Reef fishes abundance and assemblages in six islands (Kapoposang, Lanyukang, Lumu-Lumu, Badi, Ballang Lompo and Karanrang island) of spermonde archipelago during El Nino 2016, South Sulawesi, Indonesia

Nita Rukminasari, Suharto, Dewi Yanuarita, Jamaluddin Jompo, and Dwi Fajriati Inaku

Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar, South Sulawesi, Indonesia

Email: nita.r@unhas.ac.id

Abstract. Overfishing in the Spermonde Archipelago has resulted in long-term changes in fishery composition and structure, as well as in resource utilization patterns. Later on, the patterns of resource use are highly variable, with new activities and new target species, e.g., ornamental corals and intensive coral reef fishery being a relatively recent phenomenon in the area. This research aims at measuring the coral fishes abundance and assemblages in six islands (Kapoposang, Lanyukang, Lumu-Lumu, Badi, Ballang Lompo, and Karanrang), representing off-shore and in-shore of Spermonde Archipelago waters during the occurrence of the 2016 El Nino. Underwater Visual Census (UVC) method was done to measure coral fish abundance, once every seasonal interval, totaling four times for every island, on 70 meter transects covering an area of 350 m² (2.5 m to the right and left and 5 m above). Fish species found were identified by following several coral fish identification books. Data was analyzed for their total species abundance based on the family. Results showed that coral fish abundance by the family was found to be lowest (less than 10,000 individuals/hectare) all through the year in Karanrang Island. The most abundance was found in Lanyukang Island (84,600 individu/hectare) during the month of September, followed by Badi Island (59,971 individu/hectare). In February, fish abundance of 35,743 and 46,886 individu/hectare were only found in Kapoposang and Badi islands. All in all, on average, Badi island showed for having relatively equal coral fish abundance in all four seasons. One hundred species were found in Lanyukang, while 78 species were found in Lumu-Lumu, totaling 136 species of coral fishes of 28 families. Coral fishes species always found in all trips were 20 species in Lanyukang and 11 species in Lumu-Lumu. Four species always found in both islands were Thalassoma hardwicke, Neoglyphidodon nigroris, Labroides dimidiatus, Cirrhilabrus ryukyuensis. Fishes found most abundance were from Labridae and Pomacentridae families, each of 31 and 30 species. The temporary conclusion was that Lanyukang has more species than Lumu-Lumu.

1. Introduction
Coral reef fish often live in close association with their habitat, and it has been widely acknowledged that reef fish assemblages are largely influenced by habitat structure (1–6). Degradation of coral reefs has been shown to affect associated fish communities irrespective of whether the cause of degradation is experimental (e.g. (7–10), anthropogenic by use of destructive fishing gears (e.g. [5,10-11]) or natural through, e.g., Crown-of-Thorns starfish infestations [12], storms and cyclones [13–15], or bleaching

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
Several fish species are strongly associated with live coral cover (e.g. [1,4,6]), and their choice of habitat may be determined at settlement [21].

Overfishing in the Spermonde Archipelago has resulted in long-term changes in fishery composition and structure, as well as in resource utilization patterns [11]. Later on, the patterns of resource use are highly variable, with new activities and new target species, e.g., ornamental corals [22] and intensive coral reef fishery being a relatively recent phenomenon in the area. These research results and some others indicate the decrease in fish’s abundance in Spermonde due to coral reef degradation. The effect of disturbances on reefs in Spermonde islands so far has come from investigations on few selected sites and over rather short periods of time. The temporal and spatial scale of changes of coral fishes over longer periods of time, therefore, might help or even necessary to understand their responses to varieties of stressors, especially to sea temperature rise during the 2016 El Nino.

Warming ocean temperatures cause sea levels to rise, but in combination with salinity changes, they also influence the geographic distribution of marine biota and can have direct effects on the species composition, breeding and population dynamics of plankton, benthos, fish and other species. Coral reefs being the most diverse marine ecosystems and besides acting as nurseries to young fish and shellfish, also are invaluable for tourism and protect islands and coastal areas from storm surges and strong waves.

Therefore, this research as a part of “Coral Vulnerability Assessment to Temperature Stress (Bleaching) and Ocean Acidification in the Spermonde Archipelago: Conservation Strategies for Climate Resilience” 2016-2017, aims to assess coral fishes abundance that could provide a better outlook for better management leading to sustainability of its resources services.

2. Material and Methods

2.1. Study sites

For the purpose of this research, Spermonde waters were divided into in-shore to off-shore islands based on de Klerk (Moll, 1983). The in-shore or inner shelf is area closest to the main island, Sulawesi, with a depth average of 10 m and bottom substrate dominated by sand and mud, represented by Karanrang (04.85328°S to 119.38357°E) and Ballang Lompo (04.93818°S to 119.39710°E) Islands. The middle-zone, starting at 12.5 km off Sulawesi with a depth ranging from 20 to 50 m and where submerged coral reefs are found many, represented by Badi (04.97190°S to 119.28344°E) and Lumu-Lumu (04.97642°S to 119.22208°E) Islands. The off-shore zone or the outer shelf is the zone of the barrier reef, and about 30 km from the mainland of Sulawesi are represented by Lanyukan (04.97795°S to 119.08361°E) and Kapoposang (04.69777°S to 118.56240°E) islands (Figure 1.)
2.2. Material
Scuba diving, roll meter of 70 m long for transect, underwater paper, pencil, and underwater camera were used to record the coral fishes.

2.3. Sampling method and fish census
Data were collected within more or less three months intervals starting February 2016 as the first trip, May 2016, as the second trip, September 2016, as the third trip and December 2016 as the fourth trip representing monsoon seasons.

![Figure 2. Underwater Visual Census (UVC)](image)

Underwater Visual Census (UVC) method was done to measure coral fish abundance, once every seasonal interval, totaling four times for every island, on 70 meter transects covering an area of 350 m2 (2.5 m to the right and left and 5 m above) following [23] (Fig. 2). Data for seawater temperatures throughout 2016 were recorded using Hobo underwater temperature data logger, which were put within the depth of five to seven meters in all those six islands.

2.4. Data analysis
The calculation of the coral fish abundance found was converted to individual/hectare from a sampling area of 350 m2 and analyzed by family. All the data abundance converts to the hectare. Coral fishes were identified using the book of Tropical Reef-Fishes Of The Western Pacific “Indonesia and Adjacent Waters” by Kuiter (19) and Pictorial Guide To “Indonesian Reef Fishes” by [24]. Reef fish abundance calculates using density formula:

$$D = \frac{\sum N_i}{A}$$ (1)

Where:
- D = Fish density/abundance (Ind/ha)
- N_i = Number of individual fish (Ind)
- A = width of area (ha)

Seawater temperatures data were used to mark the higher or lower level temperatures found in each island and to support the fish abundance discussion.

3. Results
Coral fish abundance by the family was found to be lowest (less than 10,000 individuals/hectare) all through the year in Karanrang Island. The most abundance was found in Lanyukang Island (84,600 individu/hectare) during the month of September, followed by Badi Island (59,971 individu/hectare). In February fish abundance of 35, 743 and 46,886 individu/hectare were only found in Kapoposang and Badi islands. All in all, on average, Badi island shown for having relatively equal coral fish abundance in all four seasons (Figure 3).
Of all coral fishes family, Labridae (wrasses) and Pomacentridae (damselfishes) counted the most found in those six islands. Lumu-Lumu island holds the highest record of having fish of family Labridae (a bit more than 20,000 individu/hectare) in June (Figure 4 and 5).
As for family Pomacentridae, the highest abundance was found in Lanyukang island during September and December, ranging from 60.314 to 77.543 individu/hectare. Unlike that of family Labridae, family Pomacentridae was always found in all four seasons in Badi Island, with the highest number during February and the lowest during December (Figure 6).

![Figure 6. Coral Fishes of Family Pomacentridae Abundances in six islands](image)

As for the live coral cover, Badi island had the highest coral cover during February and December, ranging from 71.8 to 80.22, while Balang Lompo island had the lowest live coral cover during February and December, ranging 3.38 to 7.9 (Figure 7).

![Figure 7. Live Coral Cover in six islands during sampling period](image)

4. Discussion
Distribution of coral fishes will differ related to the life form and coral reef physical condition. Fish species diversity, as well as its structure among functional groups, may determine the resistance and the resilience of fish assemblages to disturbance [24–26]. Most frequent coral fishes found in both islands were from the major group under the family of Labridae and Pomacentridae, both of which are herbivores. In terms of coral fish diversity, Lanyukang Island (offshore zone) has more fishes compare to Lumu—lumu Island (inshore zone), despite the fact that Lumu-lumu has better coral condition than Lanyukang. [27] found that there was an increase of invertivore species across the inshore to offshore gradient (e.g., C. auricularis, C. auratus, P. biserialis and R. sarba), which may be associated with increased food availability at greater depths or with greater water movement. Live coral cover at Lumu-lumu is up to 40%, while Lanyukang has 20%.Indicator coral fishes, found in few, were only found in Lanjukang Island. This finding was in line with a previous study by [27] who found that coral cover was positively correlated with total fish density.

The labroids include the wrasses, the parrotfishes, and the damselfishes. Wrasses are a large family of some 500 carnivorous species that specialize in taking benthonic invertebrates, primarily crustaceans and molluscs [7]. There are about 68 species of parrotfishes, and most are primarily herbivorous. Herbivore fishes are essential to maintaining healthy and resilient reefs [28,29]. The damselfishes, which total 235 species worldwide, have diets which range from herbivory to planktivory, to feeding on benthic crustaceans. Many wrasses and parrotfishes exhibit sequential hermaphroditism and have complex social systems. Territorial behavior is common among the damselfishes. Wrasses are known to be the principal cleaner fishes in the Indo-Pacific [32].

The temporary conclusion showed no relation of live coral condition with coral fishes found, which may result in less sampling replication of the transect as well as time replication.

Acknowledgment
We thanks to our students (Sudjriati Mustari, Marwah, Adi, Alinda, M. Yusfi Yusuf, Wahid, Syaeful and Wahidah) who helping us for field sampling of this project. Also we thank to M. Hijaz and Funti, who collected fish data for this research. This research was funded by USAID with the program of Partnership for Enhanced and Engagement in Research (PEER) project cycle 4.

References
[1] Chabanet P, Ralambondrainy H, Amanieu M, Faure G, Galzin R 1997 Relationships between coral reef substrata and fish. Coral Reefs 16(2):93–102
[2] Ohman MC, Rajasuriya A 1998 Relationships between habitat structure and fish communities.pdf. Environ Biol Fishes 53:19–31
[3] Bergman KC, Òhman MC, Svensson S 2000 Influence of habitat structure on Pomacentrus sulphureus, a western Indian Ocean reef fish. Environ Biol Fishes 59(3):243–52
[4] Garpe KC, Ohman MC 2003 Coral and fish distribution patterns in Mafia Island Marine Park, Tanzania: Fish-habitat interactions. Hydrobiologia 498:191–211
[5] Wilson SK, Fisher R, Pratchett MS, Graham NAJ, Dulvy NK, Turner RA 2008 Exploitation and habitat degradation as agents of change within coral reef fish communities. Glob Chang Biol 14(12):2796–809
[6] Wilson SK, Adjeroud M, Bellwood DR, Berumen ML, Booth D, Bozec YM 2010 Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. J Exp Biol 213(6):894–900
[7] Sano M, Shimizu M, Nose Y 1984 Changes in structure of coral reef fish communities by destruction of hermatypic corals: observational and experimental views. Pacific Sci 38(1):51–79
[8] Lewis AR 1997 Recruitment and post-recruit immigration affect the local population size of coral reef fishes. Coral Reefs 16(3):139–49
[9] Syms C 1998 Disturbance and the structure of coral reef fish communities on the reef slope. J Exp Mar Bio Ecol 230(2):151–67
[10] Ohman MC, Rajasuriya A, Olafsson E 1997 Reef fish assemblages in north-western Sri Lanka: Distribution patterns and influences of fishing practises. Environ Biol Fishes 49(1):45–61
[11] Pet-Soede C, Van Densen WLT, Pet JS, Machiels MAM 2001 Impact of Indonesian coral reef fisheries on fish community structure and the resultant catch composition. Fish Res. 51(1):35–51
[12] Sano M, Shimizu M, Nose Y 1987 Long-term effects of destruction of hermatypic corals by Acanthaster planci infestation on reef fish communities at Iriomote Island, Japan. Mar Ecol Prog Ser 37:191–9
[13] Walsh WJ 1983 Stability of a coral reef fish community following a catastrophic storm. Coral Reefs 2(1):49–63
[14] Cheal AJ, Coleman G, Delean S, Miller I, Osborne K, Sweatman H 2002 Responses of coral and fish assemblages to a severe but short-lived tropical cyclone on the Great Barrier Reef, Australia. Coral Reefs 21(2):131–42
[15] Halford A, Cheal AJ, Ryan D, William DM 2004 Resilience to Large-Scale Disturbance in Coral and Fish Assemblages on the Great Barrier Reef. Ecology 85(7):1892–905
[16] Öhman MC, Lindahl U, Schelten CK 1999 Influence of coral bleeding on the fauna of Tutia Reef, Tanzania. Coral Reef Degrad Indian Ocean 7(10):48–52
[17] Lindahl U, Öhman MC, Schelten CK 2001 The 1997/1998 mass mortality of corals: Effects on fish communities on a Tanzanian coral reef. Mar Pollut Bull 42(2):127–31
[18] Spalding MD, Jarvis GE 2002 The impact of the 1998 coral mortality on reef fish communities in the Seychelles. Mar Pollut Bull 44(4):309–21
[19] Pratchett MS, Wilson SK, Berumen ML, McCormick MI 2004 Sublethal effects of coral bleaching on an obligate coral feeding butterflyfish. Coral Reefs 23(3):352–6
[20] Garpe KC, Yahya SAS, Lindahl U, Öhman MC 2006 Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Mar Ecol Prog Ser 315:237–47
[21] Booth DJ, Beretta GA 1994 Seasonal recruitment, habitat associations and survival of pomacentrid reef fish in the US Virgin Islands. Coral Reefs 13:81–9
[22] Knittweis L, Kraemer WE, Timm J, Kochzius M 2009 Genetic structure of Heliofungia actiniformis (Scleractinia: Fungiidae) populations in the Indo-Malay Archipelago: Implications for live coral trade management efforts. Conserv Genet 10(1):241–9
[23] Halford AR, Thompson AA 1994 Visual Censuses Surveys of Reef Fish. Australian Institute of Marine Science 14 p
[24] Allen GR, Adrim M 2003 Review: Article Coral Reef Fishes of Indonesia. Zool Stud. 42(1):1–72
[25] Hughes TP 1994 Catastrophes, phase shifts, and large-scale degradation of Caribbean coral reef. Science (80-) 265:1547–51
[26] Jennings S, Reynolds J., Polunin NV 1999 Predicting the vulnerability of tropical reef fishes to exploitation with phylogenies and life histories. Conserv Biol. 13(6):1466–75
[27] Mumby PJ, Dahlgren CP, Harborne AR, Kappel C V., Micheli F, Brumbaugh DR 2006 Fishing, trophic cascades, and the process of grazing on coral reefs. Science (80-) 311(5757):98–101.
[28] Bach LL, Saunders BJ, Newman SJ, Holmes TH, Harvey ES 2018 Cross and long-shore variations in reef fish assemblage structure and implications for biodiversity management. Estuar Coast Shelf Sci [Internet]. 218:246–57. Available from: https://doi.org/10.1016/j.ecss.2018.12.023
[29] Jörgensen TL, Martin EC, Burt AJ 2015 Spatial variability in habitat structure and heterogenic coral reef fish assemblages inside a small-scale marine reserve after a coral mass mortality event. Ocean Coast Manag 114:32–41
[30] Doropoulos C, Hyndes GA, Abecasis D, Vergés A 2013 Herbivores strongly influence algal recruitment in both coral- and algal-dominated coral reef habitats. Mar Ecol Prog Ser 486:153–64
[31] Edwards CB, Friedlander AM, Green AG, Hardt MJ, Sala E, Sweatman HP, et al 1991 Global assessment of the status of coral reef herbivorous fishes: Evidence for fishing effects. *Proc R Soc B Biol Sci.* 281(1774):7–11

[32] Magnuson J 1991 Fish and Fisheries Ecology. *Ecol Applications* 1(1):13–26