Taxonomy Construction Using Syntactic Contextual Evidence

Luu Anh Tuan¹, Jung-jae Kim¹, Ng See Kiong²

¹School of Computer Engineering, Nanyang Technological University, Singapore
²Institute for Infocomm Research, A*STAR, Singapore
Outline

• Introduction
• Related work
• Methodology
• Experiments
• Conclusion and future work
Taxonomy

• Useful for many areas:
 • question answering
 • document clustering

• Some available hand-crafted taxonomies: WordNet, OpenCyc, Freebase
 • time-consuming
 • more general, less specific

→ demand for constructing taxonomies for new domains
Outline

• Introduction
• Related work
• Methodology
• Experiments
• Conclusion and future work
Taxonomic relation identification

- **Statistical approach:**
 - Co-occurrence analysis (Budanitsky, 1999), term subsumption (Fotzo, 2004), clustering (Wong, 2007).
 - Less accurate, heavily depend on feature types and dataset

- **Linguistic approach:**
 - Hand-written patterns: (Kozareva, 2010), (Wentao, 2012)
 - Automatic bootstrapping: (Girju, 2003), (Velardi, 2012)
 - Lack of contextual analysis across sentences → low coverage
Our contribution

• Propose syntactic contextual subsumption method:
 • Utilize contextual information of terms in syntactic structures by evidence from the Web
 • Infer taxonomic relations between terms in different sentences

• Introduce graph-based algorithm for taxonomy induction:
 • Utilize the evidence scores of edges
 • Base on graph’s topological properties
Outline

- Introduction
- Related work
- Methodology
- Experiments
- Conclusion and future work
Workflow

1. Term extraction and filtering
2. Taxonomic relation identification
3. Taxonomy induction
Term extraction and filtering

• Term extraction:
 • Apply Stanford parser \(\rightarrow\) extract all noun phrases
 • Remove determiners, do lemmatization

• Term filtering:
 • TF-IDF
 • Domain relevance, domain consensus (Navigli and Velardi, 2004)

\[
TS(t, D) = \alpha \times \text{TFIDF}(t, D) + \beta \times \text{DR}(t, D) + \gamma \times \text{DC}(t, D)
\]
Taxonomic relation identification

• Combine three methods:
 • Syntactic contextual subsumption
 • String inclusion with WordNet
 • Lexical-syntactic pattern matching
Syntactic contextual subsumption (SCS)

• Find relations across different sentences
• Utilize syntactic structure (Subject, Verb, Object)

• Observation 1: (terrorist, attack, people),
 (terrorist, attack, American)
 \[\Rightarrow \text{people} \gg \text{American} \]
• But from (animal, eat, meat) and (animal, eat, grass)?
Observation 2:

\[s_1 \gg s_2 \]

- $S(\text{animal, eat}) = \{\text{meat, wild boar, deer, buffalo, grass, potato, insects}\}$
- $S(\text{tiger, eat}) = \{\text{meat, wild boar, deer, buffalo}\}$

$\rightarrow \text{animal} \gg \text{tiger}$
Syntactic contextual subsumption (SCS)

For terms s_1, s_2:
- Find most common relation v between s_1 and s_2. Suppose s_1 and s_2 are both subjects
- Submit query “$s_1 v$” to search engine, collect first 1000 results, find $S(s_1, v) = \{o | \exists (s_1, v, o)\}$
- Similar for $S(s_2, v)$
- Calculate:

$$Score_{SCS}(s_1, s_2) = \left[\frac{|S(s_1, v) \cap S(s_2, v)|}{|S(s_2, v)|} + \left(1 - \frac{|S(s_1, v) \cap S(s_2, v)|}{|S(s_1, v)|} \right) \right]$$

$$\times \log(|S(s_1, v)| + |S(s_2 v)|)$$
String inclusion with WordNet (SIWN)

- SIWN method:

 \[t_1 = w_{11} w_{12} w_{13} \]
 \[t_2 = w_{21} w_{22} w_{23} w_{24} w_{25} \]

 \(t_1 \gg t_2 \) or \(t_1 \approx t_2 \)

 \(\gg: \) is hypernym of

 “suicide attack” \(\gg \) “self-destruction bombing”

- attack \(\gg \) bombing

- suicide \(\approx \) self-destruction

\[
Score_{SIWN}(t_1, t_2) = \begin{cases}
1 & \text{if } t_1 \gg t_2 \text{ via SIWN} \\
0 & \text{otherwise}
\end{cases}
\]
Lexical-syntactic pattern (LSP)

- Use following patterns to query on Google:

 “t₁ such as t₂”
 “t₁, including t₂”
 “t₂ is [a|an] t₁”
 “t₂ is a [kind|type] of t₁”
 “t₂, [and|or] other t₁”

\[
\text{Score}_{LSP}(t₁, t₂) = \frac{\log(WH(t₁, t₂))}{1 + \log(WH(t₂, t₁))}
\]
Combined method

\[
Score(t_1, t_2) = \alpha \times Score_{SIWN}(t_1, t_2) \\
+ \beta \times Score_{LSP}(t_1, t_2) \\
+ \gamma \times Score_{SCS}(t_1, t_2)
\]
Taxonomy induction

- Step 1: Initial hypernym graph with a ROOT node
- Step 2:
 \[w(e(t_1, t_2)) = \begin{cases}
 1 & \text{if } t_1 = \text{ROOT} \\
 \text{Score}(t_1, t_2) & \text{otherwise}
\end{cases} \]
- Step 3: apply Edmonds’ algorithm to find maximum optimum branching of weighted directed graph
Outline

• Introduction
• Related work
• Methodology
• Experiments
• Conclusion and future work
Constructing new taxonomies

- **Terrorism domain:**
 - 104 reports of the US state department “Patterns of Global Terrorism (1991-2002)”
 - Each report ~1,500 words

- **Artificial Intelligence (AI) domain:**
 - 4,119 papers extracted
 - the IJCAI proceedings from 1969 to 2011
 - the ACL archives from 1979 to 2010
Taxonomy construction

- Compare constructed AI taxonomy with that of (Velardi et al., 2012)

	Our system	Velardi’s system
#vertex	1839	1675
#edge	1838	1674
Average depth	6.2	6
Max depth	10	10
Term coverage	83%	76%
Taxonomy construction

- Number of taxonomic relations extracted by different methods

Method	Terrorism domain	AI domain
SCS	484	1308
SIWN	301	984
LSP	527	1537
SIWN + LSP	711	2203
SCS + SIWN + LSP	976	3122
Taxonomy construction

• Estimated precision of taxonomic relation identification methods in 100 random extracted relations

	Percentage of correct relations	
	Terrorism domain	AI domain
SCS	91%	88%
SIWN	96%	91%
LSP	93%	93%
SCS + SIWN + LSP	92%	90%
Evaluate against WordNet

- Three domains: Animals, Plants and Vehicles:
 - Use the bootstrapping algorithm described in (Kozareva, 2008)
 - Compare the results with (Kozareva, 2010) and (Navigli, 2011)

	Animals domain	Plants domain	Vehicles domain						
	Our	Kozareva	Navigli	Our	Kozareva	Navigli	Our	Kozareva	Navigli
Term coverage	96%	N.A.	94%	98%	N.A.	97%	97%	N.A.	96%
Precision	95%	98%	97%	95%	97%	97%	93%	99%	91%
Recall	56%	38%	44%	53%	39%	38%	69%	60%	49%
F-measure	71%	55%	61%	68%	56%	55%	79%	75%	64%
Syntactic structures

- Comparison of three syntactic structures: \textit{S-V-O} (Subject-Verb-Object), \textit{N-P-N} (Noun- Preposition-Noun) and \textit{N-A-N} (Noun-Adjective- Noun)

	\(S-V-O\)	\(N-P-N\)	\(N-A-N\)
Animals domain			
Precision	95\%	68\%	72\%
Recall	56\%	52\%	47\%
F-measure	71\%	59\%	57\%
Plants domain			
Precision	95\%	63\%	66\%
Recall	53\%	41\%	43\%
F-measure	68\%	50\%	52\%
Vehicles domain			
Precision	93\%	59\%	60\%
Recall	69\%	45\%	48\%
F-measure	79\%	51\%	53\%
Dataset link

- All dataset and experiment results are available at
 http://nlp.sce.ntu.edu.sg/wiki/projects/taxogen
Outline

• Introduction
• Related work
• Architecture
• Experiments
• Conclusion and future work
Conclusion

• Proposed a novel method of identifying taxonomic relations using contextual evidence from syntactic structure and Web data
• Presented a graph-based algorithm to induce an optimal taxonomy from a given taxonomic relation set
• Generally achieve better performance than the state-of-the-art methods
Future work

• Build the probabilistic model for taxonomy
• Consider the time stamp of information
• Apply to other domains and integrate into other frameworks such as ontology learning or topic identification
THANK YOU

Q & A
References

1. W. Wentao, L. Hongsong, W. Haixun, and Q. Zhu. 2012. *Probase: A probabilistic taxonomy for text understanding*. In proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 481-492.

2. Z. Kozareva, E. Riloff, and E. H. Hovy. 2008. *Semantic Class Learning from the Web with Hyponym Pattern Linkage Graphs*. In proceedings of the 46th Annual Meeting of the ACL, pp. 1048-1056.

3. R. Navigli, P. Velardi and S. Faralli. 2011. *A Graph-based Algorithm for Inducing Lexical Taxonomies from Scratch*. In proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 1872-1877.

4. P. Velardi, S. Faralli and R. Navigli. 2012. *Ontolearn Reloaded: A Graph-based Algorithm for Taxonomy Induction*. Computational Linguistics, 39(3), pp.665-707.

5. J. Edmonds. 1967. *Optimum branchings*. Journal of Research of the National Bureau of Standards, 71, pp. 233-240.

6. M. A. Hearst. 1992. *Automatic Acquisition of Hyponyms from Large Text Corpora*. In proceedings of the 14th Conference on Computational Linguistics, pp. 539-545.
7. Z. Kozareva, E. Riloff, and E. H. Hovy. 2008. *Semantic Class Learning from the Web with Hyponym Pattern Linkage Graphs*. In proceedings of the 46th Annual Meeting of the ACL, pp. 1048-1056.

8. W. Wong, W. Liu and M. Bennamoun. 2007. *Tree-traversing ant algorithm for term clustering based on featureless similarities*. Data Mining and Knowledge Discovery, 15(3), pp. 349-381.

9. A. Budanitsky. 1999. *Lexical semantic relatedness and its application in natural language processing*. Technical Report CSRG-390, Computer Systems Research Group, University of Toronto.

10. H. N. Fotzo and P. Gallinari. 2004. *Learning “Generalization/Specialization” Relations between Concepts-Application for Automatically Building Thematic Document Hierarchies*. In proceedings of the 7th International Conference on Computer-Assisted Information Retrieval.

11. D. Widdows and B. Dorow. 2002. *A Graph Model for Unsupervised Lexical Acquisition*. In proceedings of the 19th International Conference on Computational Linguistics, pp. 1-7.

12. R. Girju, A. Badulescu, and D. Moldovan. 2003. *Learning Semantic Constraints for the Automatic Discovery of Part-Whole Relations*. In proceedings of the NAACL, pp. 1-8.