Supplementary material:

In silico identification of natural antiviral compounds as a potential inhibitor of Chikungunya Virus non-structural protein 3 macrodomain

Meenakshi Chaudhary, Deepak Sehgal*

Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh-201314, India

Corresponding author*

*Deepak Sehgal

Professor and Head

Department of Life Sciences

School of Natural Sciences

Shiv Nadar University

Gautam Buddha Nagar, 201314
The list of the compounds, based on the binding affinity (Vina scores) of the highest-ranked position in the ligand docked with CHIKV nsP3MD is shown in Table S1. From the natural compounds, five compounds (Baicalin, Berberine, Quercetin, Curcumin, and Apigenin) were the only compound that has already been tested in vivo against CHIKV (Table S1 and Table S2). Additionally, the remaining twenty-six plant-based natural compounds (Narirutin, Scutellarin, Complanatuside, Eriocitrin, Rutacearpine, Amentoflavone, Apigenin, OroxinB, Luteoloside, Baloxavir, Homoorientin, Withanolide, Withaferin A, Sitosterol, Astragalin, Piperine, Nicotiflorin, Gingerol, Cannabidiol, Aloesin, Dehydroandrographolide, Aloenin, Shogaol, Nimbin, Lupeol, and Ursolic acid have not been tested in vivo against CHIKV.

Binding score of eleven synthetic compounds; Umbralisib, Bictegravir, Sofosbuvir, Pimobendan, Verdinexor, Aprepitant, Amenamevir, Dolutegravir, Indigo, GSK650394, and Dapivirine were -11.1, -10.7, -10.5, -10.4, -10.3, -10.2, -10.2, -10.1, -10.1, -10.0, -10.0 kcal/mol, respectively (Table S1 and Table S2).

Top screened inhibitor Umbralisib is under clinical trial Phase 2 (Table S2). Second top-scoring, Sofosbuvir, a synthetic drug, is already used for the treatment of HCV (Table S1 and Table S2). However, Sofosbuvir demonstrated relevant results (with an EC50 of 11µm) in vivo in decreasing viremia or in reducing clinical manifestations during CHIKV infection (Ferreira et al. 2019).
Figure S1: 2D structure of other eleven synthetic compounds identified through CHIKV nsP3MD docking study visualized using maestro (Schrödinger). All 2D structures are representing with compound number, compound name and binding affinity in (kcal/mol).
25. Withanolide (-9.4)
26. Withaferin A (-9.3)
29. Sitosterol (-8.7)
31. Astragalin (-8.4)
32. Piperine (-8.3)
33. Nicotiflorin (-8.2)
34. Gingerol (-7.9)
35. Cannabidiol (-7.8)
36. Aloesin (-7.6)
37. Dehydroandrographolide (-7.6)
38. Aloenin (-7.4)
39. Shogao (-7.3)
40. Nimbin (-7.1)
41. Lupeol (-7.0)
42. Ursolic acid (-6.8)
Figure S2: 2D structure of other fifteen natural compounds used for CHIKV nsP3MD docking study visualized using maestro (Schrödinger). All 2D structures are representing with compound number, compound name and binding affinity in (kcal/mol).

24. Berberine (-9.5)
27. Quercetin (-8.9)
28. Curcumin (-8.8)
30. Apigenin (-8.4)

Figure S3: 2D structure of four natural compounds showed anti CHIKV activity used four CHIKV nsP3MD docking study visualized using maestro (Schrödinger). All 2D structures are representing with compound number, compound name and binding affinity in (kcal/mol).
Compound number	Binding Affinity (kcal/mol)	H-Bonds (Residue (Atom Number-Distance in Å-Ligand atom number) Ligand)	Other Interactions (Total Hydrophobic Interacting Residues)	
1. Umbralisib	-11.1	B-Leu108(O-2.74-05)L, S-Thr111(O-2.80-03)L, B-Thr114(N-3.11-F3)L, Asp144(NH2-2.68-O1)L	Asp10, Ile11, Ala22, Ala23, Asp31, Val33, Pro107, Leu109, Val113, Tyr114, Trp148 (I2)	
2. Baicalin	-10.8	B-Met9(O-3.29-09)L, B-Leu108(O-2.48-01)L, S-Thr111(O-2.96-02)L, B-Thr114(N-2.83-O11)L, Asp144(NH2-2.94-O7)L,	Ile11, Ala22, Asn24, Asp31, Gly30, Gly32, Val33, Pro107, Leu109, Gly112, Val113, Tyr142, Tyr142 (I3)	
3. Narirutin	-10.8	B-Met9(O-3.12-014)L, B-Ile11 (N-2.98-014)L, S-Asn24(ND2-2.83-06)L, B-Gly32(N-2.76-011)L, B-Leu108(O-2.79-05)L, B-Thr111(O-2.80-03)L, B-Gly112(N-3.11-O3)L, B-Arg144(N-2.87-O11)L, B-Arg144(NH1-2.80-09)L, B-Arg144(NH1-2.97-O10)L	Asp10, Ala22, Ala3, Val33, Cys34, Lys35, Ala36, Leu109, Tyr144, Tyr142, Cys143 (I2)	
4. Bictegravir	-10.7	B-Leu108(O-3.13-05)L, B-Ser110(N-3.26-05)L, B-Thr111(O-2.94-03)L, B-Arg144(NE-3.26-F1)L, B-Arg144(NB2-3.28-F1)L	Met9, Ile11, Ala22, Ala23, Gly32, Val33, Cys34, Leu109, Gly112, Val113, Tyr144, Tyr142, Cys143 (I3).	
5. Scutellarin	-10.7	B-Met9(O-3.14-O7)L, S-Asn24(ND1-2.77-O12)L, B-Leu108(O-2.72-014)L	Asp10, Ala22, Ala3, Gly32, Val33, Ala36, Leu109, Val113, Tyr144, Tyr142, Cys143 (I2).	
	Compound	**Interaction**	**Results**	
---	-------------	----------------	-------------	
6.	Complanat side	B-Ser110(N-2.83-O1)L, B-Thr111(N-3.12-O11)L, B-Thr111(N-3.32-O1)L, S-Thr111(OG1-2.79-O11)L, S-Thr111(OG1-3.33-O10)L, B-Gly112(N-2.95-O11)L, S-Arg144(NH1-3.17-O7)L	Ala22, Val33, Cys34, Ala36, Leu109, Ser110, Gly12, Val113, Tyr114, Tyr142, Cys143, Trp148 (12), \(\text{Thr142} \) (9)	
7.	Sofosbuvir	B-Met9(O-2.84-O12)L, B-Met9(O-3.21-O13)L, B-Ile11(N-3.02-O13)L, S-Asp10(OD1-3.23-O14)L, S-Asp10(OD1-3.11-O13)L, B-Gly32(O-3.29-O13)L, B-Gly32(NB1-2.81-O13)L, B-Arg144(N-3.11-O1)L, B-Arg144(N-3.01-O15)L, S-Arg144(NH2-2.81-O13)L, B-Asp145(N-3.02-O15)L	Met9, Ile11, Ala22, Ala23, Asp31, Val33, Cys34, Ser110, Leu108, Tyr114, Tyr142, Cys143, Trp148 (13)	
8.	Verdinexor	B-Asp31(O-3.09-N2)L, B-Gly70(N-3.16-F2)L, B-Ser10(N-2.96-F1)L, B-Ser10(N-3.22-F3)L	Met9, Ile11, Ala22, Ala23, Gly32, Val33, Gly112, Val113, Tyr114, Tyr142, Cys143, Arg144	
9.	Pimobendan	S-Asn24(ND2-3.05-O5)L, B-Thr111(N-3.29-O3)L, S-Gly112(N-2.95-O3)L, S-Cys143(N-3.89-O7)L, B-Asp145(N-3.11-O7)L	Ala22, Ala23, Cys34, Ser110, Gly112, Tyr114, Tyr142, Cys143, Trp148 (9)	
10.	Eriocitrin	B-Met9(O-3.08-O14)L, S-Asp10(OD1-2.94-O15)L, B-Ile11(N-3.90-O15)L, S-Asn24(ND1-3.04-O6)L, B-Asp31(O-3.22-O5)L, B-Leu108(O-2.86-O7)L, S-Thr111(OG1-2.36-O7)L, B-Thr111(N-2.85-O4)L, B-Gly112(N-3.10-O5)L, B-Ser110(N-3.07-O5)L, S-Arg144(ND2-2.63-O9)L	Ala22, Ala23, Gly30, Gly32, Val33, Cys34, Lys35, Ala36, Lys39, Leu109, Cys143 (11)	
11.	Rutaecarpine	S-Thr111(N-2.97-O1)L, B-Gly112(N-3.17-O1)L	Ala22, Asn24, Gly30, Asp31, Gly32, Val33, Cys34, Leu108, Leu109, Ser110, Tyr114 (11)	
12.	Aprepitant	S-Asn24(ND2-3.22-F4)L, B-Val33(N-3.17-O3)L, S-Cys34(SG-3.34-F4)L, B-Ser110(N-3.08-F1)L, B-Ser110(N-3.10-F2)L, B-Arg144(N-2.92-O3)L	Ala22, Ala23, Asp31, Gly32, Leu108, Thr111, Gly112, Val113, Tyr114, Cys143, Trp148 (11)	
13.	Amentoflavone	B-Ala23(O-2.67-O9)L, S-Asn24(ND2-3.19-O10)L	Met9, Asp10, Ala22, Asp31, Gly30, Gly32, Val33, Lys35, Gly112, Val113, Tyr114, Tyr142, Cys143, Arg144 (14)	
14.	Amenamivir	S-Asn24(ND2-3.08-O3)L, B-Ala22(O-2.80-N3)L	Ala23, Asp31, Gly32, Val33, Cys34, Leu108, Thr111, Gly112, Val113, Tyr114, Tyr142, Cys143, Arg144, Trp148 (14)	
15.	Dolutegravir	-10.1	B-Ser110(O-2.86-O3)L	Ala22, Ala23, Asp31, Gly32, Leu108, Leu109, Thr111, Gly112, Val113, Tyr114, Asp145, Trp148 (12).
16.	Indigo	-10.1	B-Val33(N-3.28-O1)L, B-Leu108(O-3.26-N1)L, B-Ser110(N-3.06-O2)L, S-Thr111(OG1-3.17-N1)L, B-Thr111(N-2.97-O2)L, B-Gly112(N-3.12-O2)L	Ala22, Asp31, Gly32, Leu109, Tyr114, Cys143, Arg144 (7).
17.	Apigetrin	-10.1	B-Met9(O-2.81-O8)L, S-Asn24(ND2-2.92-O10)L, B-Ile11(N-3.09-O7)L, B-Leu108(O-2.81-O1)L, B-Ser110(N-2.94-O1)L, B-Thr111(N-2.88-O9)L, S-Thr111(OG1-2.39-O9)L, B-Gly112(N-3.18-O1)L, B-Cys143(O-3.13-O8)L	Asp10, Ala22, Ala23, Asp31, Gly32, Val33, Cys34, Leu109, Tyr114, Tyr142, Arg144 (11).
18.	Oroxin B	-10.1	B-Ala22(O-2.76-O10)L, B-Leu108(O-3.96-O15)L, B-Ser110(N-2.92-O13)L, B-Ser110(N-2.96-O12)L, S-Thr111(OG1-2.78-O14)L, S-Thr111(OG1-2.93-O15)L, B-Thr111(N-3.13-O13)L, B-Gly112(N-3.34-O13)L, S-Arg144(ND2-3.28-O3)L	Asp10, Ala23, Asp31, Gly32, Val33, Cys34, Lys35, Ala36, Lys39, Leu109, Tyr114, Cys143, Trp148 (13).
19.	Baloxavir	-10.0	B-Ser110(N-3.05-O3)L, B-Thr114(N-3.01-O6)L, B-Gly112(N-2.80-O6)L	Ala22, Asp31, Gly32, Val33, Leu108, Thr111, Val113, Thr142, Arg144, Trp148 (10).
20.	GSK650394	-10.0	B-Tyr142(O-3.32-N1)L	Ala22, Asp31, Gly32, Val33, Pro107, Leu108, Ser110, Thr111, Val113, Tyr114, Cys143, Asp145, Trp148 (13).
21.	Dapivirine	-10.0	B-Leu108(O-3.28-N3)L, B-Leu108(O-3.33-N5)L, S-Thr111(OG1-2.86-N3)L	Ala22, Ala23, Asn24, Val33, Val113, Tyr114, Gly112, Tyr142, Cys143, Arg144, Asp145, Trp148 (12).
22.	Homoorie	-10.0	S-Asn24(ND2-2.89-O11)L, B-Leu108(N-3.12-O7)L, B-Ser110(N-2.96-O2)L, S-Thr111(OG1-3.75-O8)L, B-Thr111(N-3.08-O2)L, B-Gly112(N-3.30-O2)L, B-Arg144(N-3.17-O5)L	Ala22, Ala23, Gly30, Asp31, Gly32, Val33, Leu109, Val113, Tyr114, Tyr142, Cys143, Asp145, Trp148 (13).
23.	Luteoloside	-10	B-Met9(O-3.15-O6)L, S-Asp10(OD1-3.34-O6)L, B-Ile11(N-2.88-O6)L, S-Asn24(ND2-2.73-O11)L, S-Arg32(O-3.05-O5)L, B-Ser110(N-2.96-O2)L, B-Gly112(N-2.95-O9)L, B-Thr111(N-3.13-O9)L, S-Thr111(OG1-2.66-O9)L, S-Arg144(NB2-3.10-O6)L, B-Arg144(NH2-3.22-O8)L	Ala22, Ala23, Asp31, Ala36, Leu108, Val113, Tyr114, Val153, Tyr142, Cys143 (10).

Other plant based natural compounds

| 24. | Berberine | -9.5 | | Ala22, Asn24, Asp31, Gly32, Val33, Cys34, Leu108, Ser110, Thr111, Gly112, Tyr114, Tyr142, Arg144 (13). |
No.	Compound	Value	Structure 1	Structure 2
25.	Withanolide	-9.4	B-Val33(N-2.79-O3)L, B-Ser10(N-2.80-O5)L, B-Asp145(N-2.57-O6)L	Ala22, Ala23, Asp24, Asp31, Gly32, Leu108, Leu109, Thr111, Gly112, Val113, Tyr114, Arg144, Trp148 (13)
26.	Withaferin A	-9.3	B-Ala22(O-3.31-O2)L, B-Arg144(N-2.96-O6)L, B-Asp145(N-2.54-O6)L	Ala23, Asp24, Asp31, Gly32, Val33, Leu108, Thr111, Gly112, Val113, Tyr114, Cys143, Trp148 (12)
27.	Quercetin	-8.9	B-Asp31(N-3.21-O3)L, S-Ala22(ND2-2.92-O4)L, B-Leu108(O-2.84-O6)L, B-Ser110(N-2.98-O2)L, B-Thr111(N-2.80-O2)L, S-Thr111(OG1-2.51-O6)L, B-Gly112(N-3.05-O2)L	Ala22, Ala23, Gly30, Gly32, Val33, Cys34, Leu109, Tyr114 (8)
28.	Curcumin	-8.8	B-Met9(O-3.02-O3)L, B-Ile11(N-2.99-O3)L, S-Arg144(NE-2.88-O2)L, S-Arg144(NB1-3.03-O2)L, S-Arg144(NB1-2.85-O3)L	Asp10, Ala22, Asp24, Asp31, Gly32, Val33, Cys34, Leu108, Thr111, Gly112, Val113, Tyr114, Cys143, Tyr142 (15)
29.	Sitosterol	-8.7	S-Asn24(ND2-2.97-O3)L, B-Leu108(O-2.72-O4)L, B-Ser110(N-2.92-O2)L, B-Thr111(N-2.96-O2)L, S-Thr111(OG1-2.70-O4)L, B-Gly112(N-3.16-O2)L	Ala22, Ala23, Asp31, Gly32, Val33, Leu108, Ser110, Thr111, Gly112, Val113, Tyr114, Arg144, Asp145, Trp148 (14)
30.	Apigenin	-8.4	B-Val33(N-3.11-O1)L, B-Leu108(O-2.93-O10)L, B-Gly112(O-3.02-O10)L, B-Ser110(N-3.09-O10)L, B-Thr111(N-2.81-O10)L, B-Thr111(O-3.04-O8)L, S-Thr111(OG1-2.70-O2)L, S-Thr111(O1-3.25-O8)L, S-Arg144(NE-2.88-O9)L	Ala22, Ala23, Asp31, Gly32, Val33, Leu109, Val113, Tyr114 (8)
31.	Astragaline	-8.3	B-Val33(N-3.11-O1)L, B-Leu108(O-2.93-O10)L, B-Gly112(O-3.02-O10)L, B-Ser110(N-3.09-O10)L, B-Thr111(N-2.81-O10)L, B-Thr111(O-3.04-O8)L, S-Thr111(OG1-2.70-O2)L, S-Thr111(O1-3.25-O8)L, S-Arg144(NE-2.88-O9)L	Ala22, Asp31, Gly32, Leu109, Trp148 (5)
32.	Piperine	-8.3	S-Asp10(OD1-3.04-O6)L, B-Ala22(O-2.80-O11)L, B-Asp31(O-2.70-O13)L, B-Asp31(O-2.68-O12)L, B-Cys34(N-3.00-O12)L, B-Leu108(O-2.68-O15)L, B-Val113(N-3.10-O10)L, B-Tyr142(O-2.50-O14)L, S-Arg144(NE2-2.94-O6)L	Gly32, Val33, Lys35, Ala36, Pro107, Gly112, Tyr114, Cys143, (11)
33.	Nicotiflorin	-8.2	B-Ile11(OG1-3.12-O4)L, B-Leu108(O-2.81-O2)L, B-Thr111(N-2.88-O2)L, B-Gly112(N-3.04-O2)L, S-Arg144(NE-2.99-O3)L	Met9, Asp10, Ala22, Ala23, Val33, Leu109, Ser110, Thr111, Tyr114, Cys143, (10)
34.	Gingerol	-7.9	B-Ile11(OG1-3.12-O4)L, B-Leu108(O-2.81-O2)L, B-Thr111(N-2.88-O2)L, B-Gly112(N-3.04-O2)L, S-Arg144(NE-2.99-O3)L	Met9, Asp10, Ala22, Ala23, Val33, Leu109, Ser110, Thr111, Tyr114, Cys143, (10)
35.	Cannabidiol	-7.8	S-Thr111(OG1-2.83-O2)L	Ala22, Ala23, Asp31, Gly32, Val33, Pro107, Leu108, Gly112, Tyr114, Cys143, Arg144, Trp148 (13)
36.	Aloesin	-7.6	B-Asp31(O-2.99-O6)L, B-Val33(N-2.89-O7)L, B-Val33(N-2.82-O6)L	Ala22, Gly32, Pro107, Thr111, Val113, Tyr114, Cys143, Trp148 (9)
37.	Dehydroandro grapholide	-7.6	B-Leu108(O-2.74-O8)L, B-Gly112(N-3.15-O3)L, B-Ser110(N-3.20-O4)L	Gly32, Val33, Tyr114, Cys143, Arg144, Trp148 (6)
38.	Aloenin	-7.4	B-Asp31(O-3.06-O5)L, B-Ser110(N-3.13-O3)L, B-Leu108(N1-2.93-O8)L, B-Thr111(N-3.12-O3)L, B-Gly112(N-3.31-O3)L	Met9, Ile11, Gly32, Val33, Pro107, Leu109, Val113, Tyr142, Cys143, Arg144, Trp148 (11)
39.	Shogaol	-7.3	B-Met9(O-2.98-O3)L, B-Ile11(N-3.15-O3)L, S-Arg144(NE-2.85-O2)L, S-Arg144(NB2-3.27-O2)L, S-Arg144(NB2-3.18-O2)L	Asp10, Ala22, Gly32, Val33, Leu108, Thr111, Gly112, Val113, Tyr114, Tyr142, Cys143 (11)
40.	Nimbin	-7.1	S-Arg144(NE-3.28-O3)L, S-Arg144(NE-3.02-O3)L, B-Asp145(N-3.02-O7)L	Asp10, Ile11, Gly32, Val33, Ala36, Thr111, Cys143, Trp148 (8)
41.	Lupeol	-7.0	B-Asp145(N-2.96-O1)L	Gly32, Lys35, Leu108, Thr111, Gly112, Tyr142, Cys143, Arg144, Trp148 (9)
42.	Ursolic acid	-6.8	Ala22, Asp31, Gly32, Val33, Leu108, Thr111, Gly112, Val113, Arg144, Trp148 (10)	

Abbreviations: S-Side chain, B-backbone, L-ligand. The Residues indicated in red color are mutated residues in previous study (Abraham et al., 2018; Alhammad & Fehr, 2020). It was shown that mutations Val33 and Asp10 of the CHIKV MD, which likely impair both ADP-ribose binding and hydrolysis (Eckei et al., 2017; McPherson et al., 2017).
Molecular interactions of Narirutin, Scutellarin, Complanatuside, Eriocitrin, Oroxin B and Homoorientin

Narirutin is also identified as a strong binder of the CHIKV nsP3MD. Results showed -10.8 kcal/mol binding energy with CHIKV nsP3MD and interacted with nsP3MD through twelve hydrogen bonds with nine residues Met9, Ile11, Asn24, Gly32, Leu108, Ser110, Thr111, Gly112 and Arg144 along with twelve hydrophobic interactions with Asp10, Ala22, Ala23, Asp31, Val33, Cys34, Lys35, Ala36, Leu109, Tyr114, Tyr142, and Cys143 residues (Table S1).

Scutellarin showed -10.8 kcal/mol binding energy with CHIKV nsP3MD and bound with nsP3MD through ten hydrogen bonds with seven residues Met9, Asn24, Leu108, Ser110, Thr111, Gly112 and Arg144 along with twelve hydrophobic interactions with Asp10, Ala22, Ala23, Asp31, Gly32, Val33, Ala36, Leu109, Val113, Tyr114, Tyr142 and Cys143 residues (Table S1).

Complanatuside showed -10.5 kcal/mol binding energy with CHIKV nsP3MD and bound with nsP3MD through eleven hydrogen bonds with seven residues Met9, Asp10, Ile11, Gly32, Ala36, Arg144 and Asp145 along with twelve hydrophobic interactions with Ala22, Val33, Cys34, Ala36, Leu109, Ser110, Gly112, Val113, Tyr114, Tyr142, Cys143 and Trp148 residues (Table S1).

Eriocitrin showed -10.4 kcal/mol binding energy with CHIKV nsP3MD and bound with nsP3MD through eleven hydrogen bonds with ten residues Met9, Asp10, Ile11, Asn24, Asp31, Leu108, Ser110, Thr111, Gly112 and Arg144 along with eleven hydrophobic interactions with Ala22, Ala23, Gly30, Gly32, Val33, Cys34, Lys35, Ala36, Lys39, Leu109 and Cys143 residues (Table S1).

Oroxin B showed -10.1 kcal/mol binding energy with CHIKV nsP3MD and bound with nsP3MD through nine hydrogen bonds with six residues Ala22, Leu108, Ser110, Thr111, Gly112 and Arg144 along with thirteen hydrophobic interactions with Asp10, Ala23, Asp31, Gly32, Val33, Cys34, Lys35, Ala36, Lys39, Leu109, Tyr114, Cys143 and Trp148 residues (Table S1).

Homoorientin showed a -10.0 kcal/mol binding energy with CHIKV nsP3MD and bound with nsP3MD through seven hydrogen bonds with six residues Asn24, Leu108, Ser110, Thr111, Gly112 and Arg144 along with thirteen hydrophobic interactions with Ala22, Ala23, Gly30, Asp31, Gly32, Val33, Leu109, Val113, Tyr114, Thr142, Cys143, Asp145 and Trp148 residues (Table S1).
S.no	Ligand	Target Information and properties	Trade Name or Brand name	Company	Clinical trial	rCHIKV NP3 MD study (Yes/No)	CHIKV activity tested (Yes/No)	Compound (Synthetic/Natural)	References
1.	Umbralisib	Chronic Lymphocytic Leukemia	-	-	Phase 2	No	No	Synthetic	(Clinicaltrials, n.d.)
2.	Baicalin	nsP3	-	-	-	No	Yes	Natural	(Oo et al., 2018; Seyedi et al., 2016; Tao et al., 2018)(Wang et al., 2020)
3.	Narirutin	Anti-inflammatory and anti-oxidative effects	-	-	-	No	No	Natural	(Salehi et al., 2019)
4.	Scutellarin	antioxidant, antitumor, antiviral, and antiinflammatory activities.	-	-	-	No	No	Natural	(Chan & , Carine S. S. Lim, Win Yee Lim, Zhi Juin Loong, 2019)
5.	Bictegavir	HIV-1 integrase	Biktarvy	Gilead’s	-	-	-	Synthetic	(Hughes, 2019)
6.	Complanatuside	Anti-inflammation, lipid-lowering and hepatoprotective effects.	Sovaldi	Gilead Sciences, Inc.	-	No (nsP4)	Yes Inhibition	Synthetic	(Ferreira et al., 2019)
7.	Sofosbuvir	HCV NS5B polymerase inhibitor	-	-	Phase 2	No	No	Synthetic	(Nandedkar et al., 2020)
8.	Verdinexor	Selective XPO1/CRM1 inhibitor.	-	-	-	No	No	Synthetic	(Nieminen et al., 2000)
9.	Pimobendan	Cardiac drug for oral use in dogs only	Vetmedi n®	Boehringer Ingelheim	-	No	No	Synthetic	(Cesari et al., 2020)
10.	Eriocitrin	Antioxidant activity	--	-	-	-	-	Natural	(Tian, Li, & Xu, 2019)
11.	Rutaecarpine	COX-2 inhibitor	-	-	-	-	-	Natural	(Muñoz, Crespo Carlos, Crespo)
12.	Aprepitant	Neurokinin-1 receptor, HIV,,antiemetics	Emend	Dheer Healthcare	-	No	No	Synthetic	(Muñoz, Crespo Carlos, Crespo)
---	---	---	---	---	---				
13.	Amenamevir	*Herpes zoster*, HSV-1 helicase-primase inhibitor	Amenali ef Maruho (Originator)	Phase III	No				
14.	Amentoflavone	Antibacterial, antioxidant, antiviral, antidiabetic, and neuroprotective activities	Amento Max Analyzed Supplements	-	-				
15.	Dolutegravir	HIV integrase inhibitor	Tivicay ViiV Healthcare	Phase 2	No				
16.	Indigo	-	-	-	No				
17.	Apigetrin	Antimutagenic, anticancer, antioxidant and anti-inflammatory properties.	-	-	No				
18.	OroxinB	Therapeutic agent for liver cancer, COX-2, VEGF, PI3K, and p-AKT	Xofluza ®) Shionogi Co., and Roche AG	-	No				
19.	Baloxavir	Influenza A and influenza B cap-dependent endonuclease enzyme inhibitor	-	-	No				
20.	GSK650394	Glucocorticoid-regulated kinase-1 inhibitor	-	-	No				
21.	Dapivirine	HIV reverse transcriptase	Phase III	No					
---	---	---	---	---	---	---			
22.	Homoorientin	Radical scavenger and an antineoplastic agent	-	-	-	No	Natural	(Quílez, Fernández-Arche, García-Gimenez, & Puerta, 2018)	
23.	Luteoloside	Anti-microbial and anti-cancer activities, 3C Protease of Enterovirus 71	-	-	-	No	Natural	(Shi, He, Zhao, & Wang, 2020)	

Other natural compounds

24.	Berberine	Antibacterial, anti-inflammatory and antioxidant properties	Berberine	EzyAbsorb	-	Yes	Natural	(Ghildiyal & Gabrani, 2020; Kovacikova & van Hemert, 2020)
25.	Withanolide	Hypnosedative, immunomodulatory, anti-inflammatory, antiarthritic, angiogenesis inhibitor, anticholinesterase, antioxidant, antibacterial and, antitumour	-	-	-	-	Natural	(Dutta, Khalil, Green, Mohapatra, & Mohapatra, 2019)
26.	Withaferin A	Anti-leukemic, anti-invasive, anti-metastatic, apoptotic, anti-inflammatory, radiosensitizing and antidiabetic activity	-	-	-	-	Natural	(Kumar et al., 2020; Pandey et al., 2018)
27.	Quercetin	5-ethyl-2-dioxyuridine and acyclovir against HSV and pseudorabies infection	Quercetin (BCM-95)	Webber Naturals	-	Yes Inhibition	Natural	(Lalani & Poh, 2020; Wang et al., 2020) (Subudhi, Chattopadhyay, Mishra, & Kumar, 2018)
28.	Curcumin	Antiviral properties	Curcumin (BCM-95)	-	Yes Inhibition	Natural	(Ghildiyal & Gabrani, 2020; Kovacikova & van Hemert, 2020)	
No.	Name	Activity	Source	Type	Reference			
-----	----------	--	---	-------------------------------	--			
29.	Sitosterol	Used for lowering cholesterol levels and reduce swelling (inflammation).	Mega strength beta sitosterol	-	Natural	Hemert, 2020; Mathew & Hsu, 2018; Mounce, Cesaro, Carrau, Vallet, & Vignuzzi, 2017; Subudhi et al., 2018		
30.	Apigenin	Inhibitor for CYP2C9 and anti CHIKV	Apigenin Prostrate health	-	Yes Inhibition	Kovacikova & van Hemert, 2020; Lalani & Poh, 2020; Subudhi et al., 2018; Wang et al., 2020		
31.	Astragalin	Anti-tumor, anti-inflammatory and antioxidant activities	-	-	-	Riaz et al., 2018		
32.	Piperine	Antioxidant, antitumor and bioavailability enhancer	-	-	-	Gorgani, Mohammadi, Najafpour, & Nikzad, 2017		
33.	Nicotiflorin	Antiglycation activity	-	-	-	Lal Shyaula et al., 2012		
34.	Gingerol	Antioxidant, anti-tumor and anti-inflammatory properties	-	-	-	Mohd Yusof, 2016		
35.	Cannabidiol	Its relevance to epilepsy and other selected neuropsychiatric disorders	-	-	-	Devinsky et al., 2014		
36.	Aloesin	Inhibitor of tyrosinase activity and up-regulates cyclin E-dependent kinase activity	-	-	-	Sánchez, González-Burgos, Iglesias, & Gómez-Serranillos, 2020		
No.	Compound	Activities	Source					
-----	-------------------	---	--					
37.	Dehydroandrographolide	Anti-inflammation, anti-cancer, anti-bacterial, anti-virus and anti-hepatitis activity	Natural (H. Chen et al., 2014; J.-X. Chen et al., 2009)					
38.	Aloenin	Antiviral activity	Natural (Glatthaar-Saalmüller et al., 2015; Guo & Mei, 2016)					
39.	Shogaol	Decreased pain sensitivity and improved anxiety-like behavior, anti-inflammatory and anticancer	Natural (Mao et al., 2019; Shen et al., 2020)					
40.	Nimbin	Anti-inflammatory, antipyretic, antifungal, antihistamine, antiseptic, antioxidant, anti-cancer and antiviral properties	Natural (Gorantla, Das, Mulani, Thulasiram, & Chinnathambi, 2019; WebPage, n.d.)					
41.	Lupeol	Affects the molecular pathways of the nuclear factor kappa B(NFκB), cFLIP, Fas, Kras, phosphatidylinositol-3-kinase PI3K/Akt, and Wnt/β-catenin in a variety of cells.	Natural (Ruiz-Rodríguez et al., 2017)					
42.	Ursolic acid	Anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-carcinogenic effects	Natural (Seo et al., 2018)					
Table S3: In-Silico ADMET predictions of selected forty two compounds using SwissADME and PreADMET software.

Compound Name	Molecular formula	MW	HB A	HBD	n-rot b	TPSA (Å²)	Log P_{o/w}	Log S	BBB	CYP 2D6 inhibitor	Lipinski	hERG_ inhibition	HIA (%)	PAIN S alert
Umbralisib	C_{33}H_{43}F_{3}N_{3}O_{3}	601.79	11	5	6	104.04	3.26	Soluble	No	No	1	Ambiguous	85.54	0
Baicalin	C_{21}H_{16}O_{11}	446.36	11	6	4	187.12	0.38	Soluble	No	No	2	Ambiguous	32.42	1
Narirutin	C_{27}H_{46}O_{14}	594.65	14	9	6	228.22	-2.53	Soluble	No	No	3	Ambiguous	3.55	0
Bictegravir	C_{21}H_{33}F_{3}N_{3}O_{5}	465.51	11	5	4	108.66	0.28	Soluble	No	No	0	Ambiguous	66.6	0
Scutellarin	C_{21}H_{16}O_{12}	480.50	12	9	4	209.76	-2.46	Soluble	No	No	2	Ambiguous	2.913	0
Complanatuside	C_{28}H_{46}O_{16}	640.67	16	10	8	257.68	-3.02	Soluble	No	No	3	Ambiguous	1.42	0
Sofosbuvir	C_{22}H_{24}FN_{3}O_{3}P	544.57	13	7	11	178.96	-0.32	Soluble	No	No	3	Ambiguous	13.32	0
Verdinexor	C_{19}H_{32}F_{6}N_{6}O	462.48	13	6	9	83.62	2.64	Soluble	No	No	1	Low Risk	66.14	0
Pimobendan	C_{19}H_{36}N_{4}O_{2}	352.51	6	5	3	77.58	1.31	Soluble	No	No	0	Medium risk	75.57	0
Eriocitrin	C_{27}H_{46}O_{15}	610.65	15	10	6	248.45	-2.79	Soluble	No	No	3	Ambiguous	1.629	0
Rutaecarpine	C_{18}H_{31}N_{3}O	305.46	4	3	0	47.53	1.80	Soluble	Yes	No	0	Medium risk	88.18	0
Aprepitant	C_{23}H_{37}F_{7}N_{4}O_{3}	550.55	14	4	8	728.0	3.91	Soluble	No	No	1	Medium risk	85.34	0
Amenamevir	C_{29}H_{48}N_{4}O_{5}S	5.473	9	7	8	154.78	1.58	Soluble	No	No	2	Ambiguous	60.79	0
Amentoflavone	C₃₀H₁₈O₁₀	538.46	10	6	3	181.80	3.62	Poorly soluble	No	No	2	Medium risk	81.20	0
--------------	---------------------------------	--------	----	----	----	---------	------	----------------	----	----	----	-------------	-------	---
Dolutegravir	C₂₀H₃₅F₂N₅O₅	435.51	10	5	4	108.66	0.38	Soluble	No	No	0	Ambiguous	63.68	0
Indigo	C₁₆H₂₈N₂O₂	280.41	4	4	1	64.52	1.21	Soluble	No	No	0	Medium risk	78.79	0
Apigetrin	C₂₁H₃₆O₁₀	448.50	10	7	4	169.30	-1.00	Soluble	No	No	1	Ambiguous	13.79	0
Oroxin B	C₂₇H₄₆O₁₅	610.65	15	10	7	248.45	-2.61	Very Soluble	No	No	3	Ambiguous	1.629	0
Baloxavir	C₂₇H₄₈F₂N₃O₇S	593.72	12	3	6	132.63	1.65	Soluble	No	No	1	Ambiguous	91.64	0
GSK650394	C₂₃H₄₄N₂O₂	404.63	4	4	4	64.52	4.04	Poorly Soluble	Yes	No	1	Medium risk	87.32	0
Dapivirine	C₂₀H₄₁N₅	351.57	5	5	5	74.14	2.27	Soluble	No	No	0	Medium risk	78.7	0
Homoorientin	C₂₁H₃₆O₁₁	464.50	11	9	3	200.53	-2.55	Soluble	No	No	2	Ambiguous	3.44	0
Luteoloside	C₂₁H₃₆O₁₁	448.38	11	7	4	190.28	0.20	Soluble	No	No	2	High risk	25.16	1

Other natural compounds

Berberine	C₂₀H₁₈NO₄	336.4	4	0	2	40.8	2.53	Moderately Soluble	yes	yes	0	Medium risk	97.8	0
Withanolide	C₂₃H₃₈O₆	470.6	6	2	3	96.3	3.37	Moderately Soluble	No	No	0	Low Risk	94.7	0
Withaferin A	C₂₃H₃₈O₆	470.6	6	2	3	96.3	3.42	Moderately Soluble	No	No	0	Low Risk	94.7	0
Compound	Chemical Formula	MW	Class	pKa	Solubility	Solubility2	Medium Risk	Medium Risk2						
Quercetin	C_{15}H_{10}O_{7}	302.2	Soluble	1.23	No	No	0	Medium risk						
Curcumin	C_{21}H_{20}O_{6}	368.4	Moderately Soluble	3.03	No	No	0	Medium risk						
Sitosterol	C_{29}H_{30}O_{6}	414.7	Poorly soluble	7.24	No	No	1	Low Risk						
Apigenin	C_{15}H_{10}O_{5}	270.2	Moderately Soluble	2.11	Yes	Yes	0	Medium risk						
Astragalin	C_{21}H_{20}O_{11}	448.3	Soluble	-0.09	No	No	2	High Risk						
Piperine	C_{17}H_{19}NO_{3}	285.3	Soluble	3.04	Yes	Yes	0	Medium risk						
Nicotiflorin	C_{27}H_{30}O_{15}	594.5	Soluble	-1.13	No	No	3	High risk						
Gingerol	C_{17}H_{26}O_{4}	294.4	Moderately Soluble	3.13	Yes	Yes	0	Low Risk						
Cannabidiol	C_{21}H_{16}O_{2}	314.4	Moderately Soluble	5.20	Yes	Yes	1	Medium risk						
Aloesin	C_{19}H_{22}O_{9}	394.4	Very Soluble	-0.30	No	No	0	Low Risk						
Dehydroandrographide	C_{20}H_{28}O_{4}	332.43	Soluble	3.12	Yes	No	0	Medium risk						
Aloenin	C_{19}H_{22}O_{10}	410.4	Soluble	0.05	No	No	0	Low Risk						
Shogaol	C_{17}H_{24}O_{3}	276.3	Moderately Soluble	3.76	Yes	Yes	0	Medium risk						
	C₃₀H₃₆O₉	540.6	9	0	8	118.3	3.20	Moderately Soluble	No	No	1	Medium risk	97.8	0
------------	--------------------------------------	-------	-----	-----	-----	-------	------	-------------------	-----	-----	---	-------------	------	---
Nimbin	C₃₀H₅₀O	426.7	1	1	1	20.2	7.28	Poorly soluble	No	No	1	Low Risk	100	0
Lupeol														
Ursolic acid	C₃₀H₄₈O₃	456.7	3	2	1	57.5	5.93	Moderately Soluble	No	No	1	Low Risk	95.9	0

HBA hydrogen bond acceptor, ≤ 10; HBD hydrogen bond donor, ≤ 5; n-roth no. of rotatable bonds, ≤ 10; TPSA topological polar surface area, ≤ 130 Å²; Log Po/w octanol/water partition coefficient, −0.7 to +5.0; Log S, aqueous solubility scale: Insoluble < −10 < Poorly < −6 < Moderately < −4 < Soluble < −2 < Very Soluble < 0 < Highly soluble; BBB blood-brain barrier permeability, central nervous system toxicity; CYP2D6 inhibitor hepatotoxicity; Lipinski number of violations of Lipinski’s rule of five, maximum is 4; hERG inhibition risk; HIA human intestinal absorption, and PAINS (Pan-Assay Interference Compounds) alert.
Table S4: *In silico* toxicity prediction of selected forty two compounds using pkCSM software.

Compound	AMES toxicity Categorical (Yes/No)	Max. tolerated dose (human) Numeric (log mg/kg/day)	hERG I* inhibitor Categorical (Yes/No)	hERG II* inhibitor Categorical (Yes/No)	Oral rat acute toxicity (LD50*) Numeric (log mg/kg)	Oral rat chronic toxicity (LOAEL*) Numeric (log mg/kg bw/day)	Hepatotoxicity Categorical (Yes/No)	Skin sensitization Categorical (Yes/No)	T. pyriformis toxicity Numeric (log µg/L)	Fathead minnow toxicity Numeric (log mM)
Umbralisib	No	-0.365	No	No	2.946	1.838	No	No	0.285	3.601
Baicalin	No	0.836	No	No	2.588	4.213	No	No	0.285	2.02
Narirutin	No	0.05	No	Yes	2.72	4.643	No	No	0.285	7.961
Bictegravir	No	0.742	No	No	2.019	4.253	No	No	0.285	4.617
Scutellarin	No	0.736	No	Yes	1.951	5.144	No	No	0.285	8.134
Complanatuside	No	-0.236	No	Yes	2.869	4.682	No	No	0.285	9.592
Sofosbuvir	No	1.052	No	No	1.971	3.692	No	No	0.285	6.119
Verdinexor	No	0.508	No	Yes	2.904	2.221	Yes	No	0.285	2.402
Pimobendan	No	-0.214	No	No	2.83	0.7	Yes	No	0.276	2.865
Eriocitrin	No	0.078	No	Yes	2.784	4.38	No	No	0.285	9.395
Rutaecarpine	No	0.1	No	No	2.494	1.323	Yes	No	0.284	2.406
Aprepitant	No	0.055	No	Yes	3.52	1.253	Yes	No	0.285	4.678
Amenamevir	No	0.389	No	No	2.236	2.569	Yes	No	0.285	3.7
Amentoflavone	No	0.413	No	Yes	2.442	3.065	No	No	0.285	-0.801
Compound	Value									
------------------	-------	-------	-------	-------	-------	-------	-------	-------		
Dolutegravir	No	0.579	No	No	1.884	4.023	No	0.285		
Indigo	No	0.991	No	No	2.304	2.209	No	0.229		
Apigetrin	No	0.248	No	No	2.644	3.776	No	0.285		
OroxinB	No	-0.476	No	Yes	2.92	6.116	No	0.285		
Baloxavir	No	-0.568	No	No	3.556	2.476	Yes	0.285		
GSK650394	No	-1.285	No	Yes	3.555	1.844	Yes	0.289		
Dapivirine	Yes	0.379	No	Yes	2.599	0.704	Yes	0.266		
Homoorientin	No	0.417	No	No	2.567	4.805	No	0.285		
Luteoloside	No	0.724	No	Yes	2.689	4.425	No	0.285		
Other natural compounds										
Berberine	No	-0.043	No	Yes	3.377	1.388	yes	0.3		
Withanolide	No	-0.224	No	No	2.743	2.229	No	0.294		
Withaferin A	No	-0.192	No	No	2.836	2.083	No	0.294		
Quercetin	No	1	No	No	2.288	2.996	No	0.303		
Curcumin	No	0.697	No	No	2.132	3.499	No	0.575		
Sitosterol	No	-0.798	No	Yes	3.892	1.007	No	0.424		
Apigenin	No	0.437	No	Yes	2.408	1.737	No	0.464		
Astragalin	No	0.821	No	Yes	2.959	2.098	No	0.285		
Piperine	No	-0.311	No	No	2.867	1.499	yes	1.868		
	hERG*	LD50*	LOAEL*							
----------------	-------	-------	--------	----	----	----	----	----	----	
Nicotiflorin	No	0.73	No	Yes	2.763	3.677	No	No	0.285	4.568
Gingerol	No	0.355	No	Yes	2.272	2.417	No	No	0.86	0.035
Cannabidiol	No	-0.798	No	Yes	3.892	1.007	No	No	0.424	-1.255
Aloesin	No	0.898	No	No	3.146	2.881	Yes	No	0.288	2.91
Dehydroandrographolide	No	-0.792	No	No	3.204	1.64	No	No	0.393	0.646
Aloenin	No	0.73	No	No	3.154	2.492	Yes	No	0.287	3.134
Shogaol	No	0.679	No	No	2.181	2.542	No	Yes	1.446	-0.191
Nimbin	No	-0.048	No	No	2.293	1.771	No	No	0.288	2.07
Lupeol	No	-0.193	No	No	4.145	1.708	No	No	0.317	-1.31
Ursolic acid	No	1.161	No	No	3.115	2.08	yes	No	0.288	-0.368

hERG*: human Ether-à-go-go-Related Gene; LD50*: lethal dose of 50%; LOAEL*: lowest observed adverse effect level.
Figure S4: The predictions of selected twelve plant based natural Compounds human intestinal absorption (HIA) and brain permeation (BBB) determined using the tPSA/WLogP-based graphical BOILED-Egg method predicted by online SwissADME (https://www.swissadme.ch) web tool. Each compound corresponds to a small red, blue and black circle. The grey region is the physicochemical space of compounds predicted to exhibit high intestinal absorption. The yellow part is the physicochemical space of compounds predicted to permeate the brain. Abbreviation: topological polar surface area (tPSA). As shown in Figure, the egg-shaped yolk space for highly probable BBB permeation and the white space for highly probable HIA absorption. The blue colour indicates effluxed by P-glycoprotein (PGP+), whereas the red colour indicates nonsubstrate of P-gp (PGP-).
Figure S5: Radar plot for oral bioavailability of the twelve-plant based natural compounds predicted by online SwissADME (https://www.swissadme.ch) web tool. Pink area represents the range of optimal values. The coloured zone is a suitable physicochemical space for oral bioavailability. Any deviation represents a suboptimal physicochemical property for oral bioavailability. LIPO (Lipophilicity): $-0.7 < \text{XLOGP3} < 5.0$; SIZE: 150 g/mol < MW < 500 g/mol; POLAR (Polarity): 20 Å² < TPSA < 130 Å²; INSOLU (Insolubility): 0 < Log S (ESOL) < 6; INSATU (Insaturation): 0.25 < Fraction Csp3 < 1; FLEX (Flexibility): 0 < Num. rotatable bonds < 9.
Figure S6: The Pie-chart of top-15 of target predicted for twelve selected natural compounds predicted by online SwissTargetPrediction (http://www.swisstargetprediction.ch) web tool.

Target prediction analysis (Figure S6 and Table S5):
The targets of Narirutin were predicted to be the family AG protein-coupled receptors (33.3%), Other cytosolic protein (26.7%), secreted proteins (20%), enzymes (13.3%), and kinase (6.7%), with a probability of below 1%. In Scutellarin, there was a potential target with family AG protein-coupled receptors (40%), Other cytosolic protein (20%), and secreted proteins (20%), enzymes (13.3%), and kinase 96.75) with a probability of below 1%. The targets of Complanatuside were predicted to be the family AG protein-coupled receptors (46.7%), secreted proteins (20%), kinase (6.7%), enzymes and other cytosolic protein (13.3) with a probability of less than 1%. In Eriocitrin, there was a potential target with the family AG protein-coupled receptors (53.3%), secreted proteins (20%), enzymes (13.3%), other cytosolic protein and cytochrome P450 (6.7%) with a probability of below 1% each. Likewise, Oroxin B showed a potential target of the family AG protein-coupled receptors (33.3%), other cytosolic protein (26.7%), secreted proteins (20%), enzyme (13.3%) and kinase (6.7%), with a probability of below 1%. The targets of Homoorientin were predicted to be proteases (40%), secreted proteins and enzymes (20%), the family AG protein-coupled receptors, primary active transporters, and Electrochemical transporter (6.7%) with a probability of less than 1%.
Table S5: The potential target of twelve selected plant based natural compounds in the human proteome, predicted through Swiss target prediction.

Baicalin	Common name	Uniprot ID	ChEMBL ID	Target Class	Probability*	Known actives (3D/2D)
Aldose reductase (by homology)	AKR1B1	P15121	CHEMBL1900	Enzyme	0.15634	7 / 69 Â Â Â Â Â
Adenosine A1 receptor (by homology)	ADORA1	P30542	CHEMBL226	Family A G protein-coupled receptor	0.123138	38 / 15 Â Â Â Â Â
TNF-alpha	TNF	P01375	CHEMBL1825	Secreted protein	0.114839	0 / 3 Â Â Â Â Â
Interleukin-2	IL2	P60568	CHEMBL5880	Secreted protein	0.114839	0 / 4 Â Â Â Â Â
Xanthine dehydrogenase	XDH	P47989	CHEMBL1929	Oxidoreductase	0.106543	0 / 19 Â Â Â Â Â
Cylooxygenase-2 Ribosomal protein S6 kinase alpha 3	PTGS2	P35354	CHEMBL230	Oxidoreductase	0.106543	0 / 5 Â Â Â Â Â
Epidermal growth factor receptor erbB1	EGFR	P00533	CHEMBL203	Kinase	0.106543	0 / 19 Â Â Â Â Â
Acetylcholinesterase	ACHE	P22303	CHEMBL220	Hydrolase	0.106543	0 / 28 Â Â Â Â Â
Quinone reductase 2	NQO2	P16083	CHEMBL3959	Enzyme	0.106543	0 / 1 Â Â Â Â Â
Neuromedin-U receptor 2	NMUR2	Q9GZQ4	CHEMBL1075144	Protein-coupled receptor	0.106543	0 / 1 Â Â Â Â Â
Alpha-2a adrenergic receptor	ADRA2A	P08913	CHEMBL1867	Family A G protein-coupled receptor	0.106543	0 / 1 Â Â Â Â Â
Adrenergic receptor alpha-2	ADRA2C	P18825	CHEMBL1916	Family A G protein-coupled receptor	0.106543	0 / 2 Â Â Â Â Â
NADPH oxidase 4	NOX4	Q9NPH5	CHEMBL1250375	Enzyme	0.106543	0 / 7 Â Â Â Â Â
Aldehyde dehydrogenase	ALDH2	P05091	CHEMBL1935	Oxidoreductase	0.106543	0 / 24 Â Â Â Â Â

Narirutin	Common name	Uniprot ID	ChEMBL ID	Target Class	Probability*	Known actives (3D/2D)	
Basic fibroblast growth factor	FGF2	P09038	CHEMBL3107	Secreted protein	0.243785537	3 / 3 Â Â Â Â Â	
Scutellarin	Common name	Uniprot ID	ChEMBL ID	Target Class	Probability*	Known actives (3D/2D)	
-------------	-------------	------------	-----------	--------------	--------------	-----------------------	
Heat shock protein HSP 90-alpha	HSP90AA1	P07900	CHEMBL3880	Other cytosolic protein	0.127881258	12 / 3Å Å Å Å Å Å	
Vascular endothelial growth factor A	VEGFA	P15692	CHEMBL1783	Secreted protein	0.110041254	2 / 4Å Å Å Å Å Å	
Acidic fibroblast growth factor	FGF1	P05230	CHEMBL2120	Secreted protein	0.110041254	1 / 7Å Å Å Å Å Å	
Heparanase	HPSE	Q9Y251	CHEMBL3921	Enzyme	0.110041254	1 / 5Å Å Å Å Å Å	
Vascular endothelial growth factor A	VEGFA	P15692	CHEMBL1783	Secreted protein	0.110041254	2 / 4Å Å Å Å Å Å	
Acidic fibroblast growth factor	FGF1	P05230	CHEMBL2120	Secreted protein	0.110041254	1 / 7Å Å Å Å Å Å	
Heparanase	HPSE	Q9Y251	CHEMBL3921	Enzyme	0.110041254	1 / 5Å Å Å Å Å Å	
Gamma-secretase	APH1B	Q8WW43	CHEMBL2094135	Protease	0.101086931	0 / 14Å Å Å Å Å Å	
Galectin-3	LGALS3	P17931	CHEMBL4531	Other cytosolic protein	0.074392272	9 / 4Å Å Å Å Å Å	
Cyclin-dependent kinase 1	CDK1	P06493	CHEMBL308	Kinase	0.074392272	5 / 1Å Å Å Å Å Å	
Galectin-4	LGALS4	P56470	CHEMBL1671608	Other cytosolic protein	0.074392272	2 / 3Å Å Å Å Å Å	
Galectin-8	LGALS8	O00214	CHEMBL5475	Other cytosolic protein	0.074392272	2 / 3Å Å Å Å Å Å	
Serotonin 2b (5-HT2b) receptor	HTR2B	P41595	CHEMBL1833	Family A G protein-coupled receptor	0.074392272	0 / 1Å Å Å Å Å Å	
Alpha-2a adrenergic receptor	ADRA2A	P08913	CHEMBL1867	Family A G protein-coupled receptor	0.074392272	0 / 1Å Å Å Å Å Å	
Adrenergic receptor alpha-2	ADRA2C	P18825	CHEMBL1916	Family A G protein-coupled receptor	0.074392272	0 / 1Å Å Å Å Å Å	
Alpha-2b adrenergic receptor	ADRA2B	P18089	CHEMBL1942	Family A G protein-coupled receptor	0.074392272	0 / 1Å Å Å Å Å Å	
Protein Name	Accession	CHEMBL	Function	ProtScore	PDB Code 1	PDB Code 2	
------------------------------------	-----------	----------	------------------------	-----------	------------	------------	
Vascular endothelial growth factor A	VEGFA	P15692	CHEMBL1783 Secreted protein	0.192799869	0 / 2Â Â Â Â Â Â		
	PSEN2	P49810	CHEMBL1783 Secreted protein	0.192799869	0 / 2Â Â Â Â Â Â		
	PSENEN	Q9NZ42	CHEMBL1783 Secreted protein	0.192799869	0 / 2Â Â Â Â Â Â		
	NCSTN	Q92542	CHEMBL1783 Secreted protein	0.192799869	0 / 2Â Â Â Â Â Â		
	APH1A	Q96B13	CHEMBL1783 Secreted protein	0.192799869	0 / 2Â Â Â Â Â Â		
	PSEN1	P49768	CHEMBL1783 Secreted protein	0.192799869	0 / 2Â Â Â Â Â Â		
Gamma-secretase	APH1B	Q8WW43	CHEMBL2094135 Protease	0.192799869	0 / 12Â Â Â Â Â Â		
Acidic fibroblast growth factor	FGF1	P05230	CHEMBL2120 Secreted protein	0.192799869	0 / 7Â Â Â Â Â Â		
Basic fibroblast growth factor	FGF2	P09038	CHEMBL3107 Secreted protein	0.192799869	0 / 4Â Â Â Â Â Â		
Heparanase	HPSE	Q9Y251	CHEMBL3921 Enzyme	0.192799869	0 / 5Â Â Â Â Â Â		
Heat shock protein HSP 90-alpha	HSP90AA1	P07900	CHEMBL3880 Other cytosolic protein	0.100634432	1 / 3Â Â Â Â Â Â		
Galectin-4	LGALS4	P56470	CHEMBL1671608 Other cytosolic protein	0.100634432	0 / 3Â Â Â Â Â Â		
Galectin-8	LGALS8	O00214	CHEMBL5475 Other cytosolic protein	0.100634432	0 / 3Â Â Â Â Â Â		
Cyclin-dependent kinase 1	CDK1	P06493	CHEMBL308 Kinase	0.100634432	0 / 1Â Â Â Â Â Â		
Serotonin 2b (5-HT2b) receptor	HTR2B	P41595	CHEMBL1833 Family A G protein-coupled receptor	0.100634432	0 / 1Â Â Â Â Â Â		
Alpha-2a adrenergic receptor	ADRA2A	P08913	CHEMBL1867 Family A G protein-coupled receptor	0.100634432	0 / 1Â Â Â Â Â Â		
Adrenergic receptor alpha-2	ADRA2C	P18825	CHEMBL1916 Family A G protein-coupled receptor	0.100634432	0 / 1Â Â Â Â Â Â		
Alpha-2b adrenergic receptor	ADRA2B	P18089	CHEMBL1942 Family A G protein-coupled receptor	0.100634432	0 / 1Â Â Â Â Â Â		
Dopamine D1 receptor	DRD1	P21728	CHEMBL2056 Family A G protein-coupled receptor	0.100634432	0 / 1Â Â Â Â Â Â		
Dopamine D2 receptor	DRD2	P14416	CHEMBL217 Family A G protein-coupled receptor	0.100634432	0 / 1Â Â Â Â Â Â		
Complanatuside	Common name	Uniprot ID	ChEMBL ID	Target Class	Probability*	Known actives (3D/2D)	
--------------------------------	------------------------------------	------------	-------------	--------------	--------------	-----------------------	
Basic fibroblast growth factor	FGF2	P09038	CHEMBL3107	Secreted protein	0.388188	4 / 3 Â Â Â Â Â Â	
Vascular endothelial growth factor A	VEGFA	P15692	CHEMBL1783	Secreted protein	0.207529	1 / 4 Â Â Â Â Â Â	
Acidic fibroblast growth factor	FGF1	P05230	CHEMBL2120	Secreted protein	0.207529	1 / 7 Â Â Â Â Â Â	
Heparanase	HPSE	Q9Y251	CHEMBL3921	Enzyme	0.207529	1 / 5 Â Â Â Â Â Â	
	PSEN2	P49810					
	PSENE	Q9NZ42					
	NCSTN	Q92542					
	APH1A	Q96B13					
	PSEN1	P49768					
Gamma-secretase	HSP90AA1	P07900	CHEMBL3880	Other cytosolic protein	0.093576	7 / 3 Â Â Â Â Â Â	
Heat shock protein HSP 90-alpha	LGALS3	P17931	CHEMBL4531	Other cytosolic protein	0.084066	5 / 4 Â Â Â Â Â Â	
Galectin-3	CDK1	P06493	CHEMBL308	Kinase	0.084066	3 / 1 Â Â Â Â Â Â	
Cyclin-dependent kinase 1	HTR2B	P41595	CHEMBL1833	Family A G protein-coupled receptor	0.074565	0 / 1 Â Â Â Â Â Â	
Serotonin 2b (5-HT2b) receptor	ADRA2A	P08913	CHEMBL1867	Family A G protein-coupled receptor	0.074565	0 / 1 Â Â Â Â Â Â	
Alpha-2a adrenergic receptor	ADRA2C	P18825	CHEMBL1916	Family A G protein-coupled receptor	0.074565	0 / 1 Â Â Â Â Â Â	
Adrenergic receptor alpha-2	ADRA2B	P18089	CHEMBL1942	Family A G protein-coupled receptor	0.074565	0 / 1 Â Â Â Â Â Â	
Alpha-2b adrenergic receptor	DRD1	P21728	CHEMBL2056	Family A G protein-coupled receptor	0.074565	0 / 1 Â Â Â Â Â Â	
Dopamine D1 receptor	ADRA1D	P25100	CHEMBL223	Family A G protein-coupled receptor	0.074565	0 / 1 Â Â Â Â Â Â	
Erictin	Common name	Uniprot ID	ChEMBL ID	Target Class	Probability*	Known actives (3D/2D)	
---------	-------------	------------	-----------	--------------	--------------	----------------------	
Vascular endothelial growth factor A	VEGFA	P15692	CHEMBL1783	Secreted protein	0.325352	2 / 4 Â Â Â Â Â	
Acidic fibroblast growth factor	FGF1	P05230	CHEMBL2120	Secreted protein	0.325352	2 / 7 Â Â Â Â Â	
Basic fibroblast growth factor	FGF2	P09038	CHEMBL3107	Secreted protein	0.325352	5 / 3 Â Â Â Â Â	
Heparanase	HPSE	Q9Y251	CHEMBL3921	Enzyme	0.325352	2 / 5 Â Â Â Â Â	
Gamma-secretase	APH1B	Q8WW43	CHEMBL2094135	Protease	0.109233	0 / 14 Â Â Â Â Â	
Heat shock protein HSP 90-alpha	HSP90AA1	P07900	CHEMBL3880	Other cytosolic protein	0.082222	6 / 3 Â Â Â Â Â	
Serotonin 2b (5-HT2b) receptor	HTR2B	P41595	CHEMBL1833	Family A G protein-coupled receptor	0.082222	0 / 1 Â Â Â Â Â	
Alpha-2a adrenergic receptor	ADRA2A	P08913	CHEMBL1867	Family A G protein-coupled receptor	0.082222	0 / 1 Â Â Â Â Â	
Adrenergic receptor alpha-2	ADRA2C	P18825	CHEMBL1916	Family A G protein-coupled receptor	0.082222	0 / 1 Â Â Â Â Â	
Alpha-2b adrenergic receptor	ADRA2B	P18089	CHEMBL1942	Family A G protein-coupled receptor	0.082222	0 / 1 Â Â Â Â Â	
Dopamine D1 receptor	DRD1	P21728	CHEMBL2056	Family A G protein-coupled receptor	0.082222	0 / 1 Â Â Â Â Â	
Serotonin 2a (5-HT2a) receptor	HTR2A	P28223	CHEMBL224	Family A G protein-coupled receptor	0.082222	0 / 1 Â Â Â Â Â	
Common name	Uniprot ID	ChEMBL ID	Target Class	Probability*	Known actives (3D/2D)	Probability*	Known actives (3D/2D)
---	------------	-----------	---	--------------	------------------------	--------------	------------------------
Serotonin 2c (5-HT2c) receptor	HTR2C	P28335	CHEMBL225	Family A G protein-coupled receptor	0.082222	0 / 1	
Dopamine D3 receptor	DRD3	P35462	CHEMBL234	Family A G protein-coupled receptor	0.082222	0 / 1	
Cytochrome P450 2D6	CYP2D6	P10635	CHEMBL289	Cytochrome P450	0.082222	0 / 1	
Rutaecarpine							
Muscarinic acetylcholine receptor M4	CHRM4	P08173	CHEMBL1821	Family A G protein-coupled receptor	0.111502	49 / 0	
Muscarinic acetylcholine receptor M2	CHRM2	P08172	CHEMBL211	Family A G protein-coupled receptor	0.111502	182 / 0	
Muscarinic acetylcholine receptor M1	CHRM1	P11229	CHEMBL216	Family A G protein-coupled receptor	0.111502	183 / 0	
Muscarinic acetylcholine receptor M3	CHRM3	P20309	CHEMBL245	Family A G protein-coupled receptor	0.111502	171 / 0	
Dopamine D4 receptor	DRD4	P21917	CHEMBL219	Family A G protein-coupled receptor	0.111502	164 / 0	
Vesicular acetylcholine transporter	SLC18A3	Q16572	CHEMBL4767	Electrochemical transporter Family A G protein-coupled receptor	0.111502	168 / 0	
Muscarinic acetylcholine receptor M5	CHRM5	P08912	CHEMBL2035	Voltage-gated ion channel Electrochemical transporter	0.111502	41 / 0	
HERG	KCNH2	Q12809	CHEMBL240	Electrochemical transporter	0.111502	356 / 0	
Norepinephrine transporter	SLC6A2	P23975	CHEMBL222	Electrochemical transporter	0.111502	514 / 0	
Serotonin transporter	SLC6A4	P31645	CHEMBL228	Electrochemical transporter	0.111502	895 / 0	
Dopamine transporter	SLC6A3	Q01959	CHEMBL238	Electrochemical transporter	0.111502	627 / 0	
Aprepitant	Common name	Uniprot ID	ChEMBL ID	Target Class	Probability*	Known actives (3D/2D)	
--	------------------------------	------------	-------------	------------------------------	--------------	-----------------------	
Methionine aminopeptidase 2	METAP2	P50579	CHEMBL3922	Protease Family A G protein-coupled receptor	0.111502	56 / 0Å Å Å Å Å Å	
Dopamine D3 receptor	DRD3	P35462	CHEMBL234	Kinase Primary active transporter	0.111502	293 / 0Å Å Å Å Å Å	
Dual specificity mitogen-activated protein kinase 1	MAP2K1	Q02750	CHEMBL3587	Kinase	0.111502	112 / 0Å Å Å Å Å Å	
P-glycoprotein 1	ABCB1	P08183	CHEMBL4302	Protease	0.111502	181 / 0Å Å Å Å Å Å	
Pyruvate dehydrogenase kinase isoform 2	PDK2	Q15119	CHEMBL3861	Kinase Voltage-gated ion channel	0.125687	170 / 0Å Å Å Å Å Å	
Sodium channel protein type IX alpha subunit	SCN9A	Q15858	CHEMBL4296	Voltage-gated ion channel	0.125687	400 / 0Å Å Å Å Å Å	
Protein-tyrosine phosphatase 1B	PTPN1	P18031	CHEMBL335	Phosphatase	0.125687	23 / 0Å Å Å Å Å Å	
T-cell protein-tyrosine phosphatase	PTPN2	P17706	CHEMBL3807	Phosphatase	0.125687	13 / 0Å Å Å Å Å Å	
Matrix metalloproteinase 12	MMP12	P39900	CHEMBL4393	Protease	0.125687	2 / 0Å Å Å Å Å Å	
Caspase-8	CASP8	P14790	CHEMBL3776	Protease	0.125687	4 / 0Å Å Å Å Å Å	
Caspase-1	CASP1	P29466	CHEMBL4801	Protease	0.125687	5 / 0Å Å Å Å Å Å	
PI3-kinase p110-delta subunit	PIK3CD	O00329	CHEMBL3130	Enzyme	0.125687	46 / 0Å Å Å Å Å Å	
PI3-kinase p110-beta subunit	PIK3CB	P42338	CHEMBL3145	Enzyme	0.125687	48 / 0Å Å Å Å Å Å	
Protein kinase C epsilon	PRKCE	Q02156	CHEMBL3582	Kinase	0.125687	5 / 0Å Å Å Å Å Å	
PI3-kinase p110-gamma subunit	PIK3CG	P48736	CHEMBL3267	Enzyme	0.125687	31 / 0Å Å Å Å Å Å	
PI3-kinase p110-alpha subunit	PIK3CA	P42336	CHEMBL4005	Enzyme Family A G protein-coupled receptor	0.125687	68 / 0Å Å Å Å Å Å	
Neurokinin 1 receptor	TACR1	P25103	CHEMBL249	Kinase	0.125687	303 / 0Å Å Å Å Å Å	
Nerve growth factor receptor Trk-A	NTRK1	P04629	CHEMBL2815	Kinase	0.125687	24 / 0Å Å Å Å Å Å	
Target Name	Common name	Uniprot ID	ChEMBL ID	Target Class	Probability*	Known actives (3D/2D)	
--	-------------	------------	----------------	-----------------------------------	--------------	-----------------------	
Beta-secretase 1	BACE1	P56817	CHEMBL4822	Protease	0.125687	46 / 0 Â Â Â Â Â Â	
Amentoflavone	VCP	P55072	CHEMBL1075145	Primary active transporter	1	1 / 1 Â Â Â Â Â Â	
Placenta growth factor	PGF	P49763	CHEMBL1697671	Unclassified protein	1	1 / 1 Â Â Â Â Â Â	
Vascular endothelial growth factor A	VEGFA	P15692	CHEMBL1783	Secreted protein	1	1 / 1 Â Â Â Â Â Â	
GABA-A receptor; alpha-1/beta-2/gamma-2	GABRA1	P14867					
GABRB2	P47870						
GABRG2	P18507						
GABA-A receptor; alpha-1/beta-2/gamma-2	HTR2C	P28335	CHEMBL225	Ligand-gated ion channel	1	1 / 1 Â Â Â Â Â Â	
Vascular endothelial growth factor A	VEGFA	P15692	CHEMBL1783	Secreted protein	1	1 / 1 Â Â Â Â Â Â	
Dopamine D3 receptor	DRD3	P35462	CHEMBL234	Family A G protein-coupled receptor	1	1 / 1 Â Â Â Â Â Â	
Delta opioid receptor	OPRD1	P41143	CHEMBL236	Family A G protein-coupled receptor	1	2 / 5 Â Â Â Â Â Â	
Protein-tyrosine phosphatase 1B	PTPN1	P18031	CHEMBL335	Phosphatase	1	6 / 18 Â Â Â Â Â Â	
Beta-secretase 1	BACE1	P56817	CHEMBL4822	Protease	1	10 / 17 Â Â Â Â Â Â	
Cyclin-dependent kinase 5/CDK5 activator 1	CDK5R1	Q15078	CHEMBL1187942	Kinase	0.086886	1 / 17 Â Â Â Â Â Â	
NEDD8-activating enzyme E1 regulatory subunit	NAE1	Q13564	CHEMBL2016431	Unclassified protein	0	0 / 1 Â Â Â Â Â Â	
NADPH oxidase 4	NOX4	Q9NPH5	CHEMBL1250375	Enzyme	0	0 / 7 Â Â Â Â Â Â	
Aldose reductase (by homology)	AKR1B1	P15121	CHEMBL1900	Enzyme	0	0 / 61 Â Â Â Â Â Â	
Monoamine oxidase A	MAOA	P21397	CHEMBL1951	Oxidoreductase	0	0 / 6 Â Â Â Â Â Â	
Tyrosine-protein kinase receptor FLT3	FLT3	P36888	CHEMBL1974	Kinase	0	0 / 7 Â Â Â Â Â Â	

Apigetrin	Common name	Uniprot ID	ChEMBL ID	Target Class	Probability*	Known actives (3D/2D)

Notes:
- The table lists various targets along with their identification numbers and corresponding data points.
- The columns include Common name, Uniprot ID, ChEMBL ID, Target Class, Probability, and Known actives (3D/2D).
- The probability values are marked as 0 or 1, indicating whether the target is known to have known actives in 3D or 2D format.
| Protein Name | Accession | PDB ID | Function | IC50 | Ki (nM) | |
|---|---|---|---|---|---|---|
| Vascular endothelial growth factor A | CHEMBL1783 | P15692 | Secreted protein | 0.191272 | 0 / 2 |
| Gamma-secretase | CHEMBL2094135 | P49810 | Protease | 0.191272 | 0 / 3 |
| Acidic fibroblast growth factor | CHEMBL2120 | P49810 | Secreted protein | 0.191272 | 0 / 4 |
| Basic fibroblast growth factor | CHEMBL3107 | P49810 | Secreted protein | 0.191272 | 0 / 5 |
| Heparanase | CHEMBL3921 | P49810 | Enzyme | 0.126929 | 0 / 6 |
| Heat shock protein HSP 90-alpha | CHEMBL3880 | P49810 | Other cytosolic protein | 0.118883 | 0 / 7 |
| Serotonin 2b (5-HT2b) receptor | CHEMBL1833 | P49810 | Family A G protein-coupled receptor | 0.118883 | 0 / 8 |
| Alpha-2a adrenergic receptor | CHEMBL1867 | P49810 | Family A G protein-coupled receptor | 0.118883 | 0 / 9 |
| Adrenergic receptor alpha-2 | CHEMBL1916 | P49810 | Family A G protein-coupled receptor | 0.118883 | 0 / 10 |
| Alpha-2b adrenergic receptor | CHEMBL1942 | P49810 | Family A G protein-coupled receptor | 0.118883 | 0 / 11 |
| Dopamine D1 receptor | CHEMBL2056 | P49810 | Family A G protein-coupled receptor | 0.118883 | 0 / 12 |
| Alpha-1d adrenergic receptor | CHEMBL223 | P49810 | Family A G protein-coupled receptor | 0.118883 | 0 / 13 |
| Serotonin 2a (5-HT2a) receptor | CHEMBL224 | P49810 | Family A G protein-coupled receptor | 0.118883 | 0 / 14 |
| Common name | Uniprot ID | ChEMBL ID | Target Class | Probability* | Known actives (3D/2D) |
|--|------------|-----------|-------------------|--------------|-----------------------|
| Basic fibroblast growth factor | FGF2 | P09038 | CHEMBL3107 | 0.199274 | 4 / 3 |
| Vascular endothelial growth factor A | VEGFA | P15692 | CHEMBL1783 | 0.109233 | 1 / 4 |
| Acidic fibroblast growth factor | FGF1 | P05230 | CHEMBL2120 | 0.109233 | 1 / 7 |
| Heparanase | HPSE | Q9Y251 | CHEMBL3921 | 0.109233 | 1 / 5 |
| | PSEN2 | P49810 | | | |
| | PSENEN | Q9NZ42 | | | |
| | NCSTN | Q92542 | | | |
| | APH1A | Q96B13 | | | |
| | PSEN1 | P49768 | | | |
| | APH1B | Q8WW43 | | | |
| Gamma-secretase | HSP90AA1 | P07900 | CHEMBL3880 | 0.091209 | 8 / 3 |
| Heat shock protein HSP 90-alpha | | | | | |
| Galectin-4 | LGALS4 | P56470 | CHEMBL1671608 | 0.091209 | 2 / 3 |
| Galectin-3 | LGALS3 | P17931 | CHEMBL4531 | 0.091209 | 10 / 4 |
| Galectin-8 | LGALS8 | O00214 | CHEMBL5475 | 0.091209 | 2 / 3 |
| Cyclin-dependent kinase 1 | CDK1 | P06493 | CHEMBL308 | 0.082222 | 3 / 1 |
| Serotonin 2b (5-HT2b) receptor | HTR2B | P41595 | CHEMBL1833 | 0.082222 | 0 / 1 |
| Alpha-2a adrenergic receptor | ADRA2A | P08913 | CHEMBL1867 | 0.082222 | 0 / 1 |
| Common name | Uniprot ID | ChEMBL ID | Target Class | Probability* | Known actives (3D/2D) |
|-------------|------------|-----------|--------------|--------------|-----------------------|
| Adrenergic receptor alpha-2 | ADRA2C | P18825 | CHEMBL1916 | 0.082222 | 0 / 1Â Â Â Â Â |
| Alpha-2b adrenergic receptor | ADRA2B | P18089 | CHEMBL1942 | 0.082222 | 0 / 1Â Â Â Â Â |
| Dopamine D1 receptor | DRD1 | P21728 | CHEMBL2056 | 0.082222 | 0 / 1Â Â Â Â Â |
| MAP kinase ERK2 | MAPK1 | P28482 | CHEMBL4040 | Kinase | 0 / 111 / 0Â Â Â Â Â |
| Sodium/glucose cotransporter 1 | SLC5A1 | P13866 | CHEMBL4979 | Electrochemical transporter | 0 / 138 / 0Â Â Â Â Â |
| Sodium/glucose cotransporter 2 | SLC5A2 | P31639 | CHEMBL3884 | Electrochemical transporter | 0 / 464 / 0Â Â Â Â Â |
| P2X purinoceptor 3 | P2RX3 | P56373 | CHEMBL2998 | Ligand-gated ion channel | 0 / 135 / 0Â Â Â Â Â |
| Dual specificity mitogen-activated protein kinase 1 | MAP2K1 | Q02750 | CHEMBL3587 | Kinase | 0 / 95 / 0Â Â Â Â Â |
| DNA topoisomerase I | TOP1 | P11387 | CHEMBL1781 | Isomerase | 0 / 21 / 0Â Â Â Â Â |
| GABA receptor alpha-5 subunit | GABRA5 | P31664 | CHEMBL5112 | Ligand-gated ion channel | 0 / 45 / 0Â Â Â Â Â |
| Dual specificity phosphatase Cdc25B | CDC25B | P30305 | CHEMBL4804 | Phosphatase | 0 / 5 / 0Â Â Â Â Â |
| Interleukin-1 receptor-associated kinase 4 | IRAK4 | Q9NWZ3 | CHEMBL3778 | Kinase | 0 / 63 / 0Â Â Â Â Â |
| Serine/threonine-protein kinase mTOR | MTOR | P42345 | CHEMBL2842 | Kinase | 0 / 182 / 0Â Â Â Â Â |
| Adenosine A1 receptor (by homology) | ADORA1 | P30542 | CHEMBL226 | Family A G protein-coupled receptor | 0 / 762 / 0Â Â Â Â Â |
| Adenosine A3 receptor | ADORA3 | P0DMS8 | CHEMBL256 | Family A G protein-coupled receptor | 0 / 401 / 0Â Â Â Â Â |
| Epidermal growth factor receptor erbB1 | EGFR | P00533 | CHEMBL203 | Kinase | 0 / 94 / 0Â Â Â Â Â |
| Homoorientin | Common name | Uniprot ID | ChEMBL ID | Target Class | Probability* | Known actives (3D/2D) |
|--------------|-------------|------------|-----------|--------------|--------------|----------------------|
| Adenosine kinase | ADK | P55263 | CHEMBL3589 | Enzyme | 0.106543 | 2 / 7 |
| Equilibrative nucleoside transporter 1 | SLC29A1 | Q99808 | CHEMBL1997 | Electrochemical transporter | 0.106543 | 0 / 0 |
| Homoorientin | Common name | Uniprot ID | ChEMBL ID | Target Class | Probability* | Known actives (3D/2D) |
| Beta-glucocerebrosidase | GBA | P04062 | CHEMBL2179 | Enzyme | 0.106543 | 2 / 7 |
| | PSEN2 | P49810 | | | | |
| | PSENEN | Q9NZ42 | | | | |
| | NCSTN | Q92542 | | | | |
| | APH1A | Q96B13 | | | | |
| | PSEN1 | P49768 | | | | |
| Gamma-secretase | APH1B | Q8WW43 | CHEMBL2094135 | Protease | 0.106543 | 0 / 14 |
| P-glycoprotein 1 | ABCB1 | P08183 | CHEMBL4302 | Primary active transporter | 0.106543 | 0 / 22 |
| Adenosine A1 receptor (by homology) | ADORA1 | P30542 | CHEMBL226 | Family A G protein-coupled receptor | 0.106543 | 60 / 0 |
| Vascular endothelial growth factor A | VEGFA | P15692 | CHEMBL1783 | Secreted protein | 0.106543 | 0 / 1 |
| Acidic fibroblast growth factor | FGF1 | P05230 | CHEMBL2120 | Secreted protein | 0.106543 | 0 / 1 |
| Basic fibroblast growth factor | FGF2 | P09038 | CHEMBL3107 | Secreted protein | 0.106543 | 0 / 1 |
| Heparanase | HPSE | Q9Y251 | CHEMBL3921 | Enzyme | 0.106543 | 0 / 1 |
| Caspase-3 | CASP3 | P42574 | CHEMBL2334 | Protease | 0.106543 | 41 / 0 |
| Caspase-6 | CASP6 | P55212 | CHEMBL3308 | Protease | 0.106543 | 7 / 0 |
| Caspase-7 | CASP7 | P55210 | CHEMBL3468 | Protease | 0.106543 | 7 / 0 |
| Caspase-8 | CASP8 | Q14790 | CHEMBL3776 | Protease | 0.106543 | 9 / 0 |
| Caspase-1 | CASP1 | P29466 | CHEMBL4801 | Protease | 0.106543 | 11 / 0 |
| Sodium/glucose cotransporter 1 | SLC5A1 | P13866 | CHEMBL4979 | Electrochemical transporter | 0.106543 | 24 / 0 |
| Epoxide hydratase | EPHX2 | P34913 | CHEMBL2409 | Protease | 0.106543 | 3 / 0 |
Narirutin is a flavonoid and has anti-inflammatory and anti-oxidative properties (Salehi et al. 2019). Scutellarin is a flavone glycoside and has antioxidant, antitumor, antiviral, and anti-inflammatory properties (Chan and, Carine S. S. Lim, Win Yee Lim, Zhi Juin Loong 2019). Scutellarin-rich extract, known as breviscapine, has been used as a medicine to improve blood circulation and cerebral blood supply. Complanatuside has anti-inflammation, lipid-lowering and hepatoprotective properties. Complanatuside pharmacokinetic analysis has been developed and validated (Yao et al. 2018). Eriocitrin flavanone has beneficial health effects and has antioxidant activity (Cesari et al. 2020); as many of these compounds, low water solubility, stability and shelf life are major issues of eriocitrin. Studies have focused on improving these aspects. OroxinB has been studied as a therapeutic agent for liver cancer. Based on Microfluidic Chip and DEN-induced rat model, OroxinB effectively exerts anti-liver cancer effect both in vitro and in vivo. The expression of miR-221 in OroxinB treated groups was significantly lower than that in the control group(Li et al. 2019). Homoorientin (Isoorientin), a flavone, has been demonstrated to have anti-cancer activities against various tumours (Quilez et al. 2018; Ye et al. 2016).

References

Abraham, R., Hauer, D., McPherson, R. L., Utt, A., Kirby, I. T., Cohen, M. S., … Griffin, D. E. (2018). ADP-ribosyl-binding and hydrolase activities of the alphavirus nsP3 macrodomain are critical for initiation of virus replication. Proceedings of the National Academy of Sciences of the United States of America, 115(44), E10457–E10466. https://doi.org/10.1073/pnas.1812130115
Alhammad, Y. M. O., & Fehr, A. R. (2020). The Viral Macrodomain Counters Host Antiviral ADP-Ribosylation. Viruses, 12(4). https://doi.org/10.3390/v12040384
Babu, S., & Jayaraman, S. (2020). An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomedicine & Pharmacotherapy, 131, 110702. https://doi.org/https://doi.org/10.1016/j.biopha.2020.110702
Cesari, A., Uccello Barretta, G., Kirschner, K. N., Pappalardo, M., Basile, L., Guccione, S., … Balzano, F. (2020). Interaction of natural flavonoid eriocitrin with β-cyclodextrin and hydroxypropyl-β-cyclodextrin: an NMR and molecular dynamics investigation. New J. Chem., 44(38), 16431–16441. https://doi.org/10.1039/D0NJ02022B
Chan, E. W. C., & , Carine S. S. Lim, Win Yee Lim, Zhi Juin Loong, C. W. W. (2019). Role of scutellarin in human cancer—A review. Journal of Applied Pharmaceutical Science, 9(01), 142–146. https://doi.org/10.7324/JAPS.2019.90119
Chen, H., Ma, Y.-B., Huang, X.-Y., Geng, C.-A., Zhao, Y., Wang, L.-J., … Chen, J.-J. (2014). Synthesis, structure–activity relationships and biological evaluation of
dehydroandrographolide and andrographolide derivatives as novel anti-hepatitis B virus agents. *Bioorganic & Medicinal Chemistry Letters*, 24(10), 2353–2359. https://doi.org/10.1016/j.bmcl.2014.03.060

Chen, J.-X., Xue, H.-J., Ye, W.-C., Fang, B.-H., Liu, Y.-H., Yuan, S.-H., … Wang, Y.-Q. (2009). Activity of Andrographolide and Its Derivatives against Influenza Virus *in Vivo* and *in Vitro*. *Biological and Pharmaceutical Bulletin*, 32(8), 1385–1391. https://doi.org/10.1248/bpb.32.1385

Chiang, C.-H., Yeh, C.-Y., Chung, J. G., Chiang, I.-T., & Hsu, F.-T. (2019). Amentoflavone Induces Apoptosis and Reduces Expression of Anti-apoptotic and Metastasis-associated Proteins in Bladder Cancer. *Anticancer Research*, 39(7), 3641–3649. https://doi.org/10.21873/anticanres.13512

Clinicaltrials. (n.d.). *TGR-1202 (Umbralisib) in Treatment Naïve Patients With Chronic Lymphocytic Leukemia (CLL)*. Retrieved from https://clinicaltrials.gov/ct2/show/NCT04163718

Devinsky, O., Cilio, M. R., Cross, H., Fernandez-Ruiz, J., French, J., Hill, C., … Friedman, D. (2014). Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. *Epilepsia*, 55(6), 791–802. https://doi.org/10.1111/epi.12631

Dutta, R., Khalil, R., Green, R., Mohapatra, S. S., & Mohapatra, S. (2019). Withania Somnifera (Ashwagandha) and Withaferin A: Potential in Integrative Oncology. *International Journal of Molecular Sciences*, 20(21), 5310. https://doi.org/10.3390/ijms20215310

Eckei, L., Krieg, S., Bütepage, M., Lehmann, A., Gross, A., Lippok, B., … Verheugd, P. (2017). The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases. *Scientific Reports*, 7, 41746. https://doi.org/10.1038/srep41746

Ferreira, A. C., Reis, P. A., de Freitas, C. S., Sacramento, C. Q., Villas Bôas Hoelz, L., Bastos, M. M., … Souza, T. M. L. (2019). Beyond Members of the Flaviviridae Family, Sofosbuvir Also Inhibits Chikungunya Virus Replication. *Antimicrobial Agents and Chemotherapy*, 63(2). https://doi.org/10.1128/AAC.01389-18

Fletcher, P., Harman, S., Azijn, H., Armanasco, N., Manlow, P., Perumal, D., … Shattock, R. (2009). Inhibition of human immunodeficiency virus type 1 infection by the candidate microbicide dapivirine, a nonnucleoside reverse transcriptase inhibitor. *Antimicrobial Agents
and Chemotherapy, 53(2), 487–495. https://doi.org/10.1128/AAC.01156-08

Ghildiyal, R., & Gabrani, R. (2020). Antiviral therapeutics for chikungunya virus. Expert Opinion on Therapeutic Patents, 30(6), 467–480. https://doi.org/10.1080/13543776.2020.1751817

Glatthaar-Saalmüller, B., Fal, A. M., Schönknecht, K., Conrad, F., Sievers, H., & Saalmüller, A. (2015). Antiviral activity of an aqueous extract derived from Aloe arborescens Mill. against a broad panel of viruses causing infections of the upper respiratory tract. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 22(10), 911–920. https://doi.org/10.1016/j.phymed.2015.06.006

Goranlìa, N. V, Das, R., Mulani, F. A., Thulasiram, H. V, & Chinnathambi, S. (2019). Neem Derivatives Inhibits Tau Aggregation. Journal of Alzheimer’s Disease Reports, 3(1), 169–178. https://doi.org/10.3233/ADR-190118

Gorgani, L., Mohammadi, M., Najafpour, G. D., & Nikzad, M. (2017). Piperine—The Bioactive Compound of Black Pepper: From Isolation to Medicinal Formulations. Comprehensive Reviews in Food Science and Food Safety, 16(1), 124–140. https://doi.org/https://doi.org/10.1111/1541-4337.12246

Guo, X., & Mei, N. (2016). Aloe vera: A review of toxicity and adverse clinical effects. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 34(2), 77–96. https://doi.org/10.1080/10590501.2016.1166826

Hadrich, F., & Sayadi, S. (2018). Apigetrin inhibits adipogenesis in 3T3-L1 cells by downregulating PPARγ and CEBP-α. Lipids in Health and Disease, 17(1), 95. https://doi.org/10.1186/s12944-018-0738-0

Hughes, D. L. (2019). Review of Synthetic Routes and Final Forms of Integrase Inhibitors Dolutegravir, Cabotegravir, and Bictegravir. Organic Process Research & Development, 23(5), 716–729. https://doi.org/10.1021/acs.oprd.9b00031

Ikematsu, H., Hayden, F. G., Kawaguchi, K., Kinoshita, M., de Jong, M. D., Lee, N., … Uehara, T. (2020). Baloxavir Marboxil for Prophylaxis against Influenza in Household Contacts. New England Journal of Medicine, 383(4), 309–320. https://doi.org/10.1056/NEJMoa1915341

Kovacikova, K., & van Hemert, M. J. (2020). Small-Molecule Inhibitors of Chikungunya Virus: Mechanisms of Action and Antiviral Drug Resistance. Antimicrobial Agents and Chemotherapy, 64(12), e01788-20. https://doi.org/10.1128/AAC.01788-20

Kumar, V., Dhanjal, J. K., Bhargava, P., Kaul, A., Wang, J., Zhang, H., … Sundar, D. (2020).
Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. *Journal of Biomolecular Structure & Dynamics*, 1–13. https://doi.org/10.1080/07391102.2020.1775704

Lal Shyaula, S., Abbas, G., Siddiqui, H., Sattar, S. A., Choudhary, M. I., & Basha, F. Z. (2012). Synthesis and antiglycation activity of kaempferol-3-O-rutinoside (nicotiflorin). *Medicinal Chemistry (Shariqah (United Arab Emirates)),* 8(3), 415–420. https://doi.org/10.2174/1573406411208030415

Lalani, S., & Poh, C. L. (2020). Flavonoids as Antiviral Agents for Enterovirus A71 (EV-A71). *Viruses*, Vol. 12. https://doi.org/10.3390/v12020184

Li, F., Song, X., Su, G., Wang, Y., Wang, Z., Jia, J., … Wang, Y. (2019). Amentoflavone Inhibits HSV-1 and ACV-Resistant Strain Infection by Suppressing Viral Early Infection. *Viruses, 11*(5). https://doi.org/10.3390/v11050466

Li, N., Men, W., Zheng, Y., Wang, H., & Meng, X. (2019). Oroxin B Induces Apoptosis by Down-Regulating MicroRNA-221 Resulting in the Inactivation of the PTEN/PI3K/AKT Pathway in Liver Cancer. *Molecules, 24*(23). https://doi.org/10.3390/molecules24234384

Mao, Q.-Q., Xu, X.-Y., Cao, S.-Y., Gan, R.-Y., Corke, H., Beta, T., & Li, H.-B. (2019). Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). *Foods (Basel, Switzerland),* 8(6), 185. https://doi.org/10.3390/foods8060185

Mathew, D., & Hsu, W.-L. (2018). Antiviral potential of curcumin. *Journal of Functional Foods, 40,* 692–699.

McPherson, R. L., Abraham, R., Sreekumar, E., Ong, S.-E., Cheng, S.-J., Baxter, V. K., … Leung, A. K. L. (2017). ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence. *Proceedings of the National Academy of Sciences of the United States of America, 114*(7), 1666–1671. https://doi.org/10.1073/pnas.1621485114

Mohd Yusof, Y. A. (2016). Gingerol and Its Role in Chronic Diseases. *Advances in Experimental Medicine and Biology, 929,* 177–207. https://doi.org/10.1007/978-3-319-41342-6_8

Mounce, B. C., Cesaro, T., Carrau, L., Vallet, T., & Vignuzzi, M. (2017). Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. *Antiviral Research, 142,* 148–157.

Muñoz, M., Crespo Carlos, J., Crespo Pedro, J., & Coveñas, R. (2019). Neurokinin-1 receptor antagonist aprepitant and radiotherapy, a successful combination therapy in a patient with lung cancer: A case report. *Mol Clin Oncol, 11*(1), 50–54.
Nandedkar, N. D., Meednu, N., Albrecht, J., Rangel-Moreno, J., Barnas, J. L., Widman, D. G., & Anolik, J. H. (2020). Verdinexor, a selective inhibitor of nuclear export, decreases plasma cell survival in human lupus. *The Journal of Immunology, 204*(1 Supplement), 236.1 L–236.1. Retrieved from http://www.jimmunol.org/content/204/1_Supplement/236.1.abstract

Nel, A. M., Smythe, S. C., Habibi, S., Kaptur, P. E., & Romano, J. W. (2010). Pharmacokinetics of 2 dapivirine vaginal microbicide gels and their safety vs. Hydroxyethyl cellulose-based universal placebo gel. *Journal of Acquired Immune Deficiency Syndromes (1999), 55*(2), 161–169. https://doi.org/10.1097/QAI.0b013e3181e3293a

Nieminen, M. S., Akkila, J., Hasenfuss, G., Kleber, F. X., Lehtonen, L. A., Mitrovic, V., … Remme, W. J. (2000). Hemodynamic and neurohumoral effects of continuous infusion of levosimendan in patients with congestive heart failure. *Journal of the American College of Cardiology, 36*(6), 1903–1912. https://doi.org/10.1016/S0735-1097(00)00961-X

Oo, A., Rausalu, K., Merits, A., Higgs, S., Vanlandingham, D., Bakar, S. A., & Zandi, K. (2018). Deciphering the potential of baicalin as an antiviral agent for Chikungunya virus infection. *Antiviral Research, 150*, 101–111. https://doi.org/10.1016/j.antiviral.2017.12.012

Pandey, S. S., Singh, S., Pandey, H., Srivastava, M., Ray, T., Soni, S., … Kalra, A. (2018). Endophytes of Withania somnifera modulate in planta content and the site of withanolide biosynthesis. *Scientific Reports, 8*(1), 5450. https://doi.org/10.1038/s41598-018-23716-5

Quílez, A., Fernández-Arche, A., García-Gimenez, M., & Puerta, R. (2018). Potential therapeutic applications of the genus Annona Local and traditional uses and pharmacology. *Journal of Ethnopharmacology, 225*. https://doi.org/10.1016/j.jep.2018.06.014

Riaz, A., Rasul, A., Hussain, G., Zahoor, M. K., Jabeen, F., Subhani, Z., … Selamoglu, Z. (2018). Astragalin: A Bioactive Phytochemical with Potential Therapeutic Activities. *Advances in Pharmacological Sciences, 2018*, 9794625. https://doi.org/10.1155/2018/9794625

Ruiz-Rodríguez, M. A., Vedani, A., Flores-Mireles, A. L., Cháirez-Ramírez, M. H., Gallegos-Infante, J. A., & González-Laredo, R. F. (2017). In Silico Prediction of the Toxic Potential of Lupeol. *Chemical Research in Toxicology, 30*(8), 1562–1571. https://doi.org/10.1021/acs.chemrestox.7b00070
Salehi, B., Fokou, P. V. T., Sharifi-Rad, M., Zucca, P., Pezzani, R., Martins, N., & Sharifi-Rad, J. (2019). The Therapeutic Potential of Naringenin: A Review of Clinical Trials. *Pharmaceuticals (Basel, Switzerland),* 12(1). https://doi.org/10.3390/ph12010011

Sánchez, M., González-Burgos, E., Iglesias, I., & Gómez-Serranillos, M. P. (2020). Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. *Molecules (Basel, Switzerland),* 25(6). https://doi.org/10.3390/molecules25061324

Sang, Y., Kong, P., Zhang, S., Zhang, L., Cao, Y., Duan, X., … Liu, W. (2021). SGK1 in Human Cancer: Emerging Roles and Mechanisms. *Frontiers in Oncology,* Vol. 10, p. 2987. Retrieved from https://www.frontiersin.org/article/10.3389/fonc.2020.608722

Saroni Arwa, P., Zeraik, M. L., Ximenes, V. F., da Fonseca, L. M., Bolzani, V. da S., & Siqueira Silva, D. H. (2015). Redox-active biflavonoids from Garcinia brasiliensis as inhibitors of neutrophil oxidative burst and human erythrocyte membrane damage. *Journal of Ethnopharmacology, 174,* 410–418. https://doi.org/10.1016/j.jep.2015.08.041

Selleckchem.com. (n.d.). https://www.selleckchem.com/search.html?searchDTO.searchParam=Indigo&sp=Indigo. Retrieved from https://www.selleckchem.com/search.html?searchDTO.searchParam=Indigo&sp=Indigo

Seo, D. Y., Lee, S. R., Heo, J.-W., No, M.-H., Rhee, B. D., Ko, K. S., … Han, J. (2018). Ursolic acid in health and disease. *The Korean Journal of Physiology & Pharmacology : Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology,* 22(3), 235–248. https://doi.org/10.4196/kjpp.2018.22.3.235

Seyedi, S. S., Shukri, M., Hassandarvish, P., Oo, A., Shankar, E. M., Abubakar, S., & Zandi, K. (2016). Computational Approach Towards Exploring Potential Anti-Chikungunya Activity of Selected Flavonoids. *Scientific Reports, 6,* 24027. https://doi.org/10.1038/srep24027

Shen, C.-L., Wang, R., Ji, G., Vellers, H., Sang, S., & Neugebauer, V. (2020). Dietary Supplementation of Gingerols- and Shogaols-Enriched Ginger Root Extracts Attenuate Pain-Associated Behaviors in Animals with Spinal Nerve Ligation. *Current Developments in Nutrition, 4*(Supplement_2), 74. https://doi.org/10.1093/cdn/nzaa040_074

Shi, C.-Y., He, X.-B., Zhao, C., & Wang, H.-J. (2020). Luteoloside Exerts Analgesic Effect in a Complete Freund’s Adjuvant-Induced Inflammatory Model via Inhibiting Interleukin-1β Expression and Macrophage/Microglia Activation. *Frontiers in Pharmacology,* Vol. 11,
Shoji, N., Tanese, K., Sasaki, A., Horiuchi, T., Utsuno, Y., Fukuda, K., … Team, A. R. (2020). Pharmaceuticals and Medical Device Agency approval summary: Amenamevir for the treatment of herpes zoster. The Journal of Dermatology, 47(7), 683–688. https://doi.org/https://doi.org/10.1111/1346-8138.15393

Subudhi, B. B., Chattopadhyay, S., Mishra, P., & Kumar, A. (2018). Current Strategies for Inhibition of Chikungunya Infection. Viruses, 10(5), 235. https://doi.org/10.3390/v10050235

Tao, Y., Zhan, S., Wang, Y., Zhou, G., Liang, H., Chen, X., & Shen, H. (2018). Baicalin, the major component of traditional Chinese medicine Scutellaria baicalensis induces colon cancer cell apoptosis through inhibition of oncomiRNAs. Scientific Reports, 8(1), 14477. https://doi.org/10.1038/s41598-018-32734-2

Tian, K., Li, J., & Xu, S. (2019). Rutaecarpine: A promising cardiovascular protective alkaloid from Evodia rutaecarpa (Wu Zhu Yu). Pharmacological Research, 141, 541–550. https://doi.org/https://doi.org/10.1016/j.phrs.2018.12.019

Wang, L., Song, J., Liu, A., Xiao, B., Li, S., Wen, Z., … Du, G. (2020). Research Progress of the Antiviral Bioactivities of Natural Flavonoids. Natural Products and Bioprospecting, 10(5), 271–283. https://doi.org/10.1007/s13659-020-00257-x

WebPage. (n.d.). https://www.medchemexpress.com/nimbin.html.

WHO.WHO recommends dolutegravir as preferred HIV treatment option in all populations. Retrieved from https://www.who.int/news/item/22-07-2019-who-recommends-dolutegravir-as-preferred-hiv-treatment-option-in-all-populations

Yao, Y.-F., Lin, C.-Z., Liu, F.-L., Zhang, R.-J., Zhang, Q.-Y., Huang, T., … Zhu, C.-C. (2018). Identification and Pharmacokinetic Studies on Complanatuside and Its Major Metabolites in Rats by UHPLC-Q-TOF-MS/MS and LC-MS/MS. Molecules (Basel, Switzerland), 24(1). https://doi.org/10.3390/molecules2010071

Yu, S., Yan, H., Zhang, L., Shan, M., Chen, P., Ding, A., & Li, F. S. (2017). A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules, Vol. 22. https://doi.org/10.3390/molecules22020299

Zhang, Z., Sun, T., Niu, J.-G., He, Z.-Q., Liu, Y., & Wang, F. (2015). Amentoflavone protects hippocampal neurons: anti-inflammatory, antioxidative, and antiapoptotic effects. Neural Regeneration Research, 10(7), 1125–1133. https://doi.org/10.4103/1673-5374.160109
Zheng, X., Liu, C., Zhai, Y., Li, L., Wang, X., & Feng, W. (2013). [Protection effect of amentoflavone in Selaginella tamariscina against TNF-alpha-induced vascular injury of endothelial cells]. Yao xue xue bao = Acta pharmaceutica Sinica, 48(9), 1503–1509.