Attention and speed information processing				
Trail making test	33	< 93 s	Normal	
Part B, dual task	161	< 282 s	Normal	
Part B-A	128	< 186 s	Borderline score	-1.36
Visual search	34.25	31-51.25	Borderline score	
Verbal fluency				
Phonemic	23	17-59	Borderline score	-1.43
Categories	32	25-58	Normal	-1.15
Language				
Boston naming test	31	43-60	Failed	-4.82
Token test	32	29-36	Normal	-0.29
Wechsler adult intelligence scale-revised	General IQ = 75 (verbal IQ = 81; performance IQ = 74); VCI = 5.5; POI = 6.25			

The standard scores, reported in the second column, are calculated considering a normal population. Our patient’s scores, adjusted for age, sex and education are shown in the first column next to each test. A score is considered pathological when the score is present less than 5% of the normal population. Sometimes normal scores are considered pathological due to the clinical condition and the global performance. VCI: Verbal comprehension index; POI: Perceptual organization index.

Figure 1 D-glucose (fluorodeoxyglucose) positron emission tomography, transversal sections. Pointer 1 displays the frontal lobe hypo-metabolism; pointer 2 displays the parietal lobe hypo-metabolism.
and PET could be useful tools to make diagnosis and to predict long-term course of schizophrenic illness.

COMMENTS

Case characteristics
A 19-year-old male patient with severe schizophrenia presentation.

Clinical diagnosis
Patient was hospitalized because of prominent persecutory delusion, auditory hallucinations, aggressiveness and thought/behavioural disorganization.

Differential diagnosis
Bipolar disorder, substance use disorder.

Laboratory diagnosis
Routine blood tests were resulted within normal limits.

Imaging diagnosis
At magnetic resonance imaging bilaterally soft hyper-intensities in superior parietal lobe periventricular white matter were detected, while positron emission tomography showed glucose parietal lobes hypometabolism bilaterally.

Pathological diagnosis
Schizophrenia, acute episode.

Treatment
Ziprasidone 80 mg × 2 and Gabapentin 300 mg × 3.

Related reports
Severe cognitive impairment as showed by neuropsychological tests.

Term explanation
Dysconnectivity means abnormal functional integration among brain regions resulting in impaired modulation of neurotransmitters.

Experiences and lessons
It is important to perform imaging evaluation and neuropsychological tests to better define long-term outcome of schizophrenia patients.

Peer-review
This case report is novel and well designed.

REFERENCES

1. van Haren NE, Schnack HG, Cahn W, van den Heuvel MP, Lepage C, Collins L, Evans AC, Hulshoff Pol HE, Kahn RS. Changes in cortical thickness during the course of illness in schizophrenia. *Arch Gen Psychiatry* 2011; 68: 871-880 [PMID: 21893656 DOI: 10.1001/archgenpsychiatry.2011.88]
2. Altamura AC, Bobo WV, Meltzer HY. Factors affecting outcome in schizophrenia and their relevance for psychopharmacological treatment. *Int Clin Psychopharmacol* 2007; 22: 249-267 [PMID: 17690594 DOI: 10.1097/YIC.0b013e32804e2c7f]
3. Wölwer W, Brinkmeyer J, Riesbeck M, Freimüller L, Klimke A, Wagner M, Möller HJ, Klingberg S, Gaebel W. Neuropsychological impairments predict the clinical course in schizophrenia. *Eur Arch Psychiatry Clin Neurosci* 2008; 258 Suppl 5: 28-34 [PMID: 18985291 DOI: 10.1007/s00406-008-5006-2]
Grassi S et al. Cognitive and neuroimaging alterations in schizophrenia

Brunet-Gouet E, Decety J. Social brain dysfunctions in schizophrenia: a review of neuroimaging studies. Psychiatry Res 2006; 148: 75-92 [PMID: 17088049 DOI: 10.1016/j.psychres.2005.06.001]

Ragland JD, Laird AR, Ranganath C, Blumenfeld RS, Gonzales SM, Glahn DC. Prefrontal activation deficits during episodic memory in schizophrenia. Am J Psychiatry 2009; 166: 863-874 [PMID: 19411370 DOI: 10.1097/appi.ajp.2009.08091307]

Schmidt MA, Smieskova R, Simon A, Allen P, Fusar-Poli P, McGuire PK, Bendfeldt K, Aston J, Lang UE, Walter M, Radue EW, Riecher-Rössler A, Borgwardt SJ. Abnormal effective connectivity and psychopathological symptoms in the psychosis high-risk state. J Psychiatry Neurosci 2014; 39: 239-248 [PMID: 24506946 DOI: 10.1503/jpn.130102]

Kyriakopoulos M, Perez-Iglesias R, Woolley JB, Kanaan RA, Vyas NS, Barker GJ, Frangou S, McGuire PK. Effect of age at onset of schizophrenia on white matter abnormalities. Br J Psychiatry 2009; 195: 346-353 [PMID: 19794204 DOI: 10.1192/bjp.bp.108.055376]

Deserno L, Sterzer P, Wüstenberg T, Heinz A, Schlangenfah M. Reduced prefrontal-pair etal effective connectivity and working memory deficits in schizophrenia. J Neurosci 2012; 32: 12-20 [PMID: 22222626 DOI: 10.1523/NEUROSCI.3405-11.2012]

Pujol N, Penadés R, Rametti G, Catalán R, Rametti G, Catalán R, Vidal-Piñeiro D, Penadés R, Rametti G, Catalán R, Vidal-Piñeiro D. Is duration of illness really a predictor of the Brief Psychiatric Rating Scale. Psychiatry Suppl 2003: 478-480 [PMID: 12883428 DOI: 10.1017/S00032917/01001638]

Stephan KE, Friston KJ, Frith CD. Disconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 2009; 35: 509-527 [PMID: 19155345 DOI: 10.1093/schbul/sbm176]

Altmur A, Serati M, Buoli M. Is duration of illness really influencing outcome in major psychoses? Nord J Psychiatry 2015; 69: 403-417 [PMID: 25768662 DOI: 10.1080/08039488.2014.990919]

Kay SR, Opler LA, Lindenmayer JP. The Positive and Negative Syndrome Scale (PANSS): rationale and standardisation. Br J Psychiatry Suppl 1989; 155 (Suppl 7): 59-67 [PMID: 2639982]

Flemena H, Zimmermann RL. Inter- and intra-rater reliability of the Brief Psychiatric Rating Scale. Psychol Rep 1973; 32: 783-792 [PMID: 4704758]

Stefanopoulou E, Manoharan A, Landau S, Geddes JR, Goodwin G, Frangou S. Cognitive functioning in patients with affective disorders and schizophrenia: a meta-analysis. Int Rev Psychiatry 2009; 21: 336-356 [PMID: 20374148 DOI: 10.1080/0954026400260921649]

Kay SR. Schizophrenic WAIS pattern by diagnostic subtypes. Percept Mot Skills 1979; 48: 1241-1242 [PMID: 4928908 DOI: 10.2466/pms.1979.48.3c.1241]

Leeson VC, Barnes TR, Harrison M, Matheson E, Harrison I, Mutsatsa SH, Ron MA, Joyce EM. The relationship between IQ, memory, executive function, and processing speed in recent-onset psychosis: 1-year stability and clinical outcome. Schizophr Bull 2010; 36: 400-409 [PMID: 18682375 DOI: 10.1093/schbul/sbn100]

Fitzgerald D, Lucas S, Redoblado MA, Winter V, Brennan J, Anderson J, Harris A. Cognitive functioning in young people with first episode psychosis: relationship to diagnosis and clinical characteristics. Aust N Z J Psychiatry 2004; 38: 501-510 [PMID: 15255822 DOI: 10.1111/j.1440-1614.2004.00403.x]

Fataoue-Bergman H, Cervenka S, Flynct L, Edman G, Farde L. Meta-analysis of cognitive performance in drug-naïve patients with schizophrenia. Schizophr Res 2014; 158: 156-162 [PMID: 25086658 DOI: 10.1016/j.schres.2014.06.034]

Bartholomeu CF, Crophey VL, Wannan C, Di Biase M, McGorry PD, Pantelis C. Structural neuroimaging across early-stage psychosis: aberrations in neurobiological trajectories and implications for the staging model. Aust N Z J Psychiatry 2017; 51: 455-476 [PMID: 27737310 DOI: 10.1177/0004864916670522]

Yildiz M, Borgwardt SJ, Berger GE. Parietal lobes in schizophrenia: do they matter? Schizophr Res Treatment 2011; 2011: 581686 [PMID: 22937268 DOI: 10.1155/2011/581686]

Minatogawa-Chang TM, Schaufelberger MS, Ayres AM, Duran FL, Gutt EK, Murray RM, Rushe TM, McGuire PK, Menezes PR, Scazufca M, Busatto GF. Cognitive performance is related to cortical grey matter volumes in early stages of schizophrenia: a population-based study of first-episode psychosis. Schizophr Res 2009; 113: 200-209 [PMID: 19616413 DOI: 10.1016/j.schres.2009.06.020]

Rand BL. Is schizophrenia a neurodegenerative disorder? Nord J Psychiatry 2009; 63: 196-201 [PMID: 19235629 DOI: 10.1080/08039480902767286]

Olabi B, Ellison-Wright I, McIntosh AM, Wood SJ, Bullmore E, Lawrie SM. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol Psychiatry 2011; 70: 88-96 [PMID: 21457946 DOI: 10.1016/j.biopsych.2011.01.032]

Hulshoff Pol HE, Kahn RS. What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophr Bull 2008; 34: 354-366 [PMID: 18283048 DOI: 10.1093/schbul/sbm168]

Torres US, Duran FL, Schaufelberger MS, Crippa JA, Louza MR, Sallet PC, Kanegusuku CY, Eliss H, Gattaf WW, Bassitt DP, Zuardi AW, Hallack J, Leite CC, Castro CC, Santos AC, Murray RM, Busatto GF. Patterns of regional gray matter loss at different stages of schizophrenia: A multisite, cross-sectional VBM study in first-episode and chronic illness. Neuroimage Clin 2016; 12: 1-15 [PMID: 27354958 DOI: 10.1016/j.nicl.2016.06.002]

Buoli M, Caldirola A, Panza G, Altmur A. Prominent clinical dimension, duration of illness and treatment response in schizophrenia: a naturalistic study. Psychiatry Investig 2012; 9: 354-360 [PMID: 23251199 DOI: 10.4306/pi.2012.9.4.354]

van Haren NE, Hulshoff Pol HE, Schnack HG, Cahn W, Mandl RC, Collins DL, Evans AC, Kahn RS. Focal gray matter changes in schizophrenia across the course of the illness: a 5-year follow-up study. Neuropsychopharmacology 2007; 32: 2057-2066 [PMID: 17327887 DOI: 10.1038/sj.appi.1301347]

Ozcelik-Erolgu E, Erturugl A, Oguz KK, Has AC, Karahan S, Yazici MK. Effect of clozapine on white matter integrity in patients with schizophrenia. Schizophr Res 2014; 158: 156-162 [PMID: 25086658 DOI: 10.1016/j.schres.2014.06.034]

Zanella A, Curtis L, Badan B et al. Merlo MC. Working memory impairments in first-episode psychosis and schizophrenia. Psychiatry Res 2009; 165: 10-18 [PMID: 19064607 DOI: 10.1016/j.psychres.2007.10.006]

Braw Y, Bloch Y, Mendelovich S, Ratsoni G, Gal H, Harari H, Tripto A, Levkovitz Y. Cognition in young schizophrenia outpatients: comparison of first-episode with multisipose patients. Schizophr Bull 2008; 34: 544-554 [PMID: 17984299 DOI: 10.1093/schbul/snm115]

P- Reviewer: Belli H, Kravos M S- Editor: Ji FF L- Editor: A E- Editor: Li D
