Rosette forming glioneuronal tumor in association with Noonan syndrome: pathobiological implications

M. Karafin1, G.I. Jallo2, M. Ayars1, C.G. Eberhart1 and F.J. Rodriguez1

1Department of Pathology, Division of Neuropathology, and 2Neurosurgery, Johns Hopkins University, Baltimore, MD, USA

Abstract. Noonan syndrome, a distinctive syndrome characterized by dysmorphism, cardiac abnormalities and developmental delay, has been associated with a number of malignancies, however, only a few cases of primary glial or glioneuronal neoplasms have been reported. We report here the case of an 18-year-old with Noonan syndrome who developed a rosette forming glioneuronal tumor of the posterior fossa. The tumor demonstrated strong pERK immunoreactivity, suggesting MAPK/ERK pathway activation. Molecular testing did not reveal BRAF rearrangements (fusion transcripts) by PCR or a BRAFV600E mutation by sequencing. We review the literature regarding the molecular pathogenesis of Noonan syndrome and primary brain tumors, and consider the intriguing link between their common molecular pathways.

Case history

An 18-year-old male with the clinical features characteristic of Noonan syndrome including developmental delay and mild pulmonary valve stenosis, presented to the Johns Hopkins Hospital in August 2008 with a scalp lesion. His Noonan syndrome diagnosis was based on established clinical criteria [22], as well as a positive family history including his father. Mutational testing was not performed. He had no previously documented cancers. Prior to this admission, his primary care physician ordered an MRI of his brain to evaluate the scalp lesion, and a posterior fossa tumor was incidentally identified. MRI revealed that the mass arose in the vermis, and occupied the fourth ventricle (Figure 1a). The scalp lesion demonstrated minimal bone scalloping. Surgical resection of both lesions was recommended, and a gross total resection of the posterior fossa lesion was accomplished. He has since had no recurrence of his brain tumor, after a follow-up of 21 months.

Pathology

The neoplasm demonstrated variable cytology, including cells with elongated nuclei and others with round, oligodendroglia-like quality (Figure 1b). Glomeruloid vasculature was present, and mitotic activity was low. The combination of findings was reminiscent of a low grade glioma. A distinctive focal finding was the presence of small rosettes with delicate cores (Figure 1d).

Immunohistochemical stains demonstrated GFAP expression in much of the tumor, while synaptophysin labeled the small
Karafin, Jaloo, Ayars et al.

rosettes (Figure 1e) as well as perivascular processes. The combination of findings was most compatible with a rosette forming glioneuronal tumor of the 4th ventricle. The scalp lesion was diagnosed as a vascular malformation, and consisted of thin-walled vessels composed of CD34 positive, D240 negative endothelial cells.

MAPK/ERK activation in specific tumor types may be inferred using antibodies detecting phosphorylated components of the pathway [3]. Immunohistochemical staining for pERK was performed using a rabbit monoclonal on antibody ((D13.14.4E) XP® Cell Signaling Technology) at a dilution of 1:100, which demonstrated strong cytoplasmic and nuclear immunoreactivity suggesting MAPK/ERK pathway activation in the majority of tumor cells, including the rosettes (Figure 1f). Molecular testing by PCR using primers designed to detect the three known \textit{BRAF:KIAA1549} fusion transcripts was negative. Sequencing of \textit{BRAF} exons 15 and 11 was also negative for \textit{BRAF}\textsubscript{V600E} or \textit{BRAF}\textsubscript{G648A} mutations, respectively.

Discussion

Noonan syndrome is a congenital syndrome with an estimated incidence of 1:1,000 to 1:2,500 live births [2]. It can be inherited in an autosomal-dominant manner, or, as is true in about 60% of cases, can be acquired sporadically [4]. According to the Van Der Burgt criteria developed in 1994, the diagnosis of Noonan syndrome requires typical facial features with either one other major criteria, including pulmonary valve stenosis and short height, or two minor criteria, such as developmental delay. The patient had pulmonary valve stenosis (major criteria) and typical facial features (major criteria) with developmental delay (minor criteria), fulfilling the diagnostic criteria for Noonan syndrome [5].

The genetics of Noonan syndrome has not been completely elucidated, but is known to derive its pathogenesis from at least five genes [6]. Over 50% of cases of Noonan syndrome involve a mutation in the \textit{PTPN11} gene [2]. This gene codes for a nonreceptor protein tyrosine phosphatase SHP2 [7]. Mutations at this gene in Noonan syndrome lead to a gain-of-function mutation of the SHP2 protein leading to an increase in signal transduction through the Ras-MAP kinase pathway [2]. Interestingly, the remaining genes found to result in the clinical features of Noonan syndrome also involve the Ras-MAP kinase signaling system, including mutations in \textit{KRAS} [8], \textit{SOS1} [9] and \textit{RAF1} [6, 10]. Mutations of the \textit{NF1} gene have also been shown to cause Noonan syndrome, in addition to the more frequent syndrome, neurofibromatosis Type 1. Perhaps not surprisingly,
patients with Noonan syndrome attributed to a mutation at the NFI gene also have findings consistent with neurofibromatosis [11]. The patient was diagnosed with a primary low grade brain neoplasm at 18 years of age. The relationship between Noonan syndrome and neoplasia has been documented in the literature. Noonan syndrome has been most associated with hematological malignancies such as juvenile myelomonocytic leukemia, myelodysplastic syndrome, B-cell acute lymphoblastic leukemia, acute myelogenous leukemia, but the incidence is low [12]. Benties-Alj et al. [12] reported cases of lung cancer, melanoma, and colon cancer in patients with PTPN11 mutations. Primary brain tumors, in particularly astrocytomas, have been described in a handful of cases of Noonan syndrome (Table 1). It is of interest that most of these tumors represent pilocytic astrocytomas, a neoplasm characterized at the genetic level by aberrations leading to increased MAPK/ERK pathway signaling [13, 14]. Pilocytic astrocytoma is also the most frequent brain tumor arising in the setting of NF1 [15], another genetic syndrome resulting in constitutive MAPK/ERK pathway activation.

The current report is unique in that a patient satisfying clinical criteria for Noonan syndrome developed a rosette forming glioneuronal tumor of the fourth ventricle. This neoplasm is a new addition to the WHO classification of brain tumors [16]. Histologically, it is a biphasic tumor composed of a well differentiated astrocytic component, and a neuronal component characterized by rosettes and perivascular pseudorosettes [17]. Although the genetic features of this tumor are not well established given its rarity, the presence of an astrocytic component resembling pilocytic astrocytoma, which often predominates, suggests that MAPK/ERK activation may play a role. In addition, a rosette forming glioneuronal tumor has been previously reported in a patient with NF1 [18], as well as one prior report of a Noonan syndrome patient with a disseminated glioneuronal tumor in leptomeninges [19].

The realization that the Ras pathway is upregulated both in Noonan syndrome and in sporadic cases of low grade glial/glioneuronal tumors increases the likelihood that the neoplasm identified both in our case report and in other previous studies did not occur by chance. However, much remains to be learned about how the upregulation of this pathway relates to Noonan syndrome and carcinogenesis in general. Additional studies both from those who study brain tumors and congenital diseases such as Noonan syndrome are clearly needed, given the fact that inhibitors of this pathway have been developed [20].

References

[1] Fryssira H, Leventopoulos G, Psoni S, Kitsiotis G, Stavrianeas N, Kanavakis E. Tumor development in three patients with Noonan syndrome. Eur J Pediatr. 2008; 167: 1025-1031. doi:10.1007/s00431-007-0636-3 PubMed
[2] Noordam K. Expanding the genetic spectrum of Noonan syndrome. Horm Res. 2007; 68 (Suppl 5): 24-27. doi:10.1159/000110468 PubMed
[3] Mandell JW, Hussaini IM, Zecevic M, Weber MJ, Vandenberg SR. In situ visualization of intratumor growth factor signaling: immunohistochemical localization of activated ERK/MAP kinase in glial neoplasms. Am J Pathol. 1998; 153: 1411-1423. doi:10.1016/S0002-9440(10)65728-8 PubMed
[4] van der Burg I. Noonan syndrome. Orphanet J Rare Dis. 2007; 2: 4. doi:10.1186/1750-1172-2-4 PubMed
[5] van der Burg I, Bereeds E, Lommen E, van Beersum S, Hamel B, Mariman E. Clinical and molecular studies in a large Dutch family with Noonan syndrome patients with Noonan syndrome.
Esposito J, Ustaszewska S, Siguero mutations cause a distinctive form of Noonan-Curry syndrome. Nat Genet. 2007; 39: 1013-1017. doi:10.1038/ng2073 PubMed

Tartaglia M, Meehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001; 29: 465-468. doi:10.1038/ng772 PubMed

Schubbert S, Zenker M, Rowe SL, Böll S, Klein C, Bollag G, van der Burgt I, Masante I, Kalscheuer V, Wehner LE, Nguyen H, West B, Zhang YV, Sistermans E, Rauch A, Niemeyer CM, Shannon K, Kratz CP. Germline KRAS mutations cause Noonan syndrome. Nat Genet. 2007; 38: 331-336. doi:10.1038/ng1748 PubMed

Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodele V, Sarkozy A, Pandit B, Oishi K, Martinelli S, Schackwitz W, Ustaszewska A, Martin J, Bristow J, Carta C, Lepri F, Neri C, Vasta I, Gibson K, Curry CJ, Sigurjo J et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet. 2007; 39: 75-79. doi:10.1038/ng1939 PubMed

Pandit B, Sarkozy A, Pennacchio LA, Carta C, Oishi K, Martinelli S, Pogna EA, Schackwitz W, Ustaszewska A, Landstrom A, Bos JM, Omnen SR, Esposito G, Lepri F, Faul C, Mundel P, López Sigurjo JP, Tenconi R, Selicorini A, Rossi C et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet. 2007; 39: 1007-1012. doi:10.1038/ng2073 PubMed

Hüffmeier U, Zenker M, Hoyer J, Faksoel R, Rauch A. A variable combination of features of Noonan syndrome and neurofibromatosis type I are caused by mutations in the NF1 gene. Am J Med Genet A. 2006; 140: 2749-2756. doi:10.1002/ajmg.a.31547 PubMed

Bentires-Alj M, Paez-Jones, David FS, Kelibach H, Halmos B, Nasiri K, Maris JM, Richardson A, Bardelli A, Sagarbaker DJ, Richards WG, Du J, Girard L, Minna JD, Loh ML, Fisher DE, Velculescu VE, Vogelstein B, Meyerson M, Sellers WR et al. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 2004; 64: 8816-8820. doi:10.1158/0008-5472.CAN-04-1923 PubMed

Bar EE, Liu A, Thian T, Burger PC, Eberhart CG. Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol. 2008; 67: 878-887. doi:10.1097/NEN.0b013e318145e522 PubMed

Jones DT, Kociakowski S, Liu L, Pearson DM, Bäcklund LM, Ichimura K, Collins VP. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008; 68: 8673-8677. doi:10.1158/0008-5472.CAN-08-2097 PubMed

Rodriguez FJ, Perry A, Gutmann DH, O’Neill BP, Leonard J, Bryant S, Giannini C. Gliomas in neurofibromatosis type 1: a clinicopathologic study of 100 patients. J Neuropathol Exp Neurol. 2008; 67: 240-249. doi:10.1097/NEN.0b013e318165e275 PubMed

Louis D, Ogaki H, Wiestler O, Cavenee W. WHO Classification of Tumours of the Central Nervous System. Lyon, France: IARC press; 2007.

Komori T, Scheithauer BW, Hirose T. A rosette-forming glioneuronal tumor of the fourth ventricle: infratentorial form of dyssembryoplastic neuroepithelial tumor? Am J Surg Pathol. 2002; 26: 582-591. doi:10.1097/00000478-200205000-00004 PubMed

Scheithauer BW, Silva AJ, Kettering RP, Pula JH, Lininger JF, Kromock MJ. Rosette-forming glioneuronal tumor: report of a chiasmal-optic nerve example in neurofibromatosis type 1: special pathology report. Neurosurgery, 2009; 64: E771-772; discussion E772.http://www.ncbi.nlm.nih.gov/pubmed/19349806

Sherman CB, Ali-Nazir A, Gonzalez-Gomez I, Finlay JL, Dhall G. Primary mixed glioneuronal tumor of the central nervous system in a patient with Noonan syndrome: a case report and review of the literature. J Pediatr Hematol Oncol. 2009; 31: 61-64. doi:10.1097/MPH.0b013e31818ab2ce PubMed

Baill DW, Jin N, Rosen DM, Dackiw A, Sidransky D, Xing M, Nellin BD. Selective growth inhibition in BRAF mutant thyroid cancer by the mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244. J Clin Endocrinol Metab. 2007; 92: 4712-4718. doi:10.1210/jc.2007-1184 PubMed

Sanford RA, Bowman R, Tomita T, De Leon G, Palka P. A 16-year-old male with Noonan’s syndrome develops progressive scoliosis and deteriorating gait. Pediatr Neurourol. 1999; 30: 47-52. doi:10.1159/000028761 PubMed

Jongmans M, Otten B, Noordam K, van der Burgt I. Genetics and variation in phenotype in Noonan syndrome. Horm Res. 2004; 62 (Suppl 3): 56-59. doi:10.1159/000080500 PubMed

Scheutjens LG, McDonald S, Whitesell K, Desrivaux DM, Grange DK, Garnett CA, Wilson DB. Pilocytic astrocytoma in a child with Noonan syndrome. Pediatr Blood Cancer. 2009; 53: 1147-1149. doi:10.1002/pbc.22193 PubMed