Changes in the prevalence and correlates of weight-control behaviors and weight perception in adolescents in the UK, 1986-2015

Citation for published version:
Solmi, F, Sharpe, H, Gage, SH, Maddock, J, Lewis, G & Patalay, P 2020, 'Changes in the prevalence and correlates of weight-control behaviors and weight perception in adolescents in the UK, 1986-2015', JAMA Pediatrics. https://doi.org/10.1001/jamapediatrics.2020.4746

Digital Object Identifier (DOI):
10.1001/jamapediatrics.2020.4746

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
JAMA Pediatrics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Changes in the Prevalence and Correlates of Weight-Control Behaviors and Weight Perception in Adolescents in the UK, 1986-2015

Francesca Solmi, PhD; Helen Sharpe, PhD; Suzanne H. Gage, PhD; Jane Maddock, PhD; Glyn Lewis, PhD; Praveetha Patalay, PhD

IMPORTANCE In the context of the growing prevalence of childhood obesity, behaviors aimed at weight loss and their psychological burden might be increasing.

OBJECTIVE To investigate whether the prevalence of weight-control behaviors and weight perception, including their association with depressive symptoms, has changed in the 3 decades between 1986 and 2015.

DESIGN, SETTING, AND PARTICIPANTS This study used data from repeated cross-sections from successive longitudinal birth cohort studies. These included general population samples of UK adolescents aged 14 to 16 years from 3 ongoing birth cohorts: the British Cohort Study 1970 (children born between April 5 and 11, 1970; data collected in 1986), the Avon Longitudinal Study of Parents and Children (mothers with expected delivery between April 1, 1991, and December 21, 1992; data collected in 2005), and the Millennium Cohort Study (children born between September 1, 2000, and January 11, 2002; data collected in 2015). A total of 22,503 adolescents with data available on at least 1 weight-control or weight-perception variable in midadolescence were included in the study. Data were analyzed from August 1, 2019, to January 15, 2020.

MAIN OUTCOMES AND MEASURES Self-reported lifetime dieting and exercise for weight loss, current intentions about weight (doing nothing, lose weight, stay the same, gain weight), and weight perception (underweight, about the right weight, overweight) adjusted for body mass index. The secondary outcome was depressive symptoms.

EXPOSURES The main exposure was time (ie, cohort); secondary exposures were weight-change behaviors and weight perception.

RESULTS The study cohort included 22,503 adolescents (mean [SD] age, 14.8 [0.3] years; 12,061 girls [53.6%]; and 19,942 White individuals [89.9%]). A total of 5,878 participants were from the British Cohort Study, 5,832 were from the Avon Longitudinal Study of Parents and Children, and 10,793 were from the Millennium Cohort Study. In 2015, 4,809 participants (44.4%) had dieted and 6,514 (60.5%) had exercised to lose weight compared with 1,952 (37.7%) and 344 (6.8%) in 1986. Furthermore, 4,539 (42.2%) were trying to lose weight in 2015 compared with 1,767 (28.6%) in 2005. Although girls were more likely to report these behaviors in all years, their prevalence increased more in boys over time (lifetime dieting in boys: odds ratio [OR], 1.79; 95% CI, 1.24-2.59; in girls: OR, 1.23; 95% CI, 0.91-1.66; currently trying to lose weight in boys: OR, 2.75; 95% CI, 2.38-3.19; in girls: OR, 1.70; 95% CI, 1.50-1.92). Adolescents also became more likely to overestimate their weight (boys describing themselves as overweight adjusting for body mass index, 2015 vs 1985 OR, 1.36; 95% CI, 1.04-1.80; girls describing themselves as underweight, after adjusting for body mass index, 2015 vs 1986 OR, 0.51; 95% CI, 0.28-0.91). Girls who described themselves as overweight experienced increasingly greater depressive symptoms over time compared to girls who described their weight as about right (mean difference 1986, 0.32; 95% CI, 0.22-0.41; mean difference 2005, 0.33; 95% CI, 0.24-0.42; mean difference 2015, 0.56; 95% CI, 0.49-0.62).

CONCLUSIONS AND RELEVANCE These findings suggest that the growing focus on obesity prevention might have had unintended consequences related to weight-control behaviors and poor mental health. Public health campaigns addressing obesity should include prevention of disordered eating behaviors and be sensitive to negative impact on mental health.

JAMA Pediatr. doi:10.1001/jamapediatrics.2020.4746
Published online November 16, 2020.
The proportion of adolescents with an overweight or obese body mass index (BMI) has almost tripled over the past 40 years in the UK.\(^1,2\) Approximately 40% of UK adolescents aged 13 to 15 years have an overweight or obese BMI.\(^2\) Government strategies for the prevention of obesity in childhood include raising awareness of food caloric intake (eg, the “traffic light” system on food packaging),\(^3\) introducing the Soft Drinks Industry Levy in 2018,\(^4\) and increasing physical activity.\(^4\)

Restrictive eating behaviors aimed at weight loss can be common in adolescence, particularly among adolescents who have an overweight BMI.\(^5\) Because of the increasing prevalence of obesity and widespread societal messages promoting thinness, restrictive eating behaviors may become more common across the BMI spectrum. This is of concern because experimental studies have found that dieting is ineffective at reducing body weight in young people\(^6\) and that restrictive eating behaviors are longitudinally associated with adverse mental health outcomes, including depression and eating disorders.\(^7,13\)

We are not aware of any UK general population studies investigating time trends in weight-control behaviors and weight perception in adolescence and changes to their psychological correlates. Recently, the UK government has highlighted these issues as an area of increasing policy concern.\(^14\) Findings from other Western countries\(^15-18\) provide inconsistent evidence. Data from the US, Norway, Cyprus, Sweden, and New Zealand show an increase in the proportion of weight-control behaviors in early adolescence, particularly in boys.\(^15,16\) However, 2 studies based in the US and Finland found that the prevalence of weight-control behaviors did not change over a 10-year time period (US, 1999-2010; Finland, 2003-2013),\(^19,20\) although girls in Finland became more likely to believe they would feel worthless if they could not achieve their desired weight.\(^19\) This suggests that the psychological burden associated with these behaviors might have increased over time.

In this study, we used harmonized data spanning 30 years derived from 3 UK birth cohorts that collected data in midadolescence on weight-perception and weight-control behaviors in 1986, 2005, and 2015, with 2 aims. First, we examine whether the prevalence of weight-control behaviors and weight perception changed in the 3 decades between 1986 and 2015 and whether any changes vary by sex. Second, we estimate their related psychological burden by investigating their associations with depressive symptoms and whether the magnitude of these associations has changed over time.

Methods

Participants

We used data from 3 ongoing UK cohorts: the 1970 British Cohort Study (BCS; children born between April 5 and 11, 1970), the Avon Longitudinal Study of Parents and Children (ALSPAC; mothers with expected delivery between April 11, 1991, and December 31, 1992), and the Millennium Cohort Study (MCS; children born between September 1, 2000, and January 11, 2002; details in eMethods 1 in the Supplement) collected when participants were aged approximately 16 years (BCS, in 1986) or 14 years (ALSPAC in 2005 and MCS in 2015). Henceforth, we refer to each cohort by the year at which the outcomes were measured (1986, 2005, 2015). Ethics approval for BCS was obtained for all sweeps after the year 2000. Prior sweeps received internal approval in line with the regulations of the time.\(^21\) The ALSPAC Law and Ethics committee, the Local Research Ethics committees, and the Multi-Centre Research Ethics Committee gave ethical approval for ALSPAC and MCS. Participants gave written consent to take part in the studies.

In our sample, we included participants with data available on at least 1 of the main weight-change or weight-perception outcomes. In the case of twins (BCS: \(n = 199\); ALSPAC: \(n = 202\); MCS: \(n = 246\) twins and \(n = 10\) triplets), we retained 1 participant per twin or triplet at random, as their shared genetic and environmental exposures might otherwise lead to over- or underestimation of the associations. As not all outcomes were measured in all cohorts (eTable 1 in the Supplement), our analytical samples vary depending on the analyses of interest. This study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.

Weight-Control Behaviors and Weight Perception

The ALSPAC and MCS surveys asked what the adolescent was trying to do about their weight (not doing anything, stay the same, lose weight, or gain weight). We harmonized questions on lifetime exercising for weight loss and dieting (responses yes or no) in BCS and MCS (eTable 1 in the Supplement). We also used a harmonized variable (in ALSPAC, MCS, and BCS) indicating whether adolescents perceived themselves as underweight, about the right weight, or overweight (eTable 1 in the Supplement).

Depressive Symptoms

In ALSPAC and MCS, depressive symptoms were assessed using the 12-item Short Moods and Feelings Questionnaire (SMFQ)\(^22\).
Changes in Weight-Control Behaviors and Weight Perception in Adolescents in the UK

Original Investigation Research

and in BCS using the 9-item Malaise Inventory (eMethods 2 in the Supplement). We used cohort-standardized scores from these scales as a measure of the sample distribution of depressive symptoms in each cohort.

Other Variables
Given geographical and sociodemographic differences between cohorts, we controlled our analyses for key sociodemographic characteristics, including age, sex, and racial/ethnic group (White British or European/ethnic minority), maternal age at birth, maternal education (compulsory vs non-compulsory), and paternal (where missing maternal) social class (manual vs nonmanual profession). Some of our analyses were adjusted for age- and sex-standardized BMI (eMethods 3 in the Supplement).

Statistical Analysis
We imputed missing data for participants with at least 1 outcome variable available using multiple imputation by chained equations, imputing 50 data sets. We additionally created attrition weights as the inverse of the probability of having taken part in the sweep of interest to account for attrition from baseline. We ran all analyses in imputed data sets using attrition weights (eMethods 4 in the Supplement). Given aggregated cross-cohort analyses, we could not account for the stratified sampling of the MCS. As a sensitivity check, we calculated overall and sex-stratified prevalence of weight-related behaviors and regressions accounting for stratified sampling for this cohort (found identical results).

To investigate the presence of cohort effects in outcome prevalence, we used multinomial logistic or logistic regressions accounting for stratified sampling for this cohort. We then examined changes in perception given aggregated cross-cohort analyses, we could not account for the stratified sampling of the MCS. As a sensitivity check, we calculated overall and sex-stratified prevalence of weight-related behaviors and regressions accounting for stratified sampling for this cohort (found identical results).

Results
In total, 22,503 adolescents (5878 from BCS, 5832 from ALSPAC, and 10,793 from MCS; mean [SD] age, 14.8 [0.3] years; 12,061 [53.6%] girls; and 19,942 White individuals [89.9%]) had at least 1 outcome variable available and were included in our study (eTable 2 in the Supplement). By the midadolescence assessment, loss to follow-up was 41.8% in MCS (n = 7756), 57.7% in ALSPAC (n = 7956), and 65.4% in BCS (n = 11,099). Factors associated with loss to follow-up are listed in eTable 3 in the Supplement.

Lifetime Dieting and Exercising for Weight Loss
In 1986, 1952 adolescents (37.7%) reported having dieted and 344 (6.8%) exercised for weight loss, compared with 4809 (44.4%) and 6514 (60.5%) in 2015 (eTable 4 in the Supplement). At both times, a higher percentage of girls than boys reported these behaviors (dieting in 1986 among boys: 17.5% [95% CI, 15.9%-19.2%]; among girls: 59.2% [95% CI, 57.3%-61.1%]; vs dieting in 2015 among boys: 34.6% [95% CI, 33.2%-35.9%]; among girls, 55.1% [95% CI, 53.8%-56.4%]; exercising in 1986 among boys: 4.9% [95% CI, 3.9%-5.9%]; among girls, 8.8% [95% CI, 7.7%-10.0%]; vs exercising in 2015 among boys: 54.9% [95% CI, 53.6%-56.3%]; among girls, 66.3% [95% CI, 65.0%-67.6%]) (Table 1). There was an overall increase in dieting in 2015 compared with 1986, which differed by sex; boys showed a larger increase in dieting (odds ratio [OR], 1.79; 95% CI, 1.24-2.59) than girls (OR, 1.23; 95% CI, 0.91-1.66) (Table 2). There was also evidence of a larger increase in the prevalence of exercising to lose weight in 2015 compared with 1986, which did not vary by sex (OR, 26.67; 95% CI, 20.06-35.40).

Weight-Loss and Weight-Gain Attempts
In 2015, a greater proportion of adolescents said that they were trying to lose (4539 [42.2%]) or gain (894 [8.5%]) weight compared with 2005 (1767 [29.8%] and 286 [5.2%]) (eTable 4 in the Supplement). At both times, more girls said they were trying to lose weight compared with boys (lose weight: 2005 girls, 52.8% [95% CI, 51.1%-54.5%] vs boys, 31.8% [95% CI, 30.6%-33.1%]; lose weight: 2015 girls, 55.1% [95% CI, 53.8%-56.4%]; vs boys, 38.6% [95% CI, 36.4%-42.1%]; vs boys, 19.4% [95% CI, 17.8%-21.0%]), whereas more boys than girls said that they were trying to gain weight (gain weight: 2015 girls, 4.1% [95% CI, 3.6%-4.6%] vs boys, 12.7% [95% CI, 11.8%-13.6%]; gain weight: 2005 girls, 2.9% [95% CI, 2.3%-3.6%] vs boys, 7.3% [95% CI, 6.3%-8.3%]) (Table 1). In regression analyses accounting for confounders, compared with 2005, in 2015, adolescents were more likely to say that they were trying to lose weight, gain weight, or stay the same weight than to say that they were doing nothing about their weight; these dif-
ferences were greater for boys than girls across all 3 outcomes (lose weight: OR, 2.75 [95% CI, 2.38-3.19] for boys vs OR, 1.70 [95% CI, 1.50-1.92] for girls; stay the same: OR, 1.89 [95% CI, 1.63-2.16] for boys vs OR, 1.15 [95% CI, 1.00-1.32] for girls; and gain weight: OR, 2.32 [95% CI, 1.89-2.85] for boys vs OR, 1.53 [95% CI, 1.14-2.07] for girls) (Table 2). When we...
Table 3. Univariable and Multivariable Linear Regression Models Testing the Association Between Dieting, Exercising for Weight Loss, Weight Intentions and Weight Perception With Depressive Symptoms

Depressive symptom	Mean difference (95% CI)	Sex × exposure interaction, P value	Boys: multivariable mean difference (95% CI), P value	Exposure × cohort interaction, P value (boys)	Girls: multivariable model, mean difference (95% CI), P value	Exposure × cohort interaction P value (girls)	
Dieting (yes vs no)	0.45 (0.41 to 0.49)	0.37 (0.33 to 0.41)	<.001	0.26 (0.20 to 0.32)	.11	0.49 (0.43 to 0.54)	<.001
Lifetime exercise for weight loss (years included: 1986 and 2015 [n = 18 913])							
Exercise for weight loss (yes vs no)	0.23 (0.20 to 0.27)	0.26 (0.22 to 0.30)	<.001	0.13 (0.08 to 0.19)	.30	0.38 (0.32 to 0.44)	<.001
Lifetime dieting (years included: 1986 and 2015 [n = 18 913])							
Lose weight (vs do nothing)	0.47 (0.43 to 0.51)	0.39 (0.34 to 0.44)	<.001	0.23 (0.17 to 0.29)	.99	0.51 (0.45 to 0.58)	.09
Stay same (vs do nothing)	0.01 (-0.03 to 0.05)	-0.01 (-0.06 to 0.03)	.13	0.03 (-0.02 to 0.08)	.55	-0.04 (-0.11 to 0.02)	.23
Gain weight (vs do nothing)	0.16 (0.08 to 0.23)	0.24 (0.17 to 0.30)	.01	0.18 (0.10 to 0.26)	.10	0.37 (0.22 to 0.51)	.77
Lifetime exercise for weight loss (years included: 1986 and 2015 [n = 18 913])							
Underweight (vs right weight)	0.25 (0.19 to 0.30)	0.27 (0.21 to 0.33)	.89	0.26 (0.19 to 0.34)	b	0.29 (0.20 to 0.38)	c
Overweight (vs right weight)	0.42 (0.38 to 0.45)	0.38 (0.36 to 0.41)	.01	0.27 (0.20 to 0.33)	d	0.44 (0.38 to 0.49)	*

* Multivariable models were adjusted for adolescent’s sex, BMI, and ethnicity; maternal age and highest level of education; and paternal social class. We additionally fit an interaction to the multivariable model to test for the presence of sex-specific associations and present sex-stratified models. In these we test for a cohort-by-exposure interaction to test for cohort effects. All analyses based on a sample of participants with at least one outcome available at age 14 years (16 years in 1986) and imputed missing covariate; we additionally used attrition weights to account for attrition at this sweep since recruitment.

b Underweight × Avon Longitudinal Study of Parents and Children (ALSPAC) P = .09; underweight × Millennium Cohort Study (MCS) P = .21.

c Underweight × ALSPAC P = .01; underweight × MCS P = .37.

d Overweight × ALSPAC P = .21; overweight × MCS P = .33.

* Overweight × ALSPAC P = .08; overweight × MCS P < .001.

Additionally adjusted for BMI, results did not change substantially (eTable 5 in the Supplement).

Weight Perception

In 2005 (n = 1570 [27.0%]) and 2015 (n = 3571 [33.4%]), a greater proportion of adolescents said that they thought they were overweight than in 1986 (n = 1298 [22.2%]) (eTable 4 in the Supplement). Compared with 1986 and 2005, in 2015, more girls with underweight BMI thought their weight was “about right” (2015: 60.8% [95% CI, 55.4%-66.3%]; 2005: 42.3% [95% CI, 36.0%-48.6%]; 1986: 51.7% [95% CI, 46.2%-57.1%]) whereas more boys—both in 2005 and 2015—in the normal BMI range thought they were overweight compared with 1986 (2015: 11.5% [95% CI, 10.5%-12.6%]; 2005: 11.5% [95% CI, 10.0%-13.0%]; 1986: 7.3% [95% CI, 6.1%-8.5%]) (eTable 6 in the Supplement). Similarly, the proportion of boys, but not girls, with overweight BMI who thought they were overweight increased in 2005 (74.5% [95% CI, 70.2%-78.8%]) compared with 1986 (60.3% [95% CI, 54.1%-66.6%]) and remained stable in 2015 (73.1% [95% CI, 70.7%-75.5%]). After adjusting for BMI and other confounders, compared with 1986, adolescents were more likely to think they were overweight and less likely to think they were underweight in 2015 (overweight: OR, 1.47 [95% CI, 1.14-1.89] vs underweight: OR, 0.72 [95% CI, 0.51-1.03]) (Table 2). At any level of BMI, boys, but not girls, were more likely to think they were overweight (vs the right weight) in 2005 (boys: OR, 3.07 [95% CI, 1.82-5.15] vs girls: OR, 1.01 [95% CI, 0.71-1.44]) and 2015 (boys: OR, 2.59 [95% CI, 1.66-4.06] vs girls: OR, 0.95 [95% CI, 0.69-1.30]) compared with 1986. Boys were also more likely to think they were underweight (vs the right weight) in 2005 compared with 1986 (OR, 1.89 [95% CI, 1.12-3.18]) but no longer in 2015 (OR, 0.97 [95% CI, 0.61-1.53]). In contrast, girls in 2015 became less likely to think they were underweight (OR, 0.43 [95% CI, 0.25-0.76]) compared with 1986, meaning that even at low BMI values, they thought they were “about the right weight.” However, we did not find a similar association when comparing 2005 with 1986 (OR, 1.00 [95% CI, 0.54-1.82]).

Associations of Weight-Change Behaviors and Weight Perception With Depressive Symptoms

Adolescents who dieted or exercised for weight loss and those who were trying to lose weight had greater depressive symptoms (dieting mean difference: 0.37 [95% CI, 0.33-0.41]; exercise mean difference: 0.26 [95% CI, 0.22-0.30]) (Table 3). The magnitude of these associations differed by sex, with girls...
engaging in these behaviors reporting greater levels of depression than boys (dieting mean difference girls: 0.49 [95% CI, 0.43-0.54]; boys: 0.26 [95% CI, 0.20-0.32]; exercise mean difference girls: 0.38 [95% CI, 0.32-0.44]; boys: 0.13 [95% CI, 0.08-0.19]). There was also evidence that girls who had dieted or exercised for weight loss in 2015 had greater depressive symptoms than those who engaged in these behaviors in 1986 (mean difference dieting 2015: 0.72 [95% CI, 0.66-0.88] vs 1986: 0.21 [95% CI, 0.12-0.29]; exercising 2015: 0.46 [95% CI: 0.39-0.53] vs 1986: 0.06 [95% CI, -0.08 to 0.20]), with weaker evidence of difference observed for those who were currently trying to lose weight in 2015 compared with 2005 (mean difference 2015: 0.58 [95% CI, 0.50-0.66] vs 2005: 0.43 [95% CI, 0.31-0.54]). There was no evidence of such differences in boys (Figure 1; eTable 7 in the Supplement).

Adolescents who thought they were underweight and those who thought they were overweight had greater depressive symptoms (mean difference underweight: 0.27 [95% CI, 0.21-0.33]; overweight: 0.38 [95% CI, 0.36-0.41]). There was evidence of a weight perception-by-sex interaction only among adolescents who said they were overweight, with girls who thought they were overweight reporting greater depressive symptoms than boys (mean difference girls: 0.44 [95% CI, 0.38-0.49]; boys: 0.27 [95% CI, 0.20-0.33]). There was also evidence that for girls, the magnitude of this association increased in 2015 (mean difference: 0.62 [95% CI, 0.54-0.69]) compared with 1986 (mean difference: 0.32 [95% CI, 0.17-0.30]) and 2005 (mean difference 0.35 [95% CI, 0.24-0.46]) (Table 3, Figure 2, and eTable 7 in the Supplement).

Sensitivity Analyses
Models with complete cases (eTables 8 and 10 in the Supplement) and with imputed data sets without attrition weights (eTables 9 and 11 in the Supplement) demonstrate results not substantially different from those presented as main analyses. In MCS, prevalence and regression estimates did not vary from those in the main analyses when accounting for stratified sampling (eTables 12, 13, and 14 in the Supplement).

Discussion
Examining 3 cohorts of adolescents born across 30 years in the UK, our study results suggest key trends in weight change-related behaviors that have occurred in parallel with decades of increasing child obesity. We also investigated the association of weight-change behaviors with depressive symptoms and observed that they were associated with an increased psychological burden in recent years compared with previous decades.

Our results suggest that the prevalence of weight-change behaviors increased in 2015 compared with both 2005 and 1986. Although behaviors aimed at weight loss were more common in girls in all cohorts, their prevalence increased more in boys in recently born cohorts; this was also observed in other countries.15,16 In line with US evidence,30 in our sample, weight-gain attempts were more common in boys and became increasingly prevalent in this group over 15 years. Recent evidence suggests that over the past couple of decades there has been a shift in media representation of male beauty ideals, with lean muscular bodies increasingly being normalized, which could explain our findings.31–33 By contrast, pressures on women to be thin have been present for longer in society, with increases in dieting ads documented since the 1960s and 1970s in the US34–37 and becoming more common in the UK in the 1980s and 1990s.38

The prevalence of exercise for weight loss, on the other hand, increased from 1986 to 2015 in both boys and girls. Evidence suggests that the proportion of adolescents engaging in vigorous physical activity has remained relatively stable over...
the past few decades.39,40 It is possible that the growing narrative around physical activity as a way to prevent or reduce overweight and obesity—reflected in recent controversial calls to add exercise-equivalent labels on food packaging41 might have led adolescents to think of exercise predominantly as a means to lose weight. Although exercise can be effective at reducing body weight,4 evidence suggests that the motivation behind exercise, such as wanting to lose weight and feeling guilty if not exercising, are important indicators of negative psychopathology, including depressive and eating disorder symptoms.42 Public health campaigns and clinicians should therefore consider the potential negative implications of how messages around physical activity are delivered. These campaigns should not foster feelings of guilt or shame but rather highlight broader positive aspects of exercise, such as improving well-being and strength, learning new skills, and socializing with friends.

It is noteworthy that the trends we observed were not explained by changes in BMI across cohorts and that adolescents increasingly overestimated their weight in more recent cohorts, albeit with different patterns in boys and girls. In 2015 and 2005, boys in the normal weight range became more likely to think they were overweight compared with 1986, whereas girls became more likely to think their weight was about right when underweight in 2015 compared with 1986 and 2005. Greater public health focus on calorie restriction and exercise,43-46 the proliferation of the fitness industry,47 and growing societal and media portrayals of lean female and male bodies48-52 could have led to adolescents’ increasingly internalizing thin body ideals53 and weight stigma, which are known correlates and predictors of restrictive eating behaviors, poor self-esteem, and depression.54,55

A recent systematic review on young people’s view on body image and weight in the UK found that children with higher BMIs report appearance-based bullying resulting in social isolation and low mood56 and that young people think it is a person’s responsibility to maintain a healthy weight—an idea often reinforced by media57—leading to high levels of self-blame for failing to lose weight.56 A Finnish study observed similar patterns around blame19 that find correspondence in our findings of increasing depressive symptoms associated with the thought of being overweight and weight-loss behaviors in girls over the years. Although in our study it was not possible to disentangle the direction of associations between weight-perception and weight-change behaviors and depressive symptoms, it is important that families, schools, and clinicians are aware of this comorbidity when interacting with adolescents about weight-related concerns.

Limitations
This study has some limitations. Although BCS and MCS are national cohorts, the ALSPAC cohort is limited to children born in a southwest region of England and might therefore not be representative of other areas of the UK. To account for observed differences in the makeup of the cohorts, we have included a number of sociodemographic and socioeconomic variables in our analyses. Overall, the inclusion of covariates did not affect the results of our analyses, suggesting that between-cohort sampling differences are unlikely to explain the observed cohort trends. All of these cohorts are affected by different degrees of attrition, which could have introduced selection bias in our analyses. To address this, we have imputed missing data for any individual who had at least 1 outcome measurement and used attrition weights in our analyses. The depression measure included in BCS differed from that used in ALSPAC and MCS, which could have resulted in underestimating or overestimating differences between cohorts if adolescents with weight-control behaviors report their depressive symptoms differently on these 2 measures. However, we believe this is unlikely to have occurred, as we
observed increased depressive symptoms in 2015 compared with 2005 when measured using the same instrument and did not see changes in boys (but did in girls), which we would have expected if differences were solely due to the instruments used. Future studies should collect data on anxiety, which is common in adolescence and also associated with disordered eating. The exercise question only focused on exercise for weight loss but not weight gain. Evidence suggests that exercising to increase muscularity is becoming more prevalent, particularly in boys; this is something that studies should consider capturing in the future.

Conclusions

This study’s findings suggest that the proportion of adolescents who were trying to lose weight at age 14 years has increased over the past 30 years. We acknowledge that there are health concerns associated with obesity; however, the finding that 44% of adolescents aged 14 years were dieting in 2015 is concerning in light of evidence that dieting is generally ineffective for weight loss and is longitudinally associated with weight gain and poor mental health. Importantly, we found that the association between dieting behaviors and overweight perception and depressive symptoms in girls has increased in magnitude over the past 30 years. Although our study could not directly measure this, it is possible that mounting societal pressures to lose weight could be becoming more detrimental for young people’s mental health and that they could be a contributor to the rising prevalence of adolescent mental health disorders. Early adolescence is a crucial developmental period, when dieting could have a range of negative outcomes, from delayed growth to eating disorders.

Reducing the prevalence of restrictive eating behaviors and weight dissatisfaction should be considered an important public health priority in itself, and these behaviors should not only be viewed as problematic when occurring alongside eating disorder diagnoses or in adolescents with low BMI. Public health campaigns around obesity should include prevention of disordered eating behaviors by addressing weight stigma and avoiding the use of body dissatisfaction as a motivator for weight change; advocating for health as opposed to “healthy weight” or “thinness”; promoting family meals; and encouraging adolescents to exercise for health, well-being, and socialization rather than as a means to achieve weight loss.

REFERENCES

1. Johnson W, Li L, Küh D, Hardy R. How has the age-related process of overweight or obesity development changed over time? Co-ordinated analyses of individual participant data from five United Kingdom birth cohorts. PLoS Med. 2015;12(5). doi:10.1001828.

2. NHS Digital. Health survey for England 2017. December 4, 2018. Accessed January 22, 2020. https://digital.nhs.uk/data-and-information/publications/statistical/health-surveys-england/2017

3. HM Government. Childhood obesity: a plan for action. Published August 18, 2016. Accessed January 22, 2020. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/546588/Childhood_obesity_2016_2_acc.pdf

4. HM Government. Sporting future: a new strategy for an active nation. Published December 17, 2015. Accessed January 22, 2020. https://www.gov.uk/government/publications/sporting-future-a-new-strategy-for-an-active-nation

5. Neumark-Sztainer D, Story M, Hannan PJ, Perry CL, Irving LM. Weight-related concerns and behaviors among overweight and nonoverweight adolescents: implications for preventing weight-related disorders. Arch Pediatr Adolesc Med. 2002;156(2):171-178. doi:10.1001/archpedi.156.2.171

6. Brown T, Moore TH, Hooper L, et al. Interventions for preventing obesity in children. Cochrane Database Syst Rev. 2019;7(7):CD001871. doi:10.1002/14651858.CD001871.pub4

7. Stice E, Gau JM, Rohde P, Shaw H. Risk factors that predict future onset of each DSM-5 eating disorder: predictive specificity in high-risk adolescent females. J Abnorm Psychol. 2017;126(1):38-51. doi:10.1037/abn0000219

8. Kotler LA, Cohen P, Davies M, Pine DS, Walsh BT. Longitudinal relationships between childhood, adolescent, and adult eating disorders. J Am Acad Child Adolesc Psychiatry. 2001;40(12):1434-1440. doi:10.1097/00004583-200112000-00004

9. Rojo L, Liviano L, Conesa L, et al. Epidemiology and risk factors of eating disorders: a two-stage

ARTICLE INFORMATION

Accepted for Publication: July 1, 2020.

Published Online: November 16, 2020.
doi:10.1001/jamapediatrics.2020.4746

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2020 Solmi F et al. JAMA Pediatrics.

Author Contributions: Dr Solmi had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: Solmi, Maddock, Patalay. Acquisition, analysis, or interpretation of data: Solmi, Sharpe, Gage, Lewis, Patalay. Drafting of the manuscript: Solmi, Gage, Patalay. Critical revision of the manuscript for important intellectual content: Sharpe, Gage, Maddock, Lewis, Patalay. Statistical analysis: Solmi, Patalay. Obtained funding: Solmi. Administrative, technical, or material support: All authors. Supervision: Lewis, Patalay.

Conflict of Interest Disclosures: Dr Lewis reported receiving grants from University College London during the conduct of the study. No other disclosures were reported.

Funding/Support: This study was supported in part by the Sir Henry Wellcome Fellowship grant 209196/Z/17/Z from the Wellcome Trust (Dr Solmi), grant ISSF3/H17RCO/NGI from the Wellcome Trust Institutional Strategic Support Fund (Dr Patalay), and the University College London Hospital, National Institute for Health Research, Biomedical Research Centre. The British Cohort Study 1970 is supported by the UK Economic and Social Research Council. The Millennium Cohort Study is supported primarily by the UK Economic and Social Research Council with cofunding by a consortium of UK government departments. Grant 102215/213/2 from the UK Medical Research Council and Wellcome Trust and the University of Bristol provide core support for the Avon Longitudinal Study of Parents and Children (ALSPAC). This publication is the work of the authors and all authors will serve as guarantors of the contents of this paper. A comprehensive list of grants funding is available on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf). Outcome measures employed in this study was funded by grant MH087786-01 from the National Institutes of Health.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: We thank all the families who took part in ALSPAC, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. We are grateful for the cooperation of the Millennium Cohort Study and British Cohort Study families who voluntarily participate in the study. There was no financial compensation for these contributions. We would also like to thank a large number of stakeholders from academic, policy maker, and funder communities and colleagues at the Centre for Longitudinal Studies involved in data collection and management of these cohort studies.
epidemiologic study in a Spanish population aged 12-18 years. Int J Eat Disord. 2003;34(3):281-291. doi:10.1002/eat.10179

10. Sharpe H, Patalay P, Choo TH, et al. Bidirectional associations between body dissatisfaction and depressive symptoms from adolescence through early adulthood. Dev Psychopathol. 2018;30(4):1447-1458. doi:10.1017/S0954579417000163

11. Neumark-Sztainer D, Wall M, Larson NI, Eisenberg ME, Loth K. Dieting and disordered eating behaviors from adolescence to young adulthood: findings from a 10-year longitudinal study. J Am Diet Assoc. 2011;111(7):1004-1011. doi:10.1016/j.jada.2011.04.012

12. Micale N, Solimi F, Horton NJ, et al. Adolescent eating disorders predict psychiatric, high-risk behaviors and weight outcomes in young adulthood. J Am Acad Child Adolesc Psychiatry. 2015;54(8):652-659.e1. doi:10.1016/j.jaac.2015.05.009

13. Conley A, Boardman JD. Weight overestimation as an indicator of disordered eating behaviors among young women in the United States. Int J Eat Disord. 2007;40(5):441-445. doi:10.1002/eat.20383

14. UK Parliament. Call for evidence changing the perfect picture: an inquiry into body image. Published 2020. Accessed April 10, 2020. https://committees.parliament.uk/call-for-evidence/93/changing-the-perfect-picture-an-inquiry-into-body-image/

15. Centers for Disease Control and Prevention. Nutrition, physical activity, & obesity data & statistics. Accessed October 19, 2020. https://www.cdc.gov/healthyyouth/data/topics/npao.htm

16. Utter J, Haines J, Denny S, Teevale T. Trends in weight-related attitudes and behaviours among New Zealand adolescents, between 2007 and 2012. J Paediatr Child Health. 2019;55(3):333-337.

17. Berg C, Larson C. Dieting, body weight concerns and health: trends and associations in Swedish schoolchildren. BMC Public Health. 2020;20(1):187.

18. von Soest T, Wichström L. Secular trends in eating problems among Norwegian adolescents from 1992 to 2010. Int J Eat Disord. 2014;47(5):448-457.

19. Litmanen J, Fröjd S, Marttunen M, Isomaa R, Kaltiala-Heino R. Are eating disorders and their symptoms increasing in prevalence among adolescent population? Nord J Psychiatry. 2017;71(1):61-66. doi:10.3109/08039488.2016.1224272

20. Loth K, Wall M, Larson N, Neumark-Sztainer D. Disordered eating and psychological well-being in overweight and nonoverweight adolescents: secular trends from 1999 to 2010. Int J Eat Disord. 2015;48(3):323-327. doi:10.1002/eat.22382

21. Shepherd P, Gilbert E. 1970 British Cohort Study Ethical Review and Consent. 2nd ed. Centre for Longitudinal Studies, 2019.

22. Angold A, Costello EJ, Messer SC, Pickles A, Winder F, Silver D. Development of a short questionnaire for use in epidemiological studies of depression in children and adolescents. Int J Methods Psychiatr Res. 1995;5:237-249.

23. Rutter M. Education, Health and Behaviour. Longman Harlow, 1970.

24. Patalay P, Gage SH. Changes in millennial adolescent mental health and health-related behaviours over time: a population cohort comparison study. Int J Epidemiol. 2019;48(5):1650-1664. doi:10.1093/ije/dyz006

25. Vidmar SL, Cole TJ, Pan H. Standardizing anthropometric measures in children and adolescents with functions for egen: update. Stat J. 2013;13(2):366-378. doi:10.17157/jsm.39944.55

26. Cole TJ, Flegal KM, Nicholls D, Jackson AA. Body mass index cut off cuts to define thinness in children and adolescents: international survey. BMJ. 2007;335(7612):194. doi:10.1136/bmj.39238.39944.55

27. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240-1243. doi:10.1136/bmj.320.7244.1240

28. White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med. 2011;30(4):377-399. doi:10.1002/sim.4067

29. Trends in prevalence and correlates of BMI perception and weight-loss behaviours in adolescents from 1986 to 2015. Findings from three UK birth cohorts. OSF Registrations. Accessed January 22, 2020. https://osf.io/7gnc/

30. Nagata JM, Bibbins-Domingo K, Garber AK, Griffiths S, Vittinghoff E, Murray SB. Boys, bulk, and body ideals: sex differences in weight gain attempts among adolescents in the United States. J Adolesc Health. 2019;64(4):450-453. doi:10.1016/j.jadohealth.2018.09.002

31. Pope HG Jr, Khalsa JH, Bhains S. Body image disorders and abuse of anabolic-androgenic steroids among men. JAMA. 2017;317(1):23-24. doi:10.1001/jama.2016.174441

32. Pope HG Jr, Olivardia R, Gruber A, Borowiecki J. Evolving ideals of male body image as seen through action toys. Int J Eat Disord. 1999;26(6):65-72. doi:10.1002/(SICI)1098-108X(19990701)26:1<65::AID-EAT4>3.0.CO;2-D

33. Lavender JM, Brown TA, Murray SB. Men, muscles, and eating disorders: an overview of traditional and muscularity-oriented disordered eating. Curr Psychiatry Rep. 2017;19(6):32. doi:10.1007/s11920-017-0787-5

34. Garner DM, Garfinikel PE, Schwartz D, Thompson M. Cultural expectations of thinness in women. Psychol Rep. 1980;47(2):483-491. doi:10.2466/pr0.1980.47.2.483

35. Wiseman C V., Farquhar JC, Wasylkiw L. Media images of men: trends and consequences of body conceptualization. Psychol Men Masc. 2007;8(3):145-160. doi:10.1037/jmms.2007.8.3.3145

36. Voeller DK, Reel JJ, Greenleaf C. Weight status and body image perceptions in adolescents: current perspectives. Adolesc Health Med Ther. 2015;6:149-158. doi:10.2147/ahmt.2015.001014

37. Harrison K. The body electric: thin-ideal media and eating disorders in adolescents. J Commun. 2000;50(3):119-143. doi:10.1111/j.1073-1920.2000.tb02556.x

38. Hesse-Biber S, Leavy P, Quinn CE, Zoino J. The marketing of disordered eating and eating disorders: the social psychology of women, thinness and culture. Womens Stud Int Forum. 2006;29(2):208-224. doi:10.1016/j.wsif.2006.03.007

39. Owen PR, Laurel-Seller E. Weight and shape ideals: this is dangerously in. J Appl Soc Psychol. 2006;36(3):797-999. doi:10.1111/j.1559-1816.2006.tb02506.x

Original Investigation Research
53. Bould H, Carnegie R, Allward H, et al. Effects of exposure to bodies of different sizes on perception of and satisfaction with own body size: two randomized studies. *R Soc Open Sci*. 2018;5(5):171387. doi:10.1098/rsos.171387

54. Flament MF, Hill EM, Buchholz A, Henderson K, Tasca GA, Goldfield G. Internalization of the thin and muscular body ideal and disordered eating in adolescence: the mediation effects of body esteem. *Body Image*. 2012;9(1):68-75. doi:10.1016/j.bodyim.2011.07.007

55. Thompson JK, Stice E. Thin-ideal internalization: mounting evidence for a new risk factor for body-image disturbance and eating pathology. *Curr Dir Psychol Sci*. 2001;10(5):181-183. doi:10.1111/1467-8721.00144

56. Rees R, Caird J, Dickson K, Vigurs C, Thomas J. The Views of Young People in the UK about Obesity, Body Size, Shape and Weight. EPPI-Centre; 2013.

57. Ata RN, Thompson JK. Weight bias in the media: a review of recent research. *Obes Facts*. 2010;3(1):41-46. doi:10.1159/000276547

58. Schaumberg K, Zerwas S, Goodman E, Yilmaz Z, Bulik CM, Micali N. Anxiety disorder symptoms at age 10 predict eating disorder symptoms and diagnoses in adolescence. *J Child Psychol Psychiatry*. 2019;60(6):686-696. Medline:30353925 doi:10.1111/jcpp.12984

59. Canadian Paediatric Society. Dieting in adolescence. *Paediatr Child Health*. 2004;9(7):487-503. doi:10.1093/pch/9.7.487

60. Daee A, Robinson P, Lawson M, Turpin JA, Gregory B, Tobias JD. Psychologic and physiologic effects of dieting in adolescents. *South Med J*. 2002;95(9):1032-1041. doi:10.1097/00007611-200295090-00016

61. Golden NH, Schneider M, Wood C; Committee on Nutrition; Committee on Adolescence; Section on Obesity. Preventing obesity and eating disorders in adolescents. *Pediatrics*. 2016;138(3):e20161649. doi:10.1542/peds.2016-1649