Search for $B^- \rightarrow \Lambda \pi \nu \bar{\nu}$ with the BABAR experiment

J. P. Lees, V. Poireau, and V. Tisserand
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France

E. Grauges
Universitat de Barcelona, Facultat de Física, Departament ECM, E-08028 Barcelona, Spain

A. Palano
INFN Sezione di Bari and Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy

G. Eigen
University of Bergen, Institute of Physics, N-5007 Bergen, Norway

D. N. Brown and Yu. G. Kolomensky
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

M. Fritsch, H. Koch, and T. Schroeder
Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

R. Cheaibb, C. Heartyab, T. S. Mattisonb, J. A. McKennab, and R. Y. Sob
Institute of Particle Physicsa; University of British Columbiab, Vancouver, British Columbia, Canada V6T 1Z1

V. E. Blinovabc, A. R. Buzykaeva, V. P. Druzhininab, V. B. Golubevab, E. A. Kozyrevab, E. A. Kravchenkoab, A. P. Onuchinabc, S. I. Serednyakovab, Yu. I. Skovpenab, E. P. Solodovab, and K. Yu. Todyshevb
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Novosibirsk State University, Novosibirsk 630090, Novosibirsk State Technical University, Novosibirsk 630092, Russia

A. J. Lankford
University of California at Irvine, Irvine, California 92697, USA

B. Dey, J. W. Gary, and O. Long
University of California at Riverside, Riverside, California 92521, USA

A. M. Eisner, W. S. Lockman, and W. Panduro Vazquez
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

D. S. Chao, C. H. Cheng, B. Echenard, K. T. Flood, D. G. Hitlin, J. Kim, Y. Li, T. S. Miyashita, P. Ongmongkolkul, F. C. Porter, and M. Röhrken
California Institute of Technology, Pasadena, California 91125, USA

Z. Huard, B. T. Meadows, B. G. Pushpawela, M. D. Sokoloff, and L. Sur
University of Cincinnati, Cincinnati, Ohio 45221, USA

J. G. Smith and S. R. Wagner
University of Colorado, Boulder, Colorado 80309, USA

D. Bernard and M. Verderi
Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
N. Neria and F. Palomboab
\textit{INFN Sezione di Milanoa; Dipartimento di Fisica, Universit\`a di Milanob, I-20133 Milano, Italy}

L. Cremaldi, R. Godangc and D. J. Summers
\textit{University of Mississippi, University, Mississippi 38677, USA}

P. Taras
\textit{Universit\`e de Montr\`eal, Physique des Particules, Montr\`eal, Qu\`ebec, Canada H3C 3J7}

G. De Nardo and C. Sciacca
\textit{INFN Sezione di Napoli and Dipartimento di Scienze Fisiche, Universit\`a di Napoli Federico II, I-80126 Napoli, Italy}

G. Raven
\textit{NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands}

C. P. Jessop and J. M. LoSecco
\textit{University of Notre Dame, Notre Dame, Indiana 46556, USA}

K. Honscheid and R. Kass
\textit{Ohio State University, Columbus, Ohio 43210, USA}

A. Gaza, M. Margoniab, M. Posoccoa, G. Simiab, F. Simonettoab, and R. Stroiliab
\textit{INFN Sezione di Padovaa; Dipartimento di Fisica, Universit\`a di Padovab, I-35131 Padova, Italy}

S. Akar, E. Ben-Haim, M. Bomben, G. R. Bonneaud, G. Calderini, J. Chauveau, G. Marchiori, and J. Ocariz
\textit{Laboratoire de Physique Nucl\'eaire et de Hautes Energies, Sorbonne Universit\`e, Paris Diderot Sorbonne Paris Cit\`e, CNRS/IN2P3, F-75252 Paris, France}

M. Biasiniab, E. Manonia, and A. Rossia
\textit{INFN Sezione di Perugiaa; Dipartimento di Fisica, Universit\`a di Perugiab, I-06123 Perugia, Italy}

G. Batignaniab, S. Bettariniab, M. Carpinelliab, G. Casarosaab, M. Chraszcza, F. Fortiab, M. A. Giorgiab, A. Lusianiac, B. Oberhopab, E. Paoloniab, M. Ramaa, G. Rizzoab, J. J. Walsha, and L. Zaniab
\textit{INFN Sezione di Pisaa; Dipartimento di Fisica, Universit\`a di Pisab; Scuola Normale Superiore di Pisac, I-56127 Pisa, Italy}

A. J. S. Smith
\textit{Princeton University, Princeton, New Jersey 08544, USA}

T. Adye and F. F. Wilson
\textit{Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom}

D. Aston, C. Cartaro, M. R. Convery, J. Dorfan, W. Dunwoodie, M. Ebert, R. C. Field, B. G. Fulsom, M. T. Graham, C. Hast, W. R. Innesf, P. Kim, D. W. G. S. Leith, S. Luitz, D. B. MacFarlane, D. R. Muller, H. Neal, B. N. Ratcliff, A. Roodman, M. K. Sullivan, J. Va’vra, and W. J. Wisniewski

\textit{IRFU, CEA, Universit\`e Paris-Saclay, F-91191 Gif-sur-Yvette, France}
We search for the rare flavor-changing neutral current process $B^- \to \Lambda p \nu \bar{\nu}$ using data from the BABAR experiment. A total of 424 fb$^{-1}$ of e^+e^- collision data collected at the center-of-mass energy of the $\Upsilon(4S)$ resonance is used in this study, corresponding to a sample of $(471 \pm 3) \times 10^6 B \bar{B}$ pairs. Signal $B^- \to \Lambda p \nu \bar{\nu}$ candidates are identified by first fully reconstructing a B^+ decay in one of many possible exclusive decays to hadronic final states, then examining detector activity that is not associated with this reconstructed B^+ decay for evidence of a signal $B^- \to \Lambda p \nu \bar{\nu}$ decay. The data yield is found to be consistent with the expected background contribution under a null signal hypothesis, resulting in an upper limit of $\mathcal{B}(B^- \to \Lambda p \nu \bar{\nu}) < 3.0 \times 10^{-5}$ at the 90% confidence level.

PACS numbers: 13.20.He, 12.38.Qk, 14.40.Nd
Flavor-changing neutral current (FCNC) processes are suppressed in the standard model (SM) of particle interactions due to their absence at tree level, appearing first at one-loop level. Consequently, they are an excellent place to look for evidence of new physics contributions, as heavy mediators could also occur in these loop processes, resulting in potentially measurable deviations from SM predictions. The process $B^- \to \Lambda \nu \bar{\nu}$ (CP conjugate processes are implied here and throughout this paper) is the baryonic analog of $B \to K^{(*)}\nu \bar{\nu}$, occurring in the SM via a FCNC $b \to s \nu \bar{\nu}$ transition through Z-penguin or W-box processes. In the case of $B^- \to \Lambda \nu \bar{\nu}$, two $q\bar{q}$ pairs are produced from the vacuum to yield the Λ and $\bar{\nu}$ in the final state (see Fig. 1). The branching fraction is predicted to be $B(B^\to \Lambda \nu \bar{\nu}) = (7.9 \pm 1.9) \times 10^{-7}$ [1].

Although the process $B \to K^{(*)}\nu \bar{\nu}$ has been searched for at B factory experiments [2,3], the sensitivity of these measurements is still far from the SM prediction for the branching fraction, leaving room for new physics contributions [1]. The challenge of these measurements lies in the fact that the $B \to K^{(*)}\nu \bar{\nu}$ decay possesses two (unobserved) neutrinos in the final state, which limits the kinematic constraints that can be used to suppress background contributions. While $B^- \to \Lambda \nu \bar{\nu}$ suffers from the same lack of kinematic constraints as $B \to K^{(*)}\nu \bar{\nu}$, the presence of two baryons in the final state, which can be cleanly reconstructed experimentally, provides much stronger rejection of backgrounds.

This paper presents a search for the decay $B^- \to \Lambda \nu \bar{\nu}$ using data recorded by the BaBar experiment at the PEP-II energy-asymmetric e^+e^- collider. These data were collected at the $T(4S)$ resonance and represent an integrated luminosity of 424 fb$^{-1}$ [3], corresponding to the production of $(47 \pm 3) \times 10^6 B\bar{B}$ pairs [3]. This is the first time that results of a search for this process are reported. The BaBar detector is described in detail in Refs. [1,3]. The charged-particle tracking system consists of a five-layer silicon vertex tracker and a 40-layer cylindrical drift chamber. Charged particle tracks are bent by a 1.5 T magnetic field produced by a superconducting solenoid, in order to enable momentum measurement. Identification of (anti)protons and other charged particles is based on measurement of the specific ionization, dE/dx, in the tracking detectors, in combination with information from the electromagnetic calorimeter and Cherenkov-photon angle information obtained from an array of fused silica quartz bars. Energy and position measurements for photons are provided by an electromagnetic calorimeter consisting of 6580 CsI(Tl) crystals arrayed as a cylindrical central barrel and a forward endcap with a conical geometry.

Simulated Monte Carlo (MC) event samples are used to develop the signal selection procedure and to estimate the selection efficiency. Studies of background channels are based on large samples of simulated events representing B^+B^- and $B^0\bar{B}^0$ production at the $T(4S)$, and continuum production of $e^+e^- \to q\bar{q}$ and $e^+e^- \to \tau^+\tau^-$. The $q\bar{q}$ simulation is separated into $\bar{\nu}\nu$ and light quark ($u\bar{d}, d\bar{u}, s\bar{s}$) samples. The $B\bar{B}$ samples are produced using EvtGen [3], while JETSET [10] is used for generation and hadronization of continuum background contributions, with EvtGen handling decays. For simulation of $\tau^+\tau^-$ production the KK [11] generator is used, and decays of τ leptons are simulated using the Tauola [12] package. These samples are then passed through a detector response simulation based on the GEANT4 [13] toolkit. The B^+B^-, $B^0\bar{B}^0$, and $\pi\pi$ simulation samples correspond to an integrated luminosity which is ten times that of data, whereas the remaining continuum samples have an integrated luminosity that is four times that of data. Signal simulation for $B^- \to \Lambda \nu \bar{\nu}$ is generated at the $T(4S)$ center-of-mass (CM) energy, where the B^- meson is required to decay to $B^- \to \Lambda \nu \bar{\nu}$, with $\Lambda \to p\pi^-$. The latter decay represents $(63.9 \pm 0.5)\%$ of the Λ decay branching fraction. The B^+ is allowed to decay generically according to the measured branching fractions [14]. The signal $B^- \to \Lambda \nu \bar{\nu}$ process is simulated as uniformly distributed in phase space (phase space model), but this is modified at the analysis level by weighting the $m_{\Lambda \nu \bar{\nu}}$ distribution according to the form factor model described in Ref. [1]. Other kinematic variables were found to have negligible impact on the signal efficiency and so were not similarly weighted; systematic uncertainties associated with the signal model are discussed later. A total of 4.053×10^6 simulated signal events are used in this analysis.

Because the decay $B^- \to \Lambda \nu \bar{\nu}$ has two unobserved neutrinos in the final state, it cannot be fully reconstructed. Instead, the analysis takes advantage of the
precisely known kinematics of the e^+e^- initial state and the exclusive decay $Y(4S)\to BB$. By reconstructing the decay of one of the two B mesons, referred to as the “tag B^* (B_{tag}), into a hadronic final state, all remaining particles in the event can then be inferred to be daughters of the other B, which is referred to as the “signal B” (B_{sig}) candidate. Moreover, the 4-vector of the B_{sig} can be determined independently of its decay products, from the B_{tag} momentum vector, $\vec{p}_{B_{\text{tag}}}$, and the known CM energy, E^*_{CM}: $|\vec{p}_{B_{\text{sig}}}^*| = \sqrt{(E^*_{\text{CM}}/2)^2 - m_B^2}$, where $\vec{p}_{B_{\text{sig}}}^*$ is the three-momentum vector of the B_{sig}, E^*_{CM} is the CM energy, and m_B is the B meson mass, with the direction of $\vec{p}_{B_{\text{sig}}}^*$ defined to be opposite to that of $\vec{p}_{B_{\text{tag}}}$, where the asterisks indicate quantities in the CM frame. The missing momentum four-vector, \vec{p}_{miss}^*, is determined by subtracting the CM four-momentum of all identified particles that are not used in the reconstruction of the B_{tag} from that of B_{sig}. Since the B_{tag} has been fully reconstructed, all missing momentum in the event is attributable to the B_{sig} candidate. This method has been used in several previous BABAR analyses, for examples see Refs. 2 10 17.

The reconstruction of B_{tag} candidates considers B decays into one of a large number of possible hadronic decay modes, $B \to SX$, where S is a “seed” meson, and X is an hadronic system consisting of a combination of up to five kaons or pions with a total charge of 0 or ±1. Although both neutral and charged B_{tag} candidates are reconstructed by this procedure, only B^\pm candidates are retained for the current study. The seed meson can be $D_{s(0)}^\pm$, $D_{s(0)}^{*\pm}$, $D_{s(0)}^{*\pm}$, or J/ψ. The D meson seeds are reconstructed as: $D^+ \to K_0^0\pi^+, K_0^0\pi^-\pi^+$, $K^0\pi^+\pi^+, K_+K^-, K^+K^0, K^+K^+, K^+\pi^+\pi^0$, $K^0\pi^+\pi^0, K_+K^-, K^+K^0, K^-\pi^+\pi^0$, $K^0\pi^+\pi^0, K_+K^-, K^0\pi^+\pi^0, K^0\pi^-\pi^0$, $K^0\pi^-\pi^0, D^0 \to K^-\pi^+, K^-\pi^0\pi^0$, $D^+ \to K^+\pi^-, K^+\pi^0\pi^0$, $D^+ \to K^+\pi^-\pi^0\pi^0$, $K_0^0\pi^0\pi^0, D^{*0} \to D^0\pi^0$, and $D^{*0} \to D^{*0}$. The D^{*0} seed decay consists of $D_s^{*+} \to D_s^+\gamma$; $D_s^+ \to \pi^+\pi^0$, and $K_0^0\pi^0\pi^0$. The J/ψ seed is reconstructed in the e^+e^- and $\mu^+\mu^-$ final states. In the decays above, $\pi^0 \to \gamma\gamma$, $K_0^0 \to \pi^+\pi^-$, and $\phi \to K^+K^-$. The output of the selector, \mathcal{L}_{BB}, is shown in Fig. 2 for events possessing a reconstructed B_{tag} with m_{ES} in the signal region. The BB processes peak towards $\mathcal{L}_{BB} = 1$ while continuum processes favor values closer to zero. Events with $\mathcal{L}_{BB} > 0.35$ are retained. This requirement rejects 76% of continuum background events and 16% of BB background events while retaining 82% of signal with respect to the nominal mass of this particle and the magnitude of ΔE. Only the best quality B_{tag} candidate is retained. Tagging efficiency is generally sub-percent 15. Additionally, individual B_{tag} modes are ranked based on the measured level of combinatorial misreconstruction, and modes with a high level of combinatorial background contributions are excluded from the analysis.

Correctly-reconstructed B_{tag} candidates exhibit a peak in the m_{ES} distribution near the B meson mass. Continuum processes and incorrectly reconstructed BB decays are referred to as “combinatorial background”. The interval 5.27 GeV/c2 < m_{ES} < 5.29 GeV/c2 is defined as the signal region, while the interval between 5.20 GeV/c2 < m_{ES} < 5.26 GeV/c2 is referred to as the sideband region.

Continuum background contributions, from non-resonant $e^+e^- \to q\bar{q}$ processes, produce a combinatorial component in the m_{ES} distribution, including in the signal region. This background contribution is suppressed using a multivariate likelihood constructed from six global event variables. The selector is designed to discriminate comparatively more jet-like non-resonant processes from the more isotropic decay topologies of $Y(4S) \to BB$ decays. The inputs are as follows:

- the ratio of the second and zeroth Fox-Wolfram moments 18, calculated using all reconstructed charged tracks and clusters of calorimeter energy in the event;
- the event thrust vector, the sum of the magnitudes of the momenta of all tracks and clusters projected onto the thrust axis, where the thrust axis is the axis that maximises the projection, and where the thrust vector is normalised with respect to the sum of the magnitudes of the momenta;
- the magnitude of the projection of the thrust vector onto the beam axis (z-axis);
- the cosine of the angle of the reconstructed B_{tag} direction with respect to the z-axis;
- the direction of the event’s missing momentum vector with respect to the z-axis;
- the cosine of the angle between the thrust axes of the decay daughters of the B_{tag} and of the B_{sig}.

All of these quantities are computed in the CM frame. The output of the selector, \mathcal{L}_{BB}, is shown in Fig. 2 for events possessing a reconstructed B_{tag} with m_{ES} in the signal region. The BB processes peak towards $\mathcal{L}_{BB} = 1$ while continuum processes favor values closer to zero. Events with $\mathcal{L}_{BB} > 0.35$ are retained. This requirement rejects 76% of continuum background events and 16% of BB background events while retaining 82% of signal
charged tracks, with total charge of ± 1 opposite to that of the B_{tag}. Signal events typically contain several low-energy clusters in the calorimeter arising from hadronic shower fragments that have not been correctly associated with reconstructed hadrons, from bremsstrahlung, or from beam-related sources. In contrast, physics background processes frequently also produce higher energy clusters attributable to daughters of π^0 decays and similar processes. To suppress these background contributions, E_{extra} (Fig. 3 (top)) is required to be less than 400 MeV; E_{extra} is the total energy of B_{sig} clusters where each cluster has lab-frame energy greater than 50 MeV. In events that pass this selection, these clusters are subsequently ignored.

The background MC does not accurately reproduce the event yield in data in either the signal or sideband region at this point in the selection. This deficiency has been observed in previous BARI analyses and is understood to be due to a combination of inaccurate branching fraction values and modeling of B_{tag} reconstruction efficiencies in the simulation. A two step procedure is applied in order to correct for these differences.

Events in the m_{ES} signal region can be divided into correctly reconstructed ("peaking") and combinatorial ("non-peaking") components. First, combinatorial background MC is used to estimate the combinatorial background contribution in the signal region relative to that in the sideband region; this is expressed as a ratio, R_{side}. This is a weighted average of ratios: the ratio of each MC type’s yield in the signal-region to sideband-region is calculated; then weighted according to the fraction of the total background MC in the sideband region comprising that MC type. The peaking component of B^+B^- MC in the signal region is excluded from the R_{side} calculation by using the $B^0\overline{B}^0$ ratio for B^+B^- events. The sideband data yield is scaled by R_{side} to estimate the combinatorial contribution in the m_{ES} signal region. As the size of the combinatorial background component depends on the relative contributions of the continuum and mis-reconstructed $B\overline{B}$ background components, the value of R_{side} is expected to vary depending on the signal selection criteria applied; after the signal selection described above, it is determined to have a value of $R_{\text{side}} = 0.215 \pm 0.001$, where the quoted uncertainty is due to MC statistics. Systematic uncertainties related to this method are discussed below. The scaled sideband data are used to model various selection variables for the non-peaking background component in the signal region.

Second, the non-peaking background component in the signal region is combined with the subset of B^+B^- MC in the signal region in which a B_{tag}’s reconstructed mass peaks around the known mass of a B meson; this subset of B^+B^- MC simulates the peaking contribution in the m_{ES} distribution. This B^+B^- peaking component is found to overestimate the B_{tag} yield in data, and hence is scaled by a factor $C_{\text{peak}} = 0.819 \pm 0.006$ to correctly

The B^+B^- signal candidates are identified by considering all activity in the detector which is not associated with the reconstructed B_{tag}. Since only the $\Lambda \rightarrow p\pi^-$ decay mode is considered in this analysis, B_{sig} candidates are required to possess exactly three
FIG. 4: Distribution of E_{extra}, calculated in the CM frame, in data and MC before (top) and after (bottom) application of the MC correction procedure for events with a reconstructed B_{tag} with m_{ES} within the signal region. In the upper plot, data are shown as points with error bars, while background MC is shown as stacked, shaded histograms. The expected distribution for simulated $B^{-} \rightarrow \Lambda p\pi^{-}$ events is shown overlaid for a branching fraction of 0.4×10^{-3} (dashed line), with yields given by the y-axis scale on the right-hand side. In the lower plot the shaded region is the sideband data scaled by R_{side} and the unshaded histogram is the m_{ES} peaking component of the $B^{+}B^{-}$ MC scaled by C_{peak}.

FIG. 5: The $p\pi^{-}$ invariant mass in events with a reconstructed B_{tag} with m_{ES} within the signal region, with three charged tracks satisfying the proton and antiproton selection and DOCA requirements. Data are shown as points with error bars, while the shaded region is the sideband data scaled by R_{side} and the unshaded histogram is the m_{ES} peaking component of the $B^{+}B^{-}$ MC scaled by C_{peak}.

represent the data. An example of the effect of this procedure is shown in Fig. 4 which demonstrates the improved agreement between data and MC distributions after the procedure is applied.

As the quantity C_{peak} represents a global correction to the B_{tag} yield, this correction is also applied to the signal efficiency. The reconstruction efficiency for $\Upsilon(4S)$ events containing a $B^{-} \rightarrow \Lambda p\nu\bar{\nu}$ decay is estimated to be approximately 0.07%, after requiring that events possess a B_{tag} with m_{ES} in the signal region and satisfy the signal selection described above. The remainder of the event selection optimization is performed “blind”, i.e., without knowledge of the data yield in the signal region until the selection procedure has been finalized.

Decays of B_{sig} candidates are expected to contain a proton-antiproton pair, and a single charged pion, where the (anti)proton with the same charge as the B_{tag} is presumed to be the daughter of the Λ. Tight (anti)proton particle identification criteria are applied to the baryon candidate tracks; no pion identification requirement is imposed on the third track. The (anti)proton selectors have an efficiency of 95% within the momentum range relevant to this analysis. A kinematic fit is imposed on the Λ daughter tracks, applying pion and proton mass hypotheses to the tracks and fitting the Λ vertex, including a constraint that the Λ originates within a B meson flight length of the event vertex. The three tracks are also required to have a DOCA ordering consistent with a $B^{-} \rightarrow \Lambda p\nu\bar{\nu}$ signal event, where DOCA is defined as the extrapolated distance of closest approach of a reconstructed track to the nominal event vertex. Due to the long mean lifetime of the Λ, the two $\Lambda \rightarrow p\pi^{-}$ decay daughters typically do not point to the interaction point, but the \bar{p} that is the daughter of the B_{sig} does and typically has the smallest DOCA. The p that is the daughter of the Λ carries most of the Λ momentum and typically has a smaller DOCA than the $p\pi^{-}$. This DOCA ordering requirement rejects 10% of signal events, but reduces the background rate by 24%. The resulting $p\pi^{-}$ invariant mass distribution, without any $L_{B\bar{B}}$ or E_{extra} requirements imposed, is shown in Fig. 5.

The Λ candidates are selected by requiring 1.112 GeV/c$^2 < m_{p\pi^-} < 1.120$ GeV/c2. If there is more than one such candidate in an event, the candidate with the highest vertex significance (the distance between the $p\pi^{-}$ vertex and primary event vertex, divided by its uncertainty) is selected. Following this selection,
background events within the nominal $Λ$ mass region
$(1.112 \text{ GeV}/c^2 < m_{p\pi^-} < 1.120 \text{ GeV}/c^2)$ are almost
entirely from real $Λ$ baryons, and from $q\bar{q}$ continuum
sources rather than $B\bar{B}$.

Once the $Λ$ candidate selection is defined, a simultane-
ous optimization of the $L_{B\bar{B}}$ and E_{extra} selection criteria
is performed, in which the expected branching fraction
limit in the absence of signal is used as the figure of merit.
This optimization yields the selection criteria values pre-
presented previously. The signal efficiency is estimated to
be $(0.034 \pm 0.001 \text{ (stat.)})\%$.

The background yield is determined by combining the
peaking background from $B^+B^−$ MC with the combi-
natorial background estimated from the m_{ES} sideband,
yielding a value of $2.3 \pm 0.7 \text{ (stat.)}$ events. The dominant
contribution of $1.7 \pm 0.6 \text{ (stat.)}$ arises from combinatorial
background sources.

Systematic uncertainties arise in the determination of
the signal efficiency and the estimation of the background
yield in the m_{ES} signal region. The combinatorial back-
ground yield in the m_{ES} signal region is determined
directly from data using the method described previously.
However, the shape of the combinatorial background dis-
tribution impacts the determination of the B_{tag} peaking
yield correction and hence the peaking yield correction
is anti-correlated with the sideband scaling ratio R_{side}.
Consequently, the relevant systematic uncertainty is due
to the extrapolation of the observed yield of combinatoric
events in the m_{ES} sideband to the m_{ES} signal region. The
ratio R_{side} is obtained from non-peaking background MC
($q\bar{q}, c\bar{c}, \tau^\pm\tau^−, B^{0}\bar{B}^0$, and non-peaking $B^+B^−$)
and its value depends on the relative mix of the continuum
and $B\bar{B}$ due to the difference in shape in the predicted m_{ES}
distributions of these two components. An uncertainty
of 17% on background yield and 16% on signal efficiency
is obtained by varying the shape of the m_{ES} distribu-
tion between that given by $B\bar{B}$ and continuum MC, and
determining the impact on the resulting signal efficiency
and background estimates.

The signal MC is produced using a phase-space model,
which is subsequently weighted into the model of Ref. [1],
based on the m_{SP} distribution. The impact of this
weighting on the signal efficiency is evaluated by modi-
fying the weighting scheme to include the other kin-
ematic quantities $m_{T\pi}$ and $θ_{B\pi}$ defined in that paper and
a systematic uncertainty of 9.6% is assigned to reflect the
model-dependence of the signal selection.

The remaining sources of systematic uncertainties are
attributed to the MC modeling of variables used in
the signal selection, and hence impact both the sig-
nal efficiency and the peaking background determina-
tions. The impact of the 3-track requirement and the
(anti)proton particle identification are evaluated using
standard $BABAR$ procedures [8] for the particle selectors
used in this analysis, in the kinematic region that is re-
levant for $B^− → A\pi\nu\bar{\nu}$ decays. An uncertainty of $1.3\%
is assigned to the background yield estimate and 1.4%
to the signal efficiency. To determine the impact of the
$Λ$ selection procedure, the $Λ$ yield is evaluated in the
m_{ES} sideband region, using a 4-vector sum of the p and
$π^−$ candidates to identify a $Λ$ control sample which is
independent of the kinematic fit procedure used in the
nominal signal selection. The relative $Λ$ yields deter-
mined from data and background MC, before and after
applying the nominal $Λ$ selection, are compared. The
difference in relative yields for data and MC is taken as
an uncertainty, resulting in a 13% correlated systematic
uncertainty on both the signal efficiency and background
estimate. This is associated with the DOCA ordering,
kinematic fit, vertex significance, and mass selection cri-
tera in the $Λ$ reconstruction.

The selection on the total energy of clusters intro-
duces a systematic uncertainty due to the possible mis-
modeling of low-energy clusters in the simulation. To
evaluate the impact, the cluster energies in the MC are
scaled so as to precisely match the E_{extra} distribution in
data. Parametrically, the level of data–MC agreement in
the E_{extra} distribution (see Fig. [1]) is found to be equiva-
 lent to applying a shift of 5 MeV per contributing energy
cluster. The signal efficiency and background yields are
then evaluated when the full signal selection is applied
to samples with cluster energies shifted by $±5 \text{ MeV}$. A
systematic uncertainty associated with the E_{extra} selec-
tion criterion corresponding to the average deviation in
the efficiency and background estimate is assigned, re-
sulting in 1.9% for the signal efficiency and 11% for the
background estimate. Systematic uncertainties are sum-
marized in Table I.

Source	Signal efficiency	Background
Signal weighting	9.6%	9.6%
MC modeling	16%	12%
Particle identif	1.4%	1.3%
A selection	13%	13%
E_{extra}	1.9%	11%

The $B^− → A\pi\nu\bar{\nu}$ branching fraction is evaluated ac-
cording to

$$B(B^− → A\pi\nu\bar{\nu}) = \frac{N_{\text{data}} - N_{\text{bg}}}{\epsilon sig × N_{B^±}},$$

where N_{data} and N_{bg} are the number of events observed
in data and the total estimated background yield, re-
spectively. The overall $B^− → A\pi\nu\bar{\nu}$ signal efficiency
including the $Λ → p\pi^−$ branching fraction is $\epsilon_{\text{sig}} =
(3.42 ± 0.08 \text{ (stat.)} ± 0.80 \text{ (sys.)}) \times 10^{-4}$, and $N_{B^±} =
(471 ± 3) \times 10^6$ is the estimated total number of charged
B mesons in the data sample [2]. It is assumed here
that $Y(4S) → B\bar{B}$ produces equal numbers of $B^{0}\bar{B}^0$ and
The branching fraction for the $B^+ \rightarrow \Lambda \bar{p} \nu \bar{\nu}$ decay is determined to be $\mathcal{B}(B^+ \rightarrow \Lambda \bar{p} \nu \bar{\nu}) = 0.4 \pm 1.1$ (stat.) ± 0.6 (sys.) $\times 10^{-5}$. No evidence is found for signal, a 90% confidence level upper limit is computed using the Barlow method [19], yielding $\mathcal{B}(B^+ \rightarrow \Lambda \bar{p} \nu \bar{\nu}) < 3.0 \times 10^{-5}$.

In signal MC we observe no significant correlation between signal efficiency and q^2, the square of the four-momentum transfer to the $\nu \bar{\nu}$ pair.

A comparison of the branching fraction limit and its SM-predicted value allows us to place a constraint on beyond-SM values of $|C_p^\prime|$, the Wilson coefficient that describes left-handed weak currents. Using the parametrization of Ref. [20], and assuming the SM value of $C_p^\prime = 0$ (that is, there are no right-handed weak currents), we can place an upper limit on $\epsilon = |C_p^\prime|/(|C_p^\prime|_{SM})$ of 7.4 at the 90% confidence level. The same calculation for the related $b \rightarrow s u \bar{\nu}$ modes $B \rightarrow K^{(*)} \nu \bar{\nu}$, using measured and predicted branching fraction values from Refs. [21], yields upper limits on ϵ of 2.2 for $B^+ \rightarrow K^+ \nu \bar{\nu}$ and 2.7 for $B^0 \rightarrow K^0 \nu \bar{\nu}$ at the 90% confidence level.

In conclusion, a search has been performed for the FCNC decay process $B^- \rightarrow \Lambda \bar{p} \nu \bar{\nu}$ based on the full BABAR dataset collected at the CM energy of the $\Upsilon(4S)$ resonance. No evidence is found for an excess over the SM prediction and we report the first branching fraction limit on this decay.

ACKNOWLEDGMENTS

The authors gratefully acknowledge David M. Straub’s help in determining the new physics implications of this analysis. We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIN (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA), and the Binnal Science Foundation (USA-Israel).

B^+B^- pairs.

When the full selection is applied to the data sample, a total of $N_{data} = 3$ events are found in the m_{ES} signal region, consistent with the background yield expectation of $N_{bg} = 2.3 \pm 0.7$ (stat.) ± 0.6 (sys.). The m_{ES} distribution of the B_{tag} in events that pass all other selection requirements is plotted in Fig. [6] and the $p\pi^-$ invariant mass distribution is shown in Fig. [7]. The central value of the branching fraction is determined to be $\mathcal{B}(B^- \rightarrow \Lambda \bar{p} \nu \bar{\nu}) = (0.4 \pm 1.1$ (stat.) ± 0.6 (sys.) $\times 10^{-5}$.

As no evidence is found for signal, a 90% confidence level upper limit is computed using the Barlow method [19], yielding $\mathcal{B}(B^- \rightarrow \Lambda \bar{p} \nu \bar{\nu}) < 3.0 \times 10^{-5}$.

In signal MC we observe no significant correlation between signal efficiency and q^2, the square of the four-momentum transfer to the $\nu \bar{\nu}$ pair.

A comparison of the branching fraction limit and its SM-predicted value allows us to place a constraint on beyond-SM values of $|C_p^\prime|$, the Wilson coefficient that describes left-handed weak currents. Using the parametrization of Ref. [20], and assuming the SM value of $C_p^\prime = 0$ (that is, there are no right-handed weak currents), we can place an upper limit on $\epsilon = |C_p^\prime|/(|C_p^\prime|_{SM})$ of 7.4 at the 90% confidence level. The same calculation for the related $b \rightarrow s u \bar{\nu}$ modes $B \rightarrow K^{(*)} \nu \bar{\nu}$, using measured and predicted branching fraction values from Refs. [21], yields upper limits on ϵ of 2.2 for $B^+ \rightarrow K^+ \nu \bar{\nu}$ and 2.7 for $B^0 \rightarrow K^0 \nu \bar{\nu}$ at the 90% confidence level.

In conclusion, a search has been performed for the FCNC decay process $B^- \rightarrow \Lambda \bar{p} \nu \bar{\nu}$ based on the full BABAR dataset collected at the CM energy of the $\Upsilon(4S)$ resonance. No evidence is found for an excess over the SM prediction and we report the first branching fraction limit on this decay.

ACKNOWLEDGMENTS

The authors gratefully acknowledge David M. Straub’s help in determining the new physics implications of this analysis. We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIN (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA), and the Binnal Science Foundation (USA-Israel).
