Recent progress (2015–2020) in the investigation of the pharmacological effects and mechanisms of ginsenoside Rb1, a main active ingredient in Panax ginseng Meyer

Zuan Lin a, Rongfang Xie a, Chenhui Zhong a, Jianyong Huang b, Peiying Shi c, *, Hong Yao a, d, e, *

a Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
b Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
c Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
d Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
e Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China

A R T I C L E   I N F O

Article history:
Received 29 November 2020
Received in revised form 21 July 2021
Accepted 27 July 2021
Available online 30 July 2021

Keywords:
Ginsenoside Rb1
Pharmacological effect
Effect mechanism
Perspectives

A B S T R A C T

Ginsenoside Rb1 (Rb1), one of the most important ingredients in Panax ginseng Meyer, has been confirmed to have favorable activities, including reducing antioxidative stress, inhibiting inflammation, regulating cell autophagy and apoptosis, affecting sugar and lipid metabolism, and regulating various cytokines. This study reviewed the recent progress on the pharmacological effects and mechanisms of Rb1 against cardiovascular and nervous system diseases, diabetes, and their complications, especially those related to neurodegenerative diseases, myocardial ischemia, hypoxia injury, and traumatic brain injury. This review retrieved articles from PubMed and Web of Science that were published from 2015 to 2020. The molecular targets or pathways of the effects of Rb1 on these diseases are referring to HMGB1, GLUT4, HIF-1α, HSD1, ERK, Akt, Notch, NF-kB, MAPK, PPAR-γ, TGF-β1/Smad pathway, PI3K/mTOR pathway, Nrf2/HO-1 pathway, Nrf2/ARE pathway, and MAPK/NF-κB pathway. The potential effects of Rb1 and its possible mechanisms against diseases were further predicted via Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway and disease ontology semantic and enrichment (DOSE) analyses with the reported targets. This study provides insights into the therapeutic effects of Rb1 and its mechanisms against diseases, which is expected to help in promoting the drug development of Rb1 and its clinical applications.

© 2021 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Panax ginseng Meyer, one of the most famous and valuable herbal medicines in East Asia, has been widely used as an “invigorating qi and strengthening yang” drug for the treatment of various critical illnesses in several countries in Asia for thousands of years [1]. P. ginseng belongs to the genus Panax of the Araliaceae family [2]. Plants of the same genus also include P. japonicus, P. notoginseng, P. quinquefolius, P. vietnamensis, and so on [3,4]. Ginsenosides were confirmed to be the main active components in P. ginseng. Recently, ginsenoside extracts derived from P. ginseng roots and rhizomes have been utilized as an adjuvant for the treatment of multiple diseases, including diabetes, cardiovascular diseases, and nervous system diseases, in China. Ginsenoside Rb1 (Rb1, Fig. 1), a dammarane triterpene saponin, is one of the most important components of ginseng and considered to have a large contribution to the therapeutic effects of this herb. Studies have reported that Rb1 has numerous beneficial effects on the human body, including the cardiovascular and central nervous system activities, anti-diabetic and antitumor activities [5–7].
2. Nervous system

2.1. Effects of Rb1 on the brain

In general, acute ischemic stroke is caused by vascular occlusion and cerebral blood flow obstruction, leading to neurological dysfunction and brain infarction. Thus, this disease is a grave threat to human health and life [11,12]. Recent studies have indicated that Rb1 can promote functional recovery after cerebral ischemic injury, improve abnormal cerebral ischemic microenvironment, inhibit neuronal cell apoptosis, release inflammatory factors after cerebral ischemia, and protect brain tissues (Table 1).

2.1.1. Rb1 promotes functional recovery after cerebral ischemic injury

Aquaporin (AQP) is a kind of proteins with pores located on the cell membrane. AQP maintains the water balance and the homeostasis of the internal environment. AQP 4 (AQP4) influences ischemic cerebral edema. Rb1 can reduce the neurological deficit score of rats with focal cerebral ischemia-reperfusion, decrease infarct area, and downregulate the expression levels of connexin 43 and AQP4 [13]. Recent studies have demonstrated that Rb1 has a protective effect on traumatic brain injury in mouse models, and the mechanism is closely related to the downregulation of Cx40 expression and partially mediated by phosphorylation of the ERK1/2 signaling pathway [14]. Furthermore, Rb1 can promote the release of neurotransmitters in the middle cerebral artery occlusion (MCAO) animal models through the cAMP-dependent protein kinase A (PKA) pathway, which is related to axon regeneration [15,16].

2.1.2. Rb1 attenuates the abnormality in cerebral ischemic microenvironment

The abnormal microenvironment of central brain neurons under an ischemic state is the critical factor that causes cerebral damage. Mitochondrial stress caused by the increase in the local concentration of glutamate (Glu), calcium overload, and cytochrome C (Cyt-C) release is an essential cause of abnormal cerebral ischemic microenvironment [17–19]. Microperfusion of L-Glu and Ca2+ in the rat hippocampus can cause abnormalities of the brain microenvironment, which are closely related to cerebral ischemia. Rb1 increases the local cerebral blood flow in the hippocampal CA1 area and promotes the stability of neuron ultrastructure. In addition, Rb1 can inhibit Ca2+ overload, reduce the release of Cyt-C, mitigate neuron damage due to mitochondrial stress, and improve microenvironment abnormality, thereby effectively protecting the central neurons of ischemic injury. The mechanism might be related to the inhibition of NMDAR and p-PTEN protein expression, as well as to the activation of the p-AKT/p-mTOR signaling pathway [20,21].

2.1.3. Rb1 inhibits apoptosis and the release of inflammatory factors

During cerebral ischemia or stroke, the activation of extracellular signal-regulated kinase (ERK) may lead to early gene induction, triggering cell damage mechanisms, such as the production of cytokines, free radicals, or other inflammatory mediators. Rb1 treatment can substantially improve neurological deficits in the MCAO model with reduced infarct size of brain tissues. The mechanism of this protective effect is due to the blocking of oxidative stress and ERK signal activation [22]. High mobility group 1 (HMGB1) is released after focal cerebral ischemia/reperfusion (I/R), which aggravates brain injury. Liu et al. [23] adopted the MCAO model to investigate the protective effects of Rb1 on focal cerebral ischemia–reperfusion injury in rats and its mechanism. Their results showed that Rb1 could reduce the apoptosis induced by I/R by downregulating the levels of Caspase-3 and Caspase-9. Moreover, they observed that Rb1 inhibited the release of HMGB1 and decreased the levels of nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (NOS) and nitric oxide (NO) in MCAO rats. The mechanism of these effects is related to the inhibition of HMGB1 and inflammatory signal.

2.2. Rb1 increases resistance to spinal cord injury

Spinal cord injury (SCI) is a devastating neurological disorder. The neuropathology of SCI is very complicated and can be divided into primary injury and secondary injury. Primary injury includes mechanical compression caused by an external force that is mainly
manifested as bleeding and changes in cell electrolyte. Secondary injury, which includes oxidative stress, inflammation, excitotoxicity, and apoptosis, can cause further damage to the spinal cord. Recent studies have shown that the neuroprotective effects of Rb1 on SCI could be related to inhibiting cellular autophagy, antioxidative damage, reducing apoptosis after spinal cord ischemia–reperfusion, and decreasing intercellular edema (Table 2).

2.2.1. Rb1 inhibits cellular autophagy

Autophagy is an intracellular degradation process in which misfolded proteins and damaged organelles are engulfed and degraded, which plays a crucial role in maintaining intracellular homeostasis [24]. Autophagy plays an essential role in spinal cord injury. Rb1 participates in neuroprotection by regulating autophagy. Rb1 treatment increased PC12 cell survival and inhibited apoptosis by suppressing excessive autophagy, whereas rapamycin-stimulated autophagy abolished the antiapoptotic effect of Rb1 [25]. In vivo, Rb1 treatment reduced motor neuron loss and promoted functional recovery in spinal cord injury models. Rb1 inhibited autophagy of neurons in SCI models and suppressed neuronal apoptosis and autophagic cell death. Taken together, the neuroprotective effect of Rb1 on SCI may be related to the inhibition of cellular autophagy. Moreover, Rb1 can reportedly alleviate experimentally induced autoimmune encephalomyelitis by inhibiting the differentiation of Th1 and Th17 cells and activating T cells [26]. These observations provide a basis to consider Rb1 a potential therapeutic agent for SCI, and the exact mechanism needs to be investigated in more depth.

2.2.2. Rb1 improves spinal cord ischemia–reperfusion injury

Spinal cord ischemia–reperfusion injury (SCI) is the process of restoring blood supply after spinal cord ischemia that leads to further damage by inflammatory factor release, cellular edema, and neuronal apoptosis [27–29]. Apoptosis is one of the main mechanisms of SCI. Rb1 can inhibit the apoptosis of spinal cord neurons in rats with abdominal aortic occlusion and improve the motor dysfunction of hind limbs. The mechanism might be due to the protective effect of Rb1 on the spinal neurons of SCI rats by downregulating the expression levels of Caspase-3, p-Ask-1, and Bax/Bcl-2 ratio [30]. Rb1 increases superoxide dismutase (SOD) activity, decreases malondialdehyde (MDA) content, increases survivin protein expression, and reduces neuronal apoptosis in serum and spinal cord tissues of artery occlusion model rats, indicating that Rb1 pretreatment can protect the rat spinal cord from ischemia–reperfusion injury by antioxidation, promoting survivin protein expression, and inhibiting cell apoptosis [31]. Furthermore, the administration of Rb1 by vein can alleviate the ischemic brain injury of rats by upregulating the antiapoptotic factor Bcl-xL. After spinal cord compression injury, Rb1 can improve BBB score and neuron density in the anterior horn of rats. Rb1 not only upregulates the expression of Bcl-xL in the spinal cord but also upregulates the expression of nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) [32].

2.2.3. Rb1 regulates aquaporins

Aquaporins are a family of water channel proteins that have a crucial role in regulating the water content of cells under pathological and physiological conditions. AQP4 is expressed explicitly in the brain and spinal cord and plays an essential role in maintaining the correct water balance in brain tissue [33]. Acute cytotoxic edema is a critical pathogenic condition of SCI. To avoid or reduce cell edema has been one of the main goals of SCI treatment. Rb1 remarkably improves the expression of NGF and brain-derived neurotrophic factor (BDNF) in OGD/R-induced rats’ primary astrocytes by increasing AQP4 expression in vitro, which is consistent with the in vivo experimental results that Rb1 inhibits neuronal apoptosis and damage, enhances spinal AQP4 expression and improves neurological deficits in rats with spinal cord ischemia–reperfusion injury [34,35]. These studies indicated that Rb1 could alleviate edema in spinal cord cells and improve neurological function by adjusting AQP4 expression.
2.3. **Rb1 delays the development of neurodegenerative diseases**

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are common neurodegenerative diseases [36]. Rb1 has neuroprotective effects on neurodegenerative diseases and can delay the development of degenerative diseases. Its products mainly include inhibiting neuroinflammation and oxidative stress, improving cognitive and memory disorders, and improving motor dysfunction (Table 3).

### 2.3.1. Therapeutic effects of Rb1 on AD

AD is a hidden and progressive neurodegenerative disease that is difficult to cure completely. The main pathological changes in AD are due to the abnormal deposition of amyloid β-protein (Aβ) in the brain cell matrix [37]. Rb1 pretreatment prevented Aβ from causing PARP-1 cleavage and elevated Bax levels, thereby preventing Aβ-induced neurotoxicity in SH-SYSY cells. Results of proteomics studies showed that the proteins CAP1, CAPZB, TOMM40, and DATN might be the potential molecular target proteins of Rb1 in the AD protection mechanism [38]. In vivo, injection of soluble Aβ1-40 into the rat hippocampus can cause learning and memory impairment. Rb1 can alleviate cognitive impairment in rats, substantially reduce the levels of Bax and cleaved-Caspase-3 in the hippocampus, and upregulate Bcl-2 levels [39]. Moreover, Rb1 might decrease the nuclear pyknosis and pyramidal cell defects in the rat hippocampus by increasing the expression of nestin, glial fibrillary acidic protein, and nucleotide sugar epimerase protein in AD rats’ model, as well as promoting the proliferation and differentiation of endogenous neural precursor cells in brain, thereby improving the cognitive function in AD rat model [40]. Metabolomic studies found that Rb1 exerted anti-AD effects through the regulation of lecithin and amino acid metabolism [41]. At the genetic level, Rb1 improves the learning ability of the SAMP8 mouse model from multiple aspects, such as neuronal system development and mitogen-activated protein kinase signaling pathway [42]. Moreover, Rb1 mitigates the isoflurane/surgery-induced elevated levels of ROS, TNF-α, and IL-6 in the mice hippocampus and attenuates cognitive impairment and synaptic dysfunction. Therefore, the mechanisms refer to inhibiting neuroinflammation and oxidative stress [43]. Another study showed that Rb1 protected the blood-brain barrier of rats from damage caused by HIV-1 Tat protein and methamphetamine by upregulating tight junction proteins in the rat brain, including Occludin, JAM-A, Claudin-5, and ZO-1, and increasing antioxidant levels. These Rb1 properties provide a potential treatment option for patients with HIV-related neurocognitive disorders or other neurodegenerative diseases [44].

### 2.3.2. Effects of Rb1 on PD

PD, also known as paralysis agitans, is a neurodegenerative disease of the extrapyramidal system. α-Synuclein is a soluble protein expressed in the presynaptic and perinuclear areas of the central nervous system, and it is closely related to the pathogenesis and related dysfunction of PD. In vivo, Rb1 prevents 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced memory defects and impaired glutamatergic transmission in mice, increases PSD-95 expression in an α-synuclein nucleoprotein-dependent manner, indicating that its protective mechanism for memory function is related to the regulation of the α-synuclein/PSD-95 pathway [45]. Glutamate excitotoxicity is considered an essential factor in the degeneration of DA neurons in the pathogenesis of PD. Dysfunction of glutamate transporter is the key to dyskinesia. Rb1 can increase the expression of glutamate transporter through nuclear translocation of NF-κB and inhibit the excitotoxicity of Glu. Rb1 can regulate the substantia nigra striatum and cortico-mesencephalic glutamatergic transmission pathways, protect dopaminergic neurons, and inhibit α-synuclein expression and astrocyte proliferation ameliorating motor deficits in rat model of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD [46].

In vitro, Rb1 was shown for inhibiting α-synuclein-induced fibrillation and toxicity in BE (2)-M17 human neuroblastoma cells and to be able to disaggregate preformed fibrils and block the α-synuclein seeded polymerization possibly by binding and stabilizing non-toxic α-synuclein oligomers without β-sheet content [47].

### 2.4. Other effects of Rb1 on the nervous system

Recent studies have shown that Rb1 has a notable relieving effect on neuronal damage, anxiety, and depression (Table 4).

#### 2.4.1. Rb1 protects neurons against oxidative stress injury

The imbalance of the redox reaction in the body leads to reactive oxygen species (ROS) accumulation, causing oxidative stress-mediated damage. Owing to the particular physiological and biochemical properties of nerve tissues, they are sensitive to ROS-mediated injury and ROS damage, including increased

---

**Table 2**

Summary of the protective effect and mechanism of ginsenoside Rb1 on spinal cord ischemic injury.

| Model | Inducer/Method | Animal/Cell | Effects | Mechanisms |
|-------|----------------|-------------|---------|------------|
| Spinal cord ischemia-reperfusion injury | Oxygen-glucose deprivation/Reoxygenation-induced | Primary astrocytes | ↑BDNF, NGF | ↑AQP4 (spinal cord) |
| Spinal cord ischemia-reperfusion injury | Abdominal aortic occlusion | Sprague-Dawley rats | ↓Neural cell Apoptosis in the spinal cord, Improved hindlimb locomotor dysfunction, ↓Apoptosis; improves impaired nerve function | ↓Bax/Bcl-2 ratio, Caspase-3 and p-Akt-1 |
| Spinal cord ischemia-reperfusion injury | Abdominal aortic occlusion | Wistar rats | ↓Neural cell Apoptosis in the spinal cord, Improved hindlimb locomotor dysfunction, ↓Apoptosis; improves impaired nerve function | ↓Bax/Bcl-2 ratio, Caspase-3 and p-Akt-1 |
| Compressive Spinal Cord Injury | Laminnectomy of the lower thoracic cord (T12) vertebrae; | Sprague-Dawley rats | Ameliorated Basso-Beattie Bresnahan score, Improved rearing activity and increased neural density | ↓AQP4 in the spinal cord |
| Oxidative stress injury in rat spinal cords | The T10 chest segment was exposed and injured with a heavy hammer | Sprague-Dawley rats | ↑MDA; ↓SOD, CAT, GSH | ↓MnSOD, Nrf2, HO-1 |
| Spinal Cord Injury | Four-level T7-T10 laminectomy | Sprague-Dawley rats; PC12 | ↓Neuronal Apoptosis and autophagic response | ↓Autophagy |
| Spinal cord ischemia-reperfusion injury | Artery occlusion | Sprague-Dawley rats; C57BL/6 mice | ↑SOD, Survivin protein; ↓Apoptosis, Oxidative stress, MDA | ↓SOD, Survivin protein |
| Experimental Autoimmune Encephalomyelitis | MBP68-82-Induced Acute EAE Model | | Decreased behavioral impairment | Suppressing Th1 and Th17 Cells and Upregulating Regulatory T Cells |

---

**References**

[32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47]
permeability of cell membranes, DNA damage, and activation of corresponding apoptotic genes [48,49]. Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase (HO-1) pathway is considered the essential antioxidant target. Activating this pathway can trigger the corresponding antioxidant enzymes, thereby enhancing the cell’s ability to scavenge ROS, maintaining redox balance, and reducing oxidative damage. In vitro, Rb1 remarkably ameliorates the imbalance of redox state and mitochondrial dysfunction in SH-SYSY cells induced by rotenone-induced oxidative stress by reducing ROS and thiobarbituric acid reactive substances levels, as well as elevating GSH levels and SOD activity. Rb1 can also decrease Caspase-3 and Bax, increase Bcl-2 expression, and regulate endothelial nitric oxide synthase (eNOS), GSH, and HO-1 expression of Nrf2 and HO-1 in the hippocampus of rats [51]. Coincidentally, Jang et al. [52] found that Rb1 could attenuate formalin-induced acute inflammatory nociception in rats by regulating the Nrf2 and NF-κB pathways. Rb1 has a protective effect on pentylenetetrazol-induced oxidative stress and Mg²⁺ free radical-induced neuronal damage by activating the Nrf2/ARE signaling pathway [53].

The above study confirmed the protective effect of Rb1 regarding the oxidative stress-induced neuronal injury. Rb1 can enhance the expression of Nrf2 and HO-1 in the hippocampus of rats in vivo and in vitro. Its primary action mechanism is to activate Nrf2/HO-1, Nrf2/ARE signaling pathway, increase SOD and CAT activity, upregulate endothelial nitric oxide synthase (eNOS), GSH, and HO-1 levels, reduce ROS and MDA content, thus improving intracellular redox status, reducing the expression of pro-apoptotic genes and inflammatory factor release in neuronal cells of rats, so as to alleviate damage of rat neuronal cells induced by oxidative stress.

2.4.2. Effects of Rb1 on acute stress, anxiety, and depression

Acute stress or prolonged exposure to stressful conditions can lead to a decrease in the expression of BDNF and tyrosine kinase B
(TrkB) in hippocampal midbrain-derived neuromaturation. Changes in BDNF and TrkB affect the outgrowth, survival, differentiation, maintenance, and protection of functions in different neuronal populations. Rb1 pretreatment reverses the decrease in BDNF/TrkB expression in the hippocampus of acutely stressed rats and increases the levels of plasma corticosterone and adrenocortical hormone [54]. Post-traumatic stress disorder (PTSD) can cause changes in the hypothalamic–pituitary–adrenal axis. Rb1 can attenuate the anxiety-like responses in model mice produced by PTSD. Rb1 restores the level of BDNF mRNA in the hippocampus and increases the content of neuropeptide Y (NPY) mRNA. Rb1 attenuates anxiety-related behavior and neurochemical reactions by modulating the expression of NPY and the central norepinephrine system [55]. The mechanism of the anxiolytic effect of Rb1 may be related to the upregulation of the GABA receptor, the expression of NPY, and the regulation of central norepinephrine system [16]. Depression, which is a depressive disorder with high incidence, disability, and recurrence rate, is characterized by chronic and lasting depression symptoms. Studies have shown that Rb1 can substantially increase the levels of serotonin, 5-HIAA, norepinephrine, and dopamine in the brain of chronic unpredictable mild stress rat model. The antidepressant mechanism of Rb1 is mainly mediated by the central neurotransmitters of serotonergic, norepinephrine, and dopaminergic systems. Monoaminergic and amino acid receptors are involved in the antidepressant effect of Rb1 on the mouse hippocampus (CA3) and prefrontal cortex [56,57]. However, the mechanism of protein expression signaling pathway after receptor activation requires further study to determine.

3. Cardiovascular system

3.1. Protective effects of Rb1 on the heart

Recent studies demonstrated that the cardioprotective effects of Rb1 are mainly reflected in the protection of myocardial hypoxia/ischemia and ischemia-reperfusion injury, improvement of mitochondrial dysfunction, and anti-heart failure. The mechanism of this action mainly involves the regulation of the pathways in which p38MAPK, RhoA, Rho/ROCK, PI3K/mTOR, and estrogen receptor participate (Table 5).

3.1.1. Rb1 protects against myocardial hypoxia/ischemia and ischemia-reperfusion injury

Myocardial ischemic injury is caused by severe blocking of the coronary blood supply, leading to myocardial cell apoptosis and necrosis. Protecting cardiomyocytes from excessive autophagy under ischemic hypoxia has become a mainstream research. In vitro, Rb1 can considerably improve the vitality of CoCl2-induced hypoxia of neonatal rat cardiomyocytes and enhance hypoxic-induced transitional autophagy by regulating the AMP-activated protein kinase (AMPK) pathway [58]. miRNA is a potential biomarker for ischemic heart disease, and the imbalance of miRNA plays a crucial role in the process of ischemic heart disease. Rb1 substantially reduces mortality of neonatal rat cardiomyocytes induced by ischemia and hypoxia in a dose-dependent manner probably by upregulating mir-1, mir-29a, and mir-208 and down-regulating mir-21 and mir-320 [59,60]. Besides, Rb1 can reduce the calcium overload of rabbit ventricular myocytes and prevent the occurrence of premature ventricular beats and ventricular tachycardia in ischemia-reperfusion injury [61]. A label-free quantitative proteomics study of H9c2 cardiomyocytes is cultured by hypoxia/reoxygenation (H/R) found 29 differential proteins, including estrogen receptor alpha and estrogen receptor beta (ERβ). This study reported that Rb1 provides myocardial protection by inducing an estrogen receptor-dependent crosstalk among the Akt, JNK, and ERK1/2 pathways to prevent injury and apoptosis induced by H/R to H9c2 cardiomyocytes [62].

After ischemia and hypoxia, blood reperfusion can lead to further damage of myocardial cells, namely, MIRI, including increasing myocardial infarct size, enhancing myocardial fibrosis, and aggravating cardiac dysfunction [63]. Apoptosis is an essential link in the pathogenesis of I/R. In vivo, Rb1 can reduce the area of myocardial infarction, reduce Caspase-3 activity and TNF-α level in coronary artery ligation rats, and exert an antipoptotic effect by inhibiting p38a MAPK phosphorylation. Moreover, Rb1 can bind to RhoA in a dose-dependent manner, inhibit the activation of the RhoA signaling pathway during cardiac I/R, and restore ATP production [64,65]. These studies suggested that the protection provided by Rb1 against MIRI might involve the regulation of the pathways where p38α MAPK, RhoA, and estrogen receptors are located.

3.1.2. Rb1 inhibits mitochondria-mediated apoptosis

Mitochondria-mediated apoptosis plays a critical role in MIRI. When MIRI occurs, the continued opening of the mitochondrial permeability transition pore (MPTP) leads to mitochondrial damage and ultimately to apoptosis. Mitochondrial oxidation increases the vulnerability of cardiac I/R injury. In vitro, Rb1 can reduce MPTP by stabilizing mitochondrial membrane potential (MMP) and reducing reactive oxygen species (ROS) during HR. Importantly, Rb1 protects mitochondria by reducing the release of cytochrome c and the expression of cleaved-caspase-3 in the cytoplasm, and ultimately reduces H9c2 cell apoptosis induced by hypoxia/reoxygenation (HR) [66]. Besides, Rb1 reduces primary neonatal rat ventricular myocyte apoptosis during hypoxia/reoxygenation injury by increasing PDH activity, blocking succinate-related HIF-1α activation, preventing cardiac acidification, and improving mitochondrial dysfunction [67]. In addition, Rb1 can alter mitochondrial membrane permeability, inhibit the opening of mitochondrial MPTP, and exert protective effects against H/R injury in neonatal rat cardiomyocytes by reducing lactate dehydrogenase (LDH) and creatine kinase (CK) levels and inducing Akt and GSK-3β phosphorylation [68].

3.1.3. Rb1 improves heart failure

Heart failure (HF) refers to the failure of the heart's systolic and diastolic functions to fully discharge the venous blood back to the heart, resulting in stagnation of the venous system and insufficient blood perfusion in the arterial system. Rb1 can slow down rats' heart rate, improve heart functions, and reduce the histological changes caused by HF. Rb1 can attenuate myocardial hypertrophy and myocardial fibrosis by reducing the levels of atrial natriuretic factor, β-myosin heavy chain, peristin, collagen I, angiotensin II (Ang II), Ang-converting enzyme, and Ang II type 1 receptor [69]. Moreover, Rb1 can reduce the mitochondrial membrane potential and increase the translocation of GLUT4 to the plasma membrane possibly by inhibiting the TGF-β1/Smad and ERK pathways and activating the Akt pathway. Rb1 can remarkably increase Rho-associated protein kinase (ROCK), which plays a vital role in the regulation of autophagy in the myocardial tissue of an acute HF animal model. Rb1 can exert anti-HF functions by regulating the Rho/ROCK and PI3K/mTOR pathways and inhibiting myocardial transition autophagy in rats [70].

3.2. Rb1 protects blood vessels

Accumulating evidence shows that the protective effects of Rb1 on blood vessels mainly include anti-atherosclerosis, inhibition of
vascular calcification, and resistance to vascular endothelial cell damage (Table 6).

### 3.2.1. Rb1 regulates lipid metabolism and improves atherosclerosis

Atherosclerosis is a disease caused by abnormal lipid metabolism. Macrophages form cholesterol-rich foam cells by phagocytosing oxidized LDLs, which is the main factor for atherosclerotic lesions. In *vitro*, Rb1 can alleviate ox-LDL-induced vascular endothelial senescence via the SIRT1/Beclin-1/autophagy axis [71]. Macrophages can differentiate into two antagonistic subtypes: M1 and M2, of which pro-inflammatory M1 macrophages can lead to a more vulnerable plaque, whereas anti-inflammatory M2 macrophages have protective effects. Rb1 can promote anti-inflammatory M2 macrophage polarization to enhance the stability of atherosclerotic plaques by increasing IL-4 and IL-13 production and STAT6-mediated M2 macrophage polarization to enhance the stability of atherosclerotic plaques. In addition, various types of apoptosis caused by inflammation are the pathological changes of atherosclerosis, including endothelial dysfunction and manifesting as reduced vasodilation and contraction, leading to vascular calcification. In *vitro*, Rb1 can promote anti-inflammatory activity and regulate cell autophagy by promoting lipid metabolism and inhibiting lipid accumulation.

3.2.2. Rb1 inhibits vascular calcification

Vascular calcification is a pathological process of cardiovascular disease. It refers to the presence of abnormal calcium deposits in the walls of blood vessels, resulting in the loss of vascular elasticity and manifesting as reduced vasodilation and contraction, leading to various cardiovascular diseases. In *vitro*, Rb1 can improve calcium deposition and vascular smooth muscle cells (VSMC) osteogenesis transformation both in vivo and in vitro. Rb1 can decrease the expression of osteogenic-related genes such as osteocalcin, osteopontin, and osteonectin in VSMC and inhibit the formation of calcium deposits. In *vivo*, Rb1 can inhibit the expression of osteoblast-related genes and decrease bone density, thereby inhibiting the development of vascular calcification. In addition, Rb1 treatment can reduce the expression of osteocalcin and osteopontin in VSMC and inhibit the formation of calcium deposits, thereby inhibiting vascular calcification. In addition, Rb1 treatment can reduce the expression of osteocalcin and osteopontin in VSMC and inhibit the formation of calcium deposits, thereby inhibiting vascular calcification.

3.2.3. Rb1 confers resistance to endothelial oxidative stress injury

Ritonavir (RTV), a highly active anti-retroviral therapy drug, can cause endothelial dysfunction through oxidative stress. In *vitro*, Rb1 can reverse the vascular dysfunction caused by oxidative stress associated with long-term ritonavir (RTV) use. The mechanism might be that Rb1 binds to the estrogen receptor ER-β, decrease the production of ROS and increase the expression of eNOS and SOD, thereby inhibiting RTV-induced oxidative damage to human endothelial cells [77]. Bcl-2/E1B-19 kDa interacting protein 3 (BNIP3) participates in oxidative damage by modulating the...
targets, namely, mTOR and NF-κB, whereas miR-210 can inhibit its expression. Rb1 inhibits H\(_2\)O\(_2\)-induced oxidative damage to human endothelial cell line (EA.hy926) by upregulating miR-210, negatively regulating BNP3 expression, and inhibiting the activation of NF-κB [78]. Besides, Endothelial progenitor cells (EPCs), primarily derived from the bone marrow, help repair blood vessel damage and tissue ischemia. Stromal cell-derived factor-1 (SDF-1) enhances EPC functions, and the SDF-1/CXCR4 axis plays a crucial role in promoting angiogenesis, recruiting EPCs, primarily derived from the bone marrow, EPCs, and may play a role in repairing blood vessels damaged by vascular injury [79].

### 4. Diabetes and its complications

Rb1 not only lowers blood glucose level, increases insulin sensitivity of adipocytes, and regulates lipid metabolism but also alleviates the occurrence of T2DM-related complications, including diabetic cardiomyopathy, diabetic retinopathy, diabetic encephalopathy, and obesity (Table 7).

#### 4.1. Rb1 increases insulin sensitivity

Insulin resistance is a major challenge in diabetes treatment. It is characterized by impaired insulin signal transduction [80]. In vitro, Rb1 can improve insulin signal transduction by inhibiting the activation of NLRP3 inflammatory bodies associated with endoplasmic reticulum stress and inhibiting the inflammatory response of adipose tissues [81]. The anti-diabetic effects of Rb1 in humans require further research. In vivo, Rb1 upregulates perilipin expression in the adipose tissues of db/db obese mice, reduces hepatic fat accumulation, and inhibits adipocyte lipolysis [82]. Moreover, Rb1 increases insulin sensitivity by reducing 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) levels in the liver and adipose tissue of mice with high-fat diet (HFD)-induced type 2 diabetes (T2D), indicating that Rb1 may exert its anti-diabetic effect by inhibiting the expression of 11β-HSD1 [83]. However, after human resistance exercise, supplementation with low-dose Rb1 did not change glucose metabolism and insulin levels probably because of the continued increase in sympathetic nerve activity [84]. Inflammatory molecules induce insulin resistance by upregulating the phosphorylation of insulin receptor substrate-1 at serine residues and impairing insulin PI3K/Akt signaling, resulting in decreased glucose uptake by adipocytes.

#### 4.2. Effects of Rb1 on glucose metabolism

Liver mitochondrial pyruvate carrier (MPC), which is a complex of MPC1 and MPC2 subunits, promotes gluconeogenesis by transporting pyruvate to the mitochondria. cAMP-responsive element binding protein (CREB) transcriptionally upregulates MPC1 to provide pyruvate for gluconeogenesis. Rb1 reduces hepatic cAMP formation in mice, thereby reducing CREB-mediated induction of MPC1. Rb1 might contribute to limiting pyruvate-dependent hepatic glucose production [85]. In vitro, Rb1 can promote GLUT4 translocation by upregulating AdipoR1 and AdipoR2 proteins and stimulating adiponectin signaling in C2C12 muscle cells [86]. Coincidentally, another study found that Rb1 could stimulate the mRNA of leptin receptors OBRa and OBRb and the protein expression and phosphorylation of STAT3, PI3K, and ERK2 in C2C12 muscle cells, indicating that Rb1 could promote the transport of GLUT4, thereby achieving the purpose of lowering blood glucose by upregulating the leptin receptors and activating the PI3K signaling pathway [87].

#### 4.3. Rb1 improves diabetic cardiomyopathy

Diabetic cardiomyopathy is a recognized cause of cardiac insufficiency secondary to chronic hyperglycemia and myocardial lipotoxicity. This disease promotes cardiomyocyte hypertrophy, interstitial fibrosis, and a decrease in myocardial contractile performance [88]. Treatment with Rb1 remarkably improves cardiac dysfunction and abnormal cardiomyocyte calcium signaling caused by diabetes in mice likely because of the fact that it suppresses Ca\(^{2+}\) leakage caused by overactivated ryanodine receptor 2 (RyR2) and it increases Ca\(^{2+}\) uptake by sarcoplasmic reticulum Ca\(^{2+}\)-ATPase 2a. Moreover, Rb1 not only enhances energy metabolism (like metformin) and eliminates O-GlcNAcylation of calcium handling proteins to regulate calcium signaling but also directly inhibits RyR2 activity from regulating calcium signaling, indicating that Rb1 could be a kind of adjunct therapeutic substance that is more effective in treating diabetic cardiomyopathy [89].

#### 4.4. Rb1 relieves diabetic retinopathy

Diabetic retinopathy (DR) is one of the main complications of diabetes. It is mainly caused by the apoptosis of retinal capillary endothelial cells (RCECs) when retinal blood vessels are exposed to high glucose environment [90,91]. In vitro, Rb1 treatment notably
increases cell viability and mtDNA copy number and inhibits ROS generation. Treatment with Rb1 increases the activities of SOD and CAT and reduces those of NOX and PARP. In vivo, Rb1 can reduce the content of MDA in the retina of streptozotocin-induced diabetic retinopathy rat model and increase the content of GSH. Furthermore, Rb1 treatment provides a new strategy for preventing and treating diabetic retinopathy [94].

4.5. Rb1 prevents and treats diabetic cardiomyopathy

Diabetic cardiomyopathy, a severe diabetic complication, is characterized by cognitive dysfunction and neuropsychiatric disorders [95]. Methylglyoxal (MGO), a highly reactive metabolite of hyperglycemia, plays a key role in diabetic complications. Accumulated MGO binds with DNA, proteins, and lipids, leading to their oxidative modification and disturbances in their molecular functions. The cytotoxicity of MGO is mainly mediated through oxidative stress, further leading to cell apoptosis. In vitro, Rb1 treatment alleviates MGO-induced apoptosis in SH-SY5Y cells by increasing the Bcl-2/Bax ratio and inhibiting the release of pro-apoptotic genes, including Caspase-3 and Caspase-9. Additionally, Rb1 can reduce mitochondrial damage and ROS production and decrease the Bcl-2/Bax ratio and inhibiting the release of pro-apoptotic genes, including Caspase-3 and Caspase-9. Additionally, Rb1 can reduce mitochondrial damage and ROS production and decrease cell viability and mtDNA copy number and inhibits ROS generation. Treatment with Rb1 increases the activities of SOD and CAT and reduces those of NOX and PARP. In vivo, Rb1 can reduce the content of MDA in the retina of streptozotocin-induced diabetic retinopathy rat model and increase the content of GSH. Furthermore, Rb1 treatment provides a new strategy for preventing and treating diabetic retinopathy [94].

4.6. Rb1 improve obesity and obesity-related diseases

Obesity is a metabolic disorder characterized by white adipose tissue hyperplasia and hypertrophy. It is associated with cardiovascular diseases, hypertension, stroke, diabetes, cancer, and other diseases. Most free fatty acids (FFAs) are derived from adipose tissues in the obese state. By activating the NF-κB pathway, FFAs stimulate fat cells to release pro-inflammatory cytokines and promote the development of inflammation and oxidative stress. Rb1 ameliorates FFA-induced ROS generation and NO reduction through the upregulation of SOD2 and eNOS expression. Moreover, Rb1 attenuates FFA-induced NF-κB phosphorylation, suggesting that Rb1 can suppress the pro-inflammatory and pro-oxidative effects of FFA on 3T3-L1 adipocytes, and its mechanism is related to blocking the NF-κB signaling pathway [97]. Furthermore, Rb1 can exert antiobesity effects by inducing browning in 3T3-L1 cells and primary white adipocytes through the activation of AMPK-mediated pathway, indicating that Rb1 can act as a potential functional antiobesity food agent [98].

In vivo, intraperitoneal injection of Rb1 can reduce the food intake of normal rats and high-fat-induced obese rats. The mechanism of this effect may be that Rb1 can exert its anorexia effect by inhibiting the expression of pro-inflammatory genes induced by lipopolysaccharides in human retinal epithelial cells (ARPE19) and RAW264.7 cells. This combined treatment provides a new strategy for preventing and treating diabetic retinopathy [94].
enhancing the sensitivity of rats to satiety signals (such as CCK) and transmitting satiety signals to the hindbrain through the vagus afferent nerves, thereby reducing the amount of food consumed and achieving weight loss effect [99]. Obesity affects leptin-induced BDNF expression and the regulation of synapse formation, which is considered to be associated with neurodegenerative diseases, cognitive decline, and depression. Recent studies have shown that chronic Rb1 treatment improves central leptin sensitivity, leptin-cognitive decline, and depression. Recent studies have shown that considering BDNF expression and the regulation of synapse formation, which is considered to be associated with neurodegenerative diseases, including favorable therapeutic effects on the central nervous system, cardiovascular system, diabetes, etc. In this review, we summarized the recently published reports (2015–2020) on Rb1. The articles reviewed indicated that Rb1 exerts the aforementioned protective effects and is involved in multiple signaling molecules and multiple pathways, presenting the characteristic of multiple effects, multiple targets, and multiple pathways (Figs. 2–5). Rb1 exhibits various pharmacological activities mainly via inhibition of the release of inflammatory factors, downregulation of the expression of pro-apoptotic genes, regulation of redox balance in the body, and regulation of cellular autophagy possibly through interactions with signaling networks and receptors, thereby exhibiting corresponding pharmacological effects on different tissues and organs and different pathophysiological environments. First, Rb1 can reduce inflammatory cytokines (TNF-α, COX-2, IL-6, IL-10, and IL-1β) and the inflammatory responses in adipose tissues and the liver probably through the regulation of HMGBl, NF-κB, MAPK/NF-κB, and PPAR-γ pathways. Second, in vivo and in vitro, Rb1 can increase the ability of antioxidants by upregulating the levels of antioxidants, such as SOD, GSH, eNOS, CAT, and Nrf2, and downregulating the levels of ROS, MDA, LDH, and MMP-2 possibly through the activation of the Nrf2/HO-1, Nrf2/ARE, and PI3K/Akt signal pathways. Third, Rb1 can downregulate pro-apoptotic factors, such as Bax, Caspase-3, and Caspase-9; upregulate the levels of antiapoptotic factors, including Bcl-2 and Bcl-xL; and exert anti-apoptotic and modulatory autophagy effects by inducing estrogen receptor-dependent crosstalk and regulating the PI3K/mTOR and p38 MAPK signaling pathways. Finally, Rb1 could play a role in regulating glucose metabolism, lipid metabolism, and energy metabolism.

5. Other aspects in research on Rb1

Aside from the aforementioned pharmacological efficacy and action mechanisms of Rb1, recent studies have elucidated the other multiple roles and mechanisms about this ginsenoside. For example, Rb1 can mitigate the development of abdominal aortic aneurysms by inhibiting the JNK and p38 signaling pathways [101]. Moreover, Rb1 has therapeutic and ameliorative effects on hypertrophic scar remodeling [102], colitis [103], asthma [104], and tumor malignancy [105], as well as the ability to activate TMEM16A channels [106]. Also, Rb1 exerts protection on other tissues and organs through multiple targets and multiple pathways, which involve intestinal ischemia-reperfusion (I/R) injury, hepatotoxicity, liver fibrosis, skin aging, and osteoarthritis (See the details in Supplementary materials). Research on the pharmacological effects of Rb1 is still at a preliminary stage, and further exploration is required to reveal the role and mechanism of the ginsenoside.

6. Conclusion and perspectives

Ginseng, which has a long history of medicinal use and can treat a variety of diseases, has attracted extensive attention from researchers worldwide. The complex composition and unclear mechanism of action of ginseng have limited its widespread clinical use. Ginseng contains a variety of active ingredients, such as saponins, peptides, volatile oils, polysaccharides, etc. Among them, saponin has been considered as the main component responsible for its pharmacological activity. There are thousands of reports in the literature describing the beneficial effects of ginseng and its bioactive ginsenosides. Most of these studies have used cellular and animal models to describe the mechanistic effects of ginsenosides on oxidative stress, inflammation, apoptosis, tumors, cognition, and neurodegeneration. To provide researchers with a deeper understanding of ginseng and to expand its clinical applications, we present the review on the pharmacological effects and mechanisms of Rb1, one of the most prominent components of ginseng.

Rb1, a saponin obtained as a natural active ingredient from the extract of ginseng, has remarkable pharmacological effects, including favorable therapeutic effects on the central nervous system, cardiovascular system, diabetes, etc. In this review, we summarized the recently published reports (2015–2020) on Rb1. The articles reviewed indicated that Rb1 exerts the aforementioned protective effects and is involved in multiple signaling molecules and multiple pathways, presenting the characteristic of multiple effects, multiple targets, and multiple pathways (Figs. 2–5).

Rb1 exhibits various pharmacological activities mainly via inhibition of the release of inflammatory factors, downregulation of the expression of pro-apoptotic genes, regulation of redox balance in the body, and regulation of cellular autophagy possibly through interactions with signaling networks and receptors, thereby exhibiting corresponding pharmacological effects on different tissues and organs and different pathophysiological environments. First, Rb1 can reduce inflammatory cytokines (TNF-α, COX-2, IL-6, IL-10, and IL-1β) and the inflammatory responses in adipose tissues and the liver probably through the regulation of HMGBl, NF-κB, MAPK/NF-κB, and PPAR-γ pathways. Second, in vivo and in vitro, Rb1 can increase the ability of antioxidants by upregulating the levels of antioxidants, such as SOD, GSH, eNOS, CAT, and Nrf2, and downregulating the levels of ROS, MDA, LDH, and MMP-2 possibly through the activation of the Nrf2/HO-1, Nrf2/ARE, and PI3K/Akt signal pathways. Third, Rb1 can downregulate pro-apoptotic factors, such as Bax, Caspase-3, and Caspase-9; upregulate the levels of antiapoptotic factors, including Bcl-2 and Bcl-xL; and exert anti-apoptotic and modulatory autophagy effects by inducing estrogen receptor-dependent crosstalk and regulating the PI3K/mTOR and p38 MAPK signaling pathways. Finally, Rb1 could play a role in regulating glucose metabolism, lipid metabolism, and energy metabolism.

Fig. 2. The main role and mechanism of Rb1 in the nervous system.
metabolism, which could be manifested in the upregulation of TC, TG, LDL-C, and HDL-C in serum, thereby increasing insulin sensitivity and improving glucose metabolism. The mechanisms of these effects are related to the regulation of the TGF-β1/Smad, ERK, and Akt signaling pathways and the regulation of 11β-HSD1 and GLUT4 levels.

The potential effects of Rb1 on diseases and the underlying mechanisms were predicted via KEGG pathway enrichment and DOSE analyses of the reported targets by using R package \[107–110\]. As shown in Fig. 6A, Rb1 not only has a certain protective effect on the aforementioned diseases but also could have effects on lung diseases, hepatitis, and many kinds of tumors, including chondrosarcoma, female reproductive organ cancer, renal cell carcinoma, myeloma, connective tissue cancer, and colon cancer. These potential effects could become the future research direction in the pharmacological effects of Rb1. Moreover, as shown in Fig. 6B, according to the KEGG analysis of the proteins collected in the literature, Rb1 can exert corresponding pharmacological effects mainly by influencing microRNAs in cancer, human cytomegalovirus infection, EGFR tyrosine kinase inhibitor resistance,

**Fig. 3.** The main role and mechanism of Rb1 in the cardiovascular system.

**Fig. 4.** The main role and mechanism of Rb1 in diabetes and complications.
adipocytokine signaling pathway, FoxO signaling pathway, oxytocin signaling pathway, chemokine signaling pathway, PD-L1 expression and PD-1 checkpoint pathway in cancer, AMPK signaling pathway, mTOR signaling pathway, and HIF-1 signaling pathway. On the basis of the results of previous studies reviewed herein and those of the present KEGG pathway and DO enrichment analyses, we offer the following ideas.

(1) First, although all the reviewed targets reported in the literature have been proved to be related to the therapeutic effects of Rb1 on cardiovascular and nervous system diseases and diabetes, the results of DO enrichment analysis strongly supported the supposition that Rb1 could have an excellent anti-lung disease and anticancer effects, especially on obstructive pulmonary disease, female reproductive organ cancer, and renal cell carcinoma. Thus, these effects must be validated by in vitro and in vivo experiments because the results may provide a scientific basis for the development of Rb1 for the treatment of obstructive pulmonary disease, female reproductive organ cancer, and renal cell carcinoma.

(2) Second, compared with those reported in the literature, the current KEGG enrichment analysis predicted more pathways, most of which, such as microRNAs in cancer, human cytomegalovirus infection, and EGFR tyrosine kinase inhibitor resistance, have been rarely mentioned. A comprehensive understanding of the therapeutic effects and mechanisms of Rb1 can be achieved by designing and conducting proteomics or genomics investigations both in vitro and in vivo. The unreported pathways can be validated and confirmed by other molecular techniques, such as Western blot and quantitative reverse transcription PCR.

(3) Finally, molecular docking and target fishing should be performed to predict the possible target proteins. The prediction and identification of target proteins can then be further investigated via gene silencing, knockout experiments, or Rb1-target protein compound crystallization experiments to corroborate the protein targets of this ginseng ingredient.

In conclusion, these ideas may provide invaluable clues or perspectives to further research on the therapeutic effects and mechanisms of Rb1, so as to promoting the drug development and clinical applications for this ingredient.
Declaration of competing interest

The author declares no conflicts of interest.

Acknowledgments

The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China (81973558), and the Joint Funds for the Innovation of Science and Technology, Fujian province (2017Y9123 and 2019Y9068).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jgr.2021.07.008.

Abbreviations

Aβ amyloid β-protein
ACE angiotensin converting enzyme
ACTH adrenocortical hormone
AD Alzheimer’s disease
AMPK AMP-activated protein kinase
ANF atrial natriuretic factor
Ang II Angiotensin II
Arginase arginase
ARPE19 adult retinal pigment epithelial cell line-19
AT1 Ang II type 1
BNIP3 Bcl-2/E1B-19 kDa interacting protein 3
β-MHC β-myosin heavy chain
CAT catalase
CK creatine kinase
CORT corticosterone
CREB cAMP-responsive element binding protein
Cx43 connexin 43
Cyt-C cytochrome C
DA dopaminergic
DOSE Disease Ontology Semantic and Enrichment
DR diabetic retinopathy
EPCs endothelial progenitor cells
ERα estrogen receptor alpha
ERβ estrogen receptor beta
ERK extracellular signal-regulated kinase
FFAs free fatty acids
Gas6 growth arrest-specific gene 6
GCLC glutathione cysteine ligase catalytic subunit
GCLM glutathione cysteine ligase modulatory subunit
GLT-1 glutamate transporter 1
Glu glutamate
GSH glutathione
H/I hypoxia/reoxygenation
HF heart failure
HMGB1 high mobility group 1
I/R ischemia/reperfusion
IL-6 interleukin-6
KEGG Kyoto Encyclopedia of Genes and Genomes
LDH lactate dehydrogenase
LPS lipopolysaccharide
MCAO middle cerebral artery occlusion
MDA malondialdehyde
MGO methylglyoxal
MIRI myocardial ischemia-reperfusion injury
MPC mitochondrial pyruvate carrier
MPTP mitochondrial permeability transition pore
NF-kB nuclear factor kappa-B
NGF nerve growth factor
NO nitric oxide
NOS nitric oxide synthase
NPY neuropeptide Y
Nqo1 NAD(P)H quinone dehydrogenase 1
Nrf2/HO-1 Nuclear factor erythroid 2-related factor 2/heme oxygenase
PD Parkinson’s disease
P. ginseng Panax ginseng C. A. Meyer
PPAR-γ peroxisome proliferator-activated receptor γ
PTSD post-traumatic stress disorder
PWATs primary white adipocytes
Rb1 Ginsenoside Rb1
RCECs retinal capillary endothelial cells
ROCK Rho-associated protein kinase
ROS reactive oxygen species
RTV ritonavir
RyR2 ryanodine receptor 2
SCI spinal cord injury
SCI spinal cord ischemia-reperfusion injury
SDF-1 stromal cell-derived factor-1
SOD superoxide dismutase
TNF-α tumor necrosis factor-α
TrkB tyrosine kinase B
VSMC vascular smooth muscle cells
11β-HSD1 11β-hydroxysteroid dehydrogenase 1

References

[1] Yao L, Wang J, Sun JC, He JP, Paek KY, Park SY, Huang LQ, Gao WY. A WRKY transcription factor, PgWRKY4X, positively regulates ginsenoside biosynthesis by activating squalene epoxidase transcription in Panax ginseng. Ind Crop Prod 2020;154:112671.
[2] Kim SW, Gupta R, Lee SH, Min CW, Agrawal GK, Ralkwal R, Kim JB, Jo IH, Park SY, Kim JR, et al. An integrated biochemical, proteomics, and metabolomics approach for supporting medicinal value of Panax ginseng fruits. Front Plant Sci 2016;7:994.
[3] Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287–96.
[4] Lee J, Park KS, Cho IH. Panax ginseng: a candidate herbal medicine for autoimmune disease. J Ginseng Res 2019;43:342–8.
[5] Liu D, Liu T, Teng Y, Chen W, Zhao L, Li X. Ginsenoside Rb1 inhibits hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells by regulating microRNA-25. Exp Ther Med 2017;14:2895–902.
[6] Hou J, Kim S. Possible role of ginsenoside Rb1 in skin wound healing via regulating senescent skin dermal fibroblast. Biochem Biophys Res Commun 2018;495:381–8.
[7] Jiang Y, Li M, Lu Z, Wang Y, Yu X, Sui D, Fu L. Ginsenoside Rg3 induces ginsenoside Rb1-comparable cardioprotective effects independent of reducing blood pressure in spontaneously hypertensive rats. Exp Ther Med 2017;14:4977–85.
[8] Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front Pharmacol 2018;9:423.
[9] Ahmed T, Razza SH, Maryam A, Setzer WN, Braidy N, Nabavi SF, de Oliveira MR, Nabavi SM. Ginsenoside Rb1 as a neuroprotective agent: a review. Brain Res Bull 2016;125:30–43.
[10] Zheng Q, Bao XY, Zhu PC, Tong Q, Zheng GQ, Wang Y. Ginsenoside Rb1 for myocardial Ischemia/Reperfusion injury: preclinical evidence and possible mechanisms. Oxid Med Cell Longev 2017;2017:6313625.
[11] Powers WJ. Acute ischemic stroke. N Engl J Med 2020;383:252–60.
[12] Thommessen B, Naess H, Logallo N, Kvistad CE, Ihle-Hansen H, Ihle-Hansen H, Thomassen L, Ronning OM. Tenecteplase versus alteplase after acute ischemic stroke at high age. Int J Stroke 2020;15:60.
[13] Li Y, Xu QQ, Shan CS, Shi HY, Wang Y, Zheng GQ. Combined use of emodin and ginsenoside Rb1 exerts synergistic neuroprotection in cerebral ischemia/reperfusion rats. Front Pharmacol 2018;9:943.
[14] Chen W, Guo Y, Yang W, Zheng P, Zeng J, Tong W. Involvement of connexin 43 in the protective effects of ginsenoside Rb1 against traumatic brain injury. Cell Mol Neurobiol 2016;36:1057–65.
[15] Gao X, Zhang X, Cui L, Chen R, Zhang C, Xue J, Zhang L, He W, Li J, Wei S, et al. Ginsenoside Rb1 promotes motor functional recovery and axonal regeneration in post-stroke mice through cAMP/PKA/CREB signaling pathway. Brain Res Bull 2020;154:51–60.
Liu ZG, Li Y, Jiao JH, Long H, Xin ZY, Yang XY. MicroRNA regulatory pattern in spinal cord injury. Cell Mol Neurobiol 2018;38:679–85.

Ning N, Dang X, Bai C, Zhang C, Wang K. Panax notoginsenoside produces neuroprotective effects via promotion of glutamate transporters in a mouse model of Parkinson’s disease. Neuropharmacology 2018;131:223–37.

Ardagh MT, Paleologou KE, Lv G, Menon SA, Abul Khair SB, Lu JH, Safieh-Garabedian A, Al-Hayani AA, Eliezer D, Li M, et al. Ginsenoside Rb1 inhibits fibrillation and toxicity of alpha-synuclein and disaggregates preformed fibrils. Neurobiol Dis 2015;74:89–101.

Forrester SJ, Kucku DS, Hernandez MS, Xu G, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 2018;122:877–902.

Wang P, Lin C, Wu S, Huang K, Wang Y, Bao X, Zhang F, Huang Z, Teng H. Inhibitory effects of ginsenoside Rb1 on spinal cord injury. Cell Mol Neurobiol 2018;38:679–90.

Lee MJ, Jung M, Choi J, Chang BS, Kim DY, Kim SH, Kwak YS, Oh S, Lee JH, Chang BJ, et al. Korean red ginseng and ginsenoside-Rb1/Rg1 alleviate experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells. Mol Neurobiol 2016;53:1977–2002.

Liu ZG, Li Y, Juo JH, Long H, Xin ZY, Yang XY. MicroRNA regulatory pattern in spinal cord ischemia-reperfusion injury. Neural Regen Res 2020;15:2123–30.

Zhu P, Li JX, Fujimoto M, Zhang J, Li XK. Development and treatments of inflammatory cells and cytokines in spinal cord ischemia-reperfusion injury. Mediators Inflamm 2016;2016:579012.

Ning N, Dang X, Bai C, Zhang C, Wang K. Panax notoginseng produces neuroprotective effects in rat model of acute spinal cord ischemia-reperfusion injury. J Ethnopharmacol 2012;139:504–12.

Zhuo D, Zhang M, Yuan H, Meng C, Zhang B, Wu H. Ginsenoside Rb1 protects against spinal cord ischemia-reperfusion injury in rats by downregulating the Bax/Bcl-2 ratio and caspase-3 and -9 protein levels. Exp Mol Pathol 2018;105:225–39.

Ye JF, Li PT, Huang SL, Xue JF, Ahn JT, Wu H, Liu RX, Cheng B. Effects of ginsenoside Rb1 on spinal cord ischemia-reperfusion injury in rats. J Orthop Surg Res 2019;14:259.

Zhu P, Hata R, Nakata K, Cao F, Samukawa K, Hiroko F, Sakanaka M. Intravenous infusion of ginsenoside Rb1 ameliorates compressive spinal cord injury through upregulation of Bcl-xL and VEGF. Int J Neurouron Res 2015;2:1017.

Li L, Liu X, Liu Z, Su Z. Interactions of connexin 43 and aquaporin-4 in the formation of glioma-induced brain edema. Mol Med Rep 2015;11:1188–94.

Huang F, Li YN, Yin F, Wu YT, Zhao DX, Li Y, Zhang YF, Zhu QS. Ginsenoside Rb1 inhibits neuronal apoptosis and damage, enhances spinal aquaporin 4 expression and improves neurologic deficits in rats with spinal cord ischemia-reperfusion injury. Mol Med Rep 2015;11:3965–72.

Li YN, Gao ZW, Li R, Zhang YF, Zhu QS, Huang F. Aquaporin 4 regulation by ginsenoside Rb1 intervenes with oxygen-glucose deprivation/reoxygenation-induced astrocyte injury. J Ethnopharmacol 2020;252:108635.

Yeung AWK, Tvetkenov NT, Georgieva MG, Ognyanov IV, Kordos J, Zawicki A, Kuhl T, Perry G, Petralia MC, Mazzone D, et al. Reactive oxygen species and their impact in neurodegenerative diseases: literature landscape analysis. Antioxidants 2021;10:402–20.

Leissring MA, Turner AJ. Regulation of distinct pools of alpha-myo in brain by multiple cellular proteins. Alzheimer’s Res Ther 2013;5:37.

Hwang YJ, Shim JS, Song MY, Yim SV, Lee SE, Park KS. Proteomic analysis reveals the protective effects of ginsenoside Rb1 are associated with the actin cytoskeleton in beta-amyloid-treated neuronal cells. J Ginseng Res 2016;40:278–84.

Wang YR, Li Y, Wang WY, Gao SY, Lin JW, Wang TQ, Zhou RL, Hu HY. Ginsenoside Rb1 inhibits apoptosis in rat cerebral ischemia-induced Alzheimer’s disease in vivo. Am J Transl Res 2018;10:796–91.

Zhao J, Lu Y, Juo H, Duan S, Zhao J. Baicalin and ginsenoside Rb1 promote the proliferation and differentiation of neural stem cells in Alzheimer’s disease in vitro. Brain Res Bull 2014;99:52–62.

Li N, Zhou L, Li W, Liu Y, Wang J. Protective effects of ginsenosides Rg1 and Rb1 on an Alzheimer’s disease mouse model: a metabolomics study. J Chromatogr B Analyt Technol Biomed Sci Life Sci 2015;858:54–61.

Zhang S, Zhu D, Li H, Zhang H, Feng C, Zhang W. Analyses of mRNA profiling through RNA sequencing on a SAMP mice model in response to ginsenoside Rg1 and Rb1. J Pharm Pharmacol 2017;69:98–107.
Lu JM, Jiang J, Jamaluddin MS, Liang Z, Yao Q, Chen C. Ginsenoside Rb1 blocks Jia F, Mou L, Ge H. Protective effects of ginsenoside Rb1 on H2O2-induced Lu H, Zhou X, Kwok HH, Dong M, Liu Z, Poon PY, Luan X. Ngok-Shun Wong R. Zhou P, Zhang X, Guo M, Guo R, Wang L, Zhang Z, Lin Z, Dong M, Dai H, J X et al. Ginsenoside Rb1 ameliorates CKD-associated vascular calcification via the SIRT1/Beclin-1/Autophagy Axis. J Cell Mol Med 2019;23:7088–98.

Nan-fang Hamai, M Son BK, Komuro A, Asari Y, Hashizume T, Takayama KI, Ogawa S, Aoki-shita M. Ginsenoside Rb1 inhibits vascular calcification as a selective androgen receptor modulator. Eur J Pharmacol 2019;859:172546.

Lu H, Zhou X, Kwok HH, Dong M, Liu Z, Poon PY, Luan X. Ngok-Shun Wong R. Ginsenoside Rb1-mediated anti-angiogenesis through regulating PDED and mR-33a through the activation of PPAR-gamma pathway. Front Pharmacol 2019;8:783.

Lu JM, Jiang J, Jamaluddin MS, Liang Z, Yao Q, Chen C. Ginsenoside Rb1 blocks rimonabant-induced oxidative stress and EROS downregulation through activation of estrogen receptor-beta and upregulation of SOD in human endothelial cells. Int J Mol Sci 2019;20:17.

Park SJ, Park M, Sharma A, Kim K, Lee HJ. Black ginseng and ginsenoside Rb1 promote breeding by inducing UCPI expression in TS-T3 and primary white adipocytes. Nutrients. 2019;11:2747.

Shen L, Wang MQ, Lo CC, Arnold M, Tso P, Woods SC, Liu M. Gut vagal afferents are necessary for the eating-suppressive effect of intraperitoneally administered ginsenoside Rb1 in rats. Physiol Behav 2015;152:62–7.

Wu Y, Huang XF, Bli C, Yu Y. Ginsenoside Rb1 improves leptin sensitivity in the prefrontal cortex in obese mice. CNS Neurosci Ther 2018;24:98–107.

Chen T, Xiao L, Zha M, Ma S, Yan T, Ji H. Anti-asthmatic effects of ginsenoside Rb1 in a mouse model of allergic asthma through regulating Th1/Th2. Inflammation 2015;38:1814–22.

Sun Q, Wang X, Tan X, Xie Y, Lu Z, Yao Q, Cai Q. Ginsenoside Rb1 improves liver fat accumulation by regulating perilipin expression in adipose tissue of db/db obese mice. J Ginseng Res 2015;39:199–205.

Song B, Ding L, Zhang H, Chu Y, Liu M. Ginsenoside Rb1 increases insulin sensitivity through suppressing 11b-hydroxysteroid dehydrogenase type 1. Am J Transl Res 2017;9:1049–57.

Chang WH, Tsai YL, Huang CY, Hsieh CC, Chauchhacyaliuk R, Fang Y, Lee SD, Kuo CH. Null effect of ginsenoside Rb1 on improving glycemic status in men during a resistance training recovery. Int J Sports Med 2015;36:1234.

Lou MS, Li J, Cheng Y, Xiao N, Ma C, Li P, Liu B, Lu Q, Li W. Glucagon up-regulates hepatic mitochondrial pyruvate carrier 1 through cAMP-responsive element-binding protein; inhibition of hepatic gluconeogenesis by ginsenoside Rb1. Br J Pharmacol 2019;176:2962–76.

Tabaneshad MR, Jafari H, Hosseini SA, Hashemtabad M. Ginsenoside Rb1 stimulates adiponectin signaling in C2C12 muscle cells through up-regulation of AdipoR1 and AdipoR2 proteins. Pharm Biol 2015;53:125–32.

Tabaneshad MR, Tabaneshad H, Hosseini M. Ginsenoside Rb1 exerts anti-diabetic action on C2C12 muscle cells by leptin receptor signaling pathway. J Recept Signal Transduct Res 2017;37:370–8.