Fourteen Polymorphic Microsatellite Markers for a Widespread Limestone Endemic, Carex eburnea (Cyperaceae: Carex sect. Albae)

Authors: Gillespie, Emily L., Pauley, Annabella G., Haffner, Megan L., Hay, Nikolai M., Estep, Matt C., et al.

Source: Applications in Plant Sciences, 5(8)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1700031
FOURTEEN POLYMORPHIC MICROSATELLITE MARKERS FOR A WIDESPREAD LIMESTONE ENDENN, CAREX EBURNEA (CYPERACEAE: CAREX SECT. ALBAE)\(^1\)

EMILY L. GILLESPIE\(^2,4\), ANNABELLA G. PAULEY\(^2\), MEGAN L. HAFFNER\(^2\), NIKOLAI M. HAY\(^3\), MATT C. ESTEP\(^3\), AND ZACK E. MURRELL\(^3\)

\(^2\)Department of Biological Sciences, Marshall University, One John Marshall Drive, Huntington, West Virginia 25755 USA; and
\(^3\)Department of Biology, Appalachian State University, 572 Rivers Street, Boone, North Carolina 28607 USA

- **Premise of the study:** Microsatellite primers were developed for a widespread limestone endemic sedge, *Carex eburnea*, to facilitate investigation of the genetic diversity and phylogeography of this taxon and its closest relative, *C. mckittrickensis*.
- **Methods and Results:** Forty-eight primer pairs were designed from Illumina sequence data and screened for suitability. Fourteen of these primer pairs were polymorphic and generated one to seven alleles per locus. Cross-species amplifications were conducted for all four members of *Carex sect. Albae*.
- **Conclusions:** These primer pairs can be used to assess the genetic diversity and population structure in future studies of *C. eburnea* and *C. mckittrickensis*, and likely in other members of *Carex sect. Albae*.

Key words: *Carex eburnea*; *Carex mckittrickensis*; *Carex sect. Albae*; Cyperaceae; genetic diversity; limestone endemic.

Carex L. is a taxonomically challenging, cosmopolitan genus comprising approximately 2000 species (Reznicek, 1990), many of which possess unusually small (Nishikawa et al., 1984) but labile genomes (Lipnerová et al., 2013). This complexity presents challenges at all taxonomic levels. *Carex sec. Albae* (Asch. & Graebn.) Kük., like most *Carex* sections, has no microsatellite markers developed to address evolutionary dynamics among recently diverged species, where many taxonomic issues occur. One small but challenging group is the *C. eburnea – C. mckittrickensis* complex. Species boundaries between *C. eburnea* Boott and *C. mckittrickensis* P. W. Ball are unclear based on randomly amplified inter-simple sequence repeat (ISSR) markers (Gillespie, 2005) and on trnS\(^{GCU}\)–trnG\(^{UUC}\) and 3\(^′\)trnV\(^{UAC}\)–ndhC chloroplast intergenic spacer data (E. Gillespie, Marshall University, unpublished data). Additionally, morphological characters vary continuously (Ball, 1998) across the two species, making this an excellent target for microsatellite marker development.

Carex eburnea is a diploid species (Löve, 1981) that occurs across North America, from Alaska to Newfoundland and southward into the Ozark Mountains, the Cumberland Plateau, and the southern Appalachian Mountains. Disjunct populations occur in the southern Appalachian Mountains and in the Sierra Madre Mountains in Mexico. Based on herbarium specimens and fieldwork (by E.L.G.), *C. eburnea* occurs nearly exclusively on limestone and exists on rock outcrops, in ceder glades and bogs, and in treeless habitats such as alvar and tundra. Co-occurring dominant tree species include spruce (*Picea A. Dietr. spp.* in the American Northwest and northern white cedar (*Thuja occidentalis* L.) in the upper Midwest and eastern North America. In the southwestern United States and in Mexico, *C. eburnea* co-occurs with junipers (*Juniperus L. spp.*) and oaks (*Quercus L. spp.*). The closest relative of *C. eburnea* is *C. mckittrickensis*, which occurs at a single locality in the Guadalupe Mountains National Park (Culberson County, Texas, USA). Two Eurasian species (*C. alba* Scop. and *C. ussuriensis* Kom.) are the only other members of *Carex sect. Albae*. Development of microsatellite markers will be helpful in clarifying the species boundaries and evolutionary history of this recently diverged, widespread, limestone-limited lineage and could be useful within the two Eurasian members of *Carex sect. Albae*.

METHODS AND RESULTS

DNA was extracted from one individual of *C. eburnea* using a QIAGEN Plant Mini Kit (QIAGEN, Valencia, California, USA) (Appendix 1). A microsatellite sequencing library (MiSeq v2 protocol) was constructed and 2 × 250 paired-end sequencing was performed on an Illumina MiSeq at the Cornell Life Sciences Sequencing and Genotyping Facility (Ithaca, New York, USA). A total of 2,093,696 raw sequence reads (GenBank Short Read Archive accession SRA557216) were trimmed to remove vectors and low-quality sequence. The resulting reads were queried by MSATCOMMANDER version 1.0.8 (Faircloth, 2008) with default settings, except that mononucleotide repeats were not included in the search, minimum primer size was set at 20 bp, maximum primer GC content was limited to 50%, and a PIG-tail sequence (GTTT) (Brownstein et al., 1996) was limited to 50%, and a PIG-tail sequence (GTTT) (Brownstein et al., 1996)
Forty-eight primer pairs were selected and screened in seven *C. eburnea* individuals (Appendix 1), prioritizing motif diversity and melting temperature difference $\leq 1^\circ$C. PCRs were prepared in a 10-μL reaction consisting of 1× GoTaq Flexi Buffer, 2.5 mM MgCl$_2$, 800 μM dNTPs, 0.5 μM each primer, 0.5 units GoTaq Flexi DNA Polymerase (Promega Corporation, Madison, Wisconsin, USA), and ~20 ng DNA. PCR was completed using a touchdown thermal cycling program on an Eppendorf Mastercycler (Eppendorf, Hauppauge, New York, USA) or an MJ Mini Thermal Cycler (Bio-Rad, Hercules, California, USA) with annealing.

Table 1. Characteristics of 16 microsatellite primer pairs developed for *Carex eburnea*.

Locus	Primer sequences (5′–3′)a	Fluorescent dye	Repeat motif	Allele size range (bp)	T_a ($^\circ$C)	GenBank accession no.
CEB005	F: TAACCCGATCCTGAAATGGCG	VIC	(AG)$_{16}$	236–242	59.5	KX760143
	R: GGTTGCGATCACTCCGACC					
CEB006	F: TAATCAACCTTGGCGGAGCAGC	6-FAM	(AG)$_{11}$	120–132	59.0	KX760144
	R: GGTTGACATTTCTGCGATTTG		(AT)$_{10}$	202–222	59.2	
CEB009	F: TGTTGGAAATGTAAGGCTATC	VIC	(AT)$_{10}$	154–176	59.3	
	R: GGTTTGAACATGCGAGACAC		(AT)$_{10}$	162–166	58.4	
CEB010	F: GTTCTCTCGTCATGCCTCTC	NED	(AT)$_{10}$	151–168	58.8	
	R: GTTAAAACATGACCAAGGCTAG					
CEB015	F: CAAAGGCTTTGTTGTTGTTG	6-FAM	(AAC)$_{10}$	151–168	58.8	
	R: GTTTCAAGGCTGATGTTCAATG		(AAC)$_{10}$	151–163	59.2	MF001352
CEB016	F: TCTCATGATGGCCATAAAGAGG	NED	(AAG)$_{10}$	147–165	59.7	
	R: GTTTAATGATGCGAGACAC					
CEB021	F: GTTACGAGATGACCTTTG	PET	(ACT)$_{10}$	204–210	59.9	
	R: GTTTGTTGAGCTGATAGAAGCCC		(ACT)$_{10}$	215–230	58.8	
CEB024	F: TTTTAGGGTGGTTTTATCCGCG	PET	(AATC)$_{10}$	204–210	59.9	
	R: GTTTTACGTTGAGATGACATGC		(AATC)$_{10}$	215–230	58.8	

Note: $T_a =$ annealing temperature.

aPIG-tail sequence is underlined on the reverse primer sequences.

Table 2. Descriptive statistics for 14 polymorphic microsatellite loci in *Carex eburnea*.a

Locus	Johnson Co., TN (N = 24)	SE Fairbanks Co., AK (N = 22)	Rockbridge Co., VA (N = 22)
	A H_e H_o H_e	A H_e H_o H_e	A H_e H_o H_e
CEB005	4 0.400 0.368***	3 0.059 0.258***	4 0.450 0.581NS
CEB006	2 0.043 0.043NS	4 0.313 0.434NS	2 0.045 0.044NS
CEB009	7 0.211 0.722***	3 0.090 0.623***	3 0.143 0.643***
CEB010	5 0.278 0.664***	3 0.211 0.421***	3 0.091 0.334***
CEB012	1 0.000 0.000M	3 0.364 0.549NS	1 0.000 0.000M
CEB015	2 0.000 0.083***	1 0.000 0.000M	3 0.286 0.516NS
CEB021	4 0.571 0.649***	2 0.133 0.444**	4 0.100 0.615***
CEB025	5 0.238 0.638***	3 0.095 0.503***	6 0.412 0.730NS
CEB032	2 0.000 0.091***	2 0.090 0.455***	2 0.090 0.408***
CEB033	3 0.038 0.217***	3 0.000 0.484***	3 0.091 0.087NS
CEB037	5 0.435 0.692*	3 0.455 0.368NS	6 0.952 0.761***
CEB039	2 0.348 0.340NS	4 0.318 0.412***	3 0.227 0.599***
CEB043	3 0.273 0.376***	4 0.591 0.526NS	3 0.273 0.577**
CEB048	3 0.043 0.124***	1 0.000 0.000M	1 0.000 0.000M
Mean	3.43 0.206 0.353	2.71 0.181 0.391	3.07 0.219 0.421

Note: $A =$ number of alleles detected across all individuals; $H_e =$ expected heterozygosity; $H_o =$ observed heterozygosity; $N =$ number of individuals.

aVoucher and locality information are provided in Appendix 1.

b Statistically significant deviation from Hardy–Weinberg equilibrium is indicated as *$P < 0.05$, **$P < 0.01$, ***$P < 0.001$; NS = not statistically significant; M = monomorphic marker.
temperatures ranging from 68°C to 55°C. Initial denaturation was 94°C for 5 min, followed by 13 cycles (45 s at 94°C, 2 min at touchdown temperature, and 1 min at 72°C), followed by 24 cycles (45 s at 94°C, 1 min at 55°C, and 1 min at 72°C), followed by 5 min at 72°C. PCR products were examined on a 1% agarose gel in 1× TBE and scored for the presence or absence of an appropriately sized PCR product and uniform amplification. Sixteen primer pairs produced repeatable amplicons across all seven individuals. These 16 pairs were screened for polymorphisms in 68 individuals from three populations (Appendix 1).

PCR reaction conditions for screening polymorphisms were the same as above, except that the forward primer concentration was reduced to 0.25 μM and replaced with 0.25 μM M13 primer (5′-CACGACGTTGTAAAACGAC-3′), labeled with 6-FAM, VIC, NED, or PET (Life Technologies, Grand Island, New York, USA). PCR products labeled with different fluorescent dyes were pooled in equal amounts, and 2 μL of the pooled reactions were submitted along with a GeneScan 500 LIZ Size Standard (Life Technologies) for genotyping on an ABI 3730xl DNA Analyzer at the Georgia Genomics Facility (Athens, Georgia, USA). Resulting chromatograms were scored using Geneious 9.1.5 (Kearse et al., 2012; Biomatters Ltd., Auckland, New Zealand). Genotypic data were analyzed using GenAIEx version 6.503 (Peakall and Smouse, 2006, 2012) to obtain standard descriptive statistics, to test for deviations from Hardy–Weinberg equilibrium (HWE) assumptions, to examine the utility of the markers to distinguish among populations, and to evaluate the level of clonality within each population.

Cross-amplification of 14 primer pairs was conducted on three additional Carex eburnea population representatives from across the range (Arkansas, USA; Ontario, Canada; and Querétaro, Mexico), five Carex mckittrckensis individuals (all from the only known locality in Texas), and single representatives of Carex alba and Carex ussuriensis (Table 3). Twelve primer pairs amplified well in all three additional Carex eburnea representatives (the remaining two pairs failed in two different Carex eburnea individuals). All but two individual reactions were successful in the Carex mckittrckensis individuals. Eight and 10 primer pairs cross-amplified successfully in the more distantly related Carex alba and Carex ussuriensis, respectively.

Table 3. Cross-amplification of 14 primer pairs in additional representatives from Carex section Albae.

Locus	C. ebur (AR)	C. ebur (Mexico)	C. ebur (Ontario)	C. mck 1	C. mck 2	C. mck 3	C. mck 4	C. mck 5	C. alba	C. uss
CEB005	+	+	+	+	+	+	+	+	+	+
CEB006	+	+	+	+	+	+	+	+	+	+
CEB009	+	+	+	+	+	+	+	+	+	+
CEB010	+	+	+	+	+	+	+	+	+	+
CEB012	+	+	—	+	+	+	+	+	+	+
CEB015	+	+	—	+	+	+	+	+	+	+
CEB021	+	+	+	+	+	+	+	+	+	+
CEB025	+	+	+	+	+	+	+	+	+	+
CEB032	+	+	+	+	+	+	+	+	+	+
CEB033	+	+	+	+	+	+	—	+	+	+
CEB037	—	+	+	+	+	+	+	+	+	+
CEB039	+	+	+	+	+	+	+	+	+	+
CEB043	+	+	+	+	+	+	+	+	+	+
CEB048	+	+	+	+	+	+	+	+	+	+

Note: + = positive amplification; — = no observable amplification; C. ebur = Carex eburnea; C. mck = Carex mckittrckensis; C. alba = Carex alba; C. uss = Carex ussuriensis.

*Voucher and locality information are provided in Appendix 1.
CONCLUSIONS

The markers reported here will likely be useful in population studies within *Carex eburnea*; despite elevated levels of homozygosity generally, these markers discriminated among three populations (including two from the same physiographic region). Cross-amplification experiments confirmed that these markers should be applicable in the *C. eburnea–C. mckittrickensis* species complex and potentially in additional members of *Carex* sect. *Albae*, providing a novel population genetic tool in *Carex*.

LITERATURE CITED

BALL, P. W. 1998. *Carex mckittrickensis* (Cyperaceae), a new species from western Texas. *Novon* 8: 220–224.

BROWNSTEIN, M. J., J. D. CARPEN, AND J. R. SMITH. 1996. Modulation of non-templated nucleotide addition by Taq DNA polymerase: Primer modifications that facilitate genotyping. *BioTechniques* 20: 1004–1006, 1008–1010.

FAIRCLOTH, B. C. 2008. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. *Molecular Ecology Resources* 8: 92–94.

Gillespie et al.—*Carex eburnea* microsatellites

GILLESPIE, E. L. 2005. Phylogeography of *Carex eburnea* (Cyperaceae) and the systematics of the *Carex eburnea* complex. Master’s thesis, Appalachian State University, Boone, North Carolina, USA.

KEARSE, M., R. MOHR, A. WILSON, S. STONES-HAYAS, M. CHEUNG, S. STURROCK, S. BUXTON, ET AL. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics (Oxford, England)* 28: 1647–1649.

LIPNEROVA, I., P. BURES, L. HUROVA, AND P. SMARDA. 2013. Evolution of genome size in *Carex* (Cyperaceae) in relation to chromosome number and genomic base composition. *Annals of Botany* 111: 79–94.

LOVE, A. 1981. Chromosome number reports LXXIII. *Taxon* 30: 829–861.

NISHIKAWA, K., Y. FURUTA, AND K. ISHITORA. 1984. Chromosomal evolution in genus *Carex* as viewed from nuclear DNA content, with special reference to its aneuploidy. *Japanese Journal of Genetics* 59: 465–472.

OROLCI, L. 1978. Multivariate analysis in vegetation research. Dr W. Junk B. V., The Hague, The Netherlands.

PEAKALL, R., AND P. E. SMOUSE. 2006. GenAIEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes* 6: 288–295.

PEAKALL, R., AND P. E. SMOUSE. 2012. GenAIEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. *Bioinformatics (Oxford, England)* 28: 2537–2539.

REZNICEK, A. A. 1990. Evolution in sedges (*Carex*, Cyperaceae). *Canadian Journal of Botany* 68: 1409–1432.

APPENDIX 1. Voucher information for *Carex* individuals included in this study.

Species	Voucher (Herbarium)	Geographic coordinates	Elevation (m)	State (Country)	County	N	
Carex eburnea Boott	Gillespie s.n. (BOON)	36.30	−81.93	598	Tennessee (USA)	Johnson	1
Carex eburnea	Gillespie 16-156 (MUHW)	36.30	−81.93	598	Tennessee (USA)	Johnson	24
Carex eburnea	Mason 16-001 (MUHW)	64.02	−145.72	362	Alaska (USA)	SE Fairbanks	22
Carex eburnea	Gillespie 16-157 (MUHW)	37.63	−79.54	343	Virginia (USA)	Rockbridge	22
Carex eburnea	Gillespie 03-230 (BOON)	35.96	−92.18	250	Arkansas (USA)	Stone	1
Carex eburnea	Reznicek s.n. (MICH)	21.28	−99.18	1110	Querétaro (Mexico)	NA	1
Carex eburnea	Richardson s.n. (OAC)	45.18	−81.61	180	Ontario (Canada)	NA	1
Carex mckittrickensis P. W. Ball	Gillespie 04-001 (BOON)	31.98	−104.79	1900	Texas (USA)	Culberson	1
Carex alba Scop.	Hendrichs 3705 (TUB)	49.07	10.01	600	Bayern (Germany)	NA	1
Carex assuvieriensis Kom.	Elias 10982 (ALA)	48.31	135.09	153	Khabarovsk (Russia)	NA	1

Note: N = number of individuals; NA = not applicable.

1. Vouchers are deposited at the following herbariae: I. W. Carpenter Jr. Herbarium, Appalachian State University (BOON), Boone, North Carolina, USA; Marshall University Herbarium (MUH), Huntington, West Virginia, USA; University of Michigan Herbarium (MICH), Ann Arbor, Michigan, USA; Guelph University Herbarium (OAC), Guelph, Ontario, Canada; Universitāt Tūbingen (TUB), Tübingen, Germany; and University of Alaska Museum of the North (ALA), Fairbanks, Alaska, USA.

2. Voucher for Illumina sequencing.

3. Voucher for marker development (separate collection effort).

4. Voucher for cross-amplification (five individuals from Culberson County, Texas, USA).