PREVALENCE OF STATIN INTOLERANCE: A META-ANALYSIS

Ibadete Bytyçi 1,2, Peter E. Penson 3,4, Dimitri P. Mikhailidis 5, Nathan D. Wong 6, Adrian V. Hernandez 7,8, Amirhossein Sahebkar 9,10,11, Paul D. Thompson 12,13, Mohsen Mazidi 14,15, Jacek Rysz 16, Daniel Pella 17, Željko Reiner 18, Peter P. Toth 19,20, Maciej Banach 21,22*, and on behalf of the Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group and the International Lipid Expert Panel (ILEP)

1Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden; 2Clinic of Cardiology, University Clinical Centre of Kosovo, Prishtina, Kosovo; 3School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; 4Liverpool Centre for Cardiovascular Science, Liverpool, UK; 5Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK; 6Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine School of Medicine Predictive Health Diagnostics, Irvine, CA, USA; 7Health Outcomes, Policy, and Evidence Synthesis (HOPES) Group, University of Connecticut School of Pharmacy, Storrs, CT, USA; 8Vicerrectorado de Investigación, Universidad San Ignacio de Loyola (USIL), Lima, Peru; 9Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; 10Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; 11School of Pharmacy, Messiah University of Medical Sciences, Mashhad, Iran; 12Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland; 13Department of Cardiology, University Hospital Center Zagreb, School of Medicine, Zagreb University, Zagreb, Croatia; 14Department of Internal Medicine, University Clinical Centre of Kosovo, Prishtina, Kosovo; 15Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden; 16Clinic of Cardiology, University Clinical Centre of Kosovo, Prishtina, Kosovo; 17Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Rzgowska 281/289, 93-338 Lodz, Poland; and 18Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Zagrowska 281/289, 93-338 Lodz, Poland, and 19CGH Center, European Atherosclerosis Society (EAS), and in different disease settings. The secondary endpoint was to identify possible risk factors for SI. A random-effects model was applied to estimate the overall pooled prevalence. A total of 176 studies [112 randomized controlled trials (RCTs); 64 cohort studies] with 4,143,517 patients were ultimately included in the analysis. The overall prevalence of SI was 9.1% (95% confidence interval 8.0–10.0%). The prevalence was similar when defined using NLA, ILEP, and EAS criteria [7.0% (6.0–8.0%), 6.7% (5.0–8.0%), 5.9% (4.0–7.0%), respectively]. The prevalence of SI in RCTs was significantly lower compared with cohort studies [4.9% (4.0–6.0%) vs. 17% (14–19%)]. The prevalence of SI in studies including both primary and secondary prevention patients was much higher than when primary or secondary prevention patients were analysed separately [18% (14–21%), 8.2% (6.0–10%), 9.1% (6.0–11%), respectively]. Statin lipid solubility did

Aims Statin intolerance (SI) represents a significant public health problem for which precise estimates of prevalence are needed. Statin intolerance remains an important clinical challenge, and it is associated with an increased risk of cardiovascular events. This meta-analysis estimates the overall prevalence of SI, the prevalence according to different diagnostic criteria and in different disease settings, and identifies possible risk factors/conditions that might increase the risk of SI.

Methods and results We searched several databases up to 31 May 2021, for studies that reported the prevalence of SI. The primary endpoint was overall prevalence and prevalence according to a range of diagnostic criteria [National Lipid Association (NLA), International Lipid Expert Panel (ILEP), and European Atherosclerosis Society (EAS)] and in different disease settings. The secondary endpoint was to identify possible risk factors for SI. A random-effects model was applied to estimate the overall pooled prevalence. A total of 176 studies [112 randomized controlled trials (RCTs); 64 cohort studies] with 4,143,517 patients were ultimately included in the analysis. The overall prevalence of SI was 9.1% (95% confidence interval 8.0–10.0%). The prevalence was similar when defined using NLA, ILEP, and EAS criteria [7.0% (6.0–8.0%), 6.7% (5.0–8.0%), 5.9% (4.0–7.0%), respectively]. The prevalence of SI in RCTs was significantly lower compared with cohort studies [4.9% (4.0–6.0%) vs. 17% (14–19%)]. The prevalence of SI in studies including both primary and secondary prevention patients was much higher than when primary or secondary prevention patients were analysed separately [18% (14–21%), 8.2% (6.0–10%), 9.1% (6.0–11%), respectively]. Statin lipid solubility did

* Corresponding author. Tel: +48 422711124, Email: maciej.banach@umed.lodz.pl
© The Author(s) 2022. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
not affect the prevalence of SI [4.0% (2.0–5.0%) vs. 5.0% (4.0–6.0%)]. Age [odds ratio (OR) 1.33, \(P = 0.04 \)], female gender (OR 1.47, \(P = 0.007 \)), Asian and Black race (\(P < 0.05 \) for both), obesity (OR 1.30, \(P = 0.02 \)), diabetes mellitus (OR 1.26, \(P = 0.02 \)), hypothyroidism (OR 1.37, \(P = 0.01 \)), chronic liver, and renal failure (\(P < 0.05 \) for both) were significantly associated with SI in the meta-regression model. Antiarrhythmic agents, calcium channel blockers, alcohol use, and increased statin dose were also associated with a higher risk of SI.

Conclusion

Based on the present analysis of >4 million patients, the prevalence of SI is low when diagnosed according to international definitions. These results support the concept that the prevalence of complete SI might often be overestimated and highlight the need for the careful assessment of patients with potential symptoms related to SI.

Key question

What is the overall prevalence of statin intolerance (SI) worldwide? What are the main risk factors of SI?

Key finding

The overall prevalence of SI is 9.1% and even lower using the international definitions: National Lipid Association, International Lipid Expert Panel, European Atherosclerosis Society (7.0, 6.7, 5.9%). Female gender, hypothyroidism, high statin dose, advanced age, antiarrhythmics, and obesity are the main factors that increase the risk of SI.

Take-home message

Clinicians should use these results to encourage adherence to statin therapy in the patients they treat.

Structured Graphical Abstract

The worldwide prevalence of statin intolerance and risk factors/conditions that effect or do not effect the risk of statin intolerance.

Keywords

Cardiovascular disease • Prevalence • Risk factors • Statin intolerance
Introduction

Cardiovascular (CV) disease (CVD) is the leading cause of morbidity and mortality worldwide, despite continuous improvement of medical treatment, diagnosis, and risk factor control. It has been clearly demonstrated that statin therapy confers significant mortality and morbidity benefits in both the primary and secondary prevention of CVD. Although statins are among the most commonly prescribed drugs, non-adherence and discontinuation of statin therapy is an ongoing problem worldwide. The most common cause of discontinuation of statin therapy is statin-associated muscle symptoms (SAMS). Other possible statin-related adverse effects include neurocognitive disorders, hepatotoxicity, haemorrhagic stroke, and renal toxicity. These conditions may lead to discontinuation, but causality has been confirmed only for SAMS, temporary elevation of aminotransferase alanine, and newly diagnosed diabetes. According to the International Lipid Expert Panel (ILEP), statin intolerance (SI) is an inability to tolerate a dose of statin required to sufficiently reduce an individual’s CV risk, limiting the effective treatment of patients at risk of, or with, CVD. The National Lipid Association (NLA) has a wider definition, including any adverse effects relating to the quality of life and leading to the decision to decrease or stop the use of an otherwise beneficial drug. The Luso-Latin American Consortium (LLAC) definition of SI is similar to that of the Canadian Consensus Working Group (CCWG). It refers to an inability to tolerate ≥2 statins at any dose or an inability to tolerate increasing doses. The symptoms must not be attributable to drug–drug interactions or conditions known to increase SI. They indicate that symptomatic criteria include intolerable muscle symptoms [pain, weakness, or cramps with or without creatine kinase (CK) changes] or severe myopathy, and they must appear in the first 12 weeks after initiating treatment or following an increase in dose.

The prevalence of SI is widely debated, in part because of difficulties in identification and diagnosis, possible interaction of different risk factors, different diseases, drugs, and other clinical and demographic indices. In contrast with randomized controlled trials (RCTs) (prevalence usually 5–7%), cohort studies suggest that SI occurs in as many as 30% of treated patients. However, this is likely to be an overestimate or underestimate and in many cases, the symptoms are likely to be attributable to the nocebo/druccebo effect.

Because of these inconsistent findings, the present meta-analysis aimed to estimate the overall prevalence of SI, its prevalence according to various diagnostic criteria, in different disease settings, and to identify possible risk factors for SI.

Methods

Search strategy and selection criteria

We followed the methods recommended by the Cochrane Collaboration and complied with the reporting standards of the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guideline of 2020. A PECOS (population, exposure, comparison, outcomes, study design) model was used to shape the clinical question and to design the search strategy (see Supplementary material online, Table S1). The following databases were searched from inception through 31 May 2021: PubMed-Medline, EMBASE, Scopus, Google Scholar, the Cochrane Central Registry of Controlled Trials, and ClinicalTrials.gov. The following keywords were used: statin intolerance, statin toxicity, statin adverse effects, statin side effects, statin-associated muscle symptoms, SAMS, statin-related myopathy, statin-related side effects, statin-related myalgia, statin discontinuation, statin withdrawal, prevalence, occurrence rate, and frequency rate (see Supplementary material online, Table S2). In addition, the references from the selected articles and relevant review articles, and the abstracts from selected congresses: scientific sessions of the European Society of Cardiology, the American Heart Association (AHA), American College of Cardiology (ACC), NLA, and European Atherosclerosis Society (EAS) were screened for additional relevant articles. The wild-card term “*” was used to increase the sensitivity of the search strategy.

Articles were eligible if they reported the prevalence of SI either in primary or secondary prevention and met the following inclusion criteria: (i) trials or cohorts reporting SI, (ii) at least 100 participants included in the analysis, and (iii) available criteria for SI diagnosis. Exclusion criteria were as follows: (i) studies with unclear methodologies to obtain the estimates of SI frequency, (ii) studies that investigated a statin that has been withdrawn from the market, (iii) ongoing trials (unless they reported relevant interim results), (iv) studies only investigating statin discontinuation without specifying intolerance, and (v) short follow-up (<1.5 month/6 weeks).

The search, screening, and data extraction were performed independently by two reviewers (I.B. and J.R.); any disagreements were resolved through discussion with senior investigators (M.B. and P.E.P.). Non-relevant articles were excluded on the basis of title and abstract screening. For each trial, the risk of bias was independently assessed by the same investigators using the revised Cochrane RoB2 tool involving five domains (randomization process, deviation from intended interventions, missing outcome data, outcome measurement, and selection of reported results). The risk of bias in each study was judged to be ‘low’, ‘high’, or ‘unclear’. For the assessment of the risk of bias in cohort studies, the Newcastle-Ottawa Scale (NOS) was used. Three domains were evaluated with the following items: (i) selection, (ii) comparability, and (iii) exposure. The risk of bias in each study was judged to be ‘good’, ‘fair’, or ‘poor’.15

Outcome measures

The primary endpoint was the overall prevalence and the prevalence based on each of the international diagnostic criteria: NLA, EAS, and ILEP. The secondary endpoint was the prevalence of SI in groups of patients with different diseases and the analysis of the association between possible risk factors/conditions and the risk of SI. According to the NLA, SI is defined as adverse effects relating to the quality of life, leading to decisions to decrease or stop the use of an otherwise beneficial drug. The ILEP definition stated that SI is an inability to tolerate a dose of statin required to reduce a person’s CV risk sufficiently from their baseline risk and could result from different statin-related side effects. The EAS definition focused only on SAMS: the assessment of the probability of SAMS being due to a statin considering the nature of the muscle symptoms, the elevation in CK levels, and their temporal association with statin initiation, discontinuation, and re-challenge. As stated by the CCWG and LLAC, SI was defined as a clinical syndrome characterized by significant symptoms and biomarker abnormalities that is documented by challenge/dechallenge/re-challenge using ≥2 statins that is not due to drug interactions or untreated risk factors for intolerance (see Supplementary material online, Figure S1). Because
the main outcome was not limited by the type of statin, the CCWG and LLAC criteria were not used in further analyses.

Data synthesis and statistical analyses

The meta-analysis was conducted using R Statistical Software (v3.5.1, Boston, MA, USA), using the packages ‘meta’ and ‘metafor’ for meta-analysis. A random-effects model (DerSimonian and Laird method) was applied to estimate the pooled prevalence across the studies. The 95% confidence intervals (CIs) for the prevalence reported in the individual studies (see Supplementary material online, Table S1) were estimated from the proportion of cases of SI and sample size using the binomial exact method (Clopper–Pearson method). An inverse variance method was used for weighting each study in the meta-analysis. For the difference of subgroup analysis, we employed post hoc analysis. To investigate the differences between groups, we used the significance test. An \(I^2 \) statistic was also computed for subgroup differences.\(^{14}\) With the inverse variance method, when the estimated probability of the condition of a single study approaches 0 or 1, the pooled mean, resulting in an over-contribution of the study in the final pooled estimation of the meta-analysis. Therefore, to avoid the over-estimated results, we conducted the Freeman–Tukey double arc sine. The final pooled result and 95% CIs were then back-transformed and expressed as percentages for ease of interpretation. The baseline characteristics are reported as the median and range. The mean and expressed as percentages for ease of interpretation. The baseline pooled estimation of the meta-analysis. Therefore, to avoid the over-estimated results, we conducted the Freeman–Tukey double arc sine. The final pooled result and 95% CIs were then back-transformed and expressed as percentages for ease of interpretation. The baseline characteristics are reported as the median and range. The mean and standard deviation values were estimated using the method described by Hozo et al.\(^{16}\) Heterogeneity between studies was assessed using Cochrane’s Q-test and the \(I^2 \) index. As a guide, \(I^2 < 25\% \) indicated low, \(25–50\% \) moderate, and >50% high heterogeneity.\(^{17}\)

Potential demographic, clinical, and drugs as modifiers of SI were further explored by meta-regression. Meta-regression coefficients and corresponding \(P \)-values are reported. For summary estimates, \(P < 0.05 \) (two-tailed) was considered statistically significant.\(^{18}\)

Results

Study selection and patient population

A total of 3569 articles were retrieved from the search after duplicates from the different databases were discarded. These articles were first screened by title and abstract, leading to 271 articles that underwent full-text review. After a stringent selection process, a total of 176 studies with 4 143 517 patients and a mean follow-up of 19 ± 7.3 months were included in the analysis.\(^{19–194}\) Out of 176 articles, 112 were RCTs (195 575 patients) and the remaining 64 were cohort studies with 3 947 942 patients. The PRISMA flow diagram is shown in Figure 1 and the key characteristics of the included studies are presented in Supplementary material online, Table S3. The mean age of patients was 60.5 ± 8.9 and 40.9% were females. The White or Caucasian race made up a greater proportion of participants than Afro-American, Asian, Hispanic, or others (81.1, 82.5, 1.45, and 1.2%, respectively; \(P < 0.001 \); Table 1).

Prevalence of statin intolerance

The pooled prevalence of SI was 9.1% (95% CI 8.0–10%, see Supplementary material online, Figure S2). The prevalence based on NLA criteria was similar compared with using the ILEP or EAS definitions (7.0% (6.0–8.0%), \(I^2 = 98\% \); 6.7% (5.0–8.0%), \(I^2 = 98\% \); 5.9% (4.0–7.0%), \(I^2 = 93\% \); respectively; see Supplementary material online, Figures S3–S5). The prevalence of SI in RCTs was significantly lower compared with cohort studies (4.9% (4.0–6.0%), \(I^2 = 93\% \); vs. 17% (14–19%), \(I^2 = 98\% \); \(P < 0.001 \); see Supplementary material online, Figures S6 and S7).

In an analysis stratified by the type of disease prevention, SI was more common in pooled analyses of studies which included both primary and secondary prevention [18% (14–21%), \(I^2 = 99\% \);] patients than in either pooled analyses of studies which only included primary or secondary prevention patients [8.2% (6.0–10%, \(I^2 = 98\% \); 9.1% (6.0–11%, \(I^2 = 98\% \); respectively; Figures 2–4).

In the subgroup analysis according to disease states, in primary prevention patients with familial hypercholesterolaemia (FH), hypercholesterolaemia, dyslipidaemia, and Type 2 diabetes mellitus (T2DM), the prevalence of SI was 9.0% (6.0–13%, \(I^2 = 96\% \); 12% (11–13%, \(I^2 = 99\% \); 13% (7.0–18%, \(I^2 = 98\% \); and 6.0% (2.0–10%, \(I^2 = 99\% \); (see Supplementary material online, Figure S8), respectively. In secondary prevention: stable coronary artery disease (CAD), acute coronary syndrome (ACS), myocardial infarction (MI), and stroke/transient ischaemic attack were associated with SI prevalence of 8% (2.0–18%, \(I^2 = 98\% \); 13% (2.0–24%, \(I^2 = 98\% \); 13% (2.0–24%, \(I^2 = 98\% \); and 5.4% (3.9–9.1%, \(I^2 = 96\% \); respectively (see Supplementary material online, Figure S9).

We also compared the prevalence of SI in patients treated with lipophilic (atorvastatin, simvastatin, lovastatin, fluvastatin, and pitavastatin) and hydrophilic statins (pravastatin and rosuvastatin). The pooled prevalence was similar in these two types [4.0% (2.0–5.0%, \(I^2 = 97\% \); vs. 5.0% (4.0–6.0%, \(I^2 = 98\% \);, respectively; \(P = 0.33 \); see Supplementary material online, Figures S10 and S11]. A summary of SI prevalence is shown in Figure 5. Between-study heterogeneity was large (\(I^2 \geq 93\% \)). Tests assessing bias were non-significant (\(P > 0.28 \)).

Interaction of demographic indices with statin intolerance

In meta-regression analyses, age (as a continuous variable) was found to be significantly associated with the higher risk for SI [odds ratio (OR) 1.33, 95% CI 1.25–1.41; \(P = 0.04 \); see Supplementary material online, Figure S12A]. Likewise, the older age \(\geq 65 \) years (OR 1.31, 95% CI 1.22–1.45; \(P = 0.04 \); see Supplementary material online, Figure S12B) and female sex were associated with a higher risk of SI (OR 1.47, 95% CI 1.38–1.53; \(P = 0.007 \); see Supplementary material online, Figure S12C). Analysis of demographic indices revealed that the prevalence of SI was associated with the percentage of participants of Asian and African-American race (\(P < 0.05 \) for both, see Supplementary material online, Figure S12G and H). However, no association was observed with White, Caucasian, and Hispanic races with SI (\(P > 0.05 \) for all, see Supplementary material online, Figure S12D–F). A summary of the meta-regression of demographic indices on SI is shown in Figure 6A.

Interaction of clinical indices with statin intolerance

A range of potential factors was tested for possible interaction with SI. Positive associations were found for obesity (OR 1.30,
interaction of drugs and addiction diseases with statin intolerance

The percentage of smokers was not significantly associated with the prevalence of SI (OR 1.03, \(P = 0.60 \)), whereas the percentage of alcohol users used showed a significant association with the prevalence of SI (OR 1.22, \(P = 0.03 \)). Moreover, exercise (OR 1.23, \(P = 0.03 \)), calcium channel blockers (CCB) (OR 1.31, \(P = 0.03 \)), and antiarrhythmic agents (OR 1.35, \(P = 0.03 \)) were associated with higher risk of SI, whereas warfarin use was not (OR 1.04, \(P = 0.15 \)). In addition, increased statin dose was associated with a higher prevalence of SI (OR 1.37, \(P = 0.01 \)), whereas the duration of study follow-up was not associated with the occurrence of SI (OR 1.06, \(P = 0.48 \), see Supplementary material online, Figure S14). A summary of the results of meta-regression with respect to associations between risk factors and drugs on SI is shown in Figure 6B.

Risk of bias assessment

The assessment of the risk of bias in the included studies using RoB2 for RCTs and NOS for cohort studies showed that most studies had moderate to high-quality level in defining objectives and the main outcomes (see Supplementary material online, Tables S4 and S5).

Discussion

To the best of our knowledge, the present meta-analysis is the first to evaluate the overall prevalence of SI worldwide, the prevalence based on different diagnostic criteria and in different disease settings. The results of our meta-analysis of 176 studies with 4,143,517 patients and a mean follow-up of 19 ± 7.3 months showed that the worldwide prevalence of SI is 9.1%, irrespective of the definition applied. Older age, female gender, Asian and
Table 1. Summary of main characteristics of studies included in the present meta-analysis
All studies

No. of studies
Overall prevalence, % (95% CI)
NLA
ILEP
EAS
Sample size, n
Female sex, %
Age, years, mean ± SD
Race, %
White or Caucasian
Black
Asian
Hispanic
Other

Cl, confidence interval; NLA, National Lipid Association; ILEP, International Lipid Expert Panel; EAS, European Atherosclerosis Society; RCT, randomized controlled trial; SD, standard deviation.
*aCombined: primary and secondary prevention patients.
Prevalence and risk factors of statin intolerance

Figure 2 Prevalence of statin intolerance in primary prevention studies. Note: D–L random-effects model was used.
Figure 3 Prevalence of statin intolerance in secondary prevention studies. Note: D–L random-effects model was used.
meta-analysis, we have attempted to investigate what risk factors/conditions might be linked to SI prevalence using meta-regression. Pooled analysis demonstrated that many demographic, clinical, and other risk factors are associated with SI. Older age, female gender, Asian, and African-American races were associated with a higher incidence of SI, whereas White, Caucasian, and Hispanic races were not associated with higher SI risk. Many commonly observed risk factors and conditions may also be significantly associated with SI occurrence, including obesity, diabetes mellitus, hypothyroidism, chronic liver disease, and renal failure. Depression was negatively associated with SAMS, perhaps because of under-reporting in these patients. Smoking and anticoagulant drugs were not associated with SI; however, the use of alcohol, exercise, antiarrhythmic agents, and CCB was positively associated with SI. Finally, as previously reported, higher doses of statins were associated with a greater prevalence of SI.

Figure 4 Prevalence of statin intolerance in combined primary and secondary prevention studies. Note: D–L random-effects model was used.
Figure 5 Prevalence of statin intolerance—summary figure. NLA, National Lipid Association; ILEP, International Lipid Expert Panel; EAS, European Atherosclerosis Society; RCTs, randomized controlled trials; DM, diabetes mellitus; sCAD, stable coronary artery disease; ASC, acute coronary syndrome; MI, myocardial infarction; TIA, transient ischaemic attack; SI, statin intolerance.

Figure 6 Summary meta-regression of (A) demographic and (B) risk factors and drugs with statin intolerance. SI, statin intolerance; BMI, body mass index; CLD, chronic liver disease; CRF, chronic renal failure; CCB, calcium channel blockers.
Strength and limitations

Our meta-analysis has some limitations. Heterogeneity between studies was present in our analysis (I^2 = 93–99%; unknown confounding may have led to this), although this was anticipated because of the broad scope of this systematic analysis, and due to very large data, we could not test the influence analysis that would resolve the effect size of different weight across the studies. The statistical examination of potential publication bias through Egger and funnel plots is not appropriate because studies with <100 patients were excluded from this systematic review.

Our analysis depended upon data reported in published studies. Some potential risk factors for SI were not reported with ideal detail or precision, such as the amount of alcohol consumption, types of exercise, and physical activity endurance. In this line, race distribution was not similar with predominantly Caucasian/White race (81.1%). It is also important to emphasize the importance of the nocebo/drucebo effect that was not examined in the included studies and might have distorted the final results to some extent (it might be responsible even for >50% of SAMS).

However, besides the new effective one-of-trial approach that does not apply in clinical practice, we do not have suitable tools to exclude this phenomenon. Moreover, in most of the included trials, the diagnosis was based on the approved definition of drugs and/or the severity of the diseases when statins might be used to suggest appropriate management techniques (e.g. doses affecting the liver, kidney, and thyroid. Finally, our analysis cannot be used to suggest appropriate management techniques (e.g. doses of drugs and/or the severity of the diseases when statins might be used without increasing the risk of SI).

Conclusion

Based on the data from >4 million patients, we demonstrated that the overall prevalence of SI is relatively low, especially when SI is objectively determined using the recognized international definitions. These results support the concept that the prevalence of complete SI is often overestimated and highlights the need for a very careful assessment of patients with SI, to decrease the risk of unnecessary statin discontinuation, and suboptimal lipid-lowering therapy. Clinicians should use these results to encourage adherence to statin therapy in their patients.

Supplementary material

Supplementary material is available at European Heart Journal online.

Funding

The results of the meta-analysis will be presented during the forthcoming European Society of Cardiology Congress—the Digital Experience (27–30 August 2021) during the Live Session: ‘Highlights from the Young on cutting edge therapy for lowering lipids’ (27 August). This meta-analysis was written independently; no company or institution supported it financially. No professional writer was involved in the preparation of this position paper.

Conflict of interest: P.E.P. has received honoraria and/or travel reimbursement for events sponsored by AKCEA, Amgen, AMRYT, Link Medical, Mylan, Napp, Sanofi; D.P.M. has given talks, acted as a consultant, or attended conferences sponsored by Amgen and Novo Nordisk; P.P.T.: speaker for Amgen, Esperion, Merck, Novo Nordisk; consultant to Aman, Amgen, Kowa, Merck, Resverlogix, and Theravance; Z.R. has given talks sponsored by Sanofi-Aventis and Novartis; M.B.: speakers bureau: Amgen, Herbaol, Kogen, KRKA, Polpharma, Mylan/Viatris, Novartis, Novo Nordisk, Sanofi-Aventis, Teva, Zentiva; consultant to Abbott Vascular, Amgen, Daichii Sankyo, Esperion, FreiaPharmaceuticals, Novartis, Polfarmex, Sanofi-Aventis; Grants from Amgen, Mylan/Viatris, Sanofi, and Valeant; CMO at Nomi Biotech Corporation; all other authors have no conflict of interest.

References

1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol 2020;76:2792–3021.
2. Stone NJ, Robinson J, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014;63:2889–2934.
3. Banach M, Stuic T, Dent R, Toth PP. Statin non-adherence and residual cardiovascular risk: there is need for substantial improvement. Int J Cardiol 2016;195–196.
4. Toth PP, Patti AM, Giglio RV, Nikolaid C, Castellino G, Rizzo M, et al. Management of statin intolerance in 2018: still more questions than answers. Am J Cardiocr Rev: Cardiovasc Drugs Therapeut Rev 2018;18:157–173.
5. Rosenson RS, Baker S, Banach M, Borow KM, Braun LT, Bruckert E, et al. Optimizing cholesterol treatment in patients with muscle complaints. J Am Coll Cardiol 2017;70:1290–1301.
6. Stroes ES, Thompson PD, Corsini A, Vladutiu GD, Rael FF, Ray KK, et al. Statin-associated muscle symptoms: impact on statin therapy—European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur Heart J 2015;36:1012–1022.
7. Banach M, Patti AM, Rizzo M, Toth PP, Farnier M, Davidson MH, Al-Rasadi K, et al. Statin intolerance: an attempt at a unified definition. Position paper from an International Lipid Expert Panel. Arch Med Sci 2015;11:1–23.
8. Guyton JR, Bays HE, Grundy SM, Jacobson TA, The National Lipid Association Statin Intolerance Panel. An assessment by the Statin Intolerance Panel: 2014 update. J Clin Lipidol 2014;8(3 Suppl):S72–S81.
9. Mancini GB, Baker S, Bergeron J, Fischett DF, Frohlich J, Genest J, et al. Diagnosis, prevention, and management of statin adverse effects and intolerance: Canadian Consensus Working Group Update (2016). Can J Cardiol 2016;32:535–565.
10. Saposnik A, Rocha Faria J, de Carvalho L, Lorenzatti A, Cafferata A, Elikir G, et al. Statin-associated muscle symptoms: position paper from the Lusso-Latin American Consortium. Curr Med Res Opin 2017;33:239–251.
11. Banach M, Mikhailidis DP. Statin intolerance: some practical hints. Cardiol Clin 2018;36:225–231.
12. Keen HI, Krishnarajaj J, Bates TR, Watts GF. Statin myopathy: the fly in the ointment for the prevention of cardiovascular disease in the 21st century? Expert Opin Drug Saf 2014;13:1227–1239.
13. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71.
14. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Systematic Reviews of Interventions version 6.2. Cochrane, 2021. www.training.cochrane.org/handbook.
15. Zeng X, Zhang Y, Kwong JS, Zhang C, Li S, Sun F, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med 2015;8:2–10.
16. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 2005;5:13.
17. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21:1539–1558.
18. Harbord RM, Egger M, Sterne JA. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 2006;25:3443–3457.
19. Kannel WB, D’Agostino RB, Stepanian M, D’Agostino LC. Efficacy and tolerability of lovastatin in men in the first three years of the Framingham Offspring Study: analysis by gender, age, and hypertensive status. Am J Cardiol 1990;66:18–108.
20. Bradford RH, Shear CL, Chremos AN, Duvonc J, Downton M, Franklin FA, et al. Expanded Clinical Evaluation of Lovastatin (EXCEL) study results. I. Efficacy in modifying plasma lipid-proteins and adverse event profile in 8245 patients with moderate hypercholesterolemia. Arch Intern Med 1991; 151:43–49.
21. Crepaldi G, Baggio G, Arca M, Avellone G, Avogaro P, Bittolo Bon G, et al. Pravastatin vs gemfibrozil in the treatment of primary hypercholesterolemia: the Italian Multicenter Pravastatin Study I. Arch Intern Med 1991; 151:146–152.
22. Pravastatin Multicenter Study Group II. Comparative efficacy and safety of pravastatin and cholestyramine alone and combined in patients with hypercholesterolemia. Arch Intern Med 1993; 153:1321–1329.
23. The Pravastatin Multinational Study Group for Cardiac Risk Patients. Effects of pravastatin in patients with serum total cholesterol levels from 5.2 to 7.8 mmol/liter (200 to 300 mg/dl) plus two additional atherosclerotic risk factors. Am J Cardiol 1993; 72:1031–1037.
24. Blankenhorn DH, Azem SP, Kramsch DM, Mack WJ, Cashin-Hemphill L, Hodis HN, et al. Coronary angiographic changes with lovastatin therapy: the Monitored Atherosclerosis Regression Study (MARS). Arch Intern Med 1993; 153:769–776.
25. Wiklund O, Angell B, Berglund M, Berglund L, Bondjers G, Carlsson A, et al. Comparative dose efficacy of atorvastatin versus simvastatin in patients with hypercholesterolemia (the CURVES study). Am J Cardiol 1998;81:582–587.
26. Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1997;337:1399–1407.
27. Harbord RM, Egger M, Sterne JA. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 2002; 21:1539–1558.
28. Insull W Jr, Black D, Duvonc J, Hosking JD. Hunninghake D, Keilson L, et al. Coronary artery disease: the West of Scotland Coronary Prevention Study Group. Arch Intern Med 1995; 155:257–263.
29. Pitt B, Mancini GB, Ellis SG, Rosman HS, Park JS, McGovern ME. Pravastatin limited cholesterol reduction in patients with hypercholesterolemia. J Intern Med 1997; 248:139–140.
30. Insull W, Kafonek S, Goldner D, Zieve F, ASSET Investigators. Comparison of the one-year efficacy and safety of atorvastatin versus lovastatin in men and women with hypercholesterolemia. Am J Cardiol 1997; 79:1475–1481.
31. Heid JA, Ballantyne CM, Farmer JA, Ferguson JJ III, Jones PH, West MS, et al. Effects of fluvastatin on coronary atherosclerosis in patients with mild to moderate cholesterol elevations (Lipoprotein and Coronary Atherosclerosis Study [LACS]). Am J Cardiol 1997; 80:278–286.
32. Jones P, Kafonek S, Lunnin I, Hunninghake D, for the CURVES Investigators. Comparative dose efficacy of atorvastatin versus simvastatin, pravastatin, lovastatin and fluvastatin in patients with hypercholesterolemia (the CURVES study). Am J Cardiol 1998;81:582–587.
33. Pitt B, Mancini GB, Ellis SG, Rosman HS, Park JS, McGovern ME. Pravastatin limited cholesterol reduction in patients with hypercholesterolemia. J Intern Med 1997; 248:139–140.
34. Herd JA, Ballantyne CM, Farmer JA, Ferguson JJ III, Jones PH, West MS, et al. Pravastatin and gemfibrozil in the treatment of primary hypercholesterolemia: the Italian Multicenter Pravastatin Study I. Arch Intern Med 1991; 151:146–152.
35. Simons LA, LevIs G, Simons J. Apparent discontinuation rates in patients previously prescribed lipid-lowering drugs. Med J Aust 1996; 164:208–211.
36. Sadik FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recent Events Trial Investigators. N Engl J Med 1996;335:1001–1007.
37. Bentvelze K, Bos E, Campbell LM, Fariner M, Langan J, Mahla G, et al. Efficacy and safety of atorvastatin compared to pravastatin in patients with hypercholesterolemia. Atherosclerosis 1997; 130:191–197.
Prevalence and risk factors of statin intolerance

59. Hunninghake D, Insull W Jr, Tobe P, Davidson D, Donovan JM, Burke SK. Coadministration of colestelam hydrochloride with atorvastatin lowers LDL cholesterol additively. *Atherosclerosis* 2001;158:407–416.

60. Saito Y, Shira K, Sasaki N, Shinomiya M, Yoshida S, Committee of the Chiba Lipid Intervention Program Study. Diagnosis of hypercholesterolemia patients taking pravastatin for five years: the Chiba Lipid Intervention Program (CLIP) Study. *Am J Cardiol* 2002;90:99–108.

61. Jackevicius CA, Mamdani M, Tu JV. Adherence with statin therapy in elderly pa-

62. Benner JS, Glynn RJ, Mogun H, Neumann PJ, Weinstein MC, Avorn J. Long-term persistence in use of statin therapy in elderly patients. *JAMA* 2002;288:455–461.

63. Larsen J, Andersen M, Krøstrup J, Gram LF. High persistence of statin use in a Danish population: compliance study 1993–1998. *Br J Clin Pharmacol* 2002;53:375–378.

64. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20 336 high risk individuals: a rando-

65. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a rando-

66. Serruys PW, de Feyter P, Macaya C, Kolokt N, Puel J, Vrolix M, et al. Fluvasi-

67. Wei L, Wang J, Thompson P, Wong S, Struthers AD, MacDonald TM. Adherence to statin treatment and readmission of patients after myocardial in-

68. Karalis DG, Ross AM, Vacari RM, Zarren H, Scott R. Comparison of ef-

69. Eagle KA, Kline-Rogers E, Goodman SG, Gurinkel EP, Avezum A, Flather MD, et al. Adherence to evidence-based therapies after discharge for acute coronary syndromes: an ongoing prospective, observational study. *Am J Med* 2004;117:73–81.

70. Howell N, Trotter R, Mottram DR, Rowe P. Compliance with statins in primary care. *Pharm J* 2004;272:31–32.

71. Kesten M, Hunninghake DB. Clinical outcomes in managed-care patients with coronary heart disease treated aggressively in lipid lowering disease manage-

72. Beavers SJ, Betteridge DJ, Ballantyne CM, Prasad C, Bullano MF, Willey VJ, et al. Fosamprenavir lipids tests and physician visits are associated with improved adher-

73. Schuster H, Barter PJ, Stender S, Cheung RC, Bonnier J, Morrell JM, et al. Effects of switching statins on achievement of lipid goals: measuring effective reductions in cholesterol using rosuvastatin therapy (MERCURY I) study. *Am Heart J* 2004;147:705–712.

74. Schwartz GG, Bolognese MA, Tremblay BP, Cheung RC, Bonnier J, Morrell JM, et al. Efficacy and safety of rosuvastatin and atorvastatin in patients with hyper-

75. Yang CC, Jick SS, Testa MA. Discontinuation and switching of therapy after ini-

76. Abraha I, Montedori A, Stracci F, Rossi M, Romagnoli C. Statin compliance in the

77. Hunninghake DB, Stein EA, Bays HE, Rader DJ, Chitra RR, Simonson SG, et al. Rosuvastatin improves the atherogenic and atheroprotective lipid profiles in pa-

78. Goldberg AC, Saper A, Liu J, Capece R, Mitchell YB. Efficacy and safety of ezeti-

79. Comparative HDL Ef

80. Barter PJ, Stender S, Cheung RC, Bonnier J, Morrell JM, et al. Effects of switching statins on achievement of lipid goals: measuring effective reductions in cholesterol using rosuvastatin therapy (MERCURY I) study. *Am Heart J* 2004;147:705–712.

81. Stein EA, Struth K, Southworth H, Diggie PJ, Miller E, HeFF Study Group. Comparison of rosuvastatin versus atorvastatin in patients with heterogeneous fa-

82. Amsencence P, Bogosladensky J, Calahorra A, Ill, Goldstein LB, Hennermici M, Rudolph AE, et al. High-dose atorvastatin after stroke or transient ischemic attack. *N Engl J Med* 2006;355:549–559.

83. Amarenco P, Bogousslavsky J, Kastelein J, Olsson AG, Tikkanen MJ, Holme I, et al. High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction. *JAMA* 2000;284:2437–2445.

84. Amarence P, Bogosladensky J, Calahorra A, Ill, Goldstein LB, Hennermici M, Rudolph AE, et al. High-dose atorvastatin after stroke or transient ischemic attack. *N Engl J Med* 2006;355:549–559.
105. Knopp RH, d’Emden M, Smilde JG, Pozock SJ. Efficacy and safety of atorvastatin in the prevention of cardiovascular end points in subjects with type 2 diabetes: the ATORvastatin Study for Prevention of Coronary Heart Disease Endpoints in non-insulin-dependent diabetes mellitus (ASPIEN). Diabetes Care 2006;29:1478–1485.

106. Nakamura H, Arakawa K, Itakura H, Kitabatake A, Goto Y, Toyota T, et al. Primary prevention of cardiovascular disease with atorvastatin in Japan: a prospective randomised controlled trial. Lancet 2006;368:1155–1163.

107. Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 2006;295:1556–1565.

108. Save V, Patil N, Mouliik N, Rajadhyaksha G. Effect of atorvastatin on type 2 diabetic dyslipidemia. J Cardiovasc Pharmacol Ther 2006;11:262–270.

109. Goldberg RB, Guyton JR, Mazzone T, Weinstock RS, Polis A, Edwards P, et al. Ezetimibe/simvastatin vs atorvastatin in patients with type 2 diabetes and hypercholesterolemia: the VYTTAL study. Mayo Clin Proc 2006;81:1579–1588.

110. Binbrek AS, El-A, Al-Zaiabag M, Ela J, Keber I, Cuevas AM, et al. Rosuvastatin versus atorvastatin in achieving lipid goals in patients at high risk for cardiovascular disease in clinical practice: a randomized, open-label, parallel-group, multicenter study (DISCOVERY alpha study). Curr Ther Res Clin Exp 2006;67:21–43.

111. Clear JC, Leary DH, Hofer B, Bassand JP, Garcia HRH, Miller SS, Socotra FM, et al. Comparison of the efficacy and safety of rosuvastatin 10 mg and atorvastatin 20 mg in high-risk patients with hypercholesterolemia—Prospective study to evaluate the Use of Low doses of the Statins Atorvastatin and Rosuvastatin (PULSAR), Trials 2006;7:35.

112. Betteridge DJ, Gibson JM. Effects of rosuvastatin on lipids, lipoproteins and apo-lipoproteins in the dyslipidaemia of diabetes. Diabet Med 2007;24:541–549.

113. Blauw GJ, MD, Chipperfield R, Blagden MD, Chipperfield R. Efficacy and safety of ezetimibe co-administered with atorvastatin in untreated patients with primary hypercholesterolaemia and coronary heart disease. Curr Med Res Opin 2007;23:767–775.

114. Lee SH, Chung N, Kwan J, Kim DI, Kim WH, Kim CJ, et al. Comparison of the efficacy and tolerability of pitavastatin and atorvastatin: an 8-week, multicenter, randomized, open-label, dose-titration study in Korean patients with hypercholesterolemia. Clin Ther 2007;29:2365–2373.

115. McGinnis B, Olson KL, Magid D, Bayliss E, Korner EJ, Brand DW, et al. Factors related to adherence to statin therapy. Ann Pharmacother 2007;41:1805–1811.

116. Hudson M, Richard H, Pilote L. Parabolas of medication use and discontinuation after myocardial infarction—are we closing the treatment gap? Pharmacoeconomics Drug Saf 2007;16:773–785.

117. Kamal-Bahl SJ, Burke T, Watson D, Wentworth C. Discontinuation of lipid modifying drugs among commercially insured United States patients in recent clinical practice. Am J Cardiol 2007;99:530–534.

118. Kjekshus J, Apetrei E, Barrie RI, Böhm M, Cleland JG, Cornel JH, et al. Rosuvastatin in older patients with systolic heart disease in daily clinical practice in Italy. Arch Cardiovasc Dis 2007;90:140–146.

119. Krowicki S, Arakawa K, Kajiwara K, Biro S, et al. A 52-week, randomized, open-label, parallel-group comparison of the tolerability and effects of pitavastatin and atorvastatin on high-density lipoprotein cholesterol levels and glucose metabolism in Japanese patients with elevated levels of low-density lipoprotein cholesterol and glucose intolerance. Clin Ther 2008;30:1089–1101.

120. Lablanche JM, Leone A, Merkely B, Morais J, Alonso J, Santini M, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med 2008;359:1485–1494.

121. Lee SH, Chung N, Kwan J, Kim DI, Kim WH, Kim CJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008;359:2195–2207.

122. Leevy SF, Nguyen HM, H Institute of Medicine J, Lumley T, et al. The safety and tolerability of atorvastatin 10 mg in the Collaborative Atorvastatin Diabetes Study (CARD3). Diab Care 2008;31:1772–1783.

123. Lonkendonk PJ, McPherson R, Tegdri A, Simonato D, Nozza A, Martinou P, et al. Comparative effects of 10 mg versus 80 mg atorvastatin on high-sensitivity C-reactive protein in patients with stable coronary artery disease: results of the CAP (Comparative Atorvastatin Pleiotropic effects) study. Clin Ther 2008;30:2278–2313.

124. Long-term persistence with statin treatment in a not-for-profit diabetes organization: a prospective, randomized, controlled trial. J Clin Lipidol 2008;2:91–105.

125. Yokota K, Juno H, Hanaka H, Shinomiya M, Mimaki K, Miyashita Y, et al. Multicenter collaborative randomized parallel group comparative study of pitavastatin and atorvastatin in Japanese hypercholesterolemia patients. Collaborative study on hypercholesterolemia drug intervention and their benefits for atherosclerosis prevention (CHIBA study). Atherosclerosis 2008;201:345–352.

126. Mayr F, Koda Y, Kukushy K, Kajiwara K, Kajiwara K, Brio S, et al. A 52-week, randomized, open-label, parallel-group comparison of the tolerability and effects of pitavastatin and atorvastatin on high-density lipoprotein cholesterol levels and glucose metabolism in Japanese patients with elevated levels of low-density lipoprotein cholesterol and glucose intolerance. Clin Ther 2008;30:1089–1101.

127. Neselius W Jr, Basile JD, VO AN, Jiang P, Thakkar R, Padley RJ. Efficacy and tolerability of atorvastatin/lopidol' fixed-dose combination tablet compared with atorvastatin and fenofibrate monotherapies in patients with dyslipidemia: a 12-week, multicenter, double-blind, randomized, parallel-group study. Clin Ther 2009;31:2284–2383.

128. Neumann CB, Szarek M, Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, et al. The safety and tolerability of atorvastatin 10 mg in the Collaborative Atorvastatin Diabetes Study (CARD3). Diab Vasc Dis Res 2008;5:149–153.

129. Neumann CB, Szarek M, Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, et al. The safety and tolerability of atorvastatin 10 mg in the Collaborative Atorvastatin Diabetes Study (CARD3). Diab Vasc Dis Res 2008;5:149–153.

130. Neumann CB, Szarek M, Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, et al. The safety and tolerability of atorvastatin 10 mg in the Collaborative Atorvastatin Diabetes Study (CARD3). Diab Vasc Dis Res 2008;5:149–153.

131. Neumann CB, Szarek M, Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, et al. The safety and tolerability of atorvastatin 10 mg in the Collaborative Atorvastatin Diabetes Study (CARD3). Diab Vasc Dis Res 2008;5:149–153.

132. Neumann CB, Szarek M, Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, et al. The safety and tolerability of atorvastatin 10 mg in the Collaborative Atorvastatin Diabetes Study (CARD3). Diab Vasc Dis Res 2008;5:149–153.

133. Neumann CB, Szarek M, Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, et al. The safety and tolerability of atorvastatin 10 mg in the Collaborative Atorvastatin Diabetes Study (CARD3). Diab Vasc Dis Res 2008;5:149–153.

134. Neumann CB, Szarek M, Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, et al. The safety and tolerability of atorvastatin 10 mg in the Collaborative Atorvastatin Diabetes Study (CARD3). Diab Vasc Dis Res 2008;5:149–153.

135. Neumann CB, Szarek M, Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, et al. The safety and tolerability of atorvastatin 10 mg in the Collaborative Atorvastatin Diabetes Study (CARD3). Diab Vasc Dis Res 2008;5:149–153.
in 12,064 survivors of myocardial infarction: a double-blind randomized trial. Lancet 2010;376:1658–1669.

156. Pitt B, Loscalzo J, Monyak J, Miller E, Raichlen J. Comparison of lipid-modifying therapy patterns among patients with type 2 diabetes mellitus with high cardiovascular disease risk. BMJ Open Diabetes Res Care 2015;23:e000132.

157. Kim SH, Seo MK, Yoon MH, Choi DH, Hong TJ, Kim HS. Assessment of the efficacy and safety profile of simvastatin versus atorvastatin in patients with mixed hyperlipidemia. J Clin Lipidol 2014;8:526–533.

158. Liu PY, Lin LY, Lin HJ, Hsia CH, Hung YR, Yeh HI, et al. Association of statin intolerance with type 2 diabetes mellitus with high cardiovascular disease risk. BMJ Open Diabetes Res Care 2015;23:e000132.

159. Vinogradova Y, Coupland C, Brindle P, Hippsley-Cox J. Discontinuation and re-starting in patients on statin treatment: prospective open cohort study using a primary care database. BMJ 2016;353:i3305.

160. Schumlan KL, Lamerato LE, Dalal MR, Sung J, Jhaveri M, Koren A, et al. Development and validation of algorithms to identify statin intolerance in a US administrative database. Value Health 2016;19:852–860.

161. Zhang H, Plutzky J, Skentzos S, Morrison F, Mar P, Shubina M, et al. Assessment of the efficacy and safety of rosvastatin of carotid intima-media thickness in Japanese patients: Justification of Atherosclerosis Regression Treatment (JART) study. Circulation 2012;126:221–229.

162. Pitt B, Llosacaio J, Monyak J, Miller E, Raichlen J. Comparison of lipid-modifying efficacy of rosuvastatin versus atorvastatin in patients with acute coronary syndrome (from the UNI-STAR protocol). Am J Cardiol 2012;109:1239–1246.

163. Nohara R, Daida H, Hata M, Kaku K, Kawamori R. Effect of intensive lipid lowering therapy with rosuvastatin of carotid intima-media thickness in Japanese patients: Justification of Atherosclerosis Regression Treatment (JART) study. Circulation 2012;126:221–229.

164. Chen F, Maccubbin D, Yan L, Sirah W, Chen E, Sisk CM, et al. Lipid-altering efficacy and safety profile of co-administered extended-release niacin/laropiprant and simvastatin versus atorvastatin in patients with mixed hyperlipidemia. Int J Cardiol 2013;167:225–231.

165. Kim SH, Seo MK, Yoon MH, Choi DH, Hong TJ, Kim HS. Assessment of the efficacy and tolerability of 2 formulations of atorvastatin in Korean adults with hypercholesterolemia: a multicenter, prospective, open-label, randomized trial. Clin Ther 2013;35:77–86.

166. Van Delden XM, Huijgen R, Wolmarans KH, Brice BC, Barron JK, Blom DJ, et al. LDL-cholesterol target achievement in patients with heterozygous familial hypercholesterolemia at Groote Schuur Hospital: minority at target despite large reductions in LDL-C. Atherosclerosis 2018;287:327–333.

167. Ofori-Asenso R, Ilomäki J, Tacey M, Si S, Curtis AJ, Zomer E, et al. Fluvastatin after statin intolerance: the PRUV-intolerance study with propensity score matching. J Clin Lipidol 2014;8:526–533.

168. Olopade BO, Barlow NJ, Howie P, Le Breton C, Cockroft J, Mullen K, et al. Patterns of treatment in the elderly. Am J Med 2018;126:1463–1471.

169. Nagar SP, Rane PP, Fox KM, Meyers J, Davis K, Beauraun A, et al. Treatment patterns, statin intolerance, and subsequent cardiovascular events among Japanese patients with high cardiovascular risk initiating statin therapy. Circ J 2018;82:1006–1016.

170. Van Delden XM, Huisgen R, Wollman RH, Brice BC, Barron JK, Blom DJ, et al. LDL-cholesterol target achievement in patients with heterozygous familial hypercholesterolemia at Groote Schuur Hospital: minority at target despite large reductions in LDL-C. Atherosclerosis 2018;287:327–333.

171. Ofori-Asenso R, Ilokomai J, Tacey M, Zomer E, Curtis AJ, Beil JS, et al. Patterns of statin use and long-term adherence and persistence among older adults with diabetes. J Diabetes 2018;10:699–707.

172. Mefford MT, Taijue GS, Tanner RM, Colantonio LD, Monda KL, Dent R, et al. Willingness to be reinitiated on a statin (from the REasons for Geographic and Racial Differences in Stroke Study). Am J Cardiol 2018;122:768–774.

173. Kajinami K, Ozaki A, Tajima Y, Yamashita S, Ariai H, Teramoto T. Real-world data to identify hypercholesterolemia patients on suboptimal statin therapy. J Atheroscler Thromb 2019;26:408–411.

174. Chou WJ, Wen TC, Fox KM, Shen LJ, Lin LY, Qian Y, et al. Treatment patterns of lipid-lowering therapies and possible statin intolerance among statin users with clinical atherosclerotic cardiovascular disease (ASCVD) or diabetes mellitus (DM) in Taiwan. J Atheroscler Thromb 2020;27:1171–1180.

175. Ofori-Asenso R, Ilokomai J, Tacey M, Si S, Curtis AJ, Zomer E, et al. Predictors of first-year nonadherence and discontinuation of statins among older adults: a retrospective cohort study. Br J Clin Pharmacol 2019;85:227–235.

176. Roh JW, Chun KH, Kang M, Lee CJ, Oh J, Shim CY, et al. PRAVastatin versus FLUVastatin after statin intolerance: the PRUV-intolerance study with propensity score matching. Am J Med 2019;132:1320–1326.e1.

177. Bradley CK, Wang YT, Li S, Robinson JG, Roger VL, Goldberg AC, et al. Patient-reported reasons for declining or discontinuing statin therapy: insights from the PALMY registry. J Am Heart Assoc 2019;8:e011765.
The STatin adverse treatment experience survey: experience of patients reporting side effects of statin therapy. J Clin Lipidol 2019;13:415–424.

Predictors of statin intolerance in patients with a new diagnosis of atherosclerotic cardiovascular disease within a large integrated health care institution: the IMPRES study. J Cardiovasc Pharmacol 2020;75:426–431.

Reported muscle symptoms during statin treatment amongst Italian dyslipidaemic patients in the real-life setting: the PROSISA Study. J Intern Med 2021;290:116–128.

Assessment of trends in statin therapy for secondary prevention of atherosclerotic cardiovascular disease in US adults from 2007 to 2016. JAMA Netw Open 2020;3:e2025505.

Statin use and discontinuation in Danes age 70 and older: a nationwide drug utilisation study. Age Ageing 2021;50:554–558.

Effects of statin and antiplatelet therapy noncompliance and intolerance on patient outcomes following vascular surgery. J Vasc Surg 2020;71:1358–1369.

Impact of statin adherence on cardiovascular disease and mortality outcomes: a systematic review. Br J Clin Pharmacol 2014;78:684–698.

Statin discontinuation in high-risk patients: a systematic review of the evidence. Curr Pharm Des 2011;17:3669–3689.

Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA 2016;315:1580–1590.

Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: the ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol 2015;9:758–769.

Predictors of statin intolerance in patients with a new diagnosis of atherosclerotic cardiovascular disease within a large integrated health care institution: the IMPRES study. J Cardiovasc Pharmacol 2020;75:426–431.

Reported muscle symptoms during statin treatment amongst Italian dyslipidaemic patients in the real-life setting: the PROSISA Study. J Intern Med 2021;290:116–128.

Assessment of trends in statin therapy for secondary prevention of atherosclerotic cardiovascular disease in US adults from 2007 to 2016. JAMA Netw Open 2020;3:e2025505.

Statin use and discontinuation in Danes age 70 and older: a nationwide drug utilisation study. Age Ageing 2021;50:554–558.

Effects of statin and antiplatelet therapy noncompliance and intolerance on patient outcomes following vascular surgery. J Vasc Surg 2020;71:1358–1369.

Impact of statin adherence on cardiovascular disease and mortality outcomes: a systematic review. Br J Clin Pharmacol 2014;78:684–698.

Statin discontinuation in high-risk patients: a systematic review of the evidence. Curr Pharm Des 2011;17:3669–3689.

Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA 2016;315:1580–1590.

Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: the ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol 2015;9:758–769.

Predictors of statin intolerance in patients with a new diagnosis of atherosclerotic cardiovascular disease within a large integrated health care institution: the IMPRES study. J Cardiovasc Pharmacol 2020;75:426–431.

Reported muscle symptoms during statin treatment amongst Italian dyslipidaemic patients in the real-life setting: the PROSISA Study. J Intern Med 2021;290:116–128.