Glöckner, Helge; Willis, George A.
Locally pro-p contraction groups are nilpotent. (English) [Zbl 07436426]
J. Reine Angew. Math. 781, 85-103 (2021)

Summary: The authors have shown previously that every locally pro-p contraction group decomposes into the direct product of a p-adic analytic factor and a torsion factor. It has long been known that p-adic analytic contraction groups are nilpotent. We show here that the torsion factor is nilpotent too, and hence that every locally pro-p contraction group is nilpotent.

MSC:
22D05 General properties and structure of locally compact groups
22A05 Structure of general topological groups
20E18 Limits, profinite groups

Full Text: DOI arXiv

References:
[1] U. Baumgartner and G. A. Willis, Contraction groups and scales of automorphisms of totally disconnected locally compact groups, Israel J. Math. 142 (2004), 221-248. · Zbl 1056.22001
[2] P.-E. Caprace and N. Monod, Future directions in locally compact groups: A tentative problem list. New directions in locally compact groups, London Math. Soc. Lecture Note Ser. 447, Cambridge University, Cambridge (2018), 343-355. · Zbl 1398.22006
[3] H. Glöckner and G. A. Willis, Classification of the simple factors appearing in composition series of totally disconnected contraction groups, J. reine angew. Math. 643 (2010), 141-169. · Zbl 1196.22005
[4] H. Glöckner and G. A. Willis, Decompositions of locally compact contraction groups, series and extensions, J. Algebra 570 (2021), 164-214. · Zbl 1480.22003
[5] M. Grüninger, M. Horn and B. Mühlherr, Moufang twin trees of prime order, Adv. Math. 302 (2016), 1-24. · Zbl 1358.20023
[6] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren Math. Wiss. 115, Springer, Berlin 1979.
[7] J. L. Kelley, General topology, Grad. Texts in Math. 27, Springer, New York 1975.
[8] C. D. Reid, Endomorphisms of profinite groups, Groups Geom. Dyn. 8 (2014), no. 2, 553-564. · Zbl 1303.20035
[9] C. D. Reid and P. R. Wesolek, Homomorphisms into totally disconnected, locally compact groups with dense image, Forum Math. 31 (2019), no. 3, 685-701. · Zbl 1420.22003
[10] W. H. Schikhof, Ultrametric calculus, Cambridge University, Cambridge 2006. · Zbl 1152.26005
[11] J.-P. Serre, Lie algebras and Lie groups, 2nd ed., Lecture Notes in Math. 1500, Springer, Berlin 1992.
[12] E. Siebert, Contractive automorphisms on locally compact groups, Math. Z. 191 (1986), no. 1, 73-90. · Zbl 0562.22002
[13] M. Stroppel, Locally compact groups, European Mathematical Society, Zürich 2006. · Zbl 1102.22005
[14] K. Tzanev, \((\mathbb{C}^*)\) algèbres de Hecke et K-théorie, PhD thesis, Université Paris 7, 2000.
[15] J. S. P. Wang, The Mautner phenomenon for p-adic Lie groups, Math. Z. 185 (1984), no. 3, 403-412. · Zbl 0539.22015
[16] A. Weil, Basic number theory, 3rd ed., Springer, New York 1974. · Zbl 0326.12001
[17] G. Willis, The structure of totally disconnected, locally compact groups, Math. Ann. 300 (1994), no. 2, 341-363. · Zbl 0811.22004
[18] J. S. Wilson, Profinite groups, The Clarendon, Oxford 1998.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.