AN INTRODUCTION TO THE BASIC REPRODUCTIVE NUMBER IN MATHEMATICAL EPIDEMIOLOGY

CIMPA SCHOOL 'Mathematical models in biology and medicine'
MAURITIUS, 2016

Antoine Perasso
Chrono-environnement Laboratory
University of Franche-Comté
CONTENTS

1 A BRIEF HISTORY OF R_0

2 A RECIPEE FOR R_0 CALCULATION

3 WHAT TO DO WITH A R_0?

4 MAIN DIFFICULTIES ARISING WITH STRUCTURED PDE MODELS
CONTENTS

1 A BRIEF HISTORY OF R_0

2 A RECIPEE FOR R_0 CALCULATION

3 WHAT TO DO WITH A R_0?

4 MAIN DIFFICULTIES ARISING WITH STRUCTURED PDE MODELS
Kermack-McKendrick SIR model

- 1905: plague epidemic in Mumbai

Figure: K.-McK. Proc. R. Soc. Lond. A (115), 1927

Question: How can we prevent such an epidemic?
Kermack-McKendrick SIR model

- 1927: first model to understand epidemic process

![SIR model diagram](image)

\[
\begin{align*}
\frac{dS(t)}{dt} &= -\beta S(t)I(t) \\
\frac{dI(t)}{dt} &= \beta S(t)I(t) - \gamma I(t) \\
\frac{dR(t)}{dt} &= \gamma I(t)
\end{align*}
\]

Question: Can we extract a tool to measure the disease risk?
At the early beginning...

1. A demographic concept [Böckh (1886) – Dublin & Lotka (1925)]:

\[\mathcal{R}_0 = \int_0^\infty P(a) \beta(a) \, da \]

2. Extension to epidemiology:
 - "Mosquitoe theorem" [Ross (1911)]
 - Pest epidemic in Mumbai [Kermack & McKendrick (1927)]
 - Link with demographic concept [MacDonald (1952)]

Epidemiological concept

\(\mathcal{R}_0 \): number of secondary infections resulting from a single primary infection into an otherwise susceptible population.

Why is \(\mathcal{R}_0 \) a threshold marker of epidemic? \(\rightarrow \) introduction of \(p \) infected individuals \(\Rightarrow (\mathcal{R}_0)^k p \) infected individuals after step \(k \).
... TO A MATHEMATICAL DEFINITION OF \mathcal{R}_0

Mathematical translation through dynamical systems
[Diekmann & Heersterbeck (1990)]

Mathematical translation

\mathcal{R}_0 : bifurcation threshold that ensures ($\mathcal{R}_0 < 1$) or not ($\mathcal{R}_0 > 1$) the stability of a specific equilibrium point, the disease-free equilibrium (DFE)

- Finite and infinite dimensional systems ;
- Determine the DFE ;
- Linked to spectral properties of the linearized problem about the DFE

Question : How can we calculate a \mathcal{R}_0 ?
CONTENTS

1. **A brief history of R_0**

2. **A recipee for R_0 calculation**

3. **What to do with a R_0 ?**

4. **Main difficulties arising with structured PDE models**
The next generation matrix

An efficient method for R_0 calculation in ODE epidemic models
[Van Den Driessche & Watmough (2002)]

$$\dot{x}(t) = f(x(t)), \quad x = (x_1, \ldots, x_p, x_{p+1}, \ldots, x_n)^T$$

$$f(x) = F(x) + \underbrace{V(x)}_{=(V_+ - V_-)(x)}$$

with

- F_i flux of newly infected
- V_i^+ (resp. V_i^-) other entering fluxes (resp. leaving fluxes)
The next generation matrix

With DFE \(x^* = (x_1^*, \ldots, x_p^*, 0, \ldots, 0) \),

\[
D_{x^*} \mathcal{F} = \begin{pmatrix} 0 & 0 \\ 0 & F \end{pmatrix}, \quad D_{x^*} \mathcal{V} = \begin{pmatrix} \Box & \Box \\ 0 & V \end{pmatrix}
\]

Theorem [Van Den Driessche & Watmough, Math. Biosci., 180 (2002)]

The \(R_0 \) value related to the epidemic system \(\dot{x}(t) = f(x(t)) \) is given by

\[
R_0 = \rho(-FV^{-1})
\]

Sketch of proof:

- \(-FV^{-1} \geq 0\) (Metzler matrices theory)
- the spectral radius is an eigenvalue (Perron-Frobenius theorem)
- linearization + Varga theorem
The next generation matrix

Some remarks:

- $-FV^{-1}$ is the "next generation matrix"
 → interpretation

- requires to determine the DFE x^*

- x^* is locally asymptotically stable when $\mathcal{R}_0 < 1$

- efficiency: reduction method!
CONTENTS

1 A BRIEF HISTORY OF R_0

2 A RECIPEEE FOR R_0 CALCULATION

3 WHAT TO DO WITH A R_0?

4 MAIN DIFFICULTIES ARISING WITH STRUCTURED PDE MODELS
What to do with a R_0?

R_0 utility through 4 examples:

1. Measure of epidemic risk & prediction
2. Control strategy ("herd immunity")
3. Impact of biodiversity on the disease dynamics
4. Extinction VS. persistence
Example 1: Measure of epidemic risk & prediction

SIR model of Kermack-McKendrick:

\[
\begin{align*}
S & \xrightarrow{\beta I} I \\
I & \xrightarrow{\gamma} R
\end{align*}
\]

SIR model:

\[
\begin{cases}
\frac{dS(t)}{dt} = -\beta S(t) I(t) \\
\frac{dI(t)}{dt} = \beta S(t) I(t) - \gamma I(t) \\
\frac{dR(t)}{dt} = \gamma I(t)
\end{cases}
\]

DFE \(x^* = (S^*, 0, 0) \), \(F = \beta S^* \), \(V = -\gamma \)

\[\mathcal{R}_0 = \frac{\beta S^*}{\gamma} \]
Example 1: Measure of epidemic risk & prediction

Figure: SIR model, simulation with $R_0 = 0.7$
Example 1: Measure of epidemic risk & prediction

Figure: SIR model, simulation with $R_0 = 0.9$
Example 1: Measure of epidemic risk & prediction

Figure: SIR model, simulation with $R_0 = 1$
Example 1: Measure of epidemic risk & prediction

Figure: SIR model, simulation with $R_0 = 1.5$
Example 1: Measure of epidemic risk & prediction

Figure: SIR model, simulation with $R_0 = 3$
Example 1: Measure of epidemic risk & prediction

Figure: SIR model, simulation with $R_0 = 5$
Example 1: Measure of epidemic risk & prediction

Figure: SIR model, simulation with $R_0 = 5$
Example 2: Control strategy

1- Malaria and Ross’ "Mosquito theorem"

Ross model

\[
\begin{align*}
\frac{dI_H(t)}{dt} &= ab_1 I_M \frac{H - I_H}{H} - \gamma I_H \\
\frac{dI_M(t)}{dt} &= ab_2 (M - I_M) \frac{I_M}{M} - \mu I_M
\end{align*}
\]

with

- \(H\) (resp. \(M\)) constant population of humans (resp. mosquitoes)
- \(I_H\) (resp \(I_M\)) number of infected humans (resp. mosquitoes)
- \(a\) number of bites / mosquito and time unit
- \(b_1\) proba that a bite generates a human infection
- \(b_2\) proba that a mosquito becomes infected
- \(1/\gamma\) infection period for human
- \(1/\mu\) mosquito lifespan
Example 2: Control strategy

DFE \((0, 0)\)

\[
F = \begin{pmatrix}
0 & ab_1 \\
\frac{ab_2 M}{H} & 0
\end{pmatrix}
\]

\[
V = \begin{pmatrix}
-\gamma & 0 \\
0 & -\mu
\end{pmatrix}
\]

\[
\mathcal{R}_0 = \rho(-FV^{-1}) = \sqrt{\frac{a^2 b_1 b_2 M}{\gamma \mu H}}
\]

→ Emphasizes the Ross' "Mosquitoe theorem"!
Example 2: Control strategy

DFE \((0, 0)\)

\[
F = \begin{pmatrix}
0 & ab_1 \\
\frac{ab_2 M}{H} & 0
\end{pmatrix}
\]

\[
V = \begin{pmatrix}
-\gamma & 0 \\
0 & -\mu
\end{pmatrix}
\]

\[
R_0 = \rho(-FV^{-1}) = \sqrt{\frac{a^2 b_1 b_2 M}{\gamma \mu H}}
\]

→ Emphasizes the Ross' "Mosquitoe theorem"!
Example 2: Control strategy

2- "Herd immunity" in disease vaccination

SEIS model - Assumptions:
- no vertical transmission
- exposure period
- no natural immunity
- healed become susceptible

\[\Lambda \]

\[S \] \[\beta I \] \[E \] \[\alpha \] \[I \] \[\mu \] \[\mu + \gamma \]
Example 2: Control strategy

SEIS model

\[
\begin{aligned}
\frac{dS(t)}{dt} &= \Lambda - \beta S(t)I(t) - \mu S(t) \\
\frac{dE(t)}{dt} &= \beta S(t)I(t) - (\alpha + \mu)E(t) \\
\frac{dI(t)}{dt} &= \alpha E - (\gamma + \mu)I(t)
\end{aligned}
\]

\[x^* = \left(\frac{\Lambda}{\mu}, 0, 0 \right)\] DFE

\[F = \begin{pmatrix} 0 & 0 \\ 0 & \frac{\beta \Lambda}{\mu} \\ 0 & -\frac{\beta \Lambda}{\mu} \end{pmatrix} \]

\[V = \begin{pmatrix} 0 & -\frac{\beta \Lambda}{\mu} \\ -\frac{\beta \Lambda}{\mu} & \alpha \\ -\frac{\beta \Lambda}{\mu} & \frac{\beta \Lambda}{\mu} \end{pmatrix} \]

\[R_0 = \rho(-FV^{-1}) = \frac{\alpha \beta \Lambda}{\mu(\mu + \alpha)(\mu + \gamma)}\]
Example 2: Control strategy

SEIS model

\[
\begin{align*}
\frac{dS(t)}{dt} &= (1 - \epsilon)\Lambda - \beta S(t)I(t) - \mu S(t) \\
\frac{dE(t)}{dt} &= \beta S(t)I(t) - (\alpha + \mu)E(t) \\
\frac{dI(t)}{dt} &= \alpha E - (\gamma + \mu)I(t)
\end{align*}
\]

\[x^* = \left(\frac{(1-\epsilon)\Lambda}{\mu}, 0, 0 \right) \text{ DFE}\]

\[F = \begin{pmatrix} 0 & 0 \\ 0 & \frac{\beta(1-\epsilon)\Lambda}{\mu} \end{pmatrix}\]

\[V = \begin{pmatrix} 0 & - (\alpha + \mu) \\ - (\gamma + \mu) & \alpha \end{pmatrix}\]

\[\tilde{R}_0 = (1 - \epsilon) R_0\]

Vaccination of a proportion \(\epsilon\) of new borns: \(\epsilon > 1 - \frac{1}{R_0} \Rightarrow \tilde{R}_0 < 1!\)
Disease	R_0	Herd immunity
Mumps	4-7	75-86 %
Polio	5-7	80-86 %
Small pops	5-7	80-85 %
Diphtheria	6-7	85 %
Rubella	6-7	83-85 %
Measles	12-18	83-94 %

Table: R_0 and herd immunity thresholds for vaccine-preventable diseases [Am. J. Prev. Med., 20 (2001)]
Table: \(R_0 \) and herd immunity thresholds for vaccine-preventable diseases [Am. J. Prev. Med., 20 (2001)]

Disease	\(R_0 \)	Herd immunity
Mumps	4-7	75-86 %
Polio	5-7	80-86 %
Small pops	5-7	80-85 %
Diphteria	6-7	85 %
Rubella	6-7	83-85 %
Measles	12-18	83-94 %

→ Eradication in 1977!
Example 3: Impact of biodiversity on the disease dynamics

Trophically transmitted parasite: *Echinococcus multilocularis*
Example 3: Impact of biodiversity on the disease dynamics

Echinococcus transmission model [Baudrot, Perasso, Fritsch & Raoul (2016)]

\[
\begin{align*}
\frac{dz_S}{dt} &= b_z z - \left(m_z + (b_z - m_z) \frac{z_S + z_I}{k_z} \right) z_S \\
\frac{dx_i S}{dt} &= b x_i - \left(m + (b - m) \frac{x_j S + x_j I}{k} \right) x_i S - \Phi_i(x_1, x_2) \frac{x_i S}{x_i} z \\
\frac{dz}{dt} &= - \left(m_z + (b_z - m_z) \frac{z_S + z_I}{k_z} \right) z_I \\
\frac{dx_i I}{dt} &= - \left(m + (b - m) \frac{x_j S + x_j I}{k} \right) x_i I - \Phi_i(x_1, x_2) \frac{x_i I}{x_i} z + z_I \Gamma_i x_i S
\end{align*}
\]
Example 3: Impact of biodiversity on the disease dynamics

Echinococcus transmission model [Baudrot, Perasso, Fritsch & Raoul (2016)]

\[
\begin{align*}
\frac{dz_S}{dt} &= b_z z - \left(m_z + (b_z - m_z) \frac{zS + zI}{k_z} \right) zS \\
\frac{dx_iS}{dt} &= bx_i - \left(m + (b - m) \frac{\sum x_jS + x_jI}{k} \right) x_iS - \Phi_i(x_1, x_2) \frac{x_iS}{x_i} z - zS \sum_i \eta_i \Phi_i(x_1, x_2) \frac{x_iS}{x_i} - \mu zI \\
\frac{dz_I}{dt} &= -\left(m_z + (b_z - m_z) \frac{zS + zI}{k_z} \right) zI + zS \sum_i \eta_i \Phi_i(x_1, x_2) \frac{x_iS}{x_i} - \mu zI \\
\frac{dx_iI}{dt} &= -\left(m + (b - m) \frac{\sum x_jS + x_jI}{k} \right) x_iI - \Phi_i(x_1, x_2) \frac{x_iS}{x_i} z + zI \Gamma_i x_iS
\end{align*}
\]
Example 3: Impact of biodiversity on the disease dynamics

Theorem [Baudrot et al., JTB, 397 (2016)]

1. existence of DFE \((z^*, x_1^*, x_2^*, 0, 0, 0)\)
2. Next generation matrix:

 \[
 -FV^{-1} = \begin{pmatrix}
 0 & \frac{\eta_1 z^* \Phi_1(x_1^*, x_2^*)}{x_1^* b} & \frac{\eta_2 z^* \Phi_2(x_1^*, x_2^*)}{x_2^* b} \\
 \frac{\Gamma_1 x_1^*}{b z + \mu} & 0 & 0 \\
 \frac{\Gamma_2 x_2^*}{b z + \mu} & 0 & 0
 \end{pmatrix}
 \]

3. Basic reproductive number:

 \[
 R_0 = \sqrt{\frac{z^*}{b(b z + \mu)}} \times (\eta_2 \Gamma_2 \Phi_2(x_1^*, x_2^*) + \eta_1 \Gamma_1 \Phi_1(x_1^*, x_2^*))
 \]

Sketch of proof:

- Model reduction with different time scales (parasite cycle VS. host dynamics)
- change of variables \((x_1, x_2) \mapsto \left(x_1 + x_2, \frac{x_1}{x_1 + x_2} \right)\) to get the DFE □
Example 3: Impact of biodiversity on the disease dynamics

Eco-epidemiological question: How variability in host competence impacts the parasite dynamics?

→ Density-dependant dilution of the parasite!

\[
R_0 = \sqrt{\frac{z^*}{b(b_z + \mu)}} \times (\eta_2 \Gamma_2 \Phi_2(x_1^*, x_2^*) + \eta_1 \Gamma_1 \Phi_1(x_1^*, x_2^*))
\]

Figure: Impact of prey availability on \(R_0\), with \(\Gamma_1 = \Gamma_2\) (left) and \(\Gamma_1 < \Gamma_2\) (right)
Example 3 : Impact of biodiversity on the disease dynamics

Eco-epidemiological question: How variability in host competence impacts the parasite dynamics?

→ **Density-dependant dilution of the parasite!**

\[
R_0 = \sqrt{\frac{z^*}{b(z + \mu)}} \times (\eta_2 \Gamma_2 \Phi_2(x_1^*, x_2^*) + \eta_1 \Gamma_1 \Phi_1(x_1^*, x_2^*))
\]

Figure: Impact of prey availability on \(R_0\), with \(\Gamma_1 = \Gamma_2\) (left) and \(\Gamma_1 < \Gamma_2\) (right)
Example 3: Impact of biodiversity on the disease dynamics

Eco-epidemiological question: How variability in host competence impacts the parasite dynamics?

→ The total of prey impacts the effect of biodiversity on the epidemic risk (dilution/amplification)
Example 3: Impact of biodiversity on the disease dynamics

Eco-epidemiological question: How variability in host competence impacts the parasite dynamics?

→ The total of prey impacts the effect of biodiversity on the epidemic risk (dilution/amplification)
Example 4: Extinction VS. persistence

The DFE is locally asymptotically stable whenever $R_0 < 1$ and unstable if $R_0 > 1$.

- Can we say more than "locally" when $R_0 < 1$?
- Persistence of the disease when $R_0 > 1$? \Rightarrow the instability of DFE is not enough!
- And what about $R_0 = 1$?

Definition (uniform persistence)

The disease is uniformly persistent if

$$\exists \varepsilon > 0, \forall I_0 > 0 \Rightarrow \liminf_{t \to +\infty} I(t) \geq \varepsilon.$$
Example 4: Extinction VS. persistence

The DFE is locally asymptotically stable whenever $R_0 < 1$ and unstable if $R_0 > 1$.

- Can we say more than "locally" when $R_0 < 1$?
- Persistence of the disease when $R_0 > 1$? \rightarrow the instability of DFE is not enough!
- And what about $R_0 = 1$?

Definition (uniform persistence)

The disease is uniformly persistent if

$$\exists \varepsilon > 0, \ \forall I_0 > 0 \Rightarrow \lim_{t \to +\infty} \inf I(t) \geq \varepsilon.$$
Example 4: Extinction VS. persistence

Global stability properties [Korobeinikov & Wake, (2002)]

\[
\begin{align*}
\frac{dS(t)}{dt} &= \Lambda - \beta S(t)I(t) - \mu_S S(t) \\
\frac{dI(t)}{dt} &= \beta S(t)I(t) - \mu_I I(t)
\end{align*}
\]

\[x^* = \left(\frac{\Lambda}{\mu_S}, 0 \right) \text{ DFE}\]

\[\bar{x} = \left(\frac{1}{R_0}, \frac{\mu_S}{\mu_I} \left(1 - \frac{1}{R_0}\right) \right) \text{ Endemic Equilibrium (EE) with}\]

\[R_0 = \frac{\beta \Lambda}{\mu_S \mu_I}\]

Theorem [Korobeinikov & Wake, Appl. Math. Lett., 15 (2002)]

- \(R_0 \leq 1 \Rightarrow \text{DFE is globally stable;}
- \(R_0 > 1 \Rightarrow \text{EE is globally stable}\)

Remark: uniform persistence when \(R_0 > 1\)!
Example 4: Extinction VS. persistence

Idea of the proof: use of Lyapunov functions

\[L(S, I) = \bar{S}g\left(\frac{S}{\bar{S}}\right) + \bar{I}g\left(\frac{I}{\bar{I}}\right) \]

with the key function \(g(z) = z - 1 - \ln(z) \). \(L \) satisfies

- \(L \) is definite positive
- \(\|(S, I)\| \to \infty \Rightarrow L(S, I) \to \infty \)
- \(\frac{d[L(S(t), I(t)]}{dt} < 0 \)

Theorem of Lyapunov \(\Rightarrow \) global stability

Some extensions:

- SIR, SIRS and SIS [Korobeinikov & Wake]
- Multi-strains SIR, SIS models [Bichara, Iggidr & Sallet (2014)]
CONTENTS

1. A BRIEF HISTORY OF \mathcal{R}_0

2. A RECIPEE FOR \mathcal{R}_0 CALCULATION

3. WHAT TO DO WITH A \mathcal{R}_0?

4. MAIN DIFFICULTIES ARISING WITH STRUCTURED PDE MODELS
SI structured models in epidemiology

→ population structured according to variable of
 - age of infection
 - immunity level
 - infection load
 - time before detection...

in
 - the transmission process
 - the evolution of the disease

Applications: nosocomial infections, HIV, salmonella, BSE-Bovine Spongiform Encephalopathy, Scrapie, CWD-Chronic Wasting Disease, Influenza...

References: Diekmann & Heesterbeek, Gurtin & MacCamy, Ianelli, Magal, Thieme, Webb, Laroche & Perasso...
SI structured models in epidemiology

Infection load-structured model

* infection load $i \geq i^-$
* evolution $\frac{di}{dt} = \sigma(i)$

\[
\begin{align*}
\frac{dS}{dt} &= \gamma - \mu_0 S - \Theta(t, S(t)) - S\mathcal{H}(I) \\
\frac{\partial I(t,i)}{\partial t} + \frac{\partial (\sigma(i) I(t,i))}{\partial i} &= -\mu(i)I + \Phi(i)S(t)\mathcal{H}(I) \\
\sigma(i^-)I(t,i^-) &= \Theta(t, S(t)) \\
\end{align*}
\]

with $\mathcal{H}(I) = \int_{i^-}^{+\infty} \beta(i) I(t,i) di$

Theorem [Perasso & Razafison, Siam J. Appl. Math., 74(5) (2014)]

For $\Theta \equiv 0$ and $\sigma(i) = \nu i$,

\[
R_0 = \frac{\gamma}{\mu_0} \int_{i^-}^{+\infty} \frac{1}{\nu i} \int_{i^-}^{i} \Phi(s) e^{-\int_{s}^{i} \frac{\mu(l)}{\nu l} dl} ds
\]
SI structured models in epidemiology

Infection load-structured model

* infection load $i \geq i^-$
* evolution $\frac{di}{dt} = \sigma(i)$

\[
\begin{aligned}
\frac{dS}{dt} &= \gamma - \mu_0 S - \Theta(t, S(t)) - S \mathcal{H}(I) \\
\frac{\partial I(t,i)}{\partial t} + \frac{\partial (\sigma(i)I(t,i))}{\partial i} &= -\mu(i)I + \Phi(i)S(t)\mathcal{H}(I) \\
\sigma(i^-)I(t,i^-) &= \Theta(t, S(t))
\end{aligned}
\]

with $\mathcal{H}(I) = \int_{i^-}^{+\infty} \beta(i)I(t,i)di$

Theorem [Perasso & Razafison, Siam J. Appl. Math., 74(5) (2014)]

For $\Theta \equiv 0$ and $\sigma(i) = \nu i$,

\[
\mathcal{R}_0 = \frac{\gamma}{\mu_0} \int_{i^-}^{+\infty} \frac{1}{\nu i} \int_{i^-}^{i} \Phi(s)e^{-\int_{s}^{i} \frac{\mu(l)}{\nu l} dl} ds
\]
WHAT IS DIFFERENT?

The structure variable implies to deal with infinite dimensional systems!

So, if we want to apply the next generation matrix method...

- requires a suitable theoretical framework (functional spaces)
- no matrices but differential operators
- the spectral properties are different (essential spectrum)
- the expression of R_0 depends on the structure variable
- the local stability properties through linearization fail
- global stability: infinite dimensional Lyapunov functions (global attractor, but the stability fails \Rightarrow Lasalle invariance principle)

But some results...

- age of infection models: local stability of DFE [Castillo-Chavez & Feng (1998)]; global stability of DFE & of EE [Magal, McCluskey & Webb (2010-2013)]
- infection load models (with exponential growth): local stability of DFE & EE [Perasso & Razafison (2014)]
- two structuring variables: global stability of the DFE [Laroche & Perasso (2016)]
THANK YOU!