Essential Role of NMDA Receptor Channel ε4 Subunit (GluN2D) in the Effects of Phencyclidine, but Not Methamphetamine

Yoko Hagino¹, Shinya Kasai¹, Wenhua Han¹, Hideko Yamamoto¹, Toshitaka Nabeshima², Masayoshi Mishina³, Kazutaka Ikeda¹*

1 Division of Psychobiology, Tokyo Institute of Psychiatry, Tokyo, Japan, 2 Comparative Cognitive Science Institutes and Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan, 3 Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

Abstract

Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, increases locomotor activity in rodents and causes schizophrenia-like symptoms in humans. Although activation of the dopamine (DA) pathway is hypothesized to mediate these effects of PCP, the precise mechanisms by which PCP induces its effects remain to be elucidated. The present study investigated the effect of PCP on extracellular levels of DA (DAex) in the striatum and prefrontal cortex (PFC) using in vivo microdialysis in mice lacking the NMDA receptor channel ε1 or ε4 subunit (GluRε1 [GluN2A] or GluRε4 [GluN2D]) and locomotor activity. PCP significantly increased DAex in wildtype and GluRε1 knockout mice, but not in GluRε4 knockout mice, in the striatum and PFC. Acute and repeated administration of PCP did not increase locomotor activity in GluRε4 knockout mice. The present results suggest that PCP enhances dopaminergic transmission and increases locomotor activity by acting at GluRε4.

Introduction

Phencyclidine (PCP) is a drug of abuse that causes psychosis resembling both the positive (e.g., hallucinations, paranoia) and negative (e.g., emotional withdrawal, motor retardation) signs of schizophrenia in humans [1]. Acute administration of PCP to rodents decreases increases in locomotor activity, stereotypy, and ataxia [2,3]. Repeated PCP administration produces sensitization of locomotor activity, rearing, and stereotypy but tolerance to ataxia [3–5]. PCP acts as a noncompetitive antagonist of the N-methyl-D-aspartate (NMDA) excitory amino acid receptor [6–8]. Additionally, high doses of PCP block dopamine (DA) uptake [9–11]. Similar to PCP, amphetamine (AMPH) and its derivative methamphetamine (METH) produce behavioral sensitization to locomotor activity, rearing, and stereotypy when they are repeatedly administered [12,13]. Amphetamine and METH facilitate dopaminergic neurotransmission via a number of mechanisms [14], including DA efflux by reverse transport through the dopamine transporter (DAT) [15–18], inhibition of DA uptake [19–21], and inhibition of monoamine oxidase (MAO) activity [22–24].

The NMDA receptor channel subunit family is composed of seven subunits—GluRε1 [GluN1], GluRε1-4 (GluN2A-D), and GluRζ1, 2 (GluN3A, B)—which are all products of separate genes [25]. In the rodent and human brains, GluRε1 and GluRε2 are predominant subunits expressed in the forebrain. GluRε3 is expressed largely in cerebellar granule cells and selectively in several other brain regions. GluRε4 is expressed in the diencephalon and midbrain and is more prominent during early development [26]. Highly active NMDA receptor channels are produced when the GluRε4 subunit is expressed together with one of the four GluRα subunits in Xenopus oocytes and mammalian cells [27–30]. Four GluRα subunits are major determinants of the functional properties of NMDA receptor channels [31]. Noncompetitive NMDA receptor antagonists (i.e., PCP, ketamine, and SKF-10,047) block the four GluRα/GluRε4 channels to similar extents in Xenopus oocytes [32]. Gene-targeting techniques provide an efficient method for clarifying the distinct functions of these NMDA receptor channel subunits. GluRε1 knockout mice display increased locomotor activity, whereas GluRε4 knockout mice exhibit reduced locomotor activity in a novel environment [33–36]. GluRε3 knockout mice show few apparent deficits [37–39]. Investigating the physiological functions of GluRε1 or GluRε2 knockout mice, in contrast, is nearly impossible because these two mutants die shortly after birth [40–42].

To clarify the contributions of NMDA receptor channel subunits in the PCP-induced increases in extracellular levels of dopamine (DAex) and locomotor responses, we investigated the effects of METH and PCP on DAex in the striatum and prefrontal cortex (PFC) using in vivo microdialysis and measuring locomotor activity in GluRε1 knockout (GluRε1−/−) and GluRε4 knockout (GluRε4−/−) mice.
Results

Baseline DAex in the striatum and PFC in GluRε1−/− and GluRε4−/− mice

Baseline DAex was not different between wildtype, GluRε1−/−, and GluRε4−/− mice in the striatum (one-way analysis of variance [ANOVA]; F2,37 = 0.412, p = 0.664) and PFC (one-way ANOVA: F2,39 = 1.025, p = 0.365). Mean baseline DAex in the striatum was 51.89 ± 3.57 fmol/10 µl (n = 27) for wildtype, 49.35 ± 5.35 fmol/10 µl (n = 19) for GluRε1−/−, and 46.75 ± 3.93 fmol/10 µl (n = 24) for GluRε4−/− mice. Mean baseline DAex in the PFC was 1.29 ± 0.20 fmol/10 µl (n = 23) for wildtype, 1.59 ± 0.30 fmol/10 µl (n = 20) for GluRε1−/−, and 1.10 ± 0.21 fmol/10 µl (n = 19) for GluRε4−/− mice.

Effects of acute METH administration on DAex in the striatum and PFC in GluRε1−/− and GluRε4−/− mice

Methamphetamine (1 mg/kg) markedly increased DAex in the striatum and PFC in wildtype, GluRε1−/−, and GluRε4−/− mice (Fig. 1A, C). Two-way ANOVA (drug × genotype) of DAex measured as the area-under-the-curve (AUC) calculated during a 180 min posttreatment period, revealed a significant effect of drug (F1,37 = 47.418, p < 0.001) but not genotype (F2,39 = 0.898, p = 0.419) and no significant drug × genotype interaction (F2,39 = 0.739, p = 0.484) in the striatum (Fig. 1B). Similarly, in the PFC, two-way ANOVA (drug × genotype) of AUC values revealed a significant effect of drug (F1,35 = 48.784, p < 0.001) but not genotype (F1,31 = 0.320, p = 0.728) and no significant drug × genotype interaction (F1,31 = 0.201, p = 0.819) (Fig. 1B).

Effects of acute PCP administration on DAex in the striatum and PFC in GluRε1−/− and GluRε4−/− mice

Phencyclidine (3 mg/kg) markedly increased DAex in wildtype and GluRε1−/− mice, but not in GluRε4−/− mice, in the striatum and PFC (Fig. 2A, C). Two-way ANOVA (drug × genotype) of AUC values revealed a significant effect of drug (F1,37 = 17.201, p < 0.001) but not genotype (F2,39 = 2.012, p = 0.147) in the striatum and a significant drug × genotype interaction (F2,39 = 3.514, p = 0.047) (Fig. 2B). Post hoc comparisons revealed that the effect of PCP on DAex in GluRε4−/− mice was significantly less compared with wildtype and GluRε1−/− mice (p = 0.002 and 0.03, respectively; Fisher’s Protected Least Significant Difference [PLSD] post hoc test) in the striatum (Fig. 2B). In the PFC, two-way ANOVA (drug × genotype) of AUC values revealed a significant effect of drug (F1,37 = 35.215, p < 0.001) but not genotype (F2,37 = 1.969, p = 0.154) and a significant drug × genotype interaction (F2,37 = 3.326, p = 0.047) (Fig. 2D). Post hoc comparisons revealed that the effect of PCP on DAex in GluRε4−/− mice was significantly less compared with wildtype and GluRε1−/− mice (p = 0.007 and 0.003, respectively; Fisher’s PLSD post hoc test) in the PFC (Fig. 2D).

Locomotor activity in GluRε1−/− and GluRε4−/− mice in a novel environment

Locomotor activity in a novel environment was different between wildtype, GluRε1−/−, and GluRε4−/− mice during the habituation period (mixed-design ANOVA: genotype, F1,39 = 35.423, p < 0.0001; time, F4,123 = 846.554, p < 0.0001; genotype × time, F4,123 = 15.337, p < 0.0001) (Fig. 3). Locomotor activity in a novel environment during the 60 min period increased in GluRε1−/− mice (p = 0.0002, unpaired t-test) but decreased in GluRε4−/− mice (p < 0.0001, Student’s t-test) compared with wildtype mice. GluRε1−/− mice did not habituate during the 180 min period compared with wildtype mice (p < 0.0001, Student’s t-test).

Effects of acute administration of METH and PCP on locomotor activity in GluRε1−/− and GluRε4−/− mice

Two-way ANOVA (drug × genotype) of locomotor activity data during the 60 min period revealed significant effects of drug...
Methamphetamine (1 mg/kg) significantly increased locomotor activity during the 60 min period after the METH injection in wildtype mice (p = 0.002, Student’s t-test) and GluRε1+/−/− mice (p = 0.0004, Student’s t-test) compared with saline. However, METH (1 mg/kg) did not increase locomotor activity during the 60 min period after the METH injection in GluRε4+/−/− mice (p = 0.411, Student’s t-test) compared with saline.

Phencyclidine (3 mg/kg) significantly increased locomotor activity during the 60 min period after the PCP injection in wildtype mice (p = 0.008, Student’s t-test) and GluRε1+/−/− mice (p = 0.045, Student’s t-test) compared with saline treatment. However, PCP (3 mg/kg) did not increase locomotor activity in GluRε4+/−/− mice (p = 0.142, unpaired t-test) compared with saline treatment.

Effects of repeated administration of METH and PCP on locomotor activity in GluRε1+/−/− and GluRε4+/−/− mice

Mixed-design ANOVA of locomotor activity data during the 60 min period after the METH injection from Session 1 to 8 revealed significant effects of genotype (F2,385 = 3.350, p = 0.042) and session (F7,385 = 16.091, p < 0.0001) but no significant genotype by session interaction (F14,385 = 0.611, p = 0.857) (Fig. 5A). Chronic METH (1 mg/kg) injections increased locomotor activity in wildtype (p < 0.0001, paired t-test), GluRε1+/−/− mice (p = 0.045, Student’s t-test) compared with saline treatment. However, PCP (3 mg/kg) did not increase locomotor activity in GluRε4+/−/− mice (p = 0.142, unpaired t-test) compared with saline treatment.

Mixed-design ANOVA of locomotor activity data during the 60 min period after the PCP injection revealed a significant effect of genotype (F2,455 = 11.318, p < 0.0001) but not session (F7,455 = 1.443, p = 0.186) and a significant genotype by session interaction (F14,455 = 2.368, p = 0.0035) (Fig. 5B). Phencyclidine-induced hyperactivity was significantly greater in Session 8 than Session 1 in wildtype mice (p = 0.006, paired t-test). Repeated PCP (3 mg/kg) administration did not increase locomotor activity in GluRε1+/−/− mice (p = 0.121, paired t-test) and GluRε4+/−/− mice (p = 0.605, paired t-test) in Session 1 compared with Session 8.

(F2,155 = 8.646, p = 0.0002) and genotype (F2,155 = 11.769, p < 0.0001) and a significant drug x genotype interaction (F4,155 = 5.734, p = 0.0002) (Fig. 4). Methamphetamine (1 mg/kg) significantly increased locomotor activity during the 60 min period after the METH injection in wildtype mice (p = 0.002, Student’s t-test) and GluRε4+/−/− mice (p = 0.0004, Student’s t-test) compared with saline. However, METH (1 mg/kg) did not increase locomotor activity during the 60 min period after the METH injection in GluRε1+/−/− mice (p = 0.411, Student’s t-test) compared with saline.

Phencyclidine (3 mg/kg) significantly increased locomotor activity during the 60 min period after the PCP injection in wildtype mice (p = 0.000, Student’s t-test) and GluRε1+/−/− mice (p = 0.045, Student’s t-test) compared with saline treatment. However, PCP (3 mg/kg) did not increase locomotor activity in GluRε4+/−/− mice (p = 0.142, unpaired t-test) compared with saline treatment.

Figure 2. Effects of acute PCP on DAex in the striatum and PFC in wildtype, GluRε1+/−/−, and GluRε4+/−/− mice. (A, C) Temporal pattern of DAex before and after s.c. saline (Sal) or PCP (3 mg/kg) injection. The arrows indicate the drug injection time. Each point represents the mean ± SEM of the percentage of DAex baseline. (B, D) Histogram representing the mean AUC ± SEM of DAex during the 180 min period after saline or PCP injection (n = 5–11). ***p < 0.001, compared with saline group of the same genotype; *p < 0.05, **p < 0.01, ***p < 0.001, comparisons between genotypes in the same drug treatment (two-way ANOVA followed by Fisher’s PLSD post hoc test).

doi:10.1371/journal.pone.0013722.g002

Figure 3. Locomotor activity in wildtype, GluRε1+/−/−, and GluRε4+/−/− mice in a novel environment. Locomotor activity was measured for 180 min. Each point represents the mean ± SEM (n = 34–50). *p < 0.05, **p < 0.01, ***p < 0.001, compared with wildtype mice (one-way ANOVA followed by Fisher’s PLSD post hoc test).

doi:10.1371/journal.pone.0013722.g003
Discussion

The present study showed that PCP-induced increases in DA_{ax} in the striatum and PFC and locomotor activity were absent in GluR_{1^-/-} and present in GluR_{1^-/-} mice, indicating GluR_{1^-/-} plays an important role in PCP-increased DA_{ax} and locomotor activity. Phencyclidine exerts psychotomimetic effects, whereas another NMDA receptor antagonist, MK-801, exerts no clear psychotomimetic effects in humans [43]. Interestingly, whereas MK-801 suppresses GluRe/4/GluR_{4^-/-} and GluRe/4/GluR_{4^-/-} channels more weakly than GluRe/1/GluR_{1^-/-} and GluRe/2/GluR_{2^-/-} channels, PCP blocks the four GluRe/GluR_{4^-/-} channels to similar extents in Xenopus oocytes [32]. The absence of psychotomimetic effects of MK-801 may be attributable to its weak ability of blocking the GluRe/4/GluR_{4^-/-} channel.

Systemic administration of PCP reportedly increases DA_{ax} in the striatum and PFC [44–49]. Similarly, PCP (3 mg/kg) increased DA_{ax} in wildtype and GluR_{1^-/-} mice in the present study. However, PCP failed to increase DA_{ax} in the striatum and PFC in GluRe/4/-/ mice. Phencyclidine is known to be a DA reuptake blocker and a noncompetitive NMDA antagonist [9–11]. It inhibits DA uptake by binding to the DAT at doses approximately 10-fold greater than those at which it binds to NMDA receptor channels [1]. Phencyclidine at the low dose used in the present study appears to have few effects on the DAT. Furthermore, no PCP-induced increases in DA_{ax} in GluRe/4/-/ mice that possess an intact DAT gene indicates that PCP increases DA_{ax} not via DAT inhibition but via blockade of NMDA receptor channels. The present results support the hypothesis that GluR_{4} is an important determinant of increased DA_{ax} induced by PCP. Acute administration of METI increased DA_{ax} in the striatum and PFC in wildtype, GluRe/1^-/-, and GluRe/4^-/- mice. However, differences in DA_{ax} increases were found between genotypes. The similar DA_{ax} increases among these mice in response to acute METH challenge suggest that increased DA_{ax} occurs independently of GluRe/1^-/- and GluRe/4^-/-.

Locomotor activity in a novel environment is reportedly high in GluRe/1^-/- mice [34,36] and low in GluRe/4^-/- mice [33,35]. Consistent with these findings, increased locomotor activity in GluRe/1^-/- mice and reduced locomotor activity in GluRe/4^-/- mice were observed in the present study. GluRe/1^-/- mice did not habituate during the 180 min period compared with wildtype mice. Interestingly, acute METI administration decreased locomotor activity in GluRe/1^-/- mice. Hyperactivity and a paradoxical response to METH suggest that GluRe/1^-/- mice may be an animal model of attention-deficit/hyperactivity disorder.

Psychostimulants, such as METH and PCP, increase locomotor activity [2,3,12,13]. In GluRe/4^-/- mice, acute METI administration increased locomotor activity, but PCP did not. Acute METI administration increased locomotor activity in wildtype and GluRe/1^-/- mice, but not in GluRe/4^-/- mice. The absence of locomotor-stimulating effects of PCP in GluRe/4^-/- mice indicates that locomotor responses to PCP require the GluRe/4 subunit.

Repeated administration of PCP produces sensitization to its locomotor-stimulating effects in wildtype mice. In GluRe/4^-/- mice, locomotor activity did not increase after repeated PCP treatment. Acute PCP did not increase locomotor activity, and repeated PCP did not produce sensitization to the locomotor-stimulating effects of PCP in GluRe/4^-/- mice. The GluRe/4 subunit appears to be necessary for behavioral sensitization to occur in response to repeated PCP administration. A previous study demonstrated that acute PCP treatment increased locomotor activity in wildtype and GluRe/1^-/- mice. Chronic PCP treatment at a low dose (3 mg/kg/day) for 7 days produced sensitization to the locomotor-stimulating effects of PCP in wildtype mice, but not
in GluR1−/− mice [50]. The present study confirmed that repeated PCP administration (3 mg/kg/day) did not produce sensitization during Session 8 in GluR1−/− mice. Repeated METH administration produced behavioral sensitization in wild-type, GluR1−/−, and GluR4−/− mice. The development of sensitization in GluR1−/− and GluR4−/− mice was delayed compared with wild-type mice. The noncompetitive NMDA receptor antagonist MK-801 has been shown to block the development of behavioral sensitization to AMPH and METH [51–54]. Molecular and cellular adaptive changes during chronic drug exposure are hypothesized to lead to the development of sensitization. Our findings support the hypothesis that adaptive changes through NMDA receptor channels play a role in the development of locomotor sensitization to METH.

Schizophrenia is a disease that has been hypothesized to be associated with hyperfunction of the dopaminergic neuronal system and dysfunction of glutamatergic transmission [55,56]. Administration of PCP to normal humans induces symptoms similar to those of schizophrenia [57]. This finding has been replicated over the years, and PCP has been shown to exacerbate the primary symptoms of schizophrenic patients [56]. Phencyclidine-treated animals have been used as an animal model of schizophrenia, and the amelioration of hyperlocomotion in these animals has been used as a screening test to assess the efficacy of antipsychotic drugs [58,59]. GluR4 immunoreactivity and protein expression increase in the frontal cortex following repeated PCP treatment, whereas GluR1 immunoreactivity and protein expression are not altered in rats [60]. Furthermore, polymorphisms of several genes known to interact with NMDA receptor channels are related to altered risk for schizophrenia, and psychotic patients display changes in the levels of mRNA encoding NMDA receptors [61]. Interestingly, Makino et al. reported that the GluR4 gene locus is a possible genomic region that contributes to schizophrenia susceptibility in a Japanese population [62]. In the present study, we first demonstrated that deletion of GluR4 abolished PCP-induced hyperlocomotion and potentiated the increases in DAex in mice. Our data and previous findings suggest that GluR4 might be a potential target for antipsychotic drug development.

Although NMDA receptor channels are highly expressed in adult brains, adult GluR1 expression is very limited [26]. GluR4 is expressed in the substantia nigra compacta (SNc), subthalamic nucleus, globus pallidus, and ventral pallidum in adult rats [63]. Jones and Gibb reported that functional GluR2 and GluR4 subunits form somatic NMDA receptors, possibly as triheteromeric receptors, whereas no somatic GluR1 subunits are present in SNc dopaminergic neurons in rats aged postnatal day 14 [64]. A small subset of NMDA receptor channels (i.e., channels containing GluR4) may be implicated in the effects of PCP on DAex and locomotor activity. This possibility is consistent with the lack of psychotic effects of ilaprodil, a selective blocker of NMDA receptor channels containing GluR2, which is highly expressed in adult brains. Additionally, GluR4 is highly expressed in the brain during development [26], suggesting that GluR4 knockout during the developmental stage may alter neuronal function in the adult brain. Although the expression of the genes related to dopaminergic signaling pathways are not altered in GluR4−/− mice during adulthood [see Table S1], other developmental changes may alter the effects of PCP in GluR4−/− mice. Further studies of synapses, neurons, and neuronal networks regulated by GluR4 and developmental changes in neuronal function in GluR4−/− mice may lead to a better understanding of the mechanisms underlying PCP-induced psychosis and schizophrenia.

Materials and Methods

Ethics statement

The experimental procedures and housing conditions were approved by the Institutional Animal Care and Use Committee (Animal Experimentation Ethics Committee of Tokyo Institute of Psychiatry, Approval ID: 22-2), and all animal were cared for and treated humanely in accordance with our institutional animal experimentation guidelines.

Animals

Wildtype and GluR1−/− or GluR4−/− mouse littersmates from crosses of heterozygous/heterozygous GluR1 or GluR4 knockout mice, respectively, on a C57BL/6 genetic background [33,65] served as subjects. Naïve adult mice were housed in an animal facility maintained at 22±2°C and 55±5% relative humidity under a 12 h/12 h light/dark cycle with lights on at 8:00 am and off at 8:00 pm. Food and water were available ad libitum. In the behavioral experiments, 13- to 23-week-old male mice were used. In the microdialysis experiments, 10- to 24-week-old male and female mice were used.

Surgery

Microdialysis probes were stereotaxically implanted in mice under sodium pentobarbital anesthesia (50 mg/kg, intraperitoneally) in the striatum (anterior, +0.6 mm; lateral, +1.8 mm; ventral, −4.0 mm from bregma) or PFC (anterior, +2.0 mm; lateral, +0.5 mm; ventral, −3.0 mm from bregma), according to the atlas of Franklin and Paxinos [66]. The probe tip was constructed with a regenerated cellulose membrane (outer diameter, 0.22 mm; membrane length, 2 mm; Eicom, Kyoto, Japan). All dialysis probe placements were verified histologically at the completion of the experiment.

Microdialysis and analytical procedures

Twenty-four hours after implantation, the dialysis experiments were performed in freely moving animals. Ringer’s solution (145 mM NaCl, 3 mM KCl, 1.26 mM CaCl2, and 1 mM MgCl2, pH 6.5) was perfused at a constant flow rate of 1 μl/min. Perifusates were directly injected into the high-performance liquid chromatography system every 10 min using an autoinjector (EAS-20; Eicom). Dialysate DA was separated using a reverse-phase ODS column (PP-ODS; Eicom) and detected with a graphite electrode (HTEC-500; Eicom). The mobile phase consisted of 0.1 M phosphate buffer (pH 5.5) containing 500 mg/l sodium decanesulfonate, 50 mg/l EDTA, and 1% methanol. Perfusion was initiated 180 min prior to the collection of baseline samples. Baseline levels of DAex were obtained from the average concentrations of three consecutive samples when they were stable. The DA detection limit of the assay was 0.3 fmol/sample with a signal-to-noise ratio of 2.

Locomotor activity measurements

Each mouse was exposed to an illuminated chamber (30×40×25 cm) at an ambient temperature of 22±2°C, and locomotor activity was measured with Supermex (Muromachi Kikai, Tokyo, Japan), a sensor monitor mounted above the chamber. In this system, a sensor detects the radiated body heat of an animal [67]. This measurement system can detect changes in heat across multiple zones of the chamber and count all horizontal movements. All counts were automatically summed and recorded every 5 min. After a 180 min habituation period, METH or PCP was administered subcutaneously (s.c.), and locomotor activity was monitored continuously for 180 min.
Drugs

Drugs were dissolved in saline and administered s.c. in a volume of 10 ml/kg. In the microdialysis experiment, saline, METH (1 mg/kg), or PCP (3 mg/kg) was administered after establishing a stable baseline, and the dialysate was continuously collected for 180 min. In the acute behavioral experiments, saline, freshly prepared METH (1 mg/kg; Dainippon Sumitomo Pharma, Osaka, Japan), or PCP (3 mg/kg; Shionogi Pharmaceutical Co. Ltd., Osaka, Japan) was administered. In the repeated behavioral experiments, METH (1 mg/kg) or PCP (3 mg/kg) was administered repeatedly at 2 or 3 day intervals for a total of seven injections. One week after withdrawal, METH or PCP challenge injections were administered as described above.

Statistical analysis

DA_{ex} responses to drugs are expressed as a percentage of baseline. The AUC of DA_{ex} during the 180 min period after drug administration was calculated as the effects of the drugs. Area-under-the-curve values of all groups were analyzed using two-way ANOVA. Individual post hoc comparisons were performed with Fisher’s PLSD test. The responses to acute administration were analyzed using Student’s t-test, one-way ANOVA, or two-way ANOVA. To evaluate behavioral sensitization, the response to drugs in Session 8 was compared with the response to the first drug injection (Session 1) in the same animal using a paired t-test or mixed-design ANOVA. Values of $p<0.05$ were considered statistically significant. Data were analyzed using Statview J5.0 software (SAS Institute, Cary, NC, USA).

Supporting Information

Table S1 Striatal gene expression in wildtype and GluRe4–/– mice.

Acknowledgments

We acknowledge Mr. Michael Arends for his assistance with editing the manuscript.

Author Contributions

Conceived and designed the experiments: YH KI. Performed the experiments: YH HY. Analyzed the data: YH HY. Contributed reagents/materials/analysis tools: SK HY TN MM. Wrote the paper: YH WH TN MM KI.

References

1. Javitt DC, Zuki SR (1991) Recent advances in the phenycyclidine model of schizophrenia. Am J Psychiatry 148: 1301–1308.
2. Surgeon RD, Fisler RG, Melzner HY (1979) Behavioral rating scales for assessing phenycyclidine-induced locomotor activity, stereotyped behavior and ataxia in rats. Eur J Pharmacol 59: 169–179.
3. Castellani S, Adams PJ (1981) Acute and chronic phenycyclidine effects on locomotor activity, stereotopy and ataxia in rats. Eur J Pharmacol 73: 143–154.
4. Nabeshima T, Fukuya H, Yamaguchi K, Ishikawa K, Furukawa H, et al. (1987) Development of tolerance and supersensitivity to phenycyclidine in rats after repeated administration of phenycyclidine. Eur J Pharmacol 133: 25–33.
5. Xu X, Domino EF (1994) Phenycyclidine-induced behavioral sensitization. Pharmacol Biochem Behav 47: 603–608.
6. Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anaesthetics, ketamine and phenycyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79: 565–575.
7. Lodge D, Johnson KM (1990) Non-competitive excitatory amino acid receptor antagonists. Trends Pharmacol Sci 11: 81–86.
8. Kemp JA, Foster AC, Wong EHF (1987) Non-competitive antagonists of excitatory amino acid receptors. Trends Neurosci 10: 294–298.
9. Smith RC, Melzner HY, Arow RC, Davis JM (1977) Effects of phenycyclidine on [3H]catecholamine and [3H]serotonin uptake in synaptosomal preparations from rat brain. Biochem Pharmacol 26: 1435–1439.
10. Snell LD, Yi SJ, Johnson KM (1988) Comparison of the effects of MK-801 and phenycyclidine on catecholamine uptake and NMDA-induced noradrenaline release. Eur J Pharmacol 145: 223–226.
11. Garrey RE, Heath RG (1976) The effects of phenycyclidine on the uptake of $[^3]H$-catecholamines by rat striatal and hypothalamic synaptosomes. Life Sci 18: 105–111.
12. Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev 25: 192–216.
13. Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396: 157–196.
14. Seiden LS, Sabol KE, Ricauret GA (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33: 629–667.
15. Fischer JF, Cho AK (1979) Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J Pharmacol Exp Ther 208: 203–209.
16. Schmitz D, Lui CJ, Schmauss C, Genova F, Sulzer D (2000) Amphetamine distorts striatal dopamine overflow: evidence on D2 autoreceptors, transporters, and synaptic vesicle stores. J Neurosci 20: 5916–5924.
17. Sulzer D, Maidment NT, Rayport S (1993) Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem 60: 527–535.
18. Benwell ME, Balfour DJ, Lucchi HM (1993) Influence of tetrodotoxin and calcium on changes in extracellular dopamine levels evoked by systemic nicotine. Psychopharmacology (Berl) 112: 467–474.
19. Parker EM, Cubeddu LX (1988) Comparative effects of amphetamine, phenylethylamine and related drugs on dopamine efflux, dopamine uptake and mazindol binding. J Pharmacol Exp Ther 245: 199–210.
20. Heikila RE, Orlandy H, Cohen G (1975) Studies on the distinction between uptake inhibition and release of $[^3]H$-dopamine in rat brain tissue slices. Biochem Pharmacol 24: 847–852.
21. Horn AS, Coyle JF, Snyder SH (1975) Catecholamine uptake by synaptosomes from rat brain: structure-activity relationships of drugs with differential effects on dopamine and norepinephrine neurons. Mol Pharmacol 7: 66–80.
22. Green AL (1971) Inhibition of rat and mouse brain monoamine oxidases by (+)-amphetamine. Biochem J 121: 378–381.
23. Green AL, el Hatt MA (1978) Inhibition of mouse brain monoamine oxidase by (+)-amphetamine in vivo. J Pharmacol Exp Ther 203: 262–263.
24. Miller HH, Shore PA, Clarke DE (1980) In vivo monoamine oxidase inhibition by d-amphetamine. Biochem Pharmacol 29: 1347–1354.
25. Watanabe M, Iino Y, Sakimura K, Mishina M (1992) Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 3: 1139–1140.
26. Ikeda K, Nagasawa M, Mori H, Araki K, Sakimura K, et al. (1995) Cloning and expression of the e_4 subunit of the NMDA receptor channel. FEBS Lett 313: 34–38.
27. Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, et al. (1992) Molecular diversity of the NMDA receptor channel. Nature 358: 36–41.
28. Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, et al. (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357: 70–74.
29. Monyer H, Sprunger R, Schoppel A, Higuchi M, et al. (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256: 1217–1221.
30. Mori H, Mishina M (2003) Roles of diverse glutamate receptors in brain functions elucidated by subunit-specific and region-specific gene targeting. Life Sci 74: 329–336.
31. Yamakura T, Mori H, Masaki H, Shimoji K, Mishina M (1993) Different sensitivities of NMDA receptor channel subtypes to non-competitive antagonists. Neuroreport 4: 607–609.
32. Ikeda K, Araki K, Takayama C, Iino Y, Yagi T, et al. (1995) Reduced spontaneous activity of mice defective in the e_4 subunit of the NMDA receptor channel. Brain Res Mol Brain Res 33: 63–70.
33. Ikeda K, Araki K, Takayama C, Iino Y, Yagi T, et al. (1995) Reduced spontaneous activity of mice defective in the e_4 subunit of the NMDA receptor channel. Brain Res Mol Brain Res 33: 63–70.
34. Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, et al. (2001) Hyperfunction of dopamineergic and serotonergic neuronal systems in mice lacking the NMDA receptor e_4 subunit. J Neurosci 21: 750–757.
35. Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, et al. (2002) Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor e_4 subunit. J Neurosci 22: 2335–2342.
36. Boyce-Rustay JM, Holmes A (2006) Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic- and antidepressant-like effects in mice. Neuropsychopharmacology 31: 2405–2414.
37. Kadotani H, Hirano T, Masuji M, Nakamura K, Nakao K, et al. (1996) Motor coordination results from combined gene disruption of the NR2A and NR2C subunits, but not from single disruption of the NR2A or NR2C subunit. J Neurosci 16: 7059–7067.

38. Ehralidze AK, Rossi DJ, Tonogawa S, Slater NT (1996) Modification of NR2A receptor channels and synaptic transmission by targeted disruption of the NR2C gene. J Neurosci 16: 5014–5025.

39. Sprengel R, Suchanek B, Amico C, Brusa R, Burnashev N, et al. (1998) Importance of the intracellular domain of NR2 subunits for NR2A receptor function in vivo. Cell 92: 279–289.

40. Kutsuwada T, Sakimura K, Manabe T, Takayama C, Kataoka N, et al. (1996) Impairment of sucking response, trigeminal neuronal pattern formation, and hippocampal LTD in NR2A receptor ε2 subunit mutant mice. Neuron 16: 333–344.

41. Li Y, Erzurumlu RS, Chen C, Jhaveri S, Tonegawa S (1994) Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice. Cell 76: 427–437.

42. Forrest D, Yuzaki M, Soares HD, Ng L, Luk DC, et al. (1994) Targeted disruption of NR2D gene abolishes NR2D response and results in neonatal death. Neuron 15: 325–338.

43. Troupin AS, Mendes, Jr, CR, Cheng, F, Rinsing, MW (1986) MK-801. In: Meldrum BS, Porter RJ, eds. New anticonvulsant drugs (series title: Current problems in epilepsy, vol 4). London: Libbey. pp 191–201.

44. Chapman CD, Guazzara RA, Howard SG (1990) Effects of phencyclidine on extracellular levels of dopamine, dihydroxyphenylacetic acid and homovanillic acid in conscious and anesthetized rats. Neuropharmacology 29: 319–325.

45. Lluranz SM, O’Connor WT, Saranpani P, Ungerstedt U (1994) In vivo effects of local and systemic phencyclidine on the extracellular levels of catecholamines and transmitter amino acids in the dorsolateral striatum of anesthetized rats. Acta Physiol Scand 150: 109–115.

46. Nishijima K, Kashiwa A, Hashimoto A, Iwama H, Umino A, et al. (1996) Differential effects of phencyclidine and methamphetamine on dopamine metabolism in rat frontal cortex and striatum as revealed by in vivo dialysis. Synapse 22: 304–312.

47. Homo H, Yonezawa Y, Nakahara T, Nakamura K, Hirano M, et al. (1994) Effect of phencyclidine on dopamine release in the rat prefrontal cortex; an in vivo microdialysis study. Brain Res 633: 337–342.

48. Pernet P, Matte JM, Nomikos GG, Iurlo M, Matte AA, et al. (1995) Effects of D-amphetamine and phencyclidine on behavior and extracellular concentrations of neurotensin and dopamine in the ventral striatum and the medial prefrontal cortex of the rat. Behav Brain Res 72: 103–114.

49. Adams B, Moghaddam B (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 18: 3535–3554.

50. Miyamoto Y, Yamada K, Nagai T, Morii H, Mishina M, et al. (2004) Behavioural adaptations to addictive drugs in mice lacking the NR2B GRIN2B subunit. Eur J Neurosci 19: 151–158.

51. Ohnori T, AbeKawa T, MuraKai A, Koyama T (1994) Competitive and noncompetitive NR2B antagonist block sensitization to methamphetamine. Pharmacol Biochem Behav 48: 387–391.

52. Wolf ME, Khansa MR (1991) Repeated administration of MK-801 produces sensitization to its own locomotor stimulant effects but blocks sensitization to amphetamine. Brain Res 562: 164–168.

53. Wolf ME, Jezierski M (1993) Coadministration of MK-801 with amphetamine, cocaine or morphine prevents rather than transiently masks the development of behavioral sensitization. Brain Res 613: 291–294.

54. Kuribara H, Asami T, Ida I, Iijima Y, Tadokoro S (1992) Effects of repeated MK-801 on amputation in mice and in sensitization following methamphetamine. Psychopharmacology (Berl) 108: 271–273.

55. Carlsson A, Waters N, Waters S, Carlson ML (2000) Network interactions in schizophrenia: therapeutic implications. Brain Res Brain Res Rev 31: 342–349.

56. Jeutsh JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NR2D receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20: 201–223.

57. Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of a new schizofrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 81: 363–369.

58. Mouri A, Noda Y, Enomoto T, Nabeshima T (2007) Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochem Int 51: 173–184.

59. Geyer MA, Ellenbroek B (2003) Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 27: 1071–1079.

60. Lindahl JS, Keifer J (2004) Glutamate receptor subunits are altered in forebrain and cerebellum in rats chronically exposed to the NR2B antagonist phencyclidine. Neuropsychopharmacology 29: 2065–2073.

61. Millan MJ (2005) N-methyl-D-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacol (Berl) 179: 30–33.

62. Makino C, Shibata H, Ninomiya H, Tashiro N, Fukushima K (2005) Identification of single-nucleotide polymorphisms in the human N-methyl-D-aspartate receptor subunit NR2D gene, GRIN2D, and association study with schizophrenia. Psychiatr Genet 15: 215–221.

63. Standaert DG, Testa CM, Young AB, Penney JB, Jr. (1994) Organization of N-methyl-D-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J Comp Neurol 343: 1–16.

64. Jones S, Gibb AF (2005) Functional NR2B- and NR2D-containing NR2 receptor channels in rat substantia nigra dopaminergic neurons. J Physiol 569: 209–221.

65. Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, et al. (1995) Reduced hippocampal LTD and spatial learning in mice lacking NR2D receptor ε2 subunit. Nature 373: 151–153.

66. Franklin KB, Paxinos G (1997) The mouse brain in stereotaxic coordinates. San Diego: Academic Press.

67. Mauro Y, Matsumoto Y, Morita S, Noguchi J (1997) A novel method for counting spontaneous motor activity in the rat. Brain Res Brain Res Protoc 1: 321–326.