Negative Muonium Ion Production With a C12A7 Electride Film

M. Otani¹ Y. Fukao¹ K. Futatsukawa¹ N. Kawamura¹ S. Matoba¹ T. Mihe¹ Y. Miyake¹ K. Shimomura¹ T. Yamazaki¹ K. Hasegawa² R. Kitamura² Y. Kondo² T. Morishita² T. Iijima³ K. Inami³ Y. Sue³ M. Yotsuzuka³ H. Inuma³ Y. Nakazawa¹ K. Ishida³ N. Saito⁶ H. Yasuda⁷

¹KEK, Oho, Tsukuba, 305-0801, Japan
²JAEA, Tokai, Ibaraki, 319-1195, Japan
³Nagoya University, Nagoya, Aichi 464-8602, Japan
⁴Ibaraki University, Mito, Ibaraki 310-8512, Japan
⁵RIKEN, Hirosawa, Wako, 351-0198, Japan
⁶J-PARC Center, Tokai, Naka, Ibaraki 319-1195, Japan
⁷University of Tokyo, Hongo, Tokyo 171-8501, Japan

E-mail: masashio@post.kek.jp

Abstract. Negative muonium atom (µ⁺e⁻e⁻, Mu⁻) has unique features stimulating potential interesting for several scientific fields. Since its discovery in late 1980's in vacuum, it has been discussed that the production efficiency would be improved using a low-work function material. C12A7 was a well-known insulator as a constituent of alumina cement, but was recently confirmed to exhibit electric conductivity by electron doping. The C12A7 electride has relatively low-work function (2.9 eV). In this paper, the negative muonium production measurement with several materials including a C12A7 electride film will be presented.

1. Introduction

Negative muonium atom (µ⁺e⁻e⁻, Mu⁻) has unique features catalyzing potential interesting in several scientific fields. Since its discovery in late 1980's in vacuum, it has been discussed that the production efficiency would be improved using a low-work function material. C12A7 was a well-known insulator as a constituent of alumina cement, but was recently confirmed to exhibit electric conductivity by electron doping. The C12A7 electride has relatively low-work function (2.9 eV). In this paper, the negative muonium production measurement with several materials including a C12A7 electride film will be presented.
same negative current signal as that with a bi-alkali material coated metal were observed in H− formation [9].

We have measured Mu− intensity using several targets including a C12A7 electride film [10]. First, we show experimental setup of the Mu− measurement. Then, we show results of the experiment. Finally we summarize our experimental results.

2. Setup
The experiment was conducted at the Japan Proton Accelerator Research Complex (J-PARC) muon science facility (MUSE). The MUSE facility provides a pulsed μ+ beam produced by π+ decay near the surface of the production target. The muon beam pulse width is approximately 40 ns in rms. The repetition rate of the beam pulse is 25 Hz [11]. For this experiment, the beam power of the J-PARC Rapid Cycle Synchrotron (RCS) was 500 kW with two bunch operations.

Figure 1 shows experimental setup for the experiment. The μ+s were injected to a Mu− production target after passing through a SUS window. The thickness of the SUS window was 50 μm. The Mu− generated in the target was accelerated to 20 keV by the SOA electrostatic lens [12]. Then, the Mu− was transported to the detector location via a series of electrostatic quadrupole (EQ1-4), an electrostatic deflector (ED), and a bending magnet (BM). A microchannel plate (MCP) assembly (Hamamatsu photonics, F1217-01 [13]) detector was employed to measure time of flight (TOF) from the Mu− production target. The μ+ arrival time at the Mu− production target was measured with a set of scintillating counters located at the side of the Mu− production target.

Three types of the Mu− target combining the Kapton foil as degrader are installed during the experiment; an Al foil, a C12A7 electride foil, and a SUS foil. The thickness of the Mu− production target and the Kapton foil is summarized in Table 1. The C12A7 electride foil consists of the C12A7 electride deposited on the Al substrate with the thickness of 200 μm. The thickness of the C12A7 electride deposition is approximately 10 μm. The dimensions of the Mu− production target were 43 × 40 mm².

target	thickness	Kapton
Al	200 μm	150 μm
SUS	100 μm	75 μm
C12A7 electride	200+10 μm	150 μm

The applied voltage to EQ’s and ED, and the applied current to BM are tuned based on the previous experiment [14] and commissioning using H− [15]. The energy acceptance of the beamline is estimated to be 1.4% by the GEANT4 simulation [16].

The electrical signal from the MCP was amplified using fast-filter amplifier (ORTEC 579 [17]) and digitized using CAEN V1720 [18]. The waveform in an interval of 10 μsec around each 25-Hz beam pulse, was recorded for analysis. A pulse higher than noise level was regraded as a signal pulse. The leading edge of the signal pulse was defined as the signal timing. The pulse height is defined by the maximum height within the signal window of 40 ns.

3. Result
Figure 2 (A) shows pulse height vs TOF for observed signal. The background events are constituted of decay positrons from muon stopped in the experimental setup and the decay positron events have lower pulse height than that of the Mu− events [19]. After pulse height selection, the TOF distribution is obtained as shown in Fig. 2 (B). Two peaks at approximately −300 ns and 300 ns are due to prompt positrons, that are transported through the μ+ beamline.
with same momentum of μ^+. The prompt positrons arrive earlier than μ^+ since they are faster. Blue and red curves shows fitting result assuming the decay positron background (blue) and the Mu$^-$ signals (red). The background is consistent to the exponential decay curve with the muon decay constant ($\tau = 2.2$ μsec). The Mu$^-$ peak width is consistent to that of the primary μ^+ beam. The time interval of the Mu$^-$ peaks is consistent to that of the primary proton beam pulses. The Mu$^-$ TOF is consistent within few percents to expectation estimated by the GEANT4 simulation where the initial energy of Mu$^-$ is assumed to be 0.2 keV. In conclusion, we succeeded in observing the Mu$^-$’s.

The Mu$^-$ event rate is estimated by subtracting the background rate estimated by off-time region from the on-time event rate. The on-time region is defined as 440-640 ns and 1040-1240 ns. The off-time region is defined as side band regions of the on-time region.

Figure 3 shows dependence of the Mu$^-$ event rate on the momentum of the injected μ^+.
Figure 2. (A) Pulse height vs TOF for observed signal. (B) TOF distribution after pulse height selection. The red line and blue hatched line shows the fitting result assuming the Mu$^-$ event and the decay positron background.

The event rate is maximum for the C12A7 electride (red square) and the Al foil (blue circle) when the beam momentum is 26.2 MeV/c and 26.0 MeV/c, respectively. In this beam momentum, the half of the beam muons stopped in the target and the density of the muon stopped around the downstream surface is maximum. The Mu$^-$ intensity is consistent within statistical uncertainty of $\sim 10\%$ among the three targets. This systematic measurement on the input beam momentum is important input to understand the Mu$^-$ production process. Now we are developing the Monte Carlo simulation for the Mu$^-$ production processes based on this result.

Figure 4 shows dependence of the Mu$^-$ event rate on acceleration voltage of the SOA lens. Because the beamline setting is same except the SOA lens and the central energy of the transport beamline acceptance is 20 keV, Mu$^-$ with an initial energy of 1 keV should be transported, for example, when the acceleration voltage is 19 keV. The energy dependence with the C12A7 electride (red square) and the Al foil (blue circle) is consistent each other within statistical
Figure 3. Dependence of the Mu\(^-\) event rate on the injected \(\mu^+\) beam momentum. Blue circle: Al foil, red square: C12A7 electride, and purple triangle: SUS foil.

error. Assuming the Mu\(^-\) energy distribution as exponential function, the average energy of the Mu\(^-\)s is estimated to be 0.2 ± 0.1 keV. It is consistent to previous experiment [3]. This result is also used for development of the Monte Carlo simulation for the Mu\(^-\) production processes.

Figure 4. Dependence of the Mu\(^-\) event rate on the SOA acceleration voltage. Blue circle: Al foil, and red square: C12A7 electride
4. Conclusion
We succeeded in measuring the Mu\(^-\) intensity with several targets including a low-work function material of the C12A7 electride. The systematic study on the momentum of the injected muon beam and the energy distribution of Mu\(^-\) emitted from the target is important input to understand the Mu\(^-\) production process. Now we are developing the Monte Carlo simulation for the Mu\(^-\) production process based on the measurement results.

5. acknowledgment
The experiment at the Materials and Life Science Experimental Facility of J-PARC was performed under user programs (Proposal No. 2018B0007). The authors are grateful to K. Shinto for his support in conducting the experiment. The authors would like to thank H. Hosono and T. Yokoyama for their permission to use of C12A7 electride. The C12A7 electride was supplied from AGC, and technical support by Naomichi Miyakawa, Satoru Watanabe, and Kazuhiro Ito of AGC and their discussion on data are greatly acknowledged. This work is supported by JSPS KAKENHI Grant Numbers JP25800164, JP15H03666, JP16J07784, JP16H03987, and JP18H03707.

References
[1] Bae S et al. “First muon acceleration using a radio-frequency accelerator” 2018 Phys. Rev. Accel. Beams 21 050101
[2] Kaplan D M et al. “Antimatter gravity with muonium”, 2016 Preprint arXiv:1601.07222
[3] Kuang Y et al. “Formation of the negative muonium ion and charge-exchange processes for positive muons passing through thin metal foils” 1989 Phy. Rev. A39 6109
[4] Kuang Y et al. “First observation of the negative muonium ion produced by electron capture in a beam-foil experiment” 1987 Phy. Rev. A 35 3172
[5] Harshman D R et al. “Observation of low-energy \(\mu^+\) emission from solid surfaces” 1986 Phy. Rev. Lett. 56 2850
[6] Dudnikov V G et al. “Cold Muonium Negative Ion Production” Proceedings of 8th International Particle Accelerator Conference (Copenhagen) pp. 2898
[7] Hosono H et al. “High-density electron anions in a nanoporous single crystal” 2003 Science 301 626
[8] Kitamura R et al. “Result of the First Muon Acceleration with Radio Frequency Quadrupole” 2017 J. Phys.: Conf. Ser. 874 01255
[9] Sasao M et al. “Negative ion formation from a low-work-function nanoporous inorganic electrode surface” 2017 AIP Conf. Proc. 1869 020005
[10] Hosono H et al. “Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs” 2017 Proc. Natl. Acad. Sci. USA 114(2) 233
[11] Strasser P et al. “J-PARC decay muon channel construction status” 2010 Journal of Physics: Conference Series 225 012050
[12] Canter K F et al. 1986 Positron studies of solids, surfaces and atom (Singapore) p. 199
[13] http://www.hamamatsu.com/
[14] Bakule P et al. “Pulsed source of ultra low energy positive muons for near-surface \(\mu\)SR studies” 2008 Nucl. Instr. Meth. B 266 335
[15] Nakazawa Y et al. “Beam commissioning of muon beamline using negative hydrogen ions generated by ultraviolet light” 2019 Nucl. Instr. Meth. A 937 164
[16] http://geant4.cern.ch/
[17] https://www.ortec-online.com/products/electronics/amplifiers/579
[18] https://www.caen.it/products/v1720/
[19] Kim B et al. “Development of a microchannel plate based beam profile monitor for a re-accelerated muon beam” 2018 Nucl. Instr. and Meth. in Phy. Res. Sec. A 899 22