Chromosome Numbers and Ploidy Levels of Chinese Curcuma Species

Juan Chen¹ and Nianhe Xia¹

Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650 China

Jietang Zhao, Jianjun Chen, and Richard J. Henny
University of Florida, IFAS, Mid-Florida Research and Education Center, 2725 S. Binion Road, Apopka, FL 32703

Additional index words. hidden cone gingers, tumeric, Zingiberaceae

Abstract. Curcuma L. is an economically important genus in the family Zingiberaceae. Many species are grown as medicinal, culinary, and ornamental crops. As a result of their high morphological diversity and small chromosome sizes, chromosome numbers and species relationships of Chinese Curcuma remain debated. This study examined chromosome numbers of 15 populations representing 11 species of Curcuma from China. Results showed that only Curcuma flaviflora S. Q. Tong was diploid with 2n = 2x = 42 and C. kwangsiensis S. G. Lee & C. F. Liang was tetraploid with 2n = 4x = 84. The other species were triploid (2n = 3x = 63). The study indicated that the basic chromosome number of Curcuma from China could be x = 21. The diploid C. flaviflora produced viable seeds, which was the main means for propagation. The tetraploid and the triploids produced no seeds and relied on rhizomes for propagation. Chromosome sizes of all species were small, ranging from 0.5 to 2.1 μm, which prevented karyotype analysis. The fact that nine of 11 species studied were triploid indicates that triploidy may have some type of competitive advantage over the diploid and tetraploid. In addition, the triploids are popular commercially because of abundant rhizome production and this may contribute to their wide distributions.

Despite their economic importance, disagreements on chromosome numbers of Curcuma species still exist (Table 1). Somatic chromosome numbers of 2n = 40, 42, and 77 were documented for C. oligantha Trim. by Saensouk and Chantaratanothai (2003), Eksomtramage et al. (2002), and Leong-Škorničková et al. (2007), respectively. The chromosome number of C. aromatica was reported to be 2n = 42 (Leong-Škorničková et al., 2007; Raghavan and Venkatsubban, 1943), 63 (Islam, 2004; Leong-Škorničková et al., 2007; Liu, 1985; Ramachandran, 1961), or 86 (Ramachandran, 1961). Variation also occurs in reports of the basic chromosome number, including x = 21 (Raghavan and Venkatsubban, 1943); x = 7 or 8 (Sato, 1960); and x = 7 (Leong-Škorničková et al., 2007). Thus far, x = 21 appears to be considered acceptable as the basic chromosome number (Eksomtramage et al., 2002; Islam, 2004; Joseph et al., 1999; Ramachandran, 1961, 1969). The ambiguity in chromosome numbers may be partially explained by potential misidentification of species. Curcuma species identification has been difficult as a result of the lack of a comprehensive taxonomic revision and the existence of numerous closely related species (Chen and Xia, 2011). So far, the number of species has been estimated at 50 (Wu and Larsen, 2000), 80 (Larsen et al., 1998), and 120 (Leong-Škorničková et al., 2007). Additional index words. hidden cone gingers, tumeric, Zingiberaceae

Table 1. A summary of somatic chromosome numbers studied in Curcuma species.

Taxa	No. (2n)	Origin	Reference
C. aff. oligantha Trim.	42	Thailand	Eksomtramage et al. (2002)
C. oligantha Trim.	40	Thailand	Saensouk and Chantaratanothai (2003)
C. amarissima Roscoe	63	Bangladesh	Islam (2004)
C. aromatica Salisb.	63, 86	India	Leong-Škorničková et al. (2007)
C. elata Roxb.	63	Bangladesh	Islam (2004)
C. longa L.	64	Unknown	Sugiu (1936)
C. kwangsiensis S. G. Lee & C. F. Liang	63	India	Ramachandran (1961)
C. nankunshanensis N. Liu, X. B. Ye & J. Chen	84	China	Chen et al. (1988)
C. phaeocaules Valeton	63	China	Liu (1985)
C. rubrobracteata Skornič. Sabu & Prasanthik.	42	India	Leong-Škorničková et al. (2007)
C. viridiflora Roxb.	42	Bangladesh	Islam (2004)
C. yunnanensis N. Liu & C. Senjen	63	China	Chen and Chen (1984)
C. zanthorrhiza Roxb.	63	China	Liu (1985)
C. zedoaria (Christ.) Roscoe	63	Bangladesh	Leong-Škorničková et al. (2007)

Received for publication 8 Feb. 2013. Accepted for publication 19 Mar. 2013.

This research was supported by National Natural Science Foundation of China (Grant no. 31170185 and no. 3120161).

We are grateful to Drs. Qin-er Yang and Yuan Qiong for their technical assistance in conducting this research. We also thank Mr. Yushi Ye for his help during field work.

³To whom reprint requests should be addressed: e-mail chenjuan101@scib.ac.cn; nhxia@scib.ac.cn.

Additional index words. hidden cone gingers, tumeric, Zingiberaceae

Table 1. A summary of somatic chromosome numbers studied in Curcuma species.

Taxa	No. (2n)	Origin	Reference
C. aff. oligantha Trim.	42	Thailand	Eksomtramage et al. (2002)
C. oligantha Trim.	40	Thailand	Saensouk and Chantaratanothai (2003)
C. amarissima Roscoe	63	Bangladesh	Islam (2004)
C. aromatica Salisb.	63, 86	India	Leong-Škorničková et al. (2007)
C. elata Roxb.	63	Bangladesh	Islam (2004)
C. longa L.	64	Unknown	Sugiu (1936)
C. kwangsiensis S. G. Lee & C. F. Liang	63	India	Ramachandran (1961)
C. nankunshanensis N. Liu, X. B. Ye & J. Chen	84	China	Chen et al. (1988)
C. phaeocaules Valeton	63	China	Liu (1985)
C. rubrobracteata Skornič. Sabu & Prasanthik.	42	India	Leong-Škorničková et al. (2007)
C. viridiflora Roxb.	42	Bangladesh	Islam (2004)
C. yunnanensis N. Liu & C. Senjen	63	China	Chen and Chen (1984)
C. zanthorrhiza Roxb.	63	China	Liu (1985)
C. zedoaria (Christ.) Roscoe	63	Bangladesh	Leong-Škorničková et al. (2007)

No. = chromosome number.
2007). High intra- and interpopulation variation also likely contributes to confusion in identification of Curcuma species (Chen and Xia, 2011).

There are 12 Curcuma species in China, mainly distributed in Yunnan, Guangxi, Sichuan, Guangdong, and Zhejiang provinces (Wu and Larsen, 2000). Somatic chromosome numbers of some Chinese Curcumas have been examined. Liu (1985) reported 2n = 63 for *C. aromatica*, *C. longa L.*, *C. phaeocaulis*, and *C. yunnanensis*. N. Liu & C. Senjen and N. H. Xia & J. Chen (1999) stated 2n = 64 for *C. kwangsiensis*. In contrast, Chen et al. (1988) stated 2n = 84 for *C. kwangsiensis*. Chromosome numbers of other Chinese *Curcuma* have not been documented such as *C. flaviflora* S. Q. Tong and *C. sichuanensis*.

Chromosome numbers and ploidy levels are important information for plant taxonomy, genetics, and evolution as well as essential for plant conservation and use (Bennett and Leitch, 2005). Cytogenetic characters have also been considered critical for defining intrageneric groups in *Curcuma* (Islam, 2004; Joseph et al., 1999; Leong-Skorníková et al., 2007; Ramachandran, 1961). To pursue a better understanding of Chinese *Curcuma* species, this study was intended to examine chromosome numbers of available *Curcuma* species in China, their ploidy levels, and their implications in distribution.

Materials and Methods

For this study, nine populations across eight species were collected from the wild in southwestern China. Six individuals of four species from Guangxi Botanical Garden of Medicinal Plants and South China Botanical Garden, Chinese Academy of Sciences, were examined (Table 2). Collected plants were grown outdoors in the ginger garden or were cultivated in containers at a greenhouse at the South China Botanical Garden. The plant specimens were identified with the help of Dr. De-Lin Wu at the South China Botanical Garden. Herbarium acronyms followed Index Herbariorum (Holmgren et al., 1990). Taxonomic names were in accordance with the classifications of Wu and Larsen (2000).

Actively growing root tips of the collected plants were taken and pretreated with 2.0 mM 8-hydroxyquinoline for 6 h, fixed in Carnoy I (three parts absolute ethanol and one part glacial acetic acid), macerated in 1 M HCl at 60 °C for 5 min, and stained with Carbol fuchsin. The root tips were squashed with forceps in a drop of 45% acetic acid on a glass slide, covered with a cover glass, and squashed again. Cover glasses were removed by freezing glass slides in liquid nitrogen. Slides were dried at room temperature and passed through three solutions: absolute ethanol; 1:1 ethyl alcohol:xylene; and xylene. Slides were sealed with permount mounting medium. Metaphase chromosomes were observed and photographs were taken under the OLYMPUS BX41 microscope (Olympus, Tokyo, Japan). Eight individual root tips from different plants of each *Curcuma* collection were studied. Chromosome numbers of a minimum of 20 cells of each collection were counted at the well-spread metaphase stage. Ploidy levels were determined based on $x = 21$ (Eksomtramage et al., 2002; Joseph et al., 1999; Ramachandran, 1961, 1969). All microscope slides were deposited in the South China Botanical Garden.

Reproductive strategies of different species were closely monitored and recorded, including seed propagation and asexual rhizome propagation. Seeds, if present, were collected and sowed. Rhizomes were also used for propagation.

Results

Chromosome numbers of 11 *Curcuma* species were determined (Table 2). Among them, *C. amarissima* Roscoe, *C. aromatica*, *C. galingensis* N. H. Xia & J. Chen, *C. elata*, *C. sichuanensis*, *C. phaeocaulis*, *C. rubrobracteata*, *C. wenyujin*, and *C. zanthorrhiza* had the chromosome number $2n = 63$.

Table 2. Chromosome numbers and vouchers of 11 species of *Curcuma* from China.

Scientific name	Habitat	Voucher	No. (2n) Ploidy level (x)	LR (μm)	RS
Curcuma rubrobracteata Skorníková, M. Sabu & Prasanthk.	Wild, growing in sand soil along the road in Menghai, Yunnan	J. Chen 0843 (IBSC)	63 3	0.5−1.3	Aⁿ
C. aromatica Salisb.	Cultivated in dry soil in Guangxi Botanical Garden of Medicinal Plants, Guangxi	J. Chen 0812 (IBSC)	63 3	0.8−1.8	A
C. sichuanensis X. X. Chen	Wild, growing beside streams in Menghai, Yunnan	J. Chen 0850 (IBSC)	63 3	0.8−1.8	A
C. elata Roxb.	Cultivated beside the road at South China Botanical Garden, Guangdong	J. Chen 0813 (IBSC)	63 3	1.0−1.8	A
C. wenyujin Y. H. Chen & C. Ling	Cultivated beside the road at South China Botanical Garden, Guangdong	J. Chen 0806 (IBSC)	63 3	0.8−1.8	A
C. phaeocaulis Valeton	Wild, growing beside streams in Wenshan, Yunnan	J. Chen 0828 (IBSC)	63 3	0.8−1.8	A
C. galingensis N. H. Xia & J. Chen	Wild, growing beside streams in Wenshan, Yunnan	J. Chen 0826 (IBSC)	63 3	0.6−1.3	A
C. zanthorrhiza Roxb.	Collected from the wild field, Wenshan, Yunnan	J. Chen 20101 (IBSC)	63 3	0.5−1.2	A
C. flaviflora S. Q. Tong	Wild at the margin of the forest in Menghai, Yunnan	J. Chen 0885 (IBSC)	42 2	0.5−2.1	S', A
C. amarissima Roscoe	Wild, growing in sand soil along the road in Menghai, Yunnan	J. Chen 0881 (IBSC)	63 3	0.5−1.5	A
C. kwangsiensis S. G. Lee & C. F. Liang	Wild, growing in sand soil along the road in Menghai, Yunnan	J. Chen 0848 (IBSC)	84 4	0.5−2.1	A
C. kwangsiensis S. G. Lee & C. F. Liang	Collected from the wild field, Baoshan, Yunnan	J. Chen 0849−1 (IBSC)	84 4	0.5−2.1	A
C. kwangsiensis S. G. Lee & C. F. Liang	Cultivated in dry soil in Guangxi Botanical Garden of Medicinal Plants, Guangxi	—	84 4	0.5−1.8	A
C. wenyujin Y. H. Chen & C. Ling	Cultivated in dry soil in Guangxi Botanical Garden of Medicinal Plants, Guangxi	J. Chen 0816 (IBSC)	84 4	0.5−1.8	A

ⁿNo. = chromosome numbers.
^rLR = chromosome length range.
^sRS = reproduction strategies.
^aA = sexual reproduction.
^sS = sexual reproduction.
(Figs. 1A–H, 2I, and 2O), whereas *C. kwangsiensis* had 2n = 84 (Fig. 2K–N), and *C. flaviflora* had 2n = 42 (Fig. 2I). All plants examined were polyploids except for *C. flaviflora*, which was a diploid. The ploidy levels of all species fitted well with the primary number x = 21 (Figs. 1 and 2).

All chromosomes of the studied *Curcuma* were very small, ranging from 0.5 to 2.1 μm in length; *C. rubrobracteata* (Fig. 1A) and *C. zanthorrhiza* (Fig. 2H) had the smallest chromosomes (0.5–1.3 μm). As a result of the small chromosome sizes, no clear morphological differences were observed. Centromeres were difficult to detect; thus, karyotype analysis was not performed.

Our study showed that *C. flaviflora* produced viable seeds and rhizomes, but seeds were the main method for propagation (Table 2; Fig. 3A–C). Tetraploid *C. kwangsiensis* appeared not able to produce seeds in the South China Botanical Garden, so it was propagated through rhizomes (Table 2; Fig. 3F–G) as were all of the triploids (Table 2; Fig. 3D–E).

The only diploid in the study, *C. flaviflora*, was found only in Yunnan province where it inhabits mountains or mountain margins. The majority of the triploids occurred in Southern China with the center of distribution in the Yunnan province. The tetraploids also had a wide geographical distribution, occurring in Yunnan, Guangxi, and Guangdong provinces (Table 2; Fig. 4).

Discussion

This is the first report of chromosome counts for *C. sichuanensis* (Fig. 1C) and *C. flaviflora* (Fig. 2I). Before this study, no diploid chromosome counts have been reported for Chinese *Curcumas* (Chen and Chen, 1984; Chen et al., 1988; Liu, 1985). *C. flaviflora* produced viable seeds, which was the main method for propagation. The identification of *C. flaviflora* as a diploid species provided additional evidence supporting the claim that the basic chromosome number of

Fig. 1. Somatic metaphase chromosomes of *Curcuma* species. (A) *Curcuma rubrobracteata* (2n = 63); (B) *C. aromatica* (2n = 63); (C) *C. sichuanensis* (2n = 63); (D) *C. elata* (2n = 63); (E) *C. wenyujin* (2n = 63); and (F) *C. phaeocaulis* (2n = 63). Scale bar = 10 μm.
Curcuma was 21. Sharma and Bhattacharya (1958) first reported $x = 16$ in the genus Curcuma. Sato (1960) proposed $x = 7$ and $x = 8$, and recently Leong-Skornicková et al. (2007) suggested that $x = 7$ should be considered a primary basic chromosome number for at least the majority of Indian Curcuma species (subgenus Curcuma). This proposal was based on the chromosome count of $2n = 77$ in C. oligantha Trim by flow cytometry. On the other hand, the basic number $x = 21$ appeared too high to be the primary one. Raghavan and Venkatsubban (1943), Ramachandran (1961), and Venkatasubban (1946) believed that this basic number might have been derived either by dibasic amphidiploidy (by combination of lower basic numbers of nine and 12 found in some genera in the family) or by secondary polyploidy. Nevertheless, the chromosome numbers of all 11 species in the present study can be explained by the basic chromosome number $x = 21$.

The present study, in conjunction with an earlier investigation (Joseph et al., 1999), has demonstrated small and similar chromosome sizes in the genus Curcuma. Similar chromosome size was also prevalent in other genera characterized by $x = 21$ such as Caulokaempferia yunnanensis (Gagnep.) Smith and Hitchenia (Chen et al., 1988; Leong-Skornicková et al., 2007; Ramachandran, 1969). The chromosomes of Curcuma were as small as those of other genera of the subfamily Zingiberoideae...
such as Globba, Hedychium and Cornu-kaempferia (Eksomtramage et al., 2002; Ramachandran, 1969). Stebbins (1966) pointed out that variation in chromosome size was correlated with climatic adaptation: the genera having smaller chromosomes were predominantly tropical or subtropical, whereas the large chromosomes were found exclusively in temperate climates. The genus Curcuma, one of many genera of the Zingiberaceae mainly occurring in tropical and subtropical habitats (Islam, 2004), may bear smaller chromosomes for adaptation to its habitat.

The triploids and tetraploids were located in areas either rich in water or influenced by human activities. Triploids probably originated by a fusion of reduced and unreduced gametes of diploids within or between species (Leong-Škormnicková et al., 2007; Rieseberg and Willis, 2007). Given the continuum of traits in polyploid taxa, hybridization may have also played an important role (Rehse, 2005). Nevertheless, the fact that the majority of species in China were triploid indicates that triploids may have some type of competitive advantage over diploids and tetraploids. The triploids are sterile and do not require seed production, their abundant rhizomes (Fig. 3D–E) make them popular in production, and subsequent selection may contribute to their wide distribution.

Fig. 3. Reproductive strategies of Curcuma species. (A–C) Spikes, seeds, and rhizomes of diploid species Curcuma flaviflora; (D–E) spikes and rhizomes of triploid species C. elata; and (F–G) spikes and rhizomes of tetraploid species C. kwangsiensis.
Fig. 4. The distribution of studied Curcuma in Guangdong, Guangxi, and Yunnan provinces, China. ⋅, ⋅, and ▲ represent the triploid, tetraploid, and diploid species, respectively.

Literature Cited

Aggarwal, B.B., Y. Surh, and S. Shishodia. 2007. The molecular targets and therapeutic uses of curcumin in health and disease. Springer Science + Business Media, LLC, New York, NY. Bennett, M.D. and I.J. Leitch. 2005. Nuclear DNA amounts in angiosperms: Progress, problems, and prospects. Ann. Bot. (Lond.) 95:45–90.

Chen, J. and N.H. Xia. 2011. Chromosome karyotype analysis of Curcuma L. and Boesenbergia Kuntz (Zingiberaceae): Polyploidy, recombination, and cyto-taxonomy. Proc. Indian Acad. Sci. B 17:118–132.

Raghavan, T.S. and K.R. Venkatasubban. 1943. Cytological studies in the family Zingiberaceae with special reference to chromosome number and cyto-taxonomy. Proc. Indian Acad. Sci. B 17:118–132.

Sato, D. 1960. The karyotype analysis in Zingiberale with special reference to the protokaryotype and stable karyotype. Sci. Papers Coll. Gen. Educ. Univ. Tokyo 10:225–243.

Sharma, A.K. and N.K. Bhattacharya. 1958. Cytology of several members of Zingiberaceae and a study of the inconstancy of their chromosome complements. Cellule 59:299–346.

Skornicková, J., T. Rehse, and M. Sabu. 2007. Other economically important Curcuma species, p. 451–467. In: Ravindra, P.N., K.N. Babu, and K. Sivaraman (eds.). Tumeric: The genus Curcuma (Medicinal and Aromatic Plants—Industrial Profiles). Vol. 45. CRC Press, Taylor & Francis Group, Boca Raton, FL.

Soontornchainakaseng, P. and K. Ananthawat-Jonsen. 2011. Ribosomal FISH mapping reveals hybridity in phytoestrogen producing Curcuma species from Thailand. Plant Syst. Evol. 292:41–49.

Stebbins, G.L. 1966. Chromosomal variation and evolution. Science 152:1463–1467.

Sugiura, T. 1936. Studies on the chromosome number of higher plants. Cytologia (Tokyo) 7:544–595.

Venkatasubban, K.R. 1946. A preliminary survey of chromosome numbers in Scitamineae of Bentham & Hooker. Proc. Indian Acad. Sci. B 23:281–300.

Wu, D.L. and K. Larsen. 2000. Zingiberiaceae, p. 322–377. In: Wu, Z.Y., P. Raven, and D.Y. Hong (eds.). Flora of China. Vol. 24. Science Press, Beijing, China, and Missouri Botanical Garden Press, St. Louis, MO.

Ye, X.B., J. Chen, and N. Liu. 2008. Curcuma nankunshanensis (Zingiberaceae), a new species from China. J. Trop. Subtrop. Bot. 16:472–476.

Zhao, L.J., F.F. Tang, and L.K. Liu. 2011. Karyotype analysis of Curcuma zedoaria (Christm.) roscoe by using CPD staining and FISH with 45S rDNA. Chin. Agri. Sci. Bull. 27:190–194 [in Chinese with English summary].