Research Article

Evaluation of Microstructure, Hardness, and Tensile Properties: A Comparative Study of Stir Cast and Extruded Al7005/Glass-/Fly-Ash-Reinforced Hybrid MMCs

Praveen Kumar Swamy,1 Shantharaja Mylaraiah,1 and Dadapeer Basheer2

1Department of Mechanical Engineering, University Visvesvaraya College of Engineering, Bangalore University, Bengaluru, Karnataka, India
2Department of Mechanical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia

Correspondence should be addressed to Dadapeer Basheer; dadapeerb@yahoo.com

Received 25 June 2021; Revised 11 July 2021; Accepted 19 July 2021; Published 28 July 2021

1. Introduction

Due to numerous advantages such as castability, high toughness, and corrosion resistance, aluminium alloy and its MMCs have a wide range of applications in various engineering sectors such as automotive, aerospace, and marine industries, among others [1–3]. Much research has been carried out on developing MMCs using various reinforcements such as SiC, Al2O3, CNTs, and graphene [4–8]. Industrial waste such as fly ash and cenospheres are also used to develop MMCs [9]. MMCs’ properties are more susceptible to microstructure, reinforcement type and size, and fabrication processes [10]. Many uncontrolled parameters involved in the metal matrix composite (MMC) fabrication process lead to deleterious defects such as porosity and uneven distribution of particles in the final product [11–13]. Many researchers [14–16] claim that the quality of casting is improved by secondary processes such as rolling or forging or extrusion by means of reduction of porosity and uniform distribution of particles in the matrix alloy. The extrusion process not only reduces the casting defects but also refines the grain boundaries in the composites [17]. Kumar et al. [18] claimed that Al grains were elongated, which break into subgrains during the deformation stage. Many researchers claim that the average particle size reduces due to the extrusion process because of particle fragmentation leading to the improvement in mechanical properties such as ultimate tensile strength, hardness, and even ductility to some extent. The fragmented particles (nano or micro) significantly modify the microstructure of composites by inducing higher dislocation density induced in the matrix alloy.
The induced dislocation density is one of the important parameters which enhance the properties of composites. Extruded alloy composite microstructures show that the coarse grains of the matrix alloy are refined to a considerable extent which results in the improvement of hardness, tensile strength, and wear resistance of the composite material. The smaller quantity and size of precipitation formed due to direct hot extrusion along with finer and uniform microstructure significantly increase the mechanical properties. But, most of the work reported in the literature is focused on micro and single type of reinforcement. Although the addition of reinforcement and extrusion is achieved in single-type reinforcement Al composites, no research work so far has focused on the extrusion process to produce hybrid composites (one shorter fiber and particles). The objective of this work is to investigate the effect of extrusion on the mechanical properties of Al/glass, Al/fly ash, and Al/glass/fly ash composites.

2. Experimental Studies

In order to develop hybrid composites, the materials Al7005 alloy and reinforcements (short S-glass and fly ash) are chosen as the matrix and reinforcements, respectively. The chemical composition results are presented in Table 1.

The Al7005/hybrid MMCs were fabricated using a popular liquid metallurgy route, i.e., by the stir casting technique. In a reactance heater, Al7005 alloy was smelted using a graphite furnace and saturated to 800°C. \(\text{C}_2\text{Cl}_6 \) (10 gm/1 kg of Al) tablets were used to degas the smelted metal. Stirring was carried out using a Cr-steel stirrer coated with \(\text{ZrO}_2 \) at a rate of 500 rpm. Later, preweighted glass fibres (diameter: 5–10 \(\mu \)m) and fly ash (particle size of 25–30 \(\mu \)m) reinforcements were added into the smelted metal. Stirring was then persisted for almost 15 min to mitigate reinforcement agglomeration. The smelted composite was then dispensed into the cast iron die (preheated) at a soaking temperature of \(\approx 730°C \). The die was warmed to room temperature. The Al alloy with and without reinforcements were hot extruded at 500°C using a mechanical extrusion machine at an extrusion rate of 0.5 mm/s at two different ratios of 2.66:1 and 5.32:1. The graphite lubricant was used during the extrusion process.

The dispersal of reinforcements within the Al7005 matrix alloy is examined using an optical microscope. After tensile testing, the fracture surfaces are examined by scanning electron microscopy (Hitachi SEM). The hardness test is performed using a Brinell hardness tester (Blue Star) in accordance with the ASTM E384 standard. Tensile testing is carried out by using a Shimadzu Universal Testing Machine in accordance with the ASTM E8M-15a standard.

3. Results and Discussion

3.1. Optical Microscopic Studies. Figure 1 (A1–A4 and E1–E4) shows the optical micrographs of Al7005, Al/5% glass, Al/6% fly ash, and Al/5% glass/6% fly ash composites

| Chemical composition of Al 7005 alloy (wt.%) |
|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Cr | Cu | Fe | Mg | Mn | Si | Zn | Al |
| 0.10 | 0.01 | 0.11 | 1.38 | 0.54 | 0.03 | 4.44 | Balance |

for both the as cast and extruded specimens. For comparison purposes, both are arranged in the same row as cast material corresponding to their respective compositions. Figure 1 (A2 and E2) shows the microstructures of Al/5wt.% glass short fiber, in which a quite random distribution is observed, which limits the dendrite formation and growth. Figure 1 (A3 and E3) reveals that the fly ash is randomly dispersed with uneven size, but with regular shape in the form of clusters. Fly ash is found to be rich in silica particles, contributing to impurity elements. The microstructure of the Al/5% glass/6% fly ash composite after the extrusion process is presented in Figure 1 (A4 and E4). It shows a good bonding between the reinforcement and matrix material without forming any porosity after the extrusion process.

3.2. Hardness. The test for change of properties at two extrusion ratios is conducted at a similar weight fraction for comparison. Mechanical properties depend on the type of reinforcement, and it is evidenced by comparing the data obtained in the case of Al, Al/5% glass, Al/6% fly ash, and Al/5% glass/6% fly ash. Figure 2 represents the hardness (BHN) of Al7005, Al/5% glass, Al/6% fly ash, and Al/5% glass and 6% fly ash composite which showed an improvement in hardness of 114 BHN, 106 BHN, and 118 BHN, respectively. The hardness of glass fiber (3000 MPa) is much higher than that of Al7005 alloy (350 MPa) and fly ash (23 MPa); hence, the glass-fiber-reinforced composites show higher hardness compared to others.

The increased hardness is not only due to the presence of the reinforcement but also derived from the grain refinement during solidification and the extrusion process. During the extrusion process, the reinforcement was crushed resulting in finer particles. The finer particles enhance a finer grain size, which leads to higher hardness. Another reason for the increased hardness of the extruded specimens is the matrix-to-reinforcement particle size ratio (PSR). The higher hardness values for the lower PSR at the same volume fraction improve bonding between the matrix and reinforcements [20].

3.3. Ultimate Tensile Strength. Figure 3 shows the ultimate tensile strength of both the as cast and extruded samples of all four types of materials under similar conditions. Both reinforcements show improvement in UTS, but glass fiber shows higher strength than fly ash composites. Even though fly ash exhibits a lower strength, its composites show higher tensile strength due to grain modification by the addition of fly ash. Hence, the tensile strength is higher than that of pure matrix alloy. On the other hand, the hybrid Al/glass/fly ash composites exhibited maximum strength around 315 to
386 MPa. A tremendous enhancement in the UTS was achieved in the case of Al/glass/fly ash hybrid composites. The addition of glass fiber in the Al/fly ash composites enhances the UTS. This may be due to the compatibility among glass and fly ash reinforcements, ultimately developing good bonding with Al 7005 [20].

Figure 1: Microstructure morphology of as cast (A) extruded ratio of 5.32:1 (E) for (1) Al7005 alloy, (2) 5% glass-fiber-reinforced, (3) 6% fly-ash-reinforced, and (4) 5% glass- and 6% fly-ash-reinforced composites.
3.4. Yield Strength. The yield strength of the as cast and extruded Al, Al/glass, Al/fly ash, and Al/glass/fly ash composites is shown in Figure 4. Compared with Al and Al/6% fly ash composites, other two combinations such as Al/5% glass and Al/5% glass/6% fly ash composites show remarkable enhancement in the yield strength (7% and 8.5%, respectively). With increasing extrusion ratio, the yield strength of these composites is improved. Compared with the 2.66:1 composites, tensile properties increased by 5.33% and 7.3%, respectively, for both Al/5% glass and Al/5% glass/6% fly ash composites. It clearly indicates that extrusion significantly strengthened the interfacial bonding strength between glass and Al matrix which leads to the elongation of matrix materials [21].

3.5. Compression Strength. Figure 5 represents the compressive strength of all the four specimens as a function of extrusion ratio. The glass- and fly-ash-reinforced composites exhibit higher compressive strengths, compared to the other three specimens irrespective of extrusion ratio. The improvement in compression strength is due to an increase in the dislocation density at the interface of reinforcement and the matrix alloy property mismatch. The higher dislocation leads to a barrier for plastic deformation. Extrusion improves the homogeneity and reduction in particle size or...
3.6. **Ductility.** Figure 6 shows the variations of ductility in the case of both the as cast and extruded specimens of different compositions. Addition of either the fly ash or glass to composites drastically reduces the ductility. However, the ductility increases with the extrusion process, due to the dynamic process of recovery, recrystallization and closer packing of the reinforcement, and a smaller interparticle spacing in the matrix. The tensile properties such as elastic modulus, UTS, and yield strength did not increase significantly with the extrusion ratio; however, the ductility significantly increased with the extrusion ratio. The same is true for all the specimens of both the as cast and composites. The mechanical strength of Al/fly was found to be lower compared to other two composites. As the fly ash spheres increase (840 kg/m³ density more than three times less than that of Al alloy; it becomes 18 volume fraction), dispersion of particles in the matrix alloy becomes very difficult leading to agglomeration of the fly ash. It reduces the relative density of Al/fly ash composites, which provides a site for initiation of the crack from the agglomeration. In other words, the
interdistance among fly ash particles is larger due to agglomeration, which causes a decrease in strength. The agglomeration increases the brittleness along the grain boundaries, diminishing grain boundary pinning which eventually decreases the strength of fly-ash-reinforced Al composites [23].

3.7. Fracture Studies. Figure 7(a)–7(d) show the fractured surface of Al, Al/fly ash, Al/glass, and Al/glass/fly ash composites, respectively, in the as cast and extruded conditions. It clearly showed that the extruded specimen fracture surfaces appear to be smooth and there exists good bonding between matrix and reinforcement. The bonding between reinforcement and matrix alloy changed which became closer gradually. The Al/glass extruded specimen (Figure 7(c)) and Al/glass/fly ash in both the as cast and extruded specimen (Figure 7(d)) are dominated by brittle fracture. But, in other directions, Al (Figure 7(a)) and Al/fly ash (Figure 7(b)) composites in both the cast and extruded form showed ductile failure; however, they exhibit dimple structure. The ductile-fracture surface has multiple finer dimples and microvoids triggered by the preliminary loading condition, which results in microcracks that proliferate and ultimately fracture in a ductile manner. The only transgranular grain boundary resides in composite specimens that failed due to brittle fracture and surface [24].

4. Conclusions
Experimental studies on the behavior of mechanical and microstructure of Al 7005 composites with and without extrusion conditions were conducted as per ASTM standards. The following important conclusions are drawn:

(i) The extrusion process and its ratio have a high influence on the reinforcement, porosity, and breakage of the fiber in the matrix alloy. These two factors promote reduction in grain boundary resulting in better distribution of reinforcement thereby increasing the mechanical strength of the extruded specimens.

(ii) The glass- and fly-ash-reinforced composites and hybrid composites exhibit higher values of hardness and tensile strength than the matrix alloy due to grain refinement during solidification.

(iii) The optical micrographs of the composite specimens revealed a uniform distribution of glass fiber and fly ash in the matrix alloy along with grain refinement, due to the addition of reinforcements.

(iv) The tensile strength of 5% glass-reinforced Al composites, 6% fly-ash-reinforced Al composites, and 5% glass-/6% fly-ash-reinforced Al hybrid composites is 370 MPa, 378 MPa, and 388 MPa compared to matrix alloy of 353 MPa.

(v) All hybrid matrix composites exhibit better tensile, hardness, and yield strengths than the matrix alloy but low ductility.

(vi) All the composites materials show brittle failure, and the base metal shows failure of ductility due to the limited amount of material displacement, observed as per the fractography.

Data Availability
Data are available on request.

Conflicts of Interest
The authors declare no conflicts of interest.

References
[1] A. Lakshmikanthan, S. Bontha, M. Krishna, P. G. Koppad, and T. Ramprabhu, “Microstructure, mechanical and wear properties of the A357 composites reinforced with dual sized SiC particles,” Journal of Alloys and Compounds, vol. 786, no. 25, pp. 570–580, 2019.
[2] L. Avinash, H. Kumar, A. Parthasarathy, K. N. K. Varun, and B. Sajjan, “The effect of ceramic reinforcement on the microstructure, mechanical properties and tribological behavior of Al-7.5%Si-0.5%Mg alloy,” Applied Mechanics and Materials, vol. 867, 2017.
[3] A. Lakshmikanth, R. T. Prabhu, S. B. Udayagiri, P. G. Koppad, M. Gupta, and M. Krishna, S. Bontha, The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites,” Journal of Materials Research and Technology, vol. 9, no. 3, pp. 6434–6452, 2020.
[4] A. Parthasarathy, L. Avinash, K. N. K. Varun, B. Sajjan, and S. Varun, “Fabrication and characterization of Al-0.4%Si-0.5%Mg - SiCp using,” Permanent Mould Casting Technique,” Applied Mechanics and Materials, vol. 867, pp. 34–40, 2017.
[5] B. Sajjan, L. Avinash, S. Varun, K. N. Varun Kumar, and A. Parthasarathy, “Investigation of mechanical properties and dry sliding wear behaviour of graphite reinforced Al7068 alloy,” Applied Mechanics and Materials, vol. 867, pp. 10–18, 2017.
[6] L. Avinash, T. P. Ram, A. Parthasarathy, K. N. V. Kumar, and B. Sajjan, “Wear and mechanical behaviour of Hypo-eutectic Al-7%Si-0.5%Mg alloy (A357) reinforced with Al2O3 particles,” Applied Mechanics and Materials, vol. 829, pp. 66–72, 2016.
[7] M. Naik, L. H. Manjunath, V. Kotti, A. Lakshmikanthan, P. Koppad, and S. Kumaran, “Al/Graphene/CNT hybrid composites: hardness and sliding wear studies,” FME Transactions, vol. 49, no. 2, pp. 414–421, 2021.
[8] H. R. M. Naik, L. H. Manjunath, V. Malik, G. M. Patel, K. K. Saxena, and A. Lakshmikanthan, “Effect of microstructure, mechanical and wear on Al-CNTs/graphene hybrid MMC’s,” Advances in Materials and Processing Technologies, , pp. 1–14, Taylor & Francis, 2021.
[9] N. Vinayaka, A. Lakshmikanthan, G. M. Patel, and C. P. Selvan, V. K. Jain, S. A. Srinivasan and H. Harsha, Mechanical, microstructure and wear properties of Al6113 fly ash reinforced composites: comparison of as-cast and heat-treated conditions,” Advances in Materials and Processing Technologies, , pp. 1–16, Taylor & Francis, 2021.
[10] L. Avinash, T. Ramprabhu, and S. Bontha, “The effect on the dry sliding wear behavior of gravity cast A357 reinforced with dual size silicon carbide particles,” Applied Mechanics and Materials, vol. 829, pp. 83–89, 2016.
[11] S. Madhusudan, M. M. M. Sarcar, and N. B. R. M. Rao, “Mechanical properties of Aluminum-Copper(p) composite metallic materials,” *Journal of Applied Research and Technology*, vol. 14, no. 5, pp. 293–299, 2016.

[12] S. Tjong and Z. Y. Ma, “Microstructural and mechanical characteristics of in situ metal matrix composites,” *Materials Science and Engineering: R: Reports*, vol. 29, no. 3-4, pp. 49–113, 2000.

[13] C. S. Ramesh, R. Keshavamurthy, B. H. Channabasappa, and A. Ahmed, “Microstructure and mechanical properties of Ni-P coated Si3N4 reinforced Al6061 composites,” *Materials Science and Engineering: A*, vol. 502, no. 1-2, pp. 99–106, 2009.

[14] V. K. Sharma, R. C. Singh, and R. Chaudhary, “Effect of fly ash particles with aluminium melt on the wear of aluminium metal matrix composites,” *Engineering Science and Technology, An International Journal*, vol. 14, 2017.

[15] C. S. Ramesh and M. Safulla, “Wear behavior of hot extruded Al6061 based composites,” *Wear*, vol. 263, no. 1-6, pp. 629–635, 2007.

[16] A. Evans, C. S. Marchi, and A. Mortenson, *Metal Matrix Composites in Industry, an Introduction and a Survey*, Springer, NY, USA, 2003.

[17] Q. Liu, X. Zhou, H. Zhou, X. Fan, and K. Liu, “The effect of extrusion conditions on the properties and textures of AZ31B alloy,” *Journal of Magnesium and Alloys*, vol. 5, no. 2, pp. 202–209, 2017.

[18] S. J. N. Kumar, R. Keshavamurthy, M. R. Haseebuddin, and P. G. Koppad, “Mechanical properties of aluminium-gra- phene composite synthesized by powder metallurgy and hot extrusion,” *Transactions of the Indian Institute of Metals*, vol. 70, no. 3, pp. 605–613, 2017.

[19] Y. Luo, Z. Zhang, B. Li, M. Gao, Y. Qiu, and M. He, “Effects of annular electromagnetic stirring coupled with intercooling on grain refinement and homogeneity during direct chill casting of large-sized 7005 alloy billet,” *Journal of Occupational Medicine*, vol. 69, no. 12, pp. 2640–2643, 2017.

[20] K. Umanath, K. Palanikumar, and S. T. Selvamani, “Analysis of dry sliding wear behaviour of Al6061/SiC/Al2O3 hybrid metal matrix composites,” *Composites Part B: Engineering*, vol. 53, pp. 159–168, 2013.

[21] H. C. Anilkumar, H. S. Hebbar, and K. S. Ravishankar, “Mechanical properties of fly ash reinforced aluminium alloy (Al6061) composites,” *International Journal of Mechanical and Materials Engineering*, vol. 6, no. 1, pp. 41–45, 2011.

[22] V. K. Sharma, R. C. Singh, and R. Chaudhary, “Effect of fly ash particles with aluminium melt on the wear of aluminium metal matrix composites,” *Engineering Science and Technology, an International Journal*, vol. 20, no. 4, pp. 1318–1323, 2017.

[23] Z. Dou, G. Wu, X. Huang, D. Sun, and L. Jiang, “Electromagnetic shielding effectiveness of aluminum alloy-fly ash composites,” *Composites Part A: Applied Science and Manufacturing*, vol. 38, no. 1, pp. 186–191, 2007.

[24] F. Nturanabo, L. M. Masu, and G. Govender, “Automotive light-weighting using aluminium metal matrix composites,” *Materials Science Forum*, vol. 828-829, pp. 485–491, 2015.