Quantum group structure of the q-deformed W algebra W_q

Huanxia Fa1, Junbo Li1, Yucai Su1

1Department of Mathematics, Changshu Institute of Technology, Changshu 215500, China

Abstract. In this paper the q-deformed W algebra W_q is constructed, whose nontrivial quantum group structure is presented.

Key words: Quantum group, q-deformed W algebra W_q, Hopf algebra.

Mathematics Subject Classification (2000): 17B05, 17B37, 17B56, 17B62, 17B68.

§1. Introduction

The deformation theory acts important roles in many fields such as mathematics and physics, which is closely related to quantum groups, originally introduced by Drinfeld in [3]. From the day that the conception of the quantum groups was born, there appear many papers on this relatively new object, so does the deformation theory (cf. [1, 2, 4], [15]–[19]). The quantum group structure on the q-deformed Virasoro algebra and q-deformed Kac-Moody algebra had been investigated by many authors (cf. [15]–[19]), and beautiful results were presented therein.

Now let’s introduce the object algebra concerned with in the present paper. The algebra W-algebra $W(2,2)$, denoted by W for convenience and introduced by Zhang and Dong in [20], is an infinite-dimensional Lie algebra, possessing a \mathbb{C}-basis \{ $L_n, W_n, C \mid n \in \mathbb{Z}$ \} and admitting the following Lie brackets (other components vanishing):

\[
[L_m, L_n] = (m - n)L_{m+n} + \frac{m^3 - m}{12}\delta_{m+n,0}C, \tag{1.1}
\]

\[
[L_m, W_n] = (m - n)W_{m+n} + \frac{m^3 - m}{12}\delta_{m+n,0}C. \tag{1.2}
\]

There appeared some papers investigating the structures and representations on such W algebra recently. In [20], Zhang and Dong produced a new class of irrational vertex operator algebras by studying its highest weight modules, while [7] and [8] classified its irreducible weight modules and indecomposable modules and [6] determined its derivations, central extensions and automorphisms. Afterwards, the Lie bialgebra structures on W (centerless form) were proved to triangular coboundary in [10], which were quantized in [11]. The generalized Verma modules for the generalized W-algebra $W(2,2)$ are also being under

1Supported by NSF grants 10471091, 10671027 of China, “One Hundred Talents Program” from University of Science and Technology of China.

Corresponding E-mail: sd_junbo@163.com
consideration in [3]. However, the existence of a q-deformation of the W-algebra $W(2,2)$ and its quantum group structure is still an open problem, which may be interesting to physicists. That is what our paper shall focus on. In other words, we shall construct a q-deformation of the W algebra, i.e., \mathcal{W}_q, which admits a nontrivial Hopf structure. The Harish-Chandra modules, Verma modules and also Unitary representations for the q-deformed W-algebra \mathcal{W}_q have been investigated and shall be presented in a series of papers (c.f. [12]–[14]) by the authors maybe in the near future.

Let’s formulate our main results below. The following definition can be found in many references (e.g. [15]).

Definition 1.1 A vector space V over \mathbb{C}, with an bilinear operation $V \times V \to V$, denoted $(x, y) \to [x, y]_q$ and called the q-bracket or q-commutator of x and y, and meanwhile with an endomorphism of V, denoted f_q, is called a q-deformed Lie algebra over \mathbb{C} if the following axioms are satisfied:

$$[u, v]_q = -[v, u]_q, \quad (1.3)$$

$$[f_q(u), [v, w]_q]_q + [f_q(w), [u, v]_q]_q + [f_q(v), [w, u]_q] = 0, \quad (1.4)$$

for any $u, v, w \in V$.

As the usual definition of 2-cocycle, we also can introduce the corresponding one of q-deformed 2-cocycle on the centerless q-deformed Lie algebra V defined in Definition 1.1.

Definition 1.2 A bilinear \mathbb{C}-value function $\psi_q : V \times V \to \mathbb{C}$ is called q-deformed 2-cocycle on V if the following conditions are satisfied

$$\psi_q(u, v) = -\psi_q(v, u), \quad (1.5)$$

$$\psi_q(f_q(u), [v, w]_q) + \psi_q(f_q(w), [u, v]_q) + \psi_q(f_q(v), [w, u]_q) = 0, \quad (1.6)$$

for any $u, v, w \in V$.

Denote by $C^2_q(V, \mathbb{C})$ the vector space of q-deformed 2-cocycles on V. For any linear \mathbb{C}-value function $\chi_q : V \to \mathbb{C}$, the 2-cocycle ψ_{χ_q} defined by

$$\psi_{\chi_q}(u, v) = \chi_q([u, v]_q), \quad \forall \ u, v \in V, \quad (1.7)$$

is called 2-coboundary on V. Denote by $B^2(V, \mathbb{C})$ the vector space of 2-coboundaries on V. The quotient space $H^2(V, \mathbb{C}) := C^2(V, \mathbb{C})/B^2(V, \mathbb{C})$ is called the second cohomology group of V.

Theorem 1.3 The algebra \mathcal{U}_q is a noncommutative but cocommutative Hopf algebra under the comultiplication Δ, the counity ϵ and the antipode S defined by (2.15)–(2.17).
§2. Proof of the main result

Firstly, we shall construct a q-deformation of \mathcal{W}, denoted \mathcal{W}_q, by using the technique developed in [15]. In fact, the Witt algebra can be recognized as the Lie algebra of derivations on $\mathbb{C}[t^{\pm 1}]$, i.e., the Lie algebra of its linear operators Ω satisfying

$$\Omega(xy) = \Omega(x)y + x\Omega(y),$$

whose Lie bracket also can be obtained by simple computations. Fix some generic $q \in \mathbb{C}^*$, and $\delta \in \text{End}(\mathbb{C}[t^{\pm 1}])$ such that $\delta(t) = qt$. Define a q-derivation D as

$$D(f(t)) = -(q - 1)^{-1}(Id - \delta)f(t), \ \forall \ f(t) \in \mathbb{C}[t^{\pm 1}].$$

It is easy to see that $\delta(t^n) = q^n t^n$ and $D(t^n) = \frac{q^n - t^n}{q(t^n - t^n)} = [n]_q t^n$, where $[n]_q = \frac{q^n - 1}{q - 1}$ for some $n \in \mathbb{Z}$. The following way of defining q-deformed Virasoro algebra can be found in many references (e.g., [15]), on which our construction is based

$$[L_m, L_n]_q = ([m]_q - [n]_q)L_{m+n} + \frac{q^{-m}[m-1]_q[m]_q[m+1]_q}{6(1+q^m)}\delta_{m,-n}C. \quad (2.1)$$

Definition 2.1 The 2-cocycle on the q-deformed Virasoro algebra given in (2.1) is called the q-deformed Virasoro 2-cocycle.

Combining the structures of the algebra \mathcal{W} listed in (1.1)–(1.2) and the q-deformed Virasoro Lie algebras given in (2.1), we introduce the centerless q-deformed W algebra \mathcal{W}_q, which possesses a \mathbb{C}-basis $\{L_m, W_m | m \in \mathbb{Z}\}$ with the following relations

$$[L_m, L_n]_q = ([m]_q - [n]_q)L_{m+n}, \ [L_m, W_n]_q = ([m]_q - [n]_q)W_{m+n}, \ [W_m, W_n]_q = 0. \quad (2.2)$$

Observing (1.4), (1.6), (2.1) and (2.2), one can take

$$f_q(L_m) = (q^m + 1)L_m, \ f_q(W_m) = (q^m + 1)W_m, \ \forall \ m \in \mathbb{Z}, \quad (2.3)$$

where f_q is that defined in Definition 1.1. By simple computations, one can see that the algebra \mathcal{W}_q defined by (2.2) with the f_q defined by (2.3) is indeed a q-deformed Lie algebra.

Using (2.1), in order to obtain the q-deformed algebra \mathcal{W}_q, we have to determine the q-deformed 2-cocycle $\psi_q(L_m, W_n)$ determined by the following identity

$$[L_m, W_n]_q = ([m]_q - [n]_q)W_{m+n} + \psi_q(L_m, W_n)C. \quad (2.4)$$
Using (2.3) and respectively, replacing \((u, v)\) by \((L_i, W_j)\) \((\forall i, j \in \mathbb{Z})\) in (1.5) and the triple \((u, v, w)\) by \((L_i, L_j, W_k)\) \((\forall i, j, k \in \mathbb{Z})\) in (1.6), one has
\[
\psi_q(L_i, W_j) = -\psi_q(W_j, L_i), \quad \text{(2.5)}
\]
\[
(q^i + 1)([j]_q - [k]_q)\psi_q(L_i, W_{j+k}) = (q^k + 1)([i]_q - [j]_q)\psi_q(L_{i+j}, W_k) + (q^j + 1)([i]_q - [k]_q)\psi_q(L_j, W_{k+i}). \quad \text{(2.6)}
\]
Let \(i = 0\) in (2.6), one has
\[
(q^j - q^k)\psi_q(L_0, W_{j+k}) = (q^j+k - 1)\psi_q(L_j, W_k),
\]
which together with our assumption on \(q\), forces
\[
\psi_q(L_0, W_0) = 0. \quad \text{(2.7)}
\]
According to the second bracket in (2.2), we can write
\[
L_0 = (1 + q^{-1})[L_1, L_{-1}]_q, \quad W_0 = (1 + q^{-1})[L_1, W_{-1}]_q,
\]
\[
L_m = ([m]_q)^{-1}[L_0, L_m]_q, \quad W_m = ([m]_q)^{-1}[L_0, W_m]_q \quad \text{if} \quad m \in \mathbb{Z}^*.
\]
Define a \(\mathbb{C}\)-linear function \(\chi_q : \mathcal{W}_q \rightarrow \mathbb{C}\) as follows
\[
\chi_q(L_0) = (1 + q^{-1})\psi_q(L_1, L_{-1}), \quad \chi_q(W_0) = (1 + q^{-1})\psi_q(L_1, W_{-1}),
\]
\[
\chi_q(L_m) = ([m]_q)^{-1}\psi_q(L_0, L_m), \quad \chi_q(W_m) = ([m]_q)^{-1}\psi_q(L_0, W_m) \quad \text{if} \quad m \in \mathbb{Z}^*.
\]
Let \(\varphi_q = \psi_q - \psi_q\chi_q\) where \(\psi_q\chi_q\) is defined in (1.7). One has
\[
\varphi_q(L_1, L_{-1}) = \varphi_q(L_1, W_{-1}) = \varphi_q(L_0, L_m) = \varphi_q(L_0, W_m) = 0 \quad \text{if} \quad m \in \mathbb{Z}^*. \quad \text{(2.8)}
\]
Denote by \(\mathfrak{W}_q\) the \(q\)-deformed Witt subalgebra of \(\mathcal{W}_q\) spanned by \(\{L_m | m \in \mathbb{Z}\}\). The by simple discussion or cite the result given in [15], one can suppose that \(\varphi_q|_{\mathfrak{W}_q}\) is exactly the \(q\)-deformed Virasoro 2-cocycle (up to a constant factor).

Recalling (2.7) and (2.9), one can deduce \(\varphi_q(L_m, W_n) = 0\) if \(m + n \neq 0\). Thus, the left components we have to compute are
\[
\varphi_q(L_m, W_{-m}), \quad \forall \ m \in \mathbb{Z}^*. \quad \text{(2.9)}
\]
By employing the same techniques developed in [15], we obtain (up to a constant factor)
\[
\varphi_q(L_m, W_{-m}) = \frac{q^{-m}[m - 1]_q[m]_q[m + 1]_q}{6(1 + q^m)}, \quad \forall \ m \in \mathbb{Z}^*. \quad \text{(2.10)}
\]
Then we have

\[[L_m, W_n]_q = ([m]_q - [n]_q)W_{m+n} + \frac{q^{-m}[m-1]_q [m]_q [m+1]_q}{6(1+q^m)} \delta_{m,-n} C. \] (2.11)

Now we can safely present the following lemma.

Lemma 2.2 The algebra \(W_q \) with a \(\mathbb{C} \)-basis \(\{L_m, W_m, C \mid m \in \mathbb{Z} \} \) satisfying the following relations (while other components vanishing) is a \(q \)-deformation of the algebra \(W \).

\[[L_m, L_n]_q = q^m L_m L_n - q^n L_n L_m, \quad [L_m, W_n]_q = q^m L_m W_n - q^n W_n L_m, \] (2.12)

where the \(q \)-deformed brackets are respectively given in (2.1) and (2.11).

Next we shall proceed with our construction of the Hopf algebra structure based on the \(q \)-deformed algebra \(W_q \) given in Lemma 2.2. Firstly, for convenience to express, we shall recall the definition of a Hopf algebra, which can be found in many books and also references.

Definition 2.3 A tuple \((\mathcal{A}, \nabla, \varepsilon, \Delta, \delta, S) \), \(\mathcal{A} \) being a \(\mathbb{C} \)-vector space, \(\nabla : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \) a multiplication map, \(\varepsilon : \mathbb{C} \rightarrow \mathcal{A} \) a unit map, \(\Delta : \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A} \) a comultiplication map, \(\delta : \mathcal{A} \rightarrow \mathbb{C} \) a counit map, \(S : \mathcal{A} \rightarrow \mathcal{A} \) an antipode map, is called a Hopf algebra over \(\mathbb{C} \) if the following axioms are satisfied

1. the map \(\nabla \) gives an associative algebra structure on \(\mathcal{A} \) with the unit \(\varepsilon(1) \),
2. \(\Delta \) and \(\delta \) give a coassociative coalgebra structure on \(\mathcal{A} \),

\[(1 \otimes \Delta)\Delta(x) = (\Delta \otimes 1)\Delta(x), \quad (1 \otimes \delta)\Delta(x) = (\delta \otimes 1)\Delta(x), \] (2.13)

3. both \(\Delta \) and \(\delta \) are algebra homomorphisms,
4. \(S \) is an automorphism with the following relations

\[\nabla(1 \otimes S)\Delta(x) = \nabla(S \otimes 1)\Delta(x) = \delta(\delta(x)). \] (2.14)

We say the Hopf algebra \(\mathcal{A} \) is cocommutative if \(\Delta = \Delta^{op} \). A vector space \(\mathcal{L} \) over \(\mathbb{C} \), is called a bialgebra if it admits the maps \(\nabla, \varepsilon, \Delta, \delta \) with the axioms (1)–(3) given in Definition 2.3.

Denote \(\mathcal{U}_q \) to be the \(q \)-deformed enveloping algebra of \(W_q \). Then \(\mathcal{U}_q \) allows the Hopf algebra structure given below

\[\varepsilon(L_m) = \varepsilon(W_m) = \varepsilon(C) = 0, \quad \Delta(C) = C \otimes 1 + 1 \otimes C, \] (2.15)

\[\Delta(L_m) = L_m \otimes T^m + T^m \otimes L_m, \quad \Delta(W_m) = W_m \otimes T^m + T^m \otimes W_m, \] (2.16)

\[S(L_m) = -T^{-m} L_m T^{-m}, \quad S(W_m) = -T^{-m} W_m T^{-m}, \quad S(C) = -C. \] (2.17)
where the operators \(\{ T, T^{-1} \} \) are given by

\[
\Delta(T) = T \otimes T, \quad \epsilon(T) = 1, \quad S(T) = T^{-1}.
\]

The following relations also can be obtained by simple computations:

\[
\begin{align*}
T^m L_n &= q^{-(n+1)m} L_n T^m, \quad T^m W_n = q^{-(n+1)m} W_n T^m, \\
T^m L_n &= q^{-(n+1)m} L_n T^m, \quad T^m W_n = q^{-(n+1)m} W_n T^m,
\end{align*}
\]

\[
\Delta(T T^{-1}) = T T^{-1} = 1, \quad q^m T^m C = CT^m, \quad q^m T^m C = C T^m.
\]

Proof of Theorem 1.3 We shall follow some techniques developed in [9]. It is not difficult to see that the coassociativity and cocommutative of \(\Delta \) hold in \(\mathcal{U}_q \) and, \(\epsilon \) is an algebra homomorphism, also \((1 \otimes \epsilon) \Delta = (\epsilon \otimes 1) \Delta = 1 \). Firstly, We shall ensure that \(\Delta \) is an algebra homomorphism while \(S \) is an algebra anti-homomorphism of \(\mathcal{U}_q \). Using the relations obtained above, we can present the following computations:

\[
\begin{align*}
q^m \Delta(L_m) \Delta(W_n) - q^n \Delta(W_n) \Delta(L_m) \\
&= (q^m L_m W_n - q^n W_n L_m) \otimes T^{m+n} + T^{m+n} \otimes (q^m L_m W_n - q^n W_n L_m) \\
&= [L_m, W_n]_q \otimes T^{m+n} + T^{m+n} \otimes [L_m, W_n]_q \\
&= ([m]_q - [n]_q) \Delta(W_{m+n}) + \frac{q^{-m}[m-1]_q[m]_q[m+1]_q}{6(1 + q^m)} \delta_{m,-n} \Delta(C).
\end{align*}
\]

Other formulate also can be proved to be preserved by the map \(\Delta \), which together implies that \(\Delta \) is an algebra homomorphism. Thus, \(\mathcal{U}_q \) indeed a bialgebra. We also have the following computations:

\[
\begin{align*}
S(L_m W_n) = S(W_n) S(L_m) &= T^{-n} W_n T^{-n} T^{-m} L_m T^{-m} = q^{n-m} T^{-m-n} L_n L_m T^{-m-n},
\end{align*}
\]

which further gives

\[
\begin{align*}
q^m S(L_m W_n) - q^n S(W_n L_m) \\
&= q^n T^{-m-n} W_n L_m T^{-m-n} - q^m T^{-m-n} L_m W_n T^{-m-n} \\
&= -T^{-m-n} (q^m L_m W_n - q^n W_n L_m) T^{-m-n} \\
&= -T^{-m-n} [L_m, W_n]_q T^{-m-n} \\
&= -([m]_q - [n]_q) S(W_{m+n}) + \frac{q^{-m}[m-1]_q[m]_q[m+1]_q}{6(1 + q^m)} \delta_{m,-n} S(C),
\end{align*}
\]

and which actually implies the fact that \(S \) preserves the second identity of (2.12). Other formulate also can be proved to be preserved by the antipode map \(S \). Thus, \(\mathcal{U}_q \) admits the referred Hopf algebra structure. \(\square \)
Before ending this short note, employing the main techniques developed in [9], one can easily obtain the following corresponding corollary.

Corollary 2.4 As vector spaces,

\[U_q \cong \mathbb{C}[T, T^{-1}] \otimes \mathcal{U}(\mathcal{W}_q), \]

where \(\mathcal{U}(\mathcal{W}_q) \) is the universal enveloping algebra of \(\mathcal{W}_q \) generated by \(\{L_m, W_m, C \mid m \in \mathbb{Z}\} \) with the relations presented in (2.12).

References

[1] N. Aizawa, H. Sato, q-Deformation of the Virasoro algebra with central extension, *Phy. Lett. B*, 256(2)(1999), 185–190.

[2] D.W. Delius, M.D. Gould, Quantum Lie Algebras, Their Existence, Uniqueness and q-Antisymmetry, *Comm. Math. Phy.*, 185(1997), 709–722.

[3] V.G. Drinfeld, Hamiltonian structures on Lie group, Lie algebras and the geometric meaning of classical Yang-Baxter equations, *Sov. Math. Dokl.*, 27(1)(1983), 68–71.

[4] E. Frenkel, N. Reshetikhin, Quantum affine algebras and deformations of the Virasoro and W-algebras, *Comm. Math. Phy.*, 178(1996), 237–264.

[5] H. Fa, J. Li, Generalized Verma modules for the generalized W-algebra \(W(2, 2) \), preprint.

[6] S. Gao, C. Jiang, Y. Pei, The derivations, central extensions and automorphisms of the Lie algebra the \(W \), [arXiv:0801.3911v1].

[7] D. Liu, S. Gao, L. Zhu, Classification of irreducible weight modules over the W-algebra \(W(2, 2) \), [arXiv:0801.2603v2].

[8] D. Liu, L. Zhu, Classification of Harish-Chandra over the W-algebra \(W(2, 2) \), preprint, [arXiv:0801.2601v2].

[9] N. Hu, Quantum group structure of the q-deformed Virasoro algebra, *Lett. Math. Phy.*, 44(1998), 99–103.

[10] J. Li, Y. Su, Lie bialgebra structures on the W-algebra \(W(2, 2) \), [arXiv:0801.4144v1].

[11] J. Li, Y. Su, Quantizations of the W-algebra \(W(2, 2) \), [arXiv:0802.0065v1].

[12] J. Li, Y. Su, H. Fa, Harish-Chandra modules for the q-deformed W-algebra \(\mathcal{W}_q \), preprint.

[13] J. Li, Y. Su, H. Fa, Verma modules for the q-deformed W-algebra \(\mathcal{W}_q \), preprint.

[14] J. Li, Y. Su, H. Fa, Unitary representations for the classical and q-deformed W-algebra \(W(2, 2) \), preprint.

[15] J. Hartwig, D. Larsson, S. Silvestrov, Deformations of Lie algebras using \(\sigma \)-derivation, *J. Alg.*, 295(2006), 314–361.

[16] K. Liu, A class of Harish-Chandra modules for the q-deformed Virasoro algebra, *J. Algebra*, 171(1995), 606–630.

[17] D. Larsson, S. Silvestrov, Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, *J. Alg.*, 288(2005), 321–344.

[18] M. Mansour, E. Tahri, A q-deformation of Virasoro and Kac-Moody algebras with Hopf structure, *Modern Phy. Lett.*, 14(1999), 733–743.

[19] A. Schmidt, H. Wachter, q-deformed quantum Lie algebras, Arxiv0509032v1.

[20] W. Zhang, C. Dong, W-algebra \(W(2, 2) \) and the Vertex operator algebra \(L(\frac{1}{2}, 0) \otimes L(0, \frac{1}{2}) \), [arXiv:0711.3624v1].