The S_N2 reaction and its relationship with the Walden inversion, the Finkelstein and Menshutkin reactions together with theoretical calculations for the Finkelstein reaction

Ibon Alkorta · José Elguero

Received: 31 May 2021 / Accepted: 17 June 2021 / Published online: 31 July 2021
© The Author(s) 2021

Abstract
This communication gives an overview of the relationships between four reactions that although related were not always perceived as such: S_N2, Walden, Finkelstein, and Menshutkin. Binary interactions (S_N2 & Walden, S_N2 & Menshutkin, S_N2 & Finkelstein, Walden & Menshutkin, Walden & Finkelstein, Menshutkin & Finkelstein) were reported. Carbon, silicon, nitrogen, and phosphorus as central atoms and fluorides, chlorides, bromides, and iodides as lateral atoms were considered. Theoretical calculations provide Gibbs free energies that were analyzed with linear models to obtain the halide contributions. The M06-2x DFT computational method and the 6-311++G(d,p) basis set have been used for all atoms except for iodine where the effective core potential def2-TZVP basis set was used. Concerning the central atom pairs, carbon/silicon vs. nitrogen/phosphorus, we reported here for the first time that the effect of valence expansion was known for Si but not for P. Concerning the lateral halogen atoms, some empirical models including the interaction between F and I as entering and leaving groups explain the Gibbs free energies.

Keywords S_N2 · Walden · Finkelstein · Menshutkin · Atom effects · DFT calculations

Introduction
There are four well-known reactions that are mutually related, the S_N2 reaction, the Walden inversion, the Finkelstein reaction, and the Menshutkin reaction, and their two-to-two relationships are often reported, but never their whole set (Fig. 1).

The IUPAC only reports a paper on the steric and electronic effects in the S_N2 reactions [1] and a definition of the Walden inversion [2].

The four reactions
Here are the four definitions with some references that report both experimental and theoretical results:

S_N2

Substitution nucleophilic bimolecular reaction involves a nucleophilic substitution reaction mechanism where one bond is broken and one bond is formed synchronously [3–11]. The standard case involves a central carbon atom ($S_N2@C$) [12], but it was soon extended to a central silicon atom ($S_N2@Si$), but in this case, the TS becomes a minimum, single-well, due to silicon...
hypervalency [12, 13]. In the simplest case, for any halogen atoms, the reactions follow different pathways (Scheme 1).

\[
\begin{align*}
X^- + H\overset{\text{C}}{-\text{C}}{-\text{X}} & \rightarrow X\overset{\text{C}}{-\text{C}}{-\text{H}} + X^- \\
X^- + H\overset{\text{Si}}{-\text{Si}}{-\text{X}} & \rightarrow X\overset{\text{Si}}{-\text{Si}}{-\text{H}} + X-
\end{align*}
\]

Scheme 1 The \(S_n2\) reaction

Walden inversion

The Walden inversion is the inversion of a chiral center in a molecule in a chemical reaction. In an \(S_n2\) reaction, the reaction occurs in a tetrahedral carbon atom (Scheme 2) [14–17].

\[
\begin{align*}
\text{Br}^- + F\overset{\text{C}}{-\text{C}}{-\text{Br}} & \rightarrow \text{Br}\overset{\text{C}}{-\text{C}}{-\text{F}} + \text{Br}^- \\
\text{Cl}^{(R)} + H\overset{\text{C}}{-\text{C}}{-\text{Cl}} & \rightarrow \text{Cl}^{(S)} + H\overset{\text{C}}{-\text{C}}{-\text{Cl}}
\end{align*}
\]

Scheme 2 An example of Walden inversion

Finkelstein reaction

The Finkelstein reaction is an \(S_n2\) reaction that involves the exchange of one halogen for another (Scheme 3) [18, 19].

\[
\begin{align*}
X^- + H\overset{\text{C}}{-\text{C}}{-\text{Y}} & \rightarrow X\overset{\text{C}}{-\text{C}}{-\text{H}} + Y^-
\end{align*}
\]

Scheme 3 The Finkelstein reaction (\(X \neq Y\))

Menshutkin reaction

The Menshutkin reaction converts a tertiary amine into a quaternary ammonium salt by reaction with an alkyl halide. We will slightly modify this definition to involve a type \(S_n2@N^+\) reaction where the central atom is a quaternary N atom [20–24], and, in a further step, a quaternary P atom, \(S_n2@P^+\) (Scheme 4) [25–27].

\[
\begin{align*}
X^- + H\overset{\text{N}}{-\text{N}}{-\text{X}} & \rightarrow X\overset{\text{N}}{-\text{N}}{-\text{H}} + X^- \\
X^- + H\overset{\text{P}}{-\text{P}}{-\text{X}} & \rightarrow X\overset{\text{P}}{-\text{P}}{-\text{H}} + X^-
\end{align*}
\]

Scheme 4 An extension of the Menshutkin reaction. The X atom is Cl, Br or I. Note that in the case of phosphonium the minimum is a neutral trigonal bipyramid of \(D_{3h}\) symmetry

A comment about the \(X^- + H_2NX^+\) or \(XNH_3^++X^-\) salt: due to proton transfer, it can exist as a \(H_2XN + HX\) complex that depending on the nature of X and on the substituents on the nitrogen atom will be more or less stable than the salt. This continuum has been studied by Legon in the gas phase by rotational spectroscopy [28, 29], by Limbach in solution by NMR [30–32], by Tokmakoff in water solution by femtosecond two-dimensional IR [33], by Nangia in the solid-state X-ray photoelectron spectroscopy (XPS) [34], and in the solid state by crystallography (this is related to the salt/co-crystal continuum) [35–37] and theoretically by Del Bene [38–41].

The binary interactions

\(S_n2\) & Walden

This is the most obvious link and, for this reason, there are the largest number of references. Barone, Adamo et al. consider the Walden inversion the prototypical \(S_n2\) reaction [42]. Using the same model that of Scheme 2, Bogданov and McMahon using mass spectrometry and B3LYP/6-311+G(3df)//B3LYP/6-311+G(d) calculations prove that the \(S_n2\) reactions are initiated via a back-side attack [43] (for some authors, the Walden inversion corresponds to the back-side attack in a \(S_n2\) reaction). Grabowski reported MP2/aug-cc-pVTZ calculations of \(S_n2/Walden\) processes with central atoms being C, Si, and Ge [44]. High-level calculations [AE-MP2, AE-CCSD, and AE-CCSD(T), where AE denotes all-electron] we used to study the \(F^- + CH_3F\) reaction [45]. The same authors reported the double-inversion mechanism of the \(F^- + CH_3Cl\) reaction [46] (see also [47]). Chlorine isotope effects were calculated theoretically [UCCSD(T)-F12a/aug-cc-pVTZ] by Zhao, Zhang et al. [48]. Hamlin, Swart, and Bickelhaupt carried out a very general study of the \(S_n2\) reactions covering aspects such as nucleophilicity, leaving groups, central atoms and solvent effects reported as a minireview [49].

\(S_n2\) & Menshutkin

The Menshutkin reaction (\(H_3N + CH_3Cl \rightarrow H_3NCH_3^+ + Cl^-\)) is the prototype of \(S_n2\) reactions of type II, where the reactants are neutral, as opposed to the usual type I \(S_n2\) reactions where
both the nucleophile and leaving group bear negative charges (Cl$^{-}$ + CH$_3$Cl → ClCH$_3$ + Cl$^{-}$). The Cl$^{-}$ + CH$_3$Cl → ClCH$_3$ + Cl$^{-}$ reaction was studied using a valence bond method coupled to a polarized continuum model, VBPCM [50]. Related studies but on more complex reactions (H$_3$N + ArCH$_2$Br) were studied using the through-space/bond (TS/TB) interaction analysis [51]. Both type I (SN$_2$) and type II (Menshutkin) reactions were compared using an ab initio quantum mechanical/molecular mechanic approach [52].

SN$_2$ & Finkelstein

Although the Finkelstein reaction is a particular case of the SN$_2$ type I, there is only a publication where these two terms came together [53]. Other examples such those reported earlier [46, 47] belong also to this group but the Finkelstein name was not used.

Walden & Menshutkin

Here, also we have found only one work where both these terms were cited. Shaik et al. predicted that external electric fields (EEFs) catalyze the front-side nucleophilic displacement reaction, thus violating the Walden inversion paradigm (Scheme 5). Besides this study also demonstrates that oriented EEFs will act as catalysts of the Menshutkin reaction [54].

Menshutkin & Finkelstein

The already cited article of Yamataka [49] not only relates SN$_2$ & Finkelstein but also Menshutkin.

Computational details

The systems have been optimized using the M06-2x DFT computational method [57] and the 6-311++G(d,p) basis set [58, 59]. The effective core potential def2-TZVP basis set [60] has been used for iodine. Frequency calculations have been performed to verify that the geometries obtained correspond to energetic minima or true transition states (zero and one imaginary frequencies, respectively) and to obtain the thermodynamic parameters. These calculations have been carried out with the Gaussian-16 program [61].

Results and discussion

Central atom comparisons

We will discuss the comparative behavior of the C, N, Si, and P as central atoms.

The left part of Scheme 6 assumes that the four SN$_2$ reactions are identical, and its right side shows that in both Si and P$^+$, the reaction stops at the pentacoordinated structure, an anion for silicon and a neutral molecule for phosphorus.
This was well known for silicon [12, 13], but with P+, this situation has not been reported before (the Menshutkin examples stop at the quaternary salt [25–27]). The transformation of tetravalent phosphonium salts into pentavalent phosphoranes (right side, bottom equation) is a common reaction in phosphorus chemistry [62, 63]. The barrier for the S_N2@C is 43.7 kJ·mol^-1 [64] and for S_N2@N^+ is 33.4 kJ·mol^-1; thus, a moderate decrease of the barrier was calculated (10.3 kJ·mol^-1).

The structure of dibromo-λ^5-phosphane, Br_PH_3–Br trigonal bipyramidal (Fig. 2), differs from that determined by Legon [65] and calculated by Kraka and Cremer [66], H_3P···Br–Br, a halogen-bonded complex, although both are minima (no imaginary frequencies). We have reported in a previous work that the P(V) derivatives are much more stable than the P(III) derivatives, although the last ones are stabilized by an halogen bond [67]. We have calculated the difference in energy of the two isomers of Fig. 2 resulting in the P(V) structure being 73 kJ·mol^-1 more stable than the P(III) complex. The other complexes X_PH_3–X (X = F, Cl, I) are also minima. The other similar complexes X_PH_3–X (X = F, Cl, and I) are also minima.

Halogen atoms comparisons

We have calculated the exothermicity of the following six equilibria (Scheme 7), all of them are S_N2@C:

Scheme 7	Replacement of a halogen by another halogen
1 F^−→H_3CCl	Cl^−→H_3CF
2 F^−→H_3CBr	Br^−→H_3CF
3 F^−→H_3Cl	I^−→H_3CF
4 Cl^−→H_3CBr	Br^−→H_3Cl
5 Cl^−→H_3Cl	I^−→H_3Cl
6 Br^−→H_3Cl	I^−→H_3Br

The ΔG calculated values of this work and some experimental literature values, all of them in kJ·mol^-1, are reported in Table 1. Literature data for equations 1, 2, and 3 are calculated ΔH values. Truhlar values for equations 4, 5, and 6 are ΔE values calculated from ΔH and harmonic frequencies [71].

Our calculated values are proportional to the literature values:

\[
\text{Lit.} = (4.7 \pm 1.7) + (1.07 \pm 0.02) \Delta G, n = 6, R^2 = 0.999
\]

A multi regression analysis of the data of Table 1 where the dependent variables are ΔG or Lit. and the independent variables F, Cl, and Br (I is the reference) lead to a series of equations where the coefficients of the halogens are their individual contributions. For a more complete discussion of the use of Free-Wilson or presence-absence matrices, see [74–80].

From ΔG: F = (4.4 ± 2.7), Cl = -(118.8 ± 2.3), Br

\[
\begin{align*}
\text{calc.} & = -(144.6 \pm 3.3), I \\
\text{exp.} & = -(159.8 \pm 4.5) \text{ kJ·mol}^{-1}, R^2 = 0.999, \text{RMS} = 2.7 \text{ kJ·mol}^{-1}
\end{align*}
\]

Table 1

Number of total admissions, average daily admission, average length of stay, and readmissions from March to October in 2019 and 2020

Calc. ΔG	Lit.	ΔH	Calc.	Lit.	ΔH																																	
123.6	134	[68]																																				
150.4	168	[69]																																				
162.3	178	[70]																																				
28.4	34	[71]																																				
47.7	58	[71]																																				
19.1	25	[71]																																				
Electronegativity [72]				---	4.0		3.0		2.8		2.5																											
Ionization energy (kJ·mol^-1) [73]				---	1681		1251		1140		1008																											
From Lit.: F = (7.5 ± 5.0), Cl = -(126.8 ± 4.3), Br
= -(156.8 ± 6.1), I
= -(174.0 ± 8.2) kJ·mol⁻¹, R²
= 0.998, RMS = 5.0 kJ·mol⁻¹ (3)

If we impose that the intercept should be = 0, i.e. F = 0.0, then:

From ΔG : F = 0.0, Cl = -(121.0 ± 2.4), Br
= -(149.0 ± 2.4), I
= -(166.4 ± 2.4) kJ·mol⁻¹, R²
= 0.999, RMS = 3.4 kJ·mol⁻¹ (4)

From Lit.: F = 0.0, Cl = -(130.5 ± 4.2), Br
= -(164.2 ± 4.2), I
= -(185.2 ± 4.2) kJ·mol⁻¹, R²
= 0.999, RMS = 5.9 kJ·mol⁻¹ (5)

Equations (2) and (3) assume that there is no interaction between both halogens in the complexes. If the most obvious (F/I, the most different halogens) interaction was considered, then Eq. (6) was obtained:

From ΔG : F = 0.0, Cl = -(123.0 ± 0.6), Br
= -(151.0 ± 0.6), I
= -(170.4 ± 0.7), interaction F/I
= -(8.1 ± 1.0) kJ·mol⁻¹, R² = 1.000, RMS
= 0.7 kJ·mol⁻¹ (6)

The coefficients of Eq. (6) are those that better fit with two properties of the halogen atoms, the electronegativity (relative scale) and the ionization energy (kJ·mol⁻¹). With this last one we obtain:

From ΔG : Halogen values of eq.6
+ (0.982 ± 0.003) ionization energies, n
= 4, R² = 1.000, RMS = 0.7 kJ·mol⁻¹ (7)

From Lit.: Halogen values of eq.6
+ (1.081 ± 0.003) ionization energies, n
= 4, R² = 1.000, RMS = 1.6 kJ·mol⁻¹ (8)

The very good quality of Eqs. (7) and (8) proves that our analysis of the energetic values of the six SN₂ reactions that lead to atomic contributions is justified.

Conclusions

After showing that four classical organic chemistry reactions are more related than it was previously believed a series of theoretical calculations analyze the energetic data. Concerning the central atom pairs, C/Si and N/P the effect of valence expansion was known for Si, but for P was reported here for the first time. Concerning the halogen atoms, some empirical models including the interaction between F and I as entering and leaving groups successfully explain the Gibbs free energies; the model coefficients are related to some fundamental properties as the electronegativity and the ionization energies.

Acknowledgements This work was carried out with financial support from the Ministerio de Ciencia, Innovación y Universidades (PGC2018-094644-B-C22) and Comunidad Autónoma de Madrid (P2018/EMT-4329 AIRTEC-CM). Thanks are also given to the CTI (CSIC) for their continued computational support.

Availability of data and material The data that support this research are available in the article.

Code availability Not applicable.

Author contribution LA did the calculations. J.E. wrote the first draft of the article. Both authors have read and agreed to the published version of the manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Ministerio de Ciencia, Innovación y Universidades (PGC2018-094644-B-C22), and Comunidad Autónoma de Madrid (P2018/EMT-4329 AIRTEC-CM)

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
References

1. Uggerud E (2009). Pure Appl Chem 81:709–717
2. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by McNaught AD, Wilkinson A. Blackwell Scientific Publications, Oxford (1997). Online version (2019) created by Chalk SJ. ISBN 0-9678550-9-8. 10.1351/goldbook

3. Chandrasekhar J, Smith SF, Jorgensen WL (1985). J Am Chem Soc 107:154–163
4. Olah GA (1990). Acc Chem Res 23:32–33
5. Vayner G, Houk KN, Jorgensen WL, Brauman JI (2004). J Am Chem Soc 126:9054–9058
6. Bento AP, Solá M, Bickelhaupt FM (2005). J Comput Chem 26:1497–1504
7. Mikosch J, Trippe S, Eichhorn C, Otto R, Lourderaj U, Zhang JX, Hase WL, Weidenmüller M, Wester R (2008). Science 319:183–186
8. Alkorta I, Thacker JCR, Popelier PLA (2018). J Comput Chem 39:546–556
9. Vermeeren P, Hansen T, Jansen P, Swart M, Hamlin TA, Bickelhaupt FM (2020). J Chem Eur J 128:10738–10744
10. Michaelson T, Bastian B, Ayasli A, Strübin P, Meyer J, Wester R (2020). J Phys Chem Lett 11:4331–4336
11. Gallegos González M, Costales Castro A, Martín Pendás A (2021). Chem Phys Chem 22:775–787
12. van Bochove MA, Swart M, Bickelhaupt FM (2006). J Am Chem Soc 128:10738–10744
13. Pierrefixe SCAF, Fonseca Guerra C, Bickelhaupt FM (2008). Chem Eur J 14:819–828
14. Hughes ED, Ingold CK, Martin RJL, Meigh DF (1950). Nature 166679–166680
15. Andrés JL, Lledós A, Duran M, Bertrán J (1988). Chem Phys Lett 153:82–86
16. Gruber B, Czałon G (2020). Phys Chem Chem Phys 22:14560–14569
17. Cravotto G, Cintas P (2021). Chirality 23:72–80
18. Zacek S, Gelman G, Dybala-Defratyka A (2017). J Phys Chem A 121:2311–2321
19. Lowe PT, Cobb SL, O'Hagan D (2019). Org Biomol Chem 17:4793–4796
20. Harris JM, Paley MS, Prasthofer TW (1981). J Am Chem Soc 103:5915–5916
21. Solá M, Lledós A, Durán M, Bertrán J, Abboud JLM (1991). J Am Chem Soc 113:2873–2879
22. Castejón H, Wiberg KB (1999). J Am Chem Soc 121:2139–2146
23. Dube YD, Stzyver T, Kalita S, Shaik S (2000). J Am Chem Soc 122:9955–9965
24. Sikora K, Nowacki A, Liberek B, Dmoshowska B (2020). J Mol Struct 1206:127701
25. Pinheiro LMY, Calado ART, Reis JCR (2004). Org Biomol Chem 2:330–3338
26. Defrem C, van den Bossche A, Luyten J, Oosterhof H, Fransaer J, Binnemans K (2018). Phys Chem Chem Phys 20:2444–2456
27. Krasowska D, Chrzanowski J, Kielbasinski P, Drabowicz J (2016). Molecules 21:1573
28. Legon AC (1993). Chem Soc Rev 135–163
29. Cooke SA, Corlett GK, Lister DG, Legon AC (1998). J Chem Soc Faraday Trans 94:837–841
30. Ramos M, Alkorta I, Elguero J, Golubev NS, Denisov GS, Benedict H, Limbach HH (1997). J Phys Chem A 101:9791–9800
31. Koepe B, Tolstoy PM, Limbach HH (2011). J Am Chem Soc 133:7897–7908
32. Koepe B, Pylaeva SA, Allolio C, Sebastiani D, Nibbering ETJ, Denisov GS, Limbach HH, Tolstoy PM (2017). Phys Chem Chem Phys 19:1010–1028
33. Dereka B, Yu Q, Lewis NHC, Carpenter WB, Bowman JM, Tokmakoff A (2021). Science 371:160–164
34. Thothadi S, Shahik TR, Gupta S, Dandelia R, Vinod CP, Nangia AK (2021). Cryst Growth Des 21:735–747
35. Childs SL, Stahlly GP, Park A (2007). Mol Pharm 4:322–338
36. Elguero J (2011). Cryst Growth Des 11:4731–4738
37. Spinguel C, Robeyns K, Norberg B, Wouters J, Leysens T (2014). Cryst Growth Des 14:3996–4004
38. Del Bene JE, Bartlett RJ, Elguero J (2002). Magn Reson Chem 40:767–771
39. Del Bene JE, Perera SA, Bartlett RJ, Yañez M, Mó O, Elguero J, Alkorta I (2003). J Phys Chem A 107:3121–3125
40. Del Bene JE, Elguero J (2004). J Am Chem Soc 126:15624–15631
41. Chan B, Del Bene JE, Elguero J, Ramod L (2005). J Phys Chem A 109:5509–5517
42. Joubert L, Pavone M, Barone V, Adamo C (2006). J Chem Theory Comput 2:1220–1227
43. Bogdanov B, McMahon TB (2006). J Phys Chem A 110:1350–1363
44. Grabowski SJ (2014). Phys Chem Chem Phys 16:1824–1834
45. Szabo I, Telekes H, Czałó G (2015). J Chem Phys 142:244301
46. Szabo I, Czałó G (2015). Nature Comm 6:5972
47. Tasi DA, Fabián Z, Czałó G (2019). Phys Chem Chem Phys 21:7924–7931
48. Zhao Z, Zhang Z, Liu S, Zhang DH (2017). Nature Comm 8:14506
49. Hamlin TA, Swart M, Bickelhaupt FM (2018). ChemPhysChem 19:1315–1330
50. Su P, Ying F, Wu W, Hiberty PC, Shaik S (2007). Phys Chem Chem Phys 8:2603–2614
51. Jiang L, Orimoto Y, Aoki Y (2013). J Chem Theory Comput 9:4035–4045
52. Pan X, Li P, Ho J, Pu J, Mei Y, Shao Y (2019). Phys Chem Chem Phys 21:20595–20605
53. Yamataka H (1999). J Synth Org Chem Japan 57:206–215 (in Japanese)
54. Ramanan R, Donovich D, Mandal D, Shaik S (2018). J Am Chem Soc 140:4354–4362
55. de la Mare PBD (1955). J Chem Soc 3169–3173
56. Lettold C, Munday CJ, Baer MD, Schenter GK, Peters B (2020). J Phys Chem 153:024103
57. Zhao Y, Truhlar D (2008). Theor Chem Accounts 120:215–241
58. Ditchfield R, Hehre WJ, Popele JA (1971). J Chem Phys 54:724–728
59. Frisch MJ, Popele JA, Binkley JS (1984). J Chem Phys 80:3265–3268
60. Weigend F, Ahlrichs R (2005). Phys Chem Chem Phys 7:3297–3305
61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, González RS, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparrini F, Egidy F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima K, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralt, JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant JC, Gyngar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT
62. Yamamoto Y, Nakao K, Hashimoto T, Matsukawa S, Suzukawa N, Kojima S, Akiba K (2011). Heteroat Chem 22:523–530
63. Krasowska D, Pokora-Sobczak P, Jasiak A, Drabowicz J (2018). Adv Heterocycl Chem 124:175–231
64. Irribarren I, Trujillo C, Sánchez G, Alkorta I, Elguero J, Hénon E, manuscript in preparation
65. Waclawik ER, Legon AC (2000). Chem Eur J 6:3968–3975
66. Oliveira V, Kraka E, Cremer D (2017). Inorg Chem 56:488–502
67. Alkorta I, Elguero J, Del Bene JE (2019). Chem Phys Lett 715:190–194
68. Szabó I, Császár AG, Czakó G (2013). Chem Sci 4:4362–4370
69. Parthiban S, de Oliveira G, Martin JML (2001). J Phys Chem A 105:895–904
70. Laerdahl JK, Uggerud E (2002). Int J Mass Spectrom 214:277–314
71. Hu WP, Truhlar DG (1995). J Am Chem Soc 117:10726–10734
72. Mázor L (1975) Analytical Chemistry of Organic Halogen Compounds. Pergamon Press, Oxford
73. Miessler GL, Tarr DA (2004) Inorganic Chemistry Third edn. Pearson Prentice Hall, New Jersey
74. Cativiela C, García JL, Elguero J, Mathieu D, Phan Tan Luu R (1987). Quant Struct Act Relat 6:173–177
75. Alkorta I, Blanco F, Elguero J (2008). Tetrahedron 64:3826–3836
76. Yáñez M, Sanz P, Mó O, Alkorta I, Elguero J (2009). J Chem Theor Comput 5:2763–2771
77. Iglesias-Sánchez JC, Santa María D, Claramunt RM, Elguero J (2010). Molecules 15:1213–1222
78. Alkorta I, Elguero J (2018). Chem Phys Lett 691:33–36
79. Holzer W, Castoldi L, Kyselova V, Sanz D, Claramunt RM, Torralba MC, Alkorta I, Elguero J (2019). Struct Chem 30:1729–1735
80. Alkorta I, Elguero J, Dardonville C, Reviriego F, Santa Maria D, Claramunt RM, Marin-Luna M (2020). J Phys Org Chem 33:e4043

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.