Dam Methylation Participates in the Regulation of PmrA/PmrB and RcsC/RcsD/RcsB Two Component Regulatory Systems in Salmonella enterica Serovar Enteritidis

Sarnacki, S. H., Castañeda, M. D. R. A., Llana, M. N., Giacomodanato, M. N., Valvano, M. Á., & Cerquetti, M. C. (2013). Dam Methylation Participates in the Regulation of PmrA/PmrB and RcsC/RcsD/RcsB Two Component Regulatory Systems in Salmonella enterica Serovar Enteritidis. PLoS ONE, 8(2), [e56474].
https://doi.org/10.1371/journal.pone.0056474

Published in: PLoS ONE

Document Version: Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright: 2013 Sarnacki et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Dam Methylation Participates in the Regulation of PmrA/PmrB and RcsC/RcsD/RcsB Two Component Regulatory Systems in Salmonella enterica Serovar Enteritidis

Sebastián Hernán Sarnacki¹, María del Rosario Aya Castañeda¹, Mariáangeles Noto Llana¹, Mónica Nancy Giacomodonato¹, Miguel Ángel Valvano²*, María Cristina Cerquetti¹*

1 Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina, 2 Department of Microbiology and Immunology, Centre for Human Immunology, University of Western Ontario, London, Ontario, Canada

Abstract

The absence of Dam in Salmonella enterica serovar Enteritidis causes a defect in lipopolysaccharide (LPS) pattern associated to a reduced expression of wzz gene. Wzz is the chain length regulator of the LPS O-antigen. Here we investigated whether Dam regulates wzz gene expression through its two known regulators, PmrA and RcsB. Thus, the expression of rcsB and pmrA was monitored by quantitative real-time RT-PCR and Western blotting using fusions with 3xFLAG tag in wild type (wt) and dam strains of S. Enteritidis. Dam regulated the expression of both rcsB and pmrA genes; nevertheless, the defect in LPS pattern was only related to a diminished expression of RcsB. Interestingly, regulation of wzz in serovar Enteritidis differed from that reported earlier for serovar Typhimurium; RcsB induces wzz expression in both serovars, whereas PmrA induces wzz in S. Typhimurium but represses it in serovar Enteritidis. Moreover, we found that in S. Enteritidis there is an interaction between both wzz regulators: RcsB stimulates the expression of pmrA and PmrA represses the expression of rcsB. Our results would be an example of differential regulation of orthologous genes expression, providing differences in phenotypic traits between closely related bacterial serovars.

Introduction

The lipopolysaccharide (LPS) is the most abundant component of outer membrane of Gram negative bacteria which structure is divided in three regions: O-antigen polysaccharide, core oligosaccharide, and lipid A [1]. LPS synthesis is a complex process involving various steps. In particular, O-antigen production and assembly in Salmonella occurs by mechanisms that require Wzy (polymerase of the repeating subunits), Wzx (flippase that translocated subunit across the membrane) and Wzz (a chain length determinant) [1,2,3,4,5,6,7,8]. Even though there is a significant amount of information on biochemistry and genetics of the LPS synthesis, the regulatory mechanisms that modulate its production are complex and poorly understood. However, it is known that LPS structure is dynamic, showing changes in response to local microenvironment signal. Many of these signals are detected as stimuli by signal transduction cascades. Usually, these systems are composed by a histidine kinase (HK) sensor protein that transmits the signal, through a phosphorylation cascade, to a second component, named response regulator [9,10,11,12,13,14,15]. Often, the response regulator is a transcription factor, thereby the result of its phosphorylation is the activation or repression of gene transcription which product is involved in the adaptation to that given microenvironment. The most important two-component regulatory systems involved in LPS modification are PhoP/PhoQ, PmrA/PmrB and RcsC/RcsD/RcsB. PmrA/PmrB and RcsC/RcsD/RcsB two-component regulatory systems of Salmonella enterica serovar Typhimurium (S. Typhimurium), each activated by different stimuli, independently promote transcription of the wzz gene [16]. The expression of wzz is also regulated by PhoP/PhoQ via PhoP-mediated upregulation of PmrD, which binds to the phosphorylated form of PmrA protecting it from dephosphorylation by PmrB [17,18].

In Salmonella, regulation of the long chain distribution of the O-antigen contributes not only to an effective barrier [19] but also affect serum resistance and entry into eukaryotic cells [20,21,22,23,24]. Furthermore, O-antigen length can also modulate acquired immunity. Indeed, Phalipon and coworkers demonstrated that in Shigella flexneri induction of an O-antigen-specific antibody response depends on the length of the polysaccharide chain [25]. Also, Helicobacter pylori alters its O-antigen structure expressing O-antigen of high molecular weight in
response to acidic pH; an important adaptation that would facilitate colonization of the acidic gastric environment [26].

In gammaphotobacteria the DNA adenine methyltransferase (Dam) introduces a methyl group at the N6 position of the adenine of GATC sequence in the newly synthesized DNA strand after DNA replication, generating methylated DNA [27,29,29,30]. DNA methylation status can affect interactions between DNA and proteins such as RNA polymerase or transcription factors [30] that regulate (activate or repress) gene expression generating a plethora of effects. Thus, Dam mutants of S. enterica have shown to have many defects particularly in virulence and they have been shown to help with bacterial pathogenesis [26]. Dam mutants have many defects particularly in virulence and they have been found to help with bacterial pathogenesis [26].

Materials and Methods

Bacterial strains, plasmids, strain construction, and growth conditions

Bacterial strains and plasmids used are listed in Table 1. S. Enteritidis #5694 was kindly given by Dr. Anne Morris Hooke, Miami University; originally from Dr. F. Collins'collection, Trudeau Institute, Saranac Lake, New York. Strains #SS218, #SS219 and #SS220 are S. Enteritidis isolates from poultry collected from argentine farms. Wild type strains were used to construct mutant strains listed in Table 1. Gene deletions were performed as described by Datsenko and Wanner [40]. Addition of a DNA fragment encoding 3xFLAG epitope tag at the 3’ end of protein-coding DNA sequences was carried out as previously described using plasmid pSUB11 as a template [41] and oligonucleotides pmrA-3xFLAG-5’ and pmrA-3xFLAG-3’ for PmrA, and rcsB-3xFLAG-5’ and rcsB-3xFLAG-3’ for RcsB.

The mutagenic primers used are listed in Table 2. S. Enteritidis was transformed by electroporation as previously described [12]. Gene deletion and the correct fusion of the ORF with 3xFLAG coding sequence were confirmed by sequencing (Macrogen Inc.), and analyzed with Sequencer (Gene Codes Corporation) and Vector NTI software. Bacteria were grown in Luria-Bertani (LB) broth [43] supplemented, as required, with antibiotics at the following final concentrations: ampicillin, 100 μg/ml; chloramphenicol, 30 μg/ml; kanamycin, 40 μg/ml; and tetracycline, 20 μg/ml. For PmrA and RcsB overproduction experiments bacteria were grown at 37°C in N-minimal medium [44], supplemented with 0.2% (w/v) glucose, 0.1 mg/ml casaminoacids, 2 μg/ml Vitamin B1 and 10 mM MgCl2 (high Mg2+ concentration) or 10 μM MgCl2 100 μM FeSO4 (low Mg2+ concentration plus Fe2+) [16]. Dam mutants were evaluated, phenotypically, determining the absence of methylated GATC sequences [39]. To confirm pmrA deletion and pmrA functionality, the resistance to the antimicrobial peptide Polymyxin B assay was carried out as previously described [45].

Molecular cloning of Salmonella pmrA and rcsB genes

DNA extracted from the parental strains of S. Enteritidis was used as template for PCR reaction to amplify pmrA and rcsB genes. PCR amplification was performed with either Pwo polymerase (Roche) (for amplification cloning fragments) or Taq polymerase (Qiagen), PCR fragments products were separated in agarose gels, purified using a Gel Extraction kit (Qiagen), and then digested using EcoRI restriction enzyme (Roche Diagnostics). Ligation with T4 DNA ligase (Rapid Ligation kit, Roche Diagnostics) into pUC18, also digested with EcoRI, and dephosphorylated with shrimp alkaline phosphatase (Roche Diagnostics) was performed. Competent E. coli DH5α cells were transformed with the ligation mixture by the calcium chloride protocol [46]. Colonies with a white color phenotype from plates with ampicillin and 0.2% (w/v) X-Gal were pooled and screened by PCR using the primers downstream combined with rcsB-F and rcsB-R for rcsB, and pmrA-F or pmrA-R for pmrA. Also, pooled colonies were screened by restriction digestion to preliminary identify the orientation of the inserts (with respect the plasmid promoter on sense or antisense).

The integrity of the inserts were confirmed by DNA sequencing (Macrogen Inc.), using the sequencing primer M13 forward and M13 reverse, and the inserts were analyzed with Sequencer (Gene Codes Corporation) and Vector NTI software.

LPS analysis

LPS was extracted as described by Marolda et al [47]. Briefly, from overnight plate culture, samples were adjusted to OD600 of 2.0 in a final volume of 100 μl. Then, samples were suspended in lysis buffer containing proteinase K as described by Hitchcock and Brown [48], followed by hot phenol extraction and a subsequent extraction of the aqueous phase with ether. LPS was resolved by electrophoresis in 14% polyacrylamide gels using a tricine-sodium dodecyl sulfate (SDS) system [49,50] and visualized by silver staining. Each well was loaded with the same LPS concentration determined by the keto-deoxoyctulosonic (KDO) assay [51]. A densitometry analysis was performed using ImageJ software. The ratio of the relative intensity of the lipid A-core band to the average intensity of the bands corresponding to total O-antigen and core+α was calculated by quantifying the pixels in a narrow window across the center of each lane. The densitometric analysis was calibrated by determining the ratio of the relative intensity of the lipid A-core region to the average intensity of the O-antigen bands.

Reverse transcription-PCR and quantitative real-time PCR

Bacteria were grown at 37°C with agitation to an OD600 of 0.6. Cells were lysed, and total RNA was isolated using Trizol reagent (Invitrogen) according to the method described by the manufacturer. Contaminating DNA was digested with RNase-free DNase I (Epipcentre Biotechnologies), and the purity of all RNA preparations was confirmed by subjecting them to PCR analysis using primers specific for the gene encoding the 16S rRNA (Table 2). After inactivation of DNase, RNA was used as a template for reverse transcription-PCR. Complementary cDNA was synthesized using random hexamer primers (Invitrogen), deoxyriboonuclease triphosphates, and Moloney murine leukemia virus M-MLV reverse transcriptase (Invitrogen). Relative quantitative real-time PCR was performed with an appropriate primer set, cDNAs, and Mezcla Real (Biodynamics) that contained nucleotides, polymerase, reaction buffer, and Green dye, using a Rotor-Gene 6000 real-time PCR machine (Corbett Research). The amplification program consisted of an initial incubation for 3 min at 95°C, followed by 40 cycles of 95°C for 20 s, 60°C for 30 s, and 72°C 20 s. The primers used are depicted in Table 2. A no-template control was included for each primer set. Melting curve analysis verified that each reaction contained a single PCR product. For the relative gene expression analysis, a comparative cycle threshold method (ΔΔCT) was used [52]. The number of copies of each sample transcript was determined with the aid of the software. Briefly, the amplification efficiencies of the genes of interest and the 16S rRNA gene used for normalization were tested. Then each sample was first normalized for the amount of template added by...
Cells were pelleted by centrifugation and resuspended with Protein extracts and Western blotting analysis student’s sample (calibrator treatment). Hence, the results were expressed normalized values were further normalized using the wild-type comparison to the 16S rRNA gene (endogenous control). The grounds were statistically significant.

Table 1. Bacterial strains and plasmids used in this study.

Strain	Relevant characteristic(s)	Reference/Source
S. enterica serovar Enteritidis	#5694 Wild type	Dr. F. Collins collection
#55218	#5694 ΔpmrA	This work
#55219	#5694 ΔrcsB, ΔpmrA	This work
#55220	#5694 Δwzz	[39]
S. enterica	#5694 pmrA::3 x FLAG, Km’	This work
#5694 pmrA::3 x FLAG, Δdam, Km’	This work	
#5694 rcsB::3 x FLAG, Km’	This work	
#55218 ΔrcsB	#55218 ΔrcsB	This work
#55219 ΔpmrA	#55219 ΔpmrA	This work
#55220 ΔrcsB	#55220 ΔrcsB	This work
S. enterica	#55230 ΔpmrA	This work
#5694 pmrA::3 x FLAG, Δdam, Km’	This work	
SE218 ΔrcsB	#55218 ΔrcsB	This work
SE219 ΔpmrA	#55219 ΔpmrA	This work
SE219 ΔrcsB	#55219 ΔrcsB	This work
SE220 ΔpmrA	#55220 ΔpmrA	This work
SE220 ΔrcsB	#55220 ΔrcsB	This work
Escherichia coli K-12	DH5α	Laboratory stock
pCP20	F’ 80 lacZ/M15 endA recA hsdR/IH plasmid	Laboratory stock
pZ833	E. coli dam gene, Amp’	[69]
pKD3	Template plasmid for mutagenesis, Amp’, Cm’	[40]
pKD4	Template plasmid for mutagenesis, Amp’, Km’	[40]
pKD4	γ, β, and exo from λ phage, araC-ParaC, Amp’, Km’	[40]
pSUB11	3 x FLAG FRT apr FRT blu R6KoriV	[41]
pUC18	High copy number cloning vector, Amp’	GenBank/EMBL sequence accession number L09136
pucsB	rcsB; Amp’ (pUC18 backbone)	This work
pcrsBas	rcsB cloned in antisense orientation to the Pcsr promoter; Amp’ (pUC18 backbone)	This work
pppmA	pmrA; Amp’ (pUC18 backbone)	This work
pppmAas	pmrA cloned in antisense orientation to the Pmr promoter; Amp’ (pUC18 backbone)	This work

do:10.1371/journal.pone.0056474.t001

comparison to the 16S rRNA gene (endogenous control). The normalized values were further normalized using the wild-type sample (calibrator treatment). Hence, the results were expressed relative to the value for the calibrator sample, which was 1. Student’s t test was used to determine if the differences in retrotranscribed mRNA content observed in different backgrounds were statistically significant.

Protein extracts and Western blotting analysis

Total protein extracts were prepared from bacterial cultures grown at 37°C in LB medium and harvested at an OD600 of 0.6. Cells were pelleted by centrifugation and resuspended with Laemmli buffer [53]. Three independent extractions for each sample were added together to minimize differences in protein recovery from sample to sample. For Western blot assays total proteins were boiled for 5–10 min in Laemmli sample buffer, and each lane was loaded with material from approximately 10⁶ CFU before resolved by 12% SDS-PAGE gel electrophoresis (PAGE) gel. Prestained SDS-PAGE standards (Bio-Rad) were used as molecular weight markers (not shown). The gels were blotted onto a Hybond-P membrane (GE Health-care, Madrid, Spain). Ponceau S red staining was used as loading control before blocking in 5% (w/v) dried skimmed milk in PBS. Finally, 3 x FLAG fusion proteins were immunodetected using mouse-monomoclonal anti-FLAG M2-peroxidase (HRP) antibodies (1:5,000; Sigma, St Louis,
MO). The reacting bands were detected by enhanced chemiluminescence (ECL) (Luminol, Santa Cruz Biotechnology, Santa Cruz, CA) in an Image Quant 300 cabinet (GE Healthcare) following the manufacturer instructions. Blots were photographed, and the intensity of the signals expressed in arbitrary units was determined by densitometry analysis using the public domain NIH Image J software (http://rsb.info.nih.gov/nihimage/). We randomly selected three different bands from the Ponceau S stained membrane to normalize the intensity of the band of interest. Data were analyzed for statistical significance using a nonparametric Mann-Whitney test.

Results

Dam methylation participates in the regulation of pmrA and rcsB genes

PmrA and RcsB two-component regulatory system are the only two known *wzz* regulators described in *S. Typhimurium*. To determine whether the LPS phenotype of the *dam* mutant of *S. Enteritidis* (SE*_{dam}*) is related to a diminished expression of these two regulators we analyzed the effect of overproduction of either RcsB or PmrA on the LPS pattern in the *dam* background.

Table 2. Oligonucleotides primers used in this study.

Gene Targeted	Primer^a	Sequence^b (5’→3’)
Gene deletion		
dam	*dam*:Cm (F)	TTCTCACAAGCGGAGAAGGTGTAATAGTTAGCTACGATGTGTAAGCTGGAGCTGCTTC
	dam:Cm (R)	GGCAATAAATACGTGTTTTCATCCGGGTCCTCTGGAGAAATTACATGATAATCTCCTTAG
pmrA	*pmrA*:F (F)	GCCGCCAGTAGTATGCTTCACGAACTGGAGACTAAATAGGACGACTGACCGGAC
	pmrA: (R)	GAAGGTTGCAATCGGGCTCTGGGTGAAACCAGTCATACGATTGCTGCTGCTTC
rcsB	*rcsB*:Km (F)	CCTACGTCAAAGCTCTGTTAGCAAAGGTACAGTTTACATTATCCTCCTTAG
	rcsB:Km (R)	ATACAGGCGTAGGGCCATCGGGGTAACTTAGATATGATAATCTCCTCCTTAG
Gene epitope tagging		
pmrA	*pmrA*-3 ’:FLAG-5’	TCACGGGTGTTGCTACGCTGTGGCTGACACGAGAAACGCTACAAAAGACGAGC
	pmrA-3 ’:FLAG-3’	GAAGGTTGCAATCGGGCTCTGGGTGAAACCAGTCATACGATTGCTGCTGCTTC
rcsB	*rcsB*-3 ’:FLAG-5’	CTATCCTCTCAGCAGCTGCCGCCACAGAAAGACTCAAAGACCCATGACCGGAC
	rcsB-3 ’:FLAG-3’	ATACAGGCGTAGGGCCATCGGGGTAACTTAGATATGATAATCTCCTCCTTAG
Gene cloning		
pmrA	*pmrA*-F	GATCGAATTCTAGAAAGATCTGATTGTTAGTGAGACGAC
	pmrA-R	GATCGAATTCTAGAAAGATCTGATTGTTAGTGAGACGAC
rcsB	*rcsB*-F	GATCGAATTCTAGAAAGATCTGATTGTTAGTGAGACGAC
	rcsB-R	GATCGAATTCTAGAAAGATCTGATTGTTAGTGAGACGAC
Verification of predicted construction		
dam	Rpe	TACGCAACCTGAAACGTTG
	damX	GCAGCGTGCCGTCACATG
pmrA	pmrA-B	CCTCGTCGAACCATGGATT
yjoB	yjoB	AAAAACATGTCGCCGATCCT
rcsB	rcsB-N	AGAGGGTTGATACCTGACGGGCC
	rcsC	CTGGCGCGAAGAAAGACACG
pUC18	downlac18	CTCTAGCGGGGCTTTGAGGC
Real-time PCR		
16S rRNA gen	q-16s-F	GCCGCAAGGTAAAACCTCAA
	q-16s-R	AAGGCCAATAATCCACCTTCTTG
rcsB	q-rcsB-F	ACCGCGACGATTAGACACATC
	q-rcsB-R	TCTACGGGTCAGGAGAAGAGG
pmrA	q-pmrA-F	AACGCAGCTAGTTACGCAAACC
wzz	q-wzz-F	CTGCAGGCTCTGCTGATCA
	q-wzz-R	AGGATGTATTACGCCGACCG

Primers were purchased from Invitrogen Inc. and were designed according to the DNA sequence information available for the *S. Enteritidis* strain (*Salmonella* spp. comparative sequencing blast server BLAST Server Database at www.sanger.ac.uk).

^aF, forward primer; R, reverse primer.

^bUnderlined nucleotides indicate the sequence homologous to pKD3, pKD4 or pSUB11. Underlined and italicized nucleotidic regions indicate the restriction endonuclease enzyme cut sites (*EcoRI*) incorporated into the primer sequence.

doi:10.1371/journal.pone.0056474.t002

POMO. The reacting bands were detected by enhanced chemiluminescence (ECL) (Luminol, Santa Cruz Biotechnology, Santa Cruz, CA) in an Image Quant 300 cabinet (GE Healthcare) following the manufacturer instructions. Blots were photographed, and the intensity of the signals expressed in arbitrary units was determined by densitometry analysis using the public domain NIH Image J software [http://rsb.info.nih.gov/nihimage/]. We randomly selected three different bands from the Ponceau S stained membrane to normalize the intensity of the band of interest. Data were analyzed for statistical significance using a nonparametric Mann-Whitney test.
wild type strains. As we previously described, the LPS pattern of the dam mutant showed many more visible bands in the intermediate region of the gel (Fig. 1, lane 2) compared with the banding pattern of the wild-type LPS (Fig. 1, lane 1). The LPS O-antigen profiles of the transformed strains were analyzed in bacteria cultured in LB and under growing conditions known to activate the PmrA/PmrB two-component regulatory system. Results are depicted in Fig. 1. Regardless the culture media used, high Mg$^{2+}$ or low Mg$^{2+}$+Fe$^{3+}$, we found that RcsB overexpression in SEΔdam mutant (Fig. 1A, lanes 4 and 7) generates an LPS banding pattern comparable to that of the wild type (Fig. 1A, lanes 1 and 5). Similar results were observed when bacteria were cultured in LB medium (not shown). It seems that the presence of high amounts of RcsB in a dam background reduces the intermediate region bands observed for SEΔdam mutant (Fig. 1A, lanes 2 and 6). On the contrary, no changes were evident in the LPS pattern of SEΔdam mutant overexpressing PmrA regardless the growth environmental condition, high Mg$^{2+}$ or low Mg$^{2+}$+Fe$^{3+}$ (Fig. 1B, lanes 4 and 7). pmrA plasmid functionality was confirmed by Polymyxin B resistance assay as described in materials and methods (data not shown). Again, similar results for LPS pattern were obtained when bacteria were cultured in LB medium (data not shown). Transformation with plasmids bearing the genes cloned in antisense orientation to the P$_{lac}$ promoter; (ppmrA:las, prcsB:bas), or with empty plasmid vector (pUC18) produced no changes in the O-antigen LPS pattern of any strain studied (data not shown). These data would indicate that the dam mutant produces a reduced amount of RcsB protein, suggesting that rcsB gene expression is up-regulated by Dam.

Next, we analyzed LPS pattern in the absence of RcsB and PmrA. For this purpose we constructed rcsB and pmrA deletion mutants of S. Enteritidis (SEΔrcsB and SEΔpmrA strains, respectively) using the lambda Red recombination system. As shown in Fig. 2A, the LPS phenotype of SEΔrcsB is similar to that observed in SEΔdam mutant (lanes 2 and 3, respectively). Complementation with the plasmid bearing the rcsB gene restored LPS pattern to that found in the wild type strain of S. Enteritidis (Fig. 2A, lane 4). The lack of pmrA did not modify LPS pattern in S. Enteritidis. As shown in Fig. 2B, deletion mutant SEΔpmrA (lane 2) presents an LPS pattern similar to that of the wild type strain (lane 1). Collectively, these experiments indicate that the reduced wzz gene expression observed in SEΔdam mutant correlates with a diminished expression of rcsB rather than pmrA.

In silico analysis has shown the presence of GATC motifs in the coding sequence and/or surrounding nucleotides of pmrA and rcsB genes [39]. Then we investigated whether Dam methylation regulates the expression of pmrA, rcsB or both by analyzing the transcription of these genes in the dam mutant and the parental strain of S. Enteritidis grown to exponential phase in LB medium. By real-time quantitative PCR, the relative expression of both pmrA and rcsB genes in SEΔdam is reduced (56% and 59%, respectively) compared with the parental strain (Fig. 3). Complementation of dam mutation with plasmid pIZ333 restored the expression of pmrA, rcsB and wzz genes to wild type levels (Fig. 3). Thus, a functional Dam results in upregulation of the expression of pmrA and rcsB genes in S. Enteritidis. To analyze whether the reduction in the amount of pmrA and rcsB mRNA observed in the absence of Dam correlated with the amount of proteins, we quantified PmrA and RcsB in SEΔdam mutant. Because murine anti PmrA or anti RcsB antibodies are not commercially available, we constructed SEΔdam mutants harboring either pmrA::3×Flag or rcsB::3×Flag transcriptional fusions in the chromosome. Total

![Figure 1](https://example.com/figure1.png)
bacterial proteins were extracted and the relative amount of PmrA and RcsB was determined by Western blot developed with anti-FLAG antibodies (Fig. 4). Densitometry analysis showed that the amount of PmrA produced by the dam mutant (as well as the complemented strains) was similar to that produced by the wild type strain (Fig. 4A). On the other hand the relative amount of the RcsB produced by the dam mutant was significantly reduced to 63% compared with that of the parental strain (Fig. 4B).

RcsB induces the expression of wzz and pmrA, whereas PmrA represses the expression of wzz and rcsB

Next we analyzed to what extent the expression of wzz was reduced in the absence of its two regulators in S. Enteritidis. To do that, real-time quantitative PCR was performed using mRNA obtained from knockout rcsB and pmrA mutants and from wild type strains grown in LB medium. As shown in Fig. 5A, the expression of wzz was reduced to 29% in SEΔrcsB mutant compared with the wild type (strain #5694). In contrast, we observed 50% increased expression of wzz in SEΔpmrA with respect to the wild type (strain #5694) (Fig. 5A). These features would not be exclusive to wild type strain #5694, since similar results were found using pmrA and rcsB mutants constructed from clinical isolates of S. Enteritidis (data not shown).

These findings prompted us to investigate whether an interaction exists between both wzz regulators. Therefore, we determined the expression of rcsB in the absence of pmrA (SEΔpmrA) and the
expression of *pmrA* in the absence of *rcsB* (SEΔrcsB). As shown in Fig. 5B, the expression of *rcsB* in the mutant lacking *pmrA* was increased by 24% with respect to the parental strain cultured in LB medium. In contrast, deficiency in *rcsB* diminished the expression of *pmrA* to 30% compared with the wild type strain grown in the same medium (Fig. 5C). The expression of *rcsB* and *pmrA* was restored in complemented strains (data not shown). To further investigate these interactions, we analyzed *wzz* expression in the wild type, *rcsB* and *pmrA* mutants grown in conditions that stimulate or repress *pmrA*. As shown in Fig. 5D, similar patterns in the expression of *wzz* were found between bacteria cultured under conditions known to activate (*low Mg^{2+}*, *low Mg^{2+}+Fe^{3+}*) or repress (*high Mg^{2+}*) *pmrA*. We found that regardless the culture media utilized, *wzz* expression was reduced in SEΔrcsB mutant
and increased in SEΔpmrA mutant compared with the parental strain. Interestingly, when the wild type strain was cultured under conditions that repress pmrA (high Mg2+), the expression of wzz was 3 or 2 fold higher compared with the wild type grown in low Mg2+ or low Mg2++Fe3+, respectively. This increase was even higher in the absence of the pmrA gene for any culture medium tested (Fig. 5D). Additional experiments revealed that concurring with the augmented expression of wzz (Fig. 5D), the wild type strain increased the expression of rcsB and reduced the expression of pmrA in high Mg2+ compared with low Mg2+ (data not shown). These results confirm that wzz expression is induced by RcsB and repressed by PmrA. In all cases, the expression of wzz was restored in complemented strains (data not shown).

Is there a third regulator of wzz in S. Enteritidis?

Results presented in Fig. 5D also show that the expression of wzz is induced in the absence of rcsB by high Mg2+ (pmrA repressive condition). This finding is interesting since it suggests the existence of another wzz regulator; therefore, we decided to investigate the expression of wzz in a double mutant of S. Enteritidis lacking pmrA and rcsB genes (SEΔrcsBΔpmrA strain). As shown in Fig. 6A and B, this double mutant was able to express wzz mRNA. We found that regardless the culture condition used the expression of wzz was decreased significantly in the double mutant compared with the parental strain. Nevertheless, it is worth noting that for the double mutant the expression of wzz was 2.3 fold higher in high Mg2+ than in low Mg2+ (Fig. 6B). Moreover, LPS analysis showed that -concomitantly with the expression of wzz- the double mutant was capable to synthesize O-antigen (Fig. 6C, lane 3). Note that in the absence of Wzz, S. Enteritidis (SEΔwzz mutant) is unable to generate O-antigen (Fig. 6B, lane 2). Altogether, our results indicate that, in addition to PmrA and RcsB, another regulator(s) exists in S. Enteritidis.

Discussion

We have reported earlier that the absence of Dam in S. Enteritidis causes a defect in the O polysaccharide chain length distribution associated to reduced wzz gene expression. Here we investigated whether Dam regulates wzz gene expression through its two known regulators, PmrA and RcsB. We found that Dam regulates the expression of both rcsB and pmrA genes; nevertheless, the Dam LPS phenotype of S. Enteritidis is only associated with RcsB. The fact that SEΔdam mutant exhibits reduced levels of rcsB mRNA and a diminished amount of RcsB indicates that the expression of rcsB gene is controlled (directly or indirectly) by Dam methylation. The lack (SEΔrcsB dam mutant) or even a diminished amount (SEΔrcsB dam strain) of RcsB resulted in an increased amount of shorter polysaccharide chains similar to the dam LPS phenotype. Furthermore, we found that overproduction of RcsB in SEΔdam mutant restores the O-antigen LPS pattern back to that of S. Enteritidis wild type. The involvement of RcsB in the regulation of polymerization was reported earlier in S. Typhimurium [16]. It was shown that the lack of RcsB affects the mobility in those bands containing 6–10 and 16–22 O-antigen subunits. Unlike serovar Enteritidis, no increase in the amount of shorter polysaccharides was reported for the rcsB mutant of S. Typhimurium. These subtle differences in the regulation of the O-antigen chain length between two serovars of Salmonella enterica would allow them to colonize specific ecological and immunological niches [54].
In *S. Typhimurium*, PmrA not only stimulates *wzz* expression, regulating the O-antigen chain length, but also participates in core and lipid A modifications [16,55,56,57,58,59,60]. Therefore, it would be reasonable to expect a direct participation of PmrA in the O polysaccharide chain length phenotype of *S. Enteritidis*; we found, however, that the absence of PmrA does not cause alterations in the LPS pattern. This is in agreement with the fact that overproduction of PmrA in the *dam* mutant does not restore the defective LPS pattern. On the other hand, our data indicate that Dam methylation (directly or indirectly) does modulate *pmrA* expression. Indeed, *pmrA* mRNA was reduced in the *dam* mutant. This finding is in agreement with microarray analysis data reported by Balbontín et al. in *S. Typhimurium dam* mutants [31]. Interestingly, despite the diminished amount of *pmrA* mRNA found in the *dam* mutant, PmrA levels remained unchanged. Discrepancies between mRNA transcription and protein translation have been reported earlier [61,62,63]. In this regard, different mechanisms related to mRNA stability have been proposed to play a critical role in this phenomenon. Therefore, we conclude that, in *S. Enteritidis*, a functional Dam is required for adequate levels of *pmrA* and *rcsB* gene expression. Also, the diminished amount of RcsB in SEA*dam* strain could explain the reduced *wzz* gene expression found earlier in this mutant [39]. We also analyzed the individual participation of PmrA and RcsB in the expression of *wzz* gene in *S. Enteritidis*. As expected, we found that the relative amount of *wzz* is reduced in *rcsB* mutant, indicating that RcsB induces *wzz* gene expression. Surprisingly, in *pmrA* deletion mutant the amount of *wzz* mRNA was higher than in the wild type, indicating that, unlike RcsB, PmrA represses *wzz* gene expression. This finding could explain the normal LPS phenotype of SEA*pmrA* (this mutant would not lack Wzz protein).

In order to investigate a putative regulatory effect between both *wzz* regulators, we determined the expression of *rcsB* in a *pmrA* mutant, and *pmrA* expression in an *rcsB* mutant. We found that both regulators affect each other expression. The relative expression of *pmrA* mRNA decreases in the absence of *rcsB*, whereas in the absence of *pmrA*, the relative amount of *rcsB* mRNA increases. These results would indicate that, under the growth conditions used, RcsB stimulates *pmrA* whereas PmrA represses *rcsB*. Also, these findings could explain the elevated expression of *wzz* found in the *pmrA* mutant; in the absence of PmrA, RcsB is derepressed and therefore *wzz* is induced. Regulatory interactions between two-component regulatory systems, coordinating responses to diverse stimuli, have been described. The mechanisms involved in these regulations include phosphatases interrupting phosphoryl transfer in phosphorelays and transcriptional and post-transcriptional modifications [64,65,66,67,68]. Then, it is possible that an interaction between both PmrA/PmrB and RcsC/RcsD/RcsB two-component regulatory systems would exist in *S. Enteritidis*. In favor of a direct RcsB-mediated regulation of *pmrA*, alignment analysis revealed a potential RcsB protein binding site in *pmrA* gene of *S. Enteritidis* (see Fig. S1 for the bioinformatics analysis performed). Similar results were obtained when the alignment analysis was performed between the conserved regulatory sequences of PmrA binding sites and a putative PmrA binding motif found in *rcsB* gene (supplemental data). Altogether these results would indicate a direct regulation of PmrA protein on *rcsB* gene and RcsB protein on *pmrA* gene. The balance between the expression and repression of *pmrA* and *rcsB* in response to environmental signals suggests a fine tuning of selective genes required for the adaptation to a specific niche.

The experiments performed using double mutant *rcsB pmrA* of *S. Enteritidis* indicate that *wzz* gene is expressed even in the absence of both regulators. Early studies on serovar Typhimurium showed that in the absence of *rcsB* and *pmrA* genes (both *wzz* inducers), the activity of the *wzz* promoter is barely detected and consequently the O-antigen is not synthesized. In fact, the LPS phenotype of *rcsB pmrA* double mutant of *S. Typhimurium* closely resembles that of a *wzz* mutant [16]. On the contrary, our experiments demonstrate that the LPS pattern of *S. Enteritidis* lacking both *rcsB* and *pmrA* genes (*wzz* inducer and repressor, respectively) does conserve O-antigen. These results indicate that, in *S. Enteritidis*, full expression of *wzz* would not depend exclusively on PmrA and ResB. Although the *wzz* mRNA amount found in *rcsB pmrA* double mutant could be related to a basal expression of *wzz* (but still enough to allow the synthesis of O-antigen), the induction of *wzz* by high Mg$^{2+}$ observed in *rcsB* mutant as well as in *rcsB pmrA*.

Figure 7. Schematic diagram of the proposed regulatory network of *wzz* gene expression in *S. Enteritidis*. The regulatory cascade for *wzz* gene expression involves Dam methylation, PmrB/PmrA and RcsC/RcsD/RcsB two-component regulatory system and a putative third regulator (X). Proteins are indicated by ovals, whereas genes are symbolized by block arrows. Black dots indicate methylation sites (5'–GATC–3' sequences). Dashed lines indicate direct interactions demonstrated in *S. Typhimurium*. Positive regulation (induction) is labeled with ↑ and (+), whereas negative regulation (repression) is labeled with ↓ and (−). The question mark indicates a putative regulation. doi:10.1371/journal.pone.0056474.g007
double mutant strongly support the possibility of a third gene regulating ω_{zz} expression in S. Enteritidis.

In summary, we showed that in S. Enteritidis Dam methylation regulates ω_{zz} expression through recB and pmrA genes; whereas RcsB induces ω_{zz} gene expression PmrA represses it. We also present evidence that rcsB and pmrA genes regulate each other; RcsB stimulates the expression of pmrA and PmrA represses rcsB gene expression. Finally, our results support the existence of a third gene regulating ω_{zz} expression in S. Enteritidis, that can be induced when bacteria is grown in high Mg$^{2+}$. The regulatory network of ω_{zz} gene expression proposed, including the involvement of the hypothetical third ω_{zz} regulator, is shown in Fig. 7. Thereby, results presented here would be an example of differential regulation of orthologous genes expression providing differences in phenotypic traits between closely related bacterial serovars.

Supporting Information
Figure S1 Bioinformatics analysis. A. Conserved sequence of PmrA-binding motif. The conserved nucleotides of the sequences corresponding to PmrA binding motif are boxed. B. Molecular analysis of rcsB gene region. Diagram of the DNA sequence corresponding to rcsB region based on Refseq NC_011294 sequence of S. enterica serovar Enteritidis. Alignment analysis performed between the conserved regulatory sequences of PmrA motif and the potential PmrA protein binding site sequences found in rcsB gene region are depicted in the correspondent localization. The two know rcsB promoters Pr3B (located within recB coding region) and Pr4DB (located at ~32 pb upstream of the recB ORF) are marked with arrows. C. Alignment analysis of one of the potential RscB-binding motifs found in pmrA gene region with the reported RcsB-dependent regulatory sequences of different enterobacteria. Homologous sequences of the potential RcsB-binding site found in comparison with the reported RscB motif are in bold. D. Molecular analysis of pmrA gene region. Diagram of the DNA sequence corresponding to pmrA region based on Refseq NC_011294 sequence of S. enterica serovar Enteritidis. Potential RcsB protein binding site sequences found in pmrA gene are depicted in the correspondent localization. Next to each potential sequence is indicated the orientation (direct, or complementary, –), the position relative to the ATG sequence of the gene and the amount of mismatches found in the alignment (mm).

(TIF)

Acknowledgments
We are very grateful to Maria Isabel Bernal for excellent technical assistance.

Author Contributions
Conceived and designed the experiments: SHS MRAC MAV MCC. Performed the experiments: SHS MRAC. Analyzed the data: SHS MRAC MAV MCC. Contributed reagents/materials/analysis tools: SHS MRAC MAV MCC. Wrote the paper: SHS MAV MCC.

References
1. Raetz CR, Whitten C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71: 635–700.
2. Batchelor RA, Haraguchi GE, Hull RA, Hull SI (1991) Regulation by a novel protein of the bimodal distribution of lipopolysaccharide in the outer membrane of Escherichia coli. J Bacteriol 173: 5609–704.
3. Liu D, Cole RA, Reeves PR (1996) An α-antigen processing function for Wzx (RhiN); a promising candidate for O-antigen flippase. J Bacteriol 178: 2100–2107.
4. Marano FA, McGrath BC, Osborn MJ (1991) Energy dependence of α-antigen synthesis in Salmonella typhimurium. J Bacteriol 173: 3129–3133.
5. McGrath BC, Osborn MJ (1991) Localization of the terminal steps of O-antigen synthesis in Salmonella typhimurium. J Bacteriol 173: 649–654.
6. Maluford CA, Osborn MJ (1983) An intermediate step in translocation of lipopolysaccharide to the outer membrane of Salmonella typhimurium. Proc Natl Acad Sci USA 80: 1159–1163.
7. Rick PD, Barr K, Sankaran K, Kajimura J, Rush JS, et al. (2003) Evidence that the ω_{zz} gene of Escherichia coli K-12 encodes a protein involved in the translocation movement of a triacylcholine lipid intermediate in the assembly of enterobacterial common antigen. J Biol Chem 278: 16334–16432.
8. Valvano MA (2003) Export of O-specific lipopolysaccharide. Front Biosci 8: e452–471.
9. Nixon BT, Ronson CW, Ausbel FM (1986) Two-component regulatory systems responsive to environmental stimuli share strong conserved domains with the nitrogen assimilation regulatory gene $ntrB$ and $ntrC$. Proc Natl Acad Sci USA: 7850–7854.
10. Ronson CW, Nixon BT, Ausbel FM (1987) Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49: 579–591.
11. Kooiolf EC, Parkinson JS (1988) Transmitter and receiver modules in bacterial signalling proteins. Proc Natl Acad Sci USA: 4981–4985.
12. Masdeu T, Kunst F, Rapoport G (1993) Two-component regulatory systems. In: Bacillus subtilis and other gram-positive bacteria; biochemistry, physiology, and molecular genetics. Hoch, J.A., Sonenshein, A.L., and Losick, R. (eds). American Society for Microbiology Washington, D.C., pp. 729–745.
13. Alex LA, Simon MI (1994) Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet 10: 133–138.
14. Swanson RV, Alex LA, Simon MI (1994) Histidine and Aspartate phosphor-ylation: two-component systems and the limits of homology. Trends Biochem Sci 19: 485–490.
15. Parkinson JS (1995) Genetic approaches for signalling pathways and proteins. In: Hoch JA, Silhavy TS, editors. Two-component transduction. Washington, DC: ASM Press. pp. 9–23.
16. Delgado MA, Mouzlin C, Grosman EA (2006) The PmrA/PmrB and RcsC/YopN/RcsB systems control expression of the Salmonella O-antigen chain length determinant. Mol Microbiol 60: 39–50.
17. Kato A, Grosman EA (2004) Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Gene Dev 18: 2302–2313.
18. Kox LF, Wosten MM, Grosman EA (2000) A small protein that mediates the activation of a two-component system by another two-component system. EMBO J 19: 1861–1872.
19. Murata T, Tseng W, Guina T, Miller SJ, Nakado H (2007) PtoTPomeditated regulation produces a more robust permeability barrier in the outer membrane of Salmonella enterica serovar Typhimurium. J Bacteriol 189: 7213–7222.
20. Grosman N, Schmitz MA, Foulds J, Klima EN, Jimenez V, et al. (1997) Lipopolysaccharide size and distribution determine serum resistance in Salmonella enterica. J Bacteriol 169: 836–840.
21. Hoare A, Birner M, Carter J, Alvarez S, Zaldîvar M, et al. (2006) The outer core lipopolysaccharide of Salmonella enterica serovar Typhi is required for bacterial entry into epithelial cells. Infect Immun 74: 1555–1566.
22. Murray GL, Attridge SR, Morona R (2003) Regulation of Salmonella Typhimurium lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz. Mol Microbiol 47: 1395–1406.
23. Murray GL, Attridge SR, Morona R (2005) Inducible serum resistance in Salmonella Typhimurium is dependent on wzz(fepE)-regulated very long O antigen chains. Microbes Infect 7: 1296–1304.
24. Murray GL, Attridge SR, Morona R (2006) Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhiurium with macrophages and complement. J Bacteriol 188: 2735–2739.
25. Phulpin A, Costachel C, Grandjean C, Thuaiz A, Guerreiro C, et al. (2006) Characterization of functional oligosaccharide mimics of the Shigella flexneri serotype 2a O-antigen: implications for the development of a chemically defined glycoconjugate vaccine. J Immunol 176: 1606–1604.
26. McGowan CC, Necheva A, Thompson SA, Cover TL, Blaser MJ (1998) Acid-induced expression of an LPS-associated gene in Helicobacter pylori. Mol Microbiol 30: 19–31.
27. Løbner-Olesen A, Skovgaard O, Marimus MG (2006) Dam methylation: coordinating cellular processes. Curr Opin Microbiol 8: 154–160.
28. Low DA, Weyand NJ, Mahan MJ (2001) Roles of DNA adenine methylation in regulating gene expression and virulence. Infect Immun 69: 7197–7204.
29. Marimus MG (1996) Methylation of DNA. In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, ¨sten MM, Groisman EA (2000) A small protein that mediates the small protein that mediates the activation of a two-component system by another two-component system. EMBO J 19: 1861–1872.
30. Vossen D, Casadesús J (2006) N6-methyl-adenine: an epigenetic signal for DNA—protein interactions. Nat Rev Microbiol 4: 183–192.
31. Balboni T, Rosley G, Pucciarelli MG, López-Garrido J, Wormstone Y, et al. (2006) DNA adenine methyltransferase regulates virulence gene expression in Salmonella enterica serovar Typhimurium. J Bacteriol 188: 8160–8168.

32. Campellone KG, Roe AJ, Løbner-Olesen A, Murphy KC, Mag scn L, et al. (2007) Increased adherence and actin pedestal formation by dam-deficient enterohaemorrhagic E. coli O157:H7. Mol Microbiol 63: 1468–1481.

33. Chessa D, Winter MG, Nuccio SP, Tu (2008) RosE expression Std fimbrial expression in Salmonella enterica serotype Typhimurium. Mol Microbiol 68: 371–387.

34. Fa...