12-21-2006

The Complexity of Computing the Size of an Interval

Lane A. Hemaspaandra
University of Rochester

Christopher M. Homan
Rochester Institute of Technology

Sven Kosub
Technische Universitat Munchen

Klaus W. Wagner
Julius-Maximilians-Universitat Wurzburg

Follow this and additional works at: http://scholarworks.rit.edu/article

Recommended Citation
Hemaspaandra Lane A., Homan Christopher M., Sven Kosub, Wagner Klaus W. (2007) The complexity of computing the size of an interval. SIAM Journal on Computing 36(5): 1264–1300; https://doi.org/10.1137/S0097539705447013

This Article is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.
THE COMPLEXITY OF COMPUTING THE SIZE OF AN INTERVAL

LANE A. HEMASPAANDRA†, CHRISTOPHER M. HOMAN‡, SVEN KOSUB§, AND KLAUS W. WAGNER¶

Abstract. Given a p-order A over a universe of strings (i.e., a transitive, reflexive, antisymmetric relation such that if $(x, y) \in A$, then $|x|$ is polynomially bounded by $|y|$), an interval size function of A returns, for each string x in the universe, the number of strings in the interval between strings $b(x)$ and $t(x)$ (with respect to A), where $b(x)$ and $t(x)$ are functions that are polynomial-time computable in the length of x. By choosing sets of interval size functions based on feasibility requirements for their underlying p-orders, we obtain new characterizations of complexity classes. We prove that the set of all interval size functions whose underlying p-orders are polynomial-time decidable is exactly #P. We show that the interval size functions for orders with polynomial-time adjacency checks are closely related to the class FPSPACE(poly). Indeed, FPSPACE(poly) is exactly the class of all nonnegative functions that are an interval size function minus a polynomial-time computable function. We study two important functions in relation to interval size functions. The function #DIV maps each natural number n to the number of nontrivial divisors of n. We show that #DIV is an interval size function of a polynomial-time decidable partial p-order with polynomial-time adjacency checks. The function #MONSAT maps each monotone boolean formula F to the number of satisfying assignments of F. We show that #MONSAT is an interval size function of a polynomial-time decidable total p-order with polynomial-time adjacency checks. Finally, we explore the related notion of cluster computation.

Key words. computational complexity, interval size functions, cluster computing, counting functions

AMS subject classifications. 03D15, 06A05, 06A06, 68Q05, 68Q10, 68Q15, 68Q17

DOI. 10.1137/S0097539705447013

1. Introduction. The class NP, which is widely believed to contain computationally intractable problems, captures the complexity of determining for a given problem instance whether at least one suitable affirmative solution exists within an exponentially large set of (polynomial-sized) potential solutions. It is certainly not simpler, and seemingly much harder, to count all affirmative solutions in such solution sets. The corresponding counting functions constitute Valiant’s widely studied counting class #P [Val79]. In the theory of counting functions, which is devoted to the study of counting versions of decision problems, most classes considered try to capture the pure phenomenon of counting, and in doing so they obscure other factors, e.g., orders on solution sets.

*Received by the editors February 13, 2005; accepted for publication (in revised form) April 25, 2006; published electronically December 21, 2006. A preliminary version of some parts of this paper was presented at the 28th International Colloquium on Automata, Languages and Programming held in Crete, Greece, in July 2001 [HKW01]. This work was supported in part by grants NSF-CCR-9322513, NSF-INT-9815095/DAAD-315-PPP-gö-ab, and NSF-CCF-0426761. This work was done in part while the second author was at the University of Rochester, and in part while the first two authors were visiting Julius-Maximilians-Universität Würzburg.

http://www.siam.org/journals/sicomp/36-5/44701.html

†Department of Computer Science, University of Rochester, Rochester, NY 14627 (www.cs.rochester.edu/~lane).

‡Department of Computer Science, Rochester Institute of Technology, Rochester, NY 14623 (www.cs.rit.edu/~cmh).

§Institut für Informatik, Technische Universität, München, D-85748 Germany (www14.in.tum.de/personen/kosub).

¶Institut für Informatik, Julius-Maximilians-Universität Würzburg, D-97074 Würzburg, Germany (www4.informatik.uni-wuerzburg.de/personen/mitarbeiter/wagner).
Natural counting problems in \#P, of course, sometimes exhibit strong relationships between solutions to the problems. As an example, consider the counting function \#DIV, which counts for each natural number the number of its nontrivial divisors. Clearly, \#DIV is in \#P since division can be done in polynomial time. A suitable structure in the set of solutions is the partial order of divisibility, that is, the order defined by \(n \leq m \) if and only if \(n \) divides \(m \). Obviously, \(\#DIV(m) = \|\{k \mid 1 < k < m\}\| \), i.e., \(\#DIV(m) \) counts the number of elements in the open interval \((1, m)\) in the partial order \(\leq \) on natural numbers.

Is \#DIV an exceptional case among \#P functions in that it has such an interval size characterization? Interestingly, “no” is the answer. It turns out that a function \(f \) is in \#P if and only if it is an interval size function of a P-decidable partial p-order. The latter means that there exist a partial p-order \(A \) (i.e., \(A \) is a partial order and in addition satisfies the requirement that for some polynomial \(p \) and all \(x \) and \(y \), it holds that \(x \leq_A y \) implies \(|x| \leq p(|y|) \) that is P-decidable (i.e., \(x \leq_A y \) is decidable in polynomial time) and polynomial-time computable functions \(b \) and \(t \) such that \(f(x) = \|\{z \mid b(x) <_A z <_A t(x)\}\| \), where \(a <_A b \) denotes \(a \leq_A b \wedge a \neq b \).

However, knowing that a partial p-order is polynomial-time decidable does not give us as much information as sometimes is needed. For example, the polynomial-time decidability of a p-order seemingly does not ensure that it has efficient adjacency checks, i.e., that there is a polynomial-time algorithm checking whether two elements are adjacent in this partial p-order. Indeed, if every P-decidable partial p-order has efficient adjacency checks, then \(P = NP \) (and vice versa). Hence adding efficient adjacency checks to the properties listed above seems to be a restriction. Denote by \(IF_p \) the class of interval size functions of P-decidable partial p-orders with efficient adjacency checks. Denote by \(IF_t \) the class of interval size functions of P-decidable total p-orders with efficient adjacency checks. We have \(IF_t \subseteq IF_p \subseteq \#P \). Are these containments proper? On one hand, we prove that \(IF_t \cap FP = IF_p \cap FP = \#P - FP \), where \(A - B = \{a - b \mid a \in A \wedge b \in B\} \). Thus these three classes do not seem to be very different; indeed, they are identical given the smoothing power of subtracting polynomial-time computable adjustments. On the other hand, \(IF_p = \#P \) is equivalent to \(P = NP \), and \(IF_t = IF_p \) only if \(UP = PH \). Thus it is unlikely that any two of \(IF_t \), \(IF_p \), and \#P coincide. Further, we study relationships between the classes \(IF_t \), \(FP \), and \#P.

We already mentioned that it is unlikely that every P-decidable partial p-order has efficient adjacency checks. What about the converse? This also is not likely; if every partial p-order with efficient adjacency checks is P-decidable, then \(P = PSPACE \) (and vice versa). Hence, in the presence of efficient adjacency checks, removing the P-decidability requirement seems to be a relaxation. Denote by \(IF^*_p \) the class of interval size functions of partial p-orders with efficient adjacency checks. Denote by \(IF^*_t \) the class of interval size functions of total p-orders with efficient adjacency checks. We have \(IF^*_p \subseteq IF^*_t \subseteq IF^*_p \subseteq FPSPACE(poly) \). We prove that \(IF^*_p \) (and \(IF^*_t \)) are remarkably powerful: \(IF^*_t \cap FP = FPSPACE(poly) - FP \). Thus \(IF^*_p \) (and \(IF^*_t \)) are in a certain sense close to \(FPSPACE(poly) \), the class of polynomially length-bounded, polynomial-space computable functions. Nonetheless, we show that if these classes coincide, then \(UP = PSPACE \). We clarify further relationships among such classes and also with respect to other function classes, in order to understand the power of interval computing.

We study two important natural functions in relation to interval size functions. We prove that the counting function \#DIV is in \(IF_p \). Also, we show that the func-
tion #MONSAT, which counts for each monotone boolean formula the number of satisfying assignments that it has, belongs to \(\text{IF}_t \).

Using order-theoretic notions to approach complexity issues has a rich tradition and appears in the literature in a variety of settings (e.g., [GHJY91, GS91, VW95, HVW96, Kos99]). The approaches in the examples just cited differ in intent from our approach in that they are based on a specific ordering, namely the lexicographical ordering. In contrast, for our purposes it is essential to consider more general feasible orderings (see [MP79, Ko83]).

Among earlier studies, perhaps the notion lying nearest to our approach is that of a cluster machine, which is a nondeterministic Turing machine that satisfies the promise that, on each input, all accepting computation paths are always neighbors with respect to the lexicographical ordering, i.e., the accepting paths must form a “cluster” [Kos99]. Based on this machine type, Kosub [Kos99] defined the counting class \(\text{c#P} \) (in a manner analogous to the way that \(\#P \) is based on standard, non-deterministic polynomial-time Turing machines). Kosub obtained many interesting results about \(\text{c#P} \), e.g., \(\text{c#P} \) seems to differ dramatically from \(\#P \) in its closure properties (as regards, e.g., integer division, see [OH93, Kos99]), and he showed that \(\text{c#P} \) is closely related to a relatively simple unambiguous-nondeterminism-based function class, “\(\text{UPSV}_t \).”

Most of the known results about \(\text{c#P} \) are proven by techniques that are exceedingly dependent on the fact that \(\text{c#P} \) is defined using adjacency clusters with respect to lexicographic order. In particular, the fact that in lexicographic order the function \(f(a, b) = \| \{ c \mid a \leq \text{lex} c \leq \text{lex} b \} \| \) is easy to compute underpins the results.

In the present paper we define the class \(\text{CL#P} \), which studies the complexity of cluster computing in a context of relatively general (though length-respecting and having efficient adjacency checks) orders, rather than merely in the extremely special case of lexicographic order. We study \(\text{CL#P} \) and show, for example, that it does not equal \(\text{c#P} \) unless UP = PP (and thus the polynomial hierarchy collapses). On the other hand, we also prove that \(\text{c#P} \) and \(\text{CL#P} \) coincide on polynomially bounded functions, and that \(\text{CL#P} \) shows some behaviors quite reminiscent of \(\text{c#P} \), e.g., though \(\#P \) is closed under increment, we show that \(\text{CL#P} \) is closed under increment only if unexpected complexity collapses occur. More generally, we explore the relationship between \(\text{CL#P} \) and such classes as \(\text{IF}_t, \text{IF}_p, \text{and} \#P \). Though \(\text{CL#P} \) is in general flavor like an interval function (over a total order satisfying appropriate but freed from the polynomial-time computability constraints of the functions defining the top and bottom of the interval), our results usually show that \(\text{CL#P} \) differs from the these classes unless unexpected complexity class collapses occur.

2. Preliminaries. Fix our finite alphabet to be \(\Sigma = \{0, 1\} \), and let \(\Sigma^* \) denote the set of all finite strings over \(\Sigma \). Let \(\varepsilon \) denote the empty string. The length of a string \(x \in \Sigma^* \) is denoted by \(|x| \). The set of all strings of length \(n \) is denoted by \(\Sigma^n \).

The complement of a set \(L \subseteq \Sigma^* \) is denoted by \(\overline{L} \), i.e., \(\overline{L} = \Sigma^* \setminus L \). For any class \(\mathcal{K} \) of subsets of \(\Sigma^* \), let \(\co\mathcal{K} \) be the class \(\{ L \subseteq \Sigma^* \mid \overline{L} \in \mathcal{K} \} \). The cardinality of a finite set \(S \) is denoted by \(|S| \). The characteristic function of a set \(L \subseteq \Sigma^* \) is denoted by \(\chi_L \), i.e., for all \(x \in \Sigma^* \), \(\chi_L(x) = 1 \iff x \in L \) and \(\chi_L(x) = 0 \iff x \notin L \). Let \(\mathbb{N} \) denote the set \(\{0, 1, 2, \ldots\} \). Let \(\mathbb{N}^+ \) denote the set \(\{1, 2, 3, \ldots\} \).

For the basic notions of complexity theory such as \(\text{P}, \text{NP}, \text{PSPACE} \), and so on see, e.g., the handbook [HO02].

The computation model we use is the standard nondeterministic Turing machine.

We review the definitions of some complexity classes of functions, already existing
in the literature, that we will use in this paper.

- **FP** is the class of all (deterministic) polynomial-time computable, total functions from \(\Sigma^* \) to \(\mathbb{N} \). We will at times use FP to mean the class of all polynomial-time computable, total functions from \(\Sigma^* \) to \(\Sigma^* \). Via the natural, efficient bijection between \(\mathbb{N} \) and \(\Sigma^* \), these two notions are essentially the same.

- [Lad89] FPSPACE(poly) is the class of all polynomial-space computable, total functions from \(\Sigma^* \) to \(\mathbb{N} \) having polynomially length-bounded outputs. We will at times use FPSPACE(poly) to mean the class of all polynomial-space computable, total functions from \(\Sigma^* \) to \(\Sigma^* \) having polynomially length-bounded outputs. Via the natural, efficient bijection between \(\mathbb{N} \) and \(\Sigma^* \), these two notions are essentially the same.

- [Val79] \(\#P \) is the class of all total functions \(f \) for which there exists a nondeterministic polynomial-time Turing machine \(M \) such that, for each \(x \), \(f(x) \) is the number of accepting computations of \(M(x) \). Equivalently, \(\#P \) is the class of all total functions \(f \) for which there exist a set \(B \in \mathbb{P} \) and a polynomial \(p \) such that, for all \(x \in \Sigma^* \), \(f(x) = \| \{ z \mid |z| = p(|x|) \land (x, z) \in B \} \| \).

- [GS88, Kos99] UPSV, is the class of all total functions \(f \) for which there exists a nondeterministic polynomial-time Turing machine \(M \) that, on each input \(x \in \Sigma^* \), has exactly one accepting path, and the output of this unique accepting path is \(f(x) \).

The following results are well-known or easy to see.

Proposition 2.1.
1. \(\text{FP} \subseteq \text{UPSV}_i = \text{FP}^{\text{UP} \lor \text{coUP}} \subseteq \#P \subseteq \text{FPSPACE}(\text{poly}) \).
2. \(\text{P} \subseteq \text{UP} \subseteq \text{Few} \cap \text{NP} \subseteq \text{Few} \cup \text{NP} \subseteq \text{P}^{\text{NP}} \subseteq \text{PH} \subseteq \text{PSPACE} \).
3. \(\text{NP} \cup \text{SPP} \subseteq \text{PP} \).
4. [KSTT92] \(\text{Few} \subseteq \text{SPP} \).

In this paper, we will sometimes for conciseness refer to the \(j \)th part of Theorem \(i \) as Theorem \(i,j \), e.g., we may refer to the third part of the above proposition as Proposition 2.1.3.

We will use the complexity-theoretic function-to-set operator \(\exists \) of Hempel and
Wechsung [HW00], which maps function classes to set classes. For a function class \(\mathcal{F} \),
\(\exists \cdot \mathcal{F} \) is the class of all sets \(L \) for which there exists a function \(f \in \mathcal{F} \) such that, for all \(x \in \Sigma^* \), \(x \in L \iff f(x) > 0 \).

The following statements are easy to see.

Proposition 2.2.
1. \(\exists \cdot \text{FP} = \exists \cdot (\text{FP} - \text{FP}) = \text{P} \).
2. \(\exists \cdot \text{UPSV}_{t} = \exists \cdot (\text{UPSV}_{t} - \text{FP}) = \exists \cdot (\text{UPSV}_{t} - \text{UPSV}_{t}) = \text{UP} \cap \text{coUP} \).
3. \(\exists \cdot \text{#P} = \text{NP} \).
4. \(\exists \cdot (\text{#P} - \text{FP}) = \text{PP} \).
5. \(\exists \cdot \text{FPSPACE}(\text{poly}) = \text{PSpace} \).

3. **Orders with feasibility constraints.** In this section, we define the notions of ordering that we use for the remainder of this paper (see also [Ko83]).

A binary relation \(A \subseteq \Sigma^* \times \Sigma^* \) is a **partial order** if it is reflexive, antisymmetric (i.e., \((\forall x, y \in \Sigma^*)[x \neq y \implies ((x, y) \notin A \lor (y, x) \notin A)]\)), and transitive. A partial order \(A \) is a total order if, for all \(x, y \in \Sigma^* \), \((x, y) \in A \) or \((y, x) \in A \). A partial order \(A \) is a **partial p-order** if there exists a polynomial \(q \) such that for all \((x, y) \in A \) it holds that \(|x| \leq q(|y|) \).

For any partial p-order \(A \), we employ the following standard notational conventions. We write \(x \leq_{A} y \) if \((x, y) \in A \). We write \(x <_{A} y \) if \(x \leq_{A} y \) and \(x \neq y \). We write \(x <_{A} y \) if \(x <_{A} y \) and there is no \(z \) such that \(x <_{A} z <_{A} y \). If \(x <_{A} y \), we say that \(x \) **precedes** \(y \) or, equivalently, \(y \) **successes** \(x \). We let \(A_{\prec} =_{\text{def}} \{(x, y) \mid x <_{A} y \} \). The lexicographical order is denoted by \(\leq_{\text{lex}} \), and lexicographical adjacency is denoted by \(\prec_{\text{lex}} \).

Note that, for every partial p-order \(A \) and every string \(y \), there exist at most exponentially (in the length of \(y \)) many strings that are less than \(y \) with respect to \(A \). Thus, the output of an interval size function on a partial p-order is always at most exponential in the input length. Note that such exponential value bounds are typically the case with function classes, such as \(\text{FP} \) and \(\#P \), that are based on Turing machines having polynomial-time running bounds.

Feasibility constraints on orders are essential to our study. A partial p-order \(A \) is **P-decidable** if \(A \in \text{P} \). A partial p-order \(A \) is said to have **efficient adjacency checks** if \(A_{\prec} \in \text{P} \).

There are complexity-theoretic connections between these two feasibility requirements.

Proposition 3.1. Let \(A \) be a partial p-order.
1. If \(A \in \text{P} \), then \(A_{\prec} \in \text{coNP} \).
2. If \(A_{\prec} \in \text{P} \), then \(A \in \text{PSpace} \).

Proof. The proof of (1) is immediate.

For (2), let \(A \) be a partial p-order that has efficient adjacency checks. Let \(M \) be an \(\text{NPSPACE} \) machine that accepts \(A \) by, on input \((x, y)\), accepting immediately if \(x = y \) and otherwise guessing a sequence \(z_{1}, \ldots, z_{k} \) such that \(x \prec_{A} z_{1} \prec_{A} z_{2} \prec_{A} \cdots \prec_{A} z_{k} \prec_{A} y \). Since \(A \) is a partial p-order, for each \(i \in \{1, \ldots, k\} \), \(|z_{i}| \) is polynomially bounded with respect to \(|y| \), so we need only guess such \(z_{i} \)'s whose lengths are polynomially bounded in \(|y| \). So \(A \in \text{NPSPACE} \). However, as is well-known, \(\text{NPSPACE} = \text{PSpace} \). \(\square \)

Corollary 3.2.
1. If \(P = \text{NP} \), then all P-decidable partial p-orders have efficient adjacency checks.
2. If $P = \text{PSPACE}$, then all partial p-orders with efficient adjacency checks are P-decidable.

In what follows we will see that the converse of each of the claims of Corollary 3.2 also holds.

4. Orders without efficient adjacency checks. We say that a function $f : \Sigma^* \to \mathbb{N}$ is an interval size function if there exist boundary functions b and t mapping from Σ^* to Σ^* and a partial order $A \subseteq \Sigma^* \times \Sigma^*$ such that, for all $x \in \Sigma^*$, $f(x) = \|\{z \mid b(x) <_A z <_A t(x)\}\|$. In this section, we characterize $\#P$ in terms of interval size functions with polynomial-time decidable p-orders and polynomial-time computable boundary functions. We also note that if we omit all feasibility restrictions on p-orders, then all polynomially length-bounded functions can be characterized in a manner analogous to the way that interval size functions of resource-bounded orders characterize $\#P$.

Theorem 4.1.

1. For any function f, the following statements are equivalent.
 a. $f \in \#P$.
 b. There exist a partial p-order $A \in P$ and functions $b, t \in \text{FP}$ such that, for all $x \in \Sigma^*$, $f(x) = \|\{z \mid b(x) <_A z <_A t(x)\}\|$.
 c. There exist a total p-order $A \in P$ and functions $b, t \in \text{FP}$ such that, for all $x \in \Sigma^*$, $b(x) \leq_A t(x)$ and $f(x) = \|\{z \mid b(x) <_A z <_A t(x)\}\|$.

 Proof. The implications (1c) \Rightarrow (1b), (1b) \Rightarrow (1a), (2c) \Rightarrow (2b), and (2b) \Rightarrow (2a) are obvious. We prove that (1a) \Rightarrow (1c) and (2a) \Rightarrow (2c).

 It is easy to see that, for every polynomially length-bounded function $f : \Sigma^* \to \mathbb{N}$, there exist a set $B \subseteq \Sigma^* \times \Sigma^*$ and a strictly increasing polynomial p such that $f(x) = \|\{z \mid |z| = p(|x|) \land (x, z) \in B\}\|$. Note that we may choose B so that, for all $x \in \Sigma^*$, $(x, 0^{p(|x|)}) \notin B$ and $(x, 1^{p(|x|)}) \notin B$. If, in addition, $f \in \#P$, then B can be chosen from P.

 We construct a total p-order A on Σ^* as follows. Generally, A will coincide with the lexicographical order on Σ^* except that, for every $x \in \Sigma^*$, the interval between $x0^{p(|x|)}$ and $x1^{p(|x|)}$ (inclusively) is ordered differently in the following way.

 * First comes $x1^{p(|x|)}$.
 * Next come the elements of $\{xz \mid |z| = p(|x|) \land (x, z) \in B\}$ in lexicographical order.
 * Finally come the elements of $\{xz \mid |z| = p(|x|) \land (x, z) \notin B \land z \neq 1^{p(|x|)}\}$ in lexicographical order.

 Note that $f(x) = \|\{w \mid x1^{p(|x|)} <_A w <_A x0^{p(|x|)}\}\|$. If, in addition, $B \in P$, then $A \in P$.

5. Polynomial-time orders with efficient adjacency checks. We know from Theorem 4.1 that counting the size of intervals with respect to P-decidable partial p-orders that have polynomial-time computable boundary functions computes some
function in \#P. The situation changes if in addition we require each P-decidable partial p-order to have efficient adjacency checks.

Definition 5.1. \(\text{IF}_p\) (respectively, \(\text{IF}_t\)) is the class of all functions \(f : \Sigma^* \rightarrow \mathbb{N}\) for which there exist a partial (respectively, total) p-order \(A \in \text{P}\) having efficient adjacency checks and functions \(b, t \in \text{FP}\), such that, for every \(x \in \Sigma^*\), \(f(x) = ||\{z \mid b(x) <_A z <_A t(x)\}||\).

The following theorem places the classes \(\text{IF}_t\) and \(\text{IF}_p\) between two well-known complexity classes.

Theorem 5.2. \(\text{FP} \subseteq \text{IF}_t \subseteq \text{IF}_p \subseteq \#P\).

Proof. The second inclusion follows from the definitions of \(\text{IF}_t\) and \(\text{IF}_p\), and the third inclusion follows from Theorem 4.1. Thus, it remains to prove that \(\text{FP} \subseteq \text{IF}_t\). For each \(f \in \text{FP}\), there exists a strictly increasing polynomial \(p\) such that \(f(x) < 2^{p(|x|)} - 1\). For \(x \in \Sigma^*\) and \(i < 2^{p(|x|)}\), let \(\text{bin}(x, i)\) be the binary description of \(i\) having exactly \(p(|x|)\) bits.

We construct a total p-order \(A\) on \(\Sigma^*\) as follows. Generally, \(A\) coincides with the lexicographical order on \(\Sigma^*\) except that, for every \(x \in \Sigma^*\), the interval between \(x0^{p(|x|)}\) and \(x1^{p(|x|)}\) (inclusively) is ordered in the following way.

- First come the elements of \(\{\text{bin}(x, i) \mid 0 \leq i \leq f(x)\}\) in lexicographical order.
- Next comes \(x1^{p(|x|)}\).
- Finally come the elements of \(\{\text{bin}(x, i) \mid f(x) < i < 2^{p(|x|)} - 1\}\) in lexicographical order.

Note that \(A\) is P-decidable, has efficient adjacency checks, and satisfies \(f(x) = ||\{w \mid x0^{p(|x|)} <_A w <_A x1^{p(|x|)}\}||\). \(\square\)

What else can we say about the relationships between \(\text{FP}, \text{IF}_t, \text{IF}_p,\) and \(\#P\)? We start by providing a characterization of \(\text{IF}_p\) based on an important subset of \(\#P\). Let \(\text{supp}(f)\) denote the support of \(f\), i.e., \(\text{supp}(f) = \{x \mid f(x) \neq 0\}\).

Theorem 5.3. \(\text{IF}_p = \{f \in \#P \mid \text{supp}(f) \in \text{P}\}\).

Proof. Suppose that \(f \in \text{IF}_p\), via p-order \(A \in \text{P}\) having polynomial-time adjacency checks and boundary functions \(b, t \in \text{FP}\). Note that \(\text{supp}(f) = \{x \mid b(x) <_A t(x) \lor b(x) <_A t(x)\}\). Thus, since \(A \in \text{P}\) and \(A < _A \in \text{P}\), it follows that \(\text{supp}(f) \in \text{P}\) and thus that \(\text{supp}(f) \in \text{P}\). By Theorem 5.2, \(f \in \#P\). Therefore \(\text{IF}_p \subseteq \{f \in \#P \mid \text{supp}(f) \in \text{P}\}\).

We now show that \(\{f \in \#P \mid \text{supp}(f) \in \text{P}\} \subseteq \text{IF}_p\). Suppose \(f \in \#P\) and \(\text{supp}(f) \in \text{P}\). Since \(f \in \#P\), there exist a set \(B \subseteq \Sigma^* \times \Sigma^*\) from \(\text{P}\) and a strictly increasing polynomial \(p\) such that \(f(x) = ||\{z \mid |z| = p(|x|) \land (x, z) \in B\}||\).

We construct a partial p-order \(A\) on \(\Sigma^*\) as follows. Generally, \(A\) coincides with the lexicographical order on \(\Sigma^*\) except that, for every \(x \in \Sigma^*\), the interval between \(x0^{p(|x|)}00\) and \(x1^{p(|x|)}11\) (inclusively) is ordered according to the following rules.

1. \(x0^{p(|x|)}00 <_A x0^{p(|x|)}01 <_A x0^{p(|x|)}11\).
2. The elements from \(\{xz10 \mid |z| = p(|x|) \land (x, z) \in B\}\) are pairwise incomparable, and all are between \(x0^{p(|x|)}01\) and \(x0^{p(|x|)}11\).
3. The elements from \(\{xz10 \mid |z| = p(|x|) \land (x, z) \notin B\}\) \(\cup \{x\sigma \mid |z| = p(|x|) \land z \neq 0^{p(|x|)} \land \sigma \in \{00, 01\}\}\) are pairwise incomparable, and all are between \(x0^{p(|x|)}00\) and \(x0^{p(|x|)}01\).

Note that \(A\) is P-decidable and satisfies \(f(x) = ||\{w \mid x0^{p(|x|)}01 <_A w <_A x0^{p(|x|)}11\}||\). Define \(b(x) =_{\text{def}} x0^{p(|x|)}01\) and \(t(x) =_{\text{def}} x0^{p(|x|)}11\). For each \(x\), we have by the construction of \(A\) that \(b(x) <_A t(x)\) if and only if \(f(x) = 0\). Since by assumption \(\{x \mid f(x) > 0\}\) \(\subseteq \text{P}\) the set \(\{x \mid b(x) <_A t(x)\}\) belongs to \(\text{P}\). By our
construction, all other adjacency questions are very easily answered by the obvious, efficient test. So $A_\prec \in P$.

From this it follows that IF_p and $\#P$ coincide on Nonzero, defined as the set
\[\{ f \mid (\forall x \in \Sigma^*) [f(x) > 0] \}. \]

Corollary 5.4. $\text{IF}_p \cap \text{Nonzero} = \#P \cap \text{Nonzero}$.

In what follows, we will sometimes write 1 for the function class consisting of precisely the constant function $\lambda x.1$, and we will sometimes write $\mathcal{O}(1)$ for the function class consisting of precisely the functions $\lambda x.0$, $\lambda x.1$, $\lambda x.2$, \ldots.

Corollary 5.5.
1. $\#P \subseteq \text{IF}_p - 1$.
2. $\#P - \mathcal{O}(1) = \text{IF}_p - \mathcal{O}(1)$.

From Theorem 5.2 and Corollary 5.5 we can conclude that $\text{IF}_p \subseteq \text{IF}_p - 1$, which is equivalent to saying that IF_p is closed under increment, i.e., for every $f \in \text{IF}_p$, the function f' is also in IF_p, where, for all $x \in \Sigma^*$, $f'(x) = \text{def} f(x) + 1$.

Corollary 5.6. The class IF_p is closed under increment.

Regarding IF_t, we have the following theorem. Note that this theorem’s second part says that the three function classes IF_t, IF_p, and $\#P$ are so closely related that in the presence of easy-to-compute subtractive postcomputation adjustments they become the same. Though it is not concerned with interval functions, we commend to the attention of the interested reader a beautiful paper by Ogihara et al. [OTTW96] that studies whether for $\#P$ postcomputation adjustments can annihilate even the effects of various operators.

Theorem 5.7.
1. $\#P \subseteq \text{IF}_t - \text{FP}$.
2. $\text{IF}_t - \text{FP} = \text{IF}_p - \text{FP} = \#P - \text{FP}$.

Proof. (1) For $f : \Sigma^* \to \mathbb{N}$ in $\#P$, there exist a set $B \subseteq \Sigma^* \times \Sigma^*$ from P and a strictly increasing polynomial p such that $f(x) = || \{ z \mid |z| = p(|x|) \land (x,z) \in B \} ||$.

We construct a total p-order A on Σ^* as follows. Generally, A coincides with the lexicographical order on Σ^* except that, for every x, the interval between $x0p(|x|)+2$ and $x1p(|x|)+2$ (inclusively) is ordered differently in the following way.

- First come the elements of $\{ x00 \mid |z| = p(|x|) \}$ in lexicographical order.
- Next come the elements of $\{ xz11 \mid |z| = p(|x|) \land (x,z) \in B \} \cup \{ xz01 \mid |z| = p(|x|) \}$ in lexicographical order.
- Finally come the elements of $\{ xz11 \mid |z| = p(|x|) \land (x,z) \notin B \} \cup \{ xz10 \mid |z| = p(|x|) \}$ in lexicographical order.

Note that A is in P, has efficient adjacency checks, and satisfies $|| \{ w \mid x1p(|x|)0 < A w < A x0p(|x|)+10 \} || = f(x) + 2p(|x|)$.

(2) This follows from Theorem 5.2 and part 1 of the present theorem.

Corollary 5.8. $\text{FP}\text{IF}_t = \text{FPIF}_p = \text{FP}\#P$.

The previous results indicate that the computational power of IF_p and IF_t are not far from the computational power of $\#P$. Nonetheless, Theorem 5.10 shows that these classes cannot coincide unless $P = \text{NP}$. In the proof of Theorem 5.10 we will draw on the following lemma regarding the application of the \exists operator to IF_p and IF_t. Comparing Lemma 5.9 with Corollary 5.4 and taking into account that $\exists \cdot \#P = \text{NP}$, it turns out that it is precisely the possibility that $f(x) = 0$ that makes the classes $\#P$ and IF_p potentially differ.

Lemma 5.9. $\exists \cdot \text{IF}_p = \exists \cdot \text{IF}_t = P$.

Proof. For $L \in \exists \text{IF}_p$ there exist a p-order $A \in \text{P}$ having efficient adjacency checks and $b,t \in \text{FP}$ such that, for all x, it holds that $x \in L \iff || \{ z \mid b(x) < A z < A t(x) \} || > 0$.

Thus, for all $x \in \Sigma^*$, $x \in L \iff [b(x) \leq_A t(x) \text{ and } b(x) \not<_A t(x)]$, so $x \in L$ can be checked in polynomial time.

Choose $L \in P$. Thus $\chi_L \in FP$. By Theorem 5.2, $\chi_L \in IF_1$, thus $L \in \exists \cdot IF_1$. □

Theorem 5.10. The following statements are equivalent.

1. $P = NP$.
2. $IF_p = \#P$.
3. $IF_t = \#P$.
4. Every P-decidable partial p-order has efficient adjacency checks.
5. Every P-decidable total p-order has efficient adjacency checks.

Proof. (1) \Rightarrow (4) follows from Corollary 3.2.1. (4) \Rightarrow (5) is immediate from the definitions. (5) \Rightarrow (3) follows from Theorem 4.1.1. (3) \Rightarrow (2) follows from Theorem 5.2. To see that (2) \Rightarrow (1), if $IF_p = \#P$ then $\exists \cdot IF_p = \exists \cdot \#P$. By Lemma 5.9 and Proposition 2.2.3 we have $P = NP$. □

We know from Theorem 5.2 that $FP \subseteq IF_t$. However, if $IF_t \subseteq FP$ or even $IF_t \subseteq UPSV_t$, then severe consequences follow.

Theorem 5.11.

1. $FP = IF_t$ if and only if $P = PP$.
2. $IF_t \subseteq UPSV_t$ if and only if $UP = PP$.
3. $UPSV_t \subseteq IF_p$ if and only if $P = UP \cap coUP$.

Proof. For items (1) and (2) we consider the left-to-right direction first. From Theorem 5.7 and Proposition 2.2, we can conclude under the assumption $FP = IF_t$ that $PP = \exists \cdot (#P - FP) = \exists \cdot (IF_t - FP) = \exists \cdot (FP - FP) = P$ and we can conclude under the assumption $IF_p \subseteq UPSV_t$ that $PP = \exists \cdot (#P - FP) = \exists \cdot (IF_t - FP) \subseteq \exists \cdot (UPSV_t - FP) = UP \cap coUP$. For the right-to-left directions, if $P = PP$, then $IF_t \subseteq \#P \subseteq FP^#P = FP^{PP} = FP$. Thus, $IF_t = FP$. If $UP = PP$, then $IF_t \subseteq \#P \subseteq FP^#P = FP^{PP} = FP^{UP \cap coUP} = UPSV_t$.

For item (3), from $UPSV_t \subseteq IF_p$, Proposition 2.2, and Lemma 5.9 it follows that $UP \cap coUP = \exists \cdot UPSV_t \subseteq \exists \cdot IF_p = P$. For the right-to-left direction, by Proposition 2.1.1, $P = UP \cap coUP$ implies $UPSV_t = FP$. So, by Theorem 5.2, $P = UP \cap coUP$ implies $UPSV_t \subseteq IF_p$ (and even $UPSV_t \subseteq IF_t$).

In contrast to Theorem 5.11.3, when restricted to strictly positive functions the class $UPSV_t$ is even included in IF_t.

Theorem 5.12. $UPSV_t \cap Nonzero \subseteq IF_t \cap Nonzero$.

A proof of Theorem 5.12 is in the technical report version [HHKW05] of this paper. Since $UPSV_t$ is closed under increment, Theorem 5.12 yields the following corollary.

Corollary 5.13. $UPSV_t \subseteq IF_t - 1$.

Corollary 5.6 showed that the class IF_p is closed under increment. This is also true for the class IF_t.

Theorem 5.14. The class IF_t is closed under increment.

Proof. For $f \in IF_t$ there exist a P-decidable p-order A on Σ^* with efficient adjacency checks and functions $b, t \in FP$ such that, for all $x \in \Sigma^*$, $f(x) = \{w \mid b(x) <_A w <_A t(x)\}$. Without loss of generality we may require that $b(x) \leq_A t(x)$, since on inputs not satisfying that we may modify $t(x)$ to output $b(x)$. Let p be a strictly increasing polynomial such that, for all $y \in \Sigma^*$ satisfying $y \leq_A t(x)$, $|y| < p(|x|)$.

We construct a total p-order A' on Σ^* as follows. Generally, A' coincides with the lexicographical order on Σ^* except that, for every $x \in \Sigma^*$, the interval between $x0^{|x|+2}$ and $x1^{|x|+2}$ (inclusively) is ordered in the following way:

- First comes $x0^{|x|+2}$.
THE COMPLEXITY OF COMPUTING INTERVAL SIZE

6. Arbitrary orders with efficient adjacency checks. In the previous section, we studied polynomial-time-decidable p-orders having efficient adjacency checks. We showed that the classes defined by interval size functions over such orders, IFp and IFt, are very close to #P. In the present section, we consider what happens when we do not insist on polynomial-time decidability for the order but still require efficient adjacency checks. Section 6.1 presents our results on this. Due to its complexity and length, the proof of one key claim of that section, Lemma 6.5, is presented separately as section 6.2.

6.1. Results on arbitrary orders with efficient adjacency checks. In this section, we study p-orders that have efficient adjacency checks but that are not required to be polynomial-time decidable. We define two classes to capture this behavior.

- Next come the elements of $D_x = \{ x^{0^{|x|-|z|}} | 1 \leq 0 | b(x) \leq A z \leq t(x) \}$, for which we set $x^{0^{|x|}-|y|} \leq y$ if and only if $y \leq_A z$.
- Finally come the elements of $\{ xu | |w| = p(|x|) + 2 \} - (D_x \cup \{ 0^{|x|+2} \})$ in lexicographical order.

Note that A' is P-decidable, that it has efficient adjacency checks, and that $f(x) + 1 = \| \{ w | x^{0^{|x|}+2} \leq_A w < A' \} x^{0^{|x|}+2} \leq t(x) \| 0 \|$.

COROLLARY 5.15. IFp ⊆ P - 1.

Although the statement “UPSVt = IFp” is not likely to be true (see Theorem 5.11), for the case of strictly positive, polynomially bounded functions the analogous statement holds. We define PolyBounded = \{ f | (\exists \text{ polynomial } p) (\forall x) [f(x) \leq p(|x|)] \}.

THEOREM 5.16.
1. IFp ∩ PolyBounded ⊆ UPSVt ∩ PolyBounded.
2. IFt ∩ PolyBounded ∩ Nonzero = UPSVt ∩ PolyBounded ∩ Nonzero.
3. UPSVt ∩ PolyBounded ⊆ IFp ∩ PolyBounded if and only if P = UP ∩ coUP.

A proof of Theorem 5.16 is in the technical report version [HHKW05] of this paper.

From Theorem 4.1 we know that total p-orders that are efficiently decidable and partial p-orders that are efficiently decidable describe the same class of functions in our setting (namely #P). If we consider p-orders that additionally have efficient adjacency checks, then the analogous confluence of total and partial does not hold unless an unexpected complexity class collapse occurs.

THEOREM 5.17. If IFt = IFp, then UP = PH.

Proof. Assume that IFt = IFp. We show that coNP ⊆ UP (which is equivalent to the statement UP = PH). Let L ∈ coNP, i.e., there is a function $f \in \#P$ such that, for all $x \in \Sigma^*$, $x \in L \Leftrightarrow f(x) = 0$. Consider the function f', where $f'(x) = f(x) + 1$. Thus $x \in L \Leftrightarrow f'(x) = 1$ and, since #P is closed under increment, we conclude that $f' \in \#P \cap \text{Nonzero} = IF_p \cap \text{Nonzero} = IF_t \cap \text{Nonzero}$. Thus, there exist a total p-order A with efficient adjacency checks and functions b, t ∈ FP such that $f'(x) = \| \{ z | b(x) < A z \leq t(x) \} \|$. Let q be a polynomial such that $(x, y) \in A$ implies $|x| \leq q(|y|)$. Define M to be a machine that, on input $x \in \Sigma^*$, nondeterministically guesses z such that $|z| \leq q(|t(x)|)$ and checks whether $b(x) < A z < A t(x)$. Clearly, M runs in polynomial time (since A has efficient adjacency checks) and always has at most one accepting path (since A is a total p-ordering and we are doing two adjacency checks in our test). Moreover, $x \in L$ if and only if M on x has an accepting computation path. Thus, L ∈ UP.

6. Arbitrary orders with efficient adjacency checks. In the previous section, we studied polynomial-time-decidable p-orders having efficient adjacency checks. We showed that the classes defined by interval size functions over such orders, IFp and IFt, are very close to #P. In the present section, we consider what happens when we do not insist on polynomial-time decidability for the order but still require efficient adjacency checks. Section 6.1 presents our results on this. Due to its complexity and length, the proof of one key claim of that section, Lemma 6.5, is presented separately as section 6.2.
Definition 6.1. The class \(\text{IF}_P^* \) (respectively, \(\text{IF}_T^* \)) is the set of all functions \(f : \Sigma^* \to \mathbb{N} \) for which there exist a partial (respectively, total) \(p \)-order \(A \) having efficient adjacency checks and functions \(b, t \in \text{FP} \) such that, for every \(x \in \Sigma^* \), \(f(x) = \| \{ z \mid b(x) <_A z <_A t(x) \} \| \).

We have the following inclusions between classes of interval size functions and other complexity classes of functions.

Proposition 6.2. \(\text{IF}_t \subseteq \text{IF}_T^* \subseteq \text{IF}_P^* \subseteq \text{FPSPACE}(\text{poly}) \) and \(\text{IF}_t \subseteq \text{IF}_P^* \subseteq \text{IF}_P^* \cap \#P \subseteq \#P \subseteq \text{FPSPACE}(\text{poly}) \).

Proof. The only inclusion that is nontrivial is \(\text{IF}_P^* \subseteq \text{FPSPACE}(\text{poly}) \). Let \(f \) be in \(\text{IF}_P^* \) via a partial \(p \)-order \(A \) having efficient adjacency checks and functions \(b, t \in \text{FP} \). Let \(p \) be a polynomial such that, for all \(x, y \in \Sigma^* \), \((x, y) \in A \) implies \(|x| \leq p(|y|) \).

From Proposition 3.1 we know that \(A \) is in \(\text{PSPACE} \). Thus, there is a polynomial-space Turing machine \(M \) that, for any input \(x \in \Sigma^* \), counts by brute force how many strings \(z \) of length at most \(p(|t(x)|) \) satisfy \(b(x) <_A z <_A t(x) \). We may thus conclude that \(f \) is in \(\text{FPSPACE}(\text{poly}) \).

The main results of this section show that the computational powers of \(\text{IF}_P^* \) and \(\text{IF}_T^* \) are close to the computational power of \(\text{FPSPACE}(\text{poly}) \). In fact, within the flexibility of the simple postcomputation adjustment of subtracting polynomial-time computable functions, these three classes become the same.

Theorem 6.3. \(\text{IF}_T^* - \text{FP} = \text{IF}_P^* - \text{FP} = \text{FPSPACE}(\text{poly}) - \text{FP} \).

Theorem 6.4. \(\exists \cdot \text{IF}_T^* = \exists \cdot \text{IF}_P^* = \text{PSPACE} \).

Theorem 6.4 can be interpreted to say something a bit surprising about the complexity of reachability, namely, that in a certain sense reachability checking in succinctly specified chains is \(\text{PSPACE} \)-complete. To see this, we reason as follows. There exist \(\text{PSPACE} \)-complete problems. So from that and Theorem 6.4, in light of Definition 6.1, we have that there are a total \(p \)-order \(A \) and functions \(b, t \in \text{FP} \) such that the set \(\{ x \mid f(x) > 0 \} \) is \(\text{PSPACE} \)-complete, where \(f(x) = \| \{ z \mid b(x) <_A z <_A t(x) \} \| \). To interpret this all in terms of reachability in a succinctly specified chain, we can view \(A \) as specifying an infinite chain such that \(a \) has an edge to \(b \) precisely if \(b \) is right-adjacent to \(a \). Testing whether \(f(x) > 0 \) is asking “Is it the case that both \(a \) \(t(x) \) is not right-adjacent to \(b(x) \), and \(b \) there is a path from \(b(x) \) to \(t(x) \) within the chain?” Note that the “(a)” part of this test is a polynomial-time test, so the complexity is coming from the “(b)” part. Thus, in the sense just mentioned, Theorem 6.4 shows the unexpected result that even for succinctly, simply specified chains, reachability testing where the “to” and “from” elements are indirectly polynomial-time specified by the input is \(\text{PSPACE} \)-complete. However, the problem just discussed, where the “to” and “from” elements are determined by polynomial-time computable functions of the input, can easily be seen—being careful of course about condition “(a)” from above—to polynomial-time many-one reduce to the more flexible case in which the “to” and “from” elements are the input. And so we have that there exists a set \(A \subseteq \mathbb{N}^2 \), \(A \in \text{P} \), such that the directed graph \((\mathbb{N}, A) \) is a chain and its reachability problem,

\[\{(x, y) \mid x, y \in \mathbb{N} \text{ and } y \text{ is reachable from } x \text{ in } (\mathbb{N}, A)\}, \]

is \(\text{PSPACE} \)-complete. Even in light of the existing results showing that many problems about succinctly specified graphs are hard, and often \(\text{PSPACE} \)-complete (see [Wag84, Wag86, PY86, GW83]), but for contrast see also [HHW05, NT05]), this result, which speaks to succinctly specified chains, seems surprising. (These comments all regard the “total” part of Theorem 6.4. The “partial” part of Theorem 6.4 implies the
analogous but far less surprising claim for succinctly specified graphs (as opposed to succinctly specified chains), and in fact would give one an alternate way of seeing
the known (see [Wag84, Wag86, PY86, GW83]) result that the graph reachability problem in succinctly specified graphs is PSPACE-complete. By the way, PSPACE-completeness is known from those earlier works to still hold even when the graphs are
restricted to outdegree one (see [Wag84, Wag86, PY86, GW83], and the discussion in
[Tan01]), which brings one somewhat closer to the chains cases mentioned above.)

Theorems 6.3 and 6.4 follow immediately from Proposition 6.2 and the following lemma, whose proof is deferred to section 6.2.

Lemma 6.5. For each \(f \in \text{FPSPACE}(\text{poly}) \), there exist a total \(p \)-order \(A \) having
efficient adjacency checks and polynomial-time computable functions \(s : \mathbb{N} \to \mathbb{N} \), \(b : \Sigma^* \to \Sigma^* \), \(b' : \Sigma^* \to \Sigma^* \), and \(t : \Sigma^* \to \Sigma^* \) such that, for all \(x \in \Sigma^* \),

1. \(s \) is polynomially bounded,
2. \(\| \{ z \mid b(x) <_A z <_A t(x) \} \| = 2^{s(|x|)} + f(x) - 2 \), and
3. \(\| \{ z \mid b'(x) <_A z <_A t(x) \} \| > 0 \) if and only if \(f(x) = 1 \).

As a consequence of Theorems 6.3 and 6.4, we obtain characterizations for the
class \(\text{FPSPACE}(\text{poly}) \) in terms of \(\text{IF}^*_t \). For classes \(\mathcal{F} \) and \(\mathcal{G} \) of functions from \(\Sigma^* \) to
\(\mathbb{N} \), let \(\mathcal{F} \ominus \mathcal{G} \) denote the class of all total, nonnegative functions in \(\mathcal{F} - \mathcal{G} \), i.e., the
class of all total functions \(h \) for which there exist total functions \(f \in \mathcal{F} \) and \(g \in \mathcal{G} \)
such that, for all \(x \in \Sigma^* \), \(f(x) \geq g(x) \) and \(h(x) = f(x) - g(x) \).

Corollary 6.6.

1. \(\text{FPSPACE}(\text{poly}) = \text{IF}^*_t \ominus \text{FP} = \text{FP}^{\text{IF}^*_t} = \text{FP}^{\text{IF}^*_t} \).
2. \(\text{FPSPACE}(\text{poly}) = \text{IF}^*_p \ominus \text{FP} \subseteq \text{FP}^{\text{IF}^*_p} \subseteq \text{FP}^{\text{IFSPACE}(\text{poly})} \subseteq \text{FP}^{\text{PSPACE}} \subseteq \text{FP}^{\text{IF}^*_t} \subseteq \text{FP}^{\text{PSPACE}} \subseteq \text{FPSPACE}(\text{poly}) \). Part 2 holds by the same inclusion chain applied to \(\text{IF}^*_p \).

Though Theorem 6.3 shows that \(\text{IF}^*_t \) is almost as powerful as \(\text{FPSPACE}(\text{poly}) \), the following theorem shows that it is unlikely that \(\text{IF}^*_t \) actually coincides with
\(\text{FPSPACE}(\text{poly}) \).

Theorem 6.7. If \(\text{FPSPACE}(\text{poly}) \subseteq \text{IF}^*_p \), then \(\text{UP} = \text{PSPACE} \).

Proof. Suppose that \(\text{FPSPACE}(\text{poly}) \subseteq \text{IF}^*_p \). Let \(L \in \text{PSPACE} \). Then its
classifying function \(\chi_L \) is in \(\text{FPSPACE}(\text{poly}) \), and by hypothesis \(\chi_L \in \text{IF}^*_p \) via some partial \(p \)-order \(A \) having efficient adjacency checks, some polynomial \(p \) such that \((x, y) \in A \) implies \(|x| \leq p(|y|) \), and functions \(b, t \in \text{FP} \) such that \(\chi_L(x) = \| \{ z \mid b(x) <_A z <_A t(x) \} \| \). Note that \(L = \{ x \mid (\exists z)[|z| \leq p(|t(x)|) \land b(x) <_A z <_A t(x)] \} \). Thus, keeping in mind that \((\forall x)[\chi_L(x) \leq 1] \), we have \(L \in \text{UP} \).

From Theorems 6.3 and 6.4, if \(\text{IF}^*_p = \text{IF}^*_t \) or \(\text{IF}^*_p \subseteq \#P - \text{FP} \), then strong
consequences follow, as the following two corollaries show.

Corollary 6.8. The following statements are equivalent.

1. \(\text{P} = \text{PSPACE} \).
2. \(\text{IF}^*_p = \text{IF}^*_p \).
3. \(\text{IF}^*_t = \text{IF}^*_t \).
4. Every partial \(p \)-order with efficient adjacency checks is \(\text{P} \)-decidable.
5. Every total \(p \)-order with efficient adjacency checks is \(\text{P} \)-decidable.

Proof. (1) \(\Rightarrow \) (4) is just Corollary 3.2.2. (4) \(\Rightarrow \) (5) is trivial. (4) \(\Rightarrow \) (2) and (5)
\(\Rightarrow \) (3) follow from the definitions of \(\text{IF}^*_p \), \(\text{IF}^*_p \), \(\text{IF}^*_t \), and \(\text{IF}^*_t \). By Theorem 6.4 and
Lemma 5.9, (2) implies \(\text{PSPACE} = \#\text{IF}^*_p = \#\text{IF}^*_p \), and so implies (1). Similarly,
(3) implies \(\text{PSPACE} = \#\text{IF}^*_t = \#\text{IF}^*_t \), and so implies (1).

\(\square \)
Corollary 6.9.
1. If IF\textsubscript{\textit{i}}\subseteq \#P - FP, then SPP = PSPACE.
2. If IF\textsubscript{\textit{i}}\subseteq \#P, then NP = SPP = PSPACE.

Proof. (1): For L \in PSPACE, \chi_L \in FPSPACE(poly). By Proposition 6.2, Theorem 6.3, and our assumption, \chi_L \in \#P - FP. Thus, L \in SPP.

(2): From Theorem 6.4 and our hypothesis, we obtain PSPACE \subseteq \exists \cdot \#P = NP. Combining this with the first part of this theorem we have SPP = NP = PSPACE. \square

The next result is analogous to results regarding the potential equality of IF\textsubscript{i} and IF\textsubscript{\textit{p}}.

Theorem 6.10. If IF\textsubscript{\textit{i}} = IF\textsubscript{\textit{p}}, then UP = PH.

Proof. The proof follows the proof of Theorem 5.17, except that, for the function there called \textit{f}', we now conclude that \textit{f}' \in \#P \cap Nonzero = IF\textsubscript{\textit{p}} \cap Nonzero \subseteq IF\textsubscript{\textit{i}} \cap Nonzero = IF\textsubscript{\textit{i}} \cap Nonzero = IF\textsubscript{\textit{i}} \cap Nonzero. This approach works because the hypothesis \textit{f}' \in IF\textsubscript{\textit{i}}\textsubscript{\textit{P}} can be exploited in the same way as the hypothesis \textit{f}' \in IF\textsubscript{\textit{i}} was exploited in the proof of Theorem 5.17. This is because in the proof of Theorem 5.17 the P-decidability of the total p-order underlying \textit{f}' \in IF\textsubscript{\textit{i}} was not even used. \square

Figure 1 summarizes the results we have obtained regarding the inclusion structure of our classes. Although we have not proven consequences of collapses other than those drawn in the figure, we conjecture that the inclusions in the figure are all one can prove without assuming unexpected collapses of complexity classes.

6.2. Proof of Lemma 6.5. The goal of this section is to prove Lemma 6.5. For convenience, we repeat its statement here.

Lemma 6.5. For each \textit{f} \in FPSPACE(poly), there exist a total p-order \textit{A} having efficient adjacency checks and polynomial-time computable functions \textit{s} : \mathbb{N} \rightarrow \mathbb{N}, \textit{b} : \Sigma^* \rightarrow \Sigma^*, \textit{b}' : \Sigma^* \rightarrow \Sigma^*, and \textit{t} : \Sigma^* \rightarrow \Sigma^* such that, for all \textit{x} \in \Sigma^*,

1. \textit{s} is polynomially bounded,
2. \|\|z \mid b(x) <_A z <_A t(x)\|\| = 2^{2s(|x|)} + f(x) - 2, and
3. \|\|z \mid b'(x) <_A z <_A t(x)\|\| > 0 \text{ if and only if } f(x) = 1.

Constructing the p-order \textit{A} mentioned in Lemma 6.5 is, compared to the other p-orders described in this paper, more technically involved. Before we prove Lemma 6.5, we will show, for any \textit{f} \in FPSPACE(poly), how to construct \textit{A} based on the behavior of a Turing machine that computes \textit{f}. We will then prove Lemma 6.5 by showing that \textit{A} has all the properties claimed by the lemma.

Our approach is based on the fact that, for any deterministic Turing machine \textit{M} and any halting configuration \textit{c} of \textit{M}, the set of all configurations of \textit{M} that lead to \textit{c} form a tree having \textit{c} as its root and as its edges every pair of configurations where in one time step \textit{M} moves from one configuration to the other. We base the order of \textit{A} on a traversal of these trees. Each argument to \textit{A} encodes either nonsense or an input to \textit{M}, a configuration of \textit{M} whose length is bounded in the space bound on \textit{M}(\textit{x}), a direction relative to the traversal of the tree to which the given configuration belongs, a guess as to what the eventual halting configuration of \textit{M} will be when run from the given configuration, and some additional information we describe later. These arguments effectively yield multiple copies of each tree. The order \textit{A} organizes the arguments in such a way that, in the case of Lemma 6.5.2 (Lemma 6.5.3 uses basically the same approach) \textit{b}(\textit{x}) and \textit{t}(\textit{x}) delimit an interval that has two elements for every configuration within the space bound imposed by \textit{M}(\textit{x}), and \textit{f}(\textit{x}) additional elements.
The key “trick” in this construction is the sequence of “guess bits” each argument to \(A \) has, which allow us to send along each tree “messages” that link each configuration to its actual halting configuration. We “pad” \(A \), near arguments containing initial configurations, with as many additional arguments as the guess bits predict. We of course do not know at this point (i.e., “near” an initial configuration) if the guess is correct. However, by the end of the computation we do know. So we simply place together in \(A \) all trees corresponding to correct guesses and set, in the case of Lemma 6.5.2, \(b(x) \) and \(t(x) \) to the boundaries of this interval (which “squeezes out” from the desired interval all incorrect guesses). This yields the claimed results.

We will construct \(A \) in five phases, described as follows.

1. **Fixing the computational model.** We will base \(A \) on a Turing machine \(M \) that computes \(f \) in a natural but somewhat nonstandard way. The benefit of using \(M \) rather than an arbitrary \(\text{FPSPACE(poly)} \) Turing machine for \(f \) is that it will be easier to work with binary encodings of the configurations.
of \(M \) and the actions of \(M \) than with those of an arbitrary \(\text{FPSPACE}(\text{poly}) \) Turing machine for \(f \).

2. **Fixing the encoding.** We will base \(A \) on binary encodings of the configurations of \(M \), which we call *enhanced instantaneous descriptions*. Our encodings are like standard instantaneous descriptions (IDs) [HMU01] but differ in three crucial ways. First, our encodings are actual binary strings rather than sequences of abstract symbols. Second, we use different syntax (which we describe below). Finally, our descriptions contain more information than is actually needed to describe a configuration of \(M \) at an instant in time. This additional information is never accessed by \(M \), so its presence in the encodings does not affect the performance of \(M \). At the same time, its presence will greatly aid us in constructing \(A \).

3. **Building trees.** For some appropriate polynomial \(s \), we will, for each \(x \in \Sigma^* \), define a tree whose nodes are enhanced instantaneous descriptions of \(M \) and whose edges are based on the next move function of \(M \). This tree will have a subtree \(T_x \) having exactly \(2^{2s(|x|)} \) nodes.

4. **Traversing the trees.** We will associate multiple strings with each node in the tree described above (by padding the labels of the nodes) in such a way that \(f(x) + 2 \) strings are associated with one of the nodes in \(T_x \) and two strings are associated with each of the remaining \(2^{2s(|x|)} - 1 \) nodes in \(T_x \). We will then define a total, one-to-one, polynomial-time computable function \(D_M \) over these strings in such a way that \(D_M \), applied repeatedly to some appropriate starting point, represents a traversal of the tree such that the traversal visits each of these strings once, i.e., from a particular one of the strings \(z \) associated with the root of the tree, for each string \(y \) associated with some node of the tree there is an integer \(i \in \mathbb{N} \) such that \(D_M^{(i)}(z) = y \), where \(D_M^{(0)}(z) = z \), and, for each \(i \in \{1, 2, 3, \ldots\} \), \(D_M^{(i)}(z) = D_M(D_M^{(i-1)}(z)) \). Moreover, for strings \(w \) and \(y \), \(D_M(w) = y \) only if the nodes associated with \(w \) and \(y \) are related (i.e., parent/child, sibling, or identical nodes).

5. **Constructing \(A \).** We will base \(A \) on \(D_M \). For example, \(A \) crucially will have the property that if \(w \) and \(z \) are two of the strings described in Phase 4, then \(w \prec_A z \) if and only if \(z = D_M(w) \). Note there will also be many strings on which \(D_M \) is not defined that will nonetheless have to be accounted for.

Through careful encoding at each phase in the construction, it will be easy to account for these strings in such a way that \(A \) has all the properties we desire.

After we handle these five phases, we will prove Lemma 6.5. We now proceed with the construction. Please note that, due to the length of this construction, we overload certain variables. For instance, the variable \(t \) denotes both a function over strings and over natural numbers, and has distinct semantics in each case. Over strings it is the function that determines the “bottom” of an interval (i.e., it is used as it typically is throughout this paper), and over the natural numbers it bounds the amount of space needed for part of the encodings we use.

Phase 1: Fixing the computational model. Let \(M = (Q, \Sigma, \Gamma, \delta, B, q_0, F) \) be a Turing machine that computes \(f \), where

- \(Q \) is the set of *state symbols*,
- \(\Sigma = \{0, 1\} \) is the set of *input symbols*,
- \(B \) is the *blank symbol*,
- \(\Gamma \supseteq \{0, 1, B\} \) is the set of allowable *tape symbols*,
- \(\delta \) is the transition function.

We will base \(A \) on binary encodings of the configurations of \(M \), which we call *enhanced instantaneous descriptions*. Our encodings are like standard instantaneous descriptions (IDs) [HMU01] but differ in three crucial ways. First, our encodings are actual binary strings rather than sequences of abstract symbols. Second, we use different syntax (which we describe below). Finally, our descriptions contain more information than is actually needed to describe a configuration of \(M \) at an instant in time. This additional information is never accessed by \(M \), so its presence in the encodings does not affect the performance of \(M \). At the same time, its presence will greatly aid us in constructing \(A \).

3. **Building trees.** For some appropriate polynomial \(s \), we will, for each \(x \in \Sigma^* \), define a tree whose nodes are enhanced instantaneous descriptions of \(M \) and whose edges are based on the next move function of \(M \). This tree will have a subtree \(T_x \) having exactly \(2^{2s(|x|)} \) nodes.

4. **Traversing the trees.** We will associate multiple strings with each node in the tree described above (by padding the labels of the nodes) in such a way that \(f(x) + 2 \) strings are associated with one of the nodes in \(T_x \) and two strings are associated with each of the remaining \(2^{2s(|x|)} - 1 \) nodes in \(T_x \). We will then define a total, one-to-one, polynomial-time computable function \(D_M \) over these strings in such a way that \(D_M \), applied repeatedly to some appropriate starting point, represents a traversal of the tree such that the traversal visits each of these strings once, i.e., from a particular one of the strings \(z \) associated with the root of the tree, for each string \(y \) associated with some node of the tree there is an integer \(i \in \mathbb{N} \) such that \(D_M^{(i)}(z) = y \), where \(D_M^{(0)}(z) = z \), and, for each \(i \in \{1, 2, 3, \ldots\} \), \(D_M^{(i)}(z) = D_M(D_M^{(i-1)}(z)) \). Moreover, for strings \(w \) and \(y \), \(D_M(w) = y \) only if the nodes associated with \(w \) and \(y \) are related (i.e., parent/child, sibling, or identical nodes).

5. **Constructing \(A \).** We will base \(A \) on \(D_M \). For example, \(A \) crucially will have the property that if \(w \) and \(z \) are two of the strings described in Phase 4, then \(w \prec_A z \) if and only if \(z = D_M(w) \). Note there will also be many strings on which \(D_M \) is not defined that will nonetheless have to be accounted for.

Through careful encoding at each phase in the construction, it will be easy to account for these strings in such a way that \(A \) has all the properties we desire.
δ is the next move function, i.e., a mapping from $Q \times \Gamma$ to $Q \times \Gamma \times \{-1,1\}$,
q_0 is the start state, and
$F \subseteq Q$ is the set of final states.

We assume that M has the following properties.
• For some $m \in \mathbb{N}$, $|Q| = |\Gamma| = 2^m$ (any Turing machine not having this property can be turned into one having this property by adding extra “dummy” states and symbols to its current sets of state and tape symbols, respectively).
• F contains a single element, q_f, and $q_0 \neq q_f$.
• M has a single, one-way infinite tape (a standard PSPACE(poly) Turing machine would have distinct input, output, and work tapes). On no input x does a true run of M move off the left end of the tape. (One way to ensure that M has this latter property is to include the symbols, 0^e, 1^e, and B^e in Γ. These symbols will be used, exactly on the leftmost cell of the tape, as replacements for 0, 1, and B. We can then construct M so that it is in its start state just once, namely at the beginning of the run, and that, from its start state, it always replaces the then-current symbol (which, in a true run, will always be located in the leftmost tape cell and will be either 0, 1, or B) not with whatever symbol it would normally write during that step but rather with the appropriate analogue among 0^e, 1^e, and B^e. Similarly, our machines can be forced to be such that they attempt to ensure that at all future times this left-marking is preserved, i.e., a $0^e/1^e/B^e$-marker square may be changed during the run but just among 0^e, 1^e, and B^e, as appropriate.

A Turing machine constructed in this way can, on any true run, determine when it is about to (were it to mindlessly perform the simulation of the underlying machine) move off the left end, and can indeed handle—without itself running off the left end and in a fashion that is consistent in effect with whatever standard behavior (typically either rejection or “bouncing off” the left end) we in our notion of Turing machines associate with attempting to go off the left end—the left-end move-off that was about to happen.)
• δ on input $(q,r) \in Q \times \Gamma$ is defined if and only if $(q,r) \notin \{q_f\} \times \Gamma$.
• For all $r \in \Gamma$ and all $i \in \{-1,1\}$, (q_0,r,i) is not in the image of δ. (That is, nothing moves to the start state.)
• For all $x \in \Sigma^*$, M on input x halts with $y \in \Sigma^*$ written on its $|y|$ leftmost tape cells, where y is the shortest binary representation of $f(x)$ (i.e., no leading zeros, unless $f(x) = 0$), and with every other tape cell containing the blank symbol.
• There is a strictly increasing polynomial p such that, on each input $x \in \Sigma^*$, M uses, at most, $p(|x|)$ tape cells and $p(|x|) > 0$.

Phase 2: Fixing the encoding. We now describe the binary encoding we use to describe the configurations of M. Figure 2 provides an overview of this phase of the construction. Let $\varphi : Q \to \{0,1\}^m$ be a total bijection (recall that $|Q| = 2^m$ and $m \geq 2$) such that $\varphi(q_0) = 0^m$ and $\varphi(q_f) = 1^m$. The function φ^{-1} denotes the unique total bijection from $\{0,1\}^m$ to Q that inverts φ. Let $\theta : \Gamma \to \{0,1\}^m$ be a total bijection (recall that $|\Gamma| = 2^m$ and $m \geq 2$) such that $\theta(B) = 0^m$, $\theta(0) = 1^{m-1}0$, and $\theta(1) = 1^m$. Define $\hat{\theta} : \Gamma^* \to (\{0,1\}^m)^*$ recursively as $\hat{\theta}(\epsilon) = \epsilon$, and, for all $y \in \Gamma$ and $w \in \Gamma^*$, $\hat{\theta}(wy) = \hat{\theta}(w)\theta(y)$. Since $\hat{\theta}$ is also a bijection, we use $\hat{\theta}^{-1}$ to denote the unique total bijection from $(\{0,1\}^m)^*$ to Γ^* that inverts $\hat{\theta}$.

We define the “partially encoded” next move function $\delta' : \{0,1\}^m \times \{0,1\}^m \to$
standard ID \[X_0X_1 \cdots X_bqX_{b+1}X_{b+2} \cdots X_{a-1} \]

\[\mu \]

\[X_0X_1 \cdots X_{b-1}q'X_bX_{b+1}X_{b+2} \cdots X_{a-1} \]

enhanced ID \[xqcwX_0X_1 \cdots X_{a-1} \]

\[\mu \]

\[xq'c'w'X_0X_1 \cdots X_bX_{b+1}X_{b+2} \cdots X_{a-1} \]

Fig. 2. A brief comparison between standard instantaneous descriptions (IDs) and the enhanced IDs we use. Before the computation step illustrated above, the tape head is at cell \(b+1 \) and the machine is in state \(q \). Afterwards, the head is at cell \(b \) and the machine is in state \(q' \). The symbol \(\mu \) represents the next move function. In standard IDs, the state \(q \) appears immediately before the tape cell that the head is currently visiting (e.g., in the case illustrated above, cell \(b+1 \) before the move and \(b \) afterwards). Our enhanced IDs contain additional strings: \(x, c, \) and \(w \). The string \(x \) encodes the input to the Turing machine, \(c \) encodes the number of computation steps the Turing machine has performed so far, and \(w \) is the position of the tape head. The state string remains in the same place throughout the computation, and instead \(w \) is updated with the position of the tape head. Thus, \(w \) encodes the number \(b+1 \) (i.e., the position of the tape head before the computation step), and \(w' \) encodes \(b \) (i.e., the position of the tape head after the computation step). The strings \(c \) and \(c' \) also represent numbers, where the number encoded by \(c' \) is one greater than the number encoded by \(c \). For more details on eIDs and encodings, see the text.

\[\{0,1\}^m \times \{0,1\}^m \times \{-1,1\} \] on input \((q, r) \in \{0,1\}^m \times \{0,1\}^m\) as \(\delta'(q, r) = (\varphi(q'), \theta(r'), i) \), where \(q', r', \) and \(i \) are specified by \(\delta(\varphi^{-1}(q), \theta^{-1}(r)) = (q', r', i) \).

Recall that \(\Sigma = \{0,1\} \). Define \(\nu : \Gamma^* \rightarrow \mathbb{N} \) recursively as \(\nu(\epsilon) = 0 \) and, for each \(y \in \Gamma \) and \(w \in \Gamma^* \),

\[
\nu(\gamma y) = \begin{cases}
1 + 2\nu(w) & \text{if } y = 1 \land w \in \Sigma^* \\
2\nu(w) & \text{if } y = 0 \land w \in \Sigma^* \\
\nu(w) & \text{if } y = B \\
0 & \text{otherwise.}
\end{cases}
\]

This has the property that if \(z \in \Sigma^*B^* \), then \(\nu(z) \) is the natural number that \(z \) represents in binary. And if \(z \in \Gamma^* - \Sigma^*B^* \), then \(\nu(z) = 0 \).

We also need the following notation. For any domain \(S \), any (possibly partial)
function $h : S \rightarrow S$, any $i \in \mathbb{N}$, and any $s \in S$, we define $h^{(i)}(s)$ as

$$h^{(i)}(s) = \begin{cases}
 s & \text{if } i = 0 \\
 h(h^{(i-1)}(s)) & \text{if } i > 0 \land (h^{(i-1)}(s) \text{ is defined}) \land \\
 \text{undefined} & \text{otherwise.}
\end{cases}$$

Note that if $h(a)$ is undefined, then so, for example, will be $h^{(1)}(a)$ and $h^{(2)}(a)$.

All logarithms in this paper are base two, i.e., $\log m$ means $\log_2 m$. Define functions r, s, and t on input $n \in \mathbb{N}$ as $r(n) = \lceil \log p(n) \rceil$ (recall that, by assumption, on any input of length n, M uses at most $p(n)$ tape cells and $p(n) > 0$), $t(n) = \lfloor m2^r(n) \rceil$, and $s(n) = \lceil m + r(n) + t(n) \rceil$.

Let $eID = \bigcup_{n=0}^{\infty} \{0,1\}^{n+2s(n)}$ be the set of enhanced instantaneous descriptions of M. Informally speaking, for each $n \in \mathbb{N}$ and $x \in \Sigma^n$, $q \in \{0,1\}^m$, $c \in \Sigma^k(n)$, $w \in \Sigma^{r(n)}$, and $X_0, X_1, \ldots, X_{2^r(n)-1} \in \Sigma^m$, the string $xqcwX_0X_1 \ldots X_{2^r(n)-1} \in eID$ is interpreted as follows.

- The string x represents the input to f.
- The string q represents the instantaneous state of M.
- The string c will be used as an external clock ("external" because it is not maintained by M itself but rather by an "outside observer") to count the number of computational steps M has made so far. The presence of the external clock will allow us to adapt the next move function of M to the enhanced instantaneous descriptions of M in such a way that cycles never occur, even if M from a particular configuration may cycle. Note that, since the number of tape cells M uses is polynomially bounded in the length of its input, we need only a polynomial amount of bits for the clock. Intuitively speaking, if the clock "runs out of time" by running out of bits, then (assuming we chose a large enough polynomial to control the number of clock bits) we know that a cycle has occurred.
- The string w encodes the instantaneous position of the tape head, i.e., a position of 0 or 1 or ... or $2^r(|x|) - 1$ is encoded (respectively) by the string $0^r(x)$ or $0^r(x)-11$ or ... or $1^r(x)$.
- The strings $X_0, X_1, \ldots, X_{2^r(n)-1}$ represent the instantaneous contents of the leftmost $2^r(n)$ tape cells of M.

Note that the second, fourth, and fifth sections of the string described above (i.e., q, w, and $X_0, X_1, \ldots, X_{2^r(n)-1}$) are already sufficient to describe M at any instant. Note also that, because s, r, and t are all polynomial-time computable and nondecreasing, we can, in polynomial time, for each $n \in \mathbb{N}$ and each $z \in \Sigma^{n+2s(n)}$, compute from z the value n and the locations of the five above-described sections of z, and these locations are well-defined.

For each $x \in \Sigma^n$, we call $x0^m0^s(|x|)0^r(|x|)0^{t(|x|)-|\varphi(x)|}x0^{2^{s(|x|)}-t(|x|)}\varphi(x)$ the initial configuration of M on x, denoted $i_{M,x}$. The string $i_{M,x}$ represents a configuration on which M would be started under “normal usage.” Note that eID contains strings that represent configurations of M that are never reached under “normal usage.” From these “unreachable” configurations, M may run forever or attempt to move off the left end of the tape. (Note that the true run of M on input x certainly does not run forever, since M is computing an $\text{FPSPACE}(\text{poly})$ function and $\text{FPSPACE}(\text{poly})$ is a class of total functions, and our model of function computing requires M to halt in order for it to compute a value. Recall that we assume that on no true run of M on input x will M attempt to move off the left end.
of the tape. We did not explicitly discuss the semantics of attempting to move off the left end of the tape, but the point of the comment above is that even if our model of computing \text{FPSPACE}(\text{poly}) functions is such that moving off the left end of the tape is considered like running forever and makes a function be undefined on the input, and so never happens on a true run of a machine computing an \text{FPSPACE}(\text{poly}) function, it nonetheless may be the case that such a machine when started at some “unreachable” configuration might attempt to run off the left end of the tape.

We define a \textit{move} over \(\mathbb{ID} \) via a function \(\mu : \Sigma^* \rightarrow \Sigma^* \) that we will define now. An important consideration in the design of \(\mu \) is to exploit the additional information present in the enhanced \(\mathbb{ID}s \) to guarantee that \(\mu \) never loops and that it always “ends” (i.e., returns the value undefined) “gracefully” (in a sense that will soon become clear, including, for example, that it does not blindly try to move off the left end of the tape).

For each \(x \in \Sigma^*, c \in \{0, 1\}^{s(|x|)}, w \in \{0, 1\}^{r(|x|)}, X_0, X_1, \ldots, X_{2^r(|x|) - 1} \in \{0, 1\}^m, and q \in \{0, 1\}^m - \{1^m\}, \)

\begin{equation}
\mu(xqcwX_0X_1 \cdots X_{2^r(|x|) - 1}) = \text{def}
\end{equation}

\[xq'c'w'X_0X_1 \cdots X_{\nu(w) - 1}YX_{\nu(w)+1}X_{\nu(w)+2} \cdots X_{2^r(|x|) - 1} \]

if

\begin{equation}
\delta'(q, X_{\nu(w)}) \text{ is defined } \land c \neq 1^{s(|x|)} \land 0 \leq \nu(w) + i < 2^{r(|x|)},
\end{equation}

where

\[\delta'(q, X_{\nu(w)}) = (q', Y, i), c' \in \{0, 1\}^{s(|x|)}, w' \in \{0, 1\}^{r(|x|)}, \nu(c') = \nu(c) + 1, \text{ and } \nu(w') = \nu(w) + i, \]

and

\begin{equation}
\mu(xqcwX_0X_1 \cdots X_{2^r(|x|) - 1}) = \text{def } x1^mcwX_0X_1 \cdots X_{2^r(|x|) - 1}
\end{equation}

otherwise. If \(q = 1^m, \mu(xqcwX_0X_1 \cdots X_{2^r(|x|) - 1}) \) is undefined. For all \(y \not\in \mathbb{ID}, \mu(y) \) is undefined. It is easy to see that the behavior of \(\mu \) described by (1) is roughly analogous to the behavior of \(\delta \). Indeed, for all \(x \in \Sigma^* \), there exists a number \(j \in \mathbb{N} \) such that \(\mu^{(j)}(i_M, x) = 1^mcwz \), where \(c \in \{0, 1\}^{s(|x|)}, w \in \{0, 1\}^{r(|x|)}, z \in \{0, 1\}^{i(|x|)}, \nu(c) = j, \text{ and } \nu(\hat{\theta}^{-1}(z)) = f(x). \) Equation (3) enforces “gracefulness” by detecting when the configuration encoded by the input string is about to move off the left end of the tape or is about to use too much tape or has a “\(c \)” value that has already reached \(2^{s(|x|)} \) (note that no actual run can ever run more than \(2^s(n) \) steps without running forever, but running forever can never happen on actual runs since all functions in \text{FPSPACE}(\text{poly}) are total). In such cases, \(\mu \) simply changes the state bits to represent the final state (i.e., \(1^m \)).

Proposition 6.11 collects several easy-to-see properties of \(\mu \).

Proposition 6.11.

1. The function \(\mu \) is polynomial-time computable.
2. The function \(\mu \) is length-preserving, i.e., for all \(w \in \Sigma^* \), if \(\mu(w) \) is defined, then \(|w| = |\mu(w)| \).
3. For all \(x \in \Sigma^* \), all \(w \in \{0, 1\}^{2s(|x|)-m} \), and all \(q \in \{0, 1\}^m, \mu(xqw) \) is defined if and only if \(q \neq 1^m \).
4. For all \(w \in \Sigma^* \), there exists a number \(j \) such that \(\mu^{(j)}(w) \) is undefined.
5. In polynomial time we can, for each $z \in \Sigma^*$, enumerate all y such that $\mu(y) = z$.

6. For each $w \in \mathcal{ID}$ and each $j \in \mathbb{N}^+$, if $\mu^{(j)}(w)$ is defined, then $\mu^{(j)}(w) \neq w$.

Proof. All items are easy to see. However, item 5 deserves some additional explanation. To perform this enumeration, if $z \not\in \mathcal{ID}$, then there is no y such that $\mu(y) = z$. If $z \in \mathcal{ID}$, then examine the next move function of M to determine the configurations from which M in one step will move into the configuration encoded by z. There are only a constant number of such configurations. Output the strings of length $|z|$ that encode these configurations. This takes care of all preimages of z that satisfy equation (2). If, for some $x \in \Sigma^*$, $c \in \{0,1\}^{s(|x|)}$, $w \in \{0,1\}^{t(|x|)}$, and $X_0, X_1, \ldots, X_{2^{2^{|x|}}-1} \in \{0,1\}^m$ it holds that $z = x1^mwX_0X_1\cdots X_{2^{2^{|x|}}-1}$ (i.e., if z satisfies the conditions of equation (3)) then, for each $q \in \{0,1\}^m - \{1^m\}$ such that $xqcwX_0X_1\cdots X_{2^{2^{|x|}}-1}$ does not satisfy equation (2), output $xqcwX_0X_1\cdots X_{2^{2^{|x|}}-1}$. This takes care of all preimages of z that do not satisfy equation (2).

Phase 3: Building trees. For each $x \in \Sigma^*$, let

$$\mathcal{ID}_x = \{xw \mid w \in \{0,1\}^{2^s(|x|)}\}$$

and

$$E_x = \{(xw,xz) \mid xw,xz \in \mathcal{ID}_x \land \mu(xw) = xz\}.$$

A directed forest is an acyclic digraph in which all nodes have outdegree at most one. Note that the digraph (\mathcal{ID}_x, E_x) has outdegree at most one. By Proposition 6.11.6, (\mathcal{ID}_x, E_x) is acyclic. Thus, (\mathcal{ID}_x, E_x) is a directed forest (see Figure 3).
For each $x \in \Sigma^*$, let (keep in mind that given the string $xw \in eD$, it is easy to identify x and w)

$$eD'_x = \{xwy \mid xw \in eD_x \land y \in \{0,1\}^{t(|x|)}\}$$

and

$$E'_x = \{(xwy, xzy) \mid w \in \{0,1\}^{2t(|x|)} \land y \in \{0,1\}^{t(|x|)} \land xwy \in eD'_x \land \mu(xw) = xz\}.$$

Note that the digraph (eD'_x, E'_x) is a directed forest, and that, for each tree in (eD_x, E_x), there are exactly $2^{t(|x|)}$ corresponding trees in (eD'_x, E'_x) (see Figure 4 for a pictorial preview of this part of the construction).

Let $R_x \overset{\text{def}}{=} \{xwy \in eD'_x \mid w \in \{0,1\}^{2t(|x|)} \land y \in \{0,1\}^{t(|x|)} \land (\mu(xw) \text{ is undefined})\}$. Note that, by Proposition 6.11.3, $R_x = \{xwy \in eD'_x \mid w \in \{0,1\}^{2t(|x|)} \land y \in \{0,1\}^{t(|x|)} \land (xw \text{ is the root of a tree in } (eD_x, E_x))\} = \{x1^{mwy} \in eD'_x \mid w \in \{0,1\}^{2t(|x|)} \land y \in \{0,1\}^{t(|x|)}\}$. Let \leq_{R_x} denote the order (with \prec_{R_x} and \preceq_{R_x} denoting the corresponding “less than” and “predecessor” relations, respectively) defined over R_x that is determined by the following sequence. (The reader is cautioned that in what follows “w” is used as a variable to catch substrings of various lengths other than the $2s(|x|)$-length strings it has been primarily used for so far.)

- First come the elements of $\{xwy \in R_x \mid w \in \{0,1\}^{2s(|x|)−t(|x|)} \land y \in \{0,1\}^{t(|x|)}\}$ in lexicographic order. Note that the last element in this sequence is $x1^{2s(|x|)+t(|x|)}$.
- Next come the elements of $\{xwy \in R_x \mid w \in \{0,1\}^{2s(|x|)−t(|x|)} \land d, y \in \{0,1\}^{t(|x|)} \land d \neq y\}$ in lexicographic order. Note that the last element in this sequence is $x1^{2s(|x|)+t(|x|)−10}$.

For each $x \in \Sigma^*$, $w \in \{0,1\}^{2s(|x|)}$, and $y \in \{0,1\}^{t(|x|)}$, we define $\mu_1 : \Sigma^* \rightarrow \Sigma^*$, on input xwy, as

$$\mu_1(xwy) = \begin{cases}
\mu(xwy)y & \text{if } xwy \notin R_x \\
xx & \text{if } xwy \in R_x \land xwy \neq x1^{2s(|x|)+t(|x|)−10}, \text{ where } xwy \prec_{R_x} xz.
\end{cases}$$

In all other cases, μ_1 is undefined. Informally speaking, μ_1 is an “augmented next move” function based on μ but with the difference that μ_1 in effect strings together all the trees in (eD'_x, E'_x) into one giant tree $T_{M,x}$ (see Figure 4 again).

Proposition 6.12. For each $x \in \Sigma^*$, let $E''_x \overset{\text{def}}{=} \{(w, z) \mid w \in eD'_x \land \mu_1(w) = z\}$, and define $T_{M,x}$ to be the digraph (eD'_x, E''_x).

1. The function μ_1 is polynomial-time computable.
2. The function μ_1 is length-preserving (i.e., on inputs a for which it is not undefined, $|\mu_1(a)| = |a|$).
3. In polynomial time we can, for any $z \in \Sigma^*$, enumerate all $y \in \Sigma^*$ such that $\mu_1(y) = z$.
4. For every $x \in \Sigma^*$ and every $w \in \{0,1\}^{2s(|x|)+t(|x|)}$, there exists a number $j \in \mathbb{N}$ such that $\mu_1^{(j)}(xw) = x1^{2s(|x|)+t(|x|)−10}$. (See also Figure 4.)
5. For every $x \in \Sigma^*$ and every $w \in \{0,1\}^{2s(|x|)+t(|x|)}$, $\mu_1(xw)$ is undefined if and only if $w = 1^{2s(|x|)+t(|x|)−10}$.
6. For each $x \in \Sigma^*$ and each $w \in \{0,1\}^{2s(|x|)}$, there is a unique $y \in \{0,1\}^{t(|x|)}$ such that, for some $k \in \mathbb{N}$, $\mu_1^{(k)}(xwy) = x1^{2s(|x|)+t(|x|)}$. (Again, viewing Figure 4—paying particular attention to the black trees—will help make this clear.)
7. For each $x \in \Sigma^*$, $||\{w \mid (\exists j \in \mathbb{N})[\mu_1^{(j)}(w) = x1^{2s(|x|)+t(|x|)}]\}|| = 2^{2s(|x|)}$.

8. For each \(x \in \Sigma^* \), the unique (by item 6) \(y \in \{0,1\}^{t(\|x\|)} \), and each \(k \in \mathbb{N} \), if \(\mu^{(k)}(i_{M,x}y) = x1^{2s(\|x\|)+t(\|x\|)} \), it holds that \(f(x) = \nu(\hat{\theta}^{-1}(y)) \).

9. For each \(x \in \Sigma^* \), the digraph \(T_{M,x} \) is a tree.

10. The subtree of \(T_{M,x} \) rooted at \(x1^{2s(\|x\|)+t(\|x\|)} \) has exactly \(2^{2s(\|x\|)} \) nodes.

Proof. Items 1–5 follow from the definition of \(\mu_1 \).

For item 6, choose an arbitrary \(x \in \Sigma^* \), \(w \in \{0,1\}^{2s(\|x\|)} \), and \(y \in \{0,1\}^{t(\|x\|)} \), and let \(j \in \mathbb{N} \), \(v \in \{0,1\}^{2s(\|x\|)-t(\|x\|)} \), \(d \in \{0,1\}^{t(\|x\|)} \) be such that \(\mu^{(j)}(xw) = xvd \) and \(\mu(xvd) \) is undefined (such \(j, v, \) and \(d \) exist by Propositions 6.11.4 and 6.11.2). By the definition of \(R_x \), \(xvdy \in R_x \). By the definition of \(\leq_R \), \(\mu^{(j)}(xw)d \leq_R x1^{2s(\|x\|)+t(\|x\|)} \) and so, by the definition of \(\mu_1 \), there exists a number \(k \geq j \) such that \(\mu^{(k)}(xwd) = x1^{2s(\|x\|)+t(\|x\|)} \). On the other hand, for all \(y \in \{0,1\}^{t(\|x\|)} \) such that \(y \neq d \), by the definition of \(\leq_R \), \(x1^{2s(\|x\|)+t(\|x\|)} <_R \mu^{(j)}(xw)y \), and so, by items 4 and 5 (which guarantee that \(\mu_1 \) does not cycle), there is no \(k \) such that \(\mu^{(k)}(xwy) = x1^{2s(\|x\|)+t(\|x\|)} \).

Item 7 follows from item 6.

For item 8, choose an arbitrary \(x \in \Sigma^* \), and by item 6 let \(y \) be the unique member of \(\{0,1\}^{t(\|x\|)} \) such that, for some \(k \in \mathbb{N} \), \(\mu^{(k)}(i_{M,x}y) = x1^{2s(\|x\|)+t(\|x\|)} \). Choose
On all other inputs, $D_{M,x} y \in R_x$. By the definition of μ_1, there exists a number $v \in \{0, 1\}^{2\xi(|x|) - t(|x|)}$ such that $\mu^{(j)}(i_{M,x}) = xv$ and, by the definition of μ, M on input x halts with y on its tape. Thus, $f(x) = \nu(\theta^{-1}(y))$.

Item 9 follows from items 4 and 5.

Item 10 follows from item 7 and the observation that, for any $x \in \Sigma^*$ and any $w, y \in eD'$, w is in the subtree of $T_{M,x}$ rooted at y if and only if y is a node of $T_{M,x}$ and there exists a number $k \in \mathbb{N}$ such that $\mu_1^{(k)}(w) = y$. \qed

Phase 4: Defining a traversal. We define $\text{dwn} : \Sigma^* \rightarrow \Sigma^* \cup \{\bot\}$, on input w, as

$$
\text{dwn}(w) = \begin{cases}
\max_{\text{lex}} \mu_1^{-1}(w) & \text{if } \mu_1^{-1}(w) \neq \emptyset \\
\bot & \text{otherwise},
\end{cases}
$$

where \max_{lex} returns the maximal element (with respect to the lexicographical order) of a set of strings and we define $\text{acr} : \Sigma^* \rightarrow \Sigma^* \cup \{\bot\}$ on input w as

$$
\text{acr}(w) = \begin{cases}
\max_{\text{lex}}\{w' \mid w' \in \mu_1^{-1}(\mu_1(w)) \land w' \prec_{\text{lex}} w\} & \text{if } \mu_1(w) \text{ is defined} \\
\bot & \text{otherwise},
\end{cases}
$$

where \min_{lex} returns the minimal element (with respect to the lexicographical order) of a set of strings. Clearly, both dwn and acr are polynomial-time computable. The function dwn is named “dwn” because it describes a descent down the tree $T_{M,x}$, and acr is named “acr” because it describes movement across the tree (i.e., from one sibling node to another). Note that, for all $x \in \Sigma^*$ and all $w \in \{0, 1\}^{2\xi(|x|) + t(|x|) - m}$ satisfying $xw \in R_x - \{x1^m0^2\xi(|x|) + t(|x|) - m\}$, it holds that $\text{dwn}(xw) \in R_x$.

Now, for each $x \in \Sigma^*$, $w \in \{0, 1\}^{2\xi(|x|)}$, $a \in \{0, 1\}$, and $y, z \in \{0, 1\}^{t(|x|)}$, we define $D_M : \Sigma^* \rightarrow \Sigma^*$, a “depth-first”-like traversal of $T_{M,x}$, on input $xwyza$, as

$$
D_M(xwyza) = \begin{cases}
\text{dwn}(xwy)z0 & \text{if } a = 0 \land \text{dwn}(xwy) \neq \bot \land \nu(z) = 0 \\
xwyz1 & \text{if } a = 0 \land \text{dwn}(xwy) = \bot \land xw \neq i_{M,x} \land \nu(z) = 0 \\
xwyz0 & \text{if } a = 0 \land \text{dwn}(xwy) = \bot \land xw = i_{M,x} \land \\
& \nu(z) < \nu(\theta^{-1}(y)), \text{ where } \prec_{\text{lex}} z' \\
xwy0t(|x|)1 & \text{if } a = 0 \land \text{dwn}(xwy) = \bot \land xw = i_{M,x} \land \\
& \nu(z) = \nu(\theta^{-1}(y)) \\
\text{acr}(xwy)z0 & \text{if } a = 1 \land \text{acr}(xwy) \neq \bot \land \nu(z) = 0 \\
\mu_1(xwy)z1 & \text{if } a = 1 \land \text{acr}(xwy) = \bot \land \nu(z) = 0.
\end{cases}
$$

On all other inputs, D_M is undefined. Figure 5 illustrates the action of D_M and Proposition 6.13 formally establishes the most important aspects of D_M’s action, most of which we will draw on soon.

Proposition 6.13.

1. The function D_M is polynomial-time computable.
2. The function D_M is length-preserving (i.e., for each v, either $D_M(v)$ is undefined or $|D_M(v)| = |v|$).
3. For each $x \in \Sigma^*$, each subtree (and here we really mean each subtree, i.e., not just those corresponding to the trees in digraph (eD', E')—the purpose of this item is to provide insight into how D_M describes a traversal of $T_{M,x}$) T of $T_{M,x}$, each $w \in \{0, 1\}^{2\xi(|x|)}$, and each $y \in \{0, 1\}^{t(|x|)}$, xwy is a node of T if and only if there exist i, j, and k such that $|v| = |xwy|$ (where v is the
root of T), $D_M^{(i)}(v0^{t(|x|)+1}) = xwy0^{t(|x|)+1}$, $D_M^{(j)}(xwy0^{t(|x|)+1}) = xwy0^{t(|x|)}1$, and $D_M^{(k)}(xwy0^{t(|x|)}) = v0^{t(|x|)}1$.

4. For every $x \in \Sigma^*$, $w \in \{0,1\}^{2s(|x|)}$, $a \in \{0,1\}$, and $y, z \in \{0,1\}^{t(|x|)}$, $D_M(xwyza)$ is defined if and only if $xwyza = x1^{2s(|x|)+t(|x|)}0^{t(|x|)}+2\sqrt{|wy|} \in \{0,1\}^{2s(|x|)+t(|x|)-10} \wedge z = 0^{t(|x|)} \vee (xw = i_{M,x} \wedge \nu(z) \leq \nu(\bar{y}) \wedge a = 0)$.

5. For every $x \in \Sigma^*$ and every $w \in \{0,1\}^{2s(|x|)+t(|x|)+1}$, if $D_M(xw)$ is defined, then there exists an $i \in \mathbb{N}$ such that $D_M^{(i)}(x1^{2s(|x|)+t(|x|)}0^{t(|x|)+2}) = xw$.

6. For all $x \in \Sigma^*$, all $w \in \{0,1\}^{2s(|x|)+t(|x|)}$, all $z \in \{0,1\}^{t(|x|)+1}$, and all $i \in \mathbb{N}$, if $D_M^{(i)}(xwz) = x1^{2s(|x|)+t(|x|)}0^{t(|x|)+1}$, then $xw \in R_x$.

7. The function $\lambda y. \min_{\text{lex}} \{w \mid y <_{\text{lex}} w \wedge (D_M(w) \text{ is undefined})\}$ is polynomial-time computable.
Proof. Items 1 and 2 follow from the definition of D_M.

For item 3, choose an arbitrary $x \in \Sigma^*$. We prove item 3 by induction over the depth of the subtrees of $T_{M,x}$.

For the base case, choose an arbitrary subtree T of $T_{M,x}$ having depth 1. Let v be the (only) node of T. Thus, $\text{dwn}(v) = \emptyset$. If, for all $y \in \{0,1\}^{|x|}$, $v \neq i_{M,x,y}$, then by the definition of D_M, $D_M^0(v0(|x|)+1) = v0(|x|)+1$, $D_M(v0(|x|)+1) = v0(|x|)+1$, and $D_M^0(v0(|x|)+1) = v0(|x|)+1$. Otherwise, let $y \in \{0,1\}^{|x|}$ be such that $v = i_{M,x,y}$. Then $D_M^0(v0(|x|)+1) = v0(|x|)+1$, $D_M(v0(|x|)+1) = v0(|x|)+1$, and $D_M^0(v0(|x|)+1) = v0(|x|)+1$.

For the induction case, suppose, for some n that is less than the depth of $T_{M,x}$ and all subtrees T of $T_{M,x}$ having depth at most n, that the induction hypothesis holds. Let S be a subtree of $T_{M,x}$ of depth $n+1$, and let v be the root of S. Let $\{a_1, \ldots, a_b\} = \mu^{-1}_R(v)$, where $a_b \leq a_{b-1} \leq \ldots \leq a_1$. It follows that each a_i, a_b is the root of a subtree of S of depth at most n. By the definition of D_M, $D_M(a_00(|x|)+1) = a_00(|x|)+1$, $D_M(a_00(|x|)+1) = a_00(|x|)+1$, and $D_M(a_00(|x|)+1) = a_00(|x|)+1$. By applying the induction hypothesis to the subtrees of S rooted at a_1, \ldots, a_b, we conclude that z is a node of S if and only if there exist i, j, k such that $D_M^i(v0(|x|)+1) = z0(|x|)+1$, $D_M^j(z0(|x|)+1) = z0(|x|)+1$, and $D_M^k(z0(|x|)+1) = v0(|x|)+1$.

Item 4 follows from the definition of D_M (to see the case where $xwyza = x12(|x|)+t(|x|)-10(|x|)+2$, it helps to note that μ_1 is undefined on $x12(|x|)+t(|x|)-10(|x|)+2$ and thus $D_M(x12(|x|)+t(|x|)-10(|x|)+2)$ is defined but $D_M(x12(|x|)+t(|x|)-10(|x|)+1)$ is not).

For item 5, choose arbitrary $x \in \Sigma^*$, $w \in \{0,1\}^{2s(|x|)}$, $a \in \{0,1\}$, and $y, z \in \{0,1\}^{|x|}$. If $xwyza = x12(|x|)+t(|x|)-10(|x|)+2$, then, by item 3, there exists an $i \in \mathbb{N}$ such that $D_M^i(x12(|x|)+t(|x|)-10(|x|)+2) = xwyza$. If $xw = i_{M,x}$ and $\nu(z) \leq \nu(t^{-1}(y))$ and $a = 0$, then, by the definition of D_M, $D_M^i(xwy0(|x|)+1) = xwyza$. Since, by item 3, there exists an $i \in \mathbb{N}$ such that $D_M^i(x12(|x|)+t(|x|)-10(|x|)+2) = xwy0(|x|)+1$, it holds that $D_M^i(x12(|x|)+t(|x|)-10(|x|)+2) = xwyza$.

For item 6, choose an arbitrary $x \in \Sigma^*$. Recall that, for all $w \in R_x - \{x1^m02^s(|x|)+t(|x|)-m\}$, $\text{dwn}(xw) \in R_x$. Thus, since $x1^m02^s(|x|)+t(|x|) \in R_x$ and $x1^m02^s(|x|)+t(|x|)-10 \in R_x$, it follows from the definitions of dwn and \leq_{R_x} that, for some $i \in \mathbb{N}$, $\text{dwn}^i(x1^m02^s(|x|)+t(|x|)-10) = x1^m02^s(|x|)+t(|x|)+10$, and for all $j \in \mathbb{N}$ such that $0 \leq j \leq i$, it holds that $\text{dwn}^j(x1^m02^s(|x|)+t(|x|)-10) \in R_x$. Thus, by the definition of D_M, $D_M^i(x1^m02^s(|x|)+t(|x|)-10(|x|)+2) = x1^m02^s(|x|)+t(|x|)+10(|x|)+1$, and for all $j \in \mathbb{N}$ such that $0 \leq j \leq i$, it holds that $D_M^j(x1^m02^s(|x|)+t(|x|)-10(|x|)+2) = w0(|x|)+1$, where $w \in R_x$.

For item 7, note that, by item 4, for all $w, y, z \in \Sigma^*$ such that $w \prec_{\text{lex}} y \prec_{\text{lex}} z$, either $D_M(y)$ is undefined or $D_M(z)$ is undefined.

Phase 5: Creating A. We are now ready to define A. A is the same as the lexicographical ordering except that the strings between $x0^2(|x|)+t(|x|)+1$ and $x1^2(|x|)+t(|x|)+1$ are ordered as follows (let $z = x1^2(|x|)+t(|x|)-10(|x|)+1$),

- First come the strings $D_M^0(z0) = z0$, $D_M^1(z0) = D_M(z0)$, $D_M^2(z0), \ldots, z1$, in the order just stated.
- Next come the strings $\{xw \mid w \in \{0,1\}^{2s(|x|)+t(|x|)+1} \land D_M(xw) \text{ is undefined} \}$.
follows from Theorem 5.3.

In this section, we show that the #MONSAT function fits into our collection of function classes. A monotone boolean function is any boolean function such that

\begin{align*}
\land \text{ or } \land \text{ in lexicographical order.}
\end{align*}

By Proposition 6.13.2, \(A \) is a p-order. By Proposition 6.13.4, \(A \) is total. By Propositions 6.13.1 and 6.13.7, \(A \) has efficient adjacency checks.

End of Construction

We are now ready to prove Lemma 6.5.

Proof of Lemma 6.5. For each \(f \in \text{FPSPACE}(\text{poly}) \), we define \(A \) as above. We define \(b : \Sigma^* \rightarrow \Sigma^* \), \(t : \Sigma^* \rightarrow \Sigma^* \), and \(b' : \Sigma^* \rightarrow \Sigma^* \) on input \(x \in \Sigma^* \) as, respectively, \(b(x) = \text{def } x1^{2\nu(|x|) + \nu(|t(x)|) + 1} \), \(t(x) = \text{def } x1^{2\nu(|x|) + \nu(|t(x)|) + 1} \), and \(b'(x) = \text{def } i_{M,x}\nu\theta^0(|x|) + 1 \), where \(y = \theta(1)\theta^0(|x|) - \theta^0(1) \) (thus \(\nu(\theta^0(y)) = 1 \)). Note that each of these functions is in FP.

For item 1, note that \(s \) is polynomially bounded.

For item 2, we prove that, for all \(x \in \Sigma^* \), \(\|\{ z \mid b(x) < A z < A t(x)\}\| = 2^{2s(|x|) + 1} + f(x) - 2 \). Choose an arbitrary \(x \in \Sigma^* \). By Proposition 6.13.4, both \(D_M(x1^{2s(|x|) + \nu(|t(x)|) + 1}) \) and \(D_M(x1^{2s(|x|) + \nu(|t(x)|) + 1}) \) are defined. Thus, by the definition of \(A \), \(\{ z \mid b(x) < A z < A t(x)\} = \{ z \mid (\exists i, k \in \mathbb{N} : i > 0 \land k > 0) [D_M^i(b(x)) = z \land D_M^k(z) = t(x)] \} \). By Proposition 6.12.10, there are exactly \(2^{2s(|x|) + 1} \) strings in the subtree of \(M_{x,z} \) rooted at \(x1^{2s(|x|) + \nu(|t(x)|)} \). Let \(S = \{ xwy0^{\nu(|x|) + 1} \mid w \in \{0, 1\}^{s(|x|)} \land a \in \{0, 1\} \land y \in \{0, 1\}^{\nu(|x|)} \land b(x) < A xwy0^{\nu(|x|) + 1} < A t(x) \} \). By Proposition 6.13.3, \(|S| = 2^{2s(|x|) + 1} - 2 \). By Propositions 6.12.6 and 6.13.3, there is a unique \(y' \in \{0, 1\}^{\nu(|x|)} \) such that \(i_{M,x,y}y0^{\nu(|x|) + 1} \in \{ z \mid b(x) < A z < A t(x) \} \). Moreover, by Proposition 6.12.8, \(\nu(\theta^0(y')) = f(x) \). By the definition of \(D_M, D_M^{(\nu(\theta^0(y')) + 1)}(i_{M,x,y}y0^{\nu(|x|) + 1}) \in S \), and for each \(i \in \mathbb{N} \) such that \(0 < i < \nu(\theta^0(y')) \), it holds that \(D_M^i(i_{M,x,y}y0^{\nu(|x|) + 1}) \notin S \).

For each \(i \in \mathbb{N} \) such that \(0 < i < \nu(\theta^0(y')) \), it holds that \(D_M^i(i_{M,x,y}y0^{\nu(|x|) + 1}) \notin S \).

For the remaining \(2^{2s(|x|) + 1} - 3 \) strings \(w \) in \(S \), \(D_M(w) \in S \cup \{ t(x) \} \). Thus \(\|\{ z \mid b(x) < A z < A t(x)\}\| = 2^{2s(|x|) + 1} + f(x) - 2 \).

For item 3, we prove that \(\|\{ z \mid b'(x) < A z < A t(x)\}\| > 0 \) if and only if \(f(x) = 1 \). Choose \(x \in \Sigma^* \) and let \(y = \theta(1)\theta^0(|x|) - \theta^0(1) \). Suppose that \(f(x) = 1 \). Then, by Proposition 6.12.8, \(x_{M,x,y}y \) is in the subtree of \(T_{M,x} \) rooted at \(x1^{2s(|x|) + \nu(|t(x)|)} \). Thus, by Proposition 6.13.3, there exists a \(k \) such that \(D_M^k(b'(x)) = t(x) \). By the definitions of \(D_M, b' \), and \(t, D_M(b'(x)) \neq t(x) \), thus \(k > 1 \). By the definition of \(A \), \(\|\{ z \mid b'(x) < A z < A t(x)\}\| > 0 \). Now, suppose \(f(x) \neq 1 \). Since \(f(x) \neq \nu(\theta^0(y)) \), it follows from Proposition 6.12.8 that \(i_{M,x,y}y \) is not in the subtree of \(T_{M,x} \) rooted at \(x1^{2s(|x|) + \nu(|t(x)|)} \).

Thus, by Proposition 6.13.3, for all \(k \in \mathbb{N} \), \(D_M^k(b'(x)) \neq t(x) \). Thus \(b'(x) \neq t(x) \), and so \(\|\{ z \mid b'(x) < A z < A t(x)\}\| = 0 \).

7. The complexity of counting divisors. Consider the function \#DIV : \(\mathbb{N} \rightarrow \mathbb{N} \), defined on input \(m \in \mathbb{N} \) as

\[
\#\text{DIV}(m) = \text{def } \begin{cases}
\|\{ n \in \mathbb{N} \mid n \neq 1, n \neq m, \text{ and } n \text{ divides } m\}\| & \text{if } m \geq 1 \\
0 & \text{otherwise}.
\end{cases}
\]

What can we say about its complexity? We claim that \#DIV belongs to the interval size function class IF\(_p\).

Theorem 7.1. \#DIV is in IF\(_p\).

Proof. Let PRIMES be the set of all prime numbers. Observe that \#DIV \in \#P and PRIMES = \{ \{ x \mid \#\text{DIV}(x) = 0 \} \}. PRIMES \in \text{P} [AKS04]. Thus Theorem 7.1 follows from Theorem 5.3. \(\square \)

8. The complexity of counting satisfying assignments of monotone formulas. In this section, we show that the \#MONSAT function fits into our collection of function classes. A monotone boolean function is any boolean function such that
changing an input from 0 to 1 (while keeping all other inputs fixed) never changes the value of the function from 1 to 0. A positive boolean formula is a boolean formula that computes a monotone boolean formula. A monotone boolean formula is a formula that is built from propositional variables and the connectives \(\land \) and \(\lor \). Note that the class of functions computed by monotone boolean formulas is exactly the monotone boolean functions. Monotone computing models have long been studied (see, e.g., Grigni and Sipser [GS92] and the references therein).

Proposition 8.1. Let \(\varphi \) be the function that is defined for every boolean formula \(F(x_1, \ldots, x_n) \), \(a \in \{0,1\}^n \), and \(r \in \{0,1\} \) as \(\varphi(F,a,r) = \text{def} \min \{ b \mid b \in \{0,1\}^n \land a \leq \text{lex} b \land F(b) = r \} \) if \(\{ b \mid b \in \{0,1\}^n \land a \leq \text{lex} b \land F(b) = r \} \) is nonempty and \(F \) is a monotone boolean formula, and \(\varphi(F,a,r) = \text{def} \bot \) otherwise, where the min in the above definition is taken with respect to the lexicographical order. The function \(\varphi \) is polynomial-time computable.

Proof. To prove this proposition we use two natural properties of monotone boolean formulas. First, note that, for each monotone boolean formula \(F \) of arity \(n \) and for each \(a = a_1 \ldots a_n \in \{0,1\}^n \) and \(b = b_1 \ldots b_n \in \{0,1\}^n \), it holds that \(F(a) \leq F(b) \) whenever \((\forall i \leq n)[a_i \leq b_i] \). Second, there is an assignment making \(F \) true (respectively, false) if and only if \(F(1^n) = 1 \) (respectively, \(F(0^n) = 0 \)). Consider the algorithm of Figure 6 running on an \(n \)-ary monotone boolean formula \(F \), \(a \in \{0,1\}^n \), and \(r \in \{0,1\} \).

The algorithm works as follows. If none of the boundary conditions in lines [1] through [6] are met, then assume that the assignments to the variables of \(F \) are just the labels of the leaves of a complete binary tree having \(2^n \) leaves, i.e., the leftmost leaf is \(0^n \), and the rightmost leaf \(1^n \). The algorithm starts in the leaf numbered \(a \), and searches the next node \(u \) on the path from \(a \) to the root such that the path comes into \(u \) from the left, and the right subtree below \(u \) contains an assignment \(b \) with \(F(b) = r \) (lines [6] to [9]). The least \(b \) of the subtree having this property is determined via binary search (lines [10] to [18]). Thus, the algorithm is correct and runs in polynomial time with respect to the input length.

We state as Proposition 8.2 some subcases of Proposition 8.1. (A “part 2 of Proposition 8.2” parallel to the first sentence of part 1 of Proposition 8.2 is not included since that trivially holds (test the all-0 assignment).) Though we could not find Proposition 8.2 in the literature, it is sufficiently fundamental that we believe it may well be known or a folk theorem.

Proposition 8.2.

1. The problem of finding the least satisfying assignment for monotone boolean formulas has a polynomial-time algorithm. Indeed, the problem of finding the least satisfying assignment lexicographically greater than or equal to a given assignment has, for monotone boolean formulas, a polynomial-time algorithm.
Fig. 6. An algorithm used in the proof of Proposition 8.1.

2. The problem of finding the least unsatisfying assignment lexicographically greater than or equal to a given assignment has, for monotone boolean formulas, a polynomial-time algorithm.

This section has, so far, spoken of monotone boolean formulas. However, note that if we view the algorithm from Figure 6 as accessing a black-box boolean function, the algorithm in fact shows that the query complexity of the task is polynomial—indeed linear—if the black-box function is a monotone boolean function. Thus we have the following results.

Proposition 8.3. Let \(\varphi \) be the function that is defined for every \(n \geq 1 \), every boolean formula \(f(x_1, \ldots, x_n) \), every \(a \in \{0, 1\}^n \), and every \(r \in \{0, 1\} \) as

\[
\varphi^f(a, r) = \begin{cases}
\min\{b \mid b \in \{0, 1\}^n \land a \leq_{\text{lex}} b \land f(b) = r\}
\land \quad \text{otherwise},
\end{cases}
\]

where the \(\min \) in the above definition is taken with respect to the lexicographical order. When restricted to monotone boolean functions, the function \(\varphi \) is of linear (in the number of variables) query complexity (and polynomial, in the number of variables, time complexity). That is, there exist a Turing machine \(M \) and a linear function \(q \) and a polynomial \(s \) such that for each \(n \geq 1 \), each monotone boolean \(n \)-variable function \(f \), each \(a \in \{0, 1\}^n \), and each \(r \in \{0, 1\} \) it holds that

1. \(M^f(a, r) \) makes at most \(q(n) \) queries to \(f \), and
2. \(M^f(a, r) \) halts within \(s(n) \) steps with \(\varphi^f(a, r) \) on its output tape.

Similarly to Proposition 8.2, we have the following (where the time and query complexities are relative to the number of variables or, equivalently, relative to the size of the “input,” i.e., \(|a| + |r|\)).
Proposition 8.4.
1. The problem of finding the least satisfying assignment when restricted to monotone boolean functions has a linear-query-complexity algorithm (that in addition is of polynomial-time complexity). Indeed, the problem of finding the least satisfying assignment lexicographically greater than or equal to a given assignment has, when restricted to monotone boolean functions, a linear-query-complexity algorithm (that in addition is of polynomial-time complexity).
2. The problem of finding the least unsatisfying assignment lexicographically greater than or equal to a given assignment has, when restricted to monotone boolean functions, a polynomial-time algorithm.

Note that in neither Proposition 8.3 nor Proposition 8.4 do we make any claims about what the procedure will compute if the black-box function is not a monotone boolean formula.

We now relate \#MONSAT to interval functions.

Theorem 8.5. \#MONSAT \(\in \text{IF}_t \).

Proof. We assume that \(F \) is given as a string over the alphabet \(\Sigma \). We construct a total p-order \(A \in \text{P} \) having efficient adjacency checks as follows. Generally, \(A \) coincides with the lexicographical order on \(\Sigma^* \) except that, for each monotone boolean formula \(F \) of arity \(n \), the interval between \(1|F|0000^n \) and \(1|F|0100^n \) is ordered in the following way.

- First comes \(\{1|F|0000y \mid |y| = n\} \) in lexicographical order (we always use \(n = n_F \) to denote the arity of \(F \)).
- Next comes the set \(\{1|F|001a \mid a \text{ is a satisfying assignment of } F\} \) in lexicographical order.
- Next comes \(\{1|F|010y \mid |y| = n\} \) in lexicographical order.
- Next comes the set \(\{1|F|011a \mid a \text{ is not a satisfying assignment of } F\} \) in lexicographical order.
- Finally comes the set \(\{1|F|100y \mid |y| = n\} \) in lexicographical order.

Clearly, \(A \) is a total p-order that is decidable in polynomial time. In light of the function \(\varphi \) from Proposition 8.1 it is not hard to see that \(A \) has efficient adjacency checks. Also, for any monotone boolean formula \(F(x_1, \ldots, x_n) \), let \(b(F) = \text{def} \ 1|F|0F0001^n \) and \(t(F) = \text{def} \ 1|F|0F1000^n \). Obviously, \(b, t \in \text{FP} \), and we obtain \(\#\text{MONSAT}(F) = \|\{z \mid b(F) <_A z <_A t(F)\}\| \). Thus, \#MONSAT \(\in \text{IF}_t \). Valiant [Val79] showed that counting the number of satisfying assignments of 2CNF monotone formulas is Turing complete for \#P. Since \#2CNFMONSAT metrically reduces to \#MONSAT, we immediately obtain from this theorem that \#MONSAT is complete for \text{IF}_t under Turing reductions, and we get an alternate proof for Corollary 5.8.

9. Cluster computations. Finally, we discuss the complexity of computing the size of intervals for which the boundaries are not required to be polynomial-time computable. This leads to the notion of cluster computation, as introduced in [Kos99] for the case of the lexicographical order. We first review the formal definitions related to cluster computation, but here we present a more general version of the definitions than what previously appeared in [Kos99].

Let \(M \) be any nondeterministic Turing machine that is “balanced” in the sense that, on every input, the graph of the nondeterministic choices \(M \) makes is a complete, balanced, binary tree. Let \(y \) and \(z \) encode computation paths of \(M \) on \(x \). By the above assumption that \(M \) is “balanced,” \(|y| = |z| \). Fix a total order \(A \) on \(\Sigma^* \). We say
that \(y \sim_{A,M,x} z \) if and only if (a) \(y \sim_A z \) or \(z \sim_A y \), and (b) \(M \) on \(x \) accepts on path \(y \) if and only if \(M \) on \(x \) accepts on path \(z \). Let \(\equiv_{A,M,x} \) be the equivalence closure (i.e., the reflexive-symmetric-transitive closure) of \(\sim_{A,M,x} \). Then the relation \(\equiv_{A,M,x} \) is an equivalence relation and thus induces a partitioning of the computation tree of \(M \) on \(x \). An \(A \)-cluster is an equivalence class whose representatives are accepting paths. Additionally, we consider \(\emptyset \) to be a valid \(A \)-cluster.

For a nondeterministic Turing machine \(M \), let \(\text{acc}_M(x) \subseteq \Sigma^* \) denote the set of all accepting paths of \(M \) on input \(x \). Let \(\#\text{acc}_M : \Sigma^* \to \mathbb{N} \) be the function defined as \(\#\text{acc}_M(x) = \text{def} |\text{acc}_M(x)| \). Let \(\text{out}_M(x) \subseteq \Sigma^* \) denote the set of all distinct outputs of accepting paths of \(M \) on input \(x \). A nondeterministic Turing machine \(M \) is a lexicographical cluster machine if and only if \(M \) is balanced in the sense defined earlier and, for every \(x \), there is a computation path \(y \) of \(M \) on \(x \) such that

\[
\text{acc}_M(x) = \{ z \mid z \equiv_{\text{lex},M,x} y \text{ and } y \in \text{acc}_M(x) \}.
\]

The intuition here is simple: Such machines on each input in the set have a single, nonempty, contiguous stretch of accepting paths.

Definition 9.1 (Kosub [Kos99]).

\(c\#P = \text{def} \{ \#\text{acc}_M \mid M \text{ is a polynomial-time lexicographical cluster machine} \} \).

We mention some basic properties of the class \(c\#P \).

Definition 9.2. A nondeterministic Turing machine computes a function \(f \) almost-uniquely if and only if, for each \(x \),

1. \(f(x) > 0 \) implies \(\text{out}_M(x) = \{ f(x) \} \) and \(\#\text{acc}_M(x) = 1 \), and
2. \(f(x) = 0 \) implies \(\text{out}_M(x) = \emptyset \).

Recalling from section 6.1 the definition of \(\ominus \), we have the following.

Proposition 9.3 (Kosub [Kos99]).

1. A function \(f \) lies in \(c\#P \) if and only if there exists a nondeterministic polynomial-time Turing machine that computes \(f \) almost-uniquely.
2. \(\text{UPSV}_t \subseteq c\#P = c\#P \ominus \text{FP} \subseteq \#P \).
3. \(\text{UPSV}_t \cap \text{Nonzero} = c\#P \cap \text{Nonzero} \).
4. \(c\#P = \#P \) if and only if \(\text{UP} = \text{PP} \).

Proposition 9.4.

1. \(\exists : c\#P = \exists : (c\#P \ominus \text{FP}) = \text{UP} \).
2. If \(\text{IF}_t \subseteq c\#P \), then \(\text{UP} = \text{PP} \).
3. If \(c\#P \subseteq \text{IF}_t \), then \(\text{P} = \text{UP} \).

Proof.

(1): It is easy to see that \(\text{UP} \subseteq \exists : c\#P \), since any balanced machine for a given UP language already implicitly shows that that language is in \(\exists : c\#P \) due to the unique paths being each a size-one equivalence class. It follows from the definitions that \(\exists : (c\#P \ominus \text{FP}) \subseteq \exists : (c\#P \ominus \text{FP}) \) and from Proposition 9.3.2 we have \(\exists : c\#P = \exists : (c\#P \ominus \text{FP}) \). However, in light of Proposition 9.3.1, we can see that each set in \(\exists : (c\#P \ominus \text{FP}) \) is in fact in UP.

(2): By Theorem 5.7, \(\text{IF}_t \subseteq c\#P \) implies \(\#P - \text{FP} \subseteq c\#P - \text{FP} \). From this, Proposition 2.2.4, and the first part of the present result we have \(\text{PP} = \exists : (\#P - \text{FP}) \subseteq \exists : (c\#P - \text{FP}) = \text{UP} \).

(3): Apply the operator \(\exists \) to both sides of the inclusion, and apply Lemma 5.9 and the first part of the present result.

Proposition 9.3, which in essence says that \(c\#P \) functions are relatively simple, is extremely dependent on the fact that \(c\#P \) is built based on lexicographical order. In particular, the results reflect the fact that it is easy, given two strings, \(a \) and \(b \), to compute \(\| \{ c \mid a \leq_{\text{lex}} c \leq_{\text{lex}} b \} \|. \) Proposition 9.3.1 for example is driven in large part
by the fact that one can, for inputs where the function is not zero, guess (and check the guess of) the rightmost and leftmost accepting paths, and then, since one knows that the complete set of accepting paths is simply the contiguous block between and including these, one can easily compute the number of accepting paths.

It is natural to wish to remove the focus here on lexigraphic order, and to instead study machines whose set of accepting paths is always a contiguous block—with respect to some total order that has efficient adjacency checks like lexicographic order, but that perhaps does not satisfy the extremely restrictive “interval sizes are always trivial to compute” property of lexicographic order. We introduce the class CL#P, which captures exactly this more flexible, natural notion of cluster computing.

(The work of this paper led to further study of CL#P in [HHK06], which studies the closure properties of, alternate definitions of, and classes related to CL#P.)

An order A on Σ^* is said to be length-respecting if and only if, for all x, y, $|x| < |y|$ implies $x \prec_A y$. Note that a length-respecting order is always a p-order.

Definition 9.5. A function f belongs to the class CL#P if and only if there exist a nondeterministic polynomial-time Turing machine M, a polynomial p, and a length-respecting total order A with efficient adjacency checks such that, for all x, the following conditions hold.

1. All computation paths of M on x have length exactly $p(|x|)$.\(^1\)
2. The set of all accepting paths of M on x is an A-cluster.
3. $f(x) = \#\text{acc}_M(x)$.

As might be expected, the class IF_1 is included in CL#P. Indeed, the following inclusions hold.

Theorem 9.6. $c#P \cup IF_1 \subseteq CL#P \subseteq \#P$.

Proof. The inclusions $c#P \subseteq CL#P$ and $CL#P \subseteq \#P$ are trivial. It remains to prove the inclusion $IF_1 \subseteq CL#P$. Choose $f \in IF_1$ via a total p-order $A \in P$ having polynomial-time adjacency checks, functions $b, t \in FP$, and a polynomial p that witnesses that A is a p-order. We may without loss of generality assume that p is monotonic. For each $x \in \Sigma^*$, let $S_x = \{x0^{p(|x|)-|y|}1y0 \mid y \leq_A x\}$. Define A' as follows. Generally, A' corresponds to the lexicographical order on Σ^*, except that, for every $x \in \Sigma^*$, the interval between $x0^{p(|x|)+2}$ and $x1^{p(|x|)+2}$ is defined as follows.

- First come all strings in S_x, such that, for any strings $x0^{p(|x|)-|y|}1y0 \leq_A x0^{p(|x|)-|y_1|}1y_10 \leq_A x0^{p(|x|)-|y_2|}1y_20$ if and only if $y_1 \leq_A y_2$.
- Next come all the strings not in S_x, in lexicographical order.

We claim that A' is a total, polynomial-time computable p-order having efficient adjacency checks. Clearly, A' is total. Also, it is clear that, for any $s \in \Sigma^*$, it is possible to determine in polynomial time whether there is an $x \in \Sigma^*$ such that $s \in S_x$. It follows by this and by the definition of A that A' is polynomial-time computable. We claim that A' has efficient adjacency checks. For any $x \in \Sigma^*$, the lexicographically smallest element in S_x is $x0^{p(|x|)-|y_1|}1y_10 \leq_A x0^{p(|x|)-|y_2|}1y_20 \in S_x$, then $x0^{p(|x|)-|y_1|}1y_10 \prec_{A'} x0^{p(|x|)-|y_2|}1y_20$ if and only if $y_1 \prec_{A} y_2$ (this is true because, for every $y \in \Sigma^*$ such that $y \leq_A x$, it holds

\(^1\)As we do in many places, we take it here as tacitly clear that the length of a path is its number of nondeterministic guesses, all of which in this model must be binary guesses. Note also that in the context of our model “All computation paths of M on x have length exactly $p(|x|)$” certainly implies that M is balanced in the sense defined at the start of this section: It will have every (and only) path corresponding to a guess sequence from $\{0, 1\}^{p(|x|)}$. We mention, however, that we do not require a machine to make nondeterministic guesses at each step.
that \(x^{0(|x|) - b/|y|}1y0 \in S_x\); and thus, for such \(y_1\) and \(y_2\), it is impossible for some string longer than \(p(|x_0|)\) to be “wedged between” them). The lexicographically smallest element not in \(S_x\) is \(x^{0(|x|) + 2}\) and the largest is \(x^{1(|x|) + 2}\). For any \(w_1, w_2 \in \Sigma^*\) and \(b_1, b_2 \in \{0, 1\}\) such that both \(w_1 b_1\) and \(w_2 b_2\) are lexicographically between \(x^{0(|x|) + 2}\) and \(x^{1(|x|) + 2}\) but neither is in \(S_x\), \(w_1 b_1 \prec_A w_2 b_2\) if and only if \((w_1 b_1 \prec lex w_2 b_2)\) or \((w_1 b_1 \not\prec lex w_2 b_2\) and \(b_1 = b_2 = 1\) and \(w_1 \not\prec lex w_2\) and \(w_2 0 \in S_x\). All other cases are handled in the way obvious from the above, e.g., for any \(w_1, w_2 \in \Sigma^*\) and \(b_1, b_2 \in \{0, 1\}\) such that both of \(w_1 b_1\) and \(w_2 b_2\) are lexicographically between \(x^{0(|x|) + 2}\) and \(x^{1(|x|) + 2}\), and exactly one of them—say \(w_1 b_1\)—is in \(S_x\), the above makes it clear that \(w_1 b_1 \prec_A w_2 b_2\) exactly if \(w_1 b_1 = x^{0(|x|) - |x|}1100\) and \(w_2 b_2 = x^{0(|x|) + 2}\).

Define \(M\) to be a Turing machine that, on input \(x \in \Sigma^*\), guesses a string \(w \in \Sigma^{|p(|x|)| + 2}\). If \(t(x)w \not\in S_{\{x\}}\), then \(M\) rejects. Otherwise, \(M\) accepts if and only if \(t(x)0^{|p(|t(x)|)| - b(|x|)|}1b(x)0 <_{A'} t(x)w <_{A'} t(x)0^{|p(|t(x)|)| - |t(x)|}1t(x)0\). Clearly, \(M\) runs in polynomial time and has computation paths of length exactly \(p(t(|x|)) + 2\). Also, the number of accepting paths of \(M\) on \(x\) equals \(f(x)\). By construction, the set of accepting computation paths of \(M\) on \(x\) is an \(A'\)-cluster. Thus, \(f \in \text{CL#P}\). □

From Proposition 9.4 and Theorem 9.6, it is clear that \(\text{CL#P}\) is different from both \(\text{C#P}\) and \(\text{IF}_4\) unless some surprising complexity class collapses occur. In particular, the following holds.

Corollary 9.7.
1. If \(\text{C#P} = \text{CL#P}\), then \(\text{UP} = \text{PP}\).
2. If \(\text{IF}_4 = \text{CL#P}\), then \(\text{P} = \text{UP}\).

Nonetheless, when considering only polynomially bounded functions, \(\text{C#P}\) and \(\text{CL#P}\) do coincide.

Theorem 9.8. \(\text{C#P} \cap \text{PolyBounded} = \text{CL#P} \cap \text{PolyBounded}\).

Proof. The inclusion “\(\subseteq\)” is immediate. For the inclusion “\(\supseteq\)” choose \(f \in \text{CL#P}\) via a nondeterministic polynomial-time Turing machine \(M\), a polynomial \(p\), and a length-respecting total order \(A\) having efficient adjacency checks, all three of which have the properties and behaviors described in Definition 9.5. Recall that all accepting paths of \(M\) on any input \(x\) will be of length \(p(|x|)\). Let \(q\) be a polynomial such that, for all \(x \in \Sigma^*\), \(f(x) \leq q(|x|)\). We now will define a nondeterministic polynomial-time Turing machine \(N\) that almost-uniquely computes \(f\) in the sense of Definition 9.2. Define \(N\) to be a Turing machine that, on input \(x \in \Sigma^*\), does the following.

1. If \(\epsilon\) is an accepting path of \(M(x)\), then accept and output \(1\).
2. \(N\) nondeterministically guesses strings \(y, z \in \Sigma^{|p(|x|)|}\), \(y' \in \Sigma^{|p(|x|)| - 1} \cup \Sigma^{|p(|x|)|}\), and \(z' \in \Sigma^{|p(|x|)|} = \Sigma^{|p(|x|)|} + 1\).
3. \(N\) checks whether all of the following hold.
 (a) \(y' \prec_A y\) and \(z \prec_A z'\).
 (b) \(y' \notin \text{acc}_M(x)\).
 (c) \(z' \notin \text{acc}_M(x)\).
 (d) \(y \in \text{acc}_M(x)\) and \(z \in \text{acc}_M(x)\).
4. If (3) does not hold, then \(N\) rejects, otherwise if \(y = z\), \(N\) accepts and outputs \(1\).
5. If (3) does hold and \(y \neq z\), then \(N\) proceeds as follows.
 (a) \(N\) nondeterministically guesses an integer \(r\) with \(0 \leq r \leq q(|x|) - 2\).
 (b) \(N\) nondeterministically guesses \(r\) strings \(v_1, \ldots, v_r \in \Sigma^{|p(|x|)|}\).
 (c) \(N\) checks whether \(y \prec_A v_1 \prec_A v_2 \prec_A \cdots \prec_A v_r \prec_A z\).
 (d) If (5c) does not hold, then \(N\) rejects. Otherwise, \(N\) accepts and outputs \(r + 2\).
N is a nondeterministic polynomial-time Turing machine that, on each input, has one accepting path if $f(x) > 0$ and no accepting paths if $f(x) = 0$. If $f(x) > 0$, then N on x outputs $f(x)$ on its accepting path. Thus, N almost-uniquely computes f, and so by Proposition 9.3.1 $f \in c\#P$.

For a class \mathcal{F} of functions, let $\exists! : \mathcal{F}$ be the class of all sets L for which there exists a function $f \in \mathcal{F}$ such that, for all x, $x \in L \iff f(x) = 1$.

Theorem 9.9.

1. $\exists! \cdot I F_p = coNP$.
2. $\exists! \cdot c\#P = \exists! \cdot CL\#P = UP$.

Proof. For (1), $coNP \subseteq \exists! \cdot I F_p$ follows from Corollary 5.4 and the observation that any language in $coNP$ is also (via considering the NP machine for the language’s complement but with one extra accepting path added on each input) in $\exists! \cdot (\#P \cap$ Nonzero). To see $\exists! \cdot I F_p \subseteq coNP$, choose $L \in \exists! \cdot I F_p$, via $f \in I F_p$. Let boundary functions $b, t \in FP$ and partial, polynomial-time computable p-order A having efficient adjacency checks witness that $f \in I F_p$. Let M be a nondeterministic polynomial-time Turing machine that, on input x, (i) guesses $y, z \in \Sigma^*$ such that $y \neq z$ and (ii) accepts if $b(x) <_A t(x) \lor (b(x) <_A y \land t(x) \land b(x) <_A z \land t(x))$. It is easy to see that M accepts L, thus $L \in NP$.

For (2), $UP \subseteq \exists! \cdot c\#P$ is obvious. To see that $\exists! \cdot CL\#P \subseteq UP$, choose $L \in \exists! \cdot CL\#P$. Thus there exists a function $f \in CL\#P$ such that, for all $x, f(x) = 1$. Let M be a machine that computes f via total order A having efficient adjacency checks and polynomial p (where M, A, and p are in the sense of Definition 9.5). Recall that all accepting paths of $M(x)$ are of length $p(x)$. Let N be a nondeterministic polynomial-time Turing machine that, on input x, guesses strings $y \in \Sigma^{p(|x|)}$ and $x, z \in \Sigma^{p(|x|)-1} \cup \Sigma^{p(|x|)} \cup \Sigma^{p(|x|)+1}$, and accepts if and only if all the following hold.

1. $y <_A z \land y \in acc_M(x) \land (\forall w : y \land w = y = \epsilon)$.
2. $w \notin acc_M(x) \lor w = y = \epsilon$.
3. $z \notin acc_M(x)$.

Clearly, N has on any input at most one accepting path and N accepts L. \[\square \]

The next result shows that $CL\#P$ is probably not powerful enough to capture $\#P$.

Theorem 9.10. If $CL\#P = \#P$, then $UP = PH$.

Proof. Using Theorem 5.2 and both parts of Theorem 9.9, we have $coNP \subseteq \exists! \cdot \#P = \exists! \cdot CL\#P = UP$. \[\square \]

On the other hand, proving $CL\#P$ to be different from $\#P$ is at least as hard as proving that $P \neq NP$ and $UP \neq PP$.

Proposition 9.11. If $P = NP$ or $UP = PP$, then $CL\#P = \#P$.

Proof. Suppose $UP = PP$. Then by Proposition 9.3.4 $c\#P = \#P$, and so (see Theorem 9.6) $CL\#P = \#P$. Suppose that $P = NP$. Then by Theorem 5.10 it holds that $IF_1 = \#P$, and so (see Theorem 9.6) $CL\#P = \#P$. \[\square \]

Unfortunately, the necessary and sufficient conditions we have obtained for the equality of $\#P$ and $CL\#P$ differ, i.e., they do not yield a complete characterization. However, if we consider polynomially bounded functions, then such a complete characterization can be established in terms of the classes UP [Val76] and Few [CH90] (see section 2 for a review of their definitions). Note that $UP = Few \iff UP = coUP = FewP = Few$ and so in light of Theorem 9.12 we easily have that $CL\#P \cap PolyBounded = \#P \cap PolyBounded$ implies $UP = coUP = FewP$.

Theorem 9.12. $CL\#P \cap PolyBounded = \#P \cap PolyBounded$ if and only if $UP = Few$. \[\square \]
Proof. \([\Rightarrow]\): Suppose that \(L \in \text{Few}\) via a function \(f \in \mathbb{P}\), a set \(B \in \mathbb{P}\), and a polynomial \(p\) such that, for all \(x\), \(f(x) \leq p(|x|)\), and \(x \in L \iff (x, 1^{f(x)}) \in B\). Let \(g(x) = \text{def} \ 1 + f(x)\). Then \(g \in \mathbb{P}\), and \(g\) is polynomially bounded. From our hypothesis and Theorem 9.8, we obtain \(g \in c\mathbb{P}\). Since \(g(x) > 0\), by Proposition 9.3.3 we have that \(g \in \text{UPSV}_t\) via some nondeterministic polynomial-time (function-computing) Turing machine \(M\) whose behavior is \(\text{UPSV}_t\)-like. Define \(N\) to be a Turing machine that, on input \(x\), nondeterministically guesses a computation path \(y\) of \(M\) on input \(x\), simulates \(M\) on input \(x\) along computation path \(y\), and accepts (on its current path) if and only if \(y\) is an accepting path with output \(z\) satisfying \((x, 1^{z-1}) \in B\). Clearly, \(N\) is a nondeterministic polynomial-time Turing machine with at most one accepting path on each input. Furthermore, it holds that \(N\) on \(x\) has an accepting computation path if and only if \((x, 1^{f(x)}) \in B\). This gives \(L \in \text{UP}\).

\([\Leftarrow]\): Let \(f\) be any polynomially bounded \(\mathbb{P}\) function. Define \(A = \text{def} \ \{(x, 1^y) \mid y \leq f(x)\}\). Note that \(A \in \text{Few}\). So by our hypothesis \(A \in \text{UP}\). Indeed, since \(\text{Few}\) is closed under complementation and \(\text{Few} = \text{UP}\) by hypothesis, \(A \in \text{UP} \cap \text{coUP}\). Via binary search using \(A\) as an oracle, we can compute \(f\) in polynomial time. That is, \(f\) is in \(FP^{\text{UP} \cap \text{coUP}} = \text{UPSV}_t \subseteq c\mathbb{P}\). Thus, \(\mathbb{CL} \cap \text{PolyBounded} = \mathbb{P} \cap \text{PolyBounded}\).

From Corollary 9.7, we know that \(\mathbb{CL} \mathbb{P}\) and \(c\mathbb{P}\) probably are different classes. However, under the \(\exists\) operator the difference disappears, since both are mapped to \(\text{UP}\). (Recall that Proposition 9.4.1 established \(\exists \cdot c\mathbb{P} = \text{UP}\).)

Theorem 9.13. \(\exists \cdot \mathbb{CL} \mathbb{P} = \text{UP}\).

Proof. The inclusion \(\text{UP} \subseteq \exists \cdot \mathbb{CL} \mathbb{P}\) is immediate from Proposition 9.4.1 and the fact that \(c\mathbb{P} \subseteq \mathbb{CL} \mathbb{P}\). To show the inclusion \(\exists \cdot \mathbb{CL} \mathbb{P} \subseteq \text{UP}\), choose an arbitrary \(L \in \exists \cdot \mathbb{CL} \mathbb{P}\). Let \(L \in \exists \cdot \mathbb{CL} \mathbb{P}\) via some function \(f \in \mathbb{CL} \mathbb{P}\) with \(x \in L \iff f(x) > 0\). Let \(f \in \mathbb{CL} \mathbb{P}\) be witnessed (in the sense of the \(M, p,\) and \(A\) of Definition 9.5) by some Turing machine \(M\), polynomial \(p\), and total order \(A\) with efficient adjacency checks. Define \(N\) to be a Turing machine that, on input \(x \in \Sigma^*\), does the following.

1. \(N\) nondeterministically guesses \(z \in \Sigma^p(|x|)\) and \(z' \in \Sigma^p(|x|) \cup \Sigma^p(|x|)+1\).

2. \(N\) checks whether each of the following conditions holds.

 (a) \(z \not\prec_M z'\).

 (b) \(z \in \text{acc}_M(x)\).

 (c) \(z' \notin \text{acc}_M(x)\).

3. \(N\) accepts if and only if 2 holds.

Clearly, \(N\) runs in polynomial time and always has at most one accepting path. Also, it holds that \#acc\(N(x) = 1 \iff x \in L\). Thus, \(L \in \text{UP}\).

It is known that \(c\mathbb{P}\) is not closed under increment unless \(\text{UP} = \text{coUP}\) [Kos99]. We note that \(\mathbb{CL} \mathbb{P}\) displays the same behavior.

Theorem 9.14. If \(\mathbb{CL} \mathbb{P}\) is closed under increment, then \(\text{UP} = \text{coUP}\).

Proof. Observe that \(\text{co}(\exists \cdot \mathbb{F}) \subseteq \exists ! \cdot (\mathbb{F} + 1)\) is true for every class \(\mathbb{F}\) of total functions, where \(\mathbb{F} + 1\) denotes \(\{g \mid (\exists f \in \mathbb{F})(\forall x)(g(x) = f(x) + 1)\}\). Thus by our hypothesis and Theorem 9.13 we have \(\text{coUP} = \text{co}(\exists \cdot \mathbb{CL} \mathbb{P}) \subseteq \exists ! \cdot (\mathbb{CL} \mathbb{P} + 1) \subseteq \exists ! \cdot \mathbb{CL} \mathbb{P} = \text{UP}\).

As a corollary, we obtain that \(\mathbb{CL} \mathbb{P}\) is incomparable to \(\text{IF}_p\) unless some unexpected complexity class collapse occurs.

Corollary 9.15.

1. If \(\mathbb{CL} \mathbb{P} \subseteq \text{IF}_p\), then \(\text{P} = \text{UP}\).

2. If \(\text{IF}_p \subseteq \mathbb{CL} \mathbb{P}\), then \(\text{UP} = \text{PH}\).

Proof. Regarding (1), from our hypothesis and Theorem 9.13 we have \(\text{UP} = \)
\[\exists \cdot \text{CL}\#P \subseteq \exists \cdot \text{IF}_p = P. \] To verify (2), observe that from our hypothesis, Theorem 9.9.1, and Theorem 9.13 we obtain \(\text{coNP} \subseteq \exists ! \cdot \text{IF}_p \subseteq \exists ! \cdot \text{CL}\#P = \text{UP}. \]

10. Conclusion and open problems. We introduced interval size functions over \(p \)-orders and used them to provide an alternate definition of \(\#P \) as the set of all interval size functions over polynomial-time decidable \(p \)-orders. We also introduced the classes \(\text{IF}_p \) and \(\text{IF}_t \), the interval size functions over partial and total polynomial-time computable \(p \)-orders with efficient adjacency checks. We proved that \(\text{IF}_p \) is the class of all functions in \(\#P \) whose support is in \(P \). We also proved that \(\text{IF}_t - \text{FP} = \#P - \text{FP} \) and \(\text{IF}_p - \mathcal{O}(1) = \#P - \mathcal{O}(1) \), but that \(\text{IF}_p = \#P \) if and only if \(P = \text{NP} \), and that \(\text{IF}_t = \text{IF}_p \) only if \(\text{UP} = \text{PH} \).

We also introduced the classes \(\text{IF}_p^* \) and \(\text{IF}_t^* \), the interval size functions over partial and total \(p \)-orders with efficient adjacency checks. We proved that \(\exists ! \cdot \text{IF}_t^* = \exists ! \cdot \text{IF}_p^* = \text{PSPACE} \).

Finally, we introduced \(\text{CL}\#P \), the set of all functions that count the number of accepting paths of polynomial-time cluster machines whose underlying orders are total and have efficient adjacency checks, and we studied the relationship between \(\text{CL}\#P \) and the previously studied cluster computing class \(c\#P \).

Reviewing all the results on the interval size function classes \(\text{IF}_p \), \(\text{IF}_p^* \), \(\text{IF}_t \), and \(\text{IF}_t^* \), it seems that we have a good understanding of the computational power of the classes \(\text{IF}_p \), \(\text{IF}_p^* \), and \(\text{IF}_t \). Regarding the class \(\text{IF}_t \), we commend as an open issue obtaining an understanding of the class \(\text{IF}_t - \mathcal{O}(1) \), which can be loosely considered to be a kind of “total order” \(\#P \).

In section 8, we showed that \(\#\text{MONSAT} \) is complete for \(\text{IF}_t \) under Turing reductions. Valiant showed that \(\#2\text{CNFMONSAT} \) is complete for \(\#P \) under Turing reductions (and thus of course \(\#\text{MONSAT} \) is complete for \(\#P \) under Turing reductions). In light of this, a referee suggested as interesting open issues such questions as the following: Can one more broadly determine which \(\#P \)-complete problems fall in \(\text{IF}_t \) and which fall in \(\text{IF}_p \)? And what can one say about the downward closure, under various reductions, of \(\#\text{MONSAT} \), of \(\text{IF}_t \), and of \(\text{IF}_p \)? In particular, what reductions are sufficiently restrictive as to leave \(\text{IF}_t \) and/or \(\text{IF}_p \) closed downward under the reductions, and relatedly, which reductions are sufficiently restrictive as to have the class of sets reducing to \(\#\text{MONSAT} \) under the reductions be a subset of \(\text{IF}_t \) and/or \(\text{IF}_p \)?

Acknowledgments. We are grateful to J. Rothe, H. Spakowski, and M. Thakur for proofreading an earlier draft of this paper, and to E. Hemaspaandra and K.-J. Lange for helpful discussions. We also thank the anonymous referees for their careful, helpful reviews and for comments that improved the presentation of the paper.

REFERENCES

[AKS04] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. (2), 160 (2004), pp. 781–793.
[CH90] J.-Y. Cai and L. Hemachandra, On the power of parity polynomial time, Math. Systems Theory, 23 (1990), pp. 95–106.
[Coo71] S. Cook, The complexity of theorem-proving procedures, in Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, ACM, New York, 1971, pp. 151–158.
[FFK94] S. Fenner, L. Fortnow, and S. Kurtz, Gap-definable counting classes, J. Comput. System Sci., 48 (1994), pp. 116–148.
[GHJY91] J. Goldsmith, L. A. Hemachandra, D. Joseph, and P. Young, Near-testable sets, SIAM J. Comput., 20 (1991), pp. 506–523.
[Gi77] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Comput., 6 (1977), pp. 675–695.

[GS88] J. Grollmann and A. L. Selman, Complexity measures for public-key cryptosystems, SIAM J. Comput., 17 (1988), pp. 39–309.

[GS91] A. V. Goldberg and M. Sipser, Compression and ranking, SIAM J. Comput., 20 (1991), pp. 524–536.

[GS92] M. Grigni and M. Sipser, Monotone complexity, in Boolean Function Complexity, London Math. Soc. Lecture Note Ser. 169, M. Paterson, ed., Cambridge University Press, Cambridge, UK, 1992, pp. 57–75.

[GW83] H. Galperin and A. Wigderson, Succinct representations of graphs, Inform. and Control, 56 (1983), pp. 183–198.

[HHK06] L. Hemaspaandra, C. Homan, and S. Kosub, Cluster computing and the power of edge recognition, in Proceedings of the Third Annual Conference on Theory and Applications of Models of Computation, Lecture Notes in Computer Sci. 3959, Springer-Verlag, Berlin, 2006, pp. 283–294.

[HHKW05] L. Hemaspaandra, C. Homan, S. Kosub, and K. Wagner, The Complexity of Computing the Size of an Interval, Technical report TR-856, University of Rochester, Department of Computer Science, Rochester, NY, February 2005, revised March 2005.

[HHW05] E. Hemaspaandra, L. Hemaspaandra, and O. Watanabe, The Complexity of Kings, Technical report TR-870, University of Rochester, Department of Computer Science, Rochester, NY, 2005.

[HKW01] L. Hemaspaandra, S. Kosub, and K. Wagner, The complexity of computing the size of an interval, in Proceedings of 28th International Colloquium on Algorithms, Languages and Programming, Lecture Notes in Computer Sci. 2076, Springer-Verlag, Berlin, 2001, pp. 1040–1051.

[HMU01] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata Theory, Languages, and Computation, 2nd ed., Addison-Wesley, Boston, 2001.

[HO02] L. Hemaspaandra and M. Ogihara, The Complexity Theory Companion, Springer-Verlag, Berlin, 2002.

[HNVW96] U. Hertrampf, H. Vollmer, and K. Wagner, On balanced versus unbalanced computation trees, Math. Systems Theory, 29 (1996), pp. 411–421.

[Ko83] K. Ko, On self-reducibility and weak P-selectivity, J. Comput. System Sci., 26 (1983), pp. 209–221.

[Kos99] S. Kosub, A note on unambiguous function classes, Inform. Process. Lett., 72 (1999), pp. 197–203.

[KSTT92] J. Kessler, U. Schöning, S. Toda, and J. Torán, Turing machines with few accepting computations and low sets for PP, J. Comput. System Sci., 44 (1992), pp. 272–286.

[Lev75] L. Levin, Universal sequential search problems, Probl. Inf. Transm., 9 (1975), pp. 265–266.

[MP79] A. Meyer and M. Paterson, With What Frequency are Apparently Intractable Problems Difficult?, Technical report MIT/LCS/TM-126, MIT, Laboratory for Computer Science, Cambridge, MA, 1979.

[MS72] A. Meyer and L. Stockmeyer, The equivalence problem for regular expressions with squaring requires exponential time, in Proceedings of the 13th Symposium on Switching and Automata Theory, IEEE Press, Los Alamitos, CA, 1972, pp. 125–129.

[NT05] A. Nickelsen and T. Tantau, The complexity of finding paths in graphs with bounded independence number, SIAM J. Comput., 34 (2005), pp. 1176–1195.

[OH93] M. Ogihara and L. Hemachandra, A complexity theory of feasible closure properties, J. Comput. System Sci., 46 (1993), pp. 295–325.

[OTTW96] M. Ogihara, T. Thierauf, S. Toda, and O. Watanabe, On closure properties of \#P in the context of PF o \#P, J. Comput. System Sci., 53 (1996), pp. 171–179.

[PY86] C. Papadimitriou and M. Yannakakis, A note on succinct representations of graphs, Inform. and Control, 71 (1986), pp. 181–185.

[Sim75] J. Simon, On Some Central Problems in Computational Complexity, Ph.D. thesis, Cornell University, Ithaca, NY, 1975.
[Sto77] L. Stockmeyer, *The polynomial-time hierarchy*, Theoret. Comput. Sci., 3 (1977), pp. 1–22.

[Tan01] T. Tantau, *A Note on the Complexity of the Reachability Problem for Tournaments*, Technical report TR01-092, Electronic Colloquium on Computational Complexity, http://www.eccc.uni-trier.de/eccc/ (2001).

[Val76] L. Valiant, *Relative complexity of checking and evaluation*, Inform. Process. Lett., 5 (1976), pp. 20–23.

[Val79] L. G. Valiant, *The complexity of enumeration and reliability problems*, SIAM J. Comput., 8 (1979), pp. 410–421.

[VW95] H. Vollmer and K. Wagner, *Complexity classes of optimization functions*, Inform. and Comput., 120 (1995), pp. 198–219.

[Wag84] K. Wagner, *The complexity of problems concerning graphs with regularities*, in Proceedings of the 11th Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Sci. 176, Springer-Verlag, Berlin, 1984, pp. 544–552.

[Wag86] K. Wagner, *The complexity of combinatorial problems with succinct input representations*, Acta Inform., 23 (1986), pp. 325–356.
