The electron beam diagnostic of the clustered supersonic nitrogen jets

To cite this article: S V Avtaeva et al 2017 J. Phys.: Conf. Ser. 927 012005

View the article online for updates and enhancements.

Related content

- Efficient chemical oxygen — iodine laser with a high total pressure of the active medium
 M V Zagitullin, V D Nikolaev, M I Svidun et al.

- Molecular tagging velocimetry in nitrogen with trace water vapor
 Carl A Hall, Marc C Ramsey, Darin A Knaus et al.

- Emission and laser-induced fluorescence measurements in a supersonic jet of plasma-heated nitrogen
 L M Cohen and R K Hanson
The electron beam diagnostic of the clustered supersonic nitrogen jets

S V Avtaeva, T S Yakovleva, V V Kalyada and A E Zarvin

Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
E-mail: s_avtaeva@srd.nsu.ru

Abstract. Axial and radial distributions of the rotational temperature and density of N_2 molecules in supersonic nitrogen jets formed with conic nozzles (critical diameters d_{cr} of 0.17 and 0.21 mm) were studied using the electron beam fluorescence technique at stagnation pressures P_0 of 0.1-0.6 MPa. A rotational temperature T_r, equaling a gas temperature T_g owing to fast RT relaxation, was obtained using the rotational line relative intensity distribution in (0-1) vibrational band of the N_2 first negative system. Gas density profiles in the jets were obtained using the integral intensity of the band. It is found, T_r at the nozzle outlet is of the order of a few tens of Kelvin and at further expansion T_r drops up to 15-20 K at distance of (100-200) d_{cr}. The gas temperature and density distributions in the studied supersonic nitrogen jets are not similar to the isentropic distributions. It is shown, that the lower is the stagnation pressure the faster the gas density and temperature decrease with distance from the nozzle. Increase in P_0 leads to elevating T_g in the jets. A reason for this effect may be cluster formation in the jets. Estimations of cluster mean sizes in the jets using Hagen’s parameter show presence of large clusters ($M \geq 200$) at $P_0=0.4-0.6$ MPa.

1. Introduction

For the first time cluster beams have been received in the middle of a past century in Germany at evaporation of a vapor, formed in a source, through a small nozzle into empty space [1]. Now the homogeneous condensation of gas at its expansion at outflow through a nozzle is the most widespread method of cluster production. Cluster beams are usually used for preparation of thin films, fine polish of surfaces and developing new materials [2, 3].

Cluster size depends on stagnation pressure and temperature, nozzle orifice and gas nature [4]. On the other hand, clusters continue to form and grow in expanding free jet until gas density is high enough and gas temperature is low enough. The cluster growth influences on gas density and temperature in the jet, as gas density decreases and some amount of heat is released at gas condensation. Here we study gas density and temperature distributions in supersonic nitrogen free jets using the electron beam fluorescence (EBF) method developed by Muntz [5]. The EBF method was frequently utilized to measure rotational temperature distributions in supersonic nitrogen free jets [6, 7]. However, Marrone pointed that the measurement by the EBF method might be affected by secondary electrons. Some deviations from the Boltzmann distribution (BD) in population of the rotational states were observed in [8, 9]. Coe et al. [7] proposed an analytical model including a quadrupole interaction with an ejected electron as well as a dipole interaction with a primary electron and reduced the spectroscopic data to the BD, concluding that there were no deviations from the BD in the rotational states in a wider range of $P_0 \cdot d$ (P_0 is the source pressure and d is the orifice diameter) from 16 to 1016 Torr-mm. Sharafutdinov et al. compared the experimental data obtained by EBF with coherent anti-Stokes Raman spectroscopy (CARS) in the range of $P_0 \cdot d$ from 60 to 1500 Torr mm, the
good agreement was obtained when the density in the jet was high enough to keep the equilibrium conditions [10]. They mentioned that the contribution of secondary electrons is small in low-density conditions. In our experiments P_0 of was varied in a range of 128-767 Torr and we suppose the BD in the rotational states. Gas density and temperature distributions at different source pressures were obtained and an attempt to observe some effects of clusters formation in the jets on the distributions was performed.

2. Experimental setup
The jets were obtained in the vacuum chamber of the experimental setup LEMPUS-2 [11]. The expansion chamber is horizontal cylinder with a diameter of 70 cm and a length of 120 cm. The vacuum pumping system provided a total pumping rate of up to 3500 L/s in N$_2$. Stagnation chamber was mounted inside the expansion chamber on the four-directional positioning device possessing three translational and the rotational degrees of freedom. The chamber has laser positioning unit which provide the necessary alignment of the jet axis and the axis of the chamber. Two supersonic nozzles with stationary modes of expansion were used in the experiments: 1) the conic nozzle #1 with inlet diameter d_{in} of 0.17 mm, outlet diameter d_{out} of 2.4 mm and length L of 8.2 mm, and 2) the conic nozzle #2 with d_{in} = 0.21 mm, d_{out} = 3.5 mm and L = 17.5 mm. The stagnation pressure P_0 was varied in the range of 0.1-0.6 MPa, gas pressure in the expansion chamber P_h was changed in the range of 0.35-3.6 Pa.

The electron beam (e-beam) was generated by an electron source installed in the upper part of the chamber. The electron source based on a hollow cathode discharge has a ballast volume evacuated by turbomolecular pump and generates a well focused e-beam with electron energies up to 10 keV and the beam current up to 100 mA. The e-beam was crossed the gas jet in perpendicular direction; a position of the jet relatively to the e-beam was assigned by the positioning device. The EBF of the jet was observed through the optical window of 160 mm diameter in the flange on the expansion chamber sidewall. The radiation was focused on one of optical fiber ends while other end of the fiber was installed in front of the spectrometer entrance slit. The spectrometer had a diffraction grating with 1200 grooves/mm and with 30 µm entrance slit it had a resolution of about 0.03 nm. The EBF spectra were recorded by a CCD array connected with a computer via an ADC.

3. The electron beam diagnostics
The electron beam fluorescence (EBF) technique is particularly well suited to low density hypersonic and supersonic flows ($< 10^{16} \text{ cm}^3$) because high fluorescence yields are obtained from excitation of the molecules or atoms of gas flows with high energy electrons. Since its first application in 1953, it has been used in numerous facilities to perform local and non-intrusive measurements of density, vibrational and rotational temperatures and velocity of different species such as N$_2$, NO, CO, CO$_2$ and He [12]. Here we use EBF technique to study rotational temperature and gas density profiles in the supersonic nitrogen jets.

The rotational temperature T_R of N$_2$ molecules was obtained using the relative intensity distribution of rotational lines in (0-1) band of the N$_2$ first negative system (FNS). The theoretical prediction of the relative intensities of the rotational lines in the e-beam excited FNS was developed by Muntz [5]. In case of direct excitation of the $N_2^+ (B^2\Sigma_u^+)$ state by e-beam at electron collisions with nitrogen molecules and the subsequent re-emission unaffected by gas kinetic collisions as well as provided that N$_2$ molecule distribution over rotational levels is a Boltzmann distribution, the T_R is obtained by measuring the relative intensities of the rotational lines in a vibrational band of the FNS and plotting $-\ln[\frac{I_{K^+}K'''}{I_{K''}K''}]/(K''+1)/v''G(K',T_R)$ versus K'' [11]). Here $(I_{K^+}K'')$ is intensity of FNS rotational lines in the (v', v'') vibrational band, K' and K'' are rotational quantum numbers (Hund’s case (b)), v' and v'' are vibrational quantum numbers of $N_2^+ (B^2\Sigma_u^+)$ and $N_2^+ (X^2\Sigma_u^+)$ electronic states, $G(K',T_R)$ is a function of K' and T_R, v is the wave number of the emission. Since
$G(K',T_R)$ depends on the rotational temperature T_R and on K', it is necessary to assume a temperature and then obtain the appropriate value $G(K',T_R)$ from a previously calculated look up table. One-two iteration is usually sufficient to obtain a satisfactory temperature measurement.

The total intensity of the vibrational molecular band does not depend on gas or rotational temperature and in case of low gas temperatures (<800K) when practically all molecules are in zero vibrational level ($v''=0$) is proportional to density of the molecules in the ground state $I_n^{R,v''} \propto n_0 (n', \, \text{and} \, n'' \, \text{are electronic quantum numbers})$ [5]. We carried out measurements of the total intensity of (0-1) band of the N₂ FNS along and across the jet to obtain gas density profile in the jet recording the spectrum with 300 µm width of the spectrometer entrance slit. A typical band shapes with resolved and unresolved rotational structure are presented in Fig. 1.

Several experiments were performed to make sure that the effect of secondary electrons and gas heating are small in our conditions. We observe EBF originated from stagnant room temperature nitrogen at the background gas pressure, varying e-beam current in a range of 10-100 mA, and studied dependences of intensity of the (0-1) band of FNS and T_r on e-beam current. The intensity was proportional to e-beam current i_{eb} in a range of 10-50 mA and then declined from the linear dependence showing tendency to saturation. In this range of i_{eb} the T_r was equal to room-temperature within the experimental error (≤5%) and at i_{eb} of 80-100 mA the T_r was higher on 30-50 K. In addition, T_r was measured in X-area of the supersonic jet (nozzle#2, $P_0=0.4 \, \text{MPa}$) at different i_{eb}, the measurements also display rise in T_r at i_{eb} of 80-100 mA compared with T_r obtained at i_{eb} of 20-40 mA, in the range of e-beam currents of 20-40 mA T_r was unchanged within the experimental error. Therefore, measurements were carried out at e-beam currents of 20-40 mA.

4. Results and discussion
Photos of the EBF of nitrogen supersonic jets expanding in the vacuum chamber are shown in Fig. 2.

Fig. 1. Typical views of the (0-1) vibrational band of the nitrogen FNS in e-beam fluorescence spectra of the supersonic nitrogen jets with a) resolved and b) unresolved rotational structure; distance from the nozzle is 5 mm; a) nozzle #1, b) nozzle #2.

Fig. 2. Photos of the EBF of the expanding nitrogen supersonic jets (nozzle #1) at stagnation pressure of a) 0.2, b) 0.4 and c) 0.6 MPa.
Fig. 3 show axial profiles of radiation intensity of the (0-1) vibrational band of the FNS and rotational temperature of N_2 molecules for the supersonic nitrogen jets. Provided that the intensity is proportional to N_2 density n_0, the intensity profile displays n_0 distribution along the jet centerline. The T_r profile is like the gas temperature distribution along jet centerline because of $T_r=T_g$ due fast rotational-translational relaxation. As it is seen in Fig. 2a at $P_0 \leq 0.2$ MPa there is not formed a typical shape of supersonic jet with one or more barrels [14] so gas density and temperature in the jet decreases at moving away from the nozzle (Fig. 3, curve 1). At $P_0 \geq 0.4$ MPa the EBF photographs clearly show outlines of the first barrel and the shock wave intersection region (X-region). T_g at the nozzle outlet is of the order of a few tens of Kelvin. At moving the jet away from a nozzle the gas density on the jet centerline first decreases at expansion then begins grow due to lateral shock waves influence up to X-region and after then decreases as the jet starts expand again (Fig. 3a, curves 2, 3); at jet expansion the T_g elevates and at compression it falls up to very low values of 15-20 K (Fig. 3b). The T_g and n_0 distributions in the nitrogen jets are unlike to the isentropic distributions, for isentropic approximation it is typical decreasing gas density and temperature at jet expansion away from a nozzle.

Radial profiles of the (0-1) band intensity and T_r show that gas density decreases at moving away from jet axis in radial direction and T_r remains almost unchanged in some area around axis and then increases; the last implies on penetration of background gas into the jet.

Fig. 4. Axial profiles of a) radiation intensity of the (0-1) band of the N_2 FNS and b) rotational temperature in expanding supersonic nitrogen jets (nozzle #1) as functions of stagnation pressure; I – nozzle #2, $P_0=0.2$ MPa, 2 – nozzle #2, $P_0=0.4$ MPa, 3 – nozzle #1, $P_0=0.6$ MPa.

Fig. 4 shows axial profiles of radiation intensity of the (0-1) band of the N_2 FNS and T_r in expanding nitrogen jets (nozzle #1) at different P_0. One can see the lower is P_0 the faster the gas
density and T_r on the jet centerline decrease with distance from the nozzle. It is worth nothing that the larger is P_0, the higher is T_r. The reason for this effect may be formation of clusters in the jets.

Cluster mean size in the supersonic nitrogen jets was estimated with Hagena’s parameter Γ^* [4]

$$\Gamma^* = K_h P_0 d_{eq}^{0.85} / T_0^{2.29},$$

where P_0 is stagnation pressure in mbar, K_h is a coefficient depending on gas nature (528 for nitrogen [8]), T_0 is stagnation temperature in K; $d_{eq} = 0.74 d_{cr} / \tan \alpha$ is equivalent nozzle diameter in μm, where d_{cr} is critical nozzle diameter and $\tan \alpha$ is tangent of a nozzle half-angle. In accordance with [13] the cluster mean size is related to the Hagena’s parameter Γ^* for large clusters as $\bar{N} = 2.94 \times 10^{-6} (\Gamma^*)^{2.35}$ and for small clusters as $\bar{N} = 4.62 \times 10^{-3} (\Gamma^*)^{1.64}$. The calculated values of Γ^* and \bar{N} for the studied jets are presented in the Table. At cluster formation and growth a heat is released so the larger is the cluster mean size the higher is the gas temperature in supersonic jet. In jet forming with the nozzle #2 at stagnation pressure 0.4 MPa large clusters with mean size of 257 molecules are formed, this is greater than in the jet of nozzle #1 at stagnation pressure of 0.6 MPa. As it is seen in Fig. 3 T_r in jet of nozzle #2 at $P_0 = 0.4$ MPa is higher compared with T_r in jet of nozzle #1 at $P_0 = 0.6$ MPa. This agrees with the hypothesis of the cluster formation effect on gas temperature in the jet.

Table. The supersonic nitrogen jet parameters.

Nozzle #	P_0, MPa	P_0/P_h	Γ^*	\bar{N}	Nozzle #	P_0, MPa	P_0/P_h	Γ^*	\bar{N}
1	0.1	285714	355	7	1	0.4	1421	68	
1	0.2	303030	710	22	2	0.4	2397	257	
2	0.2	215054	1199	52	1	0.6	2131	195	

5. Conclusion

Axial and radial distributions of the gas temperature and density in supersonic nitrogen jets were studied using the EBF technique at stagnation pressures of 0.1-0.6 MPa. At the outlet of the nozzle, the gas temperature is of the order of a few tens of Kelvin and at distance of 100-200 d_{cr} the temperature drops up to 15-20K. The gas temperature and density distributions in the studied clustered nitrogen jets are unlike to the isentropic distributions. At pressures ≥ 0.4 MPa the EBF clearly shows outlines of the first barrel and the shock wave intersection region. It is shown that the lower is P_0 the faster decrease the gas density and T_r on the jet centerline with distance from the nozzle and the larger is P_0 the higher is the temperature. The reason for this effect may be gas condensation in to clusters in the jets. Mean size of clusters forming in the supersonic nitrogen jets was estimated with Hagena’s parameter. It was found that at $P_0 \geq 0.4$ MPa clusters with mean size of ≥ 200 M are formed in the jets. It is shown that there can be interdependence between cluster formation and gas temperature in the jets.

References

[1] Becker E W, Bier K und, Henke W 1956 Zeitschrift fur Physik. 146 S333
[2] Yamada I 2014 Appl. Surf. Sci. 310 77
[3] Smirnov B M 1994 Physics-Uspekhi 164 (7) 665
[4] Hagena O F 1981 Surface Science 106 101
[5] Muntz E P 1962 Phys. Fluids 5 80
[6] Marrone P V 1967 Phys. Fluids 10 521
[7] Coe D, Robben F, Talbot L, and Cattolica R 1980 Phys. Fluids 23 706
[8] Belikov A E, Zarvin A E, Karelov N V, Sukhinin G I, Sharafutdinov R G 1984 J. Appl. Mech. Techn. Phys. 25 331
[9] Mori H, Niimi T, Akiyama I, and Tsuzuki T 2005 Phys. Fluids 17 117103
[10] Sharafutdinov R G, Ilyukhin A A, Smirnov V V, Belikov A E, Sukhinin G I, and Pykhov R L 1998 Chem. Phys. 233 127
[11] Zarvin A E, Kalyada V V, Madirbaev V Zh, Korobeishchikov N G, Khodakov M D, Yaskin A S, Khudozhitkov V E, and Gimelshein S F 2017 *IEEE Transactions on Plasma Science* **45** 819
[12] Mohamed A K, Bonnet J, Larigaldie S, Pot T, Soutadé J 2009 *Aerospace Lab* **01**-08
[13] Korobeishchikov N G, Zarvin A E, Kalyada V V, Khodakov M D 2012 *Vestnik of Novosibirsk State University* **7** 85
[14] Zischang J and Suhm M A 2013 *J. Chem. Phys.* **139** 024201