Identification of modifications in microbial, native tRNA that suppress immunostimulatory activity

Stefanie Gehrig,1 Mariel-Esther Eberle,2 Flavia Botschen,1 Katharina Rimbach,2 Florian Eberle,2 Tatjana Eigenbrod,2 Steffen Kaiser,3 Walter M. Holmes,4,5,6 Volker A. Erdmann,7 Mathias Sprinzl,8 Guillaume Bec,9 Gérard Keith,9 Alexander H. Dalpke,2 and Mark Helm1,3

1Department of Chemistry, Institute of Pharmacy and Molecular Biotechnology; and 2Department of Infectious Diseases–Medical Microbiology and Hygiene; Heidelberg University, 69117 Heidelberg, Germany
3Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
4Department of Microbiology and Immunology, 5Department of Biochemistry and Molecular Biology, and 6Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23284
7Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany
8Institute of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
9Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France

Naturally occurring nucleotide modifications within RNA have been proposed to be structural determinants for innate immune recognition. We tested this hypothesis in the context of native nonself-RNAs. Isolated, fully modified native bacterial transfer RNAs (tRNAs) induced significant secretion of IFN-α from human peripheral blood mononuclear cells in a manner dependent on TLR7 and plasmacytoid dendritic cells. As a notable exception, tRNA\textsubscript{Tyr} from \textit{Escherichia coli} was not immunostimulatory, as were all tested eukaryotic tRNAs. However, the unmodified, 5′-unphosphorylated in vitro transcript of tRNA\textsubscript{Tyr} induced IFN-α, thus revealing posttranscriptional modifications as a factor suppressing immunostimulation. Using a molecular surgery approach based on catalytic DNA, a panel of tRNA\textsubscript{Tyr} variants featuring differential modification patterns was examined. Out of seven modifications present in this tRNA, 2′-O-methylated G\textsubscript{m18} was identified as necessary and sufficient to suppress immunostimulation. Transplantation of this modification into the scaffold of yeast tRNAphe also resulted in blocked immunostimulation. Moreover, an RNA preparation of an \textit{E. coli} trmH mutant that lacks G\textsubscript{m18} 2′-O-methyltransferase activity was significantly more stimulatory than the wild-type sample. The experiments identify the single methyl group on the 2′-oxygen of G\textsubscript{m18} as a natural modification in native tRNA that, beyond its primary structural role, has acquired a secondary function as an antagonist of TLR7.
Kariñó et al., 2005). Indeed, random incorporation of naturally occurring m^3C, m^3A, m^3U, s^2U, or pseudouridine into in vitro transcripts (IVTs) of messenger RNAs abrogated stimulation of TLRs (Koski et al., 2004). Similarly, multiple studies showed that incorporation of 2′′-O-Me nucleotides into small interfering RNA (siRNA) suppressed unwanted immunostimulation (Robbins et al., 2007; Sioud et al., 2007; Eberle et al., 2008). As a point in case, 2′′-O-Me is a regularly occurring modification in natural RNA that occurs in higher frequencies in eukaryotic RNA than in bacterial or mitochondrial RNA (Kariñó and Weissman, 2007; Jühling et al., 2009).

However, the aforementioned concepts have not yet been tested with natural, full-length RNA species of defined sequence. Because access to pure native RNA species is limited, all previous studies, when specifically analyzing single modifications, made use either of short synthetic oligoribonucleotides or of IVTs. Moreover, investigations are biased toward self-RNA, and most interpretations have not been cross-validated with nonself-RNA. A point in case is given by 2′′-O-Me: although a suppressive effect on secretion of IFN-α from PBMCs is documented in RNAs of artificial or eukaryotic sequence, effects in foreign RNAs are not understood. This is particularly relevant because 2′′-O-Me occurs in bacteria as well (Persson et al., 1997; Hori et al., 2002; Czerwoniec et al., 2009; Cantara et al., 2011). Conceivably, the ensemble of other bacterial modifications as well as positioning and structural context of such modifications is probably of additional importance.

Therefore, we investigated native bacterial RNA species to analyze nucleotide modifications in their natural context. We used purified transfer RNA (tRNA) species of bacterial origin, and the resulting TLR7-mediated stimulation, as measured by ELISA-based detection of IFN-α secretion from PBMCs, was compared with purified eukaryotic tRNA species. We report the development of a method to produce tRNA hybrids that allows dissecting single modification and analyzing their immunostimulatory potential.

Using such a molecular surgical approach, we unequivocally identify 2′′-O-Me G18 (Gm18) as a highly efficient suppressive modification in bacterial native tRNA^15m. This single methyl group is necessary and sufficient for immunosuppression in a classical tRNA macromolecule, as could be shown by transplantation experiments into otherwise highly stimulatory IVTs. Analysis of eukaryotic tRNAs reveals that Gm18 is not the singular discriminator of self- versus nonself-tRNA. However, increased stimulation by total tRNA preparations from Escherichia coli mutants lacking the Gm18 methyltransferase (MTase) tmh suggests a potential role of this enzyme as a virulence factor.

RESULTS AND DISCUSSION

As opposed to previous approaches identifying nucleotide modifications with effects on immunostimulation in self-RNA, we set out to identify such moieties in nonself-RNA. Although previous studies have relied on ill-defined preparations of total RNA,
we based our investigations on the fact that native bacterial tRNAs contain a large number of modifications at precise and well-known positions.

Native E. coli tRNA^{Tyr} lacks immunostimulatory activity in PBMCs

We first tested a panel of native modified bacterial tRNAs. Importantly, tRNA accounts for around 10% of the bacterial RNA population and thus is the second most abundant RNA species. Considering that the majority of the ribosomal RNA population is complexed in ribosomal particles and thus likely to be shielded from TLR recognition, tRNA is probably a relevant RNA species for immune recognition. PBMCs were tested for secretion of IFN-α upon stimulation with RNA. To account for donor variance, experimental results were normalized to stimulation with the TLR9 ligand CpG2216. Various tRNA species from E. coli in general showed strong immunostimulation (Fig. 1 A). In contrast, tRNA^{Phe} from Saccharomyces cerevisiae, a heavily modified eukaryotic tRNA, induced only minor amounts of IFN-α when compared side by side with E. coli tRNA^{Phe}. Similarly, mammalian tRNA^{Phe} and tRNA^{Asp} were devoid of immunostimulatory activity. Among the strongly stimulatory tRNA species from E. coli, i.e., Met, Ala1, Ala3, Phe, Lys, and Asp (sequences in Jühling et al. [2009]), only moderate differences could be evidenced. In surprising contrast to these bacterial tRNAs, native E. coli tRNA^{Tyr} was not stimulatory.

We verified that the observed IFN-α response was caused by stimulation of TLR7 in plasmacytoid DCs (pDCs). Thus, depletion of pDCs from PBMCs abolished tRNA-mediated IFN-α secretion (Fig. 1 B). The observed tRNA activity was abolished either by blocking endosomal maturation with chloroquine or by inhibition of TLR7 with an antagonistic RNA oligonucleotide (2mA; Fig. 1, C and D). Furthermore, partial knockdown of TLR7 in PBMCs by siRNA clearly decreased tRNA-mediated induction of IFN-α in proportion to RNA interference efficiency by a known TLR7 ligand (Fig. 1 E). Contributions by other RNA-sensing entities were largely excluded. No activation of RIG-I but minimal stimulation of MDA5 could be observed in Huh7.5 cells expressing the respective receptors (Fig. 1 F), thus ruling out a stimulation of MDA5 and RIG-I, did not reduce tRNA stimulation (not depicted).

Lack of activity of E. coli tRNA^{Tyr} is caused by naturally occurring nucleotide modifications

We compared the lack of immunostimulatory activity of E. coli tRNA^{Tyr} with the immune response to an unmodified version, obtained by in vitro transcription. Of special importance, IVTs were generated from a precursor with a self-excising hammerhead (hh) leader sequence, resulting in a 5′-OH end, effectively excluding the presence of 5′-triphosphates, whose known stimulatory properties might activate RIG-I (Hornung et al., 2006). Processed tRNA IVTs were detected and purified by PAGE. The IVTs of tRNA^{Tyr} and tRNA^{Met} were directly compared with the native tRNA preparations (Fig. 2 A). Of note, the IVT of tRNA^{Tyr} strongly induced IFN-α, thus arguing for suppressive activity within the native tRNA. Testing yet further IVTs of various tRNAs (E. coli Phe, E. coli Ala1, and S. cerevisiae Phe) showed that in general all IVTs are stimulatory, and among the tested bacterial tRNAs, only tRNA^{Tyr} showed a significant difference between native and IVT tRNA (Fig. 2 B).

Comparison of native and IVT E. coli tRNA^{Tyr} clearly indicates that the silencing effect must be caused by one or more of the seven posttranscriptional nucleotide modifications present in the native tRNA, namely s⁵U8, G_α18, Q34, m⁵S³⁴A37, Ψ39, T54, and Ψ55 (Fig. 3 A).

Molecular surgery identifies 2′-O-Me at G18 to suppress IFN-α induction by E. coli tRNA^{Tyr}

To deconvolute the contribution of single modifications or groups thereof, we synthesized modivariants, i.e., differentially modified tRNA^{Tyr} species, in a two-step procedure of molecular surgery as depicted in Fig. 3. By judicious choice of the targeting sequences (Hengsbach et al., 2008), the RNA cleavage activity of an 8–17 DNAzyme was directed between nucleotides 24 and 25 to generate defined tRNA
fragments carrying modifications from native tRNA\textsuperscript{\text{Ty}} or their unmodified counterparts from the corresponding IVT (Fig. 3, B and C). Repeated thermocycling was used to maximize cleavage, and the resulting fragments were isolated from reactions on a preparative scale (i.e., 800 pmol). After phosphorylation on their 5’ end and removal of cyclic 3’-phosphates by treatment with T4-PNK, reassembly of permuted fragments was achieved by hybridization onto a full-length cDNA. This resulted in the formation of nicked DNA–RNA hybrids, which are ligation-competent complexes for T4-DNA ligase (Fig. 3, D and E; Kurschat et al., 2005). After ligation, the DNA splint was removed by enzymatic digestion, and the full-length modivariant tRNAs mv#1 and mv#2 were purified by PAGE in final quantities of ~2 μg.

Analysis of these modivariants in the IFN-α secretion assay revealed that the modifications suppressing immunostimulation are situated in the 5’ half of the tRNA (Fig. 4 A): mv#1, which contains the five modifications Q34, ms2i6A37, Ψ39, T54, and Ψ55 of the 3’ fragment, was nearly as strongly stimulatory as the IVT, whereas mv#2, containing s4U8 and G\textsubscript{m}18, was nearly as silent as the native tRNA\textsuperscript{\text{Ty}}. Next, modivariants G\textsubscript{m}18 and s4U8 were generated from synthetic fragments including only G\textsubscript{m}18 or s4U8 in the 5’ end of the tRNA. We observed that s4U8 did not show any effect (Fig. 4 A), G\textsubscript{m}18 alone was sufficient to completely ablate any immunostimulatory properties of the 85-nt full-length bacterial tRNA\textsuperscript{\text{Ty}}, thus emerging as the singular effective modification in this tRNA.

Different modification events lead to immunosilencing of eukaryotic tRNA

Because G\textsubscript{m} is common in eukaryotic tRNAs as well, the question arises of whether this modification represents a fundamental principle in the recognition of tRNA by TLR7. Native tRNAPhe from yeast, which showed no immunostimulation (Fig. 1), lacks G\textsubscript{m}18 (Jühling et al., 2009) but bears other modifications that obviously act in a suppressive manner. Using a similar molecular surgery approach as for tRNA\textsuperscript{\text{Ty}}, we set out to identify these. However, tRNAPhe is more heavily modified than tRNA\textsuperscript{\text{Ty}}, and the accompanying increase in thermostability protected native tRNA from DNAzyme cleavage, whereas the IVT was an efficient substrate.

![Figure 3. Molecular surgery approach based on catalytic DNA.](image-url)

(A and B) A DNAzyme was engineered to cut between residues 24 and 25 of tRNA\textsuperscript{\text{Ty}} (85 nt), generating fragments of 61 nt and 24 nt. (C) Fragments of cleaved native tRNA\textsuperscript{\text{Ty}}, and its IVT were purified by PAGE (indicated by arrows). (D) Isolated unmodified (black lines) and modified fragments (gray lines with dots indicating modifications) were annealed on splint cDNA to yield modivariants mv#1 and mv#2 after ligation and digestion of cDNA. (E) PAGE purification of modivariants (indicated by arrows).
Molecular transplantation experiments demonstrate that bacterial and eukaryotic tRNA scaffolds are interchangeable

The IVT of tRNAPhe from \textit{S. cerevisiae} was as strongly stimulatory as all other tRNA IVTs (Fig. 1), suggesting that there are no cryptic details inherent in eukaryotic tRNA sequences that might govern TLR7 recognition on a fundamental level. To clearly demonstrate that bacterial and eukaryotic tRNA scaffolds are interchangeable, transplantation experiments were performed in which both identified effective G\textsubscript{m} modifications (G\textsubscript{m}18 from prokaryotic and G\textsubscript{m}34 from eukaryotic tRNA) were assayed in a nonnative tRNA context. Transplantation by molecular surgery of G\textsubscript{m}18 into the scaffold of the tRNAPhe IVT efficiently silenced the strong response provoked by the IVT (Phe G\textsubscript{m}18 in Fig. 4 B). This shows that the TLR7 response to eukaryotic self-tRNA may be silenced by G\textsubscript{m}18 also in a tRNA context in which it does not naturally occur. Similarly, in the analogous transplantation of the eukaryotic modification into a bacterial tRNA context, the G\textsubscript{m}34 modification also silenced the tRNATyr response, albeit with somewhat reduced efficiency (Tyr G\textsubscript{m}34 in Fig. 4 C).

Figure 4. Unique effect of G\textsubscript{m}18 in suppression of immunostimulation. (A) PBMC stimulation with native \textit{E. coli} tRNATyr, its IVT, and modivariants mv\#1 and mv\#2, as well as modivariants G\textsubscript{m}18 and s4U8 (n = 4; mean + SD). (B) Stimulation of PBMCs with native \textit{S. cerevisiae} tRNAPhe, its IVT, and variants bearing G\textsubscript{m}18 or single, naturally occurring 2'-O-Me residues at different positions (C\textsubscript{m}32 and G\textsubscript{m}34; n = 2; mean + SD of triplicates). (C) Stimulation of PBMCs with variants of \textit{E. coli} tRNATyr with positionally altered G\textsubscript{m} (n = 3; mean + SD).
Gm\textsubscript{18} reduces immunostimulatory activity of total bacterial tRNA preparations

In *E. coli*, the gene product of *trmH* has been identified to act as 2'-O-MTase, which is crucial for tRNA Gm\textsubscript{18} modification (Persson et al., 1997). *trmH* deficiency results in loss of Gm\textsubscript{18}. As Gm\textsubscript{18} occurs in 13 out of 45 tRNAs in *E. coli*, loss of Gm\textsubscript{18} might increase the immunostimulatory properties of whole tRNA preparations. Surprisingly, total tRNA from WT *E. coli* was only weakly stimulatory, although the majority of tRNAs did not possess the Gm\textsubscript{18} modification. We speculated that Gm\textsubscript{18} might not only lack immunostimulation but even suppress otherwise activating tRNA. This notion is strongly supported by the finding that total tRNA from a *trmH* mutant (Δ*trmH::kan*; Persson et al., 1997) elicited a significantly stronger IFN-α response (Fig. 5 A). This result implies an antagonistic property of Gm\textsubscript{18}-containing tRNAs, which appear to silence the TLR7-mediated response to the remainder of the total tRNA population. We therefore decided to evaluate the antagonistic properties of Gm\textsubscript{18}-containing tRNA34 in a titration experiment with stimulatory, G18-unmethylated tRNA. Increasing amounts of *E. coli* tRNA34 were added to stimulatory *E. coli* tRNAPhe (Fig. 5 B). Indeed, *E. coli* tRNA34 decreased IFN-α secretion induced by tRNAPhe in an inhibitory manner.

At this point, we can state that self-tRNA is guarded against TLR7 activation (which was the most important receptor triggered by tRNA in our study setting) not by a singular principle, but by a variety of at least three different posttranscriptional modifications, of which we have characterized Gm\textsubscript{18} and Gm\textsubscript{34} in detail, and another one is contained in mammalian tRNA34. Systematic investigation of all of the >40 tRNA species in humans must be postponed to future research. We have already shown (Fig. 4) that Cm\textsubscript{32} does not affect recognition of the tRNAPhe scaffold by TLR7, indicating that not all 2’-O-Me-methylations are effective in this matter. Naturally occurring 2’-O-Me residues in tRNAs include positions 4, 44, or 54, which are thus prime candidates for further investigations (Fühling et al., 2009; Cantara et al., 2011).

Gm\textsubscript{18} in bacterial tRNA is likely to have evolved from selection pressure unrelated to the mammalian innate immune system. Indeed, the Gm\textsubscript{18} modification is found in bacterial, archaeal, and eukaryotic tRNAs alike, where it is part of a class of modifications in the structural core of the tRNA deemed to be responsible for structural and metabolic stabilization (Motorin and Helm, 2010). Lack of a growth phenotype, i.e., normal growth in modification-deficient mutants, as observed for *trmH* mutants in *E. coli* (Persson et al., 1997), is a common feature of such modifications, which are thought to contribute to a network of cooperative structural effects. Although a structural effect still awaits biophysical confirmation (Kumagai et al., 1980; Björk, 1995; Motorin and Helm, 2010), a widespread occurrence supports the notion that an effect of Gm\textsubscript{18} on TLR7 recognition is a secondary function acquired late in evolution.

Most interestingly, a potential physiological importance of Gm\textsubscript{18} for the immunological recognition of bacterial RNA could be demonstrated by using an *E. coli* mutant that lacked the 2’-O-MTase *trmH*. Whole tRNA preparations from mutant bacteria showed increased immunostimulation as compared with WT bacteria. This result verifies that Gm\textsubscript{18} in a physiological setting is important to shape bacterial immunogenicity for innate immune cells. Our results show that among natural tRNA modifications, Gm\textsubscript{18} plays an outstanding role in modulating the tRNA’s immunostimulatory properties. The fact that *trmH* mutants are more immunostimulatory although only a minority of tRNAs (Persson et al., 1997) bear a Gm\textsubscript{18} modification (Fig. 5 A) and decreased immunostimulation of tRNA upon addition of Gm\textsubscript{18}-modified species (Fig. 5 B) indicates a dominant inhibitory effect, which de facto categorizes tRNA34 as a TLR7 antagonist.

Assuming a secondary role of bacterial Gm\textsubscript{18} in avoiding a mammalian immune response, a correlation between the Gm\textsubscript{18} content in bacterial tRNA from various species and the adaptation of the respective prokaryote to mammals might reveal evolutionary immunological pressure that selected for this modification. Certainly, differences in Gm\textsubscript{18} frequencies between different bacteria can be observed, e.g., *Haemophilus influenzae* is lacking *trmH* (Fleischmann et al., 1995), but extensive systematic analysis of Gm\textsubscript{18} content in bacterial tRNA is needed to address this point. It remains unknown whether bacteria can regulate their Gm\textsubscript{18} modification pattern to cope with immune recognition by a mammalian host. Interestingly, many of the stimulatory *E. coli* tRNAs present in total tRNA, including, e.g., tRNAPhe and tRNA34, possess the relevant target residue G18 but are no substrates for TrmH and remain unmethylated. This is not unusual for tRNA MTases, which normally require a limited set of structural and sequence elements for substrate recognition (Motorin and Helm, 2011). Although the precise substrate requirements for TrmH are yet
unknown, they are obviously present in tRNA$^{\text{Tyr}}$ but not in tRNA$^{\text{Phe}}$ and tRNA$^{\text{A18}}$. In turn, this points to the substrate specificity of TrmH as a potentially important contribution to the overall immunostimulation of total tRNA from *E. coli* in particular and from any given potential pathogen in general. Future research must elucidate whether broader substrate specificity and a correspondingly higher fraction of G$_{\text{A18}}$-containing tRNAs leads to a further decrease in TLR7 stimulation and, possibly, increased virulence of the respective bacterium. Also, future tests must include less canonical tRNA structures such as initiator tRNA, human mitochondrial tRNAs, or mutated tRNAs with deliberate mutations of tertiary structure to evaluate whether our findings apply to substrates without the classical tRNA structure context.

MATERIALS AND METHODS

tRNA preparation

Native tRNA$^{\text{Tyr}}$, tRNA$^{\text{Phe}}$, tRNA$^{\text{A18}}$, tRNA$^{\text{A40}}$, tRNA$^{\text{A42}}$, and tRNA$^{\text{M81}}$ from *E. coli* had been purified as described previously (Holmes et al., 1978) and were stored at -80°C after long-term storage. *S. cerevisiae* tRNA$^{\text{Phe}}$ and certain batches of tRNA$^{\text{A18}}$ were obtained from Sigma-Aldrich. Mammalian tRNA$^{\text{Phe}}$ and tRNA$_{\mu}$$_{\text{Ala}}$ were isolated as described previously (Keith and Dirheimer, 1978; Bénas et al., 2000). Fragments of yeast tRNA$^{\text{Phe}}$ originated from chemical cleavage via depurination of the wobble nucleotide at position 37, followed by strand scission under acidic conditions. These fragments had been isolated earlier (Sprinzl et al., 1976).

Total tRNA lacking G$_{\text{A18}}$ was prepared from strain CF4409, an *E. coli* K-12 derivative in which spoU/trmH (Persson et al., 1997) had been deleted (ΔmH$_{\text{K-12}}$). The parental strain CF897 was used as a control (Xiao et al., 1991). All strains were provided by M. Cashel (National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD). Bacteria were grown at 37°C for 6 h in Luria-Bertani medium supplemented with 50 µg/ml kanamycin. Bacteria were pelleted, frozen at -80°C overnight, and then lysed in 40 mg/ml lysozyme for 20 min. Total RNA was isolated using TRIZOL reagent (Invitrogen) according to the manufacturer’s instructions. RNA was separated by denaturing PAGE (10% acrylamide and 50% urea). The bands containing the tRNA were cut and dephosphorylated with 0.6 U/µl shrimp alkaline phosphatase in shrimp alkaline phosphatase buffer (10 mM Tris-HCl, pH 8.0, 5 mM MgCl$_2$, and 0.1 mg/ml BSA) in a final volume of 50 µl for 1 h at 37°C and purified by phenol-ether extraction.

Synthesis of modivariants

*DNAzyme catalyzed fragmentation of *E. coli* tRNAs*. DNAzyme catalyzing reactions of 250-µl final volume contained 150 mM KCl, 10 mM MgCl$_2$, 50 mM Tris-HCl, pH 7.4, 20 µg of either native or in vitro IVT *E. coli* tRNA$^{\text{Phe}}$, and a 2× molar excess of DNAzyme ($5'\text{-AGTCTGCTCTG-CACGGACACGAAATTTTGCGCGGGAAACCccc-3'}$). The mixture was subjected to 20 repetitions of temperature cycling: 30 s at 85°C, a temperature decrease by 0.5°C/s to 37°C, and 3 min at 37°C. DNAzyme was digested by directly adding Dnase I (4–6 U/µg DNA substrate; Fermentas) to the reaction mixture and incubating for 1 h at 37°C.

Phosphorylation and dephosphorylation. For 5’-phosphorylation and 3’-dephosphorylation, 200 pmol of each fragment was incubated in Buffer A (50 mM Tris-HCl, pH 7.6, 10 mM MgCl$_2$, 5 mM DTT, 0.1 mM spermidine, and 0.1 mM EDTA) supplemented with 2 mM ATP and 0.8 U/µl T4-PPNK (Fermentas) in a final volume of 17–24 µl for 1 h at 37°C. The reaction mixture was directly used for subsequent steps.

Splinted ligation. Ligation of prephosphorylated fragments was performed in a final volume of 50 µl at final concentrations of 50 mM Tris-HCl, pH 7.4, 10 mM MgCl$_2$, 4 µM of each oligoribonucleotide, and 0.9 equivalents of DNA splint (5’-TGGTGGTGGGGAAGGATTCGAACCTTCGAAAG-CTGCGTCTTTTGCTCTACCAAGTATCGTACTT-3’, reverse primer 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’,模板 Met, 5’-TGGTGGTGGGGGAAGGATTCGAACCTTCGAAAG-CTGCGTCTTTTGCTCTACCAAGTATCGTACTT-3’, reverse primer 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’, template Tyr, 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’, reverse primer 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’, template Ala1, 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’, reverse primer 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’). The mixture was subjected to 20 repetitions of temperature cycling: 30 s at 85°C, a temperature decrease by 0.5°C/s to 37°C, and 3 min at 37°C. DNAzyme was digested by directly adding Dnase I (4–6 U/µg DNA substrate; Fermentas) to the reaction mixture and incubating for 1 h at 37°C.

Splinted ligation. Ligation of prephosphorylated fragments was performed in a final volume of 50 µl at final concentrations of 50 mM Tris-HCl, pH 7.4, 10 mM MgCl$_2$, 4 µM of each oligoribonucleotide, and 0.9 equivalents of DNA splint (5’-TGGTGGTGGGGAAGGATTCGAACCTTCGAAAG-CTGCGTCTTTTGCTCTACCAAGTATCGTACTT-3’, reverse primer 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’, template Met, 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’, reverse primer 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’, template Tyr, 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’, reverse primer 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’, template Ala1, 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’, reverse primer 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’, template Ala2, 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’, reverse primer 5’-TGGTGCAACACGAGTCATTCACGTTGCTTC-3’).
Stimulation of PBMCs with tRNAs

Human PBMCs were isolated from heparinized blood of healthy donors by standard Ficoll-Hypaque density-gradient centrifugation (Ficoll 1.078 g/ml; Eberle et al., 2008). PBMCs were filtered through a 100-µm cell strainer and resuspended in complete medium prepared of RPMI 1640 supplemented with heat-inactivated (1 h, 56°C) 2% autologous serum. Cells were plated at 4 × 10^5 cells/well in a 96-well flat-bottom plate. 1 µg tRNA sample was diluted in a volume of 5 µl. The RNA was encapsulated with 2.5 µl of 1 mg/ml DOTAP (N-[1-(2, 3-dioleoyloxy)propyl]-N, N, N-trimethylammonium methysulfate) by mixing with serum-free medium and incubation for 10 min. PBMCs were stimulated in a humidified 5% CO₂ atmosphere at 37°C for 16 h. As internal positive control, PBMCs were stimulated with 1 µM of the TLR9-specific stimulus CpG2216. In inhibition experiments, two different tRNAs were mixed as indicated and added together to the cells. Cell-free supernatant was analyzed for secretion of IFN-α using a sandwich ELISA (Bender MedSystems).

Where indicated, cells were pretreated with 1 or 5 µM chloroguanidine (Sigma-Aldrich) for 30 min or with RNA oligonucleotide 2mA (5′-GGMACUCUCCAGGGUCMCAGUUGCCG-3′) to block endosomal TLRs or TLR7, respectively (Eberle et al., 2009). PBMCs were also tested when depleted of BDCA-4-positive pDCs through magnetic cell separation (MACS; Miltenyi Biotec) according to the manufacturer’s protocol. Induction of TNF by LPS stimulation was not affected through pDC depletion or any of the inhibitors. Analysis of stimulation of RIG-I or MDA5 was essentially performed as described previously (Eberle et al., 2009) by overexpressing these receptors in otherwise inactive Huh7.5 cells harboring an IRF3 reporter.

Knockdown of TLR7 in PBMCs to verify engagement of TLR7 by tRNAs was performed as follows: in brief, 2.5 pmol siRNA was incubated with Lipofectamine RNAiMax in Optimem in 96-well plates. PBMCs were plated after 20 min of incubation (10^5 cells/well) and placed at 37°C, 5% CO₂. After 24 h, cells were stimulated with the respective tRNA or control.

Statistical analysis

Data were analyzed by the Prism 5 program (GraphPad Software). Significant differences were assessed by the Student’s t test. In all figures, the p-value is indicated by *, P < 0.05; **, P < 0.01; and ***, P < 0.001.

Online supplemental material

Fig. S1 shows the preparation of modivariants mv#3 and mv#4 of B. burgdorferi tRNA(Phe).相似 to the scheme in Fig. 3 except that acid hydrolysis was used instead of a DNAzyme to site-specifically cleave native tRNA, and also shows stimulation data of these modivariants mv#3 and mv#4, as well as of one more construct tRNA(Lys,3) in which the point to identify the 2′-O-Me modifications in the anticodon loop of tRNAβ as being important for silencing of the IFN-α response to this tRNA. Online supplemental material is available at http://www.jem.org/cgi/content/full/jem.20111044/DC1.

We thank René Karayilan for excellent technical support and Michael Cashel for providing us with bacterial strains.

This work has been supported by supported by contract research “Methoden für die Lebenswissenschaften” of the Baden-Württemberg Stiftung (P-LS-Meth/10 to A.H. Dalpke and M. Helm).

The authors have no conflicting financial interests.

Submitted: 24 May 2011
Accepted: 10 January 2012

REFERENCES

Bénas, P., G. Bec, G. Keith, R. Marquet, C. Ehresmann, B. Ehresmann, and P. Dumas. 2000. The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop. RNA. 6:1347–1355. http://dx.doi.org/10.1017/S0889848000000919

Björk, G.R. 1995. Genetic dissection of synthesis and function of modified nucleosides in bacterial transfer RNA. Prog. Nucleic Acid Res. Mol. Biol. 50:263–338. http://dx.doi.org/10.1016/S0079-6603(08)60817-X

Cantara, W.A., P.F. Crum, J. Rozenski, J.A. McCluskey, K.A. Harris, X. Zhang, F.A. Vendrus, D. Franks, and P.F. Agnis. 2011. The RNA modification database, RNASMOD 2011 update. Nucleic Acids Res. 39:D195–D201. http://dx.doi.org/10.1093/nar/gkj1028

Czerwonica, A., S. Dunin-Horkawicz, E. Prut, and K.H. Kaminska. 2010. Pathogen recognition by the innate immune system. Eur. J. Immunol. 39:2537–2547. http://dx.doi.org/10.1002/eji.200838978

Fechter, P., J. Rudinger, R. Giegé, and A. Théobald-Dietrich. 1998. Ribozyme processed RNA transcripts with unfriendly internal promoter for T7 RNA polymerase: production and activity. FEBS Lett. 436:99–103. http://dx.doi.org/10.1016/S0014-5793(98)01096-5

Fleischmann, R.D., M.D. Adams, O. White, R.A. Clayton, E.F. Kirkness, A.R. Kerlavage, C.J. Blatt, J.F. Tomb, B.A. Dougherty, J.M. Merrick, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512. http://dx.doi.org/10.1126/science.7542800

Grosjean, H. 2009. DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution. Landes Bioscience, Austin, TX. 682 pp.

Hengesbach, M., M. Meusburger, F. Lyko, and M. Helm. 2008. Use of DNAzymes for site-specific analysis of ribonucleotide modifications. RNA. 14:180–187. http://dx.doi.org/10.1261/rna.742708

Holmes, W.M., R.E. Hurd, B.R. Reid, R.A. Rimeman, and G.W. Hatfield. 1975. Separation of transfer ribonucleic acid by sepharose chromatography using reverse salt gradients. Proc. Natl. Acad. Sci. USA 72:1068–1071. http://dx.doi.org/10.1073/pnas.72.3.1068

Hori, H., T. Suzuki, K. Sugawara, Y. Inoue, T. Shibata, S. Kuzumitsu, S. Yokoyama, T. Oshima, and K. Watanabe. 2002. Identification and characterization of tRNA (Gm18) methyltransferase from Thermus thermophilus HB8: domain structure and conserved amino acid sequence motif. Gene Cells. 7:259–272. http://dx.doi.org/10.1016/S0370-1648(01)00725-5

Hornung, V., J. Ellestad, S. Kim, K. Brzózka, A. Jung, H. Kato, H. Poeck, S. Akira, K.K. Conzelmann, M. Schlee, et al. 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997. http://dx.doi.org/10.1126/science.1132505

Jühling, F., M. Mörl, R.K. Hartmann, M. Spinzel, P.F. Stadler, and J. Pütz. 2009. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 37:D119–D162. http://dx.doi.org/10.1093/nar/gkn772

Kariko, K., and D. Weissman. 2007. Naturally occurring nucleotide modifications suppress the immunostimulatory activity of RNA: implications for therapeutic RNA development. Curr. Opin. Drug Discov. Decov. 10:523–532.

Kariko, K., M. Buckstein, H. Ni, and D. Weissman. 2005. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 23:163–175. http://dx.doi.org/10.1016/j.immuni.2005.06.008

Keith, G., and D. Dharmer. 1978. The primary structure of rabbit, calf and bovine liver tRNAPhe. Biochim. Biophys. Acta. 514:133–149.

Koski, G.K., K. Kariko, S. Xu, D. Weissman, P.A. Cohen, and B.J. Czerniecki. 2004. Cutting edge: innate immune system discriminates between RNA containing bacterial versus eukaryotic structural features that prime for high-level IL-12 secretion by dendritic cells. J. Immunol. 172:3898–3993.

Kumagai, I., K. Watanabe, and T. Oshima. 1980. Thermus thermophilus HB27 Rd. 682 pp.

Kumagai, I., K. Watanabe, and T. Oshima. 1980. Thermus thermophilus HB27. Proc. Natl. Acad. Sci. USA. 77:1922–1926. http://dx.doi.org/10.1073/pnas.77.4.1922

Kumar, H., T. Kawai, and S. Akira. 2011. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30:16–34. http://dx.doi.org/10.1080/08830185.2010.529976

Kutsch, W.C., J. Müller, R. Wombacher, and M. Helm. 2005. Optimizing splinted ligation of highly structured small RNAs. RNA. 11:1909–1914. http://dx.doi.org/10.1261/rna.2170705
Motorin, Y., and M. Helm. 2010. tRNA stabilization by modified nucleotides. Biochemistry. 49:4934–4944. http://dx.doi.org/10.1021/bi100408a

Motorin, Y., and M. Helm. 2011. RNA nucleotide methylation. Wiley Interdiscip Rev RNA. 2:611–631. http://dx.doi.org/10.1002/wrna.79

Persson, B.C., G. Jäger, and C. Gustafsson. 1997. The spoU gene of Escherichia coli, the fourth gene of the spoT operon, is essential for tRNA (Gn18) 2’-O-methyltransferase activity. Nucleic Acids Res. 25:4093–4097. http://dx.doi.org/10.1093/nar/25.20.4093

Robbins, M., A. Judge, L. Liang, K. McClintock, E. Yaworski, and I. MacLachlan. 2007. 2’-O-methyl-modified RNAs act as TLR7 antagonists. Mol. Ther. 15:1663–1669. http://dx.doi.org/10.1038/sj.mt.6300240

Sampson, J.R., and O.C. Uhlenbeck. 1988. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc. Natl. Acad. Sci. USA. 85:1033–1037. http://dx.doi.org/10.1073/pnas.85.4.1033

Sioud, M., G. Furset, and L. Cekaite. 2007. Suppression of immunostimulatory siRNA-driven innate immune activation by 2’-modified RNAs. Biochem. Biophys. Res. Commun. 361:122–126. http://dx.doi.org/10.1016/j.bbrc.2007.06.177

Sprinzl, M., T. Wagner, S. Lorenz, and V.A. Erdmann. 1976. Regions of tRNA important for binding to the ribosomal A and P sites. Biochemistry. 15:3031–3039. http://dx.doi.org/10.1021/bi00659a115

Tluk, S., M. Jurk, A. Forsbach, R. Weeratna, U. Samulowitz, A.M. Krieg, S. Bauer, and J. Vollmer. 2009. Sequences derived from self-RNA containing certain natural modifications act as suppressors of RNA-mediated inflammatory immune responses. Int. Immunol. 21:607–619. http://dx.doi.org/10.1093/intimm/dxp030

Xiao, H., M. Kalman, K. Ikehara, S. Zemel, G. Glaser, and M. Cashel. 1991. Residual guanosine 3’,5’-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266:5980–5990.