Review Article

The Wound Healing Potential of *Aspilia africana* (Pers.) C. D. Adams (Asteraceae)

Richard Komakech,1,2,3 Motlalepula Gilbert Matsabisa,4 and Youngmin Kang1,2

1University of Science & Technology (UST), Korea Institute of Oriental Medicine (KIOM) Campus, Korean Medicine Life Science Major, Daejeon 34054, Republic of Korea
2Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Ill Geomjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
3Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, P.O. Box 4864, Kampala, Uganda
4University of the Free State, 205 Nelson Mandela Drive, Bloemfontein 9300, South Africa

Correspondence should be addressed to Youngmin Kang; ymkang@kiom.re.kr

Received 20 August 2018; Accepted 23 December 2018; Published 21 January 2019

Guest Editor: Abidemi J. Akindele

Copyright © 2019 Richard Komakech et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wounds remain one of the major causes of death worldwide. Over the years medicinal plants and natural compounds have played an integral role in wound treatment. *Aspilia africana* (Pers.) C. D. Adams which is classified among substances with low toxicity has been used for generations in African traditional medicine to treat wounds, including stopping bleeding even from severed arteries. This review examined the potential of the extracts and phytochemicals from *A. africana*, a common herbaceous flowering plant which is native to Africa in wound healing. *In vitro* and *in vivo* studies have provided strong pharmacological evidences for wound healing effects of *A. africana*-derived extracts and phytochemicals. Singly or in synergy, the different bioactive phytochemicals including alkaloids, saponins, tannins, flavonoids, phenols, terpenoids, β-caryophyllene, germacrene D, α-pinene, carene, phytol, and linolenic acid in *A. africana* have been observed to exhibit a very strong anti-inflammatory, antimicrobial, and antioxidant activities which are important processes in wound healing. Indeed, *A. africana* wound healing ability is furthermore due to the fact that it can effectively reduce wound bleeding, hasten wound contraction, increase the concentration of basic fibroblast growth factor (BFGF) and platelet derived growth factor, and stimulate the haematological parameters, including white and red blood cells, all of which are vital components for the wound healing process. Therefore, these facts may justify why *A. africana* is used to treat wounds in ethnomedicine.

1. Introduction

A wound can be defined as the disruption of living tissue integrity associated with loss of function [1]. The wound healing process is a complex dynamic process which represents an attempt to restore a normal anatomical structure and function [2, 3]. Wounds can be broadly categorized as acute wounds which are caused by external injury to the skin and include surgical wounds, bites, burns, minor cuts and abrasions, and more severe traumatic wounds such as lacerations and those caused by crush or gunshot injuries or chronic etiology wounds which includes vascular, diabetic, and pressure ulcers [1, 4]. In fact, wounds impose significant health, social, and economic burdens to the individuals, the healthcare system, and the community as a whole [5, 6]. Recent statistics showed that approximately 3% of the healthcare budget is spent on treating wound-related complications in developed countries [6]. The aim of treating a wound is to prevent pain discomfort to the patient and promote wound healing which occurs mainly in four phases: hemostasis, inflammation, proliferation, and remodeling [1, 7, 8]. Plants have immense potential that can be explored for the treatment and management of wounds [2, 9]. Indeed, several medicinal plants have been used in traditional medicine for the treatment and management of all kinds of wounds across the globe since time immemorial.
 Evidence-Based Complementary and Alternative Medicine

[3, 10, 11]. *Aspilia africana* (Pers.) C. D. Adams (Asteraceae), commonly referred to as wild sunflower, is one of the highly valued wound healing plants throughout its distribution range and beyond [12–14]. This unique wound healing plant species is commonly referred to as “haemorrhage plant” due to its distinguished ability to stop bleeding, even of severed artery [15, 16]. Apart from its enormous potential in wound healing, *A. africana* is reported to be vital in the treatment and management of myriad of other diseases and disorders in African traditional medicine, including headache, corneal opacities, stomach disorders, cough, gonorrhea, rheumatic pains, and tuberculosis; the leaf infusion is taken as a tonic for its distinguished ability to stop bleeding, even of severed artery [15, 16]. Apart from its enormous potential in wound healing, *A. africana* plant is known to possess great anti-inflammatory, antimarial, and antimicrobial activities [12, 16]. Several scientific studies have attributed the numerous medicinal properties of *A. africana* to the abundant bioactive secondary metabolites in it such as alkaloids, saponins, tannins, glycosides, flavonoids, and terpenoids [18, 19].

The use of *A. africana* in wound treatment and management has been assessed and discussed in a number of peer reviewed journal articles over the years. This review therefore sought to examine the wound healing potential of *A. africana* both *in vitro* and *in vivo* with the goal of finding new drugs for treatment and management of wounds.

2. Methods

In this review, we obtained information from original peer reviewed articles published in scientific journals, with a focus on the botany, distribution, and potential of *A. africana* for treatment and management of wounds. We critically searched electronic literature databases including but not limited to Google Scholar, PubMed, and Scopus for all available peer reviewed data. The following key search terms were used (“*A. africana*” OR “Wild sunflower” AND “wounds” OR “wound healing” OR “Phytochemicals”) OR (“Phytochemicals in *A. africana*” OR “Wild sunflower” AND “wound” OR “wound healing”), OR (“*Phytochemicals in A. africana*” OR “Wild sunflower” AND “Anti-inflammation” OR “Antimicrobial”), OR (“Plants” OR “Natural products” AND “wound” OR “wound healing”) OR (“*A. africana*” OR “Wild sunflower” AND “Botany” OR “Distribution”). The data obtained were verified independently for their accuracy and any inconsistencies were settled through discussions between the authors. The final data obtained through discussions among the authors were then summarized, analyzed, and compared, and conclusions were made accordingly.

3. Botany and Distribution of *Aspilia africana*

The genus *Aspilia* is a genus of common herbaceous flowering plants which are native to Africa and comprised of approximately 140 species [18, 64]. Morphologically, *A. africana* is a herb measuring about 1-2 m in height covered with bristles; stem is stiff at the base, with many branches and rough to touch (Figures 1(a) and 1(b)); leaves are rough, opposite, ovate-lanceolate, creased accordion-style covered with trichomes, average 10 cm long and 5 cm wide, and rounded at the base with petioles about 1 cm long with 3 prominent veins (Figure 1(c)); inflorescence consists of capitula which is terminal, solitary, or in lax racemes of hairy stalk of about 7 cm long on average; flowers have numerous showy-yellow florets; fruits are 4-angled yellow achenes (Figure 1(d)) [12, 64, 65].

A. africana is native to Africa occurring in a number of countries throughout the tropical African region on waste land of the savanna and forested zones between altitude of 800 and 1800 m (Figure 2), and its rapid growth characteristics make it a difficult weed in cultivated land and fallows [65].

4. Toxicological Effects of *Aspilia africana*

Generally, this unique wound healing plant can be classified among agents with low toxicity [66]. In an *in vivo* study by Okokon et al. [67] using Swiss albino mice, the acute toxicity of the ethanolic extract of the plant showed that doses of 2000 mg/kg and above were lethal to the animals and the determined LD50 of the extract was 1414.2 mg/kg. Further, *in vivo* study by Oko et al. [68] on Swiss albino mice concluded that oral administration of up to 10,000 mg/kg body weight of aqueous and ethanolic extracts of the plant was safe for animal and human use. However, a recent study showed that the aqueous leaf extract of *A. africana* may be teratogenic to the developing placenta of Wistar rats in a dose-dependent manner; more severe outcomes were observed in female rats that received up to 1250 mg/kg body weight of the aqueous extract [69]. Similarly, other previous studies also showed that intraperitoneal administration of the extracts of *A. africana* leaf caused significant delay in estrus cycle and in addition did not only distort the histology of ovaries and reduce its weight, but also damaged the uterine tissues and fallopian tubes in Wistar rats [17, 67, 70, 71]. Furthermore, methanolic extracts of *A. africana* have also been found to significantly decrease the weight of testis, epididymis, seminal vesicle, and prostate gland of experimental male Wistar rats [72]. Therefore, despite the safety associated with *A. africana*, caution must be taken during its long term oral consumption as it may have adverse effects on reproductive organs.

5. Effects of Leaf Extracts of *Aspilia africana* on Wound Healing

A. africana is one of the many medicinal plants containing large quantities of bioactive compounds making it such a potent plant in wound sepsis treatment and management and other microbe induced disease conditions [19, 20]. Over the years, several *in vitro* and *in vivo* scientific studies have been conducted to validate the wound healing ability of this plant. In an *in vivo* study by Eweka and Eweka [73]; they examined the effects of aqueous extract of *A. africana* administered orally for fourteen days on the duodenum of adult Wistar rats exposed to varied concentrations of hydrochloric acid. The histological findings indicated sections of the small intestine of treated rats showed varying degrees of cellular proliferation and epithelia regeneration. This showed that *A. africana* consumption may have antiulcer effects on duodenal ulcer by its healing effects on the Brunns glands and epithelia cells of the small intestine of adult Wistar rats. Similarly,
Figure 1: The morphological illustration of the main features of *A. africana*. (a) *A. africana* plant with numerous branches. (b) *A. africana* stem with numerous bristles. (c) Simple leaf of *A. africana*, oppositely arranged on the plant. (d) Inflorescence of *A. africana* consisting of outer ray and inner disc florets.

Earlier study by Nguelefack et al. [74] also showed that the methanolic extract of fresh leaves of *A. africana* at the dose of 1g/kg reduced gastric lesion in the pylorus ligated rats by 52%, a further proof of the potential of *A. africana* in wound healing. In a study by Attama et al., 2011 [75] where they examined the methanol leaf extract of *A. africana* formulated as gels for its potency on experimentally induced wound in rats, 100% wound closure was observed by the 17th day of treatment in both gel formulations of the plant methanolic extract and the standard gel, an indication of effectiveness of *A. africana* in wound healing. Similarly, a study by Osunwoke et al. [76] on the wound healing effects of the leaves extract of *A. africana* on Wistar rats showed that the rate of contraction of the excised wounds in the experimental group on days 6 and 9 was significant (*P*<0.05) with a mean wound closure of 12.6±1.17 cm compared to those in the control group which was 15.0±1.86 cm. Furthermore, they observed that the concentration of neutrophils and macrophages was intense in the experimental group relative to than the control group in the excised tissue samples. The total wound closure and increased inflammatory response suggests that the aqueous extract of the leaves of *A. africana* promotes wound healing activity through increased inflammatory response and neovascularization. In another *in vivo* experimental evaluation by Okoli et al. [12] using Wistar rats, they observed that the methanolic and hexane extracts and methanolic fractions of *A. africana* significantly (*P*<0.05) reduced bleeding (clotting time) in the rats and caused varying degrees of inhibition of the growth of microbial organisms known to cause wound infections such as *Pseudomonas fluorescens* and *Staphylococcus aureus*. The study showed that the extracts reduced epithelialization period of wounds that were experimentally excised in the rats, hence validating the fact that *A. africana* possesses constituents capable of accelerating wound healing. At different concentrations, *A. africana* also showed varied stimulating effects on haematological parameters including white and red blood cells due to the enormous micronutrients found in the plant [77]. Indeed, increased haematological changes especially in the red blood cells count are known to result in increased level of oxygen supply to the wounds resulting in faster wound healing [78]. Additionally, the wound healing ability of *A. africana* has also heavily been attributed to its anti-inflammatory activity resulting in inhibition of prostaglandins synthesis, decreased vascular permeability, inhibition of neutrophil migration into inflamed tissues, and stimulation of lymphocyte accumulation, thus enhancing tissue repair and healing [12]. Indeed, anti-inflammatory activity is essential for wound healing,
since a long duration of the inflammatory phase causes delay in the wound healing process [79]. Additionally, the strong antimicrobial activities of *A. africana* play a vital role in the ability of this plant to heal wound sepsis [80–84]. In fact, a study by Anibijuwon et al. [85] showed that *A. africana* has strong antimicrobial activities. These findings further showed that the anti-inflammatory and antimicrobial agent play vital roles in wound healing process.

6. The Potential of the Phytochemicals from *Aspilia africana* in Wound Healing

As discussed above, *in vivo* studies have provided strong pharmacological evidence for wound healing potential of the extracts obtained from *A. africana*. The plant is endowed with myriad of classes of bioactive secondary metabolites including alkaloids, saponins, tannins, flavonoids, and phenols (Figure 3) [12, 18, 20, 86, 87] and terpenoids [19, 20]. *A. africana* also contains a number of other compounds (Table 1) such as sesquiterpenes including β-caryophyllene and germacrene D, and linolenic acid [20]. The presence of these phytochemicals suggests that *A. africana* might be of medicinal importance and supports the basis for its use in ethnomedicine as a wound healing plant.

The high content of alkaloids in *A. africana* may be one of the major contributing factors to the wound healing activity of this plant [64, 68]. A number of alkaloids have been known to have great wound healing activities [18]. In an *in vivo* study, topical application of an alkaloid enriched-ointment exhibited higher dermal healing activity of the wounds on rats [45]. Similarly, alkaloids have been observed to promote early phases of wound healing in a dose-dependent manner.
Table 1: Constituent compounds in *A. africana* extract and associated activities that enhance wound healing.

S/No	Class of compound	Phytochemical compounds	Compound structure	Activities that enhances wound healing	Reference
a	Monoterpenes	Carene	![Carene structure](image)	(i) Anti-inflammatory	
(ii) Antimicrobial	[19–26]				
b	Phytocannabinoids	Caryophyllene	![Caryophyllene structure](image)	(i) Antimicrobial	
(ii) Anti-inflammatory	[19, 27–35]				
c	Sesquiterpenes	Germacrene D	![Germacrene D structure](image)	(i) Anti-inflammatory	
(ii) Anti-microbial and					
(iii) Anti-oxidant	[36–44]				
d	Terpene	α-pinene	![α-pinene structure](image)	(i) Anti-microbial	
(ii) Anti-inflammatory					
(iii) Increases basic fibroblast growth factor (BFGF)					
(iv) Increases platelet derived growth factor	[45–53]				
e	Acyclic diterpene alcohol	Phytol	![Phytol structure](image)	(i) Induces oxidative stress on microbial organisms	
(ii) Reduces interleukin-1β and tumor necrosis factor-α levels	[4, 20, 54–60]				
f	Fatty acid	Linolenic acid	![Linolenic acid structure](image)	(i) Anti-microbial	
(ii) Down regulate inflammatory inducible nitric oxide synthase (iNOS) | [20, 61–63] |
with the ability to stimulate chemotaxis for fibroblasts in vitro [89]. Alkaloids have also been observed to enhance significant wound healing activity (P<0.05) as evidenced by the increased rate of wound contraction and reduction in the period of epithelialization [90]. Sahib et al. [21] reported that the wound healing potential of *Ruta graveolens* L. plant may be due to the presence of alkaloids. These findings therefore suggest that the wound healing potential of *A. africana* may be due to the presence of large quantity of alkaloids.

Flavonoids are antioxidants with free radical scavenging ability and are therefore able to prevent oxidative damage in cells and have great anti-inflammatory activities [22], a basis for wound healing. Furthermore, flavonoids are also known to promote the wound healing process mainly due to their astringent and antimicrobial properties which are responsible for wound contraction and increased rate of epithelialization [23, 24]. Consequently, the wound healing ability of flavonoids has been observed to be even greater than that of silver sulfadiazine [25]. Flavonoids have also been observed to increase collagen synthesis, promote the cross-linking of collagen, shorten the inflammation period, and provide resistance against infections, important factors in enhancing the wound healing process [26]. These findings in part may be the reason behind the use of *A. africana* in the treatment of wounds, ulcers, and burns in traditional medicine.

Saponins’ antioxidant and haemolytic properties make them one of the most important secondary metabolites in the treatment and management of a number of diseases, including wound healing [28, 29]. Indeed, saponins’ ability to treat wounds and stop bleeding is due to the fact these phytochemicals precipitate and aggregate red blood cells [18]. Saponins are also known to enhance wound healing by causing wound contraction and bringing about high collagen deposition [29, 30]. In fact, saponins are also known to promote angiogenesis during skin wound repair [31]. Therefore, the high quantity of saponins in *A. africana* could explain why the plant has got such a potent ability to treat wounds in traditional medicine.

The presence of phenols in the plant leaf extract of *A. africana* is an indication that the extract may have antimicrobial properties [18] which greatly offers a basis for wound healing.

Tannins have been reported as having astringent activities which helps to quicken wound healing and treat inflammations [18]. Owing to its antibacterial activity and NIH3T3 cell proliferative effect, tannins have been observed to promote wound contraction, improve healing rate, and promote healing of infectious wounds [32]. Specifically, tannins have been observed to reduce colonization of wounds by *S. aureus* resulting in a hasten wound healing [33]. Therefore, the presence of tannins may be one of the reasons why *A. africana* is renowned for wound healing in traditional medicine.

Terpenoids isolated from the leaves of *A. africana* include 3β-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranosyl-(1→3)-ursan-12-ene, 3β-Hydroxyolean-12-ene, and 3β-acetoxyolean-12-ene (Figure 4) [27]. Other terpenes present include α-pinene [34], carene, and phytol [19, 20] (Table 1).

Terpenoids are known to promote the wound healing process, mainly due to their astringent and antimicrobial properties, which seem to be responsible for wound contraction and an increased rate of epithelialization [35]. Carene (monoterpene) (Table 1) wound healing ability may be due to its antimicrobial activity in which it can inhibit the growth of *S. aureus* and *P. aeruginosa* in wounds [36–40]. Carene as an example of monoterpenes exhibited strong anti-inflammatory activity [41]. Therefore, the anti-inflammatory and antimicrobial activities of carene and other monoterpenes contained in *A. africana* somewhat validate the use of this plant in wound healing.

Alpha-pinene (Table 1) is an organic compound of the terpene class contained in *A. africana* [34, 42]. This vital compound was found to have potent anti-inflammatory activity [43]. The anti-inflammatory activity is due to its ability to suppress mitogen-activated protein kinases (MAPKs) and the nuclear factor-kappa B (NF-κB) pathway which makes it a vital compound in the treatment of inflammatory diseases [44]. Beside its anti-inflammatory activity, singly or in synergy with other compounds, α-pinene has been observed to have interesting antimicrobial properties [46–48]. An *in vivo* study on *Pistacia atlantica* resin extract with 46.57% α-pinene as the main content had a concentration-dependent effect on the healing of burn wounds after 14 days of treatment by increasing the concentration of basic fibroblast growth factor (BFGF), platelet derived growth factor, and improving angiogenesis [49]. Indeed, increased concentration of basic fibroblast growth factor is known to greatly enhance wound healing [49, 50]. Therefore, the antimicrobial, anti-inflammatory, and ability to increase BFGF level may explain why *A. africana* with α-pinene as one of the major compounds has been used in wound healing for generations.

Phytol (Table 1) is an acyclic diterpene alcohol with a percentage abundance of about 13% in the chloroform extract of *A. africana* [20]. This phytochemical has been shown to have wound healing activity. In an *in vivo* study, topical application of *Stachytarpheta jamaicensis* plant extract cream containing phytol on diabetic excision wound significantly improved (P<0.05) the percentage of wound contraction.
Evidence-Based Complementary and Alternative Medicine 7

(88%) when compared to untreated diabetic rats in a period of 20 days [51]. It is important to note that wound healing can be greatly delayed due to infection by microorganisms [4]. *Pseudomonas aeruginosa* is one of the most common bacteria isolated from chronic wounds and can express virulence factors on the surface proteins affecting wound healing [52]. Phytol is known to exert antibacterial property on *P. aeruginosa* via inducing oxidative stress [53]. Indeed, this compound is known to have high antimicrobial activity, high stability, and low toxicity [54]. In addition to the antimicrobial potential, phytol is also known to be one of the compounds with highly potent anti-inflammatory property [55, 56]. An in vivo study showed that phytol attenuated the inflammatory response by inhibiting neutrophil migration that is partly caused by reduction in interleukin-1β and tumor necrosis factor-α levels and oxidative stress [57]. The presence of phytol in *A. africana* therefore may explain why this plant has great antimicrobial and anti-inflammatory activities and hence its potent wound healing ability.

Caryophyllene (Table 1) is a natural bicyclic sesquiterpene that is a constituent of many essential oils belonging to a class of phytocannabinoids, one of the many compounds found in the extract of *A. africana* [19]. This compound has been shown to have potent antimicrobial property [58, 59]. Indeed, β-caryophyllene has demonstrated selective antibacterial activity against *S. aureus* (minimum inhibitory concentration (MIC) 3±1.0 μM) and more pronounced antifungal activity [60]. Similarly, β-caryophyllene presented rapid bacterial killing for *S. aureus* (MIC <1.0 mg/ml) in 4 h [61]; *S. aureus* is one of the main microbial organisms that enhances wound sepsis [62]. β-caryophyllene has also been shown to exhibit great anti-inflammatory activity [63, 91, 92]. In a study by Dahham et al. [93], it was observed that β-caryophyllene elicited significant (*P<0.01) reduction in paw volumes and low intensity of fluorescent signal in experimental animals when compared with negative control. Furthermore, the result indicated that the compound has a low toxicity, with high ability of skin penetration, greatly enhancing anti-inflammatory and analgesic activities making it useful for prevention and management of inflammation-related diseases, including wounds. Therefore, the antimicrobial and anti-inflammatory activities exhibited by β-caryophyllene contained in the extracts of *A. africana* could explain why this plant is so effective in wound healing.

Germacrene D (Table 1) is a volatile organic hydrocarbon compound belonging to the class sesquiterpenes contained

Figure 4: Isolated terpenoids from the leaves of *Aspilia africana* [27].
in *A. africana* plant [27, 94, 95]. The compound possesses potent antimicrobial, anti-inflammatory, and antioxidant potentials activities [96–99]. Indeed germacrene D showed broad spectrum antibacterial activity against important human pathogenic Gram-positive and Gram-negative bacteria including *S. aureus* [100–102]. Therefore, the antimicrobial and anti-inflammatory activities exhibited by germacrene D contained in the extracts of *A. africana* could explain why this plant is so effective in wound treatment and management. However, more studies on isolated germacrene D needs to be conducted to validate further its wound healing potential.

Linolenic acid (Table 1) has been reported to have very strong antimicrobial activity against a number of microbes including those known to infect wounds and delay its healing such as *S. aureus* [103]. In addition, it is also an important anti-inflammatory agent [104]. Linolenic acid has been observed to down regulate inflammatory inducible nitric oxide synthase (iNOS), cyclooxygenase-2, and tumor necrosis factor-alpha gene expressions through the blocking of nuclear factor-kappaB and mitogen-activated protein kinases activation in lipopolysaccharide-stimulated murine macrophages cell line (RAW 264.7 cells), which may be the mechanistic basis for the anti-inflammatory effect of linolenic acid [105]. The presence of linolenic acid in *A. africana* therefore may explain why this plant has great antimicrobial and anti-inflammatory activities and hence its potent wound healing ability.

Through synergistic interactions of the different phytochemicals in *A. africana*, the plant has exhibited very strong antimicrobial, anti-inflammatory, and antioxidant activities which are vital components of the wound healing processes.

7. Conclusion

Throughout the world, wounds impose significant health burdens on millions of people. Consequently, all possible measures have to be taken to tackle it. Natural products have been used over the years for treatment and management of wounds. *A. africana* is one of the plants with immense attributes to enhance wound healing. The synergistic effects of the major phytochemicals in *A. africana* including alkaloids, saponins, tannins, flavonoids, β-caryophyllene, germacrene D, α-pinene, carene, phytol, and linolenic acid confer potent anti-inflammatory, antimicrobial, and antioxidant activities on the plant. This probably explains why this plant has such a potent wound healing ability. However, due to the reported adverse effects on the reproductive organs of the experimental animal models when administered orally, we recommend that future clinical studies focus on its topical application for wounds. Furthermore, although several studies have been carried out regarding chemical screening in *A. africana*, our review did not find any study on major nonvolatile chemical isolation and structure determination except for a limited study on terpenoids. Therefore, further studies on *A. africana* need to be done in this regard. Future studies also need to focus on the wound healing potential of the individual isolated compounds in *A. africana*. Furthermore, more preclinical and subsequently clinical studies need to be done to validate and understand the mechanism(s) of action of these phytochemicals in *A. africana* either in isolation or in combination for possible future wound healing drug development.

Disclosure

Richard Komakech is first author.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Richard Komakech carried out the data search and was the major contributor in writing the manuscript. Motlalepula Gilbert Matsabisa and Youngmin Kang technically designed and helped in writing the manuscript. All the authors read and approved the final manuscript.

Acknowledgments

In a special way, we would like to thank Mr. Gang Roggers, a research officer at the National Agricultural Research Organisation (NARO), Ministry of Agriculture and Fisheries in Uganda, for the *A. africana* pictures that he provided from which the illustrations were made that greatly improved this manuscript. This work was supported under the framework of International Cooperation Program (Korea-South Africa Cooperative Research Project for Excavation of Candidate Resources of Complementary & Alternative Medicine) managed by the National Research Foundation of Korea (Grant 2017093655, KIOM: DI7470). Additionally, this work was equally supported by Grants from Establishment of the Evidence for Clinical Practice-based Korean Medicine Treatment Technologies (K18121) and Development of Foundational Techniques for the Domestic Production of Herbal Medicines (K18405) from the Korea Institute of Oriental Medicine (KIOM), through the Ministry of Science & ICT, Republic of Korea.

References

[1] C. Shenoy, M. B. Patil, R. Kumar, and S. Patil, “Preliminary phytochemical investigation and wound healing activity of Allium cepa linn (Liliaceae),” *International Journal of Pharmacy and Pharmaceutical Sciences*, no. 2, pp. 167–175, 2009.

[2] R. Thakur, N. Jain, R. Pathak, and S. S. Sandhu, “Practices in Wound Healing Studies of Plants,” *Evidence-Based Complementary and Alternative Medicine*, vol. 2011, Article ID 438056, 17 pages, 2011.

[3] H. Imran, M. Ahmad, Atiq-Ur-Rahman et al., “Evaluation of wound healing effects between Salvadoria persica ointment and Solcoseryl jelly in animal model,” *Pakistan Journal of Pharmacoeutical Sciences*, vol. 28, no. 5, pp. 1777–1780, 2015.

[4] P. G. Bowler, B. L. Duerrden, and D. G. Armstrong, “Wound microbiology and associated approaches to wound management,” *Clinical Microbiology Reviews*, vol. 14, no. 2, pp. 244–269, 2001.
Evidence-Based Complementary and Alternative Medicine

[5] J. Boateng and O. Catanzano, “Advanced Therapeutic Dressings for Effective Wound Healing - A Review,” *Journal of Pharmaceutical Sciences*, vol. 104, no. 11, pp. 3653–3680, 2015.

[6] K. Järbrink, G. Ni, H. Sönnergren et al., “Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review,” *Systematic Reviews*, vol. 5, no. 1, 2016.

[7] N. Pazzar, Y. Yaghobi, E. Raﬁee, A. Mehrabian, and A. Feily, “Skin wound healing and phytomedicine: a review,” *Skin Pharmacology and Physiology*, vol. 27, no. 6, pp. 303–310, 2014.

[8] A. C. D. O. Gonzalez, Z. D. A. Andrade, T. F. Costa, and A. R. A. P. Medrado, “Wound healing—a literature review,” *Anais Brasileiros de Dermatologia*, vol. 91, no. 5, pp. 614–620, 2016.

[9] M. Rekik, B. S. Khedir, K. K. Moalla, and Z. Sahnoune, “Healing activity of many Tunisian medicinal plants on wounds and burns,” *International Journal of Scientific & Engineering Research*, vol. 7, no. 5, 2016.

[10] P. Sabale, B. Bhimani, C. Prajapati, and V. Sabalea, “An overview of medicinal plants as wound healers,” *Journal of Applied Pharmaceutical Science*, vol. 2, no. 11, pp. 143–150, 2012.

[11] C. Agyare, Y. D. Boakye, E. O. Bekoe, A. Hensel, S. O. Dapaah, and T. Appiah, “Review: African medicinal plants with wound healing properties,” *Journal of Ethnopharmacology*, vol. 177, pp. 85–100, 2016.

[12] C. O. Okoli, P. A. Akah, and A. S. Okoli, “Potentials of leaves of Aspilia africana (Compositae) in wound care: An experimental evaluation,” *BMC Complementary and Alternative Medicine*, vol. 7, article no. 24, 2007.

[13] K. K. Ajibesin, “Ethnobotanical survey of plants used for skin diseases and related ailments in Akwa Ibom State, Nigeria,” *Ethnobotany Research and Applications*, vol. 10, pp. 463–522, 2012.

[14] I. F. Nwafor, K. M. Tschimene, F. P. Onyekere, and ETAL. “Ethnobotanical study of traditional medicine practices for the treatment of chronic leg ulcer in South eastern Nigeria,” *Indian Journal of Traditional Knowledge*, vol. 17, no. 1, pp. 34–42, 2018.

[15] C. O. Okoli, P. A. Akah, S. V. Nwafor, A. I. Anisio, I. N. Ilbegbunam, and O. Erojikwe, “Anti-inflammatory activity of hexane leaf extract of *Aspilia africana* C.D. Adams,” *Journal of Ethnopharmacology*, vol. 109, no. 2, pp. 219–225, 2007.

[16] S. E. Ukwueze, A. N. Aghanya, A. A. Mgbahurike et al., “Analysis of Chloroform Extract of the Leaves of Aspilia africana,” *Journal of Medicinal Plants Studies*, vol. 5, no. 4, pp. 22–27, 2017.

[17] O. Etiosa, A. Akeem, and N. Chika, “Phytochemical Studies and GC-MS Analysis of Chloroform Extract of the Leaves of Aspilia africana,” *Asian Journal of Physical and Chemical Sciences*, vol. 4, no. 3, pp. 1–8, 2018.

[18] E. M. Ilondu, “Chemical constituents and comparative toxicity of aspilia africana (pers) C. D ADAMS LEAF extracts against two leafspot fungal isolates of PAW-PAW (Carica papaya L.),” *Indian Journal of Science and Technology*, vol. 6, no. 9, pp. 5242–5248, 2013.

[19] S. S. Sasidharan, R. Nilawatyi, R. Xavier, L. Y. Latha, and R. Amala, “Wound healing potential of *Elaeis guineensis* Jacq leaves in an infected albino rat model,” *Molecules*, vol. 15, no. 5, pp. 3186–3199, 2010.

[20] K. Yousefi, S. Hamedeyazdan, D. Hodaia et al., “An in vitro ethnopharmacological study on Prangos fervaluce: A wound healing agent,” *BioImpacts*, vol. 7, no. 2, pp. 75–82, 2017.
D.-S. Kim, H.-J. Lee, Y.-D. Jeon et al., "Alpha-pinene exhibits
T. A. Ibrahim, A. A. El-Hela, H. M. El-Hefnawy, A. M. Al-
M. Tohid, M. Khayami, V. Nejati, and H. Meftahizade, "Evidence-Based Complementary and Alternative Medicine, vol. 11, pp. 173–194, 2007.

C. Obute and O. G. Adubor, "Chemicals detected in plants used for folk medicine in South Eastern Nigeria," Ethnobotanical Leaflets, vol. 11, pp. 173–194, 2007.

[37] M. Glamoclija, D. Sokovic, D. Ilijevic, S. Ristic, D. Cicic, and V. D. Grubici, "Chemical Composition and Antimicrobial Activity of Echinophora spinosa L. (Apiaceae) Essential Oil Jasmina," Records of Natural Products, vol. 5, no. 4, pp. 319–323, 2011.

[38] L. Cherrat, L. Espina, M. Bakkali, D. Garcia-Gonzalo, R. Pagán, and A. Laglouai, "Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation," Journal of the Science of Food and Agriculture, vol. 94, no. 6, pp. 1197–1204, 2014.

[39] C. Atif, M. Boualem, M. M. Cherif, H. Youcef, and C. Azzedine, "Chemical composition and antimicrobial activity of essential oils in Xerophytic plant Cotula cinerea Del (Asteraceae) during two stages of development: Flowering and fruiting," Journal of Applied Pharmaceutical Science, vol. 5, no. 3, pp. 29–34, 2015.

[40] T. A. Ibrahim, A. A. El-Hela, H. M. Al-Hefnawy, A. M. Al-Taweel, and S. Perveen, "Chemical composition and antimicrobial activities of essential oils of some coniferous plants cultivated in Egypt," Iranian Journal of Pharmaceutical Research, vol. 16, no. 1, pp. 328–337, 2017.

[41] R. de Cássia da Silveira E Sá, L. N. Andrade, and D. P. de Sousa, "A review on anti-inflammatory activity of monoterpenes," Molecules, vol. 18, no. 1, pp. 1227–1254, 2013.

[42] A. Ogununwande, I. Eresanya O, O. Avoseh, T. Oyegoke, O. Oggunmoye, and G. Flaminic, "Chemical composition of essential oils from Nigerian plants," Pelagia Research Library, vol. 3, no. 1, pp. 279–286, 2012.

[43] I. Orhan, E. Küpeli, M. Aslan, M. Kartal, and E. Yesilada, "Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L.,” Journal of Ethnopharmacology, vol. 105, no. 1-2, pp. 235–240, 2006.

[44] D.-S. Kim, H.-J. Lee, Y.-D. Jeon et al., "Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages," American Journal of Chinese Medicine, vol. 43, no. 4, pp. 731–742, 2015.

[45] S. Mahibalan, M. Stephen, R. T. Nethran, R. Khan, and S. Begum, "Dermal wound healing potency of single alkaloid (betaine) versus standardized crude alkaloid enriched-ointment of Evolvulus alsinoides," Pharmaceutical Biology, vol. 54, no. 12, pp. 2851–2856, 2016.

[46] M. Tofidi, M. Khayami, V. Nejati, and H. Meftahizade, "Evaluation of antibacterial activity and wound healing of Pistacia atlantica and Pistacia kinnuk," Journal of Medicinal Plants Research, vol. 5, no. 17, pp. 4310–4314, 2011.

[47] Z. Parveen, S. Nawaz, S. Siddique, and K. Shahzad, "Composition and Antimicrobial Activity of the Essential Oil from Leaves of Curcuma longa L. Kasur Variety," Indian Journal of Pharmacological Sciences, vol. 75, no. 1, p. 117, 2013.

[48] D. R. Davis and G. R. Graves, "A new leafmining moth (Camararia cotinivora, Lepidoptera: Gracillariidae) of the American Smoketree (Cotinus obovatus)," Proceedings of the Entomological Society of Washington, vol. 118, no. 2, pp. 244–253, 2016.

[49] F. Haghdoost, M. M. Baradaran Mahdavi, A. Zandifar, M. H. Sanei, B. Zolfaghari, and S. H. Javanmard, "Pistacia atlantica resin has a dose-dependent effect on angiogenesis and skin burn wound healing in rat," Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 893425, 8 pages, 2013.

[50] Q. M. Nunes, Y. Li, C. Sun, T. K. Kinnunen, and D. G. Fernig, "Fibroblast growth factors as tissue repair and regeneration therapeutics," Peer Journal, vol. 4, p. e1555, 2016.

[51] M. H. Van Rozijnoor, K. Nural Nadia, and S. Nurdiana, "Stachytarpheta jamaicensis ethanolic leaf extract as wound healer on alloxan-induced diabetic sprague dawley rats," Biotechnology: An Indian Journal, vol. 9, no. 11, pp. 460–464, 2016.

[52] R. Serra, R. Grande, L. Butrico et al., "Chronic wound infections: the role of," Expert Review of Anti-infective Therapy, vol. 13, no. 5, pp. 605–613, 2015.

[53] W. Lee, E.-R. Woo, and D. G. Lee, "Phytol has antibacterial property by inducing oxidative stress response in Pseudomonas aeruginosa," Free Radical Research, vol. 50, no. 12, pp. 1309–1318, 2016.

[54] M. Ghaniean, M. T. H. Jebali, A. S. Hekmatmohammadam, and M. Mahmoudi, "Antimicrobial activity, toxicity and stability of phytol as a novel surface disinfectant," Environmental Health Engineering and Management Journal, vol. 2, no. 1, pp. 13–16, 2015.

[55] P. Olofsson, M. Hultqvist, I. Hellgren, and R. Holmdah, "Phytol: A Chlorophyll Component with Anti-inflammatory and Metabolic Properties," Recent Advances in Redox Active Plant and Microbial Products, pp. 345–359, 2014.

[56] N. D. Phatangare, K. K. Deshmukh, and V. D. Murade, "Isolation and Characterization of Phytol from Justicia gendarussa Burm. f.-An Anti-Inflammatory Compound," International Journal of Pharmacognosy and Phytochemical Research, vol. 9, no. 6, pp. 864–872, 2017.

[57] R. O. Silva, F. B. Sousa, and S. R. Damasceno, "Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress," Fundamental Clinical Pharmacology, vol. 28, no. 4, pp. 455–464, 2014.

[58] L. Xiong, C. Peng, Q.-M. Zhou et al., "Chemical composition and antibacterial activity of essential oils from different parts of Leonurus japonicus houtt.," Molecules, vol. 18, no. 1, pp. 963–973, 2013.

[59] H. A. Yamanì, E. C. Pang, N. Mantri, and M. A. Deighton, "Antimicrobial activity of Tula (Ocimum tenuiflorum) essential oil and their major constituents against three species of bacteria," Frontiers in Microbiology, vol. 7, article 681, 2016.

[60] S. S. Dahham, Y. M. Tabana, M. A. Isbel et al., "The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna, Molecules, vol. 20, no. 7, pp. 11808–11829, 2015.

[61] M. C. Selestino Neta, C. Vitorarazi, A. C. Guimarães et al., "Effects of β-caryophyllene and ," Pharmaceutical Biology, vol. 55, no. 1, pp. 190–197, 2016.

[62] L. Halcón and K. Milík, "Staphylococcus aureus and wounds: a review of tea tree oil as a promising antimicrobial," American Journal of Infection Control, vol. 32, no. 7, pp. 402–408, 2004.

[63] B. Bakir, H. Aydin, Ö. Hanefi, E. Düz, and M. Tütüncü, "Investigation of the anti-inflammatory and analgesic activities of β-caryophyllene," International Journal of Essential Oil Therapeutics, vol. 2, pp. 41–44, 2008.

[64] O. O. Oko, E. Agiang, and E. E. Osim, "Pharmacognosy of Aspilia africana plant: Phytochemistry and Activities," in Bioactive Phytochemicals: Perspectives for Modern Medicine, Kumar, Ed., pp. 383–409, ASTRAL, 2nd edition, 2014.

[65] C. Obute and O. G. Adubor, "Chemicals detected in plants used for folk medicine in South Eastern Nigeria," Ethnobotanical Leaflets, vol. 11, pp. 173–194, 2007.
C. Taziebou Lienou, F.-X. Etoa, B. Nkougou, C. A. Pieme, and D. P. D. Dzeufet, "Acute and subacute toxicity of Aspilia africana leaves," *African Journal of Traditional, Complementary and Alternative Medicines*, vol. 4, no. 2, pp. 127–134, 2007.

C. Okwuonu, K. Oluyemi, B. Grillo et al., "Effects of Methanolic extract of Aspilia africana leaf on the ovarian tissues and weights of Wistar rats," *The Internet Journal of Alternative Medicine*, vol. 5, no. 1, 2006.

O. O. Koko, E. A. Agiang, E. E. Osim, and O. R. Asuquo, "Toxicological evaluation of aspilia africana leaf extracts in mice," *American Journal of Pharmacology and Toxicology*, vol. 6, no. 3, pp. 96–101, 2011.

A. M. Eluwa, E. O. Imossan, and R. O. Asuquo, "Pre-natal exposure and toxicity of aqueous leaf extract of Aspilia africana on placenta of albino wistar rat foetuses," *European Journal of Pharmaceutical and Medical Research*, vol. 4, no. 9, pp. 46–51, 2017.

O. Kayode A., O. Uche C., B. D. Grillo, and O. Tolulope O., "Toxic effects of methanolic extract of Aspilia africana leaf on the estrous cycle and uterine tissues of Wistar rats," *International Journal of Morphology*, vol. 25, no. 3, pp. 609–614, 2007.

A. O. Eweka, "Histological studies of the effects of oral administration of Aspilia africana (Asteraceae) leaf extract on the ovaries of female wistar rats," *African Journal of Traditional, Complementary and Alternative Medicines*, vol. 6, no. 1, pp. 57–61, 2009.

O. R. Asuquo, M. A. Eluwa, and O. E. Mesembe, "Antispermatogenic activity of Aspilia africana methanol leaf extract in male Wistar rats," *British Journal of Medicine & Medical Research*, vol. 6, no. 4, pp. 415–422, 2015.

A. Eweka, "Anti-ulcer effect of Aspilia africana (Asteraceae) leaf extract on induced duodenal ulcer of adult Wistar rats (Rattus norvegicus) – A Histological Study," *The Internet Journal of Alternative Medicine*, vol. 8, no. 1, 2008.

T. B. Nguelefack, P. Watcho, S. L. Wansi et al., "Short Communication: The antinociceptive effects of the methanol extract of the leaves of Aspilia africana (Asteraceae) in rats," *African Journal of Traditional, Complementary and Alternative Medicines*, vol. 2, no. 3, pp. 233–237, 2005.

A. A. Attama, P. F. Uzor, C. O. Nnadi, and C. G. Okafor, "Evaluation of the wound healing activity of gel formulations of leaf extract of Aspilia Africana fam. Compositae," *Journal of Chemical and Pharmaceutical Research*, vol. 3, no. 3, pp. 718–724, 2011.

E. A. Osumwoke, O. Otakore, and S. Lelei, "Wound Healing Effects Of The Leaves Extract Of Aspilia africana On Wistar Rats (Rattus norvegicus)," *Vedic Research International Phytotherapy*, vol. 2, no. 1, pp. 1–5, 2014.

K. O. Ajiegbef, S. S. Enitan, D. R. Omotoso, and O. O. Oladokun, "Acute effects of aqueous leaf extract of Aspilia africana C.D. Adams on some haematological parameters in rats," *African journal of traditional, complementary, and alternative medicines: AJTCAM / African Networks on Ethnomedicines*, vol. 10, no. 5, pp. 236–243, 2013.

M. Mahre, B. Umaru, S. Ngulde et al., "Haematological changes and wound healing effects of sildenafli citrate in diabetic albino rats," *Sokoto Journal of Veterinary Sciences*, vol. 15, no. 1, pp. 20–26, 2017.

I. Tumen, I. Sünhtar, H. Keleş, and E. Küpeli Akkol, "A therapeutic approach for wound healing by using essential oils of cupressus and juniperus species growing in Turkey," *Evidence-Based Complementary and Alternative Medicine*, vol. 2012, Article ID 728281, 7 pages, 2012.
Adams. American-Eurasian Journal of Sustainable Agriculture, vol. 3, no. 4, pp. 899–901, 2009.

[96] L. T. H. Tan, L. H. Lee, W. F. Yin et al., “Traditional Uses, Phytochemistry, and Bioactivities of Cananga odorata (Ylang-Ylang),” Evidence-Based Complementary and Alternative Medicine, vol. 2015, Article ID 896314, 30 pages, 2015.

[97] C. Pérez Zamora, C. Torres, and M. Nuñez, “Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America,” Molecules, vol. 23, no. 3, p. 544, 2018.

[98] B. Bayala, I. H. Bassole, C. Gnoula et al., “Chemical Composition, Antioxidant, Anti-Inflammatory and Anti-Proliferative Activities of Essential Oils of Plants from Burkina Faso,” PLoS ONE, vol. 9, no. 3, p. e92122, 2014.

[99] P. Sitarek, P. Rijo, C. García et al., “Antibacterial, Anti-Inflammatory, Antioxidant, and Antiproliferative Properties of Essential Oils from Hairy and Normal Roots of Leonurus sibiricus L. And Their Chemical Composition,” Oxidative Medicine and Cellular Longevity, vol. 2017, Article ID 7384061, 2017.

[100] J. Cárdenas, J. Rojas, L. Rojas-Fermin, M. Lucena, and A. Buitrago, “Essential oil composition and antibacterial activity of Monticalia greenmaniana (Asteraceae),” Natural Product Communications (NPC), vol. 7, no. 2, pp. 243-244, 2012.

[101] A. Kadri, I. B. Chobba, Z. Zarai et al., “Chemical constituents and antioxidant activity of the essential oil from aerial parts of Artemisia herba-alba grown in Tunisian semi-arid region,” African Journal of Biotechnology, vol. 10, no. 15, pp. 2923–2929, 2011.

[102] C. El-Kalamouni, P. Venskutonis, B. Zebib, O. Merah, C. Raynaud, and T. Talou, “Antioxidant and Antimicrobial Activities of the Essential Oil of Achillea millefolium L. Grown in France,” Medicines, vol. 4, no. 2, p. 30, 2017.

[103] J.-Y. Lee, Y.-S. Kim, and D.-H. Shin, “Antimicrobial synergistic effect of linolenic acid and monoglyceride against Bacillus cereus and Staphylococcus aureus,” Journal of Agricultural and Food Chemistry, vol. 50, no. 7, pp. 2193–2199, 2002.

[104] R. Reifen, A. Karlinsky, A. H. Stark, Z. Berkovich, and A. Nyska, “α-Linolenic acid (ALA) is an anti-inflammatory agent in inflammatory bowel disease,” The Journal of Nutritional Biochemistry, vol. 26, no. 12, pp. 1632–1640, 2015.

[105] J. Ren and S. H. Chung, “Anti-inflammatory effect of α-linolenic acid and its mode of action through the inhibition of nitric oxide production and inducible nitric oxide synthase gene expression via NF-κB and mitogen-activated protein kinase pathways,” Journal of Agricultural and Food Chemistry, vol. 55, no. 13, pp. 5073–5080, 2007.