Supporting information

Graphene chemiresistors modified with functionalized triphenylene for highly sensitive and selective detection of dimethyl methylphosphonate

Yun-Tae Kim, Seongwoo Lee, Sanghwan Park, and Chang Young Lee

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

Corresponding authors: cylee@unist.ac.kr
Fig. S1. Synthesis of N-substituted triphenylene. Refer to Ref. 14 for details.

Fig. S2. I_{2D}/I_G ratio before and after the functionalization. The decreased I_{2D}/I_G ratio by the functionalization implies n- or p-doping of graphene.

Fig. S3. Responses to DMMP at a high concentration (1300 ppm) after partially irreversible responses at a low concentration (1.3 ppm).
Figure S4. Recovery of Raman peak parameters of graphene when pristine (black), functionalized (red), and after the exposure to DMMP (blue). (a) 2D/G intensity ratio (I_{2D}/I_G). (b) Peak positions of G peak (ω_G). (c) FWHM of G peak (Γ_G). (d) Peak positions of 2D peak (ω_{2D})