Imaging the accumulated intracellular microalgal lipids as a response to temperature stress

Khaled N. M. Elsayed1,3 · Tatiana A. Kolesnikova1 · Anja Noke2 · Gerd Klöck2

Received: 4 January 2017 / Accepted: 27 February 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Over the last few decades, many scientists considered microalgae as promising actors for future biofuels because of the high lipid productivity inside their cells. Moreover, much attention has been paid to algal lipids as they can be used in biodiesel production. In this study, we optimized the different suitable conditions such as incubation time, incubation temperature, Dimethylesulfoxide and Nile red concentrations of the lipophilic fluorescence dye Nile red as an excellent and fast vital stain to detect and quantify intracellular lipids. This was achieved using the green alga Nannochloropsis salina. In addition, investigating the accumulation of lipid vesicles inside different isolated microalgal species as a response to temperature stress. Furthermore, the confocal laser scanning microscopy (LS510) for imaging and measuring the size and volume of the accumulated lipid vesicles was used.

Keywords Microalgae · Nile red (NR) · Neutral lipids · Fluorescence dye · Scanning microscopy

Introduction

Microalgae have received global attention as a promising sustainable feedstock for biofuel production as they use solar energy and convert it to lipids in the form of Triacylglycerols (TAGs) through the process of photosynthesis (Gusbeth et al. 2016; Ota et al. 2016; Zhu et al. 2016; Yu et al. 2011). Compared to other feedstocks, microalgae exhibit many advantages such as high photosynthetic efficiency, high growth rate, short doubling time and high lipid productivity (Meng et al. 2009; Widjaja et al. 2009). Moreover, they can grow in non drinking water and on non arable lands in addition high CO2 mitigation efficiency. Later, TAGs can be extracted and chemically transestifed to produce Fatty Acid Methyl Ester (biodiesel) which is considered a bottleneck in the biofuels industry.

Biodiesel is biodegradable, renewable, non-toxic, and an environmentally friendly source of energy; it does not pollute to the environment as normal diesel does as there is no emission of sulfur compounds when using biodiesel (Abou-Shanab et al. 2011; Collet et al. 2014; Knothe 2011; Wang et al. 2016; Wong and Franz 2013; Wahlen et al. 2011; Yao et al. 2012).

Lipids produced by microalgae can be grouped into two main categories; storage neutral lipids or non-polar lipids and structural phospholipids or polar lipids (Harwati et al. 2012; Velmurugan et al. 2013). Neutral lipids which are produced and accumulated during the stationary growth phase are mainly in the form of TAGs which represent a storage form of carbon and energy in the cell and can be used as an energy source (Cho et al. 2015). Moreover, microalgal TAGs are generally synthesized in the light, stored in cytosolic lipid bodies, and then reutilized for polar lipid synthesis in the dark. The polar lipids or phospholipids which are produced during the growth phase are...
located in cell membranes and chloroplasts; they are important structural components of the cell membranes and act as a selective permeable barrier for cells and organelles, these lipids maintain the specific membrane functions providing the matrix for a wide variety of metabolic processes (Sharma et al. 2012; Wong and Franz 2013).

The synthesis of lipids in oleaginous unicellular microalgae takes place under optimal conditions (Gong et al. 2013; Goncalves et al. 2016). TAGs formation in eukaryotes takes place in specialized organelles such as chloroplasts. However, in prokaryotes it takes place in the cytoplasm (Sakthivel et al. 2011).

All TAGs are synthesized through a complex pathway and by a single set of enzymes in the chloroplast. Initiation process of Acetyl-CoA formation takes place by the enzyme Acetyle CoA carboxylase (ACoAase) which is considered the most important and crucial step during lipid biosynthesis (Goncalves et al. 2016; Minhas et al. 2016). The synthesis of fatty acids starts with glycolysis derived pyruvate during the respiration process (Hu et al. 2008; Sharma et al. 2012).

In glycolysis, pyruvate kinase catalyzes the irreversible synthesis of pyruvate which is then converted into Acetyl CoA; the major compound used to produce fatty acids (Song et al. 2008; Sakthivel et al. 2011).

Micro-algal oil composition is similar to that of vegetable oils; however, other literature states that micro-algal oils are richer in polyunsaturated fatty acids with four or more double bonds (Chisti 2007). It can vary widely depending on the strain and culture conditions. Typically, oil levels of 1–26% (dry weight basis) are quite common (Dunstan et al. 1993). The composition and concentration of lipids in microalgae can be influenced by exposure to certain environmental conditions as variations in temperature, nutrients, salinity, pH, photoperiod, light intensity and light quality (Chen et al. 2011; Fabiano et al. 2006; Liu et al. 2008; Romano et al. 2000; Yamaberi et al. 1998).

Under unfavorable environmental or stress conditions, many microalgae alter their metabolic pathways towards the formation and accumulation of high amounts of neutral lipids from 20 to 50% DCW (dry cell weight), mainly in the form of TAGs in addition to other compounds such as carbohydrates and secondary metabolites, enabling microalgae to endure these adverse conditions (Meng et al. 2009; Sharma et al. 2012). The neutral lipids are mostly triglycerides that serve primarily as a storage form of carbon and energy, they can account for as much as 80% of the total lipid content in the cell (Song et al. 2008; Teo et al. 2014).

The temperature is one of the most important factors that greatly affect the rate of cell growth, lipid productivity and lipid composition. However, it is species dependent as many studies have shown that microalgal growth rate, as well as lipid production increases when the temperature increases until the optimum level, which in turn differs from one species to another, but generally ranges between 20 and 27 °C (Zhu et al. 2016). Therefore, it is very important to select promising strains that show a remarkable increase in lipid productivity under exposure to high temperature (Minhas et al. 2016; Wang et al. 2016).

Different established screening methods were described for lipid quantification including solvent extraction, gravimetric determination, gas liquid chromatography (GLC) and high pressure liquid chromatography (HPLC). All of these methods are complicated, time consuming, and require extensive, sophisticated laboratory work (as they include pretreatment, preparation, extraction, purification, concentration and quantification of lipids) (Elsey et al. 2007; Park et al. 2013). Furthermore, a proper amount of algal biomass is required for extraction (Gusbeth et al. 2016). This is why many researchers have tried to develop fast in situ quantification methods such as lipo-fluorescent dyes like Nile red (9-diethylamino-5-benzo[a] phenoxazine) and BODIPY (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene). These methods are more efficient, cheaper and easier to use compared to all of the previously mentioned techniques. Additionally, they are significantly time saving (Govender et al. 2012; Ren et al. 2013; Mishra et al. 2014; Cabanelas et al. 2015; Natunen et al. 2015).

NR offers several characteristics such as photo-stability, fluorescence in organic solvents and hydrophobic environments and allows us to distinguish between neutral lipids and polar lipids; furthermore, the fluorescence of NR was found to be linearly correlated with the amount of TAGs contained in microalgal cells (Kou et al. 2013; Rumin et al. 2015).

Materials and methods

Optimization of Nile red assay

The Nile red assay was repeated several times using model alga *Nannochloropsis salina* with cell numbers of 7×10^8 ml, an optical density of 1 (OD$_{700}$) and using the recommended results presented by Chen et al. 2009. Therefore, different concentrations of DMSO (Dimethylesulfoxide 99.5%, Carl Roth GmbH + Co.KG, Germany) ranging between 5 and 30% v/v (final concentration/ml) were added. The stock solution of NR stain were prepared by adding 10 mg NR powder to 10 ml Acetone (≥99.9% HPLC grade, Carl Roth GmbH + Co.KG, Germany) (Doan and Obbard 2012).

The used NR final concentration ranged from 0.5 to 3 µg ml$^{-1}$ was then vortexed for 30 s. They were then
incubated in dark conditions with different time intervals ranging from 10 to 60 min and an incubation temperature ranging between 10 and 70 °C. A HITACHI Fluorescence Spectrophotometer F-2500 (Hitachi, Germany) was used with excitation and emission at 530 and 580 nm, respectively. Data analysis was performed using FL Winlab software (scan speed 60 nm/min, excitation slit 5 nm, emission slit 20 nm and PMT voltage 700 V). All concentrations were measured in triplicates.

Standard lipid curve

For creating a standard lipid curve, Triolein (Glyceryl trioleate 65%, Sigma/Aldrich, USA) was used as a referenced lipid substance. 0.35 g of Triolein was added to 49.95 ml isopropanol (2-Propanol ≥99.8%, Carl Roth GmbH + Co.KG, Germany) then serial dilutions and calculations were performed to prepare different concentrations in triplicate starting from 0.001 to 0.01 g/l. The fluorescence intensity (FI) for each concentration was measured using the recommended results of our conducted experiment of Nile red assay (Fig. 1).

Isolation and cultivation of the tested species

The tested 12 microalgae species were obtained from microalgae culture collection at Hochschule Bremen, Germany. Originally, they were isolated from soil and water samples of marine habitat (Red Sea). The samples were brought to the lab and the isolation process started immediately after the sample collection is completed because some species might be very sensitive and die when moved from their natural environment. Agar plate method with f/2 media was used to get unialgal colonies then each single colony was picked and either streaked again on agar plate or inoculated into liquid medium of f/2. This method repeated several times to finally get a pure unialgal culture. The molecular identification and phylogenetic analysis of these strains were done and we got these strains name from the results of BLAST analysis on NCPI data base.

Preparation of algal cells for lipid vesicles visualization

The cells of different isolated microalgae species were grown on f/2 media at a temperature of 40 °C in 12 h light and 30 °C in 12 h dark cycles, respectively, with light intensity of 105 ± 2 μmol photons m⁻² s⁻¹. The flasks were rotated at 150 rpm on an orbital shaker for 14 days. The cells were harvested using centrifugation for 6 min at 4000 rpm and cells were concentrated up to 1 ml. Nile red assay with recommended results was then applied to the concentrated cells at 20% DMSO as a final concentration in the reaction tube, adding 2 μg/ml Nile red and incubated in the dark for 20 min at room temperature. They were then examined under laser microscope.

![Fig. 1 Effect of different parameters on Nile red assay](image-url)
Confocal laser scanning microscopy (CLSM)

Confocal imaging (1.0 Airy units) was performed with a laser scanning microscope LSM510 (Carl Zeiss, Germany) and a Plan-Apochromat100x/1.25 NA oil objective lens (Carl Zeiss). For imaging, an aliquot of cells was placed between two microscopy cover slips. Fluorescence of Nile red was analyzed using an Argon laser with 488 nm excitation wavelength; emission was collected using a 530–600 nm band-pass filter. Chlorophyll fluorescence was analyzed using HeNe laser with 633 nm excitation wavelength; emission was collected using a 650 nm long-pass filter. Images were merged and pseudo-colored in Carl Zeiss confocal software ZEN 2012 (blue edition). All microscopy experiments were performed in triplicate with different preparations of algal species. In each experiment, at least ten cells were analyzed to get sustained statistics of vesicle staining.

Results

Optimization of Nile Red assay

Nile red concentration

First, we tested the fluorescence intensity (FI) of the green alga N. salina without NR as a negative control. The average FI was comparatively small at 464 a.u. (Fig. 1). With a concentration of NR less than 2 μg ml⁻¹ it is clear that it is not sufficient to stain all the neutral lipids inside the cells. By adding a different concentration of NR followed by fluorescence measurements at excitation and emission wavelengths of 530 and 580 nm, respectively, the FI increased at a concentration of 2 μg ml⁻¹ (optimal concentration). The fluorescence intensity decreased after adding a more concentrated NR.

DMSO concentration

DMSO has proven to be more advantageous than any other organic solvent to improve NR stain effectiveness (Shrivastava and Gupta 2011). However, the optimal DMSO concentration should be known for correct measurements (Fig. 1). From the obtained results, it is clear that there was no remarkable difference between different DMSO concentrations. 20% DMSO displayed the highest fluorescence intensity with a low standard deviation of 10 a.u. By increasing the DMSO concentration the FI decreased.

Effect of incubation time and temperature

The Fluorescence intensity changed slightly with different incubation times. Different time intervals were tested, starting from measuring the FI immediately after adding NR until 60 min. However, there was no significant difference between different time intervals. Therefore, it is recommended to take measurements at 20 min after adding NR (Fig. 1).

From the incubation temperature, it was clear that, there was no big difference between the incubation temperatures that were tested as can be seen with the low standard deviation (SD). This is why it is recommended that 20 °C is a suitable incubation temperature (Fig. 1).

Standard lipid curve

The FI of different concentrations of Triolein, 65% of a standard lipid compound (Sigma/Aldrich), ranged between 1 × 10⁻³ and 1 × 10⁻² g/l and were measured following the recommended NR assay results to create the standard lipid curve. This was used later to calculate the lipid content during further experiments of temperature stress with low limit of detection (LOD) of 142 a.u. and low limit of quantification (LOQ) of 152 a.u. which were measured using the following equations:

\[
\text{LOD} = \mu + 3 \, \text{SD} \quad \text{and} \quad \text{LOQ} = \mu + 10 \, \text{SD}
\]

where \(\mu\) is the mean value of the blank and SD is the standard deviation of the blank (Morowvat et al. 2010).

Discussion

Nile red is a lipophilic fluorescent dye that fluoresces at a defined wavelength (Bertozzini et al. 2011); it has been proposed to determine the neutral lipid content inside microalgal cells (Rumin et al. 2015). Several trials that were performed to improve the efficiency of NR stain (Chen et al. 2009) revealed that adding DMSO at a concentration of 25% (v/v) in the staining solution increases the efficiency of Nile red to maximum fluorescence intensity. The measured fluorescence of the NR assay could be changed daily so it is important to take the time factor into consideration during measurements (Doan and Obbard 2012). Staining of algal cells growing at 40 °C for 10 min yielded optimal neutral lipid fluorescence. The concentration of NR 0.5 mg/ml was found to be the optimal concentration at cell densities ranging from 5 × 10⁴ to 4 × 10⁵ cells ml⁻¹ (Chen et al. 2009).

Nile red is hydrophobic in nature as it can only be dissolved in organic solvents (Doan and Obbard 2012; Pick and Rachutin-Zalogin 2012). Many previous studies have shown, adding organic solvents like acetone, ethylene glycol or glycerol could improve the efficiency of NR staining assays. However, amongst the different solvents used, DMSO showed the highest efficiency for improving the penetration of NR through the rigid cell wall and other...
cytoplasmic membranes inside living cells that we tested. DMSO improved the ability to stain the accumulated neutral lipids (Chen et al. 2009).

Based on previous investigations, the used excitation and emission wavelengths during this study were 530 and 580 nm, respectively (Chen et al. 2009). 2 \(\mu \text{g ml}^{-1} \) was found to be the optimal concentration during the measurement of fluorescence in Chlorella vulgaris. On the other hand, NR stain was found to be slightly influenced by different incubation times and incubation temperatures but the fluorescence intensity at room temperature (20 °C) exhibited the highest value so it was considered as optimum temperature, which is consistent with the results obtained by Shrivastava and Gupta 2011 with Nannochloropsis sp. An alternative study was performed on green alga Chlorella vulgaris as a final concentration is optimal for measurements in Chlamydomonas reinhardtii. Although, there are different published results used the alga Nannochloropsis sp., showed 16.5% DMSO with an incubation time of 5 min with 0.7 \(\mu \text{g ml}^{-1} \) NR as a final concentration are the optimal conditions for the NR assay (Chen et al. 2009).

We found that 20% DMSO was optimal during fluorescence measurements; however, another study was conducted by (Doan and Obbard 2012) concluded that a concentration of 5% DMSO (v/v) with 1–2 \(\mu \text{g ml}^{-1} \) was found to be the optimal concentration during the measurement of fluorescence in the model green alga N. salina. On the other hand, NR stain was found to be slightly influenced by different incubation times and incubation temperatures but the fluorescence intensity at room temperature (20 °C) exhibited the highest value so it was considered as optimum temperature, which is consistent with the results obtained by Shrivastava and Gupta 2011 with Nannochloropsis sp. An alternative study was performed on green alga Chlorella vulgaris as a final concentration is optimal for measurements in Chlamydomonas reinhardtii. Although, there are different published results used the alga Nannochloropsis sp., showed 16.5% DMSO with an incubation time of 5 min with 0.7 \(\mu \text{g ml}^{-1} \) NR as a final concentration are the optimal conditions for the NR assay (Chen et al. 2009).

We found that 20% DMSO was optimal during fluorescence measurements; however, another study was conducted by (Doan and Obbard 2012) concluded that a concentration of 5% DMSO (v/v) with 1–2 \(\mu \text{g ml}^{-1} \) as a final concentration is optimal for measurements in Chlamydomonas reinhardtii. Although, there are different published results used the alga Nannochloropsis sp., showed 16.5% DMSO with an incubation time of 5 min with 0.7 \(\mu \text{g ml}^{-1} \) NR as a final concentration are the optimal conditions for the NR assay (Chen et al. 2009).

Confocal microscopy study of lipid content in algal cells

TAGs are the key material for biodiesel production; the oil content in different algal species is variable as in some species it ranged between 50 and 60% of their dry weight (Abou-Shanab et al. 2011; Wirshing and Minocha 2012). It is clear that, changing temperature either increasing or decreasing was found to affect the total lipid productivity of microalgae. Nutrient stress including nitrogen, phosphorus starvation, light irradiation, pH, temperature, and heavy metals was also found to affect lipid productivity (Miao and Wu 2006; Shuo et al. 2012).

It was apparent that, neutral lipid accumulation of Chlamydomonas reinhardtii at elevated temperature is higher compared to non-stressed Chlamydomonas wild type (Yao et al. 2012). Also, a remarkable increase of neutral lipid accumulation in Isochrysis galbana and Ochromonas danica was observed as a result of increasing temperature from 15 to 30 °C. However, shifting the temperature from 25 to 12 °C increased the production of unsaturated lipids by 20% in Dunaliella salina (Sharma et al. 2012).

To identify algae species with high lipid content, lipophilic fluorescent dye Nile red which is commonly used as a vital stain for lipid-containing vesicles [also referred to as lipid bodies (LB)] was used within algal cells (Bertozzini et al. 2011; Chen et al. 2009; Cirulis et al. 2012; Cooper et al. 2010; Eibl et al. 2014; Greenspan and Fowler 1985; Siaut et al. 2011; Wang et al. 2009). For the microscopy study, cells were grown to stationary phase. After harvesting, aliquots of Nile red stock solution in 20% DMSO were added directly to the algal suspensions, prior to the microscopic study as a pretreatment to increase efficiency of staining (Chen et al. 2009). The dye diffuses through the cell membranes and accumulates in the intracellular lipid-based compartments within several minutes. The mechanism of accumulation is called a diffusion-trap mechanism that is based on the solvation of a hydrophobic Nile red by neutral lipids (Akimoto and Mimuuro 2007).

Labeling efficiency of Nile red differs for various algal species due to the variation of their cell-wall thicknesses (Cabanellas et al. 2015). For this reason, algal cells were gently stirred over a time period of 15 s after addition of Nile red to accelerate the diffusion of dye into the cells. Importantly, no vital staining with Nile Red or stirring affected the cell viability in our study.

The results of staining experiments of algal cells with Nile red are shown in (Fig. 2). Individual lipid bodies are clearly distinguishable; LBs (green) are located in the cytoplasm and separated from the large chloroplasts (red), which exhibit moderate fluorescence from the endogenous chlorophyll. Importantly, the microscopic study allows for evaluation of the LB sizes; thus the corresponding lipid quantity can be estimated for each type of alga (Table 1). Figure 2 shows that all lipid vesicles have a spherical shape and range in size from 0.2 to 1.5 \(\mu \text{m} \) depending on the strain. In some cases Nile red can stain cytoplasmic compartments other than lipid bodies (Cabanellas et al. 2015), it can bind to certain proteins that contain a hydrophobic domain in the cytoplasm or to phospholipids, thus interfering with the LB stain and contributing to a background signal (Brown et al. 1992). This could explain the observed weak fluorescent signal (green) originating
from the cellular membrane in samples *Micractinium* sp. YACCYB33 and *Pedinomonas noctilucae* C34 (Fig. 2a, c).

TAGs enhancement and accumulation as a result of physiological and environmental stress has been reported by many researchers. In this study, we investigated the accumulation of lipid vesicles as a direct effect of temperature stress (40°C). NR was found to be a powerful fluorescence dye that can visualize and quantify lipid vesicles with the use of laser microscope after pretreatment with DMSO as an effective carrier for NR across the rigid cellular membrane.
cell wall to the interior of the microalgal cell and stain it in situ.

Acknowledgements The authors would like to gratefully thank the German Academic Exchange Service (DAAD) in collaboration with the Ministry of Higher Education (MoHE) of the Arab republic of Egypt in the German Egyptian Long-Term Scholarship program (GERLS). We also would like to thank Misses. Angelina Stifanelli and Miss. Sian Lant at Nottingham Trent University, Nottingham, UK; Mrs. Noha Mohamed at New Mexico State University, USA for their revising and grammar corrections.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

Abou-Shanab RAI, Matter IA, Kim SN, Oh YK, Choi Jeon BH (2011) Characterization and identification of lipid-producing microalgae species isolated from a freshwater lake. Biomass Bioenergy 35(7):3079–3085. doi:10.1016/j.biombioe.2011.04.021

Akimoto S, Mimuro M (2007) Application of time-resolved polarization fluorescence spectroscopy in the femtosecond range to photosynthetic systems. Photochem Photobiol 83:163–170. doi:10.1562/2006-02-28-IR-825

Bertozzini E, Galluzzi L, Penna A, Magnani M (2011) Applications of the standard addition method for the absolute quantification of neutral lipids in microalgae using Nile red. J Microbiol Meth 87(1):17–23. doi:10.1016/j.mimet.2011.06.018

Brown WJ, Sullivan TR, Greenspan P (1992) Nile red staining of lysosomal phospholipid inclusions. Histochemistry 97(4):349–354

Cabanellas IT, Van der Zwart M, Kleinegris DM, Barbosa MJ, Wijffels RH (2015) Rapid method to screen and sort lipid accumulating microalgae. Bioresearch Technol 18:47–52. doi:10.1016/j.biortech.2014.10.057

Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Meth 77(1):41–47. doi:10.1016/j.mimet.2009.01.001

Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green alga Dunaliella tertiolecta. Bioresearch Technol 102(2):1649–1655. doi:10.1016/j.biotech.2010.09.062

Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi:10.1016/j.biotechadv.2007.02.001

Cho K, Kim KN, Lim NL, Kim MS, Ha JC, Shin HH, Mi-Kyung Roh SW, Kim D, Oda T (2015) Enhanced biomass and lipid production by supplement of myo-inositol with oceanic microalga Dunaliella salina. Biomass Bioenergy 72:1–7. doi:10.1016/j.biombioe.2014.11.014

Cirulis JT, Strasser BC, Scott JA, Ross GM (2012) Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytom A 81A:618–626. doi:10.1002/cyto.a.22066

Collet P, Lardon L, Helias A, Bricout S, Laumber-Laval I, Perrier B, Lepine O, Steyer JP (2014) Biodiesel from microalgae-life cycle assessment and recommendations for potential improvements. Renew Energy 71:525–533. doi:10.1016/j.renene.2014.06.009

Cooper MS, Hardin WR, Petersen TW, Cattolico RA (2010) Visualizing “green oil” in live algal cells. J Biosci Bioeng 109(2):198–201. doi:10.1016/j.jbiosc.2009.08.004

Doan TTY, Obbard JP (2012) Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow-cytometric cell sorting. Algal Res 1(1):17–21. doi:10.1016/j.algal.2012.03.001

Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximization of the polysaturated fatty acid content of three microalgae grown in mass culture. J Appl Phycol 5(1):71–83. doi:10.1007/BF02182424

Eibl JK, Corcoran JD, Senhorinaho GNA, Zhang K, Hosseini NS, Marsden J, Laamanen CA, Scott JA, Ross GM (2014) Bio-prospecting for acidophilic lipid-rich green microalgae isolated from abandoned mine site water bodies. AMB Express. doi:10.1186/2191-0855-4-7

Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods 68:639–642. doi:10.1016/j.mimet.2006.11.008

Fabiano CB, Ernani SA, Mauricio VB, Jorge Luiz BO (2006) Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in a hydroponic wastewater. Grasas Aceites 57(3):270–274. doi:10.3989/gya.2006.v57.i3.48

Goncalves EC, Wilkie AC, Kirst M, Rathinasabapathi B (2016) Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. J Plant Biotechnol 14(8):1649–1660. doi:10.1111/jptb.12523

Gong Y, Guo X, Wan X, Liang L, Jiang M (2013) Triacylglycerol accumulation and change in fatty acids content of four marine oleaginous microalgae under nutrient limitation and at different culture ages. J Basic Microbial 53(1):29–36. doi:10.1002/jobm.201100487

Govender T, Ramanna L, Rawat I, Bux F (2012) BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresearch Technol 114:507–511. doi:10.1016/j.biotech.2012.03.024

Greenspan P, Fowler SD (1985) Spectrofluorometric studies of the lipid probe, Nile red. J Lipid Res 26(7):1067–1073.

Harwati TU, Willke T, Vorlop KD (2012) Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcales. Bioresour Technol 112:51–56. doi:10.1016/j.biortech.2012.06.098

Hu Q, Sommerfeld M, Jarvis E, Cattolico RA, Petersen TW (2008) Microalgal triglyceride-secreting green algae: identification of potential targets for engineering to improve biodiesel production: perspectives and advances. J Appl Phycol 25:391–406. doi:10.1007/s10811-012-9624-2

Knothe G (2011) A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform? Green Chem 13(11):3048–3065. doi:10.1039/C1GC00946F

Kou Z, Bei S, Sun J, Pan J (2013) Fluorescent measurement of lipid content in the model organism Clamydomonas reinhardtii. J Appl Phycol 25(6):1633–1641. doi:10.1007/s10811-013-0011-x

Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresearch Technol 99(11):4717–4722. doi:10.1016/j.biotech.2007.09.073

Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5. doi:10.1016/j.renene.2008.04.014
