Antibiotic-potentiation activities of four Cameroonian dietary plants against multidrug-resistant Gram-negative bacteria expressing efflux pumps

Francesco K Touani, Armel J Seukep, Doriane E Djeussi, Aimé G Fankam, Jaurès A K Noumedem and Victor Kuete*

Abstract

Background: The continuous spread of multidrug-resistant (MDR) bacteria, partially due to efflux pumps drastically reduced the efficacy of the antibiotic armory, increasing the frequency of therapeutic failure. The search for new compounds to potentiate the efficacy of commonly used antibiotics is therefore important. The present study was designed to evaluate the ability of the methanol extracts of four Cameroonian dietary plants (Capsicum frutescens L. var. facilulatum, Brassica oleacea L. var. italica, Brassica oleacea L. var. butyris and Basilicum polystachyon (L.) Moench) to improve the activity of commonly used antibiotics against MDR Gram-negative bacteria expressing active efflux pumps.

Methods: The qualitative phytochemical screening of the plant extracts was performed using standard methods whilst the antibacterial activity was performed by broth micro-dilution method.

Results: All the studied plant extracts revealed the presence of alkaloids, phenols, flavonoids, triterpenes and sterols. The minimal inhibitory concentrations (MIC) of the studied extracts ranged from 256-1024 μg/mL. Capsicum frutescens var. facilulatum extract displayed the largest spectrum of activity (73%) against the tested bacterial strains whilst the lower MIC value (256 μg/mL) was recorded with Basilicum polystachyon against E. aerogenes ATCC 13048 and P. stuartii ATCC 29916. In the presence of PAβN, the spectrum of activity of Brassica oleacea var. italica extract against bacteria strains increased (75%). The extracts from Brassica oleacea var. butyris, Brassica oleacea var. italica, Capsicum frutescens var. facilulatum and Basilicum polystachyon showed synergistic effects (FIC ≤ 0.5) against the studied bacteria, with an average of 75.3% of the tested antibiotics.

Conclusion: These results provide promising information for the potential use of the tested plants alone or in combination with some commonly used antibiotics in the fight against MDR Gram-negative bacteria.

Keywords: Cameroonian dietary plants, Potentiation, Gram-negative bacteria, Multidrug resistant, Efflux pumps

Background

The spread of multidrug-resistant bacteria, partially due to the inappropriate use of common antibiotics, drastically reduced the efficacy of the antibiotic armory, increasing the frequency of therapeutic failure. The over-expression of efflux pumps is the main resistance mechanism observed in many bacteria [1]. In Gram-negative bacteria, many of these efflux pumps belong to the resistance-nodulation-cell division (RND), family of tripartite efflux pumps [2]. In the fight against microbial infections including those due to MDR bacteria, investigations are being carried out to discover new effective, none or less-toxic and available antibacterial drugs. Many scientist are also investigating synergistic compounds to potentiate the activity of the commonly used antibiotics [3]. The present work was designed to evaluate the in vitro ability of some edible plants namely Capsicum frutescens L. var. facilulatum (Solanaceae) or ‘chili pepper’, Brassica oleacea L. var. italica commonly known as ‘Broccoli’ and Brassica
oleacera L. var. butyris (Brassicaceae) or ‘Cauliflower’; and Basilicum polystachyon (L.) Moench. (Lamiaceae) or ‘Musk Basil’ to potentiate the effect of common antibiotics against Gram-negative MDR phenotypes.

Methods

Plant material and extraction

The plants used in this study were collected in Douala (Littoral Region of Cameroon) in January 2013. The plants were further identified at the National Herbarium (Yaoundé, Cameroon) where voucher specimens were deposited under a reference number (Table 1). Air dried and powdered sample (0.1 g) of each plant was extracted by maceration with methanol (0.3 L) for 48 h at room temperature (25°C). After filtration using Whatman No. 1 filter paper, the filtrate of each plant was concentrated under reduced pressure in a rotary evaporator, and dried at room temperature to give the crude extract. The extraction yield was calculated (Table 2). These extracts were then stored at 4°C until further use.

Preliminary phytochemical screenings

The secondary metabolite classes such as alkaloids, anthocyanins, anthraquinones, flavonoids, phenols, saponins, tannins, steroids and triterpenes were screened according to the standard phytochemical methods described by Harbone [16].

Bacteria strains and culture media

The studied microorganisms included both reference (from the American Type Culture Collection, ATCC) and clinical (Laboratory collection) strains of Escherichia coli, Enterobacter aerogenes, Providencia stuartii, Pseudomonas aeruginosa and Klebsiella pneumoniae (Table 3). They were maintained at 4°C and sub-cultured on a fresh appropriate Mueller Hinton Agar (MHA) for 24 h before any antibacterial test. The Mueller Hinton Broth (MHB) was used for all antibacterial assays.

Chemicals for antibacterial assays

Nine commonly used antibiotics including tetracycline (TET), cefepime (CEP), streptomycin (STR), ciprofloxacin (CIP), norfloxacin (NOR), chloramphenicol (CHL), amoxicillin (AMP), erythromycin (ERY), kanamycin (KAN) (Sigma-Aldrich, St Quentin Fallavier, France) were used for potentiation assay.

Table 1 Information on plants used in this study

Plants samples and herbarium voucher number	Parts used	Popular names	Traditional used	Known antimicrobial activities of plants
Capsicum frutescens L. var. faciulatum (Solanaceae)	Fruits	Green pepper	Antimutagenic [4], allergy, cancer and viral infection [5]	Antibacterial activities of aqueous and methanolic extracts against Sa, St, Vc [6,7], antifungal activities of lectin against Af, [8]; antifungal activities of saponin CAY-1 against Ca, Aspergillus Spp and dermatophytes Tm, Tr et Mc [9].
Brassica oleacera L. var. italicla (Brassicaceae)	Leaves	Broccoli	Oxidative stress, cytotoxic [10]	Antibacterial activities of ethanolic extracts against Sa, Bc, Pa [11]. Antifungal activities against Sc, Te, Hm, Pm [12].
Brassica oleacera L. var. butyris (Brassicaceae)	Leaves	Flower cabbage	Cytotoxic effect, antiproliferative, Oxidative stress [13]	Antibacterial activities of sulfur compounds MMTSO, AITC, MMTSO, against Pp, Lm, Lp, Lb Lm Sa, Ea, Ec, Bs and antifungal against strains Sc, Te, Hm, Pm [12].
Basilicum polystachyon (L.) Moench. (Lamiaceae)	Leaves	Cotimandjo (Cameroon)	Infectious diseases, gastroenteritis [14]	Strong activities of acidic extracts against Gram (+), but less activities against Gram (-). Strong antibacterial activities of ethanolic and methanol extracts against An [15].

Af, Am, Ca, Cr, Tr, Mt, Mc, Sa, Bc, Ec, Pa, Sc, Te Hm, Pr, Pp, Lp, Lb, Lm, Bs, Ea, St, Te, Hm, An, Kp, Ec, Sm, Vc who are respectively: Aspergillus flavus, Fusarium moniliforme, Candidat albicans, trichophyton mentagrophytes, T. rubum, T.janusirius Microsporum canis, Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Saccharomyces cerevisiae, Torulopsis etchellsii, Hansenula mariki, Pichia membranefaciens, Pedicoccus pentosaceus, Leuconostoc mesenteroides, Lactobacillus plantarum , Lactobacillus brevis, Listeria monocytogenes, Bacillus subtilis, Enterobacter aerogenes, Salmonella. Typhimurium, Torulopsis etchellsii, Hansenula mariki, Aspergillus niger, Klebsiella pneumoniae C, Enterobacter cloacae C, Clostridium cholerse MMTSO; Méthylmethanethiosulfonate, AITC: Allyisothyocyanate, MMTSO; Méthylmethanethiosulfonat. SRFC: Company of Forest Reserve of Cameroon; HNC: Cameroon National Herbarium.
(PAßN) (Sigma-Aldrich) were used as bacterial growth indicator and efflux pumps inhibitor respectively. Dimethylsulf-oxide 10% (DMSO) was used as solvent for all extracts.

Bacterial susceptibility determinations

The minimal inhibitory concentrations (MIC) of the plant extracts against the studied bacteria were determined by rapid INT colorimetric assay [19,20]. Briefly, the test samples were first dissolved in DMSO/MHB. The solution obtained was then added to MHB in a 96-well microplate followed by a two fold serial dilution. One hundred microliters (100 μL) of inoculum (1.5 × 10⁶ CFU/mL) prepared in MHB was then added. The plates were covered with a sterile plate sealer, then agitated to mix the contents of the wells using a shaker and incubated at 37°C for 18 h. The final concentration ranges were 8-1024 μg/mL for plant extracts and 2-512 μg/mL for reference antibiotic chloramphenicol (CHL). Wells containing MHB (100 μL), 100 μL of inoculum and DMSO at a final concentration of 2.5% served as negative growth inhibition control. MIC was detected after 18 h of incubation at 37°C, following addition (40 μL) of 0.2 mg/mL INT and incubation at 37°C for 30 min. Viable bacteria reduced the yellow dye to pink. MIC was defined as the lowest sample concentration that prevented this change and exhibited complete inhibition of bacterial growth [21]. The minimal bactericidal concentrations (MBC) of the samples was determined by taking 50 μL of the suspensions from the wells which did not show any growth after incubation during MIC assays to a new 96-well microplate containing 150 μL of fresh broth per well. The plate was further re-incubated at 37°C for 48 hours the addition of INT. The MBC was defined as the lowest concentration of samples which completely inhibited the growth of bacteria. Samples were tested alone and in the presence of PAßN at 30 μg/mL final concentration [22].

To evaluate the potentiating effect of tested extracts, a preliminary combination at their sub-inhibitory concentrations (MIC/2, MIC/5, MIC/10 and MIC/20) with antibiotics was assessed against *P. aeruginosa* PA124 strain. The appropriate sub-inhibitory concentrations were then selected on the basis of their ability to improve the activity

Table 3 Bacterial strains and features

Bacteria and strains	Features	References
Escherichia coli	ATCC 8739 References strains	
	ATCC 10536 References strains	
AG100 Ate	AG 100 sur-expressing AcrAB pumps, containing TET⁺ gene acrF	[14]
AG100	Wild-typeE. ColiK-12	[15]
AG102	AG100 Sur-expressingAcrAB pumps.	[17]
MC4100	Wild typeE. coli	
Enterobacter aerogenes	ATCC 13048 References strains	
EA27	Clinical MDR isolate exhibiting energy-dependent norfloxacin and chloramphenicol efflux with KAN⁺, AMP⁺, NAL⁺, STR⁺, TET⁺	[18]
EA-3	Clinical MDR isolate CHL⁺, NOR⁺, OFX⁺, SPX⁺, MOX⁺, CFT⁺, ATM⁺, FEP⁺	[18]
EA 289	KAN sensitive derivative d’EA27	[18]
EA 294	EA289 sur-expressing AcrA pumps Exhibiting KAN⁺	[18]
EA 298	EA289 TolC KAN⁺	[18]
CM64	CHL⁺resistant variant obtained from ATCC13048 over-expressing the AcrAB pump	[18]
Klebsiella pneumoniae	ATCC 11296 References strains	
K-2	Clinical MDR isolate exhibiting energy-dependent norfloxacin and chloramphenicol efflux with KAN⁺, AMP⁺, NAL⁺, STR⁺, TET⁺	Laboratory collection of UNR-MD1, University of Marseille, France
K-24	AcrAB-TolC	
KP 55	Clinical isolate MDR, TET⁺, AMP⁺, ATM⁺, CEF⁺	[17]
KP 63	Clinical isolate du MDR, TET⁺, CHL⁺, AMP⁺, ATM⁺	[17]
Pseudomonas aeruginosa	PA01 References strains	
PA124	MDR clinical isolate	[15]
NAE16	MDR clinical isolate AcrAB-TolC	[15]
Providencia stuartii	ATCC 29916 References strains	
AMP, ATM, CEF*, CFT*, CHL*, FEP*, KAN*, MOX*, STR*, TET*. Resistance to ampicillin, aztreonam, cephalothin, cefadroxil, chloramphenicol, cefepime, kanamycin, moxalactam, streptomycin, and tetracycline; OMPC and OMPF: Outer Membran Protein F and C respectively. AcrAB-TolC: Efflux pump of type AcrAB associated to one porine of type TolC.*	[15]	

AMP, ATM, CEF*, CFT*, CHL*, FEP*, KAN*, MOX*, STR*, TET.* Resistance to ampicillin, aztreonam, cephalothin, cefadroxil, chloramphenicol, cefepime, kanamycin, moxalactam, streptomycin, and tetracycline; OMPC and OMPF: Outer Membran Protein F and C respectively. AcrAB-TolC: Efflux pump of type AcrAB associated to one porine of type TolC.*
of the maximum antibiotic. These sub-inhibitory concentrations for selected extracts were further tested in combination with antibiotics against more MDR bacteria. The Fractional inhibitory concentration (FIC) of each combination was then calculated as the ratio of MIC of Antibiotic in combination versus MIC of Antibiotic alone [23,24].

Results

Phytochemical composition of the tested plant’s extracts

The results of the qualitative phytochemical analysis showed that each of the studied extract contained alkaloids, phenols, flavonoids, triterpenes and sterols. None of them contained anthocyanins and anthraquinones. Other phytochemical classes have been selectively detected as shown in Table 2.

Antibacterial activity of the plant’s extracts

Bacterial strains and MDR isolates were tested for their susceptibility to plant extracts and chloramphenicol. The results summarized in Table 4 the selectivity of the extracts towards the tested bacteria, with MIC values ranging from 256 to 1024 μg/mL on the majority of the 22 tested microorganisms. *Capsicum frutescens* extract displayed the largest spectrum of activity, 73% (16/22) against the tested bacteria; followed by *Brassica oleacea* var. *italica*, 50% (11/22); *Basilicum polystachyon* 41% (9/22) and *Brassica oleacea* var. *butyris* 27% (6/22) extracts. The lowest MIC value (256 μg/mL) was recorded with *Basilicum polystachyon* extract against *P. stuartii* (ATCC 29916) and *E. aerogenes* (ATCC 13048). No significant MBC value was recorded.

Eight (8) of the twenty two (22) studied MDR bacteria were also tested for their susceptibility to the plant extracts in the presence of PAβN (Table 5). The largest spectrum of activity was recorded with *B. oleacea* var. *butyris* extract against 75% (6/8) tested MDR bacteria. This efflux pumps inhibitor (EPI) also improved the activity of *C. frutescens* extract against *E. coli* (AG100), *K. pneumoniae* (KP53) and *E. aerogenes* (EA27) as well as that of *B. polystachyon* against *P. stuartii* (NAE16).

Antibacterial activity of extract-antibiotic combination

A preliminary assay against *P. aeruginosa* PA124 strain allowed selecting MIC/2 and MIC/5 as appropriate sub-inhibitory concentrations to be used on other bacteria Table 4 MIC and MBC of the tested plants extracts and CHL on the studied bacterial species

Strains bacterial	Capsicum frutescens	Brassica oleacea var. varbutyris	Brassica oleacea var. italica	Basilicum polystachyon	Chloramphenicol
Escherichia coli	ATCC 8739	1024	1024	1024	8
	ATCC 10536	-	-	-	512
	AG100 Aret	512	-	-	2
	AG100	-	-	512	64
	AG102	1024	1024	1024	8
	MC4100	1024	512	1024	128
Enterobacter aerogenes	ATCC 13048	1024	1024	1024	256
	EA27	-	-	-	8
	EA294	-	-	-	256
	EA298	512	1024	-	128
	EA 289	-	-	-	-
	CM64	1024	-	1024	128
Klebsiella pneumoniae	ATCC 11296	1024	1024	1024	8
	K-2	512	1024	512	512
	K-24	1024	1024	1024	16
	KP 55	1024	1024	512	32
	KP 63	512	-	-	128
Pseudomonas aeruginosa	PA01	-	-	-	64
	PA124	-	-	-	512
Providencia stuartii	ATCC 29916	1024	1024	1024	256
	NAE16	1024	-	-	256

NT: Not determined; -: superior to 1024 μL for extracts and superior to 512 μg/mL for antibiotics; CHL: Chloramphenicol; Values in Bold are the lowest MIC values for the plant extracts.
Table 5 Antibacterial activities of extracts alone and in the presence of PAβN

Bacterial strains	Capsicum frutescens	Brassica oleacea var. butyris	Brassica oleacea var. italica	Basilicum polystachyon	CHL	PAβN
AG100	1024 (256)	- (1024)	- (1024)	- (1024)	- (1024)	16 (4) >128
AG100 Atet	512 (512)	1024 (512)	1024 (1024)	- (-)	64 (32)	>128
CM64	1024 (1024)	- (-)	1024 (512)	- (1024)	128 (64)	>128
EA27	- (512)	- (128)	- (512)	- (-)	256 (64)	>128
KP5	- (-)	- (1024)	- (1024)	- (-)	64(8)	>128
KP63	512 (256)	- (1024)	- (-)	- (-)	128(16)	>128
PA124	- (-)	- (-)	- (1024)	- (-)	512(128)	>128
NAE16	- (-)	- (-)	- (1024)	- (-)	256(64)	>128

(Table 6). Synergistic effects were observed with all the tested extracts. Brassica oleacea var. italica and B. oleacea var. butyris extracts potentiate (0.125 < FIC < 0.5 and 0.031 < FIC < 0.5 respectively) the effects of the majority of antibiotics on most of the tested MDR bacteria (Table 7). Extracts from C. frutescens and B. polystachyon showed synergistic effects with six of the nine studied antibiotics, with 0.125 < FIC < 0.5 and 0.25 < FIC < 0.5 respectively.

Discussion

The Pharmacological potencies of plants' secondary metabolites are well demonstrated. The qualitative phytochemical screening of the plant extracts showed the presence of several classes of secondary metabolites, such as alkaloids, flavonoids, phenols, triterpenes, sterols, saponins, tannins and coumarins. Several antibacterial activities associated to the presence of compounds belonging to these various classes were shown [25-27]. It should however be mentioned that the detection of an alleged bioactive class of secondary metabolite in a plant is not a guarantee for any biological property, as this will depend on the nature of the compounds as well as their concentrations and the possible interactions with other constituents [12]. The differences observed between the antibacterial activities of the extracts as observed in the present work could be due to the differences in their phytochemical composition [9]. According to the criteria of classification of the antibacterial activity of the phytochemicals [28], the extracts used in this study were moderately and/or weak active (256 ≤ MIC < 1024 μg/mL). Their direct

Table 6 MICs of antibiotics in combination with plant extracts against P. aeruginosa PA124

Plants’ extracts	CEF	AMP	CIP	ERY	KAN	TET	STR	CHL	NOR
ATB ALONE	- (-)	- (-)	64	512	128	64	64	512	256
Capsicum frutescens									
MIC2	- (-)	- (-)	32 (0,5) 5	256 (0,5) 5	128 (1) 1	32 (0,5) 5	256 (4) 1	256 (0,5) 5	128 (0,5) 5
MIC5	- (-)	- (-)	32 (0,5) 5	256 (0,5) 5	128 (1) 1	64 (1) 1	256 (4) 1	256 (0,5) 5	128 (0,5) 5
MIC10	- (-)	- (-)	32 (0,5) 5	256 (0,5) 5	128 (1) 1	64 (1) 1	256 (4) 1	256 (0,5) 5	128 (0,5) 5
MIC20	- (-)	- (-)	64 (1) 1	256 (0,5) 5	256 (2) 1	64 (1) 1	256 (4) 1	256 (0,5) 5	128 (0,5) 5
Brassica oleacea var. butyris									
MIC2	- (-)	- (-)	32 (0,5) 5	256 (0,5) 5	16 (0,125) 5	16 (0,25) 5	32 (0,5) 5	256 (0,5) 5	128 (0,5) 5
MIC5	- (-)	- (-)	32 (0,5) 5	256 (0,5) 5	16 (0,125) 5	16 (0,25) 5	32 (0,5) 5	256 (0,5) 5	128 (0,5) 5
MIC10	- (-)	- (-)	32 (0,5) 5	256 (0,5) 5	16 (0,125) 5	16 (0,25) 5	32 (0,5) 5	256 (0,5) 5	128 (0,5) 5
MIC20	- (-)	- (-)	32 (0,5) 5	256 (0,5) 5	32 (0,25) 5	32 (0,25) 5	64 (1) 1	256 (0,5) 5	128 (0,5) 5
Brassica oleacea var. italica									
MIC2	- (-)	- (-)	32 (0,5) 5	256 (0,5) 5	128 (1) 1	32 (0,25) 5	32 (0,5) 5	256 (0,5) 5	128 (0,5) 5
MIC5	- (-)	- (-)	64 (1) 1	256 (0,5) 5	128 (1) 1	32 (0,25) 5	32 (0,5) 5	256 (0,5) 5	128 (0,5) 5
MIC10	- (-)	- (-)	64 (1) 1	256 (0,5) 5	128 (1) 1	32 (0,25) 5	64 (1) 1	512 (1) 1	256 (1) 1
MIC20	- (-)	- (-)	64 (1) 1	256 (0,5) 5	128 (1) 1	64 (1) 1	64 (1) 1	512 (1) 1	256 (1) 1
Basilicum polystachyon									
MIC2	- (-)	- (-)	32 (0,5) 5	128 (0,25) 5	256 (2) 1	64 (1) 1	64 (1) 1	256 (0,5) 5	256 (1) 1
MIC5	- (-)	- (-)	32 (0,5) 5	256 (0,5) 5	256 (2) 1	64 (1) 1	64 (1) 1	256 (0,5) 5	256 (1) 1
MIC10	- (-)	- (-)	64 (1) 1	256 (0,5) 5	256 (2) 1	64 (1) 1	64 (1) 1	256 (0,5) 5	256 (1) 1
MIC20	- (-)	- (-)	64 (1) 1	256 (0,5) 5	256 (2) 1	64 (1) 1	64 (1) 1	256 (0,5) 5	256 (1) 1

s: Synergy; I: Indifference; A: Antagonism; (;): fractional inhibitory concentration or FIC; -: MIC > 512 μg/mL; ATB: Antibiotic; CIP: Ciprofloxacin; NOR: Norfloxacin; CHL: Chloramphenicol, STR: Streptomycin, TET: Tetracycline, KAN: Kanamycin, ERY: Erythromycin, AMP: Ampicillin and CEF: Cefepime; The values in bold represent the cases of synergy between extract and antibiotic.
Antibiotics	Bacterial strains	Capsicum frutescens	Brassica oleracea var. butyris	Brassica oleracea var. Italica	Basilicum polystachyon
	MIC	MIC/2	MIC/5	MIC/2	MIC/5
CEF					
AG100	-	-	-	-	-
EA27	256	-	-	-	-
CM64	-	-	-	-	-
KP55	-	-	-	-	-
KP63	-	-	-	-	-
NAE16	-	-	-	-	-
PA124	-	-	-	-	-
AMP					
AG100	-	-	-	-	-
EA27	-	-	-	-	-
CM64	-	-	-	-	-
KP55	-	-	-	-	-
KP63	-	-	-	-	-
NAE16	-	-	-	-	-
PA124	-	-	-	-	-
CIP					
AG100	32	32 (1)	64 (2)	8 (0.25)	8 (0.25)
EA27	16	32 (2)	32 (1)	4 (0.25)	4 (0.25)
CM64	16	16 (1)	16 (1)	8 (0.5)	8 (0.5)
KP55	16	4 (0.25)	8 (0.5)	4 (0.25)	4 (0.25)
KP63	8*	4 (0.5)	4 (0.5)	1* (0.125)	1* (0.125)
NAE16	8*	2 (0.25)	2 (0.25)	2* (0.25)	2* (0.25)
PA124	64	32 (0.5)	32 (0.5)	32 (0.5)	32 (0.5)
ERY					
AG100	32	16 (0.5)	16 (0.5)	8 (0.25)	8 (0.25)
EA27	32	32 (1)	64 (2)	64 (2)	64 (2)
CM64	32	64 (2)	16 (0.5)	32 (1)	32 (1)
KP55	128	128 (1)	64 (0.5)	64 (0.5)	128 (1)
KP63	128	32 (0.25)	64 (0.5)	64 (0.5)	128 (1)
NAE16	128	16 (0.125)	16 (0.125)	32 (0.25)	128 (1)
PA124	512	256 (0.5)	256 (0.5)	256 (0.5)	256 (0.5)
KAN					
AG100	32	32 (1)	64 (2)	64 (2)	64 (2)
EA27	32	8 (0.25)	8 (0.25)	8 (0.25)	8 (0.25)
CM64	64	64 (1)	16 (0.25)	32 (0.5)	32 (0.5)
KP55	64	16 (0.25)	16 (0.25)	16 (0.25)	16 (0.25)
KP63	64	16 (0.25)	16 (0.25)	16 (0.25)	16 (0.25)
NAE16	64	16 (0.125)	16 (0.125)	16 (0.125)	16 (0.125)
PA124	512	256 (0.5)	256 (0.5)	256 (0.5)	256 (0.5)
TET					
AG100	32	8 (0.25)	8 (0.25)	8 (0.25)	8 (0.25)
EA27	128	64 (0.5)	16 (0.125)	16 (0.125)	16 (0.125)
CM64	64	128 (2)	4 (0.062)	8 (0.125)	64 (1)
KP55	16	2 (0.125)	4 (0.062)	1 (0.062)	1 (0.062)
KP63	32	8 (0.25)	8 (0.25)	16 (0.5)	16 (0.5)
NAE16	128	64 (0.5)	128 (1)	128 (1)	64 (0.5)
PA124	64	32 (0.5)	64 (1)	16 (0.25)	32 (0.5)
STR					
AG100	64	256 (4)	256 (4)	128 (1)	64 (0.5)

*Note: The MIC values are given in micrograms per milliliter (µg/mL). The MIC/2 and MIC/5 values are calculated as the MIC divided by 2 and 5, respectively. The values in parentheses represent the actual concentration of the antibiotic in µg/mL. The superscript 's' indicates sensitivity, and 'i' indicates intermediate sensitivity.
use in the control of MDR bacterial infections could therefore be of limited importance. None-the-less, the obtained results can be considered as interesting when considering the fact that the extracts are obtained directly from edible plant materials.

Efflux pumps are responsible for the reduction of intracellular concentration of antibiotic compounds [29]. To tackle problems related to this phenomenon, an intensive search of efflux pumps inhibitors (EPI) is welcome [30]. The EPI blocks the efflux pumps and leads to the increase of the intracellular concentration of active principle (MIC < FIC < 0.5) with the majority of the tested antibiotics against the studied MDR strains. This suggests that the extracts might contain bioactive compounds that, combined with antibiotics, acted at different sites by various mechanisms [33,34]. These data indicate that a combination of these extracts with antibiotics could be envisaged to fight MDR bacteria.

Conclusion

These results provide promising baseline information for the potential use of *Capsicum frutescens, Brassica oleracea* var. *italica, Basilicum polystachyon* and *Brassica oleracea* var. *butyris*, independently or in combination with some commonly used antibiotics in the fight against MDR Gram-negative bacteria.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

FTK carried out the study; VK designed the experiments. FTK, AJS, AGF and NV carried out the microbiological studies. VK was involved in data analysis. FTK and NV drafted the manuscript.

Acknowledgements

Authors are thankful to the Cameroon National Herbarium (Yaounde) for plants identification.

References

1. Hancock EW: Mechanisms of action of newer antibiotics for Gram-positive pathogens. *Lancet Infect Dis* 2005, 5:209–218.
2. Lomovskaya O, Bostian KA: Practical applications and feasibility of efflux pump inhibitors in the clinic - a vision for applied use. *Biochem Pharmacol* 2006, 71:910–918.
3. Noumedem JAR, Mihasan M, Kuiate JR, Stefan M, Cojocaru M, Dzoyem JP, Kuate V: In vitro antibacterial and antibiotic-potentiation activities of four

Table 7 MIC of antibiotics in combination with plant at their MIC/2 and MIC/5 against selected MDR bacteria strains (Continued)

	EA27	CM64	KP55	KP63	NAE16	PA124
MIC	32 (1)	32 (1)	32 (1)	32 (1)	32 (1)	32 (1)
FIC	4 (0.25)	4 (0.25)	4 (0.25)	4 (0.25)	4 (0.25)	4 (0.25)
MIC	8 (1)	16 (1)	16 (1)	16 (1)	16 (1)	16 (1)
FIC	32 (0.5)	32 (0.5)	32 (0.5)	32 (0.5)	32 (0.5)	32 (0.5)
MIC	64 (1)	128 (1)	128 (1)	128 (1)	128 (1)	128 (1)
FIC	64 (0.5)	64 (0.5)	64 (0.5)	64 (0.5)	64 (0.5)	64 (0.5)
MIC	128 (1)	256 (1)	256 (1)	256 (1)	256 (1)	256 (1)
FIC	256 (1)	256 (1)	256 (1)	256 (1)	256 (1)	256 (1)

The extracts of *B. oleracea* var. *butyris*, *B. oleracea* var. *italica, Basilicum polystachyon* and *C. frutescens* showed significant synergistic effects (0.031 < FIC < 0.5) with the majority of the tested antibiotics against the studied MDR strains. This suggests that the extracts might contain bioactive compounds that, combined with antibiotics, acted at different sites by various mechanisms [33,34]. These data indicate that a combination of these extracts with antibiotics could be envisaged to fight MDR bacteria.

References

1. Hancock EW: Mechanisms of action of newer antibiotics for Gram-positive pathogens. *Lancet Infect Dis* 2005, 5:209–218.
2. Lomovskaya O, Bostian KA: Practical applications and feasibility of efflux pump inhibitors in the clinic - a vision for applied use. *Biochem Pharmacol* 2006, 71:910–918.
3. Noumedem JAR, Mihasan M, Kuiate JR, Stefan M, Cojocaru M, Dzoyem JP, Kuate V: In vitro antibacterial and antibiotic-potentiation activities of four
edible plants against multidrug-resistant gram-negative species. BMC Complement Altern Med 2013, 13:190.
4. Patrick H, Ngai K, Ng TB: A lectin with antifungal and mitogenic activities from red cluster pepper (Capsicum frutescens) seeds. Appl Microbial Biotechnol 2007, 74:367–371.
5. Koffi-Nevy R, Kouassi CK, Nanga ZY, Koussou M, Louako GY: Antibacterial Activity of Two Bell Pepper Extracts: Capsicum annum L and Capsicum frutescens. Int J Food Prop 2012, 15:61–971.
6. Ooi LS, Ng TB, Geng Y, Ooi VE: Lectins from bulbs of the Chinese daffodil Narcissus tazetta (family Amaryllidaceae). J Biochem Cell Biol 2000, 78:463–468.
7. Yul G, Milton JD, Fernig DG: Opposite effects on human colon cancer cell proliferation of two dietary Thomson–Friedenreichantigen-binding lectins. J Cell Physiol 2001, 186:262–267.
8. Jefferies EH, Araya M: Physiological effects of broccoli consumption. Phytochem Rev 2009, 8:293–298.
9. Stergiopoulou T, De Lucca AJ, Meletadis J, Sein T, Boue SM, Schaufele R, Rollides E, Ghanounou M, Walsh J: In vitro activity of CAY-1, a saponin from Capsicum frutescens, against Microsporum and Trichophyton species. Med Mycol 2008, 46:803–810.
10. Farzinebrahimi R, Mattaha R, Fadainasab M, Mokhtari S: Antibiotic activities against sulfonamide and tetracycline resistant strains of Enterobacter aerogenes. J Med Microbiol 2012, 61:578–588.
11. Katayoon D, Akram T, Mahdi V: Investigation of Antipseudomonal Activity of Brassica Napus L. Singapore: Singapore; 2011.
12. Kuete V, Fleming HP: Antimicrobial activity of sugar lipids derived from cabbage. J Food Prot 1997, 60:867–71.
13. Charkaroty D, Mandal SM, Charkaroty J, Bhattacharyya PK, Bandypadhyay A, Mitra A, Gupta K: Antimicrobial Activity of Leaf Extract of Basilicum polystachyon (L) Moench. Ind J Exp Biol 2007, 45:744–748.
14. Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG: Quinone chemistry and toxicity. Toxicol Appl Pharmacol 1992, 112:5–16.
15. Lorenzo V, Muzelli A, Bernardi AF, Berti L, Pagès JM: Geraniol restores Antibiotic activities against multidrug resistant isolates from Gram-negatives species. Antimicrobial Agents Chemother 2009, 53:2209–2111.
16. Harborne JB: Phytochemical methods: A guide to modern techniques of plant analysis. 3rd edition. London, UK: Chapman & Hall Pub; 1973.
17. Kuete V, Albert-Franco S, Eyong KO, Ngameni B, Folefoc GN, Nguemeving JR, Tangmouo JG, Fotsot GJ, Konegnu J, Douahouo BMW, Boss JM, Chevalier J, Ngadjui BT, Nkengfa GR: Detection and prevalence of active drug efflux mechanism in various multidrug resistant Escherichia coli over expressing RND Efflux Pumps. Antimicrobial Agents Chemother 2005, 49:849–852.
18. Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG: Detection and prevalence of active drug efflux mechanism in various multidrug resistant Klebsiella pneumoniae strains from Turkey. J Clin Microbiol 2004, 42:2701–2706.
19. Pagès JM, Amaral L: Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochem Biophys Acta 2009, 1794:826–833.
20. Marquez B: Antibacterial efflux systems and efflux pumps inhibitors. Biochimie 2005, 87:1137–1147.
21. Lomovskaya O, Watkins W: Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J Mol Microbiol Biotechnol 2001, 3:222–236.
22. Kuete V, Nana F, Ngameni B, Mbaveng AT, Keumedji F, Ngadjui BT: Antimicrobial activity of the crude extract, fractions and compounds from stem bark of Ficus ovata (Moraceae). J Ethnopharmacol 2009, 124:556–561.
23. Peres MTLP, Monache FD, Cruz AB, Pizzolatti MG, Ynes RA: Chemical composition and antimicrobial activity of croton Urucurana baillon (Euphorbiaceae). J Ethnopharmacol 1997, 56:223–226.
24. Bruneton J: Pharmacognosie: Phytocimie, Plantes medicinales. 3rd edition. Paris: Bourin; 1999:263–309.
25. Kuete V, Ngami B, Tangmouo JG, Bolla JM, Alibert-Franco S, Ngadjui BT, Pagès JM: Efflux Pumps are involved in the defense of Gram-Negative Bacteria against the natural products Isobavachalcone and Diospyrone. Antimicrob Agents Chemother 2010, 54(5):1749–1752.
26. Bohnert JA, Winfried VK: Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli over expressing RND Efflux Pumps. Antimicrobial Agents Chemother 2005, 49:849–852.
27. Hasdemir UO, Chevalier J, Nordmann P, Pagès JM: Detection and prevalence of active drug efflux mechanism in various multidrug efflux mechanisms in various multidrug resistant Klebsiella pneumoniae strains from Turkey. J Clin Microbiol 2004, 42:2701–2706.
28. Pagès JM, Amaral L: Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochem Biophys Acta 2009, 1794:826–833.
29. Marquez B: Antibacterial efflux systems and efflux pumps inhibitors. Biochimie 2005, 87:1137–1147.
30. Lomovskaya O, Watkins W: Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J Mol Microbiol Biotechnol 2001, 3:222–236.
31. Kuete V, Nana F, Ngameni B, Mbaveng AT, Keumedji F, Ngadjui BT: Antimicrobial activity of the crude extract, fractions and compounds from stem bark of Ficus ovata (Moraceae). J Ethnopharmacol 2009, 124:556–561.
32. Marquez B: Antibacterial efflux systems and efflux pumps inhibitors. Biochimie 2005, 87:1137–1147.