Protection from Lethal Gram-positive Infection by Macrophage Scavenger Receptor–dependent Phagocytosis

By Christian A. Thomas,* Yongmei Li,‡ Tatsuhiko Kodama,§ Hiroshi Suzuki,§ Samuel C. Silverstein,*‡ and Joseph El Khoury‡

From the *Department of Medicine, Division of Medical Oncology, Columbia Presbyterian Medical Center, New York, New York 10032; the ‡Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032; the §Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Meguro Tokyo 153, Japan; and the ‡Department of Medicine, Beth Israel Hospital, Albert Einstein College of Medicine, New York, New York 10003

Abstract

Infections with gram-positive bacteria are a major cause of morbidity and mortality in humans. Opsonin-dependent phagocytosis plays a major role in protection against and recovery from gram-positive infections. Inborn and acquired defects in opsonin generation and/or recognition by phagocytes are associated with an increased susceptibility to bacterial infections. In contrast, the physiological significance of opsonin-independent phagocytosis is unknown. Type I and II class A scavenger receptors (SR-AI/II) recognize a variety of polyanions including bacterial cell wall products such as lipopolysaccharide (LPS) and lipoteichoic acid (LTA), suggesting a role for SR-AI/II in innate immunity to bacterial infections. Here, we show that SR-AI/II–deficient mice (MSR-A−/−) are more susceptible to intraperitoneal infection with a prototypic gram-positive pathogen, Staphylococcus aureus, than MSR-A+/+ control mice. MSR-A−/− mice display an impaired ability to clear bacteria from the site of infection despite normal killing of S. aureus by neutrophils and die as a result of disseminated infection. Opsonin-independent phagocytosis of gram-positive bacteria by MSR-A−/− macrophages is significantly decreased although their phagocytic machinery is intact. Peritoneal macrophages from control mice phagocytose a variety of gram-positive bacteria in an SR-AI/II–dependent manner. Our findings demonstrate that SR-AI/II mediate opsonin-independent phagocytosis of gram-positive bacteria, and provide the first evidence that opsonin-independent phagocytosis plays a critical role in host defense against bacterial infections in vivo.

Key words: scavenger receptor • macrophage • phagocytosis • gram-positive bacteria • Staphylococcus aureus

Introduction

Phagocytosis of microorganisms is a key element in host defense against bacterial infections (1). Two principal mechanisms of phagocytosis have been described, opsonin-dependent phagocytosis (2) and opsonin-independent phagocytosis (for a review, see reference 3). In opsonin-dependent phagocytosis, immunoglobulin or complement molecules bind to microorganisms, thereby promoting ingestion via Fcγ or complement receptors on phagocytic leukocytes (2). In contrast, in opsonin-independent phagocytosis, ligands on the surfaces of microorganisms are directly recognized by receptors on the plasma membranes of phagocytes (3).

Several lines of evidence link defects in opsonin-dependent phagocytosis to an increased susceptibility to infection. First, immunoglobulin- or complement-deficient animals (4–6) and humans (7) exhibit an increased incidence of bacterial infections. Second, administration of antibodies against bacterial capsular antigens (8–10), or immunization against bacterial capsular antigens (11), protects against infections with bacteria expressing these antigens. Third, Fcγ receptor polymorphisms in humans (12, 13) are associated with increased susceptibility to infection.

Much less is known about the physiological roles of op-
son-independent phagocytosis in host defense against bacterial infections. Types I and II class A macrophage scavenger receptors (SR-AI/II) are homotrimetric membrane proteins (14) of mononuclear phagocytes that mediate phagocytosis of apoptotic thymocytes (15), endocytosis of modified lipoproteins (16), and adhesion of macrophages to surfaces coated with serum proteins (17), glucose-modified basement membrane proteins (18), and β-amyloid fibrils (19). The demonstration that macrophage scavenger receptors bind bacterial cell wall components such as LPS from gram-negative bacteria (20) or lipoteichoic acid (LTA) from gram-positive bacteria (21), and that SR-AI/II-deficient mice (MSR-A^{-/-}) exhibit increased susceptibility to infection with Listeria monocytogenes (22) and to LPS-mediated shock (23) suggested that these receptors function in the absence of serum opsonins in host defense against bacterial infections.

We hypothesized that SR-AI/II mediate opsonin-independent phagocytosis of bacteria via a direct interaction of SR-AI/II with bacterial cell wall products such as LTA, leading to clearance of bacteria from sites of infection. To test this hypothesis, we chose Staphylococcus aureus, a prototypical gram-positive microorganism and an important cause of life-threatening bacterial infections in humans (24–26). Since SR-AI/II are expressed mainly on mononuclear phagocytes, and these cells are the first line of antimicrobial defense in the peritoneal cavity (27–29), we compared the susceptibility of MSR-A^{-/-} mice to intraperitoneal challenge with two strains of S. aureus (13709) and (Wood strain, 10832), and that SR-AI/II-deficient mice (MSR-A^{-/-}) increased susceptibility to infection with L. monocytogenes (22) and to LPS-mediated shock (23) suggested that these receptors function in the absence of serum opsonins in host defense against bacterial infections.

Materials and Methods

Mice and Bacteria. SR-AI/II knockout mice (MSR-A^{-/-}) are described in detail elsewhere (22). MSR-A^{-/-} or BALB/c control mice (The Jackson Laboratory) were kept in a germ-free barrier facility with free access to autoclaved water and irradiated Purina-Pico mouse diet (W.F. Fisher & Son, Inc.). S. aureus (W ood strain, 10832), S. aureus (Cowan I strain, 12598), S. aureus (Smith diffuse strain, 13709), Streptococcus agalactiae (1238), Streptococcus pyogenes (10403), L. monocytogenes (43251), and E. nterococcus hirae (9790) were from the American Type Culture Collection. S. aureus (strain DB) was a gift from Dr. A. Cheung, Rockefeller University, New York, N.Y. Heat-inactivated, BODIPY[®] flourophore-labeled S. aureus (Wood strain) and zymosan particles were from Molecular Probes.

Abbreviations used in this paper: LTA, lipoteichoic acid; MSR-A^{-/-} mice, macrophage scavenger receptor-deficient mice; MSR-A^{-/-} mice, wild-type mice; SR-AI/II, type I and/or II class A macrophage scavenger receptors; TMΔ, thioglycollate broth-elicited peritoneal macrophages.

Infusion Assay. S. aureus (Cowan I) was grown overnight in Brain Heart broth (Difco) in a bacterial shaker at 37°C. On the day of an experiment, bacteria were washed three times in phosphate-buffered saline (PDS) without Ca²⁺/Mg²⁺ and spectrophotometrically adjusted to OD₂₆₀ = 2.0 (10⁸ CFU/ml). The number of viable bacteria was confirmed by plating serial dilutions on Brain Heart agar plates and counting bacterial colonies after overnight incubation at 37°C. For each experiment, four MSR-A^{-/-} or four MSR-A^{-/-} control mice (4–6 wk of age, 20–25 g) were injected intraperitoneally with 1 ml PD containing 2 × 10²-10⁴ CFU of the indicated microorganism and observed for 72 h. Mice were killed with CO₂. At various time points after injection, mice were killed and blood and peritoneal fluid were harvested and assayed for the presence of viable bacteria by plating serial dilutions on agar plates. Blood was obtained by cardiac puncture. Three to six experiments of this type were performed, as indicated in the figure legends.

Analysis of Peritoneal Cells of Mice Inoculated Intraperitoneally with S. aureus. The total number of white blood cells in the peritoneal fluid was determined using a hemocytometer. Leukocytes were typed by evaluating a Wright's stained smear of peritoneal fluid.

Killing of S. aureus by Peritoneal Neutrophils In Vivo. Neutrophil bactericidal activity was assayed in a modified tumble assay (30). In brief, MSR-A^{-/-} control mice or MSR-A^{-/-} mice were inoculated intraperitoneally with 1 ml of 2% sodium caseinate (Sigma Chemical Co.) (31), and the resulting neutrophil-rich exudate was harvested 6 h later by lavage as described above. The exudate cells (75% neutrophils) were washed, counted, and suspended at a concentration of 2.6 × 10⁶ cells/ml in PBS (with Ca²⁺ and Mg²⁺) containing 0.1% human serum albumin and 5 mM glucose. S. aureus (Cowan I) was grown overnight, washed, and suspended at a concentration of 2 × 10⁸ CFU/ml in PBS containing 0.9 mM Ca²⁺ and 0.5 mM Mg²⁺, 5 mM glucose, 0.1% human serum albumin, and 20% mouse serum (as a source of complement: Sigma Chemical Co.), and incubated for 10 min at 37°C to opsonize the bacteria. 250 μl aliquots of this bacterial suspension were mixed with 250 μl of the neutrophil suspension, and the mixture was incubated at 37°C for 1 h on a rotary shaker. The mixture was then diluted sixfold in sterile distilled water, incubated for 5 min to lyse the neutrophils, and the number of CFU of S. aureus was determined by plating serial dilutions on agar plates. Data are reported as percent reduction in CFU of S. aureus incubated with neutrophils, and were calculated as 1 − no. of CFU recovered at 1 h/no. of CFU in the inoculum at time 0 (i.e., 1 × 10⁶ CFU). In the absence of neutrophils, the number of CFU of S. aureus increased by 1.5-fold over 1 h. No S. aureus killing occurred when neutrophils and bacteria were incubated in medium containing mouse serum lacking complement activity.

Fluorescent Labeling of Bacteria. Bacteria were labeled with BO DIPY[®] FL (Molecular Probes) according to the manufacturer's specifications. Bacteria were grown overnight in 5–10 ml Brain Heart broth, washed twice, and resuspended in 0.2 ml buffer (0.1 M NaH₂CO₃, 125 mM NaCl). 100 μg of BODIPY[®] FL was added slowly, and bacteria were incubated under constant stirring in the dark at room temperature for 1 h. The reaction was stopped by dropwise addition of 1.5 M hydroxylamine (Sigma Chemical Co.). Bacteria were washed and resuspended in PBS at OD₂₆₀ = 2.0 (≈10⁵ CFU/ml). Bacterial viability was checked by plating serial dilutions and was typically >80%.

Phagocytosis of Bacteria by Macrophages In Vivo. Thioglycollate broth-elicited peritoneal macrophages (TMΔ) were harvested by irrigating the peritoneal cavity of mice with cold PD 4 d after infection.
traperitoneal injection of 2 ml aged thioglycollate broth (Sigma Chemical Co.). TM ϕ were plated in 96-well plates at 10^5 cells/well in 100 μl RPMI 1640/10% fetal calf serum and incubated overnight. TM ϕ were washed once with PD, and labeled bacteria were added at ~100 CFU/macrophage for 30 min at 37°C. Phagocytosis was stopped by addition of cold PD. Fluorescence of extracellular bacteria was quenched by incubation with PD containing 1.0 mg/ml trypan blue for 20 min at room temperature as described (32, 33). Intracellular fluorescence of phagocytosed bacteria was measured at λ = 485 nm (excitation) and λ = 530 (emission), using a fluorescence plate reader (Cytofluor II; PerSeptive Biosystems). To determine background fluorescence from noningested extracellular bacteria, TM ϕ were incubated with 1.0 μM cytochalasin D (Sigma Chemical Co.) to inhibit phagocytosis, and fluorescence was measured after trypan blue quenching (32–34). Phagocytosis is expressed as the ratio of fluorescence of phagocytosed bacteria to fluorescence of adherent but nonquenching (32–34). Phagocytosis was stopped by addition of cold PD. Fluorescence of phagocytosed bacteria to fluorescence of adherent but nonquenching (32–34). Phagocytosis is expressed as the ratio of fluorescence of phagocytosed bacteria to fluorescence of adherent but nonquenching (32–34).

Results

Decreased Clearance of S. aureus by MSR-A^/-^ Mice. MSR-A^/-^ and MSR-A^+/+^ mice were injected intraperitoneally with 10^7 CFU S. aureus Cowan I, and viable bacteria were quantified in blood and peritoneal lavage samples at the indicated time points. The number of viable bacteria recovered from the peritoneum of MSR-A^+/+^ mice decreased to ~0.01% of the inoculum and to <0.3% of the number of bacteria recovered from the peritoneum immediately after infection (i.e., from 4.0 × 10^8 to 1.1 × 10^8 CFU/mouse) within 24 h (Fig. 1 A). No bacteria were detected in the blood of MSR-A^+/+^ mice by 12 h (Fig. 1 B). In contrast, the number of viable bacteria in the peritoneum of MSR-A^/-^ mice was 20% of the inoculum at 24 h (Fig. 1 A) and increased 200-fold in the blood at 12 h compared with 5 min after inoculation (Fig. 1 B).

Decreased Survival of MSR-A^/-^ Mice after Infection with S. aureus. Impaired ability to eliminate S. aureus may lead to increased mortality from disseminated infection. To test this, we injected MSR-A^/-^ and MSR-A^+/+^ mice with increasing numbers of S. aureus. All control mice survived intraperitoneal infection with 2 × 10^7 and 2 × 10^8 CFU of S. aureus, whereas 40 and 60% of MSR-A^/-^ mice became moribund within 24 h (Fig. 2, A and B) after inoculation with 2 × 10^7 and 2 × 10^8 CFU of S. aureus, respectively. 20% of control mice became moribund within 24 h of infection with 10^6 CFU/mouse (Fig. 2 C). In contrast, 90% of MSR-A^-/-^ mice became moribund within 12 h of infection with 10^6 CFU of S. aureus (Fig. 2 C). No further deaths were observed in either group after 48 h. Thus, targeted disruption of the SR-AI/II gene significantly increased the susceptibility of mice to infection with S. aureus.

Normal Recruitment of Inflammatory Cells by MSR-A^-/-^ Mice after Infection with S. aureus. Atherosclerotic lesions in MSR-A^-/-^ mice contain significantly fewer macrophages compared with lesions in MSR-A^-/-^ mice (22). To examine whether the increased susceptibility of MSR-A^-/-^ mice to S. aureus reflected a similar defect in recruitment of macrophages or other leukocytes to the site of infection, peritoneal cells from MSR-A^-/-^ and MSR-A^-/-^-/+^ mice were harvested at various times after intraperitoneal injection of S. aureus. Before infection, the peritoneal cavities of MSR-A^-/-^-/+^ and MSR-A^-/-^ mice contained similar numbers of resident peritoneal cells, >99% of which were mononuclear leukocytes, and the majority of which were mononuclear phagocytes (not shown). As described previously (27), intraperitoneal injection of S. aureus induced a marked influx of leukocytes, >99% of which were neutrophils (Fig. 3). There were no significant differences between MSR-A^-/-^-/+^ and MSR-A^-/-^ mice in either the number or types of leukocytes that were recovered from the peritoneal cavity after intraperitoneal injection of S. aureus (Fig. 3). Thus, the increased susceptibility of MSR-A^-/-^ mice to S. aureus infection cannot be explained by lack of recruitment of neutrophils or mononuclear phagocytes to the peritoneal cavity.

SR-AI/II Mediate Opsonin-independent Phagocytosis of Gram-positive Bacteria. SR-AI/II bind LPS from gram-negative bacteria. We hypothesized that SR-AI/II play an important role in host defense against intraperitoneal infection with S. aureus by mediating opsonin-independent phagocytosis of this bacte-
phagocytosed 72–83% fewer bacteria than TMφ from MSR-A-/- mice (Fig. 4 A). In contrast, zymosan, a particle whose uptake is mediated by mannose and β-glucan receptors (36), was phagocytosed with equal efficiency by TMφ from MSR-A-/- and MSR-A-/+ mice, indicating that macrophages from MSR-A-/- mice possess intact phagocytic machinery.

Macrophages have been shown to secrete sufficient complement to opsonize zymosan for phagocytosis (37). To test the possibility that complement receptors or other membrane integrins played a role in phagocytosis of gram-positive bacteria, we compared phagocytosis of gram-positive bacteria by incubating TMφ from MSR-A-/- and MSR-A-/+ mice in medium with and without Ca2+ and Mg2+. Ca2+ and Mg2+ are required for complement activation and for most integrin-mediated functions, but not for interactions of SR-AI/II with their ligands (14–19). TMφ from MSR-A-/- and MSR-A-/+ mice ingested 62–95% as many organisms in Ca2+/Mg2+-free medium (Fig. 4 B) as in Ca2+/Mg2+-containing medium, demonstrating that the phagocytosis of these bacteria was both complement independent and integrin independent.

LTA, a major cell wall component of gram-positive bacteria (38) and a known ligand of SR-AI/II (21), inhibited opsonin-independent phagocytosis of S. aureus and other gram-positive bacteria (Fig. 4, C and E), suggesting that soluble LTA was competing with LTA on the surfaces of these bacteria for receptors on the macrophage plasma membrane. In addition to LTA, phagocytosis of S. aureus was inhibited by other SR-AI/II ligands (polynaseric acid, polyguanylic acid, fucoidan), whereas a control reagent (polyinosinic acid, polyguanylic acid) that does not block SR-AI/II receptors had no effect (Fig. 4 C). Furthermore, 2F8, an mAb that specifically recognizes murine SR-AI/II (17) and that has been shown to block SR-AI/II–mediated phagocytosis of apoptotic thymocytes (15), inhibited phagocytosis of different strains of S. aureus and of E. hirae and B. subtilis by 56–95% (Fig. 4 D). An isotype-matched control antibody (EM-34.1) had no effect (Fig. 4 D). In contrast, phagocytosis of unopsonized zymosan was unaffected by 2F8 (Fig. 4 C). Both 2F8 and LTA inhibited S. aureus phagocytosis by TMφ from wild-type mice in a dose-dependent manner (Fig. 4 E). Interestingly, LTA inhibited S. aureus phagocytosis to a greater extent than 2F8 (Fig. 4 E). This was similar to a previous report that 2F8 incompletely blocks phagocytosis of apop-

Figure 2. Mortality of MSR-A-/- and MSR-A-/+ mice after S. aureus challenge. Four MSR-A-/- and four MSR-A-/+ mice were injected intraperitoneally with 1 ml of buffer containing S. aureus (Cowan I): (A) 2 × 10⁷ CFU, (B) 2 × 10⁶ CFU, (C) 10⁵ CFU. Mice were observed for signs of systemic infection, and moribund animals were killed. Data represent the mean of six experiments.

Figure 3. Recruitment of peritoneal leukocytes. Four MSR-A-/- mice and four MSR-A-/+ mice were injected intraperitoneally with 10⁷ CFU of S. aureus (Cowan I). At the indicated times, mice were killed and their peritoneal cavities were irrigated with cold buffer. (A) The total number of leukocytes (WBC) in peritoneal lavage fluids of each mouse was determined microscopically. (B) The total number of neutrophils in the peritoneal lavage fluid was calculated after the percentage of neutrophils was determined microscopically by Wright’s stain. Data represent the mean of three experiments.
It may reflect the inability of 2F8 to fully mask the binding site(s) for \(S. aureus \) in the collagenous domain of SR-AI/II, and/or the participation of other scavenger receptors, such as MARCO (39) or CD36 (40), in phagocytosis of gram-positive bacteria. Regardless of the reasons for the incomplete inhibition of binding and ingestion of gram-positive bacteria by 2F8, it is likely that LTA on the surface of these bacteria interacts directly with SR-AI/II (21), and that this interaction is an essential first step in initiating opsonin-independent phagocytosis of unencapsulated gram-positive bacteria.

Killing of \(S. aureus \) (Cowan I) by neutrophils from MSR-A\(^{--}\) and MSR-A\(^{+/+}\) mice. Approximately equal numbers of neutrophils were elicited after intraperitoneal injection of \(S. aureus \) (Cowan I) into the peritoneal cavities of MSR-A\(^{--}\) and MSR-A\(^{+/+}\) mice (Fig. 3 B). However, \(\approx 12 \)-fold more viable bacteria (\(4 \times 10^6 \) vs. \(3 \times 10^4 \)) were recovered from the peritoneal cavity of MSR-A\(^{--}\) than MSR-A\(^{+/+}\) mice (Fig. 1 A). Although neutrophils do not express SR-AI/II (41), it was possible that genetic disruption of the class A scavenger receptor impaired in some unknown manner the ability of neutrophils from MSR-A\(^{--}\) mice to phagocytose and kill bacteria. To exclude this possibility, we compared killing of \(S. aureus \) (Cowan I) by peritoneal exudate neutrophils from MSR-A\(^{--}\) and MSR-A\(^{+/+}\) mice. \(S. aureus \) (Cowan I) bacteria were killed equally by neutrophils from
The data presented thus far indicate that S. aureus strain Cowan I is phagocytosed by macrophages by an opsonin-independent mechanism that involves interactions of ligands on the surfaces of these bacteria, presumably LTA, with SR-AI/II. They suggest that SR-AI/II–mediated opsonin-independent phagocytosis of S. aureus strain Cowan I by macrophages in the peritoneum of M SR-A^{-/-} mice permits these mice to resist intraperitoneal infection with a dose of this bacterium that is lethal for M SR-A^{+/+} mice. If this interpretation is correct, then M SR-A^{-/-} and M SR-A^{+/+} mice should be equally susceptible to infection with an encapsulated S. aureus strain, such as Smith diffuse, which is not phagocytosed in the absence of opsonins by T M φ from either M SR-A^{-/-} or M SR-A^{+/+} mice (Fig. 4 A). Indeed, M SR-A^{-/-} and M SR-A^{+/+} mice were equally susceptible to intraperitoneal challenge with S. aureus Smith diffuse (Table II), confirming that the increased susceptibility of M SR-A^{-/-} mice to infection with S. aureus Cowan I (Fig. 4 A) is related to the inability of macrophages lacking SR-AI/II to phagocytose S. aureus Cowan I in an opsonin-independent manner, and not to other immune defects.

Table II. Mortality of M SR-A^{-/-} and M SR-A^{+/+} Mice after Intraperitoneal Infection with Encapsulated S. aureus

S. aureus (Smith diffuse)	M SR-A^{-/-}	M SR-A^{+/+}
CFU/mouse		
5 × 10⁷	6/8 (75%)	7/8 (87.5%)
5 × 10⁸	8/8 (100%)	7/8 (87.5%)

M SR-A^{-/-} and M SR-A^{+/+} mice were infected intraperitoneally by injection of S. aureus Smith diffuse (5 × 10⁷ and 5 × 10⁸ CFU). Mice were observed for signs of systemic infections, and sick animals were killed. Data are presented as number of dead mice per total number of mice.

independent phagocytosis of these bacteria (Fig. 4, A–E). This may explain why shortly after intraperitoneal infection a much larger percentage of S. aureus Cowan I was cleared by resident peritoneal macrophages of M SR-A^{+/+} than of M SR-A^{-/-} mice (Fig. 1).

In humans, introduction of dialysis fluid into the peritoneal cavity reduces the concentration of antibodies and complement to a level insufficient to opsonize bacteria for phagocytosis (43). In mice, intraperitoneal inoculation of 1 ml of buffered saline containing S. aureus dilutes enormously the very small volume of fluid that coats the peritoneal cavity and is likely to have a similar inhibitory effect on the efficiency of opsonization. However, the inflammatory response initiated by peritoneal inoculation of these bacteria promotes the influx of neutrophils, monocytes (Fig. 3), and plasma proteins (e.g., complement, antibodies). We envision that this led to opsonization of S. aureus Cowan I and clearance of these bacteria from the peritoneum of M SR-A^{-/-} mice challenged with sublethal doses of S. aureus Cowan I (Fig. 1). Similarly, it is likely that bacteria that entered the bloodstream of sublethally challenged M SR-A^{-/-} mice (Fig. 1) were opsonized by antibodies and complement and were cleared by Fcy- and complement receptor–dependent phagocytosis. This is consistent with our observation that even in the absence of opsonins, phagocytosis of gram-positive bacteria by M SR-A^{+/+} macrophages is somewhat more efficient in the presence of divalent cations than in their absence (Fig. 4 B). Divalent cations are required both for the activation of complement, and for binding of complement-coated bacteria by integrins such as CD11b/CD18 (complement receptor 3). CD11b/CD18 plays an important role in phagocytosis of other bacterial pathogens (for a review, see reference 3). We suggest that these opsonin-dependent mechanisms account for the ability of M SR-A^{-/-} mice challenged intraperitoneally with sublethal numbers of S. aureus Cowan I to clear these bacteria from the peritoneum and blood.

As indicated above, LTA on the surface of unencapsulated S. aureus (Cowan I strain) is probably responsible for the phagocytosis of these bacteria by M SR-A^{+/+} macrophages (Fig. 4). In contrast, capsular polysaccharides mask the LTA of Smith strain S. aureus (44, 45). These capsular polysaccharides are not ligands for SR-AI/II on mononuclear phagocytes. Presumably this is the reason why the encapsulated...
Smith strain of S. aureus was not phagocytosed in the absence of opsonins by M MR +/+ macrophages (Fig. 4 A).

Virtually all adult humans express antibodies to S. aureus cell wall constituents. However, antibodies against S. aureus cell wall constituents do not promote phagocytosis of encapsulated S. aureus strains by neutrophils and monocytes. This is because the capsular polysaccharides of S. aureus mask antibodies and complement deposited on the S. aureus cell wall (45-47), thereby preventing the interaction of these opsonins with Fc and complement receptors on neutrophils and mononuclear phagocytes. This is probably the reason why the LD 50 of the encapsulated Smith strain of S. aureus is substantially lower than that of the unencapsulated Cowan I strain, and why M MR -/- and M MR +/+ mice were equally susceptible to lethal infection with the encapsulated Smith strain. The report by Karakawa et al. (48) that specific anti-capsular antibodies are required to promote phagocytosis of encapsulated S. aureus, and Cohn's (29) observation that antibodies directed against the capsular polysaccharides of Smith strain S. aureus protect against intraperitoneal challenge with this bacterium are consistent with this interpretation.

Staphylococcal species from the normal skin flora are the most frequent causative agents of bacterial peritonitis (49), a significant cause of morbidity and mortality in patients undergoing peritoneal dialysis (50). Carrozi and colleagues (51, 52) have shown that intraperitoneal administration of IgG and monocytes have been depleted die when infected with S. aureus. We suggest that SR-AI/II mediate phagocytosis of apoptotic thymocytes (53). The findings presented here suggest that cytokines such as M-CSF (54) or pharmacologic agents that increase SR-AI/II expression on mononuclear phagocytes may help reduce the incidence of bacterial peritonitis, especially with unencapsulated gram-positive bacteria, in peritoneal dialysis patients.

M MR -/- mice are more susceptible to lethal infection with S. aureus (Cowan I) (Fig. 2), L. monocytogenes, H SV-1 (22), and to the lethal effects of LPS (23) than M MR +/+ mice. Our observations suggest that SR-AI/II exert their protective effect against S. aureus infection by promoting the clearance of these bacteria by macrophages (Figs. 1 and 4). SR-AI/II may also protect against the lethal effects of LPS by promoting endocytosis of LPS, which would minimize LPS-C1 interaction and thereby diminish synthesis and secretion of TNF-α. However, L. monocytogenes and H SV-1 are intracellular pathogens, and neither organism requires SR-AI/II to enter or grow within host cells. Thus, increased uptake of L. monocytogenes or H SV-1 does not explain the beneficial effect of macrophage SR-AI/II in host defense against infections with these intracellular pathogens.

SR-AI/II mediate phagocytosis of apoptotic thymocytes (15). Phagocytosis of apoptotic M. avium-avium infected macrophages by fresh uninfected macrophages leads to the killing of M. avium contained within the apoptotic macrophages (55). It is possible that SR-AI/II play a similar role in clearing apoptotic Listeria- or H SV-1-infected cells. Two findings are consistent with this suggestion. First, both List-
12. Sanders, L.A.M., J.G.J. van de Winkel, G.T. Rijkers, M.M. Voorhorst-Ogink, M. de Haas, P.J.A. Capel, and B.J.M. Zegers. 1994. Fcy receptor II (CD32) heterogeneity in patients with recurrent bacterial respiratory tract infections. J. Infect. Dis. 170:854–861.

13. Platonov, A.E., E.J. Kuiper, I.V. Vershinina, G.A. Shipulin, N. Westerdaal, C.A. Fijen, and J.G. van de Winkel. 1998. Meningococcal disease and polymorphism of FcyRIIa (CD32) in late complement component-deficient individuals. Clin. Exp. Immunol. 111:97–101.

14. Krieger, M., and J. Herz. 1994. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu. Rev. Biochem. 63:601–637.

15. Platt, N., H. Suzuki, Y. Kurihara, T. Kodama, and S. Gordon. 1996. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc. Natl. Acad. Sci. USA. 93:12456–12460.

16. Goldstein, J.L., Y.K. Ho, S.K. Basu, and M.S. Brown. 1979. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. USA. 76:333–337.

17. Fraser, I., D. Hughes, and S. Gordon. 1993. Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor. Nature 361:24–36.

18. El Khoury, J., C.A. Thomas, J.D. Loike, L. Cao, and S.C. Silverstein. 1994. Macrophages adhere to glucose-modified collagen type IV via their scavenger receptors. J. Biol. Chem. 269:10197–10200.

19. El Khoury, J., S.E. Hickman, C.A. Thomas, L. Cao, S.C. Silverstein, and J.D. Loike. 1996. Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils and secretion of reactive oxygen species. Nature 382:716–719.

20. Hampton, R.Y., D.T. Golenbock, M. Penman, M. Krieger, and C.R.H. Raetz. 1991. Recognition and plasma clearance of endotoxin by scavenger receptors. J. Immunol. Methods 142:1–7.

21. Loike, J.D., and S.C. Silverstein. 1983. A fluorescence quenching technique using trypan blue to differentiate between ingested glutaraldehyde-fixed red blood cells in phagocytosing murine macrophages. J. Immunol. Methods 60:115–124.

22. Suzuki, H., Y. Kurihara, M. Takeya, N. Kamada, M. Katoaka, K. Jishage, O. Ueda, H. Sakauchi, T. Higasi, T. Suzuki, et al. 1997. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296.

23. Haworth, R., N. Platt, S. Keshav, D. Hughes, E. Darley, H. Suzuki, Y. Kurihara, T. Kodama, and S. Gordon. 1997. The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. J. Exp. Med. 186:1431–1439.

24. Shanson, D.C. 1986. Staphylococcal infections in hospital. Brit. J. Hosp. Med. 35:312–320.

25. Brun-Buisson, C., F. Doyon, and J. Carlet. 1996. Bacteremia and severe sepsis in adults: a multicenter prospective survey in ICUs and wards of 24 hospitals. French Bacteremia-Sepsis Study Group. Am. J. Resp. Crit. Care Med. 154:617–624.

26. Sands, K.E., D.W. Bates, P.N. Lanken, P.S. Graman, P.L. Hibberd, K.L. Kahn, R. Panzer, E.J. Rav, D.R. Snyderman, E. Black, et al. 1997. Epidemiology of sepsis syndrome in 8 academic medical centers. Academic Medical Center Consortium Sepsis Project Working Group. JAMA (J. Am. Med. Assoc.) 278:234–240.

27. Cohn, Z.A. 1962. Determinants of infection in the peritoneal cavity. I. Response to and fate of Staphylococcus aureus and Staphylococcus albus in the mouse. Yale J. Biol. Med. 35:12–28.

28. Cohn, Z.A. 1962. Determinants of infection in the peritoneal cavity. II. Factors influencing the fate of Staphylococcus aureus in the mouse. Yale J. Biol. Med. 35:29–47.

29. Cohn, Z.A. 1962. Determinants of infection in the peritoneal cavity. III. The action of selected inhibitors on the fate of Staphylococcus aureus in the mouse. Yale J. Biol. Med. 35:48–61.

30. Horwitz, M.A., and S.C. Silverstein. 1980. Influence of the Escherichia coli capsule on complement fixation and on phagocytosis and killing by human phagocytes. J. Clin. Invest. 65:82–94.

31. Brummer, E., J.G. McEwen, and D.A. Stevens. 1986. Fungal activity of murine inflammatory polymorphonuclear neutrophils: comparison with murine peripheral blood PMN. Clin. Exp. Immunol. 66:681–690.

32. Cohn, Z.A. 1962. Determinants of infection in the peritoneal cavity. II. Factors influencing the fate of Staphylococcus aureus in the mouse. Yale J. Biol. Med. 35:29–47.

33. El Khoury, J., S.E. Hickman, C.A. Thomas, J.D. Loike, L. Cao, and S.C. Silverstein. 1994. A fluorescence quenching technique using trypan blue to differentiate between ingested glutaraldehyde-fixed red blood cells in phagocytosing murine macrophages. J. Immunol. Methods 60:115–124.

34. Zimmerli, S., S. Edwards, and J.D. Ernst. 1996. Selective receptor blockade during phagocytosis does not alter survival and growth of M. tuberculosis in macrophages. Am. J. Respir. Cell Mol. Biol. 15:760–770.

35. DiCicco, J., J. Lombard, P. Finteneau, C.D. Muller, R. Levit, M. Matayama-Kumba, J. Lassins, and P. Poindron. 1993. Both mannose and beta-glucan receptors are involved in phagocytosis of unopsonized, heat killed Saccharomyces cerevisiae by murine macrophages. J. Leukoc. Biol. 54:564–571.

36. Ezekowitz, R., R.B. Sim, and S. Gordon. 1984. Localization of secreted macrophage components. Role of receptors for complement in uptake of zymosan. J. Exp. Med. 159:244–260.

37. Wicken, A.J., and K.W. Knox. 1975. Lipoteichoic acids: a new class of bacterial antigen. Science. 187:1161–1167.

38. Elomaa, O., M. Kangas, C. Sahlberg, J. Tuukkanen, R. Sorumunen, A. Liakka, I. Theosell, G. Kraal, and K. Tryggvason. 1995. Cloning of a novel bacterium-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80:603–609.

39. Endemann, G., L.W. Stanton, K.S. Madden, C.M. Bryant, R. Tyler-Wilhite, and A.A. Proctor. 1993. CD 36 is a receptor for oxidized LDL. J. Biol. Chem. 268:11811–11816.

40. Hughes, D.A., I.P. Fraise, and S. Gordon. 1995. M urine macrophage scavenger receptor: in vivo expression and function for macrophage adhesion in lymphoid and non-lymphoid organs. Eur. J. Immunol. 25:466–473.

41. West, T.E., M.E. West, and J.M. Mlotto. 1985. Antiserum agar method for identification of Smith-type exopolysaccharides in clinical isolates of S. aureus. J. Clin. Microbiol. 21:490–492.

42. Verbrugh, H.A., W.F. Keene, J.R. Holdahl, M.R. Freiberg, and P.K. Peterson. 1983. Peritoneal macrophages and opsonins: antibacterial defense in patients undergoing chronic peritoneal dialysis. J. Infect. Dis. 147:1028–1029.

43. Mely, M.A., L.J. Duke, A. Deng-Fong, and J.H. Hash. 1974.
Biological properties of the encapsulated Staphylococcus aureus M. Infect. Immun. 10:389–397.

45. Arizono, T., A. Umeda, and K. Amako. 1991. Distribution of capsular material on the cell wall surface of strain Smith diffuse of S. aureus. J. Bacteriol. 173:4333–4340.

46. Peterson, P.K., B.J. Wilkinson, Y. Kim, D. Schmeling, and P.G. Quie. 1978. Influence of encapsulation on staphylococcal opsonization and phagocytosis by human polymorphonuclear leukocytes. Infect. Immun. 19:943–949.

47. Wilkinson, B.J., P.K. Peterson, and P.G. Quie. 1979. Cryptic peptidoglycan and the antiphagocytic effect of the Staphylococcus aureus capsule: model for the antiphagocytic effect of bacterial cell surface polymers. Infect. Immun. 23:502–508.

48. Karakawa, W.W., A. Sutton, R. Schneerson, A. Karpas, and W.F. Vann. 1988. Capsular antibodies induce type-specific phagocytosis of encapsulated S. aureus by human polymorphonuclear leukocytes. Infect. Immun. 56:1090–1095.

49. Williams, J.D., and G.A. Coles. 1991. Gram-positive infections related to CAPD. J. Antimicrob. Chemother. 27(Suppl. B):31–35.

50. Saklayen, M.G. 1990. CAPD peritonitis. Incidence, pathogens, diagnosis, and management. Med. Clin. North Am. 74:997–1010.

51. Carrozi, S., M.G. Nasini, A. Kunkl, S. Cantarella, and S. Lamperi. 1988. Response of CAPD patients with a high incidence of peritonitis to intraperitoneal immunoglobulin therapy. ASAIO (Am. Soc. Artif. Inten. Organs) Trans. 34:633–639.

52. Carrozi, S., and S. Lamperi. 1988. Peritonitis prevention in CAPD. Clin. Nephrol. 30(Suppl. 1):S45–S48.

53. Lamperi, S., and S. Carozzi. 1988. Interferon-γ (IFN-γ) as an in vitro enhancing factor of peritoneal macrophage defective bactericidal activity during continuous ambulatory peritoneal dialysis (CAPD). Am. J. Kidney Dis. 11:225–230.

54. deVilliers, W.J., I.P. Fraser, D.A. Hughes, A.G. Doyle, and S. Gordon. 1994. Macrophage-colony-stimulating factor selectively enhances macrophage scavenger receptor expression and function. J. Exp. Med. 180:705–709.

55. Fratazi, C., R.D. Arbeito, C. Carini, and H.G. Remold. 1997. Programmed cell death of Mycobacterium avium serovar 4-infected human macrophages prevents the mycobacteria from spreading and induces mycobacterial growth inhibition by freshly added, uninfected macrophages. J. Immunol. 158:4320–4327.

56. Rogers, H.W., M.P. Callery, B. Deck, and E.R. Unanue. 1996. Listeria monocytogenes induces apoptosis of infected hepatocytes. J. Immunol. 156:679–684.

57. Galvan, V., and B. Roizman. 1997. Programmed cell death of Mycobacterium avium serovar 4-infected human macrophages prevents the mycobacteria from spreading and induces mycobacterial growth inhibition by freshly added, uninfected macrophages. J. Immunol. 158:4320–4327.

58. Rosen, H., S. Gordon, and R.J. North. 1989. Exacerbation of murine listeriosis by a monoclonal antibody specific for the type 3 complement receptor on myelomonocytic cells. Absence of monocytes at infective foci allows Listeria to multiply in nonphagocytic cells. J. Exp. Med. 170:27–37.

59. Irie, H., H. Koyama, A. Kubo, K. Fukuda, T. Aita, A. Koike, T. Yoshimura, J. Yoshida, J. Shiga, and T. Hill. 1998. Herpes simplex virus hepatitis in macrophage-deficient mice: the role of massive, apoptotic cell death in pathogenesis. J. Gen. Virol. 79:1225–1231.

60. Pinto, A.J., D. Stewart, N. van Rooijen, and P.S. Morahan. 1991. Selective depletion of liver and splenic macrophages using liposomes encapsulating the drug dichloromethylene diphosphate: effects on antimicrobial resistance. J. Leukoc. Biol. 49:579–586.