Search for Higgs bosons predicted in two-Higgs-doublet models via decays to tau lepton pairs in 1.96 TeV pp collisions

T. Aaltenon,24 J. Adelman,14 T. Akimoto,56 B. Álvarez González,12 S. Americo,14 D. Amidei,35 A. Anastassov,39 A. Anno,29 J. Antos,15 G. Apollinari,18 A. Apresyan,49 T. Arisawa,58 A. Artikov,16 W. Ashmanskas,18 A. Attal,4 A. Aurisano,54 F. Azfar,43 W. Badgett,18 A. Barbaro-Galtieri,29 V.E. Barnes,49 B.A. Barnett,26 P. Barria67,47 P. Bartos,15 V. Bartsch,31 G. Bauer,33 P.-H. Beauchemin,34 F. Bedeschi,47 D. Beecher,31 S. Behari,26 G. Bellettini,47 J. Bellinger,60 D. Benjamine,17 A. Beretvas,18 J. Beringer,29 A. Bhatti,51 M. Binkley,18 D. Bisello,41 I. Bizjak11,31 R.E. Blair,5 C. Blocker,7 B. Blumenfeld,26 A. Bocci,17 A. Bodek,80 V. Boisvert,50 G. Bolla,49 D. Bortoletto,19 J. Boudreau,48 A. Boveia,11 B. Brau,11 A. Bridgeman,25 L. Brigliadori,6 J. Brometer,36 E. Bru behaker,14 J. Budagov,16 H.S. Budd,50 S. Budd,25 S. Burke,18 K. Burkett,18 G. Busetto,44 P. Bussey,22 A. Buzatu,34 K. L. Byrum,2 S. Cabrera,17 C. Calancha,32 M. Campanelli,36 M. Campbell,35 T. Canelli,14,18 A. Canepa,46 B. Carls,25 D. Carlsm 60 R. Carosi,47 S. Carrillo,19 S. Carron,34 B. Casal,12 M. Casarsa,18 A. Castro,6 P. Cattastin67,47 D. Cauze,55 V. Cavaliere,b67 M. Cavalli-Sforza,4 A. Cerri,29 L. Cerri67,31 S.H. Chang,62 Y.C. Chen,1 M. Chertok,9 G. Chiarelli,57 G. Chlachidze,58 F. Chlebana,18 K. Cho,62 D. Chokheli,16 J.P. Chou,23 G. Choudalakis,33 S.H. Chuang,53 K. Chung,15 W.H. Chung,60 Y.S. Chung,50 T. Chwalek,27 C.I. Ciobanu,45 M.A. Ciocci,67 A. Clark,21 D. Clark,7 G. Compostella,44 M.E. Convery,18 J. Conway,8 M. Cordeli,20 G. Cortiana,44 C.A. Cox,8 F. Crescioli,47 C. Cuenca Almenar,8 J. Cuevas,12 R. Culbertson,18 J.C. Cully,35 D. Dagenhart,18 M. Datta,18 T. Davies,22 P. de Barbaro,50 S. De Cecco,52 A. Deisher,29 G. De Lorenzo,4 M. Dell’Orso,47 C. Deluca,4 L. Demortier,51 J. Deng,17 M. Deninno,58 P.F. Derwent,18 A. Di Canto67,47 G.P. di Giovanni,49 C. Dionisi44,52 B. Di Ruzza55 J.R. Dittmann,5 M. D’Onofrio,4 S. Donatini,47 P. Dong,9 J. Donini,44 T. Dorigo,44 S. Dube,53 J. Efron,40 A. Eligini,54 R. Erbacher,8 D. Errede,25 S. Errede,25 R. Eusebi,18 H.C. Fang,29 S. Farrington,43 W.T. Fedorko,14 R.G. Feld,61 M. Feindt,27 J.P. Fernandez,32 C. Ferrazza,47 R. Field,19 G. Flanagan,49 R. Forrest,8 M.J. Frank,5 M. Franklin,23 J.C. Freeman,18 I. Furic,19 M. Gallinar,52 J. Galyzerd,13 F. Garberson,11 J.E. Garcia,21 A.F. Garfinkel,59 P. Garosi67,47 K. Genser,18 H. Gerberich,25 D. Gerdes,35 A. Gessler,27 S. Giagu52 V. Giakoumopoulos,3 P. Giannetti,47 K. Gibson,47 J.L. Gimml,50 C.M. Ginsburg,18 N. Giokaris,5 M. Giordani,55 P. Giromini,20 M. Giunta,47 G. Giurgiù,26 V. Glagolev,16 D. Glinzinski,18 M. Gold,38 N. Goldschmidt,19 A. Golossanov,18 G. Gomez,12 G. Gomez-Ceballos,53 M. Goncharov,35 O. González,32 I. Gorelov,38 A.T. Goshaw,17 K. Goulionas,51 A. Greisele,44 S. Grinstein,23 C. Grosso-Pilcher,14 R.C. Group,18 U. Grunden,25 J. Guinanaes da Costa,23 Z. Guan-Uno alan,36 C. Haber,52 K. Hahn,33 S.R. Hahn,18 E. Halkiadakis,53 B.-Y. Han,50 J.Y. Han,60 F. Happacher,29 K. Hara,56 D. Hare,53 M. Hare,57 S. Harper,43 R.F. Harr,59 R.M. Harris,18 M. Hartz,48 K. Hatakeyama,51 C. Hays,43 M. Heck,27 A. Heijboer,46 J. Heinrich,46 C. Henderson,53 M. Herndon,60 J. Heuser,27 S. Hewamanage,5 D. Hidas,17 C.S. Hill,11 D. Hirschbuehl,27 A. Hoeker,18 S. Hou,5 M. Hou den,50 S.C. Hsu,29 B.T. Huffman,43 R.E. Hughes,40 U. Husemann,51 M. Hussein,51 J. Huston,56 J. Incandela,11 G. Introzzi,47 M. Iorid52 A. Ivanov,8 E. James,18 D. Jang,13 B. Jayatilaka,17 E.J. Jeon,62 M.K. Jha,54 S. Jindariani,18 W. Johnson,58 M. Jones,49 K.K. Joo,62 S.Y. Jun,13 J.E. Jung,62 T.R. Junk,18 T. Kamon,54 D. Kar,19 P.E. Karchin,59 Y. Kato,42 R. Kephart,18 W. Ketchum,14 J. Keung,46 V. Khotilovich,54 B. Kilminster,18 D.H. Kim,62 H.S. Kim,62 H.W. Kim,62 J.E. Kim,62 M.J. Kim,20 S.B. Kim,62 S.H. Kim,56 Y.K. Kim,14 N. Kimura,56 L. Kirsch,7 S. Klimenko,19 B. Knutsen,35 B.R. Ko,17 K. Kondo,58 D.J. Gong,62 J. Konigsberg,19 A. Korytov,19 A.V. Kotwal,17 M. Kreps,27 J. Kroll,46 D. Krop,14 N. Krummack,5 M. Kruse,17 V. Krutelyov,11 T. Kubo,56 T. Kuhr,27 N.P. Kulkarni,59 M. Kurnat,56 S. Kwang,14 T.T. Laasanen,49 S. Lami,57 A. Latch,54 G. Latino67,47 I. Lazzizzera,42 T. LeCompte,2 E. Lee,54 H.S. Lee,14 S.W. Lee,54 S. Leone,47 J.D. Lewis,18 C.-S. Lin,29 J. Linaacre,43 M. Lindgren,18 E. Lipeles,46 A. Lister,8 D.O. Litvintsev,18 C. Liu,16 N.S. Lockyer,46 A. Logino,61 M. Loretii,44 L. Lovas,15 D. Lucchesi,44 C. Luciaid 52 J. Lueck,27 P. Lujan,29 P. Lukens,18 G. Lungu,45 L. Lyons,43 J. Lys,29 R. Lysak,15 D. MacQueen,34 R. Madrak,18 K. Maehima,18 K. Makhoul,33 T. Maki,24 P. Masksimovic,26 S. Malde,13 G. Malin,13 A. Manousakis-Katsikakis,8 F. Margaroli,49 C. Marino,27 C.P. Marino,25 A. Martin,61 V. Martiné,22 M. Martinez,4 R. Martínez-Ballarín,32 T. Maruyama,50 P. Mattrand,52 T. Masubuchi,56 M. Mathis,26 M.E. Mathson,59 P. Mazzanti,13 J.K. McFarland,50 P. McIntyre,45 R. McNulty,30 A. Mehta,30 P. Mehtala,24 A. Menzione,47 P. Merkel,49 C. Mesropian,51 T. Miao,18 N. Miladinovic,7 R. Miller,36 C. Mills,35 M. Milnik,27 A. Mitra,1 G. Mitselmakher,19 H. Miyake,6 N. Moggi,6 M.N. Mondragon67,18 C.S. Moon,62 R. Moore,18 M.J. Morello,47 J. Morlock,27 P. Movilla Fernandez,18 J. Müllerstädt,29 A. Mukherjee,24 H. Muller,27 J. Mumford,62 P. Murat,18 arXiv:0906.1014v2 [hep-ex] 26 Oct 2009
M. Mussini, J. Nachtman, Y. Nagai, A. Nagano, J. Naganuma, K. Nakamura, I. Nakano, A. Napier, V. Necula, J. Nett, C. Neu, M.S. Neubauer, S. Neubauer, J. Nielsen, L. Nodulman, M. Norman, O. Ornella, E. Nurse, L. Oakes, S.H. Oh, Y.D. Oh, I. Oksuzian, T. Okusawa, R. Orava, K. Osterberg, S. Pagan Griso, C. Pagliarone, E. Palencia, V. Papadimitriou, A. Papaikonomou, A.A. Paramonov, B. Parks, S. Pashapour, J. Patrick, G. Pauletta, M. Paulini, C. Paus, T. Peiffer, D.E. Pellett, A. Penzo, T.J. Phillips, G. Piacentino, E. Pianori, L. Pinera, K. Pitts, C. Pledger, I. Pondrom, O. Poukhov, N. Pounder, F. Prakoshy, A. Pronko, J. Proudfoot, F. Ptohos, E. Pueschel, G. Punzi, J. Pursley, J. Rademaker, A. Rahaman, V. Ramakrishnan, N. Ranjan, I. Redondo, P. Renton, M. Renz, M. Rescigno, S. Richter, F. Rimanoli, L. Ristori, A. Robson, T. Rodrigo, T. Rodriguez, E. Rogers, S. Rolli, R. Roser, M. Rossi, R. Rossin, P. Roy, A. Ruiz, J. Russ, V. Rusu, B. Rutherford, H. Saarikko, A. Safonov, W.K. Sakumoto, O. Saltò, L. Santi, S. Sarkar, L. Sartori, K. Sato, A. Savoy-Navarro, P. Schlabach, A. Schmidt, E.E. Schmidt, M.A. Schmidt, M.P. Schmidt, T. Schwarz, L. Scodellaro, A. Scribano, F. Scuci, A. Sedov, S. Seidel, Y. Seiya, A. Semenov, L. Sexton-Kennedy, F. Sforza, A. Sfyrila, S.Z. Shalhout, T. Shears, P.F. Shepard, M. Shimojima, S. Shiraishi, M. Shochet, Y. Shon, I. Shreiber, P. Siviero, A. Sisakyan, A.J. Slaughter, J. Slunwhtie, K. Sliva, J.R. Smith, P.D. Snider, R. Snihur, A. Soha, S. Somalwar, V. Sorin, T. Sprêtre, P. Squillacioti, M. Stanitzki, R. St. Denis, B. Stelzer, O. Stelzer-Chilton, J. Strologas, G.L. Strycker, J.S. Sueh, A. Sukhanov, I. Suslov, T. Suzuki, A. Taffard, R. Takahama, Y. Takeuchi, R. Tanaka, M. Tecchio, P.K. Teng, K. Terashi, J. Thom, A.S. Thompson, G.A. Thompson, E. Thomson, P. Tipton, P. Tito-Guzmán, S. Tkaczuk, D. Toback, S. Tókár, K. Tollefson, T. Tomura, D. Tonelli, S. Torre, D. Torretta, P. Tóth, S. Tournier, M. Trovato, Y. Tsai, Y. Tu, N. Turini, F. Uegawa, S. Vallecorsa, N. van Remortel, A. Varganov, E. Vattaca, F. Vázquez, G. Velev, C. Vellidis, M. Vidal, R. Vidal, I. Vila, R. Vilar, T. Vine, M. Vogel, I. Volobouev, G. Volpi, P. Wagner, R.G. Wagner, R.L. Wagner, W. Wagnerno, J. Wagnerno-Kuhru, W. Wallny, S.M. Wang, A. Warburton, D. Waters, M. Weinberger, J. Weinelt, W.C. Wester III, B. Whitehouse, D. Whiteson, A.B. Wicklund, E. Wicklund, S. Wilbur, G. Williams, H.H. Williams, P. Wilson, B.L. Winer, P. Wittich, S. Woblers, C. Wolfe, T. Wright, X. Wu, F. Würtzheim, S. Xie, A. Yagil, K. Yamamoto, J. Yamaoka, U.K. Yang, Y.C. Yang, W.M. Yao, G.P. Yeh, K. Yio, J. Yoh, K. Yorita, T. Yoshida, G.B. Yu, I. Yu, S.S. Yu, J.C. Yun, L. Zanello, A. Zanetti, X. Zhang, Y. Zheng, and S. Zucchelli (CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439
3 University of Athens, 157 71 Athens, Greece
4 Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5 Baylor University, Waco, Texas 76798
6 Istituto Nazionale di Fisica Nucleare Bologna, University of Bologna, I-40127 Bologna, Italy
7 Brandeis University, Waltham, Massachusetts 02254
8 University of California, Davis, California 95616
9 University of California, Los Angeles, Los Angeles, California 90024
10 University of California, San Diego, La Jolla, California 92093
11 University of California, Santa Barbara, Santa Barbara, California 93106
12 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
13 Carnegie Mellon University, Pittsburgh, PA 15213
14 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
15 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
16 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
17 Duke University, Durham, North Carolina 27708
18 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
19 University of Florida, Gainesville, Florida 32611
20 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
21 University of Geneva, CH-1211 Geneva 4, Switzerland
22 Glasgow University, Glasgow G12 8QQ, United Kingdom
23 Harvard University, Cambridge, Massachusetts 02138
24 Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
We present the results of a search for Higgs bosons predicted in two-Higgs-doublet models, in the case where the Higgs bosons decay to tau lepton pairs, using 1.8 fb$^{-1}$ of integrated luminosity of $p\bar{p}$ collisions recorded by the CDF II experiment at the Fermilab Tevatron. Studying the mass distribution in events where one or both tau leptons decay leptonically, no evidence for a Higgs boson signal is observed. The result is used to infer exclusion limits in the two-dimensional space of $\tan\beta$ versus m_A (the ratio of the vacuum expectation values of the two Higgs doublets and the mass of the pseudoscalar boson, respectively).
Understanding the origin of electroweak symmetry breaking is one of the central goals of particle physics. The Higgs mechanism in the standard model (SM) provides a possible explanation, but the calculated mass of the Higgs boson suffers from large radiative corrections. Remedies for this problem such as supersymmetry require at least two Higgs doublets and result in a more complicated Higgs boson sector than that of the SM. The minimal supersymmetric standard model (MSSM) predicts the existence of three neutral Higgs bosons. The MSSM is an example of a Type II two-Higgs-doublet model (Type II 2HDM) in which there is a light scalar h, a heavy scalar H, and a pseudoscalar A. The masses of these states are governed mainly by two parameters in the theory, usually taken to be $\tan \beta$, the ratio of the vacuum expectation values of the two Higgs doublets, and m_A, the mass of the pseudoscalar.

In $p\bar{p}$ collisions at 1.96 TeV center of mass energy at the Fermilab Tevatron, Type II 2HDM Higgs bosons would be predominantly produced by gluon-gluon fusion through a b quark loop or by bb fusion. The couplings and masses of the Higgs bosons are such that if $\tan \beta$ is greater than about 20 and m_A is smaller (greater) than about 125 GeV/c^2, one finds that the h (H) and A are degenerate in mass to within a few GeV/c^2, and are produced with a cross section proportional to $\tan^2 \beta$, while the production of H (h) is suppressed.

These $\tan^2 \beta$-enhanced production cross sections can be in the range 0.1–10 pb depending on the Higgs boson masses, and are orders of magnitude greater than the one finds that the h (H) and A are degenerate in mass to within a few GeV/c^2, and are produced with a cross section proportional to $\tan^2 \beta$, while the production of H (h) is suppressed.

These $\tan^2 \beta$-enhanced production cross sections can be in the range 0.1–10 pb depending on the Higgs boson masses, and are orders of magnitude greater than the corresponding ones for a SM Higgs and also the more familiar associated production modes of a SM Higgs boson with a vector boson. The Higgs bosons decay to fermion pairs with a partial width proportional to the fermion mass squared; thus the decays $\phi \rightarrow \bar{b}b$ and $\phi \rightarrow \tau^+ \tau^-$ (with $\phi = h, A, H$) predominate, with the branching ratio to $\bar{b}b$ approximately 90% and the branching ratio to $\tau^+ \tau^-$ about 9% for $m_A > 100$ GeV/c^2.

This Letter presents the results of a search for the production of Higgs bosons in Type II 2HDM such as the MSSM, using data collected with the CDF II detector at the Fermilab Tevatron $p\bar{p}$ collider corresponding to 1.8 fb$^{-1}$ of integrated luminosity. Full details of the analysis are available elsewhere; this result supersedes our previously published result and is similar to the search performed by the D0 Collaboration. The analysis is sensitive to a region of MSSM parameter space which is complementary to that explored by the LEP 2 experiments.

The analysis presented here uses the tau pair decay modes, since it is possible to efficiently trigger on and reconstruct the leptons in decays of the tau lepton to $e\nu\nu$ or $\mu\nu\nu$. Indeed, despite the 10× larger branching ratio to bb, the search in the tau mode is more sensitive because the SM background is much smaller.

CDF II is a general-purpose detector with an overall cylindrical geometry surrounding the $p\bar{p}$ interaction region. The three-dimensional trajectories of charged particles produced in $p\bar{p}$ collisions are measured at small radii (<30 cm) using multiple layers of silicon microstrip detectors, and at outer radii (>30 cm) with a multi-wire drift chamber. The tracking system is inside a solenoidal magnet with uniform 1.4 T magnetic field oriented along the beam direction. Outside the solenoid are the electromagnetic and hadronic calorimeters, which are segmented in pseudorapidity (η) and azimuth in a projective “tower” geometry. A set of strip and wire chambers located at a depth of six radiation lengths aids in identifying photons and electrons from the electromagnetic shower shape. Muons are identified by a system of drift chambers and scintillators placed outside the calorimeter steel, which acts as an absorber for hadrons. The integrated luminosity of the $p\bar{p}$ collisions is measured using Cerenkov luminosity counters.

We seek events with tau pairs where one or both taus decay leptonically (excluding e^+e^- and $\mu^+\mu^-$ which suffer from excessive background from Z/γ^* production). These final states are denoted $e^+\tau^-, \mu^+\tau^-$, and $e^+\mu^-$ (where “τ” here means the reconstructed hadronic part of a tau decay). Events with a high-p_T (8 GeV/c or more) e or μ candidate plus a high-p_T charged track (5 GeV/c or more) or a second e or μ (4 GeV/c or more) are identified using high-speed trigger electronics and are recorded for later analysis. The performance of the trigger and lepton identification algorithms is described in detail elsewhere.

The reconstruction of hadronic decays of tau leptons relies on defining tau signal and isolation region cones centered around seed tracks having $p_T > 6$ GeV/c; we demand one or three charged tracks in the tau cone, and include in addition any π^0 candidates. The main way to discriminate between hadronic tau lepton decays and misidentified leptons is to require the reconstructed hadronic part of the tau decay to be consistent with a b quark. We demand one or three charged tracks in the tau cone, and include in addition any π^0 candidates.
TABLE I: Mean expected SM backgrounds and observed numbers of selected events in the final sample. The uncertainties include all systematic effects, some of which are correlated.

Background	e + µ	e + τ	µ + τ
Z/γ* → τ+τ-	605 ± 51	1378 ± 117	1353 ± 116
Z/γ* → e+e-	1.5 ± 1.2	70 ± 10	negl.
Z/γ* → µ+µ-	17.9 ± 4.5	negl.	107 ± 13
dibosons	11.4 ± 3.7	4.2 ± 2.1	3.3 ± 1.8
tt	9.1 ± 3.3	4.0 ± 2.1	3.3 ± 1.9
W+jet, multijet	57.1 ± 13.5	467 ± 73	285 ± 46
Total	702 ± 55	1922 ± 141	1752 ± 129
Observed	726	1979	1666

To demand no additional charged tracks or π0 candidates in an isolation annulus outside the tau signal cone but within 30° of the tau seed track. The half-angle of the tau signal cone decreases with increasing visible tau energy due to the Lorentz boost of the tau lepton, further aiding the discrimination of taus from jets. Additional suppression of hadronic jets comes from imposing a mass requirement on the tau candidate decay products. Electrons and muons are removed using information from the calorimeters and muon detectors.

To select the e + τ and µ + τ events we require an isolated e or µ with p_T > 10 GeV/c, and a τ with visible hadronic decay products with total p_T > 15 GeV/c (20 GeV/c for three-charged-pion decays). For the e + µ channel we require one lepton to have p_T > 10 GeV/c and the other to have p_T > 6 GeV/c.

The main SM contributions to the selected event sample include Z/γ* → τ+τ-, and W+jet events where W → ℓν (with ℓ = e, µ) and the hadronic jet is misidentified as a hadronically decaying τ. The W+jet events are largely removed by requiring that the missing transverse energy E_T not point along the direction opposite the momentum of the ℓ+τ system. The remaining W+jet background, and all other background stemming from jets misreconstructed as taus (“fakes”) is estimated from events recorded with a jet trigger. There are small contributions from Z → e+e-, Z → µ+µ-, diboson, and tt production.

The acceptances for signal and the non-fake backgrounds are estimated from samples of simulated events produced by the PYTHIA event generator [17] with CTEQ5L [18] parton distribution functions. The Higgs boson widths and masses are those for an MSSM model with tan β = 50. Tau decays are simulated by the TAUOLA package [19]. A GEANT-based [20] model simulates the interactions of all final state particles in the detector.

Table I shows the mean expected contributions of SM backgrounds and all other background stemming from jets misreconstructed as taus (“fakes”) is estimated from events recorded with a jet trigger. There are small contributions from Z → e+e-, Z → µ+µ-, diboson, and tt production.

Various uncertainties limit the sensitivity of our search. The one with the largest effect is due to the imprecisely known tau energy. The distribution of the observed transverse momentum of the τ in W → τν events constrains the ratio of the reconstructed tau energy in the observed events to that in the simulation to less than 1%, but the residual uncertainty allows for shifts in the background m_vis spectra mimicking a Higgs boson signal, particularly for the lower masses considered (m_A < 140 GeV/c^2). At larger Higgs boson masses the mass sensitivity is limited by other systematic effects considered, including the lepton trigger and identification uncertainties (2.4% for electrons, 2.7% for muons, and 4.2% for hadronically decaying taus), the uncertainty in the integrated luminosity (6%), Z → τ+τ- cross section (2.9%), and Higgs boson production cross section (5.7%) [21].

We represent all the systematic uncertainties by a Gaussian-constrained nuisance parameters in the likelihood (5.7%) [21].
lihood, and eliminate these parameters by maximizing the likelihood with respect to them. This procedure is numerically nearly identical to eliminating them by Bayesian marginalization with a Gaussian prior density, which takes much longer to compute.

The resulting likelihood is calculated as a function of the Higgs boson signal cross section times branching ratio to tau pairs $\sigma \cdot B$, and then converted to a posterior density in $\sigma \cdot B$ assuming a uniform prior density. We exclude with 95% C.L. any $\sigma \cdot B$ above which 5% of the posterior probability lies.

The likelihood as a function of $\sigma \cdot B$ reveals no evidence for the presence of a Higgs boson signal, and all nuisance parameters remain consistent with their nominal values. Figure 1 and other kinematic distributions not shown in this Letter all reveal excellent agreement of the observed distributions with the predictions. We therefore proceed to use the null result to infer upper limits on the Higgs boson production cross section.

Table I lists the observed 95% C.L. upper limits on $\sigma \cdot B$, and the median upper limits expected under the null hypothesis. Figure 2 depicts the results, including $\pm 1\sigma$ and $\pm 2\sigma$ ranges for the expected limits. We note that these bounds would apply to any scalar with similar production kinematics decaying to tau pairs. The Higgs boson signal distribution shown in Fig. 1 corresponds to that excluded at 95% C.L. for $m_A = 140 \text{ GeV}/c^2$.

We can interpret the upper limits on $\sigma \cdot B$ in the context of the MSSM parameters $\tan \beta$ and m_A. The resulting excluded regions are shown in Fig. 3 for various assumptions about the sign of the higgsino mass parameter μ and two extremes for the nature of scalar top mixing [23], denoted m_h^{max} and “no mixing.” The excluded regions are the most stringent published to date in the high $\tan \beta$ region, and are remarkably insensitive to changes in theoretical assumptions due to cancellation of effects in the Higgs boson production and decay.

In summary, we have used a sample of data from the Tevatron collider recorded by the CDF II detector corresponding to 1.8 fb$^{-1}$ of integrated luminosity to search for Higgs bosons predicted in two-Higgs-doublet models, via the Higgs boson decays to tau lepton pairs. No evidence for a Higgs boson signal is observed, and we use the null result to infer cross sections excluded at the 95% C.L. as a function of the Higgs mass, and 95% C.L. excluded regions of the MSSM parameter space $\tan \beta$ versus m_A.

We thank A. Belyaev, M. Carena, J. Gunion, T. Han, S. Heinemeyer, W. Kilgore, S. Mrenna, M. Spira, C. Wagner, G. Weiglein, and S. Willenbrock for illuminating discussions on the theory of MSSM Higgs production and decays.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

Table II: Observed 95% C.L. upper limits, and median expected limits under the null hypothesis on the Higgs boson production cross section times branching ratio $\sigma \cdot B$ versus m_A.

m_A (GeV/c^2)	Median expected limit (pb)	Observed limit (pb)
90	28.115	28.978
100	19.884	23.465
110	9.382	11.063
120	5.447	5.288
130	3.374	2.770
140	2.340	1.812
150	1.751	1.392
160	1.400	1.198
170	1.124	1.051
180	0.933	0.880
190	0.782	0.808
200	0.707	0.709
230	0.470	0.505
250	0.379	0.451

![FIG. 2: Observed 95% C.L. upper limits on the cross section for $\phi = h/A/H$ production as a function of m_A. The grey bands show the median expected limit under the null hypothesis, and indicate the ± 1- and ± 2-standard-deviation ranges.](image-url)
FIG. 3: Regions in the MSSM plane of tan β versus m_A excluded at 95% C.L. assuming heavy (\sim1 TeV/c^2) sfermions. The top panel shows excluded regions for higgsino mass parameter $\mu > 0$, and the bottom panel shows excluded regions for $\mu < 0$. Each panel shows the slightly different excluded regions for two scalar top mixing scenarios. The solid and dashed curves show the previously published bounds. [8]

[1] P. W. Higgs, Phys. Lett. 12, 132 (1964); Phys. Rev. Lett. 13, 508 (1964); Phys. Rev. 145, 1156 (1966).
[2] S.P. Martin, [arXiv:hep-ph/9709356 (1997), and references therein.
[3] S. L. Glashow and S. Weinberg, Phys. Rev. D 15, 1156 (1977); J. F. Donoghue and L. F. Li, ibid. 19, 945 (1979).
[4] D. H. J. Chung et al., Phys. Rep. 407, 1 (2005) and references therein.
[5] S. Dawson, A. Djouadi, and M. Spira, Phys. Rev. Lett. 77, 16 (1996).
[6] F. Maltoni, Z. Sullivan, and S. Willenbrock, Phys. Rev. D 67, 093005 (2003); R. V. Harlander and W. B. Kilgore, ibid. 68, 013001 (2003).
[7] C. Cuenca Almenar, Search for the neutral MSSM Higgs bosons in the $\tau\tau$ decay channels at CDF Run II (Ph.D. thesis), Spain: Univ. de Valencia, 2008 (FERMILAB-THESIS-2008-86).
[8] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 96, 011802 (2006).
[9] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 071804 (2008).
[10] S. Schael et al. (ALEPH, DELPHI, L3, and OPAL Collaborations), Eur. Phys. J. C 47, 547 (2006).
[11] A. Abulencia et al. (CDF Collaboration), J. Phys. G 34, 2457 (2007).
[12] We use a coordinate system defined about the proton beam direction, which is taken as the z axis; the x axis lies in the horizontal plane and the y axis points the pseudorapidity η of a particle’s three-momentum as $\eta \equiv -\ln(\tan \frac{\theta}{2})$. The transverse energy and momentum are defined as $E_T = E \sin \theta$ and $p_T = p \sin \theta$ where E is the energy measured by the calorimeter and p is the momentum measured in the tracking system. The missing transverse energy is defined as $E_{Tm} = |\sum_i E_{T_i} n_i|$ where n_i is a unit vector perpendicular to the beam axis and pointing from the beam axis to the i^{th} calorimeter tower.
[13] S. Klimenko, J. Konigsberg, and T.M. Liss, FERMILAB-FN-0741 (2003).
[14] A. Anastassov et al., Nucl. Instrum. Methods Phys. Res. Sect. A 518, 609 (2004).
[15] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[16] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 96, 011802 (2006); D. E. Acosta et al. (CDF Collaboration), ibid. 95, 131801 (2005).
[17] T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001), and references therein.
[18] H.L. Lai et al., Eur. Phys. J. C12, 375 (2000).
[19] Z. Was et al., Nucl. Phys. B Proc. Suppl. 98, 96 (2001).
[20] R. Brun and F. Carminati, CERN Programming Library Long Writenup W5013 (1993).
[21] J. Pumplin et al., J. High Energy Phys. 0207, 012 (2002).
[22] M. Carena et al., Eur. Phys. J. C 26, 601 (2003) and references therein.
[23] M. Carena et al., Eur. Phys. J. C 45, 797 (2006).