Insights into non-projectivity in Hindi

Prashanth Mannem, Himani Chaudhry and Akshar Bharati

LTRC, IIIT
Hyderabad, India 50032
{prashanth,himani}@research.iiit.ac.in

Aug 4, 2009
Outline

1. Introduction
 HyDT

2. Non-projectivity
 Non-projectivity in HyDT
 Non-projectivity Analysis

3. Graph properties
 HyDT’s graph properties

4. Linguistic Analysis
 Classes

5. Summary
Introduction

- Hindi is a verb final, flexible word order language
 - raama baazaara gayaa thaa
 - *Ram market go.PAST be.PAST*
 - baazaara gayaa thaa raama
 - raama gayaa thaa baazaara
 - baazaara raama gayaa thaa

- Hyderabad Dependency Treebank (HyDT) for Hindi
Introduction

- Hindi is a verb final, flexible word order language
 - raama baazaara gayaa thaa
 - Ram market go.PAST be.PAST
 - baazaara gayaa thaa raama
 - raama gayaa thaa baazaara
 - baazaara raama gayaa thaa

- Hyderabad Dependency Treebank (HyDT) for Hindi
HyDT - Hyderabad Dependency Treebank

- Paninian Grammar
 - Syntactic cues help in determining the type of relation
- Sentences annotated with
 - POS tags
 - Minimal constituents (chunks) and their heads
 - Relations between chunks (inter-chunk)
 - Intra-chunk dependencies left unspecified
 - *Trees can be expanded if needed*
Example

▶ meraa baDaa bhaaii bahuta phala khaataa hai
 my big brother lots-of fruits eat PRES.

▶ ((meraa baDaa bhaaii))_{NP} ((bahuta phala))_{NP} ((khaataa hai))_{VG}

▶ ((meraa_PRP baDaa_JJ bhaaii_NN))_{NP} ((bahuta_QF phala_NN))_{NP} ((khaataa_VM hai_VAUX))_{VG}

P. Mannem, H. Chaudhry and A. Bharati IIIT, Hyderabad

Insights into non-projectivity in Hindi
A dependency grammar based approach
Inspired by inflectionally rich language (Sanskrit)
Better suited for handling Indian Languages
Provides syntactico-semantic analysis of language
Various linguistic phenomena handled seamlessly
The grammar facilitates analysis of the intended meaning as an ‘expression’ of what the speaker wants to communicate (*vivaksha*) (Bharati et al., 1995)
Dependency relations

- *karaka* relations: Direct participants (*karaka*) of the action denoted by the verb
 - 6 basic karakas: *karta* (subject/agent/doer), *karma* (object/patient), *karana* (instrument), *sampradaan* (beneficiary), *apaadaan* (source), *adhikarana* (location in place/time/other)

- Other than *karaka* relations: purpose, genitive, reason etc...

- Relations which are not strictly 'dependency relation’ but are used to represent 'co-ordination’ and ‘complex predicates’

- 40 labels in all
Outline

1 Introduction
 HyDT

2 Non-projectivity
 Non-projectivity in HyDT
 Non-projectivity Analysis

3 Graph properties
 HyDT’s graph properties

4 Linguistic Analysis
 Classes

5 Summary
Non-projectivity

He had huge liking for football

- Every word in the span of relation has to be dominated by the head in that relation for it to be projective.
- Otherwise, the relation is non-projective.
- In a flat representation, crossing arcs indicate non-projectivity.
HyDT and non-projectivity

- 1865 sentences, 16620 chunks, 35787 words
- 14% sentences have non-projective structures
- 1.87% of inter-chunk relations are non-projective
- 0.87% if intra-chunk relations are also considered
- In PDT 2.0 (Czech), 23% (out of 73088) of the sentences are non-projective
HyDT and non-projectivity

- 1865 sentences, 16620 chunks, 35787 words
- 14% sentences have non-projective structures
- 1.87% of inter-chunk relations are non-projective
- 0.87% if intra-chunk relations are also considered
- In PDT 2.0 (Czech), 23% (out of 73088) of the sentences are non-projective
Why is non-projectivity important as a constraint

- Poses problems in parsing with respect to both accuracy and efficiency
- Need special algorithms to handle non-projectivity
- Bharati et al. (2008) showed that a major chunk of errors in their Hindi parser is due to non-projectivity
- A need to analyse non-projectivity in Hindi for a better insight into such constructions
Why is non-projectivity important as a constraint

- Poses problems in parsing with respect to both accuracy and efficiency
- Need special algorithms to handle non-projectivity
- Bharati et al. (2008) showed that a major chunk of errors in their Hindi parser is due to non-projectivity
- A need to analyse non-projectivity in Hindi for a better insight into such constructions
Why is non-projectivity important as a constraint

- Poses problems in parsing with respect to both accuracy and efficiency
- Need special algorithms to handle non-projectivity
- Bharati et al. (2008) showed that a major chunk of errors in their Hindi parser is due to non-projectivity
- A need to analyse non-projectivity in Hindi for a better insight into such constructions
Non-projectivity analysis

- From two perspectives
 - Graph properties constraining non-projectivity (Kuhlmann and Nivre, 2006; Nivre, 2006)
 - Like gap degree, edge degree, planarity, well-nestedness
 - These constraints give an idea of the extent of non-projectivity
 - Linguistic phenomenon giving rise to non-projectivity
 - Provides better understanding and gives insight into what kind of constructions lead to non-projectivity
 - Can be used as features for better learning
Non-projectivity analysis

- From two perspectives
- Graph properties constraining non-projectivity (Kuhlmann and Nivre, 2006; Nivre, 2006)
 - Like gap degree, edge degree, planarity, well-nestedness
 - These constraints give an idea of the extent of non-projectivity
- Linguistic phenomenon giving rise to non-projectivity
 - Provides better understanding and gives insight into what kind of constructions lead to non-projectivity
 - Can be used as features for better learning
Non-projectivity analysis

From two perspectives

Graph properties constraining non-projectivity (Kuhlmann and Nivre, 2006; Nivre, 2006)

- Like gap degree, edge degree, planarity, well-nestedness
- These constraints give an idea of the extent of non-projectivity

Linguistic phenomenon giving rise to non-projectivity

- Provides better understanding and gives insight into what kind of constructions lead to non-projectivity
- Can be used as features for better learning
Outline

1. Introduction
 HyDT

2. Non-projectivity
 Non-projectivity in HyDT
 Non-projectivity Analysis

3. Graph properties
 HyDT’s graph properties

4. Linguistic Analysis
 Classes

5. Summary

P. Mannem, H. Chaudhry and A. Bharati
IIIT, Hyderabad
Insights into non-projectivity in Hindi
Graph constraints restricting non-projectivity

- Gap degree
- Edge degree
- Planarity
- Well-nestedness
Gap degree

- Gap is a pair of adjacent nodes in the projection of a node but not adjacent in the sentence.
- Gap degree of a node is the number of gaps in the projection of a node.
- Gap degree of a sentence is the maximum among gap degrees of nodes in the sentence.
Edge degree

- The number of connected components in the span of an edge which are not dominated by the outgoing node in the edge.
- Edge degree of a sentence is the maximum among edge degrees of edges in the sentence.
Planarity and Well-nestedness

- A dependency graph is **planar** if edges do not cross when drawn above the sentence.

```
 a -- b -- c -- d
```

- A dependency graph is **well-nested** if no two disjoint subgraphs interleave.
- Two subgraphs are **disjoint** if neither of their roots dominates the other.
- They **interleave** if their projections overlap.

```
 a -- b  -- c -- d  -- e  -- f
```

P. Mannem, H. Chaudhry and A. Bharati
IIT, Hyderabad
Insights into non-projectivity in Hindi
HyDT w.r.t the graph properties

Property	Count	Percentage
All structures	1865	
Gap degree		
Gd(0)	1603	85.9%
Gd(1)	259	13.89%
Gd(2)	0	0%
Gd(3)	3	0.0016%
Edge degree		
Ed(0)	1603	85.9%
Ed(1)	254	13.6%
Ed(2)	6	0.0032%
Ed(3)	1	0.0005%
Ed(4)	1	0.0005%

Property	Count	Percentage
Projective	1603	85.9%
Planar	1639	87.9%
Non-projective & planar	36	1.93%
Well-nested	1865	100%

Table: Results on HyDT
Outline

1 Introduction
 HyDT

2 Non-projectivity
 Non-projectivity in HyDT
 Non-projectivity Analysis

3 Graph properties
 HyDT’s graph properties

4 Linguistic Analysis
 Classes

5 Summary
Linguistic phenomena leading to non-projectivity

- **Classes**
 - Relative co-relative constructions
 - Extrapoosed relative clause constructions
 - Intra-clausal non-projectivity
 - Paired connectives
 - *ki* complement clauses
 - Genitive relation split by a verb modifier
 - Phrase split a co-ordinating structure
 - Shared argument splitting the non-finite clause
 - Others
Analysis of the non-projective classes

- Cues to identify non-projectivity
 - Rigidity
 - Reorderability of the constructions retaining the gross meaning
 - Gross meaning — Meaning of the sentence not taking the discourse and topic-focus into consideration
- What is the best projective approximation possible by reordering?
- Is this projective construction more natural compared to the non-projective one?
Relative co-relative constructions

Cues: relative co-relatives like jaba-tabā (when-then), jo-vo (which-that), jahāM-vahāM (where-there), jīsā-usā (which-that)

- Not rigid
- Can be made projective by reordering
- Hard to say which among the projective & non-projective ones is more natural
Extraposed relative clause constructions

- NP and the relative clause are separated by the verb group
- Cues: Relative pronoun following a verb group
- Not rigid
- Extraposed relative clause can be moved next to the noun phrase to make it projective
- Resulting projective construction is less natural than the original non-projective one
- Most common non-projective class

This letter was published in the press at Mumbai where I worked.
Paired connectives

- **Cues:** Paired connectives like *agar-to* (*if-then*), *yadi-to* (*if-then*)
- Can be reordered and is not rigid
- The phrase that comes after *to* followed by *yadi* clause and then *to*
 - *to* is optional here
- Resulting projective construction is not a natural one

If [you] needed money then [you] should have told me

\[
\begin{align*}
((\text{yadi}) & \quad ((\text{rupayom kii}) \quad ((\text{zarurata thii}) \quad ((\text{to}) \quad ((\text{mujha ko}) \quad ((\text{bataanaa chahiye thaa})) \\
\text{if money.OBL GEN. need be.PAST then I.OBL DAT. tell.INF should be.PAST} \\
\text{If [you] needed money then [you] should have told me}
\end{align*}
\]
ki complement clause constructions

He had such [a] liking for football that he was not able to give it up

- **Cues:** ki comes after words like yaha (*this*), aisaa (*such*), is tarah (*such*), itana (*this much*)
 - Takes the pattern yaha-its property-VP-ki clause
- **Rigid**
- If VP has a transitive verb, then the ki clause and the referent both modify the verb, making it projective
Genitive relation split by a verb modifier

- No obvious cues
- Is not rigid
- Move the verb modifier out of the genitive phrase to make it projective
- Projective one is more natural

He had huge liking for football
After this Jaman Shah [got it] and then, in 1795 Shah Shuja got it

- **Cues:** NONE
- **Adverb occurring in the middle of a co-ordinating structure**
- **Is not rigid**
- **Projective one is more natural**
Shared argument splitting the non-finite clause

We used to talk after placing that writer’s identity proudly before the publisher.

- Cues: NONE
- Is not rigid
- Projective one is more natural
Others

- Few very rare and not natural phenomena
- Annotation errors
- Inconsistent NULL placement
Non-projective classes in HyDT

Non-projective Class	Count	%
Relative co-relatives constructions	18	6.8%
Extraposed relative clause constructions	101	38.0%
Intra-clausal non-projectivity	12	4.5%
Paired connectives	33	12.4%
ki complement clauses	52	19.5%
Genitive relation split by a verb modifier	10	3.8%
Phrase splitting a co-ordinating structure	4	1.5%
Shared argument splitting the non-finite clause	10	3.8%
Others	26	9.8%

Table: Non-projectivity class distribution in HyDT
Outline

1 Introduction
 HyDT

2 Non-projectivity
 Non-projectivity in HyDT
 Non-projectivity Analysis

3 Graph properties
 HyDT’s graph properties

4 Linguistic Analysis
 Classes

5 Summary

P. Mannem, H. Chaudhry and A. Bharati
IIIT Hyderabad

Insights into non-projectivity in Hindi
Summary

- Analysed non-projectivity in HyDT from two perspectives
- Gap degree and edge degree ≤ 1 ensures 99.99% coverage
- Non-projective structures classified into 8 categories
- Around 75% of the non-projective cases can be identified using strong lexical cues
 - Parsers can make use of this information and determine non-projective arcs directly
- The rest are hard to recognize and need extra information (world knowledge!) to identify non-projectivity in them
Summary

- Analysed non-projectivity in HyDT from two perspectives
- Gap degree and edge degree ≤ 1 ensures 99.99% coverage
- Non-projective structures classified into 8 categories
- Around 75% of the non-projective cases can be identified using strong lexical cues
 - Parsers can make use of this information and determine non-projective arcs directly
- The rest are hard to recognize and need extra information (world knowledge!) to identify non-projectivity in them
Summary

- Analysed non-projectivity in HyDT from two perspectives
- Gap degree and edge degree ≤ 1 ensures 99.99% coverage
- Non-projective structures classified into 8 categories
- Around 75% of the non-projective cases can be identified using strong lexical cues
 - Parsers can make use of this information and determine non-projective arcs directly
- The rest are hard to recognize and need extra information (world knowledge!) to identify non-projectivity in them

P. Mannem, H. Chaudhry and A. Bharati
IIIT, Hyderabad
Insights into non-projectivity in Hindi
Summary

- Analysed non-projectivity in HyDT from two perspectives
- Gap degree and edge degree ≤ 1 ensures 99.99% coverage
- Non-projective structures classified into 8 categories
- Around 75% of the non-projective cases can be identified using strong lexical cues
 - Parsers can make use of this information and determine non-projective arcs directly
- The rest are hard to recognize and need extra information (world knowledge!) to identify non-projectivity in them
Summary

- Analysed non-projectivity in HyDT from two perspectives
- Gap degree and edge degree ≤ 1 ensures 99.99% coverage
- Non-projective structures classified into 8 categories
- Around 75% of the non-projective cases can be identified using strong lexical cues
 - Parsers can make use of this information and determine non-projective arcs directly
- The rest are hard to recognize and need extra information (world knowledge!) to identify non-projectivity in them
Summary

- Analysed non-projectivity in HyDT from two perspectives
- Gap degree and edge degree ≤ 1 ensures 99.99% coverage
- Non-projective structures classified into 8 categories
- Around 75% of the non-projective cases can be identified using strong lexical cues
 - Parsers can make use of this information and determine non-projective arcs directly
- The rest are hard to recognize and need extra information (world knowledge!) to identify non-projectivity in them
Thank You
References

- R. Begum, S. Husain, A. Dhwaj, D. Sharma, L. Bai, and R. Sangal. 2008. Dependency annotation scheme for Indian Languages. In Proceedings of The Third International Joint Conference on Natural Language Processing (IJCNLP), Hyderabad, India.

- Akshar Bharati, Vineet Chaitanya, and Rajeev Sangal. 1995. Natural Language Processing: A Paninian Perspective. Prentice-Hall of India.

- Akshar Bharati, Rajeev Sangal, and Dipti Sharma. 2005. Shakti analyser: Ssf representation. Technical report, International Institute of Information Technology, Hyderabad, India.

- Akshar Bharati, Samar Husain, Bharat Ambati, Sambhav Jain, Dipti Sharma, and Rajeev Sangal. 2008a. Two semantic features make all the difference in parsing accuracy. In Proceedings of the 6th International Conference on Natural Language Processing (ICON-08), Pune, India.
References

- Marco Kuhlmann and Mathias Mohl. 2007. Mildly contextsensitive dependency languages. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 160167, Prague, Czech Republic, June. Association for Computational Linguistics.
- Marco Kuhlmann and Joakim Nivre. 2006. Mildly nonprojective dependency structures. In Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pages 507514, Sydney, Australia, July. Association for Computational Linguistics.
- Ryan McDonald and Joakim Nivre. 2007. Characterizing the errors of data-driven dependency parsing models. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages 122131, Prague, Czech Republic, June. Association for Computational Linguistics.
References

- Joakim Nivre, Johan Hall, Sandra Kubler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007. The CoNLL 2007 shared task on dependency parsing. In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages 915932, Prague, Czech Republic, June. Association for Computational Linguistics.

- Joakim Nivre. 2006. Constraints on non-projective dependency parsing. In In Proceedings of European Association of Computational Linguistics (EACL), pages 7380.