Paraphrase Generation as Unsupervised Machine Translation

Xiaofei Sun1,2, Yufei Tian3, Yuxian Meng2, Nanyun Peng3
Fei Wu1,5, Jiwei Li1,2 and Chun Fan4

1Zhejiang University, 2Shannon.AI, 3University of California, Los Angeles
4Peng Cheng Laboratory, 4National Biomedical Imaging Center, Peking University
4Computer Center, Peking University, 5Shanghai AI Laboratory
5Shanghai Institute for Advanced Study of Zhejiang University
xiaofei_sun@zju.edu.cn, yufei@ucla.edu, jiwei_li@shannonai.com

Abstract

In this paper, we propose a new paradigm for paraphrase generation by treating the task as unsupervised machine translation (UMT) based on the assumption that there must be pairs of sentences expressing the same meaning in a large-scale unlabeled monolingual corpus. The proposed paradigm first splits a large unlabeled corpus into multiple clusters, and trains multiple UMT models using pairs of these clusters. Then based on the paraphrase pairs produced by these UMT models, a unified surrogate model can be trained to serve as the final \{Seq2Seq\} model to generate paraphrases, which can be directly used for test in the unsupervised setup, or be finetuned on labeled datasets in the supervised setup. The proposed method offers merits over machine-translation-based paraphrase generation methods, as it avoids reliance on bilingual sentence pairs. It also allows human intervene with the model so that more diverse paraphrases can be generated using different filtering criteria. Extensive experiments on existing paraphrase dataset for both the supervised and unsupervised setups demonstrate the effectiveness the proposed paradigm.

1 Introduction

The goal of paraphrase generation (Prakash et al., 2016a; Cao et al., 2016; Ma et al., 2018; Wang et al., 2018) is to generate a sentence semantically identical to a given input sentence but with variations in lexicon or syntax. It has been applied to various downstream NLP tasks such as parsing (Berant and Liang, 2014), question answering (Dong et al., 2017), summarization (Barzilay, 2004) and machine translation (Callison-Burch et al., 2006).

Building a strong paraphrase generation system usually requires massive amounts of high-quality annotated paraphrase pairs, but existing labeled datasets (Lin et al., 2014; Fader et al., 2013; Lan et al., 2017) are either of small sizes or restricted in narrow domains. To avoid such a heavy reliance on labeled datasets, recent works have explored unsupervised methods (Li et al., 2018b; Fu et al., 2019; Siddique et al., 2020) to generate paraphrase without annotated training data, among which the back-translation based model is an archetype (Mallinson et al., 2017; Sokolov and Filimonov, 2020). It borrows the idea of back-translation (BT) in machine translation (Sennrich et al., 2016) where the model first translates a sentence \(s_1\) into another sentence \(s_2\) in a different language (e.g., En\(\rightarrow\)Fr), and then translates \(s_2\) back to \(s_1\). In this way, the model is able to generate paraphrases by harnessing bilingual datasets, removing the need for label paraphrase data.

However, BT-based models for paraphrase generation have the following severe issues: firstly, BT-based systems rely on external resources, i.e., bilingual datasets, making them hard to be applied to languages whose bilingual datasets are hard to obtain. Secondly, translation errors, such as duplicate words (Holtzman et al., 2020), missing words (Luong et al., 2015) and polysemous words (Rios Gonzales et al., 2017), will accumulate during the forward and backward translations, resulting in inferior performances. Thirdly, machine translation models work like blackboxes, making it hard for humans to intervene with the model and control the generation process.

In this work, we propose to address these problems based on the assumption that there must be pairs of sentences expressing the same meaning in a large-scale unlabeled corpus. Inspired by unsupervised machine translation (UMT) models, which align semantic spaces of two languages using monolingual data, we propose a pipeline system to generate paraphrases following two stages: (1) splitting a large-scale monolingual corpus into multiple clusters/sub-datasets, on which UMT models are trained based on pairs of these sub-datasets; and (2) training a unified surrogate model based on the paraphrase pairs produced by the trained multiple
UMT models, where we can design filtering functions to remove the pairs with undesired properties. The unified surrogate model can be then directly used for paraphrase generation in the unsupervised setup, or be finetuned on labeled datasets in the supervised setup.

The proposed framework provides the following merits over existing BT-based methods: (1) it is purely based on a large-scale monolingual corpus, which removes the reliance on bilingual datasets; (2) the trained unified model is able to generate paraphrases end-to-end, which avoids the issue of error accumulation that exists in vanilla BT-based models; and (3) human interventions can take place in the filtering step, which gives finer-grained controls over the generated paraphrases.

We conduct extensive experiments on a wide range of paraphrase datasets to evaluate the effectiveness of the proposed framework, and we are able to observe performance boosts against strong baselines in both supervised and unsupervised setups.

2 Related Work

Paraphrase Generation Methods for paraphrase generation usually fall into two categories: supervised and unsupervised approaches. Supervised methods for paraphrase generation rely on annotated paraphrase pairs. Xu et al. (2018); Qian et al. (2019) employed distinct semantic style embeddings to generate diverse paraphrases, and Iyyer et al. (2018); Li et al. (2019); Chen et al. (2019); Goyal and Durrett (2020) proposed to use different syntactic structure templates. A line of work (Mallinson et al., 2017; Sokolov and Filimonov, 2020) formalized paraphrase generation as machine translation. Unsupervised paraphrase generation is primarily based on reinforcement learning (RL) generative models (Ranzato et al., 2015; Li et al., 2016b). RL optimizes certain criteria, e.g. BLEU, to reward paraphrases with higher quality (Li et al., 2018b; Siddique et al., 2020). Bowman et al. (2016); Yang et al. (2019) trained a variational auto-encoder (VAE) (Kingma and Welling, 2013) to generate paraphrases. Other unsupervised methods for paraphrase generation include VAE (VQ-VAE) (Roy and Grangier, 2019), latent bag-of-words alignment (Fu et al., 2019) and simulated annealing (Liu et al., 2019a). Adapting large-scale pretraining (Devlin et al., 2018; Radford et al., 2018; Liu et al., 2019b; Clark et al., 2020; Sun et al., 2021b) to paraphrase generation has been recently investigated (Witteveen and Andrews, 2019; Hegde and Patil, 2020; Niu et al., 2020; Meng et al., 2021) and has shown promising potentials to improve generation quality. Our work is distantly related to unsupervised text style transfer (Hu et al., 2017; Mueller et al., 2017; Shen et al., 2017; Li et al., 2018a; Fu et al., 2018), where the model alters a specific text attribute of an input sentence (such as sentiment) while preserving other text attributes.

Regarding soliciting large-scale paraphrase datasets, Bannard and Callison-Burch (2005) used statistical machine translation methods obtain paraphrases in parallel text, the technique of which is scaled up by Ganitkevitch et al. (2013) to produce the Paraphrase Database (PPDB). Wieting et al. (2017) translate the non-English side of parallel text to obtain paraphrase pairs. Wieting and Gimpel (2017) collected paraphrase dataset with million of pairs via machine translation. Hu et al. (2019a,b) produced paraphrases from a bilingual corpus based on the techniques of negative constraints and inference sampling.

Unsupervised Machine Translation Unsupervised Machine Translation (UMT) has been an active research direction in NLP (Ravi and Knight, 2011). Pioneering work for unsupervised neural machine translation used denoising auto-encoders and back-translation (Sennrich et al., 2016) to iteratively refine the generated translation. Artetxe et al. (2017) proposed to use a shared encoder to encode source input sentences from different languages. Lample et al. (2017) additionally used adversarial and cross-domain training objectives to better identify different language domains. Yang et al. (2018) relaxed the strategy of sharing the entire encoder in Artetxe et al. (2017) by building independent encoders to maintain unique characteristics of each language. Another line of work for UMT is to combine statistical machine translation (SMT) and NMT. Artetxe et al. (2018); Lample et al. (2018) built a phrase-level mapping table from the source language to the target language. Following works improved UMT by combining SMT and NMT in different ways, such as warming up an NMT model with a trained SMT model (Marie and Fujita, 2018; Artetxe et al., 2019) and using SMT as posterior regularization (Ren et al., 2019). Other works involve initializing the model using retrieved semantically similar sentence pairs (Wu et al., 2019; Ren et al., 2020; Sun et al., 2021a), using auxiliary par-
We use the unsupervised machine translation (UMT) framework proposed by Lample et al.
(2017) as the backbone. We briefly go though the model structure in this section. Let C_{src} and C_{tgt} respectively denote the monolingual dataset for the source and target language, on which a translation model M is trained to generate target sequences y based on source sequences x, $y = M(x)$. The model is first initialized by training in a word-by-word translation manner using a parallel dictionary. The initial parallel dictionary is thus a word being generated by matching two languages into the same latent space. The discriminator performs the cross-entropy loss in this case. BT encourages the model to reconstruct the input sentence x from $N(y)$, a corrupted version of the model’s translation $y = M(x)$. The training objective of DAE is given by:

$$L^{l}_{\text{DAE}} = \mathbb{E}_{x \sim C_1, \hat{x} \sim \hat{d}(e(N(x),l),l)}[\Delta(\hat{x},x)]$$ \hspace{0.5cm} (1)

where $l = \text{src}$ or $l = \text{tgt}$ specifies the language, $N(x)$ is a noisy version of x, e and \hat{d} respectively means encoding and decoding, and Δ measures the difference between the two sequences, which is the cross-entropy loss in this case. BT encourages the model to reconstruct the input sentence x from $N(y)$, a corrupted version of the model’s translation $y = M(x)$. The training objective is given by:

$$L^{l_1 \rightarrow l_2}_{\text{BT}} = \mathbb{E}_{x \sim C_1, \hat{x} \sim \hat{d}(e(N(M(x)),l_2),l_1)}[\Delta(\hat{x},x)]$$ \hspace{0.5cm} (2)

AL uses a discriminator to distinguish the language from the encoded latent representations, and by doing so, the model is able to better map two languages into the same latent space. The discriminative training objective is given by:

$$L^{l}_{\text{Dis}} = -\mathbb{E}_{(x,l)}[\log p(l|e(x,l))]$$ \hspace{0.5cm} (3)

The encoder is trained to fool the discriminator so that the encoder and the discriminator perform together in an adversarial style (Goodfellow et al., 2014):

$$L^{l_1 \rightarrow l_2}_{\text{Adv}} = -\mathbb{E}_{(x_1,l_1)}[\log p(l_2|e(x_1,l_1))]$$ \hspace{0.5cm} (4)

The final training objective is given by:

$$L = \lambda_1[L^{l}_{\text{DAE}} + L^{l}_{\text{Dis}}] + \lambda_2[L^{l_1 \rightarrow l_2}_{\text{BT}} + L^{l_2 \rightarrow l_1}_{\text{BT}}] + \lambda_3[L^{l_1 \rightarrow l_2}_{\text{Adv}} + L^{l_2 \rightarrow l_1}_{\text{Adv}}]$$ \hspace{0.5cm} (5)

The discriminative loss L^{l}_{Dis} is alternatively optimized with L to train the discriminator. We follow Lample et al. (2017) to implement each of the UMT models. We used the transformer-large (Vaswani et al., 2017) as the backbone instead of LSTMs in Bahdanau et al. (2014).

4 Model

The core idea of the proposed strategy is to use two subdatasets from a large monolingual corpus C and train unsupervised NMT models based on the two subdatasets. The path towards this goal naturally constitutes two modules: (1) constructing two subdatasets C_{src} and C_{tgt} from C; and (2) training the UMT model based on C_{src} and C_{tgt}.

4.1 Dataset Split

The crucial part in the framework is how to build the two subdatasets, on which the unsupervised NMT model is trained. To this end, we propose to (1) first construct candidates $\{c_1, c_2, ..., c_K\}$ for C_{src} and C_{tgt} from C based on the clustering models; and (2) selecting C_{src} and C_{tgt}. Based on C_{src} and C_{tgt}, UMT models will be trained. We use two criteria for clustering, LDA (Blei et al., 2003) and K-means clustering. The number of clusters/topics K is set to 80.\footnote{Here we use “topic” and “cluster” interchangeably.}

LDA Clustering For LDA, we use Gibbs sampling and iterate over the entire corpus 5 times in total. In the last round, a sentence is assigned to the topic/cluster which has the largest probability of generating it. In LDA, each cluster is characterized as a distribution over the vocabulary. The distance between two subset c_n, c_m is the Jensen–Shannon (JS) divergence between the two distributions over the vocabulary:

$$\text{Dis}(c_n, c_m) = \text{KL}(c_n||c_m) + \text{KL}(c_m||c_n)$$

$$\text{KL}(c_n||c_m) = -\sum_{v \in V} p(v|c_n) \log \frac{p(v|c_m)}{p(v|c_n)}$$

$$\text{KL}(c_m||c_n) = -\sum_{v \in V} p(v|c_m) \log \frac{p(v|c_n)}{p(v|c_m)}$$ \hspace{0.5cm} (6)

Since topics clustered by LDA can be incoherent (e.g., the clustering of stop words), we ask humans...
to examine the top words of the topics, and discard meaningless clusters.

K-means Clustering For K-means, we use the average of the top layer embeddings from BERT (Devlin et al., 2018) to represent the sentence. Let \(h_s \) denote the sentence representation for the sentence \(s \). We run the hard K-means model on the corpus, where the distance between a sentence and the cluster center is the \(L_2 \) distance between the two vector representations.

The LDA and K-means methods described above focus more on the situation that centers of two clusters are far away, but not individual sentences belonging to different clusters are different. These two focuses are correlated, but not exactly the same. The JS divergence for LDA clusters and \(L_4 \).

4.2.1 Multiple UMT Models

For the K-means model, \(M \) use \(M \) that model \(M \) c randomly selected \(C \) different clusters. Each of the trained UMT models uses a \(\{ \) main, we propose to train \(\} \) sentences from the \(\{ \) main. The UMT model trained on the single \(\{ \) main. The UMT model trained on the single \(\{ \) src \(\} \) as \(C_{src} \) and \(C_{tgt} \), on which a single UMT model will be trained. The problem with single UMT model is obvious: each subset in \(\{ c_1, c_2, \ldots, c_K \} \) potentially represents a specific domain. The UMT model trained on the single \(C_{src} \) can thus only be able to properly paraphrase sentences from the \(C_{src} \) domain. To cover the full domain, we propose to train \(K \) UMT models, denoted by \(\{ M_1, M_2, \ldots, M_K \} \), where \(K \) is the number of clusters. Each of the trained UMT models uses a different \(c \in \{ c_1, c_2, \ldots, c_K \} \) as \(C_{src} \), paired with a randomly selected \(C_{tgt} \).

To paraphrase sentence \(s \), we need to find its corresponding paraphrase generation model \(M \in \{ M_1, M_2, \ldots, M_K \} \), which takes \(s \) as the input and outputs its paraphrase. We first select the \(C_{src} \in \{ c_1, c_2, \ldots, c_K \} \) that \(s \) belongs to. Next, we pick that model \(M \) trained using \(C_{src} \) as sources, and use \(M \) to generate the output.

For LDA, \(C_{src} \) is the topic that generates \(s \) with the largest probability:

\[
C_{src} = \arg \max_{c \in \{ c_1, c_2, \ldots, c_K \}} p(s | c) \tag{7}
\]

For the K-means model, \(C_{src} \) is the cluster whose center is closest to \(s \):

\[
C_{src} = \arg \min_{c \in \{ c_1, c_2, \ldots, c_K \}} \| h_s - \mu_c \|^2 \tag{8}
\]

where \(\mu_c \) denotes the center of the cluster \(c \).

We follow Lample et al. (2017) to implement each of the UMT models. We used the transformer (Vaswani et al., 2017) as the backbone instead of LSTMs in Bahdanau et al. (2014), where the number of encoder blocks, decoder blocks, the number of heads, \(d_{model} \) and \(d_{ff} \) are respectively set to 6, 6, 8, 512 and 2,048. For UMT models based on specific \(C_{src} \) and \(C_{tgt} \), both the encoder and the decoder are trained using Adam (Kingma and Ba, 2014), with the learning rate set to 0.00025, \(\beta_1 \) set to 0.5. We evenly alternate between the encoder-decoder and the discriminator.

4.2 UMT Training on \(C_{src} \) and \(C_{tgt} \)

4.2.1 Multiple UMT Models

We can randomly pick one pair of subsets from \(\{ c_1, \ldots, c_K \} \) as \(C_{src} \) and \(C_{tgt} \), on which a single UMT model will be trained. The problem with single UMT model is obvious: each subset in \(\{ c_1, c_2, \ldots, c_K \} \) potentially represents a specific domain. The UMT model trained on the single \(C_{src} \) can thus only be able to properly paraphrase sentences from the \(C_{src} \) domain. To cover the full domain, we propose to train \(K \) UMT models, denoted by \(\{ M_1, M_2, \ldots, M_K \} \), where \(K \) is the number of clusters. Each of the trained UMT models uses a different \(c \in \{ c_1, c_2, \ldots, c_K \} \) as \(C_{src} \), paired with a randomly selected \(C_{tgt} \).

To paraphrase sentence \(s \), we need to find its corresponding paraphrase generation model \(M \in \{ M_1, M_2, \ldots, M_K \} \), which takes \(s \) as the input and outputs its paraphrase. We first select the \(C_{src} \in \{ c_1, c_2, \ldots, c_K \} \) that \(s \) belongs to. Next, we pick that model \(M \) trained using \(C_{src} \) as sources, and use \(M \) to generate the output.

For LDA, \(C_{src} \) is the topic that generates \(s \) with the largest probability:

\[
C_{src} = \arg \max_{c \in \{ c_1, c_2, \ldots, c_K \}} p(s | c) \tag{7}
\]

For the K-means model, \(C_{src} \) is the cluster whose center is closest to \(s \):

\[
C_{src} = \arg \min_{c \in \{ c_1, c_2, \ldots, c_K \}} \| h_s - \mu_c \|^2 \tag{8}
\]

where \(\mu_c \) denotes the center of the cluster \(c \).

We follow Lample et al. (2017) to implement each of the UMT models. We used the transformer (Vaswani et al., 2017) as the backbone instead of LSTMs in Bahdanau et al. (2014), where the number of encoder blocks, decoder blocks, the number of heads, \(d_{model} \) and \(d_{ff} \) are respectively set to 6, 6, 8, 512 and 2,048. For UMT models based on specific \(C_{src} \) and \(C_{tgt} \), both the encoder and the decoder are trained using Adam (Kingma and Ba, 2014), with the learning rate set to 0.00025, \(\beta_1 \) set to 0.5. We evenly alternate between the encoder-decoder and the discriminator.

Unifying \(Ms \) into a Surrogate Model

We need to maintain \(K \) different domain-specific UMT models, which is both memory costly and computationally intensive, especially for online services. We thus propose to unify different \(Ms \) into a single surrogate one. For each sentence \(s \) in a selected corpus, we first find the cluster \(C_{src} \) it belongs to using LDA or K-means described above, and then we use the model \(M \) trained on \(C_{src} \) to generate the paraphrase of \(s \). In this way, we are able to collect massive amounts of pseudo-labeled paraphrase pairs by treating the original sentence \(s \) as the source and the produced paraphrase as the target. We collected a total number of 25 million pairs. Human interventions can happen in this stage, where we can design filtering functions to remove pairs with undesired properties. Here, human interventions involve (1) removing pairs with identical source and target; (2) removing targets two times longer than sources. 16 million pairs remain after filtering.

We train a \(Seq2Seq \) model (Sutskever et al., 2014; Vaswani et al., 2017) (referred to as \(UMT-Multi \)) on the remaining pseudo-labeled data, which is used as the ultimate paraphrase generation model. We use the Transformer-base (Vaswani et al., 2017) as the model backbone, where the number of encoder blocks, decoder blocks, the number of heads, \(d_{model} \) and \(d_{ff} \) are respectively set to 6, 6, 8, 512 and 2,048. We use Adam (Kingma and Ba, 2014) with learning rate of 1e-4, \(\beta_1 = 0.9 \), \(\beta_2 = 0.999 \), and a warmup step of 4K. Batch size is set to 256. This model can be directly used in the unsupervised learning setup. An overview of deriving the \(UMT-Multi \) model is shown in Figure 1. Up to now, \(UMT-Multi \) is purely based on unlabeled common-crawl corpus.
4.3 Supervised Setup

For the supervised setup, where we have pairs of paraphrases containing sources from a source domain and paraphrases of sources from a target domain, we can fine-tune the pretrained UMT-Multi model on the supervised paraphrase pairs, where we initialize the model using the UMT-Multi model, and run additional iterations on the supervised dataset. The fine-tuned model thus shares the structure with UMT-Multi. Again, we use Adam (Kingma and Ba, 2014) for fine-tuning, with $\beta_1 = 0.9, \beta_2 = 0.98$. Batch size, learning rate and the number of iterations are treated as hyper-parameters and tuned on the dev set. At test time, beam search (Sutskever et al., 2014; Li et al., 2016a) is used when decoding.

An additional use of the gold labeled paraphrase datasets is to help to select $C_{tgt} \in \{c_1, c_2, ..., c_K\}$ that best aligns with C_{src}, while in the unsupervised setup, we can only randomly pair C_{src} and C_{tgt} due to the lack of training signals for pairing. In the most straightforward setup, for each $C_{src} \in \{c_1, c_2, ..., c_K\}$, we can construct $K - 1$ pairs (C_{src}, c) by treating all $c \in \{c_1, c_2, ..., c_K\}, c \neq C_{src}$ as C_{tgt}. Next, we train $K - 1$ UMT models based on the pairs, and select the model that achieves the highest evaluation score on the labeled dataset. This strategy leads to a total number of $K \times (K - 1)$ models to be trained, which is computationally prohibitive. We propose a simplified learning model that maps the distance between C_{src} and C_{tgt} as inputs to output the evaluation score (here we use iBLEU) on the labeled dataset. Specifically, we randomly select L pairs, where $L \ll K \times (K - 1)$. We train L UMT models on the selected dataset pairs. Using the trained UMT models, we generate paraphrases for the labeled datasets, and obtain corresponding evaluation scores. Based on the distance between C_{src} and C_{tgt}, and the evaluation score $S(M_{(src,tgt)})$, we train a simple polynomial function F to learn to map the distance to the evaluation score:

$$S(M_{(src,tgt)}) = F(\text{Dis}(C_{src}, C_{tgt})) \quad (9)$$

The function F can be then used to select C_{tgt} with highest predicted evaluation score for C_{src}.

5 Experiments

5.1 Experiment Setups

We consider both the supervised and unsupervised setups. There are two differences between the supervised and unsupervised setups: for the supervised setup, (1) the training data provides guidance on pairing C_{src} and C_{tgt}, and (2) the pretrained model will be used as initialization and later fine-tuned on the labeled dataset. Datasets that we use for evaluation include Quora, WikiAnswers (Fader
We can also observe that the BT model is able to achieve competitive results, which shows that back-translation serves as a strong and simple baseline for paraphrase generation. The BT model trained on En-Fr consistently outperforms the one trained on En-Zh, and this is because that En-Zh translation is a harder task than En-Fr due to the greater grammars difference between the two languages.

For the supervised setup, we compare our proposed model to the following baselines: ResidualLSTM (Prakash et al., 2016b), VAE-SVG-eq (Gupta et al., 2018), Pointer (See et al., 2017), Transformer (Vaswani et al., 2017) and DNPG (Li et al., 2019). For the unsupervised setup, we use the following models for comparison: VAE (Bowman et al., 2016), Lag VAE (He et al., 2019), CGMH (Miao et al., 2019) and UPSA (Liu et al., 2019a).

Results for VAE, Lag VAE, CGMH and UPSA on different datasets are copied from Miao et al. (2019) and Liu et al. (2019a). Results for ResidualLSTM, VAE-SVG-eq, Pointer, Transformer on various datasets are copied from Li et al. (2019). We leave details of these datasets, baselines and training in Appendix 7.

We are particularly interested in comparing the proposed model with bilingual MT based models. BT is trained end-to-end on WMT’14 En-Fr. A paraphrase pair is obtained by pairing the English sentence in the original dataset and the translation of the French sentence. Next we train a Transformer-large model on paraphrase pairs. The model is used as initialization to be further fine-tuned on the labeled dataset. We also use WMT-14 En-Zh for reference purposes. We use BLEU (Papineni et al., 2002), iBLEU (Sun and Zhou, 2012) and ROUGE scores (Lin, 2004) for evaluation.

5.2 Results

In-domain Results

We first show the in-domain results in Table 1. We can observe that across all datasets and under both the supervised and unsupervised setups, the proposed UMT model significantly outperforms than baselines. As expected, multiple UMT models perform better than a single UMT model as the former is more flexible at selecting the correct domain C_{src} for an input sentence. We can also observe that the BT model is able to achieve competitive results, which shows that back-translation serves as a strong and simple baseline for paraphrase generation. The BT model trained on En-Fr consistently outperforms the one trained on En-Zh, and this is because that En-Zh translation is a harder task than En-Fr due to the greater grammars difference between the two languages.

Domain-adapted Results

We test the model’s domain adaptation ability on Quora and Wikianswers. Table 2 shows the results. We can see that UMT-multi performs significantly better than baselines, including UMT-single, showing the better...
Table 2: Domain-adapted performances of different models. “R1” stands for ROUGE-1 and “R2” stands for ROUGE-2.

5.3 Human Evaluation

To further validate the performance of the proposed model, we randomly sample 500 sentences from Quora test set for human evaluation. The input sentence and its two paraphrases respectively generated by the UMT model and the BT model (En-Fr) are assigned to two human annotators at Amazon Mechanical Turk (AMT), with “> 95% HIT approval rate”. Annotators are asked to judge which output is better in terms of three aspects: (1) semantics: whether the two sentences are the same semantic meaning; (2) diversity: whether the two sentences are diverse in expressions; and (3) fluency: whether the generated paraphrase is fluent. Ties are allowed. If the two annotators’ evaluations do not agree with each other, the job will be assigned to one more annotator, and we take the majority as the final result.

Comparing with BT, the proportions of win, tie and lose for the proposed UMT-model are respectively 41%, 36%, and 22%, demonstrating its superiority over BT models.

5.4 Examples

Table 3 presents sampled paraphrases from the BT and UMT models. From these examples, we can identify several intrinsic drawbacks of the BT model that the UMT model can circumvent: (1) for the first example, the tense from the BT paraphrase model based on En-Zh translation is incorrect. This is because the Chinese language expresses tense in a more implicit way. This leads the model to make mistake in tense when Chinese is translated back to English. The UMT model does not have this issue; (2) for the second example, BT model directly copies the input, this is because the En-Fr can perfectly map in two languages with no expression variations. Due to the blackbox nature of MT models, it is hard to intervene with the process to avoid producing the same copy. Instead, for the proposed UMT framework, developers can intervene with the model in both clustering stage and data filtering stage. (3) For the third example, the BT model changes the meaning of the original sentence, which is due to the mistake made by the translation model. These mistakes are sometimes inevitable due to the limitation of current MT models, but can be fixed in the proposed system.

6 Ablation Study

In this section, we perform comprehensive ablation studies on Wikianswers dataset for understanding behaviors of the proposed model. And we report iBLEU score for comparison.

Size of C for UMT Training First, we explore how the size of C, the CommonCrawl corpus used for dataset split and UMT training, affects downstream performances. Table 4 shows the results, where the size is respectively 10M, 100M, 1B and 10B. We can observe that with more training data, the performance significantly improves. This is because the trained model can better learn to align sentences between different clusters.

The Number of LDA Topics Table 5 presents the influence of the number of LDA clusters. The trend is clear: more topics lead to better performances. This is because the model with more topics has a stronger ability of disentangling very similar sentences in the original corpus C, and thus avoids copying. It is worth noting that more topics means training more UMT models before unifying them, leading to greater computational intensity.

Pairing C_{src} and C_{tgt} In our main experiments, we randomly select C_{tgt} given C_{src}. It would be interesting to see the effects of different cluster selection strategies. We consider four strategies: Largest (select C_{tgt} with the largest distance to C_{src}), Medium (select C_{tgt} with the medium distance to C_{src}), Smallest (select C_{tgt} with the smallest distance to C_{src}) and for referring purposes,
Normal text that is readable and natural.
Acknowledgement

We would like to thank anonymous reviewers for their comments and suggestions. This work is supported by the Key R & D Projects of the Ministry of Science and Technology (2020YFC0832500).

References

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018. Unsupervised statistical machine translation. *arXiv preprint arXiv:1809.01272*.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2019. An effective approach to unsupervised machine translation. *arXiv preprint arXiv:1902.01313*.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. 2017. Unsupervised neural machine translation. *arXiv preprint arXiv:1710.11041*.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate.

Colin Bannard and Chris Callison-Burch. 2005. Paraphrasing with bilingual parallel corpora. In *Proceedings of the 43nd Annual Meeting of the Association for Computational Linguistics (ACL’05)*, pages 597–604.

Regina Barzilay. 2004. Information fusion for multidocument summarization: Paraphrasing and generation.

Jonathan Berant and Percy Liang. 2014. Semantic parsing via paraphrasing. In *Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1415–1425.

David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. *the Journal of machine Learning research*, 3:993–1022.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio. 2016. Generating sentences from a continuous space. In *Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning*, pages 10–21. Berlin, Germany. Association for Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, and Miles Osborne. 2006. Improved statistical machine translation using paraphrases. In *Proceedings of the Human Language Technology Conference of the NAACL, Main Conference*, pages 17–24.

Ziqiang Cao, Chuwei Luo, Wenjie Li, and Sujian Li. 2016. Joint copying and restricted generation for paraphrase.

Mingda Chen, Qingming Tang, Sam Wiseman, and Kevin Gimpel. 2019. Controllable paraphrase generation with a syntactic exemplar. *arXiv preprint arXiv:1906.00565*.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2020. Electra: Pre-training text encoders as discriminators rather than generators. *arXiv preprint arXiv:2003.10555*.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*.

Li Dong, Jonathan Mallinson, Siva Reddy, and Mirella Lapata. 2017. Learning to paraphrase for question answering. *arXiv preprint arXiv:1708.06022*.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. 2013. Paraphrase-driven learning for open question answering. In *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1608–1618. Sofia, Bulgaria. Association for Computational Linguistics.

Yao Fu, Yansong Feng, and John P Cunningham. 2019. Paraphrase generation with latent bag of words. In *Advances in Neural Information Processing Systems*, pages 13645–13656.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. 2018. Style transfer in text: Exploration and evaluation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32.

Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. 2013. Ppdb: The paraphrase database. In *Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 758–764.

Xavier Garcia, Pierre Forret, Thibault Sellam, and Ankur P Parikh. 2020. A multilingual view of unsupervised machine translation. *arXiv preprint arXiv:2002.02955*.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial networks. *arXiv preprint arXiv:1406.2661*.

Tanya Goyal and Greg Durrett. 2020. Neural syntactic preordering for controlled paraphrase generation. *arXiv preprint arXiv:2005.02013*.

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and Piyush Rai. 2018. A deep generative framework for paraphrase generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32.

Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick. 2019. Lagging inference networks and posterior collapse in variational autoencoders. *arXiv preprint arXiv:1901.05534*. 6387
the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 196–206, New Orleans, Louisiana. Association for Computational Linguistics.

Jonathan Mallinson, Rico Sennrich, and Mirella Lapata. 2017. Paraphrasing revisited with neural machine translation. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 881–893.

Benjamin Marie and Atsushi Fujita. 2018. Unsupervised neural machine translation initialized by unsupervised statistical machine translation. arXiv preprint arXiv:1810.12703.

Yuxian Meng, Xiang Ao, Qing He, Xiaofei Sun, Qinghong Han, Fei Wu, Jiwei Li, et al. 2021. Conrp: Paraphrase generation using contexts as regularizer. arXiv preprint arXiv:2109.00363.

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei Li. 2019. Cgmn: Constrained sentence generation by metropolis-hastings sampling. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6834–6842.

Jonas Mueller, David Gifford, and Tommi Jaakkola. 2017. Sequence to better sequence: continuous revision of combinatorial structures. In International Conference on Machine Learning, pages 2536–2544. PMLR.

Tong Niu, Semih Yavuz, Yingbo Zhou, Huan Wang, Nitish Shirish Keskar, and Caiming Xiong. 2020. Unsupervised paraphrase generation via dynamic blocking. arXiv preprint arXiv:2010.12885.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics, pages 311–318. Association for Computational Linguistics.

Aadiya Prakash, Sadid A Hasan, Kathy Lee, Vivek Datla, Ashqueul Qadir, Joey Liu, and Oladimeji Farri. 2016a. Neural paraphrase generation with stacked residual lstm networks. arXiv preprint arXiv:1610.03098.

Aadiya Prakash, Sadid A Hasan, Kathy Lee, Vivek Datla, Ashqueul Qadir, Joey Liu, and Oladimeji Farri. 2016b. Neural paraphrase generation with stacked residual LSTM networks. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 2923–2934, Osaka, Japan. The COLING 2016 Organizing Committee.

Lihua Qian, Lin Qiu, Weinan Zhang, Xin Jiang, and Yong Yu. 2019. Exploring diverse expressions for paraphrase generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3164–3173.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. 2015. Sequence level training with recurrent neural networks. arXiv preprint arXiv:1511.06732.

Sujith Ravi and Kevin Knight. 2011. Deciphering foreign language. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 12–21, Portland, Oregon, USA. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084.

Shuo Ren, Yu Wu, Shujie Liu, Ming Zhou, and Shuai Ma. 2020. A retrieve-and-rewrite initialization method for unsupervised machine translation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3498–3504, Online. Association for Computational Linguistics.

Shuo Ren, Zhirui Zhang, Shujie Liu, Ming Zhou, and Shuai Ma. 2019. Unsupervised neural machine translation with smt as posterior regularization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 241–248.

Annette Rios Gonzales, Laura Mascarell, and Rico Sennrich. 2017. Improving word sense disambiguation in neural machine translation with sense embeddings. In Proceedings of the Second Conference on Machine Translation, pages 11–19, Copenhagen, Denmark. Association for Computational Linguistics.

Aurko Roy and David Grangier. 2019. Unsupervised paraphrasing without translation. arXiv preprint arXiv:1905.12752.

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Summarization with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1073–1083, Vancouver, Canada. Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving neural machine translation models with monolingual data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 86–96, Berlin, Germany. Association for Computational Linguistics.
Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2017. Style transfer from non-parallel text by cross-alignment.

A. B. Siddique, Samet Oymak, and Vagelis Hristidis. 2020. Unsupervised paraphrasing via deep reinforcement learning. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

Alex Sokolov and Denis Filimonov. 2020. Neural machine translation for paraphrase generation. arXiv preprint arXiv:2006.14223.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2019. Mass: Masked sequence to sequence pre-training for language generation. arXiv preprint arXiv:1905.02450.

Hong Sun and Ming Zhou. 2012. Joint learning of a dual smt system for paraphrase generation. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 38–42.

Xiaofei Sun, Yuxian Meng, Xiang Ao, Fei Wu, Tianwei Zhang, Jiwei Li, and Chun Fan. 2021a. Sentence similarity based on contexts. arXiv preprint arXiv:2105.07623.

Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu, and Jiwei Li. 2021b. Chinesebert: Chinese pretraining enhanced by glyph and pinyin information. arXiv preprint arXiv:2106.16038.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Advances in neural information processing systems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems, pages 5998–6008.

Su Wang, Rahul Gupta, Nancy Chang, and Jason Baldridge. 2018. A task in a suit and a tie: paraphrase generation with semantic augmentation.

John Wieting and Kevin Gimpel. 2017. Paramnt-50m: Pushing the limits of paraphrastic sentence embeddings with millions of machine translations. arXiv preprint arXiv:1711.05732.

John Wieting, Jonathan Mallinson, and Kevin Gimpel. 2017. Learning paraphrastic sentence embeddings from back-translated bitext. arXiv preprint arXiv:1706.01847.

Sam Witteveen and Martin Andrews. 2019. Paraphrasing with large language models. arXiv preprint arXiv:1911.09661.
A Datasets

(1) **Quora**: The Quora dataset contains 140K parallel paraphrases of questions and 260K non-parallel sentences collected from the question answering website Quora. We follow the standard setup in Miao et al. (2019) and use 3K/30K paraphrase pairs respectively for validation and test.

(2) **WikiAnswers**: The WikiAnswers corpus (Fader et al., 2013) contains clusters of questions tagged by WikiAnswers users as paraphrases. It contains a total number of 2.3M paraphrase pairs. We follow Liu et al. (2019a) to randomly pick 5K pairs for validation and 20K for test.

(3) **MSCOCO**: The MSCOCO dataset (Lin et al., 2014) contains over 500K paraphrase pairs for 120K image captions, with each image caption annotated by five annotators. We follow the dataset split and the evaluation protocol in Prakash et al. (2016b), where only image captions with fewer than 15 words are considered.

(4) **Twitter**: The Twitter dataset is collected via linked tweets through shared URLs (Lan et al., 2017), which originally contains 50K paraphrase pairs. We follow the data split in Liu et al. (2019a), where 10% of the training data is used as validation and the test set only contains sentence pairs that are labeled as “paraphrases”.

B Baselines

For the supervised setup, we compare our proposed model to the follow baselines:

(1) **ResidualLSTM**: Prakash et al. (2016b) deepened the LSTM network by stacking multiple layers with residual connection. This deep SEQ2SEQ model is trained on labeled paraphrase datasets.

(2) **VAE-SVG-eq**: Gupta et al. (2018) combined VAEs with LSTMs to generate paraphrases in a generative style.

(3) **Pointer**: See et al. (2017) augmented the standard SEQ2SEQ model by using a pointer, i.e., the copy mechanism. Word in the input sentence can be directly copied as the current decoded word.

(4) **Transformer**: Vaswani et al. (2017) proposed the Transformer architecture which is based on the self-attention mechanism.

(5) **DNPG**: Li et al. (2019) proposed a Transformer-based model that learns and generates paraphrases at different levels of granularity, i.e., from the lexical to phrasal and then to sentential levels.

For the unsupervised setup, we use the following models for comparison:

(1) **VAE**: Bowman et al. (2016) proposed variational auto-encoders (VAEs) to generate sentences from a continuous space. By minimizing the reconstruction loss between the input sentence and the output sentence, VAEs are able to sample paraphrases from the continuous space.

(2) **Lag VAE**: To overcome the posterior collapse issue of VAEs, He et al. (2019) proposed to aggressively optimize the inference network by performing multiple updates before reverting back to basic VAE training.

(3) **CGMH**: Miao et al. (2019) used Metropolis–Hastings sampling to generate paraphrases, where a word can be deleted, replaced or inserted into the current sentence based on the sampling distribution.

(4) **UPSA**: Liu et al. (2019a) proposed to use simulated annealing to optimize the paraphrase generation model. The training objective is composed of three parts: semantic similarity, expression diversity and language fluency.

Note that the selected data is different from Liu et al. (2019a) but is comparable in the statistical sense.