Simulation of the dynamics of primary immunodeficiencies in CD4+ T-cells

Gabriel N. Teku, Mauno Vihinen *
Department of Experimental Medical Science, Lund University, Lund, Sweden

* mauno.vihinen@med.lu.se

Abstract

Primary immunodeficiencies (PIDs) form a large and heterogeneous group of mainly rare disorders that affect the immune system. T-cell deficiencies account for about one-tenth of PIDs, most of them being monogenic. Apart from genetic and clinical information, lots of other data are available for PID proteins and genes, including functions and interactions. Thus, it is possible to perform systems biology studies on the effects of PIDs on T-cell physiology and response. To achieve this, we reconstructed a T-cell network model based on literature mining and TPPIN, a previously published core T-cell network, and performed semi-quantitative dynamic network simulations on both normal and T-cell PID failure modes. The results for several loss-of-function PID simulations correspond to results of previously reported molecular studies. The simulations for TCR PTPRC, LCK, ZAP70 and ITK indicate profound changes to numerous proteins in the network. Significant effects were observed also in the BCL10, CARD11, MALT1, NEMO, IKKB and MAP3K14 simulations. No major effects were observed for PIDs that are caused by constitutively active proteins. The T-cell model facilitates the understanding of the underlying dynamics of PID disease processes. The approach confirms previous knowledge about T-cell signaling network and indicates several new important proteins that may be of interest when developing novel diagnosis and therapies to treat immunological defects.

Introduction

The human immunome consists of the genes and proteins essential both for the innate and adaptive immunity. Interactions between these proteins are indispensable for immune responses [1]. Studies have been carried out to identify and characterize the essential immunome interactome, i.e. the totality of interactions in the immune system [1, 2]. Knowledge from these studies enables the investigation of the dynamic behavior of networks in both health and disease. The immunome interactome varies depending on the cell-type, timing and localization of expressed and active proteins.

CD4+ T-cells are crucial immune response white blood cells. They recognize and bind to antigens on antigen-presenting cells via the cell surface T-cell receptor (TCR) complex [3]. Antigen binding to the TCR triggers a sequence of signaling events that lead to the activation and nuclear transportation of specific transcription factors (TFs) [3]. In the nucleus, these TFs
transactivate genes that are required for T-cell responses. CD4+ T-cells are divided into sub-populations of T helper 1 (Th1), Th2, Th17, regulatory T (Treg) and follicular helper T (Tfh) cells [4]. Each cell type plays different roles in the immune response by virtue of their different master regulator TFs and signature cytokine expression [5].

Here, we investigated the qualitative dynamics of the naïve CD4+ T-cells in both health and in disease in primary immunodeficiencies. Protein interaction networks in T-cells and their role in various diseases have been investigated [6, 7]. Primary immunodeficiencies (PIDs) are intrinsic diseases of the immune system, and are typically rare with heterogeneous phenotypes. Currently about 300 PIDs are known. Disease-causing variants in PIDs have been collected into the IDbases [8] and other databases and are available for more than 150 PIDs. Differential diagnosis of PIDs can be difficult due to overlapping signs and symptoms. Several classification schemes have been made, including the frequently updated classification by the International Union of Immunological Societies (IUIS) expert committee for PIDs [9]. PIDs have also been classified with a network approach that clusters the diseases based on signs, symptoms and laboratory parameters [10]. The severity of PIDs ranges from mild to moderate, and severe to lethal. By integrating the diverse information sources, systems level studies of the underlying mechanisms on PIDs can be conducted.

In systems biology, the reconstruction of cellular networks and their simulations facilitate studies of diseases as perturbations (or alterations) to the networks [11, 12]. These approaches provide insight on the dynamics of biomolecular interactions that drive cellular processes and contribute towards deciphering biological processes in both health and disease. Disease-causing variations can affect protein-protein interaction (PPI) networks at the cellular or tissue level. Studies of quantitative dynamics of PPIs require kinetic parameters and reaction constants. A problem emerges as reaction constants for most of the reactions have not been determined. Further, these network calculations are very computer intensive. The number of parameters, even for a moderate size network is so large that calculations would be very costly and time-consuming. Another approach amenable to larger networks of few tens to hundreds of nodes is to use qualitative and semi-quantitative dynamic methods [13–15], which provide useful models for approximating systems.

In this study, we employed a semi-quantitative method, the normalized HillCube Boolean approach [16], to simulate the dynamics during the activation of naïve CD4+ T-cells. With these simulations, we investigated the mechanisms of perturbations of known PID-causing proteins and revealed novel putative PID-related factors. Semi-quantitative simulations with synchronous updates were performed, and in silico validated. The simulations qualitatively replicated PIDs due to variations in PID-related proteins which disrupt essential signal transduction pathways during T-cell development from pre- to mature CD4+ T-cells [12]. Further, several novel proteins affected by PIDs were identified.

Results

The naïve CD4+ T-cell activation network

We reconstructed the signal transduction network for naïve CD4+ T-cells by using the T cell PPI network, TPPIN [17] as a basis for formulating reaction equations. The nodes and links of the PPI network were used to mine the published literature for valid reaction equations on CD4+ T-cells. The TPPIN is a PPI network that contains 227 core signal transduction interactions derived from integrated, time series, gene expression data sets. This network does not include link directions and, in most cases, lacks cellular context. Thus, we mined manually the direction, interaction and cellular context information by literature survey. We included only signaling interactions that were TCR/CD28-dependent and CD4+ T-cell-specific, leaving 85
interactions, which were used for reconstructing the Boolean network model (S1 Table). The interactions were defined manually as Boolean equations using the sum-of-product (SOP) form. The SOP representation offers a convenient means to represent Boolean equations of a signaling network in a hypergraph [18]. Proteins, i.e. the nodes, represent the Boolean variables. The edges (hyperarcs) represent the interactions between proteins and are signed either activating (+) or inhibiting (-). Edges have a tail that begins from a start node and a head (or arrow), which points to an end node, indicating the direction of signal transduction. Multiple edges with the same end node were summed by an OR operator. The AND gate was used as a product operator for multiple incoming edges that together are required to activate or inhibit a protein. 19 input nodes did not have in-coming links (Fig 1).

We started by analyzing the structure of the network and the signaling paths between the initial events of the TCR-dependent activation and the late events that involve the activation of the major TFs that turn on the expression of response genes. The TCR complex, its co-receptor CD4, and the co-stimulatory receptor CD28, are involved in the initial events, while the TFs AP1, NFAT, and NF-κB control the late events of T-cell activation [3].

The TCR is activated when it binds to an antigen (signal 1) presented by an antigen presenting cell. Another signal (signal 2) through the co-activation receptor CD28 is needed to elicit
activation, survival and response [19]. The multiple paths from receptors to TFs guarantee a fail-safe and robust T-cell activation [20, 21]. It may also imply that the sensitivity of the level of activation is modulated by different routes [22]. On the other hand, signal transduction may be critical if only a single route exists from the receptors, through the network, to the TFs.

We identified signaling paths from signals 1 and 2 to the major response TFs NF-κB, AP1 and NFAT. For this purpose, we converted the Boolean network into an interaction network (Fig 2). Such a network captures the dependencies, interactions, and thus, the paths through which signals are transduced through the network. The interaction network consists of a connected component with 85 nodes interconnected by 146 links. To detect the part of the network with the most cross-talk between the signaling pathways, we identified the strongly connected component that consists of 25 nodes and 48 links (Fig 3).

To identify proteins essential for signal transduction from the receptors to the downstream actuators we analyzed the feedback loops (FBLs) in the network. Those proteins whose Boolean update equations are along most of the FBLs are considered essential. Input and output nodes were not included in the FBLs. We identified 419 such loops, of which the longest spans 20 nodes and the shortest 2 nodes (Fig 4). The median and mean length of the FBLs is 14 nodes long. Among the PID proteins, LCK was in 409 FBLs, ZAP70 in 380, CBM in 316, CARD11 in 312, BCL10 in 210, ITK in 120, PI3K in 110 and MALT1 in 106 FBLs. The other PID proteins, NEMO, IKKB, NFKBIA and MAP3K14, do not occur in any of the FBLs. PTPRC is an input node and is thus not included in any of the FBLs.

Fig 2. Boolean model transformed into its underlying interaction graph. The network consists of nodes and links derived from the Boolean network model without the AND operator. The interaction graph consists of 85 nodes and 146 links, and represents the underlying interaction network of the model. The nodes are as described in Fig 1. The network shows the paths through which signals from the receptors are channeled through the network to the TFs, which turn on the response genes.

https://doi.org/10.1371/journal.pone.0176500.g002
Validation of reconstructed network and identification of the wild type attractor

After the engagement of the TCR complex and the co-activator CD28, a series of signal transduction cascades occur in naïve CD4+ T-cells [23] and are captured by the reconstructed network. The signaling cascades lead to response either via NF-κB, AP1 or NFAT [3]. The reconstructed network is cogent if the major TFs (here TFs NF-κB, AP1 and NFAT that together activate IL2) and the signaling components that lead to their activation are turned on.

To ensure that the reconstructed model reproduces CD4+ T-cell activation, we performed simulations by iteratively changing the initial states of the input nodes while making sure that the network represented the main signaling events. We used normalized HillCube dynamic simulations [16] with signals 1 and 2 turned on and validated the simulations in silico. This network model was used for the subsequent analyses. Additionally, we performed simulations by turning signal 1 on and signal 2 off, and vice versa. When either of the signals were turned off, only AP1 and NFAT, but not NF-κB, were activated.

The normalized HillCube simulations were run until the networks reached their attractor states. The model settled in a cyclic attractor or limit cycle after about 40 update rounds (arbitrary time units, Fig 5). The network subsequently continues in a cycle attractor after about every 20 updates. This attractor is in accordance with published experimental results [3, 24], which also is evident in the activation of the major downstream TFs (AP1, NF-κB, and NFAT) when signals 1 and 2 are turned on.
PID failure analysis

To study the effects of disease-causing variations on the long-term dynamics of naïve CD4+ T-cells, we perturbed PID proteins in the network model and simulated their dynamics with the normalized HillCube update approach. Twelve PIDs are known to affect the proteins in the network including BCL10, CARD11, IKKB, ITK, LCK, MALT1, MAP3K14, NEMO, NFKBIA, PI3K, PTPRC, TCR (TRAC, a component of the TCR complex) and ZAP70. The proteins were identified from the ImmunoDeficiency Resource [25], IDbases [8], the most recent classification by the IUIS expert committee for PIDs [9] and a recent review [26]. These proteins are expressed at the pre-CD4+ stage during T-cell development and differentiation.

The effects of knockouts or overexpression of these proteins to the signaling pathways were investigated by turning them off (on) during simulation. The resulting perturbed attractors were probed for differences compared to the wild type attractor.

The three major TF pathways were dysregulated in the attractors of PIDs involved in the early events of the TCR-dependent T-cell activation including ITK, LCK, PTPRC, TCR and ZAP70 perturbations (Fig 6). AP1 was inactive in the PID attractors for BCL10, CARD11,
ITK, LCK, MALT1, MAP3K14 and PTPRC. The NF-κB pathway was dysregulated in all the PID-perturbed attractors, except that for PI3K and NFBIA. The NFKBIA knockout and the PI3K overexpression simulations were identical to the wild type. The perturbations indicate profound effects in the networks for almost all the PIDs. Several novel proteins were found to be affected by the complete and partial knockouts (knockins) of the PID proteins.

Correlation to PID severity

The severity of PIDs varies greatly from very mild to life-threatening conditions. Severe combined immunodeficiency (SCID) is associated with high susceptibility to bacterial, viral and
fungal infections [27]. Persistent infections with respiratory and gastrointestinal viruses and opportunistic pathogens are frequent and often associated with protracted diarrhea and failure to thrive. According to the IUIS classification [9], most of the PIDs in this study are associated with SCIDs with reduced numbers or absent T and B cells. These include BCL10, CARD11, IKKB, ITK, LCK, MAL'T1, MAP3K14, NEMO, PTPRC, TCR and ZAP70 deficiencies. Interestingly, the attractors for these proteins show severe dysregulation (Fig 6).

Gain-of-function variants in the PIK3CD gene, a catalytic subunit of the PI3K heterodimeric complex is associated with a milder PID [28–30]. Additionally, variants in the gene that code for NFκBIA are associated with various forms of ectodermal dysplasia with immunodeficiency (EDA-ID) [31–34]. The attractors for these two proteins are very similar to the wild type form.

Novel PID-associated proteins

The discovery and cataloging of the PIDs is an ongoing effort. With the improvement, development and reduction in the cost of new technologies, more PIDs are identified. Due to the large number, rarity and overlapping symptoms of PIDs, the diagnosis may be late, difficult and costly. Several efforts have been made to ease diagnosis by classifying PIDs [9, 10], predicting and prioritizing candidate genes and proteins [35–38]. The FBLs of our model and the PID-perturbed attractors from simulations provide information about proteins that affect several pathways and could be involved with PIDs. Proteins which are along at least 20 FBLs include the majority of the investigated PIDs and several proteins essential for CD4+ T cell activation and functions. Interestingly, most of these proteins also indicate abrogated signaling in the attractors for most of the PIDs. To evaluate, in silico, the effects of perturbing the non-PIDs in Table 1, we performed knockout simulations for each node, except for CBL for which knockin simulation was performed, as CBL is turned off in the wild type attractor. Twenty-one (70%) of the perturbed nodes are impaired in TCR-dependent T cell activation. Further, we investigated the Human Gene Connectome (HGC) (ref) and found that many of the proteins involved in numerous FBLs have significant connections to known PID proteins. Taken together, the genes coding for these proteins are worth considering when prioritizing genes during challenging diagnosis.

Discussion

In this study, we used the normalized HillCube approach to simulate the PID knockout effects in the naïve CD4+ T-cell network dynamics. To achieve this, a network was reconstructed based on evidence from the literature and a previously identified core T-cell network. By using normalized HillCube simulations, we refined and in silico validated the reconstructed network. The normalized HillCube perturbation studies qualitatively replicated complete loss-of-function variation effects for several PIDs at CD4+ T-cell developmental stages.

Comparison of the wild type to the PID attractors highlighted significant differences in the signal transduction patterns for ITK, LCK, PTPRC, TCR and ZAP70. The effects of the LCK, PTPRC, TCR and ZAP70 perturbations are severe. Knockout simulations for these proteins qualitatively capture major changes in signaling patterns. The differences between the wild type and MAP3K14, NEMO and IKKB PID simulations were somewhat minor. In the BCL10, MAL'T1, CARD11, MAP3K14, NEMO and IKKB knockouts, the NF-κB pathway was the most affected. This is because these proteins connect receptor-dependent signals to the distal NF-κB pathway [24]. Knockout of any of these genes may cause the IKK complex, the major NF-κB regulator, to be impaired, leaving NFκBIA bound to NFκB1, and preventing its nuclear transportation and function as a TF [24]. These results show that our approach of simulating effects
of protein variations in networks is effective when the affected proteins are in the core of the interconnected network or along non-redundant paths belonging to crucial pathways. No major changes were revealed in overexpression perturbation, as in PI3K, or redundant signaling path between the receptor to the TF. In the NFKBIA PID heterozygous variants that either lack the phosphorylation sites [31, 32] or truncate the protein [34] protect it from phosphorylation-induced proteosomal degradation. The inactivated NFKBIA sequesters NFKB1 in the cytosol [32]. Thus, the deficient NFKBIA acts as a dominant negative form for NFKB1, reducing NFKB1’s activity and causing the reduction of TCR activation-dependent cytokine

Table 1. Number of FBLs along which each protein is in the T cell network model.

Protein	No of FBLs	Effect on NFAT pathway	Effect on NF-κB pathway	Effect on AP1 pathway	BRP	Core proteins^b
LCK	409	0	0	0	0.00275	NFKBIA (PI3K, PTPRC)
MAP1K	404	1	1	1	0.00024	IKKB (CARD11, LCK, MALT1, NEMO, PTPRC, ITK, PI3K, NFKBIA)
ZAP70	380	0	0	0		
DAG	344	1	0	0		
CBM+	316	1	0	0		
PRKCI	312	1	0	0	0.00024	IKKB (CARD11, LCK, MALT1, NEMO, PTPRC, ZAP70, ITK, PI3K)
CARD11	312	1	0	0	0.00281	IKKB (CARD11, MALT1, NEMO, NFKBIA, ZAP70, ITK, PI3K)
MAP3K7	312	1	0	0	0.00048	ITK (LCK, ZAP70, PTPRC, PI3K, NFKBIA, IKKB)
PLCG1	304	1	0	0	0.00167	ITK (PI3K, LCK, ZAP70)
BLK10	210	1	0	0		
LAT	193	1	0	0	0.00119	ZAP70 (PTPRC, ITK, PI3K, LCK, NFKBIA)
CBL	190	0	0	0	0.00114	ITK (PI3K, ZAP70, LCK, PTPRC)
ABL1	189	0	0	0	0.00633	NFKBIA (LCK, ZAP70, ITK, PI3K)
GRAP2	171	1	0	0	0.00048	ITK (PTPRC, PI3K, NFKBIA, IKKB, MALT1)
TRAF6	160	1	0	0	0.00191	NFKBIA (MALT1, IKKB, CARD11, LCK, NEMO, ZAP70, PI3K)
VAV1	120	1	0	0	0.00036	ITK(PI3K, LCK, ZAP70, NFKBIA)
ITK	120	0	0	0		
PI3K	110	1	1	1		
MALT1	106	1	0	0		
MAP2K1	92	1	1	1	0.00072	PI3K (ITK, NFKBIA)
RAF1	92	1	1	1	0.00329	PI3K (LCK, ITK, NFKBIA)
RAS	92	1	1	1	0.00335	LCK (ZAP70, PI3K, NFKBIA, IKKB)
RASGRP1	86	1	1	1	0.00125	ZAP70 (PI3K, IKKB, MALT1, CARD11, LCK, ITK, PTPRC, NEMO)
SOS	70	1	0	0	0.00036	ITK (PI3K, LCK, ZAP70, CARD11)
TCRP	47	1	1	1		
DGK	40	1	1	1	0.00556	NFKBIA (ZAP70, CARD11)
PDK1	30	1	0	0	0.00102	MALT1 (CARD11, PI3K, IKKB, NFKBIA, LCK, NEMO, ZAP70)
MAP3K4	24	1	0	0	0.01673	PI3K (LCK, IKKB, NEMO)

Rows with tan background are for PIDs.

^aCBM deficiency is considered as a PID because it is a complex, all of whose components are related to PIDs.

^bThe first core protein is the most significant to the target and those in parenthesis are other significant ones for the target (BRP < 0.05).

https://doi.org/10.1371/journal.pone.0176500.t001
response [32]. Indeed, there were no observed differences between the PI3K and NFKBIA PID simulations compared to the wild type. LCK and ZAP70 perturbations that cause major effects are present in over 90% of the FBLs in the network and CARD11 and the CBM complex in 75% of the FBLs. Seven of the 12 PID proteins emerge in the FBLs, most of which are proximal TCR activation events, highlighting the fact that the simulation studies are effective for detecting effects of centrally located proteins.

Antigen-TCR complex ligation causes conformational alterations of CD3 chains, which contain immunoreceptor tyrosine-based activation motifs (ITAMs) on which they are phosphorylated by LCK [3]. This is an essential step in early TCR activation. The LCK kinase activity is regulated by the antagonistic actions of the membrane protein tyrosine phosphatase PTPRC and the carboxy-terminal Src kinase (CSK) (30). The phosphorylation of Tyr505 in LCK by CSK inhibits LCK activity via auto-phosphorylation of Tyr394 in the catalytic domain. The dephosphorylation of the Tyr505 by PTPRC relieves this inhibition [39]. TCR is crucial for T cell activation and cytokine response, and simulation of TCR deficiency shows profound impairment of all TF pathways. A homozygous variant of TRAC, a crucial component of the TCR complex, causes this deficiency [40]. The deficiency is associated with lymphadenopathy, recurrent infections and hepatosplenomegaly. Because the increased activity of LCK is crucial for the T cell response after antigen stimulation, the PTPRC knockout causes a severe perturbation. This is confirmed by disease-causing variations in the gene [41–45]. The known variants include large deletions [44] and amino acid substitutions [45]. Immunodeficiencies caused by the lack of LCK activity lead to T cells that are low in number and non-responsive, which in turn causes susceptibility to infections. Our PTPRC-perturbed simulations indicate that all the signaling paths of NFAT, NFKB1 and AP1 TFs, crucial for TCR-dependent response, are disrupted.

The activation of LCK is a crucial early step for T-cell activation and response. The phosphorylation of the CD3 ITAMs leads to the recruitment of ZAP70 and its activation by LCK. ZAP70 subsequently phosphorylates LAT, leading to the formation of the LAT signaling (the proximal signaling complex) [46]. LAT signalosome transduces signals to pathways that are indispensable for the three major TFs necessary for T-cell activation and response. Thus, the improper constitution of this signaling site affects multiple pathways and disrupts the transduction of TCR activation signals, as verified by our simulations.

The absence of LCK signaling disrupts the NFAT pathways and abrogates the T-cell response. The LCK deficiency is associated to naive CD4+ T-cell lymphopenia, respiratory tract infections, and early-onset autoimmune inflammation [47–49]. The major effects of this PID on naive CD4+ T-cells are a profoundly defective TCR signaling, lack of calcium/magnesium signaling and defective NF-κB response. Our simulation of the knockout perturbation confirms the dysregulation of most signaling events associated with the calcium signaling, thereby affecting the AP1, NFKB1 and NFAT signaling pathways. LCK and ZAP70, the two vital components necessary for the formation of the LAT signalosome, are turned off in the LCK-perturbed attractor. This suggests that the LAT signalosome is disrupted and thus, downstream signaling is impaired. As shown in Fig 6, the signaling components required for the AP1, NF-κB, NFAT family of proteins, including the calcium-dependent signaling, are turned off in the LCK knockout attractor. The affected signaling components include PLCG2, PIP2, IP3, DAG and CALN.

Because of the proximity of ZAP70 to LCK in the early activated TCR signaling events, the effects of ZAP70 are expected to be similar. This is indeed the case. Partially affected signaling occurs in ZAP70 deficiency, but downstream responses, like proliferation, are abrogated because of the TCR signaling defect. Severe conditions caused by the ZAP70 deficiency have been diagnosed in several patients [50–55]. Like the PTPRC and LCK knockout simulations,
the major effectors associated to the calcium signaling are turned off in the ZAP70 perturbed attractor. Based on these results, the activated T-cells would become anergic and/or undergo apoptosis. SYK, the ZAP70 homolog in non-T-cells, is expressed at high levels in the CD4+ T-cells of ZAP70-deficient patients [50, 53]. The SYK expression might compensate for the lack of ZAP70, and has been used to explain the less severe phenotype of the ZAP70 deficiency [50].

During the constitution of the LAT signalosome, LCP2 and PLCG1 bind to LAT and are phosphorylated by ZAP70 [46]. The phosphorylated LCP2 then recruits ITK, which leads to the activation of PLCG1. PLCG1 hydrolyzes its substrate PIP2 to generate second messengers, IP3 and DAG. ITK is a non-receptor tyrosine kinase expressed in T-cells and has been described as an important component of proximal TCR signaling [56].

Several homozygous ITK variants cause PID [57–60]. The ITK deficiency is associated with naïve CD4+ T-cell lymphopenia, modest change in the number of CD4+ T-cells, impaired positive and negative selection of thymocytes due to reduced TCR signal levels, recurrent infections (for example, herpes virus infections), autoimmune cytopenias, lymphoproliferation, lymphadenopathy and hepatosplenomegaly. Genotype studies point to a twofold increase in activated CD4+ T-cells, impaired activation-induced cell death and decreased levels of TCR signaling. Additionally, there is evidence that TXK could substitute for ITK [61]. The lack of ITK in mice is mitigated by the ability of TXK to activate PLCG1 [62]. ITK is present in both the strongly connected component and several (29%) of the FBLs. These findings indicate that in the absence of ITK, T-cells are activated, but signaling resulting from TCR stimulation leads to impaired response. Indeed, the attractors from our perturbed simulations showed abrogation of the NFAT, AP1 and NF-κB pathways. This agrees with normal, but progressive decrease in T cell numbers that may be caused by defective response in the TCR-dependent response pathways, which are indispensable for IL-2 transactivation and T cell response [63, 64].

The constitution of the CBM complex is an essential event in the regulation of NF-κB pathway. After the TCR/CD28 activation, PRKCQ is activated and recruited to the proximal signalosome. Here, PRKCQ activates CARD11 [65], which leads to its association with BCL10. Because BCL10 is constitutively bound to MALT1, the association of CARD11 to BCL10 leads to the formation of the CBM complex. Several PIDs have been connected to variations that occur on the genes that code for CARD11 [66], MALT1 [67] and BCL10 [68]. The CARD11 PID case is caused by a homozygous premature stop codon on the gene that codes for CARD11, and truncates its kinase-like domain. A homozygous variant in the CARD domain of MALT1 causes MALT1 PID. The known BCL10 PID case is due to a homozygous splice-site variation at intron 1 of the gene encoding BCL10. The CARD11 PID is associated with hypogammaglobulinemia, severe interstitial pneumonia, dyspnea and respiratory tract infections [66]. The MALT1 deficiency is associated with bronchiectasis, mastoiditis, chronic aphthous ulcers, gastritis, gingivitis, duodenitis and meningitis while the BCL10 PID is associated with hypogammaglobulinemia, gastroenteritis, otitis, respiratory tract infection and several viral infections [68]. Although the CBM PIDs show normal T cell counts, the BCL10 and MALT1 deficiencies show predominantly naïve CD4+ T cells, including severely abrogated TCR-dependent NF-κB signaling and cytokine response [69]. As expected, the pathways for NF-κB and AP1 are severely disrupted in the attractors of the CARD11, MALT1 and BCL10 PIDs.

The major regulator of NF-κB is the IKK complex [24]. It consists of two protein kinases, IKKA and IKKB and a regulatory protein, NEMO [70]. The activation of the IKK complex is NEMO-dependent. After the TCR/CD28 activation PRKCQ is activated and recruited to the proximal signalosome, where it activates CARD11 [65], which leads to the formation of the CBM complex. The TRAF6 oligomerizes with the CBM complex through the association with
MALT1 and BCL10 [71]. This oligomerization recruits UBE2V1 which polyubiquitinates and, thus, activates TRAF6 [72]. The activated TRAF6 in turn activates MAP3K7, which subsequently coordinates the assembly of the IKK complex [71, 73].

Some PIDs have been linked to both IKKB and NEMO [74–77]. A complete loss of function homozygous truncating variant, a duplicating variant, and a nonsynonymous nucleotide substitution on the gene that codes for IKKB have been reported to cause the disease [77–79]. IKKB deficiency is associated with life-threatening bacterial, fungal, and viral infections, defective immunoglobulin production and hypo- or agammaglobulinemia. Although T cell numbers are normal, T cell subsets are lower, and peripheral T cells fail to respond to stimulation. IKKB loss of function variants abrogates signaling and response via the NF-κB pathway in these patients [24]. Genetic studies have revealed several PID cases linked to IKBKG, the gene that codes for NEMO [74, 75, 80–82]. The disease results from amino acid substitution and exon skipping variations. The NEMO deficiency is associated with anhidrotic ectodermal dysplasia, polysaccharide non-response, various infectious diseases, colitis, ectodermal dysplasia, conical teeth, variable defects of skin pigmentation and monocyte dysfunction [74, 75]. The T cell counts are normal but TCR activation is impaired, especially NF-κB activation. In accordance with these studies, our simulation indicates that the NEMO and IKKB perturbations lead to inactivation of NF-κB, despite normal activation of AP1 and NFAT [24, 83, 84].

MAP3K14 is a member of the family of mitogen-activated protein kinases that is involved in both the canonical [24] and non-canonical [85] NF-κB pathways. In the canonical NF-κB pathway, the CD28 co-stimulatory signal is required for the MAP3K14 activation through MAP3K8 (COT). After activation by AKT1, MAP3K8 activates MAP3K14, which in turn contributes in the activation and subsequent ubiquitination of NFKBIA [71, 73, 86]. The ubiquitination of NFKBIA releases NFKB1 which is translocated into the nucleus and results in T-cell response. In the non-canonical NF-κB pathway, MAP3K14 associates with IKKA to induce the phosphorylation and subsequent ubiquitination of the p100 subunit [85, 87]. This leads to the proteolysis of NFKB2/p100 to NFKB2/p52-RELB dimer, which is translocated to the nucleus and transactivates κB-containing genes for response [85].

A PID caused by a biallelic variation in the gene coding for MAP3K14 protein leads to loss of its kinase activity [88]. This variant disrupts both the canonical and non-canonical NF-κB pathways in immune response cell-types [88]. Despite the normal overall T cell numbers, several T cell subsets show defective response and perturbation. The MAP3K14 PID is associated with several microbial infections, including bacterial and viral infections [88]. The MAP3K14 PID-perturbed simulations are in accordance with its crucial and non-redundant role in T cells as seen in the defective activation of NFKB1, albeit normal activation of AP1, NFAT and MAPK14 [89].

The results for simulations of NFKBIA and PI3K did not differ from wild type. To investigate the effects of variants and knockouts in these proteins, dedicated networks would be needed with more information about downstream factors.

Our results show PID-caused trends in the cellular dynamics of the CD4+ T-cells when the affected proteins are involved in non-redundant paths along major TF signaling pathways. The downstream signaling events show minor effect on the network dynamics than the early events. This paper is the first attempt, as far as we are aware, to investigate, with systems biological simulations, the effects of variations in immune response proteins in PIDs. We found profound effects in the ITK, LCK, PTPRC, TCR and ZAP70 perturbed simulations, and less profound but noticeable effects in the BCL10, CARD11, IKKB, MALT1, MAP3K14 and NEMO perturbed simulations.

The non-PID proteins in Table 2 are indispensable for T cell activation and response, are affected in several of the simulated PID attractors and have also been associated with other
diseases. Several of them have been identified as candidate PIDs. VAV1, RAF1, LAT, LCP2 and MAPK1 were identified as candidate PID genes with high confidence by Keerthikumar et al. [37]. Moreover, 15 out of 22 of the proteins are predicted to be candidates by another recent study [38]. These include LCP2, CBL, TRAF6, MAP3K7, VAV1, PLCG1, PRKCQ, RAF1, ABL1, PDPK1, GRAP2, LAT, MAPK1, MAP3K4 and MAP2K1. Several of the candidate genes are central in the Human Gene Connectome (Table 2) providing independent proof for their significance. As the connectome is not complete, the fact that there is no support from this method does not mean that our findings were not significant even from this point of view.

Nine of the proteins in Table 2 are protein kinases (MAPK1, PRKCQ, MAP3K7, PLCG1, LAT, MAP2K1, RAF1, PDPK1, MAP3K4), 4 are mitogen-activated protein kinases (MAPK1, MAP2K1, RAF1 and MAP3K4), 3 are serine-threonine kinases (PRKCQ, MAP3K7, and PDPK1), and 3 have guanyl-nucleotide exchange factor activity (VAV1, RASGRP1 and SOS). Four of the proteins are linked to various forms of the Noonan syndrome (CBL, MAP2K1, RAF1 and SOS), 5 to various types of tumors (MAPK1, PRKCQ, ABL1, GRAP2 and RAS) and one to an autoimmune disorder (RASGRP1). Seven of the genes are not linked to any disease (MAP3K7, LCP2, LAT, VAV1, DGK, PDPK1 and MAP3K4). The listed proteins are strong PID candidates; however, their involvement in PIDs needs to be experimentally verified. In the case of the NFkBIA perturbed simulations we observed local effect on NF-κB and for PI3K, no effects. Further simulation studies of these PIDs will require more specific networks, if applicable.

Several studies suggest candidate PID genes [35, 37, 38]. Ortutay and Vihinen constructed a PPI network of immune system-specific proteins, proteins with high network statistics and PID-related Gene Ontology term enrichment scores [35]. Itan and Casanova identified the top 1% of genes that were biologically close to known PIDs and, from these selected the ones with similar Gene Ontology terms as the known PIDs [38]. A machine learning technique, support vector machine, was applied by Keerthikumar and colleagues to identify candidate

Table 2. Tuned parameters of nodes in the Odefy-simulated T cell network model.

Influenced node	Influencing node(s)	\(\tau \)	\(n \)	\(k \)
PAG1	[]	1	20	0.9
PAG1	[]	1	20	0.9
DAG	DGK	1	20	0.9
DGK	[]	1	3	0.9
DGK	[]	1	3	0.9
LCK	MAPK1	10	20	0.1
CBL	[]	3	20	0.9
CALN	CABIN1	1	3	0.9
CALN	RCAN1	1	3	0.9
CALN	AKAP5	1	3	0.9

*All influencing nodes.

PAG1, phosphoprotein membrane anchor with glycosphingolipid microdomains 1; DAG, second messenger, diacylglycerol; DGK, diacylglycerol kinases; LCK, LCK proto-oncogene, Src family tyrosine kinase; MAPK1, mitogen-activated protein kinase 1 (ERK); CBL, Cbl proto-oncogene; CALN, calcineurin complex; CABIN1, calcineurin Binding Protein 1, RCAN1, regulator of calcineurin 1, AKAP5, A-kinase anchoring protein 5.

https://doi.org/10.1371/journal.pone.0176500.t002
Simulation of the dynamics of PIDs in CD4+ T-cells

PIDs by utilizing binary features from PIDs and non-PIDs [37]. The above approaches were successful in identifying several candidate genes that were subsequently verified to be PID related. Our approach focuses on T-cell-specific PIDs and how they affect other components of the cellular signaling dynamics. This, as well as other evidence presented above, allowed us to identify the candidate PIDs.

Diagnosis and prognosis of PIDs is still often problematic. Our approach provides novel insights into the mechanisms of PID effects on signaling cascades and may highlight novel targets for therapy downstream of the defective proteins. The presented approach can be used to study PIDs of any cellular system and even diseases outside the immune system.

Methods

Network reconstruction and analysis

The T-cell PPI network (TPPIN), a core network of PPIs specific to T-cells [17], was used as the basis for extensive literature survey and the reconstruction of the Boolean equations for the T cell model. Only those nodes that have been demonstrated to play a crucial role in the TCR/CD28-dependent activation of CD4+ T cells were retained.

The CellNetAnalyzer version 2016.1 [18] was used for identifying feedback loops in the underlying interaction graph of the model. The base R software version 3.2.3 [90] and Cytoscape version 3.3.0 [91] were used for data analysis and network visualization, respectively. The strongly connected components were calculated using igraph, a library for network and graph analyses in R [92].

A Boolean model consists of N nodes/proteins X₁, X₂, ..., Xₙ. The proteins are represented by variables xᵢ that take values {0, 1} [93]. Each protein, xᵢ, is influenced by a set of proteins Rᵢ = {X₁, X₂, ..., Xₙ} connected to it. Based on the values of their influencing proteins Rᵢ, for each time step, the value of each protein xᵢ, is calculated from the update function Bᵢ: {0, 1}ᴺ → {0, 1}. Because the time is discretized in Boolean simulations, at time point t + 1, updates are done synchronously as follows [93, 94],

\[xᵢ(t + 1) = Bᵢ(xᵢ(t), x₁(t), ..., xₙ(t)) \]

The Boolean update functions, Bᵢ, are converted into a system of continuous ordinary differential equation (ODE) model where xᵢ takes values [0, 1] using the following ODE equation

\[\dot{xᵢ} = \frac{1}{τᵢ} (Bᵢ(xᵢ, x₁, ..., xₙ) - xᵢ) \]

where, \(Bᵢ \) is a continuous homologue of the discrete function Bᵢ, parameter τᵢ represents the life-time of the protein, and \(\dot{xᵢ} \) describes its decay.

Odefy [16], a toolbox compatible with MATLAB, transforms Bᵢ to the ODE system and computes the solution of the system using the BooleCubes [95] as follows,

\[Bᵢ(x₁, x₂, ..., xₙ) = \sum_{x₁=0}^{1} \sum_{x₂=0}^{1} ... \sum_{xₙ=0}^{1} B(x₁, x₂, ..., xₙ) \prod_{j=1}^{N} (xⱼxⱼ + (1 - xⱼ)(1 - xⱼ)) \]

\[Bᵢ, \text{ the BooleCube, is obtained from the multilinear interpolation of the Boolean update function } Bᵢ. \text{ Biomolecular interactions show switch-like behavior and are modeled using sigmoidal functions. Thus, the Hill function, } f(x) = \frac{x^n}{x^n + k^n}, \text{ was used to smoothen the affine multilinear BooleCube, to obtain the sinusoidal HillCube [95]. Hence, the parameter } n \text{ was introduced (the Hill coefficient or slope of the Hill function), to represent the cooperativity between the protein interactions and parameter } k \text{ represent the value at which the } \]
activation is half-maximal. The HillCube is obtained from the BooleCube as follows,
\[B^H(x_1, \ldots, x_N) = B^I(f_1(x_1), \ldots, f_N(x_N)). \]

To obtain perfect homologues of the Boolean update functions \(B_i \), the HillCube functions are normalized to the unit interval to give the normalized HillCube [95] as follows,
\[\tilde{B}^H(x_1, \ldots, x_N) = \tilde{B}^I\left(\frac{f_1(x_1)}{f_1(1)}, \ldots, \frac{f_N(x_N)}{f_N(1)}\right). \]

The network model used in this study is available in SBML qual format (S1 Text) on the website http://structure.bmc.lu.se/tcell_net/web_session/#/.

Basin of attraction and attractor identification

The Odefy was used to simulate the qualitative dynamics of the network model. It provides simulation algorithms for both synchronous and asynchronous updates and allows simulations based on the BooleCubes [16]. We used the normalized HillCube functions, which represent the normalized BooleCubes in the range [0–1]. Boolean dynamic simulations were performed using normalized HillCube simulations [95]. Except for nodes involved in some negative feedback loops, the default parameter values were used. The default parameters for the normalized HillCube were \(n = 3, k = 0.5 \) and \(\tau = 1 \). Table 2 lists non-default parameters for nodes on some feedback loops. The variable \(n \) represents the Hill exponent of the Hill function and is used for converting the discrete Boolean update functions that take value \{0, 1\} into their continuous BooleCube equivalents that have values \{0, 1\}. It captures the influence that nodes of the same Boolean equation have on each other. \(k \) is a variable to control the continuous relaxation of the Boolean step function. It represents the value at half-maximal activation of a protein. \(\tau \) is a decay parameter; for each protein, the higher its value the slower the decay of the protein. The simulations were run until the network dynamics settled in an attractor.

Perturbation

The Analysis of PID effects was performed for each protein encoded by a PID gene using the normalized HillCube simulations. For each perturbation, the node was converted to an input before assigning a state, either off or on, depending on the PID. For example, if the PID occurs as a result of over-activity of the protein, then the perturbed state is ON. This state was maintained until the simulation transitioned into the attractor. The parameter values used in the wild type simulations were maintained for all the PID perturbed simulations. The end result of the simulation represents the perturbed PID attractor.

Primary immunodeficiency data

PID proteins expressed after the pre-CD4+ T-cell development stage were retrieved from the IDbases [8], the most recent updated IUIS expert committee classification of PID data [9], and a recent survey [26], and used for the PID failure mode simulations. The PIDs included LCK, ZAP70, ITK, IKKB, NEMO, CARD11, MALT1, BCL10, NFKBIA, PTPRC, MAP3K14 and PI3K deficiencies.

Supporting information

S1 Table. CD4+ T-cell activation Boolean network model update equations. The table lists Boolean equations of protein activation used in the network model and simulations. (DOCX)
S1 Text. SBML qual. The CD4+ T-cell network model in SBML qual format. The contains the CD4+ T-cell network qualitative model in the SBML qual format.

(SBML)

Author Contributions

Conceptualization: VM GNT.
Data curation: GNT.
Formal analysis: GNT.
Funding acquisition: VM.
Investigation: GNT VM.
Methodology: GNT VM.
Project administration: GNT VM.
Resources: VM.
Software: GNT.
Supervision: VM.
Validation: GNT.
Visualization: GNT VM.
Writing – original draft: GNT.
Writing – review & editing: GNT VM.

References

1. Ortutay C, Vihinen M. Immunome: A reference set of genes and proteins for systems biology of the human immune system. Cell Immunol. 2006; 244(2):87–9. https://doi.org/10.1016/j.cellimm.2007.01.012 PMID: 17434156
2. Samarghitean C, Ortutay C, Vihinen M. Systematic classification of primary immunodeficiencies based on clinical, pathological, and laboratory parameters. Journal of Immunology (Baltimore, Md: 1950). 2009; 183(11):7569–75.
3. Smith-Garvin JE, Koretzky GA, Jordan MS. T Cell Activation. Annual Review of Immunology. 2009; 27:591–619. https://doi.org/10.1146/annurev.immunol.021908.132706 PMID: 19132916
4. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996; 383(6603):787–93. https://doi.org/10.1038/383787a0 PMID: 8893001
5. Nakayamada S, Takahashi H, Kanno Y, O’Shea JJ. Helper T cell diversity and plasticity. Curr Opin Immunol. 2012; 24(3):297–302. https://doi.org/10.1016/j.coi.2012.01.014 PMID: 22341735
6. Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B, et al. A logical model provides insights into T cell receptor signaling. PLoS Comput Biol. 2007; 3(8):e163. https://doi.org/10.1371/journal.pcbi.0030163 PMID: 17722974
7. Saadatpour A, Wang RS, Liao A, Liu X, Loughran TP, Albert I, et al. Dynamical and structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte leukemia. PLoS Comput Biol. 2011; 7(11):e1002267. https://doi.org/10.1371/journal.pcbi.1002267 PMID: 22102804
8. Piirila H, Vallaho J, Vihinen M. Immunodeficiency mutation databases (IDbases). Hum Mutat. 2006; 27(12):1200–8. https://doi.org/10.1002/humu.20405 PMID: 17004234
9. Picard C, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, et al. Primary Immunodeficiency Diseases: an Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol. 2015.
10. Samarghitean C, Orututay C, Vihinen M. Systematic classification of primary immunodeficiencies based on clinical, pathological, and laboratory parameters. J Immunol. 2009; 183(11):7569–75. https://doi.org/10.4049/jimmunol.0901837 PMID: 19917694

11. del Sol A, Balling R, Hood L, Galas D. Diseases as network perturbations. Curr Opin Biotechnol. 2010; 21(4):566–71. https://doi.org/10.1016/j.copbio.2010.07.010 PMID: 20709523

12. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL. The human disease network. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104(21):8685–90. https://doi.org/10.1073/pnas.0701361104 PMID: 17502601

13. Li FT, Long T, Lu Y, Ouyang Q, Tang C. The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci U S A. 2004; 101(14):3161–6. https://doi.org/10.1073/pnas.0305937101 PMID: 15037758

14. Thakar J, Saadatpour-Moghadam A, Harvill ET, Albert R. Constraint-based network model of pathogen-immune system interactions. J R Soc Interface. 2009; 6(36):599–612. https://doi.org/10.1098/rsif.2008.0363 PMID: 18952547

15. von Dassow G, Meir E, Munro EM, Odell GM. The segment polarity network is a robust development module. Nature. 2000; 406(6792):188–92. https://doi.org/10.1038/35018085 PMID: 10910359

16. Krumsiek J, Poelsterl S, Wittmann DM, Theis FJ. Odefy—From discrete to continuous models. BMC Bioinformatics. 2010; 11:233-. https://doi.org/10.1186/1471-2105-11-233 PMID: 20459647

17. Teku GN, Orututay C, Vihinen M. Identification of core T cell network based on immune network. BMC Syst Biol. 2014; 8:17-. https://doi.org/10.1186/1752-0509-8-17 PMID: 24528953

18. Klamt S, Saez-Rodriguez J, Lindquist JA, Simon I, Gilles ED. A methodological framework for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics. 2006; 7:56. https://doi.org/10.1186/1471-2105-7-56 PMID: 16464248

19. Linsley PS, Bradshaw J, Umes M, Grosmaire L, Ledbetter JA. CD28 engagement by B7/BB-1 induces transient down-regulation of CD28 synthesis and prolonged unresponsiveness to CD28 signaling. J Immunol. 1993; 150(8 Pt 1):3161–9. PMID: 7682233

20. Sugiyama Y, Kako K, Kimura A, Takada I, Kashiwagi I, Wakabayashi Y, et al. Smad2 and Smad3 are redundantly essential for the suppression of iNOS synthesis in macrophages by regulating IRF3 and STAT1 pathways. Int Immunol. 2012; 24(4):253–65. https://doi.org/10.1093/intimm/dxr126 PMID: 22331441

21. Baltanas FC, Perez-Andres M, Ginel-Picardo A, Diaz D, Jimeno D, Liceras-Boillos P, et al. Functional Redundancy of Sos1 and Sos2 for Lymphopoiesis and Organismic Homeostasis and Survival. Mol Cell Biol. 2013; 33(22):4562–78. https://doi.org/10.1128/MCB.01026-13 PMID: 24033412

22. Guo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009; 19(1):71–88. https://doi.org/10.1038/cr.2008.302 PMID: 19002158

23. van der Burg M, Gennery AR. The expanding clinical and immunological spectrum of severe combined immunodeficiency. Eur J Pediatr. 2011; 170(5):561–71. https://doi.org/10.1007/s00431-011-1452-3 PMID: 21479529

24. Angulo I, Vadás O, Garcon F, Banham-Hall E, Plagnol V, Leahy TR, et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science. 2013; 342(6160):866–71. https://doi.org/10.1126/science.1243292 PMID: 24136356

25. Lucas CL, Kuehn HS, Zhao F, Niemela JE, Denick EE, Palendirra U, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat Immunol. 2014; 15(1):88–97. https://doi.org/10.1038/ni.2771 PMID: 24165795

26. Crank MC, Grossman JK, Moir S, Pittaluga S, Buckner CM, Kardava L, et al. Mutations in PIK3CD can cause hyper IgM syndrome (HIGM) associated with increased cancer susceptibility. J Clin Immunol. 2014; 34(3):272–6. https://doi.org/10.1007/s10875-014-0012-9 PMID: 24610295

27. McDonald DR, Mooster JL, Reddy M, Bawle E, Secord E, Geha RS. Heterozygous N-terminal deletion of IkappaBalpha results in functional nuclear factor kappaB haploinsufficiency, ectodermal dysplasia,
and immune deficiency. J Allergy Clin Immunol. 2007; 120(4):900–7. https://doi.org/10.1016/j.jaci.2007.08.035 PMID: 17931563

32. Courtois G, Smahi A, Reichenbach J, Doffinger R, Cancrini C, Bonnet M, et al. A hypermorphic Ikappa-Balpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest. 2003; 112(7):1108–15. https://doi.org/10.1172/JCI18714 PMID: 14523047

33. Janssen R, van Wengen A, Hoeve MA, ten Dam M, van der Burg M, van Dongen J, et al. The same IkappaBalpha mutation in two related individuals leads to completely different clinical syndromes. J Exp Med. 2004; 200(5):559–68. https://doi.org/10.1084/jem.20040773 PMID: 15337789

34. Lopez-Granados E, Keenan JE, Kinney MC, Jain N, Ma CA, et al. A novel mutation in NFKBIA/IKBA results in a degradation-resistant N-truncated protein and is associated with ectodermal dysplasia with immunodeficiency. Hum Mutat. 2008; 29(6):861–8. https://doi.org/10.1002/hum.20740 PMID: 18412279

35. Ortutay C, Vihinen M. Identification of candidate disease genes by integrating Gene Ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res. 2009; 37(2):622–8. https://doi.org/10.1093/nar/gkn982 PMID: 19073697

36. Piro RM, Di Cunto F. Computational approaches to disease-gene prediction: rationale, classification and successes. FEBS J. 2012; 279(5):678–96. https://doi.org/10.1111/j.1742-4658.2012.08471.x PMID: 22221742

37. Keerthikumar S, Bhadra S, Kandasamy K, Raju R, Ramachandra YL, Bhattacharyya C, et al. Prediction of candidate primary immunodeficiency disease genes using a support vector machine learning approach. DNA Res. 2009; 16(6):345–51. https://doi.org/10.1093/dnares/dsp019 PMID: 19801557

38. Itan Y, Casanova JL. Novel primary immunodeficiency candidate genes predicted by the human gene connectome. Front Immunol. 2015; 6:142. https://doi.org/10.3389/fimmu.2015.00142 PMID: 25883595

39. Thomas ML, Brown EJ. Positive and negative regulation of Src-family membrane kinases by CD45. Immunol Today. 1999; 20(9):406–11. PMID: 10462740

40. Morgan NV, Goddard S, Cardno TS, McDonald D, Rahman F, Barge D, et al. Mutation in the TCRalpha subunit constant gene (TRAC) leads to a human immunodeficiency disorder characterized by a lack of TCRalpha+ T cells. J Clin Invest. 2011; 121(2):695–702. https://doi.org/10.1172/JCI41931 PMID: 21206088

41. Cale CM, Klein NJ, Novelli V, Veys P, Jones AM, Morgan G. Severe combined immunodeficiency with abnormalities in expression of the common leucocyte antigen, CD45. Arch Dis Child. 1997; 76(2):163–4. PMID: 9068311

42. Hermiston ML, Xu Z, Weiss A. CD45: A critical regulator of signaling thresholds in immune cells. Annu Rev Immunol. 2003; Volume 21:107–37.

43. Kung C, Pingei JT, Heikinheimo M, Kiemola T, Varkila K, Yoo LJ, et al. Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat Med. 2000; 6(3):343–5. https://doi.org/10.1038/73208 PMID: 10700239

44. Roberts JL, Buckley RH, Luo B, Pei J, Lapidus A, Peri S, et al. CD45-deficient severe combined immunodeficiency caused by uniparental disomy. Proc Natl Acad Sci U S A. 2012; 109(26):10456–61. https://doi.org/10.1073/pnas.120249109 PMID: 22689986

45. Tchilian EZ, Wallace DL, Wells RS, Flower DR, Morgan G, Beverley PC. A deletion in the gene encoding the CD45 antigen in a patient with SCID. J Immunol. 2001; 166(2):1308–13. PMID: 11145714

46. Werlen G, Palmer E. The TCR signalosome: a dynamic structure with expanding complexity. Curr Opin Immunol. 2002; 14(3):299–305. PMID: 11973126

47. Gibson S, Truitt K, Lu Y, Lapushin R, Khan H, Imboden JB, et al. Efficient CD28 signalling leads to increases in the kinase activities of the TEC family tyrosine kinase EMT/ITK/TSK and the SRC family tyrosine kinase LCK. Biochem J. 1998; 330 (Pt 3)(Pt 3):1123–8.

48. Hauck F, Randriamampita C, Martin E, Gerart S, Lambert N, Lim A, et al. Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol. 2012; 130(5):1144–52 e11. https://doi.org/10.1016/j.jaci.2012.07.029 PMID: 22985903

49. Sawabe T, Horuchi T, Nakamura M, Tsukamoto H, Nakahara K, Harashima SI, et al. Defect of lck in a patient with common variable immunodeficiency. Int J Mol Med. 2001; 7(6):609–14. PMID: 11351273

50. Toyabe S, Watanabe A, Harada W, Karasawa T, Uchiyama M. Specific immunoglobulin E responses in ZAP-70-deficient patients are mediated by Syk-dependent T-cell receptor signalling. Immunology. 2001; 103(2):164–71. https://doi.org/10.1046/j.1365-2567.2001.01246.x PMID: 11412303

51. Turul T, Tecsan I, Artac H, de Bruin-Versteeg S, Barendregt BH, Reissl I, et al. Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency. Eur J Pediatr. 2009; 168(1):87–93. https://doi.org/10.1007/s00431-008-0718-x PMID: 18509675

PLOS ONE https://doi.org/10.1371/journal.pone.0176500 April 27, 2017 18 / 21
52. Karaca E, Karakoc-Aydiner E, Bayrak OF, Keles S, Sevli S, Barlan IB, et al. Identification of a novel mutation in ZAP70 and prenatal diagnosis in a Turkish family with severe combined immunodeficiency disorder. Gene. 2013; 512(2):189–93. https://doi.org/10.1016/j.gene.2012.10.062 PMID: 23124046

53. Hauck F, Blumenthal B, Fuchs S, Lenoir C, Martin E, Speckmann C, et al. SYK expression endows human ZAP70-deficient CD8 T cells with residual TCR signaling. Clin Immunol. 2015; 161(2):103–9. https://doi.org/10.1016/j.clim.2015.07.002 PMID: 26187144

54. Picard C, Dogniaux S, Chemin K, Maciorowski Z, Lim A, Mazerolles F, et al. Hypomorphic mutation of ZAP70 in human results in a late onset immunodeficiency and no autoimmunity. Eur J Immunol. 2009; 39(7):1966–76. https://doi.org/10.1002/eji.200939385 PMID: 19548248

55. Schroeder ML, Triggs-Raine B, Zelinski T. Genotyping an immunodeficiency causing c.1624-11G>A mutation in ZAP70 gene in Canadian Mennonites. BMC Med Genet. 2016; 17(1):50. https://doi.org/10.1186/s12881-016-0312-4 PMID: 27448562

56. Andreotti AH, Schwartzberg PL, Joseph RE, Berg LJ. T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb Perspect Biol. 2010; 2(7):a002287. https://doi.org/10.1101/cshperspect.a002287 PMID: 20519342

57. Huck K, Feyen O, Niehues T, Ruschendorf F, Hubner N, Laws HJ, et al. Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest. 2009; 119(5):1350–8. https://doi.org/10.1172/JCI37901 PMID: 19425169

58. Schaeffer EM, Debnath J, Yap G, McVicar D, Liao XC, Littman DR, et al. Requirement for Tec kinases Rlk and Itk in T cell receptor signaling and immunity. Science. 1999; 284(5414):638–41. PMID: 10213685

59. Sahu N, Venegas AM, Jankovic D, Mitzner W, Gomez-Rodriguez J, Cannons JL, et al. Selective expression rather than specific function of Txk and Itk regulate Th1 and Th2 responses. J Immunol. 2008; 181(9):6125–31. PMID: 18941202

60. Kosaka Y, Felices M, Berg LJ. Itk and Th2 responses: action but no reaction. Trends Immunol. 2006; 27(10):453–60. https://doi.org/10.1016/j.it.2006.08.006 PMID: 16931156

61. Fowell DJ, Shinkai K, Liao XC, Beebe AM, Coffman RL, Littman DR, et al. Impaired NFATc translocation and failure of Th2 development in Itk-deficient CD4+ T cells. Immunity. 1999; 11(4):399–409. PMID: 10549622

62. Altman A, Villalba M. Protein kinase C-theta (PKC theta): a key enzyme in T cell life and death. Journal of Biochemistry. 2002; 132(6):841–6. PMID: 12473184

63. Stepensky P, Keller B, Buchta M, Kienzler A-K, Elpeleg O, Somech R, et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol. 2013; 131(2):477+. https://doi.org/10.1016/j.jaci.2013.11.050 PMID: 23374270

64. Jabara HH, Ohsumi T, Chou J, Massaad MJ, Benson H, Megarbane A, et al. A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency. J Allergy Clin Immunol. 2013; 132(1):151–8. https://doi.org/10.1016/j.jaci.2013.04.047 PMID: 23727036

65. Torres JM, Martinez-Barricarte R, Garcia-Gomez S, Mazariegos MS, Itan Y, Boisson B, et al. Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity. J Clin Invest. 2014; 124(12):5239–48. https://doi.org/10.1172/JCI77493 PMID: 25365219

66. Turvey SE, Durandy A, Fischer A, Fung SY, Geha RS, Gewies A, et al. The CARD11-BCL10-MALT1 (CBM) signalosome complex: Stepping into the limelight of human primary immunodeficiency. J Allergy Clin Immunol. 2014; 134(2):276–84. https://doi.org/10.1016/j.jaci.2014.06.015 PMID: 25087226

67. Hacker H, Karin M. Regulation and function of IKK and IKK-related kinases. Science’s STKE: signal transduction knowledge environment. 2006; 2006(357):re13. https://doi.org/10.1126/stke.3572006re13 PMID: 17047224

68. Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell. 2004; 14(3):289–301. PMID: 15125833
72. Li Y, He X, Wang S, Shu HB, Liu Y. USP2a positively regulates TCR-induced NF-kappaB activation by bridging MALT1-TRAF6. Protein Cell. 2013; 4(1):62–70. https://doi.org/10.1007/s13238-012-2120-8 PMID: 23264041

73. Shinohara H, Kurosaki T. Comprehending the complex connection between PKC beta, TAK1, and IKK in BCR signaling. Immunol Rev. 2009; 232:300–18. https://doi.org/10.1111/j.1600-065X.2009.00836.x PMID: 19909372

74. Fusco F, Pescatore A, Conte MI, Mirabeli P, Piaciolla M, Esposito E, et al. EDA-ID and IP, two faces of the same coin: how the same IKBKG/NEMO mutation affecting the NF-kappaB pathway can cause immunodeficiency and/or inflammation. Int Rev Immunol. 2015; 34(6):445–59. https://doi.org/10.3109/08830185.2015.1055331 PMID: 26269396

75. Johnston AM, Niemela J, Rosenzweig SD, Fried AJ, Delmonte OM, Fleisher TA, et al. A Novel Mutation in IKBKG/NEMO Leads to Ectodermal Dysplasia with Severe Immunodeficiency (EDA-ID). J Clin Immunol. 2016; 36(6):541–3. https://doi.org/10.1007/s10875-016-0309-y PMID: 27368913

76. Puel A, Reichenbach J, Bustamante J, Ku CL, Feinberg J, Doffinger R, et al. The NEMO mutation creating the most-upstream premature stop codon is hypomorphic because of a reinitiation of translation. Am J Hum Genet. 2006; 78(4):691–701. https://doi.org/10.1086/501532 PMID: 16532398

77. Nielsen C, Jakobsen MA, Larsen MJ, Muller AC, Hansen S, Lillevang ST, et al. Immunodeficiency associated with a nonsense mutation of IKBKB. J Clin Immunol. 2014; 34(8):916–21. https://doi.org/10.1007/s10875-014-0097-1 PMID: 25216719

78. Orange JS, Levy O, Brodeur SR, Krzewski K, Roy RM, Niemela JE, et al. Human nuclear factor kappa B essential modulator mutation can result in immunodeficiency without ectodermal dysplasia. J Clin Immunol. 2014; 34(8):916–21. https://doi.org/10.1007/s10875-014-0097-1 PMID: 25216719

79. Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001; 27(3):277–85. https://doi.org/10.1038/ng7837 PMID: 11242109

80. Jorgensen SE, Bottger P, Kofod-Olsen E, Holm M, Mork N, Omtoft TF, et al. Ectodermal dysplasia with immunodeficiency caused by a branch-point mutation in IKBKG/NEMO. J Allergy Clin Immunol. 2016; 138(6):1706–9 e4. https://doi.org/10.1016/j.jaci.2016.05.030 PMID: 27477329

81. Kawai T, Nishikomori R, Izawa K, Murata Y, Tanaka N, Sakai H, et al. Frequent somatic mosaicism of NEMO in T cells of patients with X-linked anhidrotic ectodermal dysplasia with immunodeficiency. Blood. 2012; 119(3):5458–66. https://doi.org/10.1182/blood-2011-05-354167 PMID: 22517901

82. Chen ZJ. Ubiquitination in signaling to and activation of IKK. Immunol Rev. 2012; 246(1):95–106. https://doi.org/10.1111/j.1600-065X.2011.01108.x PMID: 22435549

83. Yamamoto M, Sato S, Saihoh T, Sakurai H, Umematsu S, Kawai T, et al. Pivotal function of Ubc13 in thymocyte TCR signaling. J Immunol. 2006; 177(11):7520–4. PMID: 17114420

84. Willmann KL, Klaver KL, Dogu F, Santos-Valente E, Garnzar W, Blici I, et al. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat Commun. 2014; 5:5360. https://doi.org/10.1038/ncomms6360 PMID: 25405851

85. Matsumoto M, Yamada T, Yoshinaga SK, Boone T, Horan T, Fujita S, et al. Essential role of NF-kappaB-B-inducing kinase in T cell activation through the TCR/CD3 pathway. J Immunol. 2002; 169(3):1151–8. PMID: 12139394

86. R-Core-Team. R: A Language and Environment for Statistical Computing: R Foundation for Statistical Computing; 2016. http://www.R-project.org.

87. Kohl M, Wiese S, Warscheid B. Cytoscape: Software for Visualization and Analysis of Biological Networks. Methods Mol Biol. 2011; 669:291–303. https://doi.org/10.1007/978-1-60761-987-1_18 PMID: 21063955

88. Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. 2006; Complex Systems:1695.

89. Boole G. The Calculus of Logic. Cambridge and Dublin Mathematical Journal. 1848; 3:183–98.
94. Thomas R. Boolean formalization of genetic control circuits. J Theor Biol. 1973; 42(3):563–85. PMID: 4588055

95. Wittmann DM, Krumsieck J, Saez-Rodriguez J, Lauffenburger DA, Klamt S, Theis FJ. Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst Biol. 2009; 3:98. https://doi.org/10.1186/1752-0509-3-98 PMID: 19785753