Regulation of transcription by the MLL2 complex and MLL complex–associated AKAP95

Hao Jiang¹,², Xiangdong Lu¹,², Miho Shimada¹, Yali Dou¹, Zhanyun Tang¹ & Robert G Roeder¹

Although histone H3 lys4 (H3K4) methylation is widely associated with gene activation, direct evidence for its causal role in transcription, through specific MLL family members, is scarce. Here we have purified a human MLL2 (Kmt2b) complex that is highly active in H3K4 methylation and chromatin transcription in a cell-free system. This effect requires S-adenosyl methionine and intact H3K4, thus establishing a direct and causal role for MLL2-mediated H3K4 methylation in transcription. We also show that human AKAP95, a chromatin-associated protein, physically and functionally associates with MLL complexes and directly enhances their methyltransferase activity. Ectopic AKAP95 stimulates expression of a chromosomal reporter gene in synergy with MLL1 or MLL2, whereas AKAP95 depletion impairs retinoic acid–mediated gene induction in embryonic stem cells. These results demonstrate an important role for AKAP95 in regulating histone methylation and gene expression, particularly during cell-fate transitions.

Histone modifications have been closely linked to many DNA-related processes including transcription. In particular, acetylation of histones H3 and H4 and methylation of H3K4, especially trimethylation, are prominent modifications related to active gene expression. The most notable H3K4 methyltransferases in mammals are the SET1 family of proteins (hereafter called MLL complexes), in which, apart from some specialized subunits, contain either hSET1A, hSET1B, MLL1, MLL2, MLL3 or MLL4 as the catalytic subunit and WDR5, RbBP5, ASH2L and Dpy30 as integral core subunits that are necessary for the efficient methyltransferase activity of the complexes. These methyltransferases and methyl readers have many genomic targets, thus making it difficult to rigorously demonstrate, in cells, their direct effect on the specific genes of interest. Moreover, the establishment of a causal role for H3K4 methylation in transcription by histone gene mutation is also technically challenging in higher organisms, owing to the existence of multiple copies of individual histone genes.

To demonstrate a causal role for H3K4 methylation in transcription, we set out to purify and characterize a human MLL2 (Kmt2b, gene ID 9757) complex that was active in H3K4 methylation and chromatin-templated in vitro transcription. We then searched for new regulators of this modification that might be associated with the MLL2 complex as well as with other MLL complexes. We recently have shown that mammalian Dpy30, a common subunit of all MLL complexes, is important for efficient H3K4 methylation and transcriptional plasticity in embryonic stem cell (ESC) differentiation. Using Dpy30 as a bait, our current study has resulted in the isolation of MLL complexes that are associated with a new component, AKAP95.

AKAP95 is the only nuclear member of the large family of A-kinase anchoring proteins (AKAPs), which share a common function in protein kinase A (PKA) binding and spatiotemporal regulation of cellular signaling. Among the many proposed roles of AKAP95 (refs. 25–27), which include mediation of chromatin condensation and a function in transcription regulation that is based on location in the nuclear matrix and binding to p68 RNA helicase, however, direct evidence for a role in gene expression is lacking. Recently, AKAP95 was also found to interact with Oct4, a transcription factor crucial for ESC pluripotency, but it is unclear whether AKAP95 is involved in ESC maintenance and differentiation. Here, we have established AKAP95

¹Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, NY, USA. ²Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA. ³UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL, USA. ⁴These authors contributed equally to this work. Correspondence should be addressed to R.G.R. (roeder@rockefeller.edu).

Received 9 May; accepted 24 July; published online 1 September 2013; doi:10.1038/nsmb.2656.
as a direct and new modulator of H3K4 methylation, a transcriptional coactivator and an important regulator of gene induction during ESC-fate transitions.

RESULTS

The MLL2 complex is highly active in methylating histone H3K4

We subjected nuclear extract derived from a HEK293 cell line that stably expresses Flag- and hemagglutinin (HA)-tagged full-length human MLL2 (Kmt2b) (FH-MLL2) to anti-Flag antibody–mediated immunofinity purification. As revealed by MS analysis, most of the co-purified proteins were known common subunits of the MLL1 and MLL2 complexes and included WDR5, RbBP5, ASH2L, DPY30 and menin (Fig. 1a). We confirmed an endogenous association of these proteins by their coimmunoprecipitation with MLL2 from HeLa-cell nuclear extract (Supplementary Fig. 1a).

In an in vitro histone methyltransferase (HMT) assay, the MLL2 complex (MLL2C) showed strong H3 methylation activity on free histone octamers and both recombinant and native HeLa nucleosomal substrates (Fig. 1b). We detected no H3 methylation for a recombinant histone-octamer substrate carrying the H3K4Q mutation (although weak H2A and H2B methylation could be detected) or on a nucleosomal substrate carrying the H3K4Q mutation. Hence, the MLL2C methyltransferase activity is dependent on histone H3K4. We further tested the activity of MLL2C on recombinant chromatin templates assembled from a plasmid and histone octamers carrying either wild-type H3 or the H3K4Q mutant (Fig. 1c). Micrococcal nuclease (MNase) digestion of the two assembled chromatinas produced indistinguishable DNA ladders of kinetic intermediates, a result indicating comparable assembly qualities for these two chromatin templates (Fig. 1d). MLL2C was shown to catalyze mono-, di- and trimethylation of H3K4 on chromatin assembled with wild-type H3 but not on chromatin assembled with the H3K4Q mutant (Fig. 1d). Interestingly, the histone acetyltransferase (HAT) p300 strongly enhanced MLL2C-dependent H3K4 methylation on the chromatin template, and this effect was evident for all three methylation states (Fig. 1e). Unlike the case for previously reported WDR5–MLL1 complex, which associates with MOF, a MYST family HAT, no known or putative HAT was found in the purified MLL2 complex by the MS analysis. Consistent with this result, MLL2C failed to show any HAT activity (Supplementary Fig. 1b). Therefore, the MLL2 complex described above is highly active and specific for H3K4 methylation.

H3K4 methylation stimulates chromatin transcription

To test the role of MLL2C-mediateH3K4 methylation in transcription, we used a well-established chromatin-templated in vitro transcription system with the same chromatin templates (Figs. 1c and 1a) used in the modification assays described above. As the template has a tandem repeat of five p53-responsive elements, we used p53 as the transcription activator and HeLa-cell nuclear extract as the source of RNA polymerase II, general transcription factors and Mediator.

Addition of MLL2C had no detectable effect on p53-dependent transcription on a DNA template (Fig. 2b, lanes 1–3) or on basal transcription (in the absence of p53) on the chromatin template (Fig. 2b, lanes 4 and 5). In contrast, MLL2C showed a strong stimulatory effect on p53-dependent transcription that was comparable to the effect of p300 (Fig. 2b, lanes 7–9), a previously established highly active transcription coactivator in this assay. (Of note, the p53-dependent activity observed in the absence of added p300 or MLL2C, but in the presence of acetyl CoA and S-adenosyl methionine (SAM), probably reflects contributions of endogenous histone-modifying activities (Fig. 2b, lane 7 versus lane 4)). Furthermore, MLL2C and p300 had a synergistic effect on chromatin transcription (Fig. 2c, comparison of lanes 5, 8 and 9). The strong stimulatory effect of MLL2C was greatly reduced by omission of exogenous SAM from the reaction (Fig. 2c, lanes 5 and 6, and Supplementary Fig. 1c, lanes 3 and 4), thus indicating that MLL2C-mediated transcription enhancement depends on its methyltransferase activity. Importantly, although having a minimal effect on the transcription without exogenous MLL2C (Fig. 2d, lane 3 and 4), the H3K4Q mutation almost completely abolished the otherwise strong stimulatory effect of MLL2C on transcription (Fig. 2d, lanes 5 and 6), a result indicating a direct role for MLLC-mediated

ARTICLES

NATURE STRUCTURAL & MOLECULAR BIOLOGY VOLUME 20 NUMBER 10 OCTOBER 2013 1137

© 2013 Nature America, Inc. All rights reserved.
methylated H3K4, rather than possible nonhistone substrates, in this manner. Notably, p300 alone had equally strong effects on transcription from the wild-type H3 and H3K4Q chromatin templates (Fig. 2c, comparison of lanes 7 and 8), thus indicating the retention of the overall integrity of the mutant chromatin and the lack of any contribution of an endogenous H3K4 methyltransferase activity in the nuclear extract to the p300-dependent transcription stimulation.

One interesting observation from our transcription experiments is the acetyl CoA dependence of MLL2-mediated transcription stimulation (Fig. 2c, lanes 4–7 and Supplementary Fig. 1c, lanes 2–5). To determine whether acetylation of histones, rather than other nonhistone factors, has an important role in H3K4 methylation-mediated transcription, we performed transcription assays on chromatin templates containing either wild-type histones or histones with specific lysine mutations in H3 (K14R K18R) and H4 (K5R K8R) (Fig. 2e). These lysine residues are known to be acetylated by p300 (ref. 34) and potentially by other HATs. We found that mutations in H3 or H4 alone partially impaired, and simultaneous mutations in both H3 and H4 completely abolished, the transcription-stimulatory effect of MLL2C (Fig. 2f, lanes 9–12). Importantly, these histone mutations barely affected the low-level transcription observed in the absence of MLL2C (Fig. 2f, lanes 5–8) or the MLL2C-mediated H3K4 methylation of chromatin (Supplementary Fig. 1d), results indicative of the overall integrity of chromatin containing mutated histones. Taken together, these results indicate that lysine acetylation of histone H3 and H4 is essential for manifestation of the stimulatory effect of MLL2C-mediated H3K4 methylation on transcription.

AKAP95 is associated with DPY30–MLL complexes

To identify new proteins associated with MLL2C and other MLL complexes, we prepared nuclear extract from a HEK293 cell line that stably expresses Flag-HA-tagged human DPY30 and subjected it to an immunoaffinity purification and subsequent MS analysis. In addition to the established subunits of MLL family complexes, AKAP95 was identified as one of the major DPY30-associated proteins (Fig. 3a), as further confirmed by immunoprecipitation with anti-HA antibody and immunoblotting (Supplementary Fig. 2a). Components of the NURF complex35 were also found to be associated with DPY30 (Fig. 3a) but were not pursued in this study. An endogenous association of AKAP95 with DPY30 was confirmed by their coimmunoprecipitation from HeLa nuclear extract by an antibody to DPY30 (Fig. 3b). As further evidence that more rigorously establishes AKAP95 as a bona fide binding partner of DPY30 in the context of MLL complexes: (i) immunoprecipitation of WDR5 or ASH2L efficiently coprecipitated AKAP95 (Fig. 3c and Supplementary Fig. 2b); (ii) epitope-tagged AKAP95 also efficiently coprecipitated ASH2L and WDR5 (Supplementary Fig. 2c); and (iii) a gel-filtration chromatography analysis revealed co-elution of AKAP95 with the MLL1 and MLL2 complexes but not with the abundant dimerized or free DPY30 (Fig. 3d).

AKAP95 stimulates expression of a chromosomal reporter gene

The physical interaction between AKAP95 and DPY30–MLL complexes raised the possibility of their functional relevance in regulating gene expression. In a HEK293T cell line (G-293T) that contains a chromosomally integrated luciferase reporter gene with upstream Gal4-binding sites23, overexpression of AKAP95 strongly stimulated the expression of reporter RNA and possibly protein (indirectly indicated by the luciferase activity); this effect was critically dependent upon the presence and dose of the Gal4-VP16 activator (Fig. 4a and Supplementary Fig. 3a,b). Remarkably, AKAP95 showed strong synergy with either MLL1 or MLL2 in stimulating reporter gene expression (Fig. 4a,b). Furthermore, overexpression of either AKAP95 or MLL2 markedly enhanced the levels of dimethylated H3K4 (H3K4me2) and H3K4me3 at the promoter region of the chromosomal Gal4-luciferase locus (Fig. 4c), results strongly suggesting effects at the transcriptional level.
Coactivation requires the DP30-binding region of AKAP95
By serial truncations from N and C termini (Fig. 5a), we mapped the AKAP95 regions that are important for its transcriptional stimulatory activity in the chromosomal reporter assay. AKAP95 (residues 1–210 and 1–340) were inactive in enhancing reporter expression (Fig. 5b). AKAP95(1–530), despite its very low expression level, modestly enhanced luciferase expression in a dose-dependent manner and was thus considered active (Fig. 5c). Despite their high levels of expression, AKAP95(341–692), AKAP95(211–692) and AKAP95(101–692) fail to enhance reporter expression (Fig. 5b,c), thus indicating an essential role of the N-terminal region (residues 1–100) in this AKAP95 function. In a further analysis, we found that the nuclear localization signal (NLS) and the two zinc fingers, but not the nuclear matrix targeting site\(^{30}\) or the RII-binding domain, were important for enhancement of reporter expression (Fig. 5d and Supplementary Fig. 3c). Because deletion of the RII-binding region led to poor expression, we tested an AKAP95 point mutant (I582P) that was previously shown to disrupt the binding of AKAP95 to RII\(^{36}\) and found it to have only a little or marginal effect on AKAP95 activity (Supplementary Fig. 3c), thus suggesting that binding to PKA RII is not critical for AKAP95 coactivation of reporter expression.

We also tested the truncated AKAP95 proteins for binding to DP30 after coexpression in G-293T cells. AKAP95(1–210), but not AKAP95(101–692), was sufficient for binding (Fig. 5e). Thus, the N-terminal region (residues 1–100), which is important for enhancing reporter expression, is also critical for binding to DP30. Although not as effective in binding AKAP95 as is endogenous DP30 in HeLa-cell nuclear extract, purified DP30 showed considerable binding to purified AKAP95 and much weaker binding to purified AKAP95(101–692), thus demonstrating a direct binding that depends

Figure 3 AKAP95 is associated with DP30–MLL complexes. (a) Coomassie blue–stained 4–20% SDS-PAGE gel of proteins eluted from M2 agarose beads. Major proteins identified specifically from the FH-DPY30 cell line by MALDI MS are indicated. Lines on the right of the gel indicate positions of gel excision for MS. F293, Flp-In-293 cells. (b) Luciferase assay in G-293T cells expressing ectopic MLL2, AKAP95 or MLL2 and AKAP95 in the presence of Gal4, (blue bars and inset) or two different doses of Gal4-VP16 (red and gray bars). In Figure 4a, values for activation fold are indicated above the bars and are based on the signal, arbitrarily set at 1, for cells transfected with empty vector and Gal4. Bars indicate range of values from two independent transfections. Representative results chosen from more than three independent experiments are shown. (b) Luciferase assay in G-293T cells expressing ectopic MLL1, AKAP95 or MLL1 and AKAP95 in the presence of Gal4 or Gal4-VP16, as indicated. (c) ChIP for H3K4me3 (right) followed by qPCR at the Gal4-luciferase promoter region. Samples are from cells ectopically expressing MLL2 or AKAP95 in the presence of Gal4 or Gal4-VP16, as indicated. Error bars, s.d. from triplicate measurements from one representative experiment (out of two experiments).

Figure 4 AKAP95 strongly coactivates expression of a chromosomal reporter gene. (a) Luciferase assay in G-293T cells expressing ectopic MLL2, AKAP95 or MLL2 and AKAP95 in the presence of Gal4 (blue bars and inset) or two different doses of Gal4-VP16 (red and gray bars). In a and b, values for activation fold are indicated above the bars and are based on the signal, arbitrarily set at 1, for cells transfected with empty vector and Gal4. Bars indicate range of values from two independent transfections. Representative results chosen from more than three independent experiments are shown. (b) Luciferase assay in G-293T cells expressing ectopic MLL1, AKAP95 or MLL1 and AKAP95 in the presence of Gal4 or Gal4-VP16, as indicated. (c) ChIP for H3K4me3 (right) followed by qPCR at the Gal4-VP16 promoter region. Samples are from cells ectopically expressing MLL2 or AKAP95 in the presence of Gal4 or Gal4-VP16, as indicated. Error bars, s.d. from triplicate measurements from one representative experiment (out of two experiments).
Figure 5 Transcriptional coactivation function of AKAP95 requires the region that binds DPY30–MLL complexes. (a) Illustration of truncations of AKAP95, with putative domains marked. (b–d) Top, luciferase assays and bottom, immunoblot analyses for G-293T cells transfected with plasmids encoding full-length FH-AKAP95 or indicated mutants, together with the Gal4-VP16 plasmid, as indicated. dNMTS, dNLS, dZFs and dRII BD are AKAP95 mutants with the nuclear matrix targeting site, NLS, zinc fingers or RII-binding domain deleted, respectively (detailed information in Online Methods). Luciferase signals were normalized to the signal (arbitrarily set at 1) from cells transfected with empty vector plus Gal4-VP16. Bars indicate the range of values from two independent transfections. (e) Immunoblot analysis for anti-Myc-mediated immunoprecipitation (IP) for G-293T cells transfected with plasmids encoding full-length FH-AKAP95 or indicated truncation mutants, with or without Myc-DPY30-expressing vector, as indicated. (f) Immunoblot analysis with anti-AKAP95 antibody for the in vitro binding assay for AKAP95 and DPY30. HeLa nuclear extract (lanes 1, 4 and 7), purified GST-AKAP95 (lanes 2, 5 and 8) or GST-AKAP95(101–692) (lanes 3, 6 and 9) incubated with either M2 beads (lanes 4–6) or M2 bead–captured FH-DPY30 (lanes 7–9) are shown. Downward arrow indicates samples from immunoprecipitation. Uncropped images are in Supplementary Figure 8d. (g) qPCR at the Gal4-luciferase promoter region on ChIP samples with control IgG or anti-HA from G-293T cells transfected with indicated plasmids in the presence of Gal4-VP16. Error bars, s.d. from triplicate measurements from one representative experiment (out of three experiments).

Figure 6 AKAP95 enhances the HMT activity of the MLL2 complex

in vitro. (a) Coomassie blue–stained SDS-PAGE gel for recombinant F-AKAP95 and F-AKAP95(101–692) proteins after immunoaffinity purification from baculovirus-infected Sf9 cells on M2 beads. Uncropped images are in Supplementary Figure 8e. (b) Autoradiographic analysis of in vitro HMT activity on chromatin by MLL2C with F-AKAP95 or F-AKAP95(101–692), all in the presence of [3H]SAM. CB, Coomassie blue staining. (c) Immunoblot analysis of in vitro HMT activity on chromatin in the absence or presence of F-AKAP95. (d) Immunoblot analysis of in vitro HMT activity on chromatin in the absence or presence of MLL2C, F-AKAP95, F-AKAP95(101–692), SAM and chromatin, as indicated.

AKAP95 enhances the HMT activity of the MLL2 complex

We next tested whether AKAP95 has any direct effect on the HMT activity of MLL complexes. We expressed recombinant Flag-HA–tagged AKAP95 and AKAP95(101–692) proteins, purified them to near homogeneity (Fig. 6a) and analyzed them in the HMT assay on chromatin assembled with recombinant histone octamers and plasmid DNA. AKAP95, but not a comparable amount of AKAP95(101–692), markedly enhanced MLL2C-mediated H3 methylation on the chromatin substrate (Fig. 6b and Supplementary Fig. 4a). Further immunoblot analyses revealed that H3K4 mono-, di- and trimethylation were all enhanced by AKAP95 (Fig. 6c). Purified full-length and mutant AKAP95 did not possess methyltransferase activity (Fig. 6d, lanes 5 and 6; also shown in Supplementary Fig. 4b, lane 3) and were not associated with free histone H3 (Fig. 6d, lanes 8 and 9; also shown in Supplementary Fig. 4b, lane 4), a good substrate for MLL2C. These results suggest that AKAP95, probably through binding to MLL2C, is a good substrate for the MLL2 complex. These data are also consistent with the pronounced effects of AKAP95 overexpression on H3K4 methylation at the chromosomal reporter locus.
AKAP95 regulates gene expression in ESC differentiation

Given the physical and functional interactions of AKAP95 and DPY30–MLL complexes, we tested whether AKAP95 might have a role in the all-trans retinoic acid (ATRA)-mediated induction of developmental genes in human embryonic carcinoma cells (ECCs) and mouse embryonic stem cells, as demonstrated by DPY30 (ref. 23). We effectively depleted AKAP95 from NT2 cells, a human ECC line (Fig. 7a), and then treated the cells with ATRA. Several developmental genes, including IGFBP5, HAND1 and MSX1, were strongly induced in control cells upon ATRA treatment, but induction in each case was clearly impaired by AKAP95 depletion (Fig. 7b). These results indicate an important role for AKAP95 in ATRA-mediated gene induction in human ECCs.

We further explored the in vitro function of AKAP95 in the E14 mouse ESC line. Depletion of AKAP95 by two different short hairpin RNAs (shRNAs) (Fig. 7a) had little effect on ESC morphology (except that the cells appeared to be slightly more aggregated) (Supplementary Fig. 5a) or on proliferation rate (Supplementary Fig. 5b) or expression levels of many important pluripotency genes (Supplementary Fig. 5c). These results suggest that AKAP95 depletion does not affect self-renewal (and chromatin condensation) of mouse ESCs. AKAP95 depletion also did not affect the global H3K4me3 level, the expression of most genes by microarray analysis (data not shown) or the recruitment of DPY30 to any highly expressed or bivalent genes that were tested in ESCs (Supplementary Fig. 5d). These results suggest that the coactivation function of AKAP95, similar to that of DPY30-mediated H3K4 methylation23, is obscured by potentially redundant mechanisms in undifferentiated ESCs. However, after ATRA-mediated differentiation, and as revealed both by quantitative PCR (qPCR) on selected genes (Fig. 7c) and by global expression analysis (Fig. 7d), many genes involved in early development showed strong induction in the control cells but greatly impaired induction in AKAP95-depleted cells. Consistent with a stimulatory effect of AKAP95 on the enzymatic activity of MLL complexes, the ATRA-mediated increase of H3K4me3 on these target gene loci was diminished by AKAP95 knockdown (Fig. 7e).

Further analyses of the microarray results for AKAP95 depletion and DPY30 or RbBP5 depletion23 in ESCs have revealed related as well as divergent relationships between AKAP95 and MLL2 core subunits. As few genes were significantly affected by either depletion before ESC differentiation, we analyzed effects on the post-ATRA gene expression levels. We found a highly statistically significant overlap in the number of genes whose post-ATRA expression levels were affected over two-fold (or 1.5-fold) by depletion of AKAP95 or DPY30, although this overlap was less significant than the overlap indicated between depletion of RbBP5 or DPY30 (Fig. 7f and Supplementary Fig. 6). These results suggest that AKAP95, although not an integral core subunit of MLL complex as are DPY30 or RbBP5, is clearly functionally associated with DPY30 in co-regulating a set of common target genes. Gene ontology analyses have revealed that the genes

Figure 7 AKAP95 modulates ATRA-mediated gene induction in human ECCs and mouse ESCs. (a) Immunoblot analysis of AKAP95 depletion (RNAi) in cells. Samples are NT2 cells treated with either control (−) or human AKAP95-specific Smartpool short interfering RNA (Smp), or E14 cells infected with viruses expressing scrambled shRNA (−) or two different shRNAs against mouse AKAP95 (1 and 2). (b) qPCR results on ATRA-mediated induction of developmental genes in control and AKAP95-depleted NT2 cells. Expression levels in DMSO-treated controls are arbitrarily set at 1. For b, c and d, error bars indicate s.d. from triplicate measurements from one representative experiment (out of three experiments). (c) qPCR results on ATRA-mediated induction of developmental genes in control and AKAP95-depleted E14 cells. siRNA, short interfering RNA. Expression levels in untreated controls are arbitrarily set at 1. (d) Microarray analysis of genes whose expression was normally induced more than four-fold after ATRA treatment. Genes were sorted according to relative expression levels after ATRA treatment in the control cells. In d–f, shRNA 2 was used for AKAP95 knockdown. (e) qPCR at developmental genes on ChIP samples for H3K4me3 in control and AKAP95-depleted E14 cells. (f) Venn diagram analyses of genes whose post-ATRA expression levels were reduced over two-fold by depletion of the indicated proteins in E14 cells. P value was calculated by two-tailed Fisher’s exact test (n = 18,118 unique genes listed in the microarray). (g) Comparison of AKAP roles in signal transduction and an AKAP95 role in transcription coordination. Top, sequence relationships shared by human PKA RII and DPY30 dimerization domains. Bottom, schematic diagram.
most affected in their post-ATRA expression levels by depletion of either DPY30 (Supplementary Fig. 7a) or AKAP95 (Supplementary Fig. 7b) are enriched in developmental processes, especially in neuronal differentiation. These results suggest a common role for these genes in mediating ATRA-dependent neuronal specification of mouse ESCs. Whereas DPY30 and RbBP5 co-dependent genes are highly enriched in transcriptional regulatory functions (Supplementary Fig. 7c), AKAP95-dependent genes and AKAP95 and DPY30 co-dependent genes are highly enriched in extracellular matrix and signaling pathways (Supplementary Fig. 7b,d). The genes coaffected by depletion of AKAP95, DPY30 or RbBP5 are also enriched in both extracellular matrix and transcription regulation (Supplementary Fig. 7e). These results suggest that AKAP95 and MLL-complex core subunits regulate ATRA-mediated differentiation in a coordinated yet differential manner on their targets in ESCs.

DISCUSSION

Starting with the isolation of a highly active MLL2C and continuing with characterization of its role in chromatin transcription in a cell-free system, we have gone further to identify and to functionally characterize a new factor associated with DPY30–MLL complexes. Our studies establish a clear causal role for H3K4 methylation by MLL2 in gene activation and, most notably, describe the function of a newly discovered modulator (AKAP95) of MLL-mediated H3K4 methylation.

MLL2 complex as a highly active H3K4 methyltransferase

A catalytically active WDR5-tagged MLL1 complex was previously shown to enhance transcription on a chromatin template, but it was not shown that this effect was through methylation of H3K4 (versus a nonhistone substrate), and further experimentation was impeded by the relatively weak H3-methylation activity of the complex. Although difficult to normalize according to the amount of the catalytic subunit, the currently described MLL2C was empirically much more active in our analyses than were the isolated MLL1 (ref. 12) and MLL3 and MLL4 (ref. 38) complexes in methylaing all levels of substrates (data not shown), potentially owing to an enhanced occupancy of the catalytic subunit in the isolated complex or to an intrinsic difference between MLL2 and other MLL family members. As discussed below, the high activity of the MLL2C may be a key factor in helping to reveal an effect of H3K4 methylation on transcription. The lack of any detectable HAT in the purified MLL2 complex, compared to that in the previously purified WDR5–MLL1 complex that was associated with MOF, could result from the different tagging and purification strategies or from MLL1 and MLL2 sequence variations that result in differential binding capabilities.

Direct coactivation of transcription by H3K4 methylation

The strict requirement for SAM and an intact H3K4 residue in the chromatin template for the stimulatory effect of the MLL2C in transcription unambiguously demonstrates a causal role for H3K4 methylation per se in activator-dependent transcription. This conclusion is corroborated by our cell-based studies showing that overexpression of either MLL1 or MLL2 strongly stimulates chromosomal reporter gene expression. Although a previous report failed to show an effect of H3K4 methylation on transcription of a chromatin template, this may have reflected either a low efficiency of methylation in the completely defined in vitro system that was used or, as is more likely, the absence in this system of transcription-related effector proteins that recognize H3K4 methylation. This contrasts with the present analysis in which the recombinant chromatin template was efficiently methylated by the MLL2C and transcribed in a nuclear extract that should contain previously described effectors for H3K4 methyl marks. Consistent with this interpretation, recent studies have shown effects of an H3K4 trimethyl analog on transcription in a HeLa nuclear extract–based assay, through CHD1 (ref. 40) and TAF3 (ref. 41) as effectors.

Our cell-free H3K4 methylation and transcription system now offers an ideal platform for the analysis of factors and mechanisms underlying H3K4 methylation–dependent transcription, including factors that generate or regulate methylation and factors (effectors) that read the H3K4 methyl marks. This could involve either an unbiased biochemical fractionation and factor purification or systematic analyses of factors already shown to enhance H3K4 methylation or to recognize the H3K4 trimethyl mark. Indeed, our initial results suggest an important role for histone lysine acetylation in MLL2C-dependent and H3K4 methylation–dependent transcription that needs to be further explored. Furthermore, our new findings of an enhancement of MLL2C-mediated H3K4 mono-, di- and trimethylation by p300 (Fig. 1e) and synergy between MLL2C and p300 in transcription (Fig. 2c) establish a new link between enzymes responsible for ‘writing’ two prevalent histone marks associated with gene activation. These results complement those of recent studies showing an enhancement of SET1C-mediated H3K4 methylation and associated p53-dependent transcription by p300 (ref. 42).

Association of AKAP95 with DPY30–MLL complexes

As DPY30 is shared among all MLL complexes, it is possible, but has not been rigorously demonstrated, that AKAP95 may also be commonly associated with all MLL complexes. Our discovery of AKAP95 as a bona fide partner and regulator of DPY30–MLL complexes has provided a new example of a protein factor, other than the well-established core subunits, that directly modifies the enzymatic activity of the H3K4 methyltransferases. Most of the known AKAPs bind specifically to PKA through the dimerization domain of the RII subunit. Interestingly, the sequence of the DPY30 dimerization domain shares a striking homology to the RII dimerization domain (Fig. 7g). Hence, it might be expected that a nuclear AKAP would actually associate with DPY30, although the regions on AKAP95 responsible for binding DPY30 and RII seem to be different. The molecular mechanism by which AKAP95 directly regulates the catalytic activity of the MLL2 complex is not clear and merits further biophysical studies. It will also be interesting to examine whether AKAP95 directly enhances H3K4 methylation mediated by other MLL complexes.

A role for AKAP95 in gene expression

A role for AKAP95 in gene regulation has been established by in vitro and in vivo results in this work. How does AKAP95 enhance chromosomal transcription? Primarily, three AKAP95 regions, including the NLS, the two zinc fingers and the N-terminal region (residues 1–100), have been found to be important for this activity. The NLS requirement suggests that AKAP95 affects transcription in the nucleus. The exact role of AKAP95 zinc fingers in regulating transcription is not clear, but they might facilitate association of AKAP95 with chromatin or transcription-related proteins, similarly to their reported roles in mediating chromosome condensation through chromatin binding and condensin recruitment. The AKAP95 N-terminal region is required for AKAP95-enhanced transcription, and it is also critical for AKAP95 binding to DPY30 and for stimulation of the methylation activity of the DPY30–MLL2 complex. Our data, therefore, are consistent with a model in which AKAP95 enhances gene expression through binding and modulation of the activity of DPY30–MLL complexes, but this does not exclude other possible mechanisms. The related yet divergent relationship between AKAP95 and MLL complexes is underscored by their impact on ATRA-mediated gene induction in ESCs. Lineage
specification for ESCs involves signaling pathways (including extra-
cellular ligand–cellular receptor interactions) eventually transduced
to instruct nuclear transcription regulation, and our analyses sug-
gest that AKAP95 and MLL core subunits may preferentially focus
on different parts of the system, in addition to co-regulating many
common targets, to coordinate the ESC-fate transition. Our findings
allow us to foresee a role for AKAP95 in coordinating transcription
by serving as a platform for the docking and integration of H3K4
methyltransferases together with other potential transcription-related
factors, analogously to the function of other AKAPs in organizing
kinase and signaling molecules for a spatiotemporal regulation of
signal transduction (Fig. 7g). In this regard, it is particularly inter-
esting that the DPY30 dimerization domain bears a striking homol-
ogy to the otherwise unrelated PKA RII dimerization domain, with
each domain mediating an association between an AKAP protein and
an enzymatic activity specific for a distinct chemical modification
(methylation versus phosphorylation) (Fig. 7g). It thus appears that
nature has adopted similar strategies for two important but distinct
biological processes.

METHODS

Methods and any associated references are available in the online
version of the paper.

Accession codes. The microarray data have been deposited in the Gene
Expression Omnibus database, under accession code GSE48128.

Note: Any Supplementary Information and Source Data files are available in the online
version of the paper.

ACKNOWLEDGMENTS

We thank Kazusa DNA Research Institute (Japan) for providing the cdna
KIAA0304. We thank J. Kim (Rockefeller University (RU)) for histone H3
and H4 with mutations in acetylation sites. E. McIntosh (Bethyl Laboratories) and
C. Hughes (RU) for the antibody to DPY30. Q. Yang (RU) for multiple valuable
reagents, J. Wysocka (Stanford University) for the antibody to WDR5, A. Goldberg
and D. Allis (RU) for LIF and Z. Fu and Z. Yan (RU) for excellent technical
assistance. H.J. was supported by a fellowship from the Leukemia and Lymphoma
Society, and X.L. was supported as a recipient of the C.H. Li Memorial Scholar
Award. This work was supported by grants from the US National Institutes of Health
(CAI12935 and DK671900) and the Ellison Medical Foundation (AG-SS-2665-11)
and the Ellison Medical Foundation (AG-SS-2665-11).

AUTHOR CONTRIBUTIONS

H.J. and X.L. conceived of the project, designed and performed the experiments,
analyzed the data and wrote the paper. M.S. and Y.D. performed experiments.
Z.T. generated the K4Q mutant octamer. R.G.R. conceived of the project, analyzed
the data, wrote the paper, supervised the project and had overall responsibility
for the joint research.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1. Kouzandes, T. Chromatin modifications and their function. Cell 128, 693–705
(2007).
2. Li, B., Carey, M. & Workman, J.L. The role of chromatin during transcription. Cell 128,
707–719 (2007).
3. Shahbazian, M.D. & Grunstein, M. Functions of site-specific histone acetylation and
decacytlation. Annu. Rev. Biochem. 76, 75–100 (2007).
4. Shilatifard, A. Molecular implementation and physiological roles for histone H3
lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol. 20, 341–348 (2008).
5. Rubanov, A.J., Ellis, C.D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy
of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30 (2007).
6. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of
regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81,
65–95 (2012).

1163

NATURE STRUCTURAL & MOLECULAR BIOLOGY VOLUME 20 NUMBER 10 OCTOBER 2013

7. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419,
407–411 (2002).
8. Schneider, R. et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic
genes. Nat. Cell Biol. 6, 73–77 (2004).
9. Bernstein, B.E. et al. Methylation of histone H3 Lys 4 in coding regions of active
transcripts. Proc. Natl. Acad. Sci. USA 101, 6869–6870 (2002).
10. Barski, A. et al. High-resolution profiling of histone modifications in the human
genome. Cell 129, 823–837 (2007).
11. Dou, Y. et al. Regulation of MLL1 H3K4 methyltransferase activity by its core
components. Nat. Struct. Mol. Biol. 13, 719–726 (2006).
12. Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyl-
transferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873–885 (2005).
13. Hughes, C.M. et al. Menin associates with a trithorax family histone methyltransferase
complex and with the hoxc box. Mol. Cell 13, 587–597 (2004).
14. Milne, T.A. et al. MLL targets SET domain methyltransferase activity to Hox gene
promoters. Mol. Cell 10, 1107–1112 (2002).
15. Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential
for H3 K4 methylation and vertebrate development. Cell 121, 859–872 (2005).
16. Demers, C. et al. Activator-mediated recruitment of the MLL2 methyltransferase
complex to the b-globin locus. Mol. Cell 27, 573–584 (2007).
17. Vermeulen, M. et al. Quantitative interaction proteomics and genome-wide profiling
of epigenetic histone marks and their readers. Cell 142, 967–980 (2010).
18. Vermeulen, M. & Timmers, H.T. Grasping trimethylation of histone H3 at lysine 4.
Epigenetics 2, 395–406 (2010).
19. Lim, D.A. et al. Chromatin remodelling factor MII is essential for neurogenesis
from postnatal neural stem cells. Nature 458, 529–533 (2009).
20. Rathert, P., Dhayalan, A., Ma, H. & Jeltsch, A. Specificity of protein lysine
methyltransferases and methods for detection of lysine methylation of non-histone
proteins. Mol. Biosyst. 4, 1186–1190 (2008).
21. Zhang, K. et al. The Set1 methyltransferase opposes Ipl1 aurora kinase functions
in chromosome segregation. Cell 122, 723–734 (2005).
22. Cho, Y.W. et al. PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4
methyltransferase complex. J. Biol. Chem. 282, 20395–20406 (2007).
23. Jiang, H. et al. Role for Dpy-30 in ES cell fate specification by regulation of H3K4
methylation within bivalent domains. Mol. Cell 144, S13–S20 (2011).
24. Wong, W. & Scott, J.D. AKAP signalling complexes: focal points in space and time.
Nat. Rev. Mol. Cell Biol. 5, 959–970 (2004).
25. Jungmann, R.A. & Kiriukhina, O. Cyclic AMP and AKAP-mediated targeting of
protein kinase A regulates lactate dehydrogenase subunit A mRNA stability. J. Biol.
Chem. 280, 25170–25177 (2005).
26. Eide, T. et al. Protein kinase A-anchoring protein AKAP95 interacts with MCM2, a
regulator of DNA replication. J. Biol. Chem. 278, 26750–26756 (2003).
27. Li, Y. et al. A novel histone deacetylase pathway regulates mitosis by modulating
Aurora B kinase activity. Genes Dev. 20, 2566–2579 (2006).
28. Collas, P., Le Guelrec, K. & Tasken, K. The A kinase-anchoring protein AKAP95 is
a multivalent protein with a key role in chromatin condensation at mitosis. J. Cell
Biol. 147, 1167–1180 (1999).
29. Bomar, J., Moreira, P., Balise, J.J. & Collas, P. Differential regulation of maternal
and paternal chromosomal condensation in mitotic zygotides. J. Cell Sci. 115,
2931–2940 (2002).
30. Akileswaran, L., Tareks, J.W., Sayer, J.A., Gettemy, J.M. & Coghlan, V.M. A-kinase-
anchoring protein AKAP95 is targeted to the nuclear matrix and associates with
p68 RNA helicase. J. Biol. Chem. 276, 17448–17454 (2001).
31. van den Berg, D.L. et al. An Oct4-centered protein interaction network in embryonic
stem cells. Cell Stem Cell 6, 369–381 (2010).
32. An, W. & Roeder, R.G. Recruitment and transcriptional analysis of chromatin in
vivo. Enzymes 37, 460–474 (2004).
33. An, W., Kim, J. & Roeder, R.G. Ordered cooperative functions of PRMT1, p300,
and deacetylation. Mol. Cell 13, 192–198 (2004).

© 2013 Nature America, Inc. All rights reserved.
ONLINE METHODS

Cloning, mutagenesis, plasmids and expression vectors. Human MLL2 cDNA was cloned on the basis of the KIAA0304 sequence (Kazusa DNA Research Institute, Japan) and inserted into pCDNA5/FRT/TO (pc5, Invitrogen) with an N-terminal Flag- HA tag. cDNA for human AKAP95 was generated by reverse transcription with HEK293 cells as the source of RNA. AKAP95 mutants were generated by PCR-based deletion or site-directed mutagenesis. Detailed information for some of these mutants is as follows: dNMTS, 1–110 + 141–692; dNLS.

Cell lines, complex purification and coimmunoprecipitation. The FH-MLL2 and FH-DPY30 cell lines were made by cotransfection of Flp-In 293 cells (293 cells, Invitrogen) with pOG44 plasmid and either an FH-MLL2-pc5 vector or an FH-DPY30-pc5 vector. Nuclear extracts were obtained from these cell lines by a modified Dignam procedure,44 incubated with M2 agroarse beads in BC300 with 0.1% NP-40 at 4 °C for 6 h and extensively washed with BC300 with 0.1% NP-40, then by BC100 with 0.1% NP-40. The complexes were eluted with 0.4 mg/ml Flag peptide in BC100 with 0.1% NP-40. DPY30-associated proteins were fractionated on Superose 6 (Smart System, Pharmacia) in buffer BC200 containing 0.05% NP-40. Coimmunoprecipitation to detect endogenous protein association was carried out in BC200 with 0.1% NP-40.

Antibodies. Anti-DPY30 antibody was obtained from C. Hughes (Rockefeller University) and E. McIntush (Bethyl Laboratories). Anti-WDR5 was kindly provided by J. Wysocka (Stanford University). Anti-MLL2 was developed previously in our laboratory. Anti-MLL2-N was generated with a recombinant epitope in human CFP1. Other antibodies were obtained commercially as follows: anti-MLL2-C, ASH2L, menin and RB5P (Bethyl Laboratories, A300-113A, A300-107A, A300-105A and A300-109A, respectively); anti-H3K4me2 and H3K4me3 (Upstate Biotechnology, 07–030 and 07–473, respectively); anti-HA (12CA5, for immunoblotting) (Roche, 11583816001); anti-FA (for ChIP assay) (Abcam, ab9110); anti-H3 (Abcam, ab17911); anti-GAPDH (Chemicon, AB374); anti-Flag (M2 beads) (Sigma, A2220); anti-MBP (New England Biolabs, E8032S); anti-AKAP95and mcy (Santa Cruz Biotechnology, sc-10766 and sc-40, respectively). For immunoblotting, antibodies were used at 0.4 ng/ml, except anti-GAPDH and anti-H3, which were used at 0.1 ng/ml. For immunoprecipitation and ChIP, 2 µg of antibody was used for each reaction.

Recombinant proteins and in vitro binding assay. A Flag-tagged AKAP95 or AKAP95(101–692) cDNA was inserted into the pFastBac1 vector (Invitrogen) for expression in S9 cells. Baculoviruses were generated according to the Bac-to-Bac Baculovirus Expression System (Invitrogen) protocols. Glutathione S-transferase (GST)-tagged AKAP95 or AKAP95(101–692) was expressed from the pGEX vector in bacteria and purified on glutathione Sepharose. For the in vitro binding assay, His-tagged AKAP95 and GST-AKAP95(101–692) was expressed from the pGEX vector in bacteria and purified on glutathione Sepharose. For the in vitro binding assay, His-tagged AKAP95 and GST-AKAP95(101–692) was expressed from the pGEX vector in bacteria and purified on glutathione Sepharose. For the in vitro binding assay, His-tagged AKAP95 and GST-AKAP95(101–692) was expressed from the pGEX vector in bacteria and purified on glutathione Sepharose. For the in vitro binding assay, His-tagged AKAP95 and GST-AKAP95(101–692) was expressed from the pGEX vector in bacteria and purified on glutathione Sepharose.

Histone modification and transcription assays. Histone modification assays on nonchromatin substrates were carried out essentially as described.42 Chromatin assembly, chromatin-based histone-modification assays and transcription assays were performed as previously described.42,45 Chromatin composed of 250–350 ng of DNA template and a similar amount of histone octamer was used in each histone methylation assay. When present, ~0.5 µg of AKAP95 or AKAP95(101–692) was added in each methylation reaction. Chromatin composed of 40 ng of DNA template and a similar amount of histone octamer, 40 ng of p53 and ~100 ng of each coactivator (p300 and/or MLL2 and/or MLL2 complex) were used, along with nuclear extract (50 µg of protein) in each transcription assay. SAM and acetyl CoA were present in all transcription reactions unless otherwise indicated. Relative transcription levels were quantified by Quantity One software.

RNA interference. Lentiviral constructs expressing shRNA sequences (listed in Supplementary Table 1) were purchased from OpenBiosystems. Negative control constructs containing a scrambled shRNA (Addgene plasmid 1864) were purchased from Addgene. Viral particles were produced according to the recommended protocols (Addgene). 2 d after infection of ESCs with viruses, puromycin was added at 2 µg/ml to select for stably infected cells. For siRNA-mediated knockdown in NT2 cells, chemically synthesized siRNAs of the indicated sequences (listed in Supplementary Table 1) were purchased from Dharmacon. An on-target plus nontargeting pool was used as the negative control. NT2 cells were transfected with siRNA duplexes with Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions.

RT-PCR, ChIP and qPCR. Total RNAs were extracted with the RNeasy kit (Qiagen) and reverse transcribed with the SuperScript III First-Strand Synthesis System (Invitrogen) with an oligo dT prime. Histone or histone-modification ChIP assays followed the fast ChIP protocol46 but with the lysis method and washing protocols from the Chromatin Immunoprecipitation Assay Kit (Upstate Biotechnology). ChIP for HA-tagged proteins followed the same protocol except that the lysis method was as follows: cell pellets were first lysed in L1 buffer (50 mM Tris, pH 8.0, 2 mM EDTA, 0.1% NP-40, 10% glycerol, 1 mM DTT and protease inhibitors) on ice for 8 min; this was followed by centrifugation at 1,300g for 5 min. Collected nuclei were then lysed in IP buffer (ChIP dilution buffer from the Upstate ChIP Assay Kit with additional 0.1% SDS and protease inhibitors). Cell lysates were passed through 27G1/2 needles before sonication. qPCR was performed in triplicate with SYBR Advantage qPCR Premix (Clontech) on a 7300 Real-Time PCR System (Applied Biosystems). Fold differences in gene expression levels were calculated according to the 2−∆∆Ct method47 and normalized against GAPDH. Levels of histone modifications were presented as the value of 2−∆∆Ct, in which ∆Ct is the difference of Ct values of the histone modification immunoprecipitation and the H3 immunoprecipitation for a given primer pair. Primers are listed in Supplementary Table 2.

ES cell culture and gene induction. The mouse ES cell line E14TG2A (E14) was cultured on 0.1% gelatin-coated tissue-culture plates in complete ES growth medium (knockout DMEM (Invitrogen)) supplemented with 15% ESC-certified FBS (Omega Scientific), 2 mM l-glutamine, 0.1 mM nonessential amino acids, 0.1 mM 2-mercaptoethanol and recombinant LIF) without irradiated murine embryonic fibroblasts. Stably infected ESCs were maintained in complete ESC growth medium with 2 µg/ml puromycin (Invivogen). To monitor ESC proliferation, we subjected cells to proliferation assays with the Aqueous One Solution Cell Proliferation Assay System (Promega) according to the manufacturer’s protocols. For ATRA-mediated gene induction, ESCs were plated on gelatinized six-well tissue-culture dishes at 30,000 cells per well in complete growth medium. Cells were washed and incubated in differentiation medium for 4 d and then in differentiation medium with 1 µM ATRA for an additional 4 d.

Gene expression microarray analysis. Total RNAs were submitted to the Genomics Resource Center at the Rockefeller University for labeling and hybridization to the Illumina eight-sample BeadChip. Signals were normalized against the median in each sample. For expression analysis after ATRA treatment, genes were sorted on the basis of the effect of ATRA treatment in the control samples.

Reporter assay. The reporter assay was performed as described.43 Briefly, the assay system is based on a Gal4-293T cell line (G-293T) that was made by stable transfection of HEK293T cells with a Gal4 UAS–x 5–SV40–firefly luciferase reporter construct described previously48. G-293T cells were plated in a 24-well dish at 35,000 cells per well on day 0 and transfected with 0.2 ng of pGL4.75 (hRlac/CMV) (Promega), 5 ng (unless otherwise indicated) of plasmid expressing Gal4 or Gal4-VIP16 and 200 ng (unless otherwise indicated) of control vector or constructs expressing coactivator genes (MLL1, MLL2 or AKAP95) on day 1 with TransIT-1LT1 (Mirus Bio). Luciferase assays were performed on day 3 with the Dual-Luciferase Reporter Assay System (Promega) according to the manufacturer’s instructions. The firefly luciferase light signals were normalized to the Renilla luciferase light signals, which served as an internal control for transfection efficiency. Figures show the range of duplicate samples in representative experiments.

44. Dignam, J.D., Leboulch, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).
45. Guermah, M., Kim, J. & Roeder, R.G. Transcription of in vitro assembled chromatin templates in a highly purified RNA polymerase II system. Methods 48, 353–360 (2009).

46. Nelson, J.D., Denisenko, O. & Bomsztyk, K. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc. 1, 179–185 (2006).

47. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC_T method. Methods 25, 402–408 (2001).

48. Zhang, J., Kalkum, M., Chait, B.T. & Roeder, R.G. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol. Cell 9, 611–623 (2002).