Roles of endogenous ether-lipids and associated PUFA in the regulation of ion channels and their relevance for disease

Delphine Fontaine1*, Sandy Figiel1*, Romain Felix1, Sana Kouba1, Gaëlle Fromont1,3, Karine Mahéo1,2, Marie Potier-Cartereau1, Aurélie Chantome1,2*, Christophe Vandier1##.

1Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France.
2Faculté de Pharmacie, Université de Tours, F-37200 Tours, France.
3Department of Pathology, CHRU Bretonneau, F-37044 Tours CEDEX 9, France.

*These authors contributed equally to this work.

Running title: Lipids are regulators of ion channels

#Correspondence should be addressed to Christophe Vandier, Phone: +(33)247366024; Fax: +(33)247366226; E-mail: christophe.vandier@univ-tours.fr
Abstract and keywords

Ether lipids (ELs) are lipids characterized by the presence of either an ether linkage (alkyl lipids) or a vinyl ether linkage (i.e. plasmalogens [Pls]) at the sn1 position of the glycerol backbone and they are enriched in PUFAs at the sn2 position. In this review, we highlight that ELs have various biological functions, act as a reservoir for second messengers (such as PUFAs), and have roles in many diseases. Some of the biological effects of ELs may be associated with their ability to regulate ion channels that control excitation-contraction/secretion/mobility coupling and therefore cell physiology. These channels are embedded in lipid membranes, and lipids can regulate their activities directly or indirectly as second messengers or by incorporating into membranes. Interestingly, ELs and EL-derived PUFAs have been reported to play a key role in several pathologies, including neurological disorders, cardiovascular diseases, and cancers. Investigations leading to a better understanding of their mechanisms of action in pathologies have opened a new field in cancer research. In summary, newly identified lipid regulators of ion channels, such as ELs and PUFAs, may represent valuable targets to improve disease diagnosis and advance the development of new therapeutic strategies for managing a range of diseases and conditions.

Keywords: ether lipids, polyunsaturated fatty acid (PUFA), ion channels, cancer, neurological disorder, cardiovascular disease, cell membrane, metastasis, neurodegeneration
Introduction

Since 1990, many papers have reported that ion channels should be considered as new diagnostic and therapeutic tools in cancer and particularly at advanced metastatic stages. Their role was clearly demonstrated in the dysregulation of calcium homeostasis in cancer through their control of processes such as cell differentiation, proliferation and migration (1, 2). One of the particularities of ion channels, as transmembrane proteins, is their close contact with lipids constituting cell membranes and thus the possibility to be regulated by these lipids. Several models of interaction of lipids with ion channels have been discussed by Herrera et al. (3), such as mechanosensitivity (and so membrane state) (4), direct interaction between membrane lipids and proteins (5) or interaction with a protein in close proximity with membrane lipids (6).

One family of lipids, which has been less studied in cancer, is the ether lipids (ELs) family. These lipids have the particularity to possess either an ether linkage (alkyl lipids) or a vinyl ether linkage (plasmalogens [Pls]) at the sn1 position of the glycerol backbone and to be enriched in polyunsaturated fatty acids (PUFAs) at the sn2 position (Figure 1). In fact, ELs are known to be a reservoir of second messengers, such as fatty acids (FAs) and also metabolites derived from FAs (7), indicating that the effects of ELs can be direct or indirect through FA release.

The first studies on ELs in cancer were mostly descriptive and quantified the global EL content in the tissues of patients, leading to the general conclusion that tumor tissues contain more ELs than non-tumor tissues (8, 9). At that time, these lipids had been found to regulate cell proliferation (10). This was only a few decades ago and thanks to advanced research technologies more accurate EL compositions (identification of molecular species of ELs) have been described in tumor tissues (11, 12). These observations went with the discovery of new functions of ELs in cancer biology, such as carcinogenesis, progression, migration and invasion (13, 14). Interestingly, these lipids are present in high quantity in many excitable tissues, such
as in the nervous system and heart, and regulate ion channels and many biological cell functions.

The aim of this review is to point out the importance of ELs and associated FAs from EL metabolization in neurological and cardiac disorders and in cancers, focusing mainly on their role in the regulation of ion channels. The mechanism of action of ELs is also discussed with the perspective to propose these lipids as new diagnostic and therapeutic tools for metastatic cancers.

ETHER LIPIDS AS REGULATORS OF ION CHANNELS IN NEUROLOGICAL DISORDERS

Direct implication of ether lipids

The central nervous system contains a large amount of ELs (compared to other organs), mainly Pls with choline as head group (Pls-Cho), which represent 15 to 30 mole% of total phospholipids, whereas Pls with ethanolamine as head group (Pls-Etn) remain rare (15, 16).

In the central nervous system, the composition of ELs varies with location: grey matter is enriched in Pls with polyunsaturated fatty acids (Pls-PUFAs), whereas Pls of myelin are mainly composed of saturated and monounsaturated FAs (15), allowing for a more compact structure and rigid aspect of the membranes (17). Patients with a lack of EL synthesis suffer from myelinization defects of the central and peripheral nervous systems (18), as observed in adrenoleukodystrophy (19). In addition, demyelination is associated with a decrease of conduction velocity in a model of EL-deficient mice (35). Synaptic vesicles are enriched in ELs (20) that confer an inverted hexagonal phase (HII) structure to membranes, thus enhancing fusion processes (21). Nanodomains also named lipid rafts contain high amounts of Pls-PUFAs.
in favor of soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs), which are necessary for endocytosis and exocytosis, protein sequestration and transmembrane protein activity (22). Interestingly, the amounts of ELs in the central nervous system evolve with age and a significant increase is noticed between birth and adulthood (30s). Then, a decrease in ELs is observed with age (22), which could be correlated with a decrease of peroxisomal function (and then EL synthesis) (23), and also with some neurological disorders, such as Alzheimer’s or Parkinson’s disease. Among ELs, the most famous and studied is platelet-activating factor (PAF), which was discovered by the French scientist Benveniste in 1972. It participates in neuronal physiology, more precisely in long-term potentiation, memory formation, inflammation and regulation of glutamatergic neurotransmission (7, 22, 24).

Abnormal repartition and quantity of Pls in the brain have been found in several neurological diseases as reviewed (22, 25). Many studies on Alzheimer’s disease in the brains of post-mortem patients and in cerebrospinal fluid, plasma and red blood cells have described a decrease of EL content, more precisely of Pls (22). Quantities and molecular species of ELs that are reduced vary with studies and organs studied (Table 1). Globally, a decrease of Pls-Etn in Alzheimer’s disease brains (26) was found, underlining a potential role of these lipids despite their small quantity. Interestingly, this reduction is associated with a change of the FA composition of Pls and with a large decrease of docosahexaenoic acid (DHA) content (27).

Thus, Pls content variations have been considered as a potential marker to assess the progression of cognitive decline in patients with Alzheimer’s disease (15, 28).

Moreover, it appears that, in Alzheimer’s disease, enzymes of EL biosynthesis are downregulated. Decrease of EL content is also correlated with an increase of the Pls selective phospholipase A2 (PLA2) activity, leading to degradation of acyl-Pls and production of several metabolites, such as lysoPAF (22). LysoPAF and PAF can cause neurotoxicity and an inflammatory response, leading to deregulation of glyceronephosphate O-acyltransferase
(GNPAT) expression, an enzyme that inserts an acyl group into the dihydroxyacetone phosphate molecule (DHAP) (22). In addition, alkylglycerone phosphate synthase (AGPS) expression, which catalyzes the transformation of acyl-DHAP to alkyl-DHAP, decreases in the presence of beta amyloid peptides and ROS produced in the brains of patients with Alzheimer’s disease, which can explain the observed decrease of EL content (27). Interestingly, in an Alzheimer’s rat model, treatment with eicosapentaenoic acid Pls-Etn (Pls-EPA-Etn) improves regulation of oxidative stress (increase of superoxide dismutase activity) and decreases tau phosphorylation, apoptosis and neuroinflammation (29).

In other pathologies, such as Parkinson’s disease, schizophrenia and bipolar depression, EL homeostasis is also disturbed (22) (Table 1). For example, a decrease of Pls content in lipid rafts has been found post-mortem in the frontal cortex of brains of patients with Parkinson’s disease (14). At the opposite, in a mouse model of Parkinson’s disease, treatment with a precursor of Pls-DHA can prevent and reverse dopamine content loss, and vesicular monoamine transporter 2 binding decreases in the striatum (30). Indeed, more generally, a modification of EL amounts influences neurotransmitter synthesis and their release. In a GNPAT KO mouse model, a decrease in both the quantity and release of dopamine in the striatum has been observed, leading to hyperactive mice, with a loss of social interaction and fear conditioning (31). In contrast to Parkinson’s disease, in a schizophrenia or bipolar depression context, the level of Pls in the frontal cortex of patients was found to be higher than in control patients (32), which illustrates the fine equilibrium of EL quantity necessary for excitation-secretion coupling.

Ion channels are key players in excitation-secretion coupling, and some studies suggest that ELs can regulate ion channels, ionotropic receptors and exchanger activities (see Figure 2 for the potent mechanisms of action of ELs on ion channels). Among ion channels, the SK3 channel has been found in lipids rafts, also called cholesterol-rich nanodomains (2). This
channel, which belongs to small conductance calcium-activated potassium channels, controls the small after-hyperpolarization phase and then the regulation of the frequency of action potential (33). The SK3 channel is sensitive to cholesterol content and membrane state (34). In fact, we reported the effect of 1-O-hexadecyl-2-O-methyl-sn-glycero-3-lactose (Ohmline), a synthetic EL, which inhibits SK3 channel activity by removing the cholesterol OH moieties away from their main binding sites, including the SK3 channel (3). This study suggests that ELs can modulate the lipid environment of ion channels and therefore regulate their activities. Moreover, ELs take part in cholinergic transmission, and a decrease of muscarinic-GTPase coupling has been observed in PIs-deficient cell lines, which decreases physiological amyloid precursor protein synthesis (36). Glutamatergic transmission is also affected by ELs and in synaptosomal preparations from dihydroxyacetone phosphate acyltransferase (DHAPAT - an enzyme of EL biosynthesis) KO mice, calcium-dependent glutamate and acetylcholine releases are weaker than in controls (20). Interestingly, changes caused by a deficit of ELs are also found in the neuromuscular junction with acetylcholine receptor clusters found to be smaller in GNPAT KO mice, in terms of volume and surface area. In this model, miniature end plate potential frequencies and vesicular functions were decreased, whereas the resistance of preparations was increased by 30% (37).

The regulation of membrane channels and transporters (collectively named the transportome) by PAF remains better documented (mainly PAF-C16) compared to any other EL (Figure 2E). This EL, by binding to its receptor, enhances store-operated calcium entry (SOCE) (38) and drives many neuronal processes, such as neuronal development and neurodegeneration according to its concentration (39). For example, the lack of PAF in a mouse model of Zellweger syndrome led to a decrease of NMDA glutamate receptor-mediated calcium entry, which regulates cell neuronal migration in cerebral cortex development30. PAF also induces cell depolarization and nitric oxide (NO) production, leading to an activation of L-type voltage-
gated calcium channels, which increases blood-brain barrier permeability (41), a process that could play an important role in inflammation. PAF is found in great quantity in rat brains with anticonvulsive treatment (22), where it inhibits the activity of ionotropic GABA receptors in hippocampal neurons, leading to a decrease in chloride currents. Bazan et al. (42) mainly reviewed the involvement of PAF in seizure-induced damage, especially by modulating the glutamate system.

Indirect effects through fatty acid release

Arachidonic acid (AA) and DHA, and more generally PUFAs, have been described to be a major part of lipids in the components of neuronal membranes. For example, DHA has been found in great amounts in phospholipids of the cerebral cortex (43). These lipids have the ability to modulate membrane fluidity and lipid environment of a huge range of embedded proteins into the membranes, including ion channels. Moreover, they constitute a reservoir of second messengers that can modulate several enzymes, such as PLA2, or more globally, neurotransmission, such as AA metabolites, that constitute a huge family of lipid messengers (*e.g.* eicosanoids) (42). PUFAs participate in several other neuronal processes, including inflammation, regulation of cell oxidation and gene expression (44). We can cite as an example that AA is able to activate neurite growth by the activation of N- and L-type calcium channels via the cell adhesion molecules pathway (45).

Interestingly, these lipids are able to modulate, in different ways, many ion channels involved in neurotransmission (see Figure 2 for the potent mechanisms of action of ELs on ion channels). Several potassium channels are regulated by PUFAs. DHA can inhibit the outward potassium current in neocortical neurons via direct interaction with Kv 1.2 and 3.1 channels (46). The same effect in rat olfactory neurons leads to a change of coding odorant information (47). EPA
has also been shown to have an effect on Kv (44). In the rat hypothalamus, stimulation by angiotensin II leads to an activation of PLA2 and a release of AA, which activates a delayed rectifier potassium current (48). AA can also activate the K2P potassium channel TRAAK (49). PUFAs were also found to modulate the calcium signaling in neurons. In sympathetic neurons, AA can inhibit L- and N-type calcium currents (50). Voltage-gated calcium (CaV) currents are generally sensitive to DHA and α linolenic acid (ALA) (44). DHA and EPA can also modulate Ca²⁺ ATPases. In fact, EPA can regulate PKC activity and the phosphorylation state of Ca²⁺ ATPases, leading to their inhibition, whereas DHA can induce a different conformation of these ATPases by changing their lipid environment and then decreasing their activities. However, DHA has been reported to be an activator of Ca²⁺ ATPases in calcium depleted cells (51). DHA, EPA and AA are also able to inhibit a non-voltage-gated calcium channel in neurons, the TRPM8 (52). Finally, DHA and EPA are also inhibitors of sodium currents in neurons by blocking NaV activity through a direct interaction (53) or by inhibiting Na⁺/K⁺ ATPase (51). Regulation of neuronal ion channels by PUFA plays an important role in pathophysiological processes. In fact, phospholipids containing AA are necessary for the functional activation of mechanoelectrical transduction channels, such as TRP channels, involved in sensory mechanotransduction and touch sensation (54). This regulation takes a great interest in aging. In fact, an inverted association has been described between consumption of n-3 PUFAs and cognitive impairment or development of Alzheimer’s disease and associated symptoms, such as dementia or cognitive decline (44). It was found that the release of PUFAs from Pls degradation, which quantity is decreased in Alzheimer’s disease, can reduce the formation of nitric oxide from microglial cells after lipopolysaccharide stimulation. In fact, PUFAs from Pls are able to inhibit NFKB and MAPK pathways activated by lipopolysaccharide. These lipids appear to be essential for neuroprotection under oxidative stress conditions, which are found in neurodegenerative diseases (55). Thus, it appears that, in a rat model of aging and dementia,
chronic treatment with n-3 PUFAs can increase the density of muscarinic receptors and have positive effects on learning and memorization (56).

Interestingly, in a context of ischemia-reperfusion syndrome, increased cytosolic calcium concentration (from the endoplasmic reticulum and mitochondria stores) leads to an increase of PLA2 and phospholipase C activities and a consequent release of AA (57). This release of AA can inhibit GABA-Cl⁻ neurotransmission and then increases neuronal excitability, which can result in neuronal damage after ischemia (58). DHA and ALA have neuroprotective properties in an ischemic context by facilitating the TREK-1 potassium current, which can decrease neuronal excitability (59, 60).

PUFAs also appear to be pain regulators. In fact, it has been demonstrated that pain is mediated by two TRP channels, TRPA1 and TRPV1(61). EPA, DHA and AA can activate TRPA1 in sensory neurons and then regulate pain (62). Moreover, DHA and EPA can inhibit the TRPV1 channel, which is involved in inflammatory pain (63). ASICs channels that are activated by an acid extracellular pH also regulate pain. Interestingly, in inflammatory conditions, AA can activate ASIC1a and ASIC3 currents (64). More recently, it has been demonstrated that AA can drive pain through activation of ASIC3, independently of acidification of the extracellular medium. This leads to a depolarization and an increased activity of nociceptive neurons in a rat model (65).

Even if we don’t know if neurological disorders are the cause or the consequence of the changes of ELs and associated PUFAs, collectively, all these data obtained in the nervous system lead us to propose that these changes would have profound effects on ion channels known to control excitation-secretion coupling of neuron cells, thus leading to exacerbation of these neurological disorders (Figure 3).

ETHER LIPIDS AS REGULATORS OF ION CHANNELS IN CARDIAC DISEASES
Direct effect of ether lipids

ELs, and more precisely Pls, constitute a huge part (50%) of phospholipids of the sarcolemma of cardiomyocytes (66), with mainly AA at the sn2 position of the glycerol. In fact, Pls-Etn accounts for about 58% of total phospholipids-Etn and Pls-Cho and 26% of phospholipids-Cho. Interestingly, despite their small proportion in front of total phospholipids quantity, Pls-Etn represent the greatest amount of Pls in heart. This repartition is mainly found in organs known to contain a large amount in Pls, such as the brain or the skeletal muscle (15). In the human heart, Pls are present in higher extent compared with alkyl lipids (16.3% against 2.4% of total phosphocholine species, respectively and 14.9% against 0.9% of total phosphoethanolamine species, respectively (67), which can suggest a major role for Pls compared to alkyl lipids. A study on swine hearts reveals that Pls-Etn appears to be a reservoir for AA, whereas Pls-Cho are enriched in palmitic (PA), oleic (OA) and linoleic acids (LA) (68). However, these results have to be interpreted cautiously, since the Pls quantity and composition of Pls in the heart is species-dependent (69). Pls are also found in high quantity in the sarcoplasmic reticulum of myocytes, where they are found as 53% of total phospholipids (70, 71).

The quantity of Pls in heart tissues evolves with age with an increase of Pls-Cho, whereas the Pls-Etn pool remains quite stable along time (72). In heart pathologies and more precisely ischemia, the EL pool is disturbed (see Table 2). Interestingly, a study aiming to quantify Pls-Cho in the serum of patients with myocardial infarction found that these lipids are inversely correlated with the risk of myocardial infarction (73). During ischemia, a calcium-independent phospholipase A2 selective for Pls is activated. This induces the hydrolysis of Pls and leads to production of lyso-Pls (up to 10 times more in a rabbit myocardial ischemia model (74–77)).
This is supported in a study by Caldwell on rabbit cardiomyocytes at early stages of infarction (78). The importance of PIs in heart is illustrated by supplementation experiments with chimyl alcohol (ether lipid precursor), which decreases the effects of ischemia-reperfusion by enhancing ventricular function and decreasing lipid peroxidation (79). In addition, it has been reported that cytochrome c released from mitochondria can cleave the ether link of PIs in the ischemia-reperfusion syndrome (80). In the plasma of hypertensive patients and in the aorta of patients with atherosclerosis, PIs are decreased (81, 82). In a model of atherosclerosis in mice, supplementation with batyl alcohol (an ether lipid precursor) led to a decrease of atherosclerosis (83). In contrast, an increase of PIs has been observed in diabetic heart rats with cardiomyopathy, and this increase is partly corrected with insulin treatment (84).

It has been observed that ELs could regulate excitation-contraction coupling and ion channels in cardiac diseases (see Figure 2 for the potent mechanisms of action of ether lipids on ion channels). LysoPIs, whose synthesis is increased in several heart diseases, can affect cardiac electrophysiology (85, 86) and thus cause arrhythmias. For example, lysoPIs-Cho can induce spontaneous contractions faster than LPC. In fact, lysoPIs-Cho application leads to a depolarization, which can be reversed by a decrease of extracellular sodium concentration (78). Thus, we can hypothesize that lysoPIs-Cho activates a sodium conductance or inhibits potassium channels. Moreover, in rabbit cardiomyocytes, lysoPIs-Cho has been found to activate PKA (87). This data is interesting, since it is well-known that the activity of some ion channels are regulated by this kinase, such as the SK3 channel for example (88), which participates in atrial action potential repolarization (89–91). PIs can also modulate the activity of the sodium-calcium exchanger (NCX), which is crucial for heart activity (92). In fact, in synthetic vesicles containing PIs and negative phospholipids (such as phosphatidyl serine), NCX conformation is modified, leading to an increase of its activity. These lipids interact with
the cationic exchanger inhibitory peptide (XIP) site of NCX, leading to a change of the three-dimensional structure (71). Furthermore, NCX can be activated by Pls with a phosphatidic acid as head group (Pls-PA). Pls-PA can also directly modulate NCX activity via this XIP domain (93). As evoked in the previous part of the review, the effect of PAF remains better documented than other ELs in heart pathophysiology. This EL is known to induce coronary vasoconstriction and has negative cardiac inotropic effect (94). Moreover, it appears to be implied in the ischemia-reperfusion syndrome by causing arrhythmias. In an animal model of infarction, an increase in the amount of PAF has been observed, as in the blood of patients with acute myocardial infarction. This increase is even more important in patients with acute myocardial infarction and arrhythmia (95). Some studies found a decrease of action potential duration in the papillary muscles of guinea pigs treated with PAF. These results were also found in guinea pigs models of myocardial ischemia (95). Interestingly, in this model, the effect of PAF is time dependent with an increase in the action potential duration at the beginning of reperfusion, which follows a period of ischemia of the papillary muscles (95). Another study reported a decrease of cytosolic calcium concentration in cardiomyocytes after treatment with PAF (96). In a model of atrial frog, a change in the equilibrium of potassium and calcium at the myocardial sarcolemma after treatment with PAF has been described, with PAF increasing the activity of the delayed outward potassium current (Kv) and decreasing the slow inward calcium current (CaV) (97). In a model of guinea pig ventricles, this lipid was also found to increase the duration of action potential (without affecting the resting membrane potential) by decreasing both the cardiac delayed rectifier and the cardiac inward rectifier potassium currents, which control the repolarization phase of the action potential (98). However, in the absence of ATP, PAF activates K_{ATP} channels, which decreases action potential duration (98). In contrast, another study shows a decrease of atrial and ventricular action potential duration
after treatment with an antagonist of the PAF receptor (PAF-R). This effect was prevented by a treatment with glibenclamide, a blocker of K\textsubscript{ATP} (99).

Altogether, these results show that PAF is a bivalent actor, which can modulate action potential duration, depending on cell states concerning ischemia (pre-ischemia or ischemia reperfusion syndrome), leading to arrhythmias. PAF arrhythmogenic effects are also attributed to its ability to inhibit the potassium TASK-1 channel activity via the PAF-R and PKC, leading to an automaticity with a maintained depolarization state in mouse ventricular myocytes (100, 101). Interestingly, PAF is also described as a cardioprotective lipid via activation of mitochondrial K\textsubscript{ATP} channels and redox signaling. Pre-treatment with low concentrations of PAF can decrease the infarct size (102) and exerts positive ionotropic effects (97).

Indirect effect through fatty acids release

As previously mentioned, ELs are also known to be a reservoir of second messengers, such as FAs. Nutritional intervention concerning PUFAs has been shown to decrease the risk of developing cardiac diseases. Studies analyzing the FA effect on cardiovascular disease first appeared in a study of Eskimos from Greenland. This population has a diet rich in fish and marine mammals (and therefore rich in n-3 PUFAs) and they develop few cases of coronary artery disease (103). Many other epidemiological studies have confirmed this association between the low risk of cardiovascular diseases and a diet rich in n-3 PUFAs (104). Intake of n-3 PUFAs prevents arrhythmias (tachycardia and ventricular fibrillation), decreases heart rate and blood pressure and improves efficiency of the left ventricle. They also have antithrombotic actions by reducing plasma cholesterol levels, thus protecting against atherosclerosis. N-3 PUFAs also decrease mortality due to cardiac arrest or cardiovascular disease (105–108). In contrast, for n-6 PUFAs, few studies have investigated the roles of LA and AA in
cardiovascular disease, and the results are contradictory (109). For example, Kark et al. showed a positive association between AA quantities in the adipose tissue of patients and the incidence of myocardial infarction, whereas there was no association for LA rates (110). Conversely, Cho et al. suggest a protective effect of LA and AA on cardiovascular disease by decreasing serum low-density lipoprotein (LDL) and increasing serum high-density lipoprotein (HDL) (111). Part of these discrepancies may be resolved when studies are focused on the importance of the n-6:n-3 ratio rather than on the individual role of each lipid in cardiovascular disease. Indeed, as in several pathologies, a high n-6:n-3 ratio (equal or superior to 10) is considered unfavorable, while a n-6:n-3 ratio close to 1 is considered to be protective. However, the use of this ratio as a marker (risk factor or predictor) has been discussed given not only the contradictory effects of n-6 PUFAs (including LA and AA) but also because this ratio does not take into account the different interactions between foods (108, 112, 113). Thus, Von Schacky and Harris have proposed the “Omega-3 index” as a new marker for cardiovascular diseases. This index is the percentage (of total serum FA) of EPA+DHA, representing the n-3 PUFAs rate (114). Concerning the saturated fatty acids (SFAs), most studies do not determine the individual effect of SFAs but the effect of their replacement by monounsaturated fatty acids (MUFAs) or PUFAs (112, 113, 115). Thus, despite few contradictory studies, the World Health Organization, the American Dietetic Association, the dietitians of Canada, the American Heart Association and the American College of Cardiology recommend reducing the intake of SFAs for a healthier cardiovascular system. SFAs should be limited to at least 10% of total energy and less than 7% for high-risk groups. Indeed, studies in primates, human prospective observational studies and randomized clinical trials have shown that lower consumption of SFAs and its replacement by unsaturated fats, in particular PUFAs, decreases the incidence of cardiovascular disease and reduces atherosclerosis by lowering LDL levels (112, 113, 115).
Heart energy comes mainly from oxidative phosphorylation (95%) and from glycolysis (5%) (116). However, these processes are altered during ischemia-reperfusion injury and FA accumulation increasing the beta-oxidation is observed (117). Moreover, the presence of PUFAs in phospholipids makes them more sensitive to oxidation and leads to the oxidized phospholipids formation involved in several cardiovascular diseases (105). Currently, there is a pharmacological approach aiming to inhibit FA oxidation (trimetazidine) and to improve cardiac efficiency with a decrease of ischemic heart disease (118).

There are different mechanisms by which FAs, in particular n-3 PUFAs, can prevent arrhythmias. Indeed, FAs can modulate ion channel activities by a direct interaction or by their incorporation into the myocyte membrane (see Figure 2 for the potent mechanisms of action of ether lipids on ion channels). Indeed, it has been demonstrated that n-3 PUFAs decrease the activity of NaV in cardiomyocytes, increasing the threshold of depolarization of the membrane potential and reducing the heart frequency (119, 120). The n-3 PUFAs modulate the activity of L-type calcium channels (from CaV) and NCX, reducing the cytosolic free calcium concentration and the excitability of myocytes, permitting them to prevent arrhythmias (121, 122). Several studies suggest that n-3 PUFAs also modulate the activity of the Kv11.1 channel, whose mutations can cause long QT syndrome, and Kv7 channels, which are potent vasodilators (123).

Same as observed in neurological disorders, cardiac diseases are the cause or the consequence of the changes of ELs and associated PUFAs, and all these data lead us to propose that these changes would have profound effects on ion channels that control cardiac excitation-contraction coupling leading to or exacerbating cardiac disorders (Figure 3).
ETHER LIPIDS AS REGULATORS OF ION CHANNELS IN CARCINOGENESIS AND METASTATIC DEVELOPMENT

History

At the end of the 1960s, an association between endogenous ELs and cancer had been described in many studies, first in order to characterize these lipids in tumor tissues and then to identify their lipid chain composition in the sn1, sn2 and sn3 positions of the glycerol. Snyder and Wood (8, 9, 124) described a higher amount of ELs in both rat and mouse tumor tissues compared to normal tissues. These results have been confirmed in a huge range of human tumors (125), such as in the lungs, liver and brain. For example, glioblastoma contained high quantities of Pls-Cho when compared to normal brain tissue (126, 127). Soodsma, Piantadosi and Snyder (128) observed that the higher content of ELs in tumors of rat liver compared to normal rat liver could be explained by the suppression of the activity of the ether cleavage system of ELs. Later, Howard et al. (10) showed a correlation between EL content and growth rate of rats bearing hepatomas in vivo and also in cell lines in vitro. In membranes of cancer cells, ELs can be metabolized into free FAs, for example, by the plasmalogen-selective PLA2, leading to FA release with biological activity. These pioneer studies led to an increased interest for this family of lipids in cancer, more precisely for Pls, that could be potential markers of carcinogenesis (129).

Quantification and composition of ether lipids and associated fatty acids in human cancer samples

Ether lipids
Several studies described changes in the content of ELs in the plasma of cancer patients compared to healthy subjects (Table 3). An increase in the content of PIs was observed in several types of tumors, such as lung, breast, gastric and prostate cancer (11, 130, 131). Interestingly, it was proposed that some specific lipids in the plasma could be used as specific biomarkers of prostate cancer, such as alkyl-glycerophosphocholine. Similar studies have been obtained for breast cancer (132). In some cases, a switch inside EL species composition was observed, and in pancreatic cancer, blood alkyl-glycerophosphocholine species decreased (compared to control patient blood) in benefit for PIs-Etn (133).

Surprisingly, in other types of cancers, such as oral squamous cell carcinoma and acute leukemia, the plasma content of some EL species appeared to decrease in advanced stages (134, 135). Table 3 reports and summarizes the quantity and the composition of ELs found in human tumors. In 2018, Messias et al. (12) reviewed studies on human gastrointestinal tumors and modification of PIs metabolism. Interestingly, the quantity of PIs varied with organ and disease progression. In an accurate way, Lopez et al. (136) reported alterations in the levels of PIs depending on colon cancer progression. In human breast cancer, ELs, more precisely PIs-Etn, are increased in tumors compared to normal tissues (137, 138).

Few studies have quantified PAF in tumors. One of them reported increased PAF in human breast tumors compared to normal tissues, but this increase was lost at advanced stages of the disease (139). Others available studies described PAF-R expression, which could be considered as a reflection of PAF-induced activity. In gastric adenocarcinoma, the PAF-R is mainly expressed in tumors with good prognosis (well-differentiated, small size and without metastases) (140). Such observations have also been observed in hepatocellular carcinoma (141). It is important to consider that PAF is a second messenger involved in the immune
system, and a loss of this lipid and its receptor in high-grade and invasive tumors could be the result of disturbed immunity in the context of cancer.

Associated fatty acids

FAs from the degradation of Pls, especially in blood samples, represent an interesting biomarker of breast, prostate and lung cancers, and their presence correlates with cancer aggressiveness (11).

In breast carcinogenesis, studies using a dietary questionnaire show an association between LA and reduction of breast cancer risk, as already observed in serum dosage. However, no association between LA content in breast adipose tissue and breast cancer risk has been observed (142). For ALA, studies reported by the French Agency of Food Safety are contradictory, and if a high level of ALA in adipose tissue is associated with a decreased risk of breast cancer (142, 143), most studies based on serum do not show any association. For longer-chain n-3 PUFAs (EPA and DHA), the dietary questionnaire data did not show any association between breast cancer risk and fish consumption. There are more studies based on several biological samples, such as serum or adipose tissue. Although contradictory, the majority of them show a negative association between DHA and EPA levels and breast cancer risk (142). Moreover, inflammatory breast cancers (144) and multifocality in breast cancer (145) are associated with low levels of EPA and/or DHA. In addition, a high n-3:n-6 ratio in breast adipose tissue is inversely associated with the risk of breast cancer (146). Interestingly, Bougnoux et al. reported that rather than a single FA, a composite indicator combining elevated monounsaturated and low n-6:n-3 FA ratio is associated with decreased breast cancer risk and propose the lipidome as a composite biomarker of the modifiable part of the risk of breast cancer (147, 148).
In prostate and colon carcinogenesis, most studies are based on data collected from dietary questionnaires. There are still few studies analyzing FA levels in biological samples (serum or adipose tissue). Although studies reported by the French Agency of Food Safety are contradictory, overall, there is no significant correlation between the consumption or dosage of different classes of FA and both prostate and colon cancer risk (142). However, in prostate cancer, it has been shown recently that LA and EPA quantified in peri-prostatic adipose tissue are inversely associated with cancer aggressiveness. Moreover, the same study observed that FA composition of the peri-prostatic adipose tissue and prostate cancer aggressiveness could depend on the ethno-geographical origin of patients (149).

In summary, currently, epidemiological studies and their contradictory results do not allow to answer conclusively whether FAs represent a risk (or a protective) factor for breast, prostate or colon cancer (142). These contradictory results can be explained by the use of different methods of analysis (food questionnaire or biological samples) and by the heterogeneity of the population, without stratification with some factors, such as age or ethno-geographical origin. Moreover, the FA composition of both adipose tissue and serum samples reflects dietary profiles over different time periods. Indeed, the serum FA composition reflects the last weeks (or months) diet, while the adipose tissue FA composition determines the long-term diet, due to its slow turnover. Therefore, adipose tissue better reflects dietary intake than the blood composition, especially for essential FAs (150). Thus, an association between alimentation and cancer development and progression could constitute a new tool for cancer prevention and/or adjuvant treatment. However, this remains quite unexplored.

Regulation of biological cancer cells properties by ether lipids and associated fatty acids

In vitro studies
ELs, PIs-Etn in particular, are present in a larger amount in some breast cancer cell lines than in non-cancer cell lines (137, 138), as well as in melanoma cells (13). The role of ELs in the biology of cancer cells has been mainly studied by modulating the enzymes of EL biosynthesis. AGPS represents one of the most studied enzymes in EL biology, and more precisely, in the cancer field. Recently, Benjamin et al., (13) showed that AGPS is overexpressed in breast tumors compared to normal tissues as well as in aggressive cancer cell lines compared to less aggressive ones in prostate, breast and melanoma models. Moreover, this enzyme participates in cell migration, invasion and proliferation, and some ELs can rescue cell migration in AGPS KO cells. This enzyme was found to be implied in epithelial to mesenchymal transition (EMT) of glioma and hepatocarcinoma cell lines, and its suppression leads to a decrease of key transcription factors implied in EMT, such as Snail or Twist (151). Moreover, this enzyme, through alkyl LPA and PGE2 pathways, increases cancer cell resistance to chemotherapy (14). Some chemical inhibitors of AGPS have been developed (152, 153), and they decrease cell migration and expression of EMT transcription factors. Moreover, GNPAT expression, which catalyzes the transformation of DHAP into acyl-DHAP, has been described as amplified in hepatocarcinoma and its suppression, in vivo, decreases tumor growth (154). Among ELs, PAF has been reported to increase cancer cell proliferation, migration and metastasis through its receptor in several cancers, such as prostate, breast, ovarian or skin cancers (155–162).

Contrary to ELs, FAs have been widely studied in several cancer cell lines and animal models. Thus, several FAs and their mechanisms of action have been described and elucidated in breast, prostate and colon cancers. In breast carcinogenesis, it has been shown that saturated FAs inhibit cell proliferation by inducing apoptosis (163, 164). Concerning OA, the results are more contradictory, but this FA seems to stimulate cell proliferation by activating the PI3K pathway (164, 165) in a dose-dependent manner (166). LA also stimulates cell proliferation, an effect
that depends on estrogens (167). For n-3 PUFAs, all data show anti-proliferative (37,42,45–48), pro-apoptotic (45–49), anti-migratory and anti-invasive effects (168, 169) of DHA, EPA, and ALA. The anti-proliferative effect of DHA is associated with a decrease of cyclin B1 phosphorylation (G1-S transition) (170) and Akt inhibition. Moreover, it was demonstrated that DHA and EPA increase in vitro cytotoxicity of anti-cancer agents, such as doxorubicin (171–173), docetaxel (174, 175), mitoxantrone (176) and paclitaxel (175, 177). The results depend mainly on the cell lines used and on the FA concentrations tested.

In prostate carcinogenesis, there are few in vitro studies. A recent one described a downregulation of the EMT pathway, mediated by calcium signaling (178), by EPA and LA, two PUFAs found in peri-prostatic adipose tissue, inversely correlated with the disease progression (149). Treatment with these two lipids resulted in a decrease of cancer cell migration, invasion and store-operated calcium entry, with a decrease of Zeb-1 expression, a key EMT transcription factor implied in prostate cancer progression (179). Some studies have reported the anti-proliferative, anti-migratory and pro-apoptotic effects of EPA and DHA (180–185) by inhibition of the Akt signaling pathway (186–188). It has also been shown that DHA improves the effectiveness of some treatments (celecoxib and docetaxel) (189, 190). In contrast, AA appears to promote the migration and invasion of PC3 prostate cancer cells (191, 192).

In colonic carcinogenesis, EPA and DHA have been shown to inhibit cell proliferation, in particular by arresting the G1 phase cell cycle. These lipids also induce cell apoptosis by inhibiting COX2/PGE2, PI3K/Akt and p38 pathways. ALA was found to have the same effects as its metabolites (EPA and DHA). For n-6 PUFAs, the results are more discordant. Indeed, some studies do not show any in vitro effect of n-6 PUFAs, while others studies show a protective effect of AA and LA by inducing cell apoptosis (for review Brandão and Ribeiro, 2018) (193).
In vivo studies

Studies on the role of ELs in tumor growth and metastasis in animal models are based on the knock-down of EL biosynthesis enzymes. In a rodent model of breast cancer, AGPS suppression in cancer cells led to a drastic decrease in tumor growth (13). The same conclusions were found after GNPAT suppression (154). Interestingly, the suppression of IIF-secreted PLA2, which degrades ELs, in fibroblasts injected into mice reduces the number of large skin tumors and decreases the quantity of LysoPls-Etn, which suggests an important role of Pls metabolites in skin carcinogenesis (194).

Studies on the role of FAs in animal models are mainly through FA-enriched oil diets, despite the difficulty to determine the most relevant control diet (isocaloric or isolipidic). In fact, this control diet could also affect the FA composition of animals, which could include some bias. In breast carcinogenesis, LA stimulates tumor growth and increases the frequency of murine or human mammary tumor metastases in mice. N-3 PUFAs, such as ALA, have been poorly studied but appear to inhibit mammary carcinogenesis. Long-chain n-3 PUFAs (EPA and DHA) are mainly provided by supplementation with fish oils. Compared with n-6 PUFAs, EPA and DHA not only inhibit tumor growth but also lung metastases (for review, Bougnoux and Menanteau, 2005) (195). They can also increase the effectiveness of several anti-cancer drugs (doxorubicin, epirubicin, and docetaxel) and have anti-angiogenic properties (196, 197). The quantities of n-3 and n-6 PUFAs need to be close to get the anti-tumor effects of n-3 PUFAs.

In prostate carcinogenesis, studies focus on the comparison between n-6 PUFAs and n-3 PUFAs. As described in mammary tumors, n-6 PUFAs were found to stimulate tumor growth in tumors transplanted from human prostate cells (198–201) or in spontaneous tumors from murine cells (202–205). In contrast, long-chain n-3 PUFAs inhibit tumor growth. The most
convincing example is the Kelavkar study, which showed a regime switch from n-6 to n-3 PUFAs induced a decrease in tumor growth previously induced by LA. On the contrary, the tumors grew more rapidly when the mice switched from an n-3 PUFAs enriched diet to an n-6 PUFAs enriched diet (201). The n-6:n-3 ratio of PUFAs is also important, since it leads to a reduction in tumor volume and an increase in cell apoptosis (206).

In colonic carcinogenesis, similar results were found to what has been observed in prostate and breast cancer studies. Indeed, compared to n-6 PUFAs, n-3 PUFAs inhibit tumor growth of both chemotherapy-induced and transplanted scenarios and also inhibit aberrant crypt formation (the most frequent risk marker used in colon cancer) and the formation of liver metastases. The protective effect of n-3 PUFAs is not observed when tumours are implanted at other sites, which shows the importance of the microenvironment of colon tumors. ALA also appears to have a protective effect, whereas OA has no effect (for review, Bougnoux and Menanteau, 2005) (195). In summary, in vivo studies show that n-6 PUFAs promote while n-3 PUFAs reduce breast, colon and prostate cancer development (195).

Ether lipids and associated PUFAs as regulators of ion channels implied in cancer cell migration and metastatic development

Ion channels regulating calcium signaling participate not only in several mechanisms implied in tumor development and progression but also in cancer cell migration and metastatic development. Thus, some CaVs, such as CaV1.3, are abnormally expressed in several cancers, such as prostate, ovarian, colon (207) and breast cancers (1) and participate in prostate and colon cell proliferation, migration and invasion (208). The same observations have been made for some TRP and SOC channels (Orai and TRP families) (209). Several studies described that associations between both potassium and calcium channels can also fuel these processes with
potassium channels acting as amplifiers of calcium entry. Gueguinou et al. described associations between calcium activated potassium channels and calcium channels, which control proliferation and migration of breast and prostate cancer cells (210). More precisely, we demonstrated that an association of the SK3 channel with the calcium channel Orai1 within cholesterol-rich nanodomains (also called lipid rafts) promotes constitutive calcium entry and breast cancer cell migration and metastasis in a metastatic rodent model (2). This association in cholesterol-rich nanodomains appears to be necessary, since channel delocalization outside these nanodomains decrease SK3-dependent constitutive calcium entry, cancer cell migration and metastatic development.

Interestingly, a synthetic EL we called Ohmline was found to decrease SK3 current, breast SK3-dependent constitutive calcium entry, cell migration and bone metastasis development (2). We demonstrated that this synthetic EL, by interacting with the carbonyl and phosphate groups of stearoylphosphatidylcholine, sphingomyelin and cholesterol can induce a membrane disorder (3). More precisely, it seems that Ohmline can change membrane lipid arrangement by competing with cholesterol, inhibiting its interactions with its binding sites. These observations could explain the observed delocalization of SK3 and Orai1 channels outside cholesterol-enriched nanodomains leading to the decrease of SK3 activity (2). These results can lean on the fact that SK3 activity is sensitive not only to cholesterol content in pig and rat arteries but also in breast and colorectal cancer cells, where its activity is decreased by MβCD (34, 211) and strongly associated with caveolin-rich domains (2, 211). We hypothesize that the presence of many cholesterol recognition/interaction amino acid consensus sequence (CRAC) domains, allowing tight interactions with cholesterol, on SK3 protein sequences could explain its sensitivity to cholesterol.

These observations are especially interesting, since endogenous ELs and cholesterol homeostasis appear to be tightly linked. In fact, Jiménez-Rojo and Riezman (212) reviewed
that a decrease of EL content decreased esterified cholesterol content, whereas an increase of PIs decreases the stability of squalene monooxygenase, a key enzyme of steroid biosynthesis. Moreover, the effects of ELs on cell membranes are closely linked to the concentration of sterols, which allow a better incorporation of high concentrations of ELs, leading to an increase of lipid interactions and membrane packing (213). We hypothesize that the presence of several ELs in cancer cell membranes can increase membrane packing, stabilizing SK3 and Orai1 channels within nanodomains enriched in cholesterol (see Figure 2 for the potent mechanisms of action of ether lipids on ion channels). In fact, we observed that in EL enriched breast cancer cells, SK3-dependent constitutive calcium entry and cell migration were enhanced (unpublished data). Thus, ELs could increase SK3 activity by stabilizing interactions between cholesterol and the SK3 channel. Moreover, we showed that PAF increases SK3 current by 30% (214), as well as several others channels we previously described. We can also consider that if SK3 has a XIP domain (as we discussed with the NCX exchanger), direct interactions between some ELs and SK3 should be possible, leading to a modulation of SK3 activity.

SK3 has also been described as associated with TRPC1 and Orai1 in colon cancer. This association led to an increase of SOCE, which mediates colon cancer cell migration. Interestingly, treatment with Ohmline decreased SK3 current and associated cell migration, showing that Ohmline’s effect is not limited to breast cancer cells (215).

In prostate cancer, SOCE mediated by SK3 after treatment with TGFβ is also sensitive to Ohmline, leading to a decrease of calcium entry and cancer cell migration. Interestingly, this pathway is also sensitive to EPA and LA: in fact, these lipids repress SK3 expression and calcium entry and cancer cell migration as a consequence. The main hypothesis is that EPA and LA can regulate SK3 and associated calcium channels at the plasma membrane, probably by dissociation of these complexes outside nanodomains enriched in cholesterol, where they are supposed to complex themselves (178). The effect of PUFAs is also found in breast cancer
cells, where AA and LA can reduce TRPC3 SOCE and associated cell proliferation and migration (216).

Same as observed in excitable cells pathologies, cancer could be the cause or the consequence of the changes of ELs and associated PUFAs. We propose that tumors changes of ELs would have profound effects on ion channels that control excitation-mobility coupling leading to exacerbation of cancer (Figure 4).

To conclude this review shows that EL and associated PUFAs are lipids that regulate ion channels in neurological, cardiac and cancer physiology. Interestingly, in pathologies such as Alzheimer’s and Parkinson’s diseases or myocardial infarction, EL homeostasis is dysregulated, which impairs the ion transportome. Thus, ELs and associated PUFAs start to be proposed and used as diagnostic tools and markers to follow disease progression, such as in Alzheimer’s disease. ELs are even suggested as therapeutic tools, especially via nutritional intervention in order to increase the EL pool in neurological disorders.

In cancer, endogenous EL rediscovery in these last years has lead to the development of new therapeutic tools and new diagnostic tools through lipidomic analysis of patient biopsies and blood samples. We can speculate that ELs and associated PUFAs may be used as predictive markers of activity or expression of ion channels and thus of cancer progression. We can propose that ELs and associated PUFAs could be used as supplemental interventions with potential EL inhibitors of some ion channels, such as the SK3 channel in breast cancer.
Data availability statement

All data are contained within the manuscript.
Acknowledgements / Grant Support

This study was supported by grants from the University of Tours, the “Région Centre-Val de Loire” “INSERM,” Canceropôle Grand Ouest, the “Ligue Nationale Contre le Cancer,” SATT Ouest Valorisation, the Association “CANCEN,” Tours’ Hospital oncology association “ACORT,” the “Institut National du Cancer” (INCa- PLBIO14-213) and des “ministères de l’Europe et des affaires étrangères et de l’enseignement supérieur, de la recherche et de l’innovation”. We thank Isabelle Domingo and Violetta Guérin for technical assistance and Catherine Leroy for secretarial support.
References

1. Cui, C., R. Merritt, L. Fu, and Z. Pan. 2017. Targeting calcium signaling in cancer therapy. *Acta Pharm Sin B*. **7**: 3–17.

2. Chantome, A., M. Potier-Cartereau, L. Clarysse, G. Fromont, S. Marionneau-Lambot, M. Gueguinou, J.-C. Pages, C. Collin, T. Oullier, A. Girault, F. Arbion, J.-P. Haelters, P.-A. Jaffres, M. Pinauld, P. Besson, V. Joulin, P. Bougnoux, and C. Vandier. 2013. Pivotal Role of the Lipid Raft SK3-Orai1 Complex in Human Cancer Cell Migration and Bone Metastases. *Cancer Research*. **73**: 4852–4861.

3. Herrera, F. E., C. M. Sevrain, P.-A. Jaffrès, H. Couthon, A. Grélard, E. J. Dufourc, A. Chantôme, M. Potier-Cartereau, C. Vandier, and A. M. Bouchet. 2017. Singular Interaction between an Antimetastatic Agent and the Lipid Bilayer: The Ohmline Case. *ACS Omega*. **2**: 6361–6370.

4. Brohawn, S. G., Z. Su, and R. MacKinnon. 2014. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. *Proc Natl Acad Sci U S A*. **111**: 3614–3619.

5. Singh, D. K., A. Rosenhouse-Dantsker, C. G. Nichols, D. Enkvetchakul, and I. Levitan. 2009. Direct Regulation of Prokaryotic Kir Channel by Cholesterol. *J Biol Chem*. **284**: 30727–30736.

6. Alioua, A., R. Lu, Y. Kumar, M. Eghbali, P. Kundu, L. Toro, and E. Stefani. 2008. Slo1 caveolin-binding motif, a mechanism of caveolin-1-Slo1 interaction regulating Slo1 surface expression. *J. Biol. Chem*. **283**: 4808–4817.
7. Magnusson, C. D., and G. G. Haraldsson. 2011. Ether lipids. *Chemistry and Physics of Lipids*. **164**: 315–340.

8. Snyder, F. 1969. Alkyl and Alk-1-enyl Ethers of Glycerol in Lipids from Normal and Neoplastic Human Tissues’. 8.

9. Snyder, F., and R. Wood. 1968. The Occurrence and Metabolism of Alkyl and Alk-1-enyl Ethers of Glycerol in Transplantable Rat and Mouse Tumors. **28**: 8.

10. Howard, B. V., H. P. Morris, and J. M. Bailey. 1972. Ether-Lipids, a-Glycerol Phosphate Dehydrogenase, and Growth Rate in Tumors and Cultured Cells. 7.

11. Smith, R. E., P. Lespi, M. Di Luca, C. Bustos, F. A. Marra, M. J. T. de Alaniz, and C. A. Marra. 2008. A Reliable Biomarker Derived from Plasmalogens to Evaluate Malignancy and Metastatic Capacity of Human Cancers. *Lipids*. **43**: 79–89.

12. Messias, M. C. F., G. C. Mecatti, D. G. Priolli, and P. de Oliveira Carvalho. 2018. Plasmalogen lipids: functional mechanism and their involvement in gastrointestinal cancer. *Lipids Health Dis*. **17**: 41.

13. Benjamin, D. I., A. Cozzo, X. Ji, L. S. Roberts, S. M. Louie, M. M. Mulvihill, K. Luo, and D. K. Nomura. 2013. Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. *Proceedings of the National Academy of Sciences*. **110**: 14912–14917.

14. Zhu, Y., X.-J. Liu, P. Yang, M. Zhao, L.-X. Lv, G.-D. Zhang, Q. Wang, and L. Zhang. 2014. Alkylglyceronephosphate Synthase (AGPS) Alters Lipid Signaling Pathways
and Supports Chemotherapy Resistance of Glioma and Hepatic Carcinoma Cell Lines. *Asian Pacific Journal of Cancer Prevention*. **15**: 3219–3226.

15. Braverman, N. E., and A. B. Moser. 2012. Functions of plasmalogen lipids in health and disease. *Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease*. **1822**: 1442–1452.

16. Horrocks, L. A., M. VanRollins, and A. J. Yates. 1981. In *The molecular basis of neuropathology* (Davison, A. N., and Thompson, R. H. S., eds.). Edward Arnold, pp. 601–30., Arnold, London.

17. Farooqui, A. A., and L. A. Horrocks. 2001. Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. *Neuroscientist*. **7**: 232–245.

18. da Silva, T. F., V. F. Sousa, A. R. Malheiro, and P. Brites. 2012. The importance of ether-phospholipids: A view from the perspective of mouse models. *Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease*. **1822**: 1501–1508.

19. Khan, M., J. Singh, and I. Singh. 2008. Plasmalogen deficiency in cerebral adrenoleukodystrophy and its modulation by lovastatin. *J. Neurochem*. **106**: 1766–1779.

20. Brodde, A., A. Teigler, B. Brugger, W. D. Lehmann, F. Wieland, J. Berger, and W. W. Just. 2012. Impaired neurotransmission in ether lipid-deficient nerve terminals. *Hum. Mol. Genet*. **21**: 2713–2724.
21. Glaser, P. E., and R. W. Gross. 1994. Plasmenylethanolamine facilitates rapid membrane fusion: a stopped-flow kinetic investigation correlating the propensity of a major plasma membrane constituent to adopt an HII phase with its ability to promote membrane fusion. *Biochemistry*. **33**: 5805–5812.

22. Dorninger, F., S. Forss-Petter, and J. Berger. 2017. From peroxisomal disorders to common neurodegenerative diseases - the role of ether phospholipids in the nervous system. *FEBS Letters*. **591**: 2761–2788.

23. Munn, N. J., E. Arnio, D. Liu, R. A. Zoeller, and L. Liscum. 2003. Deficiency in ethanolamine plasmalogen leads to altered cholesterol transport. *Journal of Lipid Research*. **44**: 182–192.

24. Bazan, N. G. 2003. Synaptic lipid signaling significance of polyunsaturated fatty acids and platelet-activating factor. *J. Lipid Res.* **44**: 2221–2233.

25. Jo, D. S., and D.-H. Cho. 2019. Peroxisomal dysfunction in neurodegenerative diseases. *Arch. Pharm. Res.* **42**: 393–406.

26. Bennett, S. A. L., N. Valenzuela, H. Xu, B. Franko, S. Fai, and D. Figeys. 2013. Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer’s Disease. *Front Physiol*. **4**, [online] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712192/ (Accessed August 17, 2019).

27. Su, X. Q., J. Wang, and A. J. Sinclair. 2019. Plasmalogens and Alzheimer’s disease: a review. *Lipids Health Dis.* **18**: 100.
28. Wood, P. L., R. Mankidy, S. Ritchie, D. Heath, J. A. Wood, J. Flax, and D. B. Goodenowe. 2010. Circulating plasmalogen levels and Alzheimer Disease Assessment Scale-Cognitive scores in Alzheimer patients. *J Psychiatry Neurosci.* **35**: 59–62.

29. Che, H., Q. Li, T. Zhang, L. Ding, L. Zhang, H. Shi, T. Yanagita, C. Xue, Y. Chang, and Y. Wang. 2018. A comparative study of EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine on Aβ42 induced cognitive deficiency in a rat model of Alzheimer’s disease. *Food Funct.* **9**: 3008–3017.

30. Miville-Godbout, E., M. Bourque, M. Morissette, S. Al-Sweidi, T. Smith, A. Mochizuki, V. Senanayake, D. Jayasinghe, L. Wang, D. Goodenowe, and T. Di Paolo. 2016. Plasmalogen Augmentation Reverses Striatal Dopamine Loss in MPTP Mice. *PLoS One.* **11**. [online] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784967/ (Accessed August 5, 2019).

31. Dorninger, F., T. König, P. Scholze, M. L. Berger, G. Zeitler, C. Wiesinger, A. Gundacker, D. D. Pollak, S. Huck, W. W. Just, S. Forss-Petter, C. Piffl, and J. Berger. 2019. Disturbed neurotransmitter homeostasis in ether lipid deficiency. *Hum. Mol. Genet.* **28**: 2046–2061.

32. Wood, P. L., and N. R. Holderman. 2015. Dysfunctional glycosynapses in schizophrenia: disease and regional specificity. *Schizophr. Res.* **166**: 235–237.
33. Vergara, C., R. Latorre, N. V. Marrion, and J. P. Adelman. 1998. Calcium-activated potassium channels. *Current Opinion in Neurobiology*. **8**: 321–329.

34. Gueguinou, M., D. Crottès, A. Chantôme, R. Rapetti-Mauss, M. Potier-Cartereau, L. Clarysse, A. Girault, Y. Fourbon, P. Jézéquel, C. Guérin-Charbonnel, G. Fromont, P. Martin, B. Pellissier, R. Schiappa, E. Chamorey, O. Mignen, A. Uguen, F. Borgese, C. Vandier, and O. Soriani. 2017. The SigmaR1 chaperone drives breast and colorectal cancer cell migration by tuning SK3-dependent Ca2+ homeostasis. *Oncogene*. **36**: 3640–3647.

35. Teigler, A., D. Komljenovic, A. Draguhn, K. Gorgas, and W. W. Just. 2009. Defects in myelination, paranode organization and Purkinje cell innervation in the ether lipid-deficient mouse cerebellum. *Hum. Mol. Genet*. **18**: 1897–1908.

36. Périchon, R., A. B. Moser, W. C. Wallace, S. C. Cunningham, G. S. Roth, and H. W. Moser. 1998. Peroxisomal disease cell lines with cellular plasmalogen deficiency have impaired muscarinic cholinergic signal transduction activity and amyloid precursor protein secretion. *Biochem. Biophys. Res. Commun.* **248**: 57–61.

37. Dorninger, F., R. Herbst, B. Kravic, B. Z. Camuradanoglu, I. Macinkovic, G. Zeitler, S. Forss-Petter, S. Strack, M. M. Khan, H. R. Waterham, R. Rudolf, S. Hashemolhosseini, and J. Berger. 2017. Reduced muscle strength in ether lipid-deficient mice is accompanied by altered development and function of the neuromuscular junction. *J. Neurochem*. **143**: 569–583.
38. Wang, X., J. H. Bae, S. U. Kim, and J. G. McLarnon. 1999. Platelet-activating factor induced Ca(2+) signaling in human microglia. *Brain Res.* **842**: 159–165.

39. Kornecki, E., and Y. H. Ehrlich. 1988. Neuroregulatory and neuropathological actions of the ether-phospholipid platelet-activating factor. *Science*. **240**: 1792–1794.

40. Gressens, P., M. Baes, P. Leroux, A. Lombet, P. Van Veldhoven, A. Janssen, J. Vamecq, S. Marret, and P. Evrard. 2000. Neuronal migration disorder in Zellweger mice is secondary to glutamate receptor dysfunction. *Ann. Neurol.* **48**: 336–343.

41. Brailoiu, E., C. L. Barlow, S. H. Ramirez, M. E. Abood, and G. C. Brailoiu. 2018. Effects of Platelet-Activating Factor on Brain Microvascular Endothelial Cells. *Neuroscience*. **377**: 105–113.

42. Bazan, N. G., B. Tu, and E. B. Rodriguez de Turco. 2002. *In Progress in Brain Research Do seizures damage the brain.* pp. 175–185., Elsevier. [online]
http://www.sciencedirect.com/science/article/pii/S0079612302350179 (Accessed August 3, 2019).

43. Simopoulos, A. P. 1991. Omega-3 fatty acids in health and disease and in growth and development. *Am. J. Clin. Nutr.* **54**: 438–463.

44. Young, G., and J. Conquer. 2005. Omega-3 fatty acids and neuropsychiatric disorders. *Reprod. Nutr. Dev.* **45**: 1–28.

45. Williams, E. J., F. S. Walsh, and P. Doherty. 1994. The production of arachidonic acid can account for calcium channel activation in the second messenger
pathway underlying neurite outgrowth stimulated by NCAM, N-cadherin, and L1. *J. Neurochem.* **62**: 1231–1234.

46. Poling, J. S., S. Vicini, M. A. Rogawski, and N. Salem. 1996. Docosahexaenoic acid block of neuronal voltage-gated K+ channels: subunit selective antagonism by zinc. *Neuropharmacology.* **35**: 969–982.

47. Seebungkert, B., and J. W. Lynch. 2002. Effects of polyunsaturated fatty acids on voltage-gated K+ and Na+ channels in rat olfactory receptor neurons. *Eur. J. Neurosci.* **16**: 2085–2094.

48. Zhu, M., C. H. Gelband, J. M. Moore, P. Posner, and C. Sumners. 1998. Angiotensin II type 2 receptor stimulation of neuronal delayed-rectifier potassium current involves phospholipase A2 and arachidonic acid. *J. Neurosci.* **18**: 679–686.

49. Fink, M., F. Lesage, F. Duprat, C. Heurteaux, R. Reyes, M. Fosset, and M. Lazdunski. 1998. A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. *EMBO J.* **17**: 3297–3308.

50. Liu, L., and A. R. Rittenhouse. 2000. Effects of arachidonic acid on unitary calcium currents in rat sympathetic neurons. *J. Physiol. (Lond.)* **525 Pt 2**: 391–404.

51. Kearns, S. D., and M. Haag. 2002. The effect of omega-3 fatty acids on Ca-ATPase in rat cerebral cortex. *Prostaglandins, Leukotrienes and Essential Fatty Acids.* **67**: 303–308.
52. Sisignano, M., D. L. H. Bennett, G. Geisslinger, and K. Scholich. 2014. TRP-channels as key integrators of lipid pathways in nociceptive neurons. *Prog. Lipid Res.* **53**: 93–107.

53. Vreugdenhil, M., C. Bruehl, R. A. Voskuyl, J. X. Kang, A. Leaf, and W. J. Wadman. 1996. Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. *Proc. Natl. Acad. Sci. U.S.A.* **93**: 12559–12563.

54. Vásquez, V., M. Krieg, D. Lockhead, and M. B. Goodman. 2014. Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. *Cell Rep.* **6**: 70–80.

55. Youssef, M., A. Ibrahim, K. Akashi, and M. S. Hossain. 2019. PUFA-Plasmalogens Attenuate the LPS-Induced Nitric Oxide Production by Inhibiting the NF-kB, p38 MAPK and JNK Pathways in Microglial Cells. *Neuroscience*. **397**: 18–30.

56. Farkas, E., M. C. de Wilde, A. J. Kiliaan, J. Meijer, J. N. Keijser, and P. G. M. Luiten. 2002. Dietary long chain PUFAs differentially affect hippocampal muscarinic 1 and serotonergic 1A receptors in experimental cerebral hypoperfusion. *Brain Res.* **954**: 32–41.

57. Phillis, J. W., F. G. Diaz, M. H. O’Regan, and J. G. Pilitsis. 2002. Effects of immunosuppressants, calcineurin inhibition, and blockade of endoplasmic reticulum calcium channels on free fatty acid efflux from the ischemic/reperfused rat cerebral cortex. *Brain Res.* **957**: 12–24.
58. Schwartz, R. D., and X. Yu. 1992. Inhibition of GABA-gated chloride channel function by arachidonic acid. *Brain Res.* **585**: 405–410.

59. Lauritzen, I., N. Blondeau, C. Heurteaux, C. Widmann, G. Romey, and M. Lazdunski. 2000. Polyunsaturated fatty acids are potent neuroprotectors. *EMBO J.* **19**: 1784–1793.

60. Heurteaux, C., N. Guy, C. Laigle, N. Blondeau, F. Duprat, M. Mazzuca, L. Lang-Lazdunski, C. Widmann, M. Zanzouri, G. Romey, and M. Lazdunski. 2004. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. *EMBO J.* **23**: 2684–2695.

61. Akopian, A. N., N. B. Ruparel, N. A. Jeske, and K. M. Hargreaves. 2007. Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. *J. Physiol. (Lond.)* **583**: 175–193.

62. Motter, A. L., and G. P. Ahern. 2012. TRPA1 is a polyunsaturated fatty acid sensor in mammals. *PLoS ONE.* **7**: e38439.

63. Park, C.-K., Z.-Z. Xu, T. Liu, N. Lü, C. N. Serhan, and R.-R. Ji. 2011. Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct roles of resolvin D1, D2, and E1. *J. Neurosci.* **31**: 18433–18438.

64. Smith, E. S., H. Cadiou, and P. A. McNaughton. 2007. Arachidonic acid potentiates acid-sensing ion channels in rat sensory neurons by a direct action. *Neuroscience.* **145**: 686–698.
65. Marra, S., R. Ferru-Clément, V. Breuil, A. Delaunay, M. Christin, V. Friend, S. Sebille, C. Cognard, T. Ferreira, C. Roux, L. Euler-Ziegler, J. Noel, E. Lingueglia, and E. Deval. 2016. Non-acidic activation of pain-related Acid-Sensing Ion Channel 3 by lipids. *EMBO J.* **35**: 414–428.

66. Gross, R. W. 1984. High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: a fast atom bombardment mass spectroscopic and gas chromatography-mass spectroscopic characterization. *Biochemistry.* **23**: 158–165.

67. Panganamala, R. V., L. A. Horrocks, J. C. Geer, and D. G. Cornwell. 1971. Positions of double bonds in the monounsaturated alk-1-enyl groups from the plasmalogens of human heart and brain. *Chem. Phys. Lipids.* **6**: 97–102.

68. Maulik, N., D. Bagchi, R. Jones, G. Cordis, and D. K. Das. 1993. Identification and characterization of plasmalogen fatty acids in swine heart. *J Pharm Biomed Anal.* **11**: 1151–1156.

69. Maulik, N., D. Bagchi, W. J. Ihm, G. A. Cordis, and D. K. Das. 1995. Fatty acid profiles of plasmalogen choline and ethanolamine glycerophospholipids in pig and rat hearts. *J Pharm Biomed Anal.* **14**: 49–56.

70. Gross, R. W. 1985. Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum. *Biochemistry.* **24**: 1662–1668.
71. Ford, D. A., and C. C. Hale. 1996. Plasmalogen and anionic phospholipid dependence of the cardiac sarcolemmal sodium-calcium exchanger. *FEBS Lett.* **394**: 99–102.

72. Hughes, B. P., and F. F. Frais. 1967. Changes in Plasmalogen Content of Human Heart and Skeletal Muscle with Age and Development. *Nature.* **215**: 993–994.

73. Moxon, J. V., R. E. Jones, G. Wong, J. M. Weir, N. A. Mellett, B. A. Kingwell, P. J. Meikle, and J. Golledge. 2017. Baseline serum phosphatidylcholine plasmalogen concentrations are inversely associated with incident myocardial infarction in patients with mixed peripheral artery disease presentations. *Atherosclerosis.* **263**: 301–308.

74. Davies, N. J., R. Schulz, P. M. Olley, K. D. Strynadka, D. L. Panas, and G. D. Lopaschuk. 1992. Lysoplasmynylethanolamine accumulation in ischemic/reperfused isolated fatty acid-perfused hearts. *Circ. Res.* **70**: 1161–1168.

75. Ford, D. A., and R. W. Gross. 1989. Differential accumulation of diacyl and plasmalogenic diglycerides during myocardial ischemia. *Circ. Res.* **64**: 173–177.

76. Ford, D. A., S. L. Hazen, J. E. Saffitz, and R. W. Gross. 1991. The rapid and reversible activation of a calcium-independent plasmalogen-selective phospholipase A2 during myocardial ischemia. *J. Clin. Invest.* **88**: 331–335.

77. Hazen, S. L., D. A. Ford, and R. W. Gross. 1991. Activation of a membrane-associated phospholipase A2 during rabbit myocardial ischemia which is highly selective for plasmalogen substrate. *J. Biol. Chem.* **266**: 5629–5633.
78. Caldwell, R. A., and C. M. Baumgarten. 1998. Plasmalogen-derived lysolipid induces a depolarizing cation current in rabbit ventricular myocytes. *Circ. Res.* **83**: 533–540.

79. Maulik, N., A. Tosaki, R. M. Engelman, G. A. Cordis, and D. K. Das. 1994. Myocardial salvage by chimyl alcohol: possible role of peroxisomal dysfunction in reperfusion injury. *Ann. N. Y. Acad. Sci.* **723**: 380–384.

80. Jenkins, C. M., K. Yang, G. Liu, S. H. Moon, B. G. Dilthey, and R. W. Gross. 2018. Cytochrome c is an oxidative stress-activated plasmalogenase that cleaves plasmenylcholine and plasmenylethanolamine at the sn-1 vinyl ether linkage. *J. Biol. Chem.* **293**: 8693–8709.

81. Graessler, J., D. Schwudke, P. E. H. Schwarz, R. Herzog, A. Shevchenko, and S. R. Bornstein. 2009. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. *PLoS ONE* **4**: e6261.

82. Buddecke, E., and G. Andresen. 1959. [Studies on the chemistry of the arterial wall. IV. Quantitative determination of the acetalphosphatides (plasmalogens) in human aorta with consideration to arteriosclerosis]. *Hoppe-Seyler's Z. Physiol. Chem.* **314**: 38–45.

83. Rasmiena, A. A., C. K. Barlow, N. Stefanovic, K. Huynh, R. Tan, A. Sharma, D. Tull, J. B. de Haan, and P. J. Meikle. 2015. Plasmalogen modulation attenuates atherosclerosis in ApoE- and ApoE/GPx1-deficient mice. *Atherosclerosis* **243**: 598–608.
84. Vecchini, A., F. Del Rosso, L. Binaglia, N. S. Dhall, and V. Panagia. 2000. Molecular defects in sarcolemmal glycerophospholipid subclasses in diabetic cardiomyopathy. *J. Mol. Cell. Cardiol.* **32**: 1061–1074.

85. Corr, P. B., B. I. Lee, and B. E. Sobel. 1981. Electrophysiological and biochemical derangements in ischemic myocardium: interactions involving the cell membrane. *Acta Med. Scand. Suppl.* **651**: 59–69.

86. Katz, A. M., and F. C. Messineo. 1981. Lipids and membrane function: implications in arrhythmias. *Hosp. Pract. (Off. Ed.)* **16**: 49–59.

87. Williams, S. D., and D. A. Ford. 1997. Activation of myocardial cAMP-dependent protein kinase by lysoplasmensylcholine. *FEBS Lett.* **420**: 33–38.

88. Clarysse, L., M. Guéguinou, M. Potier-Cartereau, G. Vandecasteele, P. Bougnoux, S. Chevalier, A. Chantôme, and C. Vandier. 2014. cAMP–PKA inhibition of SK3 channel reduced both Ca2+ entry and cancer cell migration by regulation of SK3–Orai1 complex. *Pflügers Archiv - European Journal of Physiology.* **466**: 1921–1932.

89. Zhang, X.-D., V. Timofeyev, N. Li, R. E. Myers, D.-M. Zhang, A. Singapuri, V. C. Lau, C. T. Bond, J. Adelman, D. K. Lieu, and N. Chiamvimonvat. 2014. Critical roles of a small conductance Ca2+-activated K+ channel (SK3) in the repolarization process of atrial myocytes. *Cardiovasc. Res.* **101**: 317–325.

90. Skibsbye, L., C. Poulet, J. G. Diness, B. H. Bentzen, L. Yuan, U. Kappert, K. Matschke, E. Wettwer, U. Ravens, M. Grunnet, T. Christ, and T. Jespersen. 2014. Small-conductance calcium-activated potassium (SK) channels contribute to
action potential repolarization in human atria. *Cardiovasc. Res.* **103**: 156–167.

91. Ling, T.-Y., X.-L. Wang, Q. Chai, T.-W. Lau, C. M. Koestler, S. J. Park, R. C. Daly, K. L. Greason, J. Jen, L.-Q. Wu, W.-F. Shen, W.-K. Shen, Y.-M. Cha, and H.-C. Lee. 2013. Regulation of the SK3 channel by microRNA-499—potential role in atrial fibrillation. *Heart Rhythm.*** **10**: 1001–1009.

92. Ottolia, M., N. Torres, J. H. B. Bridge, K. D. Philipson, and J. I. Goldhaber. 2013. Na/Ca exchange and contraction of the heart. *J. Mol. Cell. Cardiol.*** **61**: 28–33.

93. Hale, C. C., E. G. Ebeling, F. F. Hsu, and D. A. Ford. 1998. The selective activation of the cardiac sarcolemmal sodium-calcium exchanger by plasmalogenic phosphatidic acid produced by phospholipase D. *FEBS Lett.* **422**: 247–251.

94. Benveniste, J., C. Boullet, C. Brink, and C. Labat. 1983. The actions of Paf-acether (platelet-activating factor) on guinea-pig isolated heart preparations. *Br. J. Pharmacol.* **80**: 81–83.

95. Tao, Y. K., S. P. Zhao, P. L. Yu, J. Shi, C. D. Gu, H. T. Sun, and G. Q. Zhang. 2013. Elevated platelet activating factor level in ischemia-related arrhythmia and its electrophysiological effect on myocardium. *Biomed. Environ. Sci.* **26**: 365–370.

96. Pietsch, P., T. Hunger, M. Braun, A. Roediger, G. Baumann, and S. B. Felix. 1998. Effects of Platelet-Activating Factor on Intracellular Ca2+ Concentration and
Contractility in Isolated Cardiomyocytes: *Journal of Cardiovascular Pharmacology*. **31**: 758–763.

97. Gollasch, M., V. Ignatieva, E. Kobrinsky, E. Vornovitsky, and L. Zaborovskaya. 1991. Electrophysiological mechanisms responsible for the action of PAF in guinea-pig myocardium. Relation to the putative membrane signalling processes of PAF. *J Lipid Mediat.* **3**: 139–159.

98. Du, Y.-M., M. Tang, C.-J. Liu, Q.-M. Ke, H.-Y. Luo, and X.-W. Hu. 2004. Effects of platelet activating factor on action potentials and potassium channels in guinea-pig ventricular myocytes. *Sheng Li Xue Bao*. **56**: 282–287.

99. Kecskeméti, V., and I. Balogh. 2000. The role of platelet-activating factor (PAF) antagonists and nitric oxide in cardiac actions of PAF. Electrophysiological and morphological study. *J. Physiol. Pharmacol.* **51**: 723–735.

100. Barbuti, A., S. Ishii, T. Shimizu, R. B. Robinson, and S. J. Feinmark. 2002. Block of the background K(+) channel TASK-1 contributes to arrhythmogenic effects of platelet-activating factor. *Am. J. Physiol. Heart Circ. Physiol.* **282**: H2024–2030.

101. Besana, A., A. Barbuti, M. A. Tateyama, A. J. Symes, R. B. Robinson, and S. J. Feinmark. 2004. Activation of protein kinase C epsilon inhibits the two-pore domain K+ channel, TASK-1, inducing repolarization abnormalities in cardiac ventricular myocytes. *J. Biol. Chem.* **279**: 33154–33160.

102. Penna, C., B. Mognetti, F. Tullio, D.Gattullo, D. Mancardi, P. Pagliaro, and G. Alloatti. 2008. The platelet activating factor triggers preconditioning-like
cardioprotective effect via mitochondrial K-ATP channels and redox-sensitive signaling. *J. Physiol. Pharmacol.* **59**: 47–54.

103. Dyerberg, J., and H. O. Bang. 1979. HÆMOSTATIC FUNCTION AND PLATELET POLYUNSATURATED FATTY ACIDS IN ESKIMOS. *The Lancet.* **314**: 433–435.

104. Simopoulos, A. P. 2002. Omega-3 fatty acids and cardiovascular disease: The epidemiological evidence. *Environmental Health and Preventive Medicine.* **6**: 203–209.

105. Stamenkovic, A., R. Ganguly, M. Aliani, A. Ravandi, and G. N. Pierce. 2019. Overcoming the Bitter Taste of Oils Enriched in Fatty Acids to Obtain Their Effects on the Heart in Health and Disease. *Nutrients.* **11**: 1179.

106. Connor, W. E. 2000. Importance of n−3 fatty acids in health and disease. *The American Journal of Clinical Nutrition.* **71**: 171S-175S.

107. Torrejon, C., U. J. Jung, and R. J. Deckelbaum. 2007. n-3 Fatty acids and cardiovascular disease: Actions and molecular mechanisms. *Prostaglandins, Leukotrienes and Essential Fatty Acids.* **77**: 319–326.

108. Marventano, S., P. Kolacz, S. Castellano, F. Galvano, S. Buscemi, A. Mistretta, and G. Grosso. 2015. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: does the ratio really matter? *International Journal of Food Sciences and Nutrition.* **66**: 611–622.
109. Burns, J. L., M. T. Nakamura, and D. W. L. Ma. 2018. Differentiating the biological effects of linoleic acid from arachidonic acid in health and disease. *Prostaglandins, Leukotrienes and Essential Fatty Acids*. **135**: 1–4.

110. Kark, J. D., N. A. Kaufmann, F. Binka, N. Goldberger, and E. M. Berry. 2003. Adipose tissue n−6 fatty acids and acute myocardial infarction in a population consuming a diet high in polyunsaturated fatty acids. *The American Journal of Clinical Nutrition*. **77**: 796–802.

111. ERA-JUMP Study Group, J. Choo, H. Ueshima, J. D. Curb, C. Shin, R. W. Evans, A. El-Saed, T. Kadowaki, T. Okamura, K. Nakata, T. Otake, K. Miura, R. D. Abbott, K. Sutton-Tyrrell, D. Edmundowicz, L. H. Kuller, and A. Sekikawa. 2010. Serum n−6 fatty acids and lipoprotein subclasses in middle-aged men: the population-based cross-sectional ERA-JUMP Study. *The American Journal of Clinical Nutrition*. **91**: 1195–1203.

112. Michas, G., R. Micha, and A. Zampelas. 2014. Dietary fats and cardiovascular disease: Putting together the pieces of a complicated puzzle. *Atherosclerosis*. **234**: 320–328.

113. Hammad, S., S. Pu, and P. J. Jones. 2016. Current Evidence Supporting the Link Between Dietary Fatty Acids and Cardiovascular Disease. *Lipids*. **51**: 507–517.

114. Vonschacky, C., and W. Harris. 2007. Cardiovascular benefits of omega-3 fatty acids. *Cardiovascular Research*. **73**: 310–315.
115. Sacks, F. M., A. H. Lichtenstein, J. H. Y. Wu, L. J. Appel, M. A. Creager, P. M. Kris-Etherton, M. Miller, E. B. Rimm, L. L. Rudel, J. G. Robinson, N. J. Stone, and L. V. Van Horn. 2017. Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. *Circulation* **136**. [online] https://www.ahajournals.org/doi/10.1161/CIR.0000000000000510 (Accessed October 19, 2019).

116. Lopaschuk, G. D. 2017. Metabolic Modulators in Heart Disease: Past, Present, and Future. *Canadian Journal of Cardiology* **33**: 838–849.

117. Liu, B., A. S. Clanachan, R. Schulz, and G. D. Lopaschuk. 1996. Cardiac Efficiency Is Improved After Ischemia by Altering Both the Source and Fate of Protons. *Circulation Research* **79**: 940–948.

118. Lopaschuk, G. D., R. Barr, P. D. Thomas, and J. R. B. Dyck. 2003. Beneficial Effects of Trimetazidine in Ex Vivo Working Ischemic Hearts Are Due to a Stimulation of Glucose Oxidation Secondary to Inhibition of Long-Chain 3-Ketoacyl Coenzyme A Thiolase. *Circulation Research* **93**. [online] https://www.ahajournals.org/doi/10.1161/01.RES.0000086964.07404.A5 (Accessed October 19, 2019).

119. Xiao, Y. F., J. X. Kang, J. P. Morgan, and A. Leaf. 1995. Blocking effects of polyunsaturated fatty acids on Na+ channels of neonatal rat ventricular myocytes. *Proceedings of the National Academy of Sciences* **92**: 11000–11004.

120. Leaf, A., J. X. Kang, Y.-F. Xiao, and G. E. Billman. 1999. n-3 fatty acids in the prevention of cardiac arrhythmias. *Lipids* **34**: S187–S189.
121. Mozaffarian, D., and J. H. Y. Wu. 2011. Omega-3 Fatty Acids and Cardiovascular Disease. *Journal of the American College of Cardiology*. 58: 2047–2067.

122. Endo, J., and M. Arita. 2016. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. *Journal of Cardiology*. 67: 22–27.

123. Elinder, F., and S. I. Liin. 2017. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels. *Frontiers in Physiology*. 8. [online] http://journal.frontiersin.org/article/10.3389/fphys.2017.00043/full (Accessed October 19, 2019).

124. Wood, R., and F. Snyder. 1967. Characterization and identification of glyceryl ether diesters present in tumor cells. *J. Lipid Res.* 8: 494–500.

125. Snyder, F., M. L. Blank, and H. P. Morris. 1969. Occurrence and nature of O-alkyl and O-alk-1-enyl moieties of glycerol in lipids of Morris transplanted hepatomas and normal rat liver. *Biochim. Biophys. Acta*. 176: 502–510.

126. Sun, G. Y., and B. S. Leung. 1974. Phospholipids and acyl groups of subcellular membrane fractions from human intracranial tumors. 9.

127. Albert, D. H., and C. E. Anderson. 1977. Ether-linked glycerolipids in human brain tumors. *Lipids*. 12: 188–192.

128. Soodsma, J. F., C. Piantadosi, and F. Snyder. 1970. The Biocleavage of Alkyl Glycerol Ethers in Morris Hepatomas and Other Transplantable Neoplasms’. 4.

129. Mangold, H., F. Paltauf, and J. Benviste. 1983. In *Biochemical and Biomedical Aspects*. Academic Press., New York.
130. Zhou, X., J. Mao, J. Ai, Y. Deng, M. R. Roth, C. Pound, J. Henegar, R. Welti, and S. A. Bigler. 2012. Identification of Plasma Lipid Biomarkers for Prostate Cancer by Lipidomics and Bioinformatics. *PLoS ONE*. 7: e48889.

131. Yang, H. 2015. Plasma Content Variation and Correlation of Plasmalogen and GIS, TC, and TPL in Gastric Carcinoma Patients: A Comparative Study. *Medical Science Monitor Basic Research*. 21: 157–160.

132. Chen, X., H. Chen, M. Dai, J. Ai, Y. Li, B. Mahon, S. Dai, and Y. Deng. 2016. Plasma lipidomics profiling identified lipid biomarkers in distinguishing early-stage breast cancer from benign lesions. *Oncotarget*. 7: 36622–36631.

133. Ritchie, S. A., H. Akita, I. Takemasa, H. Eguchi, E. Pastural, H. Nagano, M. Monden, Y. Doki, M. Mori, W. Jin, T. T. Sajobi, D. Jayasinghe, B. Chitou, Y. Yamazaki, T. White, and D. B. Goodenowwe. 2013. Metabolic system alterations in pancreatic cancer patient serum: potential for early detection. *BMC Cancer*. 13. [online] http://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-13-416 (Accessed May 28, 2019).

134. Wang, L., X. Wang, Y. Li, Y. Hou, F. Sun, S. Zhou, C. Li, and B. Zhang. 2017. Plasma lipid profiling and diagnostic biomarkers for oral squamous cell carcinoma. *Oncotarget*. 8: 92324–92332.

135. Kuliszkwicz-Janus, M., M. A. Tuz, and S. Baczyński. 2005. Application of 31P MRS to the analysis of phospholipid changes in plasma of patients with acute leukemia. *Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids*. 1737: 11–15.
136. Lopez, D. H., J. Bestard-Escalas, J. Garate, A. Maimó-Barceló, R. Fernández, R.
Reigada, S. Khorrami, D. Ginard, T. Okazaki, J. A. Fernández, and G. Barceló-
Coblijn. 2018. Tissue-selective alteration of ethanolamine plasmalogen
metabolism in dedifferentiated colon mucosa. Biochimica et Biophysica Acta
(BBA) - Molecular and Cell Biology of Lipids. 1863: 928–938.

137. Cífková, E., M. Holčapek, M. Lísa, D. Vrána, J. Gatěk, and B. Melichar. 2015.
Determination of lipidomic differences between human breast cancer and
surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate
data analysis. Analytical and Bioanalytical Chemistry. 407: 991–1002.

138. Cífková, E., M. Lísa, R. Hrstka, D. Vrána, J. Gatěk, B. Melichar, and M. Holčapek. 2017.
Correlation of lipidomic composition of cell lines and tissues of breast
cancer patients using hydrophilic interaction liquid
chromatography/electrospray ionization mass spectrometry and
multivariate data analysis: HILIC/ESI-MS of lipids in breast cell lines and
tumor tissues. Rapid Communications in Mass Spectrometry. 31: 253–263.

139. Pitton, C., M. Lanson, P. Besson, F. Fetissoff, J. Lansac, J. Benveniste, and P.
Bougnoux. 1989. Presence of PAF-acether in human breast carcinoma:
relation to axillary lymph node metastasis. J. Natl. Cancer Inst. 81: 1298–
1302.

140. Giaginis, C., E. Kourou, A. Giagini, N. Goutas, E. Patsouris, G. Kourakis, and S.
Theocharis. 2014. Platelet-activating factor (PAF) receptor expression is
associated with histopathological stage and grade and patients’ survival in
gastric adenocarcinoma. *Neoplasma.* **61**: 309–317.

141. Kitagawa, D., A. Taketomi, H. Kayashima, Y. Kuroda, S. Itoh, Y. Yamashita, and Y.
Maehara. 2007. Expression of Platelet-Activating Factor Receptor: A Novel
Prognosticator in Patients with Hepatocellular Carcinoma following
Hepatectomy. *OCL.* **72**: 381–387.

142. Afssa, and NACRe. 2003. Acides gras alimentaires et cancer : état des connaissances
et perspectives. Maisons-Alfort.

143. Klein, V., V. Chajès, E. Germain, G. Schulgen, M. Pinault, D. Malvy, T. Lefrancq, A.
Fignon, O. Le Floch, C. Lhuillery, and P. Bougnoux. 2000. Low alpha-linolenic
acid content of adipose breast tissue is associated with an increased risk of
breast cancer. *Eur. J. Cancer.* **36**: 335–340.

144. Chas, M., C. Goupille, F. Arbion, P. Bougnoux, M. Pinault, M. L. Jourdan, S. Chevalier,
and L. Ouldamer. 2019. Low eicosapentaenoic acid and gamma-linolenic
acid levels in breast adipose tissue are associated with inflammatory breast
cancer. *Breast.* **45**: 113–117.

145. Ouldamer, L., C. Goupille, A. Vildé, F. Arbion, G. Body, S. Chevalier, J. P. Cottier, and
P. Bougnoux. 2016. N-3 Polyunsaturated Fatty Acids of Marine Origin and
Multifocality in Human Breast Cancer. *PLoS ONE.* **11**: e0147148.

146. Maillard, V., P. Bougnoux, P. Ferrari, M.-L. Jourdan, M. Pinault, F. Lavillonière, G.
Body, O. Le Floch, and V. Chajès. 2002. N-3 and N-6 fatty acids in breast
adipose tissue and relative risk of breast cancer in a case-control study in Tours, France. *Int. J. Cancer.* **98**: 78–83.

147. Bougnoux, P., B. Giraudieu, and C. Couet. 2006. Diet, cancer, and the lipidome. *Cancer Epidemiol. Biomarkers Prev.* **15**: 416–421.

148. Bougnoux, P., N. Hajjaji, and C. Couet. 2008. The lipidome as a composite biomarker of the modifiable part of the risk of breast cancer. *Prostaglandins Leukot. Essent. Fatty Acids.* **79**: 93–96.

149. Figiel, S., M. Pinault, I. Domingo, C. Guimaraes, R. Guibon, P. Besson, E. Tavernier, P. Blanchet, L. Multigner, F. Bruyère, O. Haillot, R. Mathieu, S. Vincendeau, N. Rioux-Leclercq, S. Lebdai, A.-R. Azzouzi, M.-A. Perrouin-Verbe, G. Fournier, L. Doucet, J. Rigaud, K. Renaudin, K. Mahéo, and G. Fromont. 2018. Fatty acid profile in peri-prostatic adipose tissue and prostate cancer aggressiveness in African-Caribbean and Caucasian patients. *Eur. J. Cancer.* **91**: 107–115.

150. Hodson, L., C. M. Skeaff, and B. A. Fielding. 2008. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. *Prog. Lipid Res.* **47**: 348–380.

151. Zhu, Y., L. Zhu, L. Lu, L. Zhang, G. Zhang, Q. Wang, and P. Yang. 2014. Role and mechanism of the alkylglycerone phosphate synthase in suppressing the invasion potential of human glioma and hepatic carcinoma cells in vitro. *Oncology Reports.* **32**: 431–436.
152. Piano, V., D. I. Benjamin, S. Valente, S. Nenci, B. Marrocco, A. Mai, A. Aliverti, D. K. Nomura, and A. Mattevi. 2015. Discovery of Inhibitors for the Ether Lipid-Generating Enzyme AGPS as Anti-Cancer Agents. *ACS Chemical Biology*. **10**: 2589–2597.

153. Stazi, G., C. Battistelli, V. Piano, R. Mazzone, B. Marrocco, S. Marchese, S. M. Louie, C. Zwergel, L. Antonini, A. Patsilinakos, R. Ragno, M. Viviano, G. Sbardella, A. Ciogli, G. Fabrizi, R. Cirilli, R. Strippoli, A. Marchetti, M. Tripodi, D. K. Nomura, A. Mattevi, A. Mai, and S. Valente. 2019. Development of alkyl glycerone phosphate synthase inhibitors: Structure-activity relationship and effects on ether lipids and epithelial-mesenchymal transition in cancer cells. *Eur J Med Chem*. **163**: 722–735.

154. Gu, L., Y. Zhu, X. Lin, Y. Li, K. Cui, E. V. Prochownik, and Y. Li. 2018. Amplification of glyceronephosphate O-acyltransferase and recruitment of USP30 stabilize DRP1 to promote hepatocarcinogenesis. *Cancer Research*. canres.0340.2018.

155. Ji, W., J. Chen, Y. Mi, G. Wang, X. Xu, and W. Wang. 2016. Platelet-activating factor receptor activation promotes prostate cancer cell growth, invasion and metastasis via ERK1/2 pathway. *International Journal of Oncology*. **49**: 181–188.

156. Romer, E., A. Thyagarajan, S. Krishnamurthy, C. Rapp, L. Liu, K. Fahy, A. Awoyemi, and R. Sahu. 2018. Systemic Platelet-Activating Factor-Receptor Agonism Enhances Non-Melanoma Skin Cancer Growth. *International Journal of Molecular Sciences*. **19**: 3109.
157. Gao, T., Y. Yu, Q. Cong, Y. Wang, M. Sun, L. Yao, C. Xu, and W. Jiang. 2018. Human mesenchymal stem cells in the tumour microenvironment promote ovarian cancer progression: the role of platelet-activating factor. *BMC Cancer*. **18**. [online] https://bmccancer.biomedcentral.com/articles/10.1186/s12885-018-4918-0 (Accessed June 3, 2019).

158. Yu, Y., M. Zhang, X. Zhang, Q. Cai, Z. Zhu, W. Jiang, and C. Xu. 2014. Transactivation of epidermal growth factor receptor through platelet-activating factor/receptor in ovarian cancer cells. *Journal of Experimental & Clinical Cancer Research*. **33**. [online] http://jeccr.biomedcentral.com/articles/10.1186/s13046-014-0085-6 (Accessed June 3, 2019).

159. Anandi, V. L., K. A. Ashiq, K. Nitheesh, and M. Lahiri. 2016. Platelet-activating factor promotes motility in breast cancer cells and disrupts non-transformed breast acinar structures. *Oncology Reports*. **35**: 179–188.

160. Lu, J., Y. Xiao Yj, L. M. Baudhuin, G. Hong, and Y. Xu. 2002. Role of ether-linked lysophosphatidic acids in ovarian cancer cells. *J. Lipid Res*. **43**: 463–476.

161. Bussolati, B., L. Biancone, P. Cassoni, S. Russo, M. Rola-Pleszczynski, G. Montrucchio, and G. Camussi. 2000. PAF Produced by Human Breast Cancer Cells Promotes Migration and Proliferation of Tumor Cells and Neo-Angiogenesis. *The American Journal of Pathology*. **157**: 1713–1725.

162. Lordan, R., A. Tsoupras, and I. Zabetakis. 2019. The Potential Role of Dietary Platelet-Activating Factor Inhibitors in Cancer Prevention and Treatment. *Advances in Nutrition*. **10**: 148–164.
163. Bégin, M. E., and G. Ells. 1987. Effects of C18 fatty acids on breast carcinoma cells in culture. *Anticancer Res.* **7**: 215–217.

164. Hardy, S., Y. Langelier, and M. Prentki. 2000. Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. *Cancer Res.* **60**: 6353–6358.

165. Chajès, V., W. Sattler, A. Stranzl, and G. M. Kostner. 1995. Influence of n-3 fatty acids on the growth of human breast cancer cells in vitro: relationship to peroxides and vitamin-E. *Breast Cancer Res. Treat.* **34**: 199–212.

166. Rose, D. P., and J. M. Connolly. 1990. Effects of fatty acids and inhibitors of eicosanoid synthesis on the growth of a human breast cancer cell line in culture. *Cancer Res.* **50**: 7139–7144.

167. Rose, D., and J. Connoly. 1989. Stimulation of growth of human breast cancer cell lines in culture by linoleic acid. - PubMed - NCBI. *Biochemical and Biophysical Research Communications.* **164**: 277–83.

168. Xue, M., Q. Wang, J. Zhao, L. Dong, Y. Ge, L. Hou, Y. Liu, and Z. Zheng. 2014. Docosahexaenoic acid inhibited the Wnt/β-catenin pathway and suppressed breast cancer cells in vitro and in vivo. *J. Nutr. Biochem.* **25**: 104–110.

169. Wannous, R., E. Bon, L. Gillet, J. Chamouton, G. Weber, L. Brisson, J. Goré, P. Bougnoux, P. Besson, S. Roger, and S. Chevalier. 2015. Suppression of PPARβ, and DHA treatment, inhibit NaV1.5 and NHE-1 pro-invasive activities. *Pflugers Arch.* **467**: 1249–1259.
170. Barascu, A., P. Besson, O. Le Floch, P. Bougnoux, and M.-L. Jourdan. 2006. CDK1-cyclin B1 mediates the inhibition of proliferation induced by omega-3 fatty acids in MDA-MB-231 breast cancer cells. *Int. J. Biochem. Cell Biol.* 38: 196–208.

171. Germain, E., V. Chajès, S. Cognault, C. Lhuillery, and P. Bougnoux. 1998. Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MDA-MB-231: relationship to lipid peroxidation. *Int. J. Cancer.* 75: 578–583.

172. Mahéo, K., S. Vibet, J. P. Steghens, C. Dartigeas, M. Lehman, P. Bougnoux, and J. Goré. 2005. Differential sensitization of cancer cells to doxorubicin by DHA: a role for lipoperoxidation. *Free Radic. Biol. Med.* 39: 742–751.

173. Vibet, S., C. Goupille, P. Bougnoux, J.-P. Steghens, J. Goré, and K. Mahéo. 2008. Sensitization by docosahexaenoic acid (DHA) of breast cancer cells to anthracyclines through loss of glutathione peroxidase (GPx1) response. *Free Radic. Biol. Med.* 44: 1483–1491.

174. Chauvin, L., C. Goupille, C. Blanc, M. Pinault, I. Domingo, C. Guimaraes, P. Bougnoux, S. Chevalier, and K. Mahéo. 2016. Long chain n-3 polyunsaturated fatty acids increase the efficacy of docetaxel in mammary cancer cells by downregulating Akt and PKCε/δ-induced ERK pathways. *Biochim. Biophys. Acta.* 1861: 380–390.

175. Menendez, J. A., R. Lupu, and R. Colomer. 2005. Exogenous supplementation with omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA; 22:6n-3) synergistically enhances taxane cytotoxicity and downregulates Her-2/neu.
(c-erbB-2) oncogene expression in human breast cancer cells. *Eur. J. Cancer Prev.* **14**: 263–270.

176. Vibet, S., K. Mahéo, J. Goré, P. Dubois, P. Bougnoux, and I. Chourpa. 2007. Differential subcellular distribution of mitoxantrone in relation to chemosensitization in two human breast cancer cell lines. *Drug Metab. Dispos.* **35**: 822–828.

177. Wang, Z., K. Butt, L. Wang, and H. Liu. 2007. The effect of seal oil on paclitaxel induced cytotoxicity and apoptosis in breast carcinoma MCF-7 and MDA-MB-231 cell lines. *Nutr Cancer.* **58**: 230–238.

178. Figiel, S., F. Bery, A. Chantôme, D. Fontaine, C. Pasqualin, V. Maupoil, I. Domingo, R. Guibon, F. Bruyère, M. Potier-Cartereau, C. Vandier, G. Fromont, and K. Mahéo. 2019. A Novel Calcium-Mediated EMT Pathway Controlled by Lipids: An Opportunity for Prostate Cancer Adjuvant Therapy. *Cancers (Basel).* **11** [online] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896176/ (Accessed December 31, 2019).

179. Figiel, S., C. Vasseur, F. Bruyere, F. Rozet, K. Maheo, and G. Fromont. 2017. Clinical significance of epithelial-mesenchymal transition markers in prostate cancer. *Human Pathology.* **61**: 26–32.

180. Rose, D. P., and J. M. Connolly. 1991. Effects of fatty acids and eicosanoid synthesis inhibitors on the growth of two human prostate cancer cell lines. *Prostate.* **18**: 243–254.
181. Kelvkar, U. P., J. Hutzley, R. Dhir, P. Kim, K. G. D. Allen, and K. McHugh. 2006. Prostate tumor growth and recurrence can be modulated by the omega-6:omega-3 ratio in diet: athymic mouse xenograft model simulating radical prostatectomy. *Neoplasia*. 8: 112–124.

182. O’Flaherty, J. T., Y. Hu, R. E. Wooten, D. A. Horita, M. P. Samuel, M. J. Thomas, H. Sun, and I. J. Edwards. 2012. 15-lipoxygenase metabolites of docosahexaenoic acid inhibit prostate cancer cell proliferation and survival. *PLoS ONE*. 7: e45480.

183. Eser, P. O., J. P. Vanden Heuvel, J. Araujo, and J. T. Thompson. 2013. Marine- and plant-derived ω-3 fatty acids differentially regulate prostate cancer cell proliferation. *Mol Clin Oncol*. 1: 444–452.

184. Oono, K., K. Takahashi, S. Sukehara, H. Kurosawa, T. Matsumura, S. Taniguchi, and S. Ohta. 2017. Inhibition of PC3 human prostate cancer cell proliferation, invasion and migration by eicosapentaenoic acid and docosahexaenoic acid. *Mol Clin Oncol*. 7: 217–220.

185. Pan, J., S. Zhou, R. Xiang, Z. Zhao, S. Liu, N. Ding, S. Gong, Y. Lin, X. Li, X. Bai, F. Li, and A. Z. Zhao. 2017. An Ω-3 fatty acid desaturase-expressing gene attenuates prostate cancer proliferation by cell cycle regulation. *Oncol Lett*. 13: 3717–3721.

186. Friedrichs, W., S. B. Ruparel, R. A. Marciniak, and L. deGraffenried. 2011. Omega-3 fatty acid inhibition of prostate cancer progression to hormone independence is associated with suppression of mTOR signaling and androgen receptor expression. *Nutr Cancer*. 63: 771–777.
187. Shin, S., K. Jing, S. Jeong, N. Kim, K.-S. Song, J.-Y. Heo, J.-H. Park, K.-S. Seo, J. Han, J.-I. Park, G.-R. Kweon, S.-K. Park, T. Wu, B.-D. Hwang, and K. Lim. 2013. The omega-3 polyunsaturated fatty acid DHA induces simultaneous apoptosis and autophagy via mitochondrial ROS-mediated Akt-mTOR signaling in prostate cancer cells expressing mutant p53. *Biomed Res Int.* **2013**: 568671.

188. Gu, Z., J. Wu, S. Wang, J. Suburu, H. Chen, M. J. Thomas, L. Shi, I. J. Edwards, I. M. Berquin, and Y. Q. Chen. 2013. Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells. *Carcinogenesis.* **34**: 1968–1975.

189. Narayanan, N. K., B. A. Narayanan, and B. S. Reddy. 2005. A combination of docosahexaenoic acid and celecoxib prevents prostate cancer cell growth in vitro and is associated with modulation of nuclear factor-kappaB, and steroid hormone receptors. *Int. J. Oncol.* **26**: 785–792.

190. Shaikh, I. A. A., I. Brown, A. C. Schofield, K. W. J. Wahle, and S. D. Heys. 2008. Docosahexaenoic acid enhances the efficacy of docetaxel in prostate cancer cells by modulation of apoptosis: the role of genes associated with the NF-kappaB pathway. *Prostate.* **68**: 1635–1646.

191. Brown, M. D., C. Hart, E. Gazi, P. Gardner, N. Lockyer, and N. Clarke. 2010. Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancer. *Br. J. Cancer.* **102**: 403–413.
192. Brown, M., J.-A. Roulson, C. A. Hart, T. Tawadros, and N. W. Clarke. 2014. Arachidonic acid induction of Rho-mediated transendothelial migration in prostate cancer. *Br. J. Cancer*. **110**: 2099–2108.

193. Brandão, D., and L. Ribeiro. 2018. Dietary fatty acids modulation of human colon cancer cells: mechanisms and future perspectives. *Int J Food Sci Nutr.* **69**: 437–450.

194. Yamamoto, K., Y. Miki, M. Sato, Y. Taketomi, Y. Nishito, C. Taya, K. Muramatsu, K. Ikeda, H. Nakanishi, R. Taguchi, N. Kambe, K. Kabashima, G. Lambeau, M. H. Gelb, and M. Murakami. 2015. The role of group IIF-secreted phospholipase A₂ in epidermal homeostasis and hyperplasia. *The Journal of Experimental Medicine*. **212**: 1901–1919.

195. Bougnoux, P., and J. Menanteau. 2005. [Dietary fatty acids and experimental carcinogenesis]. *Bull Cancer*. **92**: 685–696.

196. Bougnoux, P., N. Hajjaji, K. Maheo, C. Couet, and S. Chevalier. 2010. Fatty acids and breast cancer: sensitization to treatments and prevention of metastatic regrowth. *Prog. Lipid Res.* **49**: 76–86.

197. Kornfeld, S., C. Goupille, S. Vibet, S. Chevalier, A. Pinet, J. Lebeau, F. Tranquart, P. Bougnoux, E. Martel, A. Maurin, S. Richard, P. Champeroux, and K. Mahéo. 2012. Reducing endothelial NOS activation and interstitial fluid pressure with n-3 PUFA offset tumor chemoresistance. *Carcinogenesis*. **33**: 260–267.
198. Clinton, S. K., and E. Giovannucci. 1998. Diet, nutrition, and prostate cancer. *Annu. Rev. Nutr.* **18**: 413–440.

199. Rose, D. P., and J. M. Connolly. 1992. Dietary fat, fatty acids and prostate cancer. *Lipids* **27**: 798–803.

200. Connolly, J. M., M. Coleman, and D. P. Rose. 1997. Effects of dietary fatty acids on DU145 human prostate cancer cell growth in athymic nude mice. *Nutr Cancer* **29**: 114–119.

201. Kelavkar, U. P., J. Hutzley, K. McHugh, K. G. D. Allen, and A. Parwani. 2009. Prostate tumor growth can be modulated by dietarily targeting the 15-lipoxygenase-1 and cyclooxygenase-2 enzymes. *Neoplasia* **11**: 692–699.

202. Berquin, I. M., Y. Min, R. Wu, J. Wu, D. Perry, J. M. Cline, M. J. Thomas, T. Thornburg, G. Kulik, A. Smith, I. J. Edwards, R. D’Agostino, H. Zhang, H. Wu, J. X. Kang, and Y. Q. Chen. 2007. Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. *J. Clin. Invest.* **117**: 1866–1875.

203. Wang, S., J. Wu, J. Suburu, Z. Gu, J. Cai, L. S. Axanova, S. D. Cramer, M. J. Thomas, D. L. Perry, I. J. Edwards, L. A. Mucci, J. A. Sinnott, M. F. Loda, G. Sui, I. M. Berquin, and Y. Q. Chen. 2012. Effect of dietary polyunsaturated fatty acids on castration-resistant Pten-null prostate cancer. *Carcinogenesis* **33**: 404–412.

204. Liang, P., S. M. Henning, S. Schokrpur, L. Wu, N. Doan, J. Said, T. Grogan, D. Elashoff, P. Cohen, and W. J. Aronson. 2016. Effect of Dietary Omega-3 Fatty Acids on
Tumor-Associated Macrophages and Prostate Cancer Progression. *Prostate*. **76**: 1293–1302.

205. Gevariya, N., M. Besançon, K. Robitaille, V. Picard, L. Diabaté, A. Alesawi, P. Julien, Y. Fradet, A. Bergeron, and V. Fradet. 2019. Omega-3 fatty acids decrease prostate cancer progression associated with an anti-tumor immune response in eugonadal and castrated mice. *Prostate*. **79**: 9–20.

206. Kobayashi, N., R. J. Barnard, S. M. Henning, D. Elashoff, S. T. Reddy, P. Cohen, P. Leung, J. Hong-Gonzalez, S. J. Freedland, J. Said, D. Gui, N. P. Seeram, L. M. Popoviciu, D. Bagga, D. Heber, J. A. Glaspy, and W. J. Aronson. 2006. Effect of altering dietary omega-6/omega-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase-2, and prostaglandin E2. *Clin. Cancer Res.* **12**: 4662–4670.

207. Fourbon, Y., M. Guéguinou, R. Félix, B. Constantin, A. Uguen, G. Fromont, L. Lajoie, C. Magaud, T. Lecomte, E. Chamorey, A. Chatelier, O. Mignen, M. Potier-Cartereau, A. Chantôme, P. Bois, and C. Vandier. 2017. Ca2+ protein alpha 1D of CaV1.3 regulates intracellular calcium concentration and migration of colon cancer cells through a non-canonical activity. *Sci Rep.* **7**: 14199.

208. Hu, S., L. Li, W. Huang, J. Liu, G. Lan, S. Yu, L. Peng, X. Xie, L. Yang, Y. Nian, and Y. Wang. 2018. CAV3.1 knockdown suppresses cell proliferation, migration and invasion of prostate cancer cells by inhibiting AKT. *Cancer Manag Res.* **10**: 4603–4614.

209. Zhong, T., X. Pan, J. Wang, B. Yang, and L. Ding. 2019. The regulatory roles of calcium channels in tumors. *Biochemical Pharmacology*. **169**: 113603.
210. Guéguinou, M., A. Chantôme, G. Fromont, P. Bougnoux, C. Vandier, and M. Potier-Cartereau. 2014. KCa and Ca2+ channels: The complex thought. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research*. **1843**: 2322–2333.

211. Absi, M., M. P. Burnham, A. H. Weston, E. Harno, M. Rogers, and G. Edwards. 2007. Effects of methyl β-cyclodextrin on EDHF responses in pig and rat arteries; association between SKCa channels and caveolin-rich domains. *Br J Pharmacol.* **151**: 332–340.

212. Jiménez-Rojo, N., and H. Riezman. 2019. On the road to unraveling the molecular functions of ether lipids. *FEBS Letters*. **593**: 2378–2389.

213. Flasiński, M., P. Wydro, K. Hąc-Wydro, and P. Dynarowicz-Łątka. 2013. Cholesterol as a factor regulating the influence of natural (PAF and lysoPAF) vs synthetic (ED) ether lipids on model lipid membranes. *Biochimica et Biophysica Acta (BBA) - Biomembranes*. **1828**: 2700–2708.

214. Girault, A., J.-P. Haelters, M. Potier-Cartereau, A. Chantome, M. Pinault, S. Marionneau-Lambot, T. Oullier, G. Simon, H. Couthon-Gourves, P.-A. Jaffres, B. Corbel, P. Bougnoux, V. Joulin, and C. Vandier. 2011. New Alkyl-Lipid Blockers of SK3 Channels Reduce Cancer Cell Migration and Occurrence of Metastasis. *Current Cancer Drug Targets*. **11**: 1111–1125.

215. Guéguinou, M., T. Harnois, D. Crottes, A. Uguen, N. Deliot, A. Gambade, A. Chantôme, J. P. Haelters, P. A. Jaffrès, M. L. Jourdan, G. Weber, O. Soriani, P. Bougnoux, O. Mignen, N. Bourmeyster, B. Constantin, T. Lecomte, C. Vandier, and M. Potier-Cartereau. 2016. SK3/TRPC1/Orai1 complex regulates SOCE-dependent colon cancer cell migration: a novel opportunity to modulate
anti-EGFR mAb action by the alkyl-lipid Ohmline. *Oncotarget*. 7. [online]
http://www.oncotarget.com/fulltext/8786 (Accessed January 8, 2019).

216. ZHANG, H., L. ZHOU, W. SHI, N. SONG, K. YU, and Y. GU. 2012. A mechanism
underlying the effects of polyunsaturated fatty acids on breast cancer. *Int J Mol Med.* 30: 487–494.

217. Han, X., D. M. Holtzman, and D. W. McKeel. 2001. Plasmalogen deficiency in early
Alzheimer’s disease subjects and in animal models: molecular
characterization using electrospray ionization mass spectrometry. *J. Neurochem.* 77: 1168–1180.

218. Guan, Z., Y. Wang, N. J. Cairns, P. L. Lantos, G. Dallner, and P. J. Sindelar. 1999.
Decrease and structural modifications of phosphatidylethanolamine
plasmalogen in the brain with Alzheimer disease. *J. Neuropathol. Exp. Neurol.* 58: 740–747.

219. Kou, J., G. G. Kovacs, R. Höftberger, W. Kulik, A. Brodde, S. Forss-Petter, S.
Hönigschnabl, A. Gleiss, B. Brügger, R. Wanders, W. Just, H. Budka, S.
Jungwirth, P. Fischer, and J. Berger. 2011. Peroxisomal alterations in
Alzheimer’s disease. *Acta Neuropathol.* 122: 271–283.

220. Igarashi, M., K. Ma, F. Gao, H.-W. Kim, S. I. Rapoport, and J. S. Rao. 2011. Disturbed
choline plasmalogen and phospholipid fatty acid concentrations in
Alzheimer’s disease prefrontal cortex. *J. Alzheimers Dis.* 24: 507–517.

221. Grimm, M. O. W., J. Kuchenbecker, T. L. Rothhaar, S. Grösgen, B. Hunsdörfer, V. K.
Burg, P. Friess, U. Müller, H. S. Grimm, M. Riemenschneider, and T.
Hartmann. 2011. Plasmalogen synthesis is regulated via alkyl-dihydroxyacetonephosphate-synthase by amyloid precursor protein processing and is affected in Alzheimer's disease. *Journal of Neurochemistry.* **116:** 916–925.

222. Pettegrew, J. W., K. Panchalingam, R. L. Hamilton, and R. J. McClure. 2001. Brain membrane phospholipid alterations in Alzheimer's disease. *Neurochem. Res.* **26:** 771–782.

223. Goodenowe, D. B., L. L. Cook, J. Liu, Y. Lu, D. A. Jayasinghe, P. W. K. Ahiahonu, D. Heath, Y. Yamazaki, J. Flax, K. F. Krenitsky, D. L. Sparks, A. Lerner, R. P. Friedland, T. Kudo, K. Kamino, T. Morihara, M. Takeda, and P. L. Wood. 2007. Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer’s disease and dementia. *J. Lipid Res.* **48:** 2485–2498.

224. Fabelo, N., V. Martín, G. Santpere, R. Marín, L. Torrent, I. Ferrer, and M. Díaz. 2011. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. *Mol. Med.* **17:** 1107–1118.

225. Wood, P. L., S. Tippireddy, J. Feriante, and R. L. Woltjer. 2018. Augmented frontal cortex diacylglycerol levels in Parkinson’s disease and Lewy Body Disease. *PLoS One.* **13.** [online] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841652/ (Accessed October 7, 2019).
226. Dragonas, C., T. Bertsch, C. C. Sieber, and T. Brosche. 2009. Plasmalogens as a marker of elevated systemic oxidative stress in Parkinson’s disease. *Clin. Chem. Lab. Med.* **47**: 894–897.

227. Ghosh, S., R. A. Dyer, and C. L. Beasley. 2017. Evidence for altered cell membrane lipid composition in postmortem prefrontal white matter in bipolar disorder and schizophrenia. *Journal of Psychiatric Research.* **95**: 135–142.

228. Beasley, C. L., W. G. Honer, A. Ramos-Miguel, F. Vila-Rodriguez, and A. M. Barr. 2017. Prefrontal fatty acid composition in schizophrenia and bipolar disorder: Association with reelin expression. *Schizophr. Res.*

229. Huang, J. H., H. Park, J. Iaconelli, S. S. Berkovitch, B. Watmuff, D. McPhie, D. Öngür, B. M. Cohen, C. B. Clish, and R. Karmacharya. 2017. Unbiased Metabolite Profiling of Schizophrenia Fibroblasts under Stressful Perturbations Reveals Dysregulation of Plasmalogens and Phosphatidylcholines. *J. Proteome Res.* **16**: 481–493.

230. Taha, A. Y., Y. Cheon, K. Ma, S. I. Rapoport, and J. S. Rao. 2013. Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients. *J Psychiatr Res.* **47**: 636–643.

231. Kaddurah-Daouk, R., J. McEvoy, R. Baillie, H. Zhu, J. K Yao, V. L. Nimgaonkar, P. F. Buckley, M. S. Keshavan, A. Georgiades, and H. A. Nasrallah. 2012. Impaired plasmalogens in patients with schizophrenia. *Psychiatry Res.* **198**: 347–352.
232. Wood, P. L., G. Unfried, W. Whitehead, A. Phillipps, and J. A. Wood. 2015. Dysfunctional plasmalogen dynamics in the plasma and platelets of patients with schizophrenia. *Schizophr. Res.* **161**: 506–510.

233. Park, J. Y., S.-H. Lee, M.-J. Shin, and G.-S. Hwang. 2015. Alteration in Metabolic Signature and Lipid Metabolism in Patients with Angina Pectoris and Myocardial Infarction. *PLoS One*. **10**. [online] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530944/ (Accessed October 7, 2019).

234. Sutter, I., R. Klingenberg, A. Othman, L. Rohrer, U. Landmesser, D. Heg, N. Rodondi, F. Mach, S. Windecker, C. M. Matter, T. F. Lüscher, A. von Eckardstein, and T. Hornemann. 2016. Decreased phosphatidylcholine plasmalogens--A putative novel lipid signature in patients with stable coronary artery disease and acute myocardial infarction. *Atherosclerosis*. **246**: 130–140.

235. Lv, J., C.-Q. Lv, L. Xu, and H. Yang. 2015. Plasma Content Variation and Correlation of Plasmalogen and GIS, TC, and TPL in Gastric Carcinoma Patients: A Comparative Study. *Med Sci Monit Basic Res*. **21**: 157–160.

236. Fernandes Messias, M. C., G. C. Mecatti, C. F. Figueiredo Angolini, M. N. Eberlin, L. Credidio, C. A. Real Martinez, C. S. Rodrigues Coy, and P. de Oliveira Carvalho. 2017. Plasma Lipidomic Signature of Rectal Adenocarcinoma Reveals Potential Biomarkers. *Front Oncol*. **7**: 325.

237. Lu, Y., J. Chen, C. Huang, N. Li, L. Zou, S. E. Chia, S. Chen, K. Yu, Q. Ling, Q. Cheng, M. Zhu, W. Zhang, M. Chen, and C. N. Ong. 2018. Comparison of hepatic and serum lipid signatures in hepatocellular carcinoma patients leads to the
discovery of diagnostic and prognostic biomarkers. *Oncotarget*. 9: 5032–5043.

238. Cotte, A. K., V. Cottet, V. Aires, T. Mouillot, M. Rizk, S. Vinault, C. Binquet, J.-P. P. de Barros, P. Hillon, and D. Delmas. 2019. Phospholipid profiles and hepatocellular carcinoma risk and prognosis in cirrhotic patients. *Oncotarget*. 10: 2161–2172.
Footnotes to text

Abbreviation	Description
AA	Arachidonic Acid
AGPS	AlkylGlycerone Phosphate Synthase
ALA	α-Linolenic Acid
CaV	Voltage-gated Calcium channel
CRAC	Cholesterol Recognition/interaction Amino acid Consensus sequence
DHA	Docosahexaenoic Acid
DHAP	DiHydroxyAcetone Phosphate
EL	Ether Lipid
EMT	Epithelial-to-Mesenchymal Transition
EPA	EicosaPentaenoic Acid
FA	Fatty Acid
GABA	Gamma-AminoButyric Acid
GNPAT	GlyceroNePhosphate O-AcylTransferase
HDL	High-Density Lipoprotein
KATP	ATP-sensitive Potassium channel
KCa	Calcium-activated Potassium channel
Kv	Voltage-gated Potassium channel
LA	Linoleic Acid
LDL	Low-Density Lipoprotein
LPA	LysoPhosphatidic Acid
LPC	LysoPhosphatidyl Choline
MβCD	Methyl-β-CycloDextrin
MUFA	Monounsaturated Fatty Acid
NaV	Voltage-gated sodium channel
NCX Sodium/Calcium eXchanger
NMDA N-Methyl-D-Aspartate
OA Oleic Acid
Ohmline 1-O-hexadecyl-2-O-methyl-αn-glycero-3-lactose
PA Phosphatidic Acid
PAF Platelet-Activating Factor
PAF-R Platelet-Activating Factor Receptor
PGE2 ProstaGlandin E2
PLA2 PhosphoLipase A2
Pls Plasmalogen
Pls-Cho Plasmalogen with phosphoCholine
Pls-Etn Plasmalogen with phosphoEtanolamine
PUFA Polyunsaturated Fatty Acid
Pls-PUFAs Plasmalogen with PUFA
SFA Saturated Fatty Acid
SOCE Store-Operated Calcium Entry
XIP eXchanger Inhibitory Peptide
Tables

Table 1: Ether-lipids in neuronal disorders

Pathology	Tissue	Lipid	Quantity in Controls	Quantity in Patients	Unit	% variation of quantity in patients	Reference
Alzheimer’s	Frontal lobe -		168,2 +/- 6,4	113 +/- 8,3	nmol per mg of proteins	-32,82	
Disease	grey matter	PIs-Etn					(217)
	Parietal lobe -		188,9 +/- 8,4	137,0 +/- 5,8		-27,47	
	grey matter						
	Temporal lobe -		175,3 +/- 5,8	129,4 +/- 6,5		-26,18	
	grey matter						
Alzheimer’s	Cerebellum -		195,9 +/- 3,1	205,0 +/- 20	mmol per mg of proteins	4,65	
Disease	grey matter	PIs-Etn					
	Frontal lobe -		458,9 +/- 24,2	300,4 +/- 53,2		-34,54	
	white matter						
	Parietal lobe -		476,2 +/- 24,1	346,7 +/- 29,5		-27,19	
	white matter						
	Temporal lobe -		469,8 +/- 15,9	284,1 +/- 29,3		-39,53	
	white matter						
Alzheimer’s	Cerebellum -		501,4 +/- 13,4	335,6 +/- 17,8		-33,07	
Disease	white matter						

Alzheimer’s Disease

Tissue	Lipid								
Frontal lobe	PIs-Etn		Decrease						
Hippocampus	PIs-Etn		Decrease						
White Matter			Decrease						
Frontal lobe	Alkyl-acyl-Etn		No change						
Hippocampus	Alkyl-acyl-Etn		No change						
White Matter			No change						
	Frontal lobe	Hippocampus	White Matter	Frontal lobe	Hippocampus	White Matter	Frontal lobe	Hippocampus	White Matter
-------------------------	--------------	-------------	--------------	--------------	-------------	--------------	--------------	-------------	--------------
	Pls-Cho	0.21 +/- 0.06	0.18 +/- 0.05	0.21 +/- 0.06	0.18 +/- 0.05	0.21 +/- 0.06	0.18 +/- 0.05	0.21 +/- 0.06	0.18 +/- 0.05
Pls-Etn 18:1 n-9	Alkyl-acyl-Etn	0.3 +/- 0.11	0.29 +/- 0.05	0.35 +/- 0.10	0.29 +/- 0.05	0.35 +/- 0.10	0.29 +/- 0.05	0.35 +/- 0.10	0.29 +/- 0.05
	Pls-Etn 20:1	0.4 +/- 0.07	0.35 +/- 0.08	0.46 +/- 0.07	0.35 +/- 0.08	0.46 +/- 0.07	0.35 +/- 0.08	0.46 +/- 0.07	0.35 +/- 0.08
	Pls-Etn 20:4	0.45 +/- 0.09	0.53 +/- 0.14	0.46 +/- 0.07	0.53 +/- 0.14	0.46 +/- 0.07	0.53 +/- 0.14	0.46 +/- 0.07	0.53 +/- 0.14
	Pls-Etn 22:4	1.31 +/- 0.21	1.21 +/- 0.25	1.31 +/- 0.21	1.21 +/- 0.25	1.31 +/- 0.21	1.21 +/- 0.25	1.31 +/- 0.21	1.21 +/- 0.25

Alzheimer's Disease

	Gyrus Frontalis	Pls-Etn	Decrease	(219)
Frontal lobe - grey matter	Pls-Etn 40:6	Decrease	(32)	
Frontal lobe - white matter	Pls-Etn 40:6	No change		
Frontal lobe - grey matter	Pls-Etn 36:2	No change		

	Pre-frontal cortex	Pls-Etn	10521 +/- 3438	8478 +/- 4398	nmol per g of brain wet weight	-16.85	(220)
	Pls-Cho	4061 +/- 3438	1111 +/- 637	-72.64	(220)		

| | Frontal cortex | Pls-Etn | Decrease | (221) |

	Combined brain regions	Pls-Etn	20,4 +/- 0,6	22,9 +/- 0,3	mol%	12,25	(222)
	Cerebellum	Pls-Etn	21,5 +/- 0,9	21,1 +/- 0,6	-1.86	(222)	
Region	Plasma Alcohols (16:0/18:1; 16:1/18:2; 18:0/18:1; 18:0/18:2; 16:0/20:4; 16:0/22:6; 18:0/20:4; 18:0/22:6; 22:6)	Decrease with severity of Alzheimer’s Disease	(223)				
--------------------------------	---	---	-------				
	Alkyl-acyl-Etn (16:0/22:6)	Decrease with severity of Alzheimer’s Disease					
Alzheimer’s Disease							
Occipital lobe	22.1 +/- 1.4 23.8 +/- 0.7 7.69						
Superior / Middle Frontal lobe	23.1 +/- 1.7 24.3 +/- 0.7 5.19						
Inferior parietal lobe	18.9 +/- 1.4 22.1 +/- 0.7 16.93						
Temporal lobe	19.3 +/- 0.9 23 +/- 0.7 19.17						
Superior Temporal lobe							
Parkinson’s Disease							
Lipid raft of total cortex	3.47 +/- 0.11 1.54 +/- 0.20 -55.62		(224)				
Frontal Cortex	1.49 +/- 0.38 0.79 +/- 0.16 -46.98						
Parkinson’s Disease	0.76 +/- 0.13 0.84 +/- 0.9 10.53						
Pls-Cho 32:0; Pls-Cho 34:0; Pls-Etn 38:3	No change		(225)				

Note: Data presented in the table above indicates molecular changes in Alzheimer's and Parkinson's diseases, focusing on specific lipid modifications in different brain regions.
Disease	Sample Type	Type	FA methyl ester	Dimethylacetal	% weight / weight of FA methyl ester and Dimethylacetal	% total Pls-Cho FA content	Change			
Parkinson’s Disease	Plasma	Dimethylacetal	16:0	0.47 +/- 0.09	0.42 +/- 0.08		-10.64			
Bipolar disorder	Pre-frontal cortex white matter	Pls-Cho Dimethylacetal 18:0	0.86 +/- 0.09	0.91 +/- 0.09		5.81	(227)			
Bipolar disorder and schizophrenia	Dorsolateral pre-frontal cortex grey matter	Total Pls Etn and Cho Dimethylacetal 16:0 and 18:0	No change	No change		No change	(228)			
Schizophrenia	Patients fibroblasts	Pls-Cho 40:7	Pls-Cho 34:1	Pls-Cho 40:7	Pls-Cho 34:1	Decrease	(229)			
Schizophrenia	Pre-frontal cortex	Pls-Etn 7654 +/- 5773	34.03	Pls-Cho 7897 +/- 5077	19.07 +/- 5.85	14.4 +/- 5.1	39,85 +/- 12.7	30 +/- 10.7	3,17	(230)
Schizophrenia	Plasma	Pls-Etn 16:0	13.37 +/- 4.57	9.7 +/- 3.3	3,37 +/- 4.57	-27.45	(231)			
Schizophrenia	Plasma	Pls-Etn 18:0	19.07 +/- 5.85	14.4 +/- 5.1	3,37 +/- 4.57	-24.49	(231)			
Schizophrenia	Plasma	Sum Pls-Etn (16:0; 18:0; 18:1 n-7/9) 39.85 +/- 12.7	-24.72	Pls-Cho 16:0 24.5 +/- 5.39	19.9 +/- 4.4	3,37 +/- 4.57	-18.78	(231)		
Schizophrenia	Plasma	Pls-Cho 18:0	5.79 +/- 1.66	4.5 +/- 1.3	3,37 +/- 4.57	-22.28	(231)			
Schizophrenia	Plasma	Pls-Cho 18:1 n-9 3.33 +/- 0.78	-24.92	Pls-Cho 18:0 5.79 +/- 1.66	4.5 +/- 1.3	3,37 +/- 4.57	-24.92	(231)		
Schizophrenia	Platelets	Plasma								
---------------	-----------	--------								
Ptd-Chol 34:1, 34:2, 36:1, 36:2, 34:3, 38:6, 40:6	Decrease	Decrease								
Ptd-Etn 34:2, 34:3, 36:2, 38:6, 40:6	Decrease	Decrease								
Ptd-Chol 16:0, 18:0, 18:1	Decrease	Decrease								
Ptd-Chol 16:0, 18:0, 18:1	27.6 ± 6.4	23.2								

Platelets

Plasma
34:2, 34:3, 36:1, 36:2, 34:3, 38:6, 40:6
34:2, 34:3, 36:1, 36:2, 34:3, 38:6, 40:6
16:0, 18:0, 18:1
16:0, 18:0, 18:1
Table 2: Ether-lipids in cardiac disorders

Pathology	Tissue	Lipid	Quantity in CTL	Quantity in Patients	Unit	% variation of quantity in patients	Reference
Myocardial infarction	Serum	Alkyl-lyso-Cho 18:0				Decrease	(233)
		Pls-Etn 16:0/20; 16:0/20:4; 16:0/20; 18:0/18:2; 18:0/20:4; 18:1/20:4; 18:1/22:6					
Myocardial infarction	Plasma	Pls-Cho 18:0/18:2	7,7	5,8	μM	-24,68	(234)
		Pls-Cho 18:0/16:0	10,1	6,4		-36,63	
		Pls-Cho 16:0/18:1	5,6	3,2		-42,86	
		Pls-Cho 16:0/18:2	7,5	5,1		-32,00	
Myocardial infarction	Serum	Alkyl-Cho 36:1; 36:2; 36:4; 38:4; 38:5; 40:7					(73)
Table 3: Ether-lipids in cancers

Pathology	Tissue	Lipid	Quantity in CTL	Quantity in Patients	Unit	% variation of quantity in patients	Reference
Breast Cancer	Breast Tissue	Pls-Etn 38:4					
		Pls-Cho 38:4					
		Pls-Etn 38:5					
		Pls-Cho 38:5					
		Pls-Etn 36:4					
Breast Cancer	Breast Tissue	Pls-Etn + Alkyl-acyl-Etn	10,8	13,8		27,78	(138)
		saturated					
		Pls-Etn + Alkyl-acyl-Etn	30,7	34,2		11,40	
		low unsaturated (1-3 double bonds)					
		Pls-Etn + Alkyl-acyl-Etn	58,5	52		Relative abundance -11,11	(137)
		High unsaturated (4-6 double bonds)					
		Pls-Cho + Alkyl-acyl-Cho	28,3	35		23,67	
		saturated					
		Pls-Cho + Alkyl-acyl-Cho	39,8	42,6		7,04	
		low unsaturated					
1-3 double bonds

Compounds	Value	Value	Change
PIs-Cho + Alkyl-acyl-Cho	31.9	22.5	-29.47
PIs-Etn + Alkyl-acyl-Etn			Decrease
PIs-Cho + Alkyl-acyl-Cho			No change
PIs-Etn 36:4; 38:5; 38:4			Decrease
Alkyl-acyl-Etn 38:6; 38:5			Decrease
PIs-Cho 36:4; 34:2; 38:5; 38:4; 38:0			Decrease
Alkyl-acyl-Cho 34:3; 38:6; 38:5; 38:4			Decrease

Breast, lung and prostate cancer

Tissue	Compounds	Value	Value	µg per mg of protein	Reference																																		
Breast Tissue	Alkyl-acyl-Etn	0.7 +/- 0.1	3.9 +/- 0.4	457.14	(11)																																		
Lung tissue	Alkyl-acyl-Etn	4.6 +/- 0.3	8.9 +/- 0.5	93.48																																			
Prostate tissue	Alkyl-acyl-Etn	0.8 +/- 0.2	1.5 +/- 0.4	87.50																																			
Breast Tissue	PIs-Etn	1.1 +/- 0.2	5.8 +/- 0.4	427.27																																			
Lung tissue	PIs-Etn	11.5 +/- 2.4	24.1 +/- 2.9	109.57																																			
Prostate tissue	PIs-Etn	3.3 +/- 0.4	12.5 +/- 3.0	278.79																																			
Breast Tissue	Alkyl-acyl-Cho	0.5 +/- 0.1	2.1 +/- 0.3	320.00																																			
Lung tissue	Alkyl-acyl-Cho	1.0 +/- 0.2	2.9 +/- 0.3	190.00																																			
Brain tumors (grey matter)	Prostate tissue	Breast Tissue	Lung tissue	Prostate tissue	Glioblastomas	Astrocytomas	Acoustic neurinoma	Oligodendroglioma	Meningioma	Glioblastomas	Astrocytomas	Acoustic neurinoma	Oligodendroglioma	Meningioma	Glioblastomas	Astrocytomas	Acoustic neurinoma	Oligodendroglioma	Meningioma	Glioblastomas	Acoustic neurinoma	Oligodendroglioma	Meningioma	Glioblastomas	Acoustic neurinoma	Oligodendroglioma	Meningioma	Glioblastomas	Acoustic neurinoma	Oligodendroglioma	Meningioma								
----------------------------	-----------------	---------------	-------------	-----------------	---------------	--------------	-------------------	-----------------	------------	---------------	--------------	-------------------	-----------------	------------	---------------	--------------	-------------------	-----------------	------------	---------------	--------------	-------------------	-----------------	------------	---------------	--------------	-------------------	-----------------	------------	---------------	--------------	-------------------	-----------------	------------	---------------	--------------	-------------------	-----------------	-----------
					0.6 ± 0.1	1.6 ± 0.2	2.3 ± 0.3	3.6 ± 0.3	166.67	0.8 ± 0.2	3.5 ± 0.7	4.4 ± 0.4	91.30	337.50	2.3 ± 0.3	4.4 ± 0.4	91.30	337.50	2.3 ± 0.3	4.4 ± 0.4	91.30	337.50																	
Glioblastomas	0.4 +/- 0.1	0.5 +/- 0.1	0.3	0.4 +/- 0.1	0.3	0.4 +/- 0.1	0.3	0.4 +/- 0.1	0.3	0.4 +/- 0.1	0.3	0.4 +/- 0.1	0.3	0.4 +/- 0.1	0.3	0.4 +/- 0.1	0.3	0.4 +/- 0.1	0.3	0.4 +/- 0.1	0.3	0.4 +/- 0.1	0.3																
Astrocytomas	4.9 +/- 0.9	8.3 +/- 1.9	11.8	4.9 +/- 0.9	8.3 +/- 1.9	4.9 +/- 0.9	8.3 +/- 1.9	4.9 +/- 0.9	8.3 +/- 1.9	4.9 +/- 0.9	8.3 +/- 1.9	4.9 +/- 0.9	8.3 +/- 1.9	4.9 +/- 0.9	8.3 +/- 1.9	4.9 +/- 0.9	8.3 +/- 1.9	4.9 +/- 0.9	8.3 +/- 1.9	4.9 +/- 0.9	8.3 +/- 1.9	4.9 +/- 0.9	8.3 +/- 1.9																
Acoustic neurinoma	0.5 +/- 0.1	2 +/- 0.6	3.4	0.5 +/- 0.1	2 +/- 0.6	0.5 +/- 0.1	2 +/- 0.6	0.5 +/- 0.1	2 +/- 0.6	0.5 +/- 0.1	2 +/- 0.6	0.5 +/- 0.1	2 +/- 0.6	0.5 +/- 0.1	2 +/- 0.6	0.5 +/- 0.1	2 +/- 0.6	0.5 +/- 0.1	2 +/- 0.6	0.5 +/- 0.1	2 +/- 0.6	0.5 +/- 0.1	2 +/- 0.6																
Oligodendroglioma	0.1 +/- 0.1	1.7 +/- 0.5	3.4	0.1 +/- 0.1	1.7 +/- 0.5	0.1 +/- 0.1	1.7 +/- 0.5	0.1 +/- 0.1	1.7 +/- 0.5	0.1 +/- 0.1	1.7 +/- 0.5	0.1 +/- 0.1	1.7 +/- 0.5	0.1 +/- 0.1	1.7 +/- 0.5	0.1 +/- 0.1	1.7 +/- 0.5	0.1 +/- 0.1	1.7 +/- 0.5	0.1 +/- 0.1	1.7 +/- 0.5	0.1 +/- 0.1	1.7 +/- 0.5																
Meningioma	0.1 +/- 0.1	3.1	3.4	0.1 +/- 0.1	3.1	0.1 +/- 0.1	3.1	0.1 +/- 0.1	3.1	0.1 +/- 0.1	3.1	0.1 +/- 0.1	3.1	0.1 +/- 0.1	3.1	0.1 +/- 0.1	3.1	0.1 +/- 0.1	3.1	0.1 +/- 0.1	3.1	0.1 +/- 0.1	3.1																
Cancer Type	Tissue Type	Compound 1	Compound 2	Compound 3	Compound 4	Fold Change	Peak Area/Peak Area Interne Standard																																
-----------------------------	-------------	------------	------------	------------	------------	-------------	-------------------------------------																																
Meningioma	Plasma	Pls-Etn 34:2	Pls-Etn 36:2	Pls-Etn 36:4	Pls-Etn 38:5	0.24	(134)																																
Gastric Carcinoma	Plasma	Pls-Cho 38:5; Alkyl-acyl-Cho 38:6	Pls-Cho 40:5; Alkyl-acyl-Cho 40:6	Lyso Pls-Cho 16:1; 18:1; 18:2	Increase	(236)																																	
Squamous cell carcinoma	Plasma	Pls-Cho 38:5; Alkyl-acyl-Cho 38:6	Pls-Cho 40:5; Alkyl-acyl-Cho 40:6	Lyso Pls-Cho 16:1; 18:1; 18:2	Increase	Decrease	(237)																																
Rectal adenocarcinoma	Plasma	Pls-Etn 36:4; 40:6	Pls-Etn 38:4; 40:6	Pls-Etn 36:4; 40:6	Decrease	(237)																																	
Hepatocellular carcinoma	Plasma	Pls-Etn 16:0/20:4	Pls-Etn 18:0/20:4	Pls-Etn 18:0/20:4	Pls-Etn 18:0/20:3	-16.67	(238)																																
Hepatocellular carcinoma	Plasma	Pls-Etn 16:0/20:4	Pls-Etn 18:0/20:4	Pls-Etn 18:0/20:4	Pls-Etn 18:0/20:3	-29.21	(238)																																
Hepatocellular carcinoma	Plasma	Pls-Etn 16:0/20:4	Pls-Etn 18:0/20:4	Pls-Etn 18:0/20:4	Pls-Etn 18:0/20:3	-33.33	(238)																																
Hepatocellular carcinoma	Plasma	Pls-Etn 16:0/20:4	Pls-Etn 18:0/20:4	Pls-Etn 18:0/20:4	Pls-Etn 18:0/20:3	-25.00	(238)																																

Quantities in the tables are represented as mean, or as mean +/- standard error of the mean, or as median [interquartile range].
Figures and Figure Legends

Figure 1. Structure of ether-lipids families and acyl-glycerolipids.
Ether-lipids are composed of two sub-families: the 1-O-alkyl-glycerolipids characterized by an ether-linkage (A) and 1-O-alkenyl-glycerophospholipids (or plasmalogens) characterized by a vinyl-ether linkage (B), contrarily to acyl-glycerolipids which possess an ester linkage at the sn1 position of the glycerol. Ether-lipids, as acyl-glycerolipids, exist as phospholipids (with mainly a phosphocholine or ethanolamine at R3 position), but also triglycerides (with a fatty acids or fatty alcohol at R3 position). At R2 position, ether-lipids can be composed of a fatty acid (acyl-ether-lipid), a fatty alcohol (ether-lipid with two ether-linkages) or only a OH moiety (lysoether-lipid).
Figure 2. Potential mechanisms of action of ether-lipids for ion channels / transporters regulation.

Ether-lipids exert different functions within cells and regulate numerous proteins such as ion channels or transporters. (A) Ether-lipids are known to be implied in many fusion processes of cells as endo and exocytosis or vesicles trafficking into cells. This property can lead to a modulation of ion channels/transporters translocation to plasma membrane or membranes of intracellular organelles. (B) Ether-lipids, and more precisely those containing PUFA participate to the structuration of nanodomains also named lipid rafts which consist in platforms for cell signalling regulating ion channel/transporters activities. (C) By their incorporation into plasma membrane, ether-lipids can promote interaction between ion channels and their accessory proteins or (D) interact directly with ion channels/transporters and regulate their gating properties for example. (E) Several ether-lipids as PAF or LPAe can be synthesized by cells and secreted in cell microenvironment. These lipids have the particularity to bind some receptors, which are coupled, to some kinases as PKA or PLC, which can regulate directly ion channels/transporters activity, or indirectly through their genetic expression via second messengers. (F) Moreover, receptor binding can lead to the activation of PLA2, which cleaves fatty acids at the sn2 position of the glycerol, leading to a production of PUFA and lyso ether-lipids. These lipids metabolites can directly interact with ion channels/transporters or modulate their genetic expression. PUFA: Polyunsaturated Fatty Acid, PAF: Platelet-Activating Factor, LPAe: LysoPhosphatidic Acid ether, PLA2: PhosphoLipase A2.
Figure 3. Involvement of ether-lipids in the modification of excitation-response couplings observed in excitable cell pathologies.

Cardiac diseases and neurological disorders can be the cause or the consequence of a dysregulation of ether-lipid metabolism and thus of ether-lipids content. We hypothesize that this dysregulation can lead to a modification of ion channels expression and/or activity leading to a modification of excitation-response couplings. Several consequences can be observed as an increase of potassium conductance and/or a decrease of sodium conductance, which leads to a membrane hyperpolarization, leading to a decrease of secretion/contraction. At the opposite, a decrease of potassium conductance and/or an increase of sodium conductance can lead to a membrane depolarization responsible for an increase of secretion/contraction. In these two cases, ion homeostasis is disturbed which results in a pathology development or an increase of the pathology phenotype.
Figure 4. Involvement of ether-lipids in the modification of excitation-response couplings in non-excitable tumor cells.

Cancer can be the cause or the consequence of a dysregulation of ether-lipid metabolism and thus of ether-lipids content. In several cancers, a dysregulation of ether-lipid metabolism and of ether-lipids content has been observed. An increase of ether-lipids content in breast cancer cells leads to an increase of SK3 expression, a potassium channel which hyperpolarizes plasma membrane, promotes calcium entry leading to an increase of cancer cell migration (unpublished data). We previously found that SK3 channel increases calcium entry and calcium mediated breast cancer cell migration and bone metastasis development (2).