AN ABM OF BITING MIDGE DYNAMICS TO UNDERSTAND
BLUETONGUE OUTBREAKS

A PREPRINT

Shane L. Gladson
Department of Mathematics
University of Florida
Gainesville, FL, USA
shanegladson@ufl.edu

Dr. Tracy L. Stepien
Department of Mathematics
University of Florida
Gainesville, FL, USA
tstepien@ufl.edu

April 20, 2023

ABSTRACT

Bluetongue (BT) is a well-known vector-borne disease that infects ruminants such as sheep, cattle, and deer with high mortality rates. Recent outbreaks in Europe highlight the importance of understanding vector-host dynamics and potential courses of action to mitigate the damage that can be done by BT. We present an agent-based model (ABM), entitled MidgePy, that focuses on the movement of individual *Culicoides* spp. biting midges and their interactions with ruminants to understand their role as vectors in BT outbreaks, especially in regions that do not regularly experience outbreaks. Sensitivity analysis is performed and results indicate that midge survival rate has a significant impact on the probability of a BTV outbreak as well as its severity. Parameter regions where outbreaks are more likely to occur are determined, with an increase in environmental temperature corresponding with an increased probability of outbreak, where midge flight activity is used as a proxy for temperature. This suggests that future methods to control BT spread could combine large-scale vaccination programs with biting midge population control measures such as the use of pesticides. Spatial heterogeneity in the environment is also explored to give insight on optimal farm layouts to reduce the potential for BT outbreaks.

Keywords vector-borne disease · epidemiology

1 Introduction

In the late 2000s and early 2010s, multiple Bluetongue (BT) disease outbreaks occurred across Northern Europe, a region which did not previously witness BT spread. The resulting epizootic, fueled by an abundance of immunologically naive livestock, lasted multiple years until it was finally brought under control through mass vaccination programs and the restriction of livestock movement across country borders (Gethmann et al. [2020]). The epizootic had a significant economic impact on the livestock industry, and its persistence represents a continued threat to the European agricultural economy (Conraths et al. [2009]).

Occasional epizootics occur in any given year now and result in losses amounting to hundreds of millions of dollars due to necessary vaccination programs or lost revenue (Mayo et al. [2020]). Furthermore, livestock infected with BT experience high morbidity and mortality rates (Saegerman et al. [2008]). Understanding how BT arrived in Northern Europe is of interest to help prevent or mitigate potential outbreaks in new regions. In fact, BT is now considered a prime example of a disease whose range is changing due to climate change bringing warmer temperatures farther north (Brand and Keeling [2017], Samy and Peterson [2016]).

BT is a vector-borne disease caused by Bluetongue Virus (BTV) that is transmitted by *Culicoides* spp. biting midges (Diptera: Ceratopogonidae) and affects a wide range of ruminants such as sheep, cattle, and deer. Thus, the dispersal of *Culicoides* spp. biting midges plays an integral role in the spreading of BT between farms which are geographically distant (Pedgley and Brooksby [1983], Alba et al. [2004], Sellers and Maarouf [1996, 1989], Chapman et al. [2010]).
Previous mathematical models have focused on various aspects of the spread of BT among animal populations with a considerable focus on the Northern Europe BTV outbreaks of the 2000–2010s (see the review paper by Courtejoie et al. [2018] and the references therein). For example, Gubbins et al. [2008] performed sensitivity analysis on a temperature-dependent model considering a population with two host species to predict the risk of BT in Great Britain. Szmaragd et al. [2009, 2010] designed a model that examined the effects of vaccine uptake among farms in Great Britain following the 2006 BTV-8 outbreak. Gourley et al. [2011] used a delay differential equation model to investigate reproduction numbers for BT. Using historical wind data, Sedda et al. [2012] retroactively simulated the spread of the 2006 BTV outbreak in Northern Europe by considering a spatio-temporal environment. Guis et al. [2012] developed a climate driven model, which they used to predict temporal changes in R_0, and subsequently predict an increase in the future risk of BT across Northern Europe. Additionally, Turner et al. [2012] modeled farm-to-farm BT spread across Eastern England, which also considered the seasonal effect on transmission rate. A model that incorporated a temperature-dependent incubation period for BT was designed by Li and Zhao [2019] to predict the reproduction ratio and perform sensitivity analysis.

However, there is a need to examine the potential of BT spread and its impact in other locations that have not been historically affected as substantially as Northern Europe. In particular, while BT is transmitted in many parts of North America, there exists only one confirmed vector: C. sonorensis (Gerry et al. [2001]). This poses a conundrum since the primary range for C. sonorensis does not extend to the Southeastern United States, yet there have been confirmed cases of BT in that region (Smith and Stalnake [1996]). Entomologists have identified potential BT vector species in the Southeastern United States including C. stellifer, C. debilipalpis, and C. pallidicornis, however transmission of BT by these species has yet to be directly observed (McGregor et al. [2019]).

Here, we develop a mathematical model to study the potential of BT outbreaks on a single farm in regions not regularly experiencing outbreaks that incorporates the movement of midges and their interactions with ruminants. To include a spatial domain, we develop an agent-based model (ABM) that allows for much finer resolution in the domain than a multi-patch ordinary differential equations model without the necessity of developing a partial differential equations model. The use of agent-based models (ABMs) has been well-established for understanding dynamics of disease spread and the navigation of insects. For example, Smith et al. [2018] published a comprehensive review on the use of ABMs to model malaria transmission. These models were each designed specifically to either understand the role of environment heterogeneity in malaria spread, analyze the effectiveness of intervention strategies, or for parameter estimation. The flight patterns of insects such as moths (Bau and Carde [2015], Liberzon et al. [2018], Stepens et al. [2020], Golov et al. [2021]), locusts (Topaz et al. [2008], Bernoff et al. [2020]), flies (Lin et al. [2015], Alderton et al. [2018], Leitch et al. [2021], Diouf et al. [2022]), honeybees (Dorin et al. [2022]), and butterflies (Grant et al. [2018]) have all been studied with ABMs using a variety of modes including simple random walks and directed movement toward a target.

This paper aims to understand the impacts of midge movement on the transmission of BT using an ABM, and how aspects such as the number of initial infected midges, the daily survival rate of the midges, the extrinsic incubation period of midges inoculated with BT, and the probability of BT transmission between vector and host can affect the probability of an outbreak on a single farm. We also study the effects of temperature using the number of actively flying midges in a simulation as a proxy to determine parameter regions where outbreaks are more likely. Spatial heterogeneity in the environment is explored to give insight on optimal farm layouts to reduce the potential for BT outbreaks. While there exist many parameters related to both vectors and hosts which are known to affect the spread of BT, this paper focuses on those associated with midges.

The outline of this paper is as follows: in Section 2 we provide biological information on BT and its spread. In Section 3 we describe an agent-based model, entitled MidgePy, that examines the spread of BT on a small-scale large mammal farm of approximately one square kilometer. In Section 4 we perform sensitivity analysis of Culicoides spp. survival rates, the extrinsic incubation period of BT, and BT transmission probability, as well as an analysis on outbreak probability and the effects of a heterogeneous spatial domain. Finally, in Section 5 we summarize our results including their application to real-world efforts to combat BT outbreaks.

2 Bluetongue (BT)

Bluetongue virus (BTV) is a virus from the family Reoviridae, genus Orbivirus (Rivera et al. [2021]). BTV causes Bluetongue (BT), a hemorrhagic disease in ruminants that is transmitted by many species of Culicoides spp. biting midges (Mellor [1990], Mellor et al. [2000], Mellor [2000]). There are more than 20 known serotypes of BTV that circulate between different regions including the Middle East, Europe, and North America (Gerbier et al. [2008], Maclachlan et al. [2015], Saegerman et al. [2008]).

While vaccines exist that prevent BT, the virus is not immunologically simple and thus the vaccines must be serotype specific. With the large number of serotypes, each with varying virulence, it is difficult or impossible to vaccinate
livestock against all strains (Noad and Roy [2009]). In addition, recent studies have shown that, due to the segmented genome of BTV, the use of live attenuated viruses to vaccinate ruminants has the possibility of introducing new genetic material to environments, increasing the risk of creating new BTV serotypes (Rojas et al. [2021]).

Transmission begins when a competent Culicoides spp. vector bites a viremic ruminant, ingesting blood that contains BTV. The virus then undergoes an incubation period inside the midge, during which it goes through multiple stages in the incubation cycle before eventually replicating within the midge and reaching its salivary glands (Mellor [2000], Mellor et al. [2000]). The length of this process is known as the Extrinsic Incubation Period (EIP) (Carpenter et al. [2011]). In Culicoides spp. vectors, this process typically lasts 14 days, however, it is significantly affected by the ambient temperature, which is accompanied by increasing Culicoides spp. activity (Tsutsui et al. [2011], Mayo et al. [2020], Tugwell et al. [2021]). Additionally, the biting rate in Culicoides spp. has been shown to be positively correlated with disease transmission rates (Elbers and Meiswinkel [2014]). Though it has recently been shown that horizontal transmission of BT between ruminants is possible (Maclachlan et al. [2019]), the goal of this paper is to focus solely on the vector-host transmission cycle, therefore, horizontal transmission of BT will not be considered here.

3 Methods

We present a spatially and temporally explicit agent-based model (ABM), entitled MidgePy, that characterizes the actions of ruminants and Culicoides spp. biting midges and the spread of Bluetongue (BT) among these populations. The spatial landscape of our study is based on a cervid farm in North Florida that has been the focus of previous BT dynamics studies (McGregor et al. [2019], Erram et al. [2019], Erram and Burkett-Cadena [2018]). However, the spatial landscape in MidgePy is customizable so that the outbreak likelihood given the introduction of BTV-infected midges to any region may be examined.

The MidgePy algorithm is depicted as a flow chart in Fig. 1 which we subsequently describe.

3.1 Model State Variables

MidgePy is comprised of two main classes of agents: a midge swarm class, named MidgeSwarm, and a ruminant swarm class, named HostSwarm. Each class holds arrays containing information on each agent, such as their location and whether or not they are infected with BT. The length of the array indicates the population size of the respective agent type. In particular, the MidgeSwarm and HostSwarm classes contain arrays of lengths $\gamma \gammaP$ and γP_d, respectively, where $\gamma : 1$ is the ratio of midges to ruminants in a simulation. See Table 1 for a list of model parameters and their values.

An increase in the midges-per-ruminant ratio γ significantly increased the computational cost when running the model, and so we ran simulations to determine a value of γ that would allow for a reasonable computational time yet be representative of the full population dynamics. Initial simulations were run setting $\gamma = 30$, and then increased to $\gamma = 100$. Simulations run with $\gamma > 100$ showed no significant differences in model output. Therefore it was decided that $\gamma = 100$ was a suitable parameter value for this analysis.

3.2 Initialization of Simulations

We considered both homogeneous and heterogeneous spatial domains in our study. The homogeneous domain was set to be a continuous, homogeneous square of size 1×1 km. The heterogeneous spatial domain is described subsequently in Section 3.2.1. Analogous to the cervid farms studied in McGregor et al. [2019], Erram et al. [2019], and Erram and Burkett-Cadena [2018], we assume Culicoides spp. are able to interact with both domestic and wild hosts, but we only include domestic hosts located on the farm. Hence, midges can fly beyond the limits of the farm domain, however the host population must always remain within the limits. If a midge flies beyond the farm domain, it continues following the same behavior it would as if it were within the domain (Fig. 2).

At the beginning of each day in the simulation, each ruminant is given a random position within the farm domain. Simulations where ruminants moved in a random walk did not produce notably different results compared to simulations where ruminants remained static throughout each day, and thus, to reduce computational complexity, ruminant locations were updated once daily.

Each day was simulated to be $T_d = 5$ hours long, which is approximately the amount of time during dawn and dusk where Culicoides spp. midges are most active (Fall et al. [2015], Gonzalez et al. [2017], Blackwell [1997]). At the start of the simulation, an initial number of midges, I, are randomly selected to be infected with BTV.

Unless otherwise stated, the simulation period of the model was 60 days. This was chosen as the primary interest for this model was understanding outbreak dynamics, and so longer periods were not necessary.
Figure 1: Flowchart of the MidgePy algorithm that determines Culicoides spp. behavior at each step.
Table 1: Model parameters of the agent-based model MidgePy. For all parameter values that do not have a reference, see Section 3.

Parameter	Description	Value	Units	Reference
Δt	Time step	60	s	
T_{full}	Length of time after a blood meal that a midge remains not hungry	2	days	
T_d	Length of each day simulated	5	hours	Fall et al. [2015], González et al. [2017], Blackwell [1997]
P_d	Ruminant population size	100		
γ	Number of midges per ruminant	100 : 1		
v_r	Flight speed of a roaming midge	0.13	m/s	Sedda et al. [2012]
v_f	Flight speed of an active midge	0.5	m/s	Sedda et al. [2012], Gethmann et al. [2020]
d_{det}	Maximum distance a midge can detect a ruminant	300	m	
d_{bite}	Minimum distance required for a midge to bite a ruminant	$v_f \Delta t$	m	
P_{VtoH}	Probability of BTV transmission from vector to host	0.9		Bessell et al. [2016]
P_{HtoV}	Probability of BTV transmission from host to vector	0.14		Carpenter et al. [2013]
ρ_H	Extrinsic incubation period of BTV in ruminants	2	days	
ρ	Extrinsic incubation period of BTV in Culicoides spp.	10–20	days	Tsutsui et al. [2011], Mayo et al. [2020], Tugwell et al. [2021], Wittmann et al. [2002]
α	Culicoides spp. daily survival probability	0.5–0.9		Wittmann et al. [2002], Lysyk and Danyk [2007], Gerry and Mul lens [2000]
I_0	Number of midges infected with BTV at initialization	1–5		

3.2.1 Heterogeneous Environment

Since midges’ habitat preferences, such as toward bodies of water or swamps, could have an effect on the direction that they would fly (Erram et al. [2019]), we also considered a heterogeneous domain. The domain designed for our study was inspired by the cervid farm located in Gadsden County, FL, USA that was studied in McGregor et al. [2019].

To examine the effects of heterogeneity, we generated a 200 pixel \times 200 pixel map, where each pixel in the map represents a 5 m \times 5 m region in the domain. Each pixel was categorized into one out of five different habitat types, which were given a rank to correspond with the habitat preferences of the midges: 1 is considered the least favorable and 5 is the most favorable.

3.3 Midge Movement and Biting Behavior

At each time step, of length Δt, whether a midge has recently fed or not is determined, which then dictates the type of movement that the midge will undergo. We consider a midge to have recently fed if it had a blood meal from a ruminant within the last T_{full} days, which we set to be 2 days. The midges that have recently fed (time since last meal $< T_{\text{full}}$)
move in a random walk with roaming flight velocity v_r. Letting $\mathbf{x}(t) = (x(t), y(t))$ be the current location of a midge, its location is updated according to

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + v_r \Delta t \frac{\mathbf{x}_r - \mathbf{x}(t)}{||\mathbf{x}_r - \mathbf{x}(t)||},$$

where \mathbf{x}_r is a random point uniformly selected within the domain. This ensures that midges remain within the domain and do not travel too far outside the region to detect ruminants when searching for a blood meal.

If a midge has not recently fed (time since last meal $\geq T_{\text{full}}$), it will check if there is a ruminant within a radius of detection distance d_{det} from itself, which we set to be 300 m. If there are no ruminants within that distance, the midge moves in a random walk with roaming flight velocity v_r as defined above in (1). If ruminants are located within a midge’s detection distance d_{det}, the midge will fly in the direction of the closest ruminant with active flight velocity v_f, such that its location is updated according to

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + v_f \Delta t \frac{\mathbf{x}_h - \mathbf{x}(t)}{||\mathbf{x}_h - \mathbf{x}(t)||},$$

where \mathbf{x}_h is the location of the host that is closest to the midge. The midge will move according to (2) until it is within a minimum biting distance d_{bite}, after which the ruminant will be bitten.

For a heterogeneous domain (Section 3.2.1), we assume that midges undergoing random walk movement would preferentially move toward habitats that are more favorable. Modifications for midge movement are then as follows: at each time step that a midge is not searching for a blood meal, the midge determines the preference ranking of the habitats in its Moore neighborhood (the surrounding eight 5 m \times 5 m patches as well as the patch that the midge is currently located in). The patches with the highest value according to preference are selected, and then one patch is randomly chosen. The midge flies with roaming flight velocity v_r in the direction of the chosen patch and its location is updated according to

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + v_r \Delta t \frac{\mathbf{x}_p - \mathbf{x}(t)}{||\mathbf{x}_p - \mathbf{x}(t)||},$$

where \mathbf{x}_p is the location of the center of the chosen patch (instead of the location being updated according to (1)). The patch selection process is repeated at each time step, so this means that the habitat distribution has an effect on how directed versus how random a midges’ flight movement is: if there is just one patch surrounding the midge with a higher ranking than all of the other patches, the midge will fly directly to that patch. However, if there are multiple patches surrounding the midge with equal preference ranking, then the midge will overall appear to move more in a random walk motion.
3.4 Transmission of Bluetongue Virus

After a midge bites a ruminant in the simulation, the subsequent steps are followed: If the host is viremic with BTV, then BTV is transmitted to the midge with probability P_{HtoV}. If the midge is infectious with BTV, then BTV is transmitted to the host with probability P_{VtoH}.

After inoculation by a midge, a ruminant that had been infected by BTV would undergo an extrinsic incubation period for ρ_H days, after which it would become viremic and could potentially infect other midges. Due to a lack of data providing a more precise value, we set ρ_H to be 2 days. Similarly, a midge that had been infected by BTV would undergo an extrinsic incubation period, ρ. The model did not consider the ability of ruminants or midges to recover from BT, and as such they would remain viremic for the duration of the simulation. Furthermore, we do not implement any changes in midge feeding behavior after infection since the biting rate of midges is not well established in the literature and is highly dependent on the data collection and statistical analysis methods employed (Möhlmann et al. [2021]).

We assume in each simulation that the midges have a constant daily survival rate, α. Laboratory findings have shown that the lifespan of Culicoides spp. with respect to a fixed temperature follow either an exponential or Weibull distribution (Lysyk and Danyk [2007]). Assuming an exponential distribution, then the mean expected survival time of the midges is $1/(1-\alpha)$ days. At the end of each day simulated, it is determined whether each midge will survive to the next day with probability α. If the midge is determined to have died, it is replaced by a new midge that is not infected with BTV in a random location so that the population size of midges remains constant.

4 Results

In this section, we analyze the sensitivity of the model parameters to the model output (Section 4.1), determine the dependence of the number of infected ruminants on Culicoides spp. survival rate, extrinsic incubation period, and temperature using midge flight activity as a proxy (Section 4.2), evaluate the dependence of outbreak probability on the initial number of infected midges, their survival rate, and probability of transmission from vector to host (Section 4.3), and examine the effects of a heterogeneous environment on midge location preferences (Section 4.4).

4.1 Sensitivity Analysis

We determine how sensitive the model is to changes in the Culicoides spp. daily survival rate, α, extrinsic incubation period, ρ, probability of BTV transmission from vector to host P_{VtoH}, probability of BTV transmission from host to vector P_{HtoV}, and initial number of infected midges, I_0, using Sobol’ sensitivity analysis (Sobol’ [2001]) via Saltelli’s extension of the Sobol’ sequence (Saltelli [2002], Saltelli et al. [2010]) as implemented in the SALib Sensitivity Analysis Library (Herman and Usher [2017]). This is a variance-based method which allows for calculation of model output changes with respect to variation with a single parameter (first-order), and combinations of all parameters (total-order). By comparing the first-order and total-order indices, the presence of higher-order interactions can be inferred.

The range of values for the parameters of interest were set to be $\alpha \in [0, 1]$, $\rho \in [0, 20]$, $P_{VtoH} \in [0, 1]$, and $P_{HtoV} \in [0, 1]$, which contain the typical values observed for these parameters (Table 1). The total number of infected ruminants after 60 days was used as the model output, and the resulting first- and total-order indices were calculated. Due to computational constraints and the stochastic nature of the model, a total of 96 simulations, with parameters given by the Saltelli distribution, were run for each trial.

To clarify terminology used in this section, we define a simulation to be a single execution of the model under a single set of parameters. A trial is a group of simulations. We averaged the results from many trials to find the expected values for the analysis in this section.

Both the first-order indices and total-order indices, shown in Fig. 3 indicated that the model was much more sensitive to perturbations in the Culicoides spp. survival rate α than it was to perturbations in the extrinsic incubation period ρ or the transmission probabilities P_{VtoH} and P_{HtoV}. Thus, this analysis implies that focusing on the survival of midges is more important than the incubation period and the probability of BTV transmission from host to vector or vice versa in reducing the number of infected ruminants.

Additionally, it was found that the model sensitivity to α decreased as I_0 increased, which was to be expected as more BTV-infected Culicoides spp. midges would reduce the need for high survival rates. Initial analysis was conducted
4.2 Percentage of Infected Ruminants

A heat map, shown in Fig. 4, was generated to visualize the total percentage of infected ruminants over a 60 day period given changes in the Culicoides spp. survival rate α and extrinsic incubation rate ρ. We also varied the total midge population, as given by the number of midges per ruminant, γ. Since midges are more active in warmer temperatures \cite{Tugwell et al., 2021}, increasing γ implies that there is more midge flight activity, which is correlated with warmer temperatures. Hence, we can implicitly examine the effects of temperature by varying γ as a proxy. Parameter values were chosen to be $\alpha \in [0.6, 0.9]$ in increments of 0.015, $\rho \in [10, 20]$ in increments of 0.5, and $\gamma \in \{5, 10, 50, 100\}$. For each combination of parameters $\alpha, \rho,$ and γ, 10 simulations of each case were run due to the stochastic nature of the model and the tendency for low values of α or high values of ρ to result in no outbreak at all. The average number of infected ruminants was averaged over all the simulations for each (α, ρ, γ)-set.

Fig. 4 illustrates that the number of infected ruminants is non-decreasing as α and ρ increase for each fixed value of γ, and it was very common for simulations with large enough values of α and ρ to end with all of the ruminants within the domain being infected with BTV. There appears to be a linear bifurcation line with respect to α and ρ that determines the likelihood of an outbreak. Low values of α combined with high values of ρ would result in few to no outbreaks, while high α and low ρ result in large-scale outbreaks. This line shifts as γ increases, such that large midge populations correspond to larger outbreaks for similar combinations of α and ρ. This follows intuition, as a high survival rate and low extrinsic incubation period would allow many more Culicoides spp. midges to become infected with BTV and subsequently pass the virus on to another ruminant. Additionally, in warmer temperatures where midge flight activity is greater, there is an increased chance of an outbreak.

4.3 Outbreak Probability

For the purposes of this study, an outbreak was defined to be the occurrence of a single BTV-infected ruminant. We fixed the initial number of infected midges, I_0, and daily survival rate, α, for each simulation and allowed the simulation to run until either all BTV-infected midges died without a single ruminant becoming infected or a single ruminant had become infected with BTV. Parameter values were chosen to be $\alpha \in [0, 1]$, $P_{VtoH} \in \{0.25, 0.5, 0.75, 1\}$, and $I_0 \in \{1, 2, 3, 4, 5, 15, 50, 100\}$. 500 simulations were run for each (α, P_{VtoH}, I_0)-set. From this, the estimated outbreak probability was calculated by averaging over all the simulations.

Fig. 5 illustrates that for low values of I_0, the relationship between α and the probability of outbreak is concave up for small P_{VtoH} and then is approximately linear for large P_{VtoH}. As I_0 increases, especially past $I_0 = 15$ and for any
The goal of this paper was to develop a model that represents the spread of BTV in a controlled environment. This model was investigated through methods that included sensitivity analysis and an examination of the probability of outbreak. Results indicated that the model was more sensitive to variations in Culicoides spp. survival rate than to the extrinsic incubation period of BTV or transmission probability (Fig. 3), which was reinforced by analysis of the probability of outbreak (Fig. 5). Additional visual analysis of the heat map in Fig. 4 suggests that there exists a bifurcation when the value of P_{VtoH}, the outbreak curves approach a step function. As P_{VtoH} increases but I_0 is kept fixed, the concavity of the outbreak curves decreases, i.e., a concave up curve becomes more linear and a concave down curve approaches a step function. This indicates that an increase in α, I_0, or P_{VtoH} corresponds with higher outbreak probabilities.

4.4 Heterogeneous Environment Simulation

The effects of a heterogeneous environment are studied using the map illustrated in Fig. 6(a) which was inspired by the cervid farm studied in McGregor et al. [2019]. Following the additional movement rules as described in Section 3.3, midges preferentially travel to habitats that are more favorable (3) instead of random walk motion (1). Due to computational constraints, a single simulation of 30 days was run, and midge locations were saved at the final time step. The spatial density of the midges is shown in Fig. 6(b), which corresponds to the most preferred region in the map (level 5). An additional highly-dense cluster is centered near (700, 800), which corresponds to the next most preferred region of level 4, observing that this cluster is closer to regions of level 3 and 1, rather than the level 5 region. Finally, there is a noticeable lack of midges near (500, 250), which is linked to the large and least preferred region of level 1.

5 Discussion

The goal of this paper was to develop a model that represents the spread of BTV in a controlled environment. This model was investigated through methods that included sensitivity analysis and an examination of the probability of outbreak. Results indicated that the model was more sensitive to variations in Culicoides spp. survival rate than to the extrinsic incubation period of BTV or transmission probability (Fig. 3), which was reinforced by analysis of the probability of outbreak (Fig. 5). Additional visual analysis of the heat map in Fig. 4 suggests that there exists a bifurcation when
Figure 5: The probability of outbreak given different initial numbers of infected midges, I_0, depending on the daily survival rate, α, and the probability of transmission from vector to host P_{VtoH}. An outbreak was defined to be the infection of a single ruminant. The probability of outbreak increases dramatically as α increases. The shape of the curve is concave up or linear for low I_0 and for low P_{VtoH} or high P_{VtoH}, respectively, and approaches a step function for high I_0, regardless of the value of P_{VtoH}.

considering the relationship between survival rate and extrinsic incubation period, which specifies parameter regimes in which outbreaks are expected. As such, we conclude from this model that there exists a strong relationship between survival rate and the spread of BTV.

It is first worth noting the limitations of the model. As it is extremely difficult to accurately count the population of biting midges in a given system, the population of midges was set to be 100 times the number of ruminants. This ratio was chosen due to computational constraints. It is very likely that this is an underestimation of the total number of midges, and so the true spread of BTV would occur among a much larger vector population. Additionally, the model does not consider ruminants that ultimately recover or die from BTV infection, thereby resulting in a non-decreasing number of viremic hosts that will indefinitely contribute to the spread of BTV. Therefore it is possible that the model is overestimating the number of infected ruminants over long simulation periods (greater than one or two months).

Simulations of the model suggest that early in the outbreak, BTV could be in the system while not being detected. This would occur during a short window where there are no viremic ruminants or midges capable of spreading BTV, and instead, the virus is within a host animal or midge after inoculation has occurred but the virus has not yet completed its replication cycle. This suggests that it is much more difficult for ecologists and epidemiologists to detect and isolate early outbreaks of BTV in a region. We suggest that it would be possible to counter this issue by repeated testing of susceptible hosts over multiple days in at-risk areas.
A key focus of this model was analyzing possible outbreak scenarios. As such, the analysis has shown that survival rate of the midges plays the most important factor in determining the probability of an outbreak. Other studies have also shown that vector mortality rate and density significantly affect disease spread within host populations for mosquitoes transmitting malaria (Mandal et al. [2011]) and tsetse flies transmitting human African trypanosomiasis (Gervas et al. [2018]). Therefore it would be prudent that, in regions at risk of an outbreak, the main focus should be to vaccine development and administration (Gerry et al. [2001]). Ideally, outbreaks would be controlled by a combination of population-control methods and vaccination programs.

One result of the model is that the outbreak probability increases with I_0 (Fig. 5). While the trend appears linear for low values of I_0, it was found that this trend becomes increasingly concave. It appears that in the limit as I_0 increases, the probability of outbreak would approach a step function. While this follows intuition, and helps to further validate the model, the results further suggest that high numbers of infected Culicoides spp. midges virtually guarantee the possibility of an outbreak. This implies that population control measures such as pesticides may not be enough to prevent epizootics, as long as there are enough vectors already infected with BTV to continue the cycle. This presents a predicament, as another strategy to prevent outbreaks is mass vaccination of livestock in the surrounding region. However, the development of new vaccines is challenging due to the increasing appearance of new BTV serotypes which are not immunologically simple (Maclachlan et al. [2015]), increasing the economic impact through very expensive vaccine development and administration (Gerry et al. [2001]). Ideally, outbreaks would be controlled by a combination of population-control methods and vaccination programs.

Multiple studies have shown a strong seasonality with the growth and decay of BTV (Gerry et al. [2001], Carpenter et al. [2011]). It is known that BTV can lie dormant for multiple months during colder, more unfavorable conditions, then return during spring and summer where its prevalence reaches its peak. This model did not attempt to simulate outbreaks on large time scales, and so seasonality was not considered in the design. Instead, the model assumes constant parameters and consistent environmental variables. Additionally, one of the key goals of this model was to understand BTV spread in the southeast United States, particularly North Florida, where BTV remains endemic and does not spread through outbreaks like in Europe. In the southeast and North Florida in particular, the subtropical environment offers less seasonality than in more northern regions. As such, the lack of seasonality in this model is not as critical of a limitation as it would be in a model for more temperate regions.

In simulations with a heterogeneous environment where midges follow preferential movement toward more favorable habitats, the midges showed a strong ability to arrange themselves in habitats that are more preferable, such as those
commonly being bodies of water or swamps (Erram et al. [2019]). Furthermore, as illustrated in Fig. 6b, midges will not only concentrate in the highest favored habitats, as expected, but there can be less favorable habitats that midges will also cluster in, such as the level 4 region centered around (700, 800) which is closer to level 1 regions than expected. Thus, regions containing high midge concentrations using MidgePy simulations can be used to suggest optimal farm layouts that involve organizing pastures and fences to avoid these areas. As Fig. 4 indicates, smaller midge populations correspond to fewer BTV infected ruminants for similar ρ and α. Therefore habitats which are suitable for ruminants and not preferable for midges should be prioritized to reduce BT outbreak occurrence and severity.

Future work will focus on the development of a continuous model based on differential equations to identify a functional relationship between the Culicoides spp. daily survival rate α and extrinsic incubation period ρ. While the sensitivity analysis indicates α to be more influential than ρ in determining the size of an outbreak, ρ still plays a significant role. In fact, there appears to be a linear relationship between α and ρ that shows how high survival rates may not be enough to guarantee an outbreak when combined with long incubation periods.

This model was designed with simplicity in mind. For that reason, it would be straightforward to modify the model in order to investigate the spread of other vector-borne diseases. Other future avenues of research using this model as a base include modeling malaria, which is spread through humans and other animal hosts. This would add a new level of complexity as humans move significant distances more frequently than livestock. Diseases such as malaria could be implemented into the model with relative ease, and sensitivity analysis could be performed to understand better methods for controlling spread. Additionally, there are other model parameters which are of potential future interest, including the incubation period of BT within ruminants, ρ_H, and midge biting rate, T_{full}. These parameters warrant further study, as well as extending the model to include vaccination and ruminant death to account for the high mortality rate found in some ruminants, particularly sheep, due to BTV (Conraths et al. [2009]). Such analysis could supplement biological research on BTV-host interactions.

Supplementary information

The source code for MidgePy used to generate the results for this article is available through GitHub at https://github.com/stepien-lab/MidgePy [v1.0.0]. The code is platform independent and written in Python. The data used for this article is available through OSF at https://www.osf.io/fhven

Acknowledgments

The authors acknowledge University of Florida Research Computing for providing computational resources and support that have contributed to the research results reported in this publication.

T.L.S. acknowledges support from a Simons Collaboration Grant for Mathematicians (#710482) and NSF grant DMS-2151566.

Statements and Declarations

Competing interests

The authors declare no competing interests.

Appendices

References

Jörn Gethmann, Carolina Probst, and Franz J. Conraths. Economic impact of a bluetongue serotype 8 epidemic in Germany. Frontiers in Veterinary Science, 7:65, 2020. ISSN 2297-1769. doi:10.3389/fvets.2020.00065.

Franz J. Conraths, Jörn M. Gethmann, Christoph Staubach, Thomas C. Mettenleiter, Martin Beer, and Bernd Hoffmann. Epidemiology of bluetongue virus serotype 8, Germany. Emerging infectious diseases, 15(3):433–435, Mar 2009. doi:10.3201/eid1503.081210

Christie Mayo, Emily McDermott, Jennifer Kopanke, Mark Stenglein, Justin Lee, Candace Mathiason, Molly Carpenter, Kirsten Reed, and T. Alex Perkins. Ecological dynamics impacting bluetongue virus transmission in North America. Frontiers in Veterinary Science, 7:186, 2020. ISSN 2297-1769. doi:10.3389/fvets.2020.00186.
An ABM of biting midge dynamics to understand Bluetongue outbreaks

Claude Saegerman, Dirk Berkvens, and Philip S. Mellor. Bluetongue epidemiology in the European Union. *Emerging Infectious Disease Journal*, 14(4):539, 2008. ISSN 1080-6059. doi:10.3201/eid1404.071441.

Samuel P. C. Brand and Matt J. Keeling. The impact of temperature changes on vector-borne disease transmission: *Culicoides* midges and bluetongue virus. *Journal of The Royal Society Interface*, 14(128):20160481, 2017. doi:10.1098/rsif.2016.0481.

Abdallah M. Samy and A. Townsend Peterson. Climate change influences on the global potential distribution of bluetongue virus. *PLOS ONE*, 11(3):1–12, 03 2016. doi:10.1371/journal.pone.0150489.

D. E. Pedgley and John Burns Brooksbys. Windborne spread of insect-transmitted diseases of animals and man. *Philosophical Transactions of the Royal Society of London. B, Biological Sciences*, 302(1111):463–470, 1983. doi:10.1098/rstb.1983.0068.

A. Alba, J. Casal, and M. Domingo. Possible introduction of bluetongue into the Balearic Islands, Spain, in 2000, via air streams. *Veterinary Record*, 155(15):460–461, 2004. doi:10.1136/vr.155.15.460.

R. F. Sellers and A. R. Maarouf. Trajectory analysis of winds and vesicular stomatitis in North America, 1982–5. *Epidemiology and Infection*, 104(2):313–328, 1990. doi:10.1017/S0950268800059495.

Camille Szmaragd, Anthony J. Wilson, Simon Carpenter, James L. N. Wood, Philip S. Mellor, and Simon Gubbins. The spread of bluetongue virus serotype 8 in Great Britain and its control by vaccination. *PLOS One*, 5(2):1–8, 02 2010. doi:10.1371/journal.pone.0009353.

Stephen A. Gourley, Horst R. Thieme, and P. van den Driessche. Stability and persistence in a model for bluetongue dynamics. *SIAM Journal on Applied Mathematics*, 71(4):1280–1306, 2011. doi:10.1137/090775014.

Fuxiang Li and Xiao-Qiang Zhao. Dynamics of a periodic bluetongue model with a temperature-dependent incubation period. *SIAM Journal on Applied Mathematics*, 79(6):2479–2505, 2019. doi:10.1137/18M1218364.
Neal R. Smith, James M. Trauer, Manoj Gambhir, Jack S. Richards, Richard J. Maude, Jonathan M. Keith, and Jennifer A. Flegg. Agent-based models of malaria transmission: a systematic review. *Malaria Journal*, 17(1):299, Aug 2018. ISSN 1475-2875. doi:10.1186/s12936-018-2442-y.

Josep Bau and Ring T. Cardé. Modeling optimal strategies for finding a resource-linked, windborne odor plume: Theories, robotics, and biomimetic lessons from flying insects. *Integrative and Comparative Biology*, 55(3):461–477, 2015. doi:10.1093/icb/icv036.

Alexander Liberzon, Kyra Harrington, Nimrod Daniel, Roi Gurka, Ally Harari, and Gregory Zilman. Moth-inspired navigation algorithm in a turbulent odor plume from a pulsating source. *PLOS ONE*, 6(13):1–18, 2018. doi:10.1371/journal.pone.0198422.

Tracy L. Stepien, Cole Zmurchok, James B. Hengenius, Rocío Marilyn Caja Rivera, Maria R. D’Orsogna, and Alan E. Lindsay. Moth mating: Modeling female pheromone calling and male navigational strategies to optimize reproductive success. *Applied Sciences*, 10(18):6543, 2020. doi:10.3390/app10186543.

Yiftach Golov, Noam Benelli, Roi Gurka, Ally Harari, Gregory Zilman, and Alex Liberzon. Open-source computational simulation of moth-inspired navigation algorithm: A benchmark framework. *MethodsX*, 8:101529, 2021. doi:10.1016/j.mex.2021.101529.

C. M. Topaz, A. J. Bernoff, S. Logan, and W. Toolson. A model for rolling swarms of locusts. *The European Physical Journal Special Topics*, 157(1):93–109, 2008. doi:10.1140/epjst/e2008-00633-y.

Simon Alderton, Ewan T. Macleod, Neil E. Anderson, Gwen Palmer, Noreen Machila, Martin Simuunza, Susan C. Welburn, and Peter M. Atkinson. An agent-based model of tsetse fly distribution and control techniques: A case study in Nguruman, Kenya. *Ecological Modelling*, 314:80–89, 2015. doi:10.1016/j.ecolmodel.2015.07.015.

Katherine J. Leitch, Francesca V. Ponce, William B. Dickson, Floris van Breugel, and Michael H. Dickinson. The long-distance flight behavior of *Drosophila* supports an agent-based model for wind-assisted dispersal in insects. *Proceedings of the National Academy of Sciences*, 118(17):e2013342118, 2021. doi:10.1073/pnas.2013342118.

Esther Gnilane Diouf, Thierry Brévault, Saliou Ndiaye, Emile Faye, Anaïs Chailleux, Paterne Diatta, and Cyril Piou. An agent-based model to simulate the boosted Sterile Insect Technique for fruit fly management. *Ecological Modelling*, 468:109951, 2022. doi:10.1016/j.ecolmodel.2022.109951.

Tyler J. Grant, Hazel R. Parry, Myron P. Zalucki, and Steven P. Bradbury. Predicting monarch butterfly (*Danaus plexippus*) movement and egg-laying with a spatially-explicit agent-based model: The role of monarch perceptual range and spatial memory. *Ecological Modelling*, 374:37–50, 2018. doi:10.1016/j.ecolmodel.2018.02.011.

Nelda A. Rivera, Csaba Varga, Mark G. Ruder, Sheena J. Dorak, Alfred L. Roca, Jan E. Novakofski, and Nohra E. Mateus-Pinilla. Bluetongue and epizootic hemorrhagic disease in the United States of America at the wildlife–livestock interface. *Pathogens*, 10(8):915, Jul 2021. ISSN 2076-0817. doi:10.3390/pathogens10080915.

P. S. Mellor. Replication of bluetongue virus in *Culicoides* vectors. In Polly Roy and Barry M. Gorman, editors, *Bluetongue Viruses*, pages 143–161, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg. ISBN 978-3-642-75247-6. doi:10.1007/978-3-642-75247-6_6.

P. S. Mellor, J. Boorman, and M. Baylis. *Culicoides* biting midges: Their role as arbovirus vectors. *Annual Review of Entomology*, 45(1):307–340, 2000. doi:10.1146/annurev.ento.45.1.307.

P.S. Mellor. Replication of arboviruses in insect vectors. *Journal of Comparative Pathology*, 123(4):231–247, 2000. ISSN 0021-9975. doi:10.1053/jcpa.2000.0434.

G. Gerbier, T. Baldet, A. Tran, G. Hendrickx, H. Guis, K. Mintiens, A.R.W. Elbers, and C. Staubach. Modelling local dispersal of bluetongue virus serotype 8 using random walk. *Preventive Veterinary Medicine*, 87(1):119–130, 2008. ISSN 0167-5877. doi:10.1016/j.prevetmed.2008.06.012.
N. J. Maclachlan, C. E. Mayo, P. W. Daniels, G. Savini, S. Zientara, and E. P. Gibbs. Bluetongue. *Rev Sci Tech*, 34(2):329–340, Aug 2015. doi:10.20506/rst.34.2.2360

R. Noad and P. Roy. Bluetongue vaccines. *Vaccine*, 27:D86–D89, 2009. ISSN 0264-410X. doi:10.1016/j.vaccine.2009.08.037

José M. Rojas, Verónica Martín, and Noemí Sevilla. Vaccination as a strategy to prevent bluetongue virus vertical transmission. *Pathogens*, 10(11):1528, November 2021. doi:10.3390/pathogens10111528

Simon Carpenter, Anthony Wilson, James Barber, Eva Veronesi, Philip Mellor, Gert Venter, and Simon Gubbins. Temperature dependence of the extrinsic incubation period of orbiviruses in *Culicoides* biting midges. *PLOS ONE*, 6(11):1–8, 11 2011. doi:10.1371/journal.pone.0027987

Toshiyuki Tsutsui, Yoko Hayama, Makoto Yamakawa, Hiroaki Shirafuji, and Tohru Yanase. Flight behavior of adult *Culicoides oxystoma* and *Culicoides maculatus* under different temperatures in the laboratory. *Parasitology Research*, 108(6):1575–1578, Jun 2011. ISSN 1432-1955. doi:10.1007/s00436-010-2048-y

Laura A. Tugwell, Marion E. England, Simon Gubbins, Christopher J. Sanders, Jessica E. Stokes, Joanne Stoner, Simon P. Graham, Alison Blackwell, Karin E. Darpel, and Simon Carpenter. Thermal limits for flight activity of field-collected *Culicoides* in the United Kingdom defined under laboratory conditions. *Parasites & Vectors*, 14(1):55, Jan 2021. ISSN 1756-3305. doi:10.1186/s13071-020-04552-x

A.R.W. Elbers and R. Meiswinkel. *Culicoides* (Diptera: Ceratopogonidae) host preferences and biting rates in the Netherlands: Comparing cattle, sheep and the black-light suction trap. *Veterinary Parasitology*, 205(1):330–337, 2014. ISSN 0304-4017. doi:10.1016/j.vetpar.2014.06.004

Nigel James Maclachlan, Stephan Zientara, William C Wilson, Juergen A Richt, and Giovanni Savini. Bluetongue and epizootic hemorrhagic disease viruses: Recent developments with these globally re-emerging arboviral infections of ruminants. *Current Opinion in Virology*, 34:56–62, 2019. ISSN 1879-6257. doi:10.1016/j.coviro.2018.12.005

Dinesh Erram, Erik M. Blosser, and Nathan Burkett-Cadena. Habitat associations of *Culicoides* species (Diptera:Ceratopogonidae) abundant on a commercial cervid farm in Florida, USA. *Parasites & Vectors*, 12(1), 2019. doi:10.1186/s13071-019-3626-1

Dinesh Erram and Nathan Burkett-Cadena. Laboratory studies on the oviposition stimuli of *Culicoides stellifer* (Diptera:Ceratopogonidae), a suspected vector of Orbiviruses in the United States. *Parasites & Vectors*, 11(1):300, 2018. doi:10.1186/s13071-018-2891-8

Moussa Fall, Assane G. Fall, Momar T. Seck, Jérémy Bouyer, Maryam Diarra, Thomas Balenghien, Claire Garros, Mame T. Bakhoum, Ousmane Faye, Thierry Baldet, and Geoffrey Gimonneau. Circadian activity of *Culicoides oxystoma* (Diptera: Ceratopogonidae), potential vector of bluetongue and African horse sickness viruses in the Niayes area, Senegal. *Parasitology Research*, 114(8):3151–3158, Aug 2015. ISSN 1432-1955. doi:10.1007/s00436-015-4534-8

Mikel González, P.M. Alarcón-Elbal, Gert Venter, and Sergio Lopez. Flight and swarming behaviour of *Culicoides* species (Diptera: Ceratopogonidae) on a livestock farm in Northern Spain. *Veterinaria Italiana*, 53:157–166, 04 2017. doi:10.12834/VetIt.371.1663.4

Alison Blackwell. Diel flight periodicity of the biting midge *Culicoides impunctatus* and the effects of meteorological conditions. *Medical and Veterinary Entomology*, 11(4):361–367, 1997. doi:10.1111/j.1365-2915.1997.tb00423.x

Paul R. Bessell, Kate R. Searle, Harriet K. Auty, Ian G. Handel, Bethan V. Purse, and B. Mark de C. Bronsvoort. Assessing the potential for bluetongue virus 8 to spread and vaccination strategies in Scotland. *Scientific Reports*, (1):38940, Dec 2016. ISSN 2045-2322. doi:10.1038/srep38940

Simon Carpenter, Martin H. Groschup, Claire Garros, Maria Luiza Felippe-Bauer, and Bethan V. Purse. Culicoides biting midges, arboviruses and public health in Europe. *Antiviral Research*, 100(1):102–113, 2013. ISSN 0166-3542. doi:10.1016/j.antiviral.2013.07.020

E. J. Wittmann, P. S. Mellor, and M. Baylis. Effect of temperature on the transmission of orbiviruses by the biting midge, *culicoides sonorensis*. *Medical and Veterinary Entomology*, 16(2):147–156, 2002. doi:10.1046/j.1365-2915.2002.00357.x

T. J. Lysyk and T. Danyk. Effect of temperature on life history parameters of adult *Culicoides sonorensis* (Diptera: Ceratopogonidae) in relation to geographic origin and vectorial capacity for bluetongue virus. *Journal of Medical Entomology*, 44(5):741–751, 09 2007. ISSN 0022-2585. doi:10.1093/jmedent/44.5.741

Alec C. Gerry and Bradley A. Mullens. Seasonal Abundance and Survivorship of Culicoides sonorensis (Diptera: Ceratopogonidae) at a Southern California Dairy, with Reference to Potential Bluetongue Virus Transmission and Persistence. *Journal of Medical Entomology*, 37(5):675–688, 09 2000. ISSN 0022-2585. doi:10.1603/0022-2585-37.5.675
An ABM of biting midge dynamics to understand Bluetongue outbreaks

Tim W. R. Möhlmann, Matt J. Keeling, Uno Wennergren, Guido Favia, Inge Santman-Berends, Willem Takken, Constantianus J. M. Koenraad, and Samuel P. C. Brand. Biting midge dynamics and bluetongue transmission: A multiscale model linking catch data with climate and disease outbreaks. *Scientific Reports*, 11:1892, 2021. doi:10.1038/s41598-021-81096-9.

R. S. Singer, J. N. MacLachlan, and T. E. Carpenter. Maximal predicted duration of viremia in bluetongue virus—infected cattle. *Journal of Veterinary Diagnostic Investigation*, 13(1):43–49, 2001. doi:10.1177/104063870101300109.

I. M. Sobol’. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. *Math. Comput. Simulat.*, 55(1):271–280, 2001. doi:10.1016/S0378-4754(00)00270-6.

Andrea Saltelli. Making best use of model evaluations to compute sensitivity indices. *Computer Physics Communications*, 145(2):280–297, 2002. ISSN 0010-4655. doi:10.1016/S0010-4655(02)00280-1.

Andrea Saltelli, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and Stefano Tarantola. Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index. *Computer Physics Communications*, 181(2):259–270, 2010. ISSN 0010-4655. doi:10.1016/j.cpc.2009.09.018.

Jon Herman and Will Usher. SALib: An open-source python library for sensitivity analysis. *The Journal of Open Source Software*, 2(9), jan 2017. doi:10.21105/joss.00097.

Sandip Mandal, Ram Rup Sarkar, and Somdatta Sinha. Mathematical models of malaria - a review. *Malaria Journal*, 10(1):202, Jul 2011. ISSN 1475-2875. doi:10.1186/1475-2875-10-202.

Hamenyimana Emanuel Gervas, Nicholas Kwasi-Do Ohene Opoku, and Shamsuddeen Ibrahim. Mathematical modelling of human African trypanosomiasis using control measures. *Computational and Mathematical Methods in Medicine*, 2018:5293568, Nov 2018. ISSN 1748-670X. doi:10.1155/2018/5293568.