Incommensurate magnetic order in Ag$_2$NiO$_2$

J. Sugiyama1, Y. Ikedo1, K. Mukai1, J. H. Brewer2, E. J. Ansaldo3, G. D. Morris3, K. H. Chow4, H. Yoshida5, and Z. Hiroi5

1Toyota Central Research and Development Labs., Inc., Nagakute, Aichi 480-1192, Japan
2TRIUMF, CIAR and Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 Canada
3TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 Canada
4Department of Physics, University of Alberta, Edmonton, AB, T6G 2J1 Canada and
5ISSP, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8581, Japan
(Dated: December 23, 2021)

The nature of the magnetic transition of the half-filled triangular antiferromagnet Ag$_2$NiO$_2$ with T_N=56K was studied with positive muon-spin-rotation and relaxation ($\mu^+\text{SR}$) spectroscopy. Zero field $\mu^+\text{SR}$ measurements indicate the existence of a static internal magnetic field at temperatures below T_N. Two components with slightly different precession frequencies and wide internal-field distributions suggest the formation of an incommensurate antiferromagnetic order below 56 K. This implies that the antiferromagnetic interaction is predominant in the NiO$_2$ plane in contrast to the case of the related compound NaNiO$_2$. An additional transition was found at \sim22 K by both $\mu^+\text{SR}$ and susceptibility measurements. It was also clarified that the transition at \sim260 K observed in the susceptibility of Ag$_2$NiO$_2$ is induced by a purely structural transition.

PACS numbers: 76.75.+i, 75.25.+z, 75.30.Kz, 75.50.Ee

I. INTRODUCTION

Two-dimensional triangular lattice (2DTL) antiferromagnets with a half-filled (e_g) state exhibit a variety of magnetically ordered states due to competition between the antiferromagnetic (AF) interaction and geometrical frustration. The discovery of superconductivity in Na$_{0.35}$CoO$_2$1.33H$_2$O leads to an additional interest in the possible relationship between magnetic and superconducting order parameters in the 2DTL near half-filling. The layered nickel dioxides, a series of materials with chemical formula A^+Ni$^{3+}$O$_2$, such as rhombohedral LiNiO$_2$, NaNiO$_2$, and AgNiO$_2$, in which Ni ions form the 2DTL by the connection of edge-sharing NiO$_6$ octahedra, has been considered to be good candidates for an ideal half-filled 2DTL. In these materials at low temperature, there is a strong interaction between the Ni$^{3+}$ ions and the crystalline electric field of the Ni$_6$ octahedron. This causes the Ni$^{3+}$ ions to be in the low spin state with a $t^6_2e^1_9$ ($S=1/2$) configuration.

Among the three layered nickel dioxides, NaNiO$_2$ is perhaps the best investigated. It exhibits two transitions at T_{JT} \sim480 K and T_N=23 K. The former is a cooperative Jahn-Teller (JT) transition from a high-T rhombohedral phase to a low-T monoclinic phase, while the latter is a transition into an A-type AF phase – i.e. ferromagnetic (FM) order in the NiO$_2$ plane but AF between the two adjacent NiO$_2$ planes, as has been reconfirmed very recently by both neutron diffraction and positive muon spin rotation/relaxation ($\mu^+\text{SR}$) experiments.

The magnetic order is associated with the JT induced trigonal distortion which stabilizes a half occupied d_{z^2} orbital.

Although LiNiO$_2$ and NaNiO$_2$ are structurally very similar, LiNiO$_2$ shows dramatically different magnetic properties. LiNiO$_2$ exhibits neither a cooperative JT transition nor long-range magnetic order down to the lowest T investigated. In fact, both heat capacity and NMR measurements suggest a spin-liquid state with short-range FM correlations. However, Chatterji et al. however, found a rapid increase in the muon spin relaxation rates in LiNiO$_2$ below \sim10 K using the longitudinal field-$\mu^+\text{SR}$ technique, suggesting a spin-glass-like behavior below 10 K. The discrepancy between the two results is considered to be a sample-dependent phenomenon that arises from the difficulties in preparing stoichiometric LiNiO$_2$. The third compound, AgNiO$_2$, also lacks a cooperative JT transition. A magnetic transition T_N was clearly observed by both susceptibility (χ) and $\mu^+\text{SR}$ measurements but long-range magnetic order was not detected by a neutron diffraction experiment even at 1.4 K.

While the nature of the magnetic ground states of LiNiO$_2$ and AgNiO$_2$ is still not clear, the FM interaction on the 2DTL NiO$_2$ plane has been thought to be common for all the layered Ni dioxides with a half-filled state because of the clear magnetic order observed in NaNiO$_2$. In this paper, we present measurements that demonstrate this supposition is incorrect. This is accomplished by investigating the magnetism in Ag$_2$NiO$_2$, a material that can be represented by the chemical formula (Ag$_2$)$^{3+}$Ni$^{3+}$O$_2$ and hence is expected to have a NiO$_2$ plane that has properties identical to the above three layered nickel dioxides. However, in Ag$_2$NiO$_2$, static AF order, likely the formation of an incommensurate AF struc-
ture in the NiO$_2$ plane, is observed instead.

Disilver nickel oxide Ag$_2$NiO$_2$ is a rhombohedral system with space group $R3m$ ($a_H = 0.29193$ nm and $c_H = 2.4031$ nm for the hexagonal unit-cell) that was found to exhibit two transitions at $T_3=260$ K and $T_N=56$ K by resistivity and χ measurements, while the symmetry remains rhombohedral down to 5 K. Interestingly, Ag$_2$NiO$_2$ shows metallic conductivity down to 2 K probably due to a quarter-filled Ag 5s band, as in the case of Ag$_2$F. Very recently, Yoshida et al. proposed the significance of the AF interaction in the vicinity of $T_N=56$ K; however, it is difficult to understand the origin of the line-broadening below 20 K using a classical AF model without invoking the presence of an additional magnetic transition. Furthermore, even the spectrum at 30 K, which is the sharpest FFT measured, consists of a main peak at ~ 14 MHz and a shoulder around 16 MHz, suggesting a wide distribution of H_{int} in Ag$_2$NiO$_2$.

We therefore use a combination of three signals to fit the ZF-μSR time spectrum:

$$A_0 P_{ZF}(t) = A_1 \cos(\omega_{\mu,1} t + \phi) \exp(-\lambda_1 t) + A_2 J_0(\omega_{\mu,2} t) \exp(-\lambda_2 t) + A_{\text{slow}} \exp(-\lambda_{\text{slow}} t),$$

where A_0 is the empirical maximum muon decay asymmetry, A_1, A_2 and A_{slow} are the asymmetries associated with the three signals, $J_0(\omega_{\mu,2} t)$ is a zeroth-order Bessel function of the first kind that describes the muon polarization evolution in an incommensurate spin density wave (IC-SDW) field distribution, and $\omega_{\mu,1} < \omega_{\mu,2}$.

Although $J_0(\omega t)$ is widely used for fitting the ZF-μSR spectrum in an IC-SDW state, it should be noted that $J_0(\omega t)$ only provides an approximation of the generic IC magnetic field distribution. This is because the lattice sum calculation of the dipole field at the muon site (H_{IC}) due to an IC magnetic structure lies in a plane and traces out an ellipse. The half length of the major axis of the ellipse corresponds to H_{max}, whereas half of the minor axis corresponds to H_{min}. As a result, the IC magnetic

II. EXPERIMENTAL

A powder sample of Ag$_2$NiO$_2$ was prepared at the ISSP of the University of Tokyo by a solid-state reaction technique using reagent grade Ag$_2$O and NiO powders as starting materials. A mixture of Ag$_2$O and NiO was heated at 550°C for 24 h in oxygen under a pressure of 70 MPa. A more detailed description of the preparation and characterization of the powder is presented in Ref. 1.

Susceptibility (χ) was measured using a superconducting quantum interference device (SQUID) magnetometer (mpms, Quantum Design) in the temperature range between 400 and 5 K under magnetic field $H \leq 55$ kOe. For the μSR experiments, the powder was pressed into a disk of about 20 mm diameter and thickness 1 mm, and subsequently placed in a muon-veto sample holder. The μSR spectra were measured on the M20 surface muon beam line at TRIUMF. The experimental setup and techniques were described elsewhere.13

III. RESULTS AND DISCUSSION

A. Below T_N

Figure 1 shows zero-field (ZF-) μSR time spectra in the T range between 1.9 K and 60 K for a powder sample of Ag$_2$NiO$_2$. A clear oscillation due to quasi-static internal fields H_{int} is observed below 54 K, unambiguously establishing the existence of long-range magnetic order in the sample. Interestingly, as T is decreased from 60 K, the relaxation rate first decreases down to ~ 20 K and then increases as T is lowered further. By contrast, the average oscillation frequency increases monotonically down to 1.9 K. This implies that the distribution of H_{int} at $T \geq 54$ K and ≤ 20 K is larger than that at 20 K $< T < 54$ K.

This is further established by the T dependence of the Fourier Transform of the ZF-μSR time spectrum shown in Fig. 2. Note that there is clearly line broadening below 20 K as well as above 54 K. The line-broadening above 54 K is reasonably explained by critical phenomena in

![Figure 1: Temperature dependence of the ZF-μSR time spectra of a powder sample of Ag$_2$NiO$_2$.](image-url)

The spectrum is offset by 0.2 for clarity of the display. The solid lines represent the fitting result using Eq. (1).
The distribution diverges as H approaches either H_{min} or H_{max} (see Fig. 3). $J_0(\omega t)$ describes the field distribution very well except in the vicinity of H_{min}, and the value of ω should be interpreted as an accurate measure of H_{max}. However, $J_0(\omega t)$ provides no information on H_{min}. Hence, the first term $A_1 \cos(\omega_{\mu,1}t + \phi_1) \exp(-\lambda_1 t)$ is added in Eq. 1 to account for the intensity around H_{min} and to determine the value of $H_{\text{min}} (= \omega_{\mu,1}/\gamma_\mu)$ [10] (γ_μ is the muon gyromagnetic ratio and $\gamma_\mu/2\pi = 13.55342$ kHz/Oe). In other words, only when $H_{\text{min}} = 0$, Eq. [3] is well approximated by $J_0(\omega t)$. Here it should be emphasized that $\mu^+\text{SR}$ spectra are often fitted in a time domain, i.e. not by Eq. [3] but by Eq. [1], since information on all the parameters such as A, ω, λ, and ϕ are necessary to discuss the magnetic nature of the sample.

We note that the data can also be well-described using two cosine oscillation signals, $A_1 \cos(\omega_{\mu,1}t + \phi_1) \exp(-\lambda_1 t) + A_2 \cos(\omega_{\mu,2}t + \phi_2) \exp(-\lambda_2 t)$ with $\phi_2 = -54 \pm 10^\circ$ below T_N. The delay is physically meaningless, implying that the field distribution fitted by a cosine oscillation, i.e. a commensurate H_{int} does not exist in Ag$_2$NiO$_2$. [12] Furthermore, as T decreases from 54 K, A_1 (A_2) decreases (increases) linearly with T from 0.15 (0) at 54 K to 0 (0.15) at 1.9 K. In order to explain the $A_1(T)$ and $A_2(T)$ curves, one would need to invoke the existence of two muon sites, and a situation whereby the population of μ^+ at each site is changing in proportion to T. Such behavior is very unlikely to occur at low T. Hence, we believe that our data strongly suggests the appearance of an IC-AF order in Ag$_2$NiO$_2$ below T_N, as predicted by the calculation using a Mott-Hubbard model (discussed later). Such a conclusion is also consistent with the fact that the paramagnetic Curie temperature is -33 K estimated from the $\chi(T)$ curve below 260 K.

Figures 4(a) - 4(d) show the T dependence of the muon precession frequencies ($\nu_t = \omega_{\mu,i}t/2\pi$), the volume fraction of the paramagnetic phases (V_{para}), $\Delta \nu = \nu_2 - \nu_1$, λ_1, λ_2, the asymmetries $A_1 + A_2$, A_1, A_2, and χ for the powder sample of Ag$_2$NiO$_2$. Here, V_{para} is estimated from the weak transverse field (wTF-) $\mu^+\text{SR}$ experiment described later. In agreement with the FFTs shown in Fig. 3 as T is decreased from 60 K, ν_2 appears at 54 K. It then increases monotonically with decreasing T down to around 20 K, and then increases more rapidly upon further cooling. The $\nu_1(T)$ curve exhibits a similar behavior to that observed for $\nu_2(T)$. It is noteworthy that as T is decreased from 80 K, the $V_{\text{para}}(T)$ curve shows a sudden drop down to ~ 0 at T_N, indicating that the whole sample enters into an IC-AF state.

As T decreases from T_N, $\Delta \nu$, which measures the distribution of H_{int} in the IC-AF phase, rapidly decreases down to ~ 0.8 MHz at 40 K, then seems to level off the lowest value down to ~ 20 K and then increases with increasing slope ($|d\Delta \nu/dT|$) until it reaches 4 MHz at 1.9 K. The overall T dependence of $\Delta \nu$ is similar to that of λ_t. This behavior is expected since a large $\Delta \nu$ naturally implies a more inhomogeneous field distribution—i.e., an increased flattening of the ellipse that enhances λ_t. The asymmetry of the IC magnetic phase, $A_1 + A_2$, also increases monotonically with decreasing T, although
the muon precession frequencies \((\nu_i = \omega_{\mu,i}/2\pi) \) and normalized transverse field asymmetry that roughly corresponds to the volume fraction of the paramagnetic phases in the sample \(V_{\text{para}} \). (b) \(\Delta \nu = \nu_2 - \nu_1 \), \(\lambda_1 \) and \(\lambda_2 \), (c) the asymmetries \(A_1 + A_2 \), \(A_1 \), \(A_2 \) and \(A_{\text{slow}} \) and (d) \(\chi \) for the powder sample of Ag\(_2\)NiO\(_2\). \(\chi \) was measured in zero-field-cooling \(ZFC \) and field-cooling \(FC \) mode with \(H = 100 \) Oe.

![FIG. 4](image)

FIG. 4: (Color online) Temperature dependences of (a) the muon precession frequencies \((\nu_i = \omega_{\mu,i}/2\pi) \) and normalized transverse field asymmetry that roughly corresponds to the volume fraction of the paramagnetic phases in the sample \(V_{\text{para}} \), (b) \(\Delta \nu = \nu_2 - \nu_1 \), \(\lambda_1 \) and \(\lambda_2 \), (c) the asymmetries \(A_1 + A_2 \), \(A_1 \), \(A_2 \) and \(A_{\text{slow}} \) and (d) \(\chi \) for the powder sample of Ag\(_2\)NiO\(_2\). \(\chi \) was measured in zero-field-cooling \(ZFC \) and field-cooling \(FC \) mode with \(H = 100 \) Oe.

A small jump likely exists around 20 K. The existence of a significant \(A_1 \) underscores the inappropriateness of fitting the ZF-\(\mu^+ \)SR data with only a \(J_0(\omega_{\mu,2} t) \) term. In fact, note that \(A_1 < A_2 \) above 20 K, suggesting that the IC-AF order develops/completes below 20 K. This is consistent with the rapid increases in \(\Delta \nu \) and \(\lambda_i \) below 20 K, as described above.

The behavior of the muon parameters is quite consistent with the \(\chi(T) \) curve, which exhibits a sudden increase in the slope \((d\chi_{\text{FC}}/dT) \) below \(\sim 22 \) K(=\(T_m \)) with decreasing \(T \). Note the \(\chi(T) \) curve measured under ZFC conditions starts to deviate from that measured in the FC configuration below \(T_N \), suggesting the development of a ferro- or ferrimagnetic component probably due to a canted spin structure. The ferro- or ferrimagnetic behavior is however observed only at low \(H \), although the cusp at \(T_N \) is clearly seen with \(H = 100 - 10 \) kOe (see Figs. 4d and 4d)). Below \(T_m \), \(\chi_{\text{FC}} \) increases with decreasing \(T \), while the slope is suppressed by increasing \(H \) (see Fig. 5).

Keeping in mind that \(\mu^+ \)SR is insensitive to magnetic impurities, we conclude that Ag\(_2\)NiO\(_2\) undergoes a transition from a paramagnetic to an IC-AF state at \(T_N = 56 \) K and then to a slightly different ordered state at \(T_m \sim 22 \) K.

It is worth contrasting the current \(\mu^+ \)SR results on Ag\(_2\)NiO\(_2\) with those in related compounds Na\(_2\)NiO\(_2\) and Ag\(_2\)O\(_2\). The ZF-\(\mu^+ \)SR spectrum on a powder sample of Na\(_2\)NiO\(_2\) consists of two signals below \(T_N \)(\(\sim 20 \) K): an exponentially relaxing cosine oscillating signal (same as the first term in Eq. 1) as the predominant component and a minor signal described by an exponential relaxation. This indicates that the whole Na\(_2\)NiO\(_2\) sample enters into a commensurate AF state below \(T_N \), being consistent with the magnetic structure determined by neutron diffraction experiments, i.e., an A-type AF order. Interestingly, the value of \(\nu_T \) at \(K = 64.2 \) MHz, which corresponds to \(H_{\text{int}} \sim 0.5 \) T, is 2.5 times higher than that for Ag\(_2\)NiO\(_2\). The muon site in Na\(_2\)NiO\(_2\) is assigned to the vicinity of the O ions and is thought to be also reasonable for the other layered nickel dioxides.

The differences between the \(\mu^+ \)SR results on Na\(_2\)NiO\(_2\) and Ag\(_2\)NiO\(_2\) hence suggest that the magnetic structure of Ag\(_2\)NiO\(_2\) is most unlikely to be an A-type AF. Furthermore, there are no indications for additional transitions of Na\(_2\)NiO\(_2\) below \(T_N \) by \(\chi \), \(\mu^+ \)SR and neutron diffraction measurements.

In Ag\(_2\)NiO\(_2\), the primary ZF-\(\mu^+ \)SR signal is one that exponentially relaxes down to the lowest \(T \) (\(\sim 3 \) K). Below \(T_N \)(=\(28 \) K), three minor oscillating components appear. These have small amplitudes and correspond to internal fields from 0.2 to 0.33 T (27 - 45 MHz). The comparison between Ag\(_2\)NiO\(_2\) and Ag\(_2\)O\(_2\) indicates that the interlayer separation \(d_{\text{NiO}_2} \) enhances the static magnetic order in the NiO\(_2\) plane. It is highly unlikely that the AF

![FIG. 5](image)

FIG. 5: (Color online) Temperature dependence of \(\chi \) measured in both ZFC and FC mode well below \(T_N = 56 \) K with \(H = 10 \) Oe, 20 Oe, 100 Oe and 1 kOe for Ag\(_2\)NiO\(_2\).
interaction through the double Ag\(_2\) layer is stronger than that through the single Ag layer, since \(d_{\text{NiO}_2}=0.801\) nm for Ag\(_2\)NiO\(_2\)\(^{10}\) and 0.612 nm for AgNiO\(_2\)\(^{7}\).

Our results therefore suggest that the AF order exists in the NiO\(_2\) plane, in contrast to the situation in NaNiO\(_2\). Assuming the AF interaction is in the NiO\(_2\) plane, an IC-spiral SDW phase is theoretically predicted to appear in a half-filled 2D TLL\(^{15}\) (calculated using the Hubbard model within a mean field approximation with \(U/t\geq 3.97\), where \(U\) is the Hubbard on-site repulsion and \(t\) is the nearest-neighbor hopping amplitude). In order to further establish the magnetism in Ag\(_2\)NiO\(_2\), it would be interesting to carry out neutron diffraction experiments to determine the magnetic structure below \(T_N\) and below \(T_m\).

We wish here to mention that if the valence state of the Ni ion in the NiO\(_2\) plane can be varied for Ag\(_2\)NiO\(_2\), the resultant phase diagram should serve as an interesting comparison with that of \(A_x\)CoO\(_2\) (\(A=\)alkali elements) with \(x<0.5\). Unlike Li\(_x\)NiO\(_2\), (Ag\(_2\))-deficient samples are currently unavailable, probably because of the metal-like Ag-Ag bond in the disilver layer.\(^{10}\) A partial substitution for Ag\(_2\) by other cations has thus far also been unsuccessful for reasons unknown.

B. Near \(T_S\)

In order to elucidate the magnetic behavior above \(T_N\), in particular near \(T_S=260\) K, we carried out weak transverse field (wTF-) \(\mu^+\)SR measurements up to 300 K. The wTF-\(\mu^+\)SR spectrum was fitted by a combination of a slowly and a fast relaxing precessing signal; the former is due to the external field and the latter due to the internal AF field (same as the first term in Eq. \(\text{(1)}\)):

\[
A_0 P_{TF}(t) = A_{TF} \cos(\omega_{\mu,TF} t + \phi_{TF}) \exp(-\lambda_{TF} t) + A_{AF} \cos(\omega_{\mu,AF} t + \phi_{AF}) \exp(-\lambda_{AF} t),
\]

where \(\omega_{\mu,TF}\) and \(\omega_{\mu,AF}\) are the muon Larmor frequencies corresponding to the applied weak transverse field and the internal AF field, \(\phi_{TF}\) and \(\phi_{AF}\) are the initial phases of the two precessing signals and \(A_n\) and \(\lambda_n\) (\(n=\) TF and AF) are the asymmetries and exponential relaxation rates of the two signals. Note that we have ignored the \(J_0(\omega t)\) term in Eq. \(\text{(3)}\) since we are primarily interested in the magnetic behavior above \(T_N\).

The results are shown in Fig. \(6\) together with \(\chi^{-1}\). Besides the transition at 56 K, there are no anomalies up to 300 K in the normalized asymmetries, the relaxation rate (\(\lambda_{TF}\)) or the shift of the muon precession frequency (\(\Delta \omega_{\mu,TF}\)). Transverse field (TF-) \(\mu^+\)SR measurements at \(H=2600\) Oe, which should be about 50 times more sensitive to frequency shifts than the wTF measurements, show no obvious changes in \(\Delta \omega_{\mu,TF}\) at \(T_S\) either. On the other hand, the \(\chi^{-1}(T)\) curve exhibits a clear change in slope at \(T_S\). Above 60 K, the normalized wTF-asymmetry (\(A_{TF}\)) levels off to its maximum value — i.e. the sample volume is almost 100% paramagnetic. This therefore suggests that \(T_S\) is induced by a purely structural transition and there is no dramatic change in the spin state of Ni ions; that is, \(T_S\) is unlikely to be a cooperative JT transition. This is consistent with the fact that the crystal structure remains rhombohedral down to 5 K.\(^{11}\)

IV. Summary

Positive muon spin rotation/relaxation (\(\mu^+\)SR) spectroscopy has been used to investigate the magnetic prop-
erties of a powder sample of Ag$_2$NiO$_2$ in the temperature range between 1.9 and 300 K. Zero field μSR measurements suggest the existence of an incommensurate anti-ferromagnetic (AF) order below $T_N=56$ K. An additional transition was also found at $T_m=22$ K by both $\mu^+\mathrm{SR}$ and susceptibility measurements.

The current results, when compared to the results in AgNiO$_2$, indicate that magnetism in the half-filled 2DTL of the NiO$_2$ plane is strongly affected by the interlayer distance. In other words, the ground state of the half-filled NiO$_2$ plane is not a ferromagnetic (FM) ordered state or an FM spin-liquid or spin-glass, but is instead an AF frustrated system. The FM behavior in NaNiO$_2$ is therefore thought to be induced by a Jahn-Teller induced trigonal distortion.

Acknowledgments

This work was performed at TRIUMF. We thank S.R. Kreitzman, B. Hitti, D.J. Arseneau of TRIUMF for help with the μ^+SR experiments. JHB is supported at UBC by CIAR, NSERC of Canada, and at TRIUMF by NRC of Canada. KHC is supported by NSERC of Canada.

[1] K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).
[2] Y. Kitaoka, T. Kobayashi, A. Koda, H. Wakabayashi, Y. Niino, H. Yamakage, S. Taguchi, K. Amaya, K. Yamaura, M. Takano, A. Hirano, and R. Kanno, J. Phys. Soc. Jpn. 67, 3703 (1998).
[3] T. Chatterji, W. Henggeler, and C Delmas, J. Phys.: Condens. Matter 17, 1341 (2005).
[4] C. Darie, P. Bordet, S. de Brion, M. Holzapfel, O. Isnard, A. Lecchi, J. E. Lorenzo, and E. Suard, Eur. Phys. J. B 43, 159 (2005).
[5] M. J. Lewis, B. D. Gaulin, L. Filion, C. Kallin, A. J. Berlinsky, H. A. Dabkowska, Y. Qiu, and J. R. D. Copley, Phys. Rev. B 72, 014408 (2005).
[6] P. J. Baker, T. Lancaster, S. J. Blundell, M. L. Brooks, W. Hayes, D. Prabhakaran, and F. L. Pratt, Phys. Rev. B 72, 104414 (2005).
[7] Y. J. Shin, J. P. Doumerc, P. Dordoe, C. Delmas, M. Pouchard, and P. Hagenmuller, J. Solid State Chem. 107, 303 (1993).
[8] H. Kikuchi, H. Nagasawa, M. Mekata, Y. Fudamoto, K. M. Kojima, G. M. Luke, Y. J. Uemura, H. Mamiya, and T. Naka, Hyperfine Interactions 120/121, 623 (1999).
[9] H. Meskine, and S. Satpathy, Phys. Rev. B 72, 224423 (2005).
[10] M. Schreyer, and M. Jansen, Angew. Chem. 41, 643 (2002).
[11] H. Yoshida, Y. Muraoka, T. Sörgel, M. Jansen, and Z. Hiroi, Phys. Rev. B 73, 020408(R) (2006).
[12] K. Andres, N. A. Kuebler, and M. B. Robin, J. Phys. Chem. Solids 27, 1747 (1966).
[13] G. M. Kalvius, D. R. Noakes, and O. Hartmann, Hand- book on the Physics and Chemistry of Rare Earths edited by K. A. Gschneidner Jr., L. Eyring, and G. H. Lander, (North-Holland, Amsterdam, 2001) vol. 32, chap. 206.
[14] G.M. Kalvius, D.R. Noakes, A. Kratzer, K.H. Münch, R. Wäppling, H. Tanaka, T. Takabatake, and R.F. Kiefl, Physica B 206-207, 205 (1995).
[15] D. Andreica, PhD Thesis, IPP/ETH-Zurich 2001.
[16] H. R. Krishnamurthy, C. Jayaprakash, S. Sarker, and W. Wenzel, Phys. Rev. Lett. 64, 950 (1990).