Yoonweon Lee

March 5, 1995

Abstract. The purpose of this note is to provide a short cut presentation of a Mayer-Vietoris formula due to Burghelea-Friedlander-Kappeler for the regularized determinant in the case of elliptic operators of Laplace Beltrami type in the form typically needed in applications to torsion.

1. Statement of Mayer-Vietoris Formula for Determinants

Let \((M,g)\) be a closed oriented Riemannian manifold of dimension \(d\) and \(\Gamma\) be an oriented submanifold of codimension 1. We denote by \(\nu\) the unit normal vector field along \(\Gamma\). Let \(M_\Gamma\) be the compact manifold with boundary \(\Gamma^+ \sqcup \Gamma^-\) obtained by cutting \(M\) along \(\Gamma\), where \(\Gamma^+\) and \(\Gamma^-\) are copies of \(\Gamma\) and denote by \(p: M_\Gamma \to M\) the identification map. The vector field \(\nu\) has the lift on \(M_\Gamma\) which we denote by \(\tilde{\nu}\) again. Denote by \(\Gamma^+\) the component of the boundary where the lift of \(\nu\) points outward. Given a smooth vector bundle \(E \to M\), denote by \(E_\Gamma\) the pull back of \(E \to M\) to \(M_\Gamma\) by \(p\). Let \(A: C^\infty(E) \to C^\infty(E)\) be an elliptic, essentially self-adjoint, positive definite differential operator of Laplace-Beltrami type, where we say that \(A\) is of Laplace-Beltrami type if \(A\) is an operator of order 2 whose principal symbol is \(\sigma_L(x,\xi) = \|\xi\|^2 Id_x\), \(Id_x \in \text{End}_{x}(E_x,E_x)\). We denote by \(A_{\Gamma,B}: C^\infty(E_\Gamma) \to C^\infty(E_\Gamma) \oplus C^\infty(E_\Gamma |_{\Gamma^+ \sqcup \Gamma^-})\) the extension of \(A\) to smooth sections of \(E_\Gamma\).

Consider Dirichlet and Neumann boundary conditions \(B, C\) on \(\Gamma^+ \sqcup \Gamma^-\) defined as follows:

\[
B: C^\infty(E_\Gamma) \to C^\infty(E_\Gamma |_{\Gamma^+ \sqcup \Gamma^-}), B(f) = f |_{\Gamma^+ \sqcup \Gamma^-}
\]

\[
C: C^\infty(E_\Gamma) \to C^\infty(E_\Gamma |_{\Gamma^+ \sqcup \Gamma^-}), C(f) = \nu(f) |_{\Gamma^+ \sqcup \Gamma^-}.
\]

Consider \(A_{\Gamma,B}^{-1} = (A_{\Gamma,B})^{-1} : C^\infty(E_\Gamma) \oplus C^\infty(E_\Gamma |_{\Gamma^+ \sqcup \Gamma^-}) \to 0\). From the properties of \(A\) it follows that \(A_{\Gamma,B}^{-1}\) is invertible. Therefore we can define the corresponding Poisson operator \(P_B\) as the restriction of \(A_{\Gamma,B}^{-1}\) to \(0 \oplus C^\infty(E_\Gamma |_{\Gamma^+ \sqcup \Gamma^-})\). Denote by \(A_B\) the restriction of \(A_{\Gamma,B}^{-1}\) on \(\{u \in C^\infty(E_\Gamma) \mid B(u) = 0\}\). Then \(A_B\) is also essentially self-adjoint and positive definite (cf Lemma 3.1). This (using standard analytic continuation technique due to Seeley (cf.[Se])) allows us to define

\[
\log\text{Det}(A) = -\frac{d}{ds} \bigg|_{s=0} tr \frac{1}{2\pi i} \int_{\gamma} \lambda^{-s}(\lambda - A)^{-1} d\lambda
\]
\[\log \text{Det}(A_\Gamma, B) = -\frac{d}{ds} \bigg|_{s=0} \frac{1}{2\pi i} \int_\gamma \lambda^{-s}(\lambda - A_B)^{-1} d\lambda, \]

where \(\gamma \) is a path around the negative real axis,

\[\{\rho \mathrm{e}^{i\pi} \mid \infty > \rho \geq \epsilon\} \cup \{\epsilon \mathrm{e}^{i\theta} \mid \pi \geq \theta \geq -\pi\} \cup \{\rho \mathrm{e}^{-i\pi} \mid \epsilon \leq \rho < \infty\} \]

with \(\epsilon > 0 \) chosen sufficiently small to ensure that \(\Gamma \) does not separate the spectrum.

We define the Dirichlet to Neumann operator, associated to \(A, B \) and \(C \),

\[R : C^\infty(E \mid \Gamma) \to C^\infty(E \mid \Gamma) \]

by the composition of the following maps

\[C^\infty(E \mid \Gamma) \xrightarrow{\Delta_{\alpha}} C^\infty(E \mid \Gamma^+) \oplus C^\infty(E \mid \Gamma^-) \xrightarrow{P_B} C^\infty(E_{\Gamma}) \xrightarrow{C} C^\infty(E \mid \Gamma^+) \oplus C^\infty(E \mid \Gamma^-) \xrightarrow{\Delta_{if}} C^\infty(E \mid \Gamma), \]

where \(\Delta_{\alpha}(f) = (f, f) \) is the diagonal inclusion and \(\Delta_{if}(f, g) = f - g \) is the difference operator. Then \(R \) is an essentially self-adjoint, positive definite, elliptic operator of order 1 (cf Lemma 3.5).

Theorem 1.1 (Mayer-Vietoris Type Formula for Determinants [BFK]).

Let \((M, g) \) be a closed oriented Riemannian manifold of dimension \(d \) and \(A \) be an elliptic, essentially self-adjoint, positive definite differential operator of Laplace-Beltrami type acting on smooth sections of a vector bundle \(E \to M \). Then \(A_B \) and \(R \) are essentially self-adjoint, positive definite elliptic operators and

\[\text{Det}(A) = c \text{Det}(A_\Gamma, B) \text{Det}(R), \]

where \(c \) is a local quantity which can be computed in terms of the symbols of \(A, B \) and \(C \) along \(\Gamma \).

Remark: The above result can be extended to manifolds with boundary. E.g. consider an oriented, compact, smooth manifold \(M \) whose boundary \(\partial M \) is a disjoint union of two components \(\partial_+ M \) and \(\partial_- M \) with \(\Gamma \cap \partial M = \emptyset \), an operator \(A \) of Laplace-Beltrami type and differential elliptic boundary conditions \(B_+ \) respectively \(B_- \) for \(A \) on \(\partial_+ M \) respectively \(\partial_- M \). Denote by \(A^{(0)} \) the operator \(A \) with domain \(\{u \in C^\infty(E) \mid B_+ u = 0, B_- u = 0\} \). Then Theorem 1.1 remains true with \(A \) replaced by \(A^{(0)} \).

2. The Asymptotics of Determinants of Elliptic Pseudodifferential Operators with Parameter

Let \(V \) be an open angle in the complex \(\lambda \)-plane and \(\mathcal{P}(\lambda), \lambda \in V \), a family of \(\Psi \text{DO} \)'s of order \(m \), \(m \) a positive integer, acting on smooth sections of a vector bundle \(E \to M \) of rank \(\nu \), where \(M \) denotes a closed smooth Riemannian manifold of dimension \(d \).

Definition 2.1. (cf.[Sh]) The family \(\mathcal{P}(\lambda), \lambda \in V \), is said to be a \(\Psi \text{DO} \) with parameter of weight \(\chi > 0 \) if in any coordinate neighborhood \(U \) of \(M \), \(M \) necessarily connected, and for an arbitrarily fixed \(\lambda \in V \), the complete symbol \(p(\lambda; x, \xi) \) of \(P \) is in \(C^\infty(U \times \mathbb{R}^d, \text{End}(\mathbb{C}^\nu)) \) and, moreover, for any multiindices \(\alpha \) and \(\beta \), there exists a constant \(C_{\alpha, \beta} \) such that

\[|\partial^\alpha_{\xi} \partial^\beta_{\xi} p(\lambda; x, \xi) | \leq C_{\alpha, \beta} (1 + |\xi| + |\lambda|^{\frac{1}{d}})^{m-|\alpha|}. \]
Definition 2.2. \(P(\lambda)\) is called classical if in any chart the complete symbol
\[p(\lambda; x, \xi) \]
admits an expansion of the form
\[p(\lambda; x, \xi) \sim p_m(\lambda; x, \xi) + p_{m-1}(\lambda; x, \xi) + \cdots, \]
where \(p_j(\tau^x\lambda; x, \tau\xi) = \tau^j p_j(\lambda; x, \xi)(\tau > 0, j \leq m)\). The family \(P(\lambda)\) is said to be
elastic with parameter if \(p_m(\lambda; x, \xi)\) is invertible for all \(x \in M, \xi \in T^*_x(M)\) and
\(\lambda \in V\) satisfying \(|\xi| + |\lambda|^{-\frac{1}{2}} \neq 0\).

Definition 2.3. Let \(Q\) be an elliptic \(\Psi DO\). The angle \(\pi\) is called an Agmon angle
for \(Q\) if for some \(\epsilon > 0\), \(\text{spec}(Q) \cap \Lambda_\epsilon = \emptyset\), where \(\text{spec}(Q)\) denotes the spectrum of
\(Q\) and \(\Lambda_\epsilon = \{z \in \mathbb{C} | \pi - \epsilon < \arg(z) < \pi + \epsilon \text{ or } |z| < \epsilon\}\).

Theorem 2.4. Let \(P(\lambda)\) be an essentially self-adjoint, positive definite, classical
\(\Psi DO\) of order \(m \in \mathbb{N}\) with parameter \(\lambda \in V\) of weight \(\chi > 0\) such that
(i) \(P(\lambda)\) is elliptic with parameter and
(ii) for each \(\lambda \in V\), \(P(\lambda)\) has \(\pi\) as an Agmon angle.

Then \(\log \text{Det}P(\lambda)\) admits an asymptotic expansion for \(\lambda \in V\), \(|\lambda| \to \infty\), of the form
\[\log \text{Det}P(\lambda) \sim \sum_{j=-d}^{\infty} \pi_j |\lambda|^{-\frac{j}{\chi}} + \sum_{j=0}^{d} q_j |\lambda|^{\frac{j}{\chi}} \log |\lambda|. \]

The coefficients \(\pi_j\) and \(q_j\) can be evaluated in terms of the symbol of \(P\) and \(\frac{\lambda}{|\lambda|}\). In
particular, \(\pi_0\) is independent of perturbations by lower order operators, whose
orders differ at least by \(d + 1\) from the order of \(P(\lambda)\).

For the convenience of the reader we include the proof of this theorem which can be
found in the appendix of [BFK].

Proof of Theorem 2.4 We divide the proof into several steps.

Step 1 By a standard procedure we construct a parametrix for
\(R(\mu, \lambda) = (\mu - P(\lambda))^{-1}(\mu \leq 0)\).

Step 2 Define \(R_N(\mu, \lambda)\) to be a conveniently chosen approximation of \(R(\mu, \lambda)\) and
write \(P(\lambda)^{-s} = P_N(\lambda; s) + \tilde{P}_N(\lambda; s)\), where \(P_N(\lambda; s) = \frac{1}{2\pi i} \int_\gamma \mu^{-s}R_N(\mu, \lambda)d\mu\)
and where \(\gamma\) denotes a contour around the negative axis, enclosing the origin in
clockwise orientation. Then for \(s \in \mathbb{C}\) with \(\text{Re} s\) sufficiently large,
\(\zeta(s) = \zeta_N(s) + \tilde{\zeta}_N(s)\), where \(\zeta(s) = \text{tr}P(\lambda)^{-s}, \zeta_N(s) = \text{tr}P_N(\lambda, \lambda), \text{and } \tilde{\zeta}_N(s) = \text{tr}\tilde{P}_N(\lambda, \lambda)\).

Step 3 Describe an asymptotic expansion of \(\frac{\partial}{\partial s} |_{s=0} \zeta_N(\lambda, s)\) as \(\lambda \to \infty\).

Step 4 Provide an estimate for the remainder term \(\frac{\partial}{\partial s} |_{s=0} \tilde{\zeta}_N(\lambda, s)\) as \(\lambda \to \infty\).

Step 5 Provide a formula for \(\pi_0\).

Step 1 We want to construct a parametrix for \(R(\mu, \lambda) = (\mu - P(\lambda))^{-1}(\mu \leq 0)\). Consider the equation
\((\mu - P(\lambda; x, \xi)) \circ r(\mu, \lambda; x, \xi) = \text{Id}\), where \(\circ\) denotes
multiplication in the algebra of symbols.

Introduce, for \(\alpha = (\alpha_1, \cdots, \alpha_d)\), the standard notation \(\alpha! = \alpha_1! \cdots \alpha_d!\),
\(\partial^\alpha = (\frac{\partial}{\partial \xi})^{\alpha_1} \cdots (\frac{\partial}{\partial \xi})^{\alpha_d}\) and
\(D^\alpha = (\frac{1}{i})^\alpha \partial^\alpha \xi\).

Write \(r(\mu, \lambda; x, \xi) \sim r_{-m}(\mu, \lambda; x, \xi) + r_{-m-1}(\mu, \lambda; x, \xi) + \cdots\), where \(r_j(\mu, \lambda; x, \xi)\)
is positive homogeneous of degree \(-j\) in \((\xi, \mu^\frac{1}{N}, \lambda^\frac{1}{N})\). Then we obtain the following
formula:
\[r_{-j}(\mu, \lambda; x, \xi) = (\mu - p_j(\lambda; x, \xi))^{-1}. \]
and for \(j \geq 1, \)
\[
r_{-m-j}(\mu, \lambda; x, \xi)
= -(\mu - p_m(\lambda; x, \xi))^{-1} \sum_{k=0}^{j-1} \sum_{|\alpha|+l+k=j} \frac{1}{\alpha!} \partial_{\xi}^\alpha p_{m-l}(\lambda; x, \xi) D_x^\alpha r_{-m-k}(\mu, \lambda; x, \xi).
\]

The functions \(r_j(\mu, \lambda; x, \xi) \) satisfy the following homogeneity condition
\[
r_j(\tau^m \mu, \tau^\lambda \lambda; x, \tau \xi) = \tau^j r_j(\mu, \lambda; x, \xi)(\tau > 0).
\]

By a standard procedure, \(\sum_{j \geq 0} r_{-m-j}(\mu, \lambda; x, \xi) \) gives rise to a \(\Psi \)DO with parameter, called a parametrix for \(R(\mu, \lambda). \)

Step 2 Introduce a finite cover \((U_j) \) of \(M \) by open charts and take a partition of unity \(\varphi_j \), subordinate to \(U_j \). Choose \(\psi_j \in C_0^\infty(U_j) \) such that \(\psi_j \equiv 1 \) in some neighborhood of \(\text{supp} \varphi_j \). Let us fix local coordinates in every \(U_j \) and define the operators
\[
(R^{(j)}_{N, \mu, \lambda} f)(x) = \psi_j(x) \cdot \int_{\mathbb{R}^d} \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} dy \left(r^{(N)}(\mu, \lambda; x, \xi) e^{i(x-y) \cdot \xi} \varphi_j(y) f(y) \right),
\]
where \(r^{(N)}(\mu, \lambda; x, \xi) = \sum_{j=0}^{N-1} r_{-m-j}(\mu, \lambda; x, \xi) \) in the local coordinates of \(U_j \). The approximation \(R_N(\mu, \lambda) \) of the resolvent \(R(\mu, \lambda) \) is defined by \(R_N(\mu, \lambda) = \sum_j R^{(j)}_{N, \mu, \lambda} \). We need an estimate of \(R(\mu, \lambda) - R_N(\mu, \lambda) \) in trace norm. The latter is denoted by \(\| \cdot \| \).

Lemma 2.5. Choose \(N > \frac{3d}{2} + m \). Then for \(\lambda \in V_1 \) and \(\mu \in \mathbb{R}^- \) with \(|\mu| \) sufficiently large
\[
\| R(\mu, \lambda) - R_N(\mu, \lambda) \| < C_N(1+|\lambda|)^{(N-\frac{3d}{2}-m)}(1+|\lambda|)^{-2},
\]
where \(V_1 \) is an angle whose closure is contained in \(V, V_1 \ll V \).

Proof. Define \(T_N(\mu, \lambda) \) by \((\mu - P(\lambda)) R_N(\mu, \lambda) = Id - T_N(\mu, \lambda) \). From \((\mu - P(\lambda)) - R(\mu, \lambda) = Id - T_N(\mu, \lambda) \), we then conclude that \(R(\mu, \lambda) - R_N(\mu, \lambda) = R(\mu, \lambda) T_N(\mu, \lambda) \).

The claimed estimate of the lemma follows, once we have proved that for some \(\tau > d \)
\[
\| R(\mu, \lambda) \|_{L^2 \to L^2} \leq C(1+|\mu|)^{-1} \tag{2.1}
\]
\((\lambda \in V_1 \ll V, \mu \in \mathbb{R}^-, |\mu| \) sufficiently large\) and
\[
\| T_N(\mu, \lambda) \|_{L^2 \to H^\tau} \leq C(1+|\lambda|^{\frac{1}{\lambda}} + |\mu|^{\frac{1}{\mu}})^{-N+\tau} \tag{2.2}
\]
because, from (2.2) we can conclude that \(T_N(\mu, \lambda) \) is a \(\Psi \)DO of order \(-\tau < -d\) and hence of trace class, when considered as an operator on \(L^2\)-sections of \(E \to M \). The estimate (2.1) is standard (cf.e.g.[Sh]) and (2.2) follows from the fact that the symbol \(t_N(\mu, \lambda; x, \xi) \) of \(T_N(\mu, \lambda) \) satisfies
\[
| D_x^\alpha D_\xi^{\beta} t_N(\mu, \lambda; x, \xi) | \leq C_{\alpha\beta}(1+|\xi| + |\lambda|^{\frac{1}{\lambda}} + |\mu|^{\frac{1}{\mu}})^{-N+|\beta|}.
\]
Thus the norm of \(T_N(\mu, \lambda) \) as an operator from \(H^s \) to \(H^{s+\tau} \) is
\[
O(1+|\lambda|^{\frac{1}{\lambda}} + |\mu|^{\frac{1}{\mu}})^{-N+\tau},
\]
Therefore

\[\| T_N \| = O(1 + |\lambda|^{d/2} + |\mu|^{d/2})^{-N + \frac{2d}{2}.} \]

\[\square \]

Step 3 Next we study the asymptotic expansion of \(\frac{\partial}{\partial s} |_{s=0} \zeta_N(\lambda, s) \) as \(\lambda \to +\infty \). Recall that \(P_N(\lambda, s) = \frac{1}{2\pi i} \int_{\gamma} d\mu \mu^{-s} R_N(\mu, \lambda) \). Its Schwarz kernel is given by

\[P_N(\lambda, s; x, y) = \sum_j \psi_j(x) \varphi_j(y) \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} d\xi e^{i(x-y) \xi} \frac{1}{2\pi i} \int_{\gamma} d\mu \mu^{-s} \sum_{k=0}^{N-1} r_{m-k}. \]

As a consequence

\[P_N(\lambda, s; x, x) = \sum_j \varphi_j(x) \frac{1}{(2\pi)^d} \sum_{k=0}^{N-1} I_k(s, \lambda, x) = \frac{1}{(2\pi)^d} \sum_{k=0}^{N-1} I_k(s, \lambda, x), \]

where \(I_j(s, \lambda, x) = \frac{1}{2\pi i} \int_{\mathbb{R}^d} d\xi \int_{\gamma} d\mu \mu^{-s} r_{m-j}(\mu, x, \xi) \). By the change of variables \(\xi = |\lambda|^{\frac{1}{m'}} \xi', \mu = |\lambda|^{\frac{1}{m}} \mu' \) and by using the homogeneity of \(r_{m-j} \), we obtain

\[I_j(s, \lambda, x) = \frac{1}{2\pi i} |\lambda| \int_{\mathbb{R}^d} d\xi \int_{\gamma} d\mu \mu^{-s} r_{m-j}(\mu, \lambda^{1/m} x; \xi). \]

We need to investigate \(J_k(s, \omega; x) := \frac{1}{2\pi i} \int_{\mathbb{R}^d} d\xi \int_{\gamma} d\mu \mu^{-s} r_{m-k}(\mu, \lambda^{1/m} x; \xi) \).

Lemma 2.6. Let \(\omega \in V \) with \(|\omega| = 1 \). Then \(J_k(s, \omega; x) \) is holomorphic in \(s \) in the half plane \(\text{Res} > \frac{d-k}{m} \) and it admits a meromorphic continuation in the complex \(s \)-plane. The point \(s=0 \) is always regular and \(J_k(0, \omega; x) = 0 \) if \(k > d \).

Proof. (i) Integrating by parts with respect to \(\mu \), one obtains

\[J_k(s, \omega; x) = \int_{\mathbb{R}^d} d\xi \frac{1}{(1-s)\cdots(l-s)} \frac{1}{2\pi i} \int_{\gamma} (-1)^l d\mu \mu^{-s+l} \frac{\partial^l}{\partial \mu^l} r_{m-k}(\mu, \omega; x, \xi). \]

If \(l > \text{Res} - 1 \), the contour integral reduces to

\[-\frac{\sin \pi s}{\pi} \int_0^{\infty} d\mu \mu^{-s+l} \frac{\partial^l}{\partial \mu^l} r_{m-k}(-\mu, \omega; x, \xi). \]

Further, the matrix \(\frac{\partial^l}{\partial \mu^l} r_{m-k} \) can be estimated

\[|\frac{\partial^l}{\partial \mu^l} r_{m-k}| \leq C(1 + |\mu|^{\frac{1}{m}} + |\xi|^{\frac{m}{m-k}})^{m-k-m}. \]

Thus, for \(\text{Res} > \frac{d-k}{m} \), the integral

\[\int d\xi \int_0^{\infty} d\mu \mu^{-s+l} \left(\frac{\partial^l}{\partial \mu^l} r_{m-k} \right)(-\mu, \omega; x, \xi). \]
converges absolutely and therefore is a holomorphic function in s. Moreover,
\[-\frac{\sin\pi s}{\pi(1-s)\cdots(l-s)}\] is entire. In all, we have proved that $J_k(s,\lambda;x)$ is holomorphic in $Res > \frac{d-m}{k}$.

(ii) Next let us prove that $J_k(s,\lambda;x)$ can be meromorphically continued to the entire complex s-plane. To keep the exposition simple let us assume that $P(\lambda)$ is a scalar ΨDO. The expressions $r_{-m-k}(\mu,\omega;x,\xi)$ have been defined in a recursive fashion and are sums of terms of the form $(\mu - p_m(\omega;x,\xi))^{-l}q_{l,k}(\omega;x,\xi)$ with $l \geq 1$, where $\text{ord}(q_{l,k}) = -m-k+ml$ and $q_{l,k}$ is an expression, independent of μ, involving only the symbols $p_{m-j}(\omega;x,\xi)$ and their derivatives with $0 \leq j \leq k$.

It follows from the recursive definition of the r_{-m-k} that l has to satisfy $l \geq k+1$ and thus, in the case $k \geq 1$, J_k consists of a sum of terms of the form

$$
\int_{\mathbb{R}^d} d\xi q_{l,k}(\omega;x,\xi) \frac{1}{2\pi i} \int_{\gamma} d\mu \mu^{-s}(\mu - p_m(\omega;x,\xi))^{-l}
$$

$$
= \left(\int_{\mathbb{R}^d} d\xi q_{l,k}(\omega;x,\xi)(p_m(\omega;x,\xi))^{-s-l+1} \right) \left(\frac{(-1)^{l-1}}{(l-1)!} s(s+1)\cdots(s+l-2) \right),
$$

where after integration by parts, we used Cauchy’s formula. As $|\omega|=1$, it follows from Definition 2.1 that the integrand $q_{l,k}(\omega;x,\xi)p_m(\omega;x,\xi)^{-s-l+1}$ is absolutely integrable in $|\xi| \leq 1$. Thus one only needs to consider the integral over $|\xi| > 1$. For ω fixed, the symbols $q_{l,k}$ and p_m are classical and admit an asymptotic expansion in ξ-homogeneous functions. Consider two cases:

Case 1: $k = 0$.

Using that $r_{-m}(\mu,\omega;x,\xi) = (\mu - p_m(\omega;x,\xi))^{-1}$ we conclude that

$$
J_0(s,\omega;x) = \int_{\mathbb{R}^d} d\xi \frac{1}{2\pi i} \int_{\gamma} d\mu \mu^{-s}(\mu - p_m(\omega;x,\xi))^{-1} = \int_{\mathbb{R}^d} d\xi(p_m(\omega;x,\xi))^{-s}.
$$

Recall that ω with $|\omega|=1$ is fixed and thus $p_m(\omega;x,\xi)$ defines an elliptic ΨDO $P_m(\omega;x,D)$ and we can apply the standard theory of complex powers of elliptic operators (cf.e.g.[Se]) to conclude that $\int_{\mathbb{R}^d} d\xi p_m(\omega;x,\xi)^{-s}$ has a meromorphic continuation in the whole complex s-plane, with at most simple poles and that $s=0$ is a regular point. The poles are located at $s_j = \frac{d-j}{m}$ with $j \in \{0,1,2,\ldots\} \setminus \{d\}$.

Case 2: $k \geq 1$.

As it was observed by Guillemin [Gu] and Wodzicki [Wo] in the context of non-commutative residues, $\int_{\mathbb{R}^d} q_{l,k}(\omega;x,\xi)(p_m(\omega;x,\xi))^{-s-l+1}d\xi$ admits a meromorphic continuation to the whole complex s-plane with at most simple poles. Thus $s \cdot \int_{\mathbb{R}^d} d\xi q_{l,k}(\omega;x,\xi)(p_m(\omega;x,\xi))^{-s-l+1}$ must be regular at $s=0$. This shows that $J_k(s,\omega;x)(k \geq 1)$ is meromorphic and that $s=0$ is a regular point.

(iii) Let $k > d+1-m$. Observe that

$$
| r_{-m-k}(\mu,\omega;x,\xi) | \leq C_k(1+|\mu|^{\frac{1}{d}} + |\xi|)^{-m-k}.
$$

As $m \geq 1$, the integral $J_k(s,\omega;x) = \frac{1}{2\pi i} \int_{\mathbb{R}^d} d\xi \int_{\gamma} d\mu \mu^{-s} r_{-m-k}(\mu,\omega;x,\xi)$ converges absolutely at $s=0$. Evaluating at $s=0$, one obtains $\int_{\gamma} d\mu r_{-m-k}(\mu,\omega;x,\xi) = 0$ and thus $J_k(0,\omega;x) = 0$ for $k > d$. □

By the above lemma, we see that

$$
P_N(\lambda,s;x,x) = \frac{1}{(2\pi)^d} \sum_{k=1}^{N-1} \lambda^{\left(\frac{d-m-k}{1+k}\right)} J_k(s,\frac{\lambda}{1+k};x).
$$
Hence, with $N^* = \min(N - 1, d)$,

$$\frac{\partial}{\partial s} \mid_{s=0} P_N(\lambda, s; x, x) = \frac{1}{(2\pi)^d} \sum_{k=0}^{N-1} \lambda^{d-k} \frac{\partial}{\partial s} J_k(s, \frac{\lambda}{|\lambda|}; x) \mid_{s=0} -$$

$$\frac{m}{\chi} \frac{1}{(2\pi)^d} \sum_{k=0}^{N^*} \lambda^{d-k} \log |\lambda| \cdot J_k(0, \frac{\lambda}{|\lambda|}; x).$$

Step 4 We have to estimate $\text{tr} \tilde{P}_N(\lambda, s)$, where

$$\tilde{P}_N(\lambda, s) = P(\lambda)^{-s} - P_N(\lambda, s) = \frac{1}{2\pi i} \int_\gamma d\mu \mu^{-s}(R(\mu, \lambda) - R_N(\mu, \lambda)).$$

The estimate of Lemma 2.5 implies that

$$|\text{tr} \frac{\partial}{\partial s} \tilde{P}_N(\lambda, s) \mid_{s=0} \leq C(1 + |\lambda|)^{-(N - \frac{d-m}{2})} \int_0^\infty d\mu \cdot \frac{|\log \mu|}{1 + |\mu|^2}$$

and thus the asymptotic expansion given in Theorem 2.4 is proved.

Step 5 In the notation introduced above, we obtain the following formula for π_0:

$$\pi_0 = \sum_j \frac{\partial}{\partial s} \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} dvol(x) J_d(s, \lambda; x, x) \mid_{s=0},$$

where $J_d(s, \lambda; x) = \frac{1}{2\pi i} \int_{\mathbb{R}^d} d\xi \int_\gamma d\mu \mu^{-s} r_{m-d}^{-s}(\mu, \lambda; x, \xi)$.

As $r_{m-d}(\mu, \frac{\lambda}{|\lambda|}; x, \xi)$ is defined recursively by ($j \geq 1$)

$$r_{m-j}(\mu, \lambda; x, \xi) =$$

$$-(\mu - p_m(\lambda; x, \xi))^{-1} \sum_{k=0}^{j-1} \sum_{|\alpha| + l + k = j} \frac{1}{\alpha!} \partial^\alpha_x p_{m-l}(\lambda; x, \xi) D_x^\alpha r_{m-k}(\mu, \lambda; x, \xi),$$

we conclude that π_0 only depends on $p_m(\lambda; x, \xi)$ for $0 \leq j \leq d$ and its derivatives up to order d. □

The following result is due to Voros [Vo] and Friedlander [Fr]. For the convenience of the reader we include Voros’ proof.

Proposition 2.7. Let $\{\lambda_k\}_{k \geq 1}$ be a sequence in $V_0, \pi = \{z \in \mathbb{C} \mid -\frac{\pi}{2} + \epsilon < \arg(z) < \frac{\pi}{2} - \epsilon\}$, possibly with multiplicities, arranged in such a way that $0 < \text{Re}\lambda_1 \leq \text{Re}\lambda_2 \leq \ldots$. Assume that the heat trace, $\theta(t) := \sum_{k=0}^\infty e^{-t\lambda_k} (t > 0)$ admits an asymptotic expansion for $t \to 0$ of the form

$$\theta(t) \sim \sum c_n t^n,
where \(i_0 < 0 \) and \(i_0 < i_1 < i_2 < \cdots \to +\infty \). For \(\lambda \) with \(\text{Re} \lambda > 0 \), let \(\zeta(s, \lambda) = \sum_{k=0}^{\infty} (\lambda_k + \lambda)^{-s} \). Then \(\pi_0 = 0 \), where \(\pi_0 \) is the constant term in the asymptotic expansion of \(-\frac{d}{ds} \zeta(s, \lambda) \big|_{s=0} \) for \(|\lambda| \to +\infty \).

Proof. It is well known that for \(\text{Re} \lambda > 0 \), \(\zeta(s, \lambda) \) is well defined and \(\zeta(s, 0) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \theta(t) \cdot t^{s-1} dt \). Let

\[
\eta(s, \lambda) = \int_{0}^{\infty} \sum_{k=0}^{\infty} e^{-\lambda k} e^{-\lambda t} t^{s-1} dt.
\]

Then \(\zeta(s, \lambda) = \frac{1}{\Gamma(s)} \eta(s, \lambda) \). For \(\text{Re} \lambda > -i_0 \), \(\eta(s, \lambda) \) can be expanded in \(\lambda \) for \(|\lambda| \to \infty \)

\[
\eta(s, \lambda) \sim \sum_{n \geq 0} c_n \lambda^{-s-i_n} \int_{0}^{\infty} t^{n+s-1} e^{-t} dt = \sum_{n \geq 0} c_n \Gamma(s+i_n) \lambda^{-s-i_n}.
\]

Thus

\[
\zeta(s, \lambda) = \frac{1}{\Gamma(s)} \eta(s, \lambda) \sim \frac{1}{\Gamma(s)} \lambda^{-s} \sum_{n \geq 0} c_n \Gamma(s+i_n) \lambda^{-i_n}.
\]

All functions involved are meromorphic functions of \(s \). Moreover \(s = 0 \) is a regular point of \(\zeta(s, \lambda) \) and thus \(\frac{d}{ds} \zeta(s, \lambda) \big|_{s=0} \) admits an asymptotic expansion in \(\lambda \) of the form

\[
\frac{d}{ds} \zeta(s, \lambda) \big|_{s=0} \sim \sum_{i_n \notin Z^- \cup \{0\}} c_n \Gamma(i_n) \lambda^{-i_n} + \sum_{i_n \in Z^-} c_n \frac{1}{\Gamma(s+i_n) \cdots (s-1)} \big|_{s=0} \lambda^{-i_n} - \sum_{i_n \in Z^- \cup \{0\}} \frac{c_n}{(i_n) \cdots (-1)} \lambda^{-i_n} \log \lambda,
\]

where \(Z^- \) is the set of all negative integers. This expansion shows that \(\pi_0 = 0 \). \(\square \)

3. **Auxiliary Results for the Proof of Theorem 1.1**

We begin by collecting a number of results about operators related to \(A \) and \(\Gamma \). Denote by \(H^\epsilon(E_\Gamma) \) the Sobolev spaces of \(E_\Gamma \)-valued sections. Throughout section 3 and section 4 we assume that \(A \) satisfies the hypothesis of Theorem 1.1 and fix \(\epsilon > 0 \), so that the spectrum of \(A \) is bounded from below by \(\epsilon \).

Lemma 3.1. (i) The operator \(A_B : \{ u \in C^\infty (E_\Gamma) \mid B(u) = 0 \} \to C^\infty (E_\Gamma) \) has a self-adjoint extension \(\bar{A}_B \) with domain \(D(\bar{A}_B) := \{ u \in H^2(E_\Gamma) \mid B(u) = 0 \} \).

(ii) The operator \(\bar{A}_B \) is positive definite and its spectrum is bounded below by \(\epsilon \).

(iii) The operator

\[
(\bar{A}_\Gamma, B) : C^\infty (E_\Gamma) \to C^\infty (E_\Gamma) \oplus C^\infty (E_\mid_{\Gamma^+ \cap \Gamma^-})
\]

defined by \((\bar{A}_\Gamma, B)(u) = (A_\Gamma(u), B(u)) \) can be extended to an invertible operator \((\bar{A}_\Gamma, B)^\dagger \)

\[
(A_\Gamma, B)_{\Gamma^+} : H^2(E_\Gamma) \to L^2(E_\Gamma) \oplus H^{2-\frac{1}{2}}(E_\mid_{\Gamma^+}),
\]

\[
(A_\Gamma, B)_{\Gamma^-} : H^2(E_\Gamma) \to L^2(E_\Gamma) \oplus H^{2-\frac{1}{2}}(E_\mid_{\Gamma^-}),
\]

\[
(A_\Gamma, B)_{\Gamma^0} : H^2(E_\Gamma) \to L^2(E_\Gamma) \oplus H^{2-\frac{1}{2}}(E_\mid_{\Gamma^0}),
\]

\[
(A_\Gamma, B)_{\Gamma} : H^2(E_\Gamma) \to L^2(E_\Gamma) \oplus H^{2-\frac{1}{2}}(E_\mid_{\Gamma}).
\]
Proof. (i) Using a partition of unity and integration by parts one shows that A_B is symmetric. Clearly, \bar{A}_B is well defined and by a standard argument self-adjoint. To prove (ii) one first notices that for any $u \in C^\infty(E_\Gamma)$ with $u \mid_{\Gamma+\Gamma^-} = 0$, one can find a sequence $\{\phi_n\}$ such that $\text{supp}(\phi_n) \subset M - \Gamma$ and ϕ_n converges to u in $H^1(E_\Gamma)$. Observe that $\langle A_B \phi_n, \phi_n \rangle = \langle A \phi_n, \phi_n \rangle \geq \epsilon \|\phi_n\|^2$ and, integrating by parts, one concludes that

$$\langle A_B u, u \rangle = \lim_{n \to \infty} \langle A \phi_n, \phi_n \rangle \geq \epsilon \|u\|^2.$$

Thus (ii) follows.

(iii) As A_B is injective, so is the extension (A_Γ, B). To prove that this extension is onto, consider $f \in L^2(E_\Gamma)$ and $\varphi \in H^{2-\frac{2}{d}}(E_\Gamma \mid_{\Gamma+\Gamma^-})$. Choose any section $v \in H^2(E_\Gamma)$ so that $Bv = \varphi$. As \bar{A}_B is invertible, there exists $w \in H^2(E_\Gamma)$ satisfying $\bar{A}_Bw = f - \bar{A}_Bv$ and the boundary conditions $Bw = 0$. Therefore $u = w + v$ is an element in $H^2(E_\Gamma)$ with $(A_\Gamma, B)u = (f, \varphi)$. Altogether one concludes that (A_Γ, B) is an isomorphism. \square

Set $\alpha_k = e^{-\frac{s+2k\pi}{d}}$ for $0 \leq k \leq d - 1$, where $d = \text{dim}(M)$.

Lemma 3.2. The following operators are invertible for $0 \leq k \leq d - 1$ and $t \geq 0$

$$(A_\Gamma - \alpha_k t, B) : C^\infty(E_\Gamma) \to C^\infty(E_\Gamma) \oplus C^\infty(E_\Gamma \mid_{\Gamma+\Gamma^-}).$$

Proof. As $\alpha_k \in \mathbb{C} \setminus \mathbb{R}^+$ and thus, for $t \geq 0$, $\alpha_k t \notin \text{Spec}(A_B)$, the operator $(A_\Gamma - \alpha_k t, B)$ is injective. To prove that this operator is onto one argues as in the proof of Lemma 3.1 (iii). \square

Since $(A_\Gamma - \alpha_k t, B)$ is invertible, we can define the Poisson operator $P(\alpha_k t)$ associated to $(A_\Gamma - \alpha_k t, B)$, $P(\alpha_k t) : C^\infty(E_\Gamma \mid_{\Gamma+\Gamma^-}) \to C^\infty(E_\Gamma)$, i.e. for $\varphi \in C^\infty(E_\Gamma \mid_{\Gamma+\Gamma^-})$, $u = P(\alpha_k t) \varphi$ is the solution in $C^\infty(E_\Gamma)$ of $(A_\Gamma - \alpha_k t)u = 0$ with boundary conditions $u \mid_{\Gamma+\Gamma^-} = \varphi$.

Let $R(\alpha_k t) : C^\infty(E \mid_\Gamma) \to C^\infty(E \mid_\Gamma)$ be the Dirichlet to Neumann operator corresponding to $A_\Gamma - \alpha_k t, B$ and C. Then the following result holds:

Lemma 3.3. For $0 \leq k \leq d - 1$, and $t \geq 0$, $R(\alpha_k t)$ is an invertible classical ΨDO of order 1, which is elliptic with parameter t of weight 1.

Proof. In a sufficiently small collar neighborhood U of Γ, choose coordinates $x = (x', s)$ such that $(x', 0) \in \Gamma$ and $\frac{\partial}{\partial s} \mid_{(x', 0)} = \nu(x', 0)$. Let $\xi = (\xi', \eta)$ be coordinates in the cotangent space corresponding to the coordinates (x', s). Let $D_s = \frac{1}{2} \frac{\partial^2}{\partial s^2}$ and write $(A - \alpha_k t) = A_2 D_s^2 + A_1 D_s + A_0$, where the A_j’s are differential operators of order at most $2 - j$. The A_j’s induce, when restricted to Γ, differential operators, again denoted by A_j, $A_j : C^\infty(E \mid_\Gamma) \to C^\infty(E \mid_\Gamma)$. Since $\sigma_L(x, (\xi', \eta)) = \| (\xi', \eta) \|^2$ and since $\nu(x', 0)$ is the unit normal to Γ at $(x', 0)$, one has $A_2(x) = Id_{x} \in \text{End}_{x}(E_x, E_x)$ on Γ.

For any $\varphi \in C^\infty(E \mid_\Gamma)$ and $t \geq 0$, we can choose $u \in C^\infty(E_\Gamma) \cap C(E)$ such that $(A - \alpha_k t)u = 0$ on $M - \Gamma$ and $u \mid_{\Gamma} = \varphi = u \mid_{\Gamma^-}$. Then $\frac{\partial u}{\partial s}(x', s)$ has a jump across Γ, which is $-R(\alpha_k t)(\varphi)(x')$. Hence

$$\frac{\partial u}{\partial s}(x', s) = -R(\alpha_k t)(\varphi)(x') H(s) + \nu(x', s).$$
where $v(x', s) \in C^\infty(E_{\Gamma} \mid U) \cap C(E \mid U)$ and $H(s)$ is the Heavyside function. Therefore, on U,

$$(A - \alpha_k t)u = A_2 R(\alpha_k t)(\varphi) \otimes \delta_{\Gamma} - A_2 \frac{\partial v}{\partial s} + \frac{1}{i} A_1 \frac{\partial u}{\partial s} + A_0 u.$$

Since $(A - \alpha_k t)u = 0$ on $M - \Gamma$, we conclude that, on $U \cap (M \setminus \Gamma)$,

$$-A_2 \frac{\partial v}{\partial s} + \frac{1}{i} A_1 \frac{\partial u}{\partial s} + A_0 u = 0.$$

As $-A_2 \frac{\partial v}{\partial s} + \frac{1}{i} A_1 \frac{\partial u}{\partial s} + A_0 u \in L^2(E \mid U)$, it follows that

$$(A - \alpha_k t)u = A_2 \cdot (\cdot \otimes \delta_{\Gamma}) \cdot R(\alpha_k t)\varphi.$$

Using that $A_2 = Id$ on Γ, one therefore obtains $Id = J \cdot (A - \alpha_k t)^{-1} \cdot (\cdot \otimes \delta_{\Gamma}) \cdot R(\alpha_k t)$ where J is the restriction operator to Γ. From this identity it follows that $R(\alpha_k t)$ is invertible. Moreover, setting $\phi = R(\alpha_k t)\varphi$,

$$R(\alpha_k t)^{-1} \phi = J \cdot (A - \alpha_k t)^{-1} \cdot (\phi \otimes \delta_{\Gamma})$$

$$= J \cdot \int_{\mathbb{R}^{d-1}} \int_{\mathbb{R}} e^{ix' \cdot s}(\xi', \eta)[(A - \alpha_k t)^{-1}(\phi \otimes \delta_{\Gamma})](\xi', \eta) d\eta d\xi'$$

$$= \int_{\mathbb{R}^{d-1}} e^{ix' \cdot s} \int_{\mathbb{R}} \sigma((A - \alpha_k t)^{-1}(x', 0, \xi', \eta) \hat{\phi}(\xi') \cdot \frac{1}{\sqrt{2\pi}} d\eta d\xi'.$$

Hence $R(\alpha_k t)^{-1}$ is a classical ΨDO of order -1 with symbol

$$\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \sigma((A - \alpha_k t)^{-1}(x', 0, \xi', \eta) d\eta,$$

and therefore $R(\alpha_k t)$ is a classical ΨDO of order 1 with parameter t of weight 1. The ellipticity with parameter of $R(\alpha_k t)$ follows from the explicit formula of the symbol. \square

Lemma 3.4. For $\epsilon' < \frac{\pi}{d}$ sufficiently small and $0 \leq k \leq d - 1$, the operator $R(\alpha_k t)$ does not have any eigenvalues in $\Lambda_{\epsilon'}$, where $\Lambda_{\epsilon'} = \{ z \in \mathbb{C} \mid \pi - \epsilon' < \arg(z) < \pi + \epsilon' \text{ or } |z| < \epsilon' \}$. Hence $R(\alpha_k t)$ has π as an Agmon angle.

Proof. By assumption, $A : C^\infty(E) \to C^\infty(E)$ is essentially self-adjoint and positive definite. Let $\{\psi_j\}_{j \geq 1}$ be a complete orthonormal system of eigensections of A with corresponding eigenvalues $\{\lambda_j\}_{j \geq 1}$. Then $(A - \alpha_k t)^{-1}\psi_j = (\lambda_j - \alpha_k t)^{-1}\psi_j$.

Moreover, for any $\varphi \in C^\infty(E \mid \Gamma), \varphi \otimes \delta_{\Gamma}$ is an element in $H^{-1}(E)$ and $(A - \alpha_k t)^{-1}(\varphi \otimes \delta_{\Gamma}) \in L^2(E)$. Therefore

$$\langle (A - \alpha_k t)^{-1}\varphi \otimes \delta_{\Gamma}, \psi_j \rangle =$$

$$\langle \varphi \otimes \delta_{\Gamma}, (A - \alpha_k t)^{-1} \psi_j \rangle = (\lambda_j - \alpha_k t)^{-1} \int_{\Gamma} (\varphi, \psi_j) d\mu_{\Gamma},$$

where $d\mu_{\Gamma}$ is the volume form on Γ induced from the metric on M and (\cdot, \cdot) is the Hermitian inner product on E.

Since $R(\alpha_k t)^{-1} = J \cdot (A - \alpha_k t)^{-1} \cdot (\cdot \otimes \delta_{\Gamma})$, one obtains for $\varphi_1, \varphi_2 \in C^\infty(E \mid \Gamma)$

$$\langle R(\alpha_k t)^{-1}\varphi_1, \varphi_2 \rangle = \sum_{j = 1}^{\infty} (\lambda_j - \alpha_k t)^{-1} \int_{\Gamma} (\varphi_1, \psi_j) d\mu_{\Gamma} \int_{\Gamma} (\psi_j, \varphi_2) d\mu_{\Gamma}.$$

Together with Lemma 3.3 this implies that $\Lambda_{\epsilon'}$ has an empty intersection with $\text{Spec} R(\alpha_k t)$. \square

Using the above formula, one obtains as an immediate consequence the following.
Corollary 3.5. The operator $R = R(0)$ is essentially self-adjoint and positive definite.

Next we are collecting a number of results about operators involving the d–th power of A and the submanifold Γ.

Consider the families of operators $A^d + t^d$ and $A^d_t + t^d$ for nonnegative real numbers t. Then $A^d + t^d$ and $A^d_t + t^d$ are elliptic differential operators with parameter, where the weight of t is 2. Note that

$$A^d_t + t^d = (A_\Gamma - te^{i\pi})(A_\Gamma - te^{3i\pi}) \cdots (A_\Gamma - te^{i\pi(d-1)}).$$

Let us introduce the boundary conditions $B_d(t), C_d(t)$ by setting

$$B_d(t) = (B, B(A_\Gamma - \alpha_0 t), B(A_\Gamma - \alpha_1 t)(A_\Gamma - \alpha_0 t), \cdots, B(A_\Gamma - \alpha_{d-2} t)(A_\Gamma - \alpha_0 t),$$

and

$$C_d(t) = (C, C(A_\Gamma - \alpha_0 t), C(A_\Gamma - \alpha_1 t)(A_\Gamma - \alpha_0 t), \cdots, C(A_\Gamma - \alpha_{d-2} t)(A_\Gamma - \alpha_0 t)).$$

It follows from Lemma 3.2 that the following operator is invertible

$$(A^d_t + t^d, B_d(t)) : C^\infty(E_\Gamma) \to C^\infty(E_\Gamma) \oplus (\oplus_d C^\infty(E_\Gamma |_{\Gamma^+ \cup \Gamma^-})).$$

Therefore the corresponding Poisson operator $\tilde{P}_d(t) : \oplus_d C^\infty(E |_{\Gamma^+ \cup \Gamma^-}) \to C^\infty(E_\Gamma)$ is well defined.

Lemma 3.6. The Poisson operator $\tilde{P}_d(t)$ associated to $(A^d_t + t^d, B_d(t))$ is given by

$$\tilde{P}_d(t)(\varphi_0, \cdots, \varphi_{d-1}) = P(\alpha_0 t)\varphi_0 + (A_\Gamma - \alpha_0 t)^{-1}P(\alpha_1 t)\varphi_1 + \cdots +$$

$$(A_\Gamma - \alpha_d t)^{-1}(A_\Gamma - \alpha_1 t)^{-1}\cdots (A_\Gamma - \alpha_{d-2} t)^{-1}P(\alpha_{d-1} t)\varphi_{d-1},$$

where $(A_\Gamma - \alpha t)_B$ is the restriction of $A_\Gamma - \alpha t$ to $\{u \in C^\infty(E_\Gamma) | Bu = 0\}$.

Proof. Denoting the right hand side of the claimed identity by $Q_d(t)(\varphi_0, \cdots, \varphi_{d-1})$ one obtains

$$(A^d_t + t^d) \cdot Q_d(t)(\varphi_0, \cdots, \varphi_{d-1}) = 0.$$

Moreover, for $0 \leq k \leq d - 1, Q_d(t)(\varphi_0, \cdots, \varphi_{d-1})$ satisfies the boundary conditions

$$B(A_\Gamma - \alpha_{k-1} t)(A_\Gamma - \alpha_{k-2} t) \cdots (A_\Gamma - \alpha_{0} t)Q_d(t)(\varphi_0, \cdots, \varphi_{d-1}) =$$

$$B(A_\Gamma - \alpha_{k-1} t) \cdots (A_\Gamma - \alpha_{0} t)P(\alpha_{0} t)\varphi_0 + \cdots +$$

$$B(A_\Gamma - \alpha_{k-1} t) \cdots (A_\Gamma - \alpha_{0} t)(A_\Gamma - \alpha_{0} t)^{-1} \cdots (A_\Gamma - \alpha_{k-1} t)^{-1}P(\alpha_{k} t)\varphi_k + \cdots +$$

$$B(A_\Gamma - \alpha_{k-1} t) \cdots (A_\Gamma - \alpha_{0} t)(A_\Gamma - \alpha_{0} t)^{-1} \cdots (A_\Gamma - \alpha_{d-2} t)^{-1}P(\alpha_{d-1} t)\varphi_{d-1} = \varphi_k,$$

since $(A_\Gamma - \alpha_j t)P(\alpha_j t) = 0$ and $B(A_\Gamma - \alpha_j t)^{-1}B = 0$. These two properties of $Q_d(t)$ establish the claimed identity. □
Further let us consider the boundary conditions \(B_d(t) \) and \(C_d(t) \) for \(t = 0 \). Note that
\[
B_d(0) = (B, BA_\Gamma, \cdots, BA^{d-1}_\Gamma); C_d(0) = (C, CA_\Gamma, \cdots, CA^{d-1}_\Gamma).
\]
Let \(\Omega(t) \) be the following lower triangular \(d \times d \) matrix
\[
\Omega(t) = \begin{pmatrix}
\alpha_0 t & 0 & \cdots & 0 \\
\alpha_0 t^2 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_0^{d-1} t^{d-1} & t^{d-2} & \cdots & 1
\end{pmatrix}.
\]
Then \(B_d(0) = \Omega(t) B_d(t) \) as well as \(C_d(0) = \Omega(t) C_d(t) \). Let \(P_d(t) := \tilde{P}_d(t) \Omega(t)^{-1} \) and notice that \(P_d(t) \) is the Poisson operator corresponding to \((A^d_\Gamma + t^d, B_d(0)) \).

Consider the Dirichlet to Neumann operator \(\tilde{R}_d(t) = \triangle_i f \cdot C_d(t) \cdot \tilde{P}_d(t) \cdot \triangle_i a \) corresponding to \(A^d_\Gamma + t^d, B_d(t) \) and \(C_d(t) \). Then
\[
\tilde{R}_d(t)(\varphi_0, \cdots, \varphi_{d-1}) = \triangle_i f \cdot (C, C(A_\Gamma - \alpha_0 t), \cdots, C(A_\Gamma - \alpha_{d-2} t) \cdots (A_\Gamma - \alpha_0 t)).
\]

Thus \(\tilde{R}_d(t) : \oplus_d C^\infty(E |_\Gamma) \to \oplus_d C^\infty(E |_\Gamma) \) can be represented by a \(d \times d \) matrix of upper triangular form,
\[
\begin{pmatrix}
R(\alpha_0 t) & \triangle_i f C(A_\Gamma - \alpha_0 t)^{-1} P(\alpha_1 t) \triangle_i a & \cdots & \triangle_i f C(A_\Gamma - \alpha_0 t)^{-1} P(\alpha_{d-1} t) \triangle_i a \\
0 & R(\alpha_1 t) & \cdots & \triangle_i f C(A_\Gamma - \alpha_1 t)^{-1} P(\alpha_{d-1} t) \triangle_i a \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & R(\alpha_{d-1} t)
\end{pmatrix},
\]
where \(R(\alpha_k t) \) is the Dirichlet to Neumann operator corresponding to \(A_\Gamma - \alpha_k t, B \) and \(C \) defined earlier. In particular, we conclude that \(\tilde{R}_d(t) \) is invertible and has \(\pi \) as an Agmon angle.

Finally introduce the Dirichlet to Neumann operator \(R_d(t) \) associated to \(A^d_\Gamma + t^d, B_d(0) \) and \(C_d(0) \). Then
\[
\tilde{R}_d(t) = \triangle_i f \cdot C_d(t) \cdot \tilde{P}_d(t) \cdot \triangle_i a = \triangle_i f \cdot \Omega(t)^{-1} \cdot C_d(0) \cdot P_d(t) \cdot \Omega(t) \cdot \triangle_i a = \Omega(t)^{-1} \cdot \triangle_i f \cdot C_d(0) \cdot P_d(t) \cdot \triangle_i a \cdot \Omega(t) = \Omega(t)^{-1} \cdot R_d(t) \cdot \Omega(t).
\]
As a consequence, \(R_d(t) \) has the same spectrum as \(\tilde{R}_d(t) \) and therefore, \(R_d(t) \) is invertible, has \(\pi \) as an Agmon angle and satisfies \(\log \text{Det}(R_d(t)) = \log \text{Det}(\tilde{R}_d(t)) \).

In view of the fact that \(\tilde{R}_d(t) \) is of upper triangular form one has
\[
\log \text{Det}(\tilde{R}_d(t)) = \sum_{k=0}^{d-1} \log \text{Det}(R(\alpha_k t)).
\]
As A is positive and essentially selfadjoint, the operator $A^d + t^d : C^\infty(E) \to C^\infty(E)$ is invertible for $t \geq 0$. Using the kernel $k_t(x,y)$ of $(A^d + t^d)^{-1}$ this operator can be extended to $C^\infty(E_\Gamma)$ by setting $(u \in C^\infty(E_\Gamma))$

$$((A^d + t^d)^{-1})_\Gamma u(x) = \int_{M_\Gamma} k_t(x,y)u(y)dy.$$

It follows from Lemma 3.2 that

$$\left(A^d_\Gamma + t^d, B_d(t)\right) : C^\infty(E_\Gamma) \to C^\infty(E_\Gamma) \oplus (\oplus_d C^\infty(E_\Gamma |_{\Gamma^+ \cup \Gamma^-})) \,.$$

is invertible. Thus, since $B_d(0) = \Omega(t)B_d(t)$, we conclude that $(A^d_\Gamma + t^d, B_d(0))$ is invertible as well. Denote by $(A^d_\Gamma + t^d)_{B_d(0)}$ the restriction of $A^d_\Gamma + t^d$ to $\{u \in C^\infty(E_\Gamma) \mid B_d(0)u = 0\}$ and let $(A^d_\Gamma + t^d)^{-1}_{B_d(0)}$ be its inverse.

Lemma 3.7. $(A^d_\Gamma + t^d)^{-1}_{B_d(0)} = ((A^d + t^d)^{-1})_\Gamma - P_d(t) \cdot B_d(0) \cdot ((A^d + t^d)^{-1})_\Gamma$

Proof. Denote by $Q(t)$ the right hand side of the claimed identity. One verifies that for $u \in C^\infty(E_\Gamma)$

$$(A^d_\Gamma + t^d)Q(t)u = u$$

and

$$B_d(0)Q(t)u = B_d(0) \cdot ((A^d + t^d)^{-1})_\Gamma u - B_d(0) \cdot ((A^d + t^d)^{-1})_\Gamma u = 0.$$

These two identities imply that $Q(t) = (A^d_\Gamma + t^d)^{-1}_{B_d(0)}$.

Lemma 3.8. (i) $\frac{d}{dt}P_d(t) = -dt^{-1}(A^d_\Gamma + t^d)^{-1}_{B_d(0)} \cdot P_d(t)$

(ii) $R_d(t)^{-1} \cdot \frac{d}{dt}R_d(t) = -dt^{-1}R_d(t)^{-1} \cdot \triangle_if \cdot C_d(0) \cdot (A^d_\Gamma + t^d)^{-1}_{B_d(0)} \cdot P_d(t) \cdot \triangle_{ia}$.

In particular, d being the dimension of M, $R_d(t)^{-1} \cdot \frac{d}{dt}R_d(t)$ is of trace class.

Proof. (i) Derive $(A^d_\Gamma + t^d) \cdot P_d(t) = 0$ with respect to t to obtain

$$(A^d_\Gamma + t^d) \cdot \frac{d}{dt}P_d(t) = - \frac{d}{dt}(A^d_\Gamma + t^d)^{-1}_{B_d(0)} \cdot P_d(t) = -dt^{-1}P_d(t).$$

Similarly, deriving $B_d(0) \cdot P_d(t) = Id$ with respect to t yields $B_d(0) \frac{d}{dt}P_d(t) = 0$. Hence

$$(A^d_\Gamma + t^d)_{B_d(0)} \cdot \frac{d}{dt}P_d(t) = -dt^{-1}P_d(t)$$

and therefore

$$\frac{d}{dt}P_d(t) = -dt^{-1}(A^d_\Gamma + t^d)^{-1}_{B_d(0)} \cdot P_d(t).$$

(ii) follows from the definition of $R_d(t)$ and (i).
Corollary 3.9.

\[R_d(t)^{-1} \cdot \frac{d}{dt} R_d(t) = dt^{d-1} Pr_\Gamma \cdot B_d(0) \cdot ((A^d + t^d)^{-1})_\Gamma \cdot P_d(t) \cdot \Delta_{ia} \]

Proof. By Lemma 3.7 and 3.8

\[R_d(t)^{-1} \cdot \frac{d}{dt} R_d(t) = -dt^{d-1}(\Delta_{if} \cdot C_d(0) \cdot P_d(t) \cdot \Delta_{ia})^{-1}. \]

\[\Delta_{if} \cdot C_d(0) \cdot ((A^d + t^d)^{-1})_\Gamma \cdot P_d(t) \cdot B_d(0) \cdot ((A^d + t^d)^{-1})_\Gamma \cdot P_d(t) \cdot \Delta_{ia}. \]

Clearly \(\Delta_{if} \cdot C_d(0) \cdot ((A^d + t^d)^{-1})_\Gamma (u) = 0 \) for \(u \in C^\infty(E) \)
and thus \(\Delta_{if} \cdot C_d(0) \cdot ((A^d + t^d)^{-1})_\Gamma \cdot P_d(t) \cdot \Delta_{ia} = 0 \). Therefore
\(R_d(t)^{-1} \cdot \frac{d}{dt} R_d(t) = dt^{d-1}(\Delta_{if} \cdot C_d(0) \cdot P_d(t) \cdot \Delta_{ia})^{-1} \cdot \Delta_{if} \cdot C_d(0) \cdot P_d(t) \cdot B_d(0) \cdot ((A^d + t^d)^{-1})_\Gamma \cdot P_d(t) \cdot \Delta_{ia}. \)

Note that for any \(u \in C^\infty(E_\Gamma) \), the boundary values of \(((A^d + t^d)^{-1})_\Gamma u \) on \(\Gamma^+ \) and \(\Gamma^- \) are the same, i.e.
\[B_d(0)((A^d + t^d)^{-1})_\Gamma u \big|_{\Gamma^+} = B_d(0)((A^d + t^d)^{-1})_\Gamma u \big|_{\Gamma^-}. \]

Hence
\[B_d(0) \cdot ((A^d + t^d)^{-1})_\Gamma \cdot P_d(t) \cdot \Delta_{ia} = \Delta_{ia} \cdot Pr_\Gamma \cdot B_d(0) \cdot ((A^d + t^d)^{-1})_\Gamma \cdot P_d(t) \cdot \Delta_{ia}. \]

As \((A^d + t^d)^{-1} (A^d + t^d)^{-1} \big|_{B_d(0)} \) and \(R_d(t)^{-1} \frac{d}{dt} R_d(t) \) are of trace class we can apply
the well known variational formula for regularized determinants:

Lemma 3.10. Let \(Q(t) \) denote any of the operators \(A^d + t^d \), \((A^d + t^d)_{B_d(0)} \) or \(R_d(t) \). Then, for any \(t \geq 0 \),
\[\frac{d}{dt} \log \text{Det} Q(t) = \text{tr} (Q(t)^{-1} \frac{d}{dt} Q(t)). \]

4. Proof of the Theorem 1.1

In the case where the operator \(A^{-1} \) is of trace class, the proof of Theorem 1.1 is considerably simpler. Unfortunately, this is only the case if the dimension \(d \) of \(M \) is equal to 1. Our strategy is to first prove a version of Theorem 1.1 for \(A^d \) (Lemma 4.1), using the fact that \((A^d)^{-1} \) is of trace class. Together with the auxiliary results of section 3 and the asymptotic expansion derived in section 2, the proof of Theorem 1.1 is then completed.

Lemma 4.1. Let \(A^d + t^d \) and \((A^d + t^d, B_d(0)) \) be as above. Then, for \(t \geq 0 \),
\[\frac{d}{dt} \left(\log \text{Det}(A^d + t^d) - \log \text{Det}(A^d + t^d, B_d(0)) \right) = \frac{d}{dt} \log \text{Det} R_d(t). \]

Proof. Define \(u(t) := \frac{d}{dt} (\log \text{Det}(A^d + t^d) - \log \text{Det}(A^d + t^d, B_d(0))). \) By Lemma 3.10 and Lemma 3.7
if

Statement (i) follows from the fact that

\[\text{Setting } \]

\[\text{Proof of Theorem 1.1.} \]

By Theorem 2.4.

Using the result of Theorem 2.4, Theorem 1.1 follows.

\[\Box \]

On the other hand, by Lemma 3.10, Corollary 3.9 and the commutativity of the trace,

\[\frac{d}{dt} \log \det R_d(t) = tr\left(\frac{d}{dt} R_d(t) \right) \cdot R_d(t)^{-1} \]

\[= dt^{d-1} \text{tr}\left(P \Gamma \cdot B_d(0) \cdot ((A^d + t^d)^{-1}) \cdot \Gamma \right) \]

Combining the above two identities shows that

\[\begin{align*}
\log \det (A^d + t^d) - \log \det ((A_d^d + t^d), B_d(0)) &= \tilde{c} + \sum_{k=0}^{d-1} \log \det R(\alpha_k t), \tag{4.1}
\end{align*} \]

where \(\tilde{c} \) is independent of \(t \).

Note that \(\log \det (A^d + t^d), \log \det (A^d + t^d), B_d(0) \) and \(\log \det R(\alpha_k t)(0 \leq k \leq d-1) \) have asymptotic expansions as \(t \to +\infty \). Since the eigenvalues of \(A^d + t^d \) and \((A_d^d + t^d)B_d(0) \) satisfy the condition in Proposition 2.7, the constant terms in the asymptotic expansions of \(\log \det (A^d + t^d) \) and \(\log \det ((A_d^d + t^d), B_d(0)) \) are zero. Let \(\pi_0(R(\alpha_k t)) \) be the constant term in the asymptotic expansion of \(\log \det (R(\alpha_k t)) \).

Then \(\tilde{c} = -\sum_{k=0}^{d-1} \pi_0(R(\alpha_k t)), \) which is computable in terms of the symbol of \(R(\alpha_k t) \) by Theorem 2.4.

Lemma 4.2. (i) \(\det(A^d, B_d(0)) = (\det(A^d, B))^d \); (ii) \(\det(A^d) = (\det A)^d \).

Proof. Statement (i) follows from the fact that \(\lambda \) is an eigenvalue of \(A_B \) if and only if \(\lambda^d \) is an eigenvalue of \((A_d^d)^{B_d(0)} \) and (ii) is proved in the same way. \(\Box \)

Proof of Theorem 1.1. Setting \(t = 0 \) in (4.1), one obtains

\[\log \det A^d - \log \det (A_d^d, B_d(0)) = \tilde{c} + \log \det R_d(0). \]

By Lemma 4.2, \(\log(\det A)^d - \log(\det(A_d^d, B))^d = \tilde{c} + \log(\det R)^d \). Hence

\[\log \det A = \log(c) + \log(\det A^d, B) + \log \det R, \text{ where } \log(c) = -\frac{1}{d} \sum_{k=0}^{d-1} \pi_0(R(\alpha_k t)). \]

Using the result of Theorem 2.4, Theorem 1.1 follows. \(\Box \)
References

[BFK] D.Burghelia, L.Friedlander, T.Kappeler, *Mayer-Vietoris Type Formula for Determinants of Elliptic Differential Operators*, J. of Funct. Anal. **107** (1992), 34-65.

[Fr] L.Friedlander, *The asymptotic of the determinant function for a class of operators*, Proc.Amer.Math.Soc. **107** (1989), 169-178.

[Gu] V.Guillemin, *A new proof of Weyl's formula on the asymptotic distribution of eigenvalues*, Adv.Math. **55** (1985), 131-160.

[Se] R.Seely, *Complex powers of elliptic operators*, Proceedings of Symposia on Singular Integrals, Amer.Math.Soc., Providence, RI **10** (1967), 288–307.

[Sh] M.A.Shibin, *Pseudodifferential Operators and Spectral Theory* (1985), Springer-Verlag, Berlin/New York.

[Vo] A.Voros, *Spectral function, special functions and Selberg zeta function*, Comm.Math.Phys. **110** (1987), 439-465.

[Wo] M.Wodzicki, *Noncommutative residue in K-theory, Arithmetic and Geometry*, Lecture Notes in Mathematics (Y.Manin, eds.), vol. 1289, Springer-Verlag,Berlin/New York, 1987.