Measurement of The Time-Dependent $CP$ Asymmetry in $B^0 \rightarrow K^{*0}\gamma$ Decays

The BaBar Collaboration

February 1, 2008

Abstract

We present a preliminary measurement of the time-dependent $CP$ asymmetry in $B^0 \rightarrow K^{*0}(K_S^0\pi^0)\gamma$ decays based on $431 \times 10^6 \Upsilon(4S) \rightarrow B\bar{B}$ decays collected with the BaBar detector at the PEP-II asymmetric-energy $e^+e^-$ collider at SLAC. In a sample containing $316\pm22$ signal events we measure $S_{K^*\gamma} = -0.08 \pm 0.31 \pm 0.05$ and $C_{K^*\gamma} = -0.15 \pm 0.17 \pm 0.03$. The uncertainties are statistical and systematic, respectively.

Contributed to the XXIIIrd International Symposium on Lepton and Photon Interactions at High Energies, 8/13 – 8/18/2007, Daegu, Korea

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported in part by Department of Energy contract DE-AC02-76SF00515.
The *BaBar* Collaboration,

B. Aubert, M. Bona, D. Boutigny, Y. Karyotakis, J. P. Lees, V. Poireau, X. Prudent, V. Tisserand, A. Zghiche

*Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France*

J. Garra Tico, E. Grauges

*Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain*

L. Lopez, A. Palano, M. Pappagallo

*Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy*

G. Eigen, B. Stugu, L. Sun

*University of Bergen, Institute of Physics, N-5007 Bergen, Norway*

G. S. Abrams, M. Battaglia, D. N. Brown, J. Button-Shafer, R. N. Cahn, Y. Groysman, R. G. Jacobsen, J. A. Kadyk, L. T. Kerth, Yu. G. Kolomensky, G. Kukartsev, D. Lopes Pegna, G. Lynch, L. M. Mir, T. J. Orimoto, I. L. Osipenkov, M. T. Ronan, K. Tackmann, T. Tanabe, W. A. Wenzel

*Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA*

P. del Amo Sanchez, C. M. Hawkes, A. T. Watson

*University of Birmingham, Birmingham, B15 2TT, United Kingdom*

H. Koch, T. Schroeder

*Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany*

D. Walker

*University of Bristol, Bristol BS8 1TL, United Kingdom*

D. J. Asgeirsson, T. Cuhadar-Donszelmann, B. G. Fulsom, C. Hearty, T. S. Mattison, J. A. McKenna

*University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1*

A. Khan, M. Saleem, L. Teodorescu

*Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom*

V. E. Blinov, A. D. Bukin, V. P. Druzhinin, V. B. Golubev, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, K. Yu. Todyshev

*Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia*

M. Bondioli, S. Curry, I. Eschrich, D. Kirkby, A. J. Lankford, P. Lund, M. Mandelkern, E. C. Martin, D. P. Stoker

*University of California at Irvine, Irvine, California 92697, USA*

S. Abachi, C. Buchanan

*University of California at Los Angeles, Los Angeles, California 90024, USA*

S. D. Foulkes, J. W. Gary, F. Liu, O. Long, B. C. Shen, G. M. Vitug, L. Zhang

*University of California at Riverside, Riverside, California 92521, USA*

1 Deceased
H. P. Paar, S. Rahatlou, V. Sharma  
University of California at San Diego, La Jolla, California 92093, USA  
J. W. Berryhill, C. Campagnari, A. Cunha, B. Dahmes, T. M. Hong, D. Kovalskyi, J. D. Richman  
University of California at Santa Barbara, Santa Barbara, California 93106, USA  
T. W. Beck, A. M. Eisner, C. J. Flacco, C. A. Heusch, J. Kroseberg, W. S. Lockman, T. Schalk,  
B. A. Schumm, A. Seiden, M. G. Wilson, L. O. Winstrom  
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA  
E. Chen, C. H. Cheng, F. Fang, D. G. Hitlin, I. Narsky, T. Piatenko, F. C. Porter  
California Institute of Technology, Pasadena, California 91125, USA  
R. Andreassen, G. Mancinelli, B. T. Meadows, K. Mishra, M. D. Sokoloff  
University of Cincinnati, Cincinnati, Ohio 45221, USA  
F. Blanc, P. C. Bloom, S. Chen, W. T. Ford, J. F. Hirschauer, A. Kreisel, M. Nagel, U. Nauenberg,  
A. Olivas, J. G. Smith, K. A. Ulmer, S. R. Wagner, J. Zhang  
University of Colorado, Boulder, Colorado 80309, USA  
A. M. Gabareen, A. Soffer, W. H. Toki, R. J. Wilson, F. Winklmeier  
Colorado State University, Fort Collins, Colorado 80523, USA  
D. D. Altenburg, E. Feltresi, A. Hauke, H. Jasper, J. Merkel, A. Petzold, B. Spaan, K. Wacker  
Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany  
V. Klose, M. J. Kobel, H. M. Lacker, W. F. Mader, R. Nogowski, J. Schubert, K. R. Schubert, R. Schwierz,  
J. E. Sundermann, A. Volk  
Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany  
D. Bernard, G. R. Bonneaud, E. Latour, V. Lombardo, Ch. Thiebaux, M. Verderi  
Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France  
P. J. Clark, W. Graddl, F. Muheim, S. Playfer, A. I. Robertson, J. E. Watson, Y. Xie  
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom  
M. Andreotti, D. Bettoni, C. Bozzi, R. Calabrese, A. Cecchi, G. Cibinetto, P. Franchini, E. Luppi,  
M. Negrini, A. Petrella, L. Piemontese, E. Prencipe, V. Santoro  
Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy  
F. Anulli, R. Baldini-Ferroli, A. Calcaterra, R. de Sangro, G. Finocchiaro, S. Pacetti, P. Patteri,  
I. M. Peruzzi, M. Piccolo, M. Rama, A. Zallo  
Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy  
A. Buzzo, R. Contri, M. Lo Vetere, M. M. Macri, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti,  
A. Santroni, S. Tosi  
Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy  

2 Now at Tel Aviv University, Tel Aviv, 69978, Israel  
3 Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
L. Gladney

*University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA*

M. Biasini, R. Covarelli, E. Manoni

*Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy*

C. Angelini, G. Batignani, S. Bettarini, M. Carpinelli, R. Cenci, A. Cervelli, F. Forti, M. A. Giorgi, A. Lusiani, G. Marchiori, M. A. Mazur, M. Morganti, N. Neri, E. Paoloni, G. Rizzo, J. J. Walsh

*Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy*

J. Biesiada, P. Elmer, Y. P. Lau, C. Lu, J. Olsen, A. J. S. Smith, A. V. Telnov

*Princeton University, Princeton, New Jersey 08544, USA*

E. Baracchini, F. Bellini, G. Cavoto, D. del Re, E. Di Marco, R. Faccini, F. Ferrarotto, F. Ferroni, M. Gaspero, P. D. Jackson, L. Li Gioi, M. A. Mazzoni, S. Morganti, G. Piredda, F. Polci, F. Renga, C. Voena

*Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy*

M. Ebert, T. Hartmann, H. Schröder, R. Waldi

*Universität Rostock, D-18051 Rostock, Germany*

T. Adye, G. Castelli, B. Franek, E. O. Olaiya, W. Roethel, F. F. Wilson

*Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX 11 0QX, United Kingdom*

S. Emery, M. Escalier, A. Gaidot, S. F. Ganzhur, G. Hamel de Monchenault, W. Kozanecki, G. Vasseur, Ch. Yèche, M. Zito

*DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France*

X. R. Chen, H. Liu, W. Park, M. V. Purohit, R. M. White, J. R. Wilson,

*University of South Carolina, Columbia, South Carolina 29208, USA*

M. T. Allen, D. Aston, R. Bartoldus, P. Bechtle, R. Claus, J. P. Coleman, M. R. Convery, J. C. Dingfelder, J. Dorfan, G. P. Dubois-Felsmann, W. Dunwoodie, R. C. Field, T. Glanzman, S. J. Gowdy, M. T. Graham, P. Grenier, C. Hast, W. R. Innes, J. Kamiński, M. H. Kelsey, H. Kim, P. Kim, M. L. Kocian, D. W. G. S. Leith, S. Li, S. Luitz, V. Luth, H. L. Lynch, D. B. MacFarlane, H. Marsiske, R. Messner, D. R. Muller, S. Nelson, C. P. O’Grady, I. Ofte, A. Perazzo, M. Perl, T. Pulliam, B. N. Ratcliff, A. Roodman, A. A. Sahlíkov, R. H. Schindler, J. Schwiening, A. Snyder, D. Su, S. Sun, M. K. Sullivan, K. Suzuki, S. K. Swain, J. M. Thompson, J. Va`vra, A. P. Wagner, M. Weaver, W. J. Wisniewski, M. Wittgen, D. H. Wright, A. K. Yarritu, K. Yi, C. C. Young, V. Ziegler

*Stanford Linear Accelerator Center, Stanford, California 94309, USA*

P. R. Burchat, A. J. Edwards, S. A. Majewski, T. S. Miyashita, B. A. Petersen, L. Wilden

*Stanford University, Stanford, California 94305-4060, USA*

S. Ahmed, M. S. Alam, R. Bula, J. A. Ernst, V. Jain, B. Pan, M. A. Saeed, F. R. Wappler, S. B. Zain

*State University of New York, Albany, New York 12222, USA*

M. Krishnamurthy, S. M. Spanier, B. J. Wogsland

*University of Tennessee, Knoxville, Tennessee 37996, USA*
The radiative decay \( b \to s \gamma \) [1] serves as a probe of physics beyond the standard model (SM) [2]. In the SM it proceeds at leading order through a loop diagram involving a virtual \( W^- \) boson and \( t \) quark. Because weak interactions involve only left-handed fermions and right-handed anti-fermions, the photon in \( b \to s \gamma \) is predominantly left-handed while in \( \bar{b} \to \bar{\tau} \gamma \) it is right-handed. Any possible interference between the direct decay \( B^0 \to K^{*0}(K^0_S\pi^0)\gamma \) and the decay via \( B^0 \) mixing, \( B^0 \to \bar{B}^0 \to K^{*0}\gamma \), is suppressed by the small rate of \( b \to s \gamma_R \) relative to \( b \to s \gamma_L \), which is of the order \( m_s/m_b \). SM predictions of the \( \text{CP} \) asymmetry due to interference between mixing and decay are expected to be about \(-0.02\) [3]. As discussed in Ref. [2], left-right symmetric models [4] could conceivably produce mixing-induced \( \text{CP} \) asymmetries larger than 0.5. Some supersymmetric models without left-right symmetry [5] have also been shown to permit \( \text{CP} \) asymmetries of \( O(1) \). Because the SM asymmetry is quite small, any significant evidence of a larger asymmetry would point to a source beyond the SM.

Here we report a preliminary updated measurement of the time-dependent \( \text{CP} \) asymmetry in \( B^0 \to K^{*0}\gamma \) based on \( 431 \times 10^6 \) \( \Upsilon(4S) \to B\bar{B} \) decays collected by the BABAR detector at the PEP-II asymmetric-energy \( e^+e^- \) collider at SLAC. Previous measurements of this mode were performed by BABAR [6] and Belle [7].

The BABAR detector is described in detail elsewhere [8]. Most important to this analysis are the five-layer, double-sided silicon microstrip detector (SVT), the 40-layer drift chamber, and the CsI(Tl) electromagnetic calorimeter (EMC). A detailed Monte Carlo (MC) simulation of signal and background processes was performed using the EVTGEN [9] generator and the GEANT4 package [10].

Time-dependent \( \text{CP} \) asymmetries are determined using the difference of \( B^0 \) meson proper decay times \( \Delta t \equiv t_{\text{sig}} - t_{\text{tag}} \), where \( t_{\text{sig}} \) is the proper decay time of the signal \( B \) (\( B_{\text{sig}} \)) and \( t_{\text{tag}} \) is that of the other \( B \) (\( B_{\text{tag}} \)). The \( \Delta t \) for \( B_{\text{sig}} \) decaying to a final state \( f \) is distributed according to

\[
P_\pm(\Delta t) = \frac{e^{-|\Delta t/\tau_B|}}{4\tau_B} \times [1 \pm S_f \sin(\Delta m_d\Delta t) \mp C_f \cos(\Delta m_d\Delta t)],
\]

where the upper and lower signs correspond to the tag-side \( B \) having flavor \( B^0 \) and \( \bar{B}^0 \) respectively, \( \tau_B \) is the \( B^0 \) lifetime, and \( \Delta m_d \) is the \( B^0 - \bar{B}^0 \) mixing frequency. The \( C_f \) coefficient is associated with the difference in decay amplitudes for \( B^0 \to f \) and \( \bar{B}^0 \to f \), while the \( S_f \) coefficient involves interference between the \( B^0 - \bar{B}^0 \) mixing and decay amplitudes. We note that direct \( \text{CP} \) violation in \( B^0 \to K^{*0}\gamma \) decays is predicted to be smaller than 1% in the SM [11]. The current evidence is consistent with this, based on self-tagging \( B \to K^{*}\gamma \) decays [12].

We search for \( B^0 \to K^{*0}(K^0_S\pi^0)\gamma \) candidates based on the previous criteria, all but one of which were used in the previous result. Photon candidates are required to have energy greater than 30 MeV and must have the expected shower shapes in the EMC. The photon from the \( B \) decay, also called the primary photon, is required to have an energy between 1.5 and 3.5 GeV in the \( e^+e^- \) center of mass (CM) frame to be consistent with \( b \to s \gamma \) decays [13]. It must be isolated from other charged and neutral clusters in the EMC. Primary photon candidates that form \( \pi^0 \to \gamma\gamma \) or \( \eta \to \gamma\gamma \) candidates of invariant mass \( 115 < m_{\gamma\gamma} < 155 \text{ MeV}/c^2 \) or \( 470 < m_{\gamma\gamma} < 620 \text{ MeV}/c^2 \), respectively, when combined with another photon of energy greater than 50 MeV for \( \pi^0 \) or 250 MeV for \( \eta \) are discarded. We select \( K^0_S \to \pi^+\pi^- \) candidates from oppositely charged tracks for which the confidence level of the vertex fit is greater than 0.1\%, the \( \pi^+\pi^- \) invariant mass is between 487 and 508 MeV/c^2 (about 3\( \sigma \)), and the reconstructed decay length is greater than 5 times its uncertainty. We select \( \pi^0 \to \gamma\gamma \) candidates with invariant mass between 115 and 155 MeV/c^2 (about 3\( \sigma \)) and energy greater than 590 MeV in the lab frame. We require the invariant \( K^0_S\pi^0 \) mass \( m(K^0_S\pi^0) \) to be within 0.8 – 1.0 MeV/c^2, and later use its shape in a maximum likelihood fit. We require
The performance of this algorithm is determined using a data sample, including a category for events in which a flavor tag is not determined. Along with signal candidates, we also reconstruct $B^+ \rightarrow K^{*+}(K^0\pi^+\gamma)$ candidates subject to the same requirements as $B^0$ candidates, and veto events for which the invariant $K^0\pi^+$ mass is within $0.8 - 1.0\text{ GeV}/c^2$. This is new since the last result, and it removes 12% of the background due to non-signal $B$ decays.

We identify signal decays using two Lorentz-invariant quantities: the energy-substituted mass $m_{ES} = \left(\sqrt{\left(s/4 + c^2 p_{e+e-} \cdot p_B\right)^2 / E_{e+e-}^2} - |p_B|^2 \right)/c^2$ and the energy difference $\Delta E = E_B^2 - \sqrt{s}/2$, where $(E_{e+e-}, p_{e+e-})$ and $p_B \equiv (E_B, p_B)$ are the four-momenta of the initial $e^+e^-$ system and the $B$ candidate, respectively. $\sqrt{s}$ is the CM energy, and the asterisk denotes the CM frame. We require $5.2 < m_{ES} < 5.3\text{ GeV}/c^2$ and $|\Delta E| < 250\text{ MeV}$. To discriminate $B$ decays against continuum $e^+e^- \rightarrow q\bar{q} (q = u, d, s, c)$ background we require $|\cos \theta_B^*| < 0.9$, where $\theta_B^*$ is the CM angle between the $B$ candidate and the $e^-$ beam direction. We also exploit event topology by requiring the ratio of Legendre moments $L_2/L_0$ to be less than 0.55, where $L_i = \sum_j |p_j^i||\cos \theta_j^i|^i$, $p_j^i$ is the CM momentum of each particle $j$ not used to reconstruct the $B$ candidate, and $\theta_j^i$ is the CM angle between $p_j^i$ and the thrust axis of the reconstructed $B$ candidate.

After all selection criteria have been applied we find the average candidate multiplicity in events with at least one candidate is 1.15. In these cases we select the candidate with $\pi^0$ mass closest to its nominal value [14], and if there is an ambiguity then we select the one with the $K^0_S$ mass closest to its nominal value. We evaluate the selection efficiency using simulated events. We find it is about 16%, and combined with the $B^0 \rightarrow K^{*0}\gamma$ branching fraction, $\mathcal{B}(B^0 \rightarrow K^{*0}\gamma) = (4.01 \pm 0.20) \times 10^{-5}$ [12], we expect $312 \pm 24$ signal events. We also expect approximately 35 events originating from non-signal $B$ decays ($B\overline{B}$ background). The rest of the 3677 selected events come from continuum background. These two background types are treated separately below.

For each reconstructed $B^0 \rightarrow K^{*0}\gamma$ candidate we use the remaining tracks in the event to determine the decay vertex position and flavor of $B_{\text{tag}}$. A neural network based on kinematic and particle identification information assigns each event to one of seven mutually exclusive tagging categories [15], including a category for events in which a flavor tag is not determined. The performance of this algorithm is determined using a data sample ($B_{\text{tag}}$ sample) of fully-reconstructed $B^0 \rightarrow D^{(*)-}\pi^+/\rho^+\pi^-\pi^0$ decays. The average tagging efficiency is measured to be $Q = \sum_c \epsilon^c(1 - 2\epsilon^c)^2 = (31.2 \pm 0.3)\%$, where $\epsilon^c$ and $\epsilon^c$ are the efficiencies and mistag probabilities, respectively, for events tagged in category $c$.

We determine the proper time difference between $B_{\text{tag}}$ and $B_{\text{tag}}$ from the spatial separation between their decay vertices in the same way as our previous measurement. The $B_{\text{tag}}$ vertex is reconstructed by combining the $K^0_S$ trajectory with the knowledge of the average interaction point (IP), which is calculated every ten minutes based on two-track events during data-taking. The $B_{\text{tag}}$ vertex is reconstructed from the remaining charged tracks in the event [16]. We compute $\Delta t$ and its uncertainty from a geometric fit [17] to the $Y(4S) \rightarrow B^0\overline{B}^0$ system, which takes the IP constraint [18] into account. The resolution of $\Delta t$ is improved by constraining the average sum of the two $B$ decay times $(t_{\text{sig}} + t_{\text{tag}})$ to equal $2\tau_{B^0}$, with an uncertainty of $\sqrt{2}\tau_{B^0}$. We have verified in signal MC that no bias on $S_{K^{*0}\gamma}$ or $C_{K^{*0}\gamma}$ results from this procedure.

The $\Delta t$ resolution strongly depends on the number of SVT layers traversed by the pions from the $K^0_S$. In order for the $\Delta t$ information to be useful, we require that each pion have at least 2 hits in the SVT, and that $\sigma_{\Delta t} < 2.5\text{ ps}$ and $|\Delta t| < 20\text{ ps}$. About 70% of the events in the data sample pass these requirements. The events for which the $\Delta t$ information is not used can still contribute to the measurement of the $C_{K^{*0}\gamma}$ parameter as long as they have flavor tagging information.

We extract signal yields and $CP$ asymmetries using an unbinned maximum likelihood fit to
As stated earlier, we expect a significant contribution from $B\bar{B}$ background, so we extract the event yield from this source as well as continuum background. The likelihood function is the same one used in the previous version of this analysis, and is described in detail in Ref. [18]. We assume that the correlation among the observables is small enough that the likelihood function can be constructed as a product of one-dimensional probability density functions (PDF). A systematic correction is applied later as a result of this assumption. All signal PDF parameters are determined using simulated events, except for the flavor tag efficiencies, mistag probabilities, and $\Delta t$ resolution function parameters, which are determined from the $B_{flav}$ sample. $B\bar{B}$ background shapes are also determined from simulation. We use the large fraction of background events in the fitted data sample to determine continuum background PDF parameters.

The $\Delta t$ PDF for signal events and $B\bar{B}$ background is obtained from the convolution of Eq. 1 with a resolution function $R(\delta t \equiv (\Delta t - \Delta t_{true}), \sigma_{\Delta t})$. The $CP$ asymmetries for the $B\bar{B}$ background, $S_{BB}$ and $C_{BB}$, are fixed to zero in the fit, and we account for a possible deviation from zero in the systematic uncertainty. The resolution function is parameterized as the sum of three gaussian distributions [16]. The first two have a nonzero mean proportional to the reconstructed $\sigma_{\Delta t}$, accounting for a small bias in $\Delta t$ from charm decays of the $B_{tag}$. Their width is also proportional to $\sigma_{\Delta t}$. The third gaussian is centered at zero with a fixed width of 8 ps. We have verified in simulation that the parameters of the resolution function for $B^0 \to K^{*0}\gamma$ events are compatible with those obtained from the $B_{flav}$ sample. Therefore we use the $B_{flav}$ parameters for better precision. We assume that the continuum background contains only prompt decays and find that the $\Delta t$ distribution is well-described by a resolution function of the same form used by the signal PDF. The parameters of the background resolution function are determined in the fit to data.

Figure 1 shows the background-subtracted distributions for $m_{ES}$ and $\Delta E$ for $B^0 \to K^{*0}\gamma$ candidates. The background subtraction is performed using the sPlot event weighting technique described in Ref. [19]. The curves in the figure represent the signal PDFs used in the fit. Figure 2 shows the background-subtracted distributions of $\Delta t$ for $B^0$- and $\bar{B}^0$-tagged events, and the asymmetry as a function $\Delta t$.

We find $316 \pm 22$ signal events with

$$S_{K^{*}\gamma} = -0.08 \pm 0.31 \pm 0.05$$

and

$$C_{K^{*}\gamma} = -0.15 \pm 0.17 \pm 0.03,$$

where the first error is statistical and the second systematic. We discuss systematic uncertainties below. The statistical uncertainties have been increased beyond what was reported in the fit result because we have determined them to be underestimated, using an ensemble of simulated experiments in which events were generated from the likelihood PDFs. The scaling factors for $S_{K^{*}\gamma}$ and $C_{K^{*}\gamma}$ are 1.097 and 1.035 respectively. Because the uncertainty of $C_{K^{*}\gamma}$ is larger than that obtained from the partial rate asymmetry in self-tagging $B \to K^{*}\gamma$ decays [12], we also perform the fit with $C_{K^{*}\gamma}$ fixed to zero and find

$$S_{K^{*}\gamma}(C_{K^{*}\gamma} = 0) = -0.07 \pm 0.32 \pm 0.05.$$
Figure 1: Signal and background (inset) distributions for $m_{ES}$ (left) and $\Delta E$ (right) obtained with the weighting technique described in Ref. [19]. The curves represent the PDFs used in the fit, normalized to the fitted yield.

Figure 2: Signal distribution for $\Delta t$ obtained with the weighting technique described in Ref. [19], with $B_{\text{tag}}$ tagged as $B^0$ (top) or $\bar{B}^0$ (center), and the asymmetry (bottom). The curves represent the PDFs for signal decays in the likelihood fit, normalized to the final fit result.
Table 1: $B^0 \to K^{*0} \gamma$ systematic uncertainties.

| Source                          | $\Delta S$ | $\Delta C$ |
|---------------------------------|------------|------------|
| $BB$ Background                 | 0.029      | 0.018      |
| Bias Uncertainty                | 0.034      | 0.015      |
| $\Delta t$ Resolution Function  | 0.011      | 0.018      |
| Beamspot                        | 0.004      | 0.001      |
| SVT Alignment                   | 0.002      | 0.001      |
| PDF Uncertainty                 | 0.025      | 0.010      |
| DCS $B_{tag}$ Decays            | 0.001      | 0.015      |
| Total                           | 0.052      | 0.035      |

simulated samples of non-signal $B \to X_s \gamma$ and other $B$ decays. For the former we use the Kagan-Neubert model [20] to model the photon energy spectrum and JETSET for the fragmentation of the $s$ quark. Since the final state multiplicity predicted by the fragmentation model is significantly different from $BaBar$’s measurement [21], we reweight events according to their multiplicity. From these studies we expect to find about 35 $BB$ events, with approximately equal contributions from $B \to X_s \gamma$ decays and other generic $B$ decays. The $BB$ background yield extracted in the fit to the data is $22 \pm 22$ events. We vary $S_{BB}$ and $C_{BB}$ within a conservative range derived from the composition of the $BB$ background sample and the CP asymmetry averages reported by the Heavy Flavor Averaging Group [12] to assign a systematic uncertainty due to the assumption of zero asymmetry in this source. Because the $BB$ yield in data is smaller than expected, we fix it to the expected value when we vary its CP asymmetry within the $S_{BB}$ range $\pm 0.41$ and the $C_{BB}$ range $\pm 0.33$. We assign uncertainties of 0.029 on $S_{K^*\gamma}$ and 0.018 on $C_{K^*\gamma}$ based on these variations.

In an ensemble of simulated experiments created by generating background events from the PDFs and embedding signal events from the full MC simulation, we determined there was bias in $S_{K^*\gamma}$ but not in $C_{K^*\gamma}$. We apply a correction of $+0.067$ to $S_{K^*\gamma}$, with a systematic uncertainty of half the shift. We also assign a systematic uncertainty of 0.015 to $C_{K^*\gamma}$ based on these tests.

Systematic effects due to uncertainties in the resolution function, beam spot position, and possible SVT misalignment are quantified in the same manner as Ref. [22]. We also include uncertainties due to imperfect knowledge of the fixed PDF parameters and shapes used in the fit, amounting to 0.025 on $S_{K^*\gamma}$ and 0.010 on $C_{K^*\gamma}$. Finally, uncertainties of 0.001 in $S_{K^*\gamma}$ and 0.015 in $C_{K^*\gamma}$ are included to account for doubly-Cabibbo-suppressed (DCS) decays of the $B_{tag}$ [23]. The systematic uncertainties are summarized in Table 1.

In summary we have performed a new preliminary measurement of the time-dependent CP asymmetry in $B^0 \to K^{*0}(K^0_S\pi^0)\gamma$ decays. We have found it to be consistent with our previous result, as well as with the standard model expectation.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support $BaBar$. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fun-
damental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, Ministerio de Educación y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation.

References

[1] Unless explicitly stated, charge conjugate decay modes are included implicitly throughout this paper.

[2] D. Atwood, M. Gronau and A. Soni, Phys. Rev. Lett. 79, 185 (1997).

[3] P. Ball and R. Zwicky, Phys. Lett. B 642, 478 (2006).

[4] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566 (1975) and Phys. Rev. D 11, 2558 (1975); G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975); G. Senjanovic, Nucl. Phys. B 153, 334 (1979).

[5] E. J. Chun, K. Hwang and J. S. Lee, Phys. Rev. D 62, 076006 (2000); L. L. Everett, G. L. Kane, S. Rigolin, L. T. Wang and T. T. Wang, JHEP 0201, 022 (2002); T. Goto, Y. Okada, Y. Shimizu, T. Shindou and M. Tanaka, Phys. Rev. D 70, 035012 (2004); C. K. Chua, W. S. Hou and M. Nagashima, Phys. Rev. Lett. 92, 201803 (2004).

[6] B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 72, 051103 (2005).

[7] Y. Ushiroda et al. [Belle Collaboration], Phys. Rev. D 74, 111104 (2006).

[8] B. Aubert et al. [BaBar Collaboration], Nucl. Instrum. Meth. A 479, 1 (2002).

[9] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).

[10] S. Agostinelli et al. [GEANT4 Collaboration], Nucl. Instrum. Meth. A 506, 250 (2003).

[11] A. L. Kagan and M. Neubert, Phys. Rev. D 58, 094012 (1998).

[12] E. Barberio et al. [Heavy Flavor Averaging Group (HFAG) Collaboration], arXiv:0704.3575 [hep-ex]; $B^0 \rightarrow K^{*0}\gamma$ average computed from M. Nakao et al. [Belle Collaboration], Phys. Rev. D 69, 112001 (2004); and B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 70, 112006 (2004).

[13] P. Koppenburg et al. [Belle Collaboration], Phys. Rev. Lett. 93, 061803 (2004); B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 97, 171803 (2006).

[14] W. M. Yao et al. [Particle Data Group], J. Phys. G 33, 1 (2006).

[15] B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 94, 161803 (2005).

[16] B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 66, 032003 (2002).

[17] W. D. Hulsbergen, Nucl. Instrum. Meth. A 552, 566 (2005).

[18] B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 93, 201801 (2004).
[19] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Meth. A 555 (2005) 356.
[20] A. L. Kagan and M. Neubert, Eur. Phys. J. C 7, 5 (1999).
[21] B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 72, 052004 (2005).
[22] B. Aubert et al. [BaBar Collaboration], arXiv:0707.2980 [hep-ex], submitted to Phys. Rev. D.
[23] B. Aubert et al. [BaBar Collaboration], arXiv:hep-ex/0703021, submitted to Phys. Rev. Lett.