Eigenfunctions of linearized integrable equations expanded around an arbitrary solution

Jianke Yang
Department of Mathematics and Statistics
University of Vermont
Burlington, VT 05401, USA
Tel: 802-6564314; Fax: 802-6562552
Email: jyang@emba.uvm.edu

Abstract

Complete eigenfunctions of linearized integrable equations expanded around an arbitrary solution are obtained for the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy and the Korteweg-de Vries (KdV) hierarchy. It is shown that the linearization operators and the recursion operator which generates the hierarchy are commutable. Consequently, eigenfunctions of the linearization operators are precisely squared eigenfunctions of the associated eigenvalue problem. Similar results are obtained for the adjoint linearization operators as well. These results make a simple connection between the direct soliton/multi-soliton perturbation theory and the inverse-scattering based perturbation theory for these hierarchy equations.

1 Introduction

Integrable equations are nonlinear evolution equations which can be solved exactly by the inverse scattering method. Over the past few decades, it has been discovered that many physically important equations such as the Korteweg-de Vries (KdV), nonlinear Schrödinger (NLS) and sine-Gordon equations are integrable (see [1] and the references therein). Linearization of an integrable equation around its solution arises in many important applications, most notably in a direct soliton/multi-soliton perturbation theory. In such situations, eigenfunctions of linearization operators and their completeness are the key questions. For linearization around single-soliton solutions, these complete eigenfunctions have been obtained for a large class of integrable equations such as the KdV hierarchy, NLS hierarchy, modified-KdV hierarchy, sine-Gordon, and Benjamin-Ono equations [2, 3, 4, 5, 6, 7, 8, 9]. It has been found that these eigenfunctions are related to squared eigenfunctions of the associated eigenvalue problem (except for the Benjamin-Ono equation). However, for linearization around a general solution such as a multi-soliton solution, complete eigenfunctions are known for much less integrable equations [2, 8]. Some general ideas have been proposed to determine these eigenfunctions though. One idea by Keener and McLaughlin [2] is that eigenfunctions of a linearization operator expanded around an arbitrary solution are the variations of the solution with respect to each parameter in the scattering data. Another idea by Herman [6] is to utilize
the Lax pair of the integrable equation and find special combinations of squared eigenfunctions of the associated eigenvalue problem, so that these combinations satisfy the linearized equation of the evolution equation. But in both approaches, each equation has to be treated separately. In addition, for each equation, much work is needed to find eigenfunctions of the linearization operator, or relate them to squared eigenfunctions of the associated eigenvalue problem. The idea by Yang [9], however, is free of these problems. This idea is to show that linearization operators of a hierarchy and the recursion operator which generates the hierarchy are commutable, thus they share the same set of eigenfunctions. Furthermore, these eigenfunctions are simply squared eigenfunctions of the associate eigenvalue problem. Compared to the other two approaches, this method explicitly gives the eigenfunctions of linearization operators in the simplest way. In addition, it treats an entire hierarchy all at once. In [9], this idea was applied only to linearizations of the KdV, NLS and modified-KdV hierarchies around single-soliton solutions. In that special case, our results went beyond commutability of the operators. We also showed that linearization operators of the hierarchy equations could be factored into the recursion operator of the hierarchy and the linearization operator of the lowest-order equation in the hierarchy. Commutability between linearization operators and the recursion operator is a simple consequence of this factorization representation for the linearization operators.

In this article, we extend the results of Yang [9] to the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy and KdV hierarchy linearized around an arbitrary solution. The AKNS hierarchy is the family of integrable equations associated with the Zakharov-Shabat eigenvalue problem [10, 11], and the KdV hierarchy is associated with the Schrödinger eigenvalue problem [11, 12]. In this general case, we can still show that linearization operators are commutable with the recursion operator of the hierarchy (the factorization result of linearization operators for single-soliton solutions does not extend to this general case though). This commutability allows us to establish that complete eigenfunctions of linearization operators in the AKNS or KdV hierarchy are simply squared eigenfunctions of the Zakharov-Shabat or Schrödinger operator. Similar results can be obtained for adjoint linearization operators as well. In a direct soliton/multi-soliton perturbation theory, these squared eigenfunctions will then serve as the expansion basis for perturbation solutions. Interestingly, these same squared eigenfunctions were also used to expand perturbation solutions in the inverse-scattering based perturbation theory [13, 14, 15]. Thus, our results in this article indicate that, at a deeper level, the direct soliton/multi-soliton perturbation theory and the inverse-scattering based perturbation theory are really equivalent.

2 Eigenfunctions of linearization operators for the AKNS hierarchy

The AKNS hierarchy associated with the Zakharov-Shabat eigenvalue problem is [11]:

\[
\begin{bmatrix}
 r_t \\
 -q_t
\end{bmatrix} + i\omega (2L_z^+) \begin{bmatrix}
 r \\
 q
\end{bmatrix} = 0,
\]

(2.1)

where the recursion operator \(L_z^+ \) is

\[
L_z^+ = \frac{1}{2i} \begin{bmatrix}
 \frac{\partial}{\partial x} - 2rf_x^{-\infty} dyq \\
 -2qf_x^{-\infty} dyq \\
 2rf_x^{-\infty} dyr \\
 -\frac{\partial}{\partial x} + 2qf_x^{-\infty} dyr
\end{bmatrix},
\]

(2.2)

2
and \(\omega(k) \) is the dispersion relation of the linear equation in the \(r \)-component. In this section, we require that \(\omega(k) \) is an entire function. When \(\omega(k) = k^2 \) and \(q = -r^* \), Eq. (2.1) reduces to the NLS equation; when \(\omega(k) = k^3 \) and \(q = -r \), the modified-KdV equation results. The adjoint operator of \(L_z^+ \) is

\[
L_z = \frac{1}{2i} \begin{bmatrix}
-\frac{\partial}{\partial x} - 2q \int_x^\infty dyr & -2q \int_x^\infty dyq \\
2r \int_x^\infty dyr & \frac{\partial}{\partial x} + 2r \int_x^\infty dyq
\end{bmatrix}.
\]

(2.3)

Now suppose \([r_0(x,t), q_0(x,t)]^T \) is an arbitrary solution of the evolution equation (2.1). To avoid dealing with divergent integrals in the following analysis, we require that this solution vanish as \(|x| \) goes to infinity. But generalization to non-vanishing solutions is also possible by appropriately defining divergent integrals, as we did in [9]. Next we linearize Eq. (2.1) around this arbitrary solution. For this purpose, we write

\[
r = r_0(x,t) + \tilde{r}(x,t), \quad q = q_0(x,t) - \tilde{q}(x,t),
\]

(2.4)

where \(\tilde{r}, \tilde{q} \ll 1 \). Note that we deliberately introduced opposite signs in front of \(r \) and \(q \)'s perturbations. This is important for obtaining the commutability relations which we will present later in this section. When Eq. (2.4) is substituted into Eq. (2.1), linearization of Eq. (2.1) is:

\[
L \left(\frac{\tilde{r}}{\tilde{q}} \right) = 0,
\]

(2.5)

where \(L \) is the linearization operator. We denote the adjoint operator of \(L \) as \(L^A \). We also denote \(L_0^+ \) and \(L_0 \) as the recursion operators \(L_z^+ \) and \(L_z \) with \(r \) and \(q \) replaced by the solutions \(r_0(x,t) \) and \(q_0(x,t) \). The primary objective of this section is to show that operators \(L \) and \(L_0^+ \) commute, and \(L^A \) and \(L_0 \) commute, i.e.,

\[
LL_0^+ = L_0^+ L,
\]

(2.6)

and

\[
L^A L_0 = L_0 L^A.
\]

(2.7)

We will prove relation (2.6) first. Relation (2.7) will then follow naturally.

Without loss of generality, we assume that the dispersion relation \(\omega(k) \) is a power function, \(\omega(k) = k^n \), where \(n \) is a non-negative integer. The reason is that any entire function of \(\omega(k) \) can be expanded into a power series. Linearization of operator \(L_z^+ \) around the solution \((r_0, q_0) \) is

\[
L_z^+ = L_0^+ + \frac{1}{2i} \mathcal{F} \left[\frac{\tilde{r}}{\tilde{q}} \right] + O(\tilde{r}^2, \tilde{\tilde{r}} q, \tilde{\tilde{r}} q^2),
\]

(2.8)

where the operator \(\mathcal{F} \) is defined as

\[
\mathcal{F} \left[\frac{\tilde{r}}{\tilde{q}} \right] = \begin{pmatrix}
-2\tilde{r} \int_{-\infty}^x dyq_0 + 2r_0 \int_x^\infty dyq & 2\tilde{r} \int_{-\infty}^x dyr_0 + 2r_0 \int_x^\infty dy\tilde{r} \\
2\tilde{q} \int_{-\infty}^x dyq_0 + 2q_0 \int_x^\infty dyq & -2\tilde{q} \int_{-\infty}^x dyr_0 + 2q_0 \int_x^\infty dy\tilde{r}
\end{pmatrix}.
\]

(2.9)

Then, for power functions of \(\omega(k) \), the linearization operator \(L \) is simply:

\[
L \left(\frac{\tilde{r}}{\tilde{q}} \right) = \left(\frac{\tilde{r}}{\tilde{q}} \right)_t + i(2L_0^+)^n \left(\frac{\tilde{r}}{\tilde{q}} \right) + \sum_{k=1}^n (2L_0^+)^{k-1} \mathcal{F} \left[\frac{\tilde{r}}{\tilde{q}} \right] (2L_0^+)^{n-k-1} \left(\frac{r_0}{q_0} \right).
\]

(2.10)
Denoting
\[
\begin{pmatrix}
P_n \\
Q_n
\end{pmatrix} = -i(2L_0^+)n \begin{pmatrix}
r_0 \\
q_0
\end{pmatrix},
\]
then the evolution of \((r_0, q_0)\) becomes
\[
\begin{pmatrix}
r_0 \\
-q_0
\end{pmatrix} = \begin{pmatrix}
P_n \\
Q_n
\end{pmatrix},
\]
and the functions \((P_n, Q_n)\) satisfy the recursion relation
\[
\begin{pmatrix}
P_{n+1} \\
Q_{n+1}
\end{pmatrix} = 2L_0^+ \begin{pmatrix}
P_n \\
Q_n
\end{pmatrix}.
\]
(2.13)

To establish the commutability of operators \(L\) and \(L_0^+\), we examine the function
\[
\mathcal{H}_n = 2i(L_0^+ L - LL_0^+) \begin{pmatrix}
\tilde{r} \\
\tilde{q}
\end{pmatrix}.
\]
(2.14)

Simple calculations show that \(\mathcal{H}_n\) has the following expression:
\[
\mathcal{H}_n = \left\{ 2P_n \int_{-\infty}^{+\infty} (q_0 \tilde{r} - r_0 \tilde{q}) dy - 2r_0 \int_{-\infty}^{+\infty} (Q_n \tilde{r} + P_n \tilde{q}) dy \\
-2Q_n \int_{-\infty}^{+\infty} (q_0 \tilde{r} - r_0 \tilde{q}) dy - 2q_0 \int_{-\infty}^{+\infty} (Q_n \tilde{r} + P_n \tilde{q}) dy
\right\} + \sum_{k=1}^{n} (2L_0^+)k-1 \left\{ 2iL_0^+ \mathcal{F} \begin{pmatrix}
\tilde{r} \\
\tilde{q}
\end{pmatrix} - \mathcal{F} \begin{pmatrix}
2iL_0^+ \begin{pmatrix}
\tilde{r} \\
\tilde{q}
\end{pmatrix}
\end{pmatrix} \right\} (2L_0^+)n-k \begin{pmatrix}
r_0 \\
q_0
\end{pmatrix}.
\]
(2.15)

Here we have replaced the time derivatives \(r_0t\) and \(-q_0t\) in \(\mathcal{H}_n\) by \(P_n\) and \(Q_n\) in view of Eq. (2.12). It is important to realize that the above \(\mathcal{H}_n\) expression (2.15) is now purely algebraic, and is independent of the evolution equation (2.12). Below we will use algebraic manipulations and the induction method to prove that \(\mathcal{H}_n\) is zero for all \(n \geq 0\).

When \(n = 0\) or \(1\), one can verify directly that \(\mathcal{H}_n\) is indeed zero. Now we assume that \(\mathcal{H}_n = 0\) for some \(n \geq 0\). Then we try to show that \(\mathcal{H}_{n+1} = 0\). For this purpose, we calculate the quantity \(\mathcal{H}_{n+1} - 2L_0^+ \mathcal{H}_n\). It turns out that most of the summation terms in \(\mathcal{H}_{n+1}\) and \(2L_0^+ \mathcal{H}_n\) cancel each other out. The terms left over are
\[
\mathcal{H}_{n+1} - 2L_0^+ \mathcal{H}_n = \left\{ 2P_{n+1} \int_{-\infty}^{+\infty} (q_0 \tilde{r} - r_0 \tilde{q}) dy - 2r_0 \int_{-\infty}^{+\infty} (Q_{n+1} \tilde{r} + P_{n+1} \tilde{q}) dy \\
-2Q_{n+1} \int_{-\infty}^{+\infty} (q_0 \tilde{r} - r_0 \tilde{q}) dy - 2q_0 \int_{-\infty}^{+\infty} (Q_{n+1} \tilde{r} + P_{n+1} \tilde{q}) dy
\right\} - \left\{ 2L_0^+ \mathcal{F} \begin{pmatrix}
\tilde{r} \\
\tilde{q}
\end{pmatrix} + i \mathcal{F} \begin{pmatrix}
2iL_0^+ \begin{pmatrix}
\tilde{r} \\
\tilde{q}
\end{pmatrix}
\end{pmatrix} \right\} \begin{pmatrix}
P_n \\
Q_n
\end{pmatrix}.
\]
(2.16)

When the recursion relation (2.13) for \(P_{n+1}\) and \(Q_{n+1}\) is substituted into the above expression, algebraic simplifications immediately reveal that
\[
\mathcal{H}_{n+1} - 2L_0^+ \mathcal{H}_n = 0.
\]
(2.17)
Since \(H_n \) is zero by assumption, it then follows that \(H_{n+1} = 0 \). Thus \(H_n = 0 \) for all \(n \geq 0 \), which means that \(L \) and \(L_0^+ \) are commutable. For a general entire function of the dispersion relation \(\omega(k) \), this result still holds, as an entire function can be expanded into a power series.

The proof for the commutability of \(L^A \) and \(L_0 \) is trivial once the commutability of \(L \text{ and } L_0^+ \) has been established. The adjoint operator of \(LL_0^+ \) is \(L_0L^A \), and the adjoint of \(L_0^+L \) is \(L^A_L_0 \). Since \(LL_0^+ = L_0^+L \), their adjoints are certainly the same, i.e., \(L_0L^A = L^A_L_0 \). Thus \(L^A \) and \(L_0 \) are also commutable.

An important consequence of the commutability relations (2.6) and (2.7) is that \(L^A(L_0^A) \text{ and } L_0^+(L_0^A) \) share the same set of eigenfunctions. To see how this comes about, let us assume that \(\Psi(x,t,\zeta) \) is a continuous eigenfunction of \(L_0^+ \) with real eigenvalue \(\zeta \), i.e.,

\[
L_0^+\Psi = \zeta\Psi. \tag{2.18}
\]

Under the condition that \([r_0(x,t),q_0(x,t)]\) vanishes as \(|x|\) goes to infinity, we can impose the boundary condition for \(\Psi \) as

\[
\Psi(x,t,\zeta) \rightarrow \begin{pmatrix} 0 \\ -e^{-2i\zeta x} \end{pmatrix}, \quad x \rightarrow -\infty. \tag{2.19}
\]

Since \(L \text{ and } L_0^+ \) are commutable, we have

\[
L_0^+L\Psi = \zeta L\Psi. \tag{2.20}
\]

Thus \(L\Psi \) is also an eigenfunction of \(L_0^+ \) with eigenvalue \(\zeta \). As \(x \) goes to infinity, the linearization operator \(L \) becomes

\[
L \rightarrow \begin{pmatrix} \partial_t + i\omega(-i\partial_x) & 0 \\ 0 & \partial_t - i\omega(i\partial_x) \end{pmatrix}, \quad |x| \rightarrow \infty. \tag{2.21}
\]

Consequently, the boundary condition for \(L\Psi \) can be obtained from Eqs. (2.19) and (2.21) as

\[
L\Psi(x,t,\zeta) \rightarrow -i\omega(2\zeta)\begin{pmatrix} 0 \\ -e^{-2i\zeta x} \end{pmatrix}, \quad x \rightarrow -\infty,
\]

which is proportional to the boundary condition (2.19) of eigenfunction \(\Psi \). Then it becomes clear that \(L\Psi \) and \(\Psi \) are the same eigenfunction of operator \(L_0^+ \) with eigenvalue \(\zeta \) (i.e., they are linearly dependent). In view of their boundary conditions, we see that

\[
L\Psi = -i\omega(2\zeta)\Psi, \tag{2.23}
\]

i.e., \(\Psi(x,t,\zeta) \) is also a continuous eigenfunction of operator \(L \) with eigenvalue \(-i\omega(2\zeta)\).

For the same real eigenvalue \(\zeta \), \(L_0^+ \) has another linearly independent eigenfunction \(\bar{\Psi} \) with boundary condition

\[
\bar{\Psi}(x,t,\zeta) \rightarrow \begin{pmatrix} e^{2i\zeta x} \\ 0 \end{pmatrix}, \quad x \rightarrow -\infty. \tag{2.24}
\]

Similar analysis shows that \(\bar{\Psi} \) is also a continuous eigenfunction of \(L \), but with eigenvalue \(i\omega(2\zeta) \), i.e.,

\[
L\bar{\Psi} = i\omega(2\zeta)\bar{\Psi}. \tag{2.25}
\]
For the discrete eigenfunctions and generalized eigenfunctions of L_0^+, same analysis indicates that they are also discrete eigenfunctions and generalized eigenfunctions of L. Thus L_0^+ and L indeed share the same set of eigenfunctions. Naturally, the same statement applies to L_0 and L_A as well.

What exactly are the sets of eigenfunctions for L and L_A? Are these sets complete? In view of our results above, we only need to find the answers for operators L_0^+ and L_0. The eigenfunctions for L_0^+ and L_0 and their closure have been known for over twenty years from the celebrated work by Ablowitz, Kaup, Newell and Segur [11] and by Kaup [16]. The results can be summarized as follows.

Consider the Zakharov-Shabat eigenvalue problem with potential $[q_0(x,t), r_0(x,t)]$:

$$v_{1x} + i\zeta v_1 = q_0(x,t)v_2, \quad (2.26)$$

$$v_{2x} - i\zeta v_2 = r_0(x,t)v_1, \quad (2.27)$$

and define Jost functions for real ζ as

$$\psi(x,t,\zeta) = \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix} \to \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{i\zeta x}, \quad x \to \infty, \quad (2.28)$$

$$\bar{\psi}(x,t,\zeta) = \begin{bmatrix} \bar{\psi}_1 \\ \bar{\psi}_2 \end{bmatrix} \to \begin{bmatrix} 1 \\ 0 \end{bmatrix} e^{-i\zeta x}, \quad x \to \infty, \quad (2.29)$$

$$\phi(x,t,\zeta) = \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} \to \begin{bmatrix} 1 \\ 0 \end{bmatrix} e^{-i\zeta x}, \quad x \to -\infty, \quad (2.30)$$

$$\bar{\phi}(x,t,\zeta) = \begin{bmatrix} \bar{\phi}_1 \\ \bar{\phi}_2 \end{bmatrix} \to \begin{bmatrix} 0 \\ -1 \end{bmatrix} e^{i\zeta x}, \quad x \to -\infty. \quad (2.31)$$

The right and left solutions are related by

$$\phi(x,t,\zeta) = a(t,\zeta)\psi(x,t,\zeta) + b(t,\zeta)\psi(x,t,\zeta), \quad (2.32)$$

$$\bar{\phi}(x,t,\zeta) = -\bar{a}(t,\zeta)\psi(x,t,\zeta) + \bar{b}(t,\zeta)\bar{\psi}(x,t,\zeta), \quad (2.33)$$

where

$$\bar{a}(t,\zeta)a(t,\zeta) + \bar{b}(t,\zeta)b(t,\zeta) = 1 \quad (2.34)$$

from Wronskian relations. With Eq. (2.34), the inverse of Eqs. (2.32) and (2.33) is

$$\psi = -\bar{a}\phi + \bar{b}\bar{\phi}, \quad (2.35)$$

$$\bar{\psi} = \bar{a}\phi + b\bar{\phi}, \quad (2.36)$$

where we have suppressed the dependent variables x, t and ζ. In addition to the continuous spectrum (ζ real), Eqs. (2.26) and (2.27) may also possess discrete eigenvalues (bound states) in the upper and the lower half ζ-plane. In the upper half plane, these occur whenever $a(t,\zeta) = 0$, and we designate them by ζ_k, $k = 1, 2, \ldots, N$, where N is the total number of bound states in the upper half ζ-plane. At $\zeta = \zeta_k$, ϕ and ψ become linearly dependent and

$$\phi(x,t,\zeta_k) = b(t,\zeta_k)\psi(x,t,\zeta_k), \quad k = 1, 2, \ldots, N. \quad (2.37)$$
In the lower half ζ-plane, bound states correspond to zeros of $\bar{\psi}(t, \zeta)$ which we designate by $\bar{\zeta}_k$, $k = 1, 2, \ldots, N$. At $\zeta = \bar{\zeta}_k$,
\[\bar{\phi}(x, t, \bar{\zeta}_k) = \bar{b}(t, \bar{\zeta}_k)\bar{\psi}(x, t, \bar{\zeta}_k), \quad k = 1, 2, \ldots, N. \] (2.38)

It is important to note that when $[q_0(x, t), r_0(x, t)]$ is a solution of the AKNS hierarchy (2.1), the discrete eigenvalues ζ_k and $\bar{\zeta}_k$ are independent of time t.

With the above notations, the eigenfunctions and generalized eigenfunctions of operators L_0^+ and L_0 are simply squared eigenstates of the Zakharov-Shabat system (2.26) and (2.27) [11]. Specifically, the set of eigenfunctions and generalized eigenfunctions for L_0^+ is
\[
\left\{ \left[\begin{array}{c} \phi_2^2 \\ -\phi_1^2 \end{array} \right]_\zeta, \left[\begin{array}{c} \bar{\phi}_2^2 \\ -\bar{\phi}_1^2 \end{array} \right]_\zeta, \zeta \text{ real} ; \left[\begin{array}{c} \phi_2^2 \\ -\phi_1^2 \end{array} \right]_{\bar{\zeta}_k}, \left[\begin{array}{c} \bar{\phi}_2^2 \\ -\bar{\phi}_1^2 \end{array} \right]_{\bar{\zeta}_k}, 1 \leq k \leq N; \left[\begin{array}{c} \phi_2^2 \\ -\phi_1^2 \end{array} \right]_{\zeta_k}, \left[\begin{array}{c} \bar{\phi}_2^2 \\ -\bar{\phi}_1^2 \end{array} \right]_{\bar{\zeta}_k}, 1 \leq k \leq \bar{N} \right\},
\]
(2.39)

and the set of such eigenfunctions for L_0 is
\[
\left\{ \left[\begin{array}{c} \psi_1^2 \\ \psi_2^2 \end{array} \right]_\zeta, \left[\begin{array}{c} \bar{\psi}_1^2 \\ \bar{\psi}_2^2 \end{array} \right]_\zeta, \zeta \text{ real} ; \left[\begin{array}{c} \psi_1^2 \\ \psi_2^2 \end{array} \right]_{\bar{\zeta}_k}, \left[\begin{array}{c} \bar{\psi}_1^2 \\ \bar{\psi}_2^2 \end{array} \right]_{\bar{\zeta}_k}, 1 \leq k \leq N; \left[\begin{array}{c} \psi_1^2 \\ \psi_2^2 \end{array} \right]_{\zeta_k}, \left[\begin{array}{c} \bar{\psi}_1^2 \\ \bar{\psi}_2^2 \end{array} \right]_{\bar{\zeta}_k}, 1 \leq k \leq \bar{N} \right\}.
\]
(2.40)

It has been shown by Kaup [16] that each of these two sets is complete. The orthogonality and inner products of functions in these sets have also been obtained there. In view of these facts, we then conclude that the sets (2.39) and (2.40) are also the complete sets of eigenfunctions and generalized eigenfunctions for linearization operators L and L^A respectively. What about the corresponding eigenvalues? The eigenvalues are actually quite easy to obtain from the asymptotic behaviors of these eigenfunctions. For operator L, the results are:

\[
L \left[\begin{array}{c} \phi_2^2 \\ -\phi_1^2 \end{array} \right]_\zeta = -i\omega(2\zeta) \left[\begin{array}{c} \phi_2^2 \\ -\phi_1^2 \end{array} \right]_\zeta, \quad \zeta \text{ real};
\]
(2.41)

\[
L \left[\begin{array}{c} \bar{\phi}_2^2 \\ -\bar{\phi}_1^2 \end{array} \right]_\zeta = i\omega(2\zeta) \left[\begin{array}{c} \bar{\phi}_2^2 \\ -\bar{\phi}_1^2 \end{array} \right]_\zeta, \quad \zeta \text{ real};
\]
(2.42)

\[
L \left[\begin{array}{c} \phi_2^2 \\ -\phi_1^2 \end{array} \right]_{\bar{\zeta}_k} = -i\omega(2\zeta_k) \left[\begin{array}{c} \phi_2^2 \\ -\phi_1^2 \end{array} \right]_{\bar{\zeta}_k}, \quad 1 \leq k \leq N;
\]
(2.43)

\[
L \left[\begin{array}{c} \bar{\phi}_2^2 \\ -\bar{\phi}_1^2 \end{array} \right]_{\bar{\zeta}_k} = i\omega(2\zeta_k) \left[\begin{array}{c} \bar{\phi}_2^2 \\ -\bar{\phi}_1^2 \end{array} \right]_{\bar{\zeta}_k}, \quad 1 \leq k \leq \bar{N};
\]
(2.44)

\[
L \frac{\partial}{\partial \zeta} \left[\begin{array}{c} \phi_2^2 \\ -\phi_1^2 \end{array} \right]_{\bar{\zeta}_k} = -i\omega(2\zeta_k) \frac{\partial}{\partial \zeta} \left[\begin{array}{c} \phi_2^2 \\ -\phi_1^2 \end{array} \right]_{\bar{\zeta}_k} - 2i\omega'(2\zeta_k) \left[\begin{array}{c} \phi_2^2 \\ -\phi_1^2 \end{array} \right]_{\bar{\zeta}_k}, \quad 1 \leq k \leq N;
\]
(2.45)

and

\[
L \frac{\partial}{\partial \zeta} \left[\begin{array}{c} \bar{\phi}_2^2 \\ -\bar{\phi}_1^2 \end{array} \right]_{\bar{\zeta}_k} = i\omega(2\zeta_k) \frac{\partial}{\partial \zeta} \left[\begin{array}{c} \bar{\phi}_2^2 \\ -\bar{\phi}_1^2 \end{array} \right]_{\bar{\zeta}_k} + 2i\omega'(2\zeta_k) \left[\begin{array}{c} \bar{\phi}_2^2 \\ -\bar{\phi}_1^2 \end{array} \right]_{\bar{\zeta}_k}, \quad 1 \leq k \leq \bar{N}.
\]
(2.46)

The results for L^A are:

\[
L^A \left[\begin{array}{c} \psi_1^2 \\ \psi_2^2 \end{array} \right]_\zeta = -i\omega(2\zeta) \left[\begin{array}{c} \psi_1^2 \\ \psi_2^2 \end{array} \right]_\zeta, \quad \zeta \text{ real};
\]
(2.47)
Lastly, we note that in the development of a direct soliton/multi-soliton perturbation theory, it is often convenient to use the derivatives of soliton/multi-soliton solutions with respect to soliton parameters as discrete eigenfunctions and generalized eigenfunctions of the linearization operator \[2, 5, 9\]. These derivative states span the same linear space as the discrete eigenfunctions in the set \(2.39\) do. Thus use of either discrete set is sufficient.

3 Eigenfunctions of linearization operators for the KdV hierarchy

For the KdV hierarchy, similar results hold. The analysis is simpler though as we only have a scaler equation to consider. This hierarchy can be written as \[11\]:

\[
q_t + C(4L_s^+q_x = 0,
\]

where \(q(x,t)\) is a real function, \(C(k^2)\) is the phase velocity of the linear equation, and the recursion operator \(L_s^+\) is:

\[
L_s^+ = -\frac{1}{4} \frac{\partial^2}{\partial x^2} - q + \frac{1}{2} q_x \int_{-\infty}^x dy.
\]

Here the subscript “s” in \(L_s^+\) refers to “Schrödinger”, as the associated eigenvalue problem for the KdV hierarchy \((3.1)\) is the Schrödinger equation \([11, 12]\). In this section, we require the phase velocity function \(C(z)\) to be entire. The adjoint operator of \(L_s^+\) is:

\[
L_s = -\frac{1}{4} \frac{\partial^2}{\partial x^2} - q + \frac{1}{2} \int_{-\infty}^x dy q_y.
\]

Suppose \(q_0(x,t)\) is an arbitrary solution of the evolution equation \((3.1)\). To linearize Eq. \((3.1)\) around this solution, we write

\[
q = q_0(x,t) + \tilde{q}(x,t),
\]

where \(\tilde{q} \ll 1\). When Eq. \((3.4)\) is substituted into the evolution equation \((3.1)\) and higher order terms in \(\tilde{q}\) neglected, the linearized equation is

\[
L_{kh} \tilde{q} = 0,
\]

(3.5)
where L_{kh} is the linearization operator. Here the subscript “kh” is the abbreviation of the KdV hierarchy. The adjoint operator of L_{kh} will be denoted as L^{A}_{kh}. We will also denote L^{+}_{s0} and L_{s0} as the operators L^{+}_{q} and L_{q} with $q(x, t)$ replaced by the solution $q_{0}(x, t)$. The objective of this section is to show that L_{kh} and L^{+}_{s0} are commutable, and L^{A}_{kh} and L_{s0} are commutable, i.e.,

$$L_{kh}L^{+}_{s0} = L^{+}_{s0}L_{kh},$$ (3.6)

and

$$L^{A}_{kh}L_{s0} = L_{s0}L^{A}_{kh}.$$ (3.7)

These results are analogous to Eqs. (2.6) and (2.7) for the AKNS hierarchy.

Without loss of generality, we will just prove relations (3.6) and (3.7) for power functions of the phase velocity function, $C(z) = z^n$, where n is a non-negative integer. For this power function, it is easy to check that the linearization operator L_{kh} is:

$$L_{kh}\tilde{q} = \tilde{q} t + (4L^{+}_{s0})^{n}\tilde{q} x + \sum_{k=1}^{n} (4L^{+}_{s0})^{k-1} F_{kh}[\tilde{q}](4L^{+}_{s0})^{n-k}q_{0x},$$ (3.8)

where

$$F_{kh}[\tilde{q}] = -4\tilde{q} + 2\tilde{q}_{x} \int_{x}^{\infty} dy,$$ (3.9)

and $q_{0}(x, t)$ is a solution of the evolution equation (3.1). Denoting

$$W_{n} = -(4L^{+}_{s0})^{n} q_{0x},$$ (3.10)

then q_{0t} is simply

$$q_{0t} = W_{n},$$ (3.11)

where functions W_{n} satisfy the recursion relation

$$W_{n+1} = 4L^{+}_{s0}W_{n}.$$ (3.12)

To show that L_{kh} and L^{+}_{s0} are commutable, we calculate the quantity

$$J_{n} = -4(L^{+}_{s0}L_{kh} - L_{kh}L^{+}_{s0})\tilde{q},$$ (3.13)

which has the expression

$$J_{n} = 2W_{nx} \int_{x}^{\infty} \tilde{q} dy - 4W_{n}\tilde{q} - (4L^{+}_{s0})^{n} \left[4L^{+}_{s0}\tilde{q}_{x} - 4(L^{+}_{s0})^{n}q_{0x} \right] - \sum_{k=1}^{n} (4L^{+}_{s0})^{k-1} \left\{ 4L^{+}_{s0}F_{kh}[\tilde{q}] - F_{kh}[4L^{+}_{s0}\tilde{q}] \right\} (4L^{+}_{s0})^{n-k}q_{0x}.$$ (3.14)

Now we show that $J_{n} = 0$ for all $n \geq 0$ by the induction method.

When $n = 0$ or 1, trivial calculations show that J_{n} is indeed zero. Now assume that $J_{n} = 0$ for some $n \geq 0$. Notice that

$$J_{n+1} - 4L^{+}_{s0}J_{n} = 2W_{n+1,x} \int_{x}^{\infty} \tilde{q} dy - 4W_{n+1}\tilde{q} - 4L^{+}_{s0} \left[2W_{nx} \int_{x}^{\infty} \tilde{q} dy - 4W_{n}\tilde{q} \right] + \left\{ 4L^{+}_{s0}F_{kh}[\tilde{q}] - F_{kh}[4L^{+}_{s0}\tilde{q}] \right\} W_{n}.$$ (3.15)
Substituting the recursion relation (3.12) for W_{n+1} into the above equation (3.15) and carrying out some algebraic simplifications including integration by parts, we find that

$$\mathcal{J}_{n+1} - 4L_{s0}^+ \mathcal{J}_n = 0. \tag{3.16}$$

Since $\mathcal{J}_n = 0$ by assumption, we see that $\mathcal{J}_{n+1} = 0$. This induction procedure proves that $\mathcal{J}_n = 0$ for all $n \geq 0$. Thus, L_{kh} and L_{s0}^+ are commutable for any power function of the phase velocity $C(z)$. The commutability for general entire functions of $C(z)$ follows from the fact that an entire function can be expanded into a power series.

Now that L_{kh} and L_{s0}^+ are commutable. Taking the adjoint of the commutability relation (3.6), we find that L_{kh}^A and L_{s0} are also commutable.

Commutability of L_{kh} (L_{kh}^A) and L_{s0}^+ (L_{s0}) implies that these operators share the same set of eigenfunctions and generalized eigenfunctions. The eigenfunctions of L_{s0}^+ and L_{s0} are well known [11, 15]. They are simply squared eigenfunctions of the Schrödinger operator with potential $q_0(x,t)$.

Specifically, consider the Schrödinger equation

$$v_{xx} + \left(\zeta^2 + q_0(x,t)\right)v = 0. \tag{3.17}$$

Using conventional notation, we define the eigenstates $\psi(x,t,\zeta)$ and $\phi(x,t,\zeta)$ of Eq. (3.17) as

$$\psi(x,t,\zeta) \rightarrow \begin{cases} e^{i\zeta x}, & x \to \infty; \\ a(t,\zeta)e^{i\zeta x} - b(t, -\zeta)e^{-i\zeta x}, & x \to -\infty; \end{cases} \tag{3.18}$$

and

$$\phi(x,t,\zeta) \rightarrow \begin{cases} e^{-i\zeta x}, & x \to -\infty; \\ a(t,\zeta)e^{-i\zeta x} + b(t,\zeta)e^{i\zeta x}, & x \to \infty. \end{cases} \tag{3.19}$$

In addition to the above continuous spectrum (real ζ), Eq. (3.17) may also possess discrete eigenvalues in the upper half ζ-plane (on the imaginary axis for real potential q_0) where $a(t,\zeta_k) = 0, k = 1, 2, \ldots, N$. Note that if $q_0(x,t)$ is a solution of the KdV hierarchy (3.1), then these discrete eigenvalues ζ_k are independent of time t [11, 12]. With the above notations, the set of eigenfunctions and generalized eigenfunctions for the operator L_{s0}^+ is

$$\left\{ \frac{\partial^2 \psi^2}{\partial x \partial \zeta}, \zeta \text{ real}; \frac{\partial^2 \psi^2}{\partial x \partial \zeta}, 1 \leq k \leq N \right\}, \tag{3.20}$$

and the set of such eigenfunctions for L_{s0} is

$$\left\{ \phi^2, \zeta \text{ real}; \phi^2|_{\zeta_k}, 1 \leq k \leq N \right\}. \tag{3.21}$$

Commutability of L_{s0}^+ (L_{s0}) and L_{kh} (L_{kh}^A) shows that the sets (3.20) and (3.21) are also eigenfunctions and generalized eigenfunctions for the linearization operators L_{kh} and L_{kh}^A respectively. In addition, we can readily show that the eigenvalue relations are

$$L_{kh} \frac{\partial \psi^2}{\partial x} \bigg|_{\zeta} = 2i\zeta C(4\zeta^2) \frac{\partial \psi^2}{\partial x} \bigg|_{\zeta}, \quad \zeta \text{ real}; \tag{3.22}$$
\[L_{kh} \frac{\partial^2 \psi^2}{\partial x^2} \bigg|_{\zeta_k} = 2i\zeta_k C(4\zeta_k^2) \frac{\partial \psi^2}{\partial x} \bigg|_{\zeta_k}, \quad 1 \leq k \leq N; \quad (3.23) \]

\[L_{kh} \frac{\partial^2 \psi^2}{\partial x \partial \zeta} \bigg|_{\zeta_k} = 2i\zeta_k C(4\zeta_k^2) \frac{\partial^2 \psi^2}{\partial x \partial \zeta} \bigg|_{\zeta_k} + \left[2iC(4\zeta_k^2) + 16i\zeta_k^2 C'(4\zeta_k^2) \right] \frac{\partial \psi^2}{\partial x} \bigg|_{\zeta_k}, \quad 1 \leq k \leq N; \quad (3.24) \]

and

\[L_{kh}^A \phi^2 \bigg|_{\zeta_k} = 2i\zeta_k C(4\zeta_k^2) \phi^2 \bigg|_{\zeta_k}, \quad \zeta \text{ real}; \quad (3.25) \]

\[L_{kh}^A \frac{\partial \phi^2}{\partial \zeta} \bigg|_{\zeta_k} = 2i\zeta_k C(4\zeta_k^2) \frac{\partial \phi^2}{\partial \zeta} \bigg|_{\zeta_k}, \quad 1 \leq k \leq N; \quad (3.26) \]

\[L_{kh}^A \frac{\partial \phi^2}{\partial \zeta} \bigg|_{\zeta_k} = 2i\zeta_k C(4\zeta_k^2) \frac{\partial \phi^2}{\partial \zeta} \bigg|_{\zeta_k} + \left[2iC(4\zeta_k^2) + 16i\zeta_k^2 C'(4\zeta_k^2) \right] \phi^2 \bigg|_{\zeta_k}, \quad 1 \leq k \leq N. \quad (3.27) \]

The completeness of the two sets (3.20) and (3.21) and their inner products have been derived in [15, 17]. Thus these sets can be used to expand the perturbation solutions in a direct soliton/multi-soliton perturbation theory [6, 7, 9].

4 Concluding remarks

In this article, we have studied the linearization operators of the AKNS hierarchy and KdV hierarchy equations expanded around an arbitrary solution. We have found that these linearization operators and the recursion operator which generates the hierarchy are commutable. This commutability relation immediately reveals that linearization operators and the recursion operator share the same set of eigenfunctions, and these eigenfunctions are simply squared eigenfunctions of the Zakharov-Shabat or Schrödinger equations. Compared to the other methods for determining eigenfunctions of the linearization operators [2, 6], our method is simple, and it gives the eigenfunctions for the entire AKNS and KdV hierarchies all at once. In addition, our result makes a clear connection between the direct soliton/multi-soliton perturbation theory and the inverse-scattering based perturbation theory, as perturbation solutions in both theories are expanded onto the same complete set of eigenfunctions. With the eigenfunctions of linearization operators now available, one can proceed to develop a direct soliton/multi-soliton perturbation theory for the AKNS and KdV hierarchies, which should reproduce the results of [14, 15] obtained by the inverse-scattering based perturbation method. This problem falls outside the scope of the present article. Another interesting question is whether the idea of this paper can be extended to derive eigenfunctions of linearization operators for other integrable equations. We believe the answer is positive. For instance, our results should be extendible to the integrable N-wave equations whose recursion operator and its eigenfunctions have been available [18, 19]. This question will be left for future studies.

Acknowledgments

The author thanks Prof. D.J. Kaup for very helpful discussions on this subject. This work was supported in part by the Air Force Office of Scientific Research under contract number USAF F49620-99-1-0174, and by National Science Foundation under grant number DMS-9971712.
References

[1] M.J. Ablowitz, and H. Segur, “Solitons and the inverse scattering transform.” SIAM, Philadelphia (1981).

[2] Keener, J.P. and McLaughlin, D.W., “Solitons under perturbations.” Phys. Rev. A 16, 777 (1977).

[3] M.B. Fogel, S.E. Trullinger, A.R. Bishop, and J.A. Krumhansl, “Dynamics of sine-Gordon solitons in the presence of perturbations.” Phys. Rev. B 15, 1578–1592 (1977).

[4] H.H. Chen and D.J. Kaup, “Linear stability of internal wave solitons in a deep stratified fluid.” Phys. Fluids 23, 235-238 (1980).

[5] D.J. Kaup, “Perturbation theory for solitons in optical fibers.” Phys. Rev. A 42, 5689 (1990).

[6] R.L. Herman, “A direct approach to studying soliton perturbations.” Phys. A: Math. Gen. 23 2327-2362 (1990).

[7] J. Yan and Y. Tang, “Direct approach to the study of soliton perturbations.” Phys. Rev. E 54, 6816-6824 (1996).

[8] Y. Matsuno and D.J. Kaup, “Linear stability of multiple internal solitary waves in fluids of great depth.” Phys. Lett. A 228, 176-181 (1997).

[9] J. Yang, “Complete eigenfunctions of linearized integrable equations expanded around a soliton solution”. J. Math. Phys. 41, 6614 (2000).

[10] V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media.” Sov. Phys. JETP 34, 62-69 (1972).

[11] M.J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, “The inverse scattering transform - Fourier analysis for nonlinear problems.” Stud. Appl. Math. 53, 249-336 (1974).

[12] C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura, “Method for solving the Korteweg-de Vries equation.” Phys. Rev. Lett. 19, 1095-1097 (1967).

[13] D.J. Kaup, “A Perturbation Expansion for the Zakharov-Shabat Inverse Scattering Transform.” SIAM J. Appl. Math. 31, 121 (1976).

[14] D.J. Kaup and A.C. Newell, “Solitons as particles, oscillators, and in slowly changing media: a singular perturbation theory.” Proc. R. Soc. Lond. A 361, 413-446 (1978).

[15] A.C. Newell, “The inverse scattering transform.” In Solitons (Topics in Current Physics, Vol. 17, Springer-Verlag, editors: R.K. Bullough and P.J. Caudrey) pp177-242 (1980).

[16] D.J. Kaup, “Closure of the squared Zakharov-Shabat eigenstates.” J. Math. Anal. Appl. 54, 849-864 (1976).

[17] R.L. Sachs, “Completeness of derivatives of squared Schrödinger eigenfunctions and explicit solutions of the linearized KdV equation.” SIAM J. Math. Anal. 14, 674-683 (1983).

[18] S. Novikov, S.V. Manakov, L.P. Pitaevski and V.E. Zakharov, Theory of solitons: the inverse scattering transform. Plenum Publishing Corp., New York, 1984.
[19] V.S. Gerdjikov, “On the spectral theory of the integro-differential operator Λ generating nonlinear evolution equations.” Lett. Math. Phys. 6, 315 (1982).