INVITED REVIEW

Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state

Katarzyna Patrycja Dzik1 · Jan Jacek Kaczor1

Received: 9 December 2018 / Accepted: 13 February 2019 / Published online: 4 March 2019
© The Author(s) 2019

Abstract

Purpose This review provides a current perspective on the mechanism of vitamin D on skeletal muscle function with the emphasis on oxidative stress, muscle anabolic state and muscle energy metabolism. It focuses on several aspects related to cellular and molecular physiology such as VDR as the trigger point of vitamin D action, oxidative stress as a consequence of vitamin D deficiency.

Method The interaction between vitamin D deficiency and mitochondrial function as well as skeletal muscle atrophy signalling pathways have been studied and clarified in the last years. To the best of our knowledge, we summarize key knowledge and knowledge gaps regarding the mechanism(s) of action of vitamin D in skeletal muscle.

Result Vitamin D deficiency is associated with oxidative stress in skeletal muscle that influences the mitochondrial function and affects the development of skeletal muscle atrophy. Namely, vitamin D deficiency decreases oxygen consumption rate and induces disruption of mitochondrial function. These deleterious consequences on muscle may be associated through the vitamin D receptor (VDR) action. Moreover, vitamin D deficiency may contribute to the development of muscle atrophy. The possible signalling pathway triggering the expression of Atrogin-1 involves Src-ERK1/2-Akt-FOXO causing protein degradation.

Conclusion Based on the current knowledge we propose that vitamin D deficiency results from the loss of VDR function and it could be partly responsible for the development of neurodegenerative diseases in human beings.

Keywords Vitamin D · Skeletal muscle · Vitamin D receptor · Mitochondria · Muscle atrophy

Abbreviations

Akt Serine/threonine-specific protein kinase
Cu/ZnSOD Copper/zinc-dependent dismutase
CS Citrate synthase
CYP24A1 Cytochrome P450 family 24 subfamily A member 1
CYP27B1 25-hydroxyvitamin D-1-α-hydroxylase
ERK 1/2 Extracellular signal-regulated kinases 1 and 2
FOXO1 Forkhead box protein O1
FOXO3 Forkhead box protein O3
GPx Glutathione peroxidase
GR Glucocorticoid receptor
IGF-1 Insulin-like growth factor 1
LBP Low back pain
MaFbx Muscle atrophy F-box protein
MAPK Mitogen-activated protein kinases
MnSOD Manganese-dependent superoxide dismutase
mTOR Mammalian target of rapamycin kinase
MuRF1 Muscle ring finger protein
OCR Oxygen consumption rate
PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
PTH Parathyroid hormone
PLIF Posterior lumbar interbody fusion
ROS Reactive oxygen species
RXR Retinoid X receptor
Src Steroid receptor coactivator complex
VDBP Vitamin D binding protein
VDR Vitamin D receptor
VDRE Vitamin D response elements

Communicated by Michael Lindinger.

* Jan Jacek Kaczor
jacek.kaczor@awf.gda.pl

1 Department of Neurobiology of Muscle, Gdansk University of Physical Education and Sport, Kazimierza Gorkiego 1, 80-336 Gdansk, Poland
Introduction

The last decade brought a tremendous number of studies on vitamin D function in human body. In fact, those studies have begun in 1822 when the Polish physician Dr. Jedrzej Sniadecki discovered that the lack of sunlight exposure directly contributes to the onset of rickets (Mozolowski 1939). Later, in 1918 Sir Edward Mellanby showed that nutritional intervention with cod liver oil may replace sunlight in the cure and prevention of rickets (Mellanby 1918). Next, Dr. Elmer McCollum et al. officially termed this nutritional factor as vitamin D (McCollum et al. 1922). The discovery of vitamin D receptor (VDR) (Haussler et al. 1969), and confirming its presence in various tissues has opened the mechanistic link between vitamin D and the occurrence of many diseases and disorders such as: obesity, a chronic, low-grade inflammatory state which aids in the pathogenesis of insulin resistance, metabolic syndrome, and type II diabetes mellitus, (McGill et al. 2008), cardiovascular risk (Kunadian et al. 2014), Alzheimer’s disease (Littlejohns et al. 2014), depression (Jhee et al. 2017) and cancer (Garland et al. 2006). The presence of VDR was also confirmed in skeletal muscle tissue (Simpson et al. 1985; Bischoff et al. 2001), thereby the studies on musculoskeletal disorders gained the potential to evaluate the mechanistic properties of vitamin D function (Fig. 1). The aim of this review is to present the latest reports on skeletal muscle function and vitamin D status. The current review provides the evidence that deficiency of vitamin D through oxidative stress and disruption of mitochondrial function may affect the development of skeletal muscle atrophy.

Vitamin D deficiency

Over the past 2 decades, interest in vitamin D has increased significantly. Requests for serum vitamin D concentration measurements increased between the year 2000 and 2010 by over 80-fold and the number of vitamin D supplements sales has risen several times (Shahangian et al. 2014). Although vitamin D intoxication reports are rare (Galior et al. 2018), it does occur and patients and prescribers should be more cognizant of the proper vitamin D treatment and potential dangers of vitamin D overdose. There has been controversy about what exact 25(OH)D (the sum of 25[OH]D2 and 25[OH]D3 concentrations) define vitamin D deficiency and sufficiency. The latest guidelines indicate the concentration lower than 20 ng/mL (50 nmol/L) as vitamin D deficiency. The majority of studies that included 25(OH)D concentrations to analyze relations between health and the risk of diseases pointed on higher 25(OH)D concentrations, i.e., in the range of 30–50 ng/mL (75–125 nmol/L) or 40–60 ng/mL (100–150 nmol/L), not on 20 ng/mL (50 nmol/L) as the necessary minimal concentration for human well-being (Pludowski et al. 2018). However, the true vitamin D deficiency should consider its bioavailability and, therefore, its binding to vitamin D binding protein (VDBP). VDBP is the primary vitamin D carrier, binding 85–90% of circulating 25(OH)D and 1,25-dihydroxyvitamin D3 and the remaining unbound 25(OH)D is considered bioavailable (either free or bound to albumin). About 10–15% of total 25(OH)D is bound to albumin, in contrast to free 25(OH)D, which accounts for 1% of total circulating vitamin D (Bikle et al. 2012). Since the affinity of albumin to 25(OH)D or 1,25(OH)2D3 is weaker than that of VDBP, the loosely bound fraction and the free fraction comprise bioavailable 25(OH)D (Brown et al. 2012). There might be tremendous personal differences in bioavailable vitamin D for humans with a genetic mutation for VDBP or in VDBP-KD mouse models were shown to have lower 25(OH)D blood level (Fu et al. 2009; Jones et al. 2012).

Fig. 1 Overview of biological functions of vitamin D with the emphasis on skeletal muscle
Vitamin D physiology

To be fully active, 25(OH) D₃ (calcidiol, 25-hydroxycholecalciferol) must be hydroxylated in the C-1 position, producing 1α,25(OH)₂ D₃ (calcitriol, 1,25-dihydroxycholecalciferol). It is known that 1α,25(OH)₂ D₃ concentration is regulated by two vitamin D₃ regulating enzymes, CYP24A1 (cytochrome P450 family 24 subfamily A member 1), and CYP27B1 (25-hydroxyvitamin D-1-α-hydroxylase). In general, excess 1α,25(OH)₂ D₃ can be converted to its catabolite CYP27B1 (cytochrome P450 family 24 subfamily A member 1), and CYP27B1 (25-hydroxyvitamin D-1-α-hydroxylase). In general, excess 1α,25(OH)₂ D₃ can be converted to its catabolite form 1α,24,25(OH)₃ D₃ via the CYP24A1 enzyme in which 1α,24,25(OH)₃ D₃ is less active. In contrast, 25-hydroxyvitamin D-1α-hydroxylase functions to increase 1α,25(OH)₂ D₃ synthesis from 25(OH) D₃ (Srikuea et al. 2016). This enzymatic reactions take place mainly in the kidney, although other cells/tissues express the CYP27B1 and CYP24A1 enzymes as well, particularly in C2C12 cells and mouse primary myotubes (Girgis et al. 2014). Therefore, the expression of the vitamin D₃ metabolizing enzymes in skeletal muscle suggests the possible local regulation of vitamin D₃ in this extrarenal tissue (Srikuea et al. 2016). In addition to the regulation of the concentration of the active vitamin D₃, CYP27B1 is a central regulatory axis of the calcium and phosphate homeostatic systems. CYP27B1 is upregulated by parathyroid hormone (PTH), low Ca²⁺, and low PO₄³⁻ levels (Omdahl et al. 1972; DeLuca 1974). Therefore, a negative relationship exists between serum 25(OH) D₃ and serum PTH. The threshold of serum 25(OH) D₃, where serum PTH starts to rise is about 75 nmol/l according to most studies (Lips 2006).

The study of Abboud and coworkers (Abboud et al. 2013), which examined the concentration and time-dependent effects of calcitriol on the capacity of muscle cells to take up and release 25(OH) D₃, showed an evidence that skeletal muscle cells indeed contain a mobile pool of 25(OH) D₃ which accumulates from and returns to the extracellular environment. 25(OH) D₃ is taken up and retained in the muscle cells by binding to VDBP, which is internalized via membrane megalin and then attached to actin in the cytoplasm, that provide high affinity binding for its specific ligand, 25(OH) D₃. Interestingly, the early increase in net uptake of 25(OH)D₃ after a short pre-incubation (3 h) and short further incubation (4 h) with calcitriol was associated with a significant increase in VDBP protein in the C2 myotubes, perhaps providing more intracellular binding sites for 25(OH)D₃. It is possible that this increase in VDBP might be due to reduced degradation in the cell since the authors observed little VDBP in the incubation medium (Abboud et al. 2018). The study also reports that when C2 cells are differentiated into myotubes, the time-dependent uptake of labelled 25(OH) D₃ is 2−3 times higher than in undifferentiated myoblasts and osteoblasts. Additionally, they showed that C2 myotubes released only 32% of the previously accumulated 25(OH) D₃ after 4 h as compared to 60% for osteoblasts, and that muscle uptake and retention of 25(OH) D₃ are modulated by PTH (Abboud et al. 2017). The authors postulated that if the capacity to hold 25(OH) D₃ out of the circulation in skeletal muscle is high when vitamin D status is falling in winter, 25(OH) D₃ might be protected from inactivating activity of CYP24A1 in the liver. Furthermore, they hypothesize that storage and gradual release from muscles would increase the level of circulating 25(OH) D₃. This would maintain adequate status during the months when vitamin D supply was low giving skeletal muscles a pivotal role in the maintenance of vitamin D status (Abboud et al. 2013, 2017, 2018). It is important to emphasize that also in this hypothesis VDBP plays an important role in regulating bioavailability of vitamin D yet this time in skeletal muscle cells.

VDR in musculoskeletal system

Many biological functions of the active form of vitamin D₃ are mediated by VDR, which is a protein that binds 1α,25(OH)₂ D₃ effectively at sub-nanomolar concentrations (Haussler et al. 1997; Dusso et al. 2005). 1α,25(OH)₂ D₃ binds to VDR what leads to the conformational changes that allow VDR to interact with its heterodimeric partner, retinoid X receptor (RXR) (Smith et al. 2004). The complex (i.e.,1,25D-VDR-RXR) is translocated to the nucleus and binds to vitamin D response elements (VDRE), which ultimately results in activation of transcription (Haussler et al. 1998). Classic VDRE consist of two hexameric direct repeats with a three-nucleotide linker (Umesono et al. 1991; Carlberg et al. 1993). The cell specificity of the actions of VDR and its ligand 1α,25(OH)₂ D₃ can be explained in part by VDR’s recognition mode for its genomic binding sites and the tissue-specific differences in the expression of VDR and its key co-factors. Moreover, in contrast to other nuclear receptors such as receptors of cortisol or testosterone, the VDR can bind its genomic targets also in the absence of
ligand, i.e., in this respect the functional profile of the VDR is larger than that of its ligand (Polly et al. 2000).

Study on chick myoblasts treated with 1α,25(OH)2 D3 revealed rapid translocation of VDR from the nucleus to the plasma membrane within 5 min after the addition of 1α,25(OH)2 D3 (Capiati et al. 2002). The 1α,25(OH)2 D3-dependent intracellular redistribution of the VDR can be blocked by genistein, herbimycin or colchicine, suggesting the involvement of tyrosine kinase/s and microtubular transport in the relocation of the receptor (Capiati et al. 2002). Studies using a VDR knockout (VDRKO) mouse (Zanello et al. 2004) and a naturally occurring human VDR mutation (Nguyen et al. 2004) unquestionably showed that 1α,25(OH)2 D3-mediated rapid responses require a functional VDR. Despite that, the VDR has been found also in the plasma membrane in caveolae (Norman et al. 2002); therefore, it has been proposed that the VDR activates non-genomic signalling. Interestingly, the identification of an alternative ligand-binding pocket in the nuclear VDR has allowed to generate by computer docking a receptor conformational ensemble model providing an explanation for the VDR genomic and non-genomic functions (Mizwicki et al. 2004).

The VDR gene shows highest expression in metabolic tissues, such as kidneys, bone and intestine, but at least low to moderate expression is found in nearly all other of the approximately 250 human tissues and cell-types (Verstuyf et al. 2010). In situ studies on human skeletal muscles confirm the presence of VDR in this tissue (Bischoff et al. 2001) and documented that expression of VDR is essential for effective uptake of vitamin D by muscle cells (Girgis et al. 2014). Additionally, recent study in VDRKO mouse muscle fibers exposed to calcitriol confirmed that VDR is essential for an uptake of labelled 25(OH) D3 (Abboud et al. 2018).

Tanaka and coworkers (Tanaka et al. 2014) using C2C12 and G58 cells demonstrated that myoblasts require downstream signalling from VDR for differentiation into myocytes and that VDR expression is necessary in skeletal muscles for maintaining muscle volume. In addition, it has been presented that VDRKO mice exhibit abnormal skeletal muscle development (Endo et al. 2003). Moreover, serum 25(OH) D3 levels and the expression of VDR in muscle cells, as well as testosterone, levels, decline with age (Bischoff-Ferrari et al. 2004), which contribute to developing sarcopenia and muscle weakness (Lips et al. 2010). VDR is located predominantly on the fast-twitch muscle fibers, which respond first in rapid actions, thus it is not surprising that vitamin D sufficiency increases muscle strength and coordination, enabling prevention of falls (Suzuki et al. 2008; Holick et al. 2011).

Ceglia and coworkers (Ceglia et al. 2013) showed that 4-month vitamin D supplementation increased intramyonucleolar VDR concentration by 30% in nonexercised vastus lateralis muscle in the older, mobility-limited, vitamin D-insufficient women. Although, as mentioned before, VDR is predominantly expressed in fast twitch muscles, a study on human paraspinous, slow twicke muscle shows that vitamin D deficiency induces its atrophy and decreases the concentration of intramyonucleolar VDR and VDR gene expression level (Bang et al. 2018). Also, the study on chronic obstructive pulmonary disease mice model shows that VDR expression in both EDL (extensor digitorum longus) and soleus muscles was reduced in vitamin D-deficient mice as compared with mice with normal vitamin D levels and that the reduction in VDR expression with vitamin D deficiency was more pronounced in the soleus muscle (~57%) compared with the EDL muscle (~37%) (Cielen et al. 2016). This data confirms the relationship between serum vitamin D concentration and intramyonuclear VDR concentration, regardless the type of muscle. However, when the disturbed signalling of 1,25(OH)2D3 is explored, it must be considered that the deficiency of vitamin D and the loss of the VDR have some similar but partly meaningful consequences.

Although in many studies VDR has been shown to be necessary for vitamin D function, numerous non classic sites have been proven to act as VDRE (Girgis et al. 2013). Also, non-genomic effects of vitamin D, characterized by rapid activation followed by other complex pathways of intracellular signal transduction after binding of 1,25(OH)2D3 to its non-nuclear receptor (Losel et al. 2003; Girgis et al. 2013; Owens et al. 2015) have been reported. Interestingly not only vitamin D itself, but also essential oils (caraway, coriander, dill, ginger, lemongrass, oregano, spearmint, thyme, turmeric and vervaine) exhibit the ability to modulate VDR activity (Bartonkova et al. 2018). Intriguingly, essential oils of turmeric, oregano, dill, caraway, verbena and spearmint augmented the activity of both VDR and glucocorticoid receptor (GR) (Bartonkova et al. 2018). The concentrations of essential oils used in this study are naturally occurring in foods and drinks (Usjak et al. 2017). Non-genomic action of vitamin D, diversity in VDR regulation and the presence of numerous VDRE sites widens the range of possible explanations for the mechanism of vitamin D function in the human body and skeletal muscle.

VDR knockout and vitamin D deficiency conditions seem to clearly indicate negative consequences for skeletal muscle homeostasis. Notwithstanding, the overexpression of VDR seems to have damaging consequences on skeletal muscle as well. The FokI polymorphism of VDR gene is a T/C transition in the second exon, resulting in a truncated protein (424aa instead of 427aa) with enhanced transactivation capacity (Whitfield et al. 2001). Two studies in humans suggest that FokI polymorphism is associated with decreased skeletal muscle mass and strength. In particular, Roth and coworkers showed that FokI homozygous men display a low fat-free muscle mass and risk of sarcopenia 2.2-fold higher.
than controls (Roth et al. 2004). The other study demonstrates that homozygosity for the FokI polymorphism is associated with reduced quadriceps strength as compared with heterozygosity or control patients (Hopkinson et al. 2008). Latest reports show that VDR expression in C2C12 cells is high at the beginning of the differentiation process and is progressively reduced until the cells complete their maturation into myotubes. This observation is consistent with previous data reported that mean intracellular VDR content is higher in undifferentiated than in differentiated cells (Kong et al. 2006). In this regard, VDR down-regulation may represent a condition required to achieve complete myogenic differentiation. The presence of several VDRE in the promoter region of the myogenin gene and the demonstration that VDR may directly bind (in absence of the administration of vitamin D) the myogenin promoter support the proposed mechanism of regulation: the hypothesis of a ligand-independent, VDR-mediated, negative regulation of myogenin transcription. This hypothesis is supported by the results showing that animals administered overdosed of vitamin D display an impaired muscle regeneration that is associated with increased VDR expression (Camperi et al. 2017). Therefore, taking into account differences in undifferentiated and matured myotubes, as well as in recovering muscle cells in the manner of VDR requirements it seems that the solution for the skeletal muscle maintenance lays between vitamin D/VDR deficiency and its overexpression. Moreover, there should be a different approach towards vitamin D supplementation for children and adolescents whose muscles are in the development stage, for athletes requiring recovery, and for elderly people.

Vitamin D relationships to oxidative stress and cellular metabolism in skeletal muscle: data from observational studies

Among many newly discovered functions of vitamin D its involvement in calcium (Ca$^{2+}$) homeostasis seems to be undeniable. Vitamin D regulates calcium absorption in the gut and maintenance of serum calcium and phosphate concentrations (Gil et al. 2018). Vitamin D was shown to be also involved in cellular metabolism of skeletal muscle, yet precise basis for the molecular mechanisms activated by vitamin D in muscles is unclear. Vitamin D action in skeletal muscle affects calcium (Ca$^{2+}$) homeostasis which is an important factor in interplay between cytosol and mitochondria which is involved in muscle energy metabolism (Glancy et al. 2012). Vitamin D, through the activity of its active metabolite, 1α,25(OH)$_2$D$_3$, is essential for normal calcium (Ca$^{2+}$) and phosphorus balance and the maintenance of skeletal health (DeLuca 2004; Haussler et al. 2008). It has been shown to play an important role in the regulation of skeletal muscle tone and contraction (Li et al. 2018). Vitamin D deficiency is known to alter muscle contraction kinetics by reducing Ca$^{2+}$ reuptake into the sarcoplasmic reticulum, thereby leading to a prolongation of the relaxation phase of muscle contraction (Rodman et al. 1978; Zittermann 2003). Under physiological conditions mitochondria in skeletal muscle fibers uptake cytoplasmic Ca$^{2+}$ released from the sarcoplasmic reticulum during twitch and tetanic responses (Rudolf et al. 2004). Thus, the experiments on vitamin D-deficient chick muscles demonstrated the alterations in oxidative phosphorylation and an inability of muscle mitochondria to retain Ca$^{2+}$ (Mukherjee et al. 1981). Therefore, vitamin D deficiency may be responsible for inadequate Ca$^{2+}$ uptake by the mitochondria which results in the perturbations of cellular metabolic homeostasis (Sinha et al. 2013).

Latest study of Ryan and coworkers (Ryan et al. 2016) demonstrated increased oxygen consumption rate (OCR) of skeletal muscle cells after treatment with 1α,25(OH)$_2$D$_3$, indicating vitamin D action in the regulation of mitochondrial oxygen consumption and dynamics. In particular, this study showed that respiration coupled to the generation of ATP was increased, which suggests that vitamin D increases the function of mitochondria in muscle. However, direct treatment of isolated mitochondria with 1α,25(OH)$_2$D$_3$ failed to increase OCR suggesting that the effects of 1α,25(OH)$_2$D$_3$ on OCR might be VDR-dependent or other extra-mitochondrial biochemical events (Ryan et al. 2016). It is important to mention that the treatment with inactive form of vitamin D, 25(OH)D$_3$, did not influence the OCR in isolated mitochondria, which suggested that vitamin D and 25(OH)D$_3$ will not be useful in the treatment of muscle weakness unless they are metabolized to 1α,25(OH)$_2$D$_3$. In fact, that is operative in the context of vitamin D deficiency where high PTH levels drive the rapid metabolism of 25(OH)D$_3$ to 1α,25(OH)$_2$D$_3$.

The vitamin D influence on mitochondria was also reported by Sinha and coauthors who showed that treatment of vitamin D deficient humans with cholecalciferol improves the maximal mitochondrial oxidative phosphorylation rate ($\tau_{1/2}$PCr and $\tau_{1/2}$ADP recovery times were reduced) measured by 31P-NMR spectroscopy (Sinha et al. 2013). Oxidative phosphorylation rate is a function that reflects a composite of mechanisms including mitochondrial number, oxidative enzyme content, mitochondrial components, and vascular supply of substrates and oxygen (Kemp et al. 1993). Moreover, it was reported that the eradication of vitamin D deficiency was associated with an improvement in symptoms of myopathy and fatigue in all participants (Sinha et al. 2013). We found that mitochondrial function was improved in skeletal muscle of patients with low back pain (LBP) supplemented with vitamin D (3200 U/day x 5 weeks). The activity of citrate synthase was approximately 40% higher in the paraspinal muscle after supplementation.
Also it was observed higher protein content of PGC-1α, a transcriptional coactivator (unpublished data). The interplay between vitamin D-VDR, reactive oxygen species (ROS) signalling, and the antioxidant system is complex. To the best of our knowledge our group was first demonstrated that vitamin deficiency D increased the cytotoxicity mediated by ROS (Dzik et al. 2018). Taken together, it is very likely that vitamin D deficiency in the long run induces VDR ablation, ROS generation and in consequence deleterious effects on the mitochondrial function, which in turn leads to elevated muscle atrophy (Fig. 2).

Mitochondria not only play an important role in cellular energy metabolism, but they also are a source of ROS. Although mitochondria are not always considered as the main producer of ROS in the cell (NAD(P)H oxidase or xanthine oxidase being able to produce high levels of ROS), the electron transport chain produces ROS continuously (Panel et al. 2018). Therefore, given the data of vitamin D effect on mitochondrial function, the aspect of oxidative stress in skeletal muscle regarding vitamin D deficiency is of great value. Recent study on patients with chronic LBP showed that vitamin D deficiency increases antioxidative enzymes activities (Cu/ZnSOD and GPx) in paraspinal muscle and leads to elevated lipid and protein peroxidation. Moreover, this data demonstrate that five week vitamin D supplementation increases serum vitamin D concentration in LBP patients and decreases oxidative stress in skeletal muscle (Dzik et al. 2018). Similar findings reported increased protein oxidation and nitrosative stress and reduced activities of the antioxidant enzymes (Bhat et al. 2015) as well as increased lipid peroxidation in the muscles of vitamin D-deficient rats (Cielen et al. 2016). Furthermore, another study indicated that rats treated with vitamin D showed reduced tissue damage and attenuated oxidative stress after exhaustive exercise (Ke et al. 2016). This data supports the thesis that vitamin D is involved not only in calcium homeostasis and mitochondrial function but also is responsible for oxidative stress in skeletal muscle.

The exact mechanism which might explain the regulation of oxidative stress via vitamin D is not yet elucidated. As previously mentioned, vitamin D regulates mitochondrial dynamics and function, therefore, it might directly influence the mitochondrial ROS generation. However, it is still a manner of debate if the observed reduction of oxidative stress via vitamin D is not yet elucidated. As previously mentioned, vitamin D regulates mitochondrial dynamics and function, therefore, it might directly influence the mitochondrial ROS generation. However, it is still a manner of debate if the observed reduction of oxidative stress is not due to vitamin D supplementation.

Fig. 2 The graphical abstract of the vitamin D action in the skeletal muscle in vitamin D deficiency conditions. Vitamin D deficiency decreases IGF-1 and PGC-1α via VDR—the nuclear receptor. Src/ERK1/2/Akt/FOXO3a signalling cascade triggers the muscle atrophy through Murf-1 and MaFbx. Vitamin D deficiency increases oxidative stress and attenuates mitochondrial biogenesis and function. Akt serine/threonine-specific protein kinase, ERK 1/2 extracellular signal-regulated kinases 1 and 2, FOXO forhead box protein, IGF-1 insulin-like growth factor 1, MaFbx muscle atrophy F-box protein, mTOR mammalian target of rapamycin kinase, MuRF1 muscle ring finger protein, OCR oxygen consumption rate, PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1-alpha, ROS reactive oxygen species, RXR retinoid X receptor, Src steroid receptor coactivator complex, VDR vitamin D receptor, VDRE vitamin D response elements.
stress in skeletal muscle is a result of altered mitochondrial function or it may possibly involve any other capacity of vitamin D action in human body. There are studies demonstrating that vitamin D is a very effective antioxidant. It was shown that vitamin D has a capacity to inhibit zinc-induced oxidative stress in the central nervous system which is 103 times higher than vitamin E analogues (Lin et al. 2005). In addition, another study shows that a vitamin D analogue exerts antioxidant effects by activating the Nrf2-Keap1 antioxidant pathway (Nakai et al. 2014). Nevertheless, vitamin D or vitamin D analogs are able to limit oxidative stress in animals (Hamden et al. 2009; Husain et al. 2009) and humans (Tanaka et al. 2011). Moreover, serum vitamin D concentration correlates with oxidative stress in asthmatic children (Igde et al. 2018) and is associated with adiposity in schoolchildren, suggesting that vitamin D deficiency potentially increases the risk for diseases caused by higher adiposity and oxidative stress (Zhang et al. 2014). For example, adipose tissue releases pro-inflammatory cytokines, resulting in chronic inflammation, which may induce oxidative stress and in consequence leads to muscle damage.

Despite the fact that oxidative stress undeniably has a devastating effect on human body, the importance of ROS and reactive nitrogen species as signals in the skeletal muscle adaptation to exercise is now evident (Merry et al. 2016). There are numerous studies reporting negative consequences of antioxidant supplementation in regard of skeletal muscle function, particularly it was shown to impair mitochondrial biogenesis (Gomez-Cabrera et al. 2008; Ristow et al. 2009), to reduce post-exercise insulin sensitivity (Trewin et al. 2015), as well as to attenuate performance improvements (Braakhuis et al. 2015). In a similar manner, the supraphysiological dose of 1α,25(OH)2D3 injected into damaged muscle (days 4–7 after BaCl2 treatment) delays the regenerative response in muscle namely, decreases satellite cell differentiation, delays regenerative muscle fiber formation, and increases muscular fibrosis (Srikuea et al. 2016). Moreover, as previously mentioned, the study on C2C12 and primary myoblasts clearly shows that vitamin D treatment at supraphysiological dose causes VDR overexpression and impairs their differentiation into mature myotubes (Camperi et al. 2017). These observations suggest that while vitamin D deficiency enhances oxidative stress, overcorrection of vitamin D status may also have a negative impact on skeletal muscle in the same manner as antioxidants while overdosed.

Vitamin D signalling with anabolic/catabolic pathways

An increasing body of knowledge suggests the involvement of vitamin D in both anabolic and catabolic pathways in skeletal muscle. One of the reasons of muscle wasting results because of an altered balance in the protein degradation and synthesis rates. Thus, there are three major proteolytic pathways described in the skeletal muscle, namely: the ATP-ubiquitin-dependent system, the lysosomal system, and the cytosolic calcium-activated system (Kandarian et al. 2006). Only, the ATP-ubiquitin-dependent system has been shown to be dependent on vitamin D (Bhat et al. 2013). The study on diet-induced vitamin D deficiency in rats reports no alternation in lysosomal and calpain enzyme activities in vitamin D deficiency-induced muscle wasting. However, it shows a significant increase in the enzymes activities of the 20S proteasome catalytic core (Bhat et al. 2013). 20S proteasomal subunit are catalytic part of the 26S proteasome that functions as the key role in nonlysosomal protein degradation (Tawa et al. 1997). Moreover, the study of Bhat and coworkers has been shown an increase in the expression of E2- ubiquitin conjugating enzyme and ubiquitin conjugates in vitamin D deficiency muscle as well as an increase in the expression of 2 muscle-specific E3 ligases. Atrogin-1 also known as MaFbx (muscle atrophy F-box protein) and MuRF1 (muscle ring finger protein) which were increased by twofold in the vitamin D deficient muscle as compared with control (Bhat et al. 2013). It was postulated that Atrogin-1 and MuRF1, which provide substrate specificity in ATP-dependent ubiquitin proteasome pathway (UPP) responsible for intracellular proteolysis are critical for the development of muscle atrophy.

Recent study on mice reports that prolonged, 12 months, vitamin D insufficiency induces characteristics of sarcopenia that include poor anaerobic capacity, lower lean mass, and a trend towards smaller fast twitch fiber cross-sectional area, as well as gait disturbance. Moreover, this study shows that vitamin D insufficient mice also exhibited increased expression of atrophy-associated Atrogin-1 and differential expression of muscle regulation associated miR-26a when compared to mice with normal vitamin D level (Sleeman et al. 2017). This data strongly suggest that vitamin D insufficiency/deficiency is involved in muscular atrophy development, yet the exact mechanism still needs to be explicated.

Hitherto studies postulated that the possible signalling pathway involved in muscle vitamin D function might require steroid receptor coactivator complex (Src), non-receptor tyrosine kinase, which has been shown to activate mitogen-activated protein kinases (MAPK) (Li et al. 2006; Thobe et al. 2006) in various tissues. There are studies that demonstrate fast non-genomic Src activation by vitamin D in various cell types, including skeletal muscle myoblasts (Chappel et al. 1997; Gniadecki 1998; Khare et al. 1999; Buitrago et al. 2001a, b). Furthermore, there is evidence that vitamin D induces rapid association of VDR with Src in skeletal muscle and osteoblastic cells (Buitrago et al. 2000; Vertino et al. 2005). The study of Buitrago and coworkers (Buitrago et al. 2001a, b) reported that the activation of nonreceptor tyrosine kinase Src coincides with a 1,25(OH)2
D$_3$-induced interaction between Src kinase and VDR in chick muscle cells. Src activation is required for vitamin D-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) and p38 MAPK in skeletal muscle myoblasts (Buitrago et al. 2001a, b, 2006). MAPK signalling is necessary for the maintenance of skeletal muscle mass because inhibition of these signalling cascades elicits muscle atrophy in vitro and in vivo. Particularly, the study on cultured myocytes show that inhibition of ERK1/2 signalling induce myotube atrophy and cause the upregulation of atrophic markers Atrogin-1 and MuRF1 and downregulates the phosphorylation of Akt and its downstream kinases (Shi et al. 2009). Akt along with its downstream signal cascades has been identified as pivotal regulators of muscle hypertrophy by enhancing protein synthesis and concomitant repression of protein breakdown (Sandri et al. 2004; Stitt et al. 2004). It has been reported that 1,25(OH)$_2$D$_3$-induced Akt activation in skeletal muscle myoblasts was mediated by Src (Buitrago et al. 2012).

ERK signalling is also suggested to mediate the hypertrophic effects of IGF-1, a muscle hypertrophy factor (Haddad et al. 2004). The IGF-1 is well described as far as it concerns its circulating level. Wei and coworkers have reported that 1 year of high-dose vitamin D supplementation of protein breakdown (Sandri et al. 2004; Stitt et al. 2004). It has been reported that 1,25(OH)$_2$D$_3$-induced Akt activation in skeletal muscle myoblasts was mediated by Src (Buitrago et al. 2012).

Recent study showed that VDR signalling enhanced by vitamin D treatment inhibited FOXO1 expression, nuclear translocation, and activity in C2C12 muscle cells. The vitamin D-dependent suppression of FOXO1 activation disappeared when VDR was knocked down. These results suggest that FOXO1 is a major target mediating VDR-null signalling in skeletal muscle including the progression of muscle atrophy (Chen et al. 2016). Hence, FOXO transcription factors are thought to control half of the genes identified in the molecular “common atrophy blueprint” present in different atrophy types (Sandri et al. 2004). Akt, a protein kinase B, which is important in signalling pathways is involved in the protein synthesis and skeletal muscle growth (Schiaffino et al. 2011). Akt blocks the function of the FOXO3 by phosphorylation of conserved residues, leading to their sequestration in the cytoplasm away from target genes (Brunet et al. 1999). Phosphorylated FOXO3a does not translocate to the nuclei, and consequently the expression of MAfbx and MuRF, both target genes of FOXO, are inhibited. It is important to note that elevated PGC-1α content, besides its function in mitochondrial biogenesis, prevents transcriptional activity of FOXO3a (Sandri et al. 2006), therefore the mitochondria might be involved in the atrophy progression. Besides the involvement in the progression of muscle atrophy Akt may also regulate muscle synthesis via mTOR. The study of Salles and coworkers (Salles et al. 2013) 1α,25(OH)$_2$D$_3$ sensitizes the Akt/mTOR-dependant pathway to the stimulating effect of leucine and insulin, resulting in a further activation of protein synthesis in murine C2C12 skeletal myotubes.

Although vitamin D deficiency has been shown to lead to muscle atrophy both in animals and humans (Endo et al. 2003; Dhesi et al. 2004; Sato et al. 2005; Snijder et al. 2006) the problem of muscle atrophy seems to be more complicated and may not be fully solved with vitamin D alone. While the studies on vitamin D deficiency seem to undoubtedly connect the low level of vitamin D with the progression of muscle atrophy, it is necessary to mention that the property to prevent muscle atrophy is not only typical for vitamin D. Catechins and other antioxidants possess the ability to prevent, mitigate, delay, and even treat muscle-related disorders caused by aging and diseases as well (Li et al. 2019). It was reported that epigallocatechin gallate protects the skeletal muscle mitochondria (Oliveira et al. 2016) reduces skeletal muscle oxidative stress in non-obese diabetic rats and restores the content of complex I and voltage-dependent anion selective channel protein 1 (VDAC1) to improve the function of mitochondria (Yan et al. 2012). Epigallocatechin gallate may also decrease the protein degradation rate caused by muscle atrophy, increase the expression of anabolic
factors and promote the cross-sectional area of muscle fiber (Mirza et al. 2014; Meador et al. 2015). Catechins were also shown to promote the differentiation of myoblasts (Kim et al. 2017). It is necessary to mention that the changes triggered by catechins involve the same pathways that we previously described to be engaged in vitamin D action in skeletal muscle. Epigallocatechin gallate was shown to promote the phosphorylation of Akt, inhibit the activation of FOXO, prevent nuclear accumulation and reduce the degradation of muscle protein (Bartholome et al. 2010). Epicatechin has been reported to activate Erk1/2 and p38 MAPK, suggesting its potential role in promoting cell survival (Deng et al. 2012). The recent study conducted on human, mice and C2C12 myoblasts demonstrate that the improvement in the glutathione (GSH) status exerts measurable and beneficial effects on both mRNA and protein expression levels of VDBP, VD-25-hydroxylase, VDR as well as PGC-1a/GLUT 4 (Jain et al. 2018). GSH is a major antioxidant and a cofactor of many enzymes in the human body (Franco et al. 2012) and the authors suggest that GSH status positively upregulates the bioavailability of 25(oh)VD. This may explain why consumption of food rich in l-cysteine/methionine and GSH, such as milk and leafy vegetables, can increase the bioavailability of vitamin D and improve the quality of life, while the studies on vitamin D itself are not always consistent.

Intriguingly, glucocorticoids were shown to increase VDR expression, particularly, dexamethasone (Dex) was reported to potentiate calcitriol effects by increasing VDR. Treatment of squamous cell carcinoma VII cells with Dex produces an important increase of VDR transcripts. Similar effects have been observed in mouse adipocytes and human breast cancer cell lines. The VDR gene contains a number of putative glucocorticoid response elements. Rapid increase in VDR transcript levels may indicate glucocorticoids directly induce VDR de novo transcription (Hidalgo et al. 2010). Also, the study in human monocytes shows that vitamin D enhances glucocorticoid action (Zhang et al. 2013). However, glucocorticoids, known as milk and leafy vegetables, can increase the bioavailability of vitamin D and improve the quality of life, while the studies on vitamin D itself are not always consistent.

As summarized in Table 1, recently published data indicates that vitamin D deficiency is associated with lower VDR content, increased oxidative stress and altered the activity of antioxidant enzymes in skeletal muscle. Moreover, it is shown that vitamin D deficiency may induce paraspinal muscle atrophy and decreases the concentration of intramyonuclei VDR and gene expression of VDR. In addition, it is also reported that vitamin D regulates mitochondrial oxygen consumption and dynamics. Namely, vitamin D deficiency decreases oxygen consumption rate and induces disruption of mitochondrial function. Taken together, it is very likely that vitamin D deficiency in the long run induces VDR ablation, ROS generation and in consequence deleterious effects on the mitochondrial function, which in turn leads to elevated muscle atrophy. The possible signalling pathway that triggers the expression of Murf1 and MafFbx (markers of muscle atrophy) may involve Src-ERK1/2-Akt-FOXO. In addition, it should be stressed that the dysfunctions of mitochondrial respiratory chain and dangerous ROS generation are crucial factors in human pathologies, especially in neurodegenerative diseases where muscle atrophy is observed. We assume that vitamin D deficiency results from the loss of VDR function and it could be partly responsible for the development of neurodegenerative diseases in human beings. However, the correction of vitamin D deficiency should be done wisely in order to avoid negative consequences of VDR overexpression and vitamin D toxicity. Vitamin D supplementation should be addressed towards bioavailability of vitamin D and towards personal requirements that may differ between children, athletes, adults and elderly people. Also, the changes in diet in regard of antioxidants, GSH precursors and essential oils supply should be considered as the support for vitamin D treatment.

Future directions

Given the important action of vitamin D on skeletal muscle tissue, a better understanding of the mechanisms involved in muscle atrophy is needed. In particular, there is a great
Table 1 Summary of selected studies on the role and the action of vitamin D in skeletal muscle since 2012

Study (ref)	Type of study	Treatment	Main outcome
Buitrago et al. (2012)	Experimental study in murine C2C12 skeletal myoblasts	Cells treated with 1 nM 1α,25(OH)2D3	Vitamin D upregulates Akt through Src, PI(3)K, and p38 MAPK to stimulate myogenesis
Bhat et al. (2013)	Experimental study in rats	Diet-induced vitamin D deficiency	MaFbx and MuRF1 increased by twofold in the vitamin D deficient muscle, increased activity of 20S proteasome catalytic core, induced muscle protein degradation
Ceglia et al. (2013)	Experimental study in vitamin D-insufficient women (aged ≥ 65 years)	Vitamin D insufficient group (22.5 to 60 nmol/L) supplemented with 4 000 (IU/day) for 4 months	Increased intramyonuclear VDR concentration by 30% in nonexercised vastus lateralis muscle
Bhat and Ismail (2015)	Experimental study in rats	Diet-induced vitamin D deficiency	Increased oxidative stress, increased GPx activity, decreased SOD and CAT activities in the rat muscle
Chen et al. (2016)	Experimental study in murine C2C12 skeletal myoblasts	Cells treated with 1α,25(OH)2D3 (0.01 µM) for 48 h knockdown of VDR	FOXO1 throught VDR signalling causes the progression of muscle atrophy in skeletal muscle, vitamin D deficiency induces insulin resistance
Ryan et al. (2016)	Experimental study in human skeletal muscle cells (hSkMCs)	Cells treated with 1α,25(OH)2D3 (0.01 µM) for 48 h	Increased oxygen consumption rate
Srikuea and Hirunsai (2016)	Experimental study in male C57BL/6 mice	Supraphysiological (1 µg/kg relative to mouse body weight) dose of 1α,25(OH)2D3 injected into damaged muscle (days 4–7 after BaCl2 treatment)	Decreased satellite cell differentiation, delayed regenerative muscle fiber formation, and increased muscular fibrosis
Camperi et al. (2017)	Experimental study in AH130-bearing rats	Vitamin D intragastrically administrated 80 IU/kg body weight for 7, 14 and 28 days	Impaired muscle regeneration associated with increased VDR expression
Sleeman et al. (2017)	Experimental study in murine C2C12 skeletal myoblasts	Calcitriol (10 nM or 100 nM, supraphysiological dose), starting from the first day of differentiation	Impaired differentiation
Bang et al. (2018)	Experimental study in women (aged ≥ 60 years)	3 groups: group with normal vitamin D concentration (>40ng/mL), vitamin D insufficiency group (20–40ng/mL), Vitamin D deficient group (<20ng/mL)	Vitamin D deficiency induces paraspinal muscle atrophy and decreases the concentration of intramyonuclear VDR and VDR gene expression level
Dzik et al. (2018)	Experimental study in LBP patients	3 groups: vitamin D sufficient group (>21ng/mL), vitamin D deficient group (<20ng/mL), vitamin D supplemented group (5 weeks, 3200 IU/day)	Vitamin D supplementation decreased oxidative stress in skeletal muscle
need of a new insight into VDR expression and activation, biogenesis and the function of mitochondria as well as signalling pathways associated with progressive muscle atrophy in vitamin D deficiency. On the other hand, beneficial effect of normalized serum vitamin D concentration should be explored in regard to muscle aerobic energy metabolism, oxidative stress and prevention of muscle atrophy. Even more, we suppose that supplementation with vitamin D to sufficient serum vitamin D level will: reduce ROS overproduction, increase VDR gene expression and protein content, improve mitochondrial function and inhibit the atrophy of muscle. Finally, the broadened knowledge about vitamin D mechanism(s), may contribute to the reduced progression of neurodegenerative diseases in humans.

Acknowledgements We would like to thank Prof. Michal Zmijewski for revise and dedicated comments that helped to improve our manuscript.

Funding This study was partially supported by NCN UMO-2012/05/B/NZ7/02493.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of interests regarding the publication of this paper.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Abboud M, Puglisi DA, Davies BN, Rybchyn M, Whitehead NP, Brock KE et al (2013) “Evidence for a specific uptake and retention mechanism for 25-hydroxyvitamin D (25(OH)D) in skeletal muscle cells.” Endocrinology 154(9): 3022–3030

Abboud M, Rybchyn MS, Liu J, Ning Y, Gordon-Thomson C, Brennan-Speranza TC et al (2017) “The effect of parathyroid hormone on the uptake and retention of 25-hydroxyvitamin D in skeletal muscle cells”. J Steroid Biochem Molecular Biol 173:173–179

Abboud M, Rybchyn MS, Ning YJ, Brennan-Speranza TC, Girgis CM, Gunton JE et al (2018) “1,25-Dihydroxycholecalciferol (calcitriol) modifies uptake and release of 25-hydroxycholecalciferol in skeletal muscle cells in culture”. J Steroid Biochem Molecular Biol 177:109–115

Ameri P, Giusti A, Boschetti M, Bovio M, Teti C, Leoncini G et al (2013) “Vitamin D increases circulating IGF1 in adults: potential implication for the treatment of GH deficiency”. Eur J Endocrinol 169(6):767–772

Banerjee A, Apponi LH, Pavlath GK, Corbett AH (2013) “PABPN1: molecular function and muscle disease”. FEBS J 280(17):4230–4250

Bang WS, Lee DH, Kim KT, Cho DC, Sung JK, Han IB et al (2018) “Relationships between vitamin D and paraspinal muscle:...
human data and experimental rat model analysis”. Spine J 18(6):1053–1061
Bartholome A, Kampkotter A, Tanner S, Sies H, Klotz LO (2010) Epigallocatechin gallate-induced modulation of FoxO signaling in mammalian cells and C. elegans: FoxO stimulation is masked via PI3K/Akt activation by hydrogen peroxide formed in cell culture. Arch Biochem Biophys 501(1):58–64
Bartonkova I, Dvorak Z (2018) “Assessment of endocrine disruption potential of essential oils of culinary herbs and spices involving glucocorticoid, androgen and vitamin D receptors”. Food Funct 9(4):2136–2144
Bhat M, Ismail A (2015) Vitamin D treatment protects against and reverses oxidative stress induced muscle proteolysis. J Steroid Biochem Mol Biol 152:171–179
Bhat M, Kalam R, Qadri SS, Madabushi S, Ismail A (2013) Vitamin D deficiency-induced muscle wasting occurs through the ubiquitin proteasome pathway and is partially corrected by calcium in male rats. Endocrinology 154(11): 4018–4029
Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG (1986) Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J Clin Endocrinol Metab 63(4):954–959
Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stahelin HB et al (2001) “In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue”. Histochem J 33(1):19–24
Bischoff-Ferrari HA, Borchers M, Gudat F, Durrmuller U, Stahelin HB, Dick W (2004) Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res 19(2):265–269
Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6(1):25–39
Braakhuis AJ, Hopkins WG (2015) “Impact of dietary antioxidants on sport performance. A review. Sports Med 45(7):939–955
Brown AJ, Coyne DW (2012) Bioavailable vitamin D in chronic kidney disease. Kidney Int 82(1):5–7
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Joo P, Hu LS et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868
Buitrago C, Vazquez G, De Boland AR, Boland RL (2000) Activation of Src kinase in skeletal muscle cells by 1, 1,25-(OH(2))-vitamin D3 correlates with tyrosine phosphorylation of the vitamin D receptor (VDR) and VDR-Src interaction. J Cell Biochem 67(4):432–438
Buitrago C, Vazquez G, De Boland AR, Boland RL (2001b) “1,25-dihydroxyvitamin D3 regulates pp60c-src activity and expression of a pp60c-src activating phosphatase”. J Cell Biochem 67(4):432–438
Chen S, Villalta SA, Agrawal DK (2016) FOXO1 mediates vitamin D deficiency-induced insulin resistance in skeletal muscle. J Bone Miner Res 31(3):585–595
Cielen N, Heuleins N, Maes K, Carmeliët G, Mathieu C, Janssens W et al (2016) Vitamin D deficiency impairs skeletal muscle function in a smoking mouse model. J Endocrinol 229(2):97–108
Crew KD, Xiao T, Thomas PS, Terry MB, Maurer M, Kalinsky K et al (2015) Safety, feasibility, and biomarker effects of high-dose vitamin D supplementation among women at high risk for breast cancer. Int J Food Sci Nutr Diet 2015(Suppl 1):1–16
Cutolo M, Paolino S, Sulli A, Smith V, Pizzorni C, Seriolo B (2014) Vitamin D, steroid hormones, and autoimmunity. Ann N Y Acad Sci 1317:39–46
DeLuca HF (1974) Vitamin D: the vitamin and the hormone. Fed Proc 33(11):2211–2219
DeLuca HF (2004) “Overview of general physiologic features and functions of vitamin D”. Am J Clin Nutr 80(6 Suppl):1689S–1696S
Deng YT, Chang TW, Lee MS, Lin JK (2012) Suppression of free fatty acid-induced insulin resistance by phytolopolyphenols in C2C12 mouse skeletal muscle cells. J Agric Food Chem 60(4):1059–1066
Dhesi JK, Jackson SH, Bearne LM, Moniz C, Hurley MV, Swift CG et al (2004) Vitamin D supplementation improves neuromuscular function in older people who fall. Age Ageing 33(6):589–595
Dusso AS, Brown AJ, Slatopolsky E (2005) Vitamin D. Am J Physiol. Renal Physiol 289(1):F8–F28
Dzik K, Skrobot W, Flis DJ, Karmia N, Libionka W, Kloc W et al (2018) “Vitamin D supplementation attenuates oxidative stress in paraspinal skeletal muscles in patients with low back pain”. End J Appl Physiol 118(1):143–151
Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T et al (2001) “In situ detection of 1,25-dihydroxyvitamin D3 in paraspinal skeletal muscles in patients with low back pain”. Eur J Appl Physiol 86(1):128–135
Carlberg C, Bendik I, Wyss A, Meier E, Sturzenbecker LJ, Grippi JF et al (1993) Two nuclear signallings pathways for vitamin D. Nature 361(6413):657–660
Ceglia L, Niramitmahapanya S, da Silva Morais M, Rivas DA, Harris SS, Bischoff-Ferrari H et al (2013) A randomized study on the effect of vitamin D(3) supplementation on skeletal muscle morphology and vitamin D receptor concentration in older women. J Clin Endocrinol Metab 98(12):E1927–E1935
Chappell J, Ross FP, Abu-Amer Y, Shaw A, Teitelbaum SL (1997) “1,25-dihydroxyvitamin D3 regulates pp60c-src activity and expression of a pp60c-src activating phosphatase”. J Cell Biochem 67(4):432–438
Chen S, Villalta SA, Agrawal DK (2016) FOXO1 mediates vitamin D deficiency-induced insulin resistance in skeletal muscle. J Bone Miner Res 31(3):585–595
Cielen N, Heuleins N, Maes K, Carmeliët G, Mathieu C, Janssens W et al (2016) Vitamin D deficiency impairs skeletal muscle function in a smoking mouse model. J Endocrinol 229(2):97–108
Crew KD, Xiao T, Thomas PS, Terry MB, Maurer M, Kalinsky K et al (2015) Safety, feasibility, and biomarker effects of high-dose vitamin D supplementation among women at high risk for breast cancer. Int J Food Sci Nutr Diet 2015(Suppl 1):1–16
Cutolo M, Paolino S, Sulli A, Smith V, Pizzorni C, Seriolo B (2014) Vitamin D, steroid hormones, and autoimmunity. Ann N Y Acad Sci 1317:39–46
DeLuca HF (1974) Vitamin D: the vitamin and the hormone. Fed Proc 33(11):2211–2219
DeLuca HF (2004) “Overview of general physiologic features and functions of vitamin D”. Am J Clin Nutr 80(6 Suppl):1689S–1696S
Deng YT, Chang TW, Lee MS, Lin JK (2012) Suppression of free fatty acid-induced insulin resistance by phytolopolyphenols in C2C12 mouse skeletal muscle cells. J Agric Food Chem 60(4):1059–1066
Dhesi JK, Jackson SH, Bearne LM, Moniz C, Hurley MV, Swift CG et al (2004) Vitamin D supplementation improves neuromuscular function in older people who fall. Age Ageing 33(6):589–595
Dusso AS, Brown AJ, Slatopolsky E (2005) Vitamin D. Am J Physiol. Renal Physiol 289(1):F8–F28
Dzik K, Skrobot W, Flis DJ, Karmia N, Libionka W, Kloc W et al (2018) “Vitamin D supplementation attenuates oxidative stress in paraspinal skeletal muscles in patients with low back pain”. Eur J Appl Physiol 118(1):143–151
Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T et al (2001) “In situ detection of 1,25-dihydroxyvitamin D3 in paraspinal skeletal muscles in patients with low back pain”. Eur J Appl Physiol 86(1):128–135
Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB et al (2011) “Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia”. J Am Med Dir Assoc 12(4):249–256
Franco R, Cidliowski JA (2012) Glutathione efflux and cell death. Antioxid Redox Signal 17(12):1694–1713
Fu L, Yun F, Ozcan M, Wong BY, Vieth R, Cole DE (2009) “Com- mon genetic variants of the vitamin D binding protein (DBP) predict differences in response of serum 25-hydroxyvitamin D [25(OH)D] to vitamin D supplementation”. Clin Biochem 42(10–11):1174–1177
Gairola K, Grebe S, Singh R (2018) Development of vitamin D toxicity from overcorrection of vitamin D deficiency: a review of case reports. Nutrients 10(8):953
Littlejohns TJ, Henley WE, Lang IA, Annweiler C, Beauchet O, Chaves PH et al (2014) Vitamin D and the risk of dementia and Alzheimer disease. Neurology 83(10):920–928

Losel R, Wehling M (2003) “Nongenomic actions of steroid hormones”. Nat Rev Mol Cell Biol 4(1):46–56

McCollum EF, Simmonds N, Becker JE, Shipley PG (1922) Studies on experimental rickets: and experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem 53:293–312

McGill AT, Stewart JM, Lithander FE, Strik CM, Poppitt SD (2008) “Relationships of low serum vitamin D3 with anthropometry and markers of the metabolic syndrome and diabetes in overweight and obesity”. Nutr J 7:4

Meador BM, Mirza KA, Tian M, Skelding MB, Reaves LA, Edens NK et al (2015) “The Green Tea Polyphenol Epigallocatechin-3-Gallate (EGCG) Attenuates Skeletal Muscle Atrophy in a Rat Model of Sarcopenia”. J Frailty Aging 4(4):209–215

Mellanby T (1918) The part played by an “accessory factor” in the existence of a vitamin which promotes calcium deposition. J Biol Chem 52(4):586–595

Nguyen TM, Lieberherr M, Fritsch J, Guillozo H, Alvarez ML, Fitouri M et al (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3): 399–412

Pludowski P, Holick MF, Grant WB, Konstantynowicz J, Mascarenhas MR, Haq A et al (2018) “Vitamin D supplementation guidelines”. J Steroid Biochem Mol Biol 175:125–135

Polly P, Herdick M, Moehren U, Banihamad A, Heinzl T, Carlbeg C (2000) VDR-Alien: a novel, DNA-selective vitamin D(3) receptor-corepressor partnership. FASEB J 14(10):1455–1463

Powe CE, Evans MK, Wenger J, Zonderman AB, Berg AH, Nalls M et al (2013) “Vitamin D-binding protein and vitamin D status of black Americans and white Americans”. New Engl J Med 369(21):1991–2000

Rodman JS, Baker T (1978) Changes in the kinetics of muscle contraction in vitamin D-depleted rats. Kidney Int 13(3):189–193

Roth SM, Zmuda JM, Cauley JA, Shea PR, Ferrell RE (2004) Vitamin D receptor genotype is associated with fat-free mass and sarcopenia in elderly men. J Gerontol. Series A, Biol Sci Med Sci 59(1): 10–15

Rudolf R, Mongillo M, Magalhaes PJ, Pozzan T (2004) “In vivo monitoring of Ca(2+) uptake into mitochondria of mouse skeletal muscle during contraction”. J Cell Biol 166(4):527–536

Ryan ZC, Craig TA, Holmes CD, Wang X, Lanza IR, Schaible NS et al (2016) “1alpha,25-dihydroxyvitamin D3 regulates mitochondrial oxygen consumption and dynamics in human skeletal muscle cells”. J Biol Chem 291(3):1514–1528

Sarrafpour H, Chaudhary A, Patra V, Baas F, Sourboun D et al (2016) “Vitamin D receptor mutations”. J Biol Chem 291(3):1514–1528

Sato Y, Iwamoto J, Kanoko T, Satoh K (2005) Low-dose vitamin D ameliorates nephropathy in diabetic rats. Am J Physiol. Endocrinol Metab 309(12):E1019–E1031

Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A et al (2004) Foxo transcription factors induce the atrogin-1/UTM13 expression and cause skeletal muscle atrophy. Cell 117(3): 399–412

Shahangian S, Alspach TD, Astles JR, Yesupriya A, Dettwyler E, Conboy I et al (2016) “1alpha,25-dihydroxyvitamin D3 regulates mitochondrial oxygen consumption and dynamics in human skeletal muscle cells”. J Biol Chem 291(3):1514–1528

Simpson RU, Thomas GA, Arnold AJ (1985) Identification of low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis 20(3):187–192

Sinha-Hikim I, Duran P, Shen R, Lee M, Friedman TC, Davidson MB (2015) “Effect of long term vitamin D supplementation on biomarkers of inflammation in Latino and African-American subjects with pre-diabetes and hypovitaminosis D.” Hormone
and metabolic research = Hormon- und Stoffwechselforschung
= Hormones et metabolisme 47(4): 280–283
Skversky AL, Kumar J, Abramowitz MK, Kaskel FJ, Melamed ML
(2011) Association of glucocorticoid use and low 25-hydroxyvitamin D levels: results from the National Health and Nutrition Examination Survey (NHANES): 2001–2006. J Clin Endocrinol Metab 96(12): 3838–3845
Sleeman I, Aspray T, Lawson R, Coleman S, Duncan G, Khoo TK et al
(2017) “The role of vitamin D in disease progression in early Parkinson’s disease. J Parkinson Dis 7(4):669–675
Smith CL, O’Malley BW (2004) Coregulator function: a key to under-
Sleeman I, Aspray T, Lawson R, Coleman S, Duncan G, Khoo TK et al
(2017) “The role of vitamin D in disease progression in early Parkinson’s disease. J Parkinson Dis 7(4):669–675
Smith CL, O’Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25(1):45–71
Snijder MB, van Schoor NM, Pluijm SM, van Dam RM, Visser M, Lips P (2006) Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab 91(8):2980–2985
Srikuea R, Hirunsai M (2016) Effects of intramuscular administration of 1alpha,25(OH)2D3 during skeletal muscle regeneration on regenerative capacity, muscular fibrosis, and angiogenesis. J Appl Physiol 120(12):1381–1393
Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO et al (2004) “The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors”. Mol Cell 14(3):395–403
Suzuki T, Kwon J, Kim H, Shimada H, Yoshida Y, Iwasa H et al (2008) Low serum 25-hydroxyvitamin D levels associated with falls among Japanese community-dwelling elderly. J Bone Miner Res 23(8):1309–1317
Tanaka M, Tokunaga K, Komaba H, Itoh K, Matsushita K, Watanabe H et al (2011) “Vitamin D receptor activator reduces oxidative stress in hemodialysis patients with secondary hyperparathyroidism”. Ther Apher Dial 15(2):161–168
Tanaka M, Kishimoto KN, Okuno H, Saito H, Itoi E (2014) Vitamin D receptor gene silencing effects on differentiation of myogenic cell lines. Muscle Nerve 49(5):700–708
Tawa NE Jr, Odessey R, Goldberg AL (1997) “Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles”. J Clin Investig 100(1):197–203
Thobe BM, Frink M, Choudry MA, Schwacha MG, Bland KI, Chaudry IH (2006) Src family kinases regulate p38 MAPK-mediated IL-6 production in Kupffer cells following hypoxia. Am J Physiol Cell Physiol 291(3):C476–C482
Trewin AJ, Lundell LS, Perry BD, Patil KV, Chibalin AV, Levering I et al (2015) Effect of N-acetylcysteine infusion on exercise-induced modulation of insulin sensitivity and signaling pathways in human skeletal muscle. Am J Physiol Endocrinol Metab 309(4):E388–E397
Umesono K, Murakami KK, Thompson CC, Evans RM (1991) Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65(7):1255–1266
Usjak L, Petrovic S, Drobec M, Sokovic M, Stanojkovic T, Ciric A et al (2017) Essential oils of three cow parsnips—composition and activity against nosocomial and foodborne pathogens and food contaminants. Food Funct 8(1):278–290
Verstuyf A, Carmeliet G, Bouillon R, Mathieu C (2010) “Vitamin D: a pleiotropic hormone”. Kidney Int 78(2):140–145
Vertino AM, Bula CM, Chen JR, Almeida M, Han L, Bellido T et al (2005) “Nongenotoxic, anti-apoptotic signaling of alphal,25(OH)2-vitamin D3 and analogs through the ligand binding domain of the vitamin D receptor in osteoblasts and osteocytes. Mediation by Src, phosphatidylinositol 3- and JNK kinases”. J Biol Chem 280(14):14130–14137
Wei S, Tanaka H, Seino Y (1998) “Local action of exogenous growth hormone and insulin-like growth factor-I on dihydroxyvitamin D production in LLC-PK1 cells”. Eur J Endocrinol 139(4):454–460
Whitfield GK, Remus LS, Jurutka PW, Zitter H, Oza AK, Dang HT et al (2001) “Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene”. Mol Cell Endocrinol 177(1–2):145–159
Yan J, Feng Z, Liu J, Shen W, Wang Y, Wertz K et al (2012) “Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: ameliorating effects of (-)-epigallocatechin-3-gallate”. J Nutr Biochem 23(7):716–724
Zanello LP, Norman AW (2004) Rapid modulation of osteoblast ion channel responses by 1alpha,25(OH)2-vitamin D3 requires the presence of a functional vitamin D nuclear receptor. Proc Natl Acad Sci USA 101(6):1589–1594
Zhang Y, Leung DY, Goleva E (2013) “Vitamin D enhances glucocorticoid action in human monocytes: involvement of granulocyte-macrophage colony-stimulating factor and mediator complex subunit 14”. J Biol Chem 288(20):14544–14553
Zhang HQ, Teng JH, Li Y, Li XX, He YH, He X et al (2014) Vitamin D status and its association with adiposity and oxidative stress in schoolchildren. Nutrition 30(9):1040–1044
Ziegler R, Kasperk C (1998) “Glucocorticoid-induced osteoporosis: prevention and treatment”. Steroids 63(5–6):344–348
Zittermann A (2003) “Vitamin D in preventive medicine: are we ignoring the evidence?”. Br J Nutr 89(5):552–572
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.