CONTINUOUS COHOMOLOGY OF THE GROUP
OF VOLUME-PRESERVING AND SYMPLECTIC
DIFFEOMORPHISMS, MEASURABLE TRANSFER
AND HIGHER ASYMPTOTIC CYCLES

ALEXANDER REZNIKOV

July, 1996

Topology of a manifold is reflected in its diffeomorphism group. It is challenging therefore to understand the diffeomorphism group $Diff(M)$ both as a topological and discrete group. Twenty years ago, some work has been done, in connection with characteristic classes of foliations, in constructing continuous cohomology classes for $Diff(M)$. For M closed oriented n-dimensional manifold, a class in $H_{cont}^{n+1}(Diff(M), \mathbb{R})$ has been explicitly written down by Bott [Bo] [Br]. This class is defined as follows. The group $Diff(M)$ acts in the multiplicative group $C^\infty_+(M)$ of positive smooth functions, and on its torsor $A_n(M)$ of volume forms. Hence one gets a cocycle in $H_{cont}^1(Diff(M), C^\infty_+(M))$, defined by
\[\lambda(f) = f^*(v) = \text{Jac}_v(f), \]
where $v \in A_n(M)$ and $f \in Diff(M)$. The Bott class is
\[\int_M \log \lambda \cup d \log \lambda \cup \ldots \cup d \log \lambda \]

The nontriviality of Bott class had been shown for $M = S^1$ [Br], and recently for S^n [BCG], $\mathbb{C}P^n$ [Go] by restricting to finite-dimensional Lie groups in $Diff(M)$. In fact, the restriction of the Bott class on $SO(n,1) \subset Diff(S^n)$ gives the hyperbolic volume class, whereas the restriction on $PSL(n+1, \mathbb{C}) \subset Diff(\mathbb{C}P^n)$ gives the Borel class.

By its construction, the Bott class vanishes on the group $Diff_v(M)$ of volume-preserving diffeomorphisms. Moreover, since it is defined by an invariant closed $(n+1)$-form in the space $A_n(M)$ where $Diff(M)$ acts, and by a theorem of Brooks [Br] there are no more invariant forms there, one gets just one class in dimension $(n+1)$ for a fixed manifold M. This contrasts sharply the usual intuition coming from the study of finite-dimensional semisimple group, where there is a range of continuous cohomology classes.

In this paper we construct, for a closed manifold M^n with a volume form ν, a series of continuous cohomology classes in $H_{cont}^{\kappa}(Diff_v(M), \mathbb{R})$ for all $\kappa = 5, 9, \ldots$. The classes will be shown nontrivial already for a torus T^n. We also will construct, for a symplectic manifold (M, w), a series of classes in $H^{2\kappa}(Sympl(M), \mathbb{R})$.

Partially supported by a BSF grant
for $\kappa = 1, 3, \ldots$. Again, these are nontrivial for a torus T^n with standard symplectic structure.

Working harder, we will show that for the smooth moduli space of stable vector bundles over a Riemann surface \mathcal{M} with its Kähler structure, our class in $H^2(Symp(\mathcal{M}_g), \mathbb{R})$ is nontrivial and restricts to a generator of $H^2(Map_g, \mathbb{R})$, where Map_g is the mapping class group:

Theorem (3.6). $H^2(Symp(\mathcal{M}_g), \mathbb{R})$ is nontrivial. Moreover, the homomorphism $Map_g \to Symp(\mathcal{M}_g, \mathbb{R})$ induces a nontrivial map in the second real cohomology.

In both cases, our classes arise from action on a “principal homogeneous space” X which in the case of $Diff_{\nu}(M)$ will be the space of Riemannian metrics with volume form ν, and in the case of $Sympl(M)$ will be the twistor variety, introduced in [Re1]. In that paper we have studied the symplectic reduction of $Sympl$ to the Hamiltonian action of subgroups of $Diff$ on $SL_n(\mathbb{R})$. The transfer map [Gu] will send these classes to $H^*_{cont}(Diff_{\nu}(M))$.

We will not however prove a rigorous comparison theorem relating these two types of construction in the present paper. However we do use the transfer map to define a new source of classes in $H^*(Diff_{\nu}(M))$ coming from the fundamental group of M. Namely, a map

$$S : H^\kappa(\pi_1(M), \mathbb{R}) \to H^\kappa(Diff_{\nu}^\sim(M), \mathbb{R})$$

will be constructed where $Diff_{\nu}^\sim(M)$ is the connected component of $Diff_{\nu}(M)$. For $\kappa = 1$, the dual of this map, a character

$$S^\vee : Diff_{\nu}^\sim(M) \to H_1(M, \mathbb{R})$$

has been known for forty years [Sch] and called the asymptotic cycle map. One can view our map S as “higher” asymptotic cycle map.

For M a closed surface with an area form, the groups $Diff_{\nu}(M)$ and $Sympl(M)$ coincide. The two previously described constructions produce a class in $H^2_{cont}(Diff_{\nu}(M))$ which we will show to lie in bounded cohomology group $H^2_b(Diff(M), \mathbb{R})$. For $f, g \in Diff_{\nu}(M)$ we give an explicit formula for a cocycle $\ell(f, g)$ representing this class. For any lamination on M [Th] one can exhibit quite a different formula, using the expression for Euler class from [BG].

The following application of dynamical nature will be proven. Let F_2 be a free group in two generators, and let, for some words h_i, k_i in F_2, a sum $\sum_{i=1}^\infty a_i(h_i, k_i)$, $\Sigma|a_i| < \infty$ be a cycle for ℓ^1-homology of F_2. This homology has dimension $2^{|\Sigma|}$, as shown in [M]. Let M be a closed surface with an area form ν. Given $f, g \in Diff_{\nu}(M)$ one has a homomorphism $F_2 \to Diff_{\nu}(M)$, so the words h_i, k_i may be viewed as diffeomorphisms in $Diff_{\nu}(M)$.

Theorem (4.2). Suppose $\sum_{i=1}^\infty a_i \ell(h_i, k_i) \neq 0$. Then the group generated by f, g in $Diff_{\nu}(M)$ is not amenable.
The significance of Theorem 4.2 stems from the fact that the condition \(\sum a_i \ell(h_i, k_i) \neq 0 \) is \(C^1 \)-open on \(f, g \). Therefore one gets a domain in \(Diff_\nu(M) \times Diff_\nu(M) \), such that any pair \((f, g)\) in it generate a “big” group in \(Diff_\nu(M) \). One can see this result as a step towards “Tits alternative” for the infinite-dimensional Lie group \(Diff_\nu(M) \).

We will show in the next paper that this theorem holds for \(M \) symplectic of higher dimension. For that purpose we ill use Lagrangian measurable foliations and Lyot-Vergne Maslov class to show that our class in \(H^2(Symp(\mathcal{M}_g, \mathbb{R}) \) is bounded. See also the end of [BG].

In [Re2] we defined the “symplectic Chern-Simons” classes \(K_{alg}^{2i-1}(Symp(M)) = \pi_{2i-1}(\mathbb{R}) \to \mathbb{R}/A \), where \(A \) is the group of periods of the Cartan form in \(\Omega^{2i-1}_{cl}(\text{Symp}^{\top}(M)) \), introduced in [Re2], on the Hurewitz image of \(\pi_{2i-1}(\text{Symp}^{\top}(M)) \) in \(H_{2i-1}(\text{Symp}^{\top}(M), \mathbb{R}) \). The real classes introduced in the present paper seem to be in the same relation to the symplectic Chern-Simons classes as Borel classes in \(H_{cont}^*(SL_3(K, \mathbb{R}) \) are to proper Chern-Simons classes \((K = \mathbb{R}, \mathbb{C}) \). The “symplectic Chern-Simons classes” of [Re2] have remarkable rigidity property: for a continuous family of representations of a f.g. group \(\Gamma \) into \(\text{Symp}(M) \), the pull-back of these classes are constant in \(H^*(\Gamma) \). This contrasts strikingly the famous non-rigidity of the Bott class, proved by Thurston. In fact, Thurston exhibited a family of homomorphism \(\tau_1(S) \to Diff(S^1) \), where \(S \) is a closed surface of genus two, with varying Godbillon-Vey class (which coincides with the Bott class for \(Diff(S^1) \)).

We do not know if the real classes constructed in the present paper in \(H^*(Diff_\nu(M)) \) and \(H^*(\text{Symp}(M)) \) are rigid. However, we introduce a new “Chern-Simons” class in \(H^3(Diff_\nu(S^3), \mathbb{R}/\mathbb{Z}) \) which is rigid and restricts to usual Chern-Simons class on \(H^3(SO(4), \mathbb{R}/\mathbb{Z}) \). This uses the invariant scalar product on Lie \((Diff_\nu(S^3)) \) in much the same way we used invariant polynomials on Lie \((\text{Symp}(M)) \) in [Re2].

6.6 Theorem (Chern-Simons class in \(Diff_\nu(S^3) \)). There exists a rigid class in \(H^3(Diff_\nu(S^3), \mathbb{R}/\mathbb{Z}) \) whose restriction on \(SO(4) \approx S^3 \times S^3/\mathbb{Z}_2 \) coincides with the sum of standard Chern-Simons classes. Moreover, for \(M = S^3/\Gamma \) there exists a class in \(H^3(Diff_\nu(M, \mathbb{R}/\mathbb{Z}) \) whose restriction on \(S^3 \) is \(|\Gamma| \) times the standard Chern-Simons class.

1. Forms on the space of metrics

We work with the manifold \(M \) with the fixed volume form \(\nu \). Define the space \(\mathcal{P} \) as the Frechet manifold of \(C^\infty \)-Riemannian metrics on \(M \), whose volume form is \(\nu \). Obviously, \(Diff_\nu(M) \) acts on \(\mathcal{P} \). We can look at \(\mathcal{P} \) as a space of sections of a fibration \(\mathcal{P} \to \mathbb{F} \to M \) with a fiber \(SL_N(\mathbb{R})/SO(N) \), where \(N = \dim M \). Clearly, \(\mathcal{M} \) is contractible. For any \(n = 5, 9, \ldots \) fix the Borel form: a \(SL_N(\mathbb{R}) \)-invariant closed \(n \)-form on \(SL_N(\mathbb{R})/SO(N) \), normalized as in [Bo]. For a vector space \(V \) of dimension \(N \) with a volume form \(\nu \) this gives a canonical choice of a closed form on the space \(\mathcal{P}^V \) of Euclidean metrics on \(V \) with determinant \(\nu \). Call this form \(\psi_n^V \). Now, we define a form on \(\mathcal{P} \) by \(\psi_n = \int_M \psi_n^{T_x M} \). That means the following: let \(g \in \mathcal{P} \) a Riemannian metric on \(M \). Let \(h_1, \ldots, h_n \in T_g \mathcal{P} \) be symmetric bilinear smooth 2-forms. Define \(\psi_n(h_1, \ldots, h_n) = \int_M \psi_n^{T_x M}(h_1(x), \ldots, h_n(x)) \, d\nu \).

Lemma (1.1). The form \(\psi \in \Omega^n(\mathcal{P}) \) is closed and \(Diff_\nu(M) \)-invariant.
Proof. The invariance is obvious from definition. To prove the closedness, observe first that a form \(\psi_n(x_1, \ldots, x_m)(h_1, \ldots, h_n) = \sum_{j=1}^m \lambda_j \psi_n^{T_z_j(M)}(h_1(x_j), \ldots, h_n(x_j)) \) is closed as a pull-back of a closed form under the map \(P \mapsto \prod_{j=1}^m P^{T_z_j(M)} \). Now one approximates \(\psi \) by \(\psi_n(x_1, \ldots, x_m) \) to show that \(\psi \) is closed.

1.2 The definition of the classes. We will now apply a general theory of regulators, as presented in [Re1], section 3. For a Frechet-Lie group \(G \), we have an inclusion \(\iota : \text{Diff}_\nu(M) \to \text{Diff}_\nu^\delta(M) \). The class \(\gamma_n \) is defined as \(\gamma_n \in H^n(\text{Diff}_\nu^\delta(M), \mathbb{R}) \) is defined as \(r(\psi_n) \).

Theorem (1.3). The class \(\gamma_n \) lies in the image of the natural map

\[
H^n_{\text{cont}}(\text{Diff}_\nu(M), \mathbb{R}) \to H^n(\text{Diff}_\nu^\delta(M), \mathbb{R}).
\]

The proof follows from Proposition 1.3 below.

1.3 Simplices in \(P \) and a Dupont-type construction. Fix two metrics \(g_1, g_2 \) in \(P \). We can join them by a segment in two different ways. First, there is a straight line segment \(I_{g_1,g_2}(t) : t \mapsto t \cdot g_1 + (1 - t)g_2 \). Second, there is a geodesic segment \(J_{g_1,g_2}(t) : t \mapsto (x \mapsto c(t,g_1(x),g_2(x))) \). Here \(t \in [0,1], x \in M, g_1(x), g_2(x) \in \mathcal{P}^{T_z}(M) \). Now, having \(n \) metrics \(g_1, \ldots, g_n \) in \(P \) we define two singular simplices \(I_{g_1\ldots g_n} : \sigma \to P \) and \(J_{g_1\ldots g_n} : \sigma \to P \) by induction as a joint of \(g_1 \) and \(J_{g_2\ldots g_n} \). Using straight line segments (resp. geodesic segments, comp [Th2]).

Proposition (1.3). Both \(\gamma_n^I \) and \(\gamma_n^J \) are continuous cocycles, representing \(\gamma_n \).

Proof. The proof mimics the finite-dimensional case, cf. [Du], and is therefore omitted.

2. Non-triviality

We will prove that the class \(\gamma_n \) in discrete group cohomology, and consequently classes of \(\gamma_n^I \) and \(\gamma_n^J \) in continuous cohomology are non-trivial in general. For that purpose, consider a torus \(T^N = \mathbb{R}^N / \mathbb{Z}^N \) with a standard volume form \(dx_1 \ldots dx_N \). We have an inclusion

\[
SL(N, \mathbb{Z}) \hookrightarrow \text{Diff}_\nu(T^N)
\]
Proposition (2.1). The class γ_n restricts to the Borel class in $H^n(SL(N,\mathbb{Z}),\mathbb{R})$ and is therefore nontrivial for N big enough.

Proof. Let \mathcal{P}_0 be the space of left-invariant metrics on T^N with the determinant ν; as a manifold, $\mathcal{P}_0 \approx SL_N(\mathbb{R})/SO(N)$. The embedding $\mathcal{P}_0 \hookrightarrow \mathcal{P}$ is $SL_N(\mathbb{Z})$-invariant, and the pull-back of the form ψ_n on \mathcal{P}_0 is the Borel form on \mathcal{P}_0. Now by [Re1], section 3, $r(\psi_n)$ coincides with the Borel class.

3. Cohomology of symplectic diffeomorphisms

We will now adapt the theory for the group $\text{Sympl}(M)$ of symplectic diffeomorphisms of a compact symplectic manifold M. For this purpose, we will introduce a new (∞-dimensional) contractible manifold Z, on which $\text{Sympl}(M)$ acts, preserving some differential forms of even degree.

3.1 Principal transformation space. Let \mathfrak{F} be the fibration over M^{2n}, whose fiber over $x \in M$ consists of complex structures in T_xM, say J, such that ω_x is J-invariant and the symmetric form $\omega(J \cdot, \cdot)$ is positive definite. Alternatively, \mathfrak{F} is a $Sp(2n,\mathbb{R})/U(n)$ fiber bundle over M, associated to the $Sp(2n,\mathbb{R})$-frame bundle. The principal transformation space Z is defined as a space of C^∞-sections of \mathfrak{F}. So a point in Z is just an almost-complex structure on M, tamed by ω, in the sense of Gromov [Gr]. Since the Siegel upper half-plane $Sp(2n,\mathbb{R})/U(n)$ is contractible, the space Z is contractible, too.

3.2 Forms on Z. Fix an $Sp(2n,\mathbb{R})$-invariant form on $Sp(2n,\mathbb{R})/U(N)$. This induces a form φ^{T_xM} on \mathfrak{F}_x for each $x \in M$ and a form

$$\varphi = \int_M \varphi^{T_xM} \cdot \omega^n$$

as in 1.1. Obviously, this form φ is $\text{Sympl}(M)$-invariant. Recall that the ring of $Sp(2n,\mathbb{R})$-invariant forms on $Sp(2n,\mathbb{R})/U(n)$ is generated by forms in dimensions $2, 6, \ldots$ [Bo].

Correspondingly, we have $\text{Sympl}(M)$-invariant closed forms, in same dimensions.

We single out the symplectic (Kähler) form on $Sp(2n,\mathbb{R})/U(n)$, which may be described as follows. For $J \in Sp(2n,\mathbb{R})/U(n)$, the tangent space $T_JSp(2n,\mathbb{R})/U(n)$ consists of operators $A : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ satisfying $AJ = -JA$ and $\langle Ax, y \rangle = \langle Ay, x \rangle$, where $\langle \cdot , \cdot \rangle$ is the symplectic structure. Alternatively, A is self-adjoint in the Euclidean scalar product $\langle J \cdot , \cdot \rangle$ and skew-commutes with J. The Kähler form on $T_JSp(2n,\mathbb{R})/U(n)$ is given by $\langle A, B \rangle = Tr JAB$.

3.3 Simplices on Z. For two almost-complex structures J_1, J_2, tamed by ω, we define a segment $\mathcal{J}(t) : t \mapsto (c(t, J_1(x), J_2(x))$ where $c(t, J_1(x), J_2(x))$ is the geodesic segment in the Hermitian symmetric space of nonpositive curvature $Sp(2n,\mathbb{R})/U(n)$, joining $J_1(x)$ and $J_2(x)$. For a collection J_1, \ldots, J_n define a singular simplex $K(J_1, \ldots, J_n)$ as in 1.3.

3.4 Continuous cohomology classes in $\text{Sympl}(M)$: a definition. For any generator of the ring of $Sp(2n,\mathbb{R})$-invariant form on $Sp(2n,\mathbb{R})/U(n)$ we define a continuous cohomology class in $H_{cont}(\text{Sympl}(M),\mathbb{R})$ by the explicit formula.
\[\delta(f_1, \ldots, f_n) = \int_{K(J_0, f_1, J_0, \ldots, f_1 f_2 \ldots f_n, J_0)} \varphi \]

where \(J_0 \) is any fixed tamed almost-complex structure, and \(\varphi \) is a form of 3.2.

3.5 Non-triviality

Let \(M \) be a flat torus \(\mathbb{R}^{2n} / \mathbb{Z}^{2n} \) with a standard symplectic structure \(dx_1 \wedge dx_2 + \ldots + dx_{2n-1} \wedge dx_{2n} \). As in 2.1, we have an \(Sp(2n, \mathbb{Z}) \)-invariant embedding \(Sp(2n, \mathbb{R})/U(n) \hookrightarrow \mathcal{X} \), and the classes of 3.4 on \(\text{Sympl}(M) \) restrict to Borel classes on \(Sp(2n, \mathbb{Z}) \), nontrivial for big \(n \) [B].

3.6 Application to moduli spaces

Let \(S \) be a closed Riemann surface of genus \(g \geq 2 \), and let \(\mathcal{M}_g \) be a component of the representation variety \(\text{Hom}(\pi_1(S), SO(3))/SO(3) \) with Stiefel-Whitney class 1. This is known to be a smooth compact simply-connected symplectic manifold [Go2] of dimension \(6g - 6 \). By a famous theorem of [NS], \(\mathcal{M}_g \) is identified with the moduli space of stable holomorphic vector bundles of rank 2 and odd determinant. The mapping class group \(\text{Map}_g \) acts symplectically on \(\mathcal{M}_g \), so we have an injective homomorphism \(\text{Map}_g \rightarrow \text{Sympl}(\mathcal{M}_g) \). Now we claim the following

Theorem (3.6). \(H^2(\text{Sympl}(\mathcal{M}_g), \mathbb{R}) \) is nontrivial. Moreover, the homomorphism \(\text{Map}_g \rightarrow \text{Sympl}(\mathcal{M}_g, \mathbb{R}) \) induces a nontrivial map in second real cohomology.

Proof. By the main theorem of [NS] there is a holomorphic embedding of the Teichmüller space \(T_g \) to the space of complex structures in \(\mathcal{M}_g \), tamed by Goldman’s symplectic form. In particular, we have a \(\text{Map}_g \)-invariant holomorphic embedding \(T_g \rightarrow^\alpha Z(\mathcal{M}_g) \). Let \(\Omega \) be the Kähler form of \(Z(\mathcal{M}_g) \), then \(\alpha^*(\Omega) \) is a \(\text{Map}_g \)-equivariant Kähler form on \(T_g \). We know there exist holomorphic maps \(Y \rightarrow^\pi S \), where \(S \) is a closed Riemann surface, \(Y \) is a compact complex surface and \(\pi \) is a smooth fibration by complex curves of genus \(g \), such that the corresponding holomorphic map \(\tilde{S} \rightarrow T_g \) is nontrivial. We may form a flat holomorphic fibration \(\mathcal{F} \rightarrow S \) with \(T_g \) as a fiber, associated to the homomorphism \(\pi_1(S) \rightarrow \text{Map}_g \), coming from \(\pi \). The Borel regulator of the flat fibration \(\mathcal{F} \rightarrow S \), corresponding to the form \(\alpha^*(\Omega) \) on \(T_g \), will coincide with the pullback of the class in \(H^2(\text{Sympl}(\mathcal{M}_g, \mathbb{R}) \) under the composite map \(\pi_1(S) \rightarrow \text{Map}_g \rightarrow \text{Sympl}(\mathcal{M}_g) \). The variation of complex structure \(Y \rightarrow^\pi S \) gives a holomorphic section of \(\mathcal{F} \rightarrow S \) which is not horizontal. Therefore the pullback of \(\alpha^*(\Omega) \) on \(S \) using this section will have positive integral over \(S \). By [Re1], section 3, this precisely means that the class we get in \(H^2(S, \mathbb{R}) \) is nontrivial. Therefore the map \(\text{Map}_g \rightarrow \text{Sympl}(\mathcal{M}_g) \) induces a nontrivial map in \(H^2 \).

Q.E.D.

4. Bounded cohomology for area-preserving diffeomorphisms

4.1

Let \(M^2 \) be a compact oriented surface of any genus and let \(\nu \) be an area form on \(M \). Then \(\text{Diff}_\nu M = \text{Sympl}(M) \). The construction of 3.4 gives a class in \(H^2_{\text{cont}}(\text{Diff}_\nu M, \mathbb{R}) \).

Theorem (4.1). The cocyle \(\delta(h_1, h_2) \) of 3.4 is bounded. The class \([\delta]\) lives therefore in the image of the natural map

\[H^2_0(\text{Diff}_\nu (M), \mathbb{R}) \rightarrow H^2(\text{Diff}_\nu^0 (M), \mathbb{R}) \]
Proof. Fix a tame almost-complex structure J_0. Then $\delta(h_1, h_2)$ is given by $\int_M \text{area}_h(\omega)$, where $\text{area}_h(x, y, z)$ is the hyperbolic area in $SL_2(\mathbb{R})/SO(2) \cong \mathcal{H}^2$ of the geodesic triangle, spanned by x, y, z. Therefore $|\delta(h_1, h_2)| \leq \pi \cdot \omega(M)$.

4.2 Non-amenability of two-generated subgroups of $\text{Diff}_\nu(M)$. We will apply theorem 4.1 to the following problem: given two area-preserving maps $f, g : M \rightarrow M$, when the group $\phi(f, g) \in \text{Diff}_\nu(M)$ is “big” (say, free)? When $\text{Diff}_\nu(M)$ is replaced by a finite-dimensional Lie group, this problem has been studied extensively, see e.g. [Re4], and references therein. In [Re4] we showed how the value of a (twisted) Euler class forces 2κ elements $f_1, \ldots, f_{2\kappa}$ of $SL_2(\mathbb{R})$ to generate a free group. Here we will give a criterion for $\phi(f, g)$ as above to be non-amenable. For that, denote $F(f, g)$ a free group in two generators f, g. Consider the ℓ^1-homology Banach space $H_2^\ell(S, \mathbb{R}) [M]$. An element of this space has a representive $\sum_{j=1}^\infty a_j(h_j, k_j)$ with $h_j, k_j \in F, \Sigma|a_j| < \infty$ and $\sum a_j(h_j k_j - h_j - h_j) = 0$ in $\ell^1(F)$. A bounded cocycle ℓ induces a continuous functional

$$\sum a_j \ell(h_i, k_i) : H_2^\ell(S, \mathbb{R}) \rightarrow \mathbb{R}$$

which vanishes if $|\ell| = 0$ in $H_2^\ell(S, \mathbb{R})$.

Theorem (4.2). Let $\sum a_j(h_j, k_j)$ be any ℓ^1-cycle in $H_2^\ell(S, \mathbb{R})$. If $\sum a_j \delta(h_j, k_j) \neq 0$, then the group $\phi(f, g)$ is non-amenable. The set of pairs $(f, g) \in \text{Diff}_\nu(M) \times \text{Diff}_\nu(M)$ satisfying this inequality, is open in C^1-topology.

Proof. Consider the following maps:

$$H_2^\ell(\text{Diff}_\nu(M), \mathbb{R}) \rightarrow H_2^\ell(\phi(f, g), \mathbb{R}) \rightarrow H_2^\ell(F(f, g), \mathbb{R}) \rightarrow (H_2^\ell(F(f, g), \mathbb{R}))^*$$

If $\phi(f, g)$ is amenable, then $H_2^\ell(\phi(f, g), \mathbb{R}) = 0$ [Gr2], so the image of δ in $(H_2^\ell(F(f, g), \mathbb{R}))^*$ is zero and $(\delta, \sum a_i(h_j, k_j)) = 0$, a contradiction. The last statement of the theorem is checked directly from the definition of δ.

4.3 Constructing ℓ^1-cycles. The cardinality of $\dim\mathbb{R} H_2^\ell(F(f, g), \mathbb{R})$ is 2^{\aleph_0} by [M]. To apply the theorem 4.2 it is useful to have explicit formulas for ℓ^1-cycles. One way is described in [M].

5. Lie algebra cohomology

We will give the Lie algebraic analogues of the above constructed classes in $\text{Diff}_\nu(M)$ and $\text{Sympl}(M)$. Observe that some odd-dimensional classes in the Lie algebra of $\text{Sympl}(M)$ were constructed in [Re2] they induce, in general, nontrivial classes in cohomology of $\text{Sympl}(M)$ as a topological space. The even-dimensional classes constructed here always induce trivial classes in $H^*(\text{Sympl}^{\text{top}}(M), \mathbb{R})$.

5.1 Formulas for $\text{Diff}_\nu(M)$. Let $X_1, \ldots, X_{2\kappa+1} \in \text{Lie}(\text{Diff}_\nu(M))$. Fix a Riemannian metric g with volume form ν. Let

$$\psi(X_1, \ldots, X_{2\kappa+1}) = \int_M \text{AltTr} \prod_{j=1}^{2\kappa+1} (\nabla X_j + (\nabla X_j)^*) \cdot \nu$$
Theorem (5.1). ψ defines a cocycle for $H^{2\kappa+1}(\text{Lie}(\text{Diff}_{\nu}(M)))$.

Proof. Consider a $\text{Diff}_{\nu}(M)$-equivariant evaluation map $\text{Diff}_{\nu}(M) \to M : f \mapsto (f^*)^{-1}(g)$. Then the $\text{Diff}_{\nu}(M)$-invariant forms on M, constructed in 1.1 induce left-invariant closed forms on $\text{Diff}_{\nu}(M)$, whose restriction on $T_{\nu} \text{Diff}_{\nu}(M)$ will be a Lie algebra cocycle. The derivative of the evaluation map $\text{Lie}(\text{Diff}_{\nu}(M)) \to T_{g} M$ is given by $X \mapsto \mathcal{L}_X g = g(\nabla X + (\nabla X)^*, \cdot)$. Accounting the formula for Borel classes (see e.g. [Re3]), one arrives above-written formula for ψ.

5.2 Formulas for $\text{Sympl}(M)$. Let $X_1, \ldots, X_{2\kappa} \in \text{Lie}(\text{Sympl}(M))$. Fix a tame almost-complex structure J. Let

$$\varphi_{2\kappa}(X_1, \ldots, X_{2\kappa}) = \int_M \text{Alt} \text{Tr} J \cdot \prod_{j=1}^{2\kappa} \mathcal{L}_{X_j} J \cdot \omega^n$$

Theorem (5.2). φ defines a cocycle for $H^{2\kappa}(\text{Lie}(\text{Sympl}(M)))$.

Proof. Same as for 5.1.

5.3 Vanishing for φ_2 for flat torus.

Proposition (5.3). Let $M = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$ be a torus with standard symplectic structure. Then for any choice of a tame almost-complex structure, the cohomology class of φ_2 in $H^2(\text{Lie}(\text{Sympl}(M)), \mathbb{R})$ is zero.

Proof. The cohomology class of φ_2 does not depend on the choice of J, since X is connected. Choose J to be the standard complex structure. We need to work on the formula for φ_2. Let g be a metric, defined by $g(J \cdot, \cdot) = \omega$ (flat in our case). We then have $\mathcal{L}_X J = [\nabla X, J]$ since g is Kähler and $\nabla X J = 0$. So

$$\varphi_2(X, Y) = \int_M \text{Tr} J([\nabla X, J][\nabla Y, J] - [\nabla Y, J][\nabla X, J]) \cdot \omega^n$$

Let X be Hamiltonian, so that $X = J \text{grad} f$. Then $\nabla X = J H_f$, where H_f is the Hessian of f. If Y is also Hamiltonian, say $Y = J \text{grad} h$, we have

$$\varphi_2(X, Y) = -\int_M \text{Tr} J[H_f, J][H_h, J] \cdot \omega^n$$

Direct computation shows that the last expression is zero for flat torus. Now, Lie(Sympl(M)) is a semidirect product of the ideal of Hamiltonian vector fields and an abelian subalgebra of constant vector fields, generated by (multivalued) linear Hamiltonians. Clearly, $\varphi_2(X, Y)$ is zero for all choices for X and Y.

5.4 Vanishing of φ_2 for a symplectic surface.

Proposition (5.4). Let (M, ω) be a compact surface with a symplectic form. Then for any choice of a tame almost-complex structure, the cohomology class of φ_2 in $H^2(\text{Lie}(\text{Ham}(M)), \mathbb{R})$ is zero.

Proof. Let g be as above. Again we have

$$\varphi_2(X, Y) = -\int_M \text{Tr} J[H_f, J][H_h, J] \cdot \omega$$

The proposition follows now from the following remarkable identity.
Theorem (5.4). On a compact Riemannian surface \((M, g)\) the following identity holds:

\[
\int_M Tr J[H_f, J][H_h, J] \cdot d\text{ area} = - \int K(g) \{f, h\} \cdot d\text{ area},
\]

(*)

where \(K(g)\) is the curvature of \(g\).

Proof. We were only able to prove this identity by a direct (very) long computation ([Re1]), which we will sketch here. Let \(g = e^{A(x, y)}(dx^2 + dy^2)\) in local conformal coordinates. Then \(\Gamma_{xx} = \frac{1}{2}A_x, \Gamma_{yy} = \frac{1}{2}A_y, \Gamma_{xy} = \frac{1}{2}A_x, \Gamma_{yx} = \frac{1}{2}A_y,\)

\(\Gamma_{yy} = -\frac{1}{2}A_x\). Next, \(H_f = \nabla(Grad f)\) and to the matrix of \(H_f\) is

\[
\begin{pmatrix}
-ae_{xx} + \frac{1}{2}e^{-A}(Ayf_y - Ax f_x) & e^{-A}f_y - \frac{1}{2}e^{-A}(Ayf_x + Ax f_y) \\
e^{-A}f_{xy} - \frac{1}{2}e^{-A}(Ayf_x + Ax f_y) & e^{-A}f_{yy} + \frac{1}{2}e^{-A}(Ax f_x - Ay f_y)
\end{pmatrix}
\]

and the same for \(h\). Substituting to the left side of (*) one gets

\[
-2 \left[\int (e^{-A}f_{xy} - \frac{1}{2}e^{-A}(Ayf_x + Ax f_y)) \cdot (h_{xx} - h_{yy} + Ay h_y - Ax h_x) - \\
\int (e^{-A}h_{xy} - \frac{1}{2}(Ay h_x + Ax h_y))(f_{xx} - f_{yy} + Ay f_y - Ax f_x) \right] dxdy
\]

Twice integrating by parts, one finds this equal to

\[
\int e^{-A}[-A_{xy}f_x + AyAx f_x - A_{yy}f_x + \\
+AyAy f_x + Ayx f_y - Ax Ay f_y + AxAx f_y - Ax Ax f_y]dxdy
\]

On the other hand, the right hand side is

\[
\int_M \{f_x h_y - f_y h_x\} \cdot (Ax + Ay) e^{-A}dxdy.
\]

Again integrating by parts, one gets the same expression as above. q.e.d.

6. Chern-Simons-type class in \(H^3(Diff f_\nu(M^3), \mathbb{R}(\mathbb{Z}))\)

This section is best read in conjunction with [Re2]. In that paper, we constructed secondary classes in \(Hom(\pi_{2i-1}(B\text{Sympl}^0(M)^+, \mathbb{R}/A)\) where \(M^{2n}\) is a compact simply-connected symplectic manifold and \(A\) is a group of periods of a biinvariant \((2i-1)\)-form on \(\text{Sympl}(M)\), whose restriction on the Lie algebra is \(f_1, \ldots, f_{2i-1} \rightarrow \text{Alt} \int_M \{f_1, f_2\} f_3 \ldots f_{2i-1} \cdot \omega^n\). In particular, it implied the following results.

6.1 Theorem ([Re2]) (Chern-Simons class extends to \(\text{Sympl}(S^2)\)). There exists a rigid class in \(H^3(\text{Sympl}(S^2, \text{can}), \mathbb{R}/\mathbb{Z})\) whose restriction on \(\text{SO}(3)\) is the standard Chern-Simons class.
6.2 Theorem ([Re2]) (Chern-Simons class extends to $\text{Symp}(\mathbb{C}P^2)$). There exists a rigid class in $H^3(\text{Symp}(\mathbb{C}P^2, \text{can}), \mathbb{R}/\mathbb{Z})$ whose restriction on $SU(3)$ is the standard Chern-Simons class.

6.3 Theorem ([Re2]). There exists a rigid class in $H^3(\text{Symp}(S^2, a_1 \cdot \text{can}) \times S^2(a_2 \times \text{can})), \mathbb{R}/\mathbb{Z}), a_1 \neq a_2$, whose restriction on $SO(3) \times SO(3)$ is the sum of standard Chern-Simons classes.

Let M^3 be a rational homology sphere, say $f \cdot H_1(M, \mathbb{Z}) = 0, f \in \mathbb{Z}$.

6.4 The definition of the ChS class. Fix a point $p \in M$ and consider the evaluation (at p) map

$$\text{Diff}_\nu(M) \to M.$$

The pull-back of ν under this map is a closed left-invariant form ν_p on $\text{Diff}_\nu(M)$, having integral periods. The general theory of [Re3] and [Re2] produces a regulator

$$\pi_3 (B \text{Diff}^\delta_\nu(M)^{+}) \to \mathbb{R}/\mathbb{Z} \quad (*)$$

A different choice of a point $p' \in M$ will give another left-invariant form $\nu_{p'}$ such that $\nu_p - \nu_{p'} = d\mu$ for a left-invariant form μ. It follows from [Re3] that the regulator $(*)$ does not depend on p. In fact, one has a biinvariant 3-form ω on $\text{Diff}_\nu(M)$, whose values on the Lie algebra are given by $\omega(X, Y, Z) = \int_M \nu(X(p), Y(p), Z(p))d\nu(p)$. The form ω gives the same regulator as above.

To extend the regulator to $H^3(B \text{Diff}^\delta_\nu(M), \mathbb{R}/\mathbb{Z})$, we need to alter the scheme of [Re3] as follows. Since $MSO_3(B \text{Diff}^\delta_\nu(M)) \approx H_3(B \text{Diff}^\delta_\nu(M), \mathbb{Z})$ any class in $H_3(B \text{Diff}^\delta_\nu(M), \mathbb{Z})$ is represented by a map $X \xrightarrow{\nu} B \text{Diff}(M)$, or equivalently, by a representation $\pi_1(X) \xrightarrow{\nu^*} B \text{Diff}_\nu(M)$. Now, for M a flat bundle $M \to E \to X$, associating to ρ. The form ω extends to the closed form on E whose periods on fibers are 1. That gives an element λ in $H^3(E, \mathbb{R}/\mathbb{Z})$. The spectral sequence of E with \mathbb{R}/\mathbb{Z}-coefficients looks like

$$
\begin{array}{cccc}
\mathbb{R}/\mathbb{Z} & H^1(X, \mathbb{R}/\mathbb{Z}) & H^2(X, \mathbb{R}/\mathbb{Z}) & H^3(X, \mathbb{R}/\mathbb{Z}) \\
0 & 0 & 0 & 0 \\
H^0(X, W) & H^1(X, W) & H^2(X, W) & H^3(X, W) \\
\mathbb{R}/\mathbb{Z} & H^1(X, \mathbb{R}/\mathbb{Z}) & H^2(X, \mathbb{R}/\mathbb{Z}) & H^3(X, \mathbb{R}/\mathbb{Z})
\end{array}
$$

where W is the local system whose stalk at p is $H^1(M, \mathbb{R}/\mathbb{Z}) \approx H_1(M, \mathbb{Z})$. The element λ lies in the kernel of the wedge map $H^3(E, \mathbb{R}/\mathbb{Z}) \to H^3(M, \mathbb{R}/\mathbb{Z})$. Now, the group $H^2(X, W)$ has exponent a divisor of f, and the image of the transgression $\delta^2 : H^1(X, W) \to H^3(X, \mathbb{R}/\mathbb{Z})$ has the same property. Therefore, $f \cdot \lambda$ induces a well-defined class in $H^3(X, \mathbb{R}/\mathbb{Z} \cdot \frac{1}{f})$. If M is a \mathbb{Z}-homology sphere, we get a class in $H^3(X, \mathbb{R}/\mathbb{Z})$.

If $Y \to B \text{Diff}^\delta_\nu(M)$ is a map, bordant to φ, then the same argument as in [Re2] proves that the value of the corresponding class in $H^3(Y, \mathbb{R}/\mathbb{Z} \cdot \frac{1}{f})$ on $[Y]$ is the same as for X. So we constructed a well-defined map

$$H_3(\text{Diff}^\delta_\nu(M), \mathbb{Z}) \to \mathbb{R}/\mathbb{Z} \cdot \frac{1}{f}.$$
6.5 Invariant scalar product on $\text{Lie}(\text{Diff}_\nu(M))$, the Cartan form and rigidity of ChS class. Here we will prove that the ChS class

$$H_3(\text{Diff}_\nu^\delta(M), \mathbb{Z}) \to \mathbb{R}/\mathbb{Z}$$

of the previous section is rigid for $M \approx S^3$. For that purpose we need to work with principal flat bundles rather than with flat associated bundles. The clue is that the form ω constructed above on $\text{Diff}_\nu(M)$ can be viewed as a Cartan form, associated with an invariant scalar product on $\text{Lie}(\text{Diff}_\nu(M))$.

We are going to prove similar results for the group $\text{Diff}_\nu(M)$ of volume-preserving diffeomorphisms of a compact oriented three-manifold. Throughout this section, M is assumed to be a rational homology sphere, that is, $H_1(M, \mathbb{Z})$ is torsion.

Let $X \in \text{Lie}(\text{Diff}_\nu(M))$ a vector field with $\text{div} X = 0$. The form $\langle X, X \rangle$ is closed, whence exact: $d\mu = X \cdot (X \nu)$. An immediate computation shows that $\langle X, X \rangle$ does not depend on the choice of μ. Moreover $\langle X, X \rangle$ is a quadratic form, invariant under the adjoint action of $\text{Diff}_\nu(M)$. By Arnold [A], $\langle X, X \rangle$ is the asymptotic self-linking number of trajetories of X. We need the following elementary lemma (the proof of left to the reader)

Lemma (6.5). For any $X, Y, Z \in \text{Lie}(\text{Diff}_\nu(M))$,

$$\Omega(X, Y, Z) = \omega(X, Y, Z)$$

that is, the forms Ω and ω coincide.

Now, as in [Re2] we define a biinvariant form Ω on $\text{Diff}_\nu(M)$ by $\Omega(X, Y, Z) = \langle [X, Y], Z \rangle$ on the Lie algebra.

Lemma (6.6). Let $M = S^3/\Gamma$ where S^3 is considered as a compact Lie group and the finite subgroup Γ acts from the right. Then the pullback of Ω by the natural map $S^3 \to \text{Diff}_\nu(M)$ is $\frac{1}{|\Gamma|}$ (volume form of S^3).

Proof. It is clearly enough to check this for $\Gamma = \{1\}$. Let $v \in \text{Lie}(S^3)$ and X is the corresponding right-invariant vector field. Let μ be a right-invariant 1-form, defined by (v, \cdot) on $\text{Lie}(S^3)$. Then $d\mu = X \cdot \nu$ and $\mu \wedge (X \cdot \nu) = \nu$. q.e.d.

6.6 Theorem (Chern-Simons class in $\text{Diff}_\nu(S^3)$). There exists a rigid class in $H^3(\text{Diff}_\nu(S^3), \mathbb{R}/\mathbb{Z})$ whose restriction on $SO(4) \approx S^3 \times S^3/\mathbb{Z}_2$ coincides with the sum of standard Chern-Simons classes. Moreover, for $M = S^3/\Gamma$ there exists a class in $H^3(\text{Diff}_\nu(M), \mathbb{R}/\mathbb{Z})$ whose restriction on S^3 is $|\Gamma|$ times the standard Chern-Simons class.

Proof. By the general theory of regulators, developed in [Re3], section 3, and [Re2], the invariant form Ω gives rise to a map

$$\pi_3(B \text{Diff}_\nu^\delta(M^+)) \to \mathbb{R}/A$$

where A is the group of periods of Ω on the Hurewitz image of $\pi_3(\text{Diff}_\nu(M))$ in $H_3(\text{Diff}_\nu(M), \mathbb{Z})$. Moreover, if $\text{Diff}_\nu(M)$ is homotopically equivalent to S^3 or $SO(4)$ this extends to a map

$$H_3(B \text{Diff}_\nu^\delta(M)) \to \mathbb{R}/A$$
By Hatcher [H] and Ivanov [I] this is exactly the case for \(M = S^3/\Gamma \). Moreover, periods of \(\Omega \) are \(2\pi^2 \cdot \mathbb{Z} \) and \(2\pi^2 \cdot \frac{1}{\kappa} \mathbb{Z} \), respectively. Since \(\Omega \) is a Cartan form, associated to an invariant polynomial in \(\text{Lie}(Diff_\nu(M)) \), it is rigid by Cheeger-Simons [Che-S].

6.6 Case of Seifert manifolds.
Let \(\Gamma \) be a uniform lattice in \(SL_2(\mathbb{R}) \), then \(M = SL_2(\mathbb{R})/\Gamma \) is a Seifert manifold. There is a cohomology class \(\beta \in H^3(SL_2(\mathbb{R}), \mathbb{R}) \), called the Seifert volume class [BGo], such that for any \(\Gamma \subset SL_2(\mathbb{R}) \), the restriction of \(\beta \) on \(\Gamma \) is \(\text{vol}(SL_2(\mathbb{R})/\Gamma) \) times the fundamental class. Then the computation of 6.4 gives the class in \(H^3(Diff_\nu(M), \mathbb{R}) \), whose restriction on \(\hat{SL}_2(\mathbb{R}) \) is \(\beta \), subject to the condition that \(Diff_\nu(M) \) is contractible. It is not known to the author if this is true for all such \(M \), comp. [FJ].

7. Measurable transfer and higher asymptotic cycles
We will first outline here an alternative approach in defining the classes of 1.2 in \(Diff_\nu(M) \). For \(M \) a locally symmetric space of nonpositive curvature, this approach also leads to new classes in \(H^*_{cont}(Diff_\nu(M), \mathbb{R}) \), different from those of 1.2.

Let \(\mathfrak{G} = Diff_\nu(M) \) and \(\mathfrak{G}_0 \subset \mathfrak{G} \) is a closed group, stabilizing a fixed point \(p \in M \). Let \(\mathfrak{G}^\sim \) be the connected component of \(\mathfrak{G} \) and let \(\mathfrak{G}_0^\sim = \mathfrak{G} \cap \mathfrak{G}_0 \). Fix a measurable section \(s : M \to \mathfrak{G} \) such that \(s(p) = p \). We will always assume that \(s(M) \) is compact.

7.1 Ergodic cocycle in non-abelian cohomology [Gu]
Define a map \(\psi : \mathfrak{G} \times M \to \mathfrak{G}_0 \) by \(g\cdot s(q) = s(g\cdot q) = s(g)\cdot s(q) \). We will view it as a map \(\mathfrak{G} \to \mathcal{F}(M, \mathfrak{G}_0) \). Here \(\mathcal{F}(M, \mathfrak{G}_0) \) is the group of measurable functions from \(M \) to \(\mathfrak{G}_0 \) with compact closure of the image. \(\mathfrak{G} \) acts on \(\mathcal{F}(M, \mathfrak{G}_0) \) by the argument change and \(\psi \) is a cocycle for the non-abelian cohomology \(H^1(\mathfrak{G}, \mathcal{F}(M, \mathfrak{G}_0)) \).

7.2 Measurable transfer [Gu]
Now let \(f : \mathfrak{G}_0 \to \mathcal{F}(M, \mathfrak{G}_0) \) be a locally bounded (say, continuous) cocycle. Define \(F : \mathfrak{G} \times \mathcal{F}(M, \mathfrak{G}_0) \to \mathbb{R} \) as \(F = \int_M \varphi(g_1, m) \cdot \varphi(g_2, m) \cdots \varphi(g_n, m) \cdot dv(m) \). This defines a cohomology class in \(H^n(\mathfrak{G}, \mathbb{R}) \), independent of the choices of \(s \) and \(f \) [Gu].

Now, we have the tangential representation \(\mathfrak{G}_0 \to SL(T_p(M)) \). Pulling back the usual Borel classes on \(\mathfrak{G}_0 \), we construct cohomology classes in \(H^i(\mathfrak{G}_0, \mathbb{R}) \) for \(i = 5, 9, \ldots \). The transfer will map these to classes in \(H^i(\mathfrak{G}, \mathbb{R}) \), which we have constructed in 1.2. We do not prove the comparison theorem here, however.

7.3 Supertransfer
We will now define a map
\[
H^\kappa(\pi_1(M), \mathbb{R}) \overset{S}{\to} H^\kappa(Diff_\nu(M), \mathbb{R})
\]
in the following way. We know that \(\pi_0(\mathfrak{G}_0^\sim) \approx \pi_1(M)/\pi_1(\mathfrak{G}^\sim) \). This defines a homomorphism \(\mathfrak{G}_0^\sim \to \pi_0(\mathfrak{G}_0^\sim) \to \pi_1(M)/\pi_1(\mathfrak{G}^\sim) \), and a map \(H^\kappa(\pi_1(M)/\pi_1(\mathfrak{G}^\sim), \mathbb{R}) \to H^\kappa(\mathfrak{G}_0^\sim, \mathbb{R}) \).

In many interesting cases one knows that \(\pi_1(\mathfrak{G}^\sim) = 1 \). If \(M \) is a surface of genus \(g \geq 2 \), a result of Earle and Eells says that \(\mathfrak{G}^\sim \) is contractible. For \(M \) locally symmetric of rank \(\geq 2 \) [FJ]. For any \(M \) such that \(\pi_1(\mathfrak{G}^\sim) = 1 \), we get \(\pi_0(\mathfrak{G}_0) \approx \pi_1(M) \) so that there is a map.
Now, composing with the measurable transfer \(H^\kappa(\mathfrak{G}^\sim) \to H^\kappa(\mathfrak{G}^\sim) \) we arrive to a desired map

\[
S : H^\kappa(\pi_1(M), \mathbb{R}) \to H^\kappa(\mathfrak{G}^\sim, \mathbb{R})
\]

7.4 Higher asymptotic cycles

The dual to the above-constructed map \(S \) is \(S^\vee \):

\[
S^\vee : H_\kappa(\mathfrak{G}^\sim, \mathbb{R}) \to H_\kappa(\pi_1(M), \mathbb{R})
\]

As we will see now, this is higher version of the classical asymptotic cycle character

\[
\mathfrak{G}^\sim \xrightarrow{\tau} H_1(M, \mathbb{R})
\]

Indeed, for \(\kappa = 1 \) the map \(S^\vee \) will act as follows: let \(g \in \mathfrak{G}^\sim \) be a volume-preserving map, isotopic to identity. Fix an isotopy \(g(t, x) \) such that \(g(0, \cdot) = \text{id} \) and \(g(1, \cdot) = g \). For \(x \in M, g(t, x) \) is a path from \(x \) to \(g(x) \) and may be considered as a 1- current. Now, the integral

\[
\int_M [g(t, x)]d\nu(x)
\]

is a closed current, defining an element in \(H_1(M, \mathbb{R}) \). This will be \(S^\vee(g) \).

Now, the definition of the asymptotic cycle map [Sch] gives the following recepy: for an element \(z \in H^1(M, \mathbb{Z}) \) let \(f : M \to S^1 \) be a representing map. The map \(f \circ g - f : M \to S^1 \) is zero-homotopic, so it comes from the map \(F : M \to \mathbb{R} \).

Now, \(\int_M F(\text{mod } \mathbb{Z}) \) is the image of \(\tau(f) \) on \(z \). If \(f \) is isotopic to identity, \(\tau(f) \) lifts to \(H_1(M, \mathbb{R}) \). It is easy to check that \((df, \int_M [g(t, x)]d\nu) = (\tau(f), z) \), which proves \(S^\vee = \tau \) in dimension 1.

References

[A] V. Arnold, a manuscript in Russian (1965).

[B] A. Borel, *Stable real cohomology of arithmetic groups*, Ann. Sci. Ec. Norm. Super. **7** (1974), 235-272.

[BCG] G. Besson, G. Courtois, J. Gallot, in preparation.

[Bo] R. Bott, *On the characteristic classes of groups of diffeomorphisms*, Enseignement Math. (2), **23** (1977), 209-220.

[BG] J. Barge, E. Ghys, *Cocycles d’Euler et de Moslov*, Math. Ann. **294** (1992), 235-265.

[BG0] R. Brooks, W. Goldman, *Volumes in Seifert space*, Duke Math. J. **51** (1984), 529-545.

[Br] R. Brooks, *Volumes and characteristic classes of foliations*, Topology, **18**, (1979), 295–304.

[D] J.L. Dupont, *Simplicial DeRham cohomology and characteristic classes of flat bundles*, Topology, **18**, (1979), 295–304.

[FJ] F. Farrell, L. Jones, *Isomorphism conjectures in Algebraic K-theory*, Journ. AMS **6** (1993), 249-297.

[Go] A. Goncharov, in preparation.

[Go1] W. Goldman, *Berkeley Thesis* (1980).

[Go2] W. Goldman, *Invariant functions on Lie groups and Hamiltonian flows on surface group representations*, Inv.math **85** (1986), 263–302.

[Gr] M. Gromov, *Pseudoholomorphic curves in symplectic manifolds*, Inv. Math. **82** (1985), 307-347.

[Gr2] M. Gromov, *Volume and bounded cohomology*, Publ. Math. IHES.
[Gu] A. Guichardet, *Cohomologie des Groupes Topologiques et des Algèbres de Lie*, Cedic (1980).

[Ha] A. Hatcher, *A proof of a Smale’s conjecture*, Annals of Math., **117**, (1983), 553–607..

[I] N. Ivanov, Soviet Math. Dokl. **20** (1979), 47-50.

[M] Y. Mitsumatsu, *Bounded cohomology and l^1-homology of surfaces*, Topology. **23** (1984), 465–471..

[NS] M.S. Narasimhan, Seshadri, *Stable and unitary bundles on a compact Riemann surface*, Annals of Math., **82**, (1965), 540–564..

[Re1] A. Reznikov, *Twistor varieties, symplectic reduction and universal Jacobians* (1996), preprint MPI.

[Re2] A. Reznikov, *Characteristic classes in symplectic topology* (1994), submitted to Annals of Mathematics.

[Re3] A. Reznikov, *Rationality of secondary classes*, to appear, J. Diff. Geom..

[Re4] A. Reznikov, *Euler class and free generation*, preprint MPI (July, 1996).

[Sch] Schwartzmann, *Asymptotic cycles*, Annals of Mathematics **66** (1957), 270-284.

[Th] W. Thurston.

[Th2] W. Thurston, *The Geometry and Topology of 3-Manifolds.*

Institute of Mathematics, Hebrew University, Giv’at Ram 91904, Jerusalem, Israel, simplex@math.huji.ac.il

Current address: Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, 53225 Bonn, Germany, reznikov@mpim-bonn.mpg.de