A solution to the Pompeiu problem

A. G. Ramm

Mathematics Department, Kansas State University,
Manhattan, KS 66506-2602, USA
email: ramm@math.ksu.edu

Abstract

Let \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \cap S \), where \(S \) is the Schwartz class of distributions, and

\[
\int_{\sigma(D)} f(x) \, dx = 0 \quad \forall \sigma \in G, \tag{*}
\]

where \(D \subset \mathbb{R}^n \) is a bounded domain, the closure \(\bar{D} \) of which is diffeomorphic to a closed ball, and \(S \) is its boundary. Then the complement of \(\bar{D} \) is connected and path connected. By \(G \) the group of all rigid motions of \(\mathbb{R}^n \) is denoted. This group consists of all translations and rotations. A proof of the following theorem is given.

Theorem 1. Assume that \(n = 2 \), \(f \not\equiv 0 \), and (*) holds. Then \(D \) is a ball.

Corollary. If the problem \((\nabla^2 + k^2)u = 0 \) in \(D \), \(u_N|_S = 0 \), \(u|_S = \text{const} \not= 0 \) has a solution, then \(D \) is a ball.

Here \(N \) is the outer unit normal to \(S \).

MSC: 35J05, 31B20

Key words: The Pompeiu problem; symmetry problems.

1 Introduction

Let \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \cap S \), where \(S \) is the Schwartz class of distributions, and

\[
\int_{\sigma(D)} f(x) \, dx = 0 \quad \forall \sigma \in G, \tag{1}
\]

where \(G \) is the group of all rigid motions of \(\mathbb{R}^n \), \(G \) consists of all translations and rotations, and \(D \subset \mathbb{R}^n \) is a bounded domain, the closure \(\bar{D} \) of which is diffeomorphic to a closed ball.
Under these assumptions the complement of D in \mathbb{R}^n is connected and path connected (\cite{5}). By S the boundary of D is denoted, and N denotes the unit normal to S pointing out of D. In \cite{6} the following question was raised by D. Pompeiu:

Does (1) imply that $f = 0$?

If yes, then we say that D has P-property (Pompeiu’s property), and write $D \in P$. Otherwise, we say that D fails to have P-property, and write $D \not\in P$. Pompeiu claimed that every plane bounded domain has P–property, but a counterexample was given 15 years later in \cite{2}. The counterexample is a domain D which is a disc, a ball in \mathbb{R}^n for $n > 2$. If D is a ball, then there are $f \neq 0$ for which equation (1) holds. The set of all $f \neq 0$, for which equation (1) holds, was constructed in \cite{7}. A bibliography on the Pompeiu problem (P–problem) can be found in \cite{14}. The results on P–problem which are used in this paper are derived in \cite{12}. The P–problem is equivalent to a symmetry problem, see Corollaries 1,2 below. The author’s results on other symmetry problems are given in \cite{10} and \cite{11}. The modern formulation of the P–problem is the following:

Prove that if $D \in \overline{P}$ then D is a ball.

We use the word ball also in the case $n = 2$, when this word means disc, and solve the P–problem. The proof of Theorem 1 we give assuming $n = 2$, but this proof is easily generalized to the case $n > 2$. Our standing assumptions are:

Assumptions A: a) D is a bounded domain, the closure of which is diffeomorphic to a closed ball, the boundary S of D is a closed connected C^1–smooth surface, b) D fails to have P–property, and c) $n = 2$.

Theorem 1. If Assumptions A hold, then D is a ball.

Corollary 1. If problem (3) (see below) has a solution, then D is a ball.

Corollary 2. If the problem $\left(\nabla^2 + k^2 \right)u = 0$ in D, $u_N|_S = 0$, $u|_S = \text{const} \neq 0$ has a solution, then D is a ball.

In Section 2 these results are proved.

2 Proof of Theorem 1

If Assumptions A hold, then the boundary S of D is real-analytic (see \cite{13}) and

\begin{equation}
\int_D e^{ik\alpha \cdot x} dx = 0, \quad \forall \alpha \in S^1,
\end{equation}

where S^1 is the unit sphere in \mathbb{R}^2, and $k > 0$ is a fixed number, see \cite{12}.

The following Lemmas 1-3 are proved in \cite{12} (Lemma 1 is Lemma 3 in \cite{12}, Lemma 2 is Lemma 5 in \cite{12}, and Lemma 3 is formula (32) in \cite{12}):
Lemma 1. If and only if relation (2) holds then the overdetermined problem (3)
\[(\nabla^2 + k^2)u = 1 \quad \text{in} \quad D, \quad u|_S = 0, \quad u_N|_S = 0,\]
has a solution.

Lemma 2. If (2) holds for all \(\alpha \in S^1\) then it holds for all \(\alpha \in M\), where \(M := \{z : z \in \mathbb{C}^2, z_1^2 + z_2^2 = 1\}\).

The \(M\) is an algebraic variety intersecting \(\mathbb{R}^2\) over \(S^1\).

Let us assume that the boundary \(S\) is star-shaped. Let \(r = f(\phi)\) be the equation of \(S\), where \(0 < c_2 \leq f \leq c_2, c_j\) are constants, \(j = 1, 2\), and \(f\) is a smooth \(2\pi\)-periodic function.

Lemma 3. If (2) holds for all \(\alpha \in S^1\), then
\[
\int_{-\pi}^{\pi} f'(\phi) f(\phi) e^{ikf(\phi)\cos(\phi-\theta)} d\phi = 0, \quad \forall \theta \in \mathbb{C}.
\]

Let us choose \(\cos \theta = is\) and \(\sin \theta = (s^2 + 1)^{1/2}\). Then \(\{is, (s^2 + 1)^{1/2}\} \in M\), and (4) can be written as
\[
\int_{-\pi}^{\pi} f'(\phi) f(\phi) e^{-skf(\phi)\cos \phi + ik(s^2+1)^{1/2}f(\phi)\sin \phi} d\phi = 0, \quad \forall s > 0.
\]

Multiply (5) by \(e^{-As}\), where \(A > 0\) is a large constant, and integrate over \(s\) from 0 to \(\infty\). Then one gets
\[
\int_{-\pi}^{\pi} d\phi f'(\phi) f(\phi) \int_{0}^{\infty} ds e^{-s(a+A)+i(s^2+1)^{1/2}b} = 0, \quad \forall A > A_0,
\]
where \(A_0 > 0\) is a fixed large constant,
\[
a = a(\phi) = kf(\phi) \cos \phi, \quad b = b(\phi) = kf(\phi) \sin \phi, \quad A_0 > \max_{\phi \in [-\pi, \pi]} |a(\phi)|.
\]

One has
\[
\int_{0}^{\infty} e^{-s(a+A)+i(s^2+1)^{1/2}b} ds = (a + A)^{-1} e^{ib}[1 + O(A^{-1})] ds, \quad A \to \infty.
\]

Writing
\[
(a + A)^{-1} = \sum_{j=0}^{\infty} (-1)^j a^j A^{-1-j}, \quad A > A_0,
\]
one obtains from (6) and (7) the relation

\[\int_{-\pi}^{\pi} f'(\phi)f(\phi)e^{ib}\sum_{j=0}^{\infty} (-1)^j a^j A^{-1-j}[1 + O(A^{-1})]d\phi = 0, \quad A \to \infty. \]

Multiply (8) by \(A \) and let \(A \to \infty \). This yields relation (9), see below, with \(j = 0 \). After getting relation (9) with \(j = 0 \), multiply (8) by \(A^2 \) and let \(A \to \infty \). This yields relation (9) with \(j = 1 \). Continue in this fashion to get

\[\int_{-\pi}^{\pi} f'(\phi)f(\phi)a^j e^{ib}d\phi = 0, \quad \forall j = 0, 1, \]

Applying the Laplace method (see [3]) for calculating the asymptotic behavior of integral (9) as \(j \to \infty \), one concludes that (9) can hold if and only if \(f'' = 0 \), that is, if and only if \(f = \text{const} \).

Let us give details. Consider the function \(a^{2m} = e^{m\Psi} \), where \(\Psi := \ln[k^2 f^2(\phi) \cos^2 \phi] \), \(j = 2m \), so that the expression under the logarithm sign is non-negative. The stationary points of the function \(\Psi \) are found from the equation \(\frac{f'(\phi)}{f(\phi)} - \tan \phi = 0 \).

If \(D \) is not a ball, then the function \(f(\phi) \) attains its maximum \(F \) at a point, which one may denote \(\phi = 0 \). There can be finitely many points at which \(f \) attains local maximums, because \(f \) is analytic. There are finitely many points at which \(f \) attains the value \(F \). We assume for simplicity that these points are non-degenerate, so \(f'' < 0 \) at these points. Since \(f > 0 \), one has the inequality

\[\frac{d}{d\phi} \left(\frac{f'(\phi)}{f(\phi)} - \tan \phi \right) = \frac{f''(\phi)}{f(\phi)} - \frac{(f'(\phi))^2}{f^2(\phi)} - \frac{1}{\cos^2 \phi} < 0, \]

if \(f'' < 0 \). Therefore, the critical points are non-degenerate and the main term of the asymptotic of the integral (9) with \(j = 2m \) as \(m \to \infty \), corresponding to the stationary point \(\phi = 0 \) can be calculated as follows. Let \(I \) denote the integral in (9). The stationary point \(\phi = 0 \) is a non-degenerate interior point of maximum of \(f \) and, therefore, of \(\Psi \). Since \(e^{ib(\phi)} = 1 + ikf(\phi)\sin \phi + ... \), \(f(\phi) = f(0) + f'(0)\phi + f''(0)\phi^2/2 + ... \) and \(f'(\phi) = f'(0) + f''(0)\phi + f'''(0)\phi^2/2 + ... \), \(\Psi(\phi) = \Psi(0) - \gamma \phi^2 + ... \), where \(\gamma := |\Psi''(0)| \), one multiplies the three terms \(ff'e^{ib} \), takes into account that \(f'(0) = 0 \) and \(\Psi'(0) = 0 \) at the critical point, and gets \(I \sim e^{m\Psi(0)} J \), where

\[J = \int_{[-\delta, \delta]} \left((ikf^2(0)f''(0) + f(0)f'''(0)/2 + ...) e^{-m\gamma \phi^2} d\phi. \]
As \(m \to \infty \), one extends the interval of integration to \((-\infty, \infty)\) and calculates the main term of the asymptotic of \(J \) as \(m \to \infty \) by using the formula
\[
\int_{-\infty}^{\infty} \phi^2 e^{-m\gamma\phi^2} d\phi = \frac{\Gamma(3/2)}{(m\gamma)^{3/2}},
\]
where \(\Gamma(z) \) is the Gamma-function, \(\Gamma(3/2) = \sqrt{\pi}/2 \). The result is
\[
I \sim e^{m\varphi(0)} \frac{\Gamma(3/2)}{(m\gamma)^{3/2}} \left(ikf^2(0)f''(0) + f(0)f'''(0)/2 \right), \quad m \to \infty.
\]
Since \(I = 0 \) and \(f(0) > 0 \), one concludes from (10), after taking the imaginary part, that \(f''(0) = 0 \), and after taking the real part, that \(f'''(0) = 0 \). This contradicts the non-degeneracy of the critical point \(\phi = 0 \). If one does not assume the non-degeneracy of this critical point, then one uses the analyticity of the function \(f \) and concludes that if for some \(j \) the derivative \(f^{(j)}(0) \neq 0 \), then this leads to a contradiction. Thus, all the derivatives \(f^{(j)}(0) = 0 \) for \(j > 0 \). Each critical point at which \(f = F \) can be taken to be the point \(\phi = 0 \), because the origin for \(\phi \) in formula (4) can be chosen arbitrarily on the interval of length of the period \([0, 2\pi]\).

If the critical point \(\phi = 0 \) is non-degenerate then the inputs of local maximums at which \(f = F \) cannot compensate each other since their imaginary parts are all of the same sign since \(f'' < 0 \) and \(f > 0 \) at these points. There can be at most finitely many critical points of \(f \) since \(f \) is analytic.

Thus, the only possibility to have equalities (9) for all large \(j \) is to have \(f = \text{const} \).

Theorem 1 is proved.

\[\square \]

References

[1] L. Brown, B. Schreiber, B. Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier, 23, N 3, (1973), 125-154.

[2] Chakalov, L., Sur un probleme de D.Pompeiu, Godishnik Univ. Sofia, Fac. Phys-Math., Livre 1, 40, (1944), 1-14.

[3] M. Fedoryuk, Method perevala, Nauka, Moscow, 1977. (in Russian)

[4] B. Fuks, Theory of analytic functions of several variables, AMS, Providence, RI, 1963.

[5] M. Hirsch, Differential topology, Springer Verlag, New York, 1976.
[6] Pompeiu, D., Sur une propriete integrale des fonctions de deux variables reelles, Bull. Sci. Acad. Roy. Belgique, 5, N 15, (1929), 265-269.

[7] A. G. Ramm, The Pompeiu problem, Applicable Analysis, 64, N1-2, (1997), 19-26.

[8] A. G. Ramm, Necessary and sufficient condition for a domain, which fails to have Pompeiu property, to be a ball, Journ. of Inverse and Ill-Posed Probl., 6, N2, (1998), 165-171.

[9] A. G. Ramm, *Inverse Problems*, Springer, New York, 2005.

[10] A. G. Ramm, A symmetry problem, Ann. Polon. Math., 92, (2007), 49-54.

[11] A. G. Ramm, A symmetry problem, Proc. Amer. Math. Soc., 141, (2013), 515-521.

[12] A. G. Ramm, The Pompeiu problem, Global Journ. Math. Anal., 1, N1, (2013), 1-10. open access: http://www.sciencepubco.com/index.php/GJMA/issue/current

[13] S. Williams, Analyticity of the boundary for Lipschitz domains without Pompeiu property, Indiana Univ. Math. J., 30, (1981), 357-369.

[14] Zalcman, L., A bibliographical survey of the Pompeiu Problem, in "Approximation by solutions of partial differential equations", (B.Fuglede ed.), Kluwer Acad., Dordrecht, 1992, pp. 177-186