On Quillen’s conjecture for p-solvable groups

Antonio Díaz Ramos

Universidad de Málaga

Congreso Bienal de la Real Sociedad Matemática Española
RSME 2017 Zaragoza
Sesión especial de Teoría de grupos
31 de enero de 2017
Introduction

D. Quillen, "Homotopy properties of the poset of nontrivial p-subgroups of a group," Adv. Math. 28 (1978), no. 2, 101–128.

For a finite group G and a prime p, let $A_p(G)$ be the poset of non-trivial elementary abelian p-subgroups of G. Let $O_p(G)$ be the largest normal p-subgroup of G.

Theorem (Quillen) $O_p(G) \neq 1 \Rightarrow |A_p(G)| \sim *$.

Conjecture (Quillen) $|A_p(G)| \sim * \Rightarrow O_p(G) \neq 1$.
INTRODUCTION

D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. Math. 28 (1978), no. 2, 101-128.

A finite group, p a prime.

$\mathcal{A}_p(G) =$ poset of non-trivial elementary abelian p-subgroups of G.

$\mathcal{O}_p(G) =$ largest normal p-subgroup of G.

Theorem (Quillen) $\mathcal{O}_p(G) \neq 1 \Rightarrow |\mathcal{A}_p(G)| \sim \ast$.

Conjecture (Quillen) $|\mathcal{A}_p(G)| \sim \ast \Rightarrow \mathcal{O}_p(G) \neq 1$.
INTRODUCTION

D. Quillen, *Homotopy properties of the poset of nontrivial p-subgroups of a group*, Adv. Math. 28 (1978), no. 2, 101-128.
D. Quillen, *Homotopy properties of the poset of nontrivial* p-*subgroups of a group*, Adv. Math. 28 (1978), no. 2, 101-128.

- G finite group, p a prime.
- $A_p(G)$ = poset of non-trivial elementary abelian p-subgroups of G.
- $O_p(G)$ = largest normal p-subgroup of G.
Introduction

D. Quillen, *Homotopy properties of the poset of nontrivial p-subgroups of a group*, Adv. Math. 28 (1978), no. 2, 101-128.

- G finite group, p a prime.
- $\mathcal{A}_p(G) =$ poset of non-trivial elementary abelian p-subgroups of G.
- $O_p(G) =$ largest normal p-subgroup of G.

Theorem (Quillen)

$O_p(G) \neq 1 \Rightarrow |\mathcal{A}_p(G)| \cong \ast.$
D. Quillen, *Homotopy properties of the poset of nontrivial p-subgroups of a group*, Adv. Math. 28 (1978), no. 2, 101-128.

- G finite group, p a prime.
- $A_p(G) =$poset of non-trivial elementary abelian p-subgroups of G.
- $O_p(G) =$largest normal p-subgroup of G.

Theorem (Quillen)

$$O_p(G) \neq 1 \Rightarrow |A_p(G)| \cong \ast.$$

Conjecture (Quillen)

$$|A_p(G)| \cong \ast \Rightarrow O_p(G) \neq 1.$$
Introduction

Conjecture (QC)

\[\text{Op}(G) = 1 \Rightarrow |A_{\text{p}}(G)| \neq \ast. \]

Known cases \(r = \text{rank} \mathcal{P}(G) = \dim(A_{\text{p}}(G)) + 1 \):

- \(r = 1 \) (Quillen),
- \(r = 2 \) (Quillen-Serre),
- \(G \) solvable (Quillen, Alperin 80s),
- \(G_p \) solvable (Alperin 80s, Aschbacher-Smith 93, Hawks-Isaacs 87),
- \(p > 5 \) and \(G \) has no component \(U_n(q) \) with \(q \equiv -1 \mod p \), \(q \) odd (Aschbacher-Smith 93).

Theorem (D 2016)

Quillen’s conjecture holds if \(G \) is solvable or \(p \)-solvable.

Highlights:

- Can build sphere in non-solvable situation,
- Can lift spheres from quotient group.
Introduction

Conjecture (QC)

\[O_p(G) = 1 \Rightarrow |A_p(G)| \not\approx \ast. \]
Introduction

Conjecture (QC)

\[O_p(G) = 1 \Rightarrow |A_p(G)| \not\cong *. \]

Known cases \((r = rank_p(G) = dim(A_p(G)) + 1):\)
Conjecture (QC)

\[O_p(G) = 1 \Rightarrow |A_p(G)| \nless \neq \ast. \]

Known cases \((r = \text{rank}_p(G) = \text{dim}(A_p(G)) + 1)\):
- \(r = 1\) (Quillen), \(r = 2\) (Quillen-Serre).
Introduction

Conjecture (QC)

\[O_p(G) = 1 \Rightarrow |A_p(G)| \not\cong \ast. \]

Known cases (\(r = rank_p(G) = dim(A_p(G)) + 1 \)):

- \(r = 1 \) (Quillen), \(r = 2 \) (Quillen-Serre).
- \(G \) solvable (Quillen, Alperin 80s).

Theorem (D 2016)

Quillen’s conjecture holds if \(G \) is solvable or \(p \)-solvable.

Highlights:

- Can build sphere in non-solvable situation.
- Can lift spheres from quotient group.
INTRODUCTION

Conjecture (QC)

\[O_p(G) = 1 \Rightarrow |A_p(G)| \not\cong \ast. \]

Known cases \((r = \text{rank}_p(G) = \text{dim}(A_p(G)) + 1)\):

- \(r = 1\) (Quillen), \(r = 2\) (Quillen-Serre).
- \(G\) solvable (Quillen, Alperin 80s).
- \(G\) \(p\)-solvable (Alperin 80s, Aschbacher-Smith 93, Hawks-Isaacs 87).

Theorem (D 2016)

Quillen’s conjecture holds if \(G\) is solvable or \(p\)-solvable.

Highlights:

- Can build sphere in non-solvable situation.
- Can lift spheres from quotient group.
CONJECTURE (QC)

\[O_p(G) = 1 \Rightarrow |A_p(G)| \not\equiv * . \]

Known cases \(r = rank_p(G) = dim(A_p(G)) + 1):\n
- \(r = 1\) (Quillen), \(r = 2\) (Quillen-Serre).
- \(G\) solvable (Quillen, Alperin 80s).
- \(G\) \(p\)-solvable (Alperin 80s, Aschbacher-Smith 93, Hawks-Isaacs 87).
- \(p > 5\) and \(G\) has no component \(U_n(q)\) with \(q \equiv -1 \mod p\), \(q\) odd (Aschbacher-Smith 93).
Conjecture (QC)

\[O_p(G) = 1 \Rightarrow |A_p(G)| \not\cong \ast. \]

Known cases \((r = \text{rank}_p(G) = \text{dim}(A_p(G)) + 1)\):

- \(r = 1\) (Quillen), \(r = 2\) (Quillen-Serre).
- \(G\) solvable (Quillen, Alperin 80s).
- \(G\) \(p\)-solvable (Alperin 80s, Aschbacher-Smith 93, Hawks-Isaacs 87).
- \(p > 5\) and \(G\) has no component \(U_n(q)\) with \(q \equiv -1 \mod p\), \(q\) odd (Aschbacher-Smith 93).

Theorem (D 2016)

Quillen's conjecture holds if \(G\) is solvable or \(p\)-solvable.
INTRODUCTION

Conjecture (QC)

\[O_p(G) = 1 \implies |A_p(G)| \not\approx *. \]

Known cases \((r = \text{rank}_p(G) = \text{dim}(A_p(G)) + 1)\):
- \(r = 1\) (Quillen), \(r = 2\) (Quillen-Serre).
- \(G\) solvable (Quillen, Alperin 80s).
- \(G\) \(p\)-solvable (Alperin 80s, Aschbacher-Smith 93, Hawks-Isaacs 87).
- \(p > 5\) and \(G\) has no component \(U_n(q)\) with \(q \equiv -1 \mod p\), \(q\) odd (Aschbacher-Smith 93).

Theorem (D 2016)

Quillen’s conjecture holds if \(G\) is solvable or \(p\)-solvable.

Highlights:
- Can build sphere in non-solvable situation.
- Can lift spheres from quotient group.
Building a homology sphere in top dimension

Alperin's solution:

\[G \text{ p-solvable} \rightarrow \rightarrow K \rtimes \mathcal{C} \text{r}_{p} \]

\[\text{CFSG} \downarrow \downarrow \]

\[G \text{ solvable} \rightarrow \rightarrow K \rtimes \mathcal{C} \text{r}_{p}, \quad K \text{ solvable} \rtimes \text{quotient} \rightarrow \rightarrow (A \times B) \rtimes \mathcal{C} \text{r}_{p} \rightarrow \rightarrow \mathcal{O}_{p}(G) = 1, \quad r = \text{rank } p(G), \quad K_{p}^{' \text{-group}}, \quad A \text{ is an abelian } p^{' \text{-group}}, \quad B \text{ is a direct product of nonabelian simple } p^{' \text{-groups}}, \text{action of } \mathcal{C} \text{r}_{p} \text{ on } K \text{ is faithful.} \]
Alperin’s solution:

\[G \text{ } p\text{-solvable} \xrightarrow{Q.\text{ reduction}} K \rtimes C_p \]

\[G \text{ solvable} \xrightarrow{Q.\text{ reduction}} K \rtimes C_p, \text{ } K \text{ solvable} \xrightarrow{r\text{-sphere}} \]
Alperin’s solution:

\[
G \text{ } p\text{-solvable} \xrightarrow{Q\text{-reduction}} K \rtimes C_p
\]

\[
G \text{ } \text{solvable} \xrightarrow{Q\text{-reduction}} K \rtimes C_p , K \text{ solvable} \xrightarrow{\text{Alperin}} r\text{-sphere}
\]

New solution:

\[
G \text{ } p\text{-solvable} \xrightarrow{Q\text{-reduction}} K \rtimes C_p \xrightarrow{\text{quotient/lift}} (A \times B) \rtimes C_p
\]

\[
G \text{ } \text{solvable} \xrightarrow{Q\text{-reduction}} K \rtimes C_p , K \text{ solvable} \xrightarrow{\text{quotient/lift}} A \rtimes C_p
\]
Alperin’s solution:

\[G \text{ } p\text{-solvable} \xrightarrow{Q\text{-reduction}} K \rtimes C_p \]
\[G \text{ solvable} \xrightarrow{Q\text{-reduction}} K \rtimes C_p \text{, } K \text{ solvable} \xrightarrow{\text{Alperin}} r\text{-sphere} \]

New solution:

\[G \text{ } p\text{-solvable} \xrightarrow{Q\text{-reduction}} K \rtimes C_p \xrightarrow{\text{quotient/lift}} (A \times B) \rtimes C_p \]
\[K \text{ solvable} \xrightarrow{\text{quotient/lift}} A \times C_p \]

\[O_p(G) = 1, \text{ } r = rank_p(G), \text{ } K \text{ } p'\text{-group, } A \text{ is an abelian } p'\text{-group, } B \text{ is a direct product of nonabelian simple } p'\text{-groups, action of } C_p^r \text{ on } K \text{ is faithful.} \]
BUILDING A HOMOLOGY SPHERE IN TOP DIMENSION

\[H = \mathbb{C}p, a \in \mathbb{Z} \rightarrow \mathbb{Z} \]

\[H_{[i_1, \ldots, i_l]} = \{ (x_1, \ldots, x_r) \in H | x_{i_1} = \cdots = x_{i_l} = 0 \} \leq H. \]

\[\sigma_{[i_1, \ldots, i_l]} = H_{[i_1, \ldots, i_l]} < H_{[i_1, i_2]} < H_{[i_1]} < H \in |A_p(H)|. \]

\[Z_H, a = \sum_{[i_1, \ldots, i_{r-1}]} \cdot a \cdot \sigma_{[i_1, \ldots, i_{r-1}]} \in C^{r-1}(|A_p(H)|). \]

Example

For \(r = 3 \), \(S_3^2 \) = \{ [1, 2], [2, 1], [1, 3], [3, 1], [2, 3], [3, 2] \}, in \(|A_p(C^3_p)|\):

\[H_{[1]} < H_{[1, 2]} < H_{[1]} < H_{[1, 2]} < H_{[1, 3]} < H_{[1]} < H_{[2, 1]} < H_{[2]} < H_{[2, 3]} < H_{[2]} < H_{[3, 1]} < H_{[3]} < H_{[3, 2]} < H_{[3]} < H_{[2, 3]} < H_{[2, 3]} < H_{[3, 1]} < H_{[3]} \]
$H = C^r_p$
$H = C_p, a \in \mathbb{Z}$
\[H = C_p, \, a \in \mathbb{Z} \not\sim \mathbb{Z}_H, a \in C_{r-1}(\lvert A_p(H) \rvert). \]
H = C'_p, \ a \in \mathbb{Z} \mapsto Z_{H,a} \in C_{r-1}(|A_p(H)|).

▶ \ H_{[i_1, \ldots, i_l]} = \{(x_1, \ldots, x_r) \in H | x_{i_1} = \ldots = x_{i_l} = 0\} \leq H.
$H = C^r_p, a \in \mathbb{Z} \rightarrow \mathbb{Z}_{H,a} \in C_{r-1}(|A_p(H)|)$.

- $H_{[i_1, \ldots, i_l]} = \{(x_1, \ldots, x_r) \in H|x_{i_1} = \ldots = x_{i_l} = 0\} \leq H$.
- $\sigma_{[i_1, \ldots, i_l]} = H_{[i_1, \ldots, i_l]} < \ldots < H_{[i_1, i_2]} < H_{[i_1]} < H \in |A_p(H)|$.

Example

For $r = 3$, $S^3_3 = \{\begin{array}{c}
[1,2] \\
[2,1] \\
[1,3] \\
[3,1] \\
[2,3] \\
[3,2]
\end{array}\}$, in $|A_p(C^3_p)|$:
$H = C^r_p, \ a \in \mathbb{Z} \mapsto Z_{H,a} \in C_{r-1}(|A_p(H)|)$.

- $H_{[i_1, \ldots, i_l]} = \{(x_1, \ldots, x_r) \in H | x_{i_1} = \ldots = x_{i_l} = 0\} \leq H$.
- $\sigma_{[i_1, \ldots, i_l]} = H_{[i_1, \ldots, i_l]} < \ldots < H_{[i_1, i_2]} < H_{[i_1]} < H \in |A_p(H)|$.
- $Z_{H,a} = \sum_{[i_1, \ldots, i_{r-1}]} \epsilon_{[i_1, \ldots, i_{r-1}]} \cdot a \cdot \sigma_{[i_1, \ldots, i_{r-1}]} \in C_{r-1}(|A_p(H)|)$.

Example

For $r = 3$, $S_3^2 = \{[1, 2], [2, 1], [1, 3], [3, 1], [2, 3], [3, 2]\}$, in $|A_p(C_3^p)|$.

$H_{[1]} < H_{[1, 2]} < H_{[1]} < H_{[1, 2]} < H_{[1, 2]} < H_{[1]} < H_{[2, 1]} < H_{[2, 1]} < H_{[1]} < H_{[2]} < H_{[3]} < H_{[3]}$.

$H_{[3]} < H_{[3, 1]} < H_{[3]} < H_{[3, 1]} < H_{[3, 1]} < H_{[3]}. $
Introduction

Building a Homology Sphere in Top Dimension

\[H = C_p^r, \ a \in \mathbb{Z} \Rightarrow Z_{H,a} \in C_{r-1}(|A_p(H)|). \]

- \(H_{[i_1, \ldots, i_l]} = \{ (x_1, \ldots, x_r) \in H | x_{i_1} = \ldots = x_{i_l} = 0 \} \leq H. \)
- \(\sigma_{[i_1, \ldots, i_l]} = H_{[i_1, \ldots, i_l]} < \ldots < H_{[i_1, i_2]} < H_{[i_1]} < H \in |A_p(H)|. \)
- \(Z_{H,a} = \sum_{[i_1, \ldots, i_{r-1}]} \epsilon_{[i_1, \ldots, i_{r-1}]} \cdot a \cdot \sigma_{[i_1, \ldots, i_{r-1}]} \in C_{r-1}(|A_p(H)|). \)

Example

For \(r = 3, S_2^3 = \{ [1, 2], [2, 1], [1, 3], [3, 1], [2, 3], [3, 2] \}, \) in \(|A_p(C_p^3)|: \)

```
H[1,2] < H[1] < H
H[2,1] < H[2] < H
H[1,3] < H[1] < H
H[3,1] < H[3] < H
H[2,3] < H[2] < H
H[3,2] < H[3] < H
```
\[H = C^r_p, a \in \mathbb{Z} \Rightarrow Z_{H,a} \in C_{r-1}(|A_p(H)|). \]

- \(H_{[i_1,...,i_l]} = \{ (x_1, \ldots, x_r) \in H | x_{i_1} = \ldots = x_{i_l} = 0 \} \leq H. \)
- \(\sigma_{[i_1,...,i_l]} = H_{[i_1,...,i_l]} < \ldots < H_{[i_1,i_2]} < H_{[i_1]} < H \in |A_p(H)|. \)
- \(Z_{H,a} = \sum_{[i_1,...,i_{r-1}]} \epsilon_{[i_1,...,i_{r-1}]} \cdot a \cdot \sigma_{[i_1,...,i_{r-1}]} \in C_{r-1}(|A_p(H)|). \)

Example

For \(r = 3, S^3_2 = \{ [1, 2], [2, 1], [1, 3], [3, 1], [2, 3], [3, 2] \}, \) in \(|A_p(C^3_p)|: \)
BUILDING A HOMOLOGY SPHERE IN TOP DIMENSION

\[G = K \rtimes H, \quad H = C_r \cdot a \cdot S \in \text{Syl}_p(G) \xrightarrow{\sim} Z_G, \quad a \cdot S \in C_r - 1(|A_p(G)|) . \]

\[\forall S \in \text{Syl}_p(G) \Rightarrow S = k_S H \text{ for some } k_S \in K . \]

\[Z_G, a \cdot S = \sum_{S \in \text{Syl}_p(G)} k_S (Z_H, a_S) \in C_r - 1(|A_p(G)|) . \]

\[d(Z_G, a \cdot S) = 0 \text{ if and only if: } \sum_{S \in N(I)} k_H[i] a_S = 0 \text{ for all } i \in \{1,...,r\} \text{ and all } K \text{-conjugates } k_H[i] \text{ of } H[i], \]

where:

\[N(I) = \{ S \in \text{Syl}_p(H) \mid I \leq S \} \text{ and } |N(I)| = \frac{|C_K(I)|}{|C_K(H)|} \text{ for } I \leq H . \]

We have removed a subdivision.

Faithful action implies \(|N(H[i])| > 1\) for \(i = 1, ..., r\).

\[\tilde{H}_{cr - 1}(|A_p(G)|; Z) \leq \tilde{H}_{r - 1}(|A_p(G)|; Z) . \]
\(G = K \rtimes H, H = C_p\)
$G = K \rtimes H, H = C^r_p, a_\circ = (a_S)_{S \in \text{Syl}_p(G)}$
$G = K \rtimes H, H = C_p, \ a_\cdot = (a_S)_{S \in \text{Syl}_p(G)} \mapsto Z_G.a_\cdot \in C_{r-1}(|A_p(G)|).$
\(G = K \rtimes H, H = \mathbb{C}_p, a_\bullet = (a_S)_{S \in \text{Syl}_p(G)} \mapsto Z_G.a_\bullet \in C_{r-1}(|\mathcal{A}_p(G)|). \)

- \(S \in \text{Syl}_p(G) \Rightarrow S = k_S H \) for some \(k_S \in K \).
$G = K \rtimes H$, $H = C_p^{r}$, $a_\bullet = (a_S)_{S \in \text{Syl}_p(G)} \sim Z_G.a_\bullet \in C_{r-1}(|A_p(G)|)$.

- $S \in \text{Syl}_p(G) \Rightarrow S = k_S H$ for some $k_S \in K$.
- $Z_{G,a_\bullet} = \sum_{S \in \text{Syl}_p(G)} k_S(Z_{H,a_S}) \in C_{r-1}(|A_p(G)|)$.
\[G = K \rtimes H, H = C_p^r, a_\bullet = (a_S)_{S \in \text{Syl}_p(G)} \mapsto Z_G.a_\bullet \in C_{r-1}(|A_p(G)|). \]

- \(S \in \text{Syl}_p(G) \Rightarrow S = kS H \) for some \(k_S \in K \).
- \(Z_G.a_\bullet = \sum_{S \in \text{Syl}_p(G)} k_S (Z_H.a_S) \in C_{r-1}(|A_p(G)|). \)
- \(d(Z_G.a_\bullet) = 0 \) if and only if:

\[
\sum_{S \in \mathcal{N}^{(kH[i])}} a_S = 0
\]

for all \(i \in \{1, \ldots, r\} \) and all \(K \)-conjugates \(kH[i] \) of \(H[i] \), where:

\[
\mathcal{N}(I) = \{S \in \text{Syl}_p(H) | I \leq S\} \text{ and } |\mathcal{N}(I)| = |C_K(I)| / |C_K(H)| \text{ for } I \leq H.
\]
Introduction

Building a Homology Sphere in Top Dimension

\[G = K \rtimes H, \quad H = C_p, \quad a \cdot = (a_S)_{S \in \text{Syl}_p(G)} \sim Z_{G,a \cdot} \in C_{r-1}(|A_p(G)|). \]

- \(S \in \text{Syl}_p(G) \Rightarrow S = k_S H \) for some \(k_S \in K \).
- \(Z_{G,a \cdot} = \sum_{S \in \text{Syl}_p(G)} k_S (Z_{H,a_S}) \in C_{r-1}(|A_p(G)|). \)
- \(d(Z_{G,a \cdot}) = 0 \) if and only if:

\[
\sum_{S \in \mathcal{N}(kH[i])} a_S = 0
\]

for all \(i \in \{1, \ldots, r\} \) and all \(K \)-conjugates \(kH[i] \) of \(H[i] \), where:

\[\mathcal{N}(I) = \{ S \in \text{Syl}_p(H) | I \leq S \} \text{ and } |\mathcal{N}(I)| = |C_K(I)|/|C_K(H)| \text{ for } I \leq H. \]

- We have removed a subdivision.
\[G = K \rtimes H, H = C_p^r, a_\bullet = (a_S)_{S \in \text{Syl}_p(G)} \mapsto Z_G, a_\bullet \in C_{r-1}(|A_p(G)|). \]

- \(S \in \text{Syl}_p(G) \Rightarrow S = k_S H \) for some \(k_S \in K \).
- \(Z_G, a_\bullet = \sum_{S \in \text{Syl}_p(G)} k_S (Z_H, a_S) \in C_{r-1}(|A_p(G)|). \)
- \(d(Z_G, a_\bullet) = 0 \) if and only if:
 \[
 \sum_{S \in \mathcal{N}(kH[i])} a_S = 0
 \]
 for all \(i \in \{1, \ldots, r\} \) and all \(K \)-conjugates \(kH[i] \) of \(H[i] \), where:
 \[\mathcal{N}(I) = \{ S \in \text{Syl}_p(H) | I \leq S \} \text{ and } |\mathcal{N}(I)| = |C_K(I)|/|C_K(H)| \text{ for } I \leq H. \]

- We have removed a subdivision.
- Faithful action implies \(|\mathcal{N}(H[i])| > 1 \) for \(i = 1, \ldots, r \).
\(G = K \rtimes H, H = C_p^r, a_\bullet = (a_S)_{S \in \text{Syl}_p(G)} \mapsto Z_G.a_\bullet \in C_{r-1}(|A_p(G)|). \)

- \(S \in \text{Syl}_p(G) \Rightarrow S = k_S H \) for some \(k_S \in K \).
- \(Z_G.a_\bullet = \sum_{S \in \text{Syl}_p(G)} k_S (Z_H.a_S) \in C_{r-1}(|A_p(G)|). \)
- \(d(Z_G,a_\bullet) = 0 \) if and only if:
 \[
 \sum_{S \in \mathcal{N}(kH[i])} a_S = 0
 \]
 for all \(i \in \{1, \ldots, r\} \) and all \(K \)-conjugates \(kH[i] \) of \(H[i] \), where:

 \(\mathcal{N}(I) = \{ S \in \text{Syl}_p(H) | I \leq S \} \) and \(|\mathcal{N}(I)| = |C_K(I)|/|C_K(H)| \) for \(I \leq H \).

- We have removed a subdivision.
- Faithful action implies \(|\mathcal{N}(H[i])| > 1 \) for \(i = 1, \ldots, r \).
- \(\tilde{H}_r^c(|A_p(G)|; \mathbb{Z}) \leq \tilde{H}_{r-1}(|A_p(G)|; \mathbb{Z}). \)
Theorem (Asymptotic p-solvable case of Quillen's conjecture)

\[\tilde{H}_{r-1}(|A_p(G)|; \mathbb{Z}) \neq 0 \quad \text{if} \quad |K| = q^{e_1 \cdot \ldots \cdot e_l} \]

satisfies that $r < q_i$ for all $i = 1, \ldots, l$, $H = C_{r^p}$ acts faithfully, $K = p'$-group.

\[\text{▶ Proof:} \quad \text{There are more variables than equations and} \quad \mathbb{Z} \text{is a P.I.D.} \]

Theorem (Existence of top dimensional sphere)

$G = K \rtimes H$, $H = C_{r^p}$, K a p'-group, elements $c_i \in C_K(H)[i] \setminus C_K(H)$ for $i = 1, \ldots, r$ such that $[c_i, c_j] = 1$ for all i and j.

\[\text{▶ Proof:} \quad \text{Set} \quad a_S = (-1)^{\sum_{i} \delta_i} \quad \text{for} \quad S = c_{\delta_1}^{a_1} \cdot \ldots \cdot c_{\delta_r}^{a_r}H, \quad \delta_i \in \{0, 1\}, \quad \text{and} \quad a_S = 0 \quad \text{otherwise.} \]
Theorem (Asymptotic p-solvable case of Quillen’s conjecture)

\[\tilde{H}_{r-1}(|A_p(K \rtimes H)|; \mathbb{Z}) \neq 0 \text{ if } |K| = q_1^{e_1} \cdots q_l^{e_l} \text{ satisfies that } r < q_i \text{ for all } i = 1, \ldots, l, \text{ } H = C_p \text{ acts faithfully, } K p'-\text{group.} \]
Theorem (Asymptotic p-solvable case of Quillen’s conjecture)

$\tilde{H}_{r-1}(|A_p(K \rtimes H)|; \mathbb{Z}) \neq 0$ if $|K| = q_1^{e_1} \cdots q_l^{e_l}$ satisfies that $r < q_i$ for all $i = 1, \ldots, l$, $H = C_p^r$ acts faithfully, $K p'$-group.

▶ Proof: There are more variables than equations and \mathbb{Z} is a P.I.D.
Theorem (Asymptotic p-solvable case of Quillen’s conjecture)

\[\tilde{H}_{r-1}(|A_p(K \rtimes H)|; \mathbb{Z}) \neq 0 \text{ if } |K| = q_1^{e_1} \cdots q_l^{e_l} \text{ satisfies that } r < q_i \text{ for all } i = 1, \ldots, l, H = C_p^r \text{ acts faithfully, } K p'-\text{group}. \]

- Proof: There are more variables than equations and \(\mathbb{Z} \) is a P.I.D.

Theorem (Existence of top dimensional sphere)

\[G = K \rtimes H, H = C_p^r, K \text{ a } p'-\text{group, elements } c_i \in C_K(H[i]) \setminus C_K(H) \text{ for } i = 1, \ldots, r \text{ such } [c_i, c_j] = 1 \text{ for all } i \text{ and } j \Rightarrow \tilde{H}_{r-1}(|A_p(G)|; \mathbb{Z}) \neq 0. \]
Theorem (Asymptotic p-solvable case of Quillen’s conjecture)

\[\widetilde{H}_{r-1}(|A_p(K \rtimes H)|; \mathbb{Z}) \neq 0 \text{ if } |K| = q_1^{e_1} \cdots q_l^{e_l} \text{ satisfies that } r < q_i \text{ for all } i = 1, \ldots, l, \text{ } H = C'_p \text{ acts faithfully, } K p'^{-}\text{-group.} \]

- Proof: There are more variables than equations and \mathbb{Z} is a P.I.D.

Theorem (Existence of top dimensional sphere)

\[G = K \rtimes H, \text{ } H = C'_p, \text{ } K \text{ a } p'^{-}\text{-group, elements } c_i \in C_K(H_{[i]}) \setminus C_K(H) \text{ for } i = 1, \ldots, r \text{ such } [c_i, c_j] = 1 \text{ for all } i \text{ and } j \Rightarrow \widetilde{H}_{r-1}(|A_p(G)|; \mathbb{Z}) \neq 0. \]

- Proof: Set \(a_S = (-1)^{\sum_i \delta_i} \) for \(S = c_1^{\delta_1} \cdots c_r^{\delta_r} H, \delta_i \in \{0, 1\}, \text{ and } a_S = 0 \) otherwise.
Theorem (Top dimensional sphere in abelian case)

\[G = A \rtimes H, \text{A abelian, } H \text{ acts faithfully} \Rightarrow \tilde{H} \cap r^{-1}(|A_2(G)|; \mathbb{Z}) \neq 0. \]

Example

\[G = C_5 \times C_5 \times C_5 \rtimes C_2 \times C_2 \times C_2, \]

\[(x_1, x_2, x_3) \mapsto (x_1, x_2, x_3), \]

\[(x_1, -x_2, x_3) \text{ and } (x_1, x_2, -x_3). \]

\[c_i \in C_K(H[i]) \setminus C_K(H); i = 1, 2, 3. \]
Theorem (Top dimensional sphere in abelian case)

\[
G = A \rtimes H, \text{ } A \text{ abelian, } H \text{ acts faithfully} \Rightarrow \tilde{H}_{r-1}(|A_p(G)|; \mathbb{Z}) \neq 0.
\]
Theorem (Top dimensional sphere in abelian case)

\[G = A \rtimes H, \text{ } A \text{ abelian, } H \text{ acts faithfully} \implies \tilde{H}_{r-1}(|\mathcal{A}_p(G)|; \mathbb{Z}) \neq 0. \]

Example

\[G = C_5 \times C_5 \times C_5 \times C_2 \times C_2 \times C_2, \text{ } (x_1, x_2, x_3) \mapsto (-x_1, x_2, x_3), \]

\[(x_1, -x_2, x_3) \text{ and } (x_1, x_2, -x_3). \text{ } c_i \in C_K(H_{[i]}) \setminus C_K(H) \text{ } i = 1, 2, 3. \]
Theorem (Top dimensional sphere in abelian case)

\[G = A \rtimes H, \text{ } A \text{ abelian, } H \text{ acts faithfully} \Rightarrow \tilde{H}_{r-1}(|A_p(G)|; \mathbb{Z}) \neq 0. \]

Example

\[G = C_5 \times C_5 \times C_5 \times C_2 \times C_2 \times C_2, \ (x_1, x_2, x_3) \mapsto (-x_1, x_2, x_3), \ (x_1, -x_2, x_3) \text{ and } (x_1, x_2, -x_3). \ c_i \in C_K(H[i]) \setminus C_K(H) \ i = 1, 2, 3. \]

Graph in \(A_2(G) \).
Theorem (Top dimensional sphere in abelian case)

\[G = A \rtimes H, \text{ } A \text{ abelian}, H \text{ acts faithfully} \Rightarrow \tilde{H}_{r-1}(|A_p(G)|; \mathbb{Z}) \neq 0. \]

Example

\[G = C_5 \times C_5 \times C_5 \times C_2 \times C_2 \times C_2, \ (x_1, x_2, x_3) \mapsto (-x_1, x_2, x_3), \ (x_1, -x_2, x_3) \text{ and } (x_1, x_2, -x_3). \ c_i \in C_K(H[i]) \setminus C_K(H) \ i = 1, 2, 3. \]

Graph in \(A_2(G) \). In \(|A_2(G)| \):
Theorem (Top dimensional sphere in abelian \times simple case)

\[G = (A \times B) \rtimes H, \text{ } A \text{ abelian, } B \text{ product of nonabelian simple } p' \text{-groups, } H \text{ acts faithfully} \Rightarrow \tilde{\text{H}}_r - 1 (|A_p(G)|; \mathbb{Z}) \neq 0. \]

Theorem

If \(H = C_r p \) acts transitively on a direct product \(Y \) of \(m \) copies of a nonabelian simple \(p' \)-group \(X \) and \(H_1, \ldots, H_n \) are linearly independent hyperplanes of \(H \) with \(C_Y(H_i) > C_Y(H) \), then there exist elements \(c_i \in C_Y(H_i) \backslash C_Y(H) \) such that

\[[c_i, c_j] = 1 \text{ for all } i, j \text{ (and } n \leq m). \]

▶ Proof: Uses the following consequence of the CFSG (already used by Aschbacher-Smith):

If \(P \) is a \(p \)-group and \(1 \neq P \leq \text{Out}(X) \) for a nonabelian simple \(p' \)-group \(X \), then \(X \) is of Lie type and \(P \) is cyclic and consists of field automorphisms.
Theorem (Top dimensional sphere in abelian\times simple case)

\[G = (A \times B) \rtimes H, \text{ } A \text{ abelian, } B \text{ product of nonabelian simple } p'\text{-groups, } H \text{ acts faithfully} \Rightarrow \tilde{H}_{r-1}(|A_p(G)|; \mathbb{Z}) \neq 0. \]
Theorem (Top dimensional sphere in abelian×simple case)

\[G = (A \times B) \rtimes H, \text{ } A \text{ } \text{abelian}, \text{ } B \text{ } \text{product of nonabelian simple } p' \text{-groups, } H \text{ } \text{acts faithfully} \Rightarrow \tilde{H}_{r-1}(|A_p(G)|; \mathbb{Z}) \neq 0. \]

Theorem

If \(H = C_p \) acts transitively on a direct product \(Y \) of \(m \) copies of a nonabelian simple \(p' \)-group \(X \) and \(H_1, \ldots, H_n \) are linearly independent hyperplanes of \(H \) with \(C_Y(H_i) > C_Y(H) \), then there exist elements \(c_i \in C_Y(H_i) \setminus C_Y(H) \) such that \([c_i, c_j] = 1\) for all \(i, j \) (and \(n \leq m \)).
Theorem (Top dimensional sphere in abelian×simple case)

\[G = (A \times B) \rtimes H, \text{ } A \text{ abelian, } B \text{ product of nonabelian simple } p'\text{-groups, } H \text{ acts faithfully} \Rightarrow \tilde{H}_{r-1}(\|A_p(G)|; \mathbb{Z}) \neq 0. \]

Theorem

If \(H = C_p^r \) acts transitively on a direct product \(Y \) of \(m \) copies of a nonabelian simple \(p'\)-group \(X \) and \(H_1, \ldots, H_n \) are linearly independent hyperplanes of \(H \) with \(C_Y(H_i) > C_Y(H) \), then there exist elements \(c_i \in C_Y(H_i) \setminus C_Y(H) \) such that \([c_i, c_j] = 1\) for all \(i, j \) (and \(n \leq m \)).

- Proof: Uses the following consequence of the CFSG (already used by Aschbacher-Smith):

\[\text{If } P \text{ is a } p\text{-group and } 1 \neq P \leq \text{Out}(X) \text{ for a nonabelian simple } p'\text{-group } X, \text{ then } X \text{ is of Lie type and } P \text{ is cyclic and consists of field automorphisms.} \]
Work in progress with Nadia Mazza

Build spheres in dimension \(\text{rank}_p(G) - 1 \) for \(G \) a finite simple group (only possible for Lie type in non-defining characteristic, exceptional, alternating and sporadic).

Theorem (D-Mazza, 2017)

Let \(H = C_r^p \leq G \) with \(r = \text{rank}_p(G) \), elements \(c_i \in C_G(H_i) \setminus N_G(H) \) with \([c_i, c_j] = 1\) for all \(i \) and \(j \). Then \(\tilde{H}_{r-1}(|A_p(G)|; \mathbb{Z}) \neq 0 \).

Example (D-Mazza, 2017)

Let \(G = A_n \). Then \(r = \text{rank}_p(G) = \lfloor \frac{n}{p} \rfloor \) and a maximal elementary abelian \(p \)-group of \(A_n \), \(H = C_r^p \), is generated by

\[
(1, \ldots, p), (p + 1, \ldots, 2p), \ldots, (r(p - 1) + 1, \ldots, rp).
\]
Thanks!