Corneal confocal microscopy for the diagnosis of diabetic peripheral neuropathy: A systematic review and meta-analysis

Hoda Gad1, Ioannis N Petropoulos1, Adnan Khan1, Georgios Ponirakis1, Ross MacDonald2, Uazman Alam3,4,5, Rayaz A Malik1,6,*

1Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar, 2Library Services, Weill Cornell Medicine-Qatar, Doha, Qatar, 3Diabetes and Neuropathy Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, UK, 4Department of Diabetes and Endocrinology, Royal Liverpool and Broadgreen University NHS Hospital Trust, Liverpool, UK, 5Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, UK, and 6Institute of Cardiovascular Medicine, University of Manchester, Manchester, UK

Keywords
CCM, Diabetic peripheral neuropathy, Diagnosis

*Correspondence
Rayaz A Malik
Tel: +974 44928256
Fax: +974 7004243
E-mail address: ram2045@qatar-med.cornell.edu

J Diabetes Investig 2022; 13: 134–147
doi: 10.1111/jdi.13643

ABSTRACT

Introduction: Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic imaging technique that identifies corneal nerve fiber damage. Small studies suggest that CCM could be used to assess patients with diabetic peripheral neuropathy (DPN).

Aim: To undertake a systematic review and meta-analysis assessing the diagnostic utility of CCM for sub-clinical DPN (DPN−) and established DPN (DPN+).

Data sources: Databases (PubMed, Embase, Central, ProQuest) were searched for studies using CCM in patients with diabetes up to April 2020.

Study selection: Studies were included if they reported on at least one CCM parameter in patients with diabetes.

Data extraction: Corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), corneal nerve fiber length (CNFL), and inferior whorl length (IWL) were compared between patients with diabetes with and without DPN and controls. Meta-analysis was undertaken using RevMan V.5.3.

Data synthesis: Thirty-eight studies including ~4,000 participants were included in this meta-analysis. There were significant reductions in CNFD, CNBD, CNFL, and IWL in DPN− vs controls (P < 0.00001), DPN+ vs controls (P < 0.00001), and DPN+ vs DPN− (P < 0.00001).

Conclusion: This systematic review and meta-analysis shows that CCM detects small nerve fiber loss in subclinical and clinical DPN and concludes that CCM has good diagnostic utility in DPN.

INTRODUCTION

Diabetic peripheral neuropathy (DPN) affects ~50% of patients with diabetes and leads to significant morbidity including neuropathic pain, erectile dysfunction, and foot ulceration1. Currently, the diagnosis of DPN in clinic relies on symptoms, loss of sensation to the 10 g monofilament, neurological examination, and occasionally electrophysiology2. However, these methods do not reliably detect small nerve fiber damage which occurs in early DPN3.

In 2003, we showed that the ophthalmic technique of corneal confocal microscopy (CCM) can identify corneal small nerve fiber loss in patients with early and established DPN4. Subsequently, we and others demonstrated good diagnostic utility for DPN5,7, comparable to intra-epidermal nerve fiber density (IENFD)5,9. CCM also predicts incident DPN8,10 and identifies individuals at higher risk of developing DPN11. However, some studies have failed to demonstrate corneal nerve fiber loss in patients with and without DPN12,13, which has been attributed to a small sample size12 and variances in image acquisition and analysis protocols13.

We have undertaken a systematic review and meta-analysis to generate a definitive single estimate for the diagnostic utility of CCM in sub-clinical and clinical DPN.
METHODS
Data sources and searches
This systematic review and meta-analysis is reported in accordance with MOOSE guidelines\textsuperscript{15}. The protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on November 2020 (CRD42018093498). Four databases were chosen to search for this systematic review: PubMed, EMBASE (Ovid), CENTRAL, and web of science (WoS)- (1900-present). In the PubMed and CENTRAL database both Mesh subject headings and keywords were searched; in Embase-(1988-present) Emtree subject headings and keywords were utilized. Numerous terms were tested for relevancy and the final search strings for the three databases can be found in Table S1 in the supplement. Article language was limited to English and no date restrictions were set. A segment of the grey literature was searched through the use of dissertation and theses (ProQuest) and Clinicaltrials.gov. The databases were searched from inception to April 2020.

We included observational studies that reported on at least one of the following CCM parameters: corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), corneal nerve fiber length (CNFL), or inferior whorl length (IWL) in any of the following three groups: patients with type 1 and/or type 2 diabetes with diabetic peripheral neuropathy (DPN\textsuperscript{+}), without diabetic peripheral neuropathy (DPN\textsuperscript{−}), and controls. Cross-sectional and longitudinal observational studies were included in this systematic review and meta-analysis. Narrative reviews, systematic reviews, correspondence, and case reports were excluded. Study country, age, diagnosis (DPN\textsuperscript{+}, DPN\textsuperscript{−}, control), duration of diabetes, HbA1c, software used for image analysis, CNFD, CNBD, CNFL, and IWL were extracted when available. Studies using CCMetrics, ACCMetrics, ImageJ, and other morphometric software to quantify CNFD, CNBD, and CNFL were included. IWL was quantified using CCMetrics and ACCMetrics only. Data presented as median (IQR) were converted into mean ± SD using an online calculator and data presented as mean ± SEM were converted into mean ± SD using the RevMan calculator\textsuperscript{16}. HbA1c presented in (%) was also converted into (mmol/mol) using the NGSP calculator, where NGSP % must be between 3 and 20\textsuperscript{17}. Original studies that staged DPN as per the diabetic neuropathy study group in Japan (DNSGJ) were classified as: DPN\textsuperscript{−} for stage I, DPN\textsuperscript{+} for stages II–V, for meta-analysis reporting purpose\textsuperscript{18,19}. Stage I was reported as DPN\textsuperscript{−} and stages II–III were reported as DPN\textsuperscript{+} in this study\textsuperscript{20}. Patients classified according to the modified neuropathy disability score (NDS) were grouped as: scores between 0–2 (DPN\textsuperscript{−}) and 3–10 (DPN\textsuperscript{+})\textsuperscript{21,22}. No neuropathy was classified as DPN\textsuperscript{−} and mild-severe neuropathy was classified as DPN\textsuperscript{+}\textsuperscript{23–26}. No differentiation was made for either painful or painless DPN and both were classified as DPN\textsuperscript{+}\textsuperscript{27,28}. Where the vibration perception threshold (VPT) was used, <15V was classified as DPN\textsuperscript{−} and ≥15V as DPN\textsuperscript{+}\textsuperscript{29}. Study selection
After the removal of duplicates, all citations were screened for relevance using the full citation, abstract, and indexing terms, before excluding studies deemed as irrelevant. Where there was a lack of consensus a third (senior) author was consulted. Duplicates were removed and the most recent and complete versions of the studies were reviewed for eligibility. Relevant studies were assessed by two reviewers (HG and INP) to assess eligibility according to the pre-specified inclusion and exclusion criteria. Full manuscripts of these potentially eligible citations were obtained. Two reviewers made the final inclusion and exclusion decisions independently and in the case of disagreement, a third reviewer was consulted to resolve any conflicts. A flow chart of search results was produced (Figure S1). A data collection tool was developed to extract the data from each study. Data verification was undertaken by two reviewers (HG and INP). In the event of missing data, the authors were emailed to obtain unpublished data.

Data extraction and quality assessment
The included studies were assessed using the Cochrane Collaborations tool for assessing the risk of bias (section 8.5)\textsuperscript{29}. The tool categorizes the risk of bias into high, moderate, low, or unclear risk. This tool assessed six domains: selection bias, performance bias, detection bias, attrition bias, reporting bias, and other bias, where applicable. Quality assessment was undertaken by two reviewers (AK and GP). If the risk of bias of a study was unclear, the effect of removing the study was checked and relevant outcomes were reported (Table S2).

Data synthesis and analysis
Meta-analysis was performed in RevMan (version 5.3)\textsuperscript{30}. Random effects meta-analysis was used in anticipation of heterogeneity due to differences in study population and type and duration of diabetes. The mean difference (MD) with a 95% confidence interval (CI) was calculated for CNFD, CNBD, CNFL, and IWL. The Chi-squared (χ\textsuperscript{2}) test was used to test for difference between subgroups. The I\textsuperscript{2} statistic was calculated, which is derived from Cochrane’s chi-squared test and is used to describe the percentage of between-study variations attributed to variability in the true exposure effect\textsuperscript{29}. An I\textsuperscript{2} value of 0–40% was classified as not important, 30–60% moderate, 50–90% substantial, and 75–100% considerable\textsuperscript{29}.

RESULTS
The search strategy identified 1,310 records (Figure S1). In total, 557 papers were screened on the basis of titles and abstracts, of which 508 were excluded, leaving 49 full text papers of which 38 were included in the meta-analysis.

Study characteristics
The studies were conducted in Canada\textsuperscript{10,26,31–33}, United Kingdom\textsuperscript{4,8,9,21,24,25,28,34–42}, Germany\textsuperscript{27}, Denmark\textsuperscript{12}, Australia\textsuperscript{43–49}, Japan\textsuperscript{18,19,22,50}, and China\textsuperscript{23,51} (Table 1).
| Study | Country | Group | n | Age (years) | Duration of diabetes (years) | HbA1c% – mmol/mol | CCM Type | Software for image analysis | Assessment with CCM |
|-------|---------|-------|---|-------------|-------------------------------|-------------------|----------|-----------------------------|----------------------|
|       |         |       |   |             |                               |                   |          |                             | CNFD CNBD CNFL IWL |
| Ahmed et al.\(^2\) | Canada | DPN+ | 33 | 50 ± 14.3 | 31.4 ± 13.5 | 8.7 ± 2.1–72 | HRT-II | CCMetrics | √√√ |
|       |         | DPN− | 56 | 34.9 ± 14.8 | 17.6 ± 14 | 7.4 ± 1.3–57 |
|       |         | Control | 64 | 38.9 ± 17.6 | N/A | NS |
|       |         |       |   |             |                               |                   |          |                             |                       |
| Ostrovski et al.\(^3\) | Canada | DPN+ | 13 | 56.2 ± 8.7 | 34.8 ± 13 | 8.5 ± 2.2–69 | HRT-III | CCMetrics | √√√ |
|       |         | DPN− | 13 | 30.3 ± 13.7 | 10.7 ± 6.2 | 7.5 ± 1.3–58 |
|       |         | Control | 20 | 41.3 ± 17.3 | N/A | 55 ± 0.4–37 |
|       |         |       |   |             |                               |                   |          |                             |                       |
| Lovblom et al.\(^10\) | Canada | DPN+ | 11 | 38 ± 16 | 21 ± 9 | 8.1 ± 1.6–65 | HRT-III | CCMetrics | √√√ |
|       |         | DPN− | 54 | 34 ± 15 | 17 ± 12 | 7.6 ± 1.3–60 |
|       |         | Control | 63 | 32.7 ± 13.6 | 17.3 ± 12.2 | 7.5 ± 1.2–58 |
|       |         |       |   |             |                               |                   |          |                             |                       |
| Sivaskandarajah et al.\(^33\) | Canada | DPN+ | 33 | 48.5 ± 13.7 | 32.3 ± 13.1 | 8.4 ± 1.6–68 | HRT-III | CCMetrics | √√√ |
|       |         | DPN− | 63 | 32.7 ± 13.6 | 17.3 ± 12.2 | 7.5 ± 1.2–58 |
|       |         | Control | 64 | 38.3 ± 16.4 | N/A | 56 ± 0.4–38 |
|       |         |       |   |             |                               |                   |          |                             |                       |
| Hertz et al.\(^26\) | Canada | DPN+ | 14 | NS | 46 ± 13.9 | 83 ± 1.3 | HRT-III | CCMetrics | √√√ |
|       |         | DPN− | 12 | NS | 46 ± 13.9 | 83 ± 1.3 |
|       |         | Control | 20 | 41.4 ± 17.3 | N/A | 55 ± 0.4–37 |
|       |         |       |   |             |                               |                   |          |                             |                       |
| Alam et al.\(^9\) | UK | DPN+ | 31 | 53.3 ± 11.9 | 37.2 ± 13.1 | 8.5 ± 1.5–69 | HRT-III | CCMetrics | √√√ |
|       |         | DPN− | 30 | 38.8 ± 12.5 | 17.2 ± 12 | 8 ± 1.3–64 |
|       |         | Control | 27 | 41 ± 14.9 | N/A | 55 ± 0.3 |
|       |         |       |   |             |                               |                   |          |                             |                       |
| Azmi et al.\(^34\) | UK | DPN+ | 29 | 61.9 ± 12.3 | 46 ± 13.9 | 83 ± 1.3 | HRT-III | CCMetrics | √√√ |
|       |         | DPN− | 32 | 47.7 ± 1.6 | 57 ± 0.6 |
|       |         | Control | 32 | 47.7 ± 1.6 | N/A | 57 ± 0.6 |
|       |         |       |   |             |                               |                   |          |                             |                       |
| Chen et al.\(^35\) | UK | DPN+ | 29 | 63 ± 12 | 19.9 ± 11.7 | 86 ± 3.6–70.4 | HRT-III | CCMetrics | √√√ |
|       |         | DPN− | 63 | 44 ± 15 | 20 ± 11.1 | 8 ± 4.1–63.9 |
|       |         | Control | 84 | 46 ± 15 | N/A | 56–374 ± 35 |
|       |         |       |   |             |                               |                   |          |                             |                       |
| Brines et al.\(^21\) | UK | DPN+ | 60 | 35.3 ± 14.3 | 35.3 ± 14.3 | 8.2 ± 1.3–66 | HRT-III | ACCMetrics | √√√ |
|       |         | DPN− | 21 | 37.1 ± 16.5 | 17.9 ± 15.1 | 7.9 ± 1.3–63 |
|       |         | Control | 48 | 46.2 ± 16.9 | N/A | 5.7 ± 0.3–39 |
|       |         |       |   |             |                               |                   |          |                             |                       |
| Petropoulos et al.\(^36\) | UK | DPN+ | 25 | 60.1 ± 10.2 | 24.8 ± 19.5 | 7.6 ± 1.5–60 | HRT-III | CCMetrics | √√√ |
|       |         | DPN− | 28 | 42.4 ± 14.7 | 16.2 ± 9.3 | NS |
|       |         | Control | 15 | NS | N/A | 54 ± 0.5–36 |
|       |         |       |   |             |                               |                   |          |                             |                       |
| Chen et al.\(^8\) | UK | DPN+ | 17 | 59 ± 11 | 39 ± 14 | 8.5 ± 1.3–69 | HRT-III | CCMetrics | √√√ |
|       |         | DPN− | 17 | 44 ± 13 | 23 ± 15 | 8.2 ± 1.4–66 |
|       |         | Control | 26 | 44 ± 15 | N/A | 55 ± 0.3–37 |
|       |         |       |   |             |                               |                   |          |                             |                       |
| Petropoulos et al.\(^37\) | UK | DPN+ | 61 | 56.5 ± 13.2 | 35.33 ± 14.3 | 84 ± 1.8–68 | HRT-III | CCMetrics | √√√ |
|       |         | DPN− | 50 | 44.2 ± 15.6 | 23 ± 14 | 7.9 ± 1.7–63 |
|       |         | Control | 47 | 52 ± 13.2 | N/A | 56 ± 0.3–38 |
|       |         |       |   |             |                               |                   |          |                             |                       |
| Petropoulos et al.\(^38\) | UK | DPN+ | 100 | NS | 34.4 ± 17.3 | 7.9 ± 1.6–63 | HRT-III | CCMetrics | √√√ |
|       |         | DPN− | 86 | NS | 24.2 ± 21.2 | 7.7 ± 1.6–61 |
|       |         | Control | 55 | 51.7 ± 11.4 | N/A | 55 ± 0.3–37 |
|       |         |       |   |             |                               |                   |          |                             |                       |
| Ponirakis et al.\(^39\) | UK | DPN+ | 46 | 60.75 ± 8.9 | 36.5 ± 14.4 | 8.6 ± 0.4–70 | HRT-III | CCMetrics | √√√ |
|       |         | DPN− | 64 | 45.5 ± 14.4 | 22.25 ± 13 | 7.62 ± 0.48–60 |
| Study                  | Country | Group | n   | Age (years) | Duration of diabetes (years) | HbA1c% – mmol/mol | CCM Type         | Software for image analysis | Assessment with CCM |
|------------------------|---------|-------|-----|-------------|-----------------------------|-------------------|---------------------|---------------------------|-----------------|
|                        |         |       |     |             |                             |                   |                     |                           | CNFD CNBD CNFL IWL |
| Quattrini et al.²⁴     | UK      | DPN+  | 44  | 59.3 ± 17.25 |                             | 8.01 ± 232-64     | Confoscan-P4       | Morphometric software     | √√√             |
|                        |         | DPN-  | 10  | 43.5 ± 10.2  |                             | 7.16 ± 126-55     |                     |                           |                 |
|                        |         | Control | 15  | 55 ± 18.5    |                             | NS                 |                     |                           |                 |
| Tavakoli et al.²⁵      | UK      | DPN+  | 67  | 59 ± 18.2    | 17.8 ± 29.55                 | 8.2 ± 270-66      | Confoscan-P4       | Morphometric software     | √√√             |
|                        |         | DPN-  | 34  | 55 ± 11.1    | 10.7 ± 10.6                 | 8.1 ± 157-65      |                     |                           |                 |
|                        |         | Control | 17  | 55 ± 19.8    |                             | <6.5 < 48          |                     |                           |                 |
| Tavakoli et al.²⁵      | UK      | DPN+  | 96  | 59 ± 20      | 50 ± 20                      | 8.30 ± 30.14-67   | Confoscan-P4       | CCMetrics                 | √√√             |
|                        |         | DPN-  | 42  | 57 ± 13      | 57 ± 13                      | 7.88 ± 10.23-63   |                     |                           |                 |
|                        |         | Control | 26  | 53 ± 3       |                             | ~5.8-40           |                     |                           |                 |
| Kalteniece et al.²¹     | UK      | DPN+  | 69  | 62.08 ± 11.6 | 20.78 ± 17.8                 | 7.19 ± 10.16-55   | HRT-III           | CCMetrics                 | √√√             |
|                        |         | DPN-  | 47  | 46.9 ± 13.2  | 16.04 ± 12.2                 | 7.72 ± 2.06-61    |                     |                           |                 |
|                        |         | Control | 22  | 50.32 ± 13.7 |                             | 5.48 ± 0.04-36    |                     |                           |                 |
| Kalteniece et al.²⁸     | UK      | DPN+  | 140 | 65.09 ± 1.13 | 21.8 ± 2.05                  | 7.5 ± 0.17-58     | HRT-III           | CCMetrics                 | √√√             |
|                        |         | DPN-  | 22  | 61.2 ± 1.33  | 16.04 ± 12.2                 | 5.63 ± 0.06-38    |                     |                           |                 |
|                        |         | Control | 30  | 59.2 ± 0.99  |                             | 8.15 ± 13-66      |                     |                           |                 |
| Malik et al.³           | UK      | DPN+  | 4   | 53 ± 18.5    | 21.3 ± 3.6                   | 7.8 ± 0.68-62     | Confoscan-P4       | Morphometric software     | √√√             |
|                        |         | DPN-  | 14  | 57.8 ± 11.5  |                             | <6.5 < 48          |                     |                           |                 |
| Ponirakis et al.³²      | UK      | DPN+  | 33  | 64.1 ± 1.79  | 37.6 ± 3.2                   | 7.9 ± 0.26-63     | HRT-III           | ACCMetrics                 | √                 |
|                        |         | DPN-  | 41  | 44.3 ± 2.19  | 23.3 ± 2.03                  | 7.5 ± 0.18-58     |                     |                           |                 |
|                        |         | Control | 70  | 41.8 ± 1.63  |                             | 5.29 ± 0.12-34    |                     |                           |                 |
| Puttgen et al.²⁷        | Germany | DPN+  | 116 | 67.3 ± 9     | 17.6 ± 13                    | 7.41 ± 13-57      | HRT-III           | CCMetrics                 | √√√             |
|                        |         | DPN-  | 46  | 66 ± 5.2     |                             | 5.44 ± 0.23-36    |                     |                           |                 |
|                        |         | Control | 27  | 71.4 ± 3.1   |                             | 6.95 ± 0.48-52    |                     |                           |                 |
| Andersen et al.¹²       | Denmark | DPN+  | 117 | 69.7 ± 2.7   | 11.67 ± 1.12                 | 6.6 ± 0.33-49     | HRT-III           | ACCMetrics                 | √√√             |
|                        |         | DPN-  | 25  | 71.2 ± 0.69  |                             | 5.5 ± 0.22-37     |                     |                           |                 |
| Tummanapalli et al.³⁴   | Australia| DPN+  | 28  | NS           |                             | 8.45 ± 05-69      | HRT-III           | ACCMetrics                 | √√√             |
|                        |         | DPN-  | 35  | NS           |                             | 7.59 ± 0.6-59     |                     |                           |                 |
|                        |         | Control | 34  | NS           |                             |                   |                     |                           |                 |
| Dehghani et al.³⁶       | Australia| DPN+  | 13  | NS           |                             | 8.89 ± 19-74      | HRT-III           | ACCMetrics                 | √√√             |
|                        |         | DPN-  | 20  | NS           |                             | 7.83 ± 102-62     |                     |                           |                 |
|                        |         | Control | 17  | NS           |                             | 8 ± 2-64          |                     |                           |                 |
| Tummanapalli et al.³⁷   | Australia| DPN+  | 23  | 47 ± 15      | 22 ± 13                      | 8 ± 14-64         | HRT-III           | ACCMetrics                 | √√√             |
|                        |         | DPN-  | 27  | 32 ± 10      | 15 ± 9                       | 8 ± 2-64          |                     |                           |                 |
|                        |         | Control | 29  | 37 ± 11      |                             | 8 ± 2-64          |                     |                           |                 |
| Tummanapalli et al.³³   | Australia| DPN+  | 35  | 51 ± 95      |                             | 8 ± 14-64         | HRT-III           | CCMetrics                 | √√√             |
|                        |         | DPN-  | 35  | 44.5 ± 11    |                             | 8 ± 2-64          |                     |                           |                 |
|                        |         | Control | 80  | 37.0 ± 17.8  |                             | 8 ± 2-64          |                     |                           |                 |
| Pritchard et al.³⁵      | Australia| DPN+  | 25  | NS           |                             | 8 ± 14-64         | HRT-III           | CCMetrics                 | √√√             |
|                        |         | DPN-  | 82  | NS           |                             | 8 ± 2-64          |                     |                           |                 |
|                        |         | Control | 80  | NS           |                             | 8 ± 2-64          |                     |                           |                 |
| Study                        | Country | Group   | n    | Age (years) | Duration of diabetes (years) | HbA1c% – mmol/mol | CCM Type | Software for image analysis | Assessment with CCM |
|-----------------------------|---------|---------|------|-------------|-----------------------------|-------------------|----------|-----------------------------|---------------------|
| Edwards et al.              | Australia | DPN+    | 88   | 58 ± 9      | 23 ± 14                     | 8.2 ± 1.7–66      | HRT-III  | CCMetrics                   | √                   |
|                             |         | DPN−    | 143  | 48 ± 16     | 14 ± 12                     | 7.8 ± 1.2–62      |          |                             |                     |
|                             |         | Control | 61   | 52 ± 14     | N/A                         | 5.4 ± 0.3–36      |          |                             |                     |
|                             |         | DPN+    | 39   | NS          | NS                          | NS                | HRT-III  | ACCMetrics                  | √                   |
|                             |         | DPN−    | 108  | NS          | NS                          | NS                |          |                             |                     |
|                             |         | Control | 60   | NS          | N/A                         | N/A               |          |                             |                     |
| Dehghani et al.             | Australia | DPN+    | 55   | 56.4 ± 14.1 | 96 ± 16.3                   | 8.03 ± 30–64      | HRT-III  | ImageJ                      | √                   |
|                             |         | DPN−    | 23   | 48.1 ± 10.6 | 58 ± 58                     | 7.7 ± 2.1–61      |          |                             |                     |
|                             |         | Control | 28   | 50.2 ± 7.41 | N/A                         | 5.6 ± 0.26–38     |          |                             |                     |
| Ishibashi et al.            | Japan    | DPN+    | 153  | 56.03 ± 10.3 | 12.4 ± 8.2                   | 8.3 ± 3.5–67      | HRT-III  | ImageJ                      | √                   |
|                             |         | DPN−    | 47   | 53.4 ± 7.54 | 10.5 ± 14.8                  | 7.3 ± 1.4–56      |          |                             |                     |
|                             |         | Control | 40   | 53.6 ± 12.6 | N/A                         | 5.7 ± 0.32–39     |          |                             |                     |
| Ishibashi et al.            | Japan    | DPN+    | 115  | 54.4 ± 19.1 | 79 ± 11.4                   | 9.06 ± 44–76      | HRT-III  | ImageJ                      | √                   |
|                             |         | DPN−    | 47   | 52.4 ± 9.6  | 5 ± 45                       | 8.5 ± 1.4–69      |          |                             |                     |
|                             |         | Control | 45   | 52.8 ± 4.7  | N/A                         | 5.5 ± 0.03–37     |          |                             |                     |
| Ishibashi et al.            | Japan    | DPN+    | 18   | 59.4 ± 8.1  | 13.6 ± 10.6                  | 9 ± 1.74–75       | HRT-III  | ImageJ                      | √                   |
|                             |         | DPN−    | 57   | 54.4 ± 12.1 | 6.7 ± 6.34                   | 9.1 ± 2.4–76      |          |                             |                     |
|                             |         | Control | 42   | 53.1 ± 11.7 | N/A                         | 5.7 ± 0.4–39      |          |                             |                     |
| Li et al.                   | China    | DPN+    | 79   | 70.15 ± 7.34 | 12.58 ± 7.28                   | 7.94 ± 186–63     | HRT-II   | CCMetrics                   | √                   |
|                             |         | DPN−    | 49   | 67.12 ± 6.01 | 9.79 ± 7.09                   | 7.07 ± 0.96–54    |          | ACCMetrics                  | √                   |
|                             |         | Control | 24   | 68.3 ± 5.19 | N/A                         | 5.88 ± 0.82–41    |          |                             |                     |
| Xiong et al.                | China    | DPN+    | 79   | 70.3 ± 10   | 12.57 ± 10.2                  | 7.95 ± 34–63      | HRT-II   | ImageJ                      | √                   |
|                             |         | DPN−    | 49   | 67.12 ± 6.13 | 9.79 ± 7.14                   | 7.07 ± 1.68–54    |          |                             |                     |
|                             |         | Control | 24   | 68.63 ± 5.2 | N/A                         | 5.88 ± 0.83–41    |          |                             |                     |
| Pritchard et al.            | Australia, Canada, UK | DPN+    | 16   | 51 ± 14     | 29 ± 16                      | 8 ± 1.1–64        | HRT-III  | CCMetrics                   | √                   |
|                             |         | DPN−    | 74   | 42 ± 16     | 15 ± 12                      | 7.9 ± 1.2–63      |          |                             |                     |
|                             |         | Control | 60   | 46 ± 15     | N/A                         | 5.5 ± 0.3–37      |          |                             |                     |
| Pritchard et al.            | Australia, UK | DPN+    | 48   | 57 ± 11     | 34 ± 16                      | 8.6 ± 1.8–70      | HRT-III  | CCMetrics                   | √                   |
|                             |         | DPN−    | 100  | 43 ± 16     | 20 ± 15                      | 8 ± 1.2–64        |          |                             |                     |
|                             |         | Control | 60   | 46 ± 15     | N/A                         | 5.5 ± 0.3–37      |          |                             |                     |

Data are presented as mean ± SD. CNFD, corneal nerve fiber density; CNBD, corneal nerve branch density; CNFL, corneal nerve fiber length; IMWL, inferior whorl length; NS, not stated; N/A, not applicable.
Figure 1 | (a) Forest plots of corneal nerve fiber density (CNFD) in patients with diabetic peripheral neuropathy (DPN+ and without diabetic peripheral neuropathy (DPN−) and healthy control. (c) Forest plots of corneal nerve fiber density (CNFD) in patients without diabetic peripheral neuropathy (DPN− and healthy control.

**Corneal nerve fiber density**

**DPN+ vs DPN−**

Twenty-nine studies with 3,214 (1,677 DPN+ and 1,537 DPN−) participants were included in the meta-analysis. The CNFD (fiber/mm²) was significantly lower in the DPN+ group compared with the DPN− group (MD = −7.01, 95% CI −7.45 to 6.57, P < 0.00001) (CCMetrics (MD = −6.83, 95% CI −7.82 to −5.84, P < 0.00001), ACCMetrics (MD = −7.77, 95% CI −8.32 to −7.22, P < 0.00001), ImageJ (MD = −3.48, 95% CI −4.64 to −2.33, P < 0.00001), and morphometric software (MD = −11.40, 95% CI −15.42 to −7.38, P < 0.00001)). There was a significant difference in the magnitude of the CNFD reduction in the DPN+ group between studies ($\chi^2 = 19.32, P = 0.0002$) (Figure 1a).

**DPN− vs control**

Twenty-nine studies with 3,377 (1,994 DPN− and 1,383 control) participants were included in the meta-analysis. The CNFD (fiber/mm²) was significantly lower in the DPN− group compared with the controls (MD = −11.94, 95% CI −12.25 to −11.62, $P < 0.00001$) (CCMetrics (MD = −10.83, 95% CI −11.26 to −10.40, P < 0.00001), ACCMetrics (MD = −13.75, 95% CI −14.26 to −13.25, P < 0.00001), ImageJ (MD = −8.98, 95% CI −10.40 to −7.55, P < 0.00001), and morphometric software (MD = −22.26, 95% CI −27.67 to −16.85, P < 0.00001)). There was a significant difference in the magnitude of the CNFD reduction in the DPN− group between studies ($\chi^2 = 15.50, P = 0.001$) (Figure 1b).

**DPN+ vs control**

Twenty-seven studies with 3,035 (1,620 DPN+ and 1,415 control) participants were included in the meta-analysis. The CNFD (fiber/mm²) was significantly lower in the DPN+ group compared with the controls (MD = −5.85, 95% CI −6.12 to −5.57, P < 0.00001) (CCMetrics (MD = −5.76, 95% CI −6.15 to −5.37, P < 0.00001), ACCMetrics (MD = −5.91, 95% CI −6.32 to −5.50, P < 0.00001), ImageJ (MD = −5.89, 95% CI −7.13 to −4.65, P < 0.00001), and morphometric software (MD = −11.07, 95% CI −16.34 to −5.80, P < 0.00001)). There was no significant difference in the magnitude of the CNFD reduction in the DPN+ group between studies ($\chi^2 = 4.01, P = 0.26$) (Figure 1c).

**Conneural nerve branch density**

**DPN+ vs DPN−**

Thirty studies with 3,552 (1,763 DPN+ and 1,789 DPN−) participants were included in the meta-analysis. The CNBD (branch/mm²) was significantly lower in the DPN+ group compared with the DPN− group (MD = −9.36, 95% CI −11.11 to −7.61, P < 0.00001) (CCMetrics (MD = −10.37, 95% CI −12.56 to −8.18, P < 0.0001), and ACCMetrics (MD = −8.20, 95% CI −10.20 to −6.20, P < 0.00001). There was a significant difference in the extent of the CNBD reduction in the DPN+ group between studies ($\chi^2 = 30.97, P < 0.00001$), (Figure 2a).

**DPN− vs control**

Thirty studies with 3,460 (2,072 DPN− and 1,388 control) participants were included in the meta-analysis. The CNBD (branch/mm²) was significantly lower in the DPN− group compared with the controls (MD = −11.00, 95% CI −11.65 to −10.35, P < 0.00001) (CCMetrics (MD = −20.87, 95% CI −22.05 to −19.68, P < 0.00001), ACCMetrics (MD = −7.34, 95% CI −8.35 to −6.32, P < 0.00001), ImageJ (MD = −4.79, 95% CI −6.65 to −3.33, P < 0.0001), and morphometric software (MD = −21.81, 95% CI −26.61 to −17.01, P = 0.0003). There was a significant difference in the magnitude of the CNBD reduction in the DPN− group between studies ($\chi^2 = 30.98, P < 0.00001$) (Figure 2b).

**Conneural nerve branch length**

**DPN+ vs DPN−**

Thirty-four studies with 3,868 (1,855 DPN+ and 2,013 DPN−) participants were included in the meta-analysis. The CNFL (mm/mm²) was significantly lower in the DPN+ group compared with the DPN− group (MD = −3.08, 95% CI −3.58 to −2.58, P < 0.00001) (CCMetrics (MD = −3.74, 95% CI −4.49 to −2.99,
Figure 2 | (a) Forest plots of corneal nerve branch density (CNBD) in patients with diabetic peripheral neuropathy (DPN+) and without diabetic peripheral neuropathy (DPN−) and healthy control. (b) Forest plots of corneal nerve branch density (CNBD) in patients with diabetic peripheral neuropathy (DPN+) and healthy control. (c) Forest plots of corneal nerve branch density (CNBD) in patients without diabetic peripheral neuropathy (DPN−) and healthy control.

P < 0.00001), ACCMetrics (MD = −2.80, 95% CI −3.57 to −2.04, P < 0.00001), ImageJ (MD = −1.57, 95% CI −2.06 to −1.09, P < 0.00001), and morphometric software (MD = −3.49, 95% CI −5.63 to −1.35, P = 0.001). There was a significant difference in the magnitude of the CNFL reduction in the DPN+ group between studies (χ² = 25.42, P < 0.00001) (Figure 3a).

**DPN+ vs control**

Thirty-two studies4,8,9,12,18,19,21–26,28,31–35,37,38,40,41,43–47,50–52 with 3,459 (2,036 DPN+ and 1,423 control) participants were included in the meta-analysis. The CNFL (mm/mm²) was significantly lower in the DPN+ group compared with the controls (MD = −6.05, 95% CI −6.77 to −5.34, P < 0.00001) (CCMetrics (MD = −6.91, 95% CI −8.06 to −5.76, P < 0.00001), ACCMetrics (MD = −5.49, 95% CI −7.03 to −3.95, P < 0.00001), ImageJ (MD = −4.14, 95% CI −4.72 to −3.56, P < 0.00001), and morphometric software (MD = −6.07, 95% CI −8.64 to −3.50, P < 0.00001). There was a significant difference in the magnitude of CNFL reduction between studies (χ² = 19.59, P = 0.0002) (Figure 3b).

**DPN+ vs control**

Thirty-two studies4,8,9,12,18,19,21–26,28,31–35,37,38,40,41,43–47,50–52 with 3,149 (1,786 DPN+ and 1,363 control) participants were included in the meta-analysis. The CNFL (mm/mm²) was significantly lower in the DPN+ group compared with the controls (MD = −2.87, 95% CI −3.34, −2.40, P < 0.00001) (CCMetrics (MD = −3.12, 95% CI −4.06 to −2.19, P < 0.00001), ACCMetrics (MD = −2.63, 95% CI −3.43 to −1.83, P < 0.00001), ImageJ (MD = −2.78, 95% CI −3.35 to −2.22, P < 0.00001), and morphometric software (MD = −2.68, 95% CI −3.48 to −1.88, P < 0.00001). There was no difference in the magnitude of the CNFL reduction in the DPN+ group between studies (χ² = 0.72, P = 0.87), (Figure 3c).

**Inferior whorl length**

**DPN+ vs DPN−**

Six studies4,8,41,43,44,48 with 459 (205 DPN+ and 254 DPN−) participants were included in the meta-analysis. The IWL (mm/mm²) was significantly lower in the DPN+ group compared with the DPN− group (MD = −4.11, 95% CI −5.10 to −3.12, P < 0.00001) (CCMetrics (MD = −3.42, 95% CI −5.47 to −1.36, P = 0.001), and ACCMetrics (MD = −4.40, 95% CI −5.53 to −3.28, P < 0.00001). There was no significant difference in the magnitude of the CNFL reduction in the DPN+ group between studies (χ² = 0.68, P = 0.41), (Figure 4a).

**DPN+ vs control**

Six studies4,8,28,41,43,44,48 with 520 (310 DPN+ and 210 control) participants were included in the meta-analysis. The IWL (mm/mm²) was significantly lower in the DPN+ group compared with the controls (MD = −10.36, 95% CI −13.30 to −7.42, P < 0.00001) (CCMetrics (MD = −11.62, 95% CI −15.97 to −7.28, P < 0.00001), and ACCMetrics (MD = −8.32, 95% CI −9.40 to −7.24, P < 0.00001)). There was no significant difference in the extent of the IWL reduction in the DPN+ group between studies (χ² = 2.08, P = 0.15), (Figure 4b).

**DPN− vs control**

Five studies8,41,43,44,48 with 399 (219 DPN− and 180 control) participants were included in the meta-analysis. The IWL (mm/mm²) was significantly lower in the DPN− group compared with the controls (MD = −3.81, 95% CI −4.56 to −3.06, P < 0.00001) (CCMetrics (MD = −4.43, 95% CI −5.56 t0 −3.29, P = 0.003), and ACCMetrics (MD = −3.34, 95% CI −4.33 to −2.34, P < 0.00001). There was no significant difference in the extent of IWL reduction in the DPN− group between studies (χ² = 2.11, P = 0.15), (Figure 4c).

**DISCUSSION**

In this large systematic review and meta-analysis of over 3,000 participants, CCM demonstrated a consistent reduction in four major corneal nerve parameters in patients with DPN compared with healthy controls and those without DPN. Furthermore, we demonstrate a lesser but significant reduction in all corneal nerve parameters in patients without DPN compared with controls, suggesting that CCM detects early sub-clinical DPN. This is consistent with the demonstration of corneal nerve loss in subjects with impaired glucose tolerance, recently diagnosed type 2 diabetes and children with type 1 diabetes. The greater corneal nerve loss in patients with DPN compared with those without DPN is consistent with studies showing that corneal nerve loss is associated with the severity of DPN, and has good sensitivity and specificity for diagnosing DPN-. Both CNFD and IENFD have a comparable diagnostic performance for DPN, although in a study of patients with recently diagnosed type 2 diabetes there were differences in the extent of small nerve fiber damage between CCM and skin biopsy. Additionally, a reduction in corneal nerve parameters is associated with incident DPN, and greater corneal nerve loss occurs in patients with painful diabetic neuropathy. CCM could act as a biomarker as defined by the NIH Biomarkers...
Definitions Working Group; it is non-invasive, easily measured, and produces rapid results with high sensitivity. It allows the detection of subclinical DPN, and there is minimal overlap in corneal nerve parameters between patients with and without DPN and healthy people. In addition, CCM identifies those at risk of developing DPN.

The outcomes of the current review extend considerably the findings of a previous systematic review and meta-analysis showing a reduction in CNFD, CNBD, and CNFL in patients with and without DPN compared with controls from 13 studies with 1,680 participants and a more recent trial sequential meta-analysis which showed a reduction in CNFD, CNBD, and CNFL in patients with and without DPN compared with controls in 13 studies with 1,830 participants.

In the present review we have included IWL which has the potential to detect earlier nerve damage, especially in patients with painful diabetic neuropathy.

The reliability of establishing a single estimate for the effect size of corneal nerve outcome measures from all the published studies may be affected by the inclusion of the same subjects from several studies, type of CCM used to acquire the images, the mode of image acquisition, and the image analysis tool used to quantify corneal nerve parameters. Our analysis showed that the type of software used for image analysis had no significant influence on the heterogeneity of corneal nerve outcomes. Whilst the corneal nerve measure was lower when using automated (ACCMetrics) compared with manual (CCMetrics, ImageJ) software, the magnitude of difference in corneal nerve parameters between groups was comparable.

Our sensitivity analysis shows no evidence of significant bias or heterogeneity (Doc S1). This was expected, given that there may be differences in corneal nerve parameters between patients with type 1 and type 2 diabetes and in relation to HbA1c and glycemic variability, presence of metabolic syndrome and hypertension or hyperlipidemia.

CONCLUSIONS

Corneal confocal microscopy is a rapid, non-invasive and reproducible imaging technique to quantify small nerve fiber damage. Our systematic review and meta-analysis provides robust evidence that corneal confocal
microscopy can be used to diagnose sub-clinical and established DPN.

ACKNOWLEDGMENTS
This work was supported by the Qatar Foundation through the Biomedical Research Program (BMRP-572613101) at Weill Cornell Medicine in Qatar.

Figure 4  (a) Forest plots of inferior whorl length (IWL) in patients with diabetic peripheral neuropathy (DPN+) and without diabetic peripheral neuropathy (DPN-). (b) Forest plots of inferior whorl length (IWL) in patients with diabetic peripheral neuropathy (DPN+) and healthy control. (c) Forest plots of inferior whorl length (IWL) in patients without diabetic peripheral neuropathy (DPN-) and healthy control.

DISCLOSURE
Approval of the research protocol: N/A.
Informed Consent: N/A.
Approval date of Registry and Registration No. of the study/trial: N/A.
Animal Studies: N/A.
REFERENCES

1. Pop-Busui R, Boulton AJ, Feldman EL, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care 2017; 40: 136–154.

2. Tesfaye S, Boulton AJ, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010; 33: 2285–2293.

3. Breiner A, Lovblom LE, Perkins BA, et al. Does the prevailing hypothesis that small-fiber dysfunction precedes large-fiber dysfunction apply to type 1 diabetic patients? Diabetes Care 2014; 37: 1418–1424.

4. Malik RA, Kallinikos P, Abbott CA, et al. Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia 2003; 46: 683–688.

5. Perkins BA, Lovblom LE, Bril V, et al. Corneal confocal microscopy for identification of diabetic sensorimotor polyneuropathy: a pooled multinational consortium study. Diabetologia 2018; 61: 1856–1861.

6. Ferdousi M, Kalteniece A, Azmi S, et al. Corneal confocal microscopy compared with quantitative sensory testing and nerve conduction for diagnosing and stratifying the severity of diabetic peripheral neuropathy. BMJ Open Diabetes Res Care 2020; 8: e001801.

7. Ferdousi M, Kalteniece A, Azmi S, et al. Diagnosis of neuropathy and risk factors for corneal nerve loss in type 1 and type 2 diabetes: a corneal confocal microscopy study. Diabetes Care 2021; 44: 150–156.

8. Chen X, Graham J, Dabbah MA, et al. Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care 2015; 38: 1138–1144.

9. Alam U, Jeziorska M, Petropoulos IN, et al. Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy. PLoS One 2017; 12: e0180175.

10. Lovblom LE, Haipern EM, Wu T, et al. In vivo corneal confocal microscopy and prediction of future-incident neuropathy in type 1 diabetes: a preliminary longitudinal analysis. Can J Diabetes 2015; 39: 390–397.

11. Lewis EJH, Lovblom LE, Ferdousi M, et al. Rapid corneal nerve fiber loss: a marker of diabetic neuropathy onset and progression. Diabetes Care 2020; 43: 1829–1835.

12. Andersen ST, Grosen K, Tankisi H, et al. Corneal confocal microscopy as a tool for detecting diabetic polyneuropathy in a cohort with screen-detected type 2 diabetes: ADDITION-Denmark. J Diabetes Complicat 2018; 32: 1153–1159.

13. Stem MS, Hussain M, Lentz SJ, et al. Differential reduction in corneal nerve fiber length in patients with type 1 or type 2 diabetes mellitus. J Diabetes Complicat 2014; 28: 658–661.

14. Haque F, Reaz MB, Ali SHM, et al. Performance analysis of noninvasive electrophysiological methods for the assessment of diabetic sensorimotor polyneuropathy in clinical research: a systematic review and meta-analysis with trial sequential analysis. Sci Rep 2020; 10: 21770.

15. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 2000; 283: 208–2012.

16. Amy D, Elaine BR. Calculator. Available from: https://training.cochrane.org/resource/revman-calculator Accessed April 2, 2021.

17. NGSP T, Convert between NGSP, IFCC and eAG 2010. Available from: http://www.ngsp.org/convert1.asp. Accessed April 2, 2021.

18. Ishibashi F, Kojima R, Kawasaki A, et al. Correlation between sudomotor function, sweat gland duct size and corneal nerve fiber pathology in patients with type 2 diabetes mellitus. J Diabetes Invest 2014; 5: 588–596.

19. Ishibashi F, Taniguchi M, Kojima R, et al. Morphological changes of the peripheral nerves evaluated by high-resolution ultrasonography are associated with the severity of diabetic neuropathy, but not corneal nerve fiber pathology in patients with type 2 diabetes. J Diabetes Investig 2015; 6: 334–342.

20. Ishibashi F, Kojima R, Taniguchi M, et al. The preferential impairment of pupil constriction stimulated by blue light in patients with type 2 diabetes without autonomic neuropathy. J Diabetes Res 2017; 2017: 6069730.

21. Brines M, Culver DA, Ferdousi M, et al. Corneal nerve fiber size adds utility to the diagnosis and assessment of therapeutic response in patients with small fiber neuropathy. Sci Rep 2018; 8: 4734.

22. Ishibashi F, Kojima R, Taniguchi M, et al. The expanded bead size of corneal c-nerve fibers visualized by corneal confocal microscopy is associated with slow conduction velocity of the peripheral nerves in patients with type 2 diabetes mellitus. J Diabetes Res 2016; 2016: 3653459.

23. Xiong Q, Lu B, Ye HY, et al. Corneal confocal microscopy as a non-invasive test to assess diabetic peripheral neuropathy. Diabetes Res Clin Pract 2018; 136: 85–92.

24. Quattrini C, Tavakoli M, Jeziorska M, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes 2007; 56: 2148–2154.

25. Tavakoli M, Boulton AJ, Efron N, et al. Increased Langerhan cell density and corneal nerve damage in diabetic patients: role of immune mechanisms in human diabetic neuropathy. Cont Lens Anterior Eye 2011; 34: 7–11.

26. Hertz P, Bril V, Orszag A, et al. Reproducibility of in vivo corneal confocal microscopy as a novel screening test for early diabetic sensorimotor polyneuropathy. Diabet Med 2011; 28: 1253–1260.

27. Puttgren S, Bonhof GJ, Strom A, et al. Augmented corneal nerve fiber branching in painful compared with painless diabetic neuropathy. J Clin Endocrinol Metab 2019; 104: 6220–6228.
28. Kalteniece A, Ferdousi M, Azmi S, et al. Corneal confocal microscopy detects small nerve fibre damage in patients with painful diabetic neuropathy. Sci Rep 2020; 10: 3371.

29. Higgins JPTJJ, Chandler J, Cumpston M, et al. (editors). Cochrane handbook for systematic reviews of interventions. Available from: www.training.cochrane.org/handbook. Accessed October 7, 2020.

30. Community C. RevMan 5. Available from: https://community.cochrane.org/help/tools-and-software/revman-5 Accessed December 12, 2018.

31. Ahmed A, Bril V, Orszag A, et al. Detection of diabetic sensorimotor polyneuropathy by corneal confocal microscopy in type 1 diabetes: a concurrent validity study. Diabetes Care 2012; 35: 821–828.

32. Ostrovski I, Lovblom LE, Farooqi MA, et al. Reproducibility of in vivo corneal confocal microscopy using an automated analysis program for detection of diabetic sensorimotor polyneuropathy. PLoS One 2015; 10: e0142309.

33. Sivaskandarajah GA, Halpern EM, Lovblom LE, et al. Structure-function relationship between corneal nerves and conventional small-fiber tests in type 1 diabetes. Diabetes Care 2013; 36: 2748–2755.

34. Azmi S, Jeziorska M, Ferdousi M, et al. Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation. Diabetologia 2019; 62: 1478–1487.

35. Chen X, Graham J, Petropoulos IN, et al. Corneal nerve fractal dimension: a novel corneal nerve metric for the diagnosis of diabetic sensorimotor polyneuropathy. Investig Ophthalmol Vis Sci 2018; 59: 1113–1118.

36. Petropoulos IN, Ferdousi M, Marshall A, et al. The inferior whorl for detecting diabetic peripheral neuropathy using corneal confocal microscopy. Investig Ophthalmol Vis Sci 2015; 56: 2498–2504.

37. Petropoulos IN, Alam U, Fadavi H, et al. Corneal nerve loss detected with corneal confocal microscopy is symmetrical and related to the severity of diabetic polyneuropathy. Diabetes Care 2013; 36: 3646–3651.

38. Petropoulos IN, Alam U, Fadavi H, et al. Rapid automated diagnosis of diabetic peripheral neuropathy with in vivo corneal confocal microscopy. Investig Ophthalmol Vis Sci 2014; 55: 2071–2078.

39. Poniarakis G, Fadavi H, Petropoulos IN, et al. Automated quantification of neuropad improves its diagnostic ability in patients with diabetic neuropathy. J Diabetes Res 2015; 2015: 847854.

40. Tavakoli M, Quattrini C, Abbott C, et al. Corneal confocal microscopy: a novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care 2010; 33: 1792–1797.

41. Kalteniece A, Ferdousi M, Petropoulos I, et al. Greater corneal nerve loss at the inferior whorl is related to the presence of diabetic neuropathy and painful diabetic neuropathy. Sci Rep 2018; 8: 3283.

42. Poniarakis G, Odniozola MN, Odniozola S, et al. NerveCheck for the detection of sensory loss and neuropathic pain in diabetes. Diabetes Technol Ther 2016; 18: 800–805.

43. Tummanapalli SS, Issar T, Kwai N, et al. A comparative study on the diagnostic utility of corneal confocal microscopy and tear neuromediator levels in diabetic peripheral neuropathy. Curr Eye Res 2020; 45: 921–930.

44. Tummanapalli SS, Willcox MDP, Issar T, et al. Tear film substance P: a potential biomarker for diabetic peripheral neuropathy. Ocul Surf 2019; 17: 690–698.

45. Dehghani C, Pritchard N, Edwards K, et al. Natural history of corneal nerve morphology in mild neuropathy associated with type 1 diabetes: development of a potential measure of diabetic peripheral neuropathy. Invest Ophthalmol Vis Sci 2014; 55: 7982–7990.

46. Edwards K, Pritchard N, Vagenas D, et al. Utility of corneal confocal microscopy for assessing mild diabetic neuropathy: baseline findings of the LANDMark study. Clin Exp Optom 2012; 95: 348–354.

47. Dehghani C, Pritchard N, Edwards K, et al. Fully automated, semiautomated, and manual morphometric analysis of corneal subbasal nerve plexus in individuals with and without diabetes. Cornea 2014; 33: 696–702.

48. Pritchard N, Dehghani C, Edwards K, et al. Utility of assessing nerve morphology in central cornea versus whorl area for diagnosing diabetic peripheral neuropathy. Cornea 2015; 34: 756–761.

49. Tummanapalli SS, Issar T, Kwai N, et al. Association of corneal nerve loss with markers of axonal ion channel dysfunction in type 1 diabetes. Clin Neurophysiol 2020; 131: 145–154.

50. Ishibashi F, Kawasaki A, Yamanaka E, et al. Morphometric features of corneal epithelial basal cells, and their relationship with corneal nerve pathology and clinical factors in patients with type 2 diabetes. J Diabetes Invest 2013; 4: 492–501.

51. Li Q, Zhong Y, Zhang T, et al. Quantitative analysis of corneal nerve fibers in type 2 diabetes with and without diabetic peripheral neuropathy: comparison of manual and automated assessments. Diabetes Res Clin Pract 2019; 151: 33–38.

52. Pritchard N, Edwards K, Dehghani C, et al. Longitudinal assessment of neuropathy in type 1 diabetes using novel ophthalmic markers (LANDMark): study design and baseline characteristics. Diabetes Res Clin Pract 2014; 104: 248–256.

53. Tavakoli M, Ferdousi M, Petropoulos IN, et al. Normative values for corneal nerve morphology assessed using corneal confocal microscopy: a multinational normative data set. Diabetes Care 2015; 38: 838–843.

54. Asghar O, Petropoulos IN, Alam U, et al. Corneal confocal microscopy detects neuropathy in subjects with impaired glucose tolerance. Diabetes Care 2014; 37: 2643–2646.

55. Ziegler D, Papanas N, Zhivov A, et al. Early detection of nerve fiber loss by corneal confocal microscopy and skin
biopsy in recently diagnosed type 2 diabetes. Diabetes 2014; 63: 2454–2463.

56. Ferdousi M, Romanchuk K, Mah JK, et al. Early corneal nerve fibre damage and increased Langerhans cell density in children with type 1 diabetes mellitus. Sci Rep 2019; 9: 8758.

57. Yan A, Issar T, Turomanapalli SS, et al. Relationship between corneal confocal microscopy and markers of peripheral nerve structure and function in type 2 diabetes. Diabet Med 2020; 37: 326–334.

58. Hafner J, Zadrazil M, Grisold A, et al. Retinal and corneal neurodegeneration and their association with systemic signs of peripheral neuropathy in type 2 diabetes. Am J Ophthalmol 2020; 209: 197–205.

59. Moulton EA, Borsook D. C-fiber assays in the cornea vs. skin. Brain Sci 2019; 9: 320.

60. Edwards K, Pritchard N, Dehghani C, et al. Corneal confocal microscopy best identifies the development and progression of neuropathy in patients with type 1 diabetes. J Diabetes Complicat 2017; 31: 1325–1327.

61. Biomarkers Definitions Working G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69: 89–95.

62. Jiang MS, Yuan Y, Gu ZX, et al. Corneal confocal microscopy for assessment of diabetic peripheral neuropathy: a meta-analysis. Br J Ophthalmol 2016; 100: 9–14.

63. Ferdousi M, Kalteniece A, Petropoulos I, et al. Diabetic neuropathy is characterized by progressive corneal nerve fiber loss in the central and inferior whorl regions. Invest Ophthalmol Vis Sci 2020; 61: 48.

64. Gad H, Al-Jarrah B, Saraswathi S, et al. Corneal nerve loss in children with type 1 diabetes mellitus without retinopathy or microalbuminuria. J Diabetes Investig 2020; 11: 1594–1601.

65. Schaldemose EL, Hammer RE, Ferdousi M, et al. An unbiased stereological method for corneal confocal microscopy in patients with diabetic polyneuropathy. Sci Rep 2020; 10: 12550.

66. Sharma S, Tobin V, Vas PRI, et al. The influence of age, anthropometric and metabolic variables on LDIHARE and corneal confocal microscopy in healthy individuals. PLoS One 2018; 13: e0193452.

67. Pellegrini M, Sebastiani S, Tucci L, et al. Association between alterations of corneal sub-basal nerve plexus analyzed with in vivo confocal microscopy and long-term glycemic variability. Eur J Ophthalmol 2020; 1120672120964126. Online ahead of print.

68. Issar T, Turomanapalli SS, Borire AA, et al. Impact of the metabolic syndrome on peripheral nerve structure and function in type 2 diabetes. Eur J Neurol 2021; 28: 2074–2082.

69. Ponnirakis G, Petropoulos IN, Alam U, et al. Hypertension contributes to neuropathy in patients with type 1 diabetes. Am J Hypertens 2019; 32: 796–803.

70. Pritchard N, Edwards K, Russell AW, et al. Corneal confocal microscopy predicts 4-year incident peripheral neuropathy in type 1 diabetes. Diabetes Care 2015; 38: 671–675.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1 | Flowchart of the included studies.
Table S1 | Search details
Table S2 | Risk of bias assessment for non-randomized studies
Doc S1 | Methods. Risk of bias and sensitivity analysis.