ON THE NONEXISTENCE OF FAT PARTIALLY HYPERBOLIC HORSESHOES

JOSÉ F. ALVES AND VILTON PINHEIRO

Abstract. We show that there are no partially hyperbolic horseshoes with positive Lebesgue measure for diffeomorphisms whose class of differentiability is higher than 1. This generalizes a classical result by Bowen for uniformly hyperbolic horseshoes.

Contents

1. Introduction 1
2. Hölder control of tangent direction 3
3. Hyperbolic times and bounded distortion 5
4. A local unstable disk inside Λ 7
References 10

1. INTRODUCTION

Let M be a Riemannian manifold. We use Leb to denote a normalized volume form defined on the Borel sets of M that we call Lebesgue measure. Given a submanifold $\gamma \subset M$ we use Lebγ to denote the measure on γ induced by the restriction of the Riemannian structure to γ.

Let $f : M \to M$ be a C^1 diffeomorphism, and let $\Lambda \subset M$ be a compact invariant set, i.e. $f(\Lambda) \subset \Lambda$. We say that Λ is a hyperbolic set if there is a Df-invariant splitting $T_{\Lambda}M = E^s \oplus E^u$ of the tangent bundle restricted to Λ and a constant $\lambda < 1$ such that (for some choice of a Riemannian metric on M) for every $x \in \Lambda$

$$\|Df \mid E^s_x\| < \lambda \quad \text{and} \quad \|Df^{-1} \mid E^u_x\| < \lambda.$$

We say that an embedded disk $\gamma \subset M$ is an unstable manifold, or an unstable disk, if $\text{dist}(f^{-n}(x), f^{-n}(y)) \to 0$ exponentially fast as $n \to \infty$, for every $x, y \in \gamma$. Similarly, γ is called a stable manifold, or a stable disk, if $\text{dist}(f^n(x), f^n(y)) \to 0$ exponentially fast as $n \to \infty$, for every $x, y \in \gamma$. It is well-known that every point in a hyperbolic set possesses a local stable
manifold $W^s_{loc}(x)$ and a local unstable manifold $W^u_{loc}(x)$ which are disks tangent to E^s_x and E^u_x at x respectively.

A hyperbolic set Λ is said to be a horseshoe if local stable and local unstable manifolds through points in Λ intersect Λ in a Cantor set. Horseshoes were introduced by Smale and appear naturally when one unfolds a homoclinic tangency associated to some hyperbolic periodic point of saddle type.

It follows from [4, Theorem 4.11] that a $C^{1+\alpha}$ diffeomorphism cannot have a fat hyperbolic horseshoe, i.e. a hyperbolic horseshoe Λ with $\text{Leb}(\Lambda) > 0$; actually the result in [4] is proved for basic sets. Nevertheless, here we obtain a generalization of that result to a much more general situation. Let us remark that fat hyperbolic horseshoes exist for C^1 diffeomorphisms, as shown in [3].

We say that a compact invariant set Λ has a dominated splitting if there exists a continuous $\mathcal{D}f$-invariant splitting $\mathcal{T}_\Lambda \mathcal{M} = E^{cs}_x \oplus E^{cu}_x$ of the tangent bundle restricted to Λ, and a constant $0 < \lambda < 1$ such that (for some choice of a Riemannian metric on \mathcal{M}) for every $x \in \Lambda$

$$\|Df \mid E^{cs}_x\| \cdot \|Df^{-1} \mid E^{cu}_{f(x)}\| \leq \lambda.$$

We call E^{cs} the centre-stable bundle and E^{cu} the centre-unstable bundle. We say that f is non-uniformly expanding along the centre-unstable direction for $x \in \Lambda$ if

$$\liminf_{n \to +\infty} \frac{1}{n} \sum_{j=1}^{n} \log \|Df^{-1} \mid E^{cu}_{f^j(x)}\| < 0. \quad (\text{NUE})$$

Condition NUE means that the derivative has expanding behavior in average over the orbit of x. This implies that x has dim(E^{cu}) positive Lyapunov exponents in the E^{cu}_x direction. As shown in [2, Theorem C], if condition NUE holds for every point in a compact invariant set Λ, then E^{cu} is necessarily uniformly expanding in Λ, i.e. there is $0 < \lambda < 1$ such that

$$\|Df^{-1} \mid E^{cu}_{f(x)}\| \leq \lambda, \quad \text{for every } x \in \Lambda.$$

A class of diffeomorphisms with a dominated splitting $T\mathcal{M} = E^{cs} \oplus E^{cu}$ for which NUE holds Lebesgue almost everywhere in \mathcal{M} and E^{cu} is not uniformly expanding can be found in [1, Appendix A].

Theorem A. Let $f : \mathcal{M} \to \mathcal{M}$ be a $C^{1+\alpha}$ diffeomorphism and let $\Lambda \subset \mathcal{M}$ have a dominated splitting. If there is $H \subset \Lambda$ with $\text{Leb}(H) > 0$ such that NUE holds for every $x \in H$, then Λ contains some local unstable disk.

We say that a compact invariant set Λ is partially hyperbolic if it has a dominated splitting $T\mathcal{M} = E^{cs} \oplus E^{cu}$ for which E^{cs} is uniformly contracting or E^{cu} is uniformly expanding, meaning that there is $0 < \lambda < 1$ such that $0 < \lambda < 1$ such that $\|Df \mid E^{cs}_x\| \leq \lambda$ for every $x \in \Lambda$, or $\|Df^{-1} \mid E^{cu}_{f(x)}\| \leq \lambda$ for every $x \in \Lambda$.

The next result is a direct consequence of Theorem A whenever E^{cu} is uniformly expanding. If, on the other hand, E^{cs} is uniformly contracting, then we just have to apply Theorem A to f^{-1}.

Corollary B. Let \(f : M \to M \) be a \(C^{1+\alpha} \) diffeomorphism and let \(\Lambda \subset M \) be a partially hyperbolic set with \(\text{Leb}(\Lambda) > 0 \).

1. If \(E^{cs} \) is uniformly contracting, then \(\Lambda \) contains a local stable disk.
2. If \(E^{cu} \) is uniformly expanding, then \(\Lambda \) contains a local unstable disk.

In particular, \(C^{1+\alpha} \) diffeomorphisms cannot have partially hyperbolic horseshoes with positive Lebesgue measure. The same holds for partially hyperbolic sets intersecting a local stable or a local unstable disk in a positive Lebesgue measure subset, as Corollary D below shows.

Theorem C. Let \(f : M \to M \) be a \(C^{1+\alpha} \) diffeomorphism and let \(\Lambda \subset M \) have a dominated splitting. Assume that there is a local unstable disk \(\gamma \) with \(\text{Leb}_{\gamma}(\gamma \cap \Lambda) > 0 \) such that NUE holds for every \(x \in \gamma \cap \Lambda \). Then \(\Lambda \) contains some local unstable disk.

The next result is a direct consequence of Theorem C in the case that \(E^{cu} \) is uniformly expanding, and a consequence of the theorem applied to \(f^{-1} \) in the case that \(E^{cs} \) is uniformly contracting.

Corollary D. Let \(f : M \to M \) be a \(C^{1+\alpha} \) diffeomorphism and let \(\Lambda \subset M \) be a partially hyperbolic set.

1. If \(E^{cs} \) is uniformly contracting and there is a local stable disk \(\gamma \) such that \(\text{Leb}_{\gamma}(\gamma \cap \Lambda) > 0 \), then \(\Lambda \) contains a local stable disk.
2. If \(E^{cu} \) is uniformly expanding and there is a local unstable disk \(\gamma \) such that \(\text{Leb}_{\gamma}(\gamma \cap \Lambda) > 0 \), then \(\Lambda \) contains a local unstable disk.

Theorems A and C are in fact corollaries of a slightly more general result that we present at the beginning of Section 4.

Acknowledgement. We are grateful to M. Viana for valuable references on this topic.

2. Hölder control of tangent direction

This section is a survey of results in \([1\text{, Section 2]}\) concerning the Hölder control of the tangent direction of submanifolds. As observed in \([1\text{, Remark 2.3]}\) those results are valid for diffeomorphisms of class \(C^{1+\alpha} \). In this section we only use the existence of a dominated splitting \(T_{\Lambda}M = E^{cs} \oplus E^{cu} \). We fix continuous extensions of the two bundles \(E^{cs} \) and \(E^{cu} \) to some neighborhood \(U \) of \(\Lambda \), that we denote by \(\tilde{E}^{cs} \) and \(\tilde{E}^{cu} \). We do not require these extensions to be invariant under \(Df \). Given \(0 < a < 1 \), we define the centre-unstable cone field \(C^{cu}_{a} = (C^{cu}_{a}(x))_{x \in U} \) of width \(a \) by

\[
C^{cu}_{a}(x) = \{ v_{1} + v_{2} \in \tilde{E}^{cs}_{x} \oplus \tilde{E}^{cu}_{x} \text{ such that } \|v_{1}\| \leq a\|v_{2}\| \}.
\]

We define the centre-stable cone field \(C^{cs}_{a} = (C^{cs}_{a}(x))_{x \in U} \) of width \(a \) in a similar way, just reversing the roles of the subbundles in \([1]\). We fix \(a > 0 \) and \(U \) small enough so that, up to slightly increasing \(\lambda < 1 \), the domination condition remains valid for any pair of vectors in the two cone fields:

\[
\|Df(x)v^{cs}\| \cdot \|Df^{-1}(f(x))v^{cu}\| \leq \lambda\|v^{cs}\|\|v^{cu}\|
\]
for every $v^{cs} \in C^a_{cs}(x)$, $v^{cu} \in C^a_{cu}(f(x))$, and any point $x \in U \cap f^{-1}(U)$. Note that the centre-unstable cone field is positively invariant:

$$Df(x)C^a_{cu}(x) \subset C^a_{cu}(f(x)), \quad \text{whenever } x, f(x) \in U.$$

Indeed, the domination property together with the invariance of $E^{cu} = (E^{cu} \mid \Lambda)$ imply that

$$Df(x)C^a_{cu}(x) \subset C^a_{cu}(f(x)) \subset C^a_{cu}(f(x)),$$

for every $x \in K$. This extends to any $x \in U \cap f^{-1}(U)$ just by continuity.

We say that an embedded C^1 submanifold $N \subset U$ is tangent to the centre-unstable cone field if the tangent subspace to N at each point $x \in N$ is contained in the corresponding cone $C^a_{cu}(x)$. Then $f(N)$ is also tangent to the centre-unstable cone field, if it is contained in U, by the domination property.

Our aim now is to express the notion of Hölder variation of the tangent bundle in local coordinates. We choose $\delta_0 > 0$ small enough so that the inverse of the exponential map \exp_x is defined on the δ_0 neighbourhood of every point x in U. From now on we identify this neighbourhood of x with the corresponding neighbourhood U_x of the origin in $T_x N$, through the local chart defined by \exp_x^{-1}. Reducing δ_0, if necessary, we may suppose that \tilde{E}^{cs}_x is contained in the centre-stable cone $C^a_{cs}(y)$ of every $y \in U_x$. In particular, the intersection of $C^a_{cs}(y)$ with \tilde{E}^{cs}_x reduces to the zero vector. Then, the tangent space to N at y is parallel to the graph of a unique linear map $A_x(y) : T_x N \to \tilde{E}^{cs}_x$. Given constants $C > 0$ and $0 < \zeta \leq 1$, we say that the tangent bundle to N is (C, ζ)-Hölder if for every $y \in N \cap U_x$ and $x \in V_0$

$$\|A_x(y)\| \leq Cd_x(y)^{\zeta},$$

where $d_x(y)$ denotes the distance from x to y along $N \cap U_x$, defined as the length of the shortest curve connecting x to y inside $N \cap U_x$.

Recall that we have chosen the neighbourhood U and the cone width a sufficiently small so that the domination property remains valid for vectors in the cones $C^a_{cs}(z)$, $C^a_{cu}(z)$, and for any point z in U. Then, there exist $\lambda_1 \in (\lambda, 1)$ and $\zeta \in (0, 1]$ such that

$$\|Df(z)v^{cs}\| \cdot \|Df^{-1}(f(z))v^{cu}\|^{1+\zeta} \leq \lambda_1 < 1$$

for every norm 1 vectors $v^{cs} \in C^a_{cs}(z)$ and $v^{cu} \in C^a_{cu}(z)$, at any $z \in U$. Then, up to reducing $\delta_0 > 0$ and slightly increasing $\lambda_1 < 1$, condition (3) remains true if we replace z by any $y \in U_x$, $x \in U$ (taking $\|\cdot\|$ to mean the Riemannian metric in the corresponding local chart).

We fix ζ and λ_1 as above. Given a C^1 submanifold $N \subset U$, we define

$$\kappa(N) = \inf\{C > 0 : \text{the tangent bundle of } N \text{ is } (C, \zeta)-\text{Hölder}\}.$$

The next result appears in [1, Corollary 2.4].

Proposition 2.1. There exists $C_1 > 0$ such that, given any C^1 submanifold $N \subset U$ tangent to the centre-unstable cone field,
(1) there exists \(n_0 \geq 1 \) such that \(\kappa(f^n(N)) \leq C_1 \) for every \(n \geq n_0 \) such that \(f^k(N) \subset U \) for all \(0 \leq k \leq n \);

(2) if \(\kappa(N) \leq C_1 \), then the same is true for every iterate \(f^n(N) \) such that \(f^k(N) \subset U \) for all \(0 \leq k \leq n \);

(3) in particular, if \(N \) and \(n \) are as in (2), then the functions

\[
J_k : f^k(N) \ni x \mapsto \log |\det (Df | T_x f^k(N))|, \quad 0 \leq k \leq n,
\]

are \((L, \zeta)\)-Hölder continuous with \(L > 0 \) depending only on \(C_1 \) and \(f \).

3. HYPERBOLIC TIMES AND BOUNDED DISTORTION

The following notion will allow us to derive uniform behaviour (expansion, distortion) from the non-uniform expansion.

Definition 3.1. Given \(\sigma < 1 \), we say that \(n \) is a \(\sigma \)-hyperbolic time for \(x \in \Lambda \) if

\[
\prod_{j=n-k+1}^{n} \| Df^{-1} | E^c_{f^j(x)} \| \leq \sigma^k, \quad \text{for all } 1 \leq k \leq n.
\]

In particular, if \(n \) is a \(\sigma \)-hyperbolic time for \(x \), then \(Df^{-k} | E^c_{f^n(x)} \) is a contraction for every \(1 \leq k \leq n \):

\[
\| Df^{-k} | E^c_{f^n(x)} \| \leq \prod_{j=n-k+1}^{n} \| Df^{-1} | E^c_{f^j(x)} \| \leq \sigma^k.
\]

Moreover, if \(\alpha > 0 \) is taken sufficiently small in the definition of our cone fields, and we choose \(\delta_1 > 0 \) also small so that the \(\delta_1 \)-neighborhood of \(\Lambda \) should be contained in \(U \), then by continuity

\[
\| Df^{-1}(f(y))v \| \leq \frac{1}{\sqrt{\sigma}} \| Df^{-1}|E^c_{f(x)}\| \|v\|,
\]

whenever \(x \in \Lambda \), \(\text{dist}(x, y) \leq \delta_1 \), and \(v \in E^c_{f^n(y)} \).

Given any disk \(\Delta \subset M \), we use \(\text{dist}_\Delta(x, y) \) to denote the distance between \(x, y \in \Delta \), measured along \(\Delta \). The distance from a point \(x \in \Delta \) to the boundary of \(\Delta \) is \(\text{dist}_\Delta(x, \partial\Delta) = \inf_{y \in \partial\Delta} \text{dist}_\Delta(x, y) \).

Lemma 3.2. Take any \(C^1 \) disk \(\Delta \subset U \) of radius \(\delta \), with \(0 < \delta < \delta_1 \), tangent to the centre-unstable cone field. There is \(n_0 \geq 1 \) such that if \(x \in \Delta \) with \(\text{dist}_\Delta(x, \partial\Delta) \geq \delta/2 \) and \(n \geq n_0 \) is a \(\sigma \)-hyperbolic time for \(x \), then there is a neighborhood \(V_n \) of \(x \) in \(\Delta \) such that:

1. \(f^n \) maps \(V_n \) diffeomorphically onto a disk of radius \(\delta_1 \) around \(f^n(x) \) tangent to the centre-unstable cone field;
2. for every \(1 \leq k \leq n \) and \(y, z \in V_n \),

\[
\text{dist}_{f^n(V_n)}(f^{n-k}(y), f^{n-k}(z)) \leq \sigma^{k/2} \text{dist}_{f^n(V_n)}(f^n(y), f^n(z)).
\]
Proof. First we show that $f^n(\Delta)$ contains some disk of radius δ_1 around $f^n(x)$, as long as
\[n > 2 \frac{\log(\delta/(2\delta_1))}{\log(\sigma)}. \] (6)
Assume that there is $y \in \partial \Delta$ with $\text{dist}_{f^n(\Delta)}(f^n(x), f^n(y)) < \delta_1$. Let η_0 be a curve of minimal length in $f^n(\Delta)$ connecting $f^n(x)$ to $f^n(y)$. For $0 \leq k \leq n$ we write $\eta_k = f^{n-k}(\eta_0)$. We prove by induction that $\text{length}(\eta_k) < \sigma^{k/2} \delta_1$, for $0 \leq k \leq n$. Let $1 \leq k \leq n$ and assume that
\[\text{length}(\eta_j) < \sigma^{j/2} \delta_1, \quad \text{for } 0 \leq j \leq k - 1. \]
Denote by $\dot{\eta}_0(w)$ the tangent vector to the curve η_0 at the point w. Then, by the choice of δ_1 in (5) and the definition of σ-hyperbolic time,
\[\|Df^{-k}(w)\dot{\eta}_0(w)\| \leq \sigma^{-k/2} \|\eta_0(w)\| \prod_{j=n-k+1}^n \|Df^{-1}(E_{f^j(x)})\| \leq \sigma^{k/2} \|\dot{\eta}_0(w)\|. \]
Hence,
\[\text{length}(\eta_k) \leq \sigma^{k/2} \text{length}(\eta_0) < \sigma^{k/2} \delta_1. \]
This completes our induction. In particular, we have $\text{length}(\eta_n) < \sigma^{n/2} \delta_1$. Note that η_n is a curve in Δ connecting x to $y \in \partial \Delta$, and so $\text{length}(\eta_n) \geq \delta/2$. Thus we must have
\[n < 2 \frac{\log(\delta/(2\delta_1))}{\log(\sigma)}. \]
Hence $f^n(\Delta)$ contains some disk of radius δ_1 around $f^n(x)$ for n as in (6).

Let now Δ_1 be the disk of radius δ_1 around $f^n(x)$ in $f^n(\Delta)$ and let $V_n = f^{-n}(\Delta_1)$, for n as in (5). Take any $y, z \in V_n$ and let η_n be a curve of minimal length in Δ_1 connecting $f^n(y)$ to $f^n(z)$. Defining $\eta_k = f^{n-k}(\eta_0)$, for $1 \leq k \leq n$, and arguing as before we inductively prove that for $1 \leq k \leq n$
\[\text{length}(\eta_k) \leq \sigma^{k/2} \text{length}(\eta_0) = \sigma^{k/2} \text{dist}_{f^n(V_n)}(f^n(y), f^n(z)), \]
which implies that for $1 \leq k \leq n$
\[\text{dist}_{f^n(V_n)}(f^{n-k}(y), f^{n-k}(z)) \leq \sigma^{k/2} \text{dist}_{f^n(V_n)}(f^n(y), f^n(z)). \]
This completes the proof of the lemma. \hfill \Box

We shall sometimes refer to the sets V_n as \textit{hyperbolic pre-balls} and to their images $f^n(V_n)$ as \textit{hyperbolic balls}. Notice that the latter are indeed balls of radius δ_1.

\textbf{Corollary 3.3 (Bounded Distortion).} There exists $C_2 > 1$ such that given Δ as in Lemma 3.2 with $\kappa(\Delta) \leq C_1$, and given any hyperbolic pre-ball $V_n \subset \Delta$ with $n \geq n_0$, then for all $y, z \in V_n$
\[\frac{1}{C_2} \leq \frac{|\det Df^n|_{T_y \Delta}|}{|\det Df^n|_{T_z \Delta}} \leq C_2. \]
Proof. For $0 \leq i < n$ and $y \in \Delta$, we denote $J_i(y) = |\det Df| \cdot |T_{f^i(y)} f^i(\Delta)|$. Then,

$$\log \frac{|\det Df^n| \cdot |T_{y} \Delta|}{|\det Df^n| \cdot |T_{z} \Delta|} = \sum_{i=0}^{n-1} \left(\log J_i(y) - \log J_i(z) \right).$$

By Proposition 2.1, $\log J_i$ is (L, ζ)-H"older continuous, for some uniform constant $L > 0$. Moreover, by Lemma 3.2, the sum of all $\text{dist}_\Delta(f^j(y), f^j(z))^{\sigma}$ over $0 \leq j \leq n$ is bounded by $\delta_1/(1 - \sigma^{\zeta/2})$. Now it suffices to take $C_2 = \exp(L\delta_1/(1 - \sigma^{\zeta/2}))$. \square

4. A local unstable disk inside Λ

Now we are able to prove Theorems A and C. These will be obtained as corollaries of the next result, as we shall see below.

Theorem 4.1. Let $f : M \to M$ be a $C^{1+\alpha}$ diffeomorphism and let $\Lambda \subset M$ have a dominated splitting. Assume that there is a disk Δ tangent to the centre-unstable cone field with $\text{Leb}_\Delta(\Delta \cap \Lambda) > 0$ such that NUE holds for every $x \in \Delta \cap \Lambda$. Then Λ contains some local unstable disk.

Assume that there is $H \subset \Lambda$ with $\text{Leb}(H) > 0$ such that NUE holds for every $x \in H$. Choosing a Leb density point of H, we laminate a neighborhood of that point into disks tangent to the centre-unstable cone field contained in U. Since the relative Lebesgue measure of the intersections of these disks with H cannot be all equal to zero, we obtain some disk Δ as in Theorem 4.1 under the assumption of Theorem A. For Theorem C observe that local stable manifolds are tangent to the centre-unstable spaces and these vary continuously with the points in Λ, thus being locally tangent to the centre-unstable cone field.

Let us now prove Theorem 4.1. Let Δ be a disk tangent to the centre-unstable cone field intersecting Λ in a positive Leb$_\Delta$ subset such that NUE holds for every $x \in \Delta \cap \Lambda$. Let $H = \Delta \cap \Lambda$. Taking a subset of H, if necessary, still with positive Leb$_\Delta$ measure, we may assume that there is $c > 0$ such that for every $x \in H$

$$\liminf_{n \to +\infty} \frac{1}{n} \sum_{j=1}^{n} \log \|Df^{-1} \cdot E_{f^j(x)}^{cu}\| \leq -c. \tag{7}$$

Since condition (7) remains valid under iteration, by Proposition 2.1 we may assume that $\kappa(\Delta) < C_1$. It is no restriction to assume that H intersects the sub-disk of Δ of radius $\delta/2$, for some $0 < \delta < \delta_1$, in a positive Leb$_\Delta$ subset, and we do so.

The following lemma is due to Pliss [6], and a proof of it in the present form can be found in [1, Lemma 3.1].
Corollary 4.3. There is \(\sigma > 0 \) such that every \(x \in H \) has infinitely many \(\sigma \)-hyperbolic times.

Proof. Given \(x \in H \), by (7) we have infinitely many values \(N \) for which

\[
\sum_{j=1}^{N} \log \| Df^{-1}|E_{j}(x) \| \leq -\frac{\sigma}{2} N.
\]

Then it suffices to take \(c_1 = c/2 \), \(c_2 = c \), \(A = \sup \| Df^{-1}|E_{j}(x) \| \), and \(a_j = -\log \| Df^{-1}|E_{j}(x) \| \) in the previous lemma. \(\square \)

Note that under assumption (7) we are unable to prove the existence of a positive frequency of hyperbolic times at infinity. This would be possible if we had \(\limsup \) instead of \(\liminf \) in (7), as shown in [1, Corollary 3.2]. The existence of infinitely many hyperbolic times is enough for what comes next.

Lemma 4.4. There are an infinite sequence of integers \(1 \leq k_1 < k_2 < \cdots \) and, for each \(n \in \mathbb{N} \), a disk \(\Delta_n \) of radius \(\delta_1/4 \) tangent to the centre-unstable cone field such that the relative Lebesgue measure of the set \(f^{k_n}(H) \) in \(\Delta_n \) converges to 1 as \(n \to \infty \).

Proof. Let \(\epsilon > 0 \) be some small number. Let \(K \) be a compact subset of \(H \) and \(A \) be an open neighborhood of \(H \) in \(\Delta \) such that

\[\text{Leb}_{\Delta}(A \setminus K) < \epsilon \text{Leb}_{\Delta}(K). \]

It follows from Corollary 4.3 and Lemma 3.2 that we can choose for each \(x \in K \) a \(\sigma \)-hyperbolic time \(n(x) \) and a hyperbolic pre-ball \(V_x \) such that \(V_x \subset A \). Here \(V_x \) is the neighborhood of \(x \) associated to the hyperbolic time \(n(x) \) constructed in Lemma 3.2 which is mapped diffeomorphically by \(f^{n(x)} \) onto a ball \(B_{\delta_1}(f^{n(x)}(x)) \) of radius \(\delta_1 \) around \(f^{n(x)}(x) \) tangent to the centre-unstable cone field. Let \(W_x \subset V_x \) be the pre-image of the ball \(B_{\delta_1/4}(f^{n(x)}(x)) \) of radius \(\delta_1/4 \) under this diffeomorphism.

By compactness we have \(K \subset W_{x_1} \cup \cdots \cup W_{x_m} \) for some \(x_1, \ldots, x_m \in K \). Writing

\[\{n_1, \ldots, n_s\} = \{n(x_1), \ldots, n(x_m)\}, \quad \text{with } n_1 < n_2 < \cdots < n_s, \quad (8) \]

let \(\mathcal{U}_1 \subset \mathbb{N} \) be a maximal set of \(\{1, \ldots, m\} \) such that if \(u \in \mathcal{U}_1 \) then \(n(x_u) = n_1 \) and \(W_{x_u} \cap W_{x_a} = \emptyset \) for all \(a \in \mathcal{U}_1 \) with \(a \neq u \). Inductively we define \(\mathcal{U}_j \)
for $1 < j \leq s$ as follows. Suppose that U_{j-1} has already been defined. Let $U_j \subset \mathbb{N}$ be a maximal set of $\{1, \ldots, m\}$ such that if $u \in U_j$ then $n(x_u) = n_j$ and $W_{x_u} \cap W_{x_a} = \emptyset$ for all $a \in U_j$ with $a \neq u$, and also $W_{x_u} \cap W_{x_a} = \emptyset$ for all $a \in U_1 \cup \ldots \cup U_{j-1}$.

Let $U = U_1 \cup \ldots \cup U_s$. By maximality, each W_{x_i}, $1 \leq i \leq m$, intersects some W_{x_u} with $u \in U$ and $n(x_i) \geq n(x_u)$. Thus, given any $1 \leq i \leq m$ and taking $u \in U$ such that $W_{x_i} \cap W_{x_u} \neq \emptyset$ and $n(x_i) \geq n(x_u)$, we get

$$f^{n(x_u)}(W_{x_i}) \cap B_{\delta_1/4}(f^{n(x_u)}(x_u)) \neq \emptyset.$$

Lemma 3.2 assures that

$$\text{diam}(f^{n(x_u)}(W_{x_i})) \leq \frac{\delta_1}{2} \sigma^{(n(x_i) - n(x_u))/2} \leq \frac{\delta_1}{2},$$

and so

$$f^{n(x_u)}(W_{x_i}) \subset B_{\delta_1}(f^{n(x_u)}(x_u)).$$

This implies that $W_{x_i} \subset V_{x_u}$. Hence $\{V_{x_u} \}_{u \in U}$ is a covering of K.

It follows from Corollary 3.3 that there is a uniform constant $\gamma > 0$ such that

$$\frac{\text{Leb}_\Delta(W_{x_u})}{\text{Leb}_\Delta(V_{x_u})} \geq \gamma, \quad \text{for every } u \in U.$$

Hence

$$\text{Leb}_\Delta \left(\bigcup_{u \in U} W_{x_u} \right) = \sum_{u \in U} \text{Leb}_\Delta(W_{x_u})$$

$$\geq \sum_{u \in U} \gamma \text{Leb}_\Delta(V_{x_u})$$

$$\geq \gamma \text{Leb}_\Delta \left(\bigcup_{u \in U} V_{x_u} \right)$$

$$\geq \gamma \text{Leb}_\Delta(K).$$

Setting

$$\rho = \min \left\{ \frac{\text{Leb}_\Delta(W_{x_u} \setminus K)}{\text{Leb}_\Delta(W_{x_u})} : u \in U \right\},$$

we have

$$\varepsilon \text{Leb}_\Delta(K) \geq \text{Leb}_\Delta(A \setminus K)$$

$$\geq \text{Leb}_\Delta \left(\bigcup_{u \in U} W_{x_u} \setminus K \right)$$

$$\geq \sum_{u \in U} \text{Leb}_\Delta(W_{x_u} \setminus K)$$

$$\geq \rho \text{Leb}_\Delta \left(\bigcup_{u \in U} W_{x_u} \right)$$

$$\geq \rho \gamma \text{Leb}_\Delta(K).$$

This implies that $\rho < \varepsilon / \gamma$. Since $\varepsilon > 0$ can be taken arbitrarily small, we may always choose W_{x_u} such that the relative Lebesgue measure of K in W_{x_u} is arbitrarily close to 1. Then, by bounded distortion, the relative Lebesgue measure of $f^{n(x_u)}(H) \supset f^{n(x_u)}(K)$ in $f^{n(x_u)}(W_{x_u})$, which is a disk of radius $\delta_1/4$ around $f^{n(x_u)}(x_u)$ tangent to centre-unstable cone field, is
also arbitrarily close to 1. Observe that since points in H have infinitely many hyperbolic times, we may take the integer $n(x_u)$ arbitrarily large, as long as n_1 in \(\mathcal{N} \) is also taken large enough.

\[\square \]

Proposition 4.5. There is a local unstable disk Δ_∞ of radius $\delta_1/4$ inside Λ.

Proof. Let $(\Delta_n)_n$ be the sequence of disks given by Lemma 4.4 and consider $(x_n)_n$ the sequence of points at which these disks are centered. Up to taking subsequences, we may assume that the centers of the disks converge to some point x. Using Ascoli-Arzelà, the disks converge to some disk Δ_∞ centered at x. By construction, every point in Δ_∞ is accumulated by some orbit of a point in $H \subset \Lambda$, and so $\Delta_\infty \subset \Lambda$.

Note that each Δ_n is contained in the k_n-iterate of Δ, which is a disk tangent to the centre-unstable cone field. The domination property implies that the angle between Δ_n and E_{cu} goes to zero as $n \to \infty$, uniformly on Λ. In particular, Δ_∞ is tangent to E_{cu} at every point in $\Delta_\infty \subset \Lambda$. By Lemma 3.2, given any $k \geq 1$, then f^{-k} is a $\sigma^{k/2}$-contraction on Δ_n for every large n. Passing to the limit, we get that f^{-k} is a $\sigma^{k/2}$-contraction on Δ_∞ for every $k \geq 1$.

In particular, we have shown that the subspace E^c_{xu} is uniformly expanding for Df. The fact that the Df-invariant splitting $T_\Lambda M = E^{cs} \oplus E^{cu}$ is a dominated splitting implies that any expansion Df may exhibit along the complementary direction E^c_{xu} is weaker than the expansion in the E^c_{xu} direction. Then, by [5], there exists a unique unstable manifold $W^u_{loc}(x)$ tangent to E^{cu} and which is contracted by the negative iterates of f. Since Δ_∞ is contracted by every f^{-k}, and all its negative iterates are tangent to centre-unstable cone field, then Δ_∞ is contained in $W^u_{loc}(x)$. \[\square \]

References

[1] J. F. Alves, C. Bonatti, M. Viana, *SRB measures for partially hyperbolic systems whose central direction is mostly expanding*, Invent. Math. 140 (2000), 351-398.

[2] J. F. Alves, V. Araújo, B. Saussol, *On the uniform hyperbolicity of some nonuniformly hyperbolic systems*, Proc. Amer. Math. Soc. 131, n.4 (2003), 1303-1309.

[3] R. Bowen, *A horseshoe with positive measure*, Invent. Math. 29 (1975), 203-204.

[4] R. Bowen, *Equilibrium states and the ergodic theory of Axiom A diffeomorphisms*, Lecture Notes in Mathematics 480 (1975), Springer.

[5] Ya. Pesin, *Families of invariant manifolds corresponding to non-zero characteristic exponents*, Math. USSR Izv. 10 (1976) 1261-1302.

[6] V. Pliss. *On a conjecture due to Smale*, Diff. Uravnenija 8 (1972) 262-268.