The emerging roles of circular RNA-mediated autophagy in tumorigenesis and cancer progression

Yuan Yuan, Xiaojing Zhang, Xinmin Fan, Yin Peng and Zhe Jin

© The Author(s) 2022

Circular RNA (circRNA) is characterized by a specific covalently closed ring structure. The back-splicing of precursor mRNA is the main way of circRNA generation, and various cis/trans-acting elements are involved in regulating the process. circRNAs exhibit multiple biological functions, including serving as sponges of microRNAs, interacting with proteins to regulate their stabilities and abilities, and acting as templates for protein translation. Autophagy participates in many physiological and pathological processes, especially it plays a vital role in tumorigenesis and carcinoma progression. Increasing numbers of evidences have revealed that circRNAs are implicated in regulating autophagy during tumor development. Until now, the roles of autophagy-associated circRNAs in carcinoma progression and their molecular mechanisms remain unclear. Here, the emerging regulatory roles and mechanisms of circRNAs in autophagy were summarized. Furtherly, the effects of autophagy-associated circRNAs on cancer development were described. We also prospected the potential of autophagy-associated circRNAs as novel therapeutic targets of tumors and as biomarkers for cancer diagnosis and prognosis.

Cell Death Discovery (2022)8:385 ; https://doi.org/10.1038/s41420-022-01172-5

FACTS

- circRNAs are implicated in diverse physiological processes, including autophagy. They are also associated with the pathogenesis of numerous diseases, such as cardiovascular diseases, neurological disorders, and cancer.
- circRNAs have both stimulatory and inhibitory effects on autophagy.
- circRNA-mediated autophagy plays vital roles in multiple aspects of tumor progression, especially the development of chemoresistance in cancer.
- The expression patterns of circRNAs are associated with the clinicopathological characteristics of cancer.
- circRNAs are considered to represent novel therapeutic targets and potentially useful diagnostic and prognostic biomarkers of cancer.

OPEN QUESTIONS

- How do circRNAs regulate autophagy in the context of cancer?
- How does circRNA-mediated autophagy affect tumorigenesis and cancer development?
- Should we promote or inhibit circRNA-mediated autophagy to suppress cancer progression?
- Whether targeting autophagy-associated circRNAs can be novel strategies for cancer treatment?

INTRODUCTION

Circular RNA (circRNA) is a class of endogenous RNA molecules with special covalent closed-loop structure. CircRNAs are mainly created from precursor mRNA (pre-mRNA) back-splicing, and they have been identified in a variety of eukaryotes and viruses [1, 2], and exhibit developmental-stage-specific and tissue-specific expression patterns [3, 4]. When they were first discovered nearly 50 years ago, these RNA molecules received little attention and were thought to be derived from errors in the splicing of mRNA and thus lacking in biological importance. However, recently researchers have found that circRNAs are implicated in diverse physiological processes, including autophagy [5] and immunity [6, 7]. They are also associated with the pathogenesis of numerous diseases, such as cardiovascular diseases [8], neurological disorders [9], chronic inflammatory diseases [10, 11], and cancer [12, 13]. The roles played by circRNAs in tumorigenesis and cancer progression have also recently been revealed. Numerous dysregulated circRNAs have been identified in diverse carcinomas, such as colorectal cancer (CRC) [14, 15], gastric cancer (GC) [16–18], basal cell carcinoma [19, 20], and hepatocellular carcinoma (HCC) [21, 22], and their expression was related to the clinicopathological features of cancer patients. We previously analyzed the expression profiles of circRNAs in five pairing GC and corresponding adjacent tissues, using circRNA sequencing with linear RNA depletion [16]. We totally identified 45,783 circRNAs from these samples, including 79% exonic, 1% intronic, 4% intergenic, 15% sense overlapping, and 1% antisense[16]. These circRNAs may participate in GC development. It has become apparent that circRNAs play vital roles in cell death [23], chemoresistance [24],
metastasis [25], the maintenance of cancer-initiating cells [26], immune evasion [27], and angiogenesis [28] in cancer. circRNAs usually show higher stability compared with that of their linear host gene, presumably due to their cyclic structures, which render them resistant to exonuclease-mediated degradation. Furthermore, some circRNAs are detectable in body fluids, including saliva, urine and peripheral blood, which suggests the possibility of their being used as non-invasive biomarkers [29]. Thus, circRNAs show great potential as diagnostic and prognostic biomarkers and as therapeutic targets for cancer therapy.

Autophagy, as a highly conserved catabolic process, plays key roles in maintaining a balance between cellular survival and death, which regulates the degradation and recycling of intracellular materials, including damaged organelles and misfolded proteins. It renders cells resistant to survival stress (such as nutritional deficiency and hypoxia), via providing materials and energy for synthesis of new cellular components and thereby restoring cellular homeostasis [30]. Three types of autophagy (macroautophagy, microautophagy, and chaperone-mediated autophagy) have been identified [31]. This review is focused on macroautophagy, characterized by the formation of autophagosomes that possess a double membrane structure. In macroautophagy (hereinafter referred to as autophagy), after being enveloped by autophagosomes, damaged cellular components are transported to lysosomes for degradation and recycling. To date, the role autophagy plays in cancer development remains controversial. On one hand, autophagy suppresses tumorigenesis by maintaining genome stability and homeostasis of cellular metabolism. On the other hand, it participates in reprogramming cellular microenvironment following the establishment of cancer and protects cancer cells from diverse survival stresses [32]. Autophagy also helps cancer cells escape from anti-tumor immune responses mediated by natural killer cells and cytotoxic T-lymphocytes [33]. Furthermore, increasing evidence has revealed the double role circRNAs play in autophagy regulation. Some circRNAs have been found to promote autophagy. A study by Yang and colleagues determined that circRHOBT3 functions as a microRNA (miRNA) sponge, and facilitates autophagy via circRHOBT3/miR-600/NAC1 axis, leading to increased cellular proliferation in pancreatic ductal adenocarcinoma (PDAC) [34]. Conversely, other circRNAs negatively regulate autophagy. circUBE2Q2 was shown to suppress STAT3-mediated autophagy via sponging miR-370-3p but promote tumorigenicity in GC [35]. Thus, to develop novel circRNA-based therapeutic strategies for cancer, the mechanisms of how circRNAs regulate autophagy and how circRNA-regulated autophagy affects tumorigenesis and progression must be urgently clarified.

Here, the emerging findings in relation to the regulatory roles circRNAs play in autophagy are summarized and these molecules’ effects on cancer development and progression are described. Further, the potential of circRNAs as novel biomarkers of cancer diagnosis and prognosis and therapeutic targets for tumor treatment is also prospected.

CIRCULAR RNA

CircRNA biogenesis

The biogenesis of circRNAs is complicated, but they are primarily produced from pre-mRNA back-splicing, which is characterized by direct binding of a 5’ downstream splice site (donor) to a 3’ upstream splice site (acceptor) via a phosphodiester bond (3’–5’) [36]. Based on the origin of circRNAs, they are mainly classified into 3 groups: exon-derived circRNA (EcRNA), intron-derived circRNA, including intronic circRNAs derived from pre-mRNA (ciRNA) and those derived from pre-tRNA (tricRNA), and exon–intron circRNA (EliRNA) [12]. Various cis-/trans-acting factors is implicated in the regulation of circRNA generation (Fig. 1). Some intronic complementary sequences, including short inverted repeats (such as Alu repeats) [37] and non-repetitive sequences, can act as cis-acting elements to facilitate circRNA biogenesis. The circularization of exons can be mediated by these complementary sequences located in flanking introns, by forming an intramolecular hairpin structure, to close the distance between the 5’ and 3’ splice sites. Short inverted repeats (approximately 30–40 nt) are sufficient for circularization; however, the sequences of the repeats affect circularization efficiency. Some sequences of low complexity, such as poly(A) tracts, suppress circularization [37]. Moreover, as trans-acting factors, some RNA-binding proteins (RBPs), including muscleblind [36] and Quaking (QKI) [38], facilitate circRNA production by binding to specific intronic motifs. QKI binds to theses intronic elements flanking circRNA-forming exons, then brings the splice sites into proximity via self-dimerization. Additionally, Nuclear factor 90 (NF90) and NF110, the immune factors mediating host immune responses to viral infections, also regulate the circularization of circRNA [39]. They contain double stranded (ds) RNA-binding domains and facilitate circRNA generation via binding to RNA pairs in flanking introns and stabilizing the base-pairing. Conversely, some RBPs, such as DEXH-box helicase 9, suppress circRNA biogenesis via destabilizing the base-pairing of intronic elements.

Another model for circRNA biogenesis is called “Lariat-driven circularization” [12]. During exon-skipping events, a lariat structure is formed via splicing the skipped exons and introns out from the pre-mRNA, which is further spliced to remove intronic sequences, resulting in the generation of an EcRNA. Alternatively, a lariat structure may be formed during intron removal from pre-mRNAs, which is further spliced for ciRNA generation.
The main mechanism underlying circRNA functions

CircRNAs exhibit multiple functions in physiological and pathological processes. The sequence, secondary structure, post-transcriptional modifications and cellular location of circRNAs are related to their functions.

microRNA (miRNA) sponge. The most well-studied function of circRNAs is known as miRNA sponging. Some circRNAs negatively regulate miRNA-mediated gene silencing by acting as competitive endogenous RNAs (ceRNAs) (Fig. 2A). circHERC4 was recently found to exhibit oncogenic effects in CRC, by binding to and inactivating the tumor suppressor, miR-556-5p [40]. circDOCK1 also acts as a miRNA sponge and promotes tumorigenesis in osteogenic sarcoma, via the circDOCK1- mir-339-3p/IGF1R axis [41]. Those circRNAs with function as miRNA sponges harbor miRNA binding sites (6-, 7-, 8-mer), complementary to miRNA seed sequences. However, the miRNA binding sites in most circRNAs are very few, and the expression level of circRNAs is relatively low compared with their corresponding miRNAs. These findings mean that the ceRNA hypothesis remains controversial [42].

Interactions with proteins. Some circRNAs bind to proteins and recruit them to certain subcellular compartments (Fig. 2B) [26, 43, 44]. Gu and colleagues described a circRNA, circPO11, that is required to maintain the self-renewal of cancer-initiating cells in HCC [26]. circPO11 was shown to trigger the expression of GLI family zinc finger protein1 via recruiting topoisomerase 1 to its promoter, and result in the activation of Hedgehog signaling. circMYH9, an intron-derived circRNA, was found to recruit hnRNPA2B1 in the nucleus and bound to p53 pre-miRNA to maintain its stability. In this way, circMYH9 promotes CRC cell proliferation in a p53-dependent manner [44]. Some circRNAs interact with proteins and suppress their activities [45–48]. circPTPRA was shown to suppress the progression of bladder cancer, through its interaction with IGF2BP1, an N6-methyladenosine (m6A) reader, and blocking the IGF2BP1-mediated recognition of m6A-modified RNAs [47]. Furthermore, some circRNAs function as protein scaffolds to affect interactions among proteins [49, 50]. As an example, circRNA-DOPEY2 facilitates the association between the E3 ligase TRIM25 and its substrate cytoplasmic polyadenylation element binding protein (CPEB4), leading to increased CPEB4 degradation [50]. As a result, the circRNA promotes chemosensitivity in esophageal cancer cells.

Translation. Although circRNAs were previously identified as non-coding RNAs, because they lacked a 5'-cap structure and a 3'-poly-A tail, recently some circRNAs containing internal ribosome entry sites (IRES) and those with N6-methyladenosine (m6A) modification can serve as templates for protein translation.

AUTOPHAGY

CircRNAs have both stimulatory and inhibitory effects on autophagy, and they mainly regulate the process of autophagy via ceRNA mechanisms. circRNA-mediated autophagy is implicated in cancer development and plays vital roles in cell proliferation, metastasis, chemoresistance, and apoptosis.

The roles played by circRNAs in autophagic processes

There are mainly five stages in the autophagic processes: initiation, autophagosome nucleation, autophagosome membrane elongation, the fusion between the autophagosome and a lysosome, and the degradation of the autophagic cargo [31] (Fig. 3). circRNAs are implicated in these processes via interacting with autophagy-related proteins or regulating their expression. During the initiation stage, a unc-51-like kinase 1 (ULK1) complex, composed of ULK1, ULK2, autophagy-related 13 (ATG13), and FIP200 is activated [31]. Several circRNAs are associated with the initiation stage. circCDYL and circTMEM87A regulate the expression of ULK1
via acting as the sponges of miR-1275 and miR-142-5p, respectively, and further promote autophagy [53, 54]. circMUC16 promotes ATG13 expression and facilitates autophagy via directly binding to ATG13 in epithelial ovarian cancer (EOC) [55]. Then, the ULK1 complex induces the activation of a class III PI3K complex (containing Beclin1, ATG14, UVRAG, and class III PI3K), which mediates autophagosome nucleation. During this process, circMUC16 enhances autophagy via the circMUC16/ miR-199a-5p/Beclin1 axis [55]. circRAB11FIP1 regulates ATG14 expression by sponging miR-129 [56]. The complex of ATG5-ATG12 mediates the elongation of the autophagosome membrane, via conjugating with ATG16 protein. Meanwhile, LC3-II is formed via the conjugation of LC3-I with lipid phosphatidylethanolamine (PE), followed by being recruited to the membrane of autophagosome. This process is mediated by the ATG4B-ATG7 complex. circRAB11FIP1 and circCDYL are reported to regulate ATG7 expression via serving as the sponges of miR-129 and miR-1275, respectively, and promote autophagy [53, 56]. Subsequently, the fusion between autophagosomes and lysosomes is facilitated by the SNARE protein syntaxin 17 (STX17), resulting in the degradation of autophagic cargoes. Circ_0000034 is implicated in the process by regulating the miR-361-3p/STX17 axis [57].

The multiple signaling pathways associated with circRNA-mediated regulation of autophagy

circRNAs regulate autophagy via a diverse range of signaling pathways, as described below (Fig. 4).

Signal transducer and activator of transcription 3 (STAT3). STAT3 signaling, a stress response pathway, has been reported to participate in regulating autophagy [58]. STAT3 proteins located in various subcellular compartments can affect the autophagic process in diverse ways [58]. Phosphorylated STAT3 proteins form dimers and enter the nucleus to regulate the expression of autophagy-associated genes, including Bcl-2, BECN1, and PIK3C3. Cytoplasmic unphosphorylated STAT3 suppresses autophagy by sequestering FOXO1, FOXO3, and EIF2AK2. circU-BE2Q2 was shown to suppress miR-370-3p/STAT3-mediated autophagy and promote GC development. Its knockdown was found to significantly decrease STAT3, p-STAT3, and Bcl-2 levels, resulting in increased autophagy [35]. Chen et al. also identified a circRNA, circHIPK3, as a key autophagy regulator in lung cancer [59]. circHIPK3 promotes cancer progression and suppresses autophagy, partially by sponging miR-124-3p and regulating the expression of its target, STAT3.
The role of circRNA-mediated autophagy in tumor development.

circRNA-mediated autophagy can exhibit either promoting or inhibiting effects on cancer development across different tumor types (Table 1). In BCa, autophagy enhanced by circDnmnt1 and circCUL2 facilitates the malignant progression and invasion of BCa cells, whereas circUBE2Q2-mediated autophagy was found to promote cell proliferation and invasion in PDAC [34]. It has even been noted that autophagy can have antithetical effects on cancer progression, even within the same tumor type. The silencing of circUBE2Q2 increased autophagy but suppressed glycolysis, cell proliferation, invasion, and migration in GC [35]. Meanwhile, circCUL2 was found to activate autophagy but inhibit tumorigenicity in GC [81]. These findings suggest that autophagy regulated by circUBE2Q2 and circCUL2 exhibits anti-tumor activity in GC, whereas circTME87A-mediated autophagy positively regulates GC progression [54]. Similarly, circUBAP2 promotes autophagic processes and enhances the development and metastasis of CRC [74], while circRNA_103948 suppresses autophagy and promotes the progression of CRC [83]. These findings indicate the opposing effects of autophagy on CRC progression. Therefore, the effects of autophagy on tumorigenesis and progression may be dependent on tumor types, the genetic context of cells, and specific types of cellular stresses. An understanding of the mechanisms underlying how circRNAs regulate autophagic processes and how autophagy affects tumorigenesis is thus important for the development of circRNA-based cancer therapy strategies.

The role of circRNA-mediated autophagy in chemoresistance of cancer cells. circRNAs are also implicated in the chemoresistance of tumor cells by regulating autophagy (Table 2). Cisplatin, a platinum-based reagent, has been widely used in therapy for solid cancers, such as ovarian, lung, colorectal, bladder, and head and neck cancers [85, 86]. However, chemoresistance often develops following cisplatin-based therapy, limiting its clinical utility [87]. circPARD3 facilitates chemoresistance of cancer cells to cisplatin in laryngeal squamous cell carcinoma via regulating PRKCI-AKT-mTOR signaling and then suppressing autophagy [88].
Table 1. The roles of autophagy-associated circRNAs in cancer development.

circRNA	Roles in autophagy	Mechanism	Target	Cancer types	Roles in cancer development	Dysregulation in cancer(up/down)	References
circDnmt1	Promote	Recruitment of proteins	PS3 and AUF1	Bca	Oncogene	Up	[15]
circCSPP1	Promote	ceRNA	miR-520h/EGFR1	PCa	Oncogene	Up	[77]
circUBAP2	Promote	ceRNA	miR-582-5p/FOXO1	CRC	Oncogene	Up	[74]
circRHO818T3	Promote	ceRNA	miR-600/NACC1	PDAC	Oncogene	Up	[34]
circRAB11FIP1	Promote	ceRNA	miR-129/ATG7 and ATG14	EOC	Oncogene	Up	[56]
circCDYL	Promote	ceRNA	miR-1275/ATG7 and ULK1	Bca	Oncogene	Up	[53]
circMUC16	Promote	ceRNA; Interaction with protein	miR-199a-5p/Beclin1 and RUNX1; ATG13	EOC	Oncogene	Up	[55]
hsa_circ_0007813	Promote	ceRNA	hsa-miR-361-3p/IGF2R	bladder cancer	Oncogene	Up	[79]
circTMEM87A	Promote	ceRNA	miR-142-5p/ULK1	GC	Oncogene	Up	[54]
circCDR1as	Promote	ceRNA	miR-671-5p	OSCC	Oncogene	Up	[62]
circ_0000034	Promote	ceRNA	miR-361-3p/STX17	RB	Oncogene	Up	[57]
circMRPS35	Promote	Interaction with protein	KAT6B/FOXO3	osteosarcoma	Anti-oncogene	–	[75]
circUBE2Q2	Suppress	ceRNA	miR-370-3p/STAT3	GC	Oncogene	Up	[35]
circHIPK3	Suppress	ceRNA	miR-124-3p/STAT3	NSCLC	Oncogene	–	[59]
hsa_circ_0000515	Suppress	ceRNA	miR-326/ELK1	Cervical cancer	Oncogene	Up	[84]
circRNA_103948	Suppress	ceRNA	miR-1236-3p/PTP1	CRC	Oncogene	Up	[83]

Bca breast cancer, PCa prostate cancer, GC gastric cancer, CRC colorectal cancer, PDAC pancreatic ductal adenocarcinoma, EOC epithelial ovarian cancer, NSCLC non-small cell lung cancer, OSCC oral squamous cell carcinoma, RB retinoblastoma.

Table 2. The roles of autophagy-associated circRNAs in chemoresistance.

circRNA	Roles in autophagy	Mechanism	Target	Anti-cancer reagents	Cancer types	Roles in cancer development	Dysregulation in cancer(up/down)	References
circCUL2	Promote	ceRNA	miR-142-3p/ROCK2	Cisplatin	GC	Anti-oncogene	Down	[81]
circRNA_100565	Promote	ceRNA	miR-337-3p/ADAM28	Cisplatin	NSCLC	Oncogene	Up	[89]
circRACGAP1	Promote	ceRNA	miR-3657/ATG7	Apatinib	GC	Oncogene	Up	[91]
circRACGAP1	Suppress	ceRNA	miR-144-5p/CDKL1	Gefitinib	NSCLC	Oncogene	Up	[92]
circ_0009910	Promote	ceRNA	miR-34a-5p/ULK1	Imatinib	CML	Oncogene	Up	[93]
circCPM	Promote	ceRNA	miR-21-3p/PRKAA2	5-FU	GC	Oncogene	Up	[103]
circ_0035483	Promote	ceRNA	miR-335/cyclinB1	Gemcitabine	RCC	Oncogene	Up	[104]
circPARD3	Suppress	ceRNA	miR-145-5p/PRKC1	Cisplatin	LSCC	Oncogene	Up	[88]

LSCC laryngeal squamous cell carcinoma, GC gastric cancer, NSCLC non-small cell lung cancer, CML chronic myeloid leukemia, RCC renal clear cell carcinoma.
The silencing of circPARD3 increases the sensitivity of cancer cells to this drug. circCUL2 also affects the resistance of GC cells to cisplatin via modulating miR-142-3p/ROCK2-mediated autophagy [81]. Zhong and colleagues described a circRNA, circRNA_100565, associated with the resistance of non-small cell lung cancer (NSCLC) cells to cisplatin [89]. The upregulation of circRNA_100565 was observed in cisplatin-resistant NSCLC cell lines and tissues. Furthermore, this circRNA promotes autophagy and cell proliferation, but suppresses apoptosis via the miR-337-3p/ADAM metallopeptidase domain 28 (ADAM28) axis, resulting in the enhancement of cisplatin resistance. In addition, several circRNAs contribute to the resistance of cancer cells to a patatin, a selective inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2), which also exhibits anti-tumor activity in solid tumors [90]. Ma et al. showed that circRACGAP1 is involved in the resistance of cancer cells to Apatinib in GC via regulating the miR-3657/ATG7-mediated autophagy. circRACGAP1 knockdown sensitized GC cells to the drug via suppressing autophagy [91]. Additionally, this circRNA regulates gefitinib resistance in NSCLC via targeting miR-144-5p/CDK1. circRACGAP1 knockdown significantly increases the gefitinib sensitivity in NSCLC cells [92]. The upregulation of circ_0009910 was noted in the serum of imatinib-resistant patients with chronic myeloid leukemia (CML) [93]. circ_0009910 enhances the resistance of CML cells to imatinib by sponging miR-34a-5p and then regulating ULK1-mediated autophagy. Thus, the roles played by circRNAs in the chemoresistance of cancer cells suggest that targeting circRNA-mediated autophagy is a potential strategy to attenuate chemoresistance in patients with advanced cancer.

The silencing of circPARD3 increases the sensitivity of cancer cells to this drug. circCUL2 also affects the resistance of GC cells to cisplatin via modulating miR-142-3p/ROCK2-mediated autophagy [81]. Zhong and colleagues described a circRNA, circRNA_100565, associated with the resistance of non-small cell lung cancer (NSCLC) cells to cisplatin [89]. The upregulation of circRNA_100565 was observed in cisplatin-resistant NSCLC cell lines and tissues. Furthermore, this circRNA promotes autophagy and cell proliferation, but suppresses apoptosis via the miR-337-3p/ADAM metallopeptidase domain 28 (ADAM28) axis, resulting in the enhancement of cisplatin resistance. In addition, several circRNAs contribute to the resistance of cancer cells to a patatin, a selective inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2), which also exhibits anti-tumor activity in solid tumors [90]. Ma et al. showed that circRACGAP1 is involved in the resistance of cancer cells to Apatinib in GC via regulating the miR-3657/ATG7-mediated autophagy. circRACGAP1 knockdown sensitized GC cells to the drug via suppressing autophagy [91]. Additionally, this circRNA regulates gefitinib resistance in NSCLC via targeting miR-144-5p/CDK1. circRACGAP1 knockdown significantly increases the gefitinib sensitivity in NSCLC cells [92]. The upregulation of circ_0009910 was noted in the serum of imatinib-resistant patients with chronic myeloid leukemia (CML) [93]. circ_0009910 enhances the resistance of CML cells to imatinib by sponging miR-34a-5p and then regulating ULK1-mediated autophagy. Thus, the roles played by circRNAs in the chemoresistance of cancer cells suggest that targeting circRNA-mediated autophagy is a potential strategy to attenuate chemoresistance in patients with advanced cancer.

THE POTENTIAL OF AUTOPHAGY-ASSOCIATED CIRCARNAS IN CANCER TREATMENT

With the increasing understanding of the regulatory roles played by circRNAs in autophagy and cancer development, the potential of circRNAs in tumor therapy is attracting more and more attention. The expression patterns of circRNAs have been shown to be associated with the clinicopathological characteristics of cancer. circHIPK3 plays an important role in regulating autophagy in NSCLC [59]. circHIPK3 and its linear partner (linHIPK3) exert the opposite regulatory effects on autophagy. The ratio between circHIPK3 and linHIPK3 (the C:L ratio) reflects the level of autophagy, with a low C:L ratio indicating poor survival in patients with advanced-stage NSCLC, therefore it was suggested that the ratio can be used as a prognostic factor in NSCLC. Moreover, circMUC16 was reported to promote autophagy in EOC [55]. circMUC16 is upregulated in EOC tissues and the expression level of this circRNA is closely related to EOC development, both in terms of stage and grade. Therefore, circRNAs exhibit potential as novel targets for cancer diagnosis and therapy.

Some circRNAs are detectable in body fluids, such as peripheral blood, saliva, and urine, providing the possibility that they could be used as non-invasive diagnostic and prognostic biomarkers for numerous human diseases, including cancers [94]. Thus, the circRNAs enriched in exosomes have received more and more attention. Exosomes are tiny membrane vesicles circulating in body fluids, which are secreted by various types of cells, such as cancer cells [95]. They contain various substances, including circRNAs, other nucleic acids, lipids, and proteins, and are associated with intercellular communication and the formation of the tumor microenvironment and premetastatic niches [94, 96, 97]. Exosomes carry circRNAs to target cells and, at the same time, increase their stability [94]. Increasing numbers of cancer-derived exosomal circRNAs have been identified, and their expression level is related to tumor progression. As they are abundant, stable, easy to detect, and show specific expression patterns in cancer, these exosomal circRNAs are considered as novel potential biomarkers of cancer diagnosis and prognosis. Rao et al. compared circRNA levels in plasma exosomes between GC patients and healthy donors to identify the expression profile of exosomal circRNAs in GC [98]. They found 620 upregulated and 440 downregulated exosomal circRNAs, which may participate in GC development. Additionally, 1195 and 1147 dysregulated exosome-derived circRNAs were identified in localized and metastatic BCa, respectively [99]. Compared with patients with localized BCa, 480 exosome-derived circRNAs were dysregulated in metastatic BCa patients, indicating their role in BCa metastasis. Moreover, circSHKBP1 is upregulated in cancer tissues and serum of GC patients [100]. Its increased expression is linked to poor survival and advanced TNM stage. The exosomal circSHKBP1 enhances GC development via the miR-582-3p/HUR/VEGFR axis and its level significantly decreases following gastrectomy. Therefore, exosomal circSHKBP1 might be a potential biomarker for GC. The enrichment of circSATB2 was found in serum exosomes from NSCLC patients and is linked to metastasis [101]. This exosomal circRNA, which can be detected with high sensitivity and specificity, also exhibit potential as a diagnostic biomarker for NSCLC. The expression patterns of autophagy-associated circRNAs in cancer-derived exosomes and their correlation with clinicopathological characteristics of cancers should be investigated further. The regulatory roles and the molecular mechanisms of these exosomal circRNAs during tumor development also need to be further elucidated.

Chemotherapy is primarily used for the treatment of metastatic cancers. However, that multidrug resistance is usually developed in patients renders cancer treatment more difficult. Autophagy-associated circRNAs play vital roles in chemoresistance development; therefore, these circRNAs can be targeted to enhance the sensitivity of cancer cells to anti-cancer reagents. The drug 5-fluorouracil (5-FU) is frequently used for the treatment of advanced GC [102]. Fang et al. reported that circCPM is upregulated in GC cell lines and tissues with resistance to 5-FU [103]. circCPM promotes PKAA2-mediated autophagy by sponging miR-21-3p and then enhances 5-FU resistance of GC cells. Therefore, targeting circCPM may represent a novel therapeutic strategy to reverse 5-FU resistance in GC. Hsa_circ_0035483 promotes gemcitabine-induced autophagy and enhances gemcitabine resistance in renal clear cell carcinoma (RCC) via sponging has_mir_335 [104]. circ_0035483 knockdown enhances the gemcitabine sensitivity, suggesting its potential as a novel target of treatment to reverse chemoresistance in RCC.

CONCLUSION

circRNAs are implicated in the regulation of autophagy, via multiple signaling pathways. circRNA-mediated autophagy plays vital roles in multiple aspects of tumor progression, and exhibits both pro- and anti-tumor effects, in a context-dependent manner. Therefore, an understanding of the mechanisms by which circRNA-mediated autophagy affects tumorigenesis and cancer progression is particularly important for the development of novel circRNA-based cancer therapeutic strategies. Furthermore, circRNAs also participate in the chemoresistance of cancer cells through the regulation of autophagy. The combination of traditional chemotherapy and new therapeutic strategies targeting autophagy-associated circRNAs may lead to more effective treatments for cancer. Additionally, some circRNAs enriched in exosomes are stable and detectable in body fluids, while the expression levels of circRNAs are linked to clinicopathological characteristics of cancers. Therefore, circRNAs are also considered to represent novel and potentially useful diagnostic and prognostic biomarkers of cancer.
All the data used to support the findings of this study are available in the paper.

REFERENCES

1. Kos A, Dijkema R, Amberg AC, Vandermeirenh H, Schellekens H. The Haptenitis Delta (Delta) virus possesses a circular RNA. Nature. 1986;323:558–60.

2. Ge JS, Wang J, Xiong F, Jiang XS, Zhu RJ, Wang YA, et al. Epstein-Barr virus-encoded circular RNA circ-BART22 promotes immune escape of nasopharyngeal carcinoma by regulating PD-L1. Cancer Res. 2021;81:5074–88.

3. Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;588:80–75.

4. Gokool A, Anwar F, Voormeij J. The landscape of circular RNA expression in the human brain. Biol Psychiatry. 2020;87:294–304.

5. Huang R, Zhang Y, Han B, Bai Y, Zhou R, Gan G, et al. Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MYR124-2HG. Autophagy. 2017;13:7222–35.

6. Su H, Zheng W, Pan J, Lv X, Xin S, Xu T. Circular RNA circSamd4a regulates antiviral immunity in teleost fish by upregulating STING through splicing miR-29a-3p. J Immunol. 2021;207:2770–84.

7. Chen X, Yang T, Wang W, Xi W, Zhang T, Li Q, et al. Circular RNAs in immune responses and immune diseases. Theranostics. 2019;9:588–607.

8. Garikipati VNS, Verma SK, Cheng Z, Liang D, Tsungcao MM, Cimini M, et al. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun. 2019;10:4317.

9. Wu F, Han B, Wu S, Yang L, Li M, et al. Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335-3p/Tiparp. J Neurosci. 2019;39:7369–93.

10. Jiao K, Walsh LJ, Ivanoski S, Han P (2021) The emerging regulatory role of circRNA. Mol Cancer. 2021;20:628.

11. Ge JS, Wang J, Xiong F, Jiang XJ, Zhu KJ, Wang YA, et al. Epstein-Barr virus-encoded circular RNA circ-BART22 promotes immune escape of nasopharyngeal carcinoma by regulating PD-L1. Cancer Res. 2021;81:5074–88.

12. Li J, Sun D, Pu W, Wang J, Peng Y. Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer. 2020;6:319–36.

13. Lei M, Zheng G, Ning Q, Zheng J, Dong D. Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 2020;20:93.

14. Wang X, Zhang H, Yang H, Bai M, Ning T, Deng T, et al. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol Oncol. 2020;14:539–55.

15. Du WW, Wang W, Li X, Awan FM, Yang Z, Fang L, et al. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene. 2018;37:5829–42.

16. Peng Y, Xu Y, Zhang X, Deng S, Yuan Y, Luo X, et al. A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/beta-catenin signaling pathway to promote gastric cancer progression. Mol Cancer. 2021;20:158.

17. Tang W, Fu K, Sun H, Rong D, Wang H, Hao C. CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol Cancer. 2018;17:137.

18. Geng S, Ouyang R, Zeng F, Wang K, Lin Y, Sun B, et al. Circular RNAs expression profiles in human gastric cancer. Cell Signal. 2017;91:6090.

19. Sand M, Bechera FG, Sand D, Gambichler T, Hahn SA, Bromba M, et al. Circular RNA expression in basal cell carcinoma. Epigenomics. 2016;8:619–32.

20. Li Y, Li Y, Li L. Circular RNA hsa_Circ_0005795 mediates cell proliferation of cutaneous basal cell carcinoma by splicing miR-1231. Arch Dermatol Res. 2021;313:773–82.

21. Wang L, Long H, Zheng Q, Bo X, Xiao X, Li B. Circular RNA circHOT1 promotes colorectal cancer progression by initiation of NF26 expression. Mol Cancer. 2019;18:119.

22. Han D, Li J, Wang H, Su X, Hou J, Gu Y, et al. Circular RNA circMTOR1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66:1151–64.

23. Yang BL, Liu GQ, Li P, Li JH. Circular RNA cUL2 regulates the development of colorectal cancer by modulating apoptosis and autophagy via mir-20a-3p/PPAR. Genes. (Aubany NY). 2022;14:497–508.

24. Hong X, Liu N, Liang Y, He Q, Yang X, Li Y, et al. Circular RNA CRIM1 functions as a ceRNA to promote nasopharyngeal carcinoma metastasis and docetaxel chemoresistance through upregulating FOXO1. Mol Cancer. 2020;19:93.

25. Gen J, Liang Y, Huang Y, Yan P, Shu G, Zheng Z, et al. Circular RNA circSDHC serves as a sponge for miR-127-3p to promote the proliferation and metastasis of renal cell carcinoma via the CDKN3/EIF2A axis. Mol Cancer. 2021;20:19.

26. Gu Y, Wang Y, He L, Zhang J, Zhu X, Liu N, et al. Circular RNA circPOD1 drives self-renewal of liver cancer initiating cells via Hedgehog signaling. Mol Cancer. 2021;20:132.
54. Wang HK, Sun GL, Xu PH, Lv JL, Zhang X, Zhang L, et al. Circular RNA TME87A promotes cell proliferation and metastasis of gastric cancer by elevating ULK1 via sponging miR-142-3p. J Gastroenterol. 2021;56:125–38.
55. Gan XL, Zhu HT, Jiang XW, Obiegbusi SC, Yong M, Long XT, et al. CircMUC16 promotes autophagy of epithelial ovarian cancer via interaction with ATG13 and miR-199A. Mol Cancer. 2020;19:45.
56. Shen T, Qian Y, Zhang T, Chen Q, Yuan Y, Wu P, Cai B, et al. CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and A-to-I RNA-editing. Mol Cancer. 2021;20:051.
57. Liu H, Yuan HF, Xu D, Chen KJ, Tan N, Zheng QJ. Circular RNA circ_m000034 upregulates STX17 level to promote human retinoblastoma development via inhibiting miR-361-3p. Eur Rev Med Pharmacol. 2020;24:12080–92.
58. You LX, Wang ZG, Li HS, Shou JW, Jing Z, Xie JS, et al. The role of STAT3 in autophagy. Autophagy. 2011;7:129–39.
59. Chen XT, Yao R, Su WM, Yang X, Geng QQ, Guo CF, et al. Circular RNA circHPK3 modulates autophagy via miR124-3p-STAT3-PRKAA/AMPK alpha signaling in STK11 mutant lung cancer. Autophagy. 2020;16:659–71.
60. Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest. 2015;125:35–32.
61. Wang HJ, Liu YM, Wang DM, Xu YL, Dong Q, Yang YX, et al. The upstream pathway of mtor-mediated autophagy in liver cells. Cells. 2019;8:1597.
62. Gao L, Dou ZC, Ren WH, Li SM, Liang X, Zhi KQ. CircCDR1as upregulates autophagy under hypoxia to promote tumor cell survival via AKT/ERK1/2/mTOR signaling pathways in oral squamous cell carcinomas. Cell Death Dis. 2019;10:745.
63. Zhang J, Chen WM, Liu S, Wang ZH, Wei TN, Chen ZZ, et al. CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res. 2019;85:106198.
64. Levine B, Abrams J. p53: The Janus of autophagy? Nat Cell Biol. 2008;10:637–9.
65. Marocik M, Frohlich LF. p53-mediated molecular control of autophagy in tumor cells. Biomolecules. 2018;8:114.
66. Maori MC, Tasdemir E, Criollo A, Morselli E, Vicenzo JM, Carnuccio R, et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ. 2009;16:1873–9.
67. Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008;134:451–60.
68. Cheng B, Lu J, Li T, Meng Z, Liu M, Sun M, et al. 1,3-Dichloro-2-Propanol inhibits autophagy via P53/AMPK/mTOR pathway in HepG2 cells. Food Chem Toxicol. 2018;122:143–50.
69. Zhu J, Ao H, Liu M, Cao K, Ma J. UBE2T promotes autophagy via the p53/AMPK/mTOR signaling pathway in lung adenocarcinoma. J Transl Med. 2021;19:374.
70. Crighton D, Wilkinson S, Ryan KM. DRAM links autophagy to p53 and programmed cell death. Autophagy. 2007;3:72–4.
71. Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121–34.
72. Cheng YZ. The FoxO-autophagy axis in health and disease. Trends Endocrin Met. 2019;30:658–71.
73. Fitzhugh DE, Thorburn A. FOXO3 links autophagy to apoptosis. Autophagy. 2018;14:1467–8.
74. Chen F, Guo L, Di J, Li M, Dong D, Pei D. Circular RNA ubiquitin-associated protein 2 enhances autophagy and promotes colorectal cancer progression and metastasis via miR-582-5p/FOXO1 signaling. J Genet Genomics. 2021;48:1091–1103.
75. Jiang C, Jiang Z, Zhang X. Circular RNA circMIRPS35 regulates progression and autophagy in osteosarcoma cells by recruiting KAT8 to govern FOXO3. Anticancer Drugs. 2022;33:607–13.
76. Peeters JGC, Picavet LW, Coenen S, Mauhle M, Vervoort SJ, Mocholi E, et al. Transcriptional and epigenetic profiling of nutrient-deprived cells identifies key novel regulators of autophagy. Autophagy. 2019;15:98–112.
77. Lu J, Zhong C, Luo J, Zhu F, Lv D, Liu Z, et al. HnRNP-L-regulated circCSPP1/miR-320h/EGR1 axis modulates autophagy and promotes progression in prostate cancer. Mol Ther Nucleic Acids. 2021;26:927–34.
78. Takeda T, Komatsu M, Chwirski F, Komatsuzaki R, Nakamura K, Tsuji K, et al. Upregulation of IGF2R evades lysosomal dysfunction-induced apoptosis of cervical cancer cells via transport of cathepsins. Cell Death Dis. 2019;10:876.
79. Zhang Z, Mou Z, Xu C, Wu S, Dai X, Chen X, et al. Autophagy-associated circular RNA hsa_circ_0007813 modulates human bladder cancer progression via hsa-miR-361-3p/GFR2 regulation. Cell Death Dis. 2021;12:778.
80. Sun L, Ma Y, Zhang Z, Li X, Chen Y, Liu G, et al. ROCK2 regulates autophagy in the hippocampus of rats after subarachnoid hemorrhage. Neuroreport. 2018;29:1571–7.
FUNDING
This research was supported by: National Natural Science Foundation of China (82173290, 82172946, 81772592, 31601028, 81871969); Medical science and technology research foundation of Guangdong Province (A2019211, A2018170); Shenzhen Basic Research Fund (JCYJ20190808163801777); Shenzhen University Talent program (2000324), High Quality University Construction 2nd phase (860-00000210); National Key Research and Development Program of China (2016YFB0201305); Youth talent support program in medical center Shenzhen University.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Yin Peng or Zhe Jin.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.