Identification of differential proteins in colorectal cancer cells treated with caffeic acid phenethyl ester

Yu-Jun He, Wan-Ling Li, Bao-Hua Liu, Hui Dong, Zhi-Rong Mou, Yu-Zhang Wu

AIM: To investigate the molecular mechanisms of the anti-cancer activity of caffeic acid phenethyl ester (CAPE).

METHODS: Protein profiles of human colorectal cancer SW480 cells treated with or without CAPE were analysed using a two-dimensional (2D) electrophoresis gel-based proteomics approach. After electrophoresis, the gels were stained with Coomassie brilliant blue R-250. Digital images were taken with a GS-800 Calibrated Densitometer, and image analysis was performed using PDQuest 2-D Analysis software. The altered proteins following CAPE treatment were further identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry followed a database search. The identified proteins were validated by Western blot and immunofluorescence assay.

RESULTS: CAPE induced human colorectal cancer cell apoptosis. Four up-regulated proteins and seven down-regulated proteins in colorectal cancer cells treated with CAPE were found. The identified down-regulated proteins in CAPE-treated colorectal cancer cells were Triosephosphate Isomerase (Tim), Proteasome subunit alpha 4 (PSMA4), protein, Guanine nucleotide binding protein beta, Phosphoserine aminotransferase 1 (PSAT1), PSMA1, Myosin XVIIIB and Tryptophanyl-tRNA synthetase. Notably, CAPE treatment led to the down-regulation of PSAT1 and PSMA1, two proteins that have been implicated in tumorigenesis. The identified up-regulated proteins were Annexin A4, glyceraldehyde-3-phosphate dehydrogenase, Glucosamine-6-phosphate deaminase 1 (GNPDA1), and Glutathione peroxidase (GPX-1). Based on high match scores and potential role in cell growth control, PSMA1, PSAT1, GNPDA1 and GPX-1 were further validated by Western blotting and immunofluorescence assay. PSMA1 and PSAT1 were down-regulated, while GNPDA1 and GPX-1 were up-regulated in CAPE-treated colorectal cancer cells.

CONCLUSION: These differentiated proteins in colorectal cancer cells following CAPE treatment, may be potential molecular targets of CAPE and involved in the anti-cancer effect of CAPE.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Caffeic acid phenethyl ester; Colorectal cancer; Proteomics; Two-dimensional electrophoresis; Mass spectrometry

Core tip: To investigate the molecular mechanisms of the anti-cancer activity of caffeic acid phenethyl ester (CAPE), CAPE-treated colorectal cancer SW480 cells were analysed by a 2D-gel based proteomics approach. Four up-regulated proteins and seven down-regulated proteins in CAPE-treated SW480 cells were found and further identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
ionization time-of-flight mass spectrometry following a database search. The down-regulated proteins, PSMA1 and PSAT1 and up-regulated proteins GNPD1A1 and GPX-1 were validated by Western blotting. The two tumorigenesis associated proteins, PSMA1 and PSAT1, were further confirmed by immunofluorescence assay. These differentiated proteins in colorectal cancer cells following CAPE treatment, may be potential molecular targets of CAPE and involved in the anti-cancer effect of CAPE.

He YJ, Li WL, Liu BH, Dong H, Mou ZR, Wu YZ. Identification of differential proteins in colorectal cancer cells treated with caffeic acid phenethyl ester. World J Gastroenterol 2014; 20(33):11840-11849. Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i33/11840.htm DOI: http://dx.doi.org/10.3748/wjg.v20.i33.11840

INTRODUCTION

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies and the third deadliest cancer in humans. In 2012, it was estimated that 143460 people in the United States had been diagnosed with colorectal cancer and that 51690 will die from this disease\(^1\). In the last few decades, enormous advances in the diagnosis and treatment of CRC have been made, and molecular biology has clarified some of the mechanisms involved in the carcinogenic process. However, patient prognosis is still poor; after curative resections, approximately 50% of patients succumb to recurrent and metastatic disease during the first 2 years of follow-up. For this reason, novel anti-cancer drugs for CRC are urgently needed.

Caffeic acid phenethyl ester (CAPE), a component of propolis is a phenolic antioxidant. CAPE has been shown to help in host defence through its anti-viral and anti-bacterial activity. In addition, the immunoregulatory properties, anti-inflammatory activity and anti-cancer activity of CAPE have been reported. Several studies have demonstrated that CAPE has anti-proliferative effects by inducing apoptosis in various tumour cells in \textit{vitro}\(^2\) and \textit{in vivo}\(^3\). CAPE also inhibits the development of azoxymethane-induced aberrant crypts in the colon of rats\(^4\).

Multiple molecular mechanisms seem to be involved in the anti-cancer effects of CAPE. We have previously shown that decreased β-catenin and associated signalling pathways may mediate the anti-cancer effects of CAPE\(^5\). It has been reported that CAPE inhibits tumour necrosis factor alpha-dependent nuclear factor kappa beta (NFκB) activation via direct inhibitory protein kappaB kinase inhibition and Nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 pathway activation\(^5\). Previous studies have also shown that McI-1 down-regulation, Bel-2 expression, and Bax up-regulation, as well as activation of caspase-8, caspase-3, and PARP, are associated with CAPE-dependent cellular apoptosis\(^6\). However, the exact anti-tumour mechanism of CAPE is not fully understood.

To understand the mechanism of the anti-cancer activity of CAPE, CAPE-treated colorectal cancer SW480 cells were analysed by a 2D-gel based proteomics approach. Differentially expressed proteins were identified by mass spectrometry and then validated by Western blotting and confocal microscopy.

MATERIALS AND METHODS

Cell culture

The human CRC cell line SW480 was purchased from the American Type Culture Collection. The cells were cultured in RPMI-1640 medium supplemented with penicillin G (100 U/mL), streptomycin (100 μg/mL), and 10% foetal calf serum. The cells were grown at 37 °C in a humidified atmosphere of 5% CO\(_2\) and were routinely sub-cultured using 0.25% (w/v) trypsin-EDTA solution. All cell culture reagents were purchased from Gibco (Carlsbad, United States). For CAPE treatment, CAPE was dissolved in DMSO and adjusted to a working concentration with culture medium before use (DMSO concentration was 0.1%). CAPE was added to the culture medium on the second day at a working concentration of 10 μg/mL.

TUNEL staining

SW480 cells were grown on poly-L-lysine coated slides in a six-well plate. After treatment with or without CAPE for 48 h, the slides were gently washed three times in 0.1 mol/L PBS (pH = 7.4) and fixed with 4% paraformaldehyde. To determine cellular apoptosis, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assays were performed using the TUNEL Detection kit (Boehringer Mannheim, Mannheim, Germany) according to the manufacturer’s instructions. All samples were observed under a microscope. Cell apoptosis was determined by counting TUNEL positive cells under a light microscope at × 40 objective.

Protein separation by 2-D electrophoresis

SW480 cells were cultured in RPMI 1640 medium with or without CAPE (10 μg/mL) for 48 h. The cells were carefully collected using a cell scraper. All reagents for 2D electrophoresis were obtained from Amersham Pharmacia Biotech (Uppsala, Sweden), except those otherwise indicated. To perform 2D electrophoresis, SW480 tumour cells were suspended in lysis buffer containing 40 mmol/L Tris, 8 mol/L urea, 4% paraformaldehyde. To determine cellular apoptosis, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assays were performed using the TUNEL Detection kit (Boehringer Mannheim, Mannheim, Germany) according to the manufacturer’s instructions. All samples were observed under a microscope. The cells were observed under a microscope. Cell apoptosis was determined by counting TUNEL positive cells under a light microscope at × 40 objective.

Protein separation by 2-D electrophoresis

SW480 cells were cultured in RPMI 1640 medium with or without CAPE (10 μg/mL) for 48 h. The cells were carefully collected using a cell scraper. All reagents for 2D electrophoresis were obtained from Amersham Pharmacia Biotech (Uppsala, Sweden), except those otherwise indicated. To perform 2D electrophoresis, SW480 tumour cells were suspended in lysis buffer containing 40 mmol/L Tris, 8 mol/L urea, 4% CHAPS, 60 mmol/L DTT, 0.8% IPG buffer (pH = 3-10), and protease inhibitor cocktail (Roche, Mannheim, Germany). Protein concentration was measured with the DC Protein Assay (BioRad, United States). Proteins (500 mg/gel) were loaded into IEF gels (pH = 3-10). The gels were immersed overnight in hydration buffer containing 8 M urea, 4% CHAPS, 60 mmol/L DTT, and 0.5% IPG buffer. After sample loading, IEF gels were run at 200 V for 1 h, 500 V for 1 h, 1000 V for 1 h and then were gradually increased to 8000 V for 5-6 h. Focusing was carried out at 35000 V h. After
IEF, IPG strips were equilibrated twice in equilibration buffer (50 mmol/L Tris-HCl (pH = 8.8), 6 mol/L urea, 30% glycerol, 2% SDS). In the first equilibration, 100 mg of DTT was dissolved in 10 mL of equilibration buffer, and 400 mg of iodoaceticamide was added in the second equilibration. The strips were then transferred onto vertical slab 12.5% SDS-PAGE gels and sealed with 0.5% low melting point agarose.

Image analysis
After electrophoresis, the gels were stained with Coomassie brilliant blue R-250. Digital images were taken with a GS-800 Com'radiograph (BioRad, USA), and image analysis was performed with PDQuest 2-D Analysis software (BioRad, United States).

Protein in-gel enzyme digestion and identification
In-gel digestion was performed as described by Rosenfeld et al. Briefly, spots were excised from the stained gel, destained with 25 mmol/L ammonium bicarbonate/50% acetonitrile (ACN), and then dried with a SpeedVac plus SC1 10 (Savant Holbook, United States). The dried gels were rehydrated in trypsin solution (Promega, United States) at 37 °C overnight. After rehydration, peptides were first eluted with 5% trifluoroacetic acid (TFA) at 40 °C for 1 h, and then eluted with 2.5% TFA/50% ACN at 30 °C for 1 h. ACN was removed by centrifugation in a vacuum centrifuge. The peptides were concentrated using C18 pipette tips (Millipore, Bedford, MA, United States). Analysis was performed primarily using the matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometer (Bruker, Germany). Peptide mixtures were analysed using a saturated solution of α-cyano-4-hydroxycinnamic acid (Sigma, United States) in acetone containing 1% TFA. Peptides were selected in the mass range of 800-4000 Da. The peptide sequence was determined with MASCOT software. Sequence homology was analysed using the MASCOT program and the NCBI BLAST online search service. The database NCBI Inr 20060731 was used.

Western blotting
SW480 cells were treated with or without CAPE (10 μg/mL) for 48 h. The cells were lysed in SDS-sample loading buffer and boiled at 100 °C for 5 min. The cell lysates were then subjected to SDS-PAGE. Proteins in the gel were then transferred onto PVDF membranes. The PVDF membranes were incubated for 2 h in blocking buffer (5% milk in 10 mmol/L Tris-HCl (pH = 7.5), 2.5 mmol/L EDTA (pH = 8.0), 50 mmol/L NaCl). The membranes were then incubated in antibodies against PSMA1, PSAT1, GNPDA1 or GPX1 (Sigma-Aldrich, United States) at a dilution of 1:5000 for 1 h at room temperature. Immunodetection was determined using the ECL-plus kit (Roche, United States) and autoradiography.

Immunofluorescence assay
SW480 cells grown on glass coverslips were treated with or without CAPE (10 μg/mL) for 48 h under standard culture conditions as described above. The cells were washed with PBS and fixed with methanol for 20 min. Incubation with anti-PSMA1, and anti-PSAT1 monoclonal antibody (1:500) was carried out overnight at 4 °C. This step was followed by incubation with FITC-conjugated secondary antibody (1:1000) for 1 h at room temperature. DAPI was used to stain the nucleus. Images were captured using a laser scanning confocal microscope (Leica, Germany).

RESULTS

CAPE inhibits tumour cell growth and induces apoptosis
To set up the cell culture system with CAPE treatment, SW480 cells were treated with CAPE at 5 μg/mL or 10 μg/mL, and cell growth was monitored daily by cell counting for a few days. Similar to a previous study, 10 μg/mL of CAPE effectively inhibited cell growth when compared to untreated control cells (data not shown). To determine if cell growth inhibition was caused by cell apoptosis, TUNEL assay was performed. We found a dose-dependent increase in cell apoptosis following treatment with CAPE (Figure 1A-D). Our data suggest that the growth inhibitory effect of CAPE may be associated with an increase in cell apoptosis.

Identification of differentially expressed proteins by the proteomics approach
To investigate the molecular mechanisms of the anticancer activity of CAPE, CAPE-treated colorectal cancer SW480 cells were analysed by a 2D-gel based proteomics approach. We used a cell viability assay to determine the optimum CAPE concentration of 10 μg/mL for cell treatment over 48 h.

Protein expression profiles in SW480 cells with or without CAPE treatment were compared by 2D electrophoresis (2-DE). Approximately 250 protein spots in untreated (Figure 2A) and treated cells (Figure 2B) were detected on the Coomassie stained gels. All spots were matched by gel-to-gel comparison using PDQuest software, and the difference in the relative abundance of each protein spot was analysed. Four up-regulated and seven down-regulated protein spots in the treated SW480 cells were found repeatedly (Figure 2C). Those eleven highly repeatable proteins were excised and then identified by MALDI-TOF mass spectrometry and a database search. The seven down-regulated proteins in response to CAPE treatment were Triosephosphate isomerase, PSMA4 protein, guanine nucleotide-binding protein, PSAT1, PSMA1, myosin WVIIIb, and human tryptophanal-rRNA synthetase (Table 1). The up-regulated proteins were Annexin A4, glyceraldehyde-3-phosphate dehydrogenase,
Glucosamine-6-phosphate deaminase 1 (GNPDA1), and glutathione peroxidase (GPX-1) (Table 2).

Validation of differentially expressed proteins

To validate the above proteomic findings, the expression levels of some identified proteins were examined by Western blot analysis. Proteins were selected for further analysis based on both their high match score and their probable role in cell growth control. Similar to our earlier observation (Figure 2), the expression of PSMA1 and PSAT1 was downregulated, and the expression of GNPDA1 and GPX-1 was up-regulated in CAPE-treated cells (Figure 3A and B). The identity of the two tumorigenesis associated proteins, PSMA1 and PSAT1, were further confirmed by immunofluorescence assay. PSMA1 and PSAT1 were mainly expressed on the cell membrane and...
No.	Protein name	Accession No.	Matched peptides	Protein sequence coverage	Mascot score	MW/pl	
1	Triosephosphate Isomerase (Tim)	gi	15079533	FFVGGNWK KQSLGELIGTLNAAK VPADTEVVCAPTAYIDFAR IAVAAQNCYK VTYNGAFTGE8PGM1 DCCAGTIVVLGLH3ER RHVVEWDELP3QK HRFVEWDELP3QK VAHAL4EGLGVIACIGEK VVALYEPYWAIGTGK TATIPQQAEVH3K SVN34AYAQS4R IFY3GS3VY3GAT3C	79%	131	26.8/6.51
2	PSMA4 protein	gi	34783332	TTIFSPEGR LLEDEVFFSEK LNDLMACSVATISDANVLTNE3R YLKQFQFIEPCIQVTALCDIK RPFVG3LLY3W3DK H3YGQFQ3SD3PGNGC3WK AT3C3GN3NS3A33AV3ML3K Q3KEV3Q3L3K K3H3EE3E3AK	50%	70	29.6/7.56
3	Guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1	gi	5174447	GHNGWVTQIAATTPQFP3DM3LS3ASR DET3NY3GI3P3R GHSHF3DSV3BS3DQ3FAL3G3SW3D3GTL3R LW3DLT3GT3TR D3V3LS3V3F3S3D3N3R Y3TVQ3D3E3H3E3W3V3S3V3C3V3R F3P3S3N3S3P3IV3S3C3G3W3D3K3 F3P3S3N3S3P3IV3S3C3G3W3D3K3 F3V3W3L3A3T3G3P3S3K3 I3V3D3E3L3Q3E3V3B3T3S3K3	80%	154	35.5/7.6
4	Phosphoserine aminotransferase 1 (PSAT1)	gi	17390289	QVVNFGPGPAK LVHS3V3L3E3Q3K G3V3G3S3V3L3E3M3H3R CAD3Y3Y3T3G3W3A3S3K F3G3T3I3N3V3H3P3K F3G3T3I3N3V3H3P3K3L3G3S3Y3G3S3Y3T3K G3A3V3L3C3D3M3S3N3F3L3S3K3P3D3V3S3K3 N3V3G3S3A3G3V3T3V3V3I3R3 D3D3L3L3G3A3L3R3 Y3W3L3C3A3T3G3P3S3K3 I3V3D3E3L3Q3E3V3B3T3S3K3	38%	79	40.9/7.56
5	Proteasome (prosome, macropain) subunit, alpha type, 1 (PSMA1)	gi	18490859	NQYD3N3D3V3TV3W3S3P3Q3CR IH3Q3I3E3Y3A3E3M3A3V3K3 IH3Q3I3E3Y3A3E3M3A3V3K3G3S3A3T3V3G3L3K3 IL3H3Y3D3N3H3G3S3A3G3L3T3D3A3R3 LL3C3N3F3M3R3F3D3R3F3L3P3V3S3R3 H3M3S3E3F3M3E3C3N3L3N3L3E3L3E3V3K3 D3L3F3T3Y3D3D3D3V3S3P3E3L3E3R3E3P3Q3R3 AQ3P3A3Q3P3A3D3E3P3A3E3K3D3E3P3M3E3H3	50%	81	29.8/6.15
in the cytosol (Figure 3B and C). After CAPE treatment, the expression levels of PSMA1 and PSAT1 were altered, although the cellular localisation of these proteins did not change (Figure 3B and C).

DISCUSSION

Propolis has been used in folk medicine since ancient times and has been noted to exhibit immunoregulatory, anti-bacterial, anti-inflammatory, and anti-tumorigenic activities in different models\[15-17\]. CAPE is a component of propolis and is therefore implicated in the activity of propolis. CAPE has been shown to selectively target tumour cells and to inhibit tumour cell proliferation. In addition, CAPE has been demonstrated to induce apoptosis in different types of tumours including breast cancer\[18\], myeloid leukaemia\[13\], cervical cancer\[12\], hepatocarcinoma cell\[19\], cholangiocarcinoma\[7\], and glioma\[20\].

In our previous studies, we demonstrated that CAPE could inhibit colorectal cancer cell proliferation by inducing cell cycle arrest and apoptosis\[2\]. Recently, it was shown that CAPE was a specific inhibitor of nuclear factor κB, inducing apoptosis via activation of the Fas signalling pathway in human tumour cells\[21\]. Other signalling pathways may also be involved\[22,23\]. To investigate the molecular mechanisms of the anti-cancer activity of CAPE, we compared the protein expression profiles of treated SW480 cells using 2D electrophoresis. Highly repeatable protein spots were selected and identified by MALDI-TOF mass spectrometry and online database searching.

PSAT1 belongs to subgroup IV of the aminotransferases and plays a crucial role in linking the central catabolic pathways (glycolysis) and amino acid biosynthesis pathways. PSAT1 catalyses the second step in the biosynthesis of the amino acid, serine, which in turn, is the crucial carbon source for purine nucleotides, phosphatidylcholine, phosphatidylserine, and other cellular metabolites. PSAT1 is weakly expressed in the normal colon, but overexpressed in colon cancer with increased expression as disease progresses\[22,23\]. PSAT1 expression was shown to be up-regulated during the colorectal adenoma-to-carcinoma sequence by proteomic technology\[24\]. Recently, it has been reported that the overexpression of PSAT1 stimulates cell growth and increases the chemoresistance of colon cancer cells\[25\], indicating that overexpression of
PSAT1 may be involved in tumorigenesis and promotes cell growth. In contrast, down-regulation of PAST1 in CAPE-treated colorectal cancer cells may be associated with cell growth inhibition.

Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in non-lysosomal pathways. PSMA1 is a subunit that is strategically located at the mouth of the core of the proteasome barrel. While PSMA1 is not part of the catalytic machinery of the proteasome, it likely plays a role in gating the entry of proteins into the barrel. PSMA1 has been shown to bind specifically with Notch 3 protein in a yeast two-hybrid assay, which results in the inhibition of proteasome activity\(^{(26)}\). PSMA1 has been reported to be overexpressed in breast cancer tissue compared to adjacent normal tissue\(^{(27)}\), suggesting that PSMA1 may be involved in tumorigenesis. Similar to PSAT1, PSMA1 was downregulated in CAPE-treated CRC cells, suggesting that PSMA1 is not only an important regulator of biological processes, but also involved in the anti-cancer activity of CAPE.

Proteins and their characteristics

Table 2: Identification of up-regulated proteins in SW480 cells treated with caffeic acid phenethyl ester

No.	Protein name	Accession No.	Matched peptides	Protein sequence coverage	Mascot score	MW/pl	
8	Annexin A4	gi	12652859	AASGNAMEDAQTLR GLGTDDAIASLVLAYR GAGTDEGCLIEILASK ISVTQVQQVGR SLEDIDSDHTSYMFR + Oxidation (M) SEDSFMQR + Oxidation (M) VLVSAGSCR DEGNYLDALVR QDADLYEAGEK FLTVLSCR NRRNFLHVFDYKR NRRNFLHVFDYKR SETISGFDALLAIVK NKSAYFAEK GLGTDNTRLR VMVSDAMILDIR +2 Oxidation (M) AEDLDIR LIVNGPNITPEQRDPSK WGDAGAEIFVVESTGVFTMVEK RVIASAPADAPMFMVCMVHEK ISNASCTTNCAPLAK VIHDNGFIEGMLTMTAHTAQK GALQNIIPASTGAAK VPTANSVWDLTCR LISYDNEFYSNRR VVDLMAHMSK +2 Oxidation (M)	56%	105	36.2/5.65
9	Glyceraldehyde-3-phosphate dehydrogenase	gi	31645	GLGTDNTRLR VMVSDAMILDIR +2 Oxidation (M) LIVNGPNITPEQRDPSK WGDAGAEIFVVESTGVFTMVEK RVIASAPADAPMFMVCMVHEK ISNASCTTNCAPLAK VIHDNGFIEGMLTMTAHTAQK GALQNIIPASTGAAK VPTANSVWDLTCR LISYDNEFYSNRR VVDLMAHMSK +2 Oxidation (M)	46%	76	36.2/8.28
10	Glucosamine-6-phosphate deaminase 1 (GNPDA1)	gi	18490843	LIQPNPGPK EFITLGPSTLGLCYK TFNMDYVGPLR AAGGIELFGGPGPDQHAFNEPGSLSLR TLAAMDIPLANAR VPTMALYGTVGTMDAR EVMILITACHAKAFALYK AIEGVTMSWASTAFQPMH PR TVFYCDYDALEK ETERKQSSK	54%	90	32.8/6.42
11	Glutathione peroxidase 1 (GPX1)	gi	14717805	GLVVLGFCPCNQCHQHENA VYRPGGFEFPNMLFEK CEVNGAGHPLFAFLLR EALPAPSSDDATAMIFPLKTBSPVCRC LTITSPVCRC FLVGPDDVPLR FLVGPDDVPLR RFQTCIEIDIEALLSQQSCA	56%	70	22.6/15.15
survival in patients with cancer[30-32]. GPX-1 may have cancer-suppressing effects and up-regulation of GPX1 in CAPE-treated colorectal cancer cells might also be associated with the anti-cancer effect of CAPE.

In conclusion, we found that CAPE induced cell apoptosis and a differential protein expression profile. In particular, CAPE treatment resulted in down-regulation of proteins previously implicated in tumorigenesis. Down-regulated PSAT1 and PSMA1 and up-regulated GPX-1 in CAPE-treated colorectal cancer cells may be potential molecular targets of CAPE and involved in the anti-cancer effect of CAPE.

ACKNOWLEDGMENTS

We thank Lei Zhang for excellent technical assistance and Emeka Okeke at the University of Manitoba in Canada for English language editing.

COMMENTS

Background

Colorectal cancer is one of the most commonly diagnosed malignancies and the third deadliest cancer in humans. Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant, which is known to suppress the growth of tumor cells and induce cell apoptosis. However, the molecular mechanisms of the anti-cancer effects of CAPE remain unclear.
activity of CAPE are unclear.

Research frontiers

CAPE is an active component of propolis and has various biological and pharmacological functions including immunoregulatory, anti-inflammatory, anti-viral, anti-bacterial, and anti-cancer activities. Several studies have revealed that CAPE has anti-proliferative effects by inducing apoptosis in various tumor cells in vitro and in vivo. CAPE also inhibits the development of azoxymethane-induced aberrant crypts in the rat colon.

Innovations and breakthroughs

Based on a proteomic approach, several altered proteins were identified in CAPE-treated human colorectal cancer cells. Phosphoserine aminotransferase 1 (PSAT1) and Proteasome subunit alpha 1 (PSMA1), have been shown to be overexpressed in human cancer tissues, while low expression of Glutathione peroxidase 1 (GPX-1) is known to be associated with aggressiveness and poor survival in patients with cancer. Down-regulated PSAT1 and PSMA1 and up-regulated GPX-1 in CAPE-treated colorectal cancer cells may be potential molecular targets of CAPE and involved in the anti-cancer effect of CAPE.

Applications

These findings suggest that CAPE mediates its anti-cancer effect by regulating the expression of important molecules.

Terminology

Proteomics is the study of the structure and function of proteins in a cell or tissue at a specific time under certain pre-defined conditions. CAPE is a natural phenolic chemical compound. It is found in a variety of plants and is also a component of propolis found in honeybee hives.

Peer review

The authors of this paper studied the mechanism involved in the inhibition by CAPE of colorectal cancer cells, and identified differential protein expression regulated GPX-1 in CAPE-treated colorectal cancer cells may be potential molecular targets of CAPE and involved in the anti-cancer effect of CAPE.

REFERENCES

The article is well written. Experimental design was logically followed through. Method and results were well presented.

1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10-29 [PMID: 22237781 DOI: 10.3322/caac.20138]
2. He YJ, Liu BH, Xiang DB, Qiao ZY, Fu T, He YH. Inhibitory effect of caffeic acid phenethyl ester on the growth of SW480 colorectal tumor cells involves beta-catenin associated signaling pathway down-regulation. World J Gastroenterol 2006; 12: 4981-4985 [PMID: 16957493]
3. Lee YJ, Liao PH, Chen WK, Yang CY. Preferential cytotoxicity of caffeic acid phenethyl ester analogues on oral cancer cells. Cancer Lett 2000; 153: 51-56 [PMID: 10779629 DOI: 10.1016/S0304-3855(00)00389-X]
4. Chen YJ, Shiao MS, Wang SY. The antioxidant caffeic acid phenethyl ester induces apoptosis associated with selective scavenging of hydrogen peroxide in human leukemic HL-60 cells. Anticancer Drugs 2001; 12: 143-149 [PMID: 11261888 DOI: 10.1097/00001813-200102000-00008]
5. Nagaoa T, Banskota AH, Tezuka Y, Saiki I, Kadota S. Selective antiproliferative activity of caffeic acid phenethyl ester analogues on highly liver-metastatic murine colon 26-L5 carcinoma cell line. Bioorg Med Chem 2002; 10: 3351-3359 [PMID: 12150882 DOI: 10.1016/S0968-0896(02)00138-4]
6. Usia T, Banskota AH, Tezuka Y, Midoriokawa K, Matsushige K, Kadota S. Constituents of Chinese propolis and their antiproliferative activities. J Nutr Pharm 2002; 65: 673-676 [PMID: 12027739 DOI: 10.1021/np010486c]
7. Onor I, DeMorrow S, Gaudio E, Franchitto A, Mancinelli R, Venter J, Kopriva S, Ueno Y, Alvaro D, Savage J, Alpini G, Francis H. Caffeic acid phenethyl ester decreases cholangiocarcinoma growth by inhibition of NF-kappaB and induction of apoptosis. Int J Cancer 2009; 125: 565-576 [PMID: 19358267 DOI: 10.1002/ijc.24271]
8. Orsolic N, Terzic S, Mihaljevic Z, Sver S, Basic I. Effects of local administration of propolis and its polyphenolic compounds on tumor formation and growth. Biol Pharm Bull 2005; 28: 1928-1933 [PMID: 16204948 DOI: 10.1248/bpb.28.1928]
9. Kuo HC, Kuo WH, Lee YJ, Lin WL, Chou FP, Tseng TH. Inhibitory effect of caffeic acid phenethyl ester on the growth of C6 glioma cells in vitro and in vivo. Cancer Lett 2006; 234: 199-208 [PMID: 15885897 DOI: 10.1016/j.canlet.2005.03.046]
10. Borrelli F, Izzo AA, Di Carlo G, Maffia P, Russo A, Maiello FM, Capasso F, Mascolo N. Effect of a propolis extract and caffeic acid phenethyl ester on formation of aberrant crypt foci and tumors in the rat colon. Fitoterapia 2002; 73 Suppl 1: S38-543 [PMID: 12495708DOI: 10.1016/S0367-326X(02)01889-2]
11. Lee Y, Shin DH, Kim JH, Hong S, Choi D, Kim YJ, Kwak MK, Jung Y. Caffeic acid phenethyl ester-mediated Nrf2 activation and IkkappaB kinase inhibition are involved in NFkappaB inhibitory effect: structural analysis for NFkappaB inhibition. Eur J Pharmacol 2010; 643: 21-28 [PMID: 20599928 DOI: 10.1016/j.ejphar.2010.06.016]
12. Hung MW, Shiao MS, Tsai LC, Chang GG, Chang TC. Apoptotic effect of caffeic acid phenethyl ester and its ester and amide analogues in human cervical cancer ME180 cells. Anticancer Res 2003; 23: 4773-4780 [PMID: 14981925]
13. Jin UH, Song KH, Motomura M, Suzuki I, Gu YH, Kang YJ, Moon TC, Kim CH. Caffeic acid phenethyl ester induces mitochondrial-mediated apoptosis in human myeloid leukemia U937 cells. Mol Cell Biochem 2008; 310: 43-48 [PMID: 18060475 DOI: 10.1016/j.mcb.2007.09.003]
14. Rosenfeld J, Capdevielle J, Guillemet JC, Ferrara P. In-gel digestion of proteins for internal sequence analysis after one or two-dimensional gel electrophoresis. Anal Biochem 1992; 203: 173-179 [PMID: 1524213]
15. Orsolic N, Knezevic AH, Sver L, Terzic S, Basic I. Immuno-modulatory and antimetastatic action of propolis and related polyphenolic compounds. J Ethnopharmacol 2004; 94: 307-315 [PMID: 15325736 DOI: 10.1016/j.jep.2004.06.006]
16. Orsolic N, Saranovic AB, Basic I. Direct and indirect mechanism(s) of antitumour activity of propolis and its polyphenolic compounds. Planta Med 2006; 72: 20-27 [PMID: 16450291 DOI: 10.1055/s-2005-873167]
17. Sforcin JM, Bankova V. Propolis: is there a potential for the development of new drugs? J Ethnopharmacol 2011; 133: 253-260 [PMID: 20970490 DOI: 10.1016/j.jep.2010.10.032]
18. Wu J, Omene C, Karkouzja J, Bosland M, Eckard J, Klein CB, Frenkel K. Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer Lett 2011; 308: 43-53 [PMID: 21570765 DOI: 10.1016/j.canlet.2011.04.012]
19. Chung TW, Moon SK, Chang YC, Ko JH, Lee YC, Cho G, Kim SH, Kim JG, Kim CH. Novel and therapeutic effect of caffeic acid and caffeic acid phenethyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J 2004; 18: 1670-1681 [PMID: 15522912 DOI: 10.1096/fj.04-2126com]
20. Lee YJ, Kuo HC, Chu CY, Wang CJ, Lin WC, Tseng TH. Involvement of tumor suppressor protein p53 and p38 MAPK in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells. Biochem Pharmacol 2003; 66: 2281-2289 [PMID: 14637186]
21. Watabe M, Hishikawa K, Takayanagi A, Shimizu N, Nakaki T. Caffeic acid phenethyl ester induces apoptosis by inhibition of NFkappaB and activation of Fas in human breast cancer MCF-7 cells. J Biol Chem 2004; 279: 6017-6026 [PMID: 14625298 DOI: 10.1074/jbc.M304042020]
22. Öjala P, Sundström J, Grönnros JM, Virtanen E, Talvinen K, Nevalainen TJ. mRNA differential display of gene expression in colonic carcinoma. Electrophoresis 2002; 23: 1667-1676 [PMID: 12179966]
23 Friederichs J, Rosenberg R, Mages J, Janssen KP, Maeckl C, Nekarda H, Holzmann B, Siewert JR. Gene expression profiles of different clinical stages of colorectal carcinoma: toward a molecular genetic understanding of tumor progression. *Int J Colorectal Dis* 2005; 20: 391-402 [PMID: 15883783 DOI: 10.1007/s00384-004-0722-1]

24 Roth U, Razawi H, Hommer J, Engelmann K, Schwientek T, Müller S, Baldus SE, Patso G, Corfield AP, Paraskeva C, Hanisch FG. Differential expression proteomics of human colorectal cancer based on a syngeneic cellular model for the progression of adenoma to carcinoma. *Proteomics* 2010; 10: 194-202 [PMID: 19899882 DOI: 10.1002/pmic.200900614]

25 Vié N, Copois V, Bascoul-Mollevi C, Denis V, Bec N, Robert B, Fraslon C, Conseiller E, Molina F, Larroque C, Martinneau P, Del Rio M, Gongora C. Overexpression of phosphoserine aminotransferase PsAT1 stimulates cell growth and increases chemoresistance of colon cancer cells. *Mol Cancer* 2008; 7: 14 [PMID: 18221502 DOI: 10.1186/1476-4598-7-14]

26 Zhang Y, Jia L, Lee SJ, Wang MM. Conserved signal peptide of Notch3 inhibits interaction with proteasome. *Biochem Biophys Res Commun* 2007; 355: 245-251 [PMID: 17292860 DOI: 10.1016/j.bbrc.2007.01.151]

27 Deng S, Zhou H, Xiong R, Lu Y, Yan D, Xing T, Dong L, Tang E, Yang H. Over-expression of genes and proteins of ubiquitin specific peptidases (USPs) and proteasome sub-units (PSs) in breast cancer tissue observed by the methods of RFDD-PCR and proteomics. *Breast Cancer Res Treat* 2007; 104: 21-30 [PMID: 17004105 DOI: 10.1007/s10549-006-9393-7]

28 Arreola R, Valderrama B, Morante ML, Horjales E. Two mammalian glucosamine-6-phosphate deaminases: a structural and genetic study. *FEBS Lett* 2003; 551: 63-70 [PMID: 12965206]

29 Zhang J, Zhang W, Zou D, Chen G, Wan T, Li N, Cao X. Cloning and functional characterization of GNPI2, a novel human homolog of glucosamine-6-phosphate isomerase/osccin. *J Cell Biochem* 2003; 88: 932-940 [PMID: 12616532 DOI: 10.1002/jcb.10444]

30 Min SY, Kim HS, Jung EJ, Jung EJ, Joe CD, Kim WH. Prognostic significance of glutathione peroxidase 1 (GPX1) down-regulation and correlation with aberrant promoter methylation in human gastric cancer. *Anticancer Res* 2012; 32: 3169-3175 [PMID: 22843889]

31 Lei XG, Cheng WH, McClung JP. Metabolic regulation and function of glutathione peroxidase-1. *Annu Rev Nutr* 2007; 27: 41-61 [PMID: 17465855 DOI: 10.1146/annurev.nutr.27.061406.093716]

32 Hu Y, Benya RV, Carroll RE, Diamond AM. Allelic loss of the gene for the GPX1 selenium-containing protein is a common event in cancer. *J Nutr* 2005; 135: 3021S-3024S [PMID: 16317164]

P- Reviewer: Pichler M S- Editor: Qi Y L- Editor: Webster JR E- Editor: Wang CH
