Diophantine approximation by Piatetski-Shapiro primes

S. I. Dimitrov

1 Introduction and statement of the result

Let \([\cdot]\) be the floor function. In this paper we show that whenever \(\eta\) is real, the constants \(\lambda_i\) satisfy some necessary conditions, then for any fixed \(1 < c < 38/37\) there exist infinitely many prime triples \(p_1, p_2, p_3\) satisfying the inequality

\[|\lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 + \eta| < (\max p_j)^{37c - 38} (\log \max p_j)^{10}\]

and such that \(p_i = [n_i^c], i = 1, 2, 3\).

Keywords Diophantine approximation · Piatetski-Shapiro primes

Mathematics Subject Classification 11D75 · 11P32

Abstract Let \([\cdot]\) be the floor function. In this paper we show that whenever \(\eta\) is real, the constants \(\lambda_i\) satisfy some necessary conditions, then for any fixed \(1 < c < 38/37\) there exist infinitely many prime triples \(p_1, p_2, p_3\) satisfying the inequality

\[|\lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 + \eta| < (\max p_j)^{37c - 38} (\log \max p_j)^{10}\]

and such that \(p_i = [n_i^c], i = 1, 2, 3\).

Keywords Diophantine approximation · Piatetski-Shapiro primes

Mathematics Subject Classification 11D75 · 11P32

1 Introduction and statement of the result

Let \(\mathbb{P}\) denotes the set of all prime numbers. In 1953 Piatetski-Shapiro [6] showed that for any fixed \(\gamma \in (11/12, 1)\) the set

\[\mathbb{P}_\gamma = \{ p \in \mathbb{P} \mid p = [n^{1/\gamma}] \text{ for some } n \in \mathbb{N}\}\]

is infinite. The prime numbers of the form \(p = [n^{1/\gamma}]\) are called Piatetski-Shapiro primes of type \(\gamma\). Subsequently the interval for \(\gamma\) was sharpened many times and the best result up to now belongs to Rivat and Wu [7] for \(\gamma \in (205/243, 1)\).

Twenty years later Vaughan [9] proved that whenever \(\delta > 0, \eta\) is real and constants \(\lambda_i\) satisfy some conditions, there are infinitely many prime triples \(p_1, p_2, p_3\) such that

\[|\lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 + \eta| < (\max p_j)^{-\xi + \delta}\]

for \(\xi = 1/10\). Latter the upper bound for \(\xi\) was improved several times and the best result up to now is due to K. Matomäki [5] with \(\xi = 2/9\). In relation to solvability of inequality (1) with prime numbers of a special form we find papers by the author and Todorova [3] and the author [1]. In order to establish our result we solve the inequality (1) with Piatetski-Shapiro primes. Thus we prove the following theorem.
Theorem 1 Suppose that $\lambda_1, \lambda_2, \lambda_3$ are non-zero real numbers, not all of the same sign, η is real, λ_1/λ_2 is irrational and γ be fixed with $37/38 < \gamma < 1$. Then there exist infinitely many ordered triples of Piatetski-Shapiro primes p_1, p_2, p_3 of type γ such that

$$|\lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 + \eta| < (\max p_j)^{37/38 \gamma} (\log \max p_j)^{10}.$$

2 Notations

The letter p will always denote prime number. As usual $[t]$ and $\{t\}$ denote the integer part of t and the fractional part of t. Moreover $\psi(t) = \{t\} - 1/2$. Let γ be a real constant such that $37/38 < \gamma < 1$. Since λ_1/λ_2 is irrational, there are infinitely many different convergents a_0/q_0 to its continued fraction, with

$$\left|\frac{\lambda_1}{\lambda_2} - \frac{a_0}{q_0}\right| < \frac{1}{q_0^2}, \quad (a_0, q_0) = 1, \quad a_0 \neq 0$$

and q_0 is arbitrary large. Denote

$$X = q_0^{13/6};$$
$$\Delta = X^{12/38} \log X;$$
$$\epsilon = X^{37/38 \gamma} \log^{10} X;$$
$$H = \frac{\log^2 X}{\epsilon};$$
$$S(\alpha, X) = \sum_{\lambda_0 X < p \leq X \atop p \in \mathbb{P}} p^{1-\gamma} e(\alpha p) \log p, \quad 0 < \lambda_0 < 1;$$
$$\Sigma(\alpha, X) = \gamma \sum_{\lambda_0 X < p \leq X} e(\alpha p) \log p;$$
$$\Omega(\alpha, X) = \sum_{\lambda_0 X < p \leq X} X p^{1-\gamma} (\psi(-p+1) - \psi(-p')) e(\alpha p) \log p;$$
$$I(\alpha, X) = \gamma \int_{\lambda_0 X}^X e(\alpha y) dy.$$

3 Preliminary lemmas

Lemma 1 Let $\epsilon > 0$ and $k \in \mathbb{N}$. There exists a function $\theta(y)$ which is k times continuously differentiable and such that

$$\theta(y) = 1 \quad \text{for} \quad |y| \leq 3\epsilon/4;$$
$$0 < \theta(y) < 1 \quad \text{for} \quad 3\epsilon/4 < |y| < \epsilon;$$
$$\theta(y) = 0 \quad \text{for} \quad |y| \geq \epsilon.$$

and its Fourier transform

$$\Theta(x) = \int_{-\infty}^{\infty} \theta(y) e(-xy) dy$$

satisfies the inequality

$$|\Theta(x)| \leq \min \left(\frac{7\epsilon}{4}, \frac{1}{\pi |x|}, \frac{1}{\pi |x|} \left(\frac{k}{2\pi |x| \epsilon/8} \right)^k \right).$$
Proof. See (Lemma 1, [8]).

Lemma 2. Let $|\alpha| \leq \Delta$. Then for the sum denoted by (8) and the integral denoted by (10) the asymptotic formula

$$\Sigma(\alpha, X) = I(\alpha, X) + O\left(\frac{X}{e^{(\log X)^{1/5}}}\right)$$

holds.

Proof. This lemma is very similar to result of Tolev [8]. Inspecting the arguments presented in ([8], Lemma 14), the reader will easily see that the proof of Lemma 2 can be obtained by the same way.

Lemma 3. For the sum denoted by (9) the upper bound

$$\Omega(\alpha, X) \ll X^{\frac{17 - 12\gamma}{26}} \log^5 X.$$

holds.

Proof. It follows by the same argument used in ([2], (36)).

Lemma 4. Suppose that $\alpha \in \mathbb{R}, a \in \mathbb{Z}, q \in \mathbb{N}$, $|\alpha - \frac{a}{q}| \leq \frac{1}{q^\gamma}, (a, q) = 1$.

Let

$$\Psi(X) = \sum_{p \leq X} e(\alpha p) \log p.$$

Then

$$\Psi(X) \ll \left(Xq^{-1/2} + X^{4/5} + X^{1/2}q^{1/2}\right) \log^4 X.$$

Proof. See ([4], Theorem 13.6).

4 Outline of the proof

Consider the sum

$$\Gamma(X) = \sum_{\lambda_0 X < p_1, p_2, p_3 \leq X, \frac{1}{q} \in \mathbb{Z}, \gamma \in \mathbb{R}, i = 1, 2, 3} \theta(\lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 + \eta)p_1^{-\gamma} p_2^{-\gamma} p_3^{-\gamma} \log p_1 \log p_2 \log p_3.$$

Using the inverse Fourier transform for the function $\theta(x)$ we get

$$\Gamma(X) = \sum_{\lambda_0 X < p_1, p_2, p_3 \leq X, \frac{1}{q} \in \mathbb{Z}, \gamma \in \mathbb{R}, i = 1, 2, 3} \int_{-\infty}^{\infty} \Theta(t)e(\lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 + \eta)t) \, dt = \int_{-\infty}^{\infty} \Theta(t)S(\lambda_1 t, X)S(\lambda_2 t, X)S(\lambda_3 t, X)e(\eta t) \, dt.$$

We decompose $\Gamma(X)$ as follows

$$\Gamma(X) = \Gamma_1(X) + \Gamma_2(X) + \Gamma_3(X),$$

where

$$\Gamma_1(X) = \int_{|\gamma| \leq \Delta} \Theta(t)S(\lambda_1 t, X)S(\lambda_2 t, X)S(\lambda_3 t, X)e(\eta t) \, dt.$$
\[\Gamma_2(X) = \int_{|t| \leq H} \Theta(t) S(\lambda_1 t, X) S(\lambda_2 t, X) S(\lambda_3 t, X) e(\eta t) \, dt, \quad (14) \]
\[\Gamma_3(X) = \int_{|t| > H} \Theta(t) S(\lambda_1 t, X) S(\lambda_2 t, X) S(\lambda_3 t, X) e(\eta t) \, dt. \quad (15) \]

We shall estimate \(\Gamma_1(X), \Gamma_2(X) \) and \(\Gamma_3(X) \), respectively, in the sections 5, 6 and 7. In section 8 we shall complete the proof of Theorem 1.

5 Lower bound of \(\Gamma_1(X) \)

In order to find the lower bound of \(\Gamma_1(X) \) we need to prove the following two lemmas.

Lemma 5 For the sum denoted by (7) and the integral denoted by (10) the asymptotic formula
\[S(\alpha, X) = I(\alpha, X) + \mathcal{O}\left(\frac{X}{(\log X)^{1/2}}\right) \quad (16) \]
holds.

Proof From (7)–(9) we have
\[S(\alpha, X) = \sum_{\lambda_0 X < p \leq X} p^{1-\gamma} ([1-p\gamma] - [(p+1)\gamma]) e(\alpha p) \log p \]
\[= \sum_{\lambda_0 X < p \leq X} p^{1-\gamma} ((p+1)\gamma - p\gamma) e(\alpha p) \log p \]
\[+ \sum_{\lambda_0 X < p \leq X} p^{1-\gamma} (\psi(-(p+1)\gamma) - \psi(-p\gamma)) e(\alpha p) \log p \]
\[= \Sigma(\alpha, X) + \Omega(\alpha, X) + \mathcal{O}(\log X). \quad (17) \]

Bearing in mind (17), Lemmas 2 and 3 we obtain the asymptotic formula (16). □

Lemma 6 Let \(\lambda \neq 0 \). Then for the sum denoted by (7) and the integral denoted by (10) we have
\[(i) \quad \int_{-\Delta}^{\Delta} |S(\lambda \alpha, X)|^2 \, d\alpha \ll X \log^3 X, \]
\[(ii) \quad \int_{-\Delta}^{\Delta} |I(\lambda \alpha)|^2 \, d\alpha \ll X \log X, \]
\[(iii) \quad \int_{0}^{1} |S(\alpha, X)|^2 \, d\alpha \ll X^{2-\gamma} \log^2 X. \]

Proof We only prove (i). The inequalities (ii) and (iii) can be proved likewise.

Using (4), (7) and Lagrange’s mean value theorem we obtain
\[\int_{-\Delta}^{\Delta} |S(\lambda \alpha, X)|^2 \, d\alpha = \sum_{\lambda_0 X < p_1, p_2 \leq X, p_1 \equiv p_2 \bmod 1, 2} (p_1 p_2)^{1-\gamma} \log p_1 \log p_2 \int_{-\Delta}^{\Delta} e(\lambda(p_1 - p_2)\alpha) \, d\alpha \]
\[\ll X^{2-2\gamma} (\log X)^2 \sum_{\lambda_0 X < n_1, n_2 \leq X, n_1 \equiv n_2 \bmod 1, 2} \min\left(\Delta, \frac{1}{|n_1 - n_2|}\right) \]
We use the identity

\begin{equation}
\sum_{(\lambda_0 X) \leq m_1, m_2 \leq X} \frac{1}{m_1 - m_1^{1/\gamma}} - \sum_{(\lambda_0 X) \leq m_1, m_2 \leq X} \frac{1}{m_2 - m_1^{1/\gamma}} \ll \varepsilon.
\end{equation}

\begin{equation}
\sum_{(\lambda_0 X) \leq m_1, m_2 \leq X} \frac{1}{m_2 - m_1} \ll \varepsilon.
\end{equation}

\begin{equation}
\sum_{(\lambda_0 X) \leq m_1, m_2 \leq X} \frac{1}{m_2 - m_1} \ll X \log^3 X.
\end{equation}

The lemma is proved. \hfill \Box

Put

\begin{align*}
S_1 &= S(t, X), \\
I_i &= I(t, X).
\end{align*}

We use the identity

\begin{equation}
S_1 S_2 S_3 = I_1 I_2 I_3 + (S_1 - I_1) I_2 I_3 + S_1 (S_2 - I_2) I_3 + S_1 S_2 (S_3 - I_3).
\end{equation}

Replace

\begin{equation}
J(X) = \int_{|t| < \Delta} \Theta(t) I(t, X) I(t, X) I(t, X) e(\eta t) \, dt.
\end{equation}

Now from (13), (18), (19), Lemmas 1, 5 and 6 it follows

\begin{equation}
\Gamma_1(X) - J(X) = \int_{|t| < \Delta} \Theta(t) \left(S(t, X) - I(t, X) \right) I(t, X) I(t, X) e(\eta t) \, dt
\end{equation}

\begin{align*}
&+ \int_{|t| < \Delta} \Theta(t) S(t, X) \left(S(t, X) - I(t, X) \right) I(t, X) e(\eta t) \, dt \\
&+ \int_{|t| < \Delta} \Theta(t) S(t, X) S(t, X) \left(S(t, X) - I(t, X) \right) e(\eta t) \, dt
\end{align*}

\begin{align*}
&\ll \varepsilon \frac{X}{e(\log X)^{1/5}} \left(\int_{|t| < \Delta} |I(t, X) I(t, X)| \, dt \\
&+ \int_{|t| < \Delta} |S(t, X) I(t, X)| \, dt + \int_{|t| < \Delta} |S(t, X) S(t, X)| \, dt \right) \\
&\ll \varepsilon \frac{X}{e(\log X)^{1/5}} \left(\int_{|t| < \Delta} |I(t, X)|^2 \, dt + \int_{|t| < \Delta} |I(t, X)|^2 \, dt \\
&+ \int_{|t| < \Delta} |S(t, X)|^2 \, dt + \int_{|t| < \Delta} |S(t, X)|^2 \, dt \right)
\end{align*}

\begin{equation}
\ll \varepsilon \frac{X^2}{e(\log X)^{1/6}}.
\end{equation}
On the other hand for the integral defined by (19) we write

\[J(X) = B(X) + \Phi, \]

where

\[B(X) = \gamma^3 \int_{\lambda_0 X}^{X} \int_{\lambda_0 X}^{X} \int_{\lambda_0 X}^{X} \theta(\lambda_1 y_1 + \lambda_2 y_2 + \lambda_3 y_3 + \eta) \, dy_1 \, dy_2 \, dy_3 \]

and

\[\Phi \ll \int_{\Delta} |\Theta(t)| |I(\lambda_1 t, X)I(\lambda_2 t, X)I(\lambda_3 t, X)| \, dt. \]

According to ([3], Lemma 4) we have

\[B(X) \gg \varepsilon X^2. \]

By (10) we get

\[I(\alpha, X) \ll \frac{1}{|\alpha|}. \]

Using (22), (24) and Lemma 1 we deduce

\[\Phi \ll \frac{e}{\Delta^2}. \]

Bearing in mind (4), (20), (21), (23) and (25) we obtain

\[\Gamma_1(X) \gg \varepsilon X^2. \]

\section*{6 Upper bound of $\Gamma_2(X)$}

Suppose that

\[\left| \alpha - \frac{a}{q} \right| \leq \frac{1}{q^2}, \quad (a, q) = 1 \]

with

\[q \in \left[X^{\frac{1}{12}}, X^{\frac{13}{12}} \right]. \]

Then (8), (27), (28) and Lemma 4 yield

\[\Sigma(\alpha, X) \ll X^{\frac{25}{26}} \log^4 X. \]

Now (17), (29) and Lemma 3 give us

\[S(\alpha, X) \ll X^{\frac{37}{36} - \frac{12}{26}} \log^5 X. \]

Let

\[\mathcal{S}(t, X) = \min \{ |S(\lambda_1 t, X)|, |S(\lambda_2 t, X)| \}. \]

We shall prove the following lemma.
Lemma 7 Let t, X, λ_1, $\lambda_2 \in \mathbb{R}$,

$$\Delta \leq |t| \leq H,$$ \hspace{1cm} (32)

where Δ and H are denoted by (4) and (6), $\lambda_1/\lambda_2 \in \mathbb{R}\setminus \mathbb{Q}$ and $\mathcal{S}(t, X)$ is defined by (31). Then there exists a sequence of real numbers $X_1, X_2, \ldots \to \infty$ such that

$$\mathcal{S}(t, X_j) \ll X_j^{37/12} \log^5 X_j, \quad j = 1, 2, \ldots.$$ \hspace{1cm} (33)

Proof Our aim is to prove that there exists a sequence $X_1, X_2, \ldots \to \infty$ such that for each $j = 1, 2, \ldots$ at least one of the numbers $\lambda_1 t$ and $\lambda_2 t$ with t, subject to (32) can be approximated by rational numbers with denominators, satisfying (28). Then the proof follows from (30) and (31).

Since $\lambda_1, \lambda_2, \lambda_3$ are not all of the same sign one can assume that $\lambda_1 > 0$, $\lambda_2 > 0$ and $\lambda_3 < 0$. Let us notice that there exist $a_1, q_1 \in \mathbb{Z}$, such that

$$|\lambda_1 t - \frac{a_1}{q_1}| < \frac{1}{q_1 q_0^2}, \quad (a_1, q_1) = 1, \quad 1 \leq q_1 \leq q_0^2, \quad a_1 \neq 0.$$ \hspace{1cm} (34)

From Dirichlet’s approximation theorem it follows the existence of integers a_1 and q_1, satisfying the first three conditions. If $a_1 = 0$ then

$$|\lambda_1 t| < \frac{1}{q_1 q_0^2}$$

and (32) gives us

$$\lambda_1 \Delta < \lambda_1 |t| < \frac{1}{q_0^2}, \quad q_0^2 < \frac{1}{\lambda_1 \Delta}.$$ \hspace{1cm} (35)

The last inequality, (3) and (4) yield

$$X_{i+2}^\frac{12}{13} < \frac{X_{i+2}^{\frac{12}{13}}}{\lambda_1 \log X},$$

which is impossible for large X. Therefore $a_1 \neq 0$. By analogy there exist $a_2, q_2 \in \mathbb{Z}$, such that

$$|\lambda_2 t - \frac{a_2}{q_2}| < \frac{1}{q_2 q_0^2}, \quad (a_2, q_2) = 1, \quad 1 \leq q_2 \leq q_0^2, \quad a_2 \neq 0.$$ \hspace{1cm} (36)

If $q_i \in \left[X_i^{\frac{12}{13}}, X_{i+1}^{\frac{12}{13}} \right]$ for $i = 1$ or $i = 2$, then the proof is completed. By (3), (33) and (34) we deduce

$$q_i \leq X_{i+1}^{\frac{12}{13}} = q_0^2, \quad i = 1, 2.$$ \hspace{1cm} (37)

It remains to show that the case $q_i < X_i^{\frac{12}{13}}, i = 1, 2$ is impossible. Assume that

$$q_i < X_i^{\frac{12}{13}}, \quad i = 1, 2.$$ \hspace{1cm} (38)

From (5), (6), (32)–(35) it follows

$$1 \leq |a_i| < \frac{1}{q_0^2} + q_i |t| < \frac{1}{q_0^2} + q_i \lambda_i H,$$

$$1 \leq |a_i| < \frac{1}{q_0^2} + \lambda_i X^{\frac{38p-35}{50}} (\log X)^{-8}, \quad i = 1, 2.$$ \hspace{1cm} (39)

We have

$$\frac{\lambda_1}{\lambda_2} = \frac{\lambda_1 t}{\lambda_2 t} = \frac{\frac{a_1}{q_1}}{\frac{a_2}{q_2}} + \left(\frac{\lambda_1 t - \frac{a_1}{q_1}}{\frac{a_2}{q_2}} \right) = \frac{a_1 q_2 + \lambda_1 t - \frac{a_1}{q_1}}{a_2 q_1}, \quad 1 + X_i,$$ \hspace{1cm} (40)

$$\frac{\lambda_1}{\lambda_2} = \frac{\lambda_1 t}{\lambda_2 t} = \frac{\frac{a_1}{q_1}}{\frac{a_2}{q_2}} + \left(\frac{\lambda_1 t - \frac{a_1}{q_1}}{\frac{a_2}{q_2}} \right) = \frac{a_1 q_2 + \lambda_1 t - \frac{a_1}{q_1}}{a_2 q_1}, \quad 1 + X_i.$$ \hspace{1cm} (41)
where
\[x_i = \frac{q_i}{a_i} \left(\lambda_i t - \frac{a_i}{q_i} \right), \quad i = 1, 2. \]

(38)

Bearing in mind (33), (34), (37) and (38) we get
\[|x_i| < \frac{|q_i|}{|a_i|} \cdot \frac{1}{q_i q_0^2} \leq \frac{1}{q_i q_0}, \quad i = 1, 2, \]
\[\frac{\lambda_1}{\lambda_2} = \frac{a_1 q_2}{a_2 q_1} \cdot \frac{1 + O \left(\frac{1}{q_i q_0} \right)}{1 + O \left(\frac{1}{q_i q_0} \right)} = \frac{a_1 q_2}{a_2 q_1} \left(1 + O \left(\frac{1}{q_i q_0} \right) \right). \]

Thus
\[\frac{a_1 q_2}{a_2 q_1} = O(1) \]

and
\[\frac{\lambda_1}{\lambda_2} = \frac{a_1 q_2}{a_2 q_1} + O \left(\frac{1}{q_i q_0} \right). \]

(39)

Therefore, both fractions \(\frac{a_0}{q_0} \) and \(\frac{a_1 q_2}{a_2 q_1} \) approximate \(\frac{\lambda_1}{\lambda_2} \). Using (3), (33), (35) and inequality (36) with \(i = 2 \) we obtain
\[|a_2| q_1 < 1 + \lambda_2 X^{2 - \frac{36}{26}} (\log X)^{-8} \leq \frac{q_0}{\log X}. \]

(40)

Consequently \(|a_2| q_1 \neq q_0 \) and \(\frac{a_0}{q_0} \neq \frac{a_1 q_2}{a_2 q_1} \). Now (40) implies
\[\left| \frac{a_0}{q_0} - \frac{a_1 q_2}{a_2 q_1} \right| = \left| \frac{a_0 a_2 q_1 - a_1 q_2 q_0}{|a_2| q_1 q_0} \right| \geq \frac{1}{|a_2| q_1 q_0} > \frac{\log X}{q_0^2}. \]

(41)

On the other hand, from (2) and (39) we deduce
\[\left| \frac{a_0}{q_0} - \frac{a_1 q_2}{a_2 q_1} \right| \leq \frac{\lambda_1}{\lambda_2} + \frac{\lambda_2}{\lambda_2} \leq \frac{1}{q_0^2}, \]

which contradicts (41). This rejects the assumption (35). Let \(q_0^{(1)}, q_0^{(2)}, \ldots \) be an infinite sequence of values of \(q_0 \), satisfying (2). Then using (3) one gets an infinite sequence \(X_1, X_2, \ldots \) of values of \(X \), such that at least one of the numbers \(\lambda_1 t \) and \(\lambda_2 t \) can be approximated by rational numbers with denominators, satisfying (28). Hence, the proof is completed. \(\square \)

Taking into account (14), (31), Lemmas 1 and 7 we deduce
\[\Gamma_2(X_j) \ll \varepsilon \int_{\Delta \leq |t| \leq H} \mathfrak{S}(t, X_j) \left(\left| S(\lambda_1 t, X_j) S(\lambda_3 t, X_j) \right| + \left| S(\lambda_2 t, X_j) S(\lambda_3 t, X_j) \right| \right) dt
\ll \varepsilon \int_{\Delta \leq |t| \leq H} \mathfrak{S}(t, X_j) \left(\left| S(\lambda_1 t, X_j) \right|^2 + \left| S(\lambda_2 t, X_j) \right|^2 + \left| S(\lambda_3 t, X_j) \right|^2 \right) dt
\ll \varepsilon X_j^{3 - \frac{12}{26}} (\log X_j)^5 T_k. \]

(42)
where
\[T_k = \int_{\Delta} H \left| S(\lambda_k t, X_j) \right|^2 dt. \]

Using Lemma 6 (iii) and working as in ([3], pp. 17–18) we obtain
\[T_k \ll H X_j^{2-\gamma} \log^2 X_j. \]

From (5), (6), (42), (43) we get
\[\Gamma_2(X_j) \ll X_j^{\frac{37-12\gamma}{36}} X_j^{2-\gamma} \log^9 X_j \ll X_j^{\frac{89-38\gamma}{36}} \log^9 X_j \ll \frac{\varepsilon X_j^2}{\log X_j}. \]

7 Upper bound of \(\Gamma_3(X) \)

By (7), (15) and Lemma 1 it follows
\[\Gamma_3(X) \ll X^{3-3\gamma} \int_{\frac{1}{H}}^{\infty} \left(\frac{k}{2\pi t \varepsilon/8} \right)^k \varepsilon dt = \frac{X^{3-3\gamma}}{k} \left(\frac{4k}{\pi \varepsilon H} \right)^k. \]

Choosing \(k = [\log X] \) from (6) and (45) we obtain
\[\Gamma_3(X) \ll 1. \]

8 Proof of the Theorem

Summarizing (5), (12), (26), (44) and (46) we deduce
\[\Gamma(X_j) \gg \varepsilon X_j^2 = X_j^{\frac{89-38\gamma}{26}} \log^{10} X_j. \]

The last estimation implies
\[\Gamma(X_j) \rightarrow \infty \quad \text{as} \quad X_j \rightarrow \infty. \]

Bearing in mind (11) and (47) we establish Theorem 1.

References

1. S. I. Dimitrov, Diophantine approximation by special primes, Appl. Math. in Eng. and Econ. – 44th. Int. Conf., AIP Conf. Proc., 2048, 050005, (2018).
2. S. I. Dimitrov, On the distribution of \(ap \) modulo one over Piatetski-Shapiro primes, arXiv:2005.05008v1 [math.NT] 11 May 2020.
3. S. Dimitrov, T. Todorova, Diophantine approximation by prime numbers of a special form, Annuaires Univ. Sofia, Fac. Math. Inform., 102, (2015), 71–90.
4. H. Iwaniec, E. Kowalski, Analytic number theory, Colloquium Publications, 53, Amer. Math. Soc., (2004).
5. K. Matomäki, Diophantine approximation by primes, Glasgow Math. J., 52, (2010), 87–106.
6. I. I. Piatetski-Shapiro, On the distribution of prime numbers in sequences of the form \(\lfloor f(n) \rfloor \), Mat. Sb., 33, (1953), 559–566.
7. J. Rivat, J. Wu, Prime numbers of the form \(\lfloor n^2 \rfloor \), Glasg. Math. J., 43, 2, (2001), 237–254.
8. D. Tolev, On a diophantine inequality involving prime numbers, Acta Arith., 61, (1992), 289–306.
9. R. Vaughan, Diophantine approximation by prime numbers I, Proc. Lond. Math.Soc., 28(3), (1974), 373–384.