Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

End-point RT-PCR: A potential alternative for diagnosing coronavirus disease 2019 (COVID-19)

José Valter Joaquim Silva Júnior, Ingrid Merchioratto, Pablo Sebastian Britto de Oliveira, Thaisa Regina Rocha Lopes, Patrícia Chaves Brites, Elehu Moura de Oliveira, Rudi Weiblen, Eduardo Furtado Flores

ABSTRACT

Real-time reverse transcription-polymerase chain reaction (RT-qPCR) is considered the “gold standard” for the direct diagnosis of SARS-CoV-2 infections. However, routine diagnosis by RT-qPCR is a limitation for many laboratories, mainly due to the infrastructure and/or disproportionate relationship between demand and supply of inputs. In this context, and to increase the diagnostic coverage of SARS-CoV-2 infections, we describe an alternative, sensitive and specific one-step end-point RT-PCR for the detection of the SARS-CoV-2 E gene. The performance of the RT-PCR was evaluated in 43 clinical samples, of which 10 and 33 were previously identified as negative and positive, respectively, by RT-qPCR. Among the positive samples, 15 and 18 were from asymptomatic and symptomatic individuals, respectively. Here, 32/33 of the positive samples in the RT-qPCR, including from asymptomatic individuals, were found positive in the RT-PCR (Ct 15.94–34.92). The analytical sensitivity of the assay was about 7.15–9 copies of vRNA/μL, and nonspecific amplifications were not observed in SARS-CoV-2 negative samples. Importantly, the RT-PCR reactions were performed in a 10 μL final volume. Finally, considering specificity, analytical sensitivity and cost reduction, we believe that the RT-PCR platform described here may be a viable option for the diagnostic of SARS-CoV-2 infections in laboratories in which RT-qPCR is not available.

In November/December 2019, a new human coronavirus, Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), family Coronaviridae and genus Betacoronavirus, emerged in Hubei province, mainland China, and has been responsible for the coronavirus disease currently named COVID-19 (Zhu et al., 2020; Huang et al., 2020; ICTV, 2020). As of July 26, 2020, SARS-CoV-2 infections have been described in 235 countries/regions, totaling 39,442,444 cases and 1,106,181 deaths, numbers that increase daily (WHO, 2020a). Among the diagnostic alternatives for COVID-19, gene amplification by real-time reverse transcription-polymerase chain reaction (RT-qPCR) remains the “gold standard” for direct diagnosis. Many in-house and commercial RT-qPCR, using several and/or combined viral genes, have been proposed for molecular detection of SARS-CoV-2 (WHO, 2020b). The Charité protocol, one of the first protocols established for COVID-19 diagnosis, employs the envelope (E) and RNA dependent RNA polymerase (RdRp) genes as targets for detection of SARS-CoV-2 in clinical samples (Corman et al., 2020). However, it is also possible/reliable to diagnose COVID-19 by detecting a single genetic target. Regarding the Charité protocol, as the detection of the E gene has demonstrated a slightly higher sensitivity, the Pan American Health Organization (PAHO) has recommend prioritizing the E gene as the selected target for molecular COVID-19 diagnosis (PAHO, 2020).

Unfortunately, routine diagnosis by RT-qPCR is still a limitation for many laboratories, especially in developing countries and regions. The current demand for inputs, material and equipment, associated with the few supplier companies, represents an additional (and real) obstacle for the timely diagnosis of SARS-CoV-2 infections. In this context, and in order to increase the diagnostic coverage of COVID-19, we describe a
sensitive and specific protocol for the detection of the SARS-CoV-2 E gene through one-step end-point RT-PCR (conventional RT-PCR); a potential alternative for situations in which RT-qPCR is not possible and/or available.

Initially, we evaluated the analytical sensitivity of the end-point RT-PCR for SARS-CoV-2 detection. The Brazilian isolate (SARS-CoV-2/SP02/human/2020/BRA, GenBank MT126808.1), previously inactivated, containing about 270,000 copies of viral RNA (vRNA)/μL, was kindly provided by Dr. Edison Durigon (Universidade de São Paulo, USP) and used as positive control throughout the study. The vRNA was extracted in the IndiMag48 automatic system (Indical Bioscience, Sachsen, Germany) and eluted in 100 μL of AVE buffer (Indical Bioscience, Sachsen, Germany). The eluate was then diluted \(10^4\) to \(10^6\), at the 0.1 dilution factor, i.e. \(10^{0.1}\), \(10^{1.2}\) (… \(10^6\)) and all dilutions were submitted to RT-PCR targeting the SARS-CoV-2 E gene.

The RT-PCR was performed with the SuperScript® III One-Step RT-PCR System with Platinum® Taq High Fidelity DNA Polymerase (Invitrogen, Carlsbad, California, USA) in a final volume of 10 μL: 5 μL of 2X reaction mix, 0.4 μL of SuperScript® III RT/Platinum® Taq High Fidelity Enzyme mix, 0.2 μL of primer E_Sarbeco_F1 (5’-ACAGGTACGT-TAATAGTTAATACGCT-3’) (10 μM), 0.2 μL of primer E_Sarbeco_R2 (5’-ATATTGCCAGTACCCACACA-3’) (10 μM) (Corman et al., 2020) and 4.2 μL of template. The amplification conditions were: 30 min at 55 °C and 2 min at 94 °C for cDNA synthesis and pre-denaturation, respectively, followed by PCR amplification in 40 cycles of 94 °C for 15 s for denaturation, 52 °C for 30 s for annealing, 68 °C for 10 s for extension, followed by a final extension at 68 °C for 5 min. The total volume of the PCR reaction (10 μL) was stained with GelRed (Biotium, Fremont, California, USA) and visualized under UV light on a 2% agarose gel. The identity of the amplicons was confirmed by genetic sequencing.

In detail, end-point RT-PCR detected 15/15 of samples from asymptomatic individuals (Ct 18.93–34.92) and 17/18 from symptomatic patients (Ct 15.94–34.92) (Table 1). The RT-PCR positive sample not detected in RT-PCR came from a symptomatic patient and showed Ct of 36.92. Nonspecific amplifications were not observed in SARS-CoV-2 negative samples (Fig. 1B).

False-negative results have been an important concern in the RT-qPCR for SARS-CoV-2, so that several targets/primers and sample types have been evaluated to increase the sensitivity (Corman et al., 2020; Peihua et al., 2020; Tahamtan and Ardebili, 2020; Wang et al., 2020; WHO, 2020b; Woloshin et al., 2020). However, considering the sensitivity of these assays, it is likely that false-negative results are more related to other factors than the characteristics of the assays per se. For example, previous studies have reported that the SARS-CoV-2 viral load (or the so-called RNAemia) may vary over time and thus strongly influence the diagnosis (Zhang et al., 2020; Zheng et al., 2020; Zou et al., 2020). Failures related to the pre-analytical phase, such as sample collection, transport and/or storage, as well as aspects of the host and the theoretical possibility of viral mutation, may also negatively influence the diagnosis of COVID-19 (Tahamtan and Ardebili, 2020; Xiao et al., 2020).

For example, previous studies have reported that the SARS-CoV-2 viral load (or the so-called RNAemia) may vary over time and thus strongly influence the diagnosis (Zhang et al., 2020; Zheng et al., 2020; Zou et al., 2020). Failures related to the pre-analytical phase, such as sample collection, transport and/or storage, as well as aspects of the host and the theoretical possibility of viral mutation, may also negatively influence the diagnosis of COVID-19 (Tahamtan and Ardebili, 2020; Xiao et al., 2020).

Table 1	Positive samples by RT-qPCR and RT-PCR tests.	
	RT-qPCR	RT-PCR
	Asymptomatic (n = 15)	Asymptomatic (n = 15)
Ct (range)	18.93–34.92	18.93–34.92
	Symptomatic (n = 18)	Symptomatic (n = 17)
Ct (range)	15.94–36.92	15.94–34.91

Fig. 1. End-point RT PCR for SARS-CoV-2 E gene. A) M: Ladder 100bp marker (Ludwig Biotec, Rio Grande do Sul, Brazil); 1: negative control (water); 2-7 positive control at \(10^{-4}\) (11.34 vRNA/μL), \(10^{-4}\) (9 vRNA/μL), \(10^{-2}\) (7.15 vRNA/μL), \(10^{-1}\) (5.68 vRNA/μL), \(10^{0}\) (1.13 vRNA/μL) and \(10^{1}\) (0.11 vRNA/μL), respectively. B) M: Ladder 100bp marker (Ludwig Biotec, Rio Grande do Sul, Brazil); 1: negative sample; 2: positive sample (Ct 34.92). *Interval considered to define the end-point RT-PCR analytical sensitivity.
It is possible that the factors described above may also influence the end-point amplification, which still presented lower sensitivity than the RT-qPCR. However, we do not believe that the sensitivity represents a real limitation for the implementation of a RT-PCR platform for detection of SARS-CoV-2 infection. Individuals with COVID-19 often have a high viral load, which is why the European Centre for Disease Prevention and Control (ECDC) recommends that samples with Ct >35 be retested so that the possibility of contamination is ruled out (ECDC, 2020). A minimum concentration of about 10 copies of vRNA/μL has also been reported in respiratory samples from individuals with mild or severe COVID-19 (Pan et al., 2020; Zheng et al., 2020). In this context, our RT-PCR showed a considerable and useful sensitivity-specificity, detecting samples with Ct 34.92, including samples from asymptomatic individuals, and not amplifying nonspecific sequences, which could require additional steps of analysis, such as gene purification and sequencing (Fig. 1, Table 1). Importantly, the RT-PCR was performed in a 10 μL final volume. This, in addition to not using specific inputs for RT-qPCR, can significantly reduce the cost of the assay.

Finally, when considering specificity, analytical sensitivity and cost, we believe that the RT-PCR platform described here may be a viable option for molecular detection of SARS-CoV-2 in laboratories in which RT-qPCR is not available and/or not possible for any reason.

CRediT authorship contribution statement

José Valter Joaquim Silva Júnior: Conceptualization, Methodology, Investigation, Writing - original draft. Ingrid Merchioratto: Investigation, Writing - review & editing. Pablo Sebastian Britto de Oliveira: Investigation, Writing - review & editing. Thaís Regina Rocha Lopes: Investigation, Writing - review & editing. Patricia Chaves Brites: Resources, Writing - review & editing. Elehu Moura de Oliveira: Resources. Rudi Weiblen: Resources, Writing - review & editing. Eduardo Furtado Flores: Conceptualization, Supervision, Writing - review & editing, Resources, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no competing interests.

Acknowledgments

Graduate students from the Programa de Pós-graduação em Medicina Veterinária, UFSC (IM and PSBO). PSBO and IM thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Brazil), respectively, for their scholarships. TRLR thanks the Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS) (Brazil) for her technological and industrial development grant (process 20/2551-0000252-7). Eduardo Furtado Flores (process 301414/2010-6) and Rudi Weiblen (process 304153/2014-1) were supported by CNPq research fellowships. This study was supported by FAPERGS (Brazil), process 20/2551-0000252-7.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.jviromet.2020.114007.

References

Brazil, 2020. Guia de Vigilância Epidemiológica Emergência de Saúde Pública de Importância Nacional pela Doença pelo Coronavírus 2019 (accessed July 7, 2020). https://www.saude.gov.br/images/pdf/2020/April/06/GuiaDeVigilEp-final.pdf.

Corman, V.M., Landti, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D.K., Bleeker, T., Brünink, S., Schneider, J., Schmidt, M.L., Mulders, D.G., Haagmans, B.L., van der Veer, B., van den Brink, S., Wijmenga, L., Godecki, G., Rommete, J.J., Ellis, J., Zambon, M., Peiris, M., Goossens, H., Reusken, C., Koopmans, M.P., Drosten, C., 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25, 2000455.

European Centre for Disease Prevention and Control, 2020. Questions and Answers Regarding Laboratory Topics on SARS-CoV-2 (accessed July 7, 2020). https://www.ecdc.europa.eu/en/all-topics-z/coronavirus/threats-and-outbreaks/covid-19/laboratory-support/questions.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J., Cao, B., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497-506.

International Committee on Taxonomy of Viruses, 2020. Virus Taxonomy: 2019 Release (accessed July 7, 2020). https://talk.ictvonline.taxonomy.

Pan, Y., Zhang, D., Yang, P., Poon, L.L.M., Wang, Q., 2020. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 20, 411-412.

Pan American Health Organization, 2020. Laboratory Guidelines for the Detection and Diagnosis of COVID-19 Virus Infection (accessed July 7, 2020). https://iris.paho.org/bitstream/handle/10665.2/52140/PAHOEMERGOVID-19200003_eng.pdf?sequence=1&isAllowed=true.

Peihua, N., Roujian, Lu., Li, Zhao., Huijuan, Wang., Banying, Huang., Fei, Ye., Wang, W., Tan, W., 2020. Three novel real-time RT-PCR assays for detection of COVID-19 virus. China CDC Weekly 2, 453-457.

Tahamtan, A., Ardelbii, A., 2020. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev. Mol. Diagn. 20, 453-454.

Wang, W., Xu, Y., Gao, R., Lu, H., Kan, K., Wu, G., Tan, W., 2020. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 323.

Woloshin, S., Patel, N., Kesselheim, A.S., 2020. False negative tests for SARS-CoV-2 infection - challenges and implications. N. Engl. J. Med.

World Health Organization, 2020a. Coronavirus Disease (COVID-19) Pandemic (accessed October 17, 2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-list?language=en.

World Health Organization, 2020b. Molecular Assays to Diagnose COVID-19: Summary Table of Available Protocols (accessed July 7, 2020). https://www.who.int/publications/m/item/molecular-assays-to-diagnose-covid-19-summary-table-of-available-protocols.

Xia, J., Tong, Y.X., Zhang, S., 2020. False negative of RT-PCR and prolonged nucleic acid conversion in COVID-19 rather than recurrence. J. Med. Virol.

Zhao, J.F., Yan, K., Ye, H.H., Lin, J., Zheng, J.J., Cai, T., 2020. SARS-CoV-2 turned positive in a discharged patient with COVID-19 arouses concern regarding the present standards for discharge. Int. J. Infect. Dis. 97, 212-214.

Zheng, B., Fan, J., Yu, F., Feng, B., Lou, B., Zou, Q., Xie, G., Lin, S., Wang, R., Yang, X., Chen, W., Wang, Q., Zhang, D., Liu, Y., Gong, R., Ma, Z., Lu, S., Xiao, Y., Gu, Y., Zhang, J., Yao, H., Xu, K., Lu, X., Wei, G., Zhou, J., Feng, Q., Cai, H., Qiu, Y., Cheng, J., Chen, Y., Liang, Y., 2020. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ 369, m4433.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F., Tan, W., Team, C.N.C.L.A.R, 2020. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733.

Zou, L., Ruan, F., Huang, M., Liang, L., Huang, H., Hong, Z., Yu, J., Kang, M., Song, Y., Xia, J., Guo, Q., Song, T., He, J., Yen, H.L., Peiris, M., Wu, J., 2020. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 382, 1177–1179.