Human error in motorcycle crashes: A methodology based on in-depth data to identify the skills needed and support training interventions for safe riding

Pedro Huertas-Leyva, Niccolò Baldanzini, Giovanni Savino, and Marco Pierini

Department of Industrial Engineering (DIEF), University of Florence, Florence, Italy

ABSTRACT

Objective: Human error by either rider or other vehicle driver is the primary contributing factor in crashes involving powered-two-wheelers. A human-factor-based crash analysis methodology is key to enhancing the road safety effectiveness of rider training interventions. Our aim is to define a methodology that uses in-depth data to identify the skills needed by riders in the highest risk crash configurations to reduce casualty rates.

Methods: The methodology is illustrated through a case study using in-depth data of 803 powered-two-wheeler crashes. Seven types of high-risk crash configuration based on pre-crash trajectories of the road-users involved were considered to investigate the human errors as crash contributors. Primary crash contributing factor, evasive maneuvers performed, horizontal roadway alignment and speed-related factors were identified, along with the most frequent crash configurations and those with the greatest risk of severe injury.

Results: Straight Crossing Path/Lateral Direction was the most frequent crash configuration and Turn Across Path/Opposing Direction was identified as that with the highest risk of serious injury. Multi-vehicle crashes cannot be considered as a homogenous category of crashes to which the same human failure is attributed, as different interactions between motorcyclists and other road users are associated with both different types of human error and different rider reactions. Human error in multiple-vehicle crashes differed between those configurations related to crossroads and those related to rear-end and head-end crashes. Both single-vehicle crashes and multi-vehicle head-on crashes frequently occur along curves. The involved collision avoidance maneuvers of the riders differed significantly among the highest risk crash configurations. The most relevant lack of skills are identified and linked to their most representative context. In most cases a combination of different skills was required simultaneously to avoid the crash.

Conclusions: The results contribute to understand the motorcyclists’ responses in high-risk crash scenarios. The findings underline the need to group accident cases, beyond the usual single-vehicle versus multi-vehicle collision approach. The different interactions with other road users should be considered to identify the competencies of the motorcyclists needed to reduce crash risks. Our methodology can be applied to increase the motorcyclists’ safety by supporting preventive actions based on riders’ training and eventually ADAS design.

Introduction

Each year, about 1.35 million people die in the world as a result of road traffic crashes, and users of motorcycles and mopeds, together referred to as powered-two-wheelers (PTWs), represent nearly a quarter of the fatalities. A fundamental issue to be addressed in the analysis of the PTW crash causes is the human factor contribution by either PTW rider or other vehicle driver, considered the primary crash contributor in in-depth studies conducted worldwide (Hurt et al. 1981; ACEM 2009). Focusing on motorcycle riding to increase safety (beyond other contributing factors related to road, vehicle and other drivers’ errors), researchers proposed science-based countermeasures aiming at improving riding competencies and behavior through effective training and sensitization campaigns (Haworth and Rowden 2010). However, there is little evidence about the effectiveness of any training program in reducing crash risk (Daniello et al. 2009; Kardamanidis et al. 2010). The fact that some studies have reported the ineffectiveness of certain rider training programs (Savolainen and Mannering 2007a; Ivers et al. 2016) does not necessarily indicate the inefficacy of training to increase safety, but rather the need for more effective training design.

Given the overall goal of minimizing PTW crash risks, chances of successful training would derive by addressing the key riding skills needed in those crash types with the highest risk. Some authors have proposed that these skills can be identified with in-depth crash investigations through a comprehensive analysis of the crash contributing human errors (Clarke et al. 2007; Salmon et al. 2010).
Previous in-depth studies of PTW crashes have mainly evaluated the effect of crash contributing factors on both crash incidence (Vlahogianni et al. 2012) and injury severity (Savolainen and Mannering 2007b). Previous research on human errors in PTW crashes is insufficient, primarily due to two limitations. First, most of the available crash-data lack detailed and consistent information on human responses and related errors (Van Elslande 2002, Salmon et al. 2010), which limits the definition of specific human-factors based counter-measures. Secondly, in the few cases where data contained detailed human responses information, the analyses used the crash cases as one homogeneous group or, at best, grouped the cases into single-vehicle (SV) or multi-vehicle (MV) crashes (Allen et al. 2017). Such analyses provide a broad view of human error in crashes, but overlook the effect of certain crash characteristics on those errors (Mannering and Bhat 2014), such as the interaction between the road users involved. Crash countermeasures based on this type of analysis assume that the identified human errors occur with similar frequency in all crash scenarios. Consequently these analyses are more sensitive to overweighting the predominant characteristics of the crashes observed being influenced by factors such as the road type or the geographical location (e.g., errors identified in crash databases from urban areas will differ from those where rural roads predominate).

To overcome the above limitations, we propose a crash analysis methodology that identifies the essential competencies needed to reduce the incidence of each of the most frequent crash types. This methodology uses detailed data on human response and considers the type of crash configuration as an explanatory variable of the interaction between involved road-users in the crash. We address the following two hypotheses: (1) PTW crashes with different types of interaction between the involved road-users are connected to different types of human errors; (2) Riders need to combine different type of skills contemporary to avoid the most common type of crashes.

Methods

Data

PTW crash data collected in France, Germany, Netherlands, Spain and Italy under the MAIDS project (ACEM 2009) were analyzed. The sample contained 921 crashes cases with injured PTW users (including 100 fatal crashes) between 1999 and 2001, with 1721 variables reported. For our analysis we excluded crashes where the primary contributing factor was rider impairment or mechanical problems (i.e., rider or PTW were not in a riding condition) and PTW mofa-type crashes, reducing the sample to 803 cases (see Appendix Figure A1). Additional references can be found in the bibliography in the Appendix.

Crash types selection

We selected the 16 configurations of the 25 included in MAIDS (see Appendix Figure A1), where either an evasive maneuver was required or a simple collision occurred without involving other road users (665 cases). To facilitate the identification of human error by crash configuration and increase the statistical power, we merged those configurations that shared similarities in pre-crash trajectories of the vehicles. The resulting seven configurations (Figure 1) correspond to: four with multi-vehicle (MV) crossing path crash at intersections; two with MV collisions not related to intersections; and one single vehicle (SV) crash with the PTW falling or running off the roadway with no other vehicle (OV) involved. The remaining configurations were categorized as Other (138 cases).

Crash variables to determine lack of competencies

First, frequency distribution of each crash configuration was analyzed as whole and segmented by PTW category (Moped or L1 for PTWs with speed ≤45km/h and engine ≤50cm³; Motorcycle or L3 for higher speed and engine) and by Injury severity (severe if MAIS3+ and non severe otherwise). Secondly, the type of human errors involved and the attempted avoidance responses were identified by analyzing: the categorical variables (i) primary crash contributing factor, (ii) horizontal roadway alignment, (iii) evasive maneuvers performed with the PTW and the quantitative variables (iv) Time from Precipitating Event to Impact (TPEI); and (v) posted speed limits and estimated impact speed (Figure 1).

Primary crash contributing factor, identified as generator of the crash event, included environment factors (road surface, adverse weather and view obstruction) and human
failures. The classification of human failures, conducted in agreement with the stages of the information processing (Wierwille et al. 2002; Stanton and Salmon 2009), were:

- late *detection* error (listed as *perception* in MAIDS), including cognitive errors (do not look at the area of the hazard) and perception errors (looked-but-failed-to-see);
- *comprehension* (poor diagnostic of the scene);
- *decision* (maneuver or response selection at a wrong time or place);
- *execution* (listed as *reaction* in MAIDS), relate mainly with skill-based errors – e.g. overcompensation, inadequate control or freezing.

Evasive maneuvers were categorized by *braking* (activation of rear, front or both brakes), *swerving*, *no evasive action* and *other* (including flashing headlamp high beams, accelerating or honking). Error in the *selection* and *execution* of the attempted maneuver was also analyzed.

Statistical analysis

Descriptive statistics by crash configuration included frequency distributions of the categorical variables and mean and quartile 1 and 3 (Q1 and Q3) for *posted speed limits*, estimated *speed impact* and *TPEI*. When impact speed exceeded the posted speed limit by 20%, we considered *speeding* as a crash contributing factor.

Odds ratios (OR) with their 95% confidence intervals were calculated to determine the association between each type of crash configuration and the variables *injury severity*, *PTW category* and *evasive maneuver*. For OR analysis, the original categorical variables were recoded as sets of dichotomous variables (category present or absent). Each analysis computed the risk of the analyzed crash scenario versus the pooled remaining scenarios. Statistical significance was considered when 1.0 was out the 95%CI.

Results

Frequency distribution

Table 1 shows the frequency distributions for the seven crash configurations considered and for those crashes categorized as *Other*. Overall, the most frequent PTW crash configurations were SCP/LD (16.9%) and TAP/SD (16.7%).

The four configurations that gather the MV crossing path crashes at intersection (SCP/LD, TIP/LD, TAP/OD and TAP/SD) represented the 57.9% of all the crashes. The two configurations representing MV collision not related with intersections (RE/SD and HS/OD) were the least frequent (less than 8% each) while single vehicle crashes without OV involvement (SV) represented 11.1% of the PTW crashes.

For the motorcycle PTW type subset, the most frequent crash configuration was SV with 16.1% of the cases. Motorcycles were overrepresented in SV configuration compared to the rest of MV crash configurations (87.6% vs. 56.7%). SV represents a risk for motorcycles 5.4 higher than for mopeds (OR = 5.4, 95%CI [2.8, 10.3]). Severe injuries were significantly more frequent in TAP/OD crashes (32.6%) than in all other configurations put together (21.3%). Crashes in TAP/OD represented a risk of severe injury 1.8 higher than in all other configurations put together (OR = 1.8, 95%CI [1.1, 2.9]).

Primary contributing factor

Figure 2 shows that distribution of primary crash contributing factors for the whole dataset (*Total*) differs from most of the scenarios and only presents similarities with the two more frequent configurations (SCP/LD and TAP/SD) (more details about *other* factor in Appendix Table A2).

Multi-vehicle collision at intersection: Detection failure by other vehicle driver

In the configurations corresponding to MV crossing path crashes at intersection (SCP/LD, TIP/LD, TAP/OD and TAP/SD), the primary contributing factor is mostly related to OV driver failure, including *detection* as the most frequent failure. This trend is particularly noticeable in TAP/OD where OV driver failure contributed to 85.3% of crashes, of which 67.4% corresponded to *detection* failure. PTW rider failure still had a relevant prevalence in two crash configurations at intersections SCP/LD and TAP/SD, where failures in *detection* and *decision* together make up more than 20% of the cases. View *obstruction* was a frequent contributing factor in crash configuration TIP/LD (12% of cases).
Multi-vehicle collision without crossing paths and single vehicle crashes: PTW rider failure

In the two MV crash configurations not related to intersections (RE/SD, HS/OD) and in single vehicle crashes (SV) the primary crash contributor was PTW rider failure (50.0%, 49.2% and 67.4% of cases respectively). The most common failures were: in RE/SD detection (28.8%); in HS/OD decision (25.4%) and execution (13.6%); in SV decision (21.3%) and execution (20.2%) (e.g., wrong trajectory bending a curve). In SV, other external factors such as roadway maintenance defects (6%) or adverse weather (8%) included in the 31.5% of other category are also important.

Horizontal roadway alignment

Crashes occurred with PTW circulating straight in over 74% of the cases in all crash configurations except for SV (24%) and HS/OD (34%) which occurred more frequently in curves. Left-hand curves were more prevalent in SV (left-hand 45% and right-hand 30%) and right-hand curves in HS/OD (left-hand 12% and right-hand 46%) (see Figure A2 in Appendix).

Evasive manoeuvres

Overall, braking is the most attempted evasive response (47%) followed by no evasive action (35%) and swerving (13%) (Figure 3).

OR analysis comparing the cases of each scenario versus the pooled remaining scenarios identified the overrepresented evasive maneuvers. Braking was overrepresented in TIP/LD (O.R: 2.0; 95%CI [1.3, 3.0]), TAP/OD (O.R: 1.5; 95%CI [1.0, 2.2]) and RE/SD (O.R: 1.7; 95%CI [1.0, 3.0]). Swerve was overrepresented in TAP/SD (O.R: 1.8; 95%CI [1.1, 3.0]), no evasive action was overrepresented in SCP/LD (O.R: 1.7; 95%CI [1.2, 2.4]) and other action was overrepresented in HS/OD (O.R: 3.1; 95%CI [1.2, 7.8]).

According to the in-depth data, excluding the no evasive action cases, the selection of the evasive maneuver was correct in 81.6% of the 374 cases (76.4% was the lowest rate of correct maneuvers for SCP/LD and 87.8% the highest for RE/SD). Therefore, we can assume that the connections found between evasive maneuvers and crash configurations are not biased by selection failure. Analyzing the cases with correct selection (N = 305), execution failures were found in braking and swerving in 43% and 38% of the cases respectively, without significant effect of the crash configuration, except HS/OD where the risk of swerving wrongly was much higher (O.R:14.9; 95%CI [1.7, 125.0]). Summarizing, when an evasive maneuver was attempted, incorrect selection was not a crash contributor; in contrast, poor braking or swerving often contributed to not avoiding the crash (see more information in Appendix Tables A3 A4).

Speed and Time from Precipitating Event to Impact (TPEI)

Posted speed limits for the collision cases was 50 km/h in most of the cases for all the configurations except for SV, where 100 km/h was also predominant (Table 2). Posted limits are related with road type, in fact the data collected corresponds mostly to urban road where limits of 50 km/h are predominant. The mean of estimated impact speed was 44.9 km/h overall, with means ranging from 35 to 50 km/h in all crash configurations except for SV (63.8 km/h). Overall, in 14.6% of the crashes the impact speed was 20% in excess of posted speed limit, with SV configuration having the highest prevalence of this type of speeding (21.2%), followed by TAP/OD (17.9%). Concerning TPEI, configurations SV, HS/OD and TAP/SD were those with the shortest time to perform the necessary processes for collision avoidance. (More data in Appendix Figure A3).

Table 2. Mean [Q1-Q3] for posted speed limit (km/h) and for TPEI (Time estimated from Precipitating Event to Impact) (s). In bold the highest speed and lowest TPEI.

Crash Conf.	Posted Speed	N	Speed Impact	N	TPEI	N
SCP/LD	50.5 [50-50]	134	38.7 [25-49]	136	1.9 [1.2-2.4]	136
TIP/LD	48.6 [40-50]	99	35.6 [23-44]	100	2.0 [1.4-2.4]	96
TAP/OD	55.5 [50-70]	95	49.6 [30-70]	95	2.0 [1.2-2.1]	94
TAP/SD	54.0 [50-50]	134	43.2 [27-53]	134	1.7 [1.0-2.4]	133
RE/SD	59.9 [50-70]	51	40.2 [26-51]	52	2.2 [1.4-2.7]	52
HS/OD	59.8 [40-90]	59	47.1 [28-64]	59	1.7 [1.1-2.1]	58
SV	71.7 [50-100]	86	63.8 [34-89]	88	1.5 [0.6-2.3]	83
Total	**56.0 [50-50]**	**658**	**44.9 [27-54]**	**664**	**1.9 [1.1-2.3]**	**652**

* † Sample less than N = 665 due to some cases not having the required information
Four MV collision configurations with intersections (SCP/LD, TIP/LD, TAP/OD and TAP/SD). Detection failure by OV drivers was the most common primary factor contributing to other driver failure in PTW detection: PTW low conspicuity (Rößger et al. 2015); spatial frequency of the motorcycle; light density of traffic (Allen et al. 2017); and perception failure of the gap with the PTW of other driver before getting in the intersections (Horswill et al. 2005). According to the human failure model defined by Van Elslande (2002) in crashes with OV driver detection failures, the prognosis error due to misjudgement or wrong anticipation (e.g., wrongly assume a vehicle will not enter path) should be also included to identify in which cases riders should learn to better anticipate other drivers’ errors. Despite the similarities among the MV crash configurations of this cluster, we also found that these four configurations differed from each other either in the rider responses to avoid collisions or in the average impact speed, which suggests analyzing these types of crashes independently. Second cluster presented rider failure as the most frequent primary contributing factor, corresponding to the two MV configurations which are not crossing path crashes (PTW impacting rear of other vehicle in same direction: RE/SD; Head-on/Swipe with other vehicle in Opposite Direction: HS/OD) and the single-vehicle crashes without involvement of other road user (SV). Detection failure by rider due to late reaction (cognitive and/or perception failures) was the main crash contributor factor in the MV crash configuration RE/SD, and decision and execution failures by rider in SV and HS/OD crash configuration. Decision failures are connected with maneuvers like overtaking due to a misjudgement or violations and speeding. Excessive speed was estimated in SV configuration in 21% of the cases. Time from precipitating event to impact (TPEI), a parameter indirectly related to speed, presented the lowest values in HS/OD, which in turn reduces the likely of a successful evasive maneuver. Execution failures in both SV and HS/OD may be related to a poor performance taking curves. Crashes in HS/OD were frequently (46% of cases) on right-hand curves that runs the PTW into oncoming traffic (traffic drove on the right), probably due to inappropriate lane position (Crundall et al. 2012). Crashes in SV were frequently on left-hand curves (45% of cases) that run the PTW off the roadway.

The second main finding showed that motorcycle riding is a complex task and that in most cases the combination of different skills was required to avoid the crash (Table A5 in Appendix). Training programs focusing on one single skill component, either cognitive or control skills, are likely to achieve a limited effect in reducing rider casualties. Rather, training should address multiple skills considering the different high-risk configurations, identifying the set of skills potentially able to reduce the likelihood of being caught in a particular crash scenario (see Figure A4 in Appendix).

Braking was the most common evasive maneuver used by riders in most configurations, and in many cases the execution was considered poor (including reactions like fear of using the front brake), suggesting a need to improve evasive
maneuvers while avoiding loss of control (Huertas-Leyva et al. 2020). However, acquiring these control skills may be not enough to avoid crash if time to collision is too short. Considering that the average for TPEI is 2 s (M = 1.9 s for our dataset) and for traveling speed is 50 km/h, the average deceleration required to avoid the collision (in an emergency braking maneuver) should be higher than 6.94 m/s². According to experiments from literature on emergency braking in a controlled environment, this deceleration is only achieved by experts (Huertas-Leyva et al. 2019). The significant proportion of cases found where riders did nothing to avoid collision may be related to different factors such as: how unexpected the hazard stimulus is (e.g., wrong anticipation); how many solutions the rider has under consideration; or how fast the perception-action process is under constrained time. Less experienced riders or with less automatism hazard-perception/evasive-action may get into panic mode, instinctively reacting with either freeze or fear responses (Collet et al. 2005). Although new brake systems including ABS or CBS may improve braking performance, braking training for emergency situations will still be necessary to use the full potential of brakes. The findings support training anticipatory skills and tasks coupling perception and action to reduce cases with no evasive action and to increase the safety margin. The perception-action task was defined as critical in previous naturalistic study with cars, which found that the main difference between crashes and near-crash cases was not in the main conflict contributor factor but in how quick was the evasive maneuver response after the precipitating event onset (Guo et al. 2010). Results also support training riders to select both proper lane position and speed in sharp curves. Finally, addressing risky attitudes, identifying the consequences of speeding and inappropriate overtaking decisions may also comprise a reduction of motorcyclists’ overconfidence and a change in attitudes and behavior (Manning and Grodsky 1995). Concurrently, considering that detection error by other vehicle drivers is often the primary crash contributing factor, driver education to perceive PTWs at intersections should be prioritized.

This study has a number of limitations. The data used may not be up-to-date and not accurately represent the current context (higher ratio of PTWs with advanced safety systems, infrastructure improvements or changes in riders’ profile). Data were mainly collected in urban areas with a high proportion of mopeds, so the crash prevalence of the analyzed configurations may have been affected by the influence of exposure. A fully developed approach to rider failures should include elements such as motivation, expectations, and physical condition (Van Elslande 2002), which can hardly be collected. MAIDS data, despite limitations, still represent one of the most comprehensive and complete in-depth databases on PTW crashes available in Europe today, including human failure analysis and rider response in each crash case, and with sufficient cases to support statistics analysis of multiple crash configurations. Changes in technology or infrastructure in recent years have not significantly affected the type of crash scenarios proposed in our study, so the proposed methodology can be applied to new data considering that such changes may affect the share by scenario, as it happens comparing databases collected in different regions in Europe or abroad. In that regard, the relative importance of the different components of the skills to be taught might vary from region to region. Additionally, the approach presented, which uses information from road-user interactions to categorize crash configurations, allows comparing rider errors linked to each crash configuration with other databases that follow our same approach, avoiding the bias of an evaluation of human failure from a global approach (more sensitive to the overrepresentation of a particular crash scenario). Our methodology can be applied with in-depth studies of different geography to assess whether different populations need improving same or different competencies for safety. For a reliable comparison between studies in the future, it is critical to harmonize data collection criteria regarding the categories and terminology of both contributing factors and accident typologies.

The results from the study give some keys to associate training skills required with representative test scenarios of the variability of real-world crashes. The importance of identifying the lack of competencies in specific context lies in their application to new training programs and education interventions for improving motorcycle safety. The findings can provide a valuable tool for motorcycle training, where instructors will know the most realistic scenario linked to a set of competencies identified as necessary to avoid rider failures in traffic conflicts. A content where competencies are learnt in a context of specific real-world crash scenarios may enhance rider motivations and consequently could improve the skills acquisition. Accordingly, instructors will have the possibility to adapt the specific skills training exercises to their most appropriate test scenario with the means available to them (videos, multimedia, simulator or off-road training). This paper provides the data to be used by policy makers (together with training experts) to take decisions concerning the most suitable mix of competences to be taught in future training programs, also projecting our results on a different mix of crash data in a given region. Further research is suggested on designing training programs for learning and retaining the skills identified as required. Additionally, the methodology presented, following previous studies on car drivers (Stanton and Salmon 2009; Nilsson et al. 2018), may be applied to define ADAS or ITS for PTWs aimed at strengthening riders’ competencies and reducing frequent errors.

Acknowledgment

We thank ACEM (European Motorcycle Manufacturers Association) for their availability by giving us access to the MAIDS database at their facilities in the framework of the MOTORIST project.

Funding

This work was funded by the 7th Framework Program of the European Commission within the Marie Curie Research Training Network
References

ACEM. 2009. Motorcycle accident in depth study.- In-depth investigations of accidents involving powered two wheelers. Final Report 2.0. http://www.maidss-study.eu/pdf/MAIDS2.pdf.

Allen T, Newstead S, Lenné MG, McClure R, Hillard P, Symmons M, Day L. 2017. Contributing factors to motorcycle injury crashes in Victoria, Australia. Transp Res Part F Traffic Psychol Behav. 45:157–168. doi:10.1016/j.trf.2016.11.003

Clarke DD, Ward P, Burtle C, Truman W. 2007. The role of motorcyclist and other driver behaviour in two types of serious accident in the UK. Accid Anal Prev. 39(5):974–981. doi:10.1016/j.aap.2007.01.002

Collet C, Petit C, Priez A, Dittmar A. 2005. Stroop color-word test, arousal, electrodermal activity and performance in a critical driving situation. Biol Psychol. 69(2):195–203. doi:10.1016/j.biopsycho.2004.07.003

Crundall E, Crundall D, Stedmon AW. 2012. Negotiating left-hand and right-hand bends: a motorcycle simulator study to investigate experiential and behaviour differences across rider groups. PLoS One. 7(1):e29978. doi:10.1371/journal.pone.0029978

Daniello A, Gabler HC, Mehta YA. 2009. Effectiveness of motorcycle training and licensing. Transp Res Part F Traffic Psychol Behav. 2140(1):206–213. http://www.sbes.vt.edu/gabler/publications/TRR-Daniello-2140-2009.pdf. doi:10.3141/2140-23

Guo F, Klauer SG, Hankey JM, Dingus T. a. 2010. Near crashes as crash surrogate for naturalistic driving studies. Transp Res Rec. 2147(1):66–74. doi:10.3141/2147-09

Haworth N, Rowden P. 2010. Challenges in improving the safety of learner motorcyclists. In: Proceedings of 20th Canadian Multidisciplinary Road Safety Conference, Niagara Falls, Ontario. June 6–9.

Horswill MS, Helman S, Ardiles P, Wann JP. 2005. Motorcycle accident risk could be inflated by a time to arrival illusion. Optom Vis Sci. 82(8):740–746. doi:10.1097/01.opt.0000175563.21423.50

Huertas-Leyva P, Nugent M, Savino G, Pierini M, Baldanzini N, Rosalie S. 2019. Emergency braking performance of motorcycle riders: skill identification in a real-life perception-action task designed for training purposes. Transp Res Part F Traffic Psychol Behav. 63:93–107. https://linkinghub.elsevier.com/retrieve/pii/S1369847818300949. doi:10.1016/j.trf.2019.03.019

Huertas-Leyva P, Savino G, Baldanzini N, Pierini M. 2020. Loss of control prediction for motorcycles during emergency braking maneuvers using a supervised learning algorithm. Appl Sci. 10(5):1754. https://www.mdpi.com/2076-3417/10/5/1754. doi:10.3390/app10051754

Hurt HH, Ouellet J, Thom D. Motorcycle accident cause factors and identification of countermeasures: volume 1 Technical Report. 1981. January (Contract No. DOT HS-5-01160). p. 425.

Ivers RQ, Sakashita C, Senserrick T, Elkening J, Lo S, Boufous S, De Rome L. 2016. Does an on-road motorcycle coaching program reduce crashes in novice riders? A randomised control trial. Accid Anal Prev. 86:40–46. doi:10.1016/j.aap.2015.10.015

Kardamanidis K, Martinuik A, Ivers R, Stevenson M, Thistlethwaite K. 2010. Motorcycle rider training for the prevention of road traffic crashes. Cochrane Database of Systematic Reviews. (10). doi:10.1002/14651858.CD005240.pub2.

Manning FL, Bhat CR. 2014. Analytic methods in accident research: methodological frontier and future directions. Anal Methods Accid Res. 1:1–22. doi:10.1016/j.amar.2013.09.001

Manning FL, Grodsky LL. 1995. Statistical analysis of motorcyclists' perceived accident risk. Accid Anal Prev. 27(1):21–31. doi:10.1016/0001-4575(94)90041-j

Nilsson D, Lindman M, Victor T, Dozza M. 2018. Definition of run-off-road crash clusters–For safety benefit estimation and driver assistance development. Accid Anal Prev. 113:97–105. doi:10.1016/j.aap.2018.01.011

Röfger L, Lenné MG, Underwood G. 2015. Increasing motorcycle conspicuity: Design and assessment of interventions to enhance rider safety. Röfger L, Lenné MG, Underwood G, editors. Surrey, UK: ASHGATE Publishing Ltd;

Salmon PM, Lenné MG, Stanton NA, Jenkins DP, Walker GH. 2010. Managing error on the open road: the contribution of human error models and methods. Saf Sci. 48(10):1225–1235. doi:10.1016/j.ssci.2010.04.004

Savolainen P, Manning F. 2007a. Effectiveness of motorcycle training and motorcyclists’ risk-taking behavior. Transp Res Rec. 2031(1):52–58. doi.org/ doi:10.3141/2031-07

Savolainen P, Manning F. 2007b. Probabilistic models of motorcyclists’ injury severities in single- and multi-vehicle crashes. Accid Anal Prev. 39(5):955–963. doi:10.1016/j.aap.2006.12.016

Stanton NA, Salmon PM. 2009. Human error taxonomies applied to driving: a generic driver error taxonomy and its implications for intelligent transport systems. Saf Sci. 47(2):227–237. doi:10.1016/j.ssci.2008.03.006

Van Elslande P. 2002. Specificity of error-generating scenarios involving motorized two-wheeler riders. In Proceedings of the Third International Conference on Traffic and Transportation Studies (ICTTS) 2002, July 23–25, Guilin, China. pp. 1132–1139. doi:10.1016/04603025(02)0157

Vlahogianni EI, Yannis G, Golas JC. 2012. Overview of critical risk factors in power-two-wheeler safety. Accid Anal Prev. 49:12–22. doi:10.1016/j.aap.2012.04.009

Wierswille WW, Hanowski RJ, Hankey JM, Kieliszewski CA, Lee SE, Medina A, Dingus TA. 2002. Identification of driver errors: overview and recommendations. FHWA-RD-02-003. Norfolk, VA: US DOT.