Role of P2X\textsubscript{7} receptors in neuronal death in the retina

The P2X\textsubscript{7} receptor is a member of the family of purinoceptors, which are ligand-gated membrane ion channels activated by extracellular adenosine 5′-triphosphate. A unique feature of the P2X\textsubscript{7} receptor is that its activation can result in the formation of large plasma membrane pores that allow the flux of ions as well as hydrophilic molecules of up to 900 Da. Recent studies indicate that P2X\textsubscript{7}-mediated signaling can trigger apoptotic cell death after ischemia and during the course of certain neurodegenerative disorders. Expression of the P2X\textsubscript{7} receptor has been demonstrated in most cell types in the retina and is related to retinal neurotransmission, and may modulate both photoreceptor and rod bipolar cell responses. In addition to its physiological roles, receptor stimulation has been reported to be involved in neuronal death in the retina. Stimulation of P2X\textsubscript{7} receptors can kill retinal ganglion cells (RGCs) by a mechanism dependent on increased intracellular Ca2+. This mechanism might play a role in ischemia-induced neuronal damage and optic nerve injury. Given that extracellular ATP levels and P2X\textsubscript{7} receptor expression in the retina increase with elevated intraocular pressure, stimulation of P2X\textsubscript{7} receptors may exert a deleterious effect on RGCs in glaucomatous eyes. P2X\textsubscript{7} receptor activation may also be associated with the up-regulation of inflammatory cytokine expression, e.g., interleukin-1β and tumor necrosis factor-α. Based on its reported effects, the P2X\textsubscript{7} receptor is a potential therapeutic target of pharmacological designs to prevent neuronal death in ocular diseases including glaucoma.

What P2X\textsubscript{7} receptors are?

Extracellular adenosine 5′-triphosphate (ATP) is an excitatory transmitter in both the peripheral and central nervous systems. P2X receptors are a family of ligand-gated membrane ion channels activated by extracellular ATP. P2X receptors consist of seven isoforms designated P2X\textsubscript{1} to P2X\textsubscript{7}. (North, 2002; Kaczmarek-Häjek et al., 2012) and are widely distributed in most types of cells of nearly every origin. These receptors have many functions such as synaptic transmission in the peripheral and central nervous systems, contraction of smooth muscle, platelet aggregation, macrophage activation, cell death and immunomodulation (Burnstock et al., 2010, 2011).

In contrast to other ligand-gated channels in the purinoceptor family, the P2X\textsubscript{7} receptor possesses unique features that are likely to be of both physiological and pathophysiological significance. Most importantly, not only does the initial activation of these receptors result in the opening of a non-selective plasma membrane channel, but in many types of cells, sustained activation causes the formation of trans-membrane pores that are permeable to hydrophilic molecules of up to 900 Da (Valera et al., 1994; Falzoni et al., 1995).

Indicative of the P2X\textsubscript{7} receptor having a role in cell pathology, this receptor has been found to be highly up-regulated in neurons and glial cells located in the ischemic cerebral cortex (Franke et al., 2004). P2X\textsubscript{7}-mediated signaling is also implicated in neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease and multiple sclerosis (Romagnoli et al., 2008).

P2X\textsubscript{7} receptors in the retina

Expression of the P2X\textsubscript{7} receptor has been demonstrated in most cell types in the retina; these include neurons such as the retinal ganglion cells (RGCs) (Brandl et al., 1998; Ishii et al., 2003; Wheeler-Schilling et al., 2001), as well as glia (Morigiwa et al., 2000; Pannicke et al., 2000) and vascular cells (Kawamura et al., 2003). In the adult rat retina, immunolabeling for the P2X\textsubscript{7} receptor is detected in a number of cells in the inner nuclear layer and ganglion cell layer, suggestive of amacrine cells and RGCs (Brandl et al., 1998). This research group later confirmed that P2X\textsubscript{7} receptors are expressed in identified RGCs using reverse transcription polymerase chain reaction (Wheeler-Schilling et al., 2001). These receptors were also found in presynaptic processes of rod bipolar cells, as well as other conventional synapses, suggesting that purines play a role in neurotransmission within the retina, and may modulate both photoreceptor and rod bipolar cell responses (Puthusery and Fletcher, 2004). Moreover, based on experiments using the P2X\textsubscript{7} receptor knockout mouse, it was suggested that these receptors provide excitatory input to photoreceptor terminals or to inhibitory cells that regulate both the rod and cone pathway response (Vessey and Fletcher, 2012). Another group suggested that activation of this receptor may affect uptake of neurotransmitters from the extracellular space by Müller cells in the retina (Pannicke et al., 2000).

P2X\textsubscript{7} receptors and neuronal death in the retina

In addition to the putative physiological roles of P2X\textsubscript{7} receptors, stimulation of these receptors has been reported to be involved in neuronal death in the retina. It was reported that ATP induces the death of developing avian retinal neurons in culture via activation of P2X\textsubscript{7} receptors (Ancassi et al., 2013). The potential neuroprotective effect of a P2X\textsubscript{7} receptor antagonist on photoreceptor cell death was reported using primary retinal cell cultures (Notomi et al., 2011). This antagonist has also been reported to inhibit apoptosis in cultured human retinal pigment epithelium (Yang et al., 2011). Moreover, stimulation of P2X\textsubscript{7} receptors can kill RGCs in vitro.

Figure 1 Representative photomicrographs of TUJ1-positive cells on day 7 after optic nerve crush (ONC) injury, with and without P2X\textsubscript{7} antagonists (OxATP and BBG) in corresponding regions (1 mm from the optic nerve head).

(A) Normal eye; (B) an eye with ONC + phosphate buffered saline; (C) an eye with ONC + 30 µmol/L OxATP; (D) an eye with ONC + 0.3 µmol/L BBG. Scale bar: 50 µm. TUJ1: Neuron-specific β-tubulin; OxATP: oxidized adenosine triphosphate; BBG: brilliant blue G. From Kakurai et al. (2013).
receptors can mediate RGC death and that this mechanism
receptors (Xia et al., 2012).

Day 2 antagonists prevent loss of RGCs after optic nerve crush
7 receptor antagonist
7 receptor over-expression in the retina
*7 β agonists en αP through a mechanism that is likely dependent on
7 receptor activation
7 receptors in RGCs can be lethal, this autocrine response may
β, 7 7 α, purinoceptor is a potential thera
7 receptor expression in the retina
7 receptors may cause injury to
7 α, 7 pola et al., 2013). Moreover, it was also reported that ischemic
plays a role in ischemia-induced neurodegeneration (Niyaduru-
pola et al., 2013). Furthermore, data from our laboratory indicate that
the activation of P2X receptor is involved in hypoxia-induced
death of retinal neurons (Sugiyama et al., 2010). Using human or-
ganotypic retinal cultures, it was demonstrated that stimulation of
P2X receptors can mediate RGC death and that this mechanism
plays a role in ischemia-induced neurodegeneration (Niyaduru-
pola et al., 2013). Moreover, it was also reported that ischemic
damage was attenuated by P2X2 receptor antagonists in isolated
optic nerves as well as in cultured oligodendrocytes (Domercq et al.,
2010). Consistent with this, our recent study revealed that P2X2 antagonists prevent loss of RGCs after optic nerve crush
(Figure 1), and that this protective effect is possibly mediated
through suppression of P2X2 receptor over-expression in the retin-
a (Kakurai et al., 2013). In addition, multiple combinations of
three Ca2+ channel inhibitors including a P2X2 receptor antagonist
have been indicated in the preservation of visual function in a rat
model of partial optic nerve transection (Savigni et al., 2011).

P2X receptors and glaucoma
A group of researchers have demonstrated that ATP is released
in response to an acute rise in ocular pressure both in vitro (Reigada et al., 2008), and in vivo (Zhang et al., 2007) and have recently
shown that ATP release accompanies chronic elevation in pressure
(Li et al., 2011). It has also been suggested that mechanical strain
triggers ATP release directly from retinal ganglion cells and that
this released ATP autostimulates P2X2 receptors (Xia et al., 2012).
Recently, our group has also demonstrated that acute elevation of
intraocular pressure can induce the up-regulation of P2X2 receptor
expression (Figure 2) (Sugiyama et al., 2013). Given that
extracellular ATP levels and P2X2 receptor expression in the retina
increase with elevated intraocular pressure, and stimulation of
P2X2 receptors in RGCs can be lethal, this autocrine response may
erxert a deleterious effect on RGCs in glaucomatous eyes.

There are a number of reports linking P2X2 receptor activation
in the retina with the expression of inflammatory cytokines (Skaper et al., 2010; Weisman et al., 2012). For example, P2X2 agonists
enhance the release of interleukin (IL)-1β and tumor necrosis factor
(TNF)-α from hypoxia-activated retinal microglia (Morigiwa et al.,
2000). In addition, our data suggest that the up-regulation of
TNF-α, IL-1β, and IL-6 may be involved in RGC death that occurs
when P2X2 receptors are activated after an increase in intraocular
pressure (Figure 3) (Sugiyama et al., 2013).

In conclusion, a variety of recent experimental studies are pro-
vinding evidence that the P2X2 purinoceptor is a potential thera-
petic target of pharmacological strategies designed to diminish
or prevent neuronal death in ocular diseases including glaucoma.

Figure 2 Western blot analysis of P2X2 receptor (P2X2-R) protein levels in whole retina after intraocular pressure (IOP) elevation.
(A) Representative immunoreactive bands of intracellular and extracellular P2X2 receptors in normal, sham control, and treated retinas on days 1, 2,
and 3 after IOP elevation. (B) Densitometric quantification of immunoreactive bands of intracellular (left) and extracellular (right) P2X2 receptor
in sham control and treated retinas on days 1, 2, and 3 compared to normal retina. Data are expressed as mean ± SD (n = 3). The asterisks indicate
significant differences from the sham control eyes (unpaired t-test, *P < 0.05, **P < 0.01). From Sugiyama et al. (2013).

Figure 3 Effects of intraocular pressure (IOP) elevation on the expression of interleukin (IL)-1β and IL-6 mRNA in the retina.
(A) Alterations in IL-1β mRNA content in the retina after IOP elevation (open circles) or after sham treatment (closed circles). (B) Alterations in
IL-6 mRNA content in the retina after IOP elevation (open circles) or sham treatment (closed circles). Open triangles represent samples from eyes
treated with 10 μmol/L OxATP just after IOP elevation. Data are expressed as mean ± SEM (n = 4–5). The asterisks indicate significant differences
from the sham control eyes (*) or from the eyes after IOP elevation (**; Mann-Whitney U-test, P < 0.05). From Sugiyama et al. (2013).

vitro and in vivo through a mechanism that is likely dependent on
a rise in intracellular Ca2+ (Zhang et al., 2005; Hu et al., 2010). It was
also suggested that the balance between extracellular ATP and
its protective metabolite adenosine can influence RGC survival in
the eye (Hu et al., 2010). Another study demonstrated that early up-
regulation of neuronal P2X2 receptors may cause injury to retinal
neurons which may contribute to retinal damage (Franke et al.,
2005). Furthermore, data from our laboratory indicate that
the activation of P2X2 receptors can be lethal, this autocrine response
may contribute to retinal damage (Franke et al., 2010). Consistent
with this, our recent study revealed that ATP release accompanies
chronic elevation in pressure (Li et al., 2011). It has also been suggested that mechanical strain
triggers ATP release directly from retinal ganglion cells and that
this released ATP autostimulates P2X2 receptors (Xia et al., 2012).
Recently, our group has also demonstrated that acute elevation of
intraocular pressure can induce the up-regulation of P2X2 receptor
expression (Figure 2) (Sugiyama et al., 2013). Given that
extracellular ATP levels and P2X2 receptor expression in the retina
increase with elevated intraocular pressure, and stimulation of
P2X2 receptors in RGCs can be lethal, this autocrine response may
erxert a deleterious effect on RGCs in glaucomatous eyes.

There are a number of reports linking P2X2 receptor activation
in the retina with the expression of inflammatory cytokines (Skaper et al., 2010; Weisman et al., 2012). For example, P2X2 agonists
enhance the release of interleukin (IL)-1β and tumor necrosis factor
(TNF)-α from hypoxia-activated retinal microglia (Morigiwa et al.,
2000). In addition, our data suggest that the up-regulation of
TNF-α, IL-1β, and IL-6 may be involved in RGC death that occurs
when P2X2 receptors are activated after an increase in intraocular
pressure (Figure 3) (Sugiyama et al., 2013).

In conclusion, a variety of recent experimental studies are pro-
vinding evidence that the P2X2 purinoceptor is a potential thera-
petic target of pharmacological strategies designed to diminish
or prevent neuronal death in ocular diseases including glaucoma.

Tetsuya Sugiyama1,2
1 Nakano Eye Clinic of Kyoto Medical Co-operative, Kyoto 604-8404, Japan

580
2 Department of Ophthalmology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan

Acknowledgements I would like to express my appreciation to Professor Puro DG for leading me to this research topic during my stay as a research fellow in his laboratory at the University of Michigan in 2001, and also to Professor Ikeda T for giving me the opportunity to study abroad and then to continue to investigate this topic in the Department of Ophthalmology at Osaka Medical College, Japan.

Corresponding author: Tetsuya Sugiyama, M.D., Ph.D., Nakano Eye Clinic of Kyoto Medical Co-operative, 2 Jurakukaitou-Cho, Nakagyo-Ku, Kyoto, 604-8404, Japan, sugiyama.t@nh.osaka-med.ac.jp.

doi:10.1016/j.ijmr.2013.10.009 http://www.nrronline.org/

Accepted: 2014-02-25

Sugiyama T. Role of P2X receptors in neuronal death in the retina. Neural Regen Res. 2014;9(6):579-581.

References

Anccasi RM, Ornellas IM, Costanza M, Persechini PM, Ventura AL (2013) ATP induces the death of developing avian retinal neurons in culture via activation of P2X, and glutamate receptors. Purinergic Signal 9:15-29.

Brändle U, Kohler K, Wheeler-Schilling TH (1998) Expression of the P2X,-receptor subunit in neurons of the rat retina. Brain Res Mol Brain Res 62:106-109.

Burnstock G, Fredholm BB, North RA, Verkhratsky A (2010) The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 199:93-147.

Burnstock G, Kennedy C (2011) P2X receptors in health and disease. Adv Pharmacol 61:333-372.

Domenq M, Perez-Samartin A, Aparicio D, Alberdi E, Pampliega O, Burnstock G, Kennedy C (2011) P2X receptors in retinal ganglion cell death after acute elevation of intraocular pressure. Invest Ophthalmol Vis Sci 52:2798-2809.

North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013-1067.

Sugiyama T. Role of P2X receptors in neuronal death in the retina. Neural Regen Res. 2014;9(6):579-581. www.nrronline.org

Morigiwa K, Quan M, Murakami M, Yamashita M, Fukuda Y (2000) P2 purinoceptor expression and functional changes of hypoxia-activated cultured rat retinal microglia. Neurosci Lett 282:153-156.

Niyadurupola N, Sidaway P, Ma N, Rhodes JD, Broadway DC, Sanderson J (2013) P2X receptor activation mediates retinal ganglion cell death in a human retina model of ischemic neurodegeneration. Invest Ophthalmol Vis Sci 54:2163-2170.

North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013-1067.

Sugiyama T. Role of P2X receptors in neuronal death in the retina. Neural Regen Res. 2014;9(6):579-581.