Hypoxia-inducible gene domain 1 proteins in yeast mitochondria protect against proton leak through complex IV.

Ngoc H. Hoang¹, Vera Strogolova², Jaramys J. Mosley¹, Rosemary A. Stuart², and Jonathan Hosler¹*.

From the ¹Department of Cell & Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi 39216 and the ²Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233

Running title: HIGD1 proteins prevent proton leak through CIV

*To whom correspondence should be addressed: Jonathan Hosler, Department of Cell & Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi 39216; jhosler@umc.edu; Tel. (601) 984-1861

Abbreviations: HIGD1 proteins, hypoxia-inducible gene domain 1 proteins; OXPHOS, oxidative phosphorylation pathway; CCCP, carbonyl cyanide 3-chlorophenylhydrazone; TMPD, N, N, N’, N’-tetramethyl-p-phenylenediamine; CIII, complex III, cytochrome bc₁ complex; CIV, complex IV, cytochrome c oxidase; IMM, inner mitochondrial membrane; ∆ψ, membrane potential across the inner mitochondrial membrane; Rcf, respiratory supercomplex factor; ET, electron transfer; Cox3, subunit 3 of CIV; Cox1, subunit 1 of CIV; TN, turnover number, as electron per second per CIII or CIV; Controlled TN, TN measured in the presence of ∆Ψ; Uncontrolled TN, TN measured in the absence of ∆Ψ

Keywords: mitochondria, hypoxia-inducible gene domain 1 (HIGD1), Rcf, membrane potential, proton leak, Complex IV, respiration, oxidative phosphorylation, suicide inactivation

ABSTRACT

Hypoxia-inducible gene domain 1 (HIGD1) proteins are small integral membrane proteins, conserved from bacteria to humans, that associate with oxidative phosphorylation supercomplexes. Using yeast as a model organism, we have previously shown that its two HIGD1 proteins, Rcf1 and Rcf2, are required for the generation and maintenance of a normal membrane potential (∆Ψ) across the inner mitochondrial membrane (IMM). We have postulated that the lower ∆Ψ observed in the absence of the HIGD1 proteins may be due to decreased proton pumping by complex IV (CIV) or to an enhanced leakage of protons across the IMM. Here, we measured the ∆Ψ generated by complex III (CIII) to discriminate between these possibilities. First, we found that the decreased ∆Ψ observed in the absence of the HIGD1 proteins cannot be due to decreased proton pumping by CIV, since CIII, operating alone, also exhibited a decreased ∆Ψ when HIGD1 proteins were absent. Since
CIII can neither lower its pumping stoichiometry nor transfer protons completely across the IMM, this result indicates that HIGD1 protein ablation enhances proton leakage across the IMM. Second, we demonstrate that this proton leakage occurs through CIV, since $\Delta\Psi$ generation by CIII is restored when CIV is removed from the cell. Third, the proton leakage appeared to take place through an inactive population of CIV that accumulates when HIGD1 proteins are absent. We conclude that HIGD1 proteins in yeast prevent CIV inactivation, likely by preventing the loss of lipids bound within the Cox3 protein of CIV.

INTRODUCTION

The yeast HIGD1 proteins, Rcf1 and Rcf2, are small integral membrane proteins in the inner mitochondrial membrane (IMM) (1-6). Rcf1, but not Rcf2, is necessary for the normal accumulation Complex IV and, thereby, for the normal accumulation of the yeast CIII$_2$CIV$_2$ supercomplex (7,8). Rcf1 acts an assembly factor for CIV, specifically for Cox3, one of the three subunits of the catalytic core of CIV (1,7). Cox3 is a V-shaped membrane protein, with two hinged transmembrane domains forming an open cleft in the middle (9-12) (Fig. 1A). In fully assembled CIV, the back wall of the Cox3 cleft is a transmembrane surface of Cox1, the central subunit of CIV, while the front of the cleft is open to the lipid bilayer. Within the cleft, conserved residues bind up to five phospholipids in specific orientations (9-11,13) (Fig. 1A). Lipid binding interactions are critical for the binding of Cox3 to Cox1 (14). In its assembly role, Rcf1 binds to newly synthesized Cox3, prior to the assembly of Cox3 into CIV (1,7). Given that lipid binding by Cox3 is required for its native structure and for its assembly into CIV, it seems likely that Rcf1 binds to Cox3 in order to facilitate the process of lipid insertion (8). A recent structure shows that the transmembrane region of Rcf1 has a V-shape similar to that of Cox3 (Fig. 1A) (15). In fact, the transmembrane domain of Rcf1 can be superimposed onto the final structure of Cox3, a position that would be consistent with lipid delivery by Rcf1 into the cleft of Cox3 or with Rcf stabilizing the V-shape of Cox3 during lipid binding.

In addition to the role of Rcf1 in CIV assembly, both of the HIGD1 proteins are necessary for fully-assembled CIV to generate and maintain a normal membrane potential in isolated mitochondria (8). In the absence of both HIGD1 proteins, yeast mitochondria showed a 33% decrease in membrane potential ($\Delta\Psi$) during electron transfer (ET) through CIV (8). It is important to note that this decrease in $\Delta\Psi$ is independent of (i.e. not due to) the reduced accumulation of CIV that occurs in the absence of Rcf1. Decreases in $\Delta\Psi$ were seen in the absence of only Rcf1 or only Rcf2 (8). Both of the HIGD1 proteins play a role in maintaining $\Delta\Psi$ and their contributions are additive.

Both of the yeast HIGD1 proteins bind directly to fully-assembled CIV (1-3). The proteins do not bind as subunits. Rather their interactions with CIV are dynamic and substoichiometric, and appear to occur via Cox3 (1,7). We have hypothesized that the HIGD1 proteins may function to maintain normal lipid binding in Cox3 of fully assembled CIV, e.g. by facilitating lipid replacement into Cox3 from the bilayer (8). Since the HIGD1 proteins appear linked to Cox3, and functional Cox3 is required for normal proton pumping by CIV (16-18), we proposed (8) that the lower $\Delta\Psi$ generated by CIV could arise from decreased H^+ pumping by CIV. However, we could not rule out enhanced proton leak through CIV or some other component of the IMM.

Here, we have measured the generation of $\Delta\Psi$ by CIII of yeast, in the presence or absence of the HIGD1 proteins, and in the
The presence or absence of CIV, in order to more precisely define the function of the yeast HIGD1 proteins. The data support the proposal that CIV is the dysfunctional component responsible for the lower $\Delta \Psi$ of mitochondria in the absence of the HIGD1 proteins. However, the data are inconsistent with the proposal that the lower $\Delta \Psi$ is due to decreased proton pumping by CIV. Rather, a population of inactive CIV appears to be capable of proton backleak across the IMM. Since disturbed lipid binding in Cox3 is known to enhance the inactivation of CIV (14), the finding that the HIGD1 proteins function to prevent the inactivation of CIV is entirely consistent with their proposed role in maintaining the lipid component of Cox3.

RESULTS

The lower $\Delta \Psi$ of mitochondria lacking HIGD1 proteins appears due to proton leak through the IMM.

Neither the content of CIII (8) nor its activity is affected by the absence of both HIGD1 proteins ($\Delta rcf1; \Delta rcf2$ mitochondria; Fig. 2A & 2B). These findings, along with the known enzymology of CIII, allowed us to use CIII to distinguish whether the decreased $\Delta \Psi$ characteristic of yeast mitochondria that lack the HIGD1 proteins (8) is caused by decreased proton pumping by CIV or by an increased leak for H^+ through the IMM. As diagrammed in Fig. 1B, the catalytic cycle of CIII includes the electrogenic transfer of both protons and electrons within the membrane (19,20). The mechanism of CIII locks in its stoichiometry of charge separations, i.e. if CIII of intact mitochondria exhibits normal antimycin-sensitive ET activity, it is capable of generating a normal $\Delta \Psi$. If the lower $\Delta \Psi$ of $\Delta rcf1; \Delta rcf2$ mitochondria results from diminished proton pumping by CIV, then the $\Delta \Psi$ developed by CIII, independent of CIV, should be the same in both $\Delta rcf1; \Delta rcf2$ mitochondria and normal mitochondria. If, however, the lower $\Delta \Psi$ of $\Delta rcf1; \Delta rcf2$ mitochondria is due to increased proton leak across the IMM, the $\Delta \Psi$ generated by CIII will be subject to this leak and the $\Delta \Psi$ generated by CIII will be lower in $\Delta rcf1; \Delta rcf2$ mitochondria than in normal mitochondria.

The $\Delta \Psi$ developed by CIII alone was assayed by measuring the uptake of the cationic, fluorescent dye safranin during steady-state ET, using NADH or ethanol as electron donors and ferricyanide as the terminal electron acceptor (See Experimental Procedures). Cyanide is present to inhibit CIV. NADH is oxidized by a peripheral membrane dehydrogenase that transfers the electrons to ubiquinone (21). This NADH dehydrogenase does not generate $\Delta \Psi$. Fig. 2C shows that CIII, even though it is present at normal levels and has normal activity (Fig. 2A & 2B), showed an approximate 50% decline in safranin uptake in $\Delta rcf1; \Delta rcf2$ mitochondria during ET from NADH to ferricyanide. A similar result was obtained during the ten-fold slower rate of steady-state ET through CIII driven by ethanol, which generates NADH in vivo as it is oxidized (Fig. 2D). In both cases, the $\Delta \Psi$ generated by CIII ET is completely collapsed by the addition of antimycin A (data not shown) confirming that antimycin A-sensitive ET through CIII is responsible for $\Delta \Psi$ generation. Since the $\Delta \Psi$-generating power of CIII of WT and CIII of $\Delta rcf1; \Delta rcf2$ mitochondria are equal under these conditions, the lower $\Delta \Psi$ in $\Delta rcf1; \Delta rcf2$ mitochondria indicated that a proton leak exists somewhere in the IMM of the mitochondria lacking the HIGD1 proteins.

Comparison of the rates of coupled (controlled) ET and uncoupled (uncontrolled) ET through CIII provided independent confirmation that the $\Delta \Psi$ generated by CIII is lower in intact $\Delta rcf1; \Delta rcf2$ mitochondria than in WT mitochondria. Controlled ET through CIII in intact WT mitochondria (Fig. 2E) is slower.
than in chemically uncoupled WT mitochondria (Fig. 2B) due to the inhibition of ET in intact mitochondria by ∆Ψ. Controlled ET through CIII in Δrcf1;Δrcf2 mitochondria is also slower than in chemically uncoupled mitochondria (compare Fig. 2B to Fig. 2E), but the extent of the inhibition of ET by ∆Ψ is clearly less than that in WT mitochondria. This indicates that a lower ∆Ψ is generated by CIII ET in intact Δrcf1;Δrcf2 mitochondria than in intact WT mitochondria.

CIV is the source of the proton leak in mitochondria lacking the HIGD1 proteins.

Having established the presence of a leak for protons across the IMM of Δrcf1;Δrcf2 mitochondria, the obvious question is, where is it? Existing evidence suggests that the proton leak seen in the absence of the HIGD1 proteins occurs through CIV. The HIGD1 proteins form dynamic associations with CIV (1,7). In mitochondria lacking the HIGD1 proteins, CIV generates a lower than normal ∆Ψ (8). Despite these links to CIV, Rcf1, at least, associates with other components in the IMM, particularly the AAC (ATP/ADP exchanger) proteins (1,7). Hence, the absence of the HIGD1 proteins could open a proton leak elsewhere in the IMM. We reasoned that if CIV is the source of the proton leak in Δrcf1;Δrcf2 mitochondria, then removing CIV from the IMM should remove the leak and restore the ability of CIII to maintain a normal ∆Ψ. Complex IV does not assemble in a yeast strain in which the gene for Cox11, a copper chaperone absolutely required for the insertion of CuB into the active site (22-24), has been deleted (25). The yeast strains Δcox11 and Δrcf1;Δrcf2 were crossed to obtain a triple mutant lacking Cox11 and the two HIGD1 proteins (Δrcf1;Δrcf2;Δcox11). We first examined the content and the uncontrolled activity (i.e. in the absence of ∆Ψ) of CIII in Δcox11 and Δrcf1;Δrcf2;Δcox11 (Fig. 2A & 2B). The content of CIII appears lower in the absence of CIV (Fig. 2A). Compared to WT, the uncontrolled activity of CIII (TN) was 14% lower in the absence of CIV, although the data did not reach significance (Δcox11 vs. WT; Fig. 2B). The uncontrolled activity of CIII is significantly lower than normal (by 43%) in the absence of both CIV and the HIGD1 proteins (Δrcf1;Δrcf2;Δcox11 vs. WT; Fig. 2B). The reason for these activity declines are not yet clear. Even with the lower inherent activity of the pool of CIII in Δrcf1;Δrcf2;Δcox11 mitochondria, the complex generated significantly greater ∆Ψ during controlled ET than did CIII in mitochondria that lack the HIGD1 proteins but contain CIV (Δrcf1;Δrcf2; Fig. 3). This result was observed during more rapid NADH-driven ET through CIII and during the slower ethanol-driven ET (Fig. 3). In comparison to WT, the removal of CIV (Δcox11) lowered the percent safranin uptake by up to 10%, perhaps consistent with the lower TN for CIII in the absence of CIV (Fig. 2B). However, there was no further significant loss of safranin uptake when the HIGD1 proteins were removed from Δcox11 mitochondria (Δcox11 vs. Δrcf1;Δrcf2;Δcox11; Fig. 3). Despite the unexplained changes in CIII activity, the data make clear that removing CIV alleviates proton leak and restores the ability of CIII to maintain ∆Ψ. This strongly favors the hypothesis that CIV is the source of increased proton leak in the absence of the HIGD1 proteins.

In Δrcf1;Δrcf2 mitochondria, the lower than normal level of CIV is associated with a dimer of CIII, forming a III2IV1 supercomplex as opposed to the III2IV2 supercomplex of WT mitochondria (1,8). The question arises as to whether this altered association of CIV with CIII is somehow driving proton leak through CIV, e.g. by altering its structure. This was tested using mitochondria containing CIV but lacking
CIII, and then in the presence or absence of the HIGD1 proteins. Complex III fails to assemble in yeast mitochondria lacking the gene (cor1) for the core subunit (26). The ∆cor1 strain was crossed with ∆rcf1; ∆rcf2 to create a triple mutant lacking CIII and the HIGD1 proteins (∆rcf1; ∆rcf2; ∆cor1). In the absence of the HIGD1 proteins, the content and the uncontrolled activity of CIV are both lowered to the same extent whether or not CIII is present (Fig. 4A and 4B). Further, decreases in safranin uptake and increases in controlled ET rates (both indicative of uncoupling) show that the ∆Ψ in the absence of the HIGD1 proteins is decreased to the same extent whether CIII is present (∆rcf1; ∆rcf2) or absent (∆cor1; ∆rcf1; ∆rcf2; ∆cor1) (Fig. 4C & 4D). We conclude the association of CIV with CIII has no effect on proton leak through CIV.

Proton leak takes place through inactive CIV in the IMM.

Brzezinski and colleagues have demonstrated that inactive CIV accumulates in the IMM of mitochondria lacking Rcf1 or Rcf2 (27). Suicide inactivation of CIV is a well-studied phenomenon (see Discussion). Heme a is retained in the inactive enzyme (28). Since heme a is used to quantitate the amount of enzyme, a population of CIV that is part active enzyme, with normal activity, and part inactive enzyme, with no activity, will exhibit an overall lower apparent TN (activity per enzyme). Indeed, we found that the uncontrolled TN of CIV of strains lacking Rcf1, Rcf2 or both of the HIGD1 proteins declined progressively (Fig. 5A). We propose that apparent TN declines due to increasing amounts of inactive CIV in this series of HIGD1 protein deletion strains. Significantly, the ability of these mitochondria to generate ∆Ψ declines in this same pattern, i.e. WT > ∆rcf1 > ∆rcf2 > ∆rcf1; ∆rcf2 (Fig. 5B and similar to that previously published (8)). Hence, in this series of HIGD1 protein deletion mutants, increasing proton leak across the IMM correlates with increasing amounts of inactivated CIV in the IMM. This correlation suggests that inactivated CIV is the source of proton leak.

Further evidence that inactivated CIV is the source of enhanced proton leak comes from examination of the kinetics of CIV ET and the concomitant generation of ∆Ψ. Suicide inactivation of CIV appears as the exponential loss of activity in a population of CIV during continuous electron transfer to O2 (28, 29). Such an exponential loss of CIV activity was observed during continuous ET through CIV in mitochondria from ∆rcf1; ∆rcf2 cells but not for CIV in mitochondria isolated from WT cells (Fig. 6A). Hence, the IMM of isolated ∆rcf1; ∆rcf2 mitochondria experience an increase in inactivated CIV during continuous ET through CIV.

On the same time scale that the population of inactivated CIV was increasing in mitochondria lacking the HIGD1 proteins, a further exponential loss of ∆Ψ was consistently observed during continuous ET (Fig. 6B). (Single exponential kinetics were verified by curve fitting; not shown.) In contrast, such a loss of ∆Ψ was not observed in mitochondria that contain the HIGD1 proteins (Fig. 6C) and do not show an increase in inactivated CIV during continuous ET (Fig. 6A). The kinetic traces explained above show that increasing amounts of inactivated CIV correlate with increasing proton leak. This strongly suggests that proton leak takes place through inactivated CIV.

We have tested if the loss of CIV activity (i.e. the ability to generate ∆Ψ) that occurs during the 2-4-minute period of the experiments in Fig. 6B is sufficient to cause the observed decrease in ∆Ψ. From the data of Fig. 6A, the activity lost by CIV of ∆rcf1; ∆rcf2 mitochondria over a 4-minute period is approximately 30%. Using data (not
shown) in which we have examined how percent safranin uptake varies with CIV activity during ΔΨ measurements, we estimate that a 30% loss of ET activity could lead to a 5% decline in percent safranin uptake in experiments performed as described. However, the data for Δrcf1;Δrcf2 mitochondria in Fig. 6B show a 25% decline in percent safranin uptake over a four-minute period. Hence, we conclude that the bulk of this ΔΨ loss during continuous activity cannot be explained by decreased generation of ΔΨ due to slowing ET. Rather, we assign the loss of ΔΨ during continuous activity to increasing proton leak.

Both Rcf1 and Rcf2 contribute to the prevention of the inactivation of CIV and to the resulting loss of ΔΨ. As discussed above, intact mitochondria lacking either one of the HIGD1 proteins showed a lower uncontrolled TN than normal mitochondria (Fig. 5A), indicative of a greater content of inactive CIV in the IMM. The difference in the molecular activities of CIV of Δrcf1 and of Δrcf2 is not large (Fig. 5A), suggesting that Rcf1 and Rcf2 have a similar capability to prevent the inactivation of CIV. Their effects are additive, however, since the expression of both HIGD1 proteins is required for the normal pool of active CIV proteins. Decreasing ΔΨ during continuous CIV activity was also observed in mitochondria lacking only Rcf1 or Rcf2 (Fig. 6D), but to a lesser extent than in mitochondria lacking both of the HIGD1 proteins.

In Δrcf1;Δrcf2 mitochondria, where CIII generates less ΔΨ than normal because enhanced proton leak is taking place, (Fig. 3), cyanide was present to inhibit all of the active CIV. This rules out a mechanism in which the absence of the HIGD1 proteins leads to altered chemistry during the catalytic cycle of CIV to allow proton leak through active CIV.

DISCUSSION

In a recent study (8), we found that the HIGD1 proteins of yeast were required for mitochondrial electron transfer through CIV to generate and maintain a normal membrane potential. In that report, we proposed that the lower ΔΨ was either due to diminished proton pumping by CIV or to enhanced proton leak through some transmembrane component in the IMM (8). In this study, we have determined the following, as detailed in Results. 1) The low ΔΨ observed in the absence of the HIGD1 proteins is due to enhanced proton leak through some component in the IMM. 2) The component that leaks is CIV. 3) Proton leak appears to take place through a population of inactivated CIV.

These findings allow us to conclude that one function of the HIGD1 proteins in yeast is to prevent the inactivation of CIV during electron transfer. Since the prevention of suicide inactivation is a primary function of Cox3 of CIV (14,30-32), the conclusion reinforces our proposal that the HIGD1 proteins are exerting their influence on CIV via Cox3 (1,7,8). A proposed mechanism that links the HIGD1 proteins to CIV inactivation and to proton leak is developed below.

Suicide inactivation of CIV: the role of Cox3 and its bound lipids. The heme aα3-type cytochrome c oxidases exhibit a tendency to suicide inactivate, defined as the spontaneous, irreversible loss of activity during catalytic turnover (28-30). Even though the probability for inactivation during any single catalytic cycle is low, an increase in this probability can lower the life-span of a CIV molecule from millions of catalytic cycles to only thousands (14,33). Inactivation results from ligand rearrangements at the heme aα3-CuB site of O2 reduction in Cox1 during a specific step in the catalytic cycle (16,31,32). One of the three subunits that comprise the conserved catalytic core of the
heme aa_3-type cytochrome c oxidases is Cox3, the lipid-binding partner of Cox1 (32,34) (Fig. 1A). A primary function of Cox3 is to lower the probability (up to 500-fold) that suicide inactivation will take place during any given catalytic cycle (32), thus saving the cell from having to frequently re-synthesize a major bioenergetic machine. Cox3 prevents suicide inactivation by supporting the structure of the heme aa_3-Cu$_{B}$ active site in Cox1 as well as by facilitating proton transfer through a pathway that delivers protons to the active site as well as to the proton pump (14,31). The lipids bound within the central cleft of V-shaped Cox3 (Figure 1A) are essential for its ability to prevent inactivation (14). The residues that coordinate Cox3’s lipids are conserved throughout the family of aa_3-type cytochrome c oxidases, from bacteria to yeast to humans. Alteration of lipid position or occupancy by site-directed mutation of lipid binding residues in the aa_3-type CIV of *Rhodobacter sphaeroides* decreased the expected number of catalytic cycles before inactivation ~100-fold (14).

The HIGD1 proteins function to protect CIV from suicide inactivation. Several lines of evidence indicate that suicide inactivation of yeast CIV is more probable in the absence of the HIGD1 proteins. The isolation of CIV from yeast mitochondria lacking Rcf1 or Rcf2 revealed the presence of inactivated enzyme (27). In Fig. 5A, the accumulation of inactivated CIV in the IMM is indicated by a decrease in the apparent TN of CIV (e$^-$ per second per CIV) in mitochondria lacking either Rcf1 or Rcf2, and especially in the absence of both HIGD1 proteins.

Experimentally, suicide inactivation of CIV appears as the exponential loss of activity in a population of CIV during continuous electron transfer (28,29). This was observed for CIV in mitochondria lacking the HIGD1 proteins (Fig. 6A). In the absence of the HIGD1 proteins, continuous ET through CIV leads to an exponential loss of CIV activity.

Importantly, active site structural changes that are characteristic of suicide inactivation (28) have been documented in the CIV that accumulates in yeast mitochondria in the absence of Rcf1, including altered binding of cyanide in the active site and a lowered redox potential for heme a_3 (35,36). Thus, the sum of the evidence suggests that the HIGD1 proteins normally function to lower the probability of suicide inactivation and thereby prevent excessive accumulation of suicide-inactivated CIV.

In its assembly role, Rcf1 binds to newly synthesized Cox3 before Cox3 binds to Cox1 (1,7). Since Cox3 must attain its V-shape in order to dock with Cox1 (see Fig. 1A), and the lipids of the cleft appear necessary for this configuration of Cox3, it seems likely that Rcf1 enhances CIV assembly by facilitating lipid insertion into Cox3. Even after the assembly of CIV, the bound lipids of Cox3 are in contact with the lipid bilayer (11,12). Slow exchange of the bound lipids with membrane lipids may occur and disturbed binding of lipids in the cleft of Cox3 has been shown to promote suicide inactivation (14). We propose that Rcf1 and Rcf2 form temporary associations with Cox3 of fully-assembled CIV in order to facilitate the maintenance and/or restoration of normal lipid binding in the cleft of Cox3. A specific lipid delivery interaction is consistent with the finding that the lipid composition of the IMM in the absence of Rcf1 and Rcf2 appears unchanged from WT (7) (S. Claypool, pers. comm.).

While our hypothesis of lipid delivery is an extension of the assembly role proposed for Rcf1 with Cox3, Rcf2 is not required for CIV assembly. However, Rcf2 does function to lessen the inactivation of CIV and the resulting proton leak through CIV (Fig. 5) (8). Thus, we include Rcf2 in our proposal for HIGD1 protein function with fully-
assembled CIV. Rcf2 is proposed to contain a transmembrane domain similar to that of Rcf1, after a processing event (4).

Suicide inactivated CIV and proton leak across the IMM. We have proposed that increased amounts of inactivated CIV leads to increased proton leak back across the IMM. Why might inactivated CIV have such a leak? Proton pumping by CIV requires a gate that prevents protons from flowing back through Cox1 to the inner (negative) side of the IMM, i.e. a device that normally prevents proton backleak (37-39) (Fig. 1B). Proton transfer pathways lead to this gate from the inner (negative) surface of the IMM and away from this gate to the outer (positive) surface (Fig. 1B). The structural elements of the gate are located close to the heme a3-CuB O2 reduction site (10-13). Proton leak likely occurs as the active site structural changes associated with suicide inactivation (28,32) allow the nearby proton gate to adopt a conformation suitable for the backleak of protons across the IMM (Fig. 1B).

CONCLUSIONS

The work of this report, plus earlier studies (1,7,8), elucidates functions for the HIGD1 proteins of yeast, plus the work allows us to begin to postulate mechanisms. First, Rcf1 functions as an assembly protein for Cox3 of CIV (1). It seems likely that by binding to Cox3, Rcf1 maintains the structure of Cox3 in a conformation suitable for lipid binding, which, in turn, is necessary for docking with Cox1 (14). The enhancement of CIV assembly by Rcf1 maintains normal levels of CIV in the IMM and, thereby, normal levels of the III2IV2 supercomplex (1,7,8). Second, both Rcf1 and Rcf2 function to maintain normal mitochondrial membrane potential (1). In this role, we propose that the HIGD1 proteins prevent suicide inactivation of fully assembled CIV and the accumulation of inactivated CIV in the IMM. In turn, this prevents enhanced proton leak across the IMM.

These results are likely to be informative about the function of related proteins in mammalian mitochondria, including humans. The HIGD1A protein of mammals is related to Rcf1 and Rcf2 of yeast (7). Using fluorescence microscopy, Li et al (40) have shown that knockdown of human HIGD1A in cultured cells lowers mitochondrial membrane potential, while over-expression of HIGD1A protects.

EXPERIMENTAL PROCEDURES

Saccharomyces cerevisiae strains and growth conditions

All of the yeast strains used in this study (each is denoted here in bold) have the genotype of WT W303-1A (Mat α, leu2, trp1, ura3, his3, ade2) plus the following: Δrcf1 (RCF1::HIS3) (1), Δrcf2 (RCF2::HIS3) (1), Δrcf1; Δrcf2 (RCF1::HIS3, RCF2::KAN) (1), Δcox11 (COX11::HIS) (25), Δrcf1;Δrcf2;Δcox11 (COX11::HIS, RCF1::HIS, RCF2::KAN) (this study), Δcor1 (COR1::HIS) (26), Δrcf1;Δrcf2;Δcor1 (COR1::HIS, RCF1::HIS, RCF2::KAN) (this study). Generation of the Δrcf1;Δrcf2;Δcox11 and Δrcf1;Δrcf2;Δcor1 strains was achieved by crossing the respective parent strains, i.e. Δrcf1;Δrcf2 with Δcox11 or Δcor1, followed by diploid selection, sporulation, tetrad dissection and genotyping of resulting tetrad spores. In the case of the Δrcf1;Δrcf2;Δcox11 strain, the initial genetic cross was achieved using a mata version of the Δrcf1;Δrcf2 parent.

All strains were plated on yeast extract/peptone/dextrose (YPD) agar using standard protocols at 30°C. Cells for the isolation of mitochondria were grown in liquid culture in YP, 2% galactose, 0.5% lactate (YPGal-lac), pH 5.5. Strains Δcox11, Δrcf1;Δrcf2;Δcox11, Δcor and Δrcf1;Δrcf2;Δcor1 were weaned from
dextrose by first growing them in liquid cultures of YPGal-lac containing 1% dextrose and then YPGal-lac containing 0.2% dextrose before growth in YPGal-lac without dextrose. The OD$_{580\text{nm}}$ at the time of harvest was 1.5–2 for all strains.

Isolation of intact mitochondria

Yeast intact mitochondria were isolated from spheroplasts by established experimental procedures (41) with modifications. Briefly, yeast cells (7-36g) were collected by centrifugation at 3000×g for 10 minutes, weighed and washed once with 100–200 mL of nano-pure water. To make spheroplasts, cells were suspended at 7 mL per g of cells in 1.2 M sorbitol, 50 mM HEPES, 1 mM EDTA, 1 mM DTT, pH 7.4. Zymolase®-20T (Sunrise Science Products) was added at 3 mg per g of cells, and the cells were shaken for 30 minutes at 200 rpm, 30°C or until the OD$_{580\text{nm}}$ was 10–20% of its value prior to the addition of Zymolase. The resulting spheroplasts were collected by centrifugation at 3000×g for 10 minutes and then lysed by the addition of two volumes of 250 mM sucrose, 50 mM HEPES, 1 mM EDTA, 1 mM PMSF, pH 7.4. Cell debris was removed by centrifugation for 10 minutes at 2000×g at 4°C. Intact mitochondria were collected by centrifugation at 7000×g for 15 minutes at 4°C. The volume of the pellet was estimated and the pellet was resuspended in 0.3-0.5 volumes of 250 mM sucrose, 1 mM EDTA, 20 mM MOPS, pH 7.2. Mitochondrial protein concentrations (usually 10-20 mg/mL) were measured using the Bio-Rad DC Protein Assay. Aliquots of 30 μL suspended mitochondria were frozen in liquid nitrogen and stored at -80°C. Mitochondrial aliquots are thawed immediately before use and discarded after one hour on ice.

Preparation of broken mitochondria

Aliquots of frozen intact mitochondria, prepared as above, were pelleted at 10,000×g for 10 minutes at 4°C, then re-suspended in an equal volume of 20 mM Tris, pH 7.4. The suspension was fast frozen in liquid nitrogen and then thawed rapidly, for a total of three freeze/thaw cycles. Broken mitochondria were used immediately.

Spectroscopic determination of the content of CIII and CIV

Intact mitochondria or broken mitochondria (5-10 mg) were solubilized in 1.1 mL 50 mM Tris, pH 7.4 plus 2% dodecylmaltoside (Anatrace). Proteinase-free RNase-DNase (Fisher) with 1 mM MgCl$_2$ was added to digest nucleic acids for ten minutes at room temperature. The sample was passed through a 10 mm diameter, 0.2 μm pore size low protein-binding filter (Millipore) and a clear solution was obtained by centrifugation at 10,000×g for 10 minutes at 4°C. Sample and reference cuvettes were filled with 450 μL of the solution. Solid sodium dithionite was added to the sample and solid potassium ferricyanide to the reference and difference spectra were collected from 500 to 700 nm using a Hitachi U-3000 spectrophotometer. The concentration of CIV was determined from ΔA at 604 minus 630 nm, with an extinction coefficient of 26 mM$^{-1}$ cm$^{-1}$. The concentration of CIII was determined from ΔA at 560 minus 575 nm with an extinction coefficient of 51.2 mM$^{-1}$ cm$^{-1}$ (for the absorbance of both the bL and bH hemes) (42).

Complex III activity

CIII activity was measured in a Hitachi U-3000 spectrophotometer at 25°C as the time-dependent reduction of potassium ferricyanide to colorless ferrocyanide at 420 nm using a measured extinction coefficient of 1.04 mM$^{-1}$ cm$^{-1}$.

For controlled (coupled) CIII activity, the reaction mixture contained 250 mM sucrose,
20 mM MOPS, 5 mM KH₂PO₄, 1 mM MgCl₂, 100 μM EDTA, 100 μM EGTA, 1 mg/ml defatted BSA, 5 mM KCN, 3 mM K₃Fe(CN)₆, and 0.1–0.2 mg intact mitochondria at pH 7.2. The reaction was initiated by the addition of NADH to 1 mM or ethanol to 20 mM. The rate of State 2 (no ADP) ferricyanide reduction was linear for 1-3 minutes. Rates of ferricyanide reduction that were insensitive to 5 μM myxothiazol and 5 μM antimycin A were subtracted.

Uncontrolled (uncoupled) CIII activity was measured as above, but the mitochondria were uncoupled with 9 nM valinomycin and 0.4 μM CCCP, or with 10 μM CCCP alone.

Complex IV activity

Complex IV activity was measured at 25°C as the rate of oxygen consumption using an Oroboros FluoRespirometer. Ascorbate and TMPD were used to donate electrons to soluble cytochrome c. Rates of non-enzymatic reduction of O₂ by ascorbate/TMPD/cytochrome c were subtracted from all rates obtained after the addition of mitochondria.

For controlled (coupled) CIV activity, the reaction mixtures contained 0.6 M mannitol, 20 mM MOPS, pH 7.2, 10 mM KH₂PO₄, 5 mM MgCl₂, 50 mM KCl, 1 mM EDTA, 100 μM EGTA, 2 μg/mL catalase, 1 mg/ml defatted BSA, 5 mM ascorbate, 0.1 mM TMPD, and 5 μM antimycin A to inhibit CIII.

Uncontrolled (uncoupled) CIV activity was measured as above, but the mitochondria were uncoupled with 9 nM valinomycin and 0.4 μM CCCP, or with 10 μM CCCP alone.

Alternatively, uncontrolled CIV activity was measured using broken mitochondria in a reaction mixture of 50 mM Tris, pH 7.4, 8 mM KCl, 1 mM EDTA, 2 μg/mL catalase, 5 mM ascorbate, 0.1 mM TMPD and 20 μM horse heart cytochrome c at 25°C. Reactions were initiated by the addition of 0.1-0.2 mg of broken mitochondria.

Calculation of TN

Turnover numbers for CIII and CIV were calculated by dividing the rate of ET, as nmol e⁻ per second, by the amount of either complex, in nmol, to obtain e⁻ per second per complex.

Measurements of safranin uptake driven by CIII or CIV activity in intact mitochondria

Using the conditions described above for state 2, controlled CIII ET in intact mitochondria, fluorescence quenching representing the uptake of the membrane-permeable, cationic fluorescent dye, safranin O (2 μM) (43) was measured using a Jasco FP8000 fluorimeter (Excitation/Emission at 520 nm/580 nm) or an Oroboros FluoRespirometer (Excitation/Emission at 485 nm/586 nm). After full quenching of safranin fluorescence (full development of membrane potential), the addition of uncoupler (9 nM valinomycin and 0.4 μM CCCP, or 10 μM CCCP alone) caused the full release of safranin from the matrix. The percent safranin uptake was calculated as in Strogolova, et al. (8).

Safranin uptake driven by CIV activity in intact mitochondria was measured by similar experimental procedures, as previously described (8), using the conditions described above for controlled CIV activity plus 2 μM safranin.

Statistical analysis.

Data was collected from 3–10 mitochondrial preparations for each strain and expressed as mean ± S.D. The significance between measurements was determined by the unpaired Student t-test using GraphPad Prism 8. Each experimental group was compared only to the WT control and not to other experimental groups. All p values lower than 0.05 were considered statistically significant.
ACKNOWLEDGMENTS

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award numbers P20GM121334 (J.H.) and R15GM101594 and R15GM117551 (R.A.S). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We acknowledge and thank Jodie Box for technical assistance and discussions. We are grateful to Dr. Antoni Barrientos (University of Miami, FL) and Dr. Alex Tzagoloff (Columbia University, NY) for the kind gifts of the \(\Delta \text{cox11} \) and \(\Delta \text{cor1} \) strains, respectively.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest with the contents of this article.
REFERENCES

1. Strogolova, V., Furness, A., Robb-McGrath, M., Garlich, J., and Stuart, R. A. (2012) Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex. Mol Cell Biol 32, 1363-1373

2. Vukotic, M., Oeljeklaus, S., Wiese, S., Vogtle, F. N., Meisinger, C., Meyer, H. E., Zieseniss, A., Katschinski, D. M., Jans, D. C., Jakobs, S., Warscheid, B., Rehling, P., and Deckers, M. (2012) Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex. Cell Metab 15, 336-347

3. Chen, Y. C., Taylor, E. B., Dephoure, N., Heo, J. M., Tonhato, A., Papandreou, I., Nath, N., Denko, N. C., Gygi, S. P., and Rutter, J. (2012) Identification of a protein mediating respiratory supercomplex stability. Cell Metab 15, 348-360

4. Rompler, K., Muller, T., Juris, L., Wissel, M., Vukotic, M., Hofmann, K., and Deckers, M. (2016) Overlapping Role of Respiratory Supercomplex Factor Rcf2 and Its N-terminal Homolog Rcf3 in Saccharomyces cerevisiae. J Biol Chem 291, 23769-23778

5. Winge, D. R. (2012) Sealing the mitochondrial respirasome. Mol Cell Biol 32, 2647-2652

6. Cui, T. Z., Conte, A., Fox, J. L., Zara, V., and Winge, D. R. (2014) Modulation of the respiratory supercomplexes in yeast: enhanced formation of cytochrome oxidase increases the stability and abundance of respiratory supercomplexes. J Biol Chem 289, 6133-6141

7. Garlich, J., Strecker, V., Wittig, I., and Stuart, R. A. (2017) Mutational Analysis of the QRRQ Motif in the Yeast Hig1 Type 2 Protein Rcf1 Reveals a Regulatory Role for the Cytochrome c Oxidase Complex. J Biol Chem 292, 5216-5226

8. Strogolova, V., Hoang, N. H., Hosler, J., and Stuart, R. A. (2019) The yeast mitochondrial proteins Rcf1 and Rcf2 support the enzymology of the cytochrome c oxidase complex and generation of the proton motive force. J Biol Chem 294, 4867-4877

9. Muramoto, K., Hirata, K., Shinzawa-Itoh, K., Yoko-o, S., Yamashita, E., Aoyama, H., Tsukihara, T., and Yoshikawa, S. (2007) A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase. Proc Natl Acad Sci U S A 104, 7881-7886

10. Svensson-Ek, M., Abramson, J., Larsson, G., Tornroth, S., Brzezinski, P., and Iwata, S. (2002) The X-ray crystal structures of wild-type and EQ(1-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321, 329-339

11. Hartley, A. M., Lukoyanova, N., Zhang, Y., Cabrera-Orefice, A., Arnold, S., Meunier, B., Pinotsis, N., and Marechal, A. (2019) Structure of yeast cytochrome c oxidase in a supercomplex with cytochrome bc1. Nat Struct Mol Biol 26, 78-83

12. Rathore, S., Berndtsson, J., Marin-Buera, L., Conrad, J., Carroni, M., Brzezinski, P., and Ott, M. (2019) Cryo-EM structure of the yeast respiratory supercomplex. Nat Struct Mol Biol 26, 50-57

13. Shinzawa-Itoh, K., Aoyama, H., Muramoto, K., Terada, H., Kurauchi, T., Tadahara, Y., Yamasaki, A., Sugimura, T., Kurono, S., Tsujimoto, K., Mizushima, T., Yamashita, E., Tsukihara, T., and Yoshikawa, S. (2007) Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J 26, 1713-1725

14. Varanasi, L., Mills, D., Murphree, A., Gray, J., Purser, C., Baker, R., and Hosler, J. (2006) Altering conserved lipid binding sites in cytochrome c oxidase of Rhodobacter
sphaeroides perturbs the interaction between subunits I and III and promotes suicide inactivation of the enzyme. Biochemistry 45, 14896-14907

15. Zhou, S., Pettersson, P., Huang, J., Sjoholm, J., Sjostrand, D., Pomes, R., Hogbom, M., Brzezinski, P., Maler, L., and Adelroth, P. (2018) Solution NMR structure of yeast Rcf1, a protein involved in respiratory supercomplex formation. Proc Natl Acad Sci U S A 115, 3048-3053

16. Mills, D. A., Tan, Z., Ferguson-Miller, S., and Hosler, J. (2003) A role for subunit III in proton uptake into the D pathway and a possible proton exit pathway in \textit{Rhodobacter sphaeroides} cytochrome c oxidase. Biochemistry 42, 7410-7417

17. Nguyen, X. T., Pabarue, H. A., Geyer, R. R., Shroyer, L. A., Estey, L. A., Parilo, M. S., Wilson, K. S., and Prochaska, L. J. (2002) Biochemical and biophysical properties of purified phospholipid vesicles containing bovine heart cytochrome c oxidase. Protein Expr Purif 26, 122-130

18. Sarti, P., Jones, M. G., Antonini, G., Malatesta, F., Colosimo, A., Wilson, M. T., and Brunori, M. (1985) Kinetics of redox-linked proton pumping activity of native and subunit III-depleted cytochrome c oxidase: a stopped-flow investigation. Proc Natl Acad Sci U S A 82, 4876-4880

19. Crofts, A. R., Holland, J. T., Victoria, D., Kolling, D. R., Dikanov, S. A., Gilbreth, R., Lhee, S., Kuras, R., and Kuras, M. G. (2008) The Q-cycle reviewed: How well does a monomeric mechanism of the bc$_1$ complex account for the function of a dimeric complex? Biochim Biophys Acta 1777, 1001-1019

20. Trumpower, B. L. (1990) The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc$_1$ complex. J Biol Chem 265, 11409-11412

21. Luttik, M. A., Overkamp, K. M., Kotter, P., de Vries, S., van Dijken, J. P., and Pronk, J. T. (1998) The \textit{Saccharomyces cerevisiae} NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273, 24529-24534

22. Hiser, L., Di Valentin, M., Hamer, A. G., and Hosler, J. P. (2000) Cox11p is required for stable formation of the Cu$_B$ and magnesium centers of cytochrome c oxidase. J Biol Chem 275, 619-623

23. Thompson, A. K., Smith, D., Gray, J., Carr, H. S., Liu, A., Winge, D. R., and Hosler, J. P. (2010) Mutagenic analysis of Cox11 of \textit{Rhodobacter sphaeroides}: insights into the assembly of Cu$_B$ of cytochrome c oxidase. Biochemistry 49, 5651-5661

24. Timon-Gomez, A., Nyvltova, E., Abriata, L. A., Vila, A. J., Hosler, J., and Barrientos, A. (2018) Mitochondrial cytochrome c oxidase biogenesis: Recent developments. Semin Cell Dev Biol 76, 163-178

25. Tzagoloff, A., Capitanio, N., Nobrega, M. P., and Gatti, D. (1990) Cytochrome oxidase assembly in yeast requires the product of COX11, a homolog of the \textit{P. denitrificans} protein encoded by ORF3. EMBO J 9, 2759-2764

26. Tzagoloff, A., Wu, M. A., and Crivellone, M. (1986) Assembly of the mitochondrial membrane system. Characterization of COR1, the structural gene for the 44-kilodalton core protein of yeast coenzyme QH$_2$-cytochrome c reductase. J Biol Chem 261, 17163-17169
27. Rydstrom Lundin, C., von Ballmoos, C., Ott, M., Adelroth, P., and Brzezinski, P. (2016) Regulatory role of the respiratory supercomplex factors in *Saccharomyces cerevisiae*. *Proc Natl Acad Sci U S A* 113, E4476-4485

28. Bratton, M. R., Pressler, M. A., and Hosler, J. P. (1999) Suicide inactivation of cytochrome c oxidase: catalytic turnover in the absence of subunit III alters the active site. *Biochemistry* 38, 16236-16245

29. Haltia, T., Semo, N., Arrondo, J. L., Goni, F. M., and Freire, E. (1994) Thermodynamic and structural stability of cytochrome c oxidase from *Paracoccus denitrificans*. *Biochemistry* 33, 9731-9740

30. Hosler, J. P. (2004) The influence of subunit III of cytochrome c oxidase on the D pathway, the proton exit pathway and mechanism-based inactivation in subunit I. *Biochim Biophys Acta* 1655, 332-339

31. Mills, D. A., and Hosler, J. P. (2005) Slow proton transfer through the pathways for pumped protons in cytochrome c oxidase induces suicide inactivation of the enzyme. *Biochemistry* 44, 4656-4666

32. Ferguson-Miller, S., and Hosler, J. (2018) Life and Death of Cytochrome c Oxidase: Influence of Subunit III on the D pathway, Proton Backflow and Suicide Inactivation. in *Mechanisms of Primary Energy Transduction in Biology* (Wikstrom, M. ed.), The Royal Society of Chemistry, Cambridge, UK. pp 215-248

33. Varanasi, L., and Hosler, J. P. (2012) Subunit III-depleted cytochrome c oxidase provides insight into the process of proton uptake by proteins. *Biochim Biophys Acta* 1817, 545-551

34. Hosler, J. P., Ferguson-Miller, S., and Mills, D. A. (2006) Energy transduction: proton transfer through the respiratory complexes. *Annu Rev Biochem* 75, 165-187

35. Rydstrom Lundin, C., and Brzezinski, P. (2017) Modulation of O2 reduction in *Saccharomyces cerevisiae* mitochondria. *FEBS Lett* 591, 4049-4055

36. Schafer, J., Dawitz, H., Ott, M., Adelroth, P., and Brzezinski, P. (2018) Regulation of cytochrome c oxidase activity by modulation of the catalytic site. *Sci Rep* 8, 11397

37. Brzezinski, P., and Johansson, A. L. (2010) Variable proton-pumping stoichiometry in structural variants of cytochrome c oxidase. *Biochim Biophys Acta* 1797, 710-723

38. Liang, R., Swanson, J. M., Peng, Y., Wikstrom, M., and Voth, G. A. (2016) Multiscale simulations reveal key features of the proton-pumping mechanism in cytochrome c oxidase. *Proc Natl Acad Sci U S A* 113, 7420-7425

39. Wikstrom, M., Krab, K., and Sharma, V. (2018) Oxygen Activation and Energy Conservation by Cytochrome c Oxidase. *Chem Rev* 118, 2469-2490

40. Li, T., Xian, W. J., Gao, Y., Jiang, S., Yu, Q. H., Zheng, Q. C., and Zhang, Y. (2019) Higd1a Protects Cells from Lipotoxicity under High-Fat Exposure. *Oxid Med Cell Longev* 2019, 6051262

41. Ohnishi, T., Kawaguchi, K., and Hagihara, B. (1966) Preparation and some properties of yeast mitochondria. *J Biol Chem* 241, 1797-1806

42. Covian, R., and Trumpower, B. L. (2008) The dimeric structure of the cytochrome bc1 complex prevents center P inhibition by reverse reactions at center N. *Biochim Biophys Acta* 1777, 1044-1052

43. Figueira, T. R., Melo, D. R., Vercesi, A. E., and Castilho, R. F. (2012) Safranine as a fluorescent probe for the evaluation of mitochondrial membrane potential in isolated organelles and permeabilized cells. *Methods Mol Biol* 810, 103-117
Figure 1: A. Structure of Cox3 of CIV of yeast and bovine mitochondria and the structure of the transmembrane domain of Rcf1. a. A structure of yeast Cox3 (green) and Cox1 (gray) at 3.35 Å taken from a cryo-EM structure of the III2-IV2 supercomplex of *Saccharomyces cerevisiae* (PDB 6hu9) (11). Although the membrane is not shown, both Cox3 and Cox1 are almost entirely within the IMM. Three phospholipids (blue) are resolved in the cleft of Cox3 in this structure. Heme a_3 of the active site in Cox1 is in purple. b. Transmembrane domain of yeast Rcf1 taken from the solution structure of Zhou et al (15) (PDB 5NF8). Similar to Cox3, the TM helices of Rcf1 form a V-shape, connected by a hinge region that extends slightly into the matrix. Although Rcf1 is smaller than Cox3, its V-shape can be super-imposed atop the V-shape of Cox3, suggesting a possible binding interaction. c. A structure of bovine Cox3 (yellow) and Cox1 (gray) at 1.8–1.9 Å taken from an X-ray structure of bovine CIV (PDB 2EIL) (9). Five Cox3 lipids are resolved in this structure, four phosphatidylglycerol (cyan) within the cleft plus one cardiolipin (pink) that binds at the entrance to the cleft. Heme a_3 of the active site in Cox1 is shown in blue. The graphics
were generated using YASARA – Yet Another Scientific Artificial Reality Application - http://www.yasara.org/. B. Diagrams showing the electrogenic charge movements associated with full catalytic cycles of CIII and CIV. In one catalytic cycle of CIII, two QH₂ are oxidized at Qₒ, one Q is reduced at Q₁ and two soluble cytochromes c are reduced by heme c₁. In one cycle, CIII generates Δψ by the electrogenic release of two H⁺ from Qₒ (two more H⁺ are released from Qₒ but these are charge-compensated by e⁻ release from Qₒ and are therefore non-electrogenic), the electrogenic transfer of two e⁻ from Qₒ to Q₁ and the electrogenic uptake of two H⁺ to Q₁. In one catalytic cycle of CIV, four e⁻ are transferred toward the negative side of the IMM (dashed line), while 4 H⁺ are transferred toward the positive side of the IMM (solid line), all to the O₂ reduction site in the transmembrane domain of Cox1. Here, the negative and positive charges annihilate (creating neutral H₂O), resulting in the equivalent of four transmembrane charge translocations. Simultaneous with these partial charge transfers, the exergonic energy of O₂ reduction is harnessed to pump four H⁺ completely from the negative side to the positive side of the IMM, resulting in four more charge separations. Note that the proton pumping activity of CIV requires a transmembrane pathway for H⁺. In contrast, there is no pathway for H⁺ to completely cross the membrane through CIII. Proton backleak (dotted line) and the gate in CIV are discussed in the text.
Figure 2: The content and activity of CIII in yeast mitochondria and the decreased membrane potential generated by CIII in mitochondria lacking the HIGD1 proteins. **A**. The content of CIII in various strains was determined from visible spectra (see Fig. S1) as described in Experimental Procedures. **B**. The uncontrolled ET activity of CIII (1 mM NADH to 3 mM ferricyanide) measured in intact mitochondria in the presence of uncoupler (10 µM CCCP). **C**. Maximum percent safranin uptake (maximum fluorescence quenching) during continuous, state 2 (no ADP) ET through CIII in intact mitochondria (1 mM NADH to 3 mM ferricyanide), and **D**. the same during ET from 20 mM ethanol to 1 mM ferricyanide. **E**. Controlled turnover numbers (e⁻ per sec per CIII), measured under the same state 2 conditions, for ET from NADH to ferricyanide, and **F**, for ET from ethanol to ferricyanide. Significance to the WT control was determined by the unpaired Student t-test: Panel B, **, p = 0.0021; Panels C-F, *, p = 0.0304; ***, p = 0.0026; ****, p < 0.0001.
Figure 3: The low mitochondrial membrane potential generated by CIII in the absence of the HIGD1 proteins is restored by the further removal of CIV. Conditions and presentation are as in Fig. 2C & 2D. Significance to the WT controls was determined by the unpaired Student t-test: *, p < 0.02; **, p < 0.0019; ****, p < 0.0001.
Figure 4: In the absence of the HIGD1 proteins, the content and the uncontrolled ET activity of CIV are both lowered to the same extent whether or not CIII is present. Also, proton leak through CIV is not affected by the association of CIV with CIII.

A. The content of CIV in intact mitochondria was determined by visible spectroscopy as described in Experimental Procedures.

B. The uncontrolled turnover number of CIV (e^{-} per sec per CIV) measured using broken mitochondria. Broken mitochondria were used to ensure that the comparisons of CIV activity are not influenced by the differences in membrane potential that would occur in intact mitochondria.

C. The membrane potential (as percent safranin uptake) generated by CIV in intact mitochondria during state 2 ET through CIV, as described in Experimental Procedures.

D. State 2 (controlled) turnover numbers of CIV in intact mitochondria. Significance to the WT controls was determined by the unpaired Student t-test: Panel A, *, p < 0.0327; ***, p < 0.0001; Panel B, ****, p < 0.0001; Panel C, **, p < 0.0048; ***, p < 0.001; ****, p < 0.0001; Panel D, *, p = 0.0421; ***, p < 0.0002.
Figure 5: The apparent TN (e⁻ per sec per CIV) and membrane potential generated by CIV in normal mitochondria and those lacking Rcf1, Rcf2 or both HIGD1 proteins. A. Uncontrolled TNs of CIV were measured using broken mitochondria as described in Experimental Procedures. B. The membrane potential (as percent safranin uptake) generated by CIV which energized by 5 mM ascorbate and 0.1 mM TMPD during state 2 ET. Significance to the WT controls was determined by the unpaired Student t-test: Panel A, *, p < 0.0425; ***, p < 0.001; ****, p < 0.0001; Panel B, ****, p < 0.0001.
Figure 6: Kinetic traces of CIV safranin fluorescence and ET in the presence and absence of the HIGD1 proteins. A. Representative traces of O$_2$ consumption by CIV (black line = WT; dashed line = Δrcf1;Δrcf2), measured in broken mitochondria. Continuous ET in broken mitochondria is driven by 5 mM ascorbate, 0.1 mM TMPD and 20 µM horse heart cytochrome c as described in Experimental Procedures. Note that in the absence of the HIGD1 proteins, continuous ET through CIV leads to an exponential decline in CIV activity (verified by curve fitting to a single exponential using GraphPad Prism; not shown). The traces were collected using broken mitochondria lacking a ΔΨ. In intact mitochondria lacking the HIGD1 proteins, the concomitant decrease in ΔΨ leads to an increase in the rate of O$_2$ consumption that offsets and therefore masks the decrease in CIV activity caused by CIV inactivation. B, C, D. Representative traces of safranin fluorescence during continuous state 2 ET through CIV in intact mitochondria. Continuous ET in intact mitochondria is driven by 5 mM ascorbate and 0.1 mM TMPD as described in Experimental Procedures. Panel B, black line = Δrcf1;Δrcf2; gray line = Δrcf1;Δrcf2;Δcor1. Panel C, black line = WT; gray line = Δcor1. Panel D, black line = Δrcf1; gray line = Δrcf2.
Hypoxia-inducible gene domain 1 proteins in yeast mitochondria protect against proton leak through complex IV.
Ngoc H. Hoang, Vera Strogolova, Jaramys J. Mosley, Rosemary A. Stuart and Jonathan Hosler

J. Biol. Chem. published online October 7, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA119.010317

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts