Functional and Radiological Outcomes After Treatment with Custom-Made Acetabular Components in Patients with Paprosky type 3 Acetabular Defects: Short-Term Results

Michael Stephan Gruber
Unfallkrankenhaus Linz
https://orcid.org/0000-0003-0697-161X

Michael Jesenko
Klinik Floridsdorf

Julia Burghuber
Unfallkrankenhaus Linz

Josef Hochreiter
Ordensklinikum Linz GmbH Barmherzige Schwestern

Peter Ritschl
Klinik Floridsdorf

Reinhold Ortmaier (r.ortmaier@gmail.com)
Teaching Hospital of the Paracelsus Medical University
https://orcid.org/0000-0002-6684-2513

Research article

Keywords: CTAC, 3D-printed prosthesis, revision surgery, severe acetabular bone loss, custom-made acetabular component, total hip arthroplasty

DOI: https://doi.org/10.21203/rs.3.rs-37200/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Severe acetabular defects require special treatment with either impaction bone grafting, metal augmented cups or cup-cage constructs. Even these options are often not adequate, especially in hips with Paprosky type 3 defects with loss of anterior and posterior columns. This study investigates the clinical and radiological outcomes of custom-made acetabular components (© Materialise NV, Leuven, Belgium) for Paprosky type 3 defects.

Methods

Sixteen patients were included in this trial, nine of whom completed one year of follow-up. The Harris hip score and the Oxford hip score were used to compare pre- and postoperative functional outcomes. Radiological follow-up comprised anteversion and inclination of the implanted cup and offset measurements in both hips (femoral, medial, ischial offset and center of rotation). Statistical analyses were performed with IBM SPSS Statistics.

Results

The mean follow-up time of the nine patients was 13.6 months (± 5.6 SD). The Oxford hip score and Harris hip score improved from 19.8 and 50.1 to 29.4 and 68.8, respectively (p = 0.009 and 0.01). There were complications in three cases (33.3%), which led to one re-revision (11.1%). Radiologic follow-up showed no significant difference in offset measurements except for femoral offset (41.8 mm on the contralateral and 35.2 mm on the treated hip, p = 0.044).

Conclusions

The functional and radiological outcomes are promising. However, long-term outcomes still need to be examined.

Level of Evidence: Therapeutic Level IV.

Background

The number of total hip arthroplasties (THAs) has increased in recent decades, and a further increase in incidence is predicted(1–3). The reasons for this increase are multifactorial and comprise an increasing incidence of especially younger populations and the ability of older patients to undergo such an intervention as a result of medical progress and increasing life expectancy(3).

However, with an increasing number of primary THAs, the absolute number of revisions will automatically increase, and orthopedic surgeons will be increasingly forced to deal with revision surgeries.
Reasons for revisions are dislocation/instability (22%), mechanical loosening (20%), infection (15%) and implant failure (10%) (4). In terms of revision, extensive acetabular defects are one of the most challenging situations for surgeons. While many contained defects can be managed with the use of standard cups, uncontained extensive defects require other strategies. Acetabular defects can be approached mainly with three methods, namely, impaction bone grafting (IBG), metal augmented cups or cup-cage constructs (5).

IBG was first described by Hastings and Parker in 1975 (6), and initial reports showed high failure rates, but the results improved due to the use of cementless cups that may improve bone integration (7, 8). However, this technique is limited by the severity of the defect, and the outcome is linked to the Paprosky type of defect (9).

Metal augments have been used for many years now. Tantalum is the material of choice. It can be shaped in a highly porous “foam”, with low stiffness and high friction. These implants can be placed directly at the area of the defect and can restore the center of rotation (COR). However, as in IBG, metal-augmented implants need a certain amount of host bone to achieve sufficient fixation for integration (10).

For more severe defects or pelvic discontinuities, cup-cage constructs are available. With the use of these stiff implants, Martin et al. reported relatively good outcomes and survivorship (11).

However, in regard to combined defects with anterior and posterior column deficiency, established implants do not provide satisfactory results.

As an alternative to the abovementioned methods, newly and specially designed custom-made triflanged acetabular components (CTACs) are on the rise. These can be produced and adapted for each unique acetabular defect based on preoperative CT images. The main goals of revision surgery for acetabular defects are to achieve sufficient fixation and restoration of the COR as well as to achieve offset and leg length (12). CTACs were developed to achieve these goals. Although this method is quite expensive compared to the use of standard implants (13, 14), it may often be the only possible solution for THA revision.

Therefore, we established a cohort study to evaluate the clinical and radiological results after treatment with CTAC cups for revision surgery in patients with severe Paprosky 3A and 3B acetabular defects.

Methods
Table 1
Paprosky classification of acetabular bone loss

Defect	Tear drop	Superior dome	Anterior column	Posterior column	Bone bed
Type 1	Present	No migration	Intact	Intact	Mild (> 50% cancellous)
Type 2A	Intact	Mild migration	Intact	Intact	Moderate (< 50% cancellous)
		< 2 cm superior			
Type 2B	Intact	Mild migration	Intact	Intact	Moderate (< 50% cancellous)
		< 2 cm superolateral			
Type 2C	Moderate destruction	Mild migration	Disrupted	Intact	Moderate (< 50% cancellous)
		< 2 cm medial			
Type 3A	Moderate destruction	Severe migration	Intact	Moderate lysis	Severe 10 – 2 o’clock loss (40% – 70% sclerotic)
		> 2 cm superolateral			
Type 3B	Complete obliteration	Severe migration	Disrupted	Severe lysis	Severe 9 – 5 o’clock loss (30% sclerotic)
		> 2 cm superomedial			

In the period from April 2016 to April 2018, 16 patients received treatment with aMace (© Materialise NV, Leuven, Belgium) CTACs for revision THA with concomitant acetabular type 3A or 3B bone defects (Table 1). Five patients were treated at the hospital “Ordensklinikum Linz GmbH Barmherzige Schwestern”, and 11 patients were treated at the Orthopedic Hospital Gersthof. The reasons for revision surgery varied: 10 patients received treatment because of aseptic loosening, three patients received treatment because of acetabular fracture, two patients received treatment because of septic loosening, and one patient was treated due to implant failure. Before implantation, infection was excluded through preoperative intraarticular joint aspiration and evaluations of C-reactive protein (CRP) and white blood cell (WBC) count as well as clinical investigations and intraoperative sonication of the dismantled implant and/or examination of five tissue samples. Six of the 16 surgeries were performed on the left hip and 10 on the right hip. Fifteen of the patients included were female, with one male patient, and the patients’ age at the time of surgery was between 42 and 85 years (mean 68.9 ± 12.5 SD). The mean body mass index was 28.2 kg/m² (± 6.3 SD) (Table 2).
One (6.3%) of the 16 patients died during follow-up. Nine of the remaining patients completed radiological and functional follow-up examinations (56.3%). While clinical follow-up comprised pre- and postoperative evaluation of Oxford hip score (OHS)(15) and Harris hip score (HHS)(16), radiological follow-up included preoperative CT scans and postoperative conventional X-rays.

The mean follow-up was 13.6 months (± 5.6 SD). Radiological investigation showed one patient with Paprosky type 3A and 8 patients with Paprosky type 3B acetabular defects (Table 3).

This study was approved by the ethics committee of the hospital “Ordensklinikum Linz GmbH Barmherzige Schwestern” (EKS 25/19). All patients provided informed consent.

Table 2
Overall patient demographics

aMace (n = 16)
Age (years)
Sex (female/male)
Side (left/right)
BMI (kg/m²)
Smoker (yes/no)

Data are presented as the mean ± standard deviation or absolute numbers (percentages).

Table 3
Patient demographics of all patients available for follow-up.

aMace (n = 9)
Age (years)
Sex (female/male)
Side (left/right)
BMI (kg/m²)
Smoker (yes/no)
Paprosky (3A/3B)

Data are presented as the mean ± standard deviation or absolute numbers (percentages).

Preoperative Evaluation and Planning

First, conventional X-rays in 2 planes (anterior-posterior and axial) were performed in the affected hip. Implant positioning and loosening and fractures were documented.
Then, a CT scan following a special protocol provided by the company was performed. A 3D model of the acetabulum and the pelvis was then virtually conducted, and bone defects and fracture lines were identified. While acetabular bone loss was quantified and classified into the Paprosky score, bone quality was evaluated for fixation of the screws (Fig. 1)(9). An implant design based on the anatomical center of rotation, inclination, anteversion and bone preservation was proposed (Fig. 2). The implant consisted of porous augmentation and the plate, which were built as one part. A titanium alloy was used for the triflanged acetabular cup and the defect filling trabecular augment (Ti6Al4V ELI). Screw length and direction as well as the diameter of the screws were chosen according to bone quality and remaining bone stock.

A preliminary planning report was provided to the surgeon and included instructions for preparation and reconstruction as well as a proposal for screw positioning and length. It was subsequently reviewed by the surgeon and updated to the surgeon's suggestions via web meetings for improvement. Production started after a final check and confirmation of the final planning report. The listed time for planning and production was 5 weeks (1 and 4 weeks, respectively). The implant came with a trial implant, bone model and custom drill guides. All components were delivered nonsterile and had to be sterilized at the hospital facility. Instruments, screws and cup/liner components were provided by the hospital.

Surgical technique

Surgery was performed following a standard protocol. Antibiotics were administered preoperatively. Tissue samples for sonication and microbial evaluation were harvested intraoperatively. The procedure was performed in the supine position, and a transgluteal approach was used. For the preparation of proper implant insertion, bone removal and clearance of some bone fragments, according to the planning report, were sometimes necessary, and gaps were filled with morselized allograft bone material afterwards. After bone bed preparation, the trial model of the implant was placed into the acetabulum to confirm implant seating and fitting. Then, the implant was brought together with a custom drill guide. After drilling, the screw length was confirmed and compared to the planned screw length. After fixation of the acetabular component, a cup/liner component was cemented in the implant. The maximum size was predefined by the planning report.

Postoperative protocol

Patients were mobilized immediately on the first postoperative day after drainage removal. Full weight bearing and full range of motion were allowed immediately after surgery in all patients.

Figure 1.tif

Figure 1 – Quantification of acetabular bone loss and assessment of bone quality

Figure 2.tif

Figure 2 – Preparation and reconstruction. From left to right: planned bone removal, bone after removal, proposed implant design (porous augment and plate are built as one part)
Statistics

Statistical analyses were performed with IBM SPSS Statistics (Windows, 64 bit, version 23.0; IBM Corp., Armonk, NY, USA). Descriptive statistics were used to investigate patient characteristics. Pre- and postoperative OHS and HHS were compared using paired t-tests. Radiological differences between the treated side of the hip and the contralateral side were evaluated with descriptive statistics and paired t-tests. Statistical significance was reported as a p-value of ≤ 0.05. There were no missing data. Patients who did not complete the follow-up examinations were declared as lost to follow-up and were excluded from the final analysis.

Results

Nine out of 16 of the initially included patients completed follow-up. Six patients were lost to follow-up. One patient died between surgery and follow-up due to nonrelated medical problems, two could not be contacted, and four did not want to participate. The remaining nine patients completed follow-up and were included in the final analysis. There were no missing data from these patients. The average time to follow-up was 13.6 months (± 5.6 SD). Short-term follow-up was chosen due to the limited preexisting evidence and influence of the outcome on the applicability of the implant.

The patients who completed follow-up were hospitalized for a mean of 21.9 days (± 6.3 SD).

Follow-up results showed an increase in postoperative scores compared to the preoperative assessment. Surgical treatment of patients with severe acetabular bone loss using aMace cups led to significant improvements in the OHS ($t = -3.436, p = 0.009, n = 9$) and HHS ($t = -3.346, p = 0.01, n = 9$). The patient’s abilities, pain and clinical presentations were significantly better after surgery compared to before. HHS improved in every patient (50.1 ± 19.8 SD preoperatively and 68.8 ± 16.4 SD postoperatively, Fig. 3), whereas 8 out of 9 patients experienced improvements in the OHS (19.8 ± 9.5 SD preoperatively and 29.4 ± 10.8 SD postoperatively, Fig. 4).

During surgery, a mean of 9 screws per patient (± 2.5 SD) were used for fixation of the implant. A mean of 13.7 screws per patient (± 1.6 SD) were planned preoperatively according to the bone condition.

Postoperative radiologic follow-up as shown in Fig. 5 showed no significant difference between medial, ilioschial and COR offsets in either hip. However, a significant difference in femoral offsets was noticed
The mean anteversion and inclination angles were 15 (± 5.8 SD) and 46.6 (± 9.0 SD) degrees, respectively (Table 4).

Table 4
Clinical and radiological results

	aMace (n = 9)
	Anteversion
	(deg)
	15 ± 5.8
	Inclination
	(deg)
	46.6 ± 9.0
	preoperative
	postoperative
	p
	Oxford hip score (60)
	19.8 ± 9.5
	29.4 ± 10.8
	0.009
	Harris hip score (100)
	50.1 ± 19.5
	68.8 ± 16.4
	0.010
	Contralateral side
	postoperative
	p
	Femoral offset (mm)
	41.8 ± 8.0
	35.2 ± 8.4
	0.044
	Medial offset (mm)
	89.8 ± 8.8
	96.8 ± 11.7
	0.109
	Ilioischial offset (mm)
	27.6 ± 4.0
	29.4 ± 10.7
	0.568
	Center of rotation (mm)
	19.3 ± 8.7
	19.4 ± 11.4
	0.980

Data are presented as the mean ± standard deviation or absolute numbers (percentages).

Complications

Intraoperative microbial samples were positive in one patient who received intravenous antibiotics thereafter. One patient had sciatic nerve palsy due to the intervention. Three of the patients faced postinterventional complications, resulting in a complication rate of 33.3%. One patient developed deep vein thrombosis, and two patients experienced femoroacetabular dislocation. One of these patients underwent a subsequent surgery for changing the type of inlay due to multiple dislocations (re-revision rate, 11.1%). This intervention led to stable conditions of the hip, and no further dislocations were noticed.

Discussion

The current study evaluated the functional and radiological outcomes after the use of CTACs in patients with severe acetabular bone defects. Overall, satisfying clinical and radiological outcomes were observed. The OHS and HHS improved significantly one year postoperatively. Our results are comparable to recent
research results. In a study by Wind et al., the authors investigated 19 patients after an average follow-up of 31 months after the use of CTACs. The authors found a significantly improved HHS from 38 to 63 points(17). In another study by Taunton et al., the investigation of 57 patients with pelvic discontinuity at an average of 65 months after the use of CTACs showed a final HHS of 74.8 points(18). With an average of 10 years, the study with the longest follow-up, performed by DeBoer et al., reported an improvement in the HHS from 41 to 80 points(19).

Radiological measurements of the COR and offsets showed no significant difference when compared to the “healthy” side. However, most of the patients had already received THA on the contralateral side. The current measurements therefore should not be seen as a comparison to baseline data; rather, it shows the correct position of the aMace implant compared to the contralateral hip, regardless of preexisting THA. We only recognized a significant difference in femoral offset (p = 0.044), and no significant differences in the other offsets were observed. However, restoration of the center of rotation is important for postoperative improvement and stability after THA. We achieved this in eight of nine patients with a mean COR of 19.4 mm. A “high hip center of rotation” is defined in the literature with a COR of more than 35 mm(10, 20). Only one patient did not match the limit with a difference to the inter-teardrop line of 38 mm.

One patient faced postoperative dislocation of the hip 87 days after implantation of the aMace cup. This special case may have been due to too little anteversion, which was 6 degrees in that particular patient. The patient received revision surgery with cementation of a special cup into the aMace implant. No further dislocation was noticed thereafter. None of the other patients experienced postoperative dislocation; in these cases, the anteversion was at a mean of 16.1 degrees.

A review of up-to-date literature shows complications in 16–53% of patients and re-revision in 11–35% (19, 21–24). We experienced a complication rate of 33.3%, resulting in a re-revision rate of 11.1%, which matched the rates in these trials. None of the implants had to be removed due to postoperative complications.

Of course, this study has several limitations. The main limitations are the small sample size and the lack of a control group as well as its retrospective design. In patients without arthroplasty on the healthy side, a statement would be needed about the difference between the original COR and offsets.

Finally, implant cost is a factor that should be taken into consideration during the decision process. While planning is free of charge, the set of one Materialise aMace implant plus drilling guides and 3D models costs approximately 15.000 €. In the authors’ opinion, the implant is a reasonable alternative for patients with severe acetabular bone defects. However, long-term outcomes still need to be examined, and socioeconomic effects should be investigated.

Conclusion
Revision surgery in THA with Materialise aMace custom-made acetabular components in patients with severe acetabular bone loss shows promising short-term functional and radiological outcomes. However, long-term outcomes still need to be examined.

List OfAbbreviations

COR center of rotation
CRP C-reactive protein
CT computed tomography
CTAC custom-made triflanged acetabular components
HHS Harris Hip Score
IBG impaction bone grafting
OHS Oxford Hip Score
SD standard deviation
THA total hip arthroplasty
WBC white blood count

Declarations

Ethics approval and consent to participate

This study has been approved by the ethics committee of the hospital “Barmherzige Schwestern Linz” with their chairman Priv.-Doz. Dr. Oleksiy Tsybrovskyy. The number given by the ethics committee is EKS 25/19. Written consent was provided.

Consent for publication

No individual person’s data are being presented.

Availability of data and materials

This manuscript does not contain any individual person’s data in any form.

Competing interests

To the authors’ knowledge, there are no potential competing interests.
Funding

There was no source of funding or cooperation with the manufacturer whatsoever.

Authors' contributions

MSG was responsible for the collection of the data, the dataset itself as well as the statistical analyses. MSG was also a major contributor in writing the manuscript. MJ was responsible for the collection of data and the follow-up examinations in the Orthopedic Hospital Gersthof. JB was responsible for the acquisition of data and the follow-up examinations in the hospital “Ordensklinikum Linz GmbH Barmherzige Schwestern”. JH is the head of orthopedic department at “Ordensklinikum Linz GmbH Barmherzige Schwestern” performed most of the interventions as well as the study design. PR also contributed to the study by performing interventions and was head of the orthopedic department at Orthopedic Hospital Gersthof. RO designed the concept of this study; he was involved in the writing process and corresponds with the journals. All authors read and approved the final manuscript.

Authors' information

Michael Stephan Gruber, MD michael.s.gruber@icloud.com

Michael Jesenko, MD michael.jesenko@wienkav.at

Julia Burghuber, MD julia.burghuber@gmx.at

Josef Hochreiter, MD josef.hochreiter@ordensklinikum.at

Univ. Prof. Peter Ritschl, MD peter.ritschl@wienkav.at

Reinhold Ortmaier, MD r.ortmaier@gmail.com

Acknowledgements

None.

References

1. Inacio MCS, Graves SE, Pratt NL, Roughead EE, Nemes S. Increase in Total Joint Arthroplasty Projected from 2014 to 2046 in Australia: A Conservative Local Model With International Implications. Clin Orthop Relat Res. 2017;475(8):2130–7.

2. 10.3109/17453674.2010.548029

Skyttä ET, Jarkko L, Antti E, Huhtala H, Ville R. Increasing incidence of hip arthroplasty for primary osteoarthritis in 30- to 59-year-old patients. Acta Orthop [Internet]. 2011 Feb;82(1):1–5. Available from: http://www.tandfonline.com/doi/full/10.3109/17453674.2010.548029.
3. 10.1016/j.joca.2014.04.009
Pabinger C, Geissler A. Utilization rates of hip arthroplasty in OECD countries. Osteoarthr Cartil [Internet]. 2014 Jun;22(6):734–41. Available from: http://dx.doi.org/10.1016/j.joca.2014.04.009.

4. 10.1007/s11999-014-4078-8
Bozic KJ, Kamath AF, Ong K, Lau E, Kurtz S, Chan V, et al. Comparative Epidemiology of Revision Arthroplasty: Failed THA Poses Greater Clinical and Economic Burdens Than Failed TKA. Clin Orthop Relat Res [Internet]. 2015;473(6):2131–8. Available from: http://dx.doi.org/10.1007/s11999-014-4078-8.

5. Baauw M, van Hooff ML, Spruit M. Current Construct Options for Revision of Large Acetabular Defects. JBJS Rev [Internet]. 2016 Nov;4(11):1. Available from: http://insights.ovid.com/crossref?an=01874474-201611000-00001.

6. Hastings DE, Parker SM. Protrusio acetabuli in rheumatoid arthritis. Clin Orthop Relat Res [Internet]. 1975 May;66(108):76–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1139840.

7. 10.1007/s00264-010-1198-y
Pulido L, Rachala SR, Cabanela ME. Cementless acetabular revision: past, present, and future. Int Orthop [Internet]. 2011 Feb 14;35(2):289–98. Available from: http://link.springer.com/10.1007/s00264-010-1198-y.

8. 10.1302/0301-620X.95B11.32834
Ibrahim MS, Raja S, Haddad FS. Acetabular impaction bone grafting in total hip replacement. Bone Joint J [Internet]. 2013 Nov;95-B(11_Supple_A):98–102. Available from: http://online.boneandjoint.org.uk/doi/10.1302/0301-620X.95B11.32834.

9. Paprosky WG, Perona PG, Lawrence JM. Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation. J Arthroplasty. 1994;9(1):33–44.

10. 10.1007/s11999-014-3861-x
Whitehouse MR, Masri BA, Duncan CP, Garbuz DS. Continued Good Results With Modular Trabecular Metal Augments for Acetabular Defects in Hip Arthroplasty at 7 to 11 Years. Clin Orthop Relat Res [Internet]. 2015 Feb 15;473(2):521–7. Available from: http://link.springer.com/10.1007/s11999-014-3861-x.

11. Martin JR, Barrett I, Sierra RJ, Lewallen DG, Berry DJ. Construct Rigidity: Keystone for Treating Pelvic Discontinuity. J Bone Jt Surg [Internet]. 2017 May;99(9):e43. Available from: http://insights.ovid.com/crossref?an=00004623-201705030-00012.

12. Myncke I, van Schaik D, Scheerlinck T. Custom-made triflanged acetabular components in the treatment of major acetabular defects. Short-term results and clinical experience. Acta Orthop Belg [Internet]. 2017 Sep;83(3):341–50. Available from: http://www.actaorthopaedica.be/acta/download/2017-3/01-Myncke.pdf.

13. Malik HH, Darwood ARJ, Shaunak S, Kulatilake P, El-Hilly AA, Mulki O, et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res [Internet]. 2015
14. Eltorai AEM, Nguyen E, Daniels AH. Three-Dimensional Printing in Orthopedic Surgery. Lindeque BGP, editor. Orthopedics [Internet]. 2015 Nov 1;38(11):684–7. Available from: http://www.healio.com/doiresolver?doi=10.3928/01477447-20151016-05.

15. HIP REPLACEMENT

10.1302/0301-620X.78B2.0780185
Dawson J, Fitzpatrick R, Carr A, Murray D. QUESTIONNAIRE ON THE PERCEPTIONS OF PATIENTS ABOUT TOTAL. HIP REPLACEMENT. J Bone Joint Surg Br [Internet]. 1996 Mar;78-B(2):185–90. Available from: http://online.boneandjoint.org.uk/doi/10.1302/0301-620X.78B2.0780185.

16. 10.1007/978-1-4471-5451-8
Banaszkiewicz PA. Traumatic Arthritis of the Hip After Dislocation and Acetabular Fractures: Treatment by Mold Arthroplasty: An End-Result Study Using a New Method of Result Evaluation. In: Banaszkiewicz PA, Kader DF, editors. Classic Papers in Orthopaedics [Internet]. London: Springer London; 2014. p. 13–7. Available from: http://link.springer.com/10.1007/978-1-4471-5451-8.

17. Wind MA, Swank ML, Sorger JI. Short-term Results of a Custom Triflange Acetabular Component for Massive Acetabular Bone Loss in Revision THA. Orthopedics [Internet]. 2013 Mar 1;36(3):e260–5. Available from: http://www.healio.com/doiresolver?doi=10.3928/01477447-20130222-11.

18. 10.1007/s11999-011-2126-1
Taunton MJ, Fehring TK, Edwards P, Bernasek T, Holt GE, Christie MJ. Pelvic Discontinuity Treated With Custom Triflange Component: A Reliable Option. Clin Orthop Relat Res [Internet]. 2012 Feb 14;470(2):428–34. Available from: http://link.springer.com/10.1007/s11999-011-2126-1.

19. DeBoer DK, Christie MJ, Brinson MF, Morrison JC. Revision Total Hip Arthroplasty for Pelvic Discontinuity. J Bone Jt Surg [Internet]. 2007 Apr;89(4):835–40. Available from: http://insights.ovid.com/crossref?an=00004623-200704000-00020.

20. Antoniades J, Pellegrini VD. Cross-sectional anatomy of the ilium: Implications for acetabular component placement in total hip arthroplasty. Clin Orthop Relat Res. 2012;470(12):3537–41.

21. Holt G, Dennis D. Use of Custom Triflanged Acetabular Components in Revision Total Hip Arthroplasty. Clin Orthop Relat Res. 2005 Jan 1;429:209–14.

22. Joshi AB, Lee J, Christensen C. Results for a custom acetabular component for acetabular deficiency. J Arthroplasty [Internet]. 2002 Aug;17(5):643–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0883540302000621.

23. Taunton MJ, Fehring TK, Edwards P, Bernasek T, Holt GE, Christie MJ. Pelvic discontinuity treated with custom triflange component: A reliable option. Clin Orthop Relat Res. 2012;470(2):428–34.

24. Wind MA, Swank ML, Sorger JI. Short-term results of a custom triflange acetabular component for massive acetabular bone loss in revision THA. Orthopedics. 2013;36(3):260–5.

Figures
Figure 1

Quantification of acetabular bone loss and assessment of bone quality

Figure 2

Preparation and reconstruction. From left to right: planned bone removal, bone after removal, proposed implant design (porous augment and plate are built as one part)
Figure 3

Pre- vs. postoperative Harris Hip Score
Figure 4

Pre- vs. postoperative Oxford Hip Score

Figure 5

I) Measurement of offsets in a hip with aseptic loosening (a: femoral offset; b: medial offset; c: ilioischial offset; d: center of rotation). Figure 5 – II) shows the same hip after revision with CTACs