Increased health service use for asthma, but decreased for COPD: Northumbrian hospital episodes, 2013–2014

I. Shiue

Abstract The burden of respiratory disease has persisted over the years, for both men and women. The aim of the present study was to investigate the hospital episode rates in respiratory disease and to understand whether and how the use of the health service for respiratory disease might have changed in recent years in the North-East of England. Hospital episode data covering two full calendar years (in 2013–2014) was extracted from the Northumbria Healthcare NHS Foundation Trust, which serves a population of nearly half a million. Hospital episode rates were calculated from admissions divided by annual and small area-specific population size by sex and across age groups, presented with per 100,000 person-years. The use of the health service for influenza and pneumonia, acute lower respiratory infections and chronic obstructive pulmonary disease (COPD) increased with an advancing age, except for acute upper respiratory infections and asthma. Overall, the use of the health service for common respiratory diseases has seemed to be unchanged, except for asthma. There were large increases in young adults aged 20–50 for both men and women and the very old aged 90+ in women. Of note, there were large increases in acute lower respiratory infections for both men and women aged 90+, whereas there was also a large decrease in COPD in women aged 80–90. This is the first study to examine health service use for respiratory diseases by calculating the detailed population size as denominator. Re-diverting funding to improve population health on a yearly basis may serve the changing need in local areas.

Introduction

Evidence before this study

Respiratory disease, as an adult health condition, affects millions of people globally and is the one of the leading causes of health issues in both developed and developing countries [1]. Health service use has increased in older persons and costs millions of pounds in the UK, USA and several European countries, which could prompt considerations on long-term healthcare together with the entire socio-economic structure [2–5]. Hospital admissions have seemed to decrease in some regions, whereas in other regions primary care consultations seem to have increased, likely due to different study populations, study time periods and/or estimation methods in rates [6–28]. Continuously monitoring how people consume the health service because of various health conditions is important in assisting with individual, local and national health profiles and with the re-allocation of medical and social recourse effectively and consequently to prevent from unnecessary pain and spending. Therefore, such clinical evidence is necessary.
Knowledge gap

Investigating admission rates and hospitalisation rates could be perceived as a direct way of understanding how many patients are admitted and hospitalised require health service utilisation. Previous research tended to estimate age-standardised rates using the population census in a certain year by accommodating a specific population structure (e.g. Europe) or by adjusting for all ages in a specific study catchment to compare across countries and/or regions. However, looking at the total age-standardised rate by using the population census in a certain year may sometimes mislead and misguide the re-allocation of local medical and social resources, as one national, international or global policy does not always fit all owing to different unadjusted historical contexts (i.e. biological or non-biological risk contributor profiles).

Study aim

Following this context, therefore, the aim of the present study was to investigate the age-specific hospital episode rates in common respiratory diseases by sex and across age groups using an annual and small area-
specific population size to understand and establish the monitoring on whether and how the use of the health service for respiratory diseases may have changed in recent years, if at all.

Materials and methods

Study sample

Hospital Episode Statistics (HES; more details via http://www.hscic.gov.uk/hes) is a data warehouse containing details of all admissions, outpatient appointments and A&E attendances at National Health Service (NHS) hospitals in England. These data are collected during a patient's time at hospital and are submitted to allow hospitals to be paid for the care they deliver. HES data are designed to enable secondary use, particularly for non-clinical purposes. Each NHS trust in England collects its own patient data, and the anonymised data are kept locally within each trust and also centrally at the national level. Northumbria Healthcare NHS Foundation Trust (more details via https://www.northumbria.nhs.uk/) covers the health service mostly for Northumberland...
and North Tyneside, including three major hospitals (Hexham General Hospital, North Tyneside General Hospital and Wansbeck General Hospital) and other smaller community hospitals (Alnwick Infirmary, Berwick Infirmary, Blyth Community Hospital, Haltwhistle War Memorial Hospital, Rothbury Community Hospital and Sir G B Hunter Memorial Hospital) facilitating health and social care and well-being for rehabilitation purposes (more details via http://www.nhs.uk/Services/Trusts/Overview/Default.aspx?id=1802) and acts as a foundation trust that has been free from central government control since 2006 (more details via https://www.northumbria.nhs.uk/about-us/being-foundation-trust).

Fig. 3 Distribution of rates of health service use for “J09–J18: influenza and pneumonia”
Variables and analyses

The data from the Northumbrian Hospital Episodes used in the present study covered two full calendar years (2013–2014). Health service use was determined by each admission coded as J00-06 Acute upper respiratory infections, J09-18 Influenza and pneumonia, J20-J22 Acute lower respiratory infections, G44 Other chronic obstructive pulmonary disease (COPD) and J45 Asthma, based on the International Classification of Diseases, 10th version (more details via http://apps.who.int/classifications/icd10/browse/2015/en; now re-directed to http://apps.who.int/classifications/icd10/browse/2016/en). To estimate the usage of the health service, age-specific HES rates were calculated from admissions divided by population size for each age group, presented with per 100,000 person-years. Estimates on population size in both 2013 and 2014 were obtained from the UK Office for National

Fig. 4 Distribution of rates in health service use for “J20–J22: other acute lower respiratory infections”

![Graphs showing health service use rates for different age groups and genders.](image-url)
Statistics (more details via http://www.ons.gov.uk/ons/taxonomy/index.html?nscl=Population). Statistical software STATA version 13.0 (STATA, College Station, Texas, USA; more details via http://www.stata.com/) and Microsoft Excel (more details via https://products.office.com/en-us/excel) were used to perform all the analyses and to generate graphs. As this was only a secondary data analysis with no individual identification in the present study, no further ethics approval was required.

Results

Figure 1 describes the population size by sex and across age groups in mid-2013 to mid-2014. Clearly, the population of young adults (aged 20–49) has decreased, whereas that of older adults (aged 50 and above) has increased. Figures 2–6 show the distribution of rates of health service use for acute upper respiratory infections, influenza and pneumonia, acute
lower respiratory infections, COPD and asthma from 2013 to 2014 by sex and age groups respectively (also see Tables 1–5). Clearly, the use of the health service for influenza and pneumonia, acute lower respiratory infections and COPD increased with an advancing age in both men and women, but not for acute upper respiratory infections and asthma. Following these 2 years, the use of the health service for common respiratory diseases has seemed to be unchanged, except for asthma. There were large increases in young adults aged 20-50 for both men and women and the very old aged 90 and above in women. Of note, there were large increases in acute lower respiratory infections for both men and women aged 90 and above; there was also a large decrease in COPD in women aged 80-90.
Discussion

Methodologically, there are a number of ways of examining hospital admissions, i.e. the use of the health service, in the population. To be specific, we could look historically at the trends by day of the week, by month, by season or by year. We could also examine geographically by hospital, by city, by region or by country. Mathematically, we could estimate by number, by rate or by standardisation. Politically, we could assess by practice, by policy or by reform. For example, respiratory admissions declined accompanying an increase in smoke-free areas or with the introduction of immunisation [29–33].

| Table 1 Hospital episode statistics for “J00–J06: acute upper respiratory infections” |
|----------------------------------|----------------------------------|---------------------------|---------------------------|
| | 2014 | 2013 | |
| | All (years) | Episode Population 2014 HES rate | All age groups (years) Episode Population 2013 HES rate |
| | 0–9 | 775 | 55,577 | 1394.461738 | 0–9 | 802 | 55,550 | 1443.744374 |
| | 10–19 | 47 | 55,577 | 84.567357 | 10–19 | 30 | 56,221 | 53.36084381 |
| | 20–29 | 44 | 54,879 | 80.17638805 | 20–29 | 14 | 55,221 | 25.3526738 |
| | 30–39 | 30 | 58,734 | 51.07774032 | 30–39 | 14 | 58,955 | 23.74692562 |
| | 40–49 | 21 | 72,433 | 28.99231013 | 40–49 | 10 | 74,655 | 13.3949501 |
| | 50–59 | 27 | 77,070 | 35.0330868 | 50–59 | 16 | 75,724 | 21.12936453 |
| | 60–69 | 13 | 70,296 | 18.49322863 | 60–69 | 7 | 69,558 | 10.06354409 |
| | 70–79 | 14 | 45,482 | 30.78140803 | 70–79 | 11 | 44,044 | 24.97502498 |
| | 80–89 | 6 | 23,764 | 182.964017 | 80–89 | 13 | 23,324 | 55.7365805 |
| | 90+ | 9 | 4,919 | 182.964017 | 90+ | 8 | 4,716 | 169.6352841 |
| Total | 164 | 40,7577 | 40.23779556 | Total | 93 | 406,197 | 22.89529465 |
| Female (years) | 0–9 | 309 | 26,728 | 1156.090991 | 0–9 | 327 | 26767 | 1221.653529 |
| | 10–19 | 32 | 26,938 | 118.7912985 | 10–19 | 19 | 27247 | 69.73244761 |
| | 20–29 | 30 | 27,406 | 109.4650806 | 20–29 | 6 | 27663 | 21.68962152 |
| | 30–39 | 17 | 30,170 | 55.3833095 | 30–39 | 11 | 30200 | 36.42384106 |
| | 40–49 | 14 | 37,372 | 37.4612009 | 40–49 | 5 | 38432 | 13.00999167 |
| | 50–59 | 22 | 39,723 | 55.3833095 | 50–59 | 11 | 38943 | 28.24641142 |
| | 60–69 | 7 | 36,233 | 19.31940496 | 60–69 | 4 | 35817 | 11.16788117 |
| | 70–79 | 8 | 24,226 | 33.02237266 | 70–79 | 7 | 23546 | 29.72904103 |
| | 80–89 | 5 | 14,148 | 35.3406842 | 80–89 | 5 | 14045 | 35.5998576 |
| | 90+ | 9 | 3,525 | 255.3191489 | 90+ | 6 | 3407 | 176.1080129 |
| Total | 112 | 212,803 | 52.63083697 | Total | 55 | 212053 | 25.936912 |
| Male (years) | 0–9 | 466 | 28,849 | 1615.30729 | 0–9 | 475 | 28,783 | 1650.279679 |
| | 10–19 | 15 | 28,609 | 52.43105317 | 10–19 | 11 | 28,558 | 38.51810351 |
| | 20–29 | 14 | 27,473 | 50.9591235 | 20–29 | 8 | 27,558 | 29.02968285 |
| | 30–39 | 13 | 28,564 | 45.51183308 | 30–39 | 3 | 28,755 | 10.43296818 |
| | 40–49 | 7 | 35,061 | 19.9652035 | 40–49 | 5 | 36,223 | 13.80338459 |
| | 50–59 | 5 | 37,347 | 13.38795619 | 50–59 | 5 | 36,781 | 13.5937515 |
| | 60–69 | 6 | 34,063 | 17.61442034 | 60–69 | 3 | 33,741 | 8.891250892 |
| | 70–79 | 6 | 21,256 | 28.22732405 | 70–79 | 4 | 20,498 | 19.51409894 |
| | 80–89 | 1 | 9,616 | 10.39933444 | 80–89 | 8 | 9,279 | 86.21618709 |
| | 90+ | 0 | 1,394 | 0 | 90+ | 2 | 1,309 | 152.7883881 |
| Total | 52 | 194,774 | 26.69760851 | Total | 38 | 194,144 | 19.57310038 |

Disassess by practice, by policy or by reform. For example, respiratory admissions declined accompanying an increase in smoke-free areas or with the introduction of immunisation [29–33]. Understanding the use of the health service in the bigger picture is critical for health service providers and policy makers to effectively re-allocate medical and social resources (from prevention to rehabilitation) respectively. The targeted at-risk population may shift following the change in investment in health and nursing.
programs and the subsequent risk contributor profile (biologically or non-biologically). Therefore, the performance review of such ought to be documented regularly, preferably annually.

Strengths and limitations

The present study has a few strengths. First, the data are from recent years. Therefore, the results provide information on recent health policy use. Second, the study period covers full calendar years. In addition, the population size was estimated on a yearly basis. Therefore, selection bias could be avoided in the presentation of trends and the estimation of rates could be more accurate than using the population census from a single year. However, mis-classification may not be completely avoidable [34, 35]. Third, this is the first HES study looking at the use of the health service in

	2014		2014 HES rate	2013		2013 HES rate
	All age groups	Episode Population		All age groups	Episode Population	
0–9	67	55,577	120.534664	0–9	66	55,550
10–19	26	55,577	46.78194127	10–19	16	56,221
20–29	41	54,879	74.70981614	20–29	31	55,221
30–39	73	58,734	124.2891681	30–39	75	58,955
40–49	147	72,433	202.94709786	40–49	147	74,655
50–59	312	77,070	404.8267808	50–59	272	75,724
60–69	620	70,296	881.9847502	60–69	600	69,558
70–79	1,069	45,842	2,350.38037	70–79	868	44,044
80–89	1,494	23,764	6,286.820401	80–89	1,420	23,324
90+	625	4,919	12,705.83452	90+	561	4,716
Total	4,474	407,577	1,097.706691	**Total**	4,056	406,197

	2014		2014 HES rate	2013		2013 HES rate
Female (years)						
0–9	28	26,728	104.7590542	0–9	27	26,767
10–19	10	26,938	37.12228079	10–19	9	27,247
20–29	25	27,406	91.22090053	20–29	24	27,663
30–39	46	30,170	152.4693404	30–39	29	30,200
40–49	76	37,372	203.3608049	40–49	80	38,432
50–59	156	39,723	392.7195831	50–59	141	38,943
60–69	300	36,233	827.9744984	60–69	300	35,817
70–79	482	24,226	1,989.597953	70–79	398	23,546
80–89	750	14,148	5,301.102629	80–89	780	14,045
90+	391	3,525	11,092.19858	90+	333	3,407
Total	2,264	212,803	1,063.894776	**Total**	2,121	212,053

Male (years)	2014		2014 HES rate	2013		2013 HES rate
0–9	39	28,849	135.1866616	0–9	39	28,783
10–19	16	28,609	55.92645671	10–19	7	28,558
20–29	16	27,473	58.23899829	20–29	7	27,558
30–39	27	28,564	94.52457639	30–39	46	28,755
40–49	71	35,061	202.504207	40–49	67	36,223
50–59	156	37,347	417.7042333	50–59	131	36,781
60–69	320	34,063	939.4357514	60–69	300	33,741
70–79	587	21,256	2,761.573203	70–79	470	20,498
80–89	744	9,616	7,737.104825	80–89	640	9,279
90+	234	1,394	16,786.22669	90+	228	1,309
Total	2,210	194,774	1,134.648362	**Total**	1,935	194,144

Eur J Clin Microbiol Infect Dis (2016) 35:311–324 319

 Springer
respiratory disease from the Northumbria area, which is free from central governmental control. However, there are also a few limitations that cannot be ignored. First, it was not possible to link with population surveys to understand patient risk contributor profiles, whether biological or non-biological. However, the entire study focus was to investigate if and how different age groups could present any change in health service use in recent years. Second, only two genders were identified. In other words, transgender was not properly coded. Therefore, no results on transgender people could be obtained (more details via http://www.ons.gov.uk/ons/about-ons/business-transparency/freedom-of-information/what-can-i-request/previous-foi-requests/health-and-social-care/transgender-population-figures/index.html).

Third, some coding errors might not be 100% avoidable, which would affect the estimates. Taken together, future studies retaining the strengths and overcoming the limitations mentioned above to continuously monitor and document such clinical

Table 3
Hospital episode statistics for “J20–J22: other acute lower respiratory infections”

Age Group (years)	2014	2013					
	Episode	Population	Episode	Population			
	rate		rate				
0–9	436	55,577	784.4971841	0–9	372	55,550	669.6669667
10–19	10	55,577	17.99305468	10–19	9	56,221	16.00825314
20–29	40	54,879	72.8876255	20–29	10	55,221	18.10905272
30–39	48	58,734	81.72438451	30–39	28	58,955	47.49385124
40–49	83	72,433	114.5886543	40–49	49	74,655	65.63525551
50–59	105	77,070	136.239782	50–59	102	75,724	134.6996989
60–69	180	70,296	256.0600888	60–69	134	69,558	192.6449869
70–79	304	45,482	668.3962886	70–79	229	44,044	519.9346108
80–89	339	23,764	1,426.527521	80–89	359	23,324	1,539.187103
90+	188	4,919	3,821.915023	90+	138	4,716	2,926.208651
Total	1,733	407,577	425.1957299	Total	1,430	406,197	352.0459285

Female (years)

Age Group (years)	2014	2013					
	Episode	Population	Episode	Population			
	rate		rate				
0–9	186	26,728	695.8994313	0–9	153	26,767	571.5993574
10–19	3	26,938	11.13668424	10–19	3	27,247	11.01038646
20–29	23	27,406	83.92322849	20–29	8	27,663	28.91949535
30–39	27	30,170	158.5982932	30–39	21	30,200	69.53642384
40–49	46	37,372	123.086803	40–49	22	38,432	57.24396363
50–59	63	39,723	136.239782	50–59	50	38,943	128.3972792
60–69	65	36,233	179.3944747	60–69	46	35,817	128.4306335
70–79	129	24,226	532.4857591	70–79	114	23,546	484.1386681
80–89	190	14,148	1,342.945999	80–89	211	14,045	1,502.313991
90+	148	4,919	4,198.58156	90+	108	3,407	3,169.944232
Total	880	212,803	413.5280048	Total	736	212,053	347.0830406

Male (years)

Age Group (years)	2014	2013					
	Episode	Population	Episode	Population			
	rate		rate				
0–9	250	28,849	866.581164	0–9	219	28,783	760.857888
10–19	7	28,609	24.4672481	10–19	6	28,558	21.00987464
20–29	17	27,473	61.87893568	20–29	2	27,558	7.257420713
30–39	21	28,564	73.51911497	30–39	7	28,755	24.34359242
40–49	37	35,061	105.5303614	40–49	27	36,223	74.53827679
50–59	42	37,347	112.458832	50–59	52	36,781	141.3773416
60–69	115	34,063	337.6097232	60–69	88	33,741	260.8102902
70–79	175	21,256	823.2969514	70–79	115	20,498	561.0303444
80–89	149	9,616	1,549.500832	80–89	148	9,279	1,594.999461
90+	40	1,394	2,869.440459	90+	30	1,309	2,291.825821
Total	853	194,774	437.9434627	Total	694	194,144	357.4666227

© Springer
evidence from the local setting to the national setting would be recommended.

Research, practice and policy implications

From 2013 to 2014, there has been unchanged use of health service utilisation with regard to common respiratory diseases, except for asthma. Respiratory disease is a common condition that has a large and negative impact on quality of life and life expectancy, with high financial costs. To direct future research, local health policy and guidelines could benefit from annual clinical records on health service use for respiratory diseases. From the practice and policy perspectives, re-organising and re-diverting funding to improve population health on a yearly basis, including improving the role of health and nursing professionals in reducing the burden of

Table 4 Hospital episode statistics for “J44: COPD” (chronic obstructive pulmonary disease)

	2014	2013		
	All (years) Episode	Population 2014 HES rate	All (years) Episode	Population 2013 HES rate
0–9	1	55,577 1.799305468	0–9	55,550
10–19	0	55,577 0	10–19	56,221
20–29	0	54,879 0	20–29	55,221
30–39	6	58,734 10.21554806	30–39	58,955
40–49	35	72,433 48.32051689	40–49	74,655
50–59	245	77,070 317.8928247	50–59	75,724
60–69	670	70,296 953.1125526	60–69	69,558
70–79	930	45,482 2,044.764962	70–79	44,044
80–89	656	23,764 2,317.544216	80–89	23,234
90+	114	4,919 2,760.478034	90+	4,716
Total	2,657	407,577 651.9013585	Total	406,197 644.5148536

Female (years)

	2014	2013		
0–9	0	26,728 0	0–9	26,767
10–19	0	26,938 0	10–19	27,247
20–29	0	27,406 0	20–29	27,663
30–39	4	30,170 13.25820351	30–39	30,200
40–49	20	37,372 53.51600128	40–49	38,432
50–59	136	342,3709186	50–59	38,943
60–69	342	36,233 2,760.478034	60–69	35,817
70–79	521	24,226 2,150.582019	70–79	23,546
80–89	385	14,148 2,721.232683	80–89	14,045
90+	60	3,525 1,702.12766	90+	3,407
Total	1,468	212,803 689.8398989	Total	212,053 695.1092416

Male (years)

	2014	2013		
0–9	1	28,849 3.466324656	0–9	28,783
10–19	0	28,609 0	10–19	28,558
20–29	0	27,473 0	20–29	27,558
30–39	2	28,564 7.001820473	30–39	28,755
40–49	15	35,061 42.78257893	40–49	36,223
50–59	109	37,347 291.8577445	50–59	36,781
60–69	328	34,063 962.9126452	60–69	33,741
70–79	409	21,256 1924.162589	70–79	20,498
80–89	271	9,616 2818.219634	80–89	9,279
90+	54	1,394 3873.74462	90+	1,309
Total	1,189	194,774 610.4510869	Total	194,144 589.7684193
rehabilitation and raising public awareness, attitude and knowledge may serve the changing need in local areas.

Compliance with ethical standards

Conflicts of interest None.

Table 5 Hospital episode statistics for “J45: asthma”

Year	Episode	Population	2014 HES rate	Year	Episode	Population	2013 HES rate
2014	0–9	99	178.1312413	2013	0–9	100	180.0180018
	10–19	58	104.3597171		10–19	48	56.221
	20–29	94	180.3968731		20–29	35	55.221
	30–39	91	154.9358123		30–39	60	58.955
	40–49	105	144.9615507		40–49	83	74.655
	50–59	88	114.1819125		50–59	70	75.724
	60–69	70	99.57892341		60–69	73	69.558
	70–79	59	129.7216481		70–79	56	44.044
	80–89	47	197.7781518		80–89	47	23.324
	90+	26	528.562716		90+	17	4.716
Total	742	407,577	182.0514897		589	406,197	145.0035328

Female (years)

Year	Episode	Population	2014 HES rate	Year	Episode	Population	2013 HES rate
2014	0–9	38	142.1730021	2013	0–9	24	26.767
	10–19	30	111.3668424		10–19	26	27.247
	20–29	61	222.5789973		20–29	24	27.663
	30–39	74	245.276765		30–39	41	30.200
	40–49	74	198.0092048		40–49	67	38.432
	50–59	70	176.2203258		50–59	52	38.943
	60–69	44	121.4362598		60–69	53	35.817
	70–79	44	181.6230496		70–79	38	23.546
	80–89	34	240.3166525		80–89	42	14.045
	90+	24	680.8510638		90+	15	3.407
Total	493	212,803	231.6696663		382	212,053	180.1436433

Male (years)

Year	Episode	Population	2014 HES rate	Year	Episode	Population	2013 HES rate
2014	0–9	61	211.445804	2013	0–9	76	28.783
	10–19	28	97.87129924		10–19	22	28.558
	20–29	38	138.3176209		20–29	11	27.558
	30–39	17	59.51547402		30–39	19	28.755
	40–49	31	88.4173298		40–49	16	36.223
	50–59	18	48.1966423		50–59	18	36.781
	60–69	26	76.3291548		60–69	20	33.741
	70–79	15	70.56831012		70–79	18	20.498
	80–89	13	135.1913478		80–89	5	9.279
	90+	2	143.472023		90+	2	1.309
Total	249	194,774	127.8404715		207	194,144	106.6218889

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
References

1. Global Burden of Disease Study 2013 Collaborators (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. doi:10.1016/S0140-6736(15)60692-4

2. Oppong R, Coast J, Hood K, Nuttall J, Smith RD, Butler CC; GRACE-01 Study Team (2011) Resource use and costs of treating acute cough/lower respiratory tract infections in 13 European countries: results and challenges. Eur J Health Econ 12(4):319–329

3. Khakhan A, Sin DD, Coast J, Hood K, Nuttall J, Smith RD, Butler CC; Global Burden of Disease Study 2013 Collaborators (2015) Hospital admissions and exercise capacity decline in patients with COPD. Eur Respir J 43(4):1018–1027

4. Stewart DL, Romero JR, Buysman EK, Fernandes AW, Mahadevia PJ (2009) Total healthcare costs in the US for preterm infants with respiratory syncytial virus lower respiratory infection in the first year of life requiring medical attention. Curr Med Res Opin 25(11):2795–2804

5. Monte SV, Paolini NM, Slazak EM, Schentag JJ, Paladino JA (2008) Costs of treating lower respiratory tract infections. Am J Manag Care 14(4):190–196

6. Singleton RJ, Holman RC, Folkema AM, Wenger JD, Steiner CA, Redd JT (2012) Trends in lower respiratory tract infection hospitalizations among American Indian/Alaska Native children and the general US child population. J Pediatr 161(2):296–302.e2

7. Moore H, Burgner D, Carville K, Jacoby P, Richmond P, Lehmann D (2007) Diverging trends for lower respiratory infections in non-African and Aboriginal children. J Paediatr Child Health 43(6):451–457

8. Fleming D, Harcourt S, Smith G (2003) Influenza and adult hospital admissions for respiratory conditions in England 1989-2001. Commun Dis Public Health 6(3):231–237

9. Aldaz P, Loayssa JR, Apezteguía J, Oscariz M, Dronda MJ, Sagredo M, Castillo J (2011) Increased primary care consultations for upper respiratory tract infections and for fever coinciding with a wave of influenza. Rev Esp Salud Pública 85(1):113–120

10. Hatzigioriou E, Kivrassilis F, Saraphidou S, Katsara M, Valeri R, Hatziagorou E, Kirvassilis F, Sagredo M, Castilla J (2011) Increased primary care consultations for upper respiratory tract infections and for fever coinciding with a wave of influenza. Rev Esp Salud Pública 85(1):113–120

11. Hatzigioriou E, Kivrassilis F, Saraphidou S, Katsara M, Valeri R, Emporiadou M, Magnisali C, Tsanakas J (2009) Acute respiratory admissions in Thessaloniki, Greece: 14-year follow-up. Hippokratia 13(4):242–246

12. Björk O, Bräbäck L (2003) A retrospective population based trend analysis on hospital admissions for lower respiratory illness among Swedish children from 1987 to 2000. BMC Public Health 3:22

13. Ramon MA, Gimeno-Santos E, Ferrer J, Ballells E, Rodríguez E, de Batlle J, Gómez FP, Sauda J, Ferrer A, Barberà JA, Agustí A, Gea J, Rodríguez-Roisin R, Antó JM, Garcia-Aymerich J, PAC-GRACE-01 Study Team (2014) Hospital admissions and exercise capacity decline in patients with COPD. Eur Respir J 43(4):1018–1027

14. De Miguel-Díez J, Jiménez-Garcia R, Hernández-Barrera V, Puente-Maestu L, Rodríguez-Rodríguez P (2013) López de Andrés A, Carrasco-Garrido F. Trends in hospital admissions for acute exacerbation of COPD in Spain from 2006 to 2010. Respir Med 107(5):717–723

15. Mikalsen JB, Skeieis L, Tveit LM, Engelsvold DH, Øyland K (2015) Decline in admissions for childhood asthma, a 26-year period population-based study. Pediatr Allergy Immunol. doi:10.1111/pai.12372

16. De Miguel-Díez J, Jiménez-Garcia R, Hernández-Barrera V, López de Andrés A, Villa-Asensio JR, Plaza V, Carrasco-Garrido P (2014) National trends in hospital admissions for asthma exacerbations among pediatric and young adult population in Spain (2002–2010). Respir Med 108(7):983–991. doi:10.1016/j.rmed.2014.04.008

17. Gibbons B, Griggs K, Mukherjee M, Sheikh A (2013) Ten years of asthma admissions to adult critical care units in England and Wales. BMJ Open 3(9)e003420

18. Barcala FJ, Viñas JA, Cuadrado LV, Bourdin A, Dobaño JM, Takkkouche B (2010) Trends in hospital admissions due to asthma in north-west Spain from 1995 to 2007. Allergol Immunopathol (Madr) 38(5):254–258

19. Kinnula VL, Vasankari T, Kontula E, Sovijärvi A, Sayjakangas O, Pietinalho A (2011) The 10-year COPD Programme in Finland: effects on quality of diagnosis, smoking, prevalence, hospital admissions and mortality. Prim Care Respir J 20(2):178–183

20. Rowe BH, Villa-Roel C, Abu-Laban RB, Stenstrom R, Mackey D, Steil IG, Campbell S, Young B (2010) Admissions to Canadian hospitals for acute asthma: a prospective, multicentre study. Can Respir J 17(1):25–30

21. Wilson DH, Tucker G, Frith P, Appleton S, Ruffin RE, Adams RJ (2007) Trends in hospital admissions and mortality from asthma and chronic obstructive pulmonary disease in Australia, 1993-2003. Med J Aust 186(8):408–411

22. Engelsvold DH, Øyland K (2003) Hospital admissions for childhood asthma in Rogaland, Norway, from 1984 to 2000. Acta Paediatr 92(5):610–616

23. Kao CC, See LC, Yan DC, Ou LS, Huang JL (2001) Time trends and seasonal variations in hospital admissions for childhood asthma in Taiwan from 1990 to 1998. Asian Pac J Allergy Immunol 19(2):63–68

24. Crott R, Pouplier I, Roch I, Chen YC, Closson MC (2014) Pneumonia and influenza, and respiratory and circulatory hospital admissions in Belgium: a retrospective database study. Arch Public Health 72(1):33

25. Froes F, Diniz A, Mesquita M, Serrado M, Nunes B (2013) Hospital admissions of adults with community-acquired pneumonia in Portugal between 2000 and 2009. Eur Respir J 41(5):1141–1146

26. Trettler CL, Stuart JM, George R, Miller E (2008) Increasing hospital admissions for pneumonia. England Emerg Infect Dis 14(5):727–733

27. Monge V, González A (2001) Hospital admissions for pneumonia in Spain. Infection 29(1):3–6

28. Djuretic T, Ryan MJ, Miller E, Fairley CK, Goldblatt D (1998) Hospital admissions in children due to pneumococcal pneumonia in England. J Infect 37(1):54–58

29. Kmiotowicz Z (2015) Smoking ban cuts admissions for child respiratory infections. BMJ 350:h2913

30. Humar JP, Garin N, Gerstel E, Barballo S, Carballo D, Keller PF, Guessou M (2014) Acute respiratory and cardiovascular admissions after a public smoking ban in Geneva, Switzerland. PLoS One 9(3):e90417

31. Millett C, Lee JT, Laverty AA, Glantz SA, Majeed A (2013) Hospital admissions for childhood asthma after smoke-free legislation in England. Pediatrics 131(2):e495–e501

32. Grijalva CG, Nuorti JP, Arbogast PG, Martin SW, Edwards KM, Griffin MR (2007) Decline in pneumonia admissions after routine
33. Puig-Barberà J, Márquez-Calderón S, Masoliver-Fores A, Lloria-Paes F, Ortega-Dicha A, Gil-Martín M, Calero-Martínez MJ (1997) Reduction in hospital admissions for pneumonia in non-institutionalised elderly people as a result of influenza vaccination: a case-control study in Spain. J Epidemiol Community Health 51(5):526–530

34. Herrett E, Shah AD, Boggon R, Denaxas S, Smeeth L, van Staa T, Timmis A, Hemingway H (2013) Completeness and diagnostic validity of recording acute myocardial infarction events in primary care, hospital care, disease registry, and national mortality records: cohort study. BMJ 346:f2350

35. Sanfilippo FM, Hobbs MS, Knuiman MW, Ridout SC, Bradshaw PJ, Finn JC, Rankin JM, Sprivulis PC, Hung J, Sanfilippo FM, Hobbs MS, Knuiman MW, Ridout SC, Bradshaw PJ, Finn JC, Rankin JM, Sprivulis PC, Hung J (2011) Can we monitor heart attack in the troponin era? Evidence from a population-based cohort study. BMC Cardiovasc Disord 11:35