Estado nutricional de vitamina A na gravidez e associação com desfechos materno-infantis no estudo MINA-Brasil

Paulo Augusto Ribeiro Neves

Tese apresentada ao Programa de Pós-graduação em Nutrição em Saúde Pública da Faculdade de Saúde Pública da Universidade de São Paulo para obtenção do título de Doutor em Ciências.

Área de Concentração: Nutrição em Saúde Pública

Orientadora: Profa. Dra. Marly Augusto Cardoso

São Paulo

2018
Estado nutricional de vitamina A na gravidez e associação com desfechos materno-infantis no estudo MINA-Brasil

Paulo Augusto Ribeiro Neves

Tese apresentada ao Programa de Pós-graduação em Nutrição em Saúde Pública da Faculdade de Saúde Pública da Universidade de São Paulo para obtenção do título de Doutor em Ciências.

Área de Concentração: Nutrição em Saúde Pública

Orientadora: Profa. Dra. Marly Augusto Cardoso

Versão corrigida

São Paulo

2018
É expressamente proibida a comercialização deste documento, tanto na sua forma impressa quanto eletrônica. Sua reprodução total ou parcial é permitida exclusivamente para fins acadêmicos e científicos, desde que na reprodução figure a identificação do autor, título, instituição e ano da tese.
Dedico,
À minha querida família e amigos que sempre me apoiaram em minhas decisões em prol de meu futuro e que me ajudaram a suportar as longas distâncias percorridas durante o percurso. Em especial, dedico este trabalho às queridas ‘buchudinhas’ de Cruzeiro do Sul, que me fizeram enxergar o valor de cada vida.
AGRADECIMENTOS

A Deus, pelas oportunidades confiadas e vivenciadas, pela sabedoria desenvolvida, pelos novos amigos feitos e pela possibilidade de poder ajudar ao próximo.

A minha família, em especial ao meu pai, Paulo Alípio Neves, que, de sua maneira particular, sempre esteve me apoiando em minhas decisões e em momentos conturbados, onde mais precisei de ajuda. Às minhas queridas irmãs, Monia Neves e Simone de Oliveira, pelo eterno amor, carinho e confiança nesse trajeto. Aos meus amados sobrinhos/afilhados, Aisha Lima, Davi de Oliveira e Rafaela de Oliveira que, apesar de suas juventudes e inocências, sempre foram um grande estímulo para que eu continue a trilhar um bom futuro. Ao meu cunhado Anderson de Oliveira, por sempre estender sua mão para ajudar quando foi necessário.

Agradeço à minha orientadora, Marly Cardoso, por ter me dado seu voto de confiança ao depositar tamanha responsabilidade em mim, por ter me proporcionado experiências de vida únicas e inesquecíveis, que eu nunca imaginaria ter tido antes de ingressar no doutorado, pelo carinho e ajuda em momentos difíceis durante essa jornada, por compartilhar seus conhecimentos e experiências para o meu desenvolvimento profissional. Tenho gratidão eterna por tudo o que aprendi, pelo que passei e ainda passarei como fruto deste trabalho. Seu trabalho e profissionalismo com certeza são e serão grande inspiração para mim.

A brasileira mais famosa da Harvard T.H.Chan School of Public Health, Márcia Castro, que sempre me estimulou a buscar determinação e qualidade em meu trabalho, pelos ‘puxões de orelha’ e conselhos que me fizeram despertar em momentos em que foi preciso, pela recepção e orientação em meu trabalho, com seriedade, qualidade e confiança. Você é um exemplo de cientista a ser seguido!

Agradeço a minha ‘lesadinha’ e querida amiga Chiara Campos. Com toda certeza sua estadia em Cruzeiro do Sul teve um propósito além de acadêmico. Você foi muito mais do que apenas uma pessoa que convivi por 7 meses no Acre, mas sim uma amiga que a vida me deu e que levarei sempre em meu coração. Obrigado por ter trazido felicidade mais uma vez em meu caminho!
As incansáveis, dedicadas e inspiradoras Bárbara Lourenço e Maira Malta pelo constante apoio na conturbada rotina do trabalho de campo, pela ajuda e conversas necessárias nos momentos difíceis, pelo carinho que sempre tiveram comigo desde que iniciamos as atividades do projeto.

Aos queridos amigos que tive o prazer de fazer em Cruzeiro do Sul e que fizeram os efeitos da distância de mais de 4.000 Km entre Boa Esperança e Cruzeiro do Sul não serem tão intensos: Bruno Pereira, Carlos Chauca, Cristina Messias, Mara Valle, Adriângela Silva, Thainara Adrieli, Renata Barbosa, Félix Paulo, Mary Freitas, Rodrigo Medeiros, Neuza Carvalho, Tieme Dolstra e Marije CB. Obrigado pela amizade e pelas alegrias compartilhadas.

A Ana Carolina Bonelá pelos momentos felizes e de dificuldades que enfrentamos em nosso convívio em Cruzeiro do Sul. Você me proporcionou crescimento espiritual e me ensinou a entender um pouco mais de como devemos respeitar a nós mesmos e às nossas necessidades individuais. Eterna gratidão por termos crescido e amadurecidos juntos, trocando nossas experiências e visões de mundo.

Agradeço à toda equipe da Secretaria de Saúde de Cruzeiro do Sul, em especial ao Edir Nascimento, e também a Secretaria de Saúde do Estado do Acre por fazerem possível a execução desse projeto.

Aos extraordinários profissionais das Unidades Básicas de Saúde de Cruzeiro do Sul que, diariamente, superam as dificuldades trazidas pelo trabalho. Um agradecimento especial aos profissionais dos postos de saúde do Agricultor e 25 de Agosto por cederem seus espaços para realização das avaliações de acompanhamento das gestantes do projeto MINA-Brasil, principalmente para os sempre prestativos Sr. Pedro e Gleyci Costa.

A toda equipe da maternidade do Juruá, principalmente à Rosinha e ao Fernando, que abriram as portas de sua instituição para nos receber. Também agradeço a todos os funcionários daquele hospital que me deram carinho e afeto no trabalho diário em busca das gestantes cruzeirenses, em especial aos funcionários do centro obstétrico, centro cirúrgico, ALCON, laboratório, SAME e ginecologia. Impossível citar o nome de todos, mas saibam que a ajuda, amizade, conversas e risadas foram extremamente significantes para a conclusão dessa tarefa.
A todos enfermeiros que tive o imenso prazer em conhecer, aprender e dividir experiências de atenção à saúde, tanto nos postos de saúde como na maternidade. Vocês têm meu respeito e gratidão, pela ajuda e lições de como lidar com o próximo de maneira humana em suas necessidades próprias.

Aos queridos amigos que a USP me deu: Fernanda Cobayashi, Anaclara Pincelli, Lara Silva, Cristieli Menezes, Pablo Fontoura, Priscila Machado, Carla Martins, Fernanda Granado e Rosangela Augusto. Foram muitos momentos e lições compartilhadas no caminho em busca de nossos respectivos títulos. Obrigado por serem tão prestativos e atenciosos!

A toda equipe participante do estudo MINA-Brasil que tornou esse trabalho possível com o fruto de nossa dedicação e esforço. Um carinhoso agradecimento aos queridos Paola Mosquera, Waleska Regina, Lalucha Mazzucchetti e Thiago da Silva pelas alegrias compartilhadas.

Aos professores e estudantes da UFAC que contribuíram de maneira significativa para que o projeto fosse executado, em especial à Ana Alice Damasceno, Gustavo Virgínio, Ana Paula Sabaia, Carine Gabrielli e Samili Melo.

Aos membros do Departamento de Nutrição e do Programa de Pós-graduação em Nutrição em Saúde Pública da FSP/USP pelo suporte sempre oportuno e eficaz em minhas necessidades, especialmente a Alessandra Blaya e Larissa Baraldi.

Agradeço aos amigos da Harvard T.H. School of Public Health e Boston pela ajuda na chegada aos Estados Unidos e fazerem a estadia naquele país um imenso prazer. Gratidão a Kelsey Vercammen, Natalie Spitzer, Brena Sena, Estelle Gong, Christine Ulysses, Esther Frevier, Igor Johansen, Leandro Resende, Abhishek Bhatia, Stephanie Ko pelos felizes momentos que passamos. Em especial, agradeço as amigas Clariana Oliveira e Silvia Koller por terem sido tão presentes, apesar do curto convívio que tivemos.

Ao Professor Wafaie Fawzi da Harvard T.H. School of Public Health, sempre disposto a ajudar, com quem tive breves momentos de aprendizado e engrandecimento profissional.

Aos amigos queridos de Boa Esperança que trouxeram inúmeras alegrias nessa fase de novos descobrimentos. Sem vocês o caminho com certeza teria sido mais difícil.
A equipe do estudo ERICA (Estudo de riscos cardiovasculares em adolescentes), especialmente a Profa. Katia Vergetti Bloch, pelo gentil empréstimo de equipamentos de grande utilidade nas atividades cotidianas no trabalho de campo.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela concessão de bolsa de estudos durante o doutorado e à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela concessão de bolsa de estudos no exterior, por meio do Programa de Doutorado Sanduíche no Exterior.

Por fim, meu muito obrigado a todas as gestantes e puérperas que contribuíram com o estudo MINA-Brasil. Vocês nos depositaram a confiança necessária para que pudéssemos, de alguma maneira, ajudar para que futuras mamães possam ter uma experiência única em suas vidas. Com vocês aprendi muito além daquilo que concerne aos aspectos biológicos envolvendo essa fase da vida, mas também que o amor de vocês por seus filhos pode superar qualquer barreira.
RESUMO

Neves PAR. Estado nutricional de vitamina A na gravidez e associação com desfechos materno-infantis no estudo MINA-Brasil [tese de doutorado]. São Paulo: Faculdade de Saúde Pública da Universidade de São Paulo; 2018.

Introdução - Exposições adversas relacionadas ao estado nutricional na gestação têm sido associadas a desfechos desfavoráveis para a saúde materno-infantil. Nesse contexto, a deficiência de vitamina A (VA) é uma das carências nutricionais mais relevantes para a saúde dessa parcela da população, especialmente nos países em desenvolvimento. Objetivos - a) investigar preditores da concentração de retinol sérico no início do terceiro trimestre de gestação (Artigo 1), b) investigar a associação entre estado nutricional de VA durante a gestação e anemia materna no parto e peso ao nascer (Artigo 2) e c) investigar a prevalência e fatores associados com a cegueira noturna gestacional (XN) e anemia materna no parto (Artigo 3) em Cruzeiro do Sul, Acre, Amazônia Ocidental Brasileira. Métodos – Trata-se de estudo de coorte de nascimentos (MINA-Brasil: Saúde e Nutrição Materno-Infantil no Acre), a partir do recrutamento de gestantes do município. Entre fevereiro/2015 e maio/2016, gestantes inscritas no pré-natal da área urbana foram rastreadas (n = 587) e dois inquéritos realizados: 1ª avaliação com 16-20 semanas de gravidez e a 2ª avaliação com 27-30 semanas de gestação. Informações sobre condições sociodemográficas, ambientais, histórico de saúde e estilo de vida, medidas antropométricas, coleta de sangue em jejum e exame de ultrassonografia foram obtidas pela equipe de pesquisa. Posteriormente, entre julho/2015 e junho/2016, foi realizado registro diário das internações para parto na única maternidade do município com coleta de informações sobre desfechos de interesse para o presente estudo. Modelos de regressão múltiplos de Poisson e lineares foram utilizados nas análises estatísticas, ao nível de significância P<0,05. Resultados – No Artigo 1 (n = 422), a presença de fumante no domicílio foi inversamente associado às concentrações de retinol sérico na gravidez (β: -0,087; IC 95%: -0,166, -0,009); por outro lado, a sazonalidade (inverno amazônico - β: 0,134; IC 95%: 0,063, 0,206), o consumo semanal de frutos amazônicos (ricos em carotenoides - β: 0,087; IC 95%: 0,012, 0,162) e a concentração de retinol entre 16-20 semanas de gestação (β: 0,045; IC
95%: 0,016, 0,074) foram positivamente associados à concentração de retinol sérico no início do terceiro trimestre gestacional. No Artigo 2 (n = 488), independentemente do momento avaliado na gestação, a deficiência de VA foi associada ao risco para anemia materna (RP: 1,39; IC 95%: 1,05, 1,84) e inversamente associada com as concentrações de hemoglobina materna no parto (β: -3,34; IC 95%: -6,48, -0,20), após ajuste para covariáveis. No mesmo sentido, associação inversa também foi observada para o peso ao nascer (β: -0,10; IC 95%: -0,20, -0,00), contudo, perdendo a significância estatística após ajuste para concentrações de ferritina plasmática. No Artigo 3 (n = 1.525), altas prevalências de cegueira noturna gestacional (11,54%) e anemia materna no parto (39,38%) foram encontradas nesta população. Os fatores associados à cegueira noturna foram o número de pessoas no domicílio (cinco ou mais- RP: 2,06; IC 95%: 1,24, 3,41), fumo na gestação (RP: 1,78; IC 95%: 1,15, 2,78) e ter realizado menos de seis consultas de pré-natal (RP: 1,61; IC 95%: 1,08, 2,40). Os fatores associados à anemia materna foram: ser adolescente (< 19 anos - RP: 1,18; IC 95%: 1,01, 1,38), malária na gestação (RP: 1,22; IC 95%: 1,01, 1,49), não ter usado suplementos na gestação (RP: 1,27; IC 95%: 1,01, 1,62) e o número de consultas de pré-natal (< 6 consultas - RP: 1,40; IC 95%: 1,15, 1,70) Conclusão - Em município da Amazônia Ocidental Brasileira, a carença de VA associou-se ao risco para anemia no parto e foi inversamente associada à hemoglobina materna e o peso ao nascer do bebê. Estratégias e ações para promoção da alimentação saudável e nutrição da mulher no pré-natal precisam ser reavaliadas visando redução dos efeitos adversos da carença de VA para o binômio mãe-filho.

Descritores: Deficiência de Vitamina A; Anemia; Peso ao Nascimento; Gravidez; Estudos Longitudinais.
Neves PAR. Vitamin A status during pregnancy and its association with mother-infant outcomes in the MINA-Brazil study [thesis]. São Paulo: Faculdade de Saúde Pública da Universidade de São Paulo; 2018. Portuguese.

Introduction - Adverse exposures related to antenatal nutrition care have been associated with poor maternal and child outcomes. In this sense, vitamin A (VA) deficiency is a relevant public health issue for this vulnerable population, especially in developing countries. **Objectives** - a) to investigate the predictors of serum retinol at the beginning of the third trimester of pregnancy (Article 1), b) to investigate associations between the VA status during pregnancy with the occurrence of maternal anemia and birth weight (Article 2), and c) to investigate the prevalence, as well as the associated factors with gestational night blindness and maternal anemia (Article 3) in Cruzeiro do Sul, Acre State, Western Brazilian Amazon. **Methods** - Prospective birth cohort study (MINA-Brazil: Maternal and Child Health and Nutrition in Acre State), starting with recruitment of pregnant women. Between February/2015 and May/2016, pregnant women registered in antenatal clinics in the urban area of Cruzeiro do Sul were screened (n = 587) and two follow-up surveys were performed: the 1st one between 16 to 20 weeks of pregnancy and the 2nd one between 27 to 30 weeks of pregnancy. Socioeconomic, environmental, health history and lifestyle, anthropometric measures, blood samples, and ultrasounds data were gathered by the research team. Subsequently, between July/2015 and June/2016, daily visits to the municipal maternity hospital were performed in order to register all births and the outcomes of interest for this study. Multiple Poisson and linear regression models were used for statistical analysis, at P<0.05. **Results** - In the Article 1 (n = 422), having a smoker in the household was inversely associated with serum retinol in pregnancy (β: -0.087; 95% CI: -0.166, -0.009); on the other hand, the seasonality (Amazonian winter - β: 0.134; 95% CI: 0.063, 0.206), the weekly consumption of Amazonian carotenoid-rich fruits (β: 0.087; 95% CI: 0.012, 0.162), and serum retinol in the first assessment (β: 0.045; 95% CI: 0.016, 0.074) were positively associated with serum retinol at the beginning of the third trimester of pregnancy. In the Article 2 (n = 488), regardless the period assessed, VA deficiency was
associated with the risk for maternal anemia (PR: 1.39; 95% CI: 1.05, 1.84), as well as it was inversely associated with maternal serum hemoglobin (β: -3.34; 95% CI: -6.48, -0.20), after adjustment for covariates. Similarly, inverse association was observed for the birth weight (β: -0.10; 95% CI: -0.20, -0.00), even though it was no longer associated after adjustment for plasma ferritin. In the Article 3 (n = 1,525), high prevalence rate of gestational night blindness (11.5%) and maternal anemia (39.4%) were observed. Associated factors with gestational night blindness were the number of people in the household (five or more- PR: 2.06; 95% CI: 1.24, 3.41), smoking during pregnancy (PR: 1.78; 95% CI: 1.15, 2.78), and the completeness of less than six antenatal care visits (PR: 1.61; 95% CI: 1.08, 2.40). Associated factors with maternal anemia were being teenage (< 19 years - PR: 1.18; 95% CI: 1.01, 1.38), gestational malaria (PR: 1.22; 95% CI: 1.01, 1.49), did not use any supplementation during pregnancy (PR: 1.27; 95% CI: 1.01, 1.62), and the number of antenatal care visits (< 6 visits - PR: 1.40; 95% CI: 1.15, 1.70). Conclusion - In a city in the Western Brazilian Amazon, the VA deficiency was associated with the risk for maternal anemia and was inversely associated with maternal serum hemoglobin and the birth weight. The current strategies and interventions targeting antenatal nutrition care must be reviewed in order to reduce the adverse effects for mother-child binomial caused by VA deficiency.

Descriptors: Vitamin A Deficiency; Anemia; Birth Weight; Pregnancy; Longitudinal Studies.
LISTA DE FIGURAS E QUADROS

Figura 1 - Estimativas da prevalência de deficiência de vitamina A na gestação (retinol sérico < 0,7 µmol/L) para o período de 1995-2005... 33

Figura 2 - Estimativas da prevalência de cegueira noturna gestacional para o período de 1995-2005... 34

Figura 3 - Estimativas da prevalência de anemia na gestação (hemoglobina sanguínea < 110,0 g/L) para o ano de 2011... 38

Figura 4 - Estimativas da prevalência de anemia em mulheres em idade reprodutiva (hemoglobina sanguínea < 120,0 g/L) para o ano de 2011.. 39

Figura 5 - Localização espacial de Cruzeiro do Sul, Acre, Brasil............... 54

Figura 6 - Hospital da Mulher e Criança do Juruá em Cruzeiro do Sul, Acre. 2015... 54

Figura 7 - Delineamento do estudo MINA-Brasil..................................... 55

Figura 8 - Centro de Saúde do Produtor Rural “Francisco Souza dos Santos” em Cruzeiro do Sul, Acre. 2015................................. 57

Figura 9 - Delineamento epidemiológico utilizado no presente estudo........ 59

Figura 10 - Modelo conceitual hierárquico adotado para seleção de covariáveis de ajuste, adaptado conforme cada objetivo proposto.. 67

Quadro 1 - Avaliação funcional da deficiência de vitamina A, por meio da ocorrência de cegueira noturna em crianças pré-escolares............ 22

Quadro 2 - Avaliação funcional da deficiência de vitamina A, por meio da ocorrência de cegueira noturna em mulheres................................. 23
LISTA DE TABELAS

Tabela 1 - Resumo dos resultados encontrados para estudos selecionados sobre o efeito do estado nutricional de vitamina A durante a gestação sobre o peso ao nascer

31
Abreviação	Significado
AGP	α-1 glicoproteína ácida
BPN	Baixo peso ao nascer
CAPES	Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
CNPq	Conselho Nacional de Desenvolvimento Científico e Tecnológico
DUM	Data da última menstruação
DVA	Deficiência de vitamina A
DXA	Dupla emissão de raios-X
EAR	*Estimated Average Requirement*
ESF	Estratégia Saúde da Família
FSP	Faculdade de Saúde Pública
Hb	Hemoglobina
HIV	Virus da imunodeficiência humana
HPLC	High Performance Liquid Chromatography
HSPH	Harvard T. H. Chan School of Public Health
IBGE	Instituto Brasileiro de Geografia e Estatística
IC 95%	Intervalo de confiança de 95%
IG	Idade gestacional
IMC	Índice de Massa Corporal
IOM	Institute of Medicine
MRDR	Teste da dose-resposta relativa modificado
MMN	Múltiplos micronutrientes
OMS	Organização Mundial da Saúde
OR	Odds ratio
PCR	Proteína-C reativa
PIG	Pequeno-para-idade-gestacional
PNDS	Pesquisa Nacional de Demografia e Saúde da Criança e da Mulher
PN	Peso ao nascer
RBP	Retinol binding protein
RDA	Recommended Dietary Allowance
RDR	Teste da dose resposta relativa
RR	Risco relativo
UFAC	Universidade Federal do Acre
UI	Unidades internacionais
UNICEF	United Nations Children’s Fund
UNIMMAP	United Nations International Multiple Micronutrient Preparation
USG	Ultrassonografia
USP	Universidade de São Paulo
WHO	World Health Organization
APRESENTAÇÃO

A presente tese de doutorado integra o Estudo MINA-Brasil (Saúde e Nutrição Materno-Infantil no Acre), que é uma coorte de nascimentos a partir do acompanhamento de gestantes inscritas na atenção pré-natal na área urbana do município de Cruzeiro do Sul, Acre. O principal objetivo do Estudo MINA-Brasil é identificar determinantes do estado nutricional e desenvolvimento de crianças nos primeiros dois anos de vida no contexto Amazônico. Para esta tese, o objetivo principal foi investigar a contribuição do estado nutricional de vitamina A na gestação em relação a desfechos materno-infantis no momento do parto.

A organização desta tese na forma de artigos seguiu recomendações do Guia de Apresentação de Teses da Faculdade de Saúde Pública (2ª edição, 2017), adotando o estilo Vancouver para as referências. O documento engloba uma contextualização ao tema estudado, justificativa, hipótese de estudo e objetivos, além da descrição e detalhamento dos métodos empregados. Em seguida, na seção de resultados e discussão, são apresentados três artigos produzidos e, por fim, as considerações finais do trabalho. Ademais, em anexo, encontram-se dois artigos derivados do Estudo MINA-Brasil escritos em coautoria, sendo um a respeito da associação entre o ganho de peso gestacional e o estado nutricional (Anexo 2) e o outro sobre impacto da malária gestacional em desfechos materno-infantis (Anexo 3).

O estudo MINA-Brasil integra um conjunto de pesquisas epidemiológicas sobre condições de saúde e nutrição no estado do Acre coordenado por pesquisadores da Universidade de São Paulo (USP) em parceria com a Universidade Federal do Acre (UFAC) – Campus Floresta e a Harvard T.H. Chan School of Public Health (HSPH). Auxílios iniciais para sua execução foram concedidos pelo Conselho Nacional de Desenvolvimento Tecnológico (CNPq), incluindo bolsa Pesquisador Visitante Especial para a Prof. Dra. Márcia Caldas de Castro da HSPH (nº 407255/2013-3), Fundação Maria Cecília Souto Vidigal e pela chamada PPSUS 001/2015 Fundo de Amparo à Pesquisa do Estado do Acre – Programa Pesquisa para o SUS: Gestão Compartilhada em Saúde FAPAC/SESACRE/PPSUS MS/CNPq. Em 2017 foi obtido auxílio à pesquisa para projeto temático pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, nº 2016/00270-6). Para a presente tese, uma bolsa de estudo foi concedida.
pelo CNPq (nº 142252/2015-8) entre agosto de 2015 a junho de 2018. Além disso, uma bolsa do Programa de Doutorado Sanduíche no Exterior foi concedida pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (nº PDSE - 88881.133704/2016-01) para realização de estágio em pesquisa no *Department of Global Health and Population* da HSPH, Boston, Massachusetts, Estados Unidos, entre abril e setembro de 2017, sob supervisão da Profa. Dra. Márcia Caldas de Castro (ANEXO 1).

Membros da Coordenação MINA-Brasil Study Working Group

Alicia M. Manitto (Departamento de Medicina Preventiva, Faculdade de Medicina da USP), Suely G. A. Gimeno (Departamento de Medicina Preventiva, Escola Paulista de Medicina da Universidade Federal de São Paulo), Bruno P. da Silva e Rodrigo M. de Souza (UFAC, campus da Floresta), Márcia C. Castro (HSPH), Paulo A. R. Neves, Maíra B. Malta, Bárbara H. Lourenço, Marly A. Cardoso (Departamento de Nutrição, Faculdade de Saúde Pública da USP).
1 INTRODUÇÃO

1.1 Avaliação do estado nutricional de vitamina A em populações

Há diversos métodos para se determinar o estado nutricional de vitamina A (VA) em populações. Essa variedade de indicadores existe devido às múltiplas funções da VA no organismo, sendo alguns métodos mais sensíveis em detectar alterações nas reservas hepáticas de VA do que outros (Tanumihardjo, 2012). No entanto, algumas limitações impedem o uso de muitos desses indicadores como medidas do estado nutricional de VA em estudos populacionais, tais como a falta de validação (teste da vela); os altos custos envolvidos para realização de testes que dependem de materiais e aparelhos laboratoriais específicos, muitas vezes não disponíveis em alguns países de baixa e média renda, como o teor de retinol no leite humano, a citologia de impressão de conjuntiva, o teste da dose-resposta e a dose-resposta modificada; ser considerado invasivo, como no caso de biópsia hepática, o teste da dose-resposta; necessidade de profissionais especializados em sua aplicação, como oftalmologistas (citologia de impressão de conjuntiva e impressão citológica de transferência); exigência do nível de instrução do indivíduo para se obter informação fidedigna, como alguns testes funcionais, tais como o teste de adaptação rápida ao escuro (WHO, 2014a, 2012a, 2011a). Dentre os indicadores disponíveis, dois são amplamente utilizados em estudos populacionais, que são a história de cegueira noturna (XN) e as concentrações de retinol sérico (WHO, 2009). Por esse motivo, ambos serão apresentados e discutidos a seguir, apontando seus pontos fortes, limitações de uso e interpretação em inquéritos populacionais.

1.1.1 História de cegueira noturna

1 Teste da dose-resposta: envolve a obtenção de duas amostras sanguíneas do indivíduo, a primeira em um tempo zero (A0) e a outra depois de 5 horas após administração (A5) de 450 µg de vitamina A (all-trans retinol). O valor é expresso pela fórmula \[\frac{(A5 - A0)}{A5} \times 100 \]. Valores acima de 20% são considerados anormais. Teste da dose resposta modificada: é uma adaptação do teste da dose-resposta, em que uma única amostra sanguínea do indivíduo é obtida após 4 horas da administração de doses específicas para idade de 3,4 didehidroretinol (que é encontrado em baixas concentrações no organismo), sendo que a cromatografia líquida de alta performance é capaz de mostrar separadamente resultados para o retinol e para o 3,4 didehidroretinol, justificando a obtenção de apenas uma amostra sanguínea. A razão molar é então calculada, sendo que valores de 3,4 didehidroretinol para retinol > 0,060 sugerem baixas reservas hepáticas de retinol.
Os primeiros sintomas associados à deficiência de VA (DVA) são caracterizados pela adaptação da visão ao escuro prejudicada, a xeroftalmia, os quais podem iniciar quando as concentrações séricas de retinol estão abaixo de 1,0 µmol/L, porém sendo mais frequentes em concentrações abaixo de 0,7 µmol/L, sendo ainda mais frequente e grave em concentrações abaixo de 0,35 µmol/L (WHO, 2014a).

A primeira vez que a xeroftalmia foi classificada foi em um encontro da Organização Mundial da Saúde (OMS) realizado em 1974. Nesse encontro, a XN havia sido definida como um sinal secundário da xeroftalmia e, naquela época, não havia sido incluída como um possível indicador do estado nutricional de VA populacional, sendo que outras manifestações da xeroftalmia eram clinicamente aceitas e mais prevalentes para detecção do problema, como a mancha de Bitot (Sommer et al., 1980; WHO, 1976).

Em 1980, a primeira pesquisa a nível nacional sobre manifestações clínicas da DVA em uma população foi realizada com crianças pré-escolares residentes em área rural da Indonésia, por Sommer e colaboradores (Sommer et al., 1980). Nessa pesquisa, a XN foi tomada cuidadosamente do responsável pela criança e pôde-se observar que esse indicador era uma efetiva ferramenta para rastreamento da xeroftalmia, pelo fato de ter sido correlacionada com indicadores bioquímicos da DVA. Além disso, a XN foi duas vezes mais efetiva como um critério independente de rastreamento para baixas concentrações de retinol sérico quando comparada com avaliações da lesão da conjuntiva (Sommer et al., 1980; WHO, 1976). Esses resultados, e outros conduzidos em outros países naquela época, levaram à OMS a reconsiderar a classificação dos estágios da xeroftalmia, sendo que a XN passou a ser aceita como seu primeiro estágio (WHO, 2014a, 2012a).

Todavia, todas as informações sobre a importância da investigação da XN foram oriundas, principalmente, de estudos com crianças pré-escolares e poucas informações sobre o problema durante a gestação eram disponíveis. A pesquisa que elucidou a importância da história de XN em gestantes foi conduzida no Nepal, por Christian e colaboradores, em 1998, em um estudo de caso-controle pareado de base populacional (Christian et al., 1998a). Os pesquisadores mostraram que as gestantes que apresentaram história de XN em gestação prévia, eram de menor nível socioeconômico, apresentaram menores concentrações séricas de retinol, tiveram maiores chances de
terem uma impressão citológica da conjuntiva anormal e baixas concentrações de retinol no leite materno, tiveram ainda maiores chances de serem anêmicas, de consumirem uma dieta pobre em VA, de apresentarem alguma morbidade (infecção urinária e vaginal, diarreia, sintomatologia digestiva da gestação, pré-eclâmpsia, desnutrição) em comparação aos controles (Christian et al., 1998a). Esses resultados mostraram a importância que uma simples investigação sobre a história de XN pode ter na identificação de mulheres em elevado risco à saúde durante a gestação e que podem requerer e se beneficiar de um aporte nutricional especial, além de maior atenção e aconselhamento no pré-natal (Christian, 2002).

Além disso, ensaio clínico nessa população nepalesa mostrou que a suplementação semanal de VA em doses normais recomendadas foi capaz de reduzir o risco de se ter XN na gestação em quase 70% (RR: 0,33; IC 95%: 0,18, 0,59), e ainda de maneira dose-resposta, com maiores reduções para aquelas mulheres que tomaram 96-100% das doses recomendadas no estudo (Christian et al., 1998b).

Diante das evidências sobre os prejuízos para a gestação associados a XN materna, desde 2002 essa investigação tem sido sugerida como um possível indicador do estado nutricional de VA à nível comunitário. Ainda nesse ano, foi sugerido que prevalências de XN materna iguais ou maiores a 5% fossem consideradas como de significância para saúde pública como um problema associado à DVA (Christian, 2002).

Embora a XN seja considerada um estágio inicial da xeroftalmia, ela representa, assim como a mancha de Bitot, uma carência de VA moderada a grave no organismo, sendo associada ao aumento da morbimortalidade em crianças e gestantes (WHO, 2009).

A investigação da ocorrência de XN é um método fácil, barato, acessível, pouco invasivo, que pode ser aplicado em gestantes, nutrizes e crianças em idade pré-escolar. Este indicador consiste na realização de uma entrevista padronizada, na qual se questiona a capacidade de enxergar do indivíduo, através do uso de linguagem local, quando a mesma existir. Este indicador não requer equipamentos caros e nem conhecimentos oftalmológicos especializados para sua execução (Mclaren e Frigg, 1999).

Apesar do reconhecimento da importância da XN na fisiopatologia da xeroftalmia e de sua utilidade como um método de rastreamento, a qualidade da informação tomada
pode ser um problema. Para aumentar sua fidedignidade como indicador de DVA, termos locais para descrever o problema foram sugeridos de serem utilizados ao se conduzir a entrevista, reduzindo possíveis erros de classificação. Todavia, esses são existentes em localidades onde o problema pode atingir maiores proporções e gravidade, como os países do Sudeste Asiático (WHO, 2014a, 1982). No Brasil, não se conhece nenhum termo que possa ser utilizado para descrever essa manifestação (Saunders et al., 2004).

A investigação da XN se dá por meio de uma entrevista padronizada pela OMS (WHO, 1996) e pela Organização Pan-Americana de Saúde (Mclaren e Frigg, 1999), originalmente proposta para investigar o sintoma ocular em crianças pré-escolares, entrevistando o responsável pela mesma (Quadro 1). Posteriormente, em 2002, baseado nos efeitos adversos evidenciados por pesquisas conduzidas com mulheres nepalesas, a investigação da XN em gestantes passou a ser recomendada como um novo indicador da DVA (Christian, 2002). Essa entrevista tem por objetivo determinar a proporção de mulheres com história de XN em gestação prévia que resultou em um nascido vivo nos últimos 3 anos (Taren, 2012). Consta de 3 questões e quando a mulher responde não para a primeira pergunta e sim para uma ou ambas das perguntas restantes, tem-se um caso (Quadro 2).

Quadro 1 – Avaliação funcional da deficiência de vitamina A, por meio da ocorrência de cegueira noturna em crianças pré-escolares.

Investigaçãoda XN
1 – Seu filho possui alguma dificuldade para enxergar durante o dia? () Sim () Não
2 – Seu filho possui alguma dificuldade para enxergar em ambientes com pouca luz ou à noite? () Sim () Não
3 – Se a resposta 2 for positiva, outras crianças na comunidade apresentam o mesmo problema? () Sim () Não
4 - Seu filho possui cegueira noturna? () Sim () Não

Fonte: WHO, 1996; Mclaren & Frigg, 1999
Quadro 2 – Avaliação funcional da deficiência de vitamina A, por meio da ocorrência de cegueira noturna em mulheres.

Investigação da XN
1 – Você possui dificuldade para enxergar durante o dia? () Sim () Não
2 – Você possui dificuldade para enxergar em ambientes com pouca luz ou à noite? () Sim () Não
3 – Você tem cegueira noturna? () Sim () Não

Fonte: Christian, 2002

No Brasil, a primeira investigação sobre a prevalência de XN gestacional e sua associação com baixas concentrações de retinol sérico foi feita por Saunders e colaboradores (2005), por meio de um estudo conduzido em uma maternidade pública da cidade do Rio de Janeiro, com puérperas consideradas de baixo risco obstétrico (até 6 horas pós-parto). Nesse estudo, os autores descreveram estratégias e recomendações para o uso da entrevista padronizada para investigação da XN no contexto brasileiro, como questionamento da capacidade da mulher em enxergar com uso de óculos ou lentes de contato durante a gestação atual. Para explicar o que era tal manifestação para a participante, foi dito que essa é uma alteração do padrão visual habitual em ambientes com pouca luz ou à noite e da dificuldade de adaptação da visão quando o indivíduo passa de um ambiente mais claro para um mais escuro, sendo adotado como referência o padrão de visão noturno pré-gestacional. A entrevista foi conduzida com uso de linguagem simples e com exemplos de locais com baixa luminosidade, que eram comuns na cidade (Saunders et al., 2005; Christian, 2002).

Nesse estudo, foram encontradas associações entre as concentrações maternas de retinol sérico < 1,05 µmol/L e a ocorrência de XN gestacional. As concentrações de retinol sérico foram significativamente menores entre as mães que apresentaram o sintoma visual comparadas com aquelas que não apresentaram o sintoma. Os autores sugerem o uso da entrevista padronizada para avaliação do estado nutricional de VA gestacional, que permite a identificação de um grande contingente de mulheres durante o pré-natal com baixas concentrações séricas de retinol (Saunders et al., 2005).

1.1.2 Retinol sérico

Dentre todos os indicadores utilizados para diagnóstico da DVA, o mais amplamente utilizado em pesquisas epidemiológicas é o retinol sérico. Para
investigação do estado nutricional de VA populacional, o ponto de corte recomendado é < 0,7 µmol/L para DVA e < 0,35 µmol/L para DVA grave (WHO, 2009).

Progressos têm sido alcançados para tentar aliviar e diminuir os sinais mais evidentes da DVA. No entanto, maiores esforços ainda são necessários na tentativa de se chegar a um parâmetro que permita o diagnóstico do estado nutricional marginal de VA, o qual pode ser preditor de condições adversas associados à essa vitamina (Tanumihardjo, 2012). Embora ainda não seja um consenso internacional, o ponto de corte < 1,05 µmol/L tem sido proposto por refletir um estado nutricional de VA inadequado entre gestantes e mulheres em lactação, mostrando uma carência marginal de VA, ou seja, com baixas concentrações da vitamina circulantes, porém sem possíveis manifestações clínicas (WHO, 2009; West, 2002).

Apesar de seu amplo uso, alguns pontos necessitam ser elucidados. Os teores de retinol sérico refletem o armazenamento hepático de VA apenas quando ele está gravemente baixo (< 0,07 µmol/g de fígado) ou extremamente elevado (> 1,05 µmol/g de fígado). Entre esses extremos, o retinol sérico é homeostaticamente controlado e assim nem sempre se correlaciona com a ingestão de VA ou sinais clínicos da deficiência. Além disso, não é uma ferramenta útil para avaliação do estado nutricional de VA de indivíduos e pode não responder a intervenções (Tanumihardjo, 2012; WHO, 2011a, 2009). Por outro lado, a distribuição dos valores de retinol em uma população e a prevalência de indivíduos com concentrações de retinol abaixo de determinado ponto de corte, podem oferecer importantes informações sobre o estado nutricional de VA em uma população e refletir a severidade da DVA como um problema de saúde pública (WHO, 2011a).

Uma importante recomendação é não utilizar o retinol sérico isoladamente para definir o grau de significância da DVA como um problema de saúde pública, mas sim em conjunto com outros indicadores biológicos ou quando quatro dos seguintes fatores de risco são encontrados em uma população: taxa de mortalidade infantil > 75/1.000 nascidos vivos e > 100/1.000 nascidos vivos para crianças menores de 5 anos; cobertura total de imunização para crianças entre 12 e 23 meses de idade < 50%; prevalência de aleitamento materno para crianças menores de 6 meses < 50%; ingestão dietética média de VA < 50% das recomendações seguras entre 75% das crianças entre 1 e 6 anos de idade; prevalência de diarreia ≥ 20% por um período de 2 semanas; taxa de letalidade
por sarampo ≥ 1%; 50% de mulheres entre 15 e 44 anos sem escolaridade; e < 50% dos domicílios com uma fonte de água potável e segura (por exemplo, água fervida, filtrada, armazenada propriamente) (Tanumihardjo, 2012; WHO, 2011a).

Uma limitação do uso do retinol sérico como indicador da DVA é que este pode sofrer influência do estado de infecção ou inflamação do indivíduo, o qual afeta a homeostase da vitamina. Infecções clínicas ou subclínicas podem diminuir as concentrações de retinol em mais de 25%, tornando o conhecimento do estado infeccioso de uma população crítico para acuradamente interpretar a distribuição do retinol sérico (WHO, 2014b, 2011a).

O uso do retinol sérico para investigação do estado nutricional de VA populacional deve ser considerado em conjunto com marcadores do estado inflamatório/infecção, para devida interpretação da estimativa de prevalência de DVA (Tanumihardjo et al., 2016; WHO, 2009). Atualmente, as concentrações de proteína C-reativa (PCR) e α-1 glicoproteína ácida (AGP) têm sido propostas como marcadores de infecção/inflamação, quando: apenas PCR elevada indica estado incubação ou fase inicial de uma infecção aguda; quando ambas estão elevadas indica início da convalescência; e quando apenas a AGP está elevada indica final da convalescência. Tais estágios da inflamação/infecção têm sido usados em pesquisas epidemiológicas para corrigir os valores ou para adotar pontos de corte menores de retinol sérico como marcador da DVA (Tanumihardjo et al., 2016). Vale ressaltar que as concentrações de PCR não são afetadas por características do indivíduo, como idade e sexo. Por outro lado, ao final da gestação é comum observar maiores concentrações de PCR, reforçando a necessidade de se considerar seus valores na interpretação do retinol sérico na gestação (WHO, 2014b). Em populações consideradas sem nenhum tipo de infecção/inflamação, os pontos de corte < 0,7 e < 1,05 µmol/L de retinol sérico para crianças e mulheres, respectivamente, podem ser mais descritivos do atual estado nutricional de VA (Tanumihardjo, 2012).

Além desses fatores, outros aspectos podem interferir no uso do retinol sérico como indicador de DVA, como as baixas concentrações da proteína carreadora de retinol (retinol binding protein - RBP), necessária ao transporte do retinol pela corrente sanguínea; a carência de outros micronutrientes, como o zinco, o qual pode reduzir as concentrações circulantes de retinol por afetar a síntese de RBP e, dessa forma, contribuir para uma deficiência funcional de VA, mesmo quando os estoques hepáticos
estão adequados; desnutrição, obesidade e doenças renais, as quais podem influenciar também as concentrações de RBP (Tanumihardjo et al., 2016).

Particularidades comuns tanto para o uso da XN gestacional quanto dos teores de retinol sérico na avaliação da DVA são encontradas na gestação. Com o avançar da gravidez, mudanças fisiológicas acontecem para adaptar o corpo da mulher ao crescimento fetal e às demandas do feto. Isso inclui aumento da transferência materno-fetal de nutrientes, como a VA, especialmente no último trimestre de gestação. Esse processo tem por objetivo a formação de reservas hepáticas fetais da vitamina para a vida extrauterina. Esse aumento na transferência de VA nesse período pode resultar em importante redução dos estoques hepáticos de VA, principalmente se a mulher apresentar baixas reservas hepáticas. Associado a isso, a partir da metade da gestação tem-se a hemodiluição que é o aumento gradativo do volume sanguíneo materno, que alcança seu pico no último trimestre gestacional (Tanumihardjo et al., 2016; Gernand et al., 2016; Saunders, 2012; Christian et al., 1998a). Considerando isso, há maior risco para DVA em mulheres na segunda metade da gestação, principalmente no último trimestre, quando as demandas nutricionais são altas e as concentrações circulantes de VA são menores. Tudo isso pode complicar a utilização e interpretação do retinol sérico como indicador de DVA nos meses finais de gestação. Consequentemente, o risco de desenvolver XN e outras condições adversas são maiores durante esse período (Tanumihardjo et al., 2016; Saunders, 2012; Christian et al., 1998a).

1.2 Evidências do papel da vitamina A nos desfechos anemia materna e peso ao nascer

Diversos estudos conduzidos em vários países, sejam eles de alta ou média e baixa renda, têm mostrado a importância do estado nutricional de VA durante a gestação e possíveis efeitos adversos para a saúde materno-infantil.

1.2.1 Anemia materna

O papel da VA sobre o metabolismo do ferro e a ocorrência de anemia tem sido demonstrado por estudos com animais. Por meio de um modelo experimental, Cunha e colaboradores (2014) conduziram um estudo com ratos alimentados com dietas pobres
em VA e/ou ferro comparados com aquelas dietas com valores normais de VA. Os autores demonstraram que a DVA reduziu o ferro sérico e o nível de saturação da transferrina, aumentando a concentração do mineral nos órgãos (fígado e baço). Dessa forma, a conclusão do estudo foi que a DVA resultou em uma eritropoiese limitada, culminando na formação de eritrócitos malformados ou não diferenciados.

Em seres humanos, alguns ensaios clínicos randomizados e controlados por placebo têm encontrado resultados positivos para a suplementação com VA na gestação no aumento da hemoglobina (Hb) sanguínea e redução da anemia maternas (Sun et al., 2010; Radhika et al., 2003), entretanto divergências existem (Van Den Broek et al., 2006).

Na Índia, 170 gestantes entre 26-28 semanas de gravidez atendidas em uma clínica, foram alocadas para receber ou 1 RDA (Recommended Dietary Allowance) de VA, por meio de óleo de palma, ou placebo por 8 semanas. Todas as participantes receberam suplementos contendo ferro e ácido fólico. A prevalência de anemia entre as mães do grupo intervenção foi significativamente menor que no placebo (80,6% e 96,7%, respectivamente; p < 0,01), bem como a média de Hb sanguínea foi maior para esse grupo (99,50 ± 14,44 g/L e 97,90 ± 10,30 g/L, respectivamente; p < 0,01) (Radhika et al., 2003). Sun e colaboradores (2010) conduziram um ensaio clínico duplo-cego randomizado com 186 gestantes anêmicas entre 12-24 semanas gestacionais, residentes em área rural da China, as quais foram divididas em quatro grupos de acordo com a intervenção: I – 60 mg de sulfato ferroso; II – intervenção grupo I + 0,4 mg de ácido fólico; III – intervenção grupo II + 2 mg de retinol; e IV – placebo. Maiores concentrações de Hb sanguínea, ferro e ferritina plasmáticos foram observadas para os grupos I, II e III comparados ao IV, e esse aumento foi ainda maior para o grupo III, que recebeu retinol, comparado aos grupos I e II (p < 0,01).

Por outro lado, em estudo conduzido em área rural do Malauí, 700 gestantes entre 12-24 semanas de gestação e com anemia (Hb sanguínea < 110,0 g/L) receberam ou 5.000, ou 10.000 UI de VA ou placebo até o momento do parto. Como parte do pré-natal de rotina, a suplementação com ferro e ácido fólico foi administrada, além de profilaxia contra malária. Como resultados, não houve diferenças estatisticamente significantes entre os grupos em relação à prevalência de anemia e às médias de Hb sanguínea materna. Contudo, vale destacar que as concentrações de retinol das
participantes em cada grupo, no recrutamento, foram semelhantes, bem como as intervenções não tiveram efeitos na diferença da média de retinol entre os grupos ao final do estudo (Van Den Broek et al., 2006).

Meta-análises apontam para os efeitos benéficos da suplementação com VA durante a gestação sobre a anemia materna. McCauley e colaboradores (2015) encontraram redução no risco para anemia com a suplementação com VA durante a gestação, com um grau de qualidade da evidência moderado (RR: 0,64; IC 95%: 0,43, 0,94). Nessa mesma direção, outra meta-análise encontrou resultado significante para o efeito da intervenção, com redução em 19% do risco de anemia entre as gestantes suplementadas com VA (RR: 0,81; IC 95%: 0,69, 0,94) (Thorne-Lyman e Fawzi, 2012).

1.2.2 Peso ao nascer

Discussões têm sido levantadas a respeito da possível relação entre a VA e o peso ao nascer (PN), com vários estudos mostrando resultados conflitantes. A Tabela 1 apresenta resultados de estudos selecionados sobre esse tema.

Estudo transversal conduzido em Israel, com aproximadamente 300 mulheres, com gestações não complicadas e seus filhos, estratificado por religião, teve a coleta de sangue para avaliação do retinol sérico no momento do parto dos pares mãe-filho. Quando comparado o teor médio de retinol sérico entre as mães de bebês com PN entre 2.500-2.999 g com aquelas de bebês com ≥ 3.000 g, verificou-se uma diferença estatisticamente significante entre elas (média ± desvio padrão: 1,43 ± 0,91 vs. 1,78 ± 1,22 µmol/L, respectivamente, p < 0,01). Além disso, houve maior proporção de bebês com PN de 2.500-2.999 g entre mães com retinol sérico < 0,7 µmol/L comparado com mães com retinol sérico ≥ 0,7 µmol/L: 46% vs. 23%, respectivamente, p < 0,01 (Gazala et al., 2003).

Em Portsmouth, Inglaterra, Mathews e colaboradores (2004), por meio de estudo prospectivo no qual dispunham de duas medidas de exposição (1ª aproximadamente com 16 semanas e 2ª aproximadamente com 28 semanas), encontraram efeitos deletérios do retinol sobre os pesos ao nascer em bebês a termo e placentário de 798 nulíparas brancas atendidas em hospital da cidade. Após ajustes para confundidores, as maiores concentrações de retinol sérico no segundo momento avaliado, mas não no primeiro, foram associadas com redução nos pesos ao nascer (β: -201,8 g; IC 95%: -
330,7, -72,9) e placentário (β: -10,8 g; IC 95%: -18,9, -2,7). Além disso, as mudanças no retinol durante a gestação também foram preditoras do PN (p = 0,002). Em média, mulheres no percentil 5 para concentrações de retinol tiveram bebês 160 gramas mais pesados que aquelas no percentil 95. Os autores consideram que essa relação pode não ter sido causal, mas sim algum distúrbio metabólico que possa influenciar a transferência placentária de VA para o feto, onde altas concentrações de retinol materno são encontradas, porém inefficientemente transportadas para o feto.

Em área rural do sul da Índia, Tielsch e colaboradores (2008) avaliaram a influência que a ocorrência de XN gestacional poderia ter sobre o PN. Eles demonstraram que a ocorrência da primeira manifestação clínica da xeroftalmia aumentou o risco de baixo peso ao nascer (BPN) em uma relação dose-dependente, baseado nos pontos de corte de PN: < 2.500 g (RR: 1,13; IC 95%: 1,01, 1,26); < 2.000 g (RR: 1,70; IC 95%: 1,27, 2,26); < 1.500 g (RR: 3,38; IC 95%: 1,18, 6,33).

Um estudo prospectivo de base comunitária rural no sul da Etiópia com 575 nascimentos incluídos na amostra final, analisou o efeito do estado nutricional de VA, avaliado no segundo e terceiros trimestres gestacionais, sobre o BPN, aferido dentro de 72 horas do nascimento. O PN médio das crianças foi de 2.896 g e a prevalência de BPN foi de 16,5% (IC 95%: 13,5, 19,6). Mulheres que tiveram DVA durante a gravidez tiveram bebês com redução em 82 g (IC 95%: 9, 150) no PN. No entanto, na análise ajustada para múltiplos determinantes do BPN, a DVA não foi associada com o desfecho (RR: 1,25; IC 95%: 0,86, 1,82). Além disso, foram testadas a possível relação entre a DVA nos trimestres gestacionais com o BPN, porém sem nenhuma evidência de associação (segundo trimestre – RR: 1,26; IC 95%: 0,77, 2,07; terceiro trimestre – RR: 1,35; IC 95%: 0,71, 2,57) (Gebremedhin et al., 2012).

Em um grande estudo de coorte realizado em Southampton, Inglaterra, Handel e colaboradores (2016), investigaram a relação entre o retinol e o β-caroteno sobre o PN e a mineralização óssea de bebês. Nesse estudo, a amostra foi composta por indivíduos que tinham informações sobre os marcadores bioquímicos no último trimestre de gestação além de dupla emissão de raios-X (DXA). Por meio de modelos lineares ajustados, os pesquisadores encontraram uma relação negativa significante entre o retinol sérico com o PN (β: -0,11 g; IC 95%: -0,18, -0,05; p < 0,001). Por outro lado, relação positiva entre o β-caroteno e o PN foi encontrada (β: 0,11 g; IC 95%: 0,02,
0,21). Quando as concentrações de retinol e β-caroteno foram divididas em tercis, não se encontrou nenhuma relação entre o retinol e os marcadores do metabolismo e desenvolvimento ósseo, ao contrário para o β-caroteno, onde observou-se que quanto maiores as concentrações de β-caroteno maior era o conteúdo mineral ósseo e a área óssea dos bebês (p= 0,016 e p= 0,01, respectivamente). Os possíveis mecanismos envolvidos nessa associação, especialmente para o β-caroteno, ainda não são totalmente conhecidos, mas no caso do retinol sérico, estudos experimentais demonstraram que suas altas concentrações podem aumentar a reabsorção óssea e diminuir a osteoblastogênese.

Cohen e colaboradores (2015) conduziram um estudo de caso-controle aninhado a uma coorte de base populacional em Montreal, Canadá, com a intenção de identificar a relação entre retinoides (retinol e carotenoides) com a ocorrência de recém-nascidos pequeno para idade gestacional (PIG), com amostras sanguíneas coletadas entre 24-26 semanas de gravidez. Os casos foram considerados aqueles bebês com PN para idade gestacional (IG) menor que o percentil 10, conforme as recomendações para a população canadense, sendo que os controles foram considerados quando o PN para IG estivesse entre os percentis 25 e 75, do mesmo padrão de referência, em uma razão de 2:1. Como resultados, o aumento nas concentrações de retinol foi positivamente associado com o aumento no risco de PIG em 41% (RR: 1,41; IC 95%: 1,22, 1,63). Por outro lado, os carotenoides foram responsáveis pela diminuição no risco de PIG em 36% (RR: 0,64; IC 95%: 0,54, 0,78). Quando os percentis de PN para IG foram subdivididos entre menor que percentil 5 e entre percentil 5 e 10, a mesma direção das associações foi encontrada para ambos os retinoides.

Ensai clínico por conglomerado, randomizado, controlado por placebo, em área rural de Bangladesh avaliou os efeitos da suplementação com retinol e β-caroteno, controlado por placebo, sobre medidas antropométricas dos recém-nascidos. A prevalência de BPN foi de 54,4%, entre mais de 13.000 recém-nascidos. Nenhuma associação foi encontrada entre a suplementação com retinol ou β-caroteno sobre o BPN (RR: 1,03; IC 95%: 0,99, 1,07; RR: 1,03; IC 95%: 0,99, 1,07, respectivamente) e sobre a ocorrência de PIG (RR: 1,00; IC 95%: 0,97, 1,03; RR: 1,02; IC 95%: 0,99, 1,05, respectivamente) comparado com o grupo placebo. Sendo assim, não foi possível associar que a intervenção com VA em uma população carente e deficiente para essa
vitamina teve algum impacto na redução do problema de grande magnitude nessa população (Christian et al., 2013).

Thorne-Lyman e Fawzi (2012) em uma meta-análise de ensaios clínicos sobre o papel da suplementação com VA e/ou β-caroteno sobre a ocorrência de PIG e BPN, não encontraram nenhuma associação entre essa intervenção com os desfechos citados, porém para o BPN houve uma tendência em direção à significância (PIG – RR: 0,89; IC 95%: 0,68, 1,17; BPN – RR: 0,83; IC 95%: 0,67, 1,01).

Outra meta-análise de ensaios clínicos em países de média e baixa renda, não encontrou nenhum efeito da suplementação com retinol durante a gestação na redução do risco para BPN (RR: 1,02; IC 95%: 0,89, 1,16) (McCaughey et al., 2015).
Tabela 1 – Resumo dos resultados encontrados para estudos selecionados sobre o efeito do estado nutricional de vitamina A durante a gestação sobre o peso ao nascer.

Estudo	Tipo	Tamanho amostral	Local	Principais resultados
Gazala et al. (2003)	Transversal	300	Berseba, Israel (Centro médico local)	Concentração de retinol das mães de bebês com BPN foi significativamente menor do que aquelas com bebês com peso dentro da normalidade
Mathews et al. (2004)	Prospectivo	798	Portsmouth, Inglaterra (Hospital local)	Maiores concentrações de retinol materno na 28ª semana de gestação reduziram os pesos ao nascer (β: -201,8 g [IC 95%: -330,7; -72,9]) e placentário (β: -10,8 g [IC 95%: -18,9; -2,7]).
Tielsl et al. (2008)	Prospectivo	12.829	Tamilnadu, India (Base populacional)	A XN gestacional foi associada com aumento do risco de BPN, em um modo dose-dependente, baseado em pontos de corte do PN.
Gebremedhin et al. (2012)	Prospectivo	575	Sidama, Etiópia (Base comunitária)	Nenhuma associação entre a DVA, seja no segundo ou terceiro trimestre gestacional, e o BPN foi encontrada.
Handel et al. (2016)	Prospectivo	520	Southampton, Inglaterra (Base populacional)	Retinol não foi negativamente associado com PN e não houve associação com marcadores do metabolismo e desenvolvimento ósseo. Os maiores tercis de β-caroteno foram positivamente associados com metabolismo e desenvolvimento ósseo dos recém-nascidos.
Cohen et al. (2015)	Caso-controle aninhado a uma coorte	324 casos e 672 controles	Montreal, Canadá (Base populacional)	Retinol no meio da gestação foi associado com aumento do risco de PIG, enquanto que para o β-caroteno foi encontrada ação protetora contra PIG.
Christian et al. (2013)	Ensaio clínico randomizado por conglomerados	13.709	Zona rural de Bangladesh (Base comunitária)	O PN e a ocorrência de PIG não diferiram significativamente entre os grupos que receberam a intervenção (retinol ou β-caroteno) comparado com o placebo.
Thorne-Lyman & Fawzi (2012)	Meta-análise de ensaios clínicos	2.254	Países em desenvolvimento	Não encontraram nenhuma associação entre a intervenção com o BPN e PIG, porém para o BPN houve uma tendência em direção à significância
McCauley et al. (2015)	Meta-análise de ensaios clínicos	14.599	Países em desenvolvimento	Não encontraram nenhuma associação entre a intervenção com o BPN.

BPN – baixo peso ao nascer; DVA – deficiência de vitamina A; PIG – pequeno para idade gestacional; PN – peso ao nascer.
1.3 Epidemiologia e principais causas do estado nutricional inadequado de vitamina A e anemia na gestação

1.3.1 Vitamina A

Apesar da importância da VA em diversas funções orgânicas, sua deficiência é um dos principais problemas de saúde pública em algumas partes do mundo, principalmente nas regiões mais carentes. A DVA é uma das mais importantes causas de cegueira evitável em crianças, além de ser um grande contribuidor para a morbimortalidade materno-infantil, especialmente em crianças em fase pré-escolar e gestantes dos países de baixa e média renda (WHO, 2009).

- Estimativas globais

Em 2009, a OMS divulgou as mais recentes estimativas globais de DVA, para o período entre os anos de 1995-2005, para países de baixa e média renda (Figura 1 e Figura 2).

![Mapa de estimativas da prevalência de deficiência de vitamina A na gestação](mapa.png)

Fonte: WHO, 2009.

Figura 1 – Estimativas da prevalência de deficiência de vitamina A na gestação (retinol sérico < 0,7 µmol/L) para o período de 1995-2005.
Fonte: WHO, 2009.

Figura 2 – Estimativas da prevalência de cegueira noturna gestacional para o período de 1995-2005.

Globalmente, a prevalência de XN entre gestantes foi de 7,8% (IC 95%: 7,0, 8,7), afetando 9,75 milhões de mulheres. Para as baixas concentrações de retinol sérico, a prevalência foi de 15,3% (IC 95%: 7,4, 23,2), com um total de 19,1 milhões de grávidas afetadas pela DVA (WHO, 2009).

Quando consideradas as diversas regiões do mundo, as maiores prevalências de XN gestacional foram encontradas no Sudeste Asiático (9,9%; IC 95%: 9,5, 10,3), África (9,8%; IC 95%: 8,4, 11,1) e Mediterrâneo Oriental (7,2%; IC 95%: 5,2, 9,2). Em outras regiões as prevalências foram de 4,8% (IC 95%: 0,9, 8,6) no Pacífico Ocidental, de 4,4% (IC 95%: 2,7, 6,2) nas Américas (excluindo Estados Unidos e Canadá) e de 3,5% (IC 95%: 1,8, 5,3) na Europa (apenas Europa Oriental) (WHO, 2009).

Ainda sobre as diferentes regiões consideradas pela OMS, mas para o indicador bioquímico, as prevalências de inadequação entre gestantes foram de 21,5% (IC 95%: 0,0, 49,2) para o Pacífico Ocidental, de 17,3% (IC 95%: 0,0, 36,2) para o Sudeste Asiático, de 16,1% (IC 95%: 9,2, 23,1) para o Mediterrâneo Oriental, de 13,5% (IC 95%: 8,9, 18,2) para a África, de 11,6% (IC 95%: 2,6, 20,6) para a Europa (apenas Europa Oriental) e de 2% (IC 95%: 0,4, 3,6) para as Américas (excluindo Estados Unidos e Canadá) (WHO, 2009).
Para critérios de classificação, a OMS considera prevalências de XN gestacional ≥ 5% como sendo um problema de saúde pública relativo à DVA e para o retinol sérico na gestação, prevalências ≤ 2% como não sendo associadas a um problema de saúde pública relativo a DVA, entre 2 e 10% um problema de saúde pública leve, entre 10 e 20% um problema moderado e ≥ 20% um grave problema de saúde pública (WHO, 2009).

Baseada nessas prevalências, dos 156 países avaliados pela OMS, 66 (42,3%) foram considerados como apresentando a XN gestacional como um problema de saúde pública. Quando analisado o indicador retinol sérico < 0,7 µmol/L para gestantes, 20 países (12,82%) foram considerados como não apresentando um problema de saúde pública, 48 países (30,77%) apresentaram os baixos níveis de retinol como um problema leve, 57 países (36,54%) um problema moderado e 31 países (19,87%) como um grave problema de saúde pública (WHO, 2009).

Ainda com base nessas estimativas, a OMS classificou o Brasil como não apresentando um problema de saúde pública entre gestantes com base no indicador XN gestacional e um problema leve baseada nos níveis de retinol sérico (WHO, 2009). Contudo, vale destacar que essas estimativas foram derivadas a partir de dados oriundos de outros países, já que o Brasil não dispunha de nenhuma informação sobre a situação de VA na gestação naquela época.

- Estimativas para América Latina e Caribe

Duas recentes revisões sistemáticas tiveram como objetivo apresentar os dados mais atualizados sobre a situação do estado nutricional de VA, com base nos níveis de retinol sérico, para crianças pré-escolares e mulheres em idade reprodutiva entre os países da América Latina e Caribe (Galicia et al., 2016; Cediel et al., 2015).

Primeiramente, é importante destacar o cenário vivido pelos países latino-americanos e caribenhos nas últimas décadas, até 2015 (Cediel et al., 2015). A situação econômica geral para a maioria desses países tem melhorado ao longo dos anos (Galicia et al., 2016; Cediel et al., 2015). Além disso, estratégias têm sido empregadas como uma tentativa de reduzir a DVA na região, como os programas de fortificação alimentar e de distribuição de mega-doses de VA para crianças em idade pré-escolar (Galicia et al., 2016; Cediel et al., 2015). Mesmo assim, Cediel e colaboradores (2015) consideram que a aplicação de tais estratégias necessita de um planejamento e monitoramento cuidadoso para se prevenir os possíveis riscos de se oferecer quantidades excessivas de VA para a população.

Poucos países dispunham de informações sobre o estado nutricional de VA entre mulheres em idade reprodutiva em 2015 (consideradas como acima de 12 anos de idade ou
entre 15 e 49 anos, dependendo da revisão sistemática), sendo eles Belize, Brasil, El Salvador, México, Nicarágua e Peru. Dentre esses, Belize, El Salvador e Nicarágua não apresentaram a DVA como um problema de saúde pública entre mulheres, com prevalência de 1,2%, 1% e 1,3%, respectivamente (Galicia et al., 2016; Cediel et al., 2015). O México apresentou prevalência de 4,3% e o Peru de 8,7%, o que os define como apresentando um problema de saúde pública leve para esse grupo populacional. O Brasil apresentou a maior prevalência (12,3%), sendo um problema de saúde pública moderado em 2006, com base nos critérios da OMS (Cediel et al., 2015).

Sobre o indicador clínico da DVA em gestantes na América Latina e Caribe, o relatório da OMS para as prevalências globais da deficiência, ressalta que a XN gestacional foi um problema de saúde pública entre 1995-2005 nos seguintes países: Guatemala, Nicarágua, Haiti, Bolívia e Peru (WHO, 2009).

Cabe destacar alguns cenários vivenciados por alguns países da América Latina e Caribe nos últimos anos, por meio de comparação das prevalências ao longo dos anos, porém para crianças pré-escolares. Reduções dramáticas nas prevalências de DVA foram observadas na Guatemala e Nicarágua, que por volta de 1995 apresentavam prevalências consideradas como problemas moderados e graves de saúde pública, respectivamente, e que mais recentemente não mais apresentam a DVA como um problema de saúde pública. Outras grandes reduções foram observadas na Costa Rica e El Salvador, apesar da DVA ainda ser um problema de saúde pública nesses países, porém leve. Tais avanços podem ser atribuídos às estratégias de controle e erradicação da DVA nesses países com a fortificação universal do açúcar. O que é mais notável é que esses avanços foram observados em países que ainda estão em um processo de crescimento econômico menor que outros, como Brasil e México que possuem economias emergentes, porém ainda enfrentam a DVA em suas populações (Cediel et al., 2015).

- Estimativas para o Brasil e estudos nacionais localizados

O Ministério da Saúde reconhece atualmente a situação da DVA no país como sendo um problema de saúde pública moderado, seja para crianças pré-escolares ou mulheres em idade fértil (Brasil, 2018a). As regiões consideradas pelo Ministério da Saúde como apresentando altas prevalências de DVA eram a região Nordeste e algumas áreas isoladas das regiões Norte e Sudeste (Brasil, 2013a). Contudo, a Pesquisa Nacional de Demografia e Saúde da Criança e da Mulher de 2006 (PNDS) mostrou que a DVA em mulheres em idade fértil não se limita apenas a essas regiões apontadas pelo Ministério da Saúde. A PNDS foi o
primeiro estudo de abrangência nacional sobre a carência de VA em mulheres em idade reprodutiva (15 a 49 anos). Nessa pesquisa as amostras sanguíneas foram coletadas de 5.698 mulheres pelo método da gota seca, sendo os teores de VA mensurados pelo HPLC (*High Performance Liquid Chromatography*). A prevalência nacional de concentrações séricas de retinol < 0,70 µmol/L foi de 12,3%. Quando analisadas as regiões do país, a maior prevalência de inadequação foi na região Sudeste (14%), seguida pelas regiões Centro-Oeste (12,8%), Nordeste (12,1%), Norte (11,2%) e Sul (8,0%). Quando o ponto de corte para detectar a carência de VA foi retinol < 1,05 µmol/L a prevalência no país foi de 49,2% (Brasil, 2009). No entanto, ressalta-se que a PNDS foi um estudo transversal e conduzido com mulheres em idade reprodutiva, sem incluir gestantes na avaliação de VA. Esses achados sugerem que uma grande parcela de mulheres em idade reprodutiva provavelmente se tornará deficiente em VA na gravidez.

Outros estudos localizados no país mostram a prevalência da XN gestacional e baixas concentrações de retinol sérico. No Rio de Janeiro, estudo transversal com 606 gestantes atendidas em maternidade pública da cidade, revelou prevalência de XN gestacional de 9,9% (Saunders et al., 2015). No estado de Pernambuco, Miglioli e colaboradores (2013) estudando amostra probabilística representativa de mães de crianças entre 6-59 meses de idade para todo o estado, encontraram prevalência de concentrações inadequadas de retinol de 6,9% (IC 95%: 4,9, 8,9); quando estratificadas entre mulheres de zona rural e urbana, as prevalências foram de 7,6% e 6,3%, respectivamente.

Levando-se em consideração todas as informações acima apresentadas, tanto para o Brasil como também para outras regiões do planeta, percebe-se que apesar dos avanços alcançados por alguns países, ainda existem desafios para a erradicação da DVA no mundo.

Muitas dessas informações provenientes dos países aqui citados, inclusive aquelas relativas ao Brasil, necessitam de atualização para monitoramento da DVA. Isso pode ser alcançado com o compromisso dos governos na realização de novas pesquisas, especialmente as Pesquisas de Demografia e Saúde que tanto auxiliam no monitoramento da situação nutricional não apenas para micronutrientes, mas para tantas outras questões relativas à saúde de mulheres e crianças e que fazem parte da agenda pactuada para o *Global Nutrition Target* para o ano de 2025 da OMS (Galícia et al., 2016).

1.3.2 Anemia materna

Dentre as carências nutricionais, a anemia é o problema de saúde pública de maior magnitude em praticamente todos os países do mundo, causando consequências adversas para
a saúde dos afetados. O indicador mais confiável e recomendado pela OMS para diagnosticar anemia são as baixas concentrações de Hb sanguínea, porém sua medida sozinha não permite distinguir as possíveis causas do problema (WHO, 2015a).

- Estimativas globais

As mais recentes estimativas globais para anemia na gestação foram divulgadas pela OMS em 2015, respectivas ao ano de 2011. Nessa análise, valores séricos de Hb materna < 110,0 g/L, ajustados para altitude e tabagismo, foram utilizados na classificação do problema (Figura 3). Para mulheres em idade reprodutiva, o ponto de corte para classificar a anemia foi Hb sanguínea < 120,0 g/L (Figura 4) (WHO, 2015a, 2011b).

Fonte: WHO, 2015a

Figura 3 – Estimativas da prevalência de anemia na gestação (hemoglobina sanguínea < 110,0 g/L) para o ano de 2011.
Figura 4 – Estimativas da prevalência de anemia em mulheres em idade reprodutiva (hemoglobina sanguínea < 120,0 g/L) para o ano de 2011.

Um total de 528,7 milhões de mulheres em idade reprodutiva, sendo 32,4 milhões gestantes, eram anêmicas em 2011. Desse total, 20,2 milhões de mulheres em idade reprodutiva tiveram anemia grave (Hb sanguínea < 70,0 g/L), das quais 0,8 milhões eram gestantes. A prevalência global de anemia entre gestantes foi de 38,2% (IC 95%: 33,5, 42,6) e a concentração média de Hb sanguínea de 114,0 g/L (IC 95%: 112,0, 116,0). Nessa análise, 146 países foram classificados como tendo a anemia na gestação como um problema de saúde pública moderado (prevalências entre 20% e 39,9%) e 37 como grave (prevalência ≥ 40%). As menores médias de concentração de Hb sanguínea entre gestantes foram encontradas na África (112,0 g/L; IC 95%: 110,0, 114,0) e Ásia (113,0 g/L; IC 95%: 111,0, 116,0), com prevalências do problema de 44,6% (IC 95%: 39,3, 49,0) e 39,3 (IC 95%: 31,8, 46,5), respectivamente. Por outro lado, a maior média de Hb sanguínea foi encontrada na América do Norte (121,0 g/L; IC 95%: 119, 125), com prevalência de anemia de 17,1% (IC 95%: 11,8, 21,8) (WHO, 2015a, 2011b).

- Estimativas para América Latina e Caribe

A prevalência de anemia em gestantes na América Latina e Caribe foi de 28,3% (IC 95%: 20,1, 38,6), sendo 1,9 milhões de mulheres afetadas. A média de Hb sanguínea para essa população foi 118,0 g/L (IC 95%: 114,0, 123,0). Praticamente todos os países da região foram classificados pela OMS como tendo a anemia na gestação como um problema de saúde.
pública moderado, com exceção do Haiti, onde a anemia é um problema grave. Tendo como base a média de Hb sanguínea gestacional, poucos países apresentaram valores superiores ou iguais a 120,0 g/L, sendo os casos do Chile, Costa Rica, Honduras, México, Nicarágua e Peru. Médias de concentração de Hb sanguínea gestacional entre 119,0 e 117,0 g/L foram encontradas para a grande maioria dos países restantes, com exceção do Haiti, Bolívia e Brasil, onde os valores foram iguais ou menores a 116,0 g/L. No Haiti, quase metade da população de gestantes era anêmica em 2011 (48%; IC 95%: 35, 59) e a média de Hb sanguínea foi próxima do ponto de corte para classificação da anemia gestacional (111,0 g/L; IC 95%: 107,0, 116,0) (WHO, 2015a).

Tais divergências possuem múltiplas causas, porém, em sua grande maioria, há adoção nesses países de estratégias para combate à anemia nutricional por deficiência de ferro na gestação, tais como a fortificação das farinhas de trigo e milho com ferro e ácido fólico, bem como a distribuição de suplementos com os mesmos micronutrientes (Mujica-Coopman et al., 2015). Contudo, outros fatores como a aderência às intervenções e a ingestão alimentar de alimentos fonte em ferro podem ajudar a explicar as discrepâncias dentro da América Latina e Caribe, as quais são difíceis de serem medidas a nível nacional.

- Estimativas para o Brasil e estudos nacionais localizados

A OMS classifica a anemia gestacional no Brasil como um problema de saúde pública moderado. Em 2011, a prevalência estimada de anemia na gestação no país foi de 32% (IC 95%: 11, 62), sendo a média de Hb sanguínea de 116,0 g/L (IC 95%: 106,0, 128,0). Com relação as mulheres em idade reprodutiva, 20% (IC 95%: 7, 47) foi a prevalência estimada de anemia para o Brasil e a média de Hb sanguínea de 129,0 g/L (IC 95%: 120,0, 138,0) (WHO, 2015a).

Prevalência de anemia para mulheres em idade reprodutiva superior à estimada pela OMS foi encontrada pela PNDS para o ano de 2006, onde 29,4% das 5.669 participantes eram anêmicas (Hb sanguínea < 120,0 g/L). Analisando dados por cada região, no Nordeste quase 40% das participantes tiveram anemia, seguido por Sudeste (28,5%), Sul (24,8%), Centro-Oeste (20,1%) e Norte (19,3%) (Brasil, 2009). Não há dados oficiais do Ministério da Saúde sobre a situação da anemia gestacional no país, apesar de recomendar que a suplementação com ferro e ácido fólico seja empregada para gestantes sem anemia e com fatores de risco para a doença e ainda para casos identificados durante o pré-natal (Brasil, 2013b). Dessa forma, a maioria das evidências a respeito da ocorrência do problema no país são provenientes de estudos localizados, as quais têm encontrado prevalências classificadas como problema de
saudé pública moderado (Bardaji et al., 2017; Pinho-Pompeu et al., 2016; Saunders et al., 2015; Fujimori et al., 2011).

Em Manaus, prevalência de 30% de anemia na gestação foi encontrada entre 1.657 gestantes atendidas em clínicas pré-natais da cidade participantes de um estudo prospectivo multicêntrico para analisar o impacto da malária em desfechos gestacionais (Bardaji et al., 2017). Em maternidade pública do Rio de Janeiro foi observada uma prevalência de 26,3% nos primeiros dois trimestres de gestação em um estudo transversal (Saunders et al., 2015). Outra análise transversal em Campinas, São Paulo, encontrou prevalência de 41,72% de anemia entre gestantes adolescentes atendidas em hospital público do município (Pinho-Pompeu et al., 2016). Por fim, buscando avaliar a efetividade da fortificação de farinhas com ferro e ácido fólico na redução da anemia em gestantes, Fujimori e colaboradores (2011) conduziram dois estudos transversais envolvendo 12.119 mulheres (6.062 pré-fortificação e 6.057 pós-fortificação) atendidas em serviços públicos de pré-natal em municípios das cinco regiões brasileiras, encontrando queda na prevalência de anemia de 25% pré-fortificação para 20% pós-fortificação.

1.3.3 Principais causas do estado nutricional inadequado de vitamina A e anemia na gestação

Dentre os fatores de risco para a ocorrência de DVA e anemia, sabe-se que a inadequação crônica na ingestão dietética de VA e ferro é a principal deles. Além disso, concomitantemente ao fator dietético, é comum observar a ocorrência de processos infecciosos em indivíduos que sofrem de tais problemas, os quais exacerbam os efeitos da inadequação alimentar (WHO, 2017, 2012b, 2009).

Normalmente, a DVA se desenvolve em ambientes com privações ecológicas, sociais e econômicas, como falta de saneamento básico e existência de doenças infecciosas recorrentes, além da dificuldade no acesso a alimentos nutricionalmente ricos em micronutrientes (WHO, 2009). Isso é evidente se considerarmos que as estimativas mais recentes da OMS sobre a prevalência de DVA no mundo não consideram os países que possuem Produto Interno Bruto per capita maior ou igual a US$ 15.000, sendo estes considerados como livres de DVA como um problema de saúde pública de significância (WHO, 2009).

O baixo consumo dos alimentos fonte de VA pode ser decorrente da falta de conhecimentos sobre nutrição pela população, da condição financeira para sua aquisição ou devido aos hábitos alimentares (Ramalho e Dolinsky, 2012; Ramalho et al., 2009a; Sommer,
Além disso, recentemente, preocupações têm surgido a respeito da qualidade da dieta proveniente de sistemas alimentares focados na quantidade e não na qualidade de alimentos consumidos pela população mundial. Apesar dos avanços na redução da desnutrição mundial, avaliada pelas prevalências de *stunting* e *wasting* em crianças, e de baixo peso em adultos, alguns países ainda enfrentam estes, além de outros problemas associados ao consumo excessivo de calorias de alimentos não saudáveis, como o sobrepeso e a obesidade. Esse cenário de carga dupla de má-nutrição tem sido relacionado à má qualidade da dieta atualmente, seja pela escassez no acesso e no consumo de alimentos naturalmente nutritivos (tais como frutas e hortaliças) ou pela maior oferta de produtos ultraprocessados, ricos em açúcares, sal e gorduras não-saudáveis (Monteiro et al., 2018; Hawkes et al., 2017; Global Panel on Agriculture and Food Systems for Nutrition, 2016; Louzada et al., 2015).

Sobre a ingestão cronicamente insuficiente é importante considerar o consumo de alimentos fonte de VA entrepopulações de países de alta renda comparado aos de renda média e baixa. Apesar das fontes de VA serem distribuídas em alimentos de origem animal e vegetal, em países de alta renda cerca de 66 a 80% da ingestão de VA é proveniente de produtos onde a vitamina é pré-formada, como suplementos vitaminícos, óleos de figado de peixe, alimentos fortificados, leite, margarina e cereais matinais. Por outro lado, em países de renda média e baixa, mais de 70% da VA é proveniente dos carotenoides, que apresentam pior biodisponibilidade que o retinol (Van Loo-Bouwman et al., 2014; Penniston e Tanumihardjo, 2006; Tanumihardjo, 2002). Em consonância com esses achados, um grande estudo transversal com mulheres em idade reprodutiva, conduzido em 42.974 domicílios em favelas de Jacarta, Indonésia, mostrou que chances de XN foram menores nos domicílios no maior quintil de gastos para aquisição de frutas e vegetais (OR: 0,47; IC 95%: 0,33, 0,67), ovos (OR: 0,62; IC 95%: 0,44, 0,85) e alimentos de origem animal (OR: 0,47; IC 95%: 0,29, 0,76) em comparação ao menor quintil. Por outro lado, em domicílios no maior quintil de gastos com cereais (especialmente arroz) as chances de XN foram maiores em comparação ao menor quintil (OR: 2,80; IC 95%: 1,86, 4,22) (Campbell et al., 2009).

Com relação à anemia, estima-se que cerca de metade de todos os casos de anemia sejam causados pela deficiência de ferro, atribuível ao baixo consumo ou problemas absorptivos, ou ainda a perdas sanguíneas (Black et al., 2013). Na gestação, as demandas por ferro dietético são bem maiores que aquelas para mulheres em idade reprodutiva, de 27 mg/d e 18 mg/d, respectivamente, sendo difíceis de serem alcançadas somente pela dieta, o que torna necessário o uso de suplementos para atender a essas necessidades (IOM, 2001). Isso pode ser verificado por um estudo com amostragem representativa para o Brasil, que aponta quedentre
diversos micronutrientes, o que apresentou a maior inadequação na ingestão entre gestantes, medida por dois recordatórios de 24 horas, foi o ferro, atingindo 97% de inadequação comparada com a EAR (Estimated Average Requirement) (Santos et al., 2014).

Sinergicamente atuando para a ocorrência de ambas deficiências estão outras carências nutricionais. Com relação à VA, o ferro e zinco apresentam um importante sinergismo com a mesma, sendo que a deficiência de um pode ocasionar a carência de outro(s), visto as funções metabólicas compartilhadas entre eles, como na questão da absorção, armazenamento hepático, bem como no transporte e utilização pelo organismo (Tanumihardjo et al., 2016; Pinkaew et al., 2013; Thorne-Lyman e Fawzi, 2012; WHO, 2011a; Winichagoon, 2008; Oliveira et al., 2008; Graham et al., 2007; Silva et al., 2007). A carência de vitaminas B9 (folato) e B12 são importantes fatores na gênese da anemia, já que a produção adequada de células vermelhas do sangue, carreadoras de oxigênio pelo corpo, dependem dessas vitaminas, assim como de ferro (WHO, 2015a). A relação entre VA e ferro ainda não é totalmente clara, mas as hipóteses existentes apontam que a VA pode ser importante fator para a mobilização do ferro de seus estoques hepáticos, no aumento da eritropoiese, na diminuição dos efeitos de estados inflamatórios sobre o ferro, bem como aumentando a absorção do mineral (Thorne-Lyman e Fawzi, 2012).

Outra importante causa para a DVA e anemia é a ocorrência de infecções/inflamações. Dentre todos os micronutrientes, a VA é considerada a que apresenta o maior sinergismo com infecções (Katona and Katona-Apte, 2008). Em locais onde a DVA é comum, espera-se encontrar coexistência dessa com infecções graves, como sarampo, ou recorrentes, como diarreia e doenças respiratórias, especialmente em crianças (WHO, 2009). Sobre a anemia, o HIV, a tuberculose e a malária são reconhecidas infecções que elevam o risco do problema (Bhutta e Salam, 2012; WHO, 2009). Tais episódios infeciosos podem favorecer um menor consumo de alimentos devido ao baixo apetite, além de redução na absorção de nutrientes, levando a uma depleção dos estoques hepáticos de retinol e ferro, devido metabolismo e excreção excessivos, podendo conduzir a um ciclo vicioso de má nutrição e infecção (WHO, 2015a, 2012b, 2009).

Por fim, outros aspectos também merecem destaque, como a própria fisiologia da gestação. Durante a gravidez ocorrem diversas alterações anatômicas e fisiológicas que afetam quase todas as funções orgânicas da mulher. Algumas dessas alterações podem interferir na manutenção do bom estado nutricional materno, como as que acontecem no sistema circulatório, devido ao aumento do volume sanguíneo (hemodiluição) que se inicia a partir da 6ª semana gestacional e atinge seu pico no início do 3º trimestre gestacional. Os
efeitos da hemodiluição na ocorrência da DVA e anemia podem ser mais intensos no último trimestre de gestação, particularmente a partir de 30 semanas de gravidez (Gernand et al., 2016; Ramalho e Dolinsky, 2012; Saunders, 2012; Bruinse e van den Berg, 1995). Concomitante a esses eventos, também no último trimestre de gestação, ocorre a maior transferência placentária de VA da mãe para o bebê. Seu propósito é o de formação das reservas hepáticas de retinol do bebê para atender às suas necessidades nos primeiros 6 meses de vida extrauterina, sendo complementadas pelo aleitamento materno. Dependendo do estado nutricional de VA materno, tais eventos podem facilitar a ocorrência de baixas concentrações de VA e de XN ao final da gestação (Kaestel et al., 2012; Ramalho e Dolinsky, 2012).

1.4 Estratégias para prevenção da deficiência de vitamina A e anemia em gestantes e puérperas

Dentre as medidas de prevenção de carências nutricionais, a mais amplamente recomendada pelos órgãos internacionais e nacionais de saúde é a adoção de práticas e hábitos alimentares saudáveis e diversificados (Brasil, 2018a; WHO, 2009). Essa não é uma estratégia específica para determinado nutriente, pois com a adoção de hábitos em que alimentos ricos em micronutrientes fazem parte das refeições diárias, diversas vitaminas e minerais podem ser ingeridos. Contudo, sabe-se que gestantes de países de média e baixa renda apresentam maior risco para carência de micronutrientes e suas causas são múltiplas: baixo acesso a uma dieta adequada em nutrientes devido à baixa renda, disponibilidade e sazonalidade dos alimentos usualmente consumidos; práticas culturais e valores que desencorajam gestantes a ganhar peso; atividade física excessiva em atividades laborais; e infecções recorrentes (WHO, 2016a; Christian, 2010). Tal problemática torna necessário buscar novas estratégias que possam efetivamente reduzir a carga de problemas ocasionados pela deficiência de micronutrientes na gestação, sendo algumas específicas para combater carências de maior magnitude global (WHO, 2018; Peña-Rosas et al., 2014; Saeterdal et al., 2012).

1.4.1 Deficiência de vitamina A

Estratégias específicas recomendadas para combater a DVA em populações em risco envolvem fortificação de alimentos com VA, a suplementação periódica com mega-doses de VA distribuídas para grupos populacionais de maior risco para carência e efeitos adversos à saúde, e ainda, no caso dos infantes, promoção do aleitamento materno exclusivo até o 6º mês.
e complementar até o 2º ano de vida (Brasil, 2013a; WHO, 2009). A suplementação com mega-doses é considerada uma estratégia de impacto em curto prazo, enquanto que a fortificação e o aumento e diversificação do consumo de alimentos fontes em VA podem ser consideradas, respectivamente, de impacto em médio e longo prazo (Ramalho et al., 2009b).

Alimentos como alguns tipos de óleos e gorduras, cereais, condimentos, açúcar refinado e leite têm sido fortificados com VA com sucesso e adotados como estratégias de saúde pública em alguns países, porém no Brasil essa estratégia não é empregada (Saeterdal et al., 2012). Evidências apontam para o efeito positivo da fortificação, como no caso da grande redução da prevalência de DVA ocorrida nos últimos anos entre crianças menores de 5 anos de idade em países como a Guatemala e Nicarágua, onde o açúcar refinado é fortificado como estratégia nacional de saúde pública, embora o consumo de açúcar seja associado com o aumento na ocorrência de doenças crônicas não transmissíveis e de cárie dentária (WHO, 2018, 2015b; Galicia et al., 2016; Cediel et al., 2015). Contudo, evidências ainda são escassas sobre o impacto da fortificação em gestantes. Na Guatemala, uma análise apontou que o açúcar foi a principal fonte de VA entre as gestantes e lactantes estudadas, sendo diferenças encontradas entre mulheres residentes na zona urbana e rural, visto que o percentual de inadequação no consumo de VA entre aquelas residentes na zona rural foi de 36% e na zona urbana de 9% (p < 0,001). Além disso, 11% das mulheres da zona urbana apresentaram elevada ingestão de VA pré-formada (Bielderman et al., 2016).

Em muitos países onde a DVA é um problema de saúde pública a adoção de uma ou mais medidas em conjunto acontece. Porém, por seu impacto em curto prazo, a suplementação com mega-doses é uma das mais difundidas e empregadas (WHO, 2011c, 2011d). Para gestantes, a OMS não recomenda a suplementação como parte do pré-natal de rotina como estratégia de prevenção da morbimortalidade materna e infantil, sendo essa uma forte recomendação. Porém, para áreas onde a DVA é um grave problema de saúde pública, a suplementação na gestação é recomendada para prevenção da XN, sendo proposto um esquema de suplementação que não cause toxicidade, com até 10.000 UI/dia ou 25.000 UI/semana de VA (WHO, 2011c). No mesmo sentido, a suplementação de puérperas não é mais recomendada para prevenção da morbimortalidade materna, recomendando a adoção de práticas alimentares saudáveis que devem ser seguidas durante toda a lactação (WHO, 2011d).

No Brasil, a distribuição de mega-doses com 100.000 UI de VA foi iniciada em 1983 tendo como público-alvo as crianças em idade pré-escolar residentes em regiões de risco, junto dos Dias Nacionais de Vacinação. As puérperas passaram a ser consideradas como público-alvo dessa intervenção em 2001 (Brasil, 2016; Martins et al., 2007). Em 2005, o
Ministério da Saúde instituiu o Programa Nacional de Suplementação de VA - Vitamina A Mais, onde as regiões brasileiras que receberiam a suplementação seriam aquelas consideradas de maior risco (Nordeste, Vales do Jequitinhonha e Mucuri em Minas Gerais e o Vale do Ribeira em São Paulo). Em 2010, esse programa foi ampliado para municípios pertencentes da Amazônia Legal e algumas localidades indígenas. Mega-doses de 200.000 UI de VA deveriam ser administradas no puerpério imediato, antes da alta hospitalar, e crianças entre 6 a 59 meses de idade, receberiam doses periódicas de 100.000 UI de VA em intervalos de 6 meses (Brasil, 2013a).

Recentemente, baseado na diretriz publicada pela OMS em 2011 sobre suplementação com mega-dose no puerpério, que aponta para a falta de fortes evidências que suportem tal estratégia como medida de saúde pública, o Ministério da Saúde encerrou a distribuição de mega-doses para puérperas dentro do programa “Vitamina A Mais”, sendo mantida para as crianças, apesar de estudos nacionais e uma meta-análise mostrarem efeitos positivos da suplementação no aumento do teor de retinol no leite humano, mas sem efeitos claros sobre a saúde materno-infantil (Brasil, 2016; Oliveira e Allert, 2016; Neves et al., 2015; Santos et al., 2013). Como estratégia alternativa, o Ministério da Saúde recomenda que o bom estado nutricional de VA no puerpério deve ser alcançado por meio de uma alimentação saudável, conforme recomendações do Guia Alimentar para População Brasileira de 2014 (Brasil, 2016, 2014).

1.4.2 Anemia

Para combater a anemia, a OMS recomenda as seguintes estratégias: fortificação das farinhas, distribuição de suplementos com ferro, a educação nutricional e a melhoria das condições sanitárias das populações. Visto as demandas aumentadas pelo mineral durante a gestação, torna-se necessário suplementar grávidas durante o pré-natal para aumentar os estoques de ferro corporais. No entanto, em países de média e baixa renda a suplementação é utilizada para prevenir e corrigir a deficiência de ferro e anemia na gestação (WHO, 2012b).

O esquema de suplementação recomendado pela OMS durante a gestação é de 30-60 mg/dia de ferro elementar com 400 µg/dia de ácido fólico, ao longo de toda a gestação, independentemente da idade da mulher e de seu local de moradia. Em locais onde a anemia é um grave problema de saúde pública, dosagens de 60 mg/dia de ferro são recomendadas. Casos de anemia diagnosticados devem receber 120 mg/dia de ferro elementar até que as concentrações de Hb alcancem valores normais, sendo o tratamento continuado com o
esquema padrão para prevenção até o período pós-parto entre 6 a 12 semanas, para redução do risco de anemia, onde essa é um problema de saúde pública (WHO, 2016b, 2012b).

Para o Brasil, o Ministério da Saúde recomenda a suplementação profilática com ferro e ácido fólico, o consumo de farinhas fortificadas e uma alimentação saudável para combater a anemia na gestação. Desde 2005, o Programa Nacional de Suplementação de Ferro distribui suplementos de ferro e ácido fólico para gestantes dentro do Sistema Único de Saúde, com doses profiláticas de 40 mg de ferro elementar e 400 µg de ácido fólico diariamente, a partir de 20 semanas de gestação até o final da mesma, sendo a suplementação com 40 mg/dia de ferro continuada no pós-parto e pós-aborto até o terceiro mês pós-evento. Casos em que a anemia for diagnosticada durante a gestação devem ser tratados com 120 mg/dia de ferro elementar por três meses. Vale ressaltar, que a boa adesão a esse esquema de suplementação é fortemente afetada por seus efeitos colaterais, principalmente gastrointestinais, o que leva a muitas mulheres a não seguirem tal protocolo (Brasil, 2013c).

Outra estratégia empregada no país é a fortificação das farinhas de trigo e milho com ferro, para prevenção da anemia, e ácido fólico, para prevenção de defeitos do tubo neural, durante a gravidez (WHO et al., 2009). A adição de 4,2 mg de ferro e de 150 µg de ácido fólico a cada 100 gramas de farinha tornou-se obrigatória no país desde 2004 (Brasil, 2018b).

Os efeitos benéficos dessa intervenção no estado nutricional de ferro em gestantes no Brasil, avaliado pela redução da prevalência de anemia e aumento da média nas concentrações de Hb sanguínea, foram demonstrados por Fujimori e colaboradores (2011) que encontraram redução na prevalência de anemia gestacional de 5 pontos percentuais no Brasil, comparando períodos pré (junho de 2004) e pós fortificação (junho de 2005), de 25,5% para 20,2%, respectivamente. No entanto, quando foram analisados tais efeitos por região brasileira, os resultados foram divergentes. Quedas expressivas na prevalência e aumento médio de Hb sanguínea foram observadas nas regiões Nordeste (37,0% e 11,3 ± 1,1 g/dL pré-fortificação para 29,0% e 11,6 ± 1,2 g/dL pós-fortificação, p< 0,001), Norte (32,0% e 11,5 ± 1,2 g/dL pré-fortificação para 25,0% e 11,7 ± 1,1 g/dL pós-fortificação p< 0,001) e Sudeste (18,3% e 12,1 ± 1,2 g/dL pré-fortificação para 14,8% e 12,2 ± 1,1 g/dL pós-fortificação p= 0,002). Na região Centro-Oeste a prevalência de anemia aumentou e as concentrações de Hb sanguínea não se alteraram (22,2% e 11,7 ± 1,1 g/dL pré-fortificação para 27,8% e 11,7 ± 1,2 g/dL pós-fortificação p= 0,051), enquanto que na região Sul, aquela com a menor prevalência do país, houve queda na prevalência e também na média de Hb sanguínea, porém de forma não significante (7,0% e 12,7 ± 1,1 g/dL pré-fortificação para 5,7% e 12,6 ± 1,1 g/dL pós-fortificação, p= 0,383). Contudo, ressalta-se que para este estudo, uma amostra de
conveniência foi captada, sendo assim que estimativas nacionais utilizando amostragem probabilística da população não existem até o momento.

1.4.3 Outras estratégias de combate à carência de micronutrientes na gestação

Apesar dos esforços empregados para erradicação das carências nutricionais acima descritas, tais problemas ainda atingem grande parcela da população de gestantes no Brasil e no mundo. Além disso, sabe-se que as carências nutricionais geralmente não ocorrem de forma isolada, onde vários micronutrientes podem estar deficientes ao mesmo tempo, e que causam efeitos negativos nos desfechos materno-infantis (Smith et al., 2017; Dalmiya et al., 2009). Tendo isso em mente, os efeitos da suplementação combinando múltiplos micronutrientes (MMN) em tabletes na gestação comparado ao ferro e ácido fólico foram testados em uma série de ensaios clínicos em diversos países de média e baixa renda e os resultados sintetizados por meta-análises (Smith et al., 2017; Devakumar et al., 2016; Fall et al., 2009). A respeito da composição, na grande maioria dos ensaios clínicos foi utilizado um suplemento de MMN disponibilizado pelo UNICEF, denominado UNIMMAP (United Nations International Multiple Micronutrient Preparation), o qual provia aproximadamente 1 RDA de MMN, e que deveria conter 30 mg de ferro elementar, no mínimo, e 400 µg de ácido fólico (Margetts et al., 2009).

As primeiras meta-análises sobre o efeito da intervenção, publicadas em 2009, mostraram que os MMN não tiveram impacto sobre a anemia, Hb sanguínea e no estado de VA e zinco maternos (Allen et al., 2009). A intervenção também não mostrou efeitos positivos para ocorrência de natimortos (OR: 1,01; IC 95%: 0,88, 1,16), mortalidade neonatal precoce (OR: 1,23; IC 95%: 0,95, 1,59), mortalidade neonatal tardia (OR: 0,94; IC 95%: 0,73, 1,23), ou mortalidade perinatal (OR: 1,11; 95% CI: 0,93, 1,33), sendo que os aumentos em 23% para mortalidade neonatal precoce e de 11% na mortalidade perinatal, mesmo que não signifiquentes estatisticamente, foram inesperados e cautela foi recomendada em sua interpretação (Ronsmans et al., 2009). Por outro lado, resultados positivos foram vistos no aumento do PN (acréscimo de 22,4 g (IC 95%: 8,3, 36,4 g)), na redução das prevalências de BPN (OR: 0,89; IC 95%: 0,81, 0,97) e PIG (OR: 0,90; IC 95%: 0,82, 0,99), visto que efeitos maiores foram vistos em mulheres com IMC mais elevado (Fall et al., 2009).

Entretanto, vale considerar que os estudos incluídos apresentaram algumas divergências entre si, tais como: englobar populações de três diferentes continentes (Ásia, África e América Latina); o estado nutricional das participantes prévio à intervenção diferir entre os locais; o percentual de primíparas diferir entre certas localidades; o momento de início da
suplementação variou entre o 1º e 3º trimestre de gestação; o sistema de vigilância e aderência da intervenção apresentou grande discrepância, variando de projetos localizados a profundos programas de monitoramento e avaliação; o grande peso atribuído a um estudo conduzido em Lombok, Indonésia; por fim, o controle de infecções ter sido mais criterioso em algumas estudos (Shrimpton et al., 2009).

Resultados semelhantes aos acima descritos foram encontrados por outra meta-análise de 2017, sendo ainda descrito que os MMN não apresentaram efeitos sobre o parto pré-termo (RR: 0,96; IC 95%: 0,90, 1,03), aborto (RR: 0,91; IC 95%: 0,80, 1,03) e mortalidade materna (RR: 0,97; IC 95%: 0,63, 1,48), porém o grau de heterogeneidade medido pela estatística I^2 foi moderado (Haider e Bhutta, 2017).

Considerando o potencial efeito da heterogeneidade entre os estudos, Smith e colaboradores (2017) conduziram outra meta-análise na tentativa de avaliar a interferência que potenciais modificadores de efeito teriam sobre o papel dos MMN comparado à suplementação com ferro e ácido fólico. Como resultados, os MMN tiveram maior efeito na redução da mortalidade neonatal entre meninas do que meninos (RR: 0,85; IC 95%: 0,75, 0,96 vs RR: 1,06; IC 95%: 0,95, 1,17, respectivamente). Para mulheres anêmicas, a intervenção teve maiores efeitos sobre a redução do BPN (RR: 0,81; IC 95%: 0,74, 0,89), PIG (RR: 0,92; IC 95%: 0,87, 0,97), e mortalidade infantil em 6 meses (RR: 0,71; IC 95%: 0,60, 0,86) do que para as não anêmicas. Além disso, os MMN reduziram o risco de parto pré-termo em mulheres com IMC < 18,5 Kg/m (RR: 0,84; IC 95%: 0,78, 0,91) e que iniciaram a suplementação antes de 20 semanas gestacionais (RR: 0,89; IC 95%: 0,85, 0,93). Por fim, a intervenção não aumentou o risco para ocorrência de natimortos, mortalidade neonatal e infantil.

Apesar de tais evidências, a OMS não recomenda a utilização dos MMN durante a gestação como estratégia de saúde pública, seja na forma de tabletes ou em pó (sprinkles), justificando que novas evidências ainda precisam ser produzidas para esclarecer as divergências encontradas por algumas meta-análises, principalmente no possível aumento do risco para mortalidade neonatal e infantil (WHO, 2016a, 2016c).
2 JUSTIFICATIVA

Exposições adversas durante a gestação podem ter profundos impactos na saúde do binômio mãe-filho, sendo que muitas dessas vêm sendo estudadas na tentativa de se determinar o seu real impacto nessa fase do ciclo da vida. Nesse contexto, os estudos sobre determinantes precoces do processo saúde-doença têm ganhado destaque considerando os efeitos a longo prazo que tais exposições podem ter na vida do indivíduo. Diante de tal importância, o período que engloba os primeiros 1.000 dias de vida de um indivíduo é considerado crítico na trajetória de vida, que engloba desde a concepção até os primeiros 2 anos de idade da criança. Nessa fase, o adequado crescimento e desenvolvimento são cruciais e qualquer desregulação pode ter graves impactos futuros; além disso, é considerado um momento oportuno no qual intervenções devem ser empregadas com o propósito de melhoria da saúde materno-infantil (Black et al., 2013; Horton, 2008). Contudo, dentro desse período, maior ênfase tem sido dada ao planejamento de ações dispensadas às crianças, sendo necessário maior atenção aos primeiros 500 dias de vida (da concepção aos 6 meses de vida) quando o bebê é totalmente dependente da nutrição materna, seja pela placenta ou pelo aleitamento materno (Mason et al., 2014).

Considerando a relevância de tal momento, a identificação de exposições adversas à saúde materna e infantil torna-se necessária. Para isso, estudos longitudinais prospectivos ganham destaque, por serem capazes de medir exposições previamente aos desfechos, permitindo assim mostrar relação temporal entre eles (Cardoso e Hure, 2014). No entanto, os resultados encontrados em certas localidades e países muitas vezes não podem ser extrapolados para outras populações devido a diferentes realidades. A Amazônia brasileira é um lugar diverso, que concentra características peculiares que a diferem de tantas outras áreas do Brasil, como a infraestrutura básica precária em saneamento, a qualidade da água de abastecimento, o acesso aos serviços de saúde pelas populações em áreas remotas, a endemicidade de doenças infecciosas tropicais. Nessa região, o estado do Acre apresenta alguns dos piores indicadores sociais do país, como ter apresentado um Índice de Desenvolvimento Humano de 0,663 (médio) em 2010, ter tido a maior taxa de fecundidade entre adolescentes de 15 a 19 anos em 2015 do país (104,3 filhos/1000 mulheres) (IBGE, 2016), bem como ser uma área endêmica de malária (Brasil, 2010).

Porém, estudos sobre a saúde materno-infantil são extremamente escassos nessa área, tornando relevante a execução de novas pesquisas no propósito de se identificar possíveis
fatores modificáveis do processo saúde-doença em uma região do país com características diferentes dos grandes centros urbanos brasileiros.

A anemia é a carência nutricional de maior magnitude entre gestantes em todo o mundo e tem sido associada negativamente com desfechos desfavoráveis tanto para a própria mulher como para seu filho (WHO, 2015). O peso ao nascer inadequado pode trazer profundos impactos para a saúde do indivíduo, sejam eles de curto ou longo prazos. Apesar da importância e magnitude desses problemas, até o momento, nenhuma investigação prospectiva se propôs a identificar possíveis exposições adversas relacionadas a nutrição durante a gestação sobre a ocorrência de tais desfechos no contexto da Amazônia Brasileira.

Considerando toda a relevância do acima exposto, o presente estudo buscou identificar como o estado nutricional de VA durante a gestação pode influenciar na saúde do binômio mãe-filho. Este é um dos resultados de um estudo prospectivo que envolveu gestantes e seus filhos da cidade de Cruzeiro do Sul, Acre na Amazônia Ocidental Brasileira, buscando trazer novas evidências para fortalecer a saúde desse grupo populacional tão relevante e vulnerável. Com tais achados, espera-se poder contribuir para que novas políticas públicas de saúde sejam criadas e que aquelas já em execução possam ser atualizadas à luz de novas evidências, buscando sempre melhorar a saúde e bem-estar das mães e seus filhos.

3 HIPÓTESE GERAL DE ESTUDO

Há associação entre o estado nutricional de vitamina A durante a gravidez e a ocorrência de desfechos obstétricos e neonatais entre mulheres residentes em município da Amazônia Ocidental Brasileira?
4 OBJETIVOS

a) Investigar os preditores das concentrações de retinol sérico no início do terceiro trimestre gestacional (Artigo 1);

b) Investigar a associação entre o estado nutricional de VA gestacional com as concentrações de hemoglobina e com a ocorrência de anemia materna no parto, bem como com o peso ao nascer (Artigo 2);

c) Investigar a prevalência e fatores associados com a cegueira noturna gestacional e anemia materna no parto, bem como sua associação com marcadores bioquímicos do estado nutricional de vitamina A e ferro medidos durante a gestação (Artigo 3).
5 MÉTODOS

5.1 Área de estudo

O município de Cruzeiro do Sul fica situado no interior do estado do Acre, na mesorregião do Vale do Juruá, Amazônia Ocidental Brasileira, na região Norte do país, ocupando uma área de 8.779,40 Km² (07° 37' 51" Sul e 72° 40' 12" Oeste). Conforme os dados do último Censo Demográfico de 2010, realizado pelo Instituto Brasileiro de Geografia e Estatística (IBGE), Cruzeiro do Sul é o segundo município mais populoso daquele estado, com 78.507 habitantes e uma densidade demográfica de 8,94 habitantes/Km². Para o ano de 2016, o IBGE projetou que a população estimada seja de 82.075 habitantes. Metade da população é composta por mulheres e 70,4% dos residentes vivem na área urbana. O Índice de Desenvolvimento Humano Municipal para o ano de 2010 foi de 0,664, sendo classificado como médio. Fica situado a 635 Km de distância da capital do estado, Rio Branco, fazendo fronteira com o Peru, o município de Guajará no Amazonas e com os municípios acreanos de Mâncio Lima, Rodrigues Alves, Porto Walter e Tarauacá (Figura 5). Apenas 12,7% dos domicílios possuem esgotamento sanitário adequado e 3,7% dos domicílios urbanos estão em vias públicas com urbanização adequada (IBGE, 2017, 2016).

No ano de 2015 foram registrados 1.839 nascimentos em Cruzeiro do Sul, sendo que a maioria dos partos (96%) foram realizados na única maternidade do município, o Hospital da Mulher e da Criança do Juruá (Figura 6), que é considerado o estabelecimento de saúde de referência para a região, onde ocorrem todos os partos assistidos (Brasil, 2017). Sobre a Atenção Básica, a Estratégia Saúde da Família (ESF) do município tem estimativa de cobertura de aproximadamente 80% da população pelas 20 equipes, todas oferecendo consultas de pré-natal (Brasil, 2017). O cuidado pré-natal também pode ser realizado na rede privada, que contava com cinco médicos obstetras em 2015. A população feminina do município é altamente vulnerável, considerando que as chances de parto pré-termo são 43% (IC 95%: 1,28, 1,59) maiores para mulheres residentes na região Norte comparado com as outras regiões brasileiras, e que Cruzeiro do Sul apresenta uma das maiores concentrações de casos de malária do Acre, sendo responsável por mais de 50% do total de casos registrados no estado de 2004 a 2008 (Miranda et al., 2012; Costa et al., 2010). Em 2015, Cruzeiro do Sul foi
classificada como região com alto risco para malária, com um Índice Parasitário Anual elevado, acima de 50 (IPA – casos positivos de malária por 1.000 habitantes) (Brasil, 2015).

Fonte: Costa et al. (2010)

Figura 5 – Localização espacial de Cruzeiro do Sul, Acre, Brasil.

Fonte: acervo pessoal

Figura 6 – Hospital da Mulher e da Criança do Juruá. 2015.
5.2 Delineamento, população do estudo e aspectos éticos

A presente tese é parte de um estudo longitudinal mais abrangente, denominado Estudo MINA-Brasil (Saúde e Nutrição Materno-Infantil no Acre) cujo principal objetivo é o de investigar as condições de saúde e nutrição materno-infantil em Cruzeiro do Sul e seu impacto sobre a saúde materna, bem como no crescimento e desenvolvimento infantil das crianças que nasceram ao longo de um ano na maternidade do município. Na figura 7 é possível visualizar uma breve descrição do delineamento do Estudo MINA-Brasil.

Figura 7 – Delineamento do Estudo MINA-Brasil

Para a presente tese, foram utilizados os dados do Estudo MINA-Brasil relativo ao seguimento longitudinal de gestantes inscritas na assistência pré-natal da ESF na área urbana de Cruzeiro do Sul, incluindo dados sobre internações para partos de seus bebês na maternidade da cidade ao longo de um ano.

Entre fevereiro de 2015 e fevereiro de 2016 ocorreu o rastreamento das gestantes inscritas na assistência pré-natal da ESF na área urbana de Cruzeiro do Sul, em parceria com os profissionais de cada ESF. Fichas de rastreamento eram preenchidas pelos Agentes Comunitários de Saúde e/ou enfermeiros e entregues semanalmente aos membros da equipe do MINA-Brasil, os quais realizavam contato telefônico para convidar a gestante a participar da pesquisa. Para participação foram adotados os seguintes critérios de inclusão: IG inferior a 20 semanas no momento do rastreamento (de acordo com a data da última menstruação - DUM), ter residência fixa e intenção de realizar o parto na maternidade do município.

Caso a gestante se enquadrasse nos critérios de inclusão e aceitasse participar da pesquisa, uma visita domiciliar foi agendada para aplicação de questionário sócio demográfico e de história de saúde. Essa ocorreu entre fevereiro de 2015 e março de 2016, momento que as gestantes se encontravam com IG distintas, mas com no máximo 20 semanas de gravidez. Para o controle da qualidade das entrevistas domiciliares, uma reentrevista parcial do questionário sócio demográfico e história de saúde foi realizada no momento da
primeira avaliação de seguimento das gestantes em uma sub-amostra selecionada aleatoriamente, correspondente a 10% do total de gestantes que responderam ao questionário.

A partir do preenchimento desse questionário, foram agendadas duas avaliações de seguimento das gestantes, ocorrendo entre março de 2015 e maio de 2016. A primeira avaliação de seguimento foi entre a 16ª e 20ª semana gestacional, a partir da DUM, presente na ficha de rastreamento. Nessa avaliação, procedeu-se à realização de exame de ultrassonografia (USG) por médicos da equipe (obstetras ou ultrassonografistas), para estimativa de IG média segundo parâmetros biométricos. Assim, foi possível se chegar à melhor estimativa de IG. A escolha do melhor método para definição da IG seguiu o seguinte esquema: (1) DUM - para relatos de ciclos menstruais regulares e ausência de uso de contraceptivos hormonais antes da gestação, com informação precisa (dia e mês exatos) pela gestante e quando a variação em relação à IG estimada por USG foi menor ou igual a sete dias; ou (2) USG - quando a participante não soube informar a DUM (dia e mês exatos), ou na ocasião de relato de ciclos menstruais irregulares e/ou uso de contraceptivos hormonais antes da gestação, ou quando a diferença entre as idades gestacionais estimadas por DUM e USG foi superior a sete dias (Wylie et al., 2013). Para a segunda avaliação, entre 27ª e 30ª semana gestacional, o agendamento foi feito conforme estimativa da melhor IG (Pincelli et al., 2018).

Em cada uma dessas avaliações, além dos exames de USG, ocorreu a coleta de sangue venoso para análise bioquímica, de dados antropométricos, de consumo alimentar, tabagismo e consumo de álcool. Na Figura 8 é apresentado uma imagem de uma das Unidades Básicas de Saúde do município, onde as avaliações eram realizadas. A escolha dos períodos para avaliação de exposições de interesse justifica-se por questões logísticas e pela possibilidade de se estudar desfechos que comumente ocorrem ao longo do terceiro trimestre gestacional.
Posteriormente às avaliações de seguimento das gestantes, ocorreu o acompanhamento no momento do parto, entre julho de 2015 e junho de 2016, no Hospital da Mulher e da Criança do Juruá, onde foram registrados dados sobre os nascimentos de todos as parturientes e seus bebês residentes no município de Cruzeiro do Sul, independente se provenientes da zona urbana ou rural, inclusive aquelas acompanhadas na gestação pela equipe do MINA-Brasil. Dessa forma, para uma parte das parturientes identificadas na maternidade do município foram coletados dados sobre o período gestacional, os quais nos permitiram verificar associações entre exposições na gestação e desfechos obstétricos. Ao mesmo tempo, informações sobre as condições de nascimentos para toda a população de recém-nascidos e suas mães do município foram disponíveis, os quais nos permitiram fazer um estudo transversal de base populacional (Figura 7). Questionários estruturados foram aplicados, bem como consulta aos prontuários, para registro das informações. Em relação à mãe registrou-se dados sobre intercorrências gestacionais, peso gestacional final, assistência pré-natal, investigação da avaliação funcional da DVA, e, apenas para aquelas não acompanhadas durante a gestação, informações sociodemográficas e história obstétrica. Sobre os bebês foram registrados dados sobre sexo, PN, intercorrências neonatais (conforme diagnóstico do pediatra responsável), além de determinação da IG. O cálculo da IG foi feito segundo Barros e
colaboradores (2008), calculada pela DUM anotada no cartão da gestante, ou referida pela mãe (nesta ordem de prioridade), e por ultrassonografia realizada antes de 20 semanas de gestação. Na Figura 9 é possível visualizar o delineamento epidemiológico do estudo apresentado nesta tese.

A equipe de trabalho em campo foi constituída por entrevistadores (estudantes de graduação de Enfermagem e Ciências Biológicas da UFAC – Campus Floresta), técnicos de enfermagem, enfermeiros, médicos (obstetras e ultrassonografistas), nutricionistas supervisores de pesquisa de campo (estudantes de pós-graduação em Nutrição em Saúde Pública e de Saúde Pública da FSP/USP) e pós-doutorandos que realizavam a administração e controle de qualidade dos dados. Para o treinamento prévio dessa equipe, foram utilizados manuais de treinamento do entrevistador do Estudo MINA-Brasil Acompanhamento das Gestantes (Anexo 6) e, periodicamente, foi realizada supervisão pelos coordenadores em campo.

O Termo de Consentimento Livre e Esclarecido (Anexo 5) foi assinado pelas gestantes após esclarecimentos sobre o objetivo da pesquisa e da garantia de sigilo das informações obtidas, assim como da posterior apresentação dos resultados individuais da pesquisa. Para gestantes adolescentes, o projeto foi explicado para a potencial participante e seu responsável, obtendo assinatura do último, em caso de aceite. No caso de mulheres que não sabiam nem ler e nem escrever, o Termo de Consentimento Livre e Esclarecido foi explicado detalhadamente e no caso de aceite foi obtida a impressão digital do polegar direito da participante. O Estudo MINA-Brasil foi aprovado pelo Comitê de Ética em Pesquisa da FSP/USP (parecer nº 872.613, 13/11/2014) (Anexo 4).

Em todas as etapas da pesquisa, participantes (mães e crianças) com diagnóstico de anemia, DVA ou malária confirmado por microscopia receberam tratamento medicamentoso gratuito pela equipe médica do projeto em parceria com as equipes de saúde da ESF do município de acordo com os esquemas terapêuticos do Ministério da Saúde. Casos com desvios nutricionais graves, segundo avaliação antropométrica no seguimento, foram orientados a procurar atendimento de saúde junto à ESF.
Figura 9 – Delineamento epidemiológico utilizado no presente estudo.

DUM - data da última menstruação; DVA - deficiência de vitamina A; IG - idade gestacional; USG - ultrasonografia.
5.3 Informações coletadas e procedimentos de campo

5.3.1 Questionário sociodemográfico e história de saúde

Os seguintes dados foram coletados e utilizados nas análises desta tese:

- *Socioeconômicos*: idade, cor da pele auto referida (branca, preta, parda, amarela ou indígena), escolaridade materna (anos completos de estudo), ocupação da gestação (atividade remunerada ou não), recebimento de auxílio governamental (Bolsa Família – sim ou não), presença de bens de consumo para construção de índice de riqueza (television, som, computador, internet, DVD, televisão por assinatura, fogão, geladeira, ferro elétrico, micro-ondas, sofá, linha de telefone fixo, telefone celular, bicicleta, moto, carro, posse de terras e criação de gado), mora com companheiro (sim ou não), chefia da família (própria gestante ou outra pessoa). Como variável categórica, a idade materna foi considerada em ‘<19 anos’ ou ‘≥ 19 anos’. A variável cor da pele foi recategorizada em ‘branca’ ou ‘não branca’; já para escolaridade materna a categorização foi feita em ‘< 9 anos’ ou ‘≥ 9 anos’.

O índice de riqueza foi gerado para as participantes do acompanhamento durante a gestação, bem como para aquelas identificadas na maternidade, pela análise dos componentes principais. A adoção desse método se justifica por refletir melhor a situação econômica familiar do que apenas considerar a renda mensal dos integrantes da família, que é uma informação imprecisa e difícil de se obter (Filmer e Pritchett, 2001). Para as integrantes do estudo acompanhadas durante a gestação, o primeiro componente principal explicou 18,86% da variação entre as famílias, o qual foi usado para derivar pesos (que se encontram entre parênteses) para cada item considerado dentro do domicílio: televisão (0,1340), som (0,1013), computador (0,3624), internet (0,3403), DVD (0,1952), televisão por assinatura (0,2299), fogão (0,1036), geladeira (0,1457), ferro elétrico (0,3592), micro-ondas (0,3036), sofá (0,2201), linha de telefone fixo (0,2395), telefone celular (0,1773), bicicleta (0,0588), moto (0,2732), carro (0,2971), posse de terras (-0,0041) e criação de gado (-0,0027). O mesmo procedimento foi seguirdo para as participantes identificadas na maternidade, incluindo aquelas acompanhadas na gestação, onde o primeiro componente principal explicou 22,76% da variação entre os domicílios e cujos pesos derivados foram: televisão (0,2151), som (0,1015), computador (0,3240), internet (0,3091), DVD (0,2064), televisão por assinatura (0,2533), fogão (0,1336), geladeira (0,2446), ferro elétrico (0,3221), micro-ondas (0,2771), sofá (0,2524), linha de telefone fixo (0,2234), telefone celular (0,2284), bicicleta (0,0508), moto (0,2116), carro (0,2742), posse de terras (-0,0407) e criação de gado (-0,0382). Os escores gerados foram então somados para produzir um índice de riqueza domiciliar estimado, que foi por fim categorizado em quintis, para cada um dos acompanhamentos descritos acima.
- **Ambientes:** abastecimento de água (rede geral ou poço/cacimba/fonte natural), esgoto (fossa séptica, fossa rudimentar ou céu aberto/rio), número de pessoas vivendo no mesmo domicílio, número de cômodos no domicílio, tipo de construção da casa (alvenaria ou madeira/misto [alvenaria + madeira]), ter um fumante no mesmo domicílio (sim ou não). O número de pessoas vivendo no mesmo domicílio foi categorizado em ‘uma a duas’, ‘três’, ‘quatro’ e ‘cinco ou mais’. Já o número de cômodos no domicílio foi categorizado em ‘até três’, ‘quatro’, ‘cinco’ ou ‘seis ou mais’.

- **História de saúde e obstétrica:** idade da menarca, histórico de abortos e/ou natimortos (sim ou não), número de filhos nascidos vivos. Como variável categórica foi considerado para idade da menarca ‘≤ 13 anos’ ou ‘≥ 14 anos’ e para o número de filhos nascidos vivos ‘nenhum’, ‘um a dois’ ou ‘três ou mais’.

5.3.2 Avaliações de seguimento das gestantes

Em cada uma das avaliações de seguimento os seguintes dados foram coletados:

- **Antropometria da gestante:** Todas as aferições seguiram as recomendações da OMS (WHO, 1995) e foram realizadas por nutricionistas treinados. A medida de peso corporal foi realizada em duplicada com balança portátil marca Tanita Corporation® (Tóquio, Japão), modelo UM061, com capacidade para 150 Kg e variação de 0,1 Kg. O peso foi aferido com a gestante descalça e com roupas leves, posicionada em pé, com postura ereta, pés juntos e braços estendidos ao longo do corpo, mantida na posição até a leitura e registro. As balanças utilizadas eram periodicamente verificadas quanto à sua calibração e aquelas apresentando erros foram imediatamente substituídas. Para mensurar a altura, foi utilizado um estadiômetro portátil marca Alturaexata® (Belo Horizonte, Brasil) com precisão de 0,1 cm e capacidade para 213 cm. A medida de altura foi obtida com a gestante descalça e com a cabeça livre de adereços (prendedores de cabelo, palito entre outros) e penteados (rabo de cavalo, trança entre outros), posicionada no centro do equipamento, ereta, com braços estendidos ao longo do corpo, com a cabeça erguida, olhando para um ponto fixo na altura dos olhos, mantida na posição até a leitura e registro.

O peso pré-gestacional auto referido pelas gestantes foi obtido no momento da primeira avaliação de seguimento do estudo, considerando o período até 2 meses antes da gestação (WHO, 1995). Para classificação antropométrica das gestantes com idade maior ou igual a 19 anos foi utilizado o IMC pré-gestacional, calculado pela divisão do peso pré-gestacional, em Kg, pela altura, em metros, elevada ao quadrado (IMC = peso pré-gestacional/ altura²), e classificado segundo critérios da OMS (WHO, 1995): baixo peso (IMC <18,5 Kg/m²); adequado (IMC 18,5-24,9 Kg/m²); sobrepeso (IMC 25,0-29,9 Kg/m²) e obesidade (≥30 Kg/m²). Já para as gestantes com idade menor
do que 19 anos, a definição do estado nutricional foi realizada com auxílio do programa WHO Anthro Plus (http://www.who.int/growthref/tools/en/) que calcula IMC em escore-z para idade em adolescentes, considerando-se os seguintes pontos de corte para sua classificação: baixo peso (escore-z < -2); eutrofia (escore-z -2 + +1); sobrepeso (escore-z ≥ +1) e obesidade (escore-z ≥ +2) (Onis et al., 2007).

Para o cálculo do ganho de peso gestacional semanal foram utilizados os pesos maternos aferidos pela equipe de pesquisa durante as duas avaliações de seguimento das gestantes, considerando a diferença de peso obtido entre a segunda e a primeira avaliação, dividido pelo número de semanas gestacionais nesse intervalo, seguindo as recomendações do IOM (IOM, 2013, 2009). A seguir está apresentada a fórmula utilizada para o cálculo do ganho de peso semanal:

Ganho de peso semanal = \[
\frac{\text{peso aferido na 2ª avaliação} - \text{peso aferido na 1ª avaliação}}{\text{semana gestacional na 2ª avaliação} - \text{semana gestacional na 1ª avaliação}}
\]

O ganho de peso semanal calculado foi classificado em insuficiente, adequado e excessivo, segundo IMC pré-gestacional adotados para adolescentes e adultas, conforme categorias do IOM (IOM, 2013, 2009).

- Avaliação dietética da gestante: A avaliação do consumo alimentar foi realizada por meio de um questionário de frequência de consumo alimentar habitual por grupos de alimentos (leite e derivados, feijões, verduras folhosas, legumes, frutas, frutas regionais, castanhas, carnes, miúdos e vísceras, pescados, ovos, cereais, pães e massas, óleos e gorduras, azeite, refrigerante e bebidas açucaradas, industrializadas e guloseimas), utilizado anteriormente em estudo em outra localidade do estado do Acre para rastreamento de deficiências nutricionais em crianças (Augusto et al., 2015), e adaptado para este estudo. As opções de resposta foram: raramente, 1–3 vezes/mês, 1–3 vezes/semana, 4–6 vezes/semana, 1 vez/dia, 2–3 vezes/dia, 4-5 vezes/dia e mais de 6 vezes/dia.

Para este estudo, maior foco foi dispensado em alimentos ricos em VA, sendo assim que um reagrupamento das categorias e para alguns itens foi feito (frutas regionais, frutas, legumes, frutas regionais, frutas, legumes, verduras e miúdos). Para as frutas regionais da Amazônia as seguintes frutas foram consideradas:

- Açaí - Euterpe oleracea Mart.; Buriti - Maurita flexuosa L. f.; Cajá - Spondias mombin L.;
- Carambola - Averrhoa carambola L.; Cupuaçu - Theobroma grandiflorum (Willd. ex Spreng.) K.Schum; Graviola - Annona muricata L.; Jaca - Artocarpus heterophyllus Lam.; Jambo - Syzygium malaccense (L.) Merr. & L. M. Perry.; Pupunha - Bactris gasipaes Kunth; Tucumã - Astrocaryum aculeatum G. Mey.
Uma única variável de consumo de frutas, legumes e verduras (FLV) foi criada, seguindo os seguintes passos: primeiramente, houve um reagrupamento das categorias para cada um desses itens: ‘0’ = raramente e 1-3 vezes/mês; ‘1’ = 1-3 vezes/semana e 4-6 vezes/semana; ‘2’ = demais categorias. Em seguida, os valores atribuídos para cada item foram somados, gerando assim valores variando entre ‘0’ e ‘6’, onde o menor valor significava um consumo muito baixo de FLV e o maior um consumo considerado alto dos três itens. Uma variável final para consumo de FLV foi então gerada, pelo reagrupamento desses valores finais, onde ‘baixo consumo’ foi considerado os valores entre 0 e 2; ‘consumo intermediário/semanal’ valores 3 e 4; e ‘consumo elevado/diário’ os valores 5 e 6.

Procedimentos semelhantes foram aplicados para as frutas regionais e miúdos. No caso das frutas regionais o consumo foi reagrupado para diferenciar o consumo semanal de frutos amazônicos ou não. Assim, o não consumo ou consumo raro englobou as categorias originais ‘raramente’ e ‘1-3 vezes/mês’ e o consumo, no mínimo, semanal englobou as demais categorias originais. Já para os miúdos diferenciou-se o consumo entre não consumo (‘raramente’), mensal (‘1-3 vezes/mês’) e, no mínimo, semanal (categorias originais restantes).

- **Tabagismo e consumo de álcool:** questionou-se a gestante sobre esses estilos de vida durante a gestação atual. O fumo foi considerado como ‘não, nunca fumou’ e ‘sim’. Para consumo do álcool foi considerado ‘não, nunca consumiu’, ‘sim, 1 ou 2 vezes’, ‘sim, mensalmente’ e ‘sim, semanalmente’. Como as frequências de resposta foram muito baixas para ingestão de álcool, reagrupou-se as categorias de resposta ‘sim’ em uma única categoria, dividindo assim o consumo de álcool entre ‘não’ e ‘sim’.

- **Infecções vaginais:** com base no diagnóstico do profissional da saúde responsável pelo pré-natal, as seguintes doenças infecciosas vaginais foram consideradas neste estudo: sífilis, gonorreia, cancro mole, donovanose ou granuloma venéreo, infogranuloma venéreo ou Chlamydia trachomatis, crista de galo ou condiloma acuminado, herpes genital tipo II, doença sexualmente transmissível (mas não soube informar o tipo de infecção) e outro tipo de infecção vaginal. Devido às baixas frequências de resposta para cada item, houve o agrupamento de todas essas doenças, adotando a ocorrência ou não de qualquer tipo de infecção vaginal durante a gestação.

- **Sazonalidade:** levando em consideração a importância que a época ou estação do ano podem exercer sobre diversos aspectos que estão relacionados com o estado nutricional de micronutrientes, a sazonalidade foi considerada neste estudo (West e Mehra, 2010; Beard et al., 2007). A região amazônica possui duas estações bem definidas: o inverno (estação chuvosa entre novembro e abril) e o verão (estação seca entre maio e outubro) (Nobre et al., 2009). Dessa forma, o
período do ano em que as amostras de sangue foram obtidas foi categorizado em ‘inverno amazônico’ e ‘verão amazônico’.

- *Uso de suplementos durante a gestação*: a ingestão de suplementos de vitaminas e minerais foi investigada perguntando para a gestante se ela estava em uso de algum tipo de suplemento medicamentoso. Caso a resposta fosse positiva, o tipo e/ou nome do produto foi perguntado. Como vários tipos diferentes de suplemento foram mencionados, isso permitiu que fosse criada uma variável para o uso de suplementos, com as seguintes categorias ‘consumo de ferro e/ou ácido fólico’, ‘multivitamínico, contendo VA’ e ‘não uso de suplemento’.

- *Avaliação dos parâmetros bioquímicos*: Amostras sanguíneas foram obtidas em jejum de 8 horas e distribuídas em dois tubos de ensaio: a) tubo seco (10 mL) para obtenção do soro (envolto por papel alumínio para proteção da luz), centrifugado em até 1 hora após a coleta; e b) tubo com EDTA (5 mL) para obtenção do plasma, mantido em gelo para centrifugação em até 30 minutos após a coleta. Após centrifugação e separação do plasma e do soro, ambos foram congelados a -18°C para serem transportados dentro de 1 mês, em gelo reciclável, para o laboratório de Nutrição Humana do Departamento de Nutrição da FSP/USP, onde foram armazenados a -70°C para análises posteriores.

A avaliação da concentração de Hb sanguínea foi realizada no momento das avaliações de seguimento das gestantes, utilizando-se hemoglobínômetro portátil da marca *Hemocue®* (Ängelholm, Suécia) com sangue venoso. Para classificar a anemia na gestante adotou-se o ponto de corte de 110g/L ao nível do mar, recomendado pela OMS (WHO, 2012b). O método adotado para quantificação do retinol, β-caroteno e 25(OH) vitamina D séricos foi HPLC em fase reversa, conforme Gomes e colaboradores (2004). As reservas corporais de ferro foram mensuradas pelas concentrações de ferritina sérica, por meio de um imunoensaio enzimático (Ramco, Houston, TX). As concentrações de PCR foram adotadas como marcador de inflamação aguda, através de um sistema imunoquímico IMMAGE (Beckman Coulter, Brea, CA, USA). Medidas de ferritina e PCR foram mensuradas apenas para a segunda avaliação de seguimento. O tratamento das variáveis bioquímicas encontra-se detalhada em cada artigo, na sessão Resultados e discussão.

5.3.3 Maternidade

- *Antropometria materna e do recém-nascido*: em relação à mãe, o peso gestacional final foi coletado a partir dos registros nos prontuários, aferido momentos antes do parto pela equipe de enfermagem na própria maternidade. A balança utilizada era da fabricante *Welmy®* (Santa Bárbara d’Oeste, Brasil), modelo W-200A LED, com capacidade para 200 Kg e variação de 0,05 Kg. Com essa informação, foi possível calcular o ganho de peso gestacional total para as mulheres que foram
acompanhadas durante a gestação, visto a disponibilidade de informações sobre o peso pré-gestacional. Para seu cálculo foi considerado a diferença entre peso gestacional final e o peso pré-gestacional, conforme recomendações do IOM (IOM, 2013, 2009). Para os recém-nascidos, aferiu-se o peso com uso de balança pediátrica digital da fabricante Toledo® Júnior (São Bernardo do Campo, Brasil), com capacidade para 15 Kg e variação de 0,005 Kg, aferido pela equipe de enfermagem da unidade e obtida por consulta aos prontuários. Adotou-se o peso ao nascimento < 2.500 g para classificação do BPN (WHO, 2006). A relação PN/IG foi determinada conforme padrões internacionais do Projeto Intergrowth-21st (Villar et al., 2014).

Todas as balanças utilizadas para aferição dos pesos tanto das mães quanto dos bebês na maternidade foram periodicamente verificadas quanto à sua calibração e durante o período do estudo nenhum problema foi encontrado com os equipamentos. A equipe do hospital envolvida na aferição antropométrica dos recém-nascidos recebeu treinamento para coleta de tais medidas.

- Entrevista materna e prontuário: dentro de 12 horas pós-parto, membros da equipe do estudo visitaram as mães ainda na maternidade para aplicação de questionário estruturado.

A realização ou não do cuidado pré-natal, bem como o número de consultas, foi registrada consultando o “Cartão da Gestante”. Procedimento semelhante ao empregado para as participantes do acompanhamento durante a gestação foi adotado também para as participantes do acompanhamento na maternidade, com relação ao uso de suplementos de micronutrientes durante a gestação, diferenciando o uso de suplementos entre ‘ferro e/ou ácido fòlico’, ‘multivitamínico, contendo VA’ e ‘não uso de suplemento’.

Além disso, foi conduzida a avaliação funcional da DVA por meio da detecção de XN gestacional com base em entrevista padronizada (Mclaren e Frigg, 1999; WHO, 1996), adaptada para o contexto brasileiro por Saunders e colaboradores (2005) (Quadro 1). Casos de XN gestacional foram definidos quando a puérpera respondeu negativamente à primeira pergunta, mas afirmativamente a pelo menos uma das perguntas subsequentes. Tal entrevista foi executada no período mínimo possível após o parto, mas com referência à ocorrência do sintoma ocular durante a gestação. Essa entrevista foi conduzida com o uso de linguagem simples e com exemplos de locais com baixa luminosidade, comuns na cidade (Saunders et al., 2005). Como no Brasil não se conhece um termo popular usado para descrever a XN gestacional, foi explicado para as participantes que se trata de uma alteração do padrão visual habitual em ambientes de pouca luz ou à noite e da dificuldade de adaptação da visão quando o indivíduo passa de um ambiente mais claro para um mais escuro, sendo adotado como referência o padrão de visão noturna no período pré-gestacional (Christian, 2002; WHO, 1996).
Outros dados coletados foram, por meio de consulta aos prontuários, a data de nascimento e o sexo da criança, o tipo de parto (vaginal ou cesáreo) e IG final. Partos pré-termo foram considerados quando a IG ao nascimento foi < 37 semanas (Goldenberg et al., 2008).

Os valores de Hb sanguínea no momento do parto foram obtidos dos registros hospitalares. Amostras sanguíneas das parturientes foram coletadas logo após admissão na maternidade, sendo os teores de Hb sanguínea determinados por meio de um contador de células automatizado Labtest® SDH-20 (Lagoa Santa, Brasil) pelo método da fotometria livre de cianeto. A anemia no momento do parto foi classificada como Hb sanguínea < 110,0 g/L (WHO, 2017).

5.4 Exposições e desfechos

As covariáveis investigadas e que potencialmente poderiam influenciar sobre os desfechos estudados foram organizadas conforme um modelo conceitual hierárquico de determinação, adaptado para cada objetivo estabelecido para esta tese, onde níveis superiores e mais distais exercem efeito sobre os níveis inferiores e mais proximais (Figura 10).
Adaptado de Victora et al. (1997), Saunders et al. (2015) e WHO (2006; 2017)

Figura 10 – Modelo conceitual hierárquico adotado para seleção de covariáveis de ajuste, adaptado conforme cada objetivo proposto.
5.4.1 Artigo 1: Identificação dos preditores das concentrações de retinol sérico no início do terceiro trimestre gestacional

Para essa primeira análise procurou-se identificar quais seriam os possíveis preditores das concentrações séricas de retinol obtidas na segunda avaliação de seguimento das gestantes, que ocorreu no início do terceiro trimestre de gestação. A variável desfecho foi tratada em sua forma contínua, buscando identificar sua relação com exposições coletadas durante a primeira avaliação de seguimento. Como ajuste adicional, adotamos as concentrações de PCR e a IG no momento de medida do desfecho como controle para as análises à partir do bloco 4 (Victora et al., 1997).

5.4.2 Artigo 2: Efeito do estado nutricional de vitamina A durante a gestação sobre a anemia materna e o peso ao nascer

Investigou-se nesta análise se o estado nutricional de VA medido no segundo e terceiro trimestres durante a gravidez teria efeito sobre os desfechos maternos, anemia e concentrações sanguíneas de Hb maternas, e infantis, PN e PN/IG. A principal exposição foi o estado nutricional de VA gestacional, como concentrações de retinol e β-caroteno, explorados nas formas contínuas e categóricas, ajustado para covariáveis de ajuste (WHO, 2017, 2006).

Considerando a disponibilidade de medidas repetidas da exposição, a investigação do comportamento de tais variáveis foi explorada pela flutuação das concentrações séricas de retinol e β-caroteno, assim como para a covariável vitamina D, ao longo da gestação. Para isso, a subtração dos valores da segunda avaliação de seguimento daqueles da primeira foi realizada para cada micronutriente, indicando se as concentrações aumentaram entre as avaliações (valores positivos), se mantiveram estáveis (valores nulos) ou diminuíram (valores negativos).

Para as análises dos desfechos maternos, anemia e concentrações sanguíneas de Hb maternas, dois modelos foram utilizados, sendo que no primeiro o ajuste foi feito para as variáveis selecionadas pela análise hierárquica e para o segundo, um ajuste adicional para ocorrência de anemia durante a gestação foi considerado. Não foram incluídas as variáveis tipo de parto, parto pré-termo e sexo do bebê nessas análises, visto que, para a grande maioria das participantes, as amostras sanguíneas foram coletadas antes do parto. Com relação às análises para o PN, os efeitos do sexo do bebê, da IG no momento do parto e das reservas de ferro foram considerados separadamente, levando em conta que esses são potenciais determinantes do desfecho (Smith et al., 2017; Villar et al., 2014; WHO, 2012b). Para isso, duas análises distintas foram executadas, onde na
primeira foi considerado controle para o sexo do bebê e para a idade gestacional no parto, com ajuste para as covariáveis selecionadas pelo modelo hierárquico, e na segunda foi feito ajuste adicional para ferritina sérica na segunda avaliação de seguimento das gestantes. A IG no parto não foi incluída nos modelos para PN/IG (Villar et al., 2014).

5.4.3 Artigo 3: Prevalência e fatores associados com a cegueira noturna gestacional e anemia no momento do parto

Procurou-se determinar a prevalência e os fatores associados à ocorrência de XN gestacional e anemia materna no parto. Todos as mulheres que residiam em Cruzeiro do Sul e que realizaram seus partos na maternidade ao longo de um ano foram incluídas nessa análise, independente se viviam na zona urbana ou rural do município (WHO, 2017; Saunders et al., 2015). Para uma sub-amostra de participantes acompanhadas durante a gestação e que dispunham de dados sobre os marcadores bioquímicos retinol sérico e ferritina plasmática, análises foram realizadas na verificação da associação entre tais variáveis com os desfechos estudados. A ocorrência dos desfechos foi considerada em sua forma dicotômica.

5.5 Processamento e análise dos dados

A coleta dos dados foi feita com auxílio de tablets e PDAs (Personal Digital Assistance), configurados com o aplicativo CSPro (https://www.census.gov/programs-surveys/international-programs.html), desenvolvido para coleta de dados digital pela equipe de campo da pesquisa. Os dados bioquímicos foram duplamente digitados no Excel para Windows. Todos os dados foram convertidos e transportados para o pacote de análises estatísticas Stata versão 14.0 (StataCorp, College Station, Texas, EUA).

Maiores detalhamentos sobre os métodos, análises estatísticas e resultados podem ser encontrados em cada um dos três artigos apresentados na seção Resultados e Discussão desta tese.
6 RESULTADOS E DISCUSSÃO

Esta tese de doutorado é composta por três artigos originais, formatados conforme as exigências de cada periódico a que serão submetidos, a saber:

- Artigo 1: Neves PAR, Campos CAS, Malta MB, Lourenço BH, Castro MC, Cardoso MA, for the MINA-Brazil Study Group. Predictors of vitamin A status among pregnant women in Western Brazilian Amazon (submetido à publicação).

- Artigo 2: Neves PAR, Castro MC, Oliveira CVR, Malta MB, Lourenço BH, Cardoso MA, for the MINA-Brazil Study Group. Effect of vitamin A status during pregnancy on maternal anemia and newborn birth weight: results from a cohort study in the Western Brazilian Amazon (submetido à publicação).

- Artigo 3: Neves PAR, Lourenço BH, Pincelli A, Malta MB, Ferreira MU, Castro MC, Cardoso MA, for the MINA-Brazil Study Group. Prevalence and factors associated with gestational night blindness and maternal anaemia: a population-based cross-sectional study in the Western Brazilian Amazon (versão preliminar não submetida à publicação).
6.1 Artigo 1

Predictors of vitamin A status among pregnant women in Western Brazilian Amazon
Paulo Augusto Ribeiro Neves, Chiara Alzineth Silva Campos, Maira Barreto Malta, Bárbara Hatzlhoffer Lourenço, Márcia Caldas de Castro, Marly Augusto Cardoso, para o MINA-Brasil Study Working Group.

Artigo original submetido à publicação.
Predictors of vitamin A status among pregnant women in Western Brazilian Amazon

Paulo AR Neves¹; Chiara AS Campos¹; Maira B Malta¹; Bárbara H Lourenço¹; Márcia C Castro²; Marly A Cardoso¹ for the MINA-Brazil Study Group*

¹Department of Nutrition, School of Public Health, University of São Paulo. Avenida Doutor Arnaldo 715, São Paulo, SP, Brazil - 01246-904;
²Department of Global Health and Population, Harvard T.H. Chan School of Public Health. 677 Huntington Ave, Boston, MA, United States – 02115.
*A full list of the MINA-Brazil Study Group members is presented in the Acknowledgements.

Correspondent author: Marly A. Cardoso. Department of Nutrition, School of Public Health, University of São Paulo. Avenida Doutor Arnaldo 715, São Paulo, SP, Brazil - 01246-904. E-mail: marlyac@usp.br. Telephone: +55 11 30617863.

Short-title: Predictors of gestational vitamin A status.

Keywords: vitamin A; pregnancy; epidemiologic factors; cohort studies; carotenoids; nutritional status.
Abstract

Determining the predictors of serum retinol at mid-pregnancy is relevant for planning interventions aimed at improving vitamin A status of pregnant women and their offspring. This prospective study assessed predictors of serum retinol at the beginning of the third trimester of pregnancy. We enrolled 442 pregnant women living in the urban area of Cruzeiro do Sul, Western Brazilian Amazon. Demographic, socioeconomic, environmental, and clinical characteristics, as well as obstetric history, anthropometric, dietary, and biochemical data, including serum retinol, were gathered between 16–20 gestational weeks. Serum retinol measured also at the beginning of the third trimester of pregnancy (~28 gestational weeks) was the outcome of interest. Multiple linear regression models were used to evaluate associations with the outcome. Overall, the following variables explained serum retinol at the beginning of the third trimester of pregnancy in the adjusted model ($R^2=11.1\%$): seasonality (winter season - November to April; β: 0.134; 95% CI: 0.063, 0.206), weekly consumption of Amazonian fruits (β: 0.087; 95%CI: 0.012, 0.162), and retinol concentrations between 16–20 gestational weeks (β: 0.045; 95%CI: 0.016, 0.074) were positively associated, whereas having a smoker in the house was negatively associated (β: −0.087; 95%CI: −0.166, −0.009). Consumption of pro-vitamin A rich fruits by pregnant women should be encouraged. Passive smoking may play a role in decreasing vitamin A status as a proxy of smoking exposure during pregnancy.
Introduction

Vitamin A (VA) plays an important role during pregnancy as a regulator of embryonic development, including the epidermis\(^1\). This occurs through retinoic acid, an active derivate of VA that synthesizes and degrades enzymes, alongside participating in spermatogenesis and embryogenesis\(^{1,2}\). VA status during pregnancy has been associated with maternal-child health outcomes, such as birth weight, lung function, bone mineralization, and increasing natural antibody concentrations in offspring, as shown by various studies worldwide\(^{3-6}\).

Varied food-sources provide VA to the human-beings, such as viscera, dairy products, eggs (preformed VA esters, such as retinoid), and orange-yellow and dark-green vegetables (VA precursors, mainly \(\beta\)-carotene)\(^7\). The bioavailability of VA precursors in the organism is less-efficient than for preformed VA esters, affecting thus the VA functions, depending on the food-matrices which the vitamin was obtained\(^{7,8}\). Hepatic storage is the main site where VA can be found in the humans, and varied methods were developed attempting to measure retinol stores in the organ, being the serum retinol (\(\mu\)mol/L) the widest used and recommended method in epidemiological surveys\(^7\).

VA deficiency is still an important public health problem in low- and middle-income countries. The global prevalence of VA deficiency during pregnancy is estimated to be 15.3%, considering serum retinol concentrations < 0.7 \(\mu\)mol/L, and 7.8% based on reported frequency of night blindness\(^7\). The latest global estimates for pregnant women in Latin America and the Caribbean showed a prevalence of 2% of low serum retinol and 4.4% of night blindness, however some estimates were obtained through regression-based models due to the lack of available data for most countries in the region\(^7\). In Brazil, a national representative study with childbearing-age women (15–49 years) found a prevalence of 12.3% of VA deficiency, and an alarming prevalence of VA insufficiency (serum retinol < 1.05 \(\mu\)mol/L) of 49.2%\(^9\). Thus, the identification of the predictors of VA status during pregnancy may help in the prevention of inadequate VA nutritional status, targeting safe interventions for improvement of VA status during this period. Considering the supplementation during pregnancy might be harmful to the mother–child pair owing to teratogenic effects if higher than 10,000 IU daily or 25,000 IU weekly\(^10\), other strategies to prevent VA insufficiency or deficiency must be considered.

Poor VA status in pregnancy is caused mainly by inadequacies on dietary intake of VA-rich foods, as well as during infectious episodes\(^7\). Alternatively, zinc and iron deficiencies have been reported to occur concomitantly with VA deficiency, due to metabolic pathways shared by these micronutrients\(^{11,12}\). A national analysis in Brazil compared nutrient intake among pregnant women,
through two non-consecutive food records, showing elevated inadequacies for iron (97%), VA (71%), and zinc (35%), according to Estimated Average Requirements\(^{(13)}\).

There is a lack of studies on the predictors of VA status at the beginning of the third trimester of pregnancy, a crucial moment when the maternal VA status has a positive correlation to the baby’s liver stores in the first six months after birth\(^{(14)}\). Likewise, there is no prospective study in Northern Brazil regarding the nutritional status of micronutrients in pregnant women. Therefore, our aim was to investigate the predictors of VA status at the beginning of the third trimester of pregnancy among women living in the Western Brazilian Amazon.

Experimental methods

Study setting and population

This is a prospective cohort study in the urban area of Cruzeiro do Sul, Acre State, Western Brazilian Amazon (latitude: 07° 37’ 52” S; longitude: 72° 40’ 12” W), part of the “MINA-Brazil – Maternal and Child Health and Nutrition in Acre, Brazil” Birth Cohort study. Cruzeiro do Sul is the second largest city in Acre, with roughly 80,000 inhabitants, half of them women. The 2010 municipal-level Human Development Index for Cruzeiro do Sul was classified as medium (0.664). It is nearly 640 km from the Acre’s capital city, Rio Branco. Based on the 2010 Demographic Census, only 12.7% of the households had access to proper sanitation in Cruzeiro do Sul\(^{(15)}\).

Our sample was composed of pregnant women enrolled in antenatal care in all primary health units (n = 13) of the Family Health Strategy in the urban area of the municipality. Women up to 20 weeks of pregnancy as measured by the last menstrual period (LMP), who were living in the city and intended to deliver at the only maternity hospital in Cruzeiro do Sul were considered eligible for this study. It was estimated to track approximately 854 pregnant women, taking into account the number of deliveries at the local maternity hospital in 2013 (n=1,780), as well as a proportion of 60% of these women living in the urban area, and a coverage of 80% for the local primary healthcare.

Screening and recruitment of participants took place on a weekly basis by the nurses of each primary health unit, from February 2015 to January 2016. During this period, all eligible women were invited to participate in our study through phone calls or home visits. Afterwards, a home-visit was scheduled to obtain written consent and to perform the socioeconomic and health interview. Twin pregnancies were excluded from this analysis.
Cohort procedures, exposure and outcome variables

Trained field workers conducted face-to-face socioeconomic and health interviews with pregnant women up to 20 weeks of pregnancy. We gathered information on: ‘sociodemographic variables’ (maternal age, maternal skin colour (white or non-white), maternal schooling (≤ 9 or > 9 years), head of the family (pregnant woman or other), living with a partner (no or yes), beneficiary of Bolsa Família conditional cash transfer program (no or yes), maternal occupation (unpaid job or paid job)); ‘environmental characteristics’ (water supply (general water distribution or water well/natural source), sewage collection (septic tank or open air/river), number of people in the household, type of household (masonry or wood/mix), having a smoker in the house (no or yes)); ‘clinical and obstetric history’ (menarche age, history of malaria (no or yes), history of abortion/stillbirth (no or yes); number of live births).

Subsequently, between March 2015 and March 2016, all pregnant women were scheduled for the first evaluation between 16–20 weeks of pregnancy based on LMP. During that evaluation, the following data were gathered: anthropometric measures (weight, height, pre-pregnancy weight), food frequency consumption, current vaginal infections (no or yes), lifestyle behaviours during pregnancy (smoking: no or yes; alcohol use: no or yes), supplement use (none, folic acid + iron, multiple micronutrients with VA), fasting venous blood samples and season at blood drawn (Amazonian summer season from May to October, or Amazonian winter season from November to April), and gestational age (GA). Trained physicians performed obstetric ultrasound assessments to set the GA precisely, which was then compared with GA based on LMP\(^{16}\). The best GA estimate was obtained based on the following criteria: the LMP was used when participants reported regular menstrual cycles, no use of hormonal contraceptive methods, and when agreement between LMP and ultrasound estimates of GA was ≤7 days for pregnancies <20 weeks or ≤14 days for pregnancies from 20–28 weeks; ultrasound measurements were used in all other cases.

A second evaluation was held at the beginning of the third trimester of pregnancy between May 2015 to May 2016, according to the best GA estimate. All the data described for the first evaluation were collected again. For the present analysis, the serum retinol at the second evaluation was considered the outcome variable.

Laboratory procedures and analysis

Nurse technicians collected a fasting (8 hours) venous blood sample (approximately 10 mL) on the morning of the scheduled day in both evaluations. Blood haemoglobin was determined at the time of blood collection by a portable haemoglobinometer (Hemocue® Hb301; Angelholm, Sweden)\(^{17}\). The serum samples were collected in a dry test tube, protected from light and centrifuged within 2
hours of collection. Serum was frozen at −20°C before it was sent to the Laboratory of Human Nutrition (School of Public Health, University of São Paulo) on dry ice and maintained at −70°C until analysis (within 6 months of blood drawn). Serum concentrations of retinol, β-carotene, and 25(OH)-vitamin D₃ were measured by using HPLC methods (HP-1100 HPLC system, Hewlett Packard, Palo Alto, California, USA) \(^\text{(18)}\). At the second evaluation, C-reactive protein (CRP) was measured as a marker of acute inflammation, using an IMMAGE Immunochemistry System (Beckman Coulter, Brea, CA, USA). Biochemical data were double-typed using Excel for Windows and then converted to Stata 14.0 for data processing and analysis. Intra- and inter-assay CVs were < 7%.

Anthropometric assessment

Weight and height were measured by trained researchers according to standardized procedures \(^\text{(19,20)}\). Body weight was measured with a Tanita Corporation portable scale (Tokyo, Japan), model UM061, with a capacity of 150 kg and a variation of 0.1 kg. Pregnant women were barefoot and wearing light clothes, standing erect, with their feet together and arms extended along the body, and maintained the position until reading and recording was completed. To measure height, a portable stadiometer (Alturaexata®; Belo Horizonte, Brazil) with precision of 0.1 mm and an extension of 213 cm was used. Pregnant women were barefoot, with their head free of accessories and hairstyles (ponytail, braid), positioned in the centre of the equipment, erect, with arms extended along the body with the head kept high, and looking at a fixed point at eye level. Heels, shoulders, and buttocks of the pregnant women were pressed against the stadiometer, and the feet formed a right angle with the legs. Each anthropometric measurement was taken in duplicate and mean value were used for calculation of body mass index (BMI). The weekly gestational weight gain was calculated by using the difference between the participant’s body weight at the second evaluation and that of the first evaluation, divided by the GA in weeks in the interval between the two. The weekly gestational weight gain was classified as insufficient, adequate, and excessive according to guidelines from the Institute of Medicine based on the pre-pregnancy BMI \(^\text{(21)}\).

Food consumption assessment

A food frequency questionnaire previously used for screening of micronutrient deficiencies among Amazonian scholars was adapted for this study \(^\text{(22)}\). The frequency of food groups consumption (dairy, beans, green and root vegetables, fruits, Amazonian fruits, eggs, meat, viscera, fish, cereals and breads, oils, and ultra-processed) was estimated during the last month, with the following response options: never, 1-3 times/month, 1-3 times/week, 4-6 times/week, 1 time/d, 2-3 times/d, \(\geq 4\) times/d.
4 times/d\(^{(22)}\). For this analysis, we considered some VA rich food, grouped as follows: fruits and vegetables (no/monthly, weekly, or daily consumption), Amazonian fruits (e.g., Açai - *Euterpe oleracea* Mart.; Buriti - *Maurita flexuosa* L. f.; Cajá - *Spondias mombin* L.; Star fruit - *Averrhoa carambola* L.; Cupuacu - *Theobroma grandiflorum* (Willd. ex Spreng.) K.Schum; Graviola - *Annona muricata* L.; Jaca - *Artocarpus heterophyllus* Lam.; Jambo - *Syzygium malaccense* (L.) Merr. & L. M. Perry.; Pupunha - *Bactris gasipaes* Kunth; Tucumã - *Astrocaryum aculeatum* G. Mey - no/rare or weekly consumption), viscera (e.g., liver, gizzard, heart - no/rare, monthly or weekly consumption), fish (no/monthly, weekly, or daily consumption), dairy (no/monthly, weekly, daily, or ≥ 1 times/d consumption), and eggs (no/monthly, weekly, or daily consumption).

Ethical concerns

This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all research procedures were approved by the Human Ethical Review Board of the School of Public Health, University of São Paulo (number 872.613, Nov 13\(^{th}\), 2014). Written informed consent was obtained from each participant. For teenage pregnancies, the adolescent’s caregiver gave consent.

Power calculation

The sample size estimation was based on detecting predictors of serum retinol in the third trimester of pregnancy (at least 10% of variation). For a power of 95% with a two-tailed level of significance of 5%, at least 120 participants were needed.

Data analysis

The normality of continuous variables was first analysed with the Shapiro-Wilk test. Thus, a square-root transformation was used for the serum retinol at second evaluation. The following data were used as continuous variables: age, number of people in the household, menarche age, number of live births, GA at first evaluation, pre-pregnancy BMI, and all biochemical indicators. We compared characteristics of participants between evaluations by using test of proportions, t-test, and Wilcoxon signed-rank test.

For this study, exposures measured at the first evaluation (16–20 weeks of pregnancy) were used in multiple linear regression models to identify predictors of serum retinol at the second evaluation (~28 weeks of pregnancy). The selection of independent variables followed a hierarchical model with five levels of determination\(^{(23)}\), ordered according to the influence on the outcome: (i) ‘sociodemographic and economic’: maternal age, maternal schooling, maternal skin colour, head of the family, living with a partner, beneficiary of *Bolsa Familia* cash transfer...
program, maternal occupation; (ii) ‘environmental’: water supply, sewage collection, number of people in the household, type of household, having a smoker in the house; (iii) ‘clinical and obstetric history’: menarche age, history of malaria, history of abortion/stillbirth, number of live births; (iv) ‘antenatal care’: pre-pregnancy BMI, current vaginal infections, smoking during pregnancy, alcohol use during pregnancy, seasonality of blood drawn, food consumption for each item, maternal supplementation; (v) ‘biochemical’: retinol, haemoglobin, β-carotene, and vitamin D at the first evaluation. We assumed the GA and CRP concentrations at second evaluation as controlling variables for the analysis in levels (iv) and (v). At each level of determination, independent variables were retained in the model if they were associated with the outcome at $P<0.10$ or if their inclusion in the model changed the R^2 by 10% or more. Missing data were included in the multiple models by creating missing-value categories. All analyses were performed using Stata 14.0 (Stata Corp., College Station, TX, USA).

Results

The flowchart of participants is presented in Figure 1. Of the 860 women screened for participation, 699 met eligibility requirements. After losses to missed appointments, miscarriage/abortion, refusal to participate, insufficient blood samples, and twin pregnancies, 442 women had complete data and were included in analysis. There was no significant difference in general characteristics among participants lost to follow-up and pregnant women included in the analyses ($P>0.10$).

General characteristics of participants are shown in Table 1. More than one quarter of the participants were teenagers (<19 years, 27.4%). Most of the women had more than 9 years of schooling (67.58%), were not the head of the family (86.28%), were non-white (85.76%), were living with a partner (77.36%), had general water supply (62.95%), and used a septic tank for sewage (67.36%). The mean number of people living in the same household was 4.11 (SD: 2.11), and 70.55% of the participants lived in households with no smokers. Regarding overall antenatal care information, most of the participants experienced excessive weight gain between the two evaluations (59.17%). More than half of the pregnant women reported at least one episode of malaria throughout their life (data not shown).

Table 2 shows the comparisons of study participants between the two evaluations. Differences in mean values between evaluations were seen in the biochemical indicators, with an improvement of nutritional status for retinol, β-carotene and vitamin D at second evaluation compared with the first one. Conversely, a reduction could be observed in mean serum haemoglobin, followed by an increase in the frequency of anaemia. Supplementary table presents
comparisons of the VA food-sources consumption between the evaluations, with significant differences only for the consumption of viscera, fish, and dairy products.

In the final multiple regression model, variables positively associated with the serum retinol in the last trimester of pregnancy were seasonality, weekly consumption of Amazonian fruits, and serum retinol at the first evaluation. Winter season (rainy season) was responsible for increasing serum retinol in 0.134 µmol/L compared with summer season (dry season). The mean retinol concentrations at the beginning of the third trimester was 0.087 µmol/L higher among women who consumed Amazonian fruits weekly than among those who consumed these fruits less often. Conversely, having a smoker in the house presented a negative correlation, with mean serum retinol of 0.087 µmol/L lower when compared to pregnant women without a smoker in the house. These four variables were responsible for explaining 11.1% of the variability in serum retinol (Table 3).

Control for CRP concentrations had a non-significant effect on the R², lowering it. Hence, we did not include this variable in the final model. The food consumption of fish, dairy, and eggs was not associated with the serum retinol at mid-pregnancy in the unadjusted analysis (data not shown in Tables).

Discussion

In this prospective cohort study in the Western Brazilian Amazon, we showed that positive predictors of serum retinol at the beginning of the third trimester of pregnancy were seasonality (Amazon winter season), weekly consumption of Amazonian carotenoid-rich fruits, and serum retinol in the second trimester. In contrast, having a smoker in the household reduced retinol concentrations. Our final model explained 11.1% of the variability of serum retinol in the last trimester of pregnancy. To our knowledge, this is the first study to address this subject in this specific period in a less-developed area of Brazil, which is relevant in view of the physiological characteristics of the forthcoming gestational weeks. Throughout the third trimester, foetus growth occurs rapidly and thus seems to increase the need for specific nutrients to meet foetal needs, such as VA(14). Furthermore, it is in this trimester that the mother-to-child transfer of nutrients may occur more intensely, highlighting the necessity of achieving good foetal stores of VA in the liver in this period (14,24). Thus, having a good nutritional status prior to the third trimester might prevent inadequate
mother-to-child transfer of VA and/or insufficient storage of retinol in the foetal liver, which is essential to complement the VA supply provided by human milk in the first six months of life.(14) Moreover, pre-pregnancy nutritional status has a crucial role in maintain optimal concentrations of micronutrients throughout pregnancy, evidencing that optimal women’s nutritional status has to be reached before the establishment of pregnancy.(26).

In this study, average of serum retinol at the second evaluation was higher than at the first evaluation, being more than 75% of our sample presented retinol concentrations above 1.05 µmol/L at the second point measured in pregnancy, which is a cut-point to insufficiency in VA(7,14). It is important to note that plasma volume during pregnancy increases until the last trimester, consequently declining the concentration of nutrients, even though it is less than the major changes in plasma volume(27). Therefore, the total amount of micronutrients in circulation increases during pregnancy(27).

Additionally, the importance of VA liver stores to maintain the homeostasis of serum retinol must be recognized. Under adequate VA nurture conditions, the liver is the main site of retinol storage in the body, and this regulates VA homeostasis, keeping adequate concentrations of retinol in the blood stream. Furthermore, the VA status indirectly regulates bioconversion of carotenoids to retinol, as well as the diet-responsive regulatory network(27). Thus, even when the intake of VA does not attend the recommendations, the serum retinol is influenced by the homeostasis, bioconversion of carotenoids or even the inflammatory status.(12). This fact may be one of the reasons our final multiple regression models have explained only 11.1% of the variability in serum retinol. It is possible that majority of the women in our study had adequate pre-pregnancy nutritional status of VA, considering the mean values of retinol in both evaluations were higher than in other studies.(24,25,28).

Previous surveys in other countries have shown different serum retinol concentrations before, during, and after pregnancy. In the United States, the mean serum retinol in childbearing-age women was 1.79 µmol/L (95% CI: 1.76–1.81), as reported by the National Health and Nutrition Examination Survey (NHANES) cycles of 2003–2004 and 2005–2006, and lower concentrations were associated with poverty and race (Hispanic and black)(28). In a large cross-sectional study of women within all gestational trimesters in Guinea-Bissau, the mean serum retinol was 1.03 (SD: 0.33) µmol/L, and the GA > 20 weeks was consistently associated with ~0.1 µmol/L lower serum retinol (β: −0.09 to −0.11) compared with GA from 7 to 16 weeks(24). Another cross-sectional study of post-partum women in an impoverished area of South Africa, where pregnant women frequently consume liver in their diet, found a mean serum retinol of 1.03 (SD: 0.4) µmol/L.(25). These studies raise a few questions, such as the influence of pre-pregnancy nutritional status of VA,
socioeconomic level, food source availability, and supplement use, among others. Also, our results reinforce the role of homeostasis acting on serum retinol even in low-income areas, like the Brazilian Amazon.

Even considering the absorption rate and bioconversion factor to retinol, carotenoids are an important source of VA, especially for populations from low- and middle-income countries\(^{(29)}\). In Western Kenya, enhanced nutrition education and intake of orange-fleshed sweet potato by pregnant women through nine months postpartum was positively associated with higher intakes of VA, and reduced odds of low serum retinol binding protein, compared with participants who received standard-of-care approaches\(^{(30)}\). Amazonian fruits such as *buriti* and *pupunha* are extremely rich in carotenoids, either through the consumption of the fruit or their oil. Each 100 g of *buriti* has 4,104 mg of carotenoids, while the same amount of *pupunha* has 1,500 mg\(^{(31)}\). It is relevant to point out the availability of carotenoids, and how these Amazonian fruits are usually consumed. Carotenoids from fruits are more available than vegetables owing to the weak layer in the fruit cells. Additionally, heating up helps release carotenoids from their matrix\(^{(8)}\). These two Amazonian fruits are normally cooked before consumption, which may foster improved nutrient availability. Experimental studies with rats have shown the improvement on serum and liver VA content with the consumption of *buriti* oil, which might be extended to humans\(^{(32,33)}\).

The availability of foods and crops relates to intake and nutritional status of many nutrients, including VA. In our study, seasonality was one of the main factors positively associated with serum retinol. Seasonal patterns of vegetable and fruit production can potentially affect dietary VA intake\(^{(34)}\). This finding is in line with those of other studies, which showed that the time of year may affect the intake of nutrients, possibly due to the availability and affordability of food in some seasons\(^{(32,33)}\). In Manila, Philippines, a prospective study with young women showed that in specific periods the consumption of fruits is higher than in others\(^{(35)}\). Another prospective study in South Africa showed that the consumption by pre-school age children of pumpkin, butternut squash, and orange-fleshed sweet potato was higher during rainy months\(^{(34)}\). The Amazon rainy season is the period of the year when Amazonian carotenoid-rich fruits are most available, enhancing the nutritional status of VA in our population\(^{(31)}\).

As expected, VA status at the first evaluation was a positive determinant of retinol concentrations in the following period assessed, evidencing that the retinol status in the first half of pregnancy influences on retinol concentrations as pregnancy progress. Two major factors affect the regulation of retinol concentrations in blood: dietary VA and hepatic retinoids stored. Upon demand, these hepatic retinoids stores are mobilized by specific enzymes from hepatic retinoid stores, releasing retinol into circulation to ensure a constant supply to peripheral tissues, even under
conditions where dietary retinoids are not available, either by insufficient VA intake or pathological conditions\(^{(36,37)}\). Taking into account that most of our sample had serum retinol above 1.05 µmol/L, we considered the retinol stores were replete for the majority of participants. In addition, with the contribution of Amazonian fruits, the nutritional status of VA for most of our population was adequate, elucidating how important the nutritional status of VA is in the first half of pregnancy to foster good retinol levels in the final gestation period. This could offer a good supply of VA to the foetus prior to the last trimester, an important period of mother-to-child transfer of VA, as well as preclude clinical manifestation of VA deficiency (xerophthalmia) and its consequences, which are more often seen in the last trimester of pregnancy in low-income areas\(^{(38)}\).

Our results show that having a smoker in the house impacts negatively on serum retinol. Although our sample had a low prevalence of smoking during pregnancy within 16–20 weeks of pregnancy, passive smoking during pregnancy may affect the availability of antioxidants such as VA, which can affect foetal growth, in either length or weight\(^{(39)}\). Nicotine affects the role of retinoic acid in early embryo development, through cellular stress\(^{(40)}\). In a national representative cross-sectional study in China, smoking habit during the second and third trimesters of gestation increased the odds of VA deficiency compared with those in the first trimester (second trimester OR: 2.4 95% CI: 1.05–5.46; third trimester OR: 2.92 95% CI: 1.43–5.93)\(^{(41)}\).

In this study, other covariates were not associated with the VA status in the final multiple model. In a cohort study in England, serum retinol in pregnancy was negatively associated with bone mineralization in new-borns\(^{(5)}\). Thus, considering the well established role of vitamin D in the bone health\(^{(42)}\), we hypothesized that the VA and vitamin D might share metabolic pathways still unknown, which might influence on adequate nutritional status of both vitamins. However, we did not observe any association between these vitamins. Inadequate VA status in pregnancy is more likely to occur in less-advantaged populations, evidenced by studies in the United States\(^{(28)}\) and Brazil\(^{(43)}\). Additionally, some episodes during the reproductive history of the pregnant women might affect their VA status, such as history of abortion, lowering the liver retinol stores for subsequent pregnancies\(^{(41)}\). Despite it all, no association with VA status at mid pregnancy was verified for some covariates related to socioeconomic and reproductive aspects above mentioned. Furthermore, previous episodes of malaria can affect subject’s VA status, as during the reproductive cycle and metabolism of the *Plasmodium* malaria the host’s liver is affected. In this sense, frequent episodes of malaria through the life course may impair adequate retinol stores, as well as raise concentrations of acute phase proteins, like CRP\(^{(44)}\). Nevertheless, neither the history of malaria nor the CRP concentrations were associated with the VA status in pregnancy in this study.
Limitations of the study include the lack of data on other biochemical indicators of VA status, e.g. retinol binding protein; the food frequency questionnaire did not include amounts of food intake, precluding estimates of nutrient intake by the participants; and the fact that our study sample was not representative of all pregnant women living in both rural and urban areas, with losses to follow-up were higher than we expected, mainly because of difficulties in contacting participants to attend evaluations. As for strengths, the prospective study design allowed us to assess causality, the measurement of serum retinol used the HPLC assay, recommended by World Health Organization, and all data and biomarkers collection was done under very good quality conditions, ensured through periodic training. Thus, other populations with similar features to ours in the Brazilian Amazon can benefit from our results.

Conclusion

The results of this prospective cohort study revealed some predictors of VA status at commencement of the third trimester of pregnancy in the Western Brazilian Amazon. The positively associated factors were the consumption of Amazonian fruits, seasonality (Amazon winter, the rainy season), and serum retinol at the first evaluation; the negatively associated factor was having a smoker in the house, a proxy of passive smoking during pregnancy. Effective actions for improving the consumption of locally available pro-vitamin A rich fruits by pregnant women, as well as avoiding passive smoking during pregnancy, are potentially important interventions to improve VA status in Western Brazilian Amazonian pregnant women.
Acknowledgments: The authors are thankful to all participants and professional health workers involved in this study, as well as the Municipal Health Secretariat and all Basic Care Units of Cruzeiro do Sul. Members of MINA-Brazil Study Group: Alicia Matijasevich Manitto, Bárbara Hatzlhoffer Lourenço, Maira Barreto Malta, Marly Augusto Cardoso, Paulo Augusto Ribeiro Neves (University of São Paulo, São Paulo, Brazil); Suely Godoy Agostinho Gimeno (Federal University of São Paulo, São Paulo, Brazil); Bruno Pereira da Silva, Rodrigo Medeiros de Souza (Federal University of Acre, Cruzeiro do Sul, Brazil); Marcia Caldas de Castro (Harvard T.H. Chan School of Public Health, Boston, USA).

Financial support: This work was funded by the National Counsel of Technological and Scientific Development - CNPq (grant number 407255/2013-3), the Maria Cecilia Souto Vidigal Foundation, and the São Paulo Research Foundation - FAPESP (grant number 2016/00270-6). P.A.R.N. received scholarships from the Brazilian Federal Agency for Support and Evaluation of Graduate Education - CAPES (grant number PDSE - 88881.133704/2016-01). The funders had no role in the design, analysis or writing of this article.

Conflict of interest: None.

Authorship: P.A.R.N., B.H.L, M.C.C., M.A.C. conceived and designed the methods of the study. P.A.R.N., C.A.S.C. collected the data. P.A.R.N., M.B.M., M.A.C. analysed the data. P.A.R.N. wrote the first draft of the article, with critical revisions by M.A.C. All authors reviewed the manuscript content and have approved the final version submitted for publication.
References

1. Mammadova A, Zhou H, Carels CEL, et al. (2016) Retinoic acid signalling in the development of the epidermis, the limbs and the secondary palate. Differentiation 92, 326-35. doi: 10.1016/j.diff.2016.05.001.

2. Clagett-Dame M & Knutson D (2011) Vitamin A in reproduction and development. Nutrients 3, 385-428. doi: 10.3390/nu3040385.

3. Cohen M, Kahn SR, Platt RW, et al. (2015) Small-for-gestational-age birth and maternal plasma antioxidant levels in mid-gestation: a nested case-control study. BJOG 122, 1313–21.

4. Checkley W, West Jr. KP, Wise RA, et al. (2010) Maternal vitamin A supplementation and lung function in offspring. N Engl J Med 362, 84-1794. doi: 10.1056/NEJMoa0907441.

5. Handel MN, Moon RJ, Titcombe P, et al. (2016) Maternal serum retinol and β-carotene concentrations and neonatal bone mineralization: results from the Southampton Women’s Survey cohort. Am J Clin Nutr 104, 1183–8. doi: 10.3945/ajcn.116.130146.

6. Palmer AC, Schulze KJ, Khatry SK, et al. (2015) Maternal vitamin A supplementation increases natural antibody concentrations of preadolescent offspring in rural Nepal. Nutrition 31, 813-9. doi: 10.1016/j.nut.2014.11.016.

7. World Health Organization (2009) Global prevalence of vitamin A deficiency in populations at risk 1995–2005. WHO Global Database on Vitamin A Deficiency. Geneva; WHO.

8. Van Loo-Bouwman CA, Naber THJ, Schafsma G (2014) A review of vitamin A equivalency of β-carotene in various food matrices for human consumption. Br J Nutr 111, 2153-66. doi: 10.1017/S0007114514000166.

9. Ministério da Saúde (Brasil) (2009) PNDS 2006 – Pesquisa Nacional de Demografia e Saúde da Criança e da Mulher. Brasília; MS.

10. World Health Organization (2011) Guideline: Vitamin A supplementation in pregnant women. Geneva; WHO. Available: http://apps.who.int/iris/bitstream/10665/44625/1/9789241501781_eng.pdf. (accessed February 2017).

11. Thorne-Lyman, Fawzi WW (2012) Vitamin A and carotenoids during pregnancy and maternal, neonatal and infant health outcomes: a systematic review and meta-analysis. Paediatr Perinat Epidemiol 26, 36-54. doi: 10.1111/j.1365-3016.2012.01284.x.

12. Tanumihardjo SA, Russell RM, Stephensen CB, et al. (2016) Biomarkers of nutrition for development (BOND) - Vitamin A review. J Nutr 146, 1816S-48S. doi: 10.3945/jn.115.229708.
13. Santos Q, Schieri R, Marchioni DML, et al. (2014) Brazilian pregnant and lactating women do not change their food intake to meet nutritional goals. *BMC Pregnancy Childbirth* 14. doi: 10.1186/1471-2393-14-186. doi: 10.1186/1471-2393-14-186.

14. Ramalho A, Dolinsky M. (2012) Carência de vitamina A no grupo materno-infantil. In *Nutrição em obstetrícia e pediatria*, 2nd ed., pp. 57-76 [Accioly E, Saunders C, Lacerda E, editors]. Rio de Janeiro: Cultura Médica/Guanabara Koogan.

15. Instituto Brasileiro de Geografia e Estatística (2017) *Cidades*. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística. Internet: https://cidades.ibge.gov.br/v4/brasil/ac/cruzeiro-do-sul/panorama (accessed January 2017).

16. Pincelli A, Neves PAR, Lourenço BH, *et al.* (2018) The hidden burden of *Plasmodium vivax* malaria in pregnancy in the Amazon: an observational study in Northwestern Brazil. *Am J Trop Med Hyg* 99, 73-83. doi: 10.4269/ajtmh.18-0135.

17. Burger SE, Pierre-Louis JN (2003) *A procedure to estimate accuracy and reliability of HemoCue measurements of survey workers*. Washington: ILSI.

18. Gomes LF, Alves AF, Sevanian A, *et al.* (2004) Role of β2-glycoprotein I, LDL-, and antioxidant levels in hypercholesterolemic elderly subjects. *Antioxid Redox Signal* 6, 237–44.

19. World Health Organization (1995) Expert Committee on Physical Status. *Physical status: the use and interpretation of anthropometry: report of a WHO Expert Committee*. Geneva: WHO.

20. Lohman TG, Roche AF, Martorell R (1988) *Anthropometric standardization reference manual*. Illinois: Human Kinetics Books.

21. Institute of Medicine (2013) *Implementing guidelines on weight gain and pregnancy*. Washington, DC: The National Academy Press.

22. Augusto RA, Cobayashi F, Cardoso MA (2015) Associations between low consumption of fruits and vegetables and nutritional deficiencies in Brazilian schoolchildren. *Public Health Nutr* 18, 927-35. doi: 10.1017/S1368980014001244.

23. Victora CG, Huttly SR, Fuchs SC, *et al.* (1997) The role of conceptual frameworks in epidemiological analysis: a hierarchical approach. *Int J Epidemiol* 26, 224-7.

24. Kæstel P, Martinussen T, Aaby P, *et al.* (2012) Serum retinol is associated with stage of pregnancy and the acute phase response in pregnant women in Guinea-Bissau. *J Nutr* 142, 942-7. doi: 10.3945/jn.111.155937.

25. Van Stuijvenberg ME, Schoeman SE, Nel J, *et al.* (2015) Serum retinol in post-partum mothers and newborns from an impoverished South African community where liver is frequently eaten and vitamin A deficiency is absent. *Matern Child Nutr* 13. doi: 10.1111/mcn.12223.
26. Ramakrishnan U, Grant F, Goldenberg T, et al. (2012) Effect of women’s nutrition before and during early pregnancy on maternal and infant outcomes: a systematic review. *Paediatr Perinat Epidemiol* 26, Suppl. 1, 285-301. doi: 10.1111/j.1365-3016.2012.01281.x.

27. King CJ (2000) Physiology of pregnancy and nutrient metabolism. *Am J Clin Nutr* 71, 1218S–25S.

28. Hanson C, Lyden E, Abresch C, et al. (2016) Serum retinol concentrations, race, and socioeconomic status in of women of childbearing age in the United States. *Nutrients* 8. doi: 10.3390/nu8080508.

29. Penniston KL & Tanumihardjo SA (2006) The acute and chronic effects of vitamin A. *Am J Clin Nutr* 83, 191-201.

30. Girard AW, Grant F, Watkinson M, et al. (2017) Promotion of orange-fleshed sweet potato increased vitamin A intakes and reduced the odds of low retinol-binding protein among postpartum Kenyan women. *J Nutr* 147, 955-963. doi: 10.3945/jn.116.236406.

31. Ministério da Saúde (Brasil) (2015) *Alimentos regionais brasileiros* – 2nd ed. http://189.28.128.100/dab/docs/portaldab/publicacoes/livro_alimentos_regionais_brasileiros.pdf. (accessed February 2017).

32. Medeiros MC, Aquino JS, Soares J, et al. (2015) Buriti oil (Mauritia flexuosa L.) negatively impacts somatic growth and reflex maturation and increases retinol deposition in young rats. *Int J Dev Neurosci* 46, 7-13. doi: 10.1016/j.ijdevneu.2015.05.001.

33. Aquino JS, Vasconcelos MH, Pessoa DC, et al. (2016) Intake of cookies made with buriti oil (Mauritia flexuosa) improves vitamin A status and lipid profiles in young rats. *Food Funct* 7, 4442-50. doi: 10.1039/c6fo00770.

34. Faber M & Laubscher R (2008) Seasonal availability and dietary intake of beta-carotene-rich vegetables and fruit of 2-year-old to 5-year-old children in a rural South African setting growing these crops at household level. *Int J Food Sci Nutr* 59, 46-60.

35. Beard JL, Murray-Kolb LE, Lawrence F, et al. (2007) Variation in the diets of Filipino women over 9 months of continuous observation. *Food Nutr Bull* 28, 206-14.

36. Schreiber R, Taschler U, Preiss-Landl K, et al. (2012) Retinyl ester hydrolases and their roles in vitamin A homeostasis. *Biochim Biophys Acta* 1821, 113-23. doi: 10.1016/j.bbalip.2011.05.001.

37. Grumet L, Taschler U, Lass A (2016) Hepatic retinyl ester hydrolases and the mobilization of retinyl ester stores. *Nutrients* 9. pii: E13. doi: 10.3390/nu9010013.
38. World Health Organization (2014) *Xerophthalmia and night blindness for the assessment of clinical vitamin A deficiency in individuals and populations*. Vitamin and Mineral Nutrition Information System. Geneva: WHO. Available: http://apps.who.int/iris/bitstream/10665/133705/1/WHO_NMH_NHD_EPG_14.4_eng.pdf?ua=1. (accessed February 2017).

39. Titova OE, Ayvazova EA, Bichkaeva FA, et al. (2012) The influence of active and passive smoking during pregnancy on umbilical cord blood levels of vitamins A and E and neonatal anthropometric indices. *Br J Nutr* **108**, 1341-5. doi: 10.1017/S000711451100688X.

40. Feltes BC, Poloni JF, Notari DL, et al. (2013) Toxicological effects of the different substances in tobacco smoke on human embryonic development by a systems chemo-biology approach. *PLoS One* **8**, e61743. doi:10.1371/journal.pone.0061743.

41. Yang C, Chen J, Liu Z, et al. (2016) Prevalence and influence factors of vitamin A deficiency of Chinese pregnant women. *Nutr J* **15**, 12. doi: 10.1186/s12937-016-0131-7.

42. Holick MF (2007). Vitamin D deficiency. *N Engl J Med* **357**, 266-81.

43. Saunders C, Leal MC, Neves PAR, et al. (2016) Determinants of gestational night blindness in pregnant women from Rio de Janeiro, Brazil. *Public Health Nutr* **19**, 851-60. doi: 10.1017/S1368980015001846.

44. Barffour MA, Schulze KJ, Coles CL, et al. (2018) Comparability of inflammation-adjusted vitamin A deficiency estimates and variance in retinol explained by C-reactive protein and α1-acid glycoprotein during low and high malaria transmission seasons in rural Zambian children. *Am J Trop Med Hyg* **98**, 334-43. doi: 10.4269/ajtmh.17-0130.
Table 1 – Characteristics of the pregnant women from the MINA-Brazil prospective study.

Variables	n	Mean	SD	%
Maternal age – years	583	24.7	6.4	
Skin colour	583			
White				14.2
Non-white (Brown/Black mainly)				85.8
Maternal schooling	583			
≤ 9 years				32.4
> 9 years				67.6
Head of the family – pregnant woman	583			13.7
Living with a partner – yes	583			77.3
Maternal occupation - paid job	583			43.2
Bolsa Familia cash transfer program – Yes	583			39.4
Water supply	583			
General water distribution		63		
Water well/natural source		37		
Sewage collection	579			
Septic tank		67.3		
Open air/river		32.6		
Number of people in the household	583	4.11	2.11	
Type of household	583			
Masonry		25.4		
Wood/Mix		74.6		
Have a smoker in the household – yes	583			29.5
Menarche age, years	583	13.53	5.26	
History of abortion/stillbirth* - yes	324			27.1
Number of live births*	324	1.93	1.63	
Pre-pregnancy BMI, kg/m²	530	23.36	4.25	
Weekly gestational weight gain†	458			
Insufficient		18.5		
Adequate		22.3		
Excessive		59.2		

SD, standard deviation; BMI, body mass index. Totals differ due to missing values.

*Only for those who have been previously pregnant.
†According to the Institute of Medicine guidelines, 2013.
Table 2 – Characteristics of participants from the MINA-Brazil prospective study between the second and third trimester of pregnancy.

Variables	1st evaluation (16-20 weeks)	2nd evaluation (~28 weeks)	%	P			
Smoking during pregnancy	523	3.8	458	3.5	0.72		
Alcohol consumption during pregnancy	523	7.8	458	5.4	0.03*		
Supplement use	523		458	0.00**			
None	42		48.9				
Folic acid + iron	40.7		34.7				
Multi-micronutrients with vitamin A	17.2		16.4				
Seasonality	523		458	0.05			
Amazonian summer	47.4		52.6				
Amazonian winter	52.6		47.4				
Gestational age, weeks	521	20.03	2.91	458	27.75	1.58	0.00***
Retinol, µmol/L	513	1.77	1.00 - 2.60	455	1.90	1.20 - 2.70	0.29
Vitamin A deficiency†	513	10.7	455	6.6	0.00***		
Vitamin A insufficiency†	513	27.1	455	20.0	0.00***		
Haemoglobin mg/dL	510	12.15	1.26	454	11.87	0.98	0.00***
Anaemia†	510	15.2	454	17.6	0.20		
β-carotene, µmol/L	513	0.45	0.25 - 0.78	455	0.52	0.28 - 0.88	0.93
Vitamin D, nmol/mL	513	76.63	54.66 - 106.83	455	79.12	48.67 - 109.82	0.43

†Totals differ due to missing values.

†Vitamin A deficiency: serum retinol < 0.7 µmol/L; vitamin A insufficiency: serum retinol < 1.05 µmol/L; anaemia: haemoglobin < 11 mg/dL.

*P < 0.05; **P < 0.01; ***P < 0.001.
Variables	Crude	Adjusted†						
	n	β^\dagger	95% CI	β^\dagger	95% CI	β^\dagger	95% CI	P
Maternal age (years)	442	0.008	0.003; 0.014	0.003	-0.003; 0.009	0.32		
Have a smoker at home								
No		Reference		Reference				
Yes		-0.105	-0.183; -0.027	-0.087	-0.166; -0.009	0.02*		
Menarche age		0.002	-0.003; 0.008	0.001	-0.004; 0.007	0.68		
History of abortion/stillbirth		Reference		Reference				
No		0.042	-0.065; 0.150	-0.004	-0.013; 0.004	0.33		
Yes								
Seasonality of blood drawn$^\|\$								
Amazonian dry season (summer)		Reference		Reference				
Amazonian rainy season (winter)		0.036	0.073; 0.216	0.134	0.063; 0.206	0.00***		
Amazonian fruits$^\|\$								
No/rare consumption		Reference		Reference				
Weekly consumption		0.128	0.053; 0.203	0.087	0.012; 0.162	0.02*		
Retinol, µmol/L$^\|\$		0.043	0.013; 0.072	0.045	0.016; 0.074	0.00**		
Haemoglobin, g/L$^\|\$		0.028	0.000; 0.056	0.021	-0.006; 0.048	0.13		

95% CI, 95% Confidence interval.

* $P < 0.05$, $^{**} P < 0.01$, $^{***} P < 0.001$

† R^2-adj: 11.1%

$^\|$ Values are in the square root-transformed scale.

$^\|\$ Controlled for gestational age at the second evaluation.

$^\|\|\$ Measured at the first evaluation.
Figure 1 – Flowchart of the recruitment and follow-up of the pregnant women participants in the MINA-Brazil prospective study.

Screening (n 860)

Eligible to study (n 699)

Not eligible (n 161)
38 Miscarriage or abortion
71 More than 20 weeks of pregnancy
52 Living in another city or rural area

Losses (n 112)
41 Refused
71 Not found

Enrolled in the study (n 587)

1st clinical evaluation (n 528)

Losses (n 59)
11 Declined
05 Miscarriage or abortion
43 Not meet the 1st appointment

2nd clinical evaluation (n 458)

Losses (n 65)
02 Declined
03 Miscarriage or abortion
61 Not found or did not meet the 2nd appointment
Excluded (n 4)
04 Twin pregnancies

Complete data to exposures and outcome (n 442)

Losses (n 16)
16 Insufficient samples to perform biochemical analysis: 10 in the first evaluation and 6 in the second evaluation.
Supplementary table – Frequency of consumption for vitamin A rich foods by pregnant women between the second and third trimesters in the MINA-Brazil prospective study

Variables	1st evaluation (16-20 weeks)	2nd evaluation (~28 weeks)	P
	n†	%	n
Fruits and vegetables	523	458	0.09
No/monthly	23.9	24.7	
Weekly	40.9	43.4	
Daily	35.2	31.8	
Amazonian fruits	523	458	0.97
No/rare	34.8	36.4	
Weekly	65.2	63.5	
Viscera	523	458	0.02*
No/rare	58.1	61.6	
Monthly	13.2	10.2	
Weekly	28.7	28.2	
Fish	523	458	0.00**
No/monthly	23.6	29.8	
Weekly	53.4	50.5	
Daily	23.0	19.7	
Dairy	523	458	0.00**
No/monthly	9.8	7.9	
Weekly	16.8	16.3	
Daily	36.4	42.4	
≥ 1 time/d	37.0	33.4	
Eggs	523	458	0.11
No/monthly	43.9	45.2	
Weekly	36.8	38.1	
Daily	19.3	16.7	

†Totals differ due to missing values.

*P < 0.05; **P < 0.01.
6.2 Artigo 2

Effect of vitamin A status during pregnancy on maternal anemia and newborn birth weight: results from a cohort study in the Western Brazilian Amazon

Paulo Augusto Ribeiro Neves, Marcia Caldas de Castro, Clariana Vitória Ramos de Oliveira, Maira Barreto Malta, Bárbara Hatzlhoffer Lourenço, Marly Augusto Cardoso, para o MINA-Brasil Study Working Group.

Artigo original submetido à publicação.
Authors’ name: Paulo Augusto R Neves¹, Marcia C Castro², Clariana VR Oliveira², Maira B Malta¹, Bárbara H Lourenço¹, Marly A Cardoso¹, for the MINA-Brazil Study Group*

* A full list of the MINA-Brazil Study Group members can be found in the Acknowledgements.

Title: Effect of vitamin A status during pregnancy on maternal anemia and newborn birth weight: results from a cohort study in the Western Brazilian Amazon

Authors’ affiliation: ¹Department of Nutrition, School of Public Health, University of São Paulo. Avenida Doutor Arnaldo, 715, 01246-904, São Paulo, Brazil. ²Department of Global Health and Population, Harvard T.H. Chan School of Public Health. 677 Huntington Avenue, 02115, Boston, United States.

Corresponding author: Marly A Cardoso. Tel: +55 11 3061-7863. E-mail: marlyac@usp.br

Authors’ ORCID register: Paulo Augusto R Neves (0000-0002-1200-4725), Marcia C Castro (0000-0003-4606-2795), Clariana VR Oliveira (0000-0001-9987-9948), Maira B Malta (0000-0003-4993-1589), Bárbara H Lourenço (0000-0002-2006-674X), Marly A Cardoso (0000-0003-0973-3908).

Acknowledgments: We are thankful to all participants and professional health workers involved in this study, as well as the State Health Secretariat of Acre, the Municipal Health Secretariat, the Primary Health Care Units, and the maternity hospital of Cruzeiro do Sul. The MINA-Brazil Study was supported by the Brazilian National Council for Scientific and Technological Development (CNPq, grant number 407.255/2013-3); the Maria Cecília Souto Vidigal Foundation; and the São Paulo Research Foundation (FAPESP, grant number 2016/00270-6). PARN received scholarships from the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES, grant number PDSE - 88881.133704/2016-01). The funders had no role in the design of the study, the data collection and analyses, the interpretation of the data, the preparation and review of the manuscript, or the decision to submit it. Members of the MINA-Brazil Study Group: Marly Augusto Cardoso (Principal Investigator), Alicia Matijasevich Manitto, Bárbara Hatzlhoffer Lourenço, Maira Barreto Malta, Paulo Augusto Ribeiro Neves (University of São Paulo, São Paulo, Brazil); Bruno
Pereira da Silva, Rodrigo Medeiros de Souza (Federal University of Acre, Cruzeiro do Sul, Brazil); Marcia Caldas de Castro (Harvard T.H. Chan School of Public Health, Boston, USA).
Abstract

Purpose: Inadequate vitamin A (VA) status during pregnancy has been associated with maternal anemia and suboptimal newborn birth weight (BW). We assessed the effect of gestational VA status (serum retinol and β-carotene, µmol/L), in different moments during pregnancy, on maternal hemoglobin (Hb, g/L) and anemia (Hb < 110.0 g/L) at delivery, and newborn BW (kg).

Methods: In a prospective cohort study in Cruzeiro do Sul, Western Brazilian Amazon, VA status was assessed in the second and third trimesters in pregnancy. VA status was analyzed considering its effect in each and in both assessments (combined VA status), and the difference of serum values between assessments. Multiple linear and Poisson regression models were used with a hierarchical selection of covariates.

Results: A total of 488 mother-newborn pairs were surveyed. Combined VA deficiency status increased the risk for maternal anemia (adjusted prevalence ratio: 1.39; 95% CI: 1.05-1.84), and was negatively associated with maternal Hb (β: -3.30 g/L; 95% CI: -6.4, -0.20) and newborn BW (β: -0.10 kg; 95% CI: -0.20, -0.00), adjusted for socioeconomic, environmental, obstetric, and antenatal characteristics, and nutritional indicators. However, the association for newborn BW was no longer significant after further adjustment for plasma ferritin. There were no significant associations between serum β-carotene and the outcomes studied.

Conclusion: Poor VA status throughout pregnancy was an underlying cause for maternal anemia at delivery in Amazonian women. The current World Health Organization protocols for supplementation during antenatal care should consider VA status for planning recommendations in different scenarios.

Key-words: vitamin A, pregnancy, hemoglobin, anemia, birth weight, Amazon.
Introduction

Vitamin A (VA) status during pregnancy, a unique period of the life cycle when cell differentiation occurs rapidly, is essential for fetal growth and maternal metabolism [1-3]. Retinol may act in early embryo development, differentiation, and organ maturation of a countless number of cells and tissues as pregnancy progress [4,5]; β-carotene has an antioxidant role in humans, being associated with the reduction of oxidative stress and hence with the lower risk of restricted fetal growth [6]. Nonetheless, vitamin A deficiency (VAD) is still one of the most prevalent nutritional deficiencies worldwide, affecting mostly pregnant and lactating women, and pre-school children [3]. According to the latest WHO estimates for the period of 1995–2005, the prevalence of VAD in pregnancy in low- and middle-income countries (LMIC) was 15.3%, with more than 19 million women affected [3].

Several studies investigated VA supplementation during pregnancy and maternal and newborn outcomes, such as maternal anemia and birth weight (BW) [7–9]. Three meta-analysis found positive effects for oral VA supplementation during pregnancy on maternal anemia using safe doses for pregnant women in LMIC (< 10,000 IU/d) [7–9]. Thorne-Lyman and Fawzi [10] showed a reduction in the risk of anemia of 19% (95% CI: 0.69, 0.94). McCauley et al. [11] and Cunha et al. [12] found similar results, with relative risks of 0.64 (95% CI: 0.43, 0.94) and 0.78 (95% CI: 0.63, 0.96), respectively. However, the quality of the evidence was considered moderate and the heterogeneity was significant among the studies [10–12].

The evidence for possible associations between maternal VA status and newborn BW is still unclear. In high-income countries (e.g., Canada and United Kingdom), where gestational serum retinol was found to be higher when compared with LMIC, serum retinol concentrations during pregnancy were inversely associated with BW, whereas a positive effect of serum β-carotene was found [6,9,13]. In Southern Ethiopia, a cohort study found that VAD was not associated with low BW (LBW) (RR: 1.27; 95% CI: 0.86, 1.87) [14]. Two meta-analysis of randomized trials in LMIC found contradictory effects for oral gestational VA supplementation on LBW [10,11].

Anemia is the most prevalent nutritional deficiency worldwide, affecting about 41.8% of all pregnancies [8]. Observational and meta-analysis studies to date have shown benefits of higher serum VA concentration during pregnancy on maternal anemia, and unclear effects for newborn BW. Thus, as maternal VA status remains a
relevant public health concern in developing countries, further assessments of possible
effects of VA status during pregnancy are important for defining future strategies for
antenatal care and advancing the current scientific knowledge [15].

In the present study, we investigated the relationship between gestational
biomarkers of VA status (serum retinol and β-carotene) with maternal anemia and
newborn BW in a prospective cohort study in the Western Brazilian Amazon. We
hypothesized that optimal VA status during pregnancy could modify the risk for
maternal anemia at delivery and positively affect newborn BW. To the best of our
knowledge, no previous studies have addressed the potential relationship between VA
status during pregnancy and these outcomes in an Amazonian population.

Subjects and methods

Study design and setting

Prospective cohort study in Cruzeiro do Sul, Acre State, Western Brazilian
Amazon, named MINA-Brazil (Maternal and Child Health and Nutrition in Acre,
Brazil). Cruzeiro do Sul is the second largest city in Acre State, with an estimated
population of 82,000 inhabitants in 2017 [16]. Its distance from Acre’s capital city, Rio
Branco, is nearly 640 km. The 2010 municipal-level Human Development Index for
Cruzeiro do Sul was 0.664 (medium). Based on the 2010 Demographic Census, only
12.7% of the households had access to proper sanitation in Cruzeiro do Sul [16,17].
Further, the municipality is located in the main malaria endemic hotspot in Brazil, the
Juruá River Valley [18,19].

Pregnant women up to 20 gestational weeks as measured by the last menstrual
period (LMP), living in the urban area of the municipality, attending Primary Health
Care Units for antenatal care (n =13), and intended to give birth at the only maternity
hospital in Cruzeiro do Sul were considered eligible to participate in this study. The
recruitment of pregnant women took place from February 2015 to January 2016 on a
weekly basis. Only singleton deliveries were included in this present analysis.

All potential participants had their contact information recorded in a
standardized form by the research team. Phone calls were performed to explain the
research protocol to the woman or caregiver (in the case of teenage pregnancy), and to
invite for participation in the MINA-Brazil study. Upon acceptance, a home-visit was
scheduled to obtain written consent and to collect initial socioeconomic and health data.
Following the interview, a first assessment was scheduled between 16 to 20 weeks of pregnancy, to collect clinical data, blood samples, and additional health and behavioral information, as well as to perform ultrasound examinations for confirmation of gestational age (GA). The ultrasound examination was performed by trained physicians using a portable SonoSite TITAN® (SonoSite, Inc., Bothell, WA, USA). All images were reviewed by an expert obstetrician in São Paulo who was not involved with the field work. The first assessment took place between March 2015 and March 2016 and was scheduled based on the LMP. A second assessment was held from May 2015 to May 2016, at about 28 weeks of pregnancy, based on the best estimate of GA, as described elsewhere [18].

Lastly, data on labour and newborn health were collected at the only maternity ward in Cruzeiro do Sul, where 96% of birth assistance occurs [18].

Data collection and laboratory procedures

During the socioeconomic and health interview, data were collected and categorized as the following levels of determination: a) socio-demographic: maternal age (≥ 20 or < 20 years), maternal education (> 9 or ≤ 9 years), skin color (white or non-white), head of the family (pregnant woman or other), living with a partner (yes or no), beneficiary of the *Bolsa Família* conditional cash transfer program (yes or no), maternal occupation (unpaid job or paid job), ownership of varied assets; b) environmental: water supply (general water distribution or water well/natural source – such as river or rain), sanitation facility (septic tank or open air/river), number of people living in the household (1-2, 3, 4, or ≥ 5), type of household (masonry or wood/mix [masonry + wood]), number of rooms in the household (< 3, 4, 5, or ≥ 6); c) clinical and obstetric history: menarche age (< 14 or ≥ 14 years), previous fetal losses (e.g., abortion and/or stillbirth - none, 1, or ≥ 2), number of live births (none, 1-2, or ≥ 3).

A wealth index was constructed as a proxy of the socioeconomic status of the participant’s family based on the ownership of assets by the household. We applied principal component analysis [20] and used the first component (which explained 18.9% of the variation between the households) to generate the index. The quintile distribution of the index was included in the analysis.

During both assessments we registered maternal anthropometry (pre-pregnancy weight and height), smoking during pregnancy, biochemical measurements (serum
retinol, µmol/L; β-carotene, µmol/L; vitamin D, 25-hydroxvitamin D3, ng/mL; ferritin, µg/L; C-reactive protein - CRP, mg/L; and hemoglobin concentrations - Hb, g/L), and conducted the ultrasound exam. Maternal height was measured to the nearest 0.1 cm, and the pre-pregnancy BMI (kg/m²) was calculated following WHO recommendations [21,22]. As the reporting of smoking was very low in each assessment (< 4%), we considered a dummy variable to indicate smoking either in one or both assessments. Gestational malaria episodes were retrospectively obtained from the Malaria Epidemiological Surveillance and Information System (SIVEP) database from the Ministry of Health of Brazil (http://200.214.130.44/sivep_malaria/).

At delivery, the following information was collected: occurrence of gestational urinary tract infection (yes or no), gestational supplementation (none, iron-folic acid, or multiple micronutrients with VA), number of antenatal care appointments (< 6, 6-8, or ≥ 9), type of delivery (vaginal or cesarean section), preterm birth (deliveries < 37 gestational weeks, yes or no), pre-birth maternal weight, newborn sex and BW. The total gestational weight gain was calculated by subtracting the pre-birth gestational weight from the pre-pregnancy weight, then further categorized by the adequacy of the gestational weight gain according to the pre-pregnancy BMI as insufficient, adequate, or excessive, considering the Institute of Medicine protocol [23]. The newborn BW was measured to the nearest 0.005 kg using a Toledo® Júnior portable scale (São Bernardo do Campo, Brazil) with a capacity of 15 kg and registered from hospital records. All maternity-staff involved in newborn care received training on BW measurement. Calculations for newborn BW z-score were performed with Intergrowth 21st Project application (https://intergrowth21.tghn.org/intergrowth-21st-applications). All data collection was performed by trained researchers using a personal digital assistant and tablets programmed with CSPro software (https://www.census.gov/programs-surveys/international-programs.html) for data-entry.

For pregnant women, around 10 mL of fasting (8 hours) venous blood samples were collected in the morning of each scheduled assessment. The serum samples were collected in a dry test tube, protected from light and centrifuged within 2 hours of collection. Serum was frozen at -20°C before it was sent on dry ice to the Laboratory of Human Nutrition, School of Public Health, University of São Paulo, and maintained at -70°C until it was analyzed (within 6 mo of the blood being drawn). Serum concentrations of retinol, β-carotene, and vitamin D were measured by using HPLC.
methods (HP-1100 HPLC system, Hewlett Packard, Palo Alto, California, USA) [24].

Gestational Hb was determined at the time of blood collection by a portable hemoglobinometer from Hemocue® (Hb301; Angelholm, Sweden). Gestational anemia was defined as Hb < 110.0 g/L in each assessment [8]; subsequently, one categorical variable was created indicating no anemia in both assessments, anemia at least in one assessment, or anemia in both assessments. Plasma ferritin concentrations were measured by enzyme immunoassays (Ramco, Houston, TX) and the cut off adopted for iron deficiency was < 15 µg/L [25]. CRP was measured by an IMMAGE Immunochemistry System (Beckman Coulter, Brea, CA, USA), and concentrations ≥ 5 mg/L were adopted as acute inflammation [26]. Plasma ferritin and CRP concentrations were only available for the second assessment. Intra- and inter-assay CVs were < 7%.

At delivery, venous blood samples were collected, and maternal Hb was determined by an automated cell counter (Labtest SDH-20, Lagoa Santa, Brazil).

Outcomes and exposures of interest, and data analysis

Maternal outcomes were Hb and anemia (Hb < 110.0 g/L) at delivery [25], and the newborn outcomes were the BW (kg) and the BW z-score, according to Intergrowth 21st Project [27].

As the main exposures, we considered the serum retinol and β-carotene measured in the two assessments. We used three continuous variables for VA status: a) the concentrations in the first assessment, b) the concentrations in the second assessment, and c) the difference in concentrations between the assessments, to capture if retinol and β-carotene concentrations improved (positive values), did not change (null values) or decreased (negative values). The same approach was used for vitamin D status.

We followed WHO recommendations [3] for classification of VA status based on serum retinol concentrations in each assessment (deficiency, < 0.7 µmol/L; insufficiency, 0.7 - < 1.05 µmol/L; sufficiency, ≥ 1.05 µmol/L). We further explored the VA status creating two variables deeming the occurrence of VAD and VA insufficiency using data from the two follow-up assessments, regardless if they occurred in any assessment or both: combined vitamin A status – deficiency (yes or no during pregnancy) and combined vitamin A status – insufficiency (yes or no during pregnancy). We also explored the variation of serum retinol and β-carotene
concentrations between assessments as the difference between assessments (remained/improved or lowered), and as tertiles of the difference distribution.

To visualize the relationship between exposures and continuous outcomes we used scatter-plots; for categorical outcomes we used \(t \)-tests, one-way ANOVA, and \(\chi^2 \) tests. The Shapiro-Wilk test, scatter-plots, and comparisons between mean and median values were used to assess the normality of continuous variables. We performed \(t \)-test, test for proportions, and Wilcoxon signed-rank test for comparisons of gestational characteristics between assessments.

Linear and Poisson regressions with robust variance were performed. First, we ran unadjusted models, which were then adjusted for covariates with a hierarchical selection of variables. Based on a theoretical model of potential determinants of maternal anemia [25] and newborn BW [2], we considered the following levels: a) socio-demographic; b) environmental; c) clinical and obstetric history; and d) antenatal care and nutritional indicators (pre-pregnancy BMI, smoking during pregnancy, gestational urinary tract infection, number of antenatal care appointments, gestational supplementation, adequacy of total gestational weight gain, gestational biochemical indicators [anemia, ferritin, and vitamin D status], GA at delivery, type of delivery, preterm birth, gestational malaria). The crude analysis for each covariate was performed retaining those associated with the outcome at \(P \leq 0.20 \). Afterwards, at each level of determination, covariates associated with the outcomes at \(P < 0.10 \) remained in the subsequent analysis until the most proximal level. We also deemed the inclusion of covariates relevant in the literature in the multiple models.

Different models were tested considering the influence of relevant covariates in each outcome. For maternal Hb (linear regression) and anemia at delivery (Poisson regression), we ran \textbf{model 1} (covariates selected through hierarchical selection analysis) and \textbf{model 2} (further adjustment for gestational anemia). For newborn BW (linear regression), as the GA at delivery and gestational iron deficiency can affect the newborn BW [8,27,28], two different models were tested: \textbf{model 1} (control for newborn sex and gestational age at delivery, and adjusted for covariates) and \textbf{model 2} (further adjustment for plasma ferritin concentrations). Control for GA at delivery was not performed to BW \(z \)-score [27].

The effect of each VA status marker on each outcome was considered significant when \(P < 0.05 \). Missing data were included in the multiple models by creating missing-
value categories. The fit of the model was ascertained by an examination of residuals, which did not show any potential harmful effect. Collinearity was examined by the correlation matrix. All analyses were done in Stata 14 (StataCorp, College Station, Texas, USA).

Results

A total of 860 pregnant women were recruited for the MINA-Brazil study; 699 were eligible (81.3%), and 587 participants (84.0%) were enrolled in the study. During follow-up there was loss of 16% of participants. Among the enrolled, 528 participants (75.5%) completed the first assessment, and we had data on VA status for 514. Further, 467 participants (66.8%) completed the second follow-up assessment, and data on VA status for 464 participants were available (Fig. 1). During follow-up there was loss of 36.4% of participants. We did not observe significant differences between the pregnant women included in the analyses and those lost to follow-up ($P > 0.10$).

The characteristics of the participants regarding socio-demographic, environmental, clinical and obstetric history, antenatal care, and biochemical indicators are presented in Tables 1 and 2. We observed that 27.4% of participants were teenagers, and less than 70% had either proper access to water supply or to sanitation facilities (Table 1). The average pre-pregnancy BMI was 23.4 ± 4.3 kg/m2 ($n = 530$); 60.3% of participants used only iron-folic acid supplements, while 34.7% used multiple micronutrients with VA ($n = 527$). Overall, 74.6% of women did not present with anemia in any assessment, and 18.2% presented anemia in one of the two assessments ($n = 452$). Frequencies of iron deficiency and acute inflammation were 42.4% and 0.2% ($n = 464$), respectively (data not shown in Tables).

In the crude analyses, VAD in the first assessment, as well as the combined VAD and the combined VA insufficiency, were negatively associated with Hb at delivery. VAD in the first assessment, combined VAD, and combined VA insufficiency increased the risk for maternal anemia at delivery; VAD in the second assessment was not associated with maternal anemia. Variations of serum retinol and β-carotene concentrations measured as the difference between assessments or tertiles of the differences were not associated with the maternal and newborn outcomes. Neither of these exposures was associated with newborn BW outcomes (Online Resource 1).
For maternal anemia at delivery, VAD in the first assessment, combined VAD, and combined VA insufficiency were associated with the risk for anemia in model 1. After further adjustment for gestational anemia (model 2), only combined VAD remained associated with a higher risk of maternal anemia at delivery (adjusted prevalence ratio - aPR: 1.39; 95% CI: 1.05-1.84) (Table 3).

Continuous VA exposures were not significantly associated with maternal Hb at delivery. In contrast, combined VAD was negatively associated with maternal Hb at delivery in both models. Combined VA insufficiency in model 1 was negatively associated with maternal Hb at delivery, yet in model 2 this association was no longer significant (Table 4).

There was a negative association between combined VAD and newborn BW. After further adjustment for plasma ferritin (model 2), the association was smoothed, and no longer significant (Table 5). There was no association in the adjusted models for newborn BW z-score (Online Resource 2).

Discussion

In this prospective cohort study in the Western Brazilian Amazon, we showed that VA status during pregnancy was associated with maternal anemia and Hb, as well as newborn BW. The occurrence of VAD during pregnancy was associated with an increased risk for maternal anemia at delivery of 39%. In a condition without gestational anemia, VAD and/or VA insufficiency in different moments during pregnancy were also associated with increased risk for maternal anemia at delivery. A deleterious effect of combined VAD was also seen for maternal Hb at delivery. Finally, a negative effect was seen for BW of babies born to women who presented combined VAD, yet after further adjustment for iron deficiency status the effect was smoothed. It must be highlighted that these results were observed after controlling for a set of confounders [2,25].

Our hypothesis was only confirmed for retinol concentrations in pregnancy, as we did not observe any effect for β-carotene in this population. It is likely that we have not seen any effect for serum β-carotene because it is a less active and effective source of VA when compared with serum retinol [5].

The mechanisms by which VA affects anemia and Hb concentrations remain unclear, although some hypotheses can be outlined: 1) VA plays a role in iron
metabolism, mobilizing the mineral from their hepatic stores; 2) the role of VA on
erthropoiesis; 3) VA enhances iron absorption in the gut; and 4) VA decreases the
inflammatory status, hence also decreasing the risk of anemia [10,25,29,30]. Anemia is
a condition affecting mainly pregnant women and children worldwide, and it is
associated with poor birth outcomes (including LBW and preterm births), as well as
maternal mortality [25]. Roughly, about 50% of anemia cases are caused by iron
deficiency [25], and strategies to reduce its burden are recommended, for example iron-
follic acid supplementation during antenatal care [8]. However, it seems important to
invest in alternatives to boost other strategies that are already in practice. In this sense,
our results, in consonance with meta-analyzes conducted in LMIC [10–12], strengthen
the evidence that decreasing VAD in pregnancy consequently improves maternal Hb as
well as reduces the prevalence of anemia and its associated harmful effects during
pregnancy and at delivery [25].

Meta-analyzes and observational studies have failed to show associations
between VA status and interventions during pregnancy on the decreasing of risk of
LBW in low-resource settings, though analyses for BW in continuous form are limited
[10,11,14]. Thus, our results suggest that inadequacies in gestational VA status might
negatively affect BW, yet after adjustment for plasma ferritin the association smoothed.
Our hypothesis is that VAD acts as a limiting factor of optimal in-utero growth through
pathways that need to be clarified. Conversely, we did not observe associations between
any marker of VA status and BW z-scores. Therefore, the relation between gestational
VA status and BW is still unclear.

Prior studies in high-income countries have shown disagreement with our
findings in relation to BW. Handel et al. [13] in Southampton, UK, found that retinol
measured in late pregnancy (~34 weeks of gestation) negatively influenced BW, as each
unit increment of retinol was responsible for decreasing the BW by 110 g, adjusted for a
set of potential confounders. In Portsmouth, UK, Mathews et al. [9] obtained two
measurements of serum retinol throughout pregnancy, similarly to our study (first
assessment ~16 weeks and second assessment ~28 weeks of pregnancy), and found that
the serum retinol at the second moment decreased the BW (β: -208.4 g; p < 0.001), yet
they only adjusted the model for maternal height and smoking. They also explored the
variation of retinol concentrations during pregnancy, as we did, encountering that large
reductions of retinol, as the pregnancy progressed, were responsible for bigger infants
(P = 0.002), though, unfortunately, they did not show any coefficient regression in the paper for this finding. In Montreal, Canada, a case-control study by Cohen at al. [6] encountered that retinol measured between 24-26 weeks of pregnancy increased the odds for small-for-gestational-age (adjusted OR: 1.41; 95% CI: 1.22, 1.63).

In this study, although the prevalence of VAD in both assessments was not too high when compared with other settings [31], comparable to values in high-income countries [6,9,13], important discrepancies between our study setting and high-income countries must be addressed. Northern Brazil still faces issues in some socioeconomic and environmental characteristics, being a less-advantaged region in the country [32]. Additionally, higher odds for preterm birth are seen in the North region than in the rest of Brazil [33]. This scenario shows the vulnerability of women of childbearing age living in the Amazonian area, as they are more likely to experience episodes of infectious diseases, including malaria and other tropical infections [34,35]. The relation between infectious disease and nutrition is well established, where a vicious cycle of poor nutritional status and frequent episodes of infections operates in such conditions [34]. Moreover, as VA is the micronutrient with the most synergistic relation with infectious diseases [35] our findings support the positive effect of retinol for this vulnerable population.

Poor micronutrient status during pregnancy is an important risk factor for a range of deleterious outcomes to the mother-baby binomial [15]. Therefore, considering the social vulnerability of the population in Northern Brazil plus the negative effects of VAD and anemia evidenced by our study, strategies addressing nutrition and health assistance during pregnancy should be reviewed. There is some evidence of the benefits of multiple micronutrients (MMN), containing VA and iron-folic acid, delivered in antenatal care for some outcomes included in our study [28,36]. A recent Cochrane meta-analysis pointed out that MMN supplementation during pregnancy reduced the risk of LBW (RR: 0.88; 95% CI: 0.85, 0.91) [36]. Smith et al. [28] found that MMN supplementation reduced the risk of LBW (RR: 0.81; 95% CI: 0.74, 0.89), and for anemic women, reductions in small-for-gestational-age births were observed (RR: 0.92; 95% CI: 0.87, 0.97). In all studies, comparison was made with iron-folic acid supplementation.

Our study has limitations. We had losses to follow-up, potentially due to logistic constraints faced by the research team in attempting to contact the participants for
enrollment in the study and to schedule the assessments, which are marked features in this area (i.e., poor internet connection, lack of street labels for many addresses, and intermittent mobile signal). The possibility of unknown confounding factors cannot be excluded as we work with observational data. Despite these limitations, the strengths must be highlighted, including: 1) the prospective design of the study, with two measurements of potential exposures throughout pregnancy; 2) the biochemical assessments of the main exposures followed standardized laboratory procedures to maintain the quality of the samples; 3) confirmation of the GA with ultrasound measurements; 4) inclusion of a wide range of potential confounders in our final adjusted model, which were carefully assessed and measured; and 5) to our knowledge, this is the first prospective cohort study on maternal-newborn health in a challenging Brazilian region.

We have demonstrated that poor VA nutritional status throughout pregnancy has harmful effects on maternal anemia and Hb at delivery, as well as newborn BW. To the best of our knowledge, this is the first study showing the role of gestational VA status in a middle-income country population. This research adds insights to the evidence that the current WHO strategies addressing pregnant women’s nutrition through supplementation with only iron-folic acid needs rethinking.

Ethical standards: The MINA-Brazil Study was approved by the School of Public Health, University of São Paulo Ethical Review Board (Number 872.613, Nov 13th, 2014), in accordance with the ethical aspects described by the 1964 Declaration of Helsinki. Written informed consent was introduced to the potential participants and approval obtained by their signatures or from the caregivers for teenage pregnancies.

Conflict of interest: the authors declare that they have no conflict of interest.

Authors’ contributions: PARN participated in the data collection and field oversee. PARN, CVRO, and MBM performed the statistical analysis. MCC, BHL, and MAC conceived the study design and methods. PARN wrote the first draft of the article, with critical appraisal by MCC and MAC. PARN and MAC had primary responsibility for final content. All authors reviewed and approved the final version of the manuscript.
References

1. United Nations Children’s Fund and World Health Organization (2004) Low birthweight: country, regional and global estimates. UNICEF. https://www.unicef.org/publications/index_24840.html. Accessed Nov 2017.

2. World Health Organisation (2006) Promoting optimal fetal development: report of a technical consultation. WHO. http://www.who.int/nutrition/publications/fetomaternal/9241594004/en/. Accessed Sep 2017.

3. World Health Organization (2009) Global prevalence of vitamin A deficiency in populations at risk. WHO. http://www.who.int/vmnis/vitamina/prevalence/en/. Accessed Sep 2017.

4. Strobel M, Tinz J, Biesalski H. The importance of β-carotene as a source of vitamin A with special regard to pregnant and breastfeeding women. Eur J Nutr 46(Suppl. 1):11-20.

5. Checkley W, West KP, Wise RA et al (2010) Maternal vitamin A supplementation and lung function in offspring. N Engl J Med 362:1784–94.

6. Cohen JM, Kahn SR, Platt RW et al (2015) Small-for-gestational-age birth and maternal plasma antioxidant levels in mid-gestation: a nested case-control study. BJOG 122:1313–21.

7. West KP, Shamim AA, Mehra S et al (2014) Effect of maternal multiple micronutrient vs iron-folic acid supplementation on infant mortality and adverse birth outcomes in rural Bangladesh: The JiVitA-3 randomized trial. JAMA 312:2649–58.

8. World Health Organization (2012) Guideline: daily iron and folic acid supplementation in pregnant women. WHO. http://apps.who.int/iris/handle/10665/77770. Accessed Nov 2017.

9. Mathews F, Youngman L, Neil A (2004) Maternal circulating nutrient concentrations in pregnancy: implications for birth and placental weights of term infants. Am J Clin Nutr 79:103–10.

10. Thorne-Lyman AL, Fawzi WW (2012) Vitamin A and carotenoids during pregnancy and maternal, neonatal and infant health outcomes: a systematic review and meta-analysis. Paediatr Perinat Epidemiol 26(Suppl. 1):36–54.

11. McCaulley ME, van den Broek N, Dou L et al (2015) Vitamin A supplementation during pregnancy for maternal and newborn outcomes. Cochrane Database Syst Rev. doi: 10.1002/14651858.CD008666.pub3.

12. Cunha MSB, Hankins CNA, Arruda SF (2018) Effect of vitamin A supplementation on iron status in humans: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. doi: 10.1080/10408398.2018.1427552).

13. Handel M, Moon RJ, Titcombe P et al (2016) Maternal serum retinol and β-carotene concentrations and neonatal bone mineralization: results from the Southampton Women’s Survey cohort. Am J Clin Nutr 104:1183–8.
14. Gebremedhin S, Enquselassie F, Umeta M (2012) Independent and joint effects of prenatal zinc and vitamin A deficiencies on birthweight in rural Sidama, Southern Ethiopia: prospective cohort study. PLoS One. doi: 10.1371/journal.pone.0050213.

15. Fall CH, Fisher DJ, Osmond C et al (2009). Multiple micronutrient supplementation during pregnancy in low-income countries: a meta-analysis of effects on birth size and length of gestation. Food Nutr Bull 30(Suppl. 4):S533-46.

16. Instituto Brasileiro de Geografia e Estatística (2017) Cidades. IBGE. https://cidades.ibge.gov.br/v4/brasil/ac/cruzeiro-do-sul/panorama. Accessed Aug 2017.

17. United Nations Development Program (2010) Human Development Report 2010. The real wealth of the nations: pathways to Human Development. UNPD. http://hdr.undp.org/sites/default/files/reports/270/hdr_2010_en_complete_reprint.pdf. Accessed Aug 2017.

18. Pincelli A, Neves PAR, Lourenço BH et al (2018) The hidden burden of *Plasmodium vivax* malaria in pregnancy in the Amazon: An observational study in Northwestern Brazil. Am J Trop Med Hyg 99:73-83.

19. Ministério da Saúde do Brasil (2010) Guia prático de tratamento da malária no Brasil. MS. http://bvsms.saude.gov.br/bvs/publicacoes/guia_pratico_malaria.pdf. Accessed Mar 2018.

20. Filmer D, Pritchett LH (2001) Estimating wealth effects without expenditure data - or tears: an application to educational enrollments in states of India. Demography 38:115–32.

21. World Health Organization (1995) Physical status: the use and interpretation of anthropometry.WHO. http://www.who.int/childgrowth/publications/physical_status/en/. Accessed Aug 2017.

22. De Onis M, Onyango AW, Borghi E et al (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Heal Organ 85:812–9.

23. Institute of Medicine (2013) Implementing guidelines on weight gain and pregnancy. IOM. https://www.nap.edu/catalog/18292/implementing-guidelines-on-weight-gain-and-pregnancy. Accessed Jan 2018.

24. Gomes LF, Alves AF, Sevanian A et al (2004) Role of β2-glycoprotein I, LDL-, and antioxidant levels in hypercholesterolemic elderly subjects. Antioxid Redox Signal 6:237–44.

25. World Health Organization (2017) Nutritional anaemias: tools for effective prevention.WHO. http://www.who.int/nutrition/publications/micronutrients/anaemias-tools-prevention-control/en/. Accessed Mar 2018.
26. World Health Organization (2014) C-reactive protein concentrations as a marker of inflammation or infection for interpreting biomarkers of micronutrient status. WHO. http://www.who.int/nutrition/publications/micronutrients/indicators_c-reactive_protein/en/. Accessed Apr 2018.

27. Villar J, Cheikh Ismail L, Victora CG et al (2014) International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 384:857–68.

28. Smith ER, Shankar AH, Wu LS-F et al (2017) Modifiers of the effect of maternal multiple micronutrient supplementation on stillbirth, birth outcomes, and infant mortality: a meta-analysis of individual patient data from 17 randomised trials in low-income and middle-income countries. Lancet Glob Health 5(11):e1090–100.

29. Michelazzo FB, Oliveira JM, Stefanello J et al (2013) The influence of vitamin A supplementation on iron status. Nutrients 5:4399–413.

30. Semba RD, Bloem MW (2002) The anemia of vitamin A deficiency: epidemiology and pathogenesis. Eur J Clin Nutr 56:271–81.

31. van Stuijvenberg ME, Schoeman SE, Nel J et al (2017) Serum retinol in post-partum mothers and newborns from an impoverished South African community where liver is frequently eaten and vitamin A deficiency is absent. Matern Child Nutr 13(1). doi: 10.1111/mcn.12223.

32. Instituto Brasileiro de Geografia e Estatística (2016) Síntese de indicadores sociais: uma análise das condições de vida da população brasileira. IBGE. https://biblioteca.ibge.gov.br/visualizacao/livros/liv98965.pdf. Accessed May 2018.

33. Miranda AE, Pinto VM, Szwarcwald CL et al (2012) Prevalence and correlates of preterm labor among young parturient women attending public hospitals in Brazil. Rev Panam Salud Pública 32:330–4.

34. Katona P, Katona-Apte J (2008) The interaction between nutrition and infection. Clin Infect Dis 46:1582–8.

35. Wiseman EM, Bar-El Dadon S, Reifen R (2017) The vicious cycle of vitamin A deficiency: a review. Crit Rev Food Sci Nutr 57:3703–14.

36. Haider BA, Bhatta ZA (2017) Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database Syst Rev. doi: 10.1002/14651858.CD004905.pub5.
Table 1 Socio-demographic, environmental, and clinic and obstetric characteristics of pregnant women from the MINA-Brazil cohort study

Variables	n	Values
Maternal age, y^a	583	24.69 ± 6.39
Maternal skin color^b	583	
White		14.2
Non-white		85.8
Maternal education^b	583	
≤ 9 years		32.4
> 9 years		67.6
Head of woman’s family^b	583	
Pregnant woman		13.7
Others		86.3
Living with a partner, yes^b	583	77.4
Maternal occupation^b	583	
Not paid job		56.8
Paid job		43.2
Bolsa Familia cash transfer program, yes^b	583	39.5
Water supply^b	583	
General water distribution		63.0
Water well/natural source		37.1
Sanitation facility^b	579	
Septic tank		67.4
Open air/river		32.7
Number of people living in the household^a	583	4.11 ± 2.11
Type of household^b	583	
Masonry		25.4
Wood/mix (masonry + wood)		74.6
Number of rooms in the household^d	583	4.54 ± 1.78
Menarche age, y^a	583	13.54 ± 5.22
Previous fetal losses^{b, c}	324	
None		72.8
1		21.6
2 or more		5.6
Number of live births^b	583	
None		48.5
1-2		38.7
3 or more		12.7
Maternal height, cm^a	533	157.12 ± 5.89

Totals differ due to missing values; ^aMean ± SD; ^bPercentage; ^cOnly for those who had been pregnant previously.
Table 2 Antenatal care characteristics and nutritional indicators of pregnant women and their newborns from the MINA-Brazil cohort study

Characteristics	1st gestational assessment	2nd gestational assessment	P-value	Combined assessments or at delivery				
	n	n	P-value	n				
Smoking during pregnancy, yes^a	523	3.8		467	3.4	0.723	461	4.8
Gestational urinary tract infection, yes^a	-	-		-	-	-	527	64.3
Number of antenatal care appointments^b	-	-		-	-	-	527	7.7 ± 2.3
Adequacy of gestational weight gain^{a,c}	-	-		-	-	-	-	-
Insufficient	-	-		-	-	-	-	-
Adequate	-	-		-	-	-	-	-
Excessive	-	-		-	-	-	-	-
Gestational age, weeks^b	521	20.03 ± 2.91	467	27.76 ± 1.61	<0.001	543	39.26 ± 1.94	
Type of delivery, cesarean section^a	-	-		-	-	-	545	45.3
Preterm birth (<37 weeks)^a	-	-		-	-	-	543	8.8
Gestational malaria, yes^a	-	-		-	-	-	553	6.3
Vitamin D, ng/dL^d	513	30.70 (21.9-42.8)	464	31.3 (19.5-43.9)	0.435	451	-0.7 (-13.4-12.9)^f	
Retinol, µmol/L^d	513	1.77 (1.00-2.60)	464	1.90 (1.20-2.70)	0.294	451	0.19 (-0.80-1.10)^f	
β-carotene, µmol/L^d	513	0.45 (0.25-0.78)	464	0.52 (0.27-0.87)	0.932	451	0.05 (-0.26-0.38)^f	
Vitamin A deficiency (<0.7 µmol/L)^a	513	10.6		464	6.4	<0.001	451	16.9^g
Vitamin A insufficiency (<1.05 µmol/L)^a	513	16.3		464	13.1	<0.001	451	42.4^g
Hemoglobin, g/L^b	515	120.15 ± 1.25	469	118.86 ± 0.97	<0.001	521	112.45 ± 1.39	
Maternal anemia (hemoglobin <110.0 g/L)^a	515	15.1		469	17.2	0.203	452	39.3
Ferritin, µg/L^d	-	-		464	17 (10.50-27.00)	-	-	-
C-reactive protein, mg/L^d	-	-		464	0.36 (0.19-0.63)	-	-	-
Newborn birth weight, kg^b	-	-		-	-	-	544	3.23 ± 0.53
Low birth weight (<2.5 kg)^a	-	-		-	-	-	544	8.6
Newborn birth weight, z-score^{b,e}	-	-		-	-	-	544	0.05 ± 0.98

Totals differ due to missing values; ^aPercentage; ^bMean ± SD; ^cAccording to the Institute of Medicine, 2013 [21]; ^dMedian (IQR₂₅₋₇₅); ^eAccording to the Intergrowth 21st Project [25]; ^fDifference in biochemical indicators between assessments (2nd assessment –1st assessment); ^gDeficiency or insufficiency during pregnancy combined: in at least one or both assessments.
Table 3: Effect of gestational vitamin A status on the risk of maternal anemia at delivery in the MINA-Brazil cohort study

Vitamin A status at 1st assessment\(^b\)	Maternal anemia at delivery (n = 467)\(^a\)	\(P\)	Vitamin A status at 2nd assessment\(^b\)	Maternal anemia at delivery (n = 467)\(^a\)	\(P\)	Vitamin A status combined – deficiency\(^c\)	Maternal anemia at delivery (n = 467)\(^a\)	\(P\)	Vitamin A status combined – insufficiency\(^c\)	Maternal anemia at delivery (n = 467)\(^a\)	\(P\)
≥ 1.05 µmol/L	Reference	0.033\(^g\)	≥ 1.05 µmol/L	Reference	0.289\(^g\)						
0.7 – 1.05 µmol/L	1.03 (0.74; 1.42)	0.86 (0.62; 1.19)									
< 0.7 µmol/L	1.50 (1.08; 2.09)	1.36 (0.96; 1.93)									
Vitamin A status at 2nd assessment\(^b\)	0.079\(^g\)	0.081\(^g\)									
≥ 1.05 µmol/L	Reference	0.007**	≥ 1.05 µmol/L	Reference	0.019*						
0.7 – 1.05 µmol/L	1.09 (0.78; 1.52)	1.09 (0.78; 1.52)									
< 0.7 µmol/L	1.45 (0.99; 2.19)	1.43 (0.99; 2.06)									
Vitamin A status combined – deficiency\(^c\)	No deficient during pregnancy	0.019*									
	Deficient during pregnancy	1.48 (1.11; 1.97)									
		1.39 (1.05; 1.84)									
Vitamin A status combined – insufficiency\(^c\)	No insufficient during pregnancy	1.34 (1.04; 1.71)									
	Insufficient during pregnancy	1.18 (0.92; 1.51)									

\(^a\)Hemoglobin < 110.0 g/L; \(^b\)1st assessment: between 16-20 weeks of pregnancy/ 2nd assessment: ~28 weeks of pregnancy; \(^c\)For ‘deficient during pregnancy’ deficiency (retinol < 0.7 µmol/L) in at least one assessment or both was considered / for ‘insufficient during pregnancy’ insufficiency (retinol < 1.05 µmol/L) in at least one assessment or both was considered; \(^d\)Model 1: iron deficiency 2nd assessment (plasma ferritin < 15 µg/L), gestational malaria (no or yes), gestational supplementation (no supplementation, acid folic + iron, multiple micronutrients with vitamin A), number of antenatal care appointments (< 6, 6-8, or ≥ 9), pre-pregnancy body mass index (underweight, normal weight, overweight, or obesity), gestational age at delivery (weeks), number of live births (none, 1-2, or ≥ 3), number of people living in the household (1-2, 3, 4, or ≥ 5), wealth index (quintiles), Bolsa Familia cash transfer program receipt (no or yes), maternal age (< 20 or ≥ 20 years); \(^e\)Model 2: Model 1 with further adjustment for gestational anemia (no anemia during pregnancy, anemia at least in one assessment, or anemia in both assessments); \(^f\)Adjusted prevalence ratio; \(^g\)P for trend; \(^*\)P < 0.05; \(^**\)P < 0.01.
Table 4 Effect of gestational vitamin A status on maternal hemoglobin at delivery in the MINA-Brazil cohort study

Retinol at 1st assessment^{b,c}	β (95% CI)	R²-adj	β (95% CI)	R²-adj
β-carotene at 1st assessment^{b,c}	1.03 (-1.02; 3.09)	0.0919	0.67 (-1.23; 2.58)	0.2042
Retinol at 2nd assessment^{b,c}	0.16 (-0.88; 1.20)	0.1018	-0.04 (-1.04; 0.95)	0.2019
β-carotene at 2nd assessment^{b,c}	-0.41 (-2.59; 1.76)	0.1019	-0.62 (-2.66; 1.41)	0.2027
Δ retinol^{c,d}	-0.45 (-1.24; 0.32)	0.0939	-0.32 (-1.07; 0.41)	0.2037
Δ β-carotene^{c,d}	-0.94 (-2.66; 0.76)	0.0935	-0.78 (-2.38; 0.80)	0.2041
Vitamin A status combined – deficiency^e	0.1181	0.2101		

No deficient during pregnancy	Reference	No deficient during pregnancy	Reference
Deficient during pregnancy	-4.81 (-8.06; -1.55)**	-3.34 (-6.48; -0.20)**	
No insufficient during pregnancy	0.1147	0.2087	
Insufficient during pregnancy	-3.28 (-5.73; -0.82)*	-2.28 (-4.61; 0.04)	

^aHemoglobin in g/L; ^b1st assessment: between 16-20 weeks of pregnancy/ 2nd assessment: ~28 weeks of pregnancy; ^cµmol/L; ^dDifference in biochemical indicators between assessments (2nd assessment – 1st assessment); ^eFor ‘deficient during pregnancy’ deficiency in at least one assessment or both was considered / for ‘insufficient during pregnancy’ insufficiency in at least one assessment or both was considered; ^fModel 1: plasma ferritin 2nd assessment (µg/L), gestational malaria (no or yes), gestational supplementation (no supplementation, acid folic + iron, multiple micronutrients with vitamin A), number of antenatal care appointments, pre-pregnancy body mass index (kg/m²), gestational age at delivery (weeks), number of live births, number of people living in the household, wealth index (quintiles), Bolsa Família cash transfer program receipt (no or yes), maternal age (years); ^gModel 2: Model 1 with further adjustment for gestational anemia (no anemia during pregnancy, anemia at least in one assessment, or anemia in both assessments); ^{*P} < 0.05; ^{**P} < 0.01.
Table 5 Effect of gestational vitamin A status on newborn birth weight in the MINA-Brazil cohort study

	Newborn birth weight (n = 488)²				
	Model 1¹	Model 2²			
	β (95% CI)	R²-adj	β (95% CI)	R²-adj	
Retinol at 1st assessmentdüc³	0.01 (-0.02; 0.04)	0.5164	0.00 (-0.02; 0.04)	0.5212	
β-carotene at 1st assessmentdüc³	-0.05 (-0.11; 0.01)	0.5189	-0.04 (-0.11; 0.01)	0.5239	
Retinol at 2nd assessmentdüce⁴	0.02 (-0.00; 0.05)	0.5206	0.02 (-0.01; 0.05)	0.5244	
β-carotene at 2nd assessmentdüce⁴	-0.03 (-0.10; 0.03)	0.5192	-0.03 (-0.10; 0.02)	0.5243	
Δ retinol⁶⁷⁸	0.00 (-0.01; 0.03)	0.5217	0.00 (-0.01; 0.03)	0.5231	
Δ β-carotene⁶⁷⁸	0.00 (-0.04; 0.06)	0.5212	0.00 (-0.04; 0.06)	0.5228	
Vitamin A status combined –					
deficiency⁹					
No deficient during pregnancy	Reference				
Deficient during pregnancy	-0.10 (-0.20; -0.00)*		-0.09 (-0.20; 0.00)		
Vitamin A status combined –					
insufficiency⁹					
No insufficient during	Reference	0.5211		0.5228	
pregnancy					
Insufficient during pregnancy	-0.00 (-0.08; 0.06)		-0.01 (-0.09; 0.06)		

¹Birth weight in kg; ²µmol/L; ³1st assessment: between 16-20 weeks of pregnancy/ 2nd assessment: ~28 weeks of pregnancy; ⁴Vitamin D in the 1st assessment; ⁵Vitamin D in the 2nd assessment; ⁶Difference in biochemical indicators between assessments (2nd assessment – 1st assessment); ⁷Difference in vitamin D concentrations in both assessments (2nd assessment – concentrations in 1st assessment); ⁸For ‘deficient during pregnancy’ deficiency in at least one assessment or both was considered / for ‘insufficient during pregnancy’ insufficiency in at least one assessment or both was considered; ¹Model 1: controlled for newborn sex and gestational age at delivery; adjusted for total gestational weight gain (insufficient, adequate, or excessive), type of delivery (vaginal or cesarean section), pre-pregnancy body mass index (kg/m²), preterm birth (no or yes), gestational anemia (no anemia in both assessments, anemia in at least one assessment, or anemia in both assessments), smoking during pregnancy (no or yes), number of prenatal care appointments, gestational malaria (no or yes), vitamin D concentrations (ng/mL), number of live births, number of rooms in the household, maternal age (years), and wealth index; ²Model 2: Model 1 further adjusted for plasma ferritin in the 2nd assessment (µg/L); *P < 0.05.
Figure 1 - Flow-diagram of cohort recruitment and outcome assessments. Vitamin A = VA.

Screening (n=860)

Not eligible (n=161)
71 More than 20 gestational weeks
52 Living in another city or in the rural area
38 Miscarriages prior first contact

Eligible to study (n=699)

Losses (n=112)
41 Refused to participate
71 Not found

Enrolled in the study (n=587)

1st assessment analysis
467 data for gestational VA status and maternal hemoglobin
488 data for gestational VA status and newborn birth weight

Losses (n=59)
11 Declined
05 Miscarriages or abortions
43 Not attended the first appointment

1st assessment (n=528)

Losses (n=66)
02 Declined
03 Miscarriages or abortions
61 Not found or did not attend the second assessment

Excluded (n=4)
04 Twin pregnancies

Included (n=9)
09 Contributed only to the 2nd assessment

2nd assessment (n=467)

Losses (n=18)
13 Insufficient samples to perform biochemical analysis: 10 in the 1st assessment and 3 in the 2nd assessment.
05 Stillbirths

Combined analysis for both assessments
411 data on gestational VA status and maternal hemoglobin
431 data on gestational VA status and newborn birth weight
Supplemental tables

Online Resource 1 Crude analysis of gestational vitamin A exposures and newborn birth weight (in kg and in z-scores) in the MINA-Brazil cohort study

Gestational exposures	Newborn birth weight in Kg	Newborn birth weight in z-score^a				
	β (95% CI)	R²	P values	β (95% CI)	R²	P values
Retinol at 1st assessment^{b,c}	-0.01 (-0.04, 0.03)	0.000	0.621	0.03 (-0.02, 0.11)	0.000	0.297
β-carotene at 1st assessment^{b,c}	-0.05 (-0.13, 0.03)	0.001	0.215	-0.11 (-0.26, 0.03)	0.002	0.137
Retinol at 2nd assessment^{b,c}	0.02 (-0.01, 0.07)	0.001	0.210	0.06 (-0.01, 0.13)	0.003	0.127
β-carotene at 2nd assessment^{b,c}	-0.04 (-0.13, 0.04)	0.000	0.318	-0.01 (-0.17, 0.14)	0.000	0.837
Difference between retinol in both assessments^{b,c}	0.02 (-0.00, 0.05)	0.002	0.144	0.01 (-0.05, 0.07)	0.000	0.706
Difference between β-carotene in both assessments^{b,c}	-0.00 (-0.07, 0.06)	0.000	0.882	0.04 (-0.09, 0.17)	0.000	0.543
Vitamin A status combined – deficiency^d	-0.001	0.094				
No deficient during pregnancy	Reference					
Deficient during pregnancy		-0.21 (-0.46, 0.04)				
Vitamin A status combined – insufficiency^d	0.001	0.164	0.000	0.752		
No insufficient during pregnancy	Reference					
Insufficient during pregnancy		-0.03 (-0.22, 0.16)				

^aAccording to the Intergrowth 21st [25]; ^bµmol/L; ^c1st assessment: between 16-20 wks of pregnancy/ 2nd assessment: ~28 wks of pregnancy; ^dFor ‘deficient during pregnancy’ was considered deficiency (retinol < 0.7 µmol/L) in at least one assessment or both/ for ‘insufficient during pregnancy’ was considered insufficiency (retinol < 1.05 µmol/L) in at least one assessment or both.
Online Resource 2 Effect of gestational vitamin A status on birth weight z-scores in the MINA-Brazil cohort study

Gestational exposures	Newborn birth weight in z-score^a	Model 1ⁱ	Model 2^j	
	β (95% CI)	R²-adj	β (95% CI)	R²-adj
Retinol at 1st assessment^{b,c,d}	0.03 (-0.03; 0.11)	0.1453	0.02 (-0.05; 0.10)	0.1438
β-carotene at 1st assessment^{b,c,d}	-0.12 (-0.27; 0.02)	0.1490	-0.11 (-0.27; 0.03)	0.1480
Retinol at 2nd assessment^{b,c,e}	0.05 (-0.02; 0.13)	0.1143	0.03 (-0.04; 0.11)	0.1471
β-carotene at 2nd assessment^{b,c,e}	-0.08 (-0.24; 0.08)	0.1128	-0.08 (-0.25; 0.07)	0.1476
Δ retinol^{b,f,g}	0.01 (-0.05; 0.07)	0.1298	0.00 (-0.05; 0.06)	0.1451
Δ β-carotene^{b,f,g}	0.02 (-0.10; 0.15)	0.1298	0.02 (-0.10; 0.15)	0.1454
Vitamin A status combined – deficiency^h		0.1378	0.1525	
No deficient during pregnancy	Reference			
Deficient during pregnancy	-0.24 (-0.48; 0.00)	-0.23 (-0.48; 0.01)		
Vitamin A status combined – insufficiency^h		0.1298	0.1456	
No insufficient during pregnancy	Reference			
Insufficient during pregnancy	-0.03 (-0.22; 0.15)	-0.04 (-0.23; 0.14)		

^aAccording to the Intergrowth 21st [25]; ^bμmol/L; ^c1st assessment: between 16-20 wks of pregnancy/ 2nd assessment: ~28 wks of pregnancy; ^dVitamin D in the 1st assessment; ^eVitamin D in the 2nd assessment; ^fDifference in biochemical indicators between assessments (2nd assessment – 1st assessment); ^gDifference in vitamin D concentrations in both assessments (2nd assessment – concentrations in 1st assessment); ^hFor ‘deficient during pregnancy’ deficiency in at least one assessment or both was considered / for ‘insufficient during pregnancy’ insufficiency in at least one assessment or both was considered; ⁱModel 1: controlled for newborn sex and gestational age at delivery; adjusted for total gestational weight gain (insufficient, adequate, or excessive), type of delivery (vaginal or cesarean section), pre-pregnancy body mass index (kg/m²), preterm birth (no or yes), gestational anemia (no anemia in both assessments, anemia in at least one assessment, or anemia in both assessments), smoking during pregnancy (no or yes), number of prenatal care appointments, gestational malaria (no or yes), vitamin D concentrations (ng/mL), number of live births, number of rooms in the household, maternal age (years), and wealth index; ^jModel 2: Model 1 further adjusted for plasma ferritin in the 2nd assessment (µg/L).
6.3 Artigo 3

Prevalence and factors associated with gestational night blindness and maternal anaemia: a population-based cross-sectional study in the Western Brazilian Amazon.
Paulo Augusto Ribeiro Neves, Bárbara Hatzlhoffer Lourenço, Anaclara Pincelli, Máira Barreto Malta, Marcelo Urbano Ferreira, Márcia Caldas de Castro, Marly Augusto Cardoso, para o MINA-Brasil Study Working Group.

Artigo original em fase de preparação.
Prevalence and factors associated with gestational night blindness and maternal anaemia: a population-based cross-sectional study in the Western Brazilian Amazon.

Paulo Augusto Ribeiro Nevesa, Bárbara Hatzlhoffer Lourençoa, Anaclara Pincellib, Maíra Barreto Maltaa, Marcelo Urbano Ferreirab, Marcia Caldas de Castroc, Marly Augusto Cardosoa, for the MINA-Brazil Study Group*

a Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, SP, Brazil
b Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
c Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
*A full-list detailing the MINA-Brazil Study members is in the acknowledgments section.

Correspondence: MA Cardoso, Department of Nutrition, School of Public Health, University of São Paulo. Avenida Doutor Arnaldo, 715, Cerqueira César, 03178-200, São Paulo, SP, Brazil. Tel: +55 (11) 3061-7863. Email: marlyac@usp.br

Running title Gestational night blindness and maternal anaemia in Brazil
Abstract

Objective To estimate the prevalence and factors associated with gestational night blindness (GXN) and maternal anaemia.

Design Population-based cross-sectional study.

Setting Cruzeiro do Sul, Acre State, Western Brazilian Amazon.

Population Women living in the municipality who delivered a singleton infant (n = 1,525).

Methods GXN was assessed in the postpartum period by WHO standardized interview, adapted to the Brazilian context. Maternal anaemia was defined as haemoglobin at delivery < 110.0 g/L. Multiple Poisson regression models with robust variance were used to identify factors associated with the outcomes.

Main outcome measures Prevalence rates and adjusted prevalence ratios (aPR), with 95% confidence intervals (95% CI).

Results High prevalence rates were observed for both outcomes: GXN 11.5% (9.97–13.25) and maternal anaemia 39.4% (36.84–41.95). Factors associated with GXN were a higher number of residents in the household (≥ 5: aPR 2.06, 95% CI 1.24–3.41), smoking during pregnancy (aPR 1.78, 95% CI 1.15–2.78), and attending insufficient antenatal care appointments (<6: aPR 1.61, 95% CI 1.08–2.40). Factors associated with maternal anaemia were maternal age <19 years (aPR 1.18, 95% CI 1.01–1.38), gestational malaria (aPR 1.22, 95% CI 1.01–1.49), not taking micronutrient supplements during pregnancy (aPR 1.27, 95% CI 1.01–1.62), and attending < 9 antenatal care appointments (<6: aPR 1.40, 95% CI 1.15–1.70).

Conclusion High prevalence rates of GXN and maternal anaemia in this population of postpartum women may reflect poor nutritional micronutrient status during pregnancy.

Tweetable abstract Gestational night blindness and maternal anaemia are public health concerns in the Western Brazilian Amazon.

Keywords Gestational night blindness; maternal anaemia; vitamin A deficiency; prevalence; postpartum women; Western Brazilian Amazon.
Introduction

Vitamin A deficiency (VAD) and anaemia are among the main nutrition-related problems of public health concern worldwide, especially in vulnerable populations in low-resource settings, such as women of childbearing age or preschool children. Both VAD and anaemia have been considered important determinants of poor maternal and child outcomes, such as impaired growth and development in utero, premature delivery, low birth weight, infectious diseases, child development, and maternal and child mortality.

Depending on its severity, VAD can progress to clinical ocular symptoms, leading to permanent visual impairment if not treated, named xerophthalmia. The first clinical manifestation of xerophthalmia that can be assessed is night blindness, a condition in which one cannot see in low-light conditions.

The latest estimates from the World Health Organization (WHO) indicate that the global prevalence of gestational night blindness (GXN) in populations at risk of VAD is 7.8% (9.75 million pregnant women), and rates ≥ 5% are considered of public health concern. In Brazil, the public health significance of GXN was considered mild (3.5%); however, the estimates for Brazil were retrieved through regression-based methods, owing to a lack of available data in the country.

According to WHO, 41.8% of all pregnancies worldwide are affected by anaemia, and half of these cases are caused by iron deficiency. The latest official Brazilian data show a prevalence of anaemia of 29.4% in women of childbearing age, reinforcing the hypothesis that a considerable number of women will start their pregnancies iron-deficient, increasing the risk of anaemia in pregnancy.

Among the principal causes of VAD and anaemia in pregnancy is the inadequate dietary intake of foods rich in vitamin A (VA) and iron, along with high rates of infection, and aspects related to the physiology of pregnancy, such as the haemodilution in the third trimester. Other causes of VAD and anaemia include poor socioeconomic and environmental conditions, maternal illiteracy, history of abortion, and inadequate antenatal care.

Most evidence on GXN and maternal anaemia in Brazil does not come from population-based studies, and there is a lack of new studies in less-advantaged areas. Thus, we aimed to describe the prevalence and the factors associated with GXN and maternal anaemia in a population-based cross-sectional study in the Brazilian Amazon.
Methods

Population and study site

The present cross-sectional analysis refers to the baseline assessment of the MINA-Brazil Study (Maternal and Child Health in Acre, Brazil), which is a large, population-based prospective birth cohort study in the municipality of Cruzeiro do Sul, Acre State, Western Brazilian Amazon. Cruzeiro do Sul has few more than 80,000 inhabitants, mostly living in the urban area of the municipality (70%), and is the second largest city in Acre State, situated nearly 640 km from the state capital, Rio Branco\(^\text{11}\). The 2010 Municipal-level Human Development Index for Cruzeiro do Sul was 0.664\(^\text{11}\). Only 12.7% of the household in Cruzeiro do Sul had access to proper sanitation in 2010\(^\text{11–13}\). Furthermore, the municipality accounted for 15.2% of the malaria burden in the country in 2016 (75% due to \textit{Plasmodium} \textit{vivax} and 25% due to \textit{Plasmodium} \textit{falciparum} [Ministry of Health of Brazil, unpublished data]), being located in the main malaria endemic-area in Brazil, the Juruá River Valley\(^\text{14}\).

Recruitment of participants was conducted at the Women and Children’s Hospital of Juruá Valley, the only maternity ward in the municipality where roughly 96% of all deliveries take place\(^\text{14,15}\). Between July 1\(^{\text{st}}\), 2015 and June 30\(^{\text{th}}\), 2016, all delivery-related admissions of women living in Cruzeiro do Sul were identified through daily visits to the maternity ward. All patients living in the municipality were considered eligible to the study, independent of the place of residence (urban or rural). The research team visited mothers within the first 12 hours after delivery, before hospital discharge, to explain the study protocol and to invite for participation. Upon acceptance, an interview was held in order to collect data on socioeconomic, environmental, obstetric history, and gestational characteristics. Tablets with CSPro software (https://www.census.gov/programs-surveys/international-programs.html) were used for data-entry. The analysis was restricted to singleton deliveries.

Outcomes of interest and covariates

The first outcome of interest was GXN, assessed using the standardized interview proposed by WHO and adapted to the Brazilian context\(^\text{16,17}\). This interview is composed of three questions on the subject’s visual capacity in daylight and dim light, taking the visual capacity prior pregnancy as reference, as follows: 1) do you have difficulty seeing during the day? 2) do you have difficulty seeing with decreased light or at night? 3) do you have night blindness? A case of GXN was ascertained when the participant responded NO to the first question and YES to either the second or third question, or both. Women with any visual
improvement were asked about their visual ability using glasses or contact lenses. To facilitate the comprehension of questions, simple language and examples of places with dim light in the municipality were used. The second outcome assessed was maternal anaemia, classified as maternal haemoglobin at delivery < 110.0 g/L at sea level. Venous blood samples were collected and maternal blood haemoglobin was determined by an automated cell counter (Labtest SDH-20, Brazil).

The following covariates were collected and grouped into: socioeconomic - maternal age (< 19 or ≥ 19 years), maternal education (< 9 or ≥ 9 years), maternal skin colour (brown, black, white, or indigenous/yellow), living with a partner (no or yes), head of the family (participant or others), maternal occupation (unpaid or paid job), receipt of the Bolsa Família conditional cash transfer program (no or yes), ownership of household assets (no or yes); environmental - water supply (general water supply, water well or river/rain), sanitary facility (septic tank, rudimentary tank or open air/river), number of residents in the household (≤ 2, 3, 4 or ≥ 5), type of household (masonry or wood/mix [masonry + wood]), area of residence (rural or urban); obstetric history - menarche age (≤ 13 or ≥ 14 years), history of foetal loss (no or yes); and gestational characteristics - smoking during pregnancy (no or yes), gestational urinary tract infection (no or yes), nutritional supplement use (none, iron + folic acid, or multiple micronutrients with VA), number of antenatal care appointments (< 6, 6-8, or ≥ 9), gestational malaria (no or yes), and gestational age at delivery (weeks).

In order to assess the socioeconomic status of the participant’s household, a wealth index was created using principal component analysis, according to the presence of household assets. The first principal component explained 22.8% of the variability between the households. Scores for each asset were added, producing an index of household wealth, consequently split into quintiles (the 1st quintile corresponds to the poorest households and the 5th to the richest households).

Data on gestational urinary tract infection, nutritional supplement use, and the number of antenatal care appointments were checked in each participant’s antenatal care registries. Gestational malaria episodes were retrospectively obtained from the Malaria Epidemiological Surveillance and Information System (SIVEP) database from the Ministry of Health of Brazil (http://200.214.130.44/sivep_malaria/). The final gestational age was consulted from the hospital records.
Sub-sample analysis

Among participants recruited at the maternity ward, a sub-sample of pregnant women (n = 528) who were attending public antenatal care clinics in the urban area of the municipality were followed-up since the antenatal period. They were recruited for the study prior 20 weeks of pregnancy based on their last menstrual period, and invited for two clinical assessments at 16-20 weeks and at about 28 weeks of pregnancy. For confirmation of gestational age according to a standardised protocol14, ultrasound measurements were obtained with a portable SonoSite TITAN® (SonoSite, Inc., Bothell, WA, USA) by two trained physicians. All images were reviewed by an expert obstetrician not involved in the fieldwork.

Blood samples were collected in both assessment during the antenatal period and shipped to analysis according to previous protocols used in similar field conditions19. Serum concentrations of retinol were measured using HPLC methods (HP-1100 HPLC system, Hewlett Packard, Palo Alto, California, USA)20, and the values categorized following WHO recommendations (< 0.7 µmol/L – deficiency; 0.7-1.05 µmol/L – insufficiency; ≥ 1.05 µmol/L – sufficiency)3. We further explored the VA status by creating two variables deeming the occurrence of VAD and VA insufficiency in both antenatal assessments, regardless if they occurred in any assessment or both: combined VA status – deficiency (not deficient during pregnancy or deficient during pregnancy) and combined VA status – insufficiency (sufficient during pregnancy or insufficient during pregnancy). We also explored the variation of serum retinol concentrations between assessments (serum retinol in the 2nd assessment minus serum retinol in the 1st assessment) as ‘tertiles of the difference of serum retinol’. Plasma ferritin concentrations were measured by enzyme immunoassays (Ramco, Houston, TX) and the cut off adopted for iron deficiency was < 15 µg/L2. Plasma C-reactive protein (CRP, mg/L) was measured by an IMMAGE Immunochemistry System (Beckman Coulter, Brea, CA, USA), adopting concentrations ≥ 5 mg/L as acute inflammation21. Plasma ferritin and CRP were only available in the 2nd assessment (n = 464). Intra- and inter-assay CVs were < 7%.

Statistical analysis

Frequencies were used to characterise the sample, and the Pearson’s and Wald’s chi-square tests were used to analyse the differences between the categorical variables investigated with the outcomes. The same approach was used for the sub-sample analysis. Multiple Poisson regression models with robust variance through a hierarchical selection of covariates were used22. A hierarchical conceptual model considered four levels of
determination, as follows: 1 - socioeconomic; 2 - environmental; 3 - obstetric history; 4 - gestational characteristics. Covariates associated with each outcome at \(p \leq 0.20 \) in crude analysis, or in view of their significance in the literature, were selected to multiple models. At each level of determination, covariates associated with outcome at \(p < 0.10 \) or if conceptually relevant were retained for the final multiple model. Missing observation (<5%) were included in the models by creating missing-value categories. Associations with the outcomes are presented with unadjusted and adjusted prevalence ratios (aPR) and respective 95% confidence intervals (95% CI). All \(p \)-values were derived from two-tailed tests. Stata 15 (StataCorp, College Station, Texas, USA) was used to perform the analysis.

Results

Population and characteristics

During the recruitment period, 1,865 hospitalizations of women living in Cruzeiro do Sul were registered, of which 128 were not eligible (16 stillbirths and 112 abortions). The remaining 1,737 women were admitted for delivery; of these 1,538 gave consent and were enrolled in the study. Out of 1,538 postpartum women who agreed to participate in the study, 1,525 (99.2%) had data on GXN, and 1,445 (94.0%) had data on maternal anaemia. Additional exclusions (\(n = 13 \)) occurred owing to twin pregnancies (Figure 1).

In Table 1, socio-demographic and environmental characteristics of participants are shown. About 20% of parturients were adolescents (< 19 years) and more than 40% of them had less than 9 years of formal schooling. More than three quarters of postpartum women reported ‘brown’ as their skin colour, with only 11.7% reporting ‘white’ (data not shown in Tables). The obstetrics and gestational characteristics of participants are given in Table 2. The majority of participants took supplements during pregnancy (90.5%) and attended more than six antenatal care visits (72.4%).

Prevalence of the outcomes and association with nutrient biomarkers in pregnancy

The prevalence of GXN was 11.5% (95% CI 9.97–13.25) and maternal anaemia was detected in 39.4% (95% CI 36.84–41.95) of participants at delivery (Table 2). Mean haemoglobin concentration at delivery was 111.67 g/L (95% CI 110.96–112.38, data not shown in Tables).

In the sub-sample analysis, VA status in the 1st assessment and the combined VAD in the antenatal period were associated significantly with GXN. In addition, VA status in the 1st
assessment, as well as combined VAD, combined VA insufficiency, and iron deficiency were associated with maternal anaemia (Table S1). The occurrence of acute inflammation was only 0.2% (data not shown in Tables).

Factors associated with GXLN and maternal anaemia

Table 3 presents the factors associated with GXLN. After controlling for potential confounders, parturients who were living in a household with four or more residents presented a higher prevalence rate of GXLN when compared with those sharing the household with fewer members (five or more - aPR 2.06, 95% CI 1.24–3.41). Smoking during pregnancy was associated with an increased prevalence rate of GXLN (aPR 1.78, 95% CI 1.15–2.78) in comparison with non-smokers. Participants who completed insufficient antenatal care appointments (<6) had higher prevalence rate of GXLN when compared with those who had more than 9 appointments (aPR 1.61, 95% CI 1.08–2.40) (Table 3).

Factors associated with maternal anaemia are presented in Table 4. After adjustment, teenager postpartum women were more likely to be anaemic at delivery than adult parturients (aPR 1.18, 95% CI 1.01–1.38). An inverse gradient was seen for the number of antenatal care appointments, as a higher prevalence rate of anaemia was observed among women who completed insufficient visits (<6: aPR 1.40, 95% CI 1.15–1.70). Malaria occurrence during pregnancy was positively associated with maternal anaemia in this population (aPR 1.22, 95% CI 1.01–1.49). Compared with multiple micronutrients use, not taking any nutritional supplement during pregnancy was associated with higher prevalence of maternal anaemia (aPR 1.27, 95% CI 1.01–1.62), whereas the use of iron-folic acid supplement was not significantly associated (Table 4). Further adjustment for gestational age at delivery did not change the associations observed for both outcomes.

Discussion

Main findings

High prevalence rates of GXLN and maternal anaemia were found in this population-based study in Western Brazilian Amazon. The prevalence of GXLN (11.54%) was more than twice the WHO cut-off for public health significance in pregnancy. The prevalence of maternal anaemia affected almost 40% of the participants. GXLN was associated with VAD during pregnancy, regardless of the time of assessment, as well as with the number of residents living in the same household, smoking during pregnancy, and the insufficient
number of antenatal care appointments. Maternal anaemia was associated with almost all biomarkers of VA and iron status measured in the sub-sample analysis, and with maternal age, the insufficient number of antenatal care appointments, malaria episode and nutritional supplement use in pregnancy.

Strengths and limitations

The population basis of our study allowed us to obtain estimates of prevalence rates that are representative of this low-resource study area. However, even though the interview used for assessment of GXN is a standardised instrument proposed by WHO, and adequate for epidemiological purposes, the method used relies on the respondents’ memory recall and ability to understand the questions. Although associations of GXN with VAD in pregnancy were confirmed regardless of the time of assessment in our sub-sample analysis, a recall bias cannot be discharged. The lack of a local term to describe the symptom may also have hindered comprehension.

Caution is needed in the interpretation of our results considering the limitations of the tool used to assess GXN. Historically, the assessment of night blindness by the WHO questionnaire has been one of the most commonly used and recommended methods for assessing VAD in vulnerable populations, even though the reported tool does not correlate strongly with serum retinol, likely owing to the hepatic regulation of this biomarker when retinol stores are replete in the liver. Nevertheless, this is a low-cost, less-invasive method to monitor VA status in populations.

Interpretation

Global estimates of night blindness in women of childbearing age, retrieved from the WHO Global Database on Vitamin A Deficiency, reveal important prevalence among some selected countries, especially in Asia, although the last update occurred more than 10 years ago. Prevalence rates of less than 10% were registered in Indonesia (1.7%), Madagascar (7.5%), and Nigeria (7.7%), whereas high prevalence rates were observed in Bolivia (14.0%), Nepal (19.6%), and in the district of Medak, India (35.0%). There are no countrywide data for GXN in Brazil; most investigations have been concentrated in Rio de Janeiro, where the prevalence of GXN of 9.9% was found in a maternity hospital. This result aligns with our findings in Brazilian Amazon. Moreover, the last Demographic Health Survey conducted in Brazil showed that 12.3% of women of childbearing age were VA deficient.
Poor social, environmental, and pregnancy-related factors conditions have been associated with GXN. In rural Nepal, a population-based case-control study found that patients with GXN were more likely to be illiterate, to be from lower castes, and to live in households of poor quality. Similarly, in a population-based trial of newborn VA supplementation in rural India, having a concrete roof, being literate, and being pregnant during adulthood lowered the odds of GXN, whereas higher parity increased the odds. A cross-sectional study in a maternity ward in Rio de Janeiro city found that living in wealthier areas of the city and receiving antenatal nutritional assistance reduced the odds for GXN, whereas having a history of abortion and having anaemia during pregnancy increased the odds. Counselling during antenatal care may act on the improvement of lifestyle behaviours, like quitting smoking and increasing the intake of nutrient-rich foods, especially in VA. Pregnant women who live in a household with a high number of residents are likely to share their home resources, lowering food availability to supply their own physiological needs during pregnancy.

The WHO global estimates indicate that anaemia in pregnancy is a worldwide issue, and almost all countries had prevalence rates higher than 20% in 2011. In this report, estimates for Brazil set anaemia in pregnancy as a moderate public health problem, with a prevalence rate of 32% (95% CI 11–62) and mean haemoglobin of 116.0 g/L (95% CI 106–128). In our study, prevalence of anaemia in parturients was even higher than those estimated by the WHO for Brazil, comparable with rates for Asia, where gestational malaria can be also one of the associated factors with maternal anaemia.

Classical factors associated with anaemia include iron deficiency, due to low consumption, higher needs or inadequate absorption, other micronutrient deficiencies (e.g. folate and VA), infections (e.g. malaria and HIV), and haemoglobinopathies. The iron-folic acid supplementation is a recognized intervention to reduce the anaemia burden in pregnancy. In our study, anaemia was associated with being a teenage parturient, presenting malaria episodes, attending insufficient antenatal care visits, and not using nutritional supplements in pregnancy. Nutritional demands are higher for teenagers than for adult women as they are still undergoing physiological development, and pregnancy in adolescence exacerbates such demands by concomitantly needs for the foetus growth. Malaria is a proven risk factor for anaemia in pregnancy, because the rupture of red blood cells during Plasmodium parasite’s metabolism lowers the red blood cell count. During antenatal care, interventions aimed to prevent anaemia are advised, such as encouraging on intake of iron-rich foods and iron-folic acid supplementation.
Noteworthy, such high prevalence of GXN and maternal anaemia in this study ascertain the importance of achieving a good nutritional status and health assistance during pregnancy in a context of social and environmental vulnerability12,29. The current nutrition strategies recommended by the WHO for targeting micronutrient deficiencies in pregnancy include supplementation with only iron and folic acid. Recently, multiple micronutrients supplementation has been proven effective to prevent of harmful effects of micronutrient deficiencies in pregnancy30. Taking into account the positive results for multiple micronutrients and the synergy among micronutrients31, the WHO nutrition-related protocols for antenatal care should be reviewed.

Conclusion

GXN and maternal anaemia were identified as significant public health problems in the Brazilian Amazon municipality studied. Such high prevalence of GXN and maternal anaemia may reflect the poor nutritional status experienced by these women since pregnancy, which can have deleterious lifetime effects for the dyad mother-infant. Sociodemographic, environmental and gestational characteristics were associated with the occurrence of GXN and maternal anaemia. Most of these factors can be addressed during antenatal care, underlying the importance of rethinking current protocols related to nutrition in pregnancy.

Acknowledgments

We are thankful to all participants in the study, to the maternity hospital in Cruzeiro do Sul, and to the Acre State Health Secretariat. Members of MINA-Brazil Study Group: Alicia Matijasevich Manitto, Bárbara Hatzlhoffer Lourenço, Maira Barreto Malta, Marly Augusto Cardoso, Paulo Augusto Ribeiro Neves (University of São Paulo, São Paulo, Brazil); Suely Godoy Agostinho Gimeno (Federal University of São Paulo, São Paulo, Brazil); Bruno Pereira da Silva, Rodrigo Medeiros de Souza (Federal University of Acre, Cruzeiro do Sul, Brazil); Marcia Caldas de Castro (Harvard T.H. Chan School of Public Health, Boston, USA).

Disclosure of interest

Nothing to declare. Full disclosure of interests available to view online as supporting information.
Contribution to authorship

MCC and MAC conceived the study design. PARN, MBM, BHL, MUF, MCC, and MAC established the methods. PARN and AP participated on the data collection and field overseen. PARN performed the statistical analysis. PARN wrote the first draft of the article, with critical appraisal by MCC and MAC. PARN and MAC bear the primary responsibility for final content. All authors review and approved the final version of the manuscript.

Details of ethical approval

The MINA-Brazil Study was approved by the Ethics Committee of School of Public Health, University of São Paulo (Protocol number 872.613, Nov 13th, 2014), and by Acre State Health Secretary. The consent to participate was given through signature of the written informed consent. In case of teenage parturients consent was obtained from the caregiver. For cases of illiteracy, a thumb fingerprint was obtained.

Funding

Financial support was provided by Brazilian National Council for Scientific and Technological Development (CNPq, 407.255/2013-3), Maria Cecilia Souto Vidigal Foundation, and the São Paulo Research Foundation (FAPESP, 2016/00270-6). PARN received scholarships from Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES, PDSE - 88881.133704/2016-01). The funders had no role in the design of the study, the data collection and analyses, the interpretation of the data, the preparation and review of the manuscript, or the decision to submit it.
References

1. World Health Organization. Priorities in the assessment of vitamin A and iron status in populations. Panama City, Panama 15-17 September 2010. Geneva: World Health Organization, 2012.

2. World Health Organization. Nutritional anaemias: Tools for effective prevention. Geneva: World Health Organization, 2017.

3. World Health Organization. Global prevalence of vitamin A deficiency in populations at risk. Geneva: World Health Organization, 2009.

4. World Health Organization. Guideline: Daily iron and folic acid supplementation in pregnant women. Geneva: World Health Organization, 2012.

5. Tielsch JM, Rahmathullah L, Katz J, Thulasiraj RD, Coles C, Sheeladevi S, et al. Maternal night blindness during pregnancy is associated with low birthweight, morbidity, and poor growth in South India. *J Nutr* 2008;138(4):787–92.

6. Christian P, Labrique AB, Ali H, Richman MJ, Wu L, Rashid M, et al. Maternal vitamin A and β-carotene supplementation and risk of bacterial vaginosis: a randomized controlled trial in rural Bangladesh. *Am J Clin Nutr* 2011;94:1643–9.

7. World Health Organization. Xerophthalmia and night blindness for the assessment of clinical vitamin A deficiency in individuals and populations. Geneva: World Health Organization, 2014.

8. Saunders C, Leal MDC, Neves PAR, Padilha PDC, Da Silva LBG, Schilitzh AOC. Determinants of gestational night blindness in pregnant women from Rio de Janeiro, Brazil. *Public Health Nutr* 2015;19(5):851–60.

9. Ministério da Saúde (Brazil). Pesquisa Nacional de Demografia e Saúde da Criança e da Mulher: PNDS 2006. Brasília: Ministério da Saúde, 2009.

10. Katz J, Tielsch JM, Thulasiraj RD, Coles C, Sheeladevi S, Yanik EL, et al. Risk factors for maternal night blindness in rural South India. *Ophthalmic Epidemiol* 2009;16(3):193–7.

11. Instituto Brasileiro de Geografia e Estatística. Cidades [https://cidades.ibge.gov.br/v4/brasil/ac/cruzeiro-do-sul/panorama]. Accessed 02 March 2017.
12. Instituto Brasileiro de Geografia e Estatística. Síntese de indicadores sociais: Uma análise das condições de vida da população brasileira. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2016.

13. Programa das Nações Unidas para o Desenvolvimento. Relatório de Desenvolvimento Humano 2010. A Verdadeira Riqueza das Nações: Vias para o Desenvolvimento Humano. New York: Programa das Nações Unidas para o Desenvolvimento, 2010.

14. Pincelli A, Neves PAR, Lourenço BH, Corder RM, Malta MB, Sampaio-Silva J, et al. The hidden burden of Plasmodium vivax malaria in pregnancy in the Amazon: An observational study in northwestern Brazil. *Am J Trop Med Hyg* 2018; 99(1):73-83.

15. Ministério da Saúde (Brazil). DATASUS - Tecnologia da informação a serviço do SUS. [http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinasc/cnv/nvac.def]. Accessed 15 December 2017.

16. World Health Organization. Indicators for assessing vitamin A deficiency and their application in monitoring and evaluating intervention programmes. Geneva: World Health Organization, 1996.

17. Saunders C, Ramalho RA, Lima APPT, Gomes MM, Campos LF, Silva BAS, et al. Association between gestational night blindness and serum retinol in mother/newborn pairs in the city of Rio de Janeiro, Brazil. *Nutrition* 2005;21(4):456–61.

18. Filmer D, Pritchett LH. Estimating wealth effects without expenditure data - or tears: an application to educational enrollments in states in India. *Demography* 2001;38(1):115–32.

19. Cardoso MA, Scopel KKG, Muniz PT, Villamor E, Ferreira MU. Underlying factors associated with anemia in amazonian children: A population-based, cross-sectional study. *PLoS One* 2012;7(5):e36341.

20. Gomes LF, Alves AF, Sevanian A, Peres C de A, Cendoroglo MS, Mello-Almada Fo. C de, et al. Role of beta2-glycoprotein I, LDL-, and antioxidant levels in hypercholesterolemic elderly subjects. *Antioxid Redox Signal* 2004;6(2):237–44.

21. World Health Organization. C-reactive protein concentrations as a marker of inflammation or infection for interpreting biomarkers of micronutrient status. Geneva: World Health Organization, 2014.
22. Barros AJ, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. *BMC Med Res Methodol* 2003;3(21).

23. Taren D. Historical and practical uses of assessing night blindness as an indicator for vitamin A deficiency. Geneva: World Health Organization, 2012.

24. Tanumihardjo SA, Russell RM, Stephensen CB, Gannon BM, Craft NE, Haskell MJ, et al. Biomarkers of Nutrition for Development (BOND) - Vitamin A review. *J Nutr* 2016;146(9):1816S–48S.

25. World Health Organization. Vitamin and Mineral Nutrition Information System. Vitamin A deficiency by country [http://www.who.int/vmnis/database/vitamina/countries/en/]. Accessed 18 April 2018.

26. Christian P, Jr KPW, Khatry SK, Katz J, Shrestha SR, Pradhan EK, et al. Night blindness of pregnancy in rural Nepal - nutritional and health risks. *Int J Epidemiol* 1998;27:231–7.

27. World Health Organization. The global prevalence of anaemia in 2011. Geneva: World Health Organization, 2015.

28. Black RE, Alderman H, Bhutta ZA, Gillespie S, Haddad L, Horton S, et al. Maternal and child nutrition: Building momentum for impact. *Lancet* 2013;382(9890):372–5.

29. Ministério da Saúde (Brazil). Guia prático de tratamento da malária no Brasil. Brasília: Minsitério da Saúde, 2010.

30. Smith ER, Shankar AH, Wu LS-F, Aboud S, Adu-Afarwuah S, Ali H, et al. Modifiers of the effect of maternal multiple micronutrient supplementation on stillbirth, birth outcomes, and infant mortality: A meta-analysis of individual patient data from 17 randomised trials in low-income and middle-income countries. *Lancet Glob Heal* 2017;5(11):e1090–100.

31. Van Den Broek NR, White SA, Flowers C, Cook JD, Letsky EA, Tanumihardjo SA, et al. Randomised trial of vitamin A supplementation in pregnant women in rural Malawi found to be anaemic on screening by HemoCue. *BJOG* 2006;113(5):569–76.
Table 1 – Socio-demographic and environmental characteristics of parturients from the MINA-Brazil study by outcome.

Variables	Total***	n (%)	GXN**** (n= 176)		Anaemia (n= 569)	
			n (%)	P	n (%)	P
Maternal age*	1,525		0.070	<0.001		
< 19 years	303 (19.9)	44 (14.5)	145 (49.8)			
≥ 19 years	1,222 (80.1)	132 (10.8)	424 (36.7)			
Maternal schooling*	1,477		0.001	0.005		
< 9 years	626 (42.4)	91 (14.8)	254 (43.4)			
≥ 9 years	851 (57.6)	76 (9.0)	294 (36.0)			
Living with a partner*	1,478		0.714	0.035		
No	320 (21.6)	34 (10.8)	135 (44.2)			
Yes	1,158 (78.4)	133 (11.6)	413 (37.1)			
Head of the family*	1,478		0.133	0.094		
Woman	195 (13.2)	16 (8.2)	63 (33.5)			
Others	1,283 (86.8)	151 (11.9)	485 (39.9)			
Beneficiary of cash transfer program*	1,478		0.004	0.035		
No	841 (56.9)	78 (9.4)	295 (36.7)			
Yes	637 (43.1)	89 (14.2)	253 (42.2)			
Wealth Index (quintiles)**	1,478		0.076	0.011		
1	294 (19.9)	40 (13.7)	116 (42.3)			
2	294 (19.9)	37 (12.8)	121 (43.2)			
3	297 (20.1)	29 (9.9)	109 (39.1)			
4	295 (20.0)	34 (11.6)	105 (37.1)			
5	298 (20.1)	27 (9.1)	97 (33.8)			
Sanitary facility**	1,478		0.030	0.022		
Septic tank	732 (49.5)	69 (9.5)	248 (35.6)			
Rudimentary tank	320 (21.7)	42 (13.2)	130 (43.0)			
Open air/ river	426 (28.8)	56 (13.4)	170 (42.0)			
Number of people in the household**	1,478		<0.001	0.003		
≤ 2	296 (20.0)	19 (6.5)	99 (35.2)			
3	348 (23.5)	29 (8.4)	114 (34.2)			
4	266 (18.0)	32 (12.1)	101 (39.0)			
≥ 5	568 (38.5)	87 (15.5)	234 (44.0)			
Type of household†	1,478		0.086	0.264		
Masonry	381 (25.8)	34 (9.0)	134 (36.6)			
Wood/ mix (masonry + wood)	1,097 (74.2)	133 (12.3)	414 (39.9)			
*Chi-squared test p-values; **Wald test p-values for trend; ***Totals differ from the total number of participants due to missing values; ****Gestational night blindness.
Table 2 – Obstetric and gestational characteristics of parturients from the MINA-Brazil study by outcome.

Variables	Total***	GXN**** (n= 176)	Anaemia (n= 569)
	n (%)	n (%)	n (%)
Primigravidae*	1,478		
No	887 (60.0)	101 (11.5)	308 (36.6)
Yes	591 (40.0)	66 (11.3)	240 (42.6)
History of foetal losses*	877		
No	612 (69.0)	64 (10.5)	208 (36.1)
Yes	275 (31.0)	37 (13.6)	100 (37.8)
Smoking during pregnancy*	1,478		
No	1,415 (95.7)	151 (10.8)	525 (39.0)
Yes	63 (4.3)	16 (25.8)	23 (40.3)
Gestational urinary tract infection*	1,525		
No	544 (35.7)	57 (10.5)	189 (36.7)
Yes	981 (64.3)	119 (12.1)	380 (40.8)
Gestational supplementation**	1,524		
None	145 (9.5)	22 (15.1)	64 (47.4)
Iron + folic acid	890 (58.4)	104 (11.7)	351 (41.6)
Multiple micronutrients with vitamin A	489 (32.1)	50 (10.2)	154 (33.0)
Maternal anaemia at delivery*	1,445		
No	876 (60.6)	85 (9.7)	-
Yes	569 (39.4)	77 (13.5)	-
Gestational night blindness*	1,525		
No	1,349 (88.5)	-	492 (38.3)
Yes	176 (11.5)	-	77 (47.5)
Number of antenatal care appointments**	1,503		
< 6	415 (27.6)	69 (16.6)	177 (45.6)
6 - 8	655 (43.6)	67 (10.2)	260 (42.0)
≥ 9	433 (28.8)	37 (8.5)	123 (29.5)
Gestational malaria*	1,525		
No	1,404 (92.1)	161 (11.4)	514 (38.6)
Yes	121 (7.9)	15 (12.4)	55 (47.8)

*Chi-squared test p-values; **Wald test p-values for trend; ***Totals differ from the total number of participants due to missing values; ****Haemoglobin at delivery < 110 g/L; *****Gestational night blindness.
Table 3. Unadjusted and adjusted analysis of associated factors with gestational night blindness.

Variables	n	PR (95% CI)***	aPR (95% CI)****
Wealth Index (quintiles)			
5	Reference	Reference	
4	1.33 (0.82; 2.16)	1.08 (0.66; 1.75)	
3	1.23 (0.75; 2.02)	0.82 (0.49; 1.38)	
2	1.43 (0.88; 2.31)	0.97 (0.59; 1.60)	
1	1.56 (0.98; 2.49)	0.88 (0.51; 1.49)	
Beneficiary of conditional cash transfer program			
No	Reference	Reference	
Yes	1.50 (1.13; 2.00)	1.08 (0.79; 1.48)	
Maternal schooling			
≥ 9 years	Reference	Reference	
< 9 years	1.63 (1.22; 2.17)	1.25 (0.90; 1.74)	
Number of people in the household			
≤ 2	Reference	Reference	
3	1.29 (0.74; 2.26)	1.36 (0.76; 2.44)	
4	1.86 (1.08; 3.20)	1.82 (1.02; 3.22)	
≥ 5	2.38 (1.48; 3.84)	2.06 (1.24; 3.41)	
History of foetal losses			
No	Reference	Reference	
Yes	1.29 (0.88; 1.88)	1.36 (0.94; 1.96)	
Gestational supplementation			
Multiple micronutrients with vitamin A	Reference	Reference	
Iron + folic acid	1.14 (0.83; 1.57)	0.92 (0.67; 1.28)	
None	1.48 (0.93; 2.36)	1.01 (0.61; 1.68)	
Postpartum maternal anaemia*			
No	Reference	Reference	
Yes	1.39 (1.04; 1.86)	1.26 (0.94; 1.68)	
Smoking during pregnancy			
No	Reference	Reference	
Yes	2.38 (1.52; 3.73)	1.78 (1.15; 2.78)	
Number of antenatal care appointments			
≥ 9	Reference	Reference	
6 - 8	1.19 (0.81; 1.75)	1.11 (0.75; 1.63)	
< 6	1.94 (1.33; 2.83)	1.61 (1.08; 2.40)	

*Haemoglobin at delivery < 110 g/L; **Gestational night blindness; ***Unadjusted prevalence ratio with respective 95% confidence interval; ****Adjusted prevalence ratio with respective 95% confidence interval.
Table 4. Unadjusted and adjusted analysis of associated factors with postpartum maternal anaemia.

Variables	n	Anaemia PR (95% CI)	aPR (95% CI)*
Wealth Index (quintiles)			
5		Reference	Reference
4	1.02 (0.81; 1.28)	0.99 (0.79; 1.24)	
3	1.19 (0.96; 1.47)	0.99 (0.79; 1.24)	
2	1.23 (0.99; 1.52)	1.09 (0.87; 1.36)	
1	1.24 (1.00; 1.53)	1.02 (0.81; 1.29)	
Maternal age			
≥ 19 years		Reference	Reference
< 19 years	1.35 (1.18; 1.55)	1.18 (1.01; 1.38)	
Number of people in the household			
≤ 2		Reference	Reference
3	0.96 (0.77; 1.19)	1.00 (0.80; 1.26)	
4	1.10 (0.88; 1.38)	1.09 (0.87; 1.36)	
≥ 5	1.23 (1.02; 1.48)	1.16 (0.96; 1.41)	
Primigravidae			
No		Reference	Reference
Yes	1.15 (1.00; 1.31)	1.10 (0.94; 1.29)	
Gestational urinary tract infection			
No		Reference	Reference
Yes	1.11 (0.97; 1.27)	1.14 (0.99; 1.30)	
Gestational night blindness			
No		Reference	Reference
Yes	1.23 (1.03; 1.47)	1.14 (0.95; 1.35)	
Gestational malaria			
No		Reference	Reference
Yes	1.27 (1.02; 1.52)	1.22 (1.01; 1.49)	
Gestational supplementation			
Multiple micronutrients with vitamin A		Reference	Reference
Iron + folic acid	1.26 (1.08; 1.47)	1.15 (0.98; 1.35)	
None	1.43 (1.15; 1.79)	1.27 (1.01; 1.62)	
Number of antenatal care appointments			
≥ 9		Reference	Reference
6 - 8	1.42 (1.19; 1.69)	1.37 (1.15; 1.64)	
< 6	1.54 (1.28; 1.85)	1.40 (1.15; 1.70)	

*Unadjusted prevalence ratio with respective 95% confidence interval; **Adjusted prevalence ratio with respective 95% confidence interval.
Table S1. Vitamin A and iron status during pregnancy according to gestational night blindness (GXN) and anaemia among participants of the MINA-Brazil study.

Variables	Total****	n (%)	GXN	P	Anaemia	P	
Vitamin A status in the 1st assessment***	518						
≥ 0.7 µmol/L	463	(89.4)	26	0.006	146	35.2	0.009
< 0.7 µmol/L	55	(10.6)	9		28	(53.8)	
Vitamin A status in the 2nd assessment*** ****	467			0.461			
≥ 0.7 µmol/L	437	(93.6)	30		147	(36.8)	
< 0.7 µmol/L	30	(6.4)	3		14	(51.8)	
Combined vitamin A status – insufficiency****	451						
No insufficiency during pregnancy	260	(57.6)	14	0.711	76	(32.5)	0.025
Insufficient during pregnancy	191	(42.4)	16		77	(43.2)	
Combined vitamin A status – deficiency****	451			0.017			
No deficiency during pregnancy	375	(83.2)	20		117	(34.2)	
Deficient during pregnancy	76	(16.8)	10		36	(51.4)	
Iron status (serum ferritin)***	464			0.794			
< 15 µg/L	197	(42.5)	14		76	(31.5)	0.002
≥ 15 µg/L	267	(57.5)	17		85	(46.4)	

*Chi-squared test p-values; **Fisher’s exact test; ***Between 16 to 20 weeks of pregnancy; ****About 28 weeks of pregnancy; *****For ‘insufficient during pregnancy’ was considered insufficiency (serum retinol < 1.05 µmol/L) in at least one assessment or both; for ‘deficient during pregnancy’ was considered deficiency (serum retinol < 0.7 µmol/L) in at least one assessment or both; Totals differ from the total number of participants studied because of missing values.
Figure 1. Flow-diagram of screening of participants and outcome assessment.

Total maternity hospitalizations (n=1,865)

- Not eligible (n=128)
 - 16 Stillbirths
 - 112 Abortion

Total live birth (n=1,737)

- Refused to participate (n=199)

Enrolled in the MINA-Brazil cohort (n=1,538)

- Not eligible (n=13)
 - 13 Twin pregnancies

- Gestational night blindness
- Maternal anemia

Parturients with complete data on the outcome (n=1,525)

Parturients with complete data on the outcome (n=1,445)
7 CONSIDERAÇÕES FINAIS

A presente investigação trouxe informações inéditas e valiosas sobre a situação de saúde e nutrição em uma população de gestantes e parturientes residentes em município da Amazônia Ocidental Brasileira e que convivem diariamente com a falta de recursos básicos, como adequado saneamento e fornecimento de água potável. Nesta análise, foi possível identificar que o estado nutricional de VA durante a gravidez teve efeito sobre a ocorrência de desfechos materno-infantis de grande relevância na saúde pública, e ainda apresentar a magnitude que duas das principais carências nutricionais de relevância em saúde pública tem no município estudado.

Primeiramente, buscou-se conhecer quais seriam alguns dos fatores que afetam o estado nutricional de VA na gestação na população estudada (Artigo 1). Aspectos ambientais mostraram-se importantes na predição de melhores concentrações de retinol no início do terceiro trimestre gestacional. O possível fumo passivo, medido pela presença de fumante no mesmo domicílio, foi o único preditor que negativamente afetou o retinol sérico, possivelmente por ser um proxy de fumo na gestação, sendo que esta prática tem sido reconhecida por afetar marcadores do estado nutricional de VA também em outras populações (Yang et al., 2016; Chelchowska et al., 2011). Também em linha com outras investigações, porém positivamente, a sazonalidade no momento em que as amostras sanguíneas foram obtidas mostrou-se um bom preditor das concentrações de retinol, tendo em mente que isso ocorra possivelmente pela maior oferta de certos alimentos em algumas épocas do ano.

Considerando a influência de fatores mais proximais na cadeia de eventos, aspectos nutricionais foram importantes preditores do retinol sérico. A abundância de frutos originais da região amazônica, que são ricos em carotenoides, pode ser uma estratégia empregada durante o pré-natal para melhorar o estado de VA na gestação, por meio do consumo no mínimo semanal, levando em conta que essa prática atuou positivamente nas concentrações de retinol sérico no momento avaliado. Como esperado, as concentrações de retinol sérico medidas anteriormente ao desfecho impactaram positivamente à medida que a gestação progrediu. Este cenário mostra que buscar um bom estado nutricional desde o início da gravidez, onde haja um consumo adequado de alimentos fonte de micronutrientes ao longo da mesma, é importante para a manutenção dos bons teores séricos de micronutrientes até o final desse período.
No que tange aos efeitos do estado nutricional de VA na gestação sobre desfechos materno-infantis, observou-se que sua deficiência impactou negativamente sobre a anemia materna e o peso ao nascer (Artigo 2). A respeito da anemia materna, medida no momento do parto, ter apresentado DVA em um ou ambos momentos avaliados foi um fator de risco para ocorrência do desfecho, independentemente da ocorrência de anemia na gestação que foi um importante fator de ajuste nessa análise. No mesmo sentido, mulheres que foram deficientes em VA na gestação, independentemente do momento avaliado, apresentaram redução nas concentrações de Hb sanguínea no momento do parto. A respeito do desfecho infantil, a DVA impactou na redução do peso ao nascimento em 100 gramas, ajustado por vários fatores e pela IG ao nascimento, sendo que após o ajuste para as reservas de ferro corporais, a associação foi suavizada, perdendo sua significância estatística. Para a relação do PN/IG, conforme o padrão Intergrowth-21st, nenhum efeito foi verificado do estado nutricional de VA gestacional, mostrando que os efeitos da exposição sobre o PN ainda não são claros.

As prevalências de XN gestacional e de anemia no parto foram de alarmantes proporções na análise transversal de base populacional (Artigo 3). Apesar das limitações do método utilizado para avaliação da ocorrência de XN na gestação e de se recomendar cautela em sua interpretação, a prevalência encontrada foi maior que o dobro ao ponto de corte adotado pela OMS como indicador de um problema de saúde pública associado à DVA em uma população. Os fatores associados a esse desfecho mostram a vulnerabilidade social e ambiental vivenciada pelas mulheres que relataram a ocorrência do sintoma, como o tabagismo na gravidez, dividir seus domicílios com um grande número de pessoas e realizar menos de seis consultas de pré-natal. Sobre a anemia, aproximadamente 40% das parturientes apresentaram tal desfecho, sendo assim classificado como um problema de saúde pública moderado conforme a OMS, porém bem próximo do critério de classificação como problema grave. A anemia no momento do parto foi associada com a gestação na adolescência, a realização de poucas consultas de pré-natal, com a ocorrência de malária na gestação e com a suplementação com MMN.

As análises apresentadas revelam a importância que a nutrição durante a gestação tem para alcançar melhores desfechos obstétricos. Considerando que aspectos nutricionais possuem forte influência sobre os desfechos analisados, a adoção de estratégias que busquem o melhor estado nutricional ao longo da gravidez é relevante e oportuna. Nesse sentido, o cuidado pré-natal é o momento chave para que práticas alimentares saudáveis sejam implementadas, encorajadas e reforçadas durante toda a gestação, bem como tantas outras práticas que podem potencializar os efeitos da nutrição nesta fase do ciclo da vida. Sabe-se que devido às grandes
demandas fisiológicas específicas da gestação, muitas vezes alcançar as recomendações nutricionais somente pela dieta pode ser um desafio. Contudo, novas abordagens têm se mostrado eficazes na intenção de potencializar outras já em prática, como é o caso da suplementação com MMN. Assim, a nutrição pré-natal merece maior atenção pelos órgãos públicos, em vista de se alcançar melhores desfechos materno-infantis, reduzindo a carga de doenças na mulher e garantindo um crescimento e desenvolvimento infantil saudáveis ao longo da vida do indivíduo.

Concluindo, os resultados apresentados nesta tese mostraram que o estado nutricional de VA gestacional merece destaque nesta região do país, que ainda passa por muitas dificuldades socioeconômicas e ambientais. A DVA na gestação foi inversamente associada a desfechos materno-infantis, com consequências negativas para a saúde tanto da mulher como da criança. Fatores ambientais e nutricionais foram associados com o estado nutricional de VA, bem como com a anemia materna. Tendo em mente os impactos negativos apresentados e reconhecidos para as exposições e desfechos aqui estudados, torna-se necessário uma reavaliação da atual atenção pré-natal no país, referente ao cuidado nutricional. As diretrizes do Guia Alimentar para a População Brasileira devem ser implementadas, buscando valorizar aspectos regionais característicos, como é o caso da disponibilidade de alimentos naturalmente ricos em carotenoides com atividade pró-vitamina A, facilmente encontrados na região amazônica. Além disso, baseado nas evidências científicas internacionais e que a estratégia vigente de suplementação com ferro e ácido fólico na gestação não foi efetiva na prevenção da anemia materna no momento do parto na população estudada, novas estratégias necessitam ser avaliadas para redução das carências de micronutrientes na gestação, especialmente de VA e ferro. As recomendações apresentadas baseiam-se em intervenções modificáveis, buscando a redução da carga que exposições adversas na gestação possuem em desfechos relevantes no contexto da saúde pública, priorizando a redução de riscos para a saúde nos primeiros 1.000 dias de vida.
8 REFERÊNCIAS

Allen LH, Peerson JM, Maternal Micronutrient Supplementation Study Group. Impact of multiple micronutrient versus iron-folic acid supplements on maternal anemia and micronutrient status in pregnancy. Food Nutr Bul 2009;30:S527-532.

Augusto RA, Cobayashi F, Cardoso MA. Associations between low consumption of fruits and vegetables and nutritional deficiencies in Brazilian schoolchildren. Public Health Nutr 2015;18:927–35. doi:10.1017/S1368980014001244.

Bardají A, Martínez-Espinosa FE, Arévalo-Herrera M, Padilla N, Kochar S, Ome-Kaius M, et al. Burden and impact of Plasmodium vivax in pregnancy: A multi-centre prospective observational study. PLoS Negl Trop Dis 2017;11:1–22. doi:10.1371/journal.pntd.0005606.

Barros AJ, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol 2003;3. doi:doi.org/10.1186/1471-2288-3-21.

Barros AJD, Santos IS, Matijasevich A, Araújo CL, Gigante DP, Menezes AM, et al. Methods used in the 1982, 1993, and 2004 birth cohort studies from Pelotas, Rio Grande do Sul State, Brazil, and a description of the socioeconomic conditions of participants’ families. Cad Saúde Pública 2008; 24(3):S371-380.

Beard JL, Murray-Kolb LE, Lawrence F, Felix A, del Mundo A, Haas JD. Variation in the diets of Filipino women over 9 months of continuous observation. Food Nutr Bull 2007;28(2):206-14.

Bhutta ZA, Salam RA. Global nutrition epidemiology and trends. Ann Nutr Metab 2012;61(Supl 1):19-27.

Bielderman I, Vossenaar M, Melse-Boonstra A, Solomons NW. The potential double-burden of Vitamin A malnutrition: under-and overconsumption of fortified table sugar in the Guatemalan highlands. Eur J Clin Nutr 2016;70(8):947–53.

Black RE, Alderman H, Bhutta ZA, Gillespie S, Haddad L, Horton S, et al. Maternal and child nutrition: building momentum for impact. Lancet 2013a;382(9890):372–5.

Brasil. Ministério da Saúde. PNDS 2006: Pesquisa Nacional de Demografia e Saúde da Criança e da Mulher. Brasília: Ministério da Saúde; 2009.

Brasil. Ministério da Saúde. Guia prático de tratamento da malária. Brasília: Ministério da Saúde; 2010.

Brasil. Ministério da Saúde. Manual de condutas gerais do Programa Nacional de Suplementação de Vitamina A. Brasília: Ministério da Saúde; 2013a.

Brasil. Ministério da Saúde. Caderno de Atenção Básica, nº 32 - Atenção ao pré-natal de baixo risco. Brasília: Ministério da Saúde; 2013b.
Brasil. Ministério da Saúde. Programa Nacional de Suplementação de Ferro - manual de condutas gerais. Brasília: Ministério da Saúde; 2013c.

Brasil. Ministério da Saúde. Guia alimentar para a população brasileira: promovendo a alimentação saudável. Brasília: Ministério da Saúde; 2014.

Brasil. Ministério da Saúde [internet]. Resumo epidemiológico por local de notificação – nacional 2015. Brasília: Ministério da Saúde; 2015 [acesso em 04 mar 2017]. Disponível em: http://portalarquivos.saude.gov.br/images/pdf/2017/fevereiro/32/Mapa-de-risco_malaria_2015.pdf.

Brasil. Ministério da Saúde [internet]. Encerramento suplementação puérperas. Brasília: Ministério da Saúde; 2016 [acesso em 05 abr 2018]. Disponível: http://nutricao.saude.gov.br/mn/vita/docs/vita_puerperas.pdf.

Brasil. Ministério da Saúde [internet]. DATASUS – Tecnologia da informação a serviço do SUS. Brasília: Ministério da Saúde; 2017 [acesso em 15 dez 2017]. Disponível em: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinasc/env/nvac.def.

Brasil. Ministério da Saúde [internet]. Programa Nacional de Suplementação de Vitamina A. Brasília: Ministério da Saúde; 2018a [acesso em 01 abr 2018]. Disponível em: http://dab.saude.gov.br/portaldab/ape_vitamina_a.php (accessed April 21, 2018).

Brasil. Ministério da Saúde [internet] Fortificação das farinhas de trigo e milho com ferro e ácido fólico. Brasília: Ministério da Saúde; 2018b [acesso em 26 abr 2018]. Disponível em: http://dab.saude.gov.br/portaldab/ape_pcan.php?conteudo=fortificacao_farinhas.

van den Broek NR, White SA, Flowers C, Cook JD, Letsky EA, Tanumihardjo SA, et al. Randomized trial of vitamin A supplementation in pregnant women in rural Malawi found to be anaemic on screening by HemoCue. BJOG 2006;113(5):569-76.

Bruinse HW, van den Berg H. Changes of some vitamin levels during and after normal pregnancy. Eur J Obstet Gynecol Reprod Biol 1995;61(1):31-7.

Campbell AA, Thorne-Lyman A, Sun K, Pee S, Kraemer K, Moench-Pfanner R, et al. Indonesian women of childbearing age are at greater risk of clinical vitamin A deficiency in families that spend more on rice and less on fruits/vegetables and animal-based foods. Nutr Res 2009;29(2):75-81.

Cardoso MA, Hure AJ. Nutrition in the first 500 days of life. Public Health Nutr 2014;17(9):1907-8.

Cediel G, Olivares M, Brito A, Romaña DL, Cori H, Frano MRL. Interpretation of serum retinol data from Latin America and the Caribbean. Food Nutr Bull 2015;36(Supl 2):S98-S108.

Chelchowska M, Ambroszkiewicz J, Gajewska J, Laskowska-Klita T, Leibschang J. The effect of tobacco smoking during pregnancy on plasma oxidant and antioxidant status in mother and newborn. Eur J Obstet Gynecol Reprod Biol 2011;155(2):132-6.
Christian P, West Jr KP, Khatry SK, Katz J, Shrestha SR, Pradhan EK. Night blindness of pregnancy in rural Nepal - nutritional and health risks. Int J Epidemiol 1998a;27(2):231-7.

Christian P, West KP Jr, Khatry SK, Katz J, LeClerq S, Pradhan EK, et al. Vitamin A or β-carotene supplementation reduces but does not eliminate maternal night blindness in Nepal. J Nutr 1998b;128(9):1458-63.

Christian P. Recommendations for indicators: night blindness during pregnancy - a simple tool to assess vitamin A deficiency in a population. J Nutr 2002;132(9 Supl):2884S-8S.

Christian P. Micronutrients, birth weight, and survival. Annu Rev Nutr 2010;30:83-104.

Christian P, Klemm R, Shamim AA, Ali H, Rashid M, Shaikh S, et al. Effects of vitamin A and β-carotene supplementation on birth size and length of gestation in rural Bangladesh: a cluster-randomized trial. Am J Clin Nutr 2013;97(1):188-94.

Cohen JM, Kahn SR, Platt RW, Basso O, Evans RW, Kramer MS. Small-for-gestational-age birth and maternal plasma antioxidant levels in mid-gestation: a nested case-control study. BJOG 2015;122(10):1313-21.

Costa KMM, Almeida WAF, Magalhães IB, Montoya R, Moura MS, Lacerda MVG. Malária em Cruzeiro do Sul (Amazônia Ocidental brasileira): análise da série histórica de 1998 a 2008. Rev Panam Salud Publica 2010; 28(5):353-60.

Cunha MS, Siqueira EM, Trindade LS, Arruda SF. Vitamin A deficiency modulates iron metabolism via ineffective erythropoiesis. J Nutr Biochem 2014;25(10):1035-44.

Dalmaia N, Darnton-Hill I, Schultink W, Shrimpton R. Multiple micronutrient supplementation during pregnancy: a decade of collaboration in action. Food Nutr Bull 2009 (4 Suppl);30:477–9.

Devakumar D, Fall CHD, Sachdev HS, Margetts BM, Osmond C, Wells JCK, et al. Maternal antenatal multiple micronutrient supplementation for long-term health benefits in children: a systematic review and meta-analysis. BMC Med 2016;14:90. doi:10.1186/s12916-016-0633-3.

Fall CH, Fisher DJ, Osmond C, Margetts BM, Maternal Micronutrient Supplementation Study Group. Multiple micronutrient supplementation during pregnancy in low-income countries: a meta-analysis of effects on birth size and length of gestation. Food Nutr Bull 2009 (4 Suppl);30:S533-46.

Filmer D, Pritchett LH. Estimating wealth effects without expenditure data - or tears: an application to educational enrollments in states in India. Demography 2001;38(1):115–32. doi:10.1353/dem.2001.0003.

Fujimori E, Sato APS, Szarfarc SC, Veiga GV da, Oliveira VA de, Colli C, et al. Anemia in Brazilian pregnant women before and after flour fortification with iron. Rev Saude Publica 2011;45(6):1027-35.
Galicia L, Grajeda R, Romaña DL. Nutrition situation in Latin America and the Caribbean: current scenario, past trends, and data gaps. Rev Panam Salud Publica 2016;40(2):104-13.

Gazala E, Sarov B, Hershkovitz E, Edvardson S, Sklan D, Katz M, et al. Retinol concentration in maternal and cord serum: its relation to birth weight in healthy mother-infant pairs. Early Hum Dev 2003;71(1):19-28.

Gebremedhin S, Enquaselassie F, Umeta M. Independent and joint effects of prenatal zinc and vitamin A deficiencies on birthweight in rural Sidama, Southern Ethiopia: prospective cohort study. PLoS One 2012;7(12):e50213. doi: 10.1371/journal.pone.0050213.

Gernand AD, Schulze KJ, Stewart CP, West Jr KP, Christian P. Micronutrient deficiencies in pregnancy worldwide: health effects and prevention. Nat Rev Endocrinol 2016;12(5):274-89.

Global Panel on Agriculture and Food Systems for Nutrition. Food systems and diets: Facing the challenges of the 21st century. London: Global Panel on Agriculture and Food Systems for Nutrition; 2016.

Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet 2008; 371(9606):75-84.

Gomes LF, Alves AF, Sevanian A, Peres C de A, Cendoroglo MS, Mello-Almada Fo. C de, et al. Role of beta2-glycoprotein I, LDL-, and antioxidant levels in hypercholesterolemic elderly subjects. Antioxid Redox Signal 2004;6(2):237–44.

Graham JM, Haskell MJ, Pandey P, Shrestha RK, Brown KH, Allen LH. Supplementation with iron and riboflavin enhances dark adaptation response to vitamin A-fortified rice in iron-deficient, pregnant, nightblind Nepali women. Am J Clin Nutr 2007;85(5):1375-84.

Haider B, Bhutta Z. Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database Syst Rev 2017;4:CD004905. doi:10.1002/14651858.CD004905.pub5.www.cochranelibrary.com.

Händel MN, Moon RJ, Titcombe P, Abrahamsen Bo, Heitmann BL, Calder PC, et al. Maternal serum retinol and b-carotene concentrations and neonatal bone mineralization: results from the Southampton Women's Survey cohort. Am J Clin Nutr 2016;104:1183-8.

Hawkes C, Demaio AR, Branca F. Double-duty actions for ending malnutrition within a decade. Lancet Glob Heal 2017;5:e745–6. doi:10.1016/S2214-109X(17)30204-8.

Horton R. Maternal and child nutrition undernutrition: an urgent opportunity. Lancet 2008; 371(9608):179.

Instituto Brasileiro de Geografia e Estatística [internet]. Cidades. Rio de Janeiro: IBGE; 2017 [acesso em 02 mar 2017]. Disponível em: https://cidades.ibge.gov.br/v4/brasil/ac/cruzeiro-dos-sul/panorama.

Instituto Brasileiro de Geografia e Estatística. Síntese de indicadores sociais: uma análise das condições de vida da população brasileira. Rio de Janeiro: IBGE; 2016.
Institute of Medicine. Dietary references intake for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicone, vanadium, and zinc. Washington, DC: The National Academy Press; 2001.

Institute of Medicine. Weight gain during pregnancy: reexamining the guidelines. Washington, DC: The National Academy Press; 2009.

Institute of Medicine. Guidelines on weight gain & pregnancy. Washington, DC: The National Academy Press; 2013.

Kæstel P, Martinussen T, Aaby P, Michaelsen KF, Friis H. Serum retinol is associated with stage of pregnancy and the acute phase response in pregnant women in Guinea-Bissau. J Nutr 2012;142(5):942-7.

Katona P, Katona-Apte J. The interaction between nutrition and infection. Clin Infect Dis 2008;46(10):1582-8.

van Loo-Bouwman CA, Naber TH, Schaafsma G. A review of vitamin A equivalency of β-carotene in various food matrices for human consumption. Br J Nutr 2014;111(12):2153-66.

Louzada MLC, Martins APB, Canella DS, Baraldi LG, Levy RB, Claro RM, et al. Impact of ultra-processed foods on micronutrient content in the Brazilian diet. Rev Saude Publica 2015;49. doi:10.1590/S0034-8910.2015049006211.

Margetts BM, Fall CHD, Ronsmans C, Allen LH, Fisher DJ, Adou P, et al. Multiple micronutrient supplementation during pregnancy in low-income countries: review of methods and characteristics of studies included in the meta-analyses. Food Nutr Bull 2009(4 Suppl);30:S517–26.

Martins MC, Oliveira YP, Coitinho DC, Santos LMP. Panorama das ações de controle da deficiência de vitamina A no Brasil. Rev Nutr 2007;20(1):5-18.

Mason JB, Shrimpton R, Saldanha LS, Ramakrishnan U, Victora CG, Girard AW, et al. The first 500 days of life: policies to support maternal nutrition. Glob Health Action 2014;7:23623. doi: 10.3402/gha.v7.23623.

Mathews F, Youngman L, Neil A. Maternal circulating nutrient concentration in pregnancy: implications for birth and placental weights of term infants. Am J Clin Nutr;79(1):103-10.

McCauley ME, van den Broek N, Dou L, Othman M. Vitamin A supplementation during pregnancy for maternal and newborn outcomes. Cochrane Database Syst Rev 2015;10:CD008666. doi: 10.1002/14651858.CD008666.pub3.

Mclaren DS, Frigg M. Manual de Ver y Vivir sobre los transtornos por deficiencia de vitamina A (VADD). Washington, DC: Organización Panamericana de La Salud; 1999.

Michelazzo FB, Oliveira JM, Stefanello J, Luzia LA, Rondó PHC. The influence of vitamin A supplementation on iron status. Nutrients 2013;5:4399–413. doi:10.3390/nu5114399.
Miglioli TC, Fonseca VM, Gomes Jr SC, Lira PI, Batista Filho M. Deficiência de vitamina A em mães e filhos no Estado de Pernambuco. Cien Saude Colet 2013;18(5):1427-40.

Miranda AE, Pinto VM, Szwarcwald CL, Golub ET. Prevalence and correlates of preterm labor among young parturient women attending public hospitals in Brazil. Rev Panam Salud Publica 2012; 32: 330-334.

Monteiro CA, Cannon G, Moubarac JC, Levy RB, Louzada MLC, Jaime PC. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr 2018;21:5–17.

Mujica-Coopman MF, Brito A, López de Romaña D, Rios-Castillo I, Coris H, Olivares M. Prevalence of anemia in Latin America and the Caribbean. Food Nutr Bull 2015;36 (2 Suppl):S119–28.

Neves PAR, Saunders C, Barros DC, Ramalho A. Vitamin A supplementation in Brazilian pregnant and postpartum women: a systematic review. Rev Bras Epidemiol 2015;18(4):824-36.

Nobre CA, Obregón GO, Marengo JA. Características do clima amazônico: aspectos principais. Amaz Glob Chang 2009;186:149–62. doi:10.1029/2008M000720.

Oliveira JM, Allert R, East CE. Vitamin A supplementation for postpartum women. Cochrane Database Syst Rev 2016;3:CD005944. doi: 10.1002/14651858.CD005944.pub3.

Oliveira JM, Michelazzo FB, Stefanello J, Rondó PH. Influence of iron on vitamin A nutritional status. Nutr Rev 2008;66(3):141-7.

Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Heal Organ 2007;85(9):660-7.

Peña-Rosas JP, Field MS, Burford BJ, De-Regil LM. Wheat flour fortification with iron for reducing anaemia and improving iron status in populations. Cochrane Database Syst Rev 2014. doi:10.1002/14651858.CD011302.

Penniston KL, Tanumihardjo SA. The acute and chronic toxic effects of vitamin A. Am J Clin Nutr 2006;83(2):191-201.

Pincelli A, Neves PAR, Lourenço BH, Corder RM, Malta MB, Sampaio-Silva J, et al. The hidden burden of Plasmodium vivax malaria in pregnancy in the Amazon: an observational study in Northwestern Brazil. Am J Trop Med Hyg 2018 99(1):73-83.

Pinho-Pompeu M, Surita FG, Pastore DA, Paulino DSM, Pinto e Silva JL. Anemia in pregnant adolescents: impact of treatment on perinatal outcomes. J Matern Neonatal Med 2016;30(10):1158–62.

Pinkaew S, Winichagoon P, Hurrell RF, Wegmuller R. Extruded rice grains fortified with zinc, iron, and vitamin A increase zinc status of Thai school children when incorporated into a school lunch program. J Nutr 2013;143(3):362-8.
Radhika MS, Bhaskaram P, Balakrishna N, Ramalakshmi BA. Red palm oil supplementation: A feasible diet-based approach to improve the vitamin A status of pregnant women and their infants. Food Nutr Bull 2003; 24(2):208-17.

Ramalho A, Saunders C, Padilha PC. Aspectos fisiopatológicos e epidemiológicos da deficiência de vitamina A. In: Ramalho A. Fome oculta: diagnóstico, tratamento e prevenção. São Paulo: Atheneu; 2009a, p. 13-31.

Ramalho A, Saunders C, Padilha PC. Tratar e prevenir a deficiência de vitamina A. In: Ramalho A. Fome Oculta: diagnóstico, tratamento e prevenção. São Paulo: Atheneu; 2009b, p. 247-63.

Ramalho A, Dolinsky M. Carência de vitamina A no grupo materno-infantil. In: Accioly E, Saunders C, Lacerda E, editors. Nutrição em Obstetrícia e Pediatria. 2 ed. Rio de Janeiro: Cultura Médica/Guanabara Koogan; 2012, p. 57–76.

Ronsmans C, Fisher DJ, Osmond C, Margetts BM, Fall CHD, Adou P, et al. Multiple micronutrient supplementation during pregnancy in low-income countries: a meta-analysis of effects on stillbirths and on early and late neonatal mortality. Food Nutr Bull 2009;30(4 Suppl):S547–55.

Saeterdal I, Mora JO, De-Regil LM. Fortification of staple foods with vitamin A for preventing vitamin A deficiency. Cochrane Database Syst Rev 2012. doi:10.1002/14651858.CD010068.

Santos CS, Kruze I, Fernandes T, Andreto LM, Figueiroa JN, Diniz ADS. The effect of a maternal double megadose of vitamin a supplement on serum levels of retinol in children aged under six months. J Nutr Metab 2013;2013. doi:10.1155/2013/876308.

Santos Q, Sichieri R, Marchioni DM, Verly Jr E. Brazilian pregnant and lactating women do not change their food intake to meet nutritional goals. BMC Pregnancy Childbirth 2014;14:186. doi: 10.1186/1471-2393-14-186.

Saunders C, Leal MC, Gomes MM, Campos LF, Silva BAS, Lima APT, et al. Gestational night blindness among women attending a public maternity hospital in Rio de Janeiro, Brazil. J Health Popul Nutr 2004;22(4):348-56.

Saunders C, Ramalho RA, Lima AP, Gomes MM, Campos LF, Silva BAS, et al. Association between gestational night blindness and serum retinol in mother/newborn pairs in the city of Rio de Janeiro, Brazil. Nutrition 2005;21(4):456-61.

Saunders C. Ajustes fisiológicos da gestação. In: Accioly E, Saunders C, Lacerda EM de A, editors. Nutrição em Obstetrícia e Pediatria. 2 ed. Rio de Janeiro: Cultura Médica/Guanabara Koogan; 2012; 2012.

Saunders C, Leal MDC, Neves PAR, Padilha PDC, Da Silva LBG, Schilithz AOC. Determinants of gestational night blindness in pregnant women from Rio de Janeiro, Brazil. Public Health Nutr 2015;19(5):851–60.
Shrimpton R, SL H, ER Z, Darnton-Hill I, Dalmiya N. Multiple micronutrient supplementation during pregnancy in developing-country settings: policy and program implications of the results of a meta-analysis. Food Nutr Bull 2009;30(4 Suppl):S556-73.

Silva LSV, Thiapó AP, Souza GG, Saunders C, Ramalho A. Micronutrientes na gestação e lactação. Rev Bras Saude Mater Infant 2007;7(3):237-44.

Smith ER, Shankar AH, Wu LS-F, Aboud S, Adu-Afarwuah S, Ali H, et al. Modifiers of the effect of maternal multiple micronutrient supplementation on stillbirth, birth outcomes, and infant mortality: a meta-analysis of individual patient data from 17 randomised trials in low-income and middle-income countries. Lancet Glob Heal 2017;5(11):e1090–100.

Sommer A. Vitamin A deficiency and its consequences. A field guide to detection and control. WHO: Geneva; 1995.

Sommer A, Hussaini G, Muhilal, Tarwotjo I, Susanto D, Saroso JS. History of nightblindness: a simple tool for xerophthalmia screening. Am J Clin Nutr 1980;33:887–91.

Sun YY, Ma AG, Yang F, Zhang FZ, Luo YB, Jiang DC, et al. A combination of iron and retinol supplementation benefits iron status, IL-2 level and lymphocyte proliferation in anemic pregnant women. Asia Pac J Clin Nutr 2010;19(4):513–9.

Tanumihardjo SA. Biomarkers of vitamin A status: what do they mean? World Health Organization: Geneva; 2012.

Tanumihardjo SA. Factors influencing the conversion of carotenoids to retinol: bioavailability to bioconversion to bioefficacy. Int J Vitam Nutr Res 2002;72(1):40-5.

Tanumihardjo SA, Russell RM, Stephensen CB, Gannon BM, Craft NE, Haskell MJ, et al. Biomarkers of Nutrition for Development (BOND) - Vitamin A review. J Nutr 2016;146(9):1816S-48S.

Taren D. Historical and practical uses of assessing night blindness as an indicator for vitamin A deficiency. World Health Organization: Geneva; 2012.

Thorne-Lyman AL, Fawzi WW. Vitamin A and carotenoids during pregnancy and maternal, neonatal and infant health outcomes: a systematic review and meta-analysis. Paediatr Perinat Epidemiol 2012;26(Supl 1):36-54.

Tielsch JM, Rahmathullah L, Katz J, Thulasiraj RD, Coles C, Sheeladevi S, et al. Maternal night blindness during pregnancy is associated with low birthweight, morbidity, and poor growth in South India. J Nutr 2008;138(4):787-92.

Victora CG, Huttly SR, Fuchs SC, Olinto MT. The role of conceptual frameworks in epidemiological analysis: a hierarchical approach. Int J Epidemiol 1997;26(1):224-7.

Villar J, Cheikh Ismail L, Victora CG, Ohuma EO, Bertino E, Altman DG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 2014;384(9946):857–68.
West Jr KP. Extent of vitamin A deficiency among preschool children and women of reproductive age. J Nutr 2002;132(Supl 9):2857S-66S.

West KP, Mehra S. Vitamin A intake and status in populations facing economic stress. J Nutr 2010;140(1):201S–7S.

WHO - World Health Organization. Vitamin A deficiency and xerophthalmia. Arch Ophthalmol 1976;108:92. doi:10.1001/archopht.1990.01070050041026.

WHO - World Health Organization. Control of vitamin A deficiency and xerophthalmia. Geneva: WHO; 1982.

WHO - World Health Organization. Physical status: the use and interpretation of anthropometry. Geneva: WHO; 1995.

WHO - World Health Organization. Indicators for assessing vitamin A deficiency and their application in monitoring and evaluating intervention programmes. Geneva: WHO; 1996.

WHO - World Health Organization. Promoting optimal fetal development: report of a technical consultation. Geneva: WHO; 2006.

WHO - World Health Organization. Global prevalence of vitamin A deficiency in populations at risk. Geneva: WHO; 2009.

WHO - World Health Organization. Serum retinol concentrations for determining the prevalence of vitamin A deficiency in populations. Geneva: WHO; 2011a.

WHO - World Health Organization. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geneva: WHO; 2011b.

WHO - World Health Organization. Guideline: Vitamin A supplementation in pregnant women. Geneva: WHO; 2011c.

WHO - World Health Organization. Guideline: Vitamin A supplementation in postpartum women. Geneva: WHO; 2011d.

WHO - World Health Organization. Priorities in the assessment of vitamin A and iron status in populations. Panama City, Panama 15-17 September 2010. Geneva: WHO; 2012a.

WHO - World Health Organization. Guideline: Daily iron and folic acid supplementation in pregnant women. Geneva: WHO; 2012b.

WHO - World Health Organization. Xerophthalmia and night blindness for the assessment of clinical vitamin A deficiency in individuals and populations. Geneva: WHO; 2014a.

WHO - World Health Organization. C-reactive protein concentrations as a marker of inflammation or infection for interpreting biomarkers of micronutrient status. Vitamin and Mineral Nutrition Information System. Geneva: WHO; 2014b.
WHO - World Health Organization. The global prevalence of anaemia in 2011. Geneva: WHO; 2015a.

WHO - World Health Organization. Guideline: Sugars intake for adults and children. Geneva: WHO; 2015b.

WHO - World Health Organization. Guideline: Use of multiple micronutrient powders for point-of-use fortification of foods consumed by pregnant women. Geneva: WHO; 2016a.

WHO - World Health Organization. Guideline: Iron supplementation in postpartum women. Geneva: WHO; 2016b.

WHO - World Health Organization. WHO recommendations on antenatal care for a positive pregnancy experience. Geneva: WHO; 2016c.

WHO - World Health Organization. Nutritional anaemias: tools for effective prevention. Geneva: WHO; 2017.

WHO - World Health Organization [internet]. Vitamin A fortification of staple foods. Geneva: WHO; 2018 [acesso em 21 abr 2018]. Disponível em: http://www.who.int/elena/titles/vitamina_fortification/en/.

WHO, FAO, UNICEF, GAIN, MI, FFI. Recommendations on wheat and maize flour fortification meeting report: interim consensus statement. Geneva: WHO; 2009.

Winichagoon P. Coexistence of micronutrient malnutrition: implication for nutrition policy and programs in Asia. Asia Pac J Clin Nutr 2008;17(Supl 1):346-8.

Wylie BJ, Kalilani-Phiri L, Madanitsa M, Membe G, Nyirenda O, Mawindo P, et al. Gestational age assessment in malaria pregnancy cohorts: A prospective ultrasound demonstration project in Malawi. Malar J 2013;12:183. doi:10.1186/1475-2875-12-183.

Yang C, Chen J, Liu Z, Yun C, Piao J, Yang X. Prevalence and influence factors of vitamin A deficiency of Chinese pregnant women. Nutr J 2016;15:12. doi: 10.1186/s12937-016-0131-7.
ANEXOS

Anexo 1 Declarações referente ao cumprimento de estágio em pesquisa realizado no Department of Global Health and Population, Harvard T. H. Chan School of Public Health ... 158

Anexo 2 Artigo escrito em coautoria submetido para publicação ao periódico Revista de Saúde Pública: “Ganho de peso gestacional e estado nutricional de gestantes em Cruzeiro do Sul, Acre” .. 161

Anexo 3 Artigo escrito em coautoria publicado no periódico The American Journal of Tropical Medicine and Hygiene: “The hidden burden of Plasmodium vivax malaria in pregnancy in the Amazon: an observational study in northwestern Brazil” .. 166

Anexo 4 Parecer de aprovação por Comitê de Ética em Pesquisa do Projeto MINA-Brasil ... 191

Anexo 5 Termo de Consentimento Livre e Esclarecido ... 195

Anexo 6 Manual do treinador e entrevistador - Projeto MINA-Brasil .. 198

Anexo 7 Ficha de rastreamento das gestantes .. 214

Anexo 8 Questionário sócio demográfico e história de saúde ... 216

Anexo 9 Formulário de acompanhamento das gestantes ... 223

Anexo 10 Formulário de acompanhamento no parto ... 230
Anexo 1

Declarações referente ao cumprimento de estágio em pesquisa realizado no *Department of Global Health and Population, Harvard T. H. Chan School of Public Health*
Boston, 26 de Outubro de 2017.

Para: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Assunto: Certificação de Conclusão

Declaro que o estudante Paulo Augusto Ribeiro Neves, doutorando em nutrição na Faculdade de Saúde Pública, Universidade de São Paulo - USP, concluiu o doutorado sanduíche no período de 1 de Abril a 29 de Setembro de 2017 na Escola de Saúde Pública da Universidade de Harvard (Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Harvard University). O estudante concluiu com sucesso as disciplinas: Nutrition and Global Health (Wafaie W. Fawzi), e Nutritional Epidemiology (Walter Willet & Deidre Tobias); um curso em Writing for Public Health (Donald Halstead e Joyce LaTulippe); e participou do Workshop on Clinical Research: From Randomized trials to data science (oferecido pelo David Rockefeller Center for Latin American Studies-HSPH e pela Universidade Autónoma de Madrid). O estudante participou ativamente de palestras e eventos na escola de saúde pública e em outras escolas da Universidade de Harvard.

Atenciosamente,

[Assinatura]
Prezado(a) Senhor(a),
PAULO AUGUSTO RIBEIRO NEVES
Rua Doutor Sales - 42
Centro
Boa Esperança - Minas Gerais
Brasil
37.170-000

1 de Dezembro de 2017
Processo: PDSE 88881.133794/2016-01

DECLARAÇÃO DE EX-BOLSISTA

Prezado(a) Ex-bolsista,
Declaramos, para os devidos fins, que o(a) interessado(a) foi bolsista da Capes e realizou DOUTORADO SANDUÍCHE no exterior, conforme os dados abaixo:
PERÍODO DA BOLSA: 04/2017 a 09/2017
INSTITUIÇÃO DE ENSINO: HARVARD UNIVERSITY - HARVARD SCHOOL OF PUBLIC HEALTH, BOSTON
PAÍS: Estados Unidos

Atenciosamente,

Adi Balbinot Júnior
Coordenador (a) Geral de Acompanhamento e Monitoramento de Resultados

Esta assinatura independe de reconhecimento de firma, por se tratar de documento público
- Art. 19, Inciso II - Constituição Federal do Brasil

A fim de validar a autenticação deste documento, por favor acesse http://validadocumentos.capes.gov.br/ e informe o seguinte código: 2534h3n60f3p
Anexo 2

Artigo escrito em coautoria submetido para publicação ao periódico Revista de Saúde Pública: “Ganho de peso gestacional e estado nutricional de gestantes em Cruzeiro do Sul, Acre”

Chiara Alzineth Silva Campos, Maira Barreto Malta, Paulo Augusto Ribeiro Neves, Bárbara Hatzlhofer Lourenço, Marcia Caldas de Castro, Marly Augusto Cardoso pelo MINA-Brazil Study Working Group.
Journal:	Revista de Saúde Pública
Manuscript ID	RSP-2018-0880
Manuscript Type:	Original Article

Keyword – Go to DeCS to find your keywords.: Basic and primary healthcare, Nutrition and health, Healthcare services

https://mc04.manuscriptcentral.com/rsp-scielo
Ganho de peso gestacional e estado nutricional de gestantes em Cruzeiro do Sul, Acre.

Título corrido: Ganho de peso e estado nutricional de gestantes

Gestational weight gain and nutritional status of pregnant women in Cruzeiro do Sul, Acre

Short title: Weight gain and nutritional status of pregnant women

Chiara Alzineth Silva Campos¹, Maira Barreto Malta¹, Paulo Augusto Ribeiro Neves¹, Bárbara Hatzlhoffer Lourenço¹, Marcia C. Castro¹¹, Marly Augusto Cardoso¹ pelo MINA-Brazil Study Group

¹ Departamento de Nutrição. Faculdade de Saúde Pública. Faculdade de Saúde Pública, Universidade de São Paulo, Avenida Doutor Arnaldo 715, São Paulo, SP, Brasil - 01246-904;
²Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Estados Unidos da América. 677 Huntington Ave, Boston, MA, Estados Unidos – 02115.

Correspondência: Marly A. Cardoso. Departamento de Nutrição. Faculdade de Saúde Pública. Faculdade de Saúde Pública, Universidade de São Paulo E-mail: marlyac@usp.br. Telephone: +55 11 30617863.

Financiamento: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 407255/2013-3, 133924/2015-7). Fundação Maria Cecília Souto Vidigal e Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP nº 2017/00270-6). CASC recebeu bolsa de estudos de mestrado do CNPq pelo Programa de Pós-Graduação em Saúde Pública da Universidade de São Paulo.

Contribuições dos autores: CASC: coleta, análise e interpretação dos dados, elaboração e revisão do manuscrito. MBM: planejamento do estudo, análise e interpretação dos dados, revisão do manuscrito. PARN: coleta, interpretação dos dados e revisão do manuscrito. BHL: planejamento e supervisão da coleta de dados, interpretação dos dados e revisão do manuscrito. MCC: concepção, interpretação dos dados, revisão do manuscrito. MAC: concepção, planejamento do estudo, análise e interpretação, revisão do manuscrito, aprovação da versão final, responsabilidade pública pelo conteúdo do artigo.

Conflitos de interesse: Os autores declaram não haver conflito de interesses.
Membros da Coordenação MINA Study Working Group:

Alicia Matijasevich Manitto (Departamento de Medicina Preventiva, Faculdade de Medicina da USP), Suely G. A. Gimeno (Departamento de Medicina Preventiva, Escola Paulista de Medicina da Universidade Federal de São Paulo), Bruno Pereira da Silva e Rodrigo Medeiros de Souza (Universidade Federal do Acre – UFAC, campus da Floresta), Márcia C. Castro (Department of Global Health and Population, Harvard T. H. Chan School of Public Health), Bárbara H. Lourenço, Máira B. Malta, Paulo A. R. Neves e Marly A. Cardoso (Departamento de Nutrição, Faculdade de Saúde Pública da USP).
RESUMO

OBJETIVO: Avaliar a associação entre o ganho de peso gestacional e estado nutricional no terceiro trimestre da gestação.

MÉTODOS: Estudo prospectivo com 457 gestantes assistidas na atenção básica à saúde em Cruzeiro do Sul, Acre. O ganho de peso gestacional semanal entre 2º e 3º trimestres foi classificado em insuficiente, adequado e excessivo segundo *Institute of Medicine* (2009). Os desfechos relacionados ao estado nutricional no 3º trimestre gestacional foram: anemia (Hb <110 g/L), insuficiência de vitamina A (IVA, retinol sérico <1,05 µmol/L) e níveis pressóricos (valores contínuos, em mmHg). Razões de prevalência (RP) ajustadas por idade, escolaridade e uso de suplementos de vitaminas e minerais foram calculadas em modelos de regressão de Poisson com variância robusta.

RESULTADOS: Entre os 2º e 3º trimestres, 18,6% das gestantes apresentaram ganho de peso semanal insuficiente e 59,1% ganho de peso excessivo. As frequências de anemia, IVA e hipertensão (pressão arterial sistólica ≥140 mmHg e/ou diastólica ≥90 mmHg) foram de 17,5%, 13,4% e 0,6%, respectivamente no início do 3º trimestre. RPs (IC95%) para anemia entre gestantes com ganho de peso insuficiente e excessivo foram 0,41 (0,18-0,93) e 1,00 (0,63-1,59), respectivamente, quando comparadas às gestantes com ganho de peso adequado. Para IVA, RP ajustada foi significantemente maior entre gestantes com ganho de peso insuficiente (2,85; IC95%: 1,55-5,24) mas não houve diferença para ganho de peso excessivo (1,53; IC95%: 0,84-2,74) quando comparadas às gestantes com ganho de peso adequado. As gestantes com ganho de peso excessivo apresentaram valores médios de pressão arterial sistólica maiores (111,10; IC95%: 109,9-112,2) quando comparadas às gestantes com ganho de peso insuficiente (107,50; IC95%: 105,4-109,6) e adequado (106,20; IC95%: 104,3-108,20).

CONCLUSÕES: O ganho de peso semanal insuficiente entre segundo e terceiro trimestres gestacionais foi associado ao risco para insuficiência de vitamina A. Por outro lado, o ganho de peso excessivo foi associado a valores pressóricos maiores no terceiro trimestre de gestação.

Descritores: Ganho de peso gestacional. Estado nutricional. Gestantes. Atenção Primária à Saúde. Amazônia Ocidental Brasileira.
Anexo 3

Artigo escrito em coautoria publicado no periódico The American Journal of Tropical Medicine and Hygiene: “The hidden burden of Plasmodium vivax malaria in pregnancy in the Amazon: an observational study in northwestern Brazil”

Anaclara Pincelli, Paulo Augusto Ribeiro Neves, Bárbara Hatzlhoffer Lourenço, Rodrigo M. Corder, Maira Barreto Malta, Juliana Sampaio-Silva, Rodrigo M. de Souza, Marly Augusto Cardoso, Marcia Caldas de Castro, Marcelo Urbano Ferreira, pelo MINA-Brazil Study Working Group.
PINCELLI AND OTHERS

MALARIA IN PREGNANCY IN THE BRAZILIAN AMazon

The Hidden Burden of *Plasmodium vivax* Malaria in Pregnancy in the Amazon: An Observational Study in northwestern Brazil

Anaclara Pinellii,1 Paulo A. R. Neves,2 Barbara H. Lourenço,2,3 Rodrigo M. Corder,1 Maira B. Malta,2 Juliana Sampaio-Silva,2 Rodrigo M. de Souza,1 Marly A. Cardoso,2 Marcia C. Castro,5 Marcelo U. Ferreira,1,* for the MINA Brazil Working Group

1Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; 2Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; 3Department of Preventive Medicine, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; 4Multidisciplinary Center, Federal University of Acre, Cruzeiro do Sul, Brazil; 5Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, Massachusetts

* Address correspondence to Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, Cidade Universitária, 05508-900 São Paulo, Brazil. E-mail: mucerreiusp.br

Abstract.

We measured the prevalence of malaria in pregnancy and estimated its impact on birth weight and length and maternal hemoglobin in 1,180 women from Juruj Valley, the main malaria hotspot in Brazil. Antenatal malaria episodes, 74.6% of them due to *Plasmodium vivax*, were microscopically diagnosed in 8.0% of the women and were associated with an average reduction in birth weight z-scores of 0.35 (95% confidence interval [CI] = 0.14–0.57) and in birth length z-scores of 0.31 (95% CI = 0.08–0.54), compared with malaria-free pregnancies. Affected mothers had a mean decrease in hemoglobin concentration at delivery of 0.33 g/100 mL (95% CI = 0.05–0.62 g/100 mL); 51.6% were anemic. The timing and frequency of antenatal infections influenced pregnancy outcomes and first- or second-trimester infections were not associated with decreased birth weight and length and maternal hemoglobin at delivery. Although repeated antenatal vivax infections were associated with poorer birth outcomes, even a single vivax malaria episode was associated with a significant reduction in birth weight and length and maternal hemoglobin. Overall, 7.5% women had the parasite's DNA found in peripheral blood at delivery. Most (83.1%) of these 89 perinatal infections were due to *P. vivax* and only 7.9% of them progressed to symptomatic disease after delivery. *Plasmodium vivax* and *Plasmodium falciparum* DNA was found in 0.6% and 0.3% of 637 cord blood samples examined, respectively, but only one newborn developed clinical neonatal malaria. Our results further challenge the notion that vivax malaria is relatively benign during pregnancy and call for better strategies for its prevention.

INTRODUCTION

More than 125 million pregnant women are globally at risk of malaria each year.1 Malaria in pregnancy (MiP) is associated with a wide range of adverse outcomes for the mother, the fetus, and the neonate. In fact, stillbirth, miscarriage, low birth weight (LBW) caused by either intrauterine growth restriction or preterm birth, increased neonatal and maternal mortality, and reduced growth and neurocognitive function in early childhood are all well-known MiP complications.2 The public health burden of MiP has been mostly investigated in malaria-endemic settings dominated by *Plasmodium falciparum* across Africa, Asia, and the Southwest Pacific.2-4
The clinical implications of malaria during pregnancy remain understudied in low-endemicity regions where *Plasmodium vivax* predominates, such as Latin America. This is partially due to the fact that infections with *P. vivax* are believed to cause less severe clinical consequences in pregnant women than those with *P. falciparum*, although an increased risk of LBW and anemia associated with infection has been documented in large studies. Erythrocytes parasitized with the former species do not sequestrate massively in the intervillus spaces as they do in *P. falciparum* infections, but some MiP-associated histological changes in the placenta, such as syncytial knotting and increased thickness of the placental barrier, have been recently documented in Brazil and may affect fetal nutrition and growth because of impaired transport and secretory functions. Because primaquine (PQ) cannot be administered during pregnancy, repeated MiP episodes due to *P. vivax* hypnozoite reactivation are relatively common and may adversely affect birth outcomes.

The 6,000–9,000 laboratory-confirmed MiP cases that are officially notified in Brazil each year, more than two-thirds of them caused by *P. vivax*, represent 4–6% of all malaria cases in the country. More than 99% of these cases occur in the Amazon. Intermittent preventive treatment during antenatal care visits is not recommended in this country, but pregnant women from malaria-endemic areas of Brazil must be screened for malaria parasites by conventional microscopy or rapid diagnostic tests at every antenatal care visit and receive supervised antimalarial treatment whenever infection is laboratory-confirmed. However, antenatal care providers often fail to perceive MiP as a major preventable and treatable cause of morbidity in pregnant women and their offspring, and routine prenatal malaria testing, although formally recommended by the Ministry of Health, remains infrequent. Moreover, available diagnostics often fail to detect peripheral parasitemias at delivery, either symptomatic or not, that are later diagnosed by more sensitive molecular methods, further contributing to MiP underreporting.

Here, we investigated the burden of MiP in Juruá Valley, the main residual malaria hotspot in Brazil, where *P. vivax* is the dominant malaria parasite species. We combine microscopy-based diagnosis throughout pregnancy with molecular diagnosis at delivery to measure MiP prevalence and estimate its impact on fetal growth and maternal anemia in the largest Amazonian sample of malaria-exposed pregnant women thus far studied.

PATIENTS AND METHODS

Study site.

Cruzeiro do Sul (07°37' S and 72°40' W), with 82,075 inhabitants, is the most populated municipality of Juruá Valley, northwestern Brazil. It currently accounts for 15.2% of the malaria burden countrywide, with 16,721 laboratory-confirmed cases in 2016—three-fourths due to *P. vivax* and one-fourth due to *P. falciparum*, with rare *Plasmodium malariae* infections (Ministry of Health of Brazil, unpublished data). Human-made vector breeding sites, mainly fish ponds opened for commercial aquaculture, are currently the major driver of residual malaria transmission in urban and periurban areas of Juruá Valley. Malaria transmission occurs year-round and the main local malaria vector is the highly anthropophilic and mostly exophilic *Anopheles darlingi*, although *Anopheles albimanus* s.l. larvae are also abundant in both natural and human-made water bodies in the region. Long-lasting insecticide-impregnated bed nets are estimated to be available in approximately one-third of households; periodic indoor spraying with residual insecticides is not consistently carried out in the municipality. The annual parasite index in Cruzeiro do Sul in 2016 was 231.9 malaria cases per 1,000 inhabitants (Ministry of Health of Brazil, unpublished data).
Study population and procedures.

This prospective observational study was carried out at government-run antenatal care clinics and the only maternity hospital in Juruá Valley, where 96% of all deliveries in the municipality take place, all located in the city of Cruzeiro do Sul. Pregnant women attending antenatal clinics or admitted to the maternity ward of the Women and Children’s Hospital of Juruá Valley for delivery from July 2015 through June 2016 were eligible for inclusion. At enrollment, pregnant women were interviewed using a structured questionnaire. Data were entered into tablets programmed with CSPro software (https://www.census.gov/programs-surveys/international-programs.html). Information on selected household assets was combined to derive a wealth index, used as a proxy of socioeconomic status for each participant. The best estimate of gestational age was obtained from ultrasonography, carried out between 12 and 20 weeks of pregnancy and available for approximately one-third of study participants, or the reported date of the last menstrual period, for those without an ultrasound scan or with poor ultrasound images. We used a portable SonoSite Titan machine (SonoSite, Bothell, WA) with curvilinear abdominal transducer, which was operated by two study radiologists. The following measurements were considered: crown-rump length (measured before week 14) or the biparietal diameter and femoral diaphysis length (measured between weeks 15 and 20). All images were reviewed by an expert obstetrician not involved in fieldwork; 96.0% of them were scored as appropriate for pregnancy dating using a previously defined quality control protocol. In a separate analysis, we found an excellent agreement between gestational age estimates obtained for the same study participants from ultrasonography and the reported date of the last menstrual period, with an average difference of 0.39 weeks (95% confidence interval [CI] = 0.27–0.50 weeks); Bland-Altman analysis revealed that 95% of the differences between these estimates are expected to lie in the interval between −2.3 and 3.1 weeks (B.H.L. and colleagues, manuscript in preparation).

Information regarding history of illnesses and treatments received during the current pregnancy was obtained through interview and review of clinical records. According to the latest guidelines of the Ministry of Health of Brazil, folate supplementation (5 mg/day) should be provided up to week 20 of pregnancy; at that time, oral iron supplementation (60 mg of iron/day) should be started. Anemia diagnosed in pregnant women is presumed to be associated with iron deficiency and treated with 120–240 mg of iron/day. Data on antenatal malaria episodes diagnosed by thick-smear microscopy during pregnancy and up to 2 months after delivery were retrospectively obtained from the Malaria Epidemiological Surveillance and Information System database of the Ministry of Health of Brazil (http://200.214.130.44/sivep_malaria/). From this electronic database, we also recovered information on whether malaria episodes were correctly notified as MiP and treated properly. According to the latest malaria therapy guidelines of the Ministry of Health of Brazil, primary P. vivax infections diagnosed in pregnant women by microscopy or rapid diagnostic tests are treated with chloroquine (CQ), total dose, 25 mg of base/kg over 3 days, without PQ because of the risk of hemolysis in the fetus. To prevent P. vivax relapses, a weekly CQ dose of 300 mg over 12 weeks or until delivery is recommended but rarely prescribed. Plasmodium falciparum infections in the first trimester are treated with quinine (3 days) plus clindamycin (5 days), whereas those during the second and third trimesters are treated with a 3-day course of artemether (2–4 mg/kg/day) plus lumefantrine (12–24 mg/kg/day). Malaria diagnosed by DNA amplification is not routinely treated, except if further confirmed by microscopy or an antigen-based rapid diagnostic test. At delivery, newborns were measured using an inextensible centimeter measuring tape accurate to the nearest millimeter, weighed on a digital scale accurate to the nearest gram, and examined by the attending clinician or
obstetric nurse for any clinical abnormalities. Z-scores for birth weight and length were obtained using the INTERGROWTH-21st reference for gestational age and gender. Venous blood samples (10 mL) were obtained from the mothers at the end of pregnancy (live-born delivery, stillbirth, or miscarriage) for complete blood counts and hemoglobin measurement as well as DNA extraction for molecular diagnosis of malaria, irrespective of any clinical symptoms. Umbilical cord blood samples (1 mL) were obtained for molecular diagnosis of congenital malaria.

Molecular diagnosis of malaria.

We used a two-step strategy for molecular malaria diagnosis on venous and cord blood collected at delivery. We first screened samples with a genus-specific real-time polymerase chain reaction (RT-PCR) with a sensitivity of 2–5 parasites/μL of blood, followed by TaqMan assays (Applied Biosystems, Foster City, CA) for species-specific diagnosis, both methods targeting the 18S rRNA gene of human malaria parasites. DNA templates for polymerase chain reaction (PCR) amplification were isolated from 200 μL of whole blood using QIAamp DNA blood kits (Qiagen, Hilden, Germany), with a final DNA elution volume of 200 μL. The 20-μL reaction mixture of RT-PCR contained 5 μL of sample, 7.5 μL of 2 × Maxima SYBR Green qPCR master mixture (Fermentas, Burlington, Canada), distilled water, and 0.1 μM of each oligonucleotide primer (forward, 5′-GTT AAG GGA GTG AAG ACG ATC AGA-3′ and reverse, 5′-AAC CCA AAG ACT TTG ATT TCT CAT AA-3′) to amplify a 157- to 165-base pair fragment. We used a Step One Plus RT-PCR System (Applied Biosystems) for DNA amplification, with a template denaturation step at 95°C for 10 minutes (min), followed by 40 cycles of 15 seconds (sec) at 95°C, and 1 min at 60°C, with fluorescence acquisition at the end of each extension step. Amplification was immediately followed by a melting program consisting of 15 sec at 95°C, 1 min at 60°C, and 95°C for 15 sec, with fluorescence acquisition at each temperature transition. For TaqMan assay, each 20-μL reaction mixture contained 5 μL of sample DNA, 10 μL of TaqMan Universal Master Mix II (Applied Biosystems), 0.1 μM of each genus-specific unlabeled oligonucleotide primer, 0.08 μM of each species-specific labeled probe (P. vivax: 5′ VIC [Applied Biosystems proprietary green fluorescent dye]-AGC AAT CTA AGA ATA AAC TCC GAA GAG AAA ATT CT-QSY [Applied Biosystems proprietary quencher] 3′; P. falciparum: 5′ FAM [6-carboxyfluorescein]-AGC AAT CTA AAA GTC ACC TCG AAA GAT GAC T-QSY [Applied Biosystems proprietary quencher] 3′; P. malariae: 5′ NED [Applied Biosystems proprietary yellow fluorescent dye]-CTA TCT AAA AGA AAC ACT CAT-MGB [minor groove binder] quencher 3′), and distilled water to complete 20 μL. Polymerase chain reaction amplification comprised an initial step at 50°C for 2 min and template denaturation at 95°C for 10 min, followed by 45 cycles of 15 sec at 95°C and 1 min at 60°C. No-template controls (containing all reagents for amplification except for the DNA template) were run for every PCR microplate.

Clinical definitions.

An antenatal malarial infection was defined as any episode of parasitemia, irrespective of the parasite density, diagnosed by thick-smear microscopy in study participants before delivery. Malaria is a notifiable disease in Brazil, with both laboratory diagnosis and treatment being available free of charge in government-run malaria outposts. Because malaria treatment is not offered by private clinics and antimalarials cannot be purchased in local drugstores, we assume that virtually all antenatal malaria episodes in study participants were treated in public facilities and notified to the Ministry of Health. A perinatal malarial infection was defined when the parasite’s DNA was detected by the research team on a
venous blood sample collected at delivery, regardless of any symptoms. Congenital malaria was defined as any parasitemia detected by DNA amplification on a cord blood sample collected at delivery. Miscarriage was defined as a fetal death before 22 weeks of pregnancy; stillbirth was defined as a fetal death at or after 22 weeks of pregnancy. A delivery before 37 weeks of pregnancy was defined as preterm. Low birth weight was defined as a birth weight below 2,500 g, regardless of gestational age. Small-for-gestational-age (SGA) newborns are those whose weight is below the 10th percentile of the INTERGROWTH-21st reference for the gestational age. Maternal anemia was defined as a hemoglobin concentration below 11 g/100 mL; hemoglobin levels below 7 g/100 mL characterized severe anemia.

Statistical analysis.

Data were entered and cleaned using Stata 14.1 (StataCorp, College Station, TX) and analyzed with Stata 14.1 or SPSS 17.0 (SPSS, Inc., Chicago, IL). Proportions were compared by applying standard χ^2 tests to contingency tables and means were compared with standard unpaired Student t tests. Statistical significance was defined at the 5% level (two-tailed tests) and 95% CIs were estimated whenever appropriate.

Multiple logistic regression models were run to identify correlates of three outcomes: 1) antenatal malaria diagnosed by conventional microscopy, 2) perinatal malaria diagnosed by nucleic acid amplification, and 3) any MiP diagnosed during pregnancy or at delivery. Covariates included in the logistic models were age in years stratified into three categories (13–20, 21–30, and > 30 years), gravidity (0 = secundigravidae or multigravidae; 1 = primigravidae), years of schooling stratified into four categories (0, 1–5, 6–10, and > 10 years), wealth index stratified into quintiles in increasing order (first quintile, 20% poorest), area of residence (0 = urban, 1 = rural), and number of antenatal care visits attended (continuous variable). Demographic variables (age and gravidity) and those that were associated with the outcome at a significance level of at least 15% were retained in the final models, which were restricted to women without missing values. Separate models were built for any malaria and for specific malaria parasite species.

Multiple linear regression models were built to estimate the impact of malaria during pregnancy and malaria at delivery on three outcome variables: birth weight and birth length of newborns (described as z-scores for gestational age and gender) and maternal hemoglobin levels (in g/100 mL). This analysis was limited to pregnancies resulting in live-born singleton infants. Because the effects on health outcomes of sociodemographic determinants are often not direct, but mediated by more proximate factors, our modeling strategy considered distinct hierarchical levels of assumed causality. Demographic and socioeconomic covariates, the most distal determinants, included age in years stratified into two categories (13–20 and > 20 years), gravidity (0 = secundigravidae or multigravidae; 1 = primigravidae), neonate’s gender (0 = female, 1 = male), mother’s years of schooling (continuous variable), wealth index (continuous variable), and area of residence (0 = urban, 1 = rural). The more proximate determinants included 1) environmental and behavioral factors such as prenatal smoking and prenatal alcohol use; 2) access to health care such as number of antenatal care visits attended (as a continuous variable), type of delivery (0 = vaginal, 1 = cesarean), and need for transfusion during pregnancy (only for the hemoglobin models); 3) self-reported comorbidities such as diabetes, chronic or gestational hypertension, and antenatal urinary tract infection; and 4) laboratory-confirmed antenatal or perinatal malaria. Unstandardized regression coefficients (B) were interpreted to indicate the influence of a given predictor on each outcome, while controlling for all other variables in the same or more distal hierarchical level. Separate regression models were built for each outcome. Demographic variables (age and gravidity) and those that were associated with the outcome at a significance level of at
least 15% were retained in the final model, which only included women without missing values. Not unexpectedly, there was a strong association between age and gravidity (both entered into the models as dichotomic variables); young women were much more likely to be primigravidae ($\chi^2 = 238.13$, 1 d. f., $P < 0.0001$). We thus run separate models with either age or gravidity as the only demographic variable to confirm that a possible collinearity between them did not affect our estimates of the impact of malaria on birth outcomes and maternal anemia. Moreover, similar models were run using birth weight in grams and birth length in centimeters, instead of the respective z-scores for gestational age, as outcome variables. These models were additionally adjusted for gestational age.

Ethical approval.

The institutional review board of the School of Public Health, University of São Paulo, approved the study protocol (no. 872.613, 2014). Written informed consent was obtained from all participants. Parents or guardians also gave written informed consent if the participants were minors (aged < 18 years).

RESULTS

Characteristics of study participants.

From July 2015 through June 2016, 1,865 pregnant women attending antenatal clinics in the urban area of Cruzeiro do Sul, or admitted to the maternity ward of the Women and Children’s Hospital of Jurujá Valley for delivery, were invited to participate in this study. Of those, 1,538 women (82.5%) gave informed consent and were interviewed. Most women (63.8%) were enrolled at the maternity ward at the end of pregnancy, whereas 36.2% were enrolled at antenatal clinics. Compared with non-consenting subjects, enrolled women more often resided in urban areas (65.4% versus 58.3%, $P = 0.011$) and delivered live-born infants (97.3% versus 86.0%, $P < 0.001$). There were only 0.8% stillborn infants and 1.9% miscarriages among enrolled women, 1.0% non-consenting women delivered stillborn infants, and 13.0% had miscarriages. The present analyses are limited to 1,180 study participants (76.7% of those enrolled) who had a blood sample collected at delivery and examined for malaria parasite’s DNA (Figure 1). The vast majority (97.9%) of them attended at least one antenatal care visit, consistent with the high coverage (around 83%) of antenatal care previously reported in this municipality; 56.5% attended seven or more visits. A comparison between study participants ($N = 1,180$) and those who were enrolled but had no blood sample collected at delivery is shown in Supplemental Table 1 (available online).

Malaria in pregnancy and associated risk factors.

Overall, 122 antenatal malaria episodes—29 (23.8%) due to *P. falciparum*, 91 (74.6%) to *P. vivax*, and 2 (1.6%) to both species—were diagnosed by conventional microscopy and treated in 94 (8.0%) study participants. Of these malaria episodes, 36 (29.5%), 40 (32.8%), and 46 (37.7%) occurred in the first, second, and third trimester of pregnancy, respectively. Twenty-eight (29.8%) mothers experiencing antenatal malaria had at least one laboratory-confirmed *P. falciparum* infection. Significantly, 37 (30.3%) antenatal malaria episodes were not correctly notified to the Ministry of Health as occurring in a pregnant woman; 24 (64.9%) of these misreported malaria were diagnosed in the first trimester of pregnancy, when some women might not be aware of their pregnancy status.

We detected malaria parasite’s DNA in 89 (7.5%) mothers’ peripheral blood samples collected at delivery, with 74 (83.1%) infections due to *P. vivax*, 14 (15.7%) due to *P. falciparum*, and one (1.1%) due to both species. No *P. malariae* infection was diagnosed by
microscopy or DNA amplification. Interestingly, all perinatal infections were asymptomatic. Three (3.4%) asymptomatic parasite carriers had had a previous infection (one due to *P. vivax* and two due to *P. falciparum*) diagnosed and treated within two weeks before delivery, consistent with residual, posttreatment parasitemias. Seven (7.9%) women with asymptomatic perinatal infection, including one *P. vivax* carrier with antenatal malaria diagnosed shortly before delivery, later developed laboratory-confirmed clinical malaria within 2 months; all others remained free of symptoms and untreated over the 2-month postpartum follow-up. A total of 148 (12.5%) study participants had one or more MiP episodes, diagnosed either antenatally, at delivery, or both. Living in rural areas, the strongest predictor of MiP in our study population (Table 1), remained significantly associated with malaria after controlling for potential confounders, such as socioeconomic variables (Table 2). Interestingly, primigravidae were at increased risk of *P. falciparum* (but not of *P. vivax*) carriage at delivery, with borderline statistical significance (odds ratios = 4.802; 95% CI = 0.995–23.168; *P* = 0.051). However, multiple logistic regression analysis revealed no significant association between gravidity and risk of antenatal malaria of any type, vivax or falciparum.

Infant and maternal outcomes.

Of the 1,180 study participants, 23 (1.9%) had a miscarriage, 9 (0.8%) had a stillbirth, and 1,148 (97.3%) delivered live-born infants, including 8 (0.7%) twin pairs. Three neonates (0.3%) died during hospitalization because of extreme prematurity; no mother died within 42 days of delivery. Among 1,140 singleton live-born infants analyzed, birth weights ranged between 780 and 5,060 g, with a mean of 3,222 g (standard deviation [SD], 509 g). The mean z-score for birth weight was 0.092 (SD, 1.026), ranging between −2.972 and 3.889 (Figure 2A). The mean z-score for length was 0.058 (SD, 1.083), ranging between −3.258 and 4.000 (Figure 2B; data for 1,132 neonates). Eighty-six (7.5%) live birth deliveries were preterm, 75 (6.6%) neonates had LBW, and 108 (9.5%) were SGA. Hemoglobin concentrations, measured in 1,101 mothers at delivery, ranged between 5.4 and 18.8 g/100 mL, with a mean of 11.1 (SD, 1.4) g/100 mL (Figure 2C). Overall, 442 (40.1%) mothers were anemic, but only 8 (0.7%) had severe anemia at delivery. Although iron and folate supplements are routinely prescribed to pregnant women in Brazil, no attempt was made to evaluate adherence to supplementation among study participants.

Clinical impact of MiP.

Microscopically diagnosed antenatal malaria, but not asymptomatic parasitemia at delivery, was a strong independent predictor of birth weight and length among singleton live-born infants (Table 3). Antenatal malaria was associated with an average reduction in z-scores for weight of 0.36 (95% CI = 0.14–0.57) and in z-scores for length of 0.31 (95% CI = 0.08–0.54). Quite similar impact estimates were derived from models that included either mother’s age or gravidity (but not both) as covariates (data not shown). Separate multiple linear models estimated that infants born to mothers who experienced one or more episodes of antenatal malaria were, on average, 0.12 g (95% CI = 0.04–0.20 g) lighter and 0.47 g (95% CI = 0.05–0.88 g) shorter, after controlling for gestational age and other potential confounders. Of 93 singleton neonates born to mothers experiencing one or more antenatal malaria, 3.2% were preterm, 8.6% had LBW, and 20.4% were SGA. Primigravidity, chronic hypertension (but not transient hypertension of pregnancy), and prenatal smoking were additional factors that negatively affected fetal growth (Table 3). Antenatal malaria (but not perinatal parasite carriage), cesarean delivery, and need for blood transfusion during pregnancy were independent predictors of decreased maternal hemoglobin levels at delivery.
Mothers with one or more antenatal malarial episodes had a mean decrease in hemoglobin concentration of 0.33 g/100 mL (95% CI = 0.05–0.62 g/100 mL), after adjusting for potential confounders; 51.6% were anemic, but none had severe anemia.

We next ran a series of multiple linear regression models to explore how the frequency and timing of antenatal malaria episodes, as well as the infecting malaria parasite species diagnosed either ante- or perinatally, affected birth weight (Figure 3), birth length (Figure 4), and maternal hemoglobin levels (Figure 5), while controlling for the potential confounders listed in Table 3. The main findings may be summarized as follows: 1) even a single antenatal vivax malaria episode was significantly associated with reduced fetal growth and maternal hemoglobin, compared with malaria-free pregnancies; 2) repeated antenatal malaria episodes of any type, experienced by 20 women, had a greater negative impact on birth weight (but not on birth length and maternal hemoglobin) than a single antenatal malaria episode; 3) the adverse effect of repeated malarial infections became more evident when the analysis was limited to P. vivax infections, which were associated with greatly reduced birth weight and hemoglobin levels at delivery; 4) third-trimester malaria episodes appeared to be more harmful than first- and second-trimester episodes—in fact, we were unable to detect a significant impact of first- and second-trimester infections on fetal growth or maternal hemoglobin evaluated at delivery; 5) the magnitude of the adverse impact on fetal growth and hemoglobin levels of third-trimester malaria remained similar, and significant, when we restricted the analysis to women experiencing a single antenatal infection in late pregnancy compared with those who remained malaria-free; and 6) although relatively little harm to the neonate and the mother could be associated with perinatal asymptomatic parasite carriage, P. falciparum infections at delivery were associated with a significant reduction in z-score for birth length.

Birth outcomes of infants putatively exposed to PQ in utero.

Primaquine (0.5 mg of base/kg/day for 7 days) was retrospectively found to have been prescribed for treatment of 59 of 93 (63.4%) antenatal vivax or mixed-species malaria episodes diagnosed in 52 study participants. Five women had PQ prescribed for two episodes and one participant had PQ prescribed for three consecutive episodes. A large proportion (23% or 39.0%) of 59 PQ-treated infections were diagnosed and treated in the first trimester, but 15 (25.4%) and 21 (35.6%) PQ-treated infections were only diagnosed in the second and third trimester, respectively. Compliance with PQ prescription was not assessed in this study. Twenty-nine (49.1%) PQ-treated P. vivax infections had been correctly notified as MiP but were treated incorrectly. Interestingly, no adverse effect on birth outcomes was associated with putative exposure to PQ during pregnancy. All pregnant women given PQ prescription (N = 52) delivered live-born infants; their average z-scores for birth weight (–0.214 versus –0.089, P = 0.725) and birth length (–0.400 versus –0.080, P = 0.299) did not differ significantly, when compared with Student t tests, from those found in neonates from PQ-unexposed mothers who had at least one vivax malaria episode diagnosed and treated during this study.

Congenital malaria.

Cord blood samples from 637 neonates were tested for the parasite’s DNA. Plasmodium vivax and P. falciparum DNA was found in 4 (0.6%) and 2 (0.3%) cord blood samples, respectively. These infants were born to mothers found to carry exactly the same parasite species at the time of delivery. Only one of these congenital infections became symptomatic over the next 4 weeks, being confirmed by microscopic analysis of peripheral blood and treated within 20 days after birth.
DISCUSSION

Despite the accelerated progress toward malaria elimination in most of Latin America, an estimated 4.3 million women are at risk of MiP each year in this continent. Here, we show that antenatal malaria remains common in the main malaria hotspot of Brazil, affecting 8.0% of our study participants—comparable with the recent prevalence estimate at 7.9% in Guayaquil, an endemic setting in Bolivia next to the border with Brazil. Neither age nor gravidity emerged as a significant predictor of risk for antenatal malaria in our study, after controlling for potential confounders. Of note, nearly one-third of the antenatal malarial infections were not correctly notified as occurring in pregnant women, implying that MiP may be substantially underreported in Brazil. Moreover, we found further evidence that health-care providers often fail to comply with the country’s malaria treatment guidelines for pregnant women in Brazil. We retrospectively found that PQ was prescribed for more than half of the antenatal P. vivax infections diagnosed during the study, not only in the first trimester (when the pregnancy status might be unknown) but also in infections correctly reported as MiP. This may expose the fetus to severe hemolysis risk. However, we found no evidence of adverse birth outcomes in neonates putatively exposed in utero to PQ.

The vast majority of maternal malaria infections detected by DNA amplification at delivery remained asymptomatic, undiagnosed, and untreated up to 42 days after delivery. Whether asymptomatic perinatal infections are harmful to the mother and the neonate in this setting remains unclear; we only found a statistically significant association between falciparum (but not vivax) infection at delivery and decreased birth length (Figure 4). Available prevalence estimates of perinatal malaria in Latin America, few of them from population-based surveys, range widely between 3.5% in the city of Manaus, Brazil, and 39.0% in northwestern Colombia. Congenital infection, found in 0.9% of our cord blood samples tested for malarial DNA, has also recently been reported in Guatemala (14.8% of DNA-positive cord blood samples), northwestern Colombia (3.0–13.0%), and Manaus, Brazil (1.0%). Severe and complicated cases of neonatal malaria have been reported in Colombia, suggesting that at least some of these subpatent and asymptomatic perinatal infections, detected by molecular methods, may later progress to a full-blown disease in similar endemic settings.

Infection with P. vivax, the dominating species in Latin America, may impair fetal growth and cause anemia in pregnant women. However, currently available evidence came mostly, although not exclusively, from studies that detected parasitemias at delivery, rather than throughout the antenatal period. We thus examined the impact of the frequency and timing of P. vivax malaria episodes during pregnancy on fetal growth and maternal hemoglobin in a low-endemicity setting. We observed significantly lower birth weights (mean z-score reduction of 0.30) and lengths (mean z-score reduction of 0.41), as well as lower maternal hemoglobin concentrations (mean reduction of 0.40 g/100 mL), in pregnancies with a single antenatal episode of vivax malaria, compared with malaria-free pregnancies, showing that one vivax malaria may suffice to adversely affect pregnancy outcomes. Repeated infections, many of them likely to originate from relapsing P. vivax parasites, were associated with poorer outcomes. In fact, the average decrease in birth weight z-score (0.65) and maternal hemoglobin (0.93 g/100 mL) was greater among women with recurring malarial during pregnancy, consistent with a cumulative adverse impact of these repeated antenatal infections.

We failed to observe a significant adverse impact of early antenatal malaria episodes, namely those occurring in the first or second trimester of pregnancy. In this and another recent study, only third-trimester P. vivax infections appeared to affect fetal growth and maternal hemoglobin levels evaluated at delivery. Another large study has shown an
increased proportion of SGA infants born to mothers who had vivax malaria after 20 weeks' pregnancy, compared with those with no MiP. By contrast, falciparum malaria before 20 weeks' pregnancy has been clearly shown to affect fetal growth measured by repeated ultrasound scans before delivery and can cause LBW and maternal anemia at delivery in some African settings. Even a single episode of either *P. vivax* or *P. falciparum* malaria diagnosed and successfully treated during the first trimester was found to increase the risk of miscarriage, although not that of LBW, in a large cohort in Thailand. As previously suggested, these findings are consistent with a relatively efficient growth recovery, over the remaining gestation, by fetuses that survived an early in utero exposure to malaria, provided that antenatal infections are properly diagnosed and treated.

The present study has some limitations. First, women whose pregnancies ended as miscarriage or stillbirth were more likely to be excluded from our study population. This limited our statistical power to analyze the impact of MiP on miscarriage and stillbirth. Because we analyzed pregnancy outcomes only for live births, a survivorship bias may have affected our analyses of the impact of early-pregnancy infections. Accordingly, one can argue that pregnancies most severely affected by early malaria episodes were more likely to end as miscarriage or stillbirth, being excluded from our analysis. Second, data on antenatal malaria episodes were retrieved retrospectively and no blood samples were available for further confirmatory diagnostic tests. Because routine antenatal malaria screening, although recommended, has not been widely implemented across the Amazon Basin of Brazil, nearly all malarial infections diagnosed and treated during pregnancy had been identified passively, when febrile women sought treatment in malaria outposts. This precludes any analysis of the impact of antenatal episodes of asymptomatic parasitemia on birth outcomes in this population. Third, parasite's DNA detection in the peripheral blood was the only diagnostic technique performed at delivery and its detection threshold (2–5 parasites/µL) is relatively low. No placental samples were available for histopathological examination. Molecular methods on peripheral blood samples may be more sensitive for perinatal malaria diagnosis than microscopic diagnosis or antigen detection on peripheral blood or placenta samples, but placental histopathology can additionally help to determine the timing and intensity of infection and its associated inflammatory changes. A careful association between histological changes in the placenta and birth outcomes in vivax malaria might contribute to our understanding on the pathophysiology of MiP caused by a parasite species that does not sequester massively but significantly affects placental functions. Finally, the infrequency of *P. falciparum* precludes further between-species comparisons of the impact of MiP on pregnancy outcomes in this low-endemicity setting.

In conclusion, our findings further challenge the common notion that vivax malaria during pregnancy, contrary to falciparum malaria, is a relatively benign health condition in low-endemicity countries. Antenatal malaria infections in the third trimester of pregnancy are associated with significant fetal growth impairment and lower maternal hemoglobin levels at delivery. Such adverse outcomes can be observed even in mothers experiencing a single antenatal *P. vivax* infection but become more evident in those with repeated vivax malaria episodes throughout pregnancy. Moreover, compliance with the national guidelines for vivax malaria treatment in pregnancy is poor, leading mothers and their fetuses to be often exposed to PQ. In particular, better ways to prevent *P. vivax* relapses in pregnancy are urgently needed because the currently recommended weekly CQ prophylaxis for recurring infections is rarely prescribed by attending health professionals and very likely to be poorly adhered to by patients. These results call for improved strategies for MiP prevention in areas where intermittent preventive treatment is not feasible.

Received February 14, 2018.
Accepted for publication March 28, 2018.

Note: Supplemental table appears at www.ajtmh.org.

Acknowledgments:

We thank all study subjects for their enthusiastic participation in this investigation. The following MINA Brazil Working Group members are acknowledged: Alicia Matijasevich (Faculty of Medicine, University of São Paulo, Brazil), Suely G. A. Gimeno (Escola Paulista de Medicina, Federal University of São Paulo, Brazil), and Bruno P. da Silva (Campus da Floresta, Federal University of Acre, Brazil). Pablo S. Fontoura, Luis C. Salla, Jaques Franco de Carvalho Jr., Priscila T. Rodrigues, and Maria José Menezes (University of São Paulo) are acknowledged for their help with statistical analysis, laboratory support, and administrative support, respectively.

Financial support: This study was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil (FAPESP; grant 2016/00270-6 to MAC), the David Rockefeller Center for Latin American Studies (DRCLAS), Harvard University, and the Fundação Maria Cecília Couto Vidigal, Brazil (to M. C. C.), the Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (CNPq: 407255/2013-3 to M. A. C.), and the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), USA (International Centers of Excellence in Malaria Research [ICEMR] program; grant U19 AI089681 to Joseph M. Vinetz). A. P., M. B. M., J. S.-S., and M. C. C. receive or received scholarships from FAPESP. P. A. R. N., R. M. C., M. A. C., M. C. C., and M. U. F. receive or received scholarships from CNPq.

Disclaimer: The funders had no role in study design, data collection and interpretation, decision to publish, or preparation of the manuscript.

Authors’ addresses: Anaclara Pinccelli, Rodrigo M. Corder, and Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil, E-mails: anaclara.pinccelli@usp.br, rodrigo.corder@usp.br, and marcelouferreira@usp.br. Paulo A. R. Noves, Maira B. Malta, Juliana Sampiao-Silva, and Marly A. Cardoso, Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil, E-mails: pau.gustome@gmail.com, maiaramaltaunutri@gmail.com, junksbio@gmail.com, and marlyac@usp.br. Barbara H. Lourenço, Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil, and Department of Preventive Medicine, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil, E-mail: barbaralourenco@unifesp.br. Rodrigo M. de Souza, Multidisciplinary Center, Federal University of Acre, Campus da Floresta, Cruzado do Sul, Brazil, E-mail: rodrigo.souza@ufac.br. Marcia C. Castro, Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA, E-mail: mcastro@hsph.harvard.edu.

REFERENCES

<jrn>1. Dellicour S, Tatem AJ, Guerra CA, Snow RW, ter Kuile FO, 2010. Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. PLoS Med 7: e1000221.</jrn>

<jrn>2. Rogerson SJ, Desai M, Mayor A, Sicuri E, Taylor SM, van Eijk AM, 2018. Burden, pathology, and costs of malaria in pregnancy: new developments for an old problem. Lancet Infect Dis 18: e107–e118.</jrn>

<jrn>3. Steketee RW, Nahlen BL, Parise ME, Menendez C, 2001. The burden of malaria in pregnancy in malaria-endemic areas. Am J Trop Med Hyg 64 (Suppl): 28–35.</jrn>

<jrn>4. Singh N, Singh MP, Wylie BJ, Hussain M, Kojo YA, Shekhar C, Sabin L, Desai M, Udhayakumar V, Hamer DH, 2012. Malaria prevalence among pregnant women in two districts with differing endemicity in Chhattisgarh, India. Malar J 11: 274.</jrn>

<jrn>5. Brutus L, Santalla J, Schneider D, Avila JC, Deloron P, 2013. Plasmodium vivax malaria during pregnancy, Bolivia. Emerg Infect Dis 19: 1605–1611.</jrn>

<jrn>6. Yanow SK, Gavina K, Gnidehou S, Maestre A, 2016. Impact of malaria in pregnancy as Latin America approaches elimination. Trends Parasitol 32: 416–427.</jrn>

<jrn>7. Nosten F, McGready R, Simpson JA, Thwai KL, Balkan S, Cho T, Hkirijaroen L, Looareesuwan S, White NJ, 1999. Effects of Plasmodium vivax malaria in pregnancy. Lancet 354: 546–549.</jrn>
8. Luxemburger C, McGready R, Kham A, Morison L, Cho T, Chongsuphajaisiddhi T, White NJ, Nosten F, 2001. Effects of malaria during pregnancy on infant mortality in an area of low malaria transmission. *Am J Epidemiol* 154: 459–465.

9. Poespoprodjo JR et al., 2008. Adverse pregnancy outcomes in an area where multidrug-resistant *Plasmodium vivax* and *Plasmodium falciparum* infections are endemic. *Clin Infect Dis* 46: 1374–1381.

10. Bardají A et al.; PregVax Study Group, 2017. Burden and impact of *Plasmodium vivax* in pregnancy: a multi-centre prospective observational study. *PLoS Negl Trop Dis* 11: e0005606.

11. McGready R et al., 2004. The effects of *Plasmodium falciparum* and *P. vivax* infections on placental histopathology in an area of low malaria transmission. *Am J Trop Med Hyg* 70: 398–407.

12. Souza RM, Ataide R, Dombrowski JG, Ippólito V, Aiiken EH, Valle SN, Alvarez JM, Epiphânio S, Marinho CRF, 2013. Placental histopathological changes associated with *Plasmodium vivax* infection during pregnancy. *PLoS Negl Trop Dis* 7: e2071.

13. Machado Filho AC, da Costa EP, da Costa EP, Reis IS, Fernandes EAC, Paim BV, Martinez-Espinosa FE, 2014. Effects of vivax malaria acquired before 20 weeks of pregnancy on subsequent changes in fetal growth. *Am J Trop Med Hyg* 90: 371–376.

14. Umbers AJ, Aiiken EH, Rogerson SJ, 2001. Malaria in pregnancy: small babies, big problem. *Trends Parasitol* 27: 168–175.

15. WHO, 2015. *Guidelines for the Treatment of Malaria*, 3rd edition. Geneva, Switzerland: World Health Organization. Available at: http://apps.who.int/iris/bitstream/10665/162441/1/9789241549127_cmg.pdf?ua=1&ua=.

16. Marchesini P, Costa FTM, Marinho CRF, 2014. A decade of malaria during pregnancy in Brazil: what has been done concerning prevention and management. *Mem Inst Oswaldo Cruz* 109: 706–708.

17. Luz TC, Suárez-Mutis MC, Miranda ES, Moritz AF, Freitas LF, Brasil JC, Osorio-de-Castro CG, 2013. Uncomplicated malaria among pregnant women in the Brazilian Amazon: local barriers to prompt and effective case management. *Acta Trop* 125: 137–142.

18. Mayor A, Moro L, Aguilar R, Bardaji A, Cisteró P, Serra-Casas E, Sigaúque B, Alonso PL, Ordi J, Menéndez C, 2012. How hidden can malaria be in pregnant women? Diagnosis by microscopy, placental histology, polymerase chain reaction and detection of histidine-rich protein 2 in plasma. *Clin Infect Dis* 54: 1561–1568.

19. Ferreira MU, Castro MC, 2016. Challenges for malaria elimination in Brazil. *Malar J* 15: 284.

20. Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, Van Boeckel T, Kabaria CW, Harbach RE, Hay SI, 2010. The dominant *Anopheles* vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. *Parasit Vectors* 3: 72.

21. Reis IC et al., 2015. Contribution of fish farming ponds to the production of immature *Anopheles* spp. in a malaria-endemic Amazonian town. *Malar J* 14: 452.
22. DATASUS. Sistema de Informação Sobre Nascidos Vivos, Cruzeiro do Sul, AC [in Portuguese]. Available at: http://www2.datasus.gov.br/DATASUS/index.php?area=060702.

23. Filmer D, Pritchett LH, 2001. Estimating wealth effects without expenditure data—or tears: an application to educational enrollments in states of India. Demography 38: 115–132.

24. Wylie BJ et al., 2013. Gestational age assessment in malaria pregnancy cohorts: a prospective ultrasound demonstration project in Malawi. Malar J 12: 183.

25. Salomon LJ, Bernard JP, Duyne M, Doris B, Mas N, Ville Y, 2006. Feasibility and reproducibility of an image-scoring method for quality control of fetal biometry in the second trimester. Ultrasound Obstet Gynecol 27: 34–40.

26. Ministry of Health of Brazil, 2012. Low-Risk Antenatal Care [in Portuguese]. Brasília: Ministry of Health of Brazil. Available at: http://dab.saude.gov.br/portal/dab/biblioteca.php?conteudo=publicacoes/cab32.

27. Ministry of Health of Brazil, 2010. Practical Guidelines for Malaria Therapy [in Portuguese]. Brasília, Ministry of Health of Brazil. Available at: http://bvmsa.saude.gov.br/bvs/publicacoes/guia_pratico_malaria.pdf.

28. Villar J, et al.; International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st), 2014. International standards for newborn weight, length, and head circumference by gestational age and sex: the newborn cross-sectional study of the INTERGROWTH-21st project. Lancet 384: 857–868.

29. Rougemont M, Van Saanen M, Sahli R, Hinrikson HP, Bille J, Jaton K, 2004. Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays. J Clin Microbiol 42: 5636–5643.

30. Victora CG, Huttly SR, Fuchs SC, Olinto MT, 1997. The role of conceptual frameworks in epidemiological analysis: a hierarchical approach. Int J Epidemiol 26: 224–227.

31. Negreiros do Valle SC, 2011. Malaria in the Municipality of Cruzeiro do Sul, Brazilian Amazon [in Portuguese]. Doctoral Thesis, University of São Paulo, São Paulo, Brazil. Available at: http://www.teses.usp.br/teses/disponiveis/6/6136/tde-16042012-164631/pt-br.php.

32. Carter KH, Singh P, Mujica OJ, Escalada RP, Ade MP, Castellanos LG, Espinal MA, 2015. Malaria in the Americas: trends from 1959 to 2011. Am J Trop Med Hyg 92: 302–316.

33. Carmona-Fonseca J, Agudelo OM, Arango EM, 2017. Asymptomatic plasmodial infection in Colombian pregnant women. Acta Trop 172: 97–101.

34. Agudelo-Garcia OM, Arango-Flórez EM, Carmona-Fonseca J, 2017. Submicroscopic and asymptomatic congenital infection by Plasmodium vivax or P. falciparum in Colombia: 37 cases with placental histopathology and cytokine profile in maternal and placental blood. J Trop Med 2017: 3680758.

35. Piñeros-Jiménez JG, Arboleda M, Jaramillo JC, Blair S, 2008. Report of five cases of severe neonatal Plasmodium vivax malaria in Urabá, Colombia [in Spanish]. Biomedica 28: 471–479.
36. Piñeros-Jiménez JG, Álvarez G, Tobón A, Arboleda M, Carrero S, Blair S. 2011. Congenital malaria in Urabá, Colombia. *Malar J* 10: 239.

37. Rodríguez-Morales AJ, Sanchez E, Vargas M, Piccolo C, Colina R, Arria M, Franco-Paredes C. 2006. Short report: pregnancy outcomes associated with *Plasmodium vivax* malaria in northeastern Venezuela. *Am J Trop Med Hyg* 74: 755–757.

38. McGready R et al., 2012. Adverse effects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: a population-based study. *Lancet Infect Dis* 12: 388–396.

39. Moore KA et al., 2017. Influence of the number and timing of malaria episodes during pregnancy on prematurity and small-for-gestational-age in an area of low transmission. *BMC Med* 15: 117.

40. Schmiegelow C et al., 2017. *Plasmodium falciparum* infection early in pregnancy has profound consequences for fetal growth. *J Infect Dis* 216: 1601–1610.

41. Huynh BT, Cottrell G, Cot M, Briand V. 2015. Burden of malaria in early pregnancy: a neglected problem? *Clin Infect Dis* 60: 598–604.

42. Moore KA, Simpson JA, Scoullar MJL, McGready R, Fowkes FJI. 2017. Quantification of the association between malaria in pregnancy and stillbirth: a systematic review and meta-analysis. *Lancet Glob Health* 5: e1101–e1112.

Figure 1. Study flow diagram. Between July 2015 and June 2016, 1,865 pregnant women attending antenatal clinics or admitted for delivery to the maternity ward of the Women and Children’s Hospital of Junuí Valley, Cruzeiro do Sul (Brazil), were invited to participate. Reasons for exclusion and the final number of subjects analyzed are indicated.

Figure 2. Frequency distribution of outcome measures—z-score for birth weight (A) and z-score for birth length (B) of live-born singleton infants, and maternal hemoglobin levels (g/100 mL) at delivery (C)—in Cruzeiro do Sul, Brazil, 2015–2016. Data for pregnancies with at least one antenatal malaria episode diagnosed by microscopy are indicated as black bar segments and those for malaria-free pregnancies with white bar segments. We analyzed 1,140 study subjects for birth weight, 1,132 for birth length (missing information for eight subjects), and 1,101 for hemoglobin concentrations (missing information for 39 subjects).

Figure 3. Impact of number, timing, and species of antenatal and perinatal malaria episodes on birth weight z-score in Cruzeiro do Sul, Brazil, 2015–2016, as determined by multiple linear regression analysis. The unstandardized regression coefficients (B) were interpreted to indicate the average change in birth weight z-score attributable to each malaria type, frequency, or timing throughout the pregnancy, compared with no malaria, while controlling for the potential confounders listed in Table 3. Note that each B estimate and respective 95% confidence interval and P value were derived from a separate model, which included different numbers of study participants (n). For example, in the comparison between participants with multiple antenatal malaria episodes (N = 20) with those with antenatal malaria (N = 1,046), 73 subjects with a single malaria episode were excluded from the analysis.

Figure 4. Impact of number, timing, and species of antenatal and perinatal malaria episodes on birth length z-score in Cruzeiro do Sul, Brazil, 2015–2016, as determined by multiple linear regression analysis. The unstandardized regression coefficients (B) were interpreted to indicate the average change in birth length z-score attributable to each malaria type, frequency, or timing throughout the pregnancy, compared with no malaria, while controlling for the potential confounders listed in Table 3. Note that each B estimate and respective P value were derived from a separate model, which included different numbers of study participants (n), as explained in the legend of Figure 3.

Figure 5. Impact of number, timing, and species of antenatal and perinatal malaria episodes on maternal hemoglobin concentration at delivery in Cruzeiro do Sul, Brazil, 2015–2016, as determined by multiple linear regression analysis. The unstandardized regression coefficients (B) were interpreted to indicate the average change in hemoglobin concentration (g/100 mL) attributable to each malaria type, frequency, or timing.
throughout the pregnancy, compared with no malaria, while controlling for the potential confounders listed in Table 3. Note that each B estimate and respective 95% confidence interval and P value were derived from a separate model, which included different numbers of study participants (n), as explained in the legend of Figure 3.

Table 1

Unadjusted OR with respective 95% CI for associations between study participants’ characteristics and antenatal or perinatal malaria in Cruzeiro do Sul, Brazil, 2015–2016.

Characteristic	No. of subjects	Antenatal malaria (microscopy) OR (95% CI)	Perinatal malaria (DNA amplification) OR (95% CI)	P
Age (years)				
13–20	380	1.000 (reference)	–	
21–30	539	0.913 (0.579–1.429)	0.695 (0.325–0.821)	0.005
> 30	259	0.424 (0.212–0.899)	0.015 (0.128–0.558)	<0.0001
Gravidales				
Primigravidae	458	0.930 (0.601–1.437)	0.743 (1.037–2.466)	0.034
Secundigravidae	722	1.000 (reference)	–	
Schooling (years)				
0	56	0.232 (0.031–1.719)	0.153 (0.848–5.377)	0.107
1–5	147	1.449 (0.778–2.698)	0.242 (0.966–3.633)	0.063
6–10	413	1.255 (0.789–1.996)	0.337 (1.132–3.042)	0.014
> 10	564	1.000 (reference)	–	
Wealth index (quintiles)				
1 (poorest)	240	1.000 (reference)	–	
2	240	0.880 (0.497–1.559)	0.662 (0.325–1.005)	0.052
3	219	0.557 (0.289–1.072)	0.080 (0.184–0.694)	0.002
4	246	0.527 (0.277–1.001)	0.050 (0.131–0.654)	<0.0001
5 (least poor)	235	0.356 (0.160–0.709)	0.004 (0.076–0.399)	<0.0001
Area of residence				
Urban	770	1.000 (reference)	–	
Rural	408	3.550 (2.293–5.496)	<0.0001 (3.083–7.886)	<0.0001
Number of antenatal care visits	1,175	1.009 (0.934–1.091)	0.816 (0.858–1.003)	0.061

CI = confidence intervals; OR = odds ratios.
TABLE 2

Adjusted odds ratios and respective 95% CI, obtained by multiple logistic regression analysis, for associations between study participants’ characteristics and malaria diagnosed during pregnancy (antenatal malaria) or at delivery (perinatal malaria) in Cruzeiro do Sul, Brazil, 2015–2016

Outcome	Covariate	aOR (95% CI)	P	
Antenatal malaria	Schooling (years)	0	0.123 (0.016–0.964)	0.046
		1–5	0.835 (0.404–1.727)	0.626
		6–10	0.797 (0.466–1.364)	0.409
		> 10	1.000 (reference)	–
	Area of residence (rural vs. urban)		3.402 (2.127–5.441)	< 0.0001
Perinatal malaria	Age (years)	13–20	1.000 (reference)	–
		21–30	0.678 (0.387–1.187)	0.174
		> 30	0.392 (0.162–0.952)	0.039
	Wealth index (quintiles)	1 (poorest)	1.000 reference	–
		2	0.748 (0.409–1.370)	0.347
		3	0.512 (0.249–1.052)	0.068
		4	0.425 (0.193–0.937)	0.034
		5 (least poor)	0.373 (0.141–0.985)	0.047
	Area of residence (rural vs. urban)		3.942 (2.369–6.557)	< 0.001
Malaria in pregnancy (ante- or perinatal)	Age (years)	13–20	1.000 (reference)	–
		21–30	0.799 (0.507–1.258)	0.333
		> 30	0.470 (0.241–0.916)	0.027
	Wealth index (quintiles)	1 (poorest)	1.000 reference	–
		2	0.929 (0.569–1.516)	0.768
		3	0.485 (0.267–0.883)	0.018
		4	0.514 (0.280–0.947)	0.033
		5 (least poor)	0.389 (0.183–0.826)	0.014
	Area of residence (rural vs. urban)		3.575 (2.417–5.288)	< 0.001

CI = confidence intervals; aOR = adjusted odds ratios. Complete information available for 1,175 subjects. Separate models were built for each outcome: antenatal malaria, perinatal malaria, and malaria in pregnancy (either antenatal, perinatal, or both).

TABLE 3

Impact of antenatal and perinatal malaria with fetal growth and maternal hemoglobin concentration in Cruzeiro do Sul, Brazil, 2015–2016, after controlling for potential confounders by multiple linear regression analysis

Outcome	Model (no. of subjects)	Covariate	B (95% CI)	P
Birth weight (z-score)	1 (N = 1,139)	Antenatal malaria (yes vs. no)	−0.357 (−0.571 to −0.143)	0.001
		Gravidity (primi- vs. multigravidae)	−0.283 (−0.421 to −0.145)	0.001
		Type of delivery (cesarean vs. vaginal)	0.276 (0.155 to 0.397)	0.001
		Chronic hypertension (yes vs. no)	−0.250 (−0.435 to −0.066)	0.008
		Prenatal smoking (yes vs. no)	−0.278 (−0.482 to −0.074)	0.007
Birth length (z-score)	1 (N = 1,132)	Antenatal malaria (yes vs. no)	-0.311 (−0.541 to -0.082)	0.008
-----------------------	---------------	--------------------------------	----------------------------	-------
		Gravidity (primi- vs. multigravidae)	-0.242 (−0.391 to -0.092)	0.002
		Neonate’s gender (male vs. female)	-0.179 (−0.305 to -0.052)	0.006
		Chronic hypertension (yes vs. no)	-0.231 (−0.434 to -0.028)	0.026
		Prenatal smoking (yes vs. no)	-0.299 (−0.520 to -0.078)	0.008
	2 (N = 1,132)	Antenatal malaria (yes vs. no)	-0.149 (−0.391 to 0.094)	0.229
		Gravidity (primi- vs. multigravidae)	-0.232 (−0.382 to -0.082)	0.002
		Neonate’s gender (male vs. female)	-0.176 (−0.303 to -0.049)	0.007
		Chronic hypertension (yes vs. no)	-0.231 (−0.434 to -0.028)	0.026
		Prenatal smoking (yes vs. no)	-0.288 (−0.510 to -0.067)	0.011

Maternal hemoglobin (g/100 mL)	1 (N = 1,098)	Antenatal malaria (yes vs. no)	-0.335 (−0.624 to -0.047)	0.023
		No. of antenatal care visits attended	0.064 (0.032 to 0.097)	< 0.001
		Neonate’s gender (male vs. female)	0.177 (0.018 to 0.336)	0.029
		Type of delivery (cesarean vs. vaginal)	-0.321 (−0.487 to -0.156)	< 0.001
		Pre- or perinatal blood transfusion (yes vs. no)	-3.284 (−4.215 to -2.332)	< 0.001
	2 (N = 1,098)	Perinatal malaria (yes vs. no)	-0.119 (−0.424 to 0.186)	0.443
		No. of antenatal care visits attended	0.063 (0.030 to 0.095)	< 0.001
		Neonate’s gender (male vs. female)	0.181 (0.022 to 0.340)	0.026
		Type of delivery (cesarean vs. vaginal)	-0.328 (−0.495 to -0.161)	< 0.001
		Pre- or perinatal blood transfusion (yes vs. no)	-3.190 (−4.127 to -2.254)	< 0.001

CI = confidence intervals. Only significant (P < 0.05) associations between covariates other than malaria and birth and maternal outcomes are shown. Separate models were built for each outcome: antenatal malaria (model 1) and perinatal malaria (model 2).
Supplemental Table 1

Characteristic	Enrolled to study (no. subjects with information)	Not enrolled to study (no. of subjects with information)	\(P (\chi^2) \)
Age	\((N = 1,178)\)	\((N = 327)\)	0.589
13–20	380	96	–
21–30	539	154	–
> 30	259	77	–
Wealth index (quartiles)	\((N = 1,180)\)	\((N = 346)\)	–
1 (poorest)	240	66	0.112
2	240	65	–
3	219	86	–
4	246	60	–
5 (least poor)	235	69	–
Area of residence	\((N = 1,178)\)	\((N = 327)\)	0.370
Urban	770	205	–
Rural	408	122	–
Gravidity	\((N = 1,180)\)	\((N = 346)\)	0.301
Primigravidae	458	145	–
Multigravidae	722	201	–
Neonate’s gender	\((N = 1,149)\)	\((N = 341)\)	0.214
Female	576	184	–
Male	573	157	–
Twins	\((N = 1,157)\)	\((N = 343)\)	0.829
Yes	8	2	–
No	1,149	341	–
Prenatal smoking	\((N = 1,180)\)	\((N = 346)\)	–
Yes	52	16	–
Alcohol use	\((N = 1,180)\)	\((N = 346)\)	0.049
Yes	206	45	–
No	974	301	–
Urinary tract infection	\((N = 1,178)\)	\((N = 327)\)	0.139
Yes	762	197	–
No	416	130	–
Diabetes	\((N = 1,180)\)	\((N = 346)\)	0.684
Yes	20	7	–
No	1,160	339	–
Chronic hypertension	\((N = 1,180)\)	\((N = 346)\)	0.074
Yes	132	51	–
No	1,048	295	–
Antenatal malaria	\((N = 1,180)\)	\((N = 346)\)	–
Any species	94	23	0.418
Plasmodium falciparum	28	9	0.808
Plasmodium vivax	66	14	0.236
Number of antenatal malarials	\((N = 1,180)\)	\((N = 346)\)	0.486
0	1,086	323	–
1	74	16	–
> 1	20	7	–
Type of delivery	\((N = 1,157)\)	\((N = 343)\)	0.429
Vaginal	652	185	–
Cesarean	505	158	–
Pregnancy outcome	\((N = 1,180)\)	\((N = 346)\)	0.386
--------------------------------	--------	--------	-------
Live-born	1,148	340	–
Stillborn	9	3	–
Miscarriage	23	3	–
Low birth weight	(N = 1,148)	(N = 339)	0.102
Yes	78	32	–
No	1,070	307	–
Figure 1

1,865 pregnant women identified

1,538 enrolled to study

1,180 analyzed for malaria risk factors

230 refused
97 unable to enroll

346 with blood sample at delivery unavailable

9 stillborn
23 miscarriages
8 twins

1,140 analyzed for pregnancy outcomes
Figure 2

A

B

C

malaria-free pregnancy
antenatal malaria

z-score for weight

z-score for length

Hemoglobin (g/100 mL)
Figure 3

Outcome: birth weight	n	B	P
Antenatal malaria (reference: no malaria)			
Any malaria	1,139	-0.357	0.001
Only one episode	1,119	-0.279	0.023
More than one episode	1,066	-0.555	0.003
First or second trimester only	1,098	-0.182	0.201
Third trimester	1,087	-0.586	< 0.0001
Only one episode, third trimester	1,075	-0.521	0.006
At least one falciparum episode	1,074	-0.351	0.068
One or more episodes, vivax only	1,111	-0.365	0.004
Only one vivax episode	1,098	-0.297	0.037
More than one episode, vivax only	1,059	-0.648	0.019
Perinatal malaria (reference: no malaria)			
Any species	1,139	-0.071	0.532
Plasmodium vivax	1,125	-0.038	0.754
Plasmodium falciparum	1,066	-0.317	0.259

-2 -1 0 1 2 z-score
Figure 4

Outcome: birth length	n	B	P
Antenatal malaria (reference: no malaria)			
Any malaria	1,132	-0.311	0.006
Only one episode	1,112	-0.308	0.019
More than one episode	1,059	-0.329	0.180
First or second trimester only	1,091	-0.193	0.212
Third trimester	1,080	-0.463	0.008
Only one episode, third trimester	1,068	-0.418	0.042
At least one falciparum episode	1,087	-0.133	0.523
One or more episodes, vivax only	1,104	-0.390	0.005
Only one vivax episode	1,091	-0.410	0.008
More than one episode, vivax only	1,052	-0.312	0.304
Perinatal malaria (reference: no malaria)			
Any species	1,132	-0.149	0.229
Plasmodium vivax	1,118	-0.045	0.735
Plasmodium falciparum	1,059	-0.693	0.023
Figure 5

Outcome: maternal hemoglobin	n	B	P
Antenatal malaria (reference: no malaria)			
Any malaria	1,098	-0.335	0.023
Only one episode	1,079	-0.372	0.020
More than one episode	1,026	-0.179	0.564
First or second trimester only	1,058	-0.134	0.487
Third trimester	1,047	-0.596	0.005
Only one episode, third trimester	1,036	-0.583	0.019
At least one falciparum episode	1,034	0.066	0.709
One or more episodes, vivax only	1,071	-0.502	0.003
Only one vivax episode	1,058	-0.396	0.036
More than one episode, vivax only	1,020	-0.926	0.012
Perinatal malaria (reference: no malaria)			
Any species	1,098	-0.119	0.443
Plasmodium vivax	1,084	0.006	0.971
Plasmodium falciparum	1,027	-0.709	0.060

-2 -1 0 1 2

gr/100 mL
Anexo 4

Parecer de aprovação por Comitê de Ética em Pesquisa do Projeto MINA-Brasil
(Faculdade de Saúde Pública da Universidade de São Paulo parecer nº 872.613,
13/11/2014)
PARECER CONSUSTANTIADO DO CEP

DADOS DO PROJETO DE PESQUISA

Título da Pesquisa: Coorte Materno-Infantil no ACRE: MINA-2015
Pesquisador: Mary Augusto Cordoso
Área Temática: Genética Humana:
 (Trata-se de pesquisa envolvendo Genética Humana que não necessita de análise
etica por parte da CONEP);

Versão: 2
CAAE: 36678614.6.0000.5421
Instituição Proponente: Faculdade de Saúde Pública da Universidade de São Paulo - FSP/USP
Patrocinador Principal: MINISTERIO DA CIENCIA, TECNOLOGIA E INOVACAO

DADOS DO PARECER

Número do Parecer: 872.613
Data da Relatoria: 13/11/2014

Apresentação do Projeto:
Trata-se da segunda apresentação do projeto. É um estudo de coorte de nascimentos para investigação de
determinantes medicados na gestação associados ao perfil de saúde e nutrição na primeira infância em
Cruzeiro do Sul, interior de estado do Acre.

Objetivo da Pesquisa:
Objetivo Geral

"Investigar determinantes medicados na gestação associados ao perfil de saúde e nutrição de puérperas e
crianças em Cruzeiro do Sul, Acre, Amazônia Ocidental Brasileira".

Objetivos Específicos
"Descrever as características sócio demográficas, obstétricas, nutricionais e neonatais materno-infantil;
Investigar determinantes do perfil de saúde e nutrição de gestantes e sua relação com características
perinatais e neonatais materno-infantil.
Investigar determinantes do perfil de saúde e nutrição de gestantes e sua relação com a saúde e
desenvolvimento infantil".

Endereço: Av. Doutor Arnaldo, 715
Bairro: Cerqueira César
CEP: 01246-904
UF: SP
Município: SAO PAULO
Telefone: (11)3061-7779
Fax: (11)3061-7779
E-mail: ceep@fsp.usp.br
Avaliação dos Riscos e Benefícios:

Riscos:
Os riscos foram complementados em relação à primeira apresentação do projeto, atendendo as recomendações apontadas no parecer anterior. Na versão atual, no TCLE, lê-se: “O desconforto esperado com a participação neste estudo refere-se às entrevistas com perguntas de caráter pessoal e coleta de sangue venoso que utilizará profissionais treinados e material descartável. Por isso, os riscos são mínimos e comparáveis a qualquer outra coleta de sangue em laboratórios de análises clínicas”.

Benefícios:
A autora relata que “Gestantes com diagnóstico de anemia, deficiência de vitamina A ou malária confirmado por microscopia receberão tratamento medicamentoso gratuito pela equipe médica do projeto em parceria com as equipes de saúde da ESF do município de acordo com os esquemas terapêuticos do Ministério da Saúde.”

Comentários e Considerações sobre a Pesquisa:
Trata-se de estudo relevante que pode contribuir para o planejamento de ações de intervenção visando redução do risco gestacional associado a morbidades e distúrbios nutricionais e suas consequências na saúde infantil.

Considerações sobre os Termos de apresentação obrigatória:
Todas as pendências foram atendidas.

Recomendações:
Pela aprovação.

Conclusões ou Pendências e Lista de Inadequações:
Não há pendências.

Situação do Parecer:
Aprovado

Necessita Aprovação da CONEP:
Não

Considerações Finais a critério do CEP:

Endereço: Av. Doutor Arnaldo, 715
Bairro: Cerqueira Cesar
CEP: 01240-004
IF: SP
Município: SÃO PAULO
Telefon: (11)3661-7779
Fax: (11)3661-7779
E-mail: cone@fsc.usp.br
SÃO PAULO, 14 de Novembro de 2014

Assinado por:
Sandra Roberta Gouvea Ferreira Vivolo
(Coordenador)
Anexo 5

Termo de Consentimento Livre e Esclarecido
TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

PRO CURSO DE PESQUISA
Saúde e Nutrição Materno-Infantil em Cruzeiro do Sul, Acre:
Estudo Longitudinal de Base Populacional

Pesquisadora responsável: Profa. Dra. Marly Augusto Cardoso

OBTIVOS E PROCEDIMENTOS DA PESQUISA
Este estudo tem por objetivo principal estudar os fatores que influenciam a saúde e a nutrição de crianças de Cruzeiro do Sul desde o início de suas vidas, até o período de gestação. Com essas mudanças que observamos nas condições de saúde da nossa população, estudos com essa finalidade são importantes para identificar como prevenir o quanto antes a ocorrência de doenças e infecções, assim como o risco para deficiências nutricionais e distúrbios metabólicos, tanto em gestantes como em seus bebês.

Para isso, nosso estudo inclui três fases:

1. Prévom, nossa equipe de pesquisa em parceria com agentes de saúde realizará visitas domiciliares no município para identificar todas as gestantes com idade gestacional de até 20 semanas. Essas gestantes serão convidadas a participar do estudo e a responder um questionário inicial sobre a data de sua última menstruação e seus dados socioeconômicos, demográficos e obstétricos.

2. Segundo, serão agendadas duas avaliações clínicas, entre 16-20ª semanas e entre 24-28ª semanas de gestação, no Posto de Saúde do Agricultor. Em cada avaliação, nossa equipe de pesquisa realizará exame de ultrasonografia do bebê, medidas de peso e altura e coleta de amostra de sangue venoso (cerca de 12 ml) da gestante.

 O exame de ultrassom será importante para acompanhar o crescimento e o desenvolvimento do bebê no útero da mãe. A amostra de sangue será coletada em jejum de 08 horas para realização de hemograma completo, avaliar a presença de anemia, dosar vitaminas A, D e ácido fólico, glicose, insulina e infecção por malária.

3. Terceiro, no momento do parto no Hospital da Mulher e da Criança de Juruá, nossa equipe registrará o tipo de parto, idade gestacional, sexo, peso e comprimento do bebê. Após o nascimento, será necessário colher uma amostra de sangue do cordão umbilical (cerca de 12 ml) e de uma gota de sangue da placenta. Também serão coletadas informações sobre possíveis problemas que ocorreram na gestação e sobre qualquer dificuldade que a gestante tenha apresentado para enquadrar claramente no período.

 A coleta de amostras de sangue do cordão umbilical e da placenta ocorrerá após o parto, portanto, não será dolorosa nem para a mãe e nem para seu bebê. Esse material será muito importante para dosar vitaminas e minerais, avaliar características genéticas e presença de malária no bebê recém-nascido.

Termo de Consentimento Livre e Esclarecido – Saúde e Nutrição Materno-infantil
BENEFÍCIOS E RISCOS EM PARTICIPAR DA PESQUISA
Ao participar da pesquisa, a gestante e seu bebê terão avaliação nutricional gratuita por equipe especializada, com acesso aos resultados de exames individuais, que ficarão arquivados no seu prontuário do Hospital da Mulher e da Criança do Juruá e/ou nos postos de saúde.

O desconforto esperado com a participação neste estudo refere-se às entrevistas com perguntas de caráter pessoal e coleta de sangue venoso que utilizará profissionais treinados e material descartável. Por isso, os riscos são mínimos e comparáveis a qualquer outra coleta de sangue em laboratórios de análises clínicas.

GARANTIAS, ESPLEERECIMENTOS E RECUSA EM PARTICIPAR
Você poderá tirar dúvidas e será esclarecida sobre a pesquisa em qualquer aspecto necessário. Você é livre para se recusar a participar. Depois de aceitar participar, você também pode retirar o seu consentimento e interromper sua participação a qualquer momento, sem nenhum prejuízo em seu atendimento nos postos de saúde de Cruzeiro do Sul e no Hospital da Mulher e da Criança do Juruá.

Sua participação é voluntária, totalmente confidencial e não acarretará qualquer custo para você. Quando os dados coletados forem utilizados pela equipe de pesquisa neste estudo, os nomes dos participantes nunca serão revelados. Os dados ou o material biológico obtidos neste estudo poderão ser utilizados em outros projetos, com a devida aprovação do Comitê de Ética em Pesquisa da Faculdade de Saúde Pública da Universidade de São Paulo.

DECLARAÇÃO DE CONSENTIMENTO PARA PARTICIPAÇÃO POS-INFORMAÇÃO

Eu, __, portadora da identidade ________________________________, nascida em _____/_____/______, fui informada de maneira clara e detalhada sobre os objetivos da pesquisa “Saúde e Nutrição Materno-infantil em Cruzeiro do Sul, Acre: Estudo Longitudinal de Base Populacional”. Após ler e receber explicação sobre a pesquisa, e ter meus direitos de:

1. receber resposta a qualquer pergunta e esclarecimento sobre os procedimentos, riscos, benefícios e outros relacionados a pesquisa;
2. retirar o consentimento a qualquer momento e deixar de participar do estudo;
3. não ser identificado e ser manter o caráter confidencial das informações relacionadas à privacidade.

Declaro que concordo em participar desse estudo, que recebi uma via deste termo de consentimento livre e esclarecido, e que me foi dada a oportunidade de ler e esclarecer as minhas dúvidas. Em caso de dúvidas, poderei chamar a pesquisadora responsável Profa. Dra. Marly Augusto Cardoso no telefone (11) 3061 7705 ou o Comitê de Ética em Pesquisa da Faculdade de Saúde Pública da Universidade de São Paulo, sito à Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo, SP, telefone (11) 3061 7779.

Cruzeiro do Sul, ____/_____/______

__
Profa. Dra. Marly Augusto Cardoso
Assinatura da participante e impressão do polegar direito

Pesquisador de campo: _______________________ Tel (68): ______________________

Termo de Consentimento Livre e Esclarecido – Saúde e Nutrição Materno-infantil
Anexo 6

Manual do treinador e entrevistador - Projeto MINA-Brasil
MANUAL DOS ENTREVISTADORES
ORIENTAÇÕES PARA COLETA DE DADOS

Projeto MINA – Saúde e nutrição Materno-INfantil em Cruzeiro do Sul, Acre.

Seja bem vindo ao projeto MINA (Saúde e nutrição Materno-INfantil em Cruzeiro do Sul, Acre)!

Como participante do MINA você exercerá uma posição fundamental para o andamento desse estudo. Tenha isso em mente ao executar suas funções durante o andamento do MINA: o resultado final deste estudo dependerá de você e da qualidade final do dado que você coletará. Um trabalho de campo sem o cuidado necessário compromete a qualidade das informações, impossibilitando o alcance dos objetivos.

Este manual descreve todos os procedimentos a serem adotados nas diversas etapas do trabalho de campo. Constitui material de leitura e referência permanente para todos os envolvidos nas várias etapas (coordenadores, supervisores e coordenadores de campo). As instruções aqui contidas devem ser seguidas rigorosamente.

A proposta do presente estudo é investigar os fatores que influenciam a saúde e a nutrição de crianças de Cruzeiro do Sul, Acre desde o início de suas vidas, ainda no período da gestação. Todas as gestantes com idade gestacional de até 20 semanas ao longo do ano de 2015 no município de Cruzeiro do Sul serão convidadas a participar da pesquisa. As participantes da pesquisa serão acompanhadas durante a gestação, parto e puerpério e seus filhos até os dois anos de vida.

A coleta de dados inclui:

- Rastreamento das gestantes com menos de 20 semanas de gestação
 (FICHA DE IDENTIFICAÇÃO DA GESTANTE);
• Aceitação da mulher em participar da pesquisa, por meio de assinatura do **TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO**;

• Entrevista inicial com as gestantes (**QUESTIONÁRIO SOCIODEMOGRÁFICO E HISTÓRIA DE SAÚDE**);

• Entrevista de acompanhamento da gestante (**FORMULÁRIO DE ACOMPANHAMENTO DA GESTANTE**);

• Entrevista de acompanhamento no momento do parto (**FORMULÁRIO DE ACOMPANHAMENTO NO PARTO**);

• Entrevista sobre a saúde da criança, ao longo dos dois primeiros anos de vida (**FORMULÁRIO DE ACOMPANHAMENTO DA CRIANÇA**).

Os critérios gerais de exclusão do estudo são: não fornecimento do consentimento livre e esclarecido e quando a idade gestacional for superior a 20 semanas no momento do recrutamento à participação no estudo.

Instruções para o preenchimento do TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

O Termo de Consentimento Livre e Esclarecido é um documento no qual constam informações sobre objetivo e procedimentos da pesquisa, apresentados de forma simples e clara para compreensão dos potenciais participantes. Este documento é emitido em duas vias sendo que as ambas devem ser assinadas pelo coordenador da pesquisa, pela participante da pesquisa (ou impressão do polegar direito) e pelo pesquisador de campo. Uma das vias deve ficar com a participante e a outra deve ser entregue para os coordenadores de campo da pesquisa (Ana Carolina e/ou Paulo).

Este documento deve ser explicado de forma clara para a participante, onde os seguintes pontos devem ser citados:

• Apresentação do entrevistador, dizendo nome e propósito do contato com a mulher;
- Nome do projeto;
- Pesquisador responsável;
- Objetivos da pesquisa;
- Fases do estudo (explicar cada uma das fases);
- Benefícios e riscos na participação;

- Garantias, esclarecimentos e recusa em participar.

Feito isso e com aceite da mulher em participar do estudo, a gestante deve assinar as duas vias do documento. O entrevistador deve se colocar à disposição da voluntária para possíveis esclarecimentos futuros sobre qualquer procedimento da pesquisa, deixando telefone de contato para futuras comunicações.

Instruções para o preenchimento do QUESTIONÁRIO SOCIODEMOGRÁFICO E HISTÓRIA DE SAÚDE

Esse questionário conta com os seguintes campos para preenchimento, sendo que todos eles deverão ser preenchidos de forma legível e pelo próprio entrevistador:

- **ID:** número de identificação da gestante na pesquisa.
- **Nome da gestante:** escrever nome completo da gestante.
- **Endereço completo:** escrever o endereço de residência da gestante, com máximo de informações possíveis (rua e número).
- **Bairro:** escrever o bairro de residência da gestante (zona rural ou urbana).
- **CEP:** escrever o CEP de residência.
- **Ponto de referência:** escrever algum local que facilite encontrar a residência da gestante.
- **Coordenadas:** latitude e longitude serão preenchidas automaticamente pelo GPS do PDA.
• **Telefone fixo (se houver):** escrever o número de telefone residencial. Na observação identificar se o telefone é da própria residência da gestante ou de algum vizinho ou parente.

• **Telefone celular (se houver):** escrever o número de telefone celular da gestante. Na observação identificar se o telefone é da própria mulher ou de algum vizinho ou parente.

• **Telefones adicionais (se houver):** escrever o número de telefone de alguma pessoa próxima à gestante (esposo, mãe, parentes e/ou amigos). No campo ‘falar com’ identificar o nome do dono do telefone e no campo ‘relação’ identificar o parentesco ou se trata de amigo.

• **Email (se houver):** escrever endereço de e-mail para contato (escrever mais e-mails se houver).

• **Nome em rede social (Facebook, Instagram, Twitter, outra):** escrever nome para identificação da gestante nas respectivas redes sociais.

• **Número do cartão do SUS:** preencher com o número que consta no cartão do SUS.

• **Número SIVEP (notificação malária):** preencher com o número SIVEP.

• **Entrevistador:** preencher seu nome completo.

• **Data:** preenchimento do dia, mês e ano em que essa entrevista estiver sendo conduzida.

• **Data de nascimento da gestante:** preencher conforme data correspondente em documento oficial (carteira de identidade, carteira de motorista, carteira de trabalho, carteira de conselho profissional, entre outros).

• **Data da última menstruação:** anotar o primeiro dia da última menstruação. Caso haja dúvidas sobre o dia correto do início da última menstruação, deve-se perguntar o período do mês (início, meio ou fim) em que ocorreu. Se o período foi no início, meio ou fim do mês, considere como data da última menstruação os dias 5, 15 e 25, respectivamente do mês informado pela gestante.

• **Idade Gestacional estimada:** calcular a idade gestacional baseada na data da última menstruação.
BLOCO 1 – Dados domiciliares, socioeconômicos e ambientais.

Antes de iniciar esse bloco de questões, dizer para a gestante: “As perguntas serão sobre algumas características do domicílio em que a senhora mora”.

1. **Este domicílio é:** perguntar para gestante se o domicílio de residência é próprio, alugado, cedido ou outros (especificar - escrever por extenso).
2. **Tipo de domicílio:** perguntar para a gestante se a casa de moradia da mulher é de alvenaria, madeira, cômodo/quarto ou outro (especificar – escrever por extenso).
3. **Quantas pessoas moram em seu domicílio:** especificar o número de pessoas que dividem o domicílio com a gestante.
4. **Quantos cômodos tem este domicílio:** os cômodos de um domicílio são quarto, sala, sala de jantar (ou copa), cozinha, área de serviço e/ou banheiro.
5. **De onde é proveniente a água utilizada neste domicílio para beber e no preparo de alimentos:** caso a resposta não se enquadre em alguma das opções, deve-se escrever por extenso o local de obtenção da água.
6. **Qual o destino do lixo gerado no domicílio:** caso a resposta não se enquadre em alguma das opções, deve-se escrever por extenso o local de destino do lixo.
7. **Para onde vai o esgoto de sua casa:** caso a resposta não se enquadre em alguma das opções, deve-se escrever por extenso o local de destino do esgoto.
8. **Este domicílio tem energia elétrica:** assinalar um das opções disponíveis
9. **Sua casa foi borrifada pela equipe de controle de malária ou dengue:** se sim escrever a data de borrifamento, com mês com 2 dígitos e ano com 4 dígitos (mm/aaaa).
10. **Há cão ou gato no seu domicílio:** assinalar a presença ou não de cão ou gato no mesmo domicílio da gestante.
11. Há horta ou pomar em seu domicílio: assinalar a presença ou não de horta ou pomar no domicílio.

12. Quais dos bens abaixo existem em seu domicílio: assinalar a presença ou não de cada um dos bens descritos.

13. Quem é considerado (a) o(a) chefe/responsável pela família em seu domicílio: assinalar uma das respostas disponíveis e no caso de ‘outros’ escrever por extenso qual o grau de parentesco ou outro do chefe.

14. Caso não seja a senhora, o chefe/responsável pela família frequentou a escola: assinalar a resposta de acordo as opções e não deixar de preencher até que série completou os estudos em caso de resposta ‘sim’.

15. A senhora frequentou a escola: assinalar a resposta de acordo as opções e não deixar de preencher até que série completou os estudos em caso de resposta ‘sim’

16. Qual sua ocupação atual: perguntar qual dos serviços listados nas opções, seja com ou sem vínculo empregatício, a gestante exerce no dia a dia, atentando-se para especificar caso seja reportada alguma ocupação não tenha nas opções.

17. A senhora (e/ou sua família) é beneficiária/recebe: para essa pergunta é possível o preenchimento de mais de uma opção de resposta, atentando-se para não esquecer o preenchimento do período em que a gestante está recebendo o benefício. Qualquer outro benefício que não conste dentro das opções deve ser perguntado e preenchido como não ou sim (nesse último caso preencher o período).

BLOCO 2 – Dados sobre estilo de vida e antecedentes pessoais da gestante.

Antes de iniciar esse bloco de questões, dizer para a gestante: “As perguntas a seguir dizem respeito à senhora e alguns de seus hábitos”.

18. Há quanto tempo a senhora mora nesta cidade: assinalar de acordo com as opções de resposta há quanto tempo a gestante resido no município de Cruzeiro do Sul (zonas urbana e rural).
19. A senhora está casada ou mora com um companheiro: mesmo a gestante não sendo casada oficialmente perguntar se ela possui parceiro (pode ser o pai da criança ou não) que reside com ela, especificando o período em que moram juntos.

20. Considerando o período de toda sua vida, a senhora já fumou mais de 20 maços de cigarro, cachimbo ou charuto: falar cada uma das opções disponíveis de resposta e assinalar a opção correspondente.

21. Se a senhora fuma ou fumou, por quanto tempo fuma/fumou: em caso de resposta positiva para a pergunta 20, questionar quantos anos e meses que a gestante fuma/fumou.

22. Se a senhora parou de fumar, há quanto tempo isso ocorreu: padrão de resposta semelhante para a pergunta 21.

23. Se a senhora fuma/fumou, quanto cigarros, cachimbos ou charutos em média a senhora fuma ou fumava por dia: mais de uma resposta é possível para essa pergunta, sendo importante deixar que a gestante responda livremente sem indução ou arredondamento de resposta (caso a gestante não saiba uma número exato, peça que ela dê um número aproximado).

24. Existem fumantes em seu domicílio: assine de acordo com as opções.

25. Considerando os últimos três meses, a senhora consumiu bebidas alcoólicas (por exemplo, cerveja, vinho, champagne, licor, pinga, uísque, vodka, vermouths, caninha, rum, tequila, gin): existem cinco possibilidades de resposta e somente uma de ser assinalada.

26. Considerando os últimos três meses, a senhora fez uso de alguma droga ilícita (por exemplo, maconha, cocaína, crack, anfetaminas, éxtase, sedativos, alucinógenos, opióides, sem prescrição por médico): existem cinco possibilidades de resposta e somente uma dever ser assinalada. Recomenda-se cuidado ao fazer essa pergunta, para não deixar a mulher desconfortável para responder.
27. **Se a senhora está casada ou mora com um companheiro, o companheiro da senhora consome ou faz uso de:** para cada um dos itens (cigarro, bebidas alcoólicas e drogas ilícitas) existem três opções de resposta e somente uma deve ser assinalada. Recomenda-se cuidado ao fazer essa pergunta, para não deixar a mulher desconfortável para responder.

28. **Em média, quantas horas a senhora costuma dormir diariamente:** é importante deixar que a gestante responda livremente sem indução ou arredondamento de resposta (caso a gestante não saiba uma número exato, peça que ela dê um número aproximado).

29. **A senhora já apresentou algum das seguintes condições ou problemas de saúde:** para cada um dos itens (pressão alta, diabetes, etc.) assinalar uma opção de resposta. Caso ela especifique outra que não conste na lista, preencher o nome do problema de saúde em ‘outros’.

30. **A senhora já foi internada:** existem duas opções de resposta, sendo que no caso de resposta ‘sim’ é importante questionar o motivo e a idade em que foi internada.

31. **A senhora já fez alguma cirurgia:** existem duas opções de resposta, sendo que no caso de resposta ‘sim’ é importante questionar o motivo e a idade em que ocorreu a cirurgia.

32. **A senhora faz uso de algum remédio/medicamento ou suplemento/vitamina regularmente:** existem duas opções de resposta, sendo que no caso de resposta ‘sim’ é importante questionar o nome do produto e a posologia prescrita ou que a que a gestante ingere. A gestante pode não se lembrar do nome do produto, então pode ser útil pedir a embalagem do mesmo para fazer a anotação.

BLOCO 3 – História obstétrica da gestante.

Antes de iniciar esse bloco de questões, dizer para a gestante: “As perguntas a seguir dizem respeito ao seu histórico de gestações”.
33. **A sua primeira menstruação veio com quantos anos:** questionar a idade em que ocorreu a primeira menstruação da gestante.

34. **Quando a senhora menstruava, seus ciclos menstruais eram regulares?** De quanto em quantos dias: existem duas opções de resposta, sendo importante relatar de quantos em quantos dias ocorre o ciclo menstrual.

35. **Quando ficava menstruada, quantos dias duravam cada menstruação:** existem duas opções de resposta, sendo importante relatar de quantos em quantos dias ocorre o ciclo menstrual.

36. **A senhora fazia uso de algum método para evitar gravidez (métodos anticoncepcionais):** existem duas opções de resposta, no caso de resposta ‘sim’, preencher qual ou quais métodos eram usados pela mulher.

37. **A senhora já fez exame de Papanicolaou:** existem duas opções de resposta, no caso de resposta ‘sim’, preencher quantos exames foram realizados.

38. **Esta foi uma gestação planejada pela senhora (e seu companheiro):** assinalar de acordo com as opções.

39. **Esta é a primeira gestação da senhora:** assinalar de acordo com as opções.

40. **Se já ficou grávida, quantas vezes ao todo com essa gravidez (incluindo abortos, natimortos, etc.):** assinalar o número de vezes em que a gestante ficou grávida, mesmo se ela perdeu o bebê por qualquer motivo que seja ou se a criança nasceu morta (natimorto – sem sinais vitais logo após o parto).

41. **Se a senhora já ficou grávida, qual era a sua idade na primeira gestação:** assinalar a idade referida na primeira gestação da mulher, mesmo se ela perdeu o bebê por qualquer motivo que seja ou se a criança nasceu morta.

42. **Quantos filhos nasceram vivos:** caso a gestante tenha tido mais de uma gestação, assinalar quantos filhos apresentavam sinais vitais logo após o parto.
43. **História de nascimentos – sobre seus filhos que nasceram vivos:**
para essa questão existem campos de resposta para cada um dos filhos da gestante que nasceram vivos. Preencher data de nascimento, sexo, tipo de parto (se normal, fórceps, cesárea), peso ao nascer da criança, se a criança nasceu prematura ou não e se está viva no momento em que a entrevista estiver sendo feita (caso a criança tenha falecido, registrar o ano de falecimento).

BLOCO 4 – Dados e cuidado pré-natal referentes à gestação atual

Antes de iniciar esse bloco de questões, dizer para a gestante: “As perguntas a seguir dizem respeito à sua gestação atual”.

44. **A senhora já iniciou os atendimentos de cuidado pré-natal na gestação atual:** assinalar o início ou não do cuidado pré-natal nessa gestação.

45. **Caso sim, em qual mês ou semana de gestação foi realizada a primeira consulta:** essa questão questiona a idade gestacional em semanas ou meses em que a gestante iniciou o cuidado pré-natal, por exemplo, se iniciou com 18 semanas ou no segundo mês de gravidez.

46. **Caso sim, quantas consultas foram realizadas até o momento:** registar o número de consultas pré-natal realizadas pela gestante até o momento da entrevista seja no serviço público ou privado.

47. **Caso sim, onde a senhora está realizando o acompanhamento pré-natal:** para essa questão, registrar o local em que a gestante está realizando o acompanhamento pré-natal atualmente, mesmo que ela tenha iniciado em outro local (por exemplo, iniciou no serviço público, mas agora faz no serviço privado). Em caso da resposta ‘outro’ especificar o local em que o acompanhamento está sendo feito.

48. **Qual é a cor da pele da gestante:** perguntar para a gestante como ela
classifica a cor de sua própria pele. Em caso da resposta ‘outro’ especificar a cor relatada pela mulher.

49. **Qual é a cor de pele do pai biológico do bebê (gestação atual):** perguntar para a gestante como ela classifica a cor da pele do pai biológico da criança (não deve ser preenchida com a cor de pele do companheiro atual caso ele não seja o pai biológico). Em caso da resposta ‘outro’ especificar a cor relatada pela mulher.

Instruções para o preenchimento da FICHA DE ACOMPANHAMENTO DO PARTO

Esse questionário deverá ser preenchido na própria maternidade onde foi realizado o parto e conta com os seguintes campos para preenchimento, sendo que todos deverão ser preenchidos de forma legível e pelo próprio entrevistador:

- **ID:** número de identificação da gestante na pesquisa.
- **Nome da gestante:** escrever nome completo da gestante.
- **Endereço completo:** escrever o endereço de residência da gestante, com máximo de informações possíveis (rua e número).
- **Bairro:** escrever o bairro de residência da gestante (zona rural ou urbana).
- **CEP:** escrever o CEP de residência.
- **Ponto de referência:** escrever algum local que facilite encontrar a residência da gestante.
- **Telefone (s):** escrever o número de telefone residencial, celular e/ou de parentes e vizinhos.
- **Número do cartão do SUS:** preencher com o número que consta no cartão do SUS.
- **Número SIVEP (notificação malária):** preencher com o número SIVEP.
- **Entrevistador:** preencher seu nome completo.
- **Data:** preenchimento do dia, mês e ano em que essa entrevista estiver sendo conduzida.
1. **Digitalização do cartão da gestante:** é de extrema importância a digitalização do cartão da gestante (que normalmente as mulheres o levam quando vão ao hospital para ter a criança), sendo recomendado fazer isso antes de iniciar a entrevista. Caso a gestante não tenha levado o cartão, deve-se questionar onde está o cartão e procurar digitalizá-lo o mais precocemente possível.

2. **Avaliação funcional da deficiência de vitamina A:** todas as perguntas referentes a essa avaliação têm como referência o período da gestação, ou seja, deve-se perguntar para a mulher se ela apresentou algum desses problemas durante a gestação e não no momento em que a entrevista estiver sendo realizada. **Pergunta a** – questionar se a mulher apresenta alguma dificuldade para enxergar durante o dia e se ela faz uso de óculos ou lentes de contato para correção desse problema (espera-se que ela responda não se fazer uso de óculos ou lentes de contato); **pergunta b** – questionar se a mulher apresenta alguma dificuldade para enxergar em momentos específicos do dia (como o amanhecer ou entardecer, que são períodos de transição de luminosidade do ambiente) ou mesmo à noite com baixa luminosidade. Para facilitar a compreensão pela gestante da pergunta, pergunte se quando ela não estava grávida ela apresentava algum desses problemas para enxergar durante a noite ou com pouca luz e comparar com o período gestacional, principalmente no último trimestre. Outro ponto que pode favorecer a compreensão é perguntar se a gestante costuma esbarrar nos móveis de sua casa ou mesmo em outras pessoas quando está com pouca luz ou à noite. Mais uma alternativa de aumentar a compreensão é perguntar para a gestante se quando ela saia de um ambiente com maior luminosidade para algum com luminosidade menor ela demorava um tempo maior para se adaptar a esse ambiente em comparação ao período pré-gestacional; **pergunta c** – pode ser que a gestante não relate problemas de enxergar com pouca luz ou à noite com baixa luminosidade, mas relate que não costuma enxergar à noite (importante: nenhum de nós consegue enxergar à noite na ausência de luz,
portanto deixar bem claro para a mulher se ela apresentava cegueira noturna mas não em um ambiente de total escuridão), sempre tendo como base de comparação o período pré-gestacional.

3. **Alguma intercorrência ocorreu durante a gestação até o momento do parto:** para cada uma das opções, uma das alternativas deve ser preenchida e também em que mês ocorreram (pode ser útil recorrer ao prontuário da gestante para busca desses dados). Em caso da resposta ‘outro’ especificar o problema que não conste na lista.

4. **Peso atual (peso gestacional final, imediatamente pré-parto):** a aferição dessa medida pode ser conduzida no momento pré-parto ou imediatamente pós-parto, com o uso de balança presente no hospital. É importante seguir as padronizações para aferição dessa medida, conforme treinamento. Duas aferições devem ser realizadas e preenchidas.

5. **Digitalização da ficha da maternidade/prontuário de atendimento:** é de extrema importância a digitalização da ficha da maternidade ou do prontuário de atendimento da gestante no momento do parto. Procure se informar com profissionais da maternidade onde é possível encontrar esses dados.

6. **Data de nascimento da criança:** preencher corretamente o dia, mês e ano de nascimento, sendo recomendado buscar essa informação junto aos registros de prontuário do recém-nascido.

7. **Idade gestacional final:** preencher a idade gestacional em que a mulher estava quando o parto ocorreu.

8. **Tipo de parto:** existem quatro opções para essa pergunta, sendo que somente uma deve ser assinalada e no caso de ‘outro’ escrever qual o tipo de parto.

9. **Parto de múltiplos (gêmeos):** assinalar uma das duas opções de resposta. Caso tenha ocorrido parto de múltiplos, as perguntas de 10 a 17 devem ser preenchidas para cada uma das crianças.
10. **Sexo da criança:** assinalar um das opções disponíveis.

11. **Índice de Ápgar do recém-nascido:** de acordo com a descrição médica, preencher os valores para o 1º e 5º minutos.

12. **Batimento cardíaco:** assinalar uma das duas opções de resposta. No caso de ‘sim’, preencher também a frequência cardíaca em batimentos por minuto, conforme descrição médica.

13. **Peso da criança:** a aferição dessa medida pode ser até 12 horas após o parto ou imediatamente pós-parto, com o uso de balança presente no hospital. É importante seguir as padronizações para aferição dessa medida, conforme treinamento. Duas aferições devem ser realizadas e preenchidas.

14. **Comprimento da criança:** a aferição dessa medida deve ser realizada juntamente com a aferição do peso ao nascer, com o uso de estadiômetro presente no hospital. É importante seguir as padronizações para aferição dessa medida, conforme treinamento. Duas aferições devem ser realizadas e preenchidas.

15. **O recém-nascido foi amamentado na primeira após o parto:** assinalar uma das opções de resposta.

16. **Durante o parto ou após os procedimentos do parto, a gestante apresentou algum problema de saúde:** para cada uma das opções, uma das alternativas deve ser preenchida. Em caso da resposta ‘outro’ especificar o problema que não conste na lista.

17. **Resultado de testes no parto:** para cada uma das opções, uma das alternativas deve ser preenchida.

18. **Coleta de material biológico após o parto**

19. **Gota espessa do sangue do cordão umbilical:** para cada uma das opções, uma das alternativas deve ser preenchida.

20. **Coleta de sangue da placenta para PT-PCR:** para cada uma das opções, uma das alternativas deve ser preenchida.

21. **Gota espessa do sangue da placenta:** para cada uma das opções, uma das alternativas deve ser preenchida.
Anexo 7

Ficha de rastreamento das gestantes
Saúde e Nutrição Materno-Infantil em Cruzeiro do Sul, Acre:
Estudo Longitudinal de Base Populacional

FICHA DE IDENTIFICAÇÃO
RASTREAMENTO DE GESTANTES COM 16 SEMANAS (4 meses) OU MENOS

Vaga	Vaga	
agente comunitário de saúde:	data:	
nome da gestante:		
endereço completo:		
bairro:	cep:	
ponto de referência:		
telefone fixo:	(__) - (__)	obs:
telefone celular:	(__) - (__)	obs:
telefones adicionais:	(__) - (__)	falar com (relação:)
	(__) - (__)	falar com (relação:)
e-mail:		
nome em rede social (facebook, instagram, twitter, outras):		
nº cartão sus:	nº sivep (notificação malária):	

FAVOR COMPLETAR OS SEGUINTE DADOS:

vaga	vaga	
data de nascimento da gestante:	__/__/	
data da última menstruação:	__/__/	
idade gestacional estimada:	_ _ _ semana(s)	
Anexo 8

Questionário sócio demográfico e história de saúde
Questionário Sociodemográfico e História de Saúde

ID: __ __ __ __

Nome: __

Endereço completo: __

Bairro: ____________________________ **CEP:** ________________

Coordenadas:

Latitude	Longitude
__ __ __ __'	__ __ __ __'

Contatos:

Telefone fixo:	(____) __________ (____) ______ obs: ___________________________

Telefone celular:	(____) _______	(____) _______	obs: ___________________________

Telefones adicionais:	(____) _______	Falar com	(relação: _______)

(____) _______	Falar com	(relação: _______)

E-mail: __

Nome em rede social (Facebook, Instagram, Twitter, outras): ______________

Nº cartão SUS: __

Nº SIVEP (notificação malária): ____________________________

Entrevistador: __ **Data da entrevista:** __/__/____

Data de nascimento da gestante:	__/__/____	**Conferir em documento oficial**

Data da última menstruação:	__/__/____

Idade gestacional estimada:	__ __ __	semanas

Bloco 1 – Dados Domiciliares, Socioeconômicos e Ambientais

As perguntas a seguir serão sobre algumas características do domicílio em que a senhora mora:

1. **Este domicílio é:**

 | 0 | Próprio | 1 | Alugado | 2 | Cedido | 3 | Outro, especifique: | _______ |

2. **Tipo de domicílio:**

 | 0 | Casa de alvenaria | 1 | Casa de madeira |

 | 2 | Cômodo/quarto | 3 | Outro, especifique: | _______ |

3. **Quantas pessoas moram em seu domicílio?**

 | ____ | pessoas |

4. **Quantos cômodos tem este domicílio?**

 | ____ | cômodos |

5. **De onde é proveniente a água utilizada neste domicílio para beber e no preparo de alimentos?**

 | 0 | Rede geral de distribuição | 1 | Poço/nascente |

 | 2 | Rio/igarapé | 3 | Comprada/mineral |

 | 4 | Outro, especifique: | _______ |

6. **Qual o destino do lixo gerado no domicílio?**

 | 0 | Coletado | 1 | Enterrado | | |
| 2 | ___ | Queimado | 3 | ___ | Descartado em terreno baldio |
| 4 | ___ | Descartado em rio/igarape | 5 | ___ | Outro, especifique ________________________________ |

7. Para onde vai o esgoto de sua casa?
- 0 | ___ | Rede de esgoto
- 1 | ___ | Fossa séptica
- 2 | ___ | Fossa rudimentar
- 3 | ___ | Vala a céu aberto
- 4 | ___ | Rio/igarape
- 5 | ___ | Recolhido por caminhão (tatução)
- 6 | ___ | Outro, especifique ________________________________

8. Este domicílio tem energia elétrica?
- 0 | ___ | Não
- 1 | ___ | Sim

9. Sua casa foi borrifada pela equipe de controle de malária ou dengue?
- 0 | ___ | Não
- 1 | ___ | Sim, quando foi realizada a última borrifação (mês/ano)? / _______

10. Há cão ou gato no seu domicílio?
- a) Cão: 0 | ___ | Não
- 1 | ___ | Sim
- b) Gato: 0 | ___ | Não
- 1 | ___ | Sim

11. Há horta ou pomar em seu domicílio?
- 0 | ___ | Não
- 1 | ___ | Sim

12. Quais dos bens abaixo existem em seu domicílio?
- a) Televisão 0 | ___ | Não
- 1 | ___ | Sim
- b) Aparelho de som 0 | ___ | Não
- 1 | ___ | Sim
- c) Computador 0 | ___ | Não
- 1 | ___ | Sim
- d) Aparelho de DVD 0 | ___ | Não
- 1 | ___ | Sim
- e) Internet 0 | ___ | Não
- 1 | ___ | Sim
- f) TV a cabo 0 | ___ | Não
- 1 | ___ | Sim
- g) Fogão a gás 0 | ___ | Não
- 1 | ___ | Sim
- h) Geladeira 0 | ___ | Não
- 1 | ___ | Sim
- i) Liquificadores 0 | ___ | Não
- 1 | ___ | Sim
- j) Ferro elétrico 0 | ___ | Não
- 1 | ___ | Sim
- k) Máquina de lavar roupa 0 | ___ | Não
- 1 | ___ | Sim
- l) Microondas 0 | ___ | Não
- 1 | ___ | Sim
- m) Jogo de sala/estofado 0 | ___ | Não
- 1 | ___ | Sim
- n) Telefone fixo 0 | ___ | Não
- 1 | ___ | Sim
- o) Telefone celular 0 | ___ | Não
- 1 | ___ | Sim
- p) Bicicleta 0 | ___ | Não
- 1 | ___ | Sim
- q) Motocicleta 0 | ___ | Não
- 1 | ___ | Sim
- r) Carro 0 | ___ | Não
- 1 | ___ | Sim
- s) Dono de terra/colônia 0 | ___ | Não
- 1 | ___ | Sim
- t) Dono de gado 0 | ___ | Não
- 1 | ___ | Sim

13. Quem é considerado(a) o(a) chefe/responsável pela família em seu domicílio?
- 0 | ___ | A mesma
- 1 | ___ | Companheiro
- 2 | ___ | Outro, especifique ________________________________

14. Caso não seja a senhora, o chefe/responsável pela família frequentou a escola?
- 0 | ___ | Não, e não sabe ler ou escrever
- 1 | ___ | Não, mas sabe ler ou escrever
- 2 | ___ | Sim. Até que série completou os estudos? ___ série ___ grau

Questionário Sociodemográfico e História de Saúde
15. A senhora frequentou a escola?
0 | ___ | Não, e não sabe ler ou escrever
1 | ___ | Não, mas sabe ler e escrever
2 |___ | Sim. Até que série completou os estudos? ___ série ___ grau

16. Qual a sua ocupação atual?
0 | ___ | Dona de casa
1 | ___ | Doméstica, faxineira, serviços gerais
2 | ___ | Comércio
3 | ___ | Agricultura
4 | ___ | Serviços técnicos (escola, secretaria, etc)
5 |___ | Assistencial (igrejas, entidades, etc)
6 |___ | Outro, especifique

17. A senhora (e/ou sua família) é beneficiária/recebe:

a) Programa Bolsa Família	0	___	Não	1	___	Sim	Período: ____________________________
b) Seguro desemprego	0	___	Não	1	___	Sim	Período: ____________________________
c) Aposentadoria	0	___	Não	1	___	Sim	Período: ____________________________
d) Pensão alimentícia	0	___	Não	1	___	Sim	Período: ____________________________
e) Outro: ____________________________	0	___	Não	1	___	Sim	Período: ____________________________

BLOCO 2 – DADOS SOBRE ESTILO DE VIDA E ANTECEDENTES PESSOAIS DA GESTANTE

As perguntas a seguir dizem respeito à senhora e alguns de seus hábitos:

18. Há quanto tempo a senhora mora nesta cidade?
0 | ___ | Menos de 1 ano
1 | ___ | Entre 1 e 5 anos
2 |___ | Mais de 5 anos
3 |___ | Desde que nasceu

19. A senhora está casada ou mora com um companheiro?
0 | ___ | Não
1 |___ | Sim, período: ____________________________

20. Considerando o período de toda sua vida, a senhora já fumou mais de 20 maços de cigarro, cachimbo ou charuto?
0 | ___ | Não
1 |___ | Sim, mas parou de fumar
2 |___ | Sim e fuma atualmente

21. Se a senhora fuma ou fumou, por quanto tempo fuma/fumou?
___ ___ anos
___ ___ meses

22. Se a senhora parou de fumar, há quanto tempo isso ocorreu?
___ ___ anos
___ ___ meses

23. Se a senhora fuma ou fumou, quantos cigarros, cachimbos ou charutos em média a senhora fuma ou fumava por dia?

a) Cigarros:	___ ___ ___	unidades por dia
b) Cachimbos:	___ ___ ___	unidades por dia
c) Charutos:	___ ___ ___	unidades por dia

24. Existem fumantes em seu domicílio?
0 | ___ | Não
1 |___ | Sim

25. Considerando os últimos três meses, a senhora consumiu bebidas alcoólicas (por exemplo, cerveja, vinho, champagne, licor, pinga, uísque, vodka, vermouths, caninha, rum, tequila, gin)?
0 | ___ | Não, nunca consumiu
2 |___ | Sim, mensalmente
3 |___ | Sim, semanalmente
4 |___ | Sim, diariamente ou quase todos os dias
26. Considerando os últimos três meses, a senhora fez uso de alguma droga ilícita (por exemplo, maconha, cocaína, crack, anfetaminas, éxtase, inalantes, sedativos, alucinógenos, opioides, sem prescrição por médico)?

	NÃO	Sim, 1 ou 2 vezes	Sim, diariamente ou quase todos os dias
0			
1	Sim		
2			
3			
4			

27. Se a senhora está casada ou mora com um companheiro, o companheiro da senhora consome ou faz uso de:

 a) Cigarro
 b) Bebidas alcoólicas
 c) Drogas ilícitas

	NÃO	Sim, esporadicamente	Sim, sempre/com frequência
0			
1	Sim		
2			

28. Em média, quantas horas a senhora costuma dormir diariamente?

	horas
0	
1	
2	
3	

29. A senhora já apresentou alguma das seguintes condições ou problemas de saúde?

 a) Pressão alta (hipertensão arterial crônica)
 b) Diabetes
 c) Cardiopatias, incluindo doença de Chagas
 d) Doença renal crônica
 e) Anemias ou deficiência de nutrientes
 f) Baixo peso ou desnutrição
 g) Sobrepeso ou obesidade
 h) Epilepsia
 i) Doenças da tireoides ou outros distúrbios hormonais
 j) Hepatite
 k) Tuberculose
 l) Malária
 m) Doenças sexualmente transmissíveis
 n) Portadora de infecção pelo HIV
 o) Doenças neurológicas e psiquiátricas
 p) Câncer ou doenças neoplásicas
 q) Doenças respiratórias
 r) Outra: ____________________________

30. A senhora já foi internada?

	Sim, especifique:
0	
1	

 Motivo: ____________________________
 Idade: ____________________________

31. A senhora já fez alguma cirurgia?

	Sim, especifique:
0	
1	

 Motivo: ____________________________
 Idade: ____________________________

32. A senhora faz uso de algum remédio/medicamento ou suplemento/vitamina regularmente?

	Sim, especifique:
0	
1	

 Motivo: ____________________________
 Idade: ____________________________
Nome: ________________________________ Posologia: ____________________________

BLOCO 3 – HISTÓRIA OBSTÉTRICA DA GESTANTE

As perguntas a seguir dizem respeito ao seu histórico de gestações:

33. A sua primeira menstruação veio com quantos anos?
 |_|_|_|_ anos

34. Quando a senhora menstruava, seus ciclos menstruais eram regulares? De quantos em quantos dias?
 0 |__| Não, menstruações irregulares 1 |__| Sim, menstruações regulares a cada ___ dias

35. Quando ficava menstruada, quantos dias durava cada menstruação?
 0 |__| Duração irregular 1 |__| Ciclos regulares, durante ___ dias

36. A senhora fazia uso de algum método para evitar gravidez (métodos anticoncepcionais)?
 0 |__|Não 1 |__| Sim, quale(s): ____________________________

37. A senhora já fez exame de Papanicolau?
 0 |__| Não 1 |__| Sim, quantas vezes: ___ vezes

38. Esta foi uma gestação planejada pela senhora (e seu companheiro)?
 0 |__| Não 1 |__| Sim

39. Esta é a primeira gestação da senhora?
 0 |__| Não 1 |__| Sim

40. Se já ficou grávida, quantas vezes ao todo sem contar esta gravidez (incluindo abortos, natiimortos, etc)?
 |__|_ vezes

41. Se a senhora já ficou grávida, qual era sua idade na primeira gestação?
 |__|_ anos

42. Quantos filhos nasceram vivos?
 |__|_ filhos

43. História de nascimentos – sobre os seus filhos que nasceram vivos:

Data de nascimento	Sexo da criança	Tipo de parto	Peso ao nascer	Prematuro?	Está viva (atualmente)?					
a) ___/__/___	_	Feminino	_	Normal	_	Fórceps	_	Não	_	Não, especifique o ano de falecimento: ______
	_	Masculino	_	Cesárea	_	Sim	_	Sim		
b) ___/__/___	_	Feminino	_	Normal	_	Fórceps	_	Não	_	Não, especifique o ano de falecimento: ______
	_	Masculino	_	Cesárea	_	Sim	_	Sim		
c) ___/__/___	_	Feminino	_	Normal	_	Fórceps	_	Não	_	Não, especifique o ano de falecimento: ______
	_	Masculino	_	Cesárea	_	Sim	_	Sim		
d) ___/__/___	_	Feminino	_	Normal	_	Fórceps	_	Não	_	Não, especifique o ano de falecimento: ______
	_	Masculino	_	Cesárea	_	Sim	_	Sim		
Saúde e Nutrição Materno-Infantil em Cruzeiro do Sul, Acre: Estudo Longitudinal de Base Populacional

	Cesárea	Feminino	Fórceps	Não	Sim	Não, especifique o ano de falecimento:
e)						
f)						
g)						
h)						
i)						
j)						

BLOCO 4 – DADOS E CUIDADO PRÉ-NATAL REFERENTES À GESTAÇÃO ATUAL

As perguntas a seguir dizem respeito à sua gestação atual:

44. A senhora já iniciou os atendimentos de cuidado pré-natal na gestação atual?

- **0** Não
- **1** Sim

45. Caso sim, em qual mês ou semana da gestação foi realizada a primeira consulta pré-natal?

- **__** mês
- **__** semana

46. Caso sim, quantas consultas foram realizadas até o momento?

- **__** consultas

47. Caso sim, onde a senhora está realizando o acompanhamento pré-natal?

- **0** Serviço público
- **1** Serviço particular/convênio
- **2** Outro, especifique

48. Qual é a cor de pele da gestante?

- **0** Branca
- **1** Negra
- **2** Parda
- **3** índigena
- **4** Amarela
- **5** Outro, especifique

49. Qual é a cor de pele do pai biológico do bebê (gestação atual)?

- **0** Branca
- **1** Negra
- **2** Parda
- **3** índigena
- **4** Amarela
- **5** Outro, especifique
- **9** Não sabe
Anexo 9

Formulário de acompanhamento das gestantes
FORMULÁRIO DE ACOMPANHAMENTO DA GESTANTE

ID: ___ ___ ___

Nome: __

Telefone(s): __

Entrevistador: ___ Data da entrevista: ___/___/_______

BLOCO 1 – EXAME CLÍNICO

1. Exame de ultrassonografia:
 0 [] Não realizado 1 [] Realizado

2. Gestação múltipla?
 0 [] Não 1 [] Sim (caso sim, completar as informações a seguir para cada uma das crianças)

3. Medidas:
 a) Diâmetro biparietal
 1° imagem: [] [] [] 2° imagem: [] [] []
 b) Circunferência abdominal
 1° imagem: [] [] [] 2° imagem: [] [] []
 c) Comprimento femoral
 1° imagem: [] [] [] 2° imagem: [] [] []
 d) Diâmetro occipito-frontal
 1° imagem: [] [] [] 2° imagem: [] [] []
 e) Circunferência cefálica
 1° imagem: [] [] [] 2° imagem: [] [] []
 f) Área transversa fêmur
 1° imagem: [] [] [] 2° imagem: [] [] []
 g) Volume do líquido amniótico

 h) ILA (maior bolsão)

 i) Localização da placenta

 j) Apresentação fetal

4. Sexo da criança:
 0 [] Feminino 1 [] Masculino 2 [] Não identificado

COLETA DE AMOSTRA DE SANGUE DA GESTANTE

5. A senhora está se sentindo bem hoje?
 0 [] Não 1 [] Sim

6. Se a gestante não estiver bem:
 a) Temperatura: [] [] °C
 b) Diarréia: 0 [] Não 1 [] Sim

7. A senhora está fazendo uso de medicamento ou suplemento nutricional?
 0 [] Não 1 [] Sim, especifique:

 Nome:___ Posologia:__________________________
 Nome:___ Posologia:__________________________
 Nome:___ Posologia:__________________________
 Nome:___ Posologia:__________________________
 Nome:___ Posologia:__________________________

8. Que dia/horário a senhora comeu ou bebeu algo pela última vez?
 a) Água: _____ / _____ _____ h _____ min
 b) Alimento: _____ / _____ _____ h _____ min
Saúde e Nutrição Materno-Infantil em Cruzeiro do Sul, Acre: Estudo Longitudinal de Base Populacional

9. Horário da coleta de sangue: ____ h ____ min

10. Coleta de sangue:
 - 0 | __ | Não realizada
 - 1 | __ | Realizada

11. Resultado Hemocue: ___ | ___ | ___ mg/dL

12. Gota espessa do sangue periférico materno:
 - 0 | __ | Não
 - 1 | __ | Sim

EXAME ANTROPOMÉTRICO DA GESTANTE

13. Peso pré-gestacional habitual referido: ___ | ___ | ___ kg

14. Peso atual:
 - a) 1ª medida: ___ | ___ | ___ kg
 - b) 2ª medida: ___ | ___ | ___ kg

15. Altura:
 - a) 1ª medida: ___ | ___ | ___ cm
 - b) 2ª medida: ___ | ___ | ___ cm

AFEIÇÃO DA PRESSÃO ARTERIAL DA GESTANTE

16. Pressão arterial sistólica/diastólica
 - a) 1ª medida: ___ | ___ | ___ mmHg
 - b) 2ª medida: ___ | ___ | ___ mmHg
 - c) 3ª medida: ___ | ___ | ___ mmHg

EXPOSIÇÃO SOLAR DA GESTANTE

17. Durante a semana anterior, a senhora ficou em ambientes ensolarados, por qualquer motivo, por exemplo, por causa de atividades de lazer ou exercício físico, trabalho, atividades do lar ou quando está andando de um lugar para o outro, por, pelo menos, 30 minutos seguidos, mesmo que de vez em quando?
 - 0 | __ | Não
 - 1 | __ | Sim

18. Quando a senhora está em um ambiente ensolarado por mais de 30 minutos, com que frequência senhora usa protetor ou filtro solar?
 - 0 | __ | Nunca
 - 1 | __ | Raramente
 - 2 | __ | Algumas vezes
 - 3 | __ | Quase sempre
 - 4 | __ | Sempre

19. Quando a senhora está em um ambiente ensolarado por mais de 30 minutos, com que frequência senhora fica na sombra?
 - 0 | __ | Nunca
 - 1 | __ | Raramente
 - 2 | __ | Algumas vezes
 - 3 | __ | Quase sempre
 - 4 | __ | Sempre

20. Quando a senhora está em um ambiente ensolarado por mais de 30 minutos, com que frequência senhora usa guarda-chuva, sombrinha, chapéu com abas, véu ou qualquer outro tipo de proteção para o rosto?
 - 0 | __ | Nunca
 - 1 | __ | Raramente
 - 2 | __ | Algumas vezes
 - 3 | __ | Quase sempre
 - 4 | __ | Sempre

21. A senhora evita se expor ao sol entre 10 horas da manhã e 4 horas da tarde?
 - 0 | __ | Não
 - 1 | __ | Sim

Acompanhamento: Avaliações Clínicas Gestantes

2
22. Qual a reação da pele da senhora depois de se expor ao sol?
 a) Sempre queima, nunca bronzeia
 0 |__| Não 1 |__| Sim
 b) Comumente queima, bronzeia com dificuldade
 0 |__| Não 1 |__| Sim
 c) Às vezes, queima levemente
 0 |__| Não 1 |__| Sim
 d) Raramente queima, bronzeia com facilidade
 0 |__| Não 1 |__| Sim

MORBIDADES INFECCIOSAS VAGINAIS DA GESTANTE

23. A senhora já teve alguma destas infecções vaginais?
 a) Sífilis ou cancro duro
 0 |__| Não 1 |__| Sim, últimos 7 dias 2 |__| Sim, último ano 3 |__| Sim, há alguns anos
 b) Gonorreia
 0 |__| Não 1 |__| Sim, últimos 7 dias 2 |__| Sim, último ano 3 |__| Sim, há alguns anos
 c) Cancro mole
 0 |__| Não 1 |__| Sim, últimos 7 dias 2 |__| Sim, último ano 3 |__| Sim, há alguns anos
 d) Donovanose ou granuloma venéreo
 0 |__| Não 1 |__| Sim, últimos 7 dias 2 |__| Sim, último ano 3 |__| Sim, há alguns anos
 e) Mula, bubão, linfogranulomato venéreo ou Chlamydia trachomatis
 0 |__| Não 1 |__| Sim, últimos 7 dias 2 |__| Sim, último ano 3 |__| Sim, há alguns anos
 f) Crista de galho ou condiloma acuminado
 0 |__| Não 1 |__| Sim, últimos 7 dias 2 |__| Sim, último ano 3 |__| Sim, há alguns anos
 g) Herpes genital tipo II
 0 |__| Não 1 |__| Sim, últimos 7 dias 2 |__| Sim, último ano 3 |__| Sim, há alguns anos
 h) DST, mas não sabe informar tipo da infecção vaginal
 0 |__| Não 1 |__| Sim, últimos 7 dias 2 |__| Sim, último ano 3 |__| Sim, há alguns anos
 i) Outro tipo de infecção vaginal, especifique: ____________________________
 0 |__| Não 1 |__| Sim, últimos 7 dias 2 |__| Sim, último ano 3 |__| Sim, há alguns anos

BLOCO 2 – QUESTIONÁRIO DE AUTO-RELATO (SRQ20)

24. A senhora tem dores de cabeça com frequência?
 0 |__| Não 1 |__| Sim
25. Tem falta de apetite?
 0 |__| Não 1 |__| Sim
26. A senhora dorme mal?
 0 |__| Não 1 |__| Sim
27. A senhora fica com medo com facilidade?
 0 |__| Não 1 |__| Sim
28. Suas mãos tremem?
 0 |__| Não 1 |__| Sim
29. A senhora se sente nervosa, tensa ou preocupada?
 0 |__| Não 1 |__| Sim
30. Sua digestão não é boa ou sofre de perturbação digestiva?
 0 |__| Não 1 |__| Sim
31. A senhora não consegue pensar com clareza?
 0 |__| Não 1 |__| Sim
32. Sente-se infeliz?
 0 |__| Não 1 |__| Sim
33. A senhora chora mais que o comum?
 0 |__| Não 1 |__| Sim
34. Acha difícil apreciar (gostar de) suas atividades diárias?
 0 |__| Não 1 |__| Sim
35. Acha difícil tomar decisões?
 0 |__| Não 1 |__| Sim
36. Seu trabalho diário é um sofrimento? Tormento? Tem dificuldade em fazer seu trabalho?
 0 |__| Não 1 |__| Sim
37. A senhora não é capaz de ter um papel útil na vida?
 0 |__| Não 1 |__| Sim
38. A senhora perde interesse nas coisas?
 0 |__| Não 1 |__| Sim
39. Acha que é uma pessoa que não vale nada?
 0 |__| Não 1 |__| Sim
40. O pensamento de acabar com a sua vida já passou por sua cabeça?
 0 |__| Não 1 |__| Sim
41. A senhora se sente cansada todo o tempo?
 0 |__| Não 1 |__| Sim
42. A senhora tem sensações desagradáveis no estômago?
 0 |__| Não 1 |__| Sim
43. Pica cansada com facilidade?
 0 |__| Não 1 |__| Sim
BLOCO 3 – PRÁTICA DE ATIVIDADE FÍSICA

44. A rua de sua casa tem algum tipo de pavimentação, como, por exemplo, asfalto ou paralelepípedo?

- 0 | **Não**
- 1 | **Sim**

45. Se sim, em que condições está a pavimentação?

- 0 | **Ruim** (muitos buracos)
- 1 | **Mediana** (alguns buracos e rachaduras)
- 2 | **Boa**

46. A rua de sua casa tem calçada?

- 0 | **Não**
- 1 | **Sim**

47. Se sim, a calçada está em boas condições?

- 0 | **Ruim** (muitos buracos, desnivelada)
- 1 | **Mediana** (alguns buracos)
- 2 | **Boa**

48. A rua de sua casa tem postes de iluminação?

- 0 | **Não**
- 1 | **Sim**

49. A rua de sua casa é de aciçúr/declive (subida e descida)?

- 0 | **Não**
- 1 | **Sim**

As perguntas a seguir são sobre uma semana típica considerando os três meses anteriores à sua gestação:

50. A senhora costumava caminhar ao realizar as seguintes atividades (em uma semana típica antes da gestação)?

Intensidade	Duração
Lazer ou exercício físico	
0	**Não**
a)	Devagar dias por semana, minutos por dia
	Normal
	Rápido
b) Para se deslocar (ir ao trabalho, escola, igreja, mercado)	
0	**Não**
	Devagar dias por semana, minutos por dia
	Normal
	Rápido

51. A senhora costumava realizar outras atividades em uma semana típica antes da gestação, como por exemplo:

- 0 | **Não**
- 1 | **Sim**
- 2 | **Correr**
- 3 | **Nadar**
- 4 | **Jogar bola**
- 5 | **Outra, especifique**

Por dias por semana, minutos por dia

52. A senhora costumava assistir televisão ou utilizar computador, tablets ou outros em uma semana típica antes da gestação?

- 0 | **Não**
- 1 | **Sim**, por dias por semana, minutos por dia

As perguntas a seguir são sobre a última semana, durante sua gestação:

53. A senhora caminhou devagar no lazer ou se exercitou na última semana?

Intensidade	Duração
Lazer ou exercício físico	
0	**Não**
a)	Devagar dias por semana, minutos por dia
	Normal
	Rápido
b) Para se deslocar (ir ao trabalho, escola, igreja, mercado)	
0	**Não**
	Devagar dias por semana, minutos por dia
	Normal
	Rápido

54. A senhora realizou outras atividades na última semana, como por exemplo:

- 0 | **Não**
- 1 | **Sim**
- 2 | **Correr**
- 3 | **Nadar**
- 4 | **Jogar bola**
- 5 | **Outra, especifique**

Por dias por semana, minutos por dia

55. Na última semana, a senhora assistiu televisão ou utilizou computador, tablets ou outros?

- Se sim, por quanto tempo?
- 0 | **Não**
- 1 | **Sim**, por dias por semana, minutos por dia
BLOCO 4 – CONSUMO ALIMENTAR HABITUAL

As perguntas a seguir serão sobre o consumo alimentar habitual de alguns grupos de alimentos.

56. Para cada grupo de alimentos citado, informar se a senhora consome ou não e quantas vezes consome por mês, por semana ou por dia (marcar apenas um X para cada linha):

Alimentos	Não come/raramente como	1-3 vezes por mês	1-3 vezes por semana	4-6 vezes por semana	1 vez por dia	2-3 vezes por dia	4-6 vezes por dia	Mais de 6 vezes por dia
Leite e derivados								
Leite (puro, com café ou chocolate), iogurtes, queijos								
Feijões								
Feijão, ervilha, lentilha, grão de bico, vagem								
Verduras de folhas								
Couve, alface, rúcula, folhas verdes em geral, crus ou cozidos								
Legumes								
Ginebra, tomate, abóbora, beterraba, crus ou cozidos								
Frutas em geral								
Laranja, banana, manga, maracujá								
Frutas regionais								
Açaí, cupuaçu, graviola, jaca, buriti, jabuticaba, pitanga, tucumã, Cajá, carambola								
Caniçá e sítiojambas								
Castanha-do-Brasil, de caju, baru, amendoim								
Carnes								
Até, porco, aves, embutidos								
Mídias e vísceras								
Fígado, moela, coração								
Pescados e frutos do mar								
Peixes em geral								
Ovos								
Cereais, pães e massas								
Arroz, macarrão, tapioca, couscuz, pães em geral, farinha de mandioca								
Raízes e tubérculos								
Batata, batata doce, mandioca, inhame								
Óleos e gorduras								
Margarina, manteiga, maionese								
Azeite de oliva								
Refrigerantes e bebidas								
açucaradias								
Refrigerantes, sucos em pó ou bebidas prontas adoçadas								
Industrializados e guloseimas								
Salgadinhos de pacote, bolachas/biscoitos, doces e chocolates								
BLOCO 5 – DADOS SOBRE ESTILO DE VIDA DA GESTANTE

57. Em comparação aos períodos em que a senhora não estava grávida, quanto se alterou a quantidade de comida que a senhora consome agora, durante a gravidez?
- 0 | ___ | A quantidade de comida é muito menor agora, durante a gravidez
- 1 | ___ | A quantidade de comida é um pouco menor agora, durante a gravidez
- 2 | ___ | A quantidade de comida durante a gravidez é mais ou menos a mesma de períodos em que não estava grávida
- 3 | ___ | A quantidade de comida é um pouco maior agora, durante a gravidez
- 4 | ___ | A quantidade de comida é muito maior agora, durante a gravidez

58. A senhora comeu ou teve desejo/vontade de comer algo que não fosse comida?
- 0 | ___ | Não
- 1 | ___ | Sim, especificar o item ou a substância

59. Durante a gestação, a senhora fumou cigarros, cachimbos ou charutos?
- 0 | ___ | Não, nunca fumou
- 1 | ___ | Sim, especificar a quantidade em média:
 a) Cigarros: | ___ | ___ | ___ | unidades por dia
 b) Cachimbos: | ___ | ___ | ___ | unidades por dia
 c) Charutos: | ___ | ___ | ___ | unidades por dia

60. Durante a gestação, a senhora consumiu bebidas alcoólicas (por exemplo, cerveja, vinho, champange, licor, pinga, uísque, vodca, vermouth, caninha, rum, tequila, gin)?
- 0 | ___ | Não, nunca consumiu
- 1 | ___ | Sim, 1 ou 2 vezes
- 2 | ___ | Sim, mensalmente
- 3 | ___ | Sim, semanalmente
- 4 | ___ | Sim, diariamente ou quase todos os dias

61. Durante a gestação, a senhora fez uso de alguma droga ilícita (por exemplo, maconha, cocaína, crack, anfetaminas, éxtase, inselentes, sedativos, alucinógenos, opioides, sem prescrição por médico)?
- 0 | ___ | Não, nunca fez uso
- 1 | ___ | Sim, 1 ou 2 vezes
- 2 | ___ | Sim, mensalmente
- 3 | ___ | Sim, semanalmente
- 4 | ___ | Sim, diariamente ou quase todos os dias
Anexo 10

Formulário de acompanhamento no parto
São Paulo Materno-Infantil em Cruzeiro do Sul, Acre: Estudo Longitudinal de Base Populacional

FORMULÁRIO DE ACOMPANHAMENTO NO PARTO

ID: ______

Nome: __
Endereço completo: ___________________________ ______________________
Ponto de referência: __
Telefone fixo: (____) _______ (____) _______ obs: _______________________
Telefone celular: (____) _______ (____) _______ obs: _______________________
Telefones adicionais: (____) _______; falar com (relação: _______) (____) _______; falar com (relação: _______)
Entrevistador: ___ Data da entrevista: ______/____/_____
Nº cartão SUS: _____________________________ Nº SIVEP (notificação malária): ____________

Desfecho da gestação
Em internações para parto de gestantes residentes em Cruzeiro do Sul, registrar o desfecho:
0 | ___ | Parto nascido vivo >> Completar todas as questões do formulário
1 | ___ | Parto natimorto >> Questões 13, 30-34, 38-41 não se aplicam
2 | ___ | Morte materna no parto >> Questões 5, 6, 8-13, 38, 42 não se aplicam
3 | ___ | Aboro, causa >> Questões 13, 20-34, 38-41 não se aplicam

BLOCO 1 – DADOS DA GESTANTE/PUÉRPERA

O cartão da gestante/pré-natal deve ser solicitado à puérpera junto ao leito no Setor do Alívio Conjunto, para consulta em conjunto à coleta de dados do Bloco 1. Ao final das questões, realizar a digitalização do cartão.

1. A senhora realizou atendimentos de cuidado pré-natal durante a gestação?
0 | ___ | Não
1 | ___ | Sim

2. Caso sim, quantas consultas foram realizadas?
Verificar anotações no cartão da gestante
___ ___ consultas

3. Caso sim, onde a senhora realizou o acompanhamento pré-natal?
0 | ___ | Serviço público, especifique o nome do posto de saúde
1 | ___ | Serviço particular/convênio, especifique o nome do médico
2 | ___ | Outro, especifique

4. Durante o acompanhamento pré-natal, a senhora fez uso de algum suplemento/vitamina?
Verificar anotações no cartão da gestante
0 | ___ | Não
1 | ___ | Sim, especifique:
Nome: ______________________ Posologia: __________ Em qual(is) trimestre(s) _______

5. Avaliação funcional da deficiência de vitamina A:
Durante o período da gestação,
a) A senhora tem dificuldade para enxergar durante o dia? 0 | ___ | Não
b) A senhora teve dificuldade para enxergar com pouca luz ou à noite? 0 | ___ | Não
c) A senhora teve cegueira noturna? 0 | ___ | Não
Saúde e Nutrição Materno-Infantil em Cruzeiro do Sul, Acre: Estudo Longitudinal de Base Populacional

6. A senhora recebeu dose de vitamina A após o parto (cápsula vermelha)?
 0 | | Não
 1 | | Sim

7. Alguma intercorrência ocorreu durante a gestação até o momento do parto?
 Verificar anotações no cartão da gestante
 a) Hemorragia
 0 | | Não
 1 | | Sim
 Em qual(s) trimestre(s)

 b) Infecção nas peles
 0 | | Não
 1 | | Sim
 Em qual(s) trimestre(s)

 c) Pressão alta
 0 | | Não
 1 | | Sim
 Em qual(s) trimestre(s)

 d) Anemia
 0 | | Não
 1 | | Sim
 Em qual(s) trimestre(s)

 e) Diabetes
 0 | | Não
 1 | | Sim
 Em qual(s) trimestre(s)

 f) Infecção urinária
 0 | | Não
 1 | | Sim
 Em qual(s) trimestre(s)

 g) Malária
 0 | | Não
 1 | | Sim
 Em qual(s) trimestre(s)

 h) Outro, especifique
 Em qual(s) trimestre(s)

8. A senhora recebeu assistência odontológica durante a gestação, na atenção pré-natal? Realizou consulta com dentista?
 0 | | Não
 1 | | Sim

9. Caso tenha recebido assistência odontológica:
 a) Foi somente um exame de boca, gengiva e dentes?
 0 | | Não
 1 | | Sim

 b) Envolveu tratamento dentário?
 0 | | Não
 1 | | Sim

 c) Outro, especifique

10. Caso tenha recebido assistência odontológica, qual foi o número de consultas com dentista durante a gestação?
 __________ consultas

11. Caso tenha recebido assistência odontológica, como a senhora percebe as mudanças na saúde de sua boca desde a conclusão do tratamento?
 0 | | Piorou muito
 1 | | Piorou um pouco
 2 | | Razoável
 3 | | Melhorou um pouco
 4 | | Melhorou muito

12. Como a senhora classifica a saúde de seus dentes e sua boca hoje?
 0 | | Muito ruim
 1 | | Ruim
 2 | | Razoável
 3 | | Boa
 4 | | Excelente

13. Seu bebê foi amamentado no primeiro dia de vida (primeiras 24 horas após o parto)?
 0 | | Não
 1 | | Sim

14. Resultados de testes no pré-natal:
 Verificar anotações no cartão da gestante
 a) HBsAg
 0 | | Negativo
 1 | | Positivo
 9 | | Sem informações

 b) Toxoplasmosse
 0 | | IgG
 1 | | IgM
 9 | | Sem informações

 c) HIV
 0 | | NRT
 1 | | RT
 9 | | Sem informações

 d) Citomegalovírus
 0 | | IgG
 1 | | IgM
 9 | | Sem informações

 e) Rubéola
 0 | | IgG
 1 | | IgM
 9 | | Sem informações

 f) Outro, especifique

15. Digitalização do cartão da gestante/pré-natal:
 0 | | Não realizada
 1 | | Realizada

BLOCO 2 – DADOS DO PRONTUÁRIO: PARTO E RECÉM-NASCIDO

A consulta ao prontuário deve ser solicitada ao posto de enfermagem do Alojamento Conjunto. Realizar a digitalização do prontuário e anotar as informações a seguir.

16. Digitalização da ficha da maternidade/prontuário de atendimento:
 0 | | Não realizada
 1 | | Realizada
Prontuário: ficha de classificação de risco da gestante

17. Data de nascimento da mãe: / /

18. Peso gestacional final: kg

19. Batimento cardíaco fetal (exame físico obstétrico):
 0 | | Ausente
 1 | | Presente, frequência: bpm

Prontuário: ficha de identificação do recém-nascido

20. Parto de múltiplos (gêmeos)?
 0 | | Não
 1 | | Sim (caso sim, completar as informações a seguir para cada uma das crianças)

21. Data de nascimento da criança: / /

22. Horário do nascimento da criança: h min

23. Sexo da criança:
 0 | | Feminino
 1 | | Masculino

24. Peso da criança: kg

25. Comprimento da criança: cm

26. Perímetro cefálico da criança: cm

27. Perímetro torácico da criança: cm

28. Idade gestacional final: semanas

29. Tipo de parto:
 0 | | Parto normal
 1 | | Parto a fórceps
 2 | | Parto cesárea

 Caso cesárea, indicação:
 Tipo de anestesia: | Peridural
 1 | Raquidiana
 2 | Combinada
 3 | Geral
 4 | Outra:

 3 | Outro, especifique

30. Índice de Apgar do recém-nascido:
 a) 1º minuto
 b) 5º minuto

31. Houve necessidade de reanimação do recém-nascido?
 0 | | Não
 1 | | Sim

32. Caso o recém-nascido tenha sido reanimado, qual o método de reanimação utilizado?
 0 | | Oxigênio
 1 | | Máscara O2
 2 | | Intubação
 3 | | Massagem cardíaca
 4 | | Drogas

33. Houve necessidade de incubadora (transferência à UTI neonatal) na internação do recém-nascido?
 0 | | Não
 1 | | Sim

34. Houve indicação médica de complementação da alimentação do recém-nascido durante a internação?
 0 | | Não
 1 | | Sim

 Caso sim, especifique:
 0 | | Fórmula láctea
 1 | | Soro glicosado
 2 | | Outra:

Acompanhamento: Parto
35. Resultados de testes no parto:
Os resultados dos exames a seguir devem ser confirmados nos laudos emitidos pelo Laboratório do Hospital da Mulher e da Criança do Jurujú, também anexados ao prontuário do paciente

a) Tipo sanguíneo materno	0	A	1	B	2	AB	3	O	9	Sem informações
b) Fator RH materno	0	Negativo	1	Positivo	9	Sem informações				
Caso a mãe seja RH negativa:	9	Sem informações								
- Tipo sanguíneo da criança	0	A	1	B	2	AB	3	O	9	Sem informações
- Fator RH da criança	0	Negativo	1	Positivo	9	Sem informações				
c) VDRL	0	NRT	1	RT	9	Sem informações				
d) Teste rápido	0		1	RT	9	Sem informações				
e) Outro, especifique										

Prontuário: ficha de evolução da gestante/puerpera

36. Durante o parto ou após os procedimentos do parto, a gestante apresentou algum problema de saúde?

a) Hemorragia	0	Não	1	Sim
b) Febre	0	Não	1	Sim
c) Pressão alta	0	Não	1	Sim
d) Convulsão	0	Não	1	Sim
e) Hemotransfusão	0	Não	1	Sim
f) Outro, especifique				

37. Resultados de hemograma materno disponíveis?

0	Não	1	Sim
a) Hemácias	1		x milhões/UL
b) Hemoglobina	1	g/dL	
c) Hematócrito	1	%	
d) VCM	1	fl	
e) HCM	1	pg	
f) CHCM	1	g/dL	
g) Leucócitos	1	/mm³	
h) Eosinófilos	1	%	
i) Basófilos	1	%	
j) Neutrofilos	1	%	
k) Linfócitos	1	%	
l) Monoцитos	1	%	
m) Eirocitos	1	%	
n) Metamorfócitos	1	%	
o) Plaquetas	1	/mm³	

Livro de registro do Centro Obstétrico/Centro Cirúrgico

38. Houve contato pele a pele entre mãe e recém-nascido?

| 0 | Não | 1 | Sim |

39. O recém-nascido foi amamentado na primeira hora após o parto?

| 0 | Não | 1 | Sim |

SAME – Informações após alta hospitalar

40. Quantos dias o recém-nascido ficou internado?

| | dias |

41. Ocorreu óbito do recém-nascido após o parto, durante a internação?

| 0 | Não | 1 | Sim, data | | | ; Causa | | |

Acompanhamento: Parto
Questão	Opção 1	Opção 2
42. Ocorreu óbito da puérpera após o parto, durante a internação?	Não	Sim, data ______/_____/_____; causa ________________________________
43. Coleta de sangue materno/papa de hemácias:	Não realizada	Realizada
44. Gota espessa do sangue periférico materno:	Não	Sim
45. Coleta de sangue do cordão umbilical:	Não realizada	Realizada
46. Gota espessa do sangue do cordão umbilical:	Não	Sim
CURRÍCULO LATTES

Paulo Augusto Ribeiro Neves
Bolsista de Doctorado do CNPq
Informação para aceder este CV: http://lattes.cnpq.br/0816575069071096
Data finalização da curricula em 11/04/2018

Identificação

Nome: Paulo Augusto Ribeiro Neves

Nome em citações bibliográficas: NEVES, P. A. R.; NEVES, PAULO AUGUSTO RIBEIRO

Endereço

Endereço Profissional
UNIVERSIDADE DE SÃO PAULO, FACuldade de Saúde PÚBLICA,
Avenda Doutor Arnaldo, 713
Comprida Ofic.
01246-904 - São Paulo, SP - Brasil
Telefon: (11) 3941-1790
URL da Homepage: www.icmp.usp.br

Formação acadêmica/titulação

2014 Doctors in resident in Nutrition in Saúde Públicas
UNIVERSIDADE DE SÃO PAULO, USP, Brasil
Com prática sanduíche em Harvard School of Public Health (Orientador: Marcella Dalles de Castro),
Título: Programa Nacional de Nutrição em Gestantes: Estudo longitudinal em Cruzamento do Sul, Acre, Amazonas Ocidental Brasileira.
Orientador: Carla Maria Augusto Cardoso.
Bolson (2014) - Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasil.
Palavras-chave: Gestante,ameaça de desnutrição em gestantes; Ameaça de desnutrição em gestantes; Anemia ferropriva.
Grande áreas: Ciências da Saúde
Grande área: Ciências da Saúde e Práticas de Saúde
Subárea de análise: Nutrição e Nutrição Populacional.

2012 - 2013 Mestrado em Nutrition (Conexão CAPES)
UNIVERSIDADE DE SÃO PAULO, USP, Brasil
Título: Impacto da suplementação com vitamina A sobre a deficiência de vitamina A em gestantes e puérperas brasileiras, ano de obtenção: 2013.
Orientador: Glória Sevinczuk.
Comissão: André André Ramalho Nune de Silva
Bollet (2012) - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.
Palavras-chave: Insuficiência de vitamina A; Deficiência de vitamina A; Puérpera; Gestante; Ameaça de desnutrição em gestantes; Anemia ferropriva.
Grande áreas: Ciências da Saúde
Subárea de análise: Nutrição e Nutrição Populacional.

2008 - 2008 Graduação em Nutrição
UNIVERSIDADE DE SÃO PAULO, USP, Brasil
Título: Índices Antropométricos e Fatores de Risco Cardiovascular em Mulheres.
Orientador: Eliane Adriana Esteves.

2001 - 2003 Ensino Médio (2º grau), Escola Estadual Padre João Vieira da Fonseca, E.E.P. U.F., Brasil.
Marly A. Cardoso graduou-se em Nutrição (1985) pela Universidade de São Paulo (USP). Nessa mesma universidade, obteve os títulos de mestre (1992) e doutor (1995) em Ciências dos Alimentos e Livre Docente em Nutrição e Saúde Pública (2006). É Professora Titular do Departamento de Nutrição da Faculdade de Saúde Pública (2012-2014), Coordenadora do Programa de Pós-Graduação em Nutrição e Saúde Pública (2006-2013) e integrante do Programa de Pós-Graduação em Nutrição e Saúde (NUMES) da USP. Atua como pesquisadora visitante no Departamento de Nutrição da Harvard School of Public Health (Massachusetts, EUA) e como Leibniz Research Fellow do David Rockefeller Center for Latin American Studies da Universidade de Harvard (2012). Coordena vários projetos de pesquisa (apoio FAPEP e CNPq), de pesquisa (APRUDO/CAPES e CNPq) e Escola de Altos Estudos em Epidemiologia Nutricional (USP/Harvard, apoio CAPES/Fundação RBF). É editora associada dos revistas Public Health Nutrition, PLoS ONE, British Journal of Nutrition, American Journal of Public Health, entre outros periódicos nas áreas de nutrição, epidemiologia e saúde coletiva. É membro do Comitê Científico do International Diabetes Epidemiology Group (IDEG) e membro do corpo de autores científicos da FAEPQ, CNPq e CAPES. Coordena 7 orientações de pós-doutorado, 9 de doutorado, 14 de mestrandos, mais de 40 orientações de iniciação científica e de treinamento técnico em pesquisa. Tem experiência na área de Nutrição, com ênfase em Epidemiologia Nutricional e Saúde Pública, atuando principalmente nos seguintes temas: avaliação do estado nutricional, consumo alimentar e distúrbios nutricionais. Foi Coordenadora do Estudo Nacional de Fortificação Caso de Alimentação Complementar (EN-FAÇ) — ensaio pragmático multicêntrico com apoio do Ministério da Saúde do Brasil, CNPq e UNICEF (2012-2014) e atualmente Coordena o Projeto MINA — Saúde e Nutrição Materno-Infantil no Acre: efeito de desmatamento em Criação de Sil (Programa Ciência sem Fronteiras CNPq 2013-2017; Acelerando Tópicos Fapesp 2017-2022). (Texto informado pelo autor)

Identificação

Nome: Marly Augusto Cardoso

Nome em citações bibliográficas: CARDOSO, M. A.; Cardoso, Marly A Cardoso, Marly Augusto Cardoso, MA; CARDOSO, M; Cardoso, Marly A.

Endereço

Endereço Profissional: Universidade de São Paulo, Faculdade de Saúde Pública.

Av. Dr. Arnaldo, 715

CEQONERA CESAR

01246-064 — São Paulo, SP — Brasil

Tel.: (11) 3061 7463

Fax.: (11) 3061 7130

Formação acadêmica/titulação

1992 - 1995

Doutoranda em Ciências dos Alimentos.

Universidade de São Paulo, USP, Brasil.

Título: EVOLUÇÃO DA MALÁRIA POR YUGMIZON BOREWEIT RÁTOS ALIMENTADOS COM RAÇÕES COM DIFERENTES TECIDOS DE FERRO, Ano de obtenção: 1995.

Orientador: MARILENE DE VECCHIO CAMARGO PINTADO.

Bolsa do CGG: Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasil.

Palavras-chave: AFRICA DO SUL; MALÁRIA EXPERIMENTAL.

Grande área: Ciências da Saúde

1989 - 1992

Mestranda em Ciências dos Alimentos.

Universidade de São Paulo, USP, Brasil.

Título: CONCENTRAÇÃO SÉRICA E ATIVIDADE BIOLOGICA DE SOMATOTROFINA-C EM RÁTOS JOVENES ALIMENTADOS COM RAÇÃO À BASE DA DIETA RODENSA DO ESTADO DE SÃO PAULO, Ano de obtenção: 1992.

Orientador: JULIO ORLANDO TRAPEROLETO.

Bolsa do CGG: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.

Palavras-chave: METABOLISMO PROTEICO; CRESCIMENTO; DIETA; DESENUTRACAO CALORICA-PROTEICA.

Grande área: Ciências da Saúde

1982 - 1985

Graduação em Nutrição.

Universidade de São Paulo, USP, Brasil.