Long-Term Exposure to Ozone and Life Expectancy in the United States, 2002 to 2008

Chaoyang Li, MD, PhD, Lina S. Balluz, ScD, MPH, Ambarish Vaidyanathan, PhD, MSEnvE, Xiao-Jun Wen, MD, MS, Yongping Hao, PhD, and Judith R. Qualters, PhD

Abstract: Long-term exposure to ground-level ozone is associated with increased risk of morbidity and mortality. The association remains uncertain between long-term exposure to ozone and life expectancy.

We assessed the associations between seasonal mean daily 8-hour maximum (8-hr max) ozone concentrations measured during the ozone monitoring seasons and life expectancy at birth in 3109 counties of the conterminous U.S. during 2002 to 2008. We used latent class growth analysis to identify latent classes of counties that had distinct mean levels and rates of change in ozone concentrations over the 7-year period and used linear regression analysis to determine differences in life expectancy by ozone levels.

We identified 3 classes of counties with distinct seasonal mean daily 8-hr max ozone concentrations and rates of change. When compared with the counties with the lowest ozone concentrations, the counties with the highest ozone concentrations had 1.7- and 1.4-year lower mean life expectancy in males and females (both \(P < 0.0001 \)), respectively. The associations remained statistically significant after controlling for potential confounding effects of seasonal mean PM\(_{2.5}\) concentrations and other selected environmental, demographic, socio-economic, and health-related factors (both \(P < 0.0001 \)). A 5 ppb higher ozone concentration was associated with 0.25 year lower life expectancy in males (95% CI: \(-0.30 \) to \(-0.19 \)) and 0.21 year in females (95% CI: \(-0.25 \) to \(-0.17 \)).

We identified 3 classes of counties with distinct mean levels and rates of change in ozone concentrations. Our findings suggest that long-term exposure to a higher ozone concentration may be associated with a lower life expectancy.

(Medicine 95(7):e2474)

INTRODUCTION

One of the most widespread air pollutants in the United States (U.S.) is ozone at the ground level.\(^1\) Studies have consistently shown that acute exposure to high ozone concentrations could harm the respiratory tract. Such harm could extend to declines in lung function, induction of inflammation, increases in respiratory symptoms and medication use in children with asthma, respiratory-related hospitalization, emergency room visits for chronic obstructive pulmonary disease and asthma, and an increase in incidence and hospital admissions for cardiovascular diseases.\(^2\text{-}^5\) Growing evidence has shown that long-term exposure to ozone could also affect people’s health.\(^6\text{-}^8\)

Life expectancy at birth is an important indicator of overall health status and quality of life and summarizes the mortality at all ages across the life span in a population. A reduction in exposure to ambient fine particulate matter (PM\(_{2.5}\)) was associated with significant improvements in life expectancy during the 1980s and 1990s in the United States.\(^8\) But the effects of long-term exposure to ozone on life expectancy remain uncertain. Thus, our study had 2 objectives: first, we identified the clustering of county units according to the levels and rates of change in ozone concentrations between 2002 and 2008 in the conterminous U.S. Second, we sought to assess direct associations between long-term exposure to ground-level ozone and life expectancy.

METHODS

We included 3109 conterminous U.S. counties in 48 states and the District of Columbia (excluding Alaska and Hawaii) in this study due to air pollution data availability. Data on modeled estimates of ozone and particulate matter concentrations, meteorological data, population data, and demographic characteristics at the county level are available from the National Environmental Public Health Tracking Network (Tracking Network) at the Centers for Disease Control and Prevention. The Tracking Network is a system of integrated health, exposure, and environmental hazard information and data obtained from a variety of national, state, and city sources.\(^10\) No ethical review was needed for this study because all data are aggregated at the county level without person-level identifiable information and publically accessible.

Estimates of Ozone Concentrations and Other Environmental Factors

The Bayesian space-time downscaling (DS) fusion modeling approach, developed by the U.S. Environmental...
Protection Agency (EPA) and its partners, was used to generate predictions of ozone and \(\text{PM}_{2.5} \). The DS modeling approach combines gridded output from the Community Multi-scale Air Quality (CMAQ) model with monitoring measurements from Air Quality System, yielding more accurate and precise predictions of ozone and \(\text{PM}_{2.5} \) concentrations. The U.S. EPA used output from the CMAQ model executed at both \(12 \times 12 \text{ km} \) and \(36 \times 36 \text{ km} \) spatial resolutions to generate predictions for 2001 to 2006 for the eastern U.S. and used output from the CMAQ model executed at a \(12 \times 12 \text{ km} \) spatial resolution to generate predictions for 2007 to 2008 for the entire conterminous U.S. Using the identical DS modeling approach and input, we generated daily mean 8-hour maximum (8-hr max) ozone concentrations (parts per billion or ppb) and daily 24-hour mean \(\text{PM}_{2.5} \) concentrations (micrograms per cubic meter or \(\mu g/m^3 \)) at the 2010 U.S. Census tract centroid locations over the entire conterminous U.S. for 2002 to 2008 in this study. Mean daily 8-hr max ozone concentrations were based on local ozone monitoring seasons, which vary by states. Seasonal mean estimates at county level were obtained using a population weighted approach, where tract populations were used to weigh daily tract level ozone and \(\text{PM}_{2.5} \) predictions. The county level estimates for ozone and \(\text{PM}_{2.5} \) concentrations in conterminous U.S. were validated carefully and are available at the Centers for Disease Control and Prevention Tracking System. By using temperature data from the North American Land Data Assimilation System, we calculated the annual mean number of days with a heat index >90°F for the Tracking Network.

Life Expectancy Estimates in the U.S. Counties

We obtained life expectancy data from the University of Washington Institute of Health Metrics and Evaluation. Details of the methods and descriptive results on life expectancy estimates at the county-level have been published previously. In brief, life expectancy was estimated by a mixed effects Poisson regression with time, geospatial units, and demographic and socio-economic components using mortality data at the county-level from National Center for Health Statistics and population size from the U.S. Census Bureau. The life expectancy during 2002 to 2008 was estimated for males and females separately for each county. We used mean life expectancy between 2002 and 2008 for males and females for each county as the health outcome measure.

Demographic Characteristics, Socioeconomic Status, and Health Risk Factors

The Tracking Network contains county-level data from the U.S. Census Bureau and the U.S. Department of Agriculture for linkage and analysis. We used county-level population, demographic, and socioeconomic data in 2002 which was considered as the baseline for assessing the temporal trends for ozone concentrations: total population, percentages of population aged 0 to 4 years and population aged 65 years or older, percentages of non-Hispanic whites, non-Hispanic blacks, and Hispanics, and percentage of adults with a high school or higher education. Population density (i.e., number of persons per square mile) in 2002 was calculated by dividing the population by the county area. The urban, suburban, and rural classifications were determined based on the Rural–Urban Continuum Codes Definitions for 2003 developed by the U.S. Department of Agriculture. County-level percentages of people of all ages in poverty (ie, a family’s total income less than the poverty threshold) in 2002, and percentages of people aged 0 to 64 years without health insurance available for 2008 were estimated by the U.S. Census Bureau using a small area estimation method. The 2002 county-level unemployment rates were obtained from the U.S. Department of Labor. The prevalence of current smoking, obesity, no leisure-time physical activity, and self-rated poor or fair health in 2008 were estimated by a multilevel regression and poststratification method using data from the Behavioral Risk Factor Surveillance System. The 2008 model-based estimates were highly correlated with the BRFSS survey estimates for adult current smoking prevalence (r = 0.67; 2002–2008 BRFSS combined data among 2423 counties) and obesity prevalence (r = 0.70; 2006–2008 BRFSS combined data in 3109 counties), and prevalence of poor or fair health (r = 0.76; 2002–2008 BRFSS combined data in 2680 counties).

Statistical Analysis

We first estimated the 7-year mean ozone concentrations from 2002 to 2008 for each county and examined their correlations with life expectancy using Spearman rank correlation coefficients (r). We then conducted a latent class growth analysis (LCGA) to identify latent classes of counties based on the mean ozone concentrations and their rates of change overtime from 2002 to 2008 using the Mplus (version 7.0) program. The LCGA is a technique that examines the heterogeneity in mean levels and rates of change of longitudinal or repeated data. It is a useful tool to identify underlying clustering of counties with distinct patterns of ozone concentration.

The number of latent classes was determined by comparing the model fit indices of LCGA models. The model with a smaller Bayesian Information Criterion value, large entropy (close to 1.0), and high posterior probability (close to 1.0) suggests a better fit to the data. A small P value (P < 0.05) for the Lo-Wendell-Rubin adjusted likelihood ratio test indicates that a model with one less class (k – 1) has to be rejected in favor of a model with at least k classes.

We conducted further analyses to examine the differences in life expectancy and all other selected variables across different latent classes of ozone. First, we computed the percentages or means and tested equality across the 3 latent classes. The overall differences in means were tested using Wald F-tests. We used 2-sample t-tests with Bonferroni adjustment for P values to compare means between each paired groups and used nonparametric tests for testing the differences in medians. We conducted linear regression analyses to estimate the differences in life expectancy by ozone latent classes in 3 regression models: model without adjustments, model adjusted for \(\text{PM}_{2.5} \) concentration, and model adjusted for all selected covariates. We also conducted linear regression analyses using the overall mean ozone concentrations from 2002 to 2008 on mean life expectancy.

Based on previous research findings and theoretical considerations, we included the following variables as potential confounders in the multivariable analyses: \(\text{PM}_{2.5} \) concentrations (continuous scale, \(\mu g/m^3 \)), ozone monitoring seasons (3 categories: 1: spring-summer season, 4 to 6 months, beginning in April or May or June, ending in September; 2: spring-fall season, 7 to 9 months, beginning in March or April, ending in September or October or November; and 3: full-year, 12 months, beginning in January, ending in December), annual mean days of heat index above 90°F (continuous scale, per day),...
The overall annual mean daily 8-hr maximum ozone concentrations in 3109 counties decreased from 46.8 ppb (ranging from 22.5 to 72.7 ppb) in 2002 to 44.6 ppb (ranging from 29.3 to 64.5 ppb) in 2008 ($P < 0.001$). The 7-year mean seasonal ozone concentrations were significantly correlated with mean life expectancy in both males ($r_c = -0.19; P < 0.0001$) and females ($r_c = -0.24; P < 0.0001$). Ozone concentration moderately correlated with PM$_{2.5}$ concentration ($r_c = 0.50$).

The 3109 counties were classified into 3 classes with distinct mean levels and the rates of change for ozone concentrations during 2002 and 2008 (Figure 1A). Class 1 comprised 126 (4.1%) counties with a mean ozone concentration of 36.4 ppb (Figure 1B). Class 2 comprised 1450 (46.6%) counties with a mean of ozone concentration of 43.3 ppb. Class 3 comprised 1533 (49.3%) counties with a mean ozone concentration of 48.8 ppb. Statistically significant reduction in mean ozone concentrations did occur during 2002 and 2008, with a mean rate of reduction of -0.15 ppb (95% confidence interval [CI]: -0.17 to -0.13 ppb), -0.16 ppb (95% CI: -0.24 to -0.09 ppb), -0.15 ppb (95% CI: -0.18 to -0.13 ppb), and -0.09 ppb (95% CI: -0.12 to -0.07 ppb) in all counties, class 1 counties, class 2 counties, and class 3 counties, respectively (Table 1).

In 2002, the mean life expectancy was 73.5 years (ranging from 64.6 to 79.7 years) in males and 79.3 years (ranging from 73.7 to 83.4 years) in females. In 2008, the mean life expectancy was 76.3 years (ranging from 67.6 to 81.4 years) in males and 81.4 years (ranging from 74.0 to 86.0 years) in females. From 2002 to 2008, life expectancy increased 0.9 years ($P < 0.0001$) in males and 0.6 years ($P < 0.0001$) in females (Table 1). Overall, statistically significant differences existed in selected population and demographic characteristics, socioeconomic status, and health risk factors across the 3 classes of counties except percentages of suburban counties (Table 1).

In the regression model without adjustment for any covariates, life expectancy in the class 2 counties and the class 3 counties was 1.2 years ($P < 0.0001$) and 1.7 years ($P < 0.0001$) lower than in the class 1 counties in males, respectively, and was 0.9 year ($P < 0.0001$) and 1.4 years ($P < 0.0001$) lower in females, respectively (Table 2, model 1). After adjustment for PM$_{2.5}$ concentration, the differences in life expectancy between the class 2, the class 3, and the class 1 counties decreased, but remained statistically significant in both males and females (all $P < 0.0001$) (Table 2, model 2). After further adjustment for all selected covariates, the differences in life expectancy between the class 2, the class 3, and the class 1 counties decreased to 0.2 and 0.6 year in males, and 0.3 and 0.6 year in females, respectively (all $P < 0.0001$) (Table 2, model 3).

The exposure-response curve shows that when compared with a reference level of ozone concentrations at 45.0 ppb (the national mean level), counties with an ozone concentrations above 45.0 ppb had a lower life expectancy and those with an ozone concentrations below 45.0 ppb had a higher life expectancy in both males (Figure 2A) and females (Figure 2B). Linear regression analysis results indicated that after controlling for potential confounding effects of demographic and socioeconomic characteristics and health risk factors, a 5 ppb higher ozone concentration was associated with 0.25 year lower life expectancy in males (95% CI: -0.30 to -0.19) and 0.21 year in females (95% CI: -0.25 to -0.17).

To account for the possible unstable estimates for life expectancy in counties with small population, sensitivity
indicate no statistically significant difference. A 2 sample t-test was used to test equality; P value with a Bonferroni adjustment for multiple comparisons is set at 0.0167 (0.05/3).

Characteristic	Time	Overall (n = 3109)	Class 1 (n = 126; 4.1%)	Class 2 (n = 1459; 46.6%)	Class 3 (n = 1533; 49.3%)	P-Value *
Environmental factors						
Mean seasonal ozone concentration, ppb						
2002	46.8 ± 4.9	36.6 ± 4.1	43.8 ± 2.5	50.4 ± 3.3	<0.001	
2008	44.6 ± 4.1	35.9 ± 2.6	42.1 ± 2.0	47.7 ± 2.6	<0.001	
Difference between 2002 and 2008	-2.2 ± 2.7	-0.7 ± 2.5	-1.7 ± 2.4	-2.7 ± 2.9	<0.001	
7-year mean	45.7 ± 3.8	36.4 ± 2.9	43.3 ± 1.6	48.8 ± 2.0	<0.001	
Rate of change per year	-0.15 ± 0.01	-0.16 ± 0.04	-0.15 ± 0.01	-0.09 ± 0.01	<0.001	
Mean days of ozone concentrations above standard (75 ppb)	2002–2008	3.6 ± 4.5	0.7 ± 1.5	1.5 ± 2.2	5.7 ± 5.1	<0.001
% Spring-summer ozone monitoring season	2002–2008	16.8	38.1±4	19.0	12.9	<0.001
% Spring-fall ozone monitoring season	2002–2008	79.2	46.0	77.1	84.1	<0.001
% Full-year ozone monitoring season	2002–2008	4.0	15.9	3.9	3.9	<0.001
Annual mean PM2.5 concentration, μg/m³	2002–2008	10.5 ± 2.4	8.6 ± 1.5	9.6 ± 1.9	11.4 ± 2.4	<0.001
Annual mean days of heat index above 90°F	2002–2008	7.8 ± 5.9	8.8 ± 10.1	8.9 ± 6.6	6.7 ± 4.3	<0.001
Life expectancy at birth in males, year	2002	73.5 ± 2.1	74.8 ± 1.6	73.7 ± 2.2	73.3 ± 2.0	<0.001
2008	74.4 ± 2.4	75.9 ± 1.9	74.6 ± 2.4	74.0 ± 2.3	<0.001	
Difference between 2002 and 2008	0.9 ± 0.6	1.1 ± 0.6	0.9 ± 0.6	0.8 ± 0.6	<0.001	
7-year mean	73.9 ± 2.2	75.3 ± 1.8	74.1 ± 2.3	73.6 ± 2.1	<0.001	
Life expectancy at birth in females, year	2002	79.3 ± 1.5	80.2 ± 1.2	79.5 ± 1.6	79.1 ± 1.3	<0.001
2008	79.9 ± 1.7	81.2 ± 1.5	80.1 ± 1.9	79.6 ± 1.5	<0.001	
Difference between 2002 and 2008	0.6 ± 0.6	1.1 ± 0.6	0.7 ± 0.6	0.5 ± 0.6	<0.001	
7-year mean	79.5 ± 1.6	80.6 ± 1.3	79.7 ± 1.7	79.2 ± 1.4	<0.001	
Population and demographics						
Population size (median)	2002	91908	264709	79207	89719	<0.001
Population density, per mile² (median)	2002	42.6	45.6	27.2	64.4	<0.001
Population age 0–4 year	2002	6.2 ± 1.1	6.3 ± 1.5	6.1 ± 1.1	6.3 ± 1.1	<0.001
Population age 5–64 year	2002	78.9 ± 3.5	78.9 ± 3.7	78.1 ± 3.8	79.7 ± 3.0	<0.001
Population age ≥65 year	2002	14.9 ± 4.1	14.8 ± 4.5	15.8 ± 4.4	14.0 ± 3.5	<0.001
% Non-Hispanic white	2002	81.7 ± 18.9	69.1 ± 27.9	80.4 ± 20.1	84.0 ± 16.3	<0.001
% Non-Hispanic black (median)	2002	2.1	1.2	1.3	2.8	<0.001
% Hispanic (median)	2002	2.1	8.9	2.0	2.1	<0.001
% High school	2000	77.3 ± 8.7	77.9 ± 11.1	77.7 ± 8.6	76.9 ± 8.6	0.022
% Rural classification	2003	31.0	15.9	39.4	24.3	<0.001
% Suburban classification	2003	34.0	34.9	34.9	33.1	0.58
Socio-economic factors	2003	34.9	49.2	25.7	42.5	<0.001
% Poverty	2002	13.8 ± 5.6	14.1 ± 6.7	14.4 ± 5.9	13.1 ± 5.1	<0.001
% Unemployed	2002	5.7 ± 1.9	7.0 ± 2.1	5.6 ± 2.0	5.7 ± 1.7	<0.001
Health and health risk factors						
% Uninsured	2008	17.9 ± 5.8	19.8 ± 7.7	18.4 ± 6.7	17.2 ± 4.5	<0.001
% Self-rated poor or fair health	2008	18.2 ± 4.9	18.1 ± 5.4	18.0 ± 4.9	18.5 ± 4.8	0.025
% Adult smokers	2008	20.8 ± 5.2	18.5 ± 5.0	20.1 ± 4.6	21.6 ± 5.6	<0.001
% Adults with a BMI ≥30kg/m²	2008	29.3 ± 4.8	28.2 ± 5.5	29.3 ± 4.4	29.3 ± 5.0	0.027
% Adults with no leisure-time physical activity	2008	27.9 ± 5.3	25.5 ± 7.5	28.1 ± 5.1	28.0 ± 5.3	<0.001

B MI = body mass index, PM2.5 = fine particulate matter.
F-Test was used for testing the overall differences in means across the 3 latent classes. Nonparametric test was used for testing the differences in medians.

¹Mean ± standard deviation for continuous variables except for the medians as indicated.
²Within a row, values with a different letter indicate a statistically significant difference in means between 2 groups and values with the same letter indicate no statistically significant difference. A 2 sample t-test was used to test equality; P value with a Bonferroni adjustment for multiple comparisons is set at 0.0167 (0.05/3).
³Mean ± standard error.
ⅣOzone monitoring season: 1 = spring-summer season (4–6 months, beginning in April or May or June, ending in September), 2 = spring-fall season (7–9 months, beginning in March or April, ending in September or October or November), and 3 = full-year (12 months, beginning in January, ending in December).
§ Chi-square test was used for testing the equality in the proportions between 2 groups; P value with a Bonferroni adjustment for multiple comparisons is set at 0.0167 (0.05/3).
TABLE 2. Estimated Differences in Life Expectancy by Ozone Latent Class and Selected Environmental, Demographic, Socioeconomic, and Health Indicators in Counties of the Conterminous United States (n = 3109), 2002 to 2008

Variable	Model 1			Model 2			Model 3		
	Regression Coefficient ± S.E.	P-Value	Regression Coefficient ± S.E.	P-Value	Regression Coefficient ± S.E.	P-Value			
Males									
Ozone latent class 2⁺	-1.2 ± 0.2	<0.0001	-0.9 ± 0.2	<0.0001	-0.2 ± 0.1	0.019			
Ozone latent class 3	-1.7 ± 0.2	<0.0001	-0.9 ± 0.2	<0.0001	-0.6 ± 0.1	0.0001			
Annual mean PM$_{2.5}$ concentration (per 10 μg/m3)									
Spring-summer ozone monitoring season[†]	0.09 \pm 0.11	0.44							
Spring-fall ozone monitoring season	-0.08 ± 0.11	0.47							
Annual mean days of heat index above 90°F	-0.02 ± 0.005	0.0002							
Urban classification	0.1 \pm 0.06	0.07							
Suburban classification	-0.05 ± 0.05	0.30							
Population density (per mile², ln)	0.2 \pm 0.02	0.0001							
% Population of 0–4 years	-0.2 ± 0.02	0.0001							
% Population of ≥65 year	-0.02 ± 0.007	0.006							
% Non-Hispanic blacks (ln)	-0.4 ± 0.01	0.0001							
% Hispanics (ln)	0.5 \pm 0.02	0.0001							
% Poverty	-0.1 ± 0.01	0.0001							
% Unemployed	-0.05 ± 0.01	0.0002							
% Uninsured	-0.05 ± 0.006	0.0001							
% Self-rated poor or fair health	-0.06 ± 0.006	0.0001							
% Adult current smokers	-0.03 ± 0.004	0.0001							
% Adults with a body mass index ≥30 kg/m²	-0.04 ± 0.005	0.0001							
% Adults with no leisure time physical activity	-0.01 ± 0.005	0.16							
Adjusted R^2	0.03	0.10	0.79						
Females									
Ozone latent class 2⁺	-0.9 ± 0.1	<0.0001	-0.7 ± 0.1	<0.0001	-0.3 ± 0.07	0.0005			
Ozone latent class 3	-1.4 ± 0.1	<0.0001	-0.7 ± 0.1	<0.0001	-0.6 ± 0.08	0.0001			
Annual mean PM$_{2.5}$ concentration (per 10 μg/m3)									
Annual mean days of heat index above 90°F	-0.01 ± 0.004	0.0008							
Spring-summer ozone monitoring season[†]	-0.2 ± 0.08	0.08							
Spring-fall ozone monitoring season	-0.2 ± 0.08	0.006							
Urban classification	0.05 \pm 0.05	0.30							
Suburban classification	-0.02 ± 0.04	0.57							
Population density (per mile², ln)	0.2 \pm 0.02	0.0001							
% Population of < 0–4 years	-0.06 ± 0.02	0.0008							
% Population of ≥ 65 year	0.04 \pm 0.005	0.0001							
% Non-Hispanic blacks (ln)	-0.3 ± 0.01	0.0001							
% Hispanics (ln)	0.3 \pm 0.02	0.0001							
% Poverty	-0.07 ± 0.004	0.0001							
% Unemployed	-0.05 ± 0.009	0.0001							
% Uninsured	-0.05 ± 0.004	0.0001							
% Self-rated poor or fair health	-0.05 ± 0.004	0.0001							
% Adult current smokers	-0.02 ± 0.003	0.0001							
% Adults with a body mass index ≥30 kg/m²	-0.03 ± 0.004	0.0001							
% Adults with no leisure time physical activity	-0.01 ± 0.004	0.24							
Adjusted R^2	0.04	0.13	0.78						

PM$_{2.5}$ = fine particulate matter, S.E. = standard error.
[†] Ozone latent class 1 was set as the referent.
[‡] Ozone monitoring season: 1 = spring-summer season (4–6 months, beginning in April or May or June, ending in September), 2 = spring-fall season (7–9 months, beginning in March or April, ending in September or October or November), and 3 = full-year (12 months, beginning in January, ending in December). The full-year monitoring season was set as the referent.
analyses were conducted by repeating the multivariable regression models in the subsample of counties with a population size <15,000 (n = 1024), 15,000 to <45,000 (n = 1080), and ≥45,000 (n = 1005). The associations between ozone concentrations and life expectancy were similar across the analyses of subsamples (Table 3).

DISCUSSION

In this ecological study of all 3109 counties of the conterminous U.S., we found an overall decreasing trend in mean ozone concentrations over the 7-year period, albeit the rate of change was small (~0.15 ppb per year). We identified 3 classes of counties with distinct developmental trajectories of ozone concentrations between 2002 and 2008. The class of counties with the persistently highest mean ozone concentrations had about 1.7- and 1.4-year lower life expectancy in males and females, respectively, when compared with the class of counties with the lowest ozone concentrations.

To the best of our knowledge, this is the first study that assessed the direct association between long-term exposure to ozone and life expectancy using data from all counties in the conterminous U.S. In addition, we used a state-of-the-art statistical model to capture the county-level heterogeneities in the mean ozone concentrations and the rate of change over a period of 7 years. Although the LCGA has been primarily applied to psychosocial and behavioral studies, its application in environmental health has been scarce. Our analyses demonstrated that this method was useful for identifying the latent classes of counties that had persistently high ozone concentrations overtime, a practical approach for identifying long-term exposure to ozone overtime. The significant association between ozone concentrations and life expectancy found in this study add support on the potential adverse effects of elevated ozone concentrations on human health.

Because life expectancy at birth is a composite measure of population health, increase in mortality among infants, children, and adults could contribute to decrease in life expectancy. A previous study showed that exposure to ozone is associated with increased risk of infant mortality, and mortality from respiratory diseases and cardiovascular diseases in adults. In addition, exposure to ozone has been associated with increased hospitalization and admission to emergency department due to asthma and chronic obstructive pulmonary disease, which could potentially increase the risk of mortality. Although the exact mechanisms linking long-term exposure to ozone and life expectancy remains unclear, laboratory and clinical studies have shown that acute exposure to ozone is linked to worsening respiratory symptoms, reducing pulmonary functions, and inflammatory responses.

Pope et al’s analyses of 211 counties in 51 U.S. metropolitan areas during 1980 to 2000 found that a decrease of 10 μg/m³ in PM2.5 concentration was associated with an increase in 0.6-year life expectancy. Our results also showed that every 10 μg/m³ increase in PM2.5 concentration was associated with about 1.2- and 1.0-year decrease in life expectancy in males and females, respectively, independent of ozone and other selected demographic characteristics, socioeconomic status, and health risk factors. Our data showed that PM2.5 moderately correlated with ozone. Therefore, it is possible that PM2.5 may partially confound the association between ozone and life expectancy.

Our results that life expectancy was lower in the counties with a higher ozone concentration than that in the counties with a lower ozone concentration add support for the possible adverse health impact of elevated ground-level ozone concentrations. By using a health impact assessment model, a recent study demonstrated that by achieving the National Ambient Air Quality Standard (NAAQS) for ozone, substantial numbers of ozone-related premature deaths could be avoided in the U.S. In 2008, the U.S. EPA lowered the primary NAAQS for daily 8-hr max ozone concentration to 75 ppb and has proposed to revise the standard to a level within the range of 60 to 70 ppb. Indeed, with the lower NAAQS standards for ozone, greater health benefits would have resulted. Another previous study indicated that even low ground-level ozone concentrations are associated with increased risk of premature death.

FIGURE 2. Exposure-response relationship between ozone concentrations (ppb) and differences in life expectancy in 3109 counties of the conterminous United States. The line is based on a linear regression analysis, adjusted for PM2.5 concentrations, days of heat index above 90 F, urban and suburban classification, percentage of population age 0 to 4 years, percentage of population age 65 year or older, percentage of non-Hispanic blacks, percentage of Hispanics, population density, percentage of uninsured, percentage of unemployed, prevalence of current smoking, prevalence of obesity, and prevalence of no leisure-time physical activity. Population density, percentage of non-Hispanic blacks, and percentage of Hispanics were log-transformed to approximate normal distribution. The solid line represents the estimates of difference in life expectancy between given ozone value compared to a reference ozone concentration of 45.0 ppb (the grand mean ozone concentration). The shaded area represents 95% confidence interval of the estimates.
Our results are subject to some limitations. First, we based our analyses on ecological data; we therefore were unable to make causal inferences. We selected known covariates to adjust for their potential confounding effects on the association between ozone and life expectancy. Because about 80% of variations in life expectancy were accounted for by ozone and selected covariates together, residual confounding of unmeasured environmental, socio-economic, and health-related factors could be minimal. Since our results were based on aggregated data at county level, confounding due to possible geographic mobility of the population in the 7-year period. Third, for ozone concentrations in counties without monitors, we used model-based data rather than actual measured data in our analyses, which could potentially introduce bias in the results. However, such bias could be minimal: in counties with the monitors, the model-based data have been highly correlated with the monitor-based data (r ranges from 0.61 to 0.86).\(^4\)

In summary, by using data from all 3109 counties of the conterminous U.S., we identified 3 classes of counties with distinct mean levels and rates of change in ozone concentrations between 2002 and 2008. Our findings suggest that independent of PM\(_{2.5}\), temperature, and other known demographic, socio-economic, and health risk factors, long-term exposure to a higher ozone concentration may be associated with a lower life expectancy.

ACKNOWLEDGEMENTS

The authors thank Dr. Xingyou Zhang at the Centers for Disease Control and Prevention for his consultation on county-level prevalence estimates for current smoking, obesity, and no leisure-time physical activity.

Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

REFERENCES

1. United States Environmental Protection Agency. What Are the Six Common Air Pollutants? [http://www.epa.gov/airquality/urbanair/]. April 20, 2012. Available at: http://www.epa.gov/airquality/urbanair/. [Accessed April 8, 2014].

2. Azevedo JM, Goncalves FL, de Fatima AM. Long-range ozone transport and its impact on respiratory and cardiovascular health in the north of Portugal. *Int J Biometeorol.* 2011;55:187–202.

3. Fann N, Lamson AD, Anenberg SC, et al. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. *Risk Anal.* 2012;32:81–95.

4. Raudavets JB, Cournot M, Cassadou S, et al. Ozone air pollution is associated with acute myocardial infarction. *Circulation.* 2005;111:563–569.

5. United States Environmental Protection Agency. Integrated Science Assessment of Ozone and Related Photochemical Oxidants (Final Report). EPA/600/R-10/076F. 2013. Washington, DC, U.S. Environmental Protection Agency.

6. Jerrett M, Burnett RT, Pope CA III et al. Long-term ozone exposure and mortality. *N Engl J Med.* 2009;360:1085–1095.

7. Woodruff TJ, Darrow LA, Parker JD. Air pollution and postneonatal infant mortality in the United States, 1999–2002. *Environ Health Perspect.* 2008;116:110–115.

8. Zanobetti A, Schwartz J. Ozone and survival in four cohorts with potentially predisposing diseases. *Am J Respir Crit Care Med.* 2011;184:836–841.

9. Pope CA III, Ezzati M, Dockery DW. Fine-particle air pollution and life expectancy in the United States. *N Engl J Med.* 2009;360:376–386.
10. Centers for Disease Control and Prevention. National Environmental Public Health Tracking Network. [www.cdc.gov/ephtracking]. October 17, 2013. Available at: www.cdc.gov/ephtracking. [Accessed April 15, 2014].

11. Berrocal VJ, Gelfand AE, Holland DM. A spatio-temporal down-scaler for output from numerical models. *J Agric Biol Environ Stat.* 2010;15:176–197.

12. Byun D, Schere KL. Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system. *Appl Mech Rev.* 2006;59:51–77.

13. Ivy D, Mulholland JA, Russell AG. Development of ambient air quality population-weighted metrics for use in time-series health studies. *J Air Waste Manag Assoc.* 2008;58:711–720.

14. Pillai SK, Noe RS, Murphy MW, et al. Heat illness: predictors of hospital admissions among emergency department visits-Georgia, 2002–2008. *J Community Health.* 2013.

15. Institute for Health Metrics and Evaluation at the University of Washington. United States Adult Life Expectancy by County 1987–2007. [http://ghdx.healthmetricsandevaluation.org/record/united-states-adult-life-expectancy-county-1987–2007]. March 24, 2014. Available at: http://ghdx.healthmetricsandevaluation.org/record/united-states-adult-life-expectancy-county-1987–2007. [Accessed April 8, 2014].

16. Wang H, Dwyer-Lindgren L, Lofgren KT, et al. Age-specific and sex-specific mortality in 187 countries, 1970–2010: a systematic analysis for the Global Burden of Disease Study 2010. *Lancet.* 2012;380:2071–2094.

17. Wang H, Schumacher AE, Levitz CE, et al. Left behind: widening disparities for males and females in US county life expectancy, 1985–2010. *Popul Health Metr.* 2013;11:8.

18. United States Census Bureau. American FactFinder. [http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml]. 2014. Available at: http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml. [Accessed April 8, 2014].

19. United States Department of Agriculture. Rural-Urban Continuum Codes. [http://www.ers.usda.gov/data-products/rural-urban-continuum-codes/aspx]. May 10, 2013. Available at: http://www.ers.usda.gov/data-products/rural-urban-continuum-codes/aspx. [Accessed April 8, 2014].

20. United States Census Bureau. Model-based Small Area Health Insurance Estimates (SAHIE) for Counties and States. [http://www.census.gov/did/www/sahie/]. March 13, 2014. Available at: http://www.census.gov/did/www/sahie/. [Accessed April 8, 2014].

21. United States Census Bureau. Model-based Small Area Income & Poverty Estimates (SAIPE) for School Districts, Counties, and States. [http://www.census.gov/did/www/saipe/index.html]. March 13, 2014. Available at: http://www.census.gov/did/www/saipe/index.html. [Accessed April 8, 2014].

22. United States Department of Labor. Local Area Unemployment Statistics. [http://www.bls.gov/lau/#tables]. 2014. Available at: http://www.bls.gov/lau/#tables. [Accessed April 8, 2014].

23. Zhang X, Holt JB, Lu H, et al. Multilevel regression and poststratification for small area estimation of population health outcomes: a case study of COPD prevalence using BRFSS. *Am J Epidemiol.* 2014;179:1025–1031.

24. Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System Annual Survey Data. [http://www.cdc.gov/brfss/annual_data/annual_data.htm]. July 11, 2013. Available at: http://www.cdc.gov/brfss/annual_data/annual_data.htm. [Accessed April 15, 2014].

25. Muthén LK, Muthén BO. *Mplus User’s Guide.* 7th (ed.). Los Angeles, CA: Muthén & Muthén; 2013.

26. Muthén LK, Muthén B. Integrating person-centered and variable-centered analyses: growth mixture modeling with latent trajectory classes. *Alcohol: Clin Exp Res.* 2000;24:882–891.

27. Nagin DS. Analyzing developmental trajectories: a semiparametric group-based approach. *Psychol Methods.* 2013;4:139–157.

28. Li C, Goran MI, Kaur H, et al. Developmental trajectories of overweight during childhood: role of early life factors. *Obesity (Silver Spring).* 2007;15:760–771.

29. Woodruff TJ, Parker JD, Schoendorf KC. Fine particulate matter (PM2.5) air pollution and selected causes of postneonatal infant mortality in California. *Environ Health Perspect.* 2006;114:786–790.

30. Bell ML, Dominici F, Samet JM. A meta-analysis of time-series studies of ozone and mortality with comparison to the national morbidity, mortality, and air pollution study. *Epidemiology.* 2005;16:436–445.

31. Gryparis A, Forberg B, Katsouyanni K, et al. Acute effects of ozone on mortality from the ‘‘air pollution and health: a European approach’’ project. *Am J Respir Crit Care Med.* 2004;170:1080–1087.

32. Ito K, De Leon SF, Lippmann M. Associations between ozone and daily mortality: analysis and meta-analysis. *Epidemiology.* 2005;16:446–457.

33. Levy JI, Chemerynski SM, Sarnat JA. Ozone exposure and mortality: an empiric bayes metaregression analysis. *Epidemiology.* 2005;16:458–468.

34. Zanobetti A, Schwartz J. Mortality displacement in the association of ozone with mortality: an analysis of 48 cities in the United States. *Am J Respir Crit Care Med.* 2008;177:184–189.

35. Brown JS, Bateson TF, McDonnell WF. Effects of exposure to 0.06 ppm ozone on FEV1 in humans: a secondary analysis of existing data. *Environ Health Perspect.* 2008;116:1023–1026.

36. McDonnell WF, Stewart PW, Smith MV. The temporal dynamics of ozone-induced FEV1 changes in humans: an exposure-response model. *Inhal Toxicol.* 2007;19:483–494.

37. Berman JD, Fann N, Hollingsworth JW, et al. Health benefits from large-scale ozone reduction in the United States. *Environ Health Perspect.* 2012;120:1404–1410.

38. United States Environmental Protection Agency. Grinedul-level Ozone Regulatory Actions. [http://www.epa.gov/airquality/ozonepollution/actions.html]. March 24, 2014. Available at: http://www.epa.gov/airquality/ozonepollution/actions.html. [Accessed April 8, 2014].

39. Bell ML, Peng RD, Dominici F. The exposure-response curve for ozone and risk of mortality and the adequacy of current ozone regulations. *Environ Health Perspect.* 2006;114:532–536.

40. Berrocal VJ, Gelfand AE, Holland DM. Space-time data fusion under error in computer model output: an application to modeling air quality. *Biometrics.* 2012;68:837–848.