Single Transits and Eclipses Observed by K2

Daryll M. LaCourse¹, Thomas L. Jacobs²

Subject headings: Planets and satellites: detection – surveys – catalogs – binaries: eclipsing

Photometric survey data from the Kepler (Koch, et al. 2010) mission have been used to discover and characterize thousands of transiting exoplanet and eclipsing binary (EB) systems. These discoveries have enabled empirical studies of occurrence rates which reveal that exoplanets are ubiquitous and found in a wide variety of system architectures and physical compositions. Because the detection strategy of Kepler is most sensitive to short orbital periods, the vast majority of these objects reside within 1 AU of their host star. Although other detection techniques have successfully identified exoplanets at wider orbits beyond the snow lines of their respective host stars (e.g., radial velocity, microlensing, direct imaging), occurrence rates within this population remain poorly constrained. As such, identifying long period objects (LPOs) from archival Kepler and K2 (Howell, et al. 2014) data is valuable from both a statistical and theoretical standpoint, particularly for massive gas giants which are thought to heavily influence the formation and evolution dynamics of their respective systems. Here we present a catalog of 164 single transit and eclipse candidates detected during a comprehensive survey of all currently available K2 data.

Identification of LPO candidates from Kepler data has been accomplished in several previous studies, which we briefly summarize here. Wang, et al. (2013) and Wang et al. (2015) leveraged a crowd sourcing strategy based on manual inspections performed by citizen-scientists of the Planet Hunters project (Fischer, et al. 2012), identifying 15 double-transit candidates and 17 single-transit candidates. Similarly, Uehara, et al. (2016) performed a visual inspection of 7557 Kepler Objects of Interest which recovered 28 single transits; including 7 objects consistent with Neptune-sized and Jupiter-sized exoplanets. Kipping, et al. (2014) and Kipping et al. (2015) utilized an automated pipeline to identify and validate a Uranus-sized exoplanet orbiting Kepler-421 and a Jupiter-sized exoplanet orbiting Kepler-167. Finally, Foreman-Mackey, et al. (2016) utilized a pipeline equipped with a probabilistic model comparison function to systematically search the light curves of 39,036 G and K dwarfs observed by Kepler, recovering 3 double-transit candidates and 13 single-transit candidates. An important result from the Foreman-Mackey study was to show an estimated occurrence rate for G/K dwarfs of 2.00(+/-0.7) exoplanets smaller than Jupiter in the 2 to 25 year orbital period range.

¹7507 52nd Place NE Marysville, WA, 98270; daryll.lacourse@gmail.com, USA
²12812 SE 69th Place Bellevue, WA 98006; tomjacobs128@gmail.com, USA
¹For a review of occurrence rate studies see: https://exoplanetarchive.ipac.caltech.edu/docs/occurrence_rate_papers.html
The search for LPOs has continued successfully into the K2 mission. Indeed, the first confirmed exoplanet of the mission, K2-2b, was identified from a single transit recovered during the mission’s engineering test phase (Vanderburg, et al. 2015). Subsequently, an automated search was performed by Osborn, et al. (2016) for selected stars from Campaigns 1, 2 and 3, which recovered 7 additional LPOs.

Motivated by these results, we undertook a visual survey of 288,399 unique stellar light curves derived from K2 Campaigns 0 through 14. For Campaigns 0, 1 and 2 we downloaded Target Pixel Files from the MAST2 and extracted light curves in an automated fashion with Guest Observer software PYKE3 (Still & Barclay 2012; Vincius, et al. 2017). For Campaigns 3 through 14, both the K2 Ames and K2SFF light curves were made available at the MAST and both sets of data were surveyed independantly by each author. For all data sets, candidates for which the LPO signal contaminated multiple EPIC targets or were noted to be associated with a spacecraft resaturation event, were discarded as false positives. Surviving targets are organized in Table 1 by Campaign and in order of decreasing brightness. Measurements for midpoint, depth, duration were taken with the light curve examination software LcTools4. Included stellar parameters are derived from the EPIC catalog (Huber, et al. 2016), except for Campaign 0 where we include Teff estimations from the K2-TESS catalog5 (Stassun, et al. 2014).

Based purely on an assessment of transit depth, it is tempting to conclude that many of the signals are caused by long period EBs. However we have opted to present the sample as an ensemble, without conclusively discriminating between stellar and sub-stellar companions. Although the radii of the LPOs can be inferred from a single transit, such estimations are only as accurate as our knowledge of the host star’s parameters; for the vast majority of our sample such characterization has not been performed via asteroseismology or spectral fitting. An additional consideration is that large numbers of both late-type and evolved stars have been observed in K2, which can allow scenarios where an exoplanet transit mimics an EB, or vice versa. As such, we do not provide putative radius and period estimations here, save to note that if the EPIC parameters are assumed to be wholly accurate, 38 of the LPOs seem consistent with a planetary origin. Additional photometric or RV follow up is encouraged to properly elucidate the nature of these candidates.

Note Added in Review: After submission of this research letter, we became aware of a large number of additional unpublished single transits in Hugh Osborns PhD thesis6. We are gratified to see a significant overlap between the two samples.

2https://archive.stsci.edu/kepler
3http://pyke.keplerscience.org
4https://sites.google.com/a/lctools.net/lctools/home
5https://filtergraph.com/tess_k2campaigns
6https://warwick.ac.uk/fac/sci/physics/research/astro/publications/phd_msc/hughosborn.phd.pdf
We are grateful to Andrew Vanderburg, Saul Rappaport, Joseph Schmitt, Fei Dai and Ben Montet for helpful discussions and comments during the preparation of this catalog. We thank LcTools author Allan R. Schmitt for facilitating this research by making his software available for our survey. This letter includes data from the K2 mission, which is funded by the NASA Science Mission directorate. Much of the data presented was obtained from the Mikulski Archive for Space Telescopes (MAST), which is governed by STScI and operated by the Association of Universities for Research in Astronomy Inc., under NASA contract NAS5-26555. We thank all past and present members of the Kepler & K2 teams for their efforts to ensure the fantastic success of both missions.

Facilities: Kepler/K2

References

Auvergne, M., Bodin, P., Boisnard, L., et al. 2009, A&A, 506, 411
Fischer, D. A., Schwamb, M. E., Schawinski, K., et al. 2012, MNRAS, 419, 2900
Foreman-Mackey, D., Morton, T. D., Hogg, D. W., Agol, E. & Scholkopf, B., 2016, arXiv:1607.08237
Huber D., et al., 2016, ApJS, 224, 2
Koch D. G., et al., 2010, ApJ, 713, L79
Kipping, D. M., Torres, G., Buchhave, L. A., et al. 2014b, ApJ, 795, 25
Kipping, D. M., Torres, G., Henze, C., et al. 2016, ApJ, 820, 112
Osborn, H. P., Armstrong, D. J., Brown, D. J. A., et al. 2016, MNRAS, 457, 2273
Stassun, K. G., Pepper, J. A., Paegert, M., De Lee, N., & Sanchis-Ojeda, R. 2014, arXiv:1410.6379
Still, M., & Barclay, T. 2012, Astrophysics Source Code Library, ascl:1208.004
Vincius, Z., Barentsen, G., Hedges, et al. 2018, Zenodo, doi:10.5281/zenodo.835583
Uehara, S., Kawahara, H., Masuda, K., Yamada, S., Aizawa, M. 2016, ApJ, 822, 2
Vanderburg A., Johnson J. A., 2014, PASP, 126, 948
Wang, J., Fischer, D. A., Barclay, T., et al. 2013, ApJ, 776, 10
Wang, J., Fischer, D. A., Barclay, T., et al. 2015, ApJ, 815, 127
Table 1. Single Transits and Eclipses Observed by K2

EPIC	Campaign	K_P (mag)	T_{eff} (K)	R^*/R_\odot	BJD$_0$ (BJD-2454833)	Depth (ppm)	Duration (hours)	Comments
248811085	14	11.25	6327	1.53	3115.3795	91337	6.3746	
248555345	14	11.60	5192	6.07	3106.6452	125978	15.6912	
248854690	14	11.98	5462	2.58	3117.3517	84973	25.4987	
248847494	14	12.17	4931	0.79	3134.1158	2236	56.3914	
201854636	14	12.19	4936	3.98	3118.2002	30324	16.1819	
248749087	14	13.80	4812	0.65	3094.5298	1833	5.8824	
248657359	14	13.92	4790	0.70	3093.0281	19297	14.2224	
248607265	14	15.14	4383	0.56	3091.0972	19639	5.8844	
201792207	14	15.35	4101	0.48	3105.8900	465848	3.9229	Deep; secondary eclipse
248912804	14	16.59	3334	0.17	3126.7501	94658	9.8064	
248873506	14	17.30	3917	0.35	3108.1574	11437	11.7696	
247692298	13	9.71	10398	3.20	3006.2056	188904	10.2960	
247632631	13	10.77	8224	2.06	3003.3757	137259	21.5760	Deep; secondary eclipse
247756662	13	11.80	4202	35.34	3049.9187	28528	310.8888	Flat-bottom
247762843	13	11.96	6527	1.39	3002.6095	1300	5.3952	
246849982	13	12.52	9715	1.85	3061.1567	235239	26.4792	
246669483	13	12.72	6149	1.72	3022.5914	32984	17.1624	
247865067	13	12.94	5013	8.33	3042.9614	2266	8.3352	
247795097	13	12.99	3606	166.45	3001.9245	192036	12.7488	
247594337	13	13.63	4908	6.90	2997.6037	175064	12.2592	
247967714	13	13.75	5076	2.01	3012.0791	258337	4.9032	
247450113	13	14.04	5886	1.86	3003.5390	3363	14.7120	
246906371	13	14.55	4912	5.74	2994.9265	24957	7.3536	
247814074	13	14.64	6245	1.76	3050.1637	443535	11.7696	Deep; secondary eclipse
247015294	13	15.86	6267	1.26	2997.8078	174621	9.3168	
246194159	12	9.48	6340	1.81	2914.3878	378934	8.8265	Deep; secondary eclipse
246359551	12	11.14	4696	5.33	2914.3570	204068	21.0858	Deep; secondary eclipse
245929407	12	11.64	-	-	2927.1473	22554	6.374717	
245964933	12	12.18	5480	0.88	2925.2779	40201	10.7879	Deep; secondary eclipse
246394998	12	12.52	5877	1.12	2913.9898	438858	5.3940	Deep; secondary eclipse
246089124	12	13.05	5865	1.10	2941.4699	138529	9.3167	Deep; secondary eclipse
246361128	12	14.38	4717	0.68	2911.2000	45590	6.8651	
246163364	12	14.89	4681	0.73	2972.8118	69921	34.8155	Deep; secondary eclipse; flat-bottom
246301164	12	14.97	5063	0.78	2925.7785	131436	4.4132	Deep
EPIC	Campaign	K_P (mag)	T_{eff} (K)	R* R_\odot	BJD$_0$ (BJD-2454833)	Depth (ppm)	Duration (hours)	Comments
----------	----------	-------------	---------------	--------------	------------------------	-------------	------------------	---
246425172	12	15.16	4866	4.64	2939.1922	62953	67.6696	Deep; secondary eclipse; flat-bottom
246302531	12	15.56	4146	0.49	2914.9906	63915	4.4133	
246020606	12	15.69	5274	0.81	2939.7230	34977	5.8842	
246331715	12	16.95	5429	0.81	2927.6786	57229	6.3747	
246279882	12	17.52	5158	6.79	2939.5191	65549	53.9395	Deep; secondary eclipse; flat-bottom
230887315	11	8.47	5262	2.74	2927.3093	30968	8.3352	
224937601	11	10.47	9696	5.30	2869.8795	202073	44.1312	Deep
223333291	11	10.74	-	-	2887.6860	72754	17.1624	Deep; secondary eclipse
226690397	11	10.85	6744	3.58	2862.2176	53438	43.6440	Deep; secondary eclipse
232334247	11	11.01	6566	1.59	2831.1303	1998	18.1435	
231674968	11	11.28	6073	3.37	2839.8854	10914	46.0941	
236157481	11	11.87	7525	3.09	2880.6772	116832	22.0662	Deep
231312005	11	11.94	5854	1.60	2852.5122	4908	8.8272	
235099239	11	13.21	4046	0.47	2856.5988	2200	14.7096	
240410914	11	13.44	4799	40.26	2837.1685	589868	10.7880	Deep
240323152	11	14.61	8545	3.39	2841.3162	12643	5.8848	
242209485	11	14.67	6229	2.98	2861.1554	39727	11.7672	
224703312	11	15.15	5509	2.98	2882.4858	146172	11.7672	Deep; secondary eclipse
229021605	10	10.47	4895	6.00	2785.7140	17416	14.2204	
201132684	10	11.67	5549	0.87	2797.8904	2196	12.7512	Apparent multi-planet system
201092629	10	11.85	5259	0.76	2778.0310	1126	5.8843	
201479221	10	11.91	5697	0.98	2787.3679	159819	10.7879	Deep
228786343	10	12.72	6140	1.19	2614.7579	14906	4.4132	
228804202	10	13.45	5719	0.94	2790.4029	731	3.9240	
229022237	10	13.60	5168	1.84	2751.6236	21467	9.3170	
201093731	10	13.74	6134	1.27	2801.8443	35729	6.3747	Deep
228891397	10	13.76	5088	6.36	2780.2586	246193	44.6227	Deep
201510813	10	14.19	5739	0.93	2802.0174	149321	5.8843	Deep
201496016	10	17.72	3833	0.33	2799.5966	221704	10.2975	
220315458	8	11.59	5832	1.05	2611.4965	985	4.9056	
220186685	8	12.00	5158	0.87	2571.6956	1973	5.8848	
220562610	8	12.51	5915	1.40	2563.6864	2813	11.7672	
220660804	8	13.00	5761	1.50	2618.2492	4928	8.3352	
220152847	8	13.19	5129	0.80	2568.8657	9191	12.2592	
EPIC	Campaign	K_P (mag)	T_{eff} (K)	R*	BJDO_0 (BJD-2454833)	Depth (ppm)	Duration (hours)	Comments
----------	----------	-------------	----------------------	-----	----------------------	-------------	------------------	-------------------------------
22065820	8	13.76	5089	3.47	2590.8710	13884	6.3744	
22065820	8	14.38	5385	0.82	2599.4419	152383	4.9032	Deep
22065820	8	14.25	5064	0.75	2575.9658	225648	6.8664	Deep
215067200	7	5.92	9210	4.32	2493.8114	151215	41.6806	Flat-bottom
213832800	7	11.08	6251	1.34	2505.0904	406	23.0472	
213832800	7	11.24	5326	2.77	2488.4585	81263	8.3361	Deep
218571675	7	11.44	-	-	2502.2907	3592	11.2782	Flat; secondary eclipse
213332545	7	11.79	5892	1.16	2505.5805	108103	4.4132	Deep; secondary eclipse
21817050	7	12.29	5379	8.74	2512.0469	2216	14.7107	
21478308	7	12.86	4206	38.41	2493.7603	7104	25.9896	
215894766	7	13.06	5267	2.36	2501.4119	26419	6.3746	
213867148	7	13.14	5150	16.29	2533.8786	8750	98.5620	
219240689	7	14.12	4953	8.97	2552.6731	25884	42.6611	Flat-bottom
215490989	6	11.50	5986	1.33	2412.0360	53688	14.2224	
212830423	6	11.95	4820	5.10	2433.3465	6805	22.0656	
215241555	6	12.52	5800	0.98	2389.6836	1132	8.3352	
21685467	6	13.26	5714	0.91	2409.6665	9319	7.3560	
21694013	6	13.36	4913	5.03	2409.1754	7113	40.6992	
21555615	6	13.42	5606	2.11	2428.6783	2358	3.9240	
212805678	6	13.69	4966	4.27	2460.5206	60463	23.0472	Secondary eclipse
212325089	6	13.69	4983	4.85	2441.2127	115890	53.9376	Flat-bottom
21335320	6	13.80	5100	0.88	2451.0103	80532	6.8664	Secondary eclipse
21247236	6	13.96	5023	3.25	2449.5901	4389	15.2016	
21255409	6	14.56	5834	0.96	2462.2474	141582	25.4976	Deep
212323800	6	14.56	5213	0.86	2449.8354	227278	14.2201	Deep; secondary eclipse
21275521	6	14.65	5252	2.28	2424.7963	12666	6.8640	
212732378	6	14.66	5272	0.65	2396.7732	58214	6.3768	
212715204	6	16.67	4193	0.47	2399.3379	185073	4.9032	
212152316	5	10.31	5631	2.29	2374.2193	66344	30.4032	
211634358	5	10.72	4830	10.55	2368.6513	1197	9.3168	
211598816	5	10.75	7437	2.19	2363.3709	9718	3.9240	
211924561	5	10.75	6976	1.17	2346.8923	2144	3.4320	
21206444	5	10.81	5938	1.18	2343.3080	644	25.4976	Flat-bottom
Table 1—Continued

EPIC	Campaign	K_P (mag)	T_{eff} (K)	R^* (R_{\odot})	BJD$_0$ (BJD-2454833)	Depth (ppm)	Duration (hours)	Comments
211953574	5	11.31	6027	1.54	2360.5608	590	6.3744	
211351543	5	11.38	6251	1.66	2373.7958	491	6.3744	
2110939692	5	11.75	6404	1.44	2337.5035	1204	11.7696	Apparent multi-planet system
2118928898	5	11.77	4787	8.74	2356.3519	8984	62.2756	
211498244	5	11.88	3731	0.31	2321.5460	94154	6.8664	
212070574	5	12.10	6039	0.91	2376.5789	3843	5.3928	
211351097	5	12.32	6214	1.42	2328.8308	905	7.3560	
212012130	5	12.37	4856	4.15	2332.4882	5003	6.3744	
211821192	5	12.58	5769	0.95	2344.1743	1103	7.3553	
211840710	5	12.72	5162	6.88	2353.1026	3890	7.3560	
211894612	5	12.76	6063	1.31	2349.9258	44324	8.8272	
211490542	5	12.90	6134	1.37	2343.1733	80800	10.2960	Deep; secondary eclipse
211995462	5	12.96	5771	0.97	2370.2761	256342	11.7696	Deep
212012030	5	13.07	5127	0.81	2341.4686	202281	4.9032	Deep
211503363	5	13.22	4988	4.34	2364.5142	4616	23.5368	
211390677	5	13.31	4886	4.85	2318.7983	6780	39.7195	Higher SnR in Ames aperture
211411112	5	13.40	6026	1.25	2345.9526	32566	4.4112	
211489484	5	15.99	3767	0.342	2359.6206	109099	4.4112	Deep; secondary eclipse
210725198	4	10.39	7899	2.31	2258.1411	10353	18.6336	Deep; secondary eclipse
211087003	4	11.64	6072	1.25	2251.0917	8089	7.8456	Apparent multi-planet system
210857749	4	12.70	6392	1.46	2251.9701	184683	13.7304	Deep
211064647	4	14.91	5613	0.74	2273.9654	13344	6.3744	
210823406	4	15.74	4102	0.49	2257.3639	174979	5.8848	Deep
210760314	4	16.20	4470	0.58	2248.1500	324966	4.8272	
210825751	4	16.43	3865	0.39	2275.9263	10907	15.2016	
210843533	4	16.94	3566	0.24	2256.1794	64606	9.8064	
211075893	4	17.72	4431	0.57	2253.7886	163591	11.7696	
205966070	3	9.86	6200	2.73	2184.7830	119208	7.8457	Deep
206253908	3	11.18	6864	1.75	2150.6618	100778	6.8651	
205639222	3	12.09	5581	2.00	2152.7766	325665	6.3748	Deep
206008070	3	13.82	4983	4.88	2172.0842	8626	97.5815	Flat-bottom
203914123	2	9.03	4801	11.11	2113.2841	26917	75.5344	Noted in Osborn, et al. (2016)
204546592	2	9.93	4848	10.92	2066.965	10212	20.5968	
EPIC	Campaign	K_P (mag)	T_{eff} (K)	R^*_{\odot}	BJD$_0$ (BJD-2454833)	Depth (ppm)	Duration (hours)	Comments
---------	----------	-------------	----------------------	----------------	------------------------	-------------	------------------	--------------------------
203865172	2	10.67	6199	1.90	2082.5250	6043	2.4504	
203746451	2	11.50	5627	0.93	2114.0612	5550	11.7672	
204918110	2	11.80	6442	2.03	2111.8748	112761	22.5502	
203311200	2	11.89	6787	1.94	2121.0070	3656	13.7304	
204533587	2	12.24	5717	0.91	2093.4343	1350	9.3168	
204634789	2	12.29	6029	2.02	2088.0105	7814	2.9424	
204086428	2	12.31	6149	1.43	2066.6689	2160	6.3744	
203011840	2	12.48	5063	1.91	2080.2971	475216	19.1256	Deep
204952800	2	12.79	6328	1.22	2110.6789	428538	6.3744	Deep
205272592	2	14.51	4544	12.57	2102.3539	338711	12.7488	Deep
204100531	2	14.58	6384	1.80	2098.7673	1436692	16.1808	Deep
204776782	2	14.77	7247	1.95	2127.0038	267132	14.2201	Deep
201207683	1	10.64	5293	9.15	2002.3225	236704	7.3554	Deep; Noted in Schmitt, et al. (2016)
201775904	1	11.57	6103	1.58	2002.5460	14162	5.9393	
201631267	1	12.78	5012	2.64	1996.6831	6207	7.3554	Noted in Osborn, et al. (2016)
201766724	1	13.98	4542	0.50	2044.7690	31203	16.6723	
201720401	1	14.74	5024	3.79	1983.3515	23941	36.2876	Noted in Osborn, et al. (2016)
201663371	1	15.05	4176	0.52	1979.7246	48800	6.3748	
201635132	1	15.14	3983	0.44	1993.9755	31550	5.8843	Noted in Osborn, et al. (2016)
202071802	0	10.40	6194		1958.5707	91224	5.3952	
202126877	0	11.00	7142		1955.4341	61834	5.8848	
202072917	0	11.90	9221		1953.6261	248395	7.3536	Deep
202060921	0	12.00	7226		1971.3294	105768	17.8456	Deep
202137580	0	13.10	3755		1962.6458	66511	50.9976	Deep; secondary eclipse
202067195	0	14.30	6980		1955.7918	15372	8.3376	
202135247	0	14.40	3919		1963.8721	89100	40.2096	Flat-bottom
202073476	0	15.00	4066		1957.7729	47716	56.3904	
202085278	0	15.50	3676		1948.2010	8248	19.6128	