Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine

Hyungwoo Kim, Hyun Jung Kim1, Dongki Yang2, Myeong Ho Jung1, Byung Joo Kim1

Division of Pharmacology, School of Korean Medicine, Pusan National University, 1Division of Longevity and Biofunctional Medicine and Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, 2Department of Physiology, College of Medicine, Gachon University, Incheon, Republic of Korea

Submitted: 15-12-2015 Revised: 21-01-2016 Published: 06-01-2017

ABSTRACT

Background: Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicine, is used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. Objective: The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Materials and Methods: Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30–32°C. Results: In current-clamp mode, DKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT, receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT, receptor antagonist) did. Methoctramine (a muscarinic M3 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca2+-free solution or thapsigargin abolished the depolarizing effects of DKT. Y25130 (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT, receptor antagonist) did not block DKT-induced PP depolarization, but 2-methoxyisobutyl isonitrite (a muscarinic M3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Conclusion: These results suggest that the component in DKT hyperpolarizes ICC PPs in an internal or external Ca2+-dependent manner by stimulating 5-HT3 and 5-HT, receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. Key words: Daikenchuto, gastrointestinal tract, interstitial cells of Cajal, pacemaker potentials

SUMMARY

• Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of pacemaker potentials (PPs)

INTRODUCTION

Chinese (or Japanese) traditional herbal medicines are prescribed for the treatment of a wide array of diseases and conditions, including gastrointestinal (GI) disorders.[4] Daikenchuto (DKT; TJ-100, TU-100) is the most widely prescribed traditional Chinese herbal medicine, and it is called Kampo in Japan. DKT is a mixture of Ginseng radix, Zingiberis siccata rhizomes, and Zanthoxyl fructus.[5] It is used traditionally to treat abdominal bloating and a cold sensation in the abdomen, and prescribed by physicians for the treatment of chronic constipation. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and generate rhythmic oscillations in membrane potentials known as slow waves.[6] and thus, ICCs play important roles in the regulation of GI motility.[7] Endogenous agents, such as neurotransmitters, hormones, and paracrine substances, modulate GI tract motility by influencing ICCs.[8] and it appears that some traditional herbal medicines could regulate the pacemaker potentials (PPs) of ICCs.[9] It has been reported that DKT accelerates small intestinal movement by directly inhibiting smooth muscle and partially by inhibiting neural activities,[10] and that it induces phasic contractions in the duodenum and proximal jejunum via cholinergic receptors.[11] These findings provide a scientific basis suggesting the therapeutic use of DKT for the treatment of GI disorders.

This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Cite this article as: Kim H, Kim HJ, Yang D, Jung MH, Kim BJ. Depolarizing effects of daikenchuto on interstitial cells of cajal from mouse small intestine. Phcog Mag 2017;13:141-7.
However, relatively little is known about the effects of DKT on the PPs of ICCs in the GI tract. Therefore, in the present study, we investigated the effects of DKT on the PPs of cultured ICCs obtained from mouse small intestine.

MATERIALS AND METHODS

Preparation of daikenchuto and its constituents

DKT extract powder was manufactured by Tsamura and Co., Tokyo. To prepare DKT constituents, the powders obtained from the ethanol or water extracts of *Ginseng* radix (Catalog number: CA03-041), *Zingiberis rhizome* (Catalog number: CA04-001), and *Zanthoxyl* fructus (Catalog number: 029-037) were obtained from the plant extract bank at the Korean Research Institute of Bioscience and Biotechnology (Daejeon, Korea). DKT and its constituents were authenticated by Hyungwoo Kim (Division of Pharmacology, Pusan National University, School of Korean Medicine, Yangsan, Korea). The powder was then immersed in ethanol or water, sonicated for 15 min, and extracted for 72 h. The extract so obtained was filtered through nonfluorescent cotton and evaporated under reduced pressure using a rotary evaporator (N-1000 SWD, Eyela, Japan) in 45°C. The condensed extract was then lyophilized using a Module Spin 40 dryer (Biotron Corporation, Calgary, Canada) for 24 h. The yield of lyophilized powder obtained was 12.3%. The DKT was dissolved in distilled water at a concentration of 0.5 g (crude drug)/ml and stored in a refrigerator. The extracts of *Ginseng* radix, *Zingiberis rhizome*, and *Zanthoxyl* fructus were dissolved in dimethyl sulfoxide as a stock solution at 100 mg/mL and stored at 4°C. The extracts of *Ginseng* radix, *Zingiberis rhizome*, and *Zanthoxyl* fructus were dissolved in dimethyl sulfoxide as a stock solution at 100 mg/mL and stored at 4°C. The stock solution was diluted with medium to the desired concentration prior to use.

Preparation of cells and cell cultures

Animal care and the study protocol were in accordance with the guidelines issued by the Ethics Committee of Pusan National University (Yangsan, Republic of Korea). BALB/c mice (3–5 day-old) were used throughout the study. Small intestines were excised (from 1 cm below the pyloric ring to the ceccum) and opened along the mesenteric border. Luminal contents were removed using Krebs-Ringer bicarbonate solution, and the tissues were pinned to the bases of Sylgard dishes. Mucosae were removed by sharp dissection. Small tissue strips of intestine muscle (consisting of circular and longitudinal muscles) were equilibrated for 30 min in Ca²⁺-free Hank’s solution, which contained the following: potassium chloride (KCl), 5.36 mM; sodium chloride (NaCl), 125 mM; sodium hydroxide (NaOH), 0.34 mM; sodium bicarbonate, 0.44 mM; glucose, 10 mM; sucrose, 2.9 mM; and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 11 mM (final pH of 7.4). Cells were then dispersed in an enzyme solution containing collagenase (Worthington Biochemical, Lakewood, NJ, USA; 1.3 mg/mL), bovine serum albumin (BSA; Sigma-Aldrich, St. Louis, MO, USA; 2 mg/mL), trypsin inhibitor (Sigma-Aldrich; 2 mg/mL), and ATP (0.27 mg/mL), and plated onto sterile glass coverslips coated with murine collagen (2.5 mg/mL; Falcon/BD, Franklin Lakes, NJ, USA) in 35 mm culture dishes. Cells were cultured at 37°C in a 95% oxygen/5% carbon dioxide incubator in smooth muscle growth medium (Clonetics, San Diego, CA, USA) supplemented with 2% antibiotics/antimycotics (Gibco, Grand Island, NY, USA) and murine stem cell factor (5 ng/mL; Sigma-Aldrich). All experiments on ICC clusters were performed after they had been cultured for 12 h. ICCs were identified immunologically using an anti-c-Kit antibody, that is, phycoerythrin-conjugated rat anti-mouse c-Kit monoclonal antibody (eBioscience, San Diego, CA, USA), at a dilution of 1:50 for 20 min. Because the morphology of ICCs differed from other cell types in culture, it could be identified under a phase-contrast microscope after incubation with anti-c-Kit antibody.

Patch-clamp experiments

Physiological salt solution was used to bathe cultured ICC clusters (Na+-Tyrode) and contained the following: KCl, 5 mM; NaCl, 135 mM; calcium chloride (CaCl₂), 2 mM; glucose, 10 mM; magnesium chloride (MgCl₂), 1.2 mM; and HEPES, 10 mM (adjusted to pH 7.4 with NaOH). The pipette solution used to examine pacemaker activity contained the following: KCl, 140 mM; MgCl₂, 5 mM; dipotassium ATP (K₂ATP), 2.7 mM; sodium GTP (NaGTP), 0.1 mM; creatine phosphate disodium, 2.5 mM; HEPES, 5 mM; and ethylene glycol tetra-acetic acid, 0.1 mM (adjusted to pH 7.2 with potassium hydroxide). Patch-clamp techniques were conducted in whole-cell configuration to record potentials (i.e., current clamp mode) from cultured ICCs using Axopatch 1-D and Axopatch 200B amplifiers (Axon Instruments, Foster, CA, USA). Command pulses were applied using an IBM-compatible personal computer (Compaq; Houston, TX, USA) and pClamp software (versions 6.1 and 10.0; Axon Instruments, Foster City, CA, USA). Data were filtered at 5 kHz and displayed on an oscilloscope, a computer monitor, and/or a pen recorder (Gould 2200; Gould, Valley View, OH, USA). Results were analyzed using pClamp and Origin software (version 6.0, Microcal, Northampton, MA, USA). All experiments were performed at 30–33°C.

Drugs

The drugs used in the experiments were Y25130, RS39604, SB269970, methoctramine, 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), and thapsigargin, and all were purchased from Sigma-Aldrich (St. Louis, MO, USA). Stock solutions were prepared and stored according to the manufacturer’s instructions. Chemicals were dissolved in physiological salt solution to their final concentrations immediately before use.

Statistical analysis

Results are expressed as mean ± standard errors. The Student’s t-test was used to determine the significances of differences. A statistically significant difference was seen at P < 0.05. "n" values reported in the text refer to the number of cells used in patch-clamp experiments.

RESULTS

Effects of daikenchuto on the pacemaker potentials of cultured interstitial cells of Cajal from murine small intestine

The patch-clamp technique was applied to ICCs that formed network-like structures after culture for 12 h. Under current clamp mode (I = 0), ICCs generated PPs [Figure 1a] with a mean resting membrane potential of –51.3 ± 2.3 mV and a mean amplitude of 25.4 ± 1.5 mV. DKT (1–10 mg/ml) depolarized PPs and decreased the PP amplitudes in a concentration-dependent manner [Figure 1b-d]. In the presence of DKT, mean degrees of depolarization were 2.6 ± 0.6 mV at 1 mg/ml, 16.2 ± 0.7 mV at 5 mg/ml, and 26.1 ± 1.5 mV at 10 mg/ml [Figure 1e, n = 24] and mean amplitudes were 24.3 ± 1.3 mV at 1 mg/ml, 11.4 ± 1.4 mV at 5 mg/ml, and 7.2 ± 0.8 mV at 10 mg/ml [Figure 1f, n = 24]. Summarized values and a bar graph showing the effects of DKT on PPs are provided in Figure 1e and f. These results suggest that DKT dose dependently depolarizes ICC PPs.

Identification of daikenchuto receptor subtypes in cultured interstitial cells of Cajal from murine small intestine

To investigate the relationship between DKT and its receptors, we studied 5-HT and muscarinic receptors because they are known to
mediate GI tract motility and to be strongly associated with prokinetic activity.[13,16,19] The stimulation of 5-HT\(_4\) receptor (5-HT\(_4\)) in the enteric nervous system results in the release of acetylcholine in the GI tract, which leads to the excitation of smooth muscles in myenteric plexus, and thus, 5-HT\(_4\) is regarded a prokinetic.[19] Therefore, we investigated whether the prokinetic action of DKT involves 5-HT receptors. In ICCs, only three receptors (5-HT\(_1\), 5-HT\(_4\), and 5-HT\(_R\)) are present.[13,16,21] To identify the 5-HT receptor subtypes involved in the effects of DKT, ICCs were pretreated with various 5-HT receptor antagonists and then treated with DKT. Y25130 (a 5-HT\(_1\) receptor antagonist), RS39604 (a 5-HT\(_R\) receptor antagonist), and SB269970 (a 5-HT\(_7\) receptor antagonist) were all pretreated at 10 \(\mu\)M for 5 min, and then DKT was added. After pretreating Y25130 or SB269970, DKT depolarized membranes [Figure 2a and d]; membrane depolarization produced in the presence of Y25130 or SB269970 by DKT (5 mg/ml) was 15.8 \(\pm\) 1.0 mV and 16.5 \(\pm\) 0.6 mV, respectively \([n = 4;\text{ Figure 2d}]\). However, pretreatment with RS39604 blocked the effect of DKT \([n = 4;\text{ Figure 2b and d}]\). In addition, ICCs isolated from the GI tract express M\(_1\) and M\(_4\) subtypes of muscarinic receptors.[22] To identify the muscarinic receptor subtypes involved, ICCs were pretreated with muscarinic receptor antagonists and then treated with DKT. Methoctramine (a muscarinic M\(_1\) receptor antagonist) or 4-DAMP (a muscarinic M\(_4\) receptor antagonist) were pretreated at 10 \(\mu\)M for 5 min and then DKT (10 mg/ml) was added. Treatment with methoctramine or 4-DAMP had no effects on PPs, and pretreatment with methoctramine did not block the DKT-induced PP depolarization [Figure 3a]. In the presence of methoctramine, mean DKT-induced PP depolarization was 26.3 \(\pm\) 0.5 mV \([n = 4;\text{ Figure 3c}]\), but after pretreating 4-DAMP, DKT-induced PP depolarization was blocked [Figure 3b]. After 4-DAMP pretreatment, DKT-induced PPs depolarization was 0.3 \(\pm\) 0.4 mV \([n = 4;\text{ Figure 3c}]\). These results show that DKT affects ICCs through 5-HT\(_1\) and M\(_4\) receptors.

Effects of external Ca\(^{2+}\)-free solution and of Ca\(^{2+}\)-ATPase inhibitor on daikenchuto-induced pacemaker potential depolarization in cultured interstitial cells of Cajal from murine small intestine

External and internal Ca\(^{2+}\) regulation plays important roles in smooth muscle contraction and in the pacemaker activities of ICCs in the GI tract.[23] To investigate the roles of external or internal Ca\(^{2+}\), DKT was applied under external Ca\(^{2+}\)-free conditions and in the presence of thapsigargin (an inhibitor of Ca\(^{2+}\)-ATPase in endoplasmic reticulum).[24,25] Pretreatment with external Ca\(^{2+}\)-free solution abolished PPs, and under this condition, DKT did not induce PP depolarization \([n = 5;\text{ Figure 4a}]\). In addition, pretreatment with thapsigargin abolished PPs, and similarly under this condition, DKT did not induce PP depolarization \([n = 5;\text{ Figure 4b}]\). Summarized values and a bar graph showing the effects of DKT using an external Ca\(^{2+}\)-free solution or in the presence of a Ca\(^{2+}\)-ATPase inhibitor are shown in Figure 4c. These results show that DKT-induced PP depolarization is dependent on internal and external Ca\(^{2+}\) regulation.

Effects of daikenchuto constituents on the pacemaker potentials of cultured interstitial cells of Cajal from murine small intestine

We examined the effects of the constituents of DKT, that is, Ginseng radix, Zingiberis (ginger) rhizomes, and Zanthoxyli fructus on the PPs of ICCs. Both Ginseng and dried ginger depolarized and decreased the amplitudes of PPs [Figure 5a and b]. However, Zanthoxyli fruit inhibited, hyperpolarized, and decreased the amplitudes of PPs [Figure 5c]. These results suggest that the main depolarizing component in DKT is probably also an ingredient of Ginseng radix and Zingiberis rhizomes.
DISCUSSION

In the present study, we investigated the effect of DKT on GI motility by examining the PPs of ICCs from murine small intestine. In these cells, DKT depolarized PPs in an internal and an external Ca\(^{2+}\)-dependent manner by stimulating 5-HT\(_4\) and M\(_3\) receptors, which suggests that DKT offers a basis for developing novel prokinetic agents that prevent or alleviate GI motility dysfunctions. Furthermore, the study also shows that the primary depolarizing component in DKT is probably also present in Ginseng radix and in Zingiberis rhizomes.

Herbal therapy has been used in Asia for thousands of years. DKT is composed of Ginseng radix, Zingiberis siccatum rhizome, and Zanthoxyli fructus,\(^2\) and it is often used to treat GI hypomotility, such as, ileus, following abdominal surgery.\(^{27}\) It has been shown that DKT induces contractions in the antrum, duodenum, and jejunum by acting through cholinergic and 5-HT\(_4\) receptors.\(^{28,29}\) On the other hand, Zanthoxylyum fruit elicited contractions mainly in duodenum and jejunum, whereas dried ginger rhizome induced contractions in the antrum only and Ginseng root had no effect.\(^{28,29}\) Furthermore, the effects of DKT have been reported to be dependent on anatomic site and timing of its administration.\(^{30}\) During the fasting state, DKT had evident prokinetic effects.\(^{28,29}\) In addition, in isolated guinea pig ileum, DKT was found to elicit contractile responses via muscarinic and 5-HT\(_4\)Rs\(^{31}\) and to ameliorate morphine-induced GI transit disorder in mice as determined by colon transit times.\(^{32}\) In one study, it was suggested that small intestine motility improvement by DKT was due to its ginger root and...
Ginseng components via smooth muscle and neural inhibition.\cite{33} In addition, Kito et al.\cite{34} suggested that DKT had no effect on pacemaker mechanisms and electrical coupling between ICCs and smooth muscle cells in mouse small intestine, and that therefore, it may contract smooth muscles by depolarizing membranes directly.\cite{34}

Most 5-HT are found in the GI tract, and abnormalities in 5-HT signaling or metabolism are associated with several GI tract disorders, such as, dyspepsia, nausea, vomiting, coeliac disease, inflammatory bowel disease, and irritable bowel syndrome (IBS).\cite{35-37} 5-HT₃R is expressed in several different cell types in intestine, where it stimulates intestinal movement and promotes the relaxation of circular muscles by depolarizing membranes directly.\cite{34}

Figure 4: Effects of an external Ca²⁺-free solution and of thapsigargin on daikenchuto-induced pacemaker potential depolarization in cultured interstitial cells of Cajal from mouse small intestine. (a) External Ca²⁺-free solution and (b) thapsigargin (5 µM) abolished the generation of pacemaker potentials and blocked daikenchuto-induced pacemaker potential depolarization. (c) Responses to daikenchuto in external Ca²⁺-free solution and in the presence of thapsigargin are summarized. Bars represent mean ± standard error of the means. **P < 0.01. Significantly different from nontreated controls. CTRL: Control, Thapsi: Thapsigargin, Daikenchuto: Daikenchuto, Ca²⁺: Calcium, mV: millivolt.

On the other hand, methoctramine (a muscarinic M₂ receptor antagonist) did not block DKT-induced PP depolarization [Figure 3a], but pretreatment with RS39604 (a 5-HT₃ receptor antagonist) blocked the effect of DKT [Figure 2b].

DKT is composed of Ginseng radix, Zingiberis rhizome, and Zanthoxyli fructus.\cite{2} and they have influences on the regulation of GI tract motility. Ginseng radix affects the GI tract. Ginseng induces mouse intestinal movement and promotes the relaxation of circular muscles and ion channels.\cite{40} Three 5-HT receptors (5-HT₁, 5-HT₂, and 5-HT₃) and two muscarinic receptors (M₁ and M₂) are present on ICCs.\cite{13,20-22} In the present study, pretreatment with Y25130 (a 5-HT₃ receptor antagonist) or SB269970 (a 5-HT₂ receptor antagonist) facilitated DKT-induced membrane depolarization [Figure 2a and c], but pretreatment with RS39604 (a 5-HT₃ receptor antagonist) blocked the effect of DKT [Figure 2b].

Therefore, ICCs are the pacemaker cells of the GI tract and generate and propagate the slow waves that regulate GI motility;\cite{9} and networks of ICCs are never static even during physiological conditions. Apoptosis and transdifferentiation cause loss of ICCs, and these losses can be restored by the proliferation and differentiation of stem cells or ameliorated by increasing the survival of ICCs.\cite{47,48} Losses of or deficiencies in ICCs have been observed in intestines of animal models of GI dysfunction and are believed to contribute to the development of motility disorders.\cite{49,50}

Therefore, ICCs play a critical physiological role in the coordination of intestinal contractile activity and constitute an important aspect of intestinal motility.

DKT is composed of Ginseng radix, Zingiberis siccatum rhizome, and Zanthoxyli fructus,\cite{2} and it has effects on the regulation of GI tract motility. Ginseng radix affects the GI tract. Ginseng increases mouse intestinal movement and promotes the relaxation of circular muscles.

Pharmacognosy Magazine, January-March 2017, Vol 13, Issue 49
in the gastric body.[34] In isolated guinea pig GI tract tissues, Ginseng increases longitudinal muscle contraction in the ileum and distal colon[35] and in the rabbit intestine, Ginseng stimulates intestinal motility.[36] Furthermore, ginsenoside Re regulates the pacemaking activity of ICCs in mouse small intestine.[37] Zingiberis siccatum rhizome continuously decreased the amplitude of contraction and Zanthoxyli fructus increased jejunal contraction in isolated rabbit jejunum.[38]

In the present study, DKT depolarized PPs in ICCs, and Ginseng and dried ginger also had depolarizing effects [Figure 5a and b], whereas Zanthoxylium fruit hyperpolarized PPs [Figure 5c], which suggests that the main depolarizing component in DKT is probably a common component of Ginseng radix and Zingiberis rhizome.

CONCLUSION

The present study shows that in ICCs, DKT depolarizes and decreases the amplitudes of PPs in a concentration-dependent manner via internal or external Ca++. RS39604 (a 5-HT 3 receptor antagonist) and 4-DAMP (a muscarinic M receptor antagonist) blocked DKT-induced PP depolarization. Ginseng radix and Zingiberis rhizome depolarized ICC PPs, whereas Zanthoxyli fructus fruit had a hyperpolarizing effect. We suggest that the main depolarizing component in DKT is probably an ingredient in Ginseng radix and Zingiberis rhizomes. These findings suggest that DKT is a good candidate for the development of a prokinetic agent.

Acknowledgement

This study was supported by The Korean National Research Foundation (NRF) funded by the Korean government (MSIP) (Grant no. 2014R1A5A2009936).

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Kono T, Shimada M, Yamamoto M, Kaneko A, Oomiya Y, Kubota K, et al. Complementary and synergistic therapeutic effects of compounds found in Kampo medicine: Analysis of daikenchuto. Front Pharmacol 2015;6:159.
2. Kono T, Mishima H, Shimada M, Morita S, Sakamoto J; GONE Investigators. Preventive effect of goshajikirin on peripheral neurotoxicity of FOLFIRI therapy: A placebo-controlled double-blind randomized phase II study (the GONE Study). Jpn J Clin Oncol 2009;39:847-9.
3. Manabe N, Kanemura T, Koyama Y, Usui K, Ito K, Ito Y, et al. Effect of daikenchuto (TU-100) on gastrointestinal and colonic transit in humans. Am J Physiol Gastrointest Liver Physiol 2010;298:G970-5.
4. Iturrun J, Camilleri M, Wong BS, Burton D, Busciglio I, et al. Effect of daikenchuto (TU-100) on gastrointestinal and colonic transit in humans. Am J Physiol 2002;288(6):G970-5.
5. Shimada M, Morine Y, Nagano H, Hatano E, Kihara T, Miyazaki M, et al. Effect of TU-100, a traditional Japanese medicine, administered after hepatic resection in patients with liver cancer: A multi-center, phase III trial (JFMC40-1001). Int J Clin Oncol 2015;20:95-104.
6. Nakamura T, Sakai A, Isogami I, Noda K, Ueno K, Yano S. Abatement of morphine-induced contractile effect of Dai-kenchu-to in isolated guinea pig ileum. Dig Dis Sci 2001;46:1126-9.
7. Liu HN, Ohya S, Nishizawa Y, Sawamura K, Iino S, Syed MM, et al. Sphingosine and FTY720 modulate pacemaking activity in cultured interstitial cells of Cajal from mouse small intestine. J Pharmacol Exp Ther 2012;342:2292-8.
8. Shibata C, Naito H, Ueno T, Furunaga Y, Fukushima K, et al. Intraduodenal and intrajejunal administration of the herbal medicine, dai-kenchu-tou, stimulates small intestinal motility via cholinergic receptors in conscious dogs. Dig Dis Sci 2001;46:1171-6.
9. Gershon MD, Tack J. The serotonin signaling system: From basic understanding to drug development for functional GI disorders. Gastroenterology 2007;132:391-414.
10. Cavalcante Morais T, Cavalcante Lopes S, Bezerra Carvalho KM, Rodrigues Arruda B, Correia de Souza FT, Saies Trevisan MT, et al. Mangiferin, a natural xanthone, accelerates gastrointestinal transit in mice involving cholinergic mechanism. World J Gastroenterol 2012;18:3207-14.
11. Shahi PK, Choi S, Zuo DC, Yeum CH, Yoon PJ, Lee J, et al. S-hydroxytryptamine generates tonic inward currents on pacemaker activity of intestinal cells of Cajal from mouse small intestine. Korean J Pharmacol 2011;15:129-35.
12. Kim BJ, Lim HH, Yang DK, Jun JY, Chang JY, Park CS, et al. Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology 2005;129:1504-17.
13. Lee JH, Kim SY, Kwon YK, Kim BJ, So I. Characteristics of the cholecystokinin-induced depolarization of pacemaking activity in cultured interstitial cells of Cajal from murine small intestine. Cell Physiol Biochem 2013;31:542-54.
14. Kim BJ, Kim SY, Lee S, Jeon JH, Matsui H, Kwon YK, et al. The role of transient receptor potential channel blockers in human gastric cancer cell viability. Can J Pharmacol 2012;90:175-86.
15. Nam JM, Kim WK, Kim BJ. Sphingosine and FTY720 modulate pacemaking activity in interstitial cells of Cajal from mouse small intestine. Mol Cells 2013;36:235-44.
16. Kim BJ, Kim HW, Lee GS, Choi S, Jun JY, So I, et al. Pacinian trisilate fruit modulates pacemaker activity in interstitial cells of Cajal from the murine small intestine. J Ethnopharmacol 2013;149:686-96.
17. Huwang MW, Kim JN, Song HJ, Lim B, Kwon YK, Kim BJ. Effects of Lohoshng Tang on cultured mouse small intestine interstitial cells of Cajal. World J Gastroenterol 2012;19:12249-55.
18. Lee S, Gim H, Shim JH, Jung Kim H, Lee JR, Kim SC, et al. The traditional herbal medicine, Ge-Gen-Tang, inhibits pacemaker potentials by nitric oxide/GMP dependent ATP-sensitive K(+) channels in cultured interstitial cells of Cajal from mouse small intestine. J Ethnopharmacol 2015;170:201-9.
19. Satoh K, Kase Y, Hayakawa T, Murata P, Ishige A, Sasaki H. Dai-kenchu-to enhances accelerated small intestinal movement. Biol Pharm Bull 2001;24:1122-6.
20. Jin XL, Shibata C, Naito H, Ueno T, Furunaga Y, Fukushima K, et al. Intraduodenal and intrajejunial administration of the herbal medicine, dai-kenchu-tou, stimulates small intestinal motility via cholinergic receptors in conscious dogs. Dig Dis Sci 2001;46:1171-6.
21. Epperson A, Hatton WJ, Callaghan B, Doherty P, Walker RL, Sanders KM, et al. Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol Cell Physiol 2000;279:C529-39.
22. Ward SM, Ordog T, Koh SD, Baker SA, Jun JY, Amberg G, et al. Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J Pharmacol 2000;325(Pt 2):355-61.
23. Koh SD, Jun JY, Kim TW, Sanders KM. A Ca++-inhibited non-selective cation conductance contributes to pacemaker currents in murine intestinal cell of Cajal. J Physiol 2002;540(Pt 3):803-14.
24. Sung TS, Kim HU, Kim JH, Lu H, Sanders KM, Koh SD. Protease-activated receptors modulate excitability of murine colonic smooth muscles by differential effects on interstitial cells. J Physiol 2015;590:1169-81.
25. Itoh T, Yamaoka K, Mai M, Yamaguchi N, Kanda T. The effect of the herbal medicine Dai-Kenchu-to on post-operative ileus. J Int Med Res 2002;30:428-32.
26. Suzuki H, Inadomi JM, Hibi T. Japanese herbal medicine in functional gastrointestinal disorders. Neurogastroenterol Motil 2009;21:688-96.
27. Suzuki H, Nishizawa T, Hibi T. Therapeutic strategies for functional dyspepsia and the introduction of the Rome III classification. J Gastroenterol 2006;41:513-23.
28. Shibata C, Sasaki I, Naito H, Ueno T, Matsuno S. The herbal medicine Dai-Kenchu-Tou stimulates upper gut motility through cholinergic and 5-hydroxytryptamine 3 receptors in conscious dogs. Surgery 1999;126:918-24.
29. Kawasaki N, Nakada K, Nakayoshi T, Furukawa Y, Suzuki Y, Hanyu N, et al. Effect of Dai-kenchu-to on gastrointestinal motility based on differences in the site and timing of administration. Dig Dis Sci 2007;52:2684-94.
30. Satoh K, Hayakawa T, Kase Y, Ishige A, Sasaki H, Nishizaka S, et al. Mechanisms for contractile effect of Dai-kenchu-to in isolated guinea pig ileum. Dig Dis Sci 2001;46:250-6.
31. Nakamura T, Sakai A, Ishogami I, Noda K, Ueno K, Yano S. Abatement of morphine-induced slowing in gastrointestinal transit by Dai-kenchu-to, a traditional Japanese herbal medicine. J Pharmacol Pharmacognosy Magazine, January-March 2017, Vol 13, Issue 49
33. Tack J, Talley NJ, Camilleri M, Holtmann G, Hu P, Malagelada JR, et al. Functional gastroduodenal disorders. Gastroenterology 2006;130:1466-79.

34. Kito Y, Suzuki H. Effects of Daikenchuto on spontaneous activity in the mouse small intestine. J Smooth Muscle Res 2006;42:198-201.

35. Beattie DT, Smith JA. Serotonin pharmacology in the gastrointestinal tract: A review. Naunyn Schmiedebergs Arch Pharmacol 2006;377:181-203.

36. De Ponti F. Drug development for the irritable bowel syndrome: Current challenges and future perspectives. Front Pharmacol 2013;4:7.

37. Spiller R. Serotonin and GI clinical disorders. Neuropharmacology 2006;55:1072-80.

38. Irving HR, Tan YY, Tochon-Danguy N, Liu H, Chetty N, Desmond PV, et al. Comparison of 5-HT4 and 5-HT7 receptor expression and function in the circular muscle of the human colon. Life Sci 2007;80:1198-205.

39. Celiek S, Thangiah R, Jarvie EM, Vivekanandan S, Lalude O, Sanger GJ. Synergy between 5-HT4 receptor activation and acetylcholinesterase inhibition in human colon and rat forestomach. Neurogastroenterol Motil 2006;20:189-201.

40. Prins NH, Briejer MR, Van Bergen PJ, Akkermans LM, Schuurkes JA. Evidence for 5-HT7 receptors mediating relaxation of human colonic circular smooth muscle. Br J Pharmacol 1999;128:849-52.

41. Uchiyama T, Chess-Williams R. Muscarinic receptor subtypes of the bladder and gastrointestinal tract. J Smooth Muscle Res 2004;40:237-47.

42. Lanzafame AA, Christopoulos A, Mitchelson F. Cellular signaling mechanisms for muscarinic acetylcholine receptors. Receptors Channels 2003;9:241-60.

43. So KY, Kim SH, Sohn HM, Choi SJ, Parajul SP, Choi S, et al. Carbachol regulates pacemaker activities in cultured interstitial cells of Cajal from the mouse small intestine. Mol Cells 2009;27:525-31.

44. Farrugia G. Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 2008;20 Suppl 1:54-63.

45. Gibbons SJ, De Giorgio R, Faussone-Pellegrini MS, Garrity-Park MM, Miller SM, Schmalz PF, et al. Apoptotic cell death of human interstitial cells of Cajal. Neurogastroenterol Motil 2009;21:85-93.

46. Ordig T, Takayama I, Cheung WK, Ward SM, Sanders KM. Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes 2000;49:1731-9.

47. Grover M, Bernard CE, Pasricha PJ, Lurken MS, Faussone-Pellegrini MS, Smyrk TC, et al. Clinical-histological associations in gastroparesis: Results from the Gastroparesis Clinical Research Consortium. Neurogastroenterol Motil 2012;24:531-9, e249.

48. Furukawa Y, Shiga Y, Hanyu N, Hashimoto Y, Mukai H, Nishikawa K, et al. Effect of Chinese herbal medicine on gastrointestinal motility and bowel obstruction. Jpn J Gastroenterol Surg 1995;28:956-60.

49. Hashimoto K, Satoh K, Kase Y, Ishige A, Kubo M, Sasaki H, et al. Modulatory effect of aliphatic acid amides from Zanthoxylum piperitum on isolated gastrointestinal tract. Planta Med 2001;67:179-81.

50. Murata P, Hayakawa T, Satoh K, Kase Y, Ishige A, Sasaki H. Effects of Dai-kenchu-to, a herbal medicine, on uterine and intestinal motility. Phytother Res 2001;15:302-6.

51. Hong NR, Park HS, Ahn TS, Kim HJ, Ha KT, Kim BJ. Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine. J Ginseng Res 2015;39:314-21.

52. Hayakawa T, Kase Y, Saito K, Hashimoto K, Ishige A, Komatsu Y, et al. Pharmacological studies of the effect of Dai-kenchu-to on spontaneous contraction of isolated rabbit jejunum. J Smooth Muscle Res 1999;35:55-62.