Critical behavior of diluted magnetic semiconductors: the apparent violation and the eventual restoration of the Harris criterion for all regimes of disorder

D. J. Priour, Jr1 and S. Das Sarma2

1Department of Physics, University of Missouri, Kansas City, MO 64110, USA
2Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, MD 20742-4111, USA

(Dated: April 12, 2010)

Using large-scale Monte Carlo calculations, we consider strongly disordered Heisenberg models on a cubic lattice with missing sites (as in diluted magnetic semiconductors such as Ga$_{1-x}$Mn$_x$As). For disorder ranging from weak to strong levels of dilution, we identify Curie temperatures and calculate the critical exponents ν, γ, η, and β finding, per the Harris criterion, good agreement with critical indices for the pure Heisenberg model where there is no disorder component. Moreover, we find that thermodynamic quantities (e.g. the second moment of the magnetization per spin) self average at the ferromagnetic transition temperature with relative fluctuations tending to zero with increasing system size. We directly calculate effective critical exponents for $T > T_c$, yielding values which may differ significantly from the critical indices for the pure system, especially in the presence of strong disorder. Ultimately, the difference is only apparent, and eventually disappears when T is very close to T_c.

PACS numbers: 75.50.Pp,75.10.-b,75.10.Nr,75.30.Hx

I. INTRODUCTION

Technologically relevant magnetic materials such as diluted magnetic semiconductors (DMS) are characteristically strongly disordered due to the low concentration of random magnetic moments (e.g. Ga$_{1-x}$Mn$_x$As where 5% - 12% of the Ga sites are occupied by substitutional Mn ions). DMS materials such as Ga$_{1-x}$Mn$_x$As have been modeled theoretically using a classical Heisenberg model on an fcc lattice where the Hamiltonian is $H = \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$ with J_{ij} being a carrier (hole) mediated random indirect exchange coupling between moments separated by a distance r_{ij} given by $J(r) = J_0 e^{-r/l_x} [\sin(2k_F r) - 2k_F r \cos(2k_F r)]$, $k_F = (\frac{3}{2} \pi^2 n_c)^{1/3}$ is the Fermi wave number, n_c is the hole density, and l is the damping scale.

While individual parameters such as the ferromagnetic transition temperature T_c have been calculated in theoretical studies\cite{1,2}, the critical behavior of strongly disordered Heisenberg models on a three dimensional lattice has not been understood in detail in the context of a direct numerical calculation. At the ferromagnetic transition, thermodynamic quantities scale as power laws in the reduced temperature $t = (T - T_c)/T_c$ with, e.g., the magnetization varying as $m \propto t^\alpha$, the correlation length scaling as $\xi \propto t^{-\nu}$, and $\chi \propto t^{-\gamma}$ for the magnetic susceptibility; hence critical exponents such as β, ν, and γ (up to prefactors specific to the model under consideration) completely specify the critical behavior near T_c where $t \ll 1$.

Our task is to determine the extent to which the critical behavior of the three dimensional Heisenberg model is influenced by disorder (in the form of randomly removed magnetic moments), and we have found the most singular contributions to critical behavior to be unaffected by disorder whether only a few magnetic moments are removed or the majority of magnetic impurities are missing in cases of strong disorder. A theoretical result (derived from a renormalization group calculation) known as the Harris criterion\cite{3} holds that the sign of the specific heat exponent α determines whether the critical exponents are altered. Specifically, although modifications in the universality class are expected for $\alpha > 0$, the Harris criterion predicts that disorder will not affect the critical exponents when $\alpha < 0$. The hyper-scaling identity $\alpha = 2 - d\nu$ implies that the condition for stable critical behavior is $\nu > 2/d$, $d = 3$ being the dimensionality of our system. In particular, since $\nu = 0.714 > 0.67$ for the Heisenberg model, the Harris result precludes disorder induced shifts in the critical exponents. With careful finite size scaling analysis, we have indeed confirmed that critical behavior in the disordered models conforms to the 3D Heisenberg universality class. An important finding of our detailed numerical study is, however, the fact that the effective critical exponents of the strongly disordered model may very well manifest an apparent violation of the Harris criterion (i.e. a deviation from the corresponding pure Heisenberg model values) away from the critical temperature, thus possibly considerably complicating the interpretation of experimental data.\cite{4}

The results of our numerical calculations are consistent with experiment where the local critical behavior of thermodynamic quantities such as the magnetic susceptibility χ (e.g. the slope $\gamma_{\text{eff}} = d\log(\chi)/d\log(t)$ of the log-log plot in the case of the magnetic susceptibility) differ from the critical indices of the pure case with $c = 1.0$ for intermediate values of the reduced temperature. Ultimately, the effective critical exponents converge for sufficiently small t to the critical behavior of the model with no disorder. Similarly, we examine finite size systems, and we would obtain results for critical behavior which differ from those of the pure model if we
extrapolate to the bulk limit in naïve manner. However, by taking into account corrections to scaling, we compensate for finite size effects and obtain critical exponents identical to those of the pure Heisenberg model.

Using large-scale Monte Carlo simulations, we calculate critical exponents for the disordered Heisenberg model on a 3D lattice. Hence, we show that the universality class remains unaltered from regimes where the model is weakly disordered and only a few magnetic moments are removed to cases such as $c = 0.4$ (the site percolation threshold for the simple cubic lattice is $c = 0.3116$ where on average fewer than half of the magnetic ions participate in a ferromagnetically ordered phase).

Another component of the Harris criterion is the prediction that thermodynamic variables such as the magnetization m and magnetic susceptibility χ do (do not) self-average at T_c in the bulk limit when $\nu > (\nu)_{2/3}$. The extent of self-averaging may be quantified via the parameter $g_2 = \langle m^2 \rangle - \langle m \rangle^2 / \langle m^2 \rangle_{2/3}$, the relative variance of $\langle m^2 \rangle$ with respect to disorder where m is the magnetization, angular brackets indicate thermal averages, and square brackets refer to disorder averaging. For the Heisenberg model, we find self-averaging to be intact with g_2 ultimately decreasing after reaching a maximum for moderate sized systems containing on the order of a few hundred magnetic impurities.

In Section II, we discuss details of our numerical techniques for determining critical behavior of the disordered Heisenberg model. Subtleties include the need for a careful calculation of the Curie Temperature T_c, and taking into account corrections to scaling which would otherwise lead to the conclusion that disorder has affected the critical behavior of the Heisenberg model; we find that the universality class is not influenced by disorder, being identical to that of the pure model.

In Section III, we give results in tabular form for the critical exponents obtained in our calculation. Explicit numerical values are given for the critical indices ν, β, γ, and η for disorder ranging from very weak (e.g. $c = 0.95$) to quite strong (i.e. $c = 0.4$). In each case, we also provide the corresponding critical exponent (calculated by us) for the pure model, which is consistent with the best and most recent values given in the literature.

In Section IV, we provide the apparent critical exponents which differ from those of the pure model, and would be obtained for system sizes that are not sufficiently large. Similarly, if one is not close enough to T_c in experiment (generally, the reduced temperature $t = (T - T_c)/T_c$ should be less than 10^{-3} to obtain the critical exponents of the pure Heisenberg model in systems with disorder), spurious apparent critical indices will be measured. This apparent violation of the Harris criterion, even very slightly away from the critical temperature, is an important cautionary remark following directly from our Monte Carlo studies of the disordered model.

Finally, in the Appendix (Section V), we provide the Monte Carlo numerical results for thermodynamic variables such as the magnetization m and magnetic susceptibility χ. Also included are the corresponding theoretical results taking into account leading singular terms, as well as the first correction to scaling. There is very good agreement between the Monte Carlo data and the results of the theoretical model (i.e. generally at least one part in 10^3 or better).

II. METHODS AND TECHNIQUES IN THE NUMERICAL ANALYSIS

Singularities in variables such as the specific heat and magnetic susceptibility are smoothened as $t \to 0$ and the correlation length ξ becomes comparable to the system size L. However, we can determine critical exponents by exploiting finite size scaling at T_c; the magnetization scales at $m \propto L^{-\beta/\nu}$, the thermal derivative $d\xi/dT$ of the correlation length ξ varies as $d\xi/dT \propto L^{1/\nu}$, and the magnetic susceptibility χ diverges with increasing system size L with the singular dependence $\chi = cL^\gamma(\langle m^2 \rangle - \langle m \rangle^2) \propto L^{\gamma/\nu}$. The critical exponents ν, β/ν, and γ/ν are obtained by calculating the appropriate thermodynamic quantities for many different system sizes and carefully extrapolating to the thermodynamic limit. Having calculated ν, γ, and β, one may obtain additional critical exponents such with the aid of hyperscaling relations. As an example, the exponent η, given in terms of γ and ν by $\eta = 2 - \gamma/\nu$, is useful because it is a more sensitive parameter than γ alone in gauging the universality class of a specific model.

To obtain critical exponents accurately, it is essential that calculations be performed as close as possible to $T_c \xi$, since the temperature range where finite size scaling holds becomes narrower with increasing system size L. To obtain the ferromagnetic transition temperature T_c as precisely as possible, we numerically calculate the normalized correlation length ξ / L following reference 2. For temperatures below T_c, ξ / L ultimately increases with increasing L, while above the Curie temperature ξ / L eventually decreases. We find T_c by insisting that ξ / L tend to a constant value for very large system sizes (i.e. containing at least on the order of 10^7 spins) where finite size effects are negligible. In this manner, we obtain T_c to within one part in 10^4. Alternatively, we may examine the Binder cumulant $U_4 = 1 - \langle \langle m^4 \rangle / 3 \langle m^2 \rangle^2 \rangle$.

Another approach for locating the ferromagnetic transition temperature which we have used and obtained the same Curie temperature results is to examine moderate size systems where finite size effects are a more important systematic effect, and to use the Binder cumulant U_4 in conjunction with the normalized correlation length ξ / L to accurately calculate T_c. Finite size effects preclude a precise determination of T_c with either technique alone; the intersections will actually scale as $T_c + A_\xi L^{-1/\nu}$ for the Binder cumulants and $T_c + A_\xi / L^{-1/\nu}$ for the normalized correlation length, respectively. Nevertheless, by examining two different system size pairs, one may cancel
the leading order corrections from finite size scaling. In this manner, we have calculate Curie temperatures to within one part in 10^4 for each impurity concentration we have examined. T_c results are shown in Fig. 1 for disorder strengths ranging from the pure case ($c = 1.0$) to the site percolation threshold ($c = 0.3116$) appropriate to the 3D simple cubic lattice; the Monte Carlo statistical error is much smaller than the size of the symbols in the graph. The specific T_c values used in the Monte Carlo calculations of singular thermodynamic quantities appear in Table I. The reciprocals $K_c = T_c^{-1}$ are given as well.

To circumvent critical slowing down plaguing local update techniques such as the Metropolis method, our Monte-Carlo calculations employ cluster updates to flip large sets of correlated spins. Specifically, we use alternating Wolff cluster and Swendsen-Wang sweeps, the latter being included because the Swendsen-Wang steps ultimately flip every spin, including isolated clusters of moments inaccessible to Wolff cluster moves. The cluster moves operate by flipping groups of thermodynamically correlated spins, and are effective even in the vicinity of T_c where the diverging correlation length ξ would otherwise be associated with a much larger Monte-Carlo autocorrelation time, as certainly would be encountered with the use of the Metropolis method.

To reduce the severity of finite size effects, we examine cubic systems of size L with periodic boundary conditions. We use 1000 hybrid sweeps per disorder realization, and equilibration effects are eliminated by discarding the first quarter of the Monte Carlo sweeps. Monte Carlo calculations require stochastic input, and we use a Mersenne Twister algorithm to minimize correlations among random numbers and to ensure the period of the sequence far exceeds the number of random numbers used over the span of the Monte Carlo simulations.

Thermal derivatives such as $d\xi/dT$ need not be calculated via numerical differentiation; it is more convenient instead to use $d\langle q \rangle /dT = (\langle qE \rangle - \langle q \rangle \langle E \rangle)/(k_B T)$ obtained by direct differentiation of $\langle q \rangle = \sum_{conf} q_{conf} \exp(-E_{conf}/k_B T)/Z$, where the sum is over all possible system configurations, Z is the partition function, E is the internal energy, and q is a generic thermodynamic variable such as the magnetization.

By examining the parameter g_2, which provides a measure of typical fluctuations from one realization of disorder to the next, we find clear evidence of self-averaging at the critical temperature T_c. Results for g_2 for a range of disorder strengths are shown in Fig. 2. The log-log g_2 curves are non-monotonic, increasing for small values of L and attaining a maximum (typically for systems containing the order of 700 spins) before decreasing and ultimately becoming linear for sufficiently small system sizes. An asymptotic power law decay in L of g_2 for large system sizes is consistent with a monotonic decreases of g_2, a hallmark of self-averaging in the bulk limit.

A more subtle question is whether disorder has an effect on the critical behavior of the Heisenberg model. Asymptotic finite size scaling behavior such as $m \propto L^{-\beta/\nu}$, $\chi \propto \chi_0 L^{\gamma/\nu}$, and $d\xi/dT \propto L^{1/\nu}$ imply the corresponding log–log plots will become linear for large enough L with the slope yielding the critical exponent of interest. However, although singular thermodynamic quantities such as the magnetization m and the susceptibility χ vary asymptotically as $\chi = \chi_0 L^{\gamma/\nu}$ and $m = m_0 L^{-\beta/\nu}$, respectively, site disorder is a source of important corrections to leading order scaling, which must be taken into account to obtain accurate expres-

![Curie temperatures calculated from Monte Carlo (filled circles) for a range of disorder strengths from the pure case $c = 1$ to the site percolation threshold where $c = 0.3116$.](image)

FIG. 1: Curie temperatures calculated from Monte Carlo (filled circles) for a range of disorder strengths from the pure case $c = 1$ to the site percolation threshold where $c = 0.3116$.

TABLE I: T_c values (with the uncertainty in the last digit for each concentration c given). The T_c results are given in units of J_0/k_B, whereas the inverse temperatures K_c are expressed in terms of k_B/J_0.

Concentration c	T_c (units of J_0/k_B)	K_c (units of k_B/J_0)
$c = 1.0$	1.4430	0.6930
$c = 0.95$	1.3543	0.7384
$c = 0.90$	1.2641	0.7911
$c = 0.80$	1.0787	0.92705
$c = 0.70$	0.88690	1.1288
$c = 0.60$	0.6840	1.462
$c = 0.50$	0.4701	2.127
$c = 0.40$	0.2361	4.235
singular contributions to \(\chi \) and \(m \), we perform nonlinear least squares fitting to take into account the next-to-\(\beta \)/\(\nu \) leading order exponent and amplitude relative to that of the leading order term with

\[
\chi(L) = \chi_0(L^{\gamma/\nu} + B_\chi L^\gamma); \quad (1)
\]
\[
m(L) = m_0(L^{-\beta/\nu} + B_\beta L^\beta); \quad (2)
\]
\[
\frac{dT}{d\xi} (L) = A_\nu_0(L^{1/\nu} + B_\nu L^{\nu}); \quad (3)
\]

where the coefficients \(B \) are the relative amplitude of the first correction to primary scaling, and the exponents labeled \(\epsilon \) are next to leading order exponents.

We calculate critical exponents and amplitudes by minimizing the sum of the squares of the relative differences, \(\sigma \), with

\[
\sigma = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{L_{\text{MC}} - L_{\text{LSF}}}{\gamma_{L_i}} \right)^2 \quad (4)
\]

where \(\gamma_{L_i} \) is calculated numerically with Monte Carlo simulations and \(\gamma_{L_i}^{\text{LSF}} \) is given in Eq. 1 for the system size \(L_i \). To carry out the nonlinear least squares fitting, we use a stochastic algorithm with an annealing stage (i.e. the Metropolis Criterion is used with the annealing parameter \(\sigma \)).

In experiment, the reduced temperature \(t \) is more readily tuned than the system size. To show how the effective critical behavior may vary appreciably for, we calculate the magnetic susceptibility \(\chi \) for \(t > 0 \), but in the bulk limit as would be appropriate for comparison experiment. For finite \(t \), it is sufficient to examine system sizes, such that \(L \gg \xi \) since the correlation length will be finite for temperatures above \(T_c \). We find the condition \(\xi/L < 0.06 \) is sufficient to reduce finite size to a negligible level. In addition, by calculating \(\chi \) for a number of different system sizes, we may correct for finite size effects; we have explicitly verified that a relation of the form \(A + B e^{-\kappa L/\xi} \) is a very good approximation to the dependence of thermodynamic variable on system size when \(L \) is at least on the order of a few correlation lengths, a condition we use to further improve our approximation to bulk behavior, or to relax somewhat the condition \(\xi/L < 0.06 \) by examining somewhat smaller systems and subsequently removing residual finite size effects.

FIG. 2: The graph contains log-log traces of the self-averaging parameter \(g_2 = [(m^2)^2] - [(m^2)]^2 \) for the second moment of the magnetization for very weak \((c = 0.95) \) to quite strong disorder \((c = 0.40) \); symbols are from Monte-Carlo calculations, and the solid line is a guide to the eye.

FIG. 3: The image shows log-log plots of the magnetization \(m \) versus system size \(L \) for the pure Heisenberg model where \(c = 1.0 \), and disorder ranging from quite weak \((c = 0.95) \) to very strong \((c = 0.40) \). The symbols are results from Monte Carlo calculations, and the solid lines are theoretical fits.

concentration \(c \)	\(\beta_{\text{pure}}/\nu_{\text{pure}} \)	\(\beta/\nu \)	\(m_0 \)	\(\epsilon_{\beta} \)	\(B_{\beta} \)
\(c = 1.0 \)	0.516	0.5159	1.083	-2.365	-0.223
\(c = 0.95 \)	0.516	0.5150	1.096	-2.242	-0.2209
\(c = 0.90 \)	0.516	0.5143	1.114	-1.975	-0.2001
\(c = 0.80 \)	0.516	0.5090	1.142	-1.935	-0.2038
\(c = 0.7 \)	0.516	0.5106	1.221	-1.648	-0.2651
\(c = 0.6 \)	0.516	0.5248	1.380	-1.306	-0.3164
\(c = 0.5 \)	0.516	0.5233	1.405	-1.375	-0.3779
\(c = 0.4 \)	0.516	0.5011	1.498	-1.919	-0.5600

TABLE II: Critical exponent ratios \(\beta/\nu \) for the magnetization with the amplitude \(m_0 \) of the leading order term, the exponent \(\epsilon_{\beta} \) of the first correction to primary scaling, and the relative amplitude \(B_{\beta} \) of the next-to-leading order term.
FIG. 4: The graph contains log-log plots of the magnetic susceptibility χ versus L for the pure Heisenberg model with $c = 1.0$, and disorder ranging from quite weak ($c = 0.95$) to very strong ($c = 0.40$). The symbols are results from Monte Carlo calculations, and the solid lines are theoretical fits.

FIG. 5: Shown are log-log traces of the thermal derivative $d\xi/dT$ versus L for the pure Heisenberg model ($c = 1.0$), and magnetic moment concentrations ranging from very weak ($c = 0.95$) to quite strong disorder ($c = 0.40$). Symbols are Monte Carlo data, and the solid lines are theoretical fits.

TABLE III: Critical exponent ratios γ/ν for the magnetization with the amplitude χ_0 of the leading order term, the exponent ϵ_ν of the first correction to primary scaling, and the relative amplitude B_ν of the next-to leading order term.

concentration c	$\gamma_{\text{pure}}/\nu_{\text{pure}}$	γ	χ_0	ϵ_ν	B_ν
$c = 1.0$	1.955	1.957	0.05206	0.9468	-0.5276
$c = 0.95$	1.955	1.963	0.05426	0.2783	-1.309
$c = 0.90$	1.955	1.954	0.0598	0.4372	-1.054
$c = 0.80$	1.955	1.935	0.0724	0.9121	-0.6482
$c = 0.70$	1.955	1.973	0.07037	-0.7585	-7.574
$c = 0.60$	1.955	1.977	0.08014	0.2133	-1.957
$c = 0.50$	1.955	1.993	0.08915	-0.8402	-15.86
$c = 0.40$	1.955	1.945	0.1317	-0.7112	-15.91

TABLE IV: Critical exponents η for disorder ranging from the pure case ($c = 1.0$) to strong disorder where $c = 0.4$.

concentration c	η_{pure}	ν	A_η	ϵ_η	r_{η}
$c = 1.0$	0.714	0.7149	0.2862	-1.428	2.798
$c = 0.95$	0.714	0.7291	0.2500	-1.2543	1.760
$c = 0.90$	0.714	0.7355	0.2045	0.4941	0.2366
$c = 0.80$	0.714	0.7412	0.1322	0.7374	0.3706
$c = 0.70$	0.714	0.7428	0.07814	0.7675	0.5878
$c = 0.60$	0.714	0.7018	0.02545	0.8972	1.293
$c = 0.50$	0.714	0.7188	0.01530	0.8838	1.759
$c = 0.40$	0.714	0.6997	0.00261	0.6612	4.485

TABLE V: Correlation length critical exponents ν for $d\xi/dT$ with the amplitude A_ν of the leading order term, the exponent ϵ_ν of the first correction to scaling, and the relative amplitude r_ν of the first correction term.

III. CRITICAL BEHAVIOR OF THE DISORDERED HEISENBERG MODEL

The log-log plots in Fig. 4 show the magnetization with symbols representing Monte Carlo results, and the continuous curves are obtained from the corresponding non-linear least squares fits. The excellent agreement of the Monte Carlo data and theoretical fits may also be seen in the Appendix, where the simulation data and theoretical results are given to five significant figures. Similarly, the magnetic susceptibilities appear in Fig. 5 where symbols represent the Monte Carlo results and solid lines obtained from theoretical fits closely match the Monte Carlo data. Finally, the correlation length thermal derivatives $d\xi/dT$ are graphed in Fig. 5 and there is again good agreement between Monte Carlo results (symbols) and the solid lines obtained from theoretical results.

Exponents and critical amplitudes are given for β/ν in Table III, γ/ν (corresponding to the susceptibility) in Table IV, η in Table V, and ν in Table V. The exponent η is calculated from γ and ν with $\eta = 2\gamma/\nu$. The parameter η is a sensitive parameter and, accordingly, there is greater variance in the results. However, the η values listed in Table V each have the same positive sign irrespective of the strength of the site disorder. The leading order exponents are consistent with those of the pure Heisenberg Universality class with deviations due only to statistical Monte Carlo error, not systematic effects related to the disorder strength. Hence, since each of the exponents $\beta, \nu, \gamma,$ and η are stable with respect to the introduction of site defects, we conclude for the Heisenberg model that critical behavior is unchanged even in
the presence of very strong disorder.

IV. EFFECTIVE CRITICAL BEHAVIOR AND APPARENT VIOLATION OF THE HARRIS CRITERION

Although ultimately we find that the critical behavior of the pure Heisenberg model emerges as the dominant part of the singular components of thermodynamic variables such as the magnetization m and magnetic susceptibility χ, finite size effects may obscure the genuine critical behavior for systems of small to moderate size where bulk critical behavior has not taken hold. Fig. 6, Fig. 7, and Fig. 8 show the apparent critical indices which would be obtained as the slope $d\log(\chi)/d\log(t) = \frac{1}{\nu} \frac{d\chi}{dt}$ of the log-log graph, a quantity which may differ significantly for the first several decades of the system size L before eventually converging to the critical indices of the pure Heisenberg model, indicated with horizontal gray lines. Qualitatively similar behavior has been seen in renormalization group (RG) calculations as well as in experiments with the reduced temperature t varied instead of the system size L. The insets of Fig. 6, Fig. 7, and Fig. 8 display β/ν, γ/ν, and ν obtained from the non-linear least squares fits. Again, throughout the broad disorder spectrum considered, even for very strongly strongly disordered systems (e.g. for the case $c = 0.4$), the critical indices we calculate are compatible with those of the pure system where there is no disorder.

To make direct contact with experiment and show explicitly the apparent change in critical behavior may be set up by strong disorder, we show finite t results where the effective critical exponent γ_{eff} corresponding to the magnetic susceptibility has been calculated; results are shown in panel (a) and panel (b) of Fig. 9. For $t > 0$, the susceptibility χ will scale as $\chi = \chi_0(t^{-\gamma_1} + Bt^{y_1} + Ct^{y_2} + Dt^{y_3} + \ldots)$ where γ is the genuine critical exponent for χ, and the terms with exponents such as y_1, y_2 for the first two subleading terms are corrections to scaling which may have a significant effect if t is sufficiently large or in the presence of strong enough disorder.

In the critical regime where subleading terms may be neglected, one may compute, e.g. for χ, $\gamma = -\frac{1}{\chi} \frac{d\chi}{dt}$.

FIG. 6: (color online) Effective β/ν curves are shown in a semi-logarithmic graph for various impurity concentrations c for several decades of L. The inset shows the calculated β/ν values versus the impurity concentration. The horizontal gray lines in both the primary graph and the inset correspond to β/ν for the pure system.

FIG. 7: (color online) Effective γ/ν curves are graphed in a semi-logarithmic plot for various impurity concentrations c for several decades of system sizes, with the inset showing γ/ν versus the impurity concentration c. The horizontal gray lines in the main figure and graph inset indicate $\gamma_{\text{pure}}/\nu_{\text{pure}}$ for the case where there is no disorder.

FIG. 8: (color online) Effective ν curves are plotted in a semi-logarithmic fashion for a range of magnetic moment concentrations c for a few decades of L; the inset is a graph of the calculated exponent ν versus c. Again, the horizontal gray lines correspond to ν_{pure} for the case $c = 1$.
However, further from T_c where corrections to singular critical behavior are more important, one obtains an “effective” exponent $\gamma(t)$ given by

$$\gamma(t) \equiv -\frac{d\chi}{dT} = \gamma\left(\frac{1 + Bt^{\gamma_1 + \gamma} + Cy^{\gamma_2 + \gamma} + \ldots}{1 + Bt^{\gamma_1} + Cy^{\gamma_2} + \ldots}\right);$$

(4)

$\gamma(t)$ will eventually tend to the leading order exponent γ as $t \to 0$, though one may have to measure χ at very low values of t if there is a strong disorder component.

The graphs shown in Fig. 9 show results from two distinct calculations of $\gamma(t)$. In panel (a) of Fig. 9 the Monte Carlo data is drawn from a study where fewer disorder realizations are examined (though still at least 5×10^3 configurations of disorder are analyzed) in favor of obtaining a larger data set; Monte Carlo results are shown as symbols with theoretical curves obtained from nonlinear least square fitting shown on the same graph. Similarly, for the set of calculations involving fewer data points but more intensive disorder averaging, Monte Carlo data is graphed as symbols in panel (b) of Fig. 9 while again solid lines are theoretical curves gleaned from least squares fitting.

In both cases, although $\gamma(t)$ for the pure ($c = 1$) case rises steadily with decreasing t, the curves for each of the disordered systems are nonmonotonic; the initial rise with decreasing t is followed by a peak and subsequent decline to the asymptotic value of γ only for very small values of the reduced temperature on the order of $t \sim 10^{-3}$.

We reiterate that the critical exponents we calculate are consistent with $\nu > 2/3$ where disorder is irrelevant to the universality class in the Renormalization Group (RG) sense. This inequality has been placed on a rigorous footing in theoretical work under a broad range of conditions, and has also been established for correlated disorders. We also emphasize that while the genuine Heisenberg model critical exponents satisfy the hyperscaling relations, the apparent critical exponents obtained away from the critical behavior are not consistent with the hyperscaling formulas, an indication of their problematic nature.

V. CONCLUSIONS

In conclusion, within a large-scale Monte Carlo study, we have examined Heisenberg models on three dimensional lattices with randomly deleted magnetic moments as a source of disorder, finding self-averaging to be intact as predicted by the Harris criterion. Moreover, our finite size scaling studies show leading order critical behavior not to be influenced by the presence of random defects, with critical exponents identical to those of the pure Heisenberg model universality class even for very strong disorder in the vicinity of the site percolation threshold where long-range ferromagnetic order is lost altogether for $T < 0$. However, while the leading order exponents are not sensitive to disorder, the presence of site defects sets up corrections to primary scaling which skew the effective exponents for finite system sizes L, a characteristic which might naively be regarded as evidence for the violation of the Harris criterion. A qualitatively similar apparent violation of the Harris criterion is seen in experiment where thermodynamic quantities such as the magnetic susceptibility are measured with respect to the reduced temperature t, and we have also calculate the same quantities in the bulk limit for $t > 0$, finding the same apparent violation of the Harris criterion. We conclude by asserting the asymptotic validity of the Harris criterion sufficiently close to the critical temperature in the strongly disordered Heisenberg model appropriate for diluted magnetic semiconductors, at the same time pointing out that slightly away from the critical temperature, the effective exponents may very well reflect an
TABLE VI: Thermodynamic quantities from Monte Carlo simulations and theoretical fits for the pure system, where $c = 1.0$.

Table [XIV] and Table [XV] contain the self-averaging parameter g_2 for various systems sizes for site disorder ranging from the weak regime (where $c = 0.95$), to the strongly disordered $c = 0.40$ case in the vicinity of the percolation threshold. A consistent feature in the dependence of g_2 on system size is an initial rise, and maximum attained for moderate sized systems with on the order of 700 spins. After reaching a peak, the g_2 self-averaging parameter begins a steady decrease consistent with intact self-averaging. However, the non-monotonic behavior is another manifestation of significant corrections to leading order scaling.

VI. APPENDIX: THERMODYNAMIC QUANTITIES FROM MONTE CARLO AND ANALYTICAL FITS

The appendix contains a sequence of tables explicitly giving thermodynamic quantities calculated in Monte Carlo simulations with the theoretical fits obtained by stochastically enhanced least squares fitting. The theoretical results are in very close agreement with the corresponding Monte Carlo data.

Discussions with Victor Galitski and Michael Fisher are gratefully acknowledged. Our numerical calculations have benefited from the University of Maryland.

TABLE VII: Monte-Carlo results and theoretical fits for thermodynamic quantities for a weakly disordered Heisenberg model with $c = 0.95$.

TABLE VIII: Monte-Carlo data and corresponding theoretical fits for the magnetization, magnetic susceptibility, and $d^2\chi/dT^2$ for mildly disordered Heisenberg models ($c = 0.9$).
n	m_{num}	m_{fit}	x_{num}	x_{fit}	$\frac{dT}{d\xi}_{num}$	$\frac{dT}{d\xi}_{fit}$
5	0.90310	0.90316				
6	0.45209	0.45195				
7	0.41946	0.41937				
8	0.39240	0.39252	3.7346	3.7337	2.4117	2.4127
9	0.37079	0.37065	4.7334	4.7340	2.8128	2.8098
10	0.35190	0.35180	5.8429	5.8480	3.2218	3.2212
11	0.33457	0.33525	7.0858	7.0751	3.6437	3.6461
12	0.32145	0.32127	8.0009	8.1415	4.0835	4.0835
13	0.30867	0.30867	9.8800	9.8655	4.5272	4.5330
14	0.29742	0.29743	11.417	11.427	4.9940	4.9938
15	0.28726	0.28731	13.090	13.100	6.4421	6.4396
16	0.27804	0.27815	14.888	14.882	5.9519	5.9475
17	0.26980	0.26981	16.799	16.774	6.4421	6.4396
18	0.26212	0.26216	18.776	18.775	6.9451	6.9412
19	0.24868	0.24861	23.101	23.103	7.9753	7.9719
20	0.23693	0.23694	27.865	27.862	9.0375	9.0373
21	0.22681	0.22676	33.003	33.050	10.136	10.135
22	0.21781	0.21777	38.657	38.664	11.253	11.264
23	0.20975	0.20977	44.733	44.702	12.411	12.422
24	0.19605	0.19607	50.050	50.043	14.835	14.821

TABLE IX: Monte Carlo results with theoretical fits for key thermodynamic quantities in the case of moderate disorder, where $c = 0.8$.

n	m_{num}	m_{fit}	x_{num}	x_{fit}	$\frac{dT}{d\xi}_{num}$	$\frac{dT}{d\xi}_{fit}$
5	0.5174	0.51391				
6	0.47241	0.47211				
7	0.4389	0.43889				
8	0.41201	0.41108	4.1464	4.1492	1.5110	1.5109
9	0.3852	0.38980	5.2738	5.2730	1.7535	1.7530
10	0.36941	0.36945	6.5313	6.5229	2.0032	2.0033
11	0.35261	0.35261	7.8917	7.8978	2.2611	2.2611
12	0.33768	0.33785	9.4050	9.3988	2.5235	2.5262
13	0.32469	0.32477	11.033	11.026	2.7974	2.7980
14	0.31308	0.31308	12.779	12.778	3.0780	3.0763
15	0.30259	0.30254	14.642	14.655	3.3598	3.3608
16	0.29296	0.29209	16.661	16.658	3.6553	3.6512
17	0.28451	0.28428	18.756	18.786	3.9476	3.9472
18	0.27625	0.27629	21.043	21.039	4.2492	4.2487
19	0.26210	0.26211	25.936	25.919	4.8674	4.8675
20	0.24967	0.24989	31.328	31.298	5.5083	5.5059
21	0.23933	0.23921	37.109	37.173	6.1555	6.1630
22	0.22973	0.22907	43.532	43.544	6.8363	6.8376
23	0.22125	0.22135	50.435	50.410	7.5259	7.5290
24	0.21377	0.21379	57.808	57.770	8.2433	8.2364

TABLE X: Monte Carlo results and theoretical fits for thermodynamic quantities corresponding to critical exponents β, γ, and ν for a range of system sizes L for moderate disorder $c = 0.7$.

1 D. J. Priour and S. Das Sarma, Phys. Rev. Lett. 62, 127201 (2006).
2 D. J. Priour and S. Das Sarma, Phys. Rev. B 73, 165203, (2006).
3 A. B. Harris and T. C. Lubensky Phys. Rev. Lett. 33, 1540 (1974).
4 Andrea Pelissetto and Ettore Vicari, Phys. Rept. 368, 549 (2002).
5 Amnon Aharony and A. B. Harris, Phys. Rev. Lett. 77, 3700 (1996).
6 Kun Chen, Alan M. Ferrenberg, and D. P. Landau, Phys. Rev. B 48, 3249 (1993).
7 J. K. Kim, Phys. Rev. D 50, 4663, (1994).
8 Ulli Wolff, Phys. Rev. Lett. 62, 361 (1989).
TABLE XI: Monte Carlo and corresponding theoretical fits for m, ξ, and $d\xi/dT$ for moderate disorder with $c = 0.06$.

n	m_{num}	m_{fit}	χ_{num}	χ_{fit}	$d\xi_{num}$	$d\xi_{fit}$
5	0.5792	0.5781	0.5682	0.5677	0.38645	0.38685
6	0.5337	0.5336	0.5382	0.5378	0.30249	0.30257
7	0.49814	0.49769	0.4981	0.4977	0.24310	0.24333
8	0.46811	0.46798	0.4692	0.4688	0.19686	0.19727
9	0.44278	0.44290	0.4428	0.4424	0.15960	0.16046
10	0.42123	0.42136	0.4215	0.4212	0.13054	0.13133
11	0.40260	0.40162	0.4024	0.4020	0.10336	0.10416
12	0.38581	0.38612	0.3862	0.3860	0.08005	0.08082
13	0.37120	0.37145	0.3715	0.3713	0.06396	0.06461
14	0.35653	0.35641	0.3564	0.3563	0.05045	0.05107
15	0.35726	0.35656	0.3566	0.3564	0.06003	0.06105
16	0.32568	0.32573	0.3256	0.3255	0.07056	0.07096
17	0.31677	0.31666	0.3166	0.3165	0.08460	0.08502
18	0.28662	0.28659	0.2865	0.2864	0.10406	0.10442
19	0.28662	0.28659	0.2865	0.2864	0.10406	0.10442
20	0.27343	0.27438	0.2743	0.2742	0.12497	0.12539
21	0.26364	0.26357	0.2635	0.2634	0.14537	0.14580
22	0.25390	0.25393	0.2538	0.2537	0.16555	0.16582
23	0.24509	0.24525	0.2452	0.2451	0.19782	0.19812

TABLE XII: Thermodynamic quantities from Monte Carlo simulations and corresponding theoretical fits for strong disorder with half of the magnetic moments missing, $c = 0.5$.

9 R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58, 86 (1987).
10 M. Dudka, R. Folk, Yu. Holovatch, and D. Ivaneiko, J. Magn. Magn. Mater. 256, 243-251 (2003).
11 M. Fähnle, G. Herzer, H. Kronmüller, R. Meyer, M. Saile, and T. Egami, J. Magn Mater 38, 240 (1983).
12 S. N. Kaul, J. Magn. Magn. Mater. 53, 5 (1985).
13 S. N. Kaul, Phys. Rev. B 38, 9178 (1988).
14 S. N. Kaul, Ch. V. Mohan, Phys. Rev. B 50, 6157 (1994).
15 P. D. Babu, S. N. Kaul, J. Phys.: Cond. Matt. 9, 7189 (1997).
16 A. Perumal, V. Srinivas, K. S. Kim, S. C. Yu, V. V. Rao, R. A. Dunlap, J. Magn. Magn. Mater. 233, 280 (2001).
17 J. T. Chayes, L. Chayes, Daniel S. Fisher, and T. Spencer, Phys. Rev. Lett. 57, 2999 (1986).
18 Abel Weinrib and B. I. Halperin, Phys. Rev. B 27, 413 (1983).
n	$g_2^{=0.0}$	$g_2^{=0.3}$	$g_2^{=0.40}$
4	0.057541	0.066634	0.091366
5	0.061999	0.070882	0.093814
6	0.063578	0.072695	0.095018
7	0.062970	0.072895	0.094071
8	0.062751	0.071787	0.092343
9	0.061942	0.070998	0.090638
10	0.060216	0.068958	0.089034
11	0.059253	0.068091	0.086531
12	0.058137	0.066394	0.084828
13	0.057270	0.065569	0.083349
14	0.055345	0.063845	0.080870
15	0.054770	0.061972	0.079409
16	0.053529	0.061077	0.077896
17	0.052644	0.060114	0.076659
18	0.052211	0.058970	0.073666
19	0.050329	0.056281	0.071286
20	0.048794	0.055587	0.068609
21	0.047155	0.053513	0.066323
22	0.046044	0.052511	0.064995
23	0.045294	0.051496	0.063222
24	0.044054	0.050261	0.061438
25	0.043114	0.048754	0.060254
26	0.042529	0.048356	0.059285
27	0.041824	0.047628	0.058666

TABLE XV: Values of the self-averaging parameter g_2 for moderate to strong levels of disorder.