The weak generative capacity of linear tree-adjoining grammars

David Chiang*
Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292, USA
chiang@isi.edu

1 Introduction

Linear tree-adjoining grammars (TAGs), by analogy with linear context-free grammars, are tree-adjoining grammars in which at most one symbol in each elementary tree can be rewritten (adjointed or substituted at). Uemura et al. (1999), calling these grammars simple linear TAGs (SL-TAGs), show that they generate a class of languages incommensurate with the context-free languages, and can be recognized in \(O(n^4) \) time.

Working within the application domain of modeling of RNA secondary structures, they find that SL-TAGs are too restrictive—they can model RNA pseudoknots but because they cannot generate all the context-free languages, they cannot model even some very simple RNA secondary structures. Therefore they propose a more powerful version of linear TAGs, extended simple linear TAGs (ESL-TAGs), which generate a class of languages that include the context-free languages and can be recognized in \(O(n^5) \) time.

Satta and Schuler (1998), working within the application domain of natural language syntax, define another restriction on TAG which is also recognizable in \(O(n^5) \) time. Despite being less powerful than full TAG, it is still able to generate languages like the copy language \(\{ww\} \) and Dutch cross-serial dependencies (Joshi, 1985). Kato et al. (2004) conjecture that this restricted TAG is in fact equivalent to ESL-TAG.

In this paper we prove their conjecture, and also prove that adding substitution to ESL-TAG does not increase its weak generative capacity, whereas adding substitution to SL-TAG makes it weakly equivalent to ESL-TAG. Thus these four formalisms converge to the same weak-equivalence class, the intuition being that the “hardest” operation in TAG, namely, adjunction of a wrapping auxiliary tree in the middle of the spine of another wrapping auxiliary tree, is subjected to the linearity constraint, but most other operations are unrestricted.1 Kato et al. (2004) show that these formalisms are more powerful than SL-TAG or general CFG or their union and conjecture, on the other hand, that they are less powerful than TAG. We prove this conjecture as well.

2 Definitions

We assume a standard definition of TAG, with or without substitution, in which adjunction is not allowed at foot nodes, and other nodes can have no-adjunction (NA) constraints, obligatory-adjunction (OA), or selective-adjunction constraints. We use the symbols \(\eta, \eta_1, \eta_2, \) etc. to range over nodes of elementary trees or derived trees, although sometimes we use the label of a node to refer to the node itself. The spine of an auxiliary tree is the path from its root node to its foot node, inclusive. The subtree of a node \(\eta \) is the set of all nodes dominated by \(\eta \), including \(\eta \) itself. The segment of a tree from \(\eta_1 \) to \(\eta_2 \) (where \(\eta_1 \) dominates \(\eta_2 \)) is the set of all nodes in the subtree of \(\eta_1 \) but not in the subtree of \(\eta_2 \). A segment can be excised, which means removing the nodes of the segment and making \(\eta_2 \) replace \(\eta_1 \) as the child of its parent.

In this paper we prove their conjecture, and also prove that adding substitution to ESL-TAG does not increase its weak generative capacity, whereas adding substitution to SL-TAG makes it weakly equivalent to ESL-TAG. Thus these four formalisms converge to the same weak-equivalence class, the intuition being that the “hardest” operation in TAG, namely, adjunction of a wrapping auxiliary tree in the middle of the spine of another wrapping auxiliary tree, is subjected to the linearity constraint, but most other operations are unrestricted.1

1 Adjunction at root and foot nodes is another operation that by itself will not take a formalism beyond context-free power, a fact which is exploited in Rogers’ regular-form TAG (Rogers, 1994). But allowing this in a linear TAG would circumvent the linearity constraint.
derivation of \(h \) is the subtree of \(h \) in the derivation tree. When we cut up derivations into subderivations or segments and recombine them, the edge labels (indicating addresses of adjunctions and substitutions) stay with the node above, not the node below.

Now we define various versions of linear TAG.

Definition 1. A right (left) auxiliary tree is one in which the leftmost (rightmost) frontier node is the foot node, and the spine contains only the root and foot nodes. A wrapping auxiliary tree is one which is neither a left or a right auxiliary tree.

Definition 2. We say that a node of an elementary tree is active if adjunction is allowed to occur at it, and that a node is \(w \)-active if adjunction of a wrapping auxiliary tree is allowed to occur at it.

Definition 3. A Satta-Schuler linear tree-adjoining grammar (SSL-TAG) is a TAG with substitution in which:

1. In the spine of each wrapping auxiliary tree, there is at most one \(w \)-active node.
2. In the spine of each left or right auxiliary tree, there are no \(w \)-active nodes, nor are there any other adjoining constraints.

Definition 4. A simple linear tree-adjoining grammar (SL-TAG), with or without substitution, is a TAG, with or without substitution, respectively, in which every initial tree has exactly one active node, and every auxiliary tree has exactly one active node on its spine and no active nodes elsewhere.

Definition 5. An extended simple linear tree-adjoining grammar (ESL-TAG), with or without substitution, is a TAG, with or without substitution, respectively, in which every initial tree has exactly one active node, and every auxiliary tree has exactly one active node on its spine and at most one active node elsewhere.

3 Properties

We now review several old results and prove a few new results relating the weak generative capacity of these formalisms to one another and to (linear) CFG and TAG. These results are summarized in Figure 1.

3.1 Previous results

Proposition 1 (Uemura et al. 1999).

\[
\text{Linear CFL} \subset \text{SL-TAL}
\]

Proposition 2 (Uemura et al. 1999).

\[
\text{CFL} \subset \text{ESL-TAL}
\]

Proposition 3 (Kato et al. 2004).

\[
\text{CFL} \cup \text{SL-TAL} \subset \text{ESL-TAL}
\]

Proposition 4 (Satta and Schuler 1998; Uemura et al. 1999). SSL-TAG and ESL-TAG can be parsed in \(O(n^5) \) time.

3.2 Weak equivalence

Proposition 5. The following formalisms are weakly equivalent:

(i) ESL-TAG

(ii) SL-TAG with substitution

(iii) ESL-TAG with substitution

(iv) SSL-TAG

Proof. We prove this by proving four inclusions.

\(\mathcal{L}(\text{ESL-TAG}) \subset \mathcal{L}(\text{ESL-TAG} + \text{substitution}) \): Trivial.

\(\mathcal{L}(\text{ESL-TAG} + \text{substitution}) \subset \mathcal{L}(\text{SSL-TAG}) \): Trivial.

\(\mathcal{L}(\text{SSL-TAG}) \subset \mathcal{L}(\text{SL-TAG} + \text{substitution}) \): We deal first with the left and right auxiliary trees, and then with off-spine adjunction.

First, we eliminate the left and right auxiliary trees. Since these only insert material to the left or right of a node, just as in tree-insertion grammars (TIGs), we may apply the conversion from TIGs to tree-substitution grammars (Schabes and Waters, 1995), used in the proof of the context-freeness of...
TIG.\(^2\) (Step 1a) For each active node \(X\) that is not the root of a left or right auxiliary tree, we create four copies of the containing elementary tree with \(X\) altered in the following ways: first, leave \(X\) unchanged; then, add a copy of \(X\) above it, making both nodes no-adjunction nodes, and add a new left sister substitution node labeled \(L_X\) or a new right sister substitution node labeled \(R_X\), or both. See Figure 2. (Step 1b) For each \(\beta\) that was originally a left (right) auxiliary tree with root/foot label \(X\), relabel the root node as \(L_X\) (\(R_X\)) and delete the foot node, and create two copies of the containing elementary tree, one unchanged, and one with a new left (right) sister substitution node. See Figure 2. When the modified \(\beta\) substitutes at one of the new children of an \(\eta\), the substitution clearly results in the same string that would have resulted from adjoining the original \(\beta\) to \(\eta\).

This construction might appear incorrect in two ways. First, the new grammar has trees with both an \(L_X\) and an \(R_X\) node corresponding to the same original node, which would correspond to adjunction of two auxiliary trees \(\beta_L\) and \(\beta_R\) at the same node \(X\) in the original grammar. But this new derivation generates a string that was generable in the original grammar, namely by adjoining \(\beta_L\) at \(X\), then adjoining \(\beta_R\) at the root of \(\beta_L\), which is allowed because the definition of SSL-TAG prohibits adjunction constraints at the root of \(\beta_L\).

Thus the first apparent problem is really the solution to the second problem: in the original grammar, a left auxiliary tree \(\beta_L\) could adjoin at the root of a right auxiliary tree \(\beta_R\), which in turn adjoined at a node \(\eta\), whereas in the new grammar, \(\beta_R\) does not have an \(L_X\) substitution node to allow this possibility. But the same string can be generated by substituting both trees under \(\eta\) in the new grammar. In the case of a whole chain of adjunctions of left/right auxiliary trees at the root of left/right auxiliary trees, we can generate the same string by rearranging the chain into a chain of left auxiliary trees and a chain of right auxiliary trees (which is allowed because adjunction constraints are prohibited at all the roots), and substituting both at \(\eta\).

(Step 2) Next, we eliminate the case of a wrapping auxiliary tree \(\beta\) that can adjoin at an off-spine node \(\eta\). (Step 2a) For each active off-spine node \(\eta\), we relabel \(\eta\) with a unique identifier \(\tilde{\eta}\) and split the containing elementary tree at \(\eta\):

\[\cdots \Rightarrow \cdots \]

\[\tilde{\eta} \Rightarrow \cdots \]

\[B_{\tilde{\eta}} \cdots \]

\[\cdots \]

\(^2\)This corresponds to Steps 1–4 of that proof (Schabes and Waters, 1995, p. 486). Since that proof uses a more relaxed definition of left and right auxiliary trees, it is probable that SSL-TAG could also be relaxed in the same way.
(Step 2b) After step 2a has been completed for all nodes \(\eta \), we revisit each \(\eta \), and for every wrapping \(\beta \) that could adjoin at \(\eta \), create a copy of \(\beta \) with root relabeled to \(T_\hat{\eta} \) and foot relabeled to \(B_\hat{\eta} \).

Then the original \(\beta \) is discarded. Substituting one of these copies of \(\beta \) at a \(T_\hat{\eta} \) node and then substituting a \(B_\hat{\eta} \) tree at the former foot node has the same effect as adjoining \(\beta \) at \(\eta \). Finally, unless \(\eta \) had an obligatory-adjunction constraint, simulate the lack of adjunction at \(\eta \) by adding the initial tree

\[
\begin{array}{c}
X_0 \\
X_
\end{array} \Rightarrow \begin{array}{c}
T_\hat{\eta} \\
B_\hat{\eta}
\end{array}
\]

Then the original \(\beta \) is discarded. Substituting one of these copies of \(\beta \) at a \(T_\hat{\eta} \) node and then substituting a \(B_\hat{\eta} \) tree at the former foot node has the same effect as adjoining \(\beta \) at \(\eta \). Finally, unless \(\eta \) had an obligatory-adjunction constraint, simulate the lack of adjunction at \(\eta \) by adding the initial tree

\[
\begin{array}{c}
X_0 \\
X_
\end{array} \Rightarrow \begin{array}{c}
T_\hat{\eta} \\
B_\hat{\eta}
\end{array}
\]

\[\mathcal{L}(\text{SL-TAG + substitution}) \subseteq \mathcal{L}(\text{ESL-TAG})\]: This construction is related to Lang’s normal form which ensures binary-branching derivation trees (Lang, 1994), but guarantees that one adjunction site is on the spine and one is off the spine.

(Step 0a) Ensure that the elementary trees are binary-branching. (Step 0b) Add a new root and foot node to every elementary tree:

\[
\begin{array}{c}
X \\
X_
\end{array} \Rightarrow \begin{array}{c}
X_\text{NA} \\
X
\end{array}
\]

\[
\begin{array}{c}
X \\
X_
\end{array} \Rightarrow \begin{array}{c}
X_\text{NA} \\
X_\text{NA}
\end{array}
\]

(Step 1) We transform the grammar so that no auxiliary tree has more than one substitution node. For any auxiliary tree with spine longer than four nodes, we apply the following transformation: target either the active node or its parent, and call it \(Y \). Let \(Z_1 \) be the child that dominates the foot node; let \(V_1 \) be a fresh nonterminal symbol and insert \(V_1 \) nodes above \(Y \) and below \(Z_1 \), and excise the segment between the two \(V \) nodes, leaving behind an active obligatory-adjunction node.

If \(Y \) has another child, call it \(Z_2 \); let \(V_2 \) be a fresh nonterminal symbol and insert a \(V_2 \) node above \(Z_2 \), and break off the subtree rooted in \(V_2 \), leaving behind a substitution node. See Figure 3. This transformation reduces the spine of the auxiliary tree by one node, and creates two new trees that satisfy the desired form. We repeat this until the entire grammar is in the desired form.

(Step 2) Next, we transform the grammar so that no initial tree has more than one substitution node, while maintaining the form acquired in step 1. For any initial tree with height greater than three nodes, we apply the same transformation as in step 1, except that \(Y \) is the child of the root node, \(Z_1 \) is its left child, and \(Z_2 \) is its other child if it exists and is not already a substitution node. See Figure 3. This transformation replaces an initial tree with at most two shorter initial trees, and one auxiliary tree in the desired form. Again we repeat this until the entire grammar is in the desired form.

(Step 3) Finally, we convert each substitution node into an adjunction node (Schabes, 1990). For each substitution node \(\eta \), let \(X \) be the label of \(\eta \). Relabel \(\eta \) to \(S_X \) with obligatory adjunction and place an empty terminal beneath \(\eta \).

\[
\begin{array}{c}
X \\
X_
\end{array} \Rightarrow \begin{array}{c}
S_X \text{OA} \\
\epsilon
\end{array}
\]

For each initial tree with root label \(X \), convert it into an auxiliary tree by adding a new root node labeled \(S_X \) whose children are the old root node and a new foot node.

\[
\begin{array}{c}
X \\
S_X \text{NA}
\end{array} \Rightarrow \begin{array}{c}
X \\
S_X
\end{array}
\]

3.3 Relation to tree-adjoining languages

Our second result, also conjectured by Kato et al., is that the weak equivalence class established above is a proper subset of TAL.

Proposition 6. The language

\[
L = \{ a_1 b_1 b_2 c_1 c_2 a_2 a_3 b_3 b_4 c_3 c_4 b_5 b_6 a_5 \}
\]

is in TAL but not ESL-TAL.
Proof ($L \in TAL$). The language is generated by the following TAG:

Before proceeding to the other half of the proof, we define a few useful notions. A marked string (as in Ogden’s Lemma) over an alphabet Σ is a string over $\Sigma \times \{0, 1\}$, where a symbol $\langle \sigma, 1 \rangle$ is marked and a symbol $\langle \sigma, 0 \rangle$ is not. Marked strings over Σ can be projected into Σ^* in the obvious way and we will talk about marked strings and their projections interchangeably.

A decomposed string over Σ is a sequence of strings over Σ, which can be projected into Σ^* by concatenating their members in order, and again we will talk about decomposed strings and their projections interchangeably. In particular, we will often simply write a decomposed string $\langle w_1, \ldots, w_n \rangle$ as $w_1 \cdots w_n$. Moreover, we may use the symbol w_i to refer to the occurrence of the ith member of the decomposition in w; for example, if w is a marked string, we may say that a symbol in w_i is marked, or if w is generated by a TAG derivation, we may say that w_i is generated by some set of nodes in the derivation tree.

The second half of the proof requires a double-decker pumping lemma.

Condition 1 (cf. Vijay-Shanker (1987), Theorem 4.7). Given a language L and a decomposed string $x_1 \cdots x_2 \in L$ with some symbols in z marked, there exists a decomposition of z into $u_1 v_1 u_2 v_2 u_3 w_2 v_3 u_4$ such that one of the v_i contains a mark, and L contains, for all $k \geq 1$,

$$x_1(u_1 v_1^k u_1^k w_2 v_2^k u_2^k w_3^k u_3^k)x_2$$

Condition 2 (cf. Uemura et al. (1999), Lemma...
1) Given a language \(L \) and a decomposed string
\[
x_1z_1z_2x_2z_3z_4x_3 \in L
\]
with some symbols in one of the \(z_i \) marked, there exist decompositions of the \(z_i \) into \(u_iv_iw_i \) such that one of the \(v_i \) contains a mark, and \(L \) contains, for all \(k \geq 1 \),
\[
x_1(u_1v_1^kw_1)(u_2v_2^kw_2)x_2(u_3v_3^kw_3)(u_4v_4^kw_4)x_3
\]

Lemma 7. If \(L \) is an ESL-TAL, then there exists a constant \(n \) such that for any \(z \in L \) with \(n \) symbols marked, Condition 1 holds of \(\epsilon \cdot z \cdot \epsilon \). Moreover, it holds such that the \(u_1 \) and \(w_2 \) provide a further decomposed into \(z_1z_2 \) and \(z_3z_4 \), respectively, such that for any marking of \(n \) symbols of any of the \(z_j \), either Condition 1 holds of \(z = x_1z_2x_2 \) (where \(x_1 \) and \(x_2 \) are the surrounding context of \(z_j \)) or Condition 2 holds of \(z = x_1z_2x_3z_4 \) (where \(x_1 \), \(x_2 \), and \(x_3 \) are the surrounding context of \(z_2 \) and \(z_3z_4 \)).

Proof. Since \(L \) is an ESL-TAL, it is generated by some ESL-TAG \(G \). Let \(k \) be the number of elementary trees in \(G \) and \(t \) be the maximum number of terminal symbols in any elementary tree of \(G \). Then set \(n = 2^{k+1}t \).

The first invocation of Condition 1 is the TAG version of Ogden’s lemma (Hopcroft and Ullman, 1979). To show that it holds, we need to find a path \(P \) in the derivation tree of \(z \) that has a cycle that generates at least one marked symbol. Define a branch point to be a node \(h \) in the derivation tree such that the marked nodes generated by the subderivation of \(h \) are not all generated by the subderivation of a single child of \(h \). We seek a \(P \) that has at least \(k+1 \) branch points. Start by adding the root of the derivation tree to \(P \). Thereafter let \(h \) be the last node in \(P \). If \(h \) is a leaf, stop; otherwise, add to \(P \) the child of \(h \) whose subderivation generates the most marked symbols. Note that if a branch point in \(P \) generates \(m \) marked symbols, the next branch point generates at least \(\frac{m-1}{2} \). Our choice of \(n \) then guarantees that \(P \) has at least \(k+1 \) branch points, at least two of which must correspond to the same auxiliary tree. Call these nodes \(h_1 \) and \(h_2 \).

These two nodes divide the derivation up into three phases: first, the derivation segment from the root to \(h_1 \), which we call \(\alpha \) (because it can be thought of as the derived initial tree it generates); then the segment from \(h_1 \) to \(h_2 \), which we call \(\beta_1 \) (because it can be thought of as the derived auxiliary tree it generates); then subderivation of \(h_2 \), which we call \(\beta_2 \). Note that we can form new valid derivations of \(G \) by repeating \(\beta_2 \); that is, in terms of derivation trees, stacking \(\alpha \) on top of one or more copies of \(\beta_1 \), on top of \(\beta_2 \) — or in terms of derived trees, repeatedly adjoining \(\beta_1 \) into \(\alpha \) and then adjoining \(\beta_2 \).

If \(\beta_2 \) adjoins into the spine of \(\beta_1 \), then let \(\langle u_1, u_2, u_3 \rangle \) be the parts of the \(\alpha \) generated by \(\alpha \), \(\langle v_1, v_2, v_3, v_4 \rangle \) the parts generated by \(\beta_1 \), and \(\langle w_1, w_2 \rangle \) the parts generated by \(\beta_2 \) (see Figure 4a). Then these new derivations generate the strings \(u_1v_1^kw_1u_2v_2^kw_2u_3v_3^kw_3u_4 \). But if \(\beta_2 \) adjoins at a node to the left of the spine of \(\beta_1 \), then let \(\langle u_1, u_2, u_3 \rangle \) be the parts of the \(\alpha \) generated by \(\alpha \), \(\langle v_1, u_2, v_3, v_4 \rangle \) the parts generated by \(\beta_1 \), and \(\langle w_1, w_2 \rangle \) the parts generated by \(\beta_2 \) (see Figure 4b). Then let \(v_2 = v_3 = \epsilon \) and \(v_4 = u_4v_2v_4v_3 \); the new derivations will generate the strings \(u_1v_1^kw_1u_2v_2^kw_2u_3v_3^kw_3u_4 \). The case where \(\beta_2 \) adjoins to the right of the spine.

Now we focus attention on \(\beta_2 \). Let \(S \) be the longest path of the derivation of \(\beta_2 \) containing the root of the derivation and auxiliary trees adjoined at spine nodes. This \(S \) is unique because each spine can only have one active node. Let \(h_3 \) be the last node in \(S \), which divides the derivation of \(\beta_2 \) into two phases: the segment from the root to \(h_3 \), which we call \(\beta_2 \), and the subderivation of \(h_3 \), which we call \(\beta_2 \). This gives a decomposition \(\langle w_1, w_2 \rangle = \langle z_1z_2z_3 \rangle \), where \(\beta_2 \) generates \(z_1 \) and \(z_2 \) (see Figure 5). Note that the derivation nodes in \(S \) are the only ones that can generate symbols in \(z_1, z_2, z_3, \) and \(z_4 \) at once; the other derivation nodes only generate symbols in a single \(z_i \). We let \(z_2 = z_2z_3 \) and \(z_3 = z_3z_4 \) and hand off the decomposition \(\langle w_1, w_2 \rangle = \langle z_1z_2z_3z_4 \rangle \) to our adversary, who may choose a \(z_j \) and mark \(n \) symbols in it.

Then we recapitulate the reasoning above to get a path \(P' \) starting from the root of the derivation of \(\beta_2 \) and containing at least \(k+1 \) branch points, two of which correspond to the same auxiliary tree. Call these nodes \(h_4 \) and \(h_5 \) and the segment between them \(\beta_3 \), and let \(\langle v_1, v_2, v_3, v_4 \rangle \) now stand for the parts of \(\langle w_1, w_2 \rangle \) generated by \(\beta_3 \). Once again, we are going to repeat \(\beta_3 \) to generate new derivations, pumping copies of the \(v_i \) into \(\langle w_1, w_2 \rangle \). But the location of the \(v_i \) depends on \(h_5 \); if \(h_5 \) is in \(S \), then the \(v_i \) will appear inside each of the \(z_i \), satisfying Condition 2. Otherwise, they will all appear inside \(z_j \).
Figure 4: Anatomy of derived tree in proof of Lemma 7.

Figure 5: Anatomy of β_2 in proof of Lemma 7.
Finally we complete the proof of Proposition 6.

Proof of Proposition 6 ($L \notin ESL-TAL$). Suppose L is an ESL-TAL. Let z be the string obtained by setting $p = q = r = n$, and mark the a_is. Then Lemma 7 must hold. The first invocation of Condition 1 must give a w_1 of the form $a_1^n b_1^n c_1^n b_2 a_2^*$ and a w_2 of the form $c_2^* b_2^* a_2^* b_2^*$. Lemma 7 must further decompose w_1 into $z_1 z_2$. Obviously, either z_1 contains all the b_1s or z_2 contains all the c_2s. Supposing the former, we can obtain a contradiction by marking the b_1s; Condition 2 is impossible because it would give unequal numbers of b_1s and b_2s; Condition 1 is impossible because it would give unequal numbers of b_1s and b_2s. On the other hand, if z_2 contains all the c_2s, we mark the c_1s, and both Conditions are again rendered impossible. □

4 Conclusion

The weak equivalence of the previously proposed ESL-TAG and SSL-TAG, along with the fact that SL-TAG with substitution and ESL-TAG with substitution belong to the same class, suggests that they represent a useful compromise between CFGs and TAGs. In the two-dimensional language hierarchy of Rambow and Satta (1999), where the two dimensions are rank (how many substructures a rule combine) and fanout (how many discontinuous spans of the input does a substructure cover), CFGs comprise the fanout-1 grammars and TAGs are a subset of the the fanout-2 grammars; both have arbitrary rank, whereas linear CFGs and linear TAGs are rank-1. The grammars discussed here are mixed: a rule can combine one fanout-2 substructure and an arbitrary number of fanout-1 substructures. A related example would be a version of synchronous CFG that allows only one pair of linked nonterminals and any number of unlinked nonterminals, which could be bitext-parsed in $O(n^5)$ time, whereas inversion transduction grammar (Wu, 1997) takes $O(n^6)$. It may be of interest to make a more general exploration of other formalisms that are mixed in this sense.

Acknowledgements

Thanks to Hiroyuki Seki for discussions that led to this paper, and to Anoop Sarkar, Giorgio Satta, and William Schuler. This research was partially supported by NSF grant ITR EIA-02-05456. S. D. G.

References

John E. Hopcroft and Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, MA.

Aravind K. Joshi. 1985. Tree adjoining grammars: How much context-sensitivity is necessary for assigning structural descriptions? In David Dowty, Lauri Karttunen, and Arnold Zwicky, editors, Natural Language Parsing, pages 206–250. Cambridge University Press, Cambridge.

Yuki Kato, Hiroyuki Seki, and Tadao Kasami. 2004. Subclasses of tree adjoining grammar for RNA secondary structure. In Proc. Seventh International Workshop on TAG and Related Formalisms (TAG*), pages 48–55.

Bernard Lang. 1994. Recognition can be harder than parsing. Computational Intelligence, 10(4):484–494. Special Issue on Tree Adjoining Grammars.

Owen Rambow and Giorgio Satta. 1999. Independent parallelism in finite copying parallel rewriting systems. Theoretical Computer Science, 223:87–120.

James Rogers. 1994. Capturing CFLs with tree adjoining grammars. In Proc. 32nd Annual Meeting of the ACL, pages 155–162.

Giorgio Satta and William Schuler. 1998. Restrictions on tree adjoining languages. In Proc. COLING-ACL, pages 1176–1182.

Yves Schabes and Richard C. Waters. 1995. Tree insertion grammar: a cubic-time parsable formalism that lexicalizes context-free grammar without changing the trees produced. Computational Linguistics, 21:479–513.

Yves Schabes. 1990. Mathematical and Computational Aspects of Lexicalized Grammars. Ph.D. thesis, University of Pennsylvania. Available as technical report MS-CIS-90-48.

Yasu Uemura, Aki Hasegawa, Satoshi Kobayashi, and Takashi Yokomori. 1999. Tree adjoining grammars for RNA structure prediction. Theoretical Computer Science, 210:277–303.

K Vijayashanker. 1987. A study of tree adjoining grammars. Ph.D. thesis, University of Pennsylvania. Available as technical report MS-CIS-88-03.

Dekai Wu. 1997. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. Computational Linguistics, 23:377–404.