Aqua Regia as a Competitive Leaching Agent for Metallic Impurity Removal from Rice Husk

Faheem Akhter*, Suhail Ahmed Soomro & Vassilis J. Inglezakis

*Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan.
1Department of Chemical Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan.
2Chemical and Process Engineering Department, University of Strathclyde, Glasgow, UK.

*Corresponding author: faheemakhtar86@quest.edu.pk

Received 25 November 2021, Received in revised form 06 December 2021, Accepted 08 January 2022, Available online 30 September 2022

ABSTRACT

Rice husk is widely recognized as significant biomass containing cellulose, lignin and silica. Usually, rice husk is combusted for energy purposes but it contributes to severe environmental pollution. Therefore, the integrated components of rice husk (i.e. silica) can be extracted and converted into value-added products. However, the metallic impurities must be removed before further extraction. Generally, rice husk is leached with conventional acids such as HCl and nitric acid, however, the present study has used aqua regia and compared the results with conventional acids. The leached rice husk samples were characterized using TGA, SEM and EDX. The results of the present work indicate that the aqua regia carries a significant leaching potential to remove metallic impurities from rice husk with 1 M and 2 M solutions removing more than 98% and 99% of impurities respectively. However, its brief chemical stability compels it to be prepared and used immediately.

Keywords: Aqua regia; leaching agent; rice husk

INTRODUCTION

Environmental problems, depletion and costs associated with the non-renewable energy sources have pushed the global trend towards exploiting renewable energy sources. On one hand, the burning of fossil fuels is satiating the energy demands but on the other hand, it is constantly polluting the environment with greenhouse gases and other pollutants. Coal, crude oil and natural gas are among such examples that are widely used for energy gains at the cost of the environment. For example, the combustion of coal releases CO₂, SOₓ, NOₓ as well as volatile organic compounds (VOCs). CO₂ results in the greenhouse effect, thereby causing global warming, whereas SO₂ and NOₓ may cause acid rain by reacting with the water and oxygen in the atmosphere (Nayak & Datta, 2021). Likewise, the VOCs react to form ground-level ozone or smog. Furthermore, the non-renewable energy sources are limited; hence their constant use is resulting in their depletion. Such continual usage and the expensive methods involved behind their transportation, mining and extraction are resulting in the increased level of their cost (Akhter, Soomro, et al. 2021; Zhu et al. 2020).

Rice is one of the major agro crops that is widely cultivated. China and India account for almost half of its global production (Nguyen et al. 2019). Such a huge production also results in the generation of massive rice husk. On a global scale, Pakistan is the 11th largest producer of rice. According to an estimate, in 2016, the total rice production in Pakistan was 6.9 million tons. One ton of rice paddy produces 220 kg of rice husk, hence 6.9 million tons will generate around 1.5 million tons of rice husk each year (Hamza Hasnain et al. 2021). Such an enormous generation of rice husk has led to environmental problems, mainly due to the way it is managed. For example, rice husk is either thrown off as a waste stockpile in an open atmosphere or burnt for energy. In both cases, it releases hazardous gases into the environment. For example, the open burning of rice husk generates rice husk ash as an end-product and produces greenhouse gases. Similarly, the open atmospheric microbial degradation of rice husk also contributes to environmental pollution. As a result, the rice husk ash still contains metallic impurities and usually ends up being dumped (Akhter, Zoppas, et al. 2021; Ozturk et al. 2017).
Therefore, to preserve the environment and extract the value-added product (silica) from rice husk, its metallic impurities need to be removed. If not, these impurities may result in much lower silica purity and also chemically interact with other compounds. The conventional method of removing the metallic impurities from rice husk is by leaching with acid. Typically, HCl and Nitric acids are used, however; the present study has also used aqua regia besides the conventional acids. Aqua regia, also known as Nitrohydrochloric acid, is a mixture of HCl and Nitric acid with a ratio of 3:1. Being the mixture of 2 strong acids, it has been shown to possess an impressive leaching capability for biomass (Bae et al. 2020), as demonstrated by the present work as well. Although, aqua regia stays briefly in its stable form, yet its leaching potential cannot be ignored. Therefore, the present work explores the leaching potential of aqua regia to remove impurities from rice husk and compares the results with conventional acids (HCl and Nitric Acids).

MATERIALS & METHODOLOGY
CHARACTERIZATION OF RICE HUSK

The surface morphology of rice husk was determined using Scanning Electron Microscopy FESEM JSM 6701F (JOEL) operated at 15 kV and 20kV. The thermogravimetric (TG) analysis was performed on a Perkin Elmer TGA6 instrument. Sample of 5 – 7 mg was heated at heating rates 20°C/min from 50°C to 900°C under nitrogen atmosphere with a flow rate of 20 mL/min. The metallic impurities in leached and unleached rice husk samples were determined using Energy Dispersive X-Ray (Model, JEOL JSM-7400F).

LEACHING ACIDS

A total of 3 acids; aqua regia, HCl and Nitric acid, were used in the present study. Each acid was prepared with solutions of 3 molar concentrations; 0.5M, 1M and 2M respectively. The prepared molar solutions of each acid were used for leaching rice husk samples (Azat et al. 2019; Bakar et al. 2016). Due to its unstable nature, the molar solutions of aqua regia were prepared right before the leaching experiments.

INITIAL WASHING AND DRYING OF RICE HUSK

Before preparing samples for leaching, 1 kg of rice husk was initially washed with distilled water several times to remove dirt and adhering impurities. The washed rice husk was then sun-dried for 5 hours, followed by oven drying at 110 °C for 24 hours. The drying ensured the complete removal of moisture from the rice husk (Askaruly et al. 2020).

LEACHING OF RICE HUSK WITH ACIDS

To prepare samples for leaching, the sun and oven-dried rice husk was divided into 18 samples (S1-S18), each of 50 g. Each rice husk sample of 50 g was mixed with 300 mL of distilled water in a beaker and magnetically stirred for one hour at 80 °C (Mirmohamadsadeghi & Karimi, 2020). Furthermore, 2 samples were leached with each molar solution of acids. Figure 1. Shows the experimental strategy performed in the present work, where as Table 1 indicates the classification of samples for leaching and % of impurities removed.

Figure 1. Experimental Strategy

RESULTS & DISCUSSION

THERMOGRAVIMETRIC ANALYSIS (TGA) OF RICE HUSK

The presence of organic components in the rice husk was determined by TG analysis. Figure 2. indicates the TG curves of acid-leached rice husks. It can be seen that, regardless of acid leaching, the first weight loss occurs between 50 and 150 °C, with a weight loss of 1 to 2 percent corresponding to the loss of water and other volatile chemicals. At temperatures ranging from 240 to 360 °C, the second stage demonstrates a rapid and significant weight loss. This is due to the heat degradation of hemicellulose and cellulose in the rice husk, which is a key organic component. Acid hydrolysis of hemicellulose and cellulose into smaller molecular weight molecules that are more readily thermodegraded resulted in poorer thermal stability. The third stage indicates a weight loss of 26–31 percent, which can be attributed to lignin, a thermally more stable aromatic polymer that decomposes gradually between 370 and 600 °C. The noncombustible silica (16 percent, >600°C) makes up the majority of the ash residue.
SEM ANALYSIS OF RICE HUSK

Figure 3 shows the morphology of leached and unleached rice husk. The unleached rice husk (a) indicates a much smaller pore size compared to leached samples. The leaching has resulted in increased pore size which is in agreement with the previous studies (Azat et al. 2019; Moayedi et al. 2019; Nuaklong et al. 2020). Apparently, the highest pore size was observed in the samples leached with aqua regia, followed by HCl and Nitric acid. This could be due to the metallic impurities being removed during leaching and the surface tension of acids. Furthermore, the amorphous structure can be attributed to acid delignification, hence the structural breakdown.

EDX ANALYSIS

Energy Dispersive X-Ray analysis was conducted to determine the metallic impurities in acid leached and unleached rice husk samples. The acid leached samples were analyzed through EDX and the results were compared to the unleached sample to determine the percentage of impurities removed. Table 1. shows the impurities removal % of leached rice husk samples. Figure 4 shows the EDX results of the samples with the highest percentage of impurities removed. All the samples leached with 3 acids are compared in figure 5. As can be observed, 2 M nitric acid, 1 M and 2 M of HCl and Aqua regia were able to remove more than 98% of impurities. The highest impurities were removed by 2 M HCl with 99.56% and 99.48%, followed by 1 M with 99.16%. However, 2 M Aqua regia was significantly able to remove 99.06% and 99.02% of impurities, hence possessing a competitive leaching potential. Although aqua regia is a mixture of 2 strong acids yet its slightly lower impurity removal than HCl with the same molar concentrations can be attributed to its unstable nature. Furthermore, the lowest impurity removal % was observed in the samples leached with 0.5 and 1 M nitric acid respectively.

Table 1. Impurity Removal % of Leached Rice Husk Samples

Sample	Leaching Acid	Molar Concentration	Impurity Removal %
S1	HNO₃	0.5 M	96.21
S2	0.5 M	96.91	
S3	1 M	96.98	
S4	1 M	97.2	
S5	2 M	98.73	
S6	2 M	98.81	
S7	HCl	0.5 M	98.02
S8	0.5 M	98.17	
S9	1 M	99.01	
S10	1 M	99.16	
S11	2 M	99.48	
S12	2 M	99.56	
S13	Aquaregia	0.5 M	96.98
S14	0.5 M	97.34	
S15	1 M	98.31	
S16	1 M	98.54	
S17	2 M	99.02	
S18	2 M	99.06	
CONCLUSION

Rice husk is shown to be of significant importance due to its composition. As biomass, it may contain various elements that can be extracted to produce value-added products, such as silica and lignin. However, the metallic impurities present in the rice husk can cause severe problems ahead. The impurities are usually removed via leaching with conventional acids such as HCl and nitric acid, however, the present study used aqua regia and compared its removal efficiency. It was found that aqua regia has a great leaching potential with 1 M and 2 M solutions removing more than 98% and 99% of impurities respectively.

ACKNOWLEDGEMENT

The authors are thankful to Coal and Research Centre, MUET, Jamshoro for providing the facilities to conduct this study.

DECLARATION OF COMPETING INTEREST

None

REFERENCES

Azat, S., Korobeinyk, A. V., Moustakas, K., & Inglezakis, V. J. 2019. Sustainable production of pure silica from rice husk waste in Kazakhstan. Journal of Cleaner Production 217: 352–359.
Bae, M., Lee, J. chun, Lee, H., & Kim, S. 2020. Recovery of nitric acid and gold from gold-bearing aqua regia by tributylphosphate. Separation and Purification Technology 235.
Bakar, R. A., Yahya, R., & Gan, S. N. 2016. Production of high purity amorphous silica from rice husk. Procedia Chemistry 19: 189–195.
Hamza Hasnain, M., Javed, U., Ali, A., & Saeed Zafar, M. 2021. Eco-friendly utilization of rice husk ash and bagasse ash blend as partial sand replacement in self-compacting concrete. Construction and Building Materials 273.
Mirmohamadsadeghi, S., & Karimi, K. 2020. Recovery of silica from rice straw and husk. In Current Developments in Biotechnology and Bioengineering: Resource Recovery from Wastes (pp. 411–433). Elsevier.
Moayedi, H., Aghel, B., Abdullahi, M. M., Nguyen, H., & Safian A Rashid, A. 2019. Applications of rice husk ash as green and sustainable biomass. Journal of Cleaner Production 237.
Nayak, P. P., & Datta, A. K. 2021. Synthesis of SiO2-nanoparticles from rice husk ash and its comparison with commercial amorphous silica through material characterization. Silicon 13(4): 1209–1214.
Nguyen, H., Jamali Moghadam, M., & Moayedi, H. 2019. Agricultural wastes preparation, management, and applications in civil engineering: a review. Journal of Material Cycles and Waste Management 21(5): 1039–1051.
Nuaklong, P., Jongvivatsakul, P., Pothisiri, T., Sata, V., & Chindaprasirt, P. 2020. Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. Journal of Cleaner Production 252.
Ozturk, M., Saba, N., Altay, V., Iqbal, R., Hakeem, K. R., Jawaid, M., & Ibrahim, F. H. 2017. Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia. In Renewable and Sustainable Energy Reviews 79: 1285–1302.
Santoso, E., Ediati, R., Kusumawati, Y., Bahruji, H., Sulistiono, D. O., & Prasetyoko, D. 2020. Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Materials Today Chemistry 16.
Zhu, P., Abdelaziz, O. Y., Hulteberg, C. P., & Riisager, A. 2020. New synthetic approaches to biofuels from lignocellulosic biomass. Current Opinion in Green and Sustainable Chemistry.