Generation in Machine Translation from Deep Syntactic Trees

Keith Hall
Johns Hopkins University

Petr Němec
Charles University in Prague
Outline

- Transfer-based MT
- Tectogrammatical Representation (TR) (deep syntax)
- Generation from English TR trees
 - process
 - models
- Empirical results
Transfer-based MT

Source
(Czech)

Target
(English)
Transfer-based MT

Source
(Czech)

Target
(English)
Transfer-based MT

Source (Czech) Interlingua Target (English)
Transfer-based MT

Source (Czech) Interlingua Target (English)
Transfer-based MT

Source (Czech) -> Tectogrammar -> Target (English)
Tecto Transfer-based MT

Czech sentence

English sentence
Tecto Transfer-based MT

Czech sentence

surface syntax

(Czech Tecto)

English sentence

deep syntax

(English Tecto)

surface syntax
Tecto Transfer-based MT

Czech sentence

surface syntax

(Czech Tecto)

deep syntax

parsing

English sentence

surface syntax

(English Tecto)

deep syntax
Tecto Transfer-based MT

Deep syntax (Czech Tecto) to tree transduction to deep syntax (English Tecto)

Surface syntax Czech sentence to parsing to surface syntax English sentence

SSST ‘07 - Hall & Němec
Tecto Transfer-based MT

Czech sentence

surface syntax

parsing

deep syntax (Czech Tecto)

tree transduction

deep syntax (English Tecto)

English sentence

surface syntax

generation

SSST '07 - Hall & Němec
Tecto Transfer-based MT

Czech sentence

surface syntax

parsing

deep syntax (Czech Tecto)

tree transduction

deep syntax (English Tecto)

surface syntax

English sentence

generation

SSST '07 - Hall & Němec
Tecto Transfer-based MT

- Parsing
 - Surface syntax
- Deep syntax
 - (Czech Tecto)
- Tree transduction
- Deep syntax
 - (English Tecto)
- Generation
 - Surface syntax

Czech sentence

English sentence
Transfer-based MT

- Allows us to explore deep syntactic representations
- Factored models are clear
- Need not be greedy one-best process
 - although we present one-best generation/results
“Now the network has opened a news bureau in the Hungarian capital"
“Now the network has opened a news bureau in the Hungarian capital”
“Now the network has opened a news bureau in the Hungarian capital”
Now the network has opened a news bureau in the Hungarian capital
“Now the network has opened a news bureau in the Hungarian capital”
“Now the network has opened a news bureau in the Hungarian capital”
Generation Process

1. Insert syn-semantic (function) words
2. Subtree reordering

- Intermediary surface syntax?
- Reordering constraints?
 - maximum subtree size
 - coordination

deep syntax
(English Tecto)

surface syntax

English sentence

SSST ‘07 - Hall & Němec
Generation Model

\[
\arg \max_{A, f} P(A, f|T) = \arg \max_{A, f} P(f|A, T)P(A|T) \\
\approx \arg \max_{f} P(f|T, \arg \max_{A} P(A|T))
\]

- **tecto nodes:** \(T = \{t_1, \ldots, t_i, \ldots, t_n\} \)
- **insertion string:** \(A = \{a_1, \ldots, a_i, \ldots, a_k\} \)
 \[n \leq k \leq 2n \]
- **order mapping:** \(f : \{A \cup T\} \rightarrow \{1, \ldots, 2n\} \)
arg max_{A,f} P(A, f|T) \quad \text{Insertion} \\
= \arg max_{A,f} P(f|A, T)P(A|T) \\
\approx \arg max_{f} P(f|T, \arg max_{A} P(A|T)) \\

- **tecto nodes:** \(T = \{t_1, \ldots, t_i, \ldots, t_n\} \) \\
- **insertion string:** \(A = \{a_1, \ldots, a_i, \ldots, a_k\} \) \(n \leq k \leq 2n \) \\
- **order mapping:** \(f : \{A \cup T\} \rightarrow \{1, \ldots, 2n\} \)
Generation Model

\[
\text{arg max}_{A, f} P(A, f | T) \quad \text{Reordering}
\]

\[
= \text{arg max}_{A, f} P(f | A, T) P(A | T)
\]

\[
\approx \text{arg max}_{f} P(f | T, \text{arg max}_{A} P(A | T))
\]

- **tecto nodes:** \(T = \{t_1, \ldots, t_i, \ldots, t_n\} \)
- **insertion string:** \(A = \{a_1, \ldots, a_i, \ldots, a_k\} \)
 \[n \leq k \leq 2n\]
- **order mapping:** \(f : \{A \cup T\} \rightarrow \{1, \ldots, 2n\}\)
“Now the network has opened a news bureau in the Hungarian capital”
“Now the network has opened a news bureau in the Hungarian capital”
Insertion Model

\[P(A|T) = \prod_i P(a_i|a_1, \ldots, a_{i-1}, T) \approx \prod_i P(a_i|t_i, t_g(i)) \]

- Insertion is dependent on local context:
 - tecto node (includes: lemma, functor, POS)
 - parent node

- Three independent models:
 - articles
 - prepositions and subordinating conjunctions
 - modals (deterministic, given functor)
“Now the network has opened a news bureau in the Hungarian capital”
“Now the network has opened a news bureau in the Hungarian capital”
Now the network has opened a news bureau in the Hungarian capital
Surface Order Model

1. child order: \[P(c_i < c_{i+1} | c_i, c_{i+1}, g) = (c_i < c_{i+1} | f_i, t_i, f_{i+1}, t_{i+1}, f_g, t_g) \]

2. gov. position: \[P(c_i < g < c_{i+1} | c_i, c_{i+1}, g) = P(c_i < g < c_{i+1} | f_i, t_i, f_{i+1}, t_{i+1}, t_g, f_g) \]

- Greedy procedure
 (there is an alternative DP solution)
- Factored models can be estimated separately
- Constraint on reorderings: maximum 5 children
- Features: functors & POS tags
Intermediate Syntax

- Insertion from Tectogrammatical Trees
- Convert deep functors to syntactic functions
 - \(P(\text{VERB} \mid \text{PRED}) \)
 - \(P(\text{SBJ} \mid \text{ACT}) \)
- Reordering based on syntactic features
 - should be a closer match to surface-syntax transfer

SSST ‘07 - Hall & Němec
Evaluation

- **Training**
 - ~50k WSJ treebank automatically converted

- **Training & Eval: PCEDT Corpus 1.0:**
 - Penn WSJ treebank translated to Czech
 - 4 retranslations back to English
 - ~20k sentences of automatic TR
 - ~500 sentences of manual TR

- **History based modes**
 - smoothed via linear-backoff EM-smoothing
Evaluation: Insertion

Model	Manual Data		Synthetic Data	
	Ins. Rules	No Rules	Ins. Rules	No Rules
	Articles	Prep & SC	Articles	Prep & SC
Baseline	N/A	77.93	N/A	78.00
w/o g. functor	87.29	86.25	88.07	87.34
w/o g. lemma	86.77	85.68	87.53	86.55
w/o g. POS	87.29	86.10	87.68	86.89
w/o functor	86.10	84.86	86.01	84.79
w/o lemma	81.34	80.88	81.28	81.42
w/o POS	84.81	84.01	85.53	84.69
All Features	**87.49**	**86.45**	**87.87**	**87.24**

- **Manual data** - hand annotated
- **Synthetic data** - automatically produced (matches training data)
- **“Rules”** - Small set of deterministic rules
 - applied if no majority prediction (all < .5)
Article Insertion

% Errors	Reference→Hypothesis
41	the → NULL
19	a/an → NULL
16	NULL → the
11	a/an → the
11	the → a/an
2	NULL → a/an

- Conservative model
 - 60% of the error is due to NULL insertion
- Assume equivalence of ‘a’ and ‘an’
Evaluation: Reordering

Model	Manual Data	Synthetic Data						
	Coord. Rules	No Rules	Coord. Rules	No Rules				
	All	Interior	All	Interior	All	Interior	All	Interior
Baseline	N/A	N/A	68.43	21.67	N/A	N/A	69.00	21.42
w/o g. functor	94.51	86.44	92.42	81.27	94.90	87.25	93.37	83.42
w/o g. tag	93.43	83.75	90.89	77.50	93.82	84.56	91.64	79.12
w/o c. functors	91.38	78.70	89.71	74.57	91.91	79.79	90.41	76.04
w/o c. tags	88.85	72.44	82.29	57.36	88.91	72.29	83.04	57.60
All Features	94.43	86.24	92.01	80.26	**95.21**	**88.04**	**93.37**	**83.42**

- **Evaluation based on Hajič et al. 2002**
 - Percentage of correct subtrees (no credit for partial order)
 - Reordering correct trees (no insertion errors)
Evaluation: Full

Model	Manual	Synthetic
TR w/ Rules	.4614	.4777
TR w/o Rules	.4532	.4657
AR	.2337	.2451

- Morphological insertion by Morphg (Carroll)
- BLEU score against original + 4 retranslations
 - “bound” on performance of MT system using this generation component
- AR - intermediate syntax
 - lost information in mapping (valency ordering!)

SSST ‘07 - Hall & Němec
Related work

- **Amalgam** (Corston-Oliver et al.‘02)
 - Generation from a logical form
 - Assumes more information than impoverished TR
- **Halogen** (Langkilde-Geary ‘02)
 - *minimally specified* results closest to ours
Conclusions

- Simple generative models capable of recovering knowledge from deep structure
 - limited history, simple smoothing
- Greedy decoding procedure is fast, but joint decoder would likely help
 - insertion/reordering not conditionally independent