ORIGINAL ARTICLE

4-Hydroxybenzyl-substituted amino acid derivatives from Gastrodia elata

Qinglan Guo, Yanan Wang, Sheng Lin, Chenggen Zhu, Minghua Chen, Zhibo Jiang, Chengbo Xu, Dan Zhang, Huailing Wei, Jiangong Shi*

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

Received 16 January 2015; received in revised form 26 February 2015; accepted 26 February 2015

KEY WORDS
Gastrodia elata Blume; Orchidaceae; 4-Hydroxybenzyl-substituted amino acid derivatives; Pyroglutamate derivatives; Inhibitory activity

Abstract Seven new 4-hydroxybenzyl-substituted amino acid derivatives (1–7), together with 11 known compounds, were isolated from an aqueous extract of the rhizomes of Gastrodia elata Blume. Their structures were determined by spectroscopic and chemical methods. Compounds 1–3 are pyroglutamate derivatives containing 4-hydroxybenzyl units at the N atom and 4–7 are the first examples of natural products with the 4-hydroxybenzyl unit linked via a thioether bond to 2-hydroxy-3-mercaptopropanoic acid (4–6) and 2-hydroxy-4-mercaptobutanoic acid (7), which would be biogenetically derived from cysteine and homocysteine, respectively. The structures of 1 and 2 were verified by synthesis, while the absolute configurations of 4, 5 and 7 were assigned using Mosher’s method based on the MPA determination rule of ΔδRS values. The known compound 4-(hydroxymethyl)-5-nitrobenzene-1,2-diol (8) exhibited activity against Fe2+-cysteine induced rat liver microsomal lipid peroxidation with IC50 values of 9.99 × 10−6 mol/L.

© 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

*Corresponding author. Tel.: +86 10 83154789; fax: +86 10 63037757.
E-mail address: shijg@imm.ac.cn (Jiangong Shi).

Peer review under responsibility of Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.

http://dx.doi.org/10.1016/j.apsb.2015.02.002
2211-3835 © 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Gastrodia elata Blume is a holomycotrophic perennial plant of the Orchidaceae family, and is widely cultivated in several provinces of China to meet the demands of pharmaceutical and food industries. The steamed and dried rhizome of *G. elata*, known as “Tianma” in Chinese, is used for the treatment of neuralgic and nervous disorders, such as headaches, migraine, dizziness, tetanus, neuralgia, and paralysis. It is also considered to have health benefits enhancing strength and virility and improving memory and blood circulation. Chemical and pharmacological studies indicated that the aqueous extract of *G. elata* rhizomes, together with biological assays, since their decoctions are practically used in a variety of formulations. A fraction mainly contained parishin and parishins B and C (total content >50%), and at dosages of 10.00–0.25 mg/kg, the purified parishins improved the impaired memory in mice caused by scopolamine or cycloheximide. In addition, 23 known compounds were characterized from the extract, and a minor component 6-(4-hydroxybenzyl)-adenosine (NHBA) was isolated as the key sedative and hypnotic constituent of the extract, exhibiting significant activity at a dosage of 0.2 mg/kg (i.p.) Therefore, we carried out further investigation on other minor components in the extract. This has resulted in isolation and characterization of seven new 4-hydroxybenzyl-substituted amino acid derivatives 1–7 (Fig. 1), along with 11 known compounds. Reported herein are the isolation, structure determination, and biological activity of these isolates.

2. Results and discussion

Compound 1 showed IR absorptions due to hydroxyl (3216 cm^{−1}), carboxyl (1734 cm^{−1} and 1658 cm^{−1}), and aromatic ring (1616 cm^{−1} and 1516 cm^{−1}) functionalities. Its molecular formula C₁₂H₁₃NO₄ was indicated by HR-ESI-MS at m/z 236.0925 [M+H]⁺ (Calcd. for C₁₂H₁₄NO₄ 236.0917) and the NMR spectral data (Table 1). The NMR spectral data of 1 showed that this compound consisted of 4′-hydroxybenzyl and pyroglutamate moieties. This was verified by the ^1H-1H COSY correlations of H-2/H3-3/H4-4 and HMBC correlations from H-2 to C-1, from H2-3 to C-1 and C-5, and from H2-4 to C-5. In particular, the HMBC correlations from H-7 to C-2 and C-5 located the 4′-hydroxybenzyl unit at the N atom of the pyroglutamate moiety. Thus, the planar structure of 1 was determined as N-(4′-hydroxybenzyl)pyroglutamate. The absolute configuration of 1 was assigned by synthesis of enantiomers (+)-(S)- and (−)-(R)-[N-(4′-hydroxybenzyl)]pyroglutamates, starting with L- and D-glutamic acids, respectively. The CD and specific rotation data of 1 were consistent with those of (+)-(S)-[N-(4′-hydroxybenzyl)]pyroglutamate. Therefore, the structure of compound 1 was determined as shown.

Compound 2 has the molecular formula C₁₄H₁₇NO₄ as indicated by the HR-ESI-MS and NMR data (Table 1 and Section 4). Comparison of the NMR data of 2 and 1 indicated the presence of an ethoxy group at δ_H 4.11 (q, 2H, J=7.2 Hz) and δ_C 61.7 and 14.4], and shielded shifts of C-1 and C-5 by Δδ_C = 0.7 ppm and −0.6 ppm, respectively in 2. This revealed that 2 is the ethyl ester of 1, which was confirmed by the HMBC correlation from OCH₂CH₃ to C-1 in the HMBC spectrum of 2. The CD and specific rotation data of 2 were similar with those of 1, indicating that the two compounds have the same configuration, which was further confirmed by synthesis of the enantiomers, ethyl (+)-(S)- and (−)-(R)-[N-(4′-hydroxybenzyl)]pyroglutamates. The CD and specific rotation data of 2 were in agreement with those of the former enantiomer. Thus, the structure of compound 2 was determined as shown.

The molecular formula C₁₄H₁₇NO₄ of compound 3 was determined from its HR-ESI-MS and NMR data (Table 1 and Section 4). Comparison of the NMR data of 3 and 2 suggests that 3 is an analog of 2 with an additional 4′-hydroxybenzyl unit substituted at C-3′. This was confirmed by the ^1H-1H COSY correlations of H-2/H3-3/H4-4 and HMBC correlations of H-2/C-1 and C-5; H-3/C-1 and C-5; H2-4/C-5; OCH₂CH=CH-1; 4″-OH/ C-3″, C-4″′, and C-5″; H-7/C-2′, C-3′, C-4′, C-1″, C-2″, and C-6″; 4″-OH/C-3′, C-4′, and C-5′; H-7/C-1′, C-2′, C-2″, and C-6′. Similarity of the CD and specific rotation data between 3 and 2 suggested the same 2(S) configuration for the two compounds. Thus, compound 3 was determined as ethyl (+)-(S)-[N-(4′-hydroxy-3′-(4′-hydroxybenzyl)benzyl)]pyroglutamate.
Compound 4 has the molecular formula C₁₁H₁₄O₄S as indicated by the HR-ESI-MS and NMR data (Table 1 and Section 4). Comparing the NMR data between 4 and the synthetic methyl S-(4-hydroxybenzyl)-l-cysteinate, the chemical shift of C-2 (δ_C 70.4) and the presence of an exchangeable hydroxyl proton [δ_H 5.75 (d, 1H, J = 6.0 Hz)] in the NMR spectra of 4 in DMSO-d₆ demonstrated the replacement of the amino group in the synthetic compound by a hydroxyl group in 4. This was proved by the two- and three-bond correlations from H-2 to C-7; from H-7 to C-1, C-2' (C-6'), and C-3; from OH to C-1, C-2, and C-3; and from OCH₃ to C-1 in the HMBC spectrum of 4. The absolute configuration at C-2 in 4 was determined by the modified Mosher’s method.²² Esterification of 4 with (−)-(R)- and (−)-(S)-α-methoxyphenylacetic acid (MPA) afforded the corresponding derivatives, 4-bis-(R)-MPA and 4-bis-(S)-MPA. Since the MPA moiety at C-4 of the benzyl unit is away from the chiral center (C-2) in the bis-MPA esters, the chemical shift change of protons around C-2 is mainly induced by the MPA moiety at C-2. From the MPA determination rule based on the ∆δ_C values (Fig. 2), the configuration of 4 was assigned as 2S. Therefore, the structure of compound 4 was determined as shown.

Compound 5 (C₁₂H₁₄O₅S) is an analog of 4, as indicated by its spectroscopic data (Table 1 and Section 4). Comparison of the NMR data of 5 and 4 indicated that the methoxyl group in 4 was substituted by an ethoxyl group [δ_H 4.09 (q, 2H, J = 7.0 Hz, OCH₂CH₃) and δ_H 1.19 (t, 3H, J = 7.0 Hz, OCH₃CH₃); and δ_C 60.2 and δ_C 14.1] in 5. The HMBC correlations from OCH₂CH₃ to C-1 confirmed the ester linkage of the ethoxyl group. The configuration of 5 was verified by Mosher’s method (Fig. 2). Thus, compound 5 was determined as ethyl (−)-(S)-2-hydroxy-3-[(4-hydroxybenzyl)thio]propanoate.

The spectroscopic data of compound 6 indicated that it is the acid form of 4 and 5. The NMR data of 6 demonstrated a deshielded shift of the C-1 resonance (∆δ_C > +3.0 ppm), as compared with that of 4 or 5, in addition to the absence of the methoxyl or ethoxyl group. An ethanol solution of 6 was treated with thionyl chloride (SOCl₂) to yield 5. Therefore, compound 6 was determined as (−)-(S)-2-hydroxy-3-[(4-hydroxybenzyl)thio]propanoic acid.

The spectroscopic data of compound 7 indicated that it is an isomer of 5. Comparing the NMR data of these two compounds...
demonstrated that instead of containing an ethyl 2-hydroxypropanoate moiety as in 5, compound 7 contained a methyl 2-hydroxybutyrate moiety. The 1H-H COSY correlations of H-2/H-3/C-1, C-2, and C-4; H-3/C-1, C-2, and C-4; H-2/C-2 and C-3, and OCH3/C-1, along with their chemical shifts, confirmed the presence of the methyl 2-hydroxybutyrate moiety with the sulfur atom substituted at C-4 in 7. In addition, the HMBC correlations from H2-4 to C-7 and from H2-7 to C-4 verified the 4'-hydroxybenzyl unit located at the sulfur atom. The 2R configuration of 7 was determined by using the same protocol as described for 4 and 5 (Fig. 2). Therefore, compound 7 was determined as methyl (−)-(−)-(R)-2-hydroxy-4′(4'-hydroxybenzyl)thiobutyrate.

The acid/ester pair of 1/2 and the ester ethyl ester 3 are considered as natural products because HPLC-ESI-MS analysis using the ion extraction method demonstrated their occurrence in the crude extract or an CH3CN-eluted fraction without contacting with EtOH. In addition, methylation or ethylation of the acids and hydrolysis of the esters were unlikely to occur in the isolation procedure because refluxing the EtOH solution of L-[N-(4'-hydroxybenzyl)]glutamic acid only produced 1, whereas 2 was obtained by subsequent addition of thionyl chloride (SOCl2) in the solution. However, the esters 4, 5, and/or 7 may be artifacts because 6 was esterified by keeping the MeOH solution at room temperature for a month, producing the ester with the spectroscopic features identical to that of 4 (Figs. S125–S127 in Supporting information).

The known compounds were identified by comparing their spectroscopic data with the reported data as cyclo[glycine-L-5-(4′-hydroxybenzyl)lysine]23, 2-[4-(β-D-glucopyranosyl)-benzyl]citrates24, 1-ethyl citrate25, 6-ethyl citrate25, ethyl paraphenyl25, ethyl parahydroxyphenyl25, 1-(4'-hydroxyphenyl)propan-1,2-dione25, and 4-β-D-glucopyranosyl(1→6)-β-D-glucopyranosyldihydroxybenzyl alcohol25.

In the in vitro bioassays, compound 8 showed activity against Fe2+ -cysteine induced rat liver microsomal lipid peroxidation, with IC50 value of 9.99 ± 10−6 mol/L (the positive control, gluthathione, gave IC50 20.21 ± 10−6 mol/L). All other compounds isolated in this experiment were inactive at the same concentration. In addition, these compounds were also evaluated for the scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and their inhibitory activity against Fe2+ -cysteine-induced liver microsomal lipid peroxidation, several human cancer cell lines, HIV-1 replication, and all of them were inactive at a concentration of 10−5 mol/L.

3. Conclusion

Seven new 4-hydroxybenzyl-substituted amino acid derivatives (1–7), together with 11 known compounds, were isolated from an aqueous extract of the rhizomes of G. elata. Blume. Compounds 1–3 are pyroglutamate derivatives containing 4-hydroxybenzyl units at the N atom and 4–7 are the first examples of natural products with the 4-hydroxybenzyl unit linked via a thioether bond to 2-hydroxy-3-mercaptopropanoic acid (4–6) and 2-hydroxy-4-mercaptobutanonic acid (7), which would be biogenetically derived from cysteine and homocysteine, respectively. The enantiomers of compounds 1 and 2 were synthesized, and the absolute configurations of 4, 5 and 7 were assigned using Mosher’s method. These results, combined with our previous studies, provide an important clue for further studies of chemical transformation, structural modification, and biosynthesis of the diverse 4-hydroxybenzyl-substituted amino acid derivatives from the rhizome of G. elata, as well as for evaluations on other pharmacological models though the new compounds were inactive in the assays carried out in this study.

4. Experimental

4.1. General experimental procedures

Optical rotations were measured using a Rudolph Research Autopol III polarimeter. UV spectra were measured on a Cary 300 spectrometer. CD spectra were measured on a JASCO J-810 spectropolarimeter. IR spectra were recorded on a Nicolet 5700 FT-IR microscope spectrometer (FT-IR microscope transmission) by microspectroscopic transmission method. 1D- and 2D-NMR spectra were obtained on INOVA 400 MHz, 500 MHz, or SYS 600 MHz spectrometers (Varian), with solvent peaks serving as references (unless otherwise noted). ESI-MS data were measured with a Q-Trap LC/MS/MS (Turbo Ionspray source) spectrometer. HR-ESI-MS data were, in turn, measured on an AccuTOF-MS JMS-T100CS spectrometer (JEOL), and HR-EL-MS data were measured using a Micromass Autospec-Ultima ETOF spectrometer. Column chromatography was performed with silica gel (200–300 mesh, Qingdao Marine Chemical Inc., Qingdao, China) and Sephadex LH-20 (Pharmacia Biotech AB, Uppsala, Sweden), Toyopearl HW-40C and HW-40F (Tosoh Bioscience LLC, Tokyo, Japan), and MCI gel (CHP20P) (Mitsubishi Chemical Inc., Tokyo, Japan). HPLC separation was performed on an instrument with a Waters C18 (5 μm), and an YMC-Pack (250 mm × 10 mm, i.d.) semi-preparative column packed with Ph (5 μm). Glass precoated silica gel GF254 plates were used for TLC. Spots were visualized under UV light or by spraying with 5% H2SO4 in EtOH, followed by heating.

4.2. Plant material

The rhizomes of G. elata were collected at the plantation field of Xiaocao Ba, Yunnan province, China, in December 2009.
Plant identification was verified by Mr. Lin Ma (Institute of Materia Medica, Beijing 100050, China). A voucher specimen (No. ID-S-2384) was deposited at the herbarium of the Department of Medicinal Plants, Institute of Materia Medica, Beijing 100050, China.

4.3. Extraction and isolation

The steamed and air-dried G. elata rhizomes (50 kg) were pulverized and ultrasonicated with H2O (150 L × 3 x 1 h). The aqueous extracts were combined and evaporated under reduced pressure to yield a concentrated solution (50 L), which was loaded on a macroporous adsorbent resin (HPD-100, 30 kg) column (20 cm × 200 cm), and eluted successively with H2O (50 L), 30% EtOH (150 L), 50% EtOH (120 L) and 95% EtOH (80 L) to yield four corresponding fractions A–D. After removing the solvent under reduced pressure, fraction C (1.9 kg) was chromatographed over MCI gel (CHP 202P, 10 L), with successively eluting using H2O (30 L), 30% EtOH (70 L), 50% EtOH (70 L), 95% EtOH (30 L) and Me2CO (20 L), to afford fractions C1–C5.

Fraction C3 (237 g) was subjected to column chromatography (CC) over silica gel, eluting with a gradient of increasing MeOH concentration (0–100%) in EtOAc followed by 30% EtOH, to yield fractions C3-1–C3-5 based on TLC analysis. Fraction C3-1 (27.3 g) was separated by silica gel CC (petroleum ether-ethyl acetate, 50:1 v/v) to give C3-1–1-C3-1-1. Separation of C3-1-1 (780 mg) by RP flash CC (10%–70% MeOH in H2O) afforded C3-1-1-1-C3-1-1-1. Purification of C3-1-1-1 (120 mg) by HPLC (C18 column, 2.0 mL/min, 45% MeOH in H2O) gave 1 (34 mg, tR = 28.7 min), and C3-1-1-1 (42.5 mg) by HPLC (45% MeCN in H2O) gave 2 (22 mg, tR = 18.2 min, C18 column, 2.0 mL/min). Separation of C3-1-1-1 (900 mg) by silica gel CC (CHCl3–MeOH, 15:1 v/v) yielded subfractions C3-1-1-1, C3-1-1-2, of which C3-1-1-2 (234 mg) was further fractioned by CC over Sephadex LH-20 (MeOH-H2O, 1:1 v/v) to obtain C3-1-1-2-1 and C3-1-1-2-2.3.

4.3.2. Ethyl (+)-(3)-[N-(4'-hydroxybenzyl)]pyroglutamate (2)

Colorless gum; [α]D +40.2 (c 0.09, MeOH); UV (MeOH) λmax (logε): 203 (3.36), 226 (3.22), 277 (2.84) nm; CD (MeOH) 224 (Δε +7.8) nm; IR (Nujol): νmax 2927, 1890, 1733, 1679, 1597, 1517, 1419, 1367, 1269, 1230, 1103, 1031, 989, 838 cm−1; 1H NMR (CD3OD, 600 MHz) data, see Table 1; 13C NMR (CD3OD, 150 MHz) data, see Table 1; (+)-ESI-MS m/z 236 [M+H]+, 258 [M+Na]+, 274 [M+K]+, 471 [2M+H]+, 493 [2M+Na]+; (+)-HR-ESI-MS m/z 236.0925 [M+H]+ (Calcd. for C13H16NaO4, 236.0917).

4.3.3. Ethyl (+)-(3)-[N-(4'-hydroxy-5'-4'-hydroxybenzyl)benzyl]pyroglutamate (3)

Colorless gum; [α]D +3.1 (c 0.19, MeOH); UV (MeOH) λmax (logε): 204 (3.39), 227 (2.82), 279 (2.16) nm; CD (MeOH) 222 (Δε +1.7) nm; IR (Nujol): νmax 3304, 3017, 2981, 2930, 1739, 1668, 1612, 1513, 1444, 1368, 1265, 1209, 1111, 1017, 963, 913, 827 cm−1; 1H NMR (MeCO-d4, 600 MHz) data, see Table 1; 13C NMR (MeCO-d4, 150 MHz) data, see Table 1; (+)-ESI-MS m/z 370 [M+H]+, 392 [M+Na]+, 408 [M+K]+; (+)-HR-ESI-MS m/z 370.1661 [M+H]+ (Calcd. for C21H23NO4Na, 370.1649), 392.1487 [M+Na]+ (Calcd. for C21H23NO4Na, 392.1468).

4.3.4. Methyl (−)-(2)-hydroxy-3-[(4'-hydroxybenzyl)thio]propanoate (4)

White amorphous powder; [α]D +68.7 (c 0.02, MeOH); UV (MeOH) λmax (logε): 226 (4.32), 279 (2.73) nm; IR (Nujol): νmax 3366, 3021, 2955, 2924, 1943, 1738, 1677, 1612, 1514, 1443, 1225, 1143, 1098, 1012, 970, 837 cm−1; 1H NMR (CD3OD-d6, 500 MHz) data, see Table 1; 13C NMR (CD3OD-d6, 125 MHz) data, see Table 1; (+)-HR-ESI-MS m/z 265.0508 [M+Na]+ (Calcd. for C11H17O2Na, 265.0505).

4.3.5. Ethyl (+)-(2)-hydroxy-3-[(4'-hydroxybenzyl)thio]propanoate (5)

White powder; [α]D +34.2 (c 0.04, MeOH); UV (MeOH) λmax (logε): 227 (4.28), 279 (2.83) nm; IR (Nujol): νmax 3572, 2983, 2927, 1890, 1733, 1673, 1612, 1596, 1514, 1446, 1370, 1224, 1097, 1024, 837 cm−1; 1H NMR (CD3OD-d6, 500 MHz) data, see Table 1; 13C NMR (CD3OD-d6, 125 MHz) data, see Table 1; (+)-HR-ESI-MS m/z 257.0837 [M+H]+ (Calcd. for C12H16O3S, 257.0842), 279.0659 [M+Na]+ (Calcd. for C13H18O3Na, 279.0662).

4.3.6. (−)-(3)-2-Hydroxy-3-[(4'-hydroxybenzyl)thio]propanoate (6)

Colorless gum; [α]D +8.51 (c 0.80, MeOH); UV (MeOH) λmax (logε): 204 (4.33), 237 (3.31), 280 (2.49) nm; IR (Nujol): νmax 3290, 3020, 2921, 1894, 1729, 1612, 1597, 1514, 1445, 1368, 1235, 1097, 1044, 1022, 980, 835 cm−1; 1H NMR (MeOH-d4, 600 MHz) data, see Table 1; 13C NMR (MeOH-d4, 150 MHz) data, see Table 1; (+)-ESI-MS m/z 227 [M−H]−, 455 [2M−H]−; (+)-HR-ESI-MS m/z 226.0925 [M+H]+ (Calcd. for C13H16NaO4, 236.0917).
4.3.7. \((R)-(R)-2\text{-Hydroxy}-4-(4'\text{-hydroxybenzyl})\text{thio}\text{butyrate (7)\}

White powder; \([\delta]_{D}^{20} = -61.7 (c 0.01, \text{MeOH}); \text{UV (MeOH)} \lambda_{\text{max}} \text{(log): } 222 (4.14), 278 (2.77) \text{ nm; IR (Nujol): } \nu_{\text{max}} = 3352, 2956, 2919, 1891, 1733, 1680, 1613, 1597, 1514, 1443, 1364, 1305, 1234, 1206, 1142, 1097, 1024, 925, 838, 802 \text{ cm}^{-1}; \text{H NMR (DMSO-d_{6}, 500 MHz) data, see Table 1; } ^{13}\text{C NMR (DMSO-d_{6}, 125 MHz) data, see Table 1; } \text{(+)\text{-HR-ESI-MS m/z 279.0662 [M+Na]^{+}} (C_{12}H_{18}O_{5}Nz, 279.0662).}

4.4. Synthesis of I and 2

To a solution of \(\text{L- or D-glutamic acid (2 g) in MeOH (30 mL), 2-hydroxybenzaldehyde (3 g) and anhydrous Na}_{2}\text{CO}_{3} (3 g) were added. The mixture was stirred at r.t. for 4 h, cooled to 0 °C, and NaBH_{4} (1 g) was slowly added by keeping the temperature at 0 – 5 °C. The mixture was stirred at r.t. for 40 min, and acidified with 2 mol/L HCl to pH 3 at 0 – 5 °C to produce precipitate, which was collected by filtration, washed with cold water, and dried to afford \(\text{L- or D-[N-(4-hydroxybenzyl)]glutamic acid (~1.4 g).\}

A suspension of \(\text{L- or D-[N-(4-hydroxybenzyl)]glutamic acid (200 mg) in ethanol (15 mL) was refluxed for 5 h. The resulting solution was filtered, followed by evaporation of the filtrate, to afford \((+)\text{-}(S)\text{-[N-(4-hydroxybenzyl)]pyroglyutamate (126 mg from \(\text{L- or D-[N-(4-hydroxybenzyl)]glutamic acid or } \text{(--)\text{-}[N-(4-hydroxybenzyl)]glutamic acid. \text{(+)\text{-}(S)\text{-[N-(4-hydroxybenzyl)]pyroglyutamate: colorless gum; } \delta_{D}^{20} = 49.8 (c 1.6, \text{MeOH}); \text{CD (MeOH)} 223 (\Delta\epsilon 11.9) \text{ nm; } ^{1}\text{H NMR (400 MHz, CD}_{3}\text{COCD}_{3}): \delta 7.06 \text{ (d, 2H, } J = 7.6 \text{ Hz, H-2'6')}, 6.78 \text{ (d, 2H, } J = 7.6 \text{ Hz, H-3'5')}, 4.93 \text{ (d, 1H, } J = 14.8 \text{ Hz, H-7a}), 3.97 \text{ (d, 1H, } J = 8.4 \text{ Hz, H-2}), 3.82 \text{ (d, 1H, } J = 14.8 \text{ Hz, H-7a}).}

4.5. Synthesis of bis-(R)-MPA and bis-(S)-MPA esters of 4, 5, and 7

\(\text{R- or S-MPA (~10 mg) was added to solutions of 4, 5, or 7 (~0.5 mg), EDCl (~10 mg), and DMAP (~5 mg) in freshly distilled methylene chloride (3 ml), and kept at r.t. overnight. The reaction mixtures were separated by preparative TLC (mobile phase: petroleum ether/MeCO}_{2}:2:1 v/v) to yield 4-bis-(R)-MPA or 4-bis-(S)-MPA from 4, 5-bis-(R)-MPA or 5-bis-(S)-MPA from 5, and 7-bis-(R)-MPA or 7-bis-(S)-MPA from 7.} \text{4-Bis-(R)-MPA: } ^{1}\text{H NMR (400 MHz, CDCl}_{3}): \delta 7.23 \text{ (d, 2H, } J = 8.4 \text{ Hz, H-2',6'), 6.92 \text{ (d, 2H, } J = 8.4 \text{ Hz, H-3',5'), 5.28 \text{ (dd, 1H, } J = 7.6, \text{ 4.0 Hz, H-2'), 3.69 \text{ (s, 3H, } H-7'), 3.61 \text{ (s, 3H, OCH}_{3}), 2.76 \text{ (dd, 1H, } J = 14.4, 4.0 \text{ Hz, H-3a), 2.76 \text{ (dd, 1H, } J = 14.4, 7.6 \text{ Hz, H-3b), 4-Bis-(S)-MPA: } ^{1}\text{H NMR (400 MHz, CDCl}_{3}): \delta 7.10 \text{ (d, 2H, } J = 8.8 \text{ Hz, H-2',6'), 6.88 \text{ (d, 2H, } J = 8.8 \text{ Hz, H-3',5'), 5.28 \text{ (dd, 1H, } J = 6.8, 4.8 \text{ Hz, H-2'), 3.71 \text{ (s, 3H, } \text{-OCH}_{3}), 3.50 \text{ (s, 2H, } H-2',7'), 2.73 \text{ (m, 2H, H-2'), 3 -Bis-(R)-MPA: } ^{1}\text{H NMR (400 MHz, CDCl}_{3): \delta 7.23 \text{ (d, 2H, } J = 8.8 \text{ Hz, H-2',6'), 6.92 \text{ (d, 2H, } J = 8.8 \text{ Hz, H-3',5'), 5.26 \text{ (dd, 1H, } J = 7.2, 3.6 \text{ Hz, H-2'), 4.08 \text{ (q, 2H, } J = 7.2 \text{ Hz, OCH}_{2}CH}_{3}, 3.70 \text{ (s, 2H, H-2'), 2.84 \text{ (dd, 1H, } J = 14.8, 3.6 \text{ Hz, H-3a), 2.77 \text{ (dd, 1H, } J = 14.8, 7.2 \text{ Hz, H-3b), 1.12 \text{ (t, 3H, } J = 7.2 \text{ Hz, OCH}_{2}CH}_{3}, 5.30 \text{ (s, 2H, } H-2',7'), 2.74 \text{ (m, 2H, H-2'), 1.21 \text{ (t, 3H, } J = 7.2 \text{ Hz, OCH}_{2}CH}_{3}, 6 -Bis-(R)-MPA: } ^{1}\text{H NMR (400 MHz, CDCl}_{3): \delta 7.23 \text{ (d, 2H, } J = 8.4 \text{ Hz, H-2',6'), 6.93 \text{ (d, 2H, } J = 8.4 \text{ Hz, H-3',5'), 5.18 \text{ (dd, 1H, } J = 6.4, 6.0 \text{ Hz, H-2'), 3.60 \text{ (s, 2H, H-2'), 3.56 \text{ (s, 3H, OCH}_{3}), 2.36 \text{ (m, 2H, H-2'), 2.06 \text{ (m, 2H, H-3').} -Bis-(S)-MPA: } ^{1}\text{H NMR (400 MHz, CDCl}_{3): \delta 7.20 \text{ (d, 2H, } J = 8.4 \text{ Hz, H-2',6'), 6.94 \text{ (d, 2H, } J = 8.4 \text{ Hz, H-3',5'), 5.16 \text{ (dd, 1H, } J = 7.6, 4.8 \text{ Hz, H-2'), 3.71 \text{ (s, 3H, OCH}_{3})}, 3.52 \text{ (2H, H-2'), 2.15 \text{ (m, 2H, H-2'), 2.00 \text{ (m, 2H, H-3'}).} \}

4.6. Synthesis of methyl \(S\text{-}[4-(4-hydroxybenzyl)]\text{-l-cysteinate}\)

Methyl l-cysteinate (10 mg) and 4-hydroxybenzylalcohol (13 mg) were added to 5 mL of 2 mol/L HCl. The mixture was stirred at r.t.
for 20 min, and extracted with EtOAc (5 × 3 mL). The organic layer was evaporated under reduced pressure. The residue was chromatographed over Toyopearl HW-40F, using H2O as the solvent. The compound was purified by chromatography over Toyopearl HW-40F, using H2O as the solvent. The compound was purified by column chromatography over silica gel (14 mg): white amorphous powder, [α]D20 +37.6 (c 2.43, MeOH); 1H NMR (DMSO-d6, 400 MHz): δ 8.4 Hz, H-3 (2H), 8.4 Hz, H-5 (2H), 7.12 (2H, J = 8.4 Hz, H-2', 6'), 8.85 (3H, OH and NH2). 13C NMR (DMSO-d6, 100 MHz): δ 30.7 (C-3), 35.1 (C-7), 41.9 (C-20), 51.8 (OCH3), 52.9 (C-2), 115.3 (C-3', 3S), 127.5 (C-1'), 130.1 (C-2', 6'), 156.6 (C-4'), 168.7 (C-1'). (+)-ESI-MS m/z: 242 [M+H]+, 242 [M+Na]+.

4.7. Antioxidant activity assay against Fe2+/cysteine-induced liver microsomal lipid peroxidation

See Ref. 34.

Acknowledgments

Financial support from the National Natural Science Foundation of China (NNSFC: Nos. 30825044 and 20932007), the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, No. IRT1007), and the National Science and Technology Project of China (Nos. 2012ZX09301002-002 and 2011ZX09307-002-01) is acknowledged.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.apsb.2015.02.002.

References

1. Xu JT, Guo SX. Retrospect on the research of the cultivation of Gastrodia elata Bl, a rare traditional Chinese medicine. Chin Med J 2000;113:686–92.

2. Jiangsu New Medical College. Dictionary of traditional Chinese medicine. Shanghai: Shanghai Science and Technology Publishing-House, 1997; Vol.1351–7.

3. Zhou J, Pu XY, Yang YB. Phenolic constituents of fresh Gastrodia elata Blume. Chin Sin Bull 1981:18:1118–20.

4. Shin EJ, Whang WK, Kim S, Bach JH, Kim JM, Nguyen XK, et al. Phenolics in mice: involvements of 5-HT1A receptor. J Pharmacol Sci 2010;113:404–8.

5. Huang NK, Lin JH, Lin JT, Lin CI, Liu EM, Lin CJ, et al. A new drug targeting the adenosinergic system for Huntington’s disease. PLoS One 2011:e22093.

6. Kan KY, Yu SJ, Jeong N, Hong JH, Anthony Jalina AM, Lee S, et al. p-Hydroxybenzyl alcohol prevents brain injury and behavioral impairment by activating Nrfl2, PDL, and neurotrophic factor genes in a rat model of brain ischemia. Mol Cells 2011;31:209–15.

7. Zhao X, Zou Y, Xu H, Fan L, Guo H, Li X, et al. Gastrodin protect primary cultured rat hippocampal neurons against amyloid-β peptide-induced neurotoxicity via ERK1/2-Nrf2 pathway. Brain Res 2012;1482:13–21.

8. Kim BW, Kopplu S, Kim JW, Lim HW, Hwang JW, Kim IS, et al. Modulation of LPS-stimulated neuroinflammation in BV-2 microglia by Gastrodia elata: 4-hydroxybenzyl alcohol is the bioactive candidate. J Ethnopharmacol 2012;139:549–57.

9. Chen M, Lin L, Li L, Zhu C, Wang X, Wang Y, et al. Enantiomers of an indole alkaloid containing unusual dihydroxypropyl and 1,2, 4-thiadiazole rings from the root of Isatis indigotica. Org Lett 2012;14:5668–71.

10. Zhao F, Wang S, Lin S, Zhu C, Yue Z, Yu Y, et al. Natural and unnatural anthraquinones isolated from the ethanol extract of the roots of Knoaeria valerioides, Acta Pharm Sin B 2012;2:260–6.

11. Yu Y, Zhu C, Wang S, Song W, Yang Y, Shi J. Homocysteic alkaloids with amino acid units from the flower buds of Lonicera japonica. J Nat Prod Res 2013;15:492–501.

12. Wang F, Jiang YP, Wang XL, Bu PB, Lin S, et al. Aromatic glycosides from the flower buds of Lonicera japonica. J Asian Nat Prod Res 2013;15:526–534.

13. Tian Y, Guo Q, Xu W, Zhu C, Yang Y, Shi J. A minor diterpenoid with a new 6/5/7/3 fused-ring skeleton from Euphorbia microstachya. Org Lett 2014;16:3950–3.

14. Xu WD, Tian Y, Guo QL, Yang YC, Shi JG. Secoepoxurocanol, a minor diterpenoid with a new skeleton from Euphorbia microstachya. Chin Chem Lett 2014;25:1531–4.

15. Song WX, Yang YC, Shi JG. Two new β-hydroxy amino acid-coupled secoiridoids from the flower buds of Lonicera japonica: isolation, structure elucidation, semisynthesis, and biological activities. Chin Chem Lett 2014;25:1215–9.

16. Yu Y, Jiang Z, Song W, Yang Y, Li Y, Jiang J, et al. Glucosylated caffeoylquinic acid derivatives from the flower buds of Lonicera japonica. Acta Pharm Sin B 2015 http://dx.doi.org/10.1016/j.apsb.2015.01.012.

17. Wang K, Shi J, Liu Y, Zhao L, Zhang M, Chen M. Gastrodia elata Blume extract for preventing vascular dementia and the preparation method. China patent CN 200810132404.0. 2008 July 15.

18. Wang Y, Lin S, Chen M, Jiang B, Guo Q, Zhu C, et al. Chemical constituents from aqueous extract of Gastrodia elata. China J Chin Mater Med 2012;37:1775–81.

19. Huang YK, Chen YF, Fang JM, Lin CI, Chen WP, Lin YL. Neuroprotective principles from Gastrodia elata. J Nat Prod 2007;70:571–4.

20. Zhang Y, Li M, Kang RX, Shi JG, Liu GT, Zhang JJ. NBHA isolated from Gastrodia elata exerts sedative and hypnotic effects in sodium pentobarbital-treated mice. Pharmacol Biochem Behav 2012;102:450–7.

21. Zhao J, Ma M, Wang S, Li S, Cao P, Yang Y, et al. Bromophenols coupled with derivatives of amino acids and nucleosides from the red alga Rhodomela confervoides. J Nat Prod 2005;68:691–4.

22. Trost BM, Belletire JL, Godleski S, McDougal PG, Balkovec JM. On the use of the O-methylmandelate ester for establishment of absolute configuration of secondary alcohols. J Org Chem 1986;51:2370–4.

23. Zt JC, Lin S, Zhu CG, Yang YC, Shi JG. Minor constituents from the rhizomes of Gastrodia elata. J Med Chem 2004;47:8134–5.

24. Song Y, Xiao HB, Yang L, Wang ZT. Two new phenolic glycosides from the rhizome of Gastrodia elata. J Asian Nat Prod Res 2012;14:457–62.

25. Dias C, Dias M, Borges C, Almoter Ferreira MA, Paulo A, Nascimento J. Structural elucidation of natural 2-hydroxy di- and tricarbonyl acids and esters, phenylpropanoid esters and a glucosylated caffeoylquinic acid derivatives from the flower buds of Gastrodia elata. Chin J Chin Mater Med 2013;8:3902–11.

26. Chen J, Zhu C, Xu H, Ni X, Yang P. Study on chemical constituents of the root of Litsea cubeba. III. Chloroform portion and ethyl acetate portion from methanol extract. Chin J Pharm 2010;41:855–60.

27. Wang Y, Lin S, Chen M, Jiang B, Guo Q, Zhu C, et al. Chemical constituents from aqueous extract of Gastrodia elata. J Nat Prod Res 2012;14:457–62.

28. Dias C, Dias M, Borges C, Almoter Ferreira MA, Paulo A, Nascimento J. Structural elucidation of natural 2-hydroxy di- and tricarbonyl acids and esters, phenylpropanoid esters and a flavonoid from Antoneanae indicaensis using gas chromatographic/electron ionization, electrospray ionization and tandem mass spectrometric techniques. J Mass Spectrom 2003;38:1240–4.

29. Tang L, Li G, Yang B, Kuang H. Studies on the chemical constituents of Chorizanthus vallaris. Chin Tradit Herbal Drugs 2009;40:541–3.

30. Li G, Burgess K. A diversity oriented synthesis of 3–O-modified nucleoside triphosphates for DNA sequencing by synthesis. Bioorg Med Chem Lett 2003;16:3902–5.

31. Chen J, Zhu C, Xu H, Ni X, Yang P. Study on chemical constituents of the root of Litsea cubeba. II. Chloroform portion and ethyl acetate portion from methanol extract. Chin J Pharm 2010;41:504–8.

32. Xia Y, Li L, You X. Studies on chemical constituents of effective part of Gastrodia elata. China J Chin Mater Med 2002;27:35–6.

33. Takaya Y, Furukawa T, Miura S, Akutagawa T, Hotta Y, Ishikawa N, et al. Antioxidant constituents in distillation residue of awamori spirits. J Agric Food Chem 2007;55:75–9.
31. Metzler M, Haaf H. Dearylation and other cleavage reactions of diethylstilbestrol: novel oxidative pathways mediated by peroxidases. *Xenobiotica* 1985;15:41–9.

32. Zi J, Li S, Liu M, Gan M, Lin S, Song W, et al. Glycosidic constituents of the tubers of *Gymnadenia conopsea*. *J Nat Prod* 2008;71:799–805.

33. Macchalin S, Kadlecinkova K, Bar N, Decroix B. The improved synthesis of enantiopure (S)-N-arylmethyl-5-oxoproline. *Synth Commun* 1998;28:3619–24.

34. Xie P, Jiao XZ, Liang XT, Feng WH, Wei HL, Liu GT. Synthesis and antioxidative activity of squamosamide cyclic analogs. *Acta Acad Med Sin* 2004;26:372–8.