HDA-2-Containing Complex Is Required for Activation of Catalase-3 Expression in Neurospora crassa

Lingaonan He,a,b Zeyu Duan,a,b Muqun Yu,a,b Shaohua Qi,a,b Ying Wang,a,b Huiqiang Lou,a,b Qun He a,b

aState Key Laboratory of Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
bMOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China

Lingaonan He and Zeyu Duan contributed equally to this work. The order of authors is determined by the length of time they have participated in the project.

ABSTRACT It is essential for aerobic organisms to maintain the homeostasis of intracellular reactive oxygen species (ROS) for survival and adaptation to the environment. In line with other eukaryotes, the catalase of Neurospora crassa is an important enzyme for clearing ROS, and its expression is tightly regulated by the growth phase and various oxidative stresses. Our study reveals that, in N. crassa, histone deacetylase 2 (HDA-2) and its catalytic activity positively regulate the expression of the catalase-3 (cat-3) gene. HDA-2, SIF-2, and SNT-1 may form a subcomplex with such a regulation role. As expected, deletion of HDA-2 or SIF-2 subunit increased acetylation levels of histone H4, indicating that loss of HDA-2 complex fails to deacetylate H4 at the cat-3 locus. Furthermore, loss of HDA-2 or its catalytic activity led to dramatic decreases of TFIIB and RNA polymerase II (RNAP II) recruitment at the cat-3 locus and also resulted in high deposition of H2A.Z at the promoter and transcription start site (TSS) regions of the cat-3 gene. Collectively, this study strongly demonstrates that the HDA-2-containing complex activates the transcription of the cat-3 gene by facilitating preinitiation complex (PIC) assembly and antagonizing the inhibition of H2A.Z at the cat-3 locus through H4 acetylation.

IMPORTANCE Clearance of reactive oxygen species (ROS) is critical to the survival of aerobic organisms. In the model filamentous fungus Neurospora crassa, catalase-3 (cat-3) expression is activated in response to H2O2-induced ROS stress. We found that histone deacetylase 2 (HDA-2) positively regulates cat-3 transcription in N. crassa; this is widely divergent from the classical repressive role of most histone deacetylases. Like HDA-2, the SIF-2 or SNT-1 subunit of HDA-2-containing complex plays a positive role in cat-3 transcription. Furthermore, we also found that HDA-2-containing complex provides an appropriate chromatin environment to facilitate PIC assembly and to antagonize the inhibition role of H2A.Z at the cat-3 locus through H4 acetylation. Taken together, our results establish a mechanism for how the HDA-2-containing complex regulates transcription of the cat-3 gene in N. crassa.

KEYWORDS HDA-2, Histone H4 acetylation, Catalase-3, Neurospora crassa

Aerobic organisms produce reactive oxygen species (ROS) as by-products through the electron transport chain during intracellular and extracellular redox reactions. ROS mainly consist of singlet oxygen, superoxide radical, hydrogen peroxide, and hydroxyl radicals. Although ROS have pivotal roles in cell signal transduction and homeostasis (1–4), they also pose a serious threat to cells if the intracellular ROS levels deviate from the optimal amount (5–8). Excessive ROS can cause extensive oxidation damage to proteins, unsaturated fatty acids, and DNA, resulting in dysfunction or death of cells (5, 6, 8, 9). To counteract the damaging effects of ROS, eukaryotic cells have evolved various antioxidation strategies which convert harmful ROS into harmless constituents to cells. Superoxide dismutase (SOD), catalases (CAT), and peroxidases are
three main types of enzymes involved in ROS clearance, among which SOD and CAT are the primary antioxidants in nearly all living cells exposed to oxygen (2, 3, 10, 11). These clearance mechanisms are highly conserved from bacteria to mammals (12).

The filamentous fungus *Neurospora crassa* possesses four catalase genes, *cat-1, cat-2, cat-3*, and *cct-1/cat-4* (13–16). Among them, *cat-1, cat-2*, and *cat-3* are inducible by oxidative stress and differentially expressed during the asexual life cycle (16, 17). Previous study showed that CAT-3 is the key catalase in growing hyphae whose function could not be replaced by other catalases (18). Furthermore, CAT-3 protein can be induced by various oxidative stresses (19). For example, H$_2$O$_2$ treatment can stimulate *cat-3* expression by elevating histone acetylation levels of the *cat-3* locus (20).

Previous study showed that CAT-3 is the key catalase in growing hyphae whose function could not be replaced by other catalases (18). Furthermore, CAT-3 protein can be induced by various oxidative stresses (19). For example, H$_2$O$_2$ treatment can stimulate *cat-3* expression by elevating histone acetylation levels of the *cat-3* locus (20). Consistent with this, CPC1/GCN4 and the histone acetyltransferase GCN5 have been proved to positively regulate the expression of *cat-3* (21). Furthermore, our previous research showed that histone variant H2A.Z is also a critical regulator for *cat-3* transcription. SWR complex-mediated H2A.Z deposition and INO80 complex-mediated H2A.Z removal both significantly influence *cat-3* transcription (22, 23). These results suggest that the chromatin structure and histone modifications play major roles in regulating the inducible expression of the *cat-3* gene.

The dynamics of histone acetylation are controlled by the antagonistic roles of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In general, HDACs frequently serve as corepressors to inactivate transcription. Hos2 has been identified as a HDAC subunit in the Set3 complex, accompanied by Set3, Sif2, Snt1, YIL112w, Cpr1, and another histone deacetylase, Hst1 (24). Unlike the classical repressive role of most HDACs, *Saccharomyces cerevisiae* Hos2 can bind to and deacetylate histone in the coding region of active genes (25). Genetic evidence has shown that Set3 and the deacetylase activity of Hos2 promote the efficient activation of the *GAL1* gene by deacetylating specific lysines in histones H3 and H4 (25, 26). Further study showed that the Set3 complex deacetylates histone at the 5′ ends of actively transcribed genes (27). In mammalian cells, the Set3 complex was proposed to be a functional homolog of the NCoR/SMRT complex, which forms a stable complex with histone deacetylase HDAC3 and TBL1. The deacetylases HDAC3 and TBL1 are mammalian homologs of Hos2 and Sif2, which are core subunits of the *S. cerevisiae* Set3 complex (28, 29). In addition, the Snt1 subunit of the Set3 complex shares the SANT domain with NCoR/SMRT (24, 30). Even though HDAC3 can act as a transcriptional corepressor, it is required for transcriptional activation in a class of retinoic acid response elements (31, 32). These results strongly suggest that the conserved enzymatic activity of the Set3 complex and NCoR/SMRT complex appear to be the Hos2 and HDAC3 subunits, which deacetylate histone H3 and H4 at the actively transcribed genes.

In budding yeast, Htz1/H2A.Z preferentially occupies the promoter regions of two transcriptionally inactive but inducible genes, *GAL1* and *PHOS* (33–37). Further study revealed that *htz1Δ* is synthetic sick with each core subunit of the Set3 complex, such as SET3, HOS2, SIF2, and SNT1, suggesting overlapping roles of them in some biological processes. Interestingly, the severe slow growth phenotype of *htz1Δ set3Δ* was partially suppressed by further deletion of the chromatin remodeler SWR1 gene (38). These results suggested that Set3/Hos2 histone deacetylase has previously unrecognized functions in the dynamic deposition or remodeling of nucleosomes containing H2A.Z. A recent study identified HDA-2 as a positive regulator for *cat-3* transcription in *Trichoderma atroviride* (39). However, it is not clear whether HDA-2 is involved in regulation of *cat-3* gene expression in *N. crassa*.

Here, we revealed that in *N. crassa*, histone deacetylase 2 (HDA-2) positively regulates *cat-3* gene expression, and such a regulatory role depends on its catalytic activity. Immunoprecipitation data confirmed the interaction among *N. crassa* HDA-2, SIF-2, and SNT-1 proteins. Like HDA-2, deletion of the SIF-2 or SNT-1 subunit in HDA-2-containing complex downregulates *cat-3* expression. The acetylation levels of histone H4 were increased in these mutants, indicating that loss of the HDA-2 complex fails to deacetylate H4 at the *cat-3* locus. Chromatin immunoprecipitation (ChIP) assays revealed that loss of
HDA-2 or its catalytic activity results in defective assembly of the preinitiation complex (PIC) and high deposition of H2A.Z at the cat-3 locus. Taken together, our results demonstrate that the HDA-2 complex is critical for cat-3 activation.

RESULTS

HDA-2, SIF-2, and SNT-1 may form a subcomplex for resisting H2O2-induced ROS stress. To identify the factors that contribute to resisting H2O2-induced ROS stress, we performed H2O2 sensitivity assays to screen N. crassa knockout mutants. We found that a strain with deletion of the hda-2 gene (NCU02795) exhibited a severe H2O2 sensitivity phenotype compared to that of the wild-type (WT) strain (Fig. 1A and B). HDA-2 is a class I histone deacetylase and is the homolog of Saccharomyces cerevisiae Hos2 and Schizosaccharomyces pombe Phd1. In S. cerevisiae, Hos2p is the deacetylase subunit of the Set3 complex (24).

To systematically analyze the function of each subunit in H2O2-induced ROS stress, we tried to generate deletion mutants of these genes by gene replacement in the ku70RIP strain. However, we could not obtain the homokaryotic deletion strains of the Yil112w (NCU00388) or Cpr1 (NCU01200) gene, suggesting that these two genes are essential to cell viability in N. crassa. As shown in Fig. 1A and B, deletion of sif-2 (NCU06838) or snt-1 (NCU10346) resulted in a similar H2O2 sensitivity phenotype with the hda-2KO strain, indicating that these subunits probably cooperate to resist H2O2-induced ROS stress. To further confirm the H2O2 sensitivity phenotype of these knockout strains, we generated the complementary strains by transforming Myc-tagged constructs of subunit proteins into each corresponding knockout strain. As expected, ectopic expression of Myc-tagged proteins restored the H2O2 sensitive phenotypes of hda-2KO, sif-2KO, or snt-1KO strains to those of WT strains (Fig. 1A and B), indicating that the H2O2 sensitivity phenotype of each mutant was due to the deletion of each subunit gene. However, the strains with deletion of nst-1 (NCU04737) or set-4 (NCU04389) exhibited similar H2O2 sensitivity as the WT strain (see Fig. S2A in the supplemental material), suggesting that NST-1 and SET-4 are not key regulators for resisting H2O2-induced ROS stress. Therefore, the HDA-2, SIF-2, and SNT-1 proteins play significant roles in responding to H2O2-induced ROS stress in N. crassa.

To confirm the integrity of N. crassa HDA-2-containing complex, we generated HDA-2- and SIF-2-specific antibodies (see Fig. S3A and B in the supplemental material) and examined the interaction between HDA-2 and SIF-2 in hda-2KO, Myc-HDA-2 and sif-2KO, Myc-SIF-2 transformants. Immunoprecipitation assays revealed that the Myc-HDA-2 or Myc-SIF-2 protein strongly interacts with endogenous SIF-2 or HDA-2, respectively (Fig. 1C and D). The snt-1KO strain exhibited similar H2O2 sensitivity as hda-2KO and sif-2KO strains, so we performed immunoprecipitation assays, which revealed that the Myc-SNT-1 protein strongly interacts with endogenous HDA-2 or SIF-2, respectively (Fig. 1E and F). To further confirm whether other homologous proteins of the S. cerevisiae Set3 complex also form complexes in N. crassa, we performed immunoprecipitation assays and found that Myc-SET-4, Myc-NST-1, Myc-YIL112w, and Myc-CPR-1 proteins interact with endogenous HDA-2 or SIF-2 (see Fig. S1B to I in the supplemental material). These results demonstrated that HDA-2, SIF-2, and SNT-1 may form a subcomplex to resist H2O2-induced oxidative stress in N. crassa.

HDA-2-containing complex plays a key role in activation of cat-3 transcription. Since CAT-3 is the major catalase in mycelia, the genetic analysis results above suggest that the HDA-2-containing complex may participate in the regulation of cat-3 expression in N. crassa. To test this possibility, we performed a Western blot assay to analyze the protein levels of CAT-3 in the WT and each mutant strain. As shown in Fig. 2A (see also Fig. S2B in the supplemental material), the protein levels of CAT-3 in hda-2KO, sif-2KO, and snt-1KO strains were extremely lower than in the WT strain, whereas the protein levels of CAT-3 in the nst-1KO and set-4KO strains were similar to that in the WT strain. As expected, an in-gel assay showed that the stained bands corresponding to CAT-3
HDA-2, SIF-2, and SNT-1 may form a subcomplex for resisting H$_2$O$_2$-induced ROS stress. (A) Mycelial growth of the wild type (WT) and cat-3KO, hda-2KO, sif-2KO, or snt-1KO and HDA-2, SIF-2, or SNT-1 transformants in plates with 0, 5, or 10 mM H$_2$O$_2$ as indicated. Cultures were inoculated ...

FIG 1 HDA-2, SIF-2, and SNT-1 may form a subcomplex for resisting H$_2$O$_2$-induced ROS stress. (A) Mycelial growth of the wild type (WT) and cat-3KO, hda-2KO, sif-2KO, or snt-1KO and HDA-2, SIF-2, or SNT-1 transformants in plates with 0, 5, or 10 mM H$_2$O$_2$ as indicated. Cultures were inoculated in...
activity were weaker in hda-2KO, sif-2KO, and snt-1KO mutants than in the WT, nst-1KO, and set-4KO strains (Fig. 2B; see also Fig. S2C). Consistent with the protein and catalase activity results, the levels of cat-3 mRNA in hda-2KO, sif-2KO, and snt-1KO mutants were also much lower than those in the WT, nst-1KO, and set-4KO strains (Fig. 2C; see also Fig. S2D). These results suggest that the decreased expression of cat-3 in these mutants is responsible for their sensitivity to H2O2-induced ROS stress. In addition, ectopic expression of Myc-tagged HDA-2 or Sif-2 in each corresponding deletion strain restored the levels of CAT-3 activity (Fig. 2D and E) and cat-3 expression to WT levels (Fig. 2F to I). Taken together, these results demonstrated that HDA-2-containing complex is critical for transcriptional activation of the cat-3 gene.

The deacetylase activity of HDA-2 is required for activation of cat-3 transcription. When the amino acid sequence of N. crassa HDA-2 was examined in a BLAST search against protein databases, its homologs were found to be highly conserved with Homo sapiens HDAC3, Saccharomyces cerevisiae Hos2, and Drosophila melanogaster HDAC3 (Fig. 3A). To determine whether the deacetylase activity of HDA-2 protein is required for activation of cat-3 transcription, we generated a series of HDA-2 mutants by introducing catalytic-dead point mutation (K89A, H202A/H203A, H240A/H241A, Y371F) or deletion of the zinc-binding sites (D238 V239 H240), respectively (40–42). A plate assay showed that ectopic expression of catalytic-dead Myc-HDA-2 failed to rescue the growth defect and H2O2 sensitive phenotypes of hda-2KO strains (Fig. 3B and C), indicating that the deacetylase activity of HDA-2 plays an important role in regulation of H2O2 resistance. Consistent with the phenotypes of these transformants, expression of the catalytic-dead Myc-HDA-2 significantly decreased the CAT-3 activity, CAT-3 protein, and cat-3 mRNA levels compared to those of the WT and hda-2KO, Myc-HDA-2 strains (Fig. 3D, E, and F). Taken together, these results demonstrated that the catalytic activity of HDA-2 protein is required for activation of cat-3 expression.

HDA-2-containing complex can bind to the cat-3 locus and regulate H4 acetylation. To test whether HDA-2-containing complex binds to the cat-3 locus, we carried out ChIP assays with HDA-2 or SIF-2 antibody. ChIP data revealed that HDA-2 and SIF-2 are highly enriched at the cat-3 locus in the WT strain compared to those in the hda-2KO or sif-2KO strains (Fig. 4A to C), confirming that HDA-2-containing complex could bind to the cat-3 locus. To test whether the binding of HDA-2 influences the histone acetylation state, we measured the levels of H3 and H4 acetylation at the cat-3 locus in the WT, hda-2KO, and sif-2KO strains. ChIP data showed that the H4 acetylation levels were increased at the cat-3 5' end of the regulation region in these mutants compared to those of WT strain (Fig. 4D and E), while the H3 acetylation levels had no significant change (Fig. 4F and G). We also measured the levels of H2B and H3 at the cat-3 locus in the WT, hda-2KO, and sif-2KO strains. However, ChIP results showed that the occupancies of histone H2B and H3 at the cat-3 locus were identical in WT, hda-2KO, and sif-2KO strains, indicating that the nucleosome density is not affected by the binding of HDA-2 and SIF-2 at the cat-3 locus (Fig. 4H and I). Taken together, these results suggest that HDA-2-containing complex is involved in regulation of H4 acetylation at the cat-3 locus but has no effect on the nucleosome density.

HDA-2-containing complex is required for PIC assembly at the cat-3 locus. In S. cerevisiae, Rpd3 and Hos2 are required for RNA polymerase II (RNAP II) recruitment to the RNR3 gene for its transcription (43). To test whether the HDA-2-containing complex is required for the PIC assembly at the cat-3 promoter, we performed a ChIP assay using (TFIIB)-specific antibody in WT, hda-2KO, and sif-2KO strains. As shown in Fig. 5A, the enrichment of TFIIB at the cat-3 promoter, transcription start site (TSS), and 5' end of the open reading frame (ORF) region was dramatically decreased in hda-2KO and sif-2KO strains (Fig. 5B; see also Fig. S2E). Consistent with this, mapping of endogenous SIF-2 or HDA-2 responsible for the interaction with ectopically expressing wild-type Myc-HDA-2 in hda-2KO strain or Myc-SIF-2 in sif-2KO strain, respectively, (E and F) Immunoprecipitation assays showing the interaction between Myc-SNT-1 and endogenous HDA-2 or SIF-2 (F) protein, respectively.
FIG 2 HDA-2-containing complex plays a key role for the activation of *cat-3* transcription. (A) Western blot showing the levels of CAT-3 protein in the WT, *hda-2*Δ, *sif-2*Δ, *snt-1*Δ, and *cat-3*Δ strains. The membrane stained with Coomassie blue.

(Continued on next page)
sif-2KO strains compared to that in the WT strain, indicating that deletion of the hda-2 or sif-2 gene affects binding of TFII B at the cat-3 locus. We further checked the enrichment of RNAP II at the cat-3 locus in WT, hda-2KO, and sif-2KO strains. ChIP assays using RPB-1-specific antibody revealed that RNAP II enrichment was also dramatically decreased at the cat-3 promoter and ORF regions in hda-2KO and sif-2KO strains compared to that in the WT strain (Fig. 5B), indicating that the HDA-2-containing complex facilitates the assembly of RNAP II at the cat-3 promoter/TSS region.

A previous study showed that Rpd3 and Hos2 regulate the activation of RNR3 by deacetylating nucleosomes at the promoter in S. cerevisiae (43). To further confirm the catalytic activity of HDA-2 in regulation of PIC assembly at the cat-3 promoter and TSS regions, we examined the acetylation status of H4 at the cat-3 locus in WT, hda-2KO, hda-2KO, Myc-HDA-2 or hda-2KO, Myc-HDA-2 strains. Consistent with the levels of cat-3 expression, ChIP assays revealed that ectopic expression of Myc-HDA-2 but not Myc-HDA-22DVH not only recovered the low levels of H4 acetylation at the cat-3 promoter seen in hda-2KO strain (Fig. 5C), but also significantly rescued the TFII B and RNAP II enrichment at the cat-3 gene region in the hda-2KO strain (Fig. 5D and E). Taken together, these data suggested that the catalytic activity of the HDA-2 protein is required for its role in activation of cat-3 expression by regulating H4 acetylation and assembly of PIC at the cat-3 locus.

HDA-2-containing complex activates transcription of the cat-3 gene by antagonizing inhibition of H2A.Z at the cat-3 locus through H4 acetylation. In S. cerevisiae, histone H3 and H4 tail acetylation is required for efficient recruitment of H2A.Z (36). We previously found that deposition of H2A.Z at the cat-3 gene promoter/TSS region negatively regulated transcription of cat-3 (22). To test whether the H4 hyperacetylation at the cat-3 promoter/TSS region promotes H2A.Z deposition, we examined the occupancies of H2A.Z at the cat-3 promoter/TSS region in WT, hda-2KO, and sif-2KO strains. ChIP assays using H2A.Z-specific antibody showed that H2A.Z occupancies were dramatically increased at the cat-3 promoter/TSS region in hda-2KO and sif-2KO strains compared to that of WT strain (Fig. 6A). Moreover, ectopic expression of WT Myc-HDA-2 but not catalytic-dead Myc-HDA-22DVH protein rescued the increased deposition of H2A.Z at the cat-3 promoter/TSS region in hda-2KO strain (Fig. 6B). These results indicated that HDA-2-containing complex antagonizes H2A.Z excessive deposition to activate transcription of the cat-3 gene through H4 acetylation.

Our previous study showed that the chromatin remodeling complex INO80C positively regulates cat-3 expression through removing H2A.Z around the cat-3 locus (23). To test whether the recruitment of INO80C to the cat-3 locus was affected by HDA-2-containing complex, we examined the enrichment of INO80 and ARP8, the catalytic and structural subunit of INO80C, at the cat-3 locus in WT, hda-2KO, and sif-2KO strains. ChIP data showed that the enrichment of INO80 and ARP8 at the cat-3 promoter/TSS region were dramatically decreased in hda-2KO and sif-2KO strains compared to those of WT strain (Fig. 6C and D). Ectopic expression of Myc-HDA-2 but not catalytic-dead Myc-HDA-22DVH protein significantly increased the INO80 enrichment around the cat-3 promoter region in the hda-2KO strain (Fig. 6E). Taken together, these data demonstrated that the catalytic activity of HDA-2 protein is required for its role in activation of cat-3 expression by regulating the INO80C-mediated removal of H2A.Z around the cat-3 promoter/TSS region.

FIG 2 Legend (Continued)

represents the total protein in each sample and acted as a loading control for Western blotting. (B) Catalase activity in-gel assay. Crude extracts from the WT, hda-2KO, sif-2KO, snt-1KO, and cat-3KO strains were subjected to native-PAGE, and the catalase activity was determined in the in-gel assay. (C) RT-qPCR analysis showing the levels of cat-3 mRNA in the WT, hda-2KO, sif-2KO, and snt-1KO strains. Error bars show SD (n = 3). Significance was assessed by using a two-tailed t test. ***P < 0.001 versus WT. (D and E) Catalase activity in-gel assays. Crude extracts from the WT, hda-2KO, or sif-2KO and HDA-2 or SIF-2 transformants were subjected to native-PAGE, and the catalase activity was determined with the in-gel assay. (F and G) Western blot showing the levels of CAT-3, HDA-2, or SIF-2 and Myc-HDA-2 or Myc-SIF-2 proteins in the WT, hda-2KO, or sif-2KO and HDA-2 or SIF-2 transformants. The membranes stained with Coomassie blue represent the total protein in each sample and acted as a loading control for Western blotting. (H and I) RT-qPCR analyses showing the levels of cat-3 mRNA in the WT, hda-2KO, or sif-2KO and HDA-2 or SIF-2 transformants. Error bars show SD (n = 3). Significance was assessed by using a two-tailed t test. ***P < 0.001 versus WT.
FIG 3 The deacetylase activity of HDA-2 is required for activation of cat-3 transcription. (A) Amino acid sequence alignment of the conserved HDA-2 from Neurospora crassa, Saccharomyces cerevisiae, Drosophila melanogaster, Mus musculus, and Homo sapiens. (B) Growth of the WT, hda-2KO, and HDA-2 (Continued on next page)
DISCUSSION

Our recent studies have shown that H$_2$O$_2$ treatment can induce cat-3 gene expression and increase H3 acetylation at the cat-3 locus (20). Biochemical analysis showed that the transcription factor CPC1/GCN4 and histone acetyltransferase GCN5 are required for maintenance of cat-3 expression and response to H$_2$O$_2$-induced oxidative stress in N. crassa (21). It is necessary to further identify the histone-modifying enzymes involved in regulation of cat-3 gene expression. Neurospora has 11 predicted proteins related to known or putative histone deacetylases (HDACs) (13). In this study, we generated most of the deletion mutants of these HDAC genes, but not the homokaryotic deletion strains of the nst-3 (NCU03059) or nst-6 (NCU05973) gene. According to the catalase activity in-gel assay and Western blot analysis, we found that only HDA-2 is involved in the positive regulation of cat-3 expression compared with the other eight histone deacetylases in N. crassa (see Fig. S4A and B in the supplemental material). In its catalytically dead mutants, the cat-3 expression level is significantly decreased, like that in hda-2200 strains, indicating that expression of cat-3 is dependent on the catalytic activity of HDA-2. HDA-2 is a deacetylase of the class I type histone deacetylases and is the homolog of S. cerevisiae Hos2. Hos2 and Set3, which is the homologous protein of N. crassa SET-4, are central components of the Set3 complex (24). However, deletion of the hda-2, sil-2, or snt-1 subunit but not set-4 or nst-1 in the N. crassa genome leads to downregulation of cat-3 expression. Immunoprecipitation data confirmed the interaction among N. crassa HDA-2, SIF-2, and SNT-1 proteins. Taken together, our results suggest that HDA-2, SIF-2, and SNT-1 proteins may form a subcomplex for cat-3 activation.

The role of HDA-2-containing complexes in yeast and mammals in gene expression has been reported in previous studies. As a histone deacetylase, we found that HDA-2-containing complex positively regulates cat-3 transcription in N. crassa. In agreement with this result, HDA-2 was identified as a positive regulator for cat-3 transcription in Trichoderma atroviride (39). In yeast, Hos2 is important for activation of GAL1 and INO1 genes through binding to the coding regions of genes (25). In addition, Hos2 and an associated factor, Set3, are necessary for efficient gene transcription (25). In contrast to other class I histone deacetylases, which are frequently found as corepressors, Hos2 is directly required for gene activation. To identify the underlying molecular mechanism of HDA-2 for cat-3 transcription, we performed a series of experiments and found that histone H4 acetylation but not H3 acetylation at the cat-3 locus in hda-2200 and sil-2200 strains was increased. A previous study showed that H4 acetylation could affect the assembly of PIC (44). To be specific, a previous work reported that Cmr1, a largely uncharacterized nuclear protein in S. cerevisiae, is recruited to regulate RNAP II occupancy in transcribed coding regions, which is stimulated by the histone deacetylases Rpd3 and Hos2 (45). In this study, we found that deletion of HDA-2 or SIF-2 lead to a dramatic decrease of TFIIB and RPB-1 levels at the cat-3 promoter and TSS regions (Fig. 5A and B). These results strongly suggest that the HDA-2-mediated deacetylation of H4 is necessary for efficient recruitment of transcriptional machinery for activation of the cat-3 gene.

We previously showed that H2A.Z is immediately evicted from the chromatin at the cat-3 locus in response to oxidative stress with a corresponding accumulation of CPC1 at the cat-3 locus, and we suggested that H2A.Z antagonizes CPC1 binding to restrict cat-3 expression in a normal setting, whereas under oxidative stress H2A.Z is removed from chromatin, leading to a rapid and full activation of cat-3 transcription (22).
FIG 4 HDA-2-containing complex can bind to the cat-3 locus and regulate H4 acetylation. (A) Schematic depiction of cat-3 (NCU00355) on the Neurospora genome. (primer pairs 5 to 8) under the schematic indicate the regions tested by ChIP-qPCR. TSS, transcription start site; ORF, open reading frame. (B and C) ChIP assays showing the binding levels of HDA-2 (B) and SIF-2 (C) at the cat-3 locus in the WT, hda-2KO (B), and sif-2KO (C) strains. (D and E) ChIP assays showing the acetylation of H4 at the cat-3 locus in the WT, hda-2KO (D), and sif-2KO (E) strains.

(Continued on next page)
addition, our recent study found that the negative cofactor 2 (NC2) complex activates cat-3 expression by recruiting INO80 complex to remove H2A.Z from special H2A.Z-containing nucleosomes at the promoter and TSS of the cat-3 gene (23). Furthermore, NC2 is involved in removal of H2A.Z at hsp70/dnak and hsp90a genes (23). These results suggest that H2A.Z deposition may serve as a regulatory target for external stimuli and that the structure of H2A.Z-containing nucleosomes around these inducible genes is less stable than those of H2A-containing nucleosomes. In budding yeast, efficient deposition of H2A.Z is further promoted by histone H3 and H4 tail acetylation and the bro-

FIG 5 HDA-2-containing complex is required for PIC assembly at the cat-3 locus. (A and B) ChIP assays showing the binding of TFIIB (A) and RPB-1 (B) at the cat-3 locus in the WT, hda-2^ko, and sif-2^ko strains. (C) ChIP assay showing the acetylation of H4 at the cat-3 locus in the WT, hda-2^ko, and HDA-2 transformants. (D and E) ChIP assays showing the binding of TFIIB (D) and RPB-1 (E) at the cat-3 locus in the WT, hda-2^ko, and HDA-2 transformants. Error bars show SD (n = 3). Significance was assessed by using a two-tailed t test. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

FIG 4 Legend (Continued)
(F and G) ChIP assays showing the acetylation of H3 at the cat-3 locus in the WT, hda-2^ko, and sif-2^ko strains. (H and I) ChIP assays showing the occupancy levels of H2B (H) and H3 (I) at the cat-3 locus in the WT, hda-2^ko, and sif-2^ko strains. Error bars show SD (n = 3). Significance was assessed by using a two-tailed t test. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
modomain protein Bdf1, a component of the SWR1 remodeling complex that deposits H2A.Z (36). It has been found in previous studies that there is an interplay between the SWR1 complex and INO80 complex. For example, AtARP6, a specific subunit of SWR1-C that mediates the H2A.Z exchange in Arabidopsis, was found to have an inhibitory role in the local chromatin enrichment of AtINO80 (46). Moreover, both htz1Δ set3Δ and swr1Δ set3Δ exhibit a severe slow growth phenotype in S. cerevisiae, but the htz1Δ swr1Δ set3Δ triple mutant grows relatively well, indicating Set3/Hos2 histone deacetylase has previously unrecognized functions in dynamic deposition and remodeling of nucleosomes containing H2A.Z (38). Our ChIP assays showed that the abundance of H2A.Z at the
cat-3 locus was dramatically increased in the absence of HDA-2 and SIF-2. In contrast, loss of HDA-2 and SIF-2 resulted in a decreased recruitment of INO80 and ARPB8 subunits of the INO80 complex at the cat-3 locus compared to that in the WT strain. These results indicated that HDA-2-containing complex positively regulates transcription of the cat-3 gene by antagonizing inhibition of H2A.Z at the cat-3 locus through H4 acetylation.

According to our previous study, the H2AZ-containing nucleosomes should be removed upon gene induction to provide access for the transcriptional machinery (22). In yeast, a genome-wide study showed that blocking PIC assembly resulted in promoter-specific H2AZ accumulation, while H2AZ eviction was unaffected upon depletion of INO80, indicating that the PIC is required to evict H2AZ (47). In this study, we found that HDA-2-containing complex is required not only for PIC assembly but also for antagonizing the inhibition of H2AZ at the cat-3 locus through H4 acetylation. Therefore, these results cannot completely exclude an interplay between PIC defective assembly and H2AZ excessive deposition at the cat-3 locus in hda-2ΔO and sif-2ΔD strains.

MATERIALS AND METHODS

Strains and culture conditions. The 87-3 (bd, a) strain was used as the wild-type strain in this study (48). The ku70Δ (bd, a) strain, generated previously (49), was used as the host strain for creating the hda-2Δ (NCU02795), sif-2Δ (NCU06838), snt-1 (NCU10346), nst-1 (NCU04737), and set-4 (NCU4389) knockout mutants by deleting the entire ORF through homologous recombination using a protocol described previously (50). The plasmid containing the cfp promoter driven the HDA-2-ORF and its 3’-untranslated region (pcfp-SMyc-6×His-HDA-2) was used as the template for mutagenesis, and five mutations of HDA-2 (HDA-2DDDD, HDA-2DDDD, HDA-2D40A/D41A, HDA-2K89A, and HDA-2Y371F) were generated. Afterwards, plasmids pcfp-SMyc-6×His-HDA-2, pcfp-SMyc-6×His-HDA-2DDDD, pcfp-SMyc-6×His-HDA-2DA40A/D41A, pcfp-SMyc-6×His-HDA-2DDDD, and pcfp-SMyc-6×His-HDA-2371F were transformed into hda-2ΔO (bd, his-3-deficient) strains to obtain the transformants hda-2ΔO, Myc-HDA-2, hda-2ΔO, Myc-HDA-2DDDD, hda-2ΔO, Myc-HDA-2345A, hda-2ΔO, Myc-HDA-2D40A/D41A, and hda-2ΔO, Myc-HDA-2Y371F. Applying the same method, a sif-2ΔO, Myc-SIF-2 strain and snt-1ΔD, Myc-SNT-1 strain were created. All strains used in this study possess the same bd background.

The medium for plate assays contained 1× Vogel’s salts, 3% sucrose, and 1.5% (wt/vol) agar with or without H2O2. Liquid cultures were grown at 25°C with shaking in minimal medium (1× Vogel’s and 2% glucose) for 18 h in constant light (LL).

Plate assay. Age-appropriate conidia were inoculated in petri dishes with 50 mL liquid medium containing Vogel’s minimal medium (VM) and 2% glucose under static culture condition at 25°C in constant light (LL) until the exponential growth phase of mycelium. The disks of mycelium mat were cut with a cork borer for quantification. For each strain, an individual mycelium disk was transferred into the centers of VM plates containing 3% sucrose and 1.5% (wt/vol) agar and cultured at 25°C in constant light (LL). The response to oxidative stress was determined by analyzing disk diameters of strains on VM plates containing 3% sucrose and 1.5% (wt/vol) agar with or without H2O2 at the indicated concentrations. In order to exclude the effect of the growth rate of different strains on the H2O2 sensitivity, the calculation method used previously, which included the extent of relative growth rate to represent the extent of H2O2 sensitivity, was also used in this study (20–22). In addition, in order to visually analyze the growth phenotype, all plates were photographed until the disk diameters of the wild-type strain in medium without H2O2 exactly extended to the edge of the plate. Then, we directly analyzed the H2O2 sensitivity through visual observation of the disk diameters of strains in medium with oxidative stress.

In-gel assay for catalase. Cell extracts of mycelium disks cultured for 18 h in liquid medium were used for the zymogram. Ground tissues were mixed with ice-cold extraction buffer containing 50 mM HEPEs (pH 7.4), 137 mM NaCl, 10% glycerol, and protease inhibitors pepstatin A (1 μg/mL), leupeptin (1 μg/mL), and phenylmethylsulfonyl fluoride (PMSF; 1 mM), and centrifuged at 10,000 × g for 10 min at 4°C. The protein concentration was measured by Bio-Rad protein assay dye at 595 nm. For the in-gel assay, catalase activity was determined as described previously (51). Equal amounts of total protein (40 μg) were loaded into a 7.5% native polyacrylamide slab gel. After electrophoresis, the gel was immersed in 10 mM H2O2 with shaking for 10 min and then in a 1:1 mixture of freshly prepared 1% potassium hexacyanoferrate (III) and 1% iron (III) chloride hexahydrate. Catalase activity was visualized as a band where H2O2 was decomposed by catalase.

Protein analysis. Protein extraction, quantification, and Western blot analysis were performed as described previously (52). Equal amounts of total protein (40 μg) were loaded into each lane. After electrophoresis, proteins were transferred onto a polyvinylidene difluoride (PVDF) membrane. Western blot analysis was performed using antibodies against the proteins of interest.

RNA analysis. For quantitative real-time reverse transcriptase quantitative PCR (qPCR), total RNA was isolated with TriZol reagent and treated with DNase I to remove genomic DNA, according to the manufacturer’s protocol. Each RNA sample (total RNA, 5 μg) was subjected to reverse transcription with Moloney murine leukemia virus reverse transcriptase (Promega) and then amplified by real-time PCR (ABI 7500). The primers used for qPCR are shown in Table S1 in the supplemental material. The relative values of gene expression were calculated using the threshold cycle (2−ΔΔCT) method (53) by comparing
the cycle number for each sample with that for the untreated control. The results were normalized to expression levels of the β-tubulin gene.

Generation of antisera against HDA-2 and SIF-2. Glutathione S-transferase (GST)-HDA-2 (amino acids T384 to R487) and GST-SIF-2 (amino acids E109 to N347) fusion proteins were expressed in BL21 cells, and soluble recombinant proteins were purified and used as the antigens to generate rabbit polyclonal antisera, as described previously (54, 55).

ChIP analysis. Chromatin immunoprecipitation (ChIP) assays were performed as described previously (56). Briefly, N. crassa tissues were fixed with 1% formaldehyde for 15 min at 25°C with shaking. Glycine was added at a final concentration of 125 mM, and samples were incubated for another 5 min. The cross-linked tissues were ground and resuspended at 0.5 g in 6 mL lysis buffer containing protease inhibitors (1 mM PMSF, 1 μg/mL leupeptin, and 1 μg/mL pepstatin A). Chromatin was sheared by sonication to approximately 500-1,000-bp fragments. A 1-mL aliquot of protein solution (2 mg/mL) was used for each immunoprecipitation reaction, and 10 μL was kept as the input DNA. The ChIP was carried out with 3 μL of anti-H4ac antibody (06-866; Millipore), 3 μL of anti-H3ac antibody (06-599; Millipore), 3 μL of anti-H3 antibody (2650; CST), 2 μL of anti-H2B antibody (1790; abcam), 10 μL of anti-HDA-2 antibody, 10 μL of anti-SIF-2 antibody, 10 μL of anti-TFIIB antibody, 10 μL of anti-RPB-1 antibody, 10 μL of anti-H2AZ antibody, 10 μL of anti-INO80 antibody, 10 μL of anti-ARP8 antibody. Immunoprecipitated DNA was quantified by using real-time PCR with primer pairs. The primer pairs used are listed in Table S2 in the supplemental material. ChIP-quantitative PCR data were normalized by the input DNA and are presented as a percentage of input DNA. Each experiment was independently performed at least three times.

Coimmunoprecipitation. Cell extracts from the adhered mycelium mat incubated for 18 h were used for performing coimmunoprecipitation (co-IP) analyses. Protein extraction, quantification, and coimmunoprecipitation assays were performed as described previously (55). Briefly, 4-mg/mL protein extracts in extraction buffer were incubated with 5 μL of monoclonal antibody to c-Myc (HT101-02; TransGen Biotech), 10 μL of antibody to HDA-2, and/or 10 μL of antibody to SIF-2 for 4 h at 4°C with rotation. Then, the 40 μL of precleaved protein G-Sepharose (17-0885-02; GE Healthcare) was added and incubated for 1 h at 4°C with rotation. The beads were washed three times with ice-cold extraction buffer, mixed with protein loading buffer, and boiled for 10 min, and the immunoprecipitated proteins were analyzed by Western blotting.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

FIG S1, TIF file, 1.1 MB.

FIG S2, TIF file, 0.8 MB.

FIG S3, TIF file, 0.4 MB.

FIG S4, TIF file, 1 MB.

TABLE S1, DOCX file, 0.01 MB.

TABLE S2, DOCX file, 0.01 MB.

ACKNOWLEDGMENTS

This work was supported by grants from the National Key R&D Program of China [2018YFA0900500] and the National Natural Science Foundation of China [31771383] to Qun He. We are very grateful to Xiao Liu, Yike Zhou, and Chengcheng Zhang for critically evaluating the manuscript.

REFERENCES

1. Forman HJ, Torres M, Fukuto J. 2002. Redox signaling. Mol Cell Biochem 234–235:49–62. https://doi.org/10.1023/A:1015913229650.

2. Gabbita SP, Robinson KA, Stewart CA, Floyd RA, Hensley K. 2000. Redox regulatory mechanisms of cellular signal transduction. Arch Biochem Bio- physics 376:1–13. https://doi.org/10.1006/abbi.1999.1685.

3. de Nadal E, Posas F. 2010. Multilayered control of gene expression by stress-activated protein kinases. EMBO J 29:4–13. https://doi.org/10.1038/ emboj.2009.346.

4. Mantindale JL, Holbrook NJ. 2002. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15. https://doi.org/10.1002/jcp.10119.

5. Scandalios JG. 2005. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014. https://doi.org/10.1590/s1516-887x20050 00700003.

6. Schumacker PT. 2006. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176. https://doi.org/10.1016/ j.ccr.2006.08.015.

7. Trachootham D, Alexandre J, Huang P. 2009. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591. https://doi.org/10.1038/nrd2803.

8. Waris G, Ahsan H. 2006. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14. https://doi.org/10.1186/1477-3163-5-14.

9. Glorieux C, Zamocky M, Sandoval JM, Verrax J, Calderon PB. 2015. Regulation of catalase expression in healthy and cancerous cells. Free Radic Biol Med 87:84–97. https://doi.org/10.1016/j.freeradbiomed.2015.06.017.

10. Davies KJ. 2000. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289. https://doi.org/10.1080/713803728.
28. Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R. 2009. Dimethylation of H3K4 by Set1 recruits the
27. Kim T, Buratowski S. 2009. Dimethylation of H3K4 by Set1 recruits the
26. Robyr D, Suka Y, Xenarios I, Kurdistani SK, Wang A, Suka N, Grunstein M. 2002. Requirement of Hos2 histone
25. Wang A, Kurdistani SK, Grunstein M. 2002. Requirement of Hos2 histone
deaetylase for gene activity in yeast. Science 298:1414–1418. https://doi.org/10.1126/science.1077990.

14. Schliebs W, Wurtz C, Kunau WH, Veenhuis M, Rottensteiner H. 2006. A
13. Ohta C, Han K, Sakai W, Pratt R. 2004. Lessons from the genome sequence of Neuro-
12. Zamocky M, Furtmüller PG, Obinger C. 2008. Evolution of catalases from
11. Neddleshewa SK, Goke N, Loscalzo J. 2003. Mechanisms of oxidative stress and vascular dysfunction. Postgrad Med J 79:195–199. https://doi.org/10.1136/pmj.79.9390.195.
10. Wang MC, Kurdistani SK, Flores S. 2017. Histone deacetylase HDA-2 regulates Trichoderma atroviride
deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol Cell Biol 18:5121–5127. https://doi.org/10.1128/MCB.18.9.5121.
9. Seto E, Yoshida M. 2014. Erasers of histone acetylation: the histone deacetyl-
8. Li Y, Selvakumaran V, Won KJ, Lazar MA. 2013. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear re-
7. Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, Rando OJ, Madhani HD. 2005. Histone variant H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 3:e384. https://doi.org/10.1371/journal.pbiol.0030384.
6. Sun Z, Feng D, Fang B, Mullican SE, You SH, Lim HW, Everett LJ, Nabel CS, Belden WJ, Larrondo LF, Froehlich AC, Shi M, Chen CH, Loros JJ, Dunlap JC. 2007. The band mutation in Neurospora crassa is a dominant allele of the human histone deacetylase family gene. J Biol Chem 272:28001–28007. https://doi.org/10.1074/jbc.b2.74.28001.
5. Alberti S, Gitler AD, Lindquist S. 2007. A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24:913–919. https://doi.org/10.1016/yea.1502.
4. Guilleminette B, Bataille AR, Gevry N, Adam M, Blanchette M, Robert F, Gaschnig L. 2005. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 3:e384. https://doi.org/10.1371/journal.pbiol.0030384.
3. Kim T, Buratowski S. 2009. Dimethylation of H3K4 by Set1 recruits the
2. Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R. 2000. A core SMRT corepressor complex containing HDAC3 and TBL1, a
1. Wang MC, Kurdistani SK, Flores S. 2017. Histone deacetylase HDA-2 Positively Regulates Set3 histone deacetylase complex to 5' transcribed regions. Cell 137:1414–1418. https://doi.org/10.1126/gad.14.9.1048.

16. Michan S, Lledias F, Hansberg W. 2003. Asexual development is increased in Neurospora cat-3-null mutant strains. Eukaryot Cell 2:798–807.
15. Yamashita K, Shiozawa A, Watanabe S, Fukumori F, Kimura M, Fujimura M. 2008. ATF-1 transcription factor regulating the expression of ccg-1 and cat-1 genes in response to oxidative stress, heat shock, and development. J Bacteriol 171:2646–2652. https://doi.org/10.1128/JB.171.5.2646-2652.1998.
14. Alberti S, Gitler AD, Lindquist S. 2007. A suite of Gateway cloning vectors
13. Ohta C, Han K, Sakai W, Pratt R. 2004. Lessons from the genome sequence of Neuro-
12. Zamocky M, Furtmüller PG, Obinger C. 2008. Evolution of catalases from
11. Neddleshewa SK, Goke N, Loscalzo J. 2003. Mechanisms of oxidative stress and vascular dysfunction. Postgrad Med J 79:195–199. https://doi.org/10.1136/pmj.79.9390.195.
10. Wang MC, Kurdistani SK, Flores S. 2017. Histone deacetylase HDA-2 regulates Trichoderma atroviride
deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol Cell Biol 18:5121–5127. https://doi.org/10.1128/MCB.18.9.5121.
9. Seto E, Yoshida M. 2014. Erasers of histone acetylation: the histone deacetyl-
8. Li Y, Selvakumaran V, Won KJ, Lazar MA. 2013. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear re-
7. Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, Rando OJ, Madhani HD. 2005. Histone variant H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 3:e384. https://doi.org/10.1371/journal.pbiol.0030384.
6. Sun Z, Feng D, Fang B, Mullican SE, You SH, Lim HW, Everett LJ, Nabel CS, Belden WJ, Larrondo LF, Froehlich AC, Shi M, Chen CH, Loros JJ, Dunlap JC. 2007. The band mutation in Neurospora crassa is a dominant allele of the human histone deacetylase family gene. J Biol Chem 272:28001–28007. https://doi.org/10.1074/jbc.b2.74.28001.
5. Alberti S, Gitler AD, Lindquist S. 2007. A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24:913–919. https://doi.org/10.1016/yea.1502.
4. Guilleminette B, Bataille AR, Gevry N, Adam M, Blanchette M, Robert F, Gaschnig L. 2005. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 3:e384. https://doi.org/10.1371/journal.pbiol.0030384.
ras-1 implicating RAS signaling in circadian output. Genes Dev 21:1494–1505. https://doi.org/10.1101/gad.1551707.

49. He Q, Cha J, He Q, Lee HC, Yang Y, Liu Y. 2006. CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop. Genes Dev 20:2552–2565. https://doi.org/10.1101/gad.1463506.

50. Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC. 2006. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103:10352–10357. https://doi.org/10.1073/pnas.0601456103.

51. Lledias F, Rangel P, Hansberg W. 1998. Oxidation of catalase by singlet oxygen. J Biol Chem 273:10630–10637. https://doi.org/10.1074/jbc.273.17.10630.

52. Yang S, Li W, Qi S, Gai K, Chen Y, Suo J, Cao Y, He Y, Wang Y, He Q. 2014. The highly expressed methionine synthase gene of Neurospora crassa is positively regulated by its proximal heterochromatic region. Nucleic Acids Res 42:6183–6195. https://doi.org/10.1093/nar/gku261.

53. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262.

54. Xu H, Wang J, Hu Q, Quan Y, Chen H, Cao Y, Li C, Wang Y, He Q. 2010. DCAF26, an adaptor protein of Cul4-based E3, is essential for DNA methylation in Neurospora crassa. PLoS Genet 6:e1001132. https://doi.org/10.1371/journal.pgen.1001132.

55. Zhao Y, Shen Y, Yang S, Wang J, Hu Q, Wang Y, He Q. 2010. Ubiquitin ligase components Cullin4 and DDB1 are essential for DNA methylation in Neurospora crassa. J Biol Chem 285:4355–4365. https://doi.org/10.1074/jbc.M109.034710.

56. Zhou Z, Liu X, Hu Q, Zhang N, Sun G, Cha J, Wang Y, Liu Y, He Q. 2013. Suppression of WC-independent frequency transcription by RCO-1 is essential for Neurospora circadian clock. Proc Natl Acad Sci U S A 110: E4867–E4874. https://doi.org/10.1073/pnas.1315133110.