Review Article

Candida albicans versus Candida dubliniensis: Why Is C. albicans More Pathogenic?

Gary P. Moran, David C. Coleman, and Derek J. Sullivan

Division of Oral Biosciences, Dublin Dental University Hospital, Trinity College Dublin, Dublin 2, Ireland

Correspondence should be addressed to Derek J. Sullivan, derek.sullivan@dental.tcd.ie

Received 11 May 2011; Accepted 28 June 2011

Academic Editor: Julian R. Naglik

Copyright © 2012 Gary P. Moran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Candida albicans and Candida dubliniensis are highly related pathogenic yeast species. However, C. albicans is far more prevalent in human infection and has been shown to be more pathogenic in a wide range of infection models. Comparison of the genomes of the two species has revealed that they are very similar although there are some significant differences, largely due to the expansion of virulence-related gene families (e.g., ALS and SAP) in C. albicans, and increased levels of pseudogenisation in C. dubliniensis. Comparative global gene expression analyses have also been used to investigate differences in the ability of the two species to tolerate environmental stress and to produce hyphae, two traits that are likely to play a role in the lower virulence of C. dubliniensis. Taken together, these data suggest that C. dubliniensis is in the process of undergoing reductive evolution and may have become adapted for growth in a specialized anatomic niche.

1. Introduction

Fungi are an important cause of human infection, and yeast species of the genus Candida are the most pathogenic fungi. While most Candida species are found in the environment, approximately a dozen or so are associated with colonization and infection of humans [1]. Candida species are common commensals of the oral cavity, intestinal tract and vagina, with newborns being colonized soon after birth. While these species are innocuous in most individuals, under certain circumstances they can opportunistically overgrow and cause a variety of diseases [2]. These diseases range from superficial infections of the vaginal and oral mucosae, to life-threatening systemic infections that can spread via the bloodstream to organs throughout the body. The risk factors for candidal vaginitis are poorly understood; however, other candidal infections are largely the result of host-related defects. These include depletion of CD4 T cells in HIV-infected individuals, which predisposes to oropharyngeal candidosis, or neutropenia and intestinal surgery, both of which are significant risk factors for systemic infection [1–3].

Candida albicans is widely recognized as being the most pathogenic yeast species and in the majority of epidemiological studies has been found to be the most common cause of superficial and systemic infections. Other species, such as Candida glabrata, Candida parapsilosis, and Candida tropicalis have also been associated with most forms of candidiasis and the relative distribution of each species can vary depending on geographic location, patient cohort, and previous exposure to antifungal drugs [2, 4]. In 1995, a new Candida species was identified in HIV-infected individuals with oropharyngeal candidosis in Dublin, Ireland [5]. This species, which was subsequently named Candida dubliniensis, is very closely related to C. albicans with which it shares many phenotypic properties, including the ability to produce hyphae and chlamydospores, traits previously specifically associated only with C. albicans [6–8]. Phylogenetic studies indicate that C. dubliniensis is the species that is most closely related to C. albicans, and it is often quite difficult to discriminate between the two species in clinical samples [9, 10]. Indeed it was only when DNA fingerprinting techniques were applied to the large-scale analysis of C. albicans populations in epidemiological studies that the first isolates of C. dubliniensis were originally identified [5]. Surprisingly, despite the close phylogenetic relationship of the two species epidemiological data show that C. albicans is far more prevalent than C. dubliniensis. In particular, in most analyses of systemic infection, C. albicans
is found in >50% of cases, while if it is identified at all, *C. dubliniensis* has only been found in at most 2-3% of cases [11–13]. This apparent discrepancy between the ability of the two species to cause infection is also reflected in data obtained from comparative studies in a wide range of infection models (e.g., systemic and mucosal) which clearly show that *C. albicans* is significantly more pathogenic than *C. dubliniensis* [10, 14–18].

The identification of virulence-associated factors in *Candida* species is complicated by the fact that they are opportunistic pathogens that usually exist in harmony with the human host as part of the commensal flora and only cause infection when host deficiencies permit. Since it is by far the most pathogenic *Candida* species, *C. albicans* is the best-studied member of the genus in terms of pathogenesis. The most commonly cited *C. albicans* virulence factors include adhesins (e.g., Hwp1 [19] and the Als family [20]), extracellular enzymes (e.g., the secreted aspartyl proteinase (Sap) family [21] and phospholipases [22]), and most importantly of all, the ability to alternate between unicellular yeast and filamentous hyphal forms of growth [23]. Both morphological forms have been shown to be essential for virulence. Hyphae have been proposed to play a major role in adhesion, invasion, and biofilm formation while yeast cells are likely to be important for dissemination and initial colonization of host surfaces [24]. Comparative phenotypic analysis of *C. albicans* and *C. dubliniensis* has suggested that *in vitro* isolates of *C. dubliniensis* exhibit higher levels of proteinase activity, are more adherent to buccal epithelial cells, and undergo phenotypic switching at a higher rate than *C. albicans* [10, 25–27]. In addition, as described earlier, *C. dubliniensis* is the only *Candida* species, other than *C. albicans* that is able to produce hyphae [5, 6]. Given the close relationship between the two species and the fact that they are so alike phenotypically, at first glance, it is difficult to understand why there is such disparity in the capacity of *C. albicans* and *C. dubliniensis* to colonise and cause disease in humans. This short review appraises recent findings that help to clarify this conundrum and explain how *C. albicans* appears to have evolved to be a better commensal and opportunistic pathogen than *C. dubliniensis*.

2. Comparative Genomic Analysis of *C. albicans* and *C. dubliniensis*

The *C. albicans* genome sequence was first published in 2004 [28], with improved annotation and analysis subsequently reported in 2005 [29] and 2007 [30]. In an early attempt to identify genomic differences that might serve to explain the disparity in the virulence of *C. albicans* and *C. dubliniensis*, Moran et al. cohybridized genomic DNA from each species to *C. albicans* whole genome microarrays to identify genes that are only present in *C. albicans* [31]. This relatively crude experiment suggested that there are 247 (approx. 4%) *C. albicans* genes that are either absent or highly (i.e., >60%) divergent in the *C. dubliniensis* genome. Interestingly, several genes strongly associated with *C. albicans* virulence are included in the list of absent/divergent genes. In 2009, in order to further investigate the genetic differences between the two species the Wellcome Trust Sanger Institute sequenced the entire *C. dubliniensis* genome [32]. Comparison of the two genome sequences revealed that, despite major karyotypic differences, the genomes of the two species are remarkably similar with 96.3% of genes exhibiting >80% identity, while 98% of genes are syntenic, thus, confirming the very close phylogenetic relationship and the relatively recent divergence of the two species (estimated to have occurred approx. 20 million years ago [33]). When transposable elements were discounted, comparison of the two genome sequences revealed that there are 29 *C. dubliniensis*-specific genes and 168 *C. albicans*-specific genes. The majority of the differences observed between the two species can be accounted for by the expansion of gene families in *C. albicans*, many of which have been previously associated with virulence. In particular, genes missing from the *C. dubliniensis* genome include those encoding hyphal-specific virulence factors, such as the cell surface proteins Hyr1 and Als3 and two members of the secreted aspartyl proteinase family (i.e., Sap5 and Sap6), while the gene encoding the well-characterized epithelial adhesin Hwp1 is highly divergent [31, 32]. Hyr1 has been shown to confer resistance to neutrophil killing activity [34] and, along with Hwp1, has been shown recently to play an important role in oral mucosal biofilm formation [35]. Als3 has been shown to play an important role in adhesion to host cells and has been shown to have invasin-like [36] and iron-sequestering [37] activity, while the Saps are well-known virulence factors [21]. The biggest difference in gene family size between the two species is the Telomere-associated (TLO) family which is comprised of 14 genes in *C. albicans*, but only two genes in *C. dubliniensis*. Sequence comparisons suggest that the TLO genes encode transcriptional regulators, and preliminary analysis of the phenotype of *C. dubliniensis* Δtlo mutants suggests that these genes may play a role in the control of hypha formation [32]. In addition to these differences, a range of genes appear to be in the process of being lost by *C. dubliniensis*. There are 78 *C. dubliniensis* pseudogenes with intact positional orthologs in *C. albicans*, including genes identified as filamentous growth regulators (FGR) in haploinsufficiency studies [38]. These findings suggest that *C. dubliniensis* is undergoing a process of reductive evolution leading to the loss of genes that have been associated with *C. albicans* virulence. Interestingly, many of these genes are only expressed by the hyphal form of growth and are likely to play a prominent role in host-pathogen interaction.

One of the most prominent phenotypic differences between *C. albicans* and *C. dubliniensis* is their different capacity to tolerate environmental stress, with the former being far more tolerant of thermal, osmotic, and oxidative stress [5, 14, 39, 40]. Indeed, comparative growth at 45°C is commonly used as a simple diagnostic test to discriminate between the two species [41]. Comparative transcriptional profiling analysis revealed that although the two species express similar core stress responses, *C. dubliniensis* mounts a more robust response to thermal stress and a very poor transcriptional response to oxidative and osmotic stress [39]. Forward genetic screens using a *C. albicans* library to try and identify genes that might increase the tolerance of *C.
3. Comparative Analysis of Hypha Formation by *C. albicans* and *C. dubliniensis*

One of the most important and best-studied virulence factors of *C. albicans* is its ability to switch between yeast and filamentous growth forms (i.e., dimorphism), a trait also shared by *C. dubliniensis* [5]. However, although *C. dubliniensis* is capable of producing germ tubes and true hyphae, it does so far less efficiently than *C. albicans*, both in vitro and under a wide range of in vivo conditions [16, 42, 43]. Given the perceived importance of dimorphism in *C. albicans* virulence, we have previously suggested that the lower virulence of *C. dubliniensis* may, at least in part, be related to its relatively poor ability to switch between yeast and hyphal forms [16]. Evidence in support of this was obtained from murine systemic infection model studies [14, 15] and the neonatal orogastric infection model [16]. In the latter, stomach and kidney samples in infected animals contained only *C. dubliniensis* yeast cells, while *C. albicans* cells were found in both the yeast and hyphal forms [16].

We have used the RHE model of superficial infection [44] to compare the invasive potential of both species (Figure 1). In particular, in this model, *C. albicans* grows as both yeast and hyphae and invades the tissue causing major damage. In contrast, *C. dubliniensis* grows exclusively in the yeast form in this model, therefore, causing relatively limited tissue invasion and damage [16, 17]. In order to investigate why the two species differ so markedly in virulence in this model and in order to identify novel virulence-associated genes; Spiering et al. compared their global gene expression profiles during the early stages of RHE infection [17]. Both species showed similar expression profiles for ribosomal and general metabolic genes, however, unsurprisingly, *C. albicans* showed increased expression of hypha-specific virulence genes (e.g., *ECE1, HWPI, HYR1, and ALS3*) within 30 minutes of infection. In contrast, *C. dubliniensis* showed a far less robust transcriptional response and no expression of hypha-specific genes. In addition, several genes with unknown function were found to be specifically upregulated in *C. albicans* that are absent from or very divergent in the *C. dubliniensis* genome. One of these genes, named *SFL2* due to its sequence similarity to the transcription factor-encoding gene *SFL1*, encodes a putative DNA-binding heat shock factor protein. When the gene was deleted in *C. albicans*, it resulted in the failure to produce hyphae under a wide range of growth conditions, including the RHE infection model. Interestingly, the Δsfl2 mutation had no effect on survival in the murine systemic infection model, although histological analysis revealed that the kidneys of infected mice were infected only with yeast cells, while the kidneys of mice infected with the wild-type parental strains contained both yeast and predominantly hyphal cells [17]. In a subsequent study, it has been shown that the Δsfl2 mutant exhibits reduced virulence in a mouse model of gastrointestinal infection, suggesting that Sfl2 is required for the penetration of the gut wall and subsequent dissemination throughout the body [45]. The *C. dubliniensis* ortholog of *SFL2* is only 50% identical and is not expressed under the same conditions as the *C. albicans* gene, therefore it is possible that the divergence of this gene and its apparent lack of expression may be partly responsible for its lower virulence.

Recent studies by our group have been directed towards investigating the molecular basis for differences in the signaling pathways responsible for filamentation in the two species. Comparative genome analysis suggests that orthologs of the known components of the major *C. albicans* morphogenetic pathways (e.g., Cph1-mediated MAPK and the Efg1-mediated Ras1-CAMP pathways) are highly conserved in *C. dubliniensis*, so the reduced capacity of *C. dubliniensis* to produce hyphae and express hypha-specific genes such as *SFL2* is unlikely to be due to the absence of regulators involved in these pathways. Forced stimulation of the Ras1-CAMP pathway with a hyperactive RAS1^{G113V} allele did not result in increased true hypha formation in *C. dubliniensis*, suggesting strong repression of the Ras1-CAMP pathway itself or downstream regulators [43]. One of the most important transcriptional regulators involved in the control of morphogenesis in *C. albicans* is Nrg1, which Staib and Morschhäuser showed that it is differentially expressed by *C. dubliniensis* when grown on media such as Staib agar [46]. In *C. albicans* this protein targets the negative regulator Tup1 to specific sequences in the promoters of genes involved in hypha formation. NRG1 expression is rapidly downregulated in *C. albicans* cells incubated under hypha-inducing conditions, including when cells are phagocytosed by murine macrophages, which results in germination and escape from the phagocytes. However, in *C. dubliniensis*, NRG1 expression remains high under these conditions, preventing hypha formation and causing cells to remain in the yeast phase, which in the murine macrophage model results in failure to escape from the phagocytes and the death of the fungus [43]. Deletion of the NRG1 gene in *C. dubliniensis* resulted in an increase in the rate of hypha and particularly pseudohypha formation, which in turn led to increased survival when exposed to murine macrophages as well as increased virulence in the reconstituted human epithelial (RHE) cell model of oral candidosis. Surprisingly, the *C. dubliniensis* Δnrg1 mutant was no more virulent than its parent strain in the murine systemic infection model and formed mainly pseudohyphae in infected kidneys, suggesting an additional level of repression preventing true hypha formation in vivo [43].

Recent investigations by O’Connor et al. have suggested that repression of filamentation in *C. dubliniensis* is mediated by nutrients. In order to improve our understanding of how environmental signals trigger these pathways O’Connor...
et al. investigated the effects of nutrient availability on the rate of hypha formation [42]. One of the most common incubation conditions for inducing hypha formation in C. albicans is incubation in the nutrient-rich medium YPD supplemented with 10% (vol/vol) fetal calf serum at 37°C. Under these conditions >80% of C. albicans cells produced germ tubes/filaments within two hours, in contrast only ∼20% of C. dubliniensis cells were observed to produce hyphae under the same induction conditions. However, when C. dubliniensis cells were incubated in water supplemented with 10% (vol/vol) fetal calf serum (WS) at 37°C, the level of hypha producing cells increased to 90% (i.e., similar to the level of hypha formation by C. albicans), suggesting that a nutrient-rich environment, in particular the presence of complex mixtures of peptides, suppressed hypha formation in this species. This was confirmed when the addition of peptone and peptone and glucose was found to significantly reduce the levels of hyphae, suggesting that nutrient starvation is a prerequisite for hypha formation by C. dubliniensis [42]. These morphological changes were coupled with changes in the expression of genes encoding key transcriptional regulators, such as NRG1 and UME6, which were significantly altered in WS, with the former downregulated by 70% and the latter upregulated 30-fold. Overexpression of the UME6 gene (which encodes a protein required for hyphal extension), using a doxycycline-inducible promoter led to C. dubliniensis cells being able to produce true hyphae, even in nutrient-rich media such as YPD. Similarly, preculture of C. dubliniensis cells in nutrient poor media, such as Lee’s medium, pH 4.5, prior to the induction of hyphae in YPDS also resulted in a transient ability of C. dubliniensis cells to produce hyphae which increased the ability of these cells to adhere to and invade epithelial tissue in the RHE model (see Figure 1) and increased survival in the murine macrophage infection model [42].

These data suggest that factors controlling UME6 expression in C. dubliniensis are repressed by the presence of nutrients, and unlike C. albicans, this repression cannot be lifted by a shift to alkaline pH, which occurs when serum is added to the medium. UME6 is likely to be regulated by Efg1 and Eed1 and is therefore under the control of the Ras1-cAMP pathway. Few studies have investigated how nutrients regulate this pathway in C. albicans or C. dubliniensis. Preliminary investigations in our laboratory have shown that rapamycin, an inhibitor of the nutrient sensing kinase Tor1 (a kinase that plays a central role in the control of responses to nutrient availability [47]), can stimulate transient hypha formation in C. dubliniensis in nutrient-rich YPD serum [48]. This derepression of hypha formation in the presence of nutrients is concomitant with a reduction of NRG1 and an increase in UME6 expression. These data suggest that differences in Tor1 activity may play a role in the differential ability of C. albicans and C. dubliniensis to form hyphae. The
We propose that formation and the expression of hypha-specific products of hyphae and hypha-specific proteins to the pathogenesis of candidal virulence, in particular the relative contribution of C. dubliniensis to filament. It is clear that the genome is in the process of losing others (e.g., the SAP genes), has undergone some degree of transcriptional rewiring (e.g., the T or pathway and Sfl2). All of these differences suggest that the main discrepancy between these two closely related species relates to differences in hypha formation and the expression of hypha-specific products (summarized in Table 1). We propose that C. dubliniensis is in the process of undergoing reductive evolution, whereby its genetic repertoire is diminishing in comparison with C. albicans and their common ancestor. One of the main phenotypic manifestations of this is the narrowing of the two species is currently under investigation.

Growth and morphology	C. albicans	C. dubliniensis	References
Growth at ≥42°C	Yes	No	[39, 41]
Growth in high salt media	Yes	No	[39, 40]
Hypha formation in YPD + serum	Yes	Poor	[16, 42]
Hypha formation in water + serum	Yes	Yes	[42]
RHE infection model	yeasts and hyphae	yeasts only	[17]

4. Conclusions

Candidal pathogenicity involves the complex interplay of a wide range of virulence-associated factors. Comparative analysis of C. albicans and C. dubliniensis genomic and transcriptomic data has revealed that the reasons for the differences in the capacity of these two species to cause disease are also complex and are not due to a simple defect in C. dubliniensis. Instead these studies have revealed genetic differences in the two species, which, at least in part, may explain the differences in their capacity to tolerate stress and to filament. It is clear that the C. dubliniensis genome is missing important virulence genes (e.g., ALS3 and HYR1), is in the process of losing others (e.g., the FGR genes), has failed to expand certain gene families (e.g., the SAP and TLO families), and has undergone some degree of transcriptional rewiring (e.g., the Tor pathway and Sfl2). All of these differences suggest that the main discrepancy between these two closely related species relates to differences in hypha formation and the expression of hypha-specific products (summarized in Table 1). We propose that C. dubliniensis is in the process of undergoing reductive evolution, whereby its genetic repertoire is diminishing in comparison with C. albicans and their common ancestor. One of the main phenotypic manifestations of this is the narrowing of environmental conditions permissive for hypha formation, perhaps as a result of specialization for survival in a specific (as yet unidentified) anatomic niche where hyphae are not required for colonization or growth. By further investigating the molecular basis for the differences between C. albicans and C. dubliniensis, we hope to improve our understanding of candidal virulence, in particular the relative contribution of hyphae and hypha-specific proteins to the pathogenesis of candidal infections.

Acknowledgments

The authors would like to acknowledge support from the Dublin Dental University Hospital, the Health Research Board (Grant HRA/2009/3), and Science Foundation Ireland (Grant SFI 11 RFP.1/GEN/3042).

References

[1] R. A. Calderone, Ed., Candida and Candidiasis, ASM Press, Washington, DC, USA, 2002.
[2] M. Ruhnke, “Epidemiology of Candida albicans infections and role of non-Candida albicans yeasts,” Current Drug Targets, vol. 7, no. 4, pp. 495–504, 2006.
[3] D. C. Coleman, D. E. Bennett, D. J. Sullivan et al., “Oral Candida in HIV infection and AIDS: new perspectives/new approaches,” Critical Reviews in Microbiology, vol. 19, no. 2, pp. 61–82, 1993.
[4] V. Krcmery and A. J. Barnes, “Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance,” Journal of Hospital Infection, vol. 50, no. 4, pp. 243–260, 2002.
[5] D. J. Sullivan, T. J. Westerneng, K. A. Haynes, D. E. Bennett, and D. C. Coleman, “Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals,” Microbiology, vol. 141, no. 7, pp. 1507–1521, 1995.
[6] D. Sullivan and D. Coleman, “Candida dubliniensis: characteristics and identification,” Journal of Clinical Microbiology, vol. 36, no. 2, pp. 329–334, 1998.
[7] D. J. Sullivan, G. P. Moran, and D. C. Coleman, “Candida dubliniensis: ten years on,” FEMS Microbiology Letters, vol. 253, no. 1, pp. 9–17, 2005.
[8] F. Citifulo, G. P. Moran, D. C. Coleman, and D. J. Sullivan, “Purification and germination of Candida albicans and Candida dubliniensis chlamydompores cultured in liquid media,” FEMS Yeast Research, vol. 9, no. 7, pp. 1051–1060, 2009.
[9] B. A. McManus, D. C. Coleman, G. Moran et al., “Multilocus sequence typing reveals that the population structure of Candida dubliniensis is significantly less divergent than that of Candida albicans,” Journal of Clinical Microbiology, vol. 46, no. 2, pp. 652–664, 2008.

Table 1: Comparison of C. albicans and C. dubliniensis.

Genome	Chromosome number	No. of species-specific genes	ALS3	HYR1	SAP4, 5 and 6	HWP1	TLO family
	8	168	Present	Present	All three genes	Present	14 genes
	9–11 chromosome-sized fragments	29	Absent	Absent	One gene	Divergent	2 genes

International Journal of Microbiology 5
Candida albicans

J. F. Staab, S. D. Bradway, P. L. Fidel, and P. Sundstrom, “Adherence and virulence of Candida albicans: comparison with C. albicans,” Medical Mycology, vol. 40, no. 3, pp. 249–257, 2002.

C. Y. Koga-Ito, E. Y. Komiyama, C. A. De Paiva Martins et al., “Comparative genomics of Candida albicans and Candida dubliniensis: results of a blinded histopathological study of invasive candidiasis,” Clinical Microbiology and Infection, vol. 15, no. 6, pp. 576–585, 2009.

C. Stokes, G. P. Moran, M. J. Spiering, G. T. Cole, D. C. Coleman, and D. J. Sullivan, “Lower filamentation rates in Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans,” Fungal Genetics and Biology, vol. 44, no. 9, pp. 920–931, 2007.

M. J. Spiering, G. P. Moran, M. Chauvel et al., “Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFl2, a C. albicans gene required for virulence in a reconstituted epithelial infection model,” Eukaryotic Cell, vol. 9, no. 2, pp. 251–265, 2010.

C. Y. Koga-Ito, E. Y. Komiyama, C. A. De Paiva Martins et al., “Experimental systemic virulence of oral Candida dubliniensis isolates in comparison with Candida albicans,” Candida tropica and Candida krusei,” Mycoses. In press.

J. F. Staab, S. D. Bradway, P. L. Fidel, and P. Sundstrom, “Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1,” Science, vol. 283, no. 5407, pp. 1535–1538, 1999.

L. L. Hoyer, “The ALS gene family of Candida albicans,” Trends in Microbiology, vol. 9, no. 4, pp. 176–180, 2001.

J. R. Naglik, S. J. Challacombe, and B. Hube, “Candida albicans secreted aspartyl proteinases in virulence and pathogenesis,” Microbiology and Molecular Biology Reviews, vol. 67, no. 3, pp. 400–428, 2003.

M. Niewerth and H. C. Korting, “Phospholipases of Candida albicans,” Mycoses, vol. 44, no. 9-10, pp. 361–367, 2001.

P. Sudbery, N. Gow, and J. Berman, “The distinct morphogenic states of Candida albicans,” Trends in Microbiology, vol. 12, no. 7, pp. 317–324, 2004.

J. S. Finkel and A. P. Mitchell, “Genetic control of Candida albicans biofilm development,” Nature Reviews Microbiology, vol. 9, pp. 109–118, 2010.

J. Hannula, M. Saara, S. Alaluusua, J. Slots, and S. Asikainen, “Phenotypic and genotypic characterization of oral yeasts from Finland and the United States,” Oral Microbiology and Immunology, vol. 12, no. 6, pp. 358–365, 1997.

L. De Repentigny, F. Aumont, K. Bernard, and P. Belhumeur, “Characterization of binding of Candida albicans to small intestinal mucus and its role in adherence to mucosal epithelial cells,” Infection and Immunity, vol. 68, no. 6, pp. 3172–3179, 2000.

M. McCallough, B. Ross, and P. Reade, “Characterization of genetically distinct subgroup of Candida albicans strains isolated from oral cavities of patients infected with human immunodeficiency virus,” Journal of Clinical Microbiology, vol. 33, no. 3, pp. 696–700, 1995.

T. Jones, N. A. Federspiel, H. Chibana et al., “The diploid genome sequence of Candida albicans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 19, pp. 7329–7334, 2004.

B. R. Braun, M. van het Hoog, C. d’Enfert et al., “A human-curated annotation of the Candida albicans genome,” PLoS Genetics, vol. 1, no. 1, pp. 36–57, 2005.

M. Van het Hoog, T. J. Rast, M. Martchenko et al., “Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes,” Genome Biology, vol. 8, no. 4, article no. R52, 2007.

G. Moran, C. Stokes, S. Thewes, B. Hube, D. C. Coleman, and D. Sullivan, “Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis,” Microbiology, vol. 150, no. 10, pp. 3363–3382, 2004.

A. P. Jackson, J. A. Gamble, T. Yeomans et al., “Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans,” Genome Research, vol. 19, no. 12, pp. 2231–2244, 2009.

P. K. Mishra, M. Baum, and J. Carbon, “Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity,” Molecular Genetics and Genomics, vol. 278, no. 4, pp. 455–465, 2007.

G. Luo, A. S. Ibrahim, B. Spellberg, C. J. Nobile, A. P. Mitchell, and Y. Fu, “Candida albicans Hylr1p confers resistance to neutrophil killing and is a potential vaccine target,” Journal of Infectious Diseases, vol. 201, no. 11, pp. 1718–1728, 2010.

P. Dwivedi, A. Thompson, Z. Xie et al., “Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion,” PLoS One, vol. 6, no. 1, Article ID e16218, 2011.

Q. T. Phan, C. L. Myers, Y. Fu et al., “Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells,” PLoS Biology, vol. 5, no. 3, article e64, 2007.

R. S. Almeida, S. Brunke, A. Albrecht et al., “The hyphal- associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin,” PLoS Pathogens, vol. 4, no. 11, Article ID e1000217, 2008.

M. A. Uhl, M. Biery, N. Craig, and A. D. Johnson, “Haplinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen Calicibicns,” EMBO Journal, vol. 22, no. 11, pp. 2668–2678, 2003.

B. Enjalbert, G. P. Moran, C. Vaughan et al., “Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress,” Molecular Microbiology, vol. 72, no. 1, pp. 216–228, 2009.

S. H. Alves, E. P. Milam, P. De Laat Sant’Ana, L. O. Oliveira, J. M. Santurio, and A. Lopes Colombo, “Hypertonic sabouraud broth as a simple and powerful test for Candida dubliniensis screening,” Diagnostic Microbiology and Infectious Disease, vol. 43, no. 1, pp. 85–86, 2002.

E. Pinjon, D. Sullivan, I. Salkin, D. Shanley, and D. Coleman, “Simple, inexpensive, reliable method for differentiation of
Candida dubliniensis from Candida albicans,” Journal of Clinical Microbiology, vol. 36, no. 7, pp. 2093–2095, 1998.

[42] L. O’Connor, N. Caplice, D. C. Coleman, D. J. Sullivan, and G. P. Moran, “Differential filamentation of Candida albicans and Candida dubliniensis is governed by nutrient regulation of UME6 expression,” Eukaryotic Cell, vol. 9, no. 9, pp. 1383–1397, 2010.

[43] G. P. Moran, D. M. MacCallum, M. J. Spiering, D. C. Coleman, and D. J. Sullivan, “Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis,” Molecular Microbiology, vol. 66, no. 4, pp. 915–929, 2007.

[44] M. Schaller, K. Zakikhany, J. R. Naglik, G. Weindl, and B. Hube, “Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia,” Nature Protocols, vol. 1, no. 6, pp. 2767–2773, 2007.

[45] W. Song, H. Wang, and J. Chen, “Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model,” FEMS Yeast Research, vol. 11, no. 2, pp. 209–222, 2011.

[46] P. Staib and J. Morschhäuser, “Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis,” Molecular Microbiology, vol. 55, no. 2, pp. 637–652, 2005.

[47] J. R. Rohde, R. Bastidas, R. Puria, and M. E. Cardenas, “Nutritional control via Tor signaling in Saccharomyces cerevisiae,” Current Opinion in Microbiology, vol. 11, no. 2, pp. 153–160, 2008.

[48] D. J. Sullivan and G. P. Moran, “Differential virulence of Candida albicans and C. dubliniensis a role for tor1 kinase?” Virulence, vol. 2, no. 1, pp. 77–81, 2011.