Introduction

Hypernatremia in adults is a common problem that has been associated with mortality rates ranging from 40% to 60%. Most studies of this condition have focused on its occurrence in the geriatric population. An increased incidence of hypernatremia in mentally handicapped patients has also been reported.

However, the epidemiologic factors and pathogenesis of hypernatremia in the general hospitalized population have not been well defined. We did a study to determine differences in clinical characteristics between patients who presented with hypernatremia on admission with those who developed it during the hospital course. Particular attention was paid to look for the influence on prognosis by the rate of correction.
Materials and Methods

We retrospectively studied all adults (≥16 years of age) with hypernatremia at Hanyang University Guri Hospital for 51-month period from 1 March 2001 to 31 May 2005. The definition of hypernatremia is arbitrary but Ross and Christie\(^6\) suggested that most authors define hypernatremia as serum sodium concentration of ≥150 mmol/L and this has been used in this study. The duration and resolution of hypernatremia were determined on the basis of an upper limit of normal of 145 mmol/L.

Patients with hypernatremia were identified from the records of the clinical pathology laboratory, and subsequently their case notes were examined for clinical details, i.e., diagnosis, etiology, duration of hospitalization, treatment and outcome.

Table 1. Demographic Characteristics of Patients

Hypernatremia on admission (n=19)	Hypernatremia during hospital stay (n=31)	
Number of patients (%)	19 (38%)	31 (62%)*
Male : Female	12:7	17:14
Mean age (years)	73.1±11.7	59.3±13.7*
Peak serum sodium (mEq/L)	165.2±9.7	160.8±7.8
Duration of hypernatremia (days)	4.0±3.0	4.8±3.6
Hypertension (%)	10 (52%)	15 (48%)
Diabetes mellitus (%)	12 (63%)	18 (58%)

Data are presented as mean±SD

*p<0.05

Table 2. Underlying Conditions of Hypernatremic Patients (n=50)

Hypernatremia on admission (n=19)	Hypernatremia during hospital stay (n=31)	Total (%)	
Cerebrovascular event	8	21	29 (58)
Infection	4	1	5 (10)
Hepatic failure	0	4	4 (8)
Pulmonary disease	2	1	3 (6)
Hyperosmolar coma	3	0	3 (6)
Gastrointestinal disease	1	2	3 (6)
Cardiovascular disease	0	1	1 (2)
Others*	1	1	2 (4)

*Drug intoxication 1, Depression 1

Particular attention was paid to the physical examination for signs and symptoms of dehydration. Details of the neurological examination and mental status of each patient were also recorded. The amount and type of parenteral fluids prescribed as well as details of all medications were examined.

Data were analyzed by either a two tailed independent Student t-test or a Chi-square test using SPSS 11.0. A p value of less than 0.05 was considered statistically significant.

Results

A serum sodium concentration greater than or equal to 150 mmol/L was reported in 50 patients during the 51-month period of 1 March 2001 through 31 May 2005. Demographic data for the patients are shown in Table 1. Hospital-acquired hypernatremia (62%, n=31) was observed more frequently than hypernatremia on admission (38%, n=19). Patients who developed hypernatremia before admission were significantly older than those during hospital stay (mean age±SD, 73.1±11.7 years compared with 59.3±13.7 years: p<0.05).

The underlying conditions that were associated with hypernatremia are shown in Table 2. Twenty nine (58%) of patients had neurologic problem. Mental status of patients was recorded in Fig. 1. Only fifteen (30%) of patients were alert. Department on admission revealed that twenty six (52%) of all pa-
patients were admitted to neurosurgery and neurology department (Fig. 2).

Various factors in admission hypernatremia and hypernatremia during hospital stay were compared (Table 3). Duration of hypernatremia, peak sodium level and the rate of correction in 6, 12, 24 hours, mortality were not significantly different between hospital-acquired hypernatremia and hypernatremia on admission. But serum creatinine and osmolality were higher in patients with hypernatremia on admission compared to hospital-acquired hypernatremia. However, all patients (n=19) of hypernatremia on admission were due to dehydration. Etiologies of hypernatremia were classified. Hospital-acquired hypernatremia was associated with diuretic therapy in seven (22%), solute diuresis in eight (25%) and both in nine (29%) of patients (Fig. 3).

Association with prognosis of correction rate and renal insufficiency was recorded (Table 4). More rapid correction within 6 hours in hypernatremia on admission was associated with higher mortality. Renal insufficiency was also associated with higher mortality in both groups.

Discussion

Unlike hypernatremia on admission, hospital-acquired hypernatremia affects patients of all ages. Hypernatremia on admission is more frequently observed in the elderly in most reports (7). In our study,

Table 3. Various Factors of Hypernatremic Patients

	Hypernatremia on admission (n=19)	Hypernatremia during hospital stay (n=31)
Correction Rate (mEq/L)		
6 hours	5.0±4.4	4.7±3.6
12 hours	8.5±4.5	7.2±6.1
24 hours	11.6±4.9	7.8±7.6
Duration from onset to peak sodium level (days)	0	1.0±1.3*
Serum creatinine (mg/dL)	2.9±2.6	1.5±1.3*
Osmolality (mosm/L)		
Urine	572±144	533±171
Serum	370±30	350±31*

*p<0.05

Fig. 1. Mental status of hypernatremic patients (n = 50). Hypernatremia was associated with diuretic therapy in seven (22%), solute diuresis in eight (25%) and both in nine (29%) of patients (Fig. 3).

Fig. 2. Admission department of hypernatremic patients. NS: neurosurgery, NR: neurology, GE: gastroenterology PM: pulmonology, EN: endocrinology, NE: nephrology * Neuropsychiatry 1, Thoracic surgery 1

Fig. 3. Etiology of hospital acquired hypernatremia (n=31). *High glucose solution, mannitol.
patients with hypernatremia on admission were older than those during hospital stay. Although hypernatremia on admission was a geriatric disease, hospital-acquired hypernatremia was not in our study. The clinical manifestations are even more elusive in hospitalized patients because they often have pre-existing neurologic dysfunction\(^7\). In our study \(56\%\) (\(n=26\)) of all patients had neurologic dysfunction and \(70\%\) (\(n=35\)) were drowsy mentality or below. Only \(30\%\) (\(n=15\)) of patients was alert on admission.

Ninety two percent (\(n=46\)) of all patients were admitted through emergency room. Hypernatremia itself was primary cause of admission in only \(26\%\) (\(n=5\)) of patients with hypernatremia on admission. Multiple main diseases as infection, liver failure, cerebrovascular event and hyperosmolar coma were combined with hypernatremia. The main underlying disease of patients with hospital-acquired hypernatremia was cerebrovascular event (\(65\%\)) such as head injury, brain infarction and intracranial hemorrhage.

In patients with hypernatremia developed over a period of hours, rapid correction improves the prognosis without increasing the risk of cerebral edema, because accumulated electrolytes are rapidly extruded from brain cells\(^8, 9\). In such patients, reducing the serum sodium concentration at a maximal rate of 0.5 mmol per liter per hour\(^{11, 12}\). In our study, more rapid correction during 6 hours only in patients with hypernatremia on admission showed higher mortality. The rate of correction during 12 or 24 hours statistically was not associated with prognosis in both groups.

The mortality of \(56\%\) we observed is similar to that reported in other studies of hypernatremia\(^1-4\). As stressed in these studies, however, much of the excess mortality cannot be directly attributed to the hypernatremia itself. Based on careful review of the medical records, our study suggest that hypernatremia partially contributed to mortality in less than \(10\%\) of patients.

The standard recommendation for the treatment of hypernatremia is that, in addition to replacement of ongoing water losses, approximately half of the water deficit be replaced during the first 24 hours and that the remainder of the deficit be replenished during the subsequent two to three days\(^{13-15}\). In our study, sodium level was peak on development in all patients with hypernatremia on admission, but after 1-4 days in 15 patients with hospital-acquired hypernatremia.

This fact suggested that despite frequent measurement of the serum concentration, treatment of hypernatremia was frequently inadequate or delayed in hospital-acquired hypernatremia.

The major factors contributed to the hypernatremia were severe dehydration due to poor oral intake in patients with hypernatremia on admission, but diuretics or solute diuresis in those during hospital stay.

	Survival (number)	Death (number)	p value
On admission (mEq/L)			
6 hours (\(n=14\))	2.1±0.7 (6)	7.1±4.9 (8)	<0.05
12 hours (\(n=14\))	7.0±3.9 (7)	10.0±4.9 (7)	N
24 hours (\(n=15\))	9.2±4.0 (7)	13.6±4.9 (8)	N
Serum creatinine (\(n=19\)) (mg/dL)	1.6±0.8 (9)	4.1±3.2 (10)	<0.05
Hospital-acquired			
6 hours (\(n=12\))	5.6±2.0 (6)	3.8±4.8 (6)	N
12 hours (\(n=15\))	7.7±4.1 (8)	6.7±8.2 (7)	N
24 hours (\(n=29\))	10.3±8.2 (12)	6.1±6.8 (17)	N
Serum creatinine (\(n=31\)) (mg/dL)	1.3±0.9 (13)	1.6±1.5 (18)	<0.05
Hospital-acquired hypernatremia results primarily from inadequate and inappropriate prescription of fluids to patients with predictably increased water losses and impaired thirst or restricted free water intake or both.

Higher mortality was observed in patients with more severe renal insufficiency in both groups. This fact suggested that renal tubular defects partially contributed to hypernatremia although renal insufficiency could be associated with the severity of underlying disease. Increased free-water losses could be caused by impaired renal concentrating capacity due to renal tubular defects.

As this was a retrospective study, there were several limitations which could have influenced our results. Amongst these were inaccurate estimate of fluid intake due to poor charting, insufficient data on osmolalities and standardized examination. Despite these limitations we believe that hypernatremia during hospital stay is largely avoidable by prompt clinical attention and appropriate therapy. Attention should be given towards improving physician education about fluid management in high risk patients.

Patients with cerebrovascular events or renal insufficiency and patients treated with diuretics or hypertonic solute need careful fluid management and the close monitoring of blood sodium level.

References

1) Himmelstein DU, Jones AA, Woolhandler S: Hypernatremic dehydration in nursing home patients: an indicator of neglect. *J Am Geriatr Soc* **31**: 466-471, 1983

2) Mahowald JM, Himmelstein Du: Hypernatremia in the elderly: relation to infection and mortality. *J Am Geriatr Soc* **29**:177-180, 1981

3) Synder NA, Feigal DW, Arieff, AJ: Hypernatremia in elderly patients: A heterogeneous, morbid and iatrogenic entity. *Ann Intern Med* **107**:309-319, 1987

4) Long CA, Marin P, Bayer AG, Shetty HG, Pathy MS: Hypernatremia in and adult in-patient population. *Postgrad Med J* **67**:643-645, 1991

5) Mcdoihald NJ, Meconnell KN, Stephen MR, Dunnigan MG: Hypernatremic dehydration in patients in a large hospital for the mentally handicapped. *Br Med J* **299**:1426-1429, 1989

6) Ross EJ, Christie SB: Hypernatremia. *Medicine (Baltimore)* **48**:441-473, 1986

7) Horacio J. Adrogue, Nicolaos E. Madias: Hypernatremia. *N Eng J Med* **342**:1493-1499. 2000

8) Palevsky PM: Hypernatremia. In: Primer on kidney diseases, 2nd ed., edited by Greenberg A, San Diego, Calif., Academic press, 1998, p64-71

9) Lien YH, Shapiro JL, Chan L: Effects of hypernatremia on organic brain osmoles. *J Clin Invest* **85**: 1427-1435, 1990

10) Hogan GR, Dodge PR, Gill SR, Master S, Sotos JF: Pathogenesis of seizures occurring during restoration of plasma tonicity to normal in animals previously chronically hypernatremic. *Pediatrics* **43**: 54-64, 1969

11) Kahn A, Brachet E, Blum D: Controlled fall in natremia and risk of seizures in hypertonic dehydration. *Intensive Care Med* **5**:27-31, 1979

12) Blum D, Brasseur D, Kahn A, Brachet E: Safe oral rehydration of hypertonic dehydration. *J Pediatr Gastroenterol Nutr* **5**:232-235, 1986

13) Palevsky PM, Singer I: Hypernatremia. In: Current Therapy in Nephrology and Hypertension, 3rd ed., edited by Glaassock RJ, St. Louis, Mosby, 1992, 14

14) Gullans SR, Verbalis JG: Control of brain volume during hyperosmolar and hypoosmolar conditions. *Annu Rev Med* **44**:289-301, 1993

15) Leape LL, Bates DW, Cullen DJ, Cooper J, Demonaco HJ, Gallivan T: Systems analysis of adverse drug events. *JAMA* **274**:35-43, 1996