Subcellular Distribution of the 1,4-Dihydropyridine Receptor in Rabbit Skeletal Muscle In Situ: An Immunofluorescence and Immunocolloidal Gold-labeling Study

Annelise O. Jorgensen,* Amy C-Y. Shen,* Wayne Arnold,* Albert T. Leung,† and Kevin P. Campbell‡

*Department of Anatomy, University of Toronto, Toronto, Canada M5S 1A8; and †Department of Physiology and Biophysics, University of Iowa, Iowa City, IA 52242

Abstract. The subcellular distribution of the 1,4-dihydropyridine receptor was determined in rabbit skeletal muscle in situ by immunofluorescence and immunoelectron microscopy. Longitudinal and transverse cryosections (5–8 μm) of rabbit gracilis muscle were labeled with monoclonal antibodies specific against either the α-subunit (170,000-D polypeptide) or the β-subunit (52,000-D polypeptide) of the 1,4-dihydropyridine receptor by immunofluorescence labeling. In longitudinal sections, specific labeling was present only near the interface between the A- and I-band regions of the sarcomeres. In transverse sections, specific labeling showed a hexagonal staining pattern within each myofiber however, the relative staining intensity of the type II (fast) fibers was judged to be three- to fourfold higher than that of the type I (slow) fibers. Specific immunofluorescence labeling of the sarcolemma was not observed in either longitudinal or transverse sections. These results are consistent with the idea that the α-subunit and the β-subunit of the purified 1,4-dihydropyridine receptor are densely distributed in the transverse tubular membrane.

Immunoelectron microscopical localization with a monoclonal antibody to the α-subunit of the 1,4-dihydropyridine receptor showed that the 1,4-dihydropyridine receptor is densely distributed in the transverse tubular membrane. Approximately half of these were distributed in close proximity to the junctional region between the transverse tubules and the terminal cisternae. Specific labeling was also present in discrete foci in the subsarcolemmal region of the myofibers. The size and the nonrandom distribution of these foci in the subsarcolemmal region support the possibility that they correspond to invaginations from the sarcolemma called caveolae. In conclusion, our results demonstrate that the 1,4-dihydropyridine receptor in skeletal muscle is localized to the transverse tubular membrane and discrete foci in the subsarcolemmal region, possibly caveolae but absent from the lateral portion of the sarcolemma.

Voltage-sensitive Ca2+ channels are present in smooth, cardiac, and skeletal muscle as well as in neuronal and endocrine cells (35, 43). The 1,4-dihydropyridines are potent blockers of the L-type voltage-sensitive Ca2+ channels (14). Electrophysiological studies have shown that 1,4-dihydropyridine-sensitive Ca2+ channels are localized to the transverse tubule membrane in adult skeletal muscle (37). Binding studies have shown that high affinity receptors for the 1,4-dihydropyridines are enriched in isolated transverse tubular membranes (9) and isolated triads (25) from skeletal muscle, but constitute only 0.1–0.8 % of the total protein in purified transverse tubular membrane vesicles (4, 9). Recently, it has been shown that dihydropyridines also inhibit charge movement in the transverse tubular membrane and thus excitation-contraction coupling in skeletal muscle (36).

The molecular properties of the dihydropyridine receptor from skeletal muscle has been extensively studied during the last few years and reviewed recently (3, 4, 12). The purified dihydropyridine receptor from skeletal muscle has been shown to contain at least four polypeptide components: α1-subunit, α2-subunit, β-subunit, and γ-subunit. The α1-subunit has an apparent molecular mass of 155–200 kD on SDS-PAGE under both nonreducing and reducing conditions and contains binding sites for dihydropyridine and aryalkylamine Ca2+ channel blockers. The primary amino acid sequence of the α1-subunit is consistent with it being the ion conduction and voltage-sensing unit of the Ca2+ channel. The α2-subunit has an apparent molecular mass of 165–175 kD under nonreducing conditions and 135–150 kD after reduction of disulfide bonds. The change in molecular mass is possibly due to dissociation of one or more disulfide linked proteins of 24–33 kD which have been referred to as the β-subunits. The β-subunit of the dihydropyridine receptor has an apparent molecular mass of 50–61 kD on SDS-PAGE which is insensitive to reduction. The α1-subunit and β-subunit are substrates for various protein kinases. The γ-subunit of the dihydropyridine receptor is a glycoprotein with an apparent molecular mass of 30–33 kD on SDS-PAGE. A stoichiometric ratio of 1:1:1:1 has been obtained for the α1, α2, β, and γ-subunits, respectively, after taking into consideration the glycoprotein nature of the α2-subunit. This obser-
Monoclonal Antibodies to the α_IIa- and β_IIa-Subunits of the Purified 1,4-Dihydropyridine Receptor of Adult Rabbit Skeletal Muscle as Determined by Immunofluorescence and Immunoelectron Microscopical Studies.

Materials and Methods

Monoclonal Antibodies to the 1,4-Dihydropyridine Receptor

The mAb to the 170,000-D (α_1) and the 52,000-D (β) subunits of the 1,4-dihydropyridine receptor from rabbit skeletal muscle were prepared and characterized as previously described (24, 25). Immunoblotting was performed according to the methods of Towbin (42) using 5% non-fat dry milk in PBS (BLOTTO) for blocking and washing of the immunobLOTS as described (15). Determination of the immunoglobulin class of the mAbs was carried out by immunofixation according to the procedure of Ouchterlony (29). Each of the mAbs was immunohistochemically stained with rabbit anti-mouse IgM and IgA. mAb IIID5 to the α_1-subunit of the 1,4-dihydropyridine receptor used for immunoelectron microscopy was purified from the mouse ascites fluid by DEAE-Affi Gel Blue chromatography (1).

Monoclonal Antibodies to the Ca$^{2+}$-ATPase of the Sarcoplasmic Reticulum

mAb IID8 to the Ca$^{2+}$-ATPase from canine cardiac sarcoplasmic reticulum and mAb IIH11 to the Ca$^{2+}$-ATPase of rabbit skeletal sarcoplasmic reticulum used in this study were prepared, purified, and characterized as previously described (18).

Preparation of Skeletal Muscle Extract, Triads, and Transverse Tubule Membranes

The extract represents the supernatant obtained from tissue homogenates during the preparation of triads. Triads were prepared as described by Mitchell et al. (28) with slight modification (39). Transverse tubular membranes were prepared by the method of Rosemblatt et al. (34). Protein concentrations were determined by the method of Lowry (26) as modified by Peterson (35) using BSA as a standard. SDS-PAGE on 3-12% gradient gels was performed by the method of Laemmli (23).

Dissection, Fixation, and Sectioning

Fixed and unfixed bundles of skeletal muscle fibers from rabbit gracilis and psoas muscle were prepared as previously described (20). Briefly, bundles of myofibers from rabbit gracilis or psoas muscle were dissected and quickly frozen in liquid nitrogen-cooled isopentane. Bundles of myofibers to be fixed were dissected from rabbit gracilis or psoas muscle and immediately tied to applicator sticks (for chemical fixation) or stainless steel loops (for cryofixation) at 100-120% of their rest length and allowed to recover for 30 min in a modified Krebs-Henseleit buffer (145 mM NaCl, 2.6 mM KCl, 5.9 mM CaCl$_2$, 1.2 mM MgSO$_4$, 25 mM NaHCO$_3$, and 10 mM glucose, saturated with a mixture of 95% O$_2$ and 5% CO$_2$). The bundles of myofibers to be used for immunofluorescence studies were fixed for 3 h in ice-cold 2% paraformaldehyde in 0.1 M sodium cacodylate (pH 7.4). Sucrose infusion, storage, and cryosectioning (6-8 μm) were carried out as previously described. The bundles of myofibers to be used for immunocytological gold labeling were cryofixed, freeze-dried, and low temperature embedded in Lowicryl K4M as previously described (Procedure II [17]) except that 10 min before freezing, the Krebs-Henseleit buffer was changed to also include 4% polyvinyl pyrrolidone (Sigma Chemical Co., St. Louis, MO) as a cryoprotectant (19). Briefly the bundles of myofibers were cryofixed using the "Gentleman Jim" freezing device (Ted Pella, Tuanta, CA) as described by Philips and Boyne (32). The cryofixed tissue was then quickly transferred to liquid nitrogen and stored overnight. Freeze-drying was carried out at low temperature in a glass cryosorption pump (5, 27). Infiltration and embedding of the cryofixed, freeze-dried tissue in Lowicryl K4M was performed according to the procedure of Chiavetti et al. (5, 6) as modified by Jorgensen and McGuffee (17). Thin sections (60-80 nm) were collected on nickel grids coated with formvar.

Immunofluorescence Labeling

Immunofluorescence staining of cryosections from unfixed rabbit gracilis muscle was carried out as previously described (20). The sections were first labeled with one of the following mAbs: IID8 to Ca$^{2+}$-ATPase of canine cardiac sarcoplasmic reticulum; IIH11 to Ca$^{2+}$-ATPase of rabbit skeletal sarcoplasmic reticulum; IID5 and IIIC12, to the α_1-subunit of the 1,4-dihydropyridine receptor; and VD2, to the β-subunit of the 1,4-dihydropyridine receptor. The secondary antibody was F(ab')$_2$ fragments of affinity-purified goat anti-mouse IgG conjugated to FITC (CooperBiomedical Inc., Malvern, PA) or to rhodamine (Jackson Immuno Research Laboratories Inc., West Grove, PA). It was used at a dilution of 1:20. The fluorescence photographs were taken with a Zeiss photomicroscope provided with an Epi-fluorescence attachment and a phase-contrast condenser using Kodak Tri-X pan film.

Immunofluorescence staining of cryosections from fixed rabbit gracilis muscle were carried out as described for cryosections from unfixed rabbit gracilis muscle, except that the secondary antibody used above was substituted with a two-step incubation described below. After incubation with the primary antibodies, cryosections were washed in PBS (pH 7.4) and then incubated for 30 min with a 1:25 dilution of biotin conjugated to affinity-purified F(ab')$_2$ fragments of rabbit anti-mouse IgG (Jackson Laboratories, Bar Harbor, ME). Subsequently the sections were again washed in PBS (pH 7.4) and incubated for 30 min with a 1:100 dilution of FITC-conjugated streptavidin (Jackson Immuno Research Laboratories, Inc., Avondale, PA). Finally the sections were washed and mounted as previously described (20).

Histological Staining

Serial transverse sections of unfixed rabbit gracilis muscles were stained for myosin ATPase after alkaline preincubations (pH 10.4) as described by Guth and Samaha (13). This method specifically labels the myosin ATPase of only fast skeletal muscle fibers.

Immunocytological Gold Labeling

Immunocytological gold labeling of thin sections of cryofixed, freeze-dried, and Lowicryl K4M-embedded rabbit skeletal muscle was carried out as previously described (16, 17) except for the modification outlined below. The sections were first labeled with DEAE-Affi Blue gel-purified mAb IID5 to the α_1-subunit of the 1,4-dihydropyridine receptor (15 μg/ml in PBS pH 7.4). Then an affinity-purified rabbit anti-mouse (Fc fragment) gamma globulin (Jackson Immuno Research Laboratories Inc.) was used at 25 μg/ml in PBS containing 3% BSA. Finally the sections were incubated with affinity-purified goat anti-rabbit gamma globulin colloidal-gold conjugate (3-7 nm) at 0.5 mg/ml PBS containing 3% BSA (Janssen Pharmaceutica, Beerse, Belgium).

To assess the immunolabeling specificity of the thin sections of Lowicryl K4M-embedded tissue, mouse gamma globulin purified from preimmune serum (10 μg/ml PBS) was substituted for mAb IID5 in the immunolabeling procedure. After immunolabeling, the sections were first stained for 15 s in saturated uranyl acetate at 50% ethanol (6) and then for 15 s in lead citrate. The sections were examined in a Hitachi 7000 transmission electron microscope.

Ultrastructure of Cryofixed Tissue

To assess the preservation of the ultrastructural features of the cryofixed and freeze-dried skeletal muscle tissue used for the immunoelectron microscopic studies, some of these tissues were vapor osmicated and then embedded in Spurr resin, as described by McGuffee et al. (27). Thin sections were stained with 2% uranylacetate followed by lead citrate, according to standard procedures, and examined in a Hitachi 7000 transmission electron microscope.

Results

Characterization of mAbs to the α_1- and the β-Subunits of the 1,4-Dihydropyridine Receptor

It was previously shown by immunoblotting and immunoprecipitation experiments that mAb VD2, binds specifically to...
Figure 1. Coomassie Blue and immunoblot staining of rabbit skeletal muscle extract and membrane fractions. Rabbit skeletal muscle extract (lanes 1), light sarcoplasmic reticulum membranes (lanes 2), triads (lanes 3), and transverse tubular membranes (lanes 4) were prepared as described in Materials and Methods and separated on SDS-PAGE (30 μg/lane) followed by Coomassie blue staining or immunoblotting with monoclonal antibodies. A is a Coomassie blue-stained gel, B, C, and D are immunoblots of the gel stained with mAbs IIC12, IID5, and VD21, respectively.

Distribution of the α- and the β-Subunits of the 1,4-Dihydropyridine Receptor in Type I (Slow) and Type II (Fast) Rabbit Gracilis Muscle

Serial transverse cyrosections from adult rabbit gracilis muscle containing a mixture of type I (slow) and type II (fast) myofibers were either labeled with mAb VD21 (anti-β-subunit) (Fig. 2a) or with mAb IIC12 (anti-α-subunit) (Fig. 2b) subunits of the 1,4-dihydropyridine receptor of rabbit skeletal muscle. To determine the fiber type distribution, additional transverse cyrosections were also stained with monoclonal antibodies specific for Ca²⁺-ATPase of the sarcoplasmic reticulum of either type I (slow) fibers (mAb IID8, Fig. 2d) or type II (fast) fibers (mAb IIH11, Fig. 2e) (18), and histochemically stained for the type II fiber marker alkaline ATPase (Fig. 2f) (13). One class of myofibers were strongly labeled with both mAb VD21 and mAb IIC12 and corresponded to the type I (slow) fibers. A second class of myofibers were strongly labeled with both mAb VD21 and with mAb IIC12 and corresponded to 95% of the type II (fast) fibers. A third class of myofibers constituting ~5% of the total fibers was also observed. This class of fibers was characterized by being more intensely labeled with mAb VD21, than the majority of the strongly labeled type II fibers but less intensely labeled with mAb IIC12 than the majority of the strongly labeled Type II fibers. Immunofluorescence labeling with another mAb IID5 specific for the α-subunit of the 1,4-dihydropyridine receptor (Fig. 2c) showed that 95% of the type II (fast) fibers also strongly labeled by mAb VD21 (anti-β-subunit) (Fig. 2a, star) and mAb IIC12 (anti-α-subunit) (Fig. 2b, star) were also strongly labeled with mAb IID5 (Fig. 2c, star) and that all type I (slow) fibers were weakly labeled with this antibody (Fig. 2c, solid circle). However the intensity of labeling of the remaining 5% of type II (fast) and the type I (slow) fibers by mAb IID5 was weak and indistinguishable from each other. The immunohistochemical and immunocytochemical characteristics of the mAbs used in the present report is summarized in Table I.

Comparison between the Distribution of the α- and the β-Subunits of the 1,4-Dihydropyridine Receptor in Skeletal Muscle Fibers

The studies described below were limited to type II (fast) myofibers. Examination of transverse sections of type II myofibers in gracilis muscle after immunolabeling with either mAb VD21 (anti-β-subunit) (Fig. 3a) or with mAb IID5 (anti-α-subunit) (Fig. 3f) showed a polygonal staining pattern throughout the cytoplasm. In contrast, the intensity of labeling of the sarcolemma was indistinguishable from that of the extracellular space. In longitudinal cyrosections of type II myofibers from fixed gracilis muscle, regular immunofluorescence staining with either mAb VD21 (anti-β-subunit) subunit (Fig. 3c, d, and e) or with mAb IID5 (anti-α-subunit) (Fig. 3h, i, and j) ap-

the β-subunit (52,000 D) of the 1,4-dihydropyridine receptor and that mAbs IIC12 and IID5 bind specifically to the α-subunit (170,000 D) of the 1,4-dihydropyridine receptor. In the present study, the specificity of these antibodies toward the α- and β-subunits of the 1,4-dihydropyridine receptor was further demonstrated by their ability to bind only one polypeptide band on immunoblots of extracts from rabbit skeletal muscle (Fig. 1, A-D, lanes 1). The mAb VD2 faintly stains a band in skeletal muscle extract (Fig. 1 D, lane 1) that is difficult to visualize after photography. Both of the immunoreactive polypeptides are relatively enriched in isolated triads (Fig. 1, lanes 3) and transverse tubular membranes (lanes 4) and relatively depleted in light sarcoplasmic reticulum membranes (lanes 2).
Figure 2. Distribution of the 52,000- and the 170,000-D subunit of the 1,4-dihydropyridine receptor in type I (slow) and type II (fast) myofibers of rabbit gracilis muscle. Serial transverse cryosections of unfixed rabbit gracilis muscle were immunofluorescently labeled with mAb VD2 (a) to the β-subunit of the 1,4-dihydropyridine receptor, with mAb IIC12 (b) and mAb IID5 (c) to the α-subunit of the 1,4-dihydropyridine receptor, with mAb IID8 (d) and mAb IIH11 (e), respectively specific for the SR-Ca2+-ATPase of the type I (slow) and type II (fast) myofibers of rabbit skeletal muscle and histochemically stained for alkali-stable myosin ATPase (f), a marker for type II (fast) myofibers. Note that three classes of fibers can be distinguished after labeling with either mAb VD2 (a), mAb IIC12 (b), or mAb IID5 (c). One class is relatively intensely labeled with all three mAbs (a, b, and c, star); a second class is relatively weakly labeled with all three mAbs (a, b, and c, solid circle); a third class is more intensely labeled with mAb VD2 (a; open circle) but labeled with medium and low intensity by mAb IIC12 (b; solid circle) and mAb IID5 (c; solid circle), respectively. The weakly labeled myofibers (a, b, and c, solid circle) correspond to type I (slow) fibers (d, e, and f, solid circle) while the remaining fibers correspond to type II (fast) fibers (d, e, and f, star and open circle). Bar, 20 μm.
Table 1. Properties of Monoclonal Antibodies

Monoclonal Antibody	Immunoglobulin Class*	PPT assay	Immunoblot assay (Mr)	Type II Epitope	Type I Epitope
VD2	IgG1	+	52	DHPR-subunit	+/−
IIC12	IgG1	+	170	DHPR-subunit	+/−
IID5	IgG1	+	170	DHPR-subunit	+/−
IID8	ND		115	Ca²⁺-ATPase	++/−
IIH11	ND		115	Ca²⁺-ATPase (cardiac, slow)	++/−

* Determination of the immunoglobulin class was carried out by immunodiffusion (13).
† The immunoprecipitation assay was performed as previously described (5).
‡ The immunoblot assay was carried out as described in Materials and Methods.
§ Fiber typing was determined according to the procedure of Guth and Samaha. PPT, precipitation.

peared as transversely oriented rows of small bright foci. The subcellular distribution of the immunofluorescence labeling (Fig. 3, c and h) corresponded to the interphase between the A-band and the I-band as observed by viewing the same field by phase-contrast microscopy of skeletal muscle (Fig. 3, b and g). The intensity of immunofluorescence of the sarcolemma was indistinguishable from that of the extracellular space after labeling with either mAb VD2 (Fig. 3 e) or mAb IID5 (Fig. 3 j). This is especially evident in the A-band regions of the sarcolemma, where demarcation of the sarcolemma is absent.

Immunoelectron Microscopical Labeling

The distribution of the α₁-subunit and the β-subunits of the 1,4-dihydropyridine receptor in rabbit skeletal muscle fibers as determined by immunofluorescence labeling are consistent with the idea that both subunits of the 1,4-dihydropyridine receptor are densely distributed in the transverse tubular membrane but apparently absent from the sarcolemma.

Figure 3. Subcellular distribution of the 52,000- and the 170,000-D subunits of the 1,4-dihydropyridine receptor in type II myofibers of rabbit gracilis muscle. Unfixed (a and f) and fixed (2% paraformaldehyde) (b−e and g−j) adult rabbit gracilis muscle was cryostat sectioned transversely (a and f) and longitudinally (b−e and g−j) and labeled with mAb (VD2) to the β-subunit (a, c, d, and e) and with mAb (IID5) to the α₁-subunit (f, h, i, and j) of the 1,4-dihydropyridine receptor purified from the triad subfraction of skeletal muscle membranes. In transverse sections (a and f) a polygonal staining pattern was observed after labeling with antibodies to either the β-subunit (a) or the α₁-subunit (f) of the 1,4-dihydropyridine receptor. Specific labeling of the sarcolemma was not apparent (a and f). The immunofluorescence staining pattern in c and h were compared with the position of the A- and I-bands in the same respective fields (mirror image) (b and g) as viewed by phase contrast microscopy. Regular fluorescent staining appeared as small bright foci in the interphase between the A- and I-bands after labeling with mAbs to either the β-subunit (c, d, and e) or the α₁-subunit (h, i, and j) of the 1,4-dihydropyridine receptor, however the intensity of labeling of the sarcolemma was generally indistinguishable from that of the extracellular space (e and j). Bar, 5 μm.
Figure 4. Ultrastructural features of longitudinal sections of rabbit skeletal muscle fibers. The tissue was cryofixed, freeze-dried, vapor fixed with osmium tetroxide, and embedded in Spurr (see Materials and Methods). A- and I-bands (A, I in a and c), Z-lines (Z, a–d), transverse tubules (T, a–d), longitudinal sarcoplasmic reticulum (L-SR, a–d), terminal cisternae (TG, a, c, and d), sarcolemma (SL, a and b), and subsarcolemmal vesicles (SV, b) are easily identified. Despite distortion of the arrangement of myofilaments in the myofibril due to ice crystal formation ultrastructurally distinct regions of the SR are well preserved (a, c, and d). Although the diameter of the T-tubules is considerably larger than normal the junctional complex between the T-tubules and the terminal cisternae is generally well preserved (c and d). Bars: (a and b) 0.2 μm; (c and d) 0.1 μm.

To determine more precisely the distribution of the 1,4-dihydropyridine receptor, these studies were extended to include the immunoelectron microscopic localization of the α1-subunit of the 1,4-dihydropyridine receptor in rabbit psoas muscle.

Preliminary studies showed that specific immunofluorescence labeling of the α1-subunit of the 1,4-dihydropyridine receptor in skeletal muscle was eliminated when 0.3% glutaraldehyde was included in the 2% paraformaldehyde fixation solution. Since 2% paraformaldehyde both decreased the intensity of labeling and proved inadequate for the ultrastructural preservation of intracellular membranes in muscle tissue, it was not feasible to use ultrathin frozen sections for immunolabeling. The loss of specific labeling after chemical fixation may in part be due to the low density of the 1,4-dihydropyridine receptor in the transverse tubules (0.1–0.8% of total protein) (4, 9).

To optimize the preservation of the antigenicity and the in situ distribution of the 1,4-dihydropyridine receptor, the muscle tissue to be used for immunoelectron microscopical labeling was cryofixed, freeze-dried, and embedded in Lowicryl K4M (17). Since it is not feasible to osmicate the freeze-dried tissue before its low temperature embedding in Lowicryl K4M, visualization of membranes in the immunolabeled sections is variable and less than optimal. However, the position of T-tubules (T, Figs. 5, 6, and 7 b), terminal cisternae
Figure 6. Electron micrograph of a longitudinal ultrathin section of rabbit skeletal muscle labeled with mAb IIID5 to the \(\alpha \)-subunit of the 1,4-dihydropyridine receptor showing two triads. Colloidal gold particles are present over regions of the triads judged to correspond to T-tubular membrane (T) and absent from the terminal cisternae (TC) and the myofibrils. Z, Z-line. Bar, 0.1 \(\mu \)m.

Figure 5. Electron micrograph of a longitudinal section of cryofixed, freeze-dried, and Lowicryl K4M-embedded rabbit psoas muscle with mAb IIID5 specific for the \(\alpha \)-subunit of the 1,4-dihydropyridine receptor by the triple-layered immunocolloidal gold-labeling technique described in Materials and Methods section. Most of the colloidal gold particles were distributed over the lumen and the membrane of the transverse tubules (T). Occasionally, colloidal gold particles were distributed in the subsarcolemmal region of the muscle fiber (thin arrow), while the sarcolemma (SL) and the terminal cisternae (TC; thick arrows) were generally labeled at the level of the background. Similarly, the myofibrils were also only labeled at the level of the background. Z, Z-line. Bar, 0.1 \(\mu \)m.
random manner. Thus while extensive stretches of subsarcolemma might lack discrete clusters of gold particles (Fig. 7 b) neighboring stretches of sarcolemma in the same thin section of the same myofiber had a relatively high number of clusters per unit length of sarcolemma (Fig. 7 a). In contrast, colloidal gold particles were very sparsely distributed over the lateral regions of the sarcolemma (SL, Figs. 5, 7, a and b, and 8) (1 colloidal gold particle per 10 μm). Similarly, the myofibrils and the interfibrillar spaces where the sarcoplasmic reticulum is densely distributed were labeled at a level similar to that of the background (>1 colloidal gold particle per 10 μm²).

Discussion

The 1,4-dihydropyridine receptor has been identified in many excitable and nonexcitable tissues by the binding of 1,4-dihydropyridines to tissue extracts or isolated membranes (14, 35, 37, 43). However, the subcellular distribution of this protein has not previously been described. This is the first report on the cellular and subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle tissue in situ using immunocytochemical labeling.

The immunofluorescence labeling studies show that the α₁-subunit of the 1,4-dihydropyridine receptor is densely distributed in the interphase between the A- and I-bands in rabbit skeletal myofibers where the transverse tubules are located (10, 11) while apparently absent from the sarcolemma. This is in agreement with previous biochemical and pharmacological studies showing that the 1,4-dihydropyridine receptor is highly enriched in the isolated T-tubular membrane (9). Our finding that the distribution of the α₁-subunit is indistinguishable from that of the β-subunit of the 1,4-dihydropyridine receptor at the light microscopic level of resolution is consistent with the idea that the β-subunit is also confined to the transverse tubular membrane and is an integral component of the 1,4-dihydropyridine receptor.

The results of our immunofluorescence studies of trans-
verse sections of rabbit gracilis muscle suggested that the intensity of labeling of both the α₁-subunit and the β-subunit is two- to threefold higher in 95% of the type II (fast) than in type I (slow) myofibers. This result might in part be explained on the basis of the twofold difference between the density of T-tubules of type II (fast) and type I (slow) myofibers as previously determined by morphometric analysis (8). Furthermore, this result is in good agreement with electrophysiological studies showing that the nifedipine inhibitable slow Ca²⁺ current is threefold higher in fast than in slow skeletal muscle fibers of rat and rabbit (22). Finally, our immunofluorescence studies support the idea that the α₁-subunit and the β-subunit of the 1,4-dihydropyridine receptor are present in a constant stoichiometric ratio (24) in at least 95% of the myofibers of rabbit gracilis muscle.

If the α₁-subunit and the β-subunit of the 1,4-dihydropyridine receptor are indeed present in a 1:1 stoichiometric ratio as previously reported (24) our finding that 5% of the type II (fast) myofibers are more strongly stained with mAb VD2, to the β-subunit but more weakly stained with mAbs IIC12 and IID5 to the α₁-subunit supports the possibility that distinct isoforms of these two subunits of the 1,4-dihydropyridine receptor exist. However further studies will be required to determine if this is indeed the case.

The immunoelectron microscopic studies showed that the α₁-subunit of the 1,4-dihydropyridine receptor is densely distributed over the transverse tubular membrane. Of these approximately half were distributed over the junctional region between the T-tubular membrane and the junctional sarcoplasmic reticulum. The results also showed that the α₁-subunit of the 1,4-dihydropyridine receptor was present in discrete clusters in the subsarcolemmal region of skeletal myofibers but absent from the lateral regions of the sarcolemma. Although it is difficult to visualize membranes due to the specimen preparation procedure used, the discrete clusters of gold particles appeared occasionally to be membrane bound. We propose that the 1,4-dihydropyridine receptor containing foci in the subsarcolemmal region are membrane bound.

The localization of the 1,4-dihydropyridine receptor to the subsarcolemmal region of skeletal muscle by electron microscopy appears to be in disagreement with the results of the immunofluorescence studies presented here. This discrepancy could be explained by the nonuniform distribution of the 1,4-dihydropyridine receptor in the subsarcolemmal region of skeletal muscle and the limited sensitivity of the immunofluorescence technique. Although the 1,4-dihydropyridine receptor distributes in regular clusters in the subsarcolemmal region, the clusters might not have a sufficient concentration of 1,4-dihydropyridine receptor to permit detection by immunofluorescence.

Previously described membrane-bound structures present in the subsarcolemmal region of skeletal muscle fibers include caveolae (7, 30, 33, 34), transverse tubule openings to the sarcolemma (10, 44), junctional sarcoplasmic reticulum (40), and longitudinal sarcoplasmic reticulum. Since neither the longitudinal sarcoplasmic reticulum nor the terminal cisternae in the interior regions of the myofiber were labeled with antibodies to the α₁-subunit of the 1,4-dihydropyridine receptor, it seems unlikely that the colloidal gold-containing vesicular structures in the subsarcolemmal region of the myofiber correspond to either of these structures.
While direct continuity between transverse tubules and the sarcolemma has been difficult to demonstrate, ultrastructural studies of guinea pig (33) and frog skeletal muscle (44) showed that transverse tubules frequently terminate in caveolae which in turn are continuous with other caveolae and the sarcolemma. However physiological studies by Zampighi et al. (44) suggested that only a subgroup of the caveolae are connected with transverse tubules. Freeze-fracture studies have shown that caveolae are nonuniformly distributed on the cell surface in frog (7) and guinea pig skeletal muscle fibers (33). Since the size, shape, and nonuniform distribution of the α₄-subunit-containing entities in the subsarcolemmal region of rabbit skeletal muscle is similar to that described for caveolae (65 × 80 nm) (7) in other vertebrate skeletal muscles (33, 44) we propose that they represent caveolae, possibly the subgroup of caveolae connecting the transverse tubules and the sarcolemma (33, 44).

The exact physiological role of the 1,4-dihydropyridine receptor in skeletal muscle remains to be elucidated. Our finding that the α₄-subunit of the 1,4-dihydropyridine receptor is present in both the junctional and nonjunctional regions of the transverse tubular membranes as well as in subsarcolemmal entities proposed to be caveolae supports the possibility that this receptor has dual functions in skeletal muscle. It has been suggested that the 1,4-dihydropyridine receptor functions both as a voltage sensor in excitation-contraction coupling to release Ca²⁺ from the sarcoplasmic reticulum (36, 38, 41) and as a calcium channel (38, 41). Our finding that approximately half of the 1,4-dihydropyridine receptor labeling in the transverse tubular membranes is in close proximity to and thus potentially capable of communicating with the junctional sarcoplasmic reticulum membrane supports the hypothesis that these receptors act as voltage sensors in excitation-contraction coupling. Morphological data on transverse tubular membranes indicate that a distinctive set of intramembranous particles which are the sole components of the junctional transverse tubular membrane are present in diamond-shaped clusters that correspond exactly in position to the subunits of the "SR foot" (2). Our results support the contention that these particles are 1,4-dihydropyridine receptors. Preliminary results from our laboratory also suggest that a complex composed of the 1,4-dihydropyridine receptor and the ryanodine receptor can be isolated. All of these results suggest the presence of a large junctional complex, consisting of the 1,4-dihydropyridine and the ryanodine receptor, spanning the triadic junction and functioning in excitation-contraction coupling. Since the 1,4-dihydropyridine receptors in the nonjunctional region of the transverse tubules and in the caveolae are not in close proximity to the sarcoplasmic reticulum, it is unlikely that these receptors function as a sensor for excitation-contraction coupling. One possibility is that they function as calcium channels.

We acknowledge the expert technical assistance of Linda K. Madson and Mitchell G. Gaver.

A. O. Jorgensen is a Scientist of the Medical Research Council of Canada and recipient of grant-in-aid MT 6364 from the Medical Research Council of Canada. A. T. Leung is an Iowa Graduate Fellow. K. P. Campbell is an Established Investigator of the American Heart Association and recipient of grant HL-37187 from the National Institutes of Health. We acknowledge the expert technical assistance of Linda K. Madson and J. J. Wolosewick, editors. SEM Inc., AMF-O'Hare, Chicago, IL. 155-164.

Dulhunty, A. F., and C. Franzini-Armstrong. 1975. The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J. Physiol. 250:513-539.

Eisenberg, B. R. 1983. Quantitative ultrastructure of mammalian skeletal muscle. Handb. Physiol. 10:73-112.

Fosset, M., E. Jaimovich, E. Delpont, and M. Lazdunski. 1983. "H-Nitrendipine receptors in skeletal muscle. J. Biol. Chem. 258:6086-6092.

Franzini-Armstrong, C. 1978. Membranous systems in muscle fibers. In The Structure and Function of Muscle. Vol. 2. G. H. Bourne, editor. Academic Press, Inc., New York. 531-619.

Franzini-Armstrong, C., and K. R. Porter. 1964. Sarcomembranous inclusions constituting the T-system in fish muscle fibers. J. Cell Biol. 22:675-696.

Glossmann, H., and J. Striessnig. 1988. Structure and pharmacology of voltage-dependent calcium channels. ISI Atlas Sci. Pharmacol. 2:202-210.

Guth, L., and F. J. Samaha. 1969. Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle. Exp. Neurol. 25:138-152.

Jorgensen, A. O., and L. R. Jones. 1987. Immunoelectron microscopical localization of phospholamban in cardiac ventricular muscle. J. Cell Biol. 104:1343-1353.

Jorgensen, A. O., and L. J. McGuffee. 1987. Immunoelectron microscopical localization of sarcoplasmic reticulum proteins in cyrofixed, freeze-dried, and low temperature-embedded tissue. J. Histochem. Cytochem. 35:723-732.

Jorgensen, A. O., W. Arnold, D. R. Pepper, F. Mandel, S. D. Kohl, and K. P. Campbell. 1988. A monoclonal antibody to the Ca²⁺-ATPase of cardiac sarcoplasmic reticulum cross-reacts with slow Type I but not with fast Type II canine skeletal muscle fibers: an immunocytochemical and immunoechemical study. Cell Motil. Cytoskeleton. 9:108-116.

Jorgensen, A. O., R. Broderick, A. P. Somolyo, and A. V. Somolyo. 1988. Two structurally distinct calcium storage sites in rat cardiac sarcoplasmic reticulum. An electron microscope analysis study. Circ. Res. 63:1060-1069.

Jorgensen, A. O., V. I. Kalnis, and D. H. MacLennan. 1979. Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence. J. Cell Biol. 80:372-384.

1. Bio-Rad Laboratories. 1983. DEAE Affi-Gel Blue Purifies IgG. BIORAD Bulletin 1062.

2. Block, B. A., T. Imagawa, K. P. Campbell, and C. Franzini-Armstrong. 1988. Structural evidence for direct interaction between the molecular components of the tubular/sarcoplasmic junction in skeletal muscle. J. Cell Biol. 107:2587-2600.

3. Campbell, K. P., A. T. Leung, and A. H. Sharp. 1989. The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci. 11:425-430.

4. Catterall, W. A., M. J. Seagar, and M. Takahashi. 1988. Molecular properties of dihydropyridine-sensitive calcium channels in skeletal muscle. J. Biol. Chem. 263:3535-3538.

5. Chiovetti, R., L. J. McGuffee, S. A. Little, and J. Brass-Dale. 1987. Combined quick freezing, freeze-drying and embedding tissue at low temperature and in low viscosity resins. J. Electron Microsc. Tech. 5:1-15.

6. Chiovetti, R., L. J. McGuffee, S. A. Little, and J. Brass-Dale. 1985. A new approach for low-temperature embedding: quick freezing, freeze-drying and direct infiltration in Lowicryl K4M. In The Science of Biological Specimen Preparation for Microscopy and Microanalysis. M. Mueller, R. P. Becker, A. Boyde, and J. J. Wolosewick, editors. SEM Inc., AMF-O'Hare, Chicago, IL. 155-164.

7. McGuffee, L. J., L. Hurwitz, S. A. Little, and B. E. Skipper. 1981. A
4Ca autoradiographic and stereological study of freeze-dried smooth muscle of the guinea pig vas deferens. J. Cell Biol. 90:201–210.

28. Mitchell, G. D., P. Palade, and S. Fleischer. 1983. Purification of morphologically intact triad structures from skeletal muscle. J. Cell Biol. 96:1008–1016.

29. Ouchterlony, O. 1968. Handbook of Immunodiffusion and Immunoelectrophoresis. Ann Arbor Science Publishers, Ann Arbor, MI.

30. Peachey, L. D., and C. Franzini-Armstrong. 1983. Structure and function of membrane systems of skeletal muscle cells. Handb. Physiol. 10:23–71.

31. Peterson, G. L. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83:346–356.

32. Phillips, T. E., and A. Boyne. 1984. Liquid nitrogen-based quick freezing: experiences with bounce-free delivery of cholinergic nerve terminals to a metal surface. J. Electron Microsc. Tech. 1:9–29.

33. Rayns, D. G., F. O. Simpson, and W. S. Bertha. 1968. Surface features of striated muscle. II. Guinea-pig skeletal muscle. J. Cell Sci. 3:475–482.

34. Reuter, H. 1983. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature (Lond.). 301:569–574.

35. Spray, T. L., R. A. Waugh, and J. R. Sommer. 1974. Peripheral couplings in adult vertebrate skeletal muscle. J. Cell Biol. 62:223–227.

36. Tanabe, T., H. Takeshima, A. Mikami, V. Flockerzi, H. Takahashi, K. Kangawa, M. Kojima, H. Matsuoka, T. Hirose, and S. Numa. 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature (Lond.). 328:313–318.

37. Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 76:4350–4354.

38. Tsien, R. W. 1983. Calcium channels in excitable cell membranes. Annu. Rev. Physiol. 45:341–358.

39. Zampighi, G., J. Vergara, and F. Ramon. 1975. On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle. J. Cell Biol. 64:734–740.