Confinement versus Chiral Symmetry

Ágnes Mócsy, Francesco Sannino and Kimmo Tuominen

The Niels Bohr Institute & NORDITA, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

(Dated: August 2003)

We construct an effective Lagrangian which illustrates why color deconfines when chiral symmetry is restored in hot gauge theories with quarks in the fundamental representation. For quarks in the adjoint representation we show that while deconfinement and the chiral transition do not need to coincide, entanglement between them is still present. Extension to the chemical potential driven transition is discussed.

In the absence of quarks the $SU(N)$ Yang-Mills theory has a global Z_N symmetry. There exists a gauge invariant operator charged under Z_N, the Polyakov loop, which can be identified as the order parameter of the theory, and thus be used to characterize the deconfinement phase transition. One can directly study this phase transition via numerical lattice simulations. Such studies have revealed that the deconfinement phase transition is second order when the number of colors is $N_c = 2$, weakly though [4], but first order for $N_c = 3$ [5], and presumably first order for $N_c \geq 4$ [4].

The picture changes considerably when quarks are added to the theory. If fermions are in the fundamental and pseudoreal representations for $N_c = 3$ and $N_c = 2$, respectively, the corresponding Z_3 or Z_2 center of the group remains a symmetry of the theory, and thus besides the chiral condensate, also the Polyakov loop is an order parameter.

Interestingly, lattice results [10] indicate that for ordinary QCD with quarks in the fundamental representation, chiral symmetry breaking and confinement (i.e. a decrease of the Polyakov loop) occur at the same critical temperature. Lattice simulations also indicate that these two transitions do not happen simultaneously when the quarks are in the adjoint representation. Despite the attempts to explain these behaviors [11], the underlying reasons are still unknown.

In this Letter we propose a solution to this puzzle based on the approach presented in [12, 13], envisioned first in [14], concerning the transfer of critical properties from true order parameters to non-critical fields. The order parameter field is a field whose expectation value is a true order parameter, i.e. is zero in the symmetric phase and non-zero in the spontaneously broken one. The non-order parameter (or non-critical) fields are the ones whose expectation values do not have such a behavior.

Two general features introduced in [12, 13] are essential: There exists a relevant trilinear interaction between the light order parameter and the heavy non-order parameter field, singlet under the symmetries of the order parameter field. This allows for an efficient transfer of information from the order parameter to the fields that are singlets with respect to the symmetry of the theory. As a result, the non-critical fields have infrared dominated spatial correlators. The second feature, also due to the existence of such an interaction, is that the finite expectation value of the order parameter field in the symmetry broken phase induces a variation in the expectation value for the singlet field, whose value generally is non-vanishing in the unbroken phase.

FUNDAMENTAL REPRESENTATION

Here we study the behavior of the Polyakov loop by treating it as a heavy field that is a singlet under chiral symmetry transformations. We take the underlying theory to be two colors and two flavors in the fundamental representation. The degrees of freedom in the chiral sector of the effective theory are $2N_f^2 - N_f - 1$ Goldstone fields π^a and a scalar field σ. For $N_f = 2$ the potential is [15, 16]:

$$V_{ch}[\sigma, \pi^a] = \frac{m^2}{2} \text{Tr}[M^4M] + \lambda_1 \text{Tr}[M^4M]^2 + \frac{\lambda_2}{4} \text{Tr}[M^4M^4M^4M]$$

with $2M = \sigma + i2\sqrt{2}\pi^a X^a$, $a = 1, \ldots, 5$ and $X^a \in \mathcal{A}(SU(4)) - \mathcal{A}(Sp(4))$. X^a are the generators provided explicitly in equation (A.5) and (A.6) of [15]. The Polyakov loop potential in the absence of the Z_2 symmetry is

$$V_\lambda[\chi] = g_0 \chi + \frac{m^2}{2} \chi^2 + \frac{g_3}{3} \chi^3 + \frac{g_4}{4} \chi^4.$$

$$\text{(2)}$$
The field χ represents the Polyakov loop itself, while m_χ is the mass above the chiral phase transition. To complete the effective theory we introduce interaction terms allowed by the chiral symmetry

\[
V_{\text{int}}[\chi, \sigma, \pi^\alpha] = (g_1\chi + g_2\chi^2) \text{Tr}[M^\dagger M] = (g_1\chi + g_2\chi^2)(\sigma^2 + \pi^\alpha\pi^\alpha) .
\]

In the phase with $T < T_{\text{cr}}$, where chiral symmetry is spontaneously broken, σ acquires a nonzero expectation value, which in turn induces a modification also for $\langle \chi \rangle$. The usual choice for vacuum alignment is in the direction, i.e. $\langle \pi \rangle = 0$. The extremum of the linearized potential is at

\[
\langle \sigma \rangle^2 \simeq -\frac{m_\sigma^2}{\lambda} , \quad m_\sigma^2 \simeq m^2 + 2g_1(\chi) , \quad \langle \chi \rangle \simeq \chi_0 - \frac{g_1}{m_\chi^2} \langle \sigma \rangle^2 , \quad \chi_0 \simeq -\frac{g_0}{m_\chi^2} ,
\]

where $\lambda = \lambda_1 + \lambda_2$. Here m_σ^2 is the full coefficient of the σ^2 term in the tree-level Lagrangian which, due to the coupling between χ and σ, also depends on $\langle \chi \rangle$. Spontaneous chiral symmetry breaking appears for $m_\sigma^2 < 0$. In this regime the positive mass squared of the σ is $M_\sigma^2 = 2\lambda(\sigma^2)$. The formulae 4 and 5 hold near the phase transition where $\langle \sigma \rangle$ is small. We have ordered the couplings such that g_0/m_χ^2 and g_1/m_χ are both much greater than g_2 and g_1/m_χ. This previous ordering does not affect our general conclusions. No such ordering will be considered for quarks in the adjoint representation of the gauge group. When computing the expectation values for the relevant fields we will keep the full potential.

Near the critical temperature the mass of the order parameter field is assumed to possess the generic behavior $m_\chi^2 \sim (T - T_c)^\nu$. Equation 6 shows that for $g_1 > 0$ and $g_0 < 0$ the expectation value of σ behaves oppositely to that of χ : As the chiral condensate starts to decrease towards chiral symmetry restoration, the expectation value of the Polyakov loop starts to increase, signaling the onset of deconfinement. This is illustrated in the left panel of figure 1. Positivity of the expectation values implies $2g_1^2 - \lambda m_\chi^2 < 0$, which also makes the extremum a minimum. At the one-loop level one can show that also χ_0 acquires a temperature dependence.

When applying the analysis presented in 12 13, the general behavior of the spatial two-point correlator of the Polyakov loop can be obtained. Near the transition point, in the broken phase, the χ-two-point function is dominated by the infrared divergent σ-loop. This is so, because the π^α Goldstone fields couple only derivatively to χ, and thus decouple. We find a drop in the screening mass of the Polyakov loop at the phase transition. When approaching the transition from the unbroken phase the Goldstone fields do not decouple, but follow the σ, resulting again in the drop of the screening mass of the Polyakov loop close to the phase transition. We consider the variation $\Delta m_\chi^2(T) = m_\chi^2(T) - m_\chi^2$ of the χ mass near the phase transition with respect to the tree level mass m_χ. The one loop analysis predicts:

\[
\Delta m_\chi^2(T) \sim \frac{g_1^2}{|m_\sigma|} \sim t^{-2} ,
\]

with $t = |T/T_c - 1|$. This result shows the strong infrared sensitivity of the two-point correlator of the field χ at the onset of chiral symmetry restoration. The detailed behavior of the screening mass of the Polyakov loop near the phase transition depends on the resummation procedure used to deal with the infrared divergences.

The large N framework motivated resummation leads to:

\[
\Delta m_\chi^2(T) = -\frac{2g_1^2(1 + N_\pi)}{8\pi m_\sigma + (1 + N_\pi)3\lambda} , \quad T > T_{\text{cr}}
\]

\[
\Delta m_\chi^2(T) = -\frac{2g_1^2}{8\pi M_\sigma + 3\lambda} , \quad T < T_{\text{cr}} .
\]

This provides a qualitative improvement, since one expects that the mass of the non-order parameter field remains finite at the phase transition. From the above equations one finds that the screening mass of the Polyakov loop is continuous and finite at T_{cr}, and $\Delta m_\chi^2(T_{\text{cr}}) = -2g_1^2/(3\lambda)$, independent of N_π, the number of pions. Even if the mass is not critical, some associated quantities do display critical behavior. We define the slope parameters for the singlet field as

\[
D_\chi^\pm = \lim_{T \to T_{\text{cr}}^\pm} \frac{1}{\Delta m_\chi^2(T_{\text{cr}})} \frac{d\Delta m_\chi^2(T)}{dT} .
\]

These have the critical behavior $D_\chi^\pm \sim t^{\nu/2-1}$. However, as shown in 13 different critical exponents might emerge when one departs from the large N limit.

This analysis is not restricted to the chiral/deconfining phase transition. The entanglement between the order parameter (the chiral condensate) and the non-order parameter field (the Polyakov loop) is universal.

ADJOINT REPRESENTATION

As a second application, consider two color QCD with two massless Dirac quark flavors in the adjoint representation. Here the global symmetry is $SU(2N_f)$ which breaks via a bilinear quark condensate to $O(2N_f)$. The number of Goldstone bosons is $2N_f^2 + N_f - 1$. We take $N_f = 2$. There are two exact order parameter fields: the chiral σ field and the Polyakov loop χ. Since the relevant interaction term $g_1\chi\pi^2$ is now forbidden, one might expect no efficient information transfer between them. This naive statement is partially supported by lattice data 10. While respecting general expectations the following analysis suggests the presence of a new and
The chiral part of the potential is given by (1) with \(M = \sigma + i \sqrt{2} \pi \), \(a = 1, \ldots, 9 \) and \(X^a \in \mathcal{A}(SU(4)) - \mathcal{A}(O(4)) \). \(X^a \) are the generators provided explicitly in equation (A.3) and (A.5) of [10]. While the chiral part of the potential takes the same form as for the fundamental representation there are differences when expressing the potential in terms of the component fields. These do not affect the following analysis. The effective Lagrangian has no knowledge of which transition, the chiral or confinement, happens first. Although lattice data already provides such information we find it instructive to analyze separately all the possibilities.

When chiral symmetry is restored before deconfinement \(T_{c\chi} \ll T_{c\sigma} \) we consider three regimes: For \(T < T_{c\sigma} \) the \(Z_2 \) symmetry is intact, while the chiral symmetry is broken. Here \(\langle \sigma \rangle^2 = -m^2/\lambda \). For \(T > T_{c\chi} \) the \(Z_2 \) is broken, \(\langle \chi \rangle^2 = -m^2_\chi/g_4 \) and chiral symmetry is restored. In both cases the coefficient of the relevant quadratic term yielding condensation is not influenced by the expectation values of the other field since the latter vanishes. In the intermediate regime between the two critical temperatures both symmetries are unbroken and \(\langle \sigma \rangle = \langle \chi \rangle = 0 \). In this intermediate regime no trilinear interaction term between the fields is induced. For \(T < T_{c\sigma} \), the interaction \(\langle \sigma \rangle \sigma \chi^2 \), and for \(T > T_{c\chi} \) a term \(\langle \chi \rangle \lambda \sigma^2 \) in the Lagrangian exists. These interactions are innocuous for two reasons: i) They vanish close to their respective phase transition, and ii) They cannot induce any infrared divergent loops [12]. Thus for \(T_{c\sigma} \ll T_{c\chi} \) the two transitions are fully separated, and neither of the two fields feels, even weakly, the transition of the other.

The situation drastically changes when \(T_{c\chi} \ll T_{c\sigma} \). For \(T_{c\chi} < T < T_{c\sigma} \) both symmetries are broken, and the expectation values of the two order parameter fields are linked to each other:

\[
\langle \sigma \rangle^2 = -\frac{1}{\lambda} \left(m^2 + 2g_2 \langle \chi \rangle^2 \right) \equiv -\frac{m^2_\sigma}{\lambda},
\]

\[
\langle \chi \rangle^2 = -\frac{1}{g_4} \left(m^2_\chi + 2g_2 \langle \sigma \rangle^2 \right) \equiv -\frac{m^2_\chi}{g_4}.
\]

The coupling \(g_2 \) is taken to be positive. One can show that positivity of the square of the expectation values implies \(\lambda g_4 - 4g_2^2 > 0 \). The latter is sufficient to make the extremum of the potential a minimum. The expected behavior of \(m^2_\chi \sim (T - T_{c\chi})^{\nu_\chi} \) and \(m^2_\sigma \sim (T - T_{c\sigma})^{\nu_\sigma} \) near \(T_{c\chi} \) and \(T_{c\sigma} \), respectively, combined with the result of eq. (12), yields in the neighborhood of these two transitions the qualitative situation, illustrated in the right panel of figure [1]. On both sides of \(T_{c\chi} \) the relevant interaction term \(g_2 \langle \sigma \rangle \chi \sigma \chi^2 \) emerges, leading to a one-loop contribution to the static two-point function of the \(\sigma \) field \(\propto \langle \sigma \rangle^2/m_\chi \). Near the deconfinement transition \(m_\chi \rightarrow 0 \) yielding an infrared sensitive screening mass for \(\sigma \). Similarly, on both sides of \(T_{c\sigma} \) the interaction term \(\langle \chi \rangle \lambda \sigma^2 \) is generated, leading to the infrared sensitive contribution \(\propto \langle \chi \rangle^2/m_\sigma \) to the \(\chi \) two-point function. We conclude, that when \(T_{c\chi} < T_{c\sigma} \), the two order parameter fields, a priori unrelated, do feel each other near the respective phase transitions. It is important to emphasize that the effective theory works only in the vicinity of the two phase transitions. Interpolation through the intermediate temperature range is shown by dotted lines in the right panel of figure [1]. Possible structures here must be determined via first principle lattice calculations.

The infrared sensitivity leads to a drop in the screening masses of each field in the neighborhood of the transition of the other, which becomes critical, namely of the \(\sigma \) field close to \(T_{c\chi} \), and of the \(\chi \) field close to \(T_{c\sigma} \). These drops at the transition points are expected, at the one-loop level, to behave as:

\[
\Delta m^2_\chi(T) \sim -\frac{\langle g_2 \langle \chi \rangle \rangle^2}{m_\chi} \sim T^{-\frac{\nu_\chi}{2}},
\]

and similarly, we have \(\Delta m^2_\sigma(T) \sim T^{-\nu_\sigma/2} \) near the \(Z_2 \) phase transition. In the derivation of the above results we considered the expectation values of the fields in the broken phases to be close to their asymptotic values. The resummation procedure outlined in the previous section predicts again a finite drop:

\[
\Delta m^2_\chi(T_{c\sigma}) = -\frac{8g^2_2 \langle \chi \rangle^2}{3\lambda}, \quad \Delta m^2_\sigma(T_{c\chi}) = -\frac{8g^2_2 \langle \sigma \rangle^2}{3g_4}.
\]

We thus predict the existence of substructures near these transitions, when considering fermions in the adjoint representation. Searching for such hidden behaviors in lattice simulations would help to further understand the nature of phase transitions in QCD.
Ginzburg–Landau is an oversimplification, it allows on one hand to illuminate the relevant physics involved, and on the other hand permits a systematic study of different effects, such as a non-zero chemical potential, quark masses, quark flavors and axial anomaly.

We thank P.H. Damgaard, A.D. Jackson and R. Pisarski for discussions. The work of F.S. is supported by the Marie–Curie fellowship under contract MCFI-2001-00181.