Enhancing the Refractive Index of Polymers with a Plant-Based Pigment

Mohammad Yasir,1 Tianqi Sai,1 Alba Sicher,1 Frank Scheffold,2 Ulrich Steiner,3 Bodo D. Wilts,3 and Eric R. Dufresne1

1Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
2Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
3Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland

(Dated: May 18, 2021)

Polymeric materials are prized for their formability, low density, and functional versatility. However, the refractive indices of common polymers fall in a relatively narrow range between 1.4 and 1.6. Here, we demonstrate that loading commercially-available polymers with large concentrations of a plant-based pigment can effectively enhance their refractive index. For polystyrene loaded with 67w/w\% β-carotene, we achieve a peak value of 2.2 near the absorption edge at 531 nm, while maintaining values above 1.75 across longer wavelengths of the visible spectrum. Despite high pigment loadings, this blend maintains the thermoforming ability of polystyrene, and β-carotene remains molecularly dispersed. Similar results are demonstrated for the plant-derived polymer ethyl cellulose. Since the refractive index enhancement is intimately connected to the introduction of strong absorption, it is best suited to applications where light travels short distances through the material, such as reflectors and nanophotonic systems. We experimentally demonstrate enhanced reflectance from films, as large as seven-fold for ethyl cellulose at selected wavelengths. Theoretical calculations that highlight that this simple strategy can significantly increase light scattering by nanoparticles and enhance the performance of Bragg reflectors.

Keywords: polymers; high refractive index; plant-based products; structural color

High refractive index (n) materials are attractive for many high performance optical systems, including nanophotonics and solar cells. While many inorganic materials naturally have very high refractive indices [1, 2], polymeric alternatives are attractive due to their low density and high processability. To that end, considerable effort has been invested in the development of high refractive index polymers and/or polymer composites (see e.g. [3–14]).

Methods to prepare high refractive index materials can be classified into three approaches. First, monomers are chemically modified to incorporate heavy atoms such as sulfur [15–17]. This can be synthetically tedious and costly. A polymer synthesized from vapor phase radical polymerization of elemental sulfur and 1,4-butanediol divinyl ether appears to have the highest refractive index reported for such a specialty polymer, with a value of about 2.1 at the wavelength of 400 nm, decaying to 1.9 at 700 nm [18]. Second, high refractive index particles are dispersed throughout the polymer matrix. These are typically nanoparticles (NPs) of metal oxides such as zirconium oxide or titanium dioxide. This approach is challenging because the particles need to be small and well-dispersed to avoid light scattering, while their high surface energies tend to drive agglomeration [8, 14, 18]. For these composite materials, refractive indices as high as 2.5 have been reported for 60% of PbS in gelatin [19]. Polymers loaded by metallic nanoparticles can also display an elevated refractive index in the vicinity of plasmon resonances, and display enhanced reflectance [20].

Third, small absorbing molecules can be dispersed in the polymer matrix. To date, this approach has focused on pigments with absorption in the UV, like phenanthrene, providing modest increases of the refractive index, Δn, of about 0.07 across the visible range [21–24].

Pigments and other absorbing systems naturally can feature high refractive indices. This is due the fact that both absorption and the refractive index are derived from the same linear response function, the dielectric constant. Basic constraints on causality require the refractive index (related to the real part of the response function) and the absorption coefficient (related to the imaginary part) to be connected through the Kramers-Kronig relationship [25]. This is famously exploited in silicon photonics, where the refractive index is about 3.5 beyond the band gap [26, 28].

Living systems can achieve very high refractive indices using organic pigments. Melanin has a refractive index of about 1.8 and is deployed in nanostructures by many species to produce structural colors [29–31]. Artificial melanin has been used to create structurally colored biomimetic nanostructures [32–34]. Pterin pigments, which absorb strongly at short wavelengths, have recently been identified as an essential component of highly reflective structures in animals [34, 35]. For example, the wing scales of Pierid butterflies carry micron-sized elipsoidal particles made primarily from pterin pigments. These particles have refractive indices as high as 2.9 at the edge of the absorption band, and remain above 2.0 at longer wavelengths [34]. In this region of the spectrum, the high refractive index of these nanostructures leads to very efficient reflection.

Here, we increase the refractive index of the common polymers polystyrene (PS) and ethyl cellulose (EC) by
loading them the natural organic pigment \(\beta \)-carotene (BC). We achieve refractive indices greater than 2 near the absorption edge, while maintaining the processability of the host polymer. All of these raw materials are produced commercially and made from naturally abundant elements (carbon, hydrogen and oxygen). Moreover, BC and EC are plant-based edible materials. Thus, our high-refractive-index materials are cost-effective, sustainable, and environmentally friendly. Because of residual adsorption, these materials are best suited for applications where light travels no more than short distances through the material. We demonstrate the applicability of this approach with a combination of experiments and theory. First, we measure increases of reflectance from flat interfaces as large as seven-fold greater than the base polymer. Second, we theoretically investigate the performance of nanoparticles and nanostructures based on these materials. Specifically, we find that pigment loading greatly enhances the reflectance of a multilayer structure and the scattering efficiency of nanoparticles.

In order to enhance the refractive index of polymeric materials using a pigment, it must satisfy two minimal criteria: (i) it must have a strong optical response and (ii) it can be dispersed in the desired polymeric matrix. Since pigments are usually characterized by their absorption spectrum and not their refractive index, we applied the Kramers-Kronig relations (see e.g. [25, 36]) to estimate the impact of dye loading on the refractive index. The change in the refractive index due to absorption can be estimated as:

\[
\Delta n(\lambda) = \frac{c}{2\pi^2} \int_0^{+\infty} \frac{\mathcal{E}(\lambda')}{1 - (\lambda'/\lambda)^2} d\lambda'
\]

where \(\mathcal{E}(\lambda) \) is the molar extinction coefficient of the pigment and \(c \) is its molar concentration [36]. The numerical approach to the evaluation of this integral is given in the Supporting Information.

Qualitatively, the refractive index increases with the molar extinction coefficient. Absorption over a narrow band of wavelengths results in a peak of the refractive index at the long-wavelength edge of the absorption band [38]. The refractive index decays slowly at longer wavelengths. An ideal pigment to enhance the refractive index should feature an absorption spectrum with a large integral and a sharp drop to zero at long wavelengths.

We identified \(\beta \)-carotene, shown in Fig. 1a, as a suitable candidate based on its absorption spectrum, shown in Fig. 1b. Solutions of BC in chloroform absorb strongly between 400 nm and 550 nm, with a peak molar extinction coefficient of about 68 000 M\(^{-1}\)cm\(^{-1}\) at 460 nm. In addition to these suitable absorption properties, BC is a healthy and abundant natural product, soluble in a variety of common solvents.

The absorption spectrum of BC implies that it should have a large refractive index. To measure this, we spin-coated a 145 nm thick film of BC on a silicon wafer and measured its refractive index using an ellipsometer. The measured refractive index is shown as the black line in Figure 1c. A peak refractive index of 2.38 is observed at a wavelength of 541 nm. The refractive index stays above 2.0 up to a wavelength of 600 nm, well outside of its absorption band. At this wavelength, the residual absorption is 276 M\(^{-1}\)cm\(^{-1}\), about 250 \(\times \) smaller than its peak value. For comparison, the refractive index predicted by the measured absorption spectrum using Eq. 1 is shown as a gray line in Fig. 1c. Note that the measured peak in the refractive index is weaker and at a longer wavelength than expected. We suspect that these differences arise from changes in the local electronic environment in solution and the solid state [37].

While pure BC has attractive optical properties, it is difficult to process. We hypothesized that dispersing BC in a polymer matrix could maintain a high index of refraction while improving its processibility. We selected polystyrene as a candidate polymer matrix. PS is a common thermoplastic polymer with a refractive index of
about 1.6 across the visible spectrum \[38\], as shown in Fig. [1].

We prepared thin composite films of BC and PS by spin coating. Photographs of the samples are shown in Fig. [1]. We quantified the uniformity and thickness of the films using optical profilometry, as shown in Fig. [1ef]. We saw no significant difference in the roughness of the films, even at very high loadings of BC. The optical properties of a range of BC/PS films were characterized using ellipsometry. The measured refractive indices of pure BC and pure PS, respectively. Since BC and PS have similar density, their weight and volume fractions are essentially the same. This estimate for the refractive index is shown as a dashed curve in Fig. [2], and also matches the data reasonably well.

The Kramers-Kronig relation also predicts the wavelength dependence of the refractive index of the 67\\% BC/PS blend rather well, as shown by the light gray curve in Fig. [2].

The Kramers-Kronig calculation for the blend’s optical properties is based on an extrapolation from the dye behavior in a dilute solution. Alternatively, we can use the law of mixtures \[39\], to extrapolate the blend’s optical properties based on the measured refractive index of pure BC and PS. In this way,

\[
n(\lambda) = n_{BC}(\lambda)\phi + n_{PS}(\lambda)(1 - \phi)
\]

where \(\phi\) is the volume fraction of BC and \(n_{BC}\), \(n_{PS}\) are the refractive indices of pure BC and pure PS, respectively. Since BC and PS have similar density, their weight and volume fractions are essentially the same. This estimate for the refractive index is shown as a dashed curve in Fig. [2], and also matches the data reasonably well.

The possible applications of this approach for increasing the refractive index are limited by residual absorption. The intrinsic trade-off between high refractive index and absorption is captured nicely by Fig. [2], where we plot the absorption length (in units of wavelength) versus the refractive index. While the 67\\% BC/PS sample can reach refractive indices as high as 2.23, the absorption length at the same frequency is only about half a wavelength. This rules out any application where light propagates through the material, such as lenses. Luckily, with only a 10\\% decrease of the refractive index, to a value of 2.0, the absorption length increases ten fold to about 5 wavelengths in the material. While this may be too short for most applications, we will show below that it can be effectively exploited for nanophotonic applications.

Counterintuitively, adding an absorbing material to a thin film increases its reflectance. To demonstrate this, we compare the specular reflectance of PS and 67\\% BC/PS thin films in Fig. [3]. While the reflectance of the pure PS film is around 0.06 across the visible spectrum, the reflectance spectrum of the 67\\% BC/PS film reaches a peak value of 0.22 (Fig. [3b]), about 4\\times higher than the reflectance of a PS film of the same thickness (Fig. [3a]). We fitted the measured reflectance spectra to Transfer-matrix calculations \[40\] using the measured refractive indices of both films, allowing their thickness to vary. The resulting thicknesses are 57 nm and 41 nm for PS and BC/PS films, respectively. The best fit spectra fit the data reasonably well. For comparison, the optical profilometer thickness measurements of the same films thickness were 72 ± 10 nm and 35 ± 7 nm for PS and BC/PS, respectively.

To demonstrate the generality of our approach, we produced thin films of ethyl cellulose EC loaded with 67\\% BC. EC is an attractive choice, because it is an inexpensive, commercially available, abundant plant-sourced polymer. We found very similar results to the PS films shown above, as summarized in Fig. [4]. Thin films of EC and BC/EC had similar roughness and uniformity (see Fig. [4ab]). While pure EC has a refractive index of about 1.44 across the visible wavelength range, the refractive index of the BC/EC composite had a peak refractive index of 2.15 at 528 nm, decaying to 1.83 at 600 nm, as shown in Fig. [4]. The specular reflection from thin films of BC/EC was almost eight-fold higher than plain EC films at the peak near 529 nm (Fig. [4c]). It should be noted that these high refractive index films are based solely on plant-based materials.

The results above demonstrated that BC can be incorporated at high-loadings in a polymer matrix to achieve a strong optical response. However, it remains to be seen whether these mixtures maintain the processability of the host polymer. We therefore tested the thermforming ability of 40\\% BC/PS mixtures. For this, we made a 40\\% BC/PS mixture by solution casting using dichloromethane as solvent under vacuum (180 mbar) at room temperature. The resulting composite is dark orange in color (Fig. [5a]), and has a porous structure as revealed by SEM (Fig. [5b]). Then, we hot pressed the composite at 170°C, which resulted in the formation of a 2 mm thick film. The resulting material was dark green (Fig. [5c]), and no porosity was visible in SEM images (Fig. [5d]).

Differential scanning calorimetry (DSC, Fig. [5]) and x-ray diffraction (XRD, Fig. [5]) revealed that the BC was in a crystalline form after solution casting, but not after hot pressing. Specifically, DSC revealed a melting event in the solution-cast BC/PS sample (before hot pressing (BHP)) between 170 – 190°C, matching the exothermic peak in the pure BC sample. Similarly, XRD revealed a number of sharp, crystalline peaks in the solution-cast BC/PS sample that matched the diffraction peaks of pure BC. These characteristic features of crystalline BC are completely absent from the DSC and XRD results after hot pressing (AHP). We therefore conclude that hot-pressing the BC/PS film at the melting point of BC dissolves it into the PS matrix. Upon cooling,
Figure 2. *Trade-off between high refractive index and absorption.* (a) Measured refractive index dispersion and absorption lengths of BC-containing PS films with loading of 67w/w%, 50w/w% and 33w/w% and pure PS (blue). (b) Peak refractive indices (circles) and refractive indices when $n(\lambda)l_{ab} = 5\lambda$ (squares) for different weight percentage BC-containing PS films. (c) Calculated and measured refractive indices of 67w/w% BC/PS film. Measured in solid, orange line, calculated by mixing rule in black, dashed line and calculated by Kramers-Kronig in light gray, solid line. (d) Normalized absorption length vs. refractive indices for 67w/w% BC/PS film, 50w/w% BC/PS film and 33w/w% BC/PS film. Data points of 67w/w% BC/PS for wavelengths of 500 nm, 535 nm, and 592 nm are marked in diamond, square, and circle, respectively.

Figure 3. *Reflectance increases significantly by incorporating BC.* (a) Schematic plot of the reflectance measurement set-up. ($\theta = 15^\circ$) (b) Measured (solid lines) and modelled (dashed lines) reflectances of the 67w/w% BC/PS film (orange) and the pure PS film (dark blue). (c) Theoretical reflectances ratio of the 67w/w% BC/PS film (57 nm) over the pure PS film (57 nm).

the PS vitrifies before the BC re-crystallizes, leaving a solid BC solution frozen in vitrified PS. This is particularly attractive for optical applications because molecularly dispersed pigments do not scatter light. To confirm that heat treatment did not compromise optical performance, we measure the refractive index dispersion of the hot pressed material, shown in Fig. 5b, by ellipsometry on a thin film formed by spin coating after redissolving the hot-pressed sample. We observed only a slight decrease in the peak refractive index, with a maximum value of 2.04 at 520 nm. Processing at higher temperatures (230°C) enabled extrusion of the material into fibers, but almost entirely removed the refractive index enhancement, as shown in Fig. S1, likely due to a chemical decomposition of the BC.

Hot-pressing at 170°C transforms the dark-red solution-cast mixture into a dark green material. To quantify this difference in appearance, we measured the specular reflectance of each sample, shown in Fig. 5h. While the solution-cast film only reflects the longest visible wavelengths, the reflectance of the hot-pressed film closely follows the profile of its measured refractive index,
In our BC/PS samples, the absorption length is longer than the transport mean-free path, ℓ, which apparently has three phases, a PS-rich phase, BC above, the solution cast film has a complex structure, and the color of the strongly-scattering solvent-cast sample is dominated by the absorption properties of the medium. This is the same color-producing mechanism as pigmentedary particles. On the other hand, hot-pressing transforms the mixture in a single phase as confirmed by SEM, DSC, and XRD measurements of Fig. 5. With no internal scattering structures, the reflection is limited to the first surface, and the rest of the light propagates through the material without scattering until it is eventually absorbed, as shown schematically in Fig. 5.

So far, we have demonstrated the efficacy of enhancing the refractive index by pigment loading for simple films, where we demonstrated a strong effect on their reflectance (Figs. 3a and 3b). To investigate whether dye-loaded polymers could be attractive for nanophotonic applications, we investigated the impact of dye-loading on the scattering of individual nanoparticles and the efficiency of multilayered Bragg reflectors.

To predict the influence of the refractive index enhancement on the scattering of particles made of BC/PS mixtures, we calculated the scattering and absorption properties of individual particles using Mie theory. Fig. 6a compares the scattering efficiency, Q_{sca}, to the absorption efficiency Q_{abs}, for 67w/w% BC/PS nanoparticles in water. The scattering (absorption) efficiency Q_{sca} (Q_{abs}) is the ratio of the scattering (absorption) cross section to the geometrical cross section. For 350 nm diameter particles, the maximum scattering efficiency is 2.86 at a wavelength of 552 nm. While the absorption efficiency is much smaller under the same conditions, it is still significant ($Q_{\text{abs}} = 0.56$). Note that Q_{sca} is a factor of five larger than the scattering efficiency of a pure PS particle at the same size and wavelength (Fig. S3). In Pierid butterflies, a similar enhancement has been observed. There, incorporation of pterin pigments increases the scattering efficiency of microparticles ten-fold.

Further work is needed to reveal how this competition of scattering and absorption translates to the optical properties of periodic and quasi-periodic distributions of such particles in photonic crystals and photonic glasses.

Putting aside the complexity of single particle response, we can assess the impact of absorption-enhanced scattering in a one-dimensional periodic structure, the multilayer Bragg reflector (MBR), shown schematically in Fig. 6b. We investigated the optical response of a multilayer with seven alternating layers of two materials. One layer has a refractive index of 1.4 ($e.g.$ PDMS), and the second has the refractive index dispersion of our BC/PS mixture. Keeping the layer thicknesses fixed (120 nm for the low index material, and 100 nm for BC/PS blends), we varied the loading of BC from 0 to 67% and calculated the reflectance spectrum of the structure at normal incidence, shown in Fig. 6b. With-
Figure 5. Processability, structure, and optical properties of BC/PS composites. (a) Photo of 40 w/w% BC/PS mixture after solution casting, and before hot pressing (BHP). Diameter of the petri dish is 10 cm. (b) SEM image of the sample. Scale bar: 200 µm. (c) Photo of 40 w/w% BC/PS composite after hot pressing (AHP) at 170°C. Diameter of the green disc is 2.5 cm. (d) SEM image of the sample after hot pressing at 170°C. Scale bar: 200 µm. (e),(f) DSC and XRD results of a 40 w/w% BC/PS mixture before (BHP) and after (AHP) hot pressing. (g) Refractive index dispersions of 40 w/w% BC/PS composites before (red) and after hot pressing (green). (h) Normalized reflectances of the 40 w/w% BC/PS mixture before (red) and after (green) hot pressing. Reflectance calculated by the Fresnel equations in gray, dashed line. (i) Schematic of the light propagation in BC/PS films.

Out further optimization, the peak reflectance increases from 0.48 with pure PS up to 0.85 with 67w/w% BC/PS. Varying the thickness of the layers, the reflectances of this system can reach as high as 0.95, as shown in Fig. (c). We observe a cut-off effect for smaller lattice spacings. As the reflectance peak reaches the absorption band, it first narrows and then fully disappears. Specifically, the reflectance peak width is around 100 nm for \(d = 180\) nm, narrowing to 50 nm for \(d = 160\) nm.

We have shown that BC can be dispersed in PS and EC at very high loadings. These mixtures can reach refractive indices over 2 for a range of wavelengths, and display enhanced reflectance in thin films. Composites of BC and PS maintain their thermoforming ability. Thermoforming has an additional benefit: it dissolves BC crystals, preventing unwanted scattering from crystallized pigment. Numerical calculations suggest that the enhancement of refractive index due to the addition of dye can significantly enhance scattering by nanoparticles and improve the reflectance of Bragg reflectors.

This work demonstrates a new degree of freedom for the design of photonic nanostructures, enabling the enhancement of refractive index at specific wavelengths. Our theoretical results on Bragg reflectors suggest this strategy is particularly effective when wavelengths with strongly-enhanced refractive indices overlap with the wavelengths selected by the nanostructure. This work demands further development of the theory of light transport in nanostructures with simultaneous scattering and absorption. To realize the photonic nanostructures proposed here, several challenges in materials chemistry and processing must be overcome. For example, new synthetic approaches are required to produce monodisperse polymer colloids with high dye loadings. Additionally, our proof-of-concept pigment, \(\beta\)-carotene, is prone to oxidation, and strategies to stabilize the pigment would greatly improve the longevity of these materials.
Figure 6. Numerical simulations of properties of nanophotonic structures made from BC/PS composites. (a) Scattering efficiencies versus absorption efficiencies for 67 w/w% BC/PS particles with different diameters (Dia) in water, calculated by Mie theory. Data points for wavelengths of 500 nm, 535 nm, and 592 nm are marked in diamonds, squares, and circles, respectively. (b) Modelled reflectances of a multilayer Bragg reflector with seven repeated layers of BC-loaded PS (thickness of each layer 100 nm) and a material with $n = 1.4$ (thickness of each layer 120 nm). (c) reflectances of 7-repeat multilayers of 67 w/w% BC/PS and a material with $n = 1.4$, where the thicknesses of the layers are varied. In the left panel, the thickness of the BC/PS layer, h_{BC} is fixed at 100 nm and total thickness of each repeat unit, d, is varied. In the right panel, d is fixed at 200 nm and h_{BC} is varied.

Acknowledgements

We thank Kiril Feldman for assistance with polymer processing and DSC measurements, Thomas Weber for help with XRD, Hui Cao for feedback on the optical data and Carla Fernandez-Rico for comments on the manuscript. This work was financially supported by the Swiss National Science Foundation through the NCCR Bio-inspired Materials.

MATERIALS AND METHODS

Materials

BC (synthetic, ≥93% (UV)), PS (35 kDa (used for making films atop silicon wafers and glass slides) and 192 kDa (used for processability experiments)), EC (48.0-49.5% (w/w) ethoxyl basis), chloroform and dichloromethane were bought from Sigma-Aldrich and used as received.

UV-VIS spectrometry

The absorption spectrum of chloroform and BC solution in chloroform (0.1 mM) was recorded by a UV-Vis spectrophotometer (Agilent Cary 60). The absorbance of chloroform was subtracted from the absorbance of BC solution in order to have absorbance of pure BC. This absorbance data was used to calculate the molar extinction coefficient of BC according to the Beer-Lambert law.

Film Preparation

To a weighed amount of PS or EC, the BC was added according to w/w% (Table 1). A solution of this mixture in chloroform at a given concentration (Table 1) was stirred at 800 rpm under dark at room temperature. This solution was filtered through a 0.45 μm filter and the film was spin coated at 1000 rpm for 10 min over silicon wafer (size: 2×2 cm2) or glass slide (size: 2.5×2.2 cm2). The volume of solution taken for spin coating was 250 or 300 μl for silicon wafer or glass slide, respectively. Specific compositions of solutions used for spin coating are found...
in the Supporting Information.

Profilometry

The imaging of the films using a 3D optical profilometer (S neox) using 10x DI lens. In order to know the thickness of the films, a cut was made in the film using blade to scrap the portion of the material. The difference between the heights of the planes with and without the material gave the thickness of the films.

Ellipsometry

For refractive index measurements, a spectroscopic ellipsometer (M2000, J.A. Woollam) was used to measure the phase and amplitude change of light after interacting with the samples. All measurements were performed between 250 and 1000 nm at an angle of incidence 65°, and all data were acquired and analyzed using WVASE software. Since the films are transparent at longer wavelengths, the films were regarded as a homogeneous material with the thickness fitted by Cauchy dispersion relation in the wavelength range from 600 to 1000 nm, After the film thickness was determined and fixed, the optical constants, refractive indices \(n \) and extinction coefficient \(\kappa \) were fitted using point to point fitting mode.

Reflectance measurement

The specular reflectance of the films have been measured with an angle-resolved spectrophotometry setup. The light source is a deuterium-halogen lamp (Ocean Optics DH-2000-BAL), ranging from 200 nm to 1000 nm. The sample is placed on a rotating stage and can be tilted to the desired angles. Finally, a light detector (Ocean Optics, QE Pro) is mounted on a rotating arm, which is controlled by software. The incident angle is set to be 15° and the specular reflectance is measured. The reflectance is calculated using reflection from a broadband dielectric mirror Thorlabs, BBSQ2-E02) at the same incident angle as reference. During the reflectance measurement, a layer of translucent Scotch tape was applied on the back side of the glass substrate to suppress unwanted back reflection from the glass-air interface.

Optical modelling

The measured reflectances of thin films were fitted by a transfer matrix method based on the RTACalc code developed by A. Rose. We assume the films are in air and on a semi-infinite glass substrate in the modelling.

The Mie scattering calculations were done using the open source MATLAB code developed by Christian Mätzler.

The reflectances of multilayer were simulated with 3D finite-difference time-domain (FDTD) calculations using Lumerical FDTD Solutions, a commercial-grade Maxwell equation solver.

XRD measurement

Samples were finely ground into powders before the XRD measurements. The XRD measurements were performed on the Panalytical X’Pert PRO MPD diffractometer with Cu Kα (8.04 keV) radiation.

DSC measurement

The DSC measurements of the samples were performed on TA DSC2500 with a ramping speed of 10°C/min under inert atmosphere.

Scanning electron microscopy

The scanning electron microscopy (SEM) observations were performed on the Hitachi SU5000.

I. SUPPORTING INFORMATION

Table S0. Solutions for Spin Coating.

Silicon Wafer Films	Glass Slide Films	
PS/EC (mg)	BC (w/w%)	Concentration (mg/mL)
61.3/	0	12.5
36/	33	15
37/	50	15
35/	67	15
/72	0	15
/56	67	15
64.6/	7	
42.4/	33	7
37/	67	7
/70	0	7
/56	67	7

A. Refractive index prediction by Kramers-Kronig relations

If we add a pigment to an optical system, according to the Kramers-Kronig relations, the resulting contribution of the pigment absorption to the refractive index \(n(\lambda) \) can be precisely calculated if the absorption information for the entire spectral wavelength range \((0 \rightarrow +\infty) \) is
known. Since we measure only the UV-Vis absorption spectrum, we determine its contribution to the refractive index:

\[\Delta n'(\lambda) = \frac{c}{2\pi^2} \int_{200}^{800} \frac{\mathcal{E}(\lambda')}{1 - (\lambda'/\lambda)^2} d\lambda'. \quad (3) \]

The contribution of the missing spectral information below 200 nm and above 800 nm can be estimated by a Cauchy term \(\Delta n_b \), as explained in our previous work\cite{36}. In this work, we mix large fractions of \(\beta \)-carotene with base polymer, with refractive index \(n_b \). With the substitution of base polymer by \(\beta \)-carotene, the contribution of the substituted part of base materials on refractive indices need to be subtracted, which can be represented by \(\Delta n_b \), which is negative. The base polymers, polystyrene and ethyl cellulose are transparent in the visible range. However, polystyrene and \(\beta \)-carotene share the same elements (C, H) and bondings (C= C,C-H,C-C). While the absorption in the UV-Vis range of organic molecules consisting of only C and H is mainly caused by the conjugation of base polymer by \(\beta \)-carotene, the absorption outside UV-Vis results from transitions and vibrations of isolated bonds. So for a BC/PS system, \(\Delta n_b \) and \(\Delta n_m \) cancel out. Therefore, the overall refractive index of BC/PS composite \(n_c \) can be written as:

\[n(\lambda) = n_b(\lambda) + \Delta n'(\lambda) \quad (4) \]

B. Processability

A mixture of BC and PS was extruded into fibers having 26w/w% and 52w/w% BC/PS at 230°C (Fig. S1a, Supporting Information). These fibers were hot pressed to form 2 mm thick circular films having the diameter of 30 mm at 205°C (Fig. S1b, Supporting Information). These films were laser cut to give rectangular films of the same thickness having 20 mm length and 5 mm width (Fig. S1c, Supporting Information). Although the refractive index of the 52w/w% BC/PS film formed by spin coating after redissolving the hot-pressed sample was decreased to 1.67 (maximum value at the wavelength of 510 nm) (Fig. S1d) due to the decomposition of most of the BC (because of heating at 230°C during extrusion, a known phenomenon)\cite{45}. But these experiments show that the composites are processable at such high loadings of BC. As the amounts of BC and PS fed into the extrusion machine were unknown, \(^1\)H NMR spectra were recorded and used to determine the amount of BC and PS in the extruded fibres (Fig. S2).

C. Mie scattering efficiency enhancement

Scattering of particles can be strongly enhanced, depending on size and refractive index according to the calculations using Mie theory. For particles consisting of polystyrene, the scattering efficiency has a maximum at short wavelengths. For particles with the refractive indices of 67w/w% BC/PS, the scattering of visible light is strongly enhanced, with a pronounced maximum in the visible wavelength range. This is particularly pronounced outside the absorption wavelength range of BC and leads to dramatic increases in the scattering efficiency of up to a factor of 8 (Fig S3).

References:
[1] E. D. Palik, *Handbook of optical constants of solids*, Vol. 3 (Academic press, 1998).
[2] W. Caseri, Macromolecular Rapid Communications 21, 705 (2000).
[3] J. g. Liu and M. Ueda, Journal of Materials Chemistry 19, 8907 (2009).
[4] T. Badur, C. Dams, and N. Hampp, Macromolecules 51, 4220 (2018).
[5] H. Jiang, X. Pan, N. Li, Z. Zhang, J. Zhu, and X. Zhu, Reactive and Functional Polymers 111, 1 (2017).
[6] T. S. Klenke, N. A. Nguyen, L. E. Anderson, S. Nannabat, E. A. LaVilla, S. A. Showghi, P. T. Dirlam, C. B. Arrington, M. S. Manchester, J. Schwiegerling, R. S. Glass, K. Char, R. A. Norwood, M. E. Mackay, and J. Pyun, ACS Macro Letters 5, 1152 (2016).
[7] J. L. H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S. L.-C. Hsu, and T.-L. Li, Materials Letters 61, 2908 (2007).
[8] C. Li and B. Yang, Journal of Materials Chemistry 19, 2884 (2009).
[9] P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, Journal of Materials Chemistry 21, 18623 (2011).
[10] A. K. Yetisen, Y. Montelongo, and H. Butt, Applied Physics Letters 109, 061106 (2016).
[11] R.-C. Kim, Materials Letters 160, 158 (2015).
[12] D. P. Sanders, Chemical Reviews 110, 321 (2010).
[13] T. Higashihara and M. Ueda, Macromolecules 48, 1915 (2015).
[14] D.-P. Song, C. Li, W. Li, and J. J. Watkins, ACS Nano 10, 1216 (2016).
[15] M. A. Olshavsky and H. R. Allcock, Macromolecules 28, 6188 (1995).
[16] D. H. Kim, W. Jang, K. Choi, J. S. Choi, J. Pyun, J. Lim, K. Char, and S. G. Im, Science Advances 6, eabb5320 (2020).
10

[17] L. Fang, J. Sun, X. Chen, Y. Tao, J. Zhou, C. Wang, and Q. Fang, Macromolecules 53, 125 (2020).
[18] M. R. Bockstaller and E. L. Thomas, The Journal of Physical Chemistry B 107, 10017 (2003).
[19] L. Zimmennann, M. Weibel, W. Caseri, and U. W. Suter, Journal of Materials Research 8, 1742 (1993).
[20] R. J. Gehr and R. W. Boyd, Chemistry of Materials 8, 1807 (1996).
[21] T. Hanemann and K. Honnef, Journal of Applied Polymer Science 122, 3514 (2011).
[22] T. Hanemann and K. Honnef, Journal of Applied Polymer Science 131 (2014).
[23] J. Böhm, J. Haußelt, P. Henzi, K. Litfin, and T. Hanemann, Advanced Engineering Materials 6, 52 (2004).
[24] T. Magrini, F. Bouville, A. Lauria, H. L. Ferrand, T. P. Niebel, and A. R. Studart, Nature Communications 10, 1 (2019).
[25] V. Lucarini, Kramers-Kronig Relations in Optical Materials Research. (Springer, Berlin, 2005).
[26] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nature Photonics 4, 518 (2010).
[27] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[28] C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, AIP Advances 5, 067168 (2015).
[29] G. E. Hill, G. E. Hill, K. J. McGraw, J. Kevin, et al., Bird coloration: mechanisms and measurements, Vol. 1 (Harvard University Press, 2006).
[30] S. Yoshioka and S. Kinoshita, Physical Review E 83, 051917 (2011).
[31] D. G. Stavenga, H. L. Leertouwer, D. C. Osorio, and B. D. Wilts, Light: Science & Applications 4, e243 (2015).
[32] A. Kawamura, M. Kohri, G. Morimoto, Y. Nannichi, T. Taniguchi, and K. Kishikawa, Scientific Reports 6, 33984 (2016).
[33] M. Xiao, Z. Hu, Z. Wang, Y. Li, A. D. Torno, N. Le Thomas, B. Wang, N. C. Gianneschi, M. D. Shawkey, and A. Dhinojwala, Science Advances 3, e1701151 (2017).
[34] B. D. Wilts, B. Wijnen, H. L. Leertouwer, U. Steiner, and D. G. Stavenga, Advanced Optical Materials 5, 1600879 (2017).
[35] B. A. Palmer, V. J. Yallapragada, N. Schiffmann, E. M. Wormser, N. Elad, E. D. Aflalo, A. Sagi, S. Weiner, L. Addadi, and D. Oron, Nature Nanotechnology 15, 138 (2020).
[36] T. Sai, M. Saba, E. R. Dufresne, U. Steiner, and B. D. Wilts, Faraday Discussions 223, 136 (2020).
[37] N. Gong, Z. Li, C. Sun, and Z. Men, Progress in Carotenoid Research 10.5772/intechopen.78593 (2018).
[38] N. Sultanova, S. Kasarova, and I. Nikolov, Acta Physica Polonica A 116, 585 (2009).
[39] W. Heller, The Journal of Physical Chemistry 69, 1123 (1965).
[40] K. J. Pascoe, Reflectivity and Transmissivity through Layered, Lossy Media: A User-Friendly Approach, Tech. Rep. (AIR FORCE INST OF TECH WRIGHT-PATTERSONAFB OH SCHOOL OF ENGINEERING, 2001).
[41] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).
[42] C. López, Advanced Materials 15, 1679 (2003).
[43] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
[44] S. Magkiriadou, J.-G. Park, Y.-S. Kim, and V. N. Manoharan, Physical Review E 90, 062302 (2014).
[45] L. Schertel, L. Siedentop, J.-M. Meijer, P. Keim, C. M. Aegerter, G. J. Aubry, and G. Maret, Advanced Optical Materials 7, 1900442 (2019).
[46] P. P. Valerio, J. M. Frias, and E. C. Cren, Journal of Thermal Analysis and Calorimetry 143, 2983 (2021).
Figure S1. Processability of BC/PS composites by (a) extrusion, (b) hot pressing and (c) laser cutting. (d) Refractive index of 52 w/w% BC/PS composite after hot pressing at 205°C.

Figure S2. 1H NMR spectra (300 MHz, chloroform-d) of (a) PS, (b) BC, (c) 26 w/w% BC/PS composite and (d) 52 w/w% BC/PS composite.
Figure S3. Enhancement factor of the Mie scattering efficiency Q_{sca} of particles with the refractive index of 67 w/w% BC/PS relative to particles with the refractive index of PS.