Monitoring diffuse volcanic degassing during volcanic unrests: the case of Campi Flegrei (Italy)

C. Cardellini1, G. Chiodini2, F. Frondini1, R. Avino1, E. Bagnato1, S. Caliro3, M. Lelli4 & A. Rosiello1

In volcanoes with active hydrothermal systems, diffuse CO2 degassing may constitute the primary mode of volcanic degassing. The monitoring of CO2 emissions can provide important clues in understanding the evolution of volcanic activity especially at calderas where the interpretation of unrest signals is often complex. Here, we report eighteen years of CO2 fluxes from the soil at Solfatara of Pozzuoli, located in the restless Campi Flegrei caldera. The entire dataset, one of the largest of diffuse CO2 degassing ever produced, is made available for the scientific community. We show that, from 2003 to 2016, the area releasing deep-sourced CO2 tripled its extent. This expansion was accompanied by an increase of the background CO2 flux, over most of the surveyed area (1.4 km2), with increased contributions from non-biogenic source. Concurrently, the amount of diffusively released CO2 increased up to values typical of persistently degassing active volcanoes (up to 3000 t d\(^{-1}\)). These variations are consistent with the increase in the flux of magmatic fluids injected into the hydrothermal system, which cause pressure increase and, in turn, condensation within the vapor plume feeding the Solfatara emission.

Volcanoes emit volatiles through active plumes, fumarolic vents and zones of diffuse soil degassing. Emitted volatiles may represent the surface manifestation of magma degassing providing useful information for the better understanding of processes occurring at depth, for assessing the state of activity of a volcano and, potentially, for forecasting the likelihood of a volcano erupting. Because of the relatively low solubility of CO2 in silicate melt, CO2 is particularly useful as it exsolves from magma at greater depths than other volatile species, and therefore can reflect deep processes. Diffuse CO2 degassing may represent the dominant mode of volcano degassing at calderas and volcanoes with hydrothermal activity. Several calderas have shown signs of unrest, however in some cases is problematic to understand if these are driven by magmatic activity (e.g., magma intrusion) or are related to hydrothermal dynamics (e.g., pressurization of the hydrothermal system).

Diffuse degassing is the main way in which CO2 is emitted by Solfatara di Pozzuoli (Solfatara hereafter), located in the centre of the restless Campi Flegrei caldera, located in the centre of the restless Campi Flegrei caldera. A reliable technique for measurement of soil diffuse CO2 degassing (accumulation chamber, AC, see Methods) was developed at the end of the 20th century, rapidly becoming extensively used in volcanological sciences. Solfatara is one of the first sites in the world where this technique, together with those used in soil CO2 diffuse degassing data analysis, were tested and improved throughout the 1990s. In general, Solfatara has become a natural laboratory for testing new types of measurements for the gas flux from hydrothermal sites based on the in situ and remote sensing determination of CO2.

Hydrothermal activity at Solfatara results in numerous fumaroles and in widespread hot soils and diffuse gas emissions. The thermal energy released by diffuse degassing at Solfatara is by far the main mode of energy release from the entire Campi Flegrei caldera.

The diffuse degassing at Solfatara is fed by a 1.5–2 km-deep subterranean vapor plume, the presence of which was first hypothesised based on geochronological and geophysical models of the fumaroles and subsequently highlighted by the re-interpretation of seismic tomography of Campi Flegrei caldera. The same concept, i.e. the presence of a

1 Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, via Pascoli snc, 06123, Perugia, Italy. 2Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, via D. Creti 12, 40128, Bologna, Italy. 3Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli Osservatorio Vesuviano, via Diocleziano 328, 80124, Napoli, Italy. 4Consiglio Nazionale delle Ricerche, Istituto di Geoscienze e Georisorse, Via G. Moruzzi 1, 56124, Pisa, Italy. Correspondence and requests for materials should be addressed to C.C. (email: carlo.cardellini@unipg.it)
Figure 1. (a) Location of Solfatara of Pozzuoli and Campi Flegrei caldera; both maps were obtained using the open-access digital elevation model of Italy, TINITALY/0175. (b) Map of surveyed area. In the map are reported: the location of all the CO₂ flux measurements (yellow dots) and, as example, the locations of CO₂ measurements of January 2016 survey (blue dots); the location of Bocca Nuova (BN), Bocca Grande (BG) and Pisciarelli (Pi) fumaroles; the main tectonic structures⁶⁰; the area considered for the mapping of CO₂ fluxes (white box); the area considered for the computation of the total CO₂ output from Pisciarelli area (PIS, box indicated by the dashed yellow line). Coordinates are reported as meters projection UTM European Datum 50. All the maps were realized with the software Surfer, Version 11.0.642 (http://www.goldensoftware.com/products/surfer).
that the CO₂ fluxes of each survey plot as a curve with an inflection point. Such curves correspond to a bimodal
anywhere18, 51, 52 on a single degassing volcanic-hydrothermal system. It is particularly relevant in the framework
CO₂ flux value, LF population (Fig. 3).

representing the system feeding CO₂ emissions at Solfatara. With respect to previous physical models of the
modelling are reported in ref. 3.

Figure 2. Computational domain of TOUGH2 simulations. The temperature, the volumetric gas fraction
Xg (different shades of grey) and the CO₂ flux vectors refer to initial steady-state conditions. Details of the
modelling are reported in ref. 3.

subterranean vapor plume, is returned by TOUGH2 modelling of the hydrothermal system feeding the Solfatara
fumarolic field15–18 (Fig. 2).
The vapor plume connects the surface to a hydrothermal zone at about 2 km depth15, 25, 37, 39, 43, 44, where the
meteoric fluids mix with magmatic gases coming from a deeper zone at about 3–6 km depth45–47.
The emitted CO₂ is thought to derive mainly from magma degassing46, even if we cannot exclude a minor
contribution from decarbonation of hydrothermal calcite48. A relatively positive (−1.3‰ ± 0.4‰ ref. 48) carbon
isotope signature of the fumarolic CO₂, as well of the CO₂ involved in the past deposition of hydrothermal cal-
cites46 indicates a primary origin of the CO₂ from a mantle metasomatised by crustal fluids34, 49, 50.

In this work, the results of 30 diffuse CO₂ flux surveys performed at Solfatara from 1998 to 2016 are presented
and discussed. The CO₂ soil fluxes were measured over an area of ~1.2 × 1.2 km, including the Solfatara crater and
the hydrothermal site of Pisciarelli (Fig. 1), using the AC (see Method). Each survey consisted of a number of CO₂
flux measurements varying from 372 to 583 (Table 1) resulting in a total of 13,158 measurements.

This data set, entirely reported in Supplementary Information Dataset S1, is one of the largest datasets made
anywhere56, 57, 58 on a single degassing volcanic-hydrothermal system. It is particularly relevant in the framework
of volcanological sciences because it was acquired during a long period of unrest at CFc. Aside from making this
large data set available, our main aim is to investigate how CO₂ emissions varied during the progress of the CFc
volcanic unrest that is characterised by accelerating geophysical and geochemical signals53, 54. Since the 1990’s,
CFc underwent several episodes of ground uplift and deformation53, generally accompanied by seismic swarms
and abruptly followed by significant changes in the composition of fumaroles4. The largest bradyseismic episode
occurred from 1982 to 1984 with a total uplift of 1.79 m. After about twenty years of prevailing subsidence, a new
unrest phase started at the beginning of the new millennium. This crisis, still ongoing, deviates from the previous
episodes due to the long duration and the clear acceleration of signals, which were recently interpreted as being
mainly caused by an ongoing heating of the system5, 25, and, regarding the 2012–2013 accelerated ground uplift,
by the intrusion of magma at shallow depths55, 56.

In the following discussion, measured CO₂ fluxes will be compared with the results of a recently published
model3 that simulated the effects of the injection of magmatic fluids into a virtual hydrothermal system, ideally
representing the system feeding CO₂ emissions at Solfatara. With respect to previous physical models of the
system, the injected magmatic fluids in ref. 3 are progressively richer in water, thus explaining the heating of the
system. Here, for the first time, the modelled CO₂ fluxes are compared with those observed during the ongoing
crisis at CFc.

Finally, a further objective of the work is the comparison of the long series of CO₂ flux data from Solfatara,
a hydrothermally active volcano, with both measured geothermal systems, and CO₂ fluxes from active volcanic
plumes on which global volcanic CO₂ emissions are largely based.

Results
Statistical distribution of CO₂ flux. The measured CO₂ flux of each survey is distributed in a wide range
of values from >0.4 g m⁻² d⁻¹ up to 72,000 g m⁻² d⁻¹ (Table 1). The logarithmic probability plot of Fig. 3 reveals
that the CO₂ fluxes of each survey plot as a curve with an inflection point. Such curves correspond to a bimodal
statistical distribution, resulting from the combination of two CO₂ flux log-normal populations (see Methods),
which could indicate the occurrence of two CO₂ flux sources29, 57, different mechanisms of gas transport, different
permeability of the soil, etc.
The statistical distribution of CO₂ flux of each survey was modelled (see Methods) with the combination of a
population characterised by a high mean CO₂ flux value, HF population, and one characterised by a lower mean
CO₂ flux value, LF population (Fig. 3).

The mean CO₂ flux value of LF and HF populations range from 14 g m⁻² d⁻¹ to 6,580 g m⁻² d⁻¹ respectively (Table 1). The high mean CO₂ flux values of HF populations clearly indicate that they are fed by the CO₂ up-rising from the underlying hydrothermal system (see for example refs 15, 28, 29, 57 and 58). The mean flux value of LF populations varies within a range that precludes the possibility that
they have a purely biologic source for the entire period. In fact, the mean biogenic CO₂ flux from a wide variety of ecosystems ranges from 0.2 g m⁻² d⁻¹ to 21 g m⁻² d⁻¹ (ref. [57] and reference therein). Roughly in agreement with these typical biogenic-derived fluxes, the coupled analyses of the CO₂ flux and the isotopic composition of the CO₂ efflux performed at Solfatara in March 2007 (see Supplementary Information Fig. S1) indicated a mean biogenic CO₂ flux of 26 (±3) g m⁻² d⁻¹ (ref. [58]). Since 2004, the mean CO₂ flux of LF populations increased to 136 g m⁻² d⁻¹ (Table 1), i.e. values much higher than those associated with a purely biologic source. The seasonal variability of the biologic production of CO₂ within the soil, resulting in soil CO₂ flux lower in autumn-winter and higher in spring-summer seasons (see for example ref. [59]), cannot account for the temporal variation of the mean CO₂ flux of LF population (Table 1). Therefore, even though mean CO₂ flux values of LF populations are consistently 1 to 2 orders of magnitude lower than mean CO₂ flux values of HF populations, since 2004, the LF population clearly represents a mixture of biogenic and deeply-derived CO₂. This suggests that deep-sourced CO₂ degassing widely affects both Solfatara crater and its surroundings.

Mapping of diffuse degassing and total CO₂ output. To characterise the spatial distribution of CO₂ fluxes, all 13,158 CO₂ flux measurements from 1998 to 2016 have been used to produce a map of CO₂ soil degassing using the sGs approach (see Methods). The result of the sGs simulations is reported as a probability map (Fig. 4) created using the threshold value for the biological background CO₂ flux as a cut-off. The threshold value selected was 50 g m⁻² d⁻¹, the 95th percentile of the biogenic soil CO₂ fluxes defined on the basis of the isotopic compositions of the CO₂ efflux of the March 2007 survey⁵⁸.

The map shows the presence of a well-defined diffuse degassing structure (Solfatara DDS, Fig. 4), that is the area characterised by degassing of deeply derived CO₂ (see Methods). Solfatara DDS is defined in yellow to red in Fig. 4.
As this map was created considering all the measurements, it reasonably highlights the areas that have been affected more frequently by the degassing of hydrothermal CO$_2$ during the last eighteen years.

The Solfatara DDS includes both the area inside the Solfatara crater and neighbouring areas outside the crater, in particular the Pisciarelli area to the E, the Monte Olibano to the S and the area of via Antiniana to the SE (Fig. 4). The shape of the Solfatara DDS is well correlated with the location of volcanic and extensional tectonic structures (faults and fractures, Fig. 4) that allow the gas to transfer towards the surface. The Solfatara DDS is bounded to the NW, and interrupted along a NW-SE band between Solfatara crater and Pisciarelli, by low flux areas corresponding to the outcrop of volcanic products belonging to Astroni deposits that can act as a permeability barrier for the rising deep CO$_2$. In fact, Astroni deposits are locally constituted by massive and fall out and ash surge deposits with thickness from ~10 to ~30 m, affected only by mesoscale normal faults with lengths of tens of centimeters and displacements of a few centimeters.

However, where normal faults deform and cut the Astroni deposits with up to metric dip separation (e.g., at Via Antiniana area and Pisciarelli), high CO$_2$ fluxes occur at the surface (Fig. 4), suggesting that anomalous CO$_2$ pressures can be present below this low permeability layer. The roughly NE-SW-elongated CO$_2$ flux anomalies in the northern part of Pisciarelli further support the probable continuity of the CO$_2$ anomaly below the Astroni deposits. These anomalies match the directions of the drainage network that eroded the Astroni deposits in the eastern flank of the Solfatara cone, resulting in higher fluxes along the valleys. Finally, the geometry of Solfatara DDS is also affected, especially at the Pisciarelli and via Antiniana areas, by intense urbanization (e.g., presence of roads, buildings, excavations and paved squares). In particular, an evident low-flux zone in the via Antiniana area (area A in the map of Fig. 4) coincides with the presence of a paved terrace, while high flux zones in the southern part of Pisciarelli (area B in the map of Fig. 4) correspond to recent excavated zones. This behaviour suggests the high impact of anthropogenic intervention in the natural degassing zones.

To investigate the changes over the time of the spatial distribution of CO$_2$ fluxes, and of the total amount of CO$_2$ released by diffuse degassing, each dataset was processed by the sGs method. The results are reported in Fig. 5 as probability maps.

The reliability of the produced maps is supported by the good spatial continuity and well-defined spatial structure of all the datasets indicated by experimental variograms of the CO$_2$ flux n-score (see Methods, Supplementary Information Fig. S2 and Table S1).

The areal extent of the DDS (1) was computed for each of the maps relating to different surveys (Fig. 5), as the area where the probability that the CO$_2$ flux is greater than 50 g m$^{-2}$ d$^{-1}$ is higher than 50% (see Methods). The DDS extent ranges from 0.45 \times 106 m2 in 1998 to more than 1 \times 106 m2 in many surveys after 2012. The expansion of DDS mainly interests the areas external to the Solfatara crater, that before 2003 were characterised by low, biogenic, CO$_2$ fluxes (Fig. 5). The largest expansion occurred in the Pisciarelli area and particularly in correspondence with the NE-SW fault network of Pisciarelli area and along a band connecting Pisciarelli with the degassing area of via Antiniana in the south. Examples of variations occurred over time in different areas are reported in Supplementary Information Fig. S3. In these areas (areas 1, 2 and 3 in Supplementary Information Fig. S3) the median of the CO$_2$ flux passed from typical background values (10–40 g m$^{-2}$ d$^{-1}$) in the pre-2003 period to values higher up to 1 order of magnitude. The 2003 increase of CO$_2$ fluxes and the DDS enlargement were already interpreted as due to the “first arrival” of hydrothermal CO$_2$ at the surface, in the peripheral areas of Solfatara.
The total amount of CO₂ released by diffuse degassing (diffuse total output, DTO) was estimated from the results of the sGs (see Methods) for the different surveys and ranges from 745 (±61) t d⁻¹ to 2,815 (±318) t d⁻¹ (Table 1). Even if the DTO refers to the sum of all the CO₂ sources active in the area, it provides a good estimate of the hydrothermal CO₂ release because CO₂ fluxes from the hydrothermal source are much higher than those from biogenic sources. For example, assuming a constant biogenic background CO₂ flux of 26 g m⁻² d⁻¹ over the entire surveyed area, the biogenic CO₂ output would result in ~38 t d⁻¹. Considering this biogenic CO₂ output for all the surveys, it is only from 1% to 5% of DTO and always within the DTO uncertainty (from 8% to 13%, Table 1). In the following, we will consider the DTO as a representative of the deep hydrothermal source, also considering that the low contribution of biogenic sources is likely an overestimation, as portions of the surveyed area are characterised by the absence of vegetation.

Discussion
In this section, variations in the CO₂ degassing during the investigated period are discussed and compared with other geochemical and geophysical signals. We refer in particular to the variations that affected, in one aspect, the “background” CO₂ emission (LF population) and the extent of DDS (Fig. 6a and b), and in another, the total CO₂ output (Fig. 7a).
The mean CO$_2$ flux of the LF population, which will be referred here as SBF (Solfatara background flux), increases from 20–30 g m$^{-2}$ d$^{-1}$ in 1998 to 136 g m$^{-2}$ d$^{-1}$ in the last campaign of June 2016, following a scattered, but almost continually increasing trend (Fig. 6a).

Figure 5. Maps of Solfatara diffuse degassing structure (DDS) in the 1998–2016 period. The maps report the probability that the simulated CO$_2$ flux is greater than 50 g m$^{-2}$ d$^{-1}$, selected as the threshold for a pure biogenic CO$_2$ flux. Yellow to red colours i.e., probability of CO$_2$ Flux > 50 g m$^{-2}$ d$^{-1}$ is higher than 50% define the Solfatara DDS where degassing deeply derived CO$_2$ occurs. Tectonic structures are from ref. 60. The maps were realized with the software Surfer, Version 11.0.642 (http://www.goldensoftware.com/products/surfer).
It is worth noting that typical mean CO2 fluxes generated by a biogenic source in the soil (20–30 g m$^{-2}$ d$^{-1}$, see above) were only measured in the first three campaigns, whilst from 2003 onwards, SBF were 2–5 times higher. This increase implies that after 2003, the SBF began to represent a mixture of biogenic and deeply-derived CO2, indicating that areas previously unaffected by an anomalous CO2 degassing started to release deeply-derived CO2.

Figure 6. Time variation of the Solfatara background flux (SBF) (a) and diffuse degassing structure (DDS) extension (b) compared with the fraction of condensation (f) computed for the Solfatara main fumaroles (BG, BN). The variable f refers to the fraction of the water removed (sign +) or added (sign −) during the transfer of the gas from the gas equilibration zone to the fumarole (see Methods). The mean of the biogenic CO2 flux estimated for Solfatara is reported as reference in (a).

Figure 7. (a) Chronogram of the measured CO2 release at Solfatara compared with the CO2 output resulting from the physical-numerical simulation of ref. 3. Measured CO2 flux from the main fumaroles, available since October 2012 and performed in periods not too different from those of CO2 flux survey, is reported together with the estimated CO2 release by diffuse degassing. The diffuse degassing computed for the Pisciarelli area (area PIS in Fig. 1) is also reported. The CO2 output simulated by the physical-numerical simulation is reported with a 0.7 scaling factor. (b) Earthquake magnitudes, number of earthquakes and ground elevation at RITE GPS station are reported for comparison (2016 data update from http://www.ov.ingv.it/ov/it/banche-dati.html). (c) Comparison of total CO2 output with the P_{CO2} estimations based on two recently published alternative approaches to gas equilibria (see the text for explanations).
gas. In fact, the SBF increase is correlated with an important change of the spatial pattern of CO$_2$ fluxes as shown by maps of the Solfatara DDS (Fig. 5). Chronograms in Fig. 6 show an initial growth of Solfatara DDS and an increase of SBF from February 2003 to March 2004, when the DDS doubled its extent from ~0.5 km2 to ~1 km2 (Table 1 and Fig. 6b) and SBF increased from 20–30 g m$^{-2}$ d$^{-1}$ to 40–50 g m$^{-2}$ d$^{-1}$. After this expansion, the DDS extent and the SBF remained quite stable until July–October 2012 when, after a relative reduction, DDS reached an extent of ~1.2 km2 (Table 1) and SBF increased to 70–100 g m$^{-2}$ d$^{-1}$. We observe that the DDS extent reached 80–90% of the 1.4 km2 of the investigated area, implying that this parameter is now close to saturation and further important variation in the future are not possible while SBF could continue to increase.

The SBF increase and the extension of Solfatara DDS may reflect variations in the vapor plume (Fig. 2) feeding the Solfatara and Pisciarelli emissions. According to ref. 25, steam condensation and temperature increase affects the hydrothermal system of Solfatara. This process could lead to a generalised increase of fluid pressure and to the formation of batches of condensates within the vapor plume25. Repeated episodes of mud emission2,25 at Pisciarelli, occurred in April 2006, July 2012, October 2013, July 2014, February 2015, May 2016 and February 2017, confirm the increased amount of condensates produced by the system. It is worth noting that the enlargement of the Solfatara DDS and the increase of SBF proceed concurrently with the increase in the fraction f of condensation estimated from the composition of the main fumaroles of Solfatara (Fig. 6a and b, see Methods). Therefore, it is highly probable that the SBF increase, as well as the enlargement of Solfatara DDS, is linked to the deep dynamics of the vapor plume and in particular to the ongoing condensation and heating processes.

Despite the good agreement between variations of DDS, SBF and f values, deviations from the long-term trend depicted in Fig. 6 can be caused by a short-term process and by the uncertainty of f estimation. For example, the DDS extent could be partially controlled by the rain that affect CO$_2$ fluxes increasing soil water content, changing soil permeability, dissolving soil CO$_2$, etc. These processes can affect DDS extent because are more effective in low-flux areas, that are those mainly contributing DDS extent variations.

Other relevant changes regarded the DTO (Fig. 7), that is well represented of deep source degassing.

The DTO measured during the first two campaigns (1998 and 2000) is relatively high (1,300–1,500 t d$^{-1}$) while the two following campaigns, performed in 2003, are characterised by the lowest values (750–800 t d$^{-1}$). Since then, a trend of increasing DTO begins, accompanying the ongoing unrest of CFc. The highest CO$_2$ fluxes were measured in the last six campaigns (after September 2014) when DTO values, excluding November 2015, are above 1,500 t d$^{-1}$ and reach peak values of 2,800 t d$^{-1}$ and 1,900 t d$^{-1}$ in January and March 2015, respectively.

The increase of DTO is mainly due to the increase of the degassing rate in areas of high CO$_2$ flux that reached a peak in 2014−2015. For example, considering the measured fluxes inside the Solfatara crater and in the fumarolic area southern of BG-BN fumaroles (areas 4 and 5 in Supplementary Information Fig. S3) the median values of CO$_2$ flux increased from ~500 g m$^{-2}$ d$^{-1}$ and ~400 g m$^{-2}$ d$^{-1}$ during 2003–2013 to ~800 g m$^{-2}$ d$^{-1}$ and ~1,100 g m$^{-2}$ d$^{-1}$ after 2013, respectively (Supplementary Information Fig. S3). The most important increase occurred in Pisciarelli area where the CO$_2$ flux passed progressively from ~100 g m$^{-2}$ d$^{-1}$ to ~300 with a peak value of ~1,000 g m$^{-2}$ d$^{-1}$ in 2015.

The relative increase of CO$_2$ fluxes is particularly relevant at Pisciarelli, where the CO$_2$ diffuse emission rose from 90 t d$^{-1}$ to 260 t d$^{-1}$ from 2003 to 2016, with a large peak of 428 t d$^{-1}$ in 2015 (area PIS in Fig. 1). Furthermore, at Pisciarelli, the increase of diffuse emission corresponds to an evident macroscopic intensification of the hydrothermal activity25,59.

The DTO represents only a fraction of the total CO$_2$ output, as it does not include the contribution from fumarolic vents. The vent contribution to the Solfatara CO$_2$ budget most probably increased in the last years concurrently with the abovementioned increase in the fumarolic activity. Measurements of the CO$_2$ flux performed in the 1980’s (refs 63 and 64) suggest, in fact, that the CO$_2$ emission from fumaroles was relatively low in the past, also during the large crisis of 1982–1984. On the contrary, more recent measurements (2012–2015 period) performed with different techniques point to significant CO$_2$ emissions from the fumarolic vents that, from BN-BG and Pisciarelli fumaroles, were estimated to be 343 ± 170 t d$^{-1}$ in 2012–2015 (ref. 31). Finally, a high total (diffuse + vents) CO$_2$ flux of 2,300 to 4,600 t d$^{-1}$ from the Solfatara crater was estimated in March 2016 based on a new portable DIAL laser system, while the same method applied at Pisciarelli gave 266 ± 211 t d$^{-1}$ (ref. 33).

In Fig. 7b the CO$_2$ release is compared with the seismicity4 and ground deformation24. Since 2005, the occurrence of earthquakes (located at depth <3 km, ref. 66) increased together with the beginning of an uplift phase. Since 2005, a general correlation emerges between the increase of CO$_2$ release and the increase in seismicity and ground uplift, although the gas flux time series is more discontinuous than geophysical ground uplift and seismicity records (Fig. 7b). In particular, in the period from 2012 to 2016, two main peaks in the CO$_2$ output coincide with episodes of accelerating ground uplift and of intensification in the seismicity. It is also worth noting that in the period from 2012 to 2016, two periods of stronger degassing are separated by a period of relatively low CO$_2$ output, which corresponds to a period of low seismicity and a pause in the deformation.

These correlations support the link between the degassing and the deformation-seismicity, both controlled by repeated episodes of magmatic fluids input into the hydrothermal system, episodes that increased in frequency after 2005 (refs 3, 4 and 25). These episodes of magmatic fluid injections, modelled with a geothermal simulator, involved increasing amounts of fluids since the mid 2000s3,4. Here we show, for the first time, the modelled CO$_2$ output returned by the last published simulation of the process3. The modelled CO$_2$ output from the entire simulation domain (Fig. 2) shows roughly the same increasing trend of the measurements (Fig. 7a), even if the observed CO$_2$ fluxes are systematically lower than the modelled CO$_2$ output (~70%). Considering the approximations of the model, this discrepancy is very low. It is possibly caused by either a general overestimation in the modelling, or the fact that our measurements do not include the entire amount of the released CO$_2$. For example, the measurements neither include the contribution of the many low flux fumaroles (which are not measured and...
LI-COR IR sensors, Li-800 or LICOR Li-820, operating in the range 0–20,000 ppm of CO$_2$. The instrument used computer (Supplementary Information Fig. S4). Since 2003, the measuring apparatuses have been equipped with chamber, AC), (2) an Infra-Red (IR) spectrophotometer, (3) an analog-digital (AD) converter, and (4) a palmtop di Perugia and INGV of Naples. Each instrument consists of: (1) a metal cylindrical vessel (the accumulation

Figure 8. CO$_2$ fluxes from Solfatara compared to mean volcanic plume CO$_2$ fluxes from persistently degassing volcanoes (data from ref. 69). For Solfatara, the minimum and average CO$_2$ flux from diffuse degassing measured for the 1998–2016 period and the maximum CO$_2$ flux resulting from the sum of diffuse degassing and fumaroles fluxes in the period 2012–2016 are reported.

not measurable with the AC, see Method), nor the CO$_2$ emissions from zones outside the investigated area. In any case, the match between modelled emission and measurements provides convincing evidence that the visible escalation in degassing activity is caused by repeated injections of magmatic gases into the Campi Flegrei hydrothermal system as simulated in the modelling.

Recently, two alternative approaches to gas equilibria leaded to opposite results regarding the temporal evolution of T-P conditions of the hydrothermal system feeding the Solfatara emission. Ref. 25 points to a generalized increase of pressures and temperatures while the other interpretation indicates the progressive depressurization of the system, a process that would be still ongoing. This depressurization is clearly in contrast with the evolution of total CO$_2$ output that almost tripled from early 2000’s in agreement with the increase of the pressure in the hydrothermal system as returned by the model of ref. 25 (Fig. 7c).

The CO$_2$ total output in recent years from the Solfatara hydrothermal system can be reasonably assumed to be at least 2000–3000 t d$^{-1}$. For comparison, the estimations for the last period are much higher than the CO$_2$ emitted by geothermal power plants around the world. They are, for example, 4–6 times higher than those emitted by Icelandic geothermal power plants (435 t d$^{-1}$, ref. 68) and ~3 times more than those associated with geothermal plants in New Zealand (~800 t d$^{-1}$; www.nz.geothermal.org.nz/emissions/).

In Fig. 8, the CO$_2$ flux released by Solfatara is compared with the mean volcanic plume CO$_2$ fluxes from persistently degassing volcanoes reviewed by ref. 69. Considering only the contributions from soil diffuse degassing, it emerges that Solfatara DDS on average (i.e., mean DTO = 1,309 t d$^{-1}$) sustains a daily CO$_2$ flux to the atmosphere similar to a “medium-large” volcanic plume. If, instead, we consider the highest total CO$_2$ release (vents + diffuse) of 3,420 t d$^{-1}$, measured in January 2015, this would constitute the eighth highest value ever measured at volcanic plumes.

In Fig. 8, the CO$_2$ flux released by Solfatara is compared with the mean volcanic plume CO$_2$ fluxes from persistently degassing volcanoes reviewed by ref. 69. Considering only the contributions from soil diffuse degassing, it emerges that Solfatara DDS on average (i.e., mean DTO = 1,309 t d$^{-1}$) sustains a daily CO$_2$ flux to the atmosphere similar to a “medium-large” volcanic plume. If, instead, we consider the highest total CO$_2$ release (vents + diffuse) of 3,420 t d$^{-1}$, measured in January 2015, this would constitute the eighth highest value ever measured at volcanic plumes.

This finding queries the reliability of the actual estimates of the natural flux of CO$_2$ from volcanic activity, considering that many calderas around the world which are affected by hydrothermal sites, similar to Campi Flegrei, are not normally included in most of the global estimates. We think that the flux of CO$_2$ from hydrothermal sites is potentially globally relevant considering also that can reach very high values up to the 10–60 kt d$^{-1}$ estimated for Yellowstone.

The long-term volcanic CO$_2$ degassing at Solfatara, and degassing from hydrothermal systems in general, can contribute to refining estimates of the volcanic CO$_2$ contribution to the atmosphere, and can aid the ability to assess the possible role of CO$_2$ degassing from hydrothermal systems.

Methods

CO$_2$ flux measurement. CO$_2$ flux measurements were performed using the accumulation chamber method, which is based on the measurement of the CO$_2$ concentrations over time, inside an inverted chamber placed on the ground. The used instruments were developed, assembled and tested at the laboratories of Università di Perugia and INGV of Naples. Each instrument consists of: (1) a metal cylindrical vessel (the accumulation chamber, AC), (2) an Infra-Red (IR) spectrophotometer, (3) an analog-digital (AD) converter, and (4) a palmtop computer (Supplementary Information Fig. S4). Since 2003, the measuring apparatuses have been equipped with LI-COR IR sensors, Li-800 or LICOR Li-820, operating in the range 0–20,000 ppm of CO$_2$. The instrument used for the surveys of 1998 and 2000 was equipped with a Dräeger Polytron IR sensor with adjustable measurement range from 2,000 ppm up to 100% vol. The gas is circulated from the AC, of ~2.8 L volume, to the IR and vice versa by a pump (~0.0167 L s$^{-1}$). The AC is internally equipped with ring-shaped perforated manifold that re-injects the gas favouring the mixing in the chamber. The CO$_2$ concentration in the circulating gas is acquired every 0.025 s and transmitted to a palmtop computer where is plotted versus the measuring time. A specific applicative projects the gas favouring the mixing in the chamber. The CO$_2$ concentration in the circulating gas is acquired every

The CO$_2$ flux is computed in real time from the rate of CO$_2$ concentration increase in the chamber (dC$_{CO2}$/dt) according to the relation CO$_2$ flux = c_0 × dC$_{CO2}$/dt (ref. 28). The proportionality factor (c_0) between dC$_{CO2}$/dt and the CO$_2$ flux was determined before each survey by laboratory tests, during which imposed CO$_2$ fluxes typically in the range 10 to 10,000 g m$^{-2}$ d$^{-1}$, were measured over a “synthetic soil” made of dry sand (10 cm-thick) placed
inside a plastic box. In each calibration test, the c_f value was computed from the linear best-fit line of CO$_2$ flux vs. $\frac{dC_{CO2}}{dt}$.

The measured soil CO$_2$ flux and the measurement locations of each survey are reported in Supplementary Information Dataset S1, together with the soil temperature at ~10 cm depth measured at the same time and at the same site of CO$_2$ flux measurement. The soil temperature data is provide for completeness but is not discussed in this work.

Statistical data elaboration. The CO$_2$ flux data was analysed by statistical methods to define the statistical parameters of the flux, which offer insight into the origin of degassed CO$_2$.

In volcanic-hydrothermal areas, the CO$_2$ soil diffuse degassing is frequently fed by multiple gas sources, such as biological and volcanic (ref. 29 and references therein). The multiple origin of the gas can result in a bimodal statistical distribution of CO$_2$ flux values, which plots as a curve with an inflection point on a logarithmic probability plot (see Fig. 3). In fact, while a single log-normal population plots as a “straight” line on a logarithmic probability plot, a polimodal distribution resulting from the overlapping of n log-normal populations plots as a curve with n-1 inflection points31. The partition of such complex statistical distributions into individual log-normal populations and the estimation of the proportion (f_i), the mean (M_i), and the standard deviation of each population were performed following the graphical-statistical procedure proposed by ref. 71, which is largely applied to soil CO$_2$ fluxes28,29,32. Since the so computed M_i value refers to the logarithm of the CO$_2$ flux values, the mean value of CO$_2$ flux was estimated using a Monte Carlo simulation procedure (Table 1).

The estimated mean CO$_2$ flux values have been used in literature to compute the CO$_2$ output pertinent to each population associating a fraction of the degassing area (i.e., $S_i = f_i S$ where S is the total extent of the surveyed area, GSA approach). However, the reliability of the CO$_2$ output computed by the GSA can be affected by arbitrary choices in the partitioning procedure29. In particular, the interpretations of the tails of the distributions are critical as, especially at the high flux values, they are generally defined based on a low number of measured values. Furthermore, the GSA approach does not consider the spatial distribution of the measurements implicitly assuming a homogeneous sampling density.

Geostatistical data elaboration. In order to obtain a reliable estimation of the total CO$_2$ output and to produce maps of the CO$_2$ flux, the CO$_2$ fluxes were elaborated with a geostatistical approach proposed by ref. 29 based on sequential Gaussian simulations (sGs). According to refs 29 and 72, sGs yields a realistic representation of the spatial distribution of CO$_2$ fluxes reproducing both the statistics and the spatial features of the experimental data.

The sGs method consists of the production of numerous equiprobable realizations of the spatial distribution of an attribute (i.e., maps of CO$_2$ flux in this study), here performed using the *sgsim* algorithm of the GSLIB software library33. Since the sGs assumes multi-Gaussian distribution of the attribute to be simulated, the CO$_2$ flux values were transformed into a normal distribution (n-scores of data) using the *nscore* algorithm of the GSLIB software library. The n-scores are then used in the simulation procedure and transformed back into flux values at the end of the simulation process, using the inverse of the normal score transform. The CO$_2$ flux values are simulated at locations defined by a regular grid, here consisting in a grid of 14,520 squared cells (121 cells in the EW and 120 cells in the NS direction) with a cell size of 10×10 m (except for the map reported in Fig. 2 for which a 2×2 m simulation cell was used). The n-scores are simulated by random sampling of a Gaussian cumulative distribution function (cdf), defined at each location on the basis of a mean value and variance computed at each grid node by means of simple kriging method. Simple kriging estimate and variance are computed considering the measured data and those previously simulated during the procedure, according to the variogram model of n-scores and to the statistical distribution of the data. The variogram model is defined fitting the experimental variogram of n-scores and provides a description of how the data are spatially correlated. The variogram models are given in terms of nugget, range and sill parameters, where the nugget represents the small-scale variation (including measurement errors), the range represents the distance within which data are correlated and the sill is the plateau the variogram reaches for a distance equal to the range. The simulation was run in order to produce 100 realizations for each dataset.

The produced realizations were post-processed to produce the E-type estimate map and the probability map. The E-type estimate map, i.e. the map of the “expected” value at any location, is obtained through a pointwise linear average of all the realizations. The probability map consists in a map of the probability that, among all the realizations, the simulated CO$_2$ flux at any location (i.e., at grid nodes) is above a cut-off value. The probability map drawn for each survey is reported in Fig. 5 while the maps of E-type estimate are reported in the Supplementary Information Fig. S5.

According to ref. 29, selecting the threshold value of biogenic CO$_2$ flux as a cut-off, the probability maps were used to define the extent of the diffuse degassing structures (DDS)28, that is the area interested by the release of deeply derived CO$_2$. According to ref. 29 in this work, the DDS is considered as the area where the probability, among the 100 realizations, that the simulated CO$_2$ flux is higher than the biogenic CO$_2$ flux threshold over 50%.

The simulated flux values by sGs were used also to compute the total CO$_2$ release by diffuse degassing. The total CO$_2$ release is computed for each realization by summing the products of the simulated CO$_2$ flux value at each grid cell by the cell surface. The mean of the values of total CO$_2$ release computed for the 100 realizations are assumed as the characteristic diffuse total CO$_2$ output (DTO, see above) for each period. The standard deviation of the 100 estimates is assumed as the DTO uncertainty.

Fraction of condensed steam. A previous work by ref. 25 illustrated several evidences of heating of the hydrothermal system feeding the Solfatara emissions based on the compositional variations of the main fumaroles of the area (BG and BN). The pressurization of the vapor plume (Fig. 2), that in turn causes the condensation
of the steam25, would cause the heating of the system. The occurrence of condensation-heating was successively returned by a physical modelling approach3. The ref. 25 proposed a method to compute the fraction of the condensed steam starting from the fumarolic compositions. Because the computation in the original work is not detailed, here we illustrate the mass balance on which the computation is based on. The mass balance of a batch of gas which passes from reservoir to fumaroles, can be expressed in terms of number of moles of CO\textsubscript{2} and H\textsubscript{2}O in the reservoir ($n_{\text{CO}_2,\text{eq}}$) and in the fumarole ($n_{\text{CO}_2,\text{fu}}$, $n_{\text{H}_2\text{O},\text{fu}}$) and the number of moles of water removed ($n_{\text{H}_2\text{O},\text{rem}}$) and/or added ($n_{\text{H}_2\text{O},\text{add}}$) during the fluid transfer. Assuming that secondary processes do not affect CO\textsubscript{2}, the mass balance equations are:

$$n_{\text{CO}_2,\text{eq}} = n_{\text{CO}_2,\text{fu}}$$ \hspace{1cm} (1) \\

$$n_{\text{H}_2\text{O}} = n_{\text{H}_2\text{O},\text{fu}} + n_{\text{H}_2\text{O},\text{rem}} - n_{\text{H}_2\text{O},\text{add}}$$ \hspace{1cm} (2) \\

We can express the number of moles of water removed and/or added as the product of a proportionality factor (f_{rem}, f_{add}) by the original number of moles ($n_{\text{H}_2\text{O},\text{eq}}$):

$$f_{\text{rem}} \times n_{\text{H}_2\text{O},\text{eq}} = n_{\text{H}_2\text{O},\text{rem}}$$ \hspace{1cm} (3) \\

$$f_{\text{add}} \times n_{\text{H}_2\text{O},\text{eq}} = n_{\text{H}_2\text{O},\text{add}}$$ \hspace{1cm} (4) \\

Inserting equations (3) and (4) in equation (2), we obtain:

$$n_{\text{H}_2\text{O},\text{eq}} = n_{\text{H}_2\text{O},\text{eq}} + f_{\text{rem}} \times n_{\text{H}_2\text{O},\text{eq}} - f_{\text{add}} \times n_{\text{H}_2\text{O},\text{eq}}$$ \hspace{1cm} (5) \\

where $f = f_{\text{rem}} - f_{\text{add}}$ is positive in the case of water removal and negative in the case of water addition. Dividing equation (5) by equation 1 gives:

$$\frac{n_{\text{H}_2\text{O},\text{eq}}}{n_{\text{CO}_2,\text{eq}}} = \frac{n_{\text{H}_2\text{O},\text{fu}} + f_{\text{rem}} \times n_{\text{H}_2\text{O},\text{eq}} - f_{\text{add}} \times n_{\text{H}_2\text{O},\text{eq}}}{n_{\text{CO}_2,\text{eq}} n_{\text{CO}_2,\text{fu}} n_{\text{CO}_2,\text{eq}}}$$ \hspace{1cm} (6) \\

Considering that $n_{\text{CO}_2,\text{fu}} = n_{\text{CO}_2,\text{eq}}$, equation (6) can be written as:

$$\frac{n_{\text{H}_2\text{O},\text{eq}}}{n_{\text{CO}_2,\text{eq}}^{\text{fuel}}} = \frac{n_{\text{H}_2\text{O},\text{fu}} + f_{\text{rem}} \times n_{\text{H}_2\text{O},\text{eq}} - f_{\text{add}} \times n_{\text{H}_2\text{O},\text{eq}}}{n_{\text{CO}_2,\text{eq}} n_{\text{CO}_2,\text{fu}} n_{\text{CO}_2,\text{eq}}}$$ \hspace{1cm} (7) \\

From equation (7), the variable f is given by:

$$f = \frac{n_{\text{H}_2\text{O},\text{eq}}}{n_{\text{CO}_2,\text{eq}}^{\text{fuel}}} - \frac{n_{\text{H}_2\text{O},\text{eq}}}{n_{\text{CO}_2,\text{eq}}}$$ \hspace{1cm} (8) \\

Finally, equation (8) is solved considering $n_{\text{CO}_2,\text{eq}} = X_{\text{CO}_2,\text{eq}} = \frac{X_{\text{CO}_2,\text{eq}}}{P_{\text{CO}_2,\text{eq}}} = \frac{X_{\text{H}_2\text{O},\text{eq}}}{P_{\text{H}_2\text{O},\text{eq}}}$ and $n_{\text{H}_2\text{O},\text{eq}} = X_{\text{H}_2\text{O},\text{eq}} = \frac{X_{\text{H}_2\text{O},\text{eq}}}{P_{\text{H}_2\text{O},\text{eq}}} = \frac{X_{\text{CO}_2,\text{eq}}}{P_{\text{CO}_2,\text{eq}}}$:

$$f = \frac{P_{\text{H}_2\text{O},\text{eq}} - X_{\text{H}_2\text{O},\text{eq}}}{X_{\text{CO}_2,\text{eq}}} = \frac{P_{\text{H}_2\text{O},\text{eq}} - X_{\text{H}_2\text{O},\text{eq}}}{X_{\text{CO}_2,\text{eq}}}$$ \hspace{1cm} (9) \\

The variable $X_{\text{CO}_2,\text{eq}}$ and $X_{\text{H}_2\text{O},\text{eq}}$ are the analytical values, while $P_{\text{H}_2\text{O},\text{eq}}$ and $P_{\text{CO}_2,\text{eq}}$ refer to the equilibrium values computed considering gas equilibria in the H\textsubscript{2}O-H\textsubscript{2}-CO\textsubscript{2}-CO gas system. In detail, we used the following expressions38,74:

$$T(K) = \frac{3133.5}{0.933} - \log \frac{X_{\text{CO}}}{X_{\text{CO}_2}}$$ \hspace{1cm} (10) \\

$$\log P_{\text{H}_2\text{O}} = 5.51 - \frac{2048}{T(K)}$$ \hspace{1cm} (11) \\

$$\log P_{\text{CO}_2} = -2.485 + \frac{2248}{T(K)} - \log \frac{X_{\text{H}_2\text{O}}}{X_{\text{CO}_2}} + \log P_{\text{H}_2\text{O}}$$ \hspace{1cm} (12) \\

where the partial pressures of water and CO\textsubscript{2} are assumed equal to their fugacities.

Equation (9) was used to compute the condensed fraction f for each BG and BN fumarolic samples reported in Fig. 6. The fumarolic compositions are available in the literature3.
References
1. Delmelle, P. & Stix, J. In Encyclopedia of Volcanoes (eds Sigurdsson, H. et al.) 803–815 (Academic Press, 1999).
2. Oppenheimer, C., Fischer, T. & Scaillet, B. In Treatise on Geochemistry (Second Edition) (eds Holland, H. D. & Turekian, K. K.) 111–179 (Elsevier, 2014).
3. Chiodini, G. et al. Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nat. Comm. 7 (2016).
4. Chiodini, G., Caliro, S., De Martino, P., Avino, R. & Gherardi, F. Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations. Geology 40, 943–946 (2012).
5. Edmonds, M. New geochemical insights into volcanic degassing. Phil. Trans. R. Soc. A 366, 4559–4579 (2008).
6. Aiuppa, A. et al. First observational evidence for the CO2-driven origin of Stromboli’s major explosions. Solid Earth 2, 135–142 (2013).
7. Gerlach, T. M. & Graeber, E. J. Volatile Budget Of Kilauea Volcano. Nature 313, 273–277 (1985).
8. Stolper, E. & Holloway, J. R. Experimental Determination Of The Solubility Of Carbon-Dioxide In Molten Basalt At Low-Pressure. Earth Planet. Sci. Lett. 87, 397–408 (1988).
9. Holloway, J. R. & Blank, J. G. In Volatiles in Magmas, Rev. Miner. Vol. 30 (eds Carroll, M. R. & Holloway, J. R.) 185–230 (Mineralogical Society of America, 1994).
10. Gerlach, T. M. et al. Application of the LI-COR CO2 analyzer to volcanic plumes: A case study, volcano Popocatépetl, Mexico, June 7 and 10, 1995. J. Geophys. Res. 102, 8005–8019 (1997).
11. Carapezza, M. L., Ingugliatto, S., Brusca, L. & Longo, M. Geochemical precursors of the activity of an open-conduit volcano: The Stromboli 2002–2003 eruptive events. Geophys. Res. Lett. 31 (2004).
12. Aiuppa, A. et al. First observations of the fumarolic gas output from a restless caldera: Implications for the current period of unrest (2005–2013) at Campi Flegrei. Geochim. Geophys. Geosys. 14, 4153–4169 (2013).
13. Poland, M. P., Miklius, A., Sutton, A. J. & Thorner, C. R. A mantle-driven surge in magma supply to Kilauea Volcano during 2003–2007. Nat. Geosci. 5, 295–297 (2012).
14. Hernandez, P. A. et al. Diffuse emission of carbon dioxide, methane, and helium-3 from Teide volcano, Tenerife, Canary Islands. Geophys. Res. Lett. 25, 3311–3314 (1998).
15. Chiodini, G. et al. CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J. Geophys. Res. 106, 16213–16221 (2001).
16. Mori, T., Hernandez, P. A., Salarar, J. M. L., Perez, N. M. & Notsu, K. An in situ method for measuring CO2 flux from volcanic-hydrothermal fumaroles. Chem. Geol. 177, 85–99 (2001).
17. Werner, C. & Brantley, S. CO2 emissions from the Yellowstone volcanic system. Geochim. Geophys. Geosys. 4 (2003).
18. Werner, C. et al. Decadal-scale variability of diffuse CO2 emissions and seismicity revealed from long-term monitoring (1995–2013) at Mammoth Mountain, California, USA. J. Volcanol. Geotherm. Res. 209, 51–63 (2014).
19. Bloomberg, S. et al. Soil CO2 emissions as a proxy for heat and mass flow assessment, Taupo Volcanic Zone, New Zealand. Geochim. Geophys. Geosys. 15, 4885–4904 (2014).
20. Accocella, V., Di Lorenzo, R., Newhall, C. & Scandone, R. An overview of recent (1988 to 2014) caldera unrest: Knowledge and perspectives. Rev. Geophys. 53, 896–955 (2015).
21. Newhall, C. G. & Dzurisin, D. In U.S. Geol. Surv. Bull. Vol. 1855, 1130 (USGSC, 1988).
22. Lowenstern, J. B., Smith, R. B. & Hill, D. P. Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems. Philosophical Phils. Trans. R. Soc. A 364, 2055–2072 (2006).
23. Gottsmann, J. & Marti, J. In Caldera Volcanism: Analysis, Modelling and Response, Developments in Volcanology Vol. 10, 492 (Elsevier, 2008).
24. Orsi, G., de Vita, S. & Di Vito, M. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 74, 179–214 (1996).
25. Chiodini, G. et al. Evidence of thermal-driven phenomena triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth Planet. Sci. Letts. 414, 58–67 (2015).
26. Farrar, C. D. et al. Forest-Killing Diffuse CO2 Emission At Mammoth Mountain As A Sign Of Magmatic Unrest. Nature 376, 675–678 (1995).
27. Chiodini, G., Frondini, F. & Raco, B. Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bull. Volcanol. 58, 41–50 (1996).
28. Chiodini, G., Cioni, R., Guidi, M., Raco, B. & Marini, L. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 543–552 (1998).
29. Cardellini, C., Chiodini, G. & Frondini, F. Application of stochastic simulation to CO2 flux from soil: Mapping and quantification of gas release. J. Geophys. Res. 108 (2003).
30. Werner, C. et al. Eddy covariance measurements of hydrothermal heat flux at Solfatara volcano, Italy. Earth Planet. Sci. Letts. 244, 72–82 (2006).
31. Aiuppa, A. et al. New ground-based lidar enables volcanic CO2 flux measurements. Sci. Rep. 5 (2015).
32. Pedone, M. et al. Volcanic CO2 flux measurement at Campi Flegrei by tunable diode laser absorption spectroscopy. Bull. Volcanol. 76 (2014).
33. Queisser, M., Granieri, D. & Burton, M. A new frontier in CO2 flux measurements using a highly portable DIAL laser system. Sci. Rep. 6, 33834 (2016).
34. Caliro, S. et al. The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim. Cosmochim. Acta 71, 3040–3055 (2007).
35. Chiodini, G. et al. Vesuvius and Phlegraen Fields: Gas geochemistry; Geochemical monitoring of the Phlegraean Fields and Vesuvius (Italy) in 1996. Acta Volcanol. 12, 117–119 (2000).
36. Chiodini, G. et al. Gas geobarometry in boiling hydrothermal systems: A possible tool to evaluate the hazard of hydrothermal explosions. Acta Volcanol. 2, 99–107 (1992).
37. Chiodini, G. et al. Chemical and isotopic variations of Bocca Grande fumarole (Solfatara volcano Phlegrean Fields). Acta Volcanol. 8, 129–138 (1996).
38. Chiodini, G. & Marini, L. Hydrothermal gas equilibria: The H2O-H2-CO2-CO-CH4 system. Geochim. Cosmochim. Acta 62, 2673–2687 (1998).
39. Cioni, R. et al. In Volcanic Hazard (ed. Latter, J. H.) 384–398 (Springer Verlag, 1989).
40. Cioni, R., Corazza, E. & Marini, L. The gas/steam ratio as indicator of heat transfer at the Solfatara fumaroles, Phlegraean Fields (Italy). Bull. Volcanol. 47, 295–302 (1984).
41. Battaglia, I., Zollo, A., Virieux, J. & Dello Iacono, D. Merging active and passive data sets in time-lapse tomography: The case study of Campi Flegrei caldera (Southern Italy). Geophys. Prospect. 56, 555–573 (2008).
42. Zollo, A. In Geophysical Exploration of the Campi Flegrei (Southern Italy) Caldera: Interiors: Data, Methods and Results (eds Zollo, A., Capuano, P. & Corciulo, M.) 220 (doppiaiovecce, 2006).
43. Chiodini, G. et al. Magma degassing as a trigger of bradyseismic events: The case of Phlegraen Fields (Italy). Geophys. Res. Lett. 30 (2003).
44. Pettillo, Z. et al. Defining a 3D physical model for the hydrothermal circulation at Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 264, 172–182 (2013).
45. Bodnar, R. J. et al. Quantitative model for magma degassing and ground deformation (bradyseism) at Campi Flegrei, Italy: Implications for future eruptions. Geology 35, 791–794 (2007).
46. Vanorio, T., Virieux, J., Capuano, P. & Russo, G. Three-dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera. J. Geophys. Res. 110 (2005).
47. Zollo, A. et al. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys. Res. Lett. 35 (2008).
48. Chiodini, G., Pappalardo, L., Aiuppa, A. & Caliro, S. The geological CO₂ degassing history of a long-lived caldera. Geology 43, 767–770 (2015).
49. Frezzotti, M. L., Peccerillo, A. & Panza, G. Carbonate metasomatism and CO₂ lithosphere-asthenosphere degassing beneath the Western Mediterranean: An integrated model arising from petrological and geophysical data. Chem. Geol. 262, 108–120 (2009).
50. Tonarini, S. et al. B/Nb and delta B-11 systematics in the Phlegraean Volcanic District, Italy. J. Volcanol. Geother. Res. 133, 123–139 (2004).
51. Meltan, G. et al. Spatial and temporal variations of diffuse CO₂ degassing at El Hierro volcanic system: Relation to the 2011–2012 submarine eruption. J. Geophys. Res. 119, 6976–6991 (2012).
52. Meltan, G. et al. A magmatic source for fumaroles and diffuse degassing from the summit crater of Teide Volcano (Tenerife, Canary Islands): a geochemical evidence for the 2004–2005 seismic-volcanic crisis. Bull. Volcanol. 74, 1465–1483 (2014).
53. D’Auria, L. et al. Magna injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Scientific Reports 5 (2015).
54. De Martino, P., Tammaro, U. & Obrizzo, F. GPS time series at Campi Flegrei caldera (2000–2013). J. Volcanol. Geother. Res. 195, 48–56 (2010).
55. Amoruso, A. et al. Choes to the cause of the 2011–2013 Campi Flegrei caldera unrest, Italy, from continuous GPS data. Geophys. Res. Lett. 41, 3081–3088, doi:10.1002/2014GL059539 (2014).
56. Viveiros, F. et al. Soil CO₂ emissions at Furnas volcano, Sao Miguel Island, Azores archipelago. Volcanic monitoring perspectives, geomorphologic studies, and land use planning application. J. Geophys. Res. 115 (2010).
57. Chiodini, G. et al. Carbon isotopic composition of soil CO₂ efflux, a powerful method to discriminate different sources feeding soil CO₂ degassing in volcanic-hydrothermal areas. Earth Planet. Sci. Letts. 274, 372–379 (2008).
58. Ray, A. et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob. Chang. Biol. 8, 851–866 (2002).
59. Isaia, R. et al. Stratigraphy, structure, and volcanic-tectonic evolution of Solfatara maar-diatreme (Campi Flegrei, Italy). Geol. Soc. Am. Bull. 127, 1485–1504 (2015).
60. Vitale, S. & Isaia, R. Fractures and faults in volcanic rocks (Campi Flegrei, southern Italy): insight into volcanic-tectonic processes. Int. J. Earth Sci. 103, 801–819 (2014).
61. Chiodini, G. et al. Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J. Geophys. Res. 115 (2010).
62. Allard, P. Correction. Geophys. Res. Lett. 19, 2103–2103 (1992).
63. Italiano, F., Nuccio, P. M. & Valenza, M. Geothermal energy release at the Solfatara of Pozzuoli (Phlegraean Fields): Phreatic and phreatomagmatic explosion risk implications. Bull. Volcanol. 47, 275–285 (1994).
64. Cardellini, C. et al. INGV-DPC V2 project final report - V2 Project Precursers di eruzioni- UR1-report. 18 (2015).
65. Di Luccio, F., Pino, N. A., Piscini, A. & Ventura, G. Significance of the 1982–2014 Campi Flegrei seismicity: Preexisting structures, ground movements during 1905–2009. J. Volcanol. Geother. Res. 195, 48–56 (2010).
66. Burton, M. R., Sawyer, G. M. & Granieri, D. In Carbon In Earth Rev. Vol. 75, 325–334 (2013).
67. Hurwitz, S. & Lowenstern, J. B. Dynamics of the Yellowstone hydrothermal system. Rev. Geophys. 52, 375–411, doi:10.1002/2014RG000452 (2014).
68. Dewit, J. A. Selection of threshold values in geochemical data using probability graphs. J. Geochem. Explor. 3, 129–149 (1974).
69. Lewicki, J. L. et al. Comparative soil CO₂ flux measurements and geostatistical estimation methods on Masaya volcano, Nicaragua. Bull. Volcanol. 68, 76–90 (2005).
70. Deutsch, C. V. & Journel, A. G. GSLIB: Geostatistical Software Library and Users Guide. Vol. 136 (Oxford Univerity Press, 1998).
71. Gugenbach, W. F. Geothermal gas equilibria. Geochim. Cosmochim. Acta 24, 691–703 (1961).
72. Tarquini, S. et al. TINITALY/01: a new Triangular Irregular Network of Italy. Ann. Geophys. 50, 407–425, http://tinitaly.pi.ingv.it (2007).

Acknowledgements
This study has benefited from funding provided by INGV (project COHESO), DECADE (an initiative from the Deep Carbon Observatory) and by the Italian Presidenza del Consiglio dei Ministri Dipartimento della Protezione Civile (DPC), INGV-DPC Research Agreement 2012–2015, Progetto V2 “Precursori di eruzioni”. This paper does not necessarily represent DPC official opinion and policies. We thank Dr. Rebecca Astbury for comments and language editing that improved the quality of the manuscript. We wish to thank J. Lowenstern, A. Di Muro and an anonymous reviewer for the helpful suggestions which improved the quality and the clarity of the manuscript.

Author Contributions
C.C., G.C. designed and led the fieldwork through the time, and with F.F. drafted the manuscript with input from all of the authors. C.C., A.R., B.E., C.S., L.M. and R.A. participated in the fieldwork, and reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-06941-2

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
