Mathematical Optimization Algorithm for Minimizing the Cost Function of GHG Emission in AS/RS Using Positive Selection Based Clonal Selection Principle

Mahalakshmi1 and Murugesan R2
1,2School of Physical Sciences. REVA University, Bangalore, India
Email: 1mahalakshmi4131@gmail.com, 2contactmurugu@gmail.com

Abstract. This paper regards with the minimization of total cost of Greenhouse Gas (GHG) efficiency in Automated Storage and Retrieval System (AS/RS). A mathematical model is constructed based on tax cost, penalty cost and discount cost of GHG emission of AS/RS. A two stage algorithm namely positive selection based clonal selection principle (PSBCSP) is used to find the optimal solution of the constructed model. In the first stage positive selection principle is used to reduce the search space of the optimal solution by fixing a threshold value. In the later stage clonal selection principle is used to generate best solutions. The obtained results are compared with other existing algorithms in the literature, which shows that the proposed algorithm yields a better result compared to others.

1. Introduction
Storing high volume of goods in less spacious warehouses is a difficult task in the manufacturing process. To overcome this issue an advanced storage system namely Automated Storage and Retrieval System (AS/RS) is introduced in the manufacturing industries. Manufacturing system involving AS/RS are called Flexible Manufacturing System (FMS). These advanced storage system will automatically store and retrieve the goods with control from one place. Two important approaches of AS/RS design and study are analytical optimization and simulations [1, 2]. Scheduling is one of method used for maximizing the throughput of AS/RS, which sequences the retrieval request by condensing the travel time. Generally first come first serve principle [3] is used to store the items. Benefits of these AS/RS are, reducing the labor cost, floor space saving, reliability and accuracy. It has few drawbacks such as, increase in electricity cost, Greenhouse Gas (GHG) emission and high investment cost and less flexibility etc. [4, 5]. Due to global awareness of environmental protection, government introduced penalty cost for more amount of GHG emission and discount cost for less amount of GHG emission. As the GHG emission increases, the penalty cost will also increase the total cost of the manufacturing process. Therefore in this paper we are putting an effort to reduce the total cost of GHG emission in AS/RS. A mathematical model is constructed based on actual cost, penalty cost and discount cost of the GHG emission of AR/RS. The recent work of GHG emission of AS/RS using Ant Colony Algorithm and Genetic Algorithm are presented in [6]. The results shown that genetic algorithm yielded a better solution than ant colony algorithm. Therefore in this paper a two stage Positive Selection Based Clonal Selection Principle (PSBCSP) algorithm is used in order to minimize the total cost function of GHG emission in AS/RS. Positive selection algorithm is developed by Seiden and Celeda in 1992 [7]. The main function positive selection algorithm [8] is to distinguish between the good and solutions in order to retain the good solution for future step and discard the bad solution permanently from the system. And the main objective of clonal selection principle [9, 10] is to select the best antibody for cloning and
mutation in order to destroy the antigens. There two types of cells namely B-cells and T-cells for clonal selection principle. B-cell based clonal selection algorithm plays a vital role in solving various scheduling problems [11, 12, 13 and 14]. Both positive selection and clonal selection principle are combined to get a positive selection based clonal selection principle algorithm [15].

2. **Mathematical model**

In this paper we are going to study about unit load AS/RS, containing one aisle, two racks a, a robot, a conveyor and an S/R machine. The mathematical model is formed based on the following assumptions.

- S/R machine can carry only a unit load.
- The horizontal velocity, vertical velocity, loading time, unloading time and amount of power consumed of S/R machine, robot and the conveyor are predetermined.
- The initial state of each rack is known.
- The due dates of all customer orders are known.
- The item locations of storage and retrieval are unknown.
- Available working time for all facilities are known.
- Distance between input/output and storage/retrieval locations are known.
- Over utilized and underutilized time are permissible and the corresponding costs are known.
- Total GHG emission by all facilities are known.
- Amount of energy consumed by S/R machine, robot and the conveyor are known.
- The GHG conversion factor [16, 17, 18 and 19] is known and constant
- Tax cost, penalty cost and discount cost are known

2.1. **Indices**

- I_c: Item quantities requested by the customer c, $c = 1,2, ... C$
- I_s: Item quantities supplied by the supplier s, $s = 1,2, ... S$
- i: Number of item types, $i = 1,2, ... N$
- j: Number of vertical locations, $j = 1,2, ... J$
- k: Number of horizontal locations, $k = 1,2, ... K$
- m: Number of S/R machines, $m = 1,2, ... M$
- R_r: Rack r in a warehouse, $r = 1,2, ... R$

2.2. **Parameters**

- $Rack_{r,(k,j)}$: The item types stored in the locations (k,j) in the rack r
- H_v: Horizontal velocity of AS/RS in m/s
- V_v: Vertical velocity of AS/RS in m/s
- t_{ss}: Storage time of an item on location by S/R machine
- t_{rs}: Retrieval time of an item on location by S/R machine
- t_{lc}: Loading time of an item on S/R machine by the conveyor
- t_{uc}: Unloading time of an item on S/R machine by the conveyor
- t_{tr}: Loading time of an item on conveyor by the robot
- t_{ur}: Unloading time of an item on conveyor by the robot
- T: Maximum working time of normal shifts in AS/RS warehouse
- P_s: Amount of power consumed in kW by S/R machine
- P_c: Amount of power consumed in kW by conveyor
- P_r: Amount of power consumed in kW by robots
\(f_c \) Conversion factor of greenhouse gas
\(t_{dc(l,c),R_r,(k_1k_2j_1j_2)} \) Travel time of dc cycle request of the customer \(c \) for an item \(i \) in rack \(r
\(O_t \) Over time working of AS/RS warehouse (greater than \(T \))
\(U_t \) Under time working of AS/RS warehouse (greater than \(T \))
\(G_p \) Permissible amount of GHG produced by all facilities
\(G_o \) Over GHG produced by all facilities (more than \(G_p \))
\(G_u \) Under GHG produced by all facilities (less than \(G_p \))
\(C_{O_t} \) Cost for over time working of AS/RS warehouse
\(C_{U_t} \) Cost for under time working of AS/RS warehouse
\(C_T \) Tax cost for a kg GHG produced.
\(C_P \) Penalty cost for a kg GHG produced.
\(C_D \) Discount cost for a kg GHG produced
\(TC \) Total cost by all the facilities

2.3. Decision Variables

\[X_{(l,c),R_r,(k_1k_2j_1j_2)} = \begin{cases} 1 & \text{if the request of customer } c \text{ for the item } i \text{ in rack } r \\ & \text{with the location } k_1j_1 \text{(storage) and } k_2j_2 \text{(retrieval)} \\ 0 & \text{otherwise} \end{cases} \]

2.4. Objective Function

\[
\begin{align*}
\text{Min } TC & = \left[U_t \times C_{O_t} \right] + \left[O_t \times C_{O_t} \right] + C_T \times f_c \\
& = \left[C_r \times \sum_{c=1}^{C} \sum_{r=1}^{R} \sum_{i=1}^{n} \sum_{k=1}^{K} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{j=1}^{J} X_{(l,c),R_r,(k_1k_2j_1j_2)} \times t_{dc(l,c),R_r,(k_1k_2j_1j_2)} \right] \\
& + P_c \times \left[\left(t_{lc} \times \sum_{r=1}^{S} I_r \right) + \left(t_{uc} \times \sum_{r=1}^{C} I_r \right) \right] + \left[t_{r} \times \sum_{s=1}^{S} I_s \right] + \left(t_{u} \times \sum_{c=1}^{C} I_c \right) \\
& + \left[(G_o \times C_p) - (G_u \times C_d) \right]
\end{align*}
\]

Where \(t_{dc(l,c),R_r,(k_1k_2j_1j_2)} = \max \left[\frac{k_1}{H_p}, \frac{j_1}{V_p} \right] + t_{ss} + \max \left[\frac{|k_1-k_2|}{H_p}, \frac{|j_1-j_2|}{V_p} \right] + \\
t_{rs} + \max \left[\frac{k_2}{H_p}, \frac{j_2}{V_p} \right] \] (1)

\[
\left[\sum_{c=1}^{C} \sum_{r=1}^{R} \sum_{i=1}^{n} \sum_{k=1}^{K} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{j=1}^{J} X_{(l,c),R_r,(k_1k_2j_1j_2)} \times t_{dc(l,c),R_r,(k_1k_2j_1j_2)} \right] \\
+ U_t - O_t = T \cdot m
\] (4)

Such that

\[
\sum_{c=1}^{C} \sum_{r=1}^{R} \sum_{i=1}^{n} \sum_{k=1}^{K} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{j=1}^{J} X_{(l,c),R_r,(k_1k_2j_1j_2)} = 1
\] (3)
\[
f_c = P_s \times \left[\sum_{c=1}^{C} \sum_{r=1}^{R} \sum_{n=1}^{N} \sum_{k=1}^{K} \sum_{j=1}^{J} \sum_{j_2=1}^{J} X(i_{c,0}, R_r(k, k_2, j_1, j_2)) \times \text{tdc}(i_{c,0}, R_r(k, k_2, j_1, j_2)) \right] \\
+ P_c \times \left[\left(t_{ic} \sum_{s=1}^{S} l_s \right) + \left(t_{uc} \sum_{c=1}^{C} l_c \right) \right] + P_r \times \left[\left(t_{ir} \sum_{s=1}^{S} l_s \right) + \left(t_{ur} \sum_{c=1}^{C} l_c \right) \right] \\
+ U_e - O_e = 1
\]

3. Implementation of Positive Selection Based Clonal Selection Principle

The method is explained in two stages. In the first stage, positive selection algorithm is used and in the second stage, clonal selection principle is applied.

3.1. Positive Selection Algorithm

Upon the generation of the initial solution to the problem, the main function of positive selection principle algorithm is to distinguish between the good and bad solution in order to discard bad solution from the system. In the human body, good solutions represent the antibodies which recognizes and overcomes the antigen. The following figure 1 represents the working rule of positive selection principle in the human body.

![Figure 1: Positive Selection Algorithm](image)

Consider a case of infection (viral, bacterial) attacking the human body. The string \(S \) is the set of antigens attacking the human body which has to be destroyed. Potential Repertoire (P) represents the potentially T-cells in human immune system. To destroy the antigens, we need the cells which can overcome the antigen. Therefore all cells in the human body are tested to find whether they recognize the antigen or not. The cells which possess capacity of recognition of the antigens are called Available Repertoire (A), which will be retained for further usage of destroying the antigens. The remaining cells which fails in the recognition of antigens are discarded from the system. The positive selection algorithm is applied for filtering purposes. Those solutions satisfying certain criteria is retained, other solutions are completely discarded from the system. To check the satisfaction level of the solution, we are fixing a threshold value. A solution is retained if the optimal value of the solution is less than the threshold, otherwise it is completely discarded from the system.

3.2. Clonal Selection Algorithm

The clonal selection algorithm is based on the working principle of human immune system. B-cells along with the T-cells will destroy the various viruses and bacteria which attacks the human body. But it has been observed that B-cells has unique tendency to clone those cells which are capable of destroying...
antigens attacking the human body. Upon the attack of antigen a particular string formation of B-cells are done to overcome the infection. The cell will clone for a large amount to produce high capacity antibodies to overcome the antigen. Usually B-cells themselves under goes process of cloning and mutation repeatedly to recognize the right solution to destroy the antigens. The flow for the positive selection based clonal selection principle algorithm is given in the figure 2.

Figure 2: Flow chart of the proposed Algorithm
4. Result and Discussion
The initial data of AS/RS system are given as follows

- Number of rack = 2
- Number of Aisles = 1
- Number of S/R machines, \(m = 1 \)
- Number of locations in a row = 10
- Number of locations in a column = 20
- Number of item types in each rack = 20
- Number of customers, \(c = 4 \)
- Number of Supplier, \(s = 4 \)
- Horizontal velocity of S/R machine, \(H_v = 4 \)
- Vertical velocity of S/R machine, \(V_v = 0.9 \)
- Loading/Unloading time of facilities, \(t_{sr}, t_{rs} = 8, t_{ic}, t_{uc} = 9 \) and \(t_{ir}, t_{ur} = 4 \)
- Amount of power consumed in kW by all the equipment, \(P_s = 1172, P_c = 5.4 \) and \(P_r = 4 \).
- Time performance cost($/s), C_{Ot} = 0.002 \) and \(C_{Ut} = 0.001 \)
- GHG emission cost($/s), \(C_{r} = 0.1, C_{p} = 0.15 \) and \(C_{D} = 0.08 \)
- Permissible amount of GHG, \(G_{p} = 200 (kg) \)
- GHG conversion factor, \(f_{c} = 1.0508 \times 10^5 \)

The proposed algorithm has to be coded in the MATLAB R2012a (7.14.0.739), 64-bit (win64). All the tests were performed on an Intel core i5 processor with the Microsoft Windows 7 (64-bit) operating system. The obtained results are tabulated in the table 1. A comparison analysis is given in the table 2, 3, and 4 and also established in the figures 3, 4, 5 and 6.

Table1: The detailed result of PSBCSP for Total cost of GHG, CPU time and cost produced by emission of GHG.

Size of the problem	Number of S/R orders	Total cost of GHG model	CPU time of GHG model	Cost produced by GHG emission
Small	100	20.38	70.48	2.01
	200	23.65	142.25	5.25
	300	30.46	233.45	12.52
	400	35.29	307.28	20.34
	500	41.17	380.65	30.54
Medium	600	46.73	472.25	35.95
	700	55.45	521.25	42.65
	800	60.57	622.54	50.62
	900	65.83	720.26	65.24
	1000	102.52	795.25	80.45
Large	1100	110.52	865.21	92.56
	1200	134.62	964.21	99.67
	1300	158.35	1011.25	110.32
	1400	177.23	1001.24	131.21
	1500	220.24	1266.14	146.95
Extra Large	1600	255.38	1358.36	172.21
	1700	260.25	1465.87	181.25
	1800	263.24	1425.32	189.21
	1900	264.58	1673.43	190.58
	2000	274.67	1699.37	197.21
Figure 3: Improvements of PSBCSP

Table 2: Total cost of GHG model

Size of the problem	Number of S/R orders	Total Cost ($)	Improvement		
		ACO	GA	PSBCSP	
Small	100	38.63	30.48	20.38	33.1364829
	200	44.39	33.27	23.65	28.9149384
	300	53.11	39.21	30.46	22.3157358
	400	61.43	46.46	35.29	24.0421868
	500	68.35	53.69	41.17	23.3190538
Medium	600	75.08	59.8	46.73	21.8561873
	700	83.33	67.4	55.45	17.7299703
	800	93.13	75.57	60.57	19.8491465
	900	108.8	81.73	65.83	19.4543007
	1000	144.19	115.61	102.52	11.32255
Large	1100	144.41	121.37	110.52	8.93960616
	1200	177.13	144.5	134.62	6.83737024
	1300	212.07	173.63	158.35	8.80032252
	1400	226.55	188.34	177.23	5.89890623
	1500	264.33	227.34	220.24	3.12307557
Extra Large	1600	310.75	257.89	255.38	0.97328318
	1700	307.02	262.2	260.25	0.36231884
	1800	307.75	265.78	263.24	0.95677628
	1900	315.14	267.14	264.58	0.95829901
	2000	324.96	276.18	274.67	0.54674487
Figure 4: Total cost comparison of PSBCSP with ACO and GA

Table 3: CPU time of GHG model

Size of the problem	Number of S/R orders	CPU time (s)	Improvement		
		ACO	GA	PSBCSP	
Small	100	92.48	81.87	70.48	13.9123
	200	185.49	160.14	142.25	11.171475
	300	253.37	242.98	233.45	3.92213351
	400	339.72	322.75	307.28	4.79318358
	500	412.27	401.84	380.65	5.27324308
Medium	600	525.89	492.95	472.25	4.19920884
	700	606.97	568.06	521.25	4.24032673
	800	678.58	646.14	622.54	3.65245922
	900	749.84	734.27	720.26	1.90801749
	1000	802.25	810.36	795.25	1.86460339
Large	1100	891.05	913.53	865.21	5.289372
	1200	978.88	991.12	964.21	2.71511018
	1300	1111.92	1058.06	1011.25	4.42413474
	1400	1048.96	1185.43	1001.24	15.5378217
	1500	1276.62	1266.77	1266.14	0.04973278
Extra Large	1600	1269.03	1326.66	1358.36	-2.38945924
	1700	1458.74	1430.43	1465.87	-2.47757667
	1800	1356.87	1411.65	1425.32	-0.96837035
	1900	1548.66	1629.72	1673.43	-2.68205581
	2000	1649.24	1673.48	1699.37	-1.54707556
Figure 5: CPU time comparison of PSBCSP with ACO and GA

Table 4: Cost produced by the emission of GHG model

Size of the problem	Number of S/R orders	Cost produced by GHG emission	Improvement		
		ACO	GA	PSBCSP	
Small	100	11.84	4.08	2.01	50.7352941
	200	20.1	9.47	5.25	44.561774
	300	33.67	20.52	12.52	38.9863548
	400	46.09	30.77	20.34	33.8966526
	500	56.2	41.59	30.54	26.5688868
Medium	600	66.7	50.55	35.95	28.8822948
	700	77.52	62.02	42.65	31.2318607
	800	92.85	74.45	50.62	32.0080591
	900	103.82	81.5	65.24	19.9509202
	1000	125.29	102.05	80.45	21.1660951
Large	1100	125.44	105.56	92.56	12.3152709
	1200	145.29	119.59	99.67	16.6569111
	1300	166.49	137.26	110.32	19.6269853
	1400	175.28	146.19	131.21	10.2469389
	1500	198.19	169.85	146.95	13.4824845
Extra Large	1600	226.35	188.38	172.21	8.58371377
	1700	224.1	191.01	181.25	5.10968012
	1800	224.56	193.18	189.21	2.05507817
	1900	229.06	194.03	190.58	1.77807555
	2000	235.03	199.52	197.21	1.15777866
5. Result and Discussion
In this paper we have mainly concentrated on GHG emission produced by automated storage and retrieval systems. Our main intention to reduce the cost of GHG emission. We developed a mathematical model consisting of tax cost, penalty cost, discount cost and time constraints of loading and unloading of S/R machines, robots and conveyors. To analyse the model, a two stage positive selection based clonal selection principle is used. The results were simulated using Mat lab and compared with other two algorithms namely Ant Colony and Genetic Algorithm. It is observed that the proposed algorithm yields a better result for small, medium and large number of requested orders but merely same results for the Extra-large number of requested orders. Therefore we can solve the same model using other hybrid algorithm to get a best result.

References
[1] T Lerher, M Sraml, M Borovinsek and I Potrč 2012 Multi-objective optimization of automated storage and retrieval systems 11th Int Conf on Industrial Logistics ICIL Zadar Croatia
[2] P Yang, L Miao, Z Xue and L Qin 2014 Optimal storage rack design for a multi-deep compact AS/RS considering the acceleration/deceleration of the storage and retrieval machine, International Journal of Production Research
[3] Rukhsar Khan and Gaurav Kakhani 2015 Analysis of Priority Scheduling Algorithm on the Basis of FCFS & SJF for Similar Priority Jobs International Journal of Computer Science and Mobile Computing, Vol.4 pg 324-331
[4] Lerher T, Edl M and Rosi B 2014 Energy efficiency model for the mini-load automated storage and retrieval systems International Journal of Advanced Manufacturing Technology 70 97–115
[5] Roodbergen K J and Vis I F A 2009 A survey of literature on automated storage and retrieval systems European Journal of Operational Research 194 343–362.
[6] Ali Roozbeh Nia, Hassan Haleh and Abbas Saghaei Dual command cycle dynamic sequencing method to consider GHG efficiency in unit-load multiple-rack automated storage and retrieval systems Computers & Industrial Engineering 111 (2017) 89–108
[7] Seiden P E and Celada F 1992 A Model for Simulating Cognate Recognition and Response in the Immune System *Journal of Theoretical Biology* 158 pp. 329 – 357
[8] Van Truong Nguyen, Xuan Hoai Nguyen and Chi Mai Luong 2013 A Novel Combination of Negative and Positive Selection in Artificial Immune Systems *IEEE RIVF Int Conf on Computing & Communication Technologies - Research, Innovation, and Vision for the future (RIVF)*
[9] Murugesan R, Balan K.S and Kumar V N 2010 Clonal selection algorithm using improved initialization for solving JSSP *Proc of IEEE Int Conf on Communication Control and Computing Technologies (ICCCCT)* pp 470-475
[10] Leandro N de Castro and Fernando J Von Zuben 2002 Learning and Optimization Using the Clonal Selection Principle *IEEE Transactions on Evolutionary Computation* vol. 6 no3
[11] Carlos A Coello, Daniel Cortes Rivera and Nareli Cruz Cortes Use of an Artificial Immune System for Job Shop Scheduling *In the Proceeding of Second International Conference on Artificial Immune Systems (ICARIS)* September 1-3, 2003, Napier University, Edinburgh, UK.
[12] E Hart and P Ross 1999 The Evolution and Analysis of a potential Antibody Library for use in Job- Shop Scheduling *A chapter in the book New Ideas in Optimization* pp 185- 202 McGraw-Hill
[13] E Hart, Ross P and Nelson J 1998 Producing robust schedules via an artificial immune system *Int Conf on Evolutionary Computing* Alaska USA pp 464-469 IEEE Press
[14] F Celada and P E Seiden 1998 Modeling Immune Cognition *Proc of the IEEE Int Conf on Systems Man and Cybernetics* October 11-14
[15] Murugesan R 2012 Positive Selection Based Modified Clonal Selection Algorithm for Solving Job Shop Scheduling Problems *Applied Mathematical Sciences* Vol 6 2255-2271
[16] Defra 2005 Guidelines for company reporting on greenhouse gas emissions *Technical report* Department for Environment, Food and Rural Affairs.
[17] Defra 2007 Guidelines to Defra0s GHG conversion factors for company reporting –Annexes updated June 2007 *Technical report* Department for Environment, Food and Rural Affairs
[18] Defra 2011 guidelines to Defra/DECC0s GHG conversion factors for company reporting Methodology paper for emission factors *Technical report* Department for Environment, Food and Rural Affairs.
[19] Defra 2013 government GHG conversion factors for company reporting: Methodology paper for emission factors *Technical report* Department for Environment, Food and Rural Affairs