The prevalence, natural history and time trends of peanut allergy over the first 10 years of life in two cohorts born in the same geographical location 12 years apart

Carina Venter1,2, Kate Maslin1,2, Veeresh Patil1, Ramesh Kurukulaaratchy1, Jane Grundy1, Gillian Glasbey1, Roger Twiselton1, Taraneh Dean1,2 & Syed Hasan Arshad1,3

1The David Hide Asthma and Allergy Research Centre, St. Mary’s Hospital, Newport, UK; 2School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, UK; 3Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK

To cite this article: Venter C, Maslin K, Patil V, Kurukulaaratchy R, Grundy J, Glasbey G, Twiselton R, Dean T, Arshad SH. The prevalence, natural history and time trends of peanut allergy over the first 10 years of life in two cohorts born in the same geographical location 12 years apart. Pediatr Allergy Immunol 2016: 27: 804–811.

Keywords
birth cohort; food allergy epidemiology; peanut allergy; prevalence; time trends

Abstract

Background: The aim of this study was to explore the natural history of peanut allergy in childhood in two birth cohorts from the same geographical region in the South of England.

Methods: The FAIR birth cohort was established on the Isle of Wight (UK) between 2001 and 2002 (n = 969). Children were followed up prospectively, skin prick tested (SPT) to peanut allergens at 1, 2, 3 and 10 years and food challenges performed. The Isle of Wight (IOW) birth cohort was established in 1989 (n = 1456). SPTs were performed at 1, 2, 4 and 10 years. Peanut allergy was based on positive SPT and a good clinical history.

Results: In the FAIR cohort, the prevalence of sensitization to peanut was 0.4%, 2.0%, 2.0% and 2.4% at 1, 2, 3 and 10 years, respectively. At 10 years of age, 12 of 828 (1.5%) children were diagnosed with peanut allergy. One child (8%) outgrew her peanut allergy between 3 and 10 years and two children (15%) presented with new onset peanut allergy. Over the first 10 years of life, 13 of 934 (1.4%) children were diagnosed with peanut allergy. In the IOW cohort, 6 of 1034 (0.58%) were diagnosed with peanut allergy at 10 years. We found no significant differences between the FAIR and the IOW birth cohort for any of the time points studied.

Conclusion: Peanut allergy appears to be stable over the first 10 years of life in our cohorts. There was no significant difference in peanut sensitization or clinical peanut allergy between 1989 and 2001.

Prevalence, incidence and time trends of peanut allergy in older children remain unclear. Furthermore, it is not known whether the prevalence and/or natural history of peanut allergy during childhood has changed in the last decade, although sensitization rates to peanut are reported to be stable (1). A systematic review reported an overall pooled estimate for all age groups of food-challenge-defined peanut allergy of 0.2% (0.2–0.3) (2). In the USA a systematic review (3) based their prevalence figures of 0.6% in 6- to 10-year-olds and 0.2% in 11- to 17-year-olds, mainly on data by Sicherer et al. (4, 5).

In terms of the natural history of peanut allergy, we know from cohorts recruited from hospital based clinics, that a small proportion (20%) of children with peanut allergy outgrow it by adolescence and occasionally a relapse may occur (6). Less is known, however, about the natural history of peanut allergy in unselected, population-based birth cohorts (7). Recently, Peters et al. (8) reported a prevalence rate of 1.47% at 4 years in the HealthNuts study. However, this was not a birth cohort as children were recruited at 1 year.

We recently reported prevalence of peanut allergy (0.58%) and sensitization (1.3%) at 10 years of age in a cohort born in 1989 (Isle of Wight (IOW) birth cohort) (7). In another cross-sectional study, peanut sensitization rates of 3.7% was reported on the Isle of Wight at 11 years (9). These children...
(different from the two birth cohorts analysed in this study) were born in 1991/1992 and assessed at only 11 years of age during a school visit. We have also reported on the time trends of peanut allergy using data from three different cohorts on the Isle of Wight when followed up between the ages of 3 and 4 years (10), who were born in 1989 (IOW Birth cohort), 1994–1996 (FAB cohort) and 2001–2002 (FAIR birth cohort). Skin prick test (SPT) positivity to peanut and clinical peanut allergy in children aged between 3 and 4 years increased significantly from 1993 to 1998/2000, but no significant change was seen from 1998/2000 to 2004/2005. We now present prevalence and natural history data of peanut allergy up to 11 years of age in the FAIR birth cohort, born in 2001-2002. To describe time trends of peanut allergy, we have compared the FAIR cohort to the IOW birth cohort (born in 1989-90) at 1, 2, 3–4 and 10 years of age.

Methods

FAIR birth cohort

A birth cohort born on the Isle of Wight (UK) (n = 969) between 2001 and 2002 was followed up prospectively (11). Children were clinically examined and SPT were performed to milk, wheat, egg, cod, peanut and sesame (ALK Abello) at 1, 2, 3 and 10 years of age. Children were invited for food challenges when indicated at three and 10 years of age. The Committee on Toxicity advice (UK) (12), which recommended the avoidance of peanut until 3 years in high risk families, was still relevant at the time. Children were therefore first challenged to peanut at 3 years of age.

Peanut allergy was defined as a positive food challenge or a positive SPT and a thorough clinical history, as previously reported (7). At 10 years, sensitization was also measured using specific IgE tests in the FAIR cohort, born in 2001-2002. To describe time trends of peanut allergy, we have compared the FAIR cohort to the IOW birth cohort (born in 1989-90) at 1, 2, 3–4 and 10 years of age.

The IOW Birth cohort

The IOW birth cohort was born in 1989 (13). SPTs were performed at 1, 2, 4 and 10 years of age using ALK Abello diagnostic extracts. A total of 1034 children were seen at 10 years of age (7). Peanut allergy was defined as a positive SPT and a thorough clinical history (14).

In both cohorts, SPT was performed using standardized allergen reagents and methodology by the same research team (15). Allergenic sensitization was defined by a positive SPT, indicated by a mean wheal diameter of 3 mm or greater than the negative control (saline).

Specific IgE tests in the FAIR cohort

All children in the FAIR cohort were invited to undergo a blood test, n = 246 consented. Specific IgE tests to peanut were performed using ImmunoCap (ThermoFisher). Component-resolved diagnostic (CRD) tests using ImmunoCap (ThermoFisher) were performed in all children with a positive specific IgE test to peanut; these included the following: Ara h1, Ara h2, Ara h3, Ara h8 and Ara h9 components.

Food challenges in the FAIR cohort

Food challenges were performed with 2.5 g of peanut protein at 3 years of age followed by a normal age-appropriate portion, calculated from national consumption data for young children from the UK National Diet and Nutrition Survey databases (16). At 10 years of age, the PRACTALL (17) recommendations were in place; therefore, challenge doses were adapted to comply with these (i.e. 3.443 g of protein). At younger ages in the FAIR cohort, challenges were performed as double-blind placebo-controlled food challenge; however, at age 10, parents consented to open food challenges only as their children already had prior diagnosis of peanut allergy. Food challenges were considered positive based on an adapted version of the PRACTALL (17) recommendations, which is used as standard clinical practice at the David Hide Asthma and Allergy Clinic on the Isle of Wight.

Statistical methods

All data were double entered by different operators on SPSS versions 20 and 21 and were verified (SPSS Inc, Chicago, USA). Prevalence rates were computed, together with 95% confidence intervals, using the methods of Clopper and Pearson. Numbers indicating loss of follow-up were clearly stated. Fisher’s exact tests, odds ratio and Mann–Whitney U-tests were used to assess risk factors for the development of peanut allergy. A logistic regression model was used to assess factors that could independently determine the development of peanut allergy.

Ethical approval for the FAIR study was obtained from the NRES South Central – Southampton B Research Ethics Committee (REF 10/H0504/11). Ethical approval for the IOW study was obtained from the Isle of Wight Local Research Ethics Committee (Ref 18/98). All parents consented and children provided assent.

Results

Prevalence and cumulative incidence of peanut allergy in the FAIR birth cohort

A total of 969 children were recruited and 900 of 969 (92.9%), 858 of 969 (88.5%), 891 of 969 (91.6%) and 827 of 969 (85%) were assessed at 1, 2, 3 and 10 years of age. Prevalence of sensitization to any of the pre-defined foods was 1.9%, 3.8%, 4.5% and 2.7% at these ages. Prevalence of sensitization to peanut at these ages was 0.4%, 2.0%, 2.0% and 2.4% (Table 1). At 3 years of age, 11 of 891 (1.2%; 95% CI: 0.6–2.2%) children were diagnosed with peanut allergy. At 10 years of age, 12 of 828 (1.5%; 95% CI: 0.8–2.5%) children were diagnosed with peanut allergy. SPT at either 1, 2, 3 or 10 years was available for 849 children. Over the first 10 years of life, 27 of 849 (3.2%; 95% CI: 2.0–4.4%) children were
Information on peanut allergy was available for 934 children at either 1, 2, 3 or 10 years. Thirteen of 934 (1.4%; 95% CI: 0.6–2.2%) children were diagnosed with a peanut allergy over the first 10 years.

Looking at peanut-specific IgE levels at 10 years, 29 children were sensitized to peanut using a cut-off of 0.35 kUA/l, 31 using 0.2 kUA/l (17) and 36 using 0.1 kUA/l (17) as a cut-off point. All children with a positive SPT to peanut were sensitized to peanut. Information on peanut allergy was available for 934 children at either 1, 2, 3 or 10 years. Thirteen of 934 (1.4%; 95% CI: 0.6–2.2%) children were diagnosed with a peanut allergy over the first 10 years.

Sensitization	1 year (n = 763)	2 years (n = 658)	3 years (n = 642)	10 years (n = 588)	Specific IgE at 10 years (n = 246)
Any of the pre-defined allergens	20 (2.6)	54 (8.2)	76 (11.8)	145 (24.7)	124 (50.4)
Any of the pre-defined food allergens (milk, egg, cod, wheat, peanut and sesame)	17 (1.9)	25 (3.8)	29 (4.5)	87 (14.6)	fx5
Any of the pre-defined aero-allergens	8 (1.1)	42 (6.4)	70 (10.9)	99 (16.8%)	113 (45.9)
Peanut	3 (0.4)	13 (2.0)	13 (2.0)	14 (2.4)	29/57 (50.9)
Lupin	4 (0.68)	3/57 (5.3)			

*wheat-grass cross-reactors removed.

Participant	Sensitized at 1 year	Sensitized at 2 years	Sensitized at 3 years	Peanut allergic at 3 years	Sensitized at 10 years	Peanut allergic at 10 years
1	No	Yes	Yes	Yes	Yes	Yes
2	No	NA	Yes	Yes	NA	Yes
3	No	Yes	Yes	Yes	Yes	Yes
4	NA	Yes	Yes	Yes	NA	Yes
5	NA	NA	Yes	Yes	Yes	Yes
6	NA	NA	No	No	Yes	Yes
7	No	No	Yes	No	Yes	Yes
8	No	Yes	Yes	No	Yes	Yes
9	No	No	No	Yes	NA	Yes
10	No	Yes	Yes	No	Yes	Yes
11	No	Yes	NA	Yes	No	No
12	No	No	No	Yes	Yes	Yes
13	Yes	Yes	Yes	Yes	Yes	Yes
14	Yes	No	No	No	No	No
15	Yes	Yes	No	No	No	No
16	NA	Yes	No	No	No	No
17	No	Yes	Yes	No	No	No
18	No	Yes	No	No	No	No
19	No	Yes	No	No	No	No
20	No	NA	Yes	No	NA	No
21	No	NA	No	No	NA	No
22	No	No	No	Yes	No	No
23	No	No	No	Yes	No	No
24	No	No	No	Yes	No	No
25	No	No	No	Yes	No	No
26	No	NA	No	No	Yes	No
27	No	Yes	No	No	Yes	No

No, negative skin prick test of food challenge; Yes, positive skin prick test or food challenge. NA, not applicable (i.e. declined test).
Table 3 Natural history of peanut allergy in the FAIR cohort over the first 10 years of life

Participant	SPT wheal size (mm) at 1 year	SPT wheal size (mm) at 2 years	SPT wheal size (mm) at 3 years	Peanut allergy at 3 years	Peanut allergy over the first 10 years of life	Specific IgE at 10 years (kUA/l)	CRD at 10 years
1	0	7.75	5.5	Yes	6 (positive OFC)	Fx5 15.2	Peanut 13.5
						Ara h8 0.09	Ara h1 0.05
						Ara h2 13.6	Ara h3 0.07
						Ara h9 0.28	
2	1.75	NA	4.25	Yes	NA (positive SPT plus history of reactions)	NA	NA
3	0	9.25	8.75	Yes	8.5 (positive OFC in past and SPT > 8 mm)	Fx5 3.5	Peanut 0.4
						Ara h8 0.01	Ara h1 0.02
						Ara h2 0.32	Ara h3 0.18
						Ara h9 0.04	
4	NA	9.5	7.75	Yes	NA (positive SPT > 8 mm plus history of reactions)	NA	NA
5	NA	NA	6	Yes	10.75 (positive SPT > 8 mm plus history of reactions)	Fx5 264	Peanut 264.5
						Ara h8 0.07	Ara h1 13.6
						Ara h2 138	Ara h3 2.07
						Ara h9 0.11	
6	NA	NA	10.5	Yes	7.5 (positive SPT > 8 mm plus history of reactions)	NA	NA
7	0	0	0	No	5 (positive SPT and history of reactions)	Fx5 0.9	Peanut 1.5
						Ara h8 0.01	Ara h1 0.07
						Ara h2 0.15	Ara h3 0.01
						Ara h9 0.01	
8	0	0	12	Yes	8.5 (positive SPT > 8 mm plus history of reactions)	Fx5 69	Peanut 49.7
						Ara h8 0.00	Ara h1 11.8
						Ara h2 29.5	Ara h3 7.79
						Ara h9 0.01	
9	0	0	3.5	Yes	NA (positive OFC in past and still reacting)	NA	NA
10	0	4.75	11	13.25	√ (positive OFC in past and SPT > 8 mm)	Fx5 1.26	Spec IgE 2.34
						Ara h8 1.47	Ara h1 0
						Ara h2 1.01	Ara h3 0.001
						Ara h9 0.03	
11	1.5	0	0	No	10 (positive OFC in past and SPT > 8 mm)	Fx5 5.03	Spec IgE 4.65
						Ara h8 0.01	Ara h1 0.3
						Ara h2 4.65	Ara h3 0.02
						Ara h9 0.01	
						Ara h8 0.03	Ara h1 0.01
						Ara h2 0.02	Ara h3 0.17
						Ara h9 0.04	
12	4.5	8.75	11	Yes	5.5 (positive OFC)	Fx5 0.75	Spec IgE 1.93
13	0	5.5	NA	Yes	0 X (positive OFC)	Fx5 0.75	Spec IgE 1.93

√, positive; NA, not applicable (i.e. declined blood test), CRD, component-resolved diagnostics.
peanut (n = 14) who consented to a blood test (n = 10) showed levels of specific IgE above 0.35 kUA/l.

Natural history of peanut allergy in the FAIR birth cohort over the first 10 years of life

Table 2 summarizes all 27 children who were sensitized to peanut at some point during their first 10 years of life. They showed a variable time course, from early sensitization to late sensitization, with some cases of sensitization in specific time points only. Table 3 summarizes the 13 children with clinical peanut allergy over the first 10 years of life and their sensitization status measured by SPT, as well as specific IgE. One child (8%) outgrew peanut allergy between 3 and 10 years of age. Two children (15%) presented with new onset peanut allergy. The CRD results of these children showed 5 of the 8 children having levels of Ara h2 > 0.35 kUA/l. Of the 12 children diagnosed with peanut allergy at age 10 years, five children had positive Ara h2 levels >0.35 kUA/l, two children had Ara h2 levels <0.35 kUA/l and five children did not have blood tests.

Time trends in peanut allergy in the FAIR and IOW birth cohorts

Although both sensitization and clinical allergy were clearly higher in the FAIR cohort, the differences were not statistically significant. Looking at peanut allergy in the two cohorts, the data shows a prevalence of 0.62% vs. 1.2% at 3–4 years and 0.58% vs. 1.5% at 10–11 years (Figs 1 and 2).

Factors associated with the development of peanut allergy

In the FAIR cohort, the following factors were associated with the development of peanut allergy at age 10 years (Table 4):

sensitization over the first 10 years of life to any allergen, any aero-allergen, any food allergen and grass; ever suffered from asthma, eczema or hayfever, any breastfeeding as well as egg allergy at 1 year. A family history of allergy was not, however, associated with the development of peanut allergy.

Logistic regression was performed to assess the impact of a number of factors on the likelihood of developing peanut allergy. The model, containing four variables (breastfeeding, family history, egg allergy and sensitization to any food allergen), was statistically significant, predicting 98.9% of participants’ peanut allergic status correctly, \(\chi^2 (6, N = 854) = 75.94, p < 0.01 \). The model as a whole explained between 8.5% (Cox and Snell R squared) and 66.1% (Nagelkerke R squared) of the variation. Although this model was very specific, correctly predicting 99.9% of non-peanut allergic participants, it had low sensitivity, correctly predicting only 27% of those with peanut allergy. None of the variables made a unique statistically significant contribution to the model. Sensitization to any food allergen made the strongest contribution, explaining 20.8% of the variation.

Discussion

We have shown that in the FAIR cohort at 10 years of age, 2.4% of children were sensitized to peanut and 1.5% clinically allergic. Between the ages of 3 and 10 years, one child outgrew peanut allergy and two children had new onset peanut allergy, leading to a cumulative incidence of peanut allergy over the first 10 years of life of 3.0%. Comparing peanut sensitization and peanut allergy in two cohorts of children born 12 years apart, we found no significant difference in the prevalence of peanut sensitization at 1, 2, 3–4 and 10 years of age or peanut allergy at 3–4 or 10 years of age. A number of factors played a
role in the development of peanut allergy, such as egg allergy and eczema in early life. Family history of allergy and breastfeeding did not independently affect the risk although they were both contributing factors in a multivariate logistic regression model.

We found a sensitization rate to peanuts at 10 years of 1.8% in the IOW birth cohort and 2.4% in the FAIR cohort. We have also described the prevalence of peanut sensitization in a different IOW school cohort (9) to be 3.7%, which may indicate either higher rates in that particular cohort or some selection bias as only 47.4% of the total cohort was recruited. Very few studies have looked at peanut sensitization in children of this age. Mustaev et al. (18) described the prevalence of sensitization to peanut at 11 years of age in Turkish children as 0.7%. Asarnoj et al. (19) reported a higher rate of peanut sensitization of 7.4% at age 8 years in a Swedish birth cohort, while McGowan et al. (1) reported a higher rate again of 10.5% in a cross-sectional US population of 6- to 19-year-old children and adolescents.

Gupta et al. (20) described the prevalence of self-reported doctor’s diagnosed peanut allergy in 11- to 13-year-olds from the USA to be 2.3%. Using similar methodology in children 11-17 years of age, Sicherer et al. (4, 5) reported prevalences of 0.2% and 1.7%. In our cohort, 1.4% of children reported a problem with consuming peanut, but not necessarily based on a doctor’s diagnosis. Only one previous study has reported peanut allergy in a prospective cohort study based on oral food challenges, SPTs and specific IgE measurements (21). The HealthNuts study recruited 12-month-old infants in Australia, born between 2006 and 2009 (n = 5276). Of the 156 participants diagnosed with peanut allergy at age 12 months (2.95% of cohort), 78% had persisting allergy at age 4 years. This is therefore a higher initial diagnosis rate and resolution rate than observed in either the FAIR or IOW cohorts. In the HealthNuts study, Ara h2, tree nut and house dust mite sensitization, coexisting food allergies, eczema and asthma were not predictive of persistent peanut allergy at age 4 years. In the FAIR cohort, we reported that sensitization over the first 10 years of life to any allergen, ever having asthma, eczema, hayfever or egg allergy at 1 year were associated with the development of peanut allergy by 10 years. Overall, the differences between studies are difficult to disentangle given the different sampling time periods, ages at recruitment and factors reported. Future publications from the HealthNuts study reporting data at age 10 years will enable more direct comparisons to be made.

In terms of development of peanut allergy, our data confirm that egg allergy and eczema are significant risk factors for peanut allergy, as reported previously by Lack et al. (22), the recent LEAP study (23) and the HealthNuts study (21). Nicolau et al. (24) reported that asthma, eczema and food allergies were more common among subjects with peanut allergy, whereas hayfever was more common in peanut-tolerant children. With respect to diet during pregnancy and infancy as risk factors for development of peanut allergy, our group has previously demonstrated that government advice to atopic mothers to avoid peanut during pregnancy was misunderstood and did not lead to a reduction in peanut allergy prevalence (25). It remains to be seen whether changes to national UK infant feeding guidelines will be made following the publication of the LEAP (23) and Enquiring About Tolerance (EAT) studies (26).

Comparing SPT or specific IgE testing, we found SPT was a better indicator of peanut allergy: 29 children had a positive specific IgE to peanut, and 14 had a positive SPT, with 12 found to be peanut allergic at age 10. For specific IgE, a cut-off of >0.35 kUA/l performed better than 0.1 kUA/l. Despite the fact, that a 0.35 kUA/l cut-off point reported by ThermoFisher was due to the initial analytic ability of the test and does not have a clinical basis. This cut-off was reduced to 0.1 kUA/l, as lower detection levels are now possible, but these are not clinical diagnostic levels (27).

Children with a clinical peanut allergy were sensitized to a range of peanut components. The majority was sensitized to Ara h2 as all eight children showed a level of sensitization to Ara h2 (n = 7 above 0.1 kUA/l; n = 5 above 0.35 kUA/l). This is similar to data reported by Nicolau et al. (24) who reported that Ara h2 was the most important predictor of peanut

Table 4 Factors associated with the development of peanut allergy at age 10 years of life in the FAIR cohort
Peanut allergy at age 10 years (n = 12)
Sensitization to any allergen over 10 years (n = 186)
Sensitization to any aero-allergen over 10 years (n = 175)
Sensitization to any FA over 10 years (n = 41)
Ever sensitized to grass (n = 108)
Any IgE mediated Food Allergy (n = 31)
Egg allergy at one year (n = 16)
Ever suffered from asthma (n = 101)
Ever suffered from eczema (n = 258)
Ever suffered from hayfever (n = 233)
Family history of allergy (n = 790)
Any breast feeding (n = 598)

Inf. infinite.

*n = 947 children have been seen at some point over the 10 years.
FA = food allergen.
allergy. However, it may not be true in all populations as Restani et al. (28) identified Ara h 3 as the major allergen in a group of peanut allergic children.

A limitation of our study was that the IOW birth cohort were not challenged to peanut, rather the diagnosis was based on a thorough clinical history and positive SPT. Although all the children in the FAIR cohort at the age of 10 years were offered a food challenge, only two consented, both of which were open challenges. Additionally, less than 25% consented to a blood test, which may affect the accuracy of the results. Another limitation is that the sample size was not sufficient to detect statistically significant differences between the two cohorts. Based on our data, we would require a sample size of 4207 children in each group at 3 years and 1908 children per group at 10 years of age to detect a difference with 80% power. Theoretically, if we use these sample sizes and impute our % of peanut allergy, we will find a highly significant increase in peanut allergy, both at 3 years (p = 0.006) and at 10 years (p = 0.004).

Conclusion

Peanut allergy appears to be stable at 1.5% over the first 10 years of life, with only about 10% of children outgrowing their peanut allergy and approximately 20% developing new onset peanut allergy. In the 12 years between 1989 and 2011, an increase in both peanut sensitization and clinical peanut allergy was noted but this did not reach statistical significance possibly due to sample size constraints. We acknowledge that in some areas of the world, some food allergies seem to be on the increase (29). It is therefore probably safe to assume that with sufficient numbers our peanut allergy prevalence may be significantly increasing, but it is difficult to say for certain as there is such limited data on the time trends in food allergy.

Acknowledgments

We would like to thank the participants of both studies.

Funding

The FAIR study was funded by the NIHR, UK, and the IOW birth cohort study was funded by the IoW NHS Trust and Asthma, UK. The sponsor and funders played no role in the study design; in the collection, analysis and interpretation of the data; in the writing of the report; and in the decision to submit the article for publication. The researchers acted independent of the funders.

References

1. McGowan E, Peng R, Salo P, Zeldin D, Keet C. changes in food-specific IgE over time in the National Health and Nutrition Examination Survey (NHANES). J Allergy Clin Immunol Pract 2016: 4: 713–20.
2. Nwaru BI, Hickstein L, Panesar SS, Roberts G, Muraro A, Sheikh A. Prevalence of common food allergies in Europe: a systematic review and meta-analysis. Allergy Eur J Allergy Clin Immunol 2014: 69: 992–1007.
3. Boyce JA, Assa’ad A, Burks AW, et al. Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J Allergy Clin Immunol 2010: 126(6 Suppl): S1–58.
4. Sicherer S, Munoz-Furlong A, Burks A, Sampson H. Prevalence of peanut and tree nut allergy in the US determined by a random digit dial telephone survey. J Allergy Clin Immunol 1999: 103: 559–62.
5. Sicherer SH, Munoz-Furlong A, Godbold JH, Sampson HA. US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. J Allergy Clin Immunol 2010: 125: 1322–6.
6. Fleischer DM. The natural history of peanut and tree nut allergy. Curr Allergy Asthma Rep 2007: 00: 175–81.
7. Arshad S, Venter C, Roberts G, Dean T, Kurukulaaratchy R. The natural history of peanut sensitization and allergy in a birth cohort. J Allergy Clin Immunol 2014: 134: 1462–3.
8. Peters RL, Allen KJ, Dharmage SC, Koplin JJ, Dang T. Natural history of peanut allergy and predictors of resolution in the first 4 years of life: a population-based assessment. J Allergy Clin Immunol 2015: 135: 1257–66. e2.
9. Pereira B, Venter C, Grundy J, Clayton CB, Arshad SH, Dean T. Prevalence of sensitization to food allergens, reported adverse reaction to foods, food avoidance, and food hypersensitivity among teenagers. J Allergy Clin Immunol 2005: 116: 884–92.
10. Venter C, Hasan Arshad S, Grundy J, et al. Time trends in the prevalence of peanut allergy: three cohorts of children from the same geographical location in the UK. Allergy Eur J Allergy Clin Immunol 2010: 65: 103–8.
11. Venter C, Pereira B, Voigt K, et al. Prevalence and cumulative incidence of food hypersensitivity in the first 3 years of life. Allergy 2008: 63: 354–9.
12. Committee on Toxicity of Chemicals in Food Consumer Products and the Environment. COT consumer products and the environment - peanut allergy. 1988.
13. Tariq SM, Stevens M, Matthews S, Ridout SA, Twiselton R, Hide DW. Cohort study of peanut and tree nut sensitisation by age of 4 years. BMJ 1996: 313: 514–7.
14. NICE. Food allergy in children and young people. 2011. Clinical Guidelines SG116. UK. Available from:http://www.nice.org.uk/nicemedia/live/13348/53214/53214.pdf.
15. Patil VK, Kurukulaaratchy RJ, Venter C, et al. Changing prevalence of wheeze, rhinitis and allergic sensitisation in late childhood: findings from 2 Isle of Wight birth cohorts 12 years apart. Clin Exp Allergy 2015: 45: 1430–8.
16. Smithers MG, Smithers G, Gregory JR, et al. The national diet and nutrition survey: young people aged 4–18 years. Nutr Bull. 2000: 25: 105–11.
17. Sampson HA, Gerth Van Wijk R, Bindslev-Jensen C, et al. Standardizing double-blind, placebo-controlled oral food challenges: American Academy of Allergy, Asthma & Immunology-European Academy of Allergy and Clinical Immunology PRACTALL consensus report. J Allergy Clin Immunol 2012: 130: 1260–74.
18. Mustafayev R, Civelek E, Orhan F, Yüksel H, Boz AB, Şekerel BE. Similar prevalence, different spectrum: IgE-mediated food allergy among Turkish adolescents. Allergol Immunopathol 2013: 41: 387–96.
19. Asarnoj A, Ostblom E, Ahlstedt S, et al. Reported symptoms to peanut between 4 and 8 years among children sensitized to peanut and birch pollen - results from the BAMSE birth cohort. Allergy Eur J Allergy Clin Immunol 2010: 65: 213–9.
20. Gupta R, Sprinston E, Warrier M, et al. The prevalence, severity and distribution of childhood food allergy in the United States. Pediatrics 2011: 128: e9–17.
21. Peters RL, Dharmage SC, Guerrin LC, et al. The natural history and clinical predictors of
egg allergy in the first 2 years of life: a prospective, population-based cohort study. J Allergy Clin Immunol 2014: 133: 485–91. e6.

22. Lack G, Fox D, Northstone K, Golding J. Factors associated with the development of peanut allergy in childhood. N Engl J Med 2003: 348: 977–85.

23. Du Toit G, Roberts G, Sayre PH, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med 2015: 372: 803–13.

24. Nicolaou N, Poorafshar M, Murray C, et al. Allergy or tolerance in children sensitized to peanut: prevalence and differentiation using component-resolved diagnostics. J Allergy Clin Immunol 2010: 125: 191–7.

25. Dean T, Venter C, Pereira B, Grundy J, Clayton CB, Higgins B. Government advice on peanut avoidance during pregnancy - Is it followed correctly and what is the impact on sensitization? J Hum Nutr Diet 2007: 20: 95–9.

26. Perkin MR, Logan K, Tseng A, et al. Randomized trial of introduction of allergenic foods in breast-fed infants. N Engl J Med 2016: 374: 1733–43.

27. Amin MR, Khoury JC, Assa’Ad AH. Food-specific serum immunoglobulin e measurements in children presenting with food allergy. Ann Allergy Asthma Immunol 2014: 112: 121–5.

28. Restani P, Ballabio C, Corsini E, et al. Identification of the basic subunit of Ara h 3 as the major allergen in a group of children allergic to peanuts. Ann Allergy Asthma Immunol 2005: 94: 262–6.

29. Venter C, Arshad SH. Epidemiology of food allergy. Pediatr Clin North Am 2011: 58: 327–49.