摩擦摺拌点接合継手における切削工具の形状を考慮した
接合ツールへの付着物の影響

生田 明彦**

Influence of Material Adhered to Welding Tool in Consideration of Shape of Cutting Tools on Friction Stir Spot Welds*

by IKUTA Akihiko**

This paper investigates the influence of the presence or absence of material adhered to the tool in A5052/A6061 lap joints when friction stir spot welding tools with cutting edges and rake angles similar to a cutting tool are used. The main focus was the inflection of material flows by the behavior of the material adhered to the tool during the friction stir spot welding. The failure load of friction stir spot lap joints made using tools with adhered material was more than 1.5 times higher than those made using tools without adhered material in some welding conditions. At this time, it was clear that the ability of the tool to discharge chips did not change irrespective of whether or not there was adhered material. In addition, the material flows during friction stir spot welding, with or without adhered material, were the material flow made by the chips in the keyhole edge and the material flow made by the cutting edge of the tip of the probe in the keyhole corner. However, when tools with adhered material were used, the material flow in the keyhole corner produced not only a flow of welding material but also a flow of adhered material stirred inside the welding material. From the results, when these tools with adhered material are used, it is clear that the adhered material assists the flows inside of the welding material, and can improve the characteristics of friction stir spot welds.

Key Words: Adhered material, Friction stir spot welding, Tool, Material flow, Cutting, Chip

1. 緒 言

摩擦摺拌接合および点接合用ツールの形状には、特にプローブの断面形状に注目した場合、円形型と非円形型に大別することができる1,2)。プローブの断面が非円形型の場合、プローブの先端や外周のエッジ部が切削工具における切れ刃のような働きをすることが報告されている3-5)。この中で、摩擦摺拌点接合（以下、FSSW）において、接合材料を切りくず状にしながら排出し6-8)、その後、攪拌することが重要であり、そのために切りくずの生成に関して切れ刃のすくい角など重要であることが指摘されている5)。また、プローブの断面が非円形型の場合、いずれの形状に成るかによっても切欠き角が存在する、この部で切りくずつまりのような状態になることを述べたが、通常、このような切りくずはツールに付着しており、FSSW 毎に取り除くことは大きな手間となる。しかしながら、プローブの断面が非円形型の場合、ツールへの付着材料がFSSW 接合に影響をおよぼすことが報告されている9)。そのため、攪拌までの流れとして、積極な切りくずの生成、排出、その後に発生する切りくずつまり、さらにつまった切りくずを攪拌する前述したような切削工具の知見を導入したツールでは、ツールへの付着物の影響を無視することは困難である。よって、このようなツールへの付着物の働きを明らかにしておくことがより重要であると考えられる。

そこで、本研究では、複数のプローブ断面が非円形型のFSSW ツールにおいて、接合特性におけるツール付着物の影響を明らかにすることを目的とした。その際、ツールにおける付着物の挙動に注目して付着物の有無を比較することにより、それぞれのプローブ断面形状の違いによるFSSW 時のツール付着物の特徴について明らかにした。

2. 供試材料および実験方法

2.1 供試材料

本研究で使用したアルミニウム合金は、上下板の攪拌状態の観察が容易になるようA5052-H34（以下、A5052）およびA6061-T651（以下、A6061）を用いた。また、ツールへの付着物の変形状態を観察するためのトレーサ材料として、SiCを分散したアルミニウム系金属基複合材料（以下、MMC）も使用した。なお、MMC中のSiCは、不規則形状の平均粒径25 µmの粒子である。これらの化学組成をTable 1に示す。材料の寸法は、長さ75 mm、幅25 mm、板厚1.5 mmのA5052ならびに3 mmのA6061およびMMCである。
2.2 摩擦攪拌点接合ツール

接合に使用したツールはSKD61で、機械加工した後、熱処理を行って、硬さをHRc46～48としたものを用いた。ツール形状は、Fig. 1に示すようにプローブ長さ2.2mm、プローブ断面の外接円直径4mmおよびショルダ直径10mmであり、非円形のプローブ断面形状を有する3種類とした。このとき、プローブ形状の違いによる使用ツールの分類は、すくい角が負角(以下、4Fツール)、ほぼ0°(以下、DMツール)および正角(以下、BMツール)である。このように、これらツールのプローブ断面形状は、切削工具の切れ刃に相当するエッジ部を有し、切削時のすくい角に相当する角度を変化させたものである。

2.3 摩擦攪拌点接合方法

ツールへの付着物なしの場合のFSSW条件は、Plunging速度2.5mm/s、Dwell時間(Plunging後の位置保持時間)1sおよびショルダPlunging深さを0.4mmとし、ツール回転数を1000、1500、2250および3000rpmと変化させて行った。接合方法は上下板の攪拌状態の観察を容易にするため、上板をA5052、下板をA6061とした重ね合わせFSSWとし、重ね代を25mmとして、その中心に重ね合わせFSSWを行った。ツールへの付着物ありの場合のFSSW条件は、付着物なしと同様に、所定の接合条件で一旦FSSWを行い、ツールへの付着物がついた状態とした。このときの接合状態を評価するため、フック(上板材料と下板材料との界面に存在する酸化物層が接合時に変形し、盛り上がって形成された構造)10、11の組織観察を行った。なお、これらの測定には光学顕微鏡を用い、観察倍率100倍で行った。

2.4 接合部の評価方法

ツールへの付着物の有無によるFSSW後の接合材料およびツール付着物の塑性流動状態を調査するため、FSSW中の軸方向荷重およびトルクを測定した。軸方向荷重は、ツールの回転中心における接合材料直下にロードセルを設置して測定を行った。トルクは自由に回転できるように、ラジアルスラスト軸受で支持されたベース板に、ツール回転中心から半径方向75mmの位置にロードセルを設置して測定を行った。さらに、付着物があるツールを用いたFSSW中のツール圧入過程を、高速度カメラを用いて観察した。観察条件は、撮影速度4000fpsおよび画像サイズ640×480pixelで行った。

接合材料の塑性流動状態の調査のため、トレーサ材料を用いた観察を行った。このとき、攪拌部を評価するため、トレーサ材料の上板と下板との初期界面からの到達高さおよびキーホール側面からの到達幅を計測した。トレーサ材料を用いた接合材料の観察は、下板材料のA6061に接合ツール回転中心から1mmの位置に直径0.8×深さ1mmのキリ穴を1つ加工し、平均粒径0.1μm、純度99.9%の超硬合金粉末を充填した。その後、付着物のあるツールを用いてFSSWを行い、接合部断面を走査型電子顕微鏡の反射電子像により観察した。

Table 1 Chemical compositions of aluminium alloys used (wt%).

| Materials     | Cu  | Mg  | Mn  | Si  | Fe  | Cr  | Ni  | Zn  | Ti  | Ca  | Pd  | Al  |
|---------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| A5052-H34    | 0.01| 2.38| 0.04| 0.08| 0.19| 0.2 | -   | -   | -   | -   | -   | Bal |
| A6061-T651   | 0.25| 1   | 0.05| 0.6 | 0.25| 0.16| -   | 0.01| 0.02| -   | -   | Bal |
| A359+20vol%SiC| 0.01| 0.5-0.7| 8.75-9.50| <0.2| 0.01| 0.01| 0.01| <0.001| <0.001| -   | -   | Bal |

2.5 付着物の評価方法

ツールへの付着物の有無がおよそFSSW中の接合材料およびツール付着物の塑性流動状態を調査するため、FSSW中の軸方向荷重およびトルクを測定した。軸方向荷重は、ツールの回転中心における接合材料直下にロードセルを設置して測定を行った。トルクは自由に回転できるように、ラジアルスラスト軸受で支持されたベース板に、ツール回転中心から半径方向75mmの位置にロードセルを設置して測定を行った。さらに、付着物があるツールを用いたFSSW中のツール圧入過程を、高速度カメラを用いて観察した。観察条件は、撮影速度4000fpsおよび画像サイズ640×480pixelで行った。

接合材料の塑性流動状態の調査のため、トレーサ材料を用いた観察を行った。このとき、攪拌部を評価するため、トレーサ材料の上板と下板との初期界面からの到達高さおよびキーホール側面からの到達幅を計測した。トレーサ材料を用いた接合材料の観察は、下板材料のA6061に接合ツール回転中心から1mmの位置に直径0.8×深さ1mmのキリ穴を1つ加工し、平均粒径0.1μm、純度99.9%の超硬合金粉末を充填した。その後、付着物のあるツールを用いてFSSWを行い、接合部断面を走査型電子顕微鏡の反射電子像により観察した。

Fig. 1 Tool design.
観察した。また、ツール付着物自体の塑性流動状態を調査するため、アルミニウム合金を基材とするMMCに対して所定の接合条件でFSSWを行い、トレーサ材料としてのMMCをツールに付着させた後、同条件で再度FSSWを行った。その後、得られた接合部断面を光学顕微鏡により観察した。さらに、ツール付着物と接合材料の塑性流動状態を調査するため、逐次の断面観察およびストップアクション法を用いた観察を行った。逐次の断面観察は、通常のFSSWの過程を途中で中断し、Plunging深さやDwell時間を短縮して終了させ、模擬的にFSSW中の塑性流動状態を観察した。ストップアクション法は、付着物があるツールを用いたFSSWでDwell終了と同時にツールの回転を急停止させ、ツールが挿入されたままの接合面に切断し、光学顕微鏡により観察した。加えて下板裏面方向から研削加工し、軸方向断面の観察も行った。

3．実験結果および考察

3.1 継手におよぼすツール付着物の影響

Fig.2は、各ツールの付着物を示したものである。このように示したような付着物があるツールを用いてFSSW継手を作製した。Fig.3は、付着物の有無によるツールを用いて作製した接合の破断荷重とツール回転速度との関係を示したものである。付着物の有無による違いに注目すると、破断荷重とツール回転速度との関係は4Fツールでは付着物の有無で概ね同様となっているが、DMおよびBMツールでは付着物の有無で異なっている。特に、DMおよびBMツールでは、ツール回転速度1500rpmにおいて付着物がない場合の破断荷重がそれぞれ2.78および2.42kNであったのに対し、付着物がある場合の破断荷重は4.37および3.85kNとなり、1.5倍以上に上昇した。そこで、ツール付着物により、特に破断荷重が大きく改善した回転速度1500rpmに着目した。

Fig.4は、付着物のあるツールを用いて作製した接合の組織観察結果として、ツール回転速度1500rpmにおいて示したものである。なお、参考として、付着物のないツールを用いて作製した場合のフック形状を緑色実線で示した。Fig.4より、いずれのツールを用いた場合でもフックの先端位置および形状は付着物の有無で同様であったが、フック先端に至る直前の曲度に違いが見られた。このときの曲度計測結果は、4F、DMおよびBMツールにおいて、付着物のない場合には52、164および164°であったものに対し、付着物がある場合には64、116および122°となっていた。このような曲度の計測結果から、付着物がある場合、破断荷重が上昇したDMおよびBMツールにおいて曲度が小さくなった。

Fig.2 Overview of material adhered to (a) 4F, (b) DM and (c) BM tools.

Fig.3 Relation between failure load and tool rotational speed in friction stir spot welds made using 4F, DM and BM tools (a) without adhered material and (b) with adhered material.
次に、Fig. 5 は、Fig. 3 において示した付着物がある場合のツール回転速度 1500 rpm について、引張せん断試験での破断後の組織観察結果について示したものである。Fig. 5(a) および(c) より、4F および BM ツールを用いた場合の破断経路は、上下板初期界面から攪拌部を含む下板の変形部を横断している。一方、DM ツールを用いた場合の破断経路は、Fig. 5(b) において黄色矢印で示すようにほぼ完全な引張状態になっており、他のツールを用いた場合と比較して著しく変形しながら破断していた。これら破断経路と破断荷重の関係は既に報告されているとおり、破断経路がせん断状にならない場合に破断荷重が大きくなることと一致している。また、このように破断経路が変化するにはツールによる塑性流動が変化することも明らかになっており、本研究においては、さらに塑性流動の変化にツール付着物が影響していることが考えられる。

3.2 FSSW 中の荷重状態によるツール付着物の評価

FSSW 中のツール付着物の挙動を調査するため、荷重状態を計測した。Fig. 6 は、ツール付着物の有無による各ツール使用時のツール回転速度 1500 rpm における軸方向荷重測定結果を示したものである。Fig. 6 は、ツール付着物の有無による各ツール使用時のツール回転速度 1500 rpm における荷重測定結果を示したものである。
結果を、Fig.7 はトルク測定結果を示したものである。Fig.6 および 7 で、軸方向荷重での BM ツールやトルクでの 4F ツールは、圧入時初期において付着物がない場合に高い値を示すこともあったが、各ツールとも軸方向荷重およびトルクは付着物の有無による差異はほとんどなく、同様の結果となった。これらのことは、ほとんどの場合において、接合材料がツールに付着していてもほぼ抵抗にはなっていないことが示唆される。

Fig.8 は、プローブ圧入から約 0.25s 後の高速度カメラによる観察結果として、ツール付着物の有無による各ツールの使用時のツール回転速度 1500 rpm の場合を示したものである。結果から、4F ツールは付着物の有無にかかわらず、切りくず形状の変化はなく、切りくず量も多くなかった。一方、DM および BM ツールは、付着物の有無の場合と比較して、付着物ありの場合に切りくず形状は変化がないものの、切りくず量は明らかに多くなっていた。特に、DM ツールでは、付着物ありの場合、流れ形の切りくずが大量に生成されていた。なお、BM ツールでは付着物ありの場合、Fig.8 において黄色矢印で示すように、付着物がプローブ溝部から離脱してプローブ外周に絡みつくようになっており、切りくず排出性は DM ツールよりも劣っていると考えられる。

これら Fig.6 から 8 までの結果より、いずれのツールも付着物の有無にかかわらず軸方向荷重もトルクもほとんど変化がないことから、付着物が接合時の抵抗にはなっていないと考えられる。また、付着物が圧入初期にプローブから離脱するか否かに関わらず、切りくず排出性は付着物がない場合と同様であると考えられる。なお、各荷重状態は、同様の状況にあると考えられるドリルを用いた穴加工の結果とよく一致している。よって、ツールに付着物があっても切りくず排出性には影響がないと考えられることから、既に接合材料がプローブ溝部に蓄積されていた分、排出される切りくず量は付着物がない場合より多くなると推察される。

3.3 塑性流動におよぼすツール付着物の影響

FSSW 中におけるツール付着物がある場合の接合材料の塑性流動状態を調査するため、トレーサ材料を用いた観察を行った。Fig.9 は、ツール回転速度 1500 rpm におけるトレーサ材料観察結果である。なお、観察場所は探針先端部、ツール挿入部の到達限界近傍である。結果より、いずれのツールを用いた場合でも、白く観察される WC 粒子が均一に分散していた。特に、DM および BM ツールでは、付着物の有無の場合と比較して、付着物ありの場合と同様の観察結果で、4F ツールではやや塊状になっていることが観察された。なお、BM ツールでは付着物ありの場合でも、Fig.8 において黄色矢印で示すように、付着物がプローブ溝部から離脱してプローブ外周に絡みつくようになっており、切りくず排出性は DM ツールよりも劣っていると考えられる。

次に、トレーサ材料の上板と下板との初期界面からの到達高さおよびキーホール側面からの到達幅を計測した結果を Fig.10 に示す。初期界面からの到達高さについては、4F ツールでは付着物がある場合、付着物がない場合より若干低下するが、それでも付着物の有無によらず上方にまで到達している。一方、DM および BM ツールでは、付着物がある場合は付着物がない場合と比較して、より上方まで到達している。キーホール側面からの到達幅については、いずれのツールを用いた場合でも、付着物の有無によらず 4F、DM および BM ツールの順に小さくなった。また、いずれのツールでも、付着物がある場合が付着物がない場合より小さくなった。
これらのように、付着物がある場合、攪拌が比較的進んでいると思われるFig.9の結果が示される一方で、攪拌部が拡がっていないと思われるFig.10の結果も示された。そのため、これらの結果には、これまで考慮していなかった付着物自体の塑性流動が影響をおよぼしていることが考えられる。

3.4 FSSW中のツール付着物の塑性流動

前節において注目した、FSSW中におけるツール付着物自体の塑性流動について調査するため、予めMMCに対してFSSWを行い、トレーサ材料としてMMCを付着させたツールを用いて、MMCの塑性流動状態を観察した。Fig.11は、ツール回転速度1500rpmにおけるMMC観察結果である。Fig.11において白色矢印で示したように、いずれのツールを用いた場合もショルダとプローブにより上部に形成されたキーホールの角（以下、キーホールエッジ）にMMCの粒子が観察された。加えて、4Fツールではごくわずかしか観察されなかったが、黄色矢印で示したように、DMおよびBMツールを用いた場合には、主にプローブ先端コーナ部で形成されたキーホール底の角（以下、キーホールコーナ）で、
MMCの粒子が観察された。 MMCの塑性流動性は A5052 または A6061 とは異なると考えられるが、それでも、主にとって 4F ツールではキーホールエッジで、DM および BM ツールではキーホールエッジならびにキーホールコーナで、付着物が板手内部に摂取されて母材と一体化した塑性流動を生成している可能性が示唆される。

3.5 FSSW 中の接続の塑性流動

ツール付着物は FSSW 中に母材内で摂取され、一体化して塑性流動している可能性が示されたことから、このことを考えること合中の塑性流動状態を考える必要がある。そのため、付着物があるツールを用いた場合、通常の FSSW の過程を途中で中断して、逐次、接続の断面を観察した。Fig.12 は、FSSW 中の逐次断面観察結果である。なお、図中には比較のため、付着物のないツールを用いて同様に観察を行った場合のフック形状を緑色実線で示す。4F ツールを用いた場合、付着物の有無により接合中のフックの形状はほぼ同様であった。しかしながら、DM および BM ツールを用いた場合、接合中のフック形状は付着物があるとプローブ先端が下板に押入れされる Plunging 深さ 1.9 mm 程度から、より大きく斜め上方へ変形している。それでも、Fig.4 に示したように、FSSW 終了時点で付着物の有無によらず同様のフック形状となる一方、曲がり異なっていたことから、Fig.12 に示したような FSSW 中の塑性流動への付着物の影響が考えられる。また、Fig.12(b) および (c) に示すように、付着物があると、プローブ圧入初期から付着物が母材と一体化した塑性流動を生成し、実質的摂取時間が長くなると考えられる。このため、Fig.9 に示したようにトレーサ材料

![Fig.12 Intermingled regions at the probe extremity in A5052/A6061 lap joints, in friction stir spot welds made using (a) 4F, (b) DM and (c) BM tools with adhered material, with a tool rotational speed of 1500 rpm, penetration depth of (1) 1.9 mm, (2) 2.1 mm, (3) 2.3 mm, (4) 2.5 mm, (5) 2.6 mm and (6) 2.6 mm, and dwell times of (1)-(4) 0 s, (5) 0.3 s and (6) 0.6 s.](image-url)
が凝集せず、分散したと考えられる。

Fig.13は、付着物のあるツールを用いたFSSW中の塑性流動状態を調べるため、ストップアクション法を用いて、ツール軸方向およびツール径方向の組織観察結果を示したものである。図中では、黄色矢印で示す空間や、緑矢印で示すキーホールエッジで切りくずと接合材料との摺捰部が観察され、これとは付着物がないツールを用いた場合と位置や大きさが同様であった。しかしながら、赤色矢印で示すツックの先端位置については、4Fツールの場合、付着物の有無で位置はほぼ同様であったが、DMおよびBMツールの場合、付着物があるツールではより低い位置を示した。また、付着物があるDMおよびBMツールでは、青色矢印で示すように摺捰部の外側に塑性流動または変形と考えられる領域が、斜め上方へ向かって拡がっていることが観察される。

このように、4Fツールでは付着物の有無が、FSSW中の塑性流動にほとんど影響しないと考えられるが、DMおよびBMツールでは付着物の有無が、FSSW中の塑性流動に影響をおよぼすと考えられる。以上の結果より、4Fツールの場合、切りくずの排出性は元々良好であるため、付着物の有無にかかわらず常に同様である。付着物のある場合は、ツールによる切りくずの排出性は付着物の有無にかかわらず常に同様である。付着物がある場合の塑性流動の特徴

これまでの結果から、典型的にツール付着物がFSSW中の塑性流動に大きく影響をおよぼす場合として、DMツールにおける塑性流動の変化を模式図としてFig.14に示す。なお、ここでは簡略化のため、ツールの回転方向を示さず、三次元的な塑性流動を二次元的に示している。比較のために示した付着物のない場合については、既に明らかになっていて、ブローブの切れ刃に相当するエッジ部がキーホールコーナーで生成する塑性流動と、上方へ移動される切りくずによるキーホールエッジでの塑性流動がある。付着物のある場合は、ツールによる切りくずの排出性は付着物の有無にかかわらず、付着物があると、基本的な塑性流動状態は付着物なしの場合と同様である。このため、Fig.14に示したようにキーホールエッジでの塑性流動は付着物なしの場合とはほぼ同様に生成している。一方、キーホールコーナーでは、切りくず排出性および排出は親和しているものの、ブローブの切れ刃部に付着物があるため、切りくず排出性の良好な状態の付着物は、Fig.14に示したように接合材料内部に摺捰されていく。この
時、Fig.9に示したように接合材料自体も塑性流動するが、予め付着物があるため付着物が先に塑性流動し、Fig.10に示したように下板を主とした接合材料の塑性流動は付着物の有無により変化する。また、付着物がある分、塑性流動する体積が増加することで攪拌部周边の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えられる。また、付着物がある分、塑性流動する体積が増加することで攪拌部周辺の斜め上方への変形も大きくなる。これによって、Fig.4に示したようにFig.5(b)に示したような複雑な破断経路となって破断荷重が改善されたと考えされる。
（2）FSSW中の荷重状態測定結果から、付着物の有無によらない。いずれのツールを用いた場合でも、切りくずの生成および排出性に変化はなく、ほとんど同様であることが明らかとなった。

（3）いずれのツールを用いた場合でも、付着物の有無によらず、維手内の塑性流動は主としてキーホールエッジおよびキーホールコーナにおける接合材料と切りくずが攪拌されることによる塑性流動があったことが示唆された。しかしながら、付着物があるDMおよびBMツールでは、キーホールエッジにおける切りくずによる塑性流動およびキーホールコーナにおける接合材料と切りくずが攪拌されることによる塑性流動があったことが示唆される。

謝辞

本研究は競輪の補助（25-99）および（26-123）を受けて実施しました。ここに謝意を表します。

参考文献

1) Y. N. Zhang, X. Cao, S. Larose and P. Wanjara: Review of tools for friction stir welding and processing, Canadian Metallurgical Quarterly, 51-3(2012), 250-261.
2) L. H. Shah, S. Walbridge and A. Gerlich: Tool eccentricity in friction stir welding: a comprehensive review, Science and Technology of Welding and Joining, 24(6)(2019), 566-578.
3) J T Xiong, J L Li, J W Qian, P S Zhang & W D Huang: High strength lap joint of aluminium and stainless steels fabricated by friction stir welding with cutting pin, Science and Technology of Welding and Joining, 17-3(2012), 196-201.
9) A. Ikuta and T. H. North: Influence of Material Adhered to Tool on Friction Stir Spot Welds, Quarterly Journal of The Japan Welding Society, 35-4(2017), 171-178. (in Japanese)
10) H. Badarinarayanan, Y. Shi, X. Li and K. Okamoto: Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets, International Journal of Machine Tools and Manufacture, 49 (2009), 814-823.
11) G. Buffaa, G. Campanile, L. Fratini and A. Prisco: Friction stir welding of lap joints -Influence of process parameters on the metallurgical and mechanical properties-, Materials Science and Engineering A, A519 (2009), 19-26.
12) A. Ikuta, Y. H. Yin and T. H. North: Influence of tool thread on mechanical properties of dissimilar Al alloy friction stir spot welds, Science and Technology of Welding and Joining, 17-8(2012), 622-629.
13) S. Horie, K. Shinozaki, M. Yamamoto and T. H. North: Experimental investigation of material flow during friction stir spot welding, Science and Technology of Welding and Joining, 15-8(2010), 666-670.
14) P. B. Prangnell and C. P. Heason: Grain structure formation during friction stir welding observed by the ‘stop action technique’, Acta Materialia, 53(2005), 3179-3192.
15) T. Segawa, H. Sasahara, Y. Kagiya, S. Aramaki and M. Tsutsutma: Visualization and analysis of chip ejection process in dry drilling of aluminum alloy, Journal of the Japan Society for Precision Engineering, 71-5(2005), 623-627. (in Japanese)
16) K. Kasahara and A. Hirota: Drilling with flat rake face drills and analysis of long-pitch helical chip formation process, Journal of the Japan Society for Precision Engineering, 56-6(1990), 1075-1081. (in Japanese)
17) S. Hanasaki, R. Hosoi, T. Hosoi, T. Nagamachi and Y. Hasegawa: Chip exhaust mechanism of twist drill drillable deep hole under continuously high feed rate, Transactions of the Japan Society of Mechanical Engineers C, 65A(2007), 584-595.
20) S. Hanasaki, R. Hosoi, T. Hosoi, T. Nagamachi and Y. Hasegawa: Chip exhaust mechanism of twist drill drillable deep hole under continuously high feed rate, Transactions of the Japan Society of Mechanical Engineers C, 65-6(2009), 1229-1234. (in Japanese)
21) T. Shibayamagi, A. P. Gerlich and T. H. North: Textures in single-crystal aluminum friction stir spot welds, Metallographic and Materials Transactions A, 40A(2009), 920-931.
22) P. Su, A. Gerlich, T. H. North and J. Bendzak: Material flow during friction stir spot welding, Science and Technology of Welding and Joining, 11-1(2006), 61-71.
23) P. Su, A. Gerlich, T. H. North and J. Bendzak: Intermixing in dissimilar friction stir spot welds, Metallurgical and Materials Transactions A, 38A(2007), 584-595.
24) A. Gerlich, P. Su, M. Yamamoto and T. H. North: Material flow and intermixing during dissimilar friction stir welding, Science and Technology of Welding and Joining, 13-3(2008), 254-264.
25) P. Su, A. Gerlich, T. H. North and J. Bendzak: Intermixing in dissimilar friction stir spot welds, Metallurgical and Materials Transactions A, 38A(2007), 584-595.
26) A. Gerlich, P. Su, M. Yamamoto and T. H. North: Material flow and intermixing during dissimilar friction stir welding, Science and Technology of Welding and Joining, 13-3(2008), 254-264.
27) D. Zhang and T. Shibayamagi: Material flow during friction stir spot welding of dissimilar Al2024/Al materials, Materials Science and Technology, 31-9(2015), 1077-1087.
28) N. Tonomaga, A. Takano, S. Kawashima, T. Yamane and T. Shibayamagi: Material flow promoting effect of the friction stir welding by double spiral tool, Quarterly Journal of The Japan Welding Society, 38-1(2020), 34-40. (in Japanese)