A SHORT NOTE ON STATIONARY DISTRIBUTIONS OF UNICHAIN MARKOV DECISION PROCESSES

RONALD ORTNER

Abstract. Dealing with unichain MDPs, we consider stationary distributions of policies that coincide in all but \(n \) states. In these states each policy chooses one of two possible actions. We show that the stationary distributions of \(n + 1 \) such policies uniquely determine the stationary distributions of all other such policies. An explicit formula for calculation is given.

1. Introduction

Definition 1.1. A Markov decision process (MDP) \(\mathcal{M} \) on a (finite) set of states \(S \) with a (finite) set of actions \(A \) available in each state \(s \in S \) consists of

(i) an initial distribution \(\mu_0 \) that specifies the probability of starting in some state in \(S \),

(ii) the transition probabilities \(p_a(i, j) \) that specify the probability of reaching state \(j \) when choosing action \(a \) in state \(i \), and

A (stationary) policy on \(\mathcal{M} \) is a mapping \(\pi : S \to A \).

Note that each policy \(\pi \) induces a Markov chain on \(\mathcal{M} \). We are interested in MDPs, where in each of the induced Markov chains any state is reachable from any other state.

Definition 1.2. An MDP \(\mathcal{M} \) is called unichain, if for each policy \(\pi \) the Markov chain induced by \(\pi \) is ergodic, i.e. if the matrix \(P = (p_{\pi(i)}(i, j))_{i,j \in S} \) is irreducible.

It is a well-known fact (cf. e.g. [1], p.130ff) that for an ergodic Markov chain with transition matrix \(P \) there exists a unique invariant and strictly positive distribution \(\mu \), such that independent of the initial distribution \(\mu_0 \) one has \(\mu_n = \mu_0 P_n \to \mu \), where \(P_n = \frac{1}{n} \sum_{j=1}^{n} P^j \).

2. Main Theorem and Proof

Given \(n \) policies \(\pi_1, \pi_2, \ldots, \pi_n \), we say that another policy \(\pi \) is a combination of \(\pi_1, \pi_2, \ldots, \pi_n \), if for each state \(s \) one has \(\pi(s) = \pi_i(s) \) for some \(i \).

This work was supported in part by the the Austrian Science Fund FWF (S9104-N04 SP4) and the IST Programme of the European Community, under the PASCAL Network of Excellence, IST-2002-506778. This publication only reflects the authors’ views.

\(^1 \)Actually, for aperiodic Markov chains one has even \(\mu_0 P^n \to \mu \), while the convergence behavior of periodic Markov chains can be described more precisely. However, for our purposes the stated fact is sufficient.
Theorem 2.1. Let \mathcal{M} be a unichain MDP and $\pi_1, \pi_2, \ldots, \pi_{n+1}$ pairwise distinct policies on \mathcal{M} that coincide on all but n states s_1, s_2, \ldots, s_n. In these states each policy applies one of two possible actions, i.e. we assume that for each i and each j either $\pi_i(s_j) = 0$ or $\pi_i(s_j) = 1$. Then the stationary distributions of all combinations of $\pi_1, \pi_2, \ldots, \pi_{n+1}$ are uniquely determined by the stationary distributions μ_i of the policies π_i.

More precisely, if we represent each combined policy π by the word $\pi(s_1)\pi(s_2)\ldots\pi(s_n)$, we may assume without loss of generality (by swapping the names of the actions correspondingly) that the policy π we want to determine is $11\ldots1$. Let S_n be the set of permutations of the elements $\{1, \ldots, n\}$. Then setting

$$\Gamma_k := \{\gamma \in S_{n+1} \mid \gamma(k) = n + 1 \text{ and } \pi_j(s_{\gamma(j)}) = 0 \text{ for all } j \neq k\}$$

one has for the stationary distribution μ of π

$$\mu(s) = \frac{\sum_{k=1}^{n+1} \sum_{\gamma \in \Gamma_k} \text{sgn}(\gamma) \mu_k(s) \prod_{j \neq k}^{n+1} \mu_j(s_{\gamma(j)})}{\sum_{s' \in S} \sum_{k=1}^{n+1} \sum_{\gamma \in \Gamma_k} \text{sgn}(\gamma) \mu_k(s) \prod_{j \neq k}^{n+1} \mu_j(s_{\gamma(j)})}.$$

For clarification of Theorem 2.1 we proceed with an example.

Example 2.2. Let \mathcal{M} be a unichain MDP and $\pi_{000}, \pi_{010}, \pi_{101}, \pi_{110}$ policies on \mathcal{M} whose actions differ only in three states s_1, s_2 and s_3. The subinduces of a policy correspond to the word $\pi(s_1)\pi(s_2)\pi(s_3)$, so that e.g. $\pi_{010}(s_1) = \pi_{010}(s_3) = 0$ and $\pi_{010}(s_2) = 1$. Now let $\mu_{000}, \mu_{010}, \mu_{101},$ and μ_{110} be the stationary distributions of the respective policies. Theorem 2.1 tells us that we may calculate the distributions of all other policies that play in states s_1, s_2, s_3 action 0 or 1 and coincide with the above mentioned policies in all other states. In order to calculate e.g. the stationary distribution μ_{111} of policy π_{111} in an arbitrary state s, we have to calculate the sets $\Gamma_{000}, \Gamma_{010}, \Gamma_{101},$ and Γ_{110}. This can be done by interpreting the subinduces of our policies as rows of a matrix. In order to obtain Γ_k one cancels row k and looks for all possibilities in the remaining matrix to choose three 0s that neither share a row nor a column:

\[
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 \\
\end{array}
\]

Each of the matrices now corresponds to a permutation in Γ_k, where k corresponds to the cancelled row. Thus $\Gamma_{000}, \Gamma_{010}$ and Γ_{101} contain only a single permutation, while Γ_{110} contains two. The respective permutation can be read off each matrix as follows: note for each row one after another the position of the chosen 0, and choose $n+1$ for the cancelled row. Thus the permutation for the third matrix is $(2, 1, 4, 3)$. Now for each of the matrices one has a term that consists of four factors (one for each row). The factor for a row j is $\mu_j(s')$, where $s' = s$ if row j was cancelled (i.e. $j = k$), or equals the state that corresponds to the column of row j in which the 0 was chosen. Thus for the third matrix above one gets $\mu_{000}(s_2)\mu_{010}(s_1)\mu_{101}(s)\mu_{110}(s_3)$. Finally, one has to consider the sign for each of the terms which is the sign of the corresponding permutation. Putting
all together, normalizing the output vector and abbreviating \(a_i := \mu_{000}(s_i) \), \(b_i := \mu_{010}(s_i) \), \(c_i := \mu_{101}(s_i) \), and \(d_i := \mu_{110}(s_i) \) one obtains
\[
\mu_{111}(s) = \frac{\mu_{000}(s)b_1 c_2 d_3 - a_1 \mu_{010}(s)c_2 d_3 - a_2 b_1 \mu_{101}(s)d_3 + a_1 b_3 c_2 \mu_{110}(s)}{b_1 c_2 d_3 - a_1 c_2 d_3 - a_2 b_1 d_3 + a_1 b_3 c_2 - a_3 b_1 c_2}.
\]

Theorem 2.1 can be obtained from the following more general result where the stationary distribution of a randomized policy is considered.

Theorem 2.3. Under the assumptions of Theorem 2.1 the stationary distribution \(\mu \) of the policy \(\pi \) that plays in state \(s_i \) \((i = 1, \ldots, n)\) action 0 with probability \(\lambda_i \in [0, 1] \) and action 1 with probability \((1-\lambda_i) \) is given by
\[
\mu(s) = \frac{\sum_{k=1}^{n+1} \sum_{\gamma \in \Gamma_k} \text{sgn}(\gamma) \mu_k(s) \prod_{j=1 \atop j \neq k}^{n+1} f(\gamma(j), j)}{\sum_{s' \in S} \sum_{k=1}^{n+1} \sum_{\gamma \in \Gamma_k} \text{sgn}(\gamma) \mu_k(s') \prod_{j=1 \atop j \neq k}^{n+1} f(\gamma(j), j)},
\]
where \(\Gamma_k := \{ \gamma \in S_{n+1} \mid \gamma(k) = n+1 \} \) and
\[
f(i, j) := \begin{cases}
\lambda_i \mu_j(i), & \text{if } \pi_j(i) = 1 \\
(\lambda_i - 1) \mu_j(i), & \text{if } \pi_j(i) = 0.
\end{cases}
\]

Theorem 2.1 follows from Theorem 2.3 by simply setting \(\lambda_i = 0 \) for \(i = 1, \ldots, n \).

Proof of Theorem 2.3. Let \(S = \{1, 2, \ldots, N\} \) and assume that \(s_i = i \) for \(i = 1, 2, \ldots, n \). We denote the probabilities associated with action 0 with \(p_{ij} := p_0(i, j) \) and those of action 1 with \(q_{ij} := p_1(i, j) \). Furthermore, the probabilities in the states \(i = n+1, \ldots, N \), where the policies \(\pi_1, \ldots, \pi_{n+1} \) coincide, are written as \(p_{ij} := p_{\pi_k(i)}(i, j) \) as well. Now setting
\[
\nu_s := \sum_{k=1}^{n+1} \sum_{\gamma \in \Gamma_k} \text{sgn}(\gamma) \mu_k(s) \prod_{j=1 \atop j \neq k}^{n+1} f(\gamma(j), j)
\]
and \(\nu := (\nu_s)_{s \in S} \) we are going to show that \(\nu P_\pi = \nu \), where \(P_\pi \) is the probability matrix of the randomized policy \(\pi \). Since the stationary distribution is unique, normalization of the vector \(\nu \) proves the theorem. Now
\[
(\nu P_\pi)_s = \sum_{i=1}^{n} \nu_i (\lambda_i p_{is} + (1 - \lambda_i) q_{is}) + \sum_{i=n+1}^{N} \nu_i p_{is}
\]
\[
= \sum_{i=1}^{n} \sum_{k=1}^{n+1} \sum_{\gamma \in \Gamma_k} \text{sgn}(\gamma) \mu_k(i) \prod_{j=1 \atop j \neq k}^{n+1} f(\gamma(j), j) (\lambda_i p_{is} + (1 - \lambda_i) q_{is})
\]
\[
+ \sum_{i=n+1}^{N} \sum_{k=1}^{n+1} \sum_{\gamma \in \Gamma_k} \text{sgn}(\gamma) \mu_k(i) \prod_{j=1 \atop j \neq k}^{n+1} f(\gamma(j), j) p_{is}.
\]
Since
\[
\sum_{i=n+1}^{N} \mu_k(i) p_{is} = \mu_k(s) - \sum_{i: \pi_k(i) = 0} \mu_k(i) p_{is} - \sum_{i: \pi_k(i) = 1} \mu_k(i) q_{is},
\]

\[
= \sum_{i=1}^{n} \nu_i (\lambda_i p_{is} + (1 - \lambda_i) q_{is}) + \sum_{i=n+1}^{N} \nu_i p_{is},
\]

we get
\[
\nu P_\pi = \nu.
\]
this gives
\[
(nP_\pi)_s = \sum_{k=1}^{n+1} \sum_{\gamma \in \Gamma'_k} \text{sgn}(\gamma) \prod_{j=1 \atop j \neq k}^{n} f(\gamma(j), j) \left(\sum_{i=1}^{n} \mu_k(i) \left(\lambda_i p_{is} + (1 - \lambda_i) q_{is} \right) + \mu_k(s) - \sum_{i: \pi_k(i) = 0} \mu_k(i) p_{is} - \sum_{i: \pi_k(i) = 1} \mu_k(i) q_{is} \right)
\]
\[
= \nu_n + \sum_{k=1}^{n+1} \sum_{\gamma \in \Gamma'_k} \text{sgn}(\gamma) \prod_{j=1 \atop j \neq k}^{n} f(\gamma(j), j) \left(\sum_{i: \pi_k(i) = 0} \mu_k(i) (\lambda_i - 1)(p_{is} - q_{is}) + \sum_{i: \pi_k(i) = 1} \mu_k(i) \lambda_i (p_{is} - q_{is}) \right)
\]
\[
= \nu_n + \sum_{i=1}^{n} (p_{is} - q_{is}) \sum_{k=1}^{n+1} \sum_{\gamma \in \Gamma'_k} \text{sgn}(\gamma) f(i, k) \prod_{j=1 \atop j \neq k}^{n} f(\gamma(j), j)
\]

Now it is easy to see that \(\sum_{k=1}^{n+1} \sum_{\gamma \in \Gamma'_k} \text{sgn}(\gamma) f(i, k) \prod_{j=1 \atop j \neq k}^{n} f(\gamma(j), j) = 0 \): fix \(k \) and some permutation \(\gamma \in \Gamma'_k \), and let \(l := \gamma^{-1}(i) \). Then there is exactly one permutation \(\gamma' \in \Gamma'_l \), such that \(\gamma'(j) = \gamma(j) \) for \(j \neq k, l \) and \(\gamma'(k) = i \). The pairs \((k, \gamma) \) and \((l, \gamma') \) correspond to the same summands
\[
f(i, k) \prod_{j=1 \atop j \neq k}^{n} f(\gamma(j), j) = f(i, l) \prod_{j=1 \atop j \neq i}^{n} f(\gamma'(j), j)
\]
– yet, since \(\text{sgn}(\gamma) = -\text{sgn}(\gamma') \), they have different sign and cancel out each other.

References

[1] J.G. Kemeny, J.L. Snell, and A.W. Knapp Denumerable Markov Chains. Springer, 1976.
[2] M.L. Puterman. Markov Decision Processes. Wiley Interscience, 1994.

E-mail address: rortner@unileoben.ac.at

DEPARTMENT MATHEMATIK UND INFORMATIONSTECHNOLOGIE
MONTANUNIVERSITÄT LEOBEN
FRANZ-JOSEF-STRASSE 18
8700 LEOBEN, AUSTRIA