Species diversity of wrasses caught by fishermen in the Spermonde Islands, South Sulawesi, Indonesia

I Yasir1,3, J Tresnati2,3, A Yanti2,3, P Y Rahmani2,3, R Aprianto2,3 and A Tuwo1,3

1Marine Science Department, Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar, Indonesia
2Fisheries Department, Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar, Indonesia
3Multitrophic Research Group, Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar, Indonesia

Email: inayah.yasir@mar-sci.unhas.ac.id

Abstract. Wrasses are reef fish that play an important role in maintaining the health of coral reef ecosystems. Some species of wrasse, such as the Napoleon wrasse Cheilinus undulates, have high economic value and are threatened with overexploitation. This study aims to analyse the species diversity of wrasses caught by fishermen operating in the Spermonde Islands, South Sulawesi, Indonesia. The study was conducted from January 2018 to May 2019, on a monthly basis. Sampling was carried out by collecting all wrasses landed on one chosen day at Makassar Fisheries Port. The species diversity parameters observed were the species name and the number of individuals of each species. Based on these data, the diversity index, evenness index, domination index, and similarity index were calculated. Wrasse diversity was always in the medium range, indicating that ecologically wrasse habitat is still quite productive and has remained balanced over a considerable period time. It appeared that capture fisheries had not caused serious problems for the wrasse community diversity and structure.

1. Introduction

Wrasses (Family Labridae) are a group of fish inhabiting tropical and temperate seas, predominantly found in shallow coastal areas. Wrasse diversity levels vary around the world, with the most diverse wrasse communities generally found in the coral reef ecosystems of the Western Indo-Pacific region [1]. Most species are small, attaining a maximum body length of less than 20 cm; however some species, such as the large hogfish (Lachnolaimus), can grow to more than 70 cm in length and 10 kg in weight.

The family Labridae is the third largest fish family after the Gobiidae and Serranidae [2]. It is the second largest fish family living in salt water [3] with a total of 70 genera and 504 species described in 2011 [4]. This number has grown to 548 species with records of 41 new species; most of the discoveries of new species have been made in the Western Pacific Ocean and the Western Indian Ocean [2]. The Labridae are also one of the most morphologically and ecologically diverse families in terms of size, shape, and colour.

Wrasses diversity is related to the unique distribution patterns of each species since some wrasses have a large home range area which correlates positively with the fish total length. In certain species, when individuals become adults, the home range area reaches a peak and then remains relatively
constant, even though fish growth continues [5]. This pattern of spatial dynamics is one of the important demographic variables that affect population and community structure in wrasses [6] as in many other reef-associated fishes [7]. This distribution pattern may affect the catch of wrasses.

Some wrasses have a high economic value and are captured both in juvenile and adult phases. The bluehead wrasse *Thalassoma bifasciatum* [8] and the red-breasted wrasse *Cheilinus fasciatus*, are known as ornamental fish when they are in juvenile phase, but become food fishes when they reach the adult phase [9]. The adult blue-throated wrasse *Notolabrus tetricus* [10] and the humphead or Napoleon wrasse *Cheilinus undulatus* [11] are fish known for consumption. Other species of wrasse belonging to the genus *Labroides* are well known as cleaner fish, and play an important role in maintaining the health of coral reef fish communities.

There have been several previous studies on wrasse diversity [12,13] however none of those examine wrasse diversity in a way that can be used as a reference in stock assessment studies. Stock assessment is essential in the management of fisheries resources, especially for vulnerable species to overfishing.

Wrasse stock assessment is particularly urgent [11]. As herbivorous fish, wrasses feed on macroalgae which covers the surface of dead coral [14]. Their presence in coral reef areas guarantees the availability of substrates on which coral planulae can settle, thus promoting coral recruitment. Besides being important due to ecological considerations, wrasse should also be seen in terms of socio-economic factors. A study is needed to ascertain whether overfishing of wrasse has occurred, and to evaluate whether the fishing pressure of these species have disturbed the balance of the population in terms of species composition and other aspects of population dynamics [15].

This research was conducted to analyse the diversity of wrasse species captured by fishermen operating in the Spermonde Islands which is one of the fishing ground in South Sulawesi Province, Indonesia [16]. Wrasses are commonly caught in and around the Spermonde Islands, as can be seen from the number of wrasses landed at the fishing port in Makassar, the capital of South Sulawesi. This research is expected to provide scientific data regarding the impacts of wrasse capture fisheries.

2. Materials and Methods

2.1. Study site and sample collection

The Spermonde Archipelago in South Sulawesi Province, Indonesia, is located in the Makassar Strait (Figure 1), one of the main fishing grounds in Indonesia [16]. It covers an area of about 2,500 km2 with 120 islands [17]. Among the islands, only 50 are vegetated [18] with a total human population of around 50,000 [19] whose livelihoods are directly or indirectly dependent on fishing. Their catches are generally landed at the Fisheries Port in Makassar.

Wrasses were sampled from January 2018 to May 2019 on a monthly basis. Almost all sampling times were in the middle of the month. All wrasses landed in the Makassar Fisheries Port on the sampling day were collected. This sampling pattern was designed to provide a snapshot of the wrasse diversity caught in and around the Spermonde Archipelago.

Each individual collected was examined carefully to identify the species. Determination of the species was based on morphological characteristics in the form of body shape, *colour* patterns, and the fins bones, using Allen, Swainston and Ruse [20], Kuiter and Tonozuka [21] and Allen and Erdmann [22]. The number of individuals for each species was also counted in order to calculate the Diversity Index (H'), Evenness Index (E), Domination Index (C), and Similarity Index (Si) [23–25]. Based on the results of these calculations, the classification for each ecological index was determined [23–25].

3. Results

A total of 1,188 wrasses were sampled during the study, with 848 fish collected in 2018 and 340 in 2019 (up to May). The number of species, as well as the number of specimens, varied greatly, both between years of sampling (Table 1), and between months within each year (Figure 2).
Figure 1. Map of Makassar Strait (A), showing the location of Spermonde Archipelago and the Makassar City where the Makassar Fisheries Port is situated (B), modified after [26]

Table 1. Number of wrasse specimens and species found in each sampling year

Statistics	Number of species	Number of fish		
	2018 (12 months)	2019 (Jan-May)	2018 (12 months)	2019 (Jan-May)
Average	8	9	71	68
STD	3	3	53	36
Min	3	4	6	20
Max	12	13	162	113

Figure 2. Number of species (A) and number of specimens (B) of wrasses sampled on a monthly basis in each year
During the study, 30 species of wrasses were found. The number of samples for each species varied greatly during the study (Table 3).

Table 2. The wrasse species identified and their abundance during the study.

No	Species	Number of fish	
		2018 (12 months)	2019 (Jan-May)
1	Anampses caeruleopunctatus	1	9
2	A. geographicus	1	0
3	A. meleagrides	1	8
4	Cheilinus chlorourus	32	13
5	C. fasciatus	44	479
6	C. trilobatus	9	49
7	Cheilinus sp.	0	1
8	Cheilinus herma	0	2
9	Choerodon anchorago	90	85
10	C. rubescens	2	0
11	C. schoenleinii	2	20
12	C. zosterophorus	1	0
13	Coris cuvieri	3	0
14	C. gaimard	8	4
15	Epibulus insidiator	1	6
		2018 (12 months)	2019 (Jan-May)
1	Halichoeres chrysus	0	2
2	H. hortulanus	0	5
3	H. scapularis	0	1
4	Hemicoriscroederi	2	0
5	Hemigymnus fasciatus	3	2
6	H. melapterus	46	31
7	Hemitautoga hortulana	0	9
8	Hologymnus oxyrhinchus	0	1
9	Iniistius dea	0	3
10	Novaculichthys taeniourus	45	12
11	Oxycheilinus bimaculatus	1	67
12	O. celebicus	0	9
13	O. digramma	46	28
14	Pseudodax moluccanus	2	1
15	Thalassoma hardwicke	0	1

Of the 30 species found (Table 2), there were six species of wrasses whose average presence was above 50%. Those were: *Cheilinus fasciatus*, *C. trilobatus*, *Choerodon anchorago*, *Hemigymnus melapterus*, *Novaculichthys taeniourus*, and *Oxycheilinus digramma* (Figure 2).

Figure 3. The percentage of presence for each species of wrasse during the 17 months of the study. There were five Labridae species with an average presence above 50% indicated by the red arrows.

The ecological indices of diversity, evenness and dominancy for the wrasse collected during this study varied between years (Table 3). These indices also varied between months within each sampling year (Figure 4)
Table 3. Values of ecological indices of diversity, evenness and dominance for the wrasse collected during each sampling year

Statistics	Diversity	Evenness	Dominancy			
	2018	2019	2018	2019	2018	2019
Average	1.40	1.71	0.682	0.829	0.353	0.226
STD	0.55	0.26	0.233	0.065	0.175	0.046
Minimum	0.26	1.29	0.143	0.772	0.134	0.194
Maximum	2.20	1.98	0.921	0.930	0.746	0.295

Figure 4. The Diversity Index (A), Evenness Index (B) and Dominance Index (C) of wrasse by month and year over the study period

4. Discussion

Generally the Diversity Index was in the range of 0.26 to 2.20, which means that the wrasse community has a moderate level of diversity, indicating a moderate level of productivity, fairly balanced ecosystem, and moderate ecological pressure. The number of wrasse species found in the present study (30 species) is higher than that found by previous studies [5,7,27]. This diversity is related to the unique distribution patterns of each wrasse species. Some wrasses have a large home range area, which usually correlates positively with total fish length. In certain species, when individuals become adult, the home range area reaches a peak, remaining fairly constant thereafter, even though the fish continues to grow [5]. This pattern of spatial dynamics is one of the important demographic variables that affect population and community structure, both in wrasses [6], and in other reef fish [7]. This distribution pattern affects the catch of wrasses in a particular area.

The Evenness Index was in a wide range. There were 4 months in 2018, where the value fell below 0.6. In these months, *Cheilinus fasciatus* was very dominant. This pattern indicates that the wrasse populations are fairly evenly distributed. Based on the values of this index, it can be concluded that the wrasses species caught during the study were fairly well distributed. In 2019, the Dominance Index was in the range of 0.194 to 0.295. This means that in 2019 there were no dominant species, whereas
in 2018, the Dominance Index was in the medium range, with values from 0.134 to 0.746, indicating that during 2018 some species were quite dominant, but only at a medium level.

These results show that there are no truly dominant wrasse species found. The absence of dominance by a particular species in the wrasse community is good news, because it should give every species of wrasse a reasonable opportunity to fulfil their ecological role. This is important, because wrasses are one of the main functional groups in coral reefs, and have roles to play in maintaining the balance of coral ecosystems, especially when facing potential phase changes (increasing resistance) and during periods of regeneration after interference (promoting resilience) [28].

The similarity index value of only 0.5 indicates that the 30 species found during the research period did not really spread evenly at each sampling period (years). This was due to the dominance of *Cheilinus fasciatus*. The general condition of the population was moderate to good over a relatively long period of time (January 2018-May 2019).

5. Conclusion
Wrasse diversity was relatively stable at a moderate level. This indicates that, ecologically, the wrasses’ habitat in and around the Spermonde Islands in South Sulawesi, Indonesia was still quite productive and balanced over the 17 months study period (January 2018-May 2019). The findings of this study imply that capture fisheries have not yet caused serious disruption to the wrasse community in the study area in terms of species diversity and community structure.

Acknowledgments
We would like to thank Universitas Hasanuddin for providing research funding (contract number 518/UN4.21/PL.00.00/2019 dated February 4th, 2019).

References
[1] Nelson J S, Grande T C and Wilson M V 2016 *Fishes of the World* (New Jersey: John Wiley & Sons)
[2] Parenti P and Randall J 2018 A checklist of wrasses (Labridae) and parrotfishes (Scaridae) of the world: 2017 update *J. Ocean Sci. Found.* 30 11–27
[3] Westneat M W and Alfaro M E 2005 Phylogenetic relationships and evolutionary history of the reef fish family Labridae *Mol. Phylogen. Evol.* 36 370–90
[4] Parenti P and Randall J E 2011 Checklist of the species of the families Labridae and Scaridae: an update *Smithiana Bull.* 29–44
[5] Jones K 2005 Home range areas and activity centres in six species of Caribbean wrasses (Labridae) *J. Fish Biol.* 66 150–66
[6] Barrett N S 1995 [6] Short-and long-term movement patterns of six temperate reef fishes (Families Labridae and Monacanthidae) *Mar. Freshw. Res.* 46 853–60
[7] Luckhurst B and Luckhurst K 1978 Diurnal space utilization in coral reef fish communities *Mar. Biol.* 49 325–32
[8] Bruckner A 2005 The importance of the marine ornamental reef fish trade in the wider Caribbean *Rev. Biol. Trop.* 53 127–37
[9] Lukoschek V and McCormick M 2000 A review of multi-species foraging associations in fishes and their ecological significance *Proceedings of the 9th international coral reef symposium* pp 467-74
[10] Shepherd S, Brook J and Xiao Y 2010 Environmental and fishing effects on the abundance, size and sex ratio of the blue-throated wrasse, Notolabrus tetricus, on South Australian coastal reefs *Fish. Manag. Ecol.* 17 209–20
[11] Sadovy Y, Kulbicki M, Labrosse P, Letourneur Y, Lokani P and Donaldson T 2003 The humphead wrasse, Cheilinus undulatus: synopsis of a threatened and poorly known giant coral reef fish *Rev. fish Biol. Fish.* 13 327–64
[12] Bshary R 2003 The cleaner wrasse, Labroides dimidiatus, is a key organism for reef fish
diversity at Ras Mohammed National Park, Egypt J. Anim. Ecol. 72 169–76
[13] Slobodkin L B and Fishelson L 1974 The effect of the cleaner-fish Labroides dimidiatus on the point diversity of fishes on the reef front at Elat Am. Nat. 108 369–76
[14] McClanahan T, Hendrick V, Rodrigues M and Polunin N 1999 Varying responses of herbivorous and invertebrate-feeding fishes to macroalgal reduction on a coral reef Coral Reefs 18 195–203
[15] Pickett S T P V T and F P L 1992 Conservation biology (Springer-Verlag Berlin Heidelberg)
[16] Kantun W, A M and Tuwo A 2018 Reproductive pattern of yellowfin tuna Thunnus albacares in deep and shallow sea FAD in Makassar Strait AACL Bioflux 11 884–93
[17] Rauf A and Yusuf M 2004 Studi Distribusi dan Kondisi Terumbu Karang dengan Menggunakan Teknologi Penginderaan Jauh di Kepulauan Spermonde, Sulawesi Selatan Ilmu Kelaut. Indones. J. Mar. Sci. 9 74–81
[18] Kench P S and Mann T 2017 Reef island evolution and dynamics: Insights from the Indian and Pacific oceans and perspectives for the Spermonde Archipelago Front. Mar. Sci. 4 1–17
[19] Glaeser B 2019 Coastal Management (Elsevier)
[20] Allen G, Swainston R and Ruse J 1999 Marine Fishes of South-East Asia: A field guide for anglers and divers (Singapura: Periplus Editions)
[21] Kuiter R H and Tonozuka T 2001 Pictorial guide to Indonesian reef fishes (Zoonetics)
[22] Allen G R and Erdmann M V 2012 Reef Fishes of the East Indies: Andaman Sea, Myanmar, Thailand, Indonesia, Christmas Island, Singapore, Malaysia, Brunei, Philippines, Papua New Guinea, Solomon Islands (Tropical Reef Research)
[23] Odum E P and Barrett G W 1971 Fundamentals of ecology vol 3 (Saunders Philadelphia)
[24] Izsak C and Price A 2001 Measuring b-diversity using a taxonomic similarity index, and its relation to spatial scale Mar. Ecol. Prog. Ser. 215 69–77
[25] Yue J C and Clayton M K 2005 A similarity measure based on species proportions Commun. Stat. Methods 34 2123–31
[26] Knittweis L, Jompa J, Richter C and Wolff M 2009 Population dynamics of the mushroom coral Heliofungiaáactiniformis in the Spermonde Archipelago, South Sulawesi, Indonesia Coral Reefs 28 793–804
[27] Hanel R, Westneat M W and Sturmbauer C 2002 Phylogenetic relationships, evolution of broodcare behavior, and geographic speciation in the wrasse tribe Labrini J. Mol. Evol. 55 776–89
[28] Hoey A and Bellwood D 2008 Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef Coral Reefs 27 37–47