Perioperative treatment in resectable gastric cancer with spartalizumab in combination with fluorouracil, leucovorin, oxaliplatin and docetaxel (FLOT): a phase II study (GASPAR)

Mélanie Dos Santos1,2*, Justine Lequesne1, Alexandra Leconte1, Stéphane Corbinais2, Aurélie Parzy2, Jean-Marc Guilloit3, Sharmini Varatharajah3, Pierre-Emmanuel Brachet1,2, Marine Dorbeau4, Dominique Vaur5, Louis-Bastien Weiswald6,7, Laurent Poulain6,7, Corentin Le Gallic1, Marie Castera-Tellier1, Marie-Pierre Galais2 and Bénédicte Clarisse1

Abstract

Background: Perioperative chemotherapy and surgery are a standard of care for patients with resectable gastric or gastroesophageal junction (GEJ) adenocarcinoma. However, the prognosis remains poor for this population. The FLOT (fluorouracil, leucovorin, oxaliplatin, and docetaxel) regimen is considered as the new standard chemotherapy regimen for perioperative strategy, despite associated with a 5-year overall survival rate (OS) amounting 45% following radical surgery.

Immunotherapy with antibodies that inhibit PD-1/PD-L1 interaction has recently emerged as a new treatment option with promising and encouraging early trial results for patients with advanced or metastatic gastric or GEJ adenocarcinoma. Currently, no trials have investigated the impact of perioperative immunotherapy in combination with chemotherapy for resectable gastric or GEJ adenocarcinoma.

Methods: GASPAR trial is a multicenter open-label, nonrandomized, phase II trial to evaluate the efficacy and safety of Spartalizumab in combination with the FLOT regimen as perioperative treatment for resectable gastric or GEJ adenocarcinoma. The main endpoint is the proportion of patients with pathological complete regression (pCR) in the primary tumour after preoperative treatment.

Systemic treatment will include a pre-operative neoadjuvant and a post-operative adjuvant treatment, during which FLOT regimen will be administered every two weeks for 4 cycles and Spartalizumab every four weeks for 2 cycles. For patients with confirmed tumor resectability on imaging assessment, surgery will be realized within 4–6 weeks after the last dose of preoperative chemotherapy. Post-operative systemic treatment will then be initiated within 4–10 weeks after surgery.

Using a Simon's two-stage design, up to 67 patients will be enrolled, including 23 in the first stage.
Discussion: Currently, no trials have investigated the impact of immunotherapy in combination with FLOT chemotherapy as perioperative treatment for resectable gastric or GEJ adenocarcinoma. Some studies have suggested a change in the tumor immune micro-environment following neoadjuvant chemotherapy in this setting, reinforcing the relevance to propose a phase II trial evaluating efficacy and safety of Spartalizumab in combination with perioperative chemotherapy, with the aim of improving treatment efficacy and survival outcomes.

Trial registration: NCT04736485, registered February, 3, 2021.

Keywords: Gastric cancer, Gastroesophageal junction cancer, Neoadjvant treatment, Immunotherapy, Spartalizumab

Background
Gastric cancer represents the fifth most common cancer and the third leading cause of cancer deaths in the world [1]. Perioperative chemotherapy and surgery are a standard of care for patients with resectable gastric or Gastroesophageal Junction (GEJ) adenocarcinoma. Despite this combination of treatment, the prognosis remains poor for this population.

Perioperative treatment was considered as the standard compared to surgery alone according to the randomized MAGIC trial, evaluating ECF (Epirubicin, Cisplatin and Fluorouracile), 3 pre- and 3 post-operative cycles in 503 patients with resectable locally advanced gastric or GEJ adenocarcinoma [2]. Especially, an improved Overall Survival (OS) with a 5-year survival rate of 36% was observed, versus 23% for surgery alone. However, in a controlled open-label phase II/III trial conducted among 716 patients, the FLOT regimen (Fluorouracil, Leucovorin, Oxaliplatin, and doceTaxel), 4 pre- and 4 post-operative cycles, was associated with better OS compared to ECF as perioperative chemotherapy, with 50 months versus 35 months in median [3]. Moreover, there was a higher proportion of pathological Complete Response (pCR): 16% [95% CI: 10–23] versus 6% [95% CI: 3–11] [4]. Furthermore, a recent meta-analysis showed that pCR was clearly associated with lower risk of death and recurrence compared with patients with any residual disease, among 1 143 patients with resectable gastric or GEJ cancer, after neoadjuvant chemotherapy and radical surgery [5]. The FLOT regimen thus appears as the new standard chemotherapy regimen for perioperative strategy of resectable gastric or GEJ adenocarcinoma. However, the 5-year OS rate remains only at 45% following radical surgery [3]. New approaches are needed to improve these outcomes.

PD-1 is a critical immune checkpoint receptor. It acts through its ligands, PD-L1 and PD-L2, while transducing a signal that inhibits T-cell proliferation, cytokine production, and cytolytic function, attenuating tumor immunity and facilitating tumor progression [6, 7]. PD-1 and its ligand PD-L1 are expressed on up to 50% of gastric or GEJ tumors, with a controversial impact on survival [8, 9]. Immunotherapy with antibodies that inhibit PD-1/PD-L1 interaction has recently emerged as a new treatment option with promising and encouraging early trial results for patients with advanced or metastatic gastric or GEJ adenocarcinoma [10]. Muro et al. conducted a phase Ib trial (KEYNOTE-012) in 39 patients with PD-L1-positive advanced gastric or GEJ adenocarcinoma to investigate the safety and activity of the anti-PD-1 antibody pembrolizumab [11]. Pembrolizumab demonstrated a 22% objective response rate with a manageable toxicity profile. Fuchs et al. conducted the KEYNOTE-059 phase II trial with pembrolizumab monotherapy in 259 patients with previously treated advanced gastric and GEJ cancer (at least 2 lines of treatment) and showed durable responses, with great response rate, especially for PD-L1 positive tumors [12]. Results from these studies allowed approval of pembrolizumab by the US FDA as third line treatment for patients with advanced or metastatic gastric or GEJ cancer PD-L1–positive. Moreover, an update of the KEYNOTE-059 trial demonstrated a manageable safety and promising efficacy of first-line immunotherapy combined with chemotherapy (cisplatin and fluorouracil) [13]. In a first-line study (KEYNOTE-062), Shitara et al. showed encouraging benefit with pembrolizumab versus chemotherapy among patients with untreated advanced gastric and GEJ cancer with higher levels of PD-L1 and microsatellite instability–high (MSI-H) tumours [14]. The CheckMate 649 trial recently showed that nivolumab and chemotherapy versus chemotherapy alone improved OS and progression-free survival (PFS) as first-line treatment in patients with non-HER-2-positive advanced gastric, GEJ or oesophageal cancer [15].

PDR001 (Spartalizumab) is a high-affinity, ligand-blocking, humanized Immunoglobulin G4 monoclonal antibody directed against PD-1 that blocks the binding of PD-L1 and PD-L2 [16]. Spartalizumab has demonstrated pharmacodynamic activity and a favorable toxicology profile in preclinical studies [17]. The available safety data from clinical studies indicate that PDR001 is generally well tolerated. As of the safety cut-off date of 26-Mar-2020, 1 702 patients across the 17 Novartis-sponsored clinical studies described have been treated with PDR001. In the open label multicenter phase I/II study of the safety and efficacy of PDR001 administered to patients with advanced malignancies, the
results of phase I dose escalation among 58 patients have been published [17]. The maximum tolerated dose was not reached. The recommended phase II doses were determined as 400 mg Q4W or 300 mg Q3W. No dose-limiting toxicities were observed, and adverse events included those typical of other PD-1 antibodies. In the phase I step of this trial [17], the most common treatment-related adverse events of any grade were fatigue (22%), diarrhea (17%), pruritus (14%), hypothyroidism (10%), and nausea (10%).

In the GASPAR study herein presented, we aim to evaluate the efficacy and safety of Spartalizumab in combination with the FLOT regimen as perioperative treatment for resectable gastric or GEJ adenocarcinoma. Ancillary biological exploration is also planned to identify subgroups of responder patients. Indeed, cancer immunotherapies represent a major novel class of antitumor agents. However, the mechanism of action of these exciting new therapies is not completely understood and much remains to be learned regarding how best to leverage these new drugs in treating patients. Thus, to aid future patients, it is important to investigate the determinants of response or resistance to cancer immunotherapy and other treatments administered. These efforts may identify predictive biomarkers and generate information that could help in patient selection with personalized medicine programs (Fig. 1).

Methods / design
The GASPAR study is a multicenter, open-label, non-randomized phase II trial conducted to evaluate the efficacy and safety of Spartalizumab in combination with the FLOT regimen as perioperative treatment for resectable gastric or GEJ adenocarcinoma in patients (Fig. 1). The GASPAR protocol and this manuscript have been written in accordance with standard protocol items, namely recommendations for interventional trials (SPIRIT).

Primary outcome
The primary objective of the study is to assess the pathologic response after pre-operative treatment by Spartalizumab in combination with the FLOT regimen for resectable gastric or GEJ adenocarcinoma.

Secondary outcomes
The secondary objectives are:

To evaluate the impact of perioperative treatment on survival outcomes (disease-free and overall survivals)
To evaluate the histological R0 resection margin
To establish the association between pCR and survival outcomes (disease-free and overall survivals)
To determine the safety profile of the combination of Spartalizumab and FLOT regimen
To evaluate the post-operative morbidity and mortality

Study population
Eligibility criteria are precised in Table 1. The GASPAR study addresses patients with untreated localized gastric or GEJ adenocarcinoma considered resectable.

Study sites
The list of study sites is indicated on https://clinicaltrials.gov/ct2/show/NCT04736485. The participation of 13 French centres is planned (Table 2).

Study treatments
Eligible patients who have completed screening and have signed the written informed consent to participate to this phase II trial will receive a treatment by Spartalizumab plus FLOT
Table 1  Eligibility criteria

| Inclusion criteria | Non-inclusion criteria |
|--------------------|------------------------|
| Patient ≥ 18 years at the day of consenting to the study | Subject with any distant metastasis |
| Provision of informed consent prior to any study specific procedures | Subject with no recovering from the effects of major surgery or significant traumatic injury within 14 days before inclusion |
| Untreated localized gastric or GEJ adenocarcinoma considered resectable (clinical stage ≤ cT2 and/or cN+ and no metastasis) | Documented significant cardiovascular disease within the past 6 months before the first dose of study treatment, including: history of congestive heart failure (defined as NYHA III or IV), myocardial infarction, unstable angina, coronary angioplasty, coronary stenting, coronary artery bypass graft, cerebrovascular accident or hypertensive crisis |
| Histologically confirmed adenocarcinoma | History of anterior organ transplant |
| ECOG performance status score ≤ 1 | Pneumonitis or interstitial lung disease |
| Tumor tissue must be provided for biomarker analyses (fresh or archival with an FFPE tissue block) | History of other malignancy within the previous 3 years (except for appropriately treated in-situ cervix carcinoma and non-melanoma skin carcinoma) |
| All subjects must consent to allow the acquisition of blood samples for performance of correlative studies | Active, known, or suspected autoimmune disease |
| Screening laboratory values must meet the criteria: WBC ≥ 2000/μl, Neutrophils ≥ 1500/μl, Platelets ≥ 100 000/μl, Hemoglobin ≥ 90 g/dl, Bilirubin ≤ 1.5 x ULN, AST and ALT ≤ 3 x ULN, measured or calculated creatinine ≥ 50 ml/min clearance (CrCl) (using the Cockcroft-Gault formula), Potassium ≥ LLN, Magnesium ≥ LLN and Calcium ≥ LLN | Subject with a condition requiring systemic treatment with either corticosteroids (> 10 mg daily prednisone equivalent) or other immunosuppressive medications within 14 days of start of study treatment |
| Female subject of childbearing potential must have a negative urine or serum pregnancy test within 72 h before study start | Known history of HIV or HBV infection, history of active tuberculosis, active HCV infection |
| Subject in reproductive age must be willing to use adequate contraception during the study and at least 9 months in men and 12 months in women after the last dose of investigational drug. In addition, given the toxicities observed on the male reproductive system, a conservation of gametes will be proposed for men | Vaccination with live vaccine within 30 days before the first dose of study treatment |
| Subject affiliated to a social security regimen | Prior treatment with an anti-PD-1, anti-PD-L1, anti-PD-L2 or any other antibody or drug specifically targeting T-cell co-stimulation or checkpoint pathways |

regimen, initiated within 15 days after inclusion. Systemic treatment will include a pre-operative neoadjuvant 8-week phase of treatment and a post-operative 8-week phase of treatment.

The administered treatment will be FLOT associated to Spartalizumab as follows:

Standard FLOT regimen:

- Docetaxel 50 mg/m² IV infusion on D1
- Oxaliplatine 85 mg/m² IV infusion on D1
- Leucovorin 200 mg/m² IV infusion on D1
- Fluourouracil 2600 mg/m² 24 h IV infusion on D1

Chemotherapy will be administered every two weeks for 4 pre-operative cycles (8 weeks) and 4 post-operative cycles (8 weeks).

Spartalizumab (PDR001): patients will receive the fixed dose of 400 mg per IV infusion over 30 minutes on D1 every four weeks for 2 pre-operative cycles (8 weeks) and 2 post-operative cycles (8 weeks).

For patients with confirmed resectability of the tumor by an imaging assessment (TAP CT-scan and optional MRI and endoscopy), surgery will be realized within 4–6 weeks after the last dose of preoperative chemotherapy and will depend on tumoral localization:

- for gastric tumors, surgery will consist on a total or subtotal distal (for antropyloric tumors) gastrectomy with D2 lymphadenectomy,
- for type 1 GEJ tumors, transsthoracic esophagectomy (Ivor-Lewis procedure) with resection of the proximal stomach and 2-field (mediastinal and abdominal) lymphadenectomy,
- for type 2 or 3 GEJ tumors, gastrectomy with transthiatal distal oesophagectomy and D2 lymphadenectomy.

Local pathologists from selected expert centers will perform standardized evaluation of pathological response in surgically resected specimens. Tumour regression grade will be assessed according to the Becker regression criteria [18].

Post-operative systemic treatment will be initiated within 4–10 weeks after surgery.

Premedication is not recommended for Spartalizumab. Also, it is recommended to use antiemetic treatment according to the ASCO/MASCC recommendation guideline with aprepitant and setron before FLOT regimen.
| INVESTIGATORS | PARTICIPATING FRENCH COMPREHENSIVE CANCER CENTRES |
|---------------|-----------------------------------------------|
| **Coordinating investigator:**<br>Dr Mélanie DOS SANTOS | Centre François Baclesse, CAEN |
| **Co-investigators:**<br>Dr Marie-Pierre GALAIS<br>Dr Stéphane CORBINAIS<br>Dr Aurélie PARZY<br>Dr Pierre-Emmanuel BRACHET<br>Dr Georges EMILE<br>Dr Emeline MÉRIAUX | |
| **Main investigator:**<br>Pr Thomas APARICIO | Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, PARIS |
| **Co-investigators:**<br>Dr Jean-Marc GORNET<br>Dr Nelson LOURENCO<br>Dr Nassim HAMMOUDI<br>Dr Nicolas ASESIO<br>Dr Delphine SALFATI | |
| **Main investigator:**<br>Dr Romain Desgrippes | Centre Hospitalier, SAINT-MALO |
| **Co-investigators:**<br>Dr Anais BODERE | |
| **Main investigator:**<br>Pr Christophe BORG | University Hospital, BESANCON |
| **Co-investigators:**<br>Dr Marine JARY<br>Dr Francine FEIN<br>Dr Thierry NGUYEN<br>Dr Hamadi ALMOTLAK<br>Dr Angélique VIENOT<br>Dr Elodie KLJER | |
| **Main investigator:**<br>Dr Sandrine HIRET | Institut de Cancérologie de l’Ouest, site NANTES |
| **Co-investigators:**<br>Dr Ludovic DOUCET<br>Camille MOREAU BACHELARD<br>Dr Judith RAIMBOURG<br>Dr Hélène SENELLART<br>Dr Amélie MALLET<br>Dr Frédéric DUMONT | |
| **Main investigator:**<br>Dr Guillaume PISSSEN | Regional University Hospital, LILLE |
| **Co-investigators:**<br>Dr Anthony TURPIN<br>Dr Anne PLOQUIN<br>Dr Christophe DESAUV<br>Dr Nicolas BERTRAND<br>Dr Anne GANDON<br>Dr Clément DUBOIS | |
| **Main investigator:**<br>Dr Emilie SOULARIE<br>Dr Christophe LOUVET<br>Dr Mostefa BENNAMOUN<br>Dr Marie-Liesse JOULIA | Institut Mutualiste Montsouris, PARIS |
| **Main investigator:**<br>Dr Mathilde BRASSEUR | University Hospital Robert Debré, REIMS |
| **Co-investigators:**<br>Dr Olivier BOUCHE | |
| **Main investigator:**<br>Dr Damien BOTSEN | |
To anticipate some potential interactions with Spar talizumab and/or FLOT regimen, the use of concomitant medications is defined in the protocol. Thus, some treatments and/or procedures are permitted, namely G-CSF (in secondary prophylaxis of severe or febrile neutropenia, or in primary prophylaxis from first cycle of treatment), erythropoietin and/or transfusions, anti-diarrheal medications in case of diarrhea, pain medication, and/or nutritional support, at the discretion of the investigator. Conversely, other systemic anticancer agents (chemotherapy, hormonal therapy other than megestrol acetate, immunotherapy) or other treatments not part of protocol-specified anticancer therapy, live vaccines, systemic glucocorticoids for any purpose other than to modulate symptoms from an adverse event that is suspected to have an immunologic etiology (the use of physiologic doses of corticosteroids may be approved after consultation with the Sponsor) are not authorized. In addition, drugs known to prolong the QTc interval should be used with caution.

**Study assessments**

The overview of study assessments and procedures is detailed in Table 3. Tumoral evaluation will be performed
Table 3  Overview of study assessments of the GASPAR trial

| Before inclusion (within 28 days prior inclusion) | DURING TREATMENT | End of treatment 30 days after the end of treatment (±7 days) | Follow-up every 3 months up to progression | Overall survival after disease progression |
|--------------------------------------------------|------------------|-----------------------------------------------------------------|-------------------------------------------|------------------------------------------|
| Pre-operative treatment  
FLOT (q2w)  
Spartalizumab PDR001 (q4w) | D1  D15  D29  D43 | Within 3 weeks before surgery | D1  D15  D29  D43 | No study visit is required. The following treatment/exams are at the discretion of physician |
| Signed Informed Consent before any study procedures | ✔ | ✔ | ✔ | ✔ | ✔ |
| Clinical assessment  
Physical examination including weight  
ECOG, vital signs  
Adverse Events collection and concomitant treatments | ✔ | ✔ | ✔ | ✔ | ✔ |
| Biological assessment  
Hematology and biochemistry  
Uracilemia  
Urine or serum pregnancy test  
Thyroid-function: TSH, free T4  
Tumor markers: CEA, CA 19.9  
ECG  
CT-scan (thoracic and abdomino-pelvic)  
MRI optional  
Endoscopy  
Blood samples for translational research | ✔ | ✔ | ✔ | ✔ | ✔ |

1 CBC - platelets, Creatininemia, kaliema, magnesiumemia, calcium, albumin, glycemia, lipase, bilirubin, ALT, AST, GGT  
2 Only if realized more 3 days before D1  
3 Within 3 days before treatment administration  
4 The initial combination treatment by FLOT regimen plus Spartalizumab should be initiated within 7 days after inclusion  
5 The combination treatment by FLOT regimen plus Spartalizumab should be initiated within 4–10 weeks after surgery  
6 Blood sample only for follow-up at 3 months  
7 To be realized before and after oxaliplatin intravenous infusion  
8 Every 3 months for the first 2 years and every 6 months for the next 3 years  
9 Within 6 weeks prior to inclusion with available archival tumor (otherwise, fresh tumor) And optional fresh tumor biopsies only at François Baclesse site for organoids research (additional specific consent form)  
10 Mandatory blood samples for ctDNA  
And optional PBMC at baseline only at François Baclesse site for organoids research (additional specific consent form)
with CT-scan (thoracic and abdomino-pelvic) at baseline, before surgery, at the end of treatment, thereafter every 3 months for the first 2 years and every 6 months for the next 3 years in the absence of tumoral progression. Disease assessment evaluation will be determined locally according to RECIST v1.1 (Response Evaluation Criteria in solid Tumors) criteria.

For further ancillary biological studies, we plan to constitute a blood and tumor collection with the aim to evaluate the impact of biomarkers (ctDNA and tissue) in terms of oncological outcomes and response to treatment. These biomarkers may include ctDNA levels over time, PD-L1 expression, MSI status, EBV (Epstein-Barr Virus) status and TMB (Tumor Mutational Burden). Exploration of tumor organoid culture is also planned only for patients enrolled in Centre François Baclesse with additional specific written consent form.

**Statistical design overview**

**Sample size determination**

We used an optimal Simon’s two stage phase II design to estimate the sample size. According to Al-Batran S-E et al. outcomes [4], patients rate achieving pathological complete regression with FLOT regimen was 16% [95%CI: 10–23] (observed in 128 patients). To assess efficacy of FLOT regimen combined with Spartalizumab, we assume a histological complete response rate \( p \) < 10% as unacceptable (corresponding to the lower CI limit of response rate in Al-Batran), and a response rate \( p \) > 23% as demonstrating efficacy of the treatment combination (corresponding to the upper CI limit). With an alpha level of 5% and statistical power of 80%, 58 assessable patients are required, including 20 in the first stage.

Taking into account that 15% of patients will be lost or non-assessable, we plan to include a total of 67 patients in the trial (23 in the first stage and 44 in the second).

**Statistical analyses**

All enrolled patients who will receive at least one dose of study medication will be evaluable for the efficacy analysis, as well as included in the safety analysis. A safety analysis will be planned after a follow-up of one month following surgery of the tenth enrolled patient, during which enrolment will be halted. It will aim to precisely describe safety data up to one month post-surgery, the potential delays in performing surgery and the reasons for postponing it, as well as the perioperative complications that will have occurred.

After the 23th inclusion, the planned interim analysis on efficacy will be performed, during which enrolment will not be halted. According to Simon’s two-stage design, a minimum of 3 complete responses out of 20 assessable patients in the first stage will allow pursuing the study in the second stage. Otherwise, the study will stop for insufficient efficacy.

On the 58 assessable patients considered for the final analysis, the study will conclude to efficacy if at least 10 complete responses are observed. Additionally, the response rate will be estimated with a 95%CI confidence interval.

Then, Chi-squared test and T-Student test will be used to measure association of, respectively, qualitative and quantitative variables with pCR response. Time-to-event variables will be summarized by the Kaplan–Meier estimator. Association of time-to-event variables with factors of interest will be measured by a Cox model and the log-rank test. Adverse events of the treatment combing Spartalizumab and FLOT regimen will be described according to NCI CTCAE criteria v5.0 and tabulated by grade and frequencies, based on time of occurrence and relationship to treatment. The tolerance profile of the association will be summarized by duration of treatment, reasons of discontinuation, dose reduction rates and reasons for dose reductions.

**Data monitoring committee**

An Independent Data Monitoring Committee (IDMC) will be set-up to ensure the protection of patients, to ensure the ethical conduct of the study, to evaluate the benefit/risk ratio of the study and to ensure an independent review of the scientific outcomes during and at completion of the study.

The committee will include a biostatistician, a pharmacologist and a medical oncologist.

The members of the IDMC will be consulted before the trial initiation, at safety analysis one month after surgery of the 10th enrolled patients, thereafter, at the interim and final analyses.

**Data management**

A Web Based Data Capture (WBDC) system will be used for data collection and query handling. The investigator will ensure that data are recorded on the eCRFs as specified in the study protocol and in accordance with the instructions provided.

The investigator ensures the accuracy, completeness, and timeliness of the data recorded and of the provision of answers to data queries according to the Clinical Study Agreement. The investigator will sign the completed eCRFs. A copy of the completed eCRFs will be archived at the study site.

**Withdrawal from study**

The reasons for why a patient may discontinue to participate to the study or interrupt the treatment include the following circumstances:
Discussion

Currently, no trials have investigated the impact of neoadjuvant immunotherapy in combination with chemotherapy for resectable gastric or GEJ adenocarcinoma. Nevertheless, some studies suggest a change in the tumor immune micro-environment following neoadjuvant chemotherapy in locally advanced gastric cancer, with an increased expression of immune markers. Thus, tumor samples, before and after neoadjuvant chemotherapy, of 60 patients with locally advanced gastric cancer were retrospectively identified and analyzed by multiplex immunohistochemistry, with a panel including PD-1 and PD-L1 [19]: following neoadjuvant chemotherapy, the overall median expression levels of PD1 and PD-L1 were significantly increased; moreover, high upregulation levels of these checkpoint molecules were correlated with survival benefits.

All these data are encouraging in the use of immunotherapy in combination with perioperative chemotherapy, with the aim of improving treatment efficacy and survival outcomes. In this context, we propose a non-randomized phase 2 study to assess the efficacy and safety of Spartalizumab in combination with the FLOT regimen as perioperative treatment for resectable gastric or GEJ adenocarcinoma.

Abbreviations

AE: Adverse event; ALT: Alanine aminotransferase; ASCO: American Society of Clinical Oncology; AST: Aspartate aminotransferase; CA 19.9: Carbohydrate antigen 19 9; CBC: Complete blood cells count; CEA: Carcinoembryonic antigen 1; CI: Confidence intervals; CT: Computed tomography; CTCAE: Common Terminology Criteria for Adverse Events; ctDNA: Circulating tumor DNA; EBV: Epstein–Barr virus; ECG: Electrocardiogram; ECOG: Eastern Cooperative Oncology Group; eCRF: Electronic case report form; FDA: Food and Drug Administration; FFPE: Formalin-fixed paraffin-embedded; GEJ: Gastroesophageal junction; GGT: Gamma glutamyltransferase; HBV: Hepatitis B virus; HCV: Hepatitis C virus; HIV: Human immunodeficiency virus; IDMC: Independent data monitoring committee; MASCC: Multinational Association of Supportive Care in Cancer; MRI: Magnetic resonance imaging; MSI: Microsatellits instability; NYHA: New York Heart Association; NCI: National cancer institute; OS: Overall survival; PBMC: Peripheral blood mononuclear cells; pCR: Pathological complete regression; PD-1: Programmed death-1; PD-L1: Programmed death-ligand 1; PD-L2: Programmed death-ligand 2; QTc: Corrected QT interval; RECIST: Response evaluation criteria in solid tumors; SPIRIT: Standard Protocol Items, Recommendations for Interventional Trials; T4: Serum thyroxine; TAP: Thorax, abdomen and pelvis; TMB: Tumor mutational burden; TSH: Thyroid stimulating hormone; WBC: White blood cell count; WBDC: Web Based Data Capture.

Acknowledgements

We are grateful to the members of the Independent Data Monitoring Committee for their involvement in the conduct of this trial. We thank the Data Processing Centre (DPC) of the North West Canceropole (Centre de Traitement des Données du Cancéropôle Nord-Ouest) in charge of data management.

We would like to thank all patients who will consent to participate as well as their families. The investigators are also thanked.

Author’s contributions

MDS, JL, AL and BC wrote the manuscript and devised the study concept and design. JL was responsible for overseeing the statistical section. All authors (MDS, JL, AL, SC, AP, JMG, SV, PEB, MD, DV, LBW, LP, CLG, MCT, MPG and BC) contributed to the study protocol, read and approved the final manuscript.

Each author has been sufficiently involved in the work to take public responsibility for appropriate portions of the content.

Funding

This trial (NCT04736485S) is granted in the context of the call for projects 2019 “Innovating molecules on HDMD210, HDMD2-P53 inhibitor, Spartalizumab (POR001), anti-PD1, Capmatinib (INC280), c-met inhibitor, LSZ102, inhibitor and modulator of estrogen receptors.” The grant is jointly funded by the French Cancer Institute and the French Fondation ARC (Ref NCa-ARC_14842). Spartalizumab is provided free of charge to enrolled patients by Novartis. The French Cancer Institute, the Fondation ARC and Novartis are not involved in the design and conduct of the study, nor in the collection, management, analysis, and interpretation of the data. They are not involved in the writing of the manuscript.

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate

This study has received ethical approval from the Comité de Protection des Personnes EST IV (N’EudraCT: 2020-004497-21) and from National Agency for Medical and Health products Safety (Reference: 2020–12-00012_2020-004497-21) in January 2021. All patients will be proposed to participate by the medical oncologists, gastroenterologists or digestive surgeons, who will give them an information file. All patients will give their written informed consent before any study-related assessment start.

Consent for publication

Not applicable.

Competing interests

Novartis provided Spartalizumab.

Author details

1Clinical Research Department, UNICANCER, Centre François Baclesse, 3 Avenue du Général Harris, 14000 Caen, France. 2Department of Medical Oncology, UNICANCER, Centre François Baclesse, 3 Avenue du Général Harris, 14000 Caen, France. 3Department of Surgery, UNICANCERCentre François Baclesse, 14000 Caen, France. 4Department of Pathology, UNICANCERCentre François Baclesse, 14000 Caen, France. 5Department of Cancer Biology and Genetics, UNICANCERCentre François Baclesse, 14000 Caen, France. 6UNICANCER, Centre François Baclesse, 14000 Caen, France. 7Normandie University, UNICAEN, ANTICIPE, ORGAPRED Platform, Caen, France.

Received: 7 April 2022 Accepted: 29 April 2022 Published online: 12 May 2022
References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

2. Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJH, Nicolson M, et al. Perioperative Chemotherapy versus Surgery Alone for Resectable Gastroesophageal Cancer. N Engl J Med. 2006;355:11–20.

3. Al-Batran S-E, Hofheinz RD, Pauligk C, Kopp H-G, Haag GM, Luley KB, et al. Histopathological regression after neoadjuvant docetaxel, oxaliplatin, fluorouracil, and leucovorin versus epirubicin, cisplatin, and fluorouracil or capecitabine in patients with resectable gastric or gastroo esophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. The Lancet. 2019;393:1948–57.

4. Al-Batran S-E, Hofheinz RD, Pauligk C, Kopp H-G, Haag GM, Luley KB, et al. Histopathological regression after neoadjuvant docetaxel, oxaliplatin, fluorouracil, and leucovorin versus epirubicin, cisplatin, and fluorouracil or capecitabine in patients with resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4-AIO): results from the phase 2 part of a multicentre, open-label, randomised phase 2/3 trial. Lancet Oncol. 2016;17:1697–708.

5. Li Z, Shan F, Wang Y, Zhang Y, Zhang L, Li S, et al. Correlation of pathological complete response with survival after neoadjuvant chemotherapy in gastric or gastro-oesophageal junction cancer treated with radical surgery: A meta-analysis. PLoS ONE. 2018;13: e0189294.

6. Riley JL. PD-1 signaling in primary T cells. Immunol Rev. 2009;229:114–25.

7. Jin H-T, Ahmed R, Okazaki T. Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol. 2011;350:17–37.

8. Wu P, Wu D, Li L, Cha Y, Huang J. PD-L1 and Survival in Solid Tumors: A Meta-Analysis. PLoS ONE. 2015;10: e0131403.

9. Gu L, Chen M, Guo D, Zhu H, Zhang W, Pan J, et al. PD-L1 and gastric cancer prognosis: A systematic review and meta-analysis. PLoS ONE. 2017;12: e0182692.

10. Taieb J, Moehler M, Boku N, Ajani JA, Yañez Ruiz E, Ryu M-H, et al. Evolution of checkpoint inhibitors for the treatment of metastatic gastric cancers: Current status and future perspectives. Cancer Treat Rev. 2018;66:104–13.

11. Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 2016;17:717–26.

12. Fuchs CS, Dai T, Jang RW, Muro K, Satch T, Machado M, et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018;4: e180013.

13. Bang Y-J, Kang Y-K, Catenacci DV, Muro K, Fuchs CS, Geva R, et al. Pembrolizumab alone or in combination with chemotherapy as first-line therapy for patients with advanced gastric or gastroesophageal junction adenocarcinoma: results from the phase II nonrandomized KEYNOTE-059 study. Gastric Cancer Off J Int Gastric Cancer Assoc Ipn Gastric Cancer Assoc. 2019;22:828–37.

14. Shitara K, Van Cutsem E, Bang Y-J, Fuchs C, Wynicz L, Lee K-W, et al. Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients With First-line Advanced Gastric Cancer: The KEYNOTE-062 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020. https://doi.org/10.1001/jamaoncol.2020.3370.

15. Moehler M, Shitara K, Garrido M, Salman P, Shen L, Wynicz L, et al. LB46 PR Nivolumab (nivo) plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced gastric cancer/gastroo esophageal junction cancer (GC/GEJC)/esophageal adenocarcinoma (EAC): First results of the CheckMate 649 study. Ann Oncol. 2020;31: S1191.

16. Freeman GJ. Structures of PD-1 with its ligands: sideways and dancing cheek to cheek. Proc Natl Acad Sci U S A. 2008;105:10275–6.

17. Naing A, Gainor JF, Gelderblom H, Forde PM, Butler MO, Lin C-C, et al. A first-in-human phase 1 dose escalation study of spartalizumab (PD001), an anti-PD-1 antibody, in patients with advanced solid tumors. J Immunother Cancer. 2020;8:e000530.

18. Reckinger K, Mueller JD, Schulmacher C, Ott K, Fink U, Busch R, et al. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy: response of gastric carcinoma to chemotherapy. Cancer. 2003;98:1521–30.

19. Yu Y, Ma X, Zhang Y, Zhang Y, Ying J, Zhang W, et al. Changes in expression of multiple checkpoint molecules and infiltration of tumor immune cells after neoadjuvant chemotherapy in gastric cancer. J Cancer. 2019;10:2754–63.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.