Temporal heterogeneity in photosystem II photochemistry in *Artemisia ordosica* under a fluctuating desert environment

Chuan Jin¹, Tianshan Zha¹,²*, Charles P.-A. Bourque¹,³, Xin Jia¹,², Yun Tian¹,², Peng Liu¹, Xinhao Li¹, Xinyue Liu¹, Xiaonian Guo⁴, Mingze Xu¹, Xiaoyu Kang³, Zifan Guo¹ and Ning Wang¹

¹Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China, ²Key Laboratory for Soil and Water Conservation, State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China, ³Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada, ⁴School of Land Science and Space Planning, Hebei GEO University, Shijiazhuang, China

Acclimation strategies in xerophytic plants to stressed environmental conditions vary with temporal scales. Our understanding of environmentally-induced variation in photosystem II (PSII) processes as a function of temporal scales is limited, as most studies have thus far been based on short-term, laboratory-controlled experiments. In a study of PSII processes, we acquired near-continuous, field-based measurements of PSII-energy partitioning in a dominant desert-shrub species, namely *Artemisia ordosica*, over a six-year period from 2012–2017. Continuous-wavelet transformation (CWT) and wavelet coherence analyses (WTC) were employed to examine the role of environmental variables in controlling the variation in the three main PSII-energy allocation pathways, i.e., photochemical efficiency and regulated and non-regulated thermal dissipation, i.e., F_{PSII}, F_{NPQ}, and F_{NO}, respectively, across a time-frequency domain from hours to years. Convergent cross mapping (CCM) was subsequently used to isolate cause-and-effect interactions in PSII-energy partitioning response. The CWT method revealed that the three PSII-energy allocation pathways all had distinct daily periodicities, oscillating abruptly at intermediate timescales from days to weeks. On a diurnal scale, WTC revealed that all three pathways were influenced by photosynthetically active radiation (PAR), air temperature (T_a), and vapor pressure deficit (VPD). By comparing associated time lags for the three forms of energy partitioning at diurnal scales, revealed that the sensitivity of response was more acutely influenced by PAR, declining thereafter with the other environmental variables, such that the order of influence was greatest for T_a, followed by VPD, and then soil water content (SWC). PSII-energy partitioning on a seasonal scale, in contrast, displayed greater variability among the different environmental variables, e.g., F_{PSII} and F_{NO} being more predisposed to changes in T_a, and F_{NPQ} to changes in VPD. CCM confirmed the causal relationship between pairings of PSII-energy allocation pathways,
According to shrub phenology, *A. ordosica* is shown to have an innate ability to (i) repair damaged PSII-photochemical apparatus (maximum quantum yield of PSII photochemistry, with $F_{v}/F_{m} > 0.78$), and (ii) acclimatize to excessive PAR, dry-air conditions, and prolonged drought. *A. ordosica* is relatively sensitive to extreme temperature and exhibits photoinhibition.

KEYWORDS

arid regions, chlorophyll fluorescence, desert plant, diurnal variation, seasonal fluctuations, wavelet analysis

Introduction

Drylands, which make up almost half the earth’s continental area, have been expanding at an alarming rate as regional-to-global climate continues to deteriorate and human activity increases (Huang et al., 2017; Li et al., 2021). Consequently, plants in drylands (arid and semi-arid lands) are frequently exposed to environmental stressors, triggered by excessive solar radiation, extreme temperature, drought, and other climatic anomalies (Jia et al., 2014; Tominaga et al., 2014). Consequently, understanding how dryland plants can cope with their harsh surroundings is of great importance to land managers and ecologists worldwide.

As a basis for maintaining energy and material flows in ecosystems, plant photosynthesis is particularly susceptible to environmental fluctuations, especially when representing extreme departures from favorable conditions (Schurr et al., 2006; Rodríguez-Calcerrada et al., 2008; Kalaji et al., 2012). Photosystem II (PSII) energy partitioning is considered the most sensitive element of photosynthesis (Quaas et al., 2015; Ni et al., 2019; Vilfan et al., 2019). Light energy collected by the light-trapping pigment in PSII is dissipated along three key energy-allocation pathways, i.e., (i) transfer to the photochemical reaction centers of photosynthesis, rated according to photochemical efficiency (F_{PSII}), (ii) transfer as heat for thermal dissipation, and (iii) re-emission in the form of chlorophyll fluorescence (ChlF). Allocation along the three pathways is competitive. Heat avoidance in plants can occur by either regulatory or non-regulatory thermal dissipation, i.e., Φ_{NPQ} and Φ_{NO}, respectively. Variables Φ_{NPQ} and Φ_{NO} represent the ability of photoprotection regulation and the extent of photoinhibition or photodamage in plants (Genty et al., 1989; Sperdouli and Moustakas, 2012). PSII-energy partitioning pathways, by way of F_{PSII}, Φ_{NPQ}, and Φ_{NO}, are themselves affected by abiotic and biotic factors (Figure 1). These factors modulate the spectral characteristics of PSII-energy partitioning over multiple timescales, i.e., from seconds to minutes, to seasons (Stoy et al., 2009; Han et al., 2018; Jia et al., 2018). At

FIGURE 1

A conceptual description of biophysical factors that drive PSII-energy partitioning over multiple timescales. Drivers of PSII-energy partitioning included in this diagram are by no means comprehensive.
sub-hour, minute timescales, for example, the intensification of
photosynthetically active radiation (PAR) affects the xanthophyll
cycle, causing excess light energy to be dissipated (Genty et al.,
1989; Ruban et al., 2012; Ware et al., 2015). At hourly scales, in
response to the increase in water vapor pressure (VPD),
photochemical efficiency (Φ_{PSII}) is lowered by stomatal closure
(Nar et al., 2009; Zhou et al., 2013). At daily timescales, PSII-
energy partitioning is largely driven by diel cycles of PAR, air
temperature (T_a), and VPD (Jia et al., 2014; Ouyang et al., 2014).
At scales of several days to months, weather events accompanied
by precipitation (PPT), high radiation levels, heat waves, cold
sprints influence photochemistry in PSII (Zha et al., 2017; Wu
et al., 2018). At seasonal and interannual scales, PSII-energy
partitioning may be affected by plant phenological processes and
annual environmental biophysical cycles, particularly in soil
water content (SWC; Han et al., 2018; Ren et al., 2018).
Despite this past understanding, most studies on PSII-energy
partitioning in plants have been based on short-term,
laboratory-controlled experiments (Georgieva et al., 2005).
However, under natural outdoor-conditions, PSII-energy
partitioning response to fluctuations in local environmental
conditions may be quite different over the short-to-long term
(Sperdouli and Moustakas, 2012).

The pulse-amplitude modulation (PAM) technique facilitates the
collection of near-continuous, in situ measurements of ChlF.
Such measurements provide detailed information concerning
the physiological state and performance of PSII in a rapid, non-destructive way (Ogawa et al., 2017; Stefanov et al., 2018). The method provides a direct assessment of the status of the three PSII-energy allocation pathways (Janka et al., 2015; Kalaji et al., 2017; Meacham et al., 2017). In general, interaction between fluctuating environmental and response variables is difficult to assess because of the presence of response delays (time lags) that may naturally differ across timescales. It is usually challenging to detect detailed information regarding time lags in covariances between PSII-energy partitioning and environmental variables by visual inspection of associated timeseries alone (Baldocchi et al., 2001; Zha et al., 2017). Although conventional methods of analysis, such as correlation analysis, can be used to quantify the contribution of environmental factors in controlling PSII-energy partitioning (Maseyk et al., 2019; Samson et al., 2019; Hikosaka, 2021; Sperdouli et al., 2021b), it is generally more
difficult to untangle the multi-level interactions that naturally
arise in complex systems. Spectral analysis, by means of wavelet
analysis, for example, may yield valuable insights as to the
temporal dynamics of PSII-energy partitioning and their
biophysical forcing (Baldocchi et al., 2001; Qin et al., 2008;
Ouyang et al., 2014). Compared to other spectral methods,
wavelet analysis can exploit translation, expansion, and other
functional operations in carrying out multi-scale analysis of
several timeseries (Grinsted et al., 2004; Cazeles et al., 2008).

Convergent cross mapping (CCM) is a nonparametric, statistical
technique that helps to isolate cause-and-effect relationships in
timeseries data (Sugihara et al., 2012; Chang et al., 2017). In
contrast to simple linear correlation, CCM provides an
improved explanation of nonlinear timeseries data, including
detection of feedback, direction of causation, and linkages
between dynamically-related variables (Chang et al., 2017).
There are only a handful of scientific studies that apply both
wavelet analysis and CCM to in situ ChlF-measured characteristics in desert-shrub ecosystems.

Artemisia ordosica is one of the most widespread shrub
species in the Mu Us Desert of northwestern China. The species
plays an important role in mitigating zones of quicksand and
promoting community succession because of its deep rooting
systems. The shrub species is particularly tolerant/resistant to
being buried in sand for limited periods and to drought (Liu and
Zhang, 2018). In this study, we applied continuous wavelet
transform (CWT) and wavelet coherence (WTC) analyses on
six years (2012–2017) of in situ measurements of ChlF and
corresponding environmental variables (i.e., PAR, T_a, VPD, and
SWC) sourced at the same site. Convergent cross mapping was
subsequently used to infer presence/absence of causality between
pairings of the three PSII-energy partitioning pathways across
timescales. The aim of the study was to (i) isolate the key
controlling variables of PSII-energy partitioning in *A. ordosica*
across multiple timescales, and (ii) evaluate the resilience of
PSII in the shrub to harsh desert conditions. We

hypothesized that across timescales, PSII-energy partitioning in *A. ordosica* is affected differently by the prevailing site-
environmental conditions.

Materials and methods

Site characteristics

This study was carried out at the Yanchi Desert Ecosystem
Research Station (37°53′38″N, 107°25′46″E; 1,530 m above
mean sea level, amsl), Ningxia Hui Autonomous Region of
northernwestern China. The study area lies at the ecotone
between the arid and semi-arid zones of the desert, with *A. ordosica* (relative cover of 45%), *Salix psammophila* (20%), and
Hedysarum mongolicum (20%) being the more abundant shrub
species throughout the area. The prevailing climate is
continental monsoon, where rainfall is rare and episodic. The
mean annual precipitation (PPT) is 287 mm, mainly falling
during the June–September period of each year. The mean
annual potential evapotranspiration is about 2,024 mm, nearly
an order of magnitude greater than PPT. The mean annual
temperature is 8.3°C. All meteorological summaries are based on
data from the Yanchi Meteorological Station (1954–2014), about
20 km from the research station.
Long-term ChlF measurements and parameter calculation

Continuous ChlF measurements were acquired in situ during the growing seasons of 2012–2017 with a multi-channel PAM fluorometer (PAM 2000, Walz, Effeltrich, Germany). Five monitoring heads (MONI-head/485) connected to the fluorometer were installed on five different plants. A portion of healthy sun leaves were arranged in each MONI-head leaf clip. The sample branch was tied to an aluminum support inserted in the ground to ensure that the sample leaf clumps would not detach from the leaf clip or from the branch. The fluorometer used modulated blue LED light (450 nm wave peak and 18 nm bandwidth) to measure fluorescence emitted from the sample leaf clumps. The actinic light was based on natural sunlight. Positioning of the clipper heads were adjusted manually to avoid self-shading. The light was based on natural sunlight. Positioning of the clipper heads were adjusted manually to avoid self-shading.

The maximum quantum yield of PSII photochemistry (F_v/F_m), photochemical efficiency (Φ_{PSII}), and regulatory and non-regulatory thermal dissipation (Φ_{NPQ} and Φ_{NO}, respectively) were calculated as follows:

$$\frac{F_v}{F_m} = \frac{F_m - F_0}{F_m},$$

(1)

$$\Phi_{PSII} = \frac{F_m' - F_i}{F_m'},$$

(2)

$$\Phi_{NPQ} = \frac{F_i}{F_m'} - \frac{F_i}{F_m},$$

(3)

$$\Phi_{NO} = \frac{F_i}{F_m}.$$

(4)

Raw ChlF-data were processed using the batch-file feature of the WinControl-3 software. Half-hourly values of $F_m < 100$ (non-dimensional) were considered atypical and removed from the dataset.

Environmental measurements

Incident photosynthetically active radiation (PAR) and air temperature (T_a) were measured simultaneously with the fluorometer. Relative humidity (RH) was measured with a thermohygrometer (HMP155A, Vaisala, Vantaa, Finland) mounted on a 6-m tall, eddy-covariance flux tower situated approximately 100 m from the ChlF-measurement area. Vapor pressure deficit (VPD) was derived from T_a and RH as discussed in Wilhelm et al. (1977), i.e.,

$$VPD = 0.611\exp \left(\frac{17.27 T_a}{T_a + 237.3} \right) \times \left(1 - \frac{RH}{100} \right).$$

(5)

Replicates of soil water content (SWC) were measured with moisture sensors placed at 30-cm depths (ECH2O-5TE, Decagon Devices, Pullman, WA, USA). PPT was quantified using a tipping-bucket rain gauge installed 50 m from the ChlF-measurement area (TE525WS, Campbell Scientific Inc., Logan, UT, USA). All micrometeorological variables were averaged or summed every 30 minutes and stored on a datalogger.

Data analysis

We subsequently analyzed the field data by means of continuous wavelet transform (CWT), cross-wavelet transform (XWT), wavelet coherence (WTC), and CCM (addressed below). Detailed reviews of wavelet analysis can be found in Grinsted et al. (2004) and Vargas et al. (2010). CWT was used to distinguish the timescales (hourly, daily, and so on) at which variability in timeseries (i.e., independent vs. dependent variables) is expressed. The CWT of a discrete timeseries (i.e., x_n, with $n = 1, \ldots, N$) recorded at a uniform timestep, δ_t, is defined as the convolution integral of x_n with a scaled and normalized basis wavelet, $\psi_s(\eta)$. We write

$$W_n^s(\eta) = \sqrt{\frac{\delta_t}{s}} \sum_{n=1}^{N} x_n \psi_s \left(\frac{(n'-n)\delta_t}{s} \right),$$

(6)

where $\psi_s^* \eta$ denotes the complex conjugate, and s is the set of wavelet scales applied (Cazelles et al., 2008). In this study, we chose a Morlet wavelet to serve as wavelet basis,

$$\psi_s(\eta) = \pi^{-1/4} \exp^{im\eta} e^{-\pi \eta^2/2},$$

(7)

because it balances localization of frequency and time elapsed (Ouyang et al., 2014). From eqn. (6), we can define the wavelet power of x_n (i.e., S_n) as

$$S_n(s) = |W_n^s(s)|^2.$$

(8)
Similarly, to quantify the spectral relationship between two timeseries, i.e., x_n (representative of PAR, T_{av}, VPD, or SWC) and y_n (Φ_{PSII}, Φ_{NPQ}, and Φ_{NO}), we defined the cross-wavelet power spectrum (C_n), phase angle spectrum (A_n), and WTC spectrum (R_n^2), respectively, as

$$C_n(s) = |W_{xy}^R(s)| = \left| W_n^R(s)W_n^I(s) \right|, \quad (9)$$

$$A_n(s) = \tan^{-1} \left(\frac{\text{Im}(W_{xy}^R(s))}{\text{Re}(W_{xy}^R(s))} \right), \quad \text{and} \quad (10)$$

$$R_n^2(s) = \left| \frac{S(s^{-1}W_n^R(s))^2}{|S(s^{-1}W_n^R(s))|^2|S(s^{-1}W_n^I(s))|^2} \right|, \quad (11)$$

where S denotes a smoothing operation in both time and scale, which provides the minimal amount of smoothing necessary to include two independent points in both dimensions; W_{xy}^R denotes XWT, and $[\text{Re}(W_{xy}^R(s))]$ and $[\text{Im}(W_{xy}^R(s))]$ are the real and imaginary parts of $W_{xy}^R(s)$ (Grinsted et al., 2004). The global cross-wavelet power spectrum (i.e., the mean of C_n over time) quantifies the magnitude of covariance that occurs between two timeseries across the frequency spectrum. Phase angles in A_n can indicate the time-frequency domain in C_n or R_n^2. Arrows pointing right or left denote two timeseries that vary either in-phase or anti-phase. If two timeseries variables, i.e., x_n and y_n, are positively correlated, phase arrows pointing upward indicate x_n lags y_n by a 1/4 period or leading y_n by a 3/4 period, while phase arrows pointing downward indicate x_n leads y_n by a 1/4 period or lags y_n by a 3/4 period. In this study, the interpretation of phase arrows related to the relationship between Φ_{PSII} and PAR should be seen as having an opposite response (i.e., arrows pointing left means that the variables are in-phase). All timeseries were normalized to have means of zero (with zeroes in data gaps) and unit variances. The statistical significance of wavelet spectra between two timeseries at a 5% critical significance level was evaluated within the cone of influence (COI), as per Vargas et al. (2010). Because of incomplete time-locality across frequencies, the wavelet transforms resulted in edge effects or artefacts (e.g., see below). Rather than use 10,000 Monte Carlo simulations as was done by the authors, we implemented 1,000 simulations. We performed wavelet analysis in MATLAB (R2018b, The MathWorks, USA) with codes acquired from Grinsted et al. (2004) and Ng and Chan (2012).

To complement the information provided by wavelet analysis, we subsequently used CCM to determine the direction and strength of causality between pairings of the three PSII-energy partitioning. The procedure is based on open-source scripts written in R. The scripts consisted of multispatialCCM v. 1.0 (Sugihara et al., 2012; Chang et al., 2017) and pdc v. 1.0.3 (via subroutine entropyHeuristics). Input requirements to run multispatialCCM were the timeseries embedded dimensions (E) and time delay (τ) determined with pdc. For hourly data, we randomly extracted 40 individual days from each phenological period over the six-year study period, as 960 consecutive records. Calculation of the standard deviation was based on 1,000 bootstrapping iterations.

Results

Seasonal dynamics of environmental variables and ChIF parameters

Figure 2 reveals obvious seasonal patterns in PAR, T_{av}, VPD, SWC, and PPT across the 2012–2017 study period. Daily mean PAR had a maximum of about 762 μmol m$^{-2}$ s$^{-1}$ in summer (Figure 2A), whereas daily mean T_{av} ranged from about -9.9°C in winter to 27.2°C in summer. Daily mean VPD varied from near-zero to 2.1 kPa in summer (Figure 2C). Seasonally, SWC exhibited clear pulse variations and wetting-to-drying cycles with a lower and upper limit of 0.05 to 0.17 m3 m$^{-3}$, increasing abruptly in response to intermittent rainfall. Distribution of PPT was uneven, mainly concentrated in summer, ranging from 278.4–362.7 mm annually. SWC decreased in winter and sharply increased during the frost-thaw period in early spring (Figure 2D).

Seasonal changes in F_i/F_m stabilized at around 0.77, with extremes (min-max) of 0.53 and 0.85, respectively (Figure 2E). Seasonally, the mode of diurnal Φ_{PSII} differed during the six-year period, varying between 0.10–0.88 (Figure 2F). Depressions in nighttime F_i/F_m and Φ_{PSII} were observed across some years, e.g., 2012, 2013, and 2015, with mid-season drought when $\text{SWC} < 0.10 \text{ m}^3 \text{ m}^{-3}$ (Figures 2D–F).

Diurnal variability in environmental variables and PSII–energy partitioning

Monthy mean variations in PAR, T_{av} and VPD had obvious diurnal patterns, peaking at about 13:00 [Beijing Standard Time (BST) = Greenwich Mean Time (GMT) + 8 hours] for PAR and 16:00 for both T_{av} and VPD (Figures 3A–C). During the June–August period of each year, T_{av} and VPD attained their highest values relative to the other times of the year (Figures 3B, C). Diurnally, Φ_{PSII} exhibited an opposite trend to that observed in PAR, producing a U-shaped curve, with its lowest value occurring at around 13:00 (Figures 3A, D). In contrast, temporal patterns in Φ_{NPQ} tended to match those observed in PAR, with its highest value occurring when PAR reached its maximum (Figures 3A, E). Diurnal patterns in Φ_{NO} were like those in Φ_{NPQ}, having reached a plateau from 10:00–15:00 (Figures 3E, F). Daytime Φ_{PSII} and Φ_{NPQ} were generally lower during the June–August period of the year, with Φ_{NPQ} reaching its highest value during that time (Figures 3D–F).
Periodicity of environmental variables and PSII-energy partitioning

According to the global wavelet power spectra, as expected, all timeseries showed timescale characteristics of periodicity, with a peak in power spectra corresponding with timescales of one day (except SWC) and 365 days (Figure 4). Meanwhile, PAR, T_a, and F_{PSII} displayed a level of periodicity at sub-daily timescales, with associated power spectra being lowest. All timeseries oscillated strongly at intermediate timescales (i.e., days to weeks; Figure 4). Consistent with peaks in the global power spectra, CWT revealed partial characteristics across the time-frequency domain (Figure S1).

Correlation at diurnal timescales

Significant wavelet coherence (i.e., WTC) was observed between PSII-energy partitioning and environmental factors at the diurnal scale throughout the growing seasons (Figures 5–7). Diurnal variations in F_{PSII} were anti-phase with variations in PAR (i.e., arrows pointing left; Figure 5A). For example, the phase angle between F_{PSII} and PAR was -11.28 ± 3.43° (mean ±
FIGURE 3
Monthly mean diurnal cycle of (A) photosynthetically active radiation (PAR), (B) air temperature (T_a), (C) vapor pressure deficit (VPD), (D) photochemical efficiency (Φ_{PSII}), and (E) regulatory and (F) non-regulatory thermal dissipation (Φ_{NPQ} and Φ_{NO}, respectively) during the growing seasons of 2012–2017 (i.e., April–October period of each year).

FIGURE 4
Global wavelet power spectra for photosynthetically active radiation (PAR), air temperature (T_a), vapor pressure deficit (VPD), soil water content at a 0.3-m depth (SWC), photochemical efficiency (Φ_{PSII}), and regulatory and non-regulatory thermal dissipation (Φ_{NPQ} and Φ_{NO}, respectively).
FIGURE 5
Wavelet coherence between photochemical efficiency (Φ_{psii}) and (A) photosynthetically active radiation (PAR), (B) air temperature (T_a), (C) vapor pressure deficit (VPD), and (D) soil water content at a 0.3-m depth (SWC). The phase difference is shown by arrows. Arrows pointing upward indicate environmental factors leading Φ_{psii} by 90°, whereas arrows pointing downward indicate environmental factors leading Φ_{psii} by 270°. Arrows pointing left (or right) indicate environmental factors and Φ_{psii} vary in-phase (or anti-phase). Black contour lines represent the 0.05 critical significance level. The thin arced lines denote the cone of influence (COI) that delimits the region not affected by edge artefacts.

FIGURE 6
Wavelet coherence between non-regulatory thermal dissipation (Φ_{noq}) and (A) photosynthetically active radiation (PAR), (B) air temperature (T_a), (C) vapor pressure deficit (VPD), and (D) soil water content at a 0.3-m depth (SWC). The phase difference is shown by arrows. Arrows pointing upward indicate environmental factors leading Φ_{noq} by 90°, whereas arrows pointing downward indicate environmental factors leading Φ_{noq} by 270°. Arrows pointing left (or right) indicate environmental factors and Φ_{noq} vary in-phase (or anti-phase). Black contour lines represent the 0.05 critical significance level. The thin arced lines denote the cone of influence (COI) that delimits the region not affected by edge artefacts.
standard deviation), with Φ_{PSII} lagging PAR by 0.75 ± 0.23 h (Figure 5A; Table 1). For the same environmental variables, the time lags for the three PSII-energy partitioning pathways were roughly the same. The time lags in PAR were the shortest, about 40 minutes, followed by those of T_a and VPD at about 3.5 and 4 hours, respectively. The time lags in SWC were the longest at about 12 hours (Figure 8A).

Correlation at intermediate and annual timescales

High global wavelet power was found between the PSII-energy partitioning pathways and environmental factors at periods between 10–100 days (see Figure S1). Intermittent areas of statistically significant WTC were observed at timescales between 16–128 days throughout the growing seasons (Figures 5–7). For instance, bands and hotspots in WTC were found in pairings of Φ_{PSII}-to-PAR, Φ_{NO}-to-PAR, and Φ_{NO}-to-VPD at about 64 days over the 2015 growing season (Figures 5, 6). Both PAR and VPD showed strong WTC with their pairings with Φ_{NPQ} at 64–128-day intervals during the 2016 growing season (Figure 7).

In comparison with diurnal timescales, the time lags between individual PSII-energy partitioning and environmental variables showed some level of discrepancy at intermediate timescales (Table 2). For PAR, time lag in Φ_{NPQ} was significantly shorter than the time lags for both Φ_{NPQ} and Φ_{NO} (i.e., 8.23 vs. >20 days), whereas for T_a, the time lags in Φ_{NO} and Φ_{PSII} were shorter than the time lag in Φ_{NPQ}, i.e., 3.72 and 5.89 days, respectively, vs. 30.51 days. Again, in terms of VPD, the time lags in Φ_{NPQ} and Φ_{PSII} were shorter than the time lag in Φ_{NO}, giving

PSII-energy partitioning pathways	PAR	T_a	VPD	SWC
Photochemical efficiency (Φ_{PSII})	0.75 ± 0.23	3.66 ± 1.21	4.32 ± 0.80	12.83 ± 7.93
Regulatory thermal dissipation (Φ_{NPQ})	0.64 ± 0.33	3.40 ± 1.37	3.90 ± 1.41	11.90 ± 7.42
Non-regulatory thermal dissipation (Φ_{NO})	0.72 ± 0.30	3.34 ± 1.77	3.79 ± 1.38	12.65 ± 8.61

Note, that the values in the Table are the leading times and associated standard deviations. The unit of time is hours.
FIGURE 8
Time lags between PSII-energy partitioning measures and environmental factors at (A) daily and (B) seasonal timescales; $\Phi_{\text{PSII}} = \text{photochemical efficiency}$; $\Phi_{\text{NPQ}} = \text{regulatory thermal dissipation}$; $\Phi_{\text{NO}} = \text{non-regulatory thermal dissipation}$; PAR = photosynthetically active radiation; $T_a = \text{air temperature}$; VPD = vapor pressure deficit; and SWC = soil water content at a 0.3-m depth. Columns above the central line (at time lag = zero) indicate positive correlation, whereas columns below the line indicate negative correlation. Data represent mean ± standard deviation (error bars).

TABLE 2

PSII-energy partitioning pathways	PAR	T_a	VPD	SWC
Photochemical efficiency (\(\Phi_{\text{PSII}} \))	36.21 ± 10.79	5.89 ± 2.92	8.67 ± 3.68	9.43 ± 1.49
Regulatory thermal dissipation (\(\Phi_{\text{NPQ}} \))	8.23 ± 2.33	30.51 ± 4.65	3.01 ± 1.11	11.71 ± 3.23
Non-regulatory thermal dissipation (\(\Phi_{\text{NO}} \))	23.65 ± 3.19	3.72 ± 2.12	25.29 ± 5.49	20.18 ± 1.98

Note, that the values in the Table are the leading times and associated standard deviations. The unit of time is days.
3.01 and 8.67 days, respectively, vs. 25.29 days. The time lags for SWC were moderate, ranging between 9.43 and 20.18 days (Figure 8B).

Causal inference at multiple timescales

Appearing in Table 3 are the results of CCM based on hourly PSII-energy partitioning as a function of shrub phenology. At the hour scale, causality among pairings of energy allocation measures was mostly in agreement across the various phenological periods. Parameter Φ_{PSII} had a unidirectional causal relationship with Φ_{NPQ} with Φ_{PSII} forcing Φ_{NPQ} (case II). Except when Φ_{PSII}-forcing-Φ_{NO} was not statistically significant ($p > 0.05$) during the budding period, both Φ_{NPQ} and Φ_{PSII} had a bidirectional causal connection (feedback) with Φ_{NO} (case III). In contrast, causal relationships among daily PSII-energy partitioning measures varied across phenological phases (Table 4). Φ_{PSII} was shown not to be causally related to Φ_{NPQ} (case I), whereas Φ_{NPQ} was bidirectionally related to Φ_{NO} (case III). The unidirectional causality between Φ_{PSII} and Φ_{NO} (case II) changed from Φ_{PSII} forcing Φ_{NO} during the budding and leaf-expanded phases to Φ_{NO} forcing Φ_{PSII} during the leaf-coloring phase.

Discussion

Environmental controls at diurnal timescales

The fate of excited states formed in PSII is variable and depends on the physiological history and state of the leaves. Events of extreme physiological states (Yan et al., 2011), drying (Ma et al., 2015), high rates of transpiration, and excessive solar radiation (Dai et al., 1992; Han et al., 2018), all have the potential to accelerate photoinhibition or photodamage in plants by affecting the energy absorbed and partitioned in PSII (Suzuki et al., 2015). Overall, by comparing time lags, we propose that low temperatures may inhibit PSII and NPQ, with Φ_{NO} to increase (Johnson and Ruban, 2014).

The average time lags for T_a and VPD with PSII-energy partitioning in A. ordosica were 3.5 and 4.0 h, respectively (Table 1). Some studies have confirmed that cold temperatures can inhibit the activity of chloroplast protein import, thus impacting the photosynthetic state of PSII (Lehnen and Theg, 1994; Savitch et al., 2009). During early morning, with the lowest T_a (PAR being close to zero), Φ_{PSII} showed a slight decline (Figures 3B, D), indicating that low temperatures may inhibit PSII in A. ordosica. The study found that extreme daytime temperatures served as a direct threat to PSII by affecting the activity of antioxidants and Calvin-Benson cycle enzymes (Liu et al., 2012). Unfortunately, we do not have direct evidence to specify exactly how extreme temperatures affected PSII in A. ordosica. Dry and wet air circulation (causing fluctuations in VPD) can induce changes in stomatal aperture. Closure of stomates can limit photosynthetic electron transfer and potentially activate photoinhibition (Ghimire et al., 2018; Bambach et al., 2020). Meanwhile, inhibited water transport can increase the proton-gradient across thylakoid membranes, and eventually cause Φ_{PSII} to decrease and Φ_{NPQ} and Φ_{NO} to increase (Johnson and Ruban, 2014).

Time lags in plant response to SWC were much longer than for the other environmental factors (Figure 8A), suggesting that A. ordosica is less sensitive to SWC during the short term (Wu et al., 2018). Overall, by comparing time lags, we propose that the sensitivity of PSII in A. ordosica at diurnal timescales is largely associated with variations in PAR, T_a, and then VPD (Table 1). This suggests that diurnal heat dissipation and the change in stomatal conductance during the day are the main processes that regulate PSII-energy partitioning in A. ordosica at daily timescales.

Environmental controls at intermediate scales

At seasonal timescales, harsh dryland environments are mainly characterized by excessive solar radiation and extreme temperatures lasting for several days to weeks, causing hydrological gradients to shift (Niinemets, 2010; Suzuki et al., 2014). Studies have shown that long-term adaptation
TABLE 3 Convergent cross mapping (CCM) with hourly data pairs relating three PSII-energy partitioning pathways for different phenological phases from 2012–2017 (Ln ~ 960 records); the number of bootstrapping iterations (n) = 1,000; and A|B and B|A stand for A forcing B and B forcing A, respectively.

| Variable A, B | Phenological phase | p-value A|B,B|A | \(\rho_\infty \) A|B,B|A | \(r^2 \) A|B,B|A | Causality |
|---------------|--------------------|------------|----------------|-----------------|----------------|------------|
| \(\Phi_{PSII}, \Phi_{NPQ} \) | budding | 0.01** | 0.43 | 0.94 | II |
| | | 0.64 | – | – | |
| | leaf-expanded | 0.01** | 0.42 | 0.87 | II |
| | | 0.53 | – | – | |
| | leaf-coloring | 0.01** | 0.49 | 0.92 | II |
| | | 0.23 | – | – | |
| \(\Phi_{NPQ}, \Phi_{NO} \) | budding | 0.01** | 0.77 | 0.96 | III |
| | | 0.03* | 0.54 | 0.94 | |
| | leaf-expanded | 0.01** | 0.57 | 0.99 | III |
| | | 0.01** | 0.62 | 0.90 |
| | leaf-coloring | 0.01** | 0.61 | 0.98 | III |
| | | 0.01** | 0.68 | 0.98 |
| \(\Phi_{PSII}, \Phi_{NO} \) | budding | 0.08 | – | – | II |
| | | 0.01** | 0.94 | 0.98 |
| | leaf-expanded | 0.01** | 0.88 | 0.93 | III |
| | | 0.01** | 0.92 | 0.98 |
| | leaf-coloring | 0.01** | 0.78 | 0.83 | III |
| | | 0.01** | 0.79 | 0.91 |

** and * indicate critical statistical significance at p-values < 0.01 and 0.05, respectively.

The Roman numerals in the sixth column coincide with the absence (case I) or presence of unidirectional causality (i.e., A|B or B|A, designated as case II) or presence of bidirectional causality (i.e., A|B and B|A, designated as case III); \(r^2 \) is the coefficient of determination associated with fitting the Michaelis-Menten equation \([i.e., y = ax/(b + x)] \); \(\rho_\infty \) (or parameter \(a \) in the equation) gives the asymptote when \(L \rightarrow \infty \).

TABLE 4 Convergent cross mapping (CCM) with daily data pairs relating three PSII-energy partitioning pathways for different phenological phases from 2012–2017 (Ln ~ 202, 528, and 230 records); the number of bootstrapping iterations (n) = 1,000; and A|B and B|A stand for A forcing B and B forcing A, respectively.

| Variable A, B | Phenological phase | p-value A|B,B|A | \(\rho_\infty \) A|B,B|A | \(r^2 \) A|B,B|A | Causality |
|---------------|--------------------|------------|----------------|-----------------|----------------|------------|
| \(\Phi_{PSII}, \Phi_{NPQ} \) | budding | 0.24 | – | – | – |
| | | 0.44 | – | – |
| | leaf-expanded | 0.30 | – | – | – |
| | | 0.33 | – | – |
| | leaf-coloring | 0.40 | – | – | – |
| | | 0.18 | – | – |
| \(\Phi_{NPQ}, \Phi_{NO} \) | budding | 0.01** | 0.60 | 0.99 | III |
| | | 0.01** | 0.60 | 0.98 |
| | leaf-expanded | 0.01** | 0.85 | 0.99 | III |
| | | 0.01** | 0.80 | 0.99 |
| | leaf-coloring | 0.03* | 0.71 | 0.91 | III |
| | | 0.01** | 0.75 | 0.98 |
| \(\Phi_{PSII}, \Phi_{NO} \) | budding | 0.04* | 0.33 | 0.83 | II |
| | | 0.56 | – | – |
| | leaf-expanded | 0.03* | 0.32 | 0.96 | II |
| | | 0.19 | – | – |
| | leaf-coloring | 0.27 | – | – | II |
| | | 0.02* | 0.47 | 0.85 |

** and * indicate critical statistical significance at p-values < 0.01 and 0.05, respectively.

The Roman numerals in the sixth column coincide with the absence (case I) or presence of unidirectional causality (i.e., A|B or B|A, designated as case II) or presence of bidirectional causality (i.e., A|B and B|A, designated as case III); \(r^2 \) is the coefficient of determination associated with fitting the Michaelis-Menten equation \([i.e., y = ax/(b + x)] \); \(\rho_\infty \) (or parameter \(a \) in the equation) gives the asymptote when \(L \rightarrow \infty \).
mechanisms in PSII takes several days or even weeks to respond, which is achieved by adjusting photosynthetic pigment concentration and chlorophyll a-to-chlorophyll b ratios, or PSII-specific protein content (Müller et al., 2001; Savitch et al., 2009; Ren et al., 2018).

Our results show that time lags associated with each PSII-energy allocation pathway vary at seasonal timescales (Figure 8B). Short time lags of F_{NPQ}-to-PAR pairings (8.23 days) indicate that *A. ordosica* has a regulatory PSII mechanism to respond to high levels of solar radiation. This is achieved by the shrub’s ability to actively increase rates of thermal dissipation (Wu et al., 2018; Samson et al., 2019). Excessive solar radiation breaks the stability between PSII-energy input and utilization, causing damage to the light-harvesting protein complexes (Stefanov et al., 2018). Time lags for the F_{PSII}-to-PAR and F_{NO}-to-PAR pairings can be up to 36.21 and 23.65 days, respectively (Table 2). This suggests that *A. ordosica* has a level of tolerance to surplus solar radiation. Morphologically, their needle-shaped leaves help to minimize excessive light capture (Liu and Zhang, 2018).

The seasonal temperature range in deserts is significant (Figure 2B). The short time lags associated with the F_{PSII}-to-T_a and F_{NO}-to-T_a pairings (i.e., 5.89 and 3.72 days, respectively) indicate that seasonal fluctuations in temperature threaten the stability of PSII, which can result in a decrease in photosynthetic capacity (Mathur et al., 2014). It is worth noting that F_{NPQ} lagged T_a by 30.51 days (Table 2), which can be viewed as a rather slow adjustment. It has been reported that desert plants can adapt to extreme temperatures by increasing the osmotic pressure in cells, increasing the anti-coagulant properties of protoplasm and reducing their metabolic rate (Faik et al., 2016; Wu et al., 2018).

Our results show that VPD impacts F_{NPQ} and F_{PSII} rapidly (about 3–8 days), whereas it influences F_{NO} much more slowly (25 days). We conclude that under dry-air conditions, *A. ordosica* can tolerate the on-going conditions with their fully evolved stomatal structures and gelatinous mesophyll (Dai et al., 1992; Ghiemre et al., 2018).

Under large hydraulic gradients, inactivation of PSII due to aridity stresses often alternates, causing reversible photodamage (Biederman et al., 2017; Wu et al., 2018). WTC-results show that during early drought (within –10 days of its onset), *A. ordosica* can maintain a stable PSII with long-term regulatory capacity (Ghiemre et al., 2018). Due to *A. ordosica*‘s well-developed rooting system, with a thick taproot and dense lateral roots, uptake of soil water is maintained even under conditions of extended drought (Fan et al., 2017). Moreover, F_c/F_m fluctuates with long-term, low growing-season SWC, maintaining an average F_c/F_m ratio of 0.78 (Figure 2E). Our study submits that *A. ordosica* can recover through PSII self-repair and regulation under long-term drought.

PSII-energy partitioning and its relationship to shrub phenology

One-way interactions between hourly F_{PSII} and F_{NPQ} identified with CCM, suggests that photosynthetic limitation in *A. ordosica* caused the shrub to mitigate pressure of excess light energy by regulating heat dissipation (Table 3). By contrast, the two-way interaction between hourly F_{PSII} and F_{NO} shows that inhibition of photosynthesis can result in photodamage. This photodamage, in turn, is expected to result in a simultaneous reduction in photosynthesis as a result of the variables’ mutual relationship in a negative feedback loop (Genty et al., 1989; Jahns and Holzwarth, 2012).

We also found that PSII-energy partitioning in *A. ordosica* was affected by its phenology. During budding, from April to early May of each year, daytime F_{NO} was shown to increase (Figure 3F). Low chlorophyll content and photosynthesis activity during this phase promoted photoinhibition (Ren et al., 2018). During the leaf-expanded phase (June–August of each year), F_{NPQ} was seen to increase and F_{PSII} to decrease (Figures 3D, E). During this period, biomass and leaf functional traits had reached their optimum functioning. Bidirectional causal relationships identified with daily F_{NPQ} and F_{NO} (Table 4), suggested that PSII in *A. ordosica* was most likely in a cycle of constant injury and mending (Han et al., 2018). During the leaf-coloring phase (i.e., September–October), daytime F_{NO} and F_c/F_m were seen to increase and decrease, respectively (Figures 2E, 3F), and the unidirectional causal relationship, i.e., F_{PSII} forcing F_{NO}, changed to F_{NO} forcing F_{PSII} (Table 4). During this period, shrub chlorophyll content and enzyme activity rapidly decreased, resulting in further cumulative photodamage, increasing PSII-photochemical suppression.

Conclusions

Functional dependencies between PSII-energy partitioning and environmental variables varied across timescales. These discrepancies reflect the adaptive strategies in *A. ordosica* to changing desert environments. Diurnally, all PSII-energy partitioning pathways were largely dominated by PAR, regulated to some extent by T_a and VPD, and exhibited low sensitivity to SWC. Seasonally, the PSII-energy partitioning in *A. ordosica* was affected by both physiological and phenological factors. Both F_{PSII} and F_{NO} were vulnerable to T_a, whereas F_{NPQ} was most sensitive to VPD. Short-term drought (within < 10 days) had little effect on PSII-energy partitioning. *A. ordosica* was shown to have an ability to repair itself, with an F_c/F_m > 0.78. Our results suggested that *A. ordosica* can acclimate to excessive PAR, air aridity, and prolonged drought, exhibiting rapid response to variation in extreme temperatures by means of photoinhibition. Our findings have important implications for understanding the adaptation capacity
in dryland shrub species in desert-plant communities under current climate change. Information from this study is beneficial to combatting desertification and restoring ecological function to drylands globally.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

Author contributions

TZ and CJ conceived the study. CJ, ZG, MX and NW conducted the fieldwork. CJ, XG, XK and XHL analyzed the data. CJ wrote the manuscript with the assistance of TZ and PL. CP-AB helped revise/polish the manuscript. YT and XJ revised the manuscript. All authors contributed to and approved the final manuscript.

Funding

The research was supported by grants from the National Natural Science Foundation of China (NSFC: 32071842, 32101588, 31901366, 32071483), by the National Key Research and Development Program of China (No. 2020YFA0608100).

Acknowledgments

We thank TZ Wei, WJ Zhou, and RZ Yang for their assistance with field measurements and instrument maintenance. The U.S.-China Carbon Consortium (USCCC) supported this work by way of helpful discussion and the exchange of scientific ideas.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.1057943/full#supplementary-material

Supplementary Figure 1

Wavelet power spectra for daily mean (A) photosynthetically active radiation (PAR), (B) air temperature (Ta), (C) vapor pressure deficit (VPD), (D) soil water content at a 0.3-m depth (SWC), (E) photochemical efficiency (Fv/FP), and (F) ratio of regulatory to non-regulatory thermal dissipation (ΦRD, and ΦNO, respectively) for the 2012–2017 study period. Black contour lines represent the 0.05 critical significance level. The thin arced lines denote the cone of influence (COI) that delimits the region not affected by edge artefacts. The color ranges from dark blue to dark red, coinciding with wavelet power spectra from low to high.

References

Baldocchi, D., Falge, E., and Wilson, K. (2001). A spectral analysis of biosphere–atmosphere trace gas densities and meteorological variables across hour to multi-year time scales. Agric. For. Meteorology 107 (1), 1–27. doi: 10.1016/S0168-1943(00)00228-8

Bambach, N., Paw U, K. T., and Gilbert, M. E. (2020). A dynamic model of RuBIP regeneration limited photosynthesis accounting for photoinhibition, heat and water stress. Agric. For. Meteorology 285–286, 107911. doi: 10.1016/j.agrformet.2020.107911

Biederman, J. A., Scott, R. L., Bell, T. W., Bowling, D. R., Dore, S., Garatuza-Payan, J., et al. (2017). CO2 exchange and evapotranspiration across dryland ecosystems of southwestern north America. Global Change Biol. 23 (10), 4204–4221. doi: 10.1111/gcb.13866

Cazelles, B., Chavez, M., Berteaux, D., Menard, F., Vik, J. O., Jenouvrier, S., et al. (2008). Wavelet analysis of ecological time series. Oecologia 156 (2), 287–304. doi: 10.1007/s00442-008-0993-2

Chang, C.-W., Ushio, M., and Hsieh, C.-H. (2017). Empirical dynamic modeling for beginners. Ecol. Res. 32 (6), 785–796. doi: 10.1007/s11284-017-1469-9

Chen, J.-W., Kuang, S.-B., Long, G.-Q., Yang, S.-C., Meng, Z.-G., Li, L.-G., et al. (2016). Photosynthesis, light energy partitioning, and photoprotection in the shade-demanding species panax notoginseng under high and low level of growth irradiance. Funct. Plant Biol. 43 (6), 479–491. doi: 10.1071/FP15283

Dai, Z., Edwards, G. E., and Ku, M. S. (1992). Control of photosynthesis and stomatal conductance in Ricinus communis L. (castor bean) by leaf to air vapor pressure deficit. Plant Physiol. 99 (4), 1426–1434. doi: 10.1104/pp.99.4.1426

Falk, A., Popova, A. V., and Veltichkova, M. (2016). Effects of long-term action of high temperature and high light on the activity and energy interaction of both photosystems in tomato plants. Photosynthetica 54 (4), 611–619. doi: 10.1007/s11099-016-0644-5
In a Mediterranean pine forest under extensive seasonal drought. Tree Physiol. 39 (10), 1767–1782. doi: 10.1093/treephys/tpw099

Mather, S., Avgaral, D., and Jiao, A. (2014). Photosynthesis: Response to high temperature stress. J. Photochem. Photobiol. A: Biol. 137, 116–126. doi: 10.1016/j.jphotochem.2014.01.010

Meacham, K., Sirault, X., Quick, W. P., von Caemmerer, S., and Furbank, R. (2017). Diurnal solar energy conversion and photoprotection in rice canopies. Plant Physiol. 173 (1), 495–508. doi: 10.1104/pp.16.01585

Nar, H., Saglam, A., Terzi, R., Varkonyi, Z., and Kadioglu, A. (2009). Leaf rolling and photosystem II efficiency in ctenanthe setosa exposed to drought stress. Photosynthetica 47 (3), 429–436. doi: 10.1007/s11099-009-0066-8

Ng, E. K. W., and Chan, J. C. L. (2012). Geophysical applications of partial wavelet coherence and multiple wavelet coherence. J. Atmospheric Oceanic Technol. 29 (12), 1845–1853. doi: 10.1175/JTECH-D-12-00056.1

Niinemets, Ü. (2010). Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants. Past stress history, stress interactions, tolerance and acclimation. For. Ecol. Manage. 260 (10), 1623–1639. doi: 10.1016/j.foreco.2010.07.054

Ni, Z., Lu, Q., Huo, and Zhang, H. (2019). Estimation of chlorophyll fluorescence at different scales: a review. Sensors 19 (13), 3000. doi: 10.3390/s19133000

Ogawa, T., Mismi, M., and Sonobe, K. (2017). Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions. Photosynthetica 133 (1), 63–73. doi: 10.1111/j.11110-017-0367-x

Ouyang, Z., Chen, J., Becker, R., Chu, H., Xie, J., Shao, C., et al. (2014). Disentangling the confounding effects of PAR and air temperature on net ecosystem exchange at multiple time scales. Ecol. Complexity 19, 46–58. doi: 10.1016/j.ecocom.2014.04.005

 Qin, Z., Ouyang, Y., Su, G.-I., Yu, Q., Li, J., Zhang, J.-E., et al. (2008). Characteristics of CO2 and water vapor fluxes in a summer maize field with wavelet analysis. Ecol. Inf. 3 (6), 397–409. doi: 10.1016/j.ecoinf.2008.09.002

Quaa, T., Bertotti, S., Ballotari, M., Flieger, K., Bassi, R., Wilhelm, C., et al. (2015). Non-photosynthetic quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation. J. Plant Physiol. 172, 92–103. doi: 10.1016/j.jplph.2014.07.023

Ren, C., Wu, Y., Zha, T., Jia, X., Tian, Y., Bai, Y., et al. (2018). Seasonal changes in photosynthetic energy utilization in a desert shrub (Artemisia ordosica krasch.) during its different phenophases. Forests 9 (4), 176. doi: 10.3390/forest9040176

Rodríguez-Calcerrada, J., Pardos, J. A. G., Lil, A., and Aranda, I. (2008). Ability to avoid water stress in seedlings of two oak species is lower in a dense forest understory than in a medium canopy gap. For. Ecol. Manage. 255 (3), 421–430. doi: 10.1016/j.foreco.2007.09.009

Ruban, A. V., Johnson, M. P., and Duffy, C. D. P. (2012). The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta (BBA) - Bioenergetics 1817 (1), 182–193. doi: 10.1016/j.bbabio.2011.04.012

Sacharz, J., Giovagnetti, V., Ungerer, P., Mastroiani, G., and Ruban, A. V. (2017). The xanthophyll cycle affects reversible interactions between PsbS and the molecular switch in the photosystem II antenna. Photosynthetica 141 (3), 315–330. doi: 10.1111/11110-017-0363-w

Sivitz, L. V., Ivanov, A. G., Gerwick, S., Hunter, N. P. A., and Simmonds, I. (2009). Effects of low temperature stress on excitation energy partitioning and photoprotection in sea masts. Funct. Plant Biol. 36 (1), 37–49. doi: 10.1071/FP08093

Schurr, U., Walter, A., and Rascher, U. (2008). Functional dynamics of plant growth and photosynthesis – from steady state to dynamics – from homogeneity to heterogeneity. Plant Cell Environ. 29 (3), 340–352. doi: 10.1111/j.1365-3040.2005.01490.x

Sperdouli, I., Andreadis, S., Moustakas, J., Panteris, E., Tsaballa, A., and Mousekatas, M. (2021a). Changes in light energy utilization in photosystem II and reactive oxygen species generation in potato leaves by the pinwheels tuta absoluta. Molecules 26 (10), 2984. doi: 10.3390/molecules26102984

Sperdouli, I., Moustakas, J., Ouzounidou, G., and Mousekatas, M. (2021b). Leaf age-dependent photosystem II photochemistry and oxidative stress responses to drought stress in Arabidopsis thaliana are modulated by flavonoid accumulation. Molecules 26 (14), 4157. doi: 10.3390/molecules26144157

Sperdouli, I., and Moustakas, M. (2012). Spatio-temporal heterogeneity in Arabidopsis thaliana leaves under drought stress. Plant Physiol. 141 (4), 118–128. doi: 10.1104/pp.111.180473

Stefanov, M., Yotsova, E., Markova, Y., and Apostolova, E. L. (2018). Effect of high light intensity on the photosynthetic apparatus of two hybrid lines of...
