Managing γ_5 in Dimensional Regularization II: the Trace with more γ_5's

Ruggero Ferrari

Received: 1 September 2016 / Accepted: 23 November 2016 / Published online: 1 December 2016
© Springer Science+Business Media New York 2016

Abstract In the present paper we evaluate the anomaly for the abelian axial current in a non abelian chiral gauge theory, by using dimensional regularization. This amount to formulate a procedure for managing traces with more than one γ_5. The suggested procedure obeys Lorentz covariance and cyclicity, at variance with previous approaches (e.g. the celebrated ’t Hooft and Veltman’s where Lorentz is violated). The result of the present paper is a further step forward in the program initiated by a previous work on the traces involving a single γ_5. The final goal is an unconstrained definition of γ_5 in dimensional regularization. Here, in the evaluation of the anomaly, we profit of the axial current conservation equation, when radiative corrections are neglected. This kind of tool is not always exploited in field theories with γ_5, e.g. in the use of dimensional regularization of infrared and collinear divergences.

Keywords Gamma_5 · Dimensional renormalization · Anomaly

1 Introduction

In paper I [1] we solved the problem of defining the trace of gamma’s with zero or one γ_5 in generic D dimensions [2–4], by using an integral representation. The γ_5 problem has been widely discussed in the literature [5–31].

The new representation sets the rules for managing the algebra in a Lorentz covariant formalism, consistent with the cyclicity of the trace. The ABJ anomaly [32–35] and the LFE

This work is supported in part by funds provided by the U.S. Department of Energy (D.O.E.) under cooperative research agreement #DE FG02-05ER41360.

✉ Ruggero Ferrari
ruggferr@mit.edu

1 Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics
Massachusetts, Institute of Technology, Cambridge, MA 02139, USA
(Local Functional Equation) [36–39] associated to the abelian local chiral transformations have been verified by explicit calculations.

In the present paper we consider the case of a trace with more than one γ_5, that frequently occurs in actual Feynman amplitude calculations. There is a further cogent reason to consider such a case, i.e. the need to formulate local chiral non abelian gauge transformations, as in the electroweak model. Were it not possible to do it in a consistent way, then the γ_5 manipulation in generic dimension would be of limited significance.

In this work we go through the explicit calculation of the divergence of the abelian axial current

$$\partial_\mu J_\mu^5$$

up to one loop correction in a $SU(2)$ nonabelian chiral (massless) theory. We use dimensional regularization and the limit $D = 4$ is taken.

We make some assumptions, hoping that they are mutually consistent:

1. Gamma’s and γ_X (our γ_5 in generic D) form an associative algebra.

 We study the generic trace where the Lorentz indices are all contracted with vectors (e.g. momenta and polarization vectors)

 $$Tr(p) \equiv Tr (\ldots \gamma_X \ldots \gamma_\mu \ldots \gamma_X \ldots \gamma_\mu_k \ldots \ldots) \ldots p_\mu \ldots p_\mu_k \ldots .$$

 Then our Ansatz is that:

2. In a neighborhood of $D = 4$ the trace admits an expansion

 $$Tr(p) = \sum_{h=0} A_h(p)(D - 4)^h,$$

 where $A_h(p)$ are Lorentz invariants in $D = 4$ dimensions (the tensor $\varepsilon_{\mu\nu\rho\sigma}$ might be present).

3. The limit $D = 4$ is smooth. For instance

 $$\{\gamma_X, \gamma_\mu\} = \mathcal{O}(D - 4), \, \forall \mu .$$

To our opinion the integral representation of the trace with zero or one γ_X, thoroughly studied in I, can be extended to the case of multiple γ_X. However we have not been able yet to continue our integral representation for any number of γ_X to non integer D; i.e. the manipulations, requiring an integer D, provide little help in order to extend the results to non integer D. For these reasons and for sake of brevity and conciseness we do not discuss here the extension to multiple γ_X of the results in I. Instead we manipulate in a formal way the gamma’s, assuming that they exist somehow.

For instance the trace $Tr (\sqrt{\gamma_X \gamma_\alpha \gamma_\beta \gamma_\mu \gamma_\nu \gamma_\rho \gamma_\sigma})$ need not to be given. In the evaluation of the anomaly only the following quantity is required

$$Tr \left(\{\gamma_X, \gamma_\alpha\} \gamma_\beta \gamma_\mu \gamma_\nu \gamma_\rho \gamma_\sigma \right) = Tr \left(\gamma_X \{\gamma_\alpha, \gamma_\beta \gamma_\mu \gamma_\nu \gamma_\rho \gamma_\sigma\} \right).$$

The strategy for evaluating the trace with many γ_X turns out to be very simple at the one-loop level.

1. We move around, inside a trace, a γ_X by introducing the anticommutator. For instance

 $$\gamma_X \gamma_\mu = -\gamma_\mu \gamma_X + \{\gamma_X, \gamma_\mu\}$$

 $$[\gamma_X, \gamma_X] = 0.$$ (6)

2. Once the anticommutator $\{\gamma_X, \gamma_\mu\}$ is introduced into the trace we get only $\mathcal{O}(D - 4)$ quantities or of higher order in $D - 4$.
3. If we need only terms of first order in $D - 4$ and $\{\gamma_X, \gamma_\mu\}$ is present, then we can use the $D = 4$ algebra in the subsequent manipulation (e.g. $\gamma_X^2 = 1$ and $\{\gamma_X, \gamma_\mu\} = 0$).

4. Eventually the trace contains at most one γ_X, if $\{\gamma_X, \gamma_\mu\}$ is present and if only first $D - 4$ order terms are required.

Trace with at most one γ_X have been dealt in I.

To summarize, the method is very simple and straightforward. Once the $O(D - 4)$ factor is introduced into the trace via a single anticommutator $\{\gamma_X, \gamma_\mu\}$, the $D = 4$ naive algebra can be used

$$\gamma_X \, p_1 \cdots p_k \gamma_X \to (-)^k \, p_1 \cdots p_k$$

$$\gamma_X^2 = 1. \quad (7)$$

However powers of γ_X need some care as it is discussed in Section 2.

In the present paper we apply the above outlined method to the evaluation of the anomaly present in the operator (1). First we organize all contributions to the operator $\partial_\mu J^5_\mu$ in such a way that they identically vanish if one uses the naive $D = 4$ algebra (i.e. if poles in $D = 4$ are neglected). With this procedure we can factorize $\{\gamma_X, \gamma_\mu\}$ in the trace. Then the evaluation of the anomaly is straightforward.

2 More Algebraic Properties

The algebra of γ_X with the other gamma’s is not know. Thus the algebraic manipulations go around this difficulty. As an example, used frequently in I, we quote the following identity

$$\text{Tr}(\{\gamma_\alpha, \gamma_X\} \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\gamma)_{\delta\alpha i} = \text{Tr}(\text{Tr}(\gamma_\alpha \gamma_X \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\gamma))_{\delta\alpha i} = (2 - D) \text{Tr}(\gamma_X \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\gamma) + 4(\delta_\rho \beta \gamma_\sigma - \delta_\rho \sigma \gamma_\beta + \delta_\sigma \beta \gamma_\rho)_{\gamma_\gamma}$$

$$= \text{Tr}(\gamma_X \gamma_\rho \gamma_\beta \gamma_\sigma) - 4(\delta_\rho \beta \gamma_\sigma - \delta_\rho \sigma \gamma_\beta + \delta_\sigma \beta \gamma_\rho)_{\gamma_\gamma} \quad (8)$$

which is zero both for $D = 4$ and $D = 2$, as it should be.

Here we list some rules and some caveat. It should be reminded that the naive $D = 4$ algebra can be used only under the protection of a $O(D - 4)$ factor in the trace. For instance

$$\gamma_X^2 = 1 \quad (9)$$

cannot be used under all circumstances. Here is an example of some unpleasant difficulty

$$\text{Tr} \left(\gamma_\mu \, \gamma_X \gamma_\alpha \gamma_\rho \, \gamma_X \gamma_\beta \gamma_\sigma \gamma_\gamma \gamma_X \right) = -\text{Tr} \left(\gamma_\mu \, \gamma_X \gamma_\alpha \gamma_\rho \, \gamma_X \gamma_\beta \gamma_\sigma \gamma_\gamma \gamma_X \right) + \text{Tr} \left(\gamma_\mu \, \gamma_X \gamma_\alpha \gamma_\rho \, \gamma_X \gamma_\beta \gamma_\sigma \gamma_\gamma \gamma_X \right)$$

$$= \text{Tr} \left(\gamma_X \gamma_\alpha \gamma_\rho \gamma_X \gamma_\beta \gamma_\sigma \gamma_\gamma \gamma_X \right) - \text{Tr} \left(\gamma_X \gamma_\alpha \gamma_\rho \gamma_X \gamma_\beta \gamma_\sigma \gamma_\gamma \gamma_X \right)$$

$$= \text{Tr} \left(\gamma_X \gamma_X \gamma_\alpha \gamma_\rho \gamma_X \gamma_\beta \gamma_\sigma \gamma_\gamma \gamma_X \right) - \text{Tr} \left(\gamma_X \gamma_X \gamma_\alpha \gamma_\rho \gamma_X \gamma_\beta \gamma_\sigma \gamma_\gamma \gamma_X \right) \quad (10)$$
But also
\[
\text{Tr} \left(\gamma_\mu \gamma_\chi \gamma_\alpha \gamma_\rho \gamma_\chi \gamma_\beta \gamma_\sigma \gamma_\iota \right) = \text{Tr} \left(\gamma_\chi \gamma_\mu \gamma_\alpha \gamma_\rho \gamma_\chi \gamma_\beta \gamma_\sigma \gamma_\iota \right) = - \text{Tr} \left(\gamma_\mu \gamma_\chi \gamma_\alpha \gamma_\rho \gamma_\chi \gamma_\beta \gamma_\sigma \gamma_\iota \right) + \text{Tr} \left(\left\{ \gamma_\chi, \gamma_\mu \right\} \gamma_\alpha \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \right) \\
= - \text{Tr} \left(\gamma_\mu \gamma_\chi \gamma_\alpha \gamma_\rho \gamma_\chi \gamma_\beta \gamma_\sigma \gamma_\iota \right) + \text{Tr} \left(\left\{ \gamma_\chi, \gamma_\mu \right\} \gamma_\alpha \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \right),
\]
\[(11)\]

Thus (10) and (11) are in contradiction if we use $\gamma^2 = 1$. The last identity can be used only inside a trace where a $\mathcal{O}(D - 4)$ term already is present.

Moreover one can easily derive
\[
\text{Tr} \left(\left[\gamma_\mu, \gamma_\chi \gamma_\alpha \gamma_\rho \gamma_\sigma \gamma_\iota \right] \gamma_\chi \gamma_\beta \gamma_\sigma \gamma_\iota \right) = 2 \text{Tr} \left(\left[\gamma_\mu, \gamma_\chi \right] \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \right)
\]
\[(12)\]
which shows once more how γ^2 is difficult object to deal with.

In some cases we can use $\gamma^2 = 1$ in proximity of $D = 4$. In our calculation we encounter two cases of this sort.

\[
\text{Tr} \left(\left[\gamma_\mu, \gamma_\chi \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \right] \gamma_\alpha \gamma_\rho \gamma_\beta \right) \\
\text{Tr} \left(\left[\gamma_\mu, \gamma_\chi \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \right] \gamma_\alpha \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \right)
\]
\[(13)\]

We can easily prove that around $D = 4$ they can be neglected. For instance
\[
\text{Tr} \left(\left[\gamma_\mu, \gamma^2 \gamma_\chi \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \right] \gamma_\chi \gamma_\rho \gamma_\beta \right) \delta_{\mu\alpha} = (D - 4) \text{Tr} \left(\gamma^2 \gamma_\rho \gamma_\beta \right) + 4 \delta_{\rho\beta} \text{Tr} \left(\gamma^2 \right)
\]
\[= - D \text{Tr} \left(\gamma^2 \gamma_\rho \gamma_\beta \right) = 0 \]
\[(14)\]
and
\[
\text{Tr} \left(\left[\gamma_\mu, \gamma^2 \gamma_\chi \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \right] \gamma_\alpha \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \right) \delta_{\mu\alpha} = (D - 8) \text{Tr} \left(\gamma^2 \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \right) + 4 \delta_{\rho\beta} \text{Tr} \left(\gamma^2 \gamma_\sigma \gamma_\iota \right)
\]
\[- 4 \delta_{\rho\sigma} \text{Tr} \left(\gamma^2 \gamma_\beta \gamma_\sigma \gamma_\iota \right) + 4 \delta_{\rho\iota} \text{Tr} \left(\gamma^2 \gamma_\beta \gamma_\sigma \gamma_\iota \right)
\]\[+ 4 \delta_{\sigma\iota} \text{Tr} \left(\gamma^2 \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \right) - D \text{Tr} \left(\gamma^2 \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \right) = 0 \]
\[(15)\]
are compatible with both traces in (13) being zero at $D \sim 4$.

3 The Anomaly of Isoscalar J^5_μ in Chiral Nonabelian Gauge Theories

In chiral theory every vertex carries a factor
\[
\frac{1}{2} \left(1 + \gamma_\chi \right).
\]
\[(16)\]

The triangular graph gives the amplitude (a factor i^3 from fermion propagators, a factor i^2 for interaction vertexes and a factor -1 from fermion loop. Total $-i$)
\[
T_{\mu\rho\sigma} (k, p) = - \frac{i}{4} \int \frac{d^D q}{(2\pi)^D} \frac{1}{(q - k)^2 q^2 (q + p)^2} \text{Tr} \left(\gamma_\mu \gamma_\chi (q - k) \gamma_\rho \gamma_\sigma \gamma_\iota \right) \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \left(1 + \gamma_\chi \right)(q + p), \gamma_\iota \right).
\]
\[(17)\]
The crossed graph will be added later on. The trace on the internal group indices contributes by a factor

\[Tr(t_at_b) = \frac{1}{2} \delta_{ab}. \]

(18)

Eventually we consider the divergence of the current (1)

\[i(p + k)_\mu T_{\mu\rho\sigma}(k, p) = \frac{1}{4} (q + p - q + k)_\mu \int \frac{d^D q}{(2\pi)^D} \times \frac{Tr(\gamma_k \gamma_\chi (q - k)_\alpha \gamma_\alpha (1 + \gamma_\chi)q_\beta \gamma_\beta \gamma_\sigma (1 + \gamma_\chi)(q + p)_i \gamma_i)}{(q - k)^2 q^2 (q + p)^2} \]

\[= \frac{1}{4} \int \frac{d^D q}{(2\pi)^D} \left\{ -\frac{Tr((q - k)_\mu \gamma_k \gamma_\chi (q - k)_\alpha \gamma_\alpha)}{(q - k)^2} \times \gamma_\rho(1 + \gamma_\chi)q_\beta \gamma_\beta \gamma_\sigma(1 + \gamma_\chi)(q + p)_i \gamma_i \right\} \]

(19)

The crossed graph yields

\[i(p + k)_\mu T_{\mu\rho\sigma}(p, k) = \frac{1}{4} (q + k - q + p)_\mu \int \frac{d^D q}{(2\pi)^D} \times \frac{Tr(\gamma_k \gamma_\chi (q - p)_\alpha \gamma_\alpha \gamma_\rho(1 + \gamma_\chi)q_\beta \gamma_\beta \gamma_\sigma(1 + \gamma_\chi)(q + k)_i \gamma_i)}{(q - p)^2 q^2 (q + k)^2} \]

\[= \frac{1}{4} \int \frac{d^D q}{(2\pi)^D} \left\{ -\frac{Tr((q - p)_\mu \gamma_k \gamma_\chi (q - p)_\alpha \gamma_\alpha)}{(q - p)^2} \times \gamma_\rho(1 + \gamma_\chi)q_\beta \gamma_\beta \gamma_\sigma(1 + \gamma_\chi)(q + k)_i \gamma_i \times \frac{Tr(\gamma_k \gamma_\chi (q - p)_\alpha \gamma_\alpha \gamma_\rho(1 + \gamma_\chi)(1 + \gamma_\chi))}{(q - p)^2 q^2} \right\} \]

(20)

We shift the variable \(q \rightarrow q - k \) in the first integral and \(q \rightarrow q + p \) in the second of (20).

\[i(p + k)_\mu T_{\mu\sigma\rho}(p, k) = \frac{1}{4} \int \frac{d^D q}{(2\pi)^D} \left\{ -\frac{Tr((q - k - p)_\mu \gamma_k \gamma_\chi (q - k - p)_i \gamma_i)}{(q - k - p)^2} \times \frac{\gamma_\sigma(1 + \gamma_\chi)(q - k)_\alpha \gamma_\alpha \gamma_\rho(1 + \gamma_\chi)q_\beta \gamma_\beta}{q^2(q - k)^2} + \frac{Tr(\gamma_k \gamma_\beta \gamma_\sigma(1 + \gamma_\chi)(1 + \gamma_\chi)(q + p)_i \gamma_i \gamma_\rho(1 + \gamma_\chi))}{(q + p)^2 q^2} \right\}. \]

(21)

By inspection one sees that the first term in (19) cancels the second term in (21) if one uses naively the algebra in \(D = 4 \). The same happens to the second term in (19) with the first term in (21). Our strategy is to find the anomaly in the lack of these cancellations, when
radiative corrections are taken into account. As an example we deal with one of these two cases. Thus we have

\[
\frac{1}{4} \int \frac{d^Dq}{(2\pi)^D} \left\{ -\frac{Tr ((q - k)_\mu \gamma_\mu \gamma_\chi (q - k)_\alpha \gamma_\alpha (1 + \gamma_\chi)(q + p)_i \gamma_i)}{(q - k)^2} \frac{q^2(q + p)^2}{q^2(q + p)^2} + \frac{Tr (\gamma_\chi q_\beta \gamma_\beta \gamma_\sigma (1 + \gamma_\chi)(q + p)_i \gamma_i, \gamma_\rho (1 + \gamma_\chi))}{(q + p)^2 q^2} \right\}
\]

\[
= \frac{1}{4} \int \frac{d^Dq}{(2\pi)^D} \left\{ -\frac{Tr ((q - k)_\mu (-\gamma_\chi \gamma_\mu + \{\gamma_\mu, \gamma_\chi\})(q - k)_\alpha \gamma_\alpha)}{(q - k)^2} \right. \\
\times \frac{\gamma_\rho (1 + \gamma_\chi) q_\beta \gamma_\beta \gamma_\sigma (1 + \gamma_\chi)(q + p)_i \gamma_i}{q^2(q + p)^2} \\
+ \frac{Tr (q_\beta \gamma_\beta \gamma_\sigma (1 + \gamma_\chi)(q + p)_i \gamma_i (-\gamma_\chi \gamma_\rho + \{\gamma_\chi, \gamma_\rho\})(1 + \gamma_\chi))}{(q + p)^2 q^2} \right\}
\]

\[
= \frac{1}{4} \int \frac{d^Dq}{(2\pi)^D} \left\{ -\frac{Tr (\{\gamma_\mu, \gamma_\chi\} \gamma_\alpha \gamma_\rho (1 + \gamma_\chi) \gamma_\beta \gamma_\sigma (1 + \gamma_\chi))}{(q - k)_\mu (q - k)_\alpha q_\beta (q + p)_i \gamma_i} \frac{(q - k)^2 q^2}{q^2(q + p)^2(q - k)^2} + Tr (\gamma_\beta \gamma_\sigma (1 + \gamma_\chi) \gamma_i \{\gamma_\chi, \gamma_\rho\}(1 + \gamma_\chi)) \frac{q_\beta (q + p)_i}{(q + p)^2 q^2} \right\}
\]

Equation (22) gives a contribution to the triangular graph anomaly. The cross term will be added later on. Noticeable is the emerging inside the trace of the factors \(\{\gamma_\mu, \gamma_\chi\}\) and \(\{\gamma_\chi, \gamma_\rho\}\) of order \(O(D - 4)\).

3.1 Reduction of \(\gamma_\chi\)’s

We proceed to remove all \(\gamma_\chi\)’s in (22) where it is possible. The guiding idea is that the presence in the trace of the factors \(\{\gamma_\mu, \gamma_\chi\}\), which is of order \(O(D - 4)\), allows us the use

\[
\{\gamma_\chi, \gamma_\nu\} = 0, \forall \nu \\
\gamma_\chi^2 = 1
\]

(23)

for all the other remaining \(\gamma_\chi\)’s. The generic value \(D\) is kept throughout the computation and the limit \(\gamma_\chi \rightarrow \gamma_5\) is taken as a last step of the algebraic manipulation of \(\{\gamma_\mu, \gamma_\chi\}\).

Thus we consider the gamma content of the first term in (19)

\[
Tr (\{\gamma_\mu, \gamma_\chi\} \gamma_\alpha \gamma_\rho (1 + \gamma_\chi) \gamma_\beta \gamma_\sigma (1 + \gamma_\chi) \gamma_i) = Tr (\{\gamma_\mu, \gamma_\chi\} \gamma_\alpha \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\chi \gamma_i) \\
+ Tr (\{\gamma_\mu, \gamma_\chi\} \gamma_\alpha \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\chi \gamma_i) \\
+ Tr (\{\gamma_\mu, \gamma_\chi\} \gamma_\alpha \gamma_\rho \gamma_\chi \gamma_\beta \gamma_\sigma \gamma_\chi \gamma_i) \\
+ Tr (\{\gamma_\mu, \gamma_\chi\} \gamma_\alpha \gamma_\rho \gamma_\chi \gamma_\beta \gamma_\sigma \gamma_\chi \gamma_i)(24)
\]

The first term in the RHS of (24) gives

\[
Tr (\{\gamma_\mu, \gamma_\chi\} \gamma_\alpha \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\chi \gamma_i) = Tr (\gamma_\chi \{\gamma_\mu, \gamma_\alpha \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\chi \gamma_i\})(25)
\]

The fourth term in the RHS of (24) gives

\[
Tr (\{\gamma_\mu, \gamma_\chi\} \gamma_\alpha \gamma_\rho \gamma_\chi \gamma_\beta \gamma_\sigma \gamma_\chi \gamma_i) = Tr (\gamma_\chi \{\gamma_\mu, \gamma_\alpha \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\chi \gamma_i\})(26)
\]
Finally the first and the fourth together yield
\[
Tr \left(\left\{ \gamma_{\mu}, \gamma_{\chi} \right\} \gamma_{\alpha} \gamma_{\rho} \gamma_{\beta} \gamma_{\sigma} \gamma_{\chi} \gamma_{\iota} \right) + Tr \left(\left\{ \gamma_{\mu}, \gamma_{\chi} \right\} \gamma_{\alpha} \gamma_{\rho} \gamma_{\beta} \gamma_{\sigma} \gamma_{\chi} \gamma_{\iota} \right) \\
= 2 Tr \left(\gamma_{\chi} \left\{ \gamma_{\mu}, \gamma_{\alpha} \gamma_{\rho} \gamma_{\beta} \gamma_{\sigma} \gamma_{\chi} \gamma_{\iota} \right\} \right).
\] (27)

Now we consider the second and third terms in (24) i.e. where an even number of \(\gamma_{\chi} \) is present.
\[
Tr \left(\left\{ \gamma_{\mu}, \gamma_{\chi} \right\} \gamma_{\alpha} \gamma_{\rho} \gamma_{\beta} \gamma_{\sigma} \gamma_{\chi} \gamma_{\iota} \right) + Tr \left(\left\{ \gamma_{\mu}, \gamma_{\chi} \right\} \gamma_{\alpha} \gamma_{\rho} \gamma_{\chi} \gamma_{\beta} \gamma_{\sigma} \gamma_{\iota} \right) \\
= Tr \left(\left\{ \gamma_{\mu}, \gamma_{\rho} \right\} \gamma_{\chi} \gamma_{\beta} \gamma_{\sigma} \gamma_{\chi} \gamma_{\iota} \right) = 0
\] (28)
according to the arguments of Section 2.

The same analysis has to be performed on the gamma content of the second term in (22) which should match the first (22) or of (19)
\[
Tr \left(\left\{ \gamma_{\chi}, \gamma_{\rho} \right\} \left(1 + \gamma_{\chi}\right) \gamma_{\beta} \gamma_{\sigma} \left(1 + \gamma_{\chi}\right) \gamma_{\iota} \right) = Tr \left(\left\{ \gamma_{\chi}, \gamma_{\rho} \right\} \gamma_{\beta} \gamma_{\sigma} \gamma_{\chi} \gamma_{\iota} \right) \\
+ Tr \left(\left\{ \gamma_{\chi, \rho} \gamma_{\rho} \gamma_{\beta} \gamma_{\sigma} \gamma_{\chi} \gamma_{\iota} \right\} \\
+ Tr \left(\left\{ \gamma_{\chi}, \gamma_{\rho} \right\} \gamma_{\rho} \gamma_{\beta} \gamma_{\sigma} \gamma_{\chi} \gamma_{\iota} \right) \\
+ Tr \left(\left\{ \gamma_{\chi}, \gamma_{\rho} \right\} \gamma_{\chi} \gamma_{\beta} \gamma_{\sigma} \gamma_{\chi} \gamma_{\iota} \right)
\] (29)
We elaborate on the single terms as for (24)
\[
= Tr \left(\gamma_{\chi} \left\{ \gamma_{\rho}, \gamma_{\beta} \gamma_{\sigma} \gamma_{\iota} \right\} \right) \\
+ Tr \left(\left\{ \gamma_{\rho}, \gamma_{\chi} \right\} \gamma_{\beta} \gamma_{\sigma} \gamma_{\chi} \gamma_{\iota} \right) \\
+ Tr \left(\left\{ \gamma_{\chi}, \gamma_{\rho} \right\} \gamma_{\chi} \gamma_{\beta} \gamma_{\sigma} \gamma_{\chi} \gamma_{\iota} \right)
\] (30)
where now all terms are zero for \(D \sim 4 \).

Finally the only surviving of the gamma’s algebra is the term in the RHS of (27)
\[
i \left(\gamma_{\mu} + \gamma_{\rho} \right) \left(T_{\mu \rho \sigma} \left(k, p \right) + T_{\mu \sigma \rho} \left(p, k \right) \right) = \frac{1}{4} \int \frac{d^{D}q}{(2\pi)^{D}} \\
\times \left\{ 2 Tr \left(\left\{ \gamma_{\mu}, \gamma_{\rho} \gamma_{\beta} \gamma_{\sigma} \gamma_{\chi} \gamma_{\iota} \right\} \right) \left(q - k \right)_{\mu} \left(q - k \right)_{\alpha} q_{\beta} \left(q + p \right)_{i} \right. \\
\left. + \left(k \leftrightarrow p \right) \left(\rho \leftrightarrow \sigma \right) \right\}.
\] (31)

3.2 Symmetric Integration

We use Feynman parameterization in order to perform a symmetric integration over \(q \)
\[
i \left(\gamma_{\mu} + \gamma_{\rho} \right) \left(T_{\mu \rho \sigma} \left(k, p \right) + T_{\mu \sigma \rho} \left(p, k \right) \right) = \frac{1}{4} \int_{0}^{1} \frac{d^{D}q}{(2\pi)^{D}} \\
\times \left\{ 2 Tr \left(\left\{ \gamma_{\mu}, \gamma_{\rho} \gamma_{\beta} \gamma_{\sigma} \gamma_{\chi} \gamma_{\iota} \right\} \right) \left(q + r - k \right)_{\mu} \left(q + r - k \right)_{\alpha} q_{\beta} \left(q + r \right)_{\rho} \left(q + r \right)_{\sigma} \left(q + r \right)_{i} \right. \\
\left. + \left(k \leftrightarrow p \right) \left(\rho \leftrightarrow \sigma \right) \right\}.
\] (32)
with
\[r_v \equiv (y_k - x p + y p)_v. \] (33)

We keep only those terms that survive in the limit \(D = 4 \)

\[
i (p + k)_\mu (T_{\mu \rho \sigma}(k, p) + T_{\mu \sigma \rho}(p, k)) = \frac{1}{4D^2} \int_0^1 dx \int_0^x dy \int \frac{d^D q}{(2\pi)^D} \frac{q^2}{(q^2 - \Delta)^3} \times \left\{ 4Tr \gamma_x \left[\left(\delta_{\mu \alpha} \gamma_\rho \gamma_\sigma \gamma_\lambda - \delta_{\mu \rho} \gamma_\alpha \gamma_\sigma \gamma_\lambda + \delta_{\mu \sigma} \gamma_\alpha \gamma_\rho \gamma_\lambda \right) - \delta_{\mu \alpha} \gamma_\rho \gamma_\beta \gamma_\lambda + \delta_{\mu \beta} \gamma_\rho \gamma_\sigma \gamma_\lambda \right] \right. \\
\left. \left(\delta_{\mu \alpha} r_\beta (r + p)_\lambda + \delta_{\mu \beta} (r - k)_\alpha (r + p)_\lambda + \delta_{\mu \lambda} (r - k)_\alpha r_\beta \right) \\
+ (k \leftrightarrow p)(\rho \leftrightarrow \sigma) \right\} = \frac{1}{4D^2} \int_0^1 dx \int_0^x dy \int \frac{d^D q}{(2\pi)^D} \frac{q^2}{(q^2 - \Delta)^3} \left(D - 4 \right) \times \left(D - 4 \right) \right. \\
\left. \times Tr \left(\gamma_x \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\lambda \right) \left(r_\beta p_\lambda - (r - k)_\beta (r + p)_\lambda - k_\beta r_\lambda \right) \\
+ (k \leftrightarrow p)(\rho \leftrightarrow \sigma) = \frac{1}{D} \int_0^1 dx \int_0^x dy \int \frac{d^D q}{(2\pi)^D} \frac{q^2}{(q^2 - \Delta)^3} \left(D - 4 \right) \times \left(D - 4 \right) \right. \\
\left. \times Tr \left(\gamma_x \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\lambda \right) k_\beta p_\lambda + (k \leftrightarrow p)(\rho \leftrightarrow \sigma) \right\} = \frac{2}{D} \int \frac{d^D q}{(2\pi)^D} \frac{q^2}{(q^2 - \Delta)^3} \left(D - 4 \right) Tr \left(\gamma_x \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\lambda \right) k_\beta p_\lambda. \] (34)

where the dependence of \(\Delta \) from \(x, y \) has been neglected due to the vanishing factor \(D - 4 \).

3.3 The Triangle Anomaly

The expression in (34) provides the anomaly in presence of two external vector mesons. Only the pole part of the integral provides a non vanishing result

\[
i (p + k)_\mu (T_{\mu \rho \sigma}(k, p) + T_{\mu \sigma \rho}(p, k)) = \frac{2}{D} \left(- \frac{i}{(4\pi)^2} \right) \frac{2}{D - 4} \left(D - 4 \right) Tr \left(\gamma_x \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\lambda \right) k_\beta p_\lambda = - \left(\frac{i}{(4\pi)^2} \right) Tr \left(\gamma_x \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\lambda \right) k_\beta p_\lambda. \] (35)

Finally we add the group factor from (18)

\[
i (p + k)_\mu (T^{ab}_{\mu \rho \sigma}(k, p) + T^{ab}_{\mu \sigma \rho}(p, k)) = - \frac{1}{2} \delta_{ab} \left(\frac{i}{(4\pi)^2} \right) Tr \left(\gamma_x \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\lambda \right) k_\beta p_\lambda. \] (36)
In terms of fields this is

\[\partial_\mu J^5_\mu = -\frac{1}{4} \left(\frac{i}{(4\pi)^2} \right) Tr \left(\gamma_\chi \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \right) \partial_\beta A_\rho^a \partial_\iota A_\sigma^a \]

\[= -\frac{1}{2} \left(\frac{i}{(4\pi)^2} \right) Tr \left(\gamma_\chi \gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\iota \right) Tr \left(\partial_\beta A_\rho A_\iota A_\sigma \right) \tag{37} \]

which is in agreement with the result in I.

4 One-loop Box Contribution

The amplitude for the box diagram (by neglecting the group factors) is given by the Feynman rules $-i^4 \frac{i^3}{23}$ (four propagators, three vertices and a – due to the fermion loop)

\[T_{\mu \rho \sigma \nu}^{\text{Box}}(k, p, l) = \frac{i}{23} \int \frac{d^D q}{(2\pi)^D} Tr \left(\gamma_\mu \gamma_\nu q_\alpha \gamma_\alpha \gamma_\rho (1 + \gamma_\chi) (q + k)_\beta \gamma_\beta \right. \]

\[\times \gamma_\sigma (1 + \gamma_\chi) (q + k + p)_\iota \gamma_\iota (1 + \gamma_\chi) (q + k + p + l)_\delta \gamma_\delta \]

\[\left. \times [q^2 (q + k)^2 (q + k + p)^2 (q + k + p + l)^2]^{-1} \right) \tag{38} \]

where incoming momenta and polarizations are (k, ρ), (p, σ) and (l, ν).

4.1 One-loop Box Contribution: the Divergence of the Current

We include also the group factor $Tr(t_a t_b t_c) = i^4 \frac{i^3}{23}$. Thus the divergence of the current at one loop is

\[i(p + k + l)_\mu T_{\mu \rho \sigma \nu}^{\text{Box Div}}(k, p, l) \frac{i}{4} \epsilon_{abc} \]

\[= -i \frac{\epsilon_{abc}}{25} \int \frac{d^D q}{(2\pi)^D} (p + k + l)_\mu Tr \left(\gamma_\mu \gamma_\chi q_\alpha \gamma_\alpha \right. \]

\[\times \gamma_\rho (1 + \gamma_\chi) (q + k)_\beta \gamma_\beta \gamma_\sigma (1 + \gamma_\chi) (q + k + p)_\iota \gamma_\iota (1 + \gamma_\chi) \]

\[\left. \times (q + k + p + l)_\delta \gamma_\delta \right) \times [q^2 (q + k)^2 (q + k + p)^2 (q + k + p + l)^2]^{-1} \]

\[= -i \frac{\epsilon_{abc}}{25} \int \frac{d^D q}{(2\pi)^D} \left\{ \right. \]

\[-Tr \left(\gamma_\mu \gamma_\nu \gamma_\rho q_\alpha \gamma_\alpha \gamma_\chi (1 + \gamma_\chi) (q + k)_\beta \gamma_\beta \gamma_\sigma (1 + \gamma_\chi) (q + k + p)_\iota \gamma_\iota \gamma_\nu \right. \]

\[\times (1 + \gamma_\chi) (q + k + p + l)_\delta \gamma_\delta \left) \times [q^2 (q + k)^2 (q + k + p)^2 (q + k + p + l)^2]^{-1} \right. \]

\[+Tr \left(\gamma_\chi \gamma_\rho q_\alpha \gamma_\alpha \gamma_\chi (1 + \gamma_\chi) (q + k)_\beta \gamma_\beta \gamma_\sigma (1 + \gamma_\chi) \right. \]

\[\times (q + k + p)_\iota \gamma_\iota \gamma_\nu (1 + \gamma_\chi) \left) \times [q^2 (q + k)^2 (q + k + p)^2]^{-1} \right) \right\} \tag{39} \]

The sum over the permutations of $(a, \rho, k), (b, \sigma, p)$ and (c, ι, l) is understood.
4.2 Identities at $D = 4$

It is convenient to disclose the identities that would be satisfied in a situation where D can be taken equal to 4. Thus we consider the first integral of the RHS where we identify the part responsible for the anomaly (i.e. $\{\gamma_\mu, \gamma_\chi\}$) of (39)

$$
- \frac{i}{25} \varepsilon_{abc} \int \frac{d^D q}{(2\pi)^D} - Tr \left(\left(\{\gamma_\mu, \gamma_\chi\} - \gamma_\chi \gamma_\mu \right) q_\mu q_\alpha \gamma_\alpha (1 + \gamma_\chi) (q + k) \beta \gamma_\beta \times \gamma_\sigma (1 + \gamma_\chi)(q + k + p) \gamma_\chi \gamma_\nu (1 + \gamma_\chi)(q + k + p + l) \delta \gamma_\delta \right) \\
\times [q^2(q + k)^2(q + k + p)^2(q + k + p + l)^2]^{-1}
$$

(40)

The non anomalous part ($-\gamma_\chi \gamma_\mu$) should contribute to the cancellations in the divergence of the isoscalar axial current. We elaborate this quantity by replacing $q \rightarrow q - k$

$$
- \frac{i}{25} \varepsilon_{abc} \int \frac{d^D q}{(2\pi)^D} Tr \left(\gamma_\chi \gamma_\rho (1 + \gamma_\chi) q_\beta \gamma_\beta \gamma_\sigma (1 + \gamma_\chi) \gamma_\nu (1 + \gamma_\chi)(q + p) \delta \gamma_\delta \right) \\
\times (q + p) \gamma_\chi \gamma_\nu (1 + \gamma_\chi)(q + p + l) \delta \gamma_\delta [((q + p)^2(q + p + l)^2q^2]^{-1}
$$

(41)

We add the expression in (41) to the second term in (39) on which we perform the cyclic permutation $(a, \rho, k) \rightarrow (b, \sigma, p) \rightarrow (c, \nu, l) \rightarrow (a, \rho, k)$. The result of this sum is

$$
- \frac{i}{25} \varepsilon_{abc} \int \frac{d^D q}{(2\pi)^D} \left\{ Tr \left(\gamma_\chi \gamma_\rho (1 + \gamma_\chi) q_\beta \gamma_\beta \gamma_\sigma (1 + \gamma_\chi) \gamma_\nu (1 + \gamma_\chi)(q + p + l) \delta \gamma_\delta \right) \\
+ Tr \left(\gamma_\chi q_\beta \gamma_\beta \gamma_\sigma (1 + \gamma_\chi)(q + p) \gamma_\chi \gamma_\nu (1 + \gamma_\chi) \gamma_\nu (1 + \gamma_\chi) \gamma_\nu (1 + \gamma_\chi)(q + p + l) \delta \gamma_\delta \right) \right\} [((q + p)^2(q + p + l)^2q^2]^{-1}
$$

$$
= - \frac{i}{25} \varepsilon_{abc} \int \frac{d^D q}{(2\pi)^D} \left\{ Tr \left(\gamma_\chi \gamma_\rho (1 + \gamma_\chi) q_\beta \gamma_\beta \gamma_\sigma (1 + \gamma_\chi) \gamma_\nu (1 + \gamma_\chi)(q + p + l) \delta \gamma_\delta \right) \\
(q + p) \gamma_\nu (1 + \gamma_\chi)(q + p + l) \delta \gamma_\delta [((q + p)^2(q + p + l)^2q^2]^{-1}
$$

(42)

We see that the expression in (42) is vanishing if $\{\gamma_\chi, \gamma_\rho\} = 0$.

The same result can be obtained for all terms generated from (39) by using the permutations on the external variables $(a, \rho, k), (b, \sigma, p)$ and (c, ν, l).

4.3 The Box Anomaly

From the previous calculation we get the final result for the anomaly coming from the box. It is given by the sum over all permutations on the external vector mesons of the term proportional to $\{\gamma_\mu, \gamma_\chi\}$ in (40) and of the expression in (42)

$$
- \frac{i}{25} \varepsilon_{abc} \int \frac{d^D q}{(2\pi)^D} \left\{ - Tr \left(\{\gamma_\mu, \gamma_\chi\} q_\mu q_\alpha \gamma_\alpha (1 + \gamma_\chi) (q + k) \beta \gamma_\beta \times \gamma_\sigma (1 + \gamma_\chi)(q + k + p) \gamma_\chi \gamma_\nu (1 + \gamma_\chi)(q + k + p + l) \delta \gamma_\delta \right) \\
\times [q^2(q + k)^2(q + k + p)^2(q + k + p + l)^2]^{-1} + Tr \left(\{\gamma_\chi, \gamma_\rho\} (1 + \gamma_\chi) q_\beta \gamma_\beta \gamma_\sigma (1 + \gamma_\chi) \gamma_\nu (1 + \gamma_\chi)(q + p + l) \delta \gamma_\delta \right) \right\}.
$$

(43)
4.4 The First Term in Eq. (43)

Let us consider the first term in (43). Since \(\{\gamma_\mu, \gamma_\chi\} = \mathcal{O}(D - 4)\) the gamma trace reduces to

\[
Tr \left(\{\gamma_\mu, \gamma_\chi\}\gamma_\alpha\gamma_\rho(1 + \gamma_\chi)\gamma_\sigma (1 + \gamma_\chi)\gamma_\nu(1 + \gamma_\chi)\gamma_\delta\right)
= 4Tr \left(\{\gamma_\mu, \gamma_\chi\}\gamma_\alpha\gamma_\rho\gamma_\beta \gamma_\sigma \gamma_\nu\gamma_\delta(1 + \gamma_\chi)\right).
\]

(44)

Let us focus now on the momentum integration. Only the divergent part of the \(q\)-integral can yield a non-zero result; i.e. the 4-th powers of \(q\) in the numerator. After Feynman parameterization, shift by \(q_\mu \rightarrow q_\mu + r_\mu\) and symmetric integration we get

\[
q_\mu q_\alpha q_\beta q_i \rightarrow \frac{q^4}{D(D + 2)} \left[\delta_{\mu\alpha}\delta_{\beta\iota} + \delta_{\mu\iota}\delta_{\beta\alpha} + \delta_{\mu\beta}\delta_{\alpha\iota}\right].
\]

(45)

Thus we can neglect the second \(\gamma_\chi\) at the far right in (44) and the numerator of the first term in (43) after symmetric integration becomes

\[
- Tr \left(\{\gamma_\mu, \gamma_\chi\}\gamma_\alpha\gamma_\beta(1 + \gamma_\chi)(q + k)\beta \gamma_\beta \gamma_\sigma (1 + \gamma_\chi)(q + k + p + l)\delta \gamma_\delta\right)
\]

\[
= - \frac{q^4}{D(D + 2)} 4Tr \left(\gamma_\chi \{\gamma_\mu, \gamma_\alpha\gamma_\rho\gamma_\beta \gamma_\sigma \gamma_\nu\gamma_\delta\}\right)
\]

\[
= - \frac{q^4}{D(D + 2)} 4Tr \left(\gamma_\chi \{\gamma_\mu, \gamma_\alpha\gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\nu\gamma_\delta\}\right)
\]

\[
\times \left[\delta_{\mu\alpha}\delta_{\beta\iota} + \delta_{\mu\iota}\delta_{\beta\alpha} + \delta_{\mu\beta}\delta_{\alpha\iota}\right](r + k + p + l)\delta
\]

\[
+ \left[\delta_{\mu\alpha}\delta_{\beta\iota} + \delta_{\mu\iota}\delta_{\beta\alpha} + \delta_{\mu\beta}\delta_{\alpha\iota}\right](r + k + p)\iota
\]

\[
+ \left[\delta_{\mu\beta}\delta_{\alpha\iota} + \delta_{\mu\iota}\delta_{\beta\alpha} + \delta_{\mu\alpha}\delta_{\iota\beta}\right]r_\alpha
\]

\[
+ \left[\delta_{\alpha\beta}\delta_{\iota\delta} + \delta_{\alpha\delta}\delta_{\beta\iota} + \delta_{\alpha\iota}\delta_{\beta\delta}\right]r_\mu
\]

(46)

We neglect the last line of (46) since, after the use of the Kronecker delta, too few gamma’s are left for a non-zero limit of \(D = 4\). Thus we have

\[
- Tr \left(\{\gamma_\mu, \gamma_\chi\}\gamma_\alpha\gamma_\beta(1 + \gamma_\chi)(q + k)\beta \gamma_\beta \gamma_\sigma (1 + \gamma_\chi)(q + k + p + l)\delta \gamma_\delta\right)
\]

\[
= - \frac{q^4}{D(D + 2)} 4Tr \left(\gamma_\chi \{\gamma_\mu, \gamma_\alpha\gamma_\rho \gamma_\beta \gamma_\sigma \gamma_\nu\gamma_\delta\}\right)
\]

\[
+ (6 - D)\gamma_\rho \gamma_\mu \gamma_\sigma \gamma_\nu \gamma_\iota (r + k + p + l)\iota
\]

\[
+ \left[(6 - D)\gamma_\mu \gamma_\nu \gamma_\iota \gamma_\chi \gamma_\sigma + (2 - D)\gamma_\rho \gamma_\sigma \gamma_\nu \gamma_\iota \gamma_\mu\right]
\]

\[
+ (10 - D)\gamma_\rho \gamma_\mu \gamma_\sigma \gamma_\nu \gamma_\iota \gamma_\chi
\]

\[
+ \left[(2 - D)\gamma_\mu \gamma_\nu \gamma_\iota \gamma_\chi \gamma_\sigma \gamma_\nu \gamma_\iota \gamma_\mu\right]
\]

\[
+ (10 - D)\gamma_\rho \gamma_\mu \gamma_\sigma \gamma_\nu \gamma_\iota \gamma_\chi
\]

\[
+ \left[(2 - D)\gamma_\iota \gamma_\mu \gamma_\rho \gamma_\sigma \gamma_\nu \gamma_\chi \gamma_\nu \gamma_\mu\right]
\]

\[
+ (6 - D)\gamma_\iota \gamma_\rho \gamma_\sigma \gamma_\mu \gamma_\nu \gamma_\iota \gamma_\nu \gamma_\mu
\]

\[
+ (6 - D)\gamma_\iota \gamma_\rho \gamma_\sigma \gamma_\mu \gamma_\nu \gamma_\iota \gamma_\nu \gamma_\mu
\]

\[
+ (6 - D)\gamma_\iota \gamma_\rho \gamma_\sigma \gamma_\mu \gamma_\nu \gamma_\iota \gamma_\nu \gamma_\mu
\]

\[
+ (6 - D)\gamma_\iota \gamma_\rho \gamma_\sigma \gamma_\mu \gamma_\nu \gamma_\iota \gamma_\nu \gamma_\mu
\]

\[
+ (6 - D)\gamma_\iota \gamma_\rho \gamma_\sigma \gamma_\mu \gamma_\nu \gamma_\iota \gamma_\nu \gamma_\mu
\]
\[= -2(D - 4) \frac{q^4}{D(D + 2)} 4Tr (\gamma_x \gamma_\rho \gamma_\sigma \gamma_\nu \gamma_\iota) \times \left([(2 - D) + (2 - D) - (6 - D)] (r + k + p + l)_i \right. \\
\left. + [-(6 - D) - (2 - D) + (10 - D)] (r + k)_i \right. \\
\left. + [(2 - D) + (6 - D) - (10 - D)] (r + k)_i \right) \\
\left. - [(2 - D) + (2 - D) - (6 - D)] r_i \right) \\
\] \[= -2(D - 4)(D + 2) \frac{q^4}{D(D + 2)} 4Tr (\gamma_x \gamma_\rho \gamma_\sigma \gamma_\nu \gamma_\iota) \times \left(-(r + k + p + l) + (r + k + p) - (r + k)_i + r_i \right) \\
\] \[= 8(D - 4) \frac{q^4}{D} Tr (\gamma_x \gamma_\rho \gamma_\sigma \gamma_\nu \gamma_\iota) (k + l)_i \quad (47) \]

4.5 The Second Term in (43)

The second term in (43) has also to be evaluated in the process of symmetric integration over \(q \) after the shift

\[q_{\mu} \rightarrow q_{\mu} + r_{\mu}. \quad (48) \]

Thus we have

\[q_{\mu} q_{\nu} \rightarrow \frac{q^2}{D} \delta_{\mu \nu}. \quad (49) \]

We have

\[Tr \left((\gamma_x, \gamma_\rho) (1 + \gamma_x) q_{\beta} \gamma_\beta \gamma_\sigma (1 + \gamma_x) (q + p)_i \gamma_\iota \gamma_\nu (1 + \gamma_x) (q + p + l) \delta \gamma_8 \right) \]
\[= 4Tr \left((\gamma_x, \gamma_\rho) \gamma_\beta \gamma_\sigma \gamma_\iota \gamma_\nu (1 + \gamma_x) \gamma_8 \right) \left[(q + r)_\beta (q + r + p)_i (q + r + p + l)_\delta \right] \quad (50) \]

After symmetric integration the second \(\gamma_x \) in the RHS of (50) can be neglected by following the argument in Section 2

\[Tr \left((\gamma_x, \gamma_\rho) (1 + \gamma_x) q_{\beta} \gamma_\beta \gamma_\sigma (1 + \gamma_x) (q + p)_i \gamma_\iota \gamma_\nu (1 + \gamma_x) (q + p + l) \delta \gamma_8 \right) \]
\[= 4 \frac{q^2}{D} Tr \left(\gamma_x \gamma_\iota \gamma_\nu \gamma_8 \right) \left[(q + r + p + l)_\delta + \delta \delta r_\beta + \delta \beta_\delta (r + p)_i \right] \quad (51) \]

We evaluate the Kronecker delta’s

\[Tr \left((\gamma_x, \gamma_\rho) (1 + \gamma_x) q_{\beta} \gamma_\beta \gamma_\sigma (1 + \gamma_x) (q + p)_i \gamma_\iota \gamma_\nu (1 + \gamma_x) (q + p + l) \delta \gamma_8 \right) \]
\[= 4 \frac{q^2}{D} Tr \left(\gamma_x \gamma_\iota \gamma_\nu \gamma_8 (r + p + l)_\delta + (2 - D) \gamma_\iota \gamma_\nu (r + p)_i \right) \quad (52) \]

around \(D = 4 \).
5 Anomaly from the Box

By restoring the initial factor of (43) the anomaly in the current conservation is

\[-i \varepsilon_{abc} \int \frac{d^Dq}{(2\pi)^D} \left\{ 8(D - 4) \frac{q^4}{D} Tr \left(\gamma_\chi \gamma_\rho \gamma_\sigma \gamma_\nu \gamma_\iota \right) (k + l)_i \right\} (q^2 - \Delta)^{-4} \]

\[= -i \varepsilon_{abc} \left(\frac{i}{(4\pi)^2} \right) \frac{2}{D - 4} 8(D - 4) Tr \left(\gamma_\chi \gamma_\rho \gamma_\sigma \gamma_\nu \gamma_\iota \right) (k + l)_i \]

\[= \frac{\varepsilon_{abc}}{2D} \left(\frac{1}{(4\pi)^2} \right) Tr \left(\gamma_\chi \gamma_\rho \gamma_\sigma \gamma_\nu \gamma_\iota \right) (k + l)_i. \]

The sum over the permutations at \((D = 4)\) gives

\[\varepsilon_{abc} \left(\frac{1}{(4\pi)^2} \right) \frac{2}{D} Tr \left(\gamma_\chi \gamma_\rho \gamma_\sigma \gamma_\nu \gamma_\iota \right) (k + p + l)_i. \]

In terms of fields we have

\[\partial_\mu J^5_\mu = \left(\frac{1}{(4\pi)^2} \right) \frac{1}{D} Tr \left(\gamma_\chi \gamma_\rho \gamma_\sigma \gamma_\nu \gamma_\iota \right) (-4i) tr \left(i\partial_\iota A_\rho A_\sigma A_\nu \right) \]

\[= \left(\frac{1}{(4\pi)^2} \right) Tr \left(\gamma_\chi \gamma_\rho \gamma_\sigma \gamma_\nu \gamma_\iota \right) tr \left(\partial_\iota A_\rho A_\sigma A_\nu \right) \]

where \(tr\) is the trace over the \(SU(2)\) internal indices.

Together (37) and (55) give the anomaly in the covariant form

\[\partial_\mu J^5_\mu = \left(\frac{1}{(4\pi)^2} \right) \frac{i}{8} Tr \left(\gamma_\chi \gamma_\rho \gamma_\nu \gamma_\iota \gamma_\sigma \gamma_\rho G_{\rho\sigma} \right) \]

where

\[G_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + i[A_\mu, A_\nu]. \]

6 Conclusions

The present analytic calculation of the anomaly of the axial isoscalar current in the \(SU(2)\) chiral theory indicates that a consistent definition of the trace with \(\gamma_5\) in dimensional regularization is at hand.

In this work we used the ingredients expected to be present in a consistent solution of the problem: associative algebra for the gamma’s, Lorentz covariance, cyclicity, smooth limit at \(D = 4\)

\[Tr(p) = \sum_{h=0} A_h(p)(D - 4)^h. \]

\(Tr(p)\) is any trace of gamma’s and \(\gamma_\chi\), where the Lorentz indices are all saturated by vectors and \(A_h(p)\) are \(D = 4\) Lorentz invariants (being \(\varepsilon_{\alpha\beta\rho\sigma}\) allowed).

The outlook is the extension of the integral representation of the trace, discussed in a previous paper (I), to the situation where more than one \(\gamma_5\) is present.

Acknowledgments We gratefully acknowledge the warm hospitality of the Department of Physics of the University of Pisa and of the INFN, Sezione di Pisa. We are thankful to Peter Breitenlohner and to Mario Raciti for stimulating discussions.
References

1. Ferrari, R.: Managing γ_5 in Dimensional Regularization and ABJ Anomaly. arXiv:1403.4212[hep-th]
2. ’t Hooft, G., Veltman, M.J.G.: Regularization And Renormalization Of Gauge Fields. Nucl. Phys. B 44, 189 (1972)
3. Bollini, C.G., Giambiagi, J.J.: Dimensional Renormalization: The Number Of Dimensions As A Regularizing. Nuovo Cim. B 12, 20 (1972)
4. Cicuta, G.M., Montaldi, E.: Analytic Renormalization Via Continuous Space Dimension. Lett. Nuovo Cim. 4, 329 (1972)
5. Rosenberg, L.: Electromagnetic interactions of neutrinos. Phys. Rev. 129, 2786 (1963)
6. Breitenlohner, P., Maison, D.: Dimensional Renormalization And The Action Principle. Commun. Math. Phys. 52, 11 (1977)
7. Chanowitz, M.S., Furman, M., Hincliflle, I.: The Axial Current in Dimensional Regularization. Nucl. Phys. B 159, 225 (1979)
8. Bonneau, G.: Consistency in Dimensional Regularization With γ_5. Phys. Lett. B 96, 147 (1980)
9. Bonneau, G.: Preserving Canonical Ward Identities in Dimensional Regularization With a Nonanticommuting γ_5. Nucl. Phys. B 177, 523 (1981)
10. Jones, D.R.T., Leveille, J.P.: Dimensional Regularization and the Two Loop Axial Anomaly in Abelian, Nonabelian and Supersymmetric Gauge Theories. Nucl. Phys. B 206, 473 (1982)
11. Jones, D.R.T., Leveille, J.P.: Erratum. Nucl. Phys. B 222, 517 (1983)
12. Elias, V., McKeon, G., Mann, R.B.: Vva Triangle Graph Ambiguities in Four-dimensions and N-dimensions. Nucl. Phys. B 229, 487 (1983)
13. Thompson, G., Yu, H.L.: Gamma(5) In Dimensional Regularization. Phys. Lett. B 151, 119 (1985)
14. Abdelhafiz, M.I., Zralek, M.: The $\gamma(5)$ and Dimensional Regularization. Acta Phys. Polon. B 18, 21 (1987)
15. Yu, H.-L., Yeung, W.B.: Dimensional Regularization And The Gamma (5) Axial Anomaly. Phys. Rev. D 35, 3955 (1987)
16. Schubert, C.: The Yukawa Model as an Example For Dimensional Renormalization With γ (5). Nucl. Phys. B 323, 478 (1989)
17. An, I., Song, H.-S.: One way to solve the puzzle of gamma(5) in the dimensional regularization. Commun. Theor. Phys. 12, 201 (1989)
18. Baikov, P.A., Ilyin, V.A.: The Modification of the standard dimensional regularizarion rules removing spurious gamma(5) anomalies, MGU-90-49-195
19. Korner, J.G., Kreimer, D., Schilcher, K.: A Practicable gamma(5) scheme in dimensional regularization. Z. Phys. C 54, 503 (1992)
20. Baikov, P.A., Ilyin, V.A.: Status of gamma(5) in dimensional regularization. Theor. Math. Phys. 88, 789 (1991)
21. Baikov, P.A., Ilyin, V.A.: Status of gamma(5) in dimensional regularization. Teor. Mat. Fiz. 88, 163 (1991)
22. Kucheryavyy, V.I.: Dimensional regularization with natural n-dimensional analog of the gamma(5) Dirac matrix and its algorithmic applications. ITF-92-66-E
23. Schubert, C.: On the gamma(5) problem of dimensional renormalization, HD-THEP-93-46
24. Gabadadze, G.T., Pivovarov, A.A.: Gamma(5) anomaly: some approaches in dimensional regularization. In: Oberammergau 1993, New computing techniques in physics research III*, pp. 491-497
25. Kreimer, D.: The Role of gamma(5) in dimensional regularization, hep-ph/9401354
26. Ferrari, R., Le Yuouanc, A., Oliver, L., Raynal, J.C.: Gauge invariance and dimensional regularization with gamma(5) in flavor changing neutral processes. Phys. Rev. D 52, 3036 (1995)
27. Baikov, P.A., Ilyin, V.A., Slavnov, D.A.: A Modification of the standard dimensional regularization rules removing spurious gamma 5 anomalies, pp. 175–180
28. Martin, C.P., Sanchez-Ruiz, D.: Action principles, restoration of BRS symmetry and the renormalization group equation for chiral nonAbelian gauge theories in dimensional renormalization with a nonanticommuting gamma(5). Nucl. Phys. B 572, 387 (2000). [hep-th/9905076]
29. Sanchez-Ruiz, D.: BRS symmetry restoration of chiral Abelian Higgs-Kibble theory in dimensional renormalization with a nonanticommuting gamma(5). Phys. Rev. D 68, 025009 (2003). [hep-th/0209023]
30. Tsai, E.-C.: Gauge Invariant Treatment of γ_5 in the Scheme of ’t Hooft and Veltman. Phys. Rev. D 83, 025020 (2011). arXiv:0905.1550 [hep-th]
31. Tsai, E.-C.: The Advantage of Rightmost Ordering for gamma(5) in Dimensional Regularization. arXiv:0905.1479[hep-th]
32. Adler, S.L.: Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426 (1969)
33. Bell, J.S., Jackiw, R.: A PCAC puzzle: $\pi_0 \rightarrow \gamma \gamma$ in the sigma model. Nuovo Cim. A 60, 47 (1969)
34. Adler, S.L., Bardeen, W.A.: Absence of higher order corrections in the anomalous axial vector divergence equation. Phys. Rev. 182, 1517 (1969)
35. Bardeen, W.A.: Anomalous Ward identities in spinor field theories. Phys. Rev. 184, 1848 (1969)
36. Ferrari, R.: Endowing the nonlinear sigma model with a flat connection structure: A way to renormalization. JHEP 0508, 048 (2005). arXiv:0504023
37. Ferrari, R., Quadri, A.: A weak power-counting theorem for the renormalization of the non-linear sigma model in four dimensions. Int. J. Theor. Phys. 45, 2497 (2006). arXiv:0506220
38. Bettinelli, D., Ferrari, R., Quadri, A.: Further comments on the renormalization of the nonlinear sigma model. Int. J. Mod. Phys. A 23, 211 (2008). arXiv:0701197
39. Bettinelli, D., Ferrari, R., Quadri, A.: Path-integral over non-linearly realized groups and hierarchy solutions. JHEP 0703, 065 (2007). arXiv:0701212