Layered double hydroxide (LDH) compounds are characterized by structures in which layers with a brucite-like structure carry a net positive charge, usually due to the partial substitution of trivalent octahedrally coordinated cations for divalent cations, giving a general layer formula $[(M_{2+}^{x}M_{3+}^{x})(OH)_{2}]^{x+}$. This positive charge is balanced by anions which are intercalated between the layers. Intercalated molecular water typically provides hydrogen bonding between the brucite layers. In addition to synthetic compounds, some of which have significant industrial applications, more than 40 mineral species conform to this description. Hydrotalcite, $Mg_6Al_2(OH)_{16}[CO_3]·4H_2O$, as the longest-known example, is the archetype of this supergroup of minerals. We review the history, chemistry, crystal structure, polytypic variation and status of all hydrotalcite-supergroup species reported to date. The dominant divalent cations, M^{2+}, that have been reported in hydrotalcite supergroup minerals are Mg, Ca, Mn, Fe, Ni, Cu and Zn; the dominant trivalent cations, M^{3+}, are Al, Mn, Fe, Co and Ni. The most common intercalated anions are $(CO_3)^{2−}, (SO_4)^{2−}$ and $Cl^{−}$; and $OH^{−}, S^{2−}$ and $[Sb(OH)_{6}]^{−}$ have also been reported. Some species contain intercalated cationic or neutral complexes such as $[Na(H_2O)_6]^{+}$ or $[MgSO_4]^{0}$. We define eight groups within the supergroup on the basis of a combination of criteria. These are (1) the hydrotalcite group, with $M^{2+}:M^{3+}=3:1$ (layer spacing ~7.8 Å); (2) the quintinite group, with $M^{2+}:M^{3+}=2:1$ (layer spacing ~7.8 Å); (3) the fougérite group, with $M^{2+}=Fe^{2+}, M^{3+}=Fe^{3+}$ in a range of ratios, and with $O^{2−}$ replacing $OH^{−}$ in the brucite module to maintain charge balance (layer spacing ~7.8 Å); (4) the woodwardite group, with variable $M^{2+}:M^{3+}$ and interlayer $[SO_4]^{2−}$, leading to an expanded layer spacing of ~8.9 Å; (5) the cualstibite group, with interlayer $[Sb(OH)_{6}]^{−}$ and a layer spacing of ~9.7 Å; (6) the glaucocerinite group, with interlayer $[SO_4]^{2−}$ as in the woodwardite group, and with additional interlayer H_2O molecules that further expand the layer spacing to ~11 Å; (7) the wermlandite group, with a layer spacing of ~11 Å, in which cationic complexes occur with anions between the brucite-like layers; and (8) the hydrocalumite group, with $M^{2+}=Ca^{2+}$ and $M^{3+}=Al$, which contains brucite-like layers in which the Ca:Al ratio is 2:1 and the large cation, Ca^{2+}, is coordinated to a seventh ligand of ‘interlayer’ water.
The principal mineral status changes are as follows. (1) The names manasseite, sjögrenite and barbertonite are discredited; these minerals are the $2H$ polytypes of hydrotalcite, pyroaurite and stichtite, respectively. Cyanophyllite is discredited as it is the $1M$ polytype of cualstibite. (2) The mineral formerly described as fougerite has been found to be an intimate intergrowth of two phases with distinct $\text{Fe}^{2+}:\text{Fe}^{3+}$ ratios. The phase with $\text{Fe}^{2+}:\text{Fe}^{3+} = 2:1$ retains the name fougerite; that with $\text{Fe}^{2+}:\text{Fe}^{3+} = 1:2$ is defined as the new species trébeurdenite. (3) The new minerals omsite (IMA2012-025), $\text{Ni}_2\text{Fe}^{3+} (\text{OH})_6[\text{Sb} (\text{OH})_6]$, and mössbauerite (IMA2012-049), $\text{Fe}_3^+\text{O}_4(\text{OH})_6[\text{CO}_3] \cdot 3\text{H}_2\text{O}$, which are both in the hydrotalcite supergroup are included in the discussion. (4) Jamborite, carrboydite, zincaluminite, motukoreaite, natroglaucocerinite, brugnatellite and muskoxite are identified as questionable species which need further investigation in order to verify their structure and composition. (5) The ranges of compositions currently ascribed to motukoreaite and muskoxite may each represent more than one species. The same applies to the approved species hydrowoodwardite and hydrocalumite. (6) Several unnamed minerals have been reported which are likely to represent additional species within the supergroup.

This report has been approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association, voting proposal 12-B. We also propose a compact notation for identifying synthetic LDH phases, for use by chemists as a preferred alternative to the current widespread misuse of mineral names.

Keywords: LDH, layered double hydroxide, hydrotalcite, hydrotalcite supergroup, brucite, nomenclature, manasseite, sjögrenite, barbertonite, cyanophyllite, fougerite, trébeurdenite.

Introduction

The layered double hydroxides (LDHs) are a large class of natural and synthetic compounds whose layered structure is derived from that of brucite, Mg(OH)_2. In LDHs, two cations of different charge substitute on the sites corresponding to the Mg of brucite to give an overall positive charge to the hydroxide layer. The positive charge is balanced by monatomic or small complex anions which are intercalated between the layers. The interlayer species are loosely bound and can be exchanged readily (e.g. Meyn et al., 1990). This ability to exchange anions between the positively charged structural layers contrasts with the exchange of interlayer cations in silicate clays and channel cations in zeolites (Amphlett, 1958; Carroll, 1959; Barrer, 1978) and many other classes of microporous materials with heteropolyhedral polyhedral frameworks (cf. Ferraris et al., 2004; Ferraris and Merlino, 2005), which have negatively charged structural frameworks. All synthetic and many natural examples of the LDHs occur as clay-sized crystals with large surface area to volume ratios (Meyn et al., 1990). They have therefore become important to industry, and have found uses as catalysts, drug delivery media, and sequestering agents for organic polymers and CO_2 (Duan and Evans, 2006; Kameda et al., 2011a,b). Oxyanion adsorption and other properties of LDH compounds are reviewed by Goh et al. (2008). Organically modified LDH phases prepared by the intercalation of organic anions into the interlayer of the LDH can absorb heavy metal ions and non-ionic organic compounds from aqueous solutions (Kameda and Yoshioka, 2011). Other potential applications of organically modified LDHs lie in the fields of catalysis, photochemistry and electrochemistry (Newman and Jones, 1998). Deprotonation of OH^- ions in so-called $\text{Fe}^{2+}-\text{Fe}^{3+}$ ‘green rust’ phases is also of interest in the reduction of oxidized pollutants such as nitrates (Génin et al., 2006c, 2008).

To date, 44 minerals have been described as natural examples of LDH phases; they are commonly known to mineralogists as the ‘hydrotalcites’ or ‘hydrotalcite group’ of minerals. These phases are commonly polytypic, and there are a number of examples where distinct names have been established for different polytypes of the same compound. As a result, a sub-commission was set up to make recommendations on the future naming of these phases, to provide a group taxonomy and to suggest a nomenclature that would be useful for synthetic analogues. The findings of this commission appear in the following text, and have been approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association, voting proposal 12-B.
Crystal chemistry of the hydrotalcite supergroup

The minerals considered here all contain a structural layer based on that of brucite. The brucite structure consists of two adjacent hexagonal eutactic (geometrically ‘close-packed’) arrays of hydroxide anions, with Mg$^{2+}$ cations filling all of the octahedral spaces between them (Fig. 1). The OH groups are oriented normal to the layers, with the H atoms on the opposite side of the oxygen to the Mg atoms, so that each O is coordinated approximately tetrahedrally by 3Mg$^{2+}$ + 1H. Layers stack so that each H atom in one layer points into one of the interstices between three H atoms in an adjacent layer. It is important to note that there is no significant H-bonding between layers at ambient pressure. If we

Fig. 1. Brucite structure viewed (a) down the z axis and (b) down the x axis. The MgO$_6$ octahedra are shown as polyhedra, H is shown as small spheres. The unit cell is indicated by the black outline.
represent the possible \(xy\) offsets of close-packed layers as \(A, B, C\) for the oxygens and \(\alpha, \beta, \gamma\) for the magnesium atoms, the overall stacking sequence can be described as \(...C\alpha B-C\alpha B-C\alpha B...\), giving a one-layer trigonal structure, with space group \(P3\bar{m}1\), and unit-cell dimensions of \(a = 3.147\) and \(c = 4.769\ \AA\), with \(Z = 1\) (e.g. Zigan and Rothbauer, 1967). Isostructural hydroxides include amakinite (Wyckoff, 1963: p. 239–444), portlandite (Henderson and Gutowsky, 1962), pyrochroite (Parise et al., 1998) and theophrastite (Ramesh et al., 2006), which are the \(\text{Fe}^{2+}, \text{Ca}^{2+}, \text{Mn}^{2+}\) and \(\text{Ni}^{2+}\) analogues, respectively.

The layers in brucite are electrostatically neutral. The LDH phases differ in that some of the octahedral \(M^{2+}\) cations are replaced by \(M^{3+}\) cations, producing layers with a net positive charge. This is balanced by negatively charged species in an expanded interlayer space, which can also accommodate water molecules and a resultant network of hydrogen bonds between layers. A distinctive feature of the expanded layers in the least structurally complex members of the supergroup, which have interlayer carbonate, is that the \(\text{OH}\) groups of adjacent brucite layers are aligned directly over one another rather than being offset. The \(\text{O-H}\) bonds are not necessarily aligned parallel to \(c\) (cf. Krivovichev et al., 2010\(a\)). This arrangement presumably optimizes hydrogen bonding to the interlayer species.

Maximum degree of order (MDO) stacking sequences were defined by Dornberger-Schiff (1982) as those in which all layer pairs, triplets and \(n\)-tuples are geometrically equivalent. For the LDH structures considered here, these are \(...C\alpha B-X-B\alpha C-X-C\alpha B-X-B\alpha C...\) and \(...C\alpha B-X-B\gamma A-X-A\beta C-X-C\alpha B...\), giving 2-layer hexagonal and 3-layer rhombohedral structures, with maximum possible space-group symmetries of \(P6_3/mmc\) and \(R3\bar{m}\), respectively (Fig. 2). In this scheme, \(X\) is defined as the interlayer ions and water.

Fig. 2. Hydrotalcite structure viewed down the \(x\) axis for (a) \(2H_1\) polytype with \(c \sim 16\ \AA\) and (b) \(3R_1\) polytype with \(c \sim 24\ \AA\). Disordered interlayer carbonate and water is indicated by sheets of carbonate groups (red spheres = oxygen, black = carbon). Note that offset of H atoms across the interlayer is different from that in brucite and that alternate brucite layers are rotated relative to one another about \(z\) by \(180^\circ\) in (a), but are translationally equivalent in (b).
Hydrotalcite-supergroup minerals and LDHs are well known for the wide range of polytypism which they exhibit. The nature of this polytypism was discussed by Bookin and Drits (1993) and Bookin et al. (1993a,b), with a more recent summary by Evans and Slade (2006). Polytypism in the hydrotalcite structure-type is complex, but in the first instance arises due to the different possible ways the brucite-like layer can stack. Bookin and Drits (1993) discussed several theoretical polytypes and described the X-ray diffraction intensity criteria for distinguishing between them. These included one single-layer polytype, three 2-layer polytypes, nine 3-layer polytypes and a large number of 6-layer polytypes. The stacking sequences of Bookin and Drits (1993) include those with OH groups offset across the interlayer, as in brucite (Fig. 1), and those with OH juxtaposed across interlayers, as in the structures shown in Fig. 2; they referred to these two interlayer geometries as ‘O type’ and ‘P type’, respectively. A survey of X-ray diffraction data by Bookin et al. (1993a) showed that although the two MDO polytypes of Fig. 2 were by far the most common, and were the only stacking sequences confirmed for the hydrotalcite group sensu stricto, other arrangements with O-type interlayers were present in members of the supergroup with expanded interlayers containing sulfate anions.

The greater chemical and structural complexity of the interlayer appears to allow more variability in the hydrogen-bonding pattern in such cases. The stacking sequences of Bookin and Drits (1993) with three layers or less are summarized in Table 1. The polytype notation has been revised slightly to distinguish trigonal and hexagonal crystal systems, in accord with the nomenclature scheme of Guinin et al. (1984).

The interlayer spacing of hydrotalcite-supergroup minerals and LDHs depends on the nature of the interlayer species. The brucite spacing of ~4.7 Å increases to ~7.8 Å in minerals with interlayer hydroxide, halide or carbonate groups, and to 8.5–9 Å in minerals with interlayer sulfate tetrahedra. Spacings of ~11 Å are observed if the interlayer contains additional H₂O coordinated to sulfate (e.g. the glaucocerinite group) or large, low-charge cations such as Na⁺ and Ca²⁺ (e.g. the wermelandite group).

In hydrotalcite-supergroup minerals and LDHs, the $M^{2+}:M^{3+}$ ratio is generally constant, and the minerals have a strong preference for a $M^{2+}:M^{3+}$ ratio of either 3:1 or 2:1. Cation ratios greater than 3:1 are known, particularly in synthetic LDHs, but are less commonly observed in minerals (although brugnatellite appears to be an example). Cation ratios of less than 2:1 are uncommon for good crystal-chemical reasons. Three M^{3+} cations around a single OH in the trioctahedral sheet of...
a hydrotalcite-type mineral will lead to over-bonding of the oxygen unless the \(M/O \) bonds are severely lengthened. The coordination polyhedra of these three highly-charged cations would also be sharing edges with one another, which is not favoured electrostatically. It seems likely that local ordering of \(M^{2+} \) and \(M^{3+} \) occurs to prevent the formation of such \(M^{3+} \) clusters. This is, in effect, an ‘aluminium avoidance principle’ analogous to that invoked by Loewenstein (1954) to account for tetrahedral cation order in aluminosilicates. Triangular clusters of edge-sharing \(M^{3+} \) cations can be avoided at \(M^{2+}:M^{3+} \) ratios of 2:1 if the \(M^{2+} \) are ordered in a honeycomb pattern within the layer, giving a \(\sqrt{3} \times \sqrt{3} \) superlattice in the plane of the layer (Fig. 3). For ratios of 3:1, \(M^{3+} \) avoidance can be achieved without long-range order.

Within-layer ordering of \(M^{2+} \) and \(M^{3+} \) cations has been verified in some cases by infrared spectroscopy (e.g. Richardson and Braterman, 2007), \(^1\)H and \(^{25}\)Mg NMR spectroscopy (e.g. Sideris et al., 2008) and electron diffraction (e.g. Steeds and Morniroli, 1992). However, if the resulting superlattices of successive layers are offset in a disordered fashion, the local ordering may not be reflected in the unit cell determined by X-ray methods. The data available to date suggests that some LDH phases show no long-range stacking order of any \(xy \) superlattices; some show short-range order, giving rise to rods of diffuse scattering parallel to \(e^a \) in X-ray diffraction patterns; and others show a high degree of long-range order. Examples of all three cases have recently been reported for the mineral quintinite (Krivovichev et al., 2010a,b,c). Long-range order in some hydrotalcite-supergroup minerals has produced \(xy \) superstructures with (pseudo)hexagonal unit nets (in multiples of the brucite \(a \) parameter) including the following: \(\sqrt{3} \times \sqrt{3} \) [brugnatellite (Fenoglio, 1938), pyroaurite/sjögrenite (Ingram and Taylor, 1967), stichite (Mills et al., 2011), chlormagaluminite (Kashaev et al., 1982), zincowoodwardite (Witzke and Raade, 2000), quintinite (Arakcheeva et al., 1996; Krivovichev et al., 2010a), zinclistibite (Bonaccorsi et al., 2007)]; \(2 \times 2 \) [pyroaurite (Ingram and Taylor, 1967), hydrotalcite (Allman and Jepsen, 1969), reevesite (White et al., 1967; De Waal and Viljoen, 1971)]; \(3 \times 3 \) [carrboydite (Nickel and Clarke, 1976), motukoreaithe (Rodgers et al., 1977, Zamarranjo et al., 1989), csalstibite (Walenta, 1984), wermlandite (Rius and Allmann, 1984), shigaite (Cooper and Hawthorne, 1996), nikischerite (Huminicki and Hawthorne, 2003)]; \(\sqrt{12} \times \sqrt{12} \) [mountkeithite (Hudson and Bussell, 1981), quintinite, charmargite and caresite (Chao and Gault, 1997)]; \(\sqrt{13} \times \sqrt{13} \) [pyroaurite/sjögrenite (Ingram and Taylor, 1967)]; and even \(\sqrt{27} \times \sqrt{27} \) [karchevskite (Britvin et al., 2008)]. Offsets of \(\sqrt{3} \times \sqrt{3} \) layers in some cases result in a lowering of the symmetry to monoclinic and rectangular unit meshes of \(\sqrt{3} \times 2 \) [hydrocalumite (Sacerdoti and Passaglia, 1988)] or \(\sqrt{3} \times 3 \) times that of brucite [cyanophyllite (Kolitsch and Giester, 2007; Kolitsch et al., in press); quintinite (Krivovichev et al., 2010b)]. The unit meshes in

Fig. 3. Most symmetrical ordering patterns of two different types of octahedra in a brucite layer for (a) 2:1 ratio of the two species and (b) 3:1 ratio. In both cases, edge-sharing between two octahedra of the minority species is avoided.
the xy plane of the known superstructures are shown in Fig. 4. It should be noted that the polytype labelling scheme of Table 1 applies only for stacking of layers with $a \sim 3$ Å (1×1 mesh); if the true a and b repeats are larger: (1) a much wider range of stacking vectors are possible and (2) the structural significance of a stacking vector such as $\{\bar{5}/\bar{C}217 \bar{5}/\bar{C}217 \bar{5}/\bar{C}217 \}$. For $H_{3}6H_{3}$, 363, $H_{12}6H_{12}$ and $H_{27}6H_{27}$ supercells, this vector will juxtapose a cation or hydroxide sublayer in the ‘A/α’ position against another A/α, rather than against B/β or C/γ.

The c repeat of the structure can be further modulated by long-range order of octahedral cations. For example, ‘quinitinite-$2H-3c$’ of Krivovichev et al. (2010a) has an overall formula $[\text{Mg}_4\text{Al}_2(\text{OH})_{12}]\text{(CO}_3\text{)}\cdot3\text{H}_2\text{O}$, and a well-defined 6-layer structure, in which the full periodicity along z is determined by factors other than stacking of the brucite layers alone. The unit mesh of one layer contains $[\text{Mg}_2\text{Al}(\text{OH})_6]$, with 3 anions per unit mesh in each hydroxide sublayer (Krivovichev et al., 2010a). If Mg and Al are not distinguished, the stacking pattern is 2H_1. However, as the Mg and Al are ordered to produce a 3×3 superstructure in the xy plane, the Al positions are systematically offset so as to triple the repeat. Each charge-balancing interlayer contains 0.5(CO_3) + 1.5(H_2O), giving a total of 3 oxygens per unit mesh, but the partial occupancies and smearing of electron density in difference-Fourier maps both imply that the carbonate and water positions are not ordered in these minerals.

Strong positional and orientational ordering of interlayer species is present in some species such as wermlandite and shigaite (which are described in the following text), and this can also lead to increased periodicity along z. In these species, it is the offset and orientation of the interlayers that defines the polytypic stacking, rather than that of the octahedral layers. It is also possible for two different types of interlayers to interstratify regularly, as exemplified by coalingite (which is also discussed in the following text).

Minerals with the hydrotalcite structure type

The members of the hydrotalcite supergroup all have brucite-like structural layers with interlayer anions and water. Some of these minerals contain hydrated cations that are connected to the brucite layers only through hydrogen bonds. Layered calcium aluminate hydrate phases have been included as the hydrocalumite group, although they are anomalous in that the Ca of the layer makes a seventh bond to an ‘interlayer’ water. Phases in which hydroxides of the brucite layer are replaced by halides or by the oxygen atoms of complex anions such as sulfate are excluded; these include minerals such as spangolite, $\text{Cu}_6\text{Al}(\text{OH})_{12}\text{Cl}(\text{SO}_4)\cdot3\text{H}_2\text{O}$ (Hawthorne et al.,

HYDROTALCITE SUPERGROUP NOMENCLATURE

Fig. 4. A brucite-type octahedral layer showing the meshes of the known superstructures in the hydrotalcite supergroup in the xy plane. The (pseudo)hexagonal meshes are (a) 1×1 mesh of brucite; (b) $\sqrt{3} \times \sqrt{3}$; (c) 2×2; (d) 3×3; (e) $12 \times \sqrt{12}$; (f) $\sqrt{13} \times \sqrt{13}$; ($g$) $27 \times \sqrt{27}$. Orthogonal meshes are (h) $\sqrt{3} \times 2$; (i) $\sqrt{3} \times 3$.

1295
Hydrotalcite and manasseite

Hydrotalcite and manasseite are both ideally Mg₆Al₂(OH)₁₆[CO₃]·4H₂O. Hydrotalcite was the first LDH phase to be discovered (Hochstetter, 1842) as contorted, lamellar-to-fibrous white masses of waxy or pearly lustre in serpentinite from Snarum, Norway. It should be noted, however, that Hochstetter regarded the CO₂ content in his analyses as due to alteration. The type material was found to contain some of the golden-brown platy hexagonal masses of waxy or pearly lustre in serpentinite (Stanimirova, 2001) suggest that quintinite may also be present (as discussed in the following text) as well as intergrowths of the two phases.

Pyroaurite and sjögrenite

Pyroaurite was described with analyses from Långban, Värmland, Sweden, by Igelström (1865), however, the essential carbonate content and correct formula Mg₈Fe₃⁺₃(OH)₁₆[CO₃]·4H₂O, were not confirmed until the study of Manasse (1915). The morphological crystallographic studies of Sjögren (1894) and Flink (1901) suggested rhombohedral symmetry for at least some of the golden-brown platy hexagonal material. The type material was found to contain coexisting hexagonal and rhombohedral phases in the X-ray study of Aminoff and Broome (1931). These phases had cell parameters of $a = 3.097$ and $c = 15.56$ Å; and $a = 3.089$ and $c = 23.23$ Å, respectively. Frondel (1941) reserved the name pyroaurite for the rhombohedral phase, and proposed sjögrenite for the hexagonal phase. Allmann (1968) noted that as with the Al analogues hydrotalcite and manasseite, these
polytypes can occur in a single crystal, with the higher temperature \(2H\) phase at the core and the \(3R\) phase at the rim. The stacking sequences were verified as \(2H_1\) and \(3R_1\) by Bookin et al. (1993a).

As is the case for hydrotalcite/manasseite, the unit cells may represent substructures. Ingram and Taylor (1967) reported a cell with \(a = 6.19\) and \(c = 46.54\) Å, with \(Z = 3\) in \(R^3m\) for pyroaurite, although their cell for sjögrenite \((a = 3.113\) and \(c = 15.61\) Å in \(P6_3/mmc\)) is similar to that of Frondel (1941). Taylor (1969, 1973) observed diffraction corresponding to \(\sqrt{3} \times \sqrt{3}\) and \(\sqrt{13} \times \sqrt{13}\) \(xy\) superstructures in pyroaurite and sjögrenite.

The mineral ‘igelströmite’ was reported from Haaf Grunay, Shetland, Scotland by Heddle (1879) as the hydroxide analogue of pyroaurite. However, re-examination of material from the ‘type locality’ by Rouxhet and Taylor (1969) showed that although some interlayer OH− replaced \([CO_3]^{2−}\), carbonate was dominant. However, they did not discount the possibility that a hydroxide-dominant phase might exist.

Stichtite and barbertonite

Stichtite was described as massive to fibrous material of a strong lilac colour, associated with serpentine minerals and chromite, from Dundas, Tasmania, Australia, by Petterd (1910: pp. 167–169). Foshag (1920) was the first to suggest the formula \(Mg_6Cr^3+(OH)_{16}[CO_3]_{3}4H_2O\), which is analogous to that of hydrotalcite, but the existence of two phases with unit cells similar to those of hydrotalcite and manasseite was not confirmed until the X-ray study of Frondel (1941). The hexagonal phase, which was found in specimens from Dundas and from Barberton, Transvaal, South Africa was named barbertonite by Frondel (1941); it has unit-cell parameters \(a = 3.085\) and \(c = 15.52\) Å, whereas rhombohedral stichtite \(sensu\ stricto\), has \(a = 3.09\) and \(c = 23.19\) Å. Mills et al. (2011) refined the structures of both minerals by the Rietveld technique for type barbertonite from the Kaapsehoop asbestos mine, Barberton district, South Africa and stichtite from Stichtite Hill, Dundas, Tasmania. Cell parameters were \(a = 3.096–3.097\), \(c = 15.619–15.627\) Å, with \(Z = \frac{1}{4}\); and \(a = 3.096, c = 23.507\) Å, with \(Z = \frac{3}{4}\), respectively, and the \(2H–3R\) polytypic relationship was confirmed. Therefore, both minerals are polytypic varieties of stichtite. A \(1T\) polytype was reported from the Terekhtinsky ridge, Altai Republic, Russia by Tatarinov et al. (1985) and mentioned by Bookin et al. (1993b). Bookin et al. (1993b) discussed the transformation of Terekhtinsky ridge stichtite on exposure to light or X-rays from pink material with the \(3R_1\) structure of Bookin and Drits (1993) to green material with \(a = 5.30\) and \(c = 7.36\) Å, corresponding to the \(1T\) polytype with a \(\sqrt{3} \times \sqrt{3}\) \(xy\) superstructure in the \(xy\) plane, and stacking disorder indicated by diffuse \(hk0\) reflections.

Meixnerite

Meixnerite was described in association with talc from fractures in a serpentine at Ybbspersenberg, Niederösterreich, Austria by Korintig and Süss (1975). The formula, \(Mg_6Al_2(OH)_{18}4H_2O\), is derived from that of hydrotalcite if the \([CO_3]^{2−}\) group is replaced by \(2[OH]^{−}\). Thus, the hydroxide anion plays two distinct roles in the structure and the formula is better written as \([Mg_6Al_2(OH)_{18}]((OH)_2)4H_2O\). Only the \(3R\) polytype has been reported, with space group \(R^3m\), and unit-cell parameters \(a = 3.046, c = 22.93\) Å, with \(Z = \frac{3}{4}\).

Iowaite

Iowaite was described by Kohls and Rodda (1967), using material from a borehole core from Sioux County, Iowa. Only a small quantity of material was available, and they reported the formula as \([Mg_4Fe^{3+}(OH)_8]OCl_2−4H_2O\). Allmann and Donnay (1969) reviewed the data of Kohls and Rodda (1967) and noted their similarity with those of the pyroaurite group. Braithwaite et al. (1994) re-investigated iowaite from the Palabra open pit mine, South Africa, and concluded that the correct formula was \([Mg_4Fe^{3+}(OH)_8]Cl_2−4H_2O\), indicating that iowaite is the Fe\(^{3+}\) analogue of woodallite and the Cl analogue of pyroaurite/sjögrenite. Crystal structure analyses reported by Braithwaite et al. (1994) gave a cell with the space group \(R^3m\), and the parameters \(a = 3.1183\) and \(c = 24.113\) Å, with \(Z = \frac{3}{4}\), indicating the \(3R\) polytype.

Droninoite

Droninoite, was described by Chukanov et al. (2009) as the Ni analogue of iowaite and reevesite from the Dronino meteorite (Dronino, Kasimov district, Ryazan Oblast’, Russia). The mineral forms dark green to brown fine-grained crusts, with individual crystals less than a micrometre.
Desautelsite, Mg$_{6}$Mn$_3^{3+}$Cl$_2$·4H$_2$O, which corresponds to an ideal formula [Ni$_6$Fe$_2^2$(OH)$_{16}$]Cl$_2$·4H$_2$O, grouping Ni and Fe$^{2+}$. Chukanov et al. (2009) gave the lattice type as trigonal R, with unit-cell parameters $a = 6.206$ and $c = 46.184$ Å; i.e. a $\sqrt{13} \times \sqrt{13}$ xy supercell and $6R$ stacking sequence. Based on the unit cell for pyroaurite given by Ingram and Taylor (1967), droninoite is likely to crystallize in the space group $R\bar{3}m$. It is noteworthy that IR spectroscopy showed the complete absence of carbonate and sulfate in the structure.

Woodallite

Woodallite, the Cl analogue of stichtite/barbertonite, was described by Grgruric et al. (2001) from the Mount Keith nickel mine, which is also the type locality for mountkeithite. Woodallite forms lilac masses of platelets <100 µm across which are visually similar to stichtite and mountkeithite. The ideal formula, [Mg$_6$Cr$_2$(OH)$_{16}$]Cl$_2$·4H$_2$O, is consistent with other Cl-rich members of the hydrotalcite supergroup, and the space group and unit cell are $R\bar{3}m$ and $a = 3.102$, $c = 24.111$ Å, with $Z = 3$, indicating the $3R$ polytype.

At Mount Keith, a complete solid-solution series was shown to exist between woodallite and stichtite (e.g. Woodhouse, 2006; Mills et al., 2012c), and Rietveld analysis was employed to model the $3R$ structure at various points in the series (Whitfield et al., 2010; Mills et al., 2012c).

Desautelsite

Desautelsite, Mg$_6$Mn$_3^{3+}$(OH)$_{16}$[CO$_3$]·4H$_2$O, is the Mn$^{3+}$ analogue of hydrotalcite. It has been reported from several localities in the USA (Dunn et al., 1979) and in Japan (Matsubara et al., 2012), as bright orange hexagonal crystals. The space group and unit-cell parameters are $R\bar{3}m$, and $a = 3.114$, $c = 24.39$ Å, with $Z = 3$, indicating the $3R$ polytype. No superstructure reflections were observed, implying no long-range order in the structure. Experiments (e.g. Hansen and Taylor, 1991) show that desautelsite forms at low temperatures (~35ºC), in slightly alkaline (pH ~9) solutions.

Takovite

Takovite was first described by Maksimović (1957) as Ni$_2$Al$_4$O$_2$(OH)$_{18}$·4H$_2$O, from Takovo, Serbia; its properties and genesis were described in further papers (Maksimović, 1958, 1959). As takovite was originally reported to be carbonate-deficient, and in view of its similarities with LDH phases, Bish and Brindley (1977) investigated samples from Serbia, Australia and France. In these samples CO$_3$ was found to range from 0.80 to 0.95 a.p.f.u. Cation M^{2+}:M^{3+} ratios of 5.87:2.12 and 5.73:2.28 were reported leading to the ideal formula Ni$_6$Al$_3^{3+}$(OH)$_{16}$(CO$_3$)·4H$_2$O, which is consistent with a hydrotalcite-group mineral.

Bish and Brindley (1977) reported a rhombohedral unit cell with parameters $a = 3.0250$ and $c = 22.595$ Å, which is consistent with the $3R$ polytype, and Bookin et al. (1993a) verified the $3R_1$ stacking sequence. Mills et al. (2012c) confirmed the $3R\bar{3}m$ space group with unit-cell parameters $a = 3.0290(2)$ and $c = 22.5995(15)$ Å, on crystals from the Agoualdine mine, Bou Azzer, Tazenakht, Morocco.

Bish (1980) exchanged the interlayer carbonate of takovite with sulfate to produce the Al analogue of honessite with $c = 26.74 = 3 \times 8.91$ Å and carboydite with $c = 32.47 = 32.50 = 3 \times 10.82 = 10.83$ Å. Bookin et al. (1993a) deduced the $3R_1$ stacking sequence for carboydite, and reported the unusual $3R_2$ structure for the Al analogue of honessite. Their work implies that anion exchange in the interlayer can cause displacement of the brucite layers and a concomitant change in the polytype.

Reevesite

Reevesite was described by White et al. (1967) as fine-grained bright yellow cavity infillings in meteorites from Wolf Creek, Western Australia. They noted a strong resemblance between its X-ray powder data and those of pyroaurite, and from qualitative chemical analysis deduced that it must be the Ni$^{2+}$ analogue, ideally Ni$_6$Al$_3^{3+}$(OH)$_{16}$(CO$_3$)·4H$_2$O. They estimated the unit-cell parameters as $a = 6.15$ and $c = 45.61$ Å. A more detailed description was published by De Waal and Viljoen (1971) from material that formed minute greenish yellow hexagonal platelets in nickel ore in the Bon Accord area of the Barberton Mountain Land, South Africa. They gave its formula as (Ni$_{16.69}$Fe$_{0.83}$Mg$_{0.41}$Co$_{0.07}$) Fe$_{6.00}$(OH)$_{48}$(CO$_3$)$_{24}$·12H$_2$O, which is in accord with the ideal endmember formula suggested by White et al. (1967). The unit cell parameters are $a = 6.164$ and $c = 45.54$ Å. The data from both of these sets of authors suggest a 6-layer polytype.
with a 2×2 superlattice in the xy plane. However, the diffraction data of De Wall and Viljoen (1971) were reinterpreted by Bookin et al. (1993b) as corresponding to an intergrowth of a $3R_1$ structure with $a = 3.082$ and $c = 22.770$ Å and a $1T$ structure with a $\sqrt{3}/3 \times \sqrt{3}$ superstructure in the xy plane, with a somewhat contracted layer spacing of $a = 5.337$ and $c = 21.608$ Å.

Jamborite

Morandi and Dalrio (1973) described jamborite as green fibrous-lamellar pseudomorphs after millerite from ophiolites at Ca’ dei Ladrì and Monteacuto Ragazza near Bologna and Castelluccio di Moscheda near Modena, Italy. The X-ray powder patterns indicated a hexagonal unit-cell parameters $a = 3.07$ and $c = 23.3$ Å. Nickel was the dominant cation, and small but consistent amounts of Co and Fe were present. The S content was consistently found to be 3.5 wt.%, but dissolution in HCl did not give a precipitate; this was not thought to be due to interlayer sulfate content, which is unique amongst the LDH minerals. There is about one sulfide ion per 7–8 octahedral cations. The general formula of Morandi and Dalrio, amended to include Co$^{3+}$, is $[(\text{Ni},\text{Co},\text{Fe})_{2-\delta}^{2+}\cdot(\text{Ni},\text{Co},\text{Fe})_{3}^{3+} (\text{OH})_2][\text{(OH)}_2^2\text{S}_{\delta/2}^- \cdot 1-1/2\text{H}_2\text{O}]$. If we assume that Co and Fe are fully oxidized, the analytical data are consistent with the formula $\left[\text{Ni}_{0.94-\delta}\text{Ni}_{0.06}\text{Co}_{0.04}\text{Fe}_{0.02}\right]_0\text{S}_{1.14}\text{OH}_{2-0.22}\cdot\text{H}_2\text{O}$, in which $y \approx 1$. Note that x must be >0.22. At the minimum value of x, 0.28 of the octahedral cations are trivalent, which is close to the ideal hydrotalcite ratio of $4/3$, and $S^{2-} >> OH^-$. It is tempting to speculate that the ideal endmember formula might be $[(\text{Ni}^{2+}\text{Ni}^{3+})_2\text{(OH)}_1_6]\text{S}^{2-}\cdot 4\text{H}_2\text{O}$, but at the same time it must be noted that the coexistence of oxidized Ni$^{3+}$ and reduced S$^{2-}$ in an oxycompound is unusual, and that the pale green colour of jamborite is not consistent with charge transfer between Ni$^{2+}$ and Ni$^{3+}$.

Quintinite

Quintinite was initially described from Mont Saint-Hilaire, Québec, Canada, as a $3T$ polytype of $\text{Mg}_4\text{Al}_2(\text{OH})_8[\text{CO}_3]_6\text{H}_2\text{O}$, by Chao and Gault (1997). The space group given was $P3_112$, with unit-cell parameters $a = 10.751$ and $c = 22.71$ Å, and $Z = 6$. Although the c parameter is similar to that of hydrotalcite, the a repeat is about $\sqrt{12}$ times that of brucite, implying the existence of long-range order within the layers. The Mg:Al ratio is higher than that of hydrotalcite, as Al occupies $1/3$ of the octahedral sites rather than $1/4$. The carbonate content is correspondingly higher (one $[\text{CO}_3]^{2-}$ per 6 octahedra, rather than one per 8 octahedra), but the water content is effectively the same as that of hydrotalcite (one H_2O per two octahedra). Chao and Gault (1997) also re-examined a well-crystallized gemmy yellow mineral occurring in cavities in dolomite from the Jacupiranga carbonatite, Brazil, originally reported as manasseite by Menezes and Martins (1984), and found it to be a $2H$ polytype of quintinite, with space group $P6_22$ and unit-cell parameters $a = 10.571$ and $c = 15.171$ Å, with $Z = 4$. Chao and Gault (1997) reported several other instances in which phases with a quintinite-like composition had been wrongly described as either hydrotalcite or manasseite. The $3T$ and $2H$ polytypes were initially described as distinct mineral species and were assigned separate IMA proposal numbers; they are now regarded as polytypes of a single species.

Arakcheeva et al. (1996) had previously examined the $2H$ polytype from Jacupiranga without describing it as a new mineral; however, they reported a different space group ($P6_22m$) and unit-cell parameters $a = 5.283$ and $c = 15.150$ Å, with $Z = 1$. Nevertheless, they described strong long-range order of Mg and Al within the brucite layers.

Recently, quintinite from the Kovdor alkaline massif, Kola peninsula, Russia, was examined by Krivovichev et al. (2010a,b,c). Their single-crystal X-ray study confirmed that quintinite occurs in several structural varieties, with different stacking sequences and different degrees of long-range order. They published structure solutions for three new varieties of quintinite. One is related to the structure of Arakcheeva et al. (1996), but has the repeat in the c direction tripled due to $[\frac{1}{3},\frac{1}{3},0]$ layer displacements every second layer. Thus, the data for quintinite are space group $R32$, with unit-cell parameters $a = 5.275$ and $c = 45.36$ Å, and $Z = 3$ (Krivovichev et al., 2010a). The authors proposed the designation ‘quintinite-2H-3c’ for this modification, to indicate that the stacking of the brucite layers is $2H$ if Mg–Al order is ignored, but that said, ordering introduces an additional tripling of c. A disadvantage of the notation proposed by
Charmarite and caresite

Krivovichev et al. (2010a) is that it does not make explicit the R lattice of the overall structure. There is a strong c = 15.12 Å subcell, and reflections with l ≠ 3n are weak and diffusely streaked, implying substantial stacking disorder. Their second quintinite variant (Krivovichev et al., 2010b) displayed monoclinic symmetry for the first time in natural LDH phases other than those of the calsilicate and hydrocalumite groups. They reported the space group as C2/m, with the unit-cell dimensions a = 5.266, b = 9.114 (which is ~\sqrt{3}a), c = 7.766 Å and β = 103.17°, with Z = 1, giving csinβ = 7.562 Å and –ccosβ = 1.769 Å = a/3. Again, reflections due to Mg–Al order within layers were weak and diffuse. In the structure, all layers are equivalent, and the structure is a cation-ordered superstructure of the conventional 3R polytype. The third quintinite variant (Krivovichev et al., 2010c) was disordered quintinite-2H, with the space group P63/mmc (corrected from P63/mcm as published) and unit-cell parameters a = 3.045 and c = 15.12–15.18 Å, with Z = ½. Note that cation ordering may or may not be preserved within a layer; however, it is certain that registration between layers is absent in this phase.

Charmarite, Mn₄Al₂(OH)₁₂[CO₃]·3H₂O, and caresite, Fe₄Al₂(OH)₁₂[CO₃]·3H₂O, are the Mn²⁺ and Fe²⁺ analogues of quintinite, respectively. They were described along with quintinite by Chao and Gault (1997) from Mont Saint-Hilaire. Charmarite occurs as 2H and 3T polytypes, with the following space groups and unit-cell data: P6₂22, a = 10.985 and c = 15.10 Å, with Z = 4 (2H); and P₃₃₁₂, a = 10.985 and c = 22.63 Å, with Z = 6 (3T). As with quintinite, the 3T and 2H polytypes were initially described as distinct mineral species and were assigned separate IMA proposal numbers, but they are now considered to be polytypes of a single species. Caresite is known only as the 3T polytype, with the space group P₃₃₁₂ and unit-cell parameters a = 10.805 and c = 22.48 Å, with Z = 6.

Zaccagnaite, ideally Zn₄Al₂(OH)₁₂[CO₃]·3H₂O, the Zn analogue of quintinite, was described from the Carrara marble of Calagio Quarry, Tuscany, Italy, by Merlino and Orlandi (2001). The space group and unit-cell parameters correspond to the disordered 2H polytype, with the space group P6₃/mmc and unit-cell parameters a = 3.073 and c = 15.114 Å, with Z = ½. Diffuse streaks parallel to c* were observed at (\sqrt{3}l,l,l)* and equivalent loci, and interpreted to imply strong Zn–Al ordering in two dimensions, albeit with no interlayer correlation. Witzke and Raade (2000) noted that a second occurrence of zaccagnaite, from Lavrion, Greece, occurred as the 3R polytype, but the unit cell was not refined due to intergrowth with related phases. A 3R polytype was described from the El Soplao cave, Cantabria, Spain by Lozano et al. (2012). This material has space group R₃m, and unit-cell parameters a = 3.0662 and c = 22.6164 Å, with a formula (Zn₀.₅₉₃Fe₀.₀₀₄Mg₀.₀₁₅Mn₀.₀₀₈Al₀.₃₈₀)(OH)₂(CO₃)₀.₁₉·₀.₁₉H₂O. Thus, the M⁺:M³⁺ ratio is 1.63:1 rather than 2.00:1, and the high Al content is charge-balanced by a higher than normal carbonate content (≈ 1.14 per 12[OH]) in the interlayer. Note that a variable M²⁺:M³⁺ ratio, with a tendency toward high contents of M³⁺, is a common feature of minerals in the woodwardite and glaucocerinite groups containing the small divalent cations Zn²⁺, Cu²⁺ and Ni²⁺ (as noted in the following discussion).

Chloromalagulanite

Chloromalagulanite was described from a magnetite–chlorite skarn in the Kapevskaya explosion pipe, Irkutsk Oblast’, Russia, by Kashaev et al. (1982). Analysis of the type material gave a formula \(\text{Mg}_{3.555}\text{Fe}_{0.022}\text{Ti}_{0.011}\text{Na}_{0.005}\text{Al}_{2.878}\text{Si}_{8.93}\text{O}_{28}\text{O}_{12}\text{H}_{12}\text{Cl}_{0.12}\text{Cl}_{1.48}\cdot2.42\text{H}_{2}\text{O} \), which strongly suggests an ideal endmember formula Mg₄Al₂(OH)₁₂Cl₂·3H₂O, and hence that chloromalagulanite is, in terms of its composition, the chloride analogue of quintinite. The space group was reported to be P6₃/mcm, P6₃/cm or P6c2, with unit-cell parameters a = 5.29 and c = 15.46 Å, and Z = ¼. These data correspond to the 2H polytype with \(\sqrt{3} \times \sqrt{3} \) superstructure in xy plane. The mineral was previously reported under the name ‘chormanasite’ by Feoktistov et al. (1978).

Comblainite

Comblainite was described as turquoise cryptocrystalline crusts from the Shinkolobwe mine, Katanga, Democratic Republic of the Congo, with a formula (Ni⁺²⁺₀.₉₀Co⁺³⁺₀.₁₀)(OH)₂(CO₃)(1−y)₂·yH₂O by Piret and Deliens (1980). The unit cell is
rhombohedral, and the parameters recalculate to give axes of \(a = 3.038\) and \(c = 22.79\) Å. The two formulae reported by Pierret and Deliens (1980) can be recast on the basis of \(6[M^{2+} + M^{3+}]\) as:
\[
[(\text{Ni}_{4.07}\text{Co}_{1.93}\text{(OH)}_{1.2})(\text{CO}_{3})_{0.88}\text{(OH)}_{0.18}] 4.47\text{H}_{2}\text{O}
\]
and
\[
[(\text{Ni}_{4.69}\text{Co}_{1.93}\text{(OH)}_{1.2})(\text{CO}_{3})_{0.68}\text{(OH)}_{0.56}] -6.61\text{H}_{2}\text{O}.
\]
Possession of \(R\) translational symmetry for the 3-layer polytype is more typical of the pyroaurite group than the quintinite group; however, the \(M^{3+}:M^{2+}\) ratio is consistently 2:1 rather than 3:1, so combainite can be considered to be the \(\text{Ni}^{2+}−\text{Co}^{3+}\) analogue of quintinite.

Fougère

There is a very special case in the hydrotalcite supergroup where the two cations in the octahedral layer are the same chemical element in different oxidation states, namely Fe\(^{2+}\) and Fe\(^{3+}\) in the mineral fougère (and possibly also Ni\(^{2+}\) and Ni\(^{3+}\) in jamborite). Vysoostskii (1905) first described the bluish green colour of so-called gleysols from below the water table (‘gley’ is transliterated from the Russian ‘глея’ = ‘clay’); this colour was attributed by Arden (1950) to a mixed-valence Fe mineral which was described as ‘ferrihydroxide’ with Fe\(^{2+}\) dominant and the formula Fe(OH)\(_{2+x}\) (see also Taylor, 1980; Herbillon, 2006). The phase was never properly characterized because of the low concentration of Fe that is usually found in waterlogged soils (about 5%). However, it was possible, using Mössbauer spectroscopy, (an Fe-oxidation state selective technique) to attribute the Fe\(^{2+}\) content to a chemical compound which is commonly described as ‘green rust’, because it is an intermediate Fe\(^{2+}−\text{Fe}^{3+}\) compound which forms during the corrosion of Fe-based materials and steels (Génin et al., 1986, 1996, 1998, 2002; Drissi et al., 1995; Trolard et al., 1997, 2007; Refait et al., 2003). Green rust was first identified by Girard and Chaudron (1935). It is an LDH type compound, with Fe\(^{2+}\) and Fe\(^{3+}\) in the octahedral layer (cf. Simon et al., 2003; Aïssa et al., 2006). The symmetry depends on the shape of the intercalated anion, being \(R\overline{3}m\) (3\(R\) polytype) for a phase described as ‘green rust I’ with spherical or planar intercalated anions such as F\(^−\), Cl\(^−\), I\(^−\), CO\(_3^{2−}\), CH\(_4\)COO\(^−\) or C\(_2\)O\(_4^{2−}\); or \(P\overline{3}m\) (1\(T\) polytype) for ‘green rust II’ with tetrahedral anions such as SO\(_4^{2−}\) or SeO\(_2^{−}\) (Bernal et al., 1959). The 3\(R\) phases have unit-cell dimensions \(a = 3.17−3.18\) and \(c = 22.7−22.9\) Å if the intercalated anions are CO\(_3^{2−}\). The intercalated anion in natural material was not initially known, and it took some time before it was shown to be CO\(_3^{2−}\). This carbonate-bearing material is the most thermodynamically stable green rust phase, and has been produced in the laboratory by bacterial reduction of \(\gamma\text{-FeOOH}\) in anoxic conditions similar to those found in aquifers (Ona-Nguema et al., 2002). In nature, the CO\(_3^{2−}\) is produced by the oxidation of organic matter as part of a redox couple in which Fe-reducing bacteria reduce Fe\(^{3+}\) in the absence of oxygen (Ruby et al., 2006).

Characterization of the natural material was complicated by the fact that the Fe\(^{3+}\) molar fraction \(x = (\text{Fe}^{3+}/\text{Fe}_{\text{tot}})\), as determined by Mössbauer spectroscopy, was always found to be greater than \(1/3\) (e.g. Génin et al., 1998, 2005; Fèder et al., 2005; Rodionov et al., 2006). In contrast, synthetic samples produced by co-precipitation always had \(x = 1/3−1/5\), as in any other LDH (Génin et al., 2006b; Génin and Ruby, 2008), and compositions such as Fe\(^2+_6\)Fe\(^3+_2\)(OH)\(_{16}\) CO\(_3\)·3H\(_2\)O and Fe\(^2+_4\)Fe\(^3+_2\)(OH)\(_{2}\)CO\(_3\)·3H\(_2\)O (Génin et al., 2005). This inconsistency was resolved when it was shown that green rust oxidizes by one of two mechanisms. In the most common mechanism the green rust dissolves, with subsequent precipitation of ferric oxyhydroxides such as ferrhydrite, lepidocrocite and finally goethite (Drissi et al., 1995; Benali et al., 2001). The less common mechanism involves oxidation accompanied by \textit{in situ} deprotonation to produce the compound Fe\(^2+_{6(1−x)}\)Fe\(^3+_{3x}\)O\(_{12}\)H\(_{4−6x}\)CO\(_3\)·3H\(_2\)O, with \(x > 1/3\) and hence some O\(^2−\) replacing OH\(^−\) in the hydroxide layer (Génin et al., 2005, 2006a). The existence of this phase might be taken to indicate the existence of a continuous solid solution, with \(x\) ranging from 0 to 1. However, studies of the variation of \(x\) in synthetic samples with electrode potential \(E_b\) and the derived chemical potential indicate that for \(x\) values in the range \(1/3−1/5\), the compositions are mixtures of two endmember phases with \(x = 1/3\) and \(x = 1/5\). Furthermore, it was found that for \(x\) in the range \(1/3−1/1\), the compositions are mixtures of endmember phases with \(x = 1/3\) and \(x = 1\), and an additional endmember exists at \(x = 0\) (Ruby et al., 2010). Low-temperature Mössbauer spectroscopy and magnetic susceptibility measurements support this conclusion (Rusch et al., 2008), and show that these four different compounds have distinct magnetic properties arising from long-range ordering of Fe\(^{2+}\) and Fe\(^{3+}\) within the layers. If \(x = 0\) [i.e. in Fe\(^3+_{6}\)(OH)\(_{10}\)(H\(_2\)O)\(_2\)CO\(_3\)·3H\(_2\)O], all of
the cations are Fe$^{2+}$; if $x = \frac{1}{3}$ [i.e. in Fe$^{2+}$Fe$^{3+}$ (OH)$_{12}$CO$_3$3H$_2$O], the Fe$^{3+}$ cations are all surrounded by six Fe$^{2+}$ cations in the pattern shown in Fig. 3a, to minimize electrostatic repulsion; if $x = \frac{3}{2}$ [i.e. in Fe$^{2+}$Fe$^{3+}$O$_2$(OH)$_{10}$ CO$_3$3H$_2$O], the Fe$^{2+}$ cations are surrounded by six Fe$^{3+}$ cations; and if $x = 1$ [i.e. in Fe$^{3+}$O$_2$(OH)$_{8}$ CO$_3$3H$_2$O], all of the cations are Fe$^{3+}$ (Rusch et al., 2008). This unusual redox flexibility has a major role in determining gleysol properties.

Samples of ‘fougérite’ collected from below the permanent water table display experimental average values of x in the range $\frac{1}{2} - \frac{3}{2}$, which indicates that they contain a mixture of domains with $x = \frac{1}{2}$ and $x = \frac{3}{2}$, intergrown in a topotactic relationship, with an overall composition derived from the relative proportions of the two phases according to the lever rule (Génin et al., 2012a). Type fougérite, as described by Trolard et al. (2007), has such a range and therefore contains two distinct mineral species (which are discussed in the following text). Gleys recently found in maritime marshes (Génin et al., 2012b) have x values in the range $\frac{3}{2} - 1$, indicating that they are a mixture of domains with $x = \frac{3}{2}$ and $x = 1$ in topotactic intergrowth. The $x = 1$ phase corresponds to the new mineral mọssbauerite.

Mọssbauerite

Mọssbauerite, (IMA2012-049), ideally Fe$^{3+}$O$_2$(OH)$_8$CO$_3$3H$_2$O, is the fully oxidized Fe$^{3+}$ analogue of the mixed valence Fe$^{2+}$–Fe$^{3+}$ green rust minerals fougérite (described in the foregoing text; see also Trolard et al., 2007) and trébeurdenite (described in the following text). The type locality is Mont Saint-Michel Bay, France. Mọssbauerite crystallizes in space group $R\bar{3}m$, and the unit-cell parameters are $a = 3.079$ and $c = 22.253$ Å, with $Z = \frac{1}{2}$, implying a $3R$ polytype with no superstructure in the xy plane. Further details of the identification of mọssbauerite by Mọssbauer spectroscopy are included in the following text (see also the redefinition of fougérite) and in Génin et al. (2012b).

Woodwardite

Woodwardite is a grandfathered species from an unknown type locality in Cornwall, UK (Dana, 1892). The formula was given by Palache et al. (1951) as “probably [Cu$_4$Al$_2$(OH)$_{12}$](SO_4)$_2$·4H$_2$O”. A sample from Cornwall in the Natural History Museum, London (specimen BM 40035), studied by Nickel (1976), was difficult to analyse due to decomposition under the electron beam, but showed variability in the Cu:Al atomic ratio (1.73–2.03, with one anomalously low value of 1.21). Weak and diffuse powder X-ray data were obtained, corresponding to a rhombohedral cell with $a = 3.00$ and $c = 3 \times 9.1 = 27.3$ Å (Raade et al., 1985). Nickel (1976) noted that dehydration occurred readily with increasing temperature, causing a steady decrease in layer spacing from 9.1 Å at room temperature to 8.1 Å at 120°C. For consistency with more recently described members of the group, such as reevesite, the formula may be better expressed [Cu$_{1-x}$Al$_x$(OH)$_2$](SO_4)$_{0.5}n$H$_2$O, in which $x = 0.33–0.37$ and $n \leqslant 0.5$. The lower water content differentiates this species from hydrowoodwardite.

Zincowoodwardite

Witzke and Raade (2000) described zincowoodwardite from Naturhistorisches Museum (Vienna) samples H 858 and G 2172, from Lavrion, Greece, which were previously examined by Raade et al. (1985). Witzke and Raade (2000) also reported data from additional natural material from the Hilarion Mine at Lavrion and synthetic samples, initially described in Witzke (1995). They expressed the formula as (Zn$_{1-x}$Al$_x$)(OH)$_2$(SO$_4$)$_{0.5}n$H$_2$O. Diffraction indicated the existence of two polytypes, 1T and 3R, with probable space groups $P\bar{3}$ and $R\bar{3}m$, respectively, and cell contents $Z = 1$ and $Z = 3$. Cell parameters were $a = 3.063$ and $c = 8.91$ Å for 1T; and $a = 3.065$ and $c = 25.42 = 3 \times 8.47$ Å for 3R. Raade et al. (1985) had previously reported $a = 5.306 = \sqrt{3} \times 3.063$ Å and $c = 26.77$ Å for sample H858, suggesting that a $\sqrt{3} \times \sqrt{3}$ superstructure can occur in the xy plane. The composition was, however, variable. The ratio $M^{2+}/(M^{2+} + M^{3+})$ ranged from 0.32–0.33 in the 1T polytype, and from 0.35–0.50 in the 3R polytype. In the natural 3R polytype, some Zn was reported to be replaced by Cu, with Cu/(Zn + Cu) in the range 0.22–0.24; this ratio ranged from 0–0.47 in synthetic samples. The analysis reported for material from sample H858 by Raade et al. (1985) can be recalculated to produce the formula [Zn$_{4.38}$Cu$_{0.94}$Al$_{2.68}$](OH)$_{16}$Na$_{0.33}$(SO$_4$)$_{1.33}$(CO$_3$)$_{0.56}$8.98H$_2$O; the Na content and high water content suggest an admixture with natroglauccerinite. The best simplified formula is probably [Zn$_{1-x}$Al$_x$(OH)$_2$](SO_4)$_{0.5}n$H$_2$O, in which $x = 0.32–0.50$ and $n < 3\sqrt{2}$. 1302
HYDROTALCITE SUPERGROUP NOMENCLATURE

Honessite
Honessite was described as an oxidation product of Ni-Fe sulfides from Linden, Iowa County, USA, by Heyl et al. (1959). Bish (1980), studying anion exchange in LDH phases, concluded that honessite was \([\text{Ni}_8\text{Fe}^{3+}_6\text{(OH)}_{16}]\)(SO4)·4H2O, and therefore the sulfate analogue of reevesite. Additional data was reported by Bish and Livingstone (1981), who reported a rhombohedral cell with \(a = 3.083\) and \(c = 3 \times 8.90 = 25.8\) Å. Bookin et al. (1993a) deduced a 3R_1 stacking sequence from X-ray intensity data. Honessite, and the similar but more hydrous phase hydrohonessite, \([\text{Ni}_8\text{Fe}^{3+}_6\text{(OH)}_{16}]\)(SO4)·7H2O, which has a larger interlayer spacing of ~11 Å (see following text), interconvert readily depending on temperature and humidity (Bish, 1980). Given the compositional variability shown by other members of this group, it is safest to assume that the 3:1 Ni:Fe ratio is not fixed, and that the best simplified formula for honessite is probably \([\text{Ni}_{1-x}\text{Fe}^{3+}_x\text{(OH)}_2]\)(SO4)\(_{c/2}\) \(n\)H2O in which \(x < 0.5\) and \(n < 3x/2\).

Glaucocerinite
Glaucocerinite was originally described as a waxy material of uneven blue colour by Dittler and Koechlin (1932) on specimens in the collection of the Naturhistorisches Museum (Vienna) from Lavrion, Greece. These specimens were re-examined by Raade et al. (1985), who regarded those with catalogue numbers G1377 and G1378 to be the true type material. Powder X-ray diffraction indicated that glaucocerinite coexists with a woodwardite-like mineral on sample G2172, and only the latter mineral was found on samples G2173 and H858. The analyses of Raade et al. (1985) indicated that this woodwardite-like phase was zincowoodwardite, and this was confirmed by Witzke and Raade (2000). Historically, there has been much confusion between glaucocerinite- and woodwardite-like phases, as evidenced by the JCPDS card 17-132 for ‘woodwardite’ from Caernarvonshire, Wales, which has powder data corresponding to a glaucocerinite-like cell and is in fact hydrowoodwardite (Witzke, 1999). The same is true for the Cornish ‘woodwardite’ of Nickel (1976). The unit-cell data of Raade et al. (1985) for glaucocerinite correspond to a rhombohedral cell with \(a = 3.057–3.070\) and \(c = 32.52–32.65\) Å, although two weak additional lines in one diffraction pattern suggested that the true symmetry may be lower. Raade et al. (1985) calculated a formula based on their own analyses of \([\text{Zn,Cu}_{4.98}\text{Al}_{3.02}\text{(OH)}_{16}]\)(SO4)\(_{1.47}\)(OH)\(_{0.08}\)·9.10H2O. Witzke (1999) presented analytical data for a range of natural and synthetic glaucocerinites for comparison with hydrowoodwardite. The Al/(Zn + Cu + Al) ratios were 0.38–0.43 in natural samples and 0.32–0.50 in synthetic material and the Cu/(Zn + Cu) ratios were 0.26–0.29 in natural samples and 0.00–0.47 in synthetic material. Hence, there appears to be a complete solid solution from the Zn endmember towards the Cu analogue hydrowoodwardite, and a M\(^{3+}\) content ranging from values comparable to those of the quintinite group to \(M^{2+}M^{3+}=1:1\).

Witzke (1999) noted that the maximum sulfate content that is sterically permissible in glaucocerinite is one sulfate for every three M cations, and that the expanded interlayer accommodates three water molecules per sulfate ion in addition to those that are present in the woodwardite group; these form hydrogen bonds to the apical oxygens of the sulfate tetrahedron. Therefore, the total water content is \(n > 3x/2\). The most general simplified formula for glaucocerinite is thus \([\text{Zn}_{1-x}\text{Al}_x\text{(OH)}_2]\)(SO4)\(_{c/2}\)\(n\)H2O, in which \(x = 0.32–0.50\) and \(n > 3x/2\), which is similar to zincowoodwardite, but with a higher water content.

Hydrowoodwardite
Hydrowoodwardite was described as a porous blue botryoidal coating from the St Briccius mine, Königswalde, Saxony, Germany, by Witzke (1999). Its formula was given as \([\text{Cu}_{1-x}\text{Al}_x\text{(OH)}_2]\)(SO4)\(_{c/2}\)\(n\)H2O, with \(x\) ranging from 0.23–0.62 in natural samples, and a postulated minimum of \(n = 3x/2\) water molecules. It is worthwhile noting that a value of \(x > 0.50\) (i.e. Al > Cu) may justify the definition of a new species. Some Cu was replaced by Zn, the range of Cu/(Cu + Zn) being between 0.82 and 1.00 in the analysed natural samples, and 0.54–1.00 in synthetic material, showing that the solid-solution series to glaucocerinite is complete. Witzke (1999) also stated that the ‘woodwardites’ from the collection of the National Museum of Wales (specimen number NMW 27.111 GR 443 from Simdde Dylluan and number NMW 27.111 GR 464 from the Ffriddgoch mine) examined by Nickel (1976) and Raade et al. (1985) were hydrowoodwardite. This material gave weak and diffuse diffraction patterns similar to those of JCPDS 17-132, corresponding to a rhombohedral
cell with $a = 3.066$ and $c = 3 \times 10.93 = 32.80$ Å. The partial analysis of Raade et al. (1985) gave a Cu:Zn:Al cation ratio of 57.0:0.5:42.5 for this sample, so that Cu/Al = 1.34, which contrasts with earlier analyses reported in Nickel (1976), which have Cu/Al ratios of 0.62–0.82. Witzke (1999) noted that hydrowoodwardite dehydrates to woodwardite in dry air over a period of weeks and can be rehydrated by immersion in water.

Witzke (1999) also reported a variety of hydrowoodwardite from the St Christoph mine, Bärenhecke, Germany, with $[\text{CO}_3]^{2-}$ substitution for $[\text{SO}_4]^{2-}$ accompanied by minor uranyl ions, which he presumed to reside in the interlayer, and gave the formula $[\text{Cu}_{0.49}\text{Zn}_{0.01}\text{Al}_{0.50}(\text{OH})_2]_2(\text{SO}_4)\text{Al}_{0.06}(\text{UO}_2)_{0.01}\cdot n\text{H}_2\text{O}$.

Carrboydite

Carrboydite was described with a mean formula $(\text{Ni},\text{Cu})_{6.90}\text{Al}_{4.48}(\text{SO}_4,\text{CO}_3)_{2.78}(\text{OH})_{2.15}\cdot 3.67\text{H}_2\text{O}$, from lateritized komatiites at the Carr Boyd Rocks mine, Western Australia, by Nickel and Clarke (1976). The reported Ni:Al ratio ranges between 1.05 and 1.80. Electron microscopy showed carrboydite spherulites to consist of aggregates of thin platy crystals, and an X-ray and electron diffraction study indicated a metrically hexagonal unit cell with $a = 9.14$ and $c = 10.34$ Å. A second phase with a larger layer spacing of ~11 Å was intimately associated. This was initially interpreted as a more highly hydrated relative of carrboydite, and was considered to be an unnamed nickel analogue of glaucocerinite by Nickel (1976) and Raade et al. (1985). It has a rhombohedral unit cell with $a = 3.022$ and $c = 32.45 = 3 \times 10.82$ Å.

The mineral with $c = 10.34$ Å is the 1T polytype of carrboydite. Bookin et al. (1993a) identified the polytype with the 3-layer structure as 3R_1, which is the same as the synthetic carrboydite of Bish (1980), which was synthesized from takovite by anion exchange.

The a repeat of carrboydite *sensu stricto* is typical of a 3×3 superstructure in the xy plane. Nickel and Clarke (1976) explained the unusual c repeat as possibly arising from the presence of a double brucite layer (i.e. and ...$\text{XMXMX}...$ sandwich rather than ...$\text{XMX}...$); however, even with occupancy of the octahedral sites reduced to 75% to obtain the correct stoichiometry, this structure has an implausibly high coordination number for the central layer hydroxide ions. It is more probable that conventional $M\text{X}_2$ layers are present, and the interlayer spacing increases from 8 Å due to the presence of additional intercalated octahedral cations. Recalculating the formula on the basis of $18(\text{OH})$ gives $[(\text{Ni},\text{Cu})_{2.8}\text{Al}_{3.72}(\text{OH})_{16}]\text{Ni}_{0.44}(\text{SO}_4,\text{CO}_3)_{2.31}\cdot 3.04\text{H}_2\text{O}$.

Given the reversible hydration and dehydration properties of these minerals, there does not appear to be any justification for making a species-level distinction between carrboydite and the ‘11 Å phase’. Disregarding the superstructures in the xy plane and minor changes in the hydration state and $M^{2+}:M^{3+}$ ratio, they can be regarded as the 1T and 3R polytypes of a more broadly defined carrboydite, with a general formula $[(\text{Ni},\text{Cu})_{1-x}\text{Al}_x(\text{OH})_2]\text{Ni}_x(\text{SO}_4,\text{CO}_3)_{x/2+y}\cdot n\text{H}_2\text{O}$, which can be simplified to $[\text{Ni}_1-x\text{Al}_x(\text{OH})_2]_2(\text{SO}_4)_{x/2-y}\cdot n\text{H}_2\text{O}$, with $x \approx 0.40$ and $n \approx 0.33$. Regardless of the details of its superstructure, polytypic modification and interlayer content, carrboydite is the Ni analogue of glaucocerinite and the Al analogue of hydrohonessite.

Hydrohonessite

Hydrohonessite occurs as microscopic yellow flakes and was originally found in 1971 at Otter Shoot, Kambalda, Western Australia, in amounts that were too small for a full characterization (Nickel and Wildman, 1981). Its nature was finally determined by Nickel and Wildman (1981) by comparison with carrboydite, mountkeithite and motukoreaithe. Bish and Livingstone (1981) reported another occurrence of hydrohonessite on the island of Unst, Shetland, Scotland. The hydrohonessite of Nickel and Wildman (1981) was described with a metrically hexagonal cell with $a = 3.09$ and $c = 10.80$ Å, indicating the 1T polytype, whereas that of Bish and Livingstone (1981) had $c = 33.4 = 3 \times 11.13$ Å. An analysis of diffraction intensities led Bookin et al. (1993a) to suggest the unusual stacking sequence $3R_2$ for this latter polytype. The empirical formula reported by Nickel and Wildman (1981) was $[\text{Ni}_{5.43}\text{Fe}^{3+}_{2.57}(\text{OH})_{16}]\text{Ni}_{0.98}\text{SO}_4\cdot 2.26\cdot 6.95\text{H}_2\text{O}$, which is close to honesite but with additional water. The excess of octahedral cations over hydroxide indicates the presence of interlayer octahedra, although the excess Ni in the structure does not appear to be as readily exchangeable as the excess Mg of mountkeithite (Nickel and Wildman, 1981). The formula given for Unst hydrohonessite by Bish and Livingstone (1981), $[\text{Ni}_{5.55}\text{Mg}_{0.10}\text{Fe}^{3+}_{2.35}(\text{OH})_{16}]\text{SO}_4\cdot 1.18\cdot 3\text{H}_2\text{O}$, has less sulfate and no...
interlayer Ni, suggesting either that the intercalated octahedral cation may not be essential or that the nickel content was overestimated by Nickel and Wildman (1981). The expansion of the layer spacing to \(\sim 11\ \text{Å}\) may be a result of the presence of additional water, additional sulfate, additional octahedral cations of type similar to those of the brucite layers, or some combination of the above. Regardless of these details, hydrohonesite is considered to be the \(\text{Fe}^{3+}\) analogue of carboydite.

Mountkeithite

Mountkeithite was described as a white flaky alteration product of stichtite from the Mount Keith nickel deposit, 400 km north-northwest of Kalgoorlie, Western Australia (Hudson and Bussell, 1981). The mineral has intercalated octahedral cations as in the wermlandite group, but a distinctive feature of its chemistry is that these are \(\text{Mg}^{2+}\), and constitute an exchangeable \(\text{MgSO}_4\) component. This component is lost so readily that mountkeithite reacts with water to produce a pyroaurite-like phase with a 7.8 Å layer spacing. This reaction can be fully reversed by immersion in a 1 M \(\text{MgSO}_4\) solution. The powder data were best fitted by a hexagonal unit cell with \(a = 10.698\) and \(c = 22.545\ \text{Å}\), corresponding to a \(\sqrt{12} \times \sqrt{12}\) superstructure in the \(xy\) plane, a 2-layer structure with less than full occupancy of the interlayer sites for a formula with 24(OH) in the brucite layer, and \(Z = 2\). The structural formula hypothesized by Hudson and Bussell (1981), with minor omissions, is \([\text{Mg}_{8.15}\text{Ni}_{0.85}\text{Cu}_{0.02}]\) \((\text{Fe}^{3+}_{1.31}\text{Cr}_{1.02}\text{Al}_{0.65})\text{Al}_{0.65}(\text{OH})_{24}\) \((\text{Mg}_{1.94}\text{Ni}_{0.18})\text{SO}_4\text{Al}_{2.32}(\text{CO}_3)_{1.11}\cdot 9.39\text{H}_2\text{O}\), suggesting an ideal formula close to \([\text{Mg}_7\text{Fe}_3\text{Al}_2\text{SO}_4\text{Al}_2\text{H}_2\text{O}]\). No information about the ordering or interconnection of the interlayer \(\text{Mg}^{2+}\), \(\text{SO}_4^{2-}\) and \(\text{H}_2\text{O}\) is currently available. However, regardless of its superstructure, polytypic modifications and exact interlayer composition (particularly the loosely held additional cations), mountkeithite is considered to be the Mg analogue of hydrohonesite, with a simplified formula \([\text{Mg}_1-x\text{Fe}_x\text{Al}_2\text{SO}_4\text{Al}_2\text{H}_2\text{O}]\), in which \(x \sim 0.25\) and \(n \sim 3x\).

Zincaluminite

Zincaluminite is a grandfathered mineral species that is not described to modern standards and is therefore questionable. It occurs at the Kamariza mine, Lavrion, Greece (Bertrand and Damour, 1881; Palache et al., 1951) as small hexagonal or pseudohexagonal plates. The formula is commonly reported to be \(\text{Zn}_6\text{Al}_6\text{SO}_4\text{Al}_2\text{H}_2\text{O}\), but no structural data are available. The formula can be recast as \([\text{Zn}_2\text{Al}_3(\text{OH})_2]\text{SO}_4\text{Al}_2\text{H}_2\text{O}\), which suggests a hydrotalcite-like mineral. The \(M^{2+}:M^{3+}\) ratio of 1:1 is very high in comparison to most LDH compounds, but has been reported in synthetic Cu-free glaucocerinite (Witzke, 1999), which is almost identical in composition to zincaluminite. The mineral urgently needs further study; it is not obvious that it merits distinction from Cu-free glaucocerinite or zincowoodwardite.

Wermlandite

Wermlandite is the prototype for a group of LDH minerals which contain both anions and hydrated cations as intercalated species. Wermlandite was described by Moore (1971) as green-grey platy crystals with magnetite and drusy calcite in dolomitic marble from Långban, Värmland, Sweden. The interlayer anion was originally reported to be carbonate, but was later shown to be sulfate by Rius and Allmann (1984) who expressed the formula as \([\text{Mg}_7\text{Al}_2\text{Fe}_{0.43}\text{Cl}_{0.57}\text{SO}_4\text{Al}_2\text{H}_2\text{O}]\). The space group and unit-cell parameters are \(P6_3\), and \(a = 9.303\), \(c = 22.57\ \text{Å}\), with \(Z = 2\), which are consistent with a 2-layer structure. It is important to note that Bookin et al. (1993) showed that the stacking of the brucite-like layers is actually \(1T\), and the doubling of the period along \(c\) arises from orientational ordering of the interlayer sulfate and water groups. This complex but well-ordered interlayer, which contains large species, results in an increase of the layer periodicity in wermlandite to \(\sim 11\ \text{Å}\); the \(3 \times 3\) superstructure in the \(xy\) plane allows ordering of the \(7\text{M}^{2+}\) and \(2\text{M}^{3+}\) in each layer. The wermlandite structure of Rius and Allmann (1984) is shown schematically in Fig. 5. The \(7:2\) ordering pattern of Mg and Al in the octahedral layer is shown in Fig. 6, along with the two differently oriented interlayers of the unit cell, which are related by a \(c\)-glide. By analogy with ‘quintinite-2H-3c’ (which is described in the
previous text), the wermlandite polytype could be described as ‘wermlandite-1T-2c’ rather than ‘wermlandite-1T’, to emphasize the fact that the two brucite layers are not oriented differently; however, this notation is problematic and is not adopted herein. For the wermlandite group, the standard polytype symbols proposed by Guinier et al. (1984) are probably sufficient, but the fact that the structural principle behind the stacking variation differs from that in the groups with simpler interlayers should be borne in mind: it is based on the offset and orientation of the
Fig. 6. Slices of the wermlandite structure parallel to (001). (a) The ordering pattern of 7 Mg (dark) and 2 Al (light) octahedra in the brucite layer at 0.1 < z < 0.4; (b) the interlayer at −0.1 < z < 0.1, showing [SO₄]²⁻ tetrahedra, [Ca(H₂O)₆]²⁺ octahedra and additional H₂O; (c) the interlayer at 0.4 < z < 0.6, reflected relative to that of (b) by a c-glide. The (Mg,Al) octahedra are blue, interlayer [SO₄]²⁻ tetrahedra are yellow, Ca²⁺ are large orange spheres, H⁺ are small pink spheres and the O²⁻ of H₂O molecules are medium-sized red spheres.
interlayer components rather than that of the octahedral layers.

Brindley (1979) and Rius and Allmann (1984) noted that expanded 11 Å layer structures are fragile, and are readily destroyed or converted into more compact layers by ion exchange, mild heating, grinding or dehydration. The resulting intergrowths of phases and their decomposition products may complicate characterizations of minerals in this group.

Shigaite

Shigaite was described as yellow hexagonal plates from the Ioi mine, Shiga Prefecture, Japan by Peacor et al. (1985) and has subsequently been reported from several other metamorphosed manganese deposits. It has the formula
\[
\left[\text{Mn}_6\text{Al}_3(\text{OH})_{18}\right]\left[\text{Na(H}_2\text{O)}_6\right]\left[\text{SO}_4\right]_2\cdot 6\text{H}_2\text{O},
\]
which is analogous to that of wermlandite, but with a greater proportion of \(M^3+\) in the brucite-like sheets and \(Na^+\) instead of \(Ca^{2+}\) in the interlayer. The structure was refined by Cooper and Hawthorne (1996) using a crystal from the N’Chwaning mine, South Africa. The space group and unit-cell parameters are \(R\bar{3}m\) and \(a = 9.512, c = 33.074 \text{ Å},\) with \(Z = 3\).

Nikischerite

Nikischerite, \(\left[\text{Fe}^{2+}_6\text{Al}_3(\text{OH})_{18}\right]\left[\text{Na(H}_2\text{O)}_6\right]\left[\text{SO}_4\right]_2\cdot 6\text{H}_2\text{O},\) is the \(Fe^{2+}\) analogue of shigaite. It was described from the Huanuni tin mine, Dalence Province, Oruro Department, Bolivia by Huminicki et al. (2003) as large euhedral green crystals; the structure was refined by Huminicki and Hawthorne (2003). The space group and unit-cell parameters for the 3R polytype are \(R\bar{3}m\) and \(a = 9.347, c = 33.000 \text{ Å},\) with \(Z = 3\).

Motukoreaite

Motukoreaite was described from Motukorea (Brown’s Island), Auckland, New Zealand, by Rodgers et al. (1977), as a white, clay-like cement phase in tuffs and beach rocks. Electron microscopy by Brindley (1979), Ramanaidou and Noack (1987) and Bryner et al. (1991) has confirmed a thin platy hexagonal habit at a micrometre scale. Various formulae have been given for the mineral. If the empirical formula of Rodgers et al. (1977) is recalculated to \(9\text{M}\), it becomes
\[
(Na_{0.22}K_{0.02})_{2.24}Mg_{5.47}Al_{3.37}Si_{4.06}Ti_{0.63}H_2O_8\cdot 3.33H_2O.
\]
This formula expresses the translational symmetry of the interlayer cation hydration sphere. The formula \(NaMg_{19}Al_{12}(\text{CO}_3)_{6.5}(\text{SO}_4)_{4}(\text{OH})_{54}
\cdot 28\text{H}_2\text{O}\) used by Bryner et al. (1991) is too low in water to provide a complete hydroxide layer and interlayer cation hydration sphere. The formula of motukoreaite departs from that expected for the wermlandite group due to dehydration and contamination by other phases (Brindley, 1979; Rius and Plana, 1986). Nevertheless, it has been accepted as the Mg analogue of shigaite and nikischerite (e.g. Rius and Plana, 1986; Huminicki and Hawthorne, 2003). The model formula used by Rius and Plana (1986) for their structure determination was
\[
[Mg_6Al_3(\text{OH})_{18}]\left[(Na_{0.67}K_{0.33})(\text{H}_2\text{O})_3\right]\left[\text{SO}_4\right]_3\cdot 3\text{H}_2\text{O},
\]
which is not charge balanced. Huminicki and Hawthorne (2003), however, used an electrostatically neutral formula which can be rewritten
\[
[Mg_5.6Al_{3.4}(\text{OH})_{18}]\left[(Na_{0.67}K_{0.33})(\text{H}_2\text{O})_3\right]\left[\text{SO}_4\right]_3\cdot 0.7\text{H}_2\text{O}.
\]
This suggests the following: (1) there is some variability in the Mg:Al ratio; (2) the Na site is partially occupied, and the occupancy may be more or less than 50%; (3) carbonate (or possibly bicarbonate) or sulfate may predominate as the interlayer anion; and therefore (4) analyses may have been undertaken on more than one phase.
Natroglaucocerinite

Natroglaucocerinite occurs at several mines in the Lavrio District of Greece. It was approved by the IMA in 1995 (IMA1995–025), but a full description remains to be published. An abstract by Witzke et al. (1995) gives the formula, \([\text{Zn}_5\text{Al}_3(\text{OH})_{16}]\text{Na}_{1.5}(\text{SO}_4)_{2.25}9\text{H}_2\text{O}\), which is close to that of glaucocerinite, but with additional interlayer \(\text{Na}^+\) and \([\text{SO}_4]^{2-}\). Given the Na content, natroglaucocerinite can be considered to be a member of the wermlandite group, and the formula can be recalculated on the basis of \(18(\text{OH})\) as \([\text{Zn}_{5.63}\text{Al}_{3.37}(\text{OH})_{18}]\text{Na}_{1.68}(\text{SO}_4)_{2.53}9.13\text{H}_2\text{O}\), which is comparable to \([\text{Zn}_6\text{Al}_3(\text{OH})_{18}]\text{Na}(\text{H}_2\text{O})_6[\text{SO}_4]_2\cdot6\text{H}_2\text{O}\). The hypothetical Zn analogue of shigaite, nikischerite and motukoreaite, but with a higher interlayer \(\text{Na}^+\) and \([\text{SO}_4]^{2-}\) content and less water than in the rest of the group. Clearly, natroglaucocerinite is not the Na analogue of glaucocerinite sensu stricto, as the name might be taken to imply.

Karchevskyite

Karchevskyite was described by Britvin et al. (2008) as pearly white spherulites from the Zheleznnyi mine, Kovdor carbonatite massif, Kola Peninsula, Russia. The empirical formula \([\text{Mg}_{18}\text{Al}_9(\text{OH})_{54}](\text{Sr}_{1.79}\text{Mg}_{0.48}\text{Ca}_{0.09})\Sigma_{2,36}(\text{CO}_3)_{8.26}(\text{PO}_4)_{0.46}(\text{H}_2\text{O})_{6.54}9\text{H}_2\text{O}\) can be simplified to produce the endmember formula \([\text{Mg}_{18}\text{Al}_9(\text{OH})_{54}]\Sigma_2(\text{CO}_3)_{9/2}(\text{H}_2\text{O})_{16}(\text{H}_3\text{O})_5\). The high degree of protonation of the interlayer water molecules, replacement of carbonate by phosphate, dominance of \(\text{Sr}^{2+}\) as the large interlayer cation (although at a very low occupancy of 2 per 27 octahedral cations) are all distinctive. The unit cell is trigonal, with dimensions \(a = 16.0556\), \(c = 25.66\) Å and \(Z = 3\). Karchevskyite has a 27 polytype, but it has an unusually large \(\sqrt{27}\) superstructure in the \(xy\) plane, presumably due to ordering of the interlayer species.

Cualstibite

Cualstibite, ideally \(\text{Cu}_2\text{Al}(\text{OH})_6[\text{Sb}(\text{OH})_6]\), was described from the Clara mine, Oberwolfach, Germany by Walenta (1984), and is the archetype of a small group of LDH phases in which the \(M^{2+}:M^{3+}\) ratio is 2:1 as in the quintinite group, but the intercalated anion is hexahydroxystibominate, \([\text{Sb}^{5+}(\text{OH})_6]_6\) without additional water. The space group is \(P\bar{3}\), and unit-cell parameters are \(a = 9.15\), \(c = 9.745\) Å, with \(Z = 3\), which implies a 17 polytype with a \(3 \times 3\) superstructure in the \(xy\) plane. Whereas the layer periodicity of hydrotalcite and quintinite group minerals is 7.5–8 Å, the larger octahedral anion of cualstibite increases the periodicity to 9.7 Å.
Zincalstibite

Zincalstibite, Zn$_2$Al(OH)$_6$[Sb(OH)$_6$], the Zn analogue of caulstibite, was described from the Fantiscritti quarry, Carrara, Tuscany, Italy by Bonaccorsi et al. (2007). The space group $P3_1$, and the unit-cell parameters $a = 5.327$ and $c = 9.792$ Å, with $Z = 1$, correspond to a $1T$ polytype with $\sqrt{3} \times \sqrt{3}$ superstructure in the xy plane. Recently, Mills et al. (2012a) described a 9-layer polytype, which has the longest periodicity of an LDH mineral reported to date. This $9R$ polytype crystallizes in space group $R3$, its unit-cell parameters are $a = 5.340(2)$ and $c = 88.01(2)$ Å, with $Z = 9$; it has a $\sqrt{3} \times \sqrt{3}$ superstructure in the xy plane.

Omsite

Omsite (IMA2012-025), ideally (Ni,Cu)$_2$Fe(OH)$_6$[Sb(OH)$_6$], is the Ni–Fe analogue of caulstibite and zincalstibite; the type locality is Correc d’en Llinassos, Oms, Pyrénées-Orientales département, France (Mills et al., 2012b). Omsite crystallizes in space group $P3_1$, and its unit cell parameters are $a = 5.351$ and $c = 19.5802 = 2 \times 9.7901$ Å, with $Z = 2$, which corresponds to a $2T$ polytype with $\sqrt{3} \times \sqrt{3}$ superstructure in the xy plane.

Hydrocalumite

Hydrocalumite provides the prototype for the calcium aluminate LDH phases. Although rare as minerals, a wide range of synthetic examples of these substances have been studied and they are important constituents of Portland cements. The divalent cation in the layers of these materials is Ca, the trivalent cation is typically Al (although Fe$^{3+}$ is present in some synthetic analogues). The divalent and trivalent cations are strongly ordered and the Ca:Al ratio is always 2:1. Due to the larger size of Ca$^{2+}$ in comparison to Mg$^{2+}$, the distance between atoms in the brucite-like xy plane increases, and the Ca cation acts as a seventh ligand to one of the interlayer water molecules. Hydrocalumite was first described from the skarn at Scawt Hill, County Antrim, Northern Ireland by Tilley et al. (1934), with an approximate formula [Ca$_4$Al$_2$(OH)$_{12}$](OH)$_{1.56}$ (CO$_3$)$_{0.22}$·4.76H$_2$O [the formula has been normalized to 6(Ca + Al) for comparative purposes]. Passaglia and Sacerdoti (1988) reviewed published compositions of hydrocalumite from various localities and concluded that they lay in a ternary solid solution with endmember formulae [Ca$_4$Al$_2$(OH)$_{12}$]Cl$_2$·4H$_2$O–[Ca$_4$Al$_2$(OH)$_{12}$](OH)$_2$·6H$_2$O–[Ca$_4$Al$_2$(OH)$_{12}$](CO$_3$)$_6$·6H$_2$O. The original specimens from Scawt Hill correspond to the hydroxide endmember. However, the analyses collated by Passaglia and Sacerdoti (1988) revealed a chloride-dominant endmember [e.g. at Bellerberg in Germany, where material described by Fischer et al. (1980) corresponds to [Ca$_4$Al$_2$(OH)$_{12}$]Cl$_{1.90}$(OH)$_{0.10}$·4H$_2$O]. The carbonate endmember was not dominant in any of the collated analyses. Due to the larger size of the Ca$^{2+}$ ion, the pseudohexagonal repeat a_{psh} in the (Ca,Al)(OH)$_2$ sheet is ~5.7 Å rather than ~3.1 Å as in the Mg-rich phases. Cation ordering and interlayer offsets result in a monoclinic cell for most hydrocalumite-related phases, the orthogonal net of the hydroxide layer having $a \sim \sqrt{3}a_{psh} = 9.953$ Å (Cl-rich, Bellerberg) or 10.047 Å (OH- and CO$_3$-rich, Montalto di Castro, Viterbo, Italy) and $b \sim 2a_{psh} = 11.466$ Å (Bellerberg) or 11.523 Å (Montalto di Castro). The c repeats are 16.292 and 16.271 Å, respectively, with $\beta = 104.46^\circ$ and 104.31$^\circ$ and $Z = 4$ for the formulae given above. The layer spacing is thus $\frac{1}{2}c\sin \beta = 7.89$ Å, which is similar to those of the hydrotalcite and quintinite groups.

The space group is $P2_1/c$, but there is a strong $C2/c$ subcell with $b_{subcell} = b_{cell}$/2 (Sacerdoti and Passaglia, 1988). A second specimen from Bellerberg with a formula [Ca$_4$Al$_2$(OH)$_{12}$]Cl$_{1.60}$ (OH)$_{0.40}$·4H$_2$O has been reported as rhombohedral, with space group $R3c$, and unit-cell
Kuzelite
Kuzelite, \([Ca_{4}Al_{2}(OH)_{12}](SO_{4})Cl_{2}(H_{2}O)_{1.6}·8H_{2}O \), was described from carbonaceous xenoliths found at Zeilberg quarry, Bavaria, Germany by Pollmann et al. (1997). It forms colourless to white platy microcrystals which crystallize in space group \(R\bar{3} \), and has a unit cell with \(a = 5.76, c = 6 \times 8.943 \approx 53.66 \\ \AA \) and \(Z = 3 \). Kuzelite is the sulfate analogue of hydrocalumite. Spectroscopic data indicate that carbonate is absent from the structure. The increase in layer spacing from 7.6 to 8.9 \\ \AA\, due to substitution of sulfate for carbonate, is very similar to that between the hydrotalcite and woodwardite groups. However, due to the small number of Ca-rich hydrotalcite-supergroup species, the increase in layer spacing has not been proposed as a criterion for group separation.

Coalingite
Coalingite, \(Mg_{10}Fe^{3+}((OH)_{24}[CO_{3}]_{2}2H_{2}O \), forms red-brown to golden-brown crusts of microscopic platelets, and was originally reported from the New Idria Serpentinite, San Benito and Fresno Counties, California, USA by Mumpton et al. (1965). The material had previously been described as ‘ferrobrucite’. Coalingite is almost always of endmember composition, and has \(\frac{1}{6} \) of the cations trivalent rather than \(\frac{1}{3} \) as in pyroaurite. It is thus very close in composition to brungnatellite, but with a much lower water content. The structure reported by Pastor-Rodriguez and Taylor (1971) has a unit cell with \(a = 3.12, c = 3 \times 12.47 = 37.4 \ \AA \) and \(Z = \frac{1}{2} \), in space group \(R\bar{3}m \), which indicates that there is no long-range Mg–Fe order within sheets or \(CO_{3}–H_{2}O \) order in the interlayer. Broadened reflections and streaking parallel to \(c \) indicate stacking disorder. In particular, the (0003) reflection was reported to lie on a streak extending from about 0.04 to 0.14 \(\AA^{-1} \), with a diffuse maximum corresponding to 13.5 \(\AA \) rather than the expected 12.5 \(\AA \). A distinctive feature of the structure is that only every second interlayer is occupied, giving alternating spacings between (Mg/Fe) planes along \(c \) of about 7.8 \(\AA \) and 4.7 \(\AA \), which are similar to those of pyroaurite and brucite, respectively. In effect, coalingite is a 1:1 interstratification of these minerals.

Brungnatellite
Brungnatellite was described from Val Malenco, Sondrio, Lombardy, Italy, by Artini (1909). His calculated formula, \(Mg_{5}Fe^{3+}((OH)_{13}[CO_{3}]_{4}H_{2}O \), includes carbonate, and is still quoted today. The X-ray study of Fenoglio (1938) reported a primitive trigonal symmetry with \(a = 5.47 \ \AA \) and \(c = 15.97 \ \AA \). If these observations are valid, the mineral can be distinguished from pyroaurite/sjögrenite by having only \(\frac{1}{3} \) of the octahedral cations trivalent, rather than \(\frac{1}{6} \), having a \(\sqrt{3} \times \sqrt{3} \) superstructure in the \(xy \) plane, and a distinctive space group symmetry. The \(c \) repeat indicates that the low \(Fe^{3+} \) content cannot be due to alternation of pyroaurite- and brucite-like stacking as in coalingite. Frondel (1941) noted that the same composition was reported for brungnatellite from four different Italian localities, but that his own examination of material from Val Malenco and Val Ramazzo showed samples labelled “brungnatellite” to consist largely of mixtures pyroaurite and brucite with additional minor phases. Nevertheless, Frondel (1941) concluded that brungnatellite was probably a distinct phase that coexisted with pyroaurite at these localities.

In common with carrboydite and mountkeithite, brungnatellite has \((M^{2+} + M^{3+})(OH)^{-} > 1:2 \). However, the \(c \) spacing is similar to that of a 2-layer member of the hydrotalcite or quintinite groups, so interlayer octahedral cations are unlikely to be present. Rewriting the formula as \(Mg_{5}Fe^{3+}((OH)_{14}[HCO_{3}]_{4}3H_{2}O \) would eliminate this anomaly. Note also that the formula with 7
octahedral cations is not compatible with the 3-fold superstructure in the ac plane, and a reformulation as $\text{Mg}_{5.14}\text{Fe}_{3+}^{3+}2\text{OH}_{12}[(\text{HCO}_3)_{0.86} \cdot 2.57\text{H}_2\text{O}]
$ may be even more appropriate. Brugnatellite requires re-examination to determine its true stoichiometry and interlayer speciation.

Muskoxite

Muskoxite was described as red-brown fine-grained crystals in a drill core from the Muskox intrusion, Kitikmeot Region, Nunavut, Canada by Jambor (1969b). Precession X-ray photographs revealed $P\bar{3}m1$ symmetry with a strong $a = 3.07$ and $c = 4.6$ Å subcell. However, numerous closely spaced reflections along c^* indicated that the true periodicity or periodicities were much longer. Chemical analysis of 200 mg of hand-picked material gave the overall formula (based on 8 cations) $\text{Mg}_{5.04}\text{Fe}^{3+}_{3.96}\text{O}_{4.85} \cdot 7.54\text{H}_2\text{O}$, with $<1\% \text{CO}_2$ and all Fe assumed to be trivalent. This analysis has insufficient water to fit into a hydrotalcite-group template, as $M: [\text{O} + \text{OH} + \text{H}_2\text{O}] = 1:2.13$ rather than 1:2.75 (8:22) as would be expected for a hydroxide member of the hydrotalcite group or 1:2.83 (6:17) for a quintinite-like phase. The 4.6 Å subperiodicity along c, which is close to the layer spacing of brucite, and the low water content, suggest that muskoxite may not be the hydroxide analogue of sjoøgrenite. Microprobe analyses of veinlet material gave Mg:Fe:Mn atomic ratios of 38.2:57.5:4.3 and 22.6:71.8:5.6, implying a wide range of Mg:Fe:Mn compositions and probably a range of Fe oxidation states. In the absence of constraints on the latter, it is not possible to determine whether the solid solution spans Mg-dominant and Fe$^{2+}$-dominant species. Further investigation is required.

Status of the minerals in the hydrotalcite supergroup

Discreditations and questionable species

According to Nickel and Grice (1998): “Polytypes and polytypoids are not regarded as separate species and, like topologically similar polymorphs, they can be distinguished by the addition of a crystallographic suffix to the mineral name, as indicated in a later section.” As such, the well established polytypes of the hydrotalcite supergroup can no longer be considered to be separate species. Considering only the stacking of layers (and neglecting any differences in the layer superstructures), the following mineral names are invalid (see also Table 2): manasseite (= hydrotalcite-2H), sjögrenite (= pyroaurite-2H), barbotonite (= stichtite-2H) and cyanophyllite (= cualstibite-1M). Hydrotalcite, pyroaurite and stichtite are preferred on the basis of historical precedence. In the case of cyanophyllite and cualstibite, cualstibite is preferred, despite being described later (1984 vs. 1981), because the chemistry, valence states and crystallography were initially described incorrectly for cyanophyllite. A complete description of the cyanophyllite structure is provided by Kolitsch et al. (in press).

Jamborite, carboydite, zincaluminite, motokoreite, natroglaucocerinite, muskoxite and brugnatellite are all considered to be questionable species on the basis of their poorly defined chemical compositions. In each case, the chemistry is not sufficiently well defined to associate the name with a unique formula which is distinct from all others; however, each of the species is probably valid and a member of the hydrotalcite supergroup. Fougeréite is redefined as two distinct species, fougérite and trébeurdenite (see below). The current status of all of the members of the hydrotalcite supergroup is summarized in Table 2. We emphasize that the status is that of a name, not of a composition range. There has been ambiguity and inconsistency in the usage and interpretation of status categories in the past; in order to avoid this with the hydrotalcite group, they are defined here as follows:

‘A’ (approved): the name has been approved by the CNMNC or its predecessor Commission as a valid name for the mineral species.

‘D’ (discredited): the name is no longer the official name for a mineral species, as it is now regarded as a synonym, a varietal name, or was so poorly defined in the first place that it cannot be applied in a reproducible fashion.

‘G’ (grandfathered): the name is an old one that pre-dates the Commissions, but is generally accepted as valid.

‘Group’: the name now refers to a group within the supergroup. Names of groups may coincide with names of valid species, giving the status ‘A + Group’. The groups are discussed in detail in the following text.

‘Q’ (questionable): the name refers to one or more mineral species, which are probably valid, but type material was not well enough characterized for species to be unambiguously identified by current criteria. Further study will allow reclassification of the name as ‘A’ or ‘D’.
HYDROTALCITE SUPERGROUP NOMENCLATURE

Table 2. The minerals of the hydrotalcite supergroup as at March 2009, the current status of the names (this report), and their new status as approved by the CNMNC in 2012.

Mineral name	IMA status (2009)	IMA status (2012)	Comment
Hydrotalcite	G	G/Rd + Group +	incorporates former manasseite
		Supergroup	
Manasseite	G	D	
Sjögrenite	G	D	
Stichtite	G	G/Rd	
Barbertonite	Q	D	
Meixnerite	A	A	
Iowaite	A	A	
Droninoite	A	A	
Woodallite	A	A	
Desautelsite	A	A	
Takovite	A	A	
Reevesite	A	A	
Jamborite	A	Q	
Quintinite	A	A + Group	
Charmarite	A	A	
Caresite	A	A	
Zaccagnaita	A	A	
Chlormagaluminite	A	A	
Comblainite	A	A	
Fougérite	A	A/Rd + Group	= fougérite + trébeurdenite
Woodwardite	G	A + Group	
Zincwoodwardite	A	A	
Honesite	A	A	
Glaucocerinite	G	A + Group	
Hydrowoodwardite	A	A	some may be new species with Al > Cu
Carrboydite	A	Q	
Hydrohonesite	A	A	
Mountkeithite	A	A	
Zincaluminite	Q	Q	= glaucocerinite?
Wermlandite	A	A + Group	
Shigaite	A	A	
Nikischerite	A	A	
Motokoreaita	A	Q	may correspond to >1 species
Natroglaucocerinite	A	Q	
Karchevskyite	A	A	
Cualstibite	A	A/Rd + Group	incorporates former cyanophyllite
Cyanophyllite	A	D	= cualstibite
Zincalstibite	A	A	
Hydrocalumite	G	G + Group	may correspond to >1 species
Kuzelite	A	A	
Coalingite	A	A	
Brugnatellite	G	Q	
Muskoxite	A	Q	may correspond to >1 species

‘Rd’ (redefined): the currently valid name now refers to a range of chemical or structural variation for the species that is narrower, broader or otherwise different from that before the redefinition. This is a temporary category highlighting that there is a discredited older name.
redefinition of fougerite

Fe$_2^+$ added. In addition to the initial composition are summarized in Fig. 8.

deprotonation of the Fe$_2^+$ in situ adequate, but there are cases where the second Gaussian distributions. The first method is usually direct superimposing Lorentzian-shaped lines, whereas D_{2f} is interpreted to correspond to Fe$_{2}^{3+}$ in vertical registry with interlayer H$_2$O molecules, whereas D_{2f} is interpreted to correspond to Fe$_{2}^{3+}$ in registry with the centre of a CO$_3^{2-}$ anion. The first doublet, D_{3f} with a small splitting of about 0.5 mm s$^{-1}$, corresponds to a unique Fe$_{3}^{3+}$ site in registry with a CO$_3^{2-}$ anion. The cations are ordered within each layer so that each Fe$_{2}^{3+}$ cation is surrounded by six Fe$_{2}^{2+}$ cations; this cation ordering induces interlayer anion ordering to minimize local charge imbalance. This composition corresponds to the mineral fougerite as redefined herein, so these doublets are labelled with an ‘f’ subscript.

The spectra evolve progressively as H$_2$O$_2$ is added to the initial precipitate. As in situ oxidation proceeds, the two quadrupole doublets with large splitting (D_1 and D_2) decrease in intensity, and a second quadrupole doublet with smaller splitting appears. This shows that Fe$_{2}^{2+}$ cations are oxidizing to Fe$_{3}^{3+}$. At $x \approx 0.5$, which corresponds to the mineral trebuenidite [Fe$_2^{3+}$Fe$_{3}^{3+}$O$_2$(OH)$_{12}$CO$_3$·3H$_2$O] two quadrupole doublets with large splitting in a 3:1 intensity ratio are present (these are labelled D_{1f} and D_{2f}, where ‘t’ stands for ‘trebuenidite’) at abundances of 25 and 8.3%, respectively. There are also two distinct Fe$_{3}^{3+}$ doublets, D_{3t} and D_{4t}, of equal intensity (i.e. 33.3 and 33.3%) (Fig. 7e,f). The Mössbauer parameters of the D_{3t} doublet are quite similar to those of the homologous D_{3f} doublet in fougerite, but whereas the Fe$_{3}^{3+}$ giving rise to D_{3f} is necessarily coordinated to 6[OH$^-$] in the octahedral layer, the new Fe$_{3}^{3+}$ environment associated with D_{4t} contains O$^{2-}$ ligands that replace OH$^-$ due to deprotonation. The Gaussian distribution of quadrupole splitting parameters most probably results from the local distortions of the octahedral surrounding Fe cations when OH$^-$ ions are partially replaced by O$^{2-}$ anions. For an average value of x in the range $\frac{1}{2} - \frac{3}{4}$, the mechanical mixture of fougerite and trebuenidite gives rise to four doublets D_1, D_2, D_3 and D_4 with broadened Gaussian distributions, which are not further resolved (Fig. 7c,d).

The ferric green rust mössbauerite (which is actually orange in colour) contains no Fe$_{2}^{2+}$ and has an ideal formula Fe$_{6}^{3+}$O$_4$(OH)$_8$CO$_3$·3H$_2$O. It produces a spectrum with two Fe$_{3}^{3+}$ doublets of small quadrupolar splitting, D_{3m} and D_{4m} (‘m’ for

Redefinition of fougerite

Mössbauer spectroscopy is the most reliable technique for quantitatively determining the proportions of Fe$_{2}^{2+}$ and Fe$_{3}^{3+}$ in green rust. As the Mössbauer spectra of the natural samples must be compared to those of the corresponding synthetic compounds measured at 78 K, we review the procedure for preparing the synthetic reference samples (cf. Génin et al., 2005; Aïssa et al., 2006), which is as follows: (1) Fe$_{2}^{3+}$Fe$_{3}^{3+}$(OH)$_{12}$CO$_3$·3H$_2$O $(x = \frac{1}{2})$ is co-precipitated by mixing ferrous and ferric sulfates in a 2:1 [Fe$_{2}^{2+}$]/[Fe$_{3}^{3+}$] ratio in the presence of NaHCO$_3$; (2) Hydrogen peroxide is introduced using a peristaltic pump into the Fe$_{2}^{2+}$Fe$_{3}^{3+}$(OH)$_{12}$CO$_3$·3H$_2$O solution, and the electrode potential E_{b} is recorded as the H$_2$O$_2$ is added. In addition to the initial Fe$_{2}^{3+}$Fe$_{3}^{3+}$(OH)$_{12}$CO$_3$·3H$_2$O, four oxidation products have been characterized by transmission Mössbauer spectroscopy at 78 K, at compositions x = $\frac{1}{2}$, 0.63, 0.78 and 1.

Mössbauer spectra can be fitted in two ways: by directly superimposing Lorentzian-shaped lines, or by deconvoluting Lorentzian-shaped lines with Gaussian distributions. The first method is usually adequate, but there are cases where the second method is more appropriate. The in situ deprotonation of the Fe$_{2}^{2+}$—Fe$_{3}^{3+}$ oxyhydroxycarbonate by H$_2$O$_2$ is one of these, and this procedure was used initially. The fitted parameters are listed in Table 3, and spectra with fits are shown in Fig. 7. The intensity variation of the doublet intensities ($D_1 + D_2$), D_3 and D_4 as a function of composition are summarized in Fig. 8.

The spectrum of the initial precipitate with $x = \frac{1}{2}$ (i.e. Fe$_2^{3+}$Fe$_{3}^{3+}$(OH)$_{12}$CO$_3$·3H$_2$O) contains three quadrupole doublets (Fig. 7a,b); two of them, D_{1f} and D_{2f}, have a large quadrupolar splitting of about 2.9 and 2.6 mm s$^{-1}$ and a 3:1 intensity ratio; these are attributed to Fe$_{2}^{2+}$ and constitute 50 and 16.7% of the total octahedral cations, respectively. The D_{1f} profile is interpreted to correspond to Fe$_{2}^{2+}$ in vertical registry with interlayer H$_2$O molecules, whereas D_{2f} is interpreted to correspond to Fe$_{2}^{3+}$ in registry with the centre of a CO$_3^{2-}$ anion. The third doublet, D_{3f}, with a small splitting of about 0.5 mm s$^{-1}$, corresponds to a unique Fe$_{3}^{3+}$ site in registry with a CO$_3^{2-}$ anion. The cations are ordered within each layer so that each Fe$_{2}^{3+}$ cation is surrounded by six Fe$_{2}^{2+}$ cations; this cation ordering induces interlayer anion ordering to minimize local charge imbalance. This composition corresponds to the mineral fougerite as redefined herein, so these doublets are labelled with an ‘f’ subscript.

The spectra evolve progressively as H$_2$O$_2$ is added to the initial precipitate. As in situ oxidation proceeds, the two quadrupole doublets with large splitting (D_1 and D_2) decrease in intensity, and a second quadrupole doublet with smaller splitting appears. This shows that Fe$_{2}^{2+}$ cations are oxidizing to Fe$_{3}^{3+}$. At $x \approx 0.5$, which corresponds to the mineral trebuenidite [Fe$_2^{3+}$Fe$_{3}^{3+}$O$_2$(OH)$_{12}$CO$_3$·3H$_2$O] two quadrupole doublets with large splitting in a 3:1 intensity ratio are present (these are labelled D_{1f} and D_{2f}, where ‘t’ stands for ‘trebuenidite’) at abundances of 25 and 8.3%, respectively. There are also two distinct Fe$_{3}^{3+}$ doublets, D_{3t} and D_{4t}, of equal intensity (i.e. 33.3 and 33.3%) (Fig. 7e,f). The Mössbauer parameters of the D_{3t} doublet are quite similar to those of the homologous D_{3f} doublet in fougerite, but whereas the Fe$_{3}^{3+}$ giving rise to D_{3f} is necessarily coordinated to 6[OH$^-$] in the octahedral layer, the new Fe$_{3}^{3+}$ environment associated with D_{4t} contains O$^{2-}$ ligands that replace OH$^-$ due to deprotonation. The Gaussian distribution of quadrupole splitting parameters most probably results from the local distortions of the octahedral surrounding Fe cations when OH$^-$ ions are partially replaced by O$^{2-}$ anions. For an average value of x in the range $\frac{1}{2} - \frac{3}{4}$, the mechanical mixture of fougerite and trebuenidite gives rise to four doublets D_1, D_2, D_3 and D_4 with broadened Gaussian distributions, which are not further resolved (Fig. 7c,d).

The ferric green rust mössbauerite (which is actually orange in colour) contains no Fe$_{2}^{2+}$ and has an ideal formula Fe$_{6}^{3+}$O$_4$(OH)$_8$CO$_3$·3H$_2$O. It produces a spectrum with two Fe$_{3}^{3+}$ doublets of small quadrupolar splitting, D_{3m} and D_{4m} (‘m’ for
‘mössbauerite’), in a 1:2 intensity ratio, which therefore account for 33.3% and 66.7% of the total intensity, respectively (Fig. 7i,j). These two doublets are produced by Fe\(^{3+}\) cations that are surrounded by six Fe\(^{3+}\) ions. The \(D\)\(_{3\text{m}}\) doublet is produced by those Fe\(^{3+}\) cations that initially balanced the charge on the CO\(_3\)\(^{2-}\)/C0\(_{3}\) anions, \(D\)\(_{4\text{m}}\) is produced by Fe\(^{3+}\) ions associated with deprotonation. The widths of the Gaussian distributions for quadrupole splitting are much increased, particularly for \(D\)\(_{4\text{m}}\) (0.41 mm s\(^{-1}\)), as local lattice distortions are now due to 2[O\(_2\)\(^{2-}\)] and 4[OH\(^-\)] anions at the apices of the octahedrons surrounding Fe\(^{3+}\) ions. For an average \(x\) value in the range \(\frac{3}{5}-1\), the mechanical mixture of trèbeurdenite and mössbauerite gives rise to only three Gaussian distributions of quadrupole doublets \((D_1 + D_2), D_3\) and \(D_4\) (Fig. 7g,h). The two ferrous contributions can no longer be resolved, and merge into a single broader distribution.

Despite the change in \(x\), the structure of the green rusts remains constant, in space group \(R\)\(_{3\text{m}}\) (Fig. 9), as shown by their X-ray diffraction patterns (Fig. 10). The measured unit-cell parameters are \(a = 3.182 \text{ Å} \quad \text{and} \quad c = 22.896 = 3 \times 7.632 \text{ Å} \) at \(x = \frac{1}{5}\); and \(a = 3.173 \text{ Å} \quad \text{and} \quad c = 22.695 = 3 \times 7.565 \text{ Å} \) at \(x = \frac{3}{5}\). At \(x = 1\), the unit-cell parameters are \(a = 3.079 \text{ Å} \quad \text{and} \quad c = 22.253 = 3 \times 7.418 \text{ Å}\). The absence of a supercell in the \(xy\) plane \((a \sim 3 \text{ Å})\) shows that the 3-layer repeat arises from offsets of octahedral layers across the interlayers rather than from long-range order of Fe\(^{2+}\) and Fe\(^{3+}\) or of the interlayer contents. Although low-temperature Mössbauer and

\(x\)	Quadrupole doublets	\(\Delta\) (mm s\(^{-1}\))	\(<\Delta>\) (mm s\(^{-1}\))	\(<\rho\Delta>\) (mm s\(^{-1}\))	\(RA\) (%)	\(F\) (%)	\(T\) (%)	\(M\) (%)
0.33 \(Fe^{2+}\)	\(D_{1f}\)	2.12	2.92	0	50	0	100	
	\(D_{2f}\)	2.12	2.63	0	17	0	0	
	\(D_{3f}\)	0.48	0.47	0	33	0	0	
\(x \sim \frac{3}{5}\) \(Fe^{2+}\)	\(D_{1f} + D_{1t}\)	1.21	2.98	0.14	38	0	50	
	\(D_{2f} + D_{2t}\)	1.21	2.72	0.16	12.5	0	0	
\(Fe^{3+}\)	\(D_{3f} + D_{3t}\)	0.49	0.40	0.15	33	0	0	
	\(D_{4t}\)	0.49	0.70	0.28	16.5	0	0	
\(x \sim 0.63\) \(Fe^{2+}\)	\(D_{1t}\)	1.24	2.80	0.15	28	0	9	
	\(D_{2t}\)	1.24	3.05	0.05	9	0	0	
\(Fe^{3+}\)	\(D_{3t}\)	0.48	0.49	0.20	32	0	0	
	\(D_{4t}\)	0.48	0.90	0.21	31	0	0	
\(x \sim 0.78\) \(Fe^{2+}\)	\(D_{1t} + D_{2t}\)	1.21	2.89	0.31	22	0	66	
\(Fe^{3+}\)	\(D_{3t} + D_{3m}\)	0.47	0.45	0.32	35	0	34	
	\(D_{4t} + D_{4m}\)	0.47	0.95	0.34	43	0	0	
\(x = 1\) \(Fe^{3+}\)	\(D_{3m}\)	0.47	0.60	0.30	33	0	100	
	\(D_{4m}\)	0.47	0.88	0.41	67	0	0	

Values of \(x\) experimentally obtained are approximately \(\frac{3}{5}, 0.63\) and 0.78 and precisely 0.33 and 1. Spectra are measured at 78 K (Fig. 7) and fitted using a Voigt profile; columns are \(\delta\): isomer shift in mm s\(^{-1}\) (reference is \(\alpha\)-iron at ambient temperature), \(<\Delta>\): mean value of quadrupole splitting in mm s\(^{-1}\) and \(<\rho\Delta>\): its standard deviation; \(RA\) (%): relative area of peak doublets as a percentage of total intensity. The variables \(F\), \(T\) and \(M\) indicate the molar percentages of fougerite, trèbeurdenite and mössbauerite, respectively, in the mixture, deduced from bulk composition according to the lever rule.

HYDROTALCITE SUPERGROUP NOMENCLATURE

Table 3. Mössbauer parameters for ‘green rusts’ with \(x = [Fe^{3+}]/[Fe_{\text{tot}}]\) in the range \(\frac{3}{5}-1\).
Fig. 7. Mössbauer spectra measured at 78 K of synthetic green rust samples for values of $x = [\text{Fe}^3\text{/}] / [\text{Fe}_{\text{tot}}]$ in the range $\frac{1}{3} - 1$. (a) Probability density for Gaussian distributions of quadrupole splittings fitted using Voigt-function profiles, and (b) total spectrum showing fitted doublets for $x = \frac{1}{3}$; (c) and (d) are corresponding data for $x = \frac{1}{2}$; (e) and (f) for $x = 0.63$; (g) and (h) for $x = 0.78$; (i) and (j) for $x = 1$.

S. J. MILLS ET AL.
magnetic susceptibility data show strong cation order within layers, there is clearly no strong coupling between layers.

As x increases, OH$^-$ ions surrounding the octahedral cations are deprotonated. The consequent shortening of bond distances causes a lattice contraction which shifts the diffraction lines towards higher angles, and also results in distortion of the octahedra (Génin et al., 2006c). These changes are well illustrated by the behaviour of the main d_{003} diffraction peak as x increases, although this peak is very hard to distinguish in mőssbauerite ($x = 1$), due to broadening and decrease in intensity caused by local strain (Fig. 10). In synthetic samples with $x = 1$, the d_{101} reflection becomes dominant, however d_{003} remains the diagnostic reflection (Génin et al., 2012b). In contrast, there is no change with oxidation in the external morphology of the hexagonal crystals as observed by transmission electron microscopy (Fig. 11), although the $x = 1$ sample of Fig. 11c has rings rather than spots in its electron diffraction pattern, produced by severe rotational disorder (Génin et al., 2006c). The occurrence of a carbonated green

![Fig. 8](image_url)

Fig. 8. Relative areas of the Mössbauer doublets $D_{1f+t} + D_{2f+t}$, D_{3f+t+m} and D_{4t+m} from Table 3 as a function of composition x.

![Fig. 9](image_url)

Fig. 9. Ordering of Fe$^{2+}$ and Fe$^{3+}$ cations within the octahedral layer, which leads to various magnetic properties: (a) Fe$^{2+}_6$(OH)$_{10}$(H$_2$O)$_2$CO$_3$·3H$_2$O; (b) Fe$^{2+}_4$Fe$^{3+}_2$(OH)$_{12}$CO$_3$·3H$_2$O, showing antiferromagnetic coupling of spins of Fe$^{2+}$ and Fe$^{3+}$ cations; (c) Fe$^{2+}_2$Fe$^{3+}_4$O$_2$(OH)$_{10}$CO$_3$·3H$_2$O; (d) Fe$^{3+}_6$O$_4$(OH)$_8$CO$_3$·3H$_2$O. Modified after Genin et al. (2012a).
A rust related mineral was confirmed recently using XRD patterns of samples collected from groundwater from Bornholm, Denmark and Åspö, Sweden. The layer spacings \(d_{003} \) in space group \(R\overline{3}m \), were measured as 7.594 and 7.605 Å, which is consistent with synthetic samples with \(x = 0.47/0.52 \); i.e. fougerèrite and tébréurdenite (Christiansen et al., 2009).

The magnetic properties of the fougerèrite-group minerals arise from strong ordering of \(Fe^{3+} \) cations within individual layers for the specific values of \(x = 1/2, 3/2 \) and 1 (Rusch et al., 2008; Fig. 9). The two sublattices of \(Fe^{2+} \) and \(Fe^{3+} \) ions in the octahedral layer display an antiparallel coupling for \(x = 1/2 \) and 3/2, resulting in ferrimagnetic behaviour with Néel temperatures.
of 5 K and ~20 K, respectively. In contrast, material with \(x = 1 \) is ferromagnetic with a Curie temperature ~80 K, and a broad range of transition. Although ordering of Fe\(^{2+}\) and Fe\(^{3+}\) restricts the composition of a given microscopic domain to \(x = \frac{1}{3}, \frac{2}{3} \) and \(x = 1 \), the topotactic intergrowth of such domains allows any intermediate value of \(x \), as observed in natural and synthetic samples.

Figure 12 shows Mössbauer spectra obtained from natural gley samples fitted using Lorentzian line shapes. Figure 12a displays the spectrum of a

![Mössbauer spectra](image)

Fig. 12. Transmission Mössbauer spectra measured at 78 K of (a) a synthetic sample of green rust with \(x = 0.50 \); (b) a sample of gley extracted from the aquifer at the forest of Fougères with \(x = 0.50 \); (c) room-temperature spectrum of a gley sample extracted from the shore of a salt marsh in Trébeurden with \(x = 0.75 \); and (d–f) spectra measured at 78 K of samples extracted from widely scattered locations in the Bay of Mont Saint-Michel with \(x = 0.72, 0.74 \) and 0.77, respectively. Modified after Genin et al. (2012a).
A synthetic sample with \(x = \frac{1}{2} \), for comparison, and Fig. 12b shows that of a sample collected from below the water table in the forest of Fougeres; the spectra are nearly identical and, in both cases, only two quadrupole doublets are resolved. Figure 12c–f displays the spectra of four samples extracted from maritime marshes; the first one from Trebeurden was measured at room temperature (Fig. 12c) and the three others extracted from the Bay of Mont Saint-Michel (Fig. 12d–f) at 78 K. These spectra are qualitatively quite different from Fig. 12a,b. The Trebeurden spectrum shown in Fig. 12c clearly resembles those of Fig. 12d–f rather than Fig. 12a,b, despite the higher temperature of experimental measurement. The spectral resolution is somewhat poorer for natural samples compared to their synthetic counterparts, so a simpler method for fitting was employed, using a finite number of Lorentzian-shaped lines rather than Gaussian distributions of Lorentzians. In the range \(\frac{1}{3} - \frac{1}{3} \), it was sufficient to use one broadened Fe\(^{2+}\) doublet as \(D_{11}, D_{22}, D_{11} \) and \(D_{22} \) could hardly be distinguished. In contrast, in the range \(\frac{1}{3} - \frac{1}{3} \), three doublets were used: one Fe\(^{2+}\) doublet \((D_{11} + D_{22}) \), an Fe\(^{3+}\) doublet with a larger intensity representing \((D_{33} + D_{44}) \), and a doublet representing \((D_{33} + D_{44}) \), with a larger quadrupole splitting and broader linewidth. This simplified fitting procedure gave excellent results for spectra measured at 78 K.

Mössbauer parameters for spectra in Fig. 12c–f are listed in Table 4.

The difference between the spectra of Fig. 12a,b and Fig. 12c–f arises because gleys from below the water table such as that of Fig. 12b have \(x \) in the \(\frac{1}{3} - \frac{1}{3} \) range, whereas those from salt marshes have \(x > \frac{1}{3} \). The salt marshes are covered by water only at high tide, so the gley is partially oxidized and reaches a steady-state \(x \) value higher than that in permanently waterlogged aquifers. The samples extracted from Trebeurden and the Bay of Mont Saint-Michel all have \(x = 0.72 - 0.77 \) according to the data of Table 4. The linear variation of intensities with composition is consistent with a mechanical mixture of different proportions of trèbeurdenite and mössbauerite (Fig. 13).

It is possible to further decompose the partially resolved experimental doublet intensities into components that correspond to all the distinct Fe\(^{2+}\) and Fe\(^{3+}\) environments that are discussed above, if we note, consistent with the data of Tables 3 and 4, that: (1) total \(D_{33} + D_{34} \) is always 33.33%; (2) the intensities of \(D_{1f}:D_{2f} \) and \(D_{1t}:D_{2t} \) are always in a 3:1 ratio; (3) the intensity ratio \(D_{2f}:D_{3f} = 1:4 \) and hence \((D_{1f} + D_{2f}) = D_{3f} = D_{4f} \); and (4) \(D_{3m} \) and \(D_{4m} \) are in a 1:2 ratio.

Table 4. Mössbauer parameters for quadrupole doublets in gley samples extracted from maritime marshes.

Quadrupole doublet	\(D_{1} + D_{2} \) Fe\(^{2+}\)(T)	\(D_{33} + D_{44} \) Fe\(^{3+}\)(T)	\(D_{33} + D_{44} \) Fe\(^{3+}\)(M)			
Trébeurden room temperature	\(x = 0.75 \)	\(\delta \) (mm s\(^{-1}\))	1.294	0.301	0.307	
		\(\Delta \) (mm s\(^{-1}\))	2.66	0.549	0.972	
		\(RA \) (%)	25	50	25	
		\(\Gamma \) (mm s\(^{-1}\))	0.56	0.45	0.49	
Mont Saint-Michel Bay 78 K	No. 1	\(x = 0.72 \)	\(\delta \) (mm s\(^{-1}\))	1.245	0.429	0.441
		\(\Delta \) (mm s\(^{-1}\))	2.842	0.560	1.059	
		\(RA \) (%)	28	56	16	
		\(\Gamma \) (mm s\(^{-1}\))	0.45	0.49	0.50	
	No. 2	\(x = 0.74 \)	\(\delta \) (mm s\(^{-1}\))	1.263	0.471	0.470
		\(\Delta \) (mm s\(^{-1}\))	2.908	0.381	0.986	
		\(RA \) (%)	26	52	22	
		\(\Gamma \) (mm s\(^{-1}\))	0.45	0.49	0.50	
	No. 3	\(x = 0.77 \)	\(\delta \) (mm s\(^{-1}\))	1.292	0.466	0.434
		\(\Delta \) (mm s\(^{-1}\))	2.877	0.405	1.073	
		\(RA \) (%)	23	46	31	
		\(\Gamma \) (mm s\(^{-1}\))	0.45	0.49	0.50	
Table 5 shows the results of this partitioning for the spectra of Fig. 12c–f and Table 4, compared with the sample with the most similar composition from Fig. 7h and Table 3. In the bottom four rows, the D_3 and D_4 peaks have been recombined according to the assignment schemes for both Table 3 and Table 4. It can be seen that the expected relative areas for the synthetic sample are within 2% of those given in Table 3, demonstrating that the site environment model, combined with the two doublet assignment schemes, applies to datasets from both the synthetic and natural samples, despite the use of different peak-fitting methodologies. Figure 14 shows the relative proportions for D_1–D_4 sites as a function of bulk composition for x in the range $\frac{1}{2}$–1.

As there are distinct variants of D_1 and D_2 for fougerite and trebeurdenite, and similarly, three versions of D_3 and two of D_4, there are nine Fe environments in total in the three minerals. The cation ordering patterns of Fig. 9 allow us to determine the identities of edge-sharing neighbour cations. As discussed above, the D_3 Fe$^{3+}$ of fougerite, i.e. D_{3f}, are obviously situated above and below interlayer carbonate anions, to facilitate charge balance. The constant proportion of D_3 cations in all three minerals confirms that this situation is maintained in each species, in which case the ordering patterns of Fig. 15 can be deduced for the site types D_1–D_4. If the O$^{2-}$ anions in the hydroxide sublayer, produced by dehydroxylation, are required to be bonded to D_4 cations, the local environments around the Fe sites can be characterized as in Table 6. The distributions of these sites between the three species are summarized in Table 7.

Given that intermediate compositions are intergrowths of the phases with $x = \frac{1}{2}$, $\frac{3}{2}$ or 1, any sample in the range $\frac{1}{2}$–$\frac{3}{2}$ is a mixture of fougerite (F) and trebeurdenite (T), with proportions obtained by the lever rule $(2-3x)F + (3x-1)T$, whereas compositions in the range $\frac{3}{2}$–1 are...
mixtures of T and mössbauerite (M) with the proportions $3(1-x)T + (3x-2)M$. To date, occurrences of gleys extracted from continental aquifers as at Fougères only have compositions in the range $x = \frac{1}{2} - \frac{3}{4}$, whereas those from salt marsh environments such as Trébeurden or Mont

Fig. 14. Relative abundance of Fe cation environments D_1-D_4 as a function of bulk composition.

![Diagram showing the relative abundance of Fe cation environments D_1-D_4 as a function of bulk composition.](image)

Fig. 15. Cations in the octahedral layer of fougèreite (F), trébeurdenite (T) and mössbauerite (M), showing the two-dimensional superstructures that arise if Fe$^{2+}$ and Fe$^{3+}$ order as in Fig. 9 and D_2 and D_3 environments which are clustered near interlayer carbonate. Arrows indicate vectors between equivalent Fe sites.

$D_{1f} = \frac{1}{2}; D_{2f} = \frac{1}{6}$
$D_{3f} = \frac{1}{3}$
$D_{1t} = \frac{1}{4}; D_{2t} = \frac{1}{12}$
$D_{3t} = \frac{1}{5}; D_{4t} = \frac{1}{3}$
$D_{2m} = \frac{1}{5}; D_{4m} = \frac{3}{5}$
Saint-Michel Bay only have compositions in the range \(x = \frac{1}{2} - 1 \).

Based on the data and analysis outlined in the foregoing text:

1. We redefine the former ‘fougerite’, which was named for its occurrence in forest of Fougeres by Trolard et al. (2007), as a \(\text{Fe}^{2+}/\text{Fe}^{3+} \) hydroxycarbonate with the formula \(\text{Fe}^{2+}_4 \text{Fe}^{3+}_2 (\text{OH})_{12} \text{CO}_3 \cdot 3\text{H}_2\text{O} \), and with \(x = \frac{1}{2} \); it is the common \(\text{Fe}^{2+}/\text{Fe}^{3+} \) LDH, and is commonly described as ‘green rust’ or ‘carbonated green rust.’ Note that the artificial equivalent of carbonated green rust commonly forms during the corrosion of Fe-based materials and steels (e.g. Drissi et al., 1995).

2. We define the \(\text{Fe}^{2+}/\text{Fe}^{3+} \) oxyhydroxycarbonate with \(x = \frac{1}{2} \), and with the formula \(\text{Fe}^{2+}_4 \text{Fe}^{3+}_4 (\text{OH})_{10} \text{CO}_3 \cdot 3\text{H}_2\text{O} \), as trebeurdenite; it is named for the township of Trebeurden, near the maritime marsh where the mineral was first found. The holotype specimen M52133 is accessioned in the collections of Museum Victoria in Melbourne, and is from l’\'Ile d’Aval, near Penvern, Trebeurden, Brittany, France.

3. The ferric oxyhydroxycarbonate with \(x = 1 \) and the formula \(\text{Fe}_6^{3+} \text{O}_4 (\text{OH})_3 \text{CO}_3 \cdot 3\text{H}_2\text{O} \) is named m"ossbaurite, after Professor Rudolf M"ossbauer (1928–2011) who discovered the resonance of \(\gamma \) rays that bears his name, for which he was awarded the 1961 Nobel Prize in physics. The full type description of m"ossbaurite is reported in Génin et al. (2012b).

Group nomenclature

Group nomenclature for the hydrotalcite supergroup follows the CNMNC guidelines outlined by Mills et al. (2009). The group nomenclature scheme discussed here can be considered as a hybrid, in that the groups are defined firstly by the interlayer spacing and secondly by the \(M^{2+}:M^{3+} \) ratios in the brucite layers. The restricted ranges found for those ratios in many members of the supergroup suggest that they correlate with cation ordering patterns within layers, which may or may not correlate between layers, as evidenced by diffraction behaviour. The dominant \(M^{2+} \) and \(M^{3+} \) cations are important for defining individual species based on the dominant-constituent and dominant-valency rules (Hatert and Burke, 2008). Due to the differences in the ionic radii of the \(M^{2+} \) and \(M^{3+} \) cations in some of the minerals (e.g. in

Table 6. Details of the local environments for Fe cations.

Local environment type	Cation	Edge-sharing octahedral neighbours	Interlayer species in vertical registry	Ligands in octahedral layer
\(D_{1f} \)	\(\text{Fe}^{2+} \)	\(3\text{Fe}^{2+} + 3\text{Fe}^{3+} \)	\(\text{H}_2\text{O} \)	\(\text{OH}_6 \)
\(D_{2f} \)	\(\text{Fe}^{2+} \)	\(3\text{Fe}^{2+} + 3\text{Fe}^{3+} \)	\(\text{CO}_3^- \)	\(\text{OH}_6 \)
\(D_{3f} \)	\(\text{Fe}^{3+} \)	\(6\text{Fe}^{2+} \)	\(\text{CO}_3^- \)	\(\text{OH}_6 \)
\(D_{1t} \)	\(\text{Fe}^{2+} \)	\(6\text{Fe}^{3+} \)	\(\text{H}_2\text{O} \)	\(\text{OH}_6 \)
\(D_{2t} \)	\(\text{Fe}^{2+} \)	\(6\text{Fe}^{3+} \)	\(\text{CO}_3^- \)	\(\text{OH}_6 \)
\(D_{3t} \)	\(\text{Fe}^{3+} \)	\(3\text{Fe}^{2+} + 3\text{Fe}^{3+} \)	\(\text{CO}_3^- \)	\(\text{OH}_6 \)
\(D_{4t} \)	\(\text{Fe}^{3+} \)	\(3\text{Fe}^{2+} + 3\text{Fe}^{3+} \)	\(\text{H}_2\text{O} \)	\(\text{OH}_6 \)
\(D_{3m} \)	\(\text{Fe}^{3+} \)	\(6\text{Fe}^{3+} \)	\(\text{CO}_3^- \)	\(\text{OH}_6 \)
\(D_{4m} \)	\(\text{Fe}^{3+} \)	\(6\text{Fe}^{3+} \)	\(\text{H}_2\text{O} \)	\(\text{OH}_6 \)

Table 7. Abundance of different local Fe environments in the green rust minerals.

	\(D_1 \)	\(D_2 \)	\(D_3 \)	\(D_4 \)
\(D_{1f} \)	50%	16.7%	33.3%	
\(D_{2f} \)		8.3%	33.3%	33.3%
\(D_{3f} \)				33.3%
\(D_{1t} \)				66.7%
\(D_{2t} \)	25%			
\(D_{3t} \)				
\(D_{4t} \)				
\(D_{3m} \)				
\(D_{4m} \)				

1323
the hydrotalcite group), specific $M^{2+}:M^{3+}$ ratios are strongly favoured (e.g. 2:1). In other groups, where the ionic radii are very similar (e.g. in the woodwardite group), there may be wide variation in $M^{2+}:M^{3+}$ ratios within and between species.

The following groups (in order of the smallest to largest interlayer periodicity) can be defined:

(1) Hydrotalcite group: hydrotalcite group members have an $M^2+:M^3+$ ratio of 3:1, they contain interlayer carbonate, chloride or hydroxide and water, and have a layer spacing of ~7.8 Å.

(2) Quintinite group: quintinite group members have an $M^2+:M^3+$ ratio of 2:1, they contain interlayer carbonate or chloride and water, and have a layer spacing of ~7.8 Å.

(3) Fougeréite group: the ‘green rusts’ of the fougeréite group have a layer spacing of ~7.8 Å; they are not included in either of the groups listed above because the dominant octahedral cations, either Fe$^{2+}$ or Fe$^{3+}$, are readily interconverted by redox processes. Two members of the group, trébeurditenne and mössbauerite, provide the only examples of M^{3+} dominance in the hydrotalcite supergroup, and contain some O^2- in replacement of OH$^-$.

(4) Woodwardite group: minerals of the woodwardite group are characterized by the presence of interlayer sulfate and water, and have a layer spacing of ~8.9 Å. The $M^{2+}:M^{3+}$ ratio is variable in members of the group and no evidence of cation ordering has been reported. The layer spacing is greater than hydrotalcite and contains carbonate or chloride and water. Furthermore, the woodwardite group minerals readily and reversibly undergo transformations to the more highly hydrated minerals of the glaucocerinite group by intercalation of additional interlayer water molecules.

(5) Cualstibite group: members of the cualstibite group are characterized by $(M^{2+}, M^{3+})(OH)_2$, brucite-type sheets, in which $M^{2+} = Cu^{2+}$, Ni^{2+} or Zn^{2+}, $M^{3+} = Al^{3+}$ or Fe^{3+}, and the interlayer species is $[Sb(OH)_6]^2-$. The layer spacing is ~9.7 Å.

(6) Glaucocerinite group: glaucocerinite group members are characterized by the presence of interlayer sulfate and water, and less commonly non-essential intercalated M^{2+} cations where $M^{2+} = Mg^{2+}$ or Ni^{2+}. The layer spacing is ~11 Å, and the interlayers contain additional water in comparison to members of the woodwardite group. The $M^{2+}:M^{3+}$ ratios are variable.

(7) Wermlandite group: wermlandite group members are characterized by the presence of interlayer sulfate, water and essential $[A(H_2O)_6]$ groups, where $A = Na^+$, Ca^{2+}, Sr^{2+}, or similarly large cations. The layer spacing is ~11 Å and $M^{2+}:M^{3+}$ ratios are variable.

(8) Hydrocalumite group: hydrocalumite group members contain (Ca,Al)(OH)$_2$ sheets in which the Ca:Al ratio is always 2:1; Ca$^{2+}$ is coordinated to a seventh ligand of ‘interlayer’ water. They may contain interlayer hydroxyl, carbonate, chloride or sulfate and water.

The members of these groups are listed in Table 8. Table 9 includes the ideal simplified formulae for the species listed in Table 8, as derived earlier in the discussion of individual species. These formulae are compared with those given in the 2009 IMA mineral list, which are available at http://pubsites.uws.edu.au/ima-cmnnmc/IMA2009-01 UPDATE 160309.pdf.

Unnamed minerals

Unnamed Co$^{3+}$ analogue of reevesite

Song and Moon (1998) reported ‘reevesite’ from serpentinized ultramafic rocks of the Kwangcheon area in Korea, which showed solid solution almost all the way to the Co$^{3+}$ endmember, and verified the completeness of the solid solution by syntheses. The Co-dominated synthetic material is dark green in colour in comparison to the yellow-brown of synthetic reevesite. The Ni$^{2+}/(Fe^{3+} + Co^{3+})$ ratio was reported to be close to 3:1, which is typical of the hydrotalcite group and contrasts with the 2:1 ratio reported for comblainite (Piret and Deliens, 1980). The new mineral has not yet been fully described or submitted to the IMA for approval. The phase was given the unnamed mineral code UM1998-10-CO:CoHNi by Smith and Nickel (2007).

Unnamed Mg-Al analogue of honessite

Lisitsina et al. (1985) described a Mg-Al sulfate from a North Atlantic seamount with $a = 3.05$ and $c = 26.50 = 3 \times 8.83$ Å. Bookin et al. (1993a) discussed attempts to fit the X-ray intensity data, and concluded that the phase had the unusual $3T_2$ stacking sequence. An intergrown 2-layer structure was also detected, but the diffraction data were not sufficient for more detailed characterization. In contrast, the synthetic
Mg₆Al₂(OH)₁₆(SO₄)·nH₂O of Miyata and Okada (1977) with a = 3.05 and c = 25.97 Å, has the 3R₁ structure according to Bookin et al. (1993a).

Unnamed Mg analogue of carrboydite or Al analogue of mountkeithite

Lisitsina et al. (1985) reported a second Mg-Al sulfate from the North Atlantic seamount described in the foregoing text, with c = 32.4 = 3 × 10.8 Å, for which Bookin et al. (1993a) deduced the 3R₁ stacking sequence. Drits et al. (1987) described a similar phase with the formula Mg₄Al₂(OH)₁₂(SO₄)·nH₂O from Gaurdak, Turkmenistan, but this has c = 11.16 Å, and hence is the 1T polytype.

Unnamed Mg–Al interstratified sulfate–carbonate

Drits et al. (1987) described a phase with the formula Mg₄Al₂(OH)₁₂(CO₃)₀.₅(SO₄)₀.₅·nH₂O, from the Inder salt dome, Caspian Depression, Kazakhstan. It has a unit cell with a = 3.05 and c = 55.62 = 3 × 18.54 Å. Bookin et al. (1993a) interpreted the 18.54 Å spacing as the sum of a narrow 6.56 Å layer spacing corresponding to interlayer carbonate, and a wide 9.98 Å spacing corresponding to interlayer sulfate, implying a regular alternation of two types of interlayer in the structure. They suggested that the narrow interlayers were P-type and the wide ones O-type, corresponding to the unusual 6R₄ stacking sequence overall.

Unnamed hydroxide analogue of coalingite

The ‘coalingite’ from the Muskox Intrusion, Canada, described by Jambor (1969a) was reported to have a very low carbonate content, and a formula (based on 12 cations) [(Mg₉.₆₇Fe₂.₃₃(OH)₂₄)(CO₃)₀.₃₃(OH)₁.₆₇]·1.₇₅H₂O. This was discussed further by Pastor-Rodriguez and Taylor (1971). The material is trigonal with a = 3.1 Å; c is uncertain but >30 Å. This phase may be the hydroxide analogue of coalingite, but requires further investigation.

HYDROTALCITE SUPERGROUP NOMENCLATURE
HYDROTALCITE SUPERGROUP

Group Name	Members
Hydrotalcite group	Hydrotalcite, Pyroaurite, Stichtite, Meixnerite, Iowaitite, Droninoite, Woodallite, Desautelsite, Takovite, Reevesite, Jamborite*
Quintinite group	Quintinite, Charmarite, Caresite, Zaccagnaite, Chlormagaluminite, Comblainite
Fougère group	Fougère, Trébeurdenite, Mössbauerite
Woodwardite group	Woodwardite, Zincowoodwardite, Honesite
Glaucocerinite group	Glaucocerinite, Hydrowoodwardite, Carrboydite*, Hydrohonesite, Mountkeithite, Zincaluminite*
Wermlandite group	Wermlandite, Shigaite, Nikischerite, Motukoreaite*, Natroglaucocerinite*, Karchevskyite
Cualstibite group	Cualstibite, Zincalstibite, Omsite
Hydrocalumite group	Hydrocalumite, Kuzelit
Unclassified	Coalingite, Brugnatellite*, Muskoxite*

* Questionable species which need further study.
Table 9. Formulae for minerals of Table 8 as given in 2009 IMA mineral list, and ideal formulae recommended on the basis of the current report.

Mineral	Group	Formula (IMA list 2009)	Recommended ideal formula
Brugnatellite	ungrouped	Mg₆Fe³⁺CO₃(OH)₁₃·4H₂O	Needs reinvestigation
Caresite	Quintinite	(Fe²⁺)₄Al₃(OH)₁₂CO₃·3H₂O	Fe₄²⁺Al₄(OH)₁₂[CO₃]·3H₂O
Carnboydite	Glaucocerinite	(Ni,Al)₃SO₄(OH)₁₈·10H₂O	(Ni₁₋ₓ,Alₓ)(OH)₂[SO₄]ₓ·nH₂O (x < 0.5, n > 3x/2)
Charmarite	Quintinite	Mn₄Al₄(OH)₁₂CO₃·3H₂O	Mn₄Al₄(OH)₁₂[CO₃]·3H₂O
Chlormagalamite	Quintinite	Mg₄Al₄(OH)₁₂Cl₂·2H₂O	Mg₄Al₄(OH)₁₂Cl₂·3H₂O
Coalingite	ungrouped	Mg₁₀(Fe³⁺)₂CO₃(OH)₂₄·2H₂O	Mg₁₀Fe³⁺₂(OH)₁₂[CO₃]·3H₂O
Comblainite	Quintinite	Ni₆(Co³⁺)₂CO₃(OH)₁₆·4H₂O	Ni₆Co³⁺₂(OH)₁₂[CO₃]·3H₂O
Cualstibite	Cualstibite	Cu₂AlSb(OH)₁₂	
Desaullesite	Hydrotalcite	Mg₆(Mn⁴⁺)₂CO₃(OH)₁₆·4H₂O	
Droninoite	Hydrotalcite	Ni₃Fe³⁺Cl(OH)₁₈·2H₂O	
Fougère	Fougère	(Fe⁴⁺,Mg)₆(Fe⁴⁺)₂(OH)₁₈·4H₂O	
Glaucocerinite	Glaucocerinite	(Zn₁₋ₓAlₓ)(OH)₂[SO₄]ₓ·nH₂O (x < 0.5, n > 3x/2)	
Honessite	Woodwardite	(NiFe³⁺)₈(SO₄)₁₂(OH)₁₆·nH₂O	
Hydrocalumite	Hydrocalumite	Ca₄Al₂(OH)₁₂(Cl,CO₃,OH)½·4H₂O	Possibly multiple species with formulae such as:
Hydrohonesite	Glaucocerinite	(NiFe³⁺)₉(SO₄)₉(OH)₁₈·7H₂O	
Hydrotalcite	Hydrotalcite	Mg₆Al₃CO₃(OH)₁₆·4H₂O	
Hydrowoodwardite	Glaucocerinite	Mg₆Al₃CO₃(OH)₁₆·4H₂O	
Iowaite	Hydrotalcite	Mg₆(Fe³⁺)₁₂(OH)₁₂Cl₂·4H₂O	
Jamborite	Hydrotalcite	Ni(OH,SO₄)₁₂·nH₂O (?)	
Karchevskyite	Wermlandite	[Mg₁₈Al₉(OH)₁₈]₃[SO₄]₃[PO₄]₃(H₂O, H₂O)₁₁]	
Kuzelite	Hydrocalumite	Ca₄Al₂(OH)₁₂(SO₄)₆·6H₂O	
Meixnerite	Hydrotalcite	Mg₆Al₃(OH)₁₈·4H₂O	
Mössbauerite	Fougère	n/a	
Motukoreaite	Wermlandite	[Mg₆Al₃(OH)₁₈][Na(SO₄)₂]·7H₂O	Needs reinvestigation:
			may be Ni₆⁶⁺Ni₆⁵⁺(OH)₆·S·4H₂O
			Mg₁₈Al₉(OH)₁₈[SO₄]₃[PO₄]₃(H₂O, H₂O)₁₁]

S. J. MILLS ET AL.
Mineral Name	Group	Formula
Mountkeithite	Glaucocerinite	$\text{Mg}_{11}(\text{Fe}^{3+})_3(\text{SO}_4)_3(\text{OH})_{24}11\text{H}_2\text{O}$
Muskoxite	ungrouped	$\text{Mg}_7(\text{Fe}^{3+})_4(\text{OH})_{26}\text{H}_2\text{O}$ (?)
Natroglaucoceerinite	Wermlandite	$\text{Zn}_8-x\text{Al}_x(\text{OH})_{16}(\text{SO}_4)_{x/2+y/2}\text{Na}_y(\text{H}_2\text{O})_6$
Nikischerite	Wermlandite	$\text{Na}(\text{Fe}^{3+})_6\text{Al}_x(\text{SO}_4)_2(\text{OH})_{16}\text{H}_2\text{O}_{12}$
Omsite	Cualstibite	n/a
Pyroaurite	Hydrotalcite	$\text{Mg}_6(\text{Fe}^{3+})_2\text{CO}_3(\text{OH})_{16}4\text{H}_2\text{O}$
Quintinite	Quintinite	$\text{Mg}_4\text{Al}_2\text{CO}_3(\text{OH})_{16}3\text{H}_2\text{O}$
Reevesite	Hydrotalcite	$\text{Ni}_6(\text{Fe}^{3+})_2\text{CO}_3(\text{OH})_{16}4\text{H}_2\text{O}$
Shigaite	Wermlandite	$\text{NaAl}_3(\text{Mn}^{2+})_6(\text{SO}_4)_2(\text{OH})_{18}12\text{H}_2\text{O}$
Stichtite	Hydrotalcite	$\text{Mg}_6\text{Cr}_2\text{CO}_3(\text{OH})_{16}4\text{H}_2\text{O}$
Takovite	Hydrotalcite	$\text{Ni}_6\text{Al}_2\text{CO}_3(\text{OH})_{16}4\text{H}_2\text{O}$
Trébeurdenite	Fougerite	n/a
Wermlandite	Wermlandite	$\text{Mg}_8\text{Al}_3(\text{OH})_{18}(\text{SO}_4)_212\text{H}_2\text{O}$
Woodallite	Hydrotalcite	$\text{Mg}_6\text{Cr}_2(\text{OH})_{16}\text{Cl}_44\text{H}_2\text{O}$
Woodwardite	Woodwardite	$\text{(Cu},\text{Al})_6(\text{SO}_4)_2(\text{OH})_{18}n\text{H}_2\text{O}$
Zaccagnaite	Quintinite	$\text{Zn}_4\text{Al}_5(\text{OH})_{12}(\text{CO}_3)_33\text{H}_2\text{O}$
Zincalstitbte	Cualstibite	$\text{Zn}_2\text{Al}_2\text{Sb}(\text{OH})_{12}$
Zincaluminate	Glaucocerinite	$\text{(Zn},\text{Al})_6(\text{SO}_4)_2(\text{OH})_{18}n\text{H}_2\text{O}$ (?)
Zincowoodwardite	Woodwardite	$\text{Zn}_{1-x}\text{Al}_x(\text{OH})_2(\text{SO}_4)_2n\text{H}_2\text{O}$

(*x* = 0.32–0.50)

(\text{Mg}_{1-2x}\text{Fe}^{3+}_x(\text{OH})_2[\text{SO}_4]_x[\text{H}_2\text{O}]_{2-n})

(*x* < 0.5, *n* > 3x/2)

Needs reinvestigation, possibly more than one species.

Needs reinvestigation: may be $\text{Zn}_6\text{Al}_{13}(\text{OH})_{18}[\text{Na(H}_2\text{O})_6]_3[\text{SO}_4]_26\text{H}_2\text{O}$

$\text{Ni}_3\text{Fe}^{3+}_x(\text{OH})_6[\text{Sb(OH)}_6]_x$

$\text{Mg}_6\text{Fe}^{3+}_x(\text{OH})_{16}[\text{CO}_3]_4\text{H}_2\text{O}$

$\text{Mg}_4\text{Al}_2(\text{OH})_{12}[\text{CO}_3]_3\text{H}_2\text{O}$,

$\text{Ni}_6\text{Fe}^{3+}_x(\text{OH})_6[\text{CO}_3]_4\text{H}_2\text{O}$

$\text{Mn}_6\text{Al}_2(\text{OH})_{18}[\text{Na(H}_2\text{O})_6][\text{SO}_4]_26\text{H}_2\text{O}$

$\text{Mg}_6\text{Cr}_2(\text{OH})_{16}[\text{CO}_3]_3\text{H}_2\text{O}$

$\text{Ni}_6\text{Al}_2(\text{OH})_{16}[\text{CO}_3]_4\text{H}_2\text{O}$

$\text{Fe}^{3+}_x\text{Fe}^{3+}_y(\text{OH})_{16}[\text{CO}_3]_3\text{H}_2\text{O}$

$\text{Mg}_7\text{Al}_2(\text{OH})_{18}[\text{Ca(H}_2\text{O})_6][\text{SO}_4]_26\text{H}_2\text{O}$

$\text{Mg}_6\text{Cr}_2(\text{OH})_{16}\text{Cl}_44\text{H}_2\text{O}$

$\text{Cu}_{1-x}\text{Al}_x(\text{OH})_2[\text{SO}_4]_2n\text{H}_2\text{O}$

(*x* < 0.5, *n* < 3x/2)

$\text{Zn}_4\text{Al}_1(\text{OH})_3[\text{CO}_3]_3\text{H}_2\text{O}$

$\text{Zn}_2\text{Al}_2(\text{OH})_3[\text{Sb(OH)}_6]_x$

Needs reinvestigation: may be same as glaucocerinite.

$\text{Zn}_{1-x}\text{Al}_x(\text{OH})_2(\text{SO}_4)_2n\text{H}_2\text{O}$

(*x* < 0.5, *n* < 3x/2)
‘Coalingite-K’

Mumpton et al. (1965) reported a second phase occurring in parallel intergrowth with coalingite, which was different in its optical and diffraction properties. This material was re-examined by Pastor-Rodriguez and Taylor (1971), who interpreted strong diffraction features at 5.72 and 4.38 Å as (0003) and (0004) reflections corresponding to a 17.2 Å c repeat, and hypothesized that the phase was an interstratification of three brucite layers and one interlayer, forming a polysomatic series with brucite, coalingite and pyroaurite. The ideal formula, in this case, would be \[\text{Mg}_{16}\text{Fe}_{3+}^2\text{OH}_{36}^\text(\text{CO}_3\text)\cdot2\text{H}_2\text{O} \], but this has not been verified, and the mineral has not been studied further or submitted for approval by the IMA.

Unnamed Mg\(^{2+}\)–Ni\(^{3+}\) hydroxide

A mineral described by Lapham (1965) from the Cedar Hill serpentinite quarry, Lancaster County, Pennsylvania is rhombohedral with \(a = 3.12 \) and \(c = 23.19 \) Å, which suggests a 3\(R \) polytype related to the hydrotalcite and quintinite groups. Carbonate is low or absent. The atomic Mg:Ni:Fe ratio was reported to be 80.8:15.0:4.2, implying that, at most, 1/5.3 of the octahedral cations is trivalent (Ni + Fe). This incompletely described phase may be a Mg\(^{2+}\)-Ni\(^{3+}\)-hydroxide analogue of brugnatellite. The phase was given the unnamed mineral code UM1965-08-OH:FeMgNi by Smith and Nickel (2007).

Unnamed Ni\(^{2+}\)–Ni\(^{3+}\) hydroxide

A nickel-rich mineral described by Jambor and Boyle (1964) from Rock Creek, British Columbia, Canada is rhombohedral with \(a = 3.07 \) and \(c = 22.74 \) Å, indicating that it is a 3\(R \) polytype related to the hydrotalcite and quintinite groups. Carbonate is low or absent and the Mg content is also negligible. The phase was compared by Lapham (1965) with his Mg-rich phase and to various synthetic compounds. This incompletely described phase may be a Ni\(^{2+}\)-Ni\(^{3+}\)-hydroxide analogue of hydrotalcite, quintinite or brugnatellite.

Nomenclature for synthetic LDH phases

Many synthetic LDH phases have a similar crystallography and chemistry to natural phases; however, a much wider range of octahedral cations and intercalated anions have been incorporated in synthetic LDH compounds. Unfortunately, some chemists have tended to use mineral names incorrectly in referring to synthetic analogues of minerals and their structural relatives. As a result of this, and due to the inconsistencies in reporting and naming synthetic LDH phases, we propose a simple but flexible nomenclature scheme which can be applied to synthetic phases; it provides information about the chemistry and crystallography of the phase and also clearly identifies it as a synthetic compound. Such a scheme would only become best practice among chemists if it was adopted by the International Union for Pure and Applied Chemistry, but as informal nomenclature schemes are already being used in the synthetic LDH literature, we can at least offer a consistent and rational alternative to the misuse of mineral names.

Hydrotalcite-like Mg-Al LDHs can be prepared by mixing aqueous solutions of alkalis such as NaOH with Mg–Al solutions such as MgCl\(_2\)–AlCl\(_3\) and Mg(NO\(_3\))\(_2\)–Al(NO\(_3\))\(_3\) (e.g. Ross and Kodama, 1967; Miyata, 1975; Miyata and Okada, 1977). The stoichiometric equation describing the precipitation of synthetic Mg–Al LDHs, for example, can be written:

\[
(1-x)\text{Mg}^{2+} + x\text{Al}^{3+} + 2\text{OH}^- + (x/n)\text{A}^{n^-} \rightarrow \text{Mg}_{1-x}\text{Al}_x\text{(OH)}_2\text{(A)}_{n/n}
\]

where 0.20 ≤ x ≤ 0.33 and A\(^{n^-}\) is an n-valent anion. The Mg/Al molar ratio x and anion A\(^{n^-}\) can be controlled during preparation of the LDH and need to be specified in the nomenclature scheme. Our proposal for a nomenclature system for synthetic LDH phases uses the following formula: LDH \(xM^{2+}yM^{3+}A[B]_C \), where x and y are the proportions of \(M^{2+} \) and \(M^{3+} \); \(M^{2+} \) is the divalent cation in the octahedral layer; \(M^{3+} \) is the trivalent cation in the octahedral layer; \(A \) is the intercalated anion; \(B \) is an interlayer cation; and \(C \) is the polytype symbol.

If this scheme is adopted the following guidelines can usefully be applied:

1. If there are no interlayer \(B \) cations, the associated brackets ‘[]’ can be omitted.
2. It is the ratio \(x:y \) which is important rather than the absolute values of \(x \) and \(y \) themselves, as is the case for any empirical formula. Thus, ‘6Mg2Al’ is equivalent to ‘75Mg25Al’ in this scheme; however, ‘1’ is optional, as in chemical formulae, so ‘3Mg1Al’ could be shortened to ‘3MgAl’.
HYDROTALCITE SUPERGROUP NOMENCLATURE

(3) The different hydration states of the analogues of woodwardite- and gluconocerinite-group minerals are not explicitly distinguished, but such phases are likely to be rapidly and reversibly convertible.

(4) The polytype symbol C conveys the overall number of brucite layers in the repeat, and the overall crystal system/lattice type. If one of the precise stacking sequences for brucite layers of Table 1 is known and needs to be specified, numerical subscripts can be added. If a distinction between types of stacking that arise by different structural mechanisms (cf. discussion of quintinite and hermalndite) is required, extensions to the notation will be needed.

(5) It is assumed that there is only one type of interlayer. Interstratified structures such as that of coalingite are not provided for in the basic notation, although Bookin et al. (1993a) suggest a notation for encoding this information.

Given the fast crystallization kinetics of synthetic LDH phases, it is likely that the octahedral cation site or interlayer site occupancy patterns will not display long-range order of the types considered in points (3) and (4) above, so more complex notation is probably not necessary.

As examples of the notation, the mineral pyroaurite has the formula $\text{Mg}_6\text{Fe}_2(\text{OH})_{12}\text{CO}_3\cdot3\text{H}_2\text{O}$. In this system, synthetic pyroaurite can be described as LDH $6\text{Mg}_2\text{Fe}_2\text{CO}_3\cdot3\text{R}$; synthetic takovite, $\text{Ni}_6\text{Al}_2(\text{OH})_{16}\text{CO}_3\cdot4\text{H}_2\text{O}$, is LDH $6\text{Ni}_2\text{AlCO}_3\cdot3\text{R}$. Synthetic LDH phases with no mineralogical equivalent, such as $\text{Mg}_{0.80}\text{Al}_{0.20}(\text{OH})_2(\text{CO}_3)_{0.10}\cdot0.78\text{H}_2\text{O}$ (Kameda et al., 2003), can easily be represented in this system (in this case, as LDH $8\text{Mg}_2\text{AlCO}_3\cdot3\text{R}$). More exotic examples are provided by synthetic zincalstibite, $\text{Zn}_2\text{Al}(\text{OH})_6(\text{Sb}(\text{OH})_6)_6$ [like LDH $2\text{ZnAl}[\text{Sb(OH)}_6]_6\cdot1\text{T}$; kuzelite, $\text{Ca}_4\text{Al}_2(\text{OH})_{12}[\text{SO}_4]\cdot6\text{H}_2\text{O}$, which is LDH $4\text{Ca}_2\text{AlSO}_4\cdot6\text{R}$; and wermlandite, $\text{Mg}_7\text{Al}_2(\text{OH})_{18}[\text{Ca}(\text{H}_2\text{O})_6]\cdot[\text{SO}_4]\cdot6\text{H}_2\text{O}$, which is LDH $7\text{Mg}_2\text{AlSO}_4(\text{Ca}(\text{H}_2\text{O})_6)\cdot17\text{T}$.

Green rust phases have commonly been identified using notation such as ‘GR(CO_3^{2-})’ (e.g. Génin et al., 2006a), which similarly only conveys part of the information about the phase. The four green rust phases with CO_3 in the interlayer are: $\text{Fe}_2^{2+}(\text{OH})_{10}(\text{H}_2\text{O})_2\text{CO}_3\cdot3\text{H}_2\text{O}$, $\text{Fe}_3^{3+}\text{Fe}_4^{2+}(\text{OH})_2\text{CO}_3\cdot3\text{H}_2\text{O}$, $\text{Fe}_3^{2+}\text{Fe}_4^{3+}\text{O}_2(\text{OH})_{10}\text{CO}_3\cdot3\text{H}_2\text{O}$ and $\text{Fe}_3^{2+}\text{O}_4(\text{OH})_{10}\text{CO}_3\cdot3\text{H}_2\text{O}$. These can thus be described as LDH $6\text{Fe}_2^{2+}\text{Fe}_4^{3+}\text{CO}_3\cdot3\text{R}$; LDH $4\text{Fe}_2^{2+}\text{Fe}_4^{3+}\text{CO}_3\cdot3\text{R}$ (fougereite); LDH $2\text{Fe}_2^{2+}\text{Fe}_4^{3+}\text{CO}_3\cdot3\text{R}$ (trèbeurdenite); and LDH $0\text{Fe}_2^{2+}\text{Fe}_4^{3+}\text{CO}_3\cdot3\text{R}$ (mössbauerite), respectively. This notation can also easily be adapted for the green rust phases with different interlayer species such as those described by Bernal et al. (1959). However, green rusts are a special case in the supergroup in that (1) the divalent and trivalent cations are the same element; (2) known compositions include ones with only one valency state in the octahedral layer; and (3) examples are known with predominantly trivalent octahedral cations, for which charge balance requires that some hydroxide anions are replaced by oxide. We recommend that the valence state for octahedral cations be included in the notation for these minerals, and that the stoichiometric number “0” be used to indicate the absent species explicitly in compositions in which the octahedral cations are all divalent or all trivalent.

Terms such as ‘hydrotalcite-like’ or ‘quinitinite-like’ do not contain precise information about the structure or the composition of the phase, and are commonly misleading. The alternative scheme proposed by Drits et al. (1987) suggests names such as ‘8.85-Å SO_4-hydrotalcite-2R', which include the layer spacing explicitly, but it is mineralogically misleading as such a phase is closer to a woodwardite-group mineral than a member of the hydrotalcite group. In addition, the $M^{2+}:M^{3+}$ ratio and hence the charge on the brucite layer are not apparent in this name. Our proposed system conveys the $M^{2+}:M^{3+}$ ratio and in consequence places quantitative constraints on the interlayer anion content. Therefore, it allows an empirical formula (H_2O) to be written, that captures the data of most importance in describing the chemical properties of synthetic LDH phases.

Acknowledgements

We thank members of the CNMNC for their comments during the submission process and Tony Kampf for comments on the submitted manuscript.

References

Aïssa, R., François, M., Ruby, C., Fauth, F., Medjahdi, G., Abdelmoula, M. and Génin, J.-M. R. (2006) Formation and crystallographical structure of hydroxy sulphate and hydroxy carbonate green rusts synthesized by coprecipitation. Journal of Physical Chemistry of Solids, 67, 1016–1019.

Alker, A., Colob, P., Postl, W. and Waltinger, H. (1981)
Hydrotalkit, Nordstrandit und Motukoreait vom Stradner Kogel, südlich Gleichenberg, Steiermark. *Mitteilungen der Abteilung für Mineralogie des Landesmuseum Joanneum*, 49, 1–13.

Allmann, R. (1968) The crystal structure of pyroaurite. *Acta Crystallographica*, B24, 972–979.

Allmann, R. and Donnay, J.D.H. (1969) About the structure of iowaite. *American Mineralogist*, 54, 296–299.

Allmann, R. and Jepsen, H.P. (1969) Die struktur des hydrotalkits. *Neues Jahrbuch für Mineralogie Monatshefte*, 1969, 544–551.

Aminoff, G. and Broome´, B. (1931) Contributions to the mineralogy of Långban. III. Contributions to the knowledge of the mineral pyroaurite. *Kungliga Svenska vetenskapsakademiens handlingar*, 9, 23–48.

Amphlett, C.B. (1958) Ion exchange in clay minerals. *Endeavour*, 17, 149–155.

Arakcheeva, A.V., Pushcharovskiy, D.Yu., Rastsvetaeva, R.K., Atencio, D. and Lubman, D.U. (1996) Crystal structure and comparative crystal chemistry of Al₃Mg₄(OH)₁₂(PO₄)₃H₂O, a new mineral from the hydrotalcite–manasaitse group. *Crystallography Reports*, 41, 972–981.

Arden, T.V. (1950) The solubility products of ferrous and ferrosic hydroxides. *Journal of the Chemical Society*, 1950, 882–885.

Artini, E. (1909) Brugnatellite; nuova specie minerale trovata in Val Malenco. *Rendiconti della Regia Accademia Nazionale dei Lincei*, 18, 3–6.

Barrer, R.M. (1978) Cation-exchange equilibria in zeolites and feldspathoids. Pp. 385–395 in: *Natural Zeolites: Occurrence, Properties, Use* (L.B. Sand and F.A. Mumpton, editors). Pergamon Press, New York.

Benali, O., Abdelmoula, M., Refaiat, Ph. and Génin, J.-M.R. (2001) Effect of orthophosphate on the oxidation products of Fe(II)–Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite. *Geochimica et Cosmochimica Acta*, 65, 1715–1726.

Bernal, J.D., Dasgupta, D.R. and Mackay, A.L. (1959) The oxides and hydroxides of iron and their structural inter-relations. *Clay Minerals Bulletin*, 15, 15–30.

Bertrand, E. and Damour, A. (1881) Zinc-aluminate, nouvelle espèce minérale du Laurium. *Bulletin de la Société Française de Minéralogie*, 4, 135–136.

Bish, D.L. (1980) Anion-exchange in takovite: applications to other hydrotalcite minerals. *Bulletin de Minéralogie*, 103, 170–175.

Bish, D.L. and Brindley, G.W. (1977) Reinvestigation of takovite, a nickel aluminum hydroxy-carbonate of the pyroaurite group. *American Mineralogist*, 62, 458–464.

Bish, D.L. and Livingstone, A. (1981) The crystal chemistry and paragenesis of honessite and hydrohonnissite. *Mineralogical Magazine*, 44, 339–343.

Bonaccorsi, E., Merlino, S. and Orlandi, P. (2007) Zincalstibite, a new mineral, and cusalstibite: crystal chemical and structural relationships. *American Mineralogist*, 92, 198–203.

Bookin, A.S. and Drits, V.A. (1993) Polytype diversity of the hydrotalcite-like minerals. I. Possible polytypes and their diffraction features. *Clays and Clay Minerals*, 41, 551–557.

Bookin, A.S., Cherkashin, V.I. and Drits, V.A. (1993a) Polytype diversity of the hydrotalcite-like minerals. II. Determination of the polytypes of experimentally studied varieties. *Clays and Clay Minerals*, 41, 558–564.

Bookin, A.S., Cherkashin, V.I. and Drits, V.A. (1993b) Reinterpretation of the X-ray diffraction patterns of stichtite and reevesite. *Clays and Clay Minerals*, 41, 631–634.

Braithwaite, R.S.W., Dunn, P.J., Pritchard, R.G. and Paar, W.H. (1994) Iowaite, a re-investigation. *Mineralogical Magazine*, 58, 79–85.

Brindley, G.W. (1979) Motukoreait – additional data and comparison with related minerals. *Mineralogical Magazine*, 43, 337–340.

Brittvin, S.N., Chukanov, N.V., Bekenova, G.K., Tagovkina, M.A., Antonov, A.V., Bogdanova, A.N. and Krasnova, N.I. (2008) Karchevskiyite, [Mg₁₈Al₉(OH)₅₄][Sr₂(CO₃,PO₄)₉(H₂O,H₃O)₁₁], a new mineral species of the layered hydroxide family. *Geology of Ore Deposits*, 50, 556–564.

Bryner, V., Rodgers, K.A., Courtney, S.F. and Postl, L. (1991) Motukoreait from Brown Island, New Zealand, and Stradnerkögel, Austria – a scanning electron microscopic study. *Neues Jahrbuch für Mineralogie Abhandlung*, 163, 291–304.

Carroll, D. (1959) Ion exchange in clays and other minerals. *Geological Society of America Bulletin*, 70, 749–779.

Chao, G.Y. and Gault, R.A. (1997) Quintinite-2H, quintinite-3T, charmarite-2H, charmarite-3T and curesite-3T, a new group of carbonate minerals related to the hydrotalcite/manasaitse group. *The Canadian Mineralogist*, 35, 1541–1549.

Christiansen, B.C., Balic-Zunic, T., Dideriksen, K. and Stipp, S.J. (2009) Identification of green rust in groundwater. *Environmental Science and Technology*, 43, 3436–3441.

Chukanov, N.V., Pekov, I.V., Levitskaya, L.A. and Chukanov, V.I. (2008) Karchevskiyite, [Mg₁₈Al₉(OH)₅₄][Sr₂(CO₃,PO₄)₉(H₂O,H₃O)₁₁], a new mineral species of the layered hydroxide family. *Geology of Ore Deposits*, 50, 556–564.

Cooper, M.A. and Hawthorne, F.C. (1996) The crystal structure of shigaite, [AlMn₃(OH)₆(SO₄)₂ Na(H₂O)₆] Holiday, a hydrotalcite-group mineral.
HYDROTALCITE SUPERGROUP NOMENCLATURE

The Canadian Mineralogist, 34, 91–97.
Dana, E.S. (1892) The System of Mineralogy, sixth edition. Wiley, New York, 962 pp.
De Waal, S.A. and Viljoen, E.A. (1971) Nickel minerals from Barberton, South Africa: IV. Reevesite, a member of the hydrotalcite group. American Mineralogist, 56, 1077–1081.
Dittler, E. and Koechlin, R. (1932) Über Glaukokerinit, ein neues Mineral von Laurion. Centralblatt für Mineralogie, Geologie und Paläontologie, A, 13–17.
Dornberger-Schiff, K. (1982) Geometrical properties of MDO polytypes and procedures for their derivation. I. General concept and applications to polytype families consisting of OD layers all of the same kind. Acta Crystallographica, A38, 438–491.
Drissi, S.H., Refait, Ph., Abdelmoula, M. and Génin, J.-M.R. (1995) The preparation and thermodynamic properties of Fe(II)–Fe(III) hydroxycarbonate (green rust 1); Pourbaix diagram of iron in carbonate-containing aqueous media. Corrosion Science, 37, 2025–2041.
Drits, V.A., Sokolova, T.N., Sokolova, G.V. and Dornberger-Schiff, K. (1982) Geometrical properties of MDO polytypes and procedures for their derivation. I. General concept and applications to polytype families consisting of OD layers all of the same kind. Acta Crystallographica, A38, 438–491.
Drissi, S.H., Refait, Ph., Abdelmoula, M. and Génin, J.-M.R. (1995) The preparation and thermodynamic properties of Fe(II)–Fe(III) hydroxycarbonate (green rust 1); Pourbaix diagram of iron in carbonate-containing aqueous media. Corrosion Science, 37, 2025–2041.
Drits, V.A., Sokolova, T.N., Sokolova, G.V. and Cherkashin, V.I. (1987) New members of the hydrotalcite–manasseite group. Clays and Clay Minerals, 35, 401–417.
Duan, X. and Evans, G.D. (2006) Layered Double Hydroxides. Springer, Berlin, 218 pp.
Dunn, P.J., Peacor, D.R. and Palmer, T.D. (1979) Desautilsite, a new mineral of the pyroaurite group. American Mineralogist, 64, 127–130.
Evans, D.G. and Slade, R.C.T. (2006) Structural aspects of layered double hydroxides. Pp. 1–87 in: Layered Double Hydroxides (X. Duan and D.G. Evans, editors). Structure and Bonding, 119. Springer, Berlin, 218 pp.
Fédé, F., Trolard, F., Klingelhöfer, G. and Bourrée, G. (2005) In situ Mössbauer spectroscopy evidence for green rust (fougérite) in a gleysol and its mineralogical transformations with time and depth. Geochimica et Cosmochimica Acta, 69, 4463–4483.
Feoktistov, G.D., Ivanov, S.I., Kashaev, A.A., Klyuchanskii, L.N., Taskina, N.G. and Ushchavpskaya, Z.F. (1978) The occurrence of cloromannasit[e = cloromagulenite] in the USSR. Zapiski Rossiskogo Mineralogicheskogo Obschestva, 107, 321–325, [in Russian].
Fenoglio, M. (1938) Ricerche sulla brugnatellite. Periodico di Mineralogia, 9, 1–13.
Ferraris, G. and Merlino, S. (editors) (2005) Micro- and Mesoporous Mineral Phases. Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA, 448 pp.
Ferraris, G., Makovicky, E. and Merlino, S. (2004) Crystallography of Modular Materials. IUCr Monographs on Crystallography, 15. Oxford University Press, Oxford, UK, 370 pp.
Fischer, R., Kuzel, H.-J. and Schellhorn, H. (1980) Hydrocalumit: Mischkristalle von “Friedelschem Salz” 3CaO·Al2O3·CaCl2·10H2O und tetracalciuma-luminathiadrat 3CaO·Al2O3·Ca(OH)2·12H2O. Neues Jahrbuch für Mineralogie Monatshefte, 1980, 322–334.
Flink, G. (1901) Mineralogische Notizen. Bulletin of the Geological Institutions of the University of Uppsala, 5, 81–95.
Foshag, W.F. (1920) The chemical composition of hydrotalcite and the hydrotalcite minerals. Proceedings of the United States National Museum, 58, 147–153.
Frondel, C. (1941) Constitution and polymorphism of the pyroaurite and sjögrenite groups. American Mineralogist, 26, 295–316.
Génin, J.-M.R. and Ruby, C. (2008) Structure of some FeII–FeIII hydroxysalt green rusts (carbonate, oxalate, methanoate) from Mössbauer spectroscopy. Hyperfine Interactions, 185, 191–196.
Génin, J.-M.R., Bauer, Ph., Olowe, A.A. and Rézel, D. (1986) Mössbauer study of the kinetics of simulated corrosion process of iron in chlorinated aqueous solution around room temperature: the hyperfine structure of ferrous hydroxides and green rust I. Hyperfine Interactions, 29, 1355–1360.
Génin, J.-M.R., Olowe, A.A., Refait, Ph. and Simon, L. (1996) On the stoichiometry and Pourbaix diagram of Fe(II)–Fe(III) hydroxysulphate or sulphate-containing green rust 2: An electrochemical and Mössbauer spectroscopy study. Corrosion Science, 38, 1751–1762.
Génin, J.-M.R., Bourrié, G., Trolard, F., Abdelmoula, M., Jaffrezic, A., Refait, Ph., Maître, V., Humbert, B. and Herbillon, A.J. (1998) Thermodynamic equilibria in aqueous suspensions of synthetic and natural FeII–FeIII green rusts: occurrences of the mineral in hydromorphic soils. Environmental Science and Technology, 32, 1058–1068.
Génin, J.-M.R., Refait, Ph. and Abdelmoula, M. (2002) Green rusts and their relationship to iron corrosion; a key role in microbially influenced corrosion. Hyperfine Interactions, 139/140, 119–131.
Génin, J.-M.R., Aïssa, R., Géhin, A., Abdelmoula, M., Benali, O., Ernstsen, V., Ona-Ngouema, G., Upadhyay, C. and Ruby, C. (2005) Fougérite and FeII–FeIII hydroxycarbonate green rust; ordering, deprotonation and/or cation substitution; structure of hydrotalcite-like compounds and mythic ferrosic hydroxide Fe(OH)\textsubscript{2+x}. Solid State Science, 7, 545–572.
Génin, J.-M.R., Abdelmoula, M., Ruby, C. and Upadhyay, C. (2006a) Speciation of iron; characterisation and structure of green rusts and FeII–FeIII
hydroxy carbonate fougerite. Comptes Rendus Geosciences, 338, 402–419.

Génin, J.-M.R., Ruby, C., Géhin, A. and Refait, Ph. (2006b) Synthesis of green rusts by oxidation of Fe(OH)$_2$, their products of oxidation and reduction of ferric oxyhydroxides; E_h–pH Pourbaix diagrams. Comptes Rendus Geosciences, 338, 433–446.

Génin, J.-M.R., Ruby, C. and Upadhyay, C. (2006) Structure and thermodynamics of ferrous, stoichiometric and ferric oxyhydroxycarbonate green rusts; redox flexibility and fougerite mineral. Solid State Science, 8, 1330–1343.

Génin, J.-M.R., Renard, A. and Ruby, C. (2008) Fougerite Fe$^{II-III}$ oxyhydroxycarbonate in environmental chemistry and nitrate reduction. Hyperfine Interactions, 186, 31–37.

Génin, J.-M.R., Guérin, O., Herbillon, A.J., Kuzman, E., Mills, S.J., Morin, G., Ona-Ngouema, G., Ruby, C. and Upadhyay, C. (2012a) Redox topotactic reactions in Fe$^{II-III}$ (oxy)-hydroxycarbonate new minerals related to fougerite in gley soils; “trêbeurdenite” and “mössbauerite”. Hyperfine Interactions, 204, 71–81.

Génin, J.-M.R., Mills, S.J., Christy, A.G., Guérin, O., Herbillon, A.J., Kuzman, E., Morin, G., Ona-Ngouema, G., Ruby, C. and Upadhyay, C. (2012b) Mössbauerite, Fe$_7$O$_4$(OH)$_6$CO$_3$.3H$_2$O, the first fully oxidized ‘green rust’ mineral from Mont Saint-Michel Bay, France. Mineralogical Magazine, 76, (in press).

Girard, A. and Chaudron, G. (1935) Sur la constitution de la rouille. Comptes Rendus Académie des Sciences, Paris, 200, 127–129.

Goh, K.-H., Lim, T.-T. and Dong, Z. (2008) Application of layered double hydroxides for removal of oxyanions: a review. Water Research, 42, 1343–1368.

Grguric, B.A., Madsen, I.C. and Pring, A. (2001) Woodallite, a new chromium analogue of iowaite from the Mount Keith nickel deposit, Western Australia. Mineralogical Magazine, 65, 427–435.

Guinier, A., Bokij, G.B., Boll-Dornberger, K., Cowley, J.M., Durovicˇ, S., Jagodzinski, H., Krishna, P., de Wolff, P.M., Zvyagin, B.B., Cox, D.E., Goodman, P., Hahn, Th., Kuchitsu, K. and Abrahams, S.C. (1984) Report of the International union of Crystallography ad hoc committee on the nomenclature of disordered, modulated and polyparticulate structures. Acta Crystallographica, A40, 399–404.

Hager, S.L., Leverett, P. and Williams, P.A. (2009) Possible structural and chemical relationships in the cyanotrichite group. The Canadian Mineralogist, 47, 635–648.

Hansen, H.C.B. and Taylor, R.M. (1991) Formation of synthetic analogues of double metal-hydroxy carbonate minerals under controlled pH conditions. II. The synthesis of desautelsite. Clay Minerals, 26, 507–525.

Hatert, F. and Burke, E.A.J. (2008) The IMA–CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717–728.

Hawthorne, F.C., Kimata, M. and Eby, R.K. (1993) The crystal structure of spangolite, a complex copper sulfate sheet mineral. American Mineralogist, 78, 649–652.

Heddle, M.F. (1879) Geognosy and mineralogy of Scotland. Mineralogical Magazine, 2, 106–133.

Henderson, D.M. and Gutowsky, H.S. (1962) A nuclear magnetic resonance determination of the hydrogen positions in Ca(OH)$_2$. American Mineralogist, 47, 1231–1251.

Herbillon, A.J. (2006) Ferrosic hydroxides, green rusts and fougerite in the biogeochemical cycle of iron. Comptes Rendus Geosciences, 338, 393–401.

Heyl, A.V., Milton, C. and Axelrod, J.M. (1959) Nickel minerals from near Linden, Iowa County, Wisconsin. American Mineralogist, 44, 995–1009.

Hill, R.J. (1980) The crystal structure of mooreite. Acta Crystallographica, B36, 1304–1311.

Hochstetter, C. (1842) Untersuchung über die Zusammensetzung einiger Mineralien. Journal für Praktische Chemie, 27, 375–378.

Hudson, D.R. and Bussel, M. (1981) Mountkeithite, a new pyroaurite-related mineral with an interlayer containing exchangeable MgSO$_4$. Mineralogical Magazine, 44, 345–350.

Huminicki, D.M.C. and Hawthorne, F.C. (2003) The crystal structure of nikischerite, NaFeAl$_3$(SO$_4$)$_2$(OH)$_6$$(H$_2$O)$_2$, a mineral of the shigaite group. The Canadian Mineralogist, 41, 79–82.

Huminicki, D.M.C., Hawthorne, F.C., Grice, J.D., Roberts, A.C. and Jambor, J.L. (2003) Nikischerite, a new mineral from the Huanuni tin mine, Dalence Province, Oruro Department, Bolivia. Mineralogical Record, 34, 155–158.

Igelström, L.J. (1865) Nya och sa¨llsynta mineralier fra˚n Vermlands och Örebrolän. Vetenskaps-Akademiens Förhandlingar, 16, 399–400.

Ingram, L. and Taylor, H.F.W. (1967) The crystal structures of sjögrenite and pyroaurite. Mineralogical Magazine, 36, 465–479.

Jambor, J.L. (1969a) Coalingite from the Muskox Intrusion, Northwest Territories. American Mineralogist, 54, 437–447.

Jambor, J.L. (1969b) Muskoxite, a new hydrous magnesium-ferric iron hydroxide from the Muskox Intrusion, Northwest Territories, Canada. American Mineralogist, 54, 684–696.

Jambor, J.L. and Boyle, R.W. (1964) A nickel hydroxide mineral from Rock Creek, British Columbia. The Canadian Mineralogist, 8, 116–120.
Kameda, T. and Yoshioka, T. (2011) Hybrid inorganic/organic composites of layered double hydroxides intercalated with organic acid anions for the uptake of hazardous substances from aqueous solution. Pp. 123–148 in: Metal, ceramic and polymeric composites for various uses (J. Cuppoletti, editor). Intech, Croatia.

Kameda, T., Yoshioka, T., Mitsuhashi, T., Uchida, M. and Okuwaki, A. (2003) The simultaneous removal of calcium and chloride ions from calcium chloride solution using magnesium–aluminum oxide. Water Research, 37, 4045–4050.

Kameda, T., Uchiyama, N. and Yoshioka, T. (2011a) Kinetics and equilibrium studies on the treatment of nitric acid with Mg–Al oxide obtained by thermal decomposition of NO3−-intercalated Mg–Al layered double hydroxide. Journal of Colloid and Interface Science, 362, 497–502.

Kameda, T., Uchiyama, N. and Yoshioka, T. (2011b) Removal of HCl, SO2, and NO by treatment of acid gas with Mg–Al oxide slurry. Chemosphere, 82, 587–591.

Kashaev, A.A., Feoktistov, G.D. and Petrova, S.V. (1982) Chloromagalaminite, (Mg,Fe2+)3Al2(OH)12(Cl,½CO3)2·2H2O – a new mineral of the manasseite–sjögrenite group. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 111, 121–127, [in Russian].

Kohls, D.W. and Rodda, J.L. (1967) Iowaite, a new hydrous magnesium hydroxide-ferric oxychloride from the Precambrian of Iowa. American Mineralogist, 52, 1261–1271.

Kolitsch, U. and Giester, G. (2007) A preliminary determination of the crystal structure of cyanophyllite and revision of its chemical formula. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 153, 66, [abstract].

Kolitsch, U., Giester, G. and Pippinger, T. (in press) The crystal structure of caulstibite-1M (formerly cyanophyllite), its revised chemical formula and its relation to caulstibite-1T. Mineralogy and Petrology.

Koritnig, S. and Süsses, P. (1975) Meixnerit, Mg6Al2(OH)18·4H2O, ein neues Magnesium-Aluminium-Hydroxid-Mineral. Tschermak’s Mineralogische und Petrographische Mitteilungen, 22, 79–87.

Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G.Yu. (2010a) Crystal chemistry of natural layered double hydroxides. 1. Quintinite-2H-3c from the Kovdor alkaline massif, Kola peninsula, Russia. Mineralogical Magazine, 74, 821–832.

Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G.Yu. (2010b) Crystal chemistry of natural layered double hydroxides. 2. Quintinite-1M. First evidence of a monoclinic polytype in M2+–M3+ layered double hydroxides. Mineralogical Magazine, 74, 833–840.

Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G.Yu. (2010c) Crystal chemistry of natural layered double hydroxides. 3. The crystal structure of Mg,Al-disordered quintinite-2H. Mineralogical Magazine, 74, 841–848.

Lapham, D.M. (1965) A new nickeliferous magnesium hydroxide from Lancaster County, Pennslyvania. American Mineralogist, 50, 1708–1716.

Lisitsina, N.A., Drits, V.A., Sokolova, G.V. and Aleksandrova, V.A. (1985) New complex secondary minerals – products of low temperature alteration of sedimentary rocks. Litologija i Polezn Imkaepemija, 1985, 20–38, [in Russian].

Loewenstein, W. (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist, 39, 92–96.

Lozano, R.P., Rossi, C., La Iglesia, A. and Matesanz, E. (2012) Zaccagnaite-3R, a new Zn-Al hydrotalcite polytype from El Soplao cave (Cantabria, Spain). American Mineralogist, 97, 513–523.

Maksimović, Z. (1957) Takovite, hydrous nickel alinate, a new mineral. Zapisnici Srpskog geološkog društva, 1955, 219–224.

Maksimović, Z. (1958) An essay on the synthesis of nickel hydroaluminate and nickel hydrosilicate under normal conditions. Bulletin of the Scientific Council of the Academy of Sciences of Yugoslavia, 4, 50 pp.

Maksimović, Z. (1959) The use of spectrochemical analysis for estimation of exchangeable cations in clay minerals. Bulletin Classe des Sciences Mathematiques et Naturales, 7, 163–165.

Manasse, E. (1915) Rocce eritree e di Aden della collezione Issel. Atti della Società Toscana di Scienze Naturali, Processi Verbali, 24, 92.

Matsubara, S., Kato, A. and Nagashima, K. (1984) Desautelsite from Konomori, Kochi City, Japan. Bulletin of the National Science Museum, 10, 81–86.

Menezes, L.A.D. and Martins, J.M. (1984) The Carraraite and revision of its chemical formula. Mineralogical Magazine, 74, 1271.

Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21,
Nickel, E.H. and Clarke, R.M. (1976) Carrboydite, a nickel hydroxide mineral. American Mineralogist, 96, 179–187.

Mills, S.J., Christy, A.G., Kampf, A.R., Housley, R.M., Favreau, G., Boulliard, J.-C. and Bourgoin, V. (2012a) Zincalstibite-9R: the first 9-layer polytype with the layered double hydroxide structure-type. Mineralogical Magazine, 76, 1337–1345.

Mills, S.J., Whitfield, P.S., Kampf, A.R., Wilson, S.A., Dipple, G.M., Raudsepp, M. and Favreau, G. (2012c) Contribution to the crystallography of hydrotalcites: the crystal structure of woodallite and takovite. Journal of Geosciences, (in press).

Miyata, S. (1975) Synthesis of hydrotalcite-like compounds and their structures and physicochemical properties. I. The systems Mg$^{2+}$–Al$^{3+}$–NO$_3^-$, Mg$^{2+}$–Al$^{3+}$–Cl$^-$, Mg$^{2+}$–Al$^{3+}$–CO$_3^{2-}$, Ni$^{2+}$–Al$^{3+}$–Cl$^-$ and Zn$^{2+}$–Al$^{3+}$–Cl$^-$, Clays and Clay Minerals, 23, 369–375.

Miyata, S. and Okada, A. (1977) Synthesis of hydrotalcite-like compounds and their physicochemical properties—the systems Mg$^{2+}$–Al$^{3+}$–SO$_4^{2-}$ and Mg$^{2+}$–Al$^{3+}$–CrO$_4^{2-}$. Clays and Clay Minerals, 25, 14–18.

Moore, P.B. (1971) Wermlandite, a new mineral from Långban, Sweden. Lithos, 4, 213–217.

Morandi, N. and Dalrio, G. (1973) Jamborite: a new nickel hydroxide mineral from the northern Appenines, Italy. American Mineralogist, 58, 835–839.

Mumpton, F.A., Jaffe, H.W. and Thompson, C.S. (1965) Coalingite, a new mineral from the New Idria serpentinite, Fresno and San Benito Counties, California. American Mineralogist, 50, 1893–1913.

Newman, S.P. and Jones, W. (1998) Synthesis, characterization and applications of layered double hydroxides containing organic guests. New Journal of Chemistry, 22, 105–115.

Nickel, E.H. (1976) New data on woodwardite. Mineralogical Magazine, 43, 644–647.

Nickel, E.H. and Clarke, R.M. (1976) Carboydite, a hydrated sulfate of nickel and aluminum: a new mineral from Western Australia. American Mineralogist, 61, 366–372.

Nickel, E.H. and Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature, 1998. The Canadian Mineralogist, 36, 913–926.

Nickel, E.H. and Wildman, J.E. (1981) Hydrohonneseite—a new hydrated Ni–Fe hydroxy-sulphate mineral; its relationship to honessite, carboydite, and minerals of the pyroaurite group. Mineralogical Magazine, 44, 333–337.

Ona-Ngouema, G., Abdelmoula, M., Jorand, F., Benali, O., Géhin, A., Block, J.C. and Génin, J.-M.R. (2002) Iron (II,III) hydroxycarbonate green rust formation and stabilization from lepidocrocite bioreduction. Environmental Science and Technology, 36, 16–20.

Palache, C., Berman, H. and Frondel, C. (1951) Dana’s System of Mineralogy, seventh edition. Wiley, New York.

Parise, J.B., Theroux, B., Li, R., Loveday, J.S., Marshall, W.G. and Klotz, S. (1998) Pressure dependence of hydrogen bonding in metal deuteroxides: a neutron powder diffraction study of Mn(OD)$_2$ and beta-Co(OD)$_2$. Physics and Chemistry of Minerals, 25, 130–137.

Passaglia, E. and Sacerdoti, M. (1988) Hydrocalumite from Montalto di Castro, Viterbo, Italy. Neues Jahrbuch für Mineralogie Monatshefte, 1988, 454–461.

Pastor-Rodriguez, J. and Taylor, H.F.W. (1971) Crystal structure of coalingite. Mineralogical Magazine, 38, 286–294.

Pausch, I., Lohse, H.-H., Schürmann, K. and Allmann, R. (1986) Synthesis of disordered and Al-rich hydrotalcite-like compounds. Clays and Clay Minerals, 34, 507–510.

Peacor, D.R., Dunn, P.J., Kato, A. and Wicks, F.J. (1985) Shigaite, a new manganese aluminum sulphate mineral from the Ioi mine, Shiga, Japan. Neues Jahrbuch für Mineralogie Monatshefte, 1985, 453–457.

Pertlik, F. and Dunn, P.J. (1990) Crystal structure of alvanite, (Zn,Ni)Al$_4$(VO$_3$)$_2$(OH)$_{12}$·2H$_2$O, the first example of an unbranched zweier-single chain vanadate in nature. Neues Jahrbuch für Mineralogie Monatshefte, 1990, 385–392.

Petterd, W.F. (1910) Catalog of the minerals of Tasmania. Mines Department Publication Hobart, Tasmania, Australia.

Piret, P. and Deliens, M. (1980) La comblainite, (Ni$_2$Co$_{3–x}$)CO_3(OH)$_2$(CO$_3$)$_{1–x}$$CO_3^{2–}H_2$O, nœve au groupe de la pyroaurite. Bulletin de Minéralogie, 103, 113–117.

Pollmann, H., Witzke, T. and Kohler, H. (1997) Kuzelilite, [Ca$_4$Al$_2$(OH)$_{12}$][(SO$_4$)$_2$·6H$_2$O], a new mineral from Maroldsweisach/Bavaria, Germany. Neues Jahrbuch für Mineralogie Monatshefte, 1997, 423–432.

Raade, G., Elliott, C.J. and Din, V.K. (1985) New data on glaucocerinite. Mineralogical Magazine, 49.
583–590.

Rad, U. (1974) Great Meteor and Josephine Seamounts (eastern North Atlantic): Composition and origin of bioclastic sands, carbonate and pyroclastic rocks. “Meteor” Forschungsergebnisse I, 9, 1–6.

Ramanaidou, E. and Noack, Y. (1987) Palagonites of the Red Sea: a new occurrence of hydroxysulphate. Mineralogical Magazine, 51, 139–143.

Ramesh, T.N., Kamath, P.V. and Shivakumara, C. (2006) Classification of stacking faults and their stepwise elimination during the disorder → order transformation of nickel hydroxide. Acta Crystallographica, B62, 530–536.

Refait, Ph., Memet, J.B., Bon, C., Sabot, R. and Génin, J.-M.R. (2003) Oxidation modes and thermodynamics of Fe(II–III) oxyhydroxycarbonate green rust: dissolution-precipitation versus in-situ deprotonation. Geochimica et Cosmochimica Acta, 74, 953–966.

Ruschi, B., Génin, J.-M.R., Ruby, C., Abdelmoula, M. and Bonville, P. (2008) Ferrimagnetic properties in Fe(II)–Fe(III) (oxy)hydroxycarbonate green rusts. Solid State Sciences, 10, 40–49.

Saccerdoti, M. and Passaglia, E. (1988) Hydrocalumite from Latium, Italy — its crystal structure and relationship with related synthetic phases. Neues Jahrbuch für Mineralogie Monatshefte, 1988, 462–475.

Sideris, P.J., Nielsen, U.G., Gan, Z.H. and Grey, C.P. (2008) Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science, 321, 113–117.

Simon, L., François, M., Refait, Ph., Renaudin, G., Lelaurain, M. and Génin, J.-M.R. (2003) Structure of the Fe(II–III) layered double hydroxysulphate green rust two from Rietveld analysis. Solid State Sciences, 5, 327–334.

Sjögren, H. (1894) Contributions to Swedish Mineralogy. Part II. Bulletin of the Geological Institutions of the University of Uppsala, 2, 39–74.

Smith, D.G.W. and Nickel, E.H. (2007) A system of codification for unnamed minerals: report of the subcommittee for unnamed minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 983–1055.

Song, Y. and Moon, H.S. (1998) Additional data on reevesite and its Co-analogue, as a new member of the hydrotalcite group. Clay Minerals, 33, 285–296.

Stanimirova, T. (2001) Hydrotalcite polytypes from Snarum, Norway. Annual of the University of Sofia, Faculty of Geology, 94, 73–80.

Steed, J.W. and Mourniolo, J.P. (1992) Selected area electron diffraction (SAED) and convergent beam diffraction (CBED). Pp. 37–84 in: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (P.R. Buseck, editor). Reviews in Mineralogy, 27. Mineralogical Society of America, Washington DC.

Taylor, H.F.W. (1969) Segregation and cation-ordering in sjögrenite and pyroaurite. Mineralogical Magazine, 37, 338–342.
hydroxide minerals. *Mineralogical Magazine*, 39, 377–389.

Taylor, R.M. (1980) Formation and properties of Fe(II) Fe(III) hydroxycarbonate and its possible significance in soil formation. *Clay Minerals*, 15, 369–372.

Tilley, C.E., Megaw, H.D. and Hey, M.H. (1934) Hydrocalumite (4CaO·Al₂O₃·12H₂O). A new mineral from Scarth Hill, County Antrim. *Mineralogical Magazine*, 23, 607–615.

Trolard, F., Génin, J.-M.R., Abdelmoula, M., Bourrié, G., Humbert, B. and Herbillon, A.J. (1997) Identification of a green rust mineral in a reductomorphic soil by Mössbauer and Raman spectroscopies. *Geochemica et Cosmochimica Acta*, 61, 1107–1111.

Trolard, F., Bourrié, G., Abdelmoula, M., Refait, Ph. and Féder, F. (2007) Fougerite, a new mineral of the pyroaurite–iowaite group: description and crystal structure. *Clays and Clay Minerals*, 55, 323–334.

Uvarova, Y.A., Sokolova, E., Hawthorne, F.C., Karpenko, V.V., Agakhanov, A. and Pautov, L.A. (2005) The crystal chemistry of the “nickelalumite”-group minerals. *The Canadian Mineralogist* 43, 1511–1519.

Vysostskii, G.N. (1905) Gley. *Eurasian Soil Science* (Pochvovedenie), 4, 291–327.

Walenta, K. (1981) Cyanophyllit, ein neues Mineral aus der Grube Clara bei Oberwolfach im mittleren Schwarzwald. *Chemie der Erde*, 40, 195–200.

Walenta, K. (1984) Cualstibit, ein neues Sekundärmineral aus der Grube Clara im mittleren Schwarzwald (BRD). *Chemie der Erde*, 43, 255–260.

White, J.S. Jr, Henderson, E.P. and Mason, B. (1967) Secondary minerals produced by weathering of the Wolf Creek meteorite. *American Mineralogist*, 52, 1190–1197.

Whitfield, P.S., Davidson, I.J., Mitchell, L.D., Wilson, S.A. and Mills, S.J. (2010) Problem solving with the TOPAS macro language: corrections and constraints in simulated annealing and Rietveld refinement. *Materials Science Forum*, 651, 11–25.

Witzke, T. (1995) Untersuchung natürlicher sulfathaltiger hybrider Schichtstrukturen: Charakterisierung, Systematik, Strukturmodellierung und Rietveld-Verfeinerung. PhD Thesis, Martin-Luther-Universität Halle, Germany.

Witzke, T. (1999) Hydrowoodwardite, a new mineral of the hydrotalcite group from Königswalde near Annaberg, Saxony/Germany and other localities. *Neues Jahrbuch für Mineralogie Monatshefte*, 1999, 75–86.

Witzke, T. and Raade, G. (2000) Zincowoodwardite, [Zn₁₋ₓAlₓ(OH)₂][(SO₄)ₓ/2(H₂O)ₙ], a new mineral of the hydrotalcite group. *Neues Jahrbuch für Mineralogie Monatshefte*, 2000, 455–465.

Woodhouse, J.N. (2006) The characterization of hydrotalcite-group minerals and their anion exchange capabilities at Mount Keith Nickel mine, Western Australia. Unpublished BSc. Thesis, The University of British Columbia, Vancouver, Canada.

Wyckoff, R.W.G. (1963) *Crystal Structures*, second edition. Interscience Publishers, New York.

Zamarreño, I., Plana, F., Vasquez, A. and Clague, D.A. (1989) Motukoreaite: a common alteration product in submarine basalts. *American Mineralogist*, 74, 1054–1058.

Zigan, F. and Rothbauer, R. (1967) Neutronenbeugungsmessungen am Brucit. *Neues Jahrbuch für Mineralogie Monatshefte*, 1967, 137–143.