Observing Nearby Nuclei on Paramagnetic Trityls and MOFs via DNP and Electron Decoupling

Kong Ooi Tan,¹[a, b, c] Luming Yang,¹[a, e] Michael Mardini,¹[a, b] Choon Boon Cheong,¹[a, b, f] Benoit Driesschaert,[d] Mircea Dincă,[a] and Robert G. Griffin*¹[a, b]

Abstract: Dynamic nuclear polarization (DNP) is an NMR sensitivity enhancement technique that mediates polarization transfer from unpaired electrons to NMR-active nuclei. Despite its success in elucidating important structural information on biological and inorganic materials, the detailed polarization-transfer pathway from the electrons to the nearby and then the bulk solvent nuclei, and finally to the molecules of interest-remains unclear. In particular, the nuclei in the paramagnetic polarizing agent play significant roles in relaying the enhanced NMR polarizations to more remote nuclei. Despite their importance, the direct NMR observation of these nuclei is challenging because of poor sensitivity. Here, we show that a combined DNP and electron decoupling approach can facilitate direct NMR detection of these nuclei. We achieved an ~80% improvement in NMR intensity via electron decoupling at 0.35 T and 80 K on trityl radicals. Moreover, we recorded a DNP enhancement factor of ε ~ 90 and ~11% higher NMR intensity using electron decoupling on paramagnetic metal-organic framework, magnesium hexa-oxytriphenylene (MgHOTP MOF).

Introduction

Dynamic nuclear polarization (DNP) is an NMR hyperpolarization technique that mediates polarization transfer from unpaired electrons to NMR-active nuclei via microwave irradiations. For an ideal two-spin electron-¹H spin system, the maximum theoretical ¹H enhancement factor can reach ε ~ 658.¹⁻³ The method has allowed important structural information to be extracted from small molecules, biological samples, and inorganic materials.⁴⁻¹⁰ Despite many successful applications, there is no detailed understanding of how the large electron polarization is transferred to the surrounding nuclei, or where these nuclei are located relative to the polarization agent. Subsequently, these “nearby nuclei” are important in mediating transfer of the enhanced NMR polarizations to the target molecules via the spin diffusion mechanism.¹¹⁻¹⁵ Nevertheless, not all nearby nuclei contribute to the NMR signals observed in standard DNP experiments. Although the nearby nuclei are preferentially hyperpolarized in DNP due to the larger hyperfine interactions, their enhanced polarization might not propagate to the bulk nuclei if the spin diffusion mechanism is quenched. For example, these nuclei could have excessively broadened or shifted NMR lines and/or short T₂ relaxation times. Consequently, they will not be efficiently in contact with the bulk nuclei.¹¹⁻¹⁵ The region in which the hyperpolarized nuclei cannot efficiently participate in spin diffusion with the bulk nuclei is known as the ‘spin diffusion barrier’.¹⁶⁻¹⁸

Motivated by the earlier studies, we have recently shown, using the three-spin solid effect, that the size of the spin diffusion barrier surrounding the trityl radical in a glassy glycerol-water matrix is < 6 Å.¹⁹ More recent experimental findings have also reported similar values for various radicals under different DNP conditions.¹⁸ Due to these conclusions are derived from indirect experimental results, and further information about these near nuclei-for instance, their NMR linewidths and relaxation rates (T₁ and T₂)-remains inaccessible using the standard DNP or NMR techniques. Hence, we hypothesize that a combined DNP and electron decoupling approach using two different pulsed microwave sources (see...
Experimental Section) can enable direct NMR observations of these nearby nuclear spins. In this manuscript, we define nearby nuclei as any intramolecular nuclei residing on the paramagnetic molecules with a distance of \(\leq 1 \) nm away from the unpaired electrons. The nearby nuclei could be either inside or outside the spin diffusion barrier.

Our 0.35 T/15 MHz/9.8 GHz DNP spectrometer is equipped with two microwave synthesizers. The microwave frequency of the first source can be set to facilitate solid effect (SE) DNP, with two microwave synthesizers. The microwave frequency of the first source is configured to perform electron decoupling, i.e., switching of \(\mu \nu \) frequencies can be employed. The first experimental evidence of the electron decoupling effect was demonstrated by Saliba et al. using such a device at 7 T.\(^{21-23}\)

We expect that the study of nearby nuclei could not only shed light on spin diffusion and the fundamental DNP mechanism, but also help elucidate structural information of natural paramagnetic sites in functional biological molecules or inorganic materials, for example, metalloproteins or battery materials etc.\(^{24,25}\) We will apply this methodology to study the metal-organic framework, magnesium 2,3,6,7,10,11-hexaoxytripheneylene (MgHOTP MOF), which was recently demonstrated to be capable of quantum sensing Li\(^+\) ions using semiquinone-type radicals.\(^{26}\) As the MOF itself is naturally paramagnetic, we show that the \(^1 \)H NMR signals can be DNP-enhanced by \(\varepsilon \sim 90 \), followed by an additional \(\sim 11\% \) improvement in sensitivity via electron decoupling.

Results and Discussions

Organic radicals

A conventional solid-effect (SE) DNP experiment was applied to a Finland trityl sample dispersed in \(d \)-DNP juice using microwaves applied at the offset frequency \(\Omega_{\mu \nu 1} = \omega_{\mu \nu} \) at 0.35 T.\(^{17,22-30}\) Subsequently, the first \(\mu \nu \) source was turned off and the second \(\mu \nu \) channel with a preset frequency \(\Omega_{\mu \nu 2} = 0 \) was turned on (Figure 1) to facilitate electron decoupling (eDec) during the NMR acquisition. Note that eDec was applied throughout the solid echo and the FID period. We expected that the electron-decoupled \(^1 \)H NMR spectrum would have a maximum integrated intensity (less signal decay during solid echo) and narrowest lines (slower signal dephasing during FID) if efficient eDec is achieved. Indeed, the eDec frequency profile (Figure 2a) obtained by measuring the integrated intensity as a function of \(\mu \nu \) frequency showed that a \(\sim 80\% \) higher signal is achieved when the \(\mu \nu \) source is on-resonance \(\Omega_{\mu \nu 2} = 0 \) with the EPR line at \(\sim 9.771 \) GHz. Our results are in good agreement with those reported previously by Barnes and coworkers\(^{21-23}\) despite significantly different experimental conditions. In particular, they measured \(^13 \)C-detected spectrum decoupled from electrons using frequency-chirped \(\mu \nu \) pulses with a gyrotron under magic-angle spinning at 7 T fields. We also noted that the eDec performance depends on the \(\tau_{\text{DNP}} \) used in the polarization period. If shorter \(\tau_{\text{DNP}} \) values are employed, then more strongly coupled nuclei can be polarized and display a higher gain when electron decoupled. However, the NMR signal would be too weak to be observed if \(\tau_{\text{DNP}} \) is too short. Hence, we chose an intermediate value of \(\tau_{\text{DNP}} = 25 \) ms. Nevertheless, we emphasize that it is not our goal to pursue a condition (e.g., short \(\tau_{\text{DNP}} \)) in which the eDec is most efficient, but rather our goal is to differentiate the intramolecular nuclei from those in the solvent.

We also compared the 1D spectra (Figure 2b) with and without eDec. Although a more intense line was observed in the electron-decoupled spectrum, the normalized spectra (data

![Figure 1. Pulse sequence for DNP and electron decoupling on static samples at 0.35 T. Each NMR scan is preceded by 128\(\times \sim 30^\circ \) saturation pulses separated by 500 \(\mu \)s delays. The DNP is performed by setting the first microwave offset frequency for solid effect \(\Omega_{\mu \nu 1} = \omega_{\mu \nu} \) for a typical duration of \(\tau_{\text{DNP}} \sim 25 \) ms. Then, a second microwave channel (ELDOR) is used for electron decoupling during the solid echo (typically \(\tau_{\text{SE}} = 20 \) \(\mu \)s) and FID. The electron decoupling was employed for \(\sim 0.5 \) ms, which is longer than ST, of the \(^1 \)H signal.](image)
The electron decoupling (eDec) frequency profile (red) was not shown) showed little difference. This implies that the observed peaks are still predominantly broadened by the 1H homonuclear dipolar couplings, and we expect that the eDec effect will be more pronounced during the solid echo period during which the 1H–1H couplings are attenuated. To confirm this, we measured the T_2 relaxation times (Figure 3a) under eDec by varying the solid-echo period (τ_{se}). Although an effective T_2 (referred to as T_2^{eff}) is measured here instead of the actual stochastic-process-driven T_2, the $'$ sign is omitted to streamline the notation. Contrary to our expectations, although eDec resulted in overall higher line intensities, the electron-nuclear and homonuclear dipolar couplings for the protonated chemical impurity in the d$_2$-DMSO solvent. We attributed the unknown 1H source to the 0.5% potentially protonated chemical impurity in the d$_2$-DMSO solvent.

Hence, we prepared new flame-sealed samples of either 1H-Finland or 2H-Finland trityl dissolved in the near 100% perdeuterated DMSO juice (see Experimental Section). Despite our best attempt to unambiguously assign the more intense 1H peak in the 1H-Finland sample (Figure 3d) to the trityl 1H, there are still some 1H signals in the 2H-Finland sample.

We had planned to assign the ~100 kHz broader components to the intramolecular 1H's on trityl. However, the assignment is not unambiguous because there is still too much residual solvent 1H, possibly originating from the atmospheric moisture. Hence, we prepared new flame-sealed samples of either 1H-Finland or 2H-Finland trityl dissolved in the near 100% perdeuterated DMSO juice (see Experimental Section). Despite our best attempt to unambiguously assign the more intense 1H peak in the 1H-Finland sample (Figure 3d) to the trityl 1H, there are still some 1H signals in the 2H-Finland sample.

Having realized that preparing a completely 1H-free sample for control is very challenging, we turned to probing intramolecular 19F in fluorinated trityl radicals, dFT15F. Since 19F has a similar gyromagnetic ratio as 1H ($\gamma_{^{19}F}/\gamma_{^1H} \sim 0.94$), the electron-nuclear and homonuclear dipolar couplings for the same distance would be slightly scaled to ~0.94 and 0.88, respectively. Given the similar strengths of dipolar interactions that drive DNP and spin diffusion, we hypothesized that the concept of spin diffusion barrier is still fundamentally applicable for the 19F system. Moreover, it is easy to adapt our experiments from 1H to 19F NMR because the difference in their Larmor frequencies is only 0.8 MHz at ~ 0.35 T. We have recorded a 19F DNP field profile (Figure S2) of 19F–19F-trityl (dFT15F) in fluorinated solvent (HFB-trifluoroethanol mixture) using similar experimental conditions. The results confirm that dFT15F remains an efficient DNP polarizing agent compared to Finland or OX063 trityls.

We repeated the eDec experiments on dFT15F in 19F-free d$_2$-TCE, and the results (Figure 4a) allow us to confidently assert that the intramolecular 19F on the trityl molecules have been directly observed. The fact that their peaks can be directly observed and not excessively broadened (linewidths of ~40 kHz) indicate that the intramolecular 19F nuclei are outside the spin diffusion barrier and, thus, contribute to the overall bulk 19F signal. This is not a surprising result as our DFT calculations show that the mean $\langle r \rangle$- 19F distance is ~ 7.6 Å (see Table S1 in Supporting Information), which is clearly outside the spin diffusion barrier determined in previous studies. Additionally, a similar ~80% signal improvement (Figure 4b and c) was achieved during eDec, showing again that the intramolecular nuclei on the radical can be efficiently decoupled from the unpaired electron. Following that, further character-
The intramolecular 19F nuclei is anticipated in future work, such as to study their structures, their roles in DNP, and spin diffusion to the bulk.

Figure 3.
a) T_2 measurement of intramolecular 1H nuclei without (blue) or with (red) electron decoupling. The signals were normalized with respect to the spectrum acquired at $\tau_{SE} = 10$ ms. The T_2 values were fitted with a mono-exponential function. b) 1D 1H spectrum taken at $\tau_{SE} = 10$ µs (blue) or 55 µs (red) from (a). The normalized spectra (bottom) showed that the $\tau_{SE} = 10$ µs spectrum has a distinctly broader line. c) The 1H's T_1 is measured by varying the duration of time delay introduced in between the DNP and the solid echo (Figure 1). We obtained the T_1 of the intramolecular 1H to be ~11 s. d) DNP-enhanced and electron decoupled on flame-sealed samples, where the 1H- (blue) and 2H-Finland trityls (red) were dissolved in the pure d-DMSO juice inside a glove box. All experiments were acquired with $t_{DNP} = 25$ ms at the SE DNP condition.

Figure 4.
a) DNP-enhanced and electron decoupled 19F spectrum on 2H-19F-dFT15F trityl in d-TCE (blue) and OX063 trityl in d-DMSO juice (red), where the latter sample is used as a control. We also noted some 19F background signals (see Supporting Information) that are barely visible in the control sample (red). b) Electron decoupling frequency profile on dFT15F showed an ~80% improvement when electron decoupling was applied. All experiments were obtained with 25 ms SE DNP (µw frequency at 9.784 GHz, see Figure S2). c) 1D 19F spectra extracted from (b) showing spectrum obtained with (pink, µw frequency at 9.77 GHz) or without electron decoupling (blue, µw frequency at of 9.752 GHz).

Metal-organic frameworks

Following the DNP and eDec study on intramolecular nuclei on the organic radicals, we applied the same techniques on other...
paramagnetic materials whose hyperfine-coupled nuclei might play important roles in material science applications. For instance, MgHOTP MOF is one of the paramagnetic materials that shows promising applications in quantum sensing of Li ions via EPR.\[26\] However, the exact binding mechanism of the Li ions to the MOF is not yet known, and we proposed that DNP and electron decoupling could answer this question by elucidating the structures of the native MOF. First, we note that the paramagnetic MOF has a narrow EPR linewidth (~18 MHz, Figure 5a), and the spin counting technique suggests that the radical concentration is ~30 mM, which is within the range typically used for DNP applications. As expected, the MOF featured a standard SE DNP profile (Figure 5a) with an enhancement of $\varepsilon \sim 90$ using short buildup times ($\tau_{1\text{DNP}} \sim 0.4$ s). A possible reason for the short DNP buildup time of this MOF—about 20 times shorter than those in trityls—are that the electrons and/or 1H nuclei have fast relaxation rates. Indeed, Figure 5(c–e) shows that the electron T_1 is $\sim 24 \mu$s, and the 1H relaxation times are $T_1 \sim 0.22$ s and $T_2 \sim 16 \mu$s, respectively. The similarity between the T_1 and $\tau_{1\text{DNP}}$ values imply that the DNP

Figure 5. 1H-DNP and EPR measurements performed on paramagnetic MgHOTP MOF at 0.35 T and 80 K. We also determined the DNP build-up time constant to be $\tau_{1\text{DNP}} \sim 0.2$ s. a) DNP frequency profile (red) acquired with $\tau_{\text{DNP}} = 400$ ms features a typical solid effect DNP profile that agrees with the EPR spectrum (blue) with an arbitrarily scaled EPR intensity. b) Electron decoupling frequency profile obtained with $\tau_{\text{DNP}} = 15$ ms. Measurement of the MOF 1H's c) $T_1 \sim 0.22$ s and d) $T_2 \sim 16 \mu$s obtained from mono-exponential fits (red). e) An electron $T_{1e} \sim 24 \mu$s was measured using an inversion recovery sequence and a mono-exponential fit (blue). f) EPR Mims ENDOR spectrum with the x-axis referenced to the 1H Larmor frequency of $\omega_L/2\pi = 14.84$ MHz.
process is in the relaxation-limited regime,14 and any additional DNP polarization built up past t_{DNP} time will be limited via spin-lattice relaxation.

Besides DNP, the eDec performance on 1H near the paramagnetic organic linker was measured to be ~4% (Figure 5b), significantly lower than the ~80% observed in trityls. The weaker decoupling performance could be due to several reasons: 1) the 1H's are strongly coupled in the fully protonated MOF's ligands, hence, the 1H's polarization are more efficiently spin-diffused to the bulk and less affected by nearby electrons, 2) the EPR linewidths in MOF are twice as broad those in trityls, which resulted in a more difficult saturation of EPR lines (shorter T_rel and higher radical concentration), 3) stronger hyperfine interactions in MOF. To confirm the last hypothesis, a Mims ENDOR experiment was performed, and it showed a ~2 MHz broad 1H peak (Figure 5f), which is about an order of magnitude larger than that exhibited by trityl in d-DNP juice.19 Thus, we expect that the eDec performance can be significantly improved if higher microwave power is available and frequency-chirped pulses can be applied to frequency-sweep through the EPR spectrum.

Conclusion

We have demonstrated that a combined DNP and electron decoupling approach allows an ~80% improvement in NMR signal intensity of intramolecular trityls 1H and 19F nuclei. This was achieved via electron decoupling with ~2 MHz microwave Rabi field at 0.35 T. Electron decoupling has revealed some broad components (≥100 kHz) that are not easily visible in conventional DNP technique. These components might contain important distance or structural information, i.e., it could become a new method in studying paramagnetic biomolecules or materials with upcoming pulsed DNP technology.31 We would like to emphasize that the DNP buildup time required for observing only the nearby nuclei is in the order of T_rel (μs-ms) because the slower nuclear-nuclear spin diffusion process is less relevant in this context. Thus, high-sensitivity nearby nuclei spectroscopy can already be envisaged at high-field DNP with short T_{DNP}. Furthermore, direct detection of intramolecular trityl 19F nuclei facilitated by DNP and eDec affirms that these nearby nuclei could participate in spin diffusion with the bulk nuclei during DNP. Finally, we extended the methodology to MgHOTP MOF, and the high DNP performance ($\epsilon \sim 90$) suggests that the MOF could be used for promising potential quantum sensing applications via DNP NMR.

Experimental Section

Sample preparation: In contrast to procedures in standard DNP experiments, we have not used d_5-glycerol/D$_2$O/H$_2$O (in a 6:3:1 ratio by volume) formulation because the deuteration factor of the commercially available d_5-glycerol (Cambridge Isotope Laboratories, 99.5 % deuterated) 1H is not sufficiently high; that is, any residual solvent 1H can overshadow the signal arises from the intramolecular 1H on trityls. Thus, we turned to the mixture of d_5-DMSO/D$_2$O mixture in a 6:4 ratio (by volume) which forms glassy matrices suitable for DNP. Despite the high deuteration factor (99.96 %) of these solvents, the chemical purity of d_5-DMSO is only 99.5 %. Hence, any chemical impurities, if protonated, might complicate our attempts to directly observe the intramolecular 1H. Furthermore, a small amount of d_5-glycerol was added because we observed an unusual EPR lineshape and the nutation curve suggesting that the Finland trityls are more prone to aggregation in pure d_5-DMSO/D$_2$O than in glycerol/H$_2$O. This observation agrees with our previous finding that the trityl and glycerol preferentially associate over other solvent components.11 Hence, we prepared a 5 mM Finland trityl in a d_5-DMSO/D$_2$O/glycerol mixture in a 57:38:5 ratio by volume, and this sample was used for the results presented in Figures 2 and 3(a–c).

To further minimize the 1H contamination in the sample from atmospheric water, we improved the sample preparation procedures. First, the radicals were mixed with solvents in a dry nitrogen-filled glove box, where the sample was syringed into a quartz EPR tube (Wilmad-LabGlass). Subsequently, the quartz tube was connected to a 3-way tap fitted with a 3D-printed adapter (Figure S1)23 enclosed with an O-ring before being transported out of the glove box. The glass tap was immediately fitted to a vacuum line, the headspace before the tap pumped and backfilled to remove contaminating atmospheric water from the tubes. The tubes were then placed under vacuum and subsequently flame sealed. The DNP samples were kept frozen in liquid nitrogen (to avoid trityl aggregation) during the flame seal (the frozen sample was ~10 cm away from the flame). These samples were used for the experiments shown in Figure 3(d).

The synthesis of 19F-trityl radical, dFT15F ($C_{40}H_{26}F_3NiO_5S_{12},$ molecular weight: 1429.8) was performed in one step from the deuterated Finland trityl (dFT, Finland trityl-d$_5$) (Figure 6).30,36 Briefly, dFT sodium salt (dFT-Na) (100 mg, 0.00 mmol, 1 equivalent) was dissolved in dry DMF (10 mL) under argon. N,N-Diisopropylpropylene-thylamine (95 μL, 0.54 mmol, 6 equivalent) was added followed by PyBOP (283 mg, 0.54 mmol, 6 equivalent). The green solution immediately turned red; the solution was stirred for 5 min. Next, 2,2,3,3,3-pentafluoropropylamine (97 μL, 0.90 mmol, 10 equivalent) was added, and the solution was stirred overnight. Water (10 mL) was added, then the organic layer was separated, and the aqueous layer was extracted with DCM (3 × 10 mL). The organic layers were combined, dried over MgSO$_4$, and filtered. The solvent was evaporated under reduced pressure and the crude was purified by flash chromatography (Combiflash RF) on silica gel (12 g) using a gradient from n-hexane to DCM to isolate 106 mg (82 % yield) of dFT15F as a dark green solid. HRMS (ESI) m/z [M$^+$] : calculated for $[C_{40}H_{26}F_3NiO_5S_{12}]^+$ 1428.2130, found 1428.2113. The 19F-trityl radical was dissolved in either deuterated tetrachloroethane (d-TCE) or hexafluorobenzene (HFB)-trifluoroethanol mixture (95:5 v/v) to give a 5 mM solution. For the control experiment (Figure 4), OX063 trityl was dissolved in d-DMSO juice because the radical is insoluble in TCE.

The synthesis of MgHOTP MOF was described in the literature.29 Note that the precursor of the MOF, i.e., the free ligand 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP), is diamagnetic in solution.}35,36 We will not discuss further on this as the work is still ongoing and beyond the scope of this manuscript. Note that no additional radicals or solvents were added to the MOF for DNP experiments.

Chem. Eur. J. 2022, 28, e202020556 (6 of 8) © 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
EPR and DNP NMR Spectroscopy

All EPR and DNP experiments were performed using the Bruker X-band (0.35 T) instrument described in previous publications.\cite{17,29} The instrument was equipped with two microwave sources capable of performing pulsed electron-electron double resonance (PELDOR/DEER) or ELDOR-detected NMR experiments.\cite{37,38} A 10 W microwave amplifier with a 100% duty cycle was used in all experiments, and generated a Rabi field $\omega_{12}/2\pi \approx 2$ MHz. In the experiments described here, we used the microwave pulse forming unit (MPFU) for DNP and the ELDOR channel for electron decoupling. This configuration was chosen because the frequency of the latter $\mu\nu$ channel can be directly configured in the PulseSPEL pulse program, which facilitates the acquisition of the electron decoupling profile. The RF circuitry was also improved for better sensitivity,\cite{39} and 128 saturation pulses were employed to ensure that any enhanced NMR signal from previous scans was fully saturated. This is crucial because the signal intensity gain ($\leq 1.8 \times$) observed in electron-decoupled signal could be overshadowed by the sensitivity gain from DNP ($\leq 100 \times$). Note that the DNP enhancement factor represents only an estimated value based on previous studies performed on partially protonated DNP juice.\cite{17,39} The actual DNP enhancement on the nearby nuclei could not be determined because the 1H thermal equilibrium signal was not observable despite long acquisition periods. To directly observe only the nearby nuclei, a short τ_{DNP} time (≤ 25 ms) and a recycle delay of ~ 0.25 s was used.

Supporting Information Available

Additional information about the 3D-printed Adapter, 19F-DNP, the HRMS spectrum and DFT calculations of the 19F trityl are available in the Supporting Information.

Acknowledgements

We acknowledge Prof. Daniel Suess and Suppachai Srisantitham for using their glove box. We also thank Prof. J. H. Ardenkjær-Larsen (Technical University of Denmark) for providing OX063 trityl radicals. This work was supported by the National Institute of General Medical Sciences (GM132997 and GM132079). K.O.T acknowledges support from the French National Research Agency: PulsedDNP (ANR-20-ERC9-0008) and HFpulsedDNP (ANR-21-CE29-0019), as well as RESPORE (n° 339299). B. D. acknowledges support from EB028553 and EB-023990 (synthesis of trityl radical). Work in the Dincá lab is supported by the National Science Foundation (DMR-2105495).

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords: dynamic nuclear polarization · electron decoupling · hyperpolarization · metal-organic framework

1. A. S. Lilly Thakamony, J. J. Wittmann, M. Kaushik, B. Corzilius, Prog. Nucl. Magn. Reson. Spectrosc. 2017, 102–103, 120–195.
2. T. R. Carver, C. P. Slichter, Phys. Rev. 1953, 92, 212–213.
3. A. Abragam, M. Goldman, Rep. Prog. Phys. 1978, 41, 395–467.
4. P. Berruyer, L. Emsley, A. Lesage, DNP in Materials Science : Touching the Surface 2018, 7, 93–104.
5. J. H. Ardenkjær-Larsen, Introduction to Dissolution DNP: Overview, Instrumentation, and Human Applications 2018, 7, 63–78.
6. I. Marco-Rius, A. Comment, Encycl. Magn. Reson. 2018, 7, 167–178.
7. D. Suter, R. R. Ernst, Phys. Rev. B 1985, 32, 5608–5627.
8. C. Ramanathan, Appl. Magn. Reson. 2008, 34, 409–421.
9. M. Ernst, B. H. Meier, in Stud. Phys. Theor. Chem., Elsevier, 1998, pp. 83–121.
[10] “Spin Diffusion for NMR Crystallography” in Encyclopedia of Magnetic Resonance, eds-in-chief R. K. Harris and R. Wasylishen, John Wiley & Sons, Chichester. DOI: 10.1002/9780470034590.emrstm1010. Published online 15th March 2009.

[11] J. P. Wolfe, Phys. Rev. Lett. 1973, 31, 907–910.

[12] A. R. King, J. P. Wolfe, R. L. Ballard, Phys. Rev. Lett. 1972, 28, 1099–1102.

[13] J. P. Wolfe, Phys. Rev. B 1977, 16, 124–145.

[14] N. A. Prisco, A. C. Pinon, L. Emsley, B. F. Chmelka, Phys. Chem. Phys. 2021, 23, 1006–1020.

[15] Y. Hovav, A. Feintuch, S. Vega, J. Magn. Reson. 2012, 214, 29–41.

[16] A. A. Smith, B. Corzilius, O. Haze, T. M. Swager, R. G. Griffin, J. Chem. Phys. 2013, 139, 1–6.

[17] K. O. Tan, M. Mardini, C. Yang, J. H. Ardenkjær-Larsen, R. G. Griffin, Sci. Adv. 2019, 5, eaax2743.

[18] S. K. Jain, C.-J. Yu, C. B. Wilson, T. Tabassum, D. E. Freedman, S. Han, Angew. Chem. Int. Ed. 2020, 59, 86–122.

[19] Q. Stern, S. F. Cousin, F. Mentink-Vigier, A. C. Pinon, S. J. Elliott, O. Cala, S. Jannin, Sci. Adv. 2021, 7, 1–14.

[20] A. Abragam, W. G. Proctor, Comptes Rendus Hebdomadaires Des Seances L Acad. Des Sci. 1958, 246, 2253–2256.

[21] N. Alavanti, E. P. Salibai, E. L. Sesti, P. T. Judge, A. B. Barnes, Angew. Chem. Int. Ed. 2019, 58, 7259–7262; Angew. Chem. 2019, 131, 7337–7340.

[22] E. P. Saliba, E. L. Sesti, F. J. Scott, B. J. Albert, E. J. Choi, N. Alaniva, C. Gao, A. B. Barnes, J. Am. Chem. Soc. 2017, 139, 6310–6313.

[23] F. J. Scott, E. P. Saliba, B. J. Albert, N. Alaniva, E. L. Sesti, C. Gao, N. C. Galota, E. J. Choi, A. P. Jagtap, J. J. Wittmann, J. Magn. Reson. 2018, 289, 45–54.

[24] I. Bertini, C. Luchinat, G. Parigi, R. Pierattelli, ChemBioChem 2005, 6, 1536–1549.

[25] A. J. Pell, G. Pintacuda, C. P. Grey, Prog. Nucl. Magn. Reson. Spectrosc. 2019, 111, 1–27.

[26] L. Sun, L. Yang, J.-H. Dou, J. Li, G. Skorupski, M. Mardini, K. O. Tan, T. Chen, C. Sun, J. Oppenheim, ChemRxiv. 2022, DOI 10.26434/chemrxiv-2022-rf8cp.

[27] T. V. Can, J. J. Walsh, T. M. Swager, R. G. Griffin, J. Chem. Phys. 2015, 143, 054201.

[28] G. Mathies, S. Jain, M. Reese, R. G. Griffin, J. Phys. Chem. Lett. 2016, 7, 111–6.

[29] K. O. Tan, C. Yang, R. T. Weber, G. Mathies, R. G. Griffin, Sci. Adv. 2019, 5, eaav6909.

[30] S. K. Jain, G. Mathies, R. G. Griffin, J. Chem. Phys. 2017, 147, 164201.

[31] K. O. Tan, S. Jawla, R. J. Temkin, R. G. Griffin, EMagRes 2019, 8, 339–352.

[32] B. Diesschaert, N. Charlier, B. Gallez, J. Marchand-Brynaert, Bioorg. Med. Chem. Lett. 2008, 18, 4291–4293.

[33] L. Delage-Laurin, R. S. Palani, N. Golota, M. Mardini, Y. Ouyang, K. O. Tan, T. M. Swager, R. G. Griffin, J. Am. Chem. Soc. 2021, 143, 20281–20290.

[34] I. Dhimitraka, O. Grigorieva, J. L. Zweier, V. V. Khramtsov, Bioorg. Med. Chem. Lett. 2010, 20, 3946–3949.

[35] K. Cai, L. Zhang, R. D. Astumian, J. F. Stoddart, Nat. Chem. Rev. 2021, 5, 511–511.

[36] Y. Wu, M. Frasconi, D. M. Gardner, P. R. McGonigal, S. T. Schneebeli, M. R. Wasielewski, J. F. Stoddart, Angew. Chem. Int. Ed. 2014, 53, 9476–9481.

[37] P. Schosseleer, T. Wacker, A. Schweiger, Chem. Phys. Lett. 1994, 224, 319–324.

[38] A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance, The publisher of the book is Oxford University Press, 2001.

[39] K. O. Tan, R. G. Griffin, J. Chem. Phys. 2022, 124112, DOI 10.1063/5.0091663.

Manuscript received: August 17, 2022
Accepted manuscript online: September 11, 2022
Version of record online: October 11, 2022