MEASURES OF NONCOMPACTNESS IN $\bar{N}(p,q)$ SUMMABLE SEQUENCE SPACES

ISHFAQ AHMAD MALIK AND TANWEER JALAL

Abstract. In this paper, we first define the $\bar{N}(p,q)$ summable sequence spaces and obtain some basic results related to these spaces. The necessary and sufficient conditions for an infinite matrix A to map these spaces into the spaces c, c_0, and ℓ_∞ is obtained and Hausdorff measure of noncompactness is then used to obtain the necessary and sufficient conditions for the compactness of linear operators defined on these spaces.

1. Introduction

We write ω for the set of all complex sequences $x = (x_k)_{k=0}^\infty$ and ϕ, c, c_0 and ℓ_∞ for the sets of all finite sequences, convergent sequences, sequences convergent to zero, and bounded sequences respectively. By e we denote the sequence of 1's, $e = (1, 1, 1, \ldots)$ and by $e^{(n)}$ the sequence with 1 as only nonzero term at the nth place for each $n \in \mathbb{N}$, where $\mathbb{N} = \{0, 1, 2, \ldots\}$. Further by cs and ℓ_1 we denote the convergent and absolutely convergent series respectively. If $x = (x_k)_{k=0}^\infty \in \omega$ then $x^{[m]} = \sum_{k=0}^{m} x_k e^{(k)}$ denotes the m–th section of x.

A sequence space X is a linear subspace of ω, such a space is called a BK space if it is a Banach space with continuous coordinates $P_n : X \to \mathbb{C}$ ($n = 0, 1, 2, \ldots$) where

$$P_n(x) = x_n, \quad x = (x_k)_{k=0}^\infty \in X.$$

The BK space X is said to have AK if every $x = (x_k)_{k=0}^\infty \in X$ has a unique representation $x = \sum_{k=0}^\infty x_k e^{(k)}$ [15, Definition 1.18]. The spaces c_0, c and ℓ_∞ are BK spaces with respect to the norm

$$\|x\|_\infty = \sup_k \{|x_k| : k \in \mathbb{N}\}.$$

The β–dual of a subset X of ω is defined by

$$X^\beta = \{a \in \omega : ax = (a_k x_k) \in cs \text{ for all } x = (x_k) \in X\}.$$

2010 Mathematics Subject Classification. 40H05, 46A45, 47B07.

Key words and phrases. Summable sequence spaces, BK spaces, matrix transformations, measures of noncompactness.
If X and Y are Banach Spaces, then by $\mathcal{B}(X,Y)$ we denote the set of all bounded (continuous) linear operators $L : X \rightarrow Y$, which is itself a Banach space with the operator norm $\|L\| = \sup_{x} \{\|L(x)\| : \|x\| = 1\}$ for all $L \in \mathcal{B}(X,Y)$. The linear operator $L : X \rightarrow Y$ is said to be compact if its domain is all of X and for every bounded sequence $(x_n) \in X$, the sequence $(L(x_n))$ has a subsequence which converges in Y. The operator $L \in \mathcal{B}(X,Y)$ is said to be of finite rank if $\dim R(L) < \infty$, where $R(L)$ denotes the range space of L. A finite rank operator is clearly compact [6, Chapter 2].

In this paper, we first define $\tilde{N}(p,q)$ summable sequence spaces as the matrix domains X_T of arbitrary triangle \tilde{N}_p^q and obtain some basic results related to these spaces. We then find out the necessary and sufficient condition for matrix transformations to map these spaces into c_0, c and ℓ_∞. Finally we characterize the classes of compact matrix operators from these spaces into c_0, c and ℓ_∞.

2. Matrix Domains

Given any infinite matrix $A = (a_{nk})_{n,k=0}^\infty$ of complex numbers, we write A_n for the sequence in the nth row of A, $A_n = (a_{nk})_{k=0}^\infty$. The A-transform of any $x = (x_k) \in \omega$ is given by $Ax = (A_n(x))_{n=0}^\infty$, where

$$A_n(x) = \sum_{k=0}^\infty a_{nk} x_k \quad n \in \mathbb{N}$$

the series on right must converge for each $n \in \mathbb{N}$.

If X and Y are subsets of ω, we denote by (X,Y), the class of all infinite matrices that map X into Y. So $A \in (X,Y)$ if and only if $A_n \in X^X$, $n = 0, 1, 2, \ldots$ and $Ax \in Y$ for all $x \in X$. The matrix domain of an infinite matrix A in X is defined by

$$X_A = \{x \in \omega : Ax \in X\}$$

The idea of constructing a new sequence space by means of the matrix domain of a particular limitation method has been studied by several authors see [4, 7–11]

For any two sequences x and y in ω the product xy is given by $xy = (x_ky_k)_{k=0}^\infty$ and for any subset X of ω

$$y^{-1} \ast X = \{a \in \omega : ay \in X\}$$

We denote by \mathcal{U} the set of all sequences $u = (u_k)_{k=0}^\infty$ such that $u_k \neq 0 \forall k = 0, 1, 2, \ldots$ and for any $u \in \mathcal{U}$, $\frac{1}{u} = \left(\frac{1}{u_k}\right)_{k=0}^\infty$.

Theorem 1. a) Let X be a BK space with basis $(\alpha^{(k)})_{k=0}^\infty$, $u \in \mathcal{U}$ and $\beta^{(k)} = (1/u)\alpha^{(k)}$, $k = 0, 1, \ldots$. Then $(\beta^{(k)})_{k=0}^\infty$ is a basis of $Y = u^{-1} \ast X$.

b) Let \((p_k)_{k=0}^\infty\) be a positive sequence, \(u \in \mathfrak{U}\) a sequence such that
\[|u_0| \leq |u_1| \leq \cdots \quad \text{and} \quad |u_n| \to \infty \quad (n \to \infty)\]
and \(T\) a triangle with
\[t_{nk} = \begin{cases} \frac{p_{n-k}}{u_n} & 0 \leq k \leq n \\ 0 & k > n \end{cases} \quad n = 0, 1, 2, \ldots\]
Then \((c_0)_T\) has AK.

c) Let \(T\) be an arbitrary triangle and \(B = |T|\). Then \((c_0)_B\) has AK if and only if \(\lim_{n \to \infty} t_{nk} = 0\) for all \(k = 0, 1, 2, \ldots\).

Proof. a) (cf. [1, Theorem 2])
b) \((c_0)_T\) is a BK space by Theorem 4.3.12 in [19], the norm \(\|x\|_{(c_0)_T}\) on it is defined as
\[\|x\|_{(c_0)_T} = \sup_n \left| \frac{1}{u_n} \sum_{k=0}^{n} p_{n-k}x_k \right|\]
Since \(|u_n| \to \infty \quad (n \to \infty)\) gives \(\phi \subset (c_0)_T\).
Let \(\epsilon > 0\) and \(x \in (c_0)_T\) then there exists integer \(N > 0\), such that \(|T_{n}(x)| < \frac{\epsilon}{2}\)
for all \(n \geq N\).
Let \(m > N\) then
\[\|x - x^{[m]}\|_{(c_0)_T} = \sup_{n \geq m+1} \left| \frac{1}{u_n} \sum_{k=m+1}^{n} p_{n-k}x_k \right| \quad (2.1)\]
Now
\[T_n(x) = \frac{1}{u_n} \sum_{k=0}^{n} p_{n-k}x_k\]
\[T_m(x) = \frac{1}{u_n} \sum_{k=0}^{m} p_{n-k}x_k\]
\[T_n(x) + T_m(x) = \frac{1}{u_n} \left[2(p_n x_0 + \cdots + p_{n-m} x_m) + \sum_{k=m+1}^{n} p_{n-k}x_k \right]\]
Then by (2.1) we have
\[\|x - x^{[m]}\|_{(c_0)_T} \leq \sup_{n \geq m+1} \left(|T_n(x)| + |T_m(x)| \right) \leq \frac{\epsilon}{2} + \frac{\epsilon}{2}\]
\[\leq \epsilon\]
Hence \(x = \sum_{k=0}^{\infty} x_k \beta(k) \).
This representation is obviously unique.
c) Same as done in (cf. [1, Theorem 2]) \(\square \)

3. \(\tilde{N}(p, q) \) Summable Sequence Spaces

Let \((p_k)_{k=0}^{\infty}, (q_k)_{k=0}^{\infty}\) be positive sequences in \(\mathbb{U} \) and \((R_n)_{n=0}^{\infty}\) the sequence with \(R_n = \sum_{j=0}^{n} p_n - j q_j \). The \(\tilde{N}(p, q) \) transform of the sequence \((x_k)_{k=0}^{\infty} \) is the sequence \((t_n)_{n=0}^{\infty} \) defined as

\[
t_n = \frac{1}{R_n} \sum_{j=0}^{n} p_{n-j} q_j x_j
\]

The matrix \(\tilde{N}_p^q \) for this transformation is

\[
(\tilde{N}_p^q)_{nk} = \begin{cases}
\frac{p_{n-k} q_k}{R_n} & 0 \leq k \leq n \\
0 & k > n
\end{cases}
\] (3.1)

We define the spaces \((\tilde{N}_p^q)_0, (\tilde{N}_p^q) \) and \((\tilde{N}_p^q)_{\infty} \) that are \(\tilde{N}(p, q) \) summable to zero, summable and bounded respectively as

\[
(\tilde{N}_p^q)_0 = (c_0)_{\tilde{N}_p^q} = \left\{ x \in \omega : \tilde{N}_p^q x = \left(\frac{1}{R_n} \sum_{k=0}^{n} p_{n-k} q_k x_k \right)_{n=0}^{\infty} \in c_0 \right\}
\]

\[
(\tilde{N}_p^q) = (c)_{\tilde{N}_p^q} = \left\{ x \in \omega : \tilde{N}_p^q x = \left(\frac{1}{R_n} \sum_{k=0}^{n} p_{n-k} q_k x_k \right)_{n=0}^{\infty} \in c \right\}
\]

\[
(\tilde{N}_p^q)_{\infty} = (\ell_{\infty})_{\tilde{N}_p^q} = \left\{ x \in \omega : \tilde{N}_p^q x = \left(\frac{1}{R_n} \sum_{k=0}^{n} p_{n-k} q_k x_k \right)_{n=0}^{\infty} \in \ell_{\infty} \right\}
\]

For any sequence \(x = (x_k)_{k=0}^{\infty} \), define \(\tau = \tau(x) \) as the sequence with \(n \)th term given by

\[
\tau_n = (\tilde{N}_p^q)_n(x) = \frac{1}{R_n} \sum_{k=0}^{n} p_{n-k} q_k x_k \quad (n = 0, 1, 2, \ldots)
\] (3.2)

This sequence \(\tau \) is called as weighted means of \(x \).

Theorem 2. The spaces \((\tilde{N}_p^q)_0, (\tilde{N}_p^q) \) and \((\tilde{N}_p^q)_{\infty} \) are BK spaces with respect to the norm \(\| \cdot \|_{\tilde{N}_p^q} \) given by

\[
\| x \|_{\tilde{N}_p^q} = \sup_n \left| \frac{1}{R_n} \sum_{k=0}^{n} p_{n-k} q_k x_k \right|
\]
If \(R_n \to \infty \ (n \to \infty) \), then \((\tilde{N}_p^q)_0 \) has AK, and every sequence \(x = (x_k)_{k=0}^{\infty} \in (\tilde{N}_p^q) \) has unique representation

\[
x = le + \sum_{k=0}^{\infty} (x_k - l) e^{(k)}
\]

(3.3)

where \(l \in \mathbb{C} \) is such that \(x - le \in (\tilde{N}_p^q)_0 \)

Proof. The sets \((\tilde{N}_p^q)_0 \), \((\tilde{N}_p^q) \) and \((\tilde{N}_p^q)_{\ell_\infty} \) are BK spaces ([19] Theorem 4.3.12), Let us consider the matrix \(T = (t_{nk}) \) defined by

\[
t_{nk} = \begin{cases} \frac{p_{n-k}}{R_n} & 0 \leq k \leq n \\ 0 & k > n \end{cases} \quad n = 0, 1, 2, \ldots
\]

Then \((\tilde{N}_p^q)_0 \) has AK by Theorem 1.

Now if \(x \in (\tilde{N}_p^q) \), then there exists a \(l \in \mathbb{C} \) such that \(x - le \in (\tilde{N}_p^q)_0 \)

Now \(\tau(e) = (\tau_n)_{n=0}^{\infty} \) where

\[
\tau_n = (\tilde{N}_p^q)_n(e) = \frac{1}{R_n} \sum_{k=0}^{\infty} p_{n-k} q_k e_k \quad (n = 0, 1, 2, \ldots)
\]

\[
= \frac{1}{R_n} \sum_{k=0}^{\infty} p_{n-k} q_k \quad \text{As } e_k = 1 \forall (k = 0, 1, 2, \ldots)
\]

\[
= 1
\]

Therefore \(\tau(e) = e \) which implies the uniqueness of \(l \).

Therefore (3.3) follows from the fact that \((\tilde{N}_p^q)_{\ell_\infty} \) has AK.

Now \(\tilde{N}_p^q \) is a triangle, it has a unique inverse and the inverse is also a triangle [12]. Take \(H_0^{(p)} = \frac{1}{p_0} \) and

\[
H_n^{(p)} = \frac{1}{p_{n+1}} \begin{bmatrix}
p_1 & p_0 & 0 & 0 & \cdots & 0 \\
p_2 & p_1 & p_0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
p_{n-1} & p_{n-2} & p_{n-3} & \cdots & p_0 \\
p_n & p_{n-1} & p_{n-2} & \cdots & p_1
\end{bmatrix}
\]

(3.4)

Then the inverse of matrix defined in (3.1) is the matrix \(S = (s_{nk})_{n,k=0}^{\infty} \) which is defined as see [16] in

\[
s_{nk} = \begin{cases} (-1)^{n-k} \frac{H_{n-k}^{(p)}}{q_n} R_k & 0 \leq k \leq n \\ 0 & k > n \end{cases}
\]

(3.5)
3.1. \(\beta \) dual of \(N(p,q) \) Sequence Spaces. In order to find the \(\beta \) dual we need the following results

Lemma 1. [18] If \(A = (a_{nk})_{n,k=0}^{\infty} \), then \(A \in (c_0,c) \) if and only if

\[
\sup_n \sum_{k=0}^{\infty} |a_{nk}| < \infty \tag{3.6}
\]

\[
\lim_{n \to \infty} a_{nk} - \alpha_k = 0 \quad \text{for every } k. \tag{3.7}
\]

Lemma 2. [5] If \(A = (a_{nk})_{n,k=0}^{\infty} \), then \(A \in (c,c) \) if and only if conditions (3.6), (3.7) holds and

\[
\lim_{n \to \infty} A_n = \lim_{n \to \infty} a_{nk} \quad \text{exists for all } k. \tag{3.8}
\]

Lemma 3. [5] If \(A = (a_{nk})_{n,k=0}^{\infty} \), then \(A \in (\ell_\infty,c) \) if and only if condition (3.7) holds and

\[
\lim_{n \to \infty} \sum_{k=0}^{\infty} |a_{nk}| = \sum_{k=0}^{\infty} \left| \lim_{n \to \infty} a_{nk} \right| \tag{3.9}
\]

Theorem 3. Let \((p_k)_{k=0}^{\infty}, (q_k)_{k=0}^{\infty}\) be positive sequences, \(R_n = \sum_{j=0}^{n} p_{n-j}q_j\) and \(a = (a_k) \in \omega \), we define a matrix \(C = (c_{nk})_{n,k=0}^{\infty}\) as,

\[
c_{nk} = \begin{cases}
R_k \left[\sum_{j=k}^{n} (-1)^{j-k} \left(\frac{p_{j-k}}{q_j} \right) a_j \right] & 0 \leq k \leq n \\
0 & k > n \end{cases} \tag{3.10}
\]

and consider the sets

\[
c_1 = \left\{ a \in \omega : \sup_n \sum_k |c_{nk}| < \infty \right\} \quad ; \quad c_2 = \left\{ a \in \omega : \lim_{n \to \infty} c_{nk} \text{ exists for each } k \in \mathbb{N} \right\}
\]

\[
c_3 = \left\{ a \in \omega : \lim_{n \to \infty} \sum_k |c_{nk}| = \sum_k \left| \lim_{n \to \infty} c_{nk} \right| \right\} \quad ; \quad c_4 = \left\{ a \in \omega : \lim_{n \to \infty} \sum_k c_{nk} \text{ exists } \right\}
\]

Then \([(\mathring{N}_p^q)_0]^\beta = c_1 \cap c_2, \quad [(\mathring{N}_p^q)_\infty]^\beta = c_1 \cap c_2 \cap c_4 \) and \([(\mathring{N}_p^q)_\infty]^\beta = c_2 \cap c_3 \).

Proof. We prove the result for \([(\mathring{N}_p^q)_0]^\beta \).

Let \(x \in (\mathring{N}_p^q)_0 \) then there exists a \(y \) such that \(y = \mathring{N}_p^q x \).
MEASURES OF NONCOMPACTNESS IN \(N(p, q) \) SUMMABLE SEQUENCE SPACES

Hence

\[
\sum_{k=0}^{n} a_k x_k = \sum_{k=0}^{n} a_k \left(\bar{N}_p^q \right)^{-1} y_k \\
= \sum_{k=0}^{n} a_k \left[\sum_{j=0}^{k} (-1)^{k-j} R_j \left(\frac{H_{j-k}^{(p)}}{q_j} \right) y_j \right] \\
= \sum_{k=0}^{n} R_k \left[\sum_{j=k}^{n} (-1)^{j-k} \left(\frac{H_{j-k}^{(p)}}{q_j} a_j \right) \right] y_k \\
= (Cy)_n
\]

So \(ax = (a_n x_n) \in cs \) whenever \(x \in \left(\bar{N}_p^q \right)_0 \) if and only if \(Cy \in cs \) whenever \(y \in c_0 \).

Using Lemma 1 we get \(\left(\left(\bar{N}_p^q \right)_0 \right)^\beta = c_1 \cap c_2 \).

Similarly using Lemma 2 and Lemma 3 the \(\beta \) dual of \(\left(\bar{N}_p^q \right) \) and \(\left(\bar{N}_p^q \right)_\infty \) can be found same way we can show the other two results as well. \(\square \)

Let \(X \subset \omega \) be a normed space and \(a \in \omega \). Then we write

\[
\|a\|^* = \sup \left\{ \left| \sum_{k=0}^{\infty} a_k x_k \right| : \|x\| = 1 \right\}
\]

provided the term on the right side exists and is finite, which is the case whenever \(X \) is a BK space and \(a \in X^\beta \) [19, Theorem 7.2.9].

Theorem 4. For \(\left(\left(\bar{N}_p^q \right)_0 \right)^\beta \), \(\left(\left(\bar{N}_p^q \right) \right)^\beta \) and \(\left(\left(\bar{N}_p^q \right)_\infty \right)^\beta \) the norm \(\| \cdot \|^* \) is defined as

\[
\|a\|^* = \sup_n \left\{ \sum_{k=0}^{n} R_k \left| \sum_{j=k}^{n} (-1)^{j-k} \left(\frac{H_{j-k}^{(p)}}{q_j} a_j \right) \right| \right\}
\]

Proof. If \(x^{[n]} \) denotes the \(n \)th section of the sequence \(x \in \left(\bar{N}_p^q \right)_0 \) then using (3.2) we have

\[
\tau_k^{[n]} = \tau_k(x^{[n]}) = \frac{1}{R_k} \sum_{j=0}^{k} p_{n-j} q_j x_j^{[n]}
\]

Let \(a \in \left(\left(\bar{N}_p^q \right)_0 \right)^\beta \), then for any non-negative integer \(n \) define the sequence \(d^{[n]} \) as

\[
d_k^{[n]} = \left\{ \begin{array}{ll}
R_k \left[\sum_{j=k}^{n} (-1)^{j-k} \left(\frac{H_{j-k}^{(p)}}{q_j} a_j \right) \right] & \text{if } 0 \leq k \leq n \\
0 & \text{if } k > n
\end{array} \right.
\]
Let \(\|a\|_{\Pi} = \sup_{n} \|d[n]\|_1 = \sup_{n} \left(\sum_{k=0}^{\infty} |d_k^{[n]}| \right) \) where \(\Pi = \left[\left(\tilde{N}_{p}^{q} \right)^{\beta} \right] \). Then

\[
\sum_{k=0}^{\infty} a_k x_k^{[n]} = \left| \sum_{k=0}^{n} a_k \left(\sum_{j=0}^{k} (-1)^{k-j} H_{k-j}^{(p)} \frac{R_j \tau_j^{[n]}}{q_k} \right) \right| \leq \sup_{k} \left| \tau_k^{[n]} \right| \cdot \left(\sum_{k=0}^{n} R_k \left| \sum_{j=k}^{n} (-1)^{j-k} H_{j-k}^{(p)} \frac{a_j}{q_j} \right| \right)
\]

\[
\leq \sup_{k} \left| \tau_k^{[n]} \right| \cdot \left(\sum_{k=0}^{n} R_k \left| \sum_{j=k}^{n} (-1)^{j-k} H_{j-k}^{(p)} \frac{a_j}{q_j} \right| \right)
\]

\[
= \|x[n]\|_{\tilde{N}_{p}^{q}} \|d[n]\|_1
\]

\[
= \|a\|_{\Pi} \|x[n]\|_{\tilde{N}_{p}^{q}}.
\]

Hence

\[
\|a\|^{\ast} \leq \|a\|_{\Pi}.
\] (3.11)

To prove the converse define the sequence \(x^{(n)} \) for any arbitrary \(n \) by

\[
\tau_k \left(x^{(n)} \right) = \text{sign} \left(d_k^{[n]} \right) \quad \text{for} \quad k = 0, 1, 2, \ldots.
\]

Then

\[
\tau_k \left(x^{(n)} \right) = 0 \quad \text{for} \quad k > n \quad \text{i.e.} \quad x^{(n)} \in \left(\tilde{N}_{p}^{q} \right)_0, \quad \|x^{(n)}\|_{\tilde{N}_{p}^{q}} = \|\tau_k \left(x^{(n)} \right)\|_{\infty} \leq 1.
\]

and

\[
\left| \sum_{k=0}^{\infty} a_k x_k^{(n)} \right| = \left| \sum_{k=0}^{n} d_k^{[n]} x_k^{(n)} \right| \leq \sum_{k=0}^{n} \left| d_k^{[n]} \right| \leq \|a\|^\ast.
\]

Since \(n \) is arbitrarily choosen so

\[
\|a\|_{\Pi} \leq \|a\|^\ast.
\] (3.12)

From (3.11) and (3.12) we get the required conclusion. \(\square \)

Some well known results that are required for proving the compactness of operators are

Proposition 1. (cf. [13], Theorem 7) Let \(X \) and \(Y \) be BK spaces, then \((X, Y) \subset B(X, Y) \) that is every matrix \(A \) from \(X \) into \(Y \) defines an element \(L_{A} \) of \(B(X, Y) \) where

\[
L_{A}(x) = A(x) \quad \forall \ x \in X.
\]
Also $A \in (X, \ell_\infty)$ if and only if
$$
\|A\|^* = \sup_n \|A_n\|^* = \|L_A\| < \infty.
$$

If $(b^{(k)})_{k=0}^\infty$ is a basis of X, Y and Y_1 are FK spaces with Y_1 a closed subspace of Y, then $A \in (X, Y_1)$ if and only if $A \in (X, Y)$ and $A (b^{(k)}) \in Y_1$ for all $k = 0, 1, 2, \ldots$.

Proposition 2. (cf. [14], Proposition 3.4) Let T be a triangle

(i) If X and Y are subsets of ω, then $A \in (X, Y_T)$ if and only if $B = TA \in (X, Y)$.

(ii) If X and Y are BK spaces and $A \in (X, Y_T)$, then
$$
\|L_A\| = \|L_B\|
$$

Using Proposition 1 and Theorem 4 we conclude the following corollary:

Corollary 1. Let $(p_k)_{k=0}^\infty, (q_k)_{k=0}^\infty$ be given positive sequences, and $R_n = \sum_{k=0}^n p_{n-k} q_k$ then

i) $A \in ((N^q_p)_0, \ell_\infty)$ if and only if
$$
\sup_{n,m} \left\{ \sum_{k=0}^m R_k \left| \sum_{j=k}^m (-1)^{j-k} \frac{H_j^{(p)}}{q_j} a_{nj} \right| \right\} < \infty \quad (3.13)
$$

and
$$
\frac{A_n H_n^{(p)} R}{q} \in c_0 \quad \forall \ n = 0, 1, \ldots \quad (3.14)
$$

ii) $A \in ((N_0^q), \ell_\infty)$ if and only if condition (3.13) holds and
$$
\frac{A_n H_n^{(p)} R}{q} \in c \quad \forall \ n = 0, 1, 2, \ldots \quad (3.15)
$$

iii) $A \in ((\tilde{N}_0^q)_0, \ell_\infty)$ if and only if condition (3.13) holds.

iv) $A \in ((\tilde{N}_0^q)_0, c_0)$ if and only if condition (3.13) holds and
$$
\lim_{n \to \infty} a_{nk} = 0 \quad \text{for all} \ k = 0, 1, 2, \ldots \quad (3.16)
$$

v) $A \in ((\tilde{N}_0^q)_0, c)$ if and only if condition (3.13) holds and
$$
\lim_{n \to \infty} a_{nk} = \alpha_k \quad \text{for all} \ k = 0, 1, 2, \ldots \quad (3.17)
$$

vi) $A \in ((\tilde{N}_0^q), c_0)$ if and only if conditions (3.13), (3.14) and (3.16) holds and
$$
\lim_{n \to \infty} \sum_{k=0}^\infty a_{nk} = 0 \quad \text{for all} \ k = 0, 1, 2, \ldots \quad (3.18)
$$
vii) \(A \in \left(\left(N_{p}^{q} \right)_{c} \right) \) if and only if conditions (3.13), (3.14) and (3.17) holds
and
\[
\lim_{n \to \infty} \sum_{k=0}^{\infty} a_{nk} = \alpha \quad \text{for all } k = 0, 1, 2 \ldots
\] (3.19)

From theorem 2,4 and Proposition 2 we conclude the following corollary

Corollary 2. Let \(X \) be a BK-space and \((p_{k})_{k=0}^{\infty}, (q_{k})_{k=0}^{\infty} \) be positive sequences, \(R_{n} = \sum_{k=0}^{n} p_{n-k} q_{k} \) then
i) \(A \in (X, (N_{p}^{q})_{\infty}) \) if and only if
\[
\sup_{m} \left\| \frac{1}{R_{m}} \sum_{n=0}^{m} p_{m-n} q_{n} A_{n} \right\|^{*} < \infty
\] (3.20)

ii) \(A \in (X, (N_{p}^{q})_{0}) \) if and only if (3.20) holds and
\[
\lim_{m \to \infty} \left(\frac{1}{R_{m}} \sum_{n=0}^{m} p_{m-n} q_{n} A_{n} \left(c^{(k)} \right) \right) = 0 \quad \forall \, k = 0, 1, 2 \ldots
\] (3.21)

where \((c^{(k)}) \) is a basis of \(X \).

iii) \(A \in (X, (N_{p}^{q})) \) if and only if (3.21) holds and
\[
\lim_{m \to \infty} \left(\frac{1}{R_{m}} \sum_{n=0}^{m} p_{m-n} q_{n} A_{n} \left(c^{(k)} \right) \right) = \alpha_{k} \quad \forall \, k = 0, 1, 2 \ldots
\] (3.22)

4. **HAUSDORFF MEASURE OF NONCOMPACTNESS**

Let \(S \) and \(M \) be the subsets of a metric space \((X, d) \) and \(\epsilon > 0 \). Then \(S \) is called an \(\epsilon \)-net of \(M \) in \(X \) if for every \(x \in M \) there exists \(s \in S \) such that \(d(x, s) < \epsilon \). Further, if the set \(S \) is finite, then the \(\epsilon \)-net \(S \) of \(M \) is called **finite \(\epsilon \)-net** of \(M \). A subset of a metric space is said to be **totally bounded** if it has a finite \(\epsilon \)-net for every \(\epsilon > 0 \) [17].

If \(\mathcal{M}_{X} \) denotes the collection of all bounded subsets of metric space \((X, d) \). If \(Q \in \mathcal{M}_{X} \) then the **Hausdorff Measure of Noncompactness** of the set \(Q \) is defined by
\[
\chi(Q) = \inf \{ \epsilon > 0 : Q \text{ has a finite } \epsilon \text{-net in } X \}
\]
The function \(\chi : \mathcal{M}_{X} \to [0, \infty) \) is called **Hausdorff Measure of Noncompactness** [2].

The basic properties of **Hausdorff Measure of Noncompactness** can be found in ([3], [15], [2]).

Some of those properties are
If Q, Q_1 and Q_2 are bounded subsets of a metric space (X, d), then

\[\chi(Q) = 0 \iff Q \text{ is totally bounded set}, \]
\[\chi(Q_1) = \chi(Q_2), \]
\[Q_1 \subset Q_2 \Rightarrow \chi(Q_1) \leq \chi(Q_2), \]
\[\chi(Q_1 \cup Q_2) = \max \{\chi(Q_1), \chi(Q_2)\}, \]
\[\chi(Q_1 \cap Q_2) = \min \{\chi(Q_1), \chi(Q_2)\}. \]

Further if X is a normed space then Hausdorff Measure of Noncompactness χ has the following additional properties connected with the linear structure.

\[\chi(Q_1 + Q_2) \leq \chi(Q_1) + \chi(Q_2) \]
\[\chi(\eta Q) = |\eta| \chi(Q) \quad \eta \in \mathbb{C} \]

The most effective way of characterizing operators between Banach Spaces is by applying Hausdorff Measure of Noncompactness. If X and Y are Banach spaces, and $L \in \mathcal{B}(X, Y)$, then the Hausdorff Measure of Noncompactness of L, denoted by $\|L\|_\chi$ is defined as

\[\|L\|_\chi = \chi(L(S_X)) \]

Where $S_X = \{x \in X : \|x\| = 1\}$ is the unit ball in X.

From ([12], Corollary 1.15) we know that

\[L \text{ is compact if and only if } \|L\|_\chi = 0 \]

Proposition 3. ([2], Theorem 6.1.1, $X = c_0$) Let $Q \in M_{c_0}$ and $P_r : c_0 \to c_0 \ (r \in \mathbb{N}$ be the operator defined by $P_r(x) = (x_0, x_1, \ldots, x_r, 0, 0, \ldots)$ for all $x = (x_k) \in c_0$. Then, we have

\[\chi(Q) = \lim_{r \to \infty} \left(\sup_{x \in Q} \|(I - P_r)(x)\| \right) \]

where I is the identity operator on c_0.

Proposition 4. (cf. [2], Theorem 6.1.1) Let X be a Banach space with a Schauder basis $\{e_1, e_2, \ldots\}$, and $Q \in M_X$ and $P_n : X \to X \ (n \in \mathbb{N}$ be the projector onto the linear span of $\{e_1, e_2, \ldots, e_n\}$. Then, we have
\[\frac{1}{a} \lim_{n \to \infty} \sup_{x \in Q} \| (I - P_n)(x) \| \leq \chi(Q) \]

\[\leq \inf_{n} \left(\sup_{x \in Q} \| (I - P_n)(x) \| \right) \leq \lim_{n \to \infty} \sup_{x \in Q} \| (I - P_n)(x) \| \]

where \(a = \lim_{n \to \infty} \sup \| I - P_n \| \), and \(I \) is the identity operator on \(c \).

If \(X = c \) then \(a = 2 \). (see [2], p.22).

5. Compact operators on the spaces \((\overline{N}_p^q)_0 \), \((\overline{N}_p^q)_\infty \)

Theorem 5. Consider the matrix \(A \) as in Corollary 1, and for any integers \(n,s, n > s \) set

\[\| A \|^{(s)} = \sup_{n > s} \sup_{m} \left\{ \sum_{k=0}^{m} R_k \left(\sum_{j=k}^{m} (-1)^{j-k} \frac{H_j^{(p)}}{q_j} a_{nj} \right) \right\} \]

(5.1)

If \(X \) be either \((\overline{N}_p^q)_0 \) or \((\overline{N}_p^q)_\infty \) and \(A \in (X, c_0) \). Then

\[\| L_A \|_{\chi} = \lim_{s \to \infty} \| A \|^{(s)}. \]

(5.2)

If \(X \) be either \((\overline{N}_p^q)_0 \) or \((\overline{N}_p^q)_\infty \) and \(A \in (X, c) \). Then

\[\frac{1}{2} \cdot \lim_{s \to \infty} \| A \|^{(s)} \leq \| L_A \|_{\chi} \leq \lim_{r \to \infty} \| A \|^{(s)}. \]

(5.3)

and if \(X \) be either \((\overline{N}_p^q)_0 \) or \((\overline{N}_p^q)_\infty \) and \(A \in (X, \ell_\infty) \). Then

\[0 \leq \| L_A \|_{\chi} \leq \lim_{s \to \infty} \| A \|^{(s)}. \]

(5.4)

Proof. Let \(F = \{ x \in X : \| x \| \leq 1 \} \) if \(A \in (X, c_0) \) and \(X \) is one of the spaces \((\overline{N}_p^q)_0 \) or \((\overline{N}_p^q)_\infty \), then by Proposition 3

\[\| L_A \|_{\chi} = \chi(AF) = \lim_{s \to \infty} \left[\sup_{x \in F} \| (I - P_s)A x \| \right] \]

(5.5)

Again using Proposition 1 and Corollary 1 we have

\[\| A \|^{*} = \sup_{x \in F} \| (I - P_s)A x \| \]

(5.6)

From (5.5) and (5.6) we get

\[\| L_A \|_{\chi} = \lim_{s \to \infty} \| A \|^{(s)}. \]
Since every sequence \(x = (x_k)_{k=0}^{\infty} \in c \) has a unique representation
\[
x = le + \sum_{k=0}^{\infty} (x_k - l)e^{(k)}
\]
where \(l \in \mathbb{C} \) is such that \(x - le \in c_0 \)

We define \(P_s : c \to c \) by
\[
P_s(x) = le + \sum_{k=0}^{s} (x_k - l)e^{(k)}, \quad s = 0, 1, 2, \ldots
\]
Then \(\|I - P_s\| = 2 \) and using (5.6) and Proposition 4 we get
\[
\frac{1}{2} \cdot \lim_{s \to \infty} \|A\|^{(s)} \leq \|LA\|_\chi \leq \lim_{s \to \infty} \|A\|^{(s)}
\]

Finally we define \(P_s : \ell_\infty \to \ell_\infty \) by
\[
P_s(x) = (x_0, x_1, \ldots, x_s, 0, 0, \ldots), \quad x = (x_k) \in \ell_\infty.
\]
Clearly \(AF \subset P_s(AF) + (I - P_s)(AF) \)
So using the properties of \(\chi \) we get
\[
\chi(AF) \leq \chi[P_s(AF)] + \chi[(I - P_s)(AF)]
= \chi[(I - P_s)(AF)]
\leq \sup_{x \in F} \|(I - P_s)A(x)\|
\]
Hence by Proposition 1 and Corollary 1 we get
\[
0 \leq \|LA\|_\chi \leq \lim_{s \to \infty} \|A\|^{(s)}
\]

□

A direct corollary of the above theorem is

Corollary 3. Consider the matrix \(A \) as in Corollary 1, and \(X = (\bar{N}^p_q)_0 \) or \(X = (\bar{N}^p_q) \) then if \(A \in (X, c_0) \) or \(A \in (X, c) \) we have
\[
LA \text{ is compact if and only if } \lim_{s \to \infty} \|A\|^{(s)} = 0
\]
Further, for \(X = (\bar{N}^p_q)_0 \) or \(X = (\bar{N}^p_q) \) or \(X = (\bar{N}^p_q)_{\infty} \), if \(A \in (X, \ell_\infty) \) then we have
\[
LA \text{ is compact if } \lim_{s \to \infty} \|A\|^{(s)} = 0 \quad (5.7)
\]

In (5.7) it is possible for \(LA \) to be compact although \(\lim_{s \to \infty} \|A\|^{(s)} \neq 0 \), that is the condition is only sufficient condition for \(LA \) to be compact.

For example, let the matrix \(A \) be defined as \(A_n = e^{(1)} \) \(n = 0, 1, 2, \ldots \) and the positive sequences \(q_n = 3^n \) \(n = 0, 1, 2, \ldots \) and \(p_0 = 1, p_1 = 1, p_k = 0 \), \(\forall k = \)
2, 3, . . .

Then by (3.13) we have

$$\sup_{n,m} \left\{ \sum_{k=0}^{m} R_k \left| \sum_{j=k}^{m} (-1)^{j-k} \frac{H_{j-k}}{q_j} a_{nj} \right| \right\} = \sup_{m} \left(2 - \frac{2}{3^m} \right) = 2 < \infty$$

Now by Corollary 1 we know $A \in \left((\bar{N}_p^q)_\infty, \ell_\infty \right)$.

But

$$\|A\|^{(s)} = \sup_{n>s} \left[2 - \frac{2}{3^m} \right] = 2 - \frac{1}{2 \cdot 3^s} \forall s$$

Which gives $\lim_{s \to \infty} \|A\|^{(s)} = 2 \neq 0$.

Since $A(x) = x_1$ for all $x \in (\bar{N}_p^q)_\infty$, so L_A is a compact operator.

REFERENCES

[1] A. Al-Jarrah and E. Malkowsky, “Bk spaces, bases and linear operators,” Rend. del Circ. Mat. di Palermo. Serie II. Suppl., vol. 52, pp. 177–191, 1998.
[2] J. Banas and K. Goebel, Measures of noncompactness in Banach spaces. Lecture Notes in Pure and Appl. Math., 1980.
[3] J. Banas and M. Mursaleen, Sequence spaces and measures of noncompactness with applications to differential and integral equations. Springer, 2014.
[4] C. Bocong, L. Liren, and L. Hongwei, “Matrix product codes with rosenbloom-tsfasman metric,” Acta Mathematica Scientia, vol. 33, no. 3, pp. 687–700, 2013.
[5] R. G. Cooke, Infinite matrices and sequence spaces. Courier Corporation, 2014.
[6] T. Diagana, Almost automorphic type and almost periodic type functions in abstract spaces. Springer, 2013.
[7] I. Djolović and E. Malkowsky, “Matrix transformations and compact operators on some new mth-order difference sequences,” Applied Mathematics and Computation, vol. 198, no. 2, pp. 700–714, 2008.
[8] T. Jacob, “Matrix transformations involving simple sequence spaces,” Pacific Journal of Mathematics, vol. 70, no. 1, pp. 179–187, 1977.
[9] T. Jalal, “Some matrix transformations of $\ell(p,u)$ into the spaces of invariant means,” International Journal of Modern Mathematical Sciences, vol. 13, no. 4, pp. 385–391, 2015.
[10] T. Jalal and R. Ahmad, “A new type of difference sequence spaces,” Thai Journal of Mathematics, vol. 10, no. 1, pp. 147–155, 2012.
[11] T. Jalal and Z. U. Ahmad, “A new sequence space and matrix transformations,” Thai Journal of Mathematics, vol. 8, no. 2, pp. 373–381, 2012.
[12] A. M. Jarrah and E. Malkowsky, “Ordinary, absolute and strong summability and matrix transformations,” Filomat, pp. 59–78, 2003.
[13] E. Malkowsky and V. Rakocevic, “The measure of noncompactness of linear operators between certain sequence spaces,” Acta Scientiarum Mathematicarum, vol. 64, no. 1, pp. 151–170, 1998.
[14] E. Malkowsky and V. Rakocevic, “The measure of noncompactness of linear operators between spaces of mth-order difference sequences,” Studia Scientiarum Mathematicarum Hungarica, vol. 35, no. 3-4, pp. 381–396, 1999.
[15] E. Malkowsky and V. Rakocević, *An introduction into the theory of sequence spaces and measures of noncompactness*. Matematički institut SANU, 2000.

[16] A. Manna, A. Maji, and P. Srivastava, “Difference sequence spaces derived by using generalized means,” *Journal of the Egyptian Mathematical Society*, vol. 23, no. 1, pp. 127–133, 2015.

[17] M. Mursaleen, V. Karakaya, H. Polat, and N. Simsek, “Measure of noncompactness of matrix operators on some difference sequence spaces of weighted means,” *Computers & Mathematics with Applications*, vol. 62, no. 2, pp. 814–820, 2011.

[18] M. Stieglitz and H. Tietz, “Matrixtransformationen von folgenräumen eine ergebnisübersicht,” *Mathematische Zeitschrift*, vol. 154, no. 1, pp. 1–16, 1977.

[19] A. Wilansky, *Summability through functional analysis*. Elsevier, 2000.

National Institute of Technology, Srinagar, Department of Mathematics, Srinagar, Jammu and Kashmir, India
E-mail address: ishfaq_2phd15@nitsri.net

National Institute of Technology, Srinagar, Department of Mathematics, Srinagar, 190006, Jammu and Kashmir, India
E-mail address: tjalal@nitsri.net