The association of 9p21-3 locus with coronary atherosclerosis: a systematic review and meta-analysis

Muhammad S Munir1,2, Zhen Wang3*, Fares Alahdab3, Mark W Steffen1, Patricia J Erwin4, Iftikhar J Kullo5 and Mohammad Hassan Murad1

Abstract

Background: Studies suggest that the 9p21-3 locus may influence susceptibility to myocardial infarction. We performed a systematic review and meta-analysis to assess whether this locus is associated with severity of coronary atherosclerosis and adverse clinical outcomes in those with known coronary disease.

Methods: Multiple electronic databases were searched from inception through August 2012. Studies examining 9p21-3 genotype in patients with known coronary artery disease were included. We extracted the association of the 9p21-3 locus with measures of severity of coronary atherosclerosis [number of diseased vessels, Gensini Score, Duke CAD Prognostic Index (DPI)], angiographic outcomes [change in minimum lumen diameter (ΔMLD) and number of new lesions at follow-up], and key clinical outcomes (all-cause mortality, recurrent myocardial infarction and the need for coronary revascularization). Relative risks (RR) and weighted mean difference (WMD) were pooled using the random effects models.

Results: 23 cohorts enrolling 16,860 participants were analyzed. There was no significant difference between HR and LR genotypes in terms of all-cause mortality, recurrent myocardial infarction or the frequency of coronary revascularization. HR genotype was associated with increased risk of triple vessel disease (RR = 1.34; 95% CI 1.08-1.65; P = 0.01) and increased baseline Gensini Score (WMD = 5.30; 95% CI 0.66-9.93; P = 0.03). However there was no association with DPI (WMD = 4.00; 95% CI 2.94-10.94; P = 0.26). HR genotype did not predict ΔMLD or number of new lesions at follow-up.

Conclusions: Patients of coronary atherosclerosis who carry the high risk genotype of the 9p21-3 allele may be more likely to have multi-vessel CAD. However the effect of this allele on CAD progression and disease specific clinical outcomes are not observed possibly due to diminishing genetic risk following dietary modification and therapy.

Keywords: Coronary, Atherosclerosis, 9p21-3

Background

Coronary artery disease (CAD) remains a worldwide leading cause of mortality. Modification of major environmental risks such as smoking and high cholesterol reduces CAD mortality by 20% to 30% [1]. The presence of a positive family history as a strong risk factor in CAD points to underlying genetic risk factors [2].

Genome wide association studies (GWAS) have identified over 30 risk variants for CAD [3,4]. Of these, the variant on the p arm of chromosome 9 at position 21–3 (9p21-3) is the most well-known and replicated. Many studies have established and replicated the association of the 9p21-3 locus with CAD and myocardial infarction (MI). Other studies have revealed that targeted deletion of the 9p21 non-coding interval leads to excessive proliferation of vascular smooth muscle cells as well as their diminished senescence [5]. Some 9p21 variants also
Impair the inflammatory response in vascular cell types, which might explain some of the genetic susceptibility underpinning CAD [6]. Variants at this locus have also been associated with a lower ankle-brachial index (ABI), which is a marker of increased risk for death and incident cardiovascular disease (CVD) events [7]. The effect of the 9p21-3 locus on angiographic severity and clinical outcomes in patients with established CAD has been tested by several investigators. However, findings from these reports are conflicting.

We therefore conducted a systematic review and meta-analysis of the published literature investigating the association of the 9p21-3 locus with angiographic CAD severity, progression, and key clinical outcomes.

Methods
The reporting of this systematic review complies with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [8].

Eligible studies were comparative studies of human subjects, provided genotyping was done at the 9p21-3 locus in a population with known coronary artery disease (previous/recent MI, or known epicardial coronary stenosis at enrollment). Applicable study designs include observational studies (case–control, cohort and cross sectional) where an association between the 9p21-3 allele and poor outcome or prognostic marker was reported. Only studies written in English were included due to feasibility.

We searched Ovid MEDLINE from 1948 until August 2012 and Ovid EMBASE, Web of Science and SCOPUS, from inception to August 2012. Subject headings (MeSH, EMTREE) were used: Chromosomes, Pair 9, Coronary artery disease, alleles and atherosclerosis. Keywords (9p21*) and MeSH terms were used in Web of Science and Scopus. The detailed search strategy is attached in Additional file 1.

A team of two trained reviewers independently screened all articles identified in the literature search. Discrepancies between the reviewers were resolved through discussions and consensus.

Markers of atherosclerotic severity included number of diseased vessels, Gensini Score and Duke CAD Prognostic Index (DPI). Markers of atherosclerotic severity and coronary disease progression are defined elsewhere [9]. We also assessed change in minimum lumen diameter (ΔMLD) and number of new lesions at follow-up. Outcomes of interest included all-cause mortality, recurrent MI, need for coronary revascularization, triple vessel disease, Gensini score, DPI, ΔMLD, and number of new lesions. In studies where all-cause and cause-specific mortalities were separately tested, we analyzed all-cause mortality only.

Recurrent MI was defined any acute coronary syndrome associated with troponin elevation and/or ST segment elevation on electrocardiography (ECG). Need for coronary re-vascularization included surgical and percutaneous procedures performed either at target or non-target coronary vessels.

We extracted details on sample size, mean age, race, the identification (rs number) of the particular SNP genotyped, and outcomes of interest. SNPs previously reported in GWAS studies or in strong linkage disequilibrium with them were considered in the analysis.

In keeping with our goal to determine locus-outcome association we did not limit our analysis to a single SNP but instead tested for all available SNPs published in reports chosen for the meta-analysis. In studies reporting > 1 SNP-outcome association, we chose the SNP not elsewhere tested in other data sets. This allows us to capture all known markers in the locus and test as many markers as possible.

We used the Newcastle-Ottawa Quality Assessment to assess the risk of bias of the included studies [10]. The following items were used: selection of patients, comparability, assessment of exposure and/or outcome, length of follow-up, lost to follow-up. We were unable to assess potential publication bias due to limited number of studies included for each outcome [11].

Genotypes were classified as either homozygous low risk (LR) heterozygous intermediate risk (IR) or homozygous high risk (HR). Study results were variedly reported using recessive [LR vs. (IR + HR)], dominant [(LR + IR) vs. HR] and additive models [LR vs. IR vs. HR]. For the purpose of this manuscript we included additive models. For dichotomized outcomes, we extracted or calculated relative risk (RR) and its 95% confidence intervals (CI). We then pooled RR across the studies using the DerSimonian and Laird random effects methods with the heterogeneity from the Mantel–Haenszel method [12]. For continuous outcomes, we pooled weighted mean difference (WMD) using the same DerSimonian and Laird random effects methods.

We assessed the optimal information size (OIS), similar to power calculation in clinical trials, to evaluate the minimum sample size required in the literature to reach reliable conclusions [8].

We assessed the consistency of the outcomes by testing heterogeneity using the test statistic, where > 50% suggests a high level of heterogeneity [13]. All statistical analyses were conducted using STATA version 12 (StataCorp, College Station, TX).

Results
The literature search yielded 229 studies of which 21 (describing 23 distinct cohorts) met criteria for inclusion. Study selection process is described in (Figure 1). Table 1 lists the studies entered in the meta-analysis together with outcomes tested in each study.

The methodological quality of the included studies was fair, with the majority of them providing adequate representativeness of study patients, comparability...
between patient groups and sufficiently assessment of exposure and/or outcome (Figure 2). Also, in all of the outcomes, except all-cause mortality, triple vessel disease, and Gensini Score, the total sample size reported in the studies were less than the OIS. We, thus, were unable to reach conclusive findings for these outcomes.

We did not find a significant association between 9p21-3 and all-cause mortality (RR = 1.11; 95% CI 0.88-1.40; p = 0.39, I² = 51.6%) (Figure 3). Likewise, no significant association emerged in the meta-analysis of 9p21-3 with recurrent MI in patients with known CAD in the additive model (RR = 1.14; 95% CI 0.92-1.40; p = 0.24; I² = 7.0%). Table 2 lists the summary statistics for the outcomes.

Four cohorts from 3 studies reported need for revascularization. No significant association was identified between 9p21-3 and re-vascularization after development of CAD (RR = 1.11; 95% CI 0.78-1.57; p = 0.56; I² = 78.1%). The meta-analysis supported an association between 9p21-3 and triple vessel disease. Homozygotes (HR) for the risk allele had significantly greater risk (RR = 1.34, 95% CI 1.08-1.65, p = 0.01, I² = 53.8%).

Three studies reported severity of CAD as measured by Gensini score at baseline. Combined analysis of these studies showed 5.30 higher mean Gensini score in the LR group vs. the HR group. This difference was significant (95% CI 0.66-9.93; p = 0.03; I² = 80.2%). However the DPI which also quantifies CAD severity was not significant in the combined analysis of the two studies reporting it (WMD = 4.00; 95% CI −2.94-10.94; p = 0.26; I² = 87.5%).

Combined analysis of two studies testing for association of angiographic progression as measured by Δ MLD and number of new lesions at follow-up revealed no association with the 9p21-3 allele. The combined WMD for Δ MLD was 0.07 (95% CI −0.02-0.15; p = 0.15; I² = 1.0%) and new lesions at follow up was 0.03 (95% CI −0.05-0.10; p = 0.49; I² = 0.0%).

Discussion

In this meta-analysis of studies investigating angiographic severity and clinical outcomes in patients with CAD, we found an association of 9p21-3 allele with increased risk of triple vessel disease and greater quantitative severity of atherosclerosis as measured with the
Study ID	Genotyping method	SNP and base position	Minor allele frequency	Linkage disequilibrium (LD) (reported as D' or r²)	Population (age/%male/ethnicity)	Baseline diagnosis	Outcome/prognostic marker (1)	Outcome/prognostic marker (2)	Outcome/prognostic marker (3)	Comments
Anderson, [14] with 5′ exonuclease (Taqman) chemistry on the ABI Prism 7000	rs2383206	0.48	D' = 2383206 - 2383207 = 0.99	1759 (59/64%/ mixed race with 86% white)	CAD	No. diseased vessels	baseline Duke index	Prospective cohort		
Chen, [15] fluorogenic 5′ nucleotidase (Taqman) assays using an ABI PRISM 7900 HT Real-Time PCR instrument	rs2383206 (chromosomal position: 22,105,026), rs2383207 (chromosomal position: 22,105,959), rs10757278 (chromosomal position: 22,114,477), rs1333049 (chromosomal position: 22,115,503)	rs2383206 = 0.15	D'rs2383206-10757278 = 1.0	212 (46/58%/ Chinese)	CAD	No. diseased vessels			Case control	
Chen, [16] TaqMan allelic discrimination assays	rs7865618: 22021005	0.38	LD of rs7865618, rs1537378, rs1333040 with rs1333049 = 0.81 ≤ r² ≤ 0.97	322 (59/84%/ white)	CAD	ΔAWLD	no. of new lesions			Case control
Hoppman, [17] TaqMan allelic discrimination assays	rs7865618: 22021005	0.38	LD of rs7865618, rs1537378, rs1333040 with rs1333049 = 0.81 ≤ r² ≤ 0.97	2028 (———%/ white)	CAD	ACS	All-cause mortality	Recurrent MI	revascularization	Prospective cohort
Peng, [18] TaqMan single nucleotide polymorphism	rs1333049	0.24	Rs10757274 and rs1333049 had strong LD (r² = 0.92)	520 (64/78.7%/ Chinese)	ACS	All-cause mortality	Recurrent MI	No. diseased vessels	Case control	
Newton-Cheh, [19] Sequenom platform (San Diego, Calif), which resolves allele-specific single-base extension products using mass spectrometry (MALDI-TOF)	rs10757274 backup: rs2383207	Case: 0.54, Control: 0.50	Rs10757274 and rs2383207 are in strong linkage disequilibrium (r² = 0.87)	466 (———%/ whites)	CAD	SCD			Retrospective case-control study of SCD. Subgroup analysis compared 124 SCD cases with 342 controls. Both cases and controls had CAD	
Ellis, (1) [20] (CDCS) allelespecific TaqMan genotyping probes	rs1333049	GG: 0.22	860 (67/69.2%/ whites)	ACS	All-cause mortality	Recurrent MI	Cohort study			
Ellis, (2) [20] (PMI) allelespecific TaqMan genotyping probes	rs1333049	GG: 0.22	607 (62/78.6%/ whites)	ACS	All-cause mortality	Recurrent MI	Cohort Study			
Buysschaert, [21] iPLEX technology on a MassARRAY	rs1333049	0.25	2942 (65/67.9%/ whites)	ACS	Recurrent MI		Prospective cohort			
Centaurus (Nanogen) platform	rs7044859	rs1292136								
Patel, [22]	rs7865618									
Study	Characteristics of the included studies (Continued)									
---------------	---									
Muehlschlegel, [23] Golden Gate assay with an Illumina Bead Station 500G system (Illumina)	rs10116277 0.18 846 (−−/−whites) CAD All-cause mortality Prospective cohort									
Dandona, [24] Affymetrix Santa Clara, (California) 500 K and 60 arrays	rs1333049 0.19 rs9632884 was linkage disequilibrium with rs1333049 (r² = 0.832). 1714 (−−/−whites) CAD/ACS No. diseased vessels baseline Duke index baseline Gensini Score case control									
Liu, [25] Golden Gate assay with an Illumina Bead Station 500 G system (Illumina, San Diego, Calif)	rs10116277 rs6475606 rs2383207: chromosome 9 positions 21,930,588 22,366,970 rs10116277 846 (−−/−whites) CAD Recurrent MI Prospective cohort									
Wang, [26] TaqMan SNP allelic discrimination by means of an ABI 7900HT (Applied Biosystems, Foster City, CA, USA)	rs1333049 430 (−−/−Chinese) CAD AVLDD no. new lesions case control									
Ardissino, [27] Matrixassisted laser desorption ionization time-of-flight mass spectrometry and a Sequenome MassARRAY platform (San Diego, California)	rs1333040 1508 (41/95%/ Italian) ACS All-cause mortality recurrent MI revascularization Prospective cohort									
Wang, [28] TaqMan SNP allelic discrimination by means of an ABI 7900HT (Applied Biosystems, Foster City, CA, USA)	rs1333049 rs2p213 0.25 620 (67/51.2%/ Chinese) CAD No. diseased vessels baseline Gensini score Cross sectional									
Chan, [29]	rs1333049 332 (59/84%/ whites) CAD AVLDD no. new lesions Prospective cohort									
Dutta, [30] Conventional Taqman PCR (probes and assays designed by Applied Biosystems; Foster City, CA)	rs1333049 478 (75/−/−whites) CAD All-cause mortality Prospective cohort									
Koszeradka, [31] TaqMan SNP Genotyping Assay using the ABI 7500 Real Time PCR System (Applied Biosystems)	rs1333049 rs4977574 rs10757278 582 (62/75%/−) CAD All-cause mortality Cohort Study									
Study Authors	Study Design	SNPs From Analysis	Genotype Frequencies	CAD: All-cause mortality	No. diseased vessels	Study Type				
---------------	--------------	-------------------	---------------------	-------------------------	----------------------	-------------				
Gioli-Pereira, [32]	Prospective cohort	rs10757274, rs2383206, rs10757278, rs1333049	rs10757274: 0.51, rs2383206: 0.59, rs10757278: 0.51, rs1333049: 0.48	611 (60.94%/ Brazilian)	CAD	Prospective cohort				
Virani, (1) [33]	Prospective cohort	rs1333049, rs2383206, rs10757278, rs1333049	CC: 0.27, CG: 0.50, GG: 0.23; CABG group:	2067 (63.74%/ whites)	ACS	CAD	Prospective cohort			
Virani, (2) [33]	Prospective cohort	rs1333049, rs2383206, rs10757278, rs1333049	CC: 0.30, CG: 0.50, GG: 0.21;	1176 (65.79%/ whites)	CAD	CAD	Prospective cohort			
Lui, [34]	Cohort Study	rs2383206		452 (58.78%/)	CAD	All-cause mortality	Cohort Study			

CAD: coronary artery disease; ACS: acute coronary syndrome; SCD: sickle-cell disease; MI: myocardial infarction.
Gensini score at baseline. The meta-analysis did not support an association of the allele with angiographic outcomes at follow up or clinical outcomes.

Our findings are consistent with the results of Chan et al. [35] who reported a 23% greater risk of triple vessel disease among high risk homozygotes when compared with their low risk genetic counterparts. Different from Chan's study, we analyzed more outcomes, including measures of severity of coronary atherosclerosis [number of diseased vessels, Gensini Score, Duke CAD Prognostic
Index (DPI)], angiographic outcomes [change in minimum lumen diameter (ΔMLD) and number of new lesions at follow-up], and key clinical outcomes (all-cause mortality, recurrent myocardial infarction and the need for coronary revascularization). We have for the first time confirmed an association of the allele with a higher Gensini score in a meta-analysis. In quantitative angiography Gensini score is derived by assigning a severity score to each coronary stenosis according to the degree of luminal narrowing and its geographic importance [28]. The score correlates positively with number of vessel segments involved. Thus it is intuitive that an association of 9p21-3 allele with triple vessel disease would translate into an association with the Gensini score in the same direction. However the lack of association with the DPI was surprising. A positive linear correlation between the Gensini and the DPI score is reported in the literature [9]. It is possible that the analysis of DPI was underpowered due to fewer studies reporting this association compared to those reporting the Gensini score.

We found no association between the 9p21-3 allele and angiographic outcomes. This was also unexpected as the process underlying de-novo atherogenesis would remain unchanged over the course of time. One likely explanation can be index event bias [36]. Conceivably, the risk factors distribution among patients with high genetic risk may have shifted after diagnosis and subsequent lifestyle modification and initiation of therapy.

We found no association between genotypic risk and all-cause mortality among CAD patients. This negative finding is supportive of existing evidence published by Ganna et al. [37] which showed that increased risk of all-cause mortality was associated with polygenic risk factors dispersed across the genome. In a sample of over 16,000 participants, a genome wide risk score derived from 707 published SNPs was associated with a modest 10% increased hazard of death. In our study we tested for association between a single locus in a smaller sample which could have further lowered the likelihood of finding an association.

Most GWAS showing locus-disease association, have shown positive results in conditions which are observed to be heritable. Given that there is no published study reporting heritability of the risk of re-infarction, the genetic risk of recurrent events among survivors of ACS remains less probable; an observation noted in our meta-analysis. Likewise in the case of TLR, which could result either from progression of atherosclerosis or recurrent acute ischemic events, we anticipated no association given the absence of increased risk of disease progression and re-infarction among 9p21-3 carriers.

Our study suffers some important limitations. First, we cannot rule out that our findings may be due to chance as multiple testing had been conducted. However, there is no consensus when this problem should be taken into account and which statistical method should be used in meta-analysis [38,39]. Second, the sample size in most of the outcomes reported in the studies was less than the OIS. Thus, we may not have the power to detect weaker associations. At last, our analyses restricted to association studies as no linkage analyses have identified this allele to be associated with CAD.

Table 2 Pooled statistics using additive [LR vs. IR vs. HR], dominant [(LR + IR) vs. HR], and recessive [LR vs. (IR + HR)] models

	Number of cohorts	Number of patients	RR	95% CI	P value	I²	
Recurrent MI	6	5795	1.14	0.92	1.40	0.24	7.0%
Revascularization	4	5225	1.11	0.78	1.57	0.56	78.1%
Triple vessel disease	4	1928	1.34	1.08	1.65	0.01	53.8%

	WMD	95% CI	p.value	I²	
Gensini Score	1.70	0.66	9.93	0.03	80.2%
DPI	0.40	−2.94	10.94	0.26	87.5%
ΔMLD	0.07	−0.02	0.15	0.15	1.0%
No. new lesions	0.03	−0.05	0.10	0.49	0.0%

MI indicates myocardial infarction; DPI, Duke CAD prognostic index; ΔMLD, change in minimum lumen diameter; No. new lesions, number of new lesions.

Conclusion

Patients of CAD who carry the high risk genotype of the 9p21-3 allele may be more likely to have multi-vessel CAD. However the effect of this allele on CAD progression and disease specific clinical outcomes are not observed possibly due to diminishing genetic risk following dietary modification and therapy.

Additional file

Additional file 1: Search Strategy.

Abbreviations

CAD: Coronary artery disease; GWAS: Genome wide association studies; MI: Myocardial infarction; PRISMA: The preferred reporting items for systematic reviews and meta-analyses statement; DPI: Duke CAD prognostic index; Δ MLD: Change in minimum lumen diameter; ECG: Electrocardiography;
LR: Homozygous low risk; IR: Heterozygous intermediate risk; HR: Homozygous high risk; WMD: Weighted mean difference; RR: Relative risk.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MM and ZW contributed equally to this study. MM carried out study design, study screening, data extraction, and drafted the manuscript. ZW carried out study design, quality appraisal, data analysis, and drafted the manuscript. FA participated in quality appraisal and critically revised the manuscript. MS conducted data extraction, drafted and critically revised the manuscript. PE designed the search strategy and revised the manuscript. JC participated in study design, advised on all methodological issues, drafted and critically revised the manuscript. MHM participated in study design, study screening, data analysis, and drafted the manuscript. All authors approved the final version of this manuscript and agreed to be accountable for all aspects of the work.

Author details

1Division of Preventive Medicine, Mayo Clinic, Rochester, MN, USA. 2Hospital Medicine, University of Wisconsin Medical Foundation, Madison, WI, USA. 3Knowledge and Evaluation Research Unit, Mayo Clinic, Rochester, MN, USA. 4Mayo Clinic Libraries, Mayo Clinic, Rochester, MN, USA. 5Division of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.

Received: 2 May 2014 Accepted: 2 June 2014

Published: 6 June 2014

References

1. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, McKillop JH, Packard CJ: Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 1995, 333(20):1301–1307.

2. Otaki Y, Granier H, Berman DS, Cheng WY, Dey D, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnyanai K, Chow BJ, Delago A, Hadamitzky M, Haasler JE, Koul Y, Merchant P, Raff G, Shaw LJ, Vlillines TC, Dunning A, Min JK: Impact of family history of coronary artery disease in young individuals (from the CONFIRM registry). J Am Coll Cardiol 2013, 111(1):108–118.

3. Lee JY, Lee BS, Shin DI, Woo Park K, Shin YA, Joong Kim K, Heo L, Young J, Kyoung Kim Y, Jin Kim Y, Bum Hong C, Lee SH, Yoon Dong J, Jung KU H, Oh HY, Kim BJ, Lee J, Park SJ, Kim J, Kwak HK, Lee J, Lee PK, Nam HY, Park HY, Shin C, Yokota M, Asano H, Nakatomi M, Matsutaka T, Kitajima H: A genome-wide association study of coronary artery disease risk variant. J Hum Genet 2013, 58(3):120–126.

4. Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, Ingelsson E, Saleheen D, Erdmann J, Goldstein BA, Stevens K, Konig IR, Cazier JB, Johannson A, Hall AS, Lee JY, Willer CJ, Chambers JC, Etko T, Folkersen L, Goel A, Grundberg E, Huvila A, Ko HW, Hopewell JC, Eriksson N, Kleibe ME, Kristiansson K, Lundmark P, Lyttkainen LP: Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 2013, 45(1):25–33.

5. Visel A, Zhu Y, May D, Arafza V, Gong E, Attanasio C, Blow MJ, Cohen JC, Rubin EM, Pennacchio LA: Targeted deletion of the 9p22 non-coding coronary artery disease risk interval in mice. Nature 2010, 464(7287):409–412.

6. Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, Ren B, Gulcher JR, Stefansson K, Waddy S, Vaccarino V, Zafari AM, Yao CY, Xio Y: A common variant on chromosome 9p22 affects the risk of early-onset coronary artery disease. Mol Biol Rep 2009, 36(5):889–893.

7. Chen SN, Ballantyne CM, Gotto AM Jr, Maranian A: The 9p22 susceptibility locus for coronary artery disease and the severity of coronary atherosclerosis. BMC Cardiovasc Disord 2009, 9:3.

8. Hoppmann P, El A, Turok S, Tisch K, Mehlili J, Schonig A, Kastri A, Koch W: No association of chromosome 9p22 with clinical and angiographic outcomes after placement of drug-eluting stents. JACC Cardiovasc Interv 2009, 2(11):1149–1155.

9. Peng WH, Lu L, Zhang Q, Zhang RY, Wang LJ, Yan XX, Chen QJ, Shen WF: Coronary 9p22 polymorphism is associated with myocardial infarction but not with clinical outcome in Han Chinese. Clin Chem Lab Med 2009, 47(8):917–922.

10. Newton-Cheh C, Cook NR, Vandenburgh M, Ridker PM, Albert CM: Common variant at 9p22 is associated with sudden and arrhythmic cardiac death. Circulation 2009, 120(21):2062–2068.

11. Peng WH, Piltrow AP, Frampton CM, Doughty RN, Whalley GA, Ellis CJ, Palmer BR, Skelton L, Yandle TG, Palmer SC, Troughton RW, Richards AM, Cameron VA: A common variant at chromosome 9p22 is associated with age of onset of coronary disease but not subsequent mortality. Circ Cardiovasc Genet 2010, 3(3):286–293.

12. Buyssechaert L, Carruthers KF, Dunbar DR, Peuteman G, Retschitzek B, Belmans A, Hedley A, De Meyer T, Budaj A, Van De Woff F, Lambrechts D, Fox KA: A variant at chromosome 9p22 is associated with recurrent myocardial infarction and acute coronary syndrome. J Am Coll Cardiol 2010, 56:927–934.

13. Higgins JP, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-analyses. BMJ 2002, 327(7414):557–560.

14. Ioannidis JP, Trikalinos TA: Publication bias in meta-analyses: a large survey. J Clin Epidemiol 2007, 60(12):1127–1131.

15. Chen Z, Qian M, Ma GS, Wang JH, Zhang XL, Feng Y, Shen CX, Yao YY: A common variant on chromosome 9p22 affects the risk of early-onset coronary artery disease. Mol Biol Rep 2009, 36(5):889–893.
Kathiresan S, Italian Atherosclerosis, Thrombosis and Vascular Biology Investigators. Influence of 9p21.3 genetic variants on clinical and angiographic outcomes in early-onset myocardial infarction. *J Am Coll Cardiol* 2011, 58(4):426–434.

28. Wang W, Peng WH, Lu L, Zhang RY, Zhang Q, Wang LJ, Chen QJ, Shen WF: Polymorphism on chromosome 9p21.3 contributes to early-onset and severity of coronary artery disease in non-diabetic and type 2 diabetic patients. *Chin Med J (Engl)* 2011, 124(1):66–71.

29. Chan K, Motterle A, Laxton RC, Ye S: Common variant on chromosome 9p21 predicts severity of coronary artery disease. *J Am Coll Cardiol* 2011, 57(13):1497–1498. author reply 1498–1499.

30. Dutta A, Henley W, Lang IA, Murray A, Guralnik J, Wallace RB, Melzer D: The coronary artery disease-associated 9p21 variant and later life 20-year survival to cohort extinction. *Circ Cardiovasc Genet* 2011, 4(5):542–548.

31. Koziarzka A, Pepinski W, Waszkiewicz E, Olszewska M, Maciorkowska D, Skawronska M, Niemcunowicz-Janica A, Dobrzychki S, Musial W, Kaminski K: The Rs1333049, Rs10757278 And Rs4977574 Polymorphisms Of The Locus 9p21-The Association With 5-Year Prognosis In Patients With St-Elevation Myocardial Infarction. *In European Heart Journal: 2011. England: Oxford Univ Press Great Clarendon St, Oxford OX2 6DP; 2011:735–736.

32. Gioli-Pereira L, Santos PC, Ferreira NE, Hueb WA, Krieger JE, Pereira AC: Higher incidence of death in multi-vessel coronary artery disease patients associated with polymorphisms in chromosome 9p21. *BMC Cardiovasc Disord* 2012, 12(1):61.

33. Virani SS, Brautbar A, Lee W, MacArthur E, Grove ML, Nambi V, Frazer L, Wilson JM, Willerson JT, Boerwinkle E, Ballantyne CM: Chromosome 9p21 single nucleotide polymorphisms are not associated with recurrent myocardial infarction in patients with established coronary artery disease. *Circ J* 2012, 76(4):950–956.

34. Lill Z, Horne B, Carlquist J, Anderson J: Snp status at 9P21.3 does not predict post-operative mortality in patients undergoing CABG. *J Am Coll Cardiol* 2012, 59(13):E1416–1416.

35. Chan K, Patel RS, Newcombe P, Nelson CP, Qasim A, Epstein SE, Burnett S, Vaccarino VL, Zafari AM, Go A, Shen GQ, Gong Y, Pepine C, Laxton RC, Whittaker JC, Tang WH: Association between the chromosome 9p21 locus and angiographic coronary artery disease burden: a collaborative meta-analysis. *J Am Coll Cardiol* 2013, 61(9):957–970.

36. Smits LJ, van Kuijk SM, Leffers P, Peeters LL, Prins MH, Sep S: Index event bias-a numerical example. *J Clin Epidemiol* 2013, 66(2):192–196.

37. Ganna A, Rivadeneira F, Hofman A, Uitterlinden AG, Magnusson PK, Pedersen NL, Ingelsson E, Tiemeier H: Genetic determinants of mortality. Can findings from genome-wide association studies explain variation in human mortality? *Hum Genet* 2013, 132(5):553–561.

38. JPT CHH, Green S: Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. *The Cochrane Collaboration* 2011. Available at: http://handbook.cochrane.org/. Accessed May, 2014.

39. Owens D, Lohr KN, Atkins D, Treadwell J, Reston J, Bass E, Chang S, Helfand M: Methods Guide for Effectiveness and Comparative Effectiveness Reviews. Rockville, MD: Agency for Healthcare Research and Quality, 2011. Available at: http://effectivehealthcare.ahrq.gov/ehc/products/60/318/CER-Methods-Guide-140109.pdf. Accessed May, 2014.