A new improved class of ratio-product type exponential estimators of the population variance

Farah Naza, Tahir Nawazb,c,*, Muhammad Abidb, and Tianxiao Panga

a. School of Mathematical Sciences, Institute of Statistics, Zhejiang University, Hangzhou 310058, China.
b. Faculty of Physical Sciences, Department of Statistics, Government College University Faisalabad, Allama Iqbal Road, Faisalabad 38000, Pakistan.
c. School of Mathematical Sciences, Shanghai Jiao Tong University, Minhang Campus, 800 Dongchuan Road, Shanghai 200240, China.

Abstract

Several auxiliary information-based estimators of the population variance are available in the existing literature of survey sampling. Mostly, these estimators are based on conventional dispersion measures of the auxiliary variable. In this study, a generalized class of ratio-product type exponential estimators of the population variance is proposed which integrates the auxiliary information on non-conventional dispersion measures under simple random sampling in the ratio-type exponential class of estimators. The performance of the proposed estimators is compared, theoretically and numerically, with the several existing estimators of the population variance. It is established that the proposed class of estimators outperforms the existing estimators in terms of the lower mean square and relative root mean square errors. Moreover, the percentage relative efficiency of the proposed estimators is much higher as compared to their counterparts.

Keywords: auxiliary variable, mean square error, percentage relative efficiency, relative root mean square error, simple random sampling.

1. Introduction

In survey sampling the auxiliary information, if available or easily obtainable without involving much cost, can be advantageously used in selection of appropriate sampling design, selection of sampling units for inquiry or measurement process, and the estimation of the characteristic of interest. For example, to study the sugar cane production, the auxiliary information about area under cultivation, the market price of sugar, the incentive, in terms of support price, given to the farmers and the production of sugar cane in previous year etc., can play a vital role for efficient estimation of the expected sugar cane production. The ratio, product, regression, exponential and their different combinations are a popular choice, in practice, to enhance the efficiency of the estimators of population mean and variance in the presence of auxiliary information correlated with the study variable. The use of these estimators is expanding to a variety of fields such as yield estimation in agriculture, demographic studies, environmental

* Corresponding Author

E-mail addresses: naz_farah25@zju.edu.cn (Naz, F.); tahir.nawaz@gcuf.edu.pk, tahir.nawaz@sjtu.edu.cn (Nawaz, T.); mabid@gcuf.edu.pk (Abid, M.); txpang@zju.edu.cn (Pang, T.)

Tel: +86-19802103352, +92-3324248719 (Nawaz, T.)
studies, statistical process monitoring in industry, medical and biological sciences, and many other related fields; see for example [1-7].

Along with population mean, the estimation of variance is of great interest to make certain policy decisions in many practical situations such as agriculture, business, stock investments, production planning in manufacturing industry, services industry, ecology, seismology, and medical sciences are few to mention[8-10]. Therefore, efficient estimation of the mean and variance are equally important for effective decision making. The estimation of variance in the context of ratio-type methods of estimation, using auxiliary information, has been considered by various researchers. Usually, conventional auxiliary measures such as mean, median, quartiles, variance, coefficient of kurtosis, variation, skewness, and the correlation between the study and auxiliary variables are employed under ratio and regression type estimation structures to improve the efficiency of the estimators of variance. For example, see [10-27] as well as their cited references for details on this subject. The auxiliary measures used in most of the existing ratio-type estimators of variance are non-resistant to the presence of outliers. The use of such measures can undermine the efficiency of the ratio-type estimators of variance if some outliers are present in the data. Thus, there is need for incorporation of some outlier resistant auxiliary measures to develop more stable ratio-type estimators.

Recently, ratio-type estimators for estimation of population mean have been developed which incorporate auxiliary information on nonconventional measures [28-32]. These non-conventional measures are somewhat robust and outlier resistant which aids in stabilizing the mean square error of the estimators in presence of outliers [8, 33, 34]. Use of auxiliary information on non-conventional or robust measures for estimation of population variance is still a neglected area. Efficient estimation of variance in the presence of outliers is of paramount interest in several practical situation, such as in agriculture, business, production processes, and so forth. Therefore, the problem of estimating the finite population variance is dealt in this study by incorporating auxiliary information on some non-conventional and robust measures of dispersion, detailed in Section 3, to develop more stable and outlier resistant ratio-product type exponential estimators. It is assumed that the auxiliary information on these non-conventional measures is readily available or it can be obtained economically. Suppose a finite population \(\Omega = \{ \Omega_1, \Omega_2, \ldots, \Omega_N \} \) consists of \(N \) different and identifiable units. Let \((y_i, x_i)\) be the measurable study and the auxiliary variables, respectively, with their values \((y_i, x_i)\) being ascertained on \(\Omega_i \) \((i = 1, 2, \ldots, N) \). The purpose of the measurement process is to efficiently estimate the population variance of the variable of interest,
\[S_y^2 = (N - 1)^{-1} \sum_{i=1}^{N} (y_i - \bar{Y})^2, \]
by drawing a random sample of size \(n \) from \(\Omega \) using simple random sampling (SRS) without replacement scheme. Let \(s_y^2 = (n - 1)^{-1} \sum_{i=1}^{n} (y_i - \bar{y})^2 \) and
\[s_x^2 = (n - 1)^{-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]
be the sample variance of the study and the auxiliary variable, respectively. Furthermore, let \(\rho_{yx} \) be the population coefficient of correlation between the study and the auxiliary variable, \(C_y = S_y / \bar{Y} \) and \(C_x = S_x / \bar{X} \) be population coefficient of variations of \(y \) and \(x \), respectively.
To determine the bias and mean square error (MSE) of the existing and the proposed estimators, the following preliminaries regarding the relative error terms are considered:

Let $\xi_0 = (s_y^2 - S_y^2) / S_y^2$ and $\xi_1 = (s_x^2 - S_x^2) / S_x^2$, so that $E(\xi_0) = E(\xi_1) = 0$; and $E(\xi_0) = \eta(\beta_{2(y)} - 1) = \beta_{2(y)}^*$, $E(\xi_1) = \eta(\beta_{2(x)} - 1) = \beta_{2(x)}^*$, $E(\xi_0 \xi_1) = \eta(\lambda_{22} - 1) = \lambda_{22}^*$; where $\eta = \left(1 - \frac{1}{n}\right)$, $\beta_{2(y)}$ and $\beta_{2(x)}$ are the population coefficient of kurtosis of the study variable y and auxiliary variable x, respectively, and $\lambda_{22} = \frac{\mu_{22}}{\mu_{20} \mu_{02}}$ with

$$\mu_{rs} = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \bar{Y}) (x_i - \bar{X})^r.$$

2. Some existing estimators of variance under SRS

Numerous estimators of finite population variance are available in literature. In this section, we briefly describe the structure of some of the existing estimators of finite population variance based on SRS.

The usual unbiased estimator of variance under SRS as defined in Cochran [35] is given as

$$S_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2,$$

The variance of S_y^2 is given as

$$\text{Var}(S_y^2) \equiv S_y^4 \beta_{2(y)}^*.$$ \hspace{1cm} (1)

Isaki [13] proposed a ratio type estimator of S_y^2, which is given as

$$S_R^2 = s_y^2 \left(\frac{s_x^2}{S_x^2} \right),$$

The MSE of S_R^2, to first degree of approximation, is given as

$$\text{MSE}(S_R^2) \equiv S_y^4 \left[\beta_{2(y)}^* + \beta_{2(x)}^* - 2\lambda_{22}^* \right].$$ \hspace{1cm} (2)

The conventional regression type estimator due to Isaki [13] is given as

$$S_{\text{Reg}}^2 = s_y^2 + b_{(s_y^*, s_x^*)} (S_x^2 - s_x^2),$$

Where $b_{(s_y^*, s_x^*)}$ represents the regression coefficient to be estimated from the sample.

The MSE of S_{Reg}^2, up to the first degree of approximation, is given as
\[
\text{MSE}\left(S_{beg}^2\right) \approx S_y^4 \beta_{2(y)}^* \left[1 - \rho^2(s_i^*, s_i^*)\right] \tag{3}
\]

where \(\rho(s_i^*, s_i^*) = \lambda_{22}^* \sqrt{\beta_{2(y)}^* \beta_{2(x)}^*}\) denotes the population correlation coefficient between \(y\) and \(x\).

The difference type estimator of Singh, Upadhyaya and Namjoshi [19] is given as
\[
S_d^2 = c_1 s_y^2 + c_2 \left(S_x^2 - s_i^2\right),
\]
where \(c_1\) and \(c_2\) are unknown constants and their optimal values are determined in such a manner that the MSE of \(S_d^2\) is minimized.

The minimum MSE of \(S_d^2\) at optimum values \(c_{1(opt)} = \beta_{2(x)}^* \left(\beta_{2(y)}^* + \beta_{2(y)}^* \beta_{2(x)}^* - \lambda_{22}^2\right)\) and \(c_{2(opt)} = S_x^2 \lambda_{22}^* \left(S_y^2 \left(\beta_{2(x)}^* + \beta_{2(y)}^* \beta_{2(x)}^* - \lambda_{22}^2\right)\right)\), up to the first degree of approximation, is given,
\[
\text{MSE}\left(S_d^2\right)_{\text{min}} \approx \frac{S_y^4 \beta_{2(y)}^* \left[1 - \rho^2(s_i^*, s_i^*)\right]}{1 + \beta_{2(y)}^* \left[1 - \rho^2(s_i^*, s_i^*)\right]} \tag{4}
\]

The ratio-type exponential estimator proposed by Bahl and Tuteja [11] is given as
\[
S_{BT}^2 = S_y^2 \exp\left(\frac{S_y^2 - s_i^2}{S_x^2 + s_i^2}\right).
\]

The minimum MSE of \(S_{BT}^2\), up to first degree of approximation, is given as
\[
\text{MSE}\left(S_{BT}^2\right) \approx S_y^4 \left[\beta_{2(y)}^* + \frac{1}{4} \beta_{2(y)}^* - \lambda_{22}^2\right] \tag{5}
\]

Upadhyaya and Singh [25] used coefficient of kurtosis of the auxiliary variable to propose a modified ratio-type estimator of population variance, which is given as
\[
S_{US}^2 = S_y^2 \left(\frac{S_x^2 + \beta_{2(x)}^*}{S_x^2 + \beta_{2(x)}^*}\right)
\]

The MSE of \(S_{US}^2\), up to first degree of approximation, is given as,
\[
\text{MSE}\left(S_{US}^2\right) \approx S_y^4 \left[\beta_{2(y)}^* + \gamma_{US} \beta_{2(x)}^* - 2\gamma_{US} \lambda_{22}^2\right], \tag{6}
\]
where \(\gamma_{US} = \frac{S_y^2}{S_x^2 + \beta_{2(x)}^*}\).
Kadilar and Cingi [14] utilized population coefficient of variation and the population coefficient of kurtosis of the auxiliary variable to suggest some modified estimators of population variance as

\[S_{KC1}^2 = \left(\frac{S_x^2 + C_x}{s_x^2 + C_x} \right); \quad S_{KC2}^2 = \left(\frac{C_xS_x^2 + \beta_{2(s)}}{C_xS_x^2 + \beta_{2(s)}} \right); \quad S_{KC3}^2 = \left(\frac{\beta_{2(s)}S_x^2 + C_x}{\beta_{2(s)}S_x^2 + C_x} \right) \]

The respective MSEs of \(S_{KC1}^2, S_{KC2}^2, \) and \(S_{KC3}^2, \) up to first degree of approximation, are given as,

\[MSE\left(S_{KC1}^2 \right) \equiv S_y^4 \left[\beta_{2(s)}^* + \gamma_{KC1}\beta_{2(s)}^* - 2\gamma_{KC1}\lambda_{22}^* \right], \quad (7) \]

\[MSE\left(S_{KC2}^2 \right) \equiv S_y^4 \left[\beta_{2(s)}^* + \gamma_{KC2}\beta_{2(s)}^* - 2\gamma_{KC2}\lambda_{22}^* \right], \quad (8) \]

\[MSE\left(S_{KC3}^2 \right) \equiv S_y^4 \left[\beta_{2(s)}^* + \gamma_{KC3}\beta_{2(s)}^* - 2\gamma_{KC3}\lambda_{22}^* \right], \quad (9) \]

where \(\gamma_{KC1} = \frac{S_x^2}{S_x^2 + C_x}, \quad \gamma_{KC2} = \frac{C_xS_x^2}{C_xS_x^2 + \beta_{2(s)}}, \) and \(\gamma_{KC3} = \frac{\beta_{2(s)}S_x^2}{\beta_{2(s)}S_x^2 + C_x}. \)

The estimator of population variance \(S_y^2, \) given by Shabbir and Gupta [17] is

\[S_{SG} = c_3S_y^2 + c_4 \left(S_y^2 - S_x^2 \right) \exp \left(\frac{s_x^2 - s_y^2}{S_x^2 + s_x^2} \right) \]

where \(c_3 \) and \(c_4 \) are unknown quantities to be determined in a manner to minimize the MSE of \(S_{SG}^2. \)

The optimum values of \(c_3 \) and \(c_4 \) that minimizes the MSE of \(S_{SG}^2 \) are given as

\[c_3(\text{opt}) = \frac{\beta_{2(s)}^*}{8} \left(\frac{8 - \beta_{2(s)}^*}{\beta_{2(s)}^* + \beta_{2(s)}^* - \lambda_{22}^*} \right) \]

\[c_4(\text{opt}) = \frac{S_x^2}{8S_y^2} \left(\frac{-4\beta_{2(s)}^* + \beta_{2(s)}^* + 8\lambda_{22}^* - \lambda_{22}^* - 4\lambda_{22}^*}{\beta_{2(s)}^* + \beta_{2(s)}^* + \beta_{2(s)}^* - \lambda_{22}^*} \right), \]

whereas the minimized MSE of \(S_{SG}^2 \) is

\[MSE\left(S_{SG}^2 \right)_{\text{min}} \equiv S_y^4 \left(\frac{-\beta_{2(s)}^* - 16\beta_{2(s)}^*}{1 + \rho_{(s_i,s_j)}^2} \left(\frac{\beta_{2(s)}^*}{1 - \rho_{(s_i,s_j)}^2} - 4 \right) \right). \]

Subramani and Kumarapandiyan [36] used the median of the auxiliary variable to propose an estimator of the population variance which is defined as.
\[S_{SK1}^2 = s_y^2 \left(\frac{S_x^2 + M_x}{s_x^2 + M_x} \right) \]

The MSE of \(S_{SK1}^2 \), up to first degree of approximation, is given as,

\[
MSE \left(S_{SK1}^2 \right) \equiv S_y^4 \left[\beta_{2(1)}^* + \gamma_{SK1}^* \beta_{2(1)}^* - 2 \gamma_{SK1}^* \lambda_{22}^* \right], \quad (11)
\]

where \(\gamma_{SK1} = \frac{S_y^2}{s_x^2 + M_x} \).

Taking motivation from Kadilar and Cingi [14] and Subramani and Kumarapandiyan [36] a new ratio-type estimator of the population variance was introduced by Subramani and Kumarapandiyan [22] that utilizes the population information on the coefficient of variation and the median of the auxiliary variable and is given as

\[
S_{SK2}^2 = \left(\frac{C_x S_x^2 + M_x}{C_x s_x^2 + M_x} \right)
\]

The MSE of \(S_{SK2}^2 \), to first order of approximation, is given as,

\[
MSE \left(S_{SK2}^2 \right) \equiv S_y^4 \left[\beta_{2(2)}^* + \gamma_{SK2}^* \beta_{2(2)}^* - 2 \gamma_{SK2}^* \lambda_{22}^* \right], \quad (12)
\]

where \(\gamma_{SK2} = \frac{C_x S_x^2}{C_x s_x^2 + M_x} \).

Khan and Shabbir [15] used upper quartile and the population correlation coefficient to suggest an improved ratio estimator of population variance as

\[
S_{KS}^2 = \left(\frac{\rho_{xs} S_x^2 + Q_{x(s)}}{\rho_{xs} s_x^2 + Q_{x(s)}} \right)
\]

The MSE of \(S_{KS}^2 \), up to first degree of approximation, is given as,

\[
MSE \left(S_{KS}^2 \right) \equiv S_y^4 \left[\beta_{2(3)}^* + \gamma_{KS}^* \beta_{2(3)}^* - 2 \gamma_{KS}^* \lambda_{22}^* \right], \quad (13)
\]

where \(\gamma_{KS} = \frac{\rho_{xs} S_x^2}{\rho_{xs} s_x^2 + Q_{x(s)}} \).

The generalized estimator of population variance proposed by Swain [24] is given below,

\[
S_{SW}^2 = S_y^2 \left[k \left(\frac{s_x^2}{s_y^2} \right)^h + (1-k) \left(\frac{s_x^2}{s_y^2} \right)^{h-d} \right]
\]
where k, q, h are suitably chosen constant and $\delta = (1, -1)$. The minimum MSE of S_{SW}^2, up to first degree of approximation, at optimum value $k = \left(\delta h + (Q_{22}^* \ell \beta_{2(\omega)}) \right) / (\delta (g + h))$, is given by

$$MSE\left(S_{SW}^2 \right)_{min} \cong S_{\gamma}^4 \beta_{2(\omega)}^* \left(1 - \rho_{(s_i^*, s_j^*)}^2 \right). \quad (14)$$

It is to be noted that the $MSE\left(S_{SW}^2 \right)_{min}$ is equal to $MSE\left(S_{reg}^2 \right)$.

The general class of estimator for population variance proposed by Yadav, Kadilar, Shabbir and Gupta [26], given by

$$S_{YG}^2 = \left[c_s s_i^2 + c_6 (s_i^2 - s_i^2) \right] \left\{ \lambda \left(\frac{a s_i^2 + b}{a s_i^2 + b} \right) + (1 - \lambda) \exp \left(\frac{a (s_i^2 - s_i^2)}{a (s_i^2 + s_i^2) + 2b} \right) \right\},$$

where c_s and c_6 are suitably chosen constants that minimizes the MSE of S_{reg}^2, while λ can take values 0 or 1 and a, b be the known values of the auxiliary variable parameters. The minimum MSE of S_{YG}^2, up to first degree of approximation, at optimum values,

$$c_{s(ope)} = \left\{ \frac{1 - \frac{1}{8} g^2 (1 + 3 \lambda + 4 \lambda^2) \beta_{2(\omega)}^*}{1 - \frac{1}{4} g^2 \lambda (1 + 3 \lambda) \beta_{2(\omega)} \beta_{2(\omega)}^* + \beta_{2(\omega)}^* \left(1 - \rho_{(s_i^*, s_j^*)}^2 \right)} \right\} \text{ and}$$

$$c_{6(ope)} = \frac{S_{Y}^2}{S_{x}^2} \left\{ \frac{1}{2} g (1 + \lambda) + c_{s(ope)} \left(\frac{\lambda_{22}^*}{\beta_{2(\omega)}^*} - g (1 + \lambda) \right) \right\} \text{ is given as}$$

$$MSE\left(S_{YG}^2 \right)_{min} \cong S_{\gamma}^4 \left\{ 1 - \frac{1}{4} g^2 (1 + \lambda)^2 \beta_{2(\omega)}^* \right\} - \frac{\left(1 - \frac{1}{8} g^2 (1 + 3 \lambda + 4 \lambda^2) \beta_{2(\omega)}^* \right)^2}{1 - \frac{1}{4} g^2 \lambda (1 + 3 \lambda) \beta_{2(\omega)}^2 + \beta_{2(\omega)}^* \left(1 - \rho_{(s_i^*, s_j^*)}^2 \right)},$$

where $g = \frac{a S_{x}^2}{a S_{x}^2 + b}$.

The minimum MSE of S_{YG}^2, up to degree order of approximation at $(\lambda, a, b) = (1, 1, 0)$, is given below,

$$MSE\left(S_{YG}^2 \right)_{min} \cong S_{\gamma}^4 \left\{ S_{\gamma}^4 MSE\left(S_{reg}^2 \right) \left(1 - \beta_{2(\omega)}^* \right) \right\}$$

$$- \frac{1 - \beta_{2(\omega)}^* + S_{\gamma}^4 MSE\left(S_{reg}^2 \right)}{1 - \beta_{2(\omega)}^*} \left(1 - \beta_{2(\omega)}^* \right)$$

$$\left(1 - \rho_{(s_i^*, s_j^*)}^2 \right), \quad (15)$$

$$\left(1 - \beta_{2(\omega)}^* \right)$$

$$\left(1 - \rho_{(s_i^*, s_j^*)}^2 \right), \quad (16)$$
Yadav and Kadilar [37] proposed a ratio-product-ratio type estimator of population variance which is given as
\[
S_{1K}^2 = S_s^2 \left[\alpha_1 \left(\frac{(1 - \beta_1) s_y^2 + \beta_1 S_s^2}{\beta_1^2 s_y^2 + (1 - \beta_1) S_s^2} \right) + (1 - \alpha_1) \left(\frac{\beta_2 s_y^2 + (1 - \beta_2) S_s^2}{(1 - \beta_2) s_y^2 + \beta_2 S_s^2} \right) \right]
\]

where \(\alpha_1\) and \(\beta_1\) are constants.

The minimum MSE of \(S_{1K}^2\), up to first degree of approximation, is given below,
\[
MSE\left(S_{1K}^2 \right)_{\text{min}} \approx S_s^4 \left[\left(\beta_{2(1)}^* + \beta_{2(2)}^* - 2 \lambda_{22}^* \right) + 16 \alpha \beta \beta_{2(2)}^* \left(1 - \alpha - \beta + \alpha \beta \right) + 4 \lambda_{22}^* \left(\alpha - \beta \right)^2 + 4 \beta_{2(1)}^* \left(-\alpha - \beta + \alpha \beta + \beta \right) \right]
\]

(17)

The minimum MSE of \(S_{1K}^2\), up to first degree of approximation at \((\alpha_{opt}, \beta_{opt}) = \left(\frac{1}{2}, \frac{1}{2} \right)\) is
\[
MSE\left(S_{1K}^2 \right)_{\text{min}} \approx S_s^4 \beta_{2(1)}^* \left(1 - \rho^2 \left(s_y^2, s_s^2 \right) \right)
\]

(18)

And when \((\alpha_1, \beta_1) = \left(\left(\left(\beta_{2(1)}^*, 2 \beta_{2(2)}^* \right)/2, 0 \right), \right)\), the minimum MSE of \(S_{1K}^2\) is given as
\[
MSE\left(S_{1K}^2 \right)_{\text{min}} \approx S_s^4 \beta_{2(2)}^* \left(1 - \rho^2 \left(s_y^2, s_s^2 \right) \right)
\]

(19)

Recently Yaqub and Shabbir [27] proposed an improved class of estimators for population variance given as,
\[
S_{1S}^2 = s_s^2 \left[c_7 + c_8 \left(s_y^2 - s_s^2 \right) \right] \left\{ \frac{a S_y^2 + b}{a s_y^2 + b} \right\} \left[\frac{1}{2} \exp \left(\frac{a \left(S_y^2 - s_s^2 \right)}{a (s_y^2 + s_s^2) + 2b} \right) + \frac{1}{2} \exp \left(\frac{a \left(s_y^2 - S_s^2 \right)}{a (s_y^2 + s_s^2) + 2b} \right) \right]
\]

where \(c_7\) and \(c_8\) are suitably chosen constants and \(a\) and \(b\) be the known population parameters of the auxiliary variable. Assuming \(a = 1\) and \(b = 0\); the minimum MSE of \(S_{1S}^2\), up to first degree of approximation, based on the optimum values,
\[
c_{7(opt)} = \frac{\beta_{2(2)}^*}{2} \left(\frac{1 + 7 (1 - \beta_{2(1)}^*)}{\beta_{2(1)}^2 + 4 \beta_{2(2)}^* (1 - \beta_{2(1)}^*) + 4 \beta_{2(1)}^* \beta_{2(2)}^* - 4 \lambda_{22}^2} \right), \text{and}
\]
\[
c_{8(opt)} = \frac{S_s^2}{2 S_y^2} \left(\frac{\lambda_{22}^2 + 7 \lambda_{22}^* (1 - \beta_{2(1)}^*) - 8 \beta_{2(2)}^* (1 - \beta_{2(1)}^*) + 8 \beta_{2(2)}^* \beta_{2(1)}^* - 8 \lambda_{22}^2}{\beta_{2(1)}^2 + 4 \beta_{2(2)}^* (1 - \beta_{2(1)}^*) + 4 \beta_{2(2)}^* \beta_{2(2)}^* - 4 \lambda_{22}^2} \right)
\]

is given below,
\[
MSE\left(S_{1S}^2 \right)_{\text{min}} \approx \frac{S_s^4}{16} \left[64 \left(1 - \beta_{2(2)}^* \right) S_y^{-4} \text{MSE}\left(S_{\text{Reg}}^2 \right) - \beta_{2(2)}^2 \right]
\]

(20)
3. The proposed generalized estimator of variance

This section presents a generalized ratio product type exponential estimator of population variance which incorporates the information on some outlier resistant non-conventional measures of dispersion of the auxiliary variable. The non-conventional measures are used in a linear combination within the structure of the proposed estimator to stabilize it against possible outliers in the data. The non-conventional somewhat robust measures of the auxiliary variable considered in this study includes:

(i) **The interquartile range**: The interquartile range (IQR) is the difference between the upper quartile \(Q_{3(s)}\) and lower quartile \(Q_{1(s)}\). Symbolically, it is given as

\[IQR_s = Q_{3(s)} - Q_{1(s)} \]

It is the most known, somewhat, robust measure of dispersion with a breakdown point of 25%.

(ii) **The Gini’s mean difference estimator**: Gini [38] suggested an estimator of dispersion which is also known as Gini’s mean difference estimator. It is given as

\[GIN_s = \frac{4}{N(N-1)} \sum_{i=1}^{N} \left(\frac{2i-N-1}{2N} \right) x_{(i)} \]

where \(x_{(i)}\) denotes the \(i^{th}\) order statistics. It is robust to outliers and more efficient estimator as compared to the estimators based on range and standard deviation (cf. David [39]).

(iii) **The Downton’s estimator**: Like \(GIN_s\), Downton [40] suggested a robust and highly efficient estimator of dispersion. It is defined as

\[DOW_s = \frac{2\sqrt{\pi}}{N(N-1)} \sum_{i=1}^{N} \left(\frac{i-N+1}{2} \right) x_{(i)} \]

where \(x_{(i)}\) denotes the \(i^{th}\) order statistics. The asymptotic efficiency of \(DOW_s\) is 97.8% (cf. David [39]).

(iv) **The probability weighted moment estimator**: Another similar estimator to \(GIN_s\) and \(DOW_s\) is the probability weighted moment estimator given in [41]. It is defined as

\[SPW_s = \frac{\sqrt{\pi}}{N^2} \sum_{i=1}^{N} (2i-N-1) x_{(i)} \]

where \(x_{(i)}\) denotes the \(i^{th}\) order statistics. Its properties are like \(GIN_s\) and \(DOW_s\), as all these three estimators are proportional to each other.

(v) **The median absolute deviation from median**: Hampel [42] suggested an estimator based on median of the absolute deviations taken from median which is given as

\[MADM_s = m \left[\text{median} |x_i - X| \right] \text{ for } i = 1, 2, \ldots, N, \]

where \(m\) is the consistency coefficient, and \(X\) denotes the median of the observations. The \(MADM_s\) is robust against outliers with a breakdown point of 50% but under normality its efficiency is relatively low i.e. 37%. To make \(MADM_s\) a consistent estimator of \(\sigma\) under the normal distribution the value of \(m\) is set equal to 1.4826.
(vi) **The median of pairwise distances:** Shamos [43] and Bickel and Lehmann [44] suggested an estimator of dispersion based on median of pairwise distances as
\[\text{median} \{ |x_i - x_j|; i < l \} \]. Rousseeuw and Croux [45] suggested to pre-multiply it with 1.0483 to achieve consistency under the Gaussian distribution and the resultant estimator can be defined as
\[B_{x_i} = 1.0483 \text{median} \{ |x_i - x_j|; i < l \} \]
The \(B_{x_i} \) is, somewhat, robust to outliers with a breakdown point of 29% and has a relatively high efficiency (about 86%) under normality.

(vii) **The ordered statistic of sub-ranges:** Croux and Rousseeuw [46] proposed a class of location-free robust estimators of dispersion based on ordered statistics of subranges defined as
\[S_{\alpha} = C_{\alpha} \left\{ x_{(i+\alpha N)\mod N} - x_{(i\mod N)} \right\} \]
where \(0 < \alpha < 0.5 \) and \(x_{(1)\leq x_{(2)}\leq\ldots\leq x_{(N)}} \) are the \(N \) order statistics, respectively (here, the symbol \(\lceil \cdot \rceil \) represents the integer part). The value of \(S_{\alpha} \) is determined by first sorting the observations \(x \) and then we calculate the absolute differences
\[|x_{(i+\alpha N)\mod N} - x_{(i\mod N)}| \]
for \(i = 1,2,\ldots,N - \lceil \alpha N \rceil - 1 \). From these calculated quantities, the \(\lceil \frac{N}{2} - \alpha N \rceil \)th order statistics yields the desired estimator. The constant \(C_{\alpha} \) is chosen in such a way that \(S_{\alpha} \) becomes a consistent estimator for a given value of \(\alpha \). In the present study we have used \(\alpha = 0.25 \) which corresponds to \(C_{\alpha} = 1.4826 \) under normality. The \(S_{\alpha} \) has a 50% breakdown point and it is more efficient than \(MADM_x \) for small samples.

(viii) **The trimmed mean of median deviations:** Rousseeuw and Croux [47] proposed an estimator with a high breakdown point of 50% and efficiency of 52% under normality which is relatively higher as compare to \(MADM_x \). It is defined as
\[T_{x_i} = \frac{1.38}{h} \sum_{k=1}^{h} \text{median} \{ |x_i - x_l|; i \neq l \} \]
where for each \(i = 1,2,\ldots,N \), we compute median of \(|x_i - x_l|, l = 1,2,3,\ldots,N \) that yields \(N \) values, the average of first \(h \) order statistics gives the desired estimator (here, \(h = \lceil \frac{N}{2} \rceil + 1 \) which is roughly half of the number of observations).

(ix) **The 0.25-quantile of pairwise distances:** Similar to \(B_{x_i} \), Rousseeuw and Croux [45] suggested a robust estimator of dispersion based on the 0.25-quantile of pairwise distances between the observations. It is given as
\[Q_{x_i} = d \{ \text{median} |x_i - x_l|; i < l \} \]
where, \(p = \left(\frac{h}{2} \right) \approx \left(\frac{N}{2} \right)/4 \) and \(h = \left\lfloor \frac{N}{2} \right\rfloor + 1 \). Hence, the \(p^{th} \) order statistic of the \(\left(\frac{N}{2} \right) \) interpoint distances yields the desired estimator. The value of \(d \) is set equal to 2.2219 for \(Qn_x \) to be a consistent estimator under normality. The estimator \(Qn_x \) has a 50% breakdown point and high Gaussian asymptotic efficiency of 82%.

(x) **The median of the median of distances:** Rousseeuw and Croux [45] suggested another robust estimator which has a high breakdown point of 50%. It is defined as

\[
S_{n_x} = q \left[\text{median} \left\{ \text{median} \left| x_i - x_j \right| ; i \neq j \right\} \right],
\]

where \(q \) is the consistency factor with a default value of 1.1926 under the normal population. To compute \(S_{n_x} \), first we determine median of \(\left| x_i - x_j \right| ; j = 1, 2, \ldots, N \) for each \(i \) which results in \(N \) values. Finally, the median of these \(N \) values yields \(S_{n_x} \).

For detail properties of these non-conventional measures of dispersion the readers may see [38-40, 43-47] and the references cited therein.

Taking motivation from Shabbir and Gupta [17] and Naz, Abid, Nawaz and Pang [34] we have integrated the above mentioned non-conventional robust measures of dispersion to design a stable ratio product type exponential estimator of population variance defined as:

\[
S_{\text{Prop}}^2 = s_y^2 \left\{ p_1 \left(\frac{\varphi S^2_x + \theta}{\varphi S^2_x + \theta} \right)^{\frac{\varphi S^2_x}{\varphi S^2_x + \theta}} + p_2 \left(\frac{\varphi S^2_x + \theta}{\varphi S^2_x + \theta} \right)^{\frac{\varphi S^2_x}{\varphi S^2_x + \theta}} \right\} \exp \left\{ \frac{\varphi \left(S^2_x - s^2_x \right)}{\varphi \left(S^2_x + s^2_x \right) + 2\theta} \right\}
\]

(21)

where \(p_1 \) and \(p_2 \) are suitably chosen constants and their values are to be determined later in such a manner that MSE of \(S_{\text{Prop}}^2 \) is minimized. \(\varphi \) can either be some known real value or function of the known conventional population parameter – such as \(\rho \) of \(\rho \) or any other value – of the auxiliary variable, whereas \(\theta \) can be one the above mentioned non-conventional measure.

Setting \(\omega = \frac{\varphi S^2_x}{\varphi S^2_x + \theta} \) and expressing \(S_{\text{Prop}}^2 \) in terms of \(\xi \)'s, we have

\[
S_{\text{Prop}}^2 = s_y^2 \left(1 + \xi_0 \right) \left\{ p_1 \left(1 + \omega \xi_1 \right)^{-\alpha_0} + p_2 \left(1 + \omega \xi_1 \right)^{\alpha_0} \right\} \exp \left\{ -\frac{\omega \xi_1}{2} \left(1 + \frac{\omega \xi_1}{2} \right)^{-1} \right\}
\]

(22)

For Simplification, expanding Eqn. (22) and retaining terms only up to 2\(^{nd}\) order in \(\xi \)'s, we have

\[
S_{\text{Prop}}^2 - S^2_x \approx s_y^2 \left\{ p_1 \left(1 + \xi_0 \left(\omega^2 + \frac{5}{4} \right) \xi_1 + \frac{\omega^2}{2} \xi_1^2 \right) + p_2 \left(1 + \xi_0 \left(\omega^2 + \frac{5}{4} \right) \xi_1 + \frac{\omega^2}{2} \xi_1^2 \right) \right\} \]

For detail properties of these non-conventional measures of dispersion the readers may see [38-40, 43-47] and the references cited therein.
By applying expectation on both sides of Eqn. (23), we get the bias of S^2_{PR} as below,

$$\text{Bias}\left(S^2_{PR} \right) \geq S^4 \left[(p_1 + p_2 - 1) + p_1 \left\{ \left(\frac{\omega^4}{2} + \omega^3 + \frac{3}{8} \omega^2 \right) \beta^2_{2\omega} \right\} \beta^2_{2\omega} + \left(\frac{\omega^4}{2} + \omega^3 + \frac{3}{8} \omega^2 \right) \beta^2_{2\omega} + \left(\frac{\omega^4}{2} + \omega^3 + \frac{3}{8} \omega^2 \right) \beta^2_{2\omega} - 1 \right]$$

(23)

Squaring both sides of Eqn. (23) and then applying expectation, we get the MSE of S^2_{PR} as below,

$$\text{MSE}\left(S^2_{PR} \right) = S^4 + p_1 S^4 \left[1 + \beta^2_{2\omega} + \left(2 \omega^3 + 3 \omega^2 + \omega \right) \beta^2_{2\omega} - 4 \left(\omega^2 + \frac{\omega^4}{2} \right) \beta^2_{2\omega} + 1 + \beta^2_{2\omega} + \left(2 \omega^3 + 3 \omega^2 + \omega \right) \beta^2_{2\omega} + 4 \left(\omega^2 + \frac{\omega^4}{2} \right) \beta^2_{2\omega} \right] + 2 p_1 S^4 \left[1 + \beta^2_{2\omega} + \omega^2 \beta^2_{2\omega} - 2 \omega \beta^2_{2\omega} \right] - 2 p_1 S^4 \left[1 + \left(\frac{\omega^4}{2} + \omega^3 + \frac{3}{8} \omega^2 \right) \beta^2_{2\omega} - \left(\omega^2 + \frac{\omega^4}{2} \right) \beta^2_{2\omega} \right] - 2 p_1 S^4 \left[1 + \left(\frac{\omega^4}{2} + \omega^3 + \frac{3}{8} \omega^2 \right) \beta^2_{2\omega} + \left(\omega^2 + \frac{\omega^4}{2} \right) \beta^2_{2\omega} \right]

(24)

To get the optimal values of p_1 and p_2, we minimize Eqn. (25) with respect to p_1 and p_2 which gives,

$$p_{1(\text{opt})} = \frac{1}{8} \left[\frac{\omega \left(-1 + 2 \omega \right) \left(\omega^2 - 7 + 4 \omega \left(1 + \omega \right) \right) \beta_{2\omega}^2 - 16 \beta_{2\omega}^2 \beta_{2\omega}^2 + 8 \beta_{2\omega}^2 \left(1 + 3 \omega \beta_{2\omega}^2 \right) \right]$$

and

$$p_{2(\text{opt})} = \frac{1}{8} \left[\frac{\omega \left(1 + 2 \omega \right) \left(\omega^2 - 7 + 4 \omega \left(-1 + \omega \right) \right) \beta_{2\omega}^2 - 16 \beta_{2\omega}^2 \beta_{2\omega}^2 + 8 \beta_{2\omega}^2 \left(1 + 3 \omega \beta_{2\omega}^2 \right) \right]$$

The optimal values of p_1 and p_2 are then substituted in Eqn. (25), which gives the minimum MSE of S^2_{PR} as below:

$$\text{MSE}\left(S^2_{PR} \right)_{\text{min}} \approx S^4 \left[\frac{16 \omega \beta_{2\omega}^2 \beta_{2\omega}^2 \left(\omega^4 - 4 \omega^3 \right) \beta_{2\omega}^2 - \omega^6 (1 - 4 \omega^2) \beta_{2\omega}^2 - 64 \omega \beta_{2\omega}^2 \left(1 + \beta_{2\omega}^2 \right) + 16 \beta_{2\omega}^2 \left(4 \omega^2 - 1 \right) \beta_{2\omega}^2 + 4 \left(1 + 2 \omega \beta_{2\omega}^2 \right) \beta_{2\omega}^2 \right]$$

(26)
Many estimators of the population variance can be generated from class of estimators given in Eqn. (21) by setting different values of \(\varphi \) and \(\theta \). A few selected estimators, which are members of proposed class, are given in Table-1.

4. **Theoretical and numerical efficiency comparisons**

In this section, theoretical and numerical efficiency comparison of the proposed generalized class of ratio-product type exponential estimators of population variance is made with the existing estimators discussed in Section 2.

4.1. **Theoretical comparison**

For theoretical efficiency comparison, let the MSE of the proposed class of estimators \(S_{PR}^2 \) be written as

\[
MSE\left(S_{PR}^2\right) = \frac{S^2}{16} \left(\frac{A}{B} \right), \tag{27}
\]

where

\[
A = 16 \omega^2 \beta_{2(s)}^2 \left((\omega - 4 \omega^1) \lambda_{22}^* - 4 \beta_{2(1)}^* \right) - \omega^2 (1 - 4 \omega^2)^2 \beta_{2(s)}^3 - 64 \lambda_{22}^2 \left(1 + \beta_{2(1)}^* \right), \quad \text{and}
\]

\[
B = \omega^2 \left(4 \omega^2 - 5 \right) \beta_{2(s)}^2 - 16 \lambda_{22}^2 + 4 \beta_{2(1)}^* \left(1 + 4 \omega \lambda_{22} + \beta_{2(1)}^* \right) \lambda_{22}^2 \beta_{2(s)}^3
\]

(i) The proposed class of estimators has superior efficiency as compare to \(S_y^2 \) if \(Var\left(S_y^2\right) - MSE\left(S_{PR}^2\right)_{\min} > 0 \). Thus, by Eqns. (1) and (27), the efficiency condition is given as

\[
\frac{S^4}{16} \left(\frac{16B \beta_{2(1)}^* - A}{B} \right) > 0.
\]

(ii) Similarly, \(S_{PR}^2 \) is more efficient as compare to \(S_R^2 \) if \(MSE\left(S_R^2\right) - MSE\left(S_{PR}^2\right)_{\min} > 0 \). Thus, by Eqns. (2) and (27), the efficiency condition is given as

\[
\frac{S^4}{16} \left(\frac{16B \left(\beta_{2(1)}^* + 2 \lambda_{22}^* \right) - A}{B} \right) > 0.
\]

(iii) The estimators envisaged in the class \(S_{PR}^2 \) attains higher efficiency as compare to \(S_{Reg}^2 \), \(S_{SW}^2 \) and \(S_{YK}^2 \) if \(MSE\left(S_{Reg}^2\right) - MSE\left(S_{PR}^2\right)_{\min} > 0 \),

\[
MSE\left(S_{SW}^2\right)_{\min} - MSE\left(S_{PR}^2\right)_{\min} > 0 \text{ and } MSE\left(S_{YK}^2\right)_{\min} - MSE\left(S_{PR}^2\right)_{\min} > 0.
\]

Thus, by Eqns. (3), (14), (19) and (27), the efficiency condition is given as
\[
\frac{S_i^4}{16} \left[\frac{16B\beta^*_{2(y)} \left(1 - \rho^2_{(s_i^1, s_i^2)}\right) - A}{B} \right] > 0.
\]

(iv) The efficiency of the proposed class \(S_{PR}^2\) is higher than \(S_d^2\) if
\[
MSE\left(S_d^2\right)_{\min} - MSE\left(S_{PR}^2\right)_{\min} > 0.
\]
Thus, by Eqns. (4) and (27), the efficiency condition is given as
\[
\frac{S_i^4}{16} \left[16B \left(\beta^*_{2(y)} \left(1 - \rho^2_{(s_i^1, s_i^2)}\right) - A \right) \left(1 + \beta^*_{2(y)} \left(1 - \rho^2_{(s_i^1, s_i^2)}\right)\right) \right] > 0.
\]

(v) \(S_{PR}^2\) shows better efficiency as compare to \(S_{BT}^2\) if
\[
MSE\left(S_{BT}^2\right) - MSE\left(S_{PR}^2\right)_{\min} > 0.
\]
Thus, by Eqns. (5) and (27), the efficiency condition is given as
\[
\frac{S_i^4}{16} \left[4B \left(4\beta^*_{2(y)} + \beta^*_{2(i)} - 4\lambda^*_{22}\right) - A \right] > 0.
\]

(vi) The proposed class of estimators \(S_{PR}^2\) display superior efficiency as compare to \(S_{US}^2, S_{KC1}^2, S_{KC2}^2, S_{SK1, SK2}^2\) and \(S_{KS}^2\) if their MSEs are greater than \(MSE\left(S_{PR}^2\right)_{\min}\).
Thus, by Eqns. (6), (7), (8), (9), (11), (12), (13) and (27), the efficiency condition is given as
\[
\frac{S_i^4}{16} \left[16B \left(\beta^*_{2(y)} + \gamma_i^2 \beta^*_{2(i)} - 2\gamma_i^2 \lambda^*_{22}\right) - A \right] > 0,
\]
where \(\gamma_i = \gamma_{US}, \gamma_{KC1}, \gamma_{KC2}, \gamma_{SK1, SK2}\) and \(\gamma_{KS}\) respectively.

(vii) The efficiency of \(S_{PR}^2\) is higher than \(S_{SG}^2\) if \(MSE\left(S_{SG}^2\right)_{\min} - MSE\left(S_{PR}^2\right)_{\min} > 0\). Thus, by Eqns. (10) and (27), the efficiency condition is given as
\[
\frac{S_i^4}{64} \left[\left(-\beta^*_{2(i)} - 16\beta^*_{2(y)} \left(1 - \rho^2_{(s_i^1, s_i^2)}\right)\right) \left(\beta^*_{2(y)} - 4\right) \right] > 0.
\]

(viii) The estimators envisaged in \(S_{PR}^2\) achieve higher efficiency as compare to \(S_{YG}^2\) if \(MSE\left(S_{YG}^2\right)_{\min} - MSE\left(S_{PR}^2\right)_{\min} > 0\). Thus, by Eqns. (16) and (27), the efficiency condition is given as
\[
\frac{S_i^4}{16} \left[\frac{16\beta^*_{2(i)} \left(1 - \rho^2_{(s_i^1, s_i^2)}\right) \left(1 - \beta^*_{2(i)}\right)}{1 - \beta^*_{2(i)} + \beta^*_{2(i)} \left(1 - \rho^2_{(s_i^1, s_i^2)}\right)} - A \right] > 0.
\]
(ix) The proposed estimators of class S^2_{PR} are superior to S^2_{YS} in terms of efficiency if
$$MSE\left(S^2_{YS}\right)_{min} - MSE\left(S^2_{PR}\right)_{min} > 0.$$ Thus, by (20) and (27). The efficiency condition is given as
$$S^4 \left[\frac{64\beta^*_2(y)\left(1 - \rho^2(s^2_x, s^2_y)\right)}{16} - \frac{A}{B}\right] > 0.$$

4.2. Numerical comparison in presence of outliers

As it has been pointed out in Section 3 that the proposed class of estimators incorporates the non-conventional measures which are somewhat robust to outliers, therefore, the numerical comparison of the proposed class of estimators of population variance with the existing estimators is made by using three population datasets which contains some outliers. The boxplots given in Figures 1-3 clearly shows that both the study and auxiliary variables in Population-I and III are crippled with outliers, while population-II has only one outlier observation in its auxiliary variable. Thus, these datasets are a good realization of the both with and without outlier observation cases. Moreover, these population datasets are frequently used in many studies to compare the performance of various estimators of population mean and variance, see for example, [28, 29, 33, 48, 49]). The description and various population characteristics are detailed as under:

[Place Figures 1-3 Here]

Population 1: This dataset is taken from Cochran [35], where y represents the number of inhabitants (in 1000's) in United States cities in 1930 and x is the number of inhabitants (in 1000's) in 1920.

$$N = 49, \ n = 20, \ \bar{Y} = 127.7959, \ \bar{X} = 103.1429, \ S^2_x = 15158.8299, \ S^2_y = 10900.4249, \
\beta_{2(y)} = 4.9245, \ \beta_{2(x)} = 5.9878, \ C_x = 1.0435, \ \lambda_{22} = 4.6977, \ \eta = 0.02959, \ \rho_{(s^2_x, s^2_y)} = 0.83577, \
Q_{1(x)} = 43.0, \ Q_{3(x)} = 120.0, \ IQR_x = 77, \ GIN_x = 97.7553, \ DOW_x = 86.6508, \ SPW_x = 84.8456, \
MADM_x = 39.2889, \ Bn_x = 52.415, \ Sr^x = 34.0998, \ Tn_x = 35.5488, \ Qn_x = 46.6599, \
Sn_x = 40.5484, \ \rho_{yx} = 0.9817, \ M_x = 64.0.$$

Population 2: This dataset is obtained from Murthy [50], where y denotes the output (in 100,000 rupees) of factories in a region and x is fixed capital (in 100,000 rupees).

$$N = 80, \ n = 20, \ \bar{Y} = 51.8264, \ \bar{X} = 11.2646, \ S^2_y = 336.9757, \ S^2_x = 70.6634, \ \beta_{2(y)} = 2.2667, \
\beta_{2(x)} = 2.8664, \ C_x = 0.751, \ \lambda_{22} = 2.2209, \ \eta = 0.0375, \ \rho_{(s^2_x, s^2_y)} = 0.79311, \ Q_{1(x)} = 5.1500, \
Q_{3(x)} = 16.975, \ IQR_x = 11.825, \ GIN_x = 10.3613, \ DOW_x = 9.1844, \ SPW_x = 9.0681, \
MADM_x = 4.8925, \ Bn_x = 7.7060, \ Sr^x = 4.0032, \ Tn_x = 4.3265, \ Qn_x = 5.1770, \ Sn_x = 4.6869, \
\rho_{yx} = 0.941, \ M_x = 7.575.$$

15
Population 3: This dataset is obtained from Italian bureau of environment protection-IBEP (2004) [source: http://www.osservatorionazionalerifuti.it (2004)], where y denotes the amount of recyclable waste (in tons) collected in different cities of Italy in 2003 and x is the number of inhabitants living in those cities.

$$N = 103, \quad n = 40, \quad \bar{Y} = 62.6212, \quad \bar{X} = 556.5541, \quad S_y^2 = 8345.7177, \quad S_x^2 = 8345.7177, \quad \beta_{2(x)} = 17.8738, \quad C_x = 1.0963, \quad \lambda_{22} = 17.2220, \quad \eta = 0.01529, \quad \rho_{[S_y^2,S_x^2]} = 0.6570, \quad Q_{(x)} = 259.3830, \quad Q_{(2x)} = 628.0235, \quad IQR_x = 373.82, \quad GIN_x = 457.666, \quad DOW_x = 405.678, \quad SPW_x = 401.701, \quad MADM_x = 223.169, \quad Bn_x = 241.697, \quad Sr_x^a = 191.317, \quad Tn_x = 201.547, \quad Qn_x = 223.029, \quad Sn_x = 221.654, \quad \rho_{yS} = 0.7298, \quad M_x = 373.82.$$

For numerical comparison, we have computed the MSEs, Percentage relative efficiencies (PREs) and relative root mean square errors (RRMSEs) based on the above-mentioned datasets. The PREs of the proposed estimators and the existing estimators relative to usual SRS estimator of population variance (S_y^2) are obtained by using the following expression:

$$PRE(Y^2) = \frac{\text{Var}(S_y^2)}{\text{MSE}(Y^2) or \text{MSE}(Y^2)_{\text{min}}} \times 100,$$

where $\text{MSE}(Y^2)$ or $\text{MSE}(Y^2)_{\text{min}}$ denotes the MSEs of the existing and proposed estimators of population variance considered in this study. An estimator with a higher value of PRE is considered superior to its counterparts. The RRMSE is obtained by using the following expression:

$$RRMSE = \sqrt{\frac{\text{MSE}(\theta_i)}{\theta}}, \quad \theta_i = S_y^2, S_x^2, S_{yS}, \ldots, S_{yS}, S_{PR-j}^2.$$

where θ is the true population variance, i.e. S_y^2, and S_{PR-j}^2 ($j = 1, 2, \ldots, 20$) denote the proposed estimators given in Table 1. An estimator with lowest RRMSE is usually declared as most efficient among the competing estimators.

The numerical results for MSEs, RRMSEs and PREs of the existing estimators and proposed estimators are given in Tables 2 and 3, respectively. A comparison of these results clearly establish that all the proposed estimators envisaged as member of the class S_{PR}^2 have smaller MSEs and RRMSEs as compare to the existing estimators of population variance in all the populations considered in this study. Moreover, the PREs of the proposed estimators are much higher as compare to their existing counterparts. It is also observed that in most cases the estimators using the auxiliary information on C_x.

[Place Tables 2 and 3 Here]
and the non-conventional measures in tandem, that is \(S_{PR-1}^2 \) to \(S_{PR-10}^2 \), perform slightly better as compare to other estimators of the proposed class \(S_{PR}^2 \).

5. Conclusion

In this study, we have proposed a new generalized class of ratio-product type exponential estimators of population variance under SRS which incorporates both the conventional and somewhat robust non-conventional auxiliary information. Some theoretical results such as the bias, MSE and efficiency conditions under which the proposed estimators are better than the existing estimators are derived. Using three different datasets which contains outlier observations, the numerical efficiency comparison with the existing estimators is made based on MSEs, RRMSEs and PREs. It is established that the proposed estimators have superior efficiency as compare to their counterparts.

Acknowledgments

The authors are thankful to the reviewers and the editor for their valuable comments and suggestions that led to improving the article.

References

1. Cochran, W.G. "The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce", *The Journal of Agricultural Science*, 30 (2), pp. 262-275 (1940).

2. Stehman, S.V. "Use of auxiliary data to improve the precision of estimators of thematic map accuracy", *Remote Sensing of Environment*, 58 (2), pp. 169-176 (1996).

3. Ogliore, R.C., Huss, G.R., and Nagashima, K. "Ratio estimation in SIMS analysis", *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 269 (17), pp. 1910-1918 (2011).

4. Temesgen, H., Monleon, V., Weiskittel, A., et al. "Sampling strategies for efficient estimation of tree foliage biomass", *Forest Science*, 57 (2), pp. 153-163 (2011).

5. Sanusi, R.A., Abuijiya, M.R., Riaz, M., et al. "Combined Shewhart CUSUM charts using auxiliary variable", *Computers and Industrial Engineering*, 105, pp. 329-337 (2017).

6. Raza, M.A., Nawaz, T., and Aslam, M. "On designing CUSUM charts using ratio-type estimators for monitoring the location of normal processes", *Scientia Iranica*, 27 (3), pp. 1593-1605 (2020).

7. Sanusi, R.A., Abbas, N., and Riaz, M. "On efficient CUSUM-type location control charts using auxiliary information", *Quality Technology & Quantitative Management*, 15 (1), pp. 87-105 (2018).

8. Naz, F., Nawaz, T., Pang, T., et al. "Use of nonconventional dispersion measures to improve the efficiency of ratio-type estimators of variance in the presence of outliers", *Symmetry*, 12, (2020).
9. Özel, G., Çingi, H., and Oğuz, M. "Separate Ratio Estimators for the Population Variance in Stratified Random Sampling", *Communications in Statistics - Theory and Methods*, 43 (22), pp. 4766-4779 (2014).
10. Solanki, R.S., Singh, H.P., and Pal, S.K. "Improved ratio-type estimators of finite population variance using quartiles", *Hacettepe Journal of Mathematics and Statistics*, 44 (3), pp. 747-754 (2015).
11. Bahl, S. and Tuteja, R.K. "Ratio and Product Type Exponential Estimators", *Journal of Information and Optimization Sciences*, 12 (1), pp. 159-164 (1991).
12. Das, A.K. and Tripathi, T.P. "Use of auxiliary information in estimating the finite population variance", *Sankhya C*, 40, pp. 139-148 (1978).
13. Isaki, C.T. "Variance estimation using auxiliary information", *Journal of the American Statistical Association*, 78, pp. 117-123 (1983).
14. Kadilar, C. and Çingi, H. "Ratio estimators for population variance in simple and stratified sampling", *Applied Mathematics and Computation*, 173, pp. 1047-1058 (2006).
15. Khan, M. and Shabbir, J. "A ratio type estimator for the estimation of population variance using quartiles of an auxiliary variable", *Journal of Statistics Application and Probability*, 2 (3), pp. 319-325 (2013).
16. Maqbool, S. and Javaid, S. "Variance Estimation Using Linear Combination of Trimean and Quartile Average", *American Journal of Biological and Environmental Statistics*, 3 (1), pp. 5-5 (2017).
17. Shabbir, J. and Gupta, S. "On improvement in variance estimation using auxiliary information", *Communications in Statistics—Theory and Methods*, 36 (12), pp. 2177-2185 (2007).
18. Singh, H.P. and Solanki, R.S. "Improved estimation of finite population variance using auxiliary information", *Communications in Statistics-Theory and Methods*, 42 (15), pp. 2718-2730 (2013).
19. Singh, H.P., Upadhyaya, L.N., and Namjoshi, U.D. "Estimation of finite population variance", *Current Science*, 57 (24), pp. 1331-1334 (1988).
20. Singh, R. and Malik, S. "Improved estimation of population variance using information on auxiliary attribute in simple random sampling", *Applied Mathematics and Computation*, 235, pp. 43-49 (2014).
21. Subramani, J. and Kumarapandiyam, G. "Variance estimation using quartiles and their functions of an auxiliary variable", *International Journal of Statistics and Applications*, 2 (5), pp. 67-72 (2012).
22. Subramani, J. and Kumarapandiyam, G. "Estimation of variance using known coefficient of variation and median of an auxiliary variable", *Journal of Modern Applied Statistical Methods*, 12 (1), pp. 58-64 (2013).
23. Subramani, J. and Kumarapandiyam, G. "A class of modified ratio estimators for estimation of population variance", *Journal of Applied Mathematics, Statistics and Informatics*, 11 (1), pp. 91-114 (2015).
24. Swain, A.K.P.C. "Generalized Estimator of Finite population Variance", *Journal of Statistical Theory and Applications*, 14 (1), pp. 45-51 (2015).
25. Upadhyaya, L.N. and Singh, H.P. "An estimator for population variance that utilizes the kurtosis of an auxiliary variable in sample surveys", *Vikram Mathematical Journal*, 19, pp. 14-17 (1999).
26. Yadav, S.K., Kadilar, C., Shabbir, J., et al. "Improved family of estimators of population variance in simple random sampling", *Journal of Statistical Theory and Practice*, 9 (2), pp. 219-226 (2015).
27. Yaqub, M. and Shabbir, J. "An improved class of estimators for finite population variance", *Hacettepe Journal of Mathematics and Statistics*, **45** (5), pp. 1641-1660 (2016).

28. Abid, M., Abbas, N., Nazir, H.Z., et al. "Enhancing the mean ratio estimators for estimating population mean using non-conventional location parameters", *Revista Colombiana de Estadística*, **39** (1), pp. 63-79 (2016).

29. Abid, M., Nazir, H.Z., Riaz, M., et al. "Improved ratio estimators using some robust measures", *Hacettepe Journal of Mathematics and Statistics*, **47** (5), pp. 1375-1393 (2018).

30. Singh, H.P. and Yadav, A. "A new exponential approach for reducing the mean squared errors of the estimators of population mean using conventional and non-conventional location parameters", *Journal of Modern Applied Statistical Methods*, **18** (1), (2020).

31. Subzar, M., Maqbool, S., Raja, T.A., et al. "Improved family of ratio type estimators for estimating population mean using conventional and non conventional location parameters", *Revista Investigacion Operacional*, **38** (5), pp. 499-513 (2017).

32. Abid, M., Sherwani, R.A.K., Abbas, N., et al. "Some Improved modified ratio estimators based on decile mean of an auxiliary variable", *Pakistan Journal of Statistics and Operation Research*, **12** (4), pp. 787-797 (2016).

33. Abid, M., Ahmed, S., Tahir, M., et al. "Improved Ratio Estimators of Variance Based on Robust Measures", *Scientia Iranica*, **26** (4), pp. 2484-2494 (2019).

34. Naz, F., Abid, M., Nawaz, T., et al. "Enhancing efficiency of ratio-type estimators of population variance by a combination of information on robust location measures", *Scientia Iranica*, **27** (4), pp. 2040-2056 (2020).

35. Cochran, W.G. *Sampling techniques*, 3rd ed., John Wiley and Sons, New York, (1977).

36. Subramani, J. and Kumarapandiyan, G. "Variance estimation using median of the auxiliary variable", *International journal of Probability and statistics*, **1** (3), pp. 36-40 (2012).

37. Yadav, S.K. and Kadilar, C. "A two parameter variance estimator using auxiliary information", *Applied Mathematics and Computation*, **226**, pp. 117-122 (2014).

38. Gini, C. *Variabilità e mutabilità*, in Memorie di metodologica statistica ed., Libreria Eredi Virgilio Veschi, Rome, (1912).

39. David, H.A. "Miscellanea: Gini's mean difference rediscovered", *Biometrika*, **55** (3), pp. 573-575 (1968).

40. Downton, F. "Linear estimates with polynomial coefficients", *Biometrika*, **53** (1-2), pp. 129-141 (1966).

41. Muhammad, F., Ahmad, S., and Abiodullah, M. "Use of Probability Weighted Moments in the Analysis of Means", *Biometrical Journal*, **35** (3), pp. 371-378 (1993).

42. Hampel, F.R. "The Influence Curve and its Role in Robust Estimation", *Journal of the American Statistical Association*, **69** (346), pp. 383-393 (1974).

43. Shamos, M.I. *Geometry and Statistics: Problems at the Interface*, in: Traub, J.F. (Ed.) New Directions and Recent Results in Algorithms and Complexity, Academic Press, New York, pp. 251-280 (1976).

44. Bickel, P.J. and Lehmann, E.L. *Descriptive Statistics for Nonparametric Models IV. Spread*, in: Jureckova, J. (Ed.) Contributions to Statistics, Hajek Memorial Volume, Academia, Prague, pp. 33-40 (1979).
45. Rousseeuw, P.J. and Croux, C. "Alternatives to the Median Absolute Deviation ", *Journal of the American Statistical Association*, **88** (424), pp. 1273-1283 (1993).
46. Croux, C. and Rousseeuw, P.J. "A class of high-breakdown scale estimators based on subranges ", *Communications in Statistics - Theory and Methods*, **21** (7), pp. 1935-1951 (1992).
47. Rousseeuw, P.J. and Croux, C. *Explicit Scale Estimators with High Breakdown point*, in: Dodge, Y. (Ed.) L1-Statistical Analysis and Related Methods, North-Holland, Amsterdam, pp. 77-92 (1992).
48. Muneer, S., Khalil, A., Shabbir, J., et al. "A new improved ratio-product type exponential estimator of finite population variance using auxiliary information", *Journal of Statistical Computation and Simulation*, **88** (16), pp. 3179-3192 (2018).
49. Singh, H.P., Singh, A.K., and Solanki, R.S. "Estimation of finite population variance using auxiliary information in sample surveys", *Statistica*, **74** (1), pp. 99-116 (2014).
50. Murthy, M.N. *Sampling theory and methods*, Statistical Publishing Society, Calcutta, (1967).
Figures Captions:

Figure 1: Boxplots for Population-I
- Figure 1 (a): Study variable
- Figure 1 (b): Auxiliary Variable

Figure 2: Boxplots for Population-II
- Figure 2 (a): Study variable
- Figure 2 (b): Auxiliary Variable

Figure 3: Boxplots for Population-III
- Figure 3 (a): Study variable
- Figure 3 (b): Auxiliary Variable

Tables Captions:

Table 1: Some new members of proposed class-I estimators

Table 2: Estimated numerical results of the MSEs, RRMSEs, and PREs with respect to S_y^2 of the existing estimators.

Table 3: Estimated numerical results of the MSEs, RRMSEs, and PREs with respect to S_y^2 of the proposed estimators.
Estimator	Value of Constant			
$S_{PR-1} = s_y^2 \left\{ p_1 \left(\frac{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}}{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}} \frac{S_x^2 + IQR_x}{S_x^2 + IQR_x} \right) + p_2 \left(\frac{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}}{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}} \frac{S_x^2 + IQR_x}{S_x^2 + IQR_x} \right) \right\} \exp \left\{ \frac{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}}{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}} (S_y^2 - S_x^2) \right\} $	$\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}$ IQR_x			
$S_{PR-2} = s_y^2 \left\{ p_1 \left(\frac{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}}{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}} \frac{S_x^2 + GIN_x}{S_x^2 + GIN_x} \right) + p_2 \left(\frac{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}}{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}} \frac{S_x^2 + GIN_x}{S_x^2 + GIN_x} \right) \right\} \exp \left\{ \frac{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}}{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}} (S_y^2 - S_x^2) \right\} $	$\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}$ GIN_x			
$S_{PR-3} = s_y^2 \left\{ p_1 \left(\frac{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}}{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}} \frac{S_x^2 + DOW_x}{S_x^2 + DOW_x} \right) + p_2 \left(\frac{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}}{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}} \frac{S_x^2 + DOW_x}{S_x^2 + DOW_x} \right) \right\} \exp \left\{ \frac{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}}{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}} (S_y^2 - S_x^2) \right\} $	$\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}$ DOW_x			
$S_{PR-4} = s_y^2 \left\{ p_1 \left(\frac{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}}{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}} \frac{S_x^2 + SPW_x}{S_x^2 + SPW_x} \right) + p_2 \left(\frac{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}}{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}} \frac{S_x^2 + SPW_x}{S_x^2 + SPW_x} \right) \right\} \exp \left\{ \frac{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}}{\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}} (S_y^2 - S_x^2) \right\} $	$\rho_{(\hat{\sigma}^2, \hat{\sigma}^2)}$ SPW_x			
S_{PR-5}	S_{PR-6}	S_{PR-7}	S_{PR-8}	S_{PR-9}
-----------	-----------	-----------	-----------	-----------
s_y^2	s_y^2	s_y^2	s_y^2	s_y^2

\[
S_{PR-5} = s_y^2 \left\{ p_1 \left(\frac{\rho_{(i',i)^2} S_{x}^2 + MADM_s}{\rho_{(i',i)^2} S_{x}^2 + MADM_s} \right)^{\rho_{(i',i)^2} S_{x}^2 + MADM_s} \right\} + p_2 \left(\frac{\rho_{(i',i)^2} S_{x}^2 + MADM_s}{\rho_{(i',i)^2} S_{x}^2 + MADM_s} \right)^{\rho_{(i',i)^2} S_{x}^2 + MADM_s} \right\} \exp \left(\frac{\rho_{(i',i)^2} \left(S_{x}^2 - s_x^2 \right)}{\rho_{(i',i)^2} \left(S_{x}^2 + s_x^2 \right) + 2MADM_s} \right) \right\} \rho_{(i',i)^2} \ \text{MADM}_s

\[
S_{PR-6} = s_y^2 \left\{ p_1 \left(\frac{\rho_{(i',i)^2} S_{x}^2 + Bn_x}{\rho_{(i',i)^2} S_{x}^2 + Bn_x} \right)^{\rho_{(i',i)^2} S_{x}^2 + Bn_x} \right\} + p_2 \left(\frac{\rho_{(i',i)^2} S_{x}^2 + Bn_x}{\rho_{(i',i)^2} S_{x}^2 + Bn_x} \right)^{\rho_{(i',i)^2} S_{x}^2 + Bn_x} \right\} \exp \left(\frac{\rho_{(i',i)^2} \left(S_{x}^2 - s_x^2 \right)}{\rho_{(i',i)^2} \left(S_{x}^2 + s_x^2 \right) + 2Bn_x} \right) \right\} \rho_{(i',i)^2} \ \text{Bn}_x

\[
S_{PR-7} = s_y^2 \left\{ p_1 \left(\frac{\rho_{(i',i)^2} S_{x}^2 + Sr^a_x}{\rho_{(i',i)^2} S_{x}^2 + Sr^a_x} \right)^{\rho_{(i',i)^2} S_{x}^2 + Sr^a_x} \right\} + p_2 \left(\frac{\rho_{(i',i)^2} S_{x}^2 + Sr^a_x}{\rho_{(i',i)^2} S_{x}^2 + Sr^a_x} \right)^{\rho_{(i',i)^2} S_{x}^2 + Sr^a_x} \right\} \exp \left(\frac{\rho_{(i',i)^2} \left(S_{x}^2 - s_x^2 \right)}{\rho_{(i',i)^2} \left(S_{x}^2 + s_x^2 \right) + 2Sr^a_x} \right) \right\} \rho_{(i',i)^2} \ \text{Sr}^a_x

\[
S_{PR-8} = s_y^2 \left\{ p_1 \left(\frac{\rho_{(i',i)^2} S_{x}^2 + Tn_x}{\rho_{(i',i)^2} S_{x}^2 + Tn_x} \right)^{\rho_{(i',i)^2} S_{x}^2 + Tn_x} \right\} + p_2 \left(\frac{\rho_{(i',i)^2} S_{x}^2 + Tn_x}{\rho_{(i',i)^2} S_{x}^2 + Tn_x} \right)^{\rho_{(i',i)^2} S_{x}^2 + Tn_x} \right\} \exp \left(\frac{\rho_{(i',i)^2} \left(S_{x}^2 - s_x^2 \right)}{\rho_{(i',i)^2} \left(S_{x}^2 + s_x^2 \right) + 2Tn_x} \right) \right\} \rho_{(i',i)^2} \ \text{Tn}_x

\[
S_{PR-9} = s_y^2 \left\{ p_1 \left(\frac{\rho_{(i',i)^2} S_{x}^2 + Qn_x}{\rho_{(i',i)^2} S_{x}^2 + Qn_x} \right)^{\rho_{(i',i)^2} S_{x}^2 + Qn_x} \right\} + p_2 \left(\frac{\rho_{(i',i)^2} S_{x}^2 + Qn_x}{\rho_{(i',i)^2} S_{x}^2 + Qn_x} \right)^{\rho_{(i',i)^2} S_{x}^2 + Qn_x} \right\} \exp \left(\frac{\rho_{(i',i)^2} \left(S_{x}^2 - s_x^2 \right)}{\rho_{(i',i)^2} \left(S_{x}^2 + s_x^2 \right) + 2Qn_x} \right) \right\} \rho_{(i',i)^2} \ \text{Qn}_x

23
\[S_{PR-10} = s_y^2 \left\{ p_1 \left(\frac{\rho_{(x_1, x_2)} (S_{x_1}^2 + S_{x_2}^2)}{\rho_{(x_1, x_2)} (S_{x_1}^2 + S_{x_2}^2)} \right) \right\} \]

\[+ p_2 \left(\frac{\rho_{(x_1, x_2)} (S_{x_1}^2 + S_{x_2}^2)}{\rho_{(x_1, x_2)} (S_{x_1}^2 + S_{x_2}^2)} \right) \exp \left\{ \frac{\rho_{(x_1, x_2)} (S_{x_1}^2 - S_{x_2}^2)}{\rho_{(x_1, x_2)} (S_{x_1}^2 + S_{x_2}^2) + 2S_{x_{12}}} \right\} \]

\[\rho_{(x_1, x_2)} \quad Sn_x \]

\[S_{PR-11} = s_y^2 \left\{ p_1 \left(\frac{C_x (S_{x_1}^2 + IQR_x)}{C_x (S_{x_1}^2 + IQR_x)} \right) \right\} \]

\[+ p_2 \left(\frac{C_x (S_{x_1}^2 + IQR_x)}{C_x (S_{x_1}^2 + IQR_x)} \right) \exp \left\{ \frac{C_x (S_{x_1}^2 - S_{x_2}^2)}{C_x (S_{x_1}^2 + S_{x_2}^2) + 2IQR_x} \right\} \]

\[C_x \quad IQR_x \]

\[S_{PR-12} = s_y^2 \left\{ p_1 \left(\frac{C_x (S_{x_1}^2 + GIN_x)}{C_x (S_{x_1}^2 + GIN_x)} \right) \right\} \]

\[+ p_2 \left(\frac{C_x (S_{x_1}^2 + GIN_x)}{C_x (S_{x_1}^2 + GIN_x)} \right) \exp \left\{ \frac{C_x (S_{x_1}^2 - S_{x_2}^2)}{C_x (S_{x_1}^2 + S_{x_2}^2) + 2GIN_x} \right\} \]

\[C_x \quad GIN_x \]

\[S_{PR-13} = s_y^2 \left\{ p_1 \left(\frac{C_x (S_{x_1}^2 + DOW_x)}{C_x (S_{x_1}^2 + DOW_x)} \right) \right\} \]

\[+ p_2 \left(\frac{C_x (S_{x_1}^2 + DOW_x)}{C_x (S_{x_1}^2 + DOW_x)} \right) \exp \left\{ \frac{C_x (S_{x_1}^2 - S_{x_2}^2)}{C_x (S_{x_1}^2 + S_{x_2}^2) + 2DOW_x} \right\} \]

\[C_x \quad DOW_x \]

\[S_{PR-14} = s_y^2 \left\{ p_1 \left(\frac{C_x (S_{x_1}^2 + SPW_x)}{C_x (S_{x_1}^2 + SPW_x)} \right) \right\} \]

\[+ p_2 \left(\frac{C_x (S_{x_1}^2 + SPW_x)}{C_x (S_{x_1}^2 + SPW_x)} \right) \exp \left\{ \frac{C_x (S_{x_1}^2 - S_{x_2}^2)}{C_x (S_{x_1}^2 + S_{x_2}^2) + 2SPW_x} \right\} \]

\[C_x \quad SPW_x \]

\[S_{PR-15} = s_y^2 \left\{ p_1 \left(\frac{C_x (S_{x_1}^2 + MADM_x)}{C_x (S_{x_1}^2 + MADM_x)} \right) \right\} \]

\[+ p_2 \left(\frac{C_x (S_{x_1}^2 + MADM_x)}{C_x (S_{x_1}^2 + MADM_x)} \right) \exp \left\{ \frac{C_x (S_{x_1}^2 - S_{x_2}^2)}{C_x (S_{x_1}^2 + S_{x_2}^2) + 2MADM_x} \right\} \]

\[C_x \quad MADM_x \]
\[
S_{\text{PR-16}}^2 = s_y^2 \left\{ p_1 \left(\frac{C_s S_z^2 + Bn_x}{C_s s_y^2 + Bn_x} \right) \frac{C_s S_z^2}{C_s s_y^2 + Bn_x} + p_2 \left(\frac{C_s S_z^2 + Bn_x}{C_s S_z^2 + Bn_x} \right) \frac{C_s S_z^2}{C_s S_z^2 + Bn_x} \right\} \exp \left\{ \frac{C_s \left(S_z^2 - s_z^2 \right)}{C_s \left(S_z^2 + s_z^2 \right) + 2Bn_x} \right\}
\]

\[
S_{\text{PR-17}}^2 = s_y^2 \left\{ p_1 \left(\frac{C_s S_z^2 + Sr_x^\alpha}{C_s S_z^2 + Sr_x^\alpha} \right) \frac{C_s S_z^2}{C_s S_z^2 + Sr_x^\alpha} + p_2 \left(\frac{C_s S_z^2 + Sr_x^\alpha}{C_s S_z^2 + Sr_x^\alpha} \right) \frac{C_s S_z^2}{C_s S_z^2 + Sr_x^\alpha} \right\} \exp \left\{ \frac{C_s \left(S_z^2 - s_z^2 \right)}{C_s \left(S_z^2 + s_z^2 \right) + 2Sr_x^\alpha} \right\}
\]

\[
S_{\text{PR-18}}^2 = s_y^2 \left\{ p_1 \left(\frac{C_s S_z^2 + Tn_x}{C_s S_z^2 + Tn_x} \right) \frac{C_s S_z^2}{C_s S_z^2 + Tn_x} + p_2 \left(\frac{C_s S_z^2 + Tn_x}{C_s S_z^2 + Tn_x} \right) \frac{C_s S_z^2}{C_s S_z^2 + Tn_x} \right\} \exp \left\{ \frac{C_s \left(S_z^2 - s_z^2 \right)}{C_s \left(S_z^2 + s_z^2 \right) + 2Tn_x} \right\}
\]

\[
S_{\text{PR-19}}^2 = s_y^2 \left\{ p_1 \left(\frac{C_s S_z^2 + Qn_x}{C_s S_z^2 + Qn_x} \right) \frac{C_s S_z^2}{C_s S_z^2 + Qn_x} + p_2 \left(\frac{C_s S_z^2 + Qn_x}{C_s S_z^2 + Qn_x} \right) \frac{C_s S_z^2}{C_s S_z^2 + Qn_x} \right\} \exp \left\{ \frac{C_s \left(S_z^2 - s_z^2 \right)}{C_s \left(S_z^2 + s_z^2 \right) + 2Qn_x} \right\}
\]

\[
S_{\text{PR-20}}^2 = s_y^2 \left\{ p_1 \left(\frac{C_s S_z^2 + Sn_x}{C_s S_z^2 + Sn_x} \right) \frac{C_s S_z^2}{C_s S_z^2 + Sn_x} + p_2 \left(\frac{C_s S_z^2 + Sn_x}{C_s S_z^2 + Sn_x} \right) \frac{C_s S_z^2}{C_s S_z^2 + Sn_x} \right\} \exp \left\{ \frac{C_s \left(S_z^2 - s_z^2 \right)}{C_s \left(S_z^2 + s_z^2 \right) + 2Sn_x} \right\}
\]
Table 2: Estimated numerical results of the MSEs, RRMSEs, and PREs with respect to S^2_y of the existing estimators.

Estimator	Measure	POP-I	POP-II	POP-III
S^2_y	MSE	26686254	5393.75	38482180
	RRMSE	0.3407832	0.2179449	0.7433034
	PRE	100	100	100
S^2_R	MSE	10314786	2952.368	21898276
	RRMSE	0.2118675	0.1612452	0.5607138
	PRE	258.7184	182.6923	175.7316
S^2_{Reg}	MSE	8045752	2000.995	21871290
	RRMSE	0.1871189	0.1327469	0.5603682
	PRE	331.6813	269.5533	175.9484
S^2_d	MSE	7773572	1966.345	16644658
	RRMSE	0.1839266	0.1315925	0.4888479
	PRE	343.2946	274.3033	231.1984
S^2_BT	MSE	10021370	2188.727	25695997
	RRMSE	0.2088324	0.1388349	0.607392
	PRE	266.2935	246.4332	149.7594
S^2_US	MSE	10305164	2750.183	21898209
	RRMSE	0.2117687	0.155626	0.560713
	PRE	343.9542	274.3033	231.1984
S^2_{KC-1}	MSE	10313107	2895.45	21898272
	RRMSE	0.2118503	0.1596833	0.5607138
	PRE	258.7184	182.6923	175.7316
S^2_{KC-2}	MSE	10305564	2691.57	21898215
	RRMSE	0.2117728	0.1539587	0.5607131
	PRE	258.95	200.3942	175.732
S^2_{KC-3}	MSE	10213530	2494.658	21896896
	RRMSE	0.2108251	0.14822	0.5606962
	PRE	261.2834	216.212	175.7426
S^2_{SG}	MSE	7411158	1923.464	15515489
	RRMSE	0.179588	0.1301498	0.471975
	PRE	360.8021	288.4185	248.0243
S^2_{SK-1}	MSE	10217681	2389.708	21897016
	RRMSE	0.2108679	0.1450688	0.560977
	PRE	261.1772	225.7074	175.7417
S^2_{SK-2}	MSE	10124389	2162.944	21895159
	RRMSE	0.209903	0.1380143	0.5606739
	PRE	263.5839	249.3707	175.7566
S^2_{KS}	MSE	8045752	2000.995	21871290
	RRMSE	0.1871189	0.1327469	0.5603682
	PRE	331.6813	269.5533	175.9484
S^2_{SW}	MSE	7728302	1963.789	15367096
	RRMSE	0.1833903	0.131507	0.4697126
Estimator	Measure	POP-I	POP-II	POP-III
-----------	---------	-------------	--------------	--------------
	PRE	345.3055	274.6603	250.4193
\(S_{YK}^2 \)	MSE	8045752	2000.995	21871290
	RRMSE	0.1871189	0.1327469	0.5603682
	PRE	331.6813	269.5533	175.9484
\(S_{YS}^2 \)	MSE	7335157	1919.253	14417414
	RRMSE	0.1786648	0.1300072	0.4549671
	PRE	363.813	281.0338	266.9146
Table 3: Estimated numerical results of the MSEs, RRMSEs, and PREs with respect to S^2_y of the proposed estimators.

Estimator	Measure	POP-I	POP-II	POP-III
S_{PR-1}	MSE	5458119	1862.839	13835683
	RRMSE	0.1541189	0.1280823	0.4456938
	PRE	488.9277	289.5445	278.1372
S_{PR-2}	MSE	5490879	1847.107	13842745
	RRMSE	0.1545807	0.1275403	0.4458075
	PRE	486.0106	292.0107	277.9953
S_{PR-3}	MSE	5473413	1832.747	13838622
	RRMSE	0.1543346	0.126936	0.4457412
	PRE	487.8158	294.5414	278.0845
S_{PR-4}	MSE	5470560	1831.236	13838307
	RRMSE	0.1542944	0.1269912	0.4457361
	PRE	489.9466	297.6411	278.3402
S_{PR-5}	MSE	5397326	1763.154	13824116
	RRMSE	0.1532582	0.1246082	0.4455075
	PRE	494.4348	305.9149	278.3699
S_{PR-6}	MSE	5418674	1812.166	13825591
	RRMSE	0.153561	0.1263282	0.4455312
	PRE	492.4868	297.6411	278.3402
S_{PR-7}	MSE	5388330	1744.32	13821579
	RRMSE	0.1531375	0.1239409	0.4454666
	PRE	495.2143	309.2179	278.4210
S_{PR-8}	MSE	5391205	1751.381	13822394
	RRMSE	0.1531713	0.1241915	0.4454797
	PRE	494.996	307.9712	278.4046
S_{PR-9}	MSE	5409339	1768.802	13824105
	RRMSE	0.1534286	0.1248076	0.4455073
	PRE	493.3367	304.938	278.3701
S_{PR-10}	MSE	5399383	1758.961	13823996
	RRMSE	0.1532874	0.1245999	0.4455055
	PRE	494.2464	306.644	278.3723
S_{PR-11}	MSE	5433607	1869.284	13823937
	RRMSE	0.1537724	0.1283037	0.4455046
	PRE	491.1333	288.5463	278.3735
S_{PR-12}	MSE	5460177	1853.613	13828183
	RRMSE	0.1541479	0.1277647	0.445573
	PRE	488.7434	290.9857	278.288
S_{PR-13}	MSE	5446001	1839.234	13825704
	RRMSE	0.1539477	0.1272682	0.445331
	PRE	490.0156	293.2607	278.3379
S_{PR-14}	MSE	5443688	1837.716	13825515
	RRMSE	0.153915	0.1272157	0.44553
	PRE	490.2238	293.5029	278.3418
S_{PR-15}	MSE	5384508	1768.603	13816990
	RRMSE	0.1530761	0.1248006	0.4453926
Estimator	Measure	POP-I	POP-II	POP-III
-----------	---------	----------	----------	-----------
S_{PR-16}^2	MSE	5401720	1818.501	13817876
	RRMSE	0.1533205	0.1265488	0.4454069
	PRE	494.0325	296.6042	278.4956
S_{PR-17}^2	MSE	5377668	1749.249	13815467
	RRMSE	0.1529788	0.1241158	0.4453681
	PRE	496.2422	308.3467	278.5442
S_{PR-18}^2	MSE	5379580	1756.516	13815956
	RRMSE	0.153006	0.1243734	0.445376
	PRE	496.0658	307.0709	278.5343
S_{PR-19}^2	MSE	5394190	1774.389	13816983
	RRMSE	0.1532136	0.1250046	0.4453925
	PRE	494.7222	303.9779	278.5136
S_{PR-20}^2	MSE	5386165	1764.303	13816918
	RRMSE	0.1530996	0.1246488	0.4453915
	PRE	495.4592	305.7156	278.5149
Figure 1: Boxplots for Population-I

(a) Study variable
(b) Auxiliary variable

Figure 2: Boxplots for Population-II

(a) Study variable
(b) Auxiliary variable
Figure 3: Boxplots for Population-III

(a) Study variable

(b) Auxiliary variable
Biographies

Farah Naz earned her MSc and MPhil degrees in Statistics from the Islamia University Bahawalpur, Pakistan, and Government College University Faisalabad, Pakistan, respectively. Currently, she is pursuing PhD in Statistics in the School of Mathematical Sciences, Institute of Statistics, Zhejiang University, Hangzhou, People’s Republic of China, under the Chinese Government Scholarship Program (2017). Her research interest is survey sampling and distribution theory.

Tahir Nawaz obtained his MSc and MPhil degrees in Statistics from the Islamia University Bahawalpur, Pakistan, and Government College University Lahore, Pakistan, respectively. He served as a statistical officer in Punjab Bureau of Statistics, Pakistan, during May 2007 to November 2009. Also, he served as a lecturer in Statistics at Islamia University Bahawalpur, Pakistan, during November 2009 to October 2013. He has been working as a lecturer in the Department of Statistics, Government College University Faisalabad, Pakistan, since November 2013. He is also pursuing his PhD in Statistics in the School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, People’s Republic of China, under the Chinese Government Scholarship Program (2016). He has published more than 20 research papers in various research journals. His research interest includes statistical process control, distribution theory, and survey sampling.

Muhammad Abid obtained his MSc and MPhil degrees in Statistics from Quaid-i-Azam University, Islamabad, Pakistan, in 2008 and 2010, respectively. He received his PhD in Statistics from the School of Mathematical Sciences, Institute of Statistics, Zhejiang University, Hangzhou, People’s Republic of China, in 2017. He served as a statistical officer in National Accounts Wing, Pakistan Bureau of Statistics (PBS), during 2010-2011. He has been serving as an Assistant Professor in the Department of Statistics, Government College University Faisalabad, Pakistan, since 2017. He has published more than 30 research papers in various research journals. His research interests include statistical quality control, Bayesian statistics, non-parametric techniques, and survey sampling.

Tianxiao Pang earned his PhD in Probability and Mathematical Statistics from the Department of Mathematics, Zhejiang University, Hangzhou, People’s Republic of China in 2005 and is now an Associate Professor of Statistics at the same university. More than 30 refereed publications in various reputed international journals are to his credit. His research interest is in probability limit theory, large sample theory in statistics, and econometrics.