Higgs coupling measurements and impact on the MSSM

Béranger Dumont
(LPSC Grenoble)

based on work with
G. Bélanger, G. Drieu La Rochelle, U. Ellwanger, R. M. Godbole, J.F. Gunion, S. Kraml,
S. Kulkarni and S. Sekmen
[arXiv:1306.2941, arXiv:1308.3735, arXiv:1312.7027]

DIS 2014 @ Warsaw

April 30, 2014
in order to construct an approximation to the Higgs likelihood, one can:

i) fit a 2D Gaussian using the 68% CL contour for each final state

ii) combine the measurements from ATLAS and CMS final state by final state
include all results up to the LHCP 2013 conference

\[\chi_i^2 = a_i (\mu_{ggF} - \hat{\mu}_{ggF})^2 + 2b_i (\mu_{ggF} - \hat{\mu}_{ggF})(\mu_{VBF} - \hat{\mu}_{VBF}) + c_i (\mu_{VBF} - \hat{\mu}_{VBF})^2 \]

without Tevatron

\begin{array}{|c|c|c|c|c|}
\hline
& \hat{\mu}_{ggF} & \hat{\mu}_{VBF} & a & b & c \\
\gamma\gamma & 0.98 & 1.72 & 14.94 & 2.69 & 3.34 \\
VV & 0.91 & 1.01 & 44.59 & 4.24 & 4.58 \\
bb/\tau\tau & 0.98 & 0.97 & 2.67 & 1.31 & 10.12 \\
bb & -0.23 & 0.97 & 0.12 & 0 & 7.06 \\
\tau\tau & 1.07 & 0.94 & 2.55 & 1.31 & 3.07 \\
\hline
\end{array}
validation with ATLAS and CMS

validation with benchmark scenarios of the ATLAS and CMS couplings fits

[ATLAS-CONF-2013-034]
[CMS-PAS-HIG-13-005]
invisible decays of the Higgs boson

includes ATLAS results for $ZH \rightarrow \ell \ell + \text{invisible}$

- **SM+invisible**
 $B(H \rightarrow \text{inv.}) < 0.21$ at 95% CL

- **SM+C_U+C_D+(C_V \leq 1)+invisible**
 $B(H \rightarrow \text{inv.}) < 0.31$ at 95% CL

- **SM+ΔC_g+ΔC_γ+invisible**
 $B(H \rightarrow \text{inv.}) < 0.39$ at 95% CL

- **SM+C_U+C_D+(C_V \leq 1)+ΔC_g+ΔC_γ+invisible**
 $B(H \rightarrow \text{inv.}) < 0.39$ at 95% CL

global fit to the Higgs properties: indirect constraint on $H \rightarrow \text{invisible}$

(more constraining than direct searches for invisible decays at the moment)
the p(henomenological) MSSM

19-parameter realization of general MSSM parameters defined at the weak scale, no SUSY breaking prejudices

minimal assumptions:

flavor-diagonal mass matrices, 1st and 2nd gen. degenerate, no new CP phases, R-parity & neutralino LSP

\[
(\widetilde{B}, \widetilde{W}^0, \widetilde{H}_d^0, \widetilde{H}_u^0) \xrightarrow{\text{EWSB}} (\widetilde{\chi}_1^0, \widetilde{\chi}_2^0, \widetilde{\chi}_3^0, \widetilde{\chi}_4^0)
\]

LSP and dark matter candidate

we scan over:

(flatt prior)

[BD, Gunion, Kraml, arXiv:1312.7027]

\[-3 \text{ TeV} \leq M_1, M_2, \mu \leq 3 \text{ TeV} ;
\]

\[0 \leq M_3, m_{\tilde{f}}, m_A \leq 3 \text{ TeV} ;
\]

\[-7 \text{ TeV} \leq A_t, A_b, A_\tau \leq 7 \text{ TeV} ;
\]

\[2 \leq \tan \beta \leq 60 .
\]

Bayesian analysis using

Markov Chain Monte Carlo (MCMC) methods

\[p(\theta|D) \sim L(D|\theta)p_0(\theta)\]
Experimental Constraints

Observable	Constraint	Likelihood function	
$\mu_j(\theta)$	D_j^{preHiggs}	$L(D_j^{\text{preHiggs}}	\mu_j(\theta))$
$\text{BR}(b \to s\gamma)$	$(3.43 \pm 0.21^\text{stat} \pm 0.23^\text{th} \pm 0.07^\text{sys}) \times 10^{-4}$	Gaussian	
$\text{BR}(B_s \to \mu\mu)$	$(2.9 \pm 0.7 \pm 0.29^\text{th}) \times 10^{-9}$	Gaussian	
$R(B_u \to \tau\nu)$	1.04 ± 0.34	Gaussian	
Δa_μ	$(26.1 \pm 8.0^{\text{exp}} \pm 10.0^\text{th}) \times 10^{-10}$	Gaussian	
m_t	173.20 ± 0.87 GeV	Gaussian	
$m_b(m_b)$	$4.19^{+0.18}_{-0.06}$ GeV	Two-sided Gaussian	
$\alpha_s(M_Z)$	0.1184 ± 0.0007	Gaussian	
sparticle masses	LEP (via micrOMEGAs)	1 if allowed / 0 if excluded	

- + prompt chargino decay ($cT < 10$ mm)
- "hsig": 125 GeV Higgs likelihood + CMS $A^0,H^0 \to \tau^+\tau^-$ constraint [CMS-PAS-HIG-13-021]
- "DMup": $\Omega_{DM} h^2 \lesssim 0.119$ and 90% CL LUX limit

Orthogonal to the CMS pMSSM studies (that incl. results from SUSY searches) [CMS-PAS-SUS-12-030, CMS-PAS-SUS-13-020]
results: $gg \rightarrow h \rightarrow \gamma \gamma$

- $p_0(\theta)$
- $p(\theta | \text{prmt } \tilde{\chi}_1^\pm)$
- $p(\theta | \text{preHiggs, prmt } \tilde{\chi}_1^\pm)$: MCMC
- $p(\theta | \text{preHiggs, prmt } \tilde{\chi}_1^\pm, 123 < m_h < 128)$

Probability density

low M_A
or light LSP
results: $gg \rightarrow h \rightarrow \gamma\gamma$

SUSY partners are typically too heavy to modify the Higgs properties
…so where are the deviations from a SM-like Higgs coming from?
why is $\mu \neq 1$

the SM Higgs width is dominated by $h \rightarrow bb$ (BR=57%)

SUSY correction to the bottom Yukawa coupling:

$$\Delta_b \equiv \frac{\Delta m_b}{m_b} \simeq \left[\frac{2\alpha_s}{3\pi} \mu m_{\tilde{g}} I(m_{\tilde{g}}^2, m_{b_1}^2, m_{b_2}^2) + \frac{\lambda_t^2}{16\pi^2} A_t \mu I(\mu^2, m_{t_1}^2, m_{t_2}^2) \right] \tan \beta$$

can be large for a heavy SUSY spectrum

[Carena et al. '99]
[Eberl et al. '99]
why is $\mu \neq 1$

the SM Higgs width is dominated by $h \rightarrow b\bar{b}$ (BR=57%)

SUSY correction to the bottom Yukawa coupling:

$$\Delta_b \equiv \frac{\Delta m_b}{m_b} \approx \left[\frac{2\alpha_s}{3\pi} \mu m_{\tilde{g}} \langle H_u^* \rangle \right] \mu m_{\tilde{g}} I(m_{\tilde{g}}^2, m_{b_1}^2, m_{b_2}^2) + \frac{\lambda_t^2}{16\pi^2} A_t \mu I(\mu^2, m_{t_1}^2, m_{t_2}^2) \right] \tan \beta$$

can be large for a heavy SUSY spectrum

[pMSSM, $\tau < 10$ mm]

$higgsino$-like LSP

A-funnel annihilation

[Carena et al. '99]

[Eberl et al. '99]
implications for dark matter

The LSP constitute only a fraction of the observed relic density.
implications for heavier Higgses

\[p(\theta \mid \text{preHiggs}, m, h_{\text{sig}}) \]

A mass [GeV]	0	500	1000	1500	2000	2500	3000
BR(A → SUSY)	0	0.2	0.4	0.6	0.8	1	

\[p(\theta \mid \text{preHiggs}, m, h_{\text{sig}}, \text{DMup}) \]

\[p(\theta \mid \text{preHiggs}, m, h_{\text{sig}}) \]

\[p(\theta \mid \text{preHiggs}, m, h_{\text{sig}}, \text{DMup}) \]

\[p(\theta \mid \text{preHiggs}, m, h_{\text{sig}}) \]

\[p(\theta \mid \text{preHiggs}, m, h_{\text{sig}}, \text{DMup}) \]
light neutralino dark matter

[Bélanger, Drieu La Rochelle, BD, Goldbole, Kraml, Kulkarni, arXiv:1308.3735]

light neutralino dark matter motivated by:

✦ having a light SUSY spectrum
✦ hints from direct detection ~ 10 GeV
 (... and maybe from indirect detection) [Hopper et al. claims]
✦ easy-to-exclude region
 • no resonance under $M_Z/2 = 45$ GeV
 • no co-annihilation under ~ 100 GeV
 (counterexample: [Arbey et al., arXiv:1308.2153])

[CDMS, arXiv:1304.4279]
light neutralino dark matter

light neutralino dark matter motivated by:

✦ having a light SUSY spectrum
✦ hints from direct detection \(\sim 10 \text{ GeV} \)
 (… and maybe from indirect detection)
[Hopper et al. claims]
✦ easy-to-exclude region
 • no resonance under \(M_Z/2 = 45 \text{ GeV} \)
 • no co-annihilation under \(\sim 100 \text{ GeV} \)
 (counterexample: [Arbey et al., arXiv:1308.2153])

[CDMS, arXiv:1304.4279]
viable light neutralino dark matter

nature of the lightest neutralino?

• pure wino or higgsino dark matter?
 → excluded by chargino searches at LEP
• pure bino dark matter?
 → the relic density is too large

solution: mainly bino ($M_1 \ll M_2, \mu$) with some wino/higgsino admixture (μ and/or $M_2 \leq 200$ GeV)

other SUSY particles?

• gluino and squarks: constrained by LEP and LHC searches to be heavy → no influence on DM
• other Higgses: little influence expected on DM (constraints on $A^0, H^0 \rightarrow \tau^+\tau^-$ at the LHC)
• sleptons: ~100 GeV is allowed, contributions from staus to DM annihilation can be large

light sleptons are required for light neutralino DM [Albornoz Vasquez, Belanger, Boehm '11]
viable light neutralino dark matter

stau-mediated annihilation

RH stau annihilation is much more efficient, also higgsino enhancement (low μ, high $\tan \beta$)

collider constraints on electroweakinos

- rather light charginos: need to check the LEP and LHC constraints
- invisible Z decays, invisible Higgs decays (LEP and LHC limits, resp.)
- light neutralino 2 \rightarrow LEP limit on $\sigma(e^+e^- \rightarrow \tilde{\chi}_2^0\tilde{\chi}_1^0)$

sleptons and staus: direct searches at LEP and at the LHC
setup of the analysis

pMSSM framework again

\[M_3 = 1 \text{ TeV} \]
\[M_{Q_3} = 750 \text{ GeV} \]
\[M_{U_i} = M_{D_i} = M_{Q_1} = 2 \text{ TeV} \]
\[A_b = 0 \]

\[
\begin{array}{c|c|c}
\tan \beta & [5, 50] & M_{L_3} & [70, 500] \\
M_A & [100, 1000] & M_{R_3} & [70, 500] \\
M_1 & [10, 70] & A_T & [-1000, 1000] \\
M_2 & [100, 1000] & M_{L_1} & [100, 500] \\
\mu & [100, 1000] & M_{R_1} & [100, 500] \\
\end{array}
\]

(all masses in GeV)

heavy 1st and 2nd generation squarks
moderately heavy gluino, stop and sbottom

variations in the
Higgs, electroweak and leptonic sectors

\[A_T \text{ tuned in order to have } m_h \approx 125.5 \text{ GeV} \]

we perform flat random scans within micrOMEGAs 3.1, using SuSpect 2.4
we impose experimental constraints in the following order:

Constraint	Condition
LEP limits	$m_{\tilde{\chi}_1^\pm} > 100$ GeV
	$m_{\tilde{\tau}_1} > 84 - 88$ GeV (depending on $m_{\tilde{\chi}_0}$)
	$\sigma(e^+e^- \rightarrow \tilde{\chi}^0_2,3\tilde{\chi}^0_1 \rightarrow Z^{(*)}(\rightarrow q\bar{q})\tilde{\chi}^0_1) \lesssim 0.05$ pb
invisible Z decay	$\Gamma_{Z\rightarrow \tilde{\chi}^0_1\tilde{\chi}^0_1} < 3$ MeV
μ magnetic moment	$\Delta a_\mu < 4.5 \times 10^{-9}$
flavor constraints	$\text{BR}(b \rightarrow s\gamma) \in [3.03, 4.07] \times 10^{-4}$
	$\text{BR}(B_s \rightarrow \mu^+\mu^-) \in [1.5, 4.3] \times 10^{-9}$
Higgs mass	$m_{h^0} \in [122.5, 128.5]$ GeV
$A^0, H^0 \rightarrow \tau^+\tau^-$	CMS results for $L = 17$ fb$^{-1}$, $m_{h^0}^\text{max}$ scenario
Higgs couplings	ATLAS, CMS and Tevatron global fit
relic density	$\Omega h^2 < 0.131$ or $\Omega h^2 \in [0.107, 0.131]$
direct detection	XENON100 upper limit
indirect detection	Fermi-LAT bound on gamma rays from dSphs
$pp \rightarrow \tilde{\chi}^0_2\tilde{\chi}^0_1$	Simplified Models Spectra approach
$pp \rightarrow \tilde{\ell}^+\tilde{\ell}^-$	
we impose experimental constraints in the following order:

Constraints	Condition
LEP limits	$m_{\tilde{\chi}^\pm_1} > 100$ GeV
	$m_{\tilde{\tau}_1} > 84 - 88$ GeV (depending on $m_{\tilde{\chi}^0_1}$)
	$\sigma(e^+e^- \rightarrow \tilde{\chi}_{2,3}^0\tilde{\chi}_1^0 \rightarrow Z^*(\rightarrow q\bar{q})\tilde{\chi}_1^0) \lesssim 0.05$ pb
invisible Z decay	$\Gamma_{Z \rightarrow \tilde{\chi}_1^0\tilde{\chi}_1^0} < 3$ MeV
μ magnetic moment	$\Delta a_\mu < 4.5 \times 10^{-9}$
flavor constraints	$\text{BR}(b \rightarrow s\gamma) \in [3.03, 4.07] \times 10^{-4}$
	$\text{BR}(B_s \rightarrow \mu^+\mu^-) \in [1.5, 4.3] \times 10^{-9}$
Higgs mass	$m_{h^0} \in [122.5, 128.5]$ GeV
$A^0, H^0 \rightarrow \tau^+\tau^-$	CMS results for $L = 17$ fb$^{-1}$, $m_{h^0}^\text{max}$ scenario
Higgs couplings	ATLAS, CMS and Tevatron global fit
relic density	$\Omega h^2 < 0.131$ or $\Omega h^2 \in [0.107, 0.131]$
direct detection	XENON100 upper limit
indirect detection	Fermi-LAT bound on gamma rays from dSphs
$pp \rightarrow \tilde{\chi}_{2,3}^0\tilde{\chi}_1^0$	Simplified Models Spectra approach
$pp \rightarrow \tilde{\ell}^+\tilde{\ell}^-$	
decomposition of a pMSSM point into simplified models, then compare to the limits on \((\sigma \times \text{BR})\) using SmodelS \cite{Kraml:2013}.

direct RH selectron/smuon production

ATLAS Preliminary

\[
\tilde{\ell}_1 \tilde{\ell}_1 \rightarrow \ell^+ \tilde{\chi}_1^0 \ell^- \tilde{\chi}_1^0
\]

L_\text{dt} = 20.3 \text{ fb}^{-1}, \sqrt{s} = 8 \text{ TeV}

- Observed limit \((\pm 1 \sigma_{\text{SUSY}})\)
- Expected limit \((\pm \sigma_{\text{exp}})\)
- LEP \(\tilde{\tau}_R\) excluded

All limits at 95% CL

still room above 20 GeV

[ATLAS-CONF-2013-049]

chargino-neutralino \(\rightarrow\) WZ + MET

CMS Preliminary

- \(\sqrt{s} = 8 \text{ TeV}, \text{ L}_{\text{int}} = 9.2 \text{ fb}^{-1}\)

- 95\% C.L. CLs NLO Exclusions
 - Observed 2/2j +3\ell \pm 1\sigma_{\text{theory}}
 - Expected 2/2j+3\ell \pm 1\sigma
 - Observed 3\ell only
 - Observed 2/2j only

black line overestimates the limit

“hidden” assumption: \(\tilde{\chi}_2^0, \tilde{\chi}_1^\pm\) wino-like

95\% CL upper limit on \(\sigma\) [fb]

[CMS-SUS-12-022]
LHC searches — implementation

There are no limits on direct stau production at the LHC but one has to consider intermediate stau decays from EWinos.

\[\tilde{\chi}^0_1 \rightarrow \ell \nu \]

\[\tilde{\chi}^0_2 \rightarrow \tilde{\ell} \tilde{\nu} \]

This assumption is problematic — we would need other values of the stau mass we extrapolate the limit for other stau masses from a similar measurement.

Also ATLAS results on 2τ+MET but the only interpretation available is for LH staus.
• upper bound on the relic density \rightarrow lower bound on the neutralino mass of ~ 15 GeV
not possible to have 8–10 GeV dark matter in this context
• direct detection could soon exclude completely the low-mass region (up to 25 GeV)
• light region only possible for very light charginos ($\lesssim 200$ GeV) and staus ($\lesssim 100$ GeV)
 this is relaxed for higher masses, especially above 35 GeV (Z resonance)
• lightest chargino and neutralino 2 are mostly higgsino-like (and not excluded by direct searches)
invisible Higgs decays

- the Higgs boson couples to a mixture of higgsino and gaugino
 \[\text{limit on the higgsino fraction } f_H \text{ from Higgs measurements} \]
- as expected, anticorrelation between \(\mu(gg \rightarrow h \rightarrow \gamma\gamma) \) and \(BR_{inv} \)
The Higgs boson couples to a mixture of higgsino and gaugino
\(\rightarrow \) limit on the higgsino fraction \(f_H \) from Higgs measurements

As expected, anticorrelation between \(\mu(gg\rightarrow h \rightarrow \gamma\gamma) \) and \(BR_{inv} \)
Higgs signal strengths

light, maximally mixed staus (see [Carena et al., arXiv:1205.5842])
in this case $\mu \gtrsim 400$ GeV and light selectrons/smuons

$g_{hbb} = \sin(\beta - \alpha) - \tan \beta \cos(\beta - \alpha)$

→ promising way to probe light neutralino scenarios
conclusion

✦ in the pMSSM, significant deviations of the Higgs couplings are possible and are already constrained by the LHC results

✦ low-mass neutralino (~ 15–35 GeV) can be accommodated with light staus and/or charginos but is under pressure by direct detection and the LHC SUSY searches

✦ possible to go beyond the Gaussian approximation for Higgs results: full likelihood in the \((\mu_{ggF+ttH}, \mu_{VBF+VH})\) plane is given in several final states by ATLAS and CMS

✦ this is taken into account in Lilith: a new, friendly-user tool for constraining BSM scenarios from Higgs measurements—stay tuned!

[Jérémy Bernon and BD, in preparation]
backup slides
invisible decays of the Higgs boson

\[C_V^2 B(H \rightarrow \text{inv.}) < 0.65 \text{ at } 95\% \text{ CL} \]

see also CMS limit on $ZH\rightarrow ll/bb+\text{invisible}$ [CMS-PAS-HIG-018/028]
and on $\text{VBF} \rightarrow \text{invisible}$ [CMS-PAS-HIG-013]
and the combination [arXiv:1404.1344]
prompt chargino decay

prompt chargino decay ($c\tau < 10$ mm):

strong impact on M_2

do not change main conclusions
masses of the SUSY partners
μ(Vh → bb)

\[\mu(Vh \rightarrow bb) \]

- Probability density

pMSSM, cτ < 10 mm

\[p(\theta \mid \text{preHiggs, } m_h) \]
\[p(\theta \mid \text{preHiggs, } m_h^h, \text{hsig}) \]
\[p(\theta \mid \text{preHiggs, } m_h^h, \text{hsig, DMup}) \]
charginos and staus again
viable light neutralino dark matter

searches for dark matter

[Combined

γ-rays

$\tau^+\tau^-$ channel

[Fermi-LAT, arXiv:1310.0828]

[LUX, arXiv:1310.8214]

WIMP–nucleon cross section (cm2)

$\sigma_{WIMP-nucleon}$ (cm2)

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

68% Containment

95% Containment

68\% Containment

95\% Containment

Maximum Likelihood

Bayesian

Median Expected

68\% Containment

95\% Containment

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-$ channel

γ-rays

$\langle \gamma \rangle$ (GeV) m_{DM} (GeV)

$\langle \gamma \rangle$ (cm3s$^{-1}$)

$\tau^+\tau^-
• update of the Fermi-LAT analysis on dwarf spheroidal galaxies: weaker limit
 (excess mainly driven by ultra-faint dwarf galaxies)
 ➞ no tension with indirect detection in the low-mass region

• in the bb channel the prediction is still two orders of magnitude below the experimental limit