Incidence and Risk Factors for Postoperative Delirium in Patients Undergoing Spine Surgery: A Systematic Review and Meta-Analysis

Xinjie Wu, Wei Sun, and Mingsheng Tan

1Peking University China–Japan Friendship School of Clinical Medicine, Beijing 100029, China
2Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing 100029, China

Correspondence should be addressed to Wei Sun; drsunwei@126.com and Mingsheng Tan; zrtanms@163.com

Received 22 August 2019; Accepted 13 November 2019; Published 26 November 2019

Academic Editor: Stavros Baloyannis

Copyright © 2019 Xinjie Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. The present study aims to investigate the incidence and risk factors associated with postoperative delirium in patients undergoing spine surgery. Methods. PubMed, EMBASE, Cochrane Library, and Science Citation Index were searched up to August 2019 for studies examining postoperative delirium following spine surgery. Incidence and risk factors associated with delirium were extracted. Odds ratios (OR) and 95% confidence intervals (CI) were calculated for outcomes. The Newcastle–Ottawa Scale (NOS) was used for the study quality evaluation. Results. The final analysis includes a total of 40 studies. The pooled analysis reveals that incidence of delirium is 8%, and there are significant differences for developing delirium in age (OR 1.07; 95% CI 1.04–1.09), age more than 65 (OR 4.77; 95% CI 4.37–5.16), age more than 70 (OR 15.87; 95% CI 6.03–41.73), and age more than 80 (OR 1.91; 95% CI 1.78–2.03) years, male (OR 0.81; 95% CI 0.76–0.86), a history of alcohol abuse (OR 2.11; 95% CI 1.67–2.56), anxiety (OR 1.74; 95% CI 1.04–2.44), congestive heart failure (OR 1.4; 95% CI 1.21–1.6), depression (OR 2.5; 95% CI 1.52–3.49), hypertension (OR 1.12; 95% CI 1.04–1.2), kidney disease (OR 1.41; 95% CI 1.16–1.66), neurological disorder (OR 4.66; 95% CI 4.22–5.11), opioid use (OR 1.86; 95% CI 1.18–2.54), psychoses (OR 2.77; 95% CI 2.29–3.25), pulmonary disease (OR 1.81; 95% CI 1.27–2.35), higher mini-mental state examination (OR 0.7; 95% CI 0.5–0.89), preoperative pain (OR 1.88; 95% CI 1.11–2.64), and postoperative urinary tract infection (OR 5.68; 95% CI 2.41–13.39). Conclusions. A comprehensive understanding of incidence and risk factors of delirium can improve prevention, diagnosis, and management. Risk of postoperative delirium can be reduced based upon identifiable risk factors.

1. Introduction

Postoperative delirium is a common complication after surgery in the elderly and causes difficulty in postoperative care [1, 2]. It is defined as an acute change in the cognitive status characterized by fluctuating consciousness, attention, memory, perceptions, and behavior postoperatively [3]. Postoperative delirium often brings out many adverse outcomes, such as functional disability, increased health care costs, and higher morbidity and mortality rates [4]. Thus, a further understanding and prevention of delirium may help reduce these problems and the associated costs. Some previous studies have reported the incidence and risk factors for delirium. However, incidences of postoperative delirium differ greatly, and risk factors of these studies are inconsistent. Therefore, we perform a systematic review and meta-analysis to explore incidence and risk factors for developing postoperative delirium following spine surgery.

2. Materials and Methods

2.1. Search Strategy. The systematic review and meta-analysis were done according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline and AMSTAR (assessing the methodological quality of systematic reviews) Guidelines [5, 6]. PubMed, EMBASE, Cochrane Library, and Science Citation Index were searched exhaustively with inception to August 2019.
2.2. Selection Criteria. Studies included in this systematic review and meta-analysis met the following criteria: (1) original articles on patients who underwent spine surgery, (2) observational, case series or cohort study design, (3) at least incidence reported or one risk factor identified as being associated with delirium, and (4) full text available. If the inclusion criteria were not met, the study was excluded. If the same study was published in different years or various journals, then the most frequently cited study was included for this meta-analysis. The potentially qualified studies were selected independently by 2 authors according to the inclusion and exclusion criteria. Any discrepancy was resolved by discussion to reach a consensus.

2.3. Data Extraction. Data were extracted by two independent authors. By discussion or by involving a third author, disagreements were addressed. The general features cover the first author, publication year, country, study type, sample size, patient characteristics, patients who underwent surgery, delirium diagnosis tool, incidence duration of delirium, and significant factors.

2.4. Quality Assessment. Two authors independently evaluated the quality of the studies, and the level of agreement between them was recorded. Any disagreements between the 2 authors were resolved by discussion with a third author. Newcastle–Ottawa Scale (NOS) was utilized to assess the quality of each study [7] since no studies were randomized controlled trials. Studies with 7–9 points could be identified as high quality, 5–6 points as moderate quality, and 0–4 as poor quality.

2.5. Statistical Analysis. The meta-analysis of comparable data was performed using Stata/SE version 15.0 software. All adjusted odds ratio (OR) with 95% confidence interval (CI)
Author	Publication year	Country	Study type	Sample size	Age mean (SD, range) years	Sex ratio (M : F)	Patients who underwent surgery	Delirium diagnosis tool	Delirium incidence	Duration of delirium (days)	Significant factors	Study quality
Pan et al. [8]	2019	Korea	Prospective	83	71.4 ± 4.6	27 : 56	Lumbar spine	CAM	12/83 (14.5%)	2.6 (1–5)	Male, parkinsonism, lower baseline MMSE score	8
Oe et al. [9]	2019	Japan	Retrospective	319	>18	85 : 234	Spinal deformity	—	30/319 (9.4%)	—	Age, PNI	7
Elsamadicy et al. [10]	2019	USA	Retrospective	138	≥18	40 : 98	Complex spinal fusion (≥5 levels)	—	15/138 (10.9%)	—	Age, intraoperative ketamine use	7
Takenaka et al. [11]	2019	Japan	Prospective	13188	11–94	7174 : 6014	Lumbar spine	—	65/13188 (4.9%)	—	CVD, dural tear	8
Kin et al. [12]	2019	Japan	Retrospective	67	69.6 ± 12.0	49 : 18	Cervical spine	CAM, DSM-IV	10/67 (14.9%)	<3	Low general health perception	8
Ouchi et al. [13]	2019	Japan	Retrospective	88370	≥65	47408 : 40962	Lumbar spine	—	450/88370 (5.1%)	—	Age >80	8
Watanabe et al. [14]	2019	Japan	Retrospective	322	75.7 years (67–89)	69 : 253	Thoracic, lumbar spine	—	26/322 (8.1%)	—	Parkinsonism	7
Morino et al. [15]	2018	Japan	Retrospective	532	64.2 (10–89)	283 : 249	Thoracolumbar deformity	DSM-IV	59/532 (11.1%)	<5	Blood loss	8
Adogwa et al. [16]	2018	USA	Retrospective	82	≥65	33 : 49	Lumbar spine	CAM	22/82 (18%)	—	Cognitive impairment	7
Adogwa et al. [17]	2018	USA	Retrospective	293	≥18	105 : 188	Lumbar spine	—	28/293 (9.6%)	—	CKD	7
Susano et al. [18]	2018	Portugal	Retrospective	715	73.6 ± 6.0	351 : 400	Cervical, lumbar spine	—	127/715 (17.8%)	—	Age, ASA physical status ≥3, METs <4, depression, non-elective surgery, invasiveness tier 3 or 4, BIS monitoring, mean pain score postoperative day 1	7
Elsamadicy et al. [19]	2018	USA	Retrospective	204	≥60	204 : 0	Elective complex spinal fusion (≥3 levels)	—	25/204 (12.3%)	—	Preoperative hgb level <13.5 g/dl	7
Ouchi et al. [20]	2018	Japan	Retrospective	2712	≥20	1738 : 974	Lumbar spine	—	52/2712 (1.9%)	—	Open laminectomy	7
Kobayashi et al. [21]	2018	Japan	Retrospective	35	91.3 (90–98)	14 : 21	Cervical, thoracic, lumbar spine	—	11/35 (31.43%)	—	Age, operative time ≥6 hours	6
Yoshida et al. [22]	2018	Japan	Retrospective	304	62.9 (18–84)	64 : 240	Spinal deformity	—	34/304 (11.2%)	—	Hyposmia (CCSIT score <9) and RBD (RBDSQ-K >4)	8
Kim et al. [23]	2018	Korea	Prospective	104	71.7 ± 4.7	36 : 68	Cervical, thoracic, lumbar spine	CAM	15/104 (14.4%)	—	—	8
Table 1: Continued.

Author	Publication year	Country	Study type	Sample size	Age mean (SD, range) years	Sex ratio (M:F)	Patients who underwent surgery	Delirium diagnosis tool	Delirium incidence	Duration of delirium (days)	Significant factors	Study quality
Ramos et al.	2017	USA	Retrospective	11043	67 ± 9	2981:8062	Spinal deformity	—	269/11043	(2.4%)	Movement disorder, parkinsonism	7
Oichi et al.	2017	Japan	Retrospective	6921	≥20	3324:3597	Lumbosacral, thoracic, cervical, unspecified	—	670/6921	(9.7%)	Parkinsonism	7
Elsamadicy et al.	2017	USA	Retrospective	453	≥65	211:242	Spine	DSM-V	17/453	(3.75%)	Superficial surgical site infection, UTI, length of hospital stay	8
Elsamadicy et al.	2017	USA	Retrospective	923	≥18	333:590	Spinal deformity	—	66/923	(7.15%)	Depression, age, operative time, postoperative UTI	7
Elsamadicy et al.	2017	USA	Retrospective	839	≥18	329:510	Elective complex spinal fusion (≥3 levels)	—	67/839	(7.98%)	—	6
Radcliff et al.	2017	USA	Retrospective	2792	≥65	1487:1305	Cervical spine	—	157/2792	(5.6%)	Dementia, TIA/stroke, age ≥ 85 in cervical decompression patients Intraoperative hypotension <80 mmHg, intraoperative use of dezocine	7
Jiang et al.	2017	China	Retrospective	451	65.1 (45–84)	226:225	Cervical and lumbar spine	ICDSC; CAM-ICU	42/451	(9.3%)	—	7
Soh et al.	2017	Korea	Prospective	109	>70	56:53	Cervical, thoracic, lumbar spine	CAM; CAM-ICU; DRS-98-R	9/109	(8.2%)	Pulmonary disease	7
Adogwa et al.	2017	USA	Prospective e	125	≥65	50:75	Spinal deformity	—	22/125	(17.6%)	—	7
Adogwa et al.	2017	USA	Retrospective	82	≥65	33:49	Spinal deformity	—	13/82	(15.9%)	Cognitive impairment	7
Kobayashi et al.	2017	Japan	Retrospective	262	82.7 (80–91)	142:140	Cervical, thoracic, and lumbar spine	—	15/262	(5.72)	Cervical lesion surgery, blood loss>300 mL Lower baseline MMSE score, higher average baseline pain, more intravenous fluid, baseline, antidepressant medication	7
Brown et al.	2016	USA	Prospective	195	74 (72–78)	47:42	Cervical, lumbar spine	CAM; CAM-ICU; DRS-98-R	36/195	(18.5%)	—	7
Lee et al.	2016	Korea	Retrospective	129	73.5 (70 to 85)	51:78	Lumbar spine	CAM; DSM-IV	18/129	(13.9%)	Cognitive impairment	7
Balabaud et al.	2015	France	Retrospective	121	83.2 ± 2.4	48:73	Lumbar spine	—	16/13(13%)	—	Instrumentation, blood loss	7
TABLE 1: Continued.

Author	Publication year	Country	Study type	Sample size	Age mean (SD, range) years	Sex ratio (M:F)	Patients who underwent surgery	Delirium diagnosis tool	Delirium incidence	Duration of delirium (days)	Significant factors	Study quality
Glennie et al. [37]	2015	Canada	Retrospective	276	42.9 ± 18.8	190:86	Thoracic, lumbar spine	—	38/276 (13.8%)	—	Age, male, head injury	7
Dea et al. [38]	2014	Canada	Prospective	101	62 (33–85)	50:51	Thoracic, lumbar, sacral spine	—	21/101 (20.8)	—	—	6
Seo et al. [39]	2014	Korea	Prospective	70	70.1 ± 5.8	32:38	Cervical, lumbar spine	ICDSC; CAM-ICU	17/70 (24.3%)	—	Preoperative GDS, BIS measured intraoperatively under 40	8
Kelly et al. [40]	2014	Canada	Prospective	92	66.08 ± 10.59	—	Lumbar spine	—	5/92 (5.4%)	—	CCI, dural tear	8
Fineberg et al. [41]	2013	USA	Retrospective	57,8457	>18	285520:292937	Lumbar spine	—	4857/57,8457 (0.84%)	—	—	6
Imagama et al. [42]	2011	Japan	Retrospective	918	54 (11–87)	521:397	Lumbar spine	—	5/918 (0.54%)	—	Cerebral vascular disease, low hemoglobin and hematocrit levels at 1 day after surgery, bad nutritional status Age >70, high-dose methylprednisolone (>1000 mg), hearing impairment	6
Lee et al. [43]	2010	Korea	Retrospective	87	73.5 (70–85)	27:50	Lumbar spine	CAM, DSM-IV	11/81 (13.6%)	13.2 (1 to 92)	Age >65, teaching hospital, alcohol abuse, deficiency anemia, congestive heart failure, coagulopathy, depression, DM with end-organ damage, drug abuse, hypertension, fluid/electrolyte disorders, metastatic neoplasm, neurological disorder, psychoses, pulmonary circulation disorders, renal failure, weight loss	7
Ushida et al. [44]	2009	Japan	Retrospective	122	52–86	—	Cervical spine	DOS, DSM-IV	26/122 (21.3%)	—	Central nervous system disorder, surgical history, age >65, DM, blood transfusion ≥800 ml, hemoglobin <100 g/L	6
Gao et al. [45]	2008	China	Retrospective	549	48.2 (10–83)	302:247	Cervical, thoracic, lumbar, sacral spine	DOS, DSM-IV	18/549 (3.3%)	3.1 (1 to 8)	—	7
Author	Publication year	Country	Study type	Sample size	Age mean (SD, range) years	Sex ratio (M:F)	Patients who underwent surgery	Delirium diagnosis tool	Delirium incidence	Duration of delirium (days)	Significant factors	Study quality
------------------	------------------	---------	------------	-------------	---------------------------	----------------	-------------------------------	------------------------	----------------	---------------------------	---------------------	--------------
Kawaguchi et al. [46]	2006	Japan	Retrospective	341	59.2 (14–88)	186:155	Cervical, thoracic, lumbar, sacral spine	CAM, DSM-III-R	13/341 (3.8%)	≤7	Low concentrations of hemoglobin and hematocrit 1 day after surgery, ambulatory status at admission	8

DOS, delirium observation screening scale; DSM, diagnostic and statistical manual of mental disorders; MMSE, mini-mental state examination; CVD, cardiovascular disease; CKD, chronic kidney disease; CAM-ICU, confusion assessment method for the intensive care unit; DRS-98-R, delirium rating scale revised-98; ICDSC, intensive care delirium screening checklist; PNI, Prognostic Nutritional Index; ASA, American Society of Anesthesiologists physical status; BIS, Bispectral Index; METs, metabolic equivalents of task; UTI, urinary tract infection; RBD, rapid eye movement sleep behavior disorder; CTSST, cross-cultural smell identification test; RBDSQ-K, Korean version of RBD screening questionnaire; TIA, transient ischemic attack; GDS, global deterioration scale; BIS, Bispectral Index; CCI, Charlson Comorbidity Index.
Note: weights are from random effects analysis

Study ID	Incidence (95% CI)	% weight
Asia		
Pan et al. (2019)	0.14 (0.07, 0.22)	1.01
Oe et al. (2019)	0.09 (0.06, 0.13)	2.70
Takenaka et al. (2019)	0.00 (0.00, 0.01)	4.26
Kin et al. (2019)	0.15 (0.06, 0.23)	0.83
Oichi et al. (2019)	0.05 (0.05, 0.05)	4.26
Watanabe et al. (2019)	0.08 (0.05, 0.11)	2.84
Morino et al. (2018)	0.11 (0.08, 0.14)	3.04
Oichi et al. (2018)	0.02 (0.01, 0.02)	4.20
Kobayashi et al. (2018)	0.31 (0.16, 0.47)	0.30
Yoshida et al. (2018)	0.11 (0.08, 0.15)	2.50
Kim et al. (2018)	0.14 (0.08, 0.21)	1.19
Oichi et al. (2017)	0.10 (0.09, 0.10)	4.15
Jiang et al. (2017)	0.09 (0.07, 0.12)	3.03
Soh et al. (2017)	0.08 (0.03, 0.13)	1.70
Kobayashi et al. (2017)	0.06 (0.03, 0.09)	2.95
Lee et al. (2016)	0.14 (0.08, 0.20)	1.41
Seo et al. (2014)	0.24 (0.14, 0.34)	0.64
Imagama et al. (2011)	0.01 (0.00, 0.01)	4.21
Lee et al. (2010)	0.14 (0.06, 0.21)	1.03
Ushida et al. (2009)	0.21 (0.14, 0.29)	1.07
Gao et al. (2008)	0.03 (0.02, 0.05)	3.79
Kawaguchi et al. (2006)	0.04 (0.02, 0.06)	3.46
Subtotal ($I^2 = 97.6\%, P = 0.000$)	0.08 (0.07, 0.10)	54.57
- América		
Elsamadicy et al. (2019)	0.11 (0.06, 0.16)	1.69
Adogwa et al. (2018)	0.27 (0.17, 0.36)	0.69
Adogwa et al. (2018)	0.10 (0.06, 0.13)	2.60
Elsamadicy et al. (2018)	0.12 (0.08, 0.17)	1.99
Ramos et al. (2017)	0.02 (0.02, 0.03)	4.24
Elsamadicy et al. (2017)	0.04 (0.02, 0.06)	3.63
Elsamadicy et al. (2017)	0.07 (0.05, 0.09)	3.69
Elsamadicy et al. (2017)	0.08 (0.06, 0.10)	3.58
Raddiff et al. (2017)	0.06 (0.05, 0.06)	4.09
Adogwa et al. (2017)	0.18 (0.11, 0.24)	1.21
Adogwa et al. (2017)	0.16 (0.08, 0.24)	0.94
Brown et al. (2016)	0.40 (0.30, 0.51)	0.62
Glennie et al. (2015)	0.14 (0.10, 0.18)	2.21
Dea et al. (2014)	0.21 (0.13, 0.29)	0.94
Kelly et al. (2014)	0.05 (0.01, 0.10)	1.93
Fineberg et al. (2013)	0.01 (0.01, 0.01)	4.26
Subtotal ($I^2 = 97.6\%, P = 0.000$)	0.08 (0.07, 0.10)	38.33
- Europe		
Susano et al. (2018)	0.18 (0.15, 0.21)	2.95
Balabaud et al. (2015)	0.01 (0.01, 0.02)	4.15
Subtotal ($I^2 = 99.2\%, P = 0.000$)	0.10 (−0.06, 0.26)	7.11
- Overall ($I^2 = 99.2\%, P = 0.000$)	0.08 (0.07, 0.09)	100.00

Note: weights are from random effects analysis

(a)

Figure 2: Continued.
Study ID

Study ID
Pan et al. (2019)
Takenaka et al. (2019)
Kim et al. (2018)
Soh et al. (2017)
Adogwa et al. (2017)
Brown et al. (2016)
Dea et al. (2014)
Seo et al. (2014)
Kelly et al. (2014)
Oichi et al. (2017)
Watanabe et al. (2019)
Susano et al. (2018)
Elsamadicy et al. (2018)
Ouchi et al. (2019)
Kin et al. (2019)
Ramos et al. (2017)
Ouchi et al. (2017)
Elsamadicy et al. (2017)
Elsamadicy et al. (2017)
Elsamadicy et al. (2017)
Adogwa et al. (2018)
Adogwa et al. (2018)
Adogwa et al. (2018)
Susano et al. (2018)
Ouchi et al. (2018)
Oichi et al. (2019)
Kin et al. (2019)
Ramos et al. (2017)
Ouchi et al. (2017)
Elsamadicy et al. (2017)
Elsamadicy et al. (2017)
Elsamadicy et al. (2017)
Adogwa et al. (2018)
Adogwa et al. (2018)
Adogwa et al. (2018)
Susano et al. (2018)
Ouchi et al. (2018)
Y oshida et al. (2018)
Y oshida et al. (2018)
L ucas et al. (2015)
Balabaud et al. (2015)
Glennie et al. (2015)
F ineberg et al. (2013)
I magama et al. (2011)
L ee et al. (2010)
U shida et al. (2009)
G ao et al. (2008)
K awaguchi et al. (2006)
Subtotal ($I^2 = 99.4\%, P = 0.000$)
Overall ($I^2 = 99.2\%, P = 0.000$)

Incidence (95% CI) and % weight

Study ID
Incidence (95% CI)
% weight
0.14 (0.07, 0.22)
0.00 (0.00, 0.01)
0.14 (0.08, 0.21)
0.08 (0.03, 0.13)
0.18 (0.11, 0.24)
0.20 (0.12, 0.31)
0.08 (0.04, 0.13)
0.10 (0.06, 0.13)
0.16 (0.08, 0.23)
0.09 (0.06, 0.13)
0.11 (0.06, 0.16)
0.15 (0.06, 0.23)
0.05 (0.05, 0.05)
0.08 (0.05, 0.11)
0.11 (0.08, 0.14)
0.27 (0.17, 0.36)
0.10 (0.06, 0.13)
0.18 (0.15, 0.21)
0.12 (0.08, 0.17)
0.02 (0.01, 0.02)
0.31 (0.16, 0.47)
0.11 (0.08, 0.15)
0.02 (0.02, 0.03)
0.10 (0.09, 0.10)
0.04 (0.02, 0.06)
0.07 (0.05, 0.09)
0.08 (0.06, 0.10)
0.06 (0.05, 0.06)
0.09 (0.07, 0.12)
0.16 (0.08, 0.24)
0.06 (0.03, 0.09)
0.14 (0.08, 0.20)
0.01 (0.01, 0.02)
0.14 (0.10, 0.18)
0.01 (0.01, 0.01)
0.01 (0.00, 0.01)
0.14 (0.06, 0.21)
0.21 (0.14, 0.29)
0.03 (0.02, 0.05)
0.04 (0.02, 0.06)
0.08 (0.07, 0.09)
0.08 (0.07, 0.09)

Note

Weights are from random effects analysis.

Figure 2: Continued.
This page contains data related to the incidence of spinal deformity and its subcategories. The data is presented in a table and a graph, with percentages and confidence intervals (95% CI) for each study included.

Study ID
- Lumbar spine
 - Pan et al. (2019)
 - Takenaka et al. (2019)
 - Adogwa et al. (2018)
 - Ouchi et al. (2018)
 - Lee et al. (2016)
 - Balabaud et al. (2015)
 - Kelly et al. (2014)
 - Fineberg et al. (2013)
 - Imagama et al. (2011)
 - Lee et al. (2010)

Incidence (95% CI) % weight

Study ID	Incidence (95% CI)	% weight
Lumbar spine		
Pan et al. (2019)	0.14 (0.07, 0.22)	1.01
Takenaka et al. (2019)	0.00 (0.00, 0.01)	4.26
Adogwa et al. (2018)	0.10 (0.06, 0.13)	2.60
Ouchi et al. (2018)	0.02 (0.01, 0.02)	4.20
Lee et al. (2016)	0.14 (0.08, 0.20)	1.41
Balabaud et al. (2015)	0.01 (0.01, 0.02)	4.15
Kelly et al. (2014)	0.05 (0.01, 0.10)	1.93
Fineberg et al. (2013)	0.01 (0.01, 0.01)	4.26
Imagama et al. (2011)	0.01 (0.00, 0.01)	4.21
Lee et al. (2010)	0.14 (0.06, 0.21)	1.03

Subtotal (I² = 92.8%, P = 0.000)
- 0.01 (0.01, 0.02) 29.06

Spinal deformity
- Oe et al. (2019)
- Yoshida et al. (2018)
- Ramos et al. (2017)
- Elsamadicy et al. (2017)
- Adogwa et al. (2017)
- Adogwa et al. (2017)

Incidence (95% CI) % weight

Study ID	Incidence (95% CI)	% weight
Spinal deformity		
Oe et al. (2019)	0.09 (0.06, 0.13)	2.70
Yoshida et al. (2018)	0.11 (0.08, 0.15)	2.50
Ramos et al. (2017)	0.02 (0.02, 0.03)	4.24
Elsamadicy et al. (2017)	0.07 (0.05, 0.09)	3.69
Adogwa et al. (2017)	0.18 (0.11, 0.24)	1.21
Adogwa et al. (2017)	0.16 (0.08, 0.24)	0.94

Subtotal (I² = 95.0%, P = 0.000)
- 0.10 (0.06, 0.14) 15.28

Mixed
- Elsamadicy et al. (2019)
- Ouchi et al. (2019)
- Watanabe et al. (2019)
- Morino et al. (2016)
- Adogwa et al. (2018)
- Susa et al. (2018)
- Elsamadicy et al. (2018)
- Kobayashi et al. (2018)
- Kim et al. (2018)
- Ouchi et al. (2017)
- Elsamadicy et al. (2017)
- Elsamadicy et al. (2017)
- Jiang et al. (2017)
- Soh et al. (2017)
- Kim et al. (2018)
- Brown et al. (2016)
- Glennie et al. (2015)
- Dea et al. (2014)
- Seo et al. (2014)
- Gao et al. (2008)
- Kawaguchi et al. (2006)

Incidence (95% CI) % weight

Study ID	Incidence (95% CI)	% weight
Mixed		
Elsamadicy et al. (2019)	0.11 (0.06, 0.16)	1.69
Ouchi et al. (2019)	0.05 (0.05, 0.05)	4.26
Watanabe et al. (2019)	0.08 (0.05, 0.11)	2.84
Morino et al. (2016)	0.11 (0.08, 0.14)	3.04
Adogwa et al. (2018)	0.27 (0.17, 0.36)	0.69
Susa et al. (2018)	0.18 (0.15, 0.21)	2.95
Elsamadicy et al. (2018)	0.12 (0.08, 0.17)	1.99
Kobayashi et al. (2018)	0.31 (0.16, 0.47)	0.30
Kim et al. (2018)	0.14 (0.08, 0.21)	1.19
Ouchi et al. (2017)	0.10 (0.09, 0.10)	4.15
Elsamadicy et al. (2017)	0.04 (0.02, 0.06)	3.63
Elsamadicy et al. (2017)	0.08 (0.06, 0.10)	3.58
Jiang et al. (2017)	0.09 (0.07, 0.12)	3.03
Soh et al. (2017)	0.08 (0.03, 0.13)	1.70
Kobayashi et al. (2017)	0.06 (0.03, 0.09)	2.95
Brown et al. (2016)	0.40 (0.30, 0.51)	0.62
Glennie et al. (2015)	0.14 (0.10, 0.18)	2.21
Dea et al. (2014)	0.21 (0.13, 0.29)	0.94
Seo et al. (2014)	0.24 (0.14, 0.34)	0.64
Gao et al. (2008)	0.03 (0.02, 0.05)	3.79
Kawaguchi et al. (2006)	0.04 (0.02, 0.06)	3.46

Subtotal (I² = 95.3%, P = 0.000)
- 0.11 (0.09, 0.13) 49.65

Cervical spine
- Kim et al. (2019)
- Radcliff et al. (2017)
- Ushida et al. (2009)

Incidence (95% CI) % weight

Study ID	Incidence (95% CI)	% weight
Cervical spine		
Kim et al. (2019)	0.15 (0.06, 0.23)	0.83
Radcliff et al. (2017)	0.06 (0.05, 0.06)	4.09
Ushida et al. (2009)	0.21 (0.14, 0.29)	1.07

Subtotal (I² = 90.9%, P = 0.000)
- 0.13 (0.03, 0.24) 6.00

Overall (I² = 99.2%, P = 0.000)
- 0.08 (0.07, 0.09) 100.00

Note: weights are from random effects analysis.

Figure 2: Continued.
were collected and pooled to evaluate the relationships between various risk factors and postoperative delirium in patients undergoing spine surgery. In addition, crude ORs with 95% CIs were calculated based on the frequency reported in the original literature. Inconsistency was quantified with I^2 statistic, and an I^2 of $>50\%$ was considered to indicate substantial heterogeneity. The random-effects model or the fixed-effect model was used depending on the heterogeneity of studies included. A random-effects model was used for heterogeneous data. Otherwise, a fixed-effect

![Begg's funnel plot with pseudo 95% confidence limits](Image)

Figure 2: Pooled result of incidence of delirium: (a) subgroup analysis based on the factor of country; (b) subgroup analysis based on the factor of study type; (c) subgroup analysis based on the factor of surgical site; (d) result of sensitive analysis; (e) Begg’s funnel plot.
model was used. Begg’s and Egger’s test were used to estimate publication bias, when 10 or more studies are presented. For any variable presenting with large heterogeneity, sensitive analysis or subgroup analysis was used to investigate the potential origin of heterogeneity.

2.6. Search Results. There were 1360 relevant studies included according to the search strategy. After the titles and abstracts were reviewed, 1256 of them were removed. A full-text review was evaluated in the 104 records maintained, and 64 of them were excluded because they did not meet the inclusion criteria. Finally, 40 studies representing 712820 patients were included in the present meta-analysis (Figure 1).

2.7. Study Characteristics and Quality Assessment. The characteristics of the included studies are summarized in Table 1. 22 studies were conducted in Asian countries, 16 studies in North America, and 2 studies in Europe. 31 studies were retrospective, and 9 were prospective in design. The sample size ranged from 35 to 578457 patients. The reported incidence of delirium ranged from 0.49% to 31.43% for patients after spinal surgery. To evaluate the quality of each study, the NOS was utilized. In those studies, all of them were of moderate to high quality (range, 6–8) (Table 1).

2.8. Incidence of Postoperative Delirium after Spine Surgery. The final meta-analysis included 40 studies [1, 8–46] from 7 different countries, and the pooled incidence was 8% (Figure 2). There was high heterogeneity (I-squared > 50%, P < 0.001). Interestingly, the heterogeneity remained high with each of the subgroups of study type, countries, or operated levels (Figure 2(a)–2(c)). After sensitive analysis, 3 studies [11, 25, 41] showed great influence on the pooled result (Figure 2(d)). The asymmetry Begg’s funnel plot suggested the presence of publication bias for incidence of postoperative delirium after spine surgery (P < 0.001) (Figure 2(e)).

2.9. Risk Factors for Postoperative Delirium after Spine Surgery. The ORs and 95% CIs of the risk factors are displayed in Table 2. Among these, 33 factors were examined in 2 or more studies and 18 factors demonstrated statistical significance.

Risk factors	No. of studies	Pooled OR (95% CI)	Heterogeneity I² (%)	P value	Effects model
Admission to ICU	3	2.51 (0.38–4.64)	0	0.944	Fixed
Age	7	1.07 (1.04–1.09)	16.5	0.304	Fixed
Age >65	3	4.77 (4.37–5.16)	0	0.383	Fixed
Age >70	3	15.87 (6.03–41.73)	48	0.14	Fixed
Age >80	2	1.91 (1.78–2.03)	0	0.844	Fixed
Alcohol abuse	4	2.11 (1.67–2.56)	0	0.397	Fixed
Anxiety	2	1.74 (1.04–2.44)	0	0.773	Fixed
Blood loss	5	1 (0.99–1.01)	83.9	<0.001	Random
Blood transfusion	3	0.62 (0.07–1.17)	74.4	0.02	Random
Cardiovascular comorbidity	10	0.81 (0.34–1.29)	0	0.697	Fixed
CCI	2	1.26 (0.56–1.96)	0	0.355	Fixed
Cervical surgery	6	0.97 (0.45–1.48)	0	0.514	Fixed
Congestive heart failure	3	1.4 (1.21–1.6)	0	0.708	Fixed
Depression	7	2.5 (1.52–3.49)	76	<0.001	Random
DM	13	1.09 (0.6–1.59)	0	0.978	Fixed
Dural tear	2	3.21 (0.07–6.35)	0	0.864	Fixed
Gender (male)	17	0.81 (0.76–0.86)	44.6	0.025	Fixed
History of surgery	6	1.09 (0.55–1.64)	0	0.617	Fixed
Hypertension	13	1.12 (1.04–1.2)	28.3	0.16	Fixed
Kidney disease	6	1.41 (1.16–1.66)	0	0.92	Fixed
MMSE score	3	0.7 (0.5–0.89)	51.7	0.126	Random
Neurological disorder	4	4.66 (4.22–5.11)	0	0.521	Fixed
Operated levels	2	1.02 (0.81–1.22)	0	0.523	Fixed
Operation time	4	1 (0.99–1)	0	0.725	Fixed
Parkinsonism	5	5.37 (0.63–10.1)	88	<0.001	Random
Preoperative VAS	2	1.88 (1.11–2.64)	0	0.816	Fixed
Previous cerebral vascular diseases	7	1.82 (0.7–2.94)	0	0.952	Fixed
Previous mild cognitive impairment	5	2.43 (0.99–3.86)	0	0.967	Fixed
Previous opioid use	3	1.86 (1.18–2.54)	0	0.659	Fixed
Psychoses	5	2.77 (2.29–3.25)	0	0.474	Fixed
Pulmonary disease	6	1.81 (1.27–2.35)	0	0.925	Fixed
Postoperative UTI	2	5.68 (2.41–13.39)	0	0.463	Fixed
Superficial surgical site infection	2	0.28 (-3.25–3.81)	0	0.433	Fixed

CCI, Charlson Comorbidity Index; DM, diabetes mellitus; MMSE, mini-mental state examination; VAS, Visual Analogue Scale; UTI, urinary tract infection.
After synthesis of 7 studies, it revealed that patients who developed delirium were significantly older (OR 1.07; 95% CI 1.04–1.09). Meanwhile, age older than 65 (OR 4.77; 95% CI 4.37–5.16), 70 (OR 15.87; 95% CI 6.03–41.73), and 80 (OR 1.91; 95% CI 1.78–2.03) years were significantly associated with the risk of developing delirium. Another demographic factor male was considered to be associated with less delirium risk in the pooled analysis (OR 0.81; 95% CI 0.76–0.86).

A history of alcohol abuse (OR 2.11; 95% CI 1.67–2.56), anxiety (OR 1.74; 95% CI 1.04–2.44), congestive heart failure (OR 1.4; 95% CI 1.21–1.6), depression (OR 2.5; 95% CI 1.52–3.49), hypertension (OR 1.12; 95% CI 1.04–1.2), kidney disease (OR 1.41; 95% CI 1.16–1.66), neurological disorder (OR 4.66; 95% CI 4.22–5.11), opioid use (OR 1.86; 95% CI 1.18–2.54), psychoses (OR 2.77; 95% CI 2.29–3.25), and pulmonary disease (OR 1.81; 95% CI 1.27–2.35) were more likely to develop delirium than controls. Assessment of mental state, as measured by mini-mental state examination (MMSE), demonstrated a significantly lower risk to develop delirium in patients with higher scores (OR 0.7; 95% CI 0.5–0.89). In addition, preoperative pain and postoperative urinary tract infection (UTI) were related to the development of delirium.

Study ID	OR (95% CI)	% weight
Prospective		
Pan et al. (2019)	0.10 (0.01, 0.66)	1.98
Kim et al. (2018)	1.16 (0.22, 6.17)	0.02
Soh et al. (2017)	0.74 (0.20, 2.71)	0.13
Brown et al. (2016)	0.69 (0.30, 1.59)	0.50
Seo et al. (2014)	0.78 (0.27, 2.31)	0.20
Subtotal (I² = 10.2%, P = 0.348)		
Retrospective		
Oe et al. (2019)	1.74 (0.75, 4.06)	0.08
Elsamadicy et al. (2019)	2.98 (0.78, 11.40)	0.01
Kin et al. (2019)	2.46 (0.58, 10.44)	0.01
Morino et al. (2018)	1.93 (1.00, 3.70)	0.11
Jang et al. (2017)	0.90 (0.48, 1.68)	0.58
Elsamadicy et al. (2017)	1.02 (0.40, 2.61)	0.17
Kobayashi et al. (2017)	1.00 (0.37, 2.75)	0.15
Glennie et al. (2015)	10.00 (2.50, 33.33)	0.00
Fineberg et al. (2013)	0.82 (0.78, 0.87)	96.04
Lee et al. (2010)	2.80 (0.81, 9.68)	0.01
Gao et al. (2008)	5.19 (2.06, 13.10)	0.01
Kawaguchi et al. (2006)	5.39 (0.91, 31.90)	0.00
Subtotal (I² = 0.0%, P = 0.535)		97.17

Heterogeneity between groups: P = 0.000
Overall (I² = 44.6%, P = 0.025)

Begg's funnel plot with pseudo 95% confidence limits

Figure 3: Pooled result of male: (a) subgroup analysis based on the factor of study type; (b) Begg's funnel plot.
3. Discussion

Delirium is thought to be a less transient disorder than previously believed in several studies [8, 11]. In addition, it has been reported that patients with postoperative delirium have a higher mortality rate than in those without it [4]. Due to the fact that delirium is varying and multifactorial, it will be helpful for prevention of delirium through identifying predictable risk factors.

This systematic review and meta-analysis were performed to pool and identify the incidence and risk factors of postoperative delirium after spine surgery. The pooled incidence of delirium in this meta-analysis is 8%. However, the present study showed wide variation and heterogeneity in incidence of delirium. A previous meta-analysis of 6 studies reported incidence of delirium after spine surgery varies from 0.84% to 21.3% [47]. Interestingly, the heterogeneity remained high with each of the subgroups of study type, countries, or operated levels (Figures 2(a)–2(c)). We found that patients with spinal deformity have higher rate of delirium (10%) and lower rate in patients with lumbar spine (1%). Meanwhile, prospective studies have a higher incidence of postoperative delirium than retrospective studies. After sensitive analysis, 3 studies [11, 25, 41] showed great influence on the pooled result (Figure 2(d)). All these 3 studies have relatively a larger sample size (range, 13188 to 578457), low incidence of delirium (range, 0.49 to 5.1%), and retrospective nature of study design, which may contribute to the heterogeneity.

The asymmetry Begg’s funnel plot suggested the presence of publication bias for incidence of postoperative delirium

Study ID	OR (95% CI)	% weight
Pan et al. (2019)	0.41 (0.11, 1.46)	48.71
Takenaka et al. (2019)	9.91 (2.23, 44.00)	0.05
Morino et al. (2018)	1.03 (0.49, 2.18)	31.08
Kim et al. (2018)	1.97 (0.60, 6.49)	2.56
Jiang et al. (2017)	1.18 (0.36, 3.86)	7.28
Soh et al. (2017)	0.57 (0.00, 3.81)	6.11
Elsamadicy et al. (2017)	2.98 (1.14, 7.80)	2.00
Brown et al. (2016)	2.32 (0.70, 7.59)	1.87
Lee et al. (2010)	4.96 (0.88, 29.06)	0.11
Gao et al. (2008)	4.62 (0.00, 19.92)	0.22
Overall (I² = 0.0%, P = 0.697)	0.81 (0.34, 1.29)	100.00

Figure 4: Pooled result of cardiovascular comorbidity: (a) forest plot of cardiovascular comorbidity; (b) Begg’s funnel plot.
after spine surgery, and lower incidence values could be missing (Figure 2(e)).

One of the most important risk factors was older age, especially in patients over 65. This may be attributed to the fact that elderly patients are more likely influenced by age-related physical and psychical changes. Aging is also associated with a higher incidence of comorbidity such as hypertension, diabetes mellitus, and pulmonary disease [12, 30]. The highest rate of delirium in our meta-analysis is 31.43% in a multicenter prospective study with patient’s age more than 90 [21]. Another significant demographic factor is male as a protective factor. Through subgroup analysis, we found that study design may contribute to the heterogeneity and prospective studies showing relatively a higher risk of developing delirium in females (Figure 3(a)). For publication bias, Begg’s funnel plot demonstrated no significant bias (Figure 3(b)).

The present study showed that comorbidities significantly increase the risk of postoperative delirium after spine surgery. A history of alcohol abuse, congestive heart failure, hypertension, neurological disorder, opioid use, psychoses, and pulmonary disease are related to develop delirium. However, diabetes mellitus, history of surgery, and cerebral vascular diseases were not found to be related to developing

Study ID	OR (95% CI)	% weight
Pan et al. (2019)	1.53 (0.38, 6.19)	0.08
Kim et al. (2018)	1.12 (0.35, 3.57)	0.26
Soh et al. (2017)	0.39 (0.10, 1.53)	1.33
Brown et al. (2016)	4.11 (1.31, 12.79)	0.02
Seo et al. (2014)	1.57 (0.50, 4.91)	0.14
Subtotal (I² = 0.0%, P = 0.518)	0.68 (0.07, 1.29)	1.83
Kin et al. (2019)	0.50 (0.12, 2.08)	0.71
Jiang et al. (2017)	1.03 (0.43, 2.49)	0.63
Elsamadicy et al. (2017)	0.44 (0.17, 1.12)	2.97
Kobayashi et al. (2017)	2.75 (0.95, 7.92)	0.06
Fineberg et al. (2013)	1.15 (1.07, 1.24)	93.44
Lee et al. (2010)	1.27 (0.37, 4.31)	0.17
Gao et al. (2008)	2.34 (0.84, 7.58)	0.06
Kawaguchi et al. (2006)	1.63 (0.53, 5.01)	0.13
Subtotal (I² = 38.8%, P = 0.120)	1.13 (1.04, 1.21)	98.17

Heterogeneity between groups: P = 0.152
Overall (I² = 28.3%, P = 0.160) 1.12 (1.04, 1.20) 100.00

Figure 5: Pooled result of hypertension: (a) forest plot of hypertension; (b) Begg’s funnel plot.
delirium, which was consistent with the previous meta-
analysis [47]. For the cardiovascular comorbidity, the pooled
result of 10 studies [8, 11, 15, 23, 26, 30, 31, 34, 43, 45]
showed no significance (OR 0.81; 95% CI 0.34–1.29) with
low heterogeneity (I² 0%) (Figure 4(a)). Only one study
found cardiovascular comorbidity as a risk factor for de-
lirium [11]. The symmetry Begg’s funnel plot suggested no
presence of publication bias for cardiovascular comorbidity
(Figure 4(b)). Interestingly, however, pooled results showed
congestive heart failure as a significant factor. This may be
due to the severity of heart diseases.

Regarding the comorbidity of hypertension, the meta-
analysis of 13 studies [1, 8, 12, 23, 26, 30, 31, 34, 39, 41, 43, 45, 46] identified it as a significant factor, and subgroup analysis
showed heterogeneity comes from study design (Figure 5(a)).
For publication bias, Begg’s funnel plot suggested no significant
bias (Figure 5(b)). Previous study showed that hypertension
leading to microembolization phenomena and cerebral ische-
emia may be responsible for the occurrence of delirium [48].

For neurological or mental diseases, neurological dis-
order, psychoses, anxiety, and depression were found to be
associated with developing delirium. The meta-analysis of 5
studies showed that mild cognitive impairment is not related
to the occurrence of delirium (OR 2.43; 95% CI 0.99–3.86; I²
0%). Meanwhile, parkinsonism was also not found to be
related to postoperative delirium (OR 5.37; 95% CI 0.63–
10.1). However, there is still controversy in the role of
parkinsonism for postoperative delirium. Kim et al. [23]

Study ID	OR (95% CI)	% weight
Prospective		
Pan et al. (2019)	5.83 (1.03, 32.89)	6.87
Kim et al. (2018)	1.63 (0.26, 10.34)	22.80
Subtotal (I² = 0.0%, P = 0.622)	2.01 (–2.79, 6.82)	29.66
Retrospective		
Watanabe et al. (2019)	8.58 (2.94, 25.25)	11.37
Ramos et al. (2017)	2.68 (1.41, 5.10)	29.36
Oichi et al. (2017)	9.56 (8.05, 11.35)	29.61
Subtotal (I² = 93.3%, P = 0.000)	6.55 (0.61, 12.49)	70.34
Overall (I² = 88.0%, P = 0.000)	5.37 (0.63, 10.10)	100.00

Note: weights are from random effects analysis.

Figure 6: Pooled result of parkinsonism: (a) forest plot of parkinsonism; (b) result of sensitive analysis.
MMSE score

Study ID	OR (95% CI)	% weight
Asia		
Pan et al. (2019)	0.71 (0.52, 0.97)	34.57
Kim et al. (2018)	0.86 (0.66, 1.12)	33.86
Subtotal ($I^2 = 0.0\%, P = 0.361$)	0.78 (0.62, 0.94)	68.43
America		
Brown et al. (2016)	0.51 (0.32, 0.81)	31.57
Subtotal ($I^2 = \cdot\%, P = \cdot$)	0.51 (0.26, 0.76)	31.57
Overall ($I^2 = 51.7\%, P = 0.126$)	0.70 (0.50, 0.89)	100.00

Note: weights are from random effects analysis

Figure 7: Pooled result of MMSE score. Subgroup analysis based on the factor of country.

Study ID	OR (95% CI)	% weight
Pan et al. (2019)	0.99 (0.99, 1.00)	36.66
Kin et al. (2019)	1.00 (0.99, 1.01)	23.34
Morino et al. (2018)	0.14 (0.02, 0.97)	0.04
Kim et al. (2018)	1.00 (1.00, 1.00)	39.96
Jiang et al. (2017)	3.51 (0.15, 10.33)	0.00
Overall ($I^2 = 83.9\%, P = 0.000$)	1.00 (0.99, 1.01)	100.00

Note: weights are from random effects analysis

Figure 8: Continued.
Figure 8: Pooled result of blood loss: (a) forest plot of blood loss; (b) result of sensitive analysis.

Study ID	OR (95% CI)	% weight
Susano et al. (2018)	3.04 (1.72, 5.39)	9.13
Jiang et al. (2017)	2.68 (0.22, 13.63)	0.68
Lee et al. (2010)	0.36 (0.10, 1.27)	90.19
Overall ($I^2 = 74.4\%, P = 0.020$)	0.62 (0.07, 1.17)	100.00

Figure 9: Pooled result of blood transfusion: (a) forest plot of blood transfusion; (b) result of sensitive analysis.
found that that parkinsonism is not a risk factor for postoperative delirium after multivariable analysis. Interestingly, Pan et al. [8] found an opposite result, which may be attributed to relatively a smaller sample of patients with parkinsonism in their study. Notably, the result should be explained with caution since the heterogeneity is high (I^2 88%). After subgroup analysis, there was a high heterogeneity between retrospective studies (Figure 6(a)). Moreover, the result of sensitive analysis showed two studies [24, 25] contributing greatly to the high heterogeneity (Figure 6(b)).

Both studies were retrospective design and focus on patients with parkinsonism, which may result in high heterogeneity.

Mental states, as assessed by MMSE, were associated with the development of delirium (OR 0.7; 95% CI 0.5–0.89). Through subgroup analysis, we found that geographical factors may contribute to heterogeneity (Figure 7). This measure of the state of mental health appears to have a clearer association with postoperative delirium compared to Charlson Comorbidity Index (CCI) which assesses the number of specific medical comorbidities. These findings are also seen in other studies where CCI appears less clearly associated with the incidence of delirium in older patients [12, 49].

The finding that preoperative pain and opioid use is associated with increased probability of delirium has been previously reported in patients with or without hip fracture or patients with cancer [49, 50]. In addition, elderly patients are more sensitive to opioid-related adverse events [51]. In patients with spine disease, pain may lead to stress reaction and changes of nerve conduction if not effectively controlled [34]. However, the accumulation of active metabolites in patients receiving opioid may contribute to the psychotic features such as delirium [52]. Hence, it is suggested that a less toxic drug, buprenorphine patch other than morphine, should be considered for patients with osteoarthritis and other types of lumbago when pain continues despite adequate administrations of nonopioid analgesics [53].

In our study, intraoperative factors do not appear to influence the prevalence of delirium based on normal clinical practice such as blood loss, blood transfusion, cervical surgery, dural tear, operated levels, and operation time. Notably, for intraoperative blood loss, there was high heterogeneity among studies (Figure 8(a)). After sensitive analysis, we found that one study [23] focused on patients with parkinsonism lead to the high heterogeneity. In addition, high heterogeneity was also seen in the meta-analysis of blood transfusion (Figure 9(a)). The sensitive analysis showed that the heterogeneity comes from one study [43], which had more fusion levels (2.27 ± 1.34) and blood loss (1263 ± 903) than other studies (Figure 9(b)). Postoperatively, patients experiencing complications such as UTI had a higher probability to develop delirium.

There are some limitations in our study. First, no randomized controlled trials were included despite our exhausted search from literatures, which may influence the quality of the result. Second, although subgroup analyses were used, the pooled result of incidence was still reported with high heterogeneity, which should be explained with caution.

4. Conclusions

In summary, the study reveals that pooled incidence of delirium is 8% and age, gender, history of alcohol abuse, anxiety, congestive heart failure, depression, hypertension, kidney disease, neurological disorder, opioid use, psychoses, pulmonary disease, MMSE, preoperative pain, and postoperative UTI were significant factors for delirium after spine surgery. A comprehensive understanding of incidence and risk factors of delirium can improve prevention, diagnosis, and management.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Mingsheng Tan designed the study, and Xinjie Wu wrote this manuscript. Xinjie Wu and Wei Sun searched database, reviewed studies, and collected and analyzed data. All of the authors have read and approved the final manuscript.

References

[1] K. Kobayashi, S. Imagama, K. Ando et al., “Risk factors for delirium after spine surgery in extremely elderly patients aged 80 years or older and review of the literature: Japanese association of spine surgeons with ambition multicenter study,” Global Spine Journal, vol. 7, no. 6, pp. 560–566, 2017.

[2] E. M. Schmitt, E. R. Marcantonio, D. C. Alsop et al., “Novel risk markers and long-term outcomes of delirium: the successful aging after elective surgery (SAGES) study design and methods,” Journal of the American Medical Directors Association, vol. 13, no. 9, pp. 818.e1–818.e10, 2012.

[3] K. G. Johnson, A. Fashoyin, R. Madden-Fuentes, A. J. Muzyk, J. P. Gagliardi, and M. Yanamadala, “Discharge plans for geriatric inpatients with delirium: a plan to stop antipsychotics?” Journal of the American Geriatrics Society, vol. 65, no. 10, pp. 2278–2281, 2017.

[4] R. A. Diwell, D. H. Davis, V. Vickerstaff, and E. L. Sampson, “Key components of the delirium syndrome and mortality: greater impact of acute change and disorganised thinking in a prospective cohort study,” BMC Geriatrics, vol. 18, no. 1, p. 24, 2018.

[5] D. Moher, PRISMA-P Group, L. Shamseer et al., “Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement,” Systematic Reviews, vol. 4, no. 1, p. 1, 2015.

[6] B. J. Shea, B. C. Reeves, G. Wells et al., “AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both,” BMJ, vol. 358, p. j4008, 2017.

[7] A. Stang, “Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses,” European Journal of Epidemiology, vol. 25, no. 9, pp. 603–605, 2010.

[8] Z. Pan, Written on Behalf of the AME Spine Surgery Collaborative Group, K. Huang et al., “The risk factors associated with delirium after lumbar spine surgery in elderly patients,” Quantitative Imaging in Medicine and Surgery, vol. 9, no. 4, pp. 700–710, 2019.
[9] S. Oe, D. Togawa, Y. Yamato et al., “Preoperative age and prognostic nutritional index are useful factors for evaluating postoperative delirium among patients with adult spinal deformity,” *Spine*, vol. 44, no. 7, pp. 472–478, 2019.

[10] A. A. Elsamadicy, L. T. Charalambous, A. R. Sergesketter et al., “Intraoperative ketamine may increase risk of postoperative delirium after complex spinal fusion for adult deformity correction,” *Journal of Spine Surgery*, vol. 5, no. 1, pp. 79–87, 2019.

[11] S. Takenaka, T. Makino, Y. Sakai et al., “Dural tear is associated with an increased rate of other perioperative complications in primary lumbar spine surgery for degenerative diseases,” *Medicine*, vol. 98, no. 1, Article ID e3970, 2019.

[12] K. Kin, T. Yasuhara, Y. Tomita, M. Umakoshi, J. Morimoto, and I. Date, “SF-36 scores predict postoperative delirium after surgery for cervical spondylotic myelopathy,” *Journal of Neurosurgery: Spine*, pp. 1–6, 2019.

[13] T. Oichi, Y. Oshima, H. Chikuda et al., “Mortality and morbidity after spinal surgery in patients with Parkinson's disease: a retrospective matched-pair cohort study,” *The Spine Journal*, vol. 17, no. 4, pp. 531–537, 2017.

[14] A. A. Elsamadicy, T. Y. Wang, A. G. Back et al., “Postoperative delirium is an independent predictor of 30-day hospital readmission after spine surgery in the elderly (≥65 years old): a study of 453 consecutive elderly spine surgery patients,” *Journal of Clinical Neuroscience*, vol. 41, pp. 128–131, 2017.

[15] A. A. Elsamadicy, O. Adogwa, E. Lydon et al., “Depression as an independent predictor of postoperative delirium in spine deformity patients undergoing elective spine surgery,” *Journal of Neurosurgery: Spine*, vol. 27, no. 2, pp. 209–214, 2017.

[16] S. Oe, D. Togawa, Y. Yamato et al., “Preoperative age and prognostic nutritional index are useful factors for evaluating postoperative delirium among patients with adult spinal deformity,” *Spine*, vol. 44, no. 5, pp. E273–E281, 2019.

[17] K. Watanabe, K. Katsumi, M. Ohashi et al., “Surgical outcomes of spinal fusion for osteoporotic thoracolumbar vertebral fractures in patients with Parkinson's disease: what is the impact of Parkinson's disease: what is the impact of Parkinson's disease on surgical outcome?,” *BMC Musculoskeletal Disorder*, vol. 20, no. 1, p. 103, 2019.

[18] T. Morino, M. Hino, S. Yamaoka et al., “Risk factors for delirium after spine surgery: an age-matched analysis,” *Asian Spine Journal*, vol. 12, no. 4, pp. 703–709, 2018.

[19] O. Adogwa, A. A. Elsamadicy, V. D. Vuong et al., “Association between baseline cognitive impairment and postoperative delirium in elderly patients undergoing surgery for adult spinal deformity,” *Journal of Neurosurgery: Spine*, vol. 28, no. 1, pp. 103–108, 2018.

[20] O. Adogwa, A. A. Elsamadicy, A. Sergesketter et al., “The impact of chronic kidney disease on postoperative outcomes in patients undergoing lumbar decompression and fusion,” *World Neurosurgery*, vol. 110, pp. e266–e270, 2018.

[21] M. J. Susano, S. D. Scheetz, R. H. Grasfield et al., “Retrospective analysis of perioperative variables associated with postoperative delirium and other adverse outcomes in older patients after spine surgery,” *Journal of Neurosurgical Anesthesiology*, vol. 31, no. 4, pp. 385–391, 2018.

[22] A. A. Elsamadicy, O. Adogwa, M. Ongel et al., “Preoperative hemoglobin level is associated with increased health care use after elective spinal fusion (≥3 levels) in elderly male patients with spine deformity,” *World Neurosurgery*, vol. 112, pp. e348–e354, 2018.

[23] T. Oichi, Y. Oshima, H. Chikuda et al., “In-hospital complication rate following microendoscopic versus open lumbar laminectomy: a propensity score-matched analysis,” *The Spine Journal*, vol. 18, no. 10, pp. 1815–1821, 2018.

[24] K. Kobayashi, S. Imagama, K. Sato et al., “Postoperative complications associated with spine surgery in patients older than 90 Years: a multicenter retrospective study,” *Global Spine Journal*, vol. 8, no. 8, pp. 887–891, 2018.

[25] G. Yoshida, T. Hasegawa, Y. Yamato et al., “Predicting perioperative complications in adult spinal deformity surgery using a simple sliding scale,” *Spine*, vol. 43, no. 8, pp. 562–570, 2018.

[26] K. H. Kim, S. Y. Kang, D. A. Shin et al., “Parkinson’s disease-related non-motor features as risk factors for post-operative delirium in spinal surgery,” *PloS One*, vol. 13, no. 4, Article ID e0195749, 2018.

[27] R. De la Garza Ramos, C. R. Goodwin, A. Jain, D. Martinez-Ramire, I. O. Karikar, and D. M. Scibba, “Inpatient morbidity after spinal deformity surgery in patients with movement disorders,” *Journal of Spine Surgery*, vol. 3, no. 4, pp. 601–608, 2017.
[38] N. Dea, A. Versteeg, C. Fisher et al., “Adverse events in emergency oncological spine surgery: a prospective analysis,” *Journal of Neurosurgery: Spine*, vol. 21, no. 5, pp. 698–703, 2014.

[39] J. S. Seo, S. W. Park, Y. S. Lee, C. Chung, and Y. B. Kim, “Risk factors for delirium after spine surgery in elderly patients,” *Journal of Korean Neurosurgical Society*, vol. 56, no. 1, pp. 28–33, 2014.

[40] A. M. Kelly, J. N. N. Batke, N. Dea, D. P. P. Hartig, C. G. Fisher, and J. T. Street, “Prospective analysis of adverse events in surgical treatment of degenerative spondylolisthesis,” *The Spine Journal*, vol. 14, no. 12, pp. 2905–2910, 2014.

[41] S. J. Fineberg, S. V. Nandyala, A. Marquez-Lara, M. Oglesby, A. A. Patel, and K. Singh, “Incidence and risk factors for postoperative delirium after lumbar spine surgery,” *Spine*, vol. 38, no. 20, pp. 1790–1796, 2013.

[42] S. Imagama, N. Ishiguro, N. Kawakami et al., “Perioperative complications and adverse events after lumbar spinal surgery: evaluation of 1012 operations at a single center,” *Journal of Orthopaedic Science*, vol. 16, no. 5, pp. 510–515, 2011.

[43] J. K. Lee and Y.-S. Park, “Delirium after spinal surgery in Korean population,” *Spine*, vol. 35, no. 18, pp. 1729–1732, 2010.

[44] T. Ushida, T. Yokoyama, Y. Kishida et al., “Incidence and risk factors of postoperative delirium in cervical spine surgery,” *Spine*, vol. 34, no. 23, pp. 2500–2504, 2009.

[45] R. Gao, Z.-Z. Yang, M. Li, Z.-C. Shi, and Q. Fu, “Probable risk factors for postoperative delirium in patients undergoing spinal surgery,” *European Spine Journal*, vol. 17, no. 11, pp. 1531–1537, 2008.

[46] Y. Kawaguchi, M. Kanamori, H. Ishihara et al., “Postoperative delirium in spine surgery,” *The Spine Journal*, vol. 6, no. 2, pp. 164–169, 2006.

[47] C. Shi, C. Yang, R. Gao, and W. Yuan, “Risk factors for delirium after spinal surgery: a meta-analysis,” *World Neurosurgery*, vol. 84, no. 5, pp. 1466–1472, 2015.

[48] F. R. Oliveira, V. H. Oliveira, J. M. Oliveira et al., “Hypertension, mitral valve disease, atrial fibrillation and low education level predict delirium and worst outcome after cardiac surgery in older adults,” *BMC Anesthesiology*, vol. 18, no. 1, p. 15, 2018.

[49] T. O. Smith, A. Cooper, G. Peryer, R. Griffiths, C. Fox, and J. Cross, “Factors predicting incidence of post-operative delirium in older people following hip fracture surgery: a systematic review and meta-analysis,” *International Journal of Geriatric Psychiatry*, vol. 32, no. 4, pp. 386–396, 2017.

[50] M. G. Grandahl, S. E. Nielsen, E. A. Koerner, H. H. Schultz, and S. M. Arnfred, “Prevalence of delirium among patients at a cancer ward: clinical risk factors and prediction by bedside cognitive tests,” *Nordic Journal of Psychiatry*, vol. 70, no. 6, pp. 413–417, 2016.

[51] V. Dagenais-Beaulé, J.-F. Tourigny, and L. Papillon-Ferland, “Opioid use and pain control in the elderly after elective or urgent orthopaedic surgery: a retrospective cohort study,” *Clinical Drug Investigation*, vol. 39, no. 3, pp. 301–308, 2019.

[52] S. K. Patil and M. Anitescu, “Opioid-free perioperative analgesia for hemicolectomy in a patient with opioid-induced delirium: a case report and review of the analgesic efficacy of the alpha-2 agonist agents,” *Pain Practice*, vol. 12, no. 8, pp. 656–662, 2012.

[53] G. Ito and K. Kanemoto, “A case of topical opioid-induced delirium mistaken as behavioural and psychological symptoms of dementia in demented state,” *Psychogeriatrics*, vol. 13, no. 2, pp. 118–123, 2013.