Identification of Five Novel Mutations Causing Rare Lysosomal Storage Diseases

Chenxi Yang
Jianyan Pan
Siyuan Linpeng
Zhuo Li
Hu Tan
Lingqian Wu

Corresponding Author: Lingqian Wu, e-mail: wulingqian@sklmg.edu.cn
Source of support: This study was supported by grants from the National Natural Science Foundation of China (31601035, 81771599), the National Key R&D Program of China (2017YFC1001802), and the Key Research and Development Program of Hunan Province (2017SK2153)

Background: Lysosomal storage diseases (LSDs), a group of rare inherited metabolic disorders, result from specific lysosomal proteins deficiencies in the degradation of biomacromolecule, including over 70 different diseases, most of which are autosomal recessive. LSDs are multisystem disorders, and the clinical manifestations are usually broad and severe, involving the skeletal system, central nervous system (CNS), cardiovascular system, etc. Besides, patients with some subtypes of LSD have distinctive facial features.

Material/Methods: We performed next generation sequencing on 4 suspected mucopolysaccharidosis (MPS) cases to determine the genetic causes of the disease. By in vitro molecular cell assay, such as real-time polymerase chain reaction (RT-PCR) and western blot, we tested the pathogenicity of candidate variants.

Results: We detected 5 novel mutations in 4 patients. The mutations were: c.211_214del and c.1270C>T in GUSB; c.1284+1C>A and c.2404C>T in GNPTAB; and c.717C>A in FUCA1. We identified a rare mucopolysaccharidosis VII patient, a rare fucosidosis patient, and 2 rare mucolipidosis II patients, one of which was an atypical patient. We also present a new pathogenic conjecture about a small deletion in GUSB.

Conclusions: Our study described rare diseases in Chinese patients and our results enrich the phenotype spectrum of related diseases, as well as mutation spectrum of related genes, which might be significant for clinical disease diagnosis and prenatal diagnosis.

MeSH Keywords: Fucosidosis • Lysosomal Storage Diseases • Mucolipidoses • Mucopolysaccharidosis VII

Abbreviations: LSD – lysosomal storage disease; CNS – central nervous system; GAGs – glycosaminoglycans; CS – chondroitin; DS – dermatan; KS – keratin; HS – heparan sulfate; M6P – Mannose 6-phosphate; NMD – nonsense-mediated mRNA decay; PVDF – polyvinylidene difluoride; MPS VII – mucopolysaccharidosis; HGMD – Human Gene Mutation Database; LNR – Lin/Notchrepeats; ESS – exon splice silence; ML II – Mucolipidosis II; CNV – copy number variation

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/915876

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
**Background**

Lysosomes as digestive organelles play an important role in life events. It is now acknowledged that lysosomes host more than 60 soluble lysosomal hydrolases and accessory proteins as well as over 120 lysosomal membrane proteins and transitory residents [1], which participate in multiple processes such as immune response, nutrient sensing, gene regulation, secretion, plasma membrane repair, metal ion homeostasis, and cholesterol transport. Mutations in genes which encode lysosomal hydrolase, enzyme activators, or membrane proteins can cause accumulation of macromolecules in cells or tissues, forming pathological changes in the body and leading to lysosomal storage diseases (LSDs). LSDs are a spectrum of rare genetic metabolic disorders comprising over 70 monogenic disorders of lysosomal catabolism [2], including mucopolysaccharidoses (MPS), mucolipidoses (ML), sphingolipidoses, partial glycogen storage diseases, oligosaccharidosis, and so on, most of which are inherited as autosomal recessive traits. The clinical presentations of LSDs are broad, involving the skeletal system, central nervous system (CNS), cardiovascular system, digestive system, and immune system. Besides, some LSD patients have special facial features like arched eyebrow, ocular hypertelorism, low nasal bridge, or anteverted nostrils. The clinical manifestations generally are severe for most LSD patients, who usually died before adulthood.

Mucopolysaccharidoses (MPS) are a group of genetic disorders caused by defective lysosomal enzymes which hydrolyze different glycosaminoglycans (GAGs). MPS are divided into 7 types: MPS type I, II, III, IV, VI, VII, IX. MPS type II and IV, which are caused by mutations in gene GALNS and IDS respectively, have higher incidence than other types, in China. MPS type VII (MIM#253220) has extremely low incidence in China, characterized by the inability to degrade glucuronic acid-containing GAGs. Gene GUSB (NM_000181) encodes for beta-glucuronidase, which plays an important role in the degradation of dermatan and keratan sulfates [3,4]. MLs are caused by the loss of UDP-GlcNac-1-phosphotransferase(GNPT) activity, which prevents the formation of mannose 6-phosphate (M6P) recognition marker. M6P cannot bond to the M6P receptors (MPR), which subsequently leads to mis sorting and hyperserecretion of multiple lysosomal enzymes [5]. MLs are divided into 3 types: ML II alpha/beta (MIM#252500), ML III alpha/beta, and ML III gamma. ML II alpha/beta and ML III alpha/beta are caused by mutations in the GNPTAB gene (NM_024312); the GNPTAB gene codes for the alpha/beta subunit of GNPT. ML III gamma can cause mutations in the GNPTG gene, and GNPTG codes for the gamma subunit of GNPT. The clinical manifestation of ML is similar to that of some types of MPS, and are difficult to identified without molecular genetic analysis. Oligosaccharidoses are a group of rare LSDs caused by defective oligosaccharide hydrolyzes with accumulation of related oligosaccharide in tissues, including fucosidosis (MIM#230000) and alpha-mannosidosis. The incidence of these disorders is extremely low. Fucosidosis is caused by abnormal alpha-L-fucosidase which hydrolyze the alpha-1,6-linked fucose joined to the reducing-end N-acetylglucosamine of the carbohydrate moieties of glycoproteins [6]. Gene FUCA1 (NM_000147) encodes for the alpha-L-fucosidase.

LSDs are a group of diseases with variety of forms, and some individual diseases have similar clinical manifestations. The diagnosis of LSDs is based on clinical findings combined with genetic analyses (the classic strategy), and in many cases, the enzyme/substrate abnormal assay is also crucial for diagnosis. Because of the phenotype heterogeneity, classification of LSD has to depend on genetic analyses using technology. In this study, by using next generation sequencing combined with clinical manifestations, we were able to identify 5 novel mutations causing LSD in 4 patients: 1 patient had MPS type VII mutation, 1 patient had fucosidosis mutation, and 2 patients had ML II mutation. We confirmed the pathogenicity of each mutation.

**Material and Methods**

**Patients and controls**

This study included 4 affected children, from 4 unrelated families, who were recruited at Hunan Jiahui Genetic hospital of China from 2015 to 2017. One of these patients was from a consanguineous marriage family. All of the patients had dysostosis multiplex with multisystem disorder, and were diagnosed with suspected mucopolysaccharidosis, while we recruited 2 normal individuals as controls. Informed consent was obtained from the parents of all patients. Research complied with the Declaration of Helsinki and its later amendments.

**Patient 1**

Patient 1 was a male whose first visit to the hospital was at 8 years old. He was 110 cm tall (P3-P50), and his head circumference was 54 cm (normal). The patient appeared normal at birth and developed normally before 1-year of age. He was 6 years old, the condition of skeletal dysplasia worsened, and he was found to have limbs length discrepancy, and lumbar scoliosis. X-ray of his chest and hands at the age of 8 years was suggestive of thoracolumbar gibbus, left pointed proximal metacarpals, and increased inhomogeneities of density of the distal radius, sharpened bilateral iliac bone, and shallowed acetabulum (Figure 1C). His left
leg length was 67.5 cm, and his right leg length was 65 cm. We learned after follow-up that he died of severe pneumonia at the age of 11 years.

**Patient 2**

Patient 2 was a male whose first visit to the hospital was at 4 years old. He was from a consanguineous marriage family (Figure 2A). He was 90 cm tall (<P97) and weighed 17 kg (P3~P50). He was shorter than most children of the same age. He was admitted to the hospital for seizures and psychomotor retardation at the age of 3 years. Biochemical analysis suggested alkaline phosphatase was 325.8 U/L (45.0–125.0 U/L) and fucosidase was 0.5 IU/L (5.0–40.0 IU/L). The patient could not sit up by himself and did not respond when his name was called. His skeletal symptoms are atypical and mainly presented as mild scoliosis (Figure 2D). X-ray of his femoral suggested no abnormality. Besides, there was no observable abnormal sign in his dermal system, while his special facial features presented as frontal bossing, epicanthus, low nasal bridge, long philtrum, and thick lips (Figure 2E). He died 2 years after his visit to the hospital.

**Patient 3**

Patient 3 was a female whose first visit to our hospital was at 3 years of age. She was admitted to the hospital previously for recurrent pneumonia at the age of 4 months. The patient showed multiple malformations: aortic insufficiency, patent foramen ovale, arched eyebrow, low nasal bridge, broad nasal tip, long philtrum, cleft lip, and talipes valgus. She had a heart operation at the age of 2 years, and died of heart failure at the age of 3 years. Besides, she also had some uncommon presentations for ML II patients, like long fingers and toes, and auricle anomaly presented as auricle notch (Figure 3A–3D).
Patient 4 was a female whose visit to the hospital was at 3 years old. She was 79 cm tall (<P97), weighed 9 kg (<P97), and her head circumference was 44 cm (<P97). She was shorter than most children of the same age. At the age of 2 months, she had been admitted to hospital for recurrent pneumonia, and then found to have patent ductus arteriosus and thus underwent surgery for therapy. She presented as psychomotor retardation at the age of 4 months. When she was 5 months old, she was reported to have scoliosis, left ribs bulging, and talipes valgus. General examination found obvious facial features: ocular hypertelorism, low nasal bridge, short neck, and gingival edema. She died of heart failure at 4 years old.

Mutation analysis by next generation sequencing and Sanger sequencing

Genomic DNA was extracted from the peripheral blood lymphocytes of all patients and their parents according to standard phenol-chloroform extraction methods. We prepared a minimum of 3 µg patient’s DNA sample to establish libraries and enriched the target using GenCap custom enrichment kit (MyGenostics Inc., Beijing, China). The target library hybridization in solution utilized the biotinylated single-strand DNA capture probes, and exome libraries were sequenced on an Illumina HiSeq 2500 sequencer (Illumina, San Diego, CA, USA). After filtering and analyzing the data, we selected the suspected variants and used Sanger bidirectional and automated sequencing to validate the variants and parent source.
Identification of splice transcripts by real-time polymerase chain reaction (RT-PCR)

Total RNA was extracted from the lymphocyte cell lines of all patients and controls using a standard TRIzol method. The cDNA was reverse transcribed from 1000 ng mRNA using RevertAid First Strand cDNA Synthesis Kit (Thermo, USA). Gene GUSB and GNPTAB related exons of Patient 1 and Patient 4 were amplified with primers (see Supplementary Table 1). The products were verified by agarose gel electrophoresis and polyacrylamide gel electrophoresis (PAGE), and were sequenced by Sanger Sequencing (Biosune, China).

Quantitative mRNA analysis by RT-PCR

To explore the mRNA expression patterns of Patient 1, Patient 2, and Patient 3 with the mutations in GUSB, FUCA1, and GNPTAB genes, we performed real-time polymerase chain reaction (RT-PCR) using cDNA of Patient 1, Patient 2, and Patient 3, in a total volume of 10 µL consisting of 5 µL Maxima SYBR Green qPCR Master Mix (Thermo Fisher, Carlsbad, CA, USA), 0.25 µL of 10 µM each primer, 2.5 µL cDNAs diluted to one-third total concentration, and water. The amplification reaction was performed using ASA-9600 qRT-PCR System (BAIYUAN GENE-TECH, Suzhou, China) in triplicate and run according to the manufacturer’s 2-step cycling protocol. Specific primers were designed for target gene based on cDNA sequence using Primer 5 software (Supplementary Table 2). Amplification levels of gene GUSB, FUCA1, and GNPTAB were calculated according to the \(2^{-\Delta\Delta CT}\) method, while mRNA level of housekeeping gene ACTB was normalized as internal control.

Protein expression level analysis by western blot analysis

Lymphocyte cells from Patient 2 were lysed in RIPA lysis buffer (Beyotime) containing protease inhibitor PMSF (Beyotime). Protein concentrated from the lysed cells was quantitated using the BCA Protein Assay Kit (Thermo Scientific). Then, 50 µg of total protein was subjected to 10% SDS-PAGE and transferred onto a polyvinylidene difluoride (PVDF) membrane.
The membrane was treated with blocking solution (5% skim milk powder solution) for 1 hour at room temperature and then incubated with rabbit anti-FUCA1 antibody (1:100 dilution; Sangon Biotech, Shanghai, China) overnight at 4°C. After being washed with TBST, goat anti-rabbit antibodies (1:10 000 dilution; Sigma) were incubated for 1 hour at room temperature. Specific protein bands were visualized after incubation with ECL™ Prime Western Blotting Detection Reagent (GE Healthcare Life Sciences). We used β-actin as the internal control.

Results

We detected 6 mutations including 5 novel mutations for 4 affected individuals. Compound heterozygous mutations c.211_214delTCAG and c.1270C>T in the GUSB gene were detected in Patient 1, which caused MPS VII. Homozygous mutation c.717C>A was detected in the FUCA1 gene of Patient 2, which caused a rare fucosidosis. Compound heterozygous mutations c.2404C>T and c.1090C>T were found in the GNPTAB gene of Patient 3, which caused ML II. We also detected compound heterozygous mutations c.1284+1C>A and c.1090G>A in the GNPTAB gene of Patient 4. We identified patients’ characteristics (genotype and phenotype); information of identified novel mutations are summarized in Tables 1 and 2, respectively. Verification results of novel mutations pathogenicity were performed.

Table 1. Summary of the phenotype and genotype characteristics of each patient.

| Sex          | 1    | 2    | 3    | 4    |
|--------------|------|------|------|------|
| Age          | 8 years | 4 years | 3 years | 3 years |
| Height       | <97%  | <97%  | –    | <97% |
| Weight       | Normal | Normal | Birth weight normal | <97% |
| Head circumference | Normal | –    | Normal | <97% |
| Gene         | GUSB  | FUCA1 | GNPTAB | GNPTAB |
| Genotype     | c.211_214delTCAG* c.1270C>T* | c.717C>A* | c.2404C>T* c.1090C>T | c.1284+1C>A* c.1090C>T |
| Age of onset | 1 year | 3 years | neonate period | 2 months |
| Skeletal malformations | Thoracic deformity, lumbar scoliosis, limbs length discrepancy | Scoliosis | Cyllum, long fingers and toes | Scoliosis, left ribs bulging, clubfeet, uneven bone density at distal femur |
| Cognitive and psychiatric manifestations | Psychomotor retardation | Psychomotor retardation | – | Psychomotor retardation |
| Facial characteristic | Short neck | Frontal bossing, epicanthus, low nasal bridge, long philtrum, thick lips | Low nasal bridge, broad nasal tip, long philtrum, arched eyebrow, auricle anomaly | Ocular hypertelorism, low nasal bridge, short neck |
| Others       | –    | Seizures, poor response, amyosthenia, hypoinnunity, alkaline phosphatase 325.8 | Aortic insufficiency, patent foramen ovale, pneumonia | Gingival edema, patent ductus arteriosus |
| Outcome      | Died at 11 years old | Died at 6 years old | Died at 3 years old | Died at 4 years old |

The membrane was treated with blocking solution (5% skim milk powder solution) for 1 hour at room temperature and then incubated with rabbit anti-FUCA1 antibody (1: 100 dilution; Sangon Biotech, Shanghai, China) overnight at 4°C. After being washed with TBST, goat anti-rabbit antibodies (1: 10 000 dilution; Sigma) were incubated for 1 hour at room temperature. Specific protein bands were visualized after incubation with ECL™ Prime Western Blotting Detection Reagent (GE Healthcare Life Sciences). We used β-actin as the internal control.

Compound heterozygosity for 2 mutations in the GUSB gene cause mucopolysaccharidosis VII

We detected compound heterozygous mutations c.211_214delTCAG and c.1270C>T in the GUSB gene, both reported first in this paper. We confirmed that the detected mutations were on different alleles by sequencing samples from the patients of Patient 1. Mutation c.211_214del TCAG was

Height, weight and head circumference refer to standardized growth curve of height weight and head circumference for children and adolescents aged at 0 to 18 years in China.
We found a novel homozygous mutation c.717C>A in the FUCA1 gene of Patient 2, which was inherited from his parents. We performed RT-qPCR to compare the gene FUCA1 expression levels of Patient 2, his parents, and normal control. There was almost no expression of FUCA1 mRNA in Patient 2, and mRNA expression levels were nearly 50% lower in mutation carriers than in the normal control (P<0.0001 for all) (Figure 2B). The western blot showed that mutation caused the decrease of protein FUCA1 expression level (Figure 2C), and mutation carriers still had partial protein expression, but lower than the normal control.

**Compound heterozygous mutations in gene GNPTAB caused 2 mucolipidosis II cases**

We detected 3 mutations in GNPTAB in Patient 3 and Patient 4, including 2 novel mutations c.2404C>T and c.1284+1G>T. The patients shared a same known nonsense mutation c.1090G>A, but had different phenotypes. We performed RT-qPCR to detect mRNA expression levels in heterozygous mutation carriers than in the normal control (P=0.0008) after assay verification (Figure 3E). We used PAGE to explore the splicing pattern and found that heterozygous mutation c.1284+1G>T caused the generation of an additional transcript product (Figure 4A). Sanger sequencing results of the PCR amplification products confirmed that the alternative splicing from exon 9 directly to exon 11 generated a shorter isoform in which exon 10 was skipped (Figure 4B, 4C).

**Novel homozygous mutation in FUCA1 caused a rare fucosidosis case**

We found a novel homozygous mutation c.717C>A in the FUCA1 of Patient 2, which was inherited from his parents. We performed RT-qPCR to compare the gene FUCA1 expression levels of Patient 2, his parents, and normal control. There was almost no expression of FUCA1 mRNA in Patient 2, and mRNA expression levels were nearly 50% lower in mutation carriers than in the normal control (P<0.0001 for all) (Figure 2B). The western blot showed that mutation caused the decrease of protein FUCA1 expression level (Figure 2C), and mutation carriers still had partial protein expression, but lower than the normal control.

**Compound heterozygous mutations in gene GNPTAB caused 2 mucolipidosis II cases**

We detected 3 mutations in GNPTAB in Patient 3 and Patient 4, including 2 novel mutations c.2404C>T and c.1284+1G>T. The patients shared a same known nonsense mutation c.1090G>A, but had different phenotypes. We performed RT-qPCR to detect mRNA expression levels in heterozygous mutation carriers than in the normal control (P=0.0008) after assay verification (Figure 3E). We used PAGE to explore the splicing pattern and found that heterozygous mutation c.1284+1G>T caused the generation of an additional transcript product (Figure 4A). Sanger sequencing results of the PCR amplification products confirmed that the alternative splicing from exon 9 directly to exon 11 generated a shorter isoform in which exon 10 was skipped (Figure 4B, 4C).
We reported molecular genetic study of an MPS VII male patient in China with compound heterozygous mutations c.211_214delTCAG and c.1270C>T in gene GUSB. Incidence of MPS VII in China is extremely low, with almost no reports. There are 66 mutations associated with MPS VII reported in the Human Gene Mutation Database (HGMD professional 2018.4), most of which are missense mutations, and only 5 small deletion mutations. Because missing TCAGs are located at the beginning of exon 2, and the HSF predicted that the mutation might break the splicing site, we speculate that the small deletion mutation c.211_214delTCAG not only caused frame-shift, but might also affect the splicing of mRNA. Transcript variant 1 (NM_000181) is the main product in healthy individuals. There is merely a small amount of transcript variant 3 (NM_001293104) and variant 4 (NM_001293105) products in healthy individual lymphocytes. The results of our experiment suggested the mRNA, which was derived from the patient exhibited an increased ratio of transcript variant 3 and 4 to transcript variant 1 compared with controls. We speculate that mutation c.211_214delTCAG might lead to transcript variant 1 substituted by transcript variant 3 and 4 due to potential ESS site activated, as seen in the similar research [7]. Mutation c.211_214delTCAG might have a dual effect. As for why the expression level of total mRNA remained less than 50%, we speculate that another missense mutation c.1270C>T might destroy the stability of mRNA, and the specific mechanism needs further experiments to verify. The mutation c.1270C>T has not been reported in 1000G or ExAC. To judge the pathogenicity of this novel mutation, we used the online predicted software. The predictions from PolyPhen-2 _HDIV was “POSSIBLY DAMAGING” and the Sorting Intolerant from Tolerant (SIFT) was “Damaging”. Combining with the results of our clinical analysis, our conclusion was that the compound heterozygous mutations c.211_214delTCAG and c.1270C>T were likely to be pathogenic for this patient.

Patient 2 have fucosidosis, which was caused by homozygous mutation c.717C>A in gene FUCA1. There are only 34 mutations associated with fucosidosis reported in HGMD, so far. Most of them are missense/nonsense mutations, in which there are 7 missense mutations and 10 nonsense mutations. Fucosidosis has been rarely reported in China, especially in the mainland. There was 1 case reported in Hongkong and Taiwan [8] respectively. In this paper, we reported and studied the molecular genetic basis of a male fucosidosis child who was from a consanguineous marriage family. Fucosidosis has been classified into 2 subtypes according to the severity of clinical signs and symptoms. Type I has a severe infantile presentation (neurological...
functions impairment starting before 1 year of age) and severe skeletal malformations; type II has progressive features (dermal system impairing obviously). In our study, Patient 2 had no dermal system signs for fucosidosis, just mild skeletal symptoms and psychomotor retardation, and his presentations look like a German case [9], which was more inclined to belong to type I. Nonsense mutation c.717C>A in FUCA1 can lead to atypical fucosidosis Type I.

We detected 3 mutations of GNPTAB in 2 ML II patients, including 2 novel mutations. Two patients shared the same known nonsense mutation c.1090C>T, but their phenotypes were different. The α/β subunit of GNPT has a complex modular structure composed of at least 3 domains including an N-terminal domain with a putative nucleotide binding site, 2 Notch repeat-like domains, and a DMAP1 binding-like domain [10,11]. The function of these 3 domains is unknown, but they could play an important role in the interaction with other protein partners or maintaining stability of multi-subunits assembly of GNPT. In our study, Patient 4 had the splicing mutation c.1284+1G>T and had typical phenotype features of MPS, including scoliosis, left ribs bulging and talipes valgus. Patient 3 showed some uncommon phenotypes like long fingers and toes, and auricle anomaly. Splicing mutation c.1284+1G>T leads to exon 10 skipping; exon 10 maps to N-terminal domain, and mutation c.2404C>T (p. Q802X) maps to the DMAP1 binding-like domain. We suspected the splicing mutation led to the broken N-terminal domain in Patient 4, so she presented without atypical phenotype. Because of significant reducing of mRNA, the GNPT of Patient 3 almost lost the function totally, so she presented with more diverse dysmorphism.

Most MLII patients usually show short stature, skeletal abnormalities, cardiomegaly, and developmental delay, while brachyphalangia is the main hands and feet abnormality. But Patient 3 in our study showed long fingers and toes, and auricle notch, which are uncommon in MLII patients. Bone development and remodeling requires a balance between bone-forming osteoblasts and bone-resorbing osteoclasts [12–18]. The increased osteoclastogenesis is a major skeletal pathomechanism in MLII [14]. Because of the uncommon phenotype, we re-analyzed the WES whole genome sequencing data, and excluded other skeletal abnormality related genes. We also excluded the possible copy number variation by single nucleotide polymorphism (SNP)-array. We think that gene GNPTAB mutations could lead to such rare phenotypes as long fingers and toes, and auricle notch.

In our study, we detected 6 mutations in 4 patients, of which 5 were novel mutations, including 1 missense mutation, 1 frameshift mutation, 1 splicing site mutation, and 2 nonsense mutations. According to these results, 3 mutations (c.211_214delTCAG in GUSB, c.717C>A in FUCA1, and c.2404C>T in GNPTAB) caused significant reduction of the expression level of mRNA. We speculate nonsense-mediated mRNA decay (NMD) might be the cause of these results. NMD is identified as a widespread mRNA surveillance machinery in degrading “aberrant” mRNA species with premature termination codons (PTCs) rapidly, which protects the cells from the accumulation of truncated proteins [19–21]. Our comparison of height, weight and head circumference used the standardized growth curve of height weight and head circumference for children and adolescents aged at 0 to 18 years in China [22].

In order to verify this speculation, further research is needed, for example cycloheximide (CHX, an inhibitor of NMD) treatment assay.

**Conclusions**

Mucopolysaccharidosis VII, fucosidosis and mucolipidosis II are all rare LSDs in China or even in the world, characterized by low incidence and sporadic cases reported. In our study, we identified 4 rare LSD cases, and described the phenotypes of all patients in detail, including a rare mucolipidosis II patient with uncommon phenotypes. These results expand the phenotype spectrums of related diseases. We also detected 5 novel mutations, and confirmed the pathogenicity of each mutation by molecular assays. These results will help us to understand the genotype-phenotype correlations in the disease, promote the clinical and molecular diagnosis, and even prenatal diagnosis.

**Conflicts of interest**

None.
Supplementary Data

Supplementary Table 1. Primers used in the RT-PCR.

| Genes | Exon | Name | Sequence (5’-3’) | Tm (°C) | Product length (bp) |
|-------|------|------|------------------|--------|---------------------|
| GUSB* | 1–5  | C1F  | ATGCTGTACCCCCAGGAGAG | 59     | 739                 |
|       |      | C1R  | TCTTGGAGTACCCCCAGGAGAG | 59     | 739                 |
| GNPTAB** | 8–12 | C1F  | GCCAGTCTAAGCAGGATGAG | 57     | 630                 |
|       |      | C1R  | CACAGAACTATACGCGAGCC | 57     | 630                 |

* Based on reference sequence NM_000181; ** based on reference sequence NM_024312.

Supplementary Table 2. Primers used in the RT-qPCR.

| Genes | Exon | Name | Sequence (5’-3’) | Tm (°C) | Product length (bp) |
|-------|------|------|------------------|--------|---------------------|
| GUSB* | 1    | 1F   | TGATCCCAGGAGGAGCCCG | 60     | 115                 |
|       |      | 1R   | CGCCGGTACCACTGCTCCTC | 60     | 115                 |
|       | 2–3  | 2-3F | TGTTGTACGAACGGGAGGTG | 60     | 177                 |
|       |      | 2-3R | GGACAGGTTCTGCTATGTCG | 60     | 177                 |
|       | 2–4  | 2-4F | CATTCCATACAGCAGGATGAC | 60     | 206                 |
|       |      | 2-4R | TGAACAGGTACTGCGCTTGACA | 60     | 206                 |
|       | 2–5  | 2-5F | TCTTGGAGTACCCCCAGGAGAG | 60     | 190                 |
|       |      | 2-5R | AGATAGCGAGGGCTGCTGAG | 60     | 190                 |
| FUCA1** | 2–3 | Q1F  | GTCTTGTTTGAAGCTGAACTCT | 60     | 174                 |
|       |      | Q1R  | GCTGTGTTTGAAGCCATTTTT | 60     | 174                 |
| GNPTAB*** | 8–9 | Q1F  | ATTAACCCCAAGGATTTTCAG | 54     | 194                 |
|       |      | Q1R  | GATAGCATGGAAATGAGTACCTC | 54     | 194                 |
| ACTB  | 4–5  | ACTB-F | GCACCTCTCCAGCCTTCTCT | 60     | 106                 |
|       |      | ACTB-F | CTACAGGCTTCCGGCTGAGF | 60     | 106                 |

* Based on reference sequence NM_000181; ** based on reference sequence NM_000147; *** based on reference sequence NM_024312.

References:

1. Braulke T, Bonifacino JS: Sorting of lysosomal proteins. Biochim Biophys Acta, 2009; 1793(4): 605–14
2. Platt FM, Azzo A, Davidson BI, Neufeld EF: Lysosomal storage diseases. Nat Rev Dis Prim, 2018; 4(1): 27
3. Chen R, Jiang X, Sun D et al: Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res, 2009; 8: 651–61
4. Zhang H, Li X, Martin DB, Aebersold R: Identification and quantification of N-acetylglucosamine-1-phosphotransferase α/β subunit gene in a patient with mucolipidosis III and a mild clinical phenotype. Am J Hum Genet A, 2005; 240: 235–40
5. Kollmann K, Pohl S, Marschner K et al: Mannose phosphorylation in health and disease. Eur J Cell Biol, 2010; 89: 117–23
6. Valero-Rubio D, Jiménez KM, Fonseca DJ et al: Transcriptomic analysis of FUS1 knockout in keratinocytes reveals new insights in the pathogenesis of fucosidosis skin lesions. Exp Dermatol, 2018; 27(6): 663–67
7. Fenwick AL, Kliszczak M, Cooper F et al: Mutations in CDCA5, encoding an essential component of the protein complex, cause meier-gorlin syndrome and craniosynostosis. Am J Hum Genet, 2016; 99(1): 125–38
8. Lin SP, Chang JH, de la Cadena MP et al: Mutation identification and characterization of a Taiwanese patient with fucosidosis. J Hum Genet, 2007; 52: 553–56
9. Prietsch V, Arnold S, Kraegeloh-Mann I et al: Severe hypomyelination as the leading neuroradiological sign in a patient with fucosidosis. Neuropediatrics, 2008; 39: 51–54
10. Tiede S, Muschol N, Reutter G et al: Rapid publication missense mutations in N-acetylglucosamine-1-phosphotransferase α/β subunit gene in a patient with mucolipidosis III and a mild clinical phenotype. Am J Med Genet A, 2005; 240: 235–40
11. Tiede S, Storch S, Henriisst B et al: Mucolipidosis II is caused by mutations in GNPTA encoding the α/β GlcNAc-1-phosphotransferase. Nat Med, 2005; 11(10): 1109–12
12. Mizumoto S, Yamada S, Sugahara K: Mutations in biosynthetic enzymes for the protein linker region of chondroitin/dermatan/heparan sulfate cause skeletal and skin dysplasias. Biomed Res Int, 2015; 2015: 861752
13. Vodopiutz J, Mizumoto S, Lausch E et al: Chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) deficiency results in a mild skeletal dysplasia and joint laxity. Hum Mutat, 2016; 38(1): 34–38

Yang C. et al.: Identification of five novel mutations causing rare lysosomal storage diseases © Med Sci Monit, 2019; 25: 7634-7644

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
14. Kollmann K, Pestka JM, Ku SC et al: Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II. EMBO Mol Med, 2013; 5(12): 1871–86

15. Klüppel M, Wight TN, Chan C et al: Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis. Dev Dis, 2005; 132(17): 3989–4003

16. Jochmann K, Bachvarova V, Vortkamp A: Heparan sulfate as a regulator of endochondral ossification and osteochondroma development. Matrix Biol, 2014; 34: 55–63

17. Nikitovic D, Aggelidakis J, Young MF et al: The biology of small leucine-rich proteoglycans in bone pathophysiology. J Biol Chem, 2012; 287(41): 33926–33

18. Raggatt LJ, Partridge NC: Cellular and molecular mechanisms of bone remodeling. J Biol Chem, 2010; 285(33): 25103–8

19. Nickless A, Bailis JM, You Z: Control of gene expression through the nonsense-mediated RNA decay pathway. Cell Biosci, 2017; 7(6): 1–12

20. Schweingruber C, Rufener SC, Zünd D et al: Nonsense-mediated mRNA decay – mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim Biophys Acta, 2013; 1829(6–7): 612–23

21. Nasif S, Contu L, Mühlemann O: Beyond quality control: The role of nonsense-mediated mRNA decay (NMD) in regulating gene expression. Semin Cell Dev Biol, 2017; (75): 78–87

22. Li H, Ji C, Zong X, Zhang Y: Standardized growth curve of height weight and head circumference for children and adolescents aged at 0 to 18 years in China. Chin J Pediatr, 2009; 46(7): 487–92