Associated bacteria of *Botryococcus braunii* (Chlorophyta)

Joao D Gouveia Corresponding Author, 1 Jie Lian Equal first author, 2, Georg Steinert 2, Hauke Smidt 2, Detmer Sipkema 2, Rene H Wijffels 1, 3, Maria J Barbosa 1, 4

1 Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
2 Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
3 Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
4 Department of Biology, University of Bergen, Bergen, Norway

Corresponding Author: Joao D Gouveia
Email address: jdggouveia@gmail.com

Botryococcus braunii (Chlorophyta) is a green microalga known for producing hydrocarbons and exopolysaccharides. Improving the biomass productivity of *B. braunii* and hence, the productivity of the hydrocarbons and of the exopolysaccharides, will make *B. braunii* more attractive for industries. Microalgae usually cohabit with bacteria which leads to the formation of species-specific communities with environmental and biological advantages. Bacteria have been found and identified with a few *B. braunii* strains, but little is known about the bacterial community across the different strains. A better knowledge of the bacterial community of *B. braunii* will help to optimize the biomass productivity, hydrocarbons and exopolysaccharide accumulation. To better understand the bacterial community diversity of *B. braunii*, we screened 12 strains from culture collections. Using 16S rRNA gene analysis by MiSeq we described the bacterial diversity across twelve *B. braunii* strains and identified possible shared communities. We found three bacterial families common to all strains: *Rhizobiaceae*, *Bradyrhizobiaceae* and *Comamonadaceae*. Additionally, the results also suggest that each strain has its own specific bacteria that may be the result of long-term isolated culture.
Associated bacteria of *Botryococcus braunii* (Chlorophyta)

Joao D. Gouveia\(^1\)*, Jie Lian\(^2\), Georg Steinert\(^2\), Hauke Smidt\(^2\), Detmer Sipkema\(^2\), Rene H. Wijffels\(^1,3\), Maria J. Barbosa\(^1,4\)

\(^1\) Bioprocess Engineering, Wageningen University & Research, AlgaePARC, PO Box 16, 6700 AA, Wageningen, The Netherlands

\(^2\) Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands

\(^3\) Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodo, Norway

\(^4\) Department of Biology, University of Bergen, PO Box 7803, 5006 Bergen, Norway

* Corresponding author: jdggouveia[al]gmail.com.
Abstract

Botryococcus braunii (Chlorophyta) is a green microalga known for producing hydrocarbons and exopolysaccharides. Improving the biomass productivity of *B. braunii* and hence, the productivity of the hydrocarbons and of the exopolysaccharides, will make *B. braunii* more attractive for industries. Microalgae usually cohabit with bacteria which leads to the formation of species-specific communities with environmental and biological advantages. Bacteria have been found and identified with a few *B. braunii* strains, but little is known about the bacterial community across the different strains. A better knowledge of the bacterial community of *B. braunii* will help to optimize the biomass productivity, hydrocarbons and exopolysaccharide accumulation. To better understand the bacterial community diversity of *B. braunii*, we screened 12 strains from culture collections. Using 16S rRNA gene analysis by MiSeq we described the bacterial diversity across twelve *B. braunii* strains and identified possible shared communities. We found three bacterial families common to all strains: *Rhizobiaceae*, *Bradyrhizobiaceae* and *Comamonadaceae*. Additionally, the results also suggest that each strain has its own specific bacteria that may be the result of long-term isolated culture.
Introduction

In recent decades many studies have focused on the physiology and cultivation process of several microalgae with potential for large scale production (Blanken et al., 2016; Cabanelas et al., 2016; Grima et al., 1999; Posten, 2009; Ugwu et al., 2005). One microalga of interest for large scale cultivation is *B. braunii* because it can produce and secrete long chain hydrocarbons and exopolysaccharides (EPS) (Dayananda et al., 2007; Fernandes et al., 1989; Metzger and Largeau, 2005). Hydrocarbons are naturally occurring compounds consisting entirely of hydrogen and carbon, and are one of the most important energy resources (Timmis and Qin, 2010) *B. braunii* is differentiated into different races (race A, B, L and S) depending on the type of hydrocarbons secreted (Kawachi et al., 2012; Metzger and Largeau, 2005). Race A strains synthesize odd-numbered alkadienes and trienes (C\textsubscript{25} to C\textsubscript{31}), race B strains synthesize isoprenoid type compounds termed botryococcenes (C\textsubscript{30} to C\textsubscript{37}), and methylated squalenes (C\textsubscript{31} to C\textsubscript{34}), race L strains synthesize lycopadiene (C\textsubscript{40}), and race S strains synthesize C\textsubscript{18} epoxy-\textit{n}-alkanes and C\textsubscript{20} saturated \textit{n}-alkanes (Dayananda et al., 2007; Eroglu et al., 2011; Kawachi et al., 2012; Metzger and Largeau, 2005). EPS can have a range of applications, for example it can be applied as stabilisers and gelling agents in food products. In addition, it has applications in the pharmaceutical and cosmeceutical industries (Borowitzka, 2013; Buono et al., 2012; Donot et al., 2012). *B. braunii* comprises of a variety of strains from diverse parts of the world. The strains can differ in the hydrocarbon and exopolysaccharide content (Allard and Casadevall, 1875; Dayananda et al., 2007; Eroglu et al., 2011; Gouveia et al., 2017; Metzger et al., 1988; Moutel et al., 1855; Volova et al., 1998; Wolf, 1983).

Bacteria can grow in close proximity to the microalgal cells due to the presence of EPS substances secreted by the microalgae (Bell and Mitchell, 1972). The presence of bacteria within, or close to this EPS layer can lead to mutually beneficial interactions as well as interactions that are antagonistic in nature. Beneficial interactions for microalgae normally provide environmental advantages, such as nutrient exchange and community resilience to invasion by other species (Eigemann et al., 2013; Hays et al., 2015; Jasti et al., 2005; Ramanan et al., 2015). Antagonistic interactions will usually result in inhibition of the microalgal growth, either causing cell lysis, or directly competing for nutrients (Cole, 1982; Cooper and Smith, 2015; Segev et al., 2016). Studies investigating interactions of microalgae with bacteria show how important these interactions can
be for the cultivation process (Guerrini et al., 1998; Kazamia et al., 2012; Kim et al., 2014; Windler et al., 2014). Understanding the interactions of microalgae and bacteria, and how it can enhance the cultivation for industrial process, could lead to increased biomass productivity.

So far the bacterial community of *B. braunii* species is described in only a few studies. The earliest work is from Chirac and colleagues who described the presence of *Pseudomonas* sp. and *Flavobacterium* sp. in two strains of *B. braunii* (Chirac et al., 1982). Rivas and colleagues identified in the *B. braunii* UTEX strain the presence of *Pseudomonas* sp. and *Rhizobium* sp. (Rivas et al., 2010). One study using the *B. braunii* Ba10 strain showed the presence of rod shaped bacteria in the rim of the colony aggregations and proposed it is as growth promoting bacteria closely related to *Hyphomonadaceae* spp. (Tanabe et al., 2015). One important finding was that *B. braunii* is a vitamin B12 autotroph, so it does not depend on bacteria for the synthesis of this important metabolite (Tanabe et al., 2014). A more recent study using a *B. braunii* (race B) strain, revealed the presence of several Rhizobiales such as *Bradyrhizobium*, and the presence of *Bacteroidetes* sp (Sambles et al., 2017). So far, all studies have focused on only a few strains making it difficult to have a good overview of what bacterial community dominates *B. braunii*.

In this study we looked at twelve strains of *B. braunii* obtained from several culture collections to investigate the bacterial community composition that is associated with *B. braunii*.

Experimental Procedure

Strain collections and media preparation

Twelve *B. braunii* strains were obtained from culture collections (Table 1) and transferred to Erlenmeyer flasks with modified Chu 13 medium (Largeau et al., 1980) without citric acid or vitamins, with the following composition: 1200 mg L\(^{-1}\) KNO\(_3\), 200 mg L\(^{-1}\) MgSO\(_4\).2H\(_2\)O, 108 mg L\(^{-1}\) CaCl\(_2\).2H\(_2\)O, 104.8 mg L\(^{-1}\) K\(_2\)HPO\(_4\), 20 mg L\(^{-1}\) Fe-Na\(_2\)EDTA, 9.4 μg L\(^{-1}\) Na\(_2\)OSe, 2.86 mg L\(^{-1}\) H\(_3\)BO\(_3\), 1.8 mg L\(^{-1}\) MnSO\(_4\).4H\(_2\)O, 220 μg L\(^{-1}\) ZnSO\(_4\).7H\(_2\)O, 90 μg L\(^{-1}\) CoSO\(_4\).7H\(_2\)O, 80 μg L\(^{-1}\) CuSO\(_4\).5H\(_2\)O, 60 μg L\(^{-1}\) Na\(_2\)MoO\(_4\).2H\(_2\)O, 10 μl L\(^{-1}\) H\(_2\)SO\(_4\). The final pH was adjusted to pH 7.2 with NaOH and NaHCO\(_3\) was added to a final concentration of 5 mM. The 12 strains were grown in Infors HT Multriton incubators in 250 mL conical flasks and a volume of 150 mL. The temperature was set at 23°C, with 2.5 % CO\(_2\) enriched air and shaking at 90 rpm. Illumination was
provided by Phillips lamps FL-Tube L 36W/77, with 150 μmol photon m\(^{-2}\) sec\(^{-1}\), and a light:dark photoperiod of 18:6 h. Flasks were inoculated with \textit{B. braunii} growing in the active growing phase, such that the initial absorbance at 680 nm was 0.2. The Erlenmeyer flasks were capped with aeroseal sterile film (Alphalabs). Samples were taken at day 1, 4, 8 and 11, for 16S rRNA gene analyses.

Table 1

DNA extraction

On sampling days, 5 mL of fresh culture was harvested with sterilized membrane filters (0.2 μm, Millipore) using a vacuum apparatus. The filters were cryopreserved in -80 °C until further processing. DNA was extracted from the cryopreserved filters that were cut into small pieces with a sterile scissor. Filter pieces were transferred to a 2 mL sterilized tube with zirconia/silica beads (Biospecs), and 1 mL S.T.A.R buffer (Roche, USA) was added. Cells were homogenized for two rounds of 45 seconds, at the speed of 5500 rpm with Precellys (Bertin Technologies). Then DNA was extracted using the Maxwell 16 Tissue LEV Total RNA purification kit (Promega, USA) with aid of the Maxwell 16 instrument (Promega, USA). The purity and quantity of DNA was examined by electrophoresis on a 1% agarose gel and measured with a Nanodrop (ND1000, Thermo Fisher Scientific Inc., Wilmington). The extracted DNA was stored at -20 °C until further use.

16S rRNA gene amplification and Miseq sequencing

Amplicons from the V1-V2 region of 16S rRNA genes were generated by a two-step PCR strategy consisting of a forward primer (27F-DegS = 5’GTTYGATYMTGGCTCAG 3’ where M = A or C; R = A or G; W = A or T; Y = C or T) and an equimolar mixture of reverse primers (338R I = 5’GCWGCCCTCCCGTAGGAGT 3’ and II = 5’ GCWGCCACCCGTAGGTGT 3’ where M = A or C; R = A or G; W = A or T; Y = C or T). Eighteen bp Universal Tags 1 and 2 (Unitag1= GAGCCGTAGCCAGTCTGC; Unitag2= GCCGCTGACCCTGACATCG) were appended at the 5’ end of the forward and reverse primer, respectively (Bogert et al., 2011; Daims et al., 1999; Tian et al., 2016). The first PCR mix (50 μL) contained 10 μL 5× HF buffer (Thermo ScientificTM, the Netherlands), 1 μL dNTP Mix (10 mM; Promega, Leiden, the Netherlands), 1 U of Phusion® Hot Start II High-Fidelity DNA polymerase (Thermo ScientificTM), 1 μM of 27F-DegS forward primer, 1 μM of 338R I and II reverse primers, 1 μL template DNA and 32.5 μL nuclease free water. Amplification included an initial denaturation at 98°C for 30 sec; 25 cycles of denaturation
at 98°C for 10 sec; annealing at 56°C for 20 sec and elongation at 72°C for 20 sec; and a final extension at 72°C for 10 min. The PCR product size was examined by 1 % gel electrophoresis.

The second PCR mix (100 µL) contained 62 µL nuclease free water, 5 µL of PCR1 product, 20 µL 5× HF buffer, 2 µL dNTP Mix, 2 U of Phusion® Hot Start II High-Fidelity DNA polymerase, 500 nM of a forward and reverse primer equivalent to the Unitag1 and Unitag2 sequences respectively, each appended with an 8 nt sample specific barcode. Amplification included an initial denaturation at 98°C for 30 sec; 5 cycles of denaturation at 98°C for 10 sec, annealing at 52°C for 20 sec and elongation at 72°C for 20 sec; and a final extension at 72°C for 10 min.. The concentration of PCR products was quantified with a Qubit Fluorometer (Life Technologies, Darmstadt, Germany) in combination with the dsDNA BR Assay kit (Invitrogen, Carlsbad, CA, USA). Purified products were then pooled in equimolar amounts of 100 ng µL⁻¹ and sequenced on a MiSeq platform (GATC-Biotech, Konstanz, Germany).

Processing MiSeq data

Data was processed using the Quantitative Insights into Microbial Ecology (QIIME) 1.8.0. In short, paired-end libraries were filtered to contain only read pairs perfectly matching barcodes. Low quality or ambiguous reads were removed and then chimeric reads were removed and checked. Sequences with less than 0.1 % were discarded. Remaining filtered sequences were assigned into Operational Taxonomy Units (OTUs) at 97% threshold using an open reference method and a customized SILVA 16S rRNA gene reference (Quast et al., 2013). Seven samples from day 4 were removed from the results due to contamination during the PCR steps: AC755, AC759, AC760, AC767, AC768, CCAP and UTEX572. The 16S rRNA gene dataset obtained in this study is deposited in the Sequence Read Archive (SRA), NCBI with accession number SRP102970.

Microbial community analysis

For the interpretation of the microbial community data on family level, the Operational Taxonomic Unit (OTU) abundance table was converted to relative abundance and visualized as heatmaps using JColorGrid (Joachimiak et al., 2006). Ordination analyses to estimate the relationship of the *B. braunii* strains based on dissimilarity of the microbial community compositions among the individual samples was performed for, a) all strains of *B. braunii* used in this study, b) all strains received from ALGOBANK-CAEN culture collection. For both analysis a standardized 97% OTU
table (\texttt{decostand function, method = hellinger}) and the nMDS function \texttt{metaMDS (distance = Bray-Curtis)} from the vegan package in R was used (R version 3.0.2) (Oksanen et al., 2016; R Core Team, 2014). Betadispersion and a permutation test were performed to test homogeneity dispersion within a group of samples. Adonis from the vegan package in R (v.3.0.2) was used to test significant differences in bacterial community between strains. Hierarchical clustering analysis was performed using \texttt{hclust function in R using method = average}.

\section*{Results}

Fig. 1 shows the bacterial families with a relative abundance above 1\% and a total of four bacterial phyla associated with \textit{B. braunii} strains. The four phyla found associated with \textit{B. braunii} are the \textit{Bacteroidetes, Gemmatimonadetes, Planctomycetes} and \textit{Proteobacteria}. \textit{Proteobacteria} is the predominant bacterial phylum and representatives of this taxon are found in all 12 strains. \textit{Bacteroidetes} is found in all strains with exception to strains AC761, AC768 and CCAP. \textit{Gemmatimonadetes} is found only in the CAEN culture (with AC prefix) strains with exception to AC755. \textit{Planctomycetes} is found in AC760, CCALA, K1489, Showa and UTEX strains. Three families are found across all 12 \textit{B. braunii} strains and all are \textit{Proteobacteria}. These are the \textit{Rhizobiaceae, Bradyrhizobiaceae} and \textit{Comamonadaceae}. \textit{Rhizobiaceae} is represented by 1 to 59\% of the bacterial reads. \textit{Bradyrhizobiaceae} was found within the 1 to 8\% range. \textit{Comamonadaceae} was found between 1 and 5\%. Two families of bacteria are only found in the strains obtained from the CAEN culture collection: \textit{Erythrobacteraceae} with bacterial reads ranging from 1 to 29\% and \textit{Rhodocyclaceae} with 1 to 18\%.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1}
\caption{Some families of bacteria are particularly dominant in specific strains. \textit{Sinobacteraceae} is dominant in CCAP with relative abundances ranging from 59 to 78\%. \textit{Planctomycetaceae} is dominant in K1489 strain with relative abundances between 46 and 51\%. \textit{Rhizobiaceae} is dominant in AC761 with relative abundances between 55 and 64\%. Other families of bacteria become dominant as the cultures become older. \textit{Rhodobacteraceae} is present in AC755 strain with relative abundances ranging from 28\% at day 1 to 40\% at day 11. \textit{Sphingomonadaceae} is present in UTEX with 10\% at day 1 and increases its presence to 47\% at day 11. \textit{Chytophagaceae} is dominant in CCALA strain with relative abundance ranging from 10\% at day 1 to 52\% at day 11.}
\end{figure}
Because we found three common families across all strains, we wanted to investigate in more
detail the bacterial composition in these selected families and see if we could identify an unique
microorganism present in all strains. Therefore we zoomed in and looked at the Operational
Taxonomy Units (OTUs) distribution belonging to the three families: *Rhizobiaceae*,
Bradyrhizobiaceae and *Comamonadaceae*. In addition, we picked the OTUs found only in the
strains obtained from the CAEN culture collection which belong to two families:
Erythrobacteraceae and *Rhodocyclaceae*. The most abundant OTUs were selected and a total of
28 OTUs were investigated. From Fig. 2 it is clear that there is not an OTU that is found across all
strains but rather each family comprises of several different OTUs. The second important
observation is that CCAP strain has no representative OTUs for *Bradyrhizobiaceae* and
Rhizobiaceae in the most abundant OTUs. The most represented family taxon is *Rhizobiaceae*
with 12 OTUs. From the three families found in the 12 strains, OTU 233 assigned to the genus
Rhizobium has the highest OTU frequency abundance with 10 % and is present in 7 out of 12
strains. The OTUs 143, 88 and 131 assigned to the genus *Shinella* are present in 9 out of 12 strains.
The OTUs 477, 475 and 484 assigned to the genus *Bosea* cover 11 out of 12 strains. From the two
families found only in the cultures originating from the CAEN culture collection, OTUs 333 and
539 are found in all seven CAEN strains with an assigned genus *Porphyrobacter* and
Methyloversatilis respectively.

The most abundant OTUs (as listed in Fig. 2) were subjected to a Blast search against the NCBI
database to infer their nearest neighbours (Table 2). OTUs 88, 115, 143 and 233 are similar in their
nearest neighbours with four different *Rhizobium* spp. as candidates. Similar blast results are seen
also for OTUs 566 and 567 with the nearest neighbours being *Hydrogenophaga* spp. The OTUs
819 and 832 with *Dyadobacter* spp. as nearest neighbour dominate CCALA bacterial community.
Some OTUs show different species as closest neighbours such as OTUs 45 and 69 with
Frigidibacter albus, *Paracoccus sediminis* and *Nioella nitratireducens* as neighbours. The OTU
415 with high abundance in K1489 belonging to *Planctomycetaceae*, has as closest neighbours
uncultured bacterium and third closest neighbour uncultured *Planctomyces* spp. with the latter
showing 87 % identity. The OTU 333 present only in the strains from CAEN culture collection,
has 100 % identity with *Sphingomonas* as closest two neighbours, and third neighbour, also with
100 %, identity being *Porphyrobacter*.

Table 2

Non-metric multidimensional scaling ordination was performed for the 12 strains to determine the bacterial community dissimilarities (Fig 3a). *B. braunii* strains from the CAEN culture collection cluster together when compared to the other strains indicating these strains are similar to each other in bacterial community composition. This is supported by hierarchical cluster analysis showing CAEN strains in their own cluster (Supplementary Fig. 1). The strains K1489, UTEX, CCAP, CCALA and Showa represent separate clusters. The homogeneity of dispersion within each strain with 1000 permutations show no significant difference (F=0.323). Using adonis to test for bacterial community similarities between all strains, the results show that the bacterial communities are significantly different (DF = 11, Residuals = 28, R² = 0.921, P = 0.001). Fig 3b zooms in to the CAEN culture collection strains. Races A, B and L are subdivisions of *B. braunii* according to the type of hydrocarbons produced. No clustering by type of hydrocarbons produced was seen by the distribution of the race B and race L strains which are found mixed, namely race B AC759 and AC761 with race L AC765 and AC768. Similarly, the bacterial community between CAEN strains are significantly different (DF = 6, Residuals = 16, R² = 0.904, P = 0.001).

Fig. 3
Discussion

It is evident that *B. braunii* possesses a highly diverse bacterial community as seen by the range of bacterial phyla and families present in all the strains used in this study (Fig. 1 (for a more comprehensive list see Supplementary Fig. 2)).

From the bacterial community analysis (Fig. 3a,b), it appears that each *B. braunii* strain has a specific bacterial community and no OTU is shared between all strains. The strains from the CAEN culture collection cluster together while *B. braunii* strains from other culture collections appear as separate groups. This implies that the culture collection from which the strain was obtained could potentially have an effect. With this study we are not able to really deduce the potential impact of the culture collection on the bacterial community because the experimental design was not set-up to do so. The presence of weak (within a culture collection) and strong (between culture collections) migration barriers may explain the bacterial profiles as obtained in our study and they may be a result of historical contingencies (Fenchel, 2003) rather than pointing towards highly specific interactions for a large number of OTUs. OTUs 539 and 333 are only found with the CAEN cultures and contributes towards these strains clustering in close proximity. OTU 333 is especially high in relative abundance and contributes to the distinctive clustering of the CAEN culture collection strains. The remaining strains also contain their specific OTUs that contribute towards their own clustering: OTU 819 and 832 with CCALA, OTU 310 with UTEX and K1489 with OTU 415. The bacterial community between three race B and three race L are mixed together (Fig. 3b). Therefore no correlation was found between bacterial community and the type of hydrocarbons produced between the two races. Similar observations were made in another study using six strains of *B. braunii* in which the authors did not find a correlation between the bacteria and type of hydrocarbon produced (Chirac et al., 1985).

Three bacterial families were found to be present with all twelve strains of *B. braunii*: Bradyrhizobiaceae, Rhizobiaceae, and Comamonadaceae. Two families were found abundantly only in the strains from the CAEN culture collection: Erythrobacteraceae and Rhodocyclaceae. The OTUs 88, 115, 143 and 233 blast hits show these are related to *Rhizobium* spp. (Table 2). *Rhizobium* spp. are known to form nodules in the roots of several plants within the family of legumes and are best known for nitrogen fixation. Nitrogen fixing bacteria were investigated in association with microalgae and it has been shown that they can enhance microalgae growth...
Rhizobium spp. associated with B. braunii could have a similar role. Rivas et al. (2010) also found a Rhizobium sp. associated with B. braunii in particular UTEX LB572, and Kim et al. (2014) showed the presence of Rhizobium sp. with B. braunii 572. Sambles et al (2017) identified Rhizobium sp. closely associated with B. braunii after submitting the cultures through a wash step and antibiotic treatment. Recent studies also shows Rhizobium spp. present with Chlamydomonas reinhardtii, Chlorella vulgaris and Scenedesmus spp. (Kim et al., 2014). Rhizobium spp. seem important to B. braunii strains as it appears in all 12 strains with more prominence in the CAEN cultures and K1489 with three to four OTUs (Fig. 2). For the remaining strains CCALA, CCAP, Showa and UTEX, Rhizobium spp. is represented only with one OTU.

OTU 475 from Bradyrhizobiaceae family shows 100 % similarity with the species Hyphomicrobium nitrativorans as the two closest neighbours and is present in 10 out of 12 B. braunii strains. H. nitrativorans is a known denitrifier isolated from a seawater treatment facility (Martineau et al., 2013). Denitrification is the process of reducing nitrate into a variety of gaseous compounds with the final being dinitrogen. Because denitrification mainly occurs in the absence of oxygen it is unlikely that this is happening within our cultures that are well oxygenated. The 3rd closest neighbour for OTU 475 is Bosea lathyri and is associated with root nodules legumes (Meyer et al., 2012).

OTUs 555, 566 and 567 from Comamonadaceae family, appeared in seven out of twelve strains. The three closest neighbours of OTU 555 were Variovorax spp. and for OTUs 566 and 567 these were Hydrogenophaga spp., Variovorax and Hydrogenophaga spp. are not known for being symbionts but may be able to support ecosystems by their ability to degrade toxic compounds and assist in nutrient recycling, therefore potentially producing benefits to other microorganisms (Satola et al., 2013; Yoon et al., 2008). Comamonadaceae also appeared as one of the main bacteria families associated with cultivation of microalgae in bioreactors using a mix of fresh water and municipal water as part of a water treatment strategy (Krustok et al., 2015).

Erythrobacteraceae and Rhodocyclaceae were only found in the strains from CAEN culture collection. OTU 333 (Erythrobacteraceae) first two closest neighbours are from Sphingomonas spp., and third closest neighbour is Porphyrobacter spp. isolated from water in a swimming pool. Most Porphyrobacter spp. isolated originate from aquatic environments (Tonon et al., 2014) and are associated with fresh water sediments (Fang et al., 2015). Porphyrobacter spp. have also been
associated with other microalgae such as Tetraselmis suecica (Biondi et al., 2016). OTU 539 (Rhodocyclaceae) second and third closest neighbour is Methyloversatilis discipulorum which is a bacteria found in biofilms formation in engineered freshwater installations (Kooij et al., 2017). It is not clear why OTU 333 and 539 are specifically found only in the strains originating from the CAEN culture collection, but it could be an introduced species during handling. None the less, these two OTUs are present in high relative abundance (Fig. 2), and would be interesting to know if they have a positive or negative influence on the growth of the CAEN strains. It would be interesting to confirm such statement by attempting the removal of these OTUs and investigate the biomass growth.

Sinobacteraceae is dominant in CCAP (Fig. 1). This family was proposed in 2008 with the characterization of a bacteria from a polluted soil in Chi (Zhou et al., 2008). A recent bacteria related to hydrocarbon degradation shows similarities with _Sinobacteraceae_ (Gutierrez et al., 2013). OTU 63 is highly abundant in CCAP and could have a negative impact in the cultivation of CCAP strain by reducing its hydrocarbon content.

The _Bactoroidetes_ family _Cytophagaceae_ dominates the culture CCALA at later stages of growth (Fig. 1). _Cytophagaceae_ has also been found present in laboratory scale photobioreactor cultivation using wastewater for production of microalgae biomass (Krustok et al., 2015). The two OTUs that dominate the bacterial community in CCALA are OTU 819 and OTU 832. The Blast search on NCBI database approximates these two OTUs as _Dyadobacter_ spp. which have also been found co-habiting with _Chlorella_ spp. (Otsuka et al., 2008).

Plactomycetaceae dominates the bacterial community in K1489 strain (Fig. 1) with one OTU 415. This family can be found in freshwater biofilms and also strongly associated with macroalga (Abed et al., 2014; Lage and Bondoso, 2014). Species in this family could possibly be involved in metallic-oxide formation and be co-players in sulphate-reduction with the latter also involving a sulphur-reducing bacteria (Shu et al., 2011).

Rhodobacteraceae is present with up to 55% of bacterial relative abundance in AC755. Members of this family have been also isolated from other microalgae, namely _Chlorella pyrenoidosa_ and _Scenedesmus obliquus_ (Schwenk et al., 2014). The OTUs 45 and 69 blast searches in NCBI database show the closest neighbours to be _Frigidibacter albus, Paracoccus sediminis_ and _Nioella_
nitratireducens (Table 2). All three neighbours were isolated from water environments (Li and Zhou, 2015; Pan et al., 2014).

Sphingomonadaceae is mostly found in freshwater and marine sediments (Newton et al., 2011). OTUs 302, 310 and 355 from this family were found in 6 out of 12 strains above 1 % relative abundance. OTU 310 is only found in the UTEX strain with *Sphingomonas* spp. as the two closest neighbours. *Sphingomonas* spp. are shown to co-habit with other microalgae such as *Chlorella sorokiniana* and *C. vulgaris* (Ramanan et al., 2015; Watanabe et al., 2005). *Sphingomonas* spp. have been shown to be able to degrade polycyclic aromatic hydrocarbons (Tang et al., 2010) and could possibly be degrading the hydrocarbons secreted by *B. braunii* as its carbon source.

Another characteristic of many bacteria is the ability to produce EPS such as species from the *Rhizobiaceae* and *Bradyrhizobiaceae* family (Alves et al., 2014; Bomfeti et al., 2011; Freitas et al., 2011). This characteristic could play a role on the colony aggregation of *B. braunii* as EPS is known to be essential for biofilm formation (Flemming et al., 2007). Therefore it would be interesting in the future to study this possible relationship as *B. braunii* is a colony forming organism. Such studies could involve the introduction of bacteria associated with colony formation such as *Terramonas ferruginea* as it has been associated with inducing flocculation in *C. vulgaris* cultures (Lee et al., 2013).

With the present high microbial diversity, *B. braunii* shows qualities in resilience towards microbial activity, probably due to its colonial morphology and protective phycosphere made of hydrocarbons and EPS (Weiss et al., 2012). A number of microbes are potentially beneficial such as *Rhizobium* spp. which have been shown to have a positive effect on the biomass productivities of *B. braunii* UTEX (Rivas et al., 2010), and *Hydrogenophaga* with the ability to degrade toxic compounds (Yoon et al., 2008). There are also microbes that may cause detrimental effects on hydrocarbon productivities of *B. braunii* such as *Sphingomonas* spp. (OTU 310) with its ability to degrade hydrocarbons (Tang et al., 2010). The removal of such detrimental microbes could enhance cultivation allowing more nitrogen available for biomass production and increase hydrocarbon accumulation of *B. braunii* as well as EPS production at larger industrial scale.
Conclusion

B. braunii can host a diverse microbial community and it is likely that some form of interaction is taking place with the members from the *Rhizobiaceae*, *Bradyrhizobiaceae* and *Comamonadaceae* family, which all belong to the phylum *Proteobacteria*. There is not a specific bacterial community correlated to the different types of hydrocarbons produced by race B and L and mostly likely also not race A. *B. braunii* has many strains and each seems to have its own species-specific bacterial community. With a diverse microbial community present, it is also likely that some bacteria are having antagonistic effects on *B. braunii* such as competition with nutrients and degradation of hydrocarbons. *Botryococcus* is a microalgae of high scientific interest and it is important to understand better the associated bacteria. *Botryococcus*-associated bacteria are hard to get rid of (Gouveia, J. unpublished data) and therefore it is important to start mass cultivation without those bacteria that are most harmful to the process.
References

Abed, R.M.M., Al-Kharusi, S., Prigent, S., Headley, T., 2014. Diversity, distribution and hydrocarbon biodegradation capabilities of microbial communities in oil-contaminated cyanobacterial mats from a constructed wetland. Plos One 9.

Allard, B., Casadevall, E., 1875. Carbohydrate composition and characterization of sugars from the green microalga Botryococcus braunii. Phytochemistry 29.

Alves, C., M., L., de Souza, J.A.M., Varani, A., 2014. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Heidelberg: Springer Berlin Heidelberg, Berlin.

Bell, W., Mitchell, R., 1972. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277.

Biondi, N., Cheloni, G., Tatti, E., Decorosi, F., Rodolfi, L., Giovannetti, L., Viti, C., Tredici, M.R., 2016. The bacterial community associated with Tetraselmis suecica outdoor mass cultures. J. Appl. Phycol. 1–12.

Blanken, W., Schaap, S., Theobald, S., Rinzena, A., Wijffels, R.H., Janssen, M., 2016. Optimizing carbon dioxide utilization for microalgae biofilm cultivation. Biotechnol. Bioeng.

Bogert, B. van den, Vos, W.M. de, Zoetendal, E.G., Kleerebezem, M., 2011. Microarray Analysis and Barcoded Pyrosequencing Provide Consistent Microbial Profiles Depending on the Source of Human Intestinal Samples. Appl Env. Microbiol 77, 2071–2080. https://doi.org/10.1128/AEM.02477-10

Bomfeti, C.A., Florentino, L.A., Guimarães, A.P., Cardoso, P.G., Guerreiro, M.C., Moreira, F.M., 2011. Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of leguminoses. Rev. Bras. Ciênc. Solo 35, 657–671.

Borowitzka, M., 2013. High-value products from microalgae: their development and commercialisation. J. Appl. Phycol. 25, 743–756.

Buono, S., Langellotti, A.L., Martello, A., Bimonte, M., Tito, A., Carola, A., Apone, F., Colucci, G., Fogliano, V., 2012. Biological activities of dermatological interest by the water extract of the microalga Botryococcus braunii. Arch. Dermatol. Res. 304, 755–764.

Cabanelas, I.T.D., van der Zwart, M., Kleinegris, D.M.M., Wijffels, R.H., Barbosa, M.J., 2016. Sorting cells of the microalga Chlorococcum littorale with increased triacylglycerol productivity. Biotechnol. Biofuels 9.

Chirac, C., Casadevall, E., Largeau, C., Metzger, P., 1985. Bacterial influence upon growth and hydrocarbon production of the green alga Botryococcus braunii. J. Phycol. 21, 380–387.

Chirac, C., Casadevall, E., Largeau, C., Metzger, P., 1982. Effect of algal strain and of associated bacteria on hydrocarbon productivity from Botryococcus braunii. Comptes Rendus Acad. Sci. Ser. Iii-Sci. Vie-Life Sci. 295, 671–674.

Cole, J.J., 1982. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. 13, 291–314.

Cooper, M.B., Smith, A.G., 2015. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr. Opin. Plant Biol. 26, 147–153.

Daims, H., Bruhl, A., Amann, R., Schleifer, K.H., Wagner, M., 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22, 434–44.
Dayananda, C., Sarada, R., Rani, U., M., S., R, T., Ravishankar, G.A., 2007. Autotrophic cultivation of *Botryococcus braunii* for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy 31, 87–93.

Donot, F., Fontana, A., Baccou, J.C., Schorr-Galindo, S., 2012. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym. 87, 951–962.

Eigemann, F., Hilt, S., Salka, I., Grossart, H.P., 2013. Bacterial community composition associated with freshwater algae: species specificity vs dependency on environmental conditions and source community. Fems Microbiol. Ecol. 83, 650–63.

Eroglu, E., Okada, S., Melis, A., 2011. Hydrocarbon productivities in different *Botryococcus* strains: comparative methods in product quantification. J. Appl. Phycol. 23.

Fang, L., Chen, L., Liu, Y., Tao, W., Zhang, Z., Liu, H., Tang, Y., 2015. Planktonic and sedimentary bacterial diversity of Lake Sayram in summer. Microbiologyopen 4, 814–825.

Fenchel, T., 2003. Biogeography for bacteria. Science 301, 925. https://doi.org/10.1126/science.1089242

Fernandes, H.L., Tome, M.M., Lupi, F.M., Fialho, A.M., Sacorreia, I., Novais, J.M., 1989. Biosynthesis of high concentrations of an exopolysaccharide during the cultivation of the microalga *Botryococcus braunii*. Biotechnol. Lett. 11, 433–436.

Flemming, H.-C., Neu, T.R., Wozniak, D.J., 2007. The EPS matrix: the “house of biofilm cells.” J. Bacteriol. 189, 7945–7947.

Freitas, F., Alves, V.D., Reis, M.A.M., 2011. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol. 29, 388–398.

Gouveia, J.D., Ruiz, J., van den Broek, L.A.M., Hesselink, T., Peters, S., Kleinegris, D.M.M., Smith, A.G., van der Veen, D., Barbosa, M.J., Wijffels, R.H., 2017. *Botryococcus braunii* strains compared for biomass productivity, hydrocarbon and carbohydrate content. J. Biotechnol. 248, 77–86. https://doi.org/10.1016/j.jbiotec.2017.03.008

Grima, E.M., Fernandez, F.G.A., Camacho, F.G., Chisti, Y., 1999. Photobioreactors: light regime, mass transfer, and scaleup. J. Biotechnol. 231–247.

Guerrini, F., Mazzotti, A., Boni, L., Pistocchi, R., 1998. Bacterial-algal interactions in polysaccharide production. Aquat. Microb. Ecol. 15, 247–253.

Gutierrez, T., Green, D.H., Nichols, P.D., Whitman, W.B., Semple, K.T., Aitken, M.D., 2013. *Polycyclovorans algicola* gen nov., sp. nov., an aromatic hydrocarbon degrading marine bacterium found associated with laboratory cultures of marine phytoplankton. Appl. Environ. Microbiol. 79, 205–214.

Hays, S.G., Patrick, W.G., Ziesack, M., Oxman, N., Silver, P.A., 2015. Better together: engineering and application of microbial symbioses. Curr. Opin. Biotechnol. 36, 40–49.

Hernandez, J.-P., de-Bashan, L.E., Rodriguez, D.J., Rodriguez, Y., Bashan, Y., 2009. Growth promotion of the freshwater microalga *Chlorella vulgaris* by the nitrogen-fixing, plant growth-promoting bacterium *Bacillus pumilus* from arid zone soils. Eur. J. Soil Biol., Ecology and application of Azospirillum and other plant growth promoting bacteria (PGPB) 45, 88–93. https://doi.org/10.1016/j.ejsobi.2008.08.004

Hilton, J., Rigg, E., Jaworski, G., 1988. In vivo algal fluorescence, spectral change due to light intensity changes and the automatic characterization of algae. Freshw. Biol. 20, 375–382. https://doi.org/10.1111/j.1365-2427.1988.tb00463.x
Jasti, S., Sieracki, M.E., Poulton, N.J., Giewat, M.W., Rooney-Varga, J.N., 2005. Phylogenetic diversity and specificity of bacteria closely associated with *Alexandrium* spp and other phytoplankton. Appl. Environ. Microbiol. 71, 3483–3494.

Joachimiak, M.P., Weisman, J.L., May, B.C., 2006. JColorGrid: software for the visualization of biological measurements. BMC Bioinformatics 7.

Kawachi, M., Tanoi, T., Demura, M., Kaya, K., Watanabe, M.M., 2012. Relationship between hydrocarbons and molecular phylogeny of *Botryococcus braunii*. Algal Res. 1, 114–119.

Kazamia, E., Czesnick, H., Thi, T.V.N., Croft, M.T., Sherwood, E., Sasso, S., Hodson, S.J., Warren, M.J., Smith, A.G., 2012. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol. 14, 1466–1476.

Kim, B.-H., Ramanan, R., Cho, D.-H., Oh, H.-M., Kim, H.-S., 2014. Role of *Rhizobium*, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy 69, 95–105. https://doi.org/10.1016/j.biombioe.2014.07.015

Kooij, D. van der, Bakker, G.L., Italiaander, R., Veenendaal, H.R., Wullings, B.A., 2017. Biofilm composition and threshold concentration for growth of *Legionella pneumophila* on surfaces exposed to flowing warm tap water without disinfectant. Appl Env. Microbiol 83, e02737-16. https://doi.org/10.1128/AEM.02737-16

Krustok, I., Truu, J., Odalar, M., Truu, M., Ligi, T., Tiirik, K., Nehrenheim, E., 2015. Effect of lake water on algal biomass and microbial community structure in municipal wastewater-based lab-scale photobioreactors. Appl Microbiol Biotechnol 99, 6537–49.

Lage, O.M., Bondoso, J., 2014. *Planctomycetes* and macroalgae, a striking association. Front Microbiol 5.

Largeau, C., Casadevall, E., Berkaloff, C., Dhamelincourt, P., 1980. Sites of accumulation and composition of hydrocarbons in *Botryococcus braunii*. Phytochemistry 19, 1043–1051.

Lee, J., Cho, D.H., Ramanan, R., Kim, B.H., Oh, H.M., Kim, H.S., 2013. Microalgae-associated bacteria play a key role in the flocculation of *Chlorella vulgaris*. Bioresour Technol 131, 195–201.

Li, A.H., Zhou, Y.G., 2015. *Frigidibacter albus* gen nov., sp. nov., a novel member of the family *Rhodobacteraceae* isolated from lake water. Int J Syst Evol Microbio 65, 1199–206.

Martineau, C., Villeneuve, C., Mauffrey, F., Villemur, R., 2013. *Hyphomicrobium nitrativorans* sp nov., isolated from the biofilm of a methanol-fed denitrification system treating seawater at the Montreal Biodome. Int. J. Syst. Evol. Microbiol. 63, 3777–3781.

Metzger, P., Berkaloff, C., Casadevall, E., Coute, A., 1985. Alkadiene- and botryococcene-producing races of wild strains of *Botryococcus braunii*. Phytochemistry 24, 2305–2312. https://doi.org/10.1016/S0031-9422(00)83032-0

Metzger, P., Casadevall, E., Coute, A., 1987. Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green alga *Botryococcus braunii*. Tetrahedron Lett. 28, 3931–3934. https://doi.org/10.1016/S0040-4039(00)96423-2

Metzger, P., Casadevall, E., Coute, A., 1988. Botryococcene distribution in strains of the green alga *Botryococcus braunii*. Phytochemistry 27, 1383–1388.

Metzger, P., Largeau, C., 2005. *Botryococcus braunii*: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol. 66, 486–496.

Meyer, D., E., S., Willems, A., 2012. Multilocus sequence analysis of *Bosea* species and description of *Bosea lupini* sp nov., *Bosea lathyrli* sp. nov. and *Bosea robiniae* sp. nov., isolated from legumes. Int J Syst Evol Microbiol 62, 2505–10.
Moutel, B., Gonçalves, O., Grand, L., F., L., M., S., P., L., J., G., D., Pruvost, J., 1855. Development of a screening procedure for the characterization of Botryococcus braunii strains for biofuel application. Process Biochem. 51.

Newton, R.J., Jones, S.E., Eiler, A., McMahon, K.D., Bertilsson, S., 2011. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75, 14–49.

Nonomura, A.M., 1988. Botryococcus braunii var. Showa. USPP6169P.

Oksanen, J., Blanchet, G., F., F., M., K., R., L., P., M., D., M., R., O., B., R., Simpson, G.L., Solymos, P., Stevens, M., H., H., Szöecs, E., Wagner, H., 2016. Vegan: community ecology package.

Otsuka, S., Abe, Y., Fukui, R., Nishiyama, M., Sendoo, K., 2008. Presence of previously undescribed bacterial taxa in non-axenic Chlorella cultures. J. Gen. Appl. Microbiol. 54, 187–93.

Pan, J., Sun, C., Zhang, X.-Q., Huo, Y.-Y., Zhu, X.-F., Wu, M., 2014. Paracoccus sediminis sp. nov., isolated from Pacific Ocean marine sediment. Int. J. Syst. Evol. Microbiol. 64, 2512–2516.

Posten, C., 2009. Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci. 9, 165–177.

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219

R Core Team, 2014. R: A language and environment for statistical computing. R Found. Stat. Comput.

Ramanan, R., Kang, Z., Kim, B.-H., Cho, D.-H., Jin, L., Oh, H.-M., Kim, H.-S., 2015. Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats. Algal Res. 8, 140–144. https://doi.org/10.1016/j.algal.2015.02.003

Rivas, M.O., Vargas, P., Riquelme, C.E., 2010. Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb. Ecol. 60, 628–635.

Rivas, M.O., Vargas, P., Riquelme, C.E., 2010. Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb. Ecol. 60, 628–635.

Sambles, C., Moore, K., Lux, T.M., Jones, K., Littlejohn, G.R., Gouveia, J.D., Aves, S.J., Studholme, D.J., Lee, R., Love, J., 2017. Metagenomic analysis of the complex microbial consortium associated with cultures of the oil-rich alga Botryococcus braunii. MicrobiologyOpen 6, e00482. https://doi.org/10.1002/mbo3.482

Satola, B., Wübbeler, J.H., Steinhübel, A., 2013. Metabolic characteristics of the species Variovorax paradoxus. Appl. Microbiol. Biotechnol. 97, 541–560.

Schwenk, D., Nohynek, L., Rischer, H., 2014. Algae–bacteria association inferred by 16S rDNA similarity in established microalgae cultures. Microbiologiyopen 3, 356–368.

Segev, E., Wyche, T.P., Kim, K.H., Petersen, J., Ellebrantd, C., Vlamakis, H., Barteneva, N., Paulson, J.N., Chai, L., Clardy, J., Kolter, R., 2016. Dynamic metabolic exchange governs a marine algal-bacterial interaction. eLife 5.

Shu, Q., Xiong, W., Peng, S., Huang, P., 2011. Molecular progresses of marine Planctomycetes: A review. Afr. J. Microbiol. Res. 5, 6018–6023.

Tanabe, Y., Ioki, M., Watanabe, M.M., 2014. The fast-growing strain of hydrocarbon-rich green alga Botryococcus braunii, BOT-22, is a vitamin B-12 autotroph. J. Appl. Phycol. 26, 9–13.

Tanabe, Y., Okazaki, Y., Yoshida, M., Matsuura, H., Kai, A., Shiratori, T., Ishida, K., Nakano, S., Watanabe, M.M., 2015. A novel alphaproteobacterial ectosymbiont promotes the growth
of the hydrocarbon-rich green alga Botryococcus braunii. Sci. Rep. 5. https://doi.org/10.1038/srep10467

Tang, X., He, L.Y., Tao, X.Q., Dang, Z., Guo, C.L., Lu, G.N., Yi, X.Y., 2010. Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J. Hazard. Mater. 181, 1158–1162. https://doi.org/10.1016/j.jhazmat.2010.05.033

Tian, L., Scholte, J., Borewicz, K., Bogert, B. van den, Smidt, H., Scheurink, A.J.W., Gruppen, H., Schols, H.A., 2016. Effects of pectin supplementation on the fermentation patterns of different structural carbohydrates in rats. Mol. Nutr. Food Res. 60, 2256–2266. https://doi.org/10.1002/mnfr.201600149

Timmis, K., Qin, J.G., 2010. Hydrocarbons from algae, in: Handbook of Hydrocarbon and Lipid MicrobiologySpringer Berlin Heidelberg. pp. 2817–2826.

Tonon, L.A.C., Moreira, A.P.B., Thompson, F., 2014. The Family Erythrobacteraceae, in: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 213–235. https://doi.org/10.1007/978-3-642-30197-1_376

Ugwu, C.U., Ogbonna, J.C., Tanaka, H., 2005. Light/dark cyclic movement of algal culture (Synechocystis aquatilis) in outdoor inclined tubular photobioreactor equipped with static mixers for efficient production of biomass. Biotechnol. Lett. 27, 75–78.

Volova, T.G., Kalacheva, G.S., Zhilo, N.O., Plotnikov, V.F., 1998. Physiological and biochemical properties of the alga Botryococcus braunii. Russ. J. Plant Physiol. 45, 775–779.

Watanabe, K., Takihana, N., Aoyagi, H., Hanada, S., Watanabe, Y., Ohmura, N., Saiki, H., Tanaka, H., 2005. Symbiotic association in Chlorella culture. Fems Microbiol. Ecol. 51, 187–196.

Weiss, T.L., Roth, R., Goodson, C., Vitha, S., Black, I., Azadi, P., Rusch, J., Holzenburg, A., Devarenne, T.P., Goodenough, U., 2012. Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot. Cell 11, 1424–1440.

Windler, M., Bova, D., Kryvenda, A., Straile, D., Gruber, A., Kroth, P.G., 2014. Influence of bacteria on cell size development and morphology of cultivated diatoms. Phycol. Res. 62, 269–281.

Wolf, F.R., 1983. Botryococcus braunii: an unusual hydrocarbon producing alga. Appl. Biochem. Biotechnol. 8, 249–260.

Yoon, J.-H., Kang, S.-J., Ryu, S.H., Jeon, C.O., Oh, T.-K., 2008. Hydrogenophaga bisanensis sp. nov., isolated from wastewater of a textile dye works. Int. J. Syst. Evol. Microbiol. 58, 393–397.

Zhou, Y., Zhang, Y.-Q., Zhi, X.-Y., Wang, X., Dong, J., Chen, Y., Lai, R., Li, W.-J., 2008. Description of Sinobacter flavus gen. nov., sp. nov., and proposal of Sinobacteraceae fam. nov. Int. J. Syst. Evol. Microbiol. 58, 184–189.
Figure captions

Fig. 1 Relative abundance of bacterial families in 12 B. braunii strains. Strain abbreviations are used as explained in Table 1. Each bar displays the bacterial family relative abundance above 1%. Strains are labelled below with sample day within square brackets. Bacterial families are organized according to the phyla (in italics) they belong to.

Fig. 2 Heatmap of most abundant 16S rRNA gene OTUs belonging to the families Rhizobiaceae, Bradyrhizobiaceae, Comamonadaceae, Erythrobacteraceae and Rhodocyclaceae. The label on the right shows the colour code for the relative abundance. Frequency (average relative abundance) of each OTU is shown in percentage on the right between brackets. The label on the left shows the family level and OTU number followed by genus. n.d means no reads detected.

Fig. 3 Non-metric multidimensional scaling (nMDS) ordination (based on Bray-Curtis distance matrix) of 16S rRNA gene sequences of 12 B. braunii strains. a) ordination of all strains with CAEN cultures clustering together (within the ellipse dotted line); b) ordination of the CAEN culture collection strains only. Capital letters in plot b refer to the race subclassification based on the type of hydrocarbons produced.
Tables Caption

Table 1 Information of the culture collections providers of Botryococcus braunii strains and location of origin.

Table 2 NCBI database blast of OTUs for selected families. Closest first three neighbours with highest identity match and with a minimum of 85% coverage for each OTU. NCBI blast on the 11th February 2016, except the OTU 662 which the blast search from 30th August 2016 and OTU 63 and 415 on February 2017.
Supplementary Information Caption

Supplementary Fig. 1 Hierarchical clustering of *B. braunii* strains. Strains from CAEN culture collection (AC prefix) cluster together in comparison to the other strains.

Supplementary Fig. 2 Family taxa relative abundance heatmap of 12 *B. braunii* strains. On the left, is the family taxa classification. On the right, the colour coded label describes the relative abundance in percentage.
Figure 1

Relative abundance of bacterial families in 12 *B. braunii* strains

Strain abbreviations are used as explained in Table 1. Each bar displays the bacterial family relative abundance above 1%. Strains are labelled below with sample day within square brackets. Bacterial Families are organized according to the phyla (in italics) they belong to.
Figure 2

Heatmap of most abundant 16S rRNA gene OTUs

Label on the right show the colour code for the relative abundance. Frequency (average relative abundance) of each OTU is shown in percentage on the right between brackets. Label on the left shows the family level and OTU number followed by genus. n.d means no reads detected.
Figure 3

Non-metric multidimensional scaling (nMDS) ordination (based on Bray-Curtis distance matrix) of 16S rRNA gene sequences of 12 B. braunii strains.

a) ordination of all strains with CAEN cultures clustering together (within the ellipse dotted line); b) ordination of the CAEN culture collection strains only. Capital letters in plot b refer to the race subclassification based on the type of hydrocarbons produced.
Table 1 (on next page)

Information of the culture collections providers of *Botryococcus braunii* strains and location of origin.
Table 1 Information of the culture collections providers of *Botryococcus braunii* strains and location of origin.

Culture collection	Strain (our abbreviation)	Race	Location	Isolation, date of isolation	Reference
Berkeley		Race B	culturing tanks, Berkeley	by unknown, 1980	Nonomura, A., 1988
Scandinavian Culture Collection of Algae and Protozoa (SCCAP)	K1489	Race A	Belgium, Nieuwoort	by G. Hansen, 2008	No reference
UTEX Culture Collection of Algae	UTEX LB572 (UTEX)	Race A	Cambridge, England	by M. R. Droop, 1950	Eroglu E., et al, 2011
Culture Collection of Autotrophic Organisms (CCALA) check	CCALA778 (CCALA)	unknown	Serra da Estrela (Barragem da Erva da Fome) Portugal	by Santos, 1997	No reference found
Culture Collection of Algae and Protozoa (CCAP)	CCAP807/2 (CCAP)	Race A	Grasmere, Cumbria, England	by Jaworski, 1984	Hilton J. et al, 1989
AC755		Race A	Lingoult-Morvan, France	by Pierre Metzger, 1981	Metzger, P., et al, 1985
AC759		Race B	Ayame, Ivory Coast	by Pierre Metzger, 1984	Metzger, P., et al, 1988
AC760		Race B	Kossou, Ivory Coast	by Pierre Metzger, 1984	Metzger, P., et al, 1988
AC761		Race B	Paquemar, Martinique, France	by Pierre Metzger, 1983	Metzger, P., et al, 1985
AC765		Race L	Kossou, Ivory Coast	by Pierre Metzger, 1984	Metzger, P., et al, 1988
AC767		Race L	Songkla Nakarin, Thailand	by Pierre Metzger, 1985	Metzger, P., Casadevall, E., 1987
AC768		Race L	Yamoussoukro, Ivory Coast	by Pierre Metzger, 1984	Metzger, P., Casadevall, E., 1987
Table 2 (on next page)

NCBI database blast of OTUs for selected families.

Closest first three neighbours with highest identity match and with a minimum of 85% coverage for each OTU. NCBI blast on the 11th February 2016, except the OTU 662 which the blast search from 30th August 2016 and OTU 63 and 415 on February 2017.
Table 2 NCBI database blast of OTUs for selected families. Closest first three neighbours with highest identity match and with a minimum of 85% coverage for each OTU. NCBI blast on the 11th February 2016, except the OTU 662 which the blast search from 30th August 2016 and OTU 63 and 415 on February 2017.

OTU nearest neighbour1	Genbank acc.	nearest neighbour2	Genbank acc.	nearest neighbour3	Genbank acc.
475 Hyphomicrobium nitrativorans (100)	NR_121713.1 Hyphomicrobium nitrativorans (100)	NR_118448.1	Bosea lathyri (100)	NR_108515.1	
477 Bradyrhizobium lupini (100)	NR_134836.1 Bradyrhizobium lupini (100)	NR_044869.2	Rhodopseudomonas palustris (100)	NR_103926.1	
484 Bosea robiniae (100)	NR_108516.1 Bradyrhizobium lablabi (100)	NR_117513.1	Beijerinckia doebereinerae (100)	NR_116304.1	
502 Bradyrhizobium daqingense (100)	NR_134844.1 Rhizobium flavum (100)	NR_133843.1	Rhizobium azibense (100)	NR_133841.1	
555 Variovorax guangxiensis (100)	NR_134828.1 Variovorax paradoxus (100)	NR_074654.1	Variovorax boronicumulans (100)	NR_114214.1	
566 Hydrogenophaga flavo (100)	NR_114133.1 Hydrogenophaga bisanensis (100)	NR_044268.1	Hydrogenophaga delphii (100)	NR_029024.1	
567 Hydrogenophaga flavo (100)	NR_114133.1 Hydrogenophaga bisanensis (100)	NR_044268.1	Hydrogenophaga delphii (100)	NR_029024.1	
333 Sphingomonas gei (100)	NR_134812.1 Sphingomonas ginsengisoli (100)	NR_132664.1	Paracoccus sediminis (96)	NR_134122.1	
599 Uncultured bacterium (100)	KY60782.1 Methyloversatilis discipulorum (71)	KY60808.1	Methyloversatilis discipulorum (71)	KY60808.1	
63 Thioclava sp. (100)	CP019437.1 Rhodobacter sp. (100)	KY60808.1	Uncultured Rhodobacter sp. (100)	KY60808.1	
819 Dyadobacter jiangsuensis (100)	NR_134721.1 Dyadobacter fermentans (100)	NR_074368.1	Dyadobacter tibetensis (88)	NR_109648.1	
832 Dyadobacter jiangsuensis (100)	NR_134721.1 Dyadobacter fermentans (100)	NR_074368.1	Dyadobacter tibetensis (88)	NR_109648.1	
415 Uncultured bacterium (100)	KT724695.1 Uncultured bacterium (91)	KT724695.1	Uncultured Planctomyces sp. (87)	JK576019.1	
45 Frigidibacter albus (100)	NR_134731.1 Paracoccus sediminis (96)	NR_134122.1	Nioella nitratireducens (94)	NR_134776.1	
69 Frigidibacter albus (100)	NR_134731.1 Paracoccus sediminis (96)	NR_134122.1	Nioella nitratireducens (97)	NR_134776.1	
302 Sphingomonas arenitolerans (100)	NR_134184.1 Sphingopyxis italic (100)	NR_108877.1	Paraphysomonas lamelihrachiae (100)	NR_113006.1	
310 Sphingomonas yantingensis (100)	NR_133866.1 Sphingomonas canadensis (100)	NR_108892.1	Blastomonas natatoria (100)	NR_113794.1	
355 Blastomonas natatoria (100)	NR_113794.1 Sphingomonas ursincola (100)	NR_040825.1	Blastomonas natatoria (100)	NR_040824.1	