Review

Natural Antioxidants in Anemia Treatment

Coralia Cotoraci 1,*,†, Alina Ciceu 2,†, Alciona Sasu 1,† and Anca Hermenean 2,3

1 Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; alcionasasu@gmail.com
2 “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; alina_ciceu@yahoo.com (A.C.); anca.hermenean@gmail.com (A.H.)
3 Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
* Correspondence: ccotoraci@yahoo.com
† These authors contributed equally to this work.

Abstract: Anemia, characterized by a decrease of the hemoglobin level in the blood and a reduction in carrying capacity of oxygen, is a major public health problem which affects people of all ages. The methods used to treat anemia are blood transfusion and oral administration of iron-based supplements, but these treatments are associated with a number of side effects, such as nausea, vomiting, constipation, and stomach pain, which limit its long-term use. In addition, oral iron supplements are poorly absorbed in the intestinal tract, due to overexpression of hepcidin, a peptide hormone that plays a central role in iron homeostasis. In this review, we conducted an analysis of the literature on biologically active compounds and plant extracts used in the treatment of various types of anemia. The purpose of this review is to provide up-to-date information on the use of these compounds and plant extracts, in order to explore their therapeutic potential. The advantage of using them is that they are available from natural resources and can be used as main, alternative, or adjuvant therapies in many diseases, such as various types of anemia.

Keywords: anemia; iron deficiency; iron overload; hemolytic anemia; β-thalassemia; sickle cell anemia

1. Introduction

Anemia is defined as a reduction in the number of circulating RBCs [1] or as a condition in which the number of erythrocytes (and subsequently their ability to carry oxygen) is insufficient to meet physiological needs [2]. Anemia is characterized by a decrease of the hemoglobin (Hb) level in the blood (generally less than 13.5 g/dL in men and 12.5 g/dL in women), which results in a reduction in carrying capacity of oxygen. Diseases that decrease Hb production (e.g., iron deficiency, B12, or folate deficiencies) or accelerate its destruction are often the result of a defect in the structure of Hb [3]. Although anemia is frequently diagnosed by a low level of Hb or hematocrit (Htc), it can also be diagnosed by using the number of RBCs, the average mean erythrocyte volume, the number of reticulocytes in the blood, the examination of the blood smear or Hb electrophoresis [4].

Anemia is a major public health problem. It affects people of all ages, especially pregnant women and children. According to statistics, globally, anemia affects 41.8% of pregnant women and 47.4% of preschool children [5]. Moreover, it has negative effects on health and development, including neonatal and perinatal mortality, low birth weight [6], premature birth [7,8], and developmental delays of the children [9]. Clinically, it is characterized by pallor, fatigue, dizziness, difficulty breathing dyspnea, and weakness [10]. In the absence of effective management, anemia can promote decreased cognitive ability, weakened immune system, and increased mortality [11].
Anemia can be classified in terms of pathogenesis and erythrocyte morphology [12]. The pathogenic mechanisms involved in the onset of anemia are inadequate production and loss of erythrocytes as a result of bleeding or hemolysis. Depending on these pathogenic mechanisms, anemia can be divided into hypo-regenerative and regenerative forms. In hypo-regenerative anemia, bone marrow production is low, as a result of impairment of the latter’s function, decreased number of precursor cells, or lack of nutrients [12]. Damage to pluripotent stem cells usually causes pancytopenia (anemia, leukopenia, and thrombocytopenia). All of these can affect normal hematopoiesis or change the microenvironment required for stem cell regeneration, differentiation, and proliferation [13,14]. In the regenerative form, anemia is characterized by an elevated level of erythropoietin in response to decreased Hb and generally reflects a loss of erythrocytes, caused by bleeding or hemolysis. Bone marrow responds appropriately to a low erythrocyte mass by increasing reticulocyte production [12].

Classification of anemias according to erythrocyte morphology is more useful in medical practice [12]. Microcytic anemia is the type of anemia in which circulating RBCs are smaller than usual. The most common cause of this type of anemia is a decrease in the body’s iron reserves, which can have several causes, such as decreased iron in the diet; reduced absorption of iron in the intestine; acute and chronic blood loss; and increased iron demand in certain situations, such as pregnancy and recovery after a major trauma or surgery [15]. The category of microcytic anemias includes iron deficiency anemia (IDA), thalassemia, anemia associated with various chronic conditions (e.g., rheumatoid arthritis, Hodgkin’s lymphoma, chronic infections, and neoplasms), and sideroblastic anemia (e.g., hereditary and intoxication with lead) [12]. Normocytic anemia may be caused by inadequate erythropoietin (EPO) levels or decreased erythropoietin response, reduced erythrocyte survival, and bone marrow infiltration. Most normocytic, normochromic anemias are a consequence of other conditions. A small part of them reflects a primary blood disorder. This may be due to anemia induced by some chronic conditions (inflammation and neoplasia), kidney failure, endocrine failure, bone marrow failure (pure red cell aplasia and aplastic anemia), acute blood loss, and polycystic blood loss [16]. Macrocytic anemia has two forms: megaloblastic (hypersegmented neutrophils) and non-megaloblastic. Megaloblastic anemia is due to impaired DNA synthesis induced by folate and/or vitamin B12 deficiency [17,18].

The main function of RBCs in the blood is the transport of respiratory gases (oxygen (O2) and carbon dioxide (CO2)) to and from tissues, by binding gases to Hb inside erythrocytes. Hb is a tetrameric protein consisting of two α- and two β-polypeptide chains. Each of them contains an iron heme group capable of binding an oxygen molecule [19]. Each heme group contains an (Fe2+) atom, which binds an oxygen molecule. Thus, a Hb tetramer can bind four oxygen molecules [20].

In the human body, iron is mainly found in erythrocytes, in the form of Hb (about 2 g of iron in men and 1.5 g in women) and, to a lesser extent, in storage compounds (ferritin and hemosiderin), and in muscle cells like myoglobin. Iron is also found bound to proteins (hemoproteins) and non-heme enzymes involved in oxidation-reduction reactions and electron transfer (cytochrome and catalase) [21–23].

About 2.2% of the total amount of iron in the body is found in a labile reserve, which forms reactive oxygen species through the Fenton reaction that forms complexes with a class of drugs known as chelators. Iron chelators are used in the treatment of iron overload, a condition often caused by blood transfusions that are used to treat thalassemia and other types of anemia [24,25].

Upon exposure to oxygen, iron forms insoluble oxides that cannot be absorbed into the human gastrointestinal tract. Human enterocytes contain membrane-bound apical enzymes that have the ability to reduce insoluble iron (Fe3+) to an absorbable (Fe2+) form. Iron overload can be particularly harmful to the heart, liver, and endocrine organs. Excess ferrous iron forms hydroxyl free radicals through the Fenton reaction, which causes tissue
damage through oxidative reactions with lipids, proteins, and nucleic acids. Thus, the absorption of iron from the diet and the factors that affect the bioavailability in the body are strictly regulated [26].

The most effective method used to treat anemia is blood transfusion [27]. Oral administration of iron-based supplements is an effective and, at the same time, inexpensive method used to treat patients with iron deficiency anemia. Moreover, this method of treatment is associated with a number of side effects, such as nausea, vomiting, constipation, and stomach pain, which limits its long-term use. In addition, oral iron supplements are poorly absorbed in the intestinal tract, due to overexpression of hepcidin, a peptide hormone that plays a central role in iron homeostasis [28]. If iron supplements are not effectively assimilated by the body, or if their absorption is inhibited, parenteral administration is recommended. Long-term parenteral administration of iron supplements can lead to hyperpigmentation of the skin. Moreover, one of the side effects of taking iron-based supplements is increased free radical production [27]. The use of inappropriate doses of iron-based supplements can induce oxidative stress [29,30], with the formation of oxidation products, and can lead to cardiovascular, neurological, or cancer conditions [31–33]. The presence of an excess of free iron initiates the Fenton reaction, which leads to oxidative damage to cell membranes, proteins, lipids, and nucleic acids, as well as the stimulation of inflammatory mediators [34,35].

Therefore, in the case of patients with anemia, the aim is to reduce the dose of iron and replace it with other complementary treatments.

The therapeutic use of herbal products in common clinical practice is not yet regulated for several reasons, such as the lack of efficacy and toxicity data that are required for their approval by health authorities. To these are added the competition of large pharmaceutical companies that make remarkable profits from the sale of synthetic drugs [36]. Currently, there is an increase in the number of clinical trials with herbal therapeutic products used in various diseases, in order to confirm their therapeutic value and receive the necessary approvals for their marketing [37]. Some phytochemicals or herbs act directly to induce the resolution of anemia, and others act pleiotropically through their antioxidant activity, by increasing oxidative stress resistance or by triggering cellular mechanisms, such as autophagy [38], or, for example, by targeting inflammation in the elderly population and subsequently reducing the anemia associated with chronic inflammation [39].

In this review, we conducted an analysis of the literature on biologically active compounds and plant extracts used in the treatment of various types of anemia. The purpose of this review is to provide up-to-date information on the use of these compounds and plant extracts, in order to explore their therapeutic potential. The advantage of using them is that they are available from natural resources and can be used as main, alternative, or adjuvant therapies in many diseases, such as various types of anemia.

2. Natural Antioxidants in Iron Deficiency Treatment

Iron is essential for the production of Hb. Depletion of iron deposits can be caused by blood loss, decreased iron intake, impaired absorption, or increased demand. Iron deficiency anemia can be caused by occult gastrointestinal bleeding [40] or decreased iron in the diet, or reduced iron absorption [26], accounting for more than half of all types of anemia [11] and require iron supplementation.

Due to the fact that oral iron supplements are associated with side effects, such as gastrointestinal irritations, reduced bioavailability, and lipid peroxidation [41], it is necessary to develop new iron-based supplements without or with minimal side effects. Polysaccharide chelated iron is characterized by high stability, water solubility, and fewer side effects [42]. Other polysaccharide–iron complexes have been used in the treatment of IDA, such as iron–dextran, iron–starch, and Niferex (a combination of ascorbic acid and iron–polysaccharide complex) [43,44].
Ulva prolifera is one of the most widespread species of green macroalgae [45]. The sulfate polysaccharides from *Ulva prolifera* (SUE) are a group of sulfated heteropolysaccharides with unique structural features in the form of rhamnose and uronic acid linkages of (1 → 4)-linked β-L-arabinopyranose residues [46]. In the case of rat-induced IDA, the SUE-iron (III) complex induced an increase in the number of RBCs and serum iron levels and contributed to the restoration of normal Hb levels [47].

Angelica sinensis has been shown to improve hematopoiesis by increasing the secretion of hematopoietic growth factors, such as erythropoietin, by stimulating hematopoietic cells and muscle tissue [48]. Polysaccharides from *A. sinensis* (ASP) improved serum iron levels and participated in the regulation of iron homeostasis [49]. Moreover, Liu et al. (2012) obtained ASP from the root powder of *A. sinensis* riched in arabinose, glucose, and galactose, with a molar ratio of 1: 5.68: 3.91 [50]. ASP has been shown to decrease hepcidin expression by inhibiting SMAD 4 expression in the liver and stimulating erythropoietin secretion, while other results showed that the decreased hepatic hepcidin expression is due to inhibition of the expression of JAK1/2, phospho-JAK1/2, phospho-SMAD1/5/8, phospho-ERK1/2, and stimulating SMAD7 [51]. Previously, ASPs have been shown to activate erythropoiesis [52,53].

Beetroot (*Beta vulgaris*) contains iron, nitrates, sodium, potassium, and betalaine [54]. Among the benefits of beetroot juice are the treatment of anemia by improving the ability of erythrocytes to carry oxygen, lowering blood pressure by dilating blood vessels and relaxing smooth muscles, preventing birth defects by increasing folate levels, etc. [55]. Compared to other vegetables with a high iron content, beets have a low price and are easy to store [56]. Consumption of 8 g of beets for 20 days induced an increase in Hb, ferritin, and serum iron levels, as well as a decrease in transferrin and total iron-binding capacity levels in seven women aged 22–24 years [57]. Consumption of beetroot in the form of juice (100–200 mL) increased the level of Hb [58,59]. Moreover, administration of 200 mL of beet juice for six weeks induced the increase of HTC, RBC, iron, and ferritin levels [58]. The administration of beetroot in the form of powder and iron-based supplements for 14 days in women with anemia led to increased levels of Hb, HTC, and erythrocyte counts [60].

The results of the in vitro and in vivo studies regarding pharmacological effects exerted by the natural antioxidants in iron deficiency anemia are summarized in Table 1.

Bioactive Compound	Doses	In Vitro/ In Vivo/ Clinical Study	Model	Bioactive Effect	References
Iron from *Moringa* leaves	10% and 20% dehydrated	in vivo	iron-deficient diet in Wistar rats	↑ serum iron, ferritin, and transferrin concentration	[61]
Moringa leaves	Moringa leaves			Dietary iron from *Moringa leaf* was found to be superior compared with ferric citrate (35 mg/kg) in overcoming the effects of iron deficiency in rats	
Sulfate *Ulva* polysaccharide (SUE)	Low-dose group (SUE-iron (III) with iron concentration of 0.8 mg/mL, 0.7 mg kg⁻¹ BW, Fe)	in vivo	iron deficiency anemia in Wistar rats	↑ RBC number	[47]
	High-dose group (SUE-iron (III) with iron concentration of 2.3 mg/mL, 2.0 mg kg⁻¹ BW, Fe)			↑ serum iron, ↓ TIBC, ↓ IL-4, returns Hb to the normal levels	
Astragalus membranaceus polysaccharide-iron (III) complex	APS-iron (III) complex with the iron content 12.5, 25, 50, 75, and 100 mg/kg	in vivo	Iron-deficiency anemia rodent model	↑ Hb, ↑ SOD and CAT, ↓ MDA	[62]
Ginger + iron supplement	215 mg	clinical study	iron deficiency anemia	↑ plasma iron, ↑ plasma ferritin	[63]
Quercetin + FeSO₄ 50 mg·kg⁻¹ quercetin + 50 mg·kg⁻¹ FeSO₄ in vivo Iron deficiency anemia rat model ↑ Hb ↑ serum iron level ↑ iron stores in spleen ↑ expression of SLC40 - improve red blood cells level ↓ CD68 macrophage activation ↓ iNOS expression in splenic red pulp [64]

Low-molecular-weight polysaccharide from Enteromorpha prolifera (LPE)-iron (III) complex Low LPE-iron (III) complex group (0.7 mg Fe/kg body weight) in vivo iron deficiency anemia rat model ↑ Hb ↑ RBC numbers ↑ HTC ↑ serum iron ↑ TIBC level ↑ EPO level - improved the growth of rats with IDA - alleviated the hypertrophy of spleen - improved the liver coefficient [65]

Aqueous extract of Mangifera indica stem bark 25, 50, and 75 mg/kg body weight in vivo iron deficiency anemia rat model ↑ PCV, Hb and RCB count ↑ lactase and sucrase activity [66]

Aqueous extract of the stem bark of Theobroma cacao (TC) 25, 50, and 75 mg/kg body weight in vivo iron deficiency anemia model albino rats ↑ PCV, Hb and RCB count ↑ intestinal lactase and sucrase activity [67]

Caulis spatholobi (CS) cells treated with 400 mg/mL of extract in vitro Human hepatocellular carcinoma cell lines HuH7 and HepG2 ↓ HAMP expression in HuH7 and HepG2 cells ↓ BMP-6-induced HAMP expression ↓ IL-6-induced HAMP expression ↓ iron mobilization in mice ↓ phosphorylation of Smad1/5/8 ↓ hepatic iron levels ↑ serum iron levels in mice [68]

Angelica sinensis polysaccharide (ASP) 1 g/kg in vivo iron deficiency anemia in Sprague Dawley rats ↓ hepcidin expression [50]

Angelica sinensis polysaccharide (ASP) 1 g·kg⁻¹ in vivo iron deficiency anemia Sprague Dawley rats ↓ hepcidin expression [51]

Beetroot juice (Beta vulgaris L.) 200 mL clinical study Twenty female soccer players 23.13 ± 0.77 years old ↑ Hb, HTC, RBC, iron, and ferritin levels ↓ TIBC [58]

Beetroot juice (Beta vulgaris L.) 100 mL clinical study adolescent girls ↑ Hb [59]

Beet powder (Beta Vulgaris L.) with Fe supplementation 8 g beetroot powder clinical study 30 pregnant women with anemia ↑ Hb, HTC, ↑ the number of erythrocytes [60]

Carica papaya 110 g of papaya clinical study 42 pregnant women ↑ Hb ↑ HTC [69]

Sweet potato (Ipomoea Batatas L.) 100 g clinical study first trimester pregnant women ↑ Hb [70]

Baobab fruit (Adansonia digitata) 60, 80, and 100 g clinical study 32 pregnant with iron deficiency anaemia ↑ Hb, PCV ↑ serum ferritin [71]
Aqueous extract of *Hibiscus sabdariffa* seeds 400 mg of the extract/kg body weights \[\uparrow \text{HB, PCV, and RBC count of hemorrhagic anemic rats} \]
\[\uparrow \text{the Hb level of the nutritionally iron-deficient rats} \]

Red beetroot (*Beta vulgaris* L.)	8 g	clinical study	healthy female volunteers (age range, 22 to 24)	\[\uparrow \text{Hb} \]
				\[\downarrow \text{TIBC} \]
				\[\uparrow \text{ferritin} \]
				\[\downarrow \text{transferrin} \]
				\[\uparrow \text{serum iron levels} \]

3. Natural Antioxidants in Iron Overload Treatment

Iron overload is associated with aplastic anemia, sideroblastic anemia, Blackfan-Diamond anemia, Fanconis anemia, pernicious anemia, congenital dyserythropoietic anemia, hereditary hypochromic anemia, or haemoglobinopathies, as \(\beta\)-thalassaemias or sickle cell anaemia.

Although blood transfusions are important for patients with anemia, chronic transfusions inevitably lead to iron overload, as the body cannot eliminate excess iron. If not treated properly, the cumulative effects of iron overload led to morbidity and mortality [73]. One unit of transfused RBCs contains about 250 mg of iron [74], while the body cannot excrete more than 1 mg of iron per day. A patient who receives 25 units per year accumulates 5 g of iron per year in the absence of chelation [75].

Chelation therapy is used in binding the iron excess and removing it from the body. Synthetic iron chelators are toxic in high doses. Due to the high costs, toxicity and side effects of treatment with synthetic iron chelators, a large number of patients are currently not receiving any iron chelation treatment. There are a number of orally active antioxidants that have the ability to chelate iron and eliminate free radicals. They also have a lower cost and toxicity compared to synthetic drugs. These natural chelators form complexes with metals and could be used in the treatment of iron overload without inducing another micromineral deficiency, being an advantage that synthetic drugs do not have [76].

The natural iron chelators contain a catechol or gallate fragment that acts as a binding site for metals and further is eliminated from the body. In addition to the ability to chelate iron and eliminate free radicals, these antioxidants can be effective in iron overload by reducing the iron load in the liver, increasing iron excretion in feces and urine, reducing serum ferritin, removing iron from ferritin and transferrin, increasing hepcidin expression, reducing iron absorption in the intestine, increasing iron absorption and incorporation into the heme, and inducting osteo- and cardio-protective effects [76].

Flavonoids and polyphenolic compounds with at least two iron binding sites have iron chelating properties. These flavonoids fall into two categories: lipophilic and hydrophilic chelators. Lipophilic chelators increase iron absorption, reduce iron excretion, and increase the deposition of excess iron in tissues. Therefore, they are a possible treatment for iron-deficiency anemia. Hydrophilic chelators, on the other hand, favor the elimination of excess iron, reduce iron absorption, and exert antioxidant and anti-inflammatory activity, without having other side effects [36]. Combining synthetic iron chelators with these antioxidants, or even replacing them with chelators from natural sources, would be a possible treatment for iron overload [76]. By chelating iron, flavonoids decrease high oxygen toxicity, for example, by inhibiting \(\text{HO}^\ast\) production from the Fenton reaction [77]. The mechanism by which certain flavonoids reduce the bioavailability of non-hemic iron...
is not fully understood, but it is assumed that flavonoids have the ability to chelate non-hemic iron [78–82].

Grape seed extract (GSE) contains various polyphenolic compounds, such as gallic acid, catechin, epigallocatechin-3-gallate (EGCG), epigallocatechin, epicatechin-3-gallate, epicatechin, and proanthocyanidins [83]. GSE extracts rich in polyphenols have antioxidant activity due to the phenolic compounds ability to neutralize free radicals and to chelate certain metals, such as iron [84,85]. Moreover, it was found that EGCG and GSE increased absorption on hemic iron on apical side and blocked transepithelial transport [83] or inhibited intestinal absorption of nonhemic iron [86].

Curcumin, the main curcuminoid in Curcuma longa L. (turmeric), is a low-molecular-weight polyphenol, widely used in Ayurveda and Chinese medicine [87]. Turmeric type 97 (77% curcumin, 17% dexethoxycurcumin, and 3% bisdemethoxy curcumin) induced an increase in the level of transferrin receptor 1 (TfR1) and the induction of activated iron-regulatory proteins (IRPs), a decrease of the hepatic ferritin level and its H and L subunits [88]. Other results show that 1000 mg iron/kg body weight and curcumin increased TfR1 and iron-responsive element-binding protein (IRP), favored the appearance of hypochromic RBCs, and decreased the levels of Hb, HTC, serum iron, ferritin, hepcidin, and transferrin saturation, as well as iron levels in the spleen and bone marrow [89].

Quercetin is a flavonol found in onions, broccoli, garlic, tomatoes, black tea, spinach, and apples [90–92], recognized for their antioxidant and anti-inflammatory activity [93]. Quercetin increased the expression of hepcidin, one of the main hormones involved in intestinal absorption of iron, which could involve the Nrf2 pathway [94]. Granado-Serrano et al. (2012) demonstrated that quercetin can activate the Nrf2 pathway by supporting nuclear translocation and its transcriptional activity [95]. Given that the levels of ferroportin (FPN) and ferritin are overexpressed transcriptionally by the Nrf2 pathway, quercetin could affect iron homeostasis and help cells to fight against oxidative stress [96]. Prenatal exposure of mice to quercetin resulted in increased hepatic iron deposits and induced overexpression of hepcidin to adults [77].

Quercetin chelates metal ions in a stable complex, thus preventing the Fenton reaction [97], and protects human erythrocytes from iron-induced oxidative damage [98,99]. Quercetin can also act as a siderophore through glucose transporters [100]. Similar to other flavonoids, it is thought to form a complex with Fe\(^{2+}\) that has greater stability than Fe\(^{3+}\). Even if quercetin initially forms a complex with Fe\(^{2+}\), it will be further self-oxidized, resulting in Fe\(^{3+}\) [101]. Iron chelation by the 3-hydroxyl group of quercetin is an important factor in iron absorption in the duodenum [79]. The decrease in duodenal iron transfer is due to the chelation of iron by quercetin, which increases the apical absorption of iron, but prevents basolateral transport. However, the precise site of iron chelation by quercetin is unknown. It is not known whether chelation occurs in the duodenal lumen or in the cytosol of duodenal enterocytes [96].

Myricetin (3,5,7,3’,4’,5’-hexahydroxyflavonol) is a flavonoid initially isolated from the bark of the Myrica rubra that has been shown to have iron-chelating properties [80,102]. Administration of myricetin to C57BL/6 mice favored an increase in RBCs, Hb levels, and serum iron and decrease in the hepatic expression of hepcidin and splenic iron levels [103].

Silibin is a biologically active compound from silymarin [104], a flavonolignan reported to have iron chelating effect [105], while other studies reported a high affinity for Fe (III) iron-silibin complex in acidic pH [104,106]. Bares et al. (2008) observed that oral administration of silibin for 12 weeks reduced iron deposits in patients with chronic hepatitis C [107].

The main pharmacological effects of the natural antioxidants in iron chelation activities are summarised in Table 2.
Table 2. Pharmacological effects of the natural antioxidants in iron chelation activity.

Bioactive Compound	Doses	In Vitro/ In Vivo/ Clinical Study	Model	Bioactive Effect	References
EGCG and GSE	in vitro	cell culture of Caco-2 cells	MEL cell culture	↓ transepithelial heme iron transpor	[83]
		MEL cell culture	mouse erythroleukemia (MEL) cell line	↑ apical heme iron uptake (GSE)	
		human Caco-2 (HTB-37TM) cell line	murine erythroleukemia (MEL) cell line	↓ the cellular assimilation of heme (EGCG)	
Curcumin	0.5% and 2.0%	in vivo	FVB mice treated with curcumin for 12 weeks	↓ in the H and L subunits of the iron storage protein ferritin	[88]
			C3H/HeNCrImice	↑ transferrin receptor 1	
			AIN93M basal diet modified to contain various amounts of iron and curcumin: 5, 12, 50, or 1000 mg iron/kg diet plus curcumin at 0% (control), 0.2%, 0.5%, and 2.0% (wt/wt) for 26 weeks	↓ iron levels in the bone marrow and spleen	
			patients with hereditary haemochromatosis	↓ appearance of hypochromic RBCs	
			patients with hereditary haemochromatosis	↑ transferrin receptor 1 (TfR1)	
			patients with hereditary haemochromatosis	↓ iron-responsive element-binding protein (IRP)	
			patients with hereditary haemochromatosis	↓ ferritin	
			patients with hereditary haemochromatosis	↓ hepcidin	
Silybin	140 mg silybin (Le-galon Forte)	clinical study	patients with hereditary haemochromatosis	↓ postprandial iron absorption	[106]
	100 mg/kg body weight	in vivo	ethanol-induced iron overload and liver damage in mice	-attenuated the hepatic iron deposition in mice exposed to ethanol or excess iron	[109]
Quercetin	40-mg/kg myricetin daily for 1 or 5 days	in vitro	mouse primary hepatocytes	-prevented ethanol induced hepatic iron overload by regulating hepcidin expression via the BMP6/SMAD4 signaling pathway	
	10-mg/kg myricetin for 5 days, after which the mice were injected with LPS (5 mg/kg, ip)	in vivo	HepG2 an HEK293 cells	↓ HAMP mRNA levels	
	0.2% (v/v) myricetin for up to 30 days	in vivo	CS7BL/6 mice	↓ SMAD1/5/8 phosphorylation	

Black soybean seed coat anthocyanins extract (BSSCE)	200 mg/mL BSSCE	in vitro	AIN-76A diet containing 2% BSSCE fed to 8-week-old male C57BL/6 mice for 0, 1, 7, 15 or 30d	↓ hepcidin expression	↓ splenic Fe concentration	↑ serum Fe concentrations	↑ in erythrocyte counts, HB concentrations, HTC values		
Citrus flavonoids-rich extracts from bergamot and orange juices	2% BSSCE	in vitro	iron overloaded human lung epithelial cells	↓ ROS	↓ lipid peroxidation	↑ mitochondrial function	↓ iron chelation-prevented DNA-oxidative damage in iron-exposed cells	↑ catalase activity	
Baicalein (Scutellaria baicalensis)	in vitro	-zebrafish embryo (Danio rerio)	↑ hepcidin expression and promoter activity in zebrafish and human and SMAD4-dependent manner						
Genistein	in vivo	the human hepatocarcinoma cell hepatocytes in a STAT3-dependent and SMAD4-dependent manner							
Vitamin C	50 and 100 mg/mL	in vivo	hepcidin-producing HepG2 cell line	-inhibition of hepcidin expression					
Tucum-Do-Cerrado (Bac tris setosa Mart.)	in vivo	Wistar rats	AIN-93G diet with 150 g of tucum-do-cerrado fruit (pulp and peel)/kg diet	↓ spleen lipid and protein oxidation; mRNA levels of hepatic Hamp and ferritin	↑ serum antioxidant capacity	↑ hepatic mRNA levels of BMP6, Hmox1, Nqo1, and Nrf2	-abrogated the liver Hamp iron-induced upregulation -prevented intestinal iron accumulation; hepatic lipid peroxidation; splenic protein damage	↑ of CAT, GR, and GSH-Px activity	
Angelica sinensis polysaccharide (ASP)	ASP at 25, 50, and 100 mg kg\(^{-1}\)	in vivo	BALB/c mice inoculated with H22 tumor cells	↓ hepcidin concentration in serum	↓ levels of serum IL-6	↓ serum ferritin	↓ levels of serum Tf	↓ levels of serum TIR2	↓ levels of serum TIR1 in the ASP 25 mg kg\(^{-1}\) treatment group
Hydro-alcoholic extract of Medicago Sativa and Allium Porrum	200 and 400 mg/kg body weight	in vivo	iron-overloaded rats	↓ serum ferritin	↓ serum iron level				
Methanolic extract of Angel’s wings mushroom (Pleurotus porri gens)	200 and 400 mg/kg/24 h	in vivo	iron-overloaded mice	-chelation of excess iron	↓ in plasma Fe\(^{3+}\) content	↓ in the extent of necrotic hepatocytes, fibrous tissues, and pseudo-lobules			
Methanol extract of Nerium indicum leaves	50, 100, and 200 mg/kg b.w.	in vivo	iron-overloaded mice	-antioxidant and iron-chelating properties	↓ iron overload induced toxicity	-normalized the levels of ALAT, ASAT, ALP, and bilirubin	↑ levels of SOD, CAT, GST, and nonenzymatic-reduced glutathione	↓ levels of lipid peroxidation, protein carbonyl, hydroxyproline	
4. Natural Antioxidants in the Treatment of Hemolytic Anemia

Hemolytic anemia is a normocytic anemia characterized by low Hb levels due to the destruction of RBCs and increased hemoglobin catabolism. Depending on where the hemolysis occurs, it can be intravascular or extravascular [126]. Destruction can also occur...
in the case of inherited protein deficiencies (membranopathies, i.e., hereditary spherocytosis), fragmentation (i.e., microangiopathic hemolytic anemia, thrombotic thrombocytopenic purpura, and disseminated intravascular coagulation), antibodies that bind to RBC resulting in phagocytosis (immune-mediated), drug-induced hemolysis, infections, or direct trauma [127].

The results of the in vitro and in vivo studies regarding pharmacological effects exerted by the natural antioxidants in hemolytic anemia are summarized in Table 3.

Table 3. Pharmacological effects of natural antioxidants in hemolytic anemia treatment.

Bioactive Compound	Doses	In Vitro/In Vivo/ Clinical Study	Route of Administration	Model	Bioactive Effect	References
Brassica oleracea var italica aqueous extract	100 and 200 mg/kg	in vivo	for 14 days	PHZ-induced anaemia in Sprague-Dawley rats	↑ RBC, ↑ Hb	[128]
Hypoestes triflora aqueous extract	50 mg/kg	in vivo	orally for 30 days	phenylhydrazine hydrochloride-induced anaemia in guinea-pigs	↑ RBC count	[129]
Phyllanthus niruri Linn aqueous extract	250, 500, and 1000 mg/kg	in vivo	orally using a feeding cannula once daily for 14 consecutive days	2,4-dinitrophenylhydrazine-induced haemolytic anaemia in Wistar rats	↑ PCV, Hb, RBC concentration ↓ WBC, MCV, MHC and reticulocytes ↑ catalase and SOD activity	[130]
Gossypium hirsutum L. leaf ethanolic extract	100–400 mg/kg	in vivo	orally	PHZ-induced haemolytic anaemia in rats	↑ RBC, Hb, PCV, neutrophils and platelets ↓ WBC, lymphocytes, MCV, and MCH	[131]
Falcaria vulgaris leaf aqueous extract	25, 50, 100, and 200 mg/kg	in vivo	Orally	PHZ-induced haemolytic anaemia in rats	↑ the levels of body weight, WBC, neutrophils, platelet, RBC, Hb, PCV, MCV, MHC, MCHC ↓ the raised levels of ALP, ASAT, ALAT, GGT, urea, creatinine, ferrous, ferritin, and erythropoietin	[132]
Beta vulgaris (beet) leaf aqueous extract	100 and 200 mg/kg	in vivo	Orally daily for 12 days	PHZ-induced haemolytic anaemia model in albino rats	restored the levels of RBCs, WBCs, Hb, and HCT ↓ MCV, MCHC ↓ MDA	[133]
Pterocarpus erinaceus stem bark aqueous extract	250 and 500 mg/kg	in vivo	Oral administration for 14 days	PHZ-induced anaemia in albino rats	↑ PCV, Hb, RBC, MCV, neutrophiles ↓ WBC, lymphocytes, platelets, MCH, MCHC ↓ ASAT, ALAT	[134]
Lophira lanceolata leaves aqueous extract	200, 400, and 800 mg/kg	in vivo	oral for 3 weeks	PHZ-induced anaemia in wistar rats	↑ in the RBC count, Hb concentration and PCV	[135]
Mangifera indica bark aqueous decoction	25, 50, and 100 mg/kg	in vivo	once daily for 14 consecutive days by oral feeding cannula	2,4-dinitrophenylhydrazine-induced haemolytic anaemia in Wistar rats	↑ PCV and Hb ↓ TLC	[136]
Ficus sur bark/fruit methanolic extract	50, 100, and 150 mg/Kg	in vivo	oral administration for 14 days	PHZ-induced haemolytic anaemia in rats	↑ Hb, HTC, RBC count	[137]
Justicia carnea leaves ethanolic extract	500 and 1000 mg/kg	in vivo	orally gavage for 28 days	PHZ induced-anemia albino rats	↑ Hb, RBC, PCV ↓ cholesterol, triacylglycerol, and LDL cholesterol concentrations ↑ HDL-cholesterol	[138]
Plant/Extraction Details	PHZ and Malaria Parasites-Induced Anemia	Effect on Hematological Parameters				
--------------------------	--	-----------------------------------				
Harungana madagascariensis bark extract	PHZ and malaria parasites-induced anemia	↑ PCV, RBC and Hb [139]				
Sorghum bicolor extract 200 or 300 mg/kg in vivo gavage for 15 days	PHZ-induced anaemia in rats	↑ PCV, RBC and Hb [140]				
Telfaria occidentalis leaf ethanolic extract 200 mg/kg in vivo orally for 2 weeks	PHZ-induced anaemia in rats	↑ HCT, Hb, RBCs, lymphocytes, monocytes ↓ serum levels of total protein, albumin, globulin and bilirubin ↑ body weight [141]				
Spinacia oleracea leaf aqueous extract 100 mg/kg in vivo once daily for 28 days	PHZ-induced anaemia in rats	↑ Hb, PCV level, RBC count [142]				
Brilliantsia nitens methanolic extract 400, 800, 1600, 3200 mg/kg in vivo oral intubation daily for 4 weeks	PHZ-induced haemolytic anaemia in rats	↑ Hb, RBC, WBC and PVC [143]				
Acacia nilotica ethanolic leaf extract 100 mg/kg and 200 mg/kg in vivo orally for 14 days	PHZ-induced anaemia in rats	↑ PVC, Hb, RBC, MCV, MCH, PLT ↓ WBC, lymphocytes and neutrophils -exhibited high radical scavenging activity [144]				
Solanum nigrum leaf methanolic extract 100, 200, 300, and 400 mg/kg in vivo orally by gastric intubation for three weeks	PHZ-induced anaemia in rats	↑ RBCs, WBCs, Hb, HTC [145]				
Mangifera indica and Telfairia occidentalis extracts 20 mg kg in vivo oral daily dose	PHZ-induced anaemia in rabbits	↑ PCV values, RBC counts, Hb, HTC, bilirubin [146]				
Hibiscus sabdariffa anthocyanins 100 mg/kg in vivo gavage for 4 weeks	2, 4-dinitrophenylhydrazine (2, 4-DNPH) rabbits	↑ in blood GSH, RBC counts, PCV and Hb, in MDA and WBC counts [147]				
Justicia secunda leaves extracts 200 mg/kg in vivo for 21 days	PHZ-induced anaemia in Sprague-Dawley rats	↑ the number of RBCs, Hb [149]				

PHZ, phenylhydrazine; WBC, white blood cell; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; GGT, gamma-glutamyl transferase; TLC, total leucocytes count; 2, 4-DNPH, 2,4-dinitrophenylhydrazine.

5. Natural Antioxidants in the Treatment of Thalassemia

Thalassemias are a group of inherited diseases that lead to a defective hemoglobin production. Patients with thalassemia have a mutation that affects the production of the hemoglobin globin polypeptide chain and is associated with inefficient erythropoiesis. It is characterized by decreased HbA production secondary to low beta-globin chain production and stopping maturation due to apoptosis of erythroid precursors induced by excess alpha chain precipitates [150].

Iron overload is a common complication of thalassemia syndromes, which can lead to organ damage and increased mortality [151,152]. Iron-induced toxicity in β-thalassemia is the leading cause of oxidative stress. Oxidative stress, associated with the formation of reactive oxygen species (ROS), plays an important role in the development of inflamma-
tion, decreased plasma antioxidant levels, depletion of erythrocyte glutathione (GSH), increased lipid peroxidation of RBCs membranes and immunosuppression in the affected patients [153,154]. Moreover, iron overload in patients with β-thalassemia decreases T cell proliferative activity [155,156].

Flavonoids and phenolic compounds have antioxidant properties, ability to neutralize free radicals [157–160] and metal chelation, suggesting that they may have a protective effect under oxidative stress-based pathological conditions caused by iron overload [161]. Therefore, the use of polyphenols as iron chelators has been proposed in clinical practice [162].

Silymarin, isolated from *Silybum marianum*, is a powerful antioxidant and has hepatoprotective and iron chelating activities [163], being introduced as an adjuvant without side effects in numerous clinical trials [164]. Gharagozloo et al. (2013) recommended the use of silymarin as a possible herbal immunomodulatory drug in the treatment of patients with β-thalassemia due to its antioxidant, cytoprotective and iron chelating activity. The study included 59 β-thalassemia patients who received 140 mg of silymarin and desferoxamine (DFO) three times daily for 3 months. Combination therapy has been well tolerated and more effective in reducing serum ferritin levels than administering DFO alone, in increasing GSH level of RBCs and promoting a decrease in serum iron and ferritin [165]. In another clinical study, patients were treated with a combination of DFO and silymarin (420 mg / day) or DFO for 9 months; Silymarin treatment significantly reduced serum iron, ferritin, serum hepcidin, and soluble transferrin receptor (sTfR), demonstrating the beneficial potential of silymarin as an iron chelating agent in reducing the serum ferritin and iron level in β-thalassemia [166]. Similar results were obtained by Hagag et al. (2015) in a clinical study for silymarin in combination with deferiprone (DFP) [167], as well by the combination of deferasirox (DFX) and silymarin [168]. Serum iron levels decreased significantly [168]. Therefore, the effects of iron chelating silymarin are related to its Fe (III) binding capacity.

The results of the studies regarding the pharmacological activities exerted by natural in β-thalassemia treatment are summarized in Table 4.

Bioactive Compound	Doses	In Vitro/ In Vivo/ Clinical Study	Route of Administration	Model	Bioactive Effect	References
Resveratrol	5 μM	in vitro	CD34+ cells	↑ maturation of erythroid cells ↓ cell proliferation -induces cell differentiation of human β-thalassemic-erythroid cells	[169]	
	2.5 mg/kg	in vivo	resveratrol incorporated into a standard diet for six months	↑ ineffective erythropoiesis ↓ anemia	[169]	
Curcumin	500 mg daily for 12 months	clinical study	Beta-thalassemia/Hb E disease	↑ MDA, SOD, GSH-Px in RBC ↓ serum NTBI ↑ RBC GSH	[170]	
	100 μM curcumin	clinical study	Beta-thalassemia patients	↓ plasma NTBI	[171]	
Fermented papaya preparation (FPP)	50 mg/kg daily for 3 months	in vivo	Oral administration	β-thalassemia mouse model daily for 3 months	↑ GSH, PMN ↓ ROS ↓ lipid peroxidation ↓ externalization of phosphatidylserine	[172]
Green tea extract (GTE) 50 mg/kg EGCG in vivo for 2 months β-knockout thalassemic (BKO) mice ↓ MDA, NTBI, and ALAT ↑ plasma hepcidin and insulin ↓ iron accumulation and MDA in pancreas and liver -improved liver and pancreatic β-cell activity by decreasing redox iron/free radicals [173]

Curcumin 200 mg/kg and 50 mg/kg DFP in vivo for 2 months mouse models ↓ plasma NTBI ↓ MDA concentrations ↓ heart iron accumulation -improved HRV [174]

EGCG from green tea in vitro iron-treated erythrocytes ↓ bound Fe³⁺ and iron chelation ↓ oxidative stress [175]

Extracts of green tea (GTE) and curcumin 17.3-35.5 mg/kg EGCG equivalent clinical study daily for 60 days transfusion-dependent β-thalassemia (TDT) patients ↓ of blood urea nitrogen levels ↓ NTBI ↓ LPI -delayed in increasing lipid-peroxidation [176]

Beta-thalassemia major is a hereditary haemolytic anemia in the treatment of which multiple blood transfusions are used [177]. Patients with major thalassemia, also known as Cooley’s anemia, have severe and hypochromic microcytic anemia, associated with an increased number of RBCs and a low level of mean corpuscular volume (MCV) and mean corpuscular Hb (MCH). Peripheral blood smear highlights microcytosis and hypochromia, anisocytosis, poikilocytosis, and nucleated RBCs (e.g., erythroblasts). The number of erythroblasts correlates with the degree of anemia and is significantly increased after splenectomy [178].

Finding natural iron chelators of plant origin that also act as a hepcidin agonist may be useful in the management of excess iron in patients with β-thalassemia major [179].

The results of the studies regarding the pharmacological activities exerted by natural in β-thalassemia major are summarized in Table 5.

Table 5. Pharmacological effects of natural antioxidants in β-thalassemia major treatment.

Bioactive Compound	Doses	In Vitro/In Vivo/ Clinical Study	Route of Administration	Model	Bioactive Effect	References
Silymarin	140 mg/kg + DFO	clinical study	three times/ day	59 patients with thalassemia major	↑ GSH levels of RBCs ↑ alkaline phosphatase ↓ ferritin and iron levels ↓ serum iron and ferritin	[180]
Silymarin	Legalon capsules (140 mg)	clinical study	9 months	97 patients with β-thalassemia major	↓ TIBC levels ↓ serum levels of hepcidin and soluble transferrin receptor (sTIR)	[166]
Nigella sativa	2 g/day	clinical study	Nigella sativa powder added to foods or drinks for 3 consecutive months	25 blood transfusion-dependent childrens with β-thalassemia major	↑ Hb, WBCs ↑ neutrophils ↓ MDA ↓ TAC	[181]
Fermented papaya	3 g	clinical study	3 g three times a day after meals for three months	patients with β-thalasmas	↑ GSH in RBCs ↓ ROS in RBCs ↓ lipid peroxidation	[182]
Curcumin	500 mg capsules (total: 1000 mg)	clinical study	twice daily for 12 weeks	68 β-thalassemia major patients	↓ NTBI ↓ ALAT, ASAT -alleviated iron burden and liver dysfunction	[183]
Green tea extract (GTE) GTE+DFP (50 mg/kg) daily orally for 3 months \(\beta\)-thalassemic mice with iron overload ↓ plasma non-transferrin bound iron concentrations ↓ plasma ALAT activity ↓ tissue iron deposition ↓ plasma NTBI levels ↓ liver oxidative damage [184]

6. Natural Antioxidants in the Treatment of Sickle Cell Anemia

Sickle cell anemia is inherited as an autosomal recessive condition [185]. Sickle cell disease is one of the most notable impairments in the structure of hemoglobin. While the amount of hemoglobin produced may be normal, the substitution of the amino acid valine with glutamic acid results in a structural defect that favors the polymerization of deoxy- genated hemoglobin [186]. It is characterized by the presence of sickle-shaped cells that block blood flow through the spleen, causing splenic sequestration [185]. When deoxyhemoglobin polymerizes, it forms fibers that alter the shape of erythrocytes [186]. Repeated stress caused by sickle cell disease will damage circulating erythrocyte membranes, leading to premature cell death. While sickle cell anemia may remain asymptomatic for a significant period of time, severe hypoxia may cause a seizure, with symptoms of generalized pain, fatigue, headache, jaundice, and repeated vascular occlusion (stroke, etc.) [3].

Given the increasing mortality rate of patients with sickle cell disease, especially in children, and the side effects of chemotherapy, the addition of natural products (phyto- medicines/herbal drugs) in the treatment is beneficial [187]. Several herbal extracts have properties in sickle cell anemia treatment, but there is still no promising drug on the market for the treatment of this condition [188–191]. The active constituents of medicinal plants and natural compounds, known as antisickling agents, are rich in aromatic amino acids, phenolic compounds, and antioxidants [192] and acts as antioxidant therapy to ameliorate the complications of sickle cell anemia [193]. Antioxidants have many beneficial effects, protect against RBC lipid peroxidation, increased glutathione levels (GSH), and reduce ROS levels [194].

Rutin (quercetin-3-rhamnosyl glucoside) is a flavone intensive studied for its antioxidant properties [195–197]. Rutin has antiplatelet and protective effects of the vascular endothelium against oxidative stress in sickle cell anemia [198,199]. Moreover, it restored the integrity of the erythrocyte membrane, prevented and reversed lipid peroxidation, induced increased GSH and CAT levels, and decreased SOD activity. The beneficial effects of rutin in sickle cell anemia may be associated with modulation of deoxy-hemoglobin and alteration of redox homeostasis. Similar results were obtained for chrysin [199].

The main pharmacological effects of the phytochemicals/herbs in sickle cell anemia treatment are summarized in Table 6.

Table 6. Pharmacological effects of natural antioxidants in sickle cell anemia treatment.

Bioactive Compound	Doses	In Vitro/In Vivo/	Route of Administration	Model	Bioactive Effect	References
DTT, N-NAC quercetin	0.25 mM DTT 10 mM N-NAC 100 μM quercetin	in vitro	sickle cell anemia in vitro model	-inhibition of the main cation pathways responsible for dehydration ↓ Ca\(^{2+}\)-induced PS exposure and hemolysis ↓ RBC’s fragility	[194]	
Rutin	in silico in vitro	sickle erythrocytes induced with 2% metabisulphite	-restored the integrity of erythrocytes membrane -prevented and reversed lipid peroxidation ↑ GSH and CAT levels ↓ SOD activity	[199]		
Extract/Extract	Concentration	Method	Action	Notes		
-----------------	--------------	--------	--------	-------		
Chrysin	- in silico	sickling was induced with 2% metabisulphite at 3 h.	- prevented sickling	[200]		
	- in vitro		- re-established the integrity of erythrocytes membrane			
			- prevented and reversed lipid peroxidation			
			↑ GSH, CAT			
			↓ SOD			
Pfaffia paniculata extract	0.0, 0.2, or 0.5 mg/mL	in vitro	RBCs from patients with sickle cell disease	- improvement of RBC deformability in patients with SCD		
			- the fragility of RBCs of patients with sickle cell disease was not affected			
Aqueous extracts of Dennettia tripetala and Physalis angulata leaf extract	in vitro	homozygous sickle cell erythrocyte	↑ GSH, SOD			
			↓ catalase			
			↓ ROS			
			↓ % of sickled cells			
			↓ haemoglobin polymerization rate			
			↓ osmotic fragility of human sickle RBCs			
Ethanol extract of Terminalia catappa L. (Combretaceae) leaves	in vitro	metabisulphite-induced sickling	- inhibited osmotically-induced hemolysis of human erythrocytes			
			- prevented and reversed the sickling of human 'SS' erythrocytes			
Extracts of the roots of Cissus populnea L.	in vitro	sodium metabisulphite-induced sickling of the HbSS red blood cells	↓ hemolysis			
			- protected erythrocyte membrane integrity under osmotic stress conditions			
Methanolic leaf extracts of Carica papaya L. (Caricaceae)	in vitro	Hbss red blood cells obtained from non-crisis state sickle cell patients	↑ for Na+, K+- and Ca2+-ATPases			
			↓ for Mg2+-ATPase			
Leaves and stem of Parquetina nigrescens L.	in vitro	pre-sickled HbSS blood cell suspensions	- antig-sickling activity			
			- protected the integrity of the erythrocyte membrane by the reduction in hemolysis of the Hbss cells			
			- inhibited formation of sickle cells under severe hypoxia			
Aqueous extract of Carica papaya leaf	2, 4, 6, 8, and 10 mg/mL					
			- prevented sickling			
			- membrane stabilizing effect on HbSS red blood cells			
Divanilloylquinic acids isolated from Fagara zanthoxyloides Lam. (Rutaceae)	patients with severe sickle cell anemia	antisickling properties				
Aqueous extract of Zanthoxylum macrophylla	in vitro	sodium metabisulphite-induced sickling in cells	- antisickling activity			
			- stabilizing the RBC membranes			
Aqueous extracts of Zanthoxylum macrophylla roots	in vitro	membrane preparations from human erythrocytes of HbAA, HbAS and HbSS bloods	modulation of the activities of the three membrane-bound ATPases:			
			↑ for Na+, K+ and Ca2+ ATPases			
			↓ for Mg2+ ATPase			
Aqueous and methanolic extracts of leaves, seeds, and stem of Telfairia occidentalis	10 mg mL−1	sickled erythrocytes obtained from SCD patients	- aqueous leaves extract exhibited the highest antisickling activity			
			- methanolic and aqueous stem extracts showed membrane stabilizing effects			
Aqueous extracts of Elaeis guineensis Jacq flowers			- anti-sickling activity			
			↓ in Fe2+/Fe3+ ratio			
Extract Source	Concentration	Mode of Administration	Effect			
----------------	---------------	------------------------	--------			
Methanol extract of *Mucuna pruriens* leaves	100, 200, 400, 600, and 800 mg/mL	-	- altered the polymerization of sickle cell Hb - maintained erythrocyte membrane integrity			
Aqueous extracts of *Zanthoxylum heitzii*	250, 500, and 1000 μg/mL	in vitro	↓ % sickle cells - membrane stabilization ↓ haemolysis - scavenging activity of the DPPH and hydroxyl radical			
Telera occidentalis, Curcubit maxima, Curcumin sativum and Curcubit lonatus		in vitro	- inhibited sickle cell Hb polymerization - improved Fe²⁺/Fe³⁺ ratio			
Solanostemon monostachyus (SolMon), *Carica papaya* seed oil (Cari-oil) and *Ipomoea involucrata* (Ipocrata)		in vitro	↓ % sickle cells ↑ RBCs ↓ Fe²⁺/Fe³⁺ ratio ↓ LDH ↑ CAT activity			
Ethanol extract of *Annona Maricata, Delonix Regia* and *Senna Alata*		in vitro	↑ GHS and CAT activities ↓ SOD activity ↓ the sickling activity ↓ the polymerization of sickle cells			
Ursolic acid isolated from the leaves of *Ocimum gratissimum* L.		in vitro	- anti-sickling effects ↑ RBCs			
Extracts of the seed, flower and leaf of *Moringa oleifera*		in vitro	- anti-sickling effects			
Aqueous methanol extracts of *Scoparia dulcis* and fractions	100, 300 and 500 mg/m extract 500 mg/mL fractions	in vitro daily administration of the extract for 30 days	in vivo in Swiss albino mice and Wistar rats - anti-sickling effects			
Aqueous extract of unripe pawpaw (Carica papaya)			sickle cells of patients - prevented sickling of Hb SS red cells and reversed sickled Hb SS red cells			
Leaves ethanol extracts of *Hymenocardia acidulosa* Tul (Euphorbiaceae)			sickle erythrocytes - reversed sickled human RBC - the fractions containing flavonoids, saponins and carboxylic acids were found to be responsible for reversal of the sickled RBC.			
Leaf and gel extracts of the Aloe vera (Aloe barbadensis)			sickle erythrocytes - inhibited sickle cell polymerization - improved of the Fe²⁺/Fe³⁺ ratio of HbSS			
Aged garlic extract	5 mL daily clinical study for 4 weeks		five patients with sickle-cell anemia ↓ number of Heinz bodies - antioxidant activity on sickle RBCs			
Moringa Oleifera Seeds and leaves extracts		in vitro	erythrocyte cells deoxygenated with 2% sodium metabisulphite - anti-sickling activity in deoxygenated erythrocytes			
Amphimas pterocarpoides		in vitro	the sickling of RBCs was induced using sodium metabisulphate 2% - anti-sickling effects ↓ the solubility of the deoxy-haemoglobin S - allowed the rehydration of SS cells by reinforcing their capacity to resist against osmotic fragility			
Isoquercitrin		in vitro	sickle erythrocytes ↓ % sickle cells ↓ polymerization			
7. Natural Antioxidants in the Treatment of Aplastic Anemia

Aplastic anemia is a condition in which the bone marrow is destroyed and blood cell production is diminished [231]. This usually correlates with a deficiency of erythrocytes (anemia), leukocytes (leukopenia), and platelets (thrombocytopenia) [232,233]. Aplastic anemia refers to the syndrome of chronic primary hematopoietic insufficiency due to lesions, leading to diminution or absence of hematopoietic precursors in the bone marrow [234,235].

Aplastic anemia can be caused either by extrinsic suppression mediated by hematopoietic stem cell immunity or by intrinsic bone marrow progenitor abnormality [236,237]. Damaged hematopoietic stem cells mature into self-reactive T-helper (T1) cells that release cytokines: interferon (IFN) and tumor necrosis factor (TNF) to develop a cytotoxic cascade to kill and suppress other hematopoietic stem cells. The exact antigens of T1 target cells are unclear, but one appears to be one of the glucose inositol phosphate-bound (GPI) proteins on cell membranes. Moreover, genes involved in apoptosis are overexpressed [238].

Strategies recently applied in the treatment of aplastic anemia include immunosuppression and/or hematopoietic stem cell transplantation [239,240]. Numerous lymphocytotoxic agents have been widely used, but some of them have various adverse effects, such as anaphylaxis fever, chest pain, and diarrhea [241].

In recent years, natural herbal products have attracted much attention, being used as an effective and safe alternative treatment for bone marrow failure [242].

For example, saponins extracted from Panax notoginseng (PNS) induced the proliferation of hematopoietic stem/progenitor cells and stromal cells in vitro [243–247], probably by overexpressing genes involved in hematopoiesis, such as GR-NTF [243]. PNS activated the MAPK pathway and GATA transcription factors in hematopoietic cells [245]. Moreover, it has been shown to differentiate the mesenchymal stem cells and NIH3T3 cells [244,246].

The main pharmacological effects of the phytochemicals/herbs in anaplastic anemia treatment are summarized in Table 7.

Table 7. Pharmacological effects of natural antioxidants in aplastic anemia treatment.

Bioactive Compound	Doses	In Vitro/Route of Administration	Model	Bioactive Effect	References	
Hyphaene Thebaica (Doum) fruit extract	1000, 500, and 250 μg/mL in vitro	incubation of RBCs with 2% sodium metabisulphite	↑ the oxygen affinity	↑ osmotic fragility of the sickle RBCs	[228]	
Genistein	in vitro	sickle erythrocytes	↓ polymerization of Hb S	↓ % sickle cells	↑ the osmotic fragility of the erythrocyte cell	[229]
Methanol seed extract of Buchholzia coriacea and Mucuna pruriens seed extract	50%, 25%, 12.5%, and 6.25% seed extracts in vitro	sickle cell blood from sickle cell disease patients with subsequent addition of 2% sodium metabisulphite to cause more sickling	Buchholzia coriacea:	-inhibited sickling	-reversed sickled RBC	[230]
			Mucuna pruriens:	↑ the solubility of sickle Hb	↑ Fe²⁺/Fe³⁺ ratio	
					↓ osmotic fragility	

DTT, dithiothreitol; NAC, N-acetylcysteine; 2,3-BPG, 2,3-bisphosphoglycerate; SCD, sickle cell disease; MCF, mean corpuscular fragility; DPPH-2, 2-diphenyl-l-picryl hydrazyl; SolMon, Solenostemon monostachyus; Cari-oil, Carica papaya seed oil; Ipocrata, Ipomoea involucrata; EFCM, Mbalmayo/Ebolowa cocoa bean extract; EFCB, Bertoua cocoa bean extract; FRAP, ferric-reducing antioxidant power.
In Vivo/ Clinical Study	Leaf Panax notoginseng saponins (LPNS)	50, 100, and 200 mg/kg	intragastric administration daily for 14 days	Aplastic anemia model in BALB/c mice	↑ WBC, platelets, RBC, Hb	↑ hematopoiesis - improve myelosuppression ↓ inflammation	[247]
Curcumin and baicalein	-curcumin (1 and 4 g/kg) -baicalein (0.6 and 2 g/kg) dissolved in corn oil	intragastric administration once a day for 5 weeks	Aplastic anemia mouse model with iron overload	↑ WBC ↑ Hb levels ↑ hepcidin and its regulators (BMP-6, SMAD4, and Tfr2)	[248]		
Ginsenoside Rb1	1, 2, and 4 mg/mL	intraperitoneally injection daily for 12 days	An immune-mediated aplastic anemia mouse model	↑ WBC, HGB, PLT, and bone marrow stem cells ↓ T-cell activation by suppressing DC maturation	[249]		
Panax-adiol saponins component	20, 40, and 80 mg/kg	intragastric daily for 15 days	Aplastic anemia model mice BALB/c mice	↑ WBC, platelet, neutrophil counts - enhanced proliferation of hematopoietic progenitor cells ↑ peripheral blood CD3⁺ and CD3⁺CD4⁺ cells and ↓ CD3⁺CD8⁺ cells ↑ CD4⁺CD25⁺FoxP3⁺ cells, alleviated pancytopenia with a hypocellular bone marrow ↑ the percentage of CD4⁺ cells in BMNC ↑ the CD4⁺/CD8⁺ ratio ↓ the pro-inflammatory cytokine concentrations of IL-2 and IFN-γ ↑ the anti-inflammatory cytokine IL-4 - inhibited Fas–FasL-induced BMNC apoptosis - suppressed intracellular apoptosis	[250]		
Saponins from Dioscorea nipponica	37.44, 74.88, and 149.76 mg/kg	orally for 14 days	Aplastic anemia model mice				

LPNS, leaf Panax notoginseng saponins; BMP-6, bone morphogenic protein 6; HGB, hematocrit and hemoglobin; HPC, hematopoietic progenitor cells; CFU-GM, colony-forming unit for granulocytes and macrophages; CFU-E, colony forming unit-erythroid; BMNC, bone marrow nucleated cells; IFN-γ, interferon-γ; GATA-3, erythroid transcription factor-3.

Author Contributions: Conceptualization C.C., A.C., A.S., A.H.; methodology C.C., A.C., A.S., A.H.; validation C.C., A.C., A.S., A.H.; investigation, C.C., A.C., A.S., A.H.; writing — original draft.
preparation, C.C., A.C., A.S., A.H.; writing—review and editing, C.C., A.C., A.S., A.H.; funding acquisition, C.C.> All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kumar, S.; Anukiruthika, T.; Dutta, S.; Kashyap, A.V.; Moses, J.A.; Anandharamakrishnan, C. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. *Trends Food Sci. Technol.* 2020, 99, 58–75, doi:10.1016/j.tifs.2020.02.021.

2. World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. 2011. Available online: https://www.who.int/vmnis/indicators/haemoglobin.pdf (accessed on 27 December 2020).

3. Rhodes, C.E.; Varacallo, M. Physiology, oxygen transport. In *StatPearls*; StatPearls Publishing: Treasure Island, FL, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538336/ (accessed on 27 December 2020).

4. Balarajayan, Y.; Ramakrishnan, U.; Özaltin, E.; Shankar, A.H.; Subramanian, S.V. Anaemia in low-income and middle-income countries. *Lancet* 2011, 378, 2123–2135, doi:10.1016/S0140-6736(10)62304-5.

5. McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; de Boenist, B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. *Publ. Health Nutr.* 2009, 12, 444–454, doi:10.1017/S1368980008002401.

6. Figueiredo, A.C.M.G.; Gomes-Filho, I.S.; Silva, R.B.; Pereira, P.P.S.; Mata, F.A.F.D.; Lyrio, A.O.; Souza, E.S.; Cruz, S.S.; Pereira, M.G. Maternal anemia and low birth weight: A systematic review and meta-analysis. *Nutrients* 2018, 10, 601, doi:10.3390/nu10050601.

7. Haider, B.A.; Olofin, I.; Wang, M.; Spiegelman, D.; Ezzati, M.; Fawzi, W.W. Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: Systematic review and meta-analysis. *BMJ* 2013, 346, f3443, doi:10.1136/bmj.f3443.

8. Rahman, M.M.; Abe, S.K.; Rahman, M.S.; Kanda, M.; Narita, S.; Bilano, V.; Ota, E.; Gilmour, S.; Shibuya, K. Maternal anemia and risk of adverse birth and health outcomes in low- and middle-income countries: Systematic review and meta-analysis. *Am. J. Clin. Nutr.* 2016, 103, 495–504, doi:10.1093/ajcn/ajw1079.

9. McCann, J.C.; Ames, B.N. An overview of evidence for a causation relation between iron deficiency during development and deficits in cognitive or behavioral function. *Am. J. Clin. Nutr.* 2007, 85, 931–945, doi:10.1093/ajcn/85.4.931.

10. Hillman, R.S.; Adult, K.A.; Leporrier, M.; Rinder, H.M. Clinical approach to anemia. In *Hematology in Clinical Practice*; Hillman, R.S., Ault, K.A., Eds.; McGraw-Hill: New York, NY, USA, 2001; p. 29.

11. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. *Lancet* 2016, 388, 1545–1602, doi:10.1016/S0140-6736(16)31678-6.

12. Moreno Chulilla, J.A.; Romero Colás, M.S.; Gutiérrez Martín, M. Classification of anemia for gastroenterologists. *World J. Gastroenterol.* 2009, 15, 4627–4637, doi:10.3748/wjg.15.4627.

13. Rozman, C.; Felu, E.; Grañena, A.; Monserrat, E.; Vives Corrons, J.L. Hematologia. In *Atlas Practico Para El Medico General*; Salvat: Barcelona, Spain, 1981; pp. 25–53.

14. Zucker, S.; Friedman, S.; Lysik, R.M. Bone marrow erythropoiesis in the anemia of infection, inflammation, and malignancy. *J. Clin. Invest.* 1974, 53, 1132–1138, doi:10.1172/JCI107651.

15. Chaudhry, H.S.; Kasarla, M.R. Microcytic hypochromic anemia. In *StatPearls*; StatPearls Publishing: Treasure Island, FL, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470252/ (accessed on 22 December 2020).

16. Fenta, D.A.; Nuru, M.M.; Yemane, T.; Asres, A.; Spahn, D.R.; Muñoz, M. Management of perioperative iron deficiency anemia. *Acta Haematol.* 2019, 142, 44–50, doi:10.1159/000496492.

17. Rodríguez, G.M.; Gilruth, J.A. The role of intravenous iron in the treatment of anemia associated with cancer and chemotherapy. *Acta Haematol.* 2019, 142, 13–20, doi:10.1159/000496967.
Chuncharueen, S.; Teawtrakul, N.; Siritanaratkul, N.; Chueamuangphan, N. Review of disease-related complications and management in adult patients with thalassemia: A multi-center study in Thailand. *PLoS ONE* **2019**, *14*, e0214148, doi:10.1371/journal.pone.0214148.

DeLoughery, T.G. Safety of oral and intravenous iron. *Acta Haematol.* **2019**, *142*, 8–12, doi:10.1159/000496966.

Ems, T.; St Lucia, K.; Huecker, M.R. Biochemistry, iron absorption. In *StatPearls*; StatPearls Publishing: Treasure Island, FL, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK448204/ (accessed on 17 December 2020).

Camaschella, C. Iron-deficiency anemia. *N. Engl. J. Med.* **2015**, *372*, 1832–1843, doi:10.1056/NEJMra1401038.

Coyne, D.W.; Auerbach, M. Anemia management in chronic kidney disease: Intravenous iron steps forward. *J. Nutr.* **2020**, *150*, 621–628, doi:10.1093/jn/150.3.621.

Connor, J.; Beard, J.L. Dietary iron supplements in the elderly: To use or not to use? *Nutr. Today* **1997**, *32*, 102–109, doi:10.1097/00001278-199705000-00002.

Beard, J.L.; Dawson, H.; Pinero, D. Iron metabolism: A comprehensive review. *Nutr. Rev.* **2020**, *78*, 1221–1235, doi:10.1111/nure.12323.

Knutson, M.D.; Walter, P.B.; Ames, B.N.; Viteri, F.E. Both iron deficiency and daily iron supplements increase lipid peroxidation in rats. *J. Nutr.* **2000**, *130*, 621–628, doi:10.1093/jn/130.3.621.

Zhang, Y.; Cheng, Y.; Wang, N.; Zhang, Q.; Wang, K. The action of JAK, SMAD and ERK signal pathways on hepcidin suppression by polysaccharides from *Angelica sinensis* in rats with iron deficiency anemia. *Food Funct.* **2014**, *5*, 1381–1388, doi:10.1039/c4fo00006d.
Kim, E.Y.; Ham, S.; Bradke, D.; Ma, Q.; Han, O. Ascorbic acid offsets the inhibitory effect of bioactive dietary polyphenolic compounds on transepithelial iron transport in Caco-2 intestinal cells. J. Nutr. 2011, 141, 828–834, doi:10.3945/jn.110.134031.

Lesjak, M.; Balesaria, S.; Skinner, V.; Debnam, E.S.; Srai, S.K. Quercetin inhibits intestinal non-haem iron absorption by regulating iron metabolism genes in the tissues. Eur. J. Nutr. 2013, 52, 797–7981, doi:10.1007/s00394-011-1211-4.

Ma, Q.; Kim, E.Y.; Han, O. Bioactive dietary polyphenols decrease heme iron absorption by decreasing basolateral iron release in human intestinal Caco-2 cells. J. Nutr. 2010, 140, 1117–1121, doi:10.3945/jn.109.117499.

Guo, Q.; Zhao, B.; Li, M.; Shen, S.; Xin, W. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim. Biophys. Acta 1996, 1304, 210–220, doi:10.1016/0005-2760(96)00212-2.

Apak, R.; Güclu, K.; Ozyurek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981, doi:10.1021/jf048741x.

Kim, E.Y.; Ham, S.K.; Shigenaga, M.K.; Han, O. Bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers. J. Nutr. 2008, 138, 1647–1651, doi:10.3945/jn.118.139.1647.

Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgeib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielinska, D.; et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 01021, doi:10.3389/fphar.2020.01021.

Jiao, Y.; Wilkinson, J.; Di, X.; Wang, W.; Hatcher, H.; Kock, N.D.; Torti, S.V. Iron chelation in the biological activity of curcumin. Free Radic. Biol. Med. 2006, 40, 1152–1160, doi:10.1016/j.freeradbiomed.2005.11.003.

Jiao, Y.; Wilkinson, J.; Di, X.; Wang, W.; Hatcher, H.; Kock, N.D.; Torti, S.V. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood 2009, 113, 462–469, doi:10.1182/blood-2008-05-155952.

Day, A.J.; Canha, F.J.; Diaz, J.C.; Kroon, P.A.; Mclauchlan, R.; Faulds, C.B.; Plumb, G.W.; Morgan, M.R.; Williamson, G. Dietary flavonoid and isolavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 2000, 468, 166–170, doi:10.1016/S0014-5793(00)01211-4.

Kroon, P.A.; Cliffton, M.N.; Crozier, A.; Day, A.J.; Donovan, J.L.; Manach, C.; Williamson, G. How should we assess the effects of exposure to dietary polyphenols in vitro? Am. J. Clin. Nutr. 2004, 80, 15–21, doi:10.1093/ajcn/80.1.15.

Scalbert, A.; Morand, C.; Manach, C.; Rémyès, C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother. 2002, 56, 276–282, doi:10.1016/S0753-3322(02)00205-6.

Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat. Inflamm. 2007, 2007, 45673, doi:10.1155/2007/45673.

Bayele, H.K.; Balesaria, S.; Srai, S.K.S. Phytoestrogens modulate hepatic hepcidin expression by Nrf2: Implications for dietary control of iron absorption. Free Radic. Biol. Med. 2016, 89, 1192–1202, doi:10.1016/j.freeradbiomed.2015.11.001.

Granado-Serrano, A.B.; Martin, A.S.; Bravo, L.; Goya, L.; Ramos, S. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Chem. Biol. Interact. 2012, 195, 154–164, doi:10.1016/j.cbi.2011.12.005.

Lesjak, M.; Srai, S.K.S. Role of Dietary Flavonoids in Iron Homeostasis. Pharmaceuticals 2019, 12, 119, doi:10.3390/ph12030119.

Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306, doi:10.1016/j.foodchem.2010.08.012.

Comporti, M.; Signorini, C.; Buonocore, G.; Ciccoli, L. Iron release, oxidative stress and erythrocyte age. Free Radic. Biol. Med. 2002, 32, 568–576, doi:10.1016/S0891-5849(02)00759-1.

Ferrari, M.; Signorini, C.; Caciotti, B.; Sugherini, L.; Ciccoli, L.; Giachetti, D.; Comporti, M. Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Lett. 1997, 416, 123–129, doi:10.1016/S0014-5793(97)01184-2.

Vlachodimitropoulou, E.; Sharp, P.A.; Naftalin, R.J. Quercetin-iron chelates are transported via glucose transporters. Free Radic. Biol. Med. 2011, 50, 934–944, doi:10.1016/j.freeradbiomed.2011.01.005.

Perron, N.R.; Broumagh, J.L. A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochem. Biophys. 2009, 53, 75–100, doi:10.1007/s12013-009-9043-x.

Mira, L.; Fernández, M.T.; Santos, M.; Rocha, R.; Floresio, M.H.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 2002, 36, 1199–1208, doi:10.1080/1071576021000016463.

Mu, M.; An, P.; Wu, Q.; Shen, X.; Shao, D.; Wang, H.; Wang, F. The dietary flavonoid myricetin regulates iron homeostasis by suppressing hepcidin expression. J. Nutr. Biochem. 2016, 30, 53–61, doi:10.1016/j.jnutbio.2015.10.015.

Gharagozloo, M.; Khoshdel, Z.; Amirghofran, Z. The effect of an iron (III) chelator, silybin, on the proliferation and cell cycle of Jurkat cells: A comparison with desferrioxamine. Eur. J. Pharmacol. 2008, 589, 1–7, doi:10.1016/j.ejphar.2008.03.059.

Borsari, M.; Gabbri, C.; Ghelfi, F.; Grandi, R.; Saladini, M.; Severi, S.; Borella, F. Silybin, a new iron-chelating agent. J. Inorg. Biochem. 2001, 85, 123–129, doi:10.1016/s0162-0134(01)00198-2.
106. Hutchinson, C.; Bomford, A., Geissler, C.A. The iron-chelating potential of silybin in patients with hereditary haemochromatosis. *Eur. J. Clin. Nutr.* 2010, 64, 1239–1241, doi:10.1038/ejcn.2010.136.

107. Bares, J.M.; Berger, J.; Nelson, J.E.; Messner, D.J.; Schildt, S.; Standish, L.J.; Kowdley, K.V. Silybin treatment is associated with reduction in serum ferritin in patients with chronic hepatitis *C*. *J. Clin. Gastroenterol.* 2008, 42, 937–944, doi:10.1097/MCG.0b013e31815cf36.

108. Ma, Q.; Kim, E.Y.; Lindsay, E.A.; Han, O. Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner in human intestinal Caco-2 Cells. *J. Food Sci.* 2011, 76, H143–H150, doi:10.1111/j.1750-3841.2011.02184.x.

109. Tang, Y.; Li, Y.; Yu, H.; Gao, C.; Liu, L.; Chen, S.; Yao, P. Quercetin prevents ethanol-induced iron overload by regulating hepcidin through the BMP6/SMAD4 signaling pathway. *J. Nutr. Biochem.* 2014, 25, 675–682, doi:10.1016/j.jnutbio.2014.02.009.

110. Mu, M.; Wu, A.; An, P.; Du, X.; Wu, Q.; Shen, X.; Wang, F. Black soybean seed coat extract regulates iron metabolism by inhibiting the expression of hepcidin. *Br. J. Nutr.* 2014, 111, 1181–1189, doi:10.1017/S0007114513004005.

111. Ferlazzo, N.; Visalli, G.; Cirmi, S.; Lombardo, G.E.; Lagana, P.; Di Pietro, A.; Navarra, M. Natural iron chelators: Protective role in A549 cells of flavonoids-rich extracts of Citrus juices in Fe³⁺-induced oxidative stress. *Environ. Toxicol. Pharmacol.* 2016, 43, 248–256, doi:10.1016/j.etap.2016.03.005.

112. Perez, C.A.; Wei, Y.; Guo, M. Iron-binding and anti-Fenton properties of baicalin and baicain. *J. Inorg. Biochem.* 2009, 103, 332–334, doi:10.1016/j.jinorgbio.2008.11.003.

113. Zhen, A.W.; Nguyen, N.H.; Gibert, Y.; Motola, S.; Buckett, P.; Wessling-Resnick, M.; Fraenkel, P.G. The small molecule, genistein, increases hepcidin expression in human hepatocytes. *Hepatology* 2013, 58, 1315–1325, doi:10.1002/hep.26490.

114. Khalili, M.; Ebrahimzadeh, M.A.; Kosaryan, M. In vivo iron-chelating activity and phenolic proflies of the angel’s wings mushroom, *Mangifera foetida*. *Pharm. Biol.* 2015, 53, 281–291.

115. Sarkar, R.; Hazra, B.; Mandal, N. Role of phenolics from *Spindias pinnata* bark in amelioration of iron overload induced hepatic damage in Swiss albino mice. *Br. J. Nutr.* 2016, 115, 137–142, doi:10.1017/S0007114515000717.

116. Cheng, Y.; Zhou, J.; Li, Q.; Liu, Y.; Wang, K.; Zhang, Y. The effects of polysaccharides from the root of *Angelica sinensis* on tumor growth and iron metabolism in H22-bearing mice. *Food Funct.* 2016, 7, 1033–1039, doi:10.1039/c6fo00855g.

117. Chaudhuri, D.; Mirzaei, A.; Delaviz, H.; Mirzaei, M.; Toloei, M. The effects of *Medicago sativa* and *Allium porrum* on iron overload in rats. *Glob. J. Health Sci.* 2015, 7, 137–142, doi:10.5539/gjhs.v7n7p137.

118. Zhen, A.W.; Nguyen, N.H.; Gibert, Y.; Motola, S.; Buckett, P.; Wessling-Resnick, M.; Fraenkel, P.G. The small molecule, genistein, increases hepcidin expression in human hepatocytes. *Hepatology* 2013, 58, 1315–1325, doi:10.1002/hep.26490.

119. Khalili, M.; Ebrahimzadeh, M.A.; Kosaryan, M. In vivo iron-chelating activity and phenolic profiles of the angel’s wings mushroom, *Mangifera foetida* (Higher Basidiomycetes). *Int. J. Med. Mushrooms* 2015, 17, 847–856, doi:10.1615/IntMedMushrooms.v17i19.50.

120. Ghate, N.B.; Chaudhuri, D.; Panja, S.; Mandal, N. *Nerium indicum* leaf alleviates iron-induced oxidative stress and hepatic injury in mice. *Pharm. Biol.* 2015, 53, 1066–1074, doi:10.3109/13880209.2014.959612.

121. Sarkar, R.; Hazra, B.; Mandal, N. Amelioration of iron overload-induced liver toxicity by a potent antioxidant and iron chelator, *Emblica officinalis* Gaertn. *Toxicol. Ind. Health* 2015, 31, 656–669, doi:10.1177/0748233713483195.

122. Das, A.; Chaudhuri, D.; Ghate, N.B.; Panja, S.; Mandal, N. Protective effect of *Clerodendrum colebrookiaum* leaves against iron-induced oxidative stress and hepatotoxicity in Swiss albino mice. *Indian J. Exp. Biol.* 2015, 53, 281–291.

123. Sarkar, R.; Hazra, B.; Mandal, N. Reducing power and iron chelating property of *Terminalia chebula* (Retz.) alleviates iron induced liver toxicity in mice. *BMC Complement. Altern. Med.* 2012, 12, 144, doi:10.1186/1472-6882-12-144.

124. Zhang, Y.; Li, H.; Zhao, Y.; Gao, Z. Dietary supplementation of baikalin and quercetin attenuates iron overload induced mouse liver injury. *Eur. J. Pharmacol.* 2006, 553, 263–269, doi:10.1016/j.ejphar.2006.01.067.

125. Estungtyas, A.; Wahyuni, T.; Wahidiyat, P.A.; Poerwaningsih, E.H.; Freisleben, H. Mangiferin and mangiferin-containing leaf extract from *Mangifera foetida* L. for therapeutic attenuation of experimentally induced iron overload in a rat model. *J. Herbed Pharm.* 2019, 8, 21–27, doi:10.15171/jhp.2019.04.

126. Baldwin, C.; Olarewaju, O. Hemolytic anemia. In *StatPears*, StatPears Publishing: Treasure Island, FL, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK558904/ (accessed on 27 December 2020).

127. Phillips, J.; Henderson, A.C. Hemolytic anemia: Evaluation and differential diagnosis. *Am. Fam. Phys.* 2018, 98, 354–361.

128. Avula, V.V.; Bora, D.; Uperti, S.; Jonathan, S.K.; Rijal, S. Effect of aqueous extract of *Brassica oleracea* var italic (Broccoli) inflorescence in phenylhydrazine induced anemic rats. *Bull. Pharm. Res.* 2015, 4, 81–83.

129. Bavihre, B.; Borive, M.; Kadima, J. Haematic and hepatoprotective potentials of *Hypoestes triflora* aqueous leaf extract in guinea-pigs. *Int. J. Pharm. Sci.* 2014, 5, 3726–3732, doi:10.13040/IJPSR.0975-8232.09.3726-32.

130. Muhammad, A.A.; Ibrahim, R.B.; Aminu, C.; Abbas, A.Y.; Kabiru, A.; Bisallah, C.I. Activity of aqueous extract of *Phyllanthus niruri* Linn in 2,4-dinitrophenylhydrazine induced anemic rats. *J. Pharm. Pharmacol.* 2020, 4, 79–95, doi:10.26502/jpppr.034.

131. Midala, B.P.; Teru, P.A.; Umaru, H.A. Effect of *Gossypium hirsutum* L. ethanol leaf extract on phenylhydrazine-induced anemic rats. *J. Nat. Sci. Res.*, 2017, 7, 16–20.

132. Goorani, S.; Koohi, M.; Zangeneh, A.; Zangeneh, M.; Moradi, R. Pharmacological evaluation of anti-anemic property of aqueous extracts of *Falcarius vulgaris* leaf in rats. *Comp. Clin. Path.* 2018, 1–7, doi:10.1007/s00580-018-2839-6.

133. Gheith, I.; El-Mahmoudy, A. Laboratory evidence for the hematopoietic potential of *Beta vulgaris* leaf and stalk extract in a phenylhydrazine model of anemia. *Braz. J. Med. Biol. Res.* 2018, 51, e7722, doi:10.1590/1414-431X20187722.
134. Nader, M.S.; Modibbo, A.A. Effects of Pterocarpus erinaceus stem bark aqueous extract on anemic rats. *Sci. Res. J.* 2014, 2, 1–5; ISSN 2201-2796.
135. Osafanle, I.A.; Duniya, S.V.; Chukwuemeka, N.A.P.; Mercy, O.; Adejoh, I.P. Haematinic effects of aqueous extract of Lophira lanceolata leaves in phenylhydrazine-induced anemia in wistar rats. *Asian J. Res. Biochem.* 2019, 4, 1–6, doi:10.9734/ajrb/2019/v4i130057.
136. Sani, H.L.; Malami, I.; Hassan, S.W.; Alhassan, A.M.; Hilliu, M.E.; Muhammad, A. Effects of standardized stem bark extract of Mangifera indica L. in wistar rats with 2,4-dinitrophenylhydrazine-induced haemolytic anemia. *Pharmacogn. J.* 2015, 7, 89–96, doi:10.5530/pj.2015.2.2.
137. Adedayo, M.A.; Enitan, S.S.; Ovonikoko, W.M.; Igogo, E.; Ajiegbie, K.O. Haematinic properties of methanolic stem bark and fruit extracts of *Ficus sur* in rats pre-exposed to phenylhydrazine-induced haemolytic anemia. *Afr. J. Biomed. Res.* 2017, 20, 85–92, doi:10.4314/AJBR.V20I1.
138. Onyeyabo, C.; Achi, N.K.; Ekeleme-Egedigwe, C.A.; Ebere, C.U.; Okoro, C.K. Haematological and biochemical studies on *Justicia carnea* leaves extract in phenylhydrazine induced-anemia in albino rats. *Acta Sci. Pol. Technol. Aliment.* 2016, 17, 217–230, doi:10.17306/J.AFS.0492.
139. Iwalewa, E.O.; Omosire, N.; Danijian, O.; Adewunmi, C.; Taiwo, B.J.; Fatokun, O.A.; Oluborode, I.O. Elemental compositions and anti-anemic property of *Harungana madagascariensis* stem bark. *Bangladesh J. Pharmacol.* 2004, 9, 115–121, doi:10.3329/BJP.V4I2.1641.
140. Senou, M.; Tchogou, A.P.; Dougnon, T.V.; Agossadou, A.; Assogba, F.; Kinsiclounon, E.G.; Koudokpon, H.; Fah, L.; Fanou, B.; Akpovi, D.C.; et al. Efficiency of *Sorghum bicolor* extract in the treatment of induced anemia on Wistar rats. *Int. J. Biosci.* 2016, 8, 62–71, doi:10.12692/jib/8.4.62-71.
141. Oladele, J.O.; Oyeleke, O.M.; Awosanya, O.; Olowookere, B.D.; Oladele, O.T. Fluted Pumpkin (*Telfaria occidentalis*) protects against phenyl-hydrazone-induced anemia and associated toxicities in rats. *Adv. Tradit. Med.* 2020, 20, 1–7, doi:10.1007/s13596-020-00499-7.
142. Luka, C.D.; Abdulkarim, M.; Adoga, G.I.; Tijani, H.; Olatunde, A. Anti-anaemic potential of aqueous extract of *Spinacia oleracea* leaf in phenylhydrazine-treated rats. *N. Y. Sci. J.* 2014, 7, 14–18; ISSN: 1554-0200.
143. Akah, P.A.; Okolo, C.E.; Ezike, A.C. The haematinic activity of the methanol leaf extract of *Brillantasia nitens* Lindau (Acanthaceae) in rats. *Afr. J. Biotechnol.* 2009, 8, 2389–2393; ISSN: 1684-5315.
144. Sarkiyyai, S.; Abubakar, M.A. Effect of ethanol leaf extract of *Acacia nilotica* on phenyl hydrazine induced anemia in rats. *IOSR J. Pharm. Biol. Sci.* 2018, 13, 01–10, doi:10.9790/3008-130302110.
145. Aduwamai, U.H.; Abimbola, M.M.; Ahmed, Z.H. Effect of *Solana nigrum* methanol leaf extract on phenylhydrazine induced anemia in rats. *Jordan J. Biol. Sci.* 2018, 11, 65–71; ISSN 1995-6673.
146. Pandey, S.; Ganeshpurkar, A.; Bansal, D.; Dubey, N. Hematopoietic effect of *Amaranthus cruentus* extract on phenylhydrazine-induced toxicity in rats. *J. Diet. Suppl.* 2016, 13, 607–615, doi:10.3109/19390211.2016.1155685.
147. Ogbe, R.J.; Adoga, G.I.; Abi, A.H. Antianemic potentials of some plant extracts on phenyl hydrazine-induced anemia in rabbits. *J. Med. Plants Res.* 2010, 4, 680–684, doi:10.5897/JMPR09.487.
148. Ologundudu, A.; Ologundudu, A.; Ololade, I.A.; Obi, F.O. Effect of *Hibiscus sabdariffa* anthocyanins on 2,4-dinitrophenylhydrazine-induced hematotoxicity in rabbits. *Afr. J. Biochem. Res.* 2009, 3, 140–144; ISSN 1996-0778.
149. Yamoah, A.; Adosraku, R.; Amenu, J.; Baah, M.K.; Abaye, D.A. Evaluation of the haematinic activities of extracts of *Justicia secunda* Vahl leaves in red blood cells of laboratory rats. *J. Biosci. Med.* 2008, 08, 48–57, doi:10.4236/jbm.2008.83006.
150. Khan, I.; Shaikh, H. Cooley anemia. In *StatPearls*; StatPearls Publishing: Treasure Island, FL, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557522/ (accessed on 27 December 2020).
151. Mariani, R.; Trombini, P.; Pozzi, M.; Piperno, A. Iron metabolism in thalassemia and sickle cell disease. *Mediterr. J. Hematol. Infect. Dis.* 2009, 1, e2009006, doi:10.4084/MJHID.2009.006.
152. Fung, E.B.; Harmatz, P.; Milet, M.; Balle, S.K.; De Castro, L.; Hagar, W.; Owen, W.; Olivieri, N.; Smith-Whitley, K.; Darbadi, D.; et al. Multi-Center Study of Iron Overload Research Group. Morbidity and mortality in chronically transfused subjects with thalassemia and sickle cell disease: A report from the multi-center study of iron overload. *Am. J. Hematol.* 2007, 82, 255–265, doi:10.1002/ajh.20809.
153. Svobodová, A.; Walterová, D.; Psotová, J. Influence of silymarin and its flavonolignans on H2O2-induced oxidative stress in human keratinocytes and mouse fibroblasts. *Burns* 2006, 32, 973–979, doi:10.1016/j.burns.2006.04.004.
154. Alidoost, F.; Ghargozloo, M.; Bagherpou, B.; Jafarian, A.; Sajadi, S.E.; Hourfar, H.; Moayedi, B. Effects of silymarin on the proliferation and glutathione levels of peripheral blood mononuclear cells from beta-thalassemia major patients. *Int. Immunopharmacol.* 2006, 6, 1305–1310, doi:10.1016/j.intimp.2006.04.004.
155. Cunningham-Rundles, S.; Giardina, P.J.; Grady, R.W.; Califano, C.; McKenzie, P.; De Sousa, M. Effect of transfusional iron overload on immune response. *J. Infect. Dis.* 2000, 182, S115-S121, doi:10.1086/315919.
156. Ezer, Ü.; Gülderen, F.; Çulha, V.K.; Akgül, N.; Gürbüz, Ö. Immunological status of Thalassemia syndrome. *Pediatr. Hematol. Oncol.* 2002, 19, 51–58, doi:10.1080/088800102753356194.
157. Loizzo, M.R.; Tundis, R.; Menichini, F.; Pugliese, A.; Bonesi, M.; Solimene, U.; Menichini, F. Chelating, antioxidant and hypo-glycaemic potential of *Muscaria comosum* (L.) Mill. bulb extracts. *Int. J. Food Sci. Nutr.* 2010, 61, 780–791, doi:10.3109/09637487.2010.482521.
158. Bitis, L.; Kultur, S.; Melikoglu, G.; Ozsoy, N.; Can, A. Flavonoids and antioxidant activity of *Rosa agrestis* leaves. *Nat. Prod. Res.* 2010, 24, 580–589, doi:10.1080/1478641090375507.

159. Ebrahimi-zadeh, M.A.; Nabavi, S.M.; Nabavi, S.F. Correlation between the in vitro iron chelating activity and poly phenol and flavonoid contents of some medicinal plants. *Pak. J. Biol. Sci.* 2009, 12, 93408, doi:10.3923/pjbs.2009.934.938.

160. Mandel, S.; Weinreb, O.; Reznichenko, L.; Kalfon, L.; Amit, T. Green tea catechins as brain-permeable, non toxic iron chelators to “iron out iron” from the brain. *J. Neural. Transm. Suppl.* 2006, 71, 249–257, doi:10.1007/978-3-211-33328-0_26.

161. Jomova, K.; Valko, M. Importance of iron chelation in free radical-induced oxidative stress and human disease. *Curr. Pharm. Des.* 2011, 17, 3460–3473, doi:10.2174/138161211798072463.

162. Hatcher, H.C.; Singh, R.N.; Torti, F.M.; Torti, S.V. Synthetic and natural iron chelators: Therapeutic potential and clinical use. *Future Med. Chem.* 2009, 1, 1643–1670, doi:10.4155/fmc.09.121.

163. Gazak, R.; Walterova, D.; Kren, V. Silibin and silymarin—New and emerging applications in medicine. *Curr. Med. Chem.* 2007, 14, 315–338, doi:10.2174/092986707779941159.

164. Darvishi Khezri, H.; Salehifar, E.; Kosaryan, M.; Aliasgharian, A.; Jalali, H.; Hadian Amree, A. Potential Effects of Silymarin and Its Flavonolignan Components in Patients with Beta-Thalassemia Major: A Comprehensive Review in 2015. *Adv. Pharmacol. Sci.* 2016, 2016, 304637, doi:10.1155/2016/3046373.

165. Gharagozloo, M.; Karimi, M.; Amirghofran, Z. Immunomodulatory effects of silymarin in patients with beta-thalassemia. *Int. Immunopharmacol.* 2013, 16, 243–247, doi:10.1016/j.intimp.2013.04.016.

166. Moayedi, B.; Gharagozloo, M.; Esmaeil, N.; Maracy, M.R.; Hoofar, H.; Jalaiekar, M. A randomized double-blind, placebo-controlled study of therapeutic effects of silymarin in beta-thalassemia major patients receiving desferrioxamine. *Eur. J. Haematol.* 2013, 90, 202–209, doi:10.1111/ejh.12061.

167. Hagag, A.; Elfaragy, M.; Elrifaeya, S.; Abd El-Lateef, A. Therapeutic value of combined therapy with Deferiprone and Silymarin as iron chelators in Egyptian Children with Beta-Thalassemia major. *Infect. Disord. Drug Targets* 2015, 15, 189–195, doi:10.2174/1871726516666150731113305.

168. Hagag, A.A.; Elfaragy, M.S.; El-Lateef, A.A. Therapeutic value of combined therapy with deferasirox and silymarin on iron overload in children with beta thalassemia. *Mediterr. J. Hematol. Infect. Dis.* 2013, 5, 1–7, doi:10.4084/MJHID.2013.065.

169. Franco, S.S.; De Falco, L.; Ghaffari, S.; Brugnara, C.; Sinclair, D.A.; Matte’, A.; Iolascon, A.; Mohandas, N.; Bertoldi, M.; An, X.; et al. Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in beta-thalassemic mice. *Haematologica* 2014, 99, 267–275, doi:10.3324/haematol.2014.090076.

170. Kalpravidh, R.W.; Siriranaratkul, N.; Insain, P.; Chareonsakdi, R.; Panichkul, N.; Hatairaktham, S.; Srichairatanakool, S.; Phisalaphong, C.; Rachmilewitz, E.; Fucharoen, S. Improvement in oxidative stress and antioxidant parameters in beta-thalassemia/Hb E patients treated with curcuminoids. *Clin. Biochem.* 2010, 43, 424–429, doi:10.1016/j.clinbiochem.2009.10.057.

171. Srichairatanakool, S.; Thephinlap, C.; Phisalaphong, C.; Porter, J.B.; Fucharoen, S. Curcumin contributes to in vitro removal of non-transferrin bound iron by deferiprone and desferrioxamine in thalassemic plasma. *Med. Chem.* 2007, 3, 469–474, doi:10.1016/j.mchem.2007.03.007.

172. Amer, J.; Goldfarb, A.; Rachmilewitz, E.A.; Fibach, E. Fermented papaya preparation as redox regulator in blood cells of beta-thalassemic mice and patients. *Phytother. Res.* 2008, 22, 820–828, doi:10.1002/ptr.2379.

173. Koonyosying, P.; Kongankna, S.; Uthaibibull, C.; Svasti, S.; Fucharoen, S.; Srichairatanakool, S. Green tea extract modulates oxidative tissue injury in beta-thalassemic mice by chelation of redox iron and inhibition of lipid peroxidation. *Biomed. Pharmacother.* 2018, 108, 1694–1702, doi:10.1016/j.biopha.2018.10.017.

174. Thephinlap, C.; Phisalaphong, C.; Lailerd, N.; Chattipakorn, N.; Winichagoon, P.; Vadolas, J.; Fucharoen, S.; Porter, J.B.; Srichairatanakool, S. Reversal of cardiac iron loading and dysfunction in thalassemic mice by curcuminoids. *Med. Chem.* 2011, 7, 62–69, doi:10.4155/medchem.1007781745447.

175. Thephinlap, C.; Onnaijean, S.; Khansuwon, U.; Fucharoen, S.; Porter, J.B.; Srichairatanakool, S. Epigallocatechin-3-gallate and epicatechin-3-gallate from green tea decrease plasma non-transferrin bound iron and erythrocyte oxidative stress. *Med. Chem.* 2007, 3, 289–296, doi:10.2174/157346077806020608.

176. Koonyosying, P.; Tantivorawit, A.; Hantrakool, S.; Utama-ang, N.; Cresswell, M.; Fucharoen, S.; Porter, J.; Srichairatanakool, S. Consumption of a green tea extract-curcumin drink decreases blood urea nitrogen and redox iron in beta-thalassemia patients. *Food Funct.* 2020, 11, 932–943, doi:10.1039/c9fo02424a.

177. Argyroupoulou, M.I.; Astrakas, L. MRI evaluation of tissue iron burden in patients with beta-thalassaemia major. *Pediat. Radiol.* 2007, 37, 1191–1200, doi:10.1007/s00247-007-0567-1.

178. Cao, A.; Galanello, R. Beta-thalassemia. *Genet. Med.* 2010, 12, 61–76, doi:10.1097/GIM.0b013e3181c6d8ed.

179. Nemeth, E. Hepcidin in beta-thalassemia. *Ann. N. Y. Acad. Sci.* 2010, 1202, 31–35, doi:10.1111/j.1749-6632.2010.05585.x.

180. Gharagozloo, M.; Moayedi, B.; Zakerinia, M.; Hamidi, M.; Karimi, M.; Maracy, M.; Amirghofran, Z. Combined therapy of silymarin and desferrioxamine in patients with beta-thalassemia major: A randomized double-blind clinical trial. *Fundam. Clin. Pharmacol.* 2009, 23, 359–365, doi:10.1111/j.1744-7248.2009.00681.x.

181. El-Shanshory, M.; Hablas, N.; Aboonq, M.; Ragab, A.; Attia, M.; Keshk, W.; Mariah, R.; Baghdadi, H.; Ayat, M.; Zolaly, M.; et al. *Nigella sativa* improves anemia, enhances immunity and relieves iron overload-induced oxidative stress as a novel promising treatment in children having beta-thalassemia major. *J. Herb. Med.* 2019, 16, 100245, doi:10.1016/j.jhermed.2018.11.001.
182. Fibach, E.; Tan, E.S.; Jamuar, S.; Ng, I.; Amer, J.; Rachmilewitz, E.A. Amelioration of oxidative stress in red blood cells from patients with beta-thalassemia major and intermedia and E-beta-thalassemia following administration of a fermented papaya preparation. *Phytother. Res.* 2010, 24, 1334–1338, doi:10.1002/ptr.3116.

183. Mohammadi, E.; Tamaddoni, A.; Quej, D.; Nasseri, E.; Zayeri, F.; Zand, H.; Gholami, M.; Mir, S.M. An investigation of the effects of curcumin on iron overload, hepcidin level, and liver function in β-thalassemia major patients: A double-blind randomized controlled clinical trial. *Phytother. Res.* 2018, 32, 1828–1835, doi:10.1002/ptr.6118.

184. Upanan, S.; Pangjit, K.; Uthaipibull, C.; Fucharoen, S.; Mckie, A.; Srirachitanaokool, S. Combined treatment of 3-hydroxy pyridine-4-one derivatives and green tea extract to induce hepcidin expression in iron-overloaded β-thalassemic mice. *Asian Pac. J. Trop. Biomed.* 2015, 5, 1010, doi:10.1016/j.ajpibt.2015.09.007.

185. Marks, P.W. Anemia: Clinical approach. In *Concise Guide to Hematology*; Lazarus, H.M., Schmaier, A.H., Eds.; Springer: Cham, Switzerland, 2019; pp. 21–27.

186. Forget, B.G.; Bunn, H.F. Classification of the disorders of hemoglobin. *Cold Spring Harb. Perspect. Med.* 2013, 3, a011684, doi:10.1101/cshperspect.a011684.

187. Imaga, N.A. Phytomedicines and nutraceuticals: Alternative therapeutics for sickle cell anemia. *Sci. World J.* 2013, 2013, 269659, doi:10.1155/2013/269659.

188. Ameh, S.J.; Tarfa, F.D.; Ebeshi, B.U. Traditional Herbal Management of Sickle Cell Anemia: Lessons from Nigeria. *Anemia* 2012, 2012, 607436, doi:10.1155/2012/607436.

189. Dash, B.; Archana, Y.; Naik, S. Search for anti-sickling agents from plants. *Pharmacogn. Rev.* 2013, 7, 53, doi:10.4103/0973-7847.112849.

190. Mpiana, P.T.; Tshibangu, D.S.T.; Ngbolua, K.N. In vitro antidrepanocytic actvity (anti-sickle cell anemia) of some congolesse plants. *Phytomedicine* 2007, 14, 192–195, doi:10.1016/j.phymed.2006.05.008.

191. Oniyangi, O.; Coball, D.H. Phytomedicines (medicines derived from plants) for sickle cell disease. *Cochrane Database Syst. Rev.* 2015, doi:10.1002/14651858.CD004448.pub5.

192. Abraham, D.J.; Mohanna, A.S.; Wireko, F.C.; Whitney, J.; Thomas, R.P.; Orringer, E.P. Vanillin, a potential agent for the treatment of sickle cell anemia. *Biol. Blood Marrow Transplant.* 1991, 77, 1334–1341.

193. Silva, D.G.H.; Belini, E., Jr.; de Almeida, E.A.; Bonini-Domingos, C.R. Oxidative stress in sickle cell disease: An overview of erythrocyte redox metabolism and current antioxidant therapeutic strategies. *Free Radic. Biol. Med.* 2013, 65, 1101–1109, doi:10.1016/j.freeradbiomed.2013.08.011.

194. Al Balushi, H.; Hannemann, A.; Rees, D.; Brewin, J.; Gibson, J.S. The effect of antioxidants on the properties of red blood cells from patients with sickle cell anemia. *Front. Physiol.* 2019, 10, 976, doi:10.3389/fphys.2019.00976.

195. Cristina Marcarini, J.; Ferreira Tsuboy, M.S.; Cabral Luiz, R.; Regina Ribeiro, L.; Beatriz Hoffmann-Campo, C.; Segio Mantovani, M. Investigation of cytotoxic, apoptosis-inducing, genotoxic and protective effects of the flavonoid rutin in HTC hepatic cells. *Exp. Toxicol. Pathol.* 2011, 63, 459–465, doi:10.1016/j.etp.2010.03.005.

196. Yang, J.; Guo, J.; Yuan, J. In vitro antioxidant properties of rutin. *LWT Food Sci. Technol.* 2008, 41, 1060–1066, doi:10.1016/j.lwt.2007.06.010.

197. Nafiees, S.; Rashid, S.; Ali, N.; Hasan, S.K.; Sultana, S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NRF2/B/MAPK pathway. *Chem. Biol. Interact.* 2015, 231, 98–107, doi:10.1016/j.cbi.2015.02.021.

198. Guo, R.; Wei, P.; Liu, W. Combined antioxidant effects of rutin and vitamin C in Triton X-100 micelles. *J. Pharm. Biomed. Anal.* 2007, 43, 1580–1586, doi:10.1016/j.jpba.2006.11.029.

199. Muhammad, A.; Waziri, A.D.; Forcados, G.E.; Sanusi, B.; Sani, H.; Malami, I.; Abubakar, I.B.; Oluwatoyin, H.Y.; Adinoyi, O.A.; Mohammed, H.A. Sicking-preventive effects of rutin is associated with modulation of deoxygenated haemoglobin, 2,3-bisphosphoglycerate mutase, redox status and alteration of functional chemistry in sickle erythrocytes. *Heliyon* 2019, 5, e01905, doi:10.1016/j.heliyon.2019.e01905.

200. Muhammad, A.; Waziri, A.D.; Forcados, G.E.; Sanusi, B.; Sani, H.; Malami, I.; Abubakar, I.B.; Muhammad, R.A.; Mohammed, H.A. Sicking-suppressive effects of chrysin may be associated with sequestration of deoxy-haemoglobin, 2,3-bisphosphoglycerate mutase, alteration of redox homeostasis and functional chemistry of sickle erythrocytes. *Hum. Exp. Toxicol.* 2020, 39, 537–546, doi:10.1177/0960327119895815.

201. Mozar, A.; Charlot, K.; Sandor, B.; Rabai, M.; Lemonne, N.; Billaud, M.; Hardy-Dessources, M.D.; Beltan, E.; Pandey, R.C.; Connes, P.; et al. Piapiac paniclet extract improves red blood cell deformability in sickle cell patients. *Clin. Hemorheol. Microcirc.* 2015, 62, 327–333, doi:10.3233/CH-151972.

202. Onyegeme-Okerenta, B.M.; Essien, E.B.; Esin, J.I. Anti-sickling properties of aqueous extracts of *Dennettia tripetala* and *Physalis angulata*. *Asian J. Biol. Sci.* 2019, 12, 772–778, doi:10.3923/AJBS.2019.772.778.

203. Mgbemene, C.N.; Ohiri, F.C. Anti-sickling potential of *Terminalia catappa* leaf extract. *Pharm. Biol.* 1999, 37, 152–154, doi:10.1076/phi.37.2.152.6090.

204. Moody, J.O.; Ojo, O.O.; Omotade, O.O.; Adeyemo, A.A.; Olumese, P.E.; Ogundipe, O.O. Anti-sickling potential of a Nigerian herbal formula (*ajawaron HF*) and the major plant component (*Cissus populnea* L. CPK). *Phytother. Res.* 2003, 17, 1173–1176, doi:10.1002/ptr.1323.

205. Imaga, N.; Gbenle, G.O.; Okochi, V.; Akanbi, S.; Edeoghon, S.O.; Oigbochie, V.; Keinde, M.; Bamiro, S. Antisickling property of *Carica papaya* leaf extract. *Afr. J. Biochem. Res.* 2009, 3, 102–106, doi:10.5897/AJBR.900034.
206. Imaga, N.; Gbenle, G.O.; Okochi, V.; Adenikan, S.; Edeogho, S.O.; Kehinde, M.; Bamiro, S.; Ajiboye, A.; Obina, A. Antisickling and toxicological profiles of leaf and stem of *Parqueolina nigrescens*. *Int. J. Med. Plants Res.* 2010, 4, 639–643.

207. Naiho, A.O.; Onkonwior, B.C.; Okoukuwu, C. Anti-sickling and membrane stabilizing effects of *Carica papaya* leaf extract. *Br. J. Med. Res.* 2015, 6, 489–492, doi:10.9734/BJMR/2015/14608.

208. Ouattara, B.; Jansen, O.; Angeton, L.; Guissou, I.P.; Frédérick, M.; Fondu, P.; Tis, M. Antisickling properties of divanillyloquinic acids isolated from *Fagara zanthoxyloides* Lam. (Rutaceae). *Phytomedicine* 2009, 16, 125–129, doi:10.1016/j.phymed.2008.10.013.

209. Elekwa, I.; Monanu, M.O.; Anosike, E.O. Effects of aqueous extracts of *Zanthoxylum macrophylla* roots on membrane stability of human erythrocytes of different genotypes. *Biokemistri* 2005, 17, 7–12, doi:10.4314/BIOKEM.V17I1.32582.

210. Elekwa, I.; Monanu, M.O.; Anosike, E.O. In vitro effects of aqueous extracts of *Zanthoxylum macrophylla* roots on adenosine triphosphatases from human erythrocytes of different genotypes. *Biokemistri* 2005, 17, 7–12, doi:10.4314/BIOKEM.V17I1.32584.

211. Atabo, S.; Umar, I.A.; James, D.B.; Mamman, A.I. Sickled erythrocyte reversal and membrane stabilizing compounds in *Telfaria occidentalis*. *Scientifica* 2016, 2016, 1568061, doi:10.1155/2016/1568061.

212. Ogwutum, F.E.; Uwakwe, A.; Weggwu, M.O.; Osuoha, J.O. In vitro investigation of the anti-sickling and erythrocyte membrane stabilizing potentials of *Elaeis guineensis* Jacq Flower. *Int. J. Biochem. Biophys.* 2018, 6, 20–25, doi:10.13189/ijbpb.2018.060102.

213. Anosike, C.A.; Igboegwui, O.N.; Nwodo, O.F.C. Antioxidant properties and membrane stabilization methods of methanol extract of *Mucuna pruriens* leaves on normal and sickle erythrocytes. *J. Tradit. Complement. Med.* 2018, 9, 278–284, doi:10.1016/j.jtcme.2017.08.002.

214. Pauline, N.; Cabral, B.N.; Anatole, P.C.; Jocelyne, A.M.; Bruno, M.; Jeanne, N.Y. The in vitro antisickling and antioxidant activity of aqueous extracts of *Zanthoxylum heitzi* on sickle cell disorder. *BMC Complement. Altern. Med.* 2013, 13, 162, doi:10.1186/1472-6882-13-162.

215. Nwaoguikpe, R.N.; Ujowundu, C.O.; Okwu, G.N. The antisickling potentials of four Curcubits (*T. occidentalis*, *C. maxima*, *C. sativus* and *C. lanatus*). *Sch. J. Appl. Med. Sci.* 2013, 1, 1391–1398.

216. Afolabi, I.S.; Osikoya, I.O.; Fajimu, I.O.; Usoro, P.I.; Ogunleye, D.O.; Bello, I.T. Antisickling and toxicological evaluation of the leaves of *Scoparia dulcis* Linn (Scrophulariaceae). *BMC Complement. Altern. Med.* 2015, 15, 414, doi:10.1186/s12906-015-0928-5.

217. Onyegeme-Okerenta, B.M.; Essien, E.B. In vitro antisickling potentials of ethanol extract of *Annona muricata*, *Delonix regia* and *Senna alata*. *Recent Trends Pharm. Sci. Res.* 2019, 2, 7–18, doi:10.5281/zenodo.3458736.

218. Tshilanda, D.D.; Onyomboko, D.N.; Babady-Bila, P.; Ngbolua, K.T.; Tshibangu, D.S.; Dibwe, E.F.D.; Mpiana, P.T. Antisickling activity of ursoic acid isolated from the leaves of *Octium gratissimum* L. (*Lamiaceae*). *Nat. Prod. Bioprospect.* 2015, 5, 215–222, doi:10.1007/s13659-015-0070-6.

219. Adejumo, O.E.; Kolapo, A.L.; Folarin, A.O. *Moringa oleifera* Lam. (*Moringaceae*) grown in Nigeria: In vitro antisickling activity on deoxygenated erythrocyte cells. *J. Pharm. Biomed. Anal.* 2012, 4, 118–122, doi:10.4103/0975-7406.94812.

220. Abere, T.A.; Okoye, C.J.; Agoreyo, F.O.; Iduwu, T. Anti-sickling agent in an extract of unripe pawpaw (*Carica papaya*): Is it real? *Afr. J. Biotechnol.* 2006, 5, 1945–1949, doi:10.5897/AJB2006.000-5089.

221. Ibrahim, H.; Sani, F.S.; Danladi, B.H.; Ahmadu, A.A. Phytochemical and antisickling studies of the leaves of *Hymenocardia acida* Tul. (*Euphorbiaceae*). *Pak. J. Biol. Sci.* 2007, 10, 788–791, doi:10.9734/pjbs.2007.788.791.

222. Nwaoguikpe, R.N.; Braide, W.; Ezejoifo, T.I. The effect of Aloe vera plant (*Aloe barbadensis*) extracts on sickle cell blood (*HbSS*). *Afri. J. Food Sci. Tech.* 2010, 1, 58–63.

223. Takasu, J.; Uykimang, R.; Sunga, M.A.; Amagase, H.; Niihara, Y. Aged garlic extract is a potential therapy for sickle-cell anemia. *J. Nutr.* 2006, 136, 8035–805S, doi:10.1093/jn/136.3.803S.

224. Omer, R.H.; Yousif, N.A.; Fadalla, T.A.; Elradi, W.E.O.; Elbasheer, M.M.; allah, E.I.A. In vitro antisickling activity of *Moringa oleifera* extracts on sickle cells. *Res. Sq.* 2020, 2, 262, doi:10.21037/rs.3.rs-3212/v1.

225. Biapa, P.C.N.; Yembeau, N.L.; Chetcha, B.; Fotsing, C.K.; Nkwikeu, P.J.N.; Telefo, P.B.; Oben, J.E.; Pieme, C.A. The anti-sickling mechanism of *Amphima pterocarpoides* (Cesalpiniaeaceae) against sickle cell anemia. *Acad. J. Med. Plants* 2019, 7, 117–124, doi:10.15413/ajmp.2019.0121.

226. Syed, M.M.; Doshi, P.J.; Dhavale, D.D.; Doshi, J.B.; Kate, S.L.; Kulkarni, G.; Sharma, N.; Uppuladinne, M.; Sonavane, U.; Joshi, R.; et al. Potential of isocurcumin as antisickling agent: A multi-spectroscopic, thermophoresis and molecular modeling approach. *J. Biomol. Struct. Dyn.* 2019, 38, 2717–2736, doi:10.1080/07391102.2019.1645735.

227. Fadalla, T.A.; Yousif, N.A.; Omer, R.H.; Elbasheer, M.M.; Elradi, W.O.; Abdallah, E.I. In vitro anti sickling activity of *Hyphaene thebaica* fruits extract on sickle cell. *Res. Sq.* 2020, 1–12, doi:10.21023/rs.3.rs-3212/v1.

228. Syed, M.M.; Doshi, P.; Bharshank, A.; Dhavale, D.D.; Kate, S.L.; Kulkarni, G.; Doshi, J.B.; Kulkarni, M.V. Repurposing of genistein as anti-sickling agent: Elucidation by multi spectroscopic, thermophoresis, and molecular modeling techniques. *J. Biomol. Struct. Dyn.* 2020, 11, 1–13, doi:10.1080/07391102.2020.1852967.

229. Ikechukwu, E.L.; Okafor, P.N.; Egba, S.I. In vitro assessment of the anti-sickling properties of *Buchholzia coriacea* and *Mucuna pruriens* seed extracts. *In Vitro Cell. Dev. Biol. Anim.* 2020, 56, 773–782, doi:10.1007/s11626-020-00512-y.
231. Segel, G.B.; Lichtman, M.A. Aplastic anemia: Acquired and inherited. In *Williams Hematology*, 8th ed.; Kaushansky, K., Williams, W.J., Eds.; McGraw-Hill Medical: New York, NY, USA, 2010; pp. 569–590.

232. Scheinberg, P.; Chen, J. Aplastic anemia: What have we learned from animal models and from the clinic. *Semin. Hematol.* **2013**, 50, 156–164, doi:10.1053/j.seminhematol.2013.03.028.

233. Young, N.S.; Calado, R.T.; Scheinberg, P. Current concepts in the pathophysiology and treatment of aplastic anemia. *Blood* **2006**, 108, 2509–2519, doi:10.1182/blood-2006-03-010777.

234. Ding, S.X.; Chen, T.; Wang, T.; Liu, C.; Lu, W.; Fu, R. The risk of clonal evolution of granulocyte colony-stimulating factor for acquired aplastic anemia: A systematic review and meta-analysis. *Acta Haematol.* **2018**, 140, 141–145, doi:10.1159/000491816.

235. Georges, G.; Doney, K.; Storb, R. Severe aplastic anemia: Allogeneic bone marrow transplantation as first-line treatment. *Blood Adv.* **2018**, 2, 2020–2028, doi:10.1182/bloodadvances.2018021162.

236. Schoettler, M.; Nathan, D. The pathophysiology of acquired aplastic anemia: Current concepts revisited. *Hematol. Oncol. Clin. N. Am.* **2018**, 32, 581–594, doi:10.1016/j.hoc.2018.03.001.

237. Yamazaki, H. [Acquired aplastic anemia: Recent advances in pathophysiology and treatment]. *[Rinsho Ketsueki] Jpn. J. Clin. Hematol.* **2018**, 59, 711–715, doi:10.11406/rinketsu.59.711.

238. Moore, C.A., Krishnan, K. Aplastic Anemia. In *aplastic anaemia*. Young, M.E.; Potter, V.; Kulasekararaj, A.G.; Mufti, G.J.; Marsh, J.C. Haematopoietic stem cell transplantation for acquired aplastic anemia. *Scheinberg, P. Aplastic anemia: Therapeutic updates in immunosuppression and transplantation. Blood Adv.* **2018**, 2, 2020–2028, doi:10.1182/bloodadvances.2018021162.

239. Passweg, J.R.; Aljurf, M. Treatment and hematopoietic SCT in aplastic anemia. *Bone Marrow Transplant.* **2013**, 48, 161, doi:10.1038/bmt.2012.229.

240. Gao, R.L.; Chong, B.H. Research and development of the effective components of Panaxdiol saponin as new Chinese patent medicine for treating hemocytopenia. *Chin. J. Integr. Med.* **2012**, 18, 897–902, doi:10.1007/s11655-012-1292-4.

241. Gao, R.L.; Chen, X.H.; Lin, X.J.; Qian, X.D.; Xu, W.H.; Chong, B.H. Effects of notoginosides on proliferation and upregulation of GR nuclear transcription factor in hematopoietic cells. *Acta Pharmacol. Sin.* **2007**, 28, 703–711, doi:10.1111/j.1745-7254.2007.00551.x.

242. Yin, L.M.; Jiang, H.F.; Wang, X.; Qian, X.D.; Gao, R.L.; Lin, X.J.; Chen, X.H.; Wang, L.C. Effects of sodium copper chlorophyllin on mesenchymal stem cell function in aplastic anemia mice. *Chin. J. Integr. Med.* **2013**, 19, 360–366, doi:10.1007/s11655-012-1210-z.

243. Sun, X.; Gao, R.L.; Lin, X.J.; Xu, W.H.; Chen, X.H. Panax notoginseng saponins induced up-regulation, phosphorylation and binding activity of MEK, ERK, AKT, PI-3K protein kinases and GATA transcription factors in hematopoietic cells. *Chin. J. Integr. Med.* **2013**, 19, 112–118, doi:10.1007/s11655-012-1306-4.

244. Yin, L.M.; Wang, X.; Qian, X.D.; Lin, X.J.; Chen, X.H.; Gao, R.L. Effects of Panax notoginseng saponins on proliferation and differentiation in NIH3T3 cells. *Chin. J. Integr. Med.* **2018**, 18, 616–620, doi:10.1007/s11655-012-1179-7.

245. Zhao, Y.; Sun, X.; Yu, X.; Gao, R.; Yin, L. Saponins from Panax notoginseng leaves improve the symptoms of aplastic anemia and aberrant immunity in mice. *Biomed. Pharmacother.* **2018**, 102, 959–965, doi:10.1016/j.biopha.2018.03.175.

246. Dijiong, W.; Xiaowen, W.; Linlong, X.; Wenbin, L.; Huijin, H.; Baodong, Y.; Yuhong, Z. Iron chelation effect of curcumin and baicalein on aplastic anemia mouse model with iron overload. *Iran J. Basic Med. Sci.* **2019**, 22, 660–668, doi:10.22038/ijbms.2019.30840.7440.

247. Zhang, L.; Feng, H.; He, Y.; Zhao, J.; Chen, Y.; Liu, Y. Ginseng saponin Rb1 enhances hematopoietic function and dendritic cells differentiation. *Acta Biochim. Biophys. Sin.* **2017**, 9, 746–749, doi:10.1093/abbs/gmx062.

248. Zheng, Z.Y.; Yu, X.L.; Dai, T.Y.; Yin, L.M.; Zhao, Y.N.; Xu, M.; Zhuang, H.F.; Chong, B.H.; Gao, R.L. Panaxdiol saponins component promotes hematopoiesis and modulates T lymphocyte dysregulation in aplastic anemia model mice. *Chin. J. Integr. Med.* **2019**, 25, 902–910, doi:10.1007/s11655-019-3049-z.

249. Wang, Y.; Yan, T.; Ma, L.; Liu, B. Effects of the total saponins from *Dioscorea nipponica* on immunoregulation in aplastic anemia mice. *Am. J. Chin. Med.* **2015**, 43, 289–303, doi:10.1142/S0192415X15500196.