Some complexity measures in confined isotropic harmonic oscillator

Neetik Mukherjee and Amlan K. Roy

Department of Chemical Sciences
Indian Institute of Science Education and Research (IISER) Kolkata,
Mohanpur-741246, Nadia, WB, India

Abstract

Various well-known statistical measures like L´opez-Ruiz, Mancini, Calbet (LMC) and Fisher-Shannon complexity have been explored for confined isotropic harmonic oscillator (CHO) in composite position \(r \) and momentum \(p \) spaces. To get a deeper insight about CHO, a more generalized form of these quantities with Rényi entropy \(R \) is invoked here. The importance of scaling parameter in the exponential part is also investigated. \(R \) is estimated considering order of entropic moments \(\alpha, \beta \) as \(\left(\frac{2}{3}, 3 \right) \) in \(r \) and \(p \) spaces respectively. Explicit results of these measures with respect to variation of confinement radius \(r_c \) is provided systematically for first eight energy states, namely, \(1s, 1p, 1d, 2s, 1f, 2p, 1g \) and \(2d \). Detailed analysis of these complexity measures provides many hitherto unreported interesting features.

PACS: 03.65-w, 03.65Ca, 03.65Ta, 03.65.Ge, 03.67-a.

Keywords: LMC complexity, Fisher-Shannon complexity, Rényi entropy, Shannon entropy, Confined isotropic harmonic oscillator.

*Corresponding author. Email: akroy@iiserkol.ac.in, akroy6k@gmail.com.
I. INTRODUCTION

Quantum particles undergo dramatic changes in their chemical and physical properties under extreme pressure. Such situations may be achieved by shifting their spatial boundary from infinity to finite region [1]. The effect of boundary condition and boundary limit on various observable properties such as energy spectrum, transition frequency, transition probability, polarizability, chemical reactivity, ionization potential etc., were studied in considerable detail in last ten years [2, 3]. These systems have their comprehensive and potential application in nano-science and technology, condensed matter physics, semiconductor physics, quantum dot, quantum wells and quantum wires, etc [2, 3].

From the beginning of this century there has been a thriving interest in exploring statistical quantities namely, Fisher information (I), Onicescu energy (E), Shannon entropy (S) and Rényi entropy (R) as signifier of certain chemical, physical properties of a quantum system. In the same direction, complexity, another topical concept, is directly concerned to aforesaid measures and illustrates their combined effect. A global definition of complexity has not yet been possible. But it may be treated as a demonstrator of pattern, structure or correlation related with the distribution function in a given system. It depends on the scale of inspection, and comprises an important area of investigation with contemporary interest in chaotic systems, spatial patterns, language, multi-electronic systems, molecular or DNA analysis, social science, astrophysics and cosmology [4–7] etc.

A quantum harmonic oscillator is a complex system; circumscribing its oscillation within an impenetrable region makes it even more impressive according to a complex world [8, 9]. Complexity, in a system, is introduced by disrupting certain rules of symmetry. A system possesses finite complexity when it is either in a state having less than some maximal order or not at a state of equilibrium. In a nutshell, it vanishes at two limiting cases, viz., when a system is (i) completely ordered (maximum distance from equilibrium) or (ii) at equilibrium (maximum disorder) [9]. Overall it provides a characteristic idea of distribution in a system and is deliberated as a general descriptor of structure and correlation. In literature several definitions are available; some of them are Shiner, Davidson, Landsberg (SDL) [10–12], López-Ruiz, Mancini, Calbet (LMC) shape (C_{LMC}) [13–16], Fisher-Shannon (C_{1S}) [17–19], Cramér-Rao [19–21] or Generalized Rényi-like complexity [22–25], generalized relative complexity measures [26] etc.
Without any loss of generality, the statistical measure of complexity, may be defined as a product of ordered and disordered parameters in the following form,

\[C_{LMC} = H.D, \]

(1)

where \(H \) represents the information content and \(D \) narrates an idea of concentration of spatial distribution. For a normalized continuous distribution \(p(r) \) these two quantities were expressed in the form \(H = -k \int p(r) \log p(r) \, dr \) (\(k \) is a positive constant) and \(D = \int p^2(r) \, dr \). But, this definition of \(C_{LMC} \) was criticized due to its inability to satisfy necessary conditions such as reaching minimal values for both extremely ordered and disordered limits, invariance under scaling, translation and replication. Therefore, this model was modified, giving rise to the expression,

\[C_{LMC} = D.e^S. \]

(2)

Here, \(S \) quantifies the information of a given system and has the mathematical form \(-\int p(r) \log p(r) \, dr \). Principally \(C_{LMC} \) quantifies the interaction between intrinsic information hidden in a system, and measure of a probabilistic distribution amongst its observed parts. It has potential application in several fields like detection of periodic, quasi-periodic, linear stochastic, chaotic dynamics and in quantum phase transition.

In information theory \(E \) measures information content of a system. It sets off to minimum at equilibrium. Hence \(E \) signifies a descriptor of order. Whereas information entropies like \(S, R \), become maximum at equilibrium, thereby implying disorder. Complexity quantifies the extent of countervail between order and disorder. In many instances, \(E \) is replaced by \(I \). So far in the literature \(S \) has been primarily used as disorder parameter. \(C_{IS} \) is another measure, attained by changing the pre-exponential global factor in \(C_{LMC} \) by a local factor like \(I \). It unites global and local characters while conserving the characteristics of complexity. Effectiveness of \(C_{IS} \) can be reviewed by looking at numerous literature available for both free and confined atomic systems, including atomic shell structure, ionization process etc. Recently a more generalized version was also designed that uses \(R \) in place of \(S \), in \(C_{LMC} \) and \(C_{IS} \). Later, a scaling factor (\(b \)) was invoked in exponential part.

About a decade ago, both \(C_{LMC} \) and \(C_{IS} \) were explored in the context of Bohr-like states of free isotropic harmonic oscillator (IHO) in \(r, p \) spaces. However, in confined environment LMC complexity has been investigated only for ground state of some model.
systems, like, CHO, confined h-atom, particle in spherical box and confined Helium atom \[36, 37\]. Very recently, the present authors have pursued similar calculations for confined hydrogen atom \[38\] and found that, parameter b plays a key role in interpreting the property of a system. In this endeavor, our objective is to explore four different types of complexity emerging out of two order (I, E) and two disorder (S, R) parameters, in conjugate spaces, as functions of confinement radius (r_c). We take into account two b values available in literature \[9\], and these are ($2/3$ for C_{IS}, 1 for C_{LMC}). All calculations were carried out using exact wave functions of CHO in r space. The p-space wave function is computed by applying numerical Fourier transform of r-space counterpart. In the end, representative calculation are done for eight low-lying states viz., $1s$, $1p$, $1d$, $2s$, $1f$, $2p$, $1g$ and $2d$. Presentation of the article is as follows. Section II gives a brief outline of the theoretical method used; Sec. III presents a thorough discussion on our results, while we conclude with a few remarks in Sec. IV.

II. METHODOLOGY

The time-independent, non-relativistic wave function for a CHO system, in r space can be written as,

$$
\Psi_{n,l,m}(r) = \psi_{n,l}(r) Y_{l,m}(\Omega),
$$

with r and Ω representing radial distance and solid angle successively. Here $\psi_{n,l}(r)$ denote the radial part and $Y_{l,m}(\Omega)$ identifies spherical harmonics. The latter has following common form in both r and p spaces (P^m_l denotes usual associated Legendre polynomial),

$$
Y_{l,m}(\Omega) = \Theta_{l,m}(\theta) \Phi_m(\phi) = (-1)^m \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P^m_l(\cos \theta) e^{-im\phi}.
$$

The relevant radial Schrödinger equation under the influence of confinement is,

$$
\left[-\frac{1}{2} \frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + v(r) + v_c(r)\right] \psi_{n,l}(r) = \mathcal{E}_{n,l} \psi_{n,l}(r),
$$

where $v(r) = \frac{1}{2} \omega^2 r^2$ and ω is the oscillator frequency. Our required confinement effect is induced by invoking the following form of potential: $v_c(r) = +\infty$ for $r > r_c$, and 0 for $r \leq r_c$, where r_c denotes radius of confinement.

Exact generalized radial wave function for a CHO is mathematically expressed as \[39\],

$$
\psi_{n,r,l}(r) = N_{n,r,l} r^l \frac{1}{\Gamma}\left[1 + \frac{3}{2} - \frac{\mathcal{E}_{n,r,l}}{\omega}, (l + \frac{3}{2}), \omega r^2\right] e^{-\frac{\omega}{2} r^2}.
$$
Here, \(N_{n,l} \) represents normalization constant and \(E_{n,l} \) corresponds to the energy of a given state distinguished by quantum numbers \(n, l \), whereas \({}_1F_1 [a, b, r] \) represents confluent hypergeometric function. Allowed energies are obtained by applying the boundary condition \(\psi_{n,l}(0) = \psi_{n,l}(r_c) = 0 \) (except for \(l = 0 \) states, only \(\psi_{n,l}(r_c) = 0 \)). In this work, generalized pseudospectral (GPS) method was employed to calculate \(E_{n,l} \) of these states. This method has provided very accurate results for various model and real systems including atoms, molecules, some of which could be found in the references [40–42]. This is very well documented and therefore omitted here.

The \(p \)-space wave function is obtained from Fourier transform of \(r \)-space counterpart,

\[
\psi_{n,l}(p) = \frac{1}{(2\pi)^{3/2}} \int_{0}^{r_c} \int_{0}^{\pi} \int_{0}^{2\pi} \psi_{n,l}(r) \Theta(\theta) \Phi(\phi) \ e^{ipr \cos \theta} r^2 \sin \theta \ dr \, d\theta \, d\phi
\]

\[
= \frac{1}{2\pi} \sqrt{\frac{2l+1}{2}} \int_{0}^{r_c} \int_{0}^{\pi} \psi_{n,l}(r) \ P_l^\theta(\cos \theta) \ e^{ipr \cos \theta} r^2 \sin \theta \ dr \, d\theta. \tag{7}
\]

Here \(\psi(p) \) is not normalized and needs to be normalized. Integrating over \(\theta \) and \(\phi \) yields,

\[
\psi_{n,l}(p) = (-i)^l \int_{0}^{r_c} \frac{\psi_{n,l}(r)}{p} f(r, p) \, dr. \tag{8}
\]

\(f(r, p) \) depends only on \(l \) quantum number. It can be expressed in terms of \(\cos \) and \(\sin \) series. More details about \(f(r, p) \) could be found in [43].

The normalized position and momentum electron densities are expressed as,

\[
\rho(r) = |\psi_{n,l,m}(r)|^2, \quad \Pi(p) = |\psi_{n,l,m}(p)|^2. \tag{9}
\]

Without any loss of generality, let us express complexity in a generalized mathematical form as \(C = Ae^{bR} \). The order \((A) \) and disorder parameters \((B) \) may comprise of \((E, I) \) and \((R, S) \) respectively. With this in mind, we are interested in the following four quantities,

\[
C_{ER} = E e^{bR}, \quad C_{IR} = I e^{bR}, \quad C_{ES} = E e^{bS}, \quad C_{IS} = I e^{bS}. \tag{10}
\]

Shannon entropy of a continuous density distribution is written as (‘t’ stands for total),

\[
S_r = - \int_{R^3} \rho(r) \, \ln[\rho(r)] \, dr; \quad S_p = - \int_{R^3} \Pi(p) \, \ln[\Pi(p)] \, dp; \quad S_t = S_r + S_p. \tag{11}
\]

Similarly, Rényi entropy of order \(\alpha \neq 1 \) is obtained by taking logarithm of \(\alpha \) and \(\beta \)-order entropic moments in respective spaces [9],

\[
R_r^\alpha = \frac{1}{1 - \alpha} \ln \left(\int_{R^3} \rho^\alpha(r) dr \right); \quad R_p^\beta = \frac{1}{1 - \beta} \ln \left[\int_{R^3} \Pi^\beta(p) dp \right]; \quad R_t = R_r^\alpha + R_p^\beta. \tag{12}
\]
FIG. 1: Variation of $C^{(1)}_{E_rS_r}$, $C^{(1)}_{EpSp}$ (bottom row A) and $C^{(2)}_{E_rS_r}$, $C^{(2)}_{EpSp}$ (top row B) in CHO with r_c for $1s, 1p, 1d, 2s, 1f, 2p, 1g, 2d$ states. See text for details.

where,

$$\frac{1}{\alpha} + \frac{1}{\beta} = 2$$

I_r, I_p for a particle in a central potential may be expressed as [44],

$$I_r = 4\langle p^2 \rangle - 2(2l + 1)|m|\langle r^{-2} \rangle; \quad I_p = 4\langle r^2 \rangle - 2(2l + 1)|m|\langle p^{-2} \rangle; \quad I_t = I_rI_p. \quad (13)$$

Finally, E is given by the following expressions in conjugate space [9],

$$E_r = \int_{R^3} \rho^2(r)dr; \quad E_p = \int_{R^3} \Pi^2(p)d\rho; \quad E_t = E_rE_p. \quad (14)$$
III. RESULT AND DISCUSSION

At the onset it is convenient to point out a few points about this report. The net information measures in conjugate r and p space may be separated into radial and angular segments. In a given space, the results provided correspond to net measures including the angular contributions. One can transform the IHO to a CHO by pressing the radial boundary of former from infinity to a finite region. This change in radial environment does not affect the angular boundary conditions. Therefore, angular part of the information measures in unconfined and confined systems remain unaltered in both spaces. Further as we are solely focused in radial confinement, this will also not influence the characteristics of a given measure as one changes r_c. Throughout this report, magnetic quantum number m remains fixed to 0. All the discussed measures of Eq. (10) have been explored with change of r_c, choosing two different and widely used values of b ($1, \frac{2}{3}$). Note that, for $b = 1$, $C^{(2)}_{ES}$ modifies to C_{LMC}; similarly $C^{(1)}_{IS}$ coincides with C_{IS} at $b = \frac{2}{3}$. In order to simplify the discussion, a few words may be devoted to the notation followed. A uniform symbol $C^b_{\text{order}_s,\text{disorder}_s}$ is used; where the two subscripts refer to two order (E, I) and disorder (S, R).
FIG. 2: Changes in $C_{E_{r}R_{r}}^{(1)}$, $C_{E_{p}R_{p}}^{(1)}$ (bottom row A) and $C_{E_{r}R_{r}}^{(2)}$, $C_{E_{p}R_{p}}^{(2)}$ (top row B) in CHO with r_c for 1s, 1p, 1d, 2s, 1f, 2p, 1g, 2d states. For more details, see text.

parameters. Another subscript s is used to specify the space; viz., r, p or t (total). Two scaling parameters $b = \frac{2}{3}, 1$ are identified with superscripts (1), (2). These measures are offered systematically for 1s, 1p, 1d, 2s, 1f, 2p, 1g and 2d states in conjugate spaces, with r_c varying in the range of 0.1-8.0 a.u. Also it is important to point out that, here levels are denoted by $n_r + 1$ and l values [45]. Therefore, as an example, $n_r = 0, l = 1$ signify 1p state, and n_r relates to n as $n = 2n_r + l$.

At first, in the bottom row (panels A(a)-A(b)) of Fig. 1, $C_{E_{r}S_{r}}^{(1)}$, $C_{E_{p}S_{p}}^{(1)}$ are plotted against r_c for all the eight states. Similarly, plots for $C_{E_{r}S_{r}}^{(2)}$, $C_{E_{p}S_{p}}^{(2)}$ are shown in panels B(a) and B(b) respectively. The lower panels clearly suggest that, $C_{E_{r}S_{r}}^{(1)}$ decreases and $C_{E_{p}S_{p}}^{(1)}$ increases
TABLE II: $C^{(1)}_{ErSr}$, $C^{(1)}_{EpSp}$ and $C^{(1)}_{EtSt}$ for $1s$, $2s$, $1p$, $1d$ states in CHO at various r_c.

r_c	$C^{(1)}_{ErSr}$	$C^{(1)}_{EpSp}$	$C^{(1)}_{EtSt}$	$C^{(1)}_{ErSr}$	$C^{(1)}_{EpSp}$	$C^{(1)}_{EtSt}$
	$1s$	$2s$	$1p$	$1d$	$1p$	$1d$
0.1	12.011965	0.01401	0.16830	25.481700	0.00761	0.19405
0.2	6.0060777	0.02802	0.16830	17.70487	0.01523	0.19415
0.5	2.4038079	0.07004	0.16830	5.0962894	0.03810	0.19417
0.8	1.5073076	0.11199	0.16838	3.1849974	0.06091	0.19401
1.0	1.2153170	0.34549	0.24173	0.8597424	0.23246	0.19985
2.5	0.6661575	0.31636	0.21074	0.8599102013	0.2324933318	0.1999233878
5.0	0.6339254	0.31520	0.2471393275	0.5985573	0.2723045747	0.1630076305
7.0	0.7153219525	0.345938391	0.2471393275	0.5989102013	0.2324933318	0.1999233878

with rise of r_c before reaching a threshold corresponding to the IHO. The decrease of $C^{(1)}_{ErSr}$ with r_c points to its inclination towards equilibrium. Next, panel A(a) reveals that at a fixed l, $C^{(1)}_{ErSr}$ progresses with n. Conversely, at a particular n, it reduces with growth of l. But panel A(b) does not imprint such patterns for $C^{(1)}_{EpSp}$. Panel A(c) in Figure S1 of Supplementary Material (SM) presents that $C^{(1)}_{EtSt}$ enhances with advancement of r_c. Now, panels B(a), B(b) delineate the variation of $C^{(2)}_{ErSr}$, $C^{(2)}_{EpSp}$ with change of r_c. One sees that, $C^{(2)}_{ErSr}$ advances with growth of r_c indicating that this is more prone towards order. On the other hand, at first $C^{(2)}_{EpSp}$ decreases with r_c, attains a minimum and finally coalesces to IHO. The ordering of $C^{(2)}_{ErSr}$ regarding n, l quantum numbers is akin to $C^{(1)}_{ErSr}$. It is noticed that, after a certain $r_c (>3)$, both $C^{(2)}_{ErSr}$, $C^{(2)}_{EpSp}$ show analogous nature (increase to reach their respective limiting value). Panel B(c) in Fig. S1 in SM portrays the increase of $C^{(2)}_{EtSt}$ with r_c. By comparing these two sets of complexity measure, namely $C^{(1)}_{ES}$ (in A(a)-A(c)) and $C^{(2)}_{ES}$ (in B(a)-B(c)), it is evident that, $C^{(1)}_{ErSr}$ and $C^{(1)}_{EpSp}$ complement each other better (as former decreases and later increases with r_c) than the other set. Hence, we have presented $C^{(1)}_{ErSr}$, $C^{(1)}_{EpSp}$ and $C^{(1)}_{EtSt}$ at some selected r_c values in Table I, for $1s$, $2s$, $1p$, $1d$. While for $2p$, $2d$, $1f$, $1g$ states these are produced in Table S1 of SM. These data consolidate the
FIG. 3: Variation of $C_{1pS}^{(1)}$, $C_{1pS}^{(2)}$ (bottom row A) $C_{1pS}^{(2)}$, $C_{1pS}^{(2)}$ (top row B) in CHO with r_c for $1s, 1p, 1d, 2s, 1f, 2p, 1g, 2d$ states. Consult text for more details.

inference drawn from Figs. 1 and S1. We also see that when CHO approaches to IHO, $C_{E_rS_r}^{(1)}$ becomes equal to $C_{E_pS_p}^{(1)}$. None of these results could be directly compared with literature data, as no such works have been published before, to the best of our knowledge.

Similarly, bottom row of Fig. 2 interprets the behavior of $C_{E_rR_r}^{(1)}$, $C_{E_pR_p}^{(1)}$ with r_c for the same states of Fig. 1. Panel A(a) reveals that, $C_{E_rR_r}^{(1)}$ diminishes with growth of r_c, then attains a minimum and finally converges to respective IHO result. This minimum gets flatter with progress of both n, l. Here also $C_{E_rR_r}^{(1)}$ shows analogous trend to what is noticed for $C_{E_rS_r}^{(1)}$, viz., (i) at a fixed n, both measures in r-space decline with growth of l (ii) at a particular l, they accelerate with n (iii) like $C_{E_rS_r}^{(1)}$, $C_{E_rR_r}^{(1)}$ is more inclined towards
disorder. From panel A(b) it is also vivid that, like C_{ErSr}, C_{EpSp} progress with growth of r_c. Additionally, at a definite l, C_{EpRp} falls off with n. At a given n, it also reduces as l advances. The relevant total measures are displayed in panel A(c) of Fig. S2 of SM, where prominent minima are seen for s states. As usual, C_{ErRr} finally merge to IHO case. Panels B(a), B(b) in top row of Fig. 2 exhibit variations of C_{ErRr}, C_{EpRr} with r_c. At smaller r_c region ($\lesssim 3$), they both change very slowly. At around $r_c = 3$, C_{ErRr} jumps and C_{EpRp} drops to reach the IHO limit. For both C_{ErRr} and C_{EpRr} absolute values of the slope of the curve enhance as n grows (fixed l) and decrease with growth of l (fixed n). The dependence of C_{ErRr} on n, l is similar to C_{ErSr}. Panel B(c) of Fig. S2 in SM imprints the alteration of C_{ErRr} with r_c varying from 0-8. Once again one may conclude that, out of C_{ErSr} and C_{ErRr}, the former offers a more clearer knowledge about CHO, which justifies the quantities produced in Table II, namely, C_{ErSr}, C_{EpRr} and C_{ErRr}. These are given for 1s, 1p, 2s, 1d states at eight suitably chosen r_c, whereas Table S2 reports the same for 2p, 1f, 2d, 1g states. These results support the conclusions drawn from Figs. 2 and S2. Moreover it is also apparent that, there appears a minimum in C_{ErSr} for all states. Similar to previous table, in this case also no literature values could be quoted. Additionally, C_{EpRr} shows more lucid trend than

r_c	$C_{ErSr}^{(2)}$	$C_{EpSp}^{(2)}$	$C_{ErRr}^{(2)}$	$C_{ErSr}^{(1)}$	$C_{EpSp}^{(1)}$	$C_{ErRr}^{(1)}$
	1s	2s				
0.1	7.758205	4303.15991	33384.80018	25.056165	29216.5721	732055.2573
0.2	15.516171	2151.56736	33355.18588	50.112519	14608.3337	732269.9114
0.5	38.766040	860.42282	33191.90621	125.300544	5844.1079	807267.8370
0.8	61.804468	537.04703	32919.50741	200.655774	3655.3318	735485.4165
1.0	76.791106	428.68905	32919.50741	251.188685	2928.0196	735485.4165
2.5	145.231258	167.01717	24256.11393	663.377452	1216.9057	807267.8370
5.0	149.733084	149.73309	22419.99774	888.731009	888.9964	790078.7475
7.0	149.733087619267	149.73308721	22419.9974802	888.738383	888.7381	789855.7135

	1p	1d				
0.1	13.589616	10065.70616	136789.08528	23.086162	21178.15365	488922.29249
0.2	27.179055	5032.83116	136789.08528	46.172182	10589.04165	488919.15916
0.5	67.929622	2012.77692	136727.17589	115.415992	4235.04577	488792.00959
0.8	108.523492	1256.72638	136384.33569	184.533851	2644.87901	488609.71221
1.0	135.307764	1003.69056	135807.12614	230.387985	2113.17739	486850.68272
2.5	293.849512	382.32570	112346.22278	535.937973	802.82774	430265.07166
5.0	327.026856	327.03676	106945.52430	653.074539	653.04527	426487.24482
7.0	327.027007440	327.0270080	106946.6637782	653.07279415428	653.072792	426509.932617

TABLE III: $C_{ErSr}^{(2)}$, $C_{EpSp}^{(2)}$ and $C_{ErRr}^{(2)}$ for 1s, 2s, 1p, 1d states in CHO at various r_c.
FIG. 4: Plots of $C_{I_r R_r}^{(1)}$, $C_{I_p R_p}^{(1)}$ (bottom row A) and $C_{I_r R_r}^{(2)}$, $C_{I_p R_p}^{(2)}$ (top row B) in CHO with r_c for 1s, 1p, 1d, 2s, 1f, 2p, 1g, 2d states. For further details, see text.

$C_{E_p S_p}$ with respect to dependence of quantum numbers n, l. Hence, in practice $C_{ER}^{(1)}$ may possibly be considered a better measure of complexity than $C_{ES}^{(1)}$.

In Fig. 3, lower $\{A(a), A(b)\}$ and upper $\{B(a), B(b)\}$ panels depict the alteration of $\{C_{I_r R_r}^{(1)}, C_{I_p S_p}^{(1)}\}$ and $\{C_{I_r R_r}^{(2)}, C_{I_p S_p}^{(2)}\}$ with rise in r_c for all the states mentioned above. Nature of variation of $\{C_{I_r S_r}^{(1)}, C_{I_p S_p}^{(1)}\}$ with r_c changes from state to state. From lower panels it is gathered that, at a fixed n, both $C_{I_r S_r}^{(1)}$ and $C_{I_p S_p}^{(1)}$ elevate with l. Similarly from panel A(c) in Fig. S3 of SM one can infer that, at a certain n, $C_{I_r S_r}^{(1)}$ increases with growth of l. On the other hand, the top panels B(a) and B(b) portray that, for these states $C_{I_r R_r}^{(2)}$ and $C_{I_p R_p}^{(2)}$ progress and regress with growth in r_c and finally approach to respective IHO values. Like
the previous cases, panel B(c) in Fig. S3 shows the plot of $C_{1s}^{(2)}$ versus r_c. From panels \{B(a), B(b)\} one observes that, at a particular n both $C_{1s}^{(2)}$, $C_{1p}^{(2)}$ increase with advancement in l. Also, at a certain l, they enhance with improvement of n. A careful study of Figs. 3 and S3 express that, in case of CHO, \{$C_{1s}^{(2)}, C_{1p}^{(2)}, C_{1t}^{(2)}\}$ offer more transparent pattern than \{$C_{1s}^{(1)}, C_{1p}^{(1)}, C_{1t}^{(1)}\}$. So, in order to get a quantitative idea, \{$C_{1s}^{(2)}, C_{1p}^{(2)}, C_{1t}^{(2)}\}$ values at eight different r_c’s are provided in Tables III (1s, 1p, 2s, 1d) and S3 (2p, 2d, 1f, 1g). Again no results are available in literature.

Finally, in Fig. 4 the bottom (A(a),A(b)) and top (B(a)-B(b)) panels provide the behavioral pattern in our last complexity measure, \textit{viz.}, $C_{1s}^{(1)}, C_{1p}^{(1)}, C_{1t}^{(1)}$. $C_{1s}^{(1)}$, $C_{1t}^{(1)}$ progresses slowly with r_c to attain the IHO values. At a suitable n this quantity advances with l. In a parallel manner, at a constant l, $C_{1s}^{(1)}$ accumulates with n. Besides this, panel A(b) shows that, for circular states (1s, 1p, 1d, 1f, 1g) $C_{1p}^{(1)}$ diminishes with progression in r_c. But for states having one radial node (2s, 2p, 2d) there appears a maximum in $C_{1p}^{(1)}$. This maximum gets right shifted with increase in l. Now, panel A(c) of Fig. S4 implies that, the dependence of $C_{1t}^{(1)}$ on r_c changes state-wise. Panels B(a), B(b) promptly portray that, $C_{1s}^{(2)}, C_{1p}^{(2)}, C_{1t}^{(2)}$, accelerate and

r_c	$C_{1s}^{(2)}$	$C_{1p}^{(2)}$	$C_{1t}^{(2)}$	$C_{1s}^{(2)}$	$C_{1p}^{(2)}$	$C_{1t}^{(2)}$
	l_1	l_2	l_3	l_1	l_2	l_3
0.1	9.433173	23.562577	22.22698694	36.667294	19837.6528	727393.0643
0.2	18.866136	1178.12662	22226.69794	73.334753	9918.7949	727392.3819
0.5	47.144086	471.21450	22214.97745	183.353252	3967.0032	727364.0186
0.8	75.237916	294.38160	22148.65828	293.516420	2477.4726	727178.9180
1.0	93.643707	235.33582	22037.71925	367.211476	1979.1660	726772.4766
2.5	196.075111	93.44035	18321.32860	939.702768	589.5390	553991.4457
5.0	226.884302	76.15910	17279.30538	1360.44154	191.4695	260483.1381
7.0	226.88661187	76.1582577	17279.28906	1360.840385	191.307601	260358.110977

Again no results are available in literature.
decelerate respectively with growth of \(r_c \). Further, at a fixed \(n \), both \(C_{I_tR_t}^{(2)} \), \(C_{I_pR_p}^{(2)} \) enhance with emergence of \(l \). Finally, panel B(c) of Fig. S4 in SM displays the trend of \(C_{I,tR_t}^{(2)} \) with improvement of \(r_c \). A closer investigation of Figs. 4 and S4 conveys that, \(C_{I_tR_t}^{(2)} \), \(C_{I_pR_p}^{(2)} \), \(C_{I_tR_t}^{(2)} \) characterizes CHO better than \(C_{I_tR_t}^{(1)} \), \(C_{I_pR_p}^{(1)} \), \(C_{I_tR_t}^{(1)} \). Thus, former three measures are given in Tables IV and S4, at some appropriately chosen \(r_c \) for which no direct comparison could be made. It is hoped that, this study would be useful in future and inspires further work.

IV. FUTURE AND OUTLOOK

Four different complexity measures namely \(C_{ES} \), \(C_{IS} \), \(C_{ER} \), \(C_{IR} \) are investigated for some low-lying states of CHO in composite \(r \) and \(p \) spaces, keeping \(m \) fixed at zero. We have performed the calculations using a global quantity \((E) \) and a local quantity \((I) \). Both these may be used as measure of order in a system. All these results are reported here for the first time. Sensitivity of such measures depends on the nature of the particular quantum system under investigation. It is found that, \(C_{ES}^{(1)} \), \(C_{ER}^{(1)} \) offer more explicit explanation than \(C_{ES}^{(2)} \), \(C_{ER}^{(2)} \) about a given system. On the other side, \(C_{IS}^{(2)} \), \(C_{IR}^{(2)} \) infer the behavior of CHO more efficiently compared to \(C_{IS}^{(1)} \), \(C_{IR}^{(1)} \). Hence, considering the nature of complexity measures, it is worthwhile to determine the appropriate value of \(b \). Accurate results for \(C_{ES}^{(1)}, C_{ER}^{(1)}, C_{IS}^{(1)}, C_{IR}^{(1)} \) are provided for first eight states of CHO. Further, an investigation of all these quantities in the realm of Rydberg states under different kinds of soft confined environment may be worthwhile pursuing.

V. ACKNOWLEDGEMENT

Financial support from DST SERB, New Delhi, India (sanction order: EMR/2014/000838) is gratefully acknowledged. NM thanks DST SERB, New Delhi, India, for a National-post-doctoral fellowship (sanction order: PDF/2016/000014/CS).

[1] A. Michels, J. de Boer and A. Bijl, Physica 4, 981 (1937).
[2] J. R. Sabin, E. Brändas and S. A. Cruz (Eds.), *The Theory of Confined Quantum Systems*, Parts I and II, Advances in Quantum Chemistry, Vols. 57 and 58 (Academic Press, Cambridge, Massachusetts, 2009).

[3] K. D. Sen (Ed.), *Electronic Structure of Quantum Confined Atoms and Molecules*, (Springer, Switzerland, 2014).

[4] O. A. Rosso, M. T. Martin and A. Plastino, Physica A **320**, 497 (2003).

[5] C. R. Shalizi, K. L. Shalizi and R. Haslinger, Phys. Rev. Lett. **93**, 118701 (2004).

[6] K. Ch. Chatzisavvas, Ch. C. Moustakidis and C. P. Panos, J. Chem. Phys. **123**, 174111 (2005).

[7] P. A. Bouvier, J. C. Angulo and J. S. Dehesa, Physica A **390**, 2215 (2011).

[8] N. Goldenfeld and L. P. Kadanoff, Science **284**, 87 (1999).

[9] K. D. Sen (Ed.), *Statistical Complexity: Applications in Electronic Structure*, (Springer, Berlin, Germany, 2012).

[10] P. T. Landsberg, Phys. Lett. A **102**, 171 (1984).

[11] P. T. Landsberg and J. S. Shiner, Phys. Lett. A **245**, 228 (1998).

[12] J. S. Shiner, M. Davison and P. T. Landsberg, Phys. Rev. E **59**, 1459 (1999).

[13] R. López-Ruiz, H. L. Mancini and X. Calbet, Phys. Lett. A **209**, 321 (1995).

[14] C. Anteneodo and A. R. Plastino, Phys. Lett. A **223**, 348 (1996).

[15] R. G. Catalán, J. Garay and R. López-Ruiz, Phys. Rev. E **66**, 011102 (2002).

[16] J. R. Sánchez and R. López-Ruiz, Physica A **355**, 633 (2005).

[17] E. Romera and J. S. Dehesa, J. Chem. Phys. **120**, 8906 (2004).

[18] K. D. Sen, J. Antolín and J. C. Angulo, Phys. Rev. A **76**, 032502 (2007).

[19] J. C. Angulo, J. Antolín and K. D. Sen, Phys. Lett. A **372**, 670 (2008).

[20] J. S. Dehesa, P. Sánchez-Moreno and R. J. Yáñez, J. Comput. Appl. Math. **186**, 523 (2006).

[21] J. Antolín and J. C. Angulo, Int. J. Quant. Chem. **109**, 586 (2009).

[22] X. Calbet, R. López-Ruiz, Phys. Rev. E **63**, 066116 (2001).

[23] M. T. Martin, A. Plastino and A. O. Rosso, Physica A **369**, 439 (2006).

[24] E. Romera and Á. Nagy, Phys. Lett. A **372**, 6823 (2008).

[25] R. López-Ruiz, Á. Nagy, E. Romera and J. Sañudo, J. Math. Phys. **50**, 123528 (2009).

[26] E. Romera, K. D. Sen and Á. Nagy, J. Stat. Mech. **2011**, P09016 (2011).

[27] D. P. Feldman and J. P. Crutchfield, Phys. Lett. A **238**, 244 (1998).

[28] R. López-Ruiz, Biophys. Chem. **115**, 215 (2005).
[29] T. Yamano, J. Math. Phys. 45, 1974 (2004).

[30] T. Yamano, Physica A 340, 131 (2004).

[31] Á. Nagy and E. Romera, Physica A 391, 3650 (2012).

[32] E. Romera, M. Calixto and Á. Nagy, J. Mol. Model. 20, 2237 (2014).

[33] J. C. Angulo and J. Antolín, J. Chem. Phys. 128, 164109 (2008).

[34] J. B. Szabó, K. D. Sen and Á. Nagy, Phys. Lett. A 372, 2428 (2008).

[35] J. Sañudo and R. López-Ruiz, J. Phys. A 41, 265303 (2008).

[36] Á. Nagy, K. D. Sen and H. E. Montgomery Jr., Phys. Lett. A 373, 2552 (2009).

[37] E. Romera, R. López-Ruiz, J. Sañudo and Á. Nagy, Int. Rev. Phys. 3, 207 (2009).

[38] S. Majumdar, N. Mukherjee and A. K. Roy, Chem. Phys. Lett. 687, 322, (2017).

[39] H. E. Montgomery Jr., N. A. Aquino and K. D. Sen, Int. J. Quant. Chem. 107, 798 (2007).

[40] A. K. Roy, J. Phys. G 30, 269 (2004).

[41] K. D. Sen and A. K. Roy, Phys. Lett. A 357, 112 (2006).

[42] A. K. Roy, Int. J. Quant. Chem. 115, 937 (2015); ibid., 116, 953 (2016).

[43] N. Mukherjee and A. K. Roy, Int. J. Quant. Chem. e25596 (2018).

[44] E. Romera, P. Sánchez-Moreno and J. S. Dehesa, Chem. Phys. Lett. 414, 468, (2005).

[45] A. K. Roy, A. F. Jalbout and E. I. Proynov, Int. J. Quant. Chem. 108, 827 (2008).
Supplemental Materials: Various Complexity measures in confined isotropic harmonic oscillator.

r_c	$C_{E_r S_r}^{(1)}$	$C_{E_p S_p}^{(1)}$	$C_{E_t S_t}^{(1)}$	$C_{E_r S_r}^{(1)}$	$C_{E_p S_p}^{(1)}$	$C_{E_t S_t}^{(1)}$
0.1	17.254949	0.01082	0.01082	13.123129	0.01427	0.18738
0.2	8.6274798	0.02167	0.02167	6.5615707	0.02855	0.18738
0.5	3.4510731	0.05417	0.05417	2.6247241	0.07139	0.18738
0.8	2.1572081	0.08663	0.08663	1.6407953	0.11417	0.18733
1.0	1.7261513	0.10817	0.10817	1.3131066	0.14261	0.18726
2.5	0.6957840	0.25900	0.25900	0.5416028	0.34020	0.18425
5.0	0.5147727	0.51412	0.51412	0.4457094	0.44582	0.19870
7.0	0.5147878061	0.5147737557	0.2649992523	0.445715446	0.445715446	0.1986622588
0.1	16.873312	0.01093	0.18443	13.851781	0.01323	0.18332
0.2	8.4366593	0.02186	0.18443	6.9258936	0.02646	0.18332
0.5	3.3747169	0.05466	0.18449	2.7704060	0.06617	0.18333
0.8	2.1093871	0.08742	0.18441	1.7316772	0.10584	0.18328
1.0	1.6877640	0.10920	0.18430	1.3855802	0.13222	0.18321
2.5	0.6790658	0.25869	0.17567	0.5629633	0.31866	0.17939
5.0	0.4658442	0.46532	0.21676	0.4323887	0.43266	0.18705
7.0	0.465898655	0.4658839758	0.2170548158	0.4324104301	0.4324104287	0.1869787794
FIG. S1: Variation of $C_{EtSt}^{(1)}$ (bottom panel) and $C_{EtSt}^{(2)}$ (top panel) in CHA with r_c, for 1s, 1p, 1d, 2s, 1f, 2p, 1g, 2d states. See text for details.

TABLE S2: $C_{EtRr}^{(1)}$, $C_{EpRp}^{(1)}$ and $C_{EtRr}^{(1)}$ for 2p, 1f, 2d, 1g states in CHA at various r_c.

r_c	$C_{EtRr}^{(1)}$	$C_{EpRp}^{(1)}$	$C_{EtRr}^{(1)}$	$C_{EtRr}^{(1)}$	$C_{EpRp}^{(1)}$	$C_{EtRr}^{(1)}$
0.1	21.962364	0.00750	0.16484	15.469104	0.00778	0.12044
0.2	10.981186	0.01501	0.16484	7.7345610	0.01557	0.12044
0.5	4.3925400	0.03754	0.16490	3.0939653	0.03839	0.12045
0.8	2.7455678	0.06066	0.16489	1.9342326	0.06228	0.12047
1.0	2.1967578	0.07505	0.16488	1.5480782	0.07784	0.12050
2.5	0.8799189	0.18327	0.16126	0.6434928	0.19071	0.12271
5.0	0.6848110	0.23658	0.16201	0.5730916	0.24199	0.13868
7.0	0.6852179489	0.236635087	0.1621466089	0.5732802278	0.2419896511	0.1387278823

	1f		2d		1g	
0.1	21.252468	0.00653	0.13879	16.403268	0.00670	0.11001
0.2	10.626237	0.01306	0.13880	8.2016383	0.01341	0.11001
0.5	4.2505334	0.03265	0.13880	3.2807273	0.03333	0.11001
0.8	2.6568022	0.05224	0.13881	2.0507122	0.05364	0.11001
1.0	2.1257180	0.06531	0.13883	1.6409239	0.06705	0.11002
2.5	0.8533617	0.16032	0.13681	0.6693462	0.16545	0.11074
5.0	0.6135813	0.21513	0.13200	0.5534133	0.21974	0.12160
7.0	0.6145939107	0.2152218204	0.1322740202	0.5538899983	0.219725423	0.1217021186
FIG. S2: Variation of $C_{E_1 R_t}^{(1)}$ (bottom panel) and $C_{E_1 R_t}^{(2)}$ (top panel) in CHA with r_c, for 1s, 1p, 1d, 2s, 1f, 2p, 1g, 2d states. See text for details.

TABLE S3: $C_{I_r S_r}^{(2)}$, $C_{I_p S_p}^{(2)}$ and $C_{I_1 S_t}^{(2)}$ for 2p, 1f, 2d, 1g states in CHA at various r_c.

r_c	$C_{I_r S_r}^{(2)}$	$C_{I_p S_p}^{(2)}$	$C_{I_1 S_t}^{(2)}$	$C_{I_r S_r}^{(2)}$	$C_{I_p S_p}^{(2)}$	$C_{I_1 S_t}^{(2)}$
0.1	30.829956	34610.5200	1067040.8207	34.277127	37301.84939	1278600.25861
0.2	61.659980	17305.3029	1067044.6459	68.554152	18650.87667	1278595.04195
0.5	154.156885	6922.8172	1067199.9473	171.374909	7459.57109	1278383.32131
0.8	246.714192	4329.2398	1068084.9095	274.104430	4659.46290	1277179.42905
1.0	308.526800	3466.7631	1069589.3417	342.427973	3723.82715	1275142.58518
2.5	787.931963	1469.5392	1157896.9377	825.488912	1420.15678	1172323.68189
5.0	1139.307518	1139.8799	1298673.8182	1102.110821	1101.94896	1214469.87865
7.0	1139.373375	1139.3700	1298167.8422	1102.13885453152	1102.138856	1214710.056286

r_c	$C_{I_r S_r}^{(2)}$	$C_{I_p S_p}^{(2)}$	$C_{I_1 S_t}^{(2)}$	$C_{I_r S_r}^{(2)}$	$C_{I_p S_p}^{(2)}$	$C_{I_1 S_t}^{(2)}$
0.1	45.282593	52555.6478	2379856.0599	46.765278	58691.74842	2744735.48228
0.2	90.565221	26277.8642	2379860.5853	93.530491	29345.80827	2744727.8639
0.5	256.146128	10511.8007	2380043.3842	233.819602	11173.33406	2744418.78877
0.8	362.297120	6572.2143	2381094.3330	374.050977	7332.31702	2742660.35412
1.0	452.937222	5260.9704	2382889.3444	467.435489	5861.09040	2739681.66713
2.5	1142.740818	2202.1192	2516451.5223	1148.845130	2247.53126	2582065.35261
5.0	1772.010616	1774.2077	3143915.0074	1671.965060	1671.30118	2794362.95082
7.0	1772.5172372	1772.54450	3141865.67995	1672.1632856887	1672.16328864	2796130.05894028
FIG. S3: Variation of $C_{Is}^{(1)}$ (bottom panel) and $C_{Is}^{(2)}$ (top panel) in CHA with r_c, for 1s, 1p, 1d, 2s, 1f, 2p, 1g, 2d states. See text for details.

r_c	$C_{Is}^{(2)}$, $C_{Ip}^{(2)}$, $C_{It}^{(2)}$ for 2p, 1f, 2d, 1g states in CHA at various r_c.	
0.1	44.271169, 19970.5174, 884118.1701	43.867820, 15021.73056, 658970.57651
0.2	88.542409, 3994.9328, 884330.7969	87.735537, 7510.86091, 658922.55152
0.5	221.363121, 4999.7145, 885512.5259	219.328424, 3004.27340, 658922.55152
0.8	354.245464, 885512.5259, 350.836023, 1877.41927, 658965.16766	
1.0	442.942959, 2003.6869, 887519.0282	438.337433, 1501.59674, 658920.6330
2.5	1120.574981, 874.6934, 1553727.7205	1208.910611, 596.06551, 637140.75398
5.0	1748.130191, 355.093236, 1553979.4627	1606.880150, 440.68957, 708135.3589
7.0	1749.712868, 355.093236, 1553979.4627	1606.880150, 440.68957, 708135.3589

TABLE S4: $C_{Is}^{(2)}$, $C_{Ip}^{(2)}$, $C_{It}^{(2)}$ for 2p, 1f, 2d, 1g states in CHA at various r_c. |
FIG. S4: Variation of $C_{Iz,Rz}^{(1)}$ (bottom panel) and $C_{Iz,Rz}^{(2)}$ (top panel) in CHA with r_c, for $1s, 1p, 1d, 2s, 1f, 2p, 1g, 2d$ states. See text for details.