Overview of the detection methods for equilibrium dissociation constant K_D of drug-receptor interaction

Weina Ma, Liu Yang, Langchong He *

School of Pharmacy, Xi'an Jiaotong University Health Science Center, No. 76, Yanta West Street, Xi'an, Shaanxi Province 710061, PR China

A R T I C L E I N F O

Article history:
Received 3 February 2018
Received in revised form 25 April 2018
Accepted 4 May 2018
Available online 5 May 2018

Keywords:
Equilibrium dissociation constant
Drug-receptor interaction
RBA
SPR
FRET
Affinity chromatography

A B S T R A C T

Drug-receptor interaction plays an important role in a series of biological effects, such as cell proliferation, immune response, tumor metastasis, and drug delivery. Therefore, the research on drug-receptor interaction is growing rapidly. The equilibrium dissociation constant (K_D) is the basic parameter to evaluate the binding property of the drug-receptor. Thus, a variety of analytical methods have been established to determine the K_D values, including radioligand binding assay, surface plasmon resonance method, fluorescence energy resonance transfer method, affinity chromatography, and isothermal titration calorimetry. With the invention and innovation of new technology and analysis method, there is a deep exploration and comprehension about drug-receptor interaction. This review discusses the different methods of determining the K_D values, and analyzes the applicability and the characteristic of each analytical method. Conclusively, the aim is to provide the guidance for researchers to utilize the most appropriate analytical tool to determine the K_D values.

© 2018 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction .. 147
2. Radioligand binding assay .. 148
3. Surface plasmon resonance technique 148
4. Affinity chromatography ... 148
5. Fluorescence energy resonance transfer method 149
6. Isothermal titration calorimetry ... 150
7. Conclusion .. 150

References .. 150

1. Introduction

The type of drug target is divided into receptor, enzyme, nucleic acid, and so on. There are about 40% drugs which interact with the corresponding receptors in order to exert their pharmacological effects. When the ligands (first messenger) combine with the corresponding receptor, a signal cascade reaction occurs through the second messenger in the cell, resulting in a series of biological effects, such as immune response and cell proliferation [1–3]. Therefore, it is very necessary to study the interaction between drugs and receptors, which contributes to understanding the mechanisms of drugs [4–8]. The equilibrium dissociation constant (K_D) is the basic parameter to evaluate the binding properties of the drug-receptor [9–11]. Thus, it is of great importance to determine the K_D values of the drugs.

A variety of analytical methods have been established to determine the K_D values since the 1960s, including radioligand binding assay (RBA) [12], surface plasmon resonance (SPR) [13], fluorescence energy resonance transfer method (FRET) [14], affinity chromatography [15], and isothermal titration calorimetry (ITC) [16].
The main purpose of this review is to analyze the applicability and characteristic of each analytical method in order to provide the guidance for researchers to choose an appropriate analytical tool to study the ligand-receptor interaction.

2. Radioligand binding assay

In the early 1960s, radiolabelled nuclide was used in the receptor pharmacology study. Based on occupation theory [17], RBA method was established. RBA is based on the interaction between radiolabeled ligand and receptor. RBA can be used to study the interaction between receptor and hormones, neurotransmitters, growth factors and drugs, as well as the interaction between the receptor and the second messenger [18].

As shown in Table 1, RBA can be used to determine the affinity constant, dissociation constant and the number of binding receptors [19–34]. The key condition of receptor binding experiments is to prepare an excellent radioligand. The basic requirements of radioligand are high radioactivity, high affinity, high specificity and stability [22,35,36]. The ability to prepare novel and selective radioligands facilitates the study of drug-receptor interaction, and RBA provides an effective tool for studying the mechanisms of drugs at molecular level [37,38]. A variety of receptor materials can be used in the RBA method, such as the cell membrane obtained from cell and tissue [19–28], intact cells [29,30], tissue slice [31–34], and engineered protein samples [38,39].

RBA method provides a sensitive detection method for determining Kd values and promotes the study of receptor pharmacology [37,38]. However, it is not very easy to synthesize the specific radioligands which are the essential elements for RBA method, and radioactive contamination should be prevented during the experiment. So the application of RBA method is greatly limited.

3. Surface plasmon resonance technique

SPR technique, which has been rapidly developed in recent years, is a sensitive and specific technique for the analysis of biomolecular interactions [40]. SPR is based on the principle that the incident light can resonate with the plasma on the metal surface during the total reflection. SPR is utilized to detect whether biological molecules interact with each other, and further explore the specificity of the interaction, kinetic parameters and affinity of the interaction [41–43]. SPR technique provides a powerful and nondestructive tool for cell sorting, cell surface characterization, protein-protein interaction, protein-small molecule interaction, and drug discovery [41,43–45].

SPR is a label-free and real-time detection method for monitoring biomolecular interactions [40]. In recent years, SPR has become a rapid developmental technology for studying the interaction between membrane protein receptors and ligands [44–56], which is shown in Table 2. Because of the high-throughput screening characteristic, SPR has been widely used in the identification of drug targets and the optimization of lead compounds [44–48].

4. Affinity chromatography

In the affinity chromatography, biological macromolecules bind in the carrier surface through chemical reaction. Affinity chromatography utilizes the liquid chromatography method to study the interaction between drugs and biological macromolecules [57–59]. As shown in Table 3, affinity chromatography is widely used in biochemistry, molecular biology, and genomics. It is becoming a commonly used method in the interaction of drug and biological macromolecules [60,61].

The frontal analysis and zonal elution method are utilized to determine the Kd values. Wainer and Hage group have done a lot of work to characterize the affinity of drugs with biomolecules [62–65]. The frontal analysis is mainly conducted by adding the analytes into the mobile phase without injection. Each drug solution with different concentrations is continuously applied to the column until a breakthrough curve with a level plateau is produced. The Kd values can be determined by analyzing the series of breakthrough curves [62,66–68]. Zonal elution method is performed by using a site-specific maker in the mobile phase and injecting the analytes. The Kd values of the analytes at a specific site are calculated by investigating the capacity factor of the analytes with the increasing concentration of the marker in the mobile phase [69,70].

Cell membrane chromatography (CMC) is a kind of bionic affinity chromatography, in which the membrane receptors are prepared as cell membrane stationary phase (CMSP), and is used in determining the interaction between drug and membrane receptors [71–74]. With the development of molecular biology, it is

Table 1
The RBA method and application examples.

No.	Receptor	Drug	Receptor material	Kd values	References
1	Glycine transporter-1	CHIBA-3007	Rat brain membranes	$1.61 \pm 0.16 \times 10^{-9}$ M	[19]
2	α7 nicotinic acetylcholine receptors	CHIBA-1006	Rat brain membranes	$8.82 \pm 2.14 \times 10^{-9}$ M	[20]
3	Opioid receptor	TCI[p][sic]	Rat brain membranes	0.35×10^{-9} M	[21]
4	5-HT(1A) receptors	WAY100635	Rat hippocampal membranes	$87 \pm 4 \times 10^{-12}$ M	[22]
5	Dopamine D1 receptor	SCH23390	Sheep brain striatum membranes	$56 \pm 8 \times 10^{-9}$ M	[23]
6	Histamine H3 receptor	Thioperamide	Rat cerebral cortex	$0.80 \pm 0.06 \times 10^{-9}$ M	[24]
7	Adenosine A2A receptors	ZM241385	Rat striatum membranes	0.14×10^{-9} M	[25]
8	Platelet-activating factor (PAF) receptor	L-659,989	Transfected CHO cell membranes	0.23×10^{-9} M	[26]
9	Bradykinin B2 receptors	PIP HOE 140	Guinea pig ileal membranes	15×10^{-12} M	[27]
10	Thromboxane (TX)-1 receptor	GR32191	Human platelets membranes	2.1×10^{-9} M	[28]
11	Human angiotensin II AT1 receptor	Olmesartan	Human platelets	2.2×10^{-9} M	[29]
12	Glucocorticoid receptor	Dexamethasone	CHO-hAT(1) cells	0.091×10^{-10} M	[30]
13	Histamine H1-receptors	Mepyramine	Peripheral blood mononuclear cells	66.194×10^{-9} M	[31]
14	Calcium channels	Nitrendipine	Bovine retinal blood vessels	$2.78 \pm 0.32 \times 10^{-9}$ M	[32]
15	NK1 receptor	CP96,345	Rat synaptosomes	0.35×10^{-9} M	[33]
16	Vasopressin V2-receptors	DDAVP	Guinea pig lung	$0.12 \pm 0.03 \times 10^{-9}$ M	[34]
factor receptor models are established in order to determine the

Table 2
The SPR method and application examples.

No.	Receptor	Drug	Receptor material	K_D values	References
1	EGFR	EGF	EGFR protein	0.177 × 10^-6 M	[44]
		GE11		0.459 × 10^-8 M	
		mAb LA1		2.07 × 10^-8 M	
2	Subendothelial collagens	vWF	Purified protein	2.03(±0.04) × 10^-9 M	[45]
3	Pr55(Cag)	1,4,5-IP3	Purified protein	2.170 × 10^-6 M	[46]
		di-(C8)-Pi		186 × 10^-6 M	
		di-(C8)-Pi(4,5)P2		47.4 × 10^-6 M	
4	VEGFR2 D3	Nanobody against NTV(1–4)	HUVEC cell	49 ± 1.8 × 10^-9 M	[47]
5	CD56	Monoclonal antibodies m900	Cancer cell	2.9 × 10^-9 M	[48]
6	Grp1 PH domain	Biotinylated Ins(1,3,4,5)P4	Rat brain membranes	0.14 × 10^-6 M	[49]
7	Angiotensin converting enzyme	Lisinopril	Angiotensin converting enzyme	1.78 × 10^-9 M	[50]
8	rKDR1–3	VEGF65	rKDR1–3 protein	57.4 × 10^-5 M	[51]
9	Lipoprotein lipase	Bis-ANS	Purified protein	(0.10–0.26) × 10^-6 M	[52]
10	CL-43	Yeast mannan	Purified protein	(2.68–2.72) × 10^-6 M	[53]
11	Human glycophorin A	Nanobody BH4	Human glycophorin A	33 ± 10^-9 M	[54]
12	Cyclophilin A	Tryp-Gly-Pro	Cyclophilin A	3.41 × 10^-6 M	[55]
13	Collagen glycoprotein VI	GABA	Human platelets	4.14 × 10^-9 M	[56]

Table 3
The affinity chromatography method and application examples.

No.	Receptor	Drug	Receptor material	K_D values	References
1	Estrogen receptor	Diethylstilbestrol	Purified protein	ERRy, 237 × 10^-6 M	[62]
				ERRα, 929 × 10^-6 M	
2	α3β4nicotinic acetylcholine receptor	Dextramethorphan 10^6 M	α3β4-nAChR cell membrane	K_D:23.40(±0.36) × 10^6 M	[63]
		Levomethorphan		K_D:12.0(±0.23) × 10^6 M	
3	Cannabinoid receptor CB1	Win-55, MA, ACEA	KU-812 cell membrane	(8.6±8.3) × 10^-6 M, (19.8±10.9) × 10^-9 M, (0.74±0.22) × 10^-9 M	[64]
	Cannabinoid receptor CB2	(5.37±0.12) × 10^-9 M, (653±182) × 10^-9 M, (5200±255) × 10^-9 M			
4	PKCε	Chelerythrine	Purified protein	698 × 10^-6 M	[66]
5	μ opioid receptors	Naloxone	CHO-μ opioid receptors	110 × 10^-6 M	[67]
			cell membrane		
6	L-type calcium channel	U99993	CHO-L calcium channel	84 × 10^-9 M	[68]
7	α1A adrenergic receptor	Nifedipine	α1A/HEK293 cell membrane	(3.36±0.28) × 10^-6 M	[72]
		Nimodipine		(1.34±0.15) × 10^-6 M	
		Nitrrendipine		(6.83±0.48) × 10^-7 M	
		Nicardipine		(1.23±0.16) × 10^-7 M	
		Amiodipine		(1.09±0.09) × 10^-7 M	
		Verapamil		(8.51±0.61) × 10^-8 M	
8	Histamine H1 receptor	Tamsulosin	α1A/HEK293 cell membrane	(1.87±0.13) × 10^-6 M	[74]
		5-methy lurapidil		(2.86±0.20) × 10^-6 M	
		Doxazosin		(3.01±0.19) × 10^-8 M	
		Terazosin		(3.44±0.19) × 10^-8 M	
		Afuzosin		(3.50±0.21) × 10^-8 M	
9	Histamine H2 receptor	Azelastine	H2R/HEK293 cell membrane	(8.72±0.21) × 10^-7 M	[75]
		Cyproheptadine		(9.12±0.26) × 10^-7 M	
		Doxipine		(9.59±0.18) × 10^-7 M	
		Astemizole		(1.42±0.13) × 10^-6 M	
		Chlorpheniramine		(2.25±0.36) × 10^-6 M	
		Diphenhydramine		(3.10±0.27) × 10^-6 M	

possible to construct cell lines with high expression of specific receptors, which makes the CMC method have stronger specificity and selectivity. Based on the development of CMC, a variety of CMC models such as L-type calcium channel, α1A adrenergic receptor, histamine H1 receptor and vascular endothelial growth factor receptor models are established in order to determine the K_D values [75–78].

Affinity chromatography plays a very important role in the study of drug-receptor interaction. The methods of binding receptor to the carrier surface are divided into chemical bonding and physical adsorption. However, after the immobilization of biological macromolecules via chemical bonding, their original configurations and even functions are largely "lost". While physical adsorption can largely retain the three-dimensional configurations and biological activities of membrane receptors and can accurately reveal the drug-membrane receptor interaction process in vivo.

5. Fluorescence energy resonance transfer method

Fluorescence spectroscopy is the most popular technique in the field of biology and medicine, which leads people to the microcosmic world of bio-medicine. The theoretical basis for FRET is a nonradiative energy transfer between two fluorescent molecules (D and A, whose excitation spectra are partially overlapped) that are located close to each other (less than 10 nm) [79–81]. FRET can
be used to study receptor-ligand interactions, affinity constants, receptor dimerization, and so on [82–84].

FRET has been widely used in drug-receptor affinity studies under equilibrium condition with no need to separate the free and combative ligands [85–87]. Piehler group studied the interaction of IFN2R with IfnAR1-H10 and measured its KD value to be 5 μM by FRET technique [88]. Domano et al. [89] also used the FRET technique to study the interaction between cytochrome c and bilayer phospholipid membranes and found a KD value of 0.2–0.4 μM.

FRET has the following advantages compared with other methods. The first is high sensitivity, and it is now possible to study single receptor molecules in this way. Moreover, FRET can selectively study intermolecular interactions under physiological conditions (living cell states) [90,91]. Another advantage is that a variety of fluorescent probes can be obtained commercially. The fluorescent probes can be used to label molecules with no fluorescence properties, thus greatly broadening the research approach. Combined with its high spatial resolution, FRET becomes an excellent tool for studying receptor-ligand interactions [92,93].

6. Isothermal titration calorimetry

ITC is a technique based on the reaction heat to quantify the interactions of various biomolecules. As a kind of rapid and direct tool without markers, ITC can detect any heat changes of biochemical reaction process. ITC is widely used in molecular biology research, drug design and structure optimization, and drug mechanism studies [94,95].

Micro calorimeter with high sensitivity and high automation is used to monitor and record the calorimetric curve of the reaction process continuously and accurately. ITC, an in situ, on-line and non-destructive method, provides the thermodynamic and kinetic information (e.g. binding constant (KD), reaction stoichiometry (n), enthalpy (ΔH) and entropy (ΔS)) [86,87]. ITC can also be used to study the properties of drug-receptor interaction by directly detecting the heat changes during the process of biochemical reaction [98,99].

By means of the ITC method, Li et al. [16] studied the interaction of neomycin and tobramycin with MLL protein, and found that the KD values are18.8 for neomycin and 59.9 μM for tobramycin, respectively. Daddaou group found that only 2-ketoglucone and 2-ketoglucose by ITC technology from glucose, ketoglucose and 2-ketoglucose by ITC technology [100].

Without any modification of receptors and ligands, ITC can directly determine the affinity of the drug-receptor under natural conditions [101]. ITC can not only determine the binding affinity, but also clarify the potential mechanism of molecular interactions. ITC is able to confirm the expected binding targets in the drug discovery process, deeply understand the structure-function relationship, and provide the guidance for candidate compounds selection and lead compounds optimization [102,103].

7. Conclusion

In all, the above five methods are all effective analytical tools to study the ligand-receptor interaction. RBA and FRET methods both provide high sensitivity, while both of them need the specific label (radioabeled ligand for RBA, fluorescent label for FRET), which limits the application of the methods. Affinity chromatography is a nondestructive and dynamical method to study the ligand-receptor interaction, but the sensitivity is limited by the detector of HPLC. As SPR and ITC methods are highly sensitive and nondestructive, they provide powerful tools for studying drug-receptor interaction. Therefore, high sensitive and nondestructive analysis methods play a crucial role in the exploration of ligand-receptor interaction.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

[1] S. Schmidt, H. Wang, D. Pussak, et al., Probing multivalency in ligand-receptor-mediated adhesion of soft, biomimetic interfaces, Beilstein J. Org. Chem. 11 (2015) 720–729.
[2] X. Men, J. Zhou, J. Tang, et al., Ligand-induced receptor-like kinase complex regulates floral organ abscission in Arabidopsis, Cell Rep. 14 (2016) 1330–1338.
[3] Y. Namkung, C. Le Gouillé, V. Lukashova, et al., Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET, Nat. Commun. 7 (2016) 12178.
[4] N. Ferruz, G. De Fabritissi, Binding kinetics in drug discovery, Mol. Inf. 35 (2016) 216–226.
[5] M. Vass, AJ Roostatra, T. Ritschel, et al., Molecular interaction fingerprint approaches for GPCR drug discovery, Curr. Opin. Pharmacol. 30 (2016) 59–68.
[6] L.G. Ferreira, R.N. Dos Santos, G. Oliva, et al., Molecular docking and structure-based drug design strategies, Molecules 20 (2015) 13384–13421.
[7] Y. Fang, Ligand-receptor interaction platforms and their applications for drug discovery, Expert. Opin. Drug Discov. 7 (2012) 969–988.
[8] M.R. Duff Jr, E.E. Howell, Thermodynamics and solvent linkage of macromolecule-ligand interactions. Methods 76 (2015) 51–68.
[9] J.N. Abres, S.D. Simple, M.W. Handley, et al., Small-molecule-based affinity chromatography method for antibody purification via nucleotide binding site targeting, Anal. Chem. 84 (2012) 7721–7728.
[10] Z. Tong, J.E. Schiel, E. Papastavros, et al., Kinetic studies of drug-protein interactions by using peak profiling and high-performance affinity chromatography: examination of multi-site interactions of drugs with human serum albumin columns, J. Chromatogr. A 1218 (2011) 2065–2071.
[11] J.H. See, C.S. Kim, H.J. Cha, Structural evaluation of GM1-related carbohydrate-cholera toxin interactions through surface plasmon resonance kinetic analysis, Analyst 138 (2013) 6924–6929.
[12] K.A. Frey, R.L. Albin, Receptor binding techniques, Curr. Protoc. Neurosci. Chapt. 1 (2001) Unit 1.4.
[13] K. Brännström, A. Ohman, L. Nilsson, et al., The -terminal region of amyloid β controls the aggregation rate and fibril stability at low pH through a gain of function mechanism, J. Am. Chem. Soc. 136 (2014) 10956–10964.
[14] M.R. Jr, Z. Shi, T. Wu, et al., Kinetics of entophlin-BNAR domain diimerization and membrane interactions, J. Biol. Chem. 288 (2013) 12533–12543.
[15] H.S. Kim, D.S. Hage, Chromatographic analysis of carboxamazine binding to human serum albumin, J. Chromatogr. B 816 (2005) 57–66.
[16] L. Li, R. Zhou, H. Ceng, et al., Discovery of two aminoglycoside antibiotics as inhibitors targeting the menin-mixed lineage leukemia interface, Bioorg. Med. Chem. Lett. 24 (2014) 2090–2093.
[17] G. Perret, P. Simon, Radioreceptor assay: principles and applications to pharmacology, J. Pharmacol. 15 (1984) 265–286.
[18] D.B. Bylund, M.L. Toews, Radioligand binding methods: practical guide and tips, Annu. J. Physiol. 265 (1993) L421–L429.
[19] J. Zhang, J. Wu, J. Toyohara, et al., Pharmacological characterization of [3H] CHIBA-3007 binding to glycine transporter 1 in the rat brain, PLoS One 6 (2011) e21322.
[20] J. Wu, J. Toyohara, Y. Tanbuchi, et al., Pharmacological characterization of [125I]CHIBA-1006 binding, a new radioligand for κ7 nicotinic acetylcholine receptors, to rat brain membranes, Brain Res. 1360 (2010) 130–137.
[21] I. Szatmári, G. Tóth, I. Kertész, et al., Synthesis and binding characteristics of [3H] H-Tyr-Ticpsi[CH2-NH] Cha-Phe-OH, a highly specific and stable delta-opioid antagonist, Peptides 20 (1999) 1079–1083.
[22] S. Parkel, A. Rinker, Characteristics of binding of [3H]WAY100635 to rat hippocampal membranes, Neurochem. Res. 31 (2006) 1135–1140.
[23] V. Casadó, C. Ferrada, J. Bonaventura, et al., Useful pharmacological parameters for G-protein-coupled receptor homodimers obtained from competition experiments. agonist-antagonist binding modulation, Biochem. Pharmacol. 78 (2009) 1456–1463.
[24] A. Alves-Rodrigues, R. Leurs, T.S. Wu, et al., [3H]-thioperamide as a radioligand for the histamine H3 receptor in rat cerebral cortex, Br. J. Pharmacol. 118 (1996) 2045–2052.
[25] A.USTAIRE, A. VONK, A. TERASMAA, et al., Kinetic and functional properties of [3H]JM243385, a high affinity antagonist for adenosine A2A receptors, Life Sci. 76 (2005) 1513–1526.
[26] S.B. Hwang, M.H. Lam, A.H. Hsu, Characterization of platelet-activating factor (PAF) receptor by specific binding of [3H]-659,989, a PAF receptor...
[82] S. Ding, A.A. Cargill, S.R. Das, et al., Biosensing with Förster resonance energy transfer coupling between fluorophores and nanocarbon allotropes, Sensors 15 (2015) 14766–14787.

[83] K.F. Chou, A.M. Dennis, Förster resonance energy transfer between quantum dot donors and quantum dot acceptors, Sensors 15 (2015) 13288–13325.

[84] M. Stanisavljevic, S. Krizkova, M. Vaculovicova, et al., Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application, Biosens. Bioelectron. 74 (2015) 562–574.

[85] C. De Los Santos, C.W. Chang, M.A. Mycek, et al., FRAP, FLIM, and FRET: detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy, Mol. Reprod. Dev. 82 (2015) 587–604.

[86] D. Shrestha, A. Jenei, P. Nagy, et al., Understanding FRET as a research tool for cellular studies, Int. J. Mol. Sci. 16 (2015) 6718–6756.

[87] C.D. Kinz-Thompson, R.L. Gonzalez Jr., smFRET studies of the ‘encounter’ complexes and subsequent intermediate states that regulate the selectivity of ligand binding, FEBS Lett. 588 (2014) 3526–3538.

[88] S. Lata, M. Gavutis, J. Piehler, Monitoring the dynamics of ligand-receptor complexes on model membranes, J. Am. Chem. Soc. 128 (2006) 6–7.

[89] Y.A. Domanov, J.G. Molotkovsky, G.P. Gorbenko, Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET, Biochim. Biophys. Acta 2005 (1716) 49–58.

[90] E. Alvarez-Curto, J.D. Pediani, G. Milligan, Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors, Anal. Bioanal. Chem. 398 (2010) 167–180.

[91] L. Lecarne, E. Prado, A. De Rache, et al., Interaction of polycationic N(II)-salophen complexes with G-quadruplex DNA, Inorg. Chem. 53 (2014) 12519–12531.

[92] X. Du, Y. Li, Y.L. Xia, et al., Insights into protein-ligand interactions: mechanisms, models, and methods, Int. J. Mol. Sci. 17 (2016).

[93] P. Draczkowski, D. Matosiuk, K. Jozwiak, Isothermal titration calorimetry in membrane protein research, J. Pharm. Biomed. Anal. 87 (2014) 313–325.