Predicting Gastric Intestinal Metaplasia in a High-Risk Population

Kesiena Akpoigbe 1, Joan Culpepper-Morgan 1, Obinna Nwankwo 2, Alvaro Genao 3

1. Division of Gastroenterology, Columbia University College of Physicians and Surgeons, Harlem Hospital Center, New York, USA 2. Division of Internal Medicine, Columbia University College of Physicians and Surgeons, Harlem Hospital Center, New York, USA 3. Division of Gastroenterology, Columbia University Medical Center Affiliated With Harlem Hospital Center, New York, USA

Corresponding author: Kesiena Akpoigbe, kessakpos@gmail.com

Abstract

Introduction: Gastric intestinal metaplasia (GIM) is a precancerous lesion. It has a low prevalence rate in the United States. However, GIM is more common among non-White and immigrant populations. Harlem Hospital serves a community that includes predominantly African Americans, Hispanics, and immigrants from West Africa and Spanish-speaking Caribbean countries. This study aims to define the factors predicting GIM in this high-risk group as well as help define screening strategies for vulnerable populations.

Methods: A total of 1351 patients who underwent endoscopic gastroduodenoscopy (EGD) and biopsy in 2018 and 2019 for any indication at Harlem Hospital were included in this study. Gastric biopsy specimens taken during the procedure were assessed for GIM by histopathology. Baseline demographics were collected, including age, sex, and ethnicity. Other information collected included risk factors for GIM such as Helicobacter pylori infection, smoking status, and the use of alcohol. Descriptive analysis was done and the Wilcoxon rank sum test and chi-squared test were used to test for associations. Multiple logistic regressions were used to assess the odds of independent factors associated with increased risk of GIM.

Results: Of the 1351 patients reviewed, 106 had GIM for a prevalence of 8.0% (CI: 6.7%-9.6%, p < 0.001). Univariate analysis revealed older patients, males, history of smoking, alcohol, and H. pylori infection were significantly associated with GIM. Using multiple logistic regressions and adjusting for underlying risk factors, smoking (OR: 1.61, 95% CI: 1.00-2.570) and H. pylori infection (OR: 5.35, 95% CI: 2.18-5.15) continued to be significantly associated with increased risk of GIM; however, alcohol use was not significantly after adjusting for other risk factors (OR: 1.10, 95% CI: 0.68-1.78). Hispanic risk for GIM was slightly higher than African Americans (OR: 1.17, 95% CI: 0.67-1.56). The predicted marginal effect of age on the odds of GIM was significant from age 40 and increased exponentially at age 50. By age 70, the odds of GIM were as high as 11% (95% CI: 8.3-15.6).

Conclusion: The prevalence of GIM in our population is significantly higher compared to reported cases in the United States. Age, male gender, H. pylori infection, and smoking significantly increase the risk of GIM. Given the high prevalence of GIM in our population, early endoscopic screening would play an important role in evaluating dyspepsia to diagnose GIM with or without H. pylori infection. We propose screening all at-risk ethnicities from age 40 years with EGD according to the Sydney System biopsy protocol. We believe this will ultimately decrease the incidence of gastric cancer death in these vulnerable populations of color.

Categories: Gastroenterology

Keywords: gastric intestinal metaplasia black, gastric intestinal metaplasia white, gastric intestinal metaplasia age, gastric intestinal metaplasia hispanics, gastric intestinal metaplasia immigrant, surveillance gastric intestinal metaplasia, screening gastric intestinal metaplasia, racial prevalence, gastric intestinal metaplasia prevalence, gastric intestinal metaplasia
Harlem Hospital serves one such community that is predominantly AA (65%) and Hispanic (30%). Approximately a third of them are immigrants from West Africa and Spanish-speaking Caribbean countries. This study aims to define the factors predicting GIM in this high-risk group as well as to help define screening strategies for vulnerable populations.

Part of this article was previously presented as a meeting abstract at the 2022 Digestive Disease Week on May 22, 2022, highlighting the risk of GIM in people of color in the USA.

Materials And Methods

Study design and patients

This was a retrospective cohort analysis of Harlem Hospital patients who had endoscopic gastroscopy (EGD) from January 2018 to December 2019 for any indication. A total of 1351 patients had an EGD procedure done during this time. Random biopsies for histology were taken during the procedures. Histological diagnosis of GIM was extracted from the pathology report. Deidentified data of all patients were obtained from the electronic medical record system. Demographic variables were recorded for each patient. These included age at diagnosis, sex, race, and ethnicity. Other information extracted were risk factors for GIM such as *H. pylori* infection, smoking status, and use of alcohol.

Statistical analysis

Deidentified data obtained from the electronic medical record was sorted, coded, and matched with underlying demographic characteristics and risk information. Analysis of data was contingent on the type of variable. The median, frequencies, and interquartile range (IQR) were used to summarize continuous variables while proportions and percentages were used to describe and summarize categorical data. Where appropriate, the 95% confidence interval (CI) was inferred. Chi-squared statistics and Wilcoxon rank-sum test were used to test for association between age, risk factors, and GIM. Multiple logistic regression was used to assess for independent factors associated with increased risk of GIM. All statistical tests were considered significant at p < 0.05. Analysis was conducted using STATA statistical software version 13 (StataCorp LLC, College Station, TX).

Results

Of 1351 patients who had EGD between 2018 and 2019, 106 had GIM for a prevalence of 8.0% (CI: 6.7%-9.6%, p < 0.001). This was significantly different from the national average of 4.8% (p < 0.05). Females accounted for 64.5% of the patients in the study. The median age of the study population was 55 years (IQR: 43-65 years) (Table 1).

Characteristics	N (%)
Age	Median 55 (IQR: 43-65)
Sex	
Male	469 (64.5)
Female	852 (35.5)
Race	
Blacks	712 (53.9)
Hispanics	502 (38.0)
Others	107 (8.1)
Risk factors	
Smoking	475 (36.0)
Alcohol	410 (31.0)
Helicobacter pylori infection	361 (27.3)
Gastric intestinal metaplasia	
Positive	106 (8.0)
Negative	1215 (92.0)

TABLE 1: Baseline characteristics

The majority of the study population were AAs (53.9%), followed by Hispanics (38.0%) and others (9.7%). Others included non-Hispanic Whites and Asians. The median age for AAs was 58.1 years, for Hispanics was...
50.3 years, and for others was 52.1 years (Table 1). The difference in age between AAs and Hispanics was statistically significant (p < 0.001). About a third of the study population had a smoking history and used alcohol. Of the patients, 27% had *H. pylori* infection. There was a significant association between increasing age and GIM. This relationship started at age 40 and then increased markedly at age 50 as shown in Figure 1.

Older Blacks and Hispanics had a significantly increased association with GIM (Figure 2).

Significantly more males (12.4%) than females (5.6%) had a strong association with GIM (p < 0.001). There was no significant association between race and GIM in this overwhelmingly AA and Hispanic cohort. While the rates among AAs and Hispanics were 9.0 and 7.8, respectively, it was still higher as compared to other ethnicities (2.8) (Table 2).
The proportion of the population with:

N (%) of the population	Positive GIM (95% CI)	Negative GIM (95% CI)
Study population	8.0 (6.7-9.6)	92.0 (90.3-93.3)
Blacks	9.0 (7.1-11.3)	91.0 (88.7-92.9)
Hispanics	7.8 (5.7-10.5)	92.2 (89.5-94.3)
Others	2.8 (0.9-8.5)	97.2 (91.5-99.1)

TABLE 2: Prevalence of gastric intestinal metaplasia (GIM)

The association of GIM with those with a history of alcohol use (10.5%), smoking (11.8%), and *H. pylori* infection (14.4%) was highly significant (*p < 0.05*) (Table 3).

Positive, n (%)	Negative, n (%)	Total	Chi-square (p-value)	
Age, median (IQR)	65 (IQR: 56-73)	54 (IQR: 42-65)	-	0.000
Sex				
Female	48 (5.6)	804 (94.4)	852	0.000
Male	58 (12.4)	411 (87.6)	469	
Race				
Black	64 (9.0)	648 (91.0)	712	0.087
Hispanic	39 (7.8)	463 (92.2)	502	
Others	3 (2.8)	104 (97.2)	107	
Risk factors				
Alcohol				
Yes	43 (10.5)	367 (89.5)	410	0.027
No	63 (6.9)	848 (93.1)	911	
Smoking				
Yes	56 (11.8)	419 (88.2)	475	0.000
No	50 (5.9)	769 (94.1)	846	
H. pylori infection				
Yes	52 (14.4)	309 (85.6)	361	0.000
No	54 (5.6)	906 (94.4)	960	

TABLE 3: Association between gastric intestinal metaplasia and age, race, sex, and risk factors

IQR, interquartile range.

Adjusting for underlying risk factors, i.e., smoking (OR: 1.61, 95% CI: 1.00-2.57) and *H. pylori* infection (OR: 3.35, 95% CI: 2.18-5.15), significantly increases the odds of GIM. However, alcohol use did not reach statistical significance after adjusting for other risk factors (OR: 1.10, 95% CI: 0.68-1.78). The odds of Hispanics having GIM was slightly higher than AAs (OR 1.17, 95% CI: 0.74-1.83) after adjusting for other risk factors. Although this was not statistically significant, it is a trend worth noting given the size of their population as compared to AAs. Increasing age (OR: 1.05, 95% CI: 1.04-1.07) and male sex (OR: 1.91, 95% CI: 1.25-2.95), respectively, increased the odds for GIM (Table 4).
TABLE 4: Factors predicting gastric intestinal metaplasia

	Crude (OR, CI)	P-value	Adjusted (OR, CI)	P-value
Age				
40	1.05 (1.03-1.07)	0.000	1.05 (1.04-1.07)	0.000
Sex				
Female	Reference		Reference	
Male	2.36 (1.58-3.52)	0.000	1.91 (1.25-2.93)	0.003
Race				
Black	Reference		Reference	
Hispanic	0.85 (0.56-1.29)	0.453	1.17 (0.74-1.83)	0.501
Others	0.29 (0.09-0.94)	0.040	0.35 (0.11-1.17)	0.087
Risk factors				
Alcohol				
No	Reference		Reference	
Yes	1.58 (1.05-2.37)	0.028	1.10 (0.68-1.78)	0.704
Smoking				
No	Reference		Reference	
Yes	2.13 (1.43-3.17)	0.000	1.61 (1.00-2.57)	0.049
H. pylori infection				
No	Reference		Reference	
Yes	2.58 (1.89-4.22)	0.000	3.35 (2.18-5.15)	0.000

TABLE 5: Predictive margins of age and gastric intestinal metaplasia

Discussion

The prevalence of GIM in our study population was 8.0%. This was about twice the national rate of 4.8%. It was much higher still when it was subcategorized on ethnicity [9,12,13]. AAs had a prevalence rate of 9.0% and Hispanics had a rate of 7.8%. Other studies have reported a prevalence of GIM in Hispanics of 12.2% and AAs of 9.7%, which is even higher [1,15,23,24]. A prospective study that included asymptomatic patients from a Veterans Affairs hospital in Houston interestingly found a prevalence of 29.5% among Hispanics, 25.5% among AAs, and 13.7% among non-Hispanic Whites. The reason for their much higher prevalence was likely due to the older age (five years) and strong male predominance (90%) of their cohort.
We were likely unable to detect a difference in prevalence between AAs and Hispanics due to the similar rate of increased risk in these populations vs. Whites. While it appears that the prevalence rate of GIM was higher in AAs in our study, after adjusting for other risk factors such as smoking, alcohol, and *H. pylori* infection, the odds of having GIM in Hispanics was about 17% higher than in AAs. This further buttressed the trend observed in Hispanics especially among expatriates as Harlem Hospital serves predominantly an immigrant population. It is also important to note that our AA cohort was about seven years significantly older than our Hispanic cohort. This also may have driven the prevalence rate upward.

Age was a significant factor associated with GIM in this study population. The median age for GIM was 65 years (IQR: 56-75). Other studies have reported average ages of GIM from 60 years to over 70 years [15,23,24]. While the median age for the study population was 55 years, the predicted marginal effect of age on the odds of GIM became significant from age 40 and markedly increased after age 50. This implies that the higher number of GIM seen in the older population might have actually started at a younger age and makes it more important for any form of screening or surveillance program to be considered at the younger age of 40 than 50. This effect of age holds true for both Hispanics and AAs.

Several of the risk factors in this study were associated with increased odds of GIM. *H. pylori*, a carcinogen, is strongly associated with GIM [15,25-50]. There was a higher percentage of GIM with *H. pylori* infection (14.4% vs. 5.6%) in this study. It significantly increased the odds of GIM in this population by 3.35. It was the most significant risk factor for GIM in this population. Nguyen et al. also found that *H. pylori* is the most significant risk factor for GIM in Hispanics, AAs, and non-Hispanic Whites. It was said to be associated with over five-fold increase in the risk in non-Hispanic Whites such that testing for *H. pylori* could be used as a surrogate for the presence of GIM. However, only 34% of the risk for GIM could be attributed to *H. pylori* in AAs and Hispanics. Therefore, other unknown factors may have accounted for the increased risk in these racial and ethnic groups. Given that our population is an immigrant population that comes from regions where *H. pylori* is endemic, it would be beneficial to initiate early screening for detection and treatment as studies have shown it to be more cost-effective in Hispanics and AAs in reducing gastric cancer [31-34].

Smoking also has a strong association with GIM. It increases the odds by 61%. Smoking like *H. pylori* has been associated with GIM and also gastric cancer [35,36]. While this would not be surprising, it lays further emphasis on the role that both *H. pylori* and smoking could play in tandem for initiating GIM and gastric cancer. Of note, alcohol was observed to have an association with GIM but the odds of causing it was not significant after adjusting for *H. pylori* and smoking. This is in keeping with other studies, which show it does not have any significant effect on causing GIM [37].

Most of our study population was female. They were about two-thirds of all persons who had an EGD between 2018 and 2019. The prevalence of GIM in females was 5.6%, i.e., about half the prevalence in males (12.4%). This association is in keeping with males having higher odds of GIM (1.19 (1.25-2.93)) than females. In addition, males have been noted to have a higher rate of GIM in other studies [15,18,26,38,39].

Current American College of Gastroenterology (ACG) dyspepsia guidelines recommend that we test and treat *H. pylori* for patients under the age of 60 with EGD reserved for those 60 and older. We feel this would not allow for the diagnosis and surveillance of patients with high-risk lesions such as GIM, many of whom have already lost their *H. pylori*. The Correa cascade suggests that GIM is an irreversible lesion that may progress to dysplasia in over 5.2 years [40]. It is unclear if *H. pylori* eradication alone is enough to completely interrupt this cascade. In addition, many of these patients may become reinfected as they return to their country of origin periodically. The U.S. Department of Homeland Security (DHS) Office of Immigration Statistics (OIS) estimated in 2016 the average re-entry per nonimmigrant per year was 1.8 times per person and could be as high as 4.4 times per person for Mexicans [41].

There are limitations to this study. Categorizing all Blacks in the study as AAs could have missed the contributions that African immigrants may have made independently since they are likely to have come from areas endemic to *H. pylori* infection [42-47]. Also lumping Hispanics into one group could have masked the different effects Caribbean Hispanics might have had from Mexican American Hispanics, South American Hispanics, etc. Another limitation is that we did not stratify our result based on the indication for EGD. This may have provided some additional insight into the selection of patients for screening by EGD. The number of pack years of smoking would also have been useful as smoking is a carcinogen has a dose response [48-51]. Some studies have even found that ever smokers were as much at risk for GIM as current smokers [52]. Lastly, the site of GIM was not recorded as it would have been helpful to note the predominant site in the stomach with GIM. Antral GIM has been found in other studies to be the most common site [15,25-30]. It is therefore the most common site for gastric cancer [56,57].

The strengths of this study are that it was a real-world practice study. Biopsies were not done according to the Sydney GIM screening protocol but were done simply to diagnose *H. pylori*. Therefore, it is likely that we underestimated the prevalence of GIM in all groups. Also, our cohort was younger and included females. As a result, we were able to detect the early rise in the probability of GIM at age 40 with a significantly narrow confidence interval (Figure 2). Thus, we recommend that screening for this precancerous lesion should begin at age 40.

Conclusions

The prevalence of GIM in our population is significantly higher compared to the reported prevalence in the United States. Age, male gender, *H. pylori* infection, and smoking significantly increase the risk of GIM in AAs and Hispanics. Given the high prevalence of GIM in our institution, early endoscopic screening could
play an important role in evaluating dyspepsia to diagnose GIM with or without H. pylori infection, not only to prevent this precancerous lesion from developing but to identify those with irreversible GIM with dysplasia that may need surveillance. Thus, we propose screening all-at-risk ethnicities from age 40 with EGD according to the Sydney System biopsy protocol. We believe EGD screening for GIM will ultimately decrease the incidence of gastric cancer death in these vulnerable populations of color.

Additional Information

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Hiatt T, Almouradi T, Attar B: Gastric intestinal metaplasia: a demographic study. Am J Gastroenterol. 2011, 106:544. 10.1038/ajg.2011.231
2. Kim GH, Liang PS, Bang SJ, Hwang JH: Screening and surveillance for gastric cancer in the United States: is it needed?. Gastrointest Endosc. 2016, 84:18-28. 10.1016/j.gie.2016.02.028
3. Arnold M, Ferlay J, van Berge Henegouwen MI, Soerjomataram I: Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut. 2020, 69:1564-71. 10.1136/gutjnl-2020-321600
4. Altayar O, Davitkov P, Shah SC, Gawron AJ, Morgan DR, Turner K, Mustafa RA: AGA technical review on gastric intestinal metaplasia—epidemiology and risk factors. Gastroenterology. 2020, 158:732-44.e16. 10.1053/j.gastro.2019.12.002
5. Henley SJ, Ward EM, Scott S, et al.: Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer. 2020, 126:2225–49. 10.1002/cncr.32802
6. Fennerty MB, Emerson JC, Sampline RE, McGee DL, Hilton LJ, Garewal HS: Gastric intestinal metaplasia in ethnic groups in the southwestern United States. Cancer Epidemiol Biomarkers Prev. 1992, 1:295–6.
7. National Cancer institute. SEER*Explorer: an interactive website for SEER cancer statistics . (2021). Accessed: September 27, 2021: https://seer.cancer.gov/statistics-network/explorer/overview.html.
8. Shah SC, McKinley M, Gupta S, Peek RM Jr, Martinez ME, Gomez SL: Population-based analysis of differences in gastric cancer incidence among races and ethnicities in individuals age 50 years and older. Gastroenterology. 2020, 159:1705-14.e2. 10.1053/j.gastro.2020.07.049
9. Islami F, DeSantis CE, Jemal A: Incidence trends of esophageal and gastric cancer subtypes by race, ethnicity, and age in the United States, 1997-2014. Clin Gastroenterol Hepatol. 2019, 17:429-39. 10.1016/j.cgh.2018.05.044
10. Merchant SI, Kim J, Choi AH, Sun V, Chao J, Nelson R: A rising trend in the incidence of advanced gastric cancer in young Hispanic men. Gastric Cancer. 2017, 20:226-34. 10.1007/s10120-016-0063-7
11. Balakrishnan M, George R, Sharma A, Graham DY, Malaty HM: An investigation into the recent increase in gastric cancer in the USA. Dig Dis Sci. 2018, 63:1613-9. 10.1002/d Digest. 2018, 63:1613-9. 10.1002/digest.28371
12. Wu X, Chen VW, Andrews PA, Ruiz B, Correa P: Incidence of esophageal and gastric cancers among Hispanics, non-Hispanic whites and non-Hispanic blacks in the United States: subtype and histology differences. Cancer Causes Control. 2007, 18:585-93. 10.1007/s10552-007-9000-1
13. Chang ET, Gomez SL, Fish K, et al.: Gastric cancer incidence among Hispanics in California: patterns by time, nativity, and neighborhood characteristics. Cancer Epidemiol Biomarkers Prev. 2012, 21:709-19. 10.1158/1055-9965.epi.11-1208
14. Naidh H, Li L, Zhao Q, O’Brien MJ, Calderwood AH: Retrospective analysis of gastric intestinal metaplasia and dysplasia in an ethnically diverse urban safety-net population. Gastroenterology. 2016, 150:1016.10.1053/j.gastro.2015.10.019
15. Nguyen TH, Tan MC, Liu Y, Rogge M, Thrift AP, El-Serag HB: Prevalence of gastric intestinal metaplasia in a multiethnic US veterans population. Clin Gastroenterol Hepatol. 2021, 19:269-76.e5. 10.1016/j.cgh.2020.05.015
16. Song H, Ekheiden IG, Zheng Z, Ericsson J, Nyren O, Ye W: Incidence of gastric cancer among patients with gastric precancerous lesions: observational cohort study in a low risk Western population. BMJ. 2015, 351:h3867. 10.1136/bmj.h3867
17. Lee YC, Chiang TH, Chou CK, Tu YK, Liao WC, Wu MS, Graham DY: Association between Helicobacter pylori eradication and gastric cancer incidence: a systematic review and meta-analysis. Gastroenterology, 2016, 150:1115-24.e5. 10.1053/j.gastro.2016.01.028
18. Maliepaerd N, Thrift AP, Othman MO, El-Serag HB, Tan MC: Demographic, lifestyle and dietary risk factors for gastric intestinal metaplasia among US veterans. Gastroenterology. 2019, 156:1016.10.1053/j.gastro.2019.05.015
19. Moss SF: The clinical evidence linking Helicobacter pylori to gastric cancer . Cell Mol Gastroenterol Hepatol. 2017, 3:183-91. 10.1016/j.jcmgh.2016.12.001
20. Sonnenberg A, Genta R, Turner K: Demographic and socio-economic influences on H. pylori-induced changes to the gastric mucosa: AGC category award: presidential poster. Am J Gastroenterol. 2015, 110:S1020-1. 10.14399/0000454-201510001-02463
21. Naidh H, Kluge MA, Calderwood AH: Gastric intestinal metaplasia and surveillance recommendations in an ethnically diverse urban safety-net population. Gastroenterology. 2017, 152:10.1016/s0016-5085(17)31152-6
22. Laszkowska M, Oh A, Hur C: Screening for upper gastrointestinal malignancies in the United States—which immigrant groups should be considered high-risk?. Gastroenterology. 2020, 158:4-8. 10.1053/j.gastro.2019.09.047
23. Simko V, Anand N, Ginter E: Gastric intestinal metaplasia - age, ethnicity and surveillance for gastric cancer
metaplasia? Gastric incisura, body, and fundus (antralization): a link between Helicobacter pylori infection and intestinal

Xia HH, Kalantar JS, Talley NJ, Wyatt JM, Adams S, Chueng K, Mitchell HM: Endoscopy of dyspeptic patients?

Valizadeh Toosi SM, Sanayifar SF, Mohammadpour RA, Sheidaei S: Smoking with risk of gastric intestinal metaplasia

L. Wynder Tobacco and Health (PATH) study wave 1 (2013-2014) aged men

Plaskon LA, Penson DF, Vaughan TL, Stanford JL: 10.1158/1055-9965.EPI-20-0525 10.1590/S0004-2803.201900000-84

Tsukamoto T, Nakagawa M, Kiyiya M, Toyoda T, Cao X: Prevention of gastric cancer: eradication of Helicobacter pylori and beyond. J Int Mol Sci. 2017, 18:1699. 10.3390/ijms18081699

Cheung I, Goodman Kl, Girgis S, et al.: Disease manifestations of Helicobacter pylori infection in Arctic Canada: using epidemiology to address community concerns. BMJ Open. 2014, 4:e005689. 10.1136/bmjopen-2013-003689

Pandey A, Tripathi SC, Mahata S, et al.: Carcinogenic Helicobacter pylori in gastric pre-cancer and cancer lesions: association with tobacco-chewing. World J Gastroenterol. 2014, 20:6860-8. 10.3748/wjg.v20.i22.6860

Hooi JK, Lai WJ, Ng WK, et al.: Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology. 2017, 153:420-9. 10.1053/j.gastro.2017.04.022

Zamani M, Ebrahimshahmiri M, Zamani V, Miller WH, Alizadeh-Navai R, Shoeb-Shivani J, Derakhshan MH: Systematic review with meta-analysis: the worldwide prevalence of Helicobacter pylori infection. Aliment Pharmacol Ther. 2018, 47:868-76. 10.1111/apt.14361

Carado MP, de Oliveira MM, de Areal Fagundes MR: Prevalence of Helicobacter pylori infection in Latin America and the Caribbean populations: a systematic review and meta-analysis. Cancer Epidemiol. 2019, 60:141-8. 10.1016/j.canep.2019.04.005

Saumoy M, Schneider Y, Shen N, Kaaleh M, Sharaiba RZ, Shah SC: Cost effectiveness of gastric cancer screening according to race and ethnicity. Gastroenterology. 2018, 155:648-60. 10.1053/j.gastro.2018.05.026

Peleterio B, Bartos J, Barros H, Lunet N: Systematic review of the prevalence of gastric intestinal metaplasia and its area-level association with smoking. Gac Sanit. 2008, 22:236-47. 10.1157/1312970

Malik TH, Zhao C, AlAhmed IM, Alam SA, Xu H: Gastric intestinal metaplasia is the most common histopathological phenotype among endoscopically diagnosed atrophic gastritis patients in North-east China. Open J Gastroenterol. 2017, 7:65-74. 10.4246/ojg.2017.72008

Nawahir S, Kurian G, Alexander T, Kurian S: China histopathological phenotype among endoscopically diagnosed atrophic gastritis patients in North-east China. Open J Gastroenterol. 2017, 7:65-74. 10.4246/ojg.2017.72008

Archampong TN, Asmah RH, Richards CJ, et al.: Disease manifestations of Helicobacter pylori infection in Arctic Canada: using epidemiology to address community concerns. BMJ Open. 2014, 4:e005689. 10.1136/bmjopen-2013-003689

United States Office of Immigration Statistics. Nonimmigrant admissions and estimated nonimmigrant individuals: 2016. (2018). https://www.dhs.gov/sites/default/files/publications/NonimmigrantAdmissions%20and%20Estimated%20Nonimmigrant%20individuals.pdf

de Sena-Reis JS, Bezerra DD, Figueiredo CA, Barreto ML, Alcântara-Neves NM, da Silva TM: Relationship between African biogeographical ancestry and Helicobacter pylori infection in children of a large Latin American urban center. Helicobacter. 2019, 24:e12662.

Archampong TN, Asmah RH, Richards CJ, et al.: Gastric duodenal disease in Africa: literature review and clinical data from Accra, Ghana. World J Gastroenterol. 2019, 25:3534-58. 10.3748/wjg.v25.i26.3534

Smith S, Fowora M, Pellicano R: Infections with Helicobacter pylori and challenges encountered in Africa . World J Gastroenterol. 2019, 25:3585-95. 10.3748/wjg.v25.i26.3585

Sonnenberg A, Turner KO, Genta RM: Clinical characteristics of gastrointestinal metaplasia in a predominantly African American population. Am J Gastroenterol. 2021, 116:562-3. 10.1039/c009722a.25016d.

Jiang BX, Liu Q, Zhao B, et al.: Risk factors for intestinal metaplasia in a southeastern Chinese population: an analysis of 28,745 cases. J Cancer Res Clin Oncol. 2017, 143:409-18. 10.1007/s00432-016-2299-9

Correia P, Piazuelo MB: The gastric precancerous cascade. J Dig Dis. 2012, 13:52-9. 10.1111/j.1751-2980.2011.05500.x

Choi CE, Sonnenberg A, Turner K, Genta RM: Systematic review of the prevalence of gastric intestinal metaplasia

Risk factors for intestinal metaplasia in a southeastern Chinese population: an analysis of 28,745 cases. J Cancer Res Clin Oncol. 2017, 143:409-18. 10.1007/s00432-016-2299-9

Sannan A, Cornell JS, Talley NJ, Wyatt JM, Adams S, Chueng K, Mitchell HM: Antral-type mucosa in the gastric incisura, body, and fundus (antralization): a link between Helicobacter pylori infection and intestinal metaplasia? Am J Gastroenterol. 2000, 95:114-6. 10.1111/j.1572-0241.2000.01609.x

Tang SJ, Wu R, Haise JF: Intestinal metaplasia of the stomach. Video J Encycl GI Endosc. 2015, 1:187-9.

Copyright © 2019 Cureus Communications LLC
56. Kim SJ, Choi CW: Common locations of gastric cancer: review of research from the endoscopic submucosal dissection era. J Korean Med Sci. 2019, 34:e251. 10.3346/jkms.2019.34.e251

57. Kim K, Cho Y, Sohn H, et al.: Clinicopathologic characteristics of early gastric cancer according to specific intragastric location. BMC Gastroenterol. 2019, 19:24. 10.1186/s12876-019-0949-5