Clinical significance of macrophage heterogeneity in human malignant tumors

Yoshihiro Komohara,1 Masahisa Jinushi2 and Motohiro Takeya1

1Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto; 2Research Center for Infection-associated Cancer, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan

Keywords
Cancer, CD163, M2, macrophage, TAM

Correspondence
Yoshihiro Komohara, Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan. Tel: +81-96-373-5095; Fax: +81-96-373-5096; E-mail: ycomo@kumamoto-u.ac.jp

Funding information
Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Received July 8, 2013; Revised October 16, 2013; Accepted October 27, 2013

Cancer Sci 105 (2014) 1–8

doi: 10.1111/cas.12314

The fact that various immune cells, including macrophages, can be found in tumor tissue has long been known. With the recent introduction of the novel concept of macrophage differentiation into a classically activated phenotype (M1) and an alternatively activated phenotype (M2), the role of tumor-associated macrophages (TAMs) is gradually beginning to be elucidated. Specifically, in human malignant tumors, TAMs that have differentiated into M2 macrophages act as “protumoral macrophages” and contribute to the progression of disease. Based on recent basic and preclinical research, TAMs that have differentiated into protumoral or M2 macrophages are believed to be intimately involved in the angiogenesis, immunosuppression, and activation of tumor cells. In this paper, we specifically discuss both the role of TAMs in human malignant tumors and the cell–cell interactions between TAMs and tumor cells.

As the relationship between TAMs and malignant tumors becomes clearer, TAMs have begun to be seen as the target of new cancer treatments. Clarification of how TAMs are involved in tumor progression and metastasis is anticipated to lead to the development of novel treatments and drugs.

Intratumoral infiltration of TAMs

Intratumoral infiltration of monocytes/macrophages is induced by various chemokines including chemokine (C-C motif) ligand (CCL)2, CCL5, CCL7, and chemokine (C-X3-C motif) ligand (CX3CL)1, as well as cytokines such as macrophage colony-stimulating factor (M-CSF), granulocyte-macrophage colony-stimulating factor, and vascular endothelial growth factor (VEGF), which are produced by tumor cells.15–15 Subsequent differentiation into TAMs is induced by various factors produced by tumor cells. While the tumor size is small, macrophages from the surrounding tissue accumulate in and around the tumor by tumor cell-derived chemotactic molecules described above, and TAMs derived from the surrounding tissue macrophages account for the majority of TAMs.4,16 As the tumor subsequently increases in size and an intratumoral vascular network forms, monocyte-derived TAMs become the dominant source of TAMs.4,16

Although many macrophage chemotactic factors are secreted by tumor cells, CCL2 and M-CSF are considered to be impor-
Role of TAMs in tumor progression

Based on numerous studies using murine tumor models, activated TAMs were found to produce a variety of angiogenic, immunosuppressive, and growth-related factors. However, few studies have been carried out using human materials, and thus the detailed mechanisms and molecular characterization of TAMs in human tumors have yet to be described. One method for studying the relationship between TAMs and tumor development is to carry out statistical analysis using clinical data related to survival rates or survival times. Studies comparing TAM infiltration into diseased tissue, using CD68 as a macrophage marker, are summarized in Table 1. The majority of studies in human malignant tumors have found that a higher level of TAM infiltration is associated with lower survival rates, and these observations indicate that TAMs may enhance tumor progression. However, other reports in certain types of cancer such as gastric, colon, and prostate cancer, have shown that a higher number of TAM infiltration results in a better outcome.

For a localized tumor a few millimeters in size to grow larger, intratumoral angiogenesis must occur. Genetic analysis has revealed that TAMs produce VEGF, interleukin (IL)-8 (CXCL8), basic fibroblast growth factor, thymidine phosphorylase, MMP, and other molecules that are involved in angiogenesis, indicating that TAMs promote the formation of intratumoral blood vessels. Furthermore, TAMs produce immunosuppressive factors, including prostaglandin E2 (PGE2), indoleamine 2,3-dioxygenase, and IL-10, and thus contribute to the immunosuppressed state of cancer patients. In fact, in studies using human tissue samples, the number of intratumoral TAM infiltration is positively correlated with formation of blood vessels and the number of regulatory T cells. Tumor-associated macrophage-derived PGE2, indoleamine 2,3-dioxygenase, and IL-10 play important roles for induction of regulatory T cells and TAM-derived CCL17, CCL18, CCL22 are chemotactic factors for regulatory T cells. These results indicate that TAMs create environments conducive to tumor progression through their effect on angiogenesis and immunosuppression. In addition, growth factors produced by TAMs, including basic fibroblast growth factor, hepatocyte growth factor, epidermal growth factor, platelet-derived growth factor, and transforming growth factor-β (TGF-β), are considered to directly promote tumor cell growth.

Of further interest is the suggestion, based on the results of animal model analysis, that TAMs may play a role in forming premetastatic niches in organs to which the tumor will eventually metastasize. Specifically, tumor necrosis factor-α, VEGF, and TGF-β (VEGF and TGF-β) are also produced by cancer cells, which are secreted by TAMs in cancer tissues, are believed to be transported through the bloodstream to destination organs such as the lung, where they induce macrophages to produce S100A8 and serum amyloid A3. Both S100A8 and serum amyloid A3 recruit macrophages and tumor cells to these organs and promote the formation of metastatic foci. Thus, TAMs are believed to not only influence their local environment, but also to impact macrophages throughout the body and contribute to disease progression.

CD163 and CD204 as markers for protumoral or M2 macrophages

The heterogeneity of macrophage functions was suggested as early as the late 1990s. Macrophage activation can be broadly divided into the following two types: classically activated macrophages (M1), which promote inflammation, and alternatively activated macrophages (M2), which inhibit...
Table 1. High numbers of CD68+ tumor-associated macrophages are correlated with clinical prognosis in human malignant tumors

Tumor type	Favorable prognosis	Poor prognosis
Epithelial		
Gastric cancer	(adenocarcinoma)	Uterine cancer
(adenocarcinoma)		(endometrioid)
Colorectal cancer	(adenocarcinoma)	Adenocarcinoma
Prostate cancer	(adenocarcinoma)	Squamous cell
Non-epithelial		Carcinoma
Malignant mesothelioma	(sarcomatous)	Malignant melanoma
(urothelial carcinoma)	(urothelial carcinoma)	Neuroblastoma
Ewing’s sarcoma	(angiosarcoma)	Hodgkin’s lymphoma
Hematopoietic		Follicular lymphoma

Table 2. Correlation between CD163+ or CD204+ tumor-associated macrophages and clinical prognosis in human malignant tumors

Tumor type	Favorable prognosis	Poor prognosis
Epithelial	Colorectal cancer	Kidney cancer
(adenocarcinoma)	(adenocarcinoma)	(clear cell type)
Non-epithelial		Liver cancer
Osteosarcoma		(hepatocellular carcinoma)
Hematopoietic		Liver cancer
		(cholangiocellular carcinoma)
		Pancreatic cancer
		(invasive ductal carcinoma)
		Lung cancer
		(squamous cell carcinoma)
		Oral cancer
		(squamous cell carcinoma)
		Ovarian cancer
		(serous adenocarcinoma)
		Esophageal cancer
		(squamous cell carcinoma)
		Leiomyosarcoma
		Brain tumor
		(high-grade glioma)
		Malignant melanoma
		Diffuse large B-cell lymphoma
		Hodgkin’s lymphoma
		Follicular lymphoma
		Angioimmunoblastic T-cell lymphoma
		Adult T-cell leukemia/lymphoma
		Multiple myeloma

Significance of direct cell–cell interactions between TAMs and tumor cells

As shown in Figure 1, TAMs and tumor cells often directly contact each other, indicating that intimate cell–cell interactions exist between them. During the initial stages of tumor progression, monocyte migration factors produced by tumor cells induce infiltration of monocytes/macrophages, as described above. The macrophages that have infiltrated the tumor are

that CD163- and/or CD204-positive TAMs are considered as “protumoral” macrophages/TAMs.

In a recent review, based on their location and function, Qian and Pollard(38) classified TAMs into the following six types: angiogenic; immunosuppressive; invasive; metastasis-associated; perivascular; and activated macrophages. Not all of these macrophage types of TAMs show the phenotype of M2 macrophages. Tumor-associated macrophages with M1 characteristics have also been observed in animal models of glioma and human pancreatic cancer.(39,40) Although the concept of “M1/M2 macrophages” is a convenient hypothesis simply dividing TAMs into two populations, we should note that TAMs contain various macrophage populations with a wide range of polarization statuses stimulated by complex signals in tumor microenvironment.

Inflammation.(27,28) Those TAMs demonstrating enhanced expression of CD163 (hemoglobin scavenger receptor), CD204 (class A macrophage scavenger receptor), CD206 (mannose receptor, C type 1), stabilin-1, arginase-1, and accelerated production of IL-10, VEGF, PGE2, and MMP9, generally show characteristics of M2 macrophages. The proangiogenic and immunosuppressive activity in the tumor microenvironment mediated by TAMs can also be considered the result of M2 macrophage function. Because CD163 and CD204 are specifically expressed on macrophages, and antibodies to these antigens that are suitable for immunohistochemical analysis are commercially available, many researchers have used these molecules as markers of the M2 phenotype in both in vitro and in vivo studies. The details of the functions of these molecules remain unclear; however, a few studies have indicated that these molecules are involved either in regulating the inflammatory responses or in maintaining the protumoral functions of macrophages. The clinicopathological studies using anti-CD163 or anti-CD204 antibodies are summarized in Table 2. In malignant lymphoma, glioma, and kidney cancer, higher CD163 expression on TAMs is associated with worse clinical prognosis, but no correlation exists between clinical prognosis and the number of CD204-expressing TAMs. In esophageal cancer, a higher number of CD204-expressing TAMs is associated with poor clinical outcome, but the number of CD163-positive TAMs is not. These observations suggest that CD163 and CD204 are not expressed in completely identical macrophage populations. In addition, the functional significance of CD163- or CD204-positive TAMs might be different among sites and histological types of cancer. We suggest that both CD163 and CD204 should be analyzed to evaluate the polarization of TAMs and
activated by tumor cell-derived molecules, including IL-6, M-CSF, PGE2, and heat shock protein-27, and differentiate into protumoral/M2 macrophages. Protumoral/M2 TAMs produce a variety of angiogenic and immunosuppressive factors, as described above, and create a microenvironment conducive to tumor progression. Signal transducer and activator of transcription 3 (Stat3) has received recent attention as an important transcription factor that mediates the interaction between TAMs and tumor cells. Many angiogenic and immunosuppressive factors are transcriptionally regulated by Stat3. Therefore, activation of Stat3 not only plays an important role in the differentiation of macrophages into protumoral/M2 macrophages, it is also involved in tumor cell growth, metastasis, epithelial–mesenchymal transition, and the acquisition of resistance to anticancer drugs and radiation therapies. Direct coculture of tumor cells and macrophages shows that Stat3 in macrophages is activated and that various factors secreted by activated macrophages, including EGF, IL-6, and IL-10, activate Stat3 in tumor cells. Activation of the M-CSF receptor (CD115) and sphingosine-1-phosphate receptor 1 (SIP1R) on the cell surface is believed to contribute to the cell–cell interaction mediated by Stat3. Membrane-type M-CSF on the surface of tumor cells serves as a ligand for CD115, and sphingosine-1-phosphate derived from tumor cells serves as a ligand for SIP1R. Stimulation of these receptors activates a variety of signal transduction pathways, including that of Stat3, causing TAMs to differentiate into the protumoral/M2 phenotype. The activation of Stat3 through cell–cell interactions between tumor cells and macrophages contributes to the formation of the microenvironment necessary for development of primary and metastatic lesions (Fig. 2).

Recent studies using a murine cancer model showed that Stat3 is also an important molecule in the maintenance and anticancer drug responses of cancer stem-like cells (CSCs), which is a glycoprotein belonging to an epidermal growth factor superfamily, contributes to Stat3 activation in cooperation with proinflammatory cytokines such as IL-6. And Stat3 activation is preferentially associated with tumorigenesis and drug resistance in CSCs. In human colorectal cancer, overexpression of stem cell markers in tumor cells is reported to be associated with a high number of TAMs. Further studies are expected to clarify the details of the relationships between TAMs and CSCs.

Tumor-associated macrophages and myeloid-derived suppressor cells

Regarding the functional analysis of TAMs, tumor xenograft mouse or rat models are more useful than human tumors. The majority of myeloid cells infiltrating tumor tissues are immature cells in some types of murine tumors. A strong immunosuppressive response has long been known to be induced when cancer cells are transplanted into mice. In the 1980s, myeloid cells in the bone marrow of tumor-bearing mice were shown to inhibit the activation of lymphocytes. Subsequently, the same types of cells were shown to exist in the spleen, and with the advancement of analysis resulting from the identification of myeloid markers CD11b and Gr1, these cells were also shown to exist in lymph nodes and tumor tissues. Immature myeloid cells are derived from bone marrow myeloid cells and exhibit immunosuppressive activity; therefore, they are referred to as myeloid-derived suppressor cells (MDSCs). Distinct from mature neutrophils and monocyte/macrophages, MDSCs have recently been divided into granulocytic MDSCs (CD11b+Ly6Cdim/Ly6G+) and monocytic MDSCs (CD11b+Ly6C+Ly6G+), showing characteristics similar to neutrophils, and monocytic MDSCs (CD11b+Ly6Cdim/Ly6G+) show characteristics similar to monocytes/macrophages. Despite the observed differences among tumor histopathological types, mature macrophages (TAMs, Gr1− and MDSCs (Gr1+) appear to coexist in the tumor tissues of mice. As MDSCs from tumor tissues differentiate into mature macrophages in ex vivo assays, MDSCs are considered to be the immature phenotype of TAMs. However, which cell type plays a greater role in angiogenesis and the activation of tumor cells remains unclear.

Systemic immunosuppression is also observed in human patients with advanced malignant tumors, suggesting the existence of cells similar in nature to the MDSCs that are found in mice. A significant increase in the number of CD14+HLA-DRlow CD11b+CD14+CD15−, or Lin HLA-DR CD33+ cells is observed in the peripheral blood of patients with malignant tumors. In an ex vivo study using human blood or tumor samples of melanoma patients, MDSCs were shown to contribute more substantially to immunosuppression than TAMs. Given that these cell types indicate immunosuppressive activity, they may correspond to the MDSCs that are found in mice. As differences in gene expression and cell markers exist between mice and humans, sufficient care must be taken when attempting to apply the results of mouse studies to humans.

Dendritic cells in human tumor tissues

Dendritic cells (DCs) serve as other myeloid lineage cells in the tumor microenvironment, and play a critical role in integrating both innate and adaptive arms of immune responses. Myeloid DCs (mDCs) and plasmacytoid DCs constitute two major subsets of the DC population, and are distinguished from macrophages according to their unique surface marker expressions. In human DCs, mDCs are further classified as blood dendritic cell antigen (BDCA)1(CD1c)+CD11b+ and BDCA3(CD141)+ C-type lectin(CLEC)9b populations, which are equivalent to CD11b+CD47+ and CD8α+ or CD103+ tissue-resident mDCs, respectively. The BDCA3+ mDCs are specialized for cross-presentation of antigens from necrotic cells, whereas BDCA1+ mDCs have pleiotropic functions to prime diverse repertoires of T cell subsets, in particular, dermal and mucosa-associated T cells. Human plasmacytoid DCs are characterized for their expression of BDCA2(CD303) and CD123 (IL3Rα), and produce large amounts of type-I interferon in response to viral or self-nucleic acids. As it is difficult to identify these molecules in paraffin-embedded pathological specimens, there are a few articles describing DCs in human tumor samples. However, these phenotypic differences should help clarify the distinct functions and molecular pathways of TAMs and DCs in tumor tissues.

Targeting TAMs: a novel concept of antitumor therapy

As previously explained, TAMs promote tumor progression through induction of angiogenesis and suppression of antitumor immunity. In particular, in humans, protumoral TAMs are believed to exhibit characteristics similar to M2 macrophages, and are intimately involved in the progression of malignant tumors. As such, treatment strategies aimed at local inhibition of macrophage differentiation into the M2 phenotype are anticipated to be effective. Signal transduction path-
The blocking effect of these compounds on Stat3 and NF-κB was not adequate in tumor cells, the direct effect on tumor cells was weaker than that of other anticancer drugs. In an in vivo study, corosolic acid appeared not to directly suppress tumor cells, but rather to stimulate the antitumor immunity of lymphocytes by inhibiting the activation of TAMs and MDSCs. Corosolic acid was therefore considered to show antitumor activity by means of indirect effects to myeloid cells.

Conclusion

With the recent introduction of the concept of macrophage differentiation into M1 and M2 macrophages, and clarification of the function of each of these cell types, the role of TAMs in malignant tumors is gradually emerging. Specifically, in human tumors, TAMs that have differentiated into the M2 phenotype act as "protumoral macrophages" and contribute to the progression of disease. Based on current basic research, TAMs that have differentiated into the M2 phenotype are believed to be intimately involved in angiogenesis, immunosuppression, and activation of tumor cells. Clarification of the mechanisms of TAM activation and the process of differentiation into the protumoral/M2 phenotype is anticipated to lead to new strategies for treating malignant tumors.
Acknowledgments

This study was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

1 Monis B, Weinberg T. Cytotoxic chemical study of esterase activity of human neoplasms and stromal macrophages. Cancer 1961; 14: 369–77.
2 Underwood JC, Carr I. The ultrastructure of the lymphoreticular cells in non-lymphoid human neoplasms. Virchows Arch B Cell Pathol 1972; 12: 39–50.
3 Laufer I, Ahern W, Stewart J, Sainsbury R. Macrophage infiltration of breast tumours: a prospective study. J Clin Pathol 1977; 30: 563–8.
4 Kreutz M, Fritsche J, Andreasen R. Macrophages in tumor biology. In: Komohara Y, Lewis CE, eds. The Macrophage, 2nd edn. Oxford, UK: Oxford Univ. Press, 2002; 485–89.
5 Tagliabue A, Mantovani A, Kilgallen M, Herberman RB, McCoy JL. Natural cytotoxicity of mouse monocytes and macrophages. J Immunol 1979; 122: 2363–70.
6 Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002; 23: 549–55.
7 Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 2002; 196: 254–65.
8 Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004; 4: 71–8.
9 Heusinkveld M, van der Burg SH. Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med 2011; 9: 216.
10 Komohara Y, Ohnishi K, Kuratsu J, Takeya M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 2008; 216: 15–24.
11 Sica A, Schioppa T, Mantovani A, Allavena P. Tumor-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 2006; 42: 717–27.
12 Yu H, Kortylewski M, Pollard JW. Macrophages are a distinct M2 polarised population promoting tumour progression: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. J Natl Cancer Inst 2007; 99: 454–58.
13 Lawrence AS, Sica A, Schioppa T, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cancer Cell 2010; 17: 787–97.
14 Kopf M, Liew FY. Macrophage polarization: a versatile cell plasticity in chronic infections. Nat Rev Immunol 2013; 13: 51–61.
15 Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141: 39–51.
16 Lemereza J, Dietert R, Schirmer T, et al. Tumor infiltration by myeloid-derived suppressor cells is associated with poor prognosis in Angioimmunoblastic T-cell lymphoma (AITL). J Clin Oncol 2010; 28: 278–83.
17 Komohara Y, Niino D, Saito Y et al. Clinical significance of CD163 tumour-associated macrophages in patients with adult T-cell leukemia/lymphoma. Cancer Sci 2013; 104: 945–51.
18 Shigeoka M, Urakawa N, Nakamura T et al. Tumor-associated macrophage expressing CD204 is associated with tumor aggressiveness of esophageal squamous cell carcinoma. Cancer Sci 2013; 104: 112–8.
19 Qian RZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cancer Cell 2010; 17: 787–97.
20 Komohara Y, Hasita H, Ohnishi K et al. Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma. Cancer Sci 2011; 102: 1424–31.
21 Niino D, Komohara Y, Murayama T et al. Ratio of M2 macrophage expression is closely associated with poor prognosis for Angioimmunoblastic T-cell lymphoma (AITL). Pathol Int 2010; 60: 278–83.
22 Komohara Y, Niino D, Saito Y et al. Clinical significance of CD163 tumour-associated macrophages in patients with adult T-cell leukemia/lymphoma. Cancer Sci 2013; 104: 945–51.
23 Shigeoka M, Urakawa N, Nakamura T et al. Tumor-associated macrophage expressing CD204 is associated with tumor aggressiveness of esophageal squamous cell carcinoma. Cancer Sci 2013; 104: 112–8.
24 Qian RZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141: 39–51.
25 Umemura N, Saito M, Suwa T et al. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol 2008; 83: 1136–44.
26 Ino Y, Yamazaki-Itoh R, Shimada K et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 2013; 108: 914–23.
27 Masuda M, Wakasaki T, Suzui M, Toh S, Joe AK, Weinstein IB. Stat3 orchestrates tumor development and progression: the Achilles’ heel of head and neck cancers? Curr Cancer Drug Targets 2010; 10: 117–26.
28 Lee H, Deng J, Kujawski M et al. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat Med 2010; 16: 1421–8.
29 Komohara Y, Horlai I, Ohnishi K et al. Importance of direct macrophage - Tumor cell interaction on progression of human glioma. Cancer Sci 2012; 103: 2165–72.
30 Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Investig 2012; 122: 787–95.
31 Sherry MM, Reeves A, Wu JK, Cochran BH. STAP3 is required for proliferation and maintenance of glioblastoma stem cells. Stem Cells 2009; 27: 2383–92.
32 Jinushi M, Chiba S, Yoshiyama H et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci USA 2011; 108: 12425–30.
33 Bao S, Tang F, Li X et al. Epigenetic reversal of post-implantation epiblast to pluripotent embryonic stem cells. Nature 2009; 461: 1292–5.
34 Rao G, Wang H, Li B et al. Reciprocal interactions between tumor-associated macrophages and CD44-positive cancer cells via osteopontin/CD44 promote tumorigenicity in colorectal cancer. Clin Cancer Res 2013; 19: 781–90.
35 Greten TF, Manns MP, Korangy F. Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 2011; 11: 802–7.
36 Ueha S, Shand FH, Matsushima K. Myeloid cell population dynamics in healthy and tumor-bearing mice. Int Immunopharmacol 2011; 11: 783–8.
51 Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 2009; 182: 4499–506.
52 Youn JI, Gabrilovich DI. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 2010; 40: 2969–75.
53 Joycz AJ, Pollard JW. Micronvironmental regulation of metastasis. Nat Rev Cancer 2009; 9: 239–52.
54 Groz A, Turcotte S, Wunderlich JR, Ahmadzadeh M, Dudley ME, Rosenberg SA. Myeloid cells obtained from the blood but not from the tumor can suppress T-cell proliferation in patients with melanoma. Clin Cancer Res 2012; 18: 5212–23.
55 MacDonald KL, Kassiano AJ, McDonald KJ et al. Human CD141+/BDCA-3+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 2010; 207: 1247–60.
56 Zaba LC, Fuentes-Duculan J, Steinman RM, Krueger JG, Lowes MA. Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+ FXIIIa+ macrophages. J Clin Invest 2007; 117: 2517–25.
57 Pello OM, De Pirollo M, Mirolo M et al. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 2002; 100: 411–21.
58 Satoh T, Takeuchi O, Vandenbosh A et al. The Jmd3-Ifi4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 2010; 11: 936–44.
59 Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity by identity. Nat Rev Immunol 2011; 11: 750–61.
60 Germaino G, Frapolli R, Belgiovine C et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 2013; 23: 249–62.
61 Rogers TL, Henon I. Tumour macrophages as potential targets of bisphosphonates. J Transl Med 2011; 9: 177.
62 Qian BZ, Li J, Zhang H et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011; 475: 222–5.
63 Roland CL, Dineen SP, Lynn KD et al. Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration in squamous cell carcinoma xenografts. Mol Cancer Ther 2009; 8: 1761–71.
64 Fujiiwara Y, Komohara Y, Ikeda T, Takeya M. Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B in tumor cells and tumor-associated macrophages. Cancer Sci 2011; 102: 206–11.
65 Horlad H, Fujiwara Y, Takemura K, Fujiwara Y, et al. Akt survival in colon cancer. Cancer Res 1996; 56: 4625–9.
66 Ryder M, Glossema RA, Ricarte-Filho JC, Knauf JA, Fugini JA. Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr Relat Cancer 2008; 15: 1069–74.
67 Kawahara A, Hattori S, Akiba J et al. Infiltration of thymidine phosphorylase-positive macrophages is closely associated with tumor angiogenesis and survival in intestinal type gastric cancer. Oncol Rep 2010; 24: 405–15.
68 Honeda T, Nakagawa M, Emoto A, Nomura T, Nasu N, Nomura Y. Prognostic value of tumor-associated macrophage count in human bladder cancer. Int J Urol 2000; 7: 263–9.
69 Burt BM, Rodig SJ, Tillman TR, Elbardissi AW, Bueno R, Sugarbaker DJ. Circulating and tumor-infiltrating myeloid cells predict survival in human pleural mesothelioma. Cancer 2011; 117: 2534–44.
70 Makitie T, Summanen P, Tarkkanen A, Kivela T. Tumor-infiltrating macrophages (CD68(+) cells) and prognosis in malignant uveal melanoma. Invest Ophthalmol Vis Sci 2001; 42: 1414–21.
71 Asgharzadeh S, Salo JA, Li L et al. Clinical significance of tumor-associated inflammatory cells in metastatic neuroblastoma. J Clin Oncol 2012; 30: 3525–32.
72 Fujiiwara T, Fukuski J, Yamamoto S et al. Macrophage infiltration predicts a poor prognosis for human ewing sarcoma. Am J Pathol 2011; 179: 1157–70.
73 Scudell C, Lee T, Shah SP et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med 2010; 362: 875–85.
74 Canioni D, Salles G, Mounier N et al. High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial. J Clin Oncol 2009; 26: 440–6.
75 Nagorsen D, Voigt S, Berg E, Stein H, Thiel E, Loddenkemper C. Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med 2007; 5: 62.
76 Musani Y, Ashima S, Fujita N et al. Tumor-associated macrophage promotes tumor progression via STAT3 signaling in hepatocellular carcinoma. Pathobiology 2013; 80: 146–54.
77 Kong LQ, Zhu XD, Xu HX et al. The clinical significance of the CD163+ and CD68+ macrophages in patients with hepatocellular carcinoma. PLoS ONE 2013; 8: e59771.
78 Hasita H, Komohara Y, Okabe H et al. Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci 2011; 101: 1913–9.
79 Kurahara H, Shinch H, Matakai Y et al. Significance of M2-Polarized Tumor-Associated Macrophage in Pancreatic Cancer. J Surg Res 2009; 167: e211–9.
80 Yoshikawa K, Mitsuogu S, Kinoshita T et al. Impact of tumor-associated macrophages on invasive ductal carcinoma of the pancreas head. Cancer Sci 2012; 103: 2012–20.
81 Chung FT, Lee KY, Wang CW et al. Coordinate expression of colony-stimulating factor-1-related proteins is associated with a poor prognosis for human ewing sarcoma. Am J Pathol 2012; 179: 1747–56.
82 Reinartz S, Schumann T, Finkernagel F et al. Macrophage infiltration predicts metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin Cancer Res 2011; 17: 2110–9.
83 Espinosa I, Beck AH, Lee CH et al. Coordinate expression of colony-stimulating factor-1 and colony-stimulating factor-2-related proteins is associated with poor prognosis in gynecological and nongynecological leiomyosarcoma. Am J Pathol 2009; 174: 2347–56.
99 Jensen TO, Schmidt H, Møller HJ et al. Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer stage I/II melanoma. *J Clin Oncol* 2009; 27: 3330–7.

100 Bronkhorst IH, Ly LV, Jordanova ES et al. Detection of M2-macrophages in uveal melanoma and relation with survival. *Invest Ophthalmol Vis Sci* 2011; 52: 643–50.

101 Wada N, Zaki MA, Hori Y et al. Tumour-associated macrophages in diffuse large B-cell lymphoma: a study of the Osaka Lymphoma Study Group. *Histopathology* 2012; 60: 313–9.

102 Zaki MA, Wada N, Ikeda J et al. Prognostic implication of types of tumor-associated macrophages in Hodgkin lymphoma. *Virchows Arch* 2011; 459: 361–6.

103 Sanchez-Espiridion B, Martin-Moreno AM, Montalban C et al. Immuno-histochemical markers for tumor associated macrophages and survival in advanced classical Hodgkin’s lymphoma. *Haematologica* 2012; 97: 1080–4.

104 Tan KL, Scott DW, Hong F et al. Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 Intergroup trial. *Blood* 2012; 120: 3280–7.

105 Clear AJ, Lee AM, Calaminci M et al. Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting microenvironment. *Blood* 2010; 115: 5053–6.

106 Suyani E, Sucak GT, Akyurek N et al. Tumor-associated macrophages as a prognostic parameter in multiple myeloma. *Ann Hematol* 2013; 92: 669–77.