HYPERTROPHIC CARDIOMYOPATHY.
LITERATURE REVIEW

Sagatov I.Y., Momynov B.M.
“A.N. Syzganov National Scientific Center for Surgery” JSC, Almaty, Kazakhstan

Abstract
Hypertrophic cardiomyopathy is a common hereditary heart disease with a heterogeneous clinical picture and a natural history. Recent advances in diagnosis and treatment methods have played an important role in reducing the incidence of adverse clinical events; however, the complete elimination of sudden cardiac death is still an unattainable achievement. Despite the heterogeneous clinical profile and complex pathophysiology, effective treatment strategies are available, including implantable defibrillators to prevent sudden death, medical and surgical myectomy (or, alternatively, alcohol ablation of the septum) to alleviate outflow obstruction and symptoms of heart failure, as well as pharmacological strategies (and possibly radiofrequency ablation) to control atrial fibrillation and prevent embolic stroke. Now, after more than 50 years, hypertrophic cardiomyopathy has been transformed from a rare and largely untreatable disorder to a common genetic disease with management strategies that permit realistic aspirations for restored quality of life and advanced longevity. This article discusses some aspects of this condition: epidemiology, clinic, diagnosis and surgery technique.

Objective. Evaluate the effectiveness of surgical treatment of patients with hypertrophic cardiomyopathy.

Material and methods. This literature review was carried out in accordance with the PRISM statement. The databases searched in this review included Pubmed, Web of Science, Scopus, and Cochrane for systematic reviews.

Conclusion. The diagnosis of HCMP is based mainly on echocardiographic variables including the dynamic parameters of LV, LVOT the distribution of increased muscle thickness, the mechanism and severity of MR as well as the degree of diastolic dysfunction.

Keywords
HCMP, echocardiography, left ventricle.
Hypertrophic cardiomyopathy is a common hereditary cardiovascular disease occurring in one out of 500 people in the whole population [1-3]. It is caused by more than 1400 mutations in 11 or more genes [4-8] encoding cardiac sarcomere proteins. Although hypertrophic cardiomyopathy is the most common cause of sudden death in young people (including trained athletes) [9, 10] and can lead to functional disability, determining the degree and localization of left ventricular hypertrophy, and anatomical abnormalities of the mitral valve and papillary muscles.

Pathophysiology in HCMP

HCMP is defined as an abnormal thickening of the LV without expansion of the chamber, which is usually asymmetric, develops in the absence of an identifiable cause (for example, aortic valve stenosis, hypertension) and is associated with a violation of myocardial fibers [11, 12]. The main structural anomalies underlying HCMP are [1] disorder of myocardial cells when the cells are in an unorganized state, in contrast to the normal parallel arrangement of myocytes; [2] dysfunction of the coronary microcirculatory bed due to an increase in the wall/lumen ratio; and [3] remodeling changes [13, 14]. In intramiocardial arterioles <80 microns, studies have shown a 2-fold increase in the wall/lumen ratio; and [3] remodeling changes due to myocardial ischemia, ongoing myocardial damage and fibrosis. Moreover, these changes are not limited to the areas of LVH and myocardial remodeling, which occur as a compensatory mechanism and may include changes in myocardies, fibroblasts and interstitials. These changes develop over many years before symptoms appear. Disorganized pattern of myocytes, increased wall/lumen ratio of coronary arteries and remodeling changes in patients with HCMP lead to impaired coronary reserve, diastolic dysfunction, supraventricular and ventricular rhythm disturbances, and sudden death. LV remodeling may include fibrosis, diffuse, asymmetric, focal or concentric hypertrophy, as well as a decrease in the size of the cavity [15, 16]. Obstruction of the excretory tract of the left ventricle occurs with HCMP, and it was initially thought that basal septum hypertrophy invading the LVOT caused the obstruction. However, later studies have shown that during ventricular systole, the flow against the incorrectly positioned mitral valve apparatus (MV) leads to the appearance of resistance forces.
Hypertrophic Cardiomyopathy.

LITERATURE REVIEW

on part of the valves, which are then pushed into LVOT [17-21] anomalies of the MK apparatus may include displacement of papillary muscles in front, hypertrophied papillary muscles in contact with the septum, elongated mitral flaps or abnormal insertion of the papillary muscle into the anterior mitral flap [18, 21, 22].

The enlargement of the left ventricle may be accelerated or aggravated by a decrease in the final diastolic volume or systemic arterial resistance or an increase in contractility or heart rate [23].

Modern classification of diseases:

Idiopathic hypertrophic subaortic stenosis.

Asymmetric hypertrophy of the septum without changes from the aortic and mitral valves, without obstruction of the LV exit tract.

Apical HCMP with restriction of the hypertrophy zone to the apical region. Symmetrical HCMP with concentric LV myocardial hypertrophy.

The last 3 forms are rare and are not accompanied by the development of obstruction of the LV outflow tract.

Classification of the New York Heart Association’s HCMP:

• I degree - pressure gradient not higher than 25 mm Hg.
• II degree - pressure gradient from 25 to 36 mm Hg.
• III degree - pressure gradient from 36 to 44 mm Hg.
• IV degree - pressure gradient 45 mm Hg.

Classification by degree of hypertrophy:

* moderate - the thickness of hypertrophy is 15-20 mm;
* average - hypertrophy thickness of 21-25 mm;
* pronounced - the thickness of hypertrophy is more than 25 mm.

Nonspecific Electrocardiogram changes associated with hypertrophic cardiomyopathy

- Hypertrophy of the left ventricle (S-shaped wave in V1 ≥35 mm; R-shaped wave in V5 >35 mm)
- Left axis deviation/left front hemiblock
- Intraventricular conduction delay (QRS >0.12 ms)
- Enlargement of the left atrium (wide toothed wave P in lead II; deeply inverted wave P in V1)
- Pathological Q-waves
- Poor progression of the R wave in precordial leads
- Supraventricular arrhythmias (most often atrial fibrillation)
- Full block of package branches
- ST segment depression
- Inverted T-waves in ≥2 consecutive leads

Echocardiographic focus in hypertrophic cardiomyopathy

1. The presence of hypertrophy and its distribution; report measurements of the size of the left ventricle, wall thickness (septum, posterior, maximum)
2. Left ventricular ejection fraction
3. Pancreatic hypertrophy and the presence of dynamic pancreatic obstruction
4. The volume of the left ventricle, indexed by body surface area
5. Diastolic function of the left ventricle (pressure of relaxation and filling)
6. Systolic pressure in the pulmonary artery
7. Dynamic obstruction at rest and with Valsalva, the place of obstruction and the slope
8. Evaluation of the mitral valve and apparatus, details of mitral regurgitation (i.e. mechanism, severity);

Surgical technique: In this article we will carefully focus on the technique: transaortic myoectomy. An attempt at a basal septum myectomy using transaortic access was originally described by Morrow in 1961 [25-31], but it was first performed in 1968 and subsequently described by Kleeland in 1963 [32-37]. The initial report described a limited myectomy without a specific anatomical resection. The technique of formal basal myectomy was later published in 1975. Initially, this method involved excision of a rectangular segment of the septum myocardium under the flap of the right coronary aortic valve which extended apically to the
HYPERTROPHIC CARDIOMYOPATHY. LITERATURE REVIEW

point of contact of the septum of the anterior flap of the mitral valve. This point is usually delimited by a fibrous scar which develops a second time due to the constant contact of the valve leaf with the septum myocardium during systole. The total myocardial sample excised during Morrow's myectomy is approximately 3-4 cm long, 1 cm wide and 1.5 cm deep [27]. More recently the standard transaortic procedure has turned into an extended septal myectomy. This procedure creates a longer myocardial excision and opens the LVOT more apically than the Morrow procedure. Following the initiation of artificial circulation (CPB), the exposure of the left ventricle is achieved by an oblique aortotomy performed through the midpoint of the non-coronary sinus of the aorta and ending about 1 cm above the aortic ring. Polypropylene seams remain or not. The Ross retractor keeps the aorta open, and the suction tip for cardiotomy is used to retract and protect the anterior flap of the mitral valve. Depending on the surgeon’s preferences, scalpel No. 10 or 11 is used to cut the septum, starting directly under the nadir of the right aortic valve leaf and directed to the left, to the anterior flap of the mitral valve, removing the basal part of the hypertrophied septum. The incision in this area is carefully marked, because a tissue rupture further to the right of the midpoint of the right valve leaf will increase the risk of damage to the membranous septum and disruption of the conductive tissue, thereby significantly increasing the likelihood of complete heart block. Then, starting again from the area of the initial incision, the area of the cut-out septum is lengthened to the apex of the heart, making sure that the excision is performed outside the endocardial fibrous scar and in the apical trabeculations. The completed myectomy extends from the subaortic level, about 5 mm below the aortic ring, to the level of the middle ventricle, opposite the base of the anterior papillary muscle of the mitral valve, with a total length of about 7 cm.

Figure 2. Comparison of the classic Morrow procedure (A) with the modification of the extended septal myectomy (B). The resection of the septum wall expands to the top, to the free wall on the left side of the image, and then to the right, as indicated by the white arrows. The dotted lines in the basal septum represent the bundles of the left bundle emanating from the membranous septum.

Figure 3. (a) Extended thymectomy of the basal septum using supravalvular aortotomy. (b) The surgeon’s view through the aortotomy, determining the hypertrophied septum directly below the right coronary aortic valve leaf.
Conclusion. The diagnosis of HCMP is based mainly on echocardiographic variables including the dynamic parameters of LV, LVOT the distribution of increased muscle thickness, the mechanism and severity of MR as well as the degree of diastolic dysfunction. Current indications for surgical intervention include patients with symptoms that are immune to drug therapy who can tolerate the risk of surgical intervention and patients with pronounced outflow gradients, even if they are asymptomatic.

Despite the ambiguity the mechanism underlying the improvement of symptoms, LV condition and long-term survival after myectomy is at least partially due to LV regression. It is extremely important for cardiac surgeons to understand the mechanisms of this disease in order to best manage these patients in perioperative conditions. It is very important to diagnose these HCMP patients in time, provide the necessary therapy and hospitalization for surgical treatment.

References

1. Vulpian A. Contribution à l’étude des rétrécissements de l’orifice ventriculo-aortique. Arch Physio 1868;3:220–2
2. Brock R. Functional obstruction of the left ventricle (acquired aortic subvalvular stenosis). Guys Hosp Rep 1957 1957;106
3. Teare D. Asymmetrical hypertrophy of the heart in young adults. Br Heart J 1958;20:1–8
4. Hollman A, Goodwin JF, Teare D, Renwick JW. A family with obstructive cardiomyopathy (asymmetrical hypertrophy). Br Heart J 1960;22:449–56
5. Towbin JA. Hypertrophic cardiomyopathy. Pacing Clin Electrophysiol 2009;32 Suppl 2:S23–31
6. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW; American College of Cardiology Foundation/ American Heart Association Task Force on Practice Guidelines; American Association for Thoracic Surgery; American Society of Echocardiography; American Society of Nuclear Cardiology; Heart Failure Society of America; Heart Rhythm Society; Society for Cardiovascular Angiography and Interventions; Society of Thoracic Surgeons. 2011 ACCF/ AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2011;124:2761–96
7. Kirklin JW, Ellis FH Jr. Surgical relief of diffuse subvalvular aortic stenosis. Circulation 1961;24:739–42
8. Morrow AG, Brockenbrough EC. Surgical treatment of idiopathic hypertrophic subaortic stenosis: technic and hemodynamic results of subaortic ventriculotomy. Ann Surg 1961;154:181–9
9. Cleland WP. The surgical management of obstructive cardiomyopathy. J Cardiovasc Surg (Torino) 1963;4:489–91
10. Maron BJ, McKenna WJ, Danielson GK, Kappenberger LJ, Kuhn HJ, Seidman CE, Shah PM, Spencer WH 3rd, Spirito P, Ten Cate FJ, Wigle ED; Task Force on Clinical Expert Consensus Documents. American College of Cardiology; Committee for Practice Guidelines. European Society of Cardiology. American College of Cardiology/ European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J Am Coll Cardiol 2003;42:1687–713
11. Wigle ED, Rakowski H, Kimball BP, Williams WG. Hypertrophic cardiomyopathy. Clinical spectrum and treatment. Circulation 1995;92:1680–92
12. Wigle ED. Cardiomyopathy: The diagnosis of hypertrophic cardiomyopathy. Heart 2001;86:709–14
13. Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet 2013;381:242–55
14. Song PS, Seol SH, Kim DI, Jang JS. Apical aneurysm in a patient with hypertrophic cardiomyopathy and midventricular obstruction. Intern Med 2013;52:1653–5
15. Ho CY. New paradigms in hypertrophic cardiomyopathy: insights from genetics. Prog Pediatr Cardiol 2011;31:93–8
16. Poliac LC, Barron ME, Maron BJ. Hypertrophic cardiomyopathy. Anesthesiology 2006;104:183–92
17. Camici PG, Olivotto I, Rimoldi OE. The coronary circulation and blood flow in left ventricular hypertrophy. J Mol Cell Cardiol 2012;52:857–64
18. Mathew JP, Swaminathan M, Ayoub CM. Clinical Manual and Review of Transesophageal Echocardiography. 2nd ed. New York: McGraw-Hill, 2010.
19. Wigle ED, Sasson Z, Henderson MA, Ruddy TD, Fulop J, Rakowski H, Williams WG. Hypertrophic cardiomyopathy. The importance of the site and the extent of hypertrophy. A review. Prog Cardiovasc Dis 1985;28:1–83
20. Shah PM, Taylor RD, Wong M. Abnormal mitral valve coaptation in hypertrophic obstructive cardiomyopathy: proposed role in systolic anterior motion of mitral valve. Am J Cardiol 1981;48:258–62
21. Sherrid MV, Gunsburg DZ, Moldenhauer S, Pearle G. Systolic anterior motion begins at low left ventricular outflow tract velocity in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 2000;36:1344–54
22. Maron BJ, Nishimura RA, Danielson GK. Pitfalls in clinical recognition and a novel operative approach for hypertrophic cardiomyopathy with severe outflow obstruction due to anomalous papillary muscle. Circulation 1998;98:2505–8
23. Hreybe H, Zahid M, Sonel A, Good CB, Shaver J, Saba S. Noncardiac surgery and the risk of death and other cardiovascular events in patients with hypertrophic cardiomyopathy. Clin Cardiol 2006;29:65–8
24. Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA Guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2011; 58: e212–60.
25. Houston BA and Stevens GR. Hypertrophic cardiomyopathy: a review. Clin Med Insights Cardiol 2014; 8(Suppl 1): 53–65.
26. Semsarian C, Ingles J, Maron MS and Maron BJ. Reply: what is the true prevalence of hypertrophic cardiomyopathy? J Am Coll Cardiol 2015; 66: 1846–1847.
27. Hensley N, Dietrich J, Nyhan D, Mitter N, Yee MS and Brady M. Hypertrophic cardiomyopathy: a review. Anesth Analg 2015; 120: 554–569.
28. Williams LK and Rakowski H. Surgical myectomy for hypertrophic obstructive cardiomyopathy: the cut that heals. Circulation 2013; 128: 193–197.
29. Balaram SK, Sherrid MV, Derose JJ Jr, Hillel Z, Winson G and Swistel DG. Beyond extended myectomy for hypertrophic cardiomyopathy: the resection-plication-release (RPR) repair. Ann Thorac Surg 2005; 80: 217–223.
30. Reis RL, Bolton MR, King JF, Pugh DM, Dunn MI and Mason DT. Anterior-superior displacement of papillary muscles producing obstruction and mitral regurgitation in idiopathic hypertrophic subaortic stenosis. Operative relief by posterior-superior realignment of papillary muscles following ventricular septal myectomy. Circulation 1974; 50(Suppl II): 181–188.
31. Klues HG, Roberts WC and Maron BJ. Anomalous insertion of papillary muscle directly into anterior mitral leaflet in hypertrophic cardiomyopathy. Significance in producing left ventricular outflow obstruction. Circulation 1991; 84: 1188–1197.
32. Li Q, Gruner C, Chan RH, et al. Genotype-positive status in patients with hypertrophic cardiomyopathy is associated with higher rates of heart failure events. Circ Cardiovasc Genet 2014; 7: 416–422.
33. Gersh BJ and Nishimura RA. Management of symptomatic hypertrophic cardiomyopathy: pills, alcohol, or the scalpel? Rev Esp Cardiol (Engl Ed) 2014; 67: 341–344.
34. Dearani JA, Ommen SR, Gersh BJ, Schaff HV and Danielson GK. Surgery insight: septal myectomy for obstructive hypertrophic cardiomyopathy—the Mayo Clinic experience. Nat Clin Pract Cardiovasc Med 2007; 4: 503–512.
35. Morrow AG and Brockenbrough EC. Surgical treatment of idiopathic hypertrophic subaortic stenosis: technic and hemodynamic results of subaortic ventriculotomy. Ann Surg 1961; 154: 181–189.
36. Cleland WP. The surgical management of obstructive cardiomyopathy. J Cardiovasc Surg (Torino) 1963; 4: 489–491.
37. Cleland WP. The surgical management of obstructive cardiomyopathy. Proc R Soc Med 1964; 57: 446–448. 15. Schaff HV, Brown ML, Dearani JA, et al. Apical myectomy: a new surgical technique for management of severely symptomatic patients with apical hypertrophic cardiomyopathy. J Thorac Cardiovasc Surg 2010; 139: 634–640.
38. Morrow AG and Braunwald E. Functional aortic stenosis: a malformation characterized by resistance to left ventricular outflow without anatomic obstruction. Circulation 1959; 20: 181–189.