A meta-analysis of gene expression quantitative trait loci in brain

Y Kim1,8, K Xia2,8, R Tao3, P Giusti-Rodriguez1, V Vladimirov4,5, E van den Oord6 and PF Sullivan1,2,7

Current catalog of brain expression quantitative trait loci (eQTL) are incomplete and the findings do not replicate well across studies. All existing cortical eQTL studies are small and emphasize the need for a meta-analysis. We performed a meta-analysis of 424 brain samples across five studies to identify regulatory variants influencing gene expression in human cortex. We identified 3584 genes in autosomes and chromosome X with false discovery rate q < 0.05 whose expression was significantly associated with DNA sequence variation. Consistent with previous eQTL studies, local regulatory variants tended to occur symmetrically around transcription start sites and the effect was more evident in studies with large sample sizes. In contrast to random SNPs, we observed that significant eQTLs were more likely to be near 5′-untranslated regions and intersect with regulatory features. Permutation-based enrichment analysis revealed that SNPs associated with schizophrenia and bipolar disorder were enriched among brain eQTLs. Genes with significant eQTL evidence were also strongly associated with diseases from OMIM (Online Mendelian Inheritance in Man) and the NHGRI (National Human Genome Research Institute) genome-wide association study catalog. Surprisingly, we found that a large proportion (28%) of ~1000 autosomal genes encoding proteins needed for mitochondrial structure or function were eQTLs (enrichment P-value = 1.3 × 10−9), suggesting a potential role for common genetic variation influencing the robustness of energy supply in brain and a possible role in the etiology of some psychiatric disorders. These systematically generated eQTL information should be a valuable resource in determining the functional mechanisms of brain gene expression and the underlying biology of psychiatric disorders.

Translational Psychiatry (2014) 4, e459; doi:10.1038/tp.2014.96; published online 7 October 2014

INTRODUCTION

Psychiatric disorders like schizophrenia, bipolar disorder, major depressive disorder, autism and substance use disorders account for a significant proportion of disability world-wide1 and cause enormous personal and societal burdens.2 The lifetime prevalence estimates range from 0.1% (autism spectrum disorder) to 24% (nicotine dependence).3 These disorders have a significant genetic component, with estimates of heritability ranging from 37% (major depressive disorder) to 81% (schizophrenia).3

Recent genome-wide association studies (GWAS) investigating the genetic architecture of psychiatric disorders have identified many common variants that meet consensus criteria for significance and replication.4–6 Understanding the biological mechanisms by which these common variants contribute to complex traits is challenging. The main reason is that the majority (>90%) of disease-associated variants from many GWAS lie in noncoding regions,7 making evaluation of their function difficult. However, accumulating evidence suggests that these noncoding common variants are involved in transcriptional regulatory mechanisms such as promoter and enhancer elements8 and enriched within expression quantitative trait loci (eQTL).8–20 In addition, about 77% of SNPs implicated in GWAS were within or in high linkage disequilibrium (LD) with DNase I hypersensitivity sites, a marker for open chromatin subject to transcriptional regulation.7,21,22 eQTL studies measure genetic variation and gene expression in the same individuals, and thus link DNA variation to mRNA variation.8 These studies have received particular attention due to their inherent relevance to the control of gene expression and because they provide a way to generate hypotheses about the functional meaning of GWAS findings via relatively simple data base queries.1,11,23,24 There are relatively few eQTL studies of human brain tissue25–28 or brain disease.27,29 Current catalogs of brain eQTLs are incomplete and the findings do not replicate well across studies—all existing brain eQTL studies are small and highlight the need for a meta-analysis.20 Thus, we performed an eQTL ‘meta-analysis’ of gene expression and GWAS data for 424 normal brain samples from five studies—Gibbs et al.,27 Colantuoni et al.,31 Myers et al.,26 Stanley Medical Research Institute (SMRI),32,33 and the NIH Genotype-Tissue Expression (GTEx) project.34 We identified more than 3000 genes whose expression was significantly associated with DNA sequence variation. Many of these genes have been implicated in psychiatric disorders. Surprisingly, we found that a large proportion (28%) of ~1000 autosomal genes encoding proteins needed for mitochondrial structure or function were eQTLs. This suggests a potential role for common genetic variation

1Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 2Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 3Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 4Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA; 5Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD, USA; 6Center for Biomarker Research and Personalized Medicine; Virginia Commonwealth University, Richmond, VA, USA and 7Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. Correspondence: Dr Y Kim, Department of Genetics, CB# 7264, 5097 Genomic Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA.
E-mail: yunjungk@email.unc.edu
8These two authors contributed equally to this work.
Received 6 January 2014; revised 15 July 2014; accepted 21 August 2014
Meta-analysis of brain gene expression

Y Kim et al

influencing the robustness of energy supply in brain and a possible role in the etiology of some psychiatric disorders.

MATERIALS AND METHODS

Gene expression data

The quality control procedures for each study are described in the Supplementary Methods. Briefly, we included brain cortical samples from neuropathologically normal subjects of European ancestry and aged ≥ 20 years at death. We downloaded raw intensity files from the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) and conducted extensive quality control procedures. As in our prior work, we processed gene expression data as consistently as possible across all studies.3,15 First, we mapped the probe sequences for all expression arrays to the genome (UCSC hg19) using Bowtie16 and removed probes that did not map, mapped to multiple locations or intersected a polymorphic SNP (HapMap3 (ref 37) and 1000 Genomes Project data38) because such probes can result in inaccurate expression.30 Second, we excluded outlier samples on the basis of inter-sample correlations30 or if phenotypic sex did not match the expression if there were multiple probes/probesets for a gene.30 We removed SNPs with low call rate (≤ 0.9), low call rate (≤ 0.9), low minor allele frequency (MAF < 0.01), deviation from Hardy–Weinberg equilibrium (HWE17,18 < 1 × 10−6), and allele frequencies inconsistent with the 1000 Genomes Project reference panel (MAF difference < 0.07). We imputed genotype dosages using the 1000 Genomes Project reference panel using MaCH-admix.41 MaCH-admix does not require phasing before imputation, which is suitable for small studies. Chrx was imputed in males using the option in MaCH-admix and females were imputed in the same way as autosomes. We retained SNPs with imputation R2 ≥ 0.3 and MAF greater than max (0.05, 5/2N).

Evaluation of covariates

Detailed information about covariate evaluation is in the Supplementary Methods. Briefly, we selected covariates for gene expression in two steps. First, we assessed all covariates by computing the type I sum of squares (SAS, v9.2) that compares a full model containing all covariates to a reduced model excluding the covariate under consideration. The impact of a covariate was quantified by determining the number of genes with a false discovery rate (FDR) < 0.05. We included an ‘impactful’ covariate when >1% of genes met this criterion. Second, we regressed out the selected covariates and performed PCA on the residuals. The final covariate list included impactful covariates from the first step and the significant principal components from the second step. For the genotype data from each study, we excluded outliers that fall apart from HapMap3 CEU subjects. Supplementary Figure S1 depicts genotype PC1 versus genotype PC2 of samples in each study together with HapMap3 samples. To determine the genomic PCs that need to be included for adjustment of population stratification, we employed several methods. First, we examined a scree-plot (Supplementary Figure S2) per study, which shows the proportions of total variance in genotype data explained by various PCs. Second, we tested genome-wide association between each PC as a dependent variable and SNPs as independent variables and calculated the genomic inflation factor43 from each association test. Supplementary Figure S3 shows the contribution of each PC to genomic inflation factor. In all studies, PC1 is clearly the major contributor to λGC. There are far lesser contributions from PC2-5. Third, we evaluated whether inclusion of PC1 is enough or several more PCs may be needed to control for population stratification. For the latter approach, we included PC1-PC5 in eQTL analysis for each study and meta-analyzed eQTLs explained below. The meta-analysis results from the two approaches were very similar. A scatter plot of r-test statistics from the two approaches showed that the magnitude and direction were almost identical (Supplementary Figure S4, Pearson’s correlation = 0.98). The clustering pattern of significant local SNP–gene eQTLs near transcription start sites remained the same (Supplementary Figure S11). Number of significant eQTLs at varying FDR thresholds remained marginally as expected (Supplementary Table S3). We present all tables and figures in the manuscript on the basis of eQTL analysis with genomic PC1.

eQTL analysis

We used MatrixEQTL44 to conduct the gene expression linear regression GWAS for each study while controlling for study-specific covariates. We evaluated all ‘local’ eQTLs (SNP–gene distance < 1 Mb). We did not evaluate ‘distant’ eQTLs given the large number of statistical comparisons and consequent low power.30 The local eQTLs for each study were then meta-analyzed using a fixed effects model.45 Chrx eQTL analysis was done separately for males and females in each study and then combined using fixed effects meta-analysis, and male and female results combined using Fisher’s test.46 FDR was used to control for multiple comparisons. FDR was computed separately for chr1-22 and chrX as the P-values were based on different models (t-statistics for autosomes and χ2 for chrX). We used sign tests to compare the signs of t-statistics between the five studies. Under the null hypothesis, half of the signs will be the same between two studies. The significance of the observed proportion was evaluated using the binomial distribution.

Enrichment analyses

Common variants identified from GWAS may influence susceptibility to diseases via regulation of gene expression.5,5 We evaluated this broad hypothesis using enrichment analyses. First, we assessed whether SNPs associated with psychiatric disorders were enriched among genetic variants that were part of a cortical eQTL (that is, SNP–gene pair) using permutation tests.19 Specifically, we evaluated the overlap between eQTLs in human cortex with five psychiatric disorders studied by the Psychiatric Genomics Consortium (PGC): attention-deficit hyperactivity disorder, autism, bipolar disorder, major depressive disorder and schizophrenia (SCZ).5 We obtained results files from the PGC website (https://pgc.unc.edu/Sharing.php#SharingOpp) from a GWAS meta-analysis of these disorders in independent cases and controls.5 There were 1 065 656 GWAS SNPs common to the five PGC resources and our brain eQTL SNPs. We excluded the extended major histocompatibility locus (eMHC, chr6:25–34 Mb) given its high gene density, LD and functionally clustered genes. We compared LD-pruned sets of GWAS SNPs generated via PLINK (—indep-pairwise 100 25 0.48). For each disorder, we generated 10 000 randomized SNP sets, each the same size as the original list of associated GWAS SNPs at a given P-value threshold matched on MAF distribution of the original list and sampled without replacement from the null set. For each set, we determined the number of significant eQTL SNPs at FDR threshold of 0.05. These permutations yielded an empirical enrichment P-value, calculated as the proportion of 10 000 randomized sets in which the number of eQTL SNPs exceeds the originally observed number of eQTL SNPs at the FDR threshold. We repeated this analysis for a recent larger SCZ GWAS.5

Second, we evaluated whether genes that were part of a SNP–gene eQTL pair were enriched for functional roles in biological pathways or similar cellular functions. We evaluated the following gene sets previously associated with SCZ: expert-curated lists of synaptic genes,50 genes encoding postsynaptic density proteins,51 genes encoding the NMDA (N-methyl-D-aspartate) receptor52 and activity-regulated cytoskeleton-associated protein complex,53 genes whose mRNAs interact with FMRP,53 genes encoding components of voltage-gated calcium channels (all CACN* RefSeq genes),54 genes whose proteins interact with a calcium channel subunit.55 We also evaluated OMIM disease genes,55 genes with an eQTL in peripheral blood from the largest human eQTL study,50 and the human orthologs of genes with local eQTLs in mouse brain.56 We tested for enrichment using a right-sided Fisher’s exact test compared with all 17 537 autosomal genes tested in our meta-analysis and for 9855 brain-expressed genes (defined as mean expression greater than the 25% quantile in three of the five studies in this meta-analysis).
Bioinformatic evaluation

We evaluated whether brain eQTLs were enriched for variants implicated in complex diseases using the NHGRI GWAS catalog (http://www.genome.gov/26525384, downloaded September 2013).57 We selected GWAS SNP associations with reported \(P \)-values \(< 1 \times 10^{-9} \) and keeping the SNP-trait association with the smallest \(P \)-value. Many local eQTLs span an extended region containing multiple eQTL SNPs with significant correlation. These are not independent associations but result from high LD between associated eQTL SNPs. We summarized these regions using ‘clumping’ (that is, the index eQTL SNP with the strongest association plus the genomic range defined by other eQTL SNPs in high LD with the index SNP) for each significant gene.58 We focused on genes with \(P < 0.05 \) and performed clumping using PLINK to retain eQTL SNPs with \(r^2 \) \(> 0.6 \) within 500-kb windows (clump-P 0.05–clump-P 0.05–clump-r^2 0.6–clump-kb 500). To guard against a falsely inflated intersection rate with the GWAS catalog SNPs, we used \(q \)-values rather than \(P \)-values as input for clumping and identified GWAS catalog SNPs with reported \(P \)-values \(< 1 \times 10^{-4} \) that were intersecting the clamped regions.

RESULTS

Meta-analysis of eQTLs

We first conducted eQTL analyses for each of the five cortical studies. After quality control, sample sizes ranged from 24 to 189 and the numbers of transcripts ranged from 10 038 to 15 857 per study (17 537 genes evaluated at least one study). Supplementary Figures S5–S9 show plots of gene location versus eQTL location. We defined a local eQTL as an SNP–gene eQTL \pm 1 \text{Mb} \) of the transcription start or end sites for a gene and distant otherwise. As expected, local eQTLs tended to have stronger effects than distant eQTLs. Studies with small sample sizes showed much weaker local eQTLs.

We next conducted a meta-analysis of 424 brain samples across five studies to identify regulatory variants influencing gene expression in human cortex (Table 1). As previous eQTL studies\(^{4,30,35,58} \) reported that distant eQTLs are usually weaker than local eQTLs, replicate poorly and require considerably larger sample sizes for reliable detection, we restricted our meta-analysis to the detection of local eQTLs. To evaluate the consistency of effects between studies, we performed sign tests between all pairs of studies (Supplementary Table S1). Sign tests were done in two ways: selecting SNP–gene pairs from the first study with \(P < 1 \times 10^{-9} \) and evaluating the significance of the same SNP–gene pairs in the second study, and by reversing the procedure. Sign tests for the results of the three studies with \(N > 50 \) were always highly significant (concordance rates = 69–80\%, \(P = 1.5 \times 10^{-7} \) or smaller). More stringent \(P \)-value cutoffs gave similar results. The sign tests indicate the general comparability of the five data sets and also show the dramatic effect of increased sample size.

The number of eQTLs at varying FDR thresholds is summarized in Supplementary Table S2. We used a standard FDR threshold \(< 0.05 \) throughout the paper. At this threshold, there were 176 794 significant autosomal SNP–gene pairs arising from 159 151 SNPs and 3520 genes. This includes more SNP–gene pairs than that found in individual studies (Table 2). As expected, we detected more eQTLs from studies with larger sample sizes.
cluster of late cornified envelope genes, which are specifically expressed in skin.

Characteristics of local SNPs

We examined functional consequences of significant SNPs with $q < 0.05$ (143 679 unique SNPs) using the Ensembl Variant Effect Predictor (VEP) tool.\(^{69}\) VEP reports a set of consequence terms defined by the Sequence Ontology (http://www.sequenceontology.org). Detailed information can be found at http://useast.ensembl.org/info/genome/variation/predicted_data.html#consequences. We used options (--most_severe, --per_gene) to output only the most severe consequence per gene. If a gene has multiple transcripts, an SNP was assigned to the transcript with the most severe predicted consequence. If more than one transcript has the same predicted consequence, VEP tool selected the transcript at random. Most significant SNPs were intronic (65.9%) followed by intergenic (39.3%), upstream (3.8%) and exonic regions (0.6%). Notably, the percentage of SNPs in intergenic regions increased by 25%. SNPs in the 5’-untranslated region again had the highest rate (63.8%) of overlap with regulatory features and SNPs in intergenic regions had the lowest rate (6.7%) of overlapping with regulatory features. The overall proportion of variants that fall in a regulatory feature was lower (9.2%) than the set of significant SNPs.

We evaluated whether there were significant differences between the classifications of significant and randomly selected nonsignificant eQTL SNPs. The overall distributions were significantly different between the two sets of SNPs (χ\(^2\), $P < 1 \times 10^{-4}$). Each functional consequence relative to intergenic also revealed significant difference between the two sets of SNPs (Supplementary Table S4). Odds ratios ranged from 3.5 to 9.2 and all P-values were $< 1 \times 10^{-4}$. SNPs in 5’-untranslated region showed the largest difference and were 9.2 times more likely to be significant eQTLs.

Prior studies observed clustering of significant local SNP–gene eQTLs near transcription start sites.\(^{11,26,30,70,71}\) We replicated this pattern (Supplementary Figure S10) which was more evident in the studies with larger samples.

Brain eQTLs and psychiatric disorders

We evaluated enrichment of brain eQTLs in regard to SNPs associated with five psychiatric disorders studied by the PGC and a
recent larger SCZ GWAS (Table 3). As shown in prior studies,47 SNPs associated with SCZ and bipolar disorder showed highly significant enrichments for eQTLs. This enrichment in brain eQTLs remained significant regardless of different statistical cutoffs used to generate the SNPs of interest. SNPs associated with attention-deficit hyperactivity disorder, autism and major depressive disorder showed much less enrichment in eQTLs, possibly owing to smaller sample sizes and fewer significant SNPs in the GWAS results.

To complement the permutation-based enrichment tests, we also applied the Bayesian framework implemented in SHERLOCK72 to the Sweden SCZ GWAS results.49 Briefly, SHERLOCK aligns the genetic architecture of SCZ against eQTL results to evaluate overlap and to summarize the evidence that a given SNP supports a functional role for the gene. A gene showing a high positive Bayes factor supports the evidence that it is more likely to be associated with SCZ via transcriptional regulation. Supplementary Table S5 lists the top predicted genes and their supporting SNPs associated with SCZ via transcriptional regulation. Supplementary Bayes factor supports the evidence that it is more likely to be a functional role for the gene. A gene showing a high positive Bayes factor supports the evidence that it is more likely to be associated with SCZ via transcriptional regulation. Supplementary Table S5 lists the top predicted genes and their supporting SNPs of SCZ that meet logarithm Bayes factor > 4.0 (that is, the posterior probability of the gene being associated with SCZ is >e4 or >55 times more likely). Among 27 predicted genes with logarithm Bayes factor > 4.0 (Supplementary Table S5), many are associated with SCZ as expected and also in regions known to be associated with bipolar disorder (ITIH4, GLTBD1, GNL3, NEK4), five major psychiatric disorders (FTSJ2, PCGEM1, C10orf32) and Parkinson’s disease (C10orf32). Some of these genes were in high LD regions (for example, chr10:104.5–105.2 Mb and chr3:52.2–53.2 Mb, Supplementary Figures S12 and S13).

Gene set enrichment
Genomic studies of SCZ have implicated biological pathways using multiple types of genomic data (common variation, rare CNVs and rare exonic variation).49,50,52,73,74 We asked whether genes in significant SNP–gene eQTLs in human cortex were enriched for pathways previously implicated in SCZ. Table 4 summarizes the results of enrichment tests using the gene sets selected from the literature. In either all genes or brain-expressed genes, we did not observe enrichment of eQTL genes among any gene sets hypothesized to be associated with SCZ.

We conducted a series of enrichment analyses with the list of genes with significant eQTL evidence (Table 4). First, using functional annotation clustering in DAVID,77 genes with eQTL evidence were very significantly enriched (Fisher’s exact test P-value = 3.24 × 10−9) for GO gene sets related to multiple mitochondrial gene sets (Supplementary Table S6). To adjust for common biases due to gene size, LD within and between genes, and pathway sizes, we generated a set of independent, nominally associated genomic intervals using clumping implemented in

Table 3. eQTL enrichment analysis of LD-pruned SNPs from PGC GWAS meta-analyses

GWAS threshold	PGC autism	PGC ADHD	PGC bipolar	PGC MDD	PGC SCZ	Sweden SCZ
P < 0.0001	6 (6e−4)	0 (1.0)	9 (2e−4)	0 (1.0)	9 (0.0047)	86 (< 1e−4)
P < 0.01	91 (0.11)	61 (0.89)	153 (< 1e−4)	78 (0.40)	165 (< 1e−4)	816 (< 1e−4)
P < 0.1	719 (0.141)	630 (0.88)	580 (< 1e−4)	756 (0.0075)	982 (< 1e−4)	3639 (< 1e−4)

Abbreviations: ADHD, attention-deficit hyperactivity disorder; eQTL, expression quantitative trait loci; GWAS, genome-wide association study; LD, linkage disequilibrium; MDD, major depressive disorder; PGC, Psychiatric Genomics Consortium; SCZ, schizophrenia; SNP, single-nucleotide polymorphism. eQTL SNPs with q < 0.05 were used for enrichment tests. Each cell gives the number of overlapping SNPs between eQTL SNPs and SNPs at the given threshold for a GWAS data set. The parentheses are empirical P-values obtained after 10 000 permutations with ‘< 1e−4’ meaning that none of 10 000 simulations yielded an eQTL count greater than the observed count. Due to high LD, the extended MHC region (chr6: 25–34 Mb) was removed. The first five data sets were imputed to HapMap3, and the rightmost column to 1000 Genomes and so the numbers of overlapping SNPs are greater.

Figure 2. Predicted functional consequences of local eQTL SNPs. (a) Functional consequences of significant eQTLs (q < 0.05, 143 679 unique SNPs) using Ensembl Variant Effect Predictor tool. Each SNP was assigned to the most severe predicted consequence. The ratio on each bar represents number of SNPs with regulatory features divided by number of SNPs in each functional category. (b) Functional consequences of randomly selected, MAF-matched, insignificant eQTLs (q > 0.5, 143 679 unique SNPs). eQTL, expression quantitative trait loci; MAF, minor allele frequency; SNP, single-nucleotide polymorphism.
PLINK and then tested it for enrichment in GO gene sets using InRICH. Analysis was restricted to 4074 GO categories containing genes between 5 and 3000 to account for pathway sizes. We used permutation to get empirical P-values per pathway and to correct for multiple-testing. Multiple GO pathways related to mitochondrial structure and function were ranked as top pathways (Supplementary Table S7). This result is consistent with the DAVID results, indicating that mitochondrial pathways are robust findings regardless of different gene-set enrichment methods. We tested for enrichment in mitochondrial pathways by further analyses using nuclear-encoded mitochondrial genes from MitoCarta (http://www.broadinstitute.org/pubs/MitoCarta),75 autosomal oxidative phosphorylation genes,76 nuclear-encoded transcriptional regulators of mitochondrial genes,76,79 Of 914 nuclear-encoded mitochondrial genes, 257 genes (28%) overlapped with genes showing significant eQTL evidence. We observed strong enrichment of significant eQTL genes in autosomal mitochondrial genes (odds ratio = 1.60, P = 1.3 x 10^{-9} using all genes; odds ratio = 1.39, P = 1.0 x 10^{-4} using brain-expressed genes). However, no enrichment was observed for nuclear regulators of mitochondrial genes (P = 0.80 using all genes, P = 0.95 using brain-expressed genes) and oxidative phosphorylation genes (P = 0.06 using all genes, P = 0.11 using brain-expressed genes).

Second, genes expressed in multiple tissues tend to have local regulatory elements.80 To evaluate the hypothesis, we compared eQTL genes in peripheral blood39 with genes having local eQTLs in our meta-analysis. We found strong overlap between eQTLs in these two tissues. Of 6662 genes with significant local eQTL evidence in peripheral blood (q < 0.001), 1578 genes (24%) overlapped with genes with local eQTL evidence in brain (odds ratio = 1.43, P = 9.4 x 10^{-21} using all genes). Restricting to 5261 genes expressed in both tissues, 70.7% of 1193 eQTL genes in brain were eQTL genes in blood (Supplementary Figure S14).

Third, gene regulation might be conserved across species. We compared our brain eQTL genes with their mouse orthologs with local eQTL evidence in a carefully conducted brain RNA-seq study. The enrichment of human brain eQTLs in genes from mouse brain samples was significant (odds ratio = 1.11, P = 0.003).56

Brain eQTLs, GWAS and OMIM
To assess the biological relevance of brain eQTLs for annotation of variants implicated in human diseases, we compared unique SNPs in autosomes and chrX (after filtering at q < 0.05 and keeping the SNP with the smallest q-value if there were multiple SNP–gene pairs) to the NHGRI GWAS catalog.37 We restricted our search to GWAS SNPs with P < 1 x 10^{-9}, yielding 2946 SNPs for 471 traits from 869 papers. Of the 2946 SNPs implicated by GWAS, 528 (17.9%) were part of a local eQTL (178 directly associated with 94 significant local eQTL evidence. We observed strong overlap between eQTLs in brain-expressed genes (odds ratio = 1.11, P = 9.4 x 10^{-21}) and nuclear-encoded autosome (gene) eQTLs (9835). P-values are from right-sided Fisher’s exact tests.

Table 4: Enrichment test of eQTLs (q < 0.05) in gene sets

Gene set	Genes	Overlap	OR1 (P)	OR2 (P)	
Implicated in schizophrenia	FMRP interactor	780	125	0.75 (0.99)	0.72 (0.99)
	Synaptic functional gene group	947	170	0.86 (0.96)	0.82 (0.98)
	Synaptic signaling pathways	121	29	1.26 (0.17)	1.28 (0.18)
	Calcium channel subunit interactor	189	28	0.69 (0.98)	0.68 (0.97)
	Calcium subunit	24	4	0.80 (0.74)	0.62 (0.83)
	Postsynaptic genes	687	113	0.78 (0.99)	0.68 (0.99)
	NMDA receptor	58	9	0.73 (0.85)	0.65 (0.91)
	ARC²	24	2	0.36 (0.97)	0.31 (0.98)
Other gene sets	Nuclear-encoded mitochondrial genes	914	257	1.60 (1.3 x 10^{-9})	1.39 (1.0 x 10^{-4})
	Oxidative phosphorylation genes	88	24	1.50 (0.06)	1.41 (0.11)
	Nuclear regulators of mitochondria genes	14	2	0.66 (0.80)	0.31 (0.95)
	OMIM	2914	609	1.06 (0.12)	1.15 (0.009)
	'godot' eQTL study in blood (q < 0.001)	6662	1578	1.43 (9.4 x 10^{-21})	1.36 (6.9 x 10^{-11})
Significant strain effect in mouse brain diallel	9534	1986	1.11 (0.003)	0.90 (0.98)	

Abbreviations: ARC, activity-regulated cytoskeleton; eQTL, expression quantitative trait loci; NMDA, N-methyl-D-aspartate; OMIM, Online Mendelian Inheritance in Man. For enrichment tests, we used 3520 eQTL genes in autosomes with false discovery rate (FDR) q < 0.05. OR1 is odds ratio using all tested autosomal genes (17 537), and OR2 is odds ratio using brain-expressed, autosomal genes (9835). P-values are from right-sided Fisher’s exact tests.

DISCUSSION
We performed a meta-analysis of local regulatory variation of 424 postmortem brain samples from five human brain eQTL studies. Our analysis of local eQTLs in this relatively large sample size allowed us to identify more eQTLs than those from individual studies.

Consistent with prior findings, we observed that local regulatory variants tend to occur symmetrically around transcription start sites, and effect was more evident in studies with large sample sizes. Significant eQTLs tended to be near 5'-untranslated regions.
Table 5. eQTL SNP clumping regions and brain diseases from the NHGRI GWAS catalog

Region	Allele	Other genes	SNP	P-value	Gene(s)
chr2:97351561–84	rs62152787	84 rs2271893	CNNM4, BIP	0.002058	22182935
chr3:52537969–42	rs11712872	42 hsa-mir-3127, MIR3127, LMAN2L, FER1L5, CNNM4	10 hsa-mir-135a-1, hsa-let7g, WDR82, TWF2, TNNC1, TLR9, STAB1, SEMA3G, PPM1M, PHF7, NISCH, MIRLET7G, MIR135A1, GLYCTK, DNAH1, BAP1, ALAS1	97476219	
chr3:52557969–42	rs1531681	12 chr6.tRNA62- SerGCT, ZNF193, ZNF187, ZKSCAN4, NKAPL, LOC222699	22037552 rs1635	7E−34 Mb	22535629 rs2335629
chr6:28162780–12	rs1531681	12 PLEKHM1, MIR4315-1, MIR4315-2, MGC57346, LRRC37A4, LOC644172, CRHR1, C17orf69	17_43543075	4.64E−9	43848638 rs116853553
chr15:78808235–20	PSMA4, CHRNB4, CHRNA5, CHRNA3, AGPHD1	78926018 rs11171739	PD rs12185268	3E−74 Mb	78826018 rs11171739 rs1635
chr17:43543075–217	PLEKHM1, MIR4315-1, MIR4315-2, MGC57346, LRRC37A4, LOC644172, CRHR1, C17orf69	43931907 rs116853553	1.03E−8	43931907 rs116853553	
mood disorders and bipolar disorder. Postmortem brain samples of bipolar disorder cases showed a pronounced decrease in the expression of nuclear genes regulating oxidative phosphorylation. Taken together, gene pathways or networks involving mitochondria function may have an etiological role for some psychiatric disorders.

There are several limitations of this study. First, more data are required. Our sample size was less than that required for confident local eQTL identification. Second, this investigation included only normal adult brain samples. Inclusion of data from cases with psychiatric disorders or from earlier developmental stages would likely be informative. Third, although consistent quality control steps were applied, different DNA and RNA platforms across studies may have impacted our findings. To evaluate the impact of between-study heterogeneity, we performed a random-effect meta-analysis using ‘REML’ method in metaphor R package (Supplementary File, http://cran.r-project.org/web/packages/metafor/index.html). We observed that the P-values from random-effect model tend to be larger than fixed-effect model. This is not surprising since fixed-effect models are known to produce tighter confidence intervals and more significant P-values than random-effect models in the presence of between-study heterogeneity. The genomic control inflation factors for the fixed-effect and random-effect analyses were 1.08 and 0.87, respectively. Top signals from random-effect model and fixed-effect model were quite different. Many significant SNP–gene pairs from fixed-effect model became nonsignificant via random-effect model. Small sample sizes, different expression platforms and unknown differences across our studies could possibly introduce such a large variation in effect sizes and thus inflated between-study heterogeneity. We need to be more cautious about interpretation of the fixed-effect results. On the other hand, there can be a large uncertainty in meta-analysis about the presence and the extent of between-study heterogeneity with limited number of studies. It was pointed out that strong inferences about heterogeneity or lack thereof should be avoided. Finally, analysis of postmortem human brain tissues face many challenges as we cannot fully control for all potential confounders that might have impacted the integrity of brain expression assessment (for example, antemortem history, medication use,licit or illicit substance use disorders, cause of death or postmortem delay).

Despite these limitations, the eQTLs and pathways identified in this investigation warrant further exploration as potential candidates involved in pathogenesis of psychiatric disorders. Annotating SNPs identified from GWAS of psychiatric disorders with brain eQTL information will be a valuable resource to characterize the functions of causal variants and generate testable hypotheses for the mechanism underlying GWAS findings.

CONFLICT OF INTEREST
Dr Sullivan was on the SAB of Expression Analysis (Durham, NC, USA). The remaining authors declare no conflict of interest.

ACKNOWLEDGMENTS
We thank Duan Qing and Yun Li for the help and support for genotypie imputation using MaCH-Admix. We also thank Wei Sun for the help in eQTL analysis. Funding for this project was from the US National Institutes of Health who had no role in the design, execution, analysis and manuscript preparation. This work was funded by grant #R01MH097283 (EvdO) from the National Institute of Mental Health.

AUTHOR CONTRIBUTIONS
All authors reviewed and approved the final version of the manuscript.

REFERENCES
1 World Health Organization. The Global Burden of Disease: 2004 Update. WHO Press: Geneva, Switzerland, 2008.
2 Collins PY, Patel V, Joestl SS, March D, Insel TR, Daar AS et al. Grand challenges in global mental health. Nature 2011; 475: 27–30.
3 Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012; 13: 537–551.
4 Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 2011; 43: 977–983.
5 Psychiatric GWAS Consortium Steering Committee. A framework for interpreting genome-wide association studies of psychiatric disorders. Mol Psychiatry 2009; 14: 10–17.
6 Psychiatric GWAS Consortium Coordinating Committee, Cichon S, Craddock N, Daly M, Faraone SV, Gejman PV et al. Genome-wide association studies: history, rationale, and prospects for psychiatric disorders. Am J Psychiatry. 2009; 166: 540–546.
7 Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012; 337: 1190–1195.
8 Cokus W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping complex disease traits with global gene expression. Nat Rev Genet 2009; 10: 184–194.
9 Majewski J, Pastinen T. The study of eQTL variation by RNA-seq from SNPs to phenotypes. Trends Genet 2011; 27: 72–79.
10 Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are likely to be more eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 2010; 6: e1000888.
11 Stranger BE, Montgomery SB, Dimas AS, Ptak R, Richardson JS, Kozlov MY et al. Patterns of cis regulatory variation in diverse human populations. PLoS Genet 2012; 8: e1002639.
12 Grundberg E, Small KS, Hedman AR, Nica AC, Bull A, Keldsøn S et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat Genet 2012; 44: 1084–1089.
13 Lango Allan H, Estrada K, Laitila G, Berndt SI, Weedon MN, Rivadeneira F et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 2010; 467: 832–838.
14 Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J et al. Genetics of gene expression and its effect on disease. Nature 2008; 452: 423–428.
15 de Jong S, van Eijk KR, Zeegers DW, Streeman T, Eijmond P, Veldink JH et al. Expression QTL analysis of top loci from GWAS meta-analysis highlights additional schizophrenia candidate genes. Eur J Hum Genet 2012; 20: 1004–1008.
16 Fransen K, Vischedijck MC, van Sommeren S, Fu JY, Franke L, Festen EA et al. Analysis of SNPs with an effect on gene expression identifies UBE2L3 and BCL3 as potential new risk genes for Crohn’s disease. Hum Mol Genet 2010; 19: 3482–3488.
17 Luo R, Sanders SJ, Tian Y, Voineagu I, Huang N, Chu SH et al. Genome-wide Transcriptome Profiling Reveals the Functional Impact of Rare De Novo and Recurrent CNVs in Autism Spectrum Disorders. Am J Hum Genet 2012; 91: 38–55.
18 Speliotes EK, Wilker CJ, Berndt SI, Monda KL, Thorleifsson G et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010; 42: 937–948.
19 Zeller T, Wild P, Szymczak S, Rotival M, Schlëffer A, Castagné R et al. Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS One 2010; 5: e10693.
20 Gamazon ER, Huang RS, Cox NJ, Dolan ME. Chemotherapeutic drug susceptibility associated SNPs are enriched in expression quantitative trait loci. Proc Natl Acad Sci USA 2010; 107: 9287–9292.
21 Thurman RE, Rynes E, Humbert R, Vierstra J, Maurows MT, Haugen E et al. The accessible chromatin landscape of the human genome. Nature 2012; 489: 75–82.
22 Degner JF, Pai AA, Pique-Regi R, Veyrieras JB, Gaffney DJ, Pickrell JK et al. DNaSe I sensitivity QTLs are a major determinant of human expression variation. Nature 2012; 482: 390–394.
23 Zou F, Chai HS, Younkin CS, Allen M, Crook J, Pankratz VS et al. Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants. PLoS Genet 2012; 8: e1002707.
24 Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A et al. Association scan of 14,500 non-synonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007; 39: 1329–1337.
25 Heinness EL, Ge D, Cronin KD, Maia JM, Shinna KV, Gabriel WN et al. Tissue-specific genetic control of splicing: implications for the study of complex traits. PLoS Biol 2008; 6: e1.
26 Myers AJ, Gibbs JR, Webster JA, Rohrer K, Zhao A, Marlowe L et al. A survey of genetic human cortical gene expression. Nat Genet 2007; 39: 1494–1499.
81 Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, Benita Y et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet 2011; 7: e1001273.

82 Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT. Mapping determinants of human gene expression by regional and genome-wide association. Nature 2005; 437: 1365–1369.

83 Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol 2008; 6: e107.

84 Chinnery PF. Searching for nuclear-mitochondrial genes. Trends Genet 2003; 19: 60–62.

85 Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M et al. Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 2008; 13: 293–307.

86 Cann O, Kovacs R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol 2007; 292: C641–C657.

87 Yankner BA, Lu T, Loerch P. The aging brain. Annu Rev Pathol 2008; 3: 41–66.

88 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.

89 Knoll N, Janick I, Volckmar AL, Klingenspor M, Illig T, Grallert H et al. Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity. PLoS One 2013; 8: e55884.

90 Ben-Shachar D. Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J Neurochem 2002; 83: 1241–1251.

91 Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM et al. Mitochondrial involvement in psychiatric disorders. Ann Med. 2008; 40: 281–295.

92 Szatkiewicz JP, O’Dushlaine C, Chen G, Chambert K, Moran JL, Neale BM et al. Copy number variation in schizophrenia in Sweden. Mol Psychiatry 2014; 19: 762–773.

93 Robicsek O, Karry R, Petit I, Salman-Kesner N, Muller FJ, Klein E et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry 2013; 18: 1067–1076.

94 Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 2012; 17: 290–314.

95 Siciliano G, Tessa A, Petrits S, Mancuso M, Bruno C, Grieco G et al. Autosomal dominant external ophthalmoplegia and bipolar affective disorder associated with a mutation in the ANT1 gene. Neuromuscul Disord 2003; 13: 162–165.

96 Bergemann ER, Boles RG. Maternal inheritance in recurrent early-onset depression. Psychiatr Genet 2010; 20: 31–34.

97 Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 2004; 61: 300–308.

98 Kavvoura FK, Ioannidis JP. Methods for meta-analysis in genetic association studies: a review of their potential and pitfalls. Hum Genet 2008; 123: 1–14.

99 Ioannidis JP, Patsopoulos NA, Evangelou E. Uncertainty in heterogeneity estimates in meta-analyses. BMJ 2007; 335: 914–916.

100 Ioannidis JP, Patsopoulos NA, Evangelou E. Heterogeneity in meta-analyses of genome-wide association investigations. PLoS One 2007; 2: e841.

101 Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539–1558.