On the spectrum of critical almost Mathieu operators in the rational case

S. Jitomirskaya, L. Konstantinov, I. Krasovsky

Abstract

We derive a new Chambers-type formula and prove sharper upper bounds on the measure of the spectrum of critical almost Mathieu operators with rational frequencies.

1 Introduction

The Harper operator, a.k.a. the discrete magnetic Laplacian\(^1\), is a tight-binding model of an electron confined to a 2D square lattice in a uniform magnetic field orthogonal to the lattice plane and with flux \(2\pi\alpha\) through an elementary cell. It acts on \(\ell^2(\mathbb{Z}^2)\) and is usually given in the Landau gauge representation

\[
(H(\alpha)\psi)_{m,n} = \psi_{m,n-1} + \psi_{m,n+1} + e^{-i2\pi\alpha n}\psi_{m-1,n} + e^{i2\pi\alpha n}\psi_{m+1,n},
\]

first considered by Peierls \[18\], who noticed that it makes the Hamiltonian separable and turns it into the direct integral in \(\theta\) of operators on \(\ell^2(\mathbb{Z})\) given by:

\[
(H_{\alpha,\theta}\varphi)(n) = \varphi(n-1) + \varphi(n+1) + 2\cos 2\pi(\alpha n + \theta)\varphi(n), \quad \alpha, \theta \in [0,1). \quad (2)
\]

In physics literature, it also appears under the names Harper’s or the Azbel-Hofstadter model, with both names used also for the discrete magnetic Laplacian \(H(\alpha)\). In mathematics, it is universally called the critical almost Mathieu operator.\(^2\) In addition to importance in physics, this model is of special interest, being at the boundary of two reasonably well understood regimes: (almost) localization and (almost) reducibility, and not being amenable to methods of either side. Recently, there has been some progress in the study of the fine structure of its spectrum \[7, 8, 10, 14, 16\].

Denote the spectrum of an operator \(H\), as a set, by \(\sigma(H)\). An important object is the union of \(\sigma(H_{\alpha,\theta})\) over \(\theta\), which coincides with the spectrum of \(H(\alpha)\). We denote it \(S(\alpha) := \sigma(H(\alpha)) = \cup_{\theta \in [0,1]} \sigma(H_{\alpha,\theta})\). Note that by the general theory of ergodic operators, if \(\alpha\) is irrational, \(\sigma(H_{\alpha,\theta})\) is independent of \(\theta\). We denote the Lebesgue measure of a set \(A\) by \(|A|\).

For irrational \(\alpha\), the Lebesgue measure \(|S(\alpha)| = 0\), and \(S(\alpha)\) is a set of Hausdorff dimension no greater than 1/2 \[15, 2, 9\]. The proof of the Hausdorff dimension result in \[9\]

\(^1\)The name “discrete magnetic Laplacian” was first introduced by M. Shubin in \[19\].

\(^2\)This name was originally introduced by Barry Simon \[20\].
(which was a conjecture of D. J. Thouless) is based on upper bounds of the measure of the spectrum for \(\alpha \in \mathbb{Q} \) and a strong continuity. For rational \(\alpha = \frac{p_0}{q_0} \), where \(p_0, q_0 \) are coprime positive integers, last obtained the bounds [15, Lemma 1]:

\[
\frac{2(\sqrt{5} + 1)}{q_0} < |S\left(\frac{p_0}{q_0}\right)| < \frac{8\pi}{q_0},
\]

where \(e = \exp(1) = 2.71 \ldots \). While the upper bound in (3) was sufficient for the argument of [9], the measure of the spectrum is subject to another conjecture of Thouless [21, 22]: that in the limit \(p_n/q_n \rightarrow \alpha \), we have \(q_n|S(p_n/q_n)| \rightarrow c \), where \(c = 32C_c/\pi = 9.32 \ldots \),
\(C_c = \sum_{k=0}^{\infty}(-1)^k(2k+1)^{-2} \) being the Catalan constant. Thouless provided a partly heuristic argument in the case \(p_n = 1, q_n \rightarrow \infty \). A rigorous proof for \(\alpha = 0 \) and \(p_n = 1 \) or \(p_n = 2, q_n \) odd, was given in [6].

The purpose of this note is to present a sharper upper bound, for all \(\alpha \in \mathbb{Q} \):\n
Theorem 1. For all positive coprime integers \(p_0 \) and \(q_0 \),

\[
|S\left(\frac{p_0}{q_0}\right)| \leq \frac{4\pi}{q_0}.
\]

Thus, the upper bound is reduced from \(8e = 21.74 \ldots \) to \(4\pi = 12.56 \ldots \). The way we prove Theorem 1 is very different from that of [15]; we use the chiral gauge representation [9] and Lidskii’s inequalities. The chiral gauge representation of the almost Mathieu operator also leads to a new type of Chambers’ relation (equations (14), (15) below).

2 Proof of Theorem 1

Consider the following operator on \(\ell^2(\mathbb{Z}) \):

\[
(H_{\alpha,\theta}\varphi)(n) = 2\sin 2\pi(\alpha(n-1)+\theta)\varphi(n-1) + 2\sin 2\pi(\alpha n+\theta)\varphi(n+1), \quad \alpha, \theta \in [0, 1),
\]

and define \(\tilde{S}(\alpha) := \cup_{\theta \in [0, 1]} \sigma(H_{\alpha,\theta}) \). It was shown in [9, Theorem 3.1] that the operators
\(M_{2\alpha} := \oplus_{\theta \in [0, 1]} H_{2\alpha,\theta} \) and \(\tilde{M}_{\alpha} := \oplus_{\theta \in [0, 1]} \tilde{H}_{\alpha,\theta} \) are unitarily equivalent, so that \(S(\alpha) = \tilde{S}(\alpha/2) \).

(Note that \(\sigma(H_{2\alpha,\theta}) \neq \sigma(\tilde{H}_{\alpha,\theta}) \), in general.) See also related partly non-rigorous considerations in [17, 11, 23, 12, 13], and an application of the rational case in [14]. Operator (4) corresponds to the chiral gauge representation of the Harper operator.

From now on, we always consider the case of rational \(\alpha \). Furthermore, the analysis below for \(q_0 = 1, q_0 = 2 \) becomes especially elementary, and gives \(|S(1)| = 8 \), \(|S(1/2)| = 4\sqrt{2} \), so that Theorem 1 obviously holds in these cases. From now on, we assume \(q_0 \geq 3 \).

If \(p_0 \) is even, define \(p := \frac{p_0}{2} \) and \(q := q_0 \) (note that \(q \) is necessarily odd in this case). This corresponds to case I below. If \(p_0 \) is odd, define \(p := p_0 \) and \(q := 2q_0 \). This corresponds to case II below. We note that in either case \(p \) and \(q \) are coprime and \(S(p_0/q_0) = \tilde{S}(p/q) \).

Let \(b(x) := 2\sin(2\pi x) \), and further identify \(b_n(\theta) := b((p/q)n+\theta) \). For the operator \(\tilde{H}_{\frac{q}{p},\theta} \), Floquet theory states that \(E \in \sigma(\tilde{H}_{\frac{q}{p},\theta}) \) if and only if the equation \((\tilde{H}_{\frac{q}{p},\theta}\varphi)(n) = E\varphi(n) \) has
a solution \(\{ \varphi(n) \}_{n \in \mathbb{Z}} \) satisfying \(\varphi(n + q) = e^{ikq}\varphi(n) \) for all \(n \), and for some real \(k \). Therefore, for a fixed \(k \), there exist \(q \) values of \(E \) satisfying the eigenvalue equation

\[
B_{\theta,k,\ell} \begin{pmatrix} \varphi(\ell) \\ \vdots \\ \varphi(\ell + q - 1) \end{pmatrix} = E \begin{pmatrix} \varphi(\ell) \\ \vdots \\ \varphi(\ell + q - 1) \end{pmatrix}
\]

(5)

for any \(\ell \), where

\[
B_{\theta,k,\ell} := \begin{pmatrix} 0 & b_\ell & 0 & 0 & \cdots & 0 & 0 & e^{-ikq}b_{\ell+q-1} \\ b_\ell & 0 & b_{\ell+1} & 0 & \cdots & 0 & 0 & 0 \\ 0 & b_{\ell+1} & 0 & b_{\ell+2} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & b_{\ell+q-3} & 0 & b_{\ell+q-2} \\ e^{ikq}b_{\ell+q-1} & 0 & 0 & 0 & \cdots & 0 & b_{\ell+q-2} & 0 \end{pmatrix}
\]

(6)

Thus, the eigenvalues of \(B_{\theta,k,\ell} \) are independent of \(\ell \).

2.1 Chambers-type formula

The celebrated Chambers’ formula presents the dependence of the determinant of the almost Mathieu operator with \(\alpha = p_0/q_0 \) restricted to the period \(q_0 \) with Floquet boundary conditions, on the phase \(\theta \) and quasimomentum \(k \). In the critical case it is given by (see, e.g., [15])

\[
\det(A_{\theta,k,\ell} - E) = \Delta(E) - 2(-1)^{q_0}(\cos(2\pi q_0 \theta) + \cos(kq_0)),
\]

(7)

where

\[
A_{\theta,k,\ell} := \begin{pmatrix} a_\ell & 1 & 0 & 0 & \cdots & 0 & 0 & e^{-ikq} \\ 1 & a_{\ell+1} & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & a_{\ell+2} & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & a_{\ell+q-2} & 1 \\ e^{ikq} & 0 & 0 & 0 & \cdots & 0 & 1 & a_{\ell+q-1} \end{pmatrix}, \quad \ell \in \mathbb{Z},
\]

(8)

\[
a(x) := 2\cos(2\pi x), \quad a_\theta(\theta) := a((p_0/q_0)n + \theta),
\]

(9)

and \(\Delta \), the discriminant\(^3\), is independent of \(\theta \) and \(k \). An immediate corollary of this formula is that \(S\left(\frac{p_0}{q_0}\right) = \Delta^{-1}([-4, 4]) \), e.g., [15].

Here we obtain a formula of this type for \(\det(B_{\theta,k,\ell} - E) \). Indeed, as usual, separating the terms containing \(k \) in the determinant, we obtain, for the characteristic polynomial \(D_{\theta,k}(E) := \det(B_{\theta,k,\ell} - E) \):

\[
D_{\theta,k}(E) = D_g^{(0)}(E) - (-1)^q b_0 \cdots b_{q-1} \cdot 2\cos(kq),
\]

(10)

where \(D_g^{(0)}(E) \) is independent of \(k \) and equal therefore to \(D_{\theta,k=\frac{p_0}{q_0}}(E) \).

For the product of \(b_j \)'s we have:

\(^3\)In [15], the discriminant differs from \(\Delta(E) \) by the factor \((-1)^{q_0}\).
Lemma 1.

\[b_0 \cdots b_{q-1} = \prod_{j=0}^{q-1} 2 \sin 2\pi \left(\frac{p}{q} j + \theta \right) \]
\[= 4 \sin(\pi q \theta) \sin \pi q(\theta + 1/2) = 2(\cos(\pi q/2) - \cos \pi q(2\theta + 1/2)). \] (11)

Proof. To evaluate the product of \(b_j \)'s, we expand sine in terms of exponentials and use the formula\[1 - z^{-q} = \prod_{j=0}^{q-1} (1 - z^{-1} e^{2\pi i q j}). \] An alternative derivation can go along the lines of the proof of Lemma 9.6 in [1].

Substituting (11) into (10), we have

\[D_{\theta,k}(E) = D_{\theta,0}^{(0)}(E) - 8(-1)^q \sin(\pi q \theta) \sin \pi q(\theta + 1/2) \cos(kq). \] (12)

We can further obtain the dependence of \(D_{\theta,0}^{(0)}(E) \) on \(\theta \):

Lemma 2.

\[D_{\theta,0}^{(0)}(E) = \widetilde{\Delta}(E) + \begin{cases} 0, & q \text{ odd} \\ 4(\cos(2\pi q \theta) - 1), & q \text{ even}, \end{cases} \]

where the discriminant \(\widetilde{\Delta}(E) := D_{\theta,0}^{(0)}(E) \) is independent of \(\theta \).

Proof. Since \(D_{\theta,k}(E) \) is independent of \(\ell \), it is \(1/q \) periodic in \(\theta \), i.e., \(D_{\theta,k}(E) = D_{\theta+1/q,k}(E) \), and by (10) so is \(D_{\theta,0}^{(0)}(E) \). Therefore, since, clearly, \(D_{\theta,0}^{(0)}(E) = \sum_{n=-q}^{q} c_n(E)e^{2\pi i q n} \), the terms \(c_k \) other than \(k = mq \) vanish, and \(D_{\theta,0}^{(0)}(E) \) has the following Fourier expansion:

\[D_{\theta,0}^{(0)}(E) = c_0(E) + c_q e^{2\pi i q \theta} + c_{-q} e^{-2\pi i q \theta}. \]

It is easily seen that the \(c_q \) and \(c_{-q} \) can be obtained from the expansion of the determinant and that, moreover, they do not depend on \(E \). Expanding \(D_{\theta,0}^{(0)}(E) \) with \(E = 0 \) in rows and columns (cf. [14]), we obtain

\[D_{\theta,0}^{(0)}(0) = D_{\theta,k=\frac{q-2}{2}}(0) = \begin{cases} 0, & q \text{ odd} \\ (-1)^{q/2}(b_0^2 b_2^2 \cdots b_{q-2}^2 + b_1^2 b_3^2 \cdots b_{q-1}^2), & q \text{ even}, \end{cases} \] (13)

This gives \(c_q = c_{-q} = 0 \) for \(q \) odd, and \(c_q = \prod_{j=0}^{q-2} e^{8\pi i j} + \prod_{j=0}^{q-2} e^{4\pi i j(2j+1)} = 2 = c_{-q}, \) for \(q \) even. It remains to denote \(\widetilde{\Delta}(E) = c_0(E) \) for \(q \) odd, and \(\widetilde{\Delta}(E) = c_0(E) + 4 \) for \(q \) even, and the proof is complete.

We therefore have, by (12) and Lemma 2:

Lemma 3 (Chambers-type formula).

\[D_{\theta,k}(E) = \widetilde{\Delta}(E) + 4(-1)^{(q-1)/2} \sin(2\pi q \theta) \cos(kq), \quad q \text{ odd.} \] (14)
\[D_{\theta,k}(E) = \widetilde{\Delta}(E) - 4(1 - \cos(2\pi q \theta))(1 + (-1)^{(q-1)/2} \cos(kq)), \quad q \text{ even.} \] (15)
Note that $\tilde{\Delta}(E)$ is a polynomial of degree q independent of $k \in \mathbb{R}$ and $\theta \in [0, 1)$. By Floquet theory, the spectrum $\sigma(\tilde{H}_{q, \theta})$ is the union of the eigenvalues of $B_{\theta, k, \ell}$ over k, a collection of q intervals.

We make the following observations.

Case I: q is odd.

By (14), $D_{\theta, k}(E) \equiv \det(B_{\theta, k, \ell} - E) = 0$ if and only if $\tilde{\Delta}(E) = 4(-1)^{(q+1)/2} \sin(2\pi q \theta) \cos(k q)$. Thus, $\sigma(\tilde{H}_{q, \theta})$ is the preimage of $[-4| \sin(2\pi q \theta)|, 4| \sin(2\pi q \theta)|]$ under the mapping $\tilde{\Delta}(E)$. If $\theta = m/(2q)$, $m \in \mathbb{Z}$, $\sigma(\tilde{H}_{q, \theta})$ is a collection of q points where $\tilde{\Delta}(E) = 0$. (In this case, $b_0(m/(2q)) = 0$, so that \tilde{H} splits into the direct sum of an infinite number of copies of a q-dimensional matrix.)

We note that the spectra $\sigma(\tilde{H}_{q, \theta})$ for different θ are nested in one another as θ grows from 0 to $1/(4q)$; in particular, for each $\theta \in [0, 1)$,

$$\sigma(\tilde{H}_{q, \theta}) = \tilde{\Delta}^{-1}([-4| \sin(2\pi q \theta)|, 4| \sin(2\pi q \theta)|]) \subseteq \sigma(\tilde{H}_{q, \theta, \psi_{q/4}}) = \tilde{\Delta}^{-1}([-4, 4]).$$

This implies that all the maxima of $\tilde{\Delta}(E)$ are no less than 4, and all the minima are no greater than -4. Moreover, taking the union over all $\theta \in [0, 1)$ gives:

$$\tilde{S}\left(\frac{p}{q}\right) = \sigma(\tilde{H}_{q, \theta, \psi_{q/4}}) = \tilde{\Delta}^{-1}([-4, 4]).$$

Clearly, it is sufficient to consider only $\theta \in [0, 1/(4q)]$.

Case II: q is even. This case is similar to case I, so we omit some details for brevity. By (15), $D_{\theta, k}(E) = 0$ if and only if $\tilde{\Delta}(E) = 4(1 - \cos(2\pi q \theta))(1 + (-1)^{(q)/2} \cos(k q))$. Considering the cases $k = 0, \frac{\pi}{q}$, it is easy to see that $\sigma(\tilde{H}_{q, \theta})$ is the preimage of $[0, 8 - 8 \cos(2\pi q \theta)]$ under the mapping $\tilde{\Delta}(E)$. If $\theta = m/q$, $m \in \mathbb{Z}$, $\sigma(\tilde{H}_{q, \theta})$ is a collection of q points where $\tilde{\Delta}(E) = 0$.

We note that the spectra $\sigma(\tilde{H}_{q, \theta})$ for different θ are nested in one another as θ grows from 0 to $1/(2q)$; in particular, for each $\theta \in [0, 1)$,

$$\sigma(\tilde{H}_{q, \theta}) = \tilde{\Delta}^{-1}([0, 8 - 8 \cos(2\pi q \theta)]) \subseteq \sigma(\tilde{H}_{q, \theta, \psi_{q/4}}) = \tilde{\Delta}^{-1}([0, 16]).$$

This implies that all the maxima of $\tilde{\Delta}(E)$ are no less than 16, and all the minima are no greater than 0. Moreover, taking the union over all $\theta \in [0, 1)$ gives:

$$\tilde{S}\left(\frac{p}{q}\right) = \sigma(\tilde{H}_{q, \theta, \psi_{q/4}}) = \tilde{\Delta}^{-1}([0, 16]).$$

Clearly, it is sufficient to consider only $\theta \in [0, 1/(2q)]$.

In this case of even q we can say more about the form of $\tilde{\Delta}(E)$. Note that $b_0(0) = b_{q/2}(0) = 0$ and $b_k(0) = b_{-k}(0)$. Recall that by Floquet theory, $D_{\theta, k}(E) = \det(B_{\theta, k, \ell} - E)$ is independent of the choice of ℓ. For convenience, choose $\ell = -q/2 + 1$. It is easily seen that $B_{\theta=0,k,\ell=-q/2+1}$ decomposes into a direct sum, and moreover $\tilde{\Delta}(E) = D_{\theta=0,k}(E) = (-1)^{q/2} P_{q/2}(-E) P_{q/2}(E)$, where $P_{q/2}(E)$ is a polynomial of degree $q/2$, odd if $q/2$ is odd, and even if $q/2$ is even (as
it is a characteristic polynomial of a tridiagonal matrix with zero main diagonal). Thus \(\Delta(E) = P_{q/2}(E)^2 \) is a square.

The discriminants \(\tilde{\Delta}(E) \equiv \Delta_{p/q}(E) \) and \(\Delta(E) \equiv \Delta_{p_0/q_0}(E) \) are related in the following way:

Lemma 4. For \(q \) odd,

\[
\tilde{\Delta}_{p/q}(E) = \Delta_{p_0/q_0}(E), \quad p_0 = 2p, \quad q_0 = q.
\]

For \(q \) even,

\[
\tilde{\Delta}_{p/q}(E) = \Delta^2_{p_0/q_0}(E), \quad p_0 = p, \quad q_0 = q/2.
\]

Proof. Case I: \(q \) is odd. Here, by our definitions at the start of the section, \(p_0 = 2p \) and \(q_0 = q \). \(\Delta_{p/q}(E) \) and \(\Delta_{p_0/q_0}(E) \) are polynomials in \(E \) of degree \(q \) with the same coefficient \(-1\) of \(E^q \). Since \(\tilde{\Delta}(E) = \Delta(E) = \pm 4 \) at the \(2q \geq q + 1 \) distinct edges of the bands (cf. [5, 3.3]), these polynomials coincide: \(\tilde{\Delta}(E) = \Delta(E) \) for each \(E \).

Case II: \(q \) is even. Here, \(p_0 = p \) and \(q_0 = q/2 \). \(\tilde{S}\left(\frac{q}{q}\right) = S\left(\frac{p_0}{q_0}\right) \) is the preimage of \([0, 16]\) under \(\tilde{\Delta}_{p/q} \) and of \([-4, 4]\) under \(\Delta_{p_0/q_0} \), hence also of \([0, 16]\) under \(\Delta^2_{p_0/q_0} \). On the other hand, we have seen above that \(\tilde{\Delta}(E) = P_{q/2}^2(E) \) for some polynomial \(P_{q/2}(E) \) of degree \(q/2 = q_0 \). Thus, \(P_{q/2}^2(E) \) and \(\Delta^2(E) \) coincide at the \(2q_0 \geq q_0 + 1 \) (for \(q_0 \) odd) and \(2q_0 - 1 \geq q_0 + 1 \) (for \(q_0 \) even) distinct edges of the bands (cf. [5, 3.3]; the central bands merge for \(q_0 \) even), so these polynomials of degree \(q \) are equal: \(\tilde{\Delta}(E) = \Delta^2(E) \) for each \(E \).

2.2 Measure of the spectrum

The rest of the proof follows the argument of [3], namely it uses Lidskii’s inequalities to bound \(|\tilde{S}(E)| \). The key observation is that choosing \(\ell \) appropriately, we can make the corner elements of the matrix \(B_{q,k,\ell} \) very small, of order \(1/q \) when \(q \) is large. This is not possible to do in the standard representation for the almost Mathieu operator. Here are the details.

Case I: \(q \) is odd. Assume without loss of generality that \((-1)^{(q+1)/2} > 0, \; \theta \in (0, 1/(4q)]\). (If \((-1)^{(q+1)/2} < 0, \) the analysis is similar.) Then the eigenvalues \(\{\lambda_i(\theta)\}_{i=1}^q \) of \(B_{q,k=0,\ell} \) labelled in decreasing order are the edges of the spectral bands where \(\Delta(E) \) reaches its maximum \(4 \sin(2\pi q \theta) \) on the band; and the eigenvalues \(\{\tilde{\lambda}_i(\theta)\}_{i=1}^q \) of \(B_{q,k=\pi/q,\ell} \) labelled in decreasing order are the edges of the spectral bands where \(\tilde{\Delta}(E) \) reaches its minimum \(-4 \sin(2\pi q \theta) \) on the band. Then

\[
|\sigma(\tilde{H}_{q,\ell})| = \sum_{j=1}^q (-1)^{q-j} (\tilde{\lambda}_j(\theta) - \lambda_j(\theta)) = \sum_{j=1}^{(q+1)/2} (\hat{\lambda}_{2j-1}(\theta) - \lambda_{2j-1}(\theta)) + \sum_{j=1}^{(q-1)/2} (\lambda_{2j}(\theta) - \hat{\lambda}_{2j}(\theta));
\]

\[
\tilde{\lambda}_j(\theta) - \lambda_j(\theta) > 0, \quad \text{if } j \text{ is odd}; \quad \hat{\lambda}_j(\theta) - \lambda_j(\theta) < 0, \quad \text{if } j \text{ is even}.
\]

(22)
Now we view $B_{\theta,k=\pi/q,\ell}$ as $B_{\theta,k=0,\ell}$ with the added perturbation

$$B_{\theta,k=\pi/q,\ell} - B_{\theta,k=0,\ell} = \begin{pmatrix} -2b_{\ell+q-1} \\ -2b_{\ell+q-1} \end{pmatrix},$$

which has the eigenvalues $\{E_i(\theta)\}_{i=1}^q$ given by:

$$E_q(\theta) = -2|b_{\ell+q-1}| < 0 = E_{q-1}(\theta) = \cdots = E_2(\theta) = 0 < 2|b_{\ell+q-1}| = E_1(\theta).$$

The Lidskii inequalities (e.g., [4]) are:

Theorem 2. For any $q \times q$ self-adjoint matrix M, we denote its eigenvalues by $E_1(M) \geq E_2(M) \geq \cdots \geq E_q(M)$. For $q \times q$ self-adjoint matrices A and B, we have:

$$E_{i_1}(A+B) + \cdots + E_{i_m}(A+B) \leq E_{i_1}(A) + \cdots + E_{i_m}(A) + E_1(B) + \cdots + E_m(B);$$

$$E_{i_1}(A+B) + \cdots + E_{i_m}(A+B) \geq E_{i_1}(A) + \cdots + E_{i_m}(A) + E_{q-m+1}(B) + \cdots + E_q(B),$$

for any $1 \leq i_1 < \cdots < i_m \leq q$.

Applying these inequalities with $A = B_{\theta,k=0,\ell}$, $B = B_{\theta,k=\pi/q,\ell} - B_{\theta,k=0,\ell}$ gives:

$$\sum_{j=1}^{(q+1)/2} (\hat{\lambda}_{2j-1}(\theta) - \lambda_{2j-1}(\theta)) \leq \sum_{j=1}^{(q+1)/2} E_j(\theta) = E_1(\theta);$$

$$\sum_{j=1}^{(q-1)/2} (\lambda_{2j}(\theta) - \hat{\lambda}_{2j}(\theta)) \leq - \sum_{j=(q-1)/2}^{q} E_j(\theta) = -E_q(\theta).$$

Substituting these into (22), we obtain:

$$|\sigma(\tilde{H}_{\theta,\ell})| \leq E_1(\theta) - E_q(\theta) = 4|b_{\ell+q-1}|. \quad (23)$$

Moreover, by the invariance of $D_{\theta,k}(E)$ under the mapping $b_n \mapsto b_{n+m}$, for $n = 0, 1, \ldots, q-1$ and any m, we can choose any ℓ in (23), so that

$$|\sigma(\tilde{H}_{\theta,\ell})| \leq 4 \min_{\ell} |b_{\ell+q-1}|. \quad (24)$$

In particular,

$$\left| \tilde{S}\left(\frac{p}{q}\right) \right| = |\sigma(\tilde{H}_{\theta,\ell})| \leq 4 \min_{\ell} \left| b_{\ell+q-1} \left(\frac{1}{4q} \right) \right| = 4 \cdot 2 \left| \sin 2\pi \left(\frac{1}{4q} \right) \right| \leq \frac{4\pi}{q}. \quad (25)$$

Therefore, $|S(\frac{p}{q})| = |\tilde{S}\left(\frac{p}{q}\right)| \leq \frac{4\pi}{q} = \frac{4\pi}{q_0}$, as required.

Case II: q is even. This case is similar to case I, so we omit some details for brevity. This time, the Lidskii equations of Theorem 2 show that $|\tilde{S}(\frac{p}{q})| \leq \frac{8\pi}{q}$. Indeed, as in (24), we have (note the doubling of the eigenvalues for $\tilde{\Delta}(E) = 0$)

$$|\sigma(\tilde{H}_{\theta,\ell})| \leq 4 \min_{\ell} |b_{\ell+q-1}|. \quad (26)$$
In particular,
\[
\left| \tilde{S}(\frac{p}{q}) \right| = |\sigma(\tilde{H}_{\frac{p}{q}, \theta = 1/2q})| \leq 4 \min_{\ell} \left| b_{\ell+q-1}\left(\frac{1}{2q}\right) \right| = 4 \cdot 2 \left| \sin(\pi \frac{1}{2q}) \right| \leq \frac{8\pi}{q}. \tag{27}
\]

Therefore, \(|S(\frac{p_0}{q_0})| = |\tilde{S}(\frac{p_0}{q_0})| \leq \frac{8\pi}{q_0} = \frac{4\pi}{q_0} \), as required. This completes the proof of Theorem 1.

Acknowledgment

The work of S.J. was supported by NSF DMS-1901462. The work of I.K. was supported by the Leverhulme Trust research programme grant RPG-2018-260.

References

[1] A. Avila and S. Jitomirskaya. The Ten Martini Problem. Ann. of Math. 170, 303–342 (2009).
[2] A. Avila and R. Krikorian. Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles. Ann. of Math. 164, 911–940 (2006).
[3] S. Becker, R. Han and S. Jitomirskaya. Cantor spectrum of graphene in magnetic fields. Invent. Math. 218.3, 979–1041 (2019).
[4] R. Bhatia. Perturbation bounds for matrix eigenvalues. Pitman Research Notes in Mathematics Series 162, Essex: Longman 1987.
[5] M.-D. Choi, G.A. Elliott and N. Yui. Gauss polynomials and the rotation algebra. Invent. Math. 99.2, 225–246 (1990).
[6] B. Helffer, P. Kerdelhue, On the total bandwidth for the rational Harper’s equation. Comm. Math. Phys. 173, 2335–356 (1995).
[7] B. Helffer, Q. Liu, Y. Qu and Q. Zhou. Positive Hausdorff Dimensional Spectrum for the Critical Almost Mathieu Operator. Commun. Math. Phys., to appear.
[8] S. Jitomirskaya. On point spectrum at critical coupling. Adv. Math., to appear.
[9] S. Jitomirskaya and I. Krasovsky. Critical almost Mathieu operator: hidden singularity, gap continuity, and the Hausdorff dimension of the spectrum. Preprint (2019). arXiv:1909.04429.
[10] S. Jitomirskaya and S. Zhang. Quantitative continuity of singular continuous spectral measures and arithmetic criteria for quasiperiodic Schrödinger operators, arXiv:1510.07086 (2015).
[11] M. Kohmoto, Y. Hatsugai. Peierls stabilization of magnetic-flux states of two-dimensional lattice electrons. Phys. Rev. B 41, 9527–9529 (1990).

[12] I. V. Krasovsky. Bethe ansatz for the Harper equation: solution for a small commensurability parameter. Phys. Rev. B 59, 322–328 (1999).

[13] I. V. Krasovsky. On the discriminant of Harper’s equation. Lett. Math. Phys. 52, 155–163 (2000).

[14] I. Krasovsky. Central spectral gaps of the almost Mathieu operator. Commun. Math. Phys. 351, 419–439 (2017).

[15] Y. Last. Zero measure spectrum for the almost Mathieu operator. Commun. Math. Phys. 164, 421–432 (1994).

[16] Y. Last and M. Shamis. Zero Hausdorff dimension spectrum for the almost Mathieu operator. Commun. Math. Phys. 348, 729–750 (2016).

[17] V. A. Mandelshtam, S. Ya. Zhitomirskaya. 1D-quasiperiodic operators. Latent symmetries. Commun. Math. Phys. 139, 589–604 (1991).

[18] R. Peierls. Zur Theorie des Diamagnetismus von Leitungselektronen. Zeitschrift für Physik A: Hadrons and Nuclei 80, 763–791 (1933).

[19] M.A. Shubin. Discrete Magnetic Laplacian, Commun. Math. Phys. 164, 259–275 (1994).

[20] B. Simon. Almost periodic Schrödinger operators: a review. Adv. Appl. Math. 3, 463–490 (1982).

[21] D.J. Thouless. Bandwidths for a quasiperiodic tight-binding model. Phys. Rev. B 28, 4272–4276 (1983).

[22] D.J. Thouless. Scaling for the discrete Mathieu equation. Commun. Math. Phys. 127, 187–193 (1990).

[23] P. B. Wiegmann and A. V. Zabrodin. Quantum group and magnetic translations Bethe ansatz for the Azbel-Hofstadter problem. Nucl. Phys. B 422, 495–514 (1994).