Transcriptional analysis of amino acid, metal ion, vitamin and carbohydrate uptake in butanol-producing *Clostridium beijerinckii* NRRL B-598

Maryna Vasylkivska1*, Katerina Jureckova2, Barbora Branska1, Karel Sedlar2, Jan Kolek1, Ivo Provaznik2, Petra Patakova1

1 Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic, 2 Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic

* vasylkim@vscht.com

Abstract

In-depth knowledge of cell metabolism and nutrient uptake mechanisms can lead to the development of a tool for improving acetone-butanol-ethanol (ABE) fermentation performance and help to overcome bottlenecks in the process, such as the high cost of substrates and low production rates. Over 300 genes potentially encoding transport of amino acids, metal ions, vitamins and carbohydrates were identified in the genome of the butanol-producing strain *Clostridium beijerinckii* NRRL B-598, based on similarity searches in protein function databases. Transcriptomic data of the genes were obtained during ABE fermentation by RNA-Seq experiments and covered acidogenesis, solventogenesis and sporulation. The physiological roles of the selected 81 actively expressed transport genes were established on the basis of their expression profiles at particular stages of ABE fermentation. This article describes how genes encoding the uptake of glucose, iron, riboflavin, glutamine, methionine and other nutrients take part in growth, production and stress responses of *C. beijerinckii* NRRL B-598. These data increase our knowledge of transport mechanisms in solventogenic *Clostridium* and may be used in the selection of individual genes for further research.

Introduction

Until the 1950s, ABE fermentation by clostridial species was one of the largest industrial biotechnological processes, the second largest after ethanol fermentation. It became unprofitable after the development of petrochemical methods for solvent production, methods which have been used exclusively until now. However, due to environmental concerns and resource limitations there is a demand for renewable methods of fuel and chemical production, independent of crude-oil [1]: ABE fermentation as an alternative and ecological process is now being reinvestigated [2].

The major products of ABE fermentation are butanol, acetone and ethanol, which in the well-studied solventogenic strain *Clostridium acetobutylicum* ATCC 824, are usually produced
at a molar ratio of 6:3:1 [3]. Butanol has two main applications—it can be used in the fuel industry as a biofuel or an addition to gasoline, and in the chemical industry. It is compatible with the original gasoline engines without modifications [4] and is listed as a preferable green solvent in solvent selection guides [5,6].

Major problems of ABE fermentation are the high cost of raw materials and low final solvent titers. While some clostridial strains are able to utilize a wide range of carbohydrates other than glucose, they still need growth factors such as vitamins and trace elements for growth and metabolite production. Many researchers have reported that addition of appropriate concentrations of amino acids and metal ions to the cultivation medium stimulate bacterial growth and result in increased solvent yield [7–10]. Therefore, an in-depth understanding of transport and metabolism of amino acids, sugars, vitamins and metal ions is important for the selection of proper and inexpensive substrates for ABE fermentation and can potentially result in a decreased solvent price [11,12].

Issues of commercialization of ABE fermentation can be addressed by the use of waste materials as a substrate, application of different fermentation techniques, optimization of fermentation conditions or strain engineering with a focus on flux redirection. All these approaches require an in-depth understanding of metabolic traits and uptake mechanisms.

The uptake of different substances in bacteria is carried out via different types of membrane transporters (Transporter Classification Database http://www.tcdb.org/), including: electrochemical potential-driven transporters (for example, symporters/antiporters transporting metal ions and amino acids), primary active transporters (for example, ATP-binding cassette transporters co-called ABC transporters, including Energy Coupling Factor-Type ABC Transporters for vitamin uptake, and P-type ATPases carrying metal ions) and group translocators (for example, phosphoenolpyruvate-dependent phosphotransferase system PTS for sugar uptake). While a few research papers describing mechanisms of carbohydrate uptake in Clostridium exist [12–14], transport of amino acids, vitamins and metal ions have received little attention, despite their major influence on growth and production [15].

C. beijerinckii NRRL B-598, formerly known as Clostridium pasteurianum NRRL B-598 [16], used in this study, is a robust solventogenic strain with stable production rates and, despite being anaerobic, tolerant to short exposures to oxygen. The whole genome sequence [17], as well as transformation techniques [18] are available for this strain, which therefore has potential for industrial use. However, modification and optimization of cultivation conditions and the fermentation medium are still required. In this paper, we identify genes encoding putative transporters of amino acids, metal ions, vitamins and carbohydrates in C. beijerinckii NRRL B-598, combined with their transcriptomic data obtained from the whole life cycle of the bacterium, including acidogenesis, solventogenesis and sporulation.

Material and methods

Cultivation experiment

C. beijerinckii NRRL B-598 was used in this work. The strain was maintained in distilled water in the form of a spore preserve at 4°C. Prior to inoculation, the spore preserve was heated to 80°C for 2 min.

An inoculum for fermentation experiments was prepared in Erlenmeyer flasks containing TYA medium (20 g/L glucose, 2 g/L yeast extract (Merck), 6 g/L tryptone (Sigma Aldrich), 0.5 g/L potassium dihydrogenphosphate, 3 g/L ammonium acetate, 0.3 g/L magnesium sulfate heptahydrate, 0.01 g/L ferrous sulfate heptahydrate) and cultivated at 37°C overnight in anaerobic chamber (Concept 400, Ruskin Technology) under a stable N₂/ H₂ (9:1) atmosphere.
Cultivation experiments were performed in parallel Multiforce 2 bioreactors (Infors HT, Switzerland) containing TYA medium with 50 g/L glucose. Prior to inoculation, the atmosphere in the bioreactors was switched to anaerobic by bubbling with N\textsubscript{2} for 30 min and the inoculum was checked under the microscope. Bioreactors were inoculated with a 10% v/v overnight culture. Before cultivation, the pH was adjusted to 6.3 using 10% sodium hydroxide solution, and during cultivation, the pH was measured but not controlled.

Analytical methods

Cell growth was determined by measuring the optical density (OD) of the culture broth at 600 nm on a Varian Cary® 50 UV-Vis spectrophotometer (Agilent). TYA medium was used as a blank, and a 10 mm cuvette containing 1 ml of culture broth was used for analysis. Samples taken after the 4th hour of cultivation were diluted so they were within OD\textsubscript{600} = 0.1–1.0 and results were multiplied by the dilution factor.

HPLC with refractive index detection (Agilent Series 1200 HPLC) equipped with an 250x8 mm Polymer IEX H form 8 um column (Watrex) was used for the determination of glucose consumption and production of acids and solvents. Before analysis, samples of culture broths were centrifuged and filtered through 0.2-μm syringe filters. A mobile phase of 5 mM H\textsubscript{2}SO\textsubscript{4} was used in the experiment. Conditions of analysis were those as described in Kolek et al. (2016): isocratic elution, stable flow rate of 0.5 mL/min, stable column temperature of 60˚C, sample volume for the injection 20 μl [19].

RNA sequencing

Culture broth samples for RNA isolation were taken at 3.5, 6, 8.5, 13, 18 and 23 h of cultivation (further referred to as sampling points T1, T2, T3, T4, T5 and T6 respectively). Each broth sample was centrifuged, the cell pellet was washed with sterile distilled water and stored immediately at– 70˚C. These sampling points were chosen so that transcriptome data would cover the whole life cycle of \textit{C. beijerinckii} NRRL B-598 [20].

Commercially available kits were used for total RNA isolation (High Pure RNA Isolation Kit, Roche) and ribosomal RNA depletion (The MICROBExpress™ Bacterial mRNA Enrichment Kit, Ambion). Prior to library construction and sequencing, RNA samples were analyzed on an Agilent 2100 Bioanalyzer (Agilent) with the Agilent RNA 6000 Nano Kit (Agilent) and DS-11 FX+ Spectrophotometer (DeNovix) and stored at– 70˚C.

Library construction and sequencing of samples were performed by the CEITEC Genomics core facility (Brno, Czechia) on Illumina NextSeq 500, single-end, 75 bp.

Bioinformatics analysis

RNA-Seq data consisted of four replicates (B, C, D, and E), as described in our previous papers [20,21]. The data are available from the NCBI Sequence Read Archive (SRA) under the accession number SRP033480. During preprocessing of data adapters, trimming was conducted by Trimmomatic [22]. Reads corresponding to 16S and 23S rRNA were removed with SortMeRNA [23] together with the SILVA database [24] containing sequences of known bacterial 16S and 23S genes. The \textit{C. beijerinckii} NRRL B-598 (CP011966.3) genome was used as the reference for mapping of preprocessed reads and mapping was performed by STAR [25].

Count tables of mapped reads were estimated in R/Bioconductor by featureCounts function from the Rsubread package [26]. Differential expression analysis was conducted by the DESeq2 package [27] in R. This package contains functions for normalization of raw count tables by library size. Normalized count tables were used for evaluation of transcription profiles of selected genes by Z-scores that were visualized as heatmaps by the R packages gplots.
and RColorBrewer. RPKM values were estimated by the featureCounts function from the edgeR package [28] in R/Bionconductor. Time series plots were generated in Matlab R2017a.

Identifications of genes and homology search

Genes encoding the uptake of amino acids, sugars, vitamins and metal ions were identified based on key word searches in these databases: UniProt [29], InterPro [30] and PFAM [31]. Most of the genes were verified by BLASTP [32] searches against the non-redundant (nr) database with experimentally verified or automatically predicted proteins encoding transport in C. beijerinckii NCIMB 8052, C. acetobutylicum ATCC 824, other solventogenic and pathogenic clostridial species, Bacillus species or other model bacteria.

Results and discussion

The experiments comprised two-phase ABE fermentation: the acidogenic phase, which is characterized by acid production and pH decrease, and the solventogenic phase, when glucose and organic acids are utilized to produce solvents. The shift from acidogenesis (sampling point T1) to solventogenesis (sampling points T3-T6) occurred at approximately 6 h of cultivation (sampling point T2) (Fig 1B). Granulose accumulation was observed at 8.5 h of cultivation (sampling point T3), spore formation began at approximately 13 h of cultivation (sampling point T4) and the first mature spores were observed at 23 h (sample point T6) (Fig 1C). Sampling point T5 represented the beginning of the stationary phase (Fig 1A). More detailed information about cell physiology and production rates during the fermentation can be found in Sedlar et al. (2018) and Patakova et al. (2019) [20,21].

Amino acid uptake

About 80 genes encoding putative amino acid transporters were identified in the genome of C. beijerinckii NRRL B-598, based on key word searches in protein function databases and verified by BLASTP searches against protein sequences encoding transporters described in other species (S1 File, S2 File). Only seven genes encoding amino acid uptake were not differentially expressed throughout the course of cultivation.

Tryptone and yeast extract, as a part of TYA medium, represented the universal, non-specific source of amino acids in this experiment. Solventogenic clostridia are sometimes considered to be amino acid auxotrophs [11] and some of them are not able to grow without addition of yeast extract to the medium [33]. However, different C. acetobutylicum strains, including C. acetobutylicum P262 later reclassified to Clostridium saccharobutylicum NCP262, were successfully cultured in defined, synthetic medium [34–36]. According to the latest in silico analysis, genes encoding all essential enzymes for proteinogenic amino acid synthesis are present in the C. beijerinckii G117 genome [37]. However, uptake of free amino acids from the culture medium is energetically more advantageous for the cell than their biosynthesis [38].

For most differentially expressed genes encoding amino acid uptake, the highest level of expression was set at the beginning of cultivation (T1) (S2 File), which is probably connected to the use of amino acids for growth. Moreover, amino acids take part in the stress response to acids produced in this phase [39], during which, C. acetobutylicum cells have been shown to accumulate the highest intracellular concentration of amino acids [40].

Branched-chain amino acids BCAA (leucine, isoleucine and valine) are essential for adaptation to solvent formation [41]. They are precursors of membrane fatty acids and therefore take part in stress response mechanisms [42]. For Clostridioïdes difficile, BCAA are described as being essential and growth-limiting [43,44]. The most massive increase in the expression of genes encoding uptake of BCAA, X276_18220- X276_18200 and X276_00370—X276_00350,
was observed between T2 and T3, corresponding to the beginning of solventogenesis (Fig 2, S1 File). According to previous findings, genes responsible for fatty acid biosynthesis in *C. beijerinckii* NRRL B-598 showed the highest expression profile between T3 to T4 following BCAA uptake [20].

Glutamine transport genes X276_14095, X276_05000-X276_04985 were also differentially expressed during solventogenesis (S1 File). This amino acid has been reported to help *C. beijerinckii* SA-1 survive butanol stress [45]. Moreover, for *C. beijerinckii* NCP 260, its addition is reported to have an impact on butanol titer. As glutamine is converted to glutamate, it
indirectly enhances the acid tolerance response of the cell, which leads to an increase in viable cells that enter solventogenesis and, as a consequence, higher butanol titer [15].

Genes encoding methionine uptake systems, X276_23665- X276_23655 and X276_11345-X276_11340, were differentially expressed (padj < 0.001, Benjamini-Hochberg correction) between late adjacent sampling points, i.e. between T4 and T5 and between T5 and T6 (S1 File). There is evidence that intracellular accumulation and secretion, as well as extracellular addition of methionine can aid survival under stress conditions and leads to a slightly improved rate of butanol synthesis in *C. acetobutylicum* [7]. Moreover, methionine is probably responsible for upregulation of butanol synthesis in the strain [46]. Previously described as a putative non-PTS glucose transporter gene, X276_11345, [20] after in-depth analysis, was re-identified as methionine ABC transporter permease.

Fig 2. Heatmap displaying changes in transcriptions of the selected genes encoding putative amino acid transporters.
https://doi.org/10.1371/journal.pone.0224560.g002
The greatest number of amino acid transporters belong to the ATP-binding cassette transporter family (ABC transporter). However, amino acid uptake can also occur via, for example, sodium:solute symporters X276_22340 and X276_19775 or sodium:dicarboxylate symporter X276_03860, which is discussed below.

Metal ion and vitamin transport

We identified 81 genes encoding metal ion and vitamin transporters in the *Clostridium beijerinckii* NRRL B-598 genome. Thirteen of them were not differentially expressed during cultivation (S4 File).

Tryptone and yeast extract were the source of vitamins and trace metals in the medium, and potassium, sodium, magnesium and iron were added in the form of potassium dihydrogenphosphate, sodium hydroxide (pH adjustment), magnesium sulfate heptahydrate and ferrous sulfate heptahydrate.

Potassium and sodium, among other functions, play crucial roles in cell homeostasis and membrane transport processes. Accumulation of potassium in the cell has an effect on membrane stability, cell integrity and division. In *C. beijerinckii* NRRL B-598, potassium is probably transported via the Kdp system, X276_26900-X276_19380-X276_19375-X276_19370, or via one of the potassium transport system Kup family proteins (Fig 3, S3 File). Transport of sodium usually happens via a symport or antiport, and, in the case of symport, can be associated with the uptake of amino acids, sugars, organic cations or anions. The sodium:dicarboxylate symporter X276_03860 shares a high similarity with the sodium:glutamate/aspartate symporter CD630_25410 of *C. difficile* 630, with a high specificity for aspartate [47]. Potassium and sodium ions are also important components of the germination process [48], which may explain the high level of expression of some of their transporters during stationary phase, when spores are formed. A high intracellular potassium concentration was found to be important for sporulation in *Bacillus subtilis* [49].

The strongest expression of magnesium transporters, X276_26115, X276_17370 and X276_09335, was during the transition period between acidogenesis and solventogenesis (T2) (Fig 3, S3 File). Except for its function in cellular energetics i.e. to form a chelate with adenosine triphosphate (ATP) and to take part in ATP-dependent reactions [50], magnesium is essential for the functioning of acetate kinase [51]. Acetate kinase gene X276_20705, encoding the enzyme converting acetyl-CoA to acetate, was highly expressed at the beginning of cultivation and was differentially expressed between T1 and T2, reflecting its role in acidogenesis (S7 File). It is also reported that magnesium ions take part in stabilization of the cell membrane as a stress response to solvent production for *C. beijerinckii* RZF-1108 [52].

The ferrous uptake system *feo*, encoded by X276_27330-X276_04855-X276_04850-X276_04845, is responsible for anaerobic iron uptake [41] and was highly expressed during the course of cultivation, with a local maxima at time T1 (Fig 3, S3 File). Iron is a component of ferredoxin, the iron-sulfur protein involved in electron transport. It is also a part of [FeFe]-hydrogenase and [NiFe]-hydrogenase, which take part in hydrogen formation via catalysis of proton reduction. For *C. acetobutylicum*, the main production of hydrogen occurs during acidogenesis [53] and the highest expression of iron transporters can be connected with a high iron requirement for activity of ferredoxin and hydrogenases, which play important roles in the pathway [50,52,54]. It is reported that iron addition facilitates hydrogen biosynthesis in *C. beijerinckii* IB4 [55]. At the same time, similarly to *C. acetobutylicum* [41], other ferrous uptake systems, X276_13995-X276_13990-X276_13985 and X276_11140-X276_11135, showed increased expression during stationary phase (Fig 3, S3 File), which may be due to the role of Fe in sporulation. It is reported that for *Bacillus* spp., iron is a sporulation inducer [56].
Zinc ions are involved in the metabolism of proteins, nucleic acids, carbohydrates and lipids. Zinc is a cofactor of metalloenzymes such as alkaline phosphatase, alcohol dehydrogenase and aminopeptidase. Yeast extract was the source of zinc ions in this experiment. The highest level of expression of zinc ABC transporter X276_03910-X276_03905 was established at the beginning of cultivation (T1) (Fig 3, S3 File). This seems to be connected with the function of zinc in stimulating cell growth and regulating sugar transport [8,50]. On the other hand, zinc
transporter ZupT, encoded by X276_11130, was differentially expressed during solventogenesis (S3 File), which may be linked with a higher zinc requirement for the functioning of butanol dehydrogenase, a key enzyme responsible for butanol biosynthesis in clostridia. Additional supplementation of zinc to the medium is reported to increase solvent formation and initiate earlier solventogenesis in *C. acetobutylicum*, probably due to enhancement of butanol dehydrogenase activity [8]. Moreover, zinc supplementation facilitates acid and butanol tolerance in *C. acetobutylicum* [57].

Cobalt participates in enzyme-catalyzed hydrolytic and redox reactions. It is also a part of the structure of vitamin B$_{12}$, cobalamin, which is involved in methyl transfer reactions and fatty acid catabolism. Most microorganisms are not able to synthesize cobalamin [58], but it is reported that the *C. acetobutylicum* genome contains genes for its biosynthesis [59]. Generally, metal ions (including cobalt) are transported from an environmentally bioavailable source and are an essential part of the culture medium. Bacteria are able to synthesize vitamins, nevertheless, vitamin uptake is energetically more advantageous for the cell and is also very important when an organism lacks a full biosynthetic pathway [60,61].

Genes encoding putative transporters of cobalt and cobalamin were differentially expressed at T1-T2 and T3-T4 respectively (S3 File). Addition of cobalt positively affected sugar conversion efficiency and production of hydrogen during acidogenesis in *C. acetobutylicum* NCIM 2877 [62]. Cobalamin, on the other hand, may ameliorate the effect of toxic compounds in the medium, such as furfural [63] or probably produced solvents.

Riboflavin B$_2$ transporters X276_24340, X276_22965 and X276_17310 had significant changes in their expression (padj < 0.001, Benjamini–Hochberg correction) between T1 and T2 and between T3 and T4 (S3 File). Riboflavin is a precursor of flavin mononucleotide and flavin adenine dinucleotide, formation of which is catalyzed by riboflavin kinase. Riboflavin kinase rfk X276_20490 exhibited increased transcription during T1 and was highly expressed during solventogenesis with a local maximum at time T4 (S7 File). It seems that transported riboflavin was sequentially used in flavin formation. Because flavins can act as electron carriers and cofactors for the redox reactions, it can be concluded that changes in expression of riboflavin transporters were connected with maintenance of the cellular redox balance. This function of the vitamin was also hypothesized in *C. beijerinckii* NCIMB 8052 under furfural stress [63]. Additionally, it was shown that riboflavin play role in iron acquisition in *Helicobacter pylori*, *Campylobacter jejuni*, *Shewanella* and probably *C. acetobutylicum* [64–67], however, expression of riboflavin transporters did not correspond with the maxima of expression of iron transporters (see above).

Niacin B$_3$ transporter niaX X276_19695 was differentially expressed between all adjacent sampling points expect for insignificant change between T5 and T6 (S3 File). Homologues of the gene encoding the NiaX transporter, can be found in multiple *Streptococci* and *Clostridium* [68]. Niacin is the precursor of NADH and NADPH, and its addition to the medium is reported to increase butanol yield and productivity in *Clostridium* sp. strain BOH3 due to flux redistribution [69].

Thiamin B$_1$, biotin B$_7$ and para-aminobenzoic acid B$_{10}$ (PABA) are specific vitamins of some of the defined media used for the cultivation of solventogenic clostridia [34–36]. Genes encoding the uptake of thiamin and biotin were highly expressed between T1 and T4, reflecting their role in sugar uptake and metabolism (Fig 3, S3 File). B class vitamins are described as limiting factors for the performance of solventogenic clostridia and for efficient ABE fermentation. Overexpression of genes encoding transport and biosynthesis of thiamine and biotin in *C. acetobutylicum* improved growth and sugar utilization rates and increased the solvent titer [9,10]. PABA takes part in folate B$_9$ biosynthesis, although the transport of PABA has still not been described in bacteria. However, genes similar to ones encoding its biosynthesis in

Transcriptional analysis of nutrient uptake in *Clostridium beijerinckii* NRRL B-598

PLOS ONE | https://doi.org/10.1371/journal.pone.0224560 | November 7, 2019
Lactococcus lactis have been identified in the genome of C. beijerinckii NRRL B-598: glutamine amidotransferase pabA X276_22125 and X276_10695, aminodeoxychorismate synthase pabB X276_05255 and aminodeoxychorismate lyase pabC X276_05260 (S7 File).

Carbohydrate uptake via PTS and non-PTS transporters

In C. beijerinckii NRRL B-598, glucose, the main carbohydrate used for the described experiments, is transported into the cell via the PTS. Transport by PTS involves enzymes that are situated in both the cell membrane—integral membrane sugar permease (IIC/IID)—and the cytoplasm: phosphoryl transfer protein enzyme I (PtsI), histidine-containing protein (PtsH), enzyme IIA (EIIA) and enzyme IIB (EIIB) (Fig 4). The genome of C. beijerinckii NRRL B-598 includes one copy of each gene encoding the histidine-containing protein PtsH (X276_20425) and enzyme I protein PtsI (X276_25680). It is common in clostridia that genes encoding PtsH and PtsI are located in different parts of the genome, while enzyme II subunits are clustered together and are organized into operons [70].

About 40 sets of the PTS EII genes were identified in the C. beijerinckii NRRL B-598 genome, with the highest number of genes encoding cellobiose and mannose uptake (S5 File, S6 File). This amount is comparable with C. beijerinckii NCIMB 8052 and is much higher than C. acetobutylicum ATCC 824, with 47 and 14 sets respectively [71]. This reflects the ability of C. beijerinckii strains to utilize a wide range of substrates as carbon sources and demonstrates their metabolic flexibility [70]. We determined experimentally that C. beijerinckii NRRL B-598 is able to utilize glucose, xylose, arabinoxylose, mannose, saccharose, cellobiose, galactose and pectin and is not able to grow on lactose and glycerol.

Eight genes encoding the glucose family PTS EII proteins—orthologues of glucose PTS EII genes of C. acetobutylicum ATCC 824 [13,72] and C. beijerinckii NCIMB 8052 [14,71,73]—were identified in the C. beijerinckii NRRL B-598 genome.

Most of the glucose family PTS EII genes demonstrated low amount of mapped reads, some of them even neglectable/at the noise threshold (S5 File). Therefore, they were probably of minor significance for glucose uptake. The genes encoding gluIIA-gluIIBC (X276_03050-X276_03055) presumably were the exception. These genes exhibited increase in their transcription, including statistically significant differential expression (padj < 0.001, Benjamini-Hochberg correction) between T2 and T3 and seems to be involved in glucose transport at the moment (Fig 5, S5 File).

Most of the other sugar transporters (PTS EII subunits and non-PTS systems) were not expressed during T1-T3, except for mannose PTS EII genes X276_23245- X276_23235 and X276_02990- X276_02975 (Fig 5, S5 File, S7 File). Mannose EII-encoding genes were the ones with the highest number of mapped reads in the whole transcriptome and were massively expressed during both acidogenesis and solventogenesis, taking part in glucose uptake [20]. Such massive involvement of the mannose PTS EII genes in glucose transport, as a contrary to glucose PTS EII genes, was also observed in other C. beijerinckii [74–76]. According to previous research, mannose PTS EII genes are responsible for uptake and phosphorylation of multiple carbohydrates, in particular, mannose, glucose, fructose and sorbose [75].

About one third of the carbohydrate transport genes were not differentially expressed during ABE fermentation, because there was no substrate for them to uptake. On the other hand, fructose, galactose and mannitol PTS EII (Fig 5, S5 File) and galactose ABC transporter genes (S6 File), which also did not have substrate to uptake, had a relatively high number of mapped reads and were differentially expressed during cultivation. Expression of fructose transporter X276_17630 was decreasing continuously for several hours when all pairwise comparison of adjacent sampling times within the interval T1–T4 were evaluated as significant differential
Carbohydrate uptake can be carried out via three types of membrane transporters: electrochemical potential-driven transporters (symport), primary active transporters (ATP-binding cassette transporters ABC: SBP–substrate-binding protein; P–carrier protein; ABR–ATP-binding region) and group translocators (Phosphoenolpyruvate-dependent phosphotransferase system PTS: EIIC/EIID—integral membrane sugar permeases; EIIB—enzyme IIB; EIIA—enzyme IIA; PtsH—histidine-containing protein; PtsI—phosphoryl transfer protein enzyme I).

https://doi.org/10.1371/journal.pone.0224560.g004
expression (padj < 0.001, Benjamini-Hochberg correction). It is reported for \textit{C. acetobutylicum} ATCC 824, that expression of the fructose uptake genes can be induced by the presence of glucose in the medium \cite{13}. As for galactose or mannitol transporters, differential expression probably was not induced by the presence of substrate. We determined the expression of genes encoding enzymes that are involved in the transport these carbohydrates in respective pathways, for example, galactokinase X276_03575, galactose-1-phosphate uridylyltransferase...
X276_03565 or mannitol-1-phosphate 5-dehydrogenase X276_25480, but they were either not differentially expressed during cultivation or their differential expression did not logically follow expression of transport genes (S5 File, S7 File). Differential expression of these transport genes may be caused by general metabolic changes connected with sporulation or butanol stress, nevertheless, confirmation requires further investigation.

Although, carbohydrates are mostly transferred to clostridial cells through PTS, sugar uptake partially occurs by non-PTS systems, which are represented by ABC transporters and symporters (Fig 4) [12, 77]. Putative xylose symporter genes xylT X276_26120 and xynB X276_05225, similar to those found in C. acetobutylicum ATCC 824 [13], as well as xylose ABC transporter XylFGH, similar to the ABC-type D-xylose transporter found in C. beijerinckii NCIMB 8052 [78], coded by X276_14760- X276_14750, were identified in the C. beijerinckii NRRL B-598 genome. None of these non-PTS systems were differentially expressed during fermentation (S6 File), however, these genes may be of major importance when the strain is cultivated on agricultural waste.

Hexoses that are taken up enter glycolysis, pentoses enter the pentose phosphate pathway and then glycolysis, other sugars are converted into intermediate products of the pathways and are further transformed into pyruvate [79]. More information about the expression of genes encoding enzymes that take part in the central metabolism of C. beijerinckii NRRL B-598 can be found in Patakova et al. (2019) [20].

Conclusions

The data presented here combine the identification and analysis of transcriptomic profiles of genes encoding putative amino acid, metal ion, vitamin and carbohydrate transporters covering the whole life cycle of C. beijerinckii NRRL B-598. To our best knowledge, this article is the first to comprehensively describe genes encoding the uptake of the main nutrients in butanol-producing C. beijerinckii strain.

Our results suggest that transcriptomic data of genes encoding nutrient uptake may be used to predict an increased requirement for these substances during different phases of ABE fermentation. From the transcriptomic data obtained for C. beijerinckii NRRL B-598 in TYA medium, we can assume that during acidogenic phase strain exhibits increased requirement for such nutrients as branched-chain amino acids (leucine, isoleucine and valine), glutamine, iron, zinc, cobalamin, riboflavin and thiamin. During the shift from acidogenesis to solventogenesis/ beginning of the solventogenic phase strain seemed to require branched-chain amino acids (leucine, isoleucine and valine), glutamine, magnesium, cobalt, cobalamin, riboflavin, thiamin and biotin. During solventogenic phase such nutrients as methionine, potassium, sodium, iron, zinc and niacin were probably very important for the functioning of the strain.

We recommend addition of glutamine, methionine, zinc, niacin, thiamine and biotin to the culture medium for the improvement of ABE fermentation performance, especially, when the strain is cultivated on waste substrates that do not contain these growth factors. These nutrients were of high demand for the strain, but more importantly, according to the literature, they had a positive impact on butanol titer.

Bacteria are able to synthesize most of the nutrients; however, uptake from the culture medium is energetically more advantageous for the cell. It is possible that energy surplus can be used for the production of valuable metabolites, synthesis of which are less energetically advantageous for the cell, for example, solvents in case of in C. beijerinckii NRRL B-598.
We hope that the present study stimulates further investigations of transport systems in solventogenic clostridia, which will lead to efficient optimization of the culture medium and selection of the best production strains for biobutanol production.

Supporting information

S1 File. Additional data on genes encoding putative amino acid transporters from Fig 2. A. RPKM values. B. Differential expression analysis.

(XLSX)

S2 File. Other genes encoding putative amino acid transporters in *C. beijerinckii* NRRL B-598. A. RPKM values. B. Differential expression analysis. C. Heatmap.

(XLSX)

S3 File. Additional data on genes encoding putative metal ion and vitamin transporters from Fig 3. A. RPKM values. B. Differential expression analysis.

(XLSX)

S4 File. Other genes encoding putative metal ion and vitamin transporters in *C. beijerinckii* NRRL B-598. A. RPKM values. B. Differential expression analysis. C. Heatmap.

(XLSX)

S5 File. Additional data on genes encoding putative carbohydrate transporters from Fig 5. A. RPKM values. B. Differential expression analysis.

(XLSX)

S6 File. Other genes encoding putative carbohydrate transporters in *C. beijerinckii* NRRL B-598. A. RPKM values. B. Differential expression analysis. C. Heatmap.

(XLSX)

S7 File. Transcriptomic data for other genes mentioned in this article. A. RPKM values. B. Differential expression analysis. C. Heatmap.

(XLSX)

Acknowledgments

We acknowledge the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085 for providing computational resources under the program "Projects of Large Research, Development, and Innovations Infrastructures". We acknowledge the CF Genomics of CEITEC, which is supported by the NCMG research infrastructure (LM2015091 funded by MEYS CR), for their support in obtaining the scientific data presented in this paper.

Author Contributions

Conceptualization: Maryna Vasyliivska, Katerina Jureckova, Barbora Branska, Jan Kolek, Ivo Provaznik, Petra Patakova.

Data curation: Karel Sedlar.

Formal analysis: Katerina Jureckova.

Funding acquisition: Ivo Provaznik, Petra Patakova.

Investigation: Maryna Vasyliivska, Barbora Branska, Jan Kolek.

Project administration: Ivo Provaznik, Petra Patakova.
Software: Karel Sedlar.

Supervision: Petra Patakova.

Validation: Maryna Vasylkivska, Barbora Branska, Karel Sedlar, Jan Kolek.

Visualization: Katerina Jureckova.

Writing – original draft: Maryna Vasylkivska.

Writing – review & editing: Katerina Jureckova, Barbora Branska, Karel Sedlar, Jan Kolek, Ivo Provaznik, Petra Patakova.

References

1. Xing W, Xu G, Dong J, Han R, Ni Y. Novel dihydrogen-bonding deep eutectic solvents: Pretreatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield. Chem Eng J. 2018; 333: 712–720. https://doi.org/10.1016/j.cej.2017.09.176

2. Algayyim SJM, Wandel AP, Yusa T, Harnawand I. Production and application of ABE as a biofuel. Renew Sustain Energy Rev. 2018; 82: 1195–1214. https://doi.org/10.1016/j.rser.2017.09.082

3. Luo H, Zhang J, Wang H, Chen R, Shi Z, Li X, et al. Effectively enhancing acetone concentration and acetone/butanol ratio in ABE fermentation by a glucose/acetate co-substrate system incorporating with glucose limitation and C. acetobutylicum/S. cerevisiae co-culturing. Biochem Eng J. 2017; 118: 132–142. https://doi.org/10.1016/j.bej.2016.12.003

4. Mascal M. Chemicals from biobutanol: Technologies and markets. Biofuel Bioprod Biorefin. 2012; 6: 483–493. https://doi.org/10.1002/bbb.1328

5. Prat D, Pardigon O, Flemming HW, Letestu S, Ducandas V, Isnard P, et al. Sanofi’s solvent selection guide: A step toward more sustainable processes. Org Process Res Dev. 2013; 17: 1517–1525. https://doi.org/10.1021/op4002565

6. Tran PJ, Jin S, Paggiola G, Petchey THM, Clark JH, Farmer TJ, et al. Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process. 2016; 4: 7. https://doi.org/10.1186/s40508-016-0051-z

7. Luo H, Ge L, Zhang J, Zhao Y, Ding J, Li Z, et al. Enhancing butanol production under the stress environment of co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous butyrate addition. PLoS One. 2015; 10: e0141160. https://doi.org/10.1371/journal.pone.0141160

PMID: 26489085

8. Wu YD, Xue C, Chen LJ, Bai FW. Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. J Biotechnol. 2013; 165: 18–21. https://doi.org/10.1016/j.jbiotec.2013.02.009 PMID: 23458964

9. Liao Z, Luo Y, Xue C, Fu H, Wang J. Improving the fermentation performance of Clostridium acetobutylicum ATCC 824 by strengthening the V80 biosynthesis pathway. Appl Microbiol Biotechnol. 2018; 102: 8107–8119. https://doi.org/10.1007/s00253-018-9208-x PMID: 29987983

10. Yang Y, Lang N, Yang G, Yang S, Jiang W, Gu Y. Improving the performance of solventogenic clostridia by reinforcing the biotin synthetic pathway. Metab Eng. 2016; 35: 121–128. https://doi.org/10.1016/j.ymben.2016.02.006 PMID: 26924180

11. Patakova P, Lipovsky J, Cizkova H, Fortova J, Rychtara M, Melzoch K. Exploitation of food feedstock and waste for production of biobutanol. Czech J Food Sci. 2009; 27: 276–283. https://doi.org/10.2144/000113087

12. Mitchell WJ. Sugar uptake by the solventogenic clostridia. World J Microbiol Biotechnol. 2016; 32: 32. https://doi.org/10.1007/s11274-015-1981-4 PMID: 26748909

13. Servesinsky MD, Kiel JT, Dupuy NF, Sund CJ. Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum. Microbiology. 2010; 156: 3478–91. https://doi.org/10.1099/mic.0.037085-0 PMID: 20856779

14. Al Makishah NH, Mitchell WJ. Dual substrate specificity of an n-acetylglucosamine phosphotransferase system in Clostridium beijerinckii. Appl Environ Microbiol. 2013; 79: 6712–6718. https://doi.org/10.1128/AEM.01866-13 PMID: 23995920

15. Reeve BWP, Reid SJ. Glutamate and histidine improve both solvent yields and the acid tolerance response of Clostridium beijerinckii NCP 260. J Appl Microbiol. 2016; 120: 1271–1281. https://doi.org/10.1111/jam.13067 PMID: 26789025
16. Sedlar K, Kolek J, Provaznik I, Patakova P. Reclassification of non-type strain Clostridium pasteurianum NRRL B-598 as Clostridium beijerinckii NRRL B-598. J Biotechnol. 2017; 244: 1–3. https://doi.org/10.1016/j.jbiotec.2017.01.003 PMID: 28111164

17. Sedlar K, Kolek J, Skutkova H, Branska B, Provaznik I, Patakova P. Complete genome sequence of Clostridium pasteurianum NRRL B-598, a non-type strain producing butanol. J Biotechnol. 2015; 214: 113–114. https://doi.org/10.1016/j.jbiotec.2015.09.022 PMID: 26410453

18. Kolek J, Sedlar K, Provaznik I, Patakova P. Dam and Dcm methylations prevent gene transfer into Clostridium pasteurianum NRRL B-598: development of methods for electrotransformation, conjugation, and sonoporation. Biotechnol Biofuels. 2016; 9: 14. https://doi.org/10.1186/s13068-016-0436-y PMID: 26793273

19. Kolek J, Branska B, Drahokoupil M, Patakova P, Melzoch K. Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation. FEMS Microbiol Lett. 2016; 363: fnw031. https://doi.org/10.1093/femsle/fnw031 PMID: 26862145

20. Patakova P, Branska B, Sedlar K, Vasylykivska M, Jureckova K, Kolek J, et al. Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level. Sci Rep. 2019; 9: 1371. https://doi.org/10.1038/s41598-018-37679-0 PMID: 30718562

21. Sedlar K, Koscova P, Vasylykivska M, Branska B, Kolek J, Kupkova K, et al. Transcription profiling of butanol producer Clostridium beijerinckii NRRL B-598 using RNA-Seq. BMC Genom. 2018; 19: 415. https://doi.org/10.1186/s12864-018-4805-8 PMID: 29843608

22. Bolger AM, Lohse M, Usadel B. Trimomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404

23. Kopylova E, Noe L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012; 28: 3211–3217. https://doi.org/10.1093/bioinformatics/bts611 PMID: 23071270

24. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013; 41: 590–596. https://doi.org/10.1093/nar/gks1219 PMID: 23193283

25. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29: 15–21. https://doi.org/10.1093/bioinformatics/bts615 PMID: 23104886

26. Liao Y, Smyth GK, Shi W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; 30: 923–930. https://doi.org/10.1093/bioinformatics/btt656 PMID: 24227677

27. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15: 550. https://doi.org/10.1186/s13059-014-0550-8 PMID: 25516281

28. Robinson MD, McCarthy DJ, Smyth GK. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26: 139–140. https://doi.org/10.1093/bioinformatics/btp616 PMID: 19910308

29. Bateman A, Martin MJ, O’Donovan C, Magrane M, Apweiler R, Alpi E, et al. UniProt: A hub for protein information. Nucleic Acids Res. 2015; 43: D204–D212. https://doi.org/10.1093/nar/gku989 PMID: 25348405

30. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, et al. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019; 47: D351–D360. https://doi.org/10.1093/nar/gky1100 PMID: 30398656

31. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019; 47: D427–D432. https://doi.org/10.1093/nar/gky995 PMID: 30357350

32. Gish W, States DJ. Identification of protein coding regions by database similarity search. Nat Genet. 1993; 3: 266–272. https://doi.org/10.1038/ng0393-266 PMID: 8485583

33. Saxena J, Tanner RS. Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. World J Microbiol Biotechnol. 2012; 28: 1553–1561. https://doi.org/10.1007/s11274-011-0959-0 PMID: 22805937

34. Soni BK, Soucaille P, Goma G. Continuous acetone-butanol fermentation: a global approach for the improvement in the solvent productivity in synthetic medium. Appl Microbiol Biotechnol. 1987; 25: 317–321. https://doi.org/10.1007/bf00252540
Transcriptional analysis of nutrient uptake in *Clostridium beijerinckii* NRRL B-598

35. Nguyen NPT, Raynaud C, Meynial-Salles I, Soucaille P. Reviving the Weizmann process for commercial n-butanol production. Nat Commun. 2018; 9: 3682. https://doi.org/10.1038/s41467-018-05661-z PMID: 30206218

36. Long S, Jones DT, Woods DR. Sporulation of *Clostridium acetobutylicum* P262 in a defined medium. Appl Environ Microbiol. 1983; 45: 1389–1393. PMID: 16346276

37. Storari M, Kulli S, Wüthrich D, Bruggmann R, Berthoud H, Arias-Roth E. Genomic approach to studying nutritional requirements of *Clostridium tyrobutyricum* and other *Clostridia* causing late blowing defects. Food Microbiol. 2016; 59: 213–223. https://doi.org/10.1016/j.fm.2015.05.013 PMID: 27375262

38. Jiao S, Zhang Y, Wan C, Lv J, Du R, Zhang R, et al. Transcriptional analysis of degenerate strain *Clostridium beijerinckii* DG-8052 reveals a pleiotropic response to CaCO(3)-associated recovery of solvent production. Sci Rep. 2016; 6: 38818. https://doi.org/10.1038/srep38818 PMID: 27966599

39. Alsaker KV, Paredes C, Papoutsakis ET. Metabolite stress and tolerance in the production of biofuels and chemicals: Gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe *Clostridium acetobutylicum*. Biotechnol Bioeng. 2010; 115: 1131–1147. https://doi.org/10.1002/bit.22628 PMID: 19998280

40. Amador-Noguez D, Brasq IA, Feng X-J, Roquet N, Rabinowitz JD. Metabolome remodeling during the acidogenic-solventogenic transition in *Clostridium acetobutylicum*. Appl Environ Microbiol. 2011; 77: 7984–7997. https://doi.org/10.1128/AEM.05374-11 PMID: 21948882

41. Alsaker KV, Papoutsakis ET. Transcriptional program of early sporulation and stationary-phase events in *Clostridium acetobutylicum*. J Bacteriol. 2005; 187: 7103–7118. https://doi.org/10.1128/ JB.187.20.7103-7118.2005 PMID: 16199581

42. Poudel S, Giannone RJ, Rodriguez M, Raman B, Martin MZ, Engle NL, et al. Integrated omics analyses reveal the details of metabolic adaptation of *Clostridium thermocellum* to lignocellulose-derived growth inhibitors released during the deconstruction of switchgrass. Biotechnol Biofuels. 2017; 10: 14. https://doi.org/10.1186/s13068-016-0697-5 PMID: 28077967

43. Henson MA, Phalack P. *In silico* analysis of *Clostridium difficile* biofilm metabolism and treatment. IFAC-PapersOnLine. 2016; 49: 153–158. https://doi.org/10.1016/j.ifacol.2016.12.118

44. Larroque M, Chenard T, Najmanovich R. A curated *Clostridium acetobutylicum* gene-expression database to elucidate nutrient transport. Appl Environ Microbiol. 2015; 81: 4759–4769. https://doi.org/10.1128/AEM.01154-15 PMID: 26069521

45. Luo H, Ge L, Zhang J, Ding J, Chen R, Shi Z. Enhancing acetone biosynthesis and acetone–butanol–ethanol fermentation performance by co-culturing *Clostridium acetobutylicum*/*Saccharomyces cerevisiae* integrated with exogenous acetate addition. Bioresour Technol. 2016; 200: 111–120. https://doi.org/10.1016/j.biortech.2015.09.116 PMID: 26476171

46. Neumann-Schaal M, Hofmann JD, Will SE, Schomburg D. Time-resolved amino acid uptake of *Clostridium difficile* 630Δerm and concomitant fermentation product and toxin formation. BMC Microbiol. 2015; 15: 281. https://doi.org/10.1186/s12866-015-0614-2 PMID: 26680234

47. Durre P. Physiology and sporulation in *Clostridium*. Microbiol Spectr. 2014; 2: 315–329. https://doi.org/10.1128/microbiolspec.tbs-0010-2012 PMID: 26104199

48. Eisenstadt E. Potassium content during growth and sporulation in *Bacillus subtilis*. J Bacteriol. 1972; 112: 264–267. PMID: 4627924

49. Wu YD, Xue C, Chen LJ, Wan HH, Bai FW. Transcriptional analysis of micronutrient zinc-associated response for enhanced carbohydrate utilization and earlier solventogenesis in *Clostridium acetobutylicum*. Sci Rep. 2015; 5: 16598. https://doi.org/10.1038/srep16598 PMID: 26586044

50. Winzer K, Lorenz K, Durre P. Acetate kinase from *Clostridium acetobutylicum*: A highly specific enzyme that is actively transcribed during acidogenesis and solventogenesis. Microbiology. 1997; 143: 3279–3286. https://doi.org/10.1099/00221287-143-10-3279 PMID: 9353928

51. Zhao X, Xing D, Liu B, Lu L, Zhao J, Ren N. The effects of metal ions and L-cysteine on hydA gene expression and hydrogen production by *Clostridium beijerinckii* RZF-1108. Int J Hydrogen Energy. 2012; 37: 13711–13717. https://doi.org/10.1016/j.ijhydene.2012.02.144

52. Chen HL, Chen ZS, Chou CP. Fedbatch operation using *Clostridium acetobutylicum* suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol Prog. 2003; 19: 383–388. https://doi.org/10.1021/bp0200664 PMID: 12675576
54. Bao MD, Su HJ, Tan TW. Dark fermentative bio-hydrogen production: Effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel. 2013; 112: 38–44. https://doi.org/10.1016/j.fuel.2013.04.063

55. Wu H, Wang C, Chen P, He A-Y, Xing F-X, Kong X-P, et al. Effects of pH and ferrous iron on the coproduction of butanol and hydrogen by Clostridium beijerinckii IB4. Int J Hydrogen Energy. 2017; 42: 6547–6555. https://doi.org/10.1016/j.ijhydrogenenergy.2017.02.094

56. Serio AW, Pechter KB, Sonenshein AL. Bacillus subtilis aconitase is required for efficient late-sporulation gene expression. J Bacteriol. 2006; 188: 6396–6405. https://doi.org/10.1128/JB.00249-06 PMID: 16923907

57. Wu YD, Xue C, Chen LJ, Yuan WJ, Bai FW. Improvements of metabolites tolerance in Clostridium acetobutylicum by micronutrient zinc supplementation. Biotechnol Bioprocess Eng. 2016; 21: 60–67. https://doi.org/10.1007/s12257-015-0583-1

58. Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN. Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genom. 2009; 10: 78. https://doi.org/10.1186/1471-2164-10-78 PMID: 19208259

59. Paredes CJ, Rigoutsos I, Papoutsakis T. Transcriptional organization of the Clostridium acetobutylicum genome. Nucleic Acids Res. 2004; 32: 1973–1981. https://doi.org/10.1093/nar/gkh509 PMID: 15060177

60. Jaehme M, Slotboom DJ. Diversity of membrane transport proteins for vitamins in bacteria and archaea. Biochim Biophys Acta—Gen Subj. 2015; 1850: 565–576. https://doi.org/10.1016/j.bbagen.2014.05.006 PMID: 24836521

61. Maret W, Wedd A. Binding, transport and storage of metal ions in biological cells. Cambridge: The Royal Society of Chemistry. 2014. https://doi.org/10.1039/9781849739979

62. Shukla G, Thakur V. Biohydrogen production from rice mill wastes by Clostridium beijerinckii. Bioresour Technol. 2015; 112: 37–43. https://doi.org/10.1016/j.biortech.2013.12.089 PMID: 24463410

63. Worst DJ, Gerrits MM, Vandenbroucke-Grauls CMJE, Kusters JG. Secretion of flavins by Campylobacter jejuni. Appl Environ Microbiol. 2007; 73: 7819–7825. https://doi.org/10.1128/AEM.01919-07 PMID: 17965203

64. Von Canstein H, Ogawa J, Shimizu S, Lloyd JR. Secretion of flavins by Helicobacter pylori. Biochim Biophys Acta—Gen Subj. 2008; 1784: 485–493. https://doi.org/10.1016/j.bbagen.2008.05.006 PMID: 18065612

65. Rodionov DA, Li X, Rodionova IA, Yang C, Sorci L, Dervyn E, et al. Transcriptional regulation of NAD metabolism in bacteria: Genomic reconstruction of NiaR (YrxA) regulon. Nucleic Acids Res. 2008; 36: 2032–2046. https://doi.org/10.1093/nar/gkn046 PMID: 18276644

66. Li T, Yan Y, He J. Reducing cofactors contribute to the increase of butanol production by a wild-type Clostridium sp. strain BOH3. Bioresour Technol. 2014; 155: 220–228. https://doi.org/10.1016/j.biortech.2013.12.089 PMID: 24463410

67. Mitchell WJ. The phosphotransferase system in solventogenic clostridia. J Mol Microbiol Biotechnol. 2015; 25: 129–142. https://doi.org/10.1159/000375125 PMID: 26159074

68. Shi Y, Li Y-X, Li Y-Y. Large number of phosphotransferase genes in the Clostridium beijerinckii NCIMB 8052 genome and the study on their evolution. BMC Bioinformatics. 2010; 11: S9. https://doi.org/10.1186/1471-2105-11-S11-S9 PMID: 21172059

69. Tangney M, Mitchell WJ. Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824. Appl Microbiol Biotechnol. 2007; 74: 398–405. https://doi.org/10.1007/s00253-006-0679-9 PMID: 17096120

70. Wang Y, Li X, Blaschek HP. Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052: genome-wide transcriptional analysis with RNA-Seq. Biotechnol Biofuels. 2013; 6: 138. https://doi.org/10.1186/1754-6834-6-138 PMID: 24229082

71. Wang Y, Li X, Mao Y, Blaschek HP. Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq. BMC Genom. 2012; 13: 102. https://doi.org/10.1186/1471-2164-13-102 PMID: 22433311
75. Seo S-O, Janssen H, Magis A, Wang Y, Lu T, Price ND, et al. Genomic, transcriptional, and phenotypic analysis of the glucose derepressed Clostridium beijerinckii mutant exhibiting acid crash phenotype. Biotechnol J. 2017; 12: 1700182. https://doi.org/10.1002/biot.201700182 PMID: 28762642

76. Shi Z, Blaschek HP. Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis. Appl Environ Microbiol. 2008; 74: 7709–7714. https://doi.org/10.1128/AEM.01948-08 PMID: 18849451

77. Zhang L, Leyn SA, Gu Y, Jiang W, Rodionov DA, Yang C. Ribulokinase and transcriptional regulation of arabinose metabolism in Clostridium acetobutylicum. J Bacteriol. 2012; 194: 1055–1064. https://doi.org/10.1128/JB.06241-11 PMID: 22194461

78. Sun Z, Chen Y, Yang C, Yang S, Gu Y, Jiang W. A novel three-component system-based regulatory model for D-xylose sensing and transport in Clostridium beijerinckii. Mol Microbiol. 2015; 95: 576–589. https://doi.org/10.1111/mmi.12894 PMID: 25441682

79. Mitchell WJ. Physiology of carbohydrate to solvent conversion by Clostridia. Adv Microb Physiol. 1997; 39: 31–130. https://doi.org/10.1016/S0065-2911(08)60015-6