The Management Growth Plate Injury in Animal Studies with Stem Cells Technique: Systematic Review

Panji Sananta, Yun Isnansyah, Rizqi D Rosandi, Muhammad Alwy Sugiarto
Department of Orthopaedics and Traumatology, Dr Saiful Anwar General Hospital, Malang, Indonesia

Corresponding author: Panji Sananta. Orthopaedic and Traumatology Department, Saiful Anwar General Hospital, Malang, Indonesia. Jl. Jaksa Agung Suprapto 2, Malang, 65112, East Java, Indonesia. Phone: +6282233600946. E-mail: panjisananta@ub.ac.id. ORCID ID: https://orcid.org/0000-0003-1778-6524.

doi: 10.5455/aim.2022.30.53-56
ACTA INFORM MED. 2022 MAR 30(1): 53-56
Received: Feb 05, 2022
Accepted: Mar 16, 2022

© 2022 Panji Sananta, Yun Isnansyah, Rizqi D Rosandi, Muhammad Alwy Sugiarto
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Management Growth Plate Injury in Animal Studies with Stem Cells Technique: Systematic Review

ABSTRACT
Background: Injury of growth plate may lead to serious complications such as bone bridge formation, deformity, growth disturbance, and limb length discrepancy. Stem cell therapy is one of the fields studied to mitigate this problem. There are various types and techniques which can be implemented. Objective: This systematic review aims to review the most common techniques used in the experimental animal study about the application of stem cells to treat growth plate injury. Methods: This study was conducted according to PRISMA guidelines. The following strategy was used. The terms used on the search engine were “stem cell growth plate injury” in PubMed database. A bibliometric evaluation was done on all the search results. Results: The initial PubMed search yielded 74 results, but 5 articles were eliminated because they could not be accessed. From the remaining 69 articles, 50 were excluded after abstract and full-text review. Further, 7 articles were eliminated because they did not meet the inclusion criteria. Most studies are experimental animal studies, and there is no human trial regarding this matter. Conclusion: There are still a few studies evaluating the application of stem cell in treating growth plate injuries, but the present results are generally satisfactory. Hopefully, clinical trials could be conducted in the near future.

Keywords: Animal experimental study, Growth plate, Stem cell, Injury, Systematic Review

1. BACKGROUND
Physis and epiphysis are two most important parts responsible for longitudinal growth in children. Injury of these anatomical regions usually results in excellent outcomes if treated properly. However, more severe injuries and improperly treated cases may lead to severe complications such as bone bridge formation, deformity, growth disturbance, and limb length discrepancy. This issue becomes more pressing because more children and youths participate in sports nowadays, increasing the risk of injuries (1).

Thus, recent researches aim to minimize the risks of such complications. In the last 20 years, many studies tried to elucidate the basic molecular mechanism of growth plate injury repair responses. The main responses are inflammatory, fibrogenic, osteogenic, and remodeling phases. Many cytokines play a role in these responses, including IL-6, TNF-alpha, PDGF (Platelet-derived growth factor), along with some common pathway such as Wnt/β-catenin pathway. These lead to new targets for therapy in preventing said complications (2, 3).

Many studies utilize the application of stem cells to attenuate the degree of injury, ensuring proper continuation of growth in affected children. There are many types of stem cells used in studies: bone marrow mesenchymal stem cell (bmMSC), chondrogenic stem cell, hepatic mesenchymal stem cell (hMSC), neural stem cell, a stromal vascular fraction (SVF), and various others (4–10). There are also various techniques used to apply stem cells in treating growth plate injury. The stem cell can be used independently or combined with various growth factors.
such as bone morphogenic protein (BMP). Likewise, there are various ways to apply the cells, by implantation, transplantation, scaffold, isolation, and others (12, 13).

2. OBJECTIVE
The aim of this systematic review is to review the most common techniques used in the experimental animal study about the application of stem cells to treat growth plate injury, especially regarding the methods to induce the injury, the anatomical location of the injury, and the technique used to prepare the stem cell.

3. MATERIALS AND METHODS
The following strategy was used: the terms used on the search engine were “stem cell growth plate injury”. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to perform the comprehensive data collection. A bibliometric evaluation was done on all the search results. After searching with those keywords, the authors conducted a review of abstracts to select the appropriate journals. Then, the authors extracted the necessary data from the selected journals to be further analyzed (Figure 1).

This research includes these types of studies: in-vitro study, experimental animal study, clinical study, review article, systematic review, and meta-analysis. The studies above were searched regardless of the language used in the publications. Microsoft Excel was used to create a database, the demographic data from PubMed were loaded, analyzed, and visualized using this software.

4. RESULTS
The initial PubMed search yielded 74 results, but 5 articles were eliminated because they could not be accessed. From the remaining 69 articles, 50 were excluded after abstract and full text review. Further, 7 articles were eliminated because they did not meet the inclusion criteria.

Figure 2 depicts the type of studies. The most common type of study is experimental animal study (n=12). The second most common is the review article (n=5). The least common type is in-vitro study (n=2).

Animal Samples
The most common type of animal model used is NZ white rabbits (n=7). The second most common is the rat model (n=3). The other animal model used are lambs (n=1) and miniature pigs (n=1). Figure 3 depicts the type of animals used.

Injury site
The most common injury site used in the animal models is proximal tibia (n=8). From those 8 tibial models, 7 induced injury in the medial part of the proximal tibial epiphysis, and only one induced injury in the central part. The second most common is the lateral part of distal femur (n=3), and one study induced injury in another region (iliac crest). Figure 4 depicts the injury site induced in the animal models.

Injury Type
The most common injury type induced is excision (n=5). The second most common injury type is drilling (n=4). The other types of injuries are incision (n=2) and trocar removal (n=1). Figure 5 depicts the methods of injury induced.

Stem Cell Type
From all the experimental animal studies, the most common type of stem cell used was bone marrow mesenchymal stem cells (MSC) (n=5). One study used synovial stem cells, and another one used periosteum stem cells. Four remaining studies used other types. Figure 6 depicts the stem cell types used.
The Management Growth Plate Injury in Animal Studies with Stem Cells Technique: Systematic Review

5. DISCUSSION

There are various types of stem cell that can be used in treating growth plate injury. Likewise, there are various preparation techniques that can be implemented. From all the studies we included in this systematic review, all are either experimental animal studies, in-vitro studies, or secondary articles (7, 14, 15). To the authors’ knowledge, there is currently no human trial conducted regarding this matter.

The most common type of animal model used is New Zealand white rabbit. This is understandable because NZ white rabbit is known for its easy handling, high reproduction rate, and docile temperament. Thus, the application of this model is quite economically advantageous (16).

Regarding the injury site, the most common growth plate injured is the proximal tibial growth plate, especially the medial part (17, 18). Other part injured is the distal femoral growth plate (14). The tibial growth plate injury model is an established model and has been used extensively in various animals (19).

The most common type of stem cell used as bone marrow mesenchymal stem cells (MSC). The main characteristics of this type of stem cell are multipotentiality, self-renewal, tissue regeneration, population heterogeneity, plasticity, lineage priming. This type of stem cell is proven to be versatile in its application to treat musculoskeletal problems in translational study (20).

One study used synovial stem cells. Recent studies have elucidated the specific markers of this stem cell type, and some protocols have been established to isolate this stem cell. Synovial stem cell shows promising result in the treatment of meniscal and growth plate damage (9, 21, 22). Further studies are still needed to evaluate the potential of this cell type.

One study used periosteum stem cells. Periosteum-derived cells and BMSC shows superior result compared to cells isolated from fat in forming hyaline cartilage. Other than that, this type of cell can be used in combination with growth factors such as BMP-2 in order to promote desired cell type differentiation (2, 10, 23).

Four remaining used tissue-engineered disks. The tissue-engineered disk is, in fact, a type of scaffold engineered using various compounds such as chitosan, collagen, et cetera. The results showed that the beneficial effect of these scaffold applications appeared in more concentrations of cells (25). The main goal of scaffold is to improve stem cell survival which in turn promotes its differentiation into the desired cell type (26).

6. CONCLUSION

There are still a few studies evaluating the application of stem cell in treating growth plate injuries, but the present results are generally satisfactory. Hopefully, clinical trials could be conducted in the near future.

- Patient Consent Form: This study did not perform in human.
- Author’s contribution: PS, and Y.I. gave substantial contributions to the conception or design of the work in acquisition, and analysis. Y.I. and R.D. had a part in article preparing for drafting or revising it critically for important intellectual content. P.S and M.A. gave final approval of the version to be published and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
- Conflicts of interest: There are no conflicts of interest.
- Financial support and sponsorship: None.
REFERENCES

1. Caine D, DiFiori J, Maffulli N. Physeal injuries in children's and youth sports: Reasons for concern? Br J Sports Med. 2006; 40(9): 749–760.

2. Chung R, Xian CJ. Mechanisms for growth plate injury repair and potential cell-based therapies for regeneration. J Mol Endocrinol. 2014; 53(1).

3. Chung R, Foster BK, Xian CJ. Injury responses and repair mechanisms of the injured growth plate. Front Biosci (Schol Ed). 2011 Jan; 3: 117–125.

4. Caldwell KL, Wang J. Cell-based articular cartilage repair: the link between development and regeneration. Osteoarthr Cartil. 2015 Mar; 23(3): 351–362.

5. Theise ND, Saxena R, Portmann BC, Thung SN, Yee H, Chiriboga L, et al. The canals of Hering and hepatic stem cells in humans. Hepatology. 1999; 30(6): 1425–1433.

6. Zhao X, Moore DL. Neural stem cells: developmental mechanisms and disease modeling. Cell Tissue Res. 2018 Jan; 371(1): 1-6.

7. Xian CJ, Chung R, Foster BK. Preclinical studies on mesenchymal stem cell-based therapy for growth plate cartilage injury repair. Stem Cells Int. 2011; 2011.

8. Hallett SA, Ono W, Ono N. Growth plate chondrocytes: Skeletal development, growth and beyond. Int J Mol Sci. 2019; 20(23): 1–17.

9. Fernandes TL, Kimura HA, Pinheiro CCG, Shimomura K, Nakamura N, Ferreira JR, et al. Human Synovial Mesenchymal Stem Cells Good Manufacturing Practices for Articular Cartilage Regeneration. Tissue Eng Part C Methods. 2018 Dec; 24(12): 709–716.

10. Ferretti C. Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge. World J Stem Cells. 2014; 6(3): 266.

11. Calori GM, Giannoudis PV. Enhancement of fracture healing with the diamond concept: The role of the biological chamber. Injury. 2011; 42(11): 1191–1193.

12. Kim BS, Kim JS, Sung HM, You HK, Lee J. Cellular attachment and osteoblast differentiation of mesenchymal stem cells on natural cuttlefish bone. J Biomed Mater Res-Part A. 2012; 100 A(7): 1673–1679.

13. Soleimannejad M, Ebrahimi-Barough S, Soleimani M, Nadri S, Tavangar SM, Roohipoor R, et al. Fibrin gel as a scaffold for photoreceptor cells differentiation from conjunctiva mesenchymal stem cells in retina tissue engineering. Artif Cells, Nanomedicine Biotechnol. 2018; 46(4): 805–814.

14. Planka L, Gal P, Kecova H, Klima J, Huclova J, Filova E, et al. Allogeneic and autogenous transplantations of MSCs in treatment of the physeal bone bridge in rabbits. BMC Biotechnol. 2008; 8: 1-9.

15. Cowan CM, Soo C, Ting K, Wu B. Evolving concepts in bone tissue engineering. Curr Top Dev Biol. 2005; 66: 239–285.

16. Mapara M, Thomas BS, Bhat KM. Rabbit as an animal model for experimental research. Dent Res J (Isfahan). 2012 Jan; 9(1): 111–118.

17. Chen F, Hui JHP, Chan WK, Lee EH. Cultured mesenchymal stem cell transfers in the treatment of partial growth arrest. J Pediatr Orthop. 2003; 23(4): 425–429.

18. Li L, Hui JHP, Goh JCH, Chen F, Lee EH. Chitin as a Scaffold for Mesenchymal Stem Cells Transfers in the Treatment of Partial Growth Arrest. J Pediatr Orthop. 2004; 24(2): 205–210.

19. Erickson CB, Shaw N, Hadley-Miller N, Riederer MS, Krebs MD, Payne KA. A Rat Tibial Growth Plate Injury Model to Characterize Repair Mechanisms and Evaluate Growth Plate Regeneration Strategies. J Vis Exp. 2017 Jul; (125): 55571.

20. Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther. 2010 Sep; 21(9): 1045–1056.

21. Mizuno M, Katano H, Mabuchi Y, Ogata Y, Ichinose S, Fuji S, et al. Specific markers and properties of synovial mesenchymal stem cells in the surface, stromal, and perivascular regions. Stem Cell Res Ther. 2018 May; 9(1): 123.

22. Yoshida K, Higuchi C, Nakura A, Nakamura N, Yoshikawa H. Treatment of partial growth arrest using an in vitro-generated scaffold-free tissue-engineered construct derived from rabbit synovial mesenchymal stem cells. J Pediatr Orthop. 2012; 32(3): 314–321.

23. Park J, Gelse K, Frank S, von der Mark K, Aigner T, Schneider H. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow, perichondrium/periosteum and fat-derived cells. J Gene Med. 2006 Jan; 8(1): 112–125.

24. Tomaszewski R, Viktor L, Gap A. Enhancement of cartilage repair through the addition of growth plate chondrocytes in an immature skeleton animal model. J Orthop Surg Res. 2019; 14(1): 1-10.

25. Azarpira MR, Shahcheraghi GH, Ayatollahi M, Geramizadeh B. Tissue engineering strategy using mesenchymal stem cell-based chitosan scaffolds in growth plate surgery: A preliminary study in rabbits. Orthop Traumatol Surg Res. 2015; 101(5): 601–605.

26. Dash BC, Xu Z, Lin L, Koo A, Ndon S, Berthiaume F, et al. Stem Cells and Engineered Scaffolds for Regenerative Wound Healing. Bioeng (Basel, Switzerland). 2018 Mar; 5(1): 23.