High gain antenna at 915 MHz for off grid wireless networks

Hussam Hamid Keriee, Mohamad Kamal A. Rahim, Nawres Abbas Nayyef, Zahriladha Zakaria, Ahmed Jamal Abdullah Al-Gburi, Fahad Taha Al-Dhief, Mustafa M. Jawad

1,2,6,7Advanced RF and Microwave Research Group (ARFMRG), School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Malaysia
3,4,5Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, Malaysia

ABSTRACT
This paper presents a high gain antenna for off-grid wireless networks at 915 MHz. The requirements for compact size and high gain antenna are needed in the industrial, scientific and medical (ISM) band for better performance and coverage. Hence, microstrip planar substrate is proposed to overcome the size challenges. The proposed antenna is designed based on rectangular patch with air gap technique. The proposed antenna is optimized using computer simulation technology software (CST) and fabricated on low profile FR-4 substrate. The measured performance agreed well with the simulated one. The reflection of less than -10 dB is obtained with high gain of 6.928 dB at desired frequency. Overall, this antenna can be a good candidate for the off-grid wireless network applications.

1. INTRODUCTION
The increasing needs for high gain antenna and compact size for industrial, scientific and medical (ISM) communication system are outlined as a requirement for better wireless network performance [1]. Various technologies for designing the antenna with compact size and high gain are introduced [2-4]. They are microstrip, waveguide, and substrate integrated waveguide (SIW). However, the waveguide technology and SIW are considered bulky and produce big size when it comes to the lower frequency. It is suitable for high frequency and millimeterwave applications [5-7]. Therefore, microstrip technology is preferred in the lower frequency due to the ability of having small size and can produce massive array. However, microstrip is not well known for its capability of producing high gain, since it uses dielectric material within the substrate which produces losses in the radiation part [8]. Therefore, there is a challenge to design a high gain antenna using microstrip technology at ISM band that has low profile, low loss, and compact size. Recent studies on microstrip antennas at ISM band, show a good performance as reported in [9-13]. It uses different techniques to achieve the compact size and high gain such as applying double layers of substrates as presented in [10]. Using rectangular or circular patch antennas [10, 11] has the benefit of increasing the gain and bandwidth as well.

Another technique of using air gap method is introduced in [12]. The antenna achieved a good gain of 5 dB and size reduction of 20%. However, the bandwidth is very narrow compared to the works presented in [9-11]. All these designs are proposed for on-grid communication. While the off-grid wireless network
is indeed having the urgent of high antenna performance in terms of gain, bandwidth, and size [13-18]. In the case of any natural disasters or unable to communicate with the cell towers, the need to have reliable off-grid system as backbone is essential [19-25]. Therefore, the ISM band 915 MHz is proposed for off-grid communication devices in the case of coverage or communication off. This paper demonstrates a rectangular patch antenna with air gap technique based on microstrip technology at 915 MHz. The paper is divided as follow: section 2 presents the antenna design procedure. Section 3 discusses the findings and the analysis of the antenna performance. Section 4 concludes the finding and results.

2. MICROSTRIP PATCH ANTENNA: DESIGN PRINCIPLE

Figure 1 shows the proposed antenna structure. The proposed antenna is designed using FR4 substrate with dielectric constant of 4.3 and thickness of 1.6 mm. A rectangular patch is selected as antenna structure with dimensions of width, (W) and length, (L). The patch is designed first to operate at 915 MHz.

The calculations of the length, width and the value are found in [5]. The effective dielectric constant, of the substrate is given by width of patch, W [5]:

\[W = \frac{c}{2f\sqrt{(\varepsilon_r + 1)/2}} \]

Effective dielectric length, \(L_{\text{eff}} \) [5]:

\[L_{\text{eff}} = \frac{c}{2f\sqrt{\varepsilon_{\text{eff}}}} \]

The length of the antenna is can be calculated by using the following equations [5].

\[\frac{\Delta L}{h} = 0.412 \left(\frac{\varepsilon_{\text{eff}} + 0.3}{\varepsilon_{\text{eff}} - 0.25\varepsilon_r} \right) \]

\[\varepsilon_{\text{eff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[1 + 12 \frac{h}{w} \right]^{-1/2}, \frac{w}{h} > \]

Where \(h \) is the height of the substrate.

As the dimensions of a patch are known, the length and width of a substrate is equal to that of the ground plane. For a ground layer, the length \((L_g) \) and the width \((W_g) \) are found based on the following equations [5, 6]:

\[L_g = 6h + L \]

\[W_g = 6h + W \]

To obtain optimal dimensions for the antenna, some parametric study has been done. The first parameter is to increase and decreases the length of the patch. At the beginning, the length of the patch is...
110 mm which gives the frequency 2 GHz. By varying the length of the patch to achieve an optimal response at 915 MHz. Then the patch length of the antenna becomes 140 mm. At this length, the targeted frequency of 915 MHz is successfully achieved as shown in Figure 2. The second parameter is to vary the slot length to achieve the desired gain at 915 MHz. This is can be clearly seen in Table 1. In summary, after the parametric study is used to obtain the optimum design dimensions. The final value of the antenna dimensions are shown in Table 2.

![Figure 2. Return loss of patch at different lengths](image)

Table 1. Effect of changing slot dimension	Table 2. The final parameters after optimization to antenna design		
Length of slot (mm)	Gain (dB)	Parameters	Values (mm)
52	6.730	W	5
54	6.778	L	160
56	6.863	LS	140
58	6.890	Wu	3
60	6.922	Lu	60
62	6.908	HG	13

3. RESULTS AND DISCUSSION

CST software is used to simulate the proposed antenna at 915 MHz. The simulated parameters such as return loss, gain, directivity, VSWR. Figure 3 shows the simulated return loss at 915 MHz. A return loss of 18 dB is obtained at 915 MHz with bandwidth of 100 MHz. Figure 4 demonstrates the simulated radiation pattern in 2D and 3D structure and polar gain. It shows that the antenna generates the maximum gain of 6.928 dB along the bore side direction at 915 MHz.

![Figure 3. Return loss at frequency 915 MHz](image)
The proposed antenna is fabricated and measured using vector network analyzer (VNA) as shown in Figure 5. The measured antenna performance is slightlhy different compared to the simulated results. Figure 6 describes the measured return loss (S_{11}) which resonates at 915.6 MHz with return loss of 22.441 dB. At 915 MHz, a return loss of -14.68 dB. This loss of -3.8 dB is basically due to the fabrication tolerance or mismatch in the port excitation. Figure 7 shows the measured radiation pattern of E-Plane and H-plane at 915 MHz. It can be clearly noticed the disparities in the measured result with respect to the simulated one. This could be caused by the losses in the measurement cables or the mismatched at the port.
High gain antenna at 915 MHz for off grid wireless networks (Hussam Hamid Keriee)
[4] Z. Er-reguig and H. Ammor, “A Miniature BroadBand Microstrip Antenna for LTE, Wi-Fi and WiMAX Applications,” International Journal of Electrical and Computer Engineering, vol. 8, no. 6, pp. 5238-5244, 2018.

[5] M. Ghorbani and H. Ghorbanejadeh, “Novel High-Gain Narrowband Waveguide-Fed Filtenna using Genetic Algorithm,” International Journal of Electrical and Computer Engineering, vol. 7, no. 1, pp. 253-259, 2017.

[6] R. M. C. Cleetus and G. J. Bala, “Frequency reconfigurable antennas for cognitive radio applications: a review,” International Journal of Electrical and Computer Engineering, vol. 9, no. 5, pp. 3542-3549, 2019.

[7] A. Majumder, “Design of an H-shaped Microstrip Patch Antenna for Bluetooth Applications,” International Journal of Innovation and Applied Studies, vol. 3, no. 4, pp. 987-994, Aug 2013.

[8] S. K. Rajagopal and S. K. Sharma, “Investigations on Ultrawideband Pentagon Shape Microstrip Slot Antenna for Wireless Communications,” in IEEE Transactions on Antennas and Propagation, vol. 57, no. 5, pp. 1353-1359, May 2009.

[9] B. R. Franciscatto, A. C. Souza, C. Defay, T. T. Trang and T. P. Vuong, “High gain microstrip patch antenna array using multiple superstrate layers for DSRC applications,” 2012 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications APWC, Cape Town, pp. 736-739, 2012.

[10] D. Bhalia, K. Bansal, “Design of a rectangular microstrip patch antenna using inset feed technique,” IOSR Journal of Electronics and Communication Engineering, vol. 7, no. 4, pp. 8-13, 2013.

[11] T. F. A. Nayna, A. K. M. Baki and F. Ahmed, “Comparative study of rectangular and circular microstrip patch antennas in X band,” 2014 International Conference on Electrical Engineering and Information & Communication Technology, Dhaka, pp. 1-5, 2014.

[12] J. Thomas, J. Robble and N. Modly, “Off Grid communications with Android Meshing the mobile world,” 2012 IEEE Conference on Technologies for Homeland Security IIST, Waltham, MA, pp. 401-405, 2012.

[13] V. Asokan, S. Thilagam and K. V. Kumar, “Design and analysis of microstrip patch antenna for 2.4GHz ISM band and WLAN application,” 2015 2nd International Conference on Advances in Computing, Communication, & Networking WISNET, Chennai, pp. 55-58, 2016.

[14] Ajay V. G., Parvathy A. R., Thomaskutty Mathew, “Microstrip antenna with DGS based on CSR for WiMAX applications,” International Journal of Electrical and Computer Engineering, vol. 9, no. 1, pp. 157-162, 2019.

[15] T. Firmsnaysh, S. Praptodyiono, H. Heradin, D. Aribowo, S. Alam, D. W. Astuti, M. Yunus, “Bandwidth enhancement and miniaturization of circular-shaped microstrip antenna based on beveled half-cut structure for MIMO 2x2 application,” International Journal of Electrical and Computer Engineering, vol. 9, no. 2, pp. 1110-1120, 2019.

[16] N. D. Mahajan and K. N. Dekate, “Design and simulation of patch antenna for 3.5GHz S-band and WiMAX application,” 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics AEEICB, Chennai, pp. 696-698, 2016.

[17] C. Sebastian, V. J. A. Vijina, Ramesh R and Usha Kiran K, “The design of high gain substrate integrated waveguide antennas,” 2016 International Conference on Wireless Communications, Signal Processing and Networking WISN, Chennai, pp. 55-58, 2016.

[18] M. Tang, T. Shi and R. W. Ziolkowski, “Planar Ultrawideband Antennas with Improved Realized Gain Performance,” in IEEE Transactions on Antennas and Propagation, vol. 64, no. 1, pp. 61-69, Jan. 2016.

[19] P. Pavithra, A. Sriram, K. Kalimuthu, “Compact planar ultrawideband MIMO antenna for wireless applications,” International Journal of Advances in Applied Sciences, vol. 8, no. 3, pp. 243-250, 2019.

[20] S. Liu, W. Wu and D. Fang, “Single-Feed Dual-Layer Dual-Band E-Shaped and U-Slot Patch Antenna for Wireless Communication Application,” in IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 468-471, 2016.

[21] S. Rana, A. Thakur, H. S. Saini, R. Kumar and N. Kumar, “A wideband planar inverted F antenna for wireless communication devices,” 2016 International Conference on Advances in Computing, Communication, & Automation ICACCA Spring, Dehradun, pp. 1-3, 2016.

[22] S. M. Ali, “Design of Compact Dual Band Circular Polarized Microstrip Antenna for High Efficiency WLAN 802.11a-2019,” International Journal of Informatics and Communication Technology, vol. 7, no. 3, pp. 135-140, 2018.

[23] M. O. Katie, M. F. Jamlos, H. Lago and S. S. AL-Bawri, “Slots-loaded dual-band elliptical polarized antenna,” 2015 IEEE International RF and Microwave Conference (RFM), Kuching, pp. 190-193, 2015.

[24] Chandan and B. S. Rai, “Bandwidth Enhancement of Wang Shape Microstrip Patch Antenna for Wireless System,” 2014 Fourth International Conference on Communication Systems and Network Technologies, Bhopal, pp. 11-15, 2014.

[25] N. A. Kumar and A. S. Gandhi, “Small size planar monopole antenna for high speed UWB applications,” 2016 Twenty Second National Conference on Communication NCC, Guwahati, pp. 1-5, 2016.