Differential Effects of Two Isoenergetic Meals Rich in Saturated or Monounsaturated Fat on Endothelial Function in Subjects With Type 2 Diabetes

OBJECTIVE — To examine the acute effects of consumption of monounsaturated (MUFAs) and saturated fatty acids (SAFAs) on endothelial function in subjects with type 2 diabetes.

RESEARCH DESIGN AND METHODS — A total of 33 participants were examined after consumption of two different isocaloric meals: one rich in MUFA and one rich in SAFA, in the form of extra-virgin olive oil and butter, respectively. Endothelial function was assessed by determination of flow-mediated dilatation (FMD).

RESULTS — FMD did not change significantly after the MUFA-rich meal but declined after the SAFA-rich meal. The FMD during the experiment, expressed as incremental area under the curve, increased after the MUFA-rich meal by 5.2 ± 2.5% and decreased after the SAFA-rich meal by 16.7 ± 6.0% (Δ = −11.5 ± 6.4%; P = 0.008).

CONCLUSIONS — Consumption of an SAFA-rich meal is harmful for the endothelium, while a MUFA-rich meal does not impair endothelial function in subjects with type 2 diabetes.

Diabetes Care 31:2276–2278, 2008

Endothelial dysfunction occurs early in the course of type 2 diabetes and contributes to the development of macrovascular complications of the disease (1, 2). Consumption of saturated fatty acids (SAFAs) impairs endothelial function for up to 6 h postmeal (3), whereas data on the effect of monounsaturated fatty acids (MUFAs) on endothelial function in subjects with type 2 diabetes are limited. According to recent nutritional recommendations, individuals with diabetes should substitute SAFA for MUFA in their diet (4), and the predominant source of MUFA in many countries is oleic acid contained in olive oil. However, the effect of consumption of olive oil on endothelial function in subjects with type 2 diabetes is not known. We tested the hypothesis that consumption of MUFA in the form of olive oil exerts a better effect on endothelial function in subjects with type 2 diabetes than that associated with consumption of butter. Because endothelial function is affected by high blood glucose, lipid and insulin concentrations, and increased oxidative stress (2), we measured these parameters during the study.

RESULTS — Mean ± SD age was 58.1 ± 9.2 years, duration of diabetes 3.8 ± 3.2 years, BMI 29.6 ± 4.3 kg/m², waist circumference 102.8 ± 10.9 cm, and A1C 7.0 ± 1.3%. After consumption of the MUFA-rich meal, FMD did not change, whereas after consumption of the SAFA-rich meal, a significant reduction in FMD was observed (Table 1). The FMD...
values, expressed as incremental area under the curve, were increased by 5.2 ± 2.5% after the MUFA-rich meal and decreased by 16.7 ± 6.0% after the SAFA-rich meal (Δ = −11.5 ± 6.4% between the test meals, P = 0.008). Baseline brachial artery diameter, baseline and peak blood flow, and percent increase in blood flow in the brachial artery did not change during the study after consumption of either test meal. Additionally, no significant differences in these parameters were observed between the test meals (Table 1).

After consumption of either test meal, plasma glucose, insulin, and triglyceride levels increased during the study, while the concentrations of total and HDL cholesterol and TPAC did not change. No significant differences were found in these parameters between the two meals, and the time-by-meal interaction was not significant (data not shown).

CONCLUSIONS — The main finding of this study is that consumption of a single MUFA-rich meal in the form of extra-virgin olive oil does not impair endothelial function in subjects with type 2 diabetes. On the contrary, consumption of a SAFA-rich meal exerts a noxious effect on endothelial function that starts at 2 h and is maintained up to 6 h postprandially. Notably, the differential effects of MUFA- and SAFA-rich diets on endothelial function were observed for similar changes in plasma glucose, insulin, and lipid concentrations in TPAC and reactive hyperemia.

Concerning the effect of MUFA on endothelial function in subjects with type 2 diabetes, one previous study showed that consumption of safflower and canola oil did not impair endothelial function 4 h postmeal (6), while another study demonstrated that substitution of PUFA for olive oil in a diet for 2 months resulted in endothelial cell activation in humans (8,9), and in vitro studies demonstrated that endothelial cells exposed to oleic acid reduce the expression of adhesion molecules (10). Furthermore, extra-virgin olive oil is rich in polyphenols that enhance the formation of nitric oxide by endothelial cells and protect endogenous antioxidant defenses postprandially (11-13). These data suggest that the protective effects of extra-virgin olive oil on endothelium could be due to the oleic acid per se, to the natural antioxidants contained in it, or to both.

Studies examining the effect of diet on endothelial function are of clinical relevance for prevention strategies in subjects with type 2 diabetes, a population vulnerable to macrovascular complications. We studied type 2 diabetic subjects without complications and with short diabetes duration; therefore, our findings cannot be extrapolated to all patients with type 2 diabetes. Moreover, we examined the effect of a single meal on endothelial function, prospective studies are needed to clarify the long-term effects of olive oil consumption on endothelial function.

References

1. Goodfellow J, Ramsey M, Luddington L, Jones C, Coates P, Dunstan F, Lewis M, Owens D, Henderson A: Endothelium and inelastic arteries: an early marker of vascular dysfunction in non-insulin-dependent diabetes. *BMJ* 312:744–745, 1996

2. Vane JR, Anggärd EE, Botting RM: Regulatory functions of the vascular endothelium. *N Engl J Med* 323:27–36, 1990

3. Vogel RA, Corretti MC, Plotnick GD: Effect of a single high-fat meal on endothelial function in healthy subjects. *Am J Cardiol* 79:350–354, 1997

4. American Diabetes Association: Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association (Position Statement). *Diabetes Care* 31(Suppl. 1): S61–S78, 2008

5. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhardt-Herman M, Herrington D, Vallance P, Vita J, Vogel R, the International Brachial Artery Reactivity Task Force: Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. *J Am Coll Cardiol* 39: 257–265, 2002

6. West SG, Hecker KD, Mustad VA, Nicholson S, Schoemer SL, Wagner P, Hinderliter AL, Ulbrecht J, Ruey P, Kris-Etherton PM: Acute effects of monounsaturated fatty acids with and without omega-3 fatty acids on endothelial function in subjects with type 2 diabetes. *Diabetes Care* 31(3): 642–647, 2008

Table 1 — Fasting and postprandial profiles of the hemodynamic parameters in the study subjects

Parameter	Fasting	2 h	4 h	6 h	P	P*	P†	
Baseline brachial artery diameter (mm)	MUFA	4.1 ± 0.4	4.2 ± 0.5	4.2 ± 0.5	4.2 ± 0.5	0.56		
	SAFA	4.2 ± 0.5	4.2 ± 0.5	4.3 ± 0.6	4.2 ± 0.6	0.25	0.84	
Flow-mediated dilatation (%)	MUFA	6.9 ± 3.7	5.8 ± 4.1	6.8 ± 4.5	5.8 ± 6.4	0.56		
	SAFA	6.9 ± 5.9	5.1 ± 5.9	1.1 ± 3.3	3.9 ± 4.5	<0.001	0.01	0.001
Baseline blood flow (ml/min)	MUFA	132.6 ± 64.1	111.6 ± 87.6	111.9 ± 53.1	103.9 ± 56.2	0.15		
	SAFA	138.5 ± 91.5	130.7 ± 82.7	136.6 ± 86.5	109.9 ± 54.4	0.14	0.43	0.35
Maximum blood flow (ml/min)	MUFA	524.7 ± 225.4	468.9 ± 203.1	491.9 ± 240.1	530.6 ± 203.9	0.42		
	SAFA	548.6 ± 264.6	496.5 ± 248.2	532.8 ± 246.6	525.2 ± 268.4	0.68	0.74	0.64
Difference in flow (%)	MUFA	323.8 ± 170.7	380.9 ± 224.3	395.6 ± 307.8	491.9 ± 244.7	0.39		
	SAFA	367.9 ± 227.9	339.2 ± 238.2	350.6 ± 167.1	457.7 ± 315.2	0.10	0.72	0.61

Data are means ± SD unless otherwise indicated. P values indicate results of two-way ANOVA for repeated measurements for the effect of time (within-subject factor) after consumption of the MUFA-rich meal and the SAFA-rich meal. *Results of two-way ANOVA for the effect of the meal (between-subject factor). †Result of two-way ANOVA for repeated measurements for the time-by-meal interaction. Baseline values before occlusion of the forearm artery, and maximum values measured within 15 s after occlusion.
Endothelial effects of olive oil in type 2 diabetes

acids on vascular reactivity in individuals with type 2 diabetes. *Diabetologia* 48:113–122, 2005

7. Ryan M, McInerney D, Owens D, Collins P, Johnson A, Tomkin GH: Diabetes and the Mediterranean diet: a beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium-dependent vasoreactivity. *QJM* 93:85–91, 2000

8. Cortés B, Nuñez I, Cofán M, Gilabert R, Pérez-Heras A, Casals E, Deulofeu R, Ros E: Acute effects of high-fat meals enriched with walnuts or olive oil on postprandial endothelial function. *J Am Coll Cardiol* 48:1666–1671, 2006

9. Carluccio MA, Massaro M, Bonfrate C, Siculella L, Maffia M, Nicolardi G, Distante A, Storelli C, De Caterina R: Oleic acid inhibits endothelial activation: a direct vascular antiatherogenic mechanism of a nutritional component in the mediterranean diet. *Arterioscler Thromb Vasc Biol* 19:220–228, 1999

10. De Caterina R, Liao JK, Libby P: Fatty acid modulation of endothelial activation. *Am J Clin Nutr* 73:673–686, 2000

11. Tuck KL, Hayball PJ: Major phenolic compounds in olive oil metabolism and health effects. *J Nutr Biochem* 13:636–644, 2002

12. Bogani P, Galli C, Villa M, Visioli F: Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. *Atherosclerosis* 190:181–186, 2007

13. Miles EA, Zoubouri P, Calder PC: Differential anti-inflammatory effects of phenolic compounds from extra virgin olive oil identified in human whole blood cultures. *Nutrition* 21:389–394, 2005