Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig

Rubanova et al.
Supplementary Note 1: Computing activity to mutational signatures

We apply topic modeling to infer signature activities. Within the time point, we separate mutation into K mutation types. Mutation types relate to vocabulary in topic modeling. The types used in TrackSig are described in the Results section. Then we use mixture of discrete distributions to infer signature activities. We describe this model below.

We represent each mutation as a K-dimensional binary vector – "one-hot-encoding" of a mutation type. "One-hot-encoding" of a mutation of type k is a binary vector where k-th component is equal to 1, and other components are zeros. We will denote \(x^{(n)} \) to be the "one-hot-encoding of mutation n. A sample containing N mutations is represented as a \(N \times K \) binary matrix \(X \), where each column corresponds one mutation.

\[
x^{(n)} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}; \quad x^{(n)}_k = \begin{cases} 1, & \text{mutation } n \text{ belongs to type } k \\ 0, & \text{otherwise} \end{cases}
\]

A mutation process is represented as a distribution over mutation types, known as a mutation signature. We will denote signature multinomials as K-dimensional probability vectors \(s_i \), where \(i = \{1..M\} \) is an index over signatures. Signatures are fixed and are not updated during the training.

We aim to estimate signature activities \(m \) – the proportion of mutations generated by each signature.

We will use the following notation:
- \(K \) – number of mutation types
- \(M \) – number of signatures
- \(N \) – number of mutations
- \(x^{(n)} \) – K-dimensional binary vector of mutation n
- \(x^{(n)}_k \) – k-th component of vector \(x^{(n)} \)
- \(s_i \) – i-th signature (K-dimensional vector)
- \(s_{ik} \) – k-th component of vector \(s_i \)
- \(m \) – signature activities (mixture coefficients, M-dimensional vector)
- \(m_i \) – i-th component of \(m \) (signature activity of signature i)
- \(z_n \) – signature assignment for mutation n

We represent mutation matrix \(X \) as a mixture of signature multinomials \(s_1,..s_K \) with mixture coefficients \(m \):

\[
X \sim \text{Multinomial}(N; \sum_{i=1}^{M} m_i \ s_i)
\]

We denote \(z_n \) to be the signature assignment of mutation n. The probabilities of mutation n to be assigned to i-th signature are equal to the mixing coefficients:

\[
p(z_n = i | m) = m_i; \quad i \in \{1..M\}
\]

The probability of a mutation n to be generated by signature i is given by:

\[
p(x^{(n)} | z_n = i, m, s_1,..s_K) = \prod_{k=1}^{K} s_{ik}^{(n)}; \quad i \in \{1..M\}; \quad n \in \{1..N\}
\]

Then log likelihood of the collection of mutations in a sample:
\[
\log L(X|m,s_1,..s_K) = \sum_{n=1}^{N} \log p(x^{(n)}|m,s_1,..s_K) = \sum_{n=1}^{N} \log \sum_{i=1}^{M} p(x^{(n)}|z_n = i,m,s_1,..s_K)p(z_n = i|m) = \sum_{n=1}^{N} \sum_{i=1}^{M} p(x^{(n)}|z_n = i,m,s_1,..s_K) \nu^{(0)}_{i}; \quad i \in \{1..M\} \quad (5)
\]

To estimate the activities, we fit mixing coefficients \(m\) in each bin using Expectation-Maximization (EM) algorithm\(^2\). The EM algorithm iterates between updating a posterior distribution over \(z_n\) and updating an estimate of the mixing coefficients \(m\).

We start with initializing EM algorithm with uniform mixing coefficients:

\[
\nu^{(0)}_{i} = \frac{1}{M}; \quad i \in \{1..M\} \quad (6)
\]

Then, we repeat the following E-step and M-step until the algorithm converges.

In E-step, at the \(t\)-th iteration, the posterior probabilities of mutation assignments to signatures are estimated as such:

\[
p(z_n = i|x^{(n)},m^{(t-1)},s_1,..s_K) = \nu^{(t-1)}_{i} \prod_{k=1}^{K} s_{x_k}^{(n)}; \quad i \in \{1..M\}; \quad n \in \{1..N\} \quad (7)
\]

In M-step we update the estimates of the mixing coefficients:

\[
\nu^{(t)}_{i} = \frac{1}{N} \sum_{n=1}^{N} p(z_n = i|x^{(n)},m^{(t-1)},s_1,..s_K); \quad i \in \{1..M\} \quad (8)
\]

The algorithm has converged when the value of \(\nu\) is updated by less than 0.001 between iterations. The resulting mixture coefficients as the activities of the mutational signatures. We show the activities as percentage for the convenience of interpretation.

Supplementary Note 2: Pruned Exact Linear Time (PELT) Algorithm

We adapt Pruned Linear Exact Time (PELT)\(^7\) algorithm to detect change points in activity trajectories given cost function (likelihood) and BIC penalty. PELT is based on dynamic programming and uses heuristics to prune the set potential changepoints, thus reducing the computational time.

In this section, we will use the following notation:

\(T\) – number of time points
\(P\) – number of changepoints
\(M\) – number of signatures

Locating change points

As described in the Methods section, we separate mutations into bins 100 mutations, each of which represents one time point. Our input is the set of mutation counts across 96 types for each time point: \(y_{1:T} = (y_1,..,y_T)\). We aim to find \(P\) changepoints, or in other words, \(P + 1\) segments. We denote \(\tau_{1:P} = (\tau_1,..,\tau_P)\) to be the boundaries for our segments, meaning each segment will contain the data points \(y_{\tau_{i-1}}..y_{\tau_i}\).

Given a set of changepoints we can compute the likelihood of the data the following way. We fit mutational signatures within each segment (treating all mutations within each segment as one bin) and compute the likelihood \(L(y_{\tau_{i-1}}..y_{\tau_i})\) as described in Supplementary Note 1. The total likelihood is the sum of likelihoods in each segment:

\[
\hat{L} = \sum_{i=1}^{P+1} L(y_{(\tau_{i-1}+1):\tau_i})
\]
We aim to minimize the Bayesian Information Criterion (BIC):

\[
BIC = -2\ln \hat{L} + k \cdot \ln(T)
\]

where \(k \) is the number of parameters in our model and \(T \) is the number of time points. In our case \(k = (P+1) \cdot (M-1) \) as we fit \((M-1)\) signature activities in \((P+1)\) segments (recall that signature activities sum to 1).

We adapt PELT objective to minimize the BIC criterion. PELT aims to minimize sum of cost functions at each time point, while using a penalty \(\beta \) for each placed changepoint

\[
\text{minimize } \sum_{i=1}^{P+1} C(y_{(\tau_i+1);\tau_i}) + \beta(P+1)
\]

Intuitively, we are trying to select changepoints which result in the lowest cost (or highest likelihood) while reducing the penalty associated with adding changepoints. We set the parameters as follows to make the PELT equivalent to BIC:

\[
C = -2\hat{L}; \quad \beta = (M-1)\ln(T)
\]

TrackSig-PELT algorithm finds the changepoints as follows. The algorithm starts with finding a partial solution in a subset of the timeline and then increases the search space until changepoints are located over the whole timeline. The algorithm keeps track of the time points \(R_{\tau_s} \) that satisfy the pruning condition and which will be considered as potential changepoints at further iterations. At each iteration \(\tau^* \), the algorithm considers adding a new changepoint out of the set of available time points \(R_{\tau_s} \). To score a potential new changepoint, the algorithm refits the activities in bins formed by a potential changepoint. It finds a time point \(\tau' \) with the smallest likelihood and adds it to the list of changepoints \(cp \). Then the list of available time points \(R_{\tau_s} \) is updated: the potential changepoints are removed from further consideration if the increase in likelihood associated with this changepoint does not exceed the complexity penalty \(\beta \).

Pruning

PELT provides an improvement in runtime by pruning certain changepoints from consideration. We prune time point \(t \) if for all \(t < s < T \):

\[
C(y_{(t+1):s}) + C(y_{(s+1):T}) + \beta \leq C(y_{(t+1):T})
\]

The cost of placing the last changepoint prior to \(T \) at \(t \) will always be higher than cost of placing the last changepoint prior to \(T \) at \(s \). Given this result, we can eliminate \(t \) as a potential changepoint for all iterations of the dynamic programming algorithm as it will never be optimal going forwards.

Algorithm 1 TrackSig PELT Method

Input: Mutation counts at each time step \((y_1, y_2, .., y_T)\)

1. **Initialize:** Set \(\beta = (M-1)\ln(T); F(0) = 0; cp = \{\}; R_1 = \{0\} \)
2. **for** \(\tau^* = 1, ..., T \) **do**
3. \(\text{Calculate } F(\tau^*) = \min_{\tau \in R_{\tau^*}} [F(\tau) + C(y_{(\tau+1):\tau^*}) + \beta] \)
4. \(\text{Let } \tau' = \arg \min_{\tau \in R_{\tau^*}} [F(\tau) + C(y_{(\tau+1):\tau^*}) + \beta] \)
5. \(\text{Append } \tau' \) to \(cp \)
6. \(\text{Set } R_{\tau^*+1} = \{ \tau \in R_{\tau^*} \cup \{\tau^*\} : F(\tau) + C(y_{\tau+1:\tau^*}) + \beta \leq F(\tau^*) \} \)
7. **end for**
8. **return** \(cp \) – a set of changepoints
Supplementary Note 3: Clonal evolution simulations

Choice of signatures We generate the simulations with four active signatures: S1, S5 and two randomly-sampled signatures, which we will call A1, A2. Two other signatures A1, A2 are sampled from uniformly from the set of PCAWG (excluding signatures S1, S5, S7 and "artifact signatures" S40-S60). We decided to exclude signature S7 (sum of signatures S7a, S7b, S7c, S7d) as it had a distribution similar to uniform and was easily confused with other signatures both by TrackSig and DeconstructSigs. We include signatures S1 and S5 in all simulations as they are present in all real samples in PCAWG.

We sample activities separately for each cluster. We sample the activity of S1 from [0.03, 0.1] interval, S5 from [0.05, 0.15] interval, A1 from [0.4, 0.7] interval. The remaining activity is assigned to signature A2 (all signature activities have to sum to 1).

Sampling mutation types To sample mutation types from a signature, we treat it as a multinomial distribution and sample from it. The number of mutations sampled from each signature is equal to the activity of this signature multiplied by the total number of mutations.

Sampling number of ref and alt alleles Here we describe sampling number of ref and alt alleles for each mutation of the cluster, given the cluster CCF, number of mutation in the cluster and desired mean mutation depth. We tested mean mutation depths of 10, 30 and 100.

For each mutation, we sample read depth d from Poisson distribution with specified mean depth. Then we compute the probability of alt allele as $p = \frac{ccf \times \text{mutantCN}}{\text{totalCN}}$, where ccf is CCF of the current cluster. Finally, we sample number of alt alleles a from a Binomial(d, p) and set the number of ref alleles to be the difference between depth and alt alleles.

In simulations with one and two clusters we use normal copy number of 2, mutant copy number of 1 and purity 1. Each simulation has 5000 mutations in total. We generate 100 simulations of each of five simulation types (one-cluster, two-cluster, branching, cna gain and infinite site assumption) and for each read depth that we tested.

Basic simulations

First, we create simple one- and two-cluster simulations.

One-cluster simulations We create one cluster with the average cluster CCF=1. Number of ref and alt alleles for each mutation is sampled as described in the previous section. We sample activity of the first active signature A1 from the interval Uniform([0.4,0.7]), activity of time-related signature S1 from Uniform([0.03,0.1]), and time-related signature S5 from Uniform([0.05,0.15]). The remaining activity is assigned to the signature A2. Finally, we sample mutation types from each of active signatures. Number of mutation types sampled from each signature is proportional to their activities.

Two-cluster simulations We create the first cluster with CCF=1 as described above. For the second cluster we sample ccf from Uniform([0.2,0.6]) distribution. To sample signature activities, we follow the procedure similar to one-cluster simulations. We sample activity of the first active signature A1 from Uniform([0.4,0.7]) for the clonal cluster, and Uniform([0.2,0.4]) for the second cluster to ensure the signature activity change between the two clusters. Full procedure is shown in Supplementary Note 6.

Branching

To test violation of TrackSig assumptions, we create simulations with branching, CNA gain or violation of infinite site assumption.

To simulate branching, we create three clusters. The clonal cluster is always assigned CCF=1. The CCF for the last cluster (with the smallest CCF) is sampled uniformly from [0.2, 0.35]. The middle cluster CCF is sampled such that it has at least 0.15 gap on CCF scale with other clusters. Additionally, we ensure that sum of CCFs of the second and third clusters does not exceed 1 (otherwise the clusters cannot be branched).
In branching simulations, we expect to see the signature activity for A1 signature decreases at the transition to the second cluster and increases again at the transition to the third subclone. If such step-like behavior of is observed in real data, we consider this a sign of branching. Note that if we reversed the order of the branched clusters and assigned the same signature activities to the first and second clusters, it wouldn’t be possible to distinguish between these two clusters since TrackSig can only find changepoints based on signature change.

To show the effect of branching on signature trajectories, we assign similar activities to the first (clonal) and third cluster (with the smallest CCF), but introduce a signature change in the second (middle) cluster. To do this, we sample signature activity for A1 from Uniform([0.4,0.7]), calculate the exposures for other signatures and assign the same activities to the first and last cluster. For the middle cluster, we sample activity for A1 signature from Uniform([0.2, 0.4]). As before, we sample activity of time-related signature S1 from Uniform([0.03,0.1]), and time-related signature S5 from Uniform([0.05,0.15]) and assign the remaining activity to A2.

CNA gain
CNA gain simulations are based on the branching simulations described above and has three clusters: clonal and two subclones.

We introduce a CNA gain for 10% of mutations in the clonal cluster: 5% of mutations have CNA gain on the mutant allele and 5% have CNA gain on reference allele. Thus, 10% of mutations get total copy number 3 and mutant copy number of 2 and 1 respectively. We assume that these copy number changes are inherited by both subclones. To simulate the CNA change, we adjust the mutantCN and totalCN parameter in Supplementary Note 7 for 10% of mutations in each cluster. We provide total copy number a input to both TrackSig and SciClone.

Violation of infinite site assumption
To simulate the violation of infinite site assumption (ISA), we create four clusters. The first three clusters are created the same way as in the branching simulation. The forth cluster simulates mutations that occurred in both clusters independently, thus violating ISA. The CCF of the forth cluster is the sum of CCFs of the two subclonal clusters. We assign 3% of all mutation to the forth cluster. As expected, the presence of mutations that violate ISA don’t affect signature activity trajectories.

Neutral Evolution Mutations
To make our simulations more realistic, we add mutations which emerged due to neutral evolution. We follow Williams et al. for generating mutations from neutral evolution. First, we establish the number of neutral mutations to be generated. Then we sample those mutations according to the power-law distribution \(\frac{1}{f^2} \), where \(f \) is variant allele frequency. Both steps are described in more detail below.

The number of neutral mutations is computed as follows:

\[
M(f_c) = se\left(\frac{1}{f_{\text{min}}} - \frac{1}{f_c}\right) \tag{10}
\]

where \(f_c \) is the variant allele frequency (VAF) of the cluster, \(f_{\text{min}} \) is a minimal VAF in consideration and \(se \) is effective mutation rate. For clonal cluster, \(f_c = 0.5 \). We only consider mutations with 3 or more mutant reads. Therefore, we set \(f_{\text{min}} = \frac{3}{d} \), where \(d \) is the mean depth of the simulation. We use \(se = 16^2 \).

Next, we sample \(M(f_c) \) mutations according to the power-law distribution on interval \([f_{\text{min}}; f_c]\). Cumulative distribution function (CDF) of power-law distribution on the interval \([f_{\text{min}}; f_c]\) is the following:

\[
\text{CDF}(f) = \frac{\frac{1}{f_c} - \frac{1}{f}}{\frac{1}{f_c} - \frac{1}{f_{\text{min}}}} \tag{11}
\]
To sample from this distribution, we take samples from uniform distribution and then use inverse cumulative distribution function (I-CDF) to transform them into samples from power-law distribution. Inverse CDF function takes the following form:

\[
f = \frac{1}{\frac{1}{f_c} - u(\frac{1}{f_c} - \frac{1}{f_{\text{min}}})}
\]

where \(f \) is our target allele frequency (i.e. sample from the power-law) and \(u \) is a sample from uniform distribution.

Note that the approach we used to sample neutrally-evolving mutations may not reflect the true, complex clonal dynamics that would be better represented with a branching process. Although our one cluster case precisely matches a standard neutral model\(^7\), using the same model for the two cluster simulations ignores the effect that the introduction of subclone has on the number and VAF distribution of neutrally-evolving mutations.

It does, however, establish a lower bound on performance. The introduction of a subclone is likely to reduce the number of neutral mutations, though their VAF distributions would not drastically different, and the “neutral mode” near the detection limit would be composed of mutations from both clones rather than from just one clone. These differences would make the reconstruction problem easier for TrackSig. As such, although the neutral model is not correct in the two cluster case, the one we used provides lower bound on TrackSig’s performance.

Our results are shown in additional bar in Figure 3b and Supplementary Figure 2. At depth 10 and 30 TrackSig’s ability to detect subclones is not impacted by neutral mutations. At depth 100, both TrackSig and SciClone detect an extra cluster, which is consistent findings of Williams et al.\(^7\): neutral evolution can be detected at a minimal depth of 100. Figure 4b shows the example of generated simulation at depth 10.

Supplementary Note 4: SciClone+DeconstructSigs baseline

To showcase the potential of our method, we compared TrackSig to SciClone+DeconstructSigs pipeline which is commonly used to infer signature activities.

SciClone + DeconstructSigs

First, we clustered SNVs using SciClone (v1.1)\(^7\). SciClone uses variational Bayesian mixture model to cluster SNVs based on their CCF. We provided CNA calls as a part of input for SciClone, same as we do in TrackSig. Since we needed to test clustering at low depth, we used minimum read depth of 1. We report the results with two clustering methods in SciClone: Beta mixture model (BMM, default) and Beta-binomial mixture model (Binomial BMM).

Finally, we took the mutation clustering performed by SciClone and computed activities of mutational signatures within each cluster using DeconstructSigs (v1.8.0)\(^7\). We used the same set of PCAWG signatures as we used in TrackSig. We fit the same set of active signatures with DeconstructSigs as we do in TrackSig.

PyClone

We attempted to use PyClone (v0.13.1)\(^7\) instead of SciClone. However, PyClone uses a Markov Chain Monte Carlo (MCMC) approach, and has a time complexity of \(O(n^2) \). This is feasible for the number of mutations validated on in the paper PyClone is described, but quickly becomes intractable for whole genome sequencing containing thousands of mutations. We didn’t manage to run the on samples containing more than 1000 SNVs.
Supplementary Note 5: Analysis of multi-region cases

To compare mutational signatures across multiple samples, we run TrackSig separately on each sample. Samples from the same tumour can have different active signatures. Therefore, for each tumour, we split the samples into groups that have the same set of active signatures and compare samples only within the group. To compare signatures of the clonal cluster, we compute KL divergence and mean activity difference between the first time points of the samples with the same active signatures. Within each group of samples with the same set of active signatures, we compute the pair-wise mean activity difference and KL difference between all pairs of samples within the group. We report the mean metrics of all pairs within the signature group.
Supplementary Note 6 Simulation algorithm for two clusters

Input: mean mutation depth d, number of mutations N

1: mutantCN = 1
2: totalCN = 2
3: Sample CCFs for each cluster:
4: $\text{ccf}_1 = 1$. \(\triangleright\) CCF of the clonal cluster is set to 1.
5: $\text{ccf}_2 \sim \text{Uniform}(0.2, 0.6)$
6: Sample number of mutations per cluster:
7: $N_{c2} = \lfloor \text{ccf}_2 \ast N \rfloor$
8: $N_{c1} = N - N_{c2}$
9: Sample two active signatures $A1, A2$ for the current tumour sample, excluding $S1$ and $S5$
10: Set active signatures to $(S1, S5, A1, A2)$
11: for each cluster i in 1..2 do
12: Sample signature activities:
13: $e_{S1} \sim \text{Uniform}(0.03, 0.1)$
14: $e_{S5} \sim \text{Uniform}(0.05, 0.15)$
15: $e_{A1} \sim \text{Uniform}(0.45, 0.7)$ for the first cluster and $e_{A1} \sim \text{Uniform}(0.2, 0.4)$ for the second cluster
16: $e_{A2} = 1 - \text{sum}(e_{S1}, e_{S5}, e_{A1})$
17: Generate number of alt and ref alleles for N_{ci} mutations:
18: for each mutation j do
19: depth$_j = \text{Poisson}(d)$ \(\triangleright\) Sample depth for each mutation
20: prob$_j = \text{ccf}_i \ast \text{mutantCN} \text{totalCN}$ \(\triangleright\) Sample probability of mutant allele for mutation j
21: alt$_j \sim \text{Binomial}(\text{depth}_j, \text{prob}_j)$ \(\triangleright\) Sample number of variant alleles from a Binomial
22: ref$_j = \text{depth}_j - \text{alt}_j$
23: end for
24: Sample types of mutations according to signature activities
25: for each signature s in active signatures $(S1, S5, A1, A2)$ do
26: Notation:
27: e_s \(\triangleright\) Signature activity
28: n_s \(\triangleright\) Mutations per signature
29: def$_s$ \(\triangleright\) Signature definition
30: $n_s = N_{ci} \ast e_s$
31: Create vector of trinucleotide counts across n_s mutations from signature s:
32: $c_s \sim \text{Multinom}(n_s, \text{def}_s)$
33: end for
34: Sum counts c_s over all signatures
35: Convert trinucleotide counts into a a vector of mutation types of length N_{ci}
Supplementary Note 7 Simulation algorithm for branching with three clusters

Input: mean mutation depth d, number of mutations N

1: mutantCN = 1
2: totalCN = 2
3: Sample CCFs for each cluster:
4: ccf$_1$ = 1. ▷ CCF of the clonal cluster is set to 1.
5: ccf$_3$ ~ Uniform(0.2, 0.35)
6: ccf$_2$ ~ Uniform(ccf$_2$ + 0.15; 1 − ccf$_2$ − 0.15) ▷ CCF of the middle cluster is set to be at least 0.15 CCF apart from third cluster. Sum of CCFs from second and third clusters should not exceed 1 because they are branched.
7: Sample number of mutations per cluster:
8: N_{c3} = ⌊ccf$_1$ * N⌋
9: N_{c2} = ⌊ccf$_2$ * N⌋
10: N_{c1} = N − N_{c2} − N_{c3}
11: Sample two active signatures A1, A2 for the current tumour sample, excluding S1 and S5
12: Set active signatures to (S1, S5, A1, A2)
13: for each cluster i in 1..3 do
14: Sample signature activities:
15: e_{S1} ~ Uniform(0.03, 0.1)
16: e_{S5} ~ Uniform(0.05, 0.15)
17: If i ∈ {1, 3} and e_{A1} ~ Uniform(0.45, 0.7) If i == 2
18: e_{A2} = 1 − sum(e_{S1}, e_{S5}, e_{A1})
19: Generate number of alt and ref alleles for N_{ci} mutations:
20: for each mutation j do
21: depth$_j$ = Poisson(d) ▷ Sample depth for each mutation
22: prob$_j$ = ccf$_i$ * mutantCN / totalCN ▷ Sample probability of mutant allele for mutation j
23: alt$_j$ ~ Binomial(depth$_j$, prob$_j$) ▷ Sample number of variant alleles from a Binomial
24: ref$_j$ = depth$_j$ − alt$_j$
25: end for
26: Sample types of mutations according to signature activities
27: for each signature s in active signatures (S1, S5, A1, A2) do
28: Notation:
29: e_s ▷ Signature activity
30: n_s ▷ Mutations per signature
31: def$_s$ ▷ Signature definition
32: $n_s = N_{ci} * e_s$
33: Create vector of trinucleotide counts across n_s mutations from signature s:
34: c_s ~ Multinom(n_s, def$_s$)
35: end for
36: Sum counts c_s over all signatures
37: Convert trinucleotide counts into a a vector of mutation types of length N_{ci}
Supplementary Tables

# predicted changepoints	# true changepoints			
	0	1	2	3
0	0.91	0.004	0	0
1	0.061	0.9	0.019	0.001
2	0.024	0.078	0.898	0.037
3	0.006	0.02	0.075	0.861
4	0.002	0.001	0.009	0.091
5	0	0.001	0.001	0.002

Supplementary Table 1. TrackSig change-point prediction performance in non-parametric simulations. Each cell shows the percentage of simulations which have certain number of predicted change-points (normalized within a column). Note that there might be several predicted change-points that correspond to the same change-point in the ground truth. We consider predicted change-points to match the ground-truth change-point if it is located no more than 3 time points away.

Supplementary Figures

Supplementary Figure 1. Discrepancies in signature activities on bootstrap data. (a) Standard deviations of signature activities at each time point for each signature across bootstraps. (b) Standard deviations of change in signature activity at each time point for each signature across bootstraps.
Supplementary Figure 2. Subclone detection accuracy in clonal evolution simulations. Each method was evaluated on all simulation scenarios in Supplementary Note 3, shown in X-axis. Y-axis shows the percentage of simulations where the method predicted the correct number of changepoints. Comparison was performed on simulated data with read depth (a) 100 and (b) 10.

Supplementary Figure 3. Absolute activity errors in clonal evolution simulations. Scatterplots show median per-mutation activity reconstruction error (absolute activity difference) between the method (TrackSig and SciClone) and the true activities on clonal evolution simulations. (a) Depth 100. Mean activity error: TrackSig 0.022, SciClone 0.039. (b) Depth 10. Mean activity error: TrackSig 0.048, SciClone 0.068.
Supplementary Figure 4. KL divergences in clonal evolution simulations. Scatterplots show mean per-mutation KL divergence between predicted and true exposures on clonal evolution simulations. (a) All simulations. Mean per-mutation KL divergence: TrackSig 0.044, SciClone 0.091. (b) Depth 30. Mean KL divergence: TrackSig 0.047, SciClone 0.095.

Supplementary Figure 5. Dependence of activity errors on TrackSig bin sizes at depth 30. (a) Median absolute, per-mutation difference between true activities and activities estimated by TrackSig for different bin sizes at depth 30. (b) Mean per-mutation KL divergence between estimated and true activities for different bin sizes at depth 30. In all subfigures, error bars extend to 1.5 times the inter-quartile range, or the point the furthest from the mean, whichever is less.
Supplementary Figure 6. Dependence of activity errors on TrackSig bin sizes at depth 100. (a) Median absolute, per-mutation difference between true activities and activities estimated by TrackSig for different bin sizes at depth 100. (b) Mean per-mutation KL divergence between estimated and true activities for different bin sizes at depth 100. In all subfigures, error bars extend to 1.5 times the inter-quartile range, or the point the furthest from the mean, whichever is less.

Supplementary Figure 7. Activity errors by depth in non-neutral simulations. Comparison of TrackSig and SciClone (BMM noise model, default) on all simulation scenarios described in Supplementary Note 3, except neutral evolution. Performance was evaluated across different simulated read depths, shown in X-axis. In all subfigures, error bars extend to 1.5 times the inter-quartile range, or the point the furthest from the mean, whichever is less. (a) Median absolute, per-mutation difference between true activities and activities estimated by each method. (b) Mean per-mutation KL divergence between true activities and activities estimated by each method.
Supplementary Figure 8. Activity errors by depth in simulations with neutral mutations. Comparison of TrackSig and SciClone (BMM noise model, default) on one and two cluster simulations with the inclusion of neutral mutations, as described in Supplementary Note 3. Performance was evaluated across different simulated read depths, shown in X-axis. In all subfigures, error bars extend to 1.5 times the inter-quartile range, or the point the furthest from the mean, whichever is less. (a) Median absolute, per-mutation difference between true activities and activities estimated by each method. (b) Mean, per-mutation, KL divergence between true activities and activities estimated by each method.
Supplementary Figure 9. Evolutionary trajectories for multiple samples from same tumour. Each subplot shows signature trajectories for different samples from the same tumour. Signature trajectories shown are the mean of 30 bootstrap trajectories and therefore are not piece-wise constant. We report mean activity difference and KL divergence between the activities in the clonal cluster only. We compare clonal activities across the groups of samples with the same set of active signatures.

Tumour DO51954: Group 1 with active signatures "SBS1 SBS5 SBS40": mean activity diff 0.0573, KL divergence 0.05. Group 2 with signatures "SBS1 SBS5 SBS18 SBS40": mean activity diff 0.036, KL divergence 0.018

Tumour DO51958: Group 1 with active signatures "SBS1 SBS5 SBS18 SBS40": mean activity diff 0.014, KL divergence 0.002. Group 2 with signatures "SBS1 SBS5 SBS18 SBS40 SBS2+13": mean activity diff 0.008, KL divergence 0.001.

Tumour DO51965: Group with active signatures "SBS1 SBS3 SBS18 SBS40": mean activity diff 0.042, KL divergence 0.028.

Tumour DO51953: Group with active signatures "SBS1 SBS5 SBS40": mean activity diff 0.031, KL divergence 0.005.

Tumour DO51959: Group with active signatures "SBS1 SBS5 SBS18 SBS41": mean activity diff 0.011, KL divergence 0.0014.

Tumour DO51962: Group with signatures "SBS1 SBS3 SBS5 SBS8 SBS40": mean activity diff 0.037, KL divergence 0.031.
Supplementary Note 8

Members of PCAWG Consortium

Steering committee

Peter J Campbell 1,2, Gad Getz 3,4,5,6, Jan O Korbel 7,8, Lincoln D Stein 9,10 and Joshua M Stuart 11

Executive committee

Sultan T Al-Sedairy 12, Axel Aretz 13, Cindy Bell 14, Miguel Betancourt 15, Christiane Buchholz 16, Fabien Calvo 17, Christine Chomienne 18, Michael Dunn 19, Stuart Edmonds 20, Eric Green 21, Shalija Gupta 22, Carolyn M Hutter 23, Karine Jegelkova 24,25, Jennifer L Jennings 26,27, Nicole Jones 28, Hyung-Laee Kim 29, Youyoung Lu 30, Hitoshi Nakagama 31, Gerd Nettekoven 32, Laura Planko 33, David Scott 34, Tatsuhiro Shibata 35,34, Kiyo Shimizu 35, Lincoln D Stein 36,9,10, Michael Rudolf Stratton 37, Takashi Yugawa 38, Giampaolo Tortora 39,37,38, K VijayRaghavan 40, Huanming Yang 39 and Jean C Zenklusen 40

Ethics and legal working group

Don Chalmers 41, Yann Joly 42, Bartha M Knoppers 43, Fruzsinsa Molnár-Gábor 44, Mark Phillips 45, Adrian Thorogood 46 and David Townend 47

Technical working group

Brice Aminou 48, Javier Bartolome 49, Keith A Boroevich 50, Rich Boyce 7, Angela N Brooks 3,4,5,6, Alex Buchanan 51, Ivo Buchalter 52,53,54, Adam P Butler 55, Niall J Byrne 56, Andy Cafferkey 57, Peter J Campbell 1,2, Zhaozhong Chen 55, Sunghoon Cho 56, Wan Choi 57, Peter Clapham 58, Brandi N Davis-Dusenbery 59, Francisco M De La Vega 60,61,62, Jonas Demeulemeester 63,64, Michelle T Dow 55, Lewis Jonathan Dursi 65, Juergen Eils 66,67, Roland Eils 68,69, Kyle Ellrott 51, Claudiu Farcas 35, Francesco Favero 60, Nodirjon Fayzullaev 45, Vincent Ferretti 46,9, Paul Flicek 7, Nuno A Fonseca 70, Josep Ll Gelpi 64,71, Gad Getz 3,4,5,6, Bob Gibson 45, Robert L Grossman 72, Olivier Harismendy 73, Allison P Heath 74, Michael C Heinold 32,54, Julian M Hess 3,5,6,7, Oliver Hofmann 75, Jongwhi H Hong 76, Thomas J Hudson 77,78,79, Barbara Hutter 80,81,82, Carolynn M Hutter 21, Daniel Hübschmann 54,66,83,84,85, Seiya Imoto 86,87, Sinisa Ivkovic 88, Seung-Hyup Jeon 57, Wei Jiao 9, Jongsun Jung 89, Rolf Kabbe 52, Andre Kahles 90,91,92,93,94, Jules NA Kerssens 52,55, Hyung-Laee Kim 27, Hyunghwan Kim 86,87, Jihoon Kim 95, Youngwook Kim 96,97, Kortine Kleinheinz 42,54,7, Jan O Korbel 7,8, Michael Kosche 98, Antonios Kouris 55, Milena Kovacevic 88, Chris Lawerenz 67, Ignaty Leshchiner 3, Jia Liu 99, Dimitri Livitz 3, George L Mihaiescu 45, Sanja Mijalkovic 88, Ana Mijalkovic Mijalkovic-Lazic 88, Satoru Miyano 87, Naoki Miyoshi 87, Hardeep K Nahal-Bose 45,84,83, Mina Nastic 88, Steven J Newhouse 7, Jonathan Nicholson 2, Brian D O’Connor 45,50,7, David Ocan 7, Kazuhiro Oh 86, Lucila Ohno-Machado 55, Larsson Omborg 100, BF Francis Ouellette 101,102, Nagarajan Paramasivam 52,81, Marc D Perry 45,103, Todd D Pihl 104, Manuel Prinz 52, Montserrat Puiggròs 105, Petar Radioc 88, Keiran M Raines 2, Esther Rheinbay 3,6,106, Mara Rosenberg 3,106, Romina Royo 105, Gunnar Rätshh 90,93,94,107,108,109,110, Gordon Saksera 8, Matthias Schlesner 52,110, Solomon I Shorser 9, Charles Short 7, Heidi J Sofia 21, Jonathan Spring 72, Lincoln D Stein 9,10, Adam J Struck 51, Grace Tiao 3, Nebojša Tijanicevic 88, David Torrents 105,111, Peter Van Loon 63,64, Miguel Vazquez 105,112, David Vicente 105, Jeremiah A Wala 3,6,49, Zhining Wang 40, Sebastian M Waszak 8, Joachim Weisfenfeldt 8,113,114, Johannes Werner 52,115, Ashley Williams 55, Youngchoon Woo 57, Adam J Wright 107, Qian Xiang 116, Sergei Yakneen 8, Liming Yang 40, Denis Yuen 9, Christina K Yung 45 and Junjun Zhang 45
Annotations working group

Angela N Brooks3,49,50, Ivo Buchhalter52,53,54, Peter J Campbell1,2, Priyanka Dhirgna117,118, Lars Feuerbach119, Mark Gerstein120,121,122,123, Gad Getz3,4,5,6, Mark P Hamilton124, Henrik Hornshøj125, Todd A Johnson49, Andre Kahles90,91,92,93,94, Abdullah Kahraman126,127,128, Manolis Kellis3,129, Ekta Khurana117,118,130,131, Jan O Korbel7,8, Morten Muhlig Nielsen125, Jakob Skou Pedersen125,126, Paz Polak3,4,6, Jüri Reimand9,133, Esther Rheinbay3,6,106, Nicola D Roberts2, Gunnar Rätsch90,93,94,107,108,109, Richard Sallari3, Nasa Sinnott-Armstrong3,61, Alfonso Valencia105,111, Miguel Vazquez105,112, Sebastian M Waszak8, Joachim Weischenfeldt8,113,114 and Christian von Mering128,134

Quality control working group

Sergi Beltran135,136, Ivo Buchhalter52,53,54, Peter J Campbell1,2, Roland Eils52,54,66,67, Daniela S Gerhard137, Gad Getz3,4,5,6, Ivo G Gut135,136, Marta Gut135,136, Barbara Hutter80,81,82, Daniel Hübschmann54,66,83,84,85, Kortine Kleinheinz52,54, Jan O Korbel7,8, Dimitri Livitz3, Marc D Perry45,103, Keiran M Raine2, Esther Rheinbay3,6,106, Mara Rosenberg3,106, Gordon Saksena3, Matthias Schlesner52,110, Miranda D Stobbe135,136, Jean-Rémi Trotta135, Johannes Werner52,115 and Justin P Whalley135

Novel somatic mutation calling methods

Matthew H Bailey138,139, Beifang Niu140, Matthias Biegs81,141, Paul C Boutro9,133,142,143, Ivo Buchhalter52,53,54, Adam P Butler2, Ken Chen144, Zechen Chong145, Li Ding138,139,146, Oliver Drechs136,147, Lewis Jonathan Dursi9,65, Roland Eils52,54,66,67, Kyle Ellrott51, Shadrielle MG Espiritu9, Yu Fan148, Robert S Fulton138,139,146, Shengjie Gao149, Josep Li Gelpi46,71, Mark Gerstein120,121,122,123, Gad Getz3,4,5,6, Santiago Gonzalez7,8, Ivo G Gut135,136, Faraz Hach150,151, Michael C Heindol52,54, Julian M Hess3,75, Jonathan Hinton2, Taobo Hu152, Vincent Huang9, Yi Huang153,154, Barbara Hutter80,81,82, David R Jones2, Jongsun Jung89, Natalie Jäger52, Hyung-Lae Kim27, Kortine Kleinheinz52,54, Sushant Kumar122,123, Yogesh Kumar152, Christopher M Lalansingh9, Ignaty Leschiner3, Ivica Letunic155, Dimitri Livitz3, Eric Z Ma152, Yosef E Maruvka3,75,106, R Jay Mashl139,156, Michael D McLellan138,139,146, Andrew Menzies2, Ana Milovanovic46, Morten Muhlig Nielsen125, Stephan Ossowski136,147,157, Nagarajan Paramasivam52,81, Jakob Skou Pedersen125,132, Marc D Perry45,103, Montserrat Puiggrós105, Keiran M Raine2, Esther Rheinbay3,6,106, Romina Royo105, S Cenk Sahinalp151,158,159, Gordon Saksena3, Iman Sarraf151,159, Matthias Schlesner52,110, Jared T Simpson9,160, Lucy Stebbings2, Chip Stewart3, Miranda D Stobbe135,136, Jon W Teague2, Grace Tiao3, David Torres105,111, Jeremiah A Wala3,6,49, Jiayin Wang139,154,161, Wenyi Wang148, Sebastian M Waszak8, Joachim Weischenfeldt8,113,114, Michael C Wendl139,162,163, Johannes Werner52,115, David A Wheeler164,165, Zhenggang Wu152, Hong Xue152, Sergey Yakneen8, Takafumi N Yamaguchi9, Kai Ye161,166, Venkata D Yellapantula167,168, Christina K Yung45 and Junjun Zhang45

Drivers and functional interpretation

Federico Abascal2, Samirkumar B Amin169,170,171, Gary D Bader10, Jonathan Barenboim9, Rameen Beroukhim3,6,172, Johanna Bertl125,173, Keith A Boroevich47,48, Søren Brunak174,175, Peter J Campbell1,2, Joana Carlevaro-Fita176,177,178, Dimple Chakravarty179, Calvin Wing Yiu Chan52,180, Ken Chen144, Jung Kyoung Choi181, Jordi Deu-Pons182,183, Priyanka Dhirgna117,118, Klev Diamant184, Lars Feuerbach119, J Lynn Fink105,185, Nuno A Fonseca7,70, Joan Frigola182, Carlo Gambacorti-Passerini186, Dale W Garsed187,188, Mark Gerstein120,121,122,123, Gad Getz3,4,5,6, Abel Gonzalez-Perez183,189,190, Qianyun Guo132, Ivo G Gut135,136, David Haan11, Mark P Hamilton124, Nicholas J Haradhvala3,106, Arif O Harmanci123,191, Mohamed Helmy192, Carl Herrmann52,54,193, Julian M Hess3,75, Asger Hobolth132,173, Emirin Hodzic159, Chen Hong119,180, Henrik Hornshøj125, Keren Isaev9,133, Jose MG Izarzugaza174, Rory Johnson177,194, Todd A Johnson47, Malene Juul125, Randi Istrup Juul125, Andre Kahles90,91,92,93,94, Abdullah Kahraman126,127,128, Manolis Kellis3,129,
Integration of transcriptome and genome

Integration of epigenome and genome
Patterns of structural variations, signatures, genomic correlations, retrotransposons, mobile elements

Kadir C Akdemir1,4, Eva G Alvarez287,288,289, Adrian Baez-Ortega290, Rameen Beroukhim3,6,172, Paul C Boutros9,133,142,143, David D L Bovtew187,291, Benedikt Brors82,119,278, Kathleen H Burns292, Peter J Campbell1,2, Kin Chan293, Ken Chen144, Isidro Cortés-Ciriano237,218,239, Ana Dueso-Barroso46, Andrew J Dunford3, Paul A Edwards294,295, Xavier Estivill296, Dariush Etemadmoghadam187,188, Lars Feuerbach119, J Lynn Fink105,185, Milana Frenkel-Morgenstern244, Dale W Garsed187,188, Mark Gerstein120,121,122,123, Dmitry A Gordenin297, David Haan11, James E Haber298, Julian M Hess3,75, Barbara Hutter80,81,82, Marcin Imlielinski299,300, David TW Jones301,302, Young Seok Ju2,181, Marat D Kazanov303,304,305, Leszek Klimeczak306, Youngil Koh307,308, Jan O Korbel7,8, Kiran Kumar3, Eunjung Alice Lee309, Jake June-Koo Lee238,259, Yi-long Li2, Andy G Lynch294,295,310, Geoff Macintyre294, Florian Markowetz294,295, Iljio Martincorenare, Alexander Martinez-Fundichely117,118,130, Matthew Meyerson3,6,49,177,253, Satoru Miyano87, Hideyuki Nakagawa48, Fabio CP Navarro122, Stephan Ossowski136,147,157, Peter J Park238,259, John V Pearson311,312, Montserrat Puiggròs84, Karsten Rippe84, Nicola D Roberts2, Steven A Roberts313, Bernardo Rodriguez-Martín287,288,289, Steven E Schumacher3,217, Ralph Scully314, Mark Schakleton188,218, Nikos Sidiropoulos113, Lina Sieverling119,180, Chip Stewart3, David Torrens105,111, Jose MC Tubio287,288,289, Izar Villasante105, Nicola Waddell311,312, Jeremiah A Wala3,6,49, Joachim Weischenfeldt8,113,114, Lixing Yang315, Xiaotong Yao299,316, Sung-Soo Yoon308, Jorge Zamora2,287,288,289 and Cheng-Zhong Zhang3,6,49

Mutation signatures and processes

Ludmil B Alexandrov2,317, Erik N Bergstrom318, Arnoud Boor267,319, Paul C Boutros9,133,142,143, Kin Chan293, Kyle Covington165, Akihiro Fujimoto48, Gad Getz3,4,5,6, Dmitry A Gordenin297, Nicholas J Haradhvala3,106, Mi Ni Huang267,319, S. M. Ashiqul Islam317, Marat D Kazanov303,304,305, Jaegil Kim3, Leszek J Klimeczak306, Michael S Lawrence3,47,106, Iljio Martincorenare, John R McPherson267,319, Sandro Morganella, Ville Mustonen320,321,322, Hideyuki Nakagawa48, Avlin Wei Tian Ng323, Serena Nik-Zainal2,324,325,326, Paz Polak3,4,6, Stéphane D Prokopiec9, Steven A Roberts313, Steven G Rozen267,268,269, Radhakrishnan Sabarinathan183,190,214, Natalie Saini297, Tatsumi Shibata33,34, Yuichi Shiraishi87, Michael Rudolf Stratton2, Bin Tean Teh266,267,268,269,270, Ignacio Vázquez-García2,167,327,328, Yang Wu267,319, Fouad Yousif9 and Willie Yu329

Germline cancer genome

Ludmil B Alexandrov2,317, Eva G Alvarez287,288,289, Adrian Baez-Ortega290, Matthew H Bailey138,139, Mattia Bosio46,136,147, G Steven Bova330, Alvis Brazma7, Alix L Bruzos287,288,289, Ivo Buchalter52,53,54, Carlos D Bustamante60,61, Atul J Butte331, Andy Cafferkey7, Claudia Calabrese7,8, Peter J Campbell1,2, Stephen J Chanock332, Nilanjan Chatterjee333,334, Jieming Chen123,335, Francisco M De La Vega59,60,61,62, Olivier Delaneau323,326,337,338, German M Demidov,136,147,399, Anthony DiBiase340, Li Ding138,139,146, Oliver Drechsel136,147, Lewis Jonathan Dursi9,65, Douglas F Easton341,342, Serap Erkek8, Georgia Escaramis147,343,344, Xavier Estivill296, Erik Garrison2, Mark Gerstein120,121,122,123, Gad Getz3,4,5,6, Dmitry A Gordenin297, Nina Habermann8, Olivier Harismendy7,3, Eoghan Harrington345, Shuto Hayashi87, José María Heredia-Genestar346, Aliaksei Z Holik147, Xing Hua332, Kuan-lin Huang139,347, Seiya Imoto86,87, Sissel Juul345, Ekta Khurana117,118,130,131, Hyung-Lae Kim27, Youngwook Kim96,97, Leszek J Klimeczak306, Jan O Korbel7,8, Roelof Koster348, Sushant Kumar122,123, Ivica Letunic155, Yi-long Li2, Tomas Marques-Bonet111,135,346,349, R Jay Mash119,156, Simon Mayes350, Michael D McLellan138,139,146, Lisa Mirabelle332, Francesc Muyas136,147,339, Hideyuki Nakagawa48, Arcadi Navarro111,135,346, Steven J Newhouse7,8, Stephan Ossowski136,147,157, Esa Pitkänen8, Aparna Prasad136, Raquel Rabionet136,147,351, Benjamin Raeder8, Tobias Rausch8, Steven A Roberts313, Bernardo Rodriguez-Martín287,288,289, Gunnar Rätsch90,93,94,107,108,109, Natalie Saini297, Matthias
Tumor subtypes and clinical translation

Fatima Al-Shahrour357, Gurmit Atwal9,10,358, Peter J Bailey236, Andrew V Biankin 359,360,361,362, Paul C Boutros9,133,142,143, Peter J Campbell1,2, David K Chang360,362, Susanna L Cooke462, Vikram Deshpande106, Bishoy M Faltas109, William C Faquin106, Levi Garraway49, Gad Getz3,4,5,6, Sean M Grimmond363, Syed Haider9, Katherine A Hoadley247,248, Wei Jiao9, Vera B Kaiser364, Rosa Karlic365, Mamoru Kato366, Kirsten Kübler3,106, Alexander J Lazar367, Constance H Li9,133, David N Louis106, Adam Margolin106, Sancho Martin2,369, Hardeep K Nahal-Bose45, G Petur Nielsen106, Serena Nik-Zaina12,324,325,326, Larsson Omborg100, Christine Pang9, Marc D Perry45,103, Paz Polak3,4,6, Esther Rheinbay3,6,106, Mark A Rubin131,194,210,211,212, Colin A Semple364, Dennis C Sgron106, Tatsushihiro Shibata33,34, Reiner Siebert262,67,36,150,159,161,166, Venkata D Stein9,10,370,371, Michelle Stojan110,372 and Junjun Zhang45

Evolution and heterogeneity

David J Adams2, Pavana Anur373, Rameen Beroukhim3,6,172, Paul C Boutros9,133,142,143, David D L Bowtell187,201, Peter J Campbell1,2, Shaolong Cao148, Elizabeth L Christie187, Marek Cmero374,375,376, Yu Peng Cun377, Kevin J Dawson2, Jonas Demeulemeester63,64, Stefan C Dentro2,64,354, Amit G Deshwar378, Nilgun Dommez151,159, Ruben M Drews204, Roland Eils12,52,54,66,67, Yu Fan148, Matthew W Fittall64, Dale W Garsed187,188, Moritz Gerstung7,8, Gad Getz3,4,5,6, Santiago Gonzalez7,8, Gavin Ha3, Kerstin Haase64, Marcin Imielski299,300, Lara Jerman8,379, Yuan Ji380,381, Clemency Jolly64, Kortine Kleinheinz52,54, Juhee Lee382, Henry Lee-Six2, Ignaty Leshchiner4, Dimitri Livotz3, Geoff Macintyre294, Salem Malik151,159, Florian Markowitz294,295, Iñigo Martincorena2, Thomas J Mitchell2,295,383, Quaid D Morris358,384, Ville Mustonen20,321,322, Layla Oesper385, Martin Peifer377, Myron Peto386, Benjamin J Raphael120, Daniel Rosebrock3, Yulia Rubanova160,358, S Cenk Sahinalp151,158,159, Adriana Salcedo9, Matthias Schlesner152,110, Steven E Schumacher2,177, Subhajit Sengupta387, Ruian Shi384, Seung Jun Shin264, Paul T Spellman388, Oliver Sprio3, Lincoln D Stein9,10, Maxime Tarabichi2,64, Peter Van Loo53,64, Shankar Vembu384,389, Ignacio Vázquez-García2,167,327,328, Wenyi Wang448, David C Wedge2,354,355, David A Wheeler164,165, Jeffrey A Wintersinger192,358,390, Tsun-Po Yang377, Xiaotong Yao399,316, Kaixian Yu399, Ke Yuan294,369,372 and Hongtu Zhu392,393

Exploratory: portals, visualization and software infrastructure

Fatima Al-Shahrour357, Elisabet Barrera7, Wojciech Bazant7, Alvis Brazma7, Isidro Cortés-Ciriano237,238,239, Brian Craft240, David Craft3, Vincent Ferretti45,69, Nuno A Fonseca7,70, Anja Füllgrabe7, Mary J Goldman240, David Haussler240,394, Wolfgang Huber8, Maria Keays7, Alfonso Muñoz7, Brian D O’Connor45,50, Irene Papatheodorou7, Robert Petryszak7, Elena Piñeiro-Yáñez357, Alfonso Valencia105,111, Miguel Vazquez105,112, John N Weinstein395,396, Qian Xiang116, Junjun Zhang45 and Jingchun Zha 240

Exploratory: mitochondrial variants and HLA/immunogenicity

Peter J Campbell1,2, Yiwen Chen148, Chad J Creighton241, Li Ding138,139,146, Akihiro Fujimoto48, Masashi Fujita48, Gad Getz3,4,5,6, Leng Han231, Takanoi Hasegawa87, Shuto Hayashi87, Seiya Imoto86,87, Young Seok Ju2,181, Hyung-Lae Kim27, Youngwook Kim96,97, Youngil Koh307,308, Mitsuiro Komura87, Jun Li148, Han
Liang, Iñigo Martincorena, Satoru Miyano, Shinichi Mizuno, **Hidden Nakagawa**, Keunchil Park, Eigo Shimizu, Yumeng Wang, John N Weinstein, Yanxun Xu, Rui Yamaguchi, Fan Yang, Yang Yang, Christopher J Yoon, Sung-Soo Yoon, Yuan Yuan, Fan Zhang, and Zemin Zhang

Exploratory: pathogens

Malik Alawi, Ivan Borozan, Daniel S Brewer, Colin S Cooper, Nikita Desai, Roland Eils, Vincent Ferretti, Adam Grundhoff, Murat Iskar, Kortine Kleinheinz, Peter Lichter, **Hidden Nakagawa**, Akinyemi I Ojesina, Chandra Sekhar Pedamallu, Matthias Schlesner, Eils, Malik Alawi, Zemin Zhang, Fan Yang, Paul M Waring, Heather Thorne, Marie Patch, K Miller, Fuzzy S. Kastalan, Sheena J. Elkins, Andrea V. Biankin, Oliver Holmes, Jianfei Lin, Wataru Sakurai, Tatiana V. Khramtsova, Andrew P. Barbour, Matthew J Anderson, Davide Antonello, Andrew P Barbour, Claudio Bassi, Samantha Bersani, Andrew V Biankin, Timothy JC Bruxner, Ivana Cataldo, David K Chang, Lorraine A Chantrill, Yoke-Eng Chiew, Angela Chou, Angelika N Christ, Sara Cingarlini, Nicole Clooan, Vincenzo Corbo, Fraser R Duthie, J Lynn Fink, Anthony J Gill, Janet S Graham, **Hidden Grimmel**, Anne Hamilton, Oliver Holmes, Jillian A Hung, Karin S Kassahn, Stephen H Kazakoff, Catherine J Kennedy, Conrad R Leonard, Linda Miskun, David K Miller, Gisela Mir Arnau, Felicity Newell, Katia Nones, Ann-Marie Patch, John V Pearson, Michael C Quinn, Mark Shackleton, Darrin F Taylor, Heather Thorne, Nadia Traficante, Ravikiran Vedururu, Nick M Waddell, Paul M Waring, Scott Wood, Qinying Xu, and Anna deFazio

Tumor Specific Providers – Australia (Ovarian cancer)

Kathryn Alsop, Australian Ovarian Cancer Study Group, David D L Bowtell, Timothy JC Bruxner, Angelika N Christ, Elizabeth L Christie, Stephen M Cordner, Prue A Cowin, Ronny Drapkin, Darius Etemadmoghadam, Sian Fereday, Dale W Garsed, Joshy George, Sean M Grimmel, Anne Hamilton, Oliver Holmes, Jillian A Hung, Karin S Kassahn, Stephen H Kazakoff, Catherine J Kennedy, Conrad R Leonard, Linda Miskun, David K Miller, Gisela Mir Arnau, Felicity Newell, Katia Nones, Ann-Marie Patch, John V Pearson, Michael C Quinn, Mark Shackleton, Darrin F Taylor, Heather Thorne, Nadia Traficante, Ravikiran Vedururu, Nick M Waddell, Paul M Waring, Scott Wood, Qinying Xu, and Anna deFazio

Tumor Specific Providers – Australia (Pancreatic cancer)

Matthew J Anderson, Davide Antonello, Andrew P Barbour, Claudio Bassi, Samantha Bersani, Andrew V Biankin, Timothy JC Bruxner, Ivana Cataldo, David K Chang, Lorraine A Chantrill, Yoke-Eng Chiew, Angela Chou, Angelika N Christ, Sara Cingarlini, Nicole Clooan, Vincenzo Corbo, Fraser R Duthie, J Lynn Fink, Anthony J Gill, Janet S Graham, **Hidden Grimmel**, Anne Hamilton, Oliver Holmes, Nigel B Jamieson, Amber L Johns, Karin S Kassahn, Stephen H Kazakoff, James G Kench, Luca Landoni, Rita T Lawlor, Conrad R Leonard, Andrea Mafficini, Neil D Merrett, David K Miller, Marco Miottto, Elizabeth A Musgrove, Adnan M Nagrial, Felicity Newell, Katia Nones, Karin A Oien, Marina Pajic, Ann-Marie Patch, John V Pearson, Mark Pinsent, Andrea A Pinho, Michael C Quinn, Alan J Robertson, Ilse Rooman, Borislav C Rusev, Jaswinder S Samra, Maria Scardoni, Christopher J Scarlett, Aldo Scarpa, Elisabetta Sereni, Katarzyna O Sikora, Michele Simbolo, Morgan L Tsukahara, Christopher W Toon, Giampaolo Tortora, Caterina Vicentini, Nick M Waddell, Nicola Waddell, Scott Wood, Jianmin Wu, Qinying Xu, and Nikolajs Zeps

Tumor Specific Providers – Australia (Skin cancer)

Lauri A Aaltonen, Andreas Behren, Hazel Burke, Jonathan Cebon, Rebecca A Dagg, Ricardo De Paoli-Iseppi, Ken Dutton-Regester, Matthew A Field, Anna Fitzgerald, Sean M Grimmel, Nicholas K Hayward, Peter Hersey, Oliver Holmes, Valerie Jakrot, Peter A Johansson, Hojabr Kakavand, Stephen H Kazakoff, Richard F Kefferd, Loretta MS Lau, Conrad R Leonard, Georgina V Long, **Hidden Grimmel**, David A Mann, Felicity Newell, Katia Nones, Ann-Marie Patch, John V Pearson, Hilda A Pickett, Antonio L Pritchard, Giulietta M Pupo, Robyn PM Saw, Sarah-Jane Schramm, Richard A Scolyer, and Mark
Tumor Specific Providers – Canada (Pancreatic cancer)

John Bartlett461,462, Prashant Bavi463, Ivan Borozan9, Dianne E Chadwick464, Michelle Chan-Seng-Yue463, Sean Cleary463,465, Ashton A Connor466,467, Karolina Czajka468, Robert E Denroche463, Neesha C Dhani469, Jenna Eagles79, Vincent Ferretti15,69, Steven Gallinger463,466,467, Robert C Grant463,470, David Hedley469, Michael A Hollingsworth71, Thomas J Hudson78,79, Gun Ho Jang463, Jeremy Johns79, Sangeetha Kalimuthu463, Sheng-Ben Liang472, Ilincu Lungu463,473, Xuemei Lu9, Faridah Mbabaaal79, John D McPherson79,463,474, Treasa A McPherson170, Jessica K Miller79, Malcolm J Moore469, Faiyaz Notta463,475, Danielle Pasternack79, Gloria M Petersen476, Michael H A Roehrl133,463,477,478,479, Michelle Sam79, Iris Selander470, Stefano Serra253, Sagedeh Shahabi472, Lincoln D Stein9,10, Morgan L Taschuk45, Sarah P Thayer406, Lee E Timms79, Gavin W Wilson9,463, Julie M Wilson463 and Bradly G Wouters480

Tumor Specific Providers – Canada (Prostate cancer)

Timothy A Beck45, Vinayak Bhandari9, Paul C Boutros9,133,142,143, Robert G Bristow133,481,482,483,484, Colin C Collins151, Shadielle MG Espiritu9, Neil E Fleschner485, Natalie S Fox9, Michael Fraser9, Syed Haider9, Lawrence E Heisler486, Vincent Huang9, Emilie Lalonde9, Julie Livingstone9, John D McPherson79,463,474, Alice Meng487, Veronica Y Sabelnykova9, Adriana Salcedo9, Yu-Jia Shiah9, Theodorus Van der Kwast488 and Takafumi N Yamaguchi9

Tumor Specific Providers – China (Gastric cancer)

Shuai Ding489, Daiming Fan400, Yong Hou39,249, Yi Huang153,154, Lin Li39, Siliang Li39,249, Dongbing Liu39,249, Xingmin Liu39,249, Youyong Lu28,29,30, Yongzhao Nie490,491, Hong Su39,249, Jian Wang39, Kui Wu39,249, Xiao Xiao154, Rong Xing29,492, Huanming Yang39, Shanlin Yang489, Yingyan Yu493, 230, Xiuling Zhang39, Yong Zhou39 and Shida Zhu39,249

Tumor Specific Providers – EU: France (Renal cancer)

Rosamonde E Banks494, Guillaume Bourque495,496, Alvis Brazma7, Paul Brennan497, Mark Lathrop496, Louis Letourneau498, Yasser Riazalhosseini496, Ghislaine Scelo497, Jörg Tost499, Naveen Vasudev500 and Juris Viksna501

Tumor Specific Providers – EU: United Kingdom (Breast cancer)

Sung-Min Ahn502, Ludmil B Alexandrov2,317, Samuel Aparicio502, Laurent Arnould504, MR Aure505, Shriram G Bhosle2, E Birney7, Ake Borg506, S Boyault507, AB Brinkman508, JE Brock509, A Broeks510, Adam P Butler2, AL Børresen-Dale505, C Caldas511,512, Peter J Campbell1,2, Suet-Feung Chin511,512, Helen Davies2, C Desmedt513, L Dirix514, S Dronov2, Anna Ehinger515, JE Eyfjord516, GG Van den Eynden517, A Fatima217, Jorge Reis Filho518, JA Foekens519, PA Futreal520, Oystein Garred521,522, Moritz Gerstung7,8, Dilip D Giri518, D Glodzik2, Dorthe Grabau523, Holmfridur Hilmarsdottir516, GK Hooijer524, Jocelyne Jacquemier252, SJ Jung526, Jon G Jonasson516, Jos Jonkers527, HY Kim525, Tari A King528,529, Stian Knappskog2, G Kong525, S Krishnamurthy530, S Van Laere514, SR Lakhani531, A Langerod505, Denis Larsimon532, HI Lee526, JY Lee533, Ming Ta Michael Lee520, Yilong Li2, Ole Christian Lingjærde534, Gaetan MacGrogan535, JW Martens536, Sancha Martin2,369, Iiigo Martincorenna2, Andrew Menzies2, Sandro Morganella2, Ville Mustonen320,321,322, Serena Nik-Zalina2,324,325,326, Sarah O’Meara2, I Pauporté18, Sarah Pinder337, X Pivot538, Elena Provenzano539,
Tumor Specific Providers – Germany (Malignant lymphoma)

Ole Ammerpohl, Sietske Aukema, Anke K Bergmann, Stephan H Bernhart, Hans Binder, Arndt Borkhardt, Christoph Borst, Benedikt Brors, Birgit Burkhardt, Alexander Claviez, Roland Eils, Maria Elisabeth Goebeler, Andrea Haake, Siegfried Haas, Martin Hansmann, Jessica I Hoell, Steve Hoffmann, Michael Hummel, Daniel Hübschmann, Dennis Karsch, Wolfram Klapper, Kortine Kleinheinz, Michael Kneba, Jan O Korbel, Helene Kretzmer, Markus Kreuz, Dieter Kube, Ralf Küppers, Chris Lawerenz, Dido Lenze, Peter Lichter, Markus Loeffler, Cristina López, Luisa Mantovani-Löffler, Peter Möller, German Ott, Bernhard Radlwimmer, Julia Richter, Marius Rohde, Philip C Rosenstiel, Andreas Rosenwald, Markus B Schillhabel, Matthias Schlesner, Stefan Schreiber, Reiner Siebert, Peter F Stadler, Peter Staib, Stephan Stilgenbauer, Stephanie Sungalee, Monika Szczepanowski, Umut H Toprak, Lorenz HP Trümper, Rabea Wagener, and Thorsten Zenz.

Tumor Specific Providers – Germany (Pediatric brain cancer)

Ivo Buchalter, Juergen Eils, Volker Hovestadt, Barbara Hutter, David TW Jones, Natalie Jäger, Christof von Kalle, Marcel Kool, Jan O Korbel, Andrey Korshunov, Pablo Landgraf, Chris Lawerenz, Hans Lehraech, Peter Lichter, Paul A Northcott, Stefan M Pfister, Bernhard Radlwimmer, Guido Reifenberger, Matthias Schlesner, Hans-Jörg Warnatz, Joachim Weischenfeld, Stephan Wolf, Marie-Laure Yaspo, and Marc Zapatka.

Tumor Specific Providers – Germany (Prostate cancer)

Yassen Assenov, Benedikt Brors, Juergen Eils, Roland Eils, Volker Hovestadt, Barbara Hutter, David TW Jones, Natalie Jäger, Christof von Kalle, Marcel Kool, Jan O Korbel, Andrey Korshunov, Pablo Landgraf, Chris Lawerenz, Hans Lehraech, Sarah Minner, Christoph Plass, Guido Sauter, Thorsten Schlomm, Nikos Sidiropoulos, Ronald Simon, Holger Sültmann, Hans-Jörg Warnatz, Dieter Weichenhan, Joachim Weischenfeld, Marie-Laure Yaspo, and Barbara Hutter.

Tumor Specific Providers – India (Oral cancer)

Nidhan K Biswas, Luca Landoni, Arindam Maitra, Partha P Majumder, and Rajiv Sarin.

Tumor Specific Providers – Italy (Pancreatic cancer)

Davide Antonello, Stefano Barbi, Claudio Bassi, Samantha Bersani, Giada Bonizzato, Cinzia Cantù, Ivana Cataldo, Sara Cingarlini, Vincenzo Corbo, Angelo P Dei Tos, Matteo Fassan, Sonia Grimaldi, Luca Landoni, Rita T Lawlor, Claudio Luchini, Andrea Mafficini, Giuseppe Mallega, Giovanni Marchegiani, Michele Milella, Marco Miotto, Salvatore Paieka, Antonio Pea, Paolo Pederzoli, Borislav C Rusev, Andrea Ruzzenente, Roberto Salvia, Maria
Tumor Specific Providers – Japan (Biliary tract cancer)

Yasuhito Arai, Natsuko Hama, Nobuyoshi Hiraoka, Fumie Hosoda, Mamoru Kato, Hiromi Nakamura, Hidenori Ojima, Takuji Okusaka, Tatsuro Shibata, Yasushi Totoki and Tomoko Urushidate

Tumor Specific Providers – Japan (Gastric cancer)

Hiroyuki Aburatani, Yasuhito Arai, Masashi Fukayama, Natsuko Hama, Fumie Hosoda, Shumpei Ishikawa, Hitoshi Katai, Mamoru Kato, Hiroto Katoh, Daisuke Komura, Genta Nagae, Hitoshi Katai, Mamoru Kato, Hiroto Katoh, Daisuke Komura, Genta Nagae, Hitoshi Katai, Mamoru Kato, Hiroto Katoh, Daisuke Komura, Genta Nagae

Tumor Specific Providers – Japan (Liver cancer)

Hiroyuki Aburatani, Hiroshi Aikata, Koji Arihiro, Shun-ichi Ariizumi, Keith A Boroevich, Kazuaki Chayama, Akihiro Fujimoto, Masashi Fujita, Mayuko Furuta, Kunihito Gotoh, Natsuko Hama, Takanori Hasegawa, Shinya Hayami, Shuto Hayashi, Satoshi Hiraoka, Seiya Imoto, Mamoru Kato, Yoshiki Kawakami, Kazuhiro Maejima, Satoru Miyano, Akihiro Suzuki, Hirokazu Taniguchi, Kenji Tatsuno, Yasushi Totoki, Tetsuo Ushiku, Shinichi Yachida, Hidewaki Nakagawa

Tumor Specific Providers – Singapore (Biliary tract cancer)

Su Pin Choo, Ioana Cutcutache, Narong Khuntikeo, John R McPherson, Choon Kiat Ong, Chawalit Pairojkul, Irinel Popescu, Steven G Rozen, Patrick Tan, and Bin Tean Teh

Tumor Specific Providers – South Korea (Blood cancer)

Keun Soo Ahn, Hyung-Lae Kim, Youngil Koh, and Sung-Soo Yoon

Tumor Specific Providers – Spain (Chronic Lymphocytic Leukemia)

Marta Aymerich, Elias Campo, Josep Ll Gelpi, Ivo G Gut, Marta Gut, Armando Lopez-Guillermo, Carlos Lopez-Otin, Xose S Puente, Romina Royo, and David Torrents

Tumor Specific Providers – United Kingdom (Bone cancer)

Tumor Specific Providers – United Kingdom (Bone cancer) Fernanda Amary, Daniel Baumhoer, Sam Behjati, Bodil Bjerkehagen, Peter J Campbell, Adrienne M Flanagan, PA Futreal, Ola Myklebost, Nischalan Pillay, Patrick Tarpey, Roberto Tirabosco, and Olga Zaikova

Tumor Specific Providers – United Kingdom (Chronic myeloid disorders)

Jacqueline Boulton, David T Bowen, Adam P Butler, Peter J Campbell, Mario Cazzola, Carlo Gambacorti-Passerini, Anthony R Green, Eva Hellstrom-Lindberg, Luca Malcovati, Sancha Martin, Jyoti Nangalia, Elli Papaemmanuil, and Paresh Vyas
Tumor Specific Providers – United Kingdom (Esophageal cancer)

Yeng Ang, Hugh Barr, Duncan Beardsmore, Matthew Eldridge, Rebecca C Fitzgerald, James Gossage, Nicola Grehan, George B Hanna, Stephen J Hayes, Ted R Huppi, David Khoo, Jesper Lagergren, Laurence E Lovar, Shona MacRae, Maria O’Donovan, J Robert O’Neill, Simon L Parsons, Shaun R Preston, Sonia Puig, Tom Roques, Grant Sanders, Sharmila Sothi, Simon Tavaré, Olga Tucker, Richard Turkington, Timothy J Underwood, and Ian Welch.

Tumor Specific Providers – United Kingdom (Prostate cancer)

Nicholas Van As, Daniel M Berney, Johann S De Bono, Daniel S Brewer, Adam P Butler, Declan Cahill, Niedzica Camacho, Colin S Cooper, Nening M Dennis, Tim Dudderidge, Sandra E Edwards, Rosalind A Eeles, Cyril Fisher, Christopher S Foster, Mohammed Ghorii, Pelvender Gill, Vincent J Gnanapragasam, Gunes Gundem, Freddie C Hamdy, Steve Hawkins, William Hazell, William B Isaacs, Katalin Karazsi, Jonathan D Kay, Vincent Khoo, Zsofia Kote-Jarai, Barbara Kremeyer, Pardeep Kumar, Adam Lambert, Daniel A Leongamornlert, Naomi Livin, Hayley J Luxton, Andy G Lynch, Luke Marsden, Charlie E Massie, Lucy Matthews, Erik Mayer, Ulan McDermott, Sue Merson, Thomas J Mitchell, David E Neal, Anthony Ng, David Nicol, Christopher Ogden, Edward W Rowe, Nimish C Shah, Jon W Teague, Sarah Thomas, Alan Thompson, Peter Van Loon, Clare Verrill, Tapio Visakorpi, Anne Y Warren, David C Wedge, Hayley C Whitaker, Yong-Jie Yu, Yongwei Yu, and Hongwei Zhang.

Tumor Specific Providers – United States (TCGA)

Adam Abeshouse, Nishant Agrawal, Rehan Akbani, Hikmat Al-Ahmadi, Monique Albert, Kenneth Aldape, Adrian Ally, Yeng Ang, Elizabeth L Appelbaum, Joshua Armenia, Sylvia Asa, J Todd Auman, Matthew H Bailey, Miruna Balasundaram, Saianand Balu, Jill Barnholtz-Sloan, Hugh Barr, John Bartlett, Oliver F Bathe, Stephen B Baylin, Duncan Beardsmore, Christopher Benz, Andrew Berchuck, Benjamin P Berman, Rameen Beroukhim, Mario Berrios, Darel Bigner, Michael Birrer, Tom Bodenheimer, Lori Boice, Moiz S Bootwalla, Marcus Bosenberg, Reanne Bowbyl, Jeffrey Boyd, Russell R Broaddus, Malcolm Brock, Denise Brooks, Susan Bullman, Samantha J Caesar-Johnson, Thomas E Carey, Rebecca Carlsen, Robert Cerfolio, Vishal S Chandan, Hsiao-Wei Chen, Andrew D Cherniack, Jeremy Chien, Juok Cho, Eric Chuah, Carrie Cubilskis, Kristian Cubilskis, Leslie Cope, Matthew G Cordes, Kyle Covington, Erin Curley, Bogdan Czerniak, Ludmila Danilova, Ian J Davis, Timothy Defreitas, John A Demchok, Noreen Dhall, Rajiv Dhir, Li Ding, HarshaVardhan Doddapaneni, Adel El-Naggar, Ina Felau, Martin L Ferguson, Gaetano Finocchiaro, Kwun M Fong, Scott Frazer, William Friedman, Catrina C Fronick, Lucinda A Fulton, Robert S Fulton, Stacey B Gabriel, Jianjiong Gao, Nils Gehlenborg, Jeffrey E Gershwenwald, Gad Getz, Ronald Ghossein, Nasra H Giama, Richard A Gibbs, Carmen Gomez, James Gossage, Ramaswamy Govindan, Nicola Grehan, George B Hanna, D Neil Hayes, Stephen J Hayes, Apurva M Hegde, David I Heiman, Zachary Heins, Austin J Hepperla, Katherine A Hoadley, Andrea Holbrook, Robert A Holt, Alan P Hoyle, Ralph H Huang, Jinhong Hu, Mei Huang, David Huntsman, Ted R Huppi, Jason Huse, Carolyn M Hutter, Christine A Iacobuzio-Donahue, Michael Ittmann, Joy C Jayaseelan, Stuart R Jefferys, Corbin D Jones, Steven JM Jones, Hartmut Juhl, Koo Jeong Kang, Beth Karlan, Katayoon Kasaian, Electron Kebebew, David Khoo, Hark Kim, Jaegil Kim, Tari A King, Viktorya Korchina, Ritika Kundra, Jesper Lagergren.
Phillip H Lai, Peter W Laird, Eric Lander, Michael S Lawrence, Alexander J Lazar, Xuan Le, Darlene Lee, Douglas A Levine, Lora Lewis, Tim Ley, Haiyan Irene Li, Pei Lin, W Marston Linehan, Eric Minwei Liu, Fei Fei Liu, Laurence E Lovat, Yiling Lu, Lisa Lyne, Yussanne Ma, Shona MacRae, Dennis T Maglinte, Elaine R Mardis, Jeffrey Marks, Marco A Marra, Thomas J Matthew, Michael Mayo, KarenMcCune, Michael D McLellan, Samuel R Meier, Shaowu Meng, Matthew Meyerson, Piotr A Mieczkowski, Tom Mikkelsen, Christopher A Miller, Gordon B Mills, Richard A Moore, Carl Morrison, Lisle E Morse, Catherine D Moser, Andrew J Mungall, Karen Mungall, David Mutch, Donna M Muzny, Jeremy Myers, Yulia Newton, Michael S Noble, Peter O'Donnell, Brian Patrick O'Neill, Angelica Ochoa, Akinyemi I Ojesina, Joong Won Park, Joel S Parker, Simon L Parsons, Harvey Pass, Alessandro Pastore, Chandra Sekhar Pedamallu, Nathan A Pennell, Charles M Perou, Gloria M Petersen, Nicholas Petrelli, Olga Potapova, Shaun R Preston, Sonia Pui, Janet S Rader, Suresh Ramalingam, W Kimryn Rathmell, Victor Reuter, Sheila M Reynolds, Matthew Ringel, Jeffrey Roach, Lewis Roberts, A Gordon Robertson, Tom Roques, Mark A Rubin, Sara Sadeghi, Gordon Saksema, Charles Saller, Francisco Sanchez-Vega, Chris Sander, Grant Sanders, Dirk Schadendorf, Jacqueline E Schein, Heather K Schmidt, Nikolaus Schultz, Steven E Schumacher, Richard A Scolyer, Raja Seethala, Yasin Senbabaoglu, Troy Shelton, Yan Shi, Juliann Shih, Ilya Shmulevich, Craig Shriver, Sabina Signoretti, Janae V Simons, Samuel Singer, Payal Sipahimalani, Tara J Skelly, Karen Smith-McCune, Nicholas D Socci, Heidi J Sofia, Matthew G Soloway, Anil K Sood, Sharmila Soth, Angela Tam, Donghui Tan, Roy Tarnuzzer, Nina Thiessen, R Houston Thompson, Leigh B Thorne, Ming Tsao, Olga Tucker, Richard Turkington, Christopher Umbrich, Timothy J Underwood, David J Van Den Berg, Erwin G Van Meir, Umadevi Veluvolu, Douglas Votz, Jiayin Wang, Linghua Wang, Zhining Wang, Paul Weinberger, John N Weinstein, Daniel J Weisenberger, Ian Welch, David A Wheeler, Dennis Wile, Matthew D Wilkerson, Richard K Wilson, Boris Winterhoff, Maciej Wiznerowicz, Tina Wong, Wening Wong, Liu Xi, Liming Yang, Christina Yau, Venkata K Yellapantula, Jean C Zenklusen, Hailei Zhang, Hongxin Zhang, and Jiashan Zhang.

Author Affiliations

1. Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK.
2. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
3. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
4. Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA.
5. Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA.
6. Harvard Medical School, Boston, MA 02115, USA.
7. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
8. Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany.
9. Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
10. Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
11. Biomolecular Engineering Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
12. King Faisal Specialist Hospital and Research Centre, Al Maather, Riyadh 12713, Saudi Arabia.
13. DLR Project Management Agency, Bonn 53227, Germany.
14. Genome Canada, Ottawa, ON K2P 1P1, Canada.
15. Instituto Carlos Slim de la Salud, Mexico City, Mexico.
16. Federal Ministry of Education and Research, Berlin 10117, Germany.
17. Institut Gustave Roussy, Villejuif 94805, France.
Institut National du Cancer (INCA), Boulogne-Billancourt 92100, France.
The Wellcome Trust, London NW1 2BE, UK.
Prostate Cancer Canada, Toronto, ON M5C 1M1, Canada.
National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Department of Biotechnology, Ministry of Science & Technology, Government of India, New Delhi, Delhi 110003, India.
Science Writer, Garrett Park, MD 20896, USA.
International Cancer Genome Consortium (ICGC)/ICGC Accelerating Research in Genomic Oncology (ARGO) Secretariat, Toronto, ON M5G 0A3, Canada.
Adaptive Oncology Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
Cancer Research UK, London EC1V 4AD, UK.
Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07895, South Korea.
Chinese Cancer Genome Consortium, Shenzhen 518083, China.
Laboratory of Molecular Oncology, Beijing, 100142, China.
Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China.
National Cancer Center, Tokyo 104-0045, Japan.
German Cancer Aid, Bonn 53113, Germany.
Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004 Japan.
Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan.
Medical Oncology, University and Hospital Trust of Verona, Verona 37134, Italy.
University of Verona, Verona 37129, Italy.
BGI-Shenzhen, Shenzhen 518083, China.
National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Centre for Law and Genetics, University of Tasmania, Sandy Bay Campus, Hobart, Tasmania 7001 Australia.
Centre of Genomics and Policy, McGill University and Génome Québec Innovation Centre, Montreal, QC H3A 1A4, Canada.
Heidelberg Academy of Sciences and Humanities, Heidelberg 69120, Germany.
CAPHRI Research School, Maastricht University, Maastricht, ER 6229, The Netherlands.
Genome Informatics Program, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain.
Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.
RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.
Dana-Farber Cancer Institute, Boston, MA 02215, USA.
University of California Santa Cruz, Santa Cruz, CA 95064, USA.
Oregon Health and Science University, Portland, OR 97239, USA.
Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center, Heidelberg 69120, Germany.
Institute of Pharmacy and Molecular Biotechnology and BioQuant, Heidelberg University, Heidelberg 69120, Germany.
University of California San Diego, San Diego, CA 92093, USA.
PDXen Biosystems Inc, Seoul 4900, South Korea.
Electronics and Telecommunications Research Institute, Daejoen 34129, South Korea.
Seven Bridges Genomics, Charlestown, MA 02129, USA.
Annai Systems, Inc, Carlsbad, CA 92013, USA.
Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA.
Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
Departments of Genetics and Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA.
63. University of Leuven, Leuven B-3000, Belgium.
64. The Francis Crick Institute, London NW1 1AT, UK.
65. The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
66. Heidelberg University, Heidelberg 69120, Germany.
67. New BIH Digital Health Center, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, Berlin 10117, Germany.
68. Rigshospitalet, Copenhagen 2200, Denmark.
69. Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada.
70. CIBIO/InBIO - Research Center in Biodiversity and Genetic Resources, Universidade do Porto, Vairão 4485-601, Portugal.
71. Department Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona 08028, Spain.
72. University of Chicago, Chicago, IL 60637, USA.
73. Division of Biomedical Informatics, Department of Medicine, & Moores Cancer Center, UC San Diego School of Medicine, San Diego, CA 92093, USA.
74. Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA.
75. Massachusetts General Hospital Center for Cancer Research, Charlestown, MA 02129, USA.
76. University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3010, Australia.
77. Syntekabio Inc, Daejon 34025, South Korea.
78. AbbVie, North Chicago, IL 60064, USA.
79. Genomics Program, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
80. German Cancer Consortium (DKTK), Heidelberg 69120, Germany.
81. Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
82. National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg 69120, Germany.
83. Department of Pediatric Immunology, Hematology and Oncology, University Hospital, Heidelberg 69120, Germany.
84. German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
85. Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg 69120, Germany.
86. Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
87. The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
88. Seven Bridges, Charlestown, MA 02129, USA.
89. Genome Integration Data Center, Syntekabio, Inc, Daejon, 34025, South Korea.
90. Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
91. ETH Zurich, Department of Biology, Zürich 8093, Switzerland.
92. ETH Zurich, Department of Computer Science, Zurich 8092, Switzerland.
93. SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.
94. University Hospital Zurich, Zurich, 8091, Switzerland.
95. Health Sciences Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093, USA.
96. Department of Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.
97. Samsung Genome Institute, Seoul 06351, South Korea.
98. Functional and Structural Genomics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
99. Leidos Biomedical Research, Inc, McLean, VA 22102, USA.
100. Sage Bionetworks, Seattle WA 98109, USA.
101. Genome Informatics, Ontario Institute for Cancer Research, Toronto, ON M5G 2C4, Canada.
102. Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
103. Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94518, USA.
104. CSRA Incorporated, Fairfax, VA 22042, USA.
105. Barcelona Supercomputing Center, Barcelona 08034, Spain.
106. Massachusetts General Hospital, Boston, MA 02114, USA.
107. Department of Biology, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland.
108. Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland.
109. Weill Cornell Medical College, New York, NY 10065, USA.
110. Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
111. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
112. Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim 7030, Norway.
113. Finsen Laboratory and Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen 2200, Denmark.
114. Department of Urology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany.
115. Department of Biological Oceanography, Leibniz Institute of Baltic Sea Research, Seestraße 15, Rostock 18119, Germany.
116. Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
117. Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA.
118. Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA.
119. Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
120. Department of Computer Science, Princeton University, Princeton, NJ 08540, USA.
121. Department of Computer Science, Yale University, New Haven, CT 06520, USA.
122. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
123. Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.
124. Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA.
125. Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus N 8200, Denmark.
126. Clinical Bioinformatics, Swiss Institute of Bioinformatics, Geneva 1202, Switzerland.
127. Institute for Pathology and Molecular Pathology, University Hospital Zurich, Zurich 8091, Switzerland.
128. Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland.
129. MIT Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
130. Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
131. Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
132. Bioinformatics Research Centre (BiRC), Aarhus University, Aarhus 8000, Denmark.
133. Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada.
134. Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich 8057, Switzerland.
135. CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain.
136. Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
137. Office of Cancer Genomics, National Cancer Institute, US National Institutes of Health, Bethesda, MD 20892, USA.
138. Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63110, USA.
139. The McDonnell Genome Institute at Washington University, St Louis, MO 63108, USA.
140. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China.
141. Center for Digital Health, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, Berlin 10117, Germany.
142. Department of Pharmacology, University of Toronto, Toronto, ON M5S 1A8, Canada.
143. University of California Los Angeles, Los Angeles, CA 90095, USA.
144. University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
145. Department of Genetics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
146. Department of Genetics, Department of Medicine, Washington University in St Louis, St Louis, MO 63110, USA.
147. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain.
148. Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Beijing Genomics Institute, Shenzhen 518083, China.

Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.

Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada.

Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.

Geneplus-Shenzhen, Shenzhen 518122, China.

School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710048, China.

Biobyte solutions GmbH, Heidelberg 69126, Germany.

Division of Oncology, Washington University School of Medicine, St Louis, MO 63110, USA.

Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72074, Germany.

Indiana University, Bloomington, IN 47405, USA.

Simon Fraser University, Burnaby, BC V5A 1S6, Canada.

Department of Computer Science, University of Toronto, Toronto, ON M5S 1A8, Canada.

School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710048, China.

Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA.

Department of Mathematics, Washington University in St Louis, St Louis, MO 63130, USA.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.

The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China.

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

The McDonnell Genome Institute at Washington University, Department of Genetics, Department of Medicine, Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63108, USA.

Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.

Quantitative & Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA.

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.

Department of Mathematics, Aarhus University, Aarhus 8000, Denmark.

Technical University of Denmark, Lyngby 2800, Denmark.

University of Copenhagen, Copenhagen 2200, Denmark.

Department for BioMedical Research, University of Bern, Bern 3008, Switzerland.

Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern 3010, Switzerland.

Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland.

Department of Genitourinary Medical Oncology - Research, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany.

Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.

Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 8003, Spain.

Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona 08002, Spain.

Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala SE-75124, Sweden.

Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.

University of Milano Bicocca, Monza 20052, Italy.

Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.

Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3052, Australia.

Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona 08003, Spain.

Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain.

Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77030, USA.
192. The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
193. Health Data Science Unit, University Clinics, Heidelberg 69120, Germany.
194. Department for Biomedical Research, University of Bern, Bern 3008, Switzerland.
195. Research Core Center, National Cancer Centre Korea, Goyang-si 410-769, South Korea.
196. Institute of Computer Science, Polish Academy of Sciences, Warsawa 01-248, Poland.
197. ETH Zurich, Department of Biology, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland.
198. Harvard University, Cambridge, MA 02138, USA.
199. Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
200. Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520, USA.
201. Program in Computational Biology and Bioinformatics, New Haven, CT 06520, USA.
202. Yale University, New Haven, CT 06520, USA.
203. Department of Information Technology, Ghent University, Ghent B-9000, Belgium.
204. Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9000, Belgium.
205. Yale School of Medicine, Yale University, New Haven, CT 06520, USA.
206. Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
207. Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.
208. Cheonan Industry-Academic Collaboration Foundation, Sangmyung University, Cheonan 31066, South Korea.
209. Spanish National Cancer Research Centre, Madrid 28029, Spain.
210. Bern Center for Precision Medicine, University Hospital of Bern, University of Bern, Bern 3008, Switzerland.
211. Englelnder Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian Hospital, New York, NY 10021, USA.
212. Pathology and Laboratory, Weill Cornell Medical College, New York, NY 10021, USA.
213. Vall d’Hebron Institute of Oncology: VHIO, Barcelona 08035, Spain.
214. National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
215. eBio Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
216. Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
217. Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
218. Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, VIC 3000, Australia.
219. eBio Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
220. CREST, Japan Science and Technology Agency, Tokyo 113-0033, Japan.
221. Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan.
222. Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
223. Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm 17121, Sweden.
224. Department of Gene Technology, Tallinn University of Technology, Tallinn 12616, Estonia.
225. Genetics & Genome Biology Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
226. Department of Information Technology, Ghent University, Interuniversitair Micro-Electronica Centrum (IMEC), Ghent B-9000, Belgium.
227. Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala SE-75108, Sweden.
228. Oregon Health & Sciences University, Portland, OR 97239, USA.
229. Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China SAR.
230. Second Military Medical University, Shanghai 200433, China.
231. The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
232. Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
233. The Ohio State University Comprehensive Cancer Center (OSUCCC – James), Columbus, OH 43210, USA.
276. Bioinformatics Group, Department of Computer, University of Leipzig, Leipzig 04109, Germany, Leipzig 04109, Germany.
277. Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig 04109, Germany.
278. German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
279. Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig 04109, Germany.
280. Computational Biology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena 07745, Germany.
281. Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig 04109, Germany.
282. Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
283. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain.
284. Research Center for Advanced Science and Technology, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
285. Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
286. Van Andel Research Institute, Grand Rapids, MI 49503, USA.
287. Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain.
288. Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain.
289. The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo 36310, Spain.
290. Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
291. Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3052, Australia.
292. Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
293. University of Ottawa Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada.
294. Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK.
295. University of Cambridge, Cambridge CB2 1TN, UK.
296. Sidra Medicine, Doha 26999, Qatar.
297. Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Durham, NC 27709, USA.
298. Brandeis University, Waltham, MA 02254, USA.
299. New York Genome Center, New York, NY 10013, USA.
300. Weill Cornell Medicine, New York, NY 10065, USA.
301. Hopp Children’s Cancer Center (KiTZ), Heidelberg 69120, Germany.
302. Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
303. Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
304. A.A. Kharekevich Institute of Information Transmission Problems, Moscow 127051, Russia.
305. Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117997, Russia.
306. Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences (NIEHS), Durham, NC 27709, USA.
307. Center For Medical Innovation, Seoul National University Hospital, Seoul 03080, South Korea.
308. Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, South Korea.
309. Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA.
310. School of Medicine/School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife KY16 9SS, UK.
311. Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia.
312. Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
313. School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
314. Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
315. Ben May Department for Cancer Research, Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA.
316. Tri-institutional PhD program of computational biology and medicine, Weill Cornell Medicine, New York, NY 10065, USA.
317. Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA.
318. Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA.
319. Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore.
320. Department of Computer Science, University of Helsinki, Helsinki 00014, Finland.
321. Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
322. Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland.
323. Programme in Cancer & Stem Cell Biology, Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore.
324. Academic Department of Medical Genetics, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK.
325. MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK.
326. The University of Cambridge School of Clinical Medicine, Cambridge CB2 0SP, UK.
327. Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK.
328. Department of Statistics, Columbia University, New York, NY 10027, USA.
329. Duke-NUS Medical School, Singapore 169857, Singapore.
330. Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere FI-33014, Finland.
331. Institute for Computational Health Sciences and Department of Pediatrics, University of California, San Francisco, CA USA.
332. Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
333. Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21230, USA.
334. Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21230, USA.
335. Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA.
336. Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.
337. Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva CH1211, Switzerland.
338. Swiss Institute of Bioinformatics, University of Geneva, Geneva CH1211, Switzerland.
339. Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany.
340. Independent Consultant, Wellesley 02481, USA.
341. Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK.
342. Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK.
343. CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
344. Research Group on Statistics, Econometrics and Health (GRECS), UdG, Barcelona 8041, Spain.
345. Oxford Nanopore Technologies, New York, NY 10013, USA.
346. Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
347. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
348. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
349. Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.
350. Applications Department, Oxford Nanopore Technologies, Oxford OX4 4DQ, UK.
351. Institut de Recerca Sant Joan de Déu; Institut de Biomedicina de la Universitat de Barcelona (IBUB) & Department of Genetics, Microbiology & Statistics, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.
352. Department of Ophthalmology and Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
353. Department of Medical and Clinical Genetics, Genome-Scale Biology Research Program, University of Helsinki, Helsinki 00100, Finland.
354. Big Data Institute, Li Ka Shing Centre, University of Oxford, Oxford OX3 7LF, UK.
355. Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK.
356. School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
357. Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
358. Vector Institute, Toronto, ON M5G 0A3, Canada.
359. South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, NSW 2170, Australia.
360. The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of NSW, Sydney, NSW 2010, Australia.
361. West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK.
362. Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK.
363. University of Melbourne Centre for Cancer Research, The University of Melbourne, Melbourne, VIC 3052, Australia.
364. MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
365. Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb. Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb.
366. Department of Bioinformatics, Research Institute, National Cancer Center Japan, Tokyo 104-0045, Japan.
367. Departments of Pathology, Genomic Medicine, and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
368. Oregon Health & Science University, Portland, OR 97239, USA.
369. University of Glasgow, Glasgow G61 1BD, UK.
370. MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
371. Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden G61 1QH, United Kingdom.
372. School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK.
373. Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA.
374. Department of Surgery, University of Melbourne, Parkville VIC 3010, Australia.
375. The Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia.
376. Walter & Eliza Hall Institute, Parkville, VIC 3052, Australia.
377. University of Cologne, Cologne 50931, Germany.
378. The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada.
379. University of Ljubljana, Ljubljana 1000, Slovenia.
380. Research Institute, NorthShore University HealthSystem, Evanston, IL 60201, USA.
381. Department of Public Health Sciences, The University of Chicago, Chicago IL 60637.
382. Department of Statistics, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
383. Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK.
384. University of Toronto, Toronto, ON M5G 2M9, Canada.
385. Department of Computer Science, Carleton College, Northfield, MN 55057, USA.
386. Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA.
387. Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA.
388. Molecular and Medical Genetics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97219, USA.
389. Argmix Consulting, North Vancouver BC V7M 2J5, Canada.
435. University of Sydney, Sydney, NSW 2006, Australia.
436. Department of Medical Oncology, Beatson West of Scotland Cancer Centre, Glasgow G12 0YN, UK.
437. Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK.
438. Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.
439. Discipline of Surgery, Western Sydney University, Penrith NSW 2751, Australia.
440. Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
441. School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia.
442. School of Surgery M507, University of Western Australia, Nedlands 6009, Australia.
443. Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki 00290, Finland.
444. Olivia Newton-John Cancer Research Institute, La Trobe University, Heidelberg, Victoria 3084, Australia.
445. Melanoma Institute Australia, The University of Sydney, Wollstonecraft NSW 2065, Australia.
446. Children’s Hospital at Westmead, The University of Sydney, Westmead, NSW 2145, Australia.
447. Melanoma Institute Australia, The University of Sydney, Sydney 2065, Australia.
448. Australian Institute of Tropical Health and Medicine, James Cook University, Douglas QLD 4814, Australia.
449. Bioplatforms Australia, North Ryde, NSW 2109, Australia.
450. Melanoma Institute Australia, Macquarie University, Wollstonecraft NSW, 2109, Australia.
451. Children’s Medical Research Institute, Westmead, NSW 2145 Australia.
452. Melanoma Institute Australia, The University of Sydney, Wollstonecraft 2065, NSW, Australia.
453. Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145 Australia.
454. Melanoma Institute Australia, The University of Sydney, Wollstonecraft, NSW 2065, Australia.
455. Centre for Cancer Research, The Westmead Millennium Institute for Medical Research, University of Sydney, Westmead Hospital, Westmead NSW 2145, Australia.
456. Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia.
457. Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney 2065, Australia.
458. Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia.
459. Bioplatforms Australia, North Ryde, NSW 2109 Australia.
460. School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006 Australia.
461. Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
462. Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
463. PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
464. BioSpecimen Sciences Program, University Health Network, Toronto, ON M5G 2C4, Canada, Toronto, ON M5G 2C4, Canada.
465. Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, ON M5G 2C4, Canada.
466. Hepatobiliary/pancreatic Surgical Oncology Program, University Health Network, Toronto, ON M5G 2C4, Canada.
467. Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada.
468. Genomics, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
469. Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada.
470. Lunenfeld-Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada.
471. University of Nebraska Medical Centre, Omaha, NE 68198, USA.
472. BioSpecimen Sciences Program, University Health Network, Toronto, ON M5G 2C4, Canada.
473. Transformative Pathology, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
474. Department of Biochemistry and Molecular Medicine, University California at Davis, Sacramento, CA 95817 USA.
475. University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7.
476. Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA.
477. Department of Pathology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10053, USA.
478. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
479. BioSpecimen Sciences, Laboratory Medicine (Toronto), Medical Biophysics, PanCuRX, Toronto, ON M5S 1A8, Canada.
480. Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
481. CRUK Manchester Institute and Centre, Manchester M204GJ, UK.
482. Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1A8, Canada.
483. Manchester Cancer Research Centre, Cancer Division, FBMH, University of Manchester, Manchester M204GJ, UK.
484. Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada.
485. Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada.
486. Genome Informatics Program, Ontario Institute for Cancer Research, Toronto, ON M5G 2C4, Canada.
487. STTARR Innovation Facility, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada.
488. Department of Pathology, Toronto General Hospital, Toronto, ON M5G 2C4, Canada.
489. Hefei University of Technology, Anhui 230009, China.
490. State key Laboratory of Cancer Biology, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi 710032, China.
491. Fourth Military Medical University, Shaanxi 710032, China.
492. Peking University Cancer Hospital & Institute, Beijing 100142, China.
493. Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
494. Leeds Institute of Medical Research @ St James’s, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK.
495. Canadian Center for Computational Genomics, McGill University, Montreal, QC H3A 0G1, Canada.
496. Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada.
497. International Agency for Research on Cancer, Lyon 69008, France.
498. McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada.
499. Centre National de Génomique, CEA - Institute de Génomique, Evry 91000, France.
500. Leeds Institute of Medical Research @ St James’s, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK.
501. Institute of Mathematics and Computer Science, University of Latvia, Riga LV1459, Latvia.
502. Department of Oncology, Gil Medical Center, Gachon University, Incheon, South Korea.
503. Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
504. Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
505. Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo 0310, Norway.
506. Lund University, Lund 223 62, Sweden.
507. Translational Research Lab, Centre Léon Bérard, Lyon 69373, France.
508. Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands.
509. Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
510. Department Experimental Therapy, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands.
511. Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK.
512. Department of Oncology, University of Cambridge, Cambridge CB2 1TN, UK.
513. Breast Cancer Translational Research Laboratory JC Heuson, Institut Jules Bordet, Brussels 1000, Belgium.
514. Translational Cancer Research Unit, Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp 2000, Belgium.
515. Department of Gynecology & Obstetrics, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund SE-221 85, Sweden.
516. Icelandic Cancer Registry, Icelandic Cancer Society, Reykjavik 125, Iceland.
517. Translational Cancer Research Unit, GZA Hospitals St.-Augustinus, Antwerp 2000, Belgium.
518. Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Department of Medical Oncology, Josephine Nefkens Institute and Cancer Genomics Centre, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands.

National Genotyping Center, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.

Department of Pathology, Oslo University Hospital Ulleval, Oslo 0450, Norway.

Faculty of Medicine and Institute of Clinical Medicine, University of Oslo, Oslo NO-0316, Norway.

Department of Pathology, Skåne University Hospital, Lund University, Lund SE-221 85, Sweden.

Department of Pathology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands.

Department of Pathology, College of Medicine, Hanyang University, Seoul 133-791, South Korea.

Department of Pathology, Asan Medical Center, College of Medicine, Ulsan University, Songpa-gu, Seoul 05505, South Korea.

Netherlands Cancer Institute, Lund University, Lund 223 62, Sweden.

Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.

Department of Surgery, Brigham and Women’s Hospital/Dana Farber Cancer Institute, Boston, MA 02115, USA.

Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

The University of Queensland Centre for Clinical Research, The Royal Brisbane & Women’s Hospital, Herston, QLD 4029, Australia.

Department of Pathology, Jules Bordet Institute, Brussels 1000, Belgium.

Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, South Korea.

University of Oslo, Oslo 0316, Norway.

Institut Bergonié, Bordeaux 33076, France.

Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands.

Department of Research Oncology, Guy’s Hospital, King’s Health Partners AHSC, King’s College London School of Medicine, London SE1 9RT, UK.

University Hospital of Minjoo, INSERM UMR 1098, Besançon 25000, France.

Cambridge Breast Unit, Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK.

East of Scotland Breast Service, Ninewells Hospital, Aberdeen AB25 2XF, UK.

Oncologie Sénologique, ICM Institut Régional du Cancer, Montpellier 34298, France.

Los Almos National Laboratory, Los Alamos, NM 87545, USA.

Department of Radiation Oncology, Radboud University Medical Centre, Nijmegen 6525 GA, The Netherlands.

University of Iceland, Reykjavik 101, Iceland.

Dundee Cancer Centre, Ninewells Hospital, Dundee DD2 1SY, UK.

Institut Curie, INSERM Unit 830, Paris 75248, France.

Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen GA 6525, The Netherlands.

Department of General Surgery, Singapore General Hospital, Outram Rd, Singapore 169608, Singapore.

Univrsite Lyon, INCa-Synergie, Centre Léon Bérard, Lyon 69008, France.

Giovanni Paolo II / I.R.C.C.S. Cancer Institute, Bari BA 70124, Italy.

Department of Biopathology, Centre Léon Bérard, Lyon 69008, France.

Université Claude Bernard Lyon 1, Villeurbanne 69100, France.

NCCS-VARI Translational Research Laboratory, National Cancer Centre Singapore, Singapore 169610, Singapore.

Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands.

Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.

Institute of Human Genetics, Christian-Albrechts-University, Kiel 24118, Germany.

Institute of Human Genetics, Ulm University and Ulm University Medical Center of Ulm, Ulm 89081, Germany.

Institute of Human Genetics, University of Ulm and University Hospital of Ulm, Ulm 89081, Germany.

Hematopathology Section, Institute of Pathology, Christian-Albrechts-University, Kiel 24118, Germany.
560. Department of Human Genetics, Hannover Medical School, Hannover 30625, Germany.
561. Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, Düsseldorf 40225, Germany.
562. Department of Internal Medicine/Hematology, Friedrich-Ebert-Hospital, Neumünster 24534, Germany.
563. University Hospital Muenster - Pediatric Hematology and Oncology, Muenster 24534, Germany.
564. Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel 24105, Germany.
565. Department of Medicine II, University of Würzburg, Würzburg, Germany.
566. Senckenberg Institute of Pathology, University of Frankfurt Medical School, Frankfurt 60596, Germany.
567. Institute of Pathology, Charité – University Medicine Berlin, Berlin 10117, Germany.
568. Department for Internal Medicine II, University Hospital Schleswig-Holstein, Kiel 24105, Germany.
569. Institute for Medical Informatics Statistics and Epidemiology, University of Leipzig, Leipzig 04109, Germany.
570. Department of Hematology and Oncology, Georg-Augusts-University of Göttingen, Göttingen 37073, Germany.
571. Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen D-45147, Germany.
572. MVZ Department of Oncology, PraxisClinic am Johannisplatz, Leipzig 04109, Germany.
573. Institute of Pathology, Ulm University and University Hospital of Ulm, Ulm 89081, Germany.
574. Department of Pathology, Robert-Bosch-Hospital, Stuttgart, Germany, Stuttgart 70376, Germany.
575. University Hospital Giessen, Pediatric Hematology and Oncology, Giessen 35392, Germany.
576. Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel 24118, Germany.
577. Institute of Pathology, University of Wuerzburg, Wuerzburg 97070, Germany.
578. Department of General Internal Medicine, University Kiel, Kiel 24118, Germany.
579. Clinic for Hematology and Oncology, St.-Antonius-Hospital, Eschweiler D-52249, Germany.
580. Department for Internal Medicine III, University of Ulm and University Hospital of Ulm, Ulm 89081, Germany.
581. Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
582. University of Düsseldorf, Düsseldorf 40225, Germany.
583. Department of Vertebrate Genomics/Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany.
584. St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA.
585. Heidelberg University Hospital, Heidelberg 69120, Germany.
586. Genomics and Proteomics Core Facility High Throughput Sequencing Unit, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
587. Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
588. University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany.
589. Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany.
590. Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20095, Germany.
591. Division of Cancer Genome Research, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
592. National Institute of Biomedical Genomics, Kalyani 741235, West Bengal, India.
593. Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India.
594. Department of Pathology, General Hospital of Treviso, Department of Medicine, University of Padua, Italy, Treviso 31100, Italy.
595. Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua 35121, Italy.
596. Division of Pathology and Clinical Laboratories, Department of Hepatobiliary and Pancreatic Oncology, Hepatobiliary and Pancreatic Surgery Division, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan.
597. Division of Cancer Genomics, Department of Bioinformatics, National Cancer Center, Tokyo 104-0045, Japan.
598. Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan.
599. Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital (NCCH), Tokyo, 104-0045 Japan.
600. Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA.
University of Southern California, USC/Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA.
Departments of Dermatology and Pathology, Yale University, New Haven, CT 06510, USA.
Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
Johns Hopkins University, Baltimore, MD 21287, USA.
University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, USA.
University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Division of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905, USA.
Division of Experimental Pathology, Mayo Clinic, Rochester, MN 55905 USA.
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21287, USA.
International Genomics Consortium, Phoenix, AZ 85004, USA.
Departments of Pediatrics and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Department of Pathology, UPMC Shadyside, Pittsburgh, PA 15232, USA.
Center for Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Istituto Neurologico Besta, Department of Neuro-Oncology, Milano 20133, Italy.
University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, QLD 4032, Australia.
Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA.
Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.
Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
Department of Internal Medicine, Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Department of Internal Medicine, Division of Medical Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA.
The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins Hospital, Baltimore, MD 21287, USA.
Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 770230, USA.
Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 770230, USA.
Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada.
Indivumed GmbH, Hamburg 20251, Germany.
Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, School of Medicine, Keimyung University Dong-san Medical Center, Daegu 41931, South Korea.
Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada.
Department of Surgery, The George Washington University, School of Medicine and Health Science, Washington, DC 20052, USA.
Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
ILSbio, LLC Biobank, Chestertown, MD 21620, USA.
Gynecologic Oncology, NYU Laura and Isaac Perlmutter Cancer Center, New York University, New York, NY 10016, USA.
721. Division of Oncology, Stem Cell Biology Section, Washington University School of Medicine, St. Louis, MO 63110, USA.
722. Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
723. Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
724. Institute for Systems Biology, Seattle, WA 98109, USA.
725. Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA.
726. Department of Surgery, Duke University, Durham, NC 27710, USA.
727. Department of Obstetrics, Gynecology and Reproductive Services, University of California San Francisco, San Francisco, CA 94143, USA.
728. Departments of Neurology and Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA.
729. Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
730. Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St. Louis, MO 3110, USA.
731. Penrose St. Francis Health Services, Colorado Springs, CO 80907, USA.
732. The University of Chicago, Chicago, IL 60637, USA.
733. Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
734. Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
735. NYU Langone Medical Center, New York, NY 10016, USA.
736. Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH 44195, USA.
737. Department of Genetics, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
738. Helen F. Graham Cancer Center at Christiana Care Health Systems, Newark, DE 19713, USA.
739. Cureline, Inc, South San Francisco, CA 94080, USA.
740. Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
741. Emory University, Atlanta, GA 30322, USA.
742. Vanderbilt University, Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA.
743. Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA.
744. Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
745. Analytical Biological Services, Inc, Wilmington, DE 19801, USA.
746. Department of Dermatology, University Hospital Essen, Westdeutsches Tumorzentrum & German Cancer Consortium, Essen 45122, Germany.
747. University of Pittsburgh, Pittsburgh, PA 15213, USA.
748. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA.
749. Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
750. Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
751. Department of Gynecologic Oncology & Reproductive Medicine, and Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
752. Department of Urology, Mayo Clinic, Rochester, MN 55905, USA.
753. Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
754. Departments of Neurosurgery and Hematology and Medical Oncology, Winship Cancer Institute and School of Medicine, Emory University, Atlanta, GA 30322, USA.
755. Georgia Regents University Cancer Center, Augusta, GA 30912, USA.
756. Thoracic Oncology Laboratory, Mayo Clinic, Rochester, MN 55905, USA.
757. Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA.
758. Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Mayo Clinic, Rochester, MN 55905, USA.
759. International Institute for Molecular Oncology, Poznań 60-203, Poland.
760. Poznan University of Medical Sciences, Poznań 61-701, Poland.
761. Human Genetics, University of Kiel, Kiel 24118, Germany.