Impact of UVC radiation on interaction of selected antifungal drugs (azole derivatives) with model DPPH free radical

Pawel Ramos, Piotr Pepliński, Barbara Pilawa

Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland

ABSTRACT

INTRODUCTION: Fungal lesions are accompanied by inflammation, during which large amounts of free radicals are formed. Antifungal drugs, which have an additional antioxidant effect, could contribute to a faster recovery. An important role in ensuring effective and safe pharmacotherapy of fungal lesions is played by proper drug storage and appropriate patient actions during treatment. Ultraviolet radiation can generate free radicals in a drug due to photolysis. A drug containing free radicals may cause toxic effects in the body.

The aim of the study was to research the antioxidant properties of selected antifungal drugs of azole derivatives. Additionally, the impact of UVC radiation on the tested drugs and their interaction with the DPPH free radical was studied.

MATERIAL AND METHODS: The tested azole samples were exposed to 24-hour UVC radiation. The interaction of drug samples with a model DPPH free radical, before and after exposure to UV radiation, was studied. UV-Vis spectrophotometry and colourimetry in the CIE Lab colour analysis system were used as the research techniques.

RESULTS: Among the initial samples of the tested drugs only ketoconazole interacted with the DPPH free radical, causing its extinction. Exposure to UVC radiation increased the antioxidant properties in ketoconazole and miconazole. The CIE Lab parameters, UV spectra and interaction kinetics of those two drugs with DPPH were different after UVC exposure, which may indicate changes in ketoconazole and miconazole. The highest stability to ultraviolet radiation was shown by fluconazole, whose CIE Lab parameters, UV spectra and interaction with DPPH did not change after exposure of the sample to light radiation.

CONCLUSIONS: The research using UV-Vis spectrophotometry and colourimetry enabled the impact of UVC radiation on selected antifungal drugs to be evaluated, including evaluation of their interaction with the model DPPH free radical. It is recommended to protect ketoconazole and miconazole from exposure to light. It is also advisable to protect patients from the sun during pharmacotherapy with these drugs.

KEY WORDS
antifungal drugs, free radicals, UVC radiation, UV-Vis spectrophotometry, colourimetry
STRESZCZENIE

WSTĘP: Zmianom grzybiczym towarzyszy stan zapalny, w trakcie którego wytwarzane są duże ilości wolnych rodni- ków. Leki działające przeciwgrzybiczko, wykazujące dodatkowo działanie antyoksydacyjne, mogłyby się przyczynić do szybszego powrotu do zdrowia. Ważną rolę w zapewnieniu skutecznej i bezpiecznej farmakoterapii zmian grzybiczych odgrywają prawidłowe przechowywanie leku oraz odpowiednie postępowanie pacjenta w trakcie leczenia. Promieniowanie ultrafioletowe może generować wolne rodniki w leku w procesie fotolizy. Lek zawierający wolne rodniki może powodować efekty toksyczne w organizmie.

Celem pracy było zbadanie właściwości antyoksydacyjnych wybranych leków przeciwgrzybiczych pochodnych azoli. Dodatkowo sprawdzono wpływ promieniowania UVC (ultraviolet C) na badane leki oraz ich oddziaływanie z modelowym wolnym rodnikiem DPPH (2,2-Diphenyl-1-picrylhydrazyl).

MATERIAL I METODY: Badane próbki azoli poddano 24-godzinnej ekspozycji na promieniowanie UVC. Zbadano oddziaływanie próbek leków z modelowym wolnym rodnikiem DPPH przed i po naświetlanie ich promieniowaniem ultrafioletowym. Jako techniki badawcze zastosowano spektroskopię UV-Vis (ultraviolet-visible) oraz kolorymetrię w układzie analizy barwy CIE Lab.

WYNIKI: Spośród wyjściowych próbek badanych leków tylko ketokonazol oddziaływał z wolnym rodnikiem DPPH, powodując jego wygaszenie. Ekspozycja na promieniowanie UVC powodowała wzrost właściwości antyoksydacyjnych w ketokonazolu oraz w mikonazolu. Parametry CIE Lab, widma UV oraz kinetyka oddziaływania z DPPH obu leków były odmienne po naświetlaniu promieniowaniem UVC, co może wskazywać na zmiany zachodzące w ketokonazolu oraz w mikonazolu. Największą stabilność na promieniowanie ultrafioletowe wykazywał flukonazol, którego parametry CIE Lab, widma UV oraz oddziaływanie z DPPH nie zmieniły się po naświetleniu próbki.

WNIOSKI: Badania z zastosowaniem spektrofotometrii UV-Vis oraz kolorymetrii pozwoliły na ocenę wpływu promieniowania UVC na wybrane leki przeciwgrzybicze, w tym na ocenę ich oddziaływania z modelowym wolnym rodnikiem DPPH. Zaleca się ochronę ketokonazolu i mikonazolu przed światłem. Wskazana jest również ochrona przed słońcem.

SŁOWA KLUCZOWE

leki przeciwgrzybicze, wolne rodniki, promieniowanie UVC, spektrofotometria UV-Vis, kolorymetria

INTRODUCTION

The use of immunomodulating and antancer drugs by patients and the occurrence of diseases impairing the immune system contributes to an increase in the incidence of fungal infections [1,2,3,4,5,6]. The treatment of fungal diseases poses many difficulties, e.g. due to difficult diagnosis and selection of an appropriate drug to which the pathogen will be susceptible [1,2,3,4,5,6,7,8,9]. Antifungal therapy is usually long-lasting, which is accompanied by numerous side and toxic effects on the body [5,6,8,9]. Fungal lesions are always accompanied by inflammation. During inflammation, large amounts of free radicals are formed [10]. Antifungal drugs with an additional antioxidative effect could facilitate inflammation alleviation, which would result in faster patient recovery.

Azoles are synthetic antifungal drugs most commonly used in the treatment [1,2,3,4,5,6,7,8,9,10]. They constitute a chemically heterogeneous group. They include both imidazole and triazole derivatives which exhibit a similar mechanism [1,2,3,4]. The antifungal effect of azoles is associated with inhibiting lanosterol 14α-demethylase in the biosynthesis of steroid hormones of fungi [1,2,3,5,6,8]. The consequence is a reduction in the amount of ergosterol, which is the main sterol building fungal cell membranes. Furthermore, azoles cause the accumulation of methylated groups at position 14 of α sterols, which is accompanied by numerous side and toxic effects on the body [5,6,8,9]. Antifungal drugs with a similar mechanism [1,2,3,4] could facilitate inflammation alleviation, which would result in faster patient recovery.

Stosowanie przez pacjentów leków immunomodulujących oraz przeciwnowotworowych, a także występowanie chorób upośledzających układ odpornościowy przyczynia się do wzrostu zachorowalności na infekcje grzybiczne [1,2,3,4,5,6]. Leczenie schorzeń grzybiczych stwarza wiele trudności, m.in. ze względu na trudne rozpoznanie oraz dobór odpowiedniego leku, na który patogen będzie wrażliwy [1,2,3,4,5,6,7,8,9]. Terapia przeciwgrzybiczna zazwyczaj jest długotrwała, co sprawia, że towarzyszą jej liczne skutki uboczne, może też działać toksycznie na organizm [5,6,8,9]. Zmianom grzybiczym zawsze towarzyszy stan zapalny, podczas którego wytwarzane są duże ilości wolnych rodni- ków [10]. Leki działające przeciwgrzybiczko, wykazujące dodatkowo działanie antyoksydacyjne, mogłyby przyspieszać łagodzenie stanu zapalnego, co wpłynęłoby na szybszą rekwalifikację pacjenta.

Do syntetycznych leków przeciwgrzybiczych najczęściej stosowanych w lecznictwie należy grupa azoli [1,2,3,4,5,6,7,8,9,10], stanowiących niejednorodną grupę pod względem chemicznym. Należą do nich zarówno pochodne imidazolu, jak i pochodne triazolowe wykazujące podobny mechanizm działania [1,2,3,4]. Działanie przeciwgrzybicze azoli wiąże się z hamowaniem 14α-demetylazy lanosterolu w biosyntezie hormonów steroidowych grzybów [1,2,3,5,6,8]. Następstwem tego jest zmniejszenie ilości ergosterolu, stanowiącego...
which leads to disorder in their polarity and makes it difficult to build them into the cell membrane bilayer [4,5,6,8]. As a result, it leads to derangement of the spatial structure in the fungal cell membrane [1,2,3,4,5,6,8]. Azoles have a very broad spectrum of activity. They are applied externally in particular; topically in infections of the skin and mucous membranes [1,2,3,4,5,6,7,8,9,10]. As some types of mycosis occur on bare body parts, they are exposed to ultraviolet radiation [11]. In order to ensure safe and effective pharmacotherapy of fungal lesions, it is very important that the drug is properly stored, and the patient acts appropriately during the treatment. Ultraviolet radiation may lead to photolysis [12,13,14]. Photolysis takes place in a direct and indirect way. In direct photolysis, the medicinal substance is transformed by the absorption of energy. This process causes, among others, the formation of free radicals as well as drug disintigration and degradation [14]. In indirect photolysis, the energy supplied to a body system in the form of ultraviolet radiation affects another substance, e.g. an excited, and modifies it forming a free radical. The free radical, formed in this way as a highly reactive molecule, interacts with a medicinal substance and modifies it [12,13,14]. Antifungal drugs are also susceptible to photolytic degradation, which has been proven in numerous scientific papers [15,16,17].

A medicinal substance that contains free radicals may cause many toxic effects in the body during pharmacotherapy [14,18]. As reactive molecules, free radicals have the ability to interact with any type of molecule that builds a living organism, causing its damage. As a result of free radical activity, lipids that build the body's cell membranes undergo a multistage peroxidation process [14,18,19,20]. This process may result in the formation of carcinogenic products, e.g. malondialdehyde [14,20]. Under the influence of free radicals, protein structures in the body may change spatially, which affects their bioactivity [14,18,19,20,21]. Free radicals may also interact with DNA and RNA, for which the hydroxyl radical is the most hazardous [14,18]. Free radicals react with any structure that builds DNA, i.e. with phosphate residues, ribose, deoxyribose and nitrogenous bases, which in turn, results in many structural abnormalities in DNA and proteins and leads to the initiation of mutations and thus neoplastic processes [14,18,19].

The aim of this study was to research the antioxidant properties using the model DPPH free radical of selected synthetic antifungal drugs belonging to the group of azoles. Additionally, the impact of UVC radiation on the tested drugs and their interaction with the DPPH free radical was tested.
MATERIALS AND METHODS

Tested antifungal drugs

Three synthetic antifungal drugs, belonging to the group of azoles, i.e. ketoconazole, miconazole (imidazole derivatives) and fluconazole (the group of triazole derivatives) were analysed in this paper [1,2,3,4,5,6,22]. The chemical structure and basic physicochemical parameters of the tested substances are given in Table I [22,23,24,25]. All the drugs analysed in this study were purchased from Sigma-Aldrich.

Drug name	Structural formula	Molecular formula	Molar mass	Melting point
Ketoconazole	![Ketoconazole structure](image)	C_{26}H_{28}Cl_{2}N_{4}O_{4}	531.43 g/mol	147°C
Miconazole	![Miconazole structure](image)	C_{18}H_{14}Cl_{4}N_{2}O	416.13 g/mol	135°C
Fluconazole	![Fluconazole structure](image)	C_{13}H_{12}F_{2}N_{6}O	306.27 g/mol	138–140°C

Ketoconazole is a synthetic drug belonging to the azoles of imidazole derivatives [1,2,3,5,6,9]. Ketoconazole is used for the treatment of both superficial and systemic mycoses [1,2,3,4,5,6]. Additionally, it can be used in candidiasis, histoplasmosis and blastomycosis [5,6,9]. Ketoconazole has a broad spectrum of activity and is used in the case of resistance to other antifungal drugs [1,2,3,4,5,6]. Ketoconazole is easily absorbed from the digestive tract in the presence of an acidic environment [4,5,6]. The most dangerous side effect of taking ketoconazole is liver necrosis; therefore, during long-term therapy with high doses of the drug, liver function tests and complete blood count are recommended [1,2,3,4,5,6].

BADANE LEKI PRZECIWGRZYBCZĘCE

Analizie poddano trzy leki przeciwparybicze pochodzenia syntetycznego, należące do grupy azoli, tj. ketokonazol, mikonazol (z grupy pochodnych imidazołowych) i fluorokonazol (z grupy pochodnych triazolowych) [1,2,3,4,5,6,22]. Struktura chemiczna oraz podstawowe parametry fizykochemiczne badanych substancji zestawiono w tabeli I. Wszystkie analizowane w pracy leki pochodzą od firmy Sigma-Aldrich. Ketokonazol jest lekiem syntetycznym z grupy pochodnych imidazołowych [1,2,3,5,6,9]. Stosuje się go...
Miconazole, like ketoconazole, is a synthetic, antifungal drug of imidazole derivatives [1,2,3,4,5,6,7]. Nowadays, miconazole is rarely used for the treatment of systemic and organ mycoses [4,5,6]. Miconazole in the form of cream, gel, globules or powder is more often used for the treatment of superficial mycoses of the skin and mucous membranes [1,2,3,4,5,6,7]. Miconazole is a drug poorly absorbed from the digestive tract [4]. It is often used together with hydrocortisone in complex preparations [1,2,3,5,6]. The side effects of miconazole mainly include allergic reactions [1,2,3,4,5,6].

Another synthetic, antifungal drug is fluconazole. It belongs to azoles, but to triazole derivatives [1,2,3,4,5,6,8,9]. Fluconazole is a broad-spectrum antifungal [1,2,3,4,5,6]. It is very well absorbed from the digestive tract [4,5,6]. It also shows good penetrating abilities in body tissues [5,6]. Fluconazole is characterised by very good bioavailability after oral administration (94%) and low bonding to plasma proteins (11–12%), which means that its half-life is long – up to 30 hours [4,5,6]. It is an alternative to the treatment of fungal infections susceptible to amphotericin B because it is less toxic than an alternative to the treatment of fungal infections sensitive to amphotericin B because it is less toxic than -an alternative to the treatment of fungal infections such that its half-life is long – up to 30 hours [4,5,6]. It is an alternative to the treatment of fungal infections susceptible to amphotericin B because it is less toxic than amphotericin B and shows the same spectrum [5,6]. The side effects, which occur very rarely after fluconazole treatment, include abdominal pain, nausea and headache [1,2,3,4,5,6].

Exposure of tested drugs to UV radiation

Ketoconazole, miconazole and fluconazole were exposed to 24-hour UVC radiation. For this purpose, drugs in the form of a thin layer of powder were placed in Petri dishes and exposed to UV radiation from a distance of 20 cm and with wavelength $\lambda = 254$ nm. For this test, a UVC lamp (Active, UK) equipped with one 8W emitter was used.

Model DPPH free radical

The DPPH free radical (2,2-diphenyl-1-picyrylhydrazyly) is a model compound used for research on the antioxidant properties of substances of synthetic and natural origin [14,19,26]. The structural formula of the DPPH free radical with an unpaired electron, located on a nitrogen atom forming a nitrogen bridge, is shown in Fig. 1 [19].

[Image of DPPH free radical]

Fig. 1. Chemical structure formula of DPPH free radical with unpaired electron located on nitrogen atom [19].

Ryc. 1. Wzór strukturalny modelowego wolnego rodnika DPPH z niesparowanym elektronem znajdującym się na atomie azotu [19].

Ketoconazole, miconazole and fluconazole were exposed to 24-hour UVC radiation. For this purpose, drugs in the form of a thin layer of powder were placed in Petri dishes and exposed to UV radiation from a distance of 20 cm and with wavelength $\lambda = 254$ nm. For this test, a UVC lamp (Active, UK) equipped with one 8W emitter was used.
Under the influence of antioxidant, the DPPH free radical is reduced as a result of the reception of an electron [14,19,26]. Depending on the analytical method used, this results in a decrease in the amplitude of the EPR DPPH signal spectrum (EPR spectroscopy method), a decrease in the absorbance at a certain wavelength (UV-Vis spectrophotometric method) or a change in colour from violet to yellow (colourimetric method) [14,18,19,26].

Preparatory procedures for samples

In this study, a methyl solution of the DPPH free radical was used since this compound forms durable alcoholic solutions. For this purpose, an 0.5 mM DPPH methyl solution was prepared. Subsequently, 10 mg of the tested drug was weighed with a CPA analytical balance (Sartorius, Germany) and placed in a test tube. Then, the 0.5 mM methyl DPPH solution was added to a 2.5 ml test tube, stopped and mixed. At a further stage, the contents of the test tube were poured into a polystyrene cuvette with an optical path of 1 cm, which was placed inside the spectrophotometer. The change in absorbance of the tested sample was measured at wavelength λ = 515 nm. Those measurements were performed at 1, 3, 5, 10, 15, 20, 25 and 30 minute(s) of interaction between the tested substance and DPPH. The control sample was a pure 0.5 mM DPPH solution. The measurement was repeated threefold and the results were averaged.

Measurement of antioxidant properties by means of UV-Vis spectrophotometry

UV-Vis spectrophotometry was used to study the interaction of the tested antifungal drugs, both the initial ones (non-exposed to ultraviolet radiation) and those exposed to 24-hour UVC radiation, with the model DPPH radical. For this purpose, the UV-Vis Thermo Genesys 10S spectrophotometer (Thermo Scientific, USA) was used. The absorbance spectra of DPPH and DPPH in contact with the tested substances were recorded in the wavelength range from 450 nm to 600 nm, using VISIONlite software (Thermo Scientific, USA). Using Origin 2015 software (OriginLab, USA), the obtained spectra were analysed and the absorbance variation at wavelength λ = 515 nm was evaluated [14].

Research using colourimetry

In the experiment, colourimetric measurement was performed with the NH 310 colourimeter (3nh, China). Analysis of ketoconazole, miconazole and fluconazole colour change before UVC radiation (initial samples) and after 24-hour exposure to UVC radiation was performed. The spatial analysis model of the CIE Lab colour system was applied [27,28]. In this system, a change in the 'L' component is responsible for the brightness of the preparation. Black has the value of 0, while white = 100 [27,28]. The component of parameter 'a' describes the proportion of colours from green (negative values) to red (positive values). The component 'b' describes the proportion of colours from blue (negative values) to yellow (positive values) [27,28]. In this system, a change in the 'L' component is responsible for the brightness of the preparation. Black has the value of 0, while white = 100 [27,28]. The component of parameter 'a' describes the proportion of colours from green (negative values) to red (positive values). The component 'b' describes the proportion of colours from blue (negative values) to yellow (positive values) [14,18,19,26]. W zależności od zastosowanej metody analitycznej powoduje to spadek amplitudy sygnału widma EPR DPPH (spektroskopia EPR), spadek absorbancji przy określonej długości fali (metoda spektrofotometryczna UV-Vis) lub zmianę zabarwienia z fioletowej na żółtą (metoda kolorymetryczna) [14,18,19,26].

Preparatyka próbek

W pracy wykorzystano metylowy roztwór wolnego rodzinka DPPH, gdyż związek ten tworzy trwałe roztwory alkoholowe. W tym celu przygotowano 0,5 mM metylowy roztwór DPPH. Następnie za pomocą wagi analitycznej CPA firmy Sartorius (Niemcy) odwagano 10 mg badanego leku i umieszczano w próbówce, do której z kolei dodawano 2,5 ml 0,5 mM metylowego roztworu DPPH, zatykano korkiem i mieszano. Na dalszym etapie zawartość próbówki przelecano do kuvety polistyrenowej o drodze optycznej 1 cm, którą umieszczano we wnętrzu spektrofotometru. Mierzono zmianę absorbancji badanej próbki przy długości fali λ = 515 nm. Pomiary te wykonywano w 1., 3, 5, 10, 15, 20, 25 i 30 minucie oddziaływania badanej substancji z DPPH. Próbę kontrolną stanowił czysty 0,5 mM roztwór DPPH. Pomiary powtórzono 3-krótnie, a wyniki uśredniono.

Pomiary właściwości antyoksydacyjnych za pomocą spektrofotometrii UV-Vis

W celu zbadania oddziaływania z modelowym rodzikiem DPPH badanych leków przeciwgrzybiczych, zarówno wyjściowych (niepoddanych działaniu promieniowania ultrafioletowego), jak i nawałnianych przez 1 dobę, zastosowano spektrofotometrię UV-Vis (ultra-violet-visible). Wykorzystano spektrofotometr UV-Vis Thermo Genesys 10S firmy Thermo Scientific (USA). Widma absorbancji DPPH oraz DPPH w kontakcie z badanymi substancjami były rejestrowane w zakresie długości fali 450–600 nm za pomocą oprogramowania VISIONlite firmy Thermo Scientific (USA). Analizę otrzymywanych widm oraz ocenę zmiany absorbancji przy długości fali λ = 515 nm przeprowadzono za pomocą oprogramowania Origin 2015 firmy OriginLab (USA) [14].

Badania za pomocą kolorymetryi

W doświadczeniach wykonane zostały pomiary kolorymetryczne za pomocą kolorymetry firmy NH 310 firmy 3nh (Chiny). Przeprowadzono analizę zmiany barwy ketoconazułu, mikonazuolu i flukonazuolu przed działaniem promieniowania UVC (próżniowego) oraz po 24-godzinnym nawałnianiu. Zastosowano model analizy przestrzennej układu barw CIE Lab [27,28]. W układzie tym zmiana składowej „L” odpowiada za poziom jasności preparatu. Wartość 0 przyjmuje barwa czarna, wartość 100 barwa biała [27,28]. Składowa parametru „a” opisuje udział barw od zielonego (wartości ujemne) do czerwonego (wartości dodatnie), natomiast składowa parametru „b” udział barw od niebieskiego (war-
The analyses which were conducted in this study using the model DPPH free radical, ketoconazole, miconazole and fluconazole non-exposed to UVC ultraviolet radiation for 24-hours, show differences in the ability to interact with the DPPH free radical. Only for the ketoconazole initial sample, non-exposed to ultraviolet radiation, was a decrease in absorbance at wavelength $\lambda = 515$ nm observed when compared with the absorbance standard. This indicates the antioxidant properties of ketoconazole (Fig. 2a). Those properties increased for the sample exposed to 24-hour ultraviolet radiation (Fig. 2b).

No decrease in absorbance at the tested wavelength ($\lambda = 515$ nm) was observed for the miconazole initial sample, non-exposed to UV radiation. This shows the inability to reduce the DPPH free radical by the initial miconazole (Fig. 3a). 24-hour exposure of the miconazole sample to UVC radiation resulted in the drug's ability to interact with DPPH. This was manifested by a decrease in absorbance at the wavelength of 515 nm (Fig. 3b).

The tested fluconazole samples, neither the non-exposed nor exposed to 24-hour UVC radiation, showed any abilities to interact with the DPPH free radical. No decrease in the absorbance values was observed for those samples when compared with the standard – the pure alcoholic solution of DPPH at wavelength $\lambda = 515$ nm (Fig. 4a and 4b). This indicates the lack of antioxidant capacity of the tested fluconazole samples.

For the tested antifungal drugs from the group ofazole derivatives, the interaction kinetics with the model DPPH free radical was studied. The same time points for absorbance measurement at the wavelength of 515 nm were used for all the analysed drugs. The measurements were performed at 1, 3, 5, 10, 15, 20, 25 and 30 minute(s) of interaction between the tested sample and the model DPPH free radical, ketoconazole, miconazole and fluconazole. Each measurement was performed threefold and the results were averaged.

RESULTS

The analyses which were conducted in this study using the model DPPH free radical, ketoconazole, miconazole and fluconazole non-exposed to UVC ultraviolet radiation for 24-hours, show differences in the ability to interact with the DPPH free radical. Only for the ketoconazole initial sample, non-exposed to ultraviolet radiation, was a decrease in absorbance at wavelength $\lambda = 515$ nm observed when compared with the absorbance standard. This indicates the antioxidant properties of ketoconazole (Fig. 2a). Those properties increased for the sample exposed to 24-hour ultraviolet radiation (Fig. 2b).

No decrease in absorbance at the tested wavelength ($\lambda = 515$ nm) was observed for the miconazole initial sample, non-exposed to UV radiation. This shows the inability to reduce the DPPH free radical by the initial miconazole (Fig. 3a). 24-hour exposure of the miconazole sample to UVC radiation resulted in the drug's ability to interact with DPPH. This was manifested by a decrease in absorbance at the wavelength of 515 nm (Fig. 3b).

The tested fluconazole samples, neither the non-exposed nor exposed to 24-hour UVC radiation, showed any abilities to interact with the DPPH free radical. No decrease in the absorbance values was observed for those samples when compared with the standard – the pure alcoholic solution of DPPH at wavelength $\lambda = 515$ nm (Fig. 4a and 4b). This indicates the lack of antioxidant capacity of the tested fluconazole samples.

For the tested antifungal drugs from the group ofazole derivatives, the interaction kinetics with the model DPPH free radical was studied. The same time points for absorbance measurement at the wavelength of 515 nm were used for all the analysed drugs. The measurements were performed at 1, 3, 5, 10, 15, 20, 25 and 30 minute(s) of interaction between the tested sample and the model DPPH free radical, ketoconazole, miconazole and fluconazole. Each measurement was performed threefold and the results were averaged.

UV-Vis measurement of tested drugs

Additionally, the UV spectra of the tested antifungal drugs (non-exposed and exposed to 24-hour ultraviolet radiation) were analysed in the study. For this purpose, 1 mg of the tested drug was dissolved in 100 ml of methyl alcohol [29]. The samples were then thoroughly mixed and poured into a quartz cuvette with an optical path of 1 cm, which was placed in a spectrophotometer. UV absorbance spectra were recorded in the wavelength range from 200 to 380 nm [9,29,30]. A UV-Vis Thermo Genesys 10S spectrophotometer (Thermo Scientific, USA) was used for measurement.

WYNIKI

Pomiary widm UV badanych leków

Dodatkowo wykonano analizy widm UV badanych leków przeciwgrzybikowych niepodanych i poddanych 24-godzinnej ekspozycji naświetleniu ultrafioletowym. W tym celu rozpuszczano 1 mg badanego leku w 100 ml alkoholu metylowego [29]. Następnie próbki dokładnie mieszano i przelewano do kwety kwarcowej o drodze optycznej wynoszącej 1 cm, którą umieszczaano w spektrofotometrze. Widma absorbancji UV rejestrowano w przedziale długości fali wynoszącym 200–380 nm [9,29,30]. Do pomiarów użyto spektrofotometru UV-Vis Thermo Genesys 10S firmy Thermo Scientific (USA) z oprogramowaniem VISIONlite firmy Thermo Scientific (USA).

Analizy z wykorzystaniem modelowego wolnego rodzinka DPPH oraz ketokonazolu, mikonazolu i flukonazolu niepodanych oraz poddanych 24-godzinnej ekspozycji naświetleniu UVC wykazały różnicę w zdolnościach oddziaływania z wolnym rodzikiem DPPH. Jedynie dla próbki wyjściowej ketokonazolu, nienaświetlonej promieniowaniem ultrafioletowym, zaobserwowano obniżenie absorbancji przy długości fali $\lambda = 515$ nm w porównaniu z absorbancją wzorca, co świadczy o właściwościach antyoksydacyjnych leku (ryc. 2a). Właściwości te rosły dla próbki poddanej przez dobę naświetleniu promieniowaniu ultrafioletowym (ryc. 2b).

Dla próbki wyjściowej mikonazolu, niepodanej działaniu promieniowania ultrafioletowego, nie obserwowano obniżenia absorbancji przy długości fali $\lambda = 515$ nm. Świadczy to o braku zdolności do redukcji wolnego rodzinka DPPH przez wyjściowy mikonazol (ryc. 3a). Naświetlanie promieniowaniem UVC próbki mikonazolu przez 1 dobę wykazało jego zdolność oddziaływania z DPPH, co manifestowało się obniżeniem wartości absorbancji przy długości fali 515 nm (ryc. 3b).

Próbki flukonazolu, zarówno niepoddane działaniu promieniowania UVC, jak i naświetlona przez 24 godziny, nie wykazywały zdolności oddziaływania z wolnym rodzikiem DPPH. Dla próbek tych nie obserwowano obniżenia wartości absorbancji w porównaniu z wzorcem, jaki stanowił czysty alkoholowy roztwór DPPH przy długości fali $\lambda = 515$ nm (ryc. 4a i 4b). Świadczy to o braku zdolności antyoksydacyjnych testowanych próbek.

Dla leków przeciwgrzybiczych pochodnych azoli wykonywano badania kinetyki oddziaływania z modelowym wolnym rodzikiem DPPH. Dla wszystkich analizowanych leków stosowano takie same punkty czasowe.
Fig. 2. UV-Vis DPPH absorbance spectrum interacting with ketoconazole (a) non-exposed to UVC radiation and (b) exposed to 24-hour UVC radiation. Absorbance was measured at room temperature.

Ryc. 2. Widmo absorbancji UV-Vis DPPH oddziałującego z ketokonazolem niepoddanym (a) oraz poddanym 24-godzinnej ekspozycji na promieniowanie UVC(b). Pomiary absorbancji wykonano w temperaturze pokojowej.

Fig. 3. UV-Vis DPPH absorbance spectrum interacting with miconazole (a) non-exposed to UVC radiation and (b) exposed to 24-hour UVC radiation. Absorbance was measured at room temperature.

Ryc. 3. Widmo absorbancji UV-Vis DPPH oddziałującego z mikonazolem niepoddanym (a) oraz poddanym 24-godzinnej ekspozycji na promieniowanie UVC(b). Pomiary absorbancji wykonano w temperaturze pokojowej.

Fig. 4. UV-Vis DPPH absorbance spectrum interacting with fluconazole (a) non-exposed to UVC radiation and (b) exposed to 24-hour UVC radiation. Absorbance was measured at room temperature.

Ryc. 4. Widmo absorbancji UV-Vis DPPH oddziałującego z flukonazolem niepoddanym (a) oraz poddanym 24-godzinnej ekspozycji na promieniowanie UVC(b). Pomiary absorbancji wykonano w temperaturze pokojowej.
and DPPH. A sample of the standard, which was the pure methyl solution of DPPH, was marked as time point 0. In the case of the ketoconazole sample, it can be observed that the absorbance for the drug non-exposed and exposed to UVC radiation decreases with the time of interaction with the model DPPH free radical (Fig. 5). The absorbance values at each measurement point for the non-UV-exposed ketoconazole adopt lower values in comparison with the initial ketoconazole. This indicates a stronger interaction of this drug with DPPH, occurring after its exposure to UVC radiation.

![Fig. 5. Interaction kinetics of DPPH with ketoconazole non-exposed and exposed to 24-hour UVC radiation. Tested absorbance variation at wavelength $\lambda = 515$ nm, measured at 1, 3, 5, 10, 15, 20, 25 and 30 minute(s) of exposure.](image)

Ryc. 5. Kinetyka oddziaływania DPPH z ketokonazolem niepoddanym oraz poddanym działaniu promieniowania UVC przez 24 godziny. Badana zmiana absorbancji przy długości fali $\lambda = 515$ nm, mierzona w 1, 3, 5, 10, 15, 20, 25 i 30 minucie oddziaływania.

By analysing the kinetics of the miconazole sample, it can be observed that the absorbance for a drug non-exposed to UVC radiation is constant over time and adopts the absorbance value of the standard (Fig. 6). This fact indicates the inability to reduce the DPPH free radical by the initial miconazole. The 24-hour exposure of miconazole to UVC radiation resulted in the drug’s ability to reduce the model DPPH free radical. The absorbance value for miconazole exposed to UV radiation decreases significantly with the time of interaction with DPPH (Fig. 6).

![Fig. 6. Interaction kinetics of DPPH with miconazole non-exposed and exposed to 24-hour UVC radiation. Tested absorbance variation at wavelength $\lambda = 515$ nm, measured at 1, 3, 5, 10, 15, 20, 25 and 30 minute(s) of exposure.](image)

Ryc. 6. Kinetyka oddziaływania DPPH z mikonazolem niepoddanym oraz poddanym działaniu promieniowania UVC przez 24 godziny. Badana zmiana absorbancji przy długości fali $\lambda = 515$ nm, mierzona w 1, 3, 5, 10, 15, 20, 25 i 30 minucie oddziaływania.

By analyzing the kinetics of the miconazole sample, it can be observed that the absorbance for a drug non-exposed to UVC radiation is constant over time and adopts the absorbance value of the standard (Fig. 6). This fact indicates the inability to reduce the DPPH free radical by the initial miconazole. The 24-hour exposure of miconazole to UVC radiation resulted in the drug’s ability to reduce the model DPPH free radical. The absorbance value for miconazole exposed to UV radiation decreases significantly with the time of interaction with DPPH (Fig. 6).

Analizując kinetykę próbki mikonazolu, można zaobserwować, że absorbancja dla leku nienarażonemu na światłociecz promieniowanie ultrafioletowego podlega znacznemu obniżeniu w porównaniu z mikonazolem wjściowym. Świadczy to o silniejszym oddziaływaniu tego leku z DPPH, występującym po ekspozycji na promieniowanie UVC.

Analizując kinetykę próbki flukonazolu, można obserwować, że absorbancja dla leku nienarażonemu na światłociecz promieniowanie UVC jest stała w czasie i przyjmuje wartość absorbancji wzorca (ryc. 7). W porównaniu ze wzorcem (metylowy roztwór DPPH) absorbancja tych próbek była znacznie niższa w przypadku próbki mikonazolu poddanej oddziaływaniu promieniowania ultrafioletowego przez 24 godziny, co świadczy o silniejszym oddziaływaniu tego leku z DPPH, występującym po ekspozycji na promieniowanie UVC.

In the case of the ketoconazole sample, it can be observed that the absorbance for the drug non-exposed and exposed to UVC radiation decreases with the time of interaction with the model DPPH free radical (Fig. 5). The absorbance values at each measurement point for the non-UV-exposed ketoconazole adopt lower values in comparison with the initial ketoconazole. This indicates a stronger interaction of this drug with DPPH, occurring after its exposure to UVC radiation.
The interaction kinetics of fluconazole, both the initial one and exposed to UVC radiation, is similar (Fig. 7). It can be observed that this drug does not show any abilities to reduce DPPH radicals even after 24-hour exposure to UV radiation, as evidenced by the absorbance values that remain constant over time (Fig. 7).

By analysing the last minute of the measurement for all tested drugs, we can observe that antifungal drugs exposed to UVC radiation for 24 hours are characterised by a stronger capability to interact with the DPPH free radical (Fig. 8). In comparison with the standard (methyl DPPH solution), the absorbance of those samples was significantly lower for ketoconazole and miconazole. Among the initial drugs, only ketoconazole showed the ability to reduce the DPPH free radical. The miconazole and fluconazole output compounds did not have antioxidant properties (Fig. 8).

For all the tested antifungal drugs belonging to the azole group, colourimetric analyses were conducted in the CIE Lab colour space system (Tab. II).

The ketoconazole and miconazole samples were characterised by significant differences in the CIE Lab system, occurring after their 24-hour exposure to UV radiation. In the case of ketoconazole, the 'L' parameter, after exposure to UVC radiation, adopted lower values for the sample, which proves that it was darkened. The 'a' parameter, on the other hand, adopted more positive values, which indicates a higher proportion of red colour in the analysed drug after exposure to UV radiation.

None of parameters of the CIE Lab system, occurring after their 24-hour exposure to UV radiation, adopted lower values for the sample, which proves that it was brightened. The 'b' parameter also adopted more positive values, which indicates a higher yellow component in the tested sample occurring after exposure to UV radiation.

In the case of miconazole, the 'L' parameter adopted many more positive values in the CIE Lab colour system after exposure to UV radiation in the tested miconazole sample. This indicates an increase in red and yellow components in the drug.

None of parameters of the CIE Lab system for the tested fluconazole after its exposure to UV radiation changed significantly. This shows that the sample did not change its colour after exposure to UVC radiation (Tab. II).

Studied parameter/ Badany parametr	Ketoconazole/Ketokonazol	Miconazole/Mikonazol	Fluconazole/Flukonazol			
	non-UV-exposed/ nieniaświetlany UV	UV-exposed for 24 hours/niaświetlany UV 24 godziny	non-UV-exposed/ nieniaświetlany UV	UV-exposed for 24 hours/niaświetlany UV 24 godziny	non-UV-exposed/ nieniaświetlany UV	UV-exposed for 24 hours/niaświetlany UV 24 godziny
L SD [±0.50]	26.32	36.47	46.42	35.13	35.89	36.17
a SD [±0.04]	1.59	1.89	0.13	1.90	-0.52	-0.55
b SD [±0.04]	3.92	4.67	2.83	11.34	2.02	1.99

SD – odchylenie standardowe

The 'b' parameter also adopted more positive values, which indicates a higher yellow component in the tested sample occurring after exposure to UVC radiation. In the case of miconazole, the 'L' parameter adopted lower values after exposure to UV radiation, which indicates darkening of the sample. Both the 'a' and 'b' parameters adopted many more positive values in the CIE Lab colour system after exposure to UV radiation in the tested miconazole sample. This indicates an increase in red and yellow components in the drug.

Probiotics ketokonazol and mikonazol also showed antioxidant properties (Fig. 8). Ketokonazol and miconazole produced DPPH free radical (Fig. 8). In comparison with the standard (methyl DPPH solution), the absorbance of those samples was significantly lower for ketoconazole and miconazole. Among the initial drugs, only ketoconazole showed the ability to reduce the DPPH free radical. The miconazole and fluconazole output compounds did not have antioxidant properties (Fig. 8).

For all the tested antifungal drugs belonging to the azole group, colourimetric analyses were conducted in the CIE Lab colour space system (Tab. II).
Fig. 9. UV absorbance spectrum of (a) ketoconazole, (b) miconazole and (c) fluconazole non-exposed and exposed to 24-hour UVC radiation. Absorbance was measured at room temperature.

Ryc. 9. Widmo absorbancji UV ketokonazolu (a), mikonazolu (b) i flukonazolu (c) niepoddanych i poddanych działaniu promieniowania UVC przez 24 godziny. Pomiar absorbancji wykonano w temperaturze pokojowej.

For ketoconazole, miconazole and fluconazole, both exposed and non-exposed to UVC radiation, UV absorbance spectrum analyses were conducted in the wavelength range from 200 to 380 nm. Differences in the appearance of the absorbance spectra for drugs exposed to 24-hour UVC radiation can be observed for ketoconazole (Fig. 9a) and miconazole (9b). In the case of fluconazole, these differences are the least visible (Fig. 9c).

DISCUSSION

The analyses conducted in the experiment of selected antifungal drugs (belonging to the group of azoles) before and after exposure to UVC radiation showed differences in interaction with the model DPPH free radical. Among the initial drugs, i.e. non-exposed to ultraviolet radiation, only ketoconazole showed antioxidant properties. Similar properties were observed by the authors of study [31], in which they demonstrated that ketoconazole inhibits lipid peroxidation in the liver, cerebral tissue and colon of tested rats. Ketoconazole also inhibited lipid peroxidation in microsomes, which was induced by the Fe(III)ADP/NADPH system [31]. The authors also tested other antifungal drugs, i.e. miconazole and clotrimazole [31]. They showed that these drugs inhibit wartyco, co wskazuje na ciemnienie próbki. Parametry „a” oraz „b” w układzie barw CIE Lab przyjmowały po tej ekspozycji znacznie bardziej dodatnie wartości, co świadczy o wzroście udziału odpowiednio barwy czerwonej i żółtej.

Żadne parametry układu CIE Lab dla flukonazolu po działaniu na lek promieniowania ultrafioletowego nie uległy znaczącej zmianie. Świadczy to o braku zmiany barwy próbki po ekspozycji na promieniowanie UVC.

Dla ketokonazolu, mikonazolu oraz flukonazolu, podanych oraz niepoddanych naświetlaniu promieniowaniu UVC, wykonano analizy widma absorbancji UV w zakresie długości fali 200–380 nm. Różnice w wyglądzie widma absorbancji dla leków poddanych 24-godzinnej ekspozycji na promieniowanie UVC można zaobserwować w przypadku ketokonazolu (ryc. 9a) i mikonazolu (9b). W przypadku flukonazolu różnice te są najmniej widoczne (ryc. 9c).

DYSKUSJA

Analizy wybranych leków przeciwgrzybiczych, należących do grupy azoli, przed i po naświetlaniu promieniowaniem UVC wykazały różnice w oddziaływaniu z modelowym wolnym rdzeniem DPPH. Spośród leków wyjściowych, czyli niepoddanych działaniu pro-
lipid peroxidation in a negligible way [31]. This confirms the results obtained in this study for the initial miconazole, as it did not have a reducing effect on the DPPH radical (Figs. 6, 8). Kus C. et al also proved in their study that some benzimidazole derivatives with antifungal properties have antioxidant characteristics [32]. Out of 12 benzimidazole derivative compounds tested by them, 3 showed antioxidant properties, which directly contributed to better antifungal properties of those compounds [32].

The research conducted in this experiment has shown that in the case of ketoconazole and miconazole, i.e. imidazole derivatives, the antioxidant properties of these drugs improved after their exposure to the 24-hour UVC radiation factor (Figs. 5, 6, 8). A similar relation that drugs improved after their exposure to the 24-hour imidazole derivatives, the antioxidant properties of the compounds [32].

The factor in the form of ultraviolet radiation, the antioxidant properties of those drugs were also improved in comparison with the initial samples [33]. This fact may result from the photolytic effect of UVC radiation on ketoconazole and miconazole [12,13]. As a result of exposure of the tested imidazole derivatives to UV radiation, it is likely that chemical bonds were broken and free radicals were formed [12,13,14]. As a result of the formation of free radicals in the tested drugs, faster recombination with a model DPPH radical might have occurred, which manifested itself in a decrease in absorbance values, i.e. improvement of antioxidant properties. Skiba M. et al. showed in their research that one of the decomposition products of ketoconazole is free radicals. They proved that the addition of antioxidants to aqueous formulations of ketoconazole affected the drug stability and inhibited its decomposition [34]. Therefore, an increase in the antioxidant capacity of ketoconazole and miconazole exposed to UVC radiation is probably due to the occurrence of photolytic degradation products in the form of free radicals. This in turn, may contribute to toxic effects in the body during pharmacotherapy with such drugs [14,35,36].

Ketoconazole and miconazole also showed differences in colourimetric tests. After their 24-hour exposure to a UVC agent, the imidazole derivatives were characterized by changes in the CIE Lab system, in comparison with the initial drugs. The obtained UV absorbance spectra in a wavelength range from 200 to 380 nm were different for those drugs before and after exposure to UV radiation. The results obtained by colourimetry and UV spectrophotometry may indicate changes in ketoconazole and miconazole under the influence of ultraviolet radiation. The research conducted by Stabu I. et al. has shown that ketoconazole is susceptible to decomposition under the influence of UVA and UVC radiation [37]. The aforementioned authors suggested storing this drug away from light [37]. The photodegradable effect of ultraviolet radiation in the UVC range (λ = 254 nm) on climbazole, an antifungal drug belonging to the group of azoles, was proved by Wang-Rong L. et al. [38]. They showed that radicals (OH•, O2•) and mieleniowania ultrafioletowego, tylko ketokonazol wykazywał właściwości antyoksydacyjne. Podobne właściwości zaobserwowali inni autorzy wykazując, że ketokonazol hamuje peroksydację lipidów w wątrobie, tkance mózgowej oraz okrężnicy badanych szczurów [31]. Ketokonazol inhibował również peroksydację lipidów w mikrosomach, indukowaną przez układ Fe(III)/ADP/NADPH. Ponadto autorzy ci testowali inne leki przeciwgrzybiczne, tj. mikonazol i klotrimazol, wykazując, że leki te w sposób znikomy hamują peroksydację lipidów. Potwierdza to wyniki uzyskane w niniejszej pracy dla mikonazolu wyjściowego, który nie wykazywał działania redukującego w stosunku do rodnika DPPH. Kus i wsp. [32] również udowodnili antyoksydacyjne właściwości niektórych pochodnych benzimidazolowych [32]. Spośród testowanych przez nich 12 związków 3 wykazywały właściwości antyoksydacyjne, co bezpośrednio przekładało się na ich lepsze właściwości przeciwgrzybiczne.

Z przeprowadzonych w niniejszym eksperymencie badań wynika, że w przypadku ketokonazolu oraz mikonazolu, czyli pochodnych imidazolowych, po 24-go-godzinnym działaniu promieniowania UVC nastąpiło połepszenie właściwości antyoksydacyjnych tych leków. Podobną zależność zarejestrowali Stanjek-Cichoracka i wsp. [33] dla ramapinyku, mikoferolenu mofetyny, cisplatyny oraz takrolimusu. Po zadziałaniu czynnika w postaci promieniowania ultrafioletowego obserwowano połepszenie właściwości antyoksydacyjnych w porównaniu z próbkami wyjściowymi. Możę to wynikać z fotolitycznego działania promieniowania UVC na ketokonazol i mikonazol [12,13]. W wyniku promieniowania ultrafioletowego w lekach tych doszło prawdopodobnie do rozerwania wiązań chemicznych i utworzenia wolnych rodziń. Znalazłem więc w postaci promieniowania ultrafioletowego w porównaniu z próbkami wyjściowymi. Możę to wynikać z fotolitycznego działania promieniowania UVC na ketokonazol i mikonazol [12,13]. W wyniku promieniowania ultrafioletowego w lekach tych doszło prawdopodobnie do rozerwania wiązań chemicznych i utworzenia wolnych rodziń [12,13,14]. Rezultatem tego mogła być szybsza rekombinacja z modelowym rodni-kiem DPPH, co manifestowało się obniżeniem wartości absorbancji, czyli połepszeniem właściwości anty-oksydacyjnych. Skiba i wsp. [34] wykazali, że jednym z produktów rozkładu ketokonazolu są wolne rodni. Udomowieni ponadto, że dodatek antyoksydantów do wodnych formułacji ketokonazolu wpływał na wzrost stabilności leku i hamował jego rozkład. W związku z tym wzrost zdolności antyoksydacyjnych ketokona- zolu oraz mikonazolu poddanych działaniu promieniowania UVC prawdopodobnie wynika z obecności w lekach produktów degradacji fotolitycznej w posta- ci wolnych rodziń. To z kolei może być przyczyną efektów toksycznych w organizmie podczas farmako-terapii takimi lekami [14,35,36]. Ketokonazol oraz mikonazol wykazywały również różnicę w badaniach kolorymetrycznych. Pochodne imidazolu poddane działaniu czynnika UVC przez jed-ną dobę cechowały się zmianami w układzie CIE Lab w porównaniu z lekami wyjściowymi. Otrzymane widma absorbancji UV w zakresie długości fali 200–380 nm były odmienne dla tych leków przed ekspozycją na promieniowanie ultrafioletowe i po. Otrzymane z badań kolorymetycznych oraz spektrofotometrii UV wyniki mogą wskazywać na zmiany zachodzące w ketokona-
singlet oxygen are formed during climbazole photodegradation [38]. Da Silva JP et al. also proved in their research the degrading effect of UVC and UVA radiation on drugs belonging to the azole group, i.e. triadimefon and triadimenol [39]. In the case of these compounds, free radicals were the photodegradation product as well [39]. In their research, Ahmed S. et al. observed the susceptibility of aqueous solutions containing sodium sulfacetamide to UV radiation [40]. The researchers observed a change in the colour of preparations stored within reach of ultraviolet radiation [40]. Using chromatography, they demonstrated that the sulfacetamide preparation decomposed with first order kinetics during its storage in the presence of UV radiation [40]. They found that the addition of antioxidant substances to sulfacetamide drops inhibits the decomposition process, which indicates that free radicals are formed in the drug during the photodegradation process [40]. In the conducted research, fluconazole was characterised by the highest stability. After 24-hour exposure to UV radiation, no significant differences or changes in the CIE Lab parameters (Tab. II), nor in the UV absorbance spectrum (Fig. 9c), were noted. The interaction kinetics of fluconazole with the DPPH free radical did not change, compared to the initial drug, after exposure to UVC radiation (Fig. 7). This proves the lack of antioxidant properties of fluconazole (Fig. 8).

CONCLUSIONS

The following conclusions can be drawn from the studies conducted using ultraviolet-visible spectroscopy (UV-Vis) and colourimetry:

1. Among the tested antifungal azole derivatives drugs, only ketoconazole had antioxidant properties.
2. UVC radiation increased the ability to reduce the DPPH free radical in the case of ketoconazole and miconazole. This may indicate the photoysis of these drugs under the influence of ultraviolet radiation.
3. For ketoconazole and miconazole exposed to UVC radiation, some differences in the CIE Lab parameters and UV absorbance spectra were observed.
4. Fluconazole was characterised by the highest stability to UVC radiation among the tested antifungal drugs. No significant differences in the CIE Lab parameters, UV absorbance spectra or interaction kinetics with the model DPPH radical were observed for fluconazole exposed to UVC radiation.
5. Ketoconazole and miconazole should be stored out of reach of ultraviolet radiation.
6. Patient exposure to sunlight during the application of preparations containing ketoconazole and miconazole is not recommended.

Acknowledgments

The research was financed by the Medical University of Silesia in Katowice. Contract no. KNW-2-019/D/6/N.
REFERENCES

1. Janiec K.W., Pytlík M., Cegiela U. Leki układu immunologicznego (leki immunomodulujące). W: Kompendium farmakologii. Red. W. Janiec. Wydawnictwo Lekarskie PZWL. Warszawa 2016, s. 435–440.
2. Cegiela U., Janiec W., Pytlík M. Leki stosowane w leczeniu nowotworów. W: Kompendium farmakologii. Red. W. Janiec. Wydawnictwo Lekarskie PZWL. Warszawa 2016, s. 451–454.
3. Janiec W., Nowinska B., Sliwinski L. Leki stosowane w zakażeniach i chorobach inwazyjnych. W: Kompendium farmakologii. Red. W. Janiec. Wydawnictwo Lekarskie PZWL. Warszawa 2016, s. 510–515.
4. Gomulka W.S. Farmakodynamika leków stosowanych w zakażeniach i chorobach inwazyjnych. W: Farmakodynamika. Red. W. Janiec. Wydawnictwo Lekarskie PZWL. Warszawa 2008; s. 880–888.
5. Reznik W., Filipiak K.J. Leki przeciwbólowe. W: Farmakologia. Red. W. Kostowski, Z. Herman. Wydawnictwo Lekarskie PZWL. Warszawa 2004, s. 359–366.
6. Tarchalska-Krata B. Farmakologia układu immunologicznego. W: Farmakologia. Red. W. Kostowski, Z. Herman. Wydawnictwo Lekarskie PZWL. Warszawa 2004, s. 390–444.
7. Abbas N., Arshad M.S., Hussain A., Irfan M., Ahsan M., Rasool M.F., ur Rehman M.H. Development and validation of a spectroscopic method for the determination of miconazole nitrate and hydrocortisone acetate in pharmaceutical dosage form. Trop. J. Pharm. Res. 2017; 16(2): 413–420.
8. Lamb D.C., Warrill A.G., Rolley N.J., Parker J.E., Nes W.D., Smith S.N., Kelly D.E., Kelly S.L. Azole Antifungal Agents To Treat the Human Pathogens Acanthamoeba castellanii and Acanthamoeba polyphaga through Inhibition of Sterol 14α-Demethylase (CYP51). Antimicrob. Agents Chemother. 2015; 59(8): 4707–4713, doi: 10.1128/AAC.00476-15.
9. Chen Z.F., Ying G.G., Jiang Y.X., Yang B., Lai H.J., Liu Y.S., Pan C.G., Peng F.Q. Photodegradation of theazole fungicides as therapeutic and personal care products in the environment: a review. Environ. Int. 2015; 84: 142–153, doi: 10.1016/j.envint.2015.07.022.
10. Mlynář P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004; 26(2): 211–219.
11. Rój A., Przybyłowski P. Ocena barwy jogurtów naturalnych. Bromat. Chem. Toksykol. 2012; 45(3): 813–816.
12. Harbourne N., Jacquier J.C., O’ Ríordain D. Optimisation of the extraction and processing conditions of chamomile (Matricaria chamomilla L.) for incorporation into a beverage. Food Chem. 2009; 115(1): 15–19, doi: 10.1016/j.foodchem.2008.11.044.
13. Suwiński J. Łączne użycie metod spektroskopowych w celu ustalania struktury związku. W: Zieliński W., Rajca A. Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych. Wydawnictwo Naukowo-Techniczne. Warszawa 1995, s. 520–533.
14. Alzadeh N., Rezaianzadeh Z. Extractive spectrophotometric determination of ketoconazole, clotrimazole and fluconazole by ion-pair complex formation with bromothymol blue and picric acid. J. Chil. Chem. Soc. 2012; 57(2): 1104–1108.
15. Wiseman H., Smith C., Arnstein H.R., Hallwell B., Cannon M. The antioxidant activity of ketoconazole and related azoles: comparison with tamoxifen and cholesterol. Chem. Biol. Interact. 1991; 79(2): 229–243.
16. Kuc C., Sozdatzenne F., Can-Eke B., Coban T. Antioxidant and antifungal properties of benzimidazole derivatives. Z. Naturforsch. C. J. Biosci. 2010; 65(9–10): 537–542.
17. Stanjek-Chicorauca A., Zegleń S., Ramos P., Pilawa B., Wojarsi J. Effect of ultraviolet irradiation on free radical scavenging activity of imanosuppressants used in lung transplantation and comparative electron paramagnetic resonance study of kinetics of their interactions with model free radicals. J. Clin. Pharm. Ther. 2018; 43(3): 385–392, doi: 10.1111/jcpt.12668.
18. Skiba M., Skiba-Lahiani M., Marchais H., Duclos R., Duclos R., Arnaud P. Stability study of kinetics of their interactions with model free radicals. J. Clin. Pharm. Ther. 2018; 43(3): 385–392, doi: 10.1111/jcpt.12668.
19. Suwiński J. Łączne użycie metod spektroskopowych w celu ustalania struktury związku. W: Zieliński W., Rajca A. Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych. Wydawnictwo Naukowo-Techniczne. Warszawa 1995, s. 520–533.
20. Halliwell B., Gutteridge J.M. Reactive species can be poisonous. In: Halliwell B., Gutteridge J.M. Free radicals in biology and medicine. Oxford University Press. United Kingdom. 2006, p. 463–510.
21. Staub I., Flores L., Gosmann G., Pohlmann A., Fröhlich P.E., Schapoval D/E/6/N. Ketokonazol (karta charakterystyki substancji), https://www.sigmaaldrich.com/catalog/product/sial/k1900007?lang=en®ion=PL&show=details. Ketokonazol oraz mikonazol nie zaleca się ekspozycji pacjentów na promieniowanie słoneczne.
22. Finansowanie Badania były finansowane przez Śląski Uniwersytet Medyczny w Katowicach, umowa nr KNW-2-019/D/6/N.