Meta-analysis of viscosity of aqueous deep eutectic solvents and their components

Gudrun Gygli1,3, Xinmeng Xu2,3 & Jürgen Pleiss2*

Deep eutectic solvents (DES) formed by quaternary ammonium salts and hydrogen bond donors are a promising green alternative to organic solvents. Their high viscosity at ambient temperatures can limit biocatalytic applications and therefore requires fine-tuning by adjusting water content and temperature. Here, we performed a meta-analysis of the impact of water content and temperature on the viscosities of four deep eutectic solvents (glyceline, reline, N,N-diethylethanol ammonium chloride–glycerol, N,N-diethylethanol ammonium chloride–ethylene glycol), their components (choline chloride, urea, glycerol, ethylene glycol), methanol, and pure water. We analyzed the viscosity data by an automated workflow, using Arrhenius and Vogel–Fulcher–Tammann–Hesse models. The consistency and completeness of experimental data and metadata was used as an essential criterion of data quality. We found that viscosities were reported for different temperature ranges, half the time without specifying a method of desiccation, and in almost half of the reports without specifying experimental errors. We found that the viscosity of the pure components varied widely, but that all aqueous mixtures (except for reline) have similar excess activation energy of viscous flow $E_{\eta}^{\text{excess}} = 3–5 \text{ kJ/mol}$, whereas reline had a negative excess activation energy ($E_{\eta}^{\text{excess}} = -19 \text{ kJ/mol}$). The data and workflows used are accessible at https://doi.org/10.15490/FAIRDOMHUB.1.STUDY.767.1.
4th order polynomial (Supplementary Figure S3C). ln η_0 Arrhenius fits). The slopes of the fits and the resulting values for E_η temperature range from 243.15 to 449.85 K from the sources cited in Table 1 (viscosity at positively deviated from an ideal mixture. This positive deviation is also reflected in supplementary Figure S3D).

Arrhenius fits were excellent, with R^2 values of 0.99 (SI file "Arrhenius_methanol.csv" for all parameters of the Figure S3A). All straight lines resulting from the Arrhenius model intersect, which is a criterion of data quality.

information47 and has been used previously to store structured data on the density, viscosity, conductivity, and ing pre-defined ontologies. The Chemical Markup Language (CML) has been developed to represent chemical sources35,36. Over the complete temperature range, the VFT model represents the data better than the Arrhenius range from 308.15 to 318.15 K, for which viscosity data exists for all mixtures. All data, analysis results, and workflows applied for analysis and visualization are available at FAIRDOMHub (https://doi.org/10.15490/FAIRD OMHUB.1.STUDY.767.1).

Component or DES	χ_w range	Temperature range (K)	References
Ethylene glycol	0.00–1.00	283.15–449.85	21–28
Methanol	0.00–1.00	278.15–323.15	30–32
Glycerol	0.00–1.00	243.15–373.15	27–29
Urea	0.86–0.98	308.15–328.15	38
Choline chloride	0.78–1.00	278.15–318.15	32
Choline chlorideicurea (reline)	0.00–1.00	283.15–363.15	30–32,39
N,N-diethylethanol ammonium chloride: ethylene glycol (DEACEG)	0.00–0.9	298.15–343.15	3
N,N-diethylethanol ammonium chloride:glycerol (DEACG)	0.00–0.9	298.15–343.15	3
Choline chloride:glycerol (glycline)	0.00–1.00	278.15–363.15	37–38
Choline chloride:ethylene glycol (ethylene)	0.00	293.15	13

Table 1. Ranges of χ_w and temperature for viscosities of 10 aqueous mixtures as collected from literature.

proposed, but still are not fully accepted by the scientific community. Enforcing guidelines upon publication was successful to improve quality and reproducibility of crystal structure data in the Protein Data Bank (PDB)44,45, but required cooperation between the scientific community and the scientific journals.

Meta-analyses would greatly benefit from machine readable data, thus automating the selection of relevant sources and the extraction of data and metadata from sources. Machine readable data can be collected and analyzed by automated workflows, therefore replacing time intensive and error prone manual search, extraction, and analysis of data. Consequently, machine readability and automation is crucial to guarantee completeness and consistency of data as proposed by the F.A.I.R. guidelines (Findable, Accessible, Interoperable, Reusable)46. Therefore, data should not be hidden in publications as plain text, tables, or figures. Instead, data and metadata should be reported in an exchange format such as XML, which allows data to be linked to dictionaries containing pre-defined ontologies. The Chemical Markup Language (CML) has been developed to represent chemical information48 and has been used previously to store structured data on the density, viscosity, conductivity, and water activity of DES49.

In this study, published data on the viscosity of aqueous solution of two salts (choline chloride, ChCl and N,N-diethylethanol ammonium chloride, DAC), three hydrogen bond donors (urea, glycerol, and ethylene glycol), and the respective DESs were collected and systematically analyzed. For comparison, pure water and aqueous methanol mixtures were included in the analysis. To our knowledge, this is the first time that viscosity data from a large number of aqueous DES mixtures at different temperatures have been collected, compared, and consistently analyzed by an Arrhenius model and the Vogel–Fulcher–Tamman–Hesse model, thus demonstrating the challenges of data quality and validation methods and the value of data integration and analysis48.

Results

The viscosity data on water and aqueous mixtures of methanol, of five DESs, and of four DES components were retrieved from literature (Table 1). Data covers the whole range of water content from χ_w = 0.0 to χ_w = 1.0, except for aqueous mixtures of urea, ChCl, DEACG, and DEACEG, and a temperature range from 293.15 to 449.85 K (Supplementary Figure S1). However, not all data covers the complete range, except for the narrow temperature range from 308.15 to 318.15 K, for which viscosity data exists for all mixtures. All data, analysis results, and workflows applied for analysis and visualization are available at FAIRDOMHub (https://doi.org/10.15490/FAIRD OMHUB.1.STUDY.767.1).

Pure water and aqueous methanol mixtures. Viscosity data for pure water was collected for a temperature range from 243.15 to 449.85 K from the sources cited in Table 1 (viscosity at χ_w = 1.0) and two additional sources35,38. Over the complete temperature range, the VFT model represents the data better than the Arrhenius model due to the curvature of the ln η – 1/T curve (Supplementary Figure S2). The Arrhenius model results in ln η_0 and E_η values of -6.6 ± 0.2 and 16.2 ± 0.6 kJ/mol, respectively (Supplementary Figure S2A, Supplementary File "Arrhenius_water.csv"), the VFT model in A = -3.3, B = 502.3, T0 = 154.9 (Supplementary Figure S2B, Supplementary File "VFT_water.csv").

Viscosity data for aqueous methanol mixtures was available for different temperature ranges, and no source specified whether methanol was desiccated before mixing. Data from different sources collected under identical conditions for χ_w = 0.0 and χ_w = 1.0 was combined, resulting in a larger temperature range (Supplementary Figure S3A). All straight lines resulting from the Arrhenius model intersect, which is a criterion of data quality. Arrhenius fits were excellent, with R^2 values of 0.99 (SI file "Arrhenius_methanol.csv" for all parameters of the Arrhenius fits). The slopes of the fits and the resulting values for E_η were sensitive to individual data points due to the small number of available data (Supplementary Figure S3A). ln η_0 had a minimum at χ_w = 0.7–0.8 (Supplementary Figure S3D). E_η increased almost linearly from 10.3 kJ/mol for pure methanol to 20.0–21.4 kJ/mol at χ_w = 0.7–0.8 (Supplementary Figure S3E) and decreased to 16.9 kJ/mol at χ_w = 1.0 (pure water). The E_η values positively deviated from an ideal mixture. This positive deviation is also reflected in $E_{\eta,\text{excess}}$, which was fit by a 4th order polynomial (Supplementary Figure S3C). ln η_0 and E_η are anticorrelated (Supplementary Figure S3F, Supplementary File "Correlation_Arrheniusparameters_methanol.csv"). Substantial deviations of the values of
E_η derived from two sources31,32 were observed at $\chi_w = 0.7$–0.9 (Supplementary Figure E). These deviations are due to the consistently steeper slopes obtained by the Arrhenius fits for the data from3 compared to the other data. Notably, the 4th order fit of E_{excess} fits better to the data from3 (Supplementary Figure S3C). Fits using the VFT model resulted in excellent fits ($R^2 = 0.99$), but not only with convex curvature, but also with almost linear and even concave curvature (Supplementary Figure S3B, see Supplementary File “VFT_methanol.csv” and Supplementary Figure S4A–C for all VFT-parameters (A, B, and T_0, respectively)).

Aqueous binary mixtures of DES components. Aqueous solutions of ChCl and urea are limited by the solubility of the salts in water, leading to a narrow range of χ_w that was studied (Table 1). Viscosity data for ethylene glycol was only available for one temperature and the pure DES. Therefore, no further analysis was performed for these mixtures.

Viscosity data for aqueous glycerol mixtures was available for different temperature ranges and no source specified whether glycerol was desiccated before mixing (Supplementary Figures S5A, S6A, S7A). By combining data from different sources collected under identical χ_w in the range 0.5–1.0, a larger temperature range was covered (Supplementary Figure S5). Performing Arrhenius modelling for different temperature ranges resulted in different fits. For each range, the fits were excellent (SI file “Arrhenius_glycerol.csv” for all parameters of the Arrhenius fits). All straight lines resulting from the Arrhenius model intersected for data from the same source. The source of the data influenced the slopes of the fits, and therefore $\ln \eta_0$, E_η, and E_{excess} values were calculated from the Arrhenius fits using Eq. (4) (Supplementary Figures S6D, E, S7D, E). E_η decreased with increasing χ_w with a slightly concave curvature (Supplementary Figures S6E, S7E). For data from Sheely et al. E_η was 63.9 kJ/mol for pure glycerol and 17.3 kJ/mol for pure water28 (Supplementary Figure S6E). For data from Segur et al., E_η was 56.3 kJ/mol for pure glycerol and 15.4 kJ/mol for pure water27 (Supplementary Figure S7E). The positive deviation from E_η from an ideal mixture E_{excess}, which was fit by a 4th order polynomial (Supplementary Figures S6C, S7C), $\ln \eta_0$, and E_η, were anticorrelated (Supplementary Figures S6F, S7F, “Correlation_Arrheinisparameters_glycerol_DOI1.csv”, “Correlation_Arrheinisparameters_glycerol_DOI2.csv”). The two series of E_η values can be explained by the consistently steeper slopes of the Arrhenius fits for the data from Sheely et al.28 as compared to the data from Segur et al.27. The deviation from an ideal mixture (E_{excess}) was smallest for data from Segur et al.27 (Supplementary File S7C, see Supplementary File “Correlation_Arrheinisparameters_glycerol_DOI2.csv”).

Viscosity data for aqueous ethylene glycol mixtures was available for different temperature ranges, and data from Sun et al.25 covered the highest temperatures (Supplementary Figure S9A). Only one source34 specified how ethylene glycol was desiccated before mixing (Supplementary Figures S9A,B, S10A,B). Data from different sources collected under identical χ_w (0.9–1.0) was combined (Supplementary Figure S9A). Arrhenius fits were excellent (SI file “Arrhenius_ethylene_glycol.csv” for all parameters of the Arrhenius fits). Straight lines resulting from the Arrhenius model intersected for data from the same source.

The source of the data influenced the slopes of the fits, and therefore $\ln \eta_0$, E_η, and E_{excess} values were calculated from the Arrhenius fits using Eq. (4) (Supplementary Figure S10D,E). E_η was 27.4 kJ/mol for pure ethylene glycol and 14.8 kJ/mol for pure water (Supplementary Figure S10E). The E_η values deviated from an ideal mixture (Supplementary Figure S10E). The positive deviation was reflected in E_{excess}, which was fit by a 4th order polynomial (Supplementary Figure S10C). $\ln \eta_0$ and E_η were anticorrelated (Supplementary Figure S10F Supplementary File “Correlation_Arrheniusparameters_ethylene_glycol_DOI1.csv”). The VFT model resulted in excellent fits (Supplementary Figure S10B, see Supplementary File “VFT_ethylene_glycol_DOI1.csv” and Supplementary Figure S11A–C for all VFT-parameters (A, B, and T_0, respectively) of all data, S11D, E, and F for data from Sheely et al.28 and S8G, H, I for data from Segur et al.27).

Viscosity data for aqueous ethylene glycol mixtures was available for different temperature ranges, and data from Sun et al.25 covered the highest temperatures (Supplementary Figure S9A). Only one source34 specified how ethylene glycol was desiccated before mixing (Supplementary Figures S9A,B, S10A,B). Data from different sources collected under identical χ_w (0.9–1.0) was combined (Supplementary Figure S9A). Arrhenius fits were excellent (SI file “Arrhenius_ethylene_glycol.csv” for all parameters of the Arrhenius fits). Straight lines resulting from the Arrhenius model intersected for data from the same source.

The source of the data influenced the slopes of the fits, and therefore $\ln \eta_0$, E_η, and E_{excess} values were calculated from the Arrhenius fits using Eq. (4) (Supplementary Figure S10D,E). E_η was 27.4 kJ/mol for pure ethylene glycol and 14.8 kJ/mol for pure water (Supplementary Figure S10E). The E_η values deviated from an ideal mixture (Supplementary Figure S10E). The positive deviation was reflected in E_{excess}, which was fit by a 4th order polynomial (Supplementary Figure S10C). $\ln \eta_0$ and E_η were anticorrelated (Supplementary Figure S10F Supplementary File “Correlation_Arrheniusparameters_ethylene_glycol_DOI1.csv”). The VFT model resulted in excellent fits (Supplementary Figure S10B, see Supplementary File “VFT_ethylene_glycol_DOI1.csv” and Supplementary Figure S11A–C for all VFT-parameters (A, B, and T_0, respectively) of all data, S11D, E, and F for data from Sheely et al.28 and S8G, H, I for data from Segur et al.27).

DES mixtures. Viscosity data for aqueous reline mixtures was available mostly from one source43, but multiple sources reported data for pure reline. Only one source38 specified how the DES components were desiccated before mixing (Fig. 1A,B). Arrhenius fits were excellent ($R^2 = 0.99$, Supplementary File “Arrhenius_reline.csv” for all parameters of the Arrhenius fits), and all straight lines resulting from the Arrhenius model intersected (Fig. 1A). $\ln \eta_0$ and E_η values were calculated from the Arrhenius fits using Eq. (4) (Fig. 1D,E). E_η was 51.2 kJ/mol for pure reline and 12.4 kJ/mol for pure water, and the values deviated considerably from an ideal mixture (Fig. 1E). The E_η deviations resulted in negative values for E_{excess}, which was fit by a 4th order polynomial (Fig. 1C). $\ln \eta_0$ and E_η were anticorrelated (Fig. 1F, Supplementary File “Correlation_Arrheniusparameters_reline.csv”). Fits using the VFT model were excellent ($R^2 = 0.99$, Fig. 1B, see Supplementary File “VFT_reline.csv” and Supplementary Figures S12A, B, and C for all VFT-parameters (A, B, and T_0, respectively). Viscosity data for glycerine–water mixtures was available mostly from one source42, but multiple sources reported data for pure glycerine. Only one source38 specified how the DES components were desiccated before mixing (Fig. 2A,B). Arrhenius fits were excellent (SI file “Arrhenius_glycerine.csv” for all parameters of the Arrhenius fits), and all straight lines resulting from the Arrhenius model intersected. $\ln \eta_0$ and E_η values were
calculated from the Arrhenius fits using Eq. (4) (Fig. 2D,E). E_η was 42.3 kJ/mol for pure glyceline and 14.0 kJ/mol for pure water (Fig. 2E). The E_η values deviated from an ideal mixture (Fig. 2C). Inη_0 and E_η were anticorrelated (Fig. 2F, Supplementary File "Correlation_Arrheniusparameters_glyceline.csv"). Fits using the VFT model were excellent (Fig. 2B, see Supplementary File "VFT_glyceline.csv" and Supplementary Figure S13A–C for all VFT-parameters (A, B and T_0, respectively).

Viscosity data for aqueous DEACG mixtures was available from a single source33 (Supplementary Figure S14A). Arrhenius fits were excellent (SI file "Arrhenius_DEACG.csv" for all parameters of the Arrhenius fits), and all straight lines resulting from the Arrhenius model intersected. Inη_0 and E_η values were calculated from the Arrhenius fits using Eq. (4) (Supplementary Figure S14D,E). E_η was 46.7 kJ/mol for pure DEACG and 19.1 kJ/mol for $\chi_w = 0.9$ (Supplementary Figure S14E). The E_η values deviated from an ideal mixture (Supplementary Figure S14E), resulting in positive values of E^{excess}_η, which were fit by a 4th order polynomial (Supplementary Figure S14F). Inη_0 and E_η were anticorrelated (Supplementary Figure S14F, Supplementary File "Correlation_Arrheniusparameters_DEACG.csv"). Fits using the VFT model were excellent [Supplementary Figure S14B, see Supplementary File "VFT_DEACG.csv" and Supplementary Figure S15A–C for all VFT-parameters (A, B and T_0, respectively)].

Viscosity data for aqueous DEACEG mixtures was available from a single source33 (Supplementary Figure S16A). Arrhenius fits were excellent (SI file "Arrhenius_DEACEG.csv" for all parameters of the Arrhenius fits), and all straight lines resulting from the Arrhenius model intersected. Inη_0 and E_η values were calculated from the Arrhenius fits using Eq. (4) (Supplementary Figure S16D,E). E_η was 30.4 kJ/mol for pure DEACEG and 17.3 kJ/mol for $\chi_w = 0.9$ (Supplementary Figure S16E). The E_η values deviated from an ideal mixture (Supplementary Figure S16E), resulting in positive values of E^{excess}_η, which were fit by a 4th order polynomial (Supplementary Figure S16C). Inη_0 and E_η were anticorrelated (Supplementary Figure S16F, Supplementary File "Correlation_Arrheniusparameters_DEACEG.csv"), but the quality of the fit was influenced by deviating data points at low and high E_η. The 4th order fit of E^{excess}_η was excellent (Supplementary Figure S16C). Fits using the VFT model...
were excellent [Supplementary Figure S16B, see Supplementary File “VFT_DEACEG.csv” and Supplementary Figure S17A–C for all VFT-parameters (A, B and T0, respectively)].

Discussion

Experimental data on viscosity of aqueous DES mixtures and their components was found for the whole range of \(\chi_w\) between 0 and 1 (except for urea, ChCl, DEACG, and DEACEG), though the temperature ranges of each source differed and overlapped only for a narrow region between 308.15 and 318.15 K. Because \(\ln \eta\) was not strictly linear in \(\frac{1}{T}\), but slightly convex, \(E_\eta\) and \(\ln \eta_0\) as obtained by the Arrhenius model depended on the analyzed temperature range. Therefore, for methanol, glycerol, and ethylene glycol mixtures, separate data analyses were performed for datasets from different sources, resulting in different dependencies of \(E_\eta(\chi_w)\) and \(\ln \eta_0(\chi_w)\).

Fitting \(\ln \eta - \frac{1}{T}\) data by an Arrhenius model requires viscosity to be measured for at least three different temperatures. However, combining data from different sources to derive \(E_\eta(\chi_w)\) and \(\ln \eta_0(\chi_w)\) was not always possible, because the values of \(\chi_w\) at which viscosity was measured differed between the sources by more than 0.05. As a consequence, for many mixtures the number of different temperatures reported was too small for a reliable analysis, resulting in a considerable loss of data during analysis. For aqueous glycerine mixtures, data was collected from eight different sources (SI, exp_ChCl_glycerol.csv), but only data from two sources could be used for the analyses by the Arrhenius model. Therefore, guidelines for a more systematic exploration of temperature ranges and a minimal number of data points to report are needed for compatibility between data from different sources, which then can be used for a consistent data analysis.

A major experimental challenge is the high hygroscopy of DES and the sensitive dependence of viscosity on the water content, especially at \(\chi_w\) close to 0.05–0.52. However, only half of the sources reported the method of desiccation of the DES components prior to experimentation. For glycerine–water mixtures, data from sources which reported the desiccation method and from sources which did not report the method were consistent (Fig. 2), whereas for aqueous glycerol and ethylene glycol mixtures, the lack of reporting the desiccation method resulted in outliers (Supplementary Figures S5 or S9) or substantial deviations in data from different sources.
Therefore, we support previous calls for community standards on measurement protocols and the complete reporting of metadata to ensure reproducibility.

A comprehensive analysis of data from different sources is pivotal for assessing the quality of individual data sources. For reline and glyceline–water mixtures, data retrieved from a source in a predatory journal (as per these lists: https://beallslist.net/ and https://predatoryjournals.com/journals/#I) behaved completely different from data from other sources (Figs. 1, 2 vs Fig. 3 and Supplementary Figure S18A–F). This data also deviated from the other data in the Arrhenius fits (Fig. 3A), resulting in a linear rather than a convex dependency of \(\ln \eta_0 \).

Figure 3
Dubious quality data for reline-water mixtures. (A) Arrhenius fits (using a minimum of 3 data points). Dots and thick lines are the experimental data and the respective fit. The dashed lines are extensions of the fit. Colors of the dashed lines indicate the source of the data. Yellow means multiple data points from different sources were be combined. (B) VFT fits (using a minimum of 4 data points). (C) \(E_{\eta}^{\text{excess}} \), calculated based on the red line in (E). Colors of the data points indicate the source of the data. (D) \(\ln \eta_0 \) at different \(\chi_w \). Error bars are calculated based on the fit in (A). The red arrow highlights the data point affected by a presumed typo. Colors of the dashed lines indicate the source of the data. Yellow means multiple data points from different sources were be combined. (E) \(E_\eta \) at different \(\chi_w \). The red line indicates the behavior of an ideal binary mixture and was used to calculate \(E_{\eta}^{\text{excess}} \) (C). (F) Correlation between \(\ln \eta_0 \) and \(E_\eta \), (G–I): same as (D–F), but without data from the source in a predatory journal, but with the data point affected by a presumed typo (red arrow in G).
(χ_w) and E_η(χ_w) (Fig. 3D,E) and inconclusive values of E_{η}^{\text{excess}} (χ_w) and correlations of lnη_0 and E_η (Fig. 3C,F). Despite the fact that the authors reported the desiccation method (Fig. 3A,B), we excluded this dataset from our analysis. For an automated analysis of large datasets, the quality and consistency of each data point matters. Each data point must have an associated error, which was only the case for half the data collected. Single outliers from dubious sources or corrupted by a typo might result in large uncertainties of lnη_0 and E_η values as demonstrated for reline (Fig. 3G–I). To ensure data quality, typos should be prevented by applying the 4-eyes-principle, by data visualization prior to publication, or by using an electronic laboratory notebook for an automated data recording and a machine-readable data format such as CML.

The comprehensive analysis of data from different sources also enabled us to compare the performance of two different phenomenological models, Arrhenius and VFT, in analyzing the data. Because of the slight convexity of the lnη_0–1/T curves, the VFT model was superior to the Arrhenius model in fitting viscosity data over the complete temperature range. However, the derived parameters A, B, and θ_0 showed an irregular dependency on χ_w, and a general trend as for the parameters lnη_0 and E_η from the Arrhenius model was not observed, as reported previously. In the measured temperature range, the parameters of the VFT model are partially correlated, or the model developed to describe the viscosity of glasses cannot be applied to aqueous DES mixture.

The systematic, comprehensive analysis of experimental viscosity data enabled a deep insight into the relationship between temperature and viscosity of aqueous mixtures. In the Arrhenius model, the two parameters E_η and lnη_0 describe the temperature dependent and the temperature independent contributions, respectively, to viscosity. In the reported temperature range between 280 and 360 K, the temperature-dependent contribution dominates. The large value of E_η at low χ_w for all aqueous mixtures (except for methanol, Supplementary Figure S19A,B) indicates an increasing temperature sensitivity at decreasing water content. The choice of the hydrogen bond donor (glycerol, urea, or ethylene glycol) impacts the temperature dependency E_η of the viscosity. Urea increases E_η as compared to glycerol (51.2 and 42.3 kJ/mol for pure glycerol and glyceline, respectively), while ethylene glycol decreases E_η (46.6 and 30.4 kJ/mol for pure DEACG and DEACEG, respectively). In contrast, the salt had a minor effect, as pure glycerine and pure DEACG had comparable temperature dependencies (E_η of 42.3 and 46.6 kJ/mol, respectively).

Even more surprising was the observed relationship between water content and viscosity, obtained by the broad coverage of parameter space (different components, water content, and temperatures). Despite their difference in size, structure, polarity, and viscosity, the aqueous mixtures of three alcohols (ethylene glycol, methanol, glycerol) and three DESs (DEACEG, DEAG, glyceline) had a similar deviation E_{η}^{\text{excess}}(χ_w) from ideal mixtures. It was similar for glycerol and methanol, despite the considerable difference of their viscosities (1412 cP and 0.585 cP, respectively, at 293.15 K for the pure compound), which was higher or lower, respectively, than pure water (1.002 cP at 293.15 K). The positive value of E_{η}^{\text{excess}} is in agreement with a previous study, which reported that the addition of methanol to pure water resulted in a gradual decrease of the self-diffusion coefficients of both water and methanol, despite the fact that the self-diffusion coefficient of pure methanol is higher than that of pure water. Molecular dynamics simulations identified a possible reason of this excess behavior: the addition of the hydrophobic methyl group weakened the hydrogen bonding of water, whereas the hydroxyl group did not compensate for the loss of hydrogen bonds. At increasing methanol concentrations, the diffusion of methanol further decreased by the formation of methanol clusters of increasing size, until at χ_w = 0.5–0.6 the system-wide water network broke down and the trend was reversed. Interestingly, all investigated aqueous mixtures showed a similar dependency E_{η}^{\text{excess}}(χ_w), except for reline. The strongly non-ideal mixing behavior of the viscosity and the highly negative values of E_{η}^{\text{excess}} of aqueous reline mixtures are surprising, because the densities of aqueous reline mixtures decrease almost linearly with water content (Supplementary Figure S20). However, it can be explained by the observation that, in contrast to aliphatic alcohols, the addition of urea to water has a negligible effect on the hydrogen-bond network of water at χ_w > 0.8. Therefore, despite its higher viscosity, addition of reline to water barely increases the viscosity of the aqueous reline mixture, resulting in the highly negative E_{η}^{\text{excess}}.

Conclusion

In this study, published experimental data on the temperature dependency of viscosity of different aqueous DES mixtures was systematically collected. The comprehensive analysis of the data resulted in two major observations: (1) aqueous reline mixtures differ fundamentally from all other DES. At increasing water content, their excess activation energy of viscous flow is negative, whereas it is positive for all other aqueous DES mixtures. (2) Experimental data as reported by different research groups might deviate considerably. Due to poor reporting of experimental methodologies, it is often impossible to identify the reason for the observed deviations. In order to make experiments reproducible, data and metadata have to be reported according to the F.A.I.R. principles. Access to open and structured data enables systematic meta-analyses and provides a deeper insight into the thermophysical properties of DES.

Our approach to collect and analyze thermophysical properties can also be applied to other solvents mixtures. Notably, DES with varying molar ratios could be studied to determine the impact of this parameter on the viscosity.

All data is available in a machine- and human readable format, the Chemical Markup Language (CML).

Methods

Data collection. Viscosity data for the aqueous solutions of two DES-salts choline chloride (ChCl) and N,N-diethylethanol ammonium chloride (DAC) and three DES-hydrogen bond donors (urea, glycerol, and ethylene glycol), and the resulting aqueous mixtures of DES were collected. We have also included water and methanol–water mixtures. Scientific publications containing data were searched for with the google scholar search tool. Keywords used were “DESs” (only for DES), “aqueous solution”, “viscosity”, and the name of the mixture
[ChCl, DAC, urea, glycerol, ethylene glycol, reline, glyceline, DAC-glycerol (DEACG), DAC-ethylene glycol (DEACEG), methanol or water]. Data was extracted from tables where possible, and if only plots were available, data was extracted using PlotDigitizer (version 2.6.8).

Most of the published datasets on aqueous mixtures also included the viscosity of pure water (χ_w = 1.0). These data points were analyzed separately and compared to viscosity data for pure water from two other sources\(^{9,36}\). The workflow used for handling, analyzing, and plotting data is available on FAIRDOMHub (https://doi.org/10.15490/FAIRD OMHUB .1.STUDY .767.1). All data sources are referenced by their DOI in the CML file.

Parameters

The viscosity of the studied DES mixtures depends on the molar ratio of the DES-components (r_{DES}, in mol/mol, Eq. 1), the water content (χ_w, in mol/mol, Eq. 2) and the temperature (T).

\[
r_{DES} = \frac{n_{salt}}{n_{HBD}}
\]

\[
χ_w = \frac{n_{water}}{n_{water} + n_{salt} + n_{HBD}}
\]

with \(n_{salt}, n_{HBD},\) and \(n_{water}\) denoting the relative number of ion pairs, hydrogen bond donor molecules, and water molecules in a mixture.

For binary aqueous solutions of the DES components and methanol, only \(χ_w\) and \(T\) are relevant, and \(r_{DES}\) is set to 0:

\[
χ_w = \frac{n_{water}}{n_{water} + n_{component}}
\]

Two phenomenological models were applied to fit the temperature dependency of viscosity: the Arrhenius model and the Vogel–Fulcher–Tammann–Hesse (VFT) model.

Arrhenius model

Only datasets for which at least three different temperatures were available were analyzed. The Arrhenius model assumes a linear relationship between \(ln η\) and \(T^{-1}\):

\[
ln η = ln η_0 + \frac{E_η}{RT}
\]

with the activation energy of viscous flow \(E_η\) (in kJ/mol) and the viscosity at infinite temperature \(η_0\) as parameters.

For ideal binary mixtures, \(ln η_0\) and \(ln η_0\) are linear in \(χ_w^{36}\):

\[
ln η_0 = χ_1 × ln η_{01} + χ_2 × ln η_{02} = χ_1 × (ln η_{01} - ln η_{02}) + ln η_{02}
\]

\[
ln η_0 = χ_1 × ln η_{01} + χ_2 × ln η_{02} = χ_1 × (ln η_{01} - ln η_{02}) + ln η_{02}
\]

where \(χ_1\) and \(χ_2\) are the mole fractions of the two components of the binary mixture (\(χ_1 + χ_2 = 1\), \(η_{01}\) and \(η_{02}\) the respective activation energies, \(η_{01}\) and \(η_{02}\) the respective viscosities at infinite temperature.

\(E_η^{excess}\) was calculated as the deviation of \(E_η\) from an ideal mixture by fitting a linear regression through \(E_η\) at \(χ_w = 0\) and \(χ_w = 1\). \(E_η^{excess}\) was fitted by polynomials of 4th order, biased by forcing the fit through the most extreme data points (e.g. \(E_η^{excess} = 0\) at \(χ_w = 0\) and \(χ_w = 1\)).

For pure liquids at \(χ_w = 0\) and \(χ_w = 1\), the temperature dependency of viscosity \(η\) is described by an Arrhenius equation:

\[
ln η(T, χ_w = 0) = E_η(χ_w = 0)/RT + ln η_0(χ_w = 0)
\]

\[
ln η(T, χ_w = 1) = E_η(χ_w = 1)/RT + ln η_0(χ_w = 1)
\]

Thus, there is a temperature \(T_η\) at which

\[
ln η(T_η, χ_w = 0) = ln η(T_η, χ_w = 1)
\]

with

\[
RT_η = (E_η(χ_w = 0) - E_η(χ_w = 1))/(ln η_0(χ_w = 1) - ln η_0(χ_w = 0))
\]

Assuming ideal mixing, all mixtures \(χ_w = 0...1\) will have the same viscosity \(ln η(T_η)\), thus \(ln η(T_η)\) is independent of \(χ_w\) for all \(χ_w = 0...1\):

\[
ln η(T_η) = E_η(χ_w)/RT_η + ln η_0(χ_w)
\]

This independence results in a linear correlation between \(E_η(χ_w)\) and \(ln η_0(χ_w)\):

\[
ln η_0(χ_w) = -(RT_η)^{-1} × E_η(χ_w) + ln η(T_η)
\]

with a slope \(-1/(RT_η)\) and intercept with the y-axis at \(ln η(T_η)\).

A deviation from ideal mixing has two consequences:
1. Not all curves \(\ln \eta (T, \chi_w) \) will intersect at \(T = T_0 \) (Eq. 8a).
2. There will be deviations from the linear correlation (Eq. 8b)

For non-ideal mixtures, \(E_\eta (\chi_w) \) deviates from its ideal value \(E_\eta^{\text{ideal}}(\chi_w) \) by \(E_\eta^{\text{excess}}(\chi_w) \):

\[
E_\eta (\chi_w) = r_\eta^{\text{ideal}} (\chi_w) + E_\eta^{\text{excess}}(\chi_w)
\]

with

\[
E_\eta^{\text{ideal}}(\chi_w) = (1 - \chi_w) \times E_\eta (\chi_w = 0) + \chi_w \times E_\eta (\chi_w = 1)
\]

Because \(\ln \eta (\chi_w) \) depends on \(E_\eta (\chi_w) \) according to (Eq. 8b), \(\ln \eta (T, \chi_w) \) of a binary mixture can be predicted by determining by experiment or by simulation:

1. \(E_\eta \) and \(\ln \eta_0 \) of the two pure components (\(\chi_w = 0 \) and \(\chi_w = 1 \))
2. \(E_\eta^{\text{excess}} (\chi_w) \) of the binary mixtures

Vogel–Fulcher–Tammann–Hesse model. Only datasets for which at least four different temperatures were available were analyzed. The Vogel–Fulcher–Tammann–Hesse (VFT) model (Eq. 11) was developed to describe the temperature dependency of viscosity\(^{10-12}\) and can be applied to ionic liquids\(^{60-62}\).

\[
\ln = A + \frac{B}{T - T_0}
\]

The empirical constants \(A, B, \) and \(T_0 \) were determined using initial parameters derived from Yadav et al. \((A = -2, B = 800, T_0 = 170 \text{ K})^{15}\).

Data quality. The data sets were manually curated and checked to eliminate copy-paste errors. A recurring issue was the use of ‘‘” or ‘‘”’’ as a symbol for the decimal point when using the ‘‘German-language-Microsoft-Excel’. This issue lead to 0.809 (instead of 0.809) to become 809, when the csv file was opened in Excel. A further complication was the use of different units (e.g. mP or cP). One data point from 10.1021/je5001796 was removed because it was assumed to be a typing error (\(\eta = 17.742 \text{ cP at } 353.15 \text{ K} \)).

Technical note. A possible complication was the use of different units (e.g. mP or cP). One data point from 10.1021/je5001796 was removed because it was assumed to be a typing error (\(\eta = 17.742 \text{ cP at } 353.15 \text{ K} \)).

Workflow used for analysis. The analysis scripts are organized in a workflow which requires the user to modify the names.py script and run the wrapper.py script. Names.py contains the name of files and parameters that will be analyzed with the workflow. Data can be filtered using the variables ‘quality’, ‘variables’ and ‘myfilters’.

XML files were written and parsed with xml.etree.ElementTree\(^{46}\). The values of \(E_\eta \) and \(\ln \eta_0 \) and their error estimates were obtained by the curve_fit function from Scipy\(^{46}\). The fitting of excess \(E_\eta \) was achieved through numpy Polynomial module\(^{46}\). The figures were visualized by python modules matplotlib, pyplot\(^{45}\) and library seaborn\(^{49}\). Additional python libraries used were pandas\(^{49}\), sys\(^{70}\), os\(^{71}\), subprocess\(^{72}\).

References

1. Torregrosa-Crespo, J., Marset, X., Guillena, G., Ramón, D. J. & María Martínez-Espinosa, R. New guidelines for testing “Deep eutectic solvents” toxicity and their effects on the environment and living beings. *Sci. Total Environ.* **704**, 133582 (2020).
2. Kudlač, B., Owczarek, K. & Namięńkiew, J. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review. *Environ. Sci. Pollut. Res.* **22**, 11975–11992 (2015).
3. Radošević, K. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. *Ecotoxicol. Environ. Saf.* **112**, 46–53 (2015).
4. Vanda, H., Dai, Y., Wilson, E. G., Verpoorte, R. & Choi, Y. H. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. *Comptes Rendus Chim.* **21**, 628–638 (2018).
5. Kim, S. H. et al. Effect of deep eutectic solvent mixtures on lipase activity and stability. *J. Mol. Catal. B Enzym.* **128**, 65–72 (2016).
6. Juneidi, I., Hayyan, M., Hashim, M. A. & Hayyan, A. Pure and aqueous deep eutectic solvents for a lipase-catalysed hydrolysis reaction. *Biochem. Eng. J.* **117**, 129–138 (2017).
7. Gotor-Fernández, V. & Paul, C. E. Deep eutectic solvents for redox biocatalysis. *J. Biotechnol.* **293**, 24–35 (2019).
8. Pätzold, M. et al. Deep Eutectic Solvents as Efficient Solvents in Biocatalysis. Trends Biotechnol. 37, 943–959 (2019).
9. Xu, P., Zheng, G. W., Zeng, M. H., Li, N. & Lou, W. Y. Recent progress on deep eutectic solvents in biocatalysis. Biosens. Bioelectron. 4, 20 (2017).
10. Vogel, H. Das Temperaturabhaengigkeitsgesetz der Viskositaet von Fluessigkeiten. Phys. Z. 22, 645 (1921).
11. Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339–355 (1925).
12. Gustav Tammann, W. H. Die Abhangigkeit der Viscosität von der Temperatur bei unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 156, 245–257 (1926).
13. Abbott, A. P., Harris, R. C. & Ryder, K. S. Application of hole theory to define ionic liquids by their transport properties. Phys. Chem. Chem. Phys. 11, 4910–4913 (2009).
14. Dai, Y., van Spronsen, J., Witkamp, G. I., Verpoorte, R. & Choi, Y. H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chem. Acta 766, 61–68 (2013).
15. Yadav, A., Tivedi, S., Rai, R. & Pandey, S. Densities and dynamic viscosities of (choline chloride+sugar) deep eutectic solvent and its aqueous mixtures in the temperature range (283.15-363.15) K. Fluid Phase Equilib. 367, 135–142 (2015).
16. Lapeña, D., Lomba, L., Artal, M., Lafuente, C. & Giner, B. The NADES glyceline as a potential Green Solvent: A comprehensive study of its thermophysical properties and effect of water inclusion. J. Chem. Thermodyn. 128, 164–172 (2019).
17. Isdale, J. D., Easteal, A. J. & Woolf, L. A. Shear viscosity of methanol and methanol + water mixtures under pressure. J. Phys. Chem. 63, 899–993 (1998).
18. Segur, J. B. & Oderstar, H. E. Viscosity of glycerol and its aqueous solutions. Ind. Eng. Chem. 43, 2117–2120 (1951).
19. Sheely, M. L. Glycerol viscosity tables. J. Mol. Liq. 215, 98–103 (2016).
20. Dai, Y., van Spronsen, J., Witkamp, G. J., Verpoorte, R. & Choi, Y. H. Natural deep eutectic solvents as new potential media for green technology. Trends Biotechnol. 37, 943–959 (2019).
21. Luo, W. Y., Xu, P., Zheng, G. W., Zeng, M. H., Li, N. & Lou, W. Y. Recent progress on deep eutectic solvents in biocatalysis. Biosens. Bioelectron. 4, 20 (2017).
22. Abbott, A. P., Capper, G. & Gray, S. Design of improved deep eutectic solvents using PFG NMR. Phys. Chem. Chem. Phys. 17, 15297–15304 (2015).
23. Abbott, A. P. & Pandey, S. Densities and viscosities of (choline chloride + urea) deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 K to 363.15 K. J. Chem. Eng. Data 59, 2221–2229 (2014).
24. Yadav, A. et al. Molecular and ionic diffusion in aqueous deep eutectic solvent mixtures: Probing inter-molecular interactions using PFG NMR. Phys. Chem. Chem. Phys. 17, 15297–15304 (2015).
25. Siongco, K. R., Leron, R. B. & Li, M. H. Densities, refractive indices, and viscosities of N,N-diethylethanol ammonium chloride-methanol + water mixtures between 290 K and 450 K. J. Chem. Eng. Data 48, 198–202 (2003).
26. Segur, J. B. & Oderstar, H. E. Viscosity of glycerol and its aqueous solutions. Ind. Eng. Chem. 43, 2117–2120 (1951).
27. Sheely, M. L. Glycerol viscosity tables. J. Mol. Liq. 215, 98–103 (2016).
28. Dai, Y., van Spronsen, J., Witkamp, G. J., Verpoorte, R. & Choi, Y. H. Natural deep eutectic solvents as new potential media for green technology. Trends Biotechnol. 37, 943–959 (2019).
29. Segur, J. B. & Oderstar, H. E. Viscosity of glycerol and its aqueous solutions. Ind. Eng. Chem. 43, 2117–2120 (1951).
30. Isdale, J. D., Easteal, A. J. & Woolf, L. A. Shear viscosity of methanol and methanol + water mixtures under pressure. Int. J. Thermophys. 6, 439–450 (1985).
31. Gonzalez, B., Calvar, N., Gomez, E. & Domínguez, A. Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 313.15) K. J. Chem. Eng. Data 63, 989–993 (1998).
32. Mikhal, S. Z. & Kimel, W. R. Densities and viscosities of methanol–water mixtures. J. Chem. Eng. Data 6, 533–537 (1961).
33. Motin, M. A., Biswas, T. K. & Haque, E. M. Volumetric and viscometric studies on an aqueous urea solution. Phys. Chem. Liq. 40, 593–605 (2002).
34. Zwolinski, B. J. & Eicher, L. D. High-precision viscosity of supercooled water and analysis of the extended range temperature coefficient. J. Phys. Chem. 75, 2016–2024 (1971).
35. Korson, L., Drost-Hansen, W. & Millero, F. J. Viscosity of water at various temperatures. J. Phys. Chem. 73, 34–39 (1969).
36. Sdzadaw, A. P., Wood, A. M. & Hedges, L. V. How to do a systematic review: A best practice guide for conducting and reporting reviews, meta-analyses, and meta-syntheses. Annu. Rev. Psychol. 70, 747–770 (2018).
37. Frenkel, M. et al. New global communication process in thermodynamics: Impact on quality of published experimental data. J. Chem. Inf. Model. 46, 2487–2493 (2006).
38. Baker, M. I, 1500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).
39. Swainston, N. et al. STREND Guideline: Enabling the validation and sharing of enzyme kinetics data. FEBS J. 285, 2193–2204 (2018).
40. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 20, 235–242 (2000).
41. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data https://doi.org/10.1038/sdata.2016.18 (2016).
42. Murray-Rust, P. & Rzepa, H. S. CML: Evolution and design. J. Cheminform. https://doi.org/10.1186/1758-2946-3-44 (2011).
43. Severin, T., Range, J., Cygler, G. & Pleiss, J. Analysis of thermophysical properties of deep eutectic solvents by data integration. J. Chem. Eng. Data 65, 1172–1179 (2020).
44. Abdellah, M. et al. Molotropic behavior of two choline chloride’s deep eutectic solvents in their aqueous mixtures. Int. J. Eng. Res. Dev. 12, 73–80 (2016).
45. Tremouilhac, P. et al. Chemotion ELN: An Open Source electronic lab notebook for chemists in academia. J. Cheminform. 9, 1–13 (2017).
55. Nascimento, M. L. F. & Aparicio, C. Data classification with the Vogel–Fulcher–Tammann–Hesse viscosity equation using correspondence analysis. *Phys. B Condens. Matter* **398**, 71–77 (2007).
56. Derlacki, Z. J., Easteal, A. J., Edge, A. V. J., Woolf, L. A. & Roksandic, Z. Diffusion coefficients of methanol and water and the mutual diffusion coefficient in methanol–water solutions at 278 and 298 K. *J. Phys. Chem.* **89**, 5318–5322 (1985).
57. Benson, S. P. & Pleiss, J. Incomplete mixing versus clathrate-like structures: A molecular view on hydrophobicity in methanol–water mixtures. *J. Mol. Model.* **19**, 3427–3436 (2013).
58. Rezus, Y. L. A. & Bakker, H. J. Effect of urea on the structural dynamics of water. *Proc. Natl. Acad. Sci. USA* **103**, 18417–18420 (2006).
59. Katti, P. K. & Chaudhri, M. M. Viscosities of binary mixtures of benzyl acetate with dioxane, aniline, and m-Cresol. *J. Chem. Eng. Data* **9**, 442–443 (1964).
60. Jin, H. *et al.* Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations. *J. Phys. Chem. B* **112**, 81–92 (2008).
61. Okturo, O. O. & VanderNoot, T. J. Temperature dependence of viscosity for room temperature ionic liquids. *J. Electroanal. Chem.* **568**, 167–181 (2004).
62. Miran, M. S., Kinoshita, H., Yasuda, T., Susan, M. A. B. H. & Watanabe, M. Physicochemical properties determined by ΔpKa for protic ionic liquids based on an organic super-strong base with various Bronsted acids. *Phys. Chem. Chem. Phys.* **14**, 5178–5186 (2012).
63. Murray-Rust, P., Townsend, J. A., Adams, S. E., Phadungsukanan, W. & Thomas, J. The semantics of chemical markup language (CML): Dictionaries and conventions. *J. Cheminform.* **3**, 43 (2011).
64. xml.etree.ElementTree. https://docs.python.org/3/library/xml.etree.ElementTree.html.
65. Jones, E., Oliphant, T. & Peterson, P. SciPy: Open Source Scientific Tools for Python. (2001).
66. Van Der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy array: A structure for efficient numerical computation. *Comput. Sci. Eng.* **13**, 22–30 (2011).
67. Hunter, J. D. Matplotlib: A 2D graphics environment. *Comput. Sci. Eng.* **9**, 99–104 (2007).
68. Waskom, M. *et al.* mwaskom/seaborn: v0.8.1. Zenodo https://doi.org/10.5281/zenodo.883859 (2017).
69. McKinney, W. Data structures for statistical computing in Python. *SciPy* 51–56 (2010).
70. os library. https://docs.python.org/3.7/library/os.html.
71. subprocess library. https://docs.python.org/3.7/library/subprocess.html.
72. Acknowledgements
This work was funded by the German Research Foundation (DFG, grant EXC 2075) and by the Swiss National Science Foundation (SNF, Early Postdoc Mobility Fellowship).

Author contributions
G.G. and J.P. designed the research; G.G. and X.M.X. performed the research; G.G., X.M.X., and J.P. analyzed data and wrote the paper; all authors reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-78101-y.

Correspondence and requests for materials should be addressed to J.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020