Characterization of Quantum Phase Transition using Holographic Entanglement Entropy

Yi Ling 1,3,*, Peng Liu 1,†, and Jian-Pin Wu 2,3‡

1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

2 Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Bohai University, Jinzhou 121013, China

3 Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444, China

Abstract

The entanglement exhibits extremal or singular behavior near quantum critical points (QCPs) in many condensed matter models. These intriguing phenomena, however, still call for a widely accepted understanding. In this letter we study this issue in holographic framework. We investigate the connection between the holographic entanglement entropy (HEE) and the quantum phase transition (QPT) in a lattice-deformed Einstein-Maxwell-Dilaton theory. Novel backgrounds exhibiting metal-insulator transitions (MIT) have been constructed in which both metallic phase and insulating phase have vanishing entropy density in zero temperature limit. We find that the first order derivative of HEE with respect to lattice parameters exhibits extremal behavior near QCPs. We propose that it would be a universal feature that HEE or its derivatives with respect to system parameters can characterize QPT in a generic holographic system. Our work opens a window for understanding the relation between entanglement and the QPT from holographic perspective.

*Electronic address: lingy@ihep.ac.cn
†Electronic address: liup51@ihep.ac.cn
‡Electronic address: jianpinwu@mail.bnu.edu.cn
I. INTRODUCTION

The relation between the entanglement and quantum phase transition (QPT) has extensively been investigated in the field of condensed matter physics (A recent review on this progress can be found for instance in [1]). In particular, it has been proposed that the entanglement may be used to diagnose the QPT because it exhibits extremal or singular behavior near the quantum critical point (QCP) in many models [2–8]. Especially, as an important quantity measuring non-local correlation, the entanglement entropy (EE) or its first derivative characterizes the QPT with local extremes near the QCPs [2, 7]. Theoretically, any entanglement measure can be written as a functional of the first derivatives of the ground state energy [9–11], which probably provides more insight into this issue since QPT is associated with the drastic modification of the ground state [12]. Nevertheless, a widely accepted understanding on how and why the entanglement characterizes the QPTs is still missing.

Usually QPT involves strong correlation physics and is hard to analyze; in quantum field theory EE is also difficult to compute. Gauge/Gravity duality [13, 14] as a novel approach has provided powerful tools for both understanding strongly correlated systems and computing EE, which stimulates us to study the deep relation between entanglement and QPT from holographic perspective.

Recently, the metal-insulator transition (MIT), as a prominent example of QPT has been implemented in holographic approach [15–22]. We expect the holographic description of EE [23, 24], namely the holographic entanglement entropy (HEE), will also furnish a dramatic signature of QPT in holographic models. Motivated by this, a connection between the HEE and QCPs of the MIT has firstly been revealed in [25], which is reminiscent of the relation between EE and QCP found in CMT [7]. Nonetheless, in [25] the ground state entropy density is vanishing for insulating phase, while nonvanishing for metallic phase since its near horizon geometry is $AdS_2 \times \mathbb{R}^2$. The artifact of AdS_2 is a well-known open problem in AdS/CMT duality since any ordinary condensed matter system in reality has vanishing entropy density in ground states, otherwise the system would suffer from the instability. Hence in [25] a crucial issue involved is whether the relation between HEE and QPT would originate from the artifact of AdS_2, and finally prevent this relation from linking to realistic condensed matter systems. To provide a definite answer to this issue, one direct way is to
construct holographic models with MIT in the absence of AdS_2. This is a challenging task since in all previous holographic realization of MIT, the instability of AdS_2 characterized by its BF bound plays an essential role in generating a transition to new IR fixed points. Therefore, to implement MIT from a metallic phase with vanishing entropy density to an insulating phase, novel mechanism of inducing instability is needed rather than violating BF bound of AdS_2. In this letter we will construct a novel holographic model which exhibits a MIT, and both the metallic phase and the insulating phase have vanishing ground state entropy density. Remarkably, we find that the location of QCPs can be captured by the local maximum of the first-order derivative of HEE with respect to system parameters. Combined with [25], the phenomena in CMT that EE or its first order derivatives [2, 7] characterizes the QPT are reproduced in holographic framework. Next we turn to the construction of our holographic model.

II. HOLOGRAPHIC SETUP

We start with an action in the framework of Einstein-Maxwell-Dilaton theory, which contains two $U(1)$ gauge fields A and B, one dilaton field Φ_1 and an additional complex scalar field Φ. The Lagrangian reads,

$$\mathcal{L} = R - \partial_a \Phi^* \partial^a \Phi - \frac{m^2}{L^2} |\Phi|^2 - \frac{1}{4} G^2 - \frac{e^{\Phi_1}}{4} F^2 - \frac{3}{2} \partial_a \Phi_1 \partial^a \Phi_1 + \frac{6}{L^2} \text{Cosh} (\Phi_1),$$

(1)

where $F = dA$, $G = dB$ are curvatures of two gauge fields and the complex field Φ simulates the Q-lattice structure [16, 17].

In the absence of gauge field B and the Q-lattice, this theory allows a well-known black brane solution with vanishing ground state entropy density, which now is called Gubser-Rocha solution [26]. In current work the motivation of introducing Q-lattice structure is twofold. One is to break the translational symmetry of the background so as to obtain a finite DC conductivity which has been extensively investigated in [15–22, 27–33]. More importantly, we expect to obtain a MIT which, from the viewpoint of renormalization group flow, requires that the Q-lattice deformation must be relevant so that the gravitational system can run from the original IR fixed point which associates with a metallic phase, to a new IR fixed point which associates with an insulating phase. It can be proved that
Q-lattices cannot induce such kind of phase transitions over Gubser-Rocha background in zero temperature limit if only a single gauge field is present\(^1\). Therefore, we introduce a second gauge field \(B\) and treat it as the Maxwell field. We expect MIT associated with this gauge field may take place for ground states in this new framework, and we will justify our expectation in sequent numerical analysis. Previously this strategy has been adopted in the construction of holographic Mott-like insulators [19].

We consider the following ansatz for a black brane solution

\[
ds^2 = \frac{L^2}{z^2} \left(-f Ud t^2 + \frac{dz^2}{fU} + V_1 dx^2 + V_2 dy^2 \right),
\]

\[A_t(z) = \frac{(1 - z)}{1 + Qz} \mu a, \quad B_t(z) = \frac{(1 - z)}{1 + Qz} \mu b,\]

\[\Phi(z) = e^{i\hat{k}x} z^{3-\Delta} \phi, \quad \Phi_1(z) = \frac{1}{2} \ln (1 + Qz\phi_1),\]

where \(f(z) = (1 - z)p(z)/g(z)\) with \(p(z) = 1 + (1 + 3Q)z + (1 + 3Q(1 + Q))z^2\) and \(g(z) = (1 + Qz)^{3/2}\), while \(\mu = L \sqrt{3Q(1 + Q)}\). All the functions \((U, V_1, V_2, a, b, \phi, \phi_1)\) depend on the radial direction \(z\) only. The Hawking temperature of the black brane is given by \(\tilde{T} = 3L \sqrt{1 + QU(1)}/(4\pi)\). When we set \((U = 1, V_1 = V_2 = g(z), a = 1, b = 0, \phi = 0, \phi_1 = 1)\), the present ansatz goes back to Gubser-Rocha solution presented in [26, 29]. In particular, the Gubser-Rocha solution in zero temperature limit can be obtained as \(Q \to \infty\), with dimensionless temperature \(T \equiv \tilde{T}/\mu = \sqrt{3}/(4\pi \sqrt{Q})\), and dimensionless entropy density \(s \equiv \hat{s}/\mu^2 = \sqrt{1 + Q}/(3Q)\), thus the entropy density vanishes linearly with the temperature.

Next we numerically solve the background equations of motion based on the ansatz in Eq.(2). The requirement of UV region \((z = 0)\) being asymptotic \(AdS_4\) leads to \(V_1(0) = V_2(0) = U(0) = 1\) and the scaling dimension of \(\Phi\) is \(\Delta = 3/2 + \sqrt{9/4 + m^2}\). For definiteness we fix \(L = 1, m^2 = -2\), thus \(\Delta = 2\). In addition, we set the boundary condition for the rest functions as \(a(0) = 1, b(0) \equiv b_0, \phi(0) = \hat{\lambda} \) and \(\phi_1(0) = 1\). Within this setting the chemical potential of the dual field corresponding to \(A\) is \(\mu\) and we will use it as the unit of scaling throughout this letter. As a result, the family of background solutions based on ansatz (2) can be parameterized by four dimensionless quantities, namely \(\{\tilde{T}/\mu, \hat{\lambda}/\mu, \hat{k}/\mu, b_0\}\). For simplicity we abbreviate these dimensionless quantities as \(\{T, \lambda, k, b_0\}\). The parameters \((\lambda, k)\) related to the Q-lattice \(\Phi\) can be interpreted as the lattice strength and as the lattice wave vector.

\(^1\) We thank Zhuoyu Xian for discussion on this issue.
Without loss of generality we will concentrate on the family of black brane solutions with fixed $b_0 = 0.1$. We have also worked with other values of b_0, and qualitatively similar phenomena can be observed. It is worthwhile to point out that for large b_0 insulating phases exist only for large values of λ at which the numerical work will be very costly.

III. MIT AND GROUND STATE ENTROPY DENSITY

In this section we investigate the conductivity behavior of the current dual to gauge field B and the entropy density of the dual system in zero temperature limit.

At zero temperature an insulator has vanishing direct-current conductivity σ_{DC}, while a metal has non-vanishing σ_{DC}. At finite temperature T, we practically distinguish the metallic phase and insulating phase by $\sigma'_{DC}(T) < 0$ and by $\sigma'_{DC}(T) > 0$, therefore the critical line is identified as $\sigma'_{DC}(T) = 0$. In this model the σ_{DC} can be computed with the data on the horizon

$$\sigma_{DC} = \left(\frac{\sqrt{V_2}}{V_1} + \frac{3Qb^2\sqrt{V_1V_2}}{2k^2(1+Q)\phi} \right) \bigg|_{z=1}.$$

First, we demonstrate that a MIT takes place at low temperature as we change the parameters (λ, k) of black brane background. We plot the phase diagram over the phase space (λ, k) at $T = 0.02$ in Fig.1 (the left plot). In general, it is noticed that the insulating phase is usually formed with large λ but small k.

Although our phase structure is obtained at a nonzero temperature, we show that a MIT could occur in zero temperature limit. As illustrated in the right plot of Fig. 1 (blue curve), k_c changes with the temperature in an almost linear manner, implying that a non-zero critical point k_{c0} may be reached at $T = 0$.

Now we address the entropy density of black brane in zero temperature limit. We intend to numerically test the scaling behavior of the entropy density with temperature, and then justify that our model exhibits vanishing ground state entropy density indeed. Fig. 2 is a plot of Ts'/s v.s. T for both metallic phase and insulating phase, where prime denotes the derivative with respect to T. It is clearly seen from this figure that down to an extremely low temperature $T \sim 10^{-2}$, Ts'/s converges to a nonzero constant, implying that for both phases the entropy density has a power law relation with the temperature $s \sim T^\alpha$. Therefore, the entropy density is expected to be vanishing in zero temperature limit indeed. Moreover, we notice that the power coefficient α is always very close to one for metallic phase, while
FIG. 1: The left plot is the phase diagram over the parameter space (λ, k) at $T = 0.02$ with $k > 0.1$. The right plot is the phase diagram over (T, k) plane with $\lambda = 4$, $T > 0.02$ and $k > 0.1$. The blue curve is the trajectory of the critical points, and the red dots denote the locations of the peaks of $\partial_{\lambda} S(l = 6.319)$ at different temperatures when varying the parameter k, which match well with the critical points of MIT in lower temperature region.

FIG. 2: The left and right plots demonstrate the $T \partial T s/s$ as a function of temperature T in insulating phase and metallic phase, respectively. It can be observed that in metallic phase we have $s \sim T^1$, and in insulating phase $s \sim T^{0.41}$, smaller than one for insulating phase, strongly implying that the RG flow runs to different IR fixed points for a metallic phase and an insulating phase at zero temperature.

IV. HEE CLOSE TO QCPS

In this section, we study the relation between the HEE and QPTs. In a bipartite system composed of subsystems A and B, the EE of A is defined as $S_A \equiv -\text{Tr}_A \rho_A \ln(\rho_A)$, where $\rho_A \equiv \text{Tr}_B \rho_{\text{total}}$. In AdS/CFT correspondence, the EE for a region A of the boundary system is obtained from gravity side as the area of the minimal surface γ_A in the bulk which ends
FIG. 3: $\partial_\lambda S$ v.s. k for different values of l with $T = 0.02$ and $\lambda = 2$. It can be seen that for $l \gtrsim 4$, $\partial_\lambda S$ reaches its local extreme at $k \simeq 0.87$, independent of the width of strip.

at ∂A [23, 24], i.e.

$$S_A = \frac{\text{Area}(\gamma_A)}{4G_N},$$

where G_N is the bulk Newton constant.

We consider the HEE for a strip geometry on the boundary with infinite length L_y in y-direction, while with finite width \hat{l} in x-direction. Notice that the metric components of the bulk are functions of z only, the minimal surface bounded with the strip can be specified by the location z_* of the bottom of the minimal surface in z-direction. Therefore, the HEE S_A could be written as $S_A = L_y\hat{S}/4G_N$, we will omit the common prefactor and treat \hat{S} as the HEE. The scaling-invariant HEE S and strip width l satisfy the following equations,

$$S = -\frac{2}{\mu z_*} + \frac{2}{\mu} \int_0^{z_*} \frac{\chi z^2 V_2(z)\sqrt{V_1(z)} - 1}{z^2},$$

$$l = 2\mu \int_0^{z_*} \chi z^2 \sqrt{\frac{V_1(z_*) V_2(z_*)}{V_1(z)}},$$

where $\chi \equiv [(1 - z)p(z)U(z)\xi/g(z)]^{-1/2}$ with $\xi \equiv z^4 V_1(z)V_2(z) - z^4 V_1(z_*)V_2(z_*)$, $S = \hat{S}/\mu$ and $l = \hat{l}\mu$. Note that we have subtracted out the vacuum contribution to HEE by adding a counter term $-1/z^2$ into the integrant of S.

We study HEE itself as well as the derivatives of HEE with respect to parameters (λ, k). Remarkably, we find in this model it is the first-order derivative of HEE, $\partial_\lambda S$ and $\partial_k S$, rather than HEE itself that exhibits an extremal behavior close to critical points. We demonstrate this phenomenon by a plot $\partial_\lambda S$ v.s. k in Fig. 3. From this figure we notice that the location
of peaks is independent of the width l when it is relatively large, from the region $Tl \ll 1$ to $Tl \to \infty$.

Furthermore, we demonstrate that the above phenomena is valid in zero temperature limit. In the right plot of Fig. 1 we show the locations of the peaks of $\partial_\lambda S$ for different temperatures in the phase diagram (k, T). We find that the peaks always coincide with the critical line when temperature goes down, indicating that the extremal behavior of the derivative of HEE at critical points is independent of T in low temperature region. This result allows us to infer safely that this extremal behavior close to QCPs can be observed in zero temperature limit.

In parallel, a similar phenomenon can be observed when we change the parameter λ but fix k. As a result, we show the contour plot of $\partial_\lambda S$ over the phase space in Fig. 4 with $T = 0.02, l = 6.319$. It can be seen that the ridge of the contour plot matches very well with the critical line which characterizes the occurrence of MIT. In addition, we remark that a similar contour plot can be drawn for $\partial_k S$, and the only difference is that the ridge is replaced by a valley.

In summary, we conclude that in this holographic model the first-order derivative of HEE with respect to system parameters characterizes the QPT. Previously, the phenomenon that the local extremes of derivatives of EE diagnose the QPT has been observed in CMT literature [2]. Our holographic model reproduces this significant feature of strongly correlated system in condensed matter physics.

Finally, we give some remarks on our results in the limit $l \to \infty$ where HEE is dominated by thermal entropy $S(l) \sim s \cdot l$. We find that the thermal entropy density s does capture the locations of critical points as well as S with finite l at low temperature in our numerical analysis. In zero temperature limit, however, s vanishes and therefore is not essential in linking HEE and QPT. As an attempt, it is instructive to define a quantity $f \equiv S(l) - s \cdot l$ for large l at finite temperature, which roughly speaking, subtracts out the contribution of pure thermal entropy $s \cdot l$ from the total HEE $S(l)$. As a matter of fact, it is shown in [34, 35] that in the limit $lT \gg 1$ the $S(l)$ could be separated as thermal contribution $s \cdot l$ and another finite contribution S_{finite}. The quantity f defined above will become S_{finite} in large l limit. Numerically, we find that f becomes independent of l for large l, and $\partial_\lambda f$ also characterizes the location of QPTs indeed. Moreover, the ridge of the contour plot of $\partial_\lambda f$ becomes steeper with the decrease of temperature, and potentially diverges in
zero temperature limit. Therefore, we expect that this quantity would be helpful for us to investigate the scaling behavior of HEE near QCPs in zero temperature limit but with $lT \gg 1$. We leave this for future investigation.

V. DISCUSSION

In this letter we have constructed a novel holographic model which contains black brane solutions with vanishing entropy density in zero temperature limit, and have demonstrated that a novel MIT can take place in the absence of AdS_2 IR geometry. A significant improvement to our previous work [25] is that an interesting connection between HEE and QPT still exists in this framework, which means that HEE characterizing QPT is not an artifact of AdS_2. Therefore, our present work has paved a bridge linking AdS/CMT duality to realistic condensed matter system. More importantly, it is the first time to find that the derivatives of HEE with respect to parameters diagnoses the QPT, which not only coincides with the phenomenon observed in condensed matter physics, but also enriches our understanding on the nature of HEE itself. Given the observations in [25] and this letter, we conjecture that
it would be a universal feature that the HEE or the derivatives of HEE could characterize QPT in generic holographic framework. This conjecture reflects the fact that in CMT the higher-order derivatives of the measures of entanglement diagnose the QPT [36].

Our current work has opened a window for understanding the relation between the HEE and QPT from holographic perspective. It is intriguing to further investigate the role of HEE in QPT with the following proposals. First, it is reasonable to expect that not only HEE or its first order derivative, but also the higher order derivatives of HEE, can characterize the QPTs in holographic models. We have gained further evidence to support this conjecture and the progress will be reported elsewhere [37]. Second, it is crucial to understand what determines the order of derivative of HEE in diagnosing the QPT, which is also an open question for ordinary EE in condensed matter physics. Further investigation on this issue should be valuable for disclosing the nature of both HEE and QPT.

Acknowledgements - We are very grateful to Chao Niu and Hongbao Zhang for helpful discussion during the early stage of this work. This work is supported by the Natural Science Foundation of China under Grant Nos.11275208, 11305018 and 11575195, and by the grant (No. 14DZ2260700) from the Opening Project of Shanghai Key Laboratory of High Temperature Superconductors. Y.L. also acknowledges the support from Jiangxi young scientists (JingGang Star) program and 555 talent project of Jiangxi Province. J. P. Wu is also supported by the Program for Liaoning Excellent Talents in University (No. LJQ2014123).

[1] L. Amico, R. Fazio, A. Osterloh and V. Vedral, Rev.Mod.Phys. 80, 517 (2008) [arXiv:0703044 [quant-ph]]
[2] Y. Chen, Z. Wang, and F. Zhang, Phys. Rev. B 73, 224414 (2006)
[3] A. Hamma, W. Zhang, S. Haas, and D. A. Lidar, Phys. Rev. B 77, 155111 (2008)
[4] A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002) [arXiv:0202029 [quant-ph]]
[5] T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110 (2002) [arXiv:0202162 [quant-ph]]
[6] G. Vidal, J. Latorre, E. Rico, A. Kitaev. Phys. Rev. Lett. 90, 227902 (2003) [arXiv:0211074 [quant-ph]]
[7] Y. Chen, P. Zanardi, Z. D. Wang and F. C. Zhang, New J. Phys. 8, 97 (2006)
[8] A. Anfossi, P. Giorda, A. Montorsi, and F. Traversa, Phys. Rev. Lett. 95, 056402 (2005)
[9] L.-A. Wu, M. S. Sarandy, D. A. Lidar, and L. J. Sham, Phys. Rev. A 74, 052335 (2006)
[10] L.-A. Wu, M. S. Sarandy, and D. A. Lidar, Phys. Rev. Lett. 93, 250404 (2004)
[11] D. Larsson and H. Johannesson, Phys. Rev. Lett. 95, 196406 (2005)
[12] S. Sachdev, Quantum Phase Transitions, (Cambridge University Press, Cambridge, 2000)
[13] J. M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231, [arXiv:hep-th/9711200].
[14] E. Witten, Adv. Theor. Math. Phys. (1998) 253, [arXiv:hep-th/9802150].
[15] A. Donos and S. A. Hartnoll, Nature Phys. 9, 649 (2013) [arXiv:1212.2998].
[16] A. Donos and J. P. Gauntlett, JHEP 1404, 040 (2014) [arXiv:1311.3292 [hep-th]].
[17] A. Donos and J. P. Gauntlett, JHEP 1406, 007 (2014) [arXiv:1401.5077 [hep-th]].
[18] Y. Ling, P. Liu, C. Niu and J. P. Wu, Phys. Rev. D 92, no. 8, 086003 (2015) [arXiv:1507.02514 [hep-th]].
[19] Y. Ling, P. Liu and J. P. Wu, JHEP 1602, 075 (2016) [arXiv:1510.05456 [hep-th]].
[20] E. Kiritsis and J. Ren, JHEP 1509, 168 (2015) [arXiv:1503.03481 [hep-th]].
[21] A. Donos, B. Goutéraux and E. Kiritsis, JHEP 1409, 038 (2014) [arXiv:1406.6351 [hep-th]].
[22] M. Baggioli and O. Pujolas, Phys. Rev. Lett. 114, no. 25, 251602 (2015) [arXiv:1411.1003 [hep-th]].
[23] S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006) [hep-th/0603001].
[24] T. Takayanagi, Class. Quant. Grav. 29, 153001 (2012) [arXiv:1204.2450 [gr-qc]].
[25] Y. Ling, P. Liu, C. Niu, J. P. Wu and Z. Y. Xian, JHEP 1604, 114 (2016) [arXiv:1502.03661 [hep-th]].
[26] S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010) [arXiv:0911.2898 [hep-th]].
[27] G. T. Horowitz, J. E. Santos and D. Tong, JHEP 1207, 168 (2012) [arXiv:1204.0519 [hep-th]].
[28] G. T. Horowitz, J. E. Santos and D. Tong, JHEP 1211, 102 (2012) [arXiv:1209.1098 [hep-th]].
[29] Y. Ling, C. Niu, J. P. Wu and Z. Y. Xian, JHEP 1311, 006 (2013) [arXiv:1309.4580 [hep-th]].
[30] Y. Ling, C. Niu, J. Wu, Z. Xian and H. b. Zhang, Phys. Rev. Lett. 113, 091602 (2014) [arXiv:1404.0777 [hep-th]].
[31] T. Andrade and B. Withers, JHEP 1405, 101 (2014) [arXiv:1311.5157 [hep-th]].
[32] B. Goutéraux, JHEP 1404, 181 (2014) [arXiv:1401.5436 [hep-th]].
[33] K. Y. Kim, K. K. Kim, Y. Seo and S. J. Sin, JHEP 1412, 170 (2014) [arXiv:1409.8346 [hep-th]].
[34] W. Fischler, A. Kundu and S. Kundu, Phys. Rev. D 87, no. 12, 126012 (2013) [arXiv:1212.4764]
[35] S. Kundu and J. F. Pedraza, arXiv:1602.07353 [hep-th].

[36] D. Larsson and H. Johannesson, Phys. Rev. A 73, 042320 (2006)

[37] Y. Ling, P. Liu, J. Wu and Z. Zhou, in preparation.