PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein

Hansol Lee,1,3 John C. Quinn,1 Kannanganattu V. Prasanth,5 Victoria A. Swiss,1,4 Kyriakos D. Economides,1 Marie M. Camacho,1 David L. Spector,5 and Cory Abate-Shen1,2,3,6

1Center for Advanced Biotechnology and Medicine, 2The Cancer Institute of New Jersey, 3Departments of Medicine and Neuroscience, 4Graduate Program in Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA

The mechanisms by which homeoproteins bind selectively to target genes in vivo have long remained unresolved. Here we report that PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein by regulating its subnuclear localization and proximity to target genes. We demonstrate that the interaction of Msx1 with PIAS1, but not its sumoylation, is required for Msx1 to function as an inhibitor of myoblast differentiation through repression of myogenic regulatory genes, such as MyoD. We find that PIAS1 enables Msx1 to bind selectively to a key regulatory element in MyoD, the CER, in myoblast cells and to distinguish the CER from other nonregulatory TAAT-containing sequences. We show that PIAS1 is required for the appropriate localization and retention of Msx1 at the nuclear periphery in myoblast cells. Furthermore, we demonstrate that myogenic regulatory genes that are repressed by Msx1, namely MyoD and Myf5, are located at the nuclear periphery in myoblast cells. We propose that a key regulatory event for DNA-binding specificity by homeoproteins in vivo is their appropriate targeting to subnuclear compartments where their target genes are located, which can be achieved by cofactors such as PIAS1.

[Keywords: Homeobox genes; protein–protein interactions; myoblast differentiation; PIAS genes; DNA-binding specificity; sumoylation]

Supplemental material is available at http://www.genesdev.org.

Received November 14, 2005; revised version accepted January 31, 2006.
a key regulatory element in the *MyoD* promoter called the core enhancer region (CER) [Goldhamer et al. 1992; Kucharczuk et al. 1999; Lee et al. 2004]. Binding of Msx1 to the CER, as well as transcriptional repression and inhibition of differentiation, requires the selective interaction of Msx1 with a linker histone, mouse H1b [human H1c] [Lee et al. 2004]. In contrast to its selective interaction with the CER in myoblast cells, Msx1 can interact in vitro with many DNA sites containing a TAAT core motif [Catron et al. 1993], which is typical of other homeoproteins [Scott et al. 1989]. This contrast emphasizes the important distinction between the apparent DNA-binding properties of Msx1 in vitro and its actual function in myoblast cells.

In pursuit of Msx1-interacting proteins that contribute to DNA-binding specificity in a cellular context, we have now isolated PIAS1 by yeast two-hybrid screening. PIAS1 is a member of a family of at least five genes and/or spliced variants [PIAS1, PIAS3, PIASγ, PIASxα,PIAS xβ], one of which [PIASxβ] was isolated as a protein partner for Mxs2 [and called Miz-1, for Mxs-2-interacting protein 1] [Wu et al. 1997]. PIAS proteins were initially described as inhibitors of STAT signaling, hence their name protein inhibitor of activated STATs (Liu et al. 1997). PIAS proteins have numerous partners, many of which are transcription factors [Schmidt and Muller 2003]. The consequences of these interactions are often manifested as transcriptional repression [Schmidt and Muller 2003] and PIAS proteins have themselves been shown to interact with DNA via an N-terminal region called the SAP domain [Fig. 1A; Sachdev et al. 2001]. Further insights regarding their mechanisms of repression were provided by the discovery that PIAS proteins can function as E3 ligases for sumoylation mediated by a ring-finger domain in the C-terminal region [Fig. 1A; Kahyo et al. 2001; Sachdev et al. 2001; Kotaja et al. 2002; Schmidt and Muller 2002]. We now report that Msx1 interacts with PIAS1, which results in modification of Msx1 by sumoylation. We find that the interaction of Msx1 with PIAS1, but not its sumoylation, is required for transcriptional repression and inhibition of differentiation. PIAS1 facilitates the selective interaction of Msx1 with a key regulatory element on the *MyoD* promoter and results in the coincident localization of Msx1 with the *MyoD* gene, as well as the *Myf5* gene, at the nuclear periphery. Thus, our findings highlight a new role for PIAS1 proteins as regulators of homeoprotein DNA-binding specificity through their ability to control the localization of homeoproteins within the nucleus and their proximity to target genes.

Results

Msx1 interacts specifically with PIAS1

Among the genes that we found to interact with Msx1 by yeast two-hybrid screening, we focused on PIAS1 because [1] we had also isolated Ubc9, which encodes an E2 enzyme in the sumoylation pathway [Seeler and Dejean 2001; Hay 2005]; and [2] Msx2 had been previously shown to interact with another member of the PIAS family, PIASxβ [Miz-1] [Wu et al. 1997]. We verified the interaction of Msx1 with endogenous PIAS1, as well as with the exogenous protein, by coimmunoprecipitation assays [Fig. 1B].

By analyses of truncated Msx1 proteins, we found that the C-terminal region of Msx1 was necessary for interaction with PIAS1 [Fig. 1A,C]. Moreover, this interaction was disrupted by deletion of the last five amino acids of Msx1 [Supplementary Fig. 2A]. Conversely, analyses of truncated PIAS1 proteins in vitro revealed that an N-terminal region [amino acids 1–200], including the SAP domain, was necessary for interaction with Msx1 [Fig. 1D, Supplementary Fig. 2B].

The interaction of Msx1 with PIAS1 was highly specific since no such interaction was observed with several other homeoproteins, including its closest homolog Mxs2 [Fig. 1E]. This prompted us to further verify that Msx1, but not Mxs2, interacted with PIAS1 [Supplementary Fig. 1B]. Conversely, we found that Msx1 did not interact with PIASx β, which was shown previously to interact with Mxs2 [Fig. 1F; Wu et al. 1997]. Taken together, these findings demonstrate that the interaction between Msx1 and PIAS1 is highly selective, even among members of their respective protein families. To our knowledge this is the first biochemical activity that discriminates Msx1 and Mxs2, which are otherwise virtually indistinguishable [Catron et al. 1996; Bendall and Abate-Shen 2000].

The reported expression patterns of *Msx1* and *PIAS* genes, including *PIAS1*, are largely overlapping during mouse development [Bendall and Abate-Shen 2000; Sturm et al. 2000] and *Msx1* and *PIAS1* are coexpressed in undifferentiated C2C12 myoblast cells [Supplementary Fig. 3]. Moreover, both *Msx1* and *PIAS1* are down-regulated during terminal differentiation of these cells, as is evident from the appearance of myotubes and by expression of *myogenin*, a marker of muscle cell differentiation [Supplementary Fig. 3; Olson and Klein 1994]. Therefore, Msx1 and PIAS1 are coexpressed in biologically relevant contexts.

The interaction of Msx1 with PIAS1, but not its modification by sumoylation, is required for Msx1 activity

Considering that PIAS proteins function as E3 SUMO ligases [Kahyo et al. 2001; Sachdev et al. 2001; Kotaja et al. 2002; Schmidt and Muller 2002], we next investigated whether the interaction of Msx1 with PIAS1 resulted in its modification by sumoylation. We found that Msx1 was indeed sumoylated in 293T cells [Fig. 1G]. This modification was stimulated by exogenous PIAS1 [Supplementary Fig. 4A], while an Msx1 protein lacking the PIAS1-interacting region [Msx1[1–271]] was not sumoylated [Fig. 1G]. Detection of exogenous Myc-SUMO revealed two modified forms of Msx1 [indicated by asterisks in Fig. 1G], the upper one being predominant, as well as additional slower-mobility forms [indicated by SUMO(n) in Fig. 1G], which likely represent multimeric SUMO-modified Msx1 proteins [Fig. 1G]. Accordingly,
Msx1 has two lysine residues in the N-terminal region (K15 and K133) that are putative consensus sites for sumoylation (KXE) (Supplementary Fig. 1A; Hochstrasser 2001; Seeler and Dejean 2003; Hay 2005). Substitution of these, but not other, lysine residues with arginine [Msx1(K15R); Msx1(K133R); and Msx1(K15R,K133R)] rendered Msx1 proteins that were defective for sumoylation (Fig. 1G; Supplementary Fig. 4A,B).

However, these sumoylation-defective Msx1 proteins [Msx1(K15R), Msx1(K133R), and Msx1(K15R,K133R)] were capable of interacting with PIAS1 [Fig. 2A; Supplementary Fig. 4C]. Conversely, PIAS1 proteins with defective E3 SUMO ligase activity [HA-PIAS1(W372A) and HA-PIAS1(C350S) (Kahyo et al. 2001; Kotaja et al. 2002)] interacted with Msx1 (Fig. 1D). Thus, while PIAS1 sumoylates Msx1, this modification is not required for its interaction with Msx1.

The major sumoylation site (K133) is located within an N-terminal region that is required for several key functions of Msx1, namely interaction with histone...
H1b, transcriptional repression, inhibition of differentiation, and binding to the CER regulatory element in the MyoD promoter (Supplementary Fig. 1A; Lee et al. 2004). However, we found that sumoylation of Msx1 was not necessary for any of these activities (Fig. 2A–D; Supplementary Fig. 5A,B). In fact, rather than being decreased, each of these activities of the sumoylation-defective Msx1(K15R,K133R) were modestly but reproducibly increased relative to that of wild-type Msx1. In striking contrast, an Msx1 protein lacking the PIAS1 interaction region [Msx1(1–271)] was significantly attenuated in its ability to repress transcription, inhibit myoblast differentiation, and bind to the CER (Fig. 2A–D). These findings suggest that the interaction of Msx1 with PIAS1, but not its sumoylation, is required for Msx1 to inhibit differentiation and repress MyoD expression.

We directly investigated the requirement of PIAS for these activities of Msx1 by performing knock-down experiments using short hairpin RNA interference (shRNAi) [Fig. 3]. We found that depletion of endogenous PIAS1, but not PIASxβ, attenuated the activities of Msx1 in transcriptional repression and inhibition of myoblast differentiation [Fig. 3A,B; Supplementary Fig. 5C; data not shown]. Notably, the consequences of PIAS1 depletion were analogous to removal of the PIAS1 interaction region [Msx1(1–271)] [Fig. 2A–D)]. Therefore, the activities of Msx1 in transcriptional repression and inhibition of differentiation are dependent on PIAS1.

PIAS1 confers DNA-binding specificity on Msx1 in myoblast cells

Considering that an Msx1 protein lacking the PIAS1 interaction region [Msx1(1–271)] was impaired in its ability to interact with the CER [Fig. 2D], we next asked whether PIAS1 affected DNA-binding specificity of Msx1 in myoblast cells. Inspection of sequences up to 25 kb upstream of the MyoD promoter revealed numerous (>80) DNA sequences containing one or more TAAT motifs (Fig. 3C), which are potential Msx1-binding sites [Gautron et al. 1993]. While Msx1 bound to most of these TAAT sites in vitro [V.A. Swiss and C. Abate-Shen, unpubl.], it bound exclusively to the CER (fragment A) of endogenous MyoD in the C2C12 myoblast cells [Fig. 3C].

Figure 2. The interaction of Msx1 with PIAS1 is necessary for its activity. (A) Summary of the relative activities of Msx1 and truncated or mutated derivatives. The asterisks indicate the positions of amino acid substitutions. A description of the proteins is provided in Supplementary Table 2. (B) Cells were transfected with an expression plasmid expressing Msx1 or the indicated Msx1 truncated or mutated derivatives (100 ng) along with a MyoD luciferase reporter plasmid (100 ng). Data are expressed as fold repression relative to the vector control. (C) Cells were infected with a retrovirus expressing Msx1 or the indicated Msx1 derivatives and grown in conditions that promote differentiation to myotubes (Supplementary Fig. 5B). Expression of myogenin, relative to GAPDH, was determined by real-time PCR. For comparison, control cells were grown in conditions that maintain their undifferentiated state (Vector, UD). (D) Cells were infected with a retrovirus expressing Msx1 or the indicated Msx1 derivatives and grown in conditions that maintain their undifferentiated state. Binding to the CER of the endogenous MyoD gene was examined by ChIP analyses. Data were normalized to Actin as a control. Insets in B–D are Western blots showing the expression levels of the exogenous Msx1 and its derivatives. Data in B–D represent the averages of at least three independent experiments done in triplicate; error bars indicate standard deviation.
Supplementary Fig. 5D). These observations extend our previous findings (Lee et al. 2004) and demonstrate the ability of Msx1 to distinguish between a potential binding site in vitro and an authentic target site in vivo.

Importantly, we found that PIAS1 also interacts specifically and preferentially with the CER of the endogenous MyoD gene in myoblast cells. ChIP assays were done in C2C12 cells expressing Flag-PIAS1, with or without Myc-Msx1. Anti-Flag was used to isolate fragments A, G, or H as indicated. Shown are representative data from two experiments done in triplicate; error bars indicate standard deviation. [E] Depletion of PIAS1 decreases the DNA-binding specificity of Msx1 in myoblast cells. ChIP assays were done in C2C12 cells following infection with retroviruses containing a control RNAi or two different PIAS1 shRNAi, or a PIASxβ shRNAi and a retrovirus expressing Flag-Msx1. Data show the average of three independent experiments done in triplicate; error bars indicate standard deviation. The p values compare binding of Msx1 in cells expressing the control versus PIAS1 shRNAi [1] for sites A or G as indicated. Relative binding was determined using Actin as a control. [Inset] Western blot showing that the levels of Msx1 are not altered by the PIAS1 shRNAi.

PIAS1 is required for localization of Msx1 at the nuclear periphery

To further investigate the significance of the interaction between Msx1 and PIAS1, we examined their subnuclear localization in myoblast cells. In the absence of exogenous Msx1, exogenous PIAS1 displayed a punctate distribution within the nucleus [Fig. 4F, K], as has been reported in other cell types (Sachdev et al. 2001; Kotaja et al. 2002). However, when coexpressed with Msx1, PIAS1 exhibited a striking redistribution to the nuclear periphery.
ery where it was colocalized with Msx1 [Fig. 4B,G,L]. Importantly, the distribution patterns of these proteins, either individually or together, were not dependent on fixation conditions or other experimental parameters (see Materials and Methods).

We extended these studies by examining the localization of endogenous Msx1 in mouse embryos, focusing on the forelimb where both Msx1 and PIAS1 are known to be coexpressed (Bendall and Abate-Shen 2000; Sturm et al. 2000). Using a monoclonal antibody that recognizes both Msx1 and Msx2 (hence, we refer to Msx expression) (Liem et al. 1995), we observed that endogenous Msx proteins were also located at the nuclear periphery in the embryonic forelimb (Fig. 4P–S). Therefore, localization of Msx1 at the nuclear periphery is not likely to be a consequence of its exogenous expression in cell culture.

Colocalization of Msx1 and PIAS1 at the nuclear periphery required their interaction, since proteins lacking their respective interaction regions were not colocalized at the periphery (Fig. 4D,I,N; Supplementary Fig. 6). Notably, Msx1-A, which is not active in transcriptional repression but interacts with PIAS1 (Figs. 1C, 2A,B; Zhang et al. 1996), was not colocalized with PIAS1 at the nuclear periphery (Fig. 4E,J,O). Taken together, these findings indicate that, regardless of its sumoylation status, Msx1 can colocalize with PIAS1 at the nuclear periphery, provided that it is able to interact with PIAS1 and function as a transcriptional repressor.

We investigated whether localization of Msx1 at the nuclear periphery was dependent on endogenous PIAS1 using shRNAi knock-down. We found that depletion of PIAS1, but not PIASx (Figs. 1C,2A,B; Zhang et al. 1996), was not colocalized with PIAS1 at the nuclear periphery (Fig. 4E,J,O). Taken together, these findings indicate that, regardless of its sumoylation status, Msx1 can colocalize with PIAS1 at the nuclear periphery, provided that it is able to interact with PIAS1 and function as a transcriptional repressor.

We extended these studies by examining the localization of endogenous Msx1 in mouse embryos, focusing on the forelimb where both Msx1 and PIAS1 are known to be coexpressed (Bendall and Abate-Shen 2000; Sturm et al. 2000). Using a monoclonal antibody that recognizes both Msx1 and Msx2 (hence, we refer to Msx expression) (Liem et al. 1995), we observed that endogenous Msx proteins were also located at the nuclear periphery in the embryonic forelimb (Fig. 4P–S). Therefore, localization of Msx1 at the nuclear periphery is not likely to be a consequence of its exogenous expression in cell culture.

Colocalization of Msx1 and PIAS1 at the nuclear periphery required their interaction, since proteins lacking their respective interaction regions were not colocalized at the periphery (Fig. 4D,I,N; Supplementary Fig. 6). Notably, Msx1-A, which is not active in transcriptional repression but interacts with PIAS1 (Figs. 1C, 2A,B; Zhang et al. 1996), was not colocalized with PIAS1 at the nuclear periphery (Fig. 4E,J,O). Taken together, these findings indicate that, regardless of its sumoylation status, Msx1 can colocalize with PIAS1 at the nuclear periphery, provided that it is able to interact with PIAS1 and function as a transcriptional repressor.

We investigated whether localization of Msx1 at the nuclear periphery was dependent on endogenous PIAS1 using shRNAi knock-down. We found that depletion of PIAS1, but not PIASx, rendered Msx1 no longer concentrated at the periphery but instead diffusely localized throughout the nucleus (Fig. 4T–V). Notably, this expression pattern was similar to that of an Msx1 protein lacking the PIAS1 interaction region [Msx1(1–271)] (Fig. 4D,I,N). Therefore, PIAS1 is necessary for localization of Msx1 to the nuclear periphery.
PIAS1 restricts the mobility of Msx1 within the nucleus

We extended these observations by investigating whether PIAS1 affects the kinetics of movement of Msx1 in living cells. We performed fluorescence recovery after photobleaching (FRAP) using fluorescently tagged derivatives of Msx1 [CFP-Msx1, CFP-Msx1[1–271] and CFP-Msx1[K15R,K133R]] expressed in C2C12 cells. We observed that CFP-Msx1 displayed a time for half-recovery \(t_{1/2} \) in the range of 20–22 sec (Fig. 5; Supplementary Fig. 7), which is in the order of reported values for other transcriptional regulatory proteins (Carrero et al. 2003). However, following depletion of PIAS1, but not PIASx\(\beta \), the mobility of CFP-Msx1 within the nucleus was significantly increased \(t_{1/2} = 13 \) sec, \(p = 0.01 \). Similarly, an Msx1 protein lacking the PIAS1 interaction region [CFP-Msx1[1–271]] displayed rapid kinetics of movement within the nucleus (Supplementary Fig. 7). Although the resolution of this live-cell imaging experiment does not permit effective visualization of Msx1 at the nuclear periphery, we observed that CFP-Msx1 displayed slower kinetics of movement near the periphery relative to more internal regions of the nucleus \(t_{1/2} = 24 \) vs. 20 sec, respectively (Supplementary Fig. 7). These findings suggest that PIAS1 is not only required for the localization of Msx1 at the nuclear periphery, it also prevents its dispersion by restricting the mobility of Msx1 within the nucleus.

Msx1 target genes are located in the nuclear periphery

Considering the involvement of PIAS1 in the localization and retention of Msx1 at the nuclear periphery, we next performed DNA FISH to ask where Msx1 target genes are located in myoblast cells. Strikingly, we found that MyoD was localized to the nuclear periphery in >98% (116 of 118) of C2C12 cells but seldom (24 of 102) in nonmyoblast cells, such as HC11 (Fig. 6A,E). This localization of MyoD to the nuclear periphery was not dependent on expression of Msx1 or PIAS1 (Fig. 6H; data not shown); however, it was dependent on the differentiation status of the cells, since MyoD was not localized to the periphery in differentiated C2C12 cells (Fig. 6D).

In addition to MyoD, Myf5, another myogenic regulatory gene that is repressed by Msx1 [Lee et al. 2004] (Y.
Chen and C. Abate-Shen, in prep.), was also localized to the nuclear periphery in >90% (58 of 63) of C2C12 cells but not in HC11 cells (29 of 69) (Fig. 6B,F). In contrast, mCAT2 [MacLeod 1996], a gene that is expressed in muscle cells but not repressed by Msx1 [Y. Chen and C. Abate-Shen, unpubl.], displayed no preference for localization to the nuclear periphery in either C2C12 or HC11 cells (41 of 89) (Fig. 6C,G). Cumulatively, our findings suggest that PIAS1 regulates the localization Msx1, the consequences of which are to bring Msx1 to the proximity of genes that are targets for its repressor function (Fig. 7).

Discussion

Understanding how homeoproteins achieve target recognition in vivo remains a critical problem in developmental biology. Indeed, bona fide target genes for homeoproteins, as well as the regulatory sequences to which they bind in vivo, remain poorly defined. To a large extent this reflects the striking contrast between the promiscuous DNA-binding specificities of homeoproteins in vitro and their selective recognition of target sites in vivo, which makes it virtually impossible to extrapolate from an in vitro binding site to a bona fide target gene. So, the challenge is to investigate the biochemical properties of homeoproteins within biologically relevant contexts.

In our analyses of the mechanisms underlying DNA-binding specificity of the Msx1 homeoprotein in vivo, we have now found that PIAS1 is a critical determinant of target site recognition by Msx1 in myoblast cells. Our current studies complement our previous ones in which we demonstrated that the functions of Msx1 as a transcriptional repressor and regulator of differentiation require its interaction with histone H1b [Lee et al. 2004]. Notably, the interaction of Msx1 with PIAS1 occurs through a distinct domain from that required for its interaction with H1b and, unlike the interaction with H1b, the interaction of Msx1 with PIAS1 is not conserved with Msx2, which itself interacts with a different member of the PIAS family [Wu et al. 1997]. Thus, we envision that target site recognition by Msx1 (and extrapolating more generally to other homeoproteins) represents the culmination of several distinct protein interactions, some of which are shared with Msx2 [or other homeoproteins] while others are exclusive for Msx1.

Interestingly, the E3 SUMO ligase activity of PIAS1 does not appear to be required for its ability to confer DNA-binding specificity on Msx1 in vivo or for inhibition of differentiation or transcriptional repression. Although PIAS proteins sumoylate many protein partners, the consequences of this modification differ dramatically depending on the particular partner [Hochstrasser 2001; Gill 2003; Seeler and Dejean 2003; Hay 2005]. In some cases, sumoylation has profound effects, as exemplified by sumoylation of Sp3, which renders it transcriptionally inactive and also affects its subnuclear localization [Ross et al. 2002; Sapetschnig et al. 2002]. However, for other proteins, such as Lef1, the consequences of sumoylation are not readily apparent [Sachdev et al. 2001]. In the case of Msx1, the lack of a requirement for sumoylation seems countertuitive, since the primary sumoylation site is located within the minimal conserved region required for inhibition of differentiation and transcriptional repression [Lee et al. 2004]. Indeed, rather than being less active, an Msx1 protein that is defective for sumoylation is slightly more active, which leads us to speculate that sumoylation of Msx1 may be inhibitory for these activities. One possibility is that sumoylation provides a clearance mechanism for rendering Msx1 inactive and thereby “fine-tuning” the extent and/or timing of its repressive capabilities.

While colocalization of PIAS proteins with their partners is common, colocalization to the nuclear periphery is unusual, the interaction of PIAS proteins with part-

Figure 6. Target genes that are repressed by Msx1 in myoblast cells are localized to the nuclear periphery. DNA FISH analyses showing the localization [white arrowheads] of the MyoD, Myf5, or mCAT2 genes in undifferentiated myoblast cells (C2C12, A–C) and nonmyoblast cells (HC11, E–G). Also shown is the localization of the MyoD gene in differentiated C2C12 cells (D) and in undifferentiated C2C12 cells expressing a PIAS1 RNAi (H).

Figure 7. Model showing how PIAS1 confers DNA-binding specificity on Msx1 by regulating its proximity to target genes. In the absence of PIAS1, Msx1 is free to diffuse within the nucleus and access irrelevant TAAT sites, whereas with PIAS1, Msx1 is retained at the nuclear periphery where it binds specific targets, such as the CER of MyoD.
mers generally results in sequestration to nuclear bodies, as exemplified by the association of PIASy with the activator, Lef1 [Sachdev et al. 2001]. Considering that Lef1 and Msx1 have complementary biological functions in at least one biological context [Chen et al. 1996; Kratochwil et al. 1996], it is tempting to speculate that their actions are regulated, at least in part, by the ability of PIAS proteins to shuttle Lef1 and Msx1 to distinct subnuclear compartments, potentially toward or away from distinct sets of target genes.

It has long been recognized that the organization of chromosomes within the nucleus is an active process, in which chromosomes partition into distinct compartments depending on the cell type, differentiation status, and other biological parameters [Marshall et al. 1997; Vazquez et al. 2002, Harmon and Sedat 2005]. Therefore, although not previously appreciated, it is perhaps not surprising that the shuttling of a homeoprotein protein to the nuclear compartment where its target genes reside plays a critical role in target recognition. Notably, the colocalization of Msx1 and PIAS1 at the nuclear periphery requires that Msx1 be competent for repression, since a transcriptionally inert form of Msx1 [Msx1-A] does not colocalize with PIAS1 at the periphery. Therefore, although localization of Msx1 to the periphery requires PIAS1, Msx1 is clearly not an innocent bystander but rather an active participant in the dynamic localization of its proximity to its targets. Notably, the nuclear periphery is now recognized as a critical compartment not only for gene silencing but also for regulation of transcriptional repression (Gasser 2001; Kosak and Groudine 2000). A total of 2.7 × 10⁶ transformants were screened for potential interactors. Following four independent verifications, 29 positive interactors were obtained, which corresponded to 12 independent genes. Among these were one positive clone that corresponded to PIAS1 and one that corresponded to Ubc9.

Cell culture, immunoprecipitation, and chromat in immunoprecipitation (ChIP) assays

Cell culture studies were done using human 293T cells or mouse C2C12 myoblast cells. Transcriptional repression was measured by transfection of Msx1 [or other] expression plasmids along with a MyoD reporter plasmid [pGL2-F5]/2.5 MyoD-promoter-luciferase] as in Hu et al. [2001] and Lee et al. [2004]. For myoblast differentiation assays, undifferentiated C2C12 cells were grown in media containing 10% serum and differentiation was induced by shifting cells to media containing 0.1% serum [Hu et al. 2001; Lee et al. 2004].

For immunoprecipitation assays, cells were lysed in RIPA buffer and proteins were immunoprecipitated with anti-Flag M2 agarose [Sigma] [Lee et al. 2004]. Immunoprecipitated proteins were analyzed by immunoblotting using ECL plus Western Blotting Detection (Amersham). For the detection of endogenous PIAS1, membranes were blocked with 10% normal donkey serum [Jackson Immunological] and incubated with anti-PIAS1 antibody [C-20, Santa Cruz]. Other antibodies used were anti-Flag (M2, Sigma), anti-Myc [Hu et al. 2001], anti-HA [HA-7, Sigma], and anti-V5 [V5-10, Sigma].

Primers [Supplementary Table 1] were used to PCR amplify 11 fragments [300 base pairs each] from the upstream region of the MyoD gene as per Fig. 3C and ChIP was done as described [Lee et al. 2004]. Samples were quantified by real-time PCR. Other Flag-tagged homeoproteins, and MBP-Msx1 were described in Lee et al. [2004] and references therein. Sequences encoding Msx1 derivatives with substitutions of lysine residues and those encoding the CFP-tagged Msx1 proteins were generated by PCR mutagenesis. Sequences corresponding to the coding region of PIAS1 were generated by PCR from image clone #1296138 [Research Genetics/Invitrogen] using oligonucleotides that introduced the Flag or HA epitope tags at the N terminus. Sequences encoding truncated PIAS1 proteins and PIAS1 proteins with substitutions of residues 372 and 350 were made by PCR. Other PIAS cDNAs were described in Liu et al. [1998]. Sequences corresponding to full-length SUMO were isolated by PCR from image clones #1547915 [SUMO2] or #849895 [SUMO1]. All data shown were obtained using SUMO2; similar results were obtained with SUMO1. All DNA sequences generated by PCR were sequence confirmed. Expression plasmids were as follows: (1) for production of MBP-tagged proteins in Escherichia coli, pMAL-c2E [New England Biolabs]; (2) for transient transfection, pcDNA3 [Invitrogen]; (3) for retroviral gene transfer, pLZRS-IRE-GFP [Lee et al. 2004]; and (4) for retroviral delivery of shRNAi, pMSCV-HpaG-Gateway [Hemann et al. 2003]. Sequences of primers used in this study are provided in Supplementary Table 1; a description of all proteins used is provided in Supplementary Table 2.

Yeast two-hybrid screen

Yeast two-hybrid screening was performed using the DupLEX-A yeast two-hybrid system [Origene Technologies, Inc.] with the full-length Msx1 coding region fused to LexA as the bait. The library was made from mammary glands of day 12.5 pregnant mice [Origene Technologies, Inc.], where Msx1 is known to be expressed and functionally relevant [Bendall and Abate-Shen 2000]. Cell culture, immunoprecipitation, and chromat in immunoprecipitation (ChIP) assays

Yeast two-hybrid screening

Yeast two-hybrid screening was performed using the DupLEX-A yeast two-hybrid system [Origene Technologies, Inc.] with the full-length Msx1 coding region fused to LexA as the bait. The library was made from mammary glands of day 12.5 pregnant mice [Origene Technologies, Inc.]. Sequences encoding truncated PIAS1 proteins and PIAS1 proteins with substitutions of residues 372 and 350 were made by PCR. Other PIAS cDNAs were described in Liu et al. [1998]. Sequences corresponding to full-length SUMO were isolated by PCR from image clones #1547915 [SUMO2] or #849895 [SUMO1]. All data shown were obtained using SUMO2; similar results were obtained with SUMO1. All DNA sequences generated by PCR were sequence confirmed. Expression plasmids were as follows: (1) for production of MBP-tagged proteins in Escherichia coli, pMAL-c2E [New England Biolabs]; (2) for transient transfection, pcDNA3 [Invitrogen]; (3) for retroviral gene transfer, pLZRS-IRE-GFP [Lee et al. 2004]; and (4) for retroviral delivery of shRNAi, pMSCV-HpaG-Gateway [Hemann et al. 2003]. Sequences of primers used in this study are provided in Supplementary Table 1; a description of all proteins used is provided in Supplementary Table 2.

Cell culture, immunoprecipitation, and chromat in immunoprecipitation (ChIP) assays

Cell culture studies were done using human 293T cells or mouse C2C12 myoblast cells. Transcriptional repression was measured by transfection of Msx1 [or other] expression plasmids along with a MyoD reporter plasmid [pGL2-F5]/2.5 MyoD-promoter-luciferase] as in Hu et al. [2001] and Lee et al. [2004]. For myoblast differentiation assays, undifferentiated C2C12 cells were grown in media containing 10% serum and differentiation was induced by shifting cells to media containing 0.1% serum [Hu et al. 2001; Lee et al. 2004].

For immunoprecipitation assays, cells were lysed in RIPA buffer and proteins were immunoprecipitated with anti-Flag M2 agarose [Sigma] [Lee et al. 2004]. Immunoprecipitated proteins were analyzed by immunoblotting using ECL plus Western Blotting Detection (Amersham). For the detection of endogenous PIAS1, membranes were blocked with 10% normal donkey serum [Jackson Immunological] and incubated with anti-PIAS1 antibody [C-20, Santa Cruz]. Other antibodies used were anti-Flag (M2, Sigma), anti-Myc [Hu et al. 2001], anti-HA [HA-7, Sigma], and anti-V5 [V5-10, Sigma].

Primers [Supplementary Table 1] were used to PCR amplify 11 fragments [300 base pairs each] from the upstream region of the MyoD gene as per Fig. 3C and ChIP was done as described [Lee et al. 2004]. Samples were quantified by real-time PCR.

Materials and methods

Plasmids

Plasmids encoding Flag- or Myc-tagged Msx1, Msx1-A [Msx1-K174A,R176A,F179A], the truncated Flag-Msx1 deriva-

tives, other Flag-tagged homeoproteins, and MBP-Msx1 were described in Lee et al. [2004] and references therein. Sequences encoding Msx1 derivatives with substitutions of lysine residues and those encoding the CFP-tagged Msx1 proteins were generated by PCR mutagenesis. Sequences corresponding to the coding region of PIAS1 were generated by PCR from image clone #1296138 [Research Genetics/Invitrogen] using oligonucleotides that introduced the Flag or HA epitope tags at the N terminus. Sequences encoding truncated PIAS1 proteins and PIAS1 proteins with substitutions of residues 372 and 350 were made by PCR. Other PIAS cDNAs were described in Liu et al. [1998]. Sequences corresponding to full-length SUMO were isolated by PCR from image clones #1547915 [SUMO2] or #849895 [SUMO1]. All data shown were obtained using SUMO2; similar results were obtained with SUMO1. All DNA sequences generated by PCR were sequence confirmed. Expression plasmids were as follows: (1) for production of MBP-tagged proteins in Escherichia coli, pMAL-c2E [New England Biolabs]; (2) for transient transfection, pcDNA3 [Invitrogen]; (3) for retroviral gene transfer, pLZRS-IRE-GFP [Lee et al. 2004]; and (4) for retroviral delivery of shRNAi, pMSCV-HpaG-Gateway [Hemann et al. 2003]. Sequences of primers used in this study are provided in Supplementary Table 1; a description of all proteins used is provided in Supplementary Table 2.
using an Mx4000 Multiplex Quantitative PCR System [Stratagene].

Immunofluorescence in cells and mouse embryos

Immunofluorescence assays were done in C2C12 cells expressing Mx1 and/or PIAS1 and/or the indicated PIAS shRNAi. Cells were fixed in 4% paraformaldehyde, blocked with 10% goat serum, and incubated with the following antibodies: Cy3-conjugated anti-Myc (Sigma), FITC-conjugated anti-FLAG (Sigma), and anti-HA (Sigma) visualized with Texas Red [Molecular Probes]. Immunofluorescence was visualized with a Leica DMIRE2/TPS SP2 inverted confocal microscope equipped with argon/krypton and helium/neon lasers using excitation wavelengths 488, 543, and 594 nm. For Cy3 and Texas Red, the collection range of emission spectra was narrowed to eliminate the possibility of bleed-through from these two fluoros. Similar results to those shown in Figure 4 and Supplementary Figure 6 were obtained in independent experiments performed in cells fixed with 10% formalin or 95% methanol/5% acetic acid as well as different antibody combinations.

Immunofluorescence assays were done on cryosections of mouse embryos from post-coital day 10.5 (10.5 dpc) that had been fixed in 4% paraformaldehyde. Mx proteins were visualized using the 4G1 antibody [Developmental Studies Hybridoma Bank], which recognizes both Mx1 and Mx2 [Liem et al. 1995].

FRAP assays

C2C12 cells expressing the CFP-Msx1 with or without the indicated PIAS shRNAi were plated on 35-mm glass-bottom microwell dishes [MatTek]. FRAP was performed using a Leica confocal microscope (as above) fitted with an INC-2000 chamber/incubator (20/20 Technology, Inc.) at a constant temperature of 37°C and with constant levels of CO2 (5%). Photobleaching was performed using a 488-nm argon/krypton laser at full laser power (100% for 0.828 sec). Three regions of interest were chosen for each cell analyzed: one in the center of the nucleus, a second near the nuclear periphery, and a third in the cytoplasm (used for calculation of background). Fluorescence recovery was monitored for a period of 300 sec using a 63× oil objective by scanning at low laser power (5%) at 0.828-sec increments. Recovery curves were generated using Leica Confocal Software.

DNA FISH

C2C12 cells were pre-extracted in cytoskeletal buffer [CSK: 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, and 10 mM PIPES at pH 6.8] containing 0.5% Triton-X 100 for 5 min on ice and fixed with 3.7% freshly prepared formaldehyde for 15 min at room temperature. The cells were washed in 1× PBS [pH 7.2] and heat denatured in 70% formamide and 2× SSC at 72°C for 5 min, followed by hybridization with the nick-translated BAC probes in 2× SSC, 50% formamide, 10% dextran sulfate, yeast tRNA, and Cot-1 DNA overnight at 37°C as previously described [Xing et al. 1995]. BAC clones were nick-translated using spectrum red-conjugated dUTP as a substitute nucleotide according to the manufacturer’s instructions [VYSIS, Inc.]. The BAC clones used were as follows: MyoD, RP24-358H24; Myf5, RP23-57E8; mCAT2, RPCI-23-94B23 [all from CHORI].

Acknowledgments

The 4G1 antibody was obtained from Developmental Studies Hybridoma Bank [Iowa City, IA]. We thank Drs. Eric Rubin and Fang Liu for advice and plasmids and Dr. Yong Lin for advice on statistical analyses. We thank Drs. Marc Gartenberg, Richard Ebright, Arnold Rabson, Danny Reinberg, Aaron Shatkin, Michael Shen, and Dinah Singer for critical comments on the manuscript. This work was supported by NIH grants ROI HD29446 to C.A.S. and GM42694 to D.L.S. K.D.E. was supported by a post-doctoral fellowship from the Department of Defense [PC040429] and V.A.S. by a predoctoral training grant in biochemistry and molecular biology [GM08360].

References

Bendall, A.J. and Abate-Shen, C. 2000. Roles for Msx and Dlx homeoproteins in vertebrate development. Gene 247: 17–31.
Bendall, A.J., Ding, J., Hu, G., Shen, M.M., and Abate-Shen, C. 1999. Mx1 antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors. Development 126: 4965–4976.
Carrera, G., McDonald, D., Crawford, E., de Vries, G., and Hendzel, M.J. 2003. Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 29: 14–28.
Catron, K.M., Iler, N., and Abate, C. 1993. Nucleotides flanking a conserved TAAAT core dictate the DNA binding specificity of three murine homeodomain proteins. Mol. Cell. Biol. 13: 2354–2365.
Catron, K.M., Wang, H., Hu, G., Shen, M.M., and Abate-Shen, C. 1996. Comparison of MSX-1 and MSX-2 suggests a molecular basis for functional redundancy. Mech. Dev. 55: 185–199.
Chen, Y., Bei, M., Woo, I., Satokata, I., and Maas, R. 1996. Mx1 controls inductive signaling in mammalian tooth morphogenesis. Development 122: 3035–3044.
Davidson, D. 1995. The function and evolution of Mx genes: Pointers and paradoxes. Trends Genet. 11: 405–411.
Gasser, S.M. 2001. Positions of potential: Nuclear organization and gene expression. Cell 104: 639–642.
Gehring, W.J. 1987. Homeo boxes in the study of development. Science 236: 1245–1252.
Gill, G. 2003. Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr. Opin. Genet. Dev. 13: 108–113.
Goldhamer, D.J., Faerman, A., Shani, M., and Emerson Jr., C.P. 1992. Regulatory elements that control the lineage-specific expression of myoD. Science 256: 538–542.
Harmon, B. and Sedat, J. 2005. Cell-by-cell dissection of gene expression and chromosomal interactions reveals consequences of nuclear reorganization. PLoS Biol. 3: e67.
Hay, R.T. 2005. SUMO: A History of Modification. Mol. Cell 18: 1–12.
Hayashi, S. and Scott, M.P. 1990. What determines the specificity of action of Drosophila homeodomain proteins? Cell 63: 883–894.
Hemann, M.T., Fridman, J.S., Zillfiou, J.T., Hernandez, E., Paddison, P.J., Cordon-Cardo, C., Hannon, G.J., and Lowe, S.W. 2003. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat. Genet. 33: 396–400.
Hochstrasser, M. 2001. SP-RING for SUMO: New functions bloom for a ubiquitin-like protein. Cell 107: 5–8.
Houzelstein, D., Auda-Boucher, G., Cheraud, Y., Rouaud, T., Blanc, I., Tajakhsh, S., Buckingham, M.E., Fontaine-Perus, J., and Robert, B. 1999. The homeobox gene Msx1 is expressed in a subset of somites, and in muscle progenitor cells migrating into the forelimb. Development 126: 2689–2701.
Hu, G., Lee, H., Price, S.M., Shen, M.M., and Abate-Shen, C. 2001. Msx homeobox genes inhibit differentiation through upregulation of cyclin D1. Development 128: 2373–2384.

Jabs, E.W., Muller, U., Li, X., Ma, L., Luo, W., Haworth, I.S., Klisak, I., Sparkes, R., Warman, M.L., Mulliken, J.B., et al. 1993. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 75: 443–450.

Jumlongras, D., Be, M., Stimson, J.M., Wang, W.F., DePalma, S.R., Seidman, C.E., Felbor, U., Maas, R., Seidman, J.G., and Olsen, B.R. 2001. A nonsense mutation in MSX1 causes Witekop syndrome. Am. J. Hum. Genet. 69: 67–74.

Kahyo, T., Nishida, T., and Yasuda, H. 2001. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol. Cell 8: 713–718.

Kosak, S.T. and Groudine, M. 2004. Form follows function: The genomic organization of cellular differentiation. Genes & Dev. 18: 1371–1384.

Kotaja, N., Karvonen, U., Janne, O.A., and Palvimo, J.J. 2002. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell. Biol. 22: 5222–5234.

Kratochwil, K., Dull, M., Farinas, I., Galceran, J., and Grosschedl, R. 1996. Lefl expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes & Dev. 10: 1382–1394.

Krumlauf, R. 1994. Hox genes in vertebrate development. Cell 78: 191–201.

Kucharczuk, K.L., Love, C.M., Dougherty, N.M., and Goldhamer, D.J. 1999. Fine-scale transgenic mapping of the MyoD core enhancer: MyoD is regulated by distinct but overlapping mechanisms in myotomal and non-myotomal muscle lineages. Development 126: 1957–1965.

Lee, H., Habas, R., and Abate-Shen, C. 2004. MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science 304: 1675–1678.

Levine, M. and Hoey, T. 1988. Homeobox genes as sequence-specific transcription factors. Cell 55: 537–540.

Liem Jr., K.F., Tremml, G., Roelink, H., and Jessell, T.M. 1995. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82: 969–979.

Liu, B., Liao, J., Rao, X., Kushner, S.A., Chung, C.D., Chang, D.D., and Shuai, K. 1998. Inhibition of Stat1-mediated gene activation by PIAS1. Proc. Natl. Acad. Sci. 95: 10626–10631.

MacLeod, C.L. 1996. Regulation of cationic amino acid transporter (CAT) gene expression. Biochem. Soc. Trans. 24: 846–852.

Manley, J.L. and Levine, M.S. 1985. The homeo box and mammalian development. Cell 43: 1–2.

Mann, R.S. and Allfolter, M. 1998. Hox proteins meet more partners. Curr. Opin. Genet. Dev. 8: 423–429.

Marshall, W.F., Fung, I.C., and Sedat, J.W. 1997. Deconstructing the nucleus: Global architecture from local interactions. Curr. Opin. Genet. Dev. 7: 259–263.

Misteli, T. 2004. Spatial positioning, a new dimension in genome function. Cell 119: 153–156.

Odelberg, S.J., Kollhoff, A., and Keating, M.T. 2000. Dedifferentiation of mammalian myotubes induced by msx1. Cell 103: 1099–1109.

Olson, E.N. and Klein, W.H. 1994. HHLH factors in muscle development: Dead lines and commitments, what to leave in and what to leave out. Genes & Dev. 8: 1–8.

Ross, S., Best, J.L., Zon, L.L., and Gill, G. 2002. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell 10: 831–842.

Sachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F., and Grosschedl, R. 2001. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes & Dev. 15: 3088–3103.

Sapetschnig, A., Rischitior, G., Braun, H., Doll, A., Schergau, M., Melchior, F., and Suske, G. 2002. Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J. 21: 5206–5215.

Schmidt, D. and Muller, S. 2002. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl. Acad. Sci. 99: 2872–2877.

Scott, M.P., Tamkun, J.W., and Hartzell III, G.W. 1989. The structure and function of the homeodomain. Biochim. Biophys. Acta 989: 25–48.

Seeler, J.S. and Dejean, A. 2003. Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol. 4: 690–699.

Song, K., Wang, Y., and Sassoon, D. 1992. Expression of Hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature 360: 477–481.

Sturmf, S., Koch, M., and White, F.A. 2000. Cloning and analysis of a murine PIAS family member, PIASy, in developing skin and neurons. J. Mol. Neurosci. 14: 107–121.

van den Boogaard, M.J., Dorland, M., Beemer, F.A., and van Amstel, H.K. 2000. MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat. Genet. 24: 342–343.

Vastardis, H., Karimbu, N., Guthua, S.W., Seidman, J.G., and Seidman, C.E. 1996. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat. Genet. 13: 417–421.

Vazquez, J., Belmont, A.S., and Sedat, J.W. 2002. The dynamics of homologous chromosome pairing during male Drosophila meiosis. Curr. Biol. 12: 1473–1483.

Wilkie, A.O., Tang, Z., Elanko, N., Walsh, S., Twigg, S.R., Hurst, J.A., Wall, S.A., Chrzanowska, K.H., and Maxson Jr., R.E. 2000. Functional haploinsufficiency of the human homeobox gene MSX2 causes defects in skull ossification. Nat. Genet. 24: 387–390.

Woloshin, P., Song, K., Degnin, C., Killary, A.M., Goldhamer, D.J., Sassoon, D., and Thayer, M.J. 1995. MSX1 inhibits myoD expression in fibroblast x 10T1/2 cell hybrids. Cell 82: 611–620.

Wu, L., Wu, H., Ma, L., Sangiorigi, F., Wu, N., Bell, J.R., Lyons, G.E., and Maxson, R. 1997. M Izl, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA. Mech. Dev. 65: 3–17.

Xing, Y., Johnson, C.V., Moen Jr., P.T., McNeil, J.A., Goldhamer, P., Song, K., Degnin, C., Killary, A.M., Goldhamer, D.J., Sassoon, D., and Thayer, M.J. 1995. MSX1 inhibits myoD expression in fibroblast x 10T1/2 cell hybrids. Cell 82: 611–620.

Wu, L., Wu, H., Ma, L., Sangiorigi, F., Wu, N., Bell, J.R., Lyons, G.E., and Maxson, R. 1997. Msx1, in developing skin.

Xing, Y., Johnson, C.V., Moen Jr., P.T., McNeil, J.A., and Lawrence, J. 1995. Nonrandom gene organization: Structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J. Cell Biol. 131: 1635–1647.

Zhang, H., Catron, K.M., and Abate-Shen, C. 1996. A role for the Msx-1 homeodomain in transcriptional regulation: Residues in the N-terminal arm mediate TATA binding protein interaction and transcriptional repression. Proc. Natl. Acad. Sci. 93: 1764–1769.