Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016

Jane Rowley, Stephen Vander Hoorn, Eline Korenromp, Nicola Low, Magnus Unemo, Laith J Abu-Raddad, Matthew Chico, Alex Smolak, Lori Newman, Sami Gottlieb, Soe Soe Thwin, Nathalie Broutet & Melanie M Taylor

Objective To generate estimates of the global prevalence and incidence of urogenital infection with chlamydia, gonorrhoea, trichomoniasis and syphilis in women and men, aged 15–49 years, in 2016.

Methods For chlamydia, gonorrhoea and trichomoniasis, we systematically searched for studies conducted between 2009 and 2016 reporting prevalence. We also consulted regional experts. To generate estimates, we used Bayesian meta-analysis. For syphilis, we aggregated the national estimates generated by using Spectrum-STI.

Findings For chlamydia, gonorrhoea and/or trichomoniasis, 130 studies were eligible. For syphilis, the Spectrum-STI database contained 978 data points for the same period. The 2016 global prevalence estimates in women were: chlamydia 3.8% (95% uncertainty interval, UI: 3.3–4.5); gonorrhoea 0.9% (95% UI: 0.7–1.1); trichomoniasis 5.3% (95% UI: 4.0–7.2); and syphilis 0.5% (95% UI: 0.4–0.6). In men prevalence estimates were: chlamydia 2.7% (95% UI: 1.9–3.7); gonorrhoea 0.7% (95% UI: 0.5–1.1); trichomoniasis 0.6% (95% UI: 0.4–0.9); and syphilis 0.5% (95% UI: 0.4–0.6). Total estimated incident cases were 376.4 million: 127.2 million (95% UI: 95.1–165.9 million) chlamydia cases; 86.9 million (95% UI: 58.6–123.4 million) gonorrhoea cases; 156.0 million (95% UI: 103.4–231.2 million) trichomoniasis cases; and 6.3 million (95% UI: 5.5–7.1 million) syphilis cases.

Conclusion Global estimates of prevalence and incidence of these four curable sexually transmitted infections remain high. The study highlights the need to expand data collection efforts at country level and provides an initial baseline for monitoring progress of the World Health Organization global health sector strategy on sexually transmitted infections 2016–2021.

Introduction

Sexually transmitted infections are among the most common communicable conditions and affect the health and lives of people worldwide. The World Health Organization (WHO) periodically generates estimates to gauge the global burden of four of the most common curable sexually transmitted infections: chlamydia (etiological agent: *Chlamydia trachomatis*), gonorrhoea (*Neisseria gonorrhoeae*), trichomoniasis (*Trichomonas vaginalis*) and syphilis (*Treponema pallidum*). The estimates provide evidence for programme improvement, monitoring and evaluation.

These sexually transmitted infections cause acute urogenital conditions such as cervicitis, urethritis, vaginitis and genital ulceration, and some of the etiological agents also infect the rectum and pharynx. Chlamydia and gonorrhoea can cause serious short- and long-term complications, including pelvic inflammatory disease, ectopic pregnancy, infertility, chronic pelvic pain and arthritis, and they can be transmitted during pregnancy or delivery. Syphilis can cause neurological, cardiovascular and dermatological disease in adults, and stillbirth, neonatal death, premature delivery or severe disability in infants. All four infections are implicated in increasing the risk of human immunodeficiency virus (HIV) acquisition and transmission. Moreover, people with sexually transmitted infections often experience stigma, stereotyping, vulnerability, shame and gender-based violence.

In May 2016, the World Health Assembly adopted the Global Health Sector Strategy on Sexually Transmitted Infections, 2016–2021. This strategy includes rapid scale-up of evidence-based interventions and services to end sexually transmitted infections as public health concerns by 2030. The strategy sets targets for reductions in gonorrhoea and syphilis incidence in adults and recommends the establishment of global baseline incidences of sexually transmitted infections by 2018. The primary objectives of this study were to estimate the 2016 global and regional prevalence and incidence of chlamydia, gonorrhoea, trichomoniasis and syphilis in adult women and men.

Methods

Prevalence estimation

Chlamydia, gonorrhoea and trichomoniasis

We generated estimates for these three infections through systematic reviews using the same methods as for the 2012 estimates.
We searched for articles published between 1 January 2009 and 29 July 2018 in PubMed without language restrictions. We used PubMed Medical subject heading (MeSH) terms for individual country names combined with: “chlamydia”[MeSH Terms] OR “chlamydia”[All Fields], “gonorrhoea”[All Fields] OR “gonorrhoea”[MeSH Terms] OR “gonorrhoea”[All Fields], “trichomonas infections”[MeSH Terms] OR (“trichomonas”[All Fields] AND “infections”[All Fields]) OR “trichomonas infections”[All Fields] OR “trichomoniasis”[All Fields]). We also asked WHO regional sexually transmitted infection advisors and other leading experts in the field for additional published and unpublished data.

To be eligible, studies had to collect most specimens between 2009 and 2016 or be published in 2010 or later if specimen collection dates were not available. Other study inclusion criteria were: sample size of at least 100 individuals; general population (e.g. pregnant women, women at delivery, women attending family planning clinics, men and women selected for participation in demographic and health surveys); and use of an internationally recognized diagnostic test with demonstrated precision using urine, urethral, cervical or vaginal specimens.

To reduce bias in the estimation of general population prevalence, we excluded studies conducted among the following groups: patients seeking care for sexually transmitted infection or urogenital symptoms, women presenting at gynaecology or sexual health clinics with sexually transmitted infection related issues, studies restricted to women with abnormal Papanicolaou test results, remote or indigenous populations, recent immigrant or migrant populations, men who have sex with men and commercial sex workers.

Two investigators independently reviewed all identified studies to verify eligibility. When more than one publication reported on the same population, we retained the publication with the most detailed information. For each included study, we calculated prevalence as the number of individuals with a positive test result divided by the total number tested. We then standardized these values by applying adjustment factors for the accuracy of the laboratory diagnostic test, study location (rural versus urban) and the age of the study population. If the adjustments resulted in a negative value, we replaced the value with 0.1% when doing the meta-analysis. The methods and adjustment factors were identical to those used to generate the 2012 estimates.

We obtained estimates for 10 geographical areas (referred to as estimation regions). Estimates for high-income North America (Canada and United States of America), were based on the latest published United States estimates that used data from multiple sources.10,11 For the other nine estimation regions, we calculated a summary prevalence estimate by meta-analysis if there were three or more data points.12 There were sufficient data to generate an estimate for chlamydia in women in all regions, but not for gonorrhoea or trichomoniasis. For regions with insufficient data for gonorrhoea and trichomoniasis, we assumed that prevalence was a multiple of the prevalence of chlamydia. The infection specific multiples were based on those studies that met the 2016 inclusion criteria (available from the data repository).13 For men, when there were insufficient data for meta-analysis, the prevalence of an infection was assumed to be proportional to the prevalence in women. The male-to-female ratios were infection-specific and were set at the same values as in 2012 estimates.6

To reflect the contribution of populations at higher risk of infection (e.g. men who have sex with men and commercial sex workers), who are likely to be under-represented in general population samples, we increased prevalence estimates by 10%, as in the 2012 estimates,6 for each estimation region, apart from high-income North America.

We performed the meta-analyses using a Bayesian approach with a Markov Chain Monte Carlo algorithm implemented with the software BRugs in R package (R foundation, Vienna, Austria).14 For each infection, the software generated 10 000 samples from the posterior distribution for the expected mean prevalence in each estimation region based on the β-binomial model, and used these to calculate the 2.5 and 97.5 uncertainty percentiles.15 We calculated global and regional prevalence estimates for each infection by weighting each of the 10 000 samples from estimation regions according to population size, using United Nations population data for women and men aged 15–49 years.16 We present results by WHO region, 2016 World Bank income classification17 and 2017 sustainable development goal (SDG) region.18 All analyses were carried out using R statistical software (R foundation).

Syphilis

We based syphilis estimates on the WHO’s published 2016 maternal prevalence estimates.19 These estimates were generated by using Spectrum-STI, a statistical trend-fitting model in the publicly available Spectrum suite of health policy planning tools20 and country specific data from the global Spectrum-STI syphilis database (available from the corresponding author). As in the 2012 estimation,6 we assumed that the prevalence of syphilis in all women 15–49 years of age in each country was the same as in pregnant women. We then increased the estimate by 10% to reflect the contribution of populations at higher risk. The men to women prevalence ratio of syphilis was set at 1.0 and assumed to have a uniform distribution ± 33% around this value, in agreement with data from a recent global meta-analysis of syphilis.21

We generated regional and global estimates by weighting the contribution of each country by the number of women and men aged 15–49 years. Regional and global 95% uncertainty intervals (UIs) were generated using the delta method;22 uncertainties were assumed to be independent across countries.

Incidence estimation

We calculated incidence estimates for each infection by dividing prevalence by the average duration of infection for all estimation regions except high-income North America where published estimates were used.16,17 Estimates of the average duration of infection were those used in the 2012 estimation6 and assumed to have a uniform distribution of ± 33.3% around the average duration. We calculated uncertainty in incidence for a given region, sex and infection at the national level using the delta method;22 uncertainty in the prevalence estimate was multiplied by uncertainty in the estimated duration of infection. Regional and global uncertainty intervals were generated assuming uncertainties were independent across countries.
Results

Data availability

Chlamydia, gonorrhoea and trichomoniasis

Of the 7244 articles screened, 112 studies met the inclusion criteria for one or more of the three infections (Fig. 1). We identified an additional 18 studies through expert consultations and reviewing reference lists (Nguyen M et al., Hanoi Medical University, Viet Nam, personal communication, 23 March 2018; El Kettani A et al., National Institute of Hygiene, Morocco, personal communication, 2 May 2016; Galdavadze K et al., Disease Control and Public Health, Republic of Georgia; personal communication, 22 August 2017). 12 Of these 130 studies, 111 reported data for women only (Table 1; available at: http://www.who.int/bulletin/volumes/96/8/18-228486), three reported data for men only (Table 2; available at: http://www.who.int/bulletin/volumes/96/8/18-228486) and 16 reported data for both women and men (Table 1 and Table 2). Only 34 studies in women and four studies in men provided information on all three infections. The included studies contained 100 data points in women for chlamydia, 64 for gonorrhoea and 69 for trichomoniasis. In men, there were 16 data points for chlamydia, 11 for gonorrhoea and seven for trichomoniasis (Table 3).

For women, a total of 43 (21.0%) of 205 countries, territories and areas had one or more data points for chlamydia, 32 (15.6%) for gonorrhoea and 29 (14.1%) for trichomoniasis. For men, only 15 (7.3%) countries, territories and areas had one or more data points for chlamydia, 10 (4.9%) for gonorrhoea and 7 (3.4%) for trichomoniasis. For women there were sufficient data to generate summary estimates for chlamydia for the nine estimation regions, but not for gonorrhoea or trichomoniasis (Table 4).

Syphilis

As of 2 May 2018, the Spectrum-STI Database contained 1576 data points from surveys conducted since 1990, including 978 from January 2009 to December 2016. 13 In total, 181 (88.3%) of 205 countries, territories and areas had sufficient data to generate a Spectrum STI estimate for 2016. For the remaining 24 countries, territories and areas, we used the median value of the countries with data for the relevant WHO region as the 2016 estimate.

Prevalence and incidence estimates

Table 5 shows prevalence estimates for the WHO regions for 2016. Based on prevalence data from 2009 to 2016, the estimated pooled global prevalence of chlamydia in 15–49-year-old women was 3.8% (95% UI: 3.3–4.5) and in men 2.7% (95% UI: 1.9–3.7), with regional values ranging from 1.5 to 7.0% in women and 1.2 to 4.0% in men. For gonorrhoea, the global estimate was 0.9% (95% UI: 0.7–1.1) in women and 0.7% (95% UI: 0.5–1.1) in men, with regional values in women ranging from 0.3 to 1.9% and from 0.3 to 1.6% in men. The estimates for trichomoniasis were 5.3% (95% UI: 4.0–7.2) in women and 0.6% (95% UI: 0.4–0.9) in men, with regional values ranging from 1.6 to 11.7% in women and from 0.2 to 1.3% in men. For syphilis, the global estimate in both men and women was 0.5% (95% UI: 0.4–0.6) with regional values ranging from 0.1 to 1.6%. The WHO African Region had the highest prevalence for chlamydia in men, gonorrhoea in women and men, trichomoniasis in women and syphilis in men and women. The WHO Region of the Americas had the highest prevalence of chlamydia in women and of trichomoniasis in men.

These prevalence estimates correspond to the totals of 124.3 million cases of chlamydia, 30.6 million cases of gonorrhoea, 110.4 million cases of trichomoniasis and 19.9 million cases of syphilis (available from the data repository). 13 Using the World Bank classification, high-income countries, territories and areas had the lowest estimated prevalence, and low-income countries, territories and areas had the highest prevalence of gonorrhoea, trichomoniasis and syphilis. For chlamydia, estimated prevalence was highest in upper-middle income countries, territories and areas (Fig. 2). The SDG grouping showed the highest prevalence of all four sexually transmitted infections in Oceania region, that is, Pacific island nations excluding Australia and New Zealand (available from the data repository). 13 We estimated the global incidence rate for chlamydia in 2016 to be 34 cases per 1000 women (95% UI: 25–45) and 33 per 1000 men (95% UI: 21–48); for gonorrhoea 20 per 1000 women (95%
Table 3. Number of data points that met the study inclusion criteria for the WHO 2016 prevalence estimates of chlamydia, gonorrhoea and trichomoniasis

Estimation region	No. of countries, territories and areas	Women	No. of data points	No. of countries	Men	No. of data points	No. of countries	Trichomoniasis					
Central, eastern and western sub-Saharan Africa	41	16	7	2	2	15	7	2	2	21	9	1	1
Southern sub-Saharan Africa	6	7	4	1	1	6	3	1	1	6	3	1	1
Andean, central, southern and tropical Latin America and Caribbean	42	25	8	2	2	14	6	2	2	16	5	1	1
High-income North America	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
North Africa and Middle East	20	11	4	1	1	5	2	0	0	5	2	1	1
Australasia and high-income Asia Pacific	6	6	2	2	1	4	1	2	1	3	1	1	1
Western, central and eastern Europe and central Asia	54	19	11	6	6	9	7	2	2	4	3	2	2
Oceania	14	7	3	1	1	7	3	1	1	5	1	0	0
South Asia	5	4	2	0	0	2	1	0	0	3	1	0	0
East Asia and south-east Asia	15	5	2	1	1	2	2	1	1	6	4	0	0
Total	205	100	43	16	15	64	32	11	10	69	29	7	7

NA: not applicable; WHO: World Health Organization.

Note: Eight of the 112 studies with data for women had two separate data points (e.g. for different population groups).
Table 4. Approach used to generate 2016 regional estimates for chlamydia, gonorrhoea and trichomoniasis

Estimation region	Women	Men				
	Chlamydia	Gonorrhoea	Trichomonias	Chlamydia	Gonorrhoea	Trichomonias
Central, eastern and western sub-Saharan Africa	Meta-analysis	Meta-analysis	Meta-analysis	Global male-to-female ratio	Global male-to-female ratio	Global male-to-female ratio
Southern sub-Saharan Africa	Meta-analysis	Meta-analysis	Meta-analysis	Global male-to-female ratio	Global male-to-female ratio	Global male-to-female ratio
Andean, central, southern and tropical Latin America and Caribbean	Meta-analysis	Meta-analysis	Meta-analysis	Special case^a	Global male-to-female ratio	Global male-to-female ratio
High-income North America^b	United States estimate for 2012	United States estimate for 2008	United States estimate for 2008	United States estimate for 2012	United States estimate for 2008	United States estimate for 2008
North Africa and Middle East	Meta-analysis	Meta-analysis	Meta-analysis	Global male-to-female ratio	Global male-to-female ratio	Global male-to-female ratio
Australasia and high-income Asia-Pacific	Meta-analysis	Gonorrhoea to chlamydia ratio	Trichomoniasis to chlamydia ratio	Global male-to-female ratio	Global male-to-female ratio	Global male-to-female ratio
Western, central and eastern Europe and central Asia	Meta-analysis	Meta-analysis	Trichomoniasis to chlamydia ratio	Meta-Analysis	Global male-to-female ratio	Global male-to-female ratio
Oceania	Meta-analysis	Meta-analysis	Meta-Analysis	Global male-to-female ratio	Global male-to-female ratio	Global male-to-female ratio
South Asia	Meta-analysis	Gonorrhoea to chlamydia ratio	Trichomoniasis to chlamydia ratio^c	Global male-to-female ratio	Global male-to-female ratio	Global male-to-female ratio
East Asia and south-east Asia	Meta-analysis	Gonorrhoea to chlamydia ratio^d	Meta-Analysis	Global male-to-female ratio	Global male-to-female ratio	Global male-to-female ratio

^a In consultation with advisors on sexual transmitted infections for the World Health Organization (WHO) Region of the Americas, we decided to use the midpoint between the 2016 estimate generated by applying the global male-to-female ratio (7.5%) and the 2012 estimate for the region (2.1%). We deemed the former to be too high and the latter too low.

^b Following discussions with the United States Centers for Disease Control and Prevention, we based our estimates on the latest published United States national estimates^{21,22} and assumed they remained constant over time and that estimates for 15–39-year-old people could be extrapolated to the 15–49-year age range. We did not apply the adjustments used for other Regions in the WHO estimates process. The figures for the United States were also applied to Canada.

^c The estimate based on the three available data points was over 4%, considerably higher than the 2012 estimate. Following discussions with regional experts we decided not to use this estimate, but instead to use the trichomoniasis to chlamydia ratio for low and lower-middle-income countries, territories and areas.

^d This estimation region is made up of countries from East Asia and South East Asia. We used the higher and upper-middle income gonorrhoea to chlamydia ratio for East Asia and the low and lower-middle income ratio for South East Asia.¹⁹

UI: 14–28) and 26 per 1000 men (95% UI: 15–41); for trichomoniasis 40 per 1000 women (95% UI: 27–58) and 42 per 1000 men (95% UI: 23–69); and for syphilis 1.7 per 1000 women (95% UI: 1.4–2.0) and 1.6 per 1000 men (95% UI: 1.3–1.9; ^{Fig. 3}). The WHO Region of the Americas had the highest incidence rate for chlamydia and syphilis in both women and men, while the WHO African Region had the highest incidence rates for gonorrhoea and trichomoniasis in women and men. Incidence rates by income category and SDG regions are available from the data repository.¹¹

These incidence rates translate globally into 127.2 million (95% UI: 95.1–165.9) new chlamydia cases, 86.9 million (95% UI: 58.6–123.4 million) gonorrhoea cases, 156.0 million (95% UI: 103.4–231.2 million) trichomoniasis cases and 6.3 million (95% UI: 5.5–7.1 million) syphilis cases in women and men aged 15–49 years in 2016. Together, the four infections accounted for 376.4 million new infections in 15–49-year-old people in 2016. Approximately 13.5% (50.8 million) of these infections occurred in low-income countries, territories and areas, 31.4% (118.1 million) in lower middle income, 47.1% (177.3 million) in upper-middle income and 8.0% (30.1 million) in high-income (available from the data repository).¹¹

Comparison of estimates

Comparing the 2012 estimates with the estimates presented here shows that more data points were available in women for the 2016 estimates. The number increased from 69 to 100 for chlamydia, 50 to 64 for gonorrhoea and 44 to 69 for trichomoniasis. For men, the number of data points fell from 21 to 16 for chlamydia and from 12 to 11 for gonorrhoea, but increased from one to seven for trichomoniasis. The period of eligibility for both estimates was eight years with an overlap of four years (2009 to 2012); in women 27 data points were included in both estimates for chlamydia, 18 for gonorrhoea and 20 for trichomoniasis. In men, these overlaps were six, five and one, respectively.

Table 5 compares the 2012 and 2016 prevalence estimates for the four infections. For syphilis, two estimates are presented for 2012, the published estimate⁶ and the 2012 estimate generated using Spectrum STI and the latest
Research

Estimates of four sexually transmitted infections, 2016

Jane Rowley et al.

Spectrum data set. For all infections in both women and men, the 2016 global prevalence estimate was within the 95% UI for 2012. At the regional level, the 95% UIs for prevalence overlapped for all four infections in both men and women, apart from gonorrhoea in men in the WHO African Region which was higher in 2016 than in 2012.

Discussion

We estimated a global total of 376.4 million new curable urogenital infections with chlamydia, gonorrhoea, trichomoniasis and syphilis in 15–49-year-old women and men in 2016. This estimate corresponds to an average of just over 1 million new infections each day. The number of individuals infected, however, is smaller as repeat infections and co-infections are common.

The estimates of prevalence and incidence in 2016 were similar to those in 2012, both globally and by region, showing that sexually transmitted infections are persistently endemic worldwide.

Grouping countries, territories and areas according to SDG regions revealed that the prevalence and incidence of all four sexually transmitted infections, in both women and men, were highest in the Oceania Region. The small island states in this SDG region are part of the WHO Western Pacific Region, which is dominated by China (owing to its population size). Therefore, the levels of sexually transmitted infections and need for infection control in these island states are masked when viewing the estimates only by WHO Region. When using the World Bank classification of countries, the prevalence of gonorrhoea, trichomoniasis and syphilis were highest in low-income countries, territories and areas. The prevalence of chlamydia was highest in the upper middle-income countries, territories and areas, partly due to high estimates in some Latin American countries. Further research is needed to determine whether these estimates reflect methodological factors or differences in C. trachomatis transmission.

The 2016 estimates for chlamydia, gonorrhoea and trichomoniasis were based on a systematic review of the literature complemented by outreach to experts using the same methods as in 2012. The aim was to reduce bias and insure comprehensiveness in the
search for data. For syphilis, the use of national estimates generated by a statistical model improves on the 2012 method by making use of historical trend data. The similarity between the published 2012 syphilis estimates and Spectrum STI generated estimates for 2012 provides reassurance about the validity of comparing the 2016 and 2012 estimates.

The study has limitations. First, limited prevalence data were available, despite an eight-year time window for data inclusion. Estimates for a given infection and region are therefore extrapolated from a small number of data points and ratios were used to generate estimates for some regions. For men, the lack of data was particularly striking. For syphilis, most data were from pregnant women, which might not reflect all women aged 15–49 years, or men. Second, the source studies include people in different age groups and used a range of diagnostic tests, so adjustment factors were applied to standardize measures across studies. Third, owing to the absence of empirical studies, incidence estimates were derived from the relationship between prevalence and duration of infection, and data on the average duration of infection for each infection. The processes for producing future prevalence estimates could be made timelier and more efficient through continually updated systematic reviews, as well as technological solutions that automate searching of databases and facilitate high quality updates of reviews.

The global estimates of prevalence and incidence of four curable sexually transmitted infections are important in the broader global context, highlighting a continuing public health challenge. Prevalence and incidence data play an important role in the design and evaluation of programmes and interventions for sexually transmitted infections and in interpreting changes in HIV epidemiology. The global threat of antimicrobial resistance, particularly the emergence of N. gonorrhoeae resistance to the few remaining antimicrobials recommended for treatment, further highlights the importance of investing in monitoring prevalence and incidence. Estimates of prevalence and incidence are essential for calculations of the burden of disease due to sexually transmitted infections, which are needed to advocate for funding to support sexually transmitted infection programmes. These burden estimates can also be used to promote innovation for point-of-care diagnostics, new therapeutics, vaccines and microbiicides. The WHO Global Health Sector
Strategy on Sexually Transmitted Infections sets a target of 90% reductions in the incidence of gonorrhoea and of syphilis, globally, between 2018 and 2030. Major scale-ups of prevention, testing, treatment and partner services will be required to achieve these goals. The estimates generated in this paper, despite their limitations, provide an initial baseline for monitoring progress towards these ambitious targets.

Acknowledgements
We thank the WHO regional advisors and technical experts: Monica Alonso, Maeve Brito de Mello, Massimo Ghidinelli, Jomuna Hermez, Naoko Ishikawa, Linh-Vi Le, Morkor Newman, Takeshi Nishijima, Innocent Nuwagira, Leopold Ouedraogo, Bharat Rewari, Ahmed Sabry, Sanni Saliyou, Annemarie Stengaard, Ellen Thom and Motoyuki Tsuboi. We also thank Mary Kamb, S. Guy Mahiané, Otilia Mardh, Nico Nagelkerke, Gianfranco Spiteri, Igor Toskin, Teodora Wi, Nalinka Saman Wijesooriya and Rebecca Williams.

Funding
This work was supported by the U.S. Centers for Disease Control and Prevention, the United Kingdom Department for International Development, and the World Health Organization Human Reproduction Programme. LJA and AS acknowledge support of Qatar National Research Fund (NPRP 9-040-3-008) that provided funding for collating data provided to this study.

Competing interests
None declared.

Fig. 3. Incidence rate estimates for chlamydia, gonorrhoea, trichomoniasis and syphilis in adults, by WHO Region, 2016

Region	Women (Incidence per 1000 woman)	Men (Incidence per 1000 men)
African Region		
Region of the Americas		
South-East Asia Region		
European Region		
Eastern Mediterranean Region		
Western Pacific Region		

Note: We defined adults as 15–49 years of age. UI: uncertainty interval, WHO: World Health Organization.

WHO Region	Chlamydia	Gonorrhoea	Trichomoniasis	Syphilis
African Region				
Region of the Americas				
South-East Asia Region				
European Region				
Eastern Mediterranean Region				
Western Pacific Region				

MLH9G

كلاميديا، والسيلان، والزهري: تقديرات الانتشار والإصابة العالمية، 2016

الكلاميديا: 3.8% (نقطة التقدير: 95%: 3.3 إلى 4.5)، والسيلان: 0.9% (نقطة التقدير: 95%: 0.7 إلى 1.1)، وداء المشعرات: 5.3% (نقطة التقدير: 95%: 4.0 إلى 7.2)؛ والزهري لدى النساء: 0.5% (نقطة التقدير: 95%: 0.4 إلى 0.6). كانت تقديرات الانتشار في عام 2016 للكلاميديا: 2.7% (نقطة التقدير: 95%: 1.9 إلى 3.7)، والسيلان: 0.7% (نقطة التقدير: 95%: 0.5 إلى 1.1)، وداء المشعرات: 0.6% (نقطة التقدير: 95%: 0.5 إلى 0.9)؛ والإصابة في الرجال، والزهري لدى النساء: 0.0% (نقطة التقدير: 95%: 0 إلى 0.4)؛ والإصابة في الرجال، والزهري لدى الرجال: 0.0% (نقطة التقدير: 95%: 0 إلى 0.4). بلغ مجموع حالات الإصابة التقديرية 376 مليون حالة: 27.2 مليون (نقطة التقدير: 95%: 16.9 إلى 41.3 مليون) حالات الكلاميديا؛ 86.9 مليون (نقطة التقدير: 95%: 58.6 إلى 123.4 مليون) حالات السيلان؛ 156.0 مليون (نقطة التقدير: 95%: 95.1 إلى 259.7 مليون) حالات الزهري للنساء؛ و 28.4 مليون (نقطة التقدير: 95%: 12.4 إلى 47.8 مليون) حالة للرجال.

ملخص

والزهري لدى النساء والرجال، الذين تتراوح أعمارهم ب

قد تتراوح أعمارهم بين 15 و 49 سنة، من عام 2016. وفقاً لنتيجة المسح الذي تم خلال الفترة من 2009 إلى 2016، فإن هناك حاجة إلى تحسين النتائج. كما بقيت النتائج تحت تأثير قضايا أخرى، مثل نقص البيانات الأساسية.Bayesian Spectrum-STD: التقديرات الأولية النتيجة التالية استفادنا من

التقديرات أولية النتيجة التالية استفادنا من

لا يوجد نتائج أولية نموذجية لمرض الزهري globally. بالنسبة لمرض الزهري، احتوت

النتائج النموذجية لأمراض الكلاميديا، والسيلان، وداء المشعرات، شملت هناك 130 دراسة مؤيدة. بالنسبة لمرض الزهري، احتوت

نتيجة للنسبة النموذجية في عام 2016 في النساء.
截至2016年，全球共有8.25亿（95%置信区间：7.10-9.40亿）患者，其中2.31亿（95%置信区间：2.06-2.58亿）为女性患者。女性患病率估计值为：衣原体病2.7%（95%置信区间：1.9-3.7%）；淋病0.7%（95%置信区间：0.5-1.1%）；滴虫病0.6%（95%置信区间：0.4-0.9%）；梅毒0.5%（95%置信区间：0.4-0.6%）。全球男性患病率估计值为：衣原体病5.3%（95%置信区间：4.0-7.2%）；和梅毒0.5%（95%置信区间：0.4-0.6%）。

全球男性患病率估计值为：衣原体病2.7%（95%置信区间：1.9-3.7%）；淋病0.7%（95%置信区间：0.5-1.1%）；滴虫病0.6%（95%置信区间：0.4-0.9%）；梅毒0.5%（95%置信区间：0.4-0.6%）。预期病例总数为3.764亿（95%置信区间：3.322亿-4.206亿）。衣原体病病例8690万（95%置信区间：5860万-12340万）；淋病病例15600万（95%置信区间：10340万-23120万）；滴虫病病例630万（95%置信区间：550万-710万）；梅毒病例3000万（95%置信区间：2200万-4200万）。

结论

对这四种可治愈的性传播疾病的患病率和发病率的全球估计值仍然很高。该研究强调了扩大国家级数据收集工作的必要性，并为监测2016至2021年世卫组织全球卫生部门性传播疾病战略的进展提供了初始基线。
ИППП, остаются высокими. Исследование показывает, что оценивается миро́вое рас пространение этих четырёх инфекций, передаваемых половым путем (ИППП), остаются высокими. Исследование показывает оцениваемые мировые распространенность и частоты этих четырёх излечимых инфекций, передаваемых половым путем (ИППП), остаются высокими. Исследование показывает, что оцениваемые мировые распространенность и частоты этих четырёх излечимых инфекций, передаваемых половым путем (ИППП), остаются высокими.

Вывод. Оценки мировой распространенности и частоты этих четырёх излечимых инфекций, передаваемых половым путем (ИППП), остаются высокими. Исследование показывает оцениваемые мировые распространенность и частоты этих четырёх излечимых инфекций, передаваемых половым путем (ИППП), остаются высокими.

References

1. Gerbase AC, Rowley JT, Heymann DH, Berkley SF , Piot P . Global prevalence and incidence estimates of selected curable STIs. Sex Transm Infect. 1998 Jun;74 Suppl 1:S12–6. PMID: 10023347
2. Global prevalence and incidence of selected curable sexually transmitted infections: overview and estimates. Report No.: WHO/HIV/AIDS/2001.02. Geneva: World Health Organization; 2001. Available from: http://www.who.int/hiv/pub/sti/who_hiv_aids_2001_02.pdf [cited 2018 Nov 5].
3. Prevalence and incidence of selected sexually transmitted infections, Chlamydia trachomatis, Neisseria gonorrhoeae, syphilis, and Trichomona vaginalis: methods and results used by WHO to generate 2005 estimates. Geneva: World Health Organization; 2011. Available from: http://www.who.int/reproductivehealth/publications/rtis/9789241502450/en/ [cited 2018 Nov 5].
4. Global incidence and prevalence of selected sexually transmitted infections 2008. Geneva: World Health Organization; 2012. Available from: http://www.who.int/reproductivehealth/publications/rtis/stisestimates/en/ [cited 2018 Nov 5].
5. Wijesooriya NS, Rochat RW, Kamb ML, Turlapati P , Temmerman M, Broutet N, et al. Global burden of maternal and congenital syphilis in 2008 and 2012: a health systems modelling study. Lancet Glob Health. 2016 Oct;4(8):e525–33. doi: http://dx.doi.org/10.1016/S2214-109X(16)30135-8. http://dx.doi.org/10.1016/S2214-109X(16)30135-8. PMID: 27443780
6. Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One. 2015 12 8;10(12):e0143304. doi: http://dx.doi.org/10.1371/journal.pone.0143304. PMID: 26646541
7. Holmes KK, Sparling PF , Stamm WE, Piot P , Wasserheit JN, Corey L, et al. Sexually transmitted diseases. 4th ed. New York: McGraw-Hill Medical, 2008.
8. Amin A. Addressing gender inequalities to improve the sexual and reproductive health and wellbeing of women living with HIV. Int AIDS Soc. 2015 12 1;18(Suppl 5):S2032. PMID: 26643464
9. Global health sector strategy on sexually transmitted infections 2016–2021. Towards ending STIs. Report No. WHO/RHR/16.09. Geneva: World Health Organization; 2016. Available from: https://www.who.int/reproductivehealth/publications/rtis/ghs/stis/en/ [cited 2018 Nov 5].
10. Satterwhite CL, Torrone E, Mettes E, Dunne EF, Mahajan R, O’Cofnut MCB, et al. Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2008. Sex Transm Dis. 2013 Mar-Apr;40(3):187–93. doi: http://dx.doi.org/10.1093/OLQ/BOB13.182666535. PMID: 23405358
11. Torrone E, Papp J, Weinstock H; Centers for Disease Control and Prevention (CDC). Prevalence of Chlamydia trachomatis genital infection among persons aged 14–39 years—United States, 2007–2012. MMWR Morb Mortal Wkly Rep. 2014 Sep 26;63(38):834–8. PMID: 25324560
12. Berry SM, Carlin BP, Lee JJ, Muller P. Bayesian adaptive methods for clinical trials. 1st ed. Boca Raton: CRC Press; 2010. 323 pp. doi: http://dx.doi.org/10.1016/EK1439285488
13. Supplemental files for Chlamydia, gonorrhoea, trichomoniasis and syphilis: Global prevalence and incidence estimates, 2016. London: Figshare; 2019. doi: http://dx.doi.org/10.6084/m9.figshare.8187107.
14. Thomas A, O’Hara B, Liggins U, Sturz S. Making BUGS open. R News. 2006;6(1):12–7.
15. Young-Xu Y, Chan KA. Pooling overdispersed binomial data to estimate event rate. BMC Med Res Methodol. 2009 08 19;9(1):58. doi: http://dx.doi.org/10.1186/1471-2288-9-58. PMID: 19734488
16. World Population Prospects. 2017. New York: United Nations; 2017. Available from: https://esa.un.org/unpd/wpp/ [cited 2018 May 5].
17. World Bank and lending groups [internet]. Washington, DC: The World Bank Group; 2018. Available from: https://datahelpdesk.worldbank.org/wdi/knowledgebase/articles/906519 [cited 2018 May 22].
18. SDG Indicators. Regional groupings used in 2017 report and statistical annex [internet]. New York: United Nations; 2019. Available from: https://unstats.un.org/sdgs/indicators/regional-groups/ [cited 2018 May 22].
19. Korenromp EL, Rowley J, Alonso M, Mello Wijesooriya NS, Mahiané SG, et al. Global burden of maternal and congenital syphilis and associated adverse birth outcomes—estimates for 2016 and progress since 2012. PLoS One. 2019 02 27;14(2):e0211720. doi: http://dx.doi.org/10.1371/journal.pone.0211720. PMID: 30811406
20. Spectrum [internet]. Glastonbury: Avenir Health, 2019. Available from: https://www.averniresearch.org/software-spectrum.php [cited 2019 May 13].
21. Smeding A, Rowley J, Nagelkerke N, Kassebaum N, Chico RM, Korenromp EL, et al. Trends and predictors of syphilis prevalence in the general population: pooled global analyses of 1103 prevalence measures including 136 million syphilis tests. Clin Infect Dis. 2018 Apr 3;66(8):1184–91. doi: http://dx.doi.org/10.1093/cid/cix75 PMID: 29316161
22. Aroian LA, Taneja VS, Cornell LW. Mathematical forms of the distribution of the product of two normal variables. Commun Stat Theory Methods. 1978 Jan 17;2(1):65–72. doi: http://dx.doi.org/10.1080/036109278088087610

Bull World Health Organ 2019;97:548–562. doi: http://dx.doi.org/10.2471/BLT.18.228486

557
Prevalence of sexually transmitted infections during pregnancy and postdelivery in Kwazulu Natal, South Africa. Sex Transm Dis. 2015 Jan;42(1):43–7. doi: http://dx.doi.org/10.1097/OLQ.0000000000000175 PMID: 25118973

de Waaij DJ, Dubbink JH, Ouburg S, Peters RH, Morré SA. Prevalence of Trichomonas vaginalis infection and protozoan load in South African women: a cross-sectional study. BMJ Open. 2017 10 8(10):e016959. doi: http://dx.doi.org/10.1136/bmjopen-2017-016959 PMID: 28933835

Francis SC, Mthiyane TN, Baisley K, Mchnetu SI, Ferguson JB, Smit T, et al. Prevalence of sexually transmitted infections among young people in South Africa: A nested survey in a health and demographic surveillance site. PLoS Med. 2018 02 27,15(2):e1002512. doi: http://dx.doi.org/10.1371/journal.pmed.1002512. 29485385

Ginindza TG, Stefan CD, Tsioa-Gwegevemi JM, Dlami X, Jolly PE, Weeranderp E, et al. Prevalence and risk factors associated with sexually transmitted infections (STIs) among women of reproductive age in Swaziland. Infect Agent Cancer. 2017 05 25,12(1):29. doi: http://dx.doi.org/10.1186/s13072-017-0140-y PMID: 28559923

Tchelougou D, Karou DS, Kpoftsa A, Balaka A, Aissi M, Banke M, et al. [Vaginal infections in pregnant women at the regional hospital of Sokode (Togo)] in 2010 and 2011. Med Sante Togo. 2013 Jan-Mar;23(1):49–54. French. PMID: 23626923

Donders GG, Donders F, Bellen G, Depuydt C, Eggemont N, Michiels T, et al. Screening for abnormal vaginal microflora by self-assessed vaginal pH does not enable detection of sexually transmitted infections in Ugandan women. Diagn Microbiol Infect Dis. 2016 Jun;85(2):227–30. doi: http://dx.doi.org/10.1016/j.diagmicrobio.2015.12.018 PMID: 27112831

Rutherford GW, Anglemeyer A, Bagdena M, Muyonga M, Lindan C, Barker JL, et al. University students and the risk of HIV and other sexually transmitted infections in Uganda: The Crane survey. Int J Adolesc Med Health. 2014,26(2):90–15. doi: http://dx.doi.org/10.1515/ijahd-2013-0515 PMID: 24762640

deWulque D, Dow VH, Nathan R, Abdul R, Abidali F, Gong E, et al. Incentivising safe sex: a randomised trial of conditional cash transfers for HIV and sexually transmitted infection prevention in rural Tanzania. BMJ Open. 2012 02 8(2):e000747. doi: http://dx.doi.org/10.1136/bmjopen-2011-000747 PMID: 22318666

Chidu M, Theiligard ZF, Bakari V, Matsufrkoko F, Bygbjerg I, Flanholc L, et al. An association between Trichomonas vaginalis and high-risk human papillomavirus in rural Tanzanian women undergoing cervical cancer screening. Clin Ther. 2014 Jan;36(1):38–45. doi: http://dx.doi.org/10.1016/j.clinthera.2013.11.009 PMID: 24477784

Hokororo A, Khunwana P, Hoekstra P, Kalluyeva SE, Changalucha JM, Fitzgerald DW, et al. High prevalence of sexually transmitted infections in pregnant adolescent girls in Tanzania: a multi-community cross-sectional study. Sex Transm Infect. 2015 Nov;91(10):743–8. doi: http://dx.doi.org/10.1136/sextrans-2014-015952 PMID: 25834122

Lazeny GB, Taylor PT, Badman BS, Mchali E, Korte JE, Soper DE, et al. An association between Trichomonas vaginalis and high-risk human papillomavirus in rural Tanzanian women undergoing cervical cancer screening. BMC Urology. 2014;14(1):66. doi: http://dx.doi.org/10.1186/1471-2490-14-66 PMID: 25411990

Mauth A, Mazigo HD, Khunwana P. Prevalence and factors associated with Trichomonas vaginalis infection among pregnant women attending antenatal clinics in Mwanza city, North-western Tanzania. Sex Transm Infect. 2017 02 08(2):e1002512. doi: http://dx.doi.org/10.1136/sextrans-2016-051057 PMID: 28798890

Stephan S, Muchanita-Kabura CGE, Munjoma MW, Mambaza G. Evaluation of Cortez OneStep Chlamydia Rapidic™ Insta test for the detection of Chlamydia trachomatis in pregnant women at Mbarare polyclinic in Harare, Zimbabwe. Int J MCH AIDS. 2017 1(1):19–26. doi: http://dx.doi.org/10.1106/jima.150 PMID: 27898890

Jane Rowley et al. Frontier of estimates of four sexually transmitted infections, 2016

558
85. Cabeza J, García PJ, Segura E, García P, Escudero F, La Rosa S, et al. Feasibility of Chlamydia trachomatis screening and treatment in pregnant women: a prospective study in two large urban hospitals. Sex Transm Infect. 2015 Feb;91(1):7–10. doi: http://dx.doi.org/10.1136/sextrans-2014-051531 PMID: 25107711

86. van der Helm JJ, Bom RJ, Grünberg AW, Bruisten SM, Schim van der Loeff MF, Sabajo LO, et al. Urogenital Chlamydia trachomatis infections among ethnic groups in Paramaribo, Suriname, and determinants of ethnic sexual mixing patterns. PLoS One. 2013 07 17;8(7):e66869. doi: http://dx.doi.org/10.1371/journal.pone.0066869 PMID: 23784730

87. van der Helm JJ, Sabajo LO, Grünberg AW, Bruisten SM, van der Loeff MF, van der Helm JJ, Bom RJ, Schim van der Loeff MF, et al. Screening for Chlamydia is acceptable and feasible during cervical screening in general practice. Ir Med J. 2016 Jan;109(1):326–7. PMID: 26927090

88. Vijaya MN, Umashankar K, Sudha, Nagure AG, Gavitha G. Prevalence of the Trichomonas Vaginalis infection in a tertiary care hospital in rural, southern India. J Clin Diag Res. 2013 Jul;7(1):470–1. PMID: 23998875

89. Qaim M, Scherf M, de Vries JC, Mehta K, Marfatya Y. Validation of vaginal discharge syndrome during pregnancy among pregnant attending obstetrics clinic, in the tertiary hospital of western India. Indian J Sex Transm Dis AIDS. 2014 Jul-Dec;35(2):118–23. doi: http://dx.doi.org/10.4103/0253-7184.142406 PMID: 26396466

90. Krishnan A, Sabeena S, Bhat PV, Kamath V, Hindol M, Zadeh VR, et al. Detection of genital chlamydial and gonococcal infections using urine samples: a community-based study from India. J Infect Public Health. 2018 Jan-Feb;11(1):75–9. doi: http://dx.doi.org/10.1016/j.jiph.2017.04.006 PMID: 28506737

91. Ani LS, Davison IS. Trichomonioma among pregnant women in Denpasar City, Bali, Indonesia. J Glob Pharma Technol. 2017 Apr 25;9(4):61–5.

92. Bannekehe H, Fernandopulle R, Prathananpan S, de Silva G, Fernando N, Wickremasinghe R. Use of culture and immunochromatographic technique for diagnosis of trichomoniasis in Sri Lanka. Ceylon Med J. 2013 Sep;58(3):122–3. doi: http://dx.doi.org/10.4038/cmj.v58i3.6105 PMID: 24081173

93. Fari A, Kiss H, Hagmann M, Hölder L, Kuenzly V, Hustein PW, et al. Evaluation of the vaginal flora in pregnant women receiving opioid maintenance therapy: a matched case-control study. BMC Pregnancy Childbirth. 2016 08 16;16(1):206. doi: http://dx.doi.org/10.1186/s12884-016-1003-z PMID: 27495167

94. Ljubin-Sternak S, Meštrović T, Kolarić B, Jarža-Davila N, Marijan T, Vraneš J. Prevalence of Chlamydia trachomatis and Neisseria gonorrhoeae infection in adolescents in northern Italy: an observational school-based study. BMC Public Health. 2016 02 26;16(1):200. doi: http://dx.doi.org/10.1186/s12889-2016-3839-x PMID: 26927226

95. Cabeza J, García PJ, Segura E, García P, Escudero F, La Rosa S, et al. Prevalence of Chlamydia trachomatis and Neisseria gonorrhoeae infection in young women by multiple real-time PCR. Infec Med. 2016;24(1):12–7. PMID: 27046236

96. Mattarellì A, Capelli M, Suisi G, Toninelli G, Carvalho ACC, Pecorelli S, et al., on behalf of the Clamigon Study Group. Prevalence of Chlamydia trachomatis and Neisseria gonorrhoeae infection in young women of southern European population? A self-sampling study. Arch Gynecol Obstet. 2013 Sep;288(3):627–33. doi: http://dx.doi.org/10.1007/s00404-013-1771-6 PMID: 23944917

97. Babinská I, Halánová M, Kalinová Z, Čechová L, Čisláková L, Madarasová MV, Sabajo LO, et al. Urogenital Chlamydia trachomatis infections among women by multiple real-time PCR. Sex Transm Infect. 2018 05;94(3):226–9. PMID: 27686884

98. Panatto D, Amicizia D, Bianchi S, Frati ER, Zotti CM, Lai PL, et al. Chlamydia trachomatis prevalence and chlamydial/HPV coinfection among HPV-unvaccinated young Italian females with normal cytology. Hum Vaccin Immunother. 2015;11(1):270–6. doi: http://dx.doi.org/10.1177/1615077614553854

99. Baloch MR, Nardini P, Baranca N, D'Antuono A, Comperi M, Cevenini R, et al. Chlamydia trachomatis infection and serovar distribution in a high-density urban area in the north of Italy. J Med Microbiol. 2016 Jun;65(5):510–20. doi: http://dx.doi.org/10.1099/jmm.0.000261 PMID: 27046236
151. Korenromp EL, Mahiané SG, Nagelkerke N, Taylor MM, Williams R, Chico RM, et al. Syphilis prevalence trends in adult women in 132 countries – estimations using the Spectrum Sexually Transmitted Infections model. Sci Rep. 2018 07 31;8(1):11503. doi: http://dx.doi.org/10.1038/s41598-018-29605-9 PMID: 30065272

152. Sexually transmitted infections (STIs). Geneva: World Health Organization; 2019. Available from: https://www.who.int/news-room/fact-sheets/detail/sexually-transmitted-infections-(stis) [cited 2019 May 24].

153. Standard protocol to assess the prevalence of gonorrhea and chlamydia among pregnant women in antenatal care clinics. Geneva: World Health Organization; 2018. Available from: https://www.who.int/reproductivehealth/publications/rtis/gonorrhoea-chlamydia-among-pregnant-women/en/ [cited 2018 Nov 30].

154. Thomas J, Noel-Storr A, Marshall J, Wallace B, McDonald S, Mavergames C, et al.; Living Systematic Review Network. Living systematic reviews: 2. Combining human and machine effort. J Clin Epidemiol. 2017 Nov;91:31–7. doi: http://dx.doi.org/10.1016/j.jclinepi.2017.08.011 PMID: 28912003

155. Wi T, Lahra MM, Ndowa F, Bala M, Dillon JR, Ramon-Pardo P, et al. Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLoS Med. 2017 07 7;14(7):e1002344. doi: http://dx.doi.org/10.1371/journal.pmed.1002344 PMID: 28686231
Table 1. Included studies on chlamydia, gonorrhoea and trichomoniasis prevalence in women, 2009–2016

Study, by WHO region	Country or territory and location	Date of study	Population and age, years	Chlamydia	Gonorrhoea	Trichomoniasis						
				Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %
African Region				Genital fluid, amplification test	400	7.8	Genital fluid, amplification test	400	1.3	Genital fluid, amplification test	400	5.3
Wynn et al., 2018	Botswana, Gaborone	Jul 2015–May 2016	ANC clinic attendees, > 18	Genital fluid, amplification test	655	5.8	Genital fluid, amplification test	655	5.3	Genital fluid, amplification test	655	7.8
Ginindza et al., 2017	Eswatini, national	Jun–Jul 2015	Outpatient clinic attendees, 15–49	Genital fluid, amplification test	655	5.8	Genital fluid, amplification test	655	5.3	Genital fluid, amplification test	655	7.8
Eshete et al., 2013	Ethiopia, Jimma Town	Dec 2011–May 2012	ANC clinic attendees, 15–36	NR	NR	NR	Genital fluid, culture	361	5.0			
Mulu et al., 2015	Ethiopia, Bahir Dar	May–Nov 2013	ANC clinic attendees, 15–49	NR	NR	NR	Genital fluid, culture	214	1.4			
Schönfeld et al., 2018	Ethiopia, Asella	May 2014–Sep 2015	ANC clinic attendees, adults	NR	NR	NR	Genital fluid, amplification test	580	5.3			
Volker et al., 2017	Ghana, Western region	Oct 2011–Jan 2012	Attendees at a hospital maternity clinic, 14–48	Genital fluid, amplification test	177	1.7	Genital fluid, culture	180	0.0	Genital fluid, culture	180	0.0
Jespers et al., 2014	Kenya, Mombasa	2010–2011	Participants in a community survey, 18–35	Genital fluid, amplification test	110	3.6	Genital fluid, culture	110	2.7			
Kinuthia et al., 2015	Kenya, Ahero and Bondo districts	May 2011–Jun 2013	ANC clinic attendees, ≥ 14	Genital fluid, amplification test	1276	5.5	Genital fluid, culture	1278	6.3	Genital fluid, culture	1278	6.3
Drake et al., 2013	Kenya, Western Kenya	Pre-2013	ANC clinic attendees, 14–21	Genital fluid, amplification test	537	4.7	Genital fluid, culture	537	5.6	Genital fluid, culture	537	5.6
Masese et al., 2017	Kenya, Mombasa	Aug 2014–Mar 2015	Students, 15–24	Urine, amplification test	451	3.5	Urine, amplification test	451	0.7			

(continues...
Study, by WHO region	Country or territory and location	Date of study	Population and age, years	Chlamydia	Gonorrhoea	Trichomoniasis						
				Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %
Masha et al., 2017	Kenya, Kilifi	Jul–Sep 2015	ANC clinic attendees, 18–45	Urine, amplification test	202	149	Urine, amplification test	202	1.0	Genital fluid, culture	202	7.4
Nkhoma et al., 2017	Malawi, Mangochi District	Feb 2011–Aug 2012	ANC clinic attendees, ≥ 15	NR	NR	NR	NR	NR	NR	Genital fluid, microscopy	1210	10.5
Olowe et al., 2014	Nigeria, Osogba	Jul–Apr 2012	ANC clinic attendees, adults	NR	NR	NR	NR	NR	NR	Genital fluid, microscopy	100	2.0
Etuketu et al., 2015	Nigeria, Abeokutu	Jun–Jul 2013	ANC clinic attendees, 15–44	NR	NR	NR	NR	NR	NR	Genital fluid, microscopy	300	10.3
Muxunyi et al., 2011	Rwanda, Kigali	Nov 2007–Mar 2010	Controls for infertility study, adults	Genital fluid, amplification test	312	3.8	NR	NR	NR	NR	NR	NR
Franceschi et al., 2014	Rwanda, Kigali	Apr 2013–May 2014	Students, 18–20	Urine, amplification test	912	2.2	NR	NR	NR	NR	NR	NR
Vieira-Baptista et al., 2017	Sao Tome and Principe, Principe	2015	Attendees at a primary health-care clinic, 21–60	Genital fluid, amplification test	100	3.0	100	2.0	100	8.0		
Moodley et al., 2015	South Africa, Durban	May 2008–Jun 2010	ANC clinic attendees, adults	Genital fluid, amplification test	1459	17.8	Genital fluid, amplification test	1459	6.4	Genital fluid, amplification test	1459	15.3
Jespers et al., 2014	South Africa, Johannesburg	2010–2011	ANC clinic attendees, adults	Genital fluid, amplification test	109	16.5	Genital fluid, amplification test	109	0.9	Genital fluid, culture	109	4.6
Peters et al., 2014	South Africa, Mopani District	Nov 2011–Feb 2012	Attendees at a primary health-care clinic, 18–49	Genital fluid, amplification test	603	16.1	Genital fluid, amplification test	603	10.1	NR	NR	NR
de Waaij et al., 2017	South Africa, Mopani District	Nov 2011–Feb 2012	Attendees at a primary health-care clinic, 18–49	NR	NR	NR	NR	NR	NR	Genital fluid, amplification test	575	19.7

(continues . . .)
Study, by WHO region	Country or territory and location	Date of study	Population and age, years	Chlamydia	Gonorrhea	Trichomoniasis						
				Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %
Francis et al., 2018	South Africa, KwaZulu-Natal	Oct 2016–Jan 2017	Youth people, 15–24	Genital, amplification test	259	11.2	Genital fluid, amplification test	259	1.9	Genital fluid, amplification test	259	46
Tchelougou et al., 2013	Togo, Sokodé	Jun 2010–Aug 2011	ANC clinic attendees, adults	NR	NR	NR	Genital fluid, amplification test	NR	NR	Genital fluid, amplification test	302	3.6
Donders et al., 2016	Uganda, Kampala	Pre-2015	Outpatient clinic attendees, adults	Genital fluid, amplification test	360	1.4	Genital fluid, amplification test	360	1.7	Genital fluid, amplification test	360	6.7
Rutherford et al., 2014	Uganda, Kampala	Sep 2008–Apr 2009	Students, 19–25	Genital fluid, amplification test	280	2.5	Genital fluid, amplification test	280	1.1	Genital fluid, culture	247	08
de Walque et al., 2012	United Republic of Tanzania, Kilombero and Ulanga Districts	Feb–Apr 2009	Participants in HIV prevention trial, 18–30	Genital fluid, amplification test	1204	2.7	Genital fluid, amplification test	1204	1.4	Genital fluid, amplification test	1204	16.2
Chiduo et al., 2012	United Republic of Tanzania, Tanga	May 2009–Oct 2010	ANC clinic attendees, 18–44	Genital fluid, amplification test	185	1.6	Genital fluid, culture and Gram stain	185	1.6	Genital fluid, microscopy	185	11.4
Hokororo et al., 2013	United Republic of Tanzania, Mwanza	Apr–Dec 2012	ANC clinic attendees, 14–20	Urine, amplification test	403	11.4	Urine, amplification test	403	6.7	Genital fluid, microscopy	403	13.4
Lazenby et al., 2014	United Republic of Tanzania, Arusha District	Pre-2014	Participants for cervical cancer screening, 30–60	Genital fluid, amplification test	324	0.0	Genital fluid, amplification test	324	0.0	Genital fluid, amplification test	297	104
Mauri et al., 2018	United Republic of Tanzania, Mwanza	Nov 2014–Apr 2015	ANC clinic attendees, 17–46	NR	NR	NR	Genital fluid, microscopy	365	104			
Chaponda et al., 2016	Zambia, Chichilenge District	Nov 2013–Apr 2014	ANC clinic attendees, adults	Genital fluid, amplification test	1083	5.2	Genital fluid, amplification test	1083	3.1	Genital fluid, amplification test	1083	24.8
Stephen et al., 2017	Zimbabwe, Harare	Jan 2012–Apr 2012	ANC clinic attendees, > 18	Genital fluid, amplification test	242	5.8	Genital fluid, amplification test	NR	NR	NR	NR	NR

Region of the Americas

(continues...)
Study, by WHO region and location	Country or territory and location	Date of study	Population and age, years	Chlamydia	Gonorrhoea	Trichomoniasis							
				Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	
Touzon et al., 2014^a	Argentina, Buenos Aires	Jan 2010–Dec 2012	ANC clinic attendees, adults	NR	NR	NR	Genital fluid, culture	1238	1.8	Genital fluid, culture	386	5.2	
Testardini et al., 2016^a	Argentina, Buenos Aires	Apr 2010–Aug 2011	ANC clinic attendees, adults	NR	NR	NR	Genital fluid, amplification test	210	0.5	Genital fluid, microscopy	210	1.4	
Mucci et al., 2016^a	Argentina, Buenos Aires	Aug 2012–Jan 2013	ANC clinic attendees, 10–42	NR	NR	NR	Urine, amplification test	2504	12.0	Urine, amplification test	2504	2.0	
Department of Public Health 2018^a	Bahamas, national	2016	ANC clinic attendees, adults	1134	109	NR	Urine, amplification test	299	7.7	Genital fluid, culture	299	7.7	
Magalhaes et al., 2015^a	Brazil, Rio Grande do Norte State	2008–2012	Participants for cervical cancer screening, 25–60	Genital fluid, amplification test	335	10.7	Urine, amplification test	335	1.5	Genital fluid, culture	168	3.0	
Miranda et al., 2014^a	Brazil, national	Mar–Nov 2009	ANC clinic attendees, 15–24	NR	NR	NR	Urine, amplification test	2071	9.8	Urine, amplification test	2071	1.0	
Pinto et al., 2011^a	Brazil, national	Mar–Nov 2009	ANC clinic attendees, 15–24	Urine, amplification test	168	16.7	NR	Genital fluid, culture	168	3.0	Genital fluid, culture	168	3.0
Ferreira et al., 2015^a	Brazil, Belem and Para	2009–2011	ANC clinic attendees, <19	Urine, amplification test	335	10.7	NR	Genital fluid, culture	335	1.5	Genital fluid, culture	335	1.5
Piazzetta et al., 2011^a	Brazil, Curitiba	Pre-2011	Sexually active youth people, 16–23	Genital fluid, amplification test	562	12.3	NR	Genital fluid, culture	562	12.3	Genital fluid, culture	562	12.3
Silveira MF et al., 2017^a	Brazil, Pelotas	Dec 2011–May 2013	Attendees at a hospital maternity clinic, 18–24	Genital fluid, amplification test	361	15.0	NR	Genital fluid, culture	361	15.0	Genital fluid, culture	361	15.0
Mesenburg et al., 2013^a	Brazil, Pelotas	Dec 2011–Jan 2013	ANC clinic attendees, <30	Genital fluid, amplification test	1238	1.8	Genital fluid, culture	386	5.2	Genital fluid, culture	210	1.4	

(continues . . .)
Study, by WHO region	Country or territory and location	Date of study	Population and age, years	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %
Gatti et al., 2017⁹⁶	Brazil, Rio Grande	Jan 2012–Jan 2015	ANC clinic attendees, adults	Genital fluid, amplification test	1169	13.1	NR								
Marconi et al., 2015⁹⁶	Brazil, Botucatu	Sep 2012–Jan 2013	Participants for cervical cancer screening, 14–54	Genital fluid, amplification test	204	5.9	NR								
Neves et al., 2016⁶⁷	Brazil, Manaus	Oct 2012–Dec 2013	Attendees at a primary health-care clinic, 14–25	Genital fluid, amplification test	1519	1.4	NR								
Zamboni et al., 2016⁶⁹	Brazil, Santiago	Mar 2013–Mar 2014	Outpatient clinic attendees, 15–24	Genital fluid, amplification test	181	5.5	NR								
Melo et al., 2016⁷⁰	Brazil, Region of La Araucania	2013–2014	Participants for cervical cancer screening, 18–24	Genital fluid, amplification test	171	8.8	NR								
Glehn et al., 2016⁷¹	Brazil, Federal District	Nov 2014–Mar 2015	Attendees at a primary health-care clinic, 18–49	Genital fluid, culture	193	15.5	NR								
Ovalle et al., 2012¹	Chile, Santiago	Apr 2010–Oct 2010	ANC clinic attendees, adults	Genital fluid, amplification test	255	5.9	Genital fluid, culture	255	0.0	Genital fluid, culture	255	2.4	Genital fluid, culture	255	2.4
Huneeus et al., 2018¹	Chile, Santiago	2012–2014	Sexually active youth people, < 25	Genital fluid, amplification test	171	8.8	Genital fluid, amplification test	171	0.6	Genital fluid, amplification test	171	0.0	Genital fluid, amplification test	171	0.0
Villaseca et al., 2015¹	Chile, Santiago	Jun 2013–Dec 2013	Attendees at a family health clinic, 15–54	Genital fluid, culture	101	3.0									
Stella et al., 2011¹⁴	Colombia, rural Medellin	2009–2010	Students, 15–18	Genital fluid, culture	262	0.0									
Research Estimates of Four Sexually Transmitted Infections, 2016

Jane Rowley et al.

Study, by WHO region	Country or territory and location	Date of study	Population and age, years	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	
Paredes et al., 2015	Colombia, Sabana Centro province	Jun 2012–Aug 2013	Students, 14–19	Urine, amplification test	436	3.2	Urine, amplification test	436	0.2	NR	NR	NR	NR
Giraldo-Ospina et al., 2015	Colombia, Dosquebradas	Aug–Dec. 2013	ANC clinic attendees, 15–47	Genital fluid, amplification test	101	0.0	Genital fluid, culture	101	2.0	NR	NR	NR	NR
Geron et al., 2014	Colombia, Bogota	Oct 2012	ANC clinic attendees, 15–40	Genital fluid, amplification test	226	5.3	Genital fluid, amplification test	199	4.0	Genital fluid, amplification test	199	196	
Jobe et al., 2014	Haiti, Jéème	Aug 2011	Attendees at a primary health-care clinic, 16–75	Genital fluid, amplification test	104	1.9	Genital fluid, amplification test	104	1.0	Genital fluid, amplification test	104	13.5	
Jobe et al., 2014	Haiti, Jéème	Oct 2012	Attendees at a primary health-care clinic, 19–78	Genital fluid, amplification test	104	1.9	Genital fluid, amplification test	104	1.0	Genital fluid, amplification test	104	13.5	
Scheildell et al., 2018	Haiti, Gressier	Aug–Oct 2013	ANC clinic attendees, adults	Urine, amplification test	200	8.0	Urine, amplification test	200	3.0	Urine, amplification test	200	205	
Bristow et al., 2017	Haiti, Port-au-Prince	Oct 2015–Jan 2016	ANC clinic attendees, > 18	Genital fluid, amplification test	300	140	Genital fluid, amplification test	300	2.7	Genital fluid, amplification test	300	27.7	
Conde-Ferráez et al., 2017	Mexico, Merida	Aug 2010–Jan 2011	ANC clinic attendees, adults	Genital fluid, amplification test	121	8.3	Genital fluid, amplification test	158	190				
López-Monteon et al., 2013	Mexico, central Veracruz	Jun–Jul 2012	Attendees at a primary health-care clinic, 14–50	Genital fluid, amplification test	NR	NR	NR	NR	NR	NR			
Magana-Contreras et al., 2015	Mexico, Villahermosa	Jan 2013–Nov 2014	Participants for cervical cancer screening, 16–74	Genital fluid, amplification test	201	1.5	Genital fluid, amplification test	201	1.5	Genital fluid, amplification test	201	1.5	
Casillas-Vega et al., 2017	Mexico, Jalisco	Sep 2013–Aug 2014	ANC clinic attendees, adults	Genital fluid, amplification test	287	108	Genital fluid, amplification test	287	108	Genital fluid, amplification test	287	108	

(continues...)
Estimates of four sexually transmitted infections, 2016

Jane Rowley et al.

Study, by WHO region	Country or territory and location	Date of study	Population and age, years	Chlamydia	Gonorrhoea	Trichomoniasis						
				Clinical specimen, test¹	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %
				Genital fluid, amplification test	600	100	NR					
				Genital fluid, amplification test	819	NR						
				Genital fluid, amplification test	753	NR						
				Genital fluid, amplification test	973	NR						
				Genital fluid, amplification test	973	NR						
				Genital fluid, amplification test	784	NR						
				Genital fluid, amplification test	750	NR						
				Genital fluid, amplification test	213	NR						
				Genital fluid, amplification test	213	NR						
				Genital fluid, amplification test	213	NR						
				Genital fluid, amplification test	213	NR						
				Genital fluid, amplification test	233	NR						
				Genital fluid, amplification test	376	NR						

(continues...)
Study, by WHO region	Country or territory and location	Date of study	Population and age, years	Chlamydia	Gonorrhea	Trichomoniasis						
				Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %
Banneheke et al., 2013	Sri Lanka, Colombo district	2007–2009	Participants in diagnostic test study, 16–45	NR	NR	NR	NR	NR	NR	Genital fluid, microscopy	601	2.8
European Region				Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %
Farr et al., 2016	Austria, Vienna	Jan 2005–Jan 2015	ANC clinic attendees, adults	NR	NR	NR	NR	NR	NR	Genital fluid, DNA probe-based assay	3763	0.8
Ljubin-Sternak et al., 2017	Croatia, Zagreb	Mar 2014–Feb 2015	Attendees at an obstetrics and gynaecology clinic, adults	Genital fluid, amplification test	8665	1.7	NR	NR	NR	NR	NR	
Peuchant et al., 2015	France, Bordeaux	Jan–Jun 2011	ANC clinic attendees, 18–44	Genital fluid, amplification test	1004	2.5	Genital fluid, amplification test	1004	0.0	NR	NR	NR
Peuchant et al., 2015	France, Bordeaux	Sep 2012–Feb 2013	ANC clinic attendees, < 25	Genital fluid, amplification test	112	7.1	Genital fluid, amplification test	112	1.8	NR	NR	NR
Galdavadze et al., personal communication 2012	Georgia, Tbilisi	Jul 2011–Mar 2012	ANC clinic attendees, 14–44	Urine, amplification test	300	5.0	Urine, amplification test	300	0.3	NR	NR	NR
Ikonomidis et al., 2015	Greece, Thessaly state	Feb 2012–Nov 2015	Attendees at a urology and gynaecology clinic, adults	Genital fluid, amplification test	130	0.8	NR	NR	NR	NR	NR	
O’Higgins et al., 2017	Ireland, Dublin	Dec 2011–Dec 2013	ANC clinic attendees, 16–25	Genital fluid, amplification test	2687	4.9	NR	NR	NR	NR	NR	
Hassan et al., 2016	Ireland, Dublin	Jul 2014–Jan 2015	Participants for cervical cancer screening, 25–40	Genital fluid, amplification test	236	3.0	Genital fluid, amplification test	236	0.0	NR	NR	NR

(continues . . .)
Study, by WHO region	Country or territory and location	Date of study	Population and age, years	Chlamydia	Gonorrhoea	Trichomoniasis						
				Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %
Bianchi et al., 2016	Italy, Milan	Dec 2008–Dec 2012	HPV vaccinated young women, 18–23	Genital fluid, amplification test	591	49	NR	NR	NR	NR	NR	NR
Seraceni et al., 2016	Italy, north-eastern	Jan 2009–Dec 2014	Participants for cervical cancer screening, adults	Genital fluid, amplification test	921	0.0	NR	NR	NR	NR	NR	NR
Panatto et al., 2015	Italy, Turin, Milan and Genoa	Jan–Jun 2010	Women attending gynaecologic routine check-ups, 16–26	Genital fluid, amplification test	566	5.8	NR	NR	NR	NR	NR	NR
Foschi et al., 2016	Italy, Bologna	Jan 2011–May 2014	Attendees at an obstetrics and gynaecology clinic, routine, ≥ 14	Genital fluid, amplification test	3072	3.4	NR	NR	NR	NR	NR	NR
Matteelli et al., 2016	Italy, Brescia	Nov 2012–Mar 2013	Sexually active students, ≥ 18	Urine, amplification test	1297	1.9	Urine, amplification test	1297	0.0	NR	NR	NR
Camporiondo et al., 2016	Italy, Rome	Mar 2013	Healthy women attending screening, 34–60	Genital fluid, amplification test	309	0.0	Genital fluid, amplification test	309	0.0	Genital fluid, amplification test	309	1.3
Leli et al., 2016	Italy, Perugia	Jan–Oct 2015	Outpatient clinic attendees, adults	Urine, amplification test	NR	NR	NR	NR	NR	Genital fluid, amplification test	1487	1.3
Gravningen et al., 2013	Norway, Finnmark	2009	Sexually active students, 15–20	Urine, amplification test	607	68	NR	NR	NR	NR	NR	NR

(continues...)
Study, by WHO region and location

Study, by WHO region and location	Country or territory and location	Date of study	Population and age, years	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %
Silva et al., 2013[10]	Portugal, Porto	Pre-2013	Students, 14–30	Genital fluid, amplification test	432	6.9	NR	NR	NR	NR	NR	NR	NR	NR	NR
Babinská et al., 2017[10]	Slovakia, eastern parts	2011	Community members, adults	Urine, amplification test	511	3.5	NR	NR	NR	NR	NR	NR	NR	NR	NR
Fernández-Benítez et al., 2013[11]	Spain, Laviana and Asturias	Nov 2010–Dec 2011	Sexually active youth people, 15–24	Urine, amplification test	277	4.0	NR	NR	NR	NR	NR	NR	NR	NR	NR
Pineiro et al., 2016[12]	Spain, Basque Autonomous Community	Jan 2011–Dec 2014	Attendees at a hospital maternity clinic, 14–54	Urine, amplification test	11 687	1.0	Urine, amplification test	11 687	0.0	Urine, amplification test	2559	0.3	Urine, amplification test	2559	0.3
Field et al., 2018[13]	United Kingdom, national	Sep 2010–Aug 2012	Sexually active adults, 16–44	Urine, amplification test	11 687	1.0	Urine, amplification test	11 687	0.0	Urine, amplification test	2559	0.3	Urine, amplification test	2559	0.3
Sonnenberg et al., 2013[14]	United Kingdom, national	Sep 2010–Aug 2012	Sexually active adults, 16–44	Urine, amplification test	2665	2.3	Urine, amplification test	2665	0.1	Urine, amplification test	2559	0.3	Urine, amplification test	2559	0.3
Eastern Mediterranean Region															
Nada et al., 2015[15]	Egypt, Cairo	Jan–Nov 2014	Controls for infertility study, adult	Genital fluid, amplification test	100	2.0	NR	NR	NR	NR	NR	NR	NR	NR	NR
Hasansadeh et al., 2013[16]	Iran (Islamic Republic of), Shiraz	2009–2011	ANC clinic attendees, adults	Genital fluid, amplification test	11 000	1.2	Genital fluid, amplification test	11 000	1.2	Genital fluid, amplification test	11 000	1.2	Genital fluid, amplification test	11 000	1.2
Hamid et al., 2011[17]	Iran (Islamic Republic of), Zanjan province	Apr 2009	Attendees at an obstetrics and gynaecology clinic, 15–45	Genital fluid, culture	328	0.9	NR	NR	NR	NR	NR	NR	NR	NR	NR
Nourian et al., 2015[18]	Iran (Islamic Republic of), Zanjan	Jul 2009–Jun 2010	ANC clinic attendees, adults	Genital fluid, culture	1000	3.3									
Rasti et al., 2011[19]	Iran (Islamic Republic of), Kashan	Pre-2010	ANC clinic attendees, adults	Genital fluid, culture	450	0.4									
Estimates of four sexually transmitted infections, 2016

Jane Rowley et al.

Study, by WHO region	Country or territory and location	Date of study	Population and age, years	Chlamydia	Gonorrhea	Trichomoniasis							
				Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	
Dehgan Marvast et al., 2017	Iran (Islamic Republic of), Yazd	May–Sep 2010	ANC clinic attendees, 16–39	Urine, amplification test	250	0.0	NR	NR	NR	NR	NR	NR	
Ahmadi et al., 2016	Iran (Islamic Republic of), Sanandaj	Aug 2012–Jan 2013	Controls for spontaneous abortion study, 19–42	Genital fluid, amplification test	109	11.9	NR	NR	NR	NR	NR	NR	
Arabi et al., 2014	Iran (Islamic Republic of), Kashan	Oct 2012–Aug 2013	Attendees at a public health unit, 16–60	NR	NR	NR	NR	NR	NR	Genital fluid, culture	970	23	
Hasanabad et al., 2013	Iran (Islamic Republic of), Sabzevar	Pre-2013	ANC clinic attendees, adolescents	Urine, amplification test	399	12.3	Urine, amplification test	399	1.3	NR	NR	NR	NR
Mousavi et al., 2014	Iran (Islamic Republic of), Sanandaj	Feb–May 2013	Controls for infertility study, 14–40	Genital fluid, amplification test	104	5.8	NR	NR	NR	NR	NR	NR	
Nateghi Rostami et al., 2015	Iran (Islamic Republic of), Qom	May 2013–Apr 2014	Attendees at an obstetrics and gynaecology clinic, 18–50	Genital fluid, amplification test	518	7.1	NR	NR	NR	NR	NR	NR	
Marashi et al., 2014	Iran (Islamic Republic of), not specified	Pre-2014	Controls for infertility study, 20–40	Genital fluid, amplification test	200	6.5	NR	NR	NR	NR	NR	NR	
Joolayi et al., 2017	Iran (Islamic Republic of), Ahvaz	Aug 2016–Jan 2017	Controls for infertility study, 18–49	Genital fluid, amplification test	125	1.6	NR	NR	NR	NR	NR	NR	
El Kettani et al., personal communication, 2016	Morocco, Rabat, Salé, Agadir and Fes	Oct 2011–Dec 2011	Attendees at a family planning clinic, 18–49	Genital fluid, amplification test	537	3.0	Genital fluid, amplification test	537	0.4	Genital fluid, culture	537	5.6	
El Kettani et al., personal communication, 2016	Morocco, Rabat, Salé, Agadir and Fes	Dec 2011–Jan 2012	ANC clinic attendees, 18–49	Genital fluid, amplification test	252	3.6	Genital fluid, amplification test	252	0.8	Genital fluid, culture	252	5.2	

(continues . .)
Study, by WHO region	Country or territory and location	Date of study	Population and age, years	Chlamydia	Gonorrhoea	Trichomoniasis							
				Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	
Kamel 2013[128]	Saudi Arabia, Jazan	Jul 2011–Jun 2012	Controls for infertility study, 18–40	Genital fluid, culture	100	40	NR	NR	NR	NR	NR		
Western Pacific Region	Wen 2013[129]	China, Wuhu	2010	Sexually active adults, adults	Genital fluid, amplification test	7892	5.4	NR	NR	NR	Genital fluid, microscopy	2010	6.6
	Lu et al., 2013[130]	China, Shenzhen	2011–2012	Attendees at an obstetrics and gynaecology clinic, adults	Genital fluid, culture	108 268	1.5	NR	NR	NR	NR	NR	
	Xia et al., 2015[131]	China, east, 16 cities	Jan–Dec 2011	Attendees at an hospital maternity clinic, adults	Genital fluid, culture	1183	3.7	NR	NR	NR	NR	NR	
	Zhang et al., 2017[132]	China, Shaanxi province	Jun 2012–Jan 2013	Attendees at an obstetrics and gynaecology clinic, adults	Genital fluid, amplification test	500	3.4	NR	NR	NR	NR	NR	
	Zhang et al., 2017[133]	China, Beijing	Mar–Oct 2014	Attendees at an obstetrics and gynaecology clinic, 20–70	Genital fluid, amplification test	953	2.2	NR	NR	NR	Genital fluid, microscopy	953	1.7
	Imai et al., 2015[134]	Japan, Miyazaki	Oct 2011–Feb 2012	Students, > 18	Urine, amplification test	1183	3.7	NR	NR	NR	NR	NR	
	Suzuki et al., 2015[135]	Japan, national	Oct 2013–Mar 2014	Attendees at an obstetrics and gynaecology clinic, adults	Genital fluid, amplification test	250571	2.3	NR	NR	NR	NR	NR	
	Ministry of Health 2017[136]	Mongolia, national	2016	Attendees at an obstetrics and gynaecology clinic, adults	Genital fluid, culture	69278	0.5	NR	NR	NR	NR	NR	
	Corsenac et al., 2015[137]	New Caledonia, national	Aug–Dec 2012	Attendees at a primary health-care clinic, 18–49	Urine, amplification test	376	10.1	NR	NR	NR	NR	NR	

(continues . . .)
Study, by WHO region	Country or territory and location	Date of study	Population and age, years	Chlamydia	Gonorrhoea	Trichomoniasis						
				Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %
Unger et al., 2015	Papua New Guinea, Madang	Nov 2009–Aug 2012	ANC clinic attendees, ≥ 16	Genital fluid, amplification test	674	4.5	Genital fluid, amplification test	674	8.2	Genital fluid, amplification test	674	21.8
Wangnapi et al., 2015	Papua New Guinea, Madang	Feb 2011–Apr 2012	ANC clinic attendees, 16–39	Genital fluid, amplification test	362	11.0	Genital fluid, amplification test	362	9.7	Genital fluid, amplification test	362	21.3
Valley et al., 2017	Papua New Guinea, four provinces	Dec 2011–Jan 2015	ANC clinic attendees, 18–59	Genital fluid, amplification test	765	22.9	Genital fluid, amplification test	765	14.2	Genital fluid, amplification test	765	22.4
Valley et al., 2017	Papua New Guinea, four provinces	Dec 2011–Jan 2015	Participants for cervical cancer screening, 18–59	Genital fluid, amplification test	614	7.5	Genital fluid, amplification test	614	8.0	Genital fluid, amplification test	614	15.0
Badman et al., 2016	Papua New Guinea, Milne Bay	Aug–Dec 2014	ANC clinic attendees, > 18	Genital fluid, amplification test	125	200	Genital fluid, amplification test	125	11.2	Genital fluid, amplification test	125	376
Hahn et al., 2014	Republic of Korea, Seoul	Mar 2010–Apr 2011	ANC clinic attendees, adults	Genital fluid, amplification test	455	2.2	Genital fluid, amplification test	455	0.4	Genital fluid, amplification test	455	0.0
Choe et al., 2012	Republic of Korea, Seoul	Mar–Dec 2010	Attendees at a health examination clinic, 20–59	Urine, amplification test	805	3.2	Urine, amplification test	805	0.2	NR	NR	NR
Kim et al., 2011	Republic of Korea, Uijeongbu	Jul–Dec 2010	Attendees at a check-up clinic, 20–60	Genital fluid, amplification test	279	3.9	Genital fluid, amplification test	279	0.4	Genital fluid, amplification test	279	2.5
Kim et al., 2014	Republic of Korea, Seoul	Jan–Oct 2012	Attendees at a health examination clinic, 25–81	Genital fluid, amplification test	405	1.2	Genital fluid, amplification test	405	0.0	Genital fluid, amplification test	405	0.2
Marks et al., 2015	Solomon Islands, Honiara	Aug 2014	Attendees at a primary health-care clinic, 16–49	Genital fluid, amplification test	296	203	Genital fluid, amplification test	296	5.1	NR	NR	NR

(continues . . .)
Study, by WHO region

Study, by WHO region	Country or territory and location	Date of study	Population and age, years	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %
Ton Nu et al., 2015	Viet Nam, Hue	Sep 2010–Jun 2012	Attendees at a family planning clinic, adults	NR	NR	NR	NR	NR	NR	Genital fluid, microscopy	534	0.7
Nguyen et al., personal communication, 2017	Viet Nam, Hanoi	2016–2017	ANC clinic attendees, > 18	Genital fluid, amplification test	490	0.8	Genital fluid, amplification test	490	0.0	Genital fluid, amplification test	490	0.8

ANC: antenatal care; DNA: deoxyribonucleic acid; HIV: human immunodeficiency virus; NR: not reported; WHO: World Health Organization.

1. Studies that reported using both culture and Gram stain were assumed to have the same sensitivity and specificity values as culture.
2. The study used an immunochromatographic capillary-flow enzyme immunoassay and we assumed a sensitivity of 50% and specificity of 99%.
3. The study used a nonamplified, nucleic acid probe-based test system and we assumed the same specific and sensitivity values as for a nucleic acid amplification test.
Table 2. Included studies on chlamydia, gonorrhoea and trichomoniasis prevalence in men, 2009–2016

Study, by WHO region	Country or territory and location	Date of study	Population and age, years	Study prevalence, %	Population and age, years	Study prevalence, %	Population and age, years	Study prevalence, %
African Region								
Francis et al., 2018	South Africa, KwaZulu-Natal	Oct 2016–Jan 2017	Community members, 15–24	188	5.3			
Rutherford et al., 2014	Uganda, Kampala	Sep 2008–Apr 2009	Students, 19–25	360	0.8			
de Walque et al., 2012	United Republic of Tanzania, Kilombero and Ulugha districts	Feb–April 2009	Participants in HIV prevention trial, 18–30	1195	1.7			
Region of the Americas								
Huneeus et al., 2018	Chile, Santiago	2012–2014	Sexually active students, ≤ 24	115	8.7			
Paredes et al., 2015	Colombia, Sabana Centro province	2011	Students, 14–19	536	1.1			
South-East Asia Region								
Jatapai et al., 2013	Thailand, national	Nov 2008–May 2009	Military recruits, 17–29	2123	7.9			
European Region								
Sviben et al., 2015	Croatia, Zagreb	Pre-2014	Controls in case-control study, 18–66	NR	NR	NR	NR	NR
Ikonomidis et al., 2015	Greece, Thessaly State	Feb 2012–Nov 2015	Attendees at urology and gynaecology clinic, adult	171	0.6	NR	NR	NR
Matteelli et al., 2016	Italy, Brescia	Nov 2012–Mar 2013	Sexually active students, > 18	762	1.4			
Ikonomidis et al., 2015	Greece, Thessaly State	Feb 2012–Nov 2015	Attendees at urology and gynaecology clinic, adult	171	0.6	NR	NR	NR
Matteelli et al., 2016	Italy, Brescia	Nov 2012–Mar 2013	Sexually active students, > 18	762	1.4			

(continues . . .)
Estimates of four sexually transmitted infections, 2016

Jane Rowley et al.

Study, by WHO region	Country or territory and location	Date of study	Population and age, years	Population and age, years	Study prevalence, %	Study prevalence, %	Study prevalence, %					
			Chlamydia	Gonorrhoea	Trichomoniasis							
			Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	Clinical specimen, test	Sample size	Study prevalence, %	
			Urine, amplification test	505	3.4	NR	NR	NR	NR	NR		
			Sexually active youth, 15–20	Community members, adult	344	2.0	NR	NR	NR	NR		
			Urine, amplification test	210	4.3	NR	NR	NR	NR	NR		
			Urine, amplification test	1885	1.9	Urine, amplification test	1885	0.1	NR	NR		
			Attendees at a public health unit, 16–60	Urine, amplification test	233	0.9	Attendees at a check-up clinic, 18–50	Urine, amplification test	430	6.7		
			Attendees at a health examination clinic, 20–59	Urine, amplification test	807	7.9	Urine, amplification test	807	0.6	NR	NR	
			Attendees at a check-up clinic, 20–60	Urine, amplification test	430	0.5	Urine, amplification test	430	0.2			

HIV: human immunodeficiency virus; NR: not reported; WHO: World Health Organization.

* Tests were either nucleic acid amplification test or culture.