項目	内容
タイトル	メタボリックシンドロームと尿路結石症 第59回日本泌尿器科学会中部総会
著者	柑本 康夫 射場 昭典 佐々木 有見子 原 努
順序	泌尿器科紀要
期間	
引用	泌尿器科紀要
許諾条件に	本文は2012-02-01に公開
要求	
URL	http://hdl.handle.net/2433/135433
データ基盤	Kyoto University
Recent epidemiological studies revealed an association of obesity, diabetes mellitus, hypertension and metabolic syndrome (MetS) with kidney stone disease. We examined how these disorders cause kidney stones. A clinical study on 467 patients with nephrolithiasis at our institution revealed that clustering of MetS traits increased the risk of uric acid stone formation by decreasing urinary pH. A subsequent study analyzing detailed data from 30,448 patients enrolled in the 6th Nationwide Survey on Urolithiasis in Japan showed that clustering of MetS traits were associated with an increased severity of the kidney stone disease and elevated urinary excretion of calcium, uric acid and oxalate. Finally, the OLETF rats, an animal model of MetS, showed lower urinary pH, decreased citrate excretion, and increased uric acid and calcium excretion. In addition, the administration of pioglitazone, an agent that improves insulin resistance, significantly increased the urinary pH. These results indicate that MetS causes changes in urinary constituents, leading to an increased risk of both uric acid and calcium oxalate stone formation. We suggest that kidney stone disease should be considered as a component of MetS and that the improvement in insulin resistance by means of diet and lifestyle changes and medical therapy might help to prevent this disorder.

(Hinyokika Kiyo 57:43-47, 2011)

Key words: Nephrolithiasis, Metabolic syndrome, Insulin resistance
に当科で結石分析を行った上部尿路結石患者467名のうち、カルシウム結石患者384名および尿酸結石患者48名の計432名について生活習慣病（肥満、糖尿病、脂質代謝異常、高尿酸血症、動脈硬化性疾患）との関連性について検討した8)。肥満（BMI≧25kg/m²）は全症例の44％にみられ、これは20歳以上の日本人の肥満の割合が30％に満たないことからすると、明らかに高率であった。高脂血症、高尿酸血症、糖尿病、動脈硬化性疾患の既往はそれぞれ39.6、25.9、17.4、40.5％にみられ、肥満を含めた何らかの生活習慣病を有する患者は77.5％にも及びっていた。

次に、生活習慣病の有無と結石成分の関係をみると、高尿酸血症や動脈硬化性疾患を有する患者では尿酸結石の比率が有意に高く、オッズ比（95％信頼区間）はそれぞれ1.86（1.09～3.18）、1.96（1.21～3.17）、2.29（1.28～4.07）であった。また、生活習慣病の合併数が0～1の患者に対し、2～3および4～5の患者では酸性尿が有意に多くみられ、オッズ比（95％信頼区間）はそれぞれ1.82（1.00～3.36）、3.72（1.55～9.15）であった。この結果は、高尿酸血症、動脈硬化性疾患、糖尿病といった個々の生活習慣病のみならず、これらが重積することによって酸性尿のリスクがさらに高くなることを示唆している。

このように、われわれの臨床的検討では、上部尿路結石患者には肥満をはじめとする生活習慣病の合併が多いこと、個々の生活習慣病が重積した状態、すなわちMetSでは尿pH低下によって尿酸結石が形成されやすいことが示された。尿pH低下の機序としては、MetSの本態であるインスリン抵抗性によって腎でのアンモニア産生が障害されることが明らかにされている11)。また、インスリン抵抗性が内因性酸産生を増加させることや、腎における肥満沈着がNa⁺/H⁺exchanger 3（NHE3）活性を低下させることによって
尿pHが低下する可能性も指摘されている（Fig.2）[12,13]。

2005年尿路結石症全国疫学調査データの解析

われわれは2005年にを行われた尿路結石症全国疫学調査の個人調査30,448例のデータベースを用い、個々の患者における肥満（BMI≧25kg/m²）、高血圧、高脂血症、糖尿病の合併症（MetS因子数）と結石形成リスク（初発/再発、単発/多発、高カルシウム尿、高尿酸尿、高シュウ酸尿、低クエン酸尿）の関係について検討した。解析に際しては、①下部尿路結石、②リノ酸マグネシウムアンモニウム結石、シスチン結石、その他の結石、③結石形成の原因（尿流停滞、尿路感染、長期臥床、原発性上皮細胞機能不全症、腎細管性アシドーシス、シスチン結石、腎瘜）を有するものを除外し、最終的に26,246例を対象とした。

MetS因子を多く有する患者では再発症例や多発症例が有意に多くみとめられた（Fig.3A）。すなわちMetS患者では再発性や多発性の尿路結石症が多く、MetSは尿路結石形成のリスク因子であることが明らかに示された（Fig.1）。さらに、MetS因子を多く有する患者では高カルシウム尿、高尿酸尿、高シュウ酸尿が有意に多かった（Fig.3B）。低クエン酸尿についても有意ではないものの、MetS患者に多い傾向がみられた。Saricaらは、肥満患者（BMI≧25kg/m²）では尿中シュウ酸およびカルシウム排泄量が有意に多く、クエン酸排泄量が少ないことを報告している[14]。また、糖尿病患者でも尿中シュウ酸排泄量が多いことや[15]、高血圧患者では尿中カルシウム排泄量が多いことも報告されている[16]。

このようにMetS患者では尿pH低下や高尿酸尿から尿酸結石が形成されやすいののみならず、高シュウ酸尿、高カルシウム尿、低クエン酸尿によってシュウ酸カルシウム結石も形成されやすくなっていると考えられる（Fig.1）。

メタボリックシンドロームモデルラットを用いた基礎の検討

われわれは、MetSによる尿路結石形成機序をさらに詳しく検討するため、過去、内臓脂肪蓄積からヒトのMetSに類似した病態を呈するOLETF（Otsuka Long-Evans Tokushima fatty）ラットを用いた基礎研究を進めてきた（Fig.4）。まず、4週齢のOLETFラットおよび対照のLETOラットにシュウ酸前駆物質である75%エチレングリコールの自由飲水下に2週間摂取し、腎におけるシュウ酸カルシウム結晶沈着量を比較したところ、前者より多くの結晶沈着が認められた[17]。また、OLETFラットでは体重増加、高血糖、インスリン抵抗性の出現とともにLETOラットに比較して有意に尿pHおよび尿中クエン酸排泄量が低下し、尿中尿酸およびカルシウム排泄量が増加していいた[18]。さらに、10週齢・雌OLETFラットにインスリン抵抗性改善剤であるビオグリタゾン（3mg/kg/dayあるいは10mg/kg/day）を4週間経口投与したところ、インスリン抵抗性の改善とともに尿pHは対照に比べて有意に上昇していた（p=0.07, p＜0.01）。

また、尿中クエン酸排泄量についても有意差は見られないもののビオグリタゾン投与によって増加する傾向がみられた[19]。

こうした動物実験のデータは、MetSではシュウ酸カルシウム結石が形成されやすいという疫学研究や臨床研究の結果と一致するのみならず、インスリン抵抗性がMetSにおける尿路結石形成の鍵を担っていることを示唆している。尿路結石形成過程には、われわれが検討してきた尿化学異常の他に、オステオポテンシンなどの高分子物質、尿細管細胞への結晶付着、細胞障害、腎小管における炎症なども関与することが知られている。今後は、MetSにおける内臓脂肪蓄積やインスリン抵抗性がこうした結石形成における様々な過程に及ぼす影響についても検討する必要がある。

尿路結石予防の新しい考え方

上述のとおり、MetS因子の重積は動脈硬化性疾患のみならず尿路結石症（シュウ酸カルシウム結石および尿酸結石）のリスクファクターであると言える。しかしながら、尿路結石症は長期的にみて直接生命に関わることの少ない疾患であり、また、体外衝撃波破砕術やエンドウロロジーといった低侵襲手術の発展により容易に結石が除去できるようになったため、患者のみならず医療従事者にも再発予防への関心が薄れていていることが危惧される。比較的若年層に多い尿路結石の発症をメタボリックシンドロームの警鐘と捉えることによって、結石形成の原因を明らかにし改善しようという再発予防の重要性を患者および医療従事者が再認識する必要がある。尿路結石症診療ガイドライン
粉状薬において腎結石治療薬であるフィブラート系薬剤（PPARα アゴニスト）にはインスリン抵抗性改善によって酸性尿を予防する作用もあり、ことに臨床的に確認されている21)。また、降圧剤であるアンジオテンシン受容体拮抗薬は動物実験においてシュウ酸カルシウム結石形成を抑制する効果が報告されている22)。こうした MetS の種々の病態に対して用いられる薬剤は新たな尿路結石予防薬として応用できる可能性があり、今後の検討が期待される。

文 献

1) Yasui T, Iguchi M, Suzuki S, et al.: Prevalence and epidemiological characteristics of urolithiasis in Japan: national trends between 1965 and 2005. Urology 71: 209–213, 2008
2) 井口正典: 上部尿路結石症の再発予防に対する食事指導の効果. 臨泌 55: 293–304, 2001
3) Taylor EN, Stamper MJ and Curhan GC: Obesity, weight gain, and the risk of kidney stones. JAMA 293: 255–462, 2005
4) Taylor EN, Stamper MJ and Curhan GC: Diabetes mellitus and the risk of nephrolithiasis. Kidney Int 68: 1230–1235, 2005
5) Madore F, Stamper MJ, Rimn EB, et al.: Nephrolithiasis and risk of hypertension. Am J Hypertens 11: 46–53, 1998
6) Madore F, Stamper MJ, Willett WC, et al.: Nephrolithiasis and risk of hypertension in women. Am J Hypertens 32: 802–807, 1998
7) West B, Luke A, Durazo-Arvizu RA, et al.: Metabolic syndrome and self-reported history of kidney stones: the national health and nutrition examination survey (NHANES III) 1994–1998. Am J Kidney Dis 51: 741–747, 2008
8) 射場昭典, 柄本康夫, 原 薫: 生活習慣病患者の尿路結石症成分についての検討: 日尿路結石症会誌 6: 81–85, 2008
9) Daudon M, Lacour B and Jungers P: Influence of body size on urinary stone composition in men and women. Urol Res 34: 193–199, 2006
10) Daudon M, Traxer O, Conort P, et al.: Type 2 diabetes increases the risk for uric acid stones. J Am Soc Nephrol 17: 2026–2033, 2006
11) Sakhaee K: Nephrolithiasis as a systemic disorder. Curr Opin Nephrol Hypertens 17: 304–309, 2008
12) Bobulescu IA, Dubree M, Zhang J, et al.: Effect of renal lipid accumulation on proximal tubule Na⁺/H⁺ exchange and ammonium secretion. Am J Physiol Renal Physiol 249: F1315–F1322, 2008
13) Bobulescu IA, Dubree M, Zhang J, et al.: Reduction of renal triglyceride accumulation: effects on proximal tubule Na⁺/H⁺ exchange and urinary acidification. Am J Physiol Renal Physiol 297: F1419–F1426, 2009
14) Sarica K, Altay B and Erturhan S: Effect of being overweight on stone-forming risk factors. Urology 71: 771–775, 2008
15) Eisner BH, Porten SP, Bechis SK, et al.: Diabetic kidney stone formers excrete more oxalate and have lower urine pH than nondiabetic stone formers. J Urol 183: 2244–2248, 2010
16) Eisner BH, Porten SP, Bechis SK, et al.: Hypertension is associated with increased urinary calcium excretion in patients with nephrolithiasis. J Urol 183: 576–579, 2010
17) 岡本昌夫, 重松 隆, 柄本康夫, ほか: メタボリックシンドロームラットにおける腎結石形成についての検討. 日尿路結石症会誌 6: 123–127, 2008
18) Iba A, Kohijimoto Y, Mori T, et al.: Insulin resistance increases the risk of urinary stone formation in a rat model of metabolic syndrome. BJU Int (in press)
19) 尿路結石症診療ガイドライン. 日本泌尿器科学会, 日本Endourology・ESWL学会, 日本尿路結石症学会編, 金原出版, 東京, 2002
20) Sarafidis PA and Bakris GL: Protection of the kidney by thiazolidinediones: an assessment from bench to bedside. Kidney Int 70: 1223–1233, 2006
21) Takahashi S, Inokuchi T, Kobayashi T, et al.: Relationship between insulin resistance and low urinary pH in patients with gout, and effects of PPARα
agonisits on urine pH. Horm Metab Res 39: 511-514, 2007

22) Toblli JE, Ferder L, Stella I, et al.: Effects of angiotensin II subtype 1 receptor blockade by losartan on tubulointerstitial lesions caused by hyperoxaluria. J Urol 168: 1550-1555, 2002

(Received on October 14, 2010)
(Accepted on October 18, 2010)