TeV γ rays from photodisintegration and daughter deexcitation of cosmic-ray nuclei

Luis A. Anchordoqui, John F. Beacom, Haim Goldberg, Sergio Palomares-Ruiz, and Thomas J. Weiler

Introduction. In the field of TeV γ-ray-astronomy, new instruments are discovering new sources at a rapid rate, both within our Galaxy and outside the Galaxy\cite{1}. Not surprisingly, one of the brightest TeV γ-ray sources is the one discovered first, the Crab pulsar wind nebula. The integral γ-ray flux obtained from the Crab by the Whipple Collaboration is now the standard TeV flux unit: $F_{\text{Crab}}(\gamma_{\text{LAB}} > 0.35 \text{TeV}) = 10^{-10} / \text{cm}^2 / \text{s}$\cite{2}. The spectral index of the Crab’s integrated flux is measured to be -1.5, so F_{Crab} falls by a factor of 30 for each decade of increase in γ_{LAB}. Newly commissioned atmospheric Cerenkov telescopes (CANGAROO, HESS, MAGIC and VERITAS) will reach a sensitivity 100 times below F_{Crab}.

Two well-known mechanisms for generating TeV γ-rays in astrophysical sources\cite{3} are the purely electromagnetic (EM) synchrotron emission and inverse Compton scattering, and the hadronic (PION) one in which γ-rays originate from $p\gamma$ production and decay. There has been considerable debate over which of these two mechanisms is dominant. The mechanism for the PION mode may be either pp or $p\gamma$ collisions. In this Letter, we highlight a third dynamic which leads to TeV γ-ray emission via the photo-disintegration of highly boosted nuclei followed by daughter de-excitation. Starburst regions such as Cygnus OB2 appear to be promising sites for TeV γ-ray emission via this mechanism. A unique feature of the A^* process is a sharp flattening of the energy spectrum below $\sim 10 \text{TeV}/(T/\text{eV})$ for γ-ray emission from a thermal region of temperature T. We also check that a diffuse γ-ray component resulting from the interaction of a possible extreme-energy cosmic-ray nuclei with background radiation is well below the observed EGRET data. The A^* mechanism described herein offers an important contribution to γ-ray astronomy in the era of intense observational activity.

astrophysical context was first calculated by Stecker in a seminal paper\cite{4}, almost forty years ago. To our knowledge, the possibly important role of nuclear de-excitation in the astrophysical context was first appreciated and proposed by Moskalenko and collaborators\cite{5} more than a decade ago. Since then, the A^*-process has been overlooked by the γ-ray community. Now that data is becoming available which can validate or invalidate the process, it is timely to revive and further develop the A^*-process. We do so, by providing calculational details, and by identifying the astrophysical context where this process might dominate over the EM and PION modes for production of γ-rays. A detailed discussion on the main features of the EM and PION mechanisms is presented in a longer accompanying paper\cite{6}.

By far the largest contribution to the photo-excitation cross-section comes from the Giant Dipole Resonance (GDR) at $\epsilon_{\text{GDR}} \sim 10 \text{ MeV} - 30 \text{ MeV}$ in the nuclear rest frame\cite{7}. The ambient photon energy required to excite the GDR is therefore $\epsilon = \epsilon_{\text{GDR}} / \Gamma_A$. The GDR decays by the statistical emission of a single nucleon, leaving an excited daughter nucleus $(A-1)^*$. The probability for de-excitation by emitting one or more photons of energies $\epsilon_{\text{GDR}} \sim 1 - 5 \text{ MeV}$ in the nuclear rest frame. The lab-frame energy of the γ-ray is then $\epsilon_{\gamma}^{\text{LAB}} = \Gamma_A \epsilon_{\gamma}^{\text{GDR}}$.

As just outlined, the boost in the nuclear energy from rest to $E_{\text{LAB}}^A = \Gamma_A m_N$ plays two roles. It promotes the thermal energies of the ambient photons to the tens of MeV γ-rays capable of exciting the GDR, and it promotes the de-excitation photons from a few MeV to much higher energies, potentially detectable in γ-ray telescopes. Eliminating Γ_A above leads to the relation $\epsilon_{\gamma}^{\text{LAB}} \sim \epsilon_{\gamma}^{\text{GDR}} \epsilon_{\gamma}^{\text{dm}}$. The "\sim" indicates that the $\epsilon_{\gamma}^{\text{GDR}}$ and $\epsilon_{\gamma}^{\text{dm}}$ energies are not sharp, but rather distributed over their resonant shapes ("Lorentzian" or
“Breit-Wigner”). Each of the two spectra have a width to mass ratio less than unity. It is sufficient for our purposes to treat each spectrum in the narrow-width-approximation (NWA). Well-defined values for ε^{GDR} and ϵ^{dnn} then result. We may summarize up to this point by saying that the A^* process produces γ-ray’s with energy $E^{\text{LAB}}_{\gamma} = \varepsilon^{\text{GDR}}/\epsilon^{\text{dnn}} \sim 20 \text{TeV}/(\text{T/ev})$ if there exists an accelerated nuclear flux with boost $\Gamma_A \sim \varepsilon^{GDR}/\epsilon \sim 7 \times 10^6 (\text{T/ev})$ or equivalent energy $E^{\text{LAB}}_{\gamma} \sim 7 \text{PeV}/(\text{T/ev})$ per nucleon [6, 7].

Here and throughout we assume a Bose-Einstein (BE) distribution with temperature T for the ambient photons; in the mean, $\langle \epsilon \rangle \sim 3.3 T$. As an example, γ-ray’s with energy $E^{\text{LAB}}_{\gamma} \sim 20 \text{TeV}$ are generated in this A^*-process if an ambient photon temperature of an eV and a boost factor of 7×10^6 are present. Thus, we have arrived at an astrophysical environment where the A^*-process may dominate production of TeV γ-ray’s: the region must contain far-UV photons (commonly defined as 1-20 eV) from the Lyman-α emission of young, massive, hot stars such as O and B stars which have surface temperatures of $T_{\odot} \sim 40,000 \text{K} (3.4 \text{eV}$ and $\langle \epsilon \rangle \sim 10 \text{ eV})$ and $18,000 \text{K} (1.5 \text{ eV}$ and $\langle \epsilon \rangle \sim 5 \text{ eV})$, respectively; and the region must contain shocks, giant winds, or other mechanisms which accelerate nuclei to excess of a PeV per nucleon. Violent starburst regions, such as the one in the direction of Cygnus, are splendid examples of regions which contain OB stars, shocks and giant stellar winds.

With ϵ^{GDR} and ϵ^{dnn} fixed at their central values, the γ-ray spectrum and $\text{d}n(\epsilon^{LAB})/\text{d}\epsilon^{LAB}$ is given by a simple Jacobian times the BE distribution with argument ϵ set to $\epsilon^{GDR}/\epsilon^{dnn}$. i.e.,

$$\frac{\text{d}n(\epsilon^{LAB})}{\text{d}\epsilon^{LAB}} \propto (\epsilon^{LAB})^{-4} \left(\epsilon^{GDR}/\epsilon^{dnn} - \epsilon^{LAB} \right)^{-1} \cdot (1)$$

Three regions in ϵ^{LAB} emerge. For $\epsilon^{LAB} < \epsilon^{GDR}/\epsilon^{dnn}$, the γ-ray spectrum is exponentially suppressed [11]. For $\epsilon^{LAB} \gg \epsilon^{GDR}/\epsilon^{dnn}$, there is power-law suppression. The γ-ray spectrum peaks near $\epsilon^{LAB} \sim \epsilon^{GDR}/\epsilon^{dnn}/T$. In particular, one notes that the suppression of the high-energy Wien end of the thermal photon spectrum has led to a similar suppression of the photon spectrum below $\epsilon^{LAB} \sim 20 \text{ TeV}/(\text{T/ev})$. This lower-energy suppression presents a robust prediction of the A^*-process. Moreover, it contrasts greatly with the PION and EM processes, and so provides a unique signature. The A^* process predicts “orphan” sources, with suppression of associated GeV γ-ray’s or MeV X-rays (although the photo-dissociated neutrons may β-decay to neutrinos [10]). Observationally, orphan γ-ray sources have been identified [12, 13] and some orphans are known to be near OB starburst regions [14].

Comparing to the PION $p\gamma$ process, the A^* process has a much lower ambient photon energy threshold; in the nuclear rest frame, the photon threshold is $\varepsilon^{GDR} \sim 10 \text{ MeV}$ for the A^* process, but it is an order of magnitude larger at m_{π} for the PION $p\gamma$ process [16]. This means that for fixed ambient temperature, Γ_A need be an order of magnitude larger for the PION $p\gamma$ process, and the resulting γ-ray energies, proportional to Γ_A^2, are two orders of magnitude larger. The EM and PION pp processes contrast with the A^*-process in that there is either no threshold (EM) or very small threshold $\mathcal{O}(2m_{\pi})$ in the lab (PION pp), and the resulting γ-ray spectrum rises monotonically with decreasing ϵ^{LAB}.

The A^*-Rate. We now derive the rate for γ-ray production in the A^*-process. The cross-section is dominated by the GDR dipole form [10], which in the NWA is

$$\sigma_A(\epsilon) \rightarrow \frac{\pi}{2} \sigma^{\text{GDR}} \Gamma^{\text{GDR}} \delta(\epsilon^{\text{GDR}} - \Gamma_A \epsilon) \cdot (2)$$

where Γ^{GDR} and σ^{GDR} are the GDR width and cross-section at maximum. Fitted numerical formulas are $\sigma^{\text{GDR}} = 1.45 A \times 10^{-2} \text{cm}^2$, $\Gamma^{\text{GDR}} = 8 \text{ MeV}$, and $\epsilon^{\text{GDR}} \sim 42.65 A^{0.41}$ MeV for $A > 4$ and $0.925 A^{2.43}$ for $A \leq 4$ [17]. The 8 MeV width implies a very short de-excitation distance of $\sim 25 \Gamma_A \text{fm}$.

The general formula for the inverse photo-disintegration mean-free-path (mfp) [18] for a highly relativistic nucleus with energy Γ_A/m_A propagating through an isotropic photon background with energy ϵ and spectrum $dn(\epsilon)/d\epsilon$ is [5, 7]

$$(\lambda_A)^{-1} \rightarrow \frac{\pi \sigma^{\text{GDR}} \Gamma^{\text{GDR}}}{4 \Gamma_A^2} \int_{\epsilon^{\text{GDR}}}^{\epsilon} \frac{d\epsilon}{\epsilon^2} \frac{dn(\epsilon)}{d\epsilon} \cdot (3)$$

For a nucleus passing through a region of thermal photons, integration over the BE photon distribution gives

$$(\lambda_A^{\text{BE}})^{-1} \approx \frac{\pi \sigma^{\text{GDR}} \Gamma^{\text{GDR}}}{\epsilon^{\text{GDR}}} \int_{\epsilon^{\text{dnn}}}^{\epsilon_{\gamma}} d\epsilon \ln \left(1 - \frac{e^{-w}}{w} \right) \cdot (4)$$

where we have defined a dimensionless scaling variable $w = \epsilon^{\text{GDR}}/2 \Gamma_A T$. From the prefactor, we learn that the peak of $(\lambda_A^{\text{BE}})^{-1}$ scales in A as $\sigma^{\text{GDR}}/\epsilon^{\text{GDR}} \sim A^{1.21}$, and the value of Γ_A at the peak scales as $\epsilon^{\text{GDR}} \sim A^{-0.21}$.

The scaling function $f(w) = w^2 \ln (1 - e^{-w})$ is shown in Fig. [1]. Approximations to the $|\ln w|$ term yield e^{-w} for $w > 2$, and $|\ln w|$ for $w < 1$. Thus, the exponential suppression of the process appears again for large for $w > 2$, i.e., for $\epsilon^{LAB} < \epsilon^{GDR}/\epsilon^{dnn}/4T$, and the small w region presents a mfp that scales as $w^2 |\ln w|$. The peak region provides the smallest inverse mfp, and so this region dominates the A^*-process. In the peak region, w is of order one, which implies that $\Gamma_A T \sim \epsilon^{\text{GDR}}$. When this latter relation between the nuclei boost and the ambient photon temperature is met, then the photo-disintegration rate is optimized.

The area under the peak region in Fig. [1] is of order one, which leads to a simple and reasonable estimate of
the inverse mfp given in Eq. (4), for any nucleus boosted near $\Gamma_A \sim \epsilon^\text{GDR}/T$. The useful and eminently sensible estimate is $(\lambda^\text{BE}_A)^{-1} \sim \sigma^\text{GDR} \lambda^\text{BE}_A$; here, we have input the typical value $\Gamma^\text{GDR}/\epsilon^\text{GDR} \sim 1/3$. Putting in numbers, this estimate yields

$$\lambda^\text{BE}_A \sim \frac{5 \times 10^{13} \text{ cm}}{A \ (\text{T/eV})^3} \sim \frac{3 \text{ AU}}{A \ (\text{T/eV})^3} \tag{5}$$

for a nucleus with energy in the peak regime around $E_A \sim 10 A/(\text{T/eV}) \text{ PeV}$. Here we have used $n^\text{BE}_\gamma = 2 \zeta(3) T^3/\pi^2 \simeq T^3/4$.

An important question is how many photo-disintegration steps in the nuclear chain $A \to (A-1)^* \to (A-2)^*$ etc. may be expected. Each step will produce an excited daughter which may de-excite via emission of γ-ray’s, each having a typical lab-frame energy $\epsilon^\text{LAB}_\gamma \sim \epsilon^\text{GDR}_\gamma \epsilon^\text{dSN}/3T$. Clearly, the number of steps depends on the mfp of each excited daughter nucleus, and on the diffusion time of the nuclei in the thermal region. The probability for n-cascades, producing n excited daughter nuclei and n single nucleons, may be written in symmetric ways as

$$P_n = \prod_{j=1}^n \int_0^{2x_{j+1}/\lambda_j} \frac{dx_j}{\lambda_j} e^{-\epsilon_{x_j-x_{j-1}}} = \prod_{j=1}^n \int_0^{x_{j+1}/\lambda_j} dx_j e^{-x_j \delta_j},$$

where $x_0 = 0$, x_{n+1} equals the diffusion length D of nuclei in the A^*-region, the ordered $x_1 \leq x_2 \ldots \leq x_n$ denote the spatial positions of successive photo-disintegrations to $(A-1)^*, \ldots, (A-n)^*$, $\delta_j = \lambda_j^{-1} - \lambda_{j+1}^{-1}$, and $\lambda_{n+1} = \infty$. The exponentials in (6) are probabilities that the various daughters not interact (i.e., survive) from the point of creation to the point of photo-disintegration. A simple result obtains when the mfp’s are long on the diffusion scale D of the A^*-region. In this case the nested integrals collapse to $P_n \approx (n!)^{-1} \prod_{j=1}^n D/\lambda_j$. This is just the product of the independent probabilities for each excited daughter to be produced, times the factor $1/n!$ that divides out all but the one correct time ordering of the n photo-disintegrations. One sees that, since $D/\lambda_j \ll 1$ by assumption, disintegration to more than the first excited daughter is unlikely. Such is the case if photo-disintegration of nuclei occurs in the Cygnus OB starburst region, as we now demonstrate.

Relevance to Starburst Regions. The aforementioned possibility of generating Galactic TeV γ-ray’s from accelerated nuclei scattering on starlight in starburst regions is of considerable astrophysical interest. The energy of the photons ($\sim 3T^*$ in the mean) is maintained as the photons disperse from the stars, but the photon density decreases by the ratio of the surface of stellar emission ($N_* \times 4\pi R^2_\ast$) to the loss surface of the starburst region ($4\pi R^2_{\text{SB}}$). Taking the giant star radius to be $R_* \sim 10 R_\odot$, the radius of the starburst region to be $R_{\text{SB}} \sim 10$ pc, and the stellar count to be $N_* \sim 2600$, the photon density is diluted by $\sim 10^{12}$. According to Eqs. (6) and (5), $(\lambda^A)^{-1}$ is proportional to the photon density, and hence to this factor. Including this factor in Eq. (5), one gets the estimate $\lambda^A \sim (56/A) (1.5 \text{ eV}/T_\ast) \times 10^{23} \text{ cm}$ for the nuclear mfp in the starburst region. The hot stars are dominantly (95%) B type, with $T_\ast \sim 1.5 \text{ eV}$.

We note here that the diffusion time for a nucleus in the Cygnus OB starburst region is calculated to be $\sim 10^4 \text{ yr} \times 10^{22} \text{ cm}$, an order of magnitude shorter than the nuclear mfp. Accordingly, one expects only a few percent of the nuclei to photo-disintegrate in the Cygnus OB region, with multiple disintegrations being rather rare.

Some early statistical-model calculations for the production of γ-rays through the decay of the GDR gave a mean photon multiplicity between 0.5 and 2 for the new nuclei in the chain reaction (see Ref. [7] for details). We will simplify the data by assuming that one photon is emitted per nuclear de-excitation. Then, the rate of photo-emission is just the rate of excited daughter production, which in turn is just the rate of photodisintegration. Allowing for the $1/r^2$ dilution of the γ-ray flux from the source region of volume V_A, at distance d, the observed integral γ-ray flux F_γ at Earth with $\epsilon^\text{LAB}_\gamma$ above a few TeV $= (\text{eV}/T)$ is then

$$F_\gamma = \frac{V_A}{4\pi d^2} \frac{1}{\lambda^A} F_A,$$

where the flux $F_A(= c n_A)$ is integral over the energy-decay of the peak region, $A (\text{eV/T}) \text{ PeV} < E_A < 10 A (\text{eV}/T)$. It is commonly assumed that this nuclear flux results from continuous trapping of the diffuse cosmic ray flux by diffusion in a milligauss magnetic field.

Putting into Eqs. (5) and (7) the parameters for the Cygnus OB2 region, i.e., $\lambda_A = (56/A) \times 10^{23} \text{ cm}$, $R_{\text{SB}} =...
10 pc, and $d = 1.7$ kpc, one obtains $F_\gamma = 2 \times 10^{-10} A F_A$. Thus, an accumulated nuclear flux within Cygnus OB2 of $f/\text{cm}^2/\text{s}$ in the PeV region gives $A \geq \text{TeV} \gamma$-ray flux at Earth of $\sim 10 A f \times F_{\text{Crab}} (\epsilon^{\text{LAB}}_\gamma \geq 1 \text{ TeV})$. For example, an iron flux $F_{\gamma 56} = 6 \times 10^{-5} \text{cm}^2/\text{s}$ above a TeV leads to a γ-ray flux at Earth of about 3% of the Crab, just at the level measured by the HEGRA experiment for γ-ray’s from the Cygnus OB2 direction [12]. In our accompanying paper [7] we present a more detailed calculation of the A^*-process for this starburst region, and show that $F_{\gamma 56} \sim 10^{-4}/\text{cm}^2/\text{s}$ is a credible 1% of the kinetic energy budget of Cygnus OB2.

The γ-ray energy spectrum remains to be discussed. In the rest frame of the excited nucleus, the photon is emitted isotropically and nearly monochromatically. Therefore, in the lab frame, the γ-ray-spectrum is nearly flat between 0 and $2 \Gamma A \epsilon^{\text{xn}}_\gamma$ on a linear scale. The power spectrum and integrated power rise as $\epsilon^{\text{LAB}}_\gamma$ and $(\epsilon^{\text{LAB}}_\gamma)^2$, respectively, peaking near $\epsilon^{\text{LAB}}_\gamma \sim \epsilon^{\text{GDR}}_\gamma \epsilon^{\text{xn}}_\gamma/4 \Gamma \sim 10 \text{ TeV (eV/T)}$, as explained in the paragraph below Eq. (4).

In detail, the photon spectrum is obtained by replacing the approximate Eq. (7) with an integral over $(dF_A/d\epsilon^{\text{LAB}}_\gamma) \times (\lambda^{3A})^{-1}$, with measure $d\epsilon^{\text{LAB}}_\gamma \cos \theta_\gamma \delta(\epsilon^{\text{LAB}}_\gamma - \Gamma A \epsilon^{\text{xn}}_\gamma (1 + \cos \theta_\gamma))$, where θ_γ is the angle in the nucleus rest frame between the isotropically-emitted photon and the boost direction. After assuming a power-law (with spectral index α) for the nuclear spectrum, and integrating over $d\cos \theta_\gamma$, one arrives at

$$\frac{(\epsilon^{\text{LAB}}_\gamma)^2 dF_\gamma}{d\epsilon^{\text{LAB}}_\gamma} = \frac{n^{\text{Th}} V_{A^*} \alpha_{\text{GDR}} \Gamma_{\text{GDR}} \epsilon^{\text{xn}}_\gamma m_N}{4 \pi d^2} \times \left(\epsilon^{\text{GDR}}_\gamma \right)^{\alpha - 2} \left(\frac{2E_N}{m_N} \right)^{\alpha} \frac{dE_N}{dE_N} x^2 F(x_e),$$

where n^{Th} is the true density of the thermal photons after spatial dilution, E_0 is any reference energy, $x_e = \epsilon^{\text{LAB}}_\gamma T/\epsilon^{\text{xn}}_\gamma \epsilon^{\text{GDR}}_\gamma$ is the dimensionless energy-scaling variable, and

$$F(x_e) = \int \frac{d\omega}{\omega} \omega^\alpha f(\omega) = \int_0^{1/x_e} d\omega \omega^{1+\alpha} \left| \ln(1 - e^{-\omega}) \right|$$

is the scaling function. Shown in Fig. 1 is $x_e^2 F(x_e)$ [15]. The γ-ray energy is $\epsilon^{\text{LAB}}_\gamma = 10 x_e \text{TeV}$ \times $(\epsilon^{\text{xn}}_\gamma/\text{MeV}) (\epsilon^{\text{GDR}}_\gamma/10 \text{MeV}) (\text{T/eV})^{-1}$. We note that the prefactor of $x_e^2 F(x_e)$ in Eq. (5) scales in A for fixed energy per nucleon as $\sigma^{\text{GDR}}_\gamma (\epsilon^{\text{GDR}}_\gamma)^{1+0.21(\alpha-1)}$, while the position of the peak in the $x_e^2 F(x_e)$ spectrum at $x_e \sim 0.25$ scales mildly as $x_e \propto \epsilon^{\text{GDR}}_\gamma A^{1+0.21}$. Well beyond the peak, the $x_e^2 F(x_e)$ spectrum falls as $x_e^{-2} \ln x_e$; equivalently, the γ-ray spectrum falls as $\sim (\epsilon^{\text{LAB}}_\gamma)^{-4}$.

The Cosmogenic A^*-Process. One well-known application of nuclear photo-disintegration occurs in the calculation of the propagation of extreme-energy cosmic nuclei in the cosmic microwave background (CMB) and cosmic infrared background (CIRB). The CMB contribution is thermal, with temperature $T = 2.3 \times 10^{-6} \text{ eV}$, and Eq. (3) readily yields a mfp of A^{-1} Mpc for nuclei with energies near $E_A \sim 4 A \times 10^{19} \text{ eV}$. The CIRB, now fairly well known [19], is much smaller than the CMB. Its spectrum may be approximated by one or two power-laws, which allows an analytic integration of Eq. (3). The result is a mfp longer than that of the CMB result, but relevant to nuclei with energies down to 10^{16} eV.

Of interest in our work is the γ-ray flux produced when the photo-dissociated nuclear fragments produced on the CMB and CIRB de-excite. These γ-rays create chains of electromagnetic cascades on the CMB and CIRB, resulting in a transfer of the initial energy into the so-called EGRET region below 100 GeV, which is bounded by observation to not exceed $\omega_{\text{max}} \sim 2 \times 10^{-6} \text{ eV/cm}^3$ [20].

Fortunately, we can finesse the details of the calculation by arguing in analogy to work already done. Two recent papers [21, 22] have calculated the $\bar{\nu}_e$ flux resulting from photo-disintegration of cosmic Fe, followed by β-decay of the associated free neutrons. The photo-disintegration chain produces one β-decay neutrino with energy of order 0.5 MeV in the nuclear rest frame, for each neutron produced. Multiplying this result by 2 to include photo-disintegration to protons in addition to neutrons correctly weights the number of steps in the chain. Each step produces on average one photon with energy $\sim 3 \text{ MeV}$ in the nuclear rest frame. Comparing, about 12 times more energy is deposited into photons. Including the factor of 12 relating ω_{max} to ω_{ν}, we find from Fig. 3 in Ref. [21] that cosmogenic photo-disintegration/de-excitation energy is more than three orders of magnitude below the EGRET bound [23]. This result appears to be nearly invariant with respect to varying the maximum energy of the Fe injection spectrum (with a larger E_{max}, the additional energy goes into cosmogenic pion production). Thus, there is no constraint on a heavy nuclei cosmic-ray flux from the A^* mechanism.

Conclusion. In final summary, we have presented an alternative mechanism (A^*) for generating TeV γ-ray’s in starburst regions. It has a unique orphan-like signature, with a flat spectrum below $\sim 20 \text{ TeV/(T/eV)}$ and a quasi power-law above. Since the EM and PION mechanisms also produce unique signatures, gamma-ray astrophysics benefits from a one-to-one correspondence between the source dynamic and the observable spectrum.

We acknowledge encouragement from V. Berezinsky, useful comments from R. Ong, and grant support from NSF PHY-0547102 (CAREER, JFB), PHY-0244507 (IG), NASA ATP02-000-0151 (SPR and TJW), Spanish MCT FPA2005-01678 (SPR), DOE DE-FG05-85ER40226 (TJW) and Vanderbilt University Discovery Award (TJW).
[1] Instruments and sources are reviewed by R. Ong, Rapporteur Talk at the 29th International Cosmic Ray Conference (ICRC 2005), [arXiv: astro-ph/0605191].

[2] G. Vacanti et al., Astrophys. J. 377, 467 (1991); A. M. Hillas et al., Astrophys. J. 503, 744 (1998).

[3] F. A. Aharonian, “Very high energy cosmic γ radiation: A crucial window on the extreme universe,” (Singapore, World Scientific Publishing 2004).

[4] A. Einstein, Annals Phys. (Leipzig) 17, 891 (1905).

[5] F. W. Stecker, Phys. Rev. 180, 1264 (1969).

[6] See e.g., S. Karakula, G. Kociolek, I. V. Moskalenko and W. Tkaczyk, Astrophys. J. Suppl. 92, 481 (1994); and further references in our longer companion paper.

[7] L. A. Anchordoqui, J. F. Beacom, H. Goldberg, S. Palomares-Ruiz, and T. J. Weiler, [astro-ph/0611581].

[8] Note that we will use ϵ for photon energies, and E for hadron and neutrino energies. It is also implicit that GDR-superscripted variables ($\epsilon_{\gamma}^{\text{GDR}}$, $\Gamma_{\gamma}^{\text{GDR}}$ and $\sigma_{\gamma}^{\text{GDR}}$ below) have an A-dependence.

[9] The interesting observation that the threshold for disintegration of heavy nuclei on starlight occurs at \sim PeV and so may be related to the change of slope (the “knee”) seen in the cosmic-ray spectrum has been noted before, in J. Candia, L. N. Epele and E. Roulet, Astropart. Phys. 17, 23 (2002) [arXiv:astro-ph/0011010].

[10] L. A. Anchordoqui, H. Goldberg, F. Halzen and T. J. Weiler, Phys. Lett. B 593, 42 (2004).

[11] This suppression characterises a mean energy. However, as explained later in the text, at low energies the differential spectrum is actually flat, so the integrated power at low-energy is suppressed as $\epsilon_{\gamma}^{\text{LAB}}^2$.

[12] F. Aharonian et al. [HEGRA Collaboration], Astron. Astrophys. 431, 197 (2005)

[13] H. Krawczynski et al., Astrophys. J. 601, 151 (2004); M. K. Daniel et al., Astrophys. J. 621, 181 (2005); M. Blazejewski et al., Astrophys. J. 630, 130 (2005).

[14] F. Aharonian et al. [H.E.S.S. Collaboration], Science 307, 1938 (2005); F. Aharonian et al. [H.E.S.S. Collaboration], Astron. Astrophys. 439, 1013 (2005).

[15] The approximate reflection symmetry in Fig. 1 between x_{γ} and x_{ph} about the value $x_{\gamma} = w = 1/2$ is in part to the inverse relation $x_{\gamma} w = \epsilon_{\gamma}^{\text{LAB}}/2 \Gamma_{\gamma}^{\text{GDR}} \epsilon_{\gamma}^{\text{GDR}} = (1 + \cos \theta_{\gamma})/2$, which equals 1/2 in the mean.

[16] F. W. Stecker and M. H. Salamon, Astrophys. J. 512, 521 (1999); J. L. Puget, F. W. Stecker and J. H. Bredekamp, Astrophys. J. 205, 638 (1976).

[17] S. Karakula and W. Tkaczyk, Astropart. Phys. 1, 229 (1993).

[18] $\lambda_A = \tau_A$ is also the mean survival time, so λ_A^{-1} is also the photodisintegration rate per nucleus.

[19] M. A. Malkan and F. W. Stecker, Astrophys. J. 496, 13 (1998).

[20] P. Sreekumar et al. [EGRET Collaboration], Astrophys. J. 494, 523 (1998) [arXiv:astro-ph/9709257].

[21] P. Sreekumar et al. [EGRET Collaboration], Astrophys. J. 543, 253 (1998) [arXiv:astro-ph/9709257].

[22] D. Hooper, A. Taylor and S. Sarkar, Astropart. Phys. 23, 19 (2005).

[23] ω_{ν} is just the area under the $E_{\nu}^2 dN_{\nu}/dE_{\nu}$ versus lnE_{ν} curve. We thank D. Hooper for replotting Fig. 3 in Ref. [21] for us in these units. Also from Fig. 3, one learns that the contribution to neutrino production and therefore photon production from photo-pion production is larger than via the photo-disintegration process by a factor of five for $E_{\text{max}} = 10^{21.5}$ eV, and by fifty for $E_{\text{max}} = 10^{22.5}$ eV.