The three-dimensional distribution of quarks in momentum space

Alessandro Bacchetta,1,2 Filippo Delcarro,3 Cristian Pisano,4,5 and Marco Radici2

1Dipartimento di Fisica Nucleare e Teorica, Università di Pavia
2INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
3Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA
4Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
5INFN Sezione di Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy

We present the distribution of unpolarized quarks in a transversely polarized proton in three-dimensional momentum space. Our results are based on consistent extractions of the unpolarized and Sivers transverse momentum dependent parton distributions (TMDs).

The antipode of taking a picture of a black hole is taking a picture of the inside of a proton, unveiling its internal constituents, confined in the most common element of the visible universe by the strong forces of Quantum Chromodynamics (QCD). Using data obtained from the scattering of a hard virtual photon off a proton, we map the density of quarks in three dimensions, i.e., as a function of their longitudinal momentum (along the photon’s direction) and their transverse momentum (orthogonal to the photon). If the proton is unpolarized, the distribution is cylindrically symmetric: we determine it using recent results from our group [1]. If the proton is polarized in the transverse plane, the distributions of up and down quarks turn out to be distorted in opposite directions. This distortion, known as Sivers effect [2], is related to quark orbital angular momentum. We determine its details with the same formalism used for the unpolarized distribution. In this way, we obtain a consistent picture of the full 3-dimensional momentum distribution of quarks in a transversely polarized proton. Our study constitutes a benchmark for future determinations of multi-dimensional quark distributions, one of the main goals of existing and planned experimental facilities [3–5].

We consider a frame where the proton has momentum \(P \) with space component in the \(+z \) direction, is polarized in the \(+y \) direction, and is probed by a spacelike virtual photon with momentum \(q \) (with \(Q^2 = -q^2 \)) in the \(-z \) direction. We define the \(xy \) plane as transverse and we denote it with the subscript \(T \). We consider the light-cone + direction \((t + z)/\sqrt{2}\) and we define it as longitudinal. If \(Q^2 \) is much larger than the proton’s mass \(M^2 \), the proton’s momentum is approximately longitudinal (\(P^+ \) is the dominant component).

Our goal is to reconstruct the distribution of unpolarized quarks inside the nucleon as a function of three components of their momentum. In the frame we are considering, the distribution of a quark with flavor \(a \) in a transversely polarized nucleon \(N^T \) can be written in terms of two Transverse Momentum Distributions (TMDs) as [6]

\[
\rho_{N^T}^a(x, k_x^2, k_y^2, Q^2) = f_1^a(x, k_T^2; Q^2) - \frac{k_x}{M} f_1^{\perp a}(x, k_T^2; Q^2),
\]

where \(f_1^a \) is the unpolarized TMD and \(f_1^{\perp a} \) is the Sivers TMD [2]. \(k \) is the momentum of the quark, \(k_T^2 \) its transverse component, and \(x = k^+/P^+ \) is its longitudinal momentum fraction. \(Q^2 \) plays the role of a resolution scale.

Recent extractions of \(f_1 \) have been published in Refs. [1, 7–9]. Several parametrizations of \(f_1^{\perp a} \) have been released up to now [10–15]. In this work, we start from a recent determination of \(f_1 \) by our group [1] and we extract \(f_1^{\perp a} \) using the same formalism. Thus, for the first time we consistently reconstruct the full 3-dimensional quark density of Eq. (1).

Both unpolarized and Sivers TMDs appear in the cross section of polarized Semi-Inclusive Deep-Inelastic Scattering (SIDIS), i.e., the process \(ℓ(l) + N(P) \to ℓ(l') + h(P_h) + X \), where a lepton \(ℓ \) with momentum \(l \) scatters off a nucleon target \(N \) with mass \(M \) and momentum \(P \). In the final state, the scattered lepton with momentum \(l' = l - q \) is detected, together with a hadron \(h \) with momentum \(P_h \) and transverse momentum \(P_h^T \). We define the usual SIDIS variables \(x_{\text{BJ}} = Q^2 / 2 P^ \cdot P_h^T \) and \(z = P^ \cdot P_h = P^ \cdot P_h^T \). In this study, we neglect power corrections of order \(M^2/Q^2 \) and \(P_h^T/Q^2 \), which allow us also to identify \(x_{\text{BJ}} = x \).

The SIDIS cross section can be written in terms of structure functions [19] that can be measured experimentally. Factorization theorems make it possible to write the structure functions at small transverse momentum \((P_h^T \ll Q^2)\) in terms of TMDs and to derive evolution equations that predict how TMDs change as functions of two scales \(\mu^2 \) and \(\zeta \) [20]. These two scales are usually chosen to be equal to the virtual photon mass \(Q^2 \).

The unpolarized TMD \(f_1 \) enters the structure function \(F_{lU,T} \). The Sivers TMD \(f_{1}^{\perp} \) enters the structure function \(F_{lU,T}^{\sin(\phi_h - \phi_S)} \), which occurs in the polarized part of the cross section weighted by \(\sin(\phi_h - \phi_S) \), where \(\phi_h \) and \(\phi_S \) indicate the azimuthal orientations of \(P_h^T \) and the target polarization \(S_T \) in the transverse plane, respectively. Both structure functions can be defined as convolutions of TMDs upon quark transverse momenta. Their Fourier transform can be written more conveniently as a product.
of the Fourier transforms of TMDs, i.e.,\footnote{More details are given in the supplemental material}
\[
\tilde{F}_{UU,T}(x, z, b_T^2, Q^2) = \sum_a e_a^2 \frac{S}{T}^\perp(x, b_T^2; Q^2) \tilde{D}_1^{a-h}(z, b_T^2; Q^2),
\]
\[
\tilde{F}_{UT,T}^{\sin(\phi_h - \phi_S)}(x, z, b_T^2, Q^2) = -M \sum_a e_a^2 x \frac{S}{T}^{(1)}(x, b_T^2; Q^2) \tilde{D}_1^{a-h}(z, b_T^2; Q^2),
\]
where we introduced the first derivative of the Sivers function in Fourier space \footnote{At this accuracy, the hard functions and the matching coefficients can be neglected}:
\[
\frac{S}{T}^{(1)}(x, b_T^2; Q^2) = -\frac{2}{M^2} \partial_{b_T^2} \frac{S}{T}^{(1)}(x, b_T^2; Q^2).
\]

The above equation, evaluated at $b_T = 0$, gives the first transverse moment of the Sivers function
\[
f_{1T}^{(1)a}(x; Q^2) = \frac{S}{T}^{(1)}(x, 0; Q^2),
\]
which is an x-dependent function and corresponds to the so-called Qiu-Sterman function \footnote{In this work, we take the unpolarized functions f_1 and D_1 from our own extraction of Ref. \cite{Aubert:2013zka}, which we denote as Pavia17. We extract the Sivers function using the same approach, based on the work of Collins, Soper, Sterman (CSS) \cite{Collins:1989gx,Collins:1992kk}. The analysis is done at the next-to-leading-logarithmic (NLL) accuracy, as defined in detail in Ref.\cite{Collins:1989gx,Collins:1992kk}. We avoid diverging perturbative contributions using the so-called b^{\ast} prescription and introducing a universal nonperturbative term in the TMD evolution, common to the unpolarized and Sivers TMDs. At variance with the CSS approach, we also modify the high-transverse-momentum behavior of TMDs through the so-called b_{\sin} prescription.

We write the Sivers function at the initial scale ($Q_0 = 1$ GeV) as a product of a suitably normalized k_T-dependent function and the first transverse moment, $f_{1T}^{(1)}$. The function reads
\[
f_{1T}^{(1)}(x, k_T^2; Q_0^2) = f_{1T}^{(1)a}(x; Q_0^2) f_{1TNP}(x, k_T^2).
\]
The nonperturbative term f_{1TNP} is given by
\[
f_{1TNP}(x, k_T^2) = \frac{1 + \lambda_S k_T^2}{K \pi (M_1^2 + \lambda_S M_1^2)} f_{NP}(x, k_T^2),
\]
where the f_{NP} is consistently taken from the Pavia17 extraction. The M_1, λ_S are free parameters, and K is the normalization factor. The first transverse moment is parametrized as
\[
f_{1T}^{(1)a}(x; Q_0^2) = \frac{N_s}{G_{max}} x^{\alpha_a} (1 - x)^{\beta_a} \times [1 + A_a T_1(x) + B_a T_2(x)] f_0^a(x; Q_0^2),
\]
where $T_n(x)$ are Chebyshev polynomials of order n, and f_1 are collinear parton densities consistently taken from the same set used in the Pavia17 fit \cite{Aubert:2013zka}. The flavor-dependent factor G_{max} is introduced to guarantee the positivity bound of the Sivers function of Eq. \cite{Collins:1992kk} \cite{Aubert:2013zka}. The free parameters N_{Siv} (varying only between -1 and 1), α, β, A, B are different for up, down, and sea quarks. The total number of free parameters is 17.

To compute the Sivers function at a generic scale Q^2, we apply TMD evolution at NLL. This is more conveniently written in b_T^2 space and leads to
\[
f_{1T}^{(1)a}(x; b_T^2; Q^2) = e^\delta(\mu_b^2, Q^2) e^{g_K(b_T^2) \ln(Q^2/Q_0^2)}
\times f_{1T}^{(1)a}(x; \mu_b^2) f_{1TNP}(x, b_T^2),
\]
where μ_b is a scale proportional to $1/b_T^2$. With our prescriptions, we always have $Q_0 \leq \mu_b \leq Q$. At the initial scale Q_0, the exponentials reduce to unity and the above equation indeed corresponds to the derivative of the Fourier transform of Eq. \cite{Collins:1992kk}. For the transverse moment $f_{1T}^{(1)}$, we apply the same evolution as the collinear PDF f_1 using the HOPPET code \cite{Collins:1992kk}. This is an approximation of the full evolution \cite{Collins:1992kk}, but we checked that modifying this part of the evolution does not lead to significant changes. Much more relevant for TMD evolution are the Sudakov form factor S and the function $g_K(b_T^2)$: they are present also in the unpolarized TMD function f_1 and are again taken from the Pavia17 fit. Without this information, it would not be possible to reliably calculate the Sivers function at the experimental scales.

We fix the free parameters of our functional form by fitting experimental data for single transverse-spin asymmetries \cite{Collins:1992kk}
\[
A_{UT,T}^{\sin(\phi_h - \phi_S)}(x, z, P_T^2, Q^2) \approx \frac{F_{UT,T}^{\sin(\phi_h - \phi_S)}}{F_{UU,T}}.
\]
An accurate extraction requires the inclusion of asymmetry measurements taken by different experimental collaborations, covering different ranges of kinematic variables, using different type of targets and final-state hadrons. In our fit we include measurements published by the HERMES \cite{Airapetian:2003hs}, COMPASS \cite{Alekseev:2005nh,Alekseev:2008aa} and JLab collaborations \cite{JLab:2013hba}. Usually, the asymmetries are presented as projections of the same dataset in x, z, and P_T. To avoid fully correlated measurements, we fit only the x projections, since we are mainly interested in the x-dependence of the Sivers function. We select data by applying the same criteria used for the unpolarized TMD fit, i.e., $Q^2 > 1.4$ GeV2, $0.20 < z < 0.74$ and $P_T < \min(0.3Q^2, 0.7Qz) + 0.5$ GeV. With these kinematic
cuts, we have a total of 118 data points: 30 from HERMES, 82 from COMPASS (32 from the 2009 analysis, and 50 from the 2017 analysis), and 6 from JLab.

Similarly to our previous Pavia17 extraction and to other studies of parton densities \[^{[39,40]}\], we perform the fit using the bootstrap method. The method consists in creating \(M\) different replicas of the original data by randomly shifting them with a Gaussian noise with the same variance as the experimental measurement. Each replica represents the possible outcome of an independent measurement. We then fit each replica separately and we obtain a vector of \(M\) results for each free parameter. The number \(M\) is fixed by accurately reproducing the mean and standard deviation of the original data points. In our case, it turns out \(M = 200\), which is also consistent with our Pavia17 fit \[^{[1]}\].

The maximal information about our results is given by the full ensemble of 200 replicas, combined with the corresponding unpolarized TMD replicas. To report our results in a concise way, we adopt the following choice: for any result (\(\chi^2\) values, parameter values, resulting distribution functions) we quote intervals containing 68\% of the replicas, obtained by excluding the upper 16\% and lower 16\% values. These intervals correspond to the 1\(\sigma\) confidence level only if the observable’s values follow a Gaussian distribution, which is not true in general. When it is not possible to draw uncertainty bands, we report the results obtained using replica 105, which was selected as the representative replica in the extraction of the unpolarized TMDs.

We obtain an excellent agreement between the experimental measurements and our theoretical prediction, with an overall value of \(\chi^2/\text{d.o.f.} = 1.12 \pm 0.06\) (total \(\chi^2 = 113 \pm 6\)). Our parametrization is able to describe very well the COMPASS 2009 data set (32 points with \(\chi^2 = 28.8 \pm 6.3\)), the COMPASS 2017 data set (50 points with \(\chi^2 = 31.8 \pm 4.2\)), and the JLab data set (6 points with \(\chi^2 = 4 \pm 0.6\)). The agreement with the HERMES data set is worse (30 points with \(\chi^2 = 50.4 \pm 4.3\)). We checked that the largest contribution to the \(\chi^2\) comes from the subset of data with \(K^-\) in the final state. Our predictions well describe also the \(z\) and \(P_{hT}\) distributions, even if those projections of the data were not included in the fit. (More information about the fit procedure, the best-fit parameters and the agreement with data can be found in the Supplemental Material.)

In Fig. 1, we show the first transverse moment \(x f_{1T}^{1(1)}\) (Eq. \[^{[1]}\] multiplied by \(x\)) as a function of \(x\) at \(Q_0 = 2\) GeV\(^2\) for the up (upper panel) and down quark (lower panel). We compare our results (solid band) with other parametrizations available in the literature \[^{[14,16,17]}\] (hatched bands, as indicated in the figure). In agreement with previous studies, the distribution for the up quark is negative, while for the down quark is positive and both have a similar magnitude. The Sivers function for sea quarks is very small but not compatible with zero.

In general, the result of a fit is biased whenever a specific fitting functional form is chosen at the initial scale.

FIG. 1. The first transverse moment \(x f_{1T}^{1(1)}\) of the Sivers TMD as a function of \(x\) for the up (upper panel) and down quark (lower panel). Solid band: the 68\% confidence interval obtained in this work at \(Q^2 = 4\) GeV\(^2\). Hatched bands from PV11 \[^{[14]}\], EIKV \[^{[16]}\], TC18 \[^{[17]}\] and at different \(Q^2\) as indicated in the figure.

In our case, we tried to reduce this bias by adopting a flexible functional form, as it is evident particularly in Eq. \[^{[5]}\]. Nevertheless, we stress that our extraction is still affected by this bias and extrapolations outside the range where data exist (0.01 \(\leq x \leq 0.3\)) should be taken with due care. At variance with other studies, in the denominator of the asymmetry in Eq. \[^{[10]}\] we are using unpolarized TMDs that were extracted from data in our previous Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent the most realistic estimate that we can currently make on the statistical error of the Sivers function.
induced distortion is positive along the $+x$ direction for the up quark (left panels), and opposite for the down quark (right panels).

At $x = 0.1$ the distortion due to the Sivers effect is evident, since we are close to the maximum value of the function shown in Fig. 1. The distortion is opposite for up and down quarks, reflecting the opposite sign of the Sivers function. It is more pronounced for down quarks, which is about 3×10^{-5} times the electric dipole of a water molecule.

The existence of this distortion requires two ingredients. First of all, the wavefunction describing quarks inside the proton must have a component with nonvanishing angular momentum. Secondly, effects due to final state interactions should be present, which in Feynman gauge can be described as the exchange of Coulomb gluons between the quark and the rest of the proton. In simplified models, it is possible to separate these two ingredients and obtain an estimate of the angular momentum carried by each quark.

Parton distributions that depend simultaneously on momentum carried by each quark and flavor are the objects of a future publication. A model-independent estimate of those distributions will be presented in a future publication. A model-independent estimate of the angular momentum requires the determination of the parton distributions that depend simultaneously on momentum and flavor.

FIG. 2. The density distribution ρ_{yx} of an unpolarized quark with flavor a in a proton polarized along the $+y$ direction and moving towards the reader, as a function of (k_x, k_y) at $Q^2 = 4$ GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at $x = 0.1$, lower panels at $x = 0.01$. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at $k_y = 0$ (where the effect of the distortion due to the Sivers function is maximal) while left ancillary plots at $k_x = 0$ (where the distribution is the same as for an unpolarized proton). Results in the contour plots and the solid lines in the projections correspond to replica 105.
momentum and position \[10\] \[11\]. Nevertheless, the study of TMDs, and of the Sivers function in particular, can provide important constraints on models of the nucleon \[12\] and test lattice QCD computations \[43\].

In the near future, more data are expected from experiments at Jefferson Laboratory and CERN. Pioneering measurements in Drell-Yan processes have been already reported, but they are not included in the present analysis because of their relatively large uncertainties. In the longer term, the recently approved Electron Ion Collider project \[3\] will provide a large amount of data in different kinematic regions compared to present experiments. With this abundance of data, we will be able to reduce the error bands, extend the range of validity of the extractions to lower and higher values of x, and obtain a much more detailed knowledge of the 3-dimensional distribution of partons in momentum space.

ACKNOWLEDGMENTS

This work is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 647981, 3DSPIN). This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
Appendix A: Supplemental material

1. Fourier transforms of structure functions

The structure functions of Eqs. (2) and (3) can be written more explicitly as [21]

\[F_{UU,T}(x, z, P_{HT}^2, Q^2) = \frac{1}{2\pi} \int_{0}^{\infty} db_T b_T J_0(b_T | P_{HT} | /z) \tilde{F}_{UU,T}(x, z, b_T^2, Q^2) \]

\[= \frac{1}{2\pi} \sum_{a} e_a^2 x \int_{0}^{\infty} db_T b_T J_0(b_T | P_{HT} | /z) \tilde{f}_a^1(x, b_T^2; Q^2) \tilde{D}_1^{\perp-h}(z, b_T^2; Q^2), \] \hspace{1cm} (A1)

\[F_{UT,T}^{\sin(\phi_k - \phi_a)}(x, z, P_{HT}^2, Q^2) = \frac{1}{2\pi} \int_{0}^{\infty} db_T b_T^2 J_1(b_T | P_{HT} \hspace{1pt} /z) \tilde{F}_{UT,T}^{\sin(\phi_k - \phi_a)}(x, z, b_T^2, Q^2) \]

\[= -\frac{M}{2\pi} \sum_{a} e_a^2 x \int_{0}^{\infty} db_T b_T^2 J_1(b_T | P_{HT} \hspace{1pt} /z) \tilde{f}_a^{(1)}(x, b_T^2; Q^2) \tilde{D}_1^{\perp-h}(z, b_T^2; Q^2). \] \hspace{1cm} (A2)

The Fourier transforms of the TMDs are defined as

\[\tilde{f}_1^a(x, b_T^2; Q^2) = \int d^2 k_T e^{ib_T \cdot k_T} f_1^a(x, k_T^2; Q^2) = \pi \int_{0}^{\infty} d|k_T|^2 J_0(b_T | k_T |) f_1^a(x, k_T^2; Q^2) \] \hspace{1cm} (A3)

\[\tilde{f}_1^{(1)}(x, b_T^2; Q^2) = \int d^2 k_T e^{ib_T \cdot k_T} \frac{|k_T|^2}{2M^2} f_1^a(x, k_T^2; Q^2) = \frac{\pi}{M^2} \int_{0}^{\infty} d|k_T|^2 \frac{|k_T|}{b_T} J_1(b_T | k_T |) f_1^{(1)}(x, k_T^2; Q^2). \] \hspace{1cm} (A4)

Note that there is a factor 2\pi difference compared to the definition in the Pavia17 extraction [1], which has been taken into account in the rest of the article.

2. Details about the fit

We denote the replicated measurements as \(A_{\text{Siv}} \), with the \(r \) index running from 1 to \(M \). Once replicas are generated, a minimization procedure is applied to each replica separately to search for the parameter values, \(\{p_r\} \), that minimize the error function

\[E_r^2(\{p_r\}) = \sum_{i} \left(A_{r}^{\text{Siv}} - A_{i}^{\text{Siv}}(\{p_r\}) \right)^2 \left(\Delta A_{r}^{\text{stat}} \right)^2 + \left(\Delta A_{r}^{\text{sys}} \right)^2 + \left(\Delta A_{r}^{\text{th}} \right)^2. \] \hspace{1cm} (A5)

The terms in the denominator are the statistical and systematic experimental errors, assumed to be completely uncorrelated, and the theoretical error due to the uncertainty in the unpolarized TMDs. For each replica separately, we identify the minimum and the corresponding values of best-fit parameters. The initial parameter values are chosen randomly within reasonable intervals. For each replica, the goodness of the fit is evaluated using the usual \(\chi^2 \) test, which corresponds to the error function of Eq. (A5), but with the original experimental data instead of the replicated ones.

In Tab. [1] we give the value of the parameters obtained from our fit. For each one, we quote the central 68% of the 200 replica values (by quoting the average \(\pm \) the semi-difference of the upper and lower limits). Parameters of replica 105, used for the multidimensional plots, are also given.
All replicas	M_1	λ_S	α_d	α_u	α_s
	0.97 ± 0.53	−0.45 ± 0.81	1.09 ± 0.96	0.22 ± 0.22	0.61 ± 0.54
Replica 105	0.87	−0.85	2.01	0.14	0.27

All replicas	β_d	β_u	β_s	A_d	A_u	A_s
	5.86 ± 4.13	2.00 ± 1.89	4.49 ± 4.45	−0.86 ± 21.70	−2.79 ± 4.37	2.87 ± 7.59
Replica 105	10.00	0.18	0.11	170.00	1.19	0.07

All replicas	B_d	B_u	B_s	N^d_{Siv}	N^u_{Siv}	N^s_{Siv}
	6.77 ± 12.90	2.24 ± 5.38	0.77 ± 3.50	1.99 × 10$^{-6}$ ± 1.00	−0.09 ± 0.52	0.04 ± 0.54
Replica 105	87.60	2.49	0.35	−1.00	1.00	0.31

TABLE I. Values of the best fit parameters for the Sivers distribution. Upper rows contain the central 68% confidence intervals obtained by 200 replicas. Lower rows refer to the best fit parameters obtained from replica 105.
FIG. 3. The first transverse moment of the Sivers function, $x f_{1T}^{(1)}$, as a function of x calculated for the up, down and sea quarks at the scale $Q^2 = 4 \text{ GeV}^2$. The plots show all the 200 replicas obtained from the fit. For each value of x, the uncertainty bands contain the central 68% of the replicas.
FIG. 4. HERMES Sivers asymmetries from SIDIS off a proton target (H) with production of π^+, π^0, π^-, K^+, K^- in the final state, presented as a function of x, z, $P_{h\gamma}$. Only the x-dependent projections have been included in the fit.
FIG. 5. COMPASS 2009 Sivers asymmetries from SIDIS off a deuteron target (^6LiD) with production of π^+, π^-, K^+, K^- in the final state, presented as function of x, z, P_{hT}. Only the x-dependent projections have been included in the fit.
FIG. 6. COMPASS 2017 Sivers asymmetries from SIDIS off a proton target (NH₃) with production of positive hadrons h^+, presented as function of x, z, P_{hT} and divided in four different Q^2 bins. Only the x-dependent projections have been included in the fit.
FIG. 7. COMPASS 2017 Sivers asymmetries from SIDIS off a proton target (NH₃) with production of negative hadrons h^-, presented as function of x, z, P_{hT} and divided in four different Q^2 bins. Only the x-dependent projections have been included in the fit.
FIG. 8. JLab Sivers asymmetries from SIDIS off a deuteron target (6LiD) with production of positive and negative π in the final state, presented as function of x. Only the x-dependent projections have been included in the fit.