THERMAL STABILITY AND SENSITIVITY OF ENERGETIC FORMULATIONS

Maria A. Donnelly
University of Rhode Island, mdonnelly@chm.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss

Recommended Citation
Donnelly, Maria A., "THERMAL STABILITY AND SENSITIVITY OF ENERGETIC FORMULATIONS" (2015). Open Access Dissertations. Paper 321.
https://digitalcommons.uri.edu/oa_diss/321

This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
THERMAL STABILITY AND SENSITIVITY
OF ENERGETIC FORMULATIONS

BY

MARIA A. DONNELLY

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN
CHEMISTRY

UNIVERSITY OF RHODE ISLAND
2015
DOCTORAL DISSERTATION IN CHEMISTRY

OF

MARI A. DONNELLY

APPROVED:

Thesis Committee:

Major Professor James L. Smith
Co-Major Professor Jimmie C. Oxley

Brenton Deboef
Bongsup Cho
Nasser H. Zawia
DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
2015
ABSTRACT

Explosive mixtures have found widespread use in both military applications and as components of improvised explosive devices (IEDs). Knowledge of how the components of these formulations interact with each other will benefit both military and anti-terrorism organizations. Since there are significant differences in the explosive properties desired by the military verses those involved in illicit activities, it is important to study both military and improvised formulations.

The use of improvised explosive devices by terrorist organizations is a significant problem that has resulted in destruction of property and loss of both military and civilian lives in countries throughout the world. There are many different materials that can be used to make homemade explosives (HMEs), but they are often combinations of a fuel and an oxidizer. These materials are popular because they are generally readily available due to their use in various industrial and household processes. Knowledge of which fuel-oxidizer combinations are potentially dangerous can help anti-terrorism organizations focus resources on detecting potential threats and preventing the use of potential HME components. In the first manuscript, titled “Fuel-oxidizer Mixtures: Their Stabilities and Burn Characteristics”, various fuel/oxidizer combinations were examined by differential scanning calorimetry (DSC) and simultaneous differential scanning calorimetry/thermogravimetric analysis (SDT). It was found that the reaction between the fuel and the oxidizer was generally triggered by a thermal event such as a melt, phase change, or decomposition. When the fuel used was a polyalcohol or sulfur, the triggering event was often the melt of the fuel, which usually occurred at a lower temperature than that of the oxidizer. However,
three of the oxidizers, potassium nitrate, potassium perchlorate, and ammonium perchlorate, generally did not react until they underwent a phase change or began to decompose, and as a result, reactions with these oxidizers tended to occur at much higher temperatures. Reactions with hydrocarbon fuels containing fewer or no alcohol groups also tended to occur at higher temperatures. Regardless of the fuel used, the mixtures containing potassium chlorate, ammonium perchlorate and ammonium nitrate generally released the greatest amount of heat, around 2000 J/g, while mixtures containing potassium dichromate were the least energetic, generally releasing less than 200 J/g. For some formulations, reactions did not occur until temperatures higher than 500°C. In order to reach higher temperatures, it was necessary to use unsealed samples in the SDT rather than the sealed capillaries used in the DSC. It was noted that when samples were not in sealed capillaries, other processes such as sublimation effectively competed with the exothermic reactions experienced by the formulations. As a result, the heat release values obtained by SDT for some formulations were artificially low.

The second manuscript “Thermal Stability Studies on IMX-101 (Dinitroanisole/Nitroguanidine/NTO)” examines the interactions among the components of an insensitive munitions formulation, IMX-101, which has been developed and qualified for use as a replacement for TNT (2,4,6-trinitrotoluene). IMX-101 contains the energetic materials 2,4-dinitroanisole (DNAN), nitroguanidine (NQ), and 3-nitro-1,2,4-triazol-5-one (NTO). DNAN is a nitroarene that is very similar in structure to TNT, but with only two nitro groups, and with an anisole functional group in place of the methyl group in TNT. 2,4-Dinitrotoluene (DNT),
which also contains only two nitro groups, is even more similar to TNT, because it is a toluene rather than an anisole. DSC and isothermal analyses were used to compare DNAN and DNT, to see if increased thermal stability made the use of DNAN more appealing than DNT in IMX-101 and other insensitive munitions formulations. The isothermal studies showed that neat DNAN was more stable than neat DNT. However, when mixed with either or both of the other components of the IMX-101 formulation, the thermal stability of both DNAN and DNT was decreased, with a greater impact on DNAN. The thermal decomposition of both DNAN and DNT was significantly accelerated by the presence of NQ. NTO also enhanced the decomposition of both nitroarenes, but this compound had a significantly greater impact on DNAN than on DNT. An examination of the decomposition products from the various mixtures showed that 2,4-dinitroaniline (DNA) was produced from the decomposition of both DNAN and DNT with either of the two additives; DNA was not observed during the neat decomposition of either nitroarene. It was thought that ammonia, which has been detected in either gaseous form or as ammonium ions during decomposition studies on both NQ and NTO, might be one cause of the decreased stability imparted to the nitroarenes by the two additives. Heating DNAN and DNT in the presence of ammonia generated from ammonium carbonate produced dinitroaniline and had an accelerating effect on the decomposition of the two nitroarenes, with the greater impact, both in the acceleration level and the amount of dinitroaniline produced, on DNAN.
ACKNOWLEDGMENTS

I would like to thank Drs. Oxley and Smith, and all of the members of the Smith-Oxley lab group, for the assistance that they have offered during my time at URI. I would specifically like to thank Evan Bernier for getting me started, Matt Porter and Kurt Fastnacht for their assistance with the FOX study, Devon Swanson for synthesizing NTO, Kevin Colizza for his work on the LC/MS, Ryan Rettinger for various technical assistance, all of the undergraduates who have made samples for me, and especially Stephanie Rayome for her invaluable assistance with the DNAN project.

I would like to thank Dr. Al Bach, Dr. Bongsup Cho, Dr. Brenton Deboef, and Dr. Louis Kirschenbaum for their willingness to serve on my committee.

I would like to thank Kyle Pereira, Morgan Turano and Sravanthi Vadlamannati for their support.

Finally, I would like to thank my family, Martin, Mary, Michaela, and Helen Donnelly, for always being there and for providing me with endless support and encouragement.
PREFACE

The following research has been presented in manuscript format according to guidelines of the Graduate School of the University of Rhode Island. The dissertation is divided into two manuscripts.

The first manuscript entitled “Fuel-oxidizer Mixtures: Their Stabilities and Burn Characteristics” was presented at the NATAS Conference (Santa Fe, NM, September 2014) and has been accepted for publication in the *Journal of Thermal Analysis and Calorimetry*.

The second manuscript entitled “Thermal Stability Studies on IMX-101 (Dinitroanisole/Nitroguanidine/NTO)” is being prepared for submission to *Propellants, Explosives, and Pyrotechnics*.
TABLE OF CONTENTS

Section	Page
ABSTRACT	ii
ACKNOWLEDGMENTS	v
PREFACE	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	xii
LIST OF SCHEMES	xxv
INTRODUCTION	1
References	5

MANUSCRIPT 1

Fuel-oxidizer Mixtures: Their Stabilities and Burn Characteristics 20

Section	Page
Abstract	21
Introduction	22
Materials and Methods	23
Results and Discussion	26
Summary	46
References	48
LIST OF TABLES

TABLE PAGE

Manuscript 1

Table 1. Burn time /seconds of a 4:1 Oxidizer: Sucrose Mix. 27
Table 2. Temperature Endotherms & Exotherms DSC & SDT (20°/min, Heat Release/ Jg⁻¹) ... 30
Table 3. Oxidation Products of Some Alcohols .. 32
Table 4. Heat Released/ Jg⁻¹ below 500°C from Oxidizer/Fuel Mixes 38
Table 5. Temperature at which Principle Exotherm is First Observed/°C 43

Manuscript 2

Table 1. First Order Rate Constants of Neat Materials 66
Table 2. Relative Stabilities: DNAN and DNT Mixtures Exemplified by Half-Life at 200°C .. 68
Table 3. First-Order Rate Constants for Components of Mixtures 68
Table 4. Species detected by LC/MS in negative ion mode 71

Appendix II

Table 1. Oxidizer endotherms .. 193
Table 2. Oxidizer exotherms ... 194
Table 3. Endotherms from Benzoic acid mixtures ... 195
Table 4. Exotherms from Benzoic acid mixtures .. 196
Table 5. Endotherms from Charcoal mixtures .. 197
Table 6. Exotherms from Charcoal mixtures ... 198
Table 7. Endotherms from Cyclododecanol mixtures 199
Table	Description	Page
8	Exotherms from Cyclododecanol mixtures	200
9	Endotherms from Erythritol mixtures	201
10	Exotherms from Erythritol mixtures	202
11	Endotherms from Fructose mixtures	203
12	Exotherms from Fructose mixtures	204
13	Endotherms from Glucose & Lactose mixtures	205
14	Exotherms from Glucose & Lactose mixtures	205
15	Endotherms from Hexatriacontane mixtures	206
16	Exotherms from Hexatriacontane mixtures	206
17	Endotherms from Naphthalene mixtures	207
18	Exotherms from Naphthalene mixtures	208
19	Endotherms from Pentaerythritol mixtures	209
20	Exotherms from Pentaerythritol mixtures	210
21	Endotherms from Sucrose mixtures	211
22	Exotherms from Sucrose mixtures	212
23	Endotherms from Sulfur mixtures	213
24	Exotherms from Sulfur mixtures	214
25	Endotherms from Aluminum mixtures	215
26	Exotherms from Aluminum mixtures	215

Appendix III

Table	Description	Page
1	Endotherms	216
2	Exotherms	217
Appendix IV

Table 1. Averaged isothermal data for neat DNAN...............................218
Table 2. Averaged isothermal data for neat DNT.................................219
Table 3. Averaged isothermal data for neat TNT.................................220
Table 4. Averaged isothermal data for the DNAN two-part mixes............221
Table 5. Averaged isothermal data for the DNT two-part mixes................222
Table 6. Averaged isothermal data for the DNAN & DNT three-part mixes....223
Table 7. Data for the calculation of activation energy for neat DNAN & DNT...229
Table 8. Calculation of activation energy for neat DNAN & DNT...............229
LIST OF FIGURES

FIGURE	PAGE
Figure 1. Ammonium Perchlorate DSC (1a) vs SDT (1b)	29
Figure 2. KIO₄ + 50wt% Sucrose	33
Figure 3. KClO₃ + 50wt% disaccharide: Sucrose (3a) & Lactose (3b)	33
Figure 4. KClO₃ + 50wt% monosaccharide: Glucose (4a) & Fructose (4b)	33
Figure 5. KIO₄ + 20wt% Sucrose	34
Figure 6. KNO₃ + 50wt% disaccharide: Sucrose (6a) & Lactose (6b)	35
Figure 7. KNO₃ + 50wt% monosaccharide: Glucose (7a) & Fructose (7b)	35
Figure 8. KNO₂ + 50wt% Sucrose (8a) + 20wt% Sucrose (8b)	36
Figure 9. AP + 50wt% Sucrose (9a) & 20wt% Sucrose (9b)	36
Figure 10. AN + 50wt% Sucrose (10a) & 20wt% Sucrose (10b)	37
Figure 11. KMnO₄ + Erythritol	39
Figure 12. AN + 50wt% Pentaerythritol (13a & 13b)	39
Figure 13. Ammonium nitrate DSC (14a) vs. SDT (14b)	40
Figure 14. KMnO₄ + 50wt% Sulfur	41
Figure 15. KClO₄ + 50wt% Sulfur	42
Figure 16. KBrO₃ + 50wt% Naphthalene	42
Figure 17. KIO₃ + 50wt% Sulfur	43
Figure 18. KMnO₄ + 20wt% Aluminum	44
Figure 19. KNO₃ + 20wt% Aluminum	45
Figure 20. KNO₂ + 20wt% Aluminum	45
FIGURE	PAGE
--------	------
Figure 21. KClO$_3$ + 20wt% Aluminum	45

Manuscript 2

FIGURE	PAGE
Figure 1. Structures of DNAN, DNT, NTO, & NQ	58
Figure 2. DSC Traces of Individual Energetic Compounds scanned 20°C/min	63
Figure 3. DNAN with NQ & NTO (50:50 & 80:20), DNT with NQ & NTO (50:50 & 80:20), and NTO with NQ (DSC)	64
Figure 4. DNAN and DNT three part mixtures with NTO & NQ (DSC)	66
Figure 5. Arrhenius Plot for DNAN & DNT	67
Figure 6. Impact of ammonia on the decomposition of DNAN and DNT	68
Figure 7. Proposed structures for decomposition products observed in neat DNAN	70
Figure 8. Proposed structures for decomposition products observed in neat DNT	70
Figure 9. NQ tautomers	72
Figure 10. Some of the cyclic products reportedly obtained from the decomposition of NQ	73
Figure 11. Summary of proposed decomposition mechanisms for NTO taken from ref 61	74
Figure 12. Proposed structures of products observed during the decomposition of DNAN with NQ that were not detected during the decomposition of neat DNAN or neat NQ	75
Figure 13. Proposed structures of products observed during the decomposition of DNT with NQ that were not detected during the decomposition of neat DNT or neat NQ	76
Figure 14. Proposed structures of products observed during the decomposition of DNAN with NTO that were not also detected during the decomposition of neat DNAN or neat NTO………………………………………………………………..77

Figure 15. Proposed structures of products observed during the decomposition of DNT with NTO that were not detected during the decomposition of neat DNT or neat NTO………………………………………………………………77

Figure 16. Proposed structures of products observed during the decomposition of DNAN with NQ and NTO that were not detected during the decomposition of the neat materials or the two part mixtures…………………………………………….78

Figure 17. Proposed structure of product observed during the decomposition of DNT with NQ and NTO that were not detected during the decomposition of the neat materials or the two part mixtures………………………………………………….78

Figure 18. Radical adduct produced via hydrogen abstraction from TNT [66]………81

Appendix I

Figure 1. Potassium chlorate, DSC………………………………………………...93

Figure 2. Potassium Chlorate, SDT………………………………………………..93

Figure 3. 50:50 Sucrose:Potassium chlorate, DSC…………………………………...94

Figure 4. 50:50 Sucrose:Potassium chlorate, SDT…………………………………...94

Figure 5. 20:80 Sucrose:Potassium chlorate, DSC…………………………………...95

Figure 6. 20:80 Sucrose:Potassium chlorate, SDT…………………………………...95

Figure 7. 50:50 Lactose:Potassium chlorate, DSC…………………………………...96

Figure 8. 50:50 Fructose:Potassium chlorate, DSC…………………………………...96
FIGURE	PAGE
Figure 9. 50:50 Fructose:Potassium chlorate, SDT	97
Figure 10. 50:50 Glucose:Potassium chlorate, DSC	97
Figure 11. 50:50 Pentaerythritol:Potassium chlorate, DSC	98
Figure 12. 50:50 Pentaerythritol:Potassium chlorate, SDT	98
Figure 13. 50:50 Erythritol:Potassium chlorate, DSC	99
Figure 14. 50:50 Charcoal:Potassium chlorate, DSC	99
Figure 15. 50:50 Sulfur:Potassium chlorate, DSC	100
Figure 16. 50:50 Cyclododecanol:Potassium chlorate, DSC	100
Figure 17. 50:50 Hexatriacontane:Potassium chlorate, DSC	101
Figure 18. 50:50 Naphthalene:Potassium chlorate, DSC	101
Figure 19. 20:80 Benzoic acid:Potassium chlorate, DSC	102
Figure 20. 20:80 Aluminum:Potassium chlorate, DSC	102
Figure 21. Potassium perchlorate, DSC	103
Figure 22. Potassium perchlorate, SDT	103
Figure 23. 50:50 Sucrose:Potassium perchlorate, DSC	104
Figure 24. 50:50 Sucrose:Potassium perchlorate, SDT	104
Figure 25. 20:80 Sucrose:Potassium perchlorate, SDT	105
Figure 26. 50:50 Fructose:Potassium perchlorate, DSC	105
Figure 27. 50:50 Fructose:Potassium perchlorate, SDT	106
Figure 28. 50:50 Erythritol:Potassium perchlorate, DSC	106
Figure 29. 50:50 Erythritol:Potassium perchlorate, SDT	107
Figure 30. 50:50 Charcoal:Potassium perchlorate, DSC	107
FIGURE 31. 50:50 Charcoal:Potassium perchlorate, SDT…………………………….108
Figure 32. 50:50 Sulfur:Potassium perchlorate, DSC……………………………….108
Figure 33. 50:50 Sulfur:Potassium perchlorate, SDT……………………………….109
Figure 34. 50:50 Cyclododecanol:Potassium perchlorate, DSC…………………….109
Figure 35. 50:50 Hexatriacontane:Potassium perchlorate, DSC………………….110
Figure 36. 50:50 Naphthalene:Potassium perchlorate, DSC……………………….110
Figure 37. 20:80 Benzoic acid:Potassium perchlorate, DSC…………………….111
Figure 38. Potassium iodate, DSC…………………………………………………..111
Figure 39. Potassium iodate, SDT…………………………………………………..112
Figure 40. 50:50 Sucrose:Potassium iodate, DSC…………………………………..112
Figure 41. 50:50 Sucrose:Potassium iodate, SDT…………………………………..113
Figure 42. 20:80 Sucrose:Potassium iodate, DSC…………………………………..113
Figure 43. 20:80 Sucrose:Potassium iodate, SDT…………………………………..114
Figure 44. 50:50 Fructose:Potassium iodate, DSC………………………………….114
Figure 45. 50:50 Fructose:Potassium iodate, SDT………………………………….115
Figure 46. 50:50 Erythritol:Potassium iodate, DSC…………………………………115
Figure 47. 50:50 Erythritol:Potassium iodate, SDT…………………………………116
Figure 48. 50:50 Charcoal:Potassium iodate, DSC………………………………….116
Figure 49. 50:50 Charcoal:Potassium iodate, SDT………………………………….117
Figure 50. 50:50 Sulfur:Potassium iodate, DSC……………………………………117
Figure 51. 50:50 Sulfur:Potassium iodate, SDT……………………………………118
Figure 52. 50:50 Cyclododecanol:Potassium iodate, DSC…………………………118
FIGURE

FIGURE	PAGE	
Figure 53. 50:50 Hexatriacontane:Potassium iodate, DSC	119	
Figure 54. 50:50 Naphthalene:Potassium iodate, DSC	119	
Figure 55. 20:80 Benzoic acid:Potassium iodate, DSC	120	
Figure 56. Potassium periodate, DSC	120	
Figure 57. Potassium periodate, SDT	121	
Figure 58. 50:50 Sucrose:Potassium periodate, DSC	121	
Figure 59. 50:50 Sucrose:Potassium periodate, SDT	122	
Figure 60. 20:80 Sucrose:Potassium periodate, DSC	122	
Figure 61. 20:80 Sucrose:Potassium periodate, SDT	123	
Figure 62. 50:50 Fructose:Potassium periodate, DSC	123	
Figure 63. 50:50 Fructose:Potassium periodate, SDT	124	
Figure 64. 50:50 Erythritol:Potassium periodate, SDT	124	
Figure 65. 50:50 Charcoal:Potassium periodate, DSC	125	
Figure 66. 50:50 Sulfur:Potassium periodate, DSC	125	
Figure 67. 50:50 Sulfur:Potassium periodate, SDT	126	
Figure 68. 50:50 Cyclododecanol:Potassium periodate, DSC	126	
Figure 69. 50:50 Hexatriacontane:Poassium periodate, DSC	127	
Figure 70. 50:50 Naphthalene:Potassium periodate, DSC	127	
Figure 71. 20:80 Benzoic acid:Potassium periodate, DSC	128	
Figure 72. 20:80 Aluminum:Potassium periodate, DSC	128	
Figure 73. Potassium bromate, DSC	129	
Figure 74. Potassium bromate, SDT	129	
FIGURE	PAGE	
--------	------	
Figure 75. 50:50 Sucrose:Potassium bromate, DSC	130	
Figure 76. 50:50 Sucrose:Potassium bromate, SDT	130	
Figure 77. 20:80 Sucrose:Potassium bromate, DSC	131	
Figure 78. 20:80 Sucrose:Potassium bromate, SDT	131	
Figure 79. 50:50 Fructose:Potassium bromate, DSC	132	
Figure 80. 50:50 Fructose:Potassium bromate, SDT	132	
Figure 81. 50:50 Pentaerythritol:Potassium bromate, DSC	133	
Figure 82. 50:50 Pentaerythritol:Potassium bromate, SDT	133	
Figure 83. 50:50 Sulfur:Potassium bromate, DSC	134	
Figure 84. 50:50 Cyclododecanol:Potassium bromate, DSC	134	
Figure 85. 50:50 Naphthalene:Potassium bromate, DSC	135	
Figure 86. 20:80 Benzoic acid:Potassium bromate, DSC	135	
Figure 87. 20:80 Aluminum:Potassium bromate, DSC	136	
Figure 88. Potassium nitrate, DSC	136	
Figure 89. Potassium nitrate, SDT	137	
Figure 90. 50:50 Sucrose:Potassium nitrate, DSC	137	
Figure 91. 20:80 Sucrose:Potassium nitrate, DSC	138	
Figure 92. 20:80 Sucrose:Potassium nitrate, SDT	138	
Figure 93. 50:50 Lactose:Potassium nitrate, DSC	139	
Figure 94. 50:50 Fructose:Potassium nitrate, DSC	139	
Figure 95. 50:50 Glucose:Potassium nitrate, DSC	140	
Figure 96. 50:50 Pentaerythritol:Potassium nitrate, DSC	140	
Figure	Description	Page
--------	---	------
97	50:50 Pentaerythritol:Potassium nitrate, SDT	141
98	50:50 Erythritol:Potassium nitrate, DSC	141
99	50:50 Charcoal:Potassium nitrate, DSC	142
100	50:50 Charcoal:Potassium nitrate, SDT	142
101	50:50 Sulfur:Potassium nitrate, DSC	143
102	50:50 Cyclododecanol:Potassium nitrate, DSC	143
103	50:50 Hexatriacontane:Potassium nitrate, DSC	144
104	50:50 Naphthalene:Potassium nitrate, DSC	144
105	20:80 Benzoic acid:Potassium nitrate, DSC	145
106	20:80 Aluminum:Potassium nitrate, DSC	145
107	Potassium nitrite, DSC	146
108	Potassium nitrite, SDT	146
109	50:50 Sucrose:Potassium nitrite, DSC	147
110	20:80 Sucrose:Potassium nitrate, DSC	147
111	20:80 Sucrose:Potassium nitrite, SDT	148
112	50:50 Fructose:Potassium nitrite, DSC	148
113	50:50 Erythritol:Potassium nitrite, DSC	149
114	50:50 Charcoal:Potassium nitrite, DSC	149
115	50:50 Sulfur:Potassium nitrite, DSC	150
116	20:80 Benzoic acid:Potassium nitrite, DSC	151
117	Potassium permanganate, DSC	151
FIGURE	PAGE	
--------	------	
Figure 119. Potassium permanganate, SDT	152	
Figure 120. 50:50 Sucrose:Potassium permanganate, DSC	152	
Figure 121. 20:80 Sucrose:Potassium permanganate, DSC	153	
Figure 122. 20:80 Sucrose:Potassium permanganate, SDT	153	
Figure 123. 50:50 Fructose:Potassium permanganate, DSC	154	
Figure 124. 50:50 Erythritol:Potassium permanganate, DSC	154	
Figure 125. 50:50 Charcoal:Potassium permanganate, DSC	155	
Figure 126. 50:50 Sulfur:Potassium permanganate, DSC	155	
Figure 127. 50:50 Sulfur:Potassium permanganate, SDT	156	
Figure 128. 50:50 Cyclododecanol:Potassium permanganate, DSC	156	
Figure 129. 50:50 Naphthalene:Potassium permanganate, DSC	157	
Figure 130. 20:80 Benzoic acid:Potassium permanganate, DSC	157	
Figure 131. Potassium dichromate, DSC	158	
Figure 132. 50:50 Sucrose:Potassium dichromate, DSC	158	
Figure 133. 50:50 Sucrose:Potassium dichromate, SDT	159	
Figure 134. 20:80 Sucrose:Potassium dichromate, DSC	159	
Figure 135. 50:50 Fructose:Potassium dichromate, DSC	160	
Figure 136. 50:50 Fructose:Potassium dichromate, SDT	160	
Figure 137. 50:50 Pentaerythritol:Potassium dichromate, DSC	161	
Figure 138. 50:50 Pentaerythritol:Potassium dichromate, SDT	161	
Figure 139. 50:50 Charcoal:Potassium dichromate, DSC	162	
Figure 140. 50:50 Charcoal:Potassium dichromate, SDT	162	
FIGURE	PAGE	
--------	------	
Figure 141. 50:50 Cyclododecanol:Potassium dichromate, DSC	163	
Figure 142. 50:50 Naphthalene:Potassium dichromate, DSC	163	
Figure 143. 20:80 Benzoic acid:Potassium dichromate, DSC	164	
Figure 144. Ammonium perchlorate, DSC	164	
Figure 145. Ammonium perchlorate, SDT	165	
Figure 146. 50:50 Sucrose:Ammonium perchlorate, DSC	165	
Figure 147. 50:50 Sucrose:Ammonium perchlorate, SDT	166	
Figure 148. 20:80 Sucrose:Ammonium perchlorate, DSC	166	
Figure 149. 20:80 Sucrose:Ammonium perchlorate, SDT	167	
Figure 150. 50:50 Fructose:Ammonium perchlorate, DSC	167	
Figure 151. 50:50 Fructose:Ammonium perchlorate, SDT	168	
Figure 152. 50:50 Erythritol:Ammonium perchlorate, DSC	168	
Figure 153. 50:50 Charcoal:Ammonium perchlorate, DSC	169	
Figure 154. 50:50 Charcoal:Ammonium perchlorate, SDT	169	
Figure 155. 50:50 Sulfur:Ammonium perchlorate, DSC	170	
Figure 156. 50:50 Sulfur:Ammonium perchlorate, SDT	170	
Figure 157. 50:50 Cyclododecanol:Ammonium perchlorate, DSC	171	
Figure 158. 50:50 Hexatriacontane:Ammonium perchlorate, DSC	171	
Figure 159. 50:50 Naphthalene:Ammonium perchlorate, DSC	172	
Figure 160. 50:50 Naphthalene:Ammonium perchlorate, DSC	172	
Figure 161. 20:80 Benzoic acid:Ammonium perchlorate, DSC	173	
Figure 162. 20:80 Aluminum:Ammonium perchlorate, DSC	173	
FIGURE

Figure 163. Ammonium nitrate, DSC…………………………………………………………174
Figure 164. Ammonium nitrate, SDT………………………………………………………174
Figure 165. 50:50 Sucrose:Ammonium nitrate, DSC……………………………………175
Figure 166. 20:80 Sucrose:Ammonium nitrate, DSC……………………………………175
Figure 167. 20:80 Sucrose:Ammonium nitrate, SDT……………………………………176
Figure 168. 50:50 Lactose:Ammonium nitrate, DSC……………………………………176
Figure 169. 50:50 Fructose:Ammonium nitrate, DSC……………………………………177
Figure 170. 50:50 Glucose:Ammonium nitrate, DSC……………………………………177
Figure 171. 50:50 Pentaerythritol:Ammonium nitrate, DSC…………………………178
Figure 172. 50:50 Erythritol:Ammonium nitrate, DSC…………………………………178
Figure 173. 50:50 Charcoal:Ammonium nitrate, DSC……………………………………179
Figure 174. 50:50 Sulfur:Ammonium nitrate, DSC………………………………………179
Figure 175. 50:50 Hexatriacontane:Ammonium nitrate, DSC………………………..180
Figure 176. 50:50 Naphthalene:Ammonium nitrate, DSC………………………………180
Figure 177. 20:80 Benzoic acid:Ammonium nitrate, DSC……………………………..181
Figure 178. 20:80 Aluminum:Ammonium nitrate, DSC……………………………….181
Figure 179. Benzoic acid, DSC…………………………………………………………….182
Figure 180. Charcoal, DSC…………………………………………………………………182
Figure 181. Charcoal, SDT under nitrogen………………………………………………183
Figure 182. Charcoal, SDT run under air…………………………………………………183
Figure 183. Cyclododecanol, DSC……………………………………………………….184
Figure 184. Erythritol, DSC………………………………………………………………..184
FIGURE

Figure 185. Erythritol, SDT ... 185
Figure 186. Fructose, DSC ... 185
Figure 187. Fructose, SDT ... 186
Figure 188. Glucose, DSC .. 186
Figure 189. Hexatriacontane, DSC .. 187
Figure 190. Lactose, DSC .. 187
Figure 191. Naphthalene, DSC ... 188
Figure 192. Pentaerythritol, DSC .. 188
Figure 193. Pentaerythritol, SDT ... 189
Figure 194. Sucrose, DSC .. 189
Figure 195. Sucrose, SDT run under nitrogen 190
Figure 196. Sucrose, SDT run under air ... 190
Figure 197. Sulfur, DSC ... 191
Figure 198. Sulfur, SDT run under nitrogen 191
Figure 199. Sulfur, SDT run under air ... 192

Appendix IV

Figure 1. Time vs. ln fraction remaining for DNAN & DNT at 300°C......... 224
Figure 2. Time vs. In fraction remaining for DNAN & DNT at 280°C......... 224
Figure 3. Time vs. ln fraction remaining for DNAN & DNT at 270°C......... 224
Figure 4. Time vs. In fraction remaining for DNAN & DNT at 250°C......... 224
Figure 5. Time vs. ln fraction remaining for DNAN & DNT at 240°C......... 225
Figure 6. Time vs. ln fraction remaining for DNAN & DNT at 200°C......... 225
FIGURE

Figure 7. Time vs. ln fraction remaining for DNAN & DNT at 180°C 225
Figure 8. Time vs. ln fraction remaining for TNT at 280°C 225
Figure 9. Time vs. ln fraction remaining for TNT at 200°C 226
Figure 10. Time vs. ln fraction remaining for DNAN & DNT in the 3-part mix at 200°C ... 226
Figure 11. Time vs. ln fraction remaining for NTO in the DNAN or DNT 3-part mix at 200°C ... 226
Figure 12. Time vs. ln fraction remaining for NQ in the DNAN or DNT 3-part mix at 200°C ... 226
Figure 13. Time vs. ln fraction remaining for DNT, NTO, & NQ in the 3-part mix at 180°C ... 227
Figure 14. Time vs. ln fraction remaining for DNAN, NTO, & NQ in the 3-part mix at 180°C ... 227
Figure 15. Time vs. ln fraction remaining for DNAN or DNT with 20% NTO at 200°C ... 227
Figure 16. Time vs. ln fraction remaining for 20% NTO with DNAN or DNT at 200°C ... 227
Figure 17. Time vs. ln fraction remaining for DNAN or DNT with 50% NTO at 200°C ... 228
Figure 18. Time vs. ln fraction remaining for 50% NTO with DNAN or DNT at 200°C ... 228
FIGURE PAGE
Figure 19. Time vs. Ln fraction remaining for DNAN or DNT with 50% NQ at
200°C...228
Figure 20. Time vs. Ln fraction remaining for 50% NQ with DNAN or DNT at
200°C...228
Figure 21. Graph of the Natural Log of the Rate Constants vs. Inverse Temperature for
neat DNAN & DNT...229

LIST OF SCHEMES

SCHEME PAGE
Manuscript 2
Scheme 1. DNAN heated with NQ..76
INTRODUCTION

Explosive mixtures have found widespread use both in military applications [1-4] and as components of improvised explosive devices (IEDs) [5-7]. Knowledge of how the components of these formulations interact with each other is beneficial to both military and anti-terrorism organizations. Since there are significant differences in the explosive properties desired by the military [3] and those engaged in illicit activities, it is important to study both military and improvised formulations.

For many years, 2,4,6-trinitrotoluene (TNT) has been one of the most commonly used military explosives. However, there is concern about the sensitivity of munitions based on conventional explosives, which can react violently if exposed to fire or impact from an armor piercing bullet or shape charge [3, 8, 9-11]. In addition, TNT and some of its decomposition products have significant levels of toxicity and, as a result, unexploded ordnance containing TNT has become an environmental and health concern [8]. These issues have led to increased interest in the development of insensitive munitions formulations that can serve as replacements for TNT and other conventional explosives [3-4]. One of the main components of many of these formulations has been 2,4-dinitroanisole (DNAN) [3-4, 8, 12].

DNAN is similar to TNT in that it contains a phenyl ring substituted with nitro groups; however, it has one less nitro group than TNT, and it has a methoxy (\(-\text{OCH}_3\)) substituent in place of the methyl (\(-\text{CH}_3\)) group that is present in TNT [8]. DNT is even more similar to TNT; it lacks only the nitro group attached to carbon six in the phenyl ring. Both DNAN and DNT are energetic but less sensitive than TNT [12], so in theory either could serve as a potential component in insensitive replacements for
TNT based munitions. While significant research has been published verifying the explosive abilities of new DNAN-containing insensitive munitions [1, 3, 8], no information has been found explaining why 2,4-dinitroanisole was initially chosen for these formulations instead of 2,4-dinitrotoluene. The study contained herein has examined the thermal properties of DNAN and DNT, both neat and in mixtures with the other components of a recently qualified insensitive munitions formulation, IMX-101. The results show that, while neat DNAN is more thermally stable than neat DNT, this greater stability is not maintained when DNAN is combined with either nitroguanidine (NQ) or 3-nitro-1,2,4-triazol-5-one (NTO), the two other energetic materials present in IMX-101.

Military organizations are not the only groups that are interested in using explosive formulations; terrorists also make use of mixtures of materials in the manufacture of improvised explosive devices (IEDs) [6-7, 13]. However, the requirements for an IED are very different from those of military explosives. While military formulations must be safe to store and use [3-4, 8], homemade explosives (HMEs) need only cause harm to effectively serve their purpose. As a result, there are many different materials that can be used by individuals to make IEDs. Many homemade explosives are combinations of a fuel and an oxidizer [13]. Both components are generally materials that are readily available because they are used for some peaceful purpose in industry and elsewhere [6, 13-14]. For example, common fuels include sucrose (table sugar) and coal, while frequently used oxidizers include ammonium nitrate, a major component of many fertilizers, and potassium chlorate, which is used in safety matches, printing, dying, and pyrotechnics [15-16]. The
increased level of concern about terrorist attacks has led to a greater focus on the materials that can be used to make explosives; however, most published research has dealt with methods to detect HME components, either before or after an attack has occurred [6-7, 13, 17-18]. While there has been some research into the interactions between specific fuel-oxidizer pairs [19-23], there has been no comprehensive study to determine what makes an effective fuel-oxidizer combination. Through the thermal analysis of various combinations of oxidizers and fuels, the study contained herein has provided information on the ways in which fuels interact differently with different oxidizers, which combinations react at lower temperatures, and which pairs are the most energetic in terms of the amount of heat released.

Thermal analyses are essential tools in the study of energetic materials. Numerous studies have been conducted on newly developed insensitive munitions, fuel-oxidizer mixtures, components of these formulations, and other energetic materials [8, 19-21, 23-93]. Many of these studies have employed non-isothermal analyses via thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), or differential thermal analysis (DTA) [8, 19-21, 23-27, 34, 40, 42-43, 48-49, 54, 61-62, 64, 70, 72-73, 83-84, 90]. Non-isothermal DSC works by gradually heating a sample at a rate specified by the operator. Highly sensitive thermocouples in the sample cell are used to detect the flow of heat into and out of the sample during the heating process. Endothermic events, such as phase changes, are usually recorded as negative peaks, while exothermic events, including many decomposition processes, are shown as positive peaks. The temperature at which an exothermic event occurs and the amount of heat released during decomposition provide information about the
energetics and thermal stability of the material being studied. TGA is a similar technique, in which an internal balance measures the amount of material lost as the temperature is gradually increased according to a predetermined ramp rate. The amount of material lost and the temperature at which the mass loss occurs can provide information about the decomposition processes taking place.

DSC, TGA, and other related techniques are able to provide valuable information in a relatively short amount of time. As a result, they are extremely useful tools for the comparison of large numbers of different samples. Isothermal analyses, on the other hand, often involve more time consuming techniques. However, such analyses can provide in-depth information on the processes involved in thermal decomposition, and, as a result, they are also frequently employed in the study of energetic materials [38-39, 63, 68, 77, 81-82, 86-89, 91-92]. The level of decomposition that results from heating a material can be measured in various ways, including the use of chromatography, which allows mixtures of materials to be separated into their various components prior to detection and quantification. Numerous studies have demonstrated the utility of high-pressure liquid chromatography (HPLC) with either an ultra-violet (UV) or a mass spectral (MS) detector in the detection and quantification of explosives, such as DNAN, DNT, NQ, and NTO, and their decomposition products [94-104].
References

[1] K. E. Lee, W. A. Balas-Hummers, A. R. Di Stasio, C. H. Patel, P. J. Samuels, B. D. Roos, V. Fung, Qualification Testing of the Insensitive TNT Replacement Explosive IMX-101, *Insensitive Munitions and Energetic Materials Technology Symposium*, Munich, 2010, US Army ARDEC, Picatinny Arsenal, ARL, Aberdeen Proving Ground, BAE Systems OSI, Holston Army Ammunition Plant 2010.

[2] E. N. Coppola, Treatment Technologies for Perchlorate, *Global Demil Symposium*, Reno, 14-17 May 2007, Applied Research Associates, Panama City, FL 2007.

[3] N. Gray, Insensitive Munitions – New Explosives on the Horizon, *Army AL&T 2008, January-March*, 34.

[4] C. M. Arnett, G. Rodriguez, S. W. Maloney, Analysis of Bacterial Community Diversity in Anaerobic Fluidized Bed Bioreactors Treating 2,4-Dinitroanisole (DNAN) and n-Methyl-4-nitroaniline (MNA) Using 16S rRNA Gene Clone Libraries, *Microbes Environ*. 2009, 24(1), 72.

[5] J. R. Jackson, Soldier Awareness of Homemade Explosives, *CIED Bulletin XI, 2012, August*.

[6] J. P. Hutchinson, C. J. Evenhuis, C. Johns. A. A. Kazarian, M. C. Breadmore, M. Macka. E. F. Hilder, R. M. Giujt, G. W. Dicinoski, P. R. Haddad, Identification of Inorganic Improvised Explosive Devices by Analysis of Postblast Residues Using Portable Capillary Electrophoresis Instrumentation
and Indirect Photometric Detection with a Light-Emitting Diode, *Anal. Chem.* 2007, 79, 7005.

[7] J. E. Prest, M. S. Beardah, S. J. Baldock, S. P. Doyle, P. R. Fielden, N. J. Goddard, B. J. Treves Brown, Determination of the Potassium Content of Explosive Residues Using Miniaturized Isotachophoresis, *Electrophoresis* 2010, 31, 3775.

[8] P. J. Davies, A. Provatas, *Characterisation of 2,4-Dinitroanisole: An Ingredient for Use in Low Sensitivity Melt Cast Formulations*, Report DSTO-TR-1904, Weapons System Division, Defence Science and Technology Organisation, Edinburgh, S. Australia, AUS 2006.

[9] J. P. Agrawal, Some New High Energy Materials and their Formulations for Specialized Applications, *Propellants Explos. Pyrotech.* 2005, 30(5), 316.

[10] G. Singh, I. P. S. Kapoor, S. K. Tiwari, P. S. Felix, Studies on Energetic Compounds Part 16. Chemistry and Decomposition Mechanisms of 5-Nitro-2,4-dihydro-3H-1,2,4-triazole-3-one (NTO), *J. Haz. Mats. B* 2001, 81, 67.

[11] A. K. Sikder, N. Sikder, A Review of Advanced High Performance, Insensitive and Thermally Stable Energetic Materials for Military and Space Applications, *J. Haz. Mats. A* 2004, 112, 1.

[12] V. M. Boddu, K. Abburi, S. W. Maloney, R. Damavarapu, Thermophysical Properties of an Insensitive Munitions Compound, 2,4-Dinitroanisole, *J. Chem. Eng. Data* 2008, 53, 1120.
[13] C. Johns, J. P. Hutchinson, M. C. Breadmore, R. M. Guijit, E. F. Hilder, G. W. Dicinoski, P. R. Haddad, Profiling the Chemical Composition of Explosives, *Chemistry in Australia* **2009**, *December*, 30.

[14] D. K. Kuila, A. Chakrabortty, S. P. Sharma, S. C. Lahiri, Composition Profile of Low Explosives from Cases in India, *Forensic Sci. Int.* **2006**, *159*, 127.

[15] *Data Sheet: Potassium Chlorate*,

www.hummelcroton.com/datap/kclo3_dp.html (14 March 2015).

[16] *Applications: Potassium Chlorate*,

https://www.akzonobel.com/finechemicals/products/potassium_chlorate/applications/ (14 March 2015).

[17] A. D. Beveridge, S. F. Payton, R. J. Audette, A. J. Lambertus, R. C. Shaddick, Systematic Analysis of Explosive Residues, *J. Forensic Sci.* **1975**, *20*(3), 431.

[18] C. Johns, R. A. Shellie, O. G. Potter, J. W. O’Reilly, J. P. Hutchinson, R. M. Guijit, M. C. Breadmore, E. F. Hilder, G. W. Dicinoski, P. R. Haddad, Identification of Homemade Inorganic Explosives by Ion Chromatographic Analysis of Post-Blast Residues, *J. Chromatogr. A* **2008**, *1182*, 205.

[19] F. S. Scanes, Thermal Analysis of Pyrotechnic Compositions Containing Potassium Chlorate and Lactose, *Combustion & Flame* **1974**, *23*(3), 363.

[20] F. S. Scanes, R. A. M. Martin, Heats of Reaction of Pyrotechnic Compositions Containing Potassium Chlorate, *Combustion & Flame* **1974**, *23*(3), 357.

[21] S. G. Hosseini, S. M. Pourmortazavi, S. S. Hajimirsadeghi, Thermal Decomposition of Pyrotechnic Mixtures Containing Sucrose with Either
Potassium Chlorate or Potassium Perchlorate, *Combustion & Flame* **2005**, *141*, 322.

[22] K. Hutches, J. Lord, A New Kind of Molotov? Gasoline-Pool Chlorinator Mixtures, *J. Forensic Sci.* **2012**, *57*(4), 1064.

[23] S. M. Pourmortazavi, S. S. Hajimirsadeghi, S. G. Hosseini, Characterization of the Aluminum/Potassium Chlorate Mixtures by Simultaneous TG-DTA, *J. Therm. Anal. Calorim.* **2006**, *84*(3), 557.

[24] M. I. Abd-Elrahman, S. M. Ahmed, Thermal Degradation Kinetics and Geometrical Stability of D-Sucrose, *Int. J. Polymeric Mats.* **2009**, *58*, 322.

[25] V. M. Abdul Mujeeb, M. H. Aneesh, K. Muraleedharan, T. Ganga Devi, M. P. Kannan, Effect of Precompression on Isothermal Decomposition Kinetics of Pure and Doped Potassium Bromate, *J. Therm. Anal. Calorim.* **2011**, *104*, 991.

[26] V. M. Abdul Mujeeb, K. Muraleedharan, M. P. Kannan, T. Ganga Devi. Influence of Trivalent Ion Dopants on the Thermal Decomposition Kinetics of Potassium Bromate, *Thermochimica Acta* **2011**, *525*, 150.

[27] V. Balek, J. Julák, Investigation of the Thermal Decomposition of Some Periodates by Means of Emanation Thermal Analysis (ETA) and DTA, *J. Thermal Analysis* **1972**, *4*, 293.

[28] I. D. Begg, P. J. Halfpenny, R. M. Hooper, R. S. Narang, K. J. Roberts, J. N. Sherwood, X-ray Topographic Investigations of Solid State Reactions. I. Changes in Surface and Bulk Substructure During Incipient Thermal Decomposition in Sodium Chlorate Monocrystals, *Proc. Royal Soc. London A* **1983**, *386*, 431.
[29] G. A. Beitel, *Sodium Nitrate Combustion Limit Tests*, Report ARH-LD-123, Atlantic Richfield Hanford Company, Richland, WA, USA 1976.

[30] L. L. Bircumshaw, B. H. Newman, The Thermal Decomposition of Ammonium Perchlorate. I. Introduction, Experimental, Analysis of Gaseous Products, and Thermal Decomposition Experiments, *Proc. Royal Soc. London A* 1954, 227(1168), 115.

[31] L. L. Bircumshaw, B. H. Newman, The Thermal Decomposition of Ammonium Perchlorate II. The Kinetics of the Decomposition, the Effect of Particle Size, and Discussion of Results, *Proc. Royal Soc. London A*, 1955, 227(1169), 228.

[32] F. E. Brown, J. A. Burrows, H. M. McLaughlin, The Decomposition of Potassium Chlorate. I. Spontaneous Decomposition Temperatures of Mixtures of Potassium Chlorate and Manganese Dioxide, *J. Am. Chem. Soc.* 1923, 45(6), 1343.

[33] C. D. Doyle, Estimating Thermal Stability of Experimental Polymers by Empirical Thermogravimetric Analysis, *Anal. Chem.* 1961, 33(1), 77.

[34] G. Eggleston, B. J. Trask-Morrell, J. R. Vercellotti, Use of Differential Scanning Calorimetry and Thermogravimetric Analysis to Characterize the Thermal Degradation of Crystalline Sucrose and Dried Sucrose-Salt Residues, *J. Agric. Food Chem.* 1996, 44, 3319.

[35] B. S. Ermolaev, A. A. Sulimov, V. E. Khrapovskii, V. A. Foteenkov, Initial Stage of the Explosion of Ammonium Nitrate and Its Powder Mixtures, *Rus. J. Phys. Chem. B* 2011, 5(4), 640.
[36] A. K. Galwey, P. W. M. Jacobs, High Temperature Thermal Decomposition of Ammonium Perchlorate, *J. Chem. Soc.* **1959**, *837*.

[37] A. Glasner, L. Weidenfeld, The Thermal Decomposition of Potassium Perchlorate and Perchlorate-Halogenide Mixtures. A Study in the Pyrolysis of Solids, *J. Am. Chem. Soc.* **1952**, *74*(10), 2467.

[38] A. E. Harvey, C. J. Wassink, T. A. Rodgers, K. H. Stern, Isothermal and Isopiestic Decomposition of Potassium Perchlorate and Potassium Chlorate, *Annals New York Acad. Sci.* **1960**, *79*, 971.

[39] A. E. Harvey, M. T. Edmison, E. D. Jones. R. A. Seybert, K. A. Catto, The Kinetics of the Isothermal Decomposition of Potassium Perchlorate, *J. Am. Chem. Soc.* **1954**, *76*, 3270.

[40] F. H. Herbstein, M. Kapon, A. Weissman, Old and New Studies on the Thermal Decomposition of Potassium Permanganate, *J. Thermal Analysis* **1991**, *41*, 303.

[41] R. A. W. Hill, J. N. Welsh, Effects of Recrystallization and Storage on the Thermal Decomposition of Potassium Permanganate, *Trans. Faraday Soc.* **1960**, *56*, 1059.

[42] S. G. Hosseini, A. Eslam, Thermochemical Investigation of Relative Reactivity of Some Nitrate Oxidants in Tin-fueled Pyrotechnic Systems, *J. Therm. Anal. Calorim.* **2010**, *101*, 1111.

[43] M. Hurtta, I. Pitkänen, J. Knutinen, Melting Behavior of D-sucrose, D-glucose and D-fructose, *Carbohydrate Res.* **2004**, *339*, 2267.
[44] S. H. Inami, W. A. Rosser, Jr., H. Wise, Heat-Release Kinetics of Ammonium Perchlorate in the Presence of Catalysts and Fuel, *Combustion & Flame*, 1968, 12, 41.

[45] K. Kajiyama, Y-I. Izato, A. Miyake, Thermal Characteristics of Ammonium Nitrate, Carbon, and Copper(II) Oxide Mixtures, *J. Therm. Anal. Calorim.* 2013, 113, 1475.

[46] C. J. Kedward, W. MacNaughtan, J. M. V. Blanshard, J. R. Mitchell, Crystallization Kinetics of Lactose and Sucrose Based on Isothermal Differential Scanning Calorimetry, *J. Food Sci.* 1988, 63(2), 192.

[47] J. W. Lee, L. C. Thomas, S. J. Schmidt, Investigation of the Heating Rate Dependency Associated with the Loss of Crystalline Structure in Sucrose, Glucose, and Fructose Using a Thermal Analysis Approach (Part I), *J. Agric. Food Chem.* 2011, 59(2), 684.

[48] M. M. Markowitz, D. A. Boryta, H. Stewart, Jr., The Differential Thermal Analysis of Perchlorates. VI. Transient Perchlorate Formation During the Pyrolysis of the Alkaline Metal Chlorates, *J. Phys. Chem.*, 1964, 68(8), 2282.

[49] S. Martins, J. B. Fernandes, S. C. Mojumdar, Catalyzed Thermal Decomposition of KClO₃ and Carbon Gasification, *J. Therm. Anal. Calorim.* 2015, 119, 831.

[50] G. G. Marvin, L. B. Woolaver, Thermal Decomposition of Perchlorates, *Industrial & Eng. Chem.* 1945, 17(8), 474.
[51] S. Materazzi, S. De Angelis Curtis, S. Vecchio Ciprioti, R. Risoluti, J. Finamore, Thermogravimetric Characterization of Dark Chocolate, *J. Therm. Anal. Calorim.* **2014**, *116*, 93.

[52] A. Mezroua, K. Khimeche, M. H. Lefebvre, M. Benziane, D. Trache, The Influence of Porosity of Ammonium Perchlorate (AP) on the Thermomechanical and Thermal Properties of the AP/Polyvinylchloride (PVC) Composite Propellants, *J. Therm. Anal. Calorim.* **2014**, *116*, 279.

[53] S. R. Mohanty, D. Patnaik, Effects of Admixtures of Potassium Bromide on the Thermal Decomposition of Potassium Bromate, *J. Therm. Analysis* **1989**, *35*, 2153.

[54] K. Muraleedharan, M. P. Kannan, Thermal Decomposition of Sodium Metaperiodate, *React. Kinet. Catal. Lett.* **1989**, *39*(2), 339.

[55] K. Muraleedharan, M. P. Kannan, T. Gangadevi, Effect of Metal Oxide Additives on the Thermal Decomposition Kinetics of Potassium Metaperiodate, *J. Therm. Anal. Calorim.* **2010**, *100*, 177.

[56] K. Muraleedharan, V. M. Abdul Mujeeb, M. H. Aneesh, T. Gangadevi, M. P. Kannan, Effect of Pre-treatments on Isothermal Decomposition Kinetics of Potassium Metaperiodate, *Thermochimica Acta*, **2010**, *510*, 160.

[57] K. Muraleedharan, M. P. Kannan, T. Gangadevi, Thermal Decomposition of Potassium Metaperiodate Doped with Trivalent Ions, *Thermochimica Acta*, **2010**, *502*, 24.

[58] K. Muraleedharan, M. P. Kannan, T. Ganga Devi, Thermal Decomposition Kinetics of Potassium Iodate, *J. Therm. Anal. Calorim.* **2011**, *103*, 943.
[59] K. Muraleedharan, Thermal Decomposition Kinetics of Potassium Iodate Part II. Effect of Gamma-irradiation on the Rate and Kinetics of Decomposition, *J. Therm. Anal. Calorim.* 2013, 114, 491.

[60] R. I. Olivares, The Thermal Stability of Molten Nitrite/Nitrate Salt for Solar Thermal Energy Storage in Different Atmospheres, *Solar Energy*, 2012, 86, 2576.

[61] F. Orsi, Kinetic Studies on the Thermal Decomposition of Glucose and Fructose, *J. Therm. Analysis* 1973, 5, 329.

[62] S. V. Pakkirisamy, S. Mahadevan, S. S. Paramashivan, A. B. Mandal, Adiabatic Thermokinetics and Process Safety of Pyrotechnic Mixtures: Atom bomb, Chinese, and Palm Leaf Crackers, *J. Therm. Anal. Calorim.* 2012, 109, 1387.

[63] B. R. Phillips, D. Taylor, Thermal Decomposition of Potassium Metaperiodate, *J. Chem. Soc. Res.* 1963, 5583.

[64] S. M. Pourmortazavi, S. S. Hajimirsadeghi, I. Kohsari, M. Fathollahi, S. G. Hosseini, Thermal Decomposition of Pyrotechnic Mixtures Containing Either Aluminum or Magnesium Powder as Fuel, *Fuel* 2008, 87, 244.

[65] E. G. Prout, F. C. Tompkins, The Thermal Decomposition of Potassium Permanganate, *Trans. Faraday Soc.* 1944, 40, 488.

[66] E. G. Prout, F. C. Tompkins, Thermal Decomposition of Silver Permanganate, *Trans. Faraday Soc.* 1946, 42, 468.
[67] E. Shafirovich, A. S. Mukasyan, A. Varma, G. Kshirsagar, Y. Zhang, J. C. Cannon, Mechanism of Combustion in Low-Exothermic Mixtures of Sodium Chlorate and Metal Fuel, *Combustion & Flame* **2002**, 128, 133.

[68] A. E. Simchen, The Fusion Point and the Thermal Decomposition of Potassium Perchlorate, *J. Phys. Chem.* **1961**, 65(7), 1093.

[69] S. Takriti, G. Duplâtre, Thermal Decomposition of KIO₄ and NaIO₄ in Relation to Solid-state Isotopic Exchange Reactions, *J. Chem. Soc. Faraday Trans. I* **1998**, 84(8), 2831.

[70] M. R. Udupa, Thermal Decomposition of Sodium Chlorate and Chromium (III) Oxide Mixtures, *J Therm. Analysis* **1981**, 21, 221.

[71] I. Vanhal, G. Blond, Impact of Melting Conditions of Sucrose on Its Glass Transition Temperature, *J. Agric. Food Chem.* **1999**, 47, 4285.

[72] M. F. Cuddy, A. R. Poda, M. A. Chappell, Estimations of Vapor Pressures by Thermogravimetric Analysis of the Insensitive Munitions IMX-101, IMX-104, and Individual Components, *Propellants Explos. Pyrotech.* **2014**, 39, 236.

[73] A. Provatas, P. J. Davies, DNAN – A Replacement for TNT in Melt-Cast Formulations, *Insensitive Munitions and Energetic Materials Technology Symposium*, 2006, Defence Science and Technology Organisation Weapons Systems Division, Edinburgh AUS **2006**.

[74] X. Xing, F. Zhao, S. Ma, K. Xu, L. Xiao, H. Gao, T. An, R. Hu, Specific Heat Capacity, Thermal Behavior, and Thermal Hazard of 2,4-Dinitroanisole, *Propellants Explos. Pyrotech.* **2012**, 37, 179.
[75] T. B. Brill, K. J. James, *Kinetics and Mechanisms of Thermal Decomposition of Nitroaromatic Explosives*, Report WL-TR-93-7058, Wright Laboratory, Eglin Air Force Base, FL, USA 1993.

[76] J. C. Dacons, M. J. Kamlet, D. V. Sickman, *Thermal Decomposition of TNT*, NAVORD Report 6831, Naval Ordnance Lab, White Oak, MD, USA 1960.

[77] Y. Oyumi, A. L. Rheingold, T. B. Brill, Thermal Decomposition of Energetic Materials XXIV. A Comparison of the Crystal Structures, IR Spectra, Thermolysis and Impact Sensitivities of Nitroguanidine and Trinitroethylnitroguanidine, *Propellants Explos. Pyrotech.* 1987, 12, 46.

[78] F. Volk, Determination of Gaseous and Solid Decomposition Products of Nitroguanidine, *Propellants Explos. Pyrotech.* 1985, 10, 139.

[79] F. Volk, F. Scehlbauer, Energy Output of Insensitive High Explosives by Measuring the Detonation Products, *Propellants Explos. Pyrotech.* 1993, 18, 332.

[80] T. R. Botcher, D. J. Beardall, C. A. Wight, L. Fan, T. J. Burkey, Thermal Decomposition Mechanism of NTO, *J. Phys. Chem.* 1996, 100, 8802.

[81] L. Fan, C. Dass, T. J. Burkey, Synthesis and Thermal Decomposition of 15N-labelled NTO, *J. Labelled Compounds and Radiopharmaceuticals* 1996, 38(1), 87.

[82] B. N. Kondrikov, S. P. Smirnov, A. V. Minakin, Chemical Kinetics of the Thermal Decomposition of NTO, *Propellants Explos. Pyrotech.* 2004, 29(1), 27.
[83] Z. Li, H. Ma, B. Yan, Y. Guan, J. Song, Synthesis, Crystal Structure, Theoretical Calculation and Thermal Behavior of DNAZ•NTO, *Chinese J. Chem.* **2009**, *27*, 2284.

[84] G. T. Long, B. A. Brems, C. A. Wight, Thermal Activation of the High Explosive NTO: Sublimation, Decomposition, and Autocatalysis, *J. Phys. Chem. B* **2002**, *106*, 4022.

[85] D. F. McMillen, D. C. Erlich, C. He, C. H. Becker, D. A. Shockey, Fracture-induced and Thermal Decomposition of NTO Using Laser Ionization Mass Spectrometry, *Combustion & Flame* **1997**, *111*, 133.

[86] J. A. Menapace, J. E. Marlin, D. R. Bruss, R. V. Dascher, Photochemical and Thermochemical Decomposition of 3-Nitro-1,2,4-triazol-5-one and Perdeuterio-3-nitro-1,2,4-triazol-5-one in Neat and Mixed Systems, *J. Phys. Chem. A* **1991**, *95*(14), 5509.

[87] J. C. Oxley, J. L. Smith, Z. Zhou, R. L. McKenney, Thermal Decomposition Studies on NTO and NTO/TNT, *J. Phys. Chem.* **1995**, *99*, 10383.

[88] J. C. Oxley, J. L. Smith, K. E. Yeager, E. Rogers, X. X. Dong, NTO Decomposition Studies, in: *MRS Symposium Proceedings Volume 418: Decomposition, Combustion, and Detonation Chemistry of Energetic Materials* (Eds.: T. B. Brill, T. P. Russell, W. C. Tao), Materials Research Society, Pittsburgh **1996**, p. 135.

[89] J. C. Oxley, J. L. Smith, E. Rogers, X. X. Dong, NTO Decomposition Products Tracked with 15N Labels, *J. Phys. Chem. A* **1997**, *101*, 3531.
[90] S. M. Pourmortazavi, M. Rahimi-Nasrabadi, I. Kohsari, S. S. Hajimirsadeghi, Non-isothermal Kinetic Studies on Thermal Decomposition of Energetic Materials, *J. Therm. Anal. Calorim.* **2012**, *110*, 857.

[91] V. P. Sinditskii, S. P. Smirnov, V. Y. Egorshev, Thermal Decomposition of NTO: An Explanation of the High Activation Energy, *Propellants Explos. Pyrotech.* **2007**, *32*(4), 277.

[92] G. K. Williams, T. B. Brill, Thermal Decomposition of Energetic Materials. 68. Decomposition and Sublimation Kinetics of NTO and Evaluation of Prior Kinetic Data, *J. Phys. Chem.* **1995**, *99*, 12536.

[93] X. Yi, H. Rongzu, Y. Chaoqing, F. Guofu, Z. Jihua, Studies on the Critical Temperature of Thermal Explosion for 3-Nitro-1,2,4-triazol-5-one (NTO) and its Salts, *Propellants Explos. Pyrotech.* **1992**, *17*, 298.

[94] E. Tyrrell, G. W. Dicinoski, E. F. Hilder, R. A. Shellie, M. C. Breadmore, C. A. Pohl, P. R. Haddad, Coupled Reversed-phase and Ion Chromatographic System for the Simultaneous Identification of Inorganic and Organic Explosives, *J. Chromatogr. A* **2011**, *1218*, 3007.

[95] A. Koutsospyros, J. Pavlov, J. Fawcett, D. Strickland, B. Smolinski, W. Braida, Degradation of High Energetic and Insensitive Munitions by Fe/Cu Bimetal reduction, *J. Haz. Mats.* **2012**, *219*-220, 75.

[96] E. P. Burrows, E. E. Bruegemann, S. H. Hoke, E. H. McNamee, L. J. Baxter, *Nitroguanidine Wastewater Pollution Control Technology: Phase II Wastewater Characterization and Analytical Methods Development for*
Organics, Technical Report 8311, US Army Medical Bioengineering Research and Development Laboratory, Frederick, MD, USA 1984.

[97] O. Cascio, M. Trettene, F. Bortolotti, G. Milana, F. Tagliaro, Analysis of Organic Components of Smokeless Gunpowders: High-Performance Liquid Chromatography vs. Micellar Electrokinetic Capillary Chromatography, *Electrophoresis* 2004, 25, 1543.

[98] D. Goesch, *Determining Fate and Transport Parameters for Nitroglycerin, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, and Nitroguanidine in Soils*, MS Thesis, Department of Hydrology and Water Resources, University of Arizona 2012.

[99] Y. Ma, A Fast Separation and Quantification Method for Nitroguanidine and 2,4-Dinitroanisole and Other Explosives in Soil, Water, and Plant Tissues by Liquid Chromatography/Tandem Mass Spectrometry, *J. Anal. Bioanal. Techniques* 2012, 2(6), 43.

[100] R. Mu, H. Shi, Y. Yuan, A. Karnjanapiboonwong, J. G. Burken, Y. Ma, Fast Separation and Quantification Method for Nitroguanidine and 2,4-Dinitroanisole by Ultrafast Liquid Chromatography-Tandem Mass Spectrometry, *Anal. Chem.* 2012, 84, 3427.

[101] N. D. Mulherin, T. F. Jenkins, M. E. Walsh, *Stability of Nitroguanidine in Moist, Unsaturated Soils*, Report ERDC/CRREL TR-05-2, US Army Engineer Research and Development Center/Cold Regions Research and Engineering Laboratory, Hanover, NH, USA 2005.
[102] M. E. Walsh, *Analytical Methods for Determining Nitroguanidine in Soil and Water*, Special Report 89-35, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, USA 1989.

[103] Z. Can, A. Üzer, Y. Tekdemir, E. Erçağ, L. Türker, R. Apak, Spectrophotometric and Chromatographic Determination of Insensitive Energetic Materials: HNS and NTO, in the Presence of Sensitive Nitro-explosives, *Talanta* 2012, 90, 69.

[104] M. E. Walsh, Overview of Analytical Methods for Detonation Residues of Insensitive Munitions, *J. Energetic Mats.*, in print.
MANUSCRIPT 1

Accepted for publication in *J. Therm. Anal. Calorim.* 2015

Fuel-Oxidizer Mixtures:

Their Stabilities and Burn Characteristics

Jimmie C. Oxley*, James L. Smith, Maria Donnelly, Matthew Porter

Corresponding author:

Dr. Jimmie C. Oxley
Chemistry Department,
University of Rhode Island,
51 Lower College Road,
Kingston, RI 02881
joxley@chm.uri.edu
tel: 401-874-2103
Manuscript 1

Fuel-Oxidizer Mixtures: Their Stabilities and Burn Characteristics

Abstract

A survey of the stability and performance of eleven solid oxidizers and thirteen fuels was performed by differential scanning calorimetry (DSC), simultaneous differential thermolysis (SDT), and hot-wire ignition. Sugars, alcohols, hydrocarbons, benzoic acid, sulfur, charcoal, and aluminum were used as fuels; all fuels except charcoal and aluminum melted at or below 200°C. It was found that the reaction between the oxidizer and the fuel was usually triggered by a thermal event, i.e. melt, phase change, or decomposition. Although the fuel usually underwent such a transition at a lower temperature than the oxidizer, the phase change of the fuel was not always the triggering event. When sugars or sulfur were the fuels, their phase change usually triggered their oxidation. However, three oxidizers, KNO₃, KClO₄, and NH₄ClO₄, tended to react only after they underwent a phase change or began to decompose, which meant that their oxidization reaction, regardless of the fuel, was usually above 400°C. KClO₄/fuel mixtures decomposed at the highest temperatures, often over 500°C, with the ammonium salt decomposing almost 100°C lower. Mixtures with ammonium nitrate also decomposed at much lower temperatures than those with the corresponding potassium salt. With the exception of the oxidizers triggered to react by the phase changes of the polyols and sulfur, the oxidizer/fuel mixtures generally decomposed between 230°C and 300°C, with ammonium nitrate (AN) formulations
generally decomposing at the lowest temperature. In terms of heat release, potassium dichromate/fuel mixtures were the least energetic, generally releasing less than 200 Jg-1. Most of the mixtures released 1000 to 1500 Jg-1, with potassium chlorate, ammonium perchlorate, and ammonium nitrate releasing significantly more heat, around 2000 Jg-1. When the fuel was aluminum most of the oxidizers decomposed below 500°C leaving the aluminum to oxidize at over 800°C. Only two oxidizers reduced the temperature of the aluminium exotherm—chlorate and potassium nitrite. To go to temperatures above 500°C, unsealed crucibles were necessary, and with these containers, the endothermic volatilization of reactants and products effectively competed against the exothermic decomposition so that heat release values were artificially low.

Key Words: Fuel-oxidizer mixtures, Thermal analysis, Differential scanning calorimetry (DSC), Simultaneous differential thermolysis (SDT), Hot-wire ignition

Introduction

Fuel-Oxidizer (FOX) mixtures are commonly used in the pyrotechnic and mining industries, with applications ranging from oxygen sources to sources of energy and propulsion. Examples of such uses include ammonium perchlorate with hydroxy-terminated polybutadiene for rocket fuel and ammonium nitrate with fuel oil for commercial mining. The wide availability of many fuels and oxidizers has also resulted in their illicit use as components of improvised explosive devices (IEDs) [1,2].
In this study, a number of solid oxidizers, with varying oxidizing power, were tested on lab-scale in mixtures with a variety of fuels. The purpose of these tests was to assess the hazard and threat potential of the different mixtures, and to allow assessment of the usefulness of small-scale tests. Many of the oxidizers were oxyhalide salts. The potassium salts were used because they tend to be less hygroscopic than those of sodium. Since ammonium salts have different chemical behavior than the potassium salts of the same anion, because they carry and use, if required, their own fuel, the ammonium salts of nitrate and perchlorate were also included in the study. The choice of fuels was limited to solids, including poly-alcohols, hydrocarbons, benzoic acid, sulfur, charcoal, and aluminum.

Materials and Methods

Eleven oxidizers and twelve fuels were used in various different combinations. All materials were reagent grade with the exception of the charcoal, which was purchased locally, and aluminum, which was pyrotechnic grade. The oxidizer/fuel mixtures were examined fuel-rich at 50/50 mass% and closer to stoichiometric at 80/20 mass%. Benzoic acid, which is often used as a burn rate modifier, and aluminum were added only at the 20 mass% level. Individual components with larger particle sizes (i.e. sugars and most oxidizers) were ground prior to mixing. Those materials that were already fine powders, such as sulfur, were used as received. Materials used to make the 80/20 sucrose mixtures were sieved to 50-100 mesh. Mixtures were generated by gently stirring the fuel and oxidizer together with a wooden stick or by mixing in a Resodyn LabRAM acoustic mixer (two minutes, 50%
intensity, auto frequency). Batch sizes ranged from 100 mg to 1 g depending on the analyses to be performed.

A TA Q100 differential scanning calorimeter (DSC) was used with a ramp rate of 20°C/minute. Samples of about 0.25 mg were flame sealed in glass capillaries (borosilicate, 0.06 in. ID, 0.11 in. OD) held on a liquid nitrogen cooled metal post to ensure that decomposition did not occur during sample preparation [3]. To verify the integrity of the capillary sealing (i.e. no leaks) capillaries were weighed before and after DSC analysis. A TA Instruments Q600 simultaneous TGA/DSC (SDT) was used with unsealed samples held in ceramic crucibles. About 5 mg of sample was placed in an empty crucible previously tared by the internal balance of the SDT. Ceramic caps (not tightly sealed) were placed on the crucibles for samples which might eject material or for highly volatile samples, such as the sulfur mixtures. The SDT was used because of its extended temperature range (1000°C versus 500°C for DSC); however, the thermograms obtained with sealed DSC capillaries did not necessarily match those observed with the unsealed ceramic pans used in the SDT. In contrast to the open pans, which allowed samples to volatilize, there was considerable pressure build-up in the sealed samples. Differences noted in the SDT traces included somewhat smaller exotherms; some smaller exotherms became endotherms; and larger exotherms were sometimes split by an endotherm. Since a build-up of pressure is representative of real explosive events, the sealed DSC capillaries were used for temperatures below 450°C; if temperatures above that are reported, they are SDT results. In most cases, both DSC and SDT analyses were run under nitrogen.
Samples were usually run in triplicate, but where marked variations in the thermograms were apparent, up to seven samples were run. Variations in the detailed appearance of the DSC thermograms were likely a result of inhomogeneities in the oxidizer and fuel mix, especially considering that samples were usually less than a milligram. Because multiple endotherms and exotherms were often observed in the DSC and SDT traces, and because many of the exotherms covered a wide temperature range, the major exotherm of a trace is usually reported with either the onset temperature or the temperature at which a deviation from baseline was initially detected, followed by the temperature(s) at which “peak maxima” were observed, with the highest in bold, and the heat of reaction in parentheses (J g\(^{-1}\)) calculated from peak area using baselines established by the operator.

For burn tests the oxidizers and sucrose were dried overnight in a vacuum oven at 50°C, then ground and sieved to 50-100 mesh. Pyrotechnic-grade (median particle size 23 μm) aluminum powder (Obron) was used. Samples were mixed with a Resodyn LabRAM acoustic mixer at 50% intensity for 2 minutes. Approximately 0.25 g samples were placed in a pile on a ceramic plate over a loop of 22-gauge nichrome wire (30 cm long for power requirements of 150W) attached to a variable autotransformer (set to 20V) with a 25 amp internal fuse for the burn. Light output was recorded with a DET36A detector (Thor Labs) and recorded using a National Instruments USB-6210 data acquisition module. Light data was recorded at 10-100 kHz by measuring voltage across a 350 ohm resistor. The detector was unfiltered for mixtures producing low levels of light (oxidizer with sucrose). To resolve the brightest events (oxidizer with aluminum), a 90% neutral density filter (ND10A, optical density
of 1.0) was applied behind an Iris (6.33 mm diameter opening, Iris SM1D12). The data acquisition card was set to sampling rate of at least 10 kHz, with pre-trigger of 50-100ms.

Results and Discussion

Neat Species: Oxidizing power can be assessed in various ways. Intrinsic oxidizing ability, given by the standard reduction potential in Volts (1M aq solution against H₂ as zero), is one approach to quantifying oxidizing power. Standard reduction potentials are listed below starting from the left with species having most positive potential [4,5]:

\[
\begin{align*}
\text{H}_2\text{O}_2 & (1.8) > \text{IO}_4^- (1.7-1.6) > \text{MnO}_4^- (1.7-1.5) > \text{BrO}_3^- (1.5-1.4) > \text{ClO}_3^- (1.5) > \\
\text{Cr}_2\text{O}_7^{2-} (1.4-1.3) > \text{ClO}_4^- (1.4-1.2) > \text{IO}_3^- (1.2-1.1) > \text{NO}_3^- (1.0-0.8) > \text{NO}_2^- (-0.46)
\end{align*}
\]

Actual potentials depend on the pH of the solution and the final products:

\[
\text{NO}_3^- \rightarrow \text{NO, HNO}_2, \text{NH}_4^+ \text{, NO}_2; \quad 0.96, 0.94, 0.87, 0.80 \text{ V, respectively}
\]

An alternative approach to rating oxidizing power is a burn test. The U.N. Manual of Tests and Criteria rates an oxidizer by comparing its burn rate in admixture with cellulose (2:3 and 3:7 ratios) to mixtures of potassium bromate/cellulose [6]. Our burn tests used 250 mg instead of 30 g of material, and sucrose or aluminum powder instead of cellulose. Burn rates are shown in Table 1.
Thermal stability was assessed via the temperature at peak maximum of the DSC exotherm. The higher the exotherm temperature, the more thermally stable the species. Some salts decomposed with an exclusively endothermic response (Table 2).

Among salts releasing heat (exothermic response), the amount of heat varied from more than 1000 J g\(^{-1}\) for ammonium salts, which can undergo self-oxidation, to a few hundred joules per gram for other oxidizers. Thermal traces of the oxidizers alone were not simple; they included phase change(s), decompositions, and heats of fusion of the decomposition product. In systems where oxygen was not allowed to escape, the pairs perchlorate/chlorate [7-9] and nitrate/nitrite [10,11] can establish a pseudo-equilibrium (eq 1-2) [10]. At high temperatures the melts of KCl, K\(_2\)O, and KI were

Table 1 Burn time /seconds of a 4:1 Oxidizer: Sucrose Mix

Oxidizer	KIO\(_3\)	KMnO\(_4\)	KBrO\(_3\)	KClO\(_3\)	K\(_2\)CrO\(_7\)	NH\(_4\)Cl	KClO \(_4\)	KBrO \(_3\)	NH\(_2\)ClO	KIO\(_3\)	KNO\(_3\)	NH\(_2\)NO\(_3\)	KNO\(_3\)	
Burn Test 8:2 Oxidizer/Al														
Arc Peak Light Signal Thor (mV)	5764	3530	1113	1179	140	144	397							
Rel.	75	57	41	74	92	71	11							
Notes	liquid flash													

Table 2 Burn time /seconds of a 4:1 Oxidizer: Sucrose Mix

Oxidizer	KIO\(_3\)	KMnO\(_4\)	KBrO\(_3\)	KClO\(_3\)	K\(_2\)CrO\(_7\)	NH\(_4\)Cl	KClO \(_4\)	KBrO \(_3\)	NH\(_2\)ClO	KIO\(_3\)	KNO\(_3\)	NH\(_2\)NO\(_3\)	KNO\(_3\)		
Burn Test 8:2 Oxidizer/Al															
Arc Peak Light Signal Thor (mV)	56	25	206	164	3	11	22								
Rel.	12	12	31	41	4	11	22								
Notes	purple	blue	blue	blue	blue	blue	blue								

Table 3 Burn time /seconds of a 4:1 Oxidizer: Sucrose Mix

Oxidizer	KIO\(_3\)	KMnO\(_4\)	KBrO\(_3\)	KClO\(_3\)	K\(_2\)CrO\(_7\)	NH\(_4\)Cl	KClO \(_4\)	KBrO \(_3\)	NH\(_2\)ClO	KIO\(_3\)	KNO\(_3\)	NH\(_2\)NO\(_3\)	KNO\(_3\)	
Burn Test 5:5 Oxidizer/Al														
Arc Peak Light Signal Thor (mV)	18	450	118	18	58	43	43							
Rel.	9	22	11	9	22	22	22							
Notes	yellow, orange	yellow	yellow, orange	yellow	yellow	yellow, orange	yellow							

Table 4 Burn time /seconds of a 4:1 Oxidizer: Sucrose Mix

Oxidizer	KIO\(_3\)	KMnO\(_4\)	KBrO\(_3\)	KClO\(_3\)	K\(_2\)CrO\(_7\)	NH\(_4\)Cl	KClO \(_4\)	KBrO \(_3\)	NH\(_2\)ClO	KIO\(_3\)	KNO\(_3\)	NH\(_2\)NO\(_3\)	KNO\(_3\)		
Burn Test 6:0 Oxidizer/Benzonic Acid															
Arc Peak Light Signal Thor (mV)	1113	157	2228	762	26	226	737	221	91	11	160				
Rel.	172	12	441	236	5	230	144	112	1	1					
Notes	yellow, orange	yellow	yellow, orange	yellow	yellow	white	white	orange	yellow						
observed, and the DSC traces showed the decomposition of periodate to iodate around 330°C (eq 3); thereafter, their thermograms were identical [12-17].

\[
\begin{align*}
K\text{ClO}_4 & \iff K\text{ClO}_3 \rightarrow K\text{Cl} + 1.5 \text{O}_2 & (1) \\
K\text{NO}_3 & \iff K\text{NO}_2 + 0.5\text{O}_2 & (2) \\
K\text{IO}_4 & \rightarrow K\text{IO}_3 \rightarrow K\text{I} + 1.5 \text{O}_2 & (3)
\end{align*}
\]

Ammonium perchlorate (AP, NH₄ClO₄) did not melt but exhibited an endotherm around 245°C (~70 J g⁻¹) as a result of an orthorhombic to cubic phase change. [Ammonium chlorate is thermally unstable and has been reported to spontaneously ignite at temperatures as low as 100°C [18]; for this reason it was not used in this study.] Continued heating of AP in sealed DSC ampules resulted in a single exotherm which began around 350°C and reached a maximum about 400°C (~1300 J g⁻¹). The SDT results appeared quite different. Immediately after the 245°C phase change, a small exotherm (~360 J g⁻¹) at ~318°C was observed followed by a second endotherm centered around 435°C (Fig. 1). This apparent difference in AP behavior has been explained by the sublimation of AP above 350°C competing with its decomposition [19, 20]. Sublimation can be dramatically reduced by pressure; thus, when possible sealed DSC pans were used [20]. As heating of the open pan in SDT was continued, a small endotherm at 757°C was observed for the melt of KCl.
All the fuels, except charcoal and aluminum, melted below 208°C; some showed exothermic decomposition especially when heated under air. Endothermic and exothermic temperature minima or maxima, onset temperatures for exotherms, and heat release as found by DSC or SDT (scan rate 20°C/min) are shown in Table 2.

An advantage of SDT thermal analysis was that it allowed scanning to higher temperatures. However, since the crucibles were not sealed, the SDT thermal traces differed markedly from sealed DSC thermal analyses. For example, the exotherm at 316°C in the DSC thermal trace of AN became an endotherm at 292°C when examined by SDT due to the volatilization of the AN. This same observation was made with a number of compounds and formulations. Sulfur, in the open pans, exhibited an exotherm around 400°C when run under air. This was evidently a reaction with the oxygen in air since no exotherm was observed when the samples were scanned under nitrogen. Similar large exotherms were also observed when charcoal and sucrose were scanned under an air atmosphere.
Table 2. Temperature Endotherms & Exotherms DSC & SDT (20°/min, Heat Release/ Jg⁻¹)

Compound	KClO₃	KMnO₄	KIO₃	KNO₃	KBrO₃	KClO₄
Snout	110	100	100	100	100	100
Bucephos	100	100	100	100	100	100
PNP	100	100	100	100	100	100
Lactone	100	100	100	100	100	100
Chiosene	100	100	100	100	100	100
Xyloglo	100	100	100	100	100	100
Xyloglon	100	100	100	100	100	100
Cystodea	100	100	100	100	100	100
Canthax	100	100	100	100	100	100
Sperma	100	100	100	100	100	100
Nannosa	100	100	100	100	100	100
Nannosum	100	100	100	100	100	100
Nannosol	100	100	100	100	100	100
Charcoal	100	100	100	100	100	100
Al 20%	100	100	100	100	100	100
Table 2 cont. Temperature Endotherms & Exotherms DSC & SDT (20°/min, Heat Release/ g⁻¹)

Sample	Temperature (°C)	Heat Release (J/g)
Sample A	100	1000
Sample B	200	2000
Sample C	300	3000

Note: Additional columns and rows may be present in the table.
Oxidizer/Fuel Mixtures

Numerous kinetic studies have examined the decomposition of individual oxidizers [7-24], and several kinetic and mechanistic studies exist that have examined the oxidation of alcohols by iodate and periodate [25-34], bromate [35], chlorate and perchlorate [36-38], permanganate [39,40], and dichromate [41] (Table 3). Most of the eleven oxidizers (KIO₄, KMnO₄, KBrO₃, KClO₃, K₂Cr₂O₇, KIO₃, AN, KNO₂) reacted with the sugars immediately after their melt, and a large exotherm was observed, as can be seen in Figure 2 (DSC thermogram of KIO₄ mixed with 50 mass% sucrose). This behavior was observed regardless of whether the sugar was a disaccharide, i.e. sucrose and lactose, or a monosaccharide, i.e. glucose and fructose (Fig. 3, 4).

Table 3 Oxidation Products of Some Alcohols

Oxidizer	Alcohol	Products	Reference
KBrO₃	propan-2-ol	acetone	35
KClO₃	sucrose	KCl, CO₂, H₂O	38
KClO₃	lactose	KCl₂, CO₂, H₂O, CO₃, C₂H₂	36, 37
KClO₃	fructose	KCl₁₂, O₂, H₂O	38
KIO₃	pea cannaery waste	fructose, iodate, carboxylic acid	37
KIO₃	diacetyl disobutyl, benzil, camphorquinone	iodate, carboxylic acid, KIO₃, 38	
KIO₃	fructose, glucose, galactose, maltose, sucrose	formic acid & lower sugars	39
NaIO₄	dextran (an anhydroglucose polymer)	formic acid, dimer of intermediate via Diels-Alder	30, 39
NaIO₄	salicyl alcohol	dimer of intermediate via Diels-Alder	30
NaIO₄	glucose	HCO₂-H, HClO₃, H₂O	25
NaIO₄	cellulose	dglaldehyde	32
NaIO₄	cellulose	dglaldehyde	33
NaIO₄	catechol	o-benzoglucinquinone	34
Fig. 2 $\text{KIO}_4 + 50$ mass% Sucrose

Fig. 3 $\text{KClO}_3 + 50$ mass% disaccharide: Sucrose (3a) & Lactose (3b)

Fig. 4 $\text{KClO}_3 + 50$ mass% monosaccharide: Glucose (4a) & Fructose (4b)
The fact that the majority of oxidizers reacted immediately after the melt of the sugar suggested that molten sugars can solublize, or at least mobilize, the oxidizer, promoting reaction. We labeled these oxidizers "sugar-controlled." A detailed examination of the reaction between KClO$_3$ and lactose noted the importance of liquid lactose and its solubilization of the chlorate; it also noted no disproportionation into perchlorate [36-38].

![Fig. 5 KIO$_4$ + 20 mass% Sucrose](image)

For three oxidizers this general trend with sugars was not observed. These oxidizers may have exhibited a small exotherm immediately after the sugar melt, but the majority of the exothermic reaction only occurred after the oxidizer underwent a melt, phase change, or decomposition, and we labeled them "oxidizer-controlled." The two resistant anions were perchlorate and nitrate, but for the latter, nitrate, only the potassium salt failed to react immediately after the sugar melt. This counter-trend was true regardless of the type of sugar (Fig. 6 and Fig. 7).
Generally, the thermograms did not change drastically in appearance when 20 mass% rather than 50 mass% sucrose was used (compare Fig. 2 and 5 or see Fig. 8). The exception was ammonium perchlorate (AP), one of the three oxidizers resistant to sugar melt. With 50 mass% sucrose a wide exotherm was observed immediately after the melt of sucrose and a second exotherm started about 270°C. With only 20 mass% sucrose, no exotherm was observed until ~ 470°C, in dramatic contrast to the thermogram with 50 mass% sucrose (Fig 9).
With ammonium nitrate (AN) and the sugars, it was difficult to assign the decomposition trigger as the sugars and the AN both melted in the 150 to 170°C range. With the higher level of sucrose (50 mass%) the main exotherm was observed around 180°C, while with sucrose closer to stoichiometric (20%), large exotherms were observed at 170 and 340°C, with the latter at the normal decomposition temperature of AN (Fig. 10).
The heat released from the oxidizers with 20 mass% sucrose was comparable (~1400 Jg$^{-1}$) to the heat released with 50 mass% sucrose (Table 4). There was a large deviation in observed heat released (±25%) run to run which we have attributed to the slow response of the DSC thermocouples. K$_2$Cr$_2$O$_7$ fuel mixtures were notably low in energy release, averaging less than a tenth of the other fuel/oxidizer mixtures (Table 4).
Table 4 Heat Released/ Jg-1 below 500°C from Oxidizer/Fuel Mixes

Oxidizer	KIO\textsubscript{4}	KMnO\textsubscript{4}	KBrO\textsubscript{3}	KClO\textsubscript{4}	KClO\textsubscript{3}	KIO\textsubscript{3}	KNO\textsubscript{3}	AN	KNO\textsubscript{2}		
Exotherm Jg-1	94	142	217	465	1233	290	1407	SDT			
Sulfur	2054	1964	1110	2037	127	2253	1125	1243	1016	2092	1981
Sulfur 20%	1405	1798	1718	2091	102	1357	1698	838	681	1792	5280
Glucose	2086	2686	697	696	1480	666	2217				
Pentaaerythritol	1427	2058	1638	2118	1009	2238	1758	1209			
Erythritol	1140	1702	2272	129	3822	573	871	2438	1758	1009	
Cyclododecanol	790	768	876	1329	276	19/	not seen	354	not seen		
Surfact	2353	2360	815	723	1747	1512	2299	1054	2328	2094	
Naphthalene	1205	531	1779	500	60	1527	not seen	829	not seen		
Benzoic acid 20%	1500	1309	835	5648	138	2400	not seen	18/9	not seen		
Charcoal	600	792	454	1585	156	1718	1172	300	1361	1607	625
Aluminum 20% all SDT	170	726	1454	1495	38	1600	800	490	1300	640	2400

Average all fuel - Al 1452 | 1331 | 1235 | 2011 | 136 | 2038 | 1057 | 978 | 1131 | 1892 | 1281 |

Since there was not much differentiation among the sugars, we chose to examine a more diverse group of alcohols: erythritol (mp 122°C), pentaerythritol (mp 190°C), and cyclododecanol (mp 78°C). Erythritol has been shown to be a suitable substitute for sucrose in the preparation of chiffon cake [42]. Only two oxidizers with erythritol (KMnO\textsubscript{4} and KIO\textsubscript{4}) showed immediate decomposition after the melt of erythritol, although all the "sugar-controlled" oxidizers that were examined with this fuel decomposed at lower temperatures than their own phase changes or decomposition point (Fig. 11). Five of the oxidizers were heated with pentaerythritol. KClO\textsubscript{3} and KBrO\textsubscript{3}, which had been labeled "sugar-controlled", remained triggered by the fuel, while KNO\textsubscript{3} remained oxidizer controlled. AN, which
with the four sugars exhibited an exotherm around 170°C, did not react with the melt of pentaerythritol (PE) at 190°C. Instead it began to release heat around 260°C, a phase change for PE. In some thermograms the exotherm at 260°C was the only peak; in others a second peak was observed at the normal decomposition temperature of AN (Fig. 12). Potassium dichromate, which was one of the “sugar controlled” oxidizers, did not react near the melting point of pentaerythritol, but showed a small exotherm following its own melting point around 400°C.

Fig. 11 KMnO₄ + Erythritol

Fig. 12 AN + 50 mass% Pentaerythritol (12a & 12b)
Cyclododecanol had a melting point lower than the other alcohols, but as a mono-alcohol it appeared to have little ability to solvate the oxidizers. Two of the oxidizers, KClO₄ and KNO₃, showed no reaction with cyclododecanol when monitored up to 500°C.

To examine samples that did not exhibit heat releases in the temperature range of the DSC, SDT was used. Because the SDT was designed to allow monitoring of mass loss as well as heat flow, samples were scanned unsealed. This immediately proved to be a problem. In some cases exothermic events appeared as endothermic events; a classic example is a scan of an unsealed sample of AN. When not contained in a sealed ampoule, AN will show an endotherm around its 300°C decomposition rather than the actual exotherm (Fig. 13). Occassionally the exothermic event was only partially countered by the endothermic evaporation of the reactant or products; in such cases the exotherm was observed, but heat release was significantly lower than it would have been in a sealed sample. Therefore, whenever possible, sealed samples were examined by DSC. To date we have found no satisfactory method for sealing DSC samples that remains gas tight over 550°C.

![Figure 13 Ammonium nitrate DSC (13a) vs. SDT (13b)](image-url)
To examine fuels other than alcohols, naphthalene, hexatriacontane, benzoic acid, charcoal, sulfur, and aluminum were added to the study. Neither naphthalene nor hexatriacontane, both of which are hydrocarbons with melting points around 80°C, exhibited reactions with the oxidizers at temperatures below 200°C, and in the mixtures with benzoic acid, only potassium permanganate reacted near the fuel’s melting point of 121°C. Charcoal, which does not melt, also tended to react at higher temperatures; only with ammonium nitrate did it have an exothermic peak maximum below 300°C. Sulfur, which exists as a number of allotropes [43], and has long been used in energetic formulations [44,45], exhibited behavior much more similar to that of the sugars. We observed two, and sometimes three, endotherms between 107 and 120°C, assigned to phase change and melting, and there was also a small endotherm around 180°C. The oxidizers that were initiated by the sugar melt also showed exothermic decomposition with sulfur beginning around 180°C. A common characteristic of this exothermic decomposition was slow heat release rising to a recognizable exotherm (Fig. 14). The same three oxidizers classified as oxidizer-controlled do not show an exotherm until higher temperatures (Fig. 15).

![Graph showing DSC analysis](image)

Fig. 14 KMnO₄ + 50 mass% Sulfur
Table 5 records the temperature at which the exotherms were first observed to rise above the baseline (ramp rate of 20°C/min). These temperatures are different than those recorded in Table 2, which tabulates the onset temperatures of the exothermic peaks as calculated by the TA Universal Analysis DSC software. When DSC exotherms are very broad, onset temperatures are often misleading. For example, when KBrO₃ is mixed with naphthalene (Fig. 16), the difference between the onset and first deviation from baseline is not large (~30°C), but for KIO₃ and sulfur (Fig. 17) the difference between the calculated onset and the deviation from baseline is huge (~160°C). (Note that this trace of oxidizer and sulfur is typical for sulfur mixtures.)
Table 5 Temperature at which Principle Exotherm is First Observed/°C

Oxidizer phase change	KIO₃	K₂MnO₄	KBrO₃	KClO₃	K₂Cr₂O₇	AP	KClO₄	KNO₃	KNO₂	AN	KNO₃
Oxidizer decomposition	310	277	428	574	365	636	555	703	254	510	
Sucrose	185	238	148	194	179	167	224	203	443	159	372
Pentanol	359							420			
Diphenylmethane	722	297	119	117	142	393	258	515	595	141	350
Sulfur	187	119	182	180	193	149	391	428	169	294	172
Cyclohexanol	79							414			
Cyclohexane	79										
Naphthalene	80							400	600	600	219
Benzoic acid 20%	121							403	NR<500	270	NR<500
Charcoal	164	277	300	367	363	393	403	410	261	368	
Al (78%)	662			419	264	900	563	581	747	846	679
Al	280							435			

The temperature at which an oxidizer/fuel mixture begins to react depends on both the susceptibility of the fuel to oxidation and the oxidizer’s tendency to be reduced. In comparing the carbonaceous fuels, cyclohexanol, hexatriacontane, naphthalene, benzoic acid, and charcoal, we had hoped to see a reactivity trend across all oxidizers, and, indeed, the following trend in the initiation temperature of the decomposition exotherm was observed with over half the oxidizers:

benzoic acid < cyclohexanol ~ hexatriacontane < charcoal < naphthalene
Interestingly, hexatriacontane and cyclododecanol, which had boiling points only one degree apart, produced DSC traces almost identical to each other, suggesting the reaction of cyclododecanol was that of a hydrocarbon rather than an alcohol. It was also observed that with fuels other than aluminum, ammonium perchlorate mixtures decomposed at lower temperatures than those with potassium perchlorate.

Aluminum, which has been used as a fuel in mixtures with ammonium nitrate and perchlorate, was used as the highest melting fuel. With two exceptions, the oxidizers decomposed long before the aluminum reacted, and aluminum did not react until over 800°C (Fig. 18, 19). In two cases (KClO₃, KNO₂) the exotherm appeared at a significantly lower temperature indicating that these oxidizers react readily with the aluminum (Fig. 20, 21). All the oxidizer/Al samples were examined by SDT, and a few were also examined by DSC. The low temperature exotherm observed for KIO₄ was its conversion into KIO₃. The low temperature (i.e. under 800°C) exotherms recorded for other oxidizers reflect the decomposition of the oxidizer.

![Fig. 18 KMnO₄ + 20 mass% Aluminum](image)
Fig. 19 KNO₃ + 20 mass% Aluminum

Fig. 20 KNO₂ + 20 mass% Aluminum

Fig. 21 KClO₃ + 20 mass% Aluminum
Summary

Neat oxidizers appeared to undergo decomposition roughly in line with their standard reduction potentials (Table 1) [4,5]. Most oxidizers produced some heat when decomposed without fuel, but it was a few hundred joules per gram compared to 1500 to 3000 Jg\(^{-1}\) when decomposed with fuel. The exceptions were the ammonium salts which produced 1000 to 1500 Jg\(^{-1}\) without fuel and double that with fuel. The oxides of chlorine released the most heat, in line with the general trend that the larger the electronegative difference between oxygen and the central element, the more stable the oxyhalide. When anions containing the same central atom are compared, the order of stability is attributed to the degree of pi-bonding in each species: ClO\(_4^-\) > ClO\(_3^-\) and NO\(_3^-\) > NO\(_2^-\) [46,47]. For the oxo-chlorine and oxo-nitrogen species, perchlorate and nitrate are more stable and less sensitive than the less highly oxidized chlorate and nitrite.

When fuels were added to the oxidizer, the phase changes of the individual oxidizers and fuels were often still observed. Most of the fuels were added at the 50 mass\% level, but thermograms of 20 mass\% sucrose were examined and shown to be very similar to 50 mass\% sucrose in terms of appearance and heat release. Variations in appearance and heat release (±25\%) were attributed to inhomogeneity in the samples and variations in particle size [48-51], although even neat ammonium nitrate exhibited 15\% variation in heat release. We suspect that with energetic materials it is difficult for the DSC thermocouples to accurately track the fast release of heat. Differences in DSC and SDT traces appeared to be related to the ability of reactants/products to vaporize in the open or lightly capped SDT containers.
We found that a phase change in the fuel or oxidizer or decomposition of the oxidizer typically was the trigger causing their reaction; therefore, we classified the reactions as fuel- or oxidizer-controlled. With the exception of charcoal and aluminum, all fuels used melted below 200°C. The melt or phase change of the sugars or sulfur triggered the reaction of most of the oxidizers, but in mixtures with the non-polyalcohol fuels, decomposition tended to occur at higher temperatures. Three oxidizers, KNO₃, KClO₄, and NH₄ClO₄, most often triggered their own reaction, and typically exhibited the highest reaction temperatures, i.e. above 400°C, regardless of the fuel.

The poorest oxidizer was clearly potassium dichromate, releasing barely 100 Jg⁻¹. The rest of the oxidizer/fuel mixtures released heat ranging from 1100 to 2200 Jg⁻¹ with an average of about 1500 Jg⁻¹ (Table 4). Oxidizers consistently releasing the most heat were KClO₃, AP, and AN. (The heat release values for potassium perchlorate may have been artificially low due to the fact they were only observable by SDT, which could allow material to escape prior to the exothermic event). The amount of heat released appeared dependent on the oxidizer rather than the fuel. No fuel stood out as clearly the ‘best’; they averaged 1500 Jg⁻¹ by DSC analysis.

Response to hot-wire ignition was assessed by the length of the burn and the light output. Table 1 orders the oxidizers left to right as highest oxidizing power to lowest in terms of electromotive potential; this roughly followed their thermal stability. Light output, when the fuel was aluminium, also roughly followed this trend.
References

[1] Johns C, Shellie RA, Potter OG, O'Reilly JW, Hutchinson JP, Guijt RM, Breadmore MC, Hilder EF, Dicinoski GW, Haddad PR. Identification of homemade inorganic explosives by ion chromatographic analysis of post-blast residues. J Chromatography A. 2008;1182:205-14.

[2] Kuila DK, Chakrabortty A, Sharma SP, Lahiri SC. Composition profile of low explosives from cases in India. Forensic Sci. Int. 2006;159:127-31.

[3] Tou JC, Whiting LF. A cradle-glass ampoule sample container for differential scanning calorimetric analysis. Thermochimica Acta 1980;42(1):21-34.

[4] Ayres GH. Quantitative Chemical Analysis Appendix V 2nd ed. New York: Harper & Row Publishers; 1968.

[5] Weast RC, Astle MJ, Beyer WH, editors. Handbook of Chemistry and Physics. 64th ed. Boca Raton: CRC Press; 1983.

[6] U.N. Manual of Tests and Criteria, section 34. 5th rev. ed.; 2010.

[7] Markowitz MM, Boryta DA, Stewart H Jr. The Differential Thermal Analysis of Perchlorates. VI. Transient Perchlorate Formation during the Pyrolysis of the Alkali Metal Chlorates. J. Phys. Chem. 1964;68(8):2282-9.

[8] Harvey AE, Wassink CJ, Rodgers TA, Stern KH. Isothermal and Isopiestic Decomposition of Potassium Perchlorate and Potassium Chlorate. Annals NY Academy of Sciences 1960;79:971-87.

[9] Rudloff WK, Freeman ES. The Catalytic Effect of Metal Oxides on Thermal-Decomposition Reactions. I. The Mechanism of the Molten-Phase Thermal Decomposition of Potassium Chlorate and of Potassium Chlorate in Mixtures
with Potassium Chloride and Potassium Perchlorate. J. Phys. Chem. 1969;78(5):1209-15.

[10] Oliwares RI. The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres. Solar Energy 2012;86:2576-83.

[11] Stern K. High Temperature Properties and Decomposition of Inorganic Salts. J Phys Chem. Ref. Data 1972;1(3):747-72.

[12] Muraleedharan K, Abdul Mujeeb VM, Aneesh MH, Gangadevi T, Kannan MP. Effect of pre-treatments on isothermal decomposition kinetics of potassium metaperiodate. Thermochimica Acta 2010;510:160-7.

[13] Phillips BR, Taylor D. Thermal Decomposition of Potassium Metaperiodate. J. Chem. Soc. (Resumed) 1963;5583-90.

[14] Takriti S, Duplâtre, G. Decomposition of KIO₄ and NaIO₄ in Relation to Solid-state Isotopic Exchange Reactions. J. Chem. Soc. Faraday Trans. 1988;84(8):2831-41.

[15] Hector AL, Henderson SJ, Levason W, Webster M. Hydrothermal Synthesis of Rare Earth Iodates from the Corresponding Periodates: Structures of Sc(IO₃)₃, Y(IO₃)₃•H₂O, La(IO₃)₃ • ½ H₂O and Lu(IO₃)₃ • 2 H₂O. Z. Anorg. Allg. Chem. 2002;628:198-202.

[16] Muraleedharan K. Thermal Decomposition Kinetics of Potassium Iodate. J. Therm. Anal. Calorim. 2013;114:491-6.

[17] Martins S, Fernandes JB, Mojumdar SC. Catalysed Thermal Decomposition of KClO₃ and Carbon Gasification. J. Therm. Anal. Calorim. 2015;119:831-5.
[18] Fairbrother F. The Spontaneous Decomposition of Ammonium Chlorate. J. Am. Chem. Soc. 1922;44(11):2419-22.

[19] Inami SH, Rosser WA Jr, Wise H. Heat-release Kinetics of Ammonium Perchlorate in the Presence of Catalysts and Fuel. Combustion and Flame 1968;17:41-4.

[20] Kraeutle KJ. The Response of Ammonium Perchlorate to Thermal Stimulus. Report to Ammonium Perchlorate Technical Consortium. Naval Weapons Center, China Lake, CA. 1989.

[21] Muraleedharan K, Kannan MP. Thermal decomposition kinetics of sodium metaperiodate. React. Kinet. Catal. Lett. 1989;39(2):339-44.

[22] Muraleedharan K, Kannan MP, Ganga Devi T. Thermal decomposition kinetics of potassium iodate. J. Therm. Anal. Calorim. 2011;103:943-55.

[23] Diefallah E-HM, Basahl SN, Obaid AY, Abu-Eittah RH. Kinetic analysis of thermal decomposition reactions: I. Thermal decomposition of potassium bromate. Thermochimica Acta 1987;111:49-56.

[24] Herbstein FH, Kapon M, Weissman A. Old and new studies of the thermal decomposition of potassium permanganate. J. Thermal Analysis 1991;41:303-22.

[25] Hughes G, Nevell TP. The mechanism of the oxidation of glucose by periodate. Trans. Faraday Soc. 1948;44:941-8.

[26] Honeyman J, Shaw CJG. Periodate oxidation. Part III. The mechanism of oxidation of cyclic glycols. J Chem. Soc. 1959;2451-4.
[27] Flay RB. Periodate Oxidation of Pea Cannery Wastes. Sewage and Industrial Wastes 1953; 25(8):953-7.

[28] Shiner VJ Jr, Wasmuth CR. Kinetics and mechanism of the periodate oxidation of α-diketones. J. Am. Chem. Soc. 1959;81(1):37-42.

[29] Dimler RJ, Wolff IA, Sloan JW, Rist CE. Interpretation of Periodate Oxidation Data on Degraded Dextran. J. Am. Chem. Soc. 1955;77(24):6568-73.

[30] Adler E, Brasen S, Miyake H. Periodate Oxidation of Phenols IX. Oxidation of o-(ω-Hydroxyalkyl)phenols. Acta Chemica Scand. 1971;25:2055-69.

[31] Kim U-J, Kuga S, Wada M, Okano T, Kondo T. Periodate Oxidation of Crystalline Cellulose. Biomacromol. 2000;1:488-92.

[32] O'Dea JF, Gibbons RA. The estimation of small amounts of formaldehyde liberated during the oxidation of carbohydrates and other substances with periodate. Biochem. J. 1953;55(4):580-6.

[33] Sirvio J, Liimatainen H, Niinimaki J, Hormi O. Dialdehyde cellulose microfibers generated from wood pulp by milling-induced periodate oxidation. Carbohydr. Polymers 2011;86:260-5.

[34] Weidman SW, Kaiser ET. The mechanism of the periodate oxidation of aromatic systems. III. A kinetic study of the periodate oxidation of catechol. J. Am. Chem. Soc. 1966;88(24):5820-7.

[35] Natarajan R, Venkatasubramanian N. Kinetics and mechanism of oxidation of secondary alcohols by potassium bromate. Tetrahedron 1974;30(16):2785-9.

[36] Scanes FS, Martin RAM. Heats of Reaction of Pyrotechnic Compositions Containing Potassium Chlorate. Combustion and Flame 1974;23:357-62.
[37] Scanes FS. Thermal Analysis of Pyrotechnic Compositions Containing Potassium Chlorate & Lactose. Combustion and Flame 1974;23:363-71.

[38] Hosseini SG, Pourmortazavi SM, Hajimirsadeghi SS. Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate of potassium perchlorate. Combustion and Flame 2005;141:322-6.

[39] Odebunmi EO, Owalude SO. Kinetics and Mechanism of Oxidation of Some Simple Reducing Sugars by Permanganate Ion in Alkaline Medium. J. Iran. Chem. Soc. 2008;5(4):623-30.

[40] Odebunmi EO, Iwarere SA, Owalude SO. Kinetics of oxidation of fructose, sucrose, and maltose by potassium permanganate in NaHCO₃/NaOH buffer and iridium (IV) complex in sodium acetate / acetic acid buffer. Int. J. Chem. 2006;16(3):167-76.

[41] Charsley EL, Chen C-H. Differential thermal analysis and temperature profile analysis of pyrotechnic delay systems: ternary mixtures of silicon, boron and potassium dichromate. Thermochimica Acta 1980;35(2):141-52.

[42] Lothrup RS. Physicochemical and sensory quality of chiffon cake prepared with rebaudioside-A and erythritol as replacement for sucrose. Doctoral Dissertation, Dept. of Food Sci. and Human Nutrition, Colorado State Univ. 2012.

[43] Meyer B. Elemental Sulfur. Chem. Rev. 1976;76(3):367–88.

[44] Tanner HG. Instability of Sulfur-Potassium Chlorate. J. Chem. Ed. 1959;36(2):58-9.
[45] Pakkirisamy SV, Mahadevan S, Paramashivan SS, Mandal AB. Adiabatic thermokinetics and process safety of pyrotechnic mixtures. J. Therm. Anal Calorim. 2012;109:1387-95.

[46] Wagner EL. Bond Character in XY_M-Type Molecules: Chlorine-Oxygen Compounds. J. Chem. Phys. 1962;37(4):751-9.

[47] Chantry GW, Plane RA. Raman Intensities of the Al Lines of Oxyanions. J. Chem. Phys. 1960;32(2):319-21.

[48] Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Fathollahi M, Hosseini SG. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel. Fuel 2008;87:244-51.

[49] Pourmortazavi SM, Hajimirsadeghi SS, Hosseini SG. Characterization of the Aluminum/Potassium Chlorate Mixtures by Simultaneous TG-DTA. J. Thermal Analysis and Calorimetry. 2006;84(3):557-61.

[50] Shafirovich E, Mukasyan AS, Varmak A, Kshirsagar G, Zhang Y, Cannon JC. Mechanism of Combustion in Low-Exothermic Mixtures of Sodium Chlorate and Metal Fuel. Combustion & Flame 2002;128:133-44.

[51] Barton TJ, Williams N, Charsley EL, Ramsey J, Ottaway MR. Factors Affecting the Ignition Temperature of Pyrotechnics. 8th International Pyrotechnics Symposium, Steamboat Springs, CO, 12-18 July, 1982;99-111.
MANUSCRIPT 2

Being prepared for submission to

Propellants, Explosives, & Pyrotechnics

Thermal Stability Studies on IMX-101

(Dinitroanisole/Nitroguanidine/NTO)

Jimmie C. Oxley*, James L. Smith, Maria Donnelly,

Kevin Colizza, and Stephanie Rayome

Corresponding author:

Dr. Jimmie C. Oxley

Chemistry Department,

University of Rhode Island,

51 Lower College Road,

Kingston, RI 02881

joxley@chm.uri.edu

tel: 401-874-2103
Thermal Stability Studies on IMX-101 (Dinitroanisole/Nitroguanidine/NTO)

Abstract

The recent emphasis on the development of new insensitive munitions has resulted in the development of a number of new energetic formulations. Many of the formulations intended for use as replacements for 2,4,6-trinitrotoluene (TNT) contain 2,4-dinitroanisole (DNAN) as a major ingredient. An in-depth evaluation of the thermal stability of one of the new insensitive TNT replacements, IMX-101, which is a mixture of DNAN, nitroguanidine (NQ) and 3-nitro-1,2,4-triazol-5-one (NTO), has been conducted using both differential scanning calorimetry (DSC) and isothermal decomposition tests. The results of this investigation were compared to a similar formulation in which the DNAN was replaced with 2,4-dinitritoluene (DNT). DNAN was expected to show greater thermal stability than DNT, both neat and in combination with NTO and NQ. The isothermal studies showed that, as expected, neat DNAN was more stable than neat DNT. However, when mixed with either or both of the other components of the IMX-101 formulation, the thermal stability of both DNAN and DNT was decreased. The decomposition of both DNAN and DNT was significantly accelerated by the presence of NQ. NTO also enhanced the decomposition of both nitroarenes, but this compound had a significantly greater impact on DNAN than on DNT. An examination of the decomposition products from the various mixtures showed that 2,4-dinitroaniline (DNA) was produced from the decomposition of both DNAN and DNT with either of the two additives; DNA was not observed during the neat decompositions of the two arenes. It was thought that
ammonia, which has been detected in either gaseous form or as ammonium ions during decomposition studies on both NQ and NTO, might be one cause of the decreased stability imparted to the nitroarenes by the two additives. Heating DNAN and DNT in the presence of ammonia generated from ammonium carbonate produced dinitroaniline and had an accelerating effect on the decomposition of the two nitroarenes, with the greater impact, both in the acceleration level and the amount of dinitroaniline produced, on DNAN.

Introduction

In 2001 the United States Congress passed the ‘Insensitive Munitions Law’, which required that "the Secretary of Defense ensure, to the extent practicable, that insensitive munitions under development or procurement are safe throughout development and fielding when subject to unplanned stimuli” [1]. Many other nations also have initiatives to develop and use less sensitive munitions [2-4]. The mandate that explosive materials be safer is not easily met. An insensitive munitions formulation should have good explosive properties but should also be thermally stable and must not react violently when subjected to unplanned events [5]. In general, materials that have good explosive properties are not particularly thermally stable and tend to be sensitive to accidental ignition [4]. Finding materials that have acceptable explosive performance and low sensitivity has proven to be quite difficult, even after many years of research. In general, the quest for insensitive munitions has followed one of two approaches; either explosive materials are encased in less sensitive
polymeric materials to form polymer bonded explosives (PBXs), or entirely new explosive formulations are developed [5,6].

One of the early candidates for a TNT replacement was 2,4-dinitroanisole (DNAN), which, like TNT, is melt-castable but also toxic [7-10]. The use of DNAN is not new; it was used as part of the explosive formulation Amatol 40 during WWII, but this use was most likely due to a shortage of TNT rather than because of concerns about the sensitivity of munitions [7,11]. More recently, the improved sensitivity of DNAN based munitions has led to the development of numerous DNAN formulations, some of which have been qualified for use by the U.S. National Service Authority [11-18]. The TNT replacement IMX-101, which contains 43.5% DNAN, 19.7% 3-nitro-1,2,4-triazol-5-one (NTO), and 36.8% nitroguanidine (NQ), was certified for use in 2010 [16]. IMX-101 is listed as having a theoretical maximum density of 1.67 g/cc and a detonation velocity of 6900 m/s; it has passed the STANAG fast and slow heating tests 4240 and 4382, respectively [16,19]. However, while IMX-101 did pass the various ageing and stability tests to which it has been subjected, it has not always shown better results than TNT and RDX. In the vacuum thermal stability test at 100°C, IMX-101 evolved slightly more gas than TNT and RDX, and events occurred at lower temperatures than TNT in the Woods Metal bath and Henkin time to explosion tests, and at lower temperatures than both TNT and RDX in the 1-liter spherical cook-off test. IMX-101 did outperform both TNT and RDX in the small-scale ESD, ERL/Bruceton impact, and BAM friction tests [16]. This study examined the use of DNAN (mp 94-95°C) in insensitive munitions formulations versus 2,4-
dinitrotoluene (DNT), which, with a melting point of 70°C, would also be melt-castable. The structures of DNAN, DNT, NTO, and NQ are shown in Figure 1.

![Structures of DNAN, DNT, NTO, & NQ](image)

Figure 1: Structures of DNAN, DNT, NTO, & NQ

Experimental Setup

Materials: 2,4-Dinitroanisole (DNAN, 98%) and 2,4-dinitrotoluene (DNT, 95%) were purchased from Alfa Aesar and were ground in a mortar and pestle prior to mixing with other formulation components or weighing into glass capillaries. Solvents were Optima (for LC/MS) or HPLC (for LC/UV) grade purchased from Fisher Scientific. Nitroguanidine (NQ) and NTO were prepared in-house. High bulk density NQ was obtained by dissolving the low-density needles in 2,2-dimethylformamide, pouring the solution into acetone and cooling the mixture until small white crystals of NQ formed [20]. The synthesized NTO was a fine white powder, and used without recrystallization. (DSC traces of a small amount of recrystallized material showed little difference from the non-recrystallized NTO.) Mixtures of the four materials were prepared either by stirring them together in a ceramic dish using a wooden stick or by mixing them using an acoustic mixer.
(LabRAM) for two minutes at 30 to 50% intensity with the frequency set to automatic. Mixture sizes ranged from 40 mg to 1g.

Differential Scanning Calorimetry (DSC): DSC samples were prepared by measuring about 0.240-0.260 mg of material into a glass capillary, which was then placed on a liquid nitrogen cooled metal post and sealed with a small flame. Liquid nitrogen was used to cool the samples to insure that decomposition did not occur during the sample preparation process [21]. The sealed capillaries were weighed before and after DSC analysis to determine if any material had leaked during testing. Samples were run on a TA Instruments Q100 DSC from 30 to 500°C with a ramp rate of 20°C/min under a nitrogen flow, and results were analyzed via TA’s Universal Analysis software.

Isothermal Kinetics: Samples were prepared by measuring about 0.540 to 0.560 mg of material into half of a melting point capillary with one end sealed. The top of the capillary was then sealed with a small flame. The material was tapped to the bottom of the capillary prior to flame sealing to prevent it from being decomposed in the sealing process. Samples were placed in either a Woods metal or sand bath in an HP 5890 GC oven heated to the desired temperature in the range of 180 to 300°C. For the initial analysis of each mixture at a given temperature, samples were generally removed at 15, 30, 45, and 60 min. The results of these initial tests were then used to determine additional incubation times. Prior to being analyzed on the HPLC, the capillaries were placed in 50 mL glass vials, crushed under 20 mL of acetonitrile, sonicated for 45 minutes, and filtered through 13 mm Millex-FG syringe driven filter
units (Millipore). If samples were not going to be analyzed immediately, they were stored in a freezer. Samples run under an ammonia atmosphere were prepared in the same manner, except that ~0.2 mg ammonium carbonate (\(\text{NH}_4\text{H}_2\text{CO}_3\)) was added to the DNAN or DNT prior to flame sealing the capillaries. At the temperatures used for the decomposition of the nitroarenes, the ammonium carbonate decomposed to produce the desired molar excess of gaseous ammonia.

HPLC Analysis: A 10.0 μL aliquot of each sample was analyzed on a Hewlett Packard 1100 series HPLC system with a diode array detector set at 235 nm. The C-18 column (Hypersil BDS or Zorbax Eclipse XDB, Agilent) was held in a heated column compartment set to 38°C. The gradient elution, based on an HP Application Note, had a flow rate of 0.75 mL/min [22]. The initial eluent was 26% aqueous acetonitrile; the organic component was increased to 40% then 55% over two ten minute increments, and then raised to 100% over the next 14 minutes. The system was held at 100% acetonitrile for one minute before returning to the initial composition. Each set of samples was accompanied by combined DNAN and DNT standards covering the range from 0.5 to 100 μg/mL, and yielding \(R^2\) values that were generally 0.999 or better. New standards were made when the \(R^2\) values fell below this value. Chromatographic results were analyzed using the Agilent Chem Station software.

Decomposition Products: Samples, prepared as described above, were typically about 0.55 mg of sample in 20 mL methanol or acetonitrile (~27.5 ng/μL) which had been filtered through a 0.45 micron PTFE syringe filter. Injections of 10 μL (~275 ng)
were made onto the HPLC/MS system [Thermo Electron (Franklin, MA, USA) Exactive Orbitrap mass spectrometer affixed with an electrospray ionization (ESI) interface]. A mixture of DNAN, DNT, NTO and NQ [5 μg/mL in 50/50 (v/v) methanol/water] was infused to optimize conditions for analysis. Negative ions of m/z 103.0261 for NQ, m/z 129.0054 for NTO, m/z 181.0255 for DNT and m/z 197.0204 for DNAN were monitored for this optimization. The demethylated phenolic fragment of DNAN at m/z 183.0047 was many times more intense than the intact parent, but the detection of m/z 197.0204 was important since dinitrophenol is a known decomposition product of DNAN. Conditions were optimized as follows: spray voltage, 3200 V; capillary temperature, 200 °C; sheath gas (N₂), 30; auxiliary gas (N₂), 15; capillary voltage, -25 V; tube lens, -85 V; and skimmer, -25 V. Units for sheath and auxiliary gas flow are arbitrary. Injections of 10 μL of the same solution were separated on several different columns to optimize chromatographic conditions for the mixture. Liquid chromatography was performed using a Thermo Electron Accela quaternary pump with a CTC Analytics (Zwingen, Switzerland) HTS PAL autosampler. The HPLC system developed for optimum analysis of the four-component mixture employed an Analytical Sales and Service (Pompton Plains, NJ, USA) Echelon column (50 x 2.1 mm, 5 μm). With a flow rate of 300 μL/min, samples were introduced into an initial mobile phase of 98% solvent A (water) and 2% solvent B (acetonitrile). Following injection, this was held for 1 minute and then ramped linearly to 98% solvent B and 2% solvent A over 7 minutes. This was held for 1 minute before returning to initial conditions over 30 seconds and re-equilibrated for 2.5 minutes prior to the next injection (total run time of 12 minutes). Because the
polarities of these 4 components vary significantly, some compromise was required in this analysis. Normal phase methods retained NTO and NQ, but DNT and DNAN eluted close to the void. Other reverse phase columns retain DNT and DNAN very well, but peak shape, retention or resolution of NTO and NQ were unacceptable. The chosen method provided good peak shape for all compounds with reasonable resolution of all components; however, NTO did not retain acceptably. Since the intention of this analysis was to determine the decomposition products of these compound mixtures, this compromise was made because NTO decomposition is well documented. Compounds smaller than NTO that may elute earlier are not likely to be detected with this system. Data collection and analysis was performed with Thermo Xcalibur software version 2.2, SP 1.48.

Results

Differential Scanning Calorimetry (DSC): DSC scans obtained at a scan rate of 20°C/minute confirmed that DNAN was somewhat more stable than DNT. Both these nitroarenes are more thermally stable than NQ and NTO, and slightly more stable than TNT (see Figure 2).
Figure 2: DSC Traces of Individual Energetic Compounds scanned 20°C/min.
Figure 3: DNAN with NQ & NTO (50:50 & 80:20), DNT with NQ & NTO (50:50 & 80:20), and NTO with NQ
When DNT was mixed with NTO (80:20) the DSC trace contained two exotherms which could be attributed to NTO ~257°C and DNT ~344°C, with only a slight depression (15°C) of the NTO peak. When the loading of NTO was increased (50:50), the larger exotherm shifted to the earlier peak, and the two peaks were no longer fully resolved, with the first peak at a somewhat higher temperature (~267°C) and the second peak at a lower temperature (~326°C). Likewise, DNAN with NTO (80:20) showed peaks around 256°C and 340°C. While the former was readily assigned to NTO, the exotherm at 340°C was 30°C below where DNAN alone exhibited an exotherm. In the 50:50 DNAN:NTO mix, the peaks were again not fully resolved, and the second peak was shifted even lower, to ~311°C. When NQ was mixed 1-to-1 with either nitroarene the exotherms of both were significantly depressed, appearing immediately after the melt of NQ at 243°C. (See Figure 3)

To emulate IMX-101 a three-part mix of DNAN (43%), NTO (20%), and NQ (37%) and a similar one using DNT instead of DNAN were scanned by DSC (Figure 4 a & b). Both three-part mixtures showed a large broad exotherm immediately after an endotherm around 215°C, which was assumed to be the melt of nitroguanidine, though slightly depressed. The average total heat released by the DNAN three-part mixture was slightly more than that produced by the DNT three-part mixture (2900±250 J/g vs. 2100±230 J/g, respectively). It has been claimed that the DSC of the three-part mixture IMX 101 appears to be the superposition of the individual components; therefore, the decomposition of one does not affect the other [23]. This was not found to be the case. There was sufficient heat being generated at temperatures below the decomposition exotherm of neat DNAN or neat DNT that decomposition of the three-
part mixture was nearly complete by that temperature. The results from this study do agree with Cuddy’s findings that decomposition of the IMX-101 mixture begins below 200°C. To examine these observations in more detail, isothermal analyses were performed.

Figure 4: DNAN and DNT three part mixtures with NTO & NQ

Kinetics: DNAN and DNT were heated in sealed capillary tubes for up to five days to achieve approximately 50% decomposition. Decompositions appeared first-order out to 20-25% decomposition. Over the temperature range 200 to 300°C, DNT decomposed up to one order of magnitude faster than DNAN (Table 1, Figure 5).

Neat	DNAN	DNT	TNT
°C			
180	4.0E-08	8.7E-07	--
200	2.4E-06	7.6E-06	1.6E-05
240	1.3E-05	1.2E-04	--
250	1.3E-05	4.7E-05	--
270	2.4E-05	4.3E-04	--
280	3.0E-04	1.1E-03	3.5E-03
300	5.4E-04	2.0E-03	--
However, when DNAN was mixed with either NTO or NQ the decomposition rate was so enhanced that noticeable decomposition was observed within an hour at 200°C (Tables 2 & 3). The thermal stability of DNT was not greatly affected by the addition of NTO, but NQ greatly accelerated the decomposition of both nitroarenes. The three-part mixtures showed the same instability imparted by NQ. From the fraction remaining after one hour at 200°C, it was evident that the three-part mixture with DNAN was more seriously destabilized by the additives than was DNT. Because NQ has a similar acceleratory effect on the decomposition of both DNAN and DNT, this increased instability was likely due to the impact of NTO, which had a significantly larger destabilizing effect on DNAN than on DNT.

Because ammonia is a likely decomposition product of both NQ and NTO, the rate of decomposition of DNAN and DNT under ammonia was examined at 200°C. Figure 6 shows that while ammonia has an accelerating effect on the decomposition of both nitroarenes, the impact on DNAN is much larger.
Table 2: Relative Stabilities: DNAN and DNT Mixtures Exemplified by Half-Life at 200°C

Formulation	Fraction Remaining	Time
DNAN	0.47	5 days 4 hours
DNT	0.41	4 days
DNAN/NQ/NTO	0.49	15 min
DNT/NQ/NTO	0.54	60 min
DNAN/NQ (50:50)	0.46	30 min
DNT/NQ (50:50)	0.51	30 min
DNAN/NTO (80:20)	0.51	4 hrs
DNT/NTO (80:20)	0.47	2 days
DNAN/NTO (50:50)	0.48	90 min
DNT/NTO (50:50)	0.42	20 hrs

Table 3: First-Order Rate Constants for Components of Mixtures

Temperature	DNAN	DNT	NQ	NTO
200°C				
DNAN/NQ/NTO	3.7E-04	--	4.3E-04	1.8E-03
DNT/NQ/NTO	--	2.6E-04	7.5E-04	6.5E-04
DNAN/NQ	4.5E-04	--	4.2E-04	--
DNT/NQ	--	4.6E-04	6.5E-04	--
DNAN/NTO (80:20)	3.9E-05	--	--	1.9E-04
DNT/NTO (80:20)	--	6.8E-06	--	3.6E-04
DNAN/NTO (50:50)	2.3E-04	--	--	3.7E-04
DNT/NTO (50:50)	--	1.6E-05	--	8.3E-05
180°C	DNAN	DNT	NQ	NTO
DNAN/NQ/NTO	1.4E-04	--	9.6E-05	6.1E-04
DNT/NQ/NTO	--	5.2E-05	1.7E-04	2.8E-04

Figure 6: Impact of ammonia on the decomposition of DNAN and DNT
Decomposition Products

Both DNT and DNAN can undergo oxidation of the methyl or methoxy group, reduction of the nitro groups, Meisenheimer complex formation and various oligomerization reactions [11-36]. DNT has been shown to experience elimination of a nitro group to form p- and o-nitrotoluene and, under aerobic conditions, to eventually yield nitrite and catechols [35,37]. Anaerobic reduction and biotransformation of DNT produces nitroso-, amino-, aminonitro-, and diaminotoluenes, as well as azoxy compounds [29,34,35]. For DNAN, loss of the methoxy group to yield 2,4 dinitrophenol has been reported under various different reaction conditions, such as mammalian metabolism and reactions with piperidines and sodium hydroxide [11,38-40]. The methoxy group has also been shown to undergo aromatic and aliphatic nucleophilic substitution reactions resulting in the replacement of either the methyl or the entire methoxy group by amines or other nucleophiles [11,39]. As with DNT, the nitro groups of DNAN can be reduced microbially to form amino- and aminonitroanisole [12,29-32]; arylnitroso and arylhydroxylamino intermediates, azoxy- and azo-dimers, demethylated and acetylated products, and ring cleavage have also been reported [33,41].

Under our experimental conditions, in which DNT and DNAN were heated in glass capillaries at 200°C for four and five days, respectively, to achieve approximately 50% decomposition, numerous products were observed (Figures 7 and 8). Assignment of chemical formulas was based on the high-resolution mass spectrometry results where compositions could be determined within 5 ppm of their calculated mass. Masses associated with proposed structures here, and throughout the
paper, are those obtained from the LC/MS for the M-1 adducts detected in negative ion mode. (Table 4):

Figure 7: Proposed structures for decomposition products observed in neat DNAN.

Figure 8: Proposed structures for decomposition products observed in neat DNT.
Observed Mass** (min)	RT	Compound/ formula**	DNAN	DNAN/ NO	DNAN/ NTO	DNAN/ NTO/ NO	DNT	DNT/ NO	DNT/ NTO	DNT/ NTO/ NO
103.0254	0.79	NQ (CH4O2N4)	1.3E+06	2.5E+06	2.4E+06	1.2E+04				
129.0051	0.57	NTO (C2H2O3N4)	9.7E+04	3.8E+04	1.4E+05					
143.0097	0.66	C3H3O3N4	1.3E+05	2.5E+04						
162.0308	6.09	C7H4O2N3	3.2E+05		3.5E+05	2.3E+05				
166.0137	0.85	CH4O4N	3.7E+06	3.1E+05	1.2E+04					
178.0250	5.28	C7H4O3N3	7.7E+03	3.2E+04	1.2E+05					
181.0256	0.66	DNT isomer	2.2E+05	3.3E+04	1.2E+05					
181.0256	4.92	DNT isomer	4.3E+04							
181.0256	7.16	DNT (C7H5O4N2)	7.1E+05	9.0E+05	2.6E+05	1.2E+06				
182.0096	0.73	C7H4O5N	2.4E+05	8.0E+04						
182.0208	6.51	DNA (C6H4O4N3)	5.6E+06	3.0E+04	2.7E+05					
183.0040	7.61	C6H5O4N2	7.3E+04	2.9E+05	3.1E+06	5.3E+06				
183.0048	1.11	C6H5O5N2	4.5E+06	1.7E+05						
197.0193	6.65	DNAN (C6H3O5N2)	4.2E+06	2.9E+06	3.1E+06	2.5E+06				
199.0762	6.56	C13H11O2	9.6E+04							
205.0371	5.22	C8H5O4N	4.5E+04	1.7E+05						
207.9995	4.53	C8H5O3N3	7.2E+04							
224.0431	5.66	C7H6O4N3	2.5E+04							
227.9895	4.65	C6H2O7N3	1.4E+05							
233.0636	5.43	C7H11O3N2	1.1E+05							
244.0597	5.71	C10H9O5N3	8.0E+04							
247.0595	6.35	C9H7O3N2	5.4E+04	7.3E+04						
249.0367	5.85	C9H5O4N4	5.8E+04	1.5E+04						
279.0496	5.99	C9H7O5N6	4.5E+04	1.6E+04						
280.0377	7.63	C8H6O6N5	3.1E+04							
291.0409	6.12	C9H7O5N6	6.4E+04	1.5E+04						
294.0520	5.34	C10H5O5N6	2.5E+04							
302.0416	5.19	C11H9O4N2	2.5E+04							
308.0385	5.51	C10H5O6N2	2.4E+04							
311.0429	7	C14H7O5N4	9.5E+04							
326.0547	8.13	C14H8O5N5	8.7E+04	2.8E+04						
329.0528	7.8	C14H9O6N4	2.1E+05							
330.0367	5.22	C14H8O6N5	1.4E+05							
333.0417	7.88	C14H9O7N4	9.8E+04							
334.0319	5.3	C13H8O6N4	1.0E+05	4.3E+04						
334.0319	7.58	C13H8O6N4	1.2E+05	2.1E+04						
345.0113	5.42	C13H8O6N4	5.9E+04							
345.0476	5.25	C14H9O7N4	6.9E+04	6.2E+04						
345.0491	7.42	C14H9O7N4	1.9E+05	5.7E+04	7.7E+04					
346.0317	5.38	C14H8O6N5	5.5E+04							
348.0236	7.75	C12H8O6N5	5.2E+03	2.6E+05	1.4E+05	5.0E+04				
356.0274	6.03	C14H9O7N5	5.3E+04							
356.0274	6.03	C14H9O7N5	5.3E+04							
363.0220	5.36	C13H7O9N4	1.2E+05							
372.0285	5.12	C7H10O13N5	4.0E+04							
373.0139	5.47	C7H9O4N4	1.1E+05	2.1E+04						
375.0218	5.22	C7H9O4N4	1.1E+05							
375.0235	5.02	C7H9O4N4	1.2E+05							
408.0683	7.73	C9H12O9N4	3.4E+04							
427.0533	8.13	C7H9O5N7	1.9E+05							
490.0752	6.93	C21H12O9N6	1.3E+04							

* MS run in negative ion mode; thus formulii provided are M-H. ring coupling substituted with NQ or NTO Oxidized Species
Nitroguanidine is reported to exist in two tautomeric forms (Figure 9) with A being predominant under all but extremely basic conditions [42,43].

\[
\begin{align*}
\text{(A)} & \quad \text{H}_2\text{N} & \quad \text{C} & \quad \text{N} & \quad \text{NO}_2 \\
\text{(B)} & \quad \text{H}_2\text{N} & \quad \text{N} & \quad \text{C} & \quad \text{H} & \quad \text{NO}_2
\end{align*}
\]

Figure 9: NQ tautomers

The thermal decomposition of NQ has been observed to produce numerous gaseous products, including NH₃, NO₂, N₂O, CO₂, HNCO, H₂O, N₂, NO, and HCN [44-46]. In addition to these gases, the thermolysis of NQ yields small molecules such as cyanogen (CN)₂, cyanimide (H₂NCN), urea (CO(NH₂)₂), and cyanic acid (CNOH), as well as cyclic materials such as melamine, ammeline, ammelide, cyanuric acid, melem, melam, melon, and paracyanogen [45-46]. Structures of some of these cyclic compounds are shown in Figure 10. It has been proposed that the nitramide and cyanimide formed from the decomposition of the nitroguanidine combine to form melamine, which then undergoes hydrolysis reactions to yield ammeline, ammelide, and cyanuric acid [45]. Gases such as NH₃, N₂O, and CO₂ have also been detected in base hydrolysis reactions of NQ [42-43,47]. Ammonia, nitrite, nitrate, nitrosoguanidine, hydroxyguanidine, cyanoguanidine, guanidine, cyanimide, cyanoguanidine, melamine, and guanidine have been reported as products of biotransformation processes, and many have also been observed after and photolysis in water [43,48-50]. Kaplan noted that urea and cyclic species such as ammeline, ammelide, and cyanuric acid were not produced through biodegradation [49].
The majority of products created through the decomposition of NTO are gases, including CO₂, CO, HCN, N₂, H₂O, NO₂, N₂O, NO, and H₂ [51-59]. Other reported products include 1,2,4-triazol-3-one (TO) from thermal decomposition [54-56], nitroso-TO from laser induced decomposition [53], amino-TO from bioremediation [60], a ring coupled dimer of NTO molecules from electroreduction [61], nitrate and ammonium ions from electrochemical oxidation [59] and an insoluble polymeric material from thermal decomposition [55-57]. In addition to the production of ammonium ions through electrochemical reduction, Fan also noted the creation of ammonia, in the form of ammonium ions, via thermal decomposition [54]. When NTO was thermally decomposed with TNT, the products observed, which included TO, triazole, 2,4-DNT, 2,6-DNT, trinitrobenzene (TNB), and aminodinitrobenzoic acid, were similar to the products observed when TNT and NTO were decomposed alone [55]. A number of studies have reported the decomposition kinetics of NTO.
[52,62], and labeling studies have been used to elucidate the decomposition mechanisms [54]. A number of routes have been proposed, including bond homolysis with or without hydrogen transfer, mono- or bi-molecular nitro-nitrite rearrangement, or a combination of both [51,54,63-65]. These may be manifest by the evolution first of NO₂, HONO, or CO₂, but in all cases a polymeric residue results. Various proposed decomposition mechanisms, as summarized by Smith, are shown in Figure 11 [62].

Figure 11: Summary of proposed decomposition mechanisms for NTO taken from ref 61. Clockwise from top left: Homolysis of C-NO₂ bond; Nitro group rearrangement; Ring rupture (mono & bi-molecular pathways); Nitro-nitrite rearrangement.

Under the LC/MS conditions used in this study, no peaks were observed in the chromatogram of an extract of NQ thermolyzed at 200°C for 2 days, and an analysis
of an extract of NTO incubated at 200°C for the same amount of time showed only the molecular ion (m/z 129). When NTO and NQ were heated together, only the molecular ion peak of both was observed (m/z 129 and 103 respectively). However, when either NTO or NQ was heated with DNAN or DNT, numerous decomposition products could be detected in addition to the parent ions. When NTO was heated with DNAN, one of the decomposition products was a methylated form of NTO (m/z 143); all other decomposition products that were identified in the mixtures contained some form of the phenyl ring from the nitroarene.

When DNAN or DNT was heated at 200°C with NQ, most of the decomposition products appeared to be related to NQ addition to the nitroarene; however, formation of dinitrophenol from DNAN and oxidation processes (e.g. conversion of the methyl group in DNT to a carboxyl group) had also occurred (Table 4, Figures 12 & 13).

Figure 12: Proposed structures of products observed during the decomposition of DNAN with NQ that were not detected during the decomposition of neat DNAN or neat NQ.
Figure 13: Proposed structures of products observed during the decomposition of DNT with NQ that were not detected during the decomposition of neat DNT or neat NQ.

While products identified from our thermolysis conditions indicated the replacement of the methyl or methoxy substituent by an amino group to form 2,4-dinitroaniline (DNA), no mono- or diaminoanisole or mono- or diaminotoluene, which might be expected under reducing conditions, were identified. When NQ and DNAN were combined, the reaction appeared to begin with replacement of the methoxy substituent with an amino group. This species underwent further reactions as depicted in Scheme I.

Scheme I DNAN heated with NQ
In a situation similar to that with NQ, products observed from the decomposition of the two-part mixtures of DNAN or DNT with NTO that were not also present in the decomposition of the neat materials were primarily the result of the attachment of NTO or an NTO fragment to the arene ring. Many of the observed decomposition products of the DNT/NTO mixture also showed the oxidation of the DNT methyl group. Dinitroaniline was observed in the decomposition of both DNAN and DNT with NTO, but more dinitroaniline was observed in the reactions between DNAN and NQ or NTO than in the reactions of DNT with either of the two additives (Figures 14 & 15).

Figure 14: Proposed structures of products observed during the decomposition of DNAN with NTO that were not also detected during the decomposition of neat DNAN or neat NTO.

Figure 15: Proposed structures of products observed during the decomposition of DNT with NTO that were not detected during the decomposition of neat DNT or neat NTO.
There were few products seen in the decomposition of the three-part mixtures that were not also observed in either the neat materials or the two-part mixtures. Proposed structures are shown in Figures 16 & 17.

![Proposed structures](image)

Figure 16: Proposed structures of products observed during the decomposition of DNAN with NQ and NTO that were not detected during the decomposition of the neat materials or the two part mixtures.

![Proposed structure](image)

Figure 17: Proposed structure of product observed during the decomposition of DNT with NQ and NTO that were not detected during the decomposition of the neat materials or the two part mixtures.

Discussion

Dinitrophenol and dinitroaniline were observed in the decomposition of DNAN with either NQ or NTO. While dinitrophenol was also observed in the thermolysis of neat DNAN, dinitroaniline was only observed when NQ or NTO was
present. Though dinitroaniline was also detected as a product when DNT was decomposed with either NQ or NTO, the formation of DNA was two orders of magnitude greater for DNAN than for DNT with either species. This is likely due to the ease with which the methoxy group is lost from DNAN as compared to methyl loss from DNT. Dinitroaniline could be formed from DNAN if, after loss of methoxy, NQ added to the ring and then was subsequently lost. However, NTO would have no such route available to it. NQ and NTO have been observed to generate ammonia or ammonium ions [42-47,50,54,59], which may replace the methoxy group with amine via a substitution reaction. Multiple studies have demonstrated DNAN’s ability to undergo nucleophilic substitution reactions, and amines were the nucleophiles in some of those experiments. [11,39]. Dinitroaniline was also formed when DNT was heated in the presence of NQ or NTO, but at significantly lower levels than were observed with DNAN. Again we attribute this to the reaction of the DNT with ammonia generated from the thermolysis of NQ or NTO.

In order to examine the impact of ammonia on the decomposition of DNAN and DNT, each nitroarene was heated at 200°C in the presence of excess ammonium carbonate. The results of this test showed that the decomposition rates of both DNAN and DNT were significantly enhanced by the ammonia generated; however, as with NTO, the impact on DNAN was far greater than the impact on DNT. While approximately 50% decomposition of DNAN was achieved by heating for five minutes at 200°C in the presence of ammonium carbonate, DNT, under the same conditions, took about 12.5 hours to reach the same level of decomposition. After three hours at 200°C, no DNAN could be detected in the reaction mixtures containing
ammonium carbonate. The two products detected by LC/MS were dinitrophenol and dinitroaniline. When DNT was heated for three hours under the same conditions, little decomposition was observed, and only trace amounts of DNA were detected. Previous studies have shown that ammonia has an acceleratory effect on the decomposition of TNT [55], and ammonia has been detected as a decomposition product of mixtures of TNT and NQ [66].

A comparison of the effects of NQ and NTO on the nitroarenes indicates that, while NQ has a similar impact on the thermal stability of both DNAN and DNT, NTO, like ammonia, has a much greater acceleratory effect on the rate of decomposition of DNAN than it does on DNT. The observation that NTO has more of a destabilizing affect on DNAN than on DNT may be related to the fact that the principle way NTO affects DNT is not via replacement of the methyl group, which is a much poorer leaving group than a methoxy, but via hydrogen transfer. We, as well as Menapace, have reported the decomposition of TNT with NTO over the temperature range 220-280°C [55,67]. In those studies, NTO accelerated the decomposition of TNT 10-fold, while TNT accelerated the decomposition of NTO 100-fold. Using deuterated analogs, Menapace found that the NH group of NTO favored reaction with the nitro groups of TNT via a process involving hydrogen abstraction, and that a similar hydrogen abstraction process also occurred between the nitro group on NTO and the methyl hydrogens on TNT. Hydrogen abstraction from TNT did not result in a loss of the methyl group, but instead produced aryl hydroxyl nitroxide radical adducts, such as that shown in Figure 18, which are similar to some products observed in our thermolysis of DNT.
In addition to dinitroanisole and dinitrophenol, a number of other decomposition products were detected in the DNAN mixtures that were not present in the decomposition of neat DNAN. In general, the decomposition products observed in the mixtures of NTO and/or NQ with DNAN appeared to be the arene ring with one or more NQ or NTO moieties attached at the position of the methoxy group (m/z 224, 225, 249, 291, 292, 280, 308), with occasional attachment at the site of a nitro group (m/z 279). In addition to methylated NTO, the DNAN/NTO thermolyzed mixture showed unique decomposition products at m/z 279 and 280; m/z 279 appears to be NTO attached to DNAN via one of its former nitro groups, while m/z 280 has an NTO moiety attached to the methoxy group. All of the unique decomposition products from the DNAN/NQ mixture had the methoxy group replaced by a nitrogen substituent; in most cases the nitrogen was part of a cyclic structure formed from the decomposition products of NQ.

The decomposition of neat DNT yielded primarily molecules containing oxidized forms of the methyl group and species best described as linked DNT molecules. When DNT was thermolyzed with NTO and/or NQ, most products that were not present in the decomposition of neat DNT were again derived from NTO, NQ or combinations/fragments of these materials attached to the arene ring. The site of attachment was often the location of the methyl group (m/z 178, 190, 205, 244, 246,
247), but the location of the adjacent nitro group was involved more frequently than in decompositions involving DNAN (m/z 178, 190, 205, 244, 246, 247, 326, 375). In many cases, bicyclic structures were formed that involved both the site of the methyl group and the site of the adjacent nitro group (m/z 178, 190, 205, 244, 246, 247).

Conclusion

The addition of NQ accelerated the decomposition of both DNAN and DNT by approximately two-orders of magnitude. A similar acceleratory effect was seen when DNAN was decomposed with NTO; however, NTO only increased the decomposition of DNT by one-order of magnitude. As would be expected from the results of the two part mixtures, both nitroarenes decomposed faster in the NTO/NQ mixture; however, DNT was not as severely accelerated as DNAN. NTO decomposed a little slower in the 50:50 DNT/NTO mixture than in the corresponding DNAN/NTO mix. In contrast, NQ decomposed a little faster in DNT/NQ than in DNAN/NQ.

An IMX 101 mixture using 2,4-dinitrotoluene rather than 2,4-dinitroanisole would be more thermally stable although not as energetic. Some evidence suggests that DNAN might be more toxic than TNT [7-8]; thus, using DNT might provide a less toxic mix. Furthermore, 2,4-DNT is a widely used chemical since it is an intermediate in the production of toluene diisocyanate (TDI) used in polyurethane production. As a result it is relatively inexpensive and widely available. Despite these apparent advantages of DNT over DNAN, the 20°C higher melting point of DNAN may continue to favor it, and improvements to the formulation may come from removing NQ entirely.
References

[1] http://armytechnology.armylive.dodlive.mil/index.php/2014/02/15/munitions/
 Congressional Record, V. 147, PT. 18, December 11, 2001 to December 12, 2001.

[2] J. P. Agrawal, Some New High Energy Materials and their Formulations for
 Specialized Applications, Propellants Explos. Pyrotech. 2005, 30(5), 316.

[3] G. Singh, I. P. S. Kapoor, S. K. Tiwari, P. S. Felix, Studies on Energetic
 Compounds Part 16. Chemistry and Decomposition Mechanisms of 5-Nitro-
 2,4-dihydro-3H-1,2,4-triazole-3-one (NTO), J. Haz. Mats. B 2001, 81, 67.

[4] A. K. Sikder, N. Sikder, A Review of Advanced High Performance, Insensitive
 and Thermally Stable Energetic Materials for Military and Space Applications,
 J. Haz. Mats. A 2004, 112, 1.

[5] M. W. Smith, M. D. Cliff, NTO-Based Explosive Formulations: A Technology
 Review, Report DSTO-TR-0796, Defence Science and Technology
 Organisation Aeronautical and Maritime Research Laboratory, Salisbury, S.
 Australia, AUS 1999.

[6] R. J. Spear, C. N Louey, M. G. Wolfson, A Preliminary Assessment of 3-Nitro-
 1,2,4-triazol-5-one (NTO) as an Insensitive High Explosive, Technical Report
 MRL-TR-89-18, Defence Science and Technology Organisation Materials
 Research Laboratory, Maribyrnong, Victoria, AUS 1989.

[7] V. M. Boddu, K. Abburi, S. W. Maloney, R. Damavarapu, Thermophysical
 Properties of an Insensitive Munitions Compound, 2,4-Dinitroanisole, J.
 Chem. Eng. Data 2008, 53, 1120.
[8] D. E. Dodd, J. N. McDougal, *Recommendation of an Occupational Exposure Level for PAX-21*, Report AFRL-HE-WP-TR-2001-0103, Air Force Research Laboratory, OH, USA 2002.

[9] E. M. Lent, L. C. B. Crouse, T. Hanna, S. M. Wallace, *The Subchronic Oral Toxicity of 2,4-Dinitroanisole (DNAN) in Rats*, Toxicology Study No. 87-XE-0DBP-10, US Army Public Health Command, Aberdeen Proving Ground, MD 2012.

[10] C. A. Dumitras-Hutanu, A. Pui, S. Jurcoane, E. Rusu, G. Drochioiu, Biological Effect and the Toxicity Mechanisms of Some Dinitrophenyl Ethers, *Rom. Biotechnol. Lett.* **2009**, *14*(6), 4893.

[11] P. J. Davies, A. Provata, *Characterisation of 2,4-Dinitroanisole: An Ingredient for Use in Low Sensitivity Melt Cast Formulations*, Report DSTO-TR-1904, Weapons System Division, Defence Science and Technology Organisation, Edinburgh, S. Australia, AUS 2006.

[12] C. M. Arnett, G. Rodriguez, S. W. Maloney, Analysis of Bacterial Community Diversity in Anaerobic Fluidized Bed Bioreactors Treating 2,4-Dinitroanisole (DNAN) and n-Methyl-4-nitroaniline (MNA) Using 16S rRNA Gene Clone Libraries, *Microbes Environ.* **2009**, *24*(1), 72.

[13] J. Mathieu, H. Stucki, Military High Explosives, *Chimia* **2004**, *58*(6), 383.

[14] P. Ravi, D. M. Badgujar, G. M. Gore, S. P. Tewari, A. K. Sikder, Review on Melt Cast Explosives, *Propellants Explos. Pyrotech.* **2011**, *36*, 393.

[15] E. N. Coppola, Treatment Technologies for Perchlorate, *Global Demil*
Symposium, Reno, 14-17 May 2007, Applied Research Associates, Panama City, FL 2007.

[16] K. E. Lee, W. A. Balas-Hummers, A. R. Di Stasio, C. H. Patel, P. J. Samuels, B. D. Roos, V. Fung, Qualification Testing of the Insensitive TNT Replacement Explosive IMX-101, Insensitive Munitions and Energetic Materials Technology Symposium, Munich, 2010, US Army ARDEC, Picatinny Arsenal, ARL, Aberdeen Proving Ground, BAE Systems OSI, Holston Army Ammunition Plant 2010.

[17] A. Provatas, P. J. Davies, DNAN – A Replacement for TNT in Melt-Cast Formulations, Insensitive Munitions and Energetic Materials Technology Symposium, 2006, Defence Science and Technology Organisation Weapons Systems Division, Edinburgh AUS 2006.

[18] V. Fung, J. Morris, D. Price, N. Tucker, E. LeClaire, A. Camillo, Further Development and Optimization of IM Ingredients at Holston Army Ammunition Plant, Insensitive Munitions and Energetic Materials Technology Symposium, Munich, 2010, BAE Systems Ordnance Systems, Inc., Kingsport, TN 2010.

[19] IMX-101 An Insensitive Explosive for Artillery Applications (with TNT equivalent performance), Technical Data Sheet DSEA-S2-2010-0022, BAE Systems, Kingsport, TN, USA 2010.

[20] J. A. Sanchez, E. L. Roemer, L. A. Stretz, Spherical Nitroguanidine Process, US Patent 4,967,000, US Department of Energy, Washington, DC, USA 1990.

[21] L. F. Whiting, M. S. Labean, S. S. Eadie, Evaluation of a capillary tube sample
container for differential scanning calorimetry, *Thermochimica Acta* 1988, 136, 231.

[22] R. Schuster, A. Gratzfeld-Huesgen, *HPLC Analysis of Explosive Constituents in Soil Samples*, HP Application Note 1993.

[23] M. F. Cuddy, A. R. Poda, M. A. Chappell, Estimations of Vapor Pressures by Thermogravimetric Analysis of the Insensitive Munitions IMX-101, IMX-104, and Individual Components, *Propellants Explos. Pyrotech.* 2014, 39, 236.

[24] V. Gold, A. Y. Miri, S. R. Robinson, Sodium Borohydride as a Reagent for Nucleophilic Aromatic Substitution by Hydrogen: the Role of Hydride Meisenheimer Adducts as Reaction Intermediates, *J. C. S. Perkin II* 1980, 243.

[25] F. C. Hill, L. K. Sviatenko, L. Gorb, S. I. Okovytyy, G. S. Blaustein, J. Leszczynski, DFT M06-2X Investigation of Alkaline Hydrolysis of Nitroaromatic Compounds, *Chemosphere* 2012, 88, 635.

[26] F. Pietra, Mechanisms for Nucleophilic and Photonucleophilic Aromatic Substitution Reactions, *Q. Rev. Chem. Soc.* 1969, 504.

[27] J. J. Wolff, A. Zietsch, T. Oeser, I. Bolocan, Rate Increase in Consecutive Nucleophilic Aromatic Substitution Reactions of Trichlorotrinitrobenzene: The Synthesis of 1-(Alkylamino)-3,5-dichloro-2,4,6-trinitrobenzenes, *J. Org. Chem.* 1998, 63, 5164.

[28] Z. Xu, J. Hao, W. Braida, D. Strickland, F. Li, X. Meng, Surface-Enhanced Raman Scattering Spectroscopy of Explosive 2,4-Dinitroanisole Using Modified Silver Nanoparticles, *Langmuir* 2011, 27, 13773.

[29] S. W. Maloney, W. E. Platten, III, D. Bailey, M. T. Suidan, *Anaerobic*
Treatment of Wastewaters Containing 2,4-Dinitroanisole and N-Methyl paranitro aniline from Munitions Handling and Production, ERDC/CERL Report TR-11-9, US Army Engineer Research and Development Center/Construction Engineering Research Laboratory, Champaign, IL, USA 2011.

[30] W. E. Platten, III, D. Bailey, M. T. Suidan, S. W. Maloney, Biological Transformation Pathways of 2,4-Dinitro anisole and N-Methyl paranitro aniline in Anaerobic Fluidized-bed Bioreactors, *Chemosphere*, **2010**, **81**, 1131.

[31] J. A. Blackie, N. J. Turner, A. S. Wells, Concerning Baker’s Yeast (*Saccharomyces cerevisiae*) Mediated Reduction of Nitroarenes and Other N-O Containing Functional Groups, *Tet. Lett.*, **1977**, 38(17), 3043.

[32] N. N. Perrault, D. Manno, A. Halasz, S. Thiboutot, G. Ampleman, J. Hawari, Aerobic Biotransformation of 2,4-Dinitroanisole in Soil and Soil *Bacillus* sp., *Biodegradation* **2012**, **23**, 287.

[33] M. R. Crampton, M. J. Willison, The Stabilities of Meisenheimer Complexes. Part XI. The Effects of Ring-size on Spiro-complex Formation, *J. C. S. Perkin II* **1976**, 155.

[34] F. C. Vaquer, A. Fresno, 2,4-Dinitrotoluene Risk Assessment, European Union Risk Assessment Report, Ministry of Health/Ministry of Environment, Madrid, Spain **2008**.

[35] J. M. Brannon, J. C. Pennington, *Environmental Fate and Transport Process*
Descriptors for Explosives, Report ERDC/EL TR-02-10, US Army Engineer Research and Development Center/Environmental Laboratory, Vicksburg, MS, USA 2002.

[36] L. Minier, K. Brower, J. C. Oxley, The Role of Intermolecular Reactions in Solvents, J. Org. Chem. 1991, 56, 3306.

[37] A. C. Gonzalez, C. W. Larson, D. F. McMillen, D. M. Golden, Mechanism of Decomposition of Nitroaromatics. Laser-Powered Homogeneous Pyrolysis of Substituted Nitrobenzenes, J. Phys. Chem. 1985, 89, 4809.

[38] T. Bausinger, J. Preuss, Stability of Nitroaromatic Specialty Explosives in Reversed-phase Liquid Chromatographic Systems, J. Haz. Mats. 2009, 162, 1578.

[39] N. S. Nudleman, D. Palleros, Reactions of Nitroanisoles. Part 2. Reactions of 2,4- and 2,6-Dinitroanisole with Piperidines in Benzene, J. C. S. Perkins II 1981, 995.

[40] C. H. Rochester, Correlation of Reaction Rates with Acidity Functions in Strongly Basic Media, Trans. Faraday Soc. 1963, 0, 2826.

[41] V. M. Boddu, D. S. Viswanath, Y. Castaneda, C. Costales-Nieves, R. A. Kirgan, A. J. Bednar, M. Qasim, Designer Nanomaterials: Bandgap Energy Manipulation of Mixed Metal Oxides of Magnesium and Zinc Through Sol-gel Synthesis, 27th Army Science Conference, Orlando, 28 Nov.-3 Dec. 2010, US Army Engineer Research and Development Center, Champaign IL 2010.

[42] F. H. Bissett, L. A. Levasseur, Analytical Methods for Nitroguanidine and
Characterization of Its Degradation Products, Technical Report TR-76/47, US Army Natick Research and Development Command Food Sciences Laboratory, Natick, MA, USA 1976.

[43] K. F. Kenyon, A Data Base Assessment of Environmental Fate Aspects of Nitroguanidine, Technical Report 8214, US Army Medical Bioengineering Research and Development Laboratory, Frederick, MD, USA 1982.

[44] Y. Oyumi, A. L. Rheingold, T. B. Brill, Thermal Decomposition of Energetic Materials XXIV. A Comparison of the Crystal Structures, IR Spectra, Thermolysis and Impact Sensitivities of Nitroguanidine and TrinitroethylNitroguanidine, Propellants Explos. Pyrotech. 1987, 12, 46.

[45] F. Volk, Determination of Gaseous and Solid Decomposition Products of Nitroguanidine, Propellants Explos. Pyrotech. 1985, 10, 139.

[46] A. F. McKay, Nitroguanidines, Report No. 100, Defence Research Chemical Laboratories, Ottawa, Ontario, CAN 1952.

[47] A. Koutsospyros, J. Pavlov, J. Fawcett, D. Strickland, B. Smolinski, W. Braida, Degradation of High Energetic and Insensitive Munitions by Fe/Cu Bimetal reduction, J. Haz. Mats. 2012, 219-220, 75.

[48] R. J. Spanggord, T.-W. Chou, T. Mill, W. Haag, W. Lau, Environmental Fate of Nitroguanidine, Diethyleneglycol dinitrate, and Hexachloroethane Smoke, Report LSU-7706, US Army Medical Research and Development Command, Frederick, MD, USA 1987.

[49] D. L. Kaplan, J. H. Cornell, A. M. Kaplan, Decomposition of Nitroguanidine, Environ. Sci. Technol. 1982, 16, 488.
[50] D. Goesch, *Determining Fate and Transport Parameters for Nitroglycerin, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, and Nitroguanidine in Soils*, MS Thesis, Department of Hydrology and Water Resources, University of Arizona 2012.

[51] T. R. Botcher, D. J. Beardall, C. A. Wight, L. Fan, T. J. Burkey, Thermal Decomposition Mechanism of NTO, *J. Phys. Chem.* 1996, 100, 8802.

[52] B. N. Kondrikov, S. P. Smirnov, A. V. Minakin, Chemical Kinetics of the Thermal Decomposition of NTO, *Propellants Explos. Pyrotech.* 2004, 29(1), 27.

[53] N. L. Garland, H. D. Ladouceur, H. H. Nelson, Laser-Induced Decomposition of NTO, *J. Phys. Chem. A* 1997, 101, 8508.

[54] L. Fan, C. Dass, T. J. Burkey, Synthesis and Thermal Decomposition of 15N-labelled NTO, *J. Labelled Compounds and Radiopharmaceuticals* 1996, 38(1), 87.

[55] J. C. Oxley, J. L. Smith, Z. Zhou, R. L. McKenney, Thermal Decomposition Studies on NTO and NTO/TNT, *J. Phys. Chem.* 1995, 99, 10383.

[56] J. C. Oxley, J. L. Smith, K. E. Yeager, E. Rogers, X. X. Dong, NTO Decomposition Studies, in: *MRS Symposium Proceedings Volume 418: Decomposition, Combustion, and Detonation Chemistry of Energetic Materials* (Eds.: T. B. Brill, T. P. Russell, W. C. Tao), Materials Research Society, Pittsburgh 1996, p. 135.

[57] J. C. Oxley, J. L. Smith, E. Rogers, X. X. Dong, NTO Decomposition Products Tracked with 15N Labels, *J. Phys. Chem. A* 1997, 101, 3531.
[58] W. Zheng, X. X. Dong, E. Rogers, J. C. Oxley, J. L. Smith, Improvements in Determination of Decomposition Gases from 1,3,3-Trinitroazetidine (TNAZ) and 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) using Capillary Gas Chromatography/Mass Spectrometry, *J. Chromat. Sci.* **1997**, *35*, 478.

[59] L. Wallace, M. P. Cronin, A. I. Day, D. P. Buck, Electrochemical Method Applicable to Treatment of Wastewater from Nitrotriazo lone Production, *Environ. Sci. Technol.* **2009**, *43*, 1993.

[60] L. Le Campion, A. Vandais, J. Ouazzani, Microbial Remediation of NTO in Aqueous Industrial Wastes, *FEMS Microbiol. Lett.* **1999**, *176*, 197.

[61] M. P. Cronin, A. I. Day, L. Wallace, Electrochemical Remediation Produces a New High-nitrogen Compound from NTO Wastewaters, *J. Haz. Mats.* **2007**, *149*, 527.

[62] M. W. Smith, M. D. Cliff, *NTO-Based Explosive Formulations: A Technology Review*, Report DSTO-TR-0796, Weapons System Division Aeronautical and Maritime Research Laboratory, Salisbury, S. Australia, AUS **1999**.

[63] D. F. McMillen, D. C. Erlich, C. He, C. H. Becker, D. A. Shockey, Fracture-induced and Thermal Decomposition of NTO Using Laser Ionization Mass Spectrometry, *Combustion & Flame* **1997**, ***111***, 133.

[64] C. Meredith, T. P. Russell, R. C. Mowrey, J. R. McDonald, Decomposition of 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO): Energetics Associated with Several Proposed Initiation Routes, *J. Phys. Chem. A* **1998**, *102*, 471.

[65] V. P. Sinditskii, S. P. Smirnov, V. Y. Egorshev, Thermal Decomposition of NTO: An Explanation of the High Activation Energy, *Propellants Explos.*
Pyrotech. 2007, 32(4), 277.

[66] F. Volk, F. Scehlbauer, Energy Output of Insensitive High Explosives by Measuring the Detonation Products, Propellants Explos. Pyrotech. 1993, 18, 332.

[67] J. A. Menapace, J. E. Marlin, D. R. Bruss, R. V. Dascher, Photochemical and Thermochemical Decomposition of 3-Nitro-1,2,4-triazol-5-one and Perdeuterio-3-nitro-1,2,4-triazol-5-one in Neat and Mixed Systems, J. Phys. Chem. 1991, 95(14), 5509.
Appendix I: Representative DSC & SDT Traces from the FOX Project

Figure 1. Potassium chlorate, DSC

Figure 2. Potassium Chlorate, SDT
Figure 3. 50:50 Sucrose:Potassium chlorate, DSC

Figure 4. 50:50 Sucrose:Potassium chlorate, SDT
Figure 5. 20:80 Sucrose:Potassium chlorate, DSC

Figure 6. 20:80 Sucrose:Potassium chlorate, SDT
Figure 7. 50:50 Lactose:Potassium chlorate, DSC

Figure 8. 50:50 Fructose:Potassium chlorate, DSC
Figure 9. 50:50 Fructose:Potassium chlorate, SDT

Figure 10. 50:50 Glucose:Potassium chlorate, DSC
Figure 11. 50:50 Pentaerythritol:Potassium chlorate, DSC

Figure 12: 50:50 Pentaerythritol:Potassium chlorate, SDT
Figure 13. 50:50 Erythritol:Potassium chlorate, DSC

Figure 14. 50:50 Charcoal:Potassium chlorate, DSC
Figure 15. 50:50 Sulfur:Potassium chlorate, DSC

Figure 16. 50:50 Cyclododecanol:Potassium chlorate, DSC
Figure 17. 50:50 Hexatriacontane:Potassium chlorate, DSC

Figure 18. 50:50 Naphthalene:Potassium chlorate, DSC
Figure 19. 20:80 Benzoic acid:Potassium chlorate, DSC

Figure 20. 20:80 Aluminum:Potassium chlorate, DSC
Figure 21. Potassium perchlorate, DSC

Figure 22. Potassium perchlorate, SDT
Figure 23. 50:50 Sucrose:Potassium perchlorate, DSC

Figure 24. 50:50 Sucrose:Potassium perchlorate, SDT

104
Figure 25. 20:80 Sucrose:Potassium perchlorate, SDT

Figure 26. 50:50 Fructose:Potassium perchlorate, DSC
Figure 27. 50:50 Fructose:Potassium perchlorate, SDT

Figure 28. 50:50 Erythritol:Potassium perchlorate, DSC
Figure 29. 50:50 Erythritol:Potassium perchlorate, SDT

Figure 30. 50:50 Charcoal:Potassium perchlorate, DSC
Figure 31. 50:50 Charcoal:Potassium perchlorate, SDT

Figure 32. 50:50 Sulfur:Potassium perchlorate, DSC
Figure 33. 50:50 Sulfur:Potassium perchlorate, SDT

Figure 34. 50:50 Cyclododecanol:Potassium perchlorate, DSC
Figure 35. 50:50 Hexatriacontane:Potassium perchlorate, DSC

Figure 36. 50:50 Naphthalene:Potassium perchlorate, DSC
Figure 37. 20:80 Benzoic acid:Potassium perchlorate, DSC

Figure 38. Potassium iodate, DSC
Figure 39. Potassium iodate, SDT

Figure 40. 50:50 Sucrose:Potassium iodate, DSC
Figure 41. 50:50 Sucrose:Potassium iodate, SDT

Figure 42. 20:80 Sucrose:Potassium iodate, DSC
Figure 43. 20:80 Sucrose:Potassium iodate, SDT

Figure 44. 50:50 Fructose:Potassium iodate, DSC
Figure 45. 50:50 Fructose:Potassium iodate, SDT

Figure 46. 50:50 Erythritol:Potassium iodate, DSC
Figure 47. 50:50 Erythritol:Potassium iodate, SDT

Figure 48. 50:50 Charcoal:Potassium iodate, DSC
Figure 49. 50:50 Charcoal:Potassium iodate, SDT

Figure 50. 50:50 Sulfur:Potassium iodate, DSC
Figure 51. 50:50 Sulfur:Potassium iodate, SDT

Figure 52. 50:50 Cyclododecanol:Potassium iodate, DSC
Figure 53. 50:50 Hexatriacontane:Potassium iodate, DSC

Figure 54. 50:50 Naphthalene:Potassium iodate, DSC
Figure 55. 20:80 Benzoic acid:Potassium iodate, DSC

Figure 56. Potassium periodate, DSC
Figure 57. Potassium periodate, SDT

Figure 58. 50:50 Sucrose:Potassium periodate, DSC
Figure 59. 50:50 Sucrose:Potassium periodate, SDT

Figure 60. 20:80 Sucrose:Potassium periodate, DSC
Figure 61. 20:80 Sucrose:Potassium periodate, SDT

Figure 62. 50:50 Fructose:Potassium periodate
Figure 63. 50:50 Fructose:Potassium periodate, SDT

Figure 64. 50:50 Erythritol:Potassium periodate, SDT
Figure 65. 50:50 Charcoal:Potassium periodate, DSC

Figure 66. 50:50 Sulfur:Potassium periodate, DSC
Figure 67. 50:50 Sulfur:Potassium periodate, SDT

Figure 68. 50:50 Cyclododecanol:Potassium periodate, DSC
Figure 69. 50:50 Hexatriacontane:Potassium periodate, DSC

Figure 70. 50:50 Naphthalene:Potassium periodate, DSC
Figure 71. 20:80 Benzoic acid:Potassium periodate, DSC

Figure 72. 20:80 Aluminum:Potassium periodate, DSC
Figure 73. Potassium bromate, DSC

Figure 74. Potassium bromate, SDT
Figure 75. 50:50 Sucrose:Potassium bromate, DSC

Figure 76. 50:50 Sucrose:Potassium bromate, SDT
Figure 77. 20:80 Sucrose:Potassium bromate, DSC

Figure 78. 20:80 Sucrose:Potassium bromate, SDT
Figure 79. 50:50 Fructose:Potassium bromate, DSC

Figure 80. 50:50 Fructose:Potassium bromate, SDT
Figure 81. 50:50 Pentaerythritol:Potassium bromate, DSC

Figure 82. 50:50 Pentaerythritol:Potassium bromate, SDT
Figure 83. 50:50 Sulfur:Potassium bromate, DSC

Figure 84. 50:50 Cyclododecanol:Potassium bromate, DSC
Figure 85. 50:50 Naphthalene:Potassium bromate, DSC

Figure 86. 20:80 Benzoic acid:Potassium bromate, DSC
Figure 87. 20:80 Aluminum:Potassium bromate, DSC

Figure 88. Potassium nitrate, DSC
Figure 89. Potassium nitrate, SDT

Figure 90. 50:50 Sucrose:Potassium nitrate, DSC
Figure 91. 20:80 Sucrose:Potassium nitrate, DSC

Figure 92. 20:80 Sucrose:Potassium nitrate, SDT
Figure 93. 50:50 Lactose:Potassium nitrate, DSC

Figure 94. 50:50 Fructose:Potassium nitrate, DSC
Figure 95. 50:50 Glucose:Potassium nitrate, DSC

Figure 96. 50:50 Pentaerythritol:Potassium nitrate, DSC
Figure 97. 50:50 Pentaerythritol:Potassium nitrate, SDT

Figure 98. 50:50 Erythritol:Potassium nitrate, DSC
Figure 99. 50:50 Charcoal:Potassium nitrate, DSC

Figure 100. 50:50 Charcoal:Potassium nitrate, SDT
Figure 101. 50:50 Sulfur:Potassium nitrate, DSC

Figure 102. 50:50 Cyclododecanol:Potassium nitrate, DSC
Figure 103. 50:50 Hexatriacontane:Potassium nitrate, DSC

Figure 104. 50:50 Naphthalene:Potassium nitrate, DSC
Figure 105. 20:80 Benzoic acid:Potassium nitrate, DSC

Figure 106. 20:80 Aluminum:Potassium nitrate, DSC
Figure 107. Potassium nitrite, DSC

Figure 108. Potassium nitrite, SDT
Figure 109. 50:50 Sucrose:Potassium nitrite, DSC

Figure 110. 20:80 Sucrose:Potassium nitrite, DSC
Figure 111. 20:80 Sucrose:Potassium nitrite, SDT

Figure 112. 50:50 Fructose:Potassium nitrite, DSC
Figure 113. 50:50 Erythritol:Potassium nitrite, DSC

Figure 114. 50:50 Charcoal:Potassium nitrite, DSC
Figure 115. 50:50 Sulfur:Potassium nitrite, DSC

Figure 116. 50:50 Sulfur:Potassium nitrite, SDT
Figure 117. 20:80 Benzoic acid:Potassium nitrite, DSC

Figure 118. Potassium permanganate, DSC
Figure 119. Potassium permanganate, SDT

Figure 120. 50:50 Sucrose:Potassium permanganate, DSC
Figure 121. 20:80 Sucrose:Potassium permanganate, DSC

Figure 122. 20:80 Sucrose:Potassium permanganate, SDT
Figure 123. 50:50 Fructose:Potassium permanganate, DSC

Figure 124. 50:50 Erythritol:Potassium permanganate, DSC
Figure 125. 50:50 Charcoal:Potassium permanganate, DSC

Figure 126. 50:50 Sulfur:Potassium permanganate, DSC
Figure 127. 50:50 Sulfur:Potassium permanganate, SDT

Figure 128. 50:50 Cyclododecanol:Potassium permanganate, DSC
Figure 129. 50:50 Naphthalene:Potassium permanganate, DSC

Figure 130. 20:80 Benzoic acid:Potassium permanganate, DSC
Figure 131. Potassium dichromate, DSC

Figure 132. 50:50 Sucrose:Potassium dichromate, DSC
Figure 133. 50:50 Sucrose:Potassium dichromate, SDT

Figure 134. 20:80 Sucrose:Potassium dichromate, DSC
Figure 135. 50:50 Fructose:Potassium dichromate, DSC

Figure 136. 50:50 Fructose:Potassium dichromate, SDT
Figure 137. 50:50 Pentaerythritol:Potassium dichromate, DSC

Figure 138. 50:50 Pentaerythritol:Potassium dichromate, SDT
Figure 139. 50:50 Charcoal:Potassium dichromate, DSC

Figure 140. 50:50 Charcoal:Potassium dichromate, SDT
Figure 141. 50:50 Cyclododecanol:Potassium dichromate, DSC

Figure 142. 50:50 Naphthalene:Potassium dichromate, DSC
Figure 143. 20:80 Benzoic acid:Potassium dichromate, DSC

Figure 144. Ammonium perchlorate, DSC
Figure 145. Ammonium perchlorate, SDT

Figure 146. 50:50 Sucrose:Ammonium perchlorate, DSC
Figure 147. 50:50 Sucrose:Ammonium perchlorate, SDT

Figure 148. 20:80 Sucrose:Ammonium perchlorate, DSC
Figure 149. 20:80 Sucrose:Ammonium perchlorate, SDT

Figure 150. 50:50 Fructose:Ammonium perchlorate, DSC
Figure 151. 50:50 Fructose:Ammonium perchlorate, SDT

Figure 152. 50:50 Erythritol:Ammonium perchlorate, DSC
Figure 153. 50:50 Charcoal:Ammonium perchlorate, DSC

Figure 154. 50:50 Charcoal:Ammonium perchlorate, SDT
Figure 155. 50:50 Sulfur:Ammonium perchlorate, DSC

Figure 156. 50:50 Sulfur:Ammonium perchlorate, SDT
Figure 157. 50:50 Cyclododecanol:Ammonium perchlorate, DSC

Figure 158. 50:50 Hexatriacontane:Ammonium perchlorate, DSC
Figure 159. 50:50 Naphthalene:Ammonium perchlorate, DSC

Figure 160. 50:50 Naphthalene:Ammonium perchlorate, DSC
Figure 161. 20:80 Benzoic acid:Ammonium perchlorate, DSC

Figure 162. 20:80 Aluminum:Ammonium perchlorate, DSC
Figure 163. Ammonium nitrate, DSC

Figure 164. Ammonium nitrate, SDT
Figure 165. 50:50 Sucrose:Ammonium nitrate, DSC

Figure 166. 20:80 Sucrose:Ammonium nitrate, DSC
Figure 167. 20:80 Sucrose:Ammonium nitrate, SDT

Figure 168. 50:50 Lactose:Ammonium nitrate, DSC
Figure 169. 50:50 Fructose:Ammonium nitrate, DSC

Figure 170. 50:50 Glucose:Ammonium nitrate, DSC
Figure 171. 50:50 Pentaerythritol:Ammonium nitrate, DSC

Figure 172. 50:50 Erythritol:Ammonium nitrate, DSC
Figure 173. 50:50 Charcoal:Ammonium nitrate, DSC

Figure 174. 50:50 Sulfur:Ammonium nitrate, DSC
Figure 175. 50:50 Hexatriacontane:Ammonium nitrate, DSC

Figure 176. 50:50 Naphthalene:Ammonium nitrate, DSC
Figure 177. 20:80 Benzoic acid:Ammonium nitrate, DSC

Figure 178. 20:80 Aluminum:Ammonium nitrate, DSC
Figure 179. Benzoic acid, DSC

Figure 180. Charcoal, DSC
Figure 181. Charcoal, SDT under nitrogen

Figure 182. Charcoal, SDT run under air
Figure 183. Cyclododecanol, DSC

Figure 184. Erythritol, DSC
Figure 185. Erythritol, SDT

Figure 186. Fructose, DSC
Figure 187. Fructose, SDT

Figure 188. Glucose, DSC
Figure 189. Hexatriacontane, DSC

Figure 190. Lactose, DSC
Figure 191. Naphthalene, DSC

Figure 192. Pentaerythritol, DSC
Figure 193. Pentaerythritol, SDT

Figure 194. Sucrose, DSC
Figure 195. Sucrose, SDT run under nitrogen

Figure 196. Sucrose, SDT run under air
Figure 197. Sulfur, DSC

Figure 198. Sulfur, SDT run under nitrogen
Figure 199. Sulfur, SDT run under air
Appendix II: Summary of Averaged FOX DSC & SDT Data

Table 1. Oxidizer endotherms

Sample	#	Start Endo (°C)	End Endo (°C)	Start Tang. (°C)	End Tang. (°C)	Start Dev. Endo Temp Min.	End Dev. Endo Temp Max.	Start Dev. Tang. Temp Min.	End Dev. Tang. Temp Max.	DSC/SDT	Heated Abs. (mg)	Heated Abs. (mg)	Oxidizer endotherms (%)	DSC/SDT	Heated Abs. (mg)																				
Ammonium Nitrate (AN)	3	53	65	53	54	20	5	114	144	122	128	2	52	287	327	338	329	332	12	51	15														
Ammonium Nitrate (AN) SDT	3	88	122	89	94	0.9	23	0.7	121	153	123	128.5	45	1	153	199	160	167	0.2	36	1	211	360	255	261	1	1049	149	523	653	531	579	13	90	37
Ammonium Perchlorate (AP)	3	244	259	245	248	1	71	10	377	463	385	433	266	13	722	771	752	758	0.3	19	1														
Ammonium Perchlorate (AP) SDT	3	235	277	237	242	0.6	71	7	377	463	385	433	266	13	722	771	752	758	0.3	19	1														
Potassium Bromate	3	378	431	407	415	1	77	90	75	716	749	728	731	1	75	12																			
Potassium Bromate SDT	3	390	428	406	413	1	75	13	716	749	728	731	75	12																					
Potassium Chlorate	3	361	376	353	358	1	341	17	754	790	762	766	180	4																					
Potassium Chlorate SDT	3	308	358	355	358	0.4	158	13	754	790	762	766	180	4																					
Potassium Dichromate	3	389	409	398	402	2	156	66																											
Potassium Iodate	3	531	632	549	555	2	380	696	671	705	677	680	0.6	85	12	813	916	840	900	23	234	42													
Potassium Iodate SDT	3	585	647	417	424	0.5	391	99	667	757	688	731	16	30	39																				
Potassium Nitrate	4	125	147	129	132	1	58	12	321	341	326	331	43	35																					
Potassium Nitrate SDT	3	125	173	126	131	0.8	92	4	285	368	312	325	0.9	72	13	614	763	670	703	8	606	169	607	859	838	31	88	65							
Potassium Nitrate	4	41	63	44	45	0.6	20	14	399	430	414	419	6	110																					
Potassium Nitrate SDT	5	390	476	417	424	0.5	391	99	667	757	688	731	16	30	39																				
Potassium Perchlorate	3	302	318	304	307	0.8	78	10																											
Potassium Perchlorate SDT	3	238	365	330	308	1	91	3	587	639	699	613	2	121	7	747	860	765	769	0.5	178	19													
Potassium Perchlorate	3	306	613	334	543	2	379	398	668	693	672	675	0.2	50	4	708	741	710	727	6	8	3													
Potassium Perchlorate SDT	3	409	574	494	540	2	63	5																											

Note: The table provides a summary of the averaged FOX DSC & SDT data for various oxidizer endotherms, including the sample name, number, and specific endothermic reactions observed.
Sample	#	Start Exo (°C)	End Exo (°C)	Onset Temp (°C)	Exo Temp Max. (°C)	Std Dev Endo Temp Max	Additional Max & Shoulders (°C) seen in some traces	Heat Released (J/g)	Std Dev Heat Rel.	Start Exo (°C)	End Exo (°C)	Onset Temp (°C)	Exo Temp Max. (°C)	Std Dev Endo Temp Max	Additional Max & Shoulders (°C) seen in some traces	Heat Released (J/g)	Std Dev Heat Rel.
Table 3. Endotherms from Benzoic acid mixtures

Sample	Start Endo (°C)	Endo Endo (°C)	Onset Temp. (°C)	Endo Temp. Min.	Std Dev. Endo Temp. Min.	Additional Mins & Shoulders (%C) seen in some traces	Heat Abs. (J/g)	Std Dev. Heat Abs.	Start Endo (°C)	Endo Endo (°C)	Onset Temp. (°C)	Endo Temp. Min.	Std Dev. Endo Temp. Min.	Additional Mins & Shoulders (%C) seen in some traces	Heat Abs. (J/g)	Std Dev. Heat Abs.	Start Endo (°C)	Endo Endo (°C)	Onset Temp. (°C)	Endo Temp. Min.	Std Dev. Endo Temp. Min.	Additional Mins & Shoulders (%C) seen in some traces	Heat Abs. (J/g)	Std Dev. Heat Abs.
Benzoic Acid	3 118 134 119 121	0.9	157	3																				
Mix 111: 20% Benzoic Acid/80% AN	2 50 60 52 53	0.4	19	0.7	119 134 122 127	121	75	7	157 175 162 166	20	57	0.3												
Mix 112: 20% Benzoic Acid/80% AP	2 121 135 123 125	0.09	36	5	243 257 243 246	0.5	251 48	2																
Mix 113: 20% Benzoic Acid/80% KBrO3	3 121 135 122 124	0.3	50	18																				
Mix 103: 20% Benzoic Acid/80% KClO3	3 121 137 122 124	1	47	16																				
Mix 110: 20% Benzoic Acid/80% KClO3	3 114 133 116 119	9	47	16																				
Mix 107: 20% Benzoic Acid/80% KClO3	2 121 143 122 124	1	129	37	11																			
Mix 105: 20% Benzoic Acid/80% KNO3	3 122 142 127 129	3	124, 133	66	20	311 325 314 318	2	47	12															
Mix 106: 20% Benzoic Acid/80% KNO3	no DSC runs showed exotherms or endotherms though mixture did turn brown; may have already decomposed (smell was noted during sample prep)																							
Mix 104: 20% Benzoic Acid/80% KClO3	3 121 137 122 125	2	41	10	301 317 304 306	2	51	18																
Mix 108: 20% Benzoic Acid/80% KIO4	3 118 130 119 121	0.5	27	12																				
Mix 109: 20% Benzoic Acid/80% KMnO4	3 116 123 118 120	0.5	45	23																				
Table 4. Exotherms from Benzoic acid mixtures

| Sample | # | Start Exo (°C) | End Exo (°C) | Onset Temp (°C) | Exo Temp Max. (°C) | Std Dev Endo Temp Max | Std Dev Exo Temp Max | Start Exo (°C) | End Exo (°C) | Onset Temp (°C) | Exo Temp Max. (°C) | Std Dev Endo Temp Max | Std Dev Exo Temp Max | Additional Max & Shoulders (°C) seen in some traces | Heat Released (J/g) | Std Dev Heat Rel. | Start Exo (°C) | End Exo (°C) | Onset Temp (°C) | Exo Temp Max. (°C) | Std Dev Endo Temp Max | Std Dev Exo Temp Max | Additional Max & Shoulders (°C) seen in some traces | Heat Released (J/g) | Std Dev Heat Rel. |
|--|---|----------------|--------------|-----------------|-------------------|---------------------|----------------------|----------------|--------------|-----------------|-------------------|---------------------|---------------------|-----------------------------|------------------|----------------|----------------|----------------|----------------|-------------------|---------------------|-----------------------------|------------------|----------------|----------------|----------------|----------------|-------------------|
| Benzoic Acid | 3 | no exotherms | | | | | | | | | | | | | | | | | | | | | | |
| Mix 111: 20% Benzoic Acid/80% AN | 2 | 267 | 364 | 313 | 335 | 5 | 359 | 1879 | 8 | | | | | | | | | | | | | | | |
| Mix 112: 20% Benzoic Acid/80% AP | 2 | 316 | 359 | 323 | 337 | 4 | 421 | 203 | 393 | 482 | 446 | 457 | 5 | 1926 | 445 | | | | | | | | | |
| Mix 113: 20% Benzoic Acid/80% KBrO₃ | 3 | 355 | 381 | 368 | 369 | 3 | 835 | 698 | | | | | | | | | | | | | | | | |
| Mix 103: 20% Benzoic Acid/80% KClO₃ | 3 | 189 | 381 | 325 | 344 | 14 | 307, 340 | 3648 | 472 | | | | | | | | | | | | | | | |
| Mix 110: 20% Benzoic Acid/80% KCr₂O₇ | 3 | 371 | 381 | 374 | 376 | 6 | 24 | 17 | 381 | 401 | 385 | 387 | 3 | 138 | 118 | | | | | | | | | |
| Mix 107: 20% Benzoic Acid/80% KIO₃ | 2 | 395 | 403 | 395 | 398 | 0.9 | 16 | 2 | 403 | 454 | 418 | 426 | 2 | 476 | 268 | | | | | | | | | |
| Mix 105: 20% Benzoic Acid/80% KNO₃ | 3 | no exotherms | | | | | | | | | | | | | | | | | | | | | | |
| Mix 106: 20% Benzoic Acid/80% KNO₂ | | no DSC runs showed exotherms or endotherms though mixture did turn brown; may have already decomposed |
| Mix 104: 20% Benzoic Acid/80% KClO₄ | 3 | 395 | | | | | | | | | | | | | | | | | | | | | | |
| Mix 108: 20% Benzoic Acid/80% KIO₄ | 3 | 259 | 369 | 284 | 299 | 3 | 333, 347 | 959 | 163 | 385 | 433 | 404 | 415 | 5 | 544 | 62 | | | | | | | | |
| Mix 109: 20% Benzoic Acid/80% KMnO₄ | 3 | 123 | 244 | 124 | 159 | 48 | 150, 182, 202, 234 | 909 | 403 | 274 | 341 | 288 | 311 | 0.5 | 430 | 47 | | | | | | | | |
Table 5. Endotherms from Charcoal mixtures

Sample	FOX (fuel/oxidizer) Mixtures, DSC & SDT runs.	#	Start Endo (°C)	Endo Endo (°C)	Onset Temp (°C)	Endo Temp Min. (°C)	Std Dev Endo Temp Min	Additional Mins & Shoulders (°C) seen in some traces	Heat Abs. (J/g)	Std Dev Heat Abs.	Start Endo (°C)	Endo Endo (°C)	Onset Temp (°C)	Endo Temp Min. (°C)	Std Dev Endo Temp Min	Additional Mins & Shoulders (°C) seen in some traces	Heat Abs. (J/g)	Std Dev Heat Abs.				
Charcoal	no DSC or SDT (under N₂) runs showed exotherms or endotherms																					
Charcoal in air SDT	2	no endotherms																				
Mix 41: 50% Charcoal/ 50% AN	4	51	67	52	54	1	7	3	114	133	119	124	4	12	7							
Mix 69: 50% Charcoal/ 50% AP SDT	4	237	259	239	244	1	19	19														
Mix 42: 50% Charcoal/ 50% KClO₃	4	no endotherms																				
Mix 98: 50% Charcoal/ 50% K₂Cr₂O₇	3	392	397	393	395	1	13	10														
Mix 98: 50% Charcoal/ 50% K₂Cr₂O₇	3	no endotherms																				
Mix 99: 50% Charcoal/ 50% KI	3	no endotherms																				
Mix 99: 50% Charcoal/ 50% KIO₃	1	no endotherms																				
Mix 43: 50% Charcoal/ 50% KNO₃	5	127	136	127	129	0.6	20	6	318	330	320	324	7	25	9							
Mix 43a: 50% Charcoal/ 50% KNO₃ SDT	3	124	171	126	129	0.2	18	8	324	361	327	332	0.5	40	7							
Mix 102: 50% Charcoal/ 50% KNO₃	3	no endotherms																				
Mix 54: 50% Charcoal/ 50% KClO₄	3	302	318	305	307	0.5	51	14														
Mix 54/70 Charcoal/ 50% KClO₄ SDT	7	298	328	299	304	1	26	9	757	774	761	765	2	14	6							
Mix 100: 50% Charcoal/ 50% KIO₄	4	no endotherms																				
Mix 101: 50% Charcoal/ 50% KMnO₄	3	no endotherms																				
Table 6. Exotherms from Charcoal mixtures

FOX (fuel/oxidizer) Mixtures, DSC & SDT runs.																						
Sample	#	Start Exo (°C)	End Exo (°C)	Onset Temp (°C)	Exo Temp Max. (°C)	Std Dev	Endo Temp Max. (°C)	Additional Max & Shoulders (°C) seen in some traces	Heat Released (J/g)	Std Dev Heat Rel.	Start Exo (°C)	End Exo (°C)	Onset Temp (°C)	Exo Temp Max. (°C)	Std Dev Endo Temp Max.	Additional Max & Shoulders (°C) seen in some traces	Heat Released (J/g)	Std Dev Heat Rel.				
Charcoal in air SDT	2	202	579	416	522	6	433		20821	483	203	241	222	223	2	1607	399					
Mix 41: 50% Charcoal/ 50% AN	4	353	465	447	451	9	1718	229	359	408	312	338	10	1738	469							
Mix 69: 50% Charcoal/ 50% AP	3	300	361	329	333	5	312, 328, 333		1585	183												
Mix 42: 50% Charcoal/ 50% KClO₃	4	397	417	397	400	1	74	20	389	477	391	397	1	239	265	670	745	672	702	4	82	57
Mix 98: 50% Charcoal/ 50% K₂Cr₂O₇	3	436	456	443	448	7	300	162	425	510	444	454	492	139								
Mix 43: 50% Charcoal/ 50% KNO₃	5	409	486	461	474	11	462	1361	413													
Mix 43a: 50% Charcoal/ 50% KNO₃, SDT	3	423	730	459	461	2	1920	353														
Mix 102: 50% Charcoal/ 50% KNO₃	3	346	407	358	381	2	625	179														
Mix 54: 50% Charcoal/ 50% KClO₄	3	462																				
Mix 54/70: Charcoal/ 50% KClO₄, SDT	7	470	557	510	525	8	512	1172	475													
Mix 100: 50% Charcoal/ 50% KIO₄	4	344	364	350	356	1	116	81	343	456	444	447	9	240	173							
Mix 101: 50% Charcoal/ 50% KMnO₄	3	277	344	294	310	2	792	269														
Table 7. Endotherms from Cyclododecanol mixtures

FOX (fuel/oxidizer) Mixtures, DSC & SDT runs.																									
Sample	**#**	**Start Endo (°C)**	**End Endo (°C)**	**Onset Temp (°C)**	**Endo Temp Min. (°C)**	**Std Dev Endo Temp Min.**	**Additional Mins & Shoulders (°C) seen in some traces**	**Heat Abs. (J/g)**	**Std Dev Heat Abs.**	**Start Endo (°C)**	**End Endo (°C)**	**Onset Temp (°C)**	**Endo Temp Min. (°C)**	**Std Dev Endo Temp Min.**	**Additional Mins & Shoulders (°C) seen in some traces**	**Heat Abs. (J/g)**	**Std Dev Heat Abs.**	**Start Endo (°C)**	**End Endo (°C)**	**Onset Temp (°C)**	**Endo Temp Min. (°C)**	**Std Dev Endo Temp Min.**	**Additional Mins & Shoulders (°C) seen in some traces**	**Heat Abs. (J/g)**	**Std Dev Heat Abs.**
Cyclododecanol	4	57	94	72	78	1	72	172	11																
Mix 128: 50% Cyclododecanol/50% AP	2	66	88	70	76	2	71	69	12	242	257	243	249	3	30	10									
Mix 130: 50% Cyclododecanol/50% KBrO₃	3	63	84	68	72	0.5	65	8																	
Mix 48: 50% Cyclododecanol/50% KClO₃	3	65	86	70	74	3	71, 76	69	11	339	362	351	357	0.4	339	94	8								
Mix 126: 50% Cyclododecanol/50% K₂CrO₇	3	63	94	70	77	0.5	72	94																	
Mix 127: 50% Cyclododecanol/50% KIO₃	3	65	85	69	75	3	72	7																	
Mix 47: 50% Cyclododecanol/50% KNO₃	4	61	85	69	73	0.9	87	12	126	139	127	129	2	17	5	313	336	320	326	3	22	11			
Mix 123: 50% Cyclododecanol/50% KClO₄	2	65	88	69	77	2	72	64	11	303	314	304	307	0.3	34	1									
Mix 129: 50% Cyclododecanol/50% KIO₃	3	64	90	70	77	0.8	71	74	5																
Mix 124: 50% Cyclododecanol/50% KMnO₄	2	63	87	69	72	0.08	77	19																	
Table 8. Exotherms from Cyclododecanol mixtures

FOX (fuel/oxidizer) Mixtures, DSC & SDT runs.	Sample	#	Start (°C)	End (°C)	Onset Temp (°C)	Exo Temp Max (°C)	Std Dev	Start (°C)	End (°C)	Onset Temp (°C)	Exo Temp Max (°C)	Std Dev	Additional Max & Shoulders (°C) seen in some traces	Heat Released (J/g)	Additional Max & Shoulders (°C) seen in some traces	Std Dev	Heat Released (J/g)	Start (°C)	End (°C)	Onset Temp (°C)	Exo Temp Max (°C)	Std Dev	Additional Max & Shoulders (°C) seen in some traces	Std Dev	Heat Released (J/g)
Cyclododecanol	4	no exotherms																							
Mix 128: 50% Cyclododecanol/50% AP	2	323	454	361	404	3	1877	392																	
Mix 130: 50% Cyclododecanol/50% KBrO₃	3	379	429	398	408	1	386	194																	
Mix 46: 50% Cyclododecanol/50% KCIO₃	3	397	494	436	470	11	483	432																	
Mix 126: 50% Cyclododecanol/50% K₂CrO₇	3	321	435	360	384	9	354, 268, 390	256	93																
Mix 127: 50% Cyclododecanol/50% KIO₃	3	414	468	444	452	2	354	16																	
Mix 47: 50% Cyclododecanol/50% KNO₂		no exotherms																							
Mix 123: 50% Cyclododecanol/50% KClO₃	2	no exotherms																							
Mix 129: 50% Cyclododecanol/50% KClO₄	3	185	234	197	212	2	19	5.1																	
Mix 124: 50% Cyclododecanol/50% KMnO₄	2	198	357	314	320	0.04	340	768	313																
Table 9. Endotherms from Erythritol mixtures

| Sample | # | Start Endo (°C) | End Endo (°C) | Onset Temp (°C) | Endo Temp Min (°C) | Std Dev Endo Temp Min | Heat Abs. (J/g) | Std Dev Heat Abs. | Start Endo (°C) | End Endo (°C) | Onset Temp (°C) | Endo Temp Min (°C) | Std Dev Endo Temp Min | Heat Abs. (J/g) | Std Dev Heat Abs. | Start Endo (°C) | End Endo (°C) | Onset Temp (°C) | Endo Temp Min (°C) | Std Dev Endo Temp Min | Heat Abs. (J/g) | Std Dev Heat Abs. | Start Endo (°C) | End Endo (°C) | Onset Temp (°C) | Endo Temp Min (°C) | Std Dev Endo Temp Min | Heat Abs. (J/g) | Std Dev Heat Abs. |
|---|---|-----------------|---------------|-----------------|-------------------|---------------------|-----------------|------------------|-----------------|---------------|-----------------|-------------------|---------------------|-----------------|------------------|-----------------|---------------|-----------------|-------------------|---------------------|-----------------|------------------|-----------------|---------------|-----------------|-------------------|---------------------|-----------------|------------------|-----------------|---------------|-----------------|-------------------|---------------------|-----------------|------------------|
Table 10. Exotherms from Erythritol mixtures

Sample	#	Start Exo (°C)	End Exo (°C)	Onset Temp (°C)	Exo Temp Max. (°C)	Std Dev Exo	Endo Temp Max. (°C)	Std Dev Endo	Additional Max & Shoulders (°C) seen in some traces	Heat Released (J/g)	Std Dev Heat Rel.	Start Exo (°C)	End Exo (°C)	Onset Temp (°C)	Exo Temp Max. (°C)	Std Dev Exo	Endo Temp Max. (°C)	Std Dev Endo	Additional Max & Shoulders (°C) seen in some traces	Heat Released (J/g)	Std Dev Heat Rel.									
Erythritol	4	no exotherms																												
Erythritol SDT	2	no exotherms																												
Mix 35: 50% Erythritol/ 50% AN	3	260	281	265	267	8	1758	244																						
Mix 44: 50% Erythritol/ 50% AP	4	258	449	362	404	74	291, 337	3822	861																					
Mix 30b: 50% Erythritol/ 50% KClO₃	5	192	281	235	258	8	215	2272	390																					
Mix 64: 50% Erythritol/ 50% KIO₃	3	141	219	156	181	6	183	871	304																					
Mix 64: 50% Erythritol/ 50% KIO₃ SDT	4	148	268	159	179	3	892	79	285	358	294	317	4	36	30															
Mix 34: 50% Erythritol/ 50% KNO₃	3	352	461	397	413	2	2438	336																						
Mix 57: 50% Erythritol/ 50% KNO₂	3	261	356	288	315	2	1009	30																						
Mix 45: 50% Erythritol/ 50% KClO₄	4	313	386	324	348	19	319	397	187	450	477	11																		
Mix 45: 50% Erythritol/ 50% KClO₄ SDT	3	509	593	524	575	6	50	9	593	669	627	642	2	609, 626	176															
Mix 67a: 50% Erythritol/ 50% KIO₃ SDT	3	119	286	118	145	7	183, 243	1140	452	129	363	332	343	14	10	7														
Mix 46: 50% Erythritol/ 50% KMnO₄	4	112	230	140	161	2	115, 125	1702	270	312	395	325	358	9	204	63														
Table 11. Endotherms from Fructose mixtures

Sample	FOX (fuel/oxidizer) Mixtures, DSC & SDT runs.	Start Endo (°C)	Endo	Onset Temp (°C)	Endo Temp Min. (°C)	Std Dev Endo Temp Min	Additional Mints & Shoulders (°C) seen in some traces	Heat Abs. (J/g)	Std Dev Heat Abs. Start Endo (°C)	Endo	Onset Temp (°C)	Endo Temp Min. (°C)	Std Dev Endo Temp Min	Additional Mints & Shoulders (°C) seen in some traces	Heat Abs. (J/g)	Std Dev Heat Abs.
Fructose		90	145	104	129	2	185	47								
Mix 25a: 50% Fructose/ 50% AN		88	167	103	124	2	283	50	177	306	180	226	35	203	274	114
Mix 29: 50% Fructose/ 50% AP Mix 29: 50% Fructose/ 50% AP SDT		95	143	106	122	12	90	34	242	252	243	244	1	19	8	
Mix 29: 50% Fructose/ 50% AP SDT		96	203	110	128	2	167	378	150	724	807	734	756	2	54	59
Mix 92: 50% Fructose/ 50% KBrO₃		99	130	103	116	2	100	27								
Mix 92: 50% Fructose/ 50% KBrO₃ SDT		98	136	105	123	3	71	32	726	741	728	730	0.6	13	2	
Mix 17: 50% Fructose/ 50% KClO₃		93	116	101	111	10	94, 103	25	13							
Mix 17: 50% Fructose/ 50% KClO₃ SDT		93	130	103	121	0.4	96	40	758	776	763	766	0.2	19	10	
Mix 16: 50% Fructose/ 50% K₂CrO₃		97	136	102	111	9	105	14	13							
Mix 96: 50% Fructose/ 50% K₂CrO₃		115	129	119	124	1	30	2								
Mix 96: 50% Fructose/ 50% K₂CrO₃		102	132	104	122	0.6	41	12	673	689	675	678	0.4	8	1	
Mix 96: 50% Fructose/ 50% KNO₃		98	146	105	154	50	136	73	28							
Mix 96: 50% Fructose/ 50% KNO₃		99	146	102	125	4	43	30	303	323	305	309	1	59	14	
Mix 7: 50% Fructose/ 50% KClO₄		88	122	96	115	0.1	36	4	660	695	670	676	0.2	27	6	
Mix 7: 50% Fructose/ 50% KClO₄		79	125	98	99	12	84	48								
Table 12. Exotherms from Fructose mixtures

FOXY (fuel/oxidizer)	Mixtures, DSC & SDT runs.																										
Sample	#	Start Exo (°C)	End Exo (°C)	Onset Temp (°C)	Exo Temp Max (°C)	Std Dev Exo	End Exo	Std Dev Endo	Temp Max	Std Dev	Additional Max & Shoulders (°C) seen in some traces	Std Dev Exo	Heat Released (J/g)	Std Dev Heat Rel.	Start Exo (°C)	End Exo (°C)	Onset Temp (°C)	Exo Temp Max (°C)	Std Dev Exo	End Exo	Std Dev Endo	Temp Max	Std Dev	Additional Max & Shoulders (°C) seen in some traces	Std Dev Exo	Heat Released (J/g)	Std Dev Heat Rel.
Fructose	4	248	318	254	270	2	204	63																			
Mix 25a: 50% Fructose/50% AN	5	149	228	155	169	0.4	199	2652	# #																		
Mix 29: 50% Fructose/50% AP	7	167	208	173	181	2	222	89																			
Mix 29: 50% Fructose/50% AP SDT	3	203	448	273	337	33	327, 367																				
Mix 92: 50% Fructose/50% KBrO₃	2	149	222	180	196	2	1317	147																			
Mix 92: 50% Fructose/50% KBrO₃ SDT	3	136	189	138	150	2	161	29	365	472	371	373	0.7	417	47												
Mix 17: 50% Fructose/50% KClO₃	10	116	255	133	166	25	128, 173, 191, 204, 250	2296	991																		
Mix 17: 50% Fructose/50% KClO₃ SDT	3	130	255	129	154	26	140, 183	466	265	318	441	325	328	1	388	165											
Mix 96: 50% Fructose/50% K₂CrO₄	3	102	123	105	109	2	80	72																			
Mix 96: 50% Fructose/50% K₂CrO₄ SDT	2	387	511	389	394	0.5		272	75																		
Mix 63: 50% Fructose/50% KIO₃	3	129	189	143	156	0.5		1442	118																		
Mix 63: 50% Fructose/50% KIO₃ SDT	4	132	201	133	145	1	282	56	423	456	425	427	2														
Mix 21: 50% Fructose/50% KN0₃	3	217	357	227	248	1	297	205	46	379	437	396	404	10	391	144											
Mix 56: 50% Fructose/50% KNO₃	2	126	231	148	168	4	160	987	61																		
Mix 27: 50% Fructose/50% KClO₄	4	414	140	140	140	0.4		631	55	335	384	341	349	0.2	33	5											
Mix 66: 50% Fructose/50% KIO₃	3	115	210	126	138	2	190	1620	371																		
Mix 66: 50% Fructose/50% KIO₃ SDT	3	122	202	130	133	0.4		631	55	335	384	341	349	0.2	33	5											
Mix 37: 50% Fructose/50% KMnO₄	4	130	282	177	200	37	235, 263	1222	348																		
Table 13. Endotherms from Glucose & Lactose mixtures

| Sample | # | Start Exo (ºC) | End Exo (ºC) | Onset Temp (ºC) | Endo Temp Min (ºC) | Std Dev Exo Temp Max | Std Dev Endo Temp Min | Additional Min & Shoulders (ºC) seen in some traces | Std Dev Heat Abs | Std Dev Heat Rel | Start Endo (ºC) | Endo Endo (ºC) | Onset Temp Min (ºC) | Endo Temp Min (ºC) | Std Dev Exo Temp Max | Std Dev Endo Temp Min | Additional Min & Shoulders (ºC) seen in some traces | Std Dev Heat Abs | Std Dev Heat Rel |
|--------|---|----------------|--------------|------------------|---------------------|----------------------|-----------------------|--|----------------|----------------|----------------|----------------|----------------------|----------------------|----------------------|-----------------------|----------------|----------------|
| Glucose | 3 | 143 | 179 | 153 | 165 | 0.7 | 217 | 201 251 206 233 0.1 | 62 15 | | | | | | | | | |
| Mix 24: 50% Glucose/ 50% AN | 3 | 53 | 69 | 54 | 55 | 0.7 | 17 6 | 95 130 110 114 13 | 68 24 | | | | | | | | | |
| Mix 16: 50% Glucose/ 50% KClO₃ | 9 | 132 | 153 | 140 | 149 | 8 | 41 | 142 173 155 164 0.6 | 112 15 | | | | | | | | | |
| Mix 20: 50% Glucose/ 50% KNO₃ | 3 | 130 | 141 | 131 | 133 | 0.7 | 5 1 | 145 177 148 152 0.8 | 59 8 | 206 | 219 | 209 | 212 0.9 | | | | | |
| Lactose (galactose + glucose) | 4 | 145 | 172 | 148 | 153 | 8 | 115 | 183 219 180 208 2 | 92 69 | | | | | | | | | |
| Mix 23: 50% Lactose/ 50% AN | 4 | 52 | 67 | 53 | 55 | 0.9 | 9 2 | 93 133 96 105 2 | 84 14 | | | | | | | | | |
| Mix 15: 50% Lactose/ 50% KClO₃ | 3 | 145 | 165 | 147 | 151 | 0.8 | 63 | 145 177 148 152 0.8 | 59 8 | 206 | 219 | 209 | 212 0.9 | | | | | |
| Mix 19: 50% Lactose/ 50% KNO₃ | 3 | 130 | 139 | 131 | 133 | 0.7 | 10 4 | 145 177 148 152 0.8 | 59 8 | 206 | 219 | 209 | 212 0.9 | | | | | |

Table 14. Exotherms from Glucose & Lactose mixtures

Sample	#	Start Exo (ºC)	End Exo (ºC)	Onset Temp (ºC)	Exo Temp Max (ºC)	Std Dev Exo Temp Max	Std Dev Endo Temp Max	Additional Max & Shoulders (ºC) seen in some traces	Heat Released (J/g)	Std Dev Heat Rel	Start Exo (ºC)	End Exo (ºC)	Onset Temp (ºC)	Exo Temp Max (ºC)	Std Dev Exo Temp Max	Std Dev Endo Temp Max	Additional Max & Shoulders (ºC) seen in some traces	Heat Released (J/g)	Std Dev Heat Rel	
Glucose	3	273	339	285	306	4	345	250 348 291 328 28 482 353	315 294 363 396 58											
Mix 24: 50% Glucose/ 50% AN	3	149	232	166	186	5	158	2277 414 250 348 291 328 28 482 353	237 348 363 396 58											
Mix 16: 50% Glucose/ 50% KClO₃	9	151	290	205	243	5	168	2668 762	372 422 394 398 5 392 363 62	237 348 363 396 58										
Mix 20: 50% Glucose/ 50% KNO₃	3	223	337	258	285	18	307 273 299 64 372 422 394 398 5 392 363 62	237 348 363 396 58												
Lactose (galactose + glucose)	4	258	368	279	304	3	478	255 333 273 302 25 187 174	237 348 363 396 58											
Mix 22: 50% Lactose/ 50% AN	4	161	243	170	182	1	208	1489 447 255 333 273 302 25 187 174	237 348 363 396 58											
Mix 15: 50% Lactose/ 50% KClO₃	3	174	289	183	197	5	256	1597 102	237 348 363 396 58	237 348 363 396 58										
Mix 19: 50% Lactose/ 50% KNO₃	3	239	326	253	271	0.8	276	366 426 389 393 0.6 696 78	237 348 363 396 58											
Table 15. Endotherms from Hexatriacontane mixtures

Sample	Start	End	Start Temp	End Temp	Std Dev	Mins & Shoulders	Host Abs (%)	Std Dev	Mins & Shoulders	Host Abs (%)	Std Dev	Mins & Shoulders	Host Abs (%)	Std Dev	Mins & Shoulders	Host Abs (%)	Std Dev	Mins & Shoulders	Host Abs (%)	Std Dev	Mins & Shoulders	Host Abs (%)						
Hexatriacontane	3	69	100	75	79	2	201	8.8																				
Mix 137: 50% Hexatriacontane/50% AN	3	52	65	53	54	0.8	12	3	71	98	75	77	0.9	128	28		125	139	127	0.3	23	3	156	176	160	167	1	30 10
Mix 134: 50% Hexatriacontane/50% AP	3	72	87	76	78	0.7	81	22																				
Mix 138: 50% Hexatriacontane/50% KClO₃	3	70	92	75	77	0.5	215	33																				
Mix 136: 50% Hexatriacontane/50% KNO₃	3	69	90	74	77	0.3	114	20																				
Mix 133: 50% Hexatriacontane/50% KClO₃	3	60	96	75	77	0.6	160	17	129	144	130	132	2	14	6		327	341	332	334	1	16 9						
Mix 132: 50% Hexatriacontane/50% KNO₃	3	71	93	75	77	1	125	14	303	316	305	308	1	39	5													
Mix 135: 50% Hexatriacontane/50% KClO₃	3	70	87	75	76	0.6	103	17																				

Table 16. Exotherms from Hexatriacontane mixtures

Sample	Start	End	Start Temp	End Temp	Std Dev	Max & Shoulders	Heat Released (J/g)	Std Dev	Heat Rel.	Start	End	Start Temp	End Temp	Std Dev	Max & Shoulders	Heat Released (J/g)	Std Dev	Heat Rel.	Start	End	Start Temp	End Temp	Std Dev	Max & Shoulders	Heat Released (J/g)	Std Dev	Heat Rel.									
Hexatriacontane	3		no exotherms									no exotherms									no exotherms															
Mix 137: 50% Hexatriacontane/50% AN	3	278	373	339	349	22	313	343	362	794	202	no exotherms									no exotherms															
Mix 134: 50% Hexatriacontane/50% AP	3	367	435	406	412	8	1414	233				no exotherms									no exotherms															
Mix 138: 50% Hexatriacontane/50% KClO₃	3		no exotherms									no exotherms									no exotherms															
Mix 136: 50% Hexatriacontane/50% KNO₃	3	418	469	443	451	3	209	46				no exotherms									no exotherms															
Mix 133: 50% Hexatriacontane/50% KClO₃	3		no exotherms									no exotherms									no exotherms															
Mix 135: 50% Hexatriacontane/50% KNO₃	3	210	234	221	224	3	18	1	287	341	296	308	24	274	88	373	447	422	437 2	411	57									no exotherms						

FOX (fuel/oxidizer) Mixtures, DSC & SDT runs.
Table 17. Endotherms from Naphthalene mixtures

Sample	#	Start (°C)	End (°C)	Endo Temp (°C)	std Dev Endo Temp Min	Heat Abs. (J/g)	std Dev Heat Abs.	Start (°C)	End (°C)	Onset Temp (°C)	std Dev Onset Temp Min	Heat Abs. (J/g)	std Dev Heat Abs.	Start (°C)	End (°C)	Onset Temp (°C)	std Dev Onset Temp Min	Heat Abs. (J/g)	std Dev Heat Abs.	Start (°C)	End (°C)	Onset Temp (°C)	std Dev Onset Temp Min	Heat Abs. (J/g)	std Dev Heat Abs.
Naphthalene	3	76	95	77	80	1	177	11																	
Mix 117: 50% Naphthalene/50% AN	3	77	93	79	82	1	74	23	125	137	126	129	0.5	18	13										
Mix 118: 50% Naphthalene/50% AP	4	77	90	78	81	0.6	97	4	242	254	246	247	0.7	35	3										
Mix 120: 50% Naphthalene/50% KBrO₃	2	77	90	79	81	2	62	1	242	254	246	247	0.7	35	3										
Mix 114: 50% Naphthalene/50% KClO₃	4	77	93	78	81	0.9	77	15	336	359	347	351	9	58	32										
Mix 122: 50% Naphthalene/50% K₂Cr₂O₇	3	76	93	79	81	0.7	31	15	388	403	393	396	2	71	22										
Mix 119: 50% Naphthalene/50% KIO₃	3	76	95	78	81	1	59	10	336	341	333	334	2	13	5										
Mix 116: 50% Naphthalene/50% KNO₃	3	78	97	79	81	0.2	131	24	128	139	128	131	2	6	5										
Mix 115: 50% Naphthalene/50% KClO₃	2	78	93	79	82	0.2	77	7	303	313	305	308	0.8	35	5										
Mix 113: 50% Naphthalene/50% KIO₃	2	76	92	78	81	1	65	1	336	341	333	334	2	13	5										
Mix 121: 50% Naphthalene/50% KMnO₄	3	76	90	78	80	0.7	92	11	242	254	246	247	0.7	35	3										
Table 18. Exotherms from Naphthalene mixtures

Sample	Start Exo (°C)	End Exo (°C)	Onset Temp (°C)	Exo Temp Max (°C)	Std Dev Exo Endo	Std Dev Temp Max	Additional Max & Shoulders (°C) seen in some traces	Heat Released (J/g)	Std Dev Heat Rel.	Start Exo (°C)	End Exo (°C)	Onset Temp (°C)	Exo Temp Max (°C)	Std Dev Exo Endo	Std Dev Temp Max	Additional Max & Shoulders (°C) seen in some traces	Heat Released (J/g)	Std Dev Heat Rel.		
Naphthalene																				
Mix 117: 50% Naphthalene/50% AN	279	343	305	328	4	317	829	525												
Mix 118: 50% Naphthalene/50% AP	356	490	435	470	21	347	358	463	477	1527	722									
Mix 120: 50% Naphthalene/50% KBrO₃	391	482	423	433	2	408	1779	596												
Mix 114: 50% Naphthalene/50% KClO₃	397	477	437	461	35	456	773	176												
Mix 122: 50% Naphthalene/50% K₂Cr₂O₇	3	no exotherms																		
Mix 119: 50% Naphthalene/50% KIO₃	3	no exotherms																		
Mix 116: 50% Naphthalene/50% KNO₃	3	no exotherms																		
Mix 115: 50% Naphthalene/50% KClO₃	2	no exotherms																		
Mix 131: 50% Naphthalene/50% KIO₃	255	391	292	317	1	759	6	404	450	421	432	0.6	83	12	450	x	x	481	19	off scale
Mix 121: 50% Naphthalene/50% KMnO₄	265	356	287	303	0.5	931	207													
Table 19. Endotherms from Pentaerythritol mixtures

Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
FOX (Fuel/Oxidizer) Mixtures, DSC & DIL runs.																				
Start	End	Cryst																		
Start	End	Cryst																		
Start	End	Cryst																		
Start	End	Cryst																		
Start	End	Cryst																		
Start	End	Cryst																		
Start	End	Cryst																		
Start	End	Cryst																		
Start	End	Cryst																		
Start	End	Cryst																		
Start	End	Cryst																		

- 1: Pentaerythritol
- 2: 5% Pentaerythritol
- 3: 10% Pentaerythritol
- 4: 15% Pentaerythritol
- 5: 20% Pentaerythritol
- 6: 25% Pentaerythritol
- 7: 30% Pentaerythritol
- 8: 35% Pentaerythritol
- 9: 40% Pentaerythritol
- 10: 45% Pentaerythritol
- 11: 50% Pentaerythritol
- 12: 55% Pentaerythritol
- 13: 60% Pentaerythritol
- 14: 65% Pentaerythritol
- 15: 70% Pentaerythritol
- 16: 75% Pentaerythritol
- 17: 80% Pentaerythritol
- 18: 85% Pentaerythritol
- 19: 90% Pentaerythritol
- 20: 95% Pentaerythritol

Notes:
- FOX: Fuel/Oxidizer
- DSC: Differential Scanning Calorimetry
- DIL: Differential Scanning Calorimetry
- Start: Start temperature of the endotherm
- End: End temperature of the endotherm
- Cryst: Crystal temperature of the endotherm
- Min: Minimum temperature of the endotherm
- Max: Maximum temperature of the endotherm
- Start time: Start time of the endotherm
- End time: End time of the endotherm
- Duration: Duration of the endotherm
- Energy: Energy released during the endotherm
- %: Percentage of the endotherm
- Std Dev: Standard deviation of the endotherm
- Additional: Additional information about the endotherm
- Shrinkage: Shrinkage during the endotherm
- heated at: Heated at a specific temperature
- at: At a specific temperature
- in: In a specific temperature
- same: Same as previous measurement
- DTA: Differential Thermal Analysis
- TGA: Thermogravimetric Analysis
- MS: Mass Spectrometry
- TEM: Transmission Electron Microscopy
- IR: Infrared Spectroscopy
- UV: Ultraviolet Spectroscopy
- HPLC: High-Performance Liquid Chromatography
- GC: Gas Chromatography
- MS/MS: Mass Spectrometry/Mass Spectrometry
Table 20. Exotherms from Penterythritol mixtures

Sample	FOX (fuel/oxidizer) Mixtures, DSC & SDT runs.	Start Exo (°C)	End Exo (°C)	Onset Temp (°C)	Exo Temp Max. (°C)	Std Dev Endo Temp Max	Additional Max & Shoulders (°C) seen in some traces	Std Dev Heat Rel.	Start Exo (°C)	End Exo (°C)	Onset Temp (°C)	Exo Temp Max. (°C)	Std Dev Endo Temp Max	Additional Max & Shoulders (°C) seen in some traces	Heat Released (J/g)	
Pentaerythritol	3 no exotherms	242	332	263	267	2	343	2118	475							
Pentaerythritol SDT	3 no exotherms	4	211	299	223	246	10	224, 269	1427	78						
Mix 33: 50% Pentaerythritol/50% AN	2	210	338	211	236	6	805	240	368	450	377	379	0.6	361	82	
Mix 93: 50% Pentaerythritol/50% KBrO₃	7	209	303	251	267	21	238, 273	290	2058	892						
Mix 93: 50% Pentaerythritol/50% KBrO₃ SDT	4	221	377	278	297	62	248, 435	963	879	545	623	559	600	19	84	83
Mix 31: 50% Pentaerythritol/50% KClO₃	4	383	411	385	390	26	129	87								
Mix 31: 50% Pentaerythritol/50% KClO₃ SDT	3	333	392	350	386	2	308	500	378	406	308	500	378	406	274	
Mix 97: 50% Pentaerythritol/50% K₂Cr₂O₇	7	420	492	450	469	438, 442, 460	1638	229								
Mix 32: 50% Pentaerythritol/50% KNO₃	3	351	527	419	454	8	111	21	817	860	818	836	10	199	138	
Table 21. Endotherms from Sucrose mixtures

Sample	#	Start Ext.	End Ext.	Start Ext.	End Ext.	Start Ext.	End Ext.	Additional Heat & Shoulders	Heat max.	Std Dev.	Start Ext.	End Ext.	Start Ext.	End Ext.	Additional Heat & Shoulders	Heat max.	Std Dev.	Start Ext.	End Ext.	Start Ext.	End Ext.	Additional Heat & Shoulders	Heat max.	Std Dev.
(Fast/cool/rise) Mixtures, OSC & SRT runs.																								
Sucrose (glucose + fructose)	4	189 202 177 185 7	186 185 125 19	224 252 224 238 2	16 8																			
Sucrose (glucose + fructose)	3	183 326 185 191 1	190 191 125 19	224 252 224 238 2	16 8																			
Sucrose (glucose + fructose)	5	148 172 152 164 5	148 164 125 19	242 257 244 245 1	21 13																			
Sucrose (glucose + fructose)	2	181 303 185 191 0	285 295 125 19	345 398 349 349 3	29 44																			
KI@O2	6	161 179 162 173 6	162 173 125 19	323 360 329 329 3	29 44																			
KI@O2	5	177 198 177 191 1	182 191 125 19	375 406 375 375 3	32 26																			
KI@O2	4	104 147 104 147 0	104 147 125 19	275 323 275 275 2	16 8																			
KI@O2	3	176 184 176 181 0	176 181 125 19	363 393 363 363 3	21 4																			
KI@O2	2	172 179 173 173 0	172 173 125 19	366 393 366 366 3	21 4																			
KI@O2	1	172 179 173 173 0	172 173 125 19	366 393 366 366 3	21 4																			
KI@O2	0	167 186 172 183 4	167 183 125 19	358 378 358 358 3	16 8																			
KI@O2	9	52 61 54 55 1	52 61 125 19	177 202 177 177 1	22 14																			
KI@O2	8	122 151 123 126 6	122 126 125 19	285 309 285 285 2	16 8																			
KI@O2	7	244 250 245 245 2	244 245 125 19	356 382 356 356 3	21 4																			
KI@O2	6	152 201 177 212 0	152 212 125 19	318 373 318 318 3	21 4																			
KI@O2	5	181 204 177 214 1	181 214 125 19	368 392 368 368 3	21 4																			
KI@O2	4	181 204 177 214 1	181 214 125 19	368 392 368 368 3	21 4																			
KI@O2	3	181 204 177 214 1	181 214 125 19	368 392 368 368 3	21 4																			
KI@O2	2	181 204 177 214 1	181 214 125 19	368 392 368 368 3	21 4																			
KI@O2	1	104 141 104 147 0	104 147 125 19	375 406 375 375 3	32 26																			
KI@O2	0	202 250 203 246 2	202 246 125 19	348 382 348 348 3	21 4																			

211
Table 22. Exotherms from Sucrose mixtures

Samples	Exotherm 1 (°C)	Exotherm 2 (°C)	Exotherm 3 (°C)	Exotherm 4 (°C)	Exotherm 5 (°C)	Exotherm 6 (°C)	Exotherm 7 (°C)	Exotherm 8 (°C)	Exotherm 9 (°C)	Exotherm 10 (°C)	Exotherm 11 (°C)	Exotherm 12 (°C)
Sucrose (glucose + fructose)	201	292	201	292	201	292	201	292	201	292	201	292
KSO	201	292	201	292	201	292	201	292	201	292	201	292
KSB	201	292	201	292	201	292	201	292	201	292	201	292
KS	201	292	201	292	201	292	201	292	201	292	201	292
K	201	292	201	292	201	292	201	292	201	292	201	292
KSO	201	292	201	292	201	292	201	292	201	292	201	292
KSB	201	292	201	292	201	292	201	292	201	292	201	292
KS	201	292	201	292	201	292	201	292	201	292	201	292
K	201	292	201	292	201	292	201	292	201	292	201	292

212
Table 23. Endotherms from Sulfur mixtures

Sample	#	Start (°C)	End (°C)	Offset Temp (°C)	Net DTA Ends (°C)	Net DTA Ends (°C) seen in same traces	Additional Max & Shoulders (%) seen in same traces	Heat Abs (%)	Start (°C)	End (°C)	Offset Temp (°C)	Net DTA Ends (°C)	Net DTA Ends (°C) seen in same traces	Additional Max & Shoulders (%) seen in same traces	Heat Abs (%)	Start (°C)	End (°C)	Offset Temp (°C)	Net DTA Ends (°C)	Net DTA Ends (°C) seen in same traces	Additional Max & Shoulders (%) seen in same traces	Heat Abs (%)	Start (°C)	End (°C)
Table 24. Exotherms from Sulfur mixtures

Sample	#	Start Exo (°C)	End Exo (°C)	Onset Temp (°C)	Exo Temp Max (°C)	Std Dev Endo Temp Max	Additional Max & Shoulders (°C) seen in some traces	Heat Released (J/g)	Std Dev Heat Rel.
Sulfur	4	no exotherms							
Sulfur SDT	3	no exotherms							
Sulfur SDT in air	3	217	455	341	392	8		6393	357
Mix 39: 50% Sulfur/ 50% AN	3	172	243	204	213	10	198, 232	2328	438
Mix 85: 50% Sulfur/ 50% AP SDT	3	391	434	416	422	5	389, 408	1747	896
Mix 90: 50% Sulfur/ 50% KBrO₃	2	298	509	413	444	3	347	817	69
Mix 38: 50% Sulfur/ 50% KClO₃	4	193	382	213	320	15		815	150
Mix 88: 50% Sulfur/ 50% KIO₃	3	241	411	308	330	0.6	301, 358	526	125
Mix 88: 50% Sulfur/ 50% KIO₃ SDT	3	169	418	324	350	22	259, 354, 409	2299	280
Mix 40: 50% Sulfur/ 50% KNO₃	6	294	438	324	336	12	305, 337, 354, 370	1054	258
Mix 87: 50% Sulfur/ 50% KNO₂	3	189	430	255	300	13	248, 368	2094	199
Mix 87: 50% Sulfur/ 50% KNO₂ SDT	1	251	362	269	272				
Mix 84: 50% Sulfur/ 50% KClO₄	3	428	482	458	468	8	456	1612	279
Mix 84: 50% Sulfur/ 50% KClO₄ SDT	3	556	652	577	596	3		157	5.9
Mix 89: 50% Sulfur/ 50% KIO₄	4	182	376	242	300	6	264, 281, 301, 366	2353	571
Mix 89: 50% Sulfur/ 50% KIO₄ SDT	3	212	386	294	304	9	269, 300	1246	82
Mix 86: 50% Sulfur/ 50% KMnO₄	3	189	397	298	309	0.3	332	2360	251
Mix 86: 50% Sulfur/ 50% KMnO₄ SDT	3	252	401	293	315	0.6	304	696	79
Table 25. Endotherms for Aluminum mixtures

Sample	Start Endo	Endo	Onset Temp	Start Dev	Endo Dev	Temp Min	Min	Std Dev	Heat Abs.	Std Dev	Heat Rel.
20% Aluminum/ 80% KBrO₃	4	no endotherms									
20% Aluminum/ 80% KClO₃	3	341	351	357	1	340	96	26			
20% Aluminum/ 80% KNO₃	2	no endotherms									
20% Aluminum/ 80% KNO₃	3	126	137	130	2	35	10	323	339	325	331
20% Aluminum/ 80% AP	4	246	256	247	2	5	2				
20% Aluminum/ 80% AN	2	no endotherms									

Table 26. Exotherms for Aluminum mixtures

Sample	Start Exo	End Exo	Onset Temp	Start Dev	Endo Dev	Temp Max	Max	Std Dev	Additional Max & Shoulders	Heat Released	Std Dev	Heat Rel.
20% Aluminum/ 80% KBrO₃	4	419	452	421	430	7			no exotherms	149	90	
20% Aluminum/ 80% KClO₃	3	no exotherms										
20% Aluminum/ 80% KNO₃	2	339	362	347	356	1			no exotherms	76	7	
20% Aluminum/ 80% AN	3	no exotherms										
20% Aluminum/ 80% AP	4	435	489	439	479	17				1051	# #	
20% Aluminum/ 80% AN	2	291	357	320	331	6				825	922	
Appendix III: Summary of Averaged DSC & SDT Data from the Insensitive Munitions Project

Table 1. Endotherms

Sample	Sample	Start Endo (°C)	Endo Endo (°C)	Onset Temp Min. (°C)	Stdev min	Heat Absorbed (J/g)	Stdev heat abs	Start Endo (°C)	Endo Endo (°C)	Onset Temp Min. (°C)	Stdev min	Heat Absorbed (J/g)	Stdev heat abs			
2,4-dinitroanisole (DNAN) avg		4	91	108	93	96	0.8	91	23							
2,4-dinitrotoluene avg		6	68	85	70	74	2	77	36							
2,4,6-trinitrotoluene (TNT) avg		4	75	92	76	79	0.7	121	16							
Nitroguanidine (NQ) avg		5	234	242	239	241	6	14	23							
Solvent recrystallized NQ (NQR) avg		3	238	244	241	243	2	25	38							
3-nitro-1,2,4-triazol-5-one (NTO) avg		4				no endotherms										
3-nitro-1,2,4-triazol-5-one (NTO) (Devon) avg		3				no endotherms										
50% DNAN/50% NTO avg		3	91	106	92	94	0.3	50	5							
80%DNAN/20%NTO (Mix3) avg		2	89	107	90	93	0.9	87	4							
50% DNT/50% NTO avg		4	66	83	67	69	0.7	61	25							
80%DNT/20%NTO (Mix4) avg		3	64	91	68	73	0.2	73	4							
50%DNAN/50%NQ (I4) avg		3	89	109	92	95	0.4	64	231	248	239	243	0.4	79	10	
50%DNT/50%NQ (I5) avg		4	64	83	67	69	1	71	21	236	248	242	246	0.4	70	26
50% NTO/50% NQ avg		3	219	228	225	227	3	36	14							
43%DNAN/37%NQ/20%NTO (I1) avg		#	88	106	90	93	2	50	11	199	219	209	213	3	37	15
43%DNAN/37%NQ/20%NTO (I1) avg w/out earlier mix		9	89	104	91	93	2	54	9	199	219	209	213	3	37	15
43%DNT/37%NQ/20%NTO (I2) avg		7	63	83	66	70	2	54	11	202	218	207	213	6	39	18
43%DNT/37%NQ/20%NTO (I2) avg w/out earlier mix		4	66	83	68	70	1	59	6	205	222	213	218	3	45	19
28%TNT/47%NQ/25%NTO (I3) avg		3	76	89	77	80	0.9	46	7	211	224	217	220	2	56	6
44% TNT/37% NQ/19%NTO (I3a) avg		4	75	89	76	78	1	45	10	204	220	209	214	7	61	13
Table 2. Exotherms

Sample	#	Start Exo (°C)	End Exo (°C)	onset Temp (°C)	Stddev Max	Start Exo (°C)	End Exo (°C)	onsent Temp (°C)	Stddev Max	Start Exo (°C)	End Exo (°C)	onsent Temp (°C)	Stddev Max	Start Exo (°C)	End Exo (°C)	onsent Temp (°C)	Stddev Max	Start Exo (°C)	End Exo (°C)	onsent Temp (°C)	Stddev Max	Start Exo (°C)	End Exo (°C)	onsent Temp (°C)	Stddev Max	Start Exo (°C)	End Exo (°C)	onsent Temp (°C)	Stddev Max	Start Exo (°C)	End Exo (°C)	onsent Temp (°C)	Stddev Max	Start Exo (°C)	End Exo (°C)	onsent Temp (°C)	Stddev Max	Start Exo (°C)	End Exo (°C)	onsent Temp (°C)	Stddev Max	Start Exo (°C)	End Exo (°C)	onsent Temp (°C)	Stddev Max	Start Exo (°C)	End Exo (°C)	onsent Temp (°C)	Stddev Max	Start Exo (°C)	End Exo (°C)	onsent Temp (°C)	Stddev Max	Start Exo (°C)	End Exo (°C)	onsent Temp (°C)	Stddev Max																																																																																																																																																																																
2,4-dinitromuslole (DNAN) avg	4	331	415	367	380	0.9	2040	759	2,4-dinitrotoluene avg	6	316	407	342	350	4	414	2107	758	2,4,6-trinitrotoluene (TNT) avg	4	292	398	325	331	3	390	4798	963	nitroguanidine (NQ) avg	5	242	279	243	247	6	725	92	Solvent recrystallized NQ (NQR) avg	3	244	271	244	248	3	1174	410	3-nitro-1,2,4-triazol-5-one (NTO) avg	4	248	290	271	272	0.7	1914	459	3-nitro-1,2,4-triazol-5-one (NTO) (Devon) avg	3	257	292	275	277	0.1	2448	147	50% DNAN/50% NTO avg	5	323	359	254	262	0.1	304	2925	89	80%DNAN/20%NTO (Mix3) avg	2	145	213	151	182	0.7	157	234	21	219	266	226	242	0.4	103	41	277	413	312	342	2	2274	80	50% DNT/50% NTO avg	4	242	368	260	266	1	330	2652	173	80%DNT/20%NTO (Mix4) avg	3	231	294	244	258	2	251	37	297	447	324	345	1	419	1520	184	50%DNAN/50%NQ (14) avg	3	248	396	249	292	20	269	356	2300	185	50%DNT/50%NQ (15) avg	4	248	360	250	264	4	1927	490	50% NTO/50% NQ avg	3	228	358	231	241	7	245	1951	385	43%DNAN/37%NQ/20%NTO (11) avg	12	141	190	151	166	8	80	53	213	394	223	243	3	300	355	379	2486	755	43%DNAN/37%NQ/20%NTO (11) avg w/out earlier mix	9	219	393	226	243	3	300	355	379	2877	261	43%DNAN/37%NQ/20%NTO (12) avg	7	157	198	160	181	1	39	8	218	339	236	254	7	236, 266, 306	1744	472	43%DNAN/37%NQ/20%NTO (12) avg w/out earlier mix	4	222	345	233	253	10	236, 274, 306	2072	233	28%TNT/47%NQ/25%NTO (13) avg	3	224	352	234	244	3	264, 351	2916	527	44% TNT/37% NQ/19%NTO (13e) avg	4	212	342	226	240	3	261, 342	2544	612
Appendix IV: Data from the Insensitive Munitions Project Isothermal Studies

Table 1. Averaged isothermal data for neat DNAN

Incubation time	Fraction Remaining	St. Dev.	Ln Fraction Remaining	St. Dev.	
180°C					
Room Temp	0	0.97	0.02	-0.026	0.02
5 days	4200	0.92	0.1	-0.084	1.1
6 days	51800	0.99	0.07	-0.0099	0.07
7 days	60400	0.89	0.2	-0.11	6.2
8 days	69100	0.87	0.2	-0.14	6.2
9 days	77700	0.865	0.09	-0.15	0.1
10 days	86400	0.95	0.05	-0.055	0.05
11 days	95400	0.94	0.02	-0.078	0.2
12 days	1036800	0.94	0.007	-0.058	0.007
200°C					
Room Temp	0	1.00	0.06	0.0017	0.06
1 day	86400	0.92	0.03	-0.085	0.04
2d 3h 40min	166000	0.91	0.005	-0.091	0.006
3 days	239000	0.87	0.03	-0.14	0.04
4 days	345000	0.82	0.02	-0.20	0.02
5 days	432000	0.51	0.1	-0.66	0.3
5d 4h	446000	0.46	0.2	-0.77	0.5
5d 8h	460800	0.35	0.2	-1.0	0.6
5d 12h	475200	0.25	0.2	-1.4	0.6
240°C					
Room Temp	0	0.99	0.05	-0.0081	0.05
15 min	900	0.98	0.07	-0.024	0.07
30 min	1800	0.98	0.03	-0.020	0.03
45 min	2700	0.93	0.2	-0.072	0.2
60 min	3600	0.92	0.1	-0.079	0.2
120 min	7200	0.92	0.009	-0.087	0.009
180 min	10800	0.90	0.009	-0.10	0.01
240 min	144000	0.77	0.3	-0.27	0.41
300 min	18000	0.86	0.03	-0.15	0.03
360 min	21600	0.82	0.04	-0.20	0.05
420 min	25200	0.81	0.02	-0.21	0.02
480 min	28800	0.71	0.06	-0.35	0.09
540 min	32400	0.66	0.08	-0.41	0.1
600 min	36000	0.58	0.1	-0.54	0.2
660 min	39600	0.56	0.1	-0.58	0.3
720 min	43200	0.56	0.4	-2.8	0.6
250°C					
Room Temp	0	0.96	0.02	-0.046	0.02
15 min	900	0.95	0.05	-0.054	0.05
30 min	1800	0.93	0.04	-0.070	0.04
45 min	2700	0.93	0.05	-0.069	0.05
60 min	3600	0.91	0.07	-0.10	0.07
270°C					
Room Temp	0	1.03	0.07	0.029	0.07
15 min	900	1.1	0.04	0.0018	0.04
30 min	1800	1.02	0.06	0.022	0.06
45 min	2700	0.96	0.03	-0.043	0.03
60 min	3600	0.94	0.05	-0.058	0.05
280°C					
Room Temp	0	1.02	0.2	0.018	0.2
15 min	900	0.99	0.07	-0.0095	0.07
30 min	1800	0.89	0.2	-0.11	0.2
45 min	2700	0.82	0.3	-0.20	0.3
60 min	3600	0.75	0.2	-0.28	0.2
75 min	4500	0.66	0.08	-0.41	0.1
90 min	4800	0.57	0.09	-0.57	0.2
90 min	5400	0.50	0.08	-0.69	0.2
95 min	5700	0.20	0.06	-1.6	0.3
105 min	63300	0.38	0.05	-0.97	0.1
110 min	66000	0.053	0.07	-2.9	1.0
300°C					
Room Temp	0	1.03	0.07	0.029	0.07
15 min	900	0.97	0.05	-0.030	0.06
30 min	1800	0.74	0.01	-0.30	0.01
45 min	2700	0.22	0.1	-1.52	0.5
Table 2. Averaged isothermal data for neat DNT

Incubation time	Time (s)	180°C			200°C			240°C			250°C			270°C			280°C			300°C					
Room Temp	Fraction Remaining (%)	St. Dev.	Ln Fraction Remaining (%)	St. Dev.	Fraction Remaining (%)	St. Dev.	Ln Fraction Remaining (%)	St. Dev.	Fraction Remaining (%)	St. Dev.	Ln Fraction Remaining (%)	St. Dev.	Fraction Remaining (%)	St. Dev.	Ln Fraction Remaining (%)	St. Dev.	Fraction Remaining (%)	St. Dev.	Ln Fraction Remaining (%)	St. Dev.	Fraction Remaining (%)	St. Dev.	Ln Fraction Remaining (%)	St. Dev.	
0.00	0.99	0.02	-0.0080	0.02	0.99	0.02	-0.0080	0.02	0.99	0.02	-0.0080	0.02	0.99	0.02	-0.0080	0.02	0.99	0.02	-0.0080	0.02	0.99	0.02	-0.0080	0.02	
5 days	432000	0.98	0.03	-0.016	0.03	0.98	0.03	-0.016	0.03	0.98	0.03	-0.016	0.03	0.98	0.03	-0.016	0.03	0.98	0.03	-0.016	0.03	0.98	0.03	-0.016	0.03
7 days	604800	0.94	0.02	-0.062	0.02	0.94	0.02	-0.062	0.02	0.94	0.02	-0.062	0.02	0.94	0.02	-0.062	0.02	0.94	0.02	-0.062	0.02	0.94	0.02	-0.062	0.02
8 days	691200	0.93	0.01	-0.075	0.01	0.93	0.01	-0.075	0.01	0.93	0.01	-0.075	0.01	0.93	0.01	-0.075	0.01	0.93	0.01	-0.075	0.01	0.93	0.01	-0.075	0.01
9 days	777600	0.87	0.1	-0.14	0.1	0.87	0.1	-0.14	0.1	0.87	0.1	-0.14	0.1	0.87	0.1	-0.14	0.1	0.87	0.1	-0.14	0.1	0.87	0.1	-0.14	0.1
10 days	854400	0.62	0.2	-0.48	0.3	0.62	0.2	-0.48	0.3	0.62	0.2	-0.48	0.3	0.62	0.2	-0.48	0.3	0.62	0.2	-0.48	0.3	0.62	0.2	-0.48	0.3
11 days	950400	0.47	0.3	-0.76	0.7	0.47	0.3	-0.76	0.7	0.47	0.3	-0.76	0.7	0.47	0.3	-0.76	0.7	0.47	0.3	-0.76	0.7	0.47	0.3	-0.76	0.7
12 days	1036800	0.38	0.03	-0.98	0.2	0.38	0.03	-0.98	0.2	0.38	0.03	-0.98	0.2	0.38	0.03	-0.98	0.2	0.38	0.03	-0.98	0.2	0.38	0.03	-0.98	0.2

- 180°C
- 200°C
- 240°C
- 250°C
- 270°C
- 280°C
- 300°C
Table 3. Averaged isothermal data for neat TNT

Incubation time	Time (s)	Fraction Remaining	St. Dev.	Ln Fraction Remaining	St. Dev.
200°C					
Room Temp	0	1.00	0.02	-0.00040	0.02
10 min	600	1.00	0.01	-0.0026	0.01
15 min	900	0.98	0.03	-0.020	0.03
25 min	1500	0.92	0.03	-0.078	0.04
30 min	1800	0.94	0.1	-0.065	0.1
45 min	2700	0.93	0.08	-0.077	0.09
60 min	3600	0.97	0.05	-0.035	0.05
270 °C					
Room Temp	0	0.99	0.02	-0.013	0.02
15 min	900	0.57	0.2	-0.57	0.3
30 min	1800	0.065	0.1	-2.7	2
280°C					
Room Temp	0	1.01	0.02	0.010	0.02
5 min	300	0.77	0.1	-0.27	0.2
10 min	600	0.54	0.07	-0.61	0.1
15 min	900	0.19	0.2	-1.7	1
17 min	1020	0.08	0.2	-2.5	2
20 min	1200	0.027	0.06	-3.6	2
25 min	1500	0.01	0.001	-4.6	0.1
30 min	1800	0.00	0.0008	-5.8	0.2
Table 4. Averaged isothermal data for the DNAN two-part mixes

Incubation time	Time (s)	DNAN Fraction Remaining	St. Dev.	DNAN Ln Fraction Remaining	St. Dev.	NQ Fraction Remaining (approx)	NQ Ln Fraction Remaining
200°C 50:50 DNAN:NQ							
Room Temp	0	0.98	0.1	-0.024	0.1	1	0
10 min	600	0.91	0.1	-0.090	0.1	0.9	-0.11
15 min	900	0.79	0.1	-0.24	0.1	0.9	-0.11
25 min	1500	0.68	0.2	-0.39	0.3	0.6	-0.51
30 min	1800	0.46	0.1	-0.78	0.3	0.5	-0.69
45 min	2700	0.30	0.2	-1.2	0.6	0.3	-1.2
60 min	3600	0.23	0.2	-1.5	0.7	0.3	-1.2
200°C 50:50 DNAN:NTO							
Room Temp	0	0.95	0.2	-0.051	0.2	1	0
15 min	900	0.94	0.1	-0.067	0.1	1	0
30 min	1800	0.99	0.06	-0.0058	0.06	0.7	-0.36
45 min	2700	1.05	0.09	0.046	2	0.7	-0.36
60 min	3600	0.88	0.2	-0.12	0.2	0.7	-0.36
75 min	4500	0.72	0.2	-0.32	0.2	0.6	-0.51
90 min	5400	0.48	0.2	-0.74	0.3	0.2	-1.6
105 min	6300	0.32	0.2	-1.1	0.6	0.1	-2.3
2 hr	7200	0.16	0.1	-1.8	0.7	0.07	-2.7
200°C 80:20 DNAN:NTO							
Room Temp	0	0.95	0.07	-0.046	0.08	1	0
15 min	900	0.94	0.04	-0.065	0.04	0.8	-0.2
30 min	1800	0.88	0.2	-0.13	0.2	0.5	-0.7
60 min	3600	0.88	0.09	-0.13	0.1	0.5	-0.7
4 hr	14400	0.51	0.1	-0.67	0.3		
6 hr	21600	0.32	0.2	-1.1	0.7		
8 hr	28800	0.37	0.3	-1.0	0.7		
Table 5. Averaged isothermal data for the DNT two-part mixes

Incubation time	Time (s)	DNT Fraction Remaining	St. Dev.	DNT Ln Fraction Remaining	St. Dev.	NQ Fraction Remaining (approx)	NQ Ln Fraction Remaining
Room Temp	0	0.96	0.2	-0.045	0.2	1	0
10 min	600	0.93	0.2	-0.076	0.3	1	0
15 min	900	0.78	0.1	-0.25	0.1	1	0
25 min	1500	0.71	0.3	-0.34	0.5	0.6	-0.51
30 min	1800	0.51	0.3	-0.67	0.5	0.5	-0.69
45 min	2700	0.36	0.3	-1.0	0.9	0.2	-1.6
60 min	3600	0.19	0.3	-1.7	2	0.1	-2.3

Incubation time	Time (s)	DNT Fraction Remaining	St. Dev.	DNT Ln Fraction Remaining	St. Dev.	NTO Fraction Remaining (approx)	NTO Ln Fraction Remaining
Room Temp	0	1.13	0.2	0.12	0.2	1	0
15 min	900	1.04	0.08	0.039	0.08	1	0
30 min	1800	1.05	0.3	0.051	0.2	1	0
45 min	2700	1.10	0.1	0.096	0.1	0.9	-0.11
60 min	3600	1.00	0.2	-0.00030	0.2	1	0
4 hr	14400	0.78	0.4	-0.24	0.5	0.4	-0.92
8 hr	28800	0.72	0.1	-0.33	0.2	0.1	-2.3
16h 20m	58800	0.62	0.06	-0.48	0.1	0.008	-4.8
20 hr	72000	0.42	0.2	-0.86	0.4		
1d 4h	100800	0.25	0.1	-1.4	0.4		
1d 6h	108000	0.17	0.1	-1.8	0.7		
1d 12h 5m	129900	0.14	0.06	-2.0	0.5		
2d 30m	174600	0.051	0.05	-3.0	1		

Incubation time	Time (s)	DNT Fraction Remaining	St. Dev.	DNT Ln Fraction Remaining	St. Dev.	NTO Fraction Remaining (approx)	NTO Ln Fraction Remaining
Room Temp	0	1.04	0.06	0.043	0.06	1	0
15 min	900	1.06	0.06	0.059	0.06	0.9	-0.11
30 min	1800	1.04	0.1	0.035	0.1	0.5	-0.69
60 min	3600	1.02	0.1	0.022	0.1	0.3	-1.2
1 d	86400	0.67	0.2	-0.40	0.3		
1d 6h	115200	0.38	0.2	-0.96	0.5		
2 d	172800	0.47	0.3	-0.75	0.6		
2d 8h	201600	0.18	0.04	-1.7	0.3		
3 d	259200	0.20	0.1	-1.6	0.6		
4 d	345600	0.07	0.05	-2.7	0.7		
Table 6. Averaged isothermal data for the DNAN & DNT three-part mixes

Incubation Temp	Time (s)	DNAN Fraction Remaining	St. Dev.	DNAN Ln Fraction Remaining	St. Dev.	NTO Fraction Remaining (approx)	NTO Ln Fraction Remaining	NQ Fraction Remaining (approx)	NQ Ln Fraction Remaining
Room Temp 0	1.02	0.2	0.023	0.2	1.0	0.04	0.09	1.0	0.0
15 min 900	0.96	0.1	-0.037	0.1	1.0	0.04	0.09	1.0	0.0
30 min 1600	0.73	0.2	-0.32	0.2	0.7	-0.36	1.0	0.0	0.0
45 min 2700	0.71	0.2	-0.35	0.2	0.3	-1.2	0.9	-0.11	0.0
60 min 3600	0.57	0.2	-0.55	0.3	0.1	-2.3	0.8	-0.22	0.0
75 min 4500	0.64	0.2	-0.45	0.1	0.06	-2.8	0.7	-0.36	0.0
90 min 5400	0.45	0.2	-0.80	0.4	0.07	-2.7	0.6	-0.51	0.0

Incubation Temp	Time (s)	DNT Fraction Remaining	St. Dev.	DNT Ln Fraction Remaining	St. Dev.	NTO Fraction Remaining (approx)	NTO Ln Fraction Remaining	NQ Fraction Remaining (approx)	NQ Ln Fraction Remaining
Room Temp 0	1.03	0.2	0.033	0.2	1.0	1.0	1.0	1.0	1.0
15 min 900	0.95	0.1	-0.052	0.1	1.0	0.0	0.0	0.0	0.0
30 min 1800	0.87	0.2	-0.14	0.2	0.9	-0.11	0.9	-0.11	0.0
45 min 2700	0.02	0.1	-0.20	0.2	0.8	-0.22	0.8	-0.22	0.0
60 min 3600	0.82	0.1	-0.20	0.2	0.5	-0.69	0.8	-0.22	0.0
75 min 4500	0.84	0.1	-0.18	0.2	0.3	-1.2	0.7	-0.36	0.0
90 min 5400	0.77	0.3	-0.26	0.4	0.3	-1.2	0.6	-0.51	0.0
120 min 7200	0.71	0.3	-0.35	0.2	0.2	-1.6	0.5	-0.69	0.0
150 min 8100	0.58	0.3	-0.55	0.5	0.1	-2.3	0.3	-1.2	0.0
180 min 9000	0.63	0.2	-0.45	0.4	0.1	-2.3	0.2	-1.6	0.0

Incubation Temp	Time (s)	NTO Fraction Remaining (approx)	NTO Ln Fraction Remaining	NQ Fraction Remaining (approx)	NQ Ln Fraction Remaining
Room Temp 0	1.0	1.0	1.0	1.0	1.0
15 min 900	0.8	0.8	0.8	0.8	0.8
30 min 1800	0.6	0.6	0.6	0.6	0.6
45 min 2700	0.3	0.3	0.3	0.3	0.3
60 min 3600	0.5	0.5	0.5	0.5	0.5
75 min 4500	0.4	0.4	0.4	0.4	0.4
90 min 5400	0.3	0.3	0.3	0.3	0.3
120 min 7200	0.3	0.3	0.3	0.3	0.3
150 min 8100	0.2	0.2	0.2	0.2	0.2
180 min 9000	0.1	0.1	0.1	0.1	0.1

223
Figure 1. Time vs. ln fraction remaining for DNAN & DNT at 300°C

Figure 2. Time vs. ln fraction remaining for DNAN & DNT at 280°C

Figure 3. Time vs. ln fraction remaining for DNAN & DNT at 270°C

Figure 4. Time vs. ln fraction remaining for DNAN & DNT at 250°C
Figure 5. Time vs. ln fraction remaining for DNAN & DNT at 240°C

Figure 6. Time vs. ln fraction remaining for DNAN & DNT at 200°C

Figure 7. Time vs. ln fraction remaining for DNAN & DNT at 180°C

Figure 8. Time vs. ln fraction remaining for TNT at 280°C
Figure 9. Time vs. In fraction remaining for TNT at 200°C

Figure 10. Time vs. In fraction remaining for DNAN & DNT in the 3-part mix at 200°C

Figure 11. Time vs. In fraction remaining for NTO in the DNAN or DNT 3-part mix at 200°C

Figure 12. Time vs. In fraction remaining for NQ in the DNAN or DNT 3-part mix at 200°C
Figure 13. Time vs. In fraction remaining for DNT, NTO, & NQ in the 3-part mix at 180°C

Figure 14. Time vs. In fraction remaining for DNAN, NTO, & NQ in the 3-part mix at 180°C

Figure 15. Time vs. In fraction remaining for DNAN or DNT with 20% NTO at 200°C

Figure 16. Time vs. In fraction remaining for 20% NTO with DNAN or DNT at 200°C
Figure 17. Time vs. In fraction remaining for DNAN or DNT with 50% NTO at 200°C

Figure 18. Time vs. In fraction remaining for 50% NTO with DNAN or DNT at 200°C

Figure 19. Time vs. In fraction remaining for DNAN or DNT with 50% NQ at 200°C

Figure 20. Time vs. In fraction remaining for 50% NQ with DNAN or DNT at 200°C
Table 7. Data for the calculation of activation energy for neat DNAN & DNT

°C	DNAN	DNT	TNT	T (K)	1/T(K)	ln (k)
180	4.0E-08	8.7E-07	--	453	0.00221	-17.04
200	2.4E-06	7.6E-06	1.6E-05	473	0.00211	-12.94
240	1.3E-05	1.2E-04	--	513	0.00195	-11.25
250	1.3E-05	4.7E-05	--	523	0.00191	-11.27
270	2.4E-05	4.3E-04	--	543	0.00184	-10.63
280	3.0E-04	1.1E-03	3.5E-03	553	0.00181	-9.13
300	5.4E-04	2.0E-03	--	573	0.00175	-7.53

Figure 21. Graph of the Natural Log of the Rate Constants vs. Inverse Temperature for neat DNAN & DNT

Table 8. Calculation of activation energy for neat DNAN & DNT

ln k vs 1/T	Ea = -R* slope
DNAN	
18128 x 1.98	35893.44 36 kcal/mol
18128 x 8.314	150716.192 151 J/mol
DNT	
16274 x 1.98	32222.52 32 kcal/mol
16274 x 8.314	135302.036 135 J/mol