$SL(2, Z)$ invariant rotating (m, n) strings in $AdS_3 \times S^3$ with mixed flux

Sorna Prava Barika, Malak Khouchenb, Josef Klusoňb and Kamal L. Panigrahia

a Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721 302, India

b Institute for Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic

E-mail: sornaprava15@gmail.com, malak.khouchen@gmail.com, klu@physics.muni.cz, panigrahi@phy.iitkgp.ernet.in

ABSTRACT: We study rigidly rotating and pulsating (m, n) strings in $AdS_3 \times S^3$ with mixed three form flux. The $AdS_3 \times S^3$ background with mixed three form flux is obtained in the near horizon limit of $SL(2, Z)$-transformed solution, corresponding to the bound state of NS5-branes and fundamental strings. We study the probe (m, n)—string in this background by solving the manifest $SL(2, Z)$—covariant form of the action. We find out the dyonic giant magnon and single spike solutions corresponding to the equations of motion of a probe string in this background and find out various relationships among the conserved charges. We further study a class of pulsating (m, n) string in AdS_3 with mixed three form flux.

KEYWORDS: AdS/CFT correspondence, Semiclassical strings.
1. Introduction

Integrability in string theory has been proved to be one of the most useful techniques in studying string spectrum in various semisymmetric superspaces \[1\]. The appearance of integrability on both sides of the AdS/CFT correspondence \[3, 4, 5\] has added tremendous amount of progress in the study of string theory. In this context, type IIB superstring theory on AdS\(_5 \times S^5\) has been shown to be described as supercoset sigma model \[6\]. The appearance of integrability via appearance of hidden charges was first exploited in \[7\]. With the realization that the counting of gauge invariant operators from gauge theory side can be elegantly formulated in terms of an integrable spin chain, it has been established that integrability played an important role on both sides of the duality, since the dual string theory is integrable in the semiclassical limit. In this connection, a special limit was put forth using in which both sides of the duality were analyzed in great detail. In particular, the spectrum on the field theory side was shown to consist of elementary excitations, the so called magnons which carry momentum \(p\) along the finitely or infinitely long spin chain. On the string theory side, the dual string state derived from the rigidly rotating string in the \(\mathcal{R} \times S^3\) appears to give the same dispersion relation between the string energy (E) and the angular momentum (J) in the large ’t Hooft limit and is known as the giant magnon \[8\]. A more general kind of rotating strings, known as spiky strings, are dual to higher twist operators also presented in \[9\]. It was further argued that they both fall into the category

\[1\]for a detailed introduction and references on integrability in AdS/CFT refer \[2\].
of special class of general rotating string solutions on the sphere. In addition to the rigidly rotating strings, the spinning and pulsating strings have also been shown to have exact correspondence with some dual operators in the gauge theory. Pulsating string was introduced first in [13]. Compared to the rigidly rotating strings, the folded and the pulsating strings are less studied even though the pulsating-rotating solutions offer better stability than the non pulsating solutions [14]. These solutions are time-dependent as opposed to the usual rigidly rotating string solutions. They are expected to be dual to highly excited states in terms of operators [13].

Long ago, Schwarz [15] has constructed an $SL(2, Z)$ multiplet of string-like solutions in type IIB string theory starting from the fundamental string solution. It is known that the equations of motion of type IIB supergravity theory are invariant under an $SL(2, R)$ group. This suggests the possibility to generate new supergravity solutions by applying this rotation to known solutions such as string-like as well as five-brane solutions. A discrete subgroup $SL(2, Z)$ of this $SL(2, R)$ group has been conjectured later to be the exact symmetry group of the type IIB string theory based on the fact that there are no fractional string or D-brane charges. The $SL(2, Z)$ transformed solution of the a bound state of Q_5 NS5-branes and Q_1 fundamental strings (F-strings) is characterized by charges with respect to RR and NS-NS two forms. In the near horizon limit of this solution, we obtain the $AdS_3 \times S^3$ background with mixed three form fluxes with integer charges. It has also been recently shown that the $SL(2, Z)$-transformation and the near horizon limit commute. This allows to map the (m, n)-string in $AdS_3 \times S^3$ background with mixed three form fluxes to (m', n')-string in $AdS_3 \times S^3$ background with NS-NS two form flux. Recently in a series of papers [16][17][18], the superstring theory on $AdS_3 \times S^3 \times T^4$ supported by a combination of RR and NSNS 3-form fluxes (with parameter of the NSNS 3-form q) has been investigated in detail. The worldsheet theory interpolates between the pure RR flux model ($q = 0$) and the pure NSNS flux model ($q = 1$). The theory has been shown to be integrable and for a generic value of the parameter q the corresponding tree-level S-matrix for massive BMN-type excitations has been computed. Further computations along the lines of rotating and pulsating string have been studied, for example in [20][21][22][23][24][25][26][27][28][29]. In view of the study of superstrings in $AdS_3 \times S^3$ background with mixed flux, it is interesting to investigate further the rotating (m, n) string in $AdS_3 \times S^3$ background with mixed three form fluxes. This problem can be mapped to (m', n') string in $AdS_3 \times S^3$ background with NS-NS two form flux by using the symmetries of the intersecting brane background itself. The rest of the paper is organized as follows. In section 2, we study (m, n)-string in $AdS_3 \times S^3$ background with mixed three form fluxes after mapping it to the simpler (m', n')-string in $AdS_3 \times S^3$ background with NS-NS two form flux. In section 3, we solve the corresponding equations of motion in the single angular momentum case where we find out solutions that correspond to spike and giant magnon. Section 4 is devoted to the study of the rotating string with two angular momenta and we present the relations among various conserved charges. In section 5, we discuss the pulsating strings in AdS_3 background with mixed three form flux. In section 6, we conclude and present our results.

\footnote{For a nice review and comprehensive list of references on the study of integrability of superstrings on $AdS_3 \times S^3 \times T^4$ with both RR and mixed flux refer [10].}
2. Rotating \((m, n)\)-string in \(\text{AdS}_3 \times S^3\) with mixed flux

We begin this section with a review of the construction of \(\text{AdS}_3 \times S^3\) background with mixed three form fluxes that was performed recently in [30]. The starting point is the \(\text{AdS}_3 \times S^3\) background with NS-NS two form flux

\[
\begin{align*}
 ds^2 &= L^2 [ds^2_{\text{AdS}_3} + d\Omega^2_3], \\
 H &= 2L^2 (\tilde{e}_{\text{AdS}_3} + e_{S^3}), L^2 = r_5^2, \\
 e^{-2\Phi_{\text{NS}}} &= \frac{1}{g_s^2} \frac{r_1^2}{r_5^2}, r_1^2 = \frac{16\pi^4 g_s^2 \alpha'^3 Q_1}{V_4}, r_5^2 = Q_5 \alpha', V_4 = (2\pi)^4 \alpha'^2 v,
\end{align*}
\]

(2.1)

where \(ds^2_{\text{AdS}_3}\) is the line element of \(\text{AdS}_3\) space expressed in dimensionless variables. It is well known that the solution given in (2.1) is a solution of type IIB supergravity equations of motion. On the other hand, we also know that type IIB superstring theory possesses \(SL(2, Z)\)–duality transformation that leaves the metric in the Einstein frame unchanged. In case of two forms, it is convenient to introduce the vector \(B\) defined as

\[
B = \begin{pmatrix} B \\ C^{(2)} \end{pmatrix}
\]

(2.2)

where \(B\) and \(C^{(2)}\) are NSNS and RR two forms respectively. The vector \(B\) transforms under \(SL(2, Z)\) transformation as

\[
\hat{B} = (\Lambda^T)^{-1} B,
\]

(2.3)

where

\[
\Lambda = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \det \Lambda = 1,
\]

(2.4)

and where \(a, b, c, d\) are integers. Type IIB theory also has two scalar fields \(\chi\) and \(\Phi\), where the dilaton \(\Phi\) is in the NS-NS sector while \(\chi\) belongs to the RR sector. It is convenient to combine these fields into a complex field \(\tau = \chi + i e^{-\Phi}\) and introduce the following matrix

\[
\mathcal{M} = e^{\Phi} \begin{pmatrix} \tau \tau^* & \chi \\ \chi^* & 1 \end{pmatrix} = e^{\Phi} \begin{pmatrix} \chi^2 + e^{-2\Phi} \chi \\ \chi \end{pmatrix}, \det \mathcal{M} = 1
\]

(2.5)

that transforms under \(SL(2, Z)\) transformation as

\[
\hat{\mathcal{M}} = \Lambda \mathcal{M} \Lambda^T,
\]

(2.6)

where \(\Lambda\) is given in (2.4).

\footnote{We ignore the part of the metric corresponding to four torus \(T^4\) with the volume \(V_4\).}
Then in order to find $AdS_3 \times S^3$ background with mixed three form fluxes, we perform $SL(2, Z)$ transformation of the ansatz (2.1) and we obtain the line element in the form

$$ds^2 = \sqrt{\frac{c^2}{g_s^2} r_1^2 + d^2} \left[L^2 [ds^2_{\tilde{AdS}_3} + ds^2_{\tilde{S}^3}] + ds^2_7 \right], \quad (2.7)$$

where $ds^2_7 = dx_6^2 + \cdots + dx_5^2$. We see that the new solution has the curvature radius $\tilde{L} = \sqrt{\frac{c^2}{g_s^2} r_1^2 + d^2} = \frac{1}{g_s} \sqrt{c^2 r_1^2 + d^2 g_s^2 r_5^2 r_5}$. Further, there are the following NSNS and RR three forms

$$\tilde{H} = dH = 2dL^2 (\tilde{\epsilon}_{AdS_3} + \epsilon_{S^3}),$$

$$\tilde{F} = -bH = -2bL^2 (\tilde{\epsilon}_{AdS_3} + \epsilon_{S^3})$$

(2.8)

and dilaton and zero form RR field as

$$e^{-\tilde{\Phi}} = \frac{\sqrt{Q_1 Q_5 v}}{c^2 Q_1 + d^2 Q_5 v} = \frac{1}{g_s},$$

$$\tilde{\chi} = \frac{ac Q_1 + bdv Q_5}{c^2 Q_1 + d^2 Q_5 v}.$$

(2.9)

Our goal is to study the dynamics of the probe (m, n)-string in this background.

To do this, we introduce the action for (m, n)-string that has the form

$$S_{(m, n)} = -T_{D1} \int d\tau d\sigma \sqrt{m^T \mathcal{M}^{-1} m} \sqrt{-\text{det}g_{MN} \partial_\alpha x^M \partial_\beta x^N} +$$

$$+ T_{D1} \int d\tau d\sigma m^T B_{MN} \partial_\tau x^M \partial_\sigma x^N,$$

(2.10)

where

$$m = \begin{pmatrix} m \\ n \end{pmatrix}, \quad m^T \mathcal{M}^{-1} m = m_i (\mathcal{M}^{-1})^{ij} m_j, \quad m^T B = m_i B^i,$$

(2.11)

where m, n count the number of fundamental string (m) and D1-branes (n) and hence they have to be integers.

It is important that the action (2.10) is manifestly invariant under $SL(2, Z)$ transformation when B and \mathcal{M} transform as in (2.2) and (2.6) and when m transforms as

$$\tilde{m} = \Lambda m.$$

(2.12)

Note that this action is expressed using Einstein frame metric g_{MN} which is related to the string frame metric G_{MN} by the relation $g_{MN} = e^{-\Phi/2} G_{MN}$ where the Einstein frame metric is invariant under $SL(2, Z)$-transformations. Then it was shown in [30] that

\[\text{For recent discussion, see [31].}\]
string in mixed $AdS_3 \times S^3$ background with mixed three form fluxes can be mapped to (m', n')-string in $AdS_3 \times S^3$ background with NSNS three form flux. Explicitly, using the manifest covariance of the action (2.10) we obtain
\[
S_{(m,n)} = -T_{D1} \int d\tau d\sigma \sqrt{m'^2 + n'^2 e^{-2\Phi_{NS}}} \sqrt{-\det(G_{MN} \partial_\alpha x^M \partial_\beta x^N)} +
\]
\[
+ T_{D1} \int d\tau d\sigma m' B_{MN} \partial_\tau x^M \partial_\sigma x^N,
\]
(2.13)
where G_{MN}, B_{MN} and Φ_{NS} correspond to the background (2.1) and we used the fact that $m'^T M^{-1} m = (\Lambda^{-1} m)^T M^{-1}_{NS} (\Lambda^{-1} m) = (m'^2 + n'^2 e^{-2\Phi_{NS}}) e^{\Phi_{NS}}$ (2.14) with
\[
m' = \begin{pmatrix} m' \\ n' \end{pmatrix} = \begin{pmatrix} dm - bn \\ -cm + an \end{pmatrix}.
\]
(2.15)
We see that we reduced the problem of the dynamics of (m, n)-string in mixed $AdS_3 \times S^3$ background to the much simpler analysis of (m', n')-string in pure NSNS $AdS_3 \times S^3$ background where the action is given in (2.13). On the other hand, this action is non-linear due to the presence of the square root of the determinant that makes the analysis of equations of motion rather awkward. For that reason it is useful to rewrite this action into Polyakov-like form when we introduce an auxiliary metric $\gamma_{\alpha\beta}$ and write the action $S_{(m,n)}$ into the form
\[
S = -\frac{\tau_{(m,n)}}{2} \int d\tau d\sigma \sqrt{-\gamma} \gamma_{n}^{\alpha\beta} G_{\alpha\beta} + q_{(m,n)} \int d\tau d\sigma B_{MN} \partial_\tau x^M \partial_\sigma x^N,
\]
(2.16)
where
\[
\tau_{(m,n)} = T_{D1} \sqrt{m'^2 + n'^2 e^{-2\Phi_{NS}}}
\]
\[
q_{(m,n)} = T_{D1} m' = T_{D1} m^T q,
\]
(2.17)
where $q = \begin{pmatrix} d \\ -b \end{pmatrix}$ is the charge vector of $(d, -b)$-flux background. Note that we have also used the fact that Φ_{NS} is constant for the background (2.1). To see an equivalence between (2.16) and Nambu-Goto form of the action, note that the equations of motion for $\gamma_{\alpha\beta}$ have the form
\[
T_{\alpha\beta} = -\frac{2}{\sqrt{-\gamma}} \frac{\delta S_{(m,n)}}{\delta \gamma^{\alpha\beta}} = \tau_{(m,n)} [-\gamma_{\alpha\beta} \gamma^\delta G_{\gamma\delta} + 2G_{\alpha\beta}] = 0
\]
(2.18)
that has clearly a solution $\gamma_{\alpha\beta} = G_{\alpha\beta}$. Inserting this solution into (2.16) we obtain the original action. In the following we use the Polyakov form of the action due to the manifest linearity of the theory. The equations of motion with respect to γ have been already determined in (2.18) while the equations of motion with respect to x^M can be easily determined.
from \(2.16\)

\[
-\frac{\tau_{(m,n)}}{2}\sqrt{-\gamma}\alpha_b\partial_M G_{KL}\partial_\alpha x^K\partial_\beta x^L + \tau_{(m,n)}\partial_\alpha[\sqrt{-\gamma}\alpha_b G_{MN}\partial_\beta x^N] + q_{(m,n)}H_{MNK}\partial_r x^N\partial_\alpha x^K = 0 ,
\]

(2.19)

where

\[
H_{MNK} = \partial_M B_{NK} + \partial_N B_{KM} + \partial_K B_{MN} .
\]

(2.20)

Our goal is to find solutions of the equations of motion derived above that correspond to giant magnon or single spike configurations. For that reason it is convenient to use the following explicit form of the background metric (2.1)

\[
ds^2 = L^2 [-\cosh^2 \rho dt^2 + d\sigma^2 + \sinh^2 \rho d\phi^2 + d\theta^2 + \sin^2 \theta d\phi_1^2 + \cos^2 \theta d\phi_2^2],
\]

\[
b_{t\phi} = L^2 \sinh^2 \rho, \quad b_{\phi_1\phi_2} = -L^2 \cos^2 \theta ,
\]

(2.21)

where we used ordinary symbols for coordinates instead of symbols with tilde used in (2.1) keeping in mind that all coordinates are dimensionless. Note that due to the fact that the action does not depend explicitly on \(\phi, \phi_1, \phi_2\) and \(t\), the action is invariant under constant shifts

\[
t'(\sigma^\alpha) = t(\sigma^\alpha) + \epsilon_t , \quad \phi'(\sigma^\alpha) = \phi(\sigma^\alpha) + \epsilon_\phi , \quad \phi'_{1,2}(\sigma^\alpha) = \phi_{1,2}(\sigma^\alpha) + \epsilon_{1,2} ,
\]

(2.22)

where all \(\epsilon's\) are constants. With the help of the standard Noether theorem we derive the following conserved currents

\[
\mathcal{J}_t^\alpha = -\tau_{(m,n)}\sqrt{-\gamma}G_{tM}\partial_\beta x^M\gamma^{\beta\alpha} + q_{(m,n)}B_{tN}\epsilon^{\alpha\beta}\partial_\beta x^N ,
\]

\[
\mathcal{J}_\phi^\alpha = -\tau_{(m,n)}\sqrt{-\gamma}G_{\phi M}\partial_\beta x^M\gamma^{\beta\alpha} + q_{(m,n)}B_{\phi N}\epsilon^{\alpha\beta}\partial_\beta x^N ,
\]

\[
\mathcal{J}_{\phi_1,\phi_2}^\alpha = -\tau_{(m,n)}\sqrt{-\gamma}G_{\phi_1,2 M}\partial_\beta x^M\gamma^{\beta\alpha} + q_{(m,n)}B_{\phi_1,2 N}\epsilon^{\alpha\beta}\partial_\beta x^N
\]

(2.23)

where \(\epsilon^{\tau\sigma} = -\epsilon^{\sigma\tau} = 1\). Note that these currents obey the relations

\[
\partial_\alpha \mathcal{J}_A^\alpha = 0 , \ A = t, \phi, \phi_{1,2} .
\]

(2.24)

Using these relations we derive the following conserved charges

\[
P_t = \int d\sigma \left(-\tau_{(m,n)}\sqrt{-\gamma}G_{tt}\partial_\beta t^\gamma\gamma^{\beta\tau} + q_{(m,n)}B_{t\phi}\epsilon^{\tau\sigma}\partial_\sigma \phi \right) ,
\]

\[
J_\phi = \int d\sigma \left(-\tau_{(m,n)}\sqrt{-\gamma}G_{\phi\phi}\partial_\beta \phi^\gamma\gamma^{\beta\tau} + q_{(m,n)}B_{\phi t}\epsilon^{\tau\sigma}\partial_\sigma t \right) ,
\]

\[
J_{\phi_1} = \int d\sigma \left(-\tau_{(m,n)}\sqrt{-\gamma}G_{\phi_1,1}\partial_\beta \phi_1^\gamma\gamma^{\beta\tau} + q_{(m,n)}B_{\phi_1,2}\epsilon^{\tau\sigma}\partial_\sigma \phi_2 \right) ,
\]

\[
J_{\phi_2} = \int d\sigma \left(-\tau_{(m,n)}\sqrt{-\gamma}G_{\phi_2,2}\partial_\beta \phi_2^\gamma\gamma^{\beta\tau} + q_{(m,n)}B_{\phi_2,1}\epsilon^{\tau\sigma}\partial_\sigma \phi_1 \right) .
\]

(2.25)
Now we try to solve the equations of motion explicitly when we consider the following ansatz

\[
\begin{align*}
t &= \gamma \tau, \quad \theta &= \theta(y), \quad \phi_1 &= \omega_1 \tau + g_1(y), \quad \phi_2 &= \omega_2 \tau + g_2(y), \\
\end{align*}
\]

where \(y \) is a function of world sheet coordinates \(y = \alpha \sigma + \beta \tau, \) together with \(\rho = 0 \) and \(\phi = 0. \) At the same time we impose the conformal gauge when \(\gamma_{\tau\tau} = -1, \gamma_{\sigma\sigma} = 1, \gamma_{\tau\sigma} = 0. \) In this case the components of the stress energy tensor have the form

\[
T_{\tau\tau} = T_{\sigma\sigma} = \tau_{(m,n)}[G_{\tau\tau} + G_{\sigma\sigma}] = 0, \\
T_{\tau\sigma} = 2\tau_{(m,n)}G_{\tau\sigma} = 0,
\]

where

\[
\begin{align*}
G_{\tau\tau} &= \partial_{\tau}x^M \partial_{\tau}x^NG_{MN} = L^2[-\gamma^2 + \beta^2 \rho^2 + (\omega_1 + \beta g_1')^2 \sin^2 \theta + (\omega_2 + \beta g_2')^2 \cos^2 \theta], \\
G_{\sigma\sigma} &= \partial_{\sigma}x^M \partial_{\sigma}x^NG_{MN} = \alpha^2 L^2[\theta^2 + g_1'^2 \sin^2 \theta + g_2'^2 \cos^2 \theta], \\
G_{\tau\sigma} &= g_{\sigma\tau} = L^2[\alpha \beta \theta^2 + \alpha(\omega_1 + \beta g_1') g_1' \sin^2 \theta + \alpha(\omega_2 + \beta g_2') g_2' \cos^2 \theta].
\end{align*}
\]

The equation of motion for \(\phi_1 \) implies

\[
g_1' = \frac{1}{(\alpha^2 - \beta^2)} \left(\frac{\Phi_1}{\sin^2 \theta} + \beta \omega_1 - \frac{q_{(m,n)}}{\tau_{(m,n)}} \alpha \omega_2 \right),
\]

where \(\Phi_1 = \text{const.} \) and \(g_1' = \frac{\partial g_1}{\partial y} \)

In the same way the equation of motion for \(\phi_2 \) implies

\[
g_2' = \frac{1}{(\alpha^2 - \beta^2)} \left(\frac{\Phi_2}{\cos^2 \theta} + \beta \omega_2 - \frac{q_{(m,n)}}{\tau_{(m,n)}} \alpha \omega_1 \right).
\]

From these two equations we can see one important point that the case of the single angular momentum, i.e., \(\omega_2 = 0, g_2 = 0 \) is possible only when \(q_{(m,n)} = 0 \) as follows from the equation of motion for \(\phi_2. \)

In order to find the equation of motion for \(\theta \) we use the constraint \(T_{\tau\tau} = 0 \) and we obtain

\[
\begin{align*}
-L^2 \gamma^2 (\alpha^2 - \beta^2)^2 + L^2 \sin^2 \theta \omega_1^2 (\alpha^2 - \beta^2)^2 + L^2 \cos^2 \theta \omega_2^2 (\alpha^2 - \beta^2)^2 + \\
+ L^2 (\alpha^2 + \beta^2) (\alpha^2 - \beta^2)^2 \theta^2 + 2L^2 \beta \omega_1 (\alpha^2 - \beta^2) \sin^2 \theta \left(\frac{\Phi_1}{\sin^2 \theta} + \beta \omega_1 + \frac{q_{(m,n)}}{\tau_{(m,n)}} \alpha \omega_2 \right) + \\
+ 2L^2 \beta \omega_2 (\alpha^2 - \beta^2) \cos^2 \theta \left(\frac{\Phi_2}{\cos^2 \theta} + \beta \omega_2 - \frac{q_{(m,n)}}{\tau_{(m,n)}} \alpha \omega_1 \right) + \\
+ L^2 \sin^2 \theta (\alpha^2 + \beta^2) \left(\frac{\Phi_1}{\sin^2 \theta} + \beta \omega_1 + \frac{q_{(m,n)}}{\tau_{(m,n)}} \alpha \omega_2 \right)^2 + \\
+ L^2 \cos^2 \theta (\alpha^2 + \beta^2) \left(\frac{\Phi_2}{\cos^2 \theta} + \beta \omega_2 - \frac{q_{(m,n)}}{\tau_{(m,n)}} \alpha \omega_1 \right)^2 = 0.
\end{align*}
\]
This equation simplifies considerably when we impose the boundary condition that for \(\theta \to \frac{\pi}{2}, \theta' = 0 \). Since \(\lim_{\theta \to \frac{\pi}{2}} \cos \theta = 0 \), we have to demand that \(\Phi_2 = 0 \) and the previous equation implies

\[
- \gamma^2 (\alpha^2 - \beta^2)^2 + \omega_1^2 (\alpha^2 - \beta^2)^2 + 2 \beta \omega_1 (\alpha^2 - \beta^2) (\Phi_1 + \beta \omega_1 - \frac{q(m,n) \alpha \omega_2}{\tau(m,n)}) + \\
+ (\alpha^2 + \beta^2) (\Phi_1 + \beta \omega_1 - \frac{q(m,n) \alpha \omega_2}{\tau(m,n)})^2 = 0
\]

(2.32)

that can be solved for \(\gamma \). Let us now consider the constraint \(T_{\tau \sigma} = 0 \) that implies

\[
G_{\tau \sigma} = g_{\theta \theta} \alpha \beta \theta'^2 + g_{\phi_1 \phi_1} \alpha g_1^\prime (\omega_1 + \beta g_1^\prime) + g_{\phi_2 \phi_2} \alpha g_2^\prime (\omega_2 + \beta g_2^\prime) = 0
\]

(2.33)

that for \(\theta = \pi/2, \theta'(\pi/2) = 0 \) implies

\[
g_1^\prime|_{\theta = \pi/2} (\omega_1 + \beta g_1^\prime|_{\theta = \pi/2}) = 0
\]

(2.34)

and we have to analyze under which condition this equation is obeyed. The first possibility is that \(g_1^\prime|_{\theta = \pi/2} = 0 \) and using (2.29) we find that this is possible when

\[
\Phi_I^1 = -\beta \omega_1 + \frac{q(m,n) \alpha \omega_2}{\tau(m,n)}.
\]

(2.35)

The second possibility how to obey (2.33) is to demand that \(\omega_1 + \beta g_1^\prime|_{\theta = \pi/2} = 0 \) which implies

\[
\Phi_{II}^1 = -\frac{1}{\beta} (\alpha^2 \omega_1 - \beta \frac{q(m,n) \alpha \omega_2}{\tau(m,n)}).
\]

(2.36)

These two values of the constants \(\Phi_I^1, \Phi_{II}^1 \) determine whether we have giant spike or giant magnon solution. Before we proceed to the discussion of the general case with two angular momenta, we consider the simpler case of single angular momentum.

3. Single Angular Momentum

Let us now consider the case when \(g_2^\prime = 0 \) and \(\omega_2 = 0 \). As we argued previously this is possible on condition when \(q(m,n) = 0 \) too. In this case we have

\[
g_1^\prime = \frac{1}{(\alpha^2 - \beta^2)} \left(\Phi_1 \frac{1}{\sin^2 \theta} + \beta \omega_1 \right)
\]

(3.1)

while the constraint \(T_{\tau \tau} = 0 \) takes the form

\[
- L^2 \gamma^2 (\alpha^2 - \beta^2)^2 + L^2 \sin^2 \theta \omega_1^2 (\alpha^2 - \beta^2)^2 + \\
+ L^2 (\alpha^2 + \beta^2) (\alpha^2 - \beta^2) \theta'^2 + 2 L^2 \beta \omega_1 (\alpha^2 - \beta^2) \sin^2 \theta (\frac{\Phi_1}{\sin^2 \theta} + \beta \omega_1) + \\
+ L^2 \sin^2 \theta (\alpha^2 + \beta^2) (\frac{\Phi_1}{\sin^2 \theta} + \beta \omega_1)^2 = 0.
\]

(3.2)
If we impose again the condition that for $\theta = \frac{\pi}{2}, \theta' = 0$ we obtain the equation
\[-\gamma^2(\alpha^2 - \beta^2)^2 + \omega_1^2(\alpha^2 - \beta^2)^2 + 2\beta \omega_1(\alpha^2 - \beta^2)(\Phi_1 + \beta \omega_1) + (\alpha^2 + \beta^2)(\Phi_1 + \beta \omega_1)^2 = 0\] (3.3)
that can be solved for γ. Further, the constraint $T_{\tau\sigma} = 0$ has the form
\[G_{\tau\sigma} = g_{\theta\theta} \alpha \beta \theta' + g_{\phi_1\phi_1} \alpha g_1'(\omega_1 + \beta g_1') = 0\] (3.4)
that for $\theta = \pi/2, \theta'(\pi/2) = 0$ implies
\[g_1'|_{\theta=\pi/2}(\omega_1 + \beta g_1'|_{\theta=\pi/2}) = 0\] (3.5)
that can be solved for two values of $\Phi_1^{I,II}$
\[\Phi_1^I = -\beta \omega_1 , \quad (3.6)\]
and
\[\Phi_1^{II} = -\frac{\alpha^2}{\beta} \omega_1 . \quad (3.7)\]
We begin with the first case.

3.1 Giant Magnon Solution

We first consider the case with $\Phi_1^I = -\beta \omega_1$. Equation (3.3) implies $\gamma = \omega_1$ while the constraint $T_{\tau\tau} = 0$ gives the equation for θ'
\[\theta'^2 = \frac{\omega_1^2 \cos^2 \theta (\alpha^2 \sin^2 \theta - \beta^2)}{(\alpha^2 - \beta^2) \sin^2 \theta} . \quad (3.8)\]
Using (2.23), we find the explicit form of the conserved charges
\[P_t = -2\kappa L^2 \tau_{(m,n)} \int d\theta \frac{(\alpha^2 - \beta^2) \sin \theta}{\alpha \cos \theta \sqrt{\alpha^2 \sin^2 \theta - \beta^2}} , \]
\[J_{\phi_1} = 2\kappa L^2 \tau_{(m,n)} \int d\theta \frac{\sin \theta}{\alpha \cos \theta} \sqrt{\alpha^2 \sin^2 \theta - \beta^2} , \quad (3.9)\]
where κ counts the number of spikes on the (m,n)–string world-volume. Both of these integrals diverge but the difference between $E = -P_t$ and J_{ϕ_1} is finite and is equal to
\[E - J_{\phi_1} = 2\kappa \tau_{(m,n)} L^2 \sqrt{1 - \left(\frac{\beta}{\alpha}\right)^2} = 2\kappa \tau_{(m,n)} L^2 \sin\left(\frac{\Delta \phi_1}{2}\right) , \quad (3.10)\]
where we introduced the difference angle ϕ_1 defined as
\[\Delta \phi_1 = 2 \int_{\phi_1^{\min}}^{\phi_1^{\max}} d\phi_1 = 2\alpha \int_{\theta^{\min}}^{\theta^{\max}} \frac{d' \theta}{\alpha |\theta'|} = -2 \arccos \left(\frac{\beta}{\alpha}\right) . \quad (3.11)\]
Note that (3.10) is the generalization of the giant magnon dispersion relation to the specific case of \((m, n)-\)string in \((d, -b)-\)mixed flux background. More explicitly, the condition \(q_{(m,n)} = T_{D1} m' = 0\) implies that \(dm = bn\) and \(\tau_{(m,n)} = T_{D1} e^{-\Phi_{NS} n'} = T_{D1} e^{-\Phi_{NS}}\). The special case is when \(n' = 1\) that corresponds to \((b, d)-\)string and we derive giant magnon dispersion relation. Note that this is in agreement with the \(SL(2, Z)-\)covariance of Type IIB string theory since \((d, -b)-\)flux background is derived from \((1, 0)-\)flux background by \(SL(2, Z)-\)rotation with the matrix \(\Lambda = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\) where NSNS and RR two forms transform as
\[
\begin{pmatrix} B' \\ C''(2) \end{pmatrix} = (\Lambda^T)^{-1} \begin{pmatrix} B \\ C(2) \end{pmatrix}
\] (3.12)
while \((m, n)-\)string transforms as \(m' = \Lambda m\), so that \((b, d)-\)string is \(SL(2, Z)\) rotation of D1-brane.

3.2 Spike Solution

In the second case, we have \(\Phi_1' = -\frac{\alpha^2}{2} \omega_1\). Equation (3.3) gives \(\gamma^2 = \frac{\alpha^2}{\beta} \omega_1^2\) while the constraint \(T_{\tau\tau} = 0\) implies following differential equation for \(\theta\)
\[
\theta'^2 = \frac{\alpha^2 \omega_1^2 \cos^2 \theta (\beta^2 \sin^2 \theta - \alpha^2)}{\beta^2 (\alpha^2 - \beta^2)^2 \sin^2 \theta}.
\] (3.13)

It is easy to see that the energy is equal to
\[
E = \frac{2\kappa L^2 \tau_{(m,n)}}{\alpha} \int d\theta \frac{(\alpha^2 - \beta^2) \sin \theta}{\cos \theta \sqrt{\beta^2 \sin^2 \theta - \alpha^2}}
\] (3.14)
which is divergent. On the other hand note that \(J_{\phi_1}\) is now finite and is equal to
\[
J_{\phi_1} = -2\kappa \tau_{(m,n)} L^2 \cos \left(\frac{\alpha}{\beta} \right).
\] (3.15)

In order to find finite dispersion relation, let us determine the angle difference
\[
\Delta \phi_1 = \frac{2}{\alpha} \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} d\theta \sqrt{\frac{\beta^2 \sin^2 \theta - \alpha^2}{\sin \theta \cos \theta}}
\] (3.16)
that is divergent. Then it is easy to find following dispersion relation
\[
E + \kappa \tau_{(m,n)} L^2 \Delta \phi_1 = 2\kappa \tau_{(m,n)} L^2 \left(\frac{\pi}{2} - \theta_1 \right).
\] (3.17)

This is the dispersion relation corresponding to the single spike solution of the string.
4. Two Angular Momenta

In this section we consider a more interesting case of two non-zero angular momenta. Recall that in section (2) we determined that these solutions are characterized by condition \(\Phi_2 = 0 \) and two values of \(\Phi_1 \) given in (2.35) and (2.36). Let us begin with the first case.

4.1 First Limiting Case \(\Phi_1^i \)

We begin with the first case with \(\Phi_1^i = -\beta \omega_1 + \frac{q_{(m,n)}}{\tau_{(m,n)}} \alpha \omega_2 \). Note that for this value of \(\Phi_1^i \), the equation (2.32) implies \(\gamma = \omega_1 \).

Using (2.31), we get the differential equation of \(\theta \)

\[
\theta'' = \frac{\Omega^2 \cos^2 \theta}{(\alpha^2 - \beta^2)^2 \sin^2 \theta} \left[\sin^2 \theta - \sin^2 \theta_0 \right],
\]

where \(\Omega^2 = \alpha^2 \left(1 - \frac{q_{(m,n)}^2}{\tau_{(m,n)}^2} \right) (\omega_1^2 - \omega_2^2) \) and \(\sin \theta_0 = \frac{\left(\beta \omega_1 - \alpha \omega_2 \frac{q_{(m,n)}}{\tau_{(m,n)}} \right)}{\Omega} \).

The explicit form of the conserved charge \(E \) is

\[
E = \frac{2 \kappa \omega_1 \tau_{(m,n)} L^2 (\alpha^2 - \beta^2)}{\alpha \Omega} \int \frac{d\theta \sin \theta}{\cos \theta \sqrt{\sin^2 \theta - \sin^2 \theta_0}},
\]

which is divergent. As for the remaining conserved charges \(J_{\phi_1} \) and \(J_{\phi_2} \), we get

\[
J_{\phi_1} = \frac{2 \kappa \omega_1 \tau_{(m,n)} L^2}{\alpha \Omega} (\alpha^2 - \beta^2) \int \frac{d\theta \sin \theta}{\cos \theta \sqrt{\sin^2 \theta - \sin^2 \theta_0}} + \\
- \frac{2 \kappa \alpha \omega_1 \tau_{(m,n)} L^2}{\Omega} \left(1 - \frac{q_{(m,n)}^2}{\tau_{(m,n)}^2} \right) \int \frac{d\theta \sin \theta \cos \theta}{\sqrt{\sin^2 \theta - \sin^2 \theta_0}},
\]

and

\[
J_{\phi_2} = \frac{2 \kappa \tau_{(m,n)} L^2 \alpha \omega_2}{\Omega} \left(1 - \frac{q_{(m,n)}^2}{\tau_{(m,n)}^2} \right) \int \frac{d\theta \sin \theta \cos \theta}{\cos \theta \sqrt{\sin^2 \theta - \sin^2 \theta_0}} + \\
- \frac{2 \kappa \tau_{(m,n)} L^2 q_{(m,n)} \sin \theta_0}{\tau_{(m,n)}} \int \frac{d\theta \cos \theta}{\sin \theta \sqrt{\sin^2 \theta - \sin^2 \theta_0}},
\]

and the angle difference

\[
\triangle \phi_1 = \frac{2 (\alpha \omega_2 \frac{q_{(m,n)}}{\tau_{(m,n)}} - \beta \omega_1)}{\Omega} \int \frac{d\theta \cos \theta}{\sin \theta \sqrt{\sin^2 \theta - \sin^2 \theta_0}} = -2 \sin \theta_0 \int \frac{d\theta \cos \theta}{\sin \theta \sqrt{\sin^2 \theta - \sin^2 \theta_0}} = -2 \cos^{-1} (\sin \theta_0).
\]
Collecting these results together we obtain the following dispersion relation

$$\frac{E}{\omega_1} - \frac{J_{\phi_1}}{\omega_1} = \frac{J_{\phi_2}}{\omega_2} - \frac{\kappa q_{(m,n)} L^2 \triangle \phi_1}{\omega_2}.$$

(4.6)

Using previous integral we evaluate the right side of the equation above and we obtain

$$\frac{J_{\phi_2} - \kappa q_{(m,n)} L^2 \triangle \phi_1}{\omega_2} = \frac{1}{\omega_1} \left((J_{\phi_2} - \kappa q_{(m,n)} L^2 \triangle \phi_1)^2 + 4 \kappa^2 \tau_{(m,n)}^2 L^4 \left(1 - \frac{q_{(m,n)}^2}{\tau_{(m,n)}^2} \right) (1 - \sin^2 \theta_0) \right)$$

and hence we derive the final form of the dispersion relation

$$E - J_{\phi_1} = \sqrt{(J_{\phi_2} - \kappa q_{(m,n)} L^2 \triangle \phi_1)^2 + 4 \kappa^2 \tau_{(m,n)}^2 L^4 \left(1 - \frac{q_{(m,n)}^2}{\tau_{(m,n)}^2} \right) \sin^2 \frac{\triangle \phi_1}{2}}$$

$$= \sqrt{(J_{\phi_2} - \kappa m^T q T_{D1} L^2 \triangle \phi_1)^2 + 4 \kappa^2 m^T M^{-1} m e^{-\Phi_{NS}} L^4 T_{D1}^2 \left(1 - \frac{m^T M^{-1} m}{m^T} e^{-\Phi_{NS}} \right) \sin^2 \frac{\triangle \phi_1}{2}}.$$

(4.7)

(4.8)

This dispersion relation is the generalization of the dispersion relations derived in [18] and also in [21] to the case of (m, n)–string in (d, b)–mixed flux background. We see that this dispersion relation is linear in the $\triangle \phi_1$ that is identified with the world-sheet momentum p which spoils periodicity of this solution. On the other hand it is clear that this dispersion relation reduces to the usual giant magnon dispersion relation when $n' = 1$ that corresponds to (b, d)–string in (d, b)–flux background and the dispersion relation has the form

$$E - J_{\phi_1} = \sqrt{J_{\phi_2}^2 + 4 \kappa^2 e^{-2\Phi_{NS}} L^4 T_{D1}^2 \sin^2 \frac{\triangle \phi_1}{2}}.$$

(4.9)

that again corresponds to $SL(2, Z)$–rotation of the dispersion relation of D1-brane in pure NSNS flux background. On the other hand it is interesting to analyze dispersion relation when $n' = 0$ that implies $q_{(m,n)} = \tau_{(m,n)}$ that corresponds to $m = \frac{a}{c}$. If we again consider the case when $m' = 1$ we find that this corresponds to (a, c)–string and we find that the dispersion relation has the form

$$E - J_{\phi_1} = J_{\phi_2} - \kappa T_{D1} L^2 \triangle \phi_1.$$

(4.10)

We interpret this solution as the bound state of J_{ϕ_2} elementary magnons so that for $J_{\phi_2} = 1$ we obtain massless dispersion relation

$$E - J_{\phi_1} = \epsilon = 1 - \kappa T_{D1} L^2 \triangle \phi_1.$$

(4.11)

that has nice physical interpretation. The (a, c)–string in (d, b)–flux background is defined by $SL(2, Z)$–rotation of fundamental string in pure NSNS flux background, where the matrix Λ is given in (2.4). On the other hand we know that fundamental string in $AdS_5 \times S^3$ with NSNS flux has exact WZW conformal field theory description with massless dispersion relation [18].
4.2 Second Limiting Case Φ^{II}_1

Now, we consider the second case with $\Phi^{II}_1 = -\frac{1}{\beta}(\alpha^2 \omega_1 - \beta \frac{q(m,n)}{\tau(m,n)} \alpha \omega_2)$. From (2.32) we again find $\gamma^2 = \frac{\alpha^2}{\beta^2} \omega_1^2$

Using (2.31) we find that the differential equation for θ has the form

$$\theta'' = \frac{\Omega^2 \cos^2 \theta}{(\alpha^2 - \beta^2)^2 \sin^2 \theta} \sin \theta - \sin^2 \theta_0 \tag{4.12}$$

where $\Omega^2 = \alpha^2 \left(1 - \frac{q^2 (m,n)}{\tau^2 (m,n)}\right) (\omega_1^2 - \omega_2^2)$, $\sin \theta_0 = \frac{1}{\beta \Omega} \left(\alpha^2 \omega_1 - \alpha \beta \omega_2 \frac{q(m,n)}{\tau(m,n)}\right)$.

Using (4.12) we determine the following conserved charges

$$E = \frac{2 \kappa \omega_1 \tau(m,n) L^2 (\alpha^2 - \beta^2)}{\beta \Omega} \int \frac{d\theta \sin \theta}{\cos \theta \sqrt{\sin^2 \theta - \sin^2 \theta_0}} \tag{4.13}$$

$$J_1 = -2 \kappa \omega_1 \tau(m,n) L^2 \left(1 - \frac{q^2 (m,n)}{\tau^2 (m,n)}\right) \cos \theta_0 \tag{4.13}$$

$$J_2 = 2 \kappa \tau(m,n) L^2 \omega_1 \left(1 - \frac{q^2 (m,n)}{\tau^2 (m,n)}\right) \omega_1^2 - \omega_2^2 \cos \theta_0 - 2 n \tau L^2 \frac{q(m,n)}{\tau(m,n)} \left(\frac{\pi}{2} - \theta_0\right) \tag{4.13}$$

together with the angle difference

$$\Delta \phi_1 = -2 \sin \theta_0 \int_{\theta_{\text{min}}}^{\pi/2} \frac{d\theta \cos \theta}{\sin \theta \sqrt{\sin^2 \theta - \sin^2 \theta_0}} - 2 \frac{\omega_1}{\beta \Omega} (\alpha^2 - \beta^2) \int \frac{d\theta \sin \theta}{\cos \theta \sqrt{\sin^2 \theta - \sin^2 \theta_0}} \tag{4.14}$$

From (4.13) and (4.14) we see that E and $\Delta \phi_1$ are both divergent but their combination is finite and is equal to

$$E + \kappa \tau(m,n) L^2 \Delta \phi_1 = 2 \kappa \tau(m,n) L^2 \left(\frac{\pi}{2} - \theta_0\right). \tag{4.15}$$

Further, the dispersion relation between angular momenta can be written as

$$J_1 = \left[\frac{2 \kappa \tau(m,n) L^2 (1 - \frac{q^2 (m,n)}{\tau^2 (m,n)}) \sin^2 \frac{(\Delta \phi_1)_{\text{reg}}}{2} + [J_2 - \kappa \tau(m,n) L^2 \frac{q(m,n)}{\tau(m,n)} (\Delta \phi_1)_{\text{reg}}]^2}{(2 \kappa \tau(m,n) L^2)^2 (1 - \frac{q^2 (m,n)}{\tau^2 (m,n)}) \sin^2 \frac{(\Delta \phi_1)_{\text{reg}}}{2}}
ight]^{\frac{1}{2}} \tag{4.16}$$

where $(\Delta \phi_1)_{\text{reg}} = -2 \cos^{-1}(\sin \theta_0)$. Note that (4.16) could be rewritten using the original variables \mathbf{m} and \mathcal{M} and we could discuss the various properties of this relation with dependence on the values of vector \mathbf{m} exactly in the same way as in previous section but we will not repeat it here since the discussion would be exactly the same.
5. Pulsating \((m, n)\)-string in \(AdS_3\) with mixed flux

In this section we will analyze the pulsating \((m, n)\)-string in mixed three form flux background. Recall that such a string has an action

\[
S = -\frac{\tau_{(m, n)}}{2} \int d\tau d\sigma \sqrt{-\gamma} \gamma^{\alpha\beta} G_{\alpha\beta} + q_{(m, n)} \int d\tau d\sigma B_{MN} \partial_\tau x^M \partial_\sigma x^N ,
\]

with the equation of motion for \(x^M\)

\[
-\frac{\tau_{(m, n)}}{2} \sqrt{-\gamma} \gamma^{\alpha\beta} \partial_M G_{KL} \partial_\alpha x^K \partial_\beta x^L + \tau_{(m, n)} \partial_\alpha \left[\sqrt{-\gamma} \gamma^{\alpha\beta} G_{MN} \partial_\beta x^N \right] + q_{(m, n)} H_{MNK} \partial_\tau x^N \partial_\sigma x^K = 0 ,
\]

and the equations of motion for \(\gamma_{\alpha\beta}\)

\[
T_{\alpha\beta} = -\frac{2}{\sqrt{-\gamma}} \frac{\delta S_{(m, n)}}{\delta \gamma_{\alpha\beta}} = \tau_{(m, n)} \left[-\gamma_{\alpha\beta} \gamma^{\gamma\delta} G_{\gamma\delta} + 2G_{\alpha\beta} \right] = 0 .
\]

In order to find pulsating \((m, n)\)-string in \(AdS_3\), we consider the following ansatz

\[
t = t(\tau) , \quad \rho = \rho(\tau) , \quad \phi = \kappa \sigma
\]

with \(b_{t\phi} = L^2 \sinh^2 \rho\). Then it is easy to find the form of the induced metric

\[
G_{\tau\tau} = L^2 (-\cosh^2 \rho \dot{t}^2 + \dot{\rho}^2) , \quad G_{\sigma\sigma} = L^2 \kappa^2 \sinh^2 \rho , \quad G_{\tau\sigma} = G_{\sigma\tau} = 0 .
\]

so that (5.3) in the conformal gauge takes the form

\[
T_{\tau\tau} = T_{\sigma\sigma} = \tau_{(m, n)} L^2 [-\cosh^2 \rho \dot{t}^2 + \dot{\rho}^2 + \kappa^2 \sinh^2 \rho] = 0 ,
\]

\[
T_{\tau\sigma} = 2\tau_{(m, n)} G_{\tau\sigma} = 0 .
\]

From (5.2) we find that the equation of motion for \(t\) has very simple form

\[
L^2 (\tau_{(m, n)} \dot{t} \cosh^2 \rho - \kappa q_{(m, n)} \sinh^2 \rho) = \mathcal{E} .
\]

On the other hand the equation of motion for \(\rho\) is more complicated and is equal to

\[
-\frac{\tau_{(m, n)}}{2} (-\partial_\rho G_{tt} \dot{t}^2 + \kappa^2 \partial_\rho G_{\phi\phi}) - L^2 \tau_{(m, n)} \ddot{\rho} + 2\kappa L^2 q_{(m, n)} \sinh \rho \cosh \dot{\rho} \dot{\rho} = 0 ,
\]

while the equation of motion for \(\phi\) implies

\[
\kappa L^2 \tau_{(m, n)} \sinh^2 \rho = A .
\]
Now using \((5.7)\) we find that \(P_t\) is equal to

\[
P_t = -E = -\int d\sigma L^2 (\tau_{(m,n)} \cosh^2 \rho \dot{\rho} - \kappa q_{(m,n)} \sinh^2 \rho) = -2\pi \mathcal{E} .
\]

(5.10)

The second important quantity is the oscillation number that is associated with string motion along the \(\rho\) direction

\[
N = \oint d\rho \Pi_\rho ,
\]

where \(\Pi_\rho\) is the canonical momentum conjugate to \(\rho\)

\[
\Pi_\rho = \tau_{(m,n)} L^2 \dot{\rho} .
\]

(5.11)

Now using the equation \((5.6)\) and \((5.7)\) we obtain differential equation for \(\rho\) in the form

\[
\ddot{\rho}^2 = \left(\kappa q_{(m,n)} L^2 \sinh^2 \rho + \mathcal{E}^2 - \kappa^2 \tau_{(m,n)}^2 L^4 \sinh^2 \rho \cosh^2 \rho\right) \frac{\tau_{(m,n)}^2 L^4 \cosh^2 \rho}{\tau_{(m,n)}^2 L^4 \cosh^2 \rho}
\]

(5.12)

and hence the oscillation number \(N\) is equal to

\[
N = \oint \frac{d\rho}{\cosh \rho} \sqrt{(\kappa q_{(m,n)} L^2 \sinh^2 \rho + \mathcal{E}^2 - \kappa^2 \tau_{(m,n)}^2 L^4 \sinh^2 \rho \cosh^2 \rho)}
\]

Changing the variable \(x = \sinh \rho\), we get

\[
N = \oint \frac{dx}{1 + x^2} \sqrt{(\kappa q_{(m,n)} L^2 x^2 + \mathcal{E}^2 - \kappa^2 \tau_{(m,n)}^2 L^4 x^2 (1 + x^2)}
\]

\[= \kappa L^2 \sqrt{\tau_{(m,n)}^2 - q_{(m,n)}^2} \int_0^{\sqrt{R_+}} \frac{dx}{1 + x^2} \sqrt{(R_+ - x^2)(x^2 - R_-)}
\]

\[= \kappa L^2 \sqrt{\tau_{(m,n)}^2 - q_{(m,n)}^2} \frac{1}{\sqrt{-R_-}} \left[R_- E \left(\frac{R_+}{R_-} \right) + (1 + R_+) \left[K \left(\frac{R_+}{R_-} \right) - (1 + R_-) \Pi \left(-R_+ \frac{R_+}{R_-} \right) \right] \right],
\]

(5.14)

where \(R_+\) and \(R_-\) are the roots of the quadratic equation in the square root with

\[
R_{\pm} = \frac{-4q_{(m,n)} \mathcal{E} - \kappa L^2 \tau_{(m,n)}^2 \pm \tau_{(m,n)} \sqrt{-4L^2 \kappa q_{(m,n)} \mathcal{E} + 4\mathcal{E}^2 + 4\kappa^2 \tau_{(m,n)}^2 L^4}}{2\kappa L^2 (\tau_{(m,n)}^2 - q_{(m,n)}^2)}.
\]

(5.15)

In short string limit

\[
N = \frac{\pi}{4L^2 \kappa \tau_{(m,n)}} \mathcal{E} + \frac{\pi q_{(m,n)}}{4L^4 \kappa^2 \tau_{(m,n)}^3} \mathcal{E}^3 - \frac{5\pi (-3q_{(m,n)}^2 + \tau_{(m,n)}^2)}{32L^6 \kappa^3 \tau_{(m,n)}^5} \mathcal{E}^4 - \frac{7\pi q_{(m,n)} (-5q_{(m,n)}^2 + 3\tau_{(m,n)}^2)}{32L^8 \kappa^4 \tau_{(m,n)}^7} \mathcal{E}^5 + O(\mathcal{E}^6).
\]

(5.16)
Reversing the above series, we have the expression for \(\mathcal{E} \)

\[
\mathcal{E} = \frac{2 \sqrt{L^2 \kappa \tau_{(m,n)}}}{\sqrt{\pi}} \sqrt{N} - \frac{2q_{(m,n)}}{\pi \tau_{(m,n)}} N + \frac{5(-q_{(m,n)}^2 + \tau_{(m,n)}^2)}{2\pi^{3/2}\tau_{(m,n)}^2 L^2 \kappa \tau_{(m,n)}} N^{3/2} + \frac{6(-q_{(m,n)}^3 + q_{(m,n)} \tau_{(m,n)}^2)}{L^2 \kappa \pi^2 \tau_{(m,n)}^4 N^2} + O[N]^{5/2}.
\]

(5.17)

Putting \(m' = 1 \) and \(n' = 0 \), we have the following expression

\[
N = \frac{\pi}{4L^2 \kappa T_{D1}} \mathcal{E}^2 + \frac{\pi}{4L^4 \kappa^2 T_{D1}^2} \mathcal{E}^3 + \frac{5\pi}{16L^6 \kappa^3 T_{D1}^3} \mathcal{E}^4 + \frac{7\pi}{16L^8 \kappa^4 T_{D1}^4} \mathcal{E}^5 + O[\mathcal{E}]^6
\]

\[
\mathcal{E} = \frac{2 \sqrt{L^2 \kappa T_{D1}}}{\sqrt{\pi}} \sqrt{N} - \frac{2}{\pi} N + O[N]^{5/2}
\]

(5.18)

The condition \(n' = 0 \) implies that \(cm = an \) and \(\tau_{(m,n)} = T_{D1} m' = T_{D1} \frac{n}{n} \). Again putting \(m' = 1 \), we get \(m = a \) and \(n = c \). So we note that the \((a,c)\)–string in \((d, -b)\)-flux background is the \(SL(2, Z) \) rotation of \(F \)–string and our result for the specific case \(m' = 1 \) and \(n' = 0 \) should match with [26].

6. Conclusion

In this paper, we have studied the rotating and pulsating \((m, n)\)–type string in \(AdS_3 \times S^3 \) background with mixed fluxes which has been obtained by taking the \(SL(2, Z) \) transformations of the usual \((F1 - NS5)\) bound state followed by a near horizon geometry. We have applied \(SL(2, Z) \) transformation on the \((m, n)\)–probe string action and generated \((m', n')\)–string action, where the \(m' \) and \(n' \) are the \(SL(2, Z) \) invariants. The giant magnon and its dyonic counterpart solutions have been obtained by solving relevant equations of motion of the probe string in the above background in the presence of NS-NS fluxes. We have shown various regularized dispersion relations among different conserved charges that the background admits. We have also checked that in the absence of probe D-string charges, the relations among various charges do match exactly with the F-string result. Furthermore, we have looked at an oscillating \((m, n)\)–string in the background of \(AdS_3 \) with NS-NS flux. In short string limit, we have obtained the energy of such a string in terms of the oscillation number. The work done in this paper can be extended in several ways. One of the interesting problems to consider is to study the pulsating and circular string solutions of \((m, n)\)–type string in \(R \times S^3 \) with the NS-NS flux turned on. A point to note, however, is that the pulsating and oscillating strings in \(R \times S^3 \) is qualitatively different from the \(AdS_3 \) case. It is left as a further example for future work. In the context of obtaining the mixed flux background, one of the backgrounds which one might look for is the \(AdS_3 \times S^3 \times S^3 \times S^1 \) with mixed flux. A way to do so would be to start with the \(NS1 - NS1' - NS5 - NS5' \) intersecting brane solution of [32] and then apply the \(SL(2, Z) \) transformation followed by a rotation and check the commutativity of the these two operations. At present, it appears to be a nice idea to pursue further.
Acknowledgement:
The work of J.K. and M.K. was supported by the Grant Agency of the Czech Republic under the grant P201/12/G028.

References

[1] K. Zarembo, “Strings on Semisymmetric Superspaces,” JHEP 1005, 002 (2010) [arXiv:1003.0465 [hep-th]].

[2] N. Beisert et al., “Review of AdS/CFT Integrability: An Overview,” Lett. Math. Phys. 99, 3 (2012) [arXiv:1012.3982 [hep-th]].

[3] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200].

[4] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998) [hep-th/9802150].

[5] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428, 105 (1998) [hep-th/9802109].

[6] R. R. Metsaev and A. A. Tseytlin, “Type IIB superstring action in AdS(5) x S**5 background,” Nucl. Phys. B 533, 109 (1998) doi:10.1016/S0550-3213(98)00570-7 [hep-th/9805028].

[7] I. Bena, J. Polchinski and R. Roiban, “Hidden symmetries of the AdS(5) x S**5 superstring,” Phys. Rev. D 69, 046002 (2004) [hep-th/0305116].

[8] D. M. Hofman and J. M. Maldacena, “Giant Magnons,” J. Phys. A 39, 13095 (2006) [hep-th/0604135].

[9] M. Kruczenski, “Spiky strings and single trace operators in gauge theories,” JHEP 0508, 014 (2005) [hep-th/0410226].

[10] S. Frolov and A. A. Tseytlin, “Multispin string solutions in AdS(5) x S**5,” Nucl. Phys. B 668, 77 (2003) [hep-th/0304255].

[11] R. Ishizeki and M. Kruczenski, “Single spike solutions for strings on S**2 and S**3,” Phys. Rev. D 76, 126006 (2007) [arXiv:0705.2429 [hep-th]].

[12] J. A. Minahan, “Circular semiclassical string solutions on AdS(5) x S(5),” Nucl. Phys. B 648, 203 (2003) [hep-th/0209047].

[13] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “A Semiclassical limit of the gauge / string correspondence,” Nucl. Phys. B 636, 99 (2002) [hep-th/0204051].

[14] A. Khan and A. L. Larsen, “Improved stability for pulsating multi-spin string solitons,” Int. J. Mod. Phys. A 21, 133 (2006) [hep-th/0502063].

[15] J. H. Schwarz, “An SL(2,Z) multiplet of type IIB superstrings,” Phys. Lett. B 360, 13 (1995) Erratum: [Phys. Lett. B 364, 252 (1995)] [hep-th/9508143].

[16] B. Hoare and A. A. Tseytlin, “On string theory on AdS_3 x S^3 x T^4 with mixed 3-form flux: tree-level S-matrix,” Nucl. Phys. B 873, 682 (2013) [arXiv:1303.1037 [hep-th]].
[17] B. Hoare and A. A. Tseytlin, “Massive S-matrix of \(AdS_3 \times S^3 \times T^4 \) superstring theory with mixed 3-form flux,” Nucl. Phys. B 873, 395 (2013) [arXiv:1304.4099 [hep-th]].

[18] B. Hoare, A. Stepanchuk and A. A. Tseytlin, “Giant magnon solution and dispersion relation in string theory in \(AdS_3 \times S^3 \times T^4 \) with mixed flux,” Nucl. Phys. B 879, 318 (2014) [arXiv:1311.1794 [hep-th]].

[19] A. Sfondrini, “Towards integrability for \(AdS_3 / CFT_2 \),” J. Phys. A 48, no. 2, 023001 (2015) [arXiv:1406.2971 [hep-th]].

[20] J. R. David and A. Sadhukhan, “Spinning strings and minimal surfaces in \(AdS_3 \) with mixed 3-form fluxes,” JHEP 1410, 49 (2014) [arXiv:1405.2687 [hep-th]].

[21] A. Banerjee, K. L. Panigrahi and P. M. Pradhan, “Spiky strings on \(AdS_3 \times S^3 \) with NS-NS flux,” Phys. Rev. D 90, no. 10, 106006 (2014) [arXiv:1405.5497 [hep-th]].

[22] R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefanski, “The complete \(AdS_3 \times S^3 \times T^4 \) worldsheet S matrix,” JHEP 1410, 66 (2014) [arXiv:1406.0453 [hep-th]].

[23] R. Hernandez and J. M. Nieto, “Spinning strings in \(AdS_3 \times S^3 \) with NSNS flux,” Nucl. Phys. B 888, 236 (2014) Erratum: [Nucl. Phys. B 895, 303 (2015)] [arXiv:1407.7475 [hep-th]].

[24] T. Lloyd, O. Ohlsson Sax, A. Sfondrini and B. Stefanski, Jr., “The complete worldsheet S matrix of superstrings on \(AdS_3 \times S^3 \times T^4 \) with mixed three-form flux,” Nucl. Phys. B 891, 570 (2015) [arXiv:1410.0866 [hep-th]].

[25] A. Stepanchuk, “String theory in \(AdS_3 \times S^3 \times T^4 \) with mixed flux: semiclassical and 1-loop phase in the S-matrix,” J. Phys. A 48, no. 19, 195401 (2015) [arXiv:1412.4764 [hep-th]].

[26] A. Banerjee, K. L. Panigrahi and M. Samal, “A note on oscillating strings in \(AdS_3 \times S^3 \) with mixed three-form fluxes,” JHEP 1511, 133 (2015) [arXiv:1508.03430 [hep-th]].

[27] J. Kluson, “Integrability of a D1-brane on a group manifold with mixed three-form flux,” Phys. Rev. D 93, no. 4, 046003 (2016) [arXiv:1509.09061 [hep-th]].

[28] A. Banerjee and A. Sadhukhan, “Multi-spike strings in \(AdS_3 \) with mixed three-form fluxes,” JHEP 1605, 083 (2016) [arXiv:1512.01816 [hep-th]].

[29] A. Banerjee, S. Biswas and R. R. Nayak, “D1 string dynamics in curved backgrounds with fluxes,” JHEP 1604, 172 (2016) [arXiv:1601.06360 [hep-th]].

[30] J. Kluson, “\((p,q)\)-five brane and \((p,q)\)-string solutions, their bound state and its near horizon limit,” JHEP 1606, 002 (2016) [arXiv:1603.05196 [hep-th]].

[31] J. Kluson, “\((m,n)\)-String in \((p,q)\)-String and \((p,q)\)-Five Brane Background,” arXiv:1602.08275 [hep-th].

[32] G. Papadopoulos, J. G. Russo and A. A. Tseytlin, “Curved branes from string dualities,” Class. Quant. Grav. 17, 1713 (2000) [hep-th/9911253].