Hydrocarbon Potentiality and Depositional Environment of Naokelekan Formation in Binari Serwan-1 Well, NE-Iraq Using Infrared Factors and Palynological Analysis Evidence

Rzger A. Abdula1,2, Maryam I. Abdulla1, Nabaz A. Salih3, Sazan A. Isa1, Hedayat Hashmi2
1Department of Petroleum Geosciences, Soran University, Soran, Kurdistan Region, Iraq
2Department of Petroleum Engineering and Mining, Tishk University, Erbil, Kurdistan Region, Iraq.
3Department of Chemistry, Soran University, Soran, Kurdistan Region, Iraq

DOI: http://dx.doi.org/10.25130/tjps.25.2020.030

ARTICLE INFO.
Article history:
-Received: 16 / 12 / 2019
-Accepted: 24 / 2 / 2020
-Available online: / / 2020

Keywords: Naokelekan, Palynology, Infrared spectrometry, kerogen, amorphous organic matter

Corresponding Author:
Name: Rzger A. Abdula
E-mail: rzger.abdulkarim@tiu.edu.iq
Tel:

ABSTRACT
The cuttings from the Jurassic Naokelekan Formation have been studied in the oil exploratory Binari-Serwan-1 Well in Dokan Town, Iraqi Kurdistan Region, NE Iraq. Both infrared spectrometry techniques and microscopic study were used for determining hydrocarbon generation potentiality. The prepared strewn slides have been studied under polarizing microscope. The Naokelekan Formation has revealed an excellent total organic carbon (TOC) wt. % content, ranging from 4.20 to 5.88 wt. %. The palynomorphs as well as phytoclasts are totally absent and only the amorphous organic matter (AOM) was identified. The concentrated kerogens of selected samples were analyzed by the Infrared Spectrometer. The results of these samples analysis show existence of kerogen types II and III, which coincides with the microscopic study. This organic matter is of gas and oil prone types. This study suggests that the sediments were deposited in a marine, suboxic to anoxic environment.

Introduction
The sediments of Jurassic Period in general and Middle Jurassic especially contain substantial source rock in Iraq. They encompass the high percentage of organic matter viz. Sargelu, Naokelekan, and Najmah formations [1, 2, 3, 4, 5]. The Naokelakan Formation was first described by Wetzel and Morton in 1950 [6] from the Imbricated Zone of northeastern Iraq, near Rowanduz Town. The Naokelakan Formation consists of dark, carbonaceous limestone, calcareous, fissile, black to brown shale, and thin-to medium dolomitic limestone. The thickness of the formation is approximately between 7 to 48 meters in Banik and RuKuchuk, respectively [6]. According to Buday [7], the Naokelekan Formation has been renamed Najmah Formation in the Mesopotamian wells in the middle and southern parts of Iraq.

In Iran and southeastern Turkey, the correlative units are Surmeh Formation of the east Zagros Mountain and the shaly horizons in the Cudi Group, respectively [8, 7]. In most of the Arabian countries, Tuwaq Mountain, Hanifa, Jubaila, and Najmah formations are equivalent formations for Naokoelakan Formation [7].

The Naokelekan Formation was deposited in an euxinic environment in a slow subsiding basin [7, 9]. On the contrary, Salae [10] decided that the formation was deposited in brackish lagoon. Balaky [11,12] studied the facies association of Naokelekan Formation in northeastern Iraq and recognized two lithofacies associations: subtidal and open marine. Kabeer [13] created a geological cross section traversing the northern limb of Gara anticline. Stratigraphy and geochemistry of Jurassic formations in Bank and Galy Derash sections, north Iraq were investigated by Al-Badry [14] and stated that depositional setting for Naokelekan Formation was salty swamps, marshes, and restricted tidal flat and lagoons.

The existence of Cyclagelosphaera deflandrei sp. and lotharingius sp. within the upper part of this formation signifies Callovian-Upper Oxfordian age [15].
The organic matter found in various inlayers of Naokelekan Formation belongs to types II and III kerogens [2]. Odisho and Othman [16] evaluated the source rock capability within the both well samples and outcrop samples of the Sargelu, Naokelekan, Chia Gara, and Sarmord formations in northern Iraq, over the Mosul block. They showed that the Sargelu, Naokelekan, and Chia Gara formations are source rocks despite the fact that with variable hydrocarbon capability. Al-Beyati, [17] used the infrared method with AOM classification on Chia Gara Formation and he agreed that the formation might represent a good source rock. The quality of organic matter of Naokelekan Formation is good and thermally matures[5].

Dunnington [18] assessed the petroleum system processes and lithofacies of Jurassic succession in northern Iraq and concluded that Jurassic units produced hydrocarbons that migrated upward. Outcomes from a basin modeling that performed by Pitman et al. [19] showed that oil was generated from Naokelekan Formation during Late Eocene to Oligocene.

The aim of this study is to interpret depositional environment, kerogen type, and hydrocarbon potentiality of the Naokelekan Formation using infrared factors and palynological analysis in the Binari-Serwan-1 Well. This well is located approximately 20 km east of Dokan Town (Fig. 1) in the High Folded Zone. The studied section lies on longitude 45º 14’ 35” E and latitude 35º 44’ 02” E.

![Map of the studied well, Binari Serwan-1, which is located in Dokan area, Sulaymaniyah Governorate.](image)

Methodology

The five samples from the Naokelekan Formation were collected from Erbil Geological Survey Storage in Erbil, Iraqi Kurdistan Region in October, 2015 (Table 1). The laboratory work performed at University of Sulaymaniyah and included the following actions:

The samples were grinded and sieved by nylon mesh 10µm. After that, 30 ml H₂O and 30 ml HCl were mixed in a glass beaker and next mixed with the 30 g of 2 mm of sieved samples. Then, they were left for a whole day. During the day the samples were shaken by a rod to speed the reaction. For five times the above reaction were repeated. When the reaction
finished in the following day, the samples were washed by water four times and left them for three hours each time.

Next step, the washed samples mixed with the 60 ml of HF in a plastic beaker until the silica bonds were dissolved. When the samples deposited, the HF were separated from the samples and washed them four times with water.

The samples mixed with 30 ml of HCl four times again and heated to remove the matter, which formed during mixing the samples with HF. Then the acid dispersed off and purified water added and left overnight. Samples were then washed several times with distilled water until being neutral. The residues are sieved with 10 μm nylon mesh. These residues were mounted by cellsize on cover slip and sticker on the slide by a small amount of mounting medium (Canada balsam).

The samples mixed with 30 ml of HCl four times again and heated to remove the matter, which formed during mixing the samples with HF. Then the acid dispersed off and purified water added and left overnight. Samples were then washed several times with distilled water until being neutral. The residues are sieved with 10 μm nylon mesh. These residues were mounted by cellsize on cover slip and sticker on the slide by a small amount of mounting medium (Canada balsam).

The prepared slides studied under transmitted light using microscope and the AOM kerogen was identified under reflected lights. The rock samples were analyzed by Infrared. The Infrared technique can be used to determine the kerogen type and maturity. It can offer a quantifiable ratio of bond types viz. aliphatic and aromatic bonds. The concentrated kergens of selected samples were analyzed by Infrared instrument (IR) at Department of Chemistry, University of Sulaymaniya. The pellets made through mixing with Potassium Bromide (KBr) and pressed under 20 Kb pressure. The IR Spectra were recorded on a Perkin-Elmer FT/IR spectrometer using KBr pellets (vmax in cm⁻¹). The intensity of important peaks at wave numbers such 1630 cm⁻¹, 1710 cm⁻¹, 2860 cm⁻¹, and 2930 cm⁻¹ have been measured.

Table 1: The studied samples number, depth of samples, and TOC for samples selected from the Naokelakan Formation at Binari Serwan-1 Well, Sulaymaniya Governorate, Kurdistan Region - Iraq.

Location	Formation	Sample No.	Depth (m)	TOC wt. %
Binari Serwan-1	Naokelakan	BS-12	840-843	4.38
Binari Serwan-1	Naokelakan	BS-13	843-846	4.52
Binari Serwan-1	Naokelakan	BS-14	846-849	1.23
Binari Serwan-1	Naokelakan	BS-15	1915-1918	5.01
Binari Serwan-1	Naokelakan	BS-23	1939-1942	5.88

The Naokelakan Formation occurs between 1916 and 1951 m and occurs again between 779 and 849 m. The repetition is due to existence of thrust fault [20].

Geological and structural setting

Iraq situated in the northeastern part of the Arabian Plate. Iraq divided into several tectonic zones include: (1) Geosyncline subdivision (Northern Thrust Zone, Zagros Thrust Zone, Imbricated Zone); (2) Unstable Shelf (High Folded Zone, Foot Hill Zone, Mesopotamian Zone); and (3) Stable Shelf (Block Faulted Zone).

The Mesozoic sequence of Iraq represents the sediments that belong to passive margin of the Arabian Plate [21]. This plate margin developed from rift to drift in the Permian- Triassic and Jurassic- Early Cretaceous, respectively. Later during Late Cretaceous- Early Tertiary was sutured [22].

The Naokelakan and Barsarin formations were deposited in the developed foreland basin during Late Jurassic at the edge of the Arabian Plate [23, 24]. The exposure of Jurassic formations can be seen as sequestered spots in several structures in the High Folded, Imbricated, and Thrust zones of Iraq.

In the studied well, Naokelakan Formation conformably occurs above Sargelu Formation and conformably also under Barsarin Formation (Fig. 2). The formation is 70 m thick and occurs between the 1916-1951 m under the surface. It occurs again between 779-849 m under the surface with the thickness of 35 m due to the existence of thrust fault.

The formation consists of laminated shaly limestone, dark grey or bluish limestones, extremely bituminous limestones, and dolomites with black bituminous shales.

Results and discussion

Total Organic Carbon

The TOC values were obtained from the Naokelakan Formation samples (Table 1) by weighting the remained amount of organic matter after mixing the samples with HCl and HF. The TOC values are different from lower, middle, and upper parts of the formation. At the lower part, the TOC is higher than the upper and middle part samples. The average TOC is 4.20 wt. % which is comparatively a moderate amount as this formation has 18.8 wt. % TOC in average in the well Ajeel-12 and 0.4 wt. % TOC in average in Barzinja locality [25].

Visual Kerogen

The prepared five strewn slides have been studied under polarizing microscope. The palynomorphs as well as phytoclasts are totally absent, and only the AOM kerogen was identified under polarizing lights. The amorphous organic matter is originated principally from marine organism viz. phytoplankton which has formless shape and quickly decomposed in oxic conditions [26].

According to Thompson and Dembicki [27], there are four diverse forms of amorphous organic matter based on texture: Type A is a dense with spotted connection or delicate polygonal; Type B is a very small, solid, stretch, ellipsoid, or smooth-edged distinct grains; Type C is clumps with gritty, fragmental or spherical textures; and Type D is tinny, platy, or quadrilateral particles.
Oil-prone organic matter is commonly encompassing types A and/or D individually or non-individually, while gas-prone organic matter comprises Type A and differs in quantities of Types B, C, and/or D. The classification of Thompson and Dembicki [27] was used for naming the type of kerogen for the studied samples. This classification has been used successfully in Kurdistan by many authors, such as Mohialdeen [28], Ranyayi [29], and Mohialdeen et al. [30].

The AOM within the studied samples were classified into three major types: a) small and elongated dark
grains less than 20 micron in diameter (Type B) and a small amount of very fine rectangular grains (Type D). Both types are dominant in samples BS-14 (Fig. 3C) and BS-15 (Fig. 3D); b) represents dark brown grains with large diameters (≈ 200 micron), which are mostly Type C, this type seen in (BS-13) sample (Fig. 3B); c) represents compact mass with spotted connection or delicate polygonal, which is mostly Type A. This type was seen in samples BS-12 (Fig. 3A) and BS-23 (Fig. 3E) [27].

The studied organic matter is mostly Type A and varies in quantities of types B, C and/or D depending on Thompson and Dembicki [27] classification. All the studied samples are grey under reflected light. Using the ternary diagram of Tyson [31] for classification of organic matter within sedimentary rocks, all the studied samples are located very close to the left lower corner of AOM (Fig. 4). This field (IX) is characterized by sediments that deposited in suboxic to anoxic marine environment. Thus, this part considered as highly oil prone organic matter.

Infrared Spectrometry

The infrared spectroscopy has been done for selected five samples from the rocks of Naokelekan Formation. The organic matter of Naokelekan Formation was investigated by FTIR for wave numbers ranging between (400–4000) Cm\(^{-1}\) (Figs. 5, 6, 7, 8, and 9). This technique depends on the relevant intensity of the absorption bands associated with aliphatic \(\text{CH}_2 \), \(\text{CH}_3 \) assemblages (active part of organic matter) and to polyaromatic nuclei (benzene) (inactive part of organic matter; therefore, kerogen type and maturity can be inferred. The information provided by this technique when utilized along supplementary data can offer a numerical measure of aliphatic and aromatic bonds in the range of: 1) 3100–2900 Cm\(^{-1}\) for \(\text{C–H} \) bonds; 2) 1800–1650 Cm\(^{-1}\) for \(\text{C=O} \) groups 3) 3600–3200 Cm\(^{-1}\) for \(\text{O–H} \) and \(\text{N–H} \) groups [32, 33, 34].

After comparison the spectrographs with those of Thompson and Dembicki [27], it is clear that the studied samples: BS-23 and BS-12 are belonging to Type C; samples BS-14 and BS-15 are belonging to Type B, which is totally gas prone; and sample BS-13 is belonging to Type A, which is oil prone.

The strength of discrete peaks at 2860 Cm\(^{-1}\) and 2930 Cm\(^{-1}\) (\(\text{CH}_2 \) and \(\text{CH}_3 \) aliphatic groups), at 1710 Cm\(^{-1}\) (Carboxyl and Carbonyl groups), and at 1630 Cm\(^{-1}\) (aromatic \(\text{C=C} \) bonds) on the spectrographs were determined to compute A and C Factors suggested by Ganz and Kalkreuth [35] (Table 2) and plotted on the A and C factors diagram (Fig. 10). The samples BS-13, BS-14, and BS-15 are Type II kerogen; however, samples BS-12 and BS-23 are containing Type III kerogen.

![Figure 3: Photomicrographs of Late Jurassic Naokelekan Formation depicting different types of organic matter (BS-12 (A), X100) sample, (BS-13 (B), X100) sample, (BS-14 (C), BS-15 (D), X100) samples, and (BS-23 (E), X100) sample, Binari Serwan-1 Well, Sulaymaniyah, Iraqi Kurdistan Region.](image-url)
Figure 4: Ternary diagram of amorphous organic matter (AOM) – phytoclast – palynomorphs. All the studied samples located in the lower left corner of the diagram, exactly on AOM corner due to high abundance of AOM. The diagram demonstrates that the upper Jurassic sediments were deposited in marine, suboxic-anoxic marine depositional setting (adapted from [31]).

Figure 5: The Infrared spectra (transmittance) for sample BS-12 (Type C). An IR spectrum’s X-axis represents the intensity of distinct peaks (1/cm) marked as “Wave number” and ranges between 400-4,000. The horizontal axis shows the absorption values. The Y-axis is marked as "Percent Transmittance" (T %) and sorts between 3.00 -35.70.
Figure 6: The Infrared spectra (transmittance) for sample BS-13 (Type A). An IR spectrum’s X-axis represents the intensity of distinct peaks (1/cm) marked as "Wave number" and ranges between 400 - 4,000. The horizontal axis shows the absorption values. The Y-axis is marked as "Percent Transmittance" (T %) and sorts between 1.90 -41.80.

Figure 7: The Infrared spectra (transmittance) for sample BS-14 (Type B). An IR spectrum’s X-axis represents the intensity of distinct peaks (1/cm) marked as "Wave number" and ranges between 400 - 4,000. The horizontal axis shows the absorption values. The Y-axis is marked as "Percent Transmittance" (T %) and sorts between 0.51 -5.77.

Figure 8: The Infrared spectra (transmittance) for sample BS-15 (Type B). An IR spectrum’s X-axis represents the intensity of distinct peaks (1/cm) marked as "Wave number" and ranges between 400 - 4,000. The horizontal axis shows the absorption values. The Y-axis is marked as "Percent Transmittance" (T %) and sorts between 8.20 -60.50.
Figure 9: The Infrared spectra (transmittance) for sample BS-23 (Type C). An IR spectrum’s X-axis represents the intensity of distinct peaks (1/cm) marked as "Wave number" and ranges between 400 - 4,000. The horizontal axis shows the absorption values. The Y-axis is marked as "Percent Transmittance" (T %) and sorts between -2.20 - 42.20.

Figure 10: The results of Infrared spectroscopy as plotted on the A-Factor versus C-Factor. The samples BS-12, BS-13, and BS-15 are containing Type II kerogen. The samples BS-14 and BS-23 are containing Type III kerogen [35].

Table 2: Sample number, range of Infrared spectra (transmittance), A and C factors.

Sample No.	2930 cm⁻¹	2860 cm⁻¹	1710 cm⁻¹	1630 cm⁻¹	A factor	C factor
BS-12	1.57	1.74	9.26	7.17	0.32	0.56
BS-13	8.65	9.80	27.17	21.00	0.47	0.56
BS-14	1.29	1.61	2.92	1.51	0.66	0.66
BS-15	23.35	25.87	31.83	38.47	0.56	0.45
BS-23	2.79	2.94	13.92	12.26	0.32	0.53

A Factor = 2860 cm⁻¹ + 2930 cm⁻¹ / 2860 cm⁻¹ + 2930 cm⁻¹ + 1630 cm⁻¹
C Factor = 1710 cm⁻¹ / 1710 cm⁻¹ + 1630 cm⁻¹ [35].

Conclusions
The results of the studied samples from Late Jurassic Naokelekan Formation in well Binari Serwan-1 indicated the following points:

- The samples BS-12, BS-13, BS-15, and BS-23 contain high TOC percentage (considered as excellent), while the sample BS-14 contains moderate TOC percentage (considered as good). Therefore, The Naokelekan Formation can be considered a potential source rock.
- The organic matter is totally amorphous with no indication to any palynomorphs and phytoclasts.
- The microscopic study data indicate the presence of kerogen types II and III. This was confirmed also by the study of prepared pellets by Infrared Spectrometer shows the presence of kerogen type II within the samples BS-13, BS-14, and BS-15, while samples BS-12 and BS-23 are kerogen type III.
- This study suggests that the sediments were deposited in a marine, suboxic to anoxic environment.
Acknowledgments

Many thanks are to the Ministry of Natural Resources in Erbil for providing samples in Binari-Serwan-I Well. We would like to recognize the Department of Chemistry, Sulaymaniya University for analyzing samples by Infrared Spectrometry. Special thanks to Dr. Ibrahim Mohialdeen and Ms. Razawa Sarraj from Geology Department, Sulaymaniya University, and Nahida Mohammed Azo from Soran University for their technical help.

Norwegian Oil and Gas Operator (DNO), Erbil, Kurdistan Region, Iraq.

References

[1] Al-Omari, F.S. and Sadiq, A., (1977). Geology of northern Iraq. Mosul University Press, Mosul, Iraq, 1986p.
[2] Othman, R.S., (1990). Generation, migration, and maturation of the hydrocarbons, Northern Iraq (Upper Jurassic-Lower Cretaceous). M.Sc. thesis (unpublished), University of Salahaddin, 208p.
[3] Jassim, S.Z. and Al-Gailani, M., (2006). Hydrocarbons, chapter 18.In: Jassim, S.Z. and Goff, J.C. (eds.), Geology of Iraq. First edition, Baghdad and Moravian Museum, Brno, Czech Republic, pp. 232–250.
[4] Ahmed, Sh.M., (2007). Source rock evaluation of Naokelekan and Barsarin Formations (Upper Jurassic), Kurdistan Region/N. Iraq. M.Sc. thesis(unpublished), University of Sulayamniah, 228p.
[5] Al-Ameri, T.K. and Zumberge, J., (2012). Middle and Upper Jurassic hydrocarbon potential of the Zagros Fold Belt, North Iraq. Marine and Petroleum Geology, 36(1), pp. 13–34.
[6] Bellen, R.C. Dunnington, van, H.V., Wetzel, R., and Morton, D.M., (1959). Lexique stratigraphic international. Paris, Vol. III, Asie, Fascicule 10a Iraq, 333p.
[7] Buday, T., (1980). The regional geology of Iraq, Vol. 1, stratigraphy and paleogeography. Dar Al-Kutub Publishing House, University of Mosul, Mosul, Iraq, 445p.
[8] Altinli, I.E., (1966). Geology of eastern and southeastern Anatolia, Turkey. Bulletin of Mineral Research Exploration Institute of Turkey, Foreign Edition, Ankara, 60, pp. 35–76.
[9] Al-Sayyab, A., Al-Ansari, N., Al-Rawi, D., Al-Jassim, J., Al-Omari, F., and Al-Shaikh, Z., (1982). Geology of Iraq. Mosul University Press, Mosul, Iraq, 280p.
[10] Salae, A.T.S. (2001). Stratigraphy and sedimentology of the Upper Jurassic succession, northern Iraq. Master’s thesis (unpublished), Science College, University of Baghdad, Baghdad, Iraq, 95p.
[11] Balaky, S.M., (2008). Facies associations and depositional environments of Naokelekan Formation (late Jurassic), Northeastern Iraq—Kurdistan region. Zanko, the scientific journal of pure and applied sciences, pp. 167–180.
[12] Balaky, S.M.H., (2015). Sequence stratigraphic analyses of Naokelekan Formation (Late Jurassic), Barsarin area, Kurdistan region—northeast Iraq. Arabian Journal of Geosciences, 8(8), pp. 5869–5878.
[13] Kabeer, A., 2019, Pers. Com., Geological cross section traversing the northern limb of Gara anticline.
Optical characteristics of amorphous kerogens and the hydrocarbon generating potential of source rocks. International Journal of Coal Geology, 6, pp. 229–249.

Source rock appraisal and oil/source rock correlation for the Chia Gara Formation, Kurdistan, N Iraq. Ph.D. dissertation (unpublished), University of Sulaymaniyah, 140p.

Source rock evaluation of lower Tertiary Formations in northeast Iraq. Master's thesis (unpublished), Science College, University of Sulaymaniyah, Iraq, 171p.

Geochemical and petrographic characterization of Late Jurassic – Early Cretaceous Chia Gara Formation in Northern Iraq: Palaeoenvironment and oil generation potential. Marine and Petroleum Geology, 43, pp. 166–177.

[30] Mohialdeen, I.M.J., Hakimi, M.H. and Al-Beyati, F.M., (2013). Geochemical and petrographic characterization of Late Jurassic – Early Cretaceous Chia Gara Formation in Northern Iraq: Palaeoenvironment and oil generation potential. Marine and Petroleum Geology, 43, pp. 166–177.

[31] Tyson, R.V., (1995). Sedimentary organic matter: Organic facies and palynofacies. Chapman and Hall, London, 615p.

[32] Farmer, V.C., (1974). The Infrared Spectra of Minerals. Mineralogical Society. London, 527p.

[33] Gionis, V., Kacandes, G., Kastritis, I., and Chryssikosi, G., (2006). Palynostratigraphy exhibits low amounts of etrahedral substitution on the structure of palygorskite by mid-and near-infrared spectroscopy. American Mineralogist, 91, pp. 1125–1133.

[34] Myriam, M., Suarez, M., and Martin-Pozas, J.M., (1998). Structural and textural modifications of palygorskite and sepiolite under acid treatment. Clays and Clay Minerals, 46(3), pp. 225–231.

[35] Ganz, H. and Kalkreuth, W., (1987). Application of infrared spectroscopy to the classification of kerogen-types and the evaluation of source rock and oil shale potentials. Fuel, 66(5), pp. 708–711.

[27] Thompson, C.L. and Dembicki, H., (1986). Optical characteristics of amorphous kerogens and the hydrocarbon generating potential of source rocks. International Journal of Coal Geology, 6, pp. 229–249.

[28] Mohialdeen, I.M.J., (2008). Source rock appraisal and oil/source rock correlation for the Chia Gara Formation, Kurdistan, N Iraq. Ph.D. dissertation (unpublished), University of Sulaymaniyah, 140p.

[29] Ranyayi, K.S.M., (2009). Source rock evaluation of lower Tertiary Formations in northeast Iraq. Master's thesis (unpublished), Science College, University of Sulaymaniyah, Iraq, 171p.

[30] Mohialdeen, I.M.J., Hakimi, M.H. and Al-Beyati, F.M., (2013). Geochemical and petrographic characterization of Late Jurassic – Early Cretaceous Chia Gara Formation in Northern Iraq: Palaeoenvironment and oil generation potential. Marine and Petroleum Geology, 43, pp. 166–177.

[31] Tyson, R.V., (1995). Sedimentary organic matter: Organic facies and palynofacies. Chapman and Hall, London, 615p.

[32] Farmer, V.C., (1974). The Infrared Spectra of Minerals. Mineralogical Society. London, 527p.

[33] Gionis, V., Kacandes, G., Kastritis, I., and Chryssikosi, G., (2006). Palynostratigraphy exhibits low amounts of etrahedral substitution on the structure of palygorskite by mid-and near-infrared spectroscopy. American Mineralogist, 91, pp. 1125–1133.

[34] Myriam, M., Suarez, M., and Martin-Pozas, J.M., (1998). Structural and textural modifications of palygorskite and sepiolite under acid treatment. Clays and Clay Minerals, 46(3), pp. 225–231.

[35] Ganz, H. and Kalkreuth, W., (1987). Application of infrared spectroscopy to the classification of kerogen-types and the evaluation of source rock and oil shale potentials. Fuel, 66(5), pp. 708–711.

البيئة الترسبية لتكون ناوكيلكان في بئر بناري سيروان 1، شمال شرق العراق باستخدام كل من تقنيات الطيف بالأشعة تحت الحمراء وتحليل التحليل بالراديوم

زهار عبد الكريم عبد الله1، نزيه عبد الحليم صالح3، سازان عارف عيسى1، هديا محمد1

قسم علم الارض البترولية، جامعة سوران، اربيل، العراق

قسم الهندسة النفط والمناجم، جامعة تيشك، اربيل، العراق

قسم الكيمياء، جامعة سوران، اربيل، العراق

المختصر

تمت دراسة صخور ناوكيلكان الجوراسي ضمن الين الاسبكتشي بئر سيروان 1 في مدينة دوكان، كوردستان العراق. واستخدمت كل من تقنيات الطيف بالأشعة تحت الحمراء ودراسة المجهرية لتحديد إمكانات توليد البترول. يحتوي ناوكيلكان على نسبة مماثلة من إجمالي حمولة الكربون العضوي، والتي تتراوح من 4.2 إلى 5.88% بالوزن. تم تحليل المادة العضوية المحتجزة للمادة تحت المجهر المستقبلي، الأشكال الباليولوبيجية وكذلك الخلايا النباتية السميكة، ثم تحديد الكيروجين عديم الشكل فقط. ثم تحليل المادة العضوية المحتجزة للمادة عن طريق استخدام جهاز تحليل الحاسوب. تظهر نتائج هذه الدراسة نوعية من الكيروجين الثاني والثالث، والذي يتميز مع نتائج الدراسة المجهرية. هذه المادة العضوية معروفة في نوع المكون للغاز والنفط. ترتبط صخور ناوكيلكان في بيئة بحرية سامة، حيث يظهر نماذج عديمة الإخبارية.

الإكسنجين.