The end-parameters of a Leonard pair

Kazumasa Nomura

Abstract

Fix an algebraically closed field \(\mathbb{F} \) and an integer \(d \geq 3 \). Let \(V \) be a vector space over \(\mathbb{F} \) with dimension \(d + 1 \). A Leonard pair on \(V \) is a pair of diagonalizable linear transformations \(A : V \to V \) and \(A^* : V \to V \), each acting in an irreducible tridiagonal fashion on an eigenbasis for the other one. There is an object related to a Leonard pair called a Leonard system. It is known that a Leonard system is determined up to isomorphism by a sequence of scalars \(\{ \theta_i \}_{i=0}^{d} \), \(\{ \phi_i \}_{i=1}^{d} \), \(\{ \varphi_i \}_{i=1}^{d} \), called its parameter array. The scalars \(\{ \theta_i \}_{i=0}^{d} \) (resp. \(\{ \phi_i \}_{i=0}^{d} \)) are mutually distinct, and the expressions \((\theta_{i-2} - \theta_{i+1})/(\theta_{i-1} - \theta_i) \), \((\theta_{i-2}^* - \theta_{i+1}^*)/(\theta_{i-1}^* - \theta_i^*) \) are equal and independent of \(i \) for \(2 \leq i \leq d - 1 \). Write this common value as \(\beta + 1 \). In the present paper, we consider the “end-parameters” \(\theta_0, \theta_d, \phi_0, \phi_d \), \(\varphi_1, \varphi_d \) of the parameter array. We show that a Leonard system is determined up to isomorphism by the end-parameters and \(\beta \). We display a relation between the end-parameters and \(\beta \). Using this relation, we show that there are up to isomorphism at most \(\lfloor (d - 1)/2 \rfloor \) Leonard systems that have specified end-parameters. The upper bound \(\lfloor (d - 1)/2 \rfloor \) is best possible.

1 Introduction

Throughout the paper \(\mathbb{F} \) denotes an algebraically closed field.

We begin by recalling the notion of a Leonard pair. We use the following terms. A square matrix is said to be tridiagonal whenever each nonzero entry lies on either the diagonal, the subdiagonal, or the superdiagonal. A tridiagonal matrix is said to be irreducible whenever each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

Definition 1.1 (See [5 Definition 1.1].) Let \(V \) be a vector space over \(\mathbb{F} \) with finite positive dimension. By a Leonard pair on \(V \) we mean an ordered pair of linear transformations \(A : V \to V \) and \(A^* : V \to V \) that satisfy (i) and (ii) below:

(i) There exists a basis for \(V \) with respect to which the matrix representing \(A \) is irreducible tridiagonal and the matrix representing \(A^* \) is diagonal.

(ii) There exists a basis for \(V \) with respect to which the matrix representing \(A^* \) is irreducible tridiagonal and the matrix representing \(A \) is diagonal.

Note 1.2 According to a common notational convention, \(A^* \) denotes the conjugate transpose of \(A \). We are not using this convention. In a Leonard pair \(A, A^* \) the matrices \(A \) and \(A^* \) are arbitrary subject to the conditions (i) and (ii) above.

We refer the reader to [3, 5, 8] for background on Leonard pairs.

For the rest of this section, fix an integer \(d \geq 0 \) and a vector space \(V \) over \(\mathbb{F} \) with dimension \(d + 1 \). Consider a Leonard pair \(A, A^* \) on \(V \). By [5] Lemma 1.3] each of \(A, A^* \)
has mutually distinct \(d + 1 \) eigenvalues. Let \(\{ \theta_i \}_{i=0}^d \) be an ordering of the eigenvalues of \(A \), and let \(\{ V_i \}_{i=0}^d \) be the corresponding eigenspaces. For \(0 \leq i \leq d \) define \(E_i : V \to V \) such that \((E_i - I)V_i = 0 \) and \(E_iV_j = 0 \) for \(j \neq i \) \((0 \leq j \leq d)\). Here \(I \) denotes the identity. We call \(E_i \) the primitive idempotent of \(A \) associated with \(\theta_i \). The primitive idempotent \(E_i^* \) of \(A^* \) associated with \(\theta_i^* \) is similarly defined. For \(0 \leq i \leq d \) pick a nonzero \(v_i \in V_i \). Note that \(\{ v_i \}_{i=0}^d \) is a basis for \(V \). We say the ordering \(\{ E_i \}_{i=0}^d \) is standard whenever the basis \(\{ v_i \}_{i=0}^d \) satisfies Definition 1.1(ii). A standard ordering of the primitive idempotents of \(A^* \) is similarly defined. For a standard ordering \(\{ E_i \}_{i=0}^d \), the ordering \(\{ E_{d-i} \}_{i=0}^d \) is also standard and no further ordering is standard. Similar result applies to a standard ordering of the primitive idempotents of \(A^* \).

Definition 1.3 (See [5] Definition 1.4.) By a Leonard system on \(V \) we mean a sequence

\[
\Phi = (A, \{ E_i \}_{i=0}^d, A^*, \{ E_i^* \}_{i=0}^d),
\]

(1)

where \(A, A^* \) is a Leonard pair on \(V \), and \(\{ E_i \}_{i=0}^d \) (resp. \(\{ E_i^* \}_{i=0}^d \)) is a standard ordering of the primitive idempotents of \(A \) (resp. \(A^* \)). We say \(\Phi \) is over \(\mathbb{F} \). We call \(d \) the diameter of \(\Phi \).

We recall the notion of an isomorphism of Leonard systems. Consider a Leonard system (1) on \(V \) and a Leonard system \(\Phi' = (A', \{ E'_i \}_{i=0}^d, A'^*, \{ E'_i^* \}_{i=0}^d) \) on a vector space \(V' \) with dimension \(d + 1 \). By an isomorphism of Leonard systems from \(\Phi \) to \(\Phi' \) we mean a linear bijection \(\sigma : V \to V' \) such that \(\sigma A = A', \sigma A^* = A'^*, \sigma E_i = E'_i, \sigma E_i^* = E'^*_i \) for \(0 \leq i \leq d \). Leonard systems \(\Phi \) and \(\Phi' \) are said to be isomorphic whenever there exists an isomorphism of Leonard systems from \(\Phi \) to \(\Phi' \).

For a Leonard system (1) over \(\mathbb{F} \), each of the following is a Leonard system over \(\mathbb{F} \):

\[
\Phi^* := (A^*, \{ E_i^* \}_{i=0}^d, A, \{ E_i \}_{i=0}^d),
\]
\[
\Phi^↓ := (A, \{ E_i \}_{i=0}^d, A^*, \{ E_i^* \}_{i=0}^d),
\]
\[
\Phi^\downarrow := (A, \{ E_{d-i} \}_{i=0}^d, A^*, \{ E_i^* \}_{i=0}^d).
\]

Viewing \(*, \downarrow, \downarrow \) as permutations on the set of all the Leonard systems,

\[
*^2 = \downarrow^2 = \downarrow\downarrow = 1, \quad \downarrow * = \downarrow*, \quad \downarrow * = \downarrow, \quad \downarrow \downarrow = \downarrow\downarrow. \tag{2}
\]

The group generated by symbols \(*, \downarrow, \downarrow \) subject to the relations (2) is the dihedral group \(D_4 \). We recall \(D_4 \) is the group of symmetries of a square, and has 8 elements. For an element \(g \in D_4 \) and for an object \(f \) associated with \(\Phi \), let \(f^g \) denote the corresponding object associated with \(\Phi^g^{-1} \).

We recall the notion of a parameter array.

Definition 1.4 (See [7] Section 2, [2] Theorem 4.6.) Consider a Leonard system (1) over \(\mathbb{F} \). By the parameter array of \(\Phi \) we mean the sequence

\[
(\{ \theta_i \}_{i=0}^d, \{ \theta_i^* \}_{i=0}^d, \{ \phi_i \}_{i=1}^d, \{ \psi_i \}_{i=1}^d), \tag{3}
\]
where \(\theta_i \) is the eigenvalue of \(A \) associated with \(E_i \), \(\theta_i^* \) is the eigenvalue of \(A^* \) associate with \(E_i^* \), and

\[
\varphi_i = (\theta_0^* - \theta_i^*) \frac{\text{tr}(E_0^* \prod_{h=0}^{i-1}(A - \theta_h I))}{\text{tr}(E_0^* \prod_{h=0}^{i-2}(A - \theta_h I))},
\]
\[
\phi_i = (\theta_0^* - \theta_i^*) \frac{\text{tr}(E_0^* \prod_{h=0}^{i-1}(A - \theta_d - h I))}{\text{tr}(E_0^* \prod_{h=0}^{i-2}(A - \theta_d - h I))},
\]

where \(\text{tr} \) means trace. In the above expressions, the denominators are nonzero by [2, Corollary 4.5].

The following two results are fundamental in the theory of Leonard pairs.

Lemma 1.5 (See [5, Theorem 1.9].) A Leonard system is determined up to isomorphism by its parameter array.

Lemma 1.6 (See [5, Theorem 1.9].) Consider a sequence \((3)\) consisting of scalars taken from \(\mathbb{F} \). Then there exists a Leonard system \(\Phi \) over \(\mathbb{F} \) with parameter array \((3)\) if and only if \((i)-(v)\) hold below:

(i) \(\theta_i \neq \theta_j, \theta_i^* \neq \theta_j^* \) (0 \(\leq i < j \leq d \)).

(ii) \(\varphi_i \neq 0, \phi_i \neq 0 \) (1 \(\leq i \leq d \)).

(iii) \(\varphi_i = \phi_1 \sum_{\ell=0}^{i-1} \frac{\theta_\ell - \theta_d - \ell \theta_0}{\theta_0 - \theta_d} + (\theta_i^* - \theta_0^*)(\theta_{i-1} - \theta_d) \) (1 \(\leq i \leq d \)).

(iv) \(\phi_i = \varphi_1 \sum_{\ell=0}^{i-1} \frac{\theta_\ell - \theta_d - \ell \theta_0}{\theta_0 - \theta_d} + (\theta_i^* - \theta_0^*)(\theta_{d-i+1} - \theta_0) \) (1 \(\leq i \leq d \)).

(v) The expressions

\[
\frac{\theta_{i-2} - \theta_{i+1}}{\theta_{i-1} - \theta_i}, \quad \frac{\theta_i^* - \theta_{i+1}^*}{\theta_{i-1}^* - \theta_i^*}
\]

are equal and independent of \(i \) for 2 \(\leq i \leq d - 1 \).

Definition 1.7 (See [7, Definition 1.1].) By a parameter array over \(\mathbb{F} \) we mean a sequence \((3)\) consisting of scalars taken from \(\mathbb{F} \) that satisfy conditions \((i)-(v)\) in Lemma 1.6.

Definition 1.8 Let \(\Phi \) be a Leonard system over \(\mathbb{F} \) with parameter array \((3)\). By the fundamental parameter of \(\Phi \) (or \((3)\)) we mean one less than the common value of \((4)\).

The \(D_4 \) action affects the parameter array as follows:
Lemma 1.9 (See [5, Theorem 1.11].) Consider a Leonard system (1) over \(F \) with parameter array (3). Then for \(g \in \{ \downarrow, \downarrow, \ast \} \) the parameters \(\theta^g_i, \theta_i^*, \varphi^g_i, \phi_i^* \) are as follows:

\(g \)	\(\theta^g_i \)	\(\theta_i^* \)	\(\varphi^g_i \)	\(\phi_i^* \)
\(\downarrow \)	\(\theta_i \)	\(\theta_{d-i}^* \)	\(\phi_{d-i+1} \)	\(\varphi_{d-i+1} \)
\(\downarrow \)	\(\theta_{d-i} \)	\(\theta_i^* \)	\(\phi_i \)	\(\varphi_i \)
\(\ast \)	\(\theta_i^* \)	\(\theta_i \)	\(\varphi_i \)	\(\phi_{d-i+1} \)

For the rest of this section, we assume \(d \geq 3 \). The present paper is motivated by the following result:

Proposition 1.10 (See [5, Corollary 14.1].) Consider a Leonard system (1) over \(F \) with parameter array (3). Then the isomorphism class of \(\Phi \) is determined by a sequence of 8 parameters consisting of \(\theta_0, \theta_1, \theta_2, \theta_0^*, \theta_2^* \), followed by one of \(\theta_3, \theta_3^* \), followed by one of \(\varphi_1, \varphi_d, \phi_1, \phi_d \).

Referring to Proposition 1.10 observe that the set of the 8 parameters is not invariant under the \(D_4 \) action. Our concern is to find a \(D_4 \)-invariant set of parameters that determines the isomorphism class of Leonard systems. In the present paper, we consider the end-parameters:

\[\theta_0, \theta_d, \theta_0^*, \theta_d^*, \varphi_1, \varphi_d, \phi_1, \phi_d. \]

Apparently the set of the end-parameters is invariant under the \(D_4 \)-action. Note that the fundamental parameter is \(D_4 \)-invariant.

Theorem 1.11 A Leonard system is determined up to isomorphism by its end-parameters and its fundamental parameter.

The end-parameters are related to the fundamental parameter as follows:

Proposition 1.12 Consider a parameter array (3) over \(F \). Let \(\beta \) be the fundamental parameter of (3), and pick a nonzero \(q \in F \) such that \(\beta = q + q^{-1} \). Then the scalar

\[\Omega = \frac{\phi_1 + \phi_d - \varphi_1 - \varphi_d}{(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}, \]

is as follows:

\(\beta \neq 2 \), \(\beta \neq -2 \)	\(\Omega \)
\(\beta = 2 \), \(\text{Char}(F) \neq 2 \)	\(\frac{q(q^{d-1} - 1)}{q^d - 1} \)
\(\beta = -2 \), \(\text{Char}(F) \neq 2 \), \(d \) is even	\(\frac{2(d - 1)}{d} \)
\(\beta = -2 \), \(\text{Char}(F) \neq 2 \), \(d \) is odd	\(2 \)
\(\beta = 0 \), \(\text{Char}(F) = 2 \)	\(0 \)
Corollary 1.13 With reference to Proposition 1.12, \(\Omega \neq 1 \).

Theorem 1.14 There exist up to isomorphism at most \(\lfloor (d - 1)/2 \rfloor \) Leonard systems with diameter \(d \) that have specified end-parameters.

In Theorem 1.14 the upper bound \(\lfloor (d - 1)/2 \rfloor \) is best possible:

Theorem 1.15 Assume \(\text{Char}(\mathbb{F}) \neq 2 \) and \(d \) does not vanish in \(\mathbb{F} \). Then there exist mutually non-isomorphic \(\lfloor (d - 1)/2 \rfloor \) Leonard systems with diameter \(d \) that have common end-parameters.

The paper is organized as follows. In Section 2 we recall some formulas concerning the parameter array. In Section 3 we prove Theorem 1.11. In Section 4 we prove Proposition 1.12. In Section 5 we consider a certain polynomial which is used in the proof of Theorems 1.14 and 1.15. In Section 6 we prove Theorem 1.14. In Section 7 we try to construct a parameter array having specified end-parameters. In Section 8 we prove Theorem 1.15. In Appendix we display formulas that represent \(\{\varphi_i\}_{i=1}^d \) and \(\{\phi_i\}_{i=1}^d \) in terms of the end-parameters and the fundamental parameter.

2 Parameter arrays in closed form

Fix an integer \(d \geq 3 \). Let \(\mathcal{A} \) be a parameter array over \(\mathbb{F} \) with fundamental parameter \(\beta \). We consider the following types of the parameter array:

Type	Description
I	\(\beta \neq 2, \ \beta \neq -2 \)
II	\(\beta = 2, \ \text{Char}(\mathbb{F}) \neq 2 \)
III+	\(\beta = -2, \ \text{Char}(\mathbb{F}) \neq 2, \ d \) is even
III-	\(\beta = -2, \ \text{Char}(\mathbb{F}) \neq 2, \ d \) is odd
IV	\(\beta = 0, \ \text{Char}(\mathbb{F}) = 2 \)

For each type we display formulas that represent the parameter array in closed form.

Lemma 2.1 (See [4, Lemma 13.1].) Assume the parameter array \(\mathcal{A} \) has type I. Pick a nonzero \(q \in \mathbb{F} \) such that \(\beta = q + q^{-1} \). Then there exist scalars \(\eta, h, \mu, \eta^*, h^*, \mu^*, \tau \) in \(\mathbb{F} \) such that

\[
\theta_i = \eta + \mu q^i + h q^{d-i},
\]
\[
\theta_i^* = \eta^* + \mu^* q^i + h^* q^{d-i},
\]

for \(0 \leq i \leq d \), and

\[
\varphi_i = (q^i - 1)(q^{d-i+1} - 1)(\tau - \mu \mu^* q^{i-1} - h h^* q^{d-i}),
\]
\[
\phi_i = (q^i - 1)(q^{d-i+1} - 1)(\tau - h \mu^* q^{i-1} - \mu h^* q^{d-i})
\]

for \(1 \leq i \leq d \).
Note 2.2 With reference to Lemma 2.1, for 1 ≤ i ≤ d we have q^i ≠ 1; otherwise ϕ_i = 0.

Lemma 2.3 (See [4, Lemma 14.1].) Assume the parameter array (3) has type II. Then there exist scalars η, h, μ, η*, h*, μ*, τ in ℱ such that

\[θ_i = η + μ(i - d/2) + hi(d - i), \]
\[θ^*_i = η* + μ*(i - d/2) + h*i(d - i) \]

for 0 ≤ i ≤ d, and

\[ϕ_i = i(d - i + 1)(τ - μμ*/2 + (hμ* + μh*)(i - (d + 1)/2) + hh*(i - 1)(d - i)), \]
\[φ_i = i(d - i + 1)(τ + μμ*/2 + (hμ* - μh*)(i - (d + 1)/2) + hh*(i - 1)(d - i)) \]

for 1 ≤ i ≤ d.

Note 2.4 With reference to Lemma 2.3, Char(ℱ) ≠ i for any prime i ≤ d; otherwise ϕ_i = 0.

Lemma 2.5 (See [4, Lemma 15.1].) Assume the parameter array (3) has type III+. Then there exist scalars η, h, s, η*, h*, s*, τ in ℱ such that

\[θ_i = \begin{cases} η + s + h(i - d/2) & \text{if } i \text{ is even,} \\ η - s - h(i - d/2) & \text{if } i \text{ is odd,} \end{cases} \]
\[θ^*_i = \begin{cases} η* + s* + h*(i - d/2) & \text{if } i \text{ is even,} \\ η* - s* - h*(i - d/2) & \text{if } i \text{ is odd} \end{cases} \]

for 0 ≤ i ≤ d, and

\[ϕ_i = \begin{cases} i(τ - sh* - s*h - hh*(i - (d + 1)/2)) & \text{if } i \text{ is even,} \\ (d - i + 1)(τ + sh* + s*h + hh*(i - (d + 1)/2)) & \text{if } i \text{ is odd,} \end{cases} \]
\[φ_i = \begin{cases} i(τ - sh* + s*h + hh*(i - (d + 1)/2)) & \text{if } i \text{ is even,} \\ (d - i + 1)(τ + sh* - s*h - hh*(i - (d + 1)/2)) & \text{if } i \text{ is odd} \end{cases} \]

for 1 ≤ i ≤ d.

Note 2.6 With reference to Lemma 2.5, Char(ℱ) ≠ i for any prime i ≤ d/2; otherwise ϕ_i = 0. By this and since Char(ℱ) ≠ 2 we find Char(ℱ) is either 0 or an odd prime greater than d/2. Observe that neither of d, d − 2 vanish in ℱ; otherwise Char(ℱ) must divide d/2 or (d − 2)/2.
Lemma 2.7 (See [4, Lemma 16.1].) Assume the parameter array (3) has type III*. Then there exist scalars $\eta, h, s, \eta^*, h^*, s^*, \tau$ in F such that

$$
\theta_i = \begin{cases}
\eta + s + h(i - d/2) & \text{if } i \text{ is even}, \\
\eta - s - h(i - d/2) & \text{if } i \text{ is odd},
\end{cases}
$$

$$
\theta_i^* = \begin{cases}
\eta^* + s^* + h^*(i - d/2) & \text{if } i \text{ is even}, \\
\eta^* - s^* - h^*(i - d/2) & \text{if } i \text{ is odd},
\end{cases}
$$

for $0 \leq i \leq d$, and

$$
\varphi_i = \begin{cases}
hh^*i(d - i + 1) & \text{if } i \text{ is even}, \\
\tau - 2ss^* + i(d - i + 1)hh^* - 2(hs^* + h^*s)(i - (d + 1)/2) & \text{if } i \text{ is odd},
\end{cases}
$$

$$
\phi_i = \begin{cases}
hh^*i(d - i + 1) & \text{if } i \text{ is even}, \\
\tau + 2ss^* + i(d - i + 1)hh^* - 2(hs^* - h^*s)(i - (d + 1)/2) & \text{if } i \text{ is odd}
\end{cases}
$$

for $1 \leq i \leq d$.

Note 2.8 With reference to Lemma 2.7, $\text{Char}(F) \neq i$ for any prime $i \leq d/2$; otherwise $\varphi_2 = 0$. By this and since $\text{Char}(F) \neq 2$ we find $\text{Char}(F)$ is either 0 or an odd prime greater than $d/2$. Observe $d - 1$ does not vanish in F; otherwise $\text{Char}(F)$ must divide $(d - 1)/2$.

Lemma 2.9 (See [4, Lemma 17.1].) Assume the parameter array (3) has type IV. Then $d = 3$, and there exist scalars h, s, h^*, s^*, r in F such that

$$
\theta_1 = \theta_0 + h(s + 1), \quad \theta_2 = \theta_0 + h, \quad \theta_3 = \theta_0 + hs,
$$

$$
\theta^*_1 = \theta^*_0 + h^*(s^* + 1), \quad \theta^*_2 = \theta^*_0 + h^*, \quad \theta^*_3 = \theta^*_0 + h^*s^*,
$$

$$
\varphi_1 = hh^*r, \quad \varphi_2 = hh^*, \quad \varphi_3 = hh^*(r + s + s^*),
$$

$$
\phi_1 = hh^*(r + s + ss^*), \quad \phi_2 = hh^*, \quad \phi_3 = hh^*(r + s^* + ss^*).$$

We mention a lemma for later use. Pick a nonzero $q \in F$ such that $\beta = q + q^{-1}$.
Lemma 2.10 (See [5, Lemma 10.2].) The following hold:

(i) Assume the parameter array (3) has type I. Then for $1 \leq i \leq d$

$$
\sum_{\ell=0}^{i-1} \frac{\theta_{\ell} - \theta_{d-\ell}}{\theta_0 - \theta_d} = \frac{(q^i - 1)(q^{d-i+1} - 1)}{(q - 1)(q^d - 1)}.
$$

(ii) Assume the parameter array (3) has type II. Then for $1 \leq i \leq d$

$$
\sum_{\ell=0}^{i-1} \frac{\theta_{\ell} - \theta_{d-\ell}}{\theta_0 - \theta_d} = \frac{i(d - i + 1)}{d}.
$$

(iii) Assume the parameter array (3) has type III$^+$. Then for $1 \leq i \leq d$

$$
\sum_{\ell=0}^{i-1} \frac{\theta_{\ell} - \theta_{d-\ell}}{\theta_0 - \theta_d} = \begin{cases}
\frac{i}{d} & \text{if } i \text{ is even,} \\
(d - i + 1)/d & \text{if } i \text{ is odd.}
\end{cases}
$$

(iv) Assume the parameter array (3) has type III$^-$. Then for $1 \leq i \leq d$

$$
\sum_{\ell=0}^{i-1} \frac{\theta_{\ell} - \theta_{d-\ell}}{\theta_0 - \theta_d} = \begin{cases}
0 & \text{if } i \text{ is even,} \\
1 & \text{if } i \text{ is odd.}
\end{cases}
$$

3 Proof of Theorem 1.11

In this section we prove Theorem 1.11. Fix an integer $d \geq 3$. Let (3) be a parameter array over \mathbb{F} with fundamental parameter β. Pick a nonzero $q \in \mathbb{F}$ such that $\beta = q + q^{-1}$. In the following five lemmas, we display formulas that represent $\{\theta_i\}_{i=0}^d$ and $\{\theta^*_i\}_{i=0}^d$ in terms of the end-parameters and q. These formulas can be routinely verified using Lemmas 2.1, 2.3, 2.5, 2.7, 2.9.

Lemma 3.1 Assume the parameter array (3) has type I. Then for $0 \leq i \leq d$

$$
\theta_i = \theta_0 - \frac{(q^i - 1)(q^{2d-i-1} - 1)(\theta_0 - \theta_d)}{(q^d - 1)(q^d - 1)} + \frac{(q^i - 1)(q^{d-i} - 1)(\phi_1 - \varphi_d)}{(q - 1)(q^{d-1} - 1)(\theta_0^* - \theta_0^*)},
$$

$$
\theta_i^* = \theta_0^* - \frac{(q^i - 1)(q^{2d-i-1} - 1)(\theta_0^* - \theta_d^*)}{(q^d - 1)(q^d - 1)} + \frac{(q^i - 1)(q^{d-i} - 1)(\phi_d - \varphi_d)}{(q - 1)(q^{d-1} - 1)(\theta_0 - \theta_d)}.
$$
Lemma 3.2 Assume the parameter array has type II. Then for $0 \leq i \leq d$

\[
\begin{align*}
\theta_i &= \theta_0 - \frac{i(2d-i-1)(\theta_0 - \theta_d)}{d(d-1)} + \frac{i(d-i)(\phi_1 - \varphi_d)}{(d-1)(\theta_0^* - \theta_d^*)}, \\
\theta_i^* &= \theta_0^* - \frac{i(2d-i-1)(\theta_0^* - \theta_d^*)}{d(d-1)} + \frac{i(d-i)(\phi_d - \varphi_d)}{(d-1)(\theta_0 - \theta_d)}.
\end{align*}
\]

Lemma 3.3 Assume the parameter array has type III+. Then for $0 \leq i \leq d$

\[
\begin{align*}
\theta_i &= \begin{cases}
\theta_0 - \frac{i(\theta_0 - \theta_d)}{d} & \text{if } i \text{ is even,} \\
\theta_0 - \frac{(2d-i-1)(\theta_0 - \theta_d)}{d} + \frac{\phi_1 - \varphi_d}{\theta_0^* - \theta_d^*} & \text{if } i \text{ is odd,}
\end{cases} \\
\theta_i^* &= \begin{cases}
\theta_0^* - \frac{i(\theta_0^* - \theta_d^*)}{d} & \text{if } i \text{ is even,} \\
\theta_0^* - \frac{(2d-i-1)(\theta_0^* - \theta_d^*)}{d} + \frac{\phi_d - \varphi_d}{\theta_0 - \theta_d} & \text{if } i \text{ is odd.}
\end{cases}
\end{align*}
\]

Lemma 3.4 Assume the parameter array has type III−. Then for $0 \leq i \leq d$

\[
\begin{align*}
\theta_i &= \begin{cases}
\theta_0 - \frac{i(\theta_0 - \theta_d)}{d-1} + \frac{i(\phi_1 - \varphi_d)}{(d-1)(\theta_0^* - \theta_d^*)} & \text{if } i \text{ is even,} \\
\theta_0 - \frac{(2d-i-1)(\theta_0 - \theta_d)}{d-1} + \frac{(d-i)(\phi_1 - \varphi_d)}{(d-1)(\theta_0^* - \theta_d^*)} & \text{if } i \text{ is odd,}
\end{cases} \\
\theta_i^* &= \begin{cases}
\theta_0^* - \frac{i(\theta_0^* - \theta_d^*)}{d-1} + \frac{i(\phi_d - \varphi_d)}{(d-1)(\theta_0 - \theta_d)} & \text{if } i \text{ is even,} \\
\theta_0^* - \frac{(2d-i-1)(\theta_0^* - \theta_d^*)}{d-1} + \frac{(d-i)(\phi_d - \varphi_d)}{(d-1)(\theta_0 - \theta_d)} & \text{if } i \text{ is odd.}
\end{cases}
\end{align*}
\]

Lemma 3.5 Assume the parameter array has type IV. Then

\[
\begin{align*}
\theta_1 &= \theta_0 + \frac{\phi_1 - \varphi_3}{\theta_0^* - \theta_3}, & \quad \theta_2 &= \theta_3 + \frac{\phi_1 - \varphi_3}{\theta_0^* - \theta_3}, \\
\theta_1^* &= \theta_0^* + \frac{\phi_3 - \varphi_3}{\theta_0 - \theta_3}, & \quad \theta_2^* &= \theta_3^* + \frac{\phi_3 - \varphi_3}{\theta_0 - \theta_3}.
\end{align*}
\]

Proof of Theorem 1.11 By Lemmas 3.1–3.5 the scalars $\{\theta_i\}_{i=0}^d$, $\{\theta_i^*\}_{i=0}^d$ are determined by the end-parameters and q. By this and Lemma 1.6(iii), (iv) the scalars $\{\phi_i\}_{i=1}^d$, $\{\phi_i^*\}_{i=1}^d$ are determined by the end-parameters and q. The result follows from these comments and Lemma 1.5. ☐
4 Proof of Proposition 1.12

In this section we prove Proposition 1.12. Fix an integer \(d \geq 3 \).

Proof of Proposition 1.12. First assume the parameter array has type I. By Lemma 2.1,

\[
\begin{align*}
\theta_0 &= \eta + \mu + hq^d, & \theta_d &= \eta + \mu q^d + h, \\
\theta^*_0 &= \eta^* + \mu^* + h^* q^d, & \theta^*_d &= \eta^* + \mu^* q^d + h^*, \\
\phi_1 &= (q-1)(q^d-1)(\tau - \mu^* - h^* q^{d-1}), & \phi_d &= (q-1)(q^d-1)(\tau - \mu^* q^{d-1} - h^*), \\
\varphi_1 &= (q-1)(q^d-1)(\tau - \mu^* q^d - \mu h^*), & \varphi_d &= (q-1)(q^d-1)(\tau - h^* q^{d-1} - \mu h^*).
\end{align*}
\]

So,

\[
\begin{align*}
(\theta_0 - \theta_d)(\theta^*_0 - \theta^*_d) &= (q^d - 1)^2(\mu - h)(\mu^* - h^*), \\
\varphi_1 + \varphi_d - \varphi_1 - \varphi_d &= (q-1)(q^d-1)(q^{d-1} + 1)(\mu^* + h^* - h^* q^{d-1} - \mu h^*).
\end{align*}
\]

Thus

\[
\frac{\varphi_1 + \varphi_d - \varphi_1 - \varphi_d}{(\theta_0 - \theta_d)(\theta^*_0 - \theta^*_d)} = \frac{(q-1)(q^{d-1} + 1)}{q^d - 1}.
\]

We have shown the result for type I. The proof is similar for the remaining types. □

5 A polynomial

In this section we consider a polynomial which will be used in our proof of Theorems 1.14 and 1.15. This polynomial is related to Proposition 1.12 for type I. Fix an integer \(d \geq 3 \).

Definition 5.1 For \(\omega \in F \) we define a polynomial in \(x \):

\[
f_\omega(x) = \omega(x^d - 1) - (x - 1)(x^{d-1} + 1).
\]

Lemma 5.2 For \(\omega \in F \) the following hold:

(i) \(f_\omega(1) = 0 \).

(ii) Assume \(\omega \neq 1 \). Then \(f_\omega(x) \) has degree \(d \) and \(f_\omega(0) \neq 0 \).

(iii) Assume \(d \) is even. Then \(f_\omega(-1) = 0 \).

(iv) Assume \(\text{Char}(F) \neq 2 \), \(d \) is odd, and \(\omega \neq 2 \). Then \(f_\omega(-1) \neq 0 \).

(v) For \(0 \neq q \in F \), if \(f_\omega(q) = 0 \) then \(f_\omega(q^{-1}) = 0 \).

Proof. Routine verification. □
Lemma 5.3 For \(\omega \in \mathbb{F} \) the following hold:

(i) We have \(f_\omega(x) = (x - 1)g_\omega(x) \), where

\[
g_\omega(x) = \omega \sum_{r=0}^{d-1} x^r - x^{d-1} - 1.
\]

(ii) Assume \(d \) is even. Then \(f_\omega(x) = (x - 1)(x + 1)g_\omega(x) \), where

\[
g_\omega(x) = \omega \sum_{r=0}^{(d-2)/2} x^{2r} - \sum_{r=0}^{d-2} (-1)^r x^r.
\]

(iii) Assume \(d \) is even and \(d \) does not vanish in \(\mathbb{F} \). Then for \(\omega = 2/d \) we have \(f_\omega(x) = -(2/d)(x - 1)^3(x + 1)g(x) \), where

\[
g(x) = \sum_{r=0}^{(d-4)/2} (r + 1)(d/2 - r - 1)x^{2r} + \sum_{r=1}^{(d-4)/2} r(d/2 - r - 1)x^{2r-1}.
\]

(iv) Assume \(d \) is odd and \(d \) does not vanish in \(\mathbb{F} \). Then for \(\omega = 2/d \) we have \(f_\omega(x) = -(1/d)(x - 1)^3g(x) \), where

\[
g(x) = \sum_{r=0}^{d-3} (r + 1)(d - r - 2)x^r.
\]

(v) Assume \(d \) is even and \(d \) does not vanish in \(\mathbb{F} \). Then for \(\omega = 2(d - 1)/d \) we have \(f_\omega(x) = (2/d)(x - 1)(x + 1)^3g(x) \), where

\[
g(x) = \sum_{r=0}^{(d-4)/2} (r + 1)(d/2 - r - 1)x^{2r} - \sum_{r=1}^{(d-4)/2} r(d/2 - r - 1)x^{2r-1}.
\]

(vi) Assume \(d \) is odd. Then for \(\omega = 2 \) we have \(f_\omega(x) = (x - 1)(x + 1)^2g(x) \), where

\[
g(x) = \sum_{r=0}^{(d-3)/2} x^{2r}.
\]

Proof. Routine verification. \(\square \)

Lemma 5.4 For \(\omega \in \mathbb{F} \) consider the equation \(f_\omega(x) = 0 \).

(i) Assume \(d \) is odd. Then there are at most \(d - 1 \) roots of \(f_\omega(x) = 0 \) other than \(\pm 1 \).

(ii) Assume \(d \) is even. Then there are at most \(d - 2 \) roots of \(f_\omega(x) = 0 \) other than \(\pm 1 \).
(iii) Assume d is even and d does not vanish in F. Then for $\omega = 2/d$ there are at most $d - 4$ roots of $f_\omega(x) = 0$ other than ± 1.

(iv) Assume d is odd and d does not vanish in F. Then for $\omega = 2/d$ there are at most $d - 3$ roots of $f_\omega(x) = 0$ other than ± 1.

(v) Assume d is even and d does not vanish in F. Then for $\omega = 2(d - 1)/d$ there are at most $d - 4$ roots of $f_\omega(x) = 0$ other than ± 1.

(vi) Assume d is odd and $\omega = 2$. Then there are at most $d - 3$ roots of $f_\omega(x) = 0$ other than ± 1.

Proof. Immediate from Lemma 5.3. □

Lemma 5.5 Assume d does not vanish in F. Then the equation $f_\omega(x) = 0$ has a repeated root for at most d values of ω.

Proof. If the equation $f_\omega(x) = 0$ has a repeated root q, then both $f_\omega(q) = 0$ and $f'_\omega(q) = 0$, where f'_ω is the derivative of f_ω. The equations $f_\omega(x) = 0$ and $f'_\omega(x) = 0$ have a common root if and only if the resultant of $f_\omega(x)$ and $f'_\omega(x)$ is zero (see [1, Chap. IV.8]). The resultant of $f_\omega(x)$ and $f'_\omega(x)$ is the determinant of the following matrix (we display the matrix for $d = 5$):

$$
M_\omega = \begin{pmatrix}
\omega - 1 & 1 & 0 & 0 & -1 & 1 - \omega & 0 & 0 & 0 \\
0 & \omega - 1 & 1 & 0 & 0 & -1 & 1 - \omega & 0 & 0 \\
0 & 0 & \omega - 1 & 1 & 0 & 0 & -1 & 1 - \omega & 0 \\
5(\omega - 1) & 4 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 5(\omega - 1) & 4 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 5(\omega - 1) & 4 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 5(\omega - 1) & 4 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 5(\omega - 1) & 4 & 0 & 0 & -1
\end{pmatrix}
$$

First assume d is odd. Then

$$
\det(M_\omega) = (\omega - 1)(\omega - 2)(d\omega - 2)^3 \psi_1(\omega)^2,
$$

where $\psi_1(x)$ is a polynomial in x with leading term $d^{(d-3)/2}x^{d-3}$. Thus there are at most d values of ω such that $\det(M_\omega) = 0$. Next assume d is even. Then

$$
\det(M_\omega) = (1 - \omega)(d\omega - 2)^3(d\omega - 2(d - 1))^3 \psi_2(\omega)^2,
$$

where $\psi_2(x)$ is a polynomials in x with leading term $d^{(d-6)/2}x^{d-4}$. Thus there are at most $d - 1$ values of ω such that $\det(M_\omega) = 0$. The result follows. □
Lemma 5.6 For $3 \leq r \leq d$ let Γ_r denote the set consisting of the rth roots of unity other than ± 1:

$$\Gamma_r = \{ q \in \mathbb{F} \mid q^r = 1, \; q^2 \neq 1 \}.$$

Let Γ be the union of Γ_r for $3 \leq r \leq d$. Then there exist infinitely many $\omega \in \mathbb{F}$ such that the equation $f_\omega(x) = 0$ has no roots in Γ.

Proof. We claim that for any $\omega \in \mathbb{F}$ the equation $f_\omega(x) = 0$ has no roots in Γ_d. Suppose $f_\omega(q) = 0$ for some $q \in \Gamma_d$. Then $0 = f_\omega(q) = q^{d-1} - q$, so $q^{d-2} = 1$. By this and $q^d = 1$ we must have $q^2 = 1$, a contradiction. Thus the claim holds. For $q \in \Gamma \setminus \Gamma_d$ define

$$\omega_q = \frac{(q - 1)(q^{d-1} + 1)}{q^d - 1},$$

and consider the set

$$\Delta = \{ \omega_q \mid q \in \Gamma \setminus \Gamma_d \}.$$

Note that $\mathbb{F} \setminus \Delta$ has infinitely many elements, since \mathbb{F} is infinite and Δ is finite. For $\omega \in \mathbb{F} \setminus \Delta$, the equation $f_\omega(x) = 0$ has no roots in $\Gamma \setminus \Gamma_d$. By this and the above claim, the equation $f_\omega(x) = 0$ has no roots in Γ. The result follows.

Corollary 5.7 Assume d does not vanish in \mathbb{F}. Then there exist infinitely many $\omega \in \mathbb{F}$ that satisfy both (i) and (ii) below:

(i) The equation $f_\omega(x) = 0$ has no repeated roots.

(ii) The equation $f_\omega(x) = 0$ has no roots in Γ, where Γ is from Lemma 5.6.

Proof. Follows from Lemmas 5.5 and 5.6.

Lemma 5.8 Let $\omega \in \mathbb{F}$ with $\omega \neq 1$, $\omega \neq 2$. Assume that the equation $f_\omega(x) = 0$ has no repeated roots.

(i) Assume $\text{Char}(\mathbb{F}) \neq 2$ and d is odd. Then the equation $f_\omega(x) = 0$ has mutually distinct $d - 1$ nonzero roots other than ± 1.

(ii) Assume d is even. Then the equation $f_\omega(x) = 0$ has mutually distinct $d - 2$ nonzero roots other than ± 1.

Proof. We claim that the equation $f_\omega(x) = 0$ has mutually distinct d nonzero roots. By Lemma 5.2(ii) and since $\omega \neq 1$, the polynomial $f_\omega(x)$ has degree d and $f_\omega(0) \neq 0$. Now the claim holds by this and since $f_\omega(x) = 0$ has no repeated roots.

(i): By Lemma 5.2(i) $f_\omega(1) = 0$. We have $f_\omega(-1) \neq 0$ by Lemma 5.2(iv) and since $\omega \neq 2$, $\text{Char}(\mathbb{F}) \neq 2$. By these comments and the claim, the equation $f_\omega(x) = 0$ has mutually distinct $d - 1$ nonzero roots other than ± 1.

(ii): By Lemma 5.2(i), (iii) each of 1, -1 is a root of $f_\omega(x) = 0$. By this and the claim, the equation $f_\omega(x) = 0$ has mutually distinct $d - 2$ nonzero roots other than ± 1. □
6 Proof of Theorem 1.14

Proof of Theorem 1.14. Suppose we are given a parameter array over \mathbb{F}:
\[
(\{\theta_i\}_{i=0}^d, \{\theta_i^*\}_{i=0}^d, \{\varphi_i\}_{i=1}^d, \{\phi_i\}_{i=1}^d).
\]

Let \tilde{P} denote the set of parameter arrays
\[
(\{\tilde{\theta}_i\}_{i=0}^d, \{\tilde{\theta}_i^*\}_{i=0}^d, \{\tilde{\varphi}_i\}_{i=1}^d, \{\tilde{\phi}_i\}_{i=1}^d)
\]
over \mathbb{F} that satisfy
\[
\tilde{\theta}_0 = \theta_0, \quad \tilde{\theta}_d = \theta_d, \quad \tilde{\theta}_0^* = \theta_0^*, \quad \tilde{\theta}_d^* = \theta_d^*,
\]
\[
\tilde{\varphi}_1 = \varphi_1, \quad \tilde{\varphi}_d = \varphi_d, \quad \tilde{\phi}_1 = \phi_1, \quad \tilde{\phi}_d = \phi_d.
\]

We count the number of elements of \tilde{P}. By Theorem 1.11 a parameter array in \tilde{P} is determined by its fundamental parameter. Let \tilde{Q} denote the set of nonzero $\tilde{q} \in \mathbb{F}$ such that $\tilde{q} + \tilde{q}^{-1}$ is the fundamental parameter for some $\tilde{p} \in \tilde{P}$. Note that \tilde{q} is determined up to inverse by the fundamental parameter. So we count the number of elements of \tilde{Q} up to inverse. Define
\[
\Omega = \frac{\phi_1 + \phi_d - \varphi_1 - \varphi_d}{(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}.
\]

By Proposition 1.12 for $\tilde{p} \in \tilde{P}$ we obtain the equation:

Type of \tilde{p}	Equation
I	$\frac{(\tilde{q} - 1)\tilde{q}^{d-1} + 1}{\tilde{q}^d - 1} = \Omega$
II	$2/d = \Omega$
III$^+$	$2(d - 1)/d = \Omega$
III$^-$	$2 = \Omega$
IV	$0 = \Omega$

where $\tilde{q} + \tilde{q}^{-1}$ is the fundamental parameter of \tilde{p}.

We claim that at least one of $1, -1$ is not contained in \tilde{Q} when $\text{Char}(\mathbb{F}) \neq 2$. By way of contradiction, assume $\text{Char}(\mathbb{F}) \neq 2$ and $\{1, -1\} \subseteq \tilde{Q}$. Then there is a $\tilde{p}_1 \in \tilde{P}$ (resp. $\tilde{p}_2 \in \tilde{P}$) that has fundamental parameter 2 (resp. -2). Note that \tilde{p}_1 has type II and \tilde{p}_2 has type III$^+$ or III$^-$. So by (5) $d\Omega = 2$, and either $d\Omega = 2(d - 1)$ or $\Omega = 2$. If $d\Omega = 2$ and $d\Omega = 2(d - 1)$, then $d - 2$ vanishes in \mathbb{F}. If $d\Omega = 2$ and $\Omega = 2$, then $d - 1$ vanishes in \mathbb{F}. But, by Note 2.4 neither of $d - 1, d - 2$ vanishes in \mathbb{F}, a contradiction. We have shown the claim. Now we count the number of elements of \tilde{Q} up to inverse. Note that $\Omega \neq 1$ by Corollary 1.13. First assume $\Omega \neq 2, d\Omega \neq 2$, and $d\Omega \neq 2(d - 1)$. By Lemma 5.4(i), (ii) there are up to inverse at most $((d - 1)/2)$ elements of \tilde{Q}. Next assume d is even and $d\Omega = 2$. By Lemma 5.4(iii) there are up to inverse at most $(d - 4)/2$ elements of \tilde{Q} other
than ±1. Next assume d is odd and $d\Omega = 2$. By Lemma 5.4 (iv) there are up to inverse at most $(d - 3)/2$ elements of \tilde{Q} other than ±1. Next assume d is even and $d\Omega = 2(d - 1)$. By Lemma 5.4 (v) there are up to inverse at most $(d - 4)/2$ elements of \tilde{Q} other than ±1. Next assume d is odd and $\Omega = 2$. By Lemma 5.4 (vi) there are up to inverse at most $(d - 3)/2$ elements of \tilde{Q} other than ±1. By these comments and the claim, there are up to inverse at most $\lfloor (d - 1)/2 \rfloor$ elements of \tilde{Q}. The result follows. \qed

7 How to construct a parameter array having specified end-parameters

In this section we try to construct a parameter array having specified end-parameters. To simplify our description, we restrict our attention to type I; we can proceed in a similar way for the other types. Fix an integer $d \geq 3$, and pick scalars

$$
\theta_0, \quad \theta_d, \quad \theta_0^*, \quad \theta_d^*, \quad \varphi_1, \quad \varphi_d, \quad \phi_1, \quad \phi_d
$$

in \mathbb{F} such that $\theta_0 \neq \theta_d$ and $\theta_0^* \neq \theta_d^*$. We will try to construct a parameter array

$$
(\{\tilde{\theta}_i\}_{i=0}^{d}, \{\tilde{\Theta}_i^*\}_{i=0}^{d}, \{\tilde{\varphi}_i\}_{i=1}^{d}, \{\tilde{\phi}_i\}_{i=1}^{d})
$$

that satisfies

$$
\begin{align*}
\tilde{\theta}_0 &= \theta_0, & \tilde{\theta}_d &= \theta_d, & \tilde{\theta}_0^* &= \theta_0^*, & \tilde{\theta}_d^* &= \theta_d^*, \\
\tilde{\varphi}_1 &= \varphi_1, & \tilde{\varphi}_d &= \varphi_d, & \tilde{\phi}_1 &= \phi_1, & \tilde{\phi}_d &= \phi_d.
\end{align*}
$$

(6)

Define

$$
\Omega = \frac{\phi_1 + \phi_d - \varphi_1 - \varphi_d}{(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}.
$$

In view of Note 2.2 and Proposition 1.12, we assume there exists a nonzero $q \in \mathbb{F}$ such that $q^i \neq 1$ for $1 \leq i \leq d$, and

$$
\Omega = \frac{(q - 1)(q^{d-1} - 1)}{q^d - 1}.
$$

(7)

In view of Lemma 3.1, we define scalars $\{\tilde{\theta}_i\}_{i=0}^{d}, \{\tilde{\Theta}_i^*\}_{i=0}^{d}$ as follows.

Definition 7.1 For $0 \leq i \leq d$ define

$$
\begin{align*}
\tilde{\theta}_i &= \theta_0 - \frac{(q^i - 1)(q^{2d-i-1} - 1)(\theta_0 - \theta_d)}{(q^{d-1} - 1)(q^d - 1)} + \frac{(q^i - 1)(q^{d-i} - 1)(\varphi_1 - \varphi_d)}{(q - 1)(q^{d-1} - 1)(\theta_0^* - \theta_d^*)}, \\
\tilde{\Theta}_i^* &= \theta_0^* - \frac{(q^i - 1)(q^{2d-i-1} - 1)(\theta_0^* - \theta_d^*)}{(q^{d-1} - 1)(q^d - 1)} + \frac{(q^i - 1)(q^{d-i} - 1)(\phi_1 - \phi_d)}{(q - 1)(q^{d-1} - 1)(\theta_0 - \theta_d)}.
\end{align*}
$$

The following two lemmas can be routinely verified.

Lemma 7.2 With reference to Definition 7.1

$$
\tilde{\theta}_0 = \theta_0, \quad \tilde{\theta}_d = \theta_d, \quad \tilde{\Theta}_0^* = \theta_0^*, \quad \tilde{\Theta}_d^* = \theta_d^*.
$$
Lemma 7.3 Assume \(\tilde{\theta}_i \neq \tilde{\theta}_j, \tilde{\theta}_i^* \neq \tilde{\theta}_j^* \) for \(1 \leq i < j \leq d \). Then each of the expressions

\[
\frac{\tilde{\theta}_{i-2} - \tilde{\theta}_{i+1}}{\tilde{\theta}_{i-1} - \tilde{\theta}_i}, \quad \frac{\tilde{\theta}_{i-2}^* - \tilde{\theta}_{i+1}^*}{\tilde{\theta}_{i-1}^* - \tilde{\theta}_i^*}
\]

is equal to \(q + q^{-1} + 1 \) for \(2 \leq i \leq d - 1 \).

In view of Lemma 2.10(i) we define scalars \(\{ \varphi_i \}_{i=1}^d \) as follows.

Definition 7.4 For \(1 \leq i \leq d \) define

\[
\varphi_i = \frac{(q^i - 1)(q^{d-i+1} - 1)}{(q - 1)(q^d - 1)}.
\]

In view of Lemma 1.6(iii), (iv), we define scalars \(\{ \tilde{\varphi}_i \}_{i=1}^d, \{ \tilde{\phi}_i \}_{i=1}^d \) as follows.

Definition 7.5 For \(1 \leq i \leq d \) define

\[
\tilde{\varphi}_i = \varphi_1 \tilde{\varphi}_i + (\tilde{\theta}_i^* - \tilde{\theta}_0^*) (\tilde{\theta}_i - \tilde{\theta}_0), \\
\tilde{\phi}_i = \varphi_1 \tilde{\phi}_i + (\tilde{\theta}_i^* - \tilde{\theta}_0^*) (\tilde{\theta}_{d-i+1} - \tilde{\theta}_0).
\]

Lemma 7.6 With reference to Definition 7.5

\[
\tilde{\varphi}_1 = \varphi_d, \quad \tilde{\varphi}_d = \varphi_d, \quad \tilde{\phi}_1 = \phi_1, \quad \tilde{\phi}_d = \phi_d.
\]

Proof. One routinely checks that

\[
\begin{align*}
\tilde{\varphi}_1 &= \phi_1 + \phi_d - \varphi_d - \frac{(q - 1)(q^{d-1} + 1)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}{q^d - 1}, \\
\tilde{\varphi}_d &= \varphi_d, \\
\tilde{\phi}_1 &= \varphi_1 + \varphi_d - \phi_d + \frac{(q - 1)(q^{d-1} + 1)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}{q^d - 1}, \\
\tilde{\phi}_d &= \varphi_1 + \varphi_d - \phi_d + \frac{(q - 1)(q^{d-1} + 1)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}{q^d - 1}.
\end{align*}
\]

Now the result follows from (7). \(\square \)

Proposition 7.7 The sequence \(\tilde{p} = (\{ \tilde{\theta}_i \}_{i=0}^d, \{ \tilde{\theta}_i^* \}_{i=0}^d, \{ \tilde{\varphi}_i \}_{i=1}^d, \{ \tilde{\phi}_i \}_{i=1}^d) \) is a parameter array over \(F \) if and only if

\[
\begin{align*}
\tilde{\theta}_i \neq \tilde{\theta}_j, & \quad \tilde{\theta}_i^* \neq \tilde{\theta}_j^* \quad (0 \leq i < j \leq d), \quad (8) \\
\tilde{\varphi}_i \neq 0, & \quad \tilde{\phi}_i \neq 0 \quad (1 \leq i \leq d). \quad (9)
\end{align*}
\]

In this case, the parameter array \(\tilde{p} \) satisfies (6).

Proof. The first assertion follows from Definition 1.7, Lemma 7.3, and Definition 7.5. The second assertion follows from Lemmas 7.2 and 7.6. \(\square \)
8 Proof of Theorem 1.15

In this section we prove Theorem 1.15. Fix an integer \(d \geq 3 \). Assume \(\text{Char}(F) \neq 2 \) and \(d \) does not vanish in \(F \). Recall the polynomial \(f_\omega(x) \) from Definition 5.1.

By Corollary 5.7 there exists \(\omega \in F \) such that

- \(\omega \neq 1, \omega \neq 2 \);
- the equation \(f_\omega(x) = 0 \) has no repeated roots;
- the equation \(f_\omega(x) = 0 \) has no roots in \(\Gamma \), where \(\Gamma \) is from Lemma 5.6.

Fix \(\omega \in F \) that satisfies the above conditions.

By Lemma 5.8 there are up to inverse precisely \(\lfloor (d-1)/2 \rfloor \) nonzero roots of \(f_\omega(x) = 0 \) other than \(\pm 1 \). For such a root \(q \) and for \(\zeta \in F \), we construct a sequence \(\tilde{p}(q, \zeta) \) as follows. Define scalars

\[
\begin{align*}
\theta_0 &= 0, & \theta_d &= 1, & \theta_0^* &= 0, & \theta_d^* &= 1, \\
\varphi_1 &= 1, & \varphi_d &= -1, & \phi_1 &= \zeta, & \phi_d &= \omega - \zeta.
\end{align*}
\]

Observe that

\[
\omega = \phi_1 + \phi_d - \varphi_1 - \varphi_d \frac{(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}{(\theta_0^* - \theta_d^*)(\theta_0 - \theta_d^*)}.
\]

For \(0 \leq i \leq d \) define scalars \(\tilde{\theta}_i = \tilde{\theta}_i(q, \zeta) \) and \(\tilde{\theta}_i^* = \tilde{\theta}_i^*(q, \zeta) \) as in Definition 7.1. For \(1 \leq i \leq d \) define scalars \(\tilde{\varphi}_i = \tilde{\varphi}_i(q, \zeta) \) and \(\tilde{\phi}_i = \tilde{\phi}_i(q, \zeta) \) as in Definition 7.5. We have constructed a sequence

\[
\begin{align*}
\tilde{p}(q, \zeta) &= (\{\tilde{\theta}_i(q, \zeta)\}_{i=0}^{d}, \{\tilde{\theta}_i^*(q, \zeta)\}_{i=0}^{d}, \{\tilde{\varphi}_i(q, \zeta)\}_{i=1}^{d}, \{\tilde{\phi}_i(q, \zeta)\}_{i=1}^{d}).
\end{align*}
\]

The following two lemmas can be routinely verified.

Lemma 8.1 For \(0 \leq i, j \leq d \)

\[
\tilde{\theta}_i(q, \zeta) - \tilde{\theta}_j(q, \zeta) = \frac{(q^i-q^j)Z_1(q, \zeta)}{(q-1)(q^{d-1}-1)(q^d-1)},
\]

where

\[
Z_1(q, \zeta) = \zeta(q^d-1)(q^{d-i-j}-1) + q(q^{d-1}-1)(q^{d-i-j-1}-1).
\]

Lemma 8.2 For \(0 \leq i, j \leq d \)

\[
\tilde{\theta}_i^*(q, \zeta) - \tilde{\theta}_j^*(q, \zeta) = \frac{(q^i-q^j)Z_2(q, \zeta)}{(q-1)(q^{d-1}-1)(q^d-1)},
\]

where

\[
Z_2(q, \zeta) = \zeta(q^d-1)(q^{d-i-j}-1) - (q^d-1)(q^{d-i-j+1}+1) + 2q^{d-i-j}(q^{i+j}+1).
\]
Lemma 8.3 For $0 \leq i < j \leq d$ the following hold:

(i) $\tilde{\theta}_i(q, \zeta) = \tilde{\theta}_j(q, \zeta)$ holds for only one value of ζ.

(ii) $\tilde{\theta}^*_i(q, \zeta) = \tilde{\theta}^*_j(q, \zeta)$ holds for only one value of ζ.

Proof. (i): Observe by Lemma 8.1 that $\tilde{\theta}_i(q, \zeta) = \tilde{\theta}_j(q, \zeta)$ if and only if $Z_1(q, \zeta) = 0$. First assume $q^{d-i-j} - 1 = 0$. Then

$$Z_1(q, \zeta) = (1 - q)(q^{d-1} - 1) \neq 0.$$

Next assume $q^{d-i-j} - 1 \neq 0$. Then $Z_1(q, \zeta)$ is a polynomial in ζ with degree 1. So $Z_1(q, \zeta) = 0$ holds for only one value of ζ. The result follows.

(ii): Similar to the proof of (i).

The following two lemmas can be routinely verified.

Lemma 8.4 For $1 \leq i \leq d$

$$\tilde{\varphi}_i(q, \zeta) = -\frac{(q^i - 1)(q^{d-i+1} - 1) Z_3(q, \zeta)}{(q - 1)^2(q^{d-1} - 1)^2(q^d - 1)^2},$$

where

$$Z_3(q, \zeta) = \zeta^2(q^d - 1)^2(q^{i-1} - 1)(q^{d-i} - 1)$$

$$- \zeta(q - 1)(q^d - 1)(q^{d-1} + 1)(q^{i-1} - 1)(q^{d-i} - 1)$$

$$- (q^{d-1} - 1)(q^i - 1)((q^{d-1} + 1)(q^{d-i+1} + 1) - 2q^{d-i}(q^i + 1)).$$

Lemma 8.5 For $1 \leq i \leq d$

$$\tilde{\phi}_i(q, \zeta) = -\frac{(q^i - 1)(q^{d-i+1} - 1) Z_4(q, \zeta)}{(q - 1)^2(q^{d-1} - 1)^2(q^d - 1)^2},$$

where

$$Z_4(q, \zeta) = \zeta^2(q^d - 1)^2(q^{i-1} - 1)(q^{d-i} - 1)$$

$$- \zeta(q - 1)(q^d - 1)((q^{d-i} - 1)(q^{d+1-i-2} - 1) - q^{d-i}(q^{i-1} - 1)^2)$$

$$- (q^{d-1} - 1)(q^{i-1} - 1)((q^{d-1} + 1)(q^{d-i+2} + 1) - 2q^{d-i+1}(q^{i-1} + 1)).$$

Lemma 8.6 For $1 \leq i \leq d$ the following hold:

(i) $\tilde{\varphi}_i(q, \zeta) = 0$ holds for at most two values of ζ.

(ii) $\tilde{\phi}_i(q, \zeta) = 0$ holds for at most two values of ζ.

Proof. (i): Observe by Lemma 8.4 that $\tilde{\varphi}_i(q, \zeta) = 0$ if and only if $Z_3(q, \zeta) = 0$. First assume $i = 1$. Then

$$Z_3(q, \zeta) = (1 - q)(q^{d-1} - 1)^2(q^d - 1) \neq 0.$$
Next assume \(i = d \). Then
\[
Z_3(q, \zeta) = (q - 1)(q^{d-1} - 1)^2(q^d - 1) \neq 0.
\]
Next assume \(i \neq 1 \) and \(i \neq d \). Then \(Z_3(q, \zeta) \) is a quadratic polynomial in \(\zeta \). So \(Z_3(q, \zeta) = 0 \) holds for at most two values of \(\zeta \).

(ii): Observe by Lemma 8.5 that \(\tilde{\phi}_i(q, \zeta) = 0 \) if and only if \(Z_4(q, \zeta) = 0 \). First assume \(i = 1 \). Then
\[
Z_4(q, \zeta) = (1 - q)(q^{d-1} - 1)^2(q^d - 1).
\]
So \(Z_4(q, \zeta) \neq 0 \) unless \(\zeta = 0 \). Next assume \(i = d \). Then
\[
Z_4(q, \zeta) = (q - 1)(q^{d-1} - 1)^2(\zeta(q^d - 1) - (q - 1)(q^{d-1} + 1))\].
So \(Z_4(q, \zeta) = 0 \) for only one value of \(\zeta \). Next assume \(i \neq 1 \) and \(i \neq d \). Then \(Z_4(q, \zeta) \) is a quadratic polynomial in \(\zeta \). So \(Z_4(q, \zeta) = 0 \) for at most two values of \(\zeta \).

Proof of Theorem 1.15. By Lemma 5.8 there are up to inverse precisely \([(d - 1)/2]\) nonzero roots of \(f_\omega(x) = 0 \) other than \(\pm 1 \). Write these roots as \(q_1, q_2, \ldots, q_n \), where \(n = [(d - 1)/2] \). For \(1 \leq r \leq n \), by Lemmas 8.3 and 8.6 there are only finitely many \(\zeta \) such that \(\tilde{\phi}(q_r, \zeta) \) conflicts \[S\] or \[T\]. Thus there exists \(\zeta \in \mathbb{F} \) such that \(\tilde{\phi}(q_r, \zeta) \) satisfies both \[S\] and \[T\] for \(1 \leq r \leq n \). Then by Proposition 7.7, for \(1 \leq r \leq n \) the sequence \(\tilde{\phi}(q_r, \zeta) \) is a parameter array over \(\mathbb{F} \) that satisfy
\[
\tilde{\theta}_0(q_r, \zeta) = \theta_0, \quad \tilde{\theta}_d(q_r, \zeta) = \theta_d, \quad \tilde{\theta}_0^*(q_r, \zeta) = \theta_0^*, \quad \tilde{\theta}_d^*(q_r, \zeta) = \theta_d^*,
\]
\[
\tilde{\varphi}_1(q_r, \zeta) = \varphi_1, \quad \tilde{\varphi}_d(q_r, \zeta) = \varphi_d, \quad \tilde{\phi}_1(q_r, \zeta) = \phi_1, \quad \tilde{\phi}_d(q_r, \zeta) = \phi_d.
\]
Now the result follows by Lemma 1.6.

\[
\Box
\]

9 Appendix

Fix an integer \(d \geq 3 \). Let \(\mathbf{3} \) be a parameter array over \(\mathbb{F} \) with fundamental parameter \(\beta \). Pick a nonzero \(q \in \mathbb{F} \) such that \(\beta = q + q^{-1} \). In this appendix, we display formulas that represent \(\varphi_i \) and \(\phi_i \) in terms of the end-parameters and \(q \).

Assume \(\mathbf{3} \) has type I. Then for \(1 \leq i \leq d \)
\[
\varphi_i = -\frac{q^{i-1}(q^i - 1)(q^{d-i} - 1)(q^{d-i+1} - 1)(q^{2d-i-1} - 1)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}{(q^{d-1} - 1)^2(q^d - 1)^2}
+ \frac{(q^i - 1)(q^{d-i+1} - 1)((q^{d-i} - 1)(q^{2d-i-1} - 1)\varphi_d + q^{i-1}(q^{d-i} - 1)^2(\phi_1 + \phi_d - \varphi_d))}{(q - 1)(q^{d-1} - 1)^2(q^d - 1)}
+ \frac{(q^{i-1} - 1)(q^i - 1)(q^{d-i} - 1)(q^{d-i+1} - 1)(\phi_1 - \varphi_d)(\phi_1 - \phi_d)}{(q - 1)^2(q^{d-1} - 1)^2(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}
\]
\[
\phi_i = \frac{q^{i-1}(q^i - 1)(q^{d-i} - 1)(q^{d-i+1} - 1)(q^{2d-i-1} - 1)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}{(q^{d-1} - 1)^2(q^d - 1)^2}
+ \frac{(q^i - 1)(q^{d-i+1} - 1)((q^{d-i} - 1)(q^{2d-i-1} - 1)\phi_d + q^{i-1}(q^{d-i} - 1)^2(\varphi_1 + \varphi_d - \phi_d))}{(q - 1)(q^{d-1} - 1)^2(q^d - 1)}
- \frac{(q^{i-1} - 1)(q^i - 1)(q^{d-i} - 1)(q^{d-i+1} - 1)(\varphi_1 - \phi_d)(\varphi_1 - \phi_d)}{(q - 1)^2(q^{d-1} - 1)^2(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}.
\]
Assume i and if i.

Assume (3) has type III. Then for $1 \leq i \leq d$

\[
\varphi_i = \frac{i(d - i)(d - i + 1)(2d - i - 1)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}{d^2(d - 1)^2} + \frac{i(d - i + 1)((i - 1)(2d - i - 1)\phi_d + (d - i)^2(\phi_1 + \phi_d - \varphi_d))}{d(d - 1)^2} + \frac{i(i - 1)(d - i)(\phi_1 - \varphi_d)(\phi_d - \varphi_d)}{(d - 1)^2(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}.
\]

\[
\phi_i = \frac{i(d - i)(d - i + 1)(2d - i - 1)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}{d^2(d - 1)^2} + \frac{i(d - i + 1)((i - 1)(2d - i - 1)\phi_d + (d - i)^2(\varphi_1 + \varphi_d - \phi_d))}{d(d - 1)^2} - \frac{i(i - 1)(d - i)(d - i + 1)(\varphi_1 - \phi_d)(\varphi_d - \phi_d)}{(d - 1)^2(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}.
\]

Assume (3) has type III$^+$. Then for $1 \leq i \leq d$

\[
\varphi_i = \begin{cases}
 \frac{i(d \varphi_d + (d - i)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*))}{(d - i + 1)(d(\phi_1 + \phi_d - \varphi_d) - (2d - i - 1)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*))} & \text{if } i \text{ is even,} \\
 \frac{i(d \phi_d - (d - i)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*))}{(d - i + 1)(d(\varphi_1 + \varphi_d - \phi_d) + (2d - i - 1)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*))} & \text{if } i \text{ is odd,}
\end{cases}
\]

\[
\phi_i = \begin{cases}
 \frac{i(d \varphi_d + (d - i)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*))}{(d - i + 1)(d(\phi_1 + \phi_d - \varphi_d) - (2d - i - 1)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*))} & \text{if } i \text{ is even,} \\
 \frac{i(d \phi_d - (d - i)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*))}{(d - i + 1)(d(\varphi_1 + \varphi_d - \phi_d) + (2d - i - 1)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*))} & \text{if } i \text{ is odd.}
\end{cases}
\]

Assume (3) has type III$^-$. Then for $1 \leq i \leq d$ the following hold.

If i is even,

\[
\varphi_i = \frac{i(i - 1)(\phi_1 - \varphi_d - (\theta_0 - \theta_d)(\theta_0^* - \theta_d^*))(\phi_d - \varphi_d - (\theta_0 - \theta_d)(\theta_0^* - \theta_d^*))}{(d - 1)^2(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)},
\]

and if i is odd,

\[
\varphi_i = -\frac{(d - i)(2d - i - 1)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}{(d - 1)^2} + \frac{(i - 1)(2d - i - 1)\varphi_d + (d - i)^2(\phi_1 + \phi_d - \varphi_d)}{(d - 1)^2} + \frac{(i - 1)(d - i)(\phi_1 - \varphi_d)(\phi_d - \varphi_d)}{(d - 1)^2(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}.
\]

Assume θ.
If i is even,
\[
\phi_i = -\frac{i(d-i+1)(\varphi_1 - \phi_d + (\theta_0 - \theta_d)(\theta_0^* - \theta_d^*))}{(d-1)^2(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)} (\varphi_d - \phi_d + (\theta_0 - \theta_d)(\theta_0^* - \theta_d^*))
\]
and if i is odd,
\[
\phi_i = \frac{(d-i)(2d-i-1)(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}{(d-1)^2}
+ \frac{(i-1)(2d-i-1)\phi_d + (d-i)^2(\varphi_1 + \varphi_d - \phi_d)}{(d-1)^2}
- \frac{(i-1)(d-i)(\varphi_1 - \phi_d)(\varphi_d - \phi_d)}{(d-1)^2(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}.
\]

Assume (3) has type IV. Then
\[
\varphi_2 = \frac{\phi_1 - \varphi_1 + (\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}{(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)} (\varphi_1 - \varphi_3 + (\theta_0 - \theta_d)(\theta_0^* - \theta_d^*))
\]
\[
\phi_2 = \frac{\varphi_1 - \phi_1 + (\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)}{(\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)} (\varphi_1 - \phi_3 + (\theta_0 - \theta_d)(\theta_0^* - \theta_d^*)).
\]

10Acknowledgments

The author would like to thank Paul Terwilliger for giving this paper a close reading and offering many valuable suggestions.

References

[1] S. Lang, Algebra, Graduate Texts in Math., 211, Springer, 2002.

[2] K. Nomura, P. Terwilliger, Some trace formulae involving the split sequences of a Leonard pair, Linear Algebra Appl. 413 (2006) 189–201; arXiv:math/0508407.

[3] K. Nomura, P. Terwilliger, Balanced Leonard pairs, Linear Algebra Appl. 420 (2007) 51-69; arXiv:math/0506219.

[4] K. Nomura, P. Terwilliger, Affine transformations of a Leonard pair, Electron. J. of Linear Algebra 16 (2007) 389-418; arXiv:math/0611783.

[5] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001) 149–203; arXiv:math/0406555.

[6] P. Terwilliger, Leonard pairs from 24 points of view, Rocky Mountain J. Math. 32 (2002) 827–888; arXiv:math/0406577.

[7] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array, Des. Codes Cryptogr. 34 (2005) 307–332; arXiv:math/0306291.
[8] P. Terwilliger, An algebraic approach to the Askey scheme of orthogonal polynomials, Orthogonal polynomials and special functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, pp. 255–330; arXiv:math/0408390.

Kazumasa Nomura
Tokyo Medical and Dental University
Kohnodai, Ichikawa, 272-0827 Japan
email: knomura@pop11.odn.ne.jp

Keywords. Leonard pair, tridiagonal pair, tridiagonal matrix.
2010 Mathematics Subject Classification. 05E35, 05E30, 33C45, 33D45