A CONJECTURAL PETERSON ISOMORPHISM IN K-THEORY

THOMAS LAM, CHANGZHENG LI, LEONARDO C. MIHALCEA, AND MARK SHIMOZONO

Abstract. We state a precise conjectural isomorphism between localizations of the equivariant quantum K-theory ring of a flag variety and the equivariant K-homology ring of the affine Grassmannian, in particular relating their Schubert bases and structure constants. This generalizes Peterson’s isomorphism in (co)homology. We prove a formula for the Pontryagin structure constants in the K-homology ring, and we use it to check our conjecture in few situations.

1. The K-Peterson conjecture

The goal of this manuscript is to present a precise conjecture which asserts the coincidence of the Schubert structure constants for the Pontryagin product in K-homology of the affine Grassmannian, with those for the quantum K-theory of the flag manifold. This is a K-theoretic analogue of the celebrated Peterson isomorphism between the homology of the affine Grassmannian and the quantum cohomology of the flag manifold [Pet, LS, LL].

Let G be a simple and simply-connected complex Lie group with chosen Borel subgroup B and maximal torus T, Weyl group W and affine Weyl group $W_{af} = W \ltimes Q'$ where Q' denotes the coroot lattice. Let Λ denote the weight lattice of G, so that the representation ring $R(T)$ of T is given by $R(T) \cong K^*_T(pt) \cong \mathbb{Z}[\Lambda]$. The torus-equivariant K-homology $K^*_T(Gr)$ of the affine Grassmannian $Gr = Gr_G$ of G has as basis over $\mathbb{Z}[\Lambda]$ the Schubert classes O_x of structure sheaves of Schubert varieties in Gr, where x varies over the set $W_{af} \subseteq W_{af}$ of affine Grassmannian elements.

Conjecture 1. Let $ut_\lambda, vt_\mu, wt_\nu \in W_{af}^-$, and let $\eta \in Q'$. Assume that $\nu = \lambda + \mu$. Then

$$c^{wt_\nu + \eta}_{ut_\lambda, vt_\mu} = N^{\nu, \eta}_{\nu, \nu} \quad \text{in } K^*_T(pt)$$

where c’s are the structure constants in $K^*_0(Gr)$ with respect to O_x and N’s are the structure constants in $QK_T(G/B)$ with respect to O^w.

Conjecture 1 implies that the multiplication in the ring $QK_T(G/B)$ is finite, and thus it is possible to define it over $\mathbb{Z}[q]$ instead of $\mathbb{Z}[[q]]$. On the affine side, it implies that we have the formula $O_{wt_\lambda} : O_{t_\nu} = O_{wt_\lambda + \nu}$ in the K-homology ring $K^*_T(Gr)$ endowed with the Pontryagin product. Conjecture 1 can then be alternatively formulated as follows.

Conjecture 2. The $R(T)$-module homomorphism

$$\Psi : K^*_0(Gr)[O^{-1}]_{t_\nu} \longrightarrow QK_T(G/B)[q^{-1}_{t_\nu}]$$

$$O_{wt_\lambda} \cdot O_{t_\nu}^{-1} \longmapsto q_{\lambda - \nu} O^w$$

1
is an isomorphism of $R(T)$-algebras.

The remainder of this article makes our conventions precise. We will give the geometric meaning of [LSS, Theorems 5.3 and 5.4] in Theorem 1 and provide a precise combinatorial formula of the aforementioned structure constants c’s in Theorem 2. This leads to computational evidence for these conjectures.

Remark 1. Ikeda, Iwao, and Maeno [IIM] have recently shown that the K-homology ring $K_0(\text{Gr}_{SL_n})$ is isomorphic to Kirillov-Maeno’s conjectural presentation of the quantum K-theory $\mathcal{Q}K(\text{Fl}_n)$ of complete flag manifold Fl_n after localization. Their approach is via the relativistic Toda lattice, and the behavior of Schubert classes under their isomorphism is also studied.

Remark 2. Braverman and Finkelberg [BF] showed that the coefficients of Givental’s K-theoretic J-function [Giv] for a flag variety are the equivariant characters of the polynomial functions on a Zastava space, which consists of based quasimaps to the flag variety. Moreover, in each homogeneous degree, the functions on a Zastava space are isomorphic to the functions on a transverse slice of a G-stable stratum inside another G-stable stratum in the affine Grassmannian. Together with the K-theoretic reconstruction theorems [LP, IMT], this provides a conceptual connection between quantum K-theory of flag varieties and K-homology of affine Grassmannians.

Remark 3. In [HL, Corollary 5.10], it is shown that the K-homology Schubert structure constants determine the 3-point K-theoretic Gromov-Witten invariants of a cominuscule flag variety G/P. However, a direct formula relating the two sets of invariants is not given.

Acknowledgements. The authors thank Takeshi Ikeda for explanations of the work [IIM]. T.L. acknowledges support from the NSF under agreement No. DMS-1464693. C. L. acknowledges supports from the Recruitment Program of Global Youth Experts in China and the NSFC Grant 11521101. L.M. acknowledges support from NSA Young Investigator Awards H98230-13-1-0208 and H98230-16-1-0013, and a Simons Collaboration Grant. M.S. acknowledges support from the NSF grant DMS-1600653.

2. Quantum K-theory of flag varieties

Let G be a complex, simple, simply-connected Lie group and $B,B^- \subset G$ is a pair of opposite Borel subgroups containing the fixed torus $T := B \cap B^-$. For each element $w \in W$ in the (finite) Weyl group there are the Schubert cells $X(w)^o := BwB/B$, $Y(w) := B^-wB/B$ and the Schubert varieties $X(w) := BwB/B$ and $Y(w) := B^-wB/B$ in the flag manifold $X := G/B$. Then $\dim_{\mathbb{C}} X(w) = \text{codim}_{\mathbb{C}} Y(w) = \ell(w)$ (the length of w). The boundary of the Schubert varieties is defined by $\partial X(w) = X(w) \setminus X(w)^o$ and $\partial Y(w) := Y(w) \setminus Y(w)^o$. The boundary is generally a reduced, Cohen-Macaulay, codimension 1 subscheme of the corresponding Schubert variety.

We briefly recall the relevant definitions regarding the equivariant K-theory ring, following e.g. [CG]. For any (complex) projective variety Z with an algebraic action of a torus T, one can define the equivariant K-theory ring $K^T(Z)$. This is the ring generated by symbols $[E]_T$ of T-equivariant vector bundles $E \to Z$ subject to the relations $[F]_T +$
There is a pairing $\langle \cdot, \cdot \rangle : K^T(Z) \otimes K^T(Z) \to K^T(pt) = R(T)$, where $R(T)$ is the representation ring of T, given by

$$\langle [E]_T, [F]_T \rangle = \chi_T(Z; E \otimes F) = \sum_{i=0}^{\dim Z} (-1)^i \text{ch}_T(H^i(Z; E \otimes F));$$

here χ_T denotes the equivariant Euler characteristic and $\text{ch}_T \in R(T)$ denotes the character of a T-module. If in addition Z is smooth then any T-equivariant coherent sheaf F on Z has a finite resolution by equivariant vector bundles, and thus there is a well defined class $[F]_T \in K^T(Z)$. This identifies the Grothendieck group $K_T(Z)$ of equivariant coherent sheaves with $K^T(Z)$. For any T-equivariant map of projective varieties $f : Z_1 \to Z_2$, there is a well defined push-forward $f_* : K_T(Z_1) \to K_T(Z_2)$ given by $f_*[F]_T = \sum_{i \geq 0} (-1)^i [R^if_*F]_T$; in this language the pairing above is given by $\langle [E]_T, [F]_T \rangle = \pi_*(\langle [E]_T, [F]_T \rangle)$ where $\pi : Z \to pt$ is the structure map.

The maximal torus T acts on $X = G/B$ by left multiplication and the Schubert varieties $X(w), Y(w)$ are T-stable. Then the structure sheaves of the Schubert varieties determine the Grothendieck classes $O_w := [O_X(w)]_T$ and $O_w^* := [O_Y(w)]_T$ in the T-equivariant K-theory ring $K_T(X)$. We will also need the ideal sheaf classes $\xi_w := [O_X(w)(-\partial X(w))]_T$ and $\xi_w^* := [O_Y(w)(-\partial Y(w))]_T$ determined by the boundaries of the corresponding Schubert varieties. The ideal sheaf classes are duals of the Schubert classes:

$$\langle O_w, \xi_v^* \rangle = \langle O_w, \xi_v \rangle = \delta_{w,v},$$

where δ is the Kronecker delta symbol. We refer to [Bri05 §3.3] or [AGM] for the proofs of this.

Motivated by the relation between quantum cohomology and Toda lattice discovered by Givental and Kim [GK, Kim], Givental and Lee [Giv, Lee] defined a ring which deforms both the (equivariant) K-theory and the quantum cohomology rings for the flag manifold X. This is the equivariant quantum K-theory ring $QK_T(X)$. Additively, $QK_T(X)$ is the free module over the power series ring $K_T(pt)[[q]] = R(T)[[q_1, \ldots, q_r]]$ which has a $R(T)[[q]]$-basis given by Schubert classes O_w (or O^*_w) as w varies in W.

Here r denotes the rank of $H_2(X)$, which for $X = G/B$ is the same as the number of simple reflections $s_i \in W$. The multiplication is determined by Laurent polynomials $N_{u,v}^{w,d} \in R(T)$ such that

$$(1) \quad O_u \ast O^v = \sum_{w \in W} N_{u,v}^{w,d} q^d O_w$$

where the sum is over effective degrees $d = \sum_{i=1}^{r} m_i [X(s_i)] \in H_2(X)_{\geq 0}$ (i.e. each $m_i \geq 0$), and $q^d = \prod_{i=1}^{r} q_i^{d_i}$. The precise definition of $N_{u,v}^{w,d}$ requires taking Euler characteristic of certain K-theory classes on the Kontsevich moduli space of stable maps $\overline{\mathcal{M}}_{0,3}(X, d)$ and over some of its boundary components $\overline{\mathcal{M}}_{0,3}(X) :$

$$N_{u,v}^{w,d} = \sum_{i=1}^{d} (-1)^i \chi_{\overline{\mathcal{M}}_{0,3}(X)}(\text{ev}_1^*(O^u) \cdot \text{ev}_2^*(O^v) \cdot \text{ev}_3^*(\xi_w)).$$
(This is unlike the case of quantum cohomology, where boundary components do not contribute to the structure constants.) Because boundary strata are fiber products of moduli spaces with 2 or 3 marked points, a standard calculation (see e.g. [BM11, §5]) shows that:

\[N_{u,v}^{w,d} = \sum (O^u, O^v, \xi_{\sigma_0})_{d_0} \cdot (O^{\sigma_0}, \xi_{\sigma_1})_{d_1} \cdot \ldots \cdot (O^{d_{j-1}}, \xi_{\sigma_{j-1}})_{d_{j-1}} \cdot (O^{\sigma_{j-1}}, \xi_w)_{d_j}, \]

where the sum is over \(\sigma_0, \ldots, \sigma_j \in W \) and multidegrees \(d = (d_0, \ldots, d_j) \) such that \(d_i \in H_2(X) \) are effective and \(d_i \neq 0 \) for \(i > 0 \). The notation \((O^u, O^v, \xi_u)_{d} \) stands for the (equivariant) 3-point K-theoretic Gromov-Witten (KGW) invariant

\[(O^u, O^v, \xi_u)_{d} = \chi_M(X_d)(ev_1^*(O^u) \cdot ev_2^*(O^v) \cdot ev_3^*(\xi_u)), \]

where \(ev_i : M_{0,3}(X, d) \to X \) are the evaluation maps. If one integrates over \(M_{0,2}(X, d) \), it gives the 2-point invariants \((O^u, \xi_v)_{d} \). Geometrical properties of the evaluation maps studied in [BCMP13, §3] imply that the 2-point KGW invariants \((O^u, \xi_v)_{d} \) are always 0 or 1. Formulas for these invariants, using combinatorially explicit recursions to calculate curve neighborhoods of Schubert varieties, can be found in [BM15, Rmk. 7.5].

If one declares \(\deg q_i = c_1(T_X) \cap [X(s_i)] = 2 \) then the quantum \(K \)-theory algebra \(QK_T(X) \) has a filtration by degrees, and its associated graded algebra is naturally isomorphic to the quantum cohomology algebra. Because KGW invariants are non-zero for infinitely many degrees (e.g. \((O^{\ast d}, O^{\ast d}, O^{\ast d})_{d} \) is the trivial 1-dimensional \(T \)-representation for any degree \(d \)), it is unclear whether the expansion of the product \(O^u \ast O^v \in QK_T(X) \) has finitely many terms. This was conjectured to be true for any flag manifold \(G/P \) by Buch, Chaput, Mihalcea and Perrin. The conjecture is true in the case of cominuscule Grassmannians [BCMP13] and for partial flag manifolds \(G/P \) with \(P \) a maximal parabolic group [BCMP16].

While there is no algorithm to calculate the structure constants \(N_{u,v}^{w,d} \) for \(X = G/B \) or for arbitrary flag manifolds \(G/P \), there are several particular instances where algorithms are available. In the case of a cominuscule Grassmannian, a “quantum = classical” statement, calculating KGW invariants in terms of certain K-theoretic intersection numbers on two-step flag manifolds was obtained in [BM11]; in Lie types different from type A, this uses rationality results from [CP11]. As a result, a Chevalley formula, which calculates the multiplication by a divisor class, was obtained in [BM11] for the type A Grassmannians, and it was recently extended in [BCMP16+] to all cominuscule Grassmannians. In the equivariant context, this formula determines an algorithm to calculate any product of Schubert classes, generalizing the result from quantum cohomology [Mih]. Formulas to calculate \(N_{u,v}^{w,d} \) for \(X = G/B \) and \(d \) a “line class”, i.e. \(d = [X(s_i)] \), were obtained in [LM] by making use of the geometry of lines on flag manifolds. In this case they also proved that \(N_{u,v}^{w,d} \) satisfy the same positivity property as the one proved by Anderson, Griffeth and Miller [AGM] for the structure constants in the (ordinary) equivariant \(K \)-theory of \(X \). There are also algorithms based on reconstruction formula [LP] [INT] which in principle can be used to calculate KGW invariants. In practice, however, these lead to quantities which quickly become unfeasible for explicit calculations.
3. \(K\)-homology of the affine Grassmannian

3.1. \(K\)-groups for thick and thin affine Grassmannians. The foundational reference for the thick affine Grassmannian is \([\text{Kas}]\) and for the thin affine Grassmannian we use \([\text{Kum02}]\) and \([\text{Kum15}]\).

We use notation from Section 1. The (thin) affine Grassmannian \(\text{Gr}\) is a \(\text{ind-finite}\) scheme: it is the union of finite-dimensional projective Schubert varieties \(X_w, \text{ for } w \in W_{\text{af}}\) (in analogy with the Schubert varieties \(X(w)\) for \(G/B\)). The dimension of the complex projective variety \(X_w\) is equal to the length \(\ell(w)\). Let \(K_T^T(\text{Gr})\) be the Grothendieck group of the category of \(T\)-equivariant finitely-supported (that is, supported on some \(X_w\)) coherent sheaves on \(\text{Gr}\). We have

\[
K_T^T(\text{Gr}) \cong \bigoplus_{w \in W_{\text{af}}} R(T) \cdot \mathcal{O}_w
\]

where \(\mathcal{O}_w = [\mathcal{O}_{X_w}]_T\) denotes the class of the structure sheaf of \(X_w\) (cf. \([\text{Kum15}],\) Section 3). We call the \(R(T)\)-module \(K_T^T(\text{Gr})\) the \((\text{equivariant}) K\)-homology of \(\text{Gr}\). We notice that \(\xi^\text{Gr}_w := [\mathcal{O}_{X_w}(-\partial X_w)]_T, \text{ for } w \in W_{\text{af}}, \) form another \(R(T)\)-basis of \(K_T^0(\text{Gr})\), which we simply denote as \(\xi_w\) whenever it is clear from the context.

The thick affine Grassmannian \(\overline{\text{Gr}}\) is an infinite-dimensional non quasicompact scheme: it is a union of finite-codimensional Schubert varieties \(X_w, \text{ for } w \in W_{\text{af}}\), of codimension \(\ell(w)\). Let \(K_T^0(\overline{\text{Gr}})\) be the Grothendieck group of the category of \(T\)-equivariant coherent sheaves on \(\overline{\text{Gr}}\), defined for example in \([\text{LSS},\) Section 3.2\]. We have

\[
K_T^0(\overline{\text{Gr}}) \cong \prod_{w \in W_{\text{af}}} R(T) \cdot \mathcal{O}^w
\]

where \(\mathcal{O}^w = [\mathcal{O}_{X^w}]_T\) denotes the class of the coherent structure sheaf of \(X^w\).

Let \(\overline{\text{Fl}}\) denote the (ind-)affine flag manifold, and \(\overline{\text{Fl}}\) denote the thick version. As for the affine Grassmannian, one defines Schubert varieties \(X_w \subset \overline{\text{Fl}}\) and \(X^w \subset \overline{\text{Fl}}\) such that \(\text{dim } X(w) = \text{codim } X^w = \ell(w)\). In this case \(w\) varies in the affine Weyl group \(W_{\text{af}}\). Let \(\mathcal{O}_w = [\mathcal{O}_{X_w}]_T \in K_T^0(\overline{\text{Fl}})\) and \(\mathcal{O}^w = [\mathcal{O}_{X^w}]_T \in K_T^0(\overline{\text{Fl}})\); we refer to \([\text{KaSh}]\) or \([\text{Kum15}]\) for the (rather delicate) details. There are \(T\)-equivariant projection maps \(\pi : \overline{\text{Fl}} \to \overline{\text{Gr}}\) and (abusing notation) \(\pi : \overline{\text{Fl}} \to \overline{\text{Gr}}\) which are locally trivial \(G/B\)-bundles. In particular they are flat, and

\[
\pi^* \mathcal{O}^w_{\overline{\text{Gr}}} = \mathcal{O}^w_{\overline{\text{Fl}}}
\]

for any \(w \in W_{\text{af}}\). Further, similar arguments to those in the finite case show that for any \(w \in W_{\text{af}}\),

\[
\pi_* \mathcal{O}_w^{\overline{\text{Fl}}} = \mathcal{O}_w^{\overline{\text{Gr}}}_{\pi(w)}
\]

where \(\pi(w)\) denotes the image of \(w\) in \(W_{\text{af}}\) under the projection map. (See e.g. \([\text{BK05},\) Thm. 3.3.4\] for a proof based on Frobenius splitting; or \([\text{BCMP13},\) Prop. 3.2\] for an argument based on a theorem of Kollár.) There is a pairing \(\langle \cdot, \cdot \rangle_{\overline{\text{Fl}}} : K_T^0(\overline{\text{Fl}}) \otimes K_T^0(\overline{\text{Fl}}) \to\)
for any classes $[\mathcal{F}], [\mathcal{G}]$ such \mathcal{F} is a T-equivariant sheaf on $\overline{\text{Fl}}$ and \mathcal{G} is a T-equivariant sheaf supported on a finite dimensional stratum $(\text{Fl})_n$ of the ind-variety Fl. By [Kum15, Lemma 3.4] this pairing is well defined. In fact, the definition of this pairing extends in an obvious way to any partial flag variety, in particular to the affine Grassmannian Gr. It was proved in [BK, Prop. 3.9] that the pairing satisfies the property $(\mathcal{O}^{u}_{\text{Fl}}, \xi_{\text{Fl}}) = \delta_{u,v}$. We will need the following additional properties of this pairing.

Lemma 1. Consider the pairing $\langle \cdot, \cdot \rangle_X$ and take any $u, v \in W_{af}$ in the case when $X = \text{Fl}$ and $u, v \in W_{af}^{-}$ for $X = \text{Gr}$. Then

$$\langle \mathcal{O}^{u}_{\text{Fl}}, \mathcal{O}_{v} \rangle_{X} = \begin{cases} 1 & \text{if } u \leq v; \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Consider first $X = \text{Fl}$. By definition we have

$$\langle \mathcal{O}^{u}_{\text{Fl}}, \mathcal{O}_{v} \rangle_{X} = \sum_{i} (-1)^{i} \chi_{T}(X_{v}, \text{Tor}_{i}^{\mathcal{O}_{\text{Gr}}^{T}}(\mathcal{O}_{X^{u}_{v}}, \mathcal{O}_{X_{u}})).$$

According to [Kum15, Lemma 5.5] all Tor sheaves are 0 for $i > 0$, and by definition $\text{Tor}_{i}^{\mathcal{O}_{\text{Gr}}^{T}}(\mathcal{O}_{X^{u}_{v}}, \mathcal{O}_{X_{v}}) = \mathcal{O}_{X_{v}}$ where $X^{u}_{v} := X^{u} \cap X_{v}$ is the Richardson variety (cf. e.g. 12 of loc.cit). According to [KuSc, Cor. 3.3], the higher cohomology groups $H^{i}(X^{u}_{v}, \mathcal{O}_{X^{u}_{v}}) = 0$ for $i > 0$ and since X^{u}_{v} is irreducible $H^{0}(X^{u}_{v}, \mathcal{O}_{X^{u}_{v}}) = \mathbb{C}$. It follows that the sheaf Euler characteristic $\chi_{T}(X^{u}_{v}, \mathcal{O}_{X^{u}_{v}}) = 1$.

We now turn to the situation when $X = \text{Gr}$. Let $u, v \in W_{af}^{-}$. The same argument as before reduces the statement to the calculation of $\chi_{T}(X^{u}_{v}, \mathcal{O}_{X^{u}_{v}})$ where $X^{u}_{v} \subset \text{Gr}$ is the Richardson variety. By definition of Schubert varieties, $\pi^{-1}(X^{u}_{v}) = X^{u}_{v0} \subset \text{Fl}$ where $w_{0} \in W$ is the longest element in the finite Weyl group, and $\pi^{-1}(X^{u}) = X^{u}$. It follows that the preimage of the grassmannian Richardson variety is $\pi^{-1}(X^{u}_{v}) = X^{u}_{v0}$. Then a standard argument based on the Leray spectral sequence (taking into account that the fiber of $\pi : \pi^{-1}(X^{u}_{v}) \to X^{u}_{v}$ is the finite flag manifold G/B, and that $H^{i}(G/B, \mathcal{O}_{G/B}) = 0$ for $i > 0$) gives that $H^{i}(X^{u}_{v0}, \mathcal{O}_{X^{u}_{v0}}) = H^{i}(X^{u}_{v}, \mathcal{O}_{X^{u}_{v}})$ for all i, thus the required Euler characteristic equals 1, as needed. \[\square\]

Lemma 2. For any $u, v \in W_{af}^{-}$, we have

(i) $\langle \mathcal{O}^{u}_{\text{Gr}}, \xi_{v} \rangle_{\text{Gr}} = \delta_{u,v};$

(ii) $\mathcal{O}_{v} = \sum_{w \leq v; w \in W_{af}^{-}} \xi_{w}.$

Proof. (i) The statement follows from the same arguments as for Fl in [BK, Prop. 3.9].

To prove (ii), we write $\mathcal{O}_{v} = \sum_{w} a_{w,v} \xi_{w}$, which is a finite sum because the class \mathcal{O}_{v} is supported on a finite-dimensional variety. By statement (i) and Lemma 1,

$$a_{w,v} = \langle \mathcal{O}^{w}_{\text{Gr}}, \mathcal{O}_{v} \rangle_{\text{Gr}} = \begin{cases} 1 & \text{if } w \leq v, \\ 0 & \text{otherwise.} \end{cases}$$

\[\square\]
3.2. *K*-Peterson algebra. The *K*-groups \(K_0^T(\text{Gr}) \) and \(K_0^0(\text{Gr}) \) acquire dual Hopf algebra structures from the homotopy equivalence \(\text{Gr} \cong \Omega K \), where \(K \subset G \) is a maximal compact subgroup and \(\Omega K \) is the group of based loops into \(K \). An algebraic model for these Hopf algebras is constructed in \cite{LSS}. Only the product structure of \(K_0^T(\text{Gr}) \), arising from the Pontryagin product \(\Omega K \times \Omega K \to \Omega K \) will be of concern to us.

We consider a variation of Kostant and Kumar’s *K*-nilHecke ring, the “small torus” affine *K*-nilHecke ring of \cite{LSS}, which was inspired by the homological analogue \cite{Pet}.

The affine Weyl group \(W_{af} \) acts on the weight lattice \(\Lambda \) of \(T \) by the level-zero action (that is, we take the null root \(\delta = 0 \))

\[
wt_\mu \cdot \lambda = w \cdot \lambda \quad \text{for } w \in W, \mu \in Q^+ \text{ and } \lambda \in \Lambda.
\]

Let \(I_{af} \) denote the vertex set of the affine Dynkin diagram. Abusing notation, we denote by \(\{\alpha_i \mid i \in I_{af}\} \) the images of the simple affine roots in \(\Lambda \). In particular, \(\alpha_0 = -\theta \in \Lambda \) where \(\theta \) is the highest root of \(G \). Let \(Q(T) = \text{Frac}(R(T)) \) and equip \(\mathbb{K}_Q = Q(T) \otimes_{R(T)} \mathbb{Q}[W_{af}] \) with product \((p \otimes v)(q \otimes w) = p(v \cdot q) \otimes vw \) for \(p, q \in Q(T) \) and \(v, w \in W_{af} \).

Define

\[
T_i = (1 - e^{\alpha_i})^{-1}(s_i - 1) \quad \text{for } i \in I_{af}.
\]

The \(T_i \) satisfy \(T_i^2 = -T_i \) and the same braid relations as the \(s_i \) do. Therefore for a reduced expression \(w = s_i s_{i_2} \cdots s_{i_\ell} \in W \) there are well defined elements \(T_w = T_{i_1} T_{i_2} \cdots T_{i_\ell} \). Let \(\mathbb{K} \) be the subring generated by \(T_i \) for \(i \in I_{af} \) and \(R(T) \). We call it the small-torus affine *K*-nilHecke ring.

Let \(\mathbb{L} \subset \mathbb{K} \) be the centralizer of \(R(T) \) in \(\mathbb{K} \); this is called the *K*-Peterson subalgebra. The following theorem clarifies the geometric meaning of \cite{LSS} Theorems 5.3 and 5.4.

Recall that the ideal sheaf basis \(\{\xi_w \mid w \in W_{af}\} \) in \(K_0^T(\text{Gr}) \) are the unique elements characterized by \(\langle \mathcal{O}^w, \xi_w \rangle_{\text{Gr}} = \delta_{vw} \).

Theorem 1. There is an isomorphism of \(R(T) \)-Hopf algebras \(k : K_0^T(\text{Gr}) \cong \mathbb{L} \) such that for every \(w \in W_{af}^{-} \)

(a) the element \(k_w := k(\xi_w) \) is the unique element in \(\mathbb{L} \) of the form

\[
k_w = T_w + \sum_{x \in W_{af} \setminus W_{af}^{-}} k_x T_x
\]

where \(k_x \in R(T) \), and

(b) the element \(l_w := k(\mathcal{O}_w) \) is given by

\[
l_w = \sum_{v \leq w} k_v.
\]

Proof. In \cite{LSS}, a *K*-homology Hopf algebra \(K_0^T(\text{Gr}) \) was constructed as a Hopf dual to \(K_0^0(\text{Gr}) \). In \cite{LSS} Theorem 5.3, an isomorphism \(K_0^T(\text{Gr}) \cong \mathbb{L} \) is constructed, and the \(R(T) \)-bilinear pairing \(\langle \cdot, \cdot \rangle_{\mathbb{L}} : K_0^0(\text{Gr}) \times \mathbb{L} \) is given by

\[
\langle \mathcal{O}^w, a \rangle_{\mathbb{L}} = a_w,
\]

where \(w \in W_{af}^{-} \) and \(a = \sum_{v \in W_{af}} a_v T_v \in \mathbb{L} \subset \mathbb{K} \) with \(a_v \in R(T) \); see \cite{LSS} §2.4, especially equation (2.10). The uniqueness of the elements \(k_w \) given by \cite{S} is \cite{LSS} Theorem 5.4.
We now identify the L with $K_T^G(Gr)$ via (6) and (10). It follows from [LSS, Theorem 5.4] that under the resulting isomorphism $k : K_T^G(Gr) \cong L$, we have $k(\xi_w) = k_w$. Statement (b) follows immediately from Lemma 2. □

3.3. Closed formula for structure constants. For $x, y, z \in W_{af}$, define the structure constants $c_{x,y}^z$ by

$$O_x \cdot O_y = \sum_{z \in W_{af}} c_{x,y}^z O_z$$

with the product structure given by the isomorphism of Theorem 1. We now give a closed formula for $c_{x,y}^z$ in terms of equivariant localizations.

Define the elements $y_i = 1 + T_i$ for $i \in I_{af}$. Then $y_i^2 = y_i$ and the y_i satisfy the braid relations so that for $w \in W_{af}$ we can define $y_w \in K$. The $\{y_w \mid w \in W_{af}\}$ form a $R(T)$-basis of K. For any $q \in Q(T)$, we have $q y_{s_i} = y_{s_i}(s_i q) + \frac{q - s_i q}{1 - e^{-\alpha_i}} y_{id}$. Define $b_{w,u} \in Q(T)$ and $e_{w,u} \in Q(T)$ respectively by

$$y_w = \sum_{u \in W_{af}} b_{w,u} u, \quad w = \sum_{u \in W_{af}} e_{w,u} y_u. \quad (11)$$

The matrix $(b_{w,u})$ is invertible, and its inverse is given by $(e_{w,u})$.

Proposition 1. Let $u, v \in W_{af}$. Let $u = s_{\beta_1} \cdots s_{\beta_m}$ be a reduced expression of u. We have

$$b_{u,v} = \sum_{\epsilon = 0}^{m} \prod_{k=1}^m \left(s_{\beta_1}^{\epsilon_1} \cdots s_{\beta_{k-1}}^{\epsilon_{k-1}} \frac{(-e^{-\beta_k})^{\epsilon_k}}{1 - e^{-\beta_k}} \right)_{\alpha_0 = -\theta}, \quad (12)$$

the summation over all $(\epsilon_1, \cdots, \epsilon_m) \in \{0,1\}^m$ satisfying $s_{\beta_1}^{\epsilon_1} \cdots s_{\beta_m}^{\epsilon_m} = v$.

Denote $\gamma_j = s_{\beta_1} \cdots s_{\beta_{j-1}}(\beta_j)$ for each j. Then we have

$$e_{u,v} = \sum_{\epsilon = 0}^{m} \prod_{k=1}^m \left((1 - e^{\gamma_k}) + \epsilon_k (1 - e^{\gamma_k}) \right)_{\alpha_0 = -\theta}, \quad (13)$$

the summation over all $(\epsilon_1, \cdots, \epsilon_m) \in \{0,1\}^m$ satisfying $y_{s_{\beta_1}}^{\epsilon_1} \cdots y_{s_{\beta_m}}^{\epsilon_m} = y_v$.

In the present work, we work in $Q(T_{af})$, where $T \subset G$ is the finite torus. Our proof below holds in $Q(T_{af})$ where T_{af} denotes the affine torus.

Proof. The formula for $b_{u,v}$ follows immediately from the definitions.

The formula for $e_{u,v}$ holds by showing that both sides satisfy the same recursive formulas. Precisely, let $\tilde{e}_{u,v}$ denote the RHS of (13). We shall show that $e_{u,v}$ and $\tilde{e}_{u,v}$

\[^1\text{In the notation of [KK90], they are denoted as } b_{u^{-1},v^{-1}} \text{ and } e^{v^{-1},u^{-1}} \text{ respectively.}\]
satisfy the same recursions. We have

\[s_i u = (e^{\alpha_i} y_{id} + (1 - e^{\alpha_i}) y_{s_i}) \sum_v e_{u,v} y_v \]

\[= \sum_v e^{\alpha_i} e_{u,v} y_v + \sum_v (1 - e^{\alpha_i}) y_{s_i} e_{u,v} y_v \]

\[= \sum_v e^{\alpha_i} e_{u,v} y_v + \sum_v (1 - e^{\alpha_i}) (s_i(e_{u,v}) y_{s_i} - s_i(e_{u,v}) - e_{u,v} y_{id}) y_v \]

\[= \sum_v e^{\alpha_i} e_{u,v} y_v + \sum_v (1 - e^{\alpha_i}) s_i(e_{u,v}) y_v + \sum_v e^{\alpha_i} (s_i(e_{u,v}) - e_{u,v}) y_v \]

\[= \sum_{v:s_i u < v} (e^{\alpha_i} e_{u,v} + (1 - e^{\alpha_i}) s_i(e_{u,v}) + (1 - e^{\alpha_i}) s_i(e_{u,s_i v}) + e^{\alpha_i} (s_i(e_{u,v}) - e_{u,v})) y_v \]

\[+ \sum_{v:s_i u > v} (e^{\alpha_i} e_{u,v} + e^{\alpha_i} (s_i(e_{u,v}) - e_{u,v})) y_v \]

\[= \sum_{v:s_i u < v} (s_i(e_{u,v}) + (1 - e^{\alpha_i}) s_i(e_{u,s_i v})) y_v + \sum_{v:s_i u > v} e^{\alpha_i} (s_i(e_{u,v}) y_v) \]

That is, for \(s_i u < u \), we have

\[e_{s_i u,v} = \begin{cases}
 s_i(e_{u,v}) + (1 - e^{\alpha_i}) s_i(e_{u,s_i v}), & \text{if } s_i u < v, \\
 e^{\alpha_i} s_i(e_{u,v}), & \text{if } s_i u > v.
\end{cases} \] (14)

It follows directly from (13) that \(e_{s_i u,v} \) satisfies the same recursive rule. Moreover, \(e_{id,v} = \delta_{id,v} = \tilde{e}_{id,v} \) for any \(v \). Therefore the statement follows. \(\square \)

Consider the left \(Q(T) \)-module homomorphism \(\kappa : Q(T) \otimes_{R(T)} \mathbb{K} \to Q(T) \otimes_{R(T)} \mathbb{L} \) defined by

\[\kappa(t_\lambda w) = t_\lambda \quad \text{for } w \in \mathbb{W} \text{ and } \lambda \in Q^\vee. \]

Proposition 2. The map \(\kappa \) restricts to a \(R(T) \)-module map \(\kappa : \mathbb{K} \to \mathbb{L} \), and

\[\kappa(T_u) = 0 \quad \text{if } u \in W_{af} \setminus W^-_{af}, \]

\[\kappa(T_u) = k_u \quad \text{if } u \in W^-_{af}, \]

\[\kappa(y_u) = l_u \quad \text{if } u \in W^-_{af}. \]

Proof. The first claim follows from the three formulas. From the definition, \(\kappa(T_i) = 0 \) for \(i \neq 0 \). It follows easily that \(\kappa(T_u) = 0 \) if \(u \notin W^-_{af} \). By [LSS, (5.1)], the element \(k_u \in \mathbb{L} \) can be characterized as follows. Let \(T_u = \sum_{x \in W_{af}} a_x x \) for \(a_x \in Q(T) \) and \(k_u = \sum_{\lambda \in Q^\vee} a'_{\lambda,\lambda} t_\lambda \) for \(a'_{\lambda,\lambda} \in Q(T) \). Then for any function \(f : W_{af} \to R(T) \) satisfying \(f(x) = f(xv) \) for \(v \in \mathbb{W} \), we have

\[\sum_{x \in W_{af}} a_x f(x) = \sum_{\lambda \in Q^\vee} a'_{\lambda,\lambda} f(t_\lambda). \]

It follows that \(\kappa(T_u) = k_u \). The last claim follows from the first two formulas, the equality \(y_w = \sum_{v \in W_{af}, v \leq w} T_v \) and (9). \(\square \)
Denote
\[b_{x,[y]} := \sum_{z \in y W} b_{x,z}, \quad e_{x,[y]} := \sum_{z \in y W} e_{x,z}. \]

Theorem 2. For any \(x, y, z \in W^- \), the coefficient \(c^z_{x,y} \) is given by
\[
(15) \quad c^z_{x,y} = \sum_{t_1, t_2 \in Q^V} b_{x,[t_1]} b_{y,[t_2]} c_{t_1 t_2, [z]}.
\]

Proof. By Theorem 1 we have \(l_x l_y = \sum_{z \in W^-} c^z_{x,y} l_z \). By Proposition 2 we have
\[
l_x l_y = \sum_{u, v \in W^-} \kappa(b_{x,u} u) \kappa(b_{y,v} v)
= \sum_{t_1, t_2 \in Q^V} \sum_{u, v \in W^-} b_{x,t_1 u} b_{y,t_2 v} \kappa(t_1 u) \kappa(t_2 v)
= \sum_{t_1, t_2 \in Q^V} \sum_{u, v \in W^-} b_{x,t_1 u} b_{y,t_2 v} t_1 t_2
= \sum_{z \in W^-} \sum_{t_1, t_2 \in Q^V} b_{x,[t_1]} b_{y,[t_2]} c_{t_1 t_2, [z]} l_z. \quad \square
\]

3.4. Geometric remarks.
We will provide a brief geometric interpretation of the previous approach. There is an \(R(T) \)-module identification \(\mathbb{K} = K_0^T(\text{Fl}) \) and an \(R(T) \)-Hopf algebra identification \(\mathbb{L} = K_0^T(\text{Gr}) \). The classes \(y_w \in \mathbb{K} \) play two roles: on one side \(y_w = O_w \) are the structure (finite dimension) Schubert structure sheaves on the affine flag manifold \(\text{Fl} \); on the other side they act \(\partial_w \) in the affine Grassmannian. In particular, Proposition 2 states that \(\psi_w \in K_0^T(\text{Gr}) \) correspond to the ideal sheaves \(\xi_w \) on \(K_0(\text{Fl}) \), or to the BGG-type operators \(\partial_w - id \). The map \(\kappa : \mathbb{K} \to \mathbb{L} \) is the K-theoretic projection map \(\pi_* : K_0^T(\text{Fl}) \to K_0^T(\text{Gr}) \), and the classes \(k_w \) and \(l_w \) (for \(w \in W^- \)) correspond respectively to the ideal sheaves and Schubert structure sheaves in the affine Grassmannian. In particular, Proposition 2 states that
\[
\pi_*(\xi_{w,\text{Fl}}) = \begin{cases}
\xi_w & \text{if } w \in W^- \\
0 & \text{otherwise}
\end{cases}; \quad \pi_*(O_{u,\text{Fl}}) = O_u \text{ for } u \in W^-.
\]

It is not difficult to prove these identities directly, using Lemma 3 and identities (4), (5).

For each of \(K_0^T(\text{Fl}) \) and \(K_0^T(\text{Gr}) \), there is a third basis \(\{ \iota_w \} \), indexed respectively by \(W^- \) and \(W^- / W \), called the localization basis. If \(w \in W^- \), then \(\iota_w \in K_0^T(\text{Fl}) \) is the map \(\iota_w : K_0^T(\text{Fl}) \to R(T) \) defined by sending the \(K \)-cohomology class \(O^a \) to its localization to the fixed point \(w \). Then equation (11) above corresponds to expanding the structure sheaf basis into localization basis and vice versa. A key observation from [LL] and [LSS], which is used in the proof of Theorem 2, is that the Pontryagin multiplication on \(K_0^T(\text{Gr}) \) is easy to write in the localization basis: if \(\lambda, \mu \in Q^V \) and \(\iota_{\lambda}, \iota_{\mu} \in K_0^T(\text{Gr}) \) are the corresponding localization elements, then \(\iota_{\lambda} \cdot \iota_{\mu} = \iota_{\lambda+\mu} \); see [LSS] Lemma 5.1.
4. Data and Evidence

As we observed above, the cohomological versions of Conjectures 1 and 2 were proved in [LS]. In the K-theoretic version, we can verify Conjecture 1 when the degree \(d \) in \(N_{\mu,\nu}^{w,d} \) is \(d = 0 \) or \(d = \alpha_i^\vee \) is a simple coroot. Our arguments are similar to those in [LL], but are quite involved, even in these situations. It would be desirable to find more conceptual explanations. Next we provide two computational examples.

4.1. Conjecture is true for \(G = SL_3 \). The complete flag manifold \(SL_3/B \) is the complex projective line \(\mathbb{P}^1 \). The Weyl group \(W = \mathbb{Z}_2 \) is generated by the simple reflection \(s_1 = s_\alpha \) of the unique simple root \(\alpha = \alpha_1 \). The equivariant quantum \(K \)-theory \(QK_T(\mathbb{P}^1) \) has an \(R(T)[q] \)-basis \(\{O^d, O^s_1\} \). As shown in [BMT], the only nontrivial quantum product is given by \(^2\)

\[
O^s_1 \star O^s_1 = (1 - e^{-\alpha})O^s_1 + e^{-\alpha}q.
\]

On the affine side, we notice that \(s_0 = s_1t_{-\alpha^\vee} \) and that \(W_\af = \{id\} \cup \{wt_{n\alpha^\vee} \mid n \in \mathbb{Z}_{<0}, w = id \text{ or } s_1\} \).

Let \(g_m \) be the unique element of \(W_\af \) of length \(m \) for \(m \geq 0 \). Let \(h_m \) be the unique element of \(W_\af \backslash W_\af^\vee \) of length \(m \) for \(m \geq 1 \). For example, \(g_3 = s_0s_1s_0 \) and \(h_4 = s_0s_1s_0s_1 \). Notice that \(T_i f = s_i(f)T_i + T_i(f) \) and \(T_i^2 = -T_i \) for any \(f \in R(T) \) and \(i \in \{0, 1\} \).

Lemma 3. We have \(k_{id} = 1 \). For \(r \geq 1 \), we have

\[
k_{g_{2r-1}} = T_{g_{2r-1}} + T_{h_{2r-1}} + (1 - e^{-\alpha})T_{h_{2r}}, \quad \text{and} \quad k_{g_{2r}} = T_{g_{2r}} + e^{-\alpha}T_{h_{2r}}.
\]

Proof. Denote by \(\tilde{k}_{g_m} \) the expected formula. By Theorem [a], it suffices to show \(\tilde{k}_{g_m} \in \mathbb{L} \), or equivalently, \(k_{g_m} e^{-\alpha} = e^{-\alpha} \tilde{k}_{g_m} \). Clearly, this holds when \(m = 0 \). It also holds for \(m \in \{1, 2\} \) by direct calculations. In particular we have

\[
(T_0 + T_1 + (1 - e^{-\alpha})T_{01})e^{\pm\alpha} = e^{\pm\alpha}(T_0 + T_1 + (1 - e^{-\alpha})T_{01});
\]

\[
(T_{10} + e^{-\alpha}T_{01})e^{\pm\alpha} = e^{\pm\alpha}(T_{10} + e^{-\alpha}T_{01}).
\]

Assume that it holds for \(m \leq 2r \) where \(r \geq 1 \). Then we have

\[
\tilde{k}_{g_{2r+1}} e^{-\alpha} = (T_{g_{2r+1}} + T_{h_{2r}} + (1 - e^{-\alpha})T_{01}T_{h_{2r}})e^{-\alpha}
\]

\[
= T_{g_{2r+1}} e^{-\alpha} + (T_1 + (1 - e^{-\alpha})T_{01})e^{\alpha}e^{-\alpha}T_{h_{2r}} e^{-\alpha}
\]

\[
= T_{g_{2r+1}} e^{-\alpha} + (T_0 + T_1 + (1 - e^{-\alpha})T_{01})e^{-\alpha}(T_{g_{2r}} + e^{-\alpha}T_{h_{2r}}) - T_{g_{2r}} e^{-\alpha}
\]

\[
= T_{g_{2r+1}} e^{-\alpha} + (T_0 + T_1 + (1 - e^{-\alpha})T_{01})T_{g_{2r}} e^{-\alpha} - e^{\alpha}(T_{01} + (1 - e^{-\alpha})T_{01})T_{h_{2r}}
\]

\[
- T_0 (T_{g_{2r}} + e^{-\alpha}T_{h_{2r}}) + T_0 e^{\alpha} T_{g_{2r}} e^{-\alpha} - e^{\alpha}(T_{01} + (1 - e^{-\alpha})T_{01})T_{g_{2r}} e^{-\alpha}
\]

\[
= e^{-\alpha} \tilde{k}_{g_{2r+1}} + T_{g_{2r}} + e^{-\alpha}T_{01}T_{h_{2r}} - T_{01} T_{h_{2r}} e^{-\alpha} - e^{\alpha} T_{1} T_{g_{2r}} e^{-\alpha}
\]

\[
= e^{-\alpha} \tilde{k}_{g_{2r+1}} - (T_{g_{2r}} + e^{-\alpha}T_{h_{2r}}) e^{\alpha} e^{-\alpha} + T_{h_{2r}} e^{-\alpha} + e^{\alpha} T_{g_{2r}} e^{-\alpha}
\]

\[
= e^{-\alpha} \tilde{k}_{g_{2r+1}}
\]

Similarly, we can show \(\tilde{k}_{g_{2r+2}} e^{-\alpha} = e^{-\alpha} \tilde{k}_{g_{2r+2}} \). Thus the statement follows. \(\square \)

\(^2\)We use the opposite identification \(e^{\alpha} = -[C_{e_i}] \in R(T) \) compared with [BMT] Section 5.5.
The following result follows from Lemma 3 and Theorem 1(b).

Lemma 4. We have $l_{id} = 1$. For $r \geq 1$, we have

\[\ell_{g_{2r-1}} = (1 - e^{-\alpha}) T_{h_{2r}} + \sum_{v \in W_{af}, \ell(v) \leq 2r-1} T_v \quad \text{and} \quad \ell_{g_{2r}} = \sum_{v \in W_{af}, \ell(v) \leq 2r} T_v. \]

Proposition 3. For $x \in W_{af}$ and $n \in \mathbb{Z}_{<0}$, we have in $K_T^*(\text{Gr}_{SL_2})$

\[O_x \cdot O_{t_{na^\vee}} = O_{xt_{na^\vee}}. \]

Proof. It suffices to prove the statement for $n = -1$. Notice that $t_{-\alpha^\vee} = s_1s_0 = g_2$ and $x = g_m$ for some $m \in \mathbb{Z}_{\geq 0}$. By Theorem 1, we just need to show $l_{g_m}l_{g_2} = l_{g_{m+2}}$. This follows from Lemma 4 and mathematical induction on m. \(\square\)

Thanks to the above formula, it remains to compute $O_{s_1t_{-\alpha^\vee}} \cdot O_{s_1t_{-\alpha^\vee}}$. For $x = s_1t_{-\alpha^\vee} = s_0 = g_1$, by direct calculations we have $l_{g_1}^2 = e^{-\alpha}l_{g_2} + (1 - e^{-\alpha})l_{g_3}$. Therefore

\[(17) \quad O_{s_1t_{-\alpha^\vee}} \cdot O_{s_1t_{-\alpha^\vee}} = (1 - e^{-\alpha}) O_{s_1t_{-2\alpha^\vee}} + e^{-\alpha}O_{t_{-\alpha^\vee}}. \]

Remark 4. We can also calculate the above product by using Theorem 2. For instance, for $z = s_1s_0 = t_{-\alpha^\vee}$, all the terms in the formula (15) for $c^z_{x,x}$ vanish unless $t_1 = t_2 = t_{\alpha^\vee}$. Therefore

\[c^z_{x,x} = b_{s_0,[t_{\alpha^\vee}]} b_{t_{2\alpha^\vee},[s_1s_0]} = \left(\frac{-e^\alpha}{1 - e^\alpha} \right)^2 e^{-\alpha} (1 - e^{-\alpha})^2 = e^{-\alpha}. \]

Formulas (16) and (17), together with Proposition 3, implies that Conjectures 1 and 2 hold when $G = SL_2$.

4.2. Multiplication for Gr_{SL_3}

The complete flag manifold $SL_3/B = \text{Fl}_3 = \{ V_1 \subset V_2 \subset \mathbb{C}^3 \mid \dim V_1 = 1, \dim V_2 = 2 \}$ parameterizes complete flags in \mathbb{C}^3. The Weyl group W is the permutation group S_3 of three objects generated by simple reflections s_1, s_2. We have the highest root $\theta = \alpha_1 + \alpha_2$ and coroot $\theta^\vee = \alpha_1^\vee + \alpha_2^\vee$. By calculations using Theorem 2, we obtain $O_{w_{1\alpha^\vee}}O_{t_{\alpha^\vee}} = O_{w_{-1\alpha^\vee}}$ in $K_T^*(\text{Gr}_{SL_3})$ for any $w \in W$, in addition to the following multiplication table.
The remaining products are read off immediately from the above table by the symmetry of the Dynkin diagram of Lie type A_2.

Comparing the above table with the appendix in [LM], we conclude that Conjecture [4] holds whenever the degree d in $N_{u,v}^w$ is given by $(0,0), (1,0)$ or $(0,1)$.

References

[AGM] D. Anderson, S. Griffeth, and E. Miller, *Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces*, J. Eur. Math. Soc. (JEMS), 13, (2011), no. 1, 57–84.

[BF] A. Braverman and M. Finkelberg, *Semi-infinite Schubert varieties and quantum K-theory of flag manifolds*, J. Amer. Math. Soc. 27 (2014) 1147–1168.

[BK] S. Baldwin and S. Kumar, *Positivity in T-equivariant K-theory of flag varieties associated to Kac-Moody groups, II*, Representation Theory, 21 (2017), 35–60.

[Bri02] M. Brion, *Positivity in the Grothendieck group of complex flag varieties*, Special issue in celebration of Claudio Procesi’s 60th birthday, J. Algebra 258 (2002), no. 1, 137–159.

[Bri05] M. Brion, *Lectures on the geometry of flag varieties*, Topics in cohomological studies of algebraic varieties, 33–85, Trends Math., Birkhäuser, Basel, 2005.

[BM11] A. S. Buch and L. C. Mihalcea, *Quantum K-theory of Grassmannians*, Duke Math. J. 156 (2011), no. 3, 501–538.

[BK05] M. Brion and S. Kumar, *Frobenius splitting methods in geometry and representation theory*, volume 231 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2005.

[BM15] A. S. Buch and L. C. Mihalcea, *Curve neighborhoods of Schubert varieties*, J. Differential Geom. 99 (2015), no. 2, 255–283.
[BCMP13] A. S. Buch, P.E. Chaput, L. C. Mihalcea and N. Perrin, Finiteness of cominuscule quantum K-theory, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 3, 477–494.

[BCMP16] A. S. Buch, P.E. Chaput, L. C. Mihalcea, and N. Perrin, Rational connectedness implies finiteness of quantum K-theory, Asian J. Math. 20 (2016), no. 1, 117–122.

[BCMP16+] A. S. Buch, P.E. Chaput, L. C. Mihalcea, and N. Perrin, A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties, arXiv:math.AG/1604.07500.

[CP11] P. E. Chaput and N. Perrin, Rationality of some Gromov-Witten varieties and applications to quantum K theory, Commun. Contemp. Math. 13 (2011), no. 1, 67–90.

[CG] N. Chriss and V. Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 2010.

[Deo] V. V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Inventiones Math., 79 (1985), pag. 499–511.

[Giv] A. Givental, On the WDVV equation in quantum K-theory, Dedicated to William Fulton on the occasion of his 60th birthday, Michigan Math. J. 48 (2000), 295–304.

[GK] A. Givental and B. Kim, Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168 (1995), no. 3, 609–641.

[GL] A. Givental and Y.-P. Lee, Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups, Invent. Math. 151 (2003), no. 1, 193–219.

[HL] X. He and T. Lam, Thomas, Projected Richardson varieties and affine Schubert varieties, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 6, 2385–2412.

[IIM] T. Ikeda, S. Iwao, and T. Maeno, Peterson Isomorphism in K-theory and Relativistic Toda Lattice, arXiv:1703.08664.

[IMT] H. Iritani, T. Milanov, and V. Tonita, Reconstruction and convergence in quantum K-theory via difference equations, Int. Math. Res. Not. IMRN 2015, no. 11, 2887–2937.

[Kas] M. Kashiwara, The flag manifold of Kac-Moody Lie algebra, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), 161–190, Johns Hopkins Univ. Press, Baltimore, MD, 1989.

[KaSh] M. Kashiwara and M. Shimozono, Equivariant K-theory of affine flag manifolds and affine Grothendieck polynomials, Duke Math. J. 148 (2009), no. 3, 501–538.

[KK86] B. Kostant and S. Kumar, The nil Hecke ring and cohomology of G/P for a Kac-Moody group, Adv. in Math. 62 (1986), no. 3, 187–237.

[KK90] B. Kostant and S. Kumar, T-equivariant K-theory of generalized flag varieties, J. of Differential Geometry, 32 (1990), no. 2, 549–603.

[Kum02] S. Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, 204. Birkhäuser Boston, Inc., Boston, MA, 2002.

[Kum15] S. Kumar, Positivity in T-equivariant K-theory of flag varieties associated to Kac-Moody groups, to appear in J. of European Math. Soc.

[KuSc] S. Kumar and K. Schwede, Richardson varieties have Kawamata log-terminal singularities, Int Math Res Notices (2014) 2014 (3): 842–864.

[LSS] T. Lam, A. Schilling, and M. Shimozono, K-theory Schubert calculus of the affine Grassmannian, Compos. Math. 146 (2010), no. 4, 811–852.

[LS] T. Lam and M. Shimozono, Quantum cohomology of G/P and homology of affine Grassmannian, Acta Math. 204 (2010), no. 1, 49–90.

[Lee] Y.-P. Lee. Quantum K-theory. I. Foundations, Duke Math. J. 121 (2004), no. 3, 389–424.

[LP] Y.-P. Lee and R. Pandharipande, A reconstruction theorem in quantum cohomology and quantum K-theory, Amer. J. Math. 126 (2004), no. 6, 1367–1379.

[LL] N. C. Leung and C. Li, Gromov-Witten invariants for G/B and Pontryagin product for ΩK, Tran. Amer. Math. Soc. (2012) no. 5, 2567–2599.

[LM] C. Li and L.C. Mihalcea, K-theoretic Gromov-Witten invariants of lines in homogeneous spaces, Int Math Res Notices (2014) 2014, no. 17, 4625–4664.
[Mih] L. C. Mihalcea, On equivariant quantum cohomology of homogeneous spaces: Chevalley formulas and algorithms, Duke Math. J. 140 (2007), no. 2, 321–350.

[Pet] D. Peterson, Quantum cohomology of G/P, Lecture notes at MIT, 1997.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
E-mail address: tfylam@umich.edu

School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
E-mail address: lichangzh@mail.sysu.edu.cn

460 McBryde Hall, Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA
E-mail address: lmihalce@math.vt.edu

460 McBryde Hall, Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA
E-mail address: mshimo@math.vt.edu