Introduction. – It is a fundamental question whether the neutrinos are Dirac or Majorana-type fermions. Neutrinoless double beta ($0\nu2\beta$) decay, if detected, would prove that neutrinos are Majorana fermions. Besides, it provides direct evidence that the fundamental law of lepton number conservation is violated in nature. According to the light-neutrino exchange mechanism, the observation of $0\nu2\beta$ decay would also give us information about the absolute neutrino mass, which oscillation experiments cannot predict.

Around the world many experiments are underway to hunt for $0\nu2\beta$ decays $^{[1]}{^{[12]}}$. Recently four experiments reported the decay’s half-lives of $T_{1/2} > 10^{25}$ yr $^{[9]}{^{[12]}}$ and a fifth experiment reached the level of 1.07×10^{26} yr for 126Xe $^{[5]}$. With a new generation of ton-scale experiments, the level of sensitivity may be pushed 1 or 2 orders of magnitude higher, yielding the possibility to identify a few decay events per year $^{[13]}{^{[17]}}$.

The standard picture of $0\nu2\beta$ involves the long-range light neutrino exchange – a minimal extension of the standard model. On the other hand, current knowledge of second-order weak-interaction nuclear matrix elements needs to be improved, as various nuclear models lead to discrepancies on the order of 100% $^{[17]}$. A promising approach $^{[18]}{^{[19]}}$ to improving the reliability of the $0\nu2\beta$ predication is to constrain the few-body inputs to ab initio many-body calculations using lattice QCD $^{[20]}{^{[23]}}$.

In this work we perform the first lattice QCD calculation of the neutrinoless double beta decay $\pi\pi \rightarrow ee$. We find that the decay amplitude involves significant long-distance contributions. The calculation reported here, with pion masses $m_\pi = 420$ and 140 MeV, demonstrates that the decay amplitude can be computed from first principles using lattice methods. At unphysical and physical pion masses, we obtain that amplitudes are 24% and 9% smaller than the predication from leading order chiral perturbation theory. Our findings provide the lattice QCD inputs and constraints for effective field theory. A follow-on calculation with fully controlled systematic errors will be possible with adequate computational resources.

Light-neutrino exchange in $0\nu2\beta$ decay. – We begin with the effective Lagrangian L_{eff} for the single β decay

$$L_{\text{eff}} = 2\sqrt{2} G_F V_{ud}(\bar{u}_L \gamma_\mu d_L)(\bar{e}_L \gamma_\mu \nu_{eL}),$$

which represents the standard Fermi charged-current weak interaction involving the left-handed fermionic fields \bar{u}_L, d_L, \bar{e}_L and ν_{eL}. Here G_F is the Fermi constant and V_{ud} is the CKM matrix element. One can introduce the neutrino mixing matrix to connect the neutrino flavor eigenstates to the mass eigenstates. For the electron flavor, we have

$$\bar{e}_L \gamma_\mu \nu_{eL} = \sum_{k=1,2,3} \bar{e}_L \gamma_\mu U_{ek} \nu_{kL}$$

with U_{ek} the mixing matrix element.

The effective Hamiltonian for 2β decay can be constructed as

$$H_{\text{eff}} = \frac{1}{2} \int d^4x \, T[H_{\nu\nu}(x) L_{\nu\nu}(0)]$$

$$= 4G_F^2 V_{ud}^2 \int d^4x \, H_{\mu\nu}(x) L_{\mu\nu}(x).$$

with the hadronic factor $H_{\mu\nu}(x) = T[J_{\muL}(x) J_{\nuL}(0)]$ with $J_{\muL}(x) = \bar{u}_L \gamma_\mu d_L(x)$. Under the mechanism that $0\nu2\beta$ decays are mediated by the exchange of light Majorana neutrinos, the leptonic factor can be written as $^{[24]}$

$$L_{\mu\nu}(x) = -m_{\beta\beta} S_0(x,0) \pi_L(x) \gamma_\mu \gamma_\nu \bar{e}_L(0)$$

with $S_0(x,0) = \int \frac{d^4q}{(2\pi)^4} e^{iqx} q^\mu q^\nu$ a massless scalar propagator and $m_{\beta\beta} = \sum_k m_k U_{ek}^2$ the effective neutrino mass. The charge conjugate of a fermionic field ψ is given as $\psi^c = C\psi^T = \gamma_4 \gamma_2 \psi^T$.

We present an exploratory lattice QCD calculation of the neutrinoless double beta decay $\pi\pi \rightarrow ee$. Around the world many experiments are underway to hunt for $0\nu2\beta$ decays $^{[1]}{^{[12]}}$. Recently four experiments reported the decay’s half-lives of $T_{1/2} > 10^{25}$ yr $^{[9]}{^{[12]}}$ and a fifth experiment reached the level of 1.07×10^{26} yr for 126Xe $^{[5]}$. With a new generation of ton-scale experiments, the level of sensitivity may be pushed 1 or 2 orders of magnitude higher, yielding the possibility to identify a few decay events per year $^{[13]}{^{[17]}}$. The standard picture of $0\nu2\beta$ involves the long-range light neutrino exchange – a minimal extension of the standard model. On the other hand, current knowledge of second-order weak-interaction nuclear matrix elements needs to be improved, as various nuclear models lead to discrepancies on the order of 100% $^{[17]}$. A promising approach $^{[18]}{^{[19]}}$ to improving the reliability of the $0\nu2\beta$ predication is to constrain the few-body inputs to ab initio many-body calculations using lattice QCD $^{[20]}{^{[23]}}$.

In this work we perform the first lattice QCD calculation of the neutrinoless double beta decay $\pi\pi \rightarrow ee$, where the light neutrinos are included as active degrees of freedom. We find that the decay amplitude receives dominant long-distance contributions from the $e\nu\pi$ intermediate state. Although small, the excited-state contribution is identified with a clear signal in our calculation. At both unphysical and physical pion masses, we find that the lattice results are consistently smaller than the predication from leading order chiral perturbation theory $^{[13]}$.

Light-neutrino exchange in $0\nu2\beta$ decay. – We begin with the effective Lagrangian L_{eff} for the single β decay

$$L_{\text{eff}} = 2\sqrt{2} G_F V_{ud}(\bar{u}_L \gamma_\mu d_L)(\bar{e}_L \gamma_\mu \nu_{eL}),$$

which represents the standard Fermi charged-current weak interaction involving the left-handed fermionic fields \bar{u}_L, d_L, \bar{e}_L and ν_{eL}. Here G_F is the Fermi constant and V_{ud} is the CKM matrix element. One can introduce the neutrino mixing matrix to connect the neutrino flavor eigenstates to the mass eigenstates. For the electron flavor, we have

$$\bar{e}_L \gamma_\mu \nu_{eL} = \sum_{k=1,2,3} \bar{e}_L \gamma_\mu U_{ek} \nu_{kL}$$

with U_{ek} the mixing matrix element.

The effective Hamiltonian for 2β decay can be constructed as

$$H_{\text{eff}} = \frac{1}{2} \int d^4x \, T[H_{\nu\nu}(x) L_{\nu\nu}(0)]$$

$$= 4G_F^2 V_{ud}^2 \int d^4x \, H_{\mu\nu}(x) L_{\mu\nu}(x).$$

with the hadronic factor $H_{\mu\nu}(x) = T[J_{\muL}(x) J_{\nuL}(0)]$ with $J_{\muL}(x) = \bar{u}_L \gamma_\mu d_L(x)$. Under the mechanism that $0\nu2\beta$ decays are mediated by the exchange of light Majorana neutrinos, the leptonic factor can be written as $^{[24]}$

$$L_{\mu\nu}(x) = -m_{\beta\beta} S_0(x,0) \pi_L(x) \gamma_\mu \gamma_\nu \bar{e}_L(0)$$

with $S_0(x,0) = \int \frac{d^4q}{(2\pi)^4} e^{iqx} q^\mu q^\nu$ a massless scalar propagator and $m_{\beta\beta} = \sum_k m_k U_{ek}^2$ the effective neutrino mass. The charge conjugate of a fermionic field ψ is given as $\psi^c = C\psi^T = \gamma_4 \gamma_2 \psi^T$.

We present an exploratory lattice QCD calculation of the neutrinoless double beta decay $\pi\pi \rightarrow ee$. Around the world many experiments are underway to hunt for $0\nu2\beta$ decays $^{[1]}{^{[12]}}$. Recently four experiments reported the decay’s half-lives of $T_{1/2} > 10^{25}$ yr $^{[9]}{^{[12]}}$ and a fifth experiment reached the level of 1.07×10^{26} yr for 126Xe $^{[5]}$. With a new generation of ton-scale experiments, the level of sensitivity may be pushed 1 or 2 orders of magnitude higher, yielding the possibility to identify a few decay events per year $^{[13]}{^{[17]}}$. The standard picture of $0\nu2\beta$ involves the long-range light neutrino exchange – a minimal extension of the standard model. On the other hand, current knowledge of second-order weak-interaction nuclear matrix elements needs to be improved, as various nuclear models lead to discrepancies on the order of 100% $^{[17]}$. A promising approach $^{[18]}{^{[19]}}$ to improving the reliability of the $0\nu2\beta$ predication is to constrain the few-body inputs to ab initio many-body calculations using lattice QCD $^{[20]}{^{[23]}}$.

In this work we perform the first lattice QCD calculation of the neutrinoless double beta decay $\pi\pi \rightarrow ee$, where the light neutrinos are included as active degrees of freedom. We find that the decay amplitude receives dominant long-distance contributions from the $e\nu\pi$ intermediate state. Although small, the excited-state contribution is identified with a clear signal in our calculation. At both unphysical and physical pion masses, we find that the lattice results are consistently smaller than the predication from leading order chiral perturbation theory $^{[13]}$.
For a general 0→2β decay \(I(p_1) \rightarrow F(p_F) e(p_1) e(p_2) \), its decay amplitude can be written as
\[
A = \langle F, e_1, e_2 | H_{\text{eff}} | I \rangle \\
= -4G_F^2 V_{ud}^2 m_{\beta \beta} \int \frac{d^4q}{(2\pi)^4} e^{iq \cdot x} \langle e_1, e_2 | \bar{e}_L(x) \gamma_{\mu} \gamma_{\nu} e_L^\dagger(0) | 0 \rangle. \tag{5}
\]
Here we use \(e_1, e_2 \) to specify the electron state carrying momentum \(p_{1,2} \). The leptonic matrix element is given by
\[
\langle e_1, e_2| \bar{e}_L(x) \gamma_{\mu} \gamma_{\nu} e_L^\dagger(0)|0 \rangle = \\
\bar{u}_L(p_1, x) \gamma_{\mu} \gamma_{\nu} u_L^\dagger(p_2, 0) - \bar{u}_L(p_2, x) \gamma_{\mu} \gamma_{\nu} u_L^\dagger(p_1, 0), \tag{6}
\]
which is antisymmetric under the exchange of two electrons \(e_1 \leftrightarrow e_2 \) due to the Pauli exclusion principle. Here the spinors are defined as
\[
\langle e_i| e_i(x) = \bar{u}_L(p_i, x) e^{i\tilde{p}_i \cdot x} e^{iE_i t}, \\
\langle e_i| e_i^\dagger(x) = u_L^\dagger(p_i, x) e^{-i\tilde{p}_i \cdot x} e^{-iE_i t}, \tag{7}
\]
for \(i = 1, 2 \). Inserting the complete set of hadronic intermediate states, the decay amplitude can be written as
\[
A = -4G_F^2 V_{ud}^2 m_{\beta \beta} \int \frac{d^n}{2E_{\nu 2} E_{\nu 1} E_{\nu i} E_{\nu j} (E_{\nu i} + E_{\nu j} + E_0 - E_1)} \bar{u}_L(p_1) \gamma_{\mu} \gamma_{\nu} u_L^\dagger(p_2) \\
+ \frac{\langle j_{\mu L} | n | j_{\nu L} | I \rangle}{2E_{\nu 1} E_{\nu 1} E_{\nu i} E_{\nu j} (E_{\nu i} + E_{\nu j} + E_0 - E_1)} \bar{u}_L(p_1) \gamma_{\mu} \gamma_{\nu} u_L^\dagger(p_2). \tag{8}
\]

Given the spatial momenta \(\vec{p}_i \) for the hadronic intermediate states specified by \(| n \rangle \), the neutrino’s momenta are constrained by the conservation law \(\vec{p}_{\nu,i} = \vec{p}_1 - \vec{p}_i - \vec{p}_2 \), and the corresponding energies are denoted as \(E_{\nu,i} = | \vec{p}_{\nu,i} | \). One can write the spinor product as a combination of \(\bar{u}_L(p_1) u_L^\dagger(p_2) \) and \(\bar{u}_L(p_1) \gamma^\mu \gamma^\nu u_L^\dagger(p_2) \). The coefficient of the second term is proportional to the difference in electron momenta and generally suppressed by a factor of \(|p_1 - p_2|/k_F \ll 1 \), where \(p_1 - p_2 \approx O(1) \) MeV and \(k_F \approx m_{\text{e}}/2 \). Keeping only the term of \(\bar{u}_L(p_1) u_L^\dagger(p_2) \), the decay amplitude is simplified as
\[
A = -T_{\text{lept}} \int \frac{d^n}{2E_{\nu 2} E_{\nu 1} E_{\nu i} E_{\nu j} (E_{\nu i} + E_{\nu j} + E_0 - E_1)} \langle j_{\mu L} | n | j_{\nu L} | I \rangle \tag{9}
\]
with \(T_{\text{lept}} = 4G_F^2 V_{ud}^2 m_{\beta \beta} \bar{u}_L(p_1) u_L^\dagger(p_2) \).

Calculation of π→ee decay – In this work we calculate the \(\pi \pi \rightarrow ee \) decay amplitude with two pions at rest and two electrons carrying spatial momenta \(\vec{p}_1 = -\vec{p}_2 \), \(|p_{1,2}| = E_{\pi \pi}/2 \). While the condition of \(|p_1 - p_2|/k_F \ll 1 \) is no more valid, we target on the determination of the amplitude given in Eq. 9, which is more relevant for chiral effective field theory inputs to \(\textit{ab initio} \) many-body calculation [18]. This setup has advantages as follows.

- Because of the non-zero momentum carried by the electron, the energies of any possible intermediate states \(e\bar{\nu}n \) always lie above the initial-state energy \(E_{\pi \pi} \approx 2m_\pi \). Therefore no exponentially growing contamination is associated with the intermediate states when one performs an integral over a Euclidean time. The effects of finite volume on a generic second-order weak amplitude [25] are not relevant here as well.

- We use the discrete lattice momenta \((2\pi/L) \vec{m} \) for the intermediate hadronic particles and the momenta \(\vec{p}_{\nu,i} = -\vec{p}_i - (2\pi/L) \vec{m} \) for the intermediate neutrino, where \(\vec{p}_i \) is the momentum carried by the electron. As nonzero momenta are assigned for the neutrino propagator, one can keep the lowest mode of the propagator, which reduces the power-law finite-volume effects.

Note that no short-distance divergence appears as \(x \) approaches to 0 in \(e_{\text{eff}}(x) L_{\text{eff}}(0) \). This can be seen by the power counting in the integral
\[
\int d^4 x e^{iAx} L_{\text{eff}}(x) L_{\text{eff}}(0) \\
\sim 8G_F^2 V_{ud}^2 m_{\beta \beta} \hat{\Lambda}^2 (\bar{u}_L \gamma_{\mu} d_L) (\bar{u}_L \gamma_{\mu} d_L) e_L^\dagger e_L. \tag{10}
\]
In lattice QCD, a hard cutoff is introduced by the inverse of lattice spacing \(1/a \). Thus the unphysical short-distance contribution appears as an \(O(a^2) \) discretization effect.

Using the Coulomb gauge fixed wall sources for the \(\phi \) interpolating operator, we construct the correlation function through \(C(x,y,t_\pi) = \)
\[
-4G_F^2 V_{ud}^2 m_{\beta \beta} \times \\
(\sum_{x,y} (0| T [j_{\mu L}(\tilde{x}, \tilde{y}) j_{\mu L}(\tilde{y}, \tilde{y}) \phi^\dagger \phi^\dagger(1)(t_\pi)]|0) \\
\times S_{0}(x,y) \langle e_1, e_2| \bar{e}_L(x) e_L^\dagger(y)|0 \rangle \\
- T_{\text{lept}} \sum_{x,y} (0| T [j_{\mu L}(\tilde{x}, \tilde{y}) j_{\mu L}(\tilde{y}, \tilde{y}) \phi^\dagger \phi^\dagger(1)(t_\pi)]|0) \\
\times S_{0}(x,y) \left(e^{-ip_1(x-y)} + e^{-ip_2(x-y)}\right) e^{E_{\pi \pi} t_\pi}, \tag{11}
\]
On the lattice, the scalar propagator \(S_{0}(x,y) e^{-ik(x-y)} \) with \(k = \vec{p}_{1,2} \) can be implemented as
\[
S_{0}(x,y) e^{-ik(x-y)} = \int \frac{d^4 q}{(2\pi)^4} e^{iq \cdot (x-y)} \\
\Rightarrow \left(\frac{1}{VT} \sum_{q_i} \frac{1}{q_i^2 + \sum_{i} k_i^2}\right) e^{\bar{q}_i + \bar{k}_i}. \tag{12}
\]
with \(\bar{q}_i = 2 \sin(q_i/2) \) the lattice discretized momenta. \(V \) and \(T \) are the spatial volume and time extent of the lattice. We can calculate the zero mode \(\bar{q}_i = 0 \) of the propagator as \(\frac{1}{VT} \sum_{q_i} e^{i\theta_{q_i}(t_\pi - t)} \frac{1}{q_i^2 + \sum_{i} k_i^2} \). The nonzero
modes ($\vec{q} \neq \vec{0}$) of the propagator can be constructed as
\[
\phi_r(x) = \frac{1}{\sqrt{V T}} \sum_{\vec{q} \neq \vec{0}, q_1} \frac{\xi_r(q) e^{i q x}}{\sqrt{q_1^2 + \sum_i q_i^2}}.
\]

(13)

Here the stochastic sources $\xi_r(q)$ satisfy
\[
\lim_{N_r \to \infty} \frac{1}{N_r} \sum_r \xi_r(q) \xi_r^*(q') = \delta_{q,q'}.
\]

(14)

It is proposed by the NPLQCD Collaboration that the neutrino propagator can also be computed in an exact way by using double Fourier transformation [26]. Following Refs. 27-29, and integrating t_x and t_y over a fixed window $[t_a, t_b]$ with $t_a > t_\pi$, we obtain

\[
\mathcal{M} = \sum_{t_{x,a}} \sum_{t_{x,b}} \sum_{t_{y,d}} \sum_{t_{y,e}} C(t_x, t_y, t_\pi) \langle V N_{\pi\pi}/2 E_{\pi\pi} e^{E_{\pi\pi} t_\pi} \rangle
\]

\[
\times \left(T_{\text{box}} + \frac{1}{E_n + E_{\nu,i} + E_i - E_{\pi\pi}} - 1 \right)
\]

(15)

with $T_{\text{box}} = t_b - t_a + 1$ the time extent of the integration window. $N_{\pi\pi}$ and $E_{\pi\pi}$ are known from the correlation function $\langle \phi_\pi \phi_\pi(t) \phi_{\nuL}^\dagger(t) \rangle$ transformed to

\[
V N_{\pi\pi}/2 E_{\pi\pi} \left(e^{-E_{\pi\pi} t} - e^{-E_{\pi\pi}(T-t)} \right) + \text{const}
\]

and the methods proposed in Ref. 30. When T_{box} is sufficiently large, the contribution from the exponential term vanishes as $E_n + E_{\nu,i} + E_i > E_{\pi\pi}$. The coefficient of the term proportional to T_{box} provides a result for the decay amplitude $\mathcal{A}(\pi\pi \to e\bar{e})$.

Numerical results. - We use two ensembles with $m_\pi = 420$ and 140 MeV generated by the RBC and UKQCD Collaborations [35]. The corresponding parameters are listed in Table 1. We produce wall-source light-quark propagators on all time slices and make use of the time translation invariance to average the correlator over all T time translations. (To reduce the computational costs at $m_\pi = 140$ MeV, we adopt the technique of all mode average [36,37] with T sloppy propagators used for correlator average and 1 precise propagator for correction.) We compute propagators for both periodic and antiperiodic boundary conditions in the temporal direction and use their average in the calculation, which effectively doubles the temporal extent of the lattice.

The Feynman diagrams corresponding to the process of $\pi\pi \to e\bar{e}$ are shown in Fig. 1. To show the time dependence of the $C(t_x, t_y, t_{\pi\pi})$ explicitly, we define the unintegrated amplitude $\mathcal{M}(t)$ as a function of the variable $t = t_x - t_y$:

\[
\mathcal{M}(t) = C(t_x, t_y, t_{\pi\pi}) \langle V N_{\pi\pi}/2 E_{\pi\pi} e^{E_{\pi\pi} t_{\pi\pi}} \rangle
\]

(16)

Table I. Ensembles used in this work. We list the pion mass m_π, the lattice spacing inverse a^{-1}, the space-time volume $L^3 \times T$, the number, N_{conf}, of configurations used and the number, N_r, of stochastic sources for the neutrino propagator.

m_π [MeV]	a^{-1} [GeV]	$L^3 \times T$	N_{conf}	N_r
420	1.73	$16^3 \times 32$	200	32
140	1.01	$24^3 \times 64$	60	64

Figure 1. Quark and lepton contractions for the process of $\pi\pi \to e\bar{e}$.

The time t_x and t_y are separated by at least 6 time units from the $\pi\pi$ sources $(t_{x,y} - t_{\pi\pi} \geq 6)$ so that the $\phi_{\nuL}^\dagger \phi_{\nuL}$ interpolating operators can project onto the ground $\pi\pi$ state. At large $|t|$, the time dependence of $\mathcal{M}(t)$ is saturated by the ground intermediate state $- e\bar{\nu}\pi$

\[
\mathcal{M}(t) \xrightarrow{|t| \to 0} - T_{\text{lept}} \frac{1}{2} \langle 0 | J_{\muL}(t) | \pi \rangle \langle \pi | J_{\muL}(t) | \pi \rangle e^{-m_{\pi} |t|}
\]

(17)

with the matrix elements $\langle 0 | J_{\muL}(t) | \pi \rangle$ and $\langle \pi | J_{\muL}(t) | \pi \rangle$ determined from the correlation functions $\langle J_{\muL}(t) \phi_{\nuL}^\dagger(0) \rangle$ and $\langle \phi_{\nuL}(t_{\pi\pi}) J_{\muL}(t_{\pi\pi}) \phi_{\nuL}^\dagger(0) \rangle$, respectively. The subscript $\langle ... \rangle_V$ indicates that the initial and final states are defined in the finite volume. The single-pion states $|\pi\rangle_V$ satisfy the normalization condition $\langle \pi | \pi \rangle_V = \langle 2 E_{\pi\pi} \rangle V \delta_{\vec{p}, \vec{p}}$, while the two-pion states $|\pi\pi\rangle_V$ can be connected to the states in the finite volume $|\pi\pi\rangle_\infty$ through the Lellouch-Lüscher relation [38,39]

\[
|\pi\pi\rangle_\infty = \left(2 \frac{E_{\pi\pi}}{k^3} \right)^{1/2} \left(q \frac{d\phi}{dq} + k \frac{d\delta}{dk} \right)^{1/2} |\pi\pi\rangle_V
\]

(18)

with the momenta $k = \sqrt{E_{\pi\pi}^2 - m_{\pi}^2}$ and $q = k L/(2 \pi)$.

The time dependence of $\mathcal{M}(t)$ is shown in Fig. 2. At large $|t|$, the data of $\mathcal{M}(t)$ are consistent with the contribution from the ground intermediate state. By subtracting the ground-state contribution, the remaining excited-state contribution is shown by blue squares points in the left panel of Fig. 2 and enlarged in the right panel. Although relatively small, the contribution from the excited intermediate states can be identified with a clear signal.

The integrated matrix element defined in Eq. (15) is shown in Fig. 3. We realize that the size of integration window $T_{\text{box}} \approx 16$ is not sufficiently large to discard the exponential term associated with the ground intermediate state. (This can be confirmed in Fig. 2 that at $|t| \approx 15$ the values of $\mathcal{M}(t)$ are statistically larger than 0.) After removing this exponential term, we can fit the lattice...
data to a linear function of T_{box} and determine the values of $A_{\pi\pi}(\pi\pi \to ee)$. To convert $A_{\pi\pi}(\pi\pi \to ee)$ to the physical amplitude $A(\pi\pi \to ee)$, a renormalization factor square Z_{ν}^2/A shall be multiplied, which relates the local lattice vector or axial-vector current (which we use) to the conserved or partially conserved ones. Besides, the Lellouch-Lüscher factor shall be multiplied to relate a finite-volume amplitude to the infinite-volume one. In our calculation, the two pions are in the ground state, i.e. at threshold. The large-L expansion of the Lellouch-Lüscher factor is given by

$$
\frac{2\pi}{k^3} \left(\frac{d\phi}{dq} + \frac{k}{\delta} \frac{d\delta}{dk} \right) = V \left[1 + d_1 \frac{a_{\pi\pi}}{L} + d_2 \left(\frac{a_{\pi\pi}}{L} \right)^2 + d_3 \left(\frac{a_{\pi\pi}}{L} \right)^3 - 2\pi \frac{a_{\pi\pi}^2 r_{\pi\pi}}{L^4} + O(L^{-4}) \right]
$$

with $a_{\pi\pi}$ the scattering length and $r_{\pi\pi}$ the effective range from the k expansion of $\pi\pi$ scattering phase shift $k \cot \delta(k) = a_{\pi\pi}^{-1} + r_{\pi\pi} k^2 + O(k^4)$. The coefficients d_i are given by

$$
d_1 = -2 \frac{Z_{00}(1;0)}{\pi} = 5.674595, \\
d_2 = \frac{Z_{00}(1;0)^2 + 3Z_{00}(2;0)}{\pi^2} = 13.075478, \\
d_3 = \frac{4\pi^4 - 4Z_{00}(3;0)}{\pi^3} = 11.482471.
$$

The values of the zeta function $Z_{00}(s,0)$ have been provided by Ref. [40]. We evaluate $a_{\pi\pi}$ using Lüscher’s finite-size formula [40] and use it as an input to determine the finite-volume correction up to $O(L^{-2})$.

Another type of power-law finite-volume effect arises from the long-range property of the neutrino propagator. The finite-volume effects relevant for the $\nu\nu\pi$-intermediate state can be evaluated as

$$
\Delta_{\text{FV}} = \left(\frac{1}{V} \sum_{\tilde{p}} - \int \frac{d^3\tilde{p}}{(2\pi)^3} \frac{\langle 0|J_{\mu L}(\tilde{p})|\pi(\tilde{p})\rangle \langle \pi(\tilde{p})|J_{\nu L}|\pi\pi \rangle}{E_{\nu}E_{\pi}(E_{\pi} + E_{\nu} + E_e - E_{\pi})} \right)
$$

(21)

with $\tilde{p} = \frac{2\pi}{L} n$ the discrete momentum for the pion. The neutrino’s energy is given by $E_{\nu} = |	ilde{p} + \tilde{p}_e|$, with \tilde{p}_e the momentum carried by the electron. We define a function $f(\tilde{p}) \equiv \langle (0|J_{\mu L}(\tilde{p})|\pi(\tilde{p})\rangle \langle \pi(\tilde{p})|J_{\nu L}|\pi\pi \rangle$ and split it as $f(\tilde{p}) = f(-\tilde{p}_e) + [f(\tilde{p}) - f(-\tilde{p}_e)]$. The term inside brackets does not contribute a power-law finite-volume effect. We thus simplify Δ_{FV} as

$$
\Delta_{\text{FV}} = f(-\tilde{p}_e) \left(\frac{1}{V} \sum_{\tilde{p}} - \int \frac{d^3\tilde{p}}{(2\pi)^3} \right) \frac{1}{|\tilde{p}_e + \tilde{p}|}
$$

\begin{align*}
&= f(-\tilde{p}_e) \left[\frac{\kappa(\tilde{n}_e)}{2\pi L^2} \right] \, .
\end{align*}

(22)

The function $\kappa(\tilde{n}_e)$ with $\tilde{n}_e = \tilde{p}_e L/(2\pi)$ can be computed numerically and we find $\kappa(\tilde{n}_e) = 0.686(3)$ for $m_{\pi} = 420$ MeV.
MeV and $0.517(3)$ for $m_\pi = 140$ MeV. Thus Eq. (22) indicates that the finite-volume correction appears as an $O(L^{-2})$ effect. We expect that the size of $f(-\bar{p}_\pi)$ is significantly smaller than $f(\bar{0})$, as the total contribution to the decay amplitude from the intermediate hadronic states that carry nonzero lattice momenta only amounts for 3%-4% when compared to the zero-momentum contribution. We therefore neglect this finite-volume effect in this work, and leave it for future studies.

In Table II we show the ground-state, excited-state and total contributions to the decay amplitude as $A^{(g)}$, $A^{(e)}$ and $A^{(g)} + A^{(e)}$, respectively. The results are presented in units of $F_\pi^2 T_{\text{lept}}$, where the decay constant F_π is determined from the matrix element $\langle \bar{0} | \hat{d}_\mu \gamma_5 u | \pi(p) \rangle = \sqrt{2} p_\mu Z_A F_\pi$, with Z_A the renormalization constant. Systematic effects associated with three choices of $t_a - t_{\pi\pi} = 6, 7, 8$ are relatively smaller than the statistical errors, suggesting that a separation of 6 is a safe choice to neglect the excited $\pi\pi$ states.

m_π [MeV]	$t_a - t_{\pi\pi}$	$A^{(g)}$	$A^{(e)}$	$A^{(g)} + A^{(e)}$
420	6	0.055(13)	1.517(13)	1.573(13)
7	1.462(10)	0.060(15)	1.522(13)	1.584(13)
8	1.552(15)	1.514(14)	1.566(13)	1.581(13)
140	6	-0.0664(70)	1.820(63)	1.753(63)
7	1.864(50)	-0.0660(73)	1.824(62)	1.758(62)
8	-0.0665(70)	1.819(60)	1.753(60)	1.789(60)

Table II. Results for ground-state ($A^{(g)}$), excited-state ($A^{(e)}$) and total ($A^{(g)} + A^{(e)}$) contributions to the $\pi\pi \rightarrow ee$ decay amplitude. All the results are listed in units of $F_\pi^2 T_{\text{lept}}$.

Conclusion. - We have carried out a lattice QCD calculation of the decay amplitude of $\pi\pi \rightarrow ee$ and obtained the result with subpercent statistical errors:

$$
\begin{align*}
A(\pi\pi \rightarrow ee) & \bigg|_{m_\pi=420 \text{ MeV}} = 1.517(13), \\
A(\pi\pi \rightarrow ee) & \bigg|_{m_\pi=140 \text{ MeV}} = 1.820(6).
\end{align*}
$$

(23)

The decay amplitude of $A(\pi\pi \rightarrow ee)$ is mainly contributed by the ground intermediate state via the process of $\pi\pi \rightarrow \pi\pi e\bar{e} \rightarrow ee$. Although the size of the excited-state contribution is only 3%-4%, it is statistically significant (see Fig. 2) as the uncertainty of the amplitude has been reduced to below 1%.

Without the signal-to-noise problem, the case of $\pi\pi \rightarrow ee$ serves as an ideal laboratory to develop the necessary methods and tools for a calculation of $0\beta2\beta$ decay with controlled uncertainties. Our exploratory study demonstrates the possibility of a first-principles calculation of the long-distance contribution to $0\beta2\beta$ decay via light-neutrino exchange. At $m_\pi = 420$ and 140 MeV, we find that the decay amplitude $A(\pi\pi \rightarrow ee)$ are 24% and 9% smaller than the leading-order prediction $A^{LO}(\pi\pi \rightarrow ee) = 2 F_\pi^2 T_{\text{lept}}$ in chiral perturbation theory \[18\]. Various systematic effects such as lattice artifacts and finite-volume effects require an accurate examination in future work but are not expected to qualitatively alter the conclusions of this work. The 9% deviation found here is still quite consistent with power counting in effective field theory. On the other hand, Ref. \[11\] has found that a leading-order, short-range contribution needs to be introduced in the $nn \rightarrow ppee$ decay, which breaks down Weinberg’s power-counting scheme. It is interesting to examine the impact of this short-range contribution in our future study. The techniques presented here can be directly applied to the study of other $0\beta2\beta$ decays, such as $n\pi \rightarrow pee$ and $nn \rightarrow ppee$. From these decays, lattice QCD can provide more low-energy QCD inputs for the effective field theory \[18\].

We gratefully acknowledge many helpful discussions with our colleagues from the RBC-UKQCD Collaboration. X.F. warmly thanks N. H. Christ, W. Dekens, W. Detmold, E. Mereghetti, D. Murphy and U. van Kolck for useful discussion. X.F., X.-Y.T. and S.-C.X. were supported in part by NSFC of China under Grant No. 11775002. The calculation was carried out on TianHe-1 (A) at Chinese National Supercomputer Center in Tianjin. Part of the computation was performed under the ALCC Program of the U.S. DOE on the Blue Gene/Q (BG/Q) Mira computer at the Argonne Leadership Class Facility, a DOE Office of Science Facility supported under Contract No. DE-AC02-06CH11357.

\[\text{xu.feng@pku.edu.cn}\]
\[\text{ljin.luchang@gmail.com}\]

[1] A. Gando et al. (KamLAND-Zen), Phys. Rev. Lett. 110, 062502 (2013), arXiv:1211.3863 [hep-ex].
[2] M. Agostini et al. (HERA-B), Phys. Rev. Lett. 111, 122503 (2013), arXiv:1307.4720 [nucl-ex].
[3] J. B. Albert et al. (EXO-200), Nature 510, 229 (2014), arXiv:1402.6956 [nucl-ex].
[4] S. Andringa et al. (SNO+), Adv. High Energy Phys. 2016, 6194250 (2016), arXiv:1508.05759 [physics.ins-det].
[5] A. Gando et al. (KamLAND-Zen), Phys. Rev. Lett. 117, 082503 (2016), Addendum: Phys. Rev. Lett. 117, no.10,109903(2016), arXiv:1605.02889 [hep-ex].
[6] S. R. Elliott et al., Proceedings, 27th International Conference on Neutrino Physics and Astrophysics (Neutrino 2016): London, United Kingdom, July 4-9, 2016, J. Phys. Conf. Ser. 888, 012035 (2017), arXiv:1610.01210 [nucl-ex].
[7] M. Agostini et al., (KamLAND-Zen), Phys. Rev. Lett. 117, no.10,109903(2016), arXiv:1605.02889 [hep-ex].
[8] O. Azzolini et al. (CUORICINO), Phys. Rev. Lett. 120, 232502 (2018), arXiv:1802.07791 [nucl-ex].
[9] C. E. Aalseth et al. (Majorana), Phys. Rev. Lett. 120, 132502 (2018), arXiv:1710.11608 [nucl-ex].
[10] J. B. Albert et al. (EXO), Phys. Rev. Lett. 120, 072701 (2018), arXiv:1707.08707 [hep-ex].
