Healing Mechanisms in Cutaneous Wounds: Tipping the Balance

Adam J. Singer, MD

Acute and chronic cutaneous wounds pose a significant health and economic burden. Cutaneous wound healing is a complex process that occurs in four distinct, yet overlapping, highly coordinated stages: hemostasis, inflammation, proliferation, and remodeling. Postnatal wound healing is reparative, which can lead to the formation of scar tissue. Regenerative wound healing occurs during fetal development and in restricted postnatal tissues. This process can restore the wound to an uninjured state by producing new skin cells from stem cell reservoirs, resulting in healing with minimal or no scarring. Focusing on the pathophysiology of acute burn wounds, this review highlights reparative and regenerative healing mechanisms (including the role of cells, signaling molecules, and the extracellular matrix) and discusses how components of regenerative healing are being used to drive the development of novel approaches and therapeutics aimed at improving clinical outcomes. Important components of regenerative healing, such as stem cells, growth factors, and decellularized dermal matrices, are all being evaluated to recapitulate more closely the natural regenerative healing process.

Keywords: acute wound healing, inflammatory response, regenerative medicine, regenerative healing, reparative healing, scarring, stem cells

Impact Statement

Acute wounds from thermal injury are common; they exert substantial physical and psychological effects on a patient and result in significant morbidity and mortality. This review provides a detailed overview of the mechanisms of reparative and regenerative wound healing; discusses the key cell types, signaling molecules, and molecular targets that influence these important biological pathways; and highlights current therapeutic approaches aimed at promoting regenerative wound healing. An increased understanding of the underlying mechanisms of reparative and regenerative healing will contribute to the development of innovative strategies for the clinical treatment of patients with severe burns.

Introduction

CUTANEOUS WOUNDS POSE a significant health and economic burden. In 2014, 8.2 million Medicare beneficiaries in the United States filed claims for wound care, and total wound costs were estimated at $28.1 billion to $96.8 billion per year. The United Kingdom’s National Health Service (NHS) spent an average of £2,151 per patient (catchment population of 250,000 adults) with acute wounds in 2012 and 2013. Although estimates for the global prevalence of chronic wounds vary, studies in Western Europe report that 1% to 2% of the population experience chronic wounds, and the NHS spent £2,870 per patient on chronic wounds in United Kingdom in 2012 and 2013. The primary difference between acute and chronic wounds is the length of time required for wound closure. Acute wounds, including those caused by trauma, iatrogenic wounds (surgical procedures), or accidental wounds (e.g., burns, lacerations, and abrasions), progress in an orderly manner through the healing process. Chronic wounds, including skin ulcers of various etiologies (e.g., venous or arterial disease, pressure, and vasculitis or
Acute wounds resulting from thermal injury are common and can result in significant morbidity and mortality. An estimated 9 million injuries and 121,000 deaths from fire, heat, and hot substances were reported in the 2017 Global Burden of Disease study. Morbidity associated with a severe burn injury can persist for 10–20 years after the initial injury. In 2019, average hospital charges for a U.S. patient with a burn injury were estimated at $105,000, which increased to $310,000 for nonsurvivors. Scarring from large burn wounds or burn wounds in functionally or cosmetically important areas (e.g., the hands, face, neck, and joints) may impart a significant burden on patients. Scars can contribute to contracture in functionally or cosmetically important areas, reduced mobility, pain, itching, disfigurement, reduced quality of life, and psychological consequences (e.g., depression and anxiety). Severe burns can also cause extensive nerve damage and peripheral neuropathy. In a systematic review, patients with burns reported the lowest scores in domains of work and heat sensitivity, bodily pain, physical role limitations, and pain/discomfort over the short term. Burn injuries are also associated with a high prevalence of posttraumatic stress disorder, ranging from 11% to 50% across studies.

Burn wounds heal through the reparative wound healing process and result in the formation of scar tissue, which is mainly composed of dense collagen, and lacks sweat glands, hair follicles, and other appendages. In contrast, regenerative healing is a process that can restore the wounded skin to an uninjured state, with minimal or no scarring. This type of healing occurs in early-developement fetal wounds (up to 24 weeks of gestation in humans) and results in skin that has a structure and function similar to the surrounding uninjured skin, including regenerated epidermal appendages. While the goal of true regenerative healing has not yet been realized with current therapies, it is the aspirational objective of burn wound treatment.

This review provides an overview of the mechanisms of reparative and regenerative wound healing; discusses the key cell types, signaling molecules, and molecular targets that influence these pathways; and highlights current and future therapeutic approaches aimed at promoting regenerative healing in acute burn wounds. Recent reviews by Zhao et al. and Han and Ceilley provide a robust overview of the current landscape for chronic wounds.

The Wound Healing Process

Most postnatal wounds heal through reparative healing, which is a complex biological process involving cells, signaling molecules, and the extracellular matrix (ECM) that occurs in four overlapping, highly coordinated stages: hemostasis, inflammatory, proliferation, and remodeling. Fetal wounds heal in utero through regenerative healing; postnatal microenvironments with an attenuated inflammatory response (e.g., the oral mucosa) also show healing with regenerative characteristics, including a reduced immune response and scarring. Regenerative healing occurs in the same four stages as reparative healing, with some key differences. The following sections summarize the wound healing process and the important biological components that differ between the two wound healing mechanisms; Table 1 provides more detail on the specific cells and signaling molecules involved in each type of wound repair.

It is important to note that many studies on cutaneous wound healing, including those on burns, use animal models. Although animal models may be preferred for reproducibility, control of factors that affect wound healing, costs, and ethical considerations, such models are not completely representative of human wound healing. An additional factor making regenerative healing difficult to study and characterize in humans is that it happens primarily in utero. While this review focuses on human cutaneous wound healing, much of the primary literature cited uses animal models in an attempt to better characterize the process.

Hemostasis phase

Burn wounds result in significant damage to the surrounding vasculature, which extends out from the initial injury zone and into the zone of stasis, leading to low oxygenation and vessel leakage. Reparative healing begins with the hemostasis phase. Immediately following a cutaneous injury, a blood clot comprising platelets, cross-linked fibrin, and fibronectin starts to form. Initial clotting prevents excessive blood loss and helps protect the wound from infection. The clot also serves as a temporary ECM that stores growth factors and facilitates the movement of vascular cells, leukocytes, and fibroblasts during the inflammatory stage.

In early-stage embryos, hemostasis begins with the formation of a fibronectin clot. Fibrin is not present in the clot, and platelets have not yet differentiated. Reepithelialization also starts immediately and is completed rapidly.

Inflammatory phase

In postnatal healing, the inflammatory phase is initiated by the innate immune response; this phase can last several days and, in cases of severe burns, lead to a hypermetabolic state. The response of toll-like receptors to damage-associated molecular patterns released by injured cells triggers the innate immune response and leads to the production of signaling molecules, including tumor necrosis factor alpha (TNF-α), and interleukin (IL)-1, IL-6, and IL-8, which promote the migration of immune cells to the wound. Leukocytes infiltrate the injured tissue by extravasation and help protect the wound from infection. Neutrophils are involved in phagocytosis and protect the wound from infection by secreting proteases. Neutrophils also secrete cytokines with immunomodulatory functions and chemokines, which signal for additional inflammatory cells to clear debris from the wound.

The infiltration of immune cells is helped by mast cells, which release histamine and heparin, reducing blood coagulation and increasing fluid accumulation. Later in the inflammatory phase, angiogenic growth factors secreted by neutrophils help promote the formation of blood vessels.
Phenomenon	Reparative healing	Regenerative healing
Hemostasis phase		
Time point	Starting immediately after wounding and lasting a few hours to 2 days \(^27,200\)	Does not occur in regenerative healing; reepithelialization starts immediately after wounding \(\) murine and rat models \(133,40\)
Cells	Platelets are activated and drive clot formation, which prevents excessive blood loss and protects the wound from infection \(25,35–37\)	Not well characterized in the published literature
Signaling molecules	VEGF is released by platelets \(^201\)	Not well characterized in the published literature
ECM	Cross-linked fibrin and fibronectin contribute to clot formation and provide an initial structure for cell movement \(25,35,58\)	A fibronectin clot forms \(^39\) Tenascin is present in the tissue surrounding the wound and helps with rapid reepithelialization \(^5,62\) There are high levels of hyaluronic acid \(^30\)
Inflammatory phase		
Time point	Starts on day 1 during hemostasis and can last up to day 8 \(^27,200\)	Although it is known that this phase is attenuated in fetal wounds, the timing of the appearance of cells and cytokines associated with inflammation has not been characterized in human or other large mammalian fetuses \(^61,62\)
Cells	Toll-like receptors on damaged cells trigger the innate immune response \(^43,44\)	Few inflammatory cells are present; larger or more severe wounds may elicit a stronger inflammatory response \(^40,61,62,63\)
	Leukocytes protect the wound from infection \(^46\)	Macrophages are present, but are not responsive to the wound \(^63\) Mast cells may be present, but are not activated \(^34\)
	Neutrophils secrete signaling molecules to debride the wound, degrade the clot, attract additional inflammatory cells, and contribute to angiogenesis \(^46,49,54,55,133,202–204\)	Anti-inflammatory IL-10 expression is increased \(^68,69\)
	M1 macrophages clear debris from the wound \(^71,133,205\)	Expression of inflammatory cytokines and chemokines, including IL-6 and IL-8, is reduced or absent \(^55–67\)
	Mast cells reduce blood coagulation and increase fluid accumulation	Anti-inflammatory IL-10 expression is increased \(^68,69\)
	Natural killer cells and plasmacytoid dendritic cells contribute to antimicrobial activity, angiogenesis, and tissue repair \(^36–59\)	Anti-inflammatory IL-10 expression is increased \(^68,69\)
Signaling molecules	Inflammatory cytokines and chemokines (e.g., TNF-\(\alpha\), TGF-\(\beta\), IL-1, IL-6, and IL-8) promote the migration of immune cells to the site of inflammation \(^49,51,133,203,206,207\)	Expression of inflammatory cytokines and chemokines, including IL-6 and IL-8, is reduced or absent \(^55–67\)
	Proteases debride the wound and eliminate toxins from damaged tissue \(^46,47\)	Anti-inflammatory IL-10 expression is increased \(^68,69\)
	Growth factors (e.g., HGF, VEGF, and FGF) promote angiogenesis \(^49,54,55\)	Anti-inflammatory IL-10 expression is increased \(^68,69\)
	Histamine and heparin reduce blood coagulation and increase fluid accumulation \(^52,53\)	Anti-inflammatory IL-10 expression is increased \(^68,69\)
	Type I interferons contribute to wound healing and antimicrobial activity \(^36,57\)	Anti-inflammatory IL-10 expression is increased \(^68,69\)
ECM	New blood vessels start to form \(^49,54,55\)	Angiogenesis does not increase, and does not contribute to inflammation \(^40,62\)
Proliferation phase		
Time point	Starts 3–10 days after wounding and can last until day 25 \(^25,77,200\)	Reepithelialization starts immediately and wound closure is achieved 2–3 days after wounding \(\) murine, rat, and lamb models \(^5,50,119\)
Cells	M2 macrophages secrete signaling molecules to attract fibroblasts and keratinocytes to the wound \(^39,71,208\)	Endothelial progenitor cells originate from the bone marrow and contribute to angiogenesis and increased blood circulation \(^69\)
	Fibroblasts migrate and proliferate to deposit the ECM for granulation tissue \(^25,74,76\)	(continued)

\(^{27,200}\) Indicates time points after wounding; murine and rat models; \(^40\) indicates known differences in regenerative healing; \(^133,40\) indicates murine and rat models; \(^30\) indicates high levels of hyaluronic acid; \(^39\) indicates fibronectin clot formation; \(^46,49,54,55,133,202–204\) indicates angiogenesis; \(^71,133,205\) indicates M1 macrophages; \(^40\) indicates reepithelialization; \(^25\) indicates blood coagulation; \(^35–37\) indicates blood loss; \(^42\) indicates plasmacytoid dendritic cells; \(^50\) indicates bone marrow; \(^75\) indicates bone marrow; \(^54,55\) indicates angiogenesis; \(^55–67\) indicates IL-6 and IL-8; \(^68,69\) indicates IL-10; \(^61,62\) indicates inflammation; \(^52,53\) indicates heparin; \(^54,55\) indicates angiogenesis.

\(^{27,200}\) Indicates time points after wounding; murine and rat models; \(^40\) indicates known differences in regenerative healing; \(^133,40\) indicates murine and rat models; \(^30\) indicates high levels of hyaluronic acid; \(^39\) indicates fibronectin clot formation; \(^46,49,54,55,133,202–204\) indicates angiogenesis; \(^71,133,205\) indicates M1 macrophages; \(^40\) indicates reepithelialization; \(^25\) indicates blood coagulation; \(^35–37\) indicates blood loss; \(^42\) indicates plasmacytoid dendritic cells; \(^50\) indicates bone marrow; \(^75\) indicates bone marrow; \(^54,55\) indicates angiogenesis; \(^55–67\) indicates IL-6 and IL-8; \(^68,69\) indicates IL-10; \(^61,62\) indicates inflammation; \(^52,53\) indicates heparin; \(^54,55\) indicates angiogenesis.

\(^{27,200}\) Indicates time points after wounding; murine and rat models; \(^40\) indicates known differences in regenerative healing; \(^133,40\) indicates murine and rat models; \(^30\) indicates high levels of hyaluronic acid; \(^39\) indicates fibronectin clot formation; \(^46,49,54,55,133,202–204\) indicates angiogenesis; \(^71,133,205\) indicates M1 macrophages; \(^40\) indicates reepithelialization; \(^25\) indicates blood coagulation; \(^35–37\) indicates blood loss; \(^42\) indicates plasmacytoid dendritic cells; \(^50\) indicates bone marrow; \(^75\) indicates bone marrow; \(^54,55\) indicates angiogenesis; \(^55–67\) indicates IL-6 and IL-8; \(^68,69\) indicates IL-10; \(^61,62\) indicates inflammation; \(^52,53\) indicates heparin; \(^54,55\) indicates angiogenesis.

\(^{27,200}\) Indicates time points after wounding; murine and rat models; \(^40\) indicates known differences in regenerative healing; \(^133,40\) indicates murine and rat models; \(^30\) indicates high levels of hyaluronic acid; \(^39\) indicates fibronectin clot formation; \(^46,49,54,55,133,202–204\) indicates angiogenesis; \(^71,133,205\) indicates M1 macrophages; \(^40\) indicates reepithelialization; \(^25\) indicates blood coagulation; \(^35–37\) indicates blood loss; \(^42\) indicates plasmacytoid dendritic cells; \(^50\) indicates bone marrow; \(^75\) indicates bone marrow; \(^54,55\) indicates angiogenesis; \(^55–67\) indicates IL-6 and IL-8; \(^68,69\) indicates IL-10; \(^61,62\) indicates inflammation; \(^52,53\) indicates heparin; \(^54,55\) indicates angiogenesis.
Natural killer cells and plasmacytoid dendritic cells are involved in antimicrobial activity during the innate response, and contribute to angiogenesis and tissue repair during the adaptive response. For more on the role of the immune response in wound healing, see the recent reviews by Cañedo-Dorantes and Cañedo-Ayala and Ellis et al. Compared with reparative healing, the inflammatory response in regenerative healing is attenuated. Many of the cells involved in both innate and acquired immunity (e.g., mast cells, macrophages, and neutrophils) are not yet differentiated or are not responsive to the wound. Therefore, levels of inflammatory cytokines and chemokines

Table 1. (Continued)

Reparative healing	Regenerative healing
Stem cells or mesenchymal progenitor cells from hair follicles, injured nerves, and the bone marrow, and dedifferentiated cells from underlying fat contribute to tissue generation	Increased migration of fibroblasts increases hyaluronic acid content of the ECM
Endothelial cells and endothelial progenitor cells form new blood vessels	Fibroblasts and keratinocytes produce an organized ECM
Activated mast cells contribute to angiogenesis	Fibroblasts are resistant to TGF-β1–induced differentiation into α-SMA–positive myofibroblasts
Fibroblasts differentiate into myofibroblasts rich in α-SMA fibers, which contract to narrow the wound opening and increase vascularization	Fibroblasts contract and contribute to wound closure
Keratinocytes from the surrounding tissue and stem cells from the interfollicular epidermis and hair follicles reepithelialize the wound	

Signaling molecules

Reparative healing	Regenerative healing
Cytokines (including IL-1 and IL-6), chemokines, and growth factors (including VEGFs and TGF-β) attract fibroblasts and keratinocytes to the wound	High levels of IL-10: upregulate hyaluronic acid
PlGF helps stimulate angiogenesis of the granulation tissue	Increase migration and invasion of fibroblasts
TGF-β1 induces fibroblasts to differentiate into myofibroblasts	and help regulate the formation of ECM and fibroblast differentiation

ECM

Reparative healing	Regenerative healing
Collagen types I and III, fibronectin, hyaluronic acid, and proteoglycans form the ECM of the granulation tissue	An organized ECM of fibronectin, tenasin, chondroitin sulfate, and hyaluronic acid is produced by fibroblasts and keratinocytes
Keratinocytes from the surrounding tissue and stem cells from the interfollicular epidermis and hair follicles reepithelialize the wound	An actin cable surrounding the wound brings the wound edges closer together
Increased migration of fibroblasts increases hyaluronic acid content of the ECM	Angiogenesis and blood circulation increase, although not to the same degree as in reparative healing

Remodeling phase

Time point	Cells	Signaling molecules	ECM
Starts around days 21–23 and can last for up to 2 years	Fibroblasts, keratinocytes, and inflammatory cells secrete MMPs	MMPs break down the granulation tissue and remodel the ECM into a more permanent structure	Collagen is laid down in parallel bundles to form the more permanent ECM and scar tissue
Starts 3 days after wounding and is complete by 14 days (murine model with human skin transplant, lamb model)	Fibroblasts lay down collagen in a pattern similar to the surrounding skin	Higher levels of antifibrotic TGF-β3 than profibrotic TGF-β1 and TGF-β2	Collagen is laid down in a basket-weave pattern similar to that of uninjured skin
Stages 1			Lower ratio of collagen type I to III
Stages 1			Blood vessel density is also reduced to levels similar to the surrounding tissue

Most of the research into regenerative healing has been done in nonhuman fetuses, which have different gestational lengths in comparison to humans; thus, the chronology of fetal wound healing in humans is not well established. The animal models used for the time points given are provided. If-SMA, alpha-smooth muscle actin; ECM, extracellular matrix; FGF, fibroblast growth factor; HGF, hepatocyte growth factor; IL, interleukin; MMP, matrix metalloproteinase; PlGF, placental growth factor; TGF, transforming growth factor; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor.
are reduced or absent in regenerative healing. \(^{65-67}\) In addition, increased expression of anti-inflammatory cytokine IL-10 in postnatal regenerative healing helps decrease the inflammatory response. \(^{68,69}\) Although the role of inflammation in regenerative wound healing is still not well understood, inflammation is associated with a fibrotic response, and reduced inflammation is thought to be more conducive to reduced fibrosis and less scarring. \(^{54,60,70}\)

Proliferative phase

During the proliferative phase in reparative healing, resident cells in the tissue migrate and proliferate to replace damaged tissue and close the wound. Macrophages secrete cytokines, chemokines, and growth factors (including vascular endothelial growth factors [VEGFs] and transforming growth factor [TGF]-\(\beta\)) to attract fibroblasts and keratinocytes to the wound. \(^{49,71}\) Dermal fibroblasts proliferate and produce an ECM of collagen types I and III, fibronectin, hyaluronic acid, and proteoglycans. \(^{12-76}\) Signals from macrophages and other immune cells cause the migration of endothelial cells and endothelial progenitor cells to the wound, where they form new blood vessels. \(^{77,78}\) These vessels vascularize the ECM formed by fibroblasts, and together form a highly vascularized struma of granulation tissue. \(^{74}\) Stem cells or mesenchymal progenitor cells from hair follicles, injured nerves, and the bone marrow, and dedifferentiated cells from underlying fat, also contribute to the generation of new tissue. \(^{79-82}\)

Induced by TGF-\(\beta\), fibroblasts in the granulation tissue differentiate into myofibroblasts. \(^{83,84}\) The myofibroblasts are rich in alpha-smooth muscle actin (\(\alpha\)-SMA) stress fibers, and contract to decrease the wound area. \(^{85}\) The contraction of the wound contributes to the vascularization of the granulation tissue by pulling in pre-existing vascular tissue, which increases the size and length of vessels already present. \(^{74,86}\) As the wound contracts, keratinocytes from the surrounding tissue and stem cells from the interfollicular epidermis and hair follicles migrate across the wound bed between the granulation tissue and the fibrin clot, epithelializing the wound. \(^{81,87-91}\)

In fetal regenerative healing, the proliferative phase is initiated quickly after wounding, potentially due, in part, to the early appearance of tenascin, which initiates cell migration and reepithelialization. \(^{33,39,62,92}\) Granulation tissue does not form. \(^{93,94}\) Instead, fetal wounds show higher levels of proliferating fibroblasts and keratinocytes than postnatal wounds, which produce an organized ECM of fibronectin, tenascin, chondroitin sulfate, and hyaluronic acid, which is similar to the surrounding tissue. \(^{33,39,62,95}\) High levels of IL-10 upregulate hyaluronic acid by increasing protein synthesis and decreasing degradation, while also increasing invasion of fibroblasts, which raise the hyaluronic acid content of the ECM. \(^{39,95-98}\)

Endothelial progenitor cells originate from the bone marrow and contribute to angiogenesis and increased blood circulation. \(^{99}\) Both fetal and oral wounds have lower levels of VEGF and associated angiogenesis than in reparative healing; this is possibly because the vessels are more organized and efficient, so fewer are required. \(^{52,100-102}\)

In fetal wound healing, the levels of antifibrotic TGF-\(\beta\)3 are higher relative to those of profibrotic TGF-\(\beta\)1 and TGF-\(\beta\)2, and fibroblasts do not differentiate into myofibroblasts. \(^{30,41,103-106}\) Instead, the fetal fibroblasts contract the ECM to decrease the wound area, but with lower contractile force than postnatal myofibroblasts; this is thought to contribute to the scarless phenotype. \(^{104,107,108}\)

Reepithelialization happens simultaneously through an actin cable running through the basal cells around the wound edge. \(^{107,109}\) This cable contracts and brings the edges of the wound closer together until they seamlessly close the wound. \(^{107,109}\) Unlike in postnatal healing, the epidermis moves over the damaged tissue in fetal healing. \(^{53}\)

Remodeling phase

In the remodeling phase of reparative wound healing, granulation tissue is replaced with a more organized ECM, resulting in scar tissue that has mechanical properties similar (although not identical) to tissue in the preinjury state. \(^{60}\) The density of blood vessels in the granulation tissue regresses to that of unwounded skin. \(^{86,110}\)

Matrix metalloproteinases secreted by fibroblasts, keratinocytes, and inflammatory cells break down the collagen in the granulation tissue and fibroblasts remodel it into a more permanent structure. \(^{111-113}\) The types and arrangement of collagens expressed impact the reparative wound healing process.

In wounds that heal without incident, the ratio of fibrillar collagen type I to collagen type III increases and shifts to that of normal skin, and fibril size increases to that of a healthy dermis over time. \(^{83,114}\) Scar tissue is made up primarily of collagen type I arranged in parallel bundles, which is weaker and less pliable than tissue in healthy skin. \(^{30,114,115}\)

In regenerative healing, IL-10 downregulates the expression of collagen type I through the TGF-\(\beta\) signaling pathway, leading to a lower ratio of collagen type I to collagen type III deposition than in reparative healing. \(^{105,106,116,117}\) Blood vessel density is reduced to levels similar to the surrounding tissue. \(^{101}\) Furthermore, collagen is deposited in a basket-weave pattern similar to that of uninjured skin, which reduces or eliminates scarring. \(^{114,118,119}\) Understanding the key molecular differences between reparative and regenerative wound healing contributes to the identification of factors and therapeutic approaches that may tip the balance toward regenerative wound healing.

Contraction and Scarring

All reparative healing results in scarring, and large or severe burn wounds can lead to scar contracture and pathological scarring. \(^{120}\) The contraction of granulation tissue by myofibroblasts during the proliferative phase is a natural part of the reparative wound healing process. \(^{85}\) However, persistence of the myofibroblasts can lead to scar contracture, resulting in pain, physical limitations, and adverse cosmetic results. \(^{120-123}\)

Pathological scars (i.e., hypertrophic scars [HTSs] and keloids) are also a result of dysregulated healing. HTSs result from an accumulation of fibroblasts and increased collagen production due to reduced apoptosis and collagenase activity and have increased angiogenesis. \(^{49,124-127}\) The resulting scar is a mass of cross-linked collagen aligned with the epidermal surface. \(^{49,126,127}\) HTSs have a higher ratio of collagen type I to collagen type III than in normal skin, but...
have more collagen type III than non-HTSs.49,114,128,129 There is a high chance of HTS formation if wound healing is delayed by more than 3 weeks.28

Unlike HTSs, which typically stay within the wound edges, keloids exhibit uncontrolled growth beyond the borders of the initial wound.130 They have multiple layers with varying ratios and levels of organization of collagen types I and III and are difficult to treat.130,131 Burn progression, extensive inflammation, and increased mechanical forces are all characteristics of severe burn wounds that contribute to scarring and contracture.

\textit{Burn wound progression and inflammation}

Although the inflammatory phase is an essential part of the wound healing process, excessive inflammation during the early stages of wound healing and prolonged inflammation can lead to scarring, fibrosis, and delayed healing.25,49 Second-degree (partial thickness) burn wounds can progress to third-degree (full thickness) burn wounds in a matter of days, and this progression is associated with increased inflammation and cell death.132–135 In addition, burn wounds with greater total body surface area (TBSA) have greater and more prolonged inflammation than those with smaller TBSA.42 The inflammation associated with severe burn wounds leads to a hypermetabolic response.42,136

Increased inflammation and the hypermetabolic response delay wound healing, including reepithelialization; delayed reepithelialization can increase scarring and lead to HTSs.137–141 There is evidence that preventing burn wound progression and reducing inflammation and the hypermetabolic response can lead to accelerated reepithelialization and wound closure in burn wounds, reducing scarring.132,138,142,143 Studies using fetal lamb and human fetal \textit{ex v~ivo} models have shown that fetal thermal wounds are able to heal without scars or an inflammatory response, although this may be dependent on the size and extent of the burn.53,63,144

\textit{Mechanical forces}

Although the focus of this review is on the biological mechanisms of wound healing, mechanical forces also play a role and need to be briefly discussed. While the role of mechanical load in wound repair is still not well characterized, it has been associated with an increase in the inflammatory response, the conversion of fibroblasts to myofibroblasts, the specific orientation of myofibroblasts and associated collagen bundles, and fibrosis.120,125,145–148 Greater mechanical force is associated with the formation of HTSs and keloids, and repeated mechanical tension can lead to scar contracture.124,125,149–151 In addition, the tension caused by contracture may lead to pathological scarring.146 Pathologic scarring and contracture are common in burn wounds.120,152

Treatment for large burn wounds may involve physical therapy to prevent muscle contraction and stretching or splinting of scars to prevent contracture; this increases mechanical forces and may facilitate the conversion of fibroblasts into myofibroblasts, which can lead to further scarring.120,153 Although it is difficult to study the role of mechanical forces in fetal skin, fetal mouse skin has a much lower resting tension than adult skin.124 Adult mouse skin has lower resting tension than human skin, and when the tension of human skin is applied to mouse skin, pathologic scarring occurs.124 Because fetal skin has a low resting tension, a severely reduced inflammatory response, and no myofibroblasts, it is thought that reduced mechanical tension contributes to scarless healing.150,153

Wound healing studies have shown that a reduction of mechanical forces reduces scarring, although therapies that can reduce mechanical forces during burn wound healing are still in development.145,154 For an in-depth discussion of mechanical forces and their potential applications in the goal of wound healing, see the recent reviews by Yannas and Tzeranis and Barnes \textit{et al.}148,153

\textit{Therapeutics Aimed at Promoting Regenerative Healing in Burn Wounds}

The aspirational objective of burn wound treatment is regenerative healing.17,28,29 One of the key differences between regenerative and reparative healing is the reduced inflammatory stage in fetal wound healing, secondary to decreased angiogenesis and expression of proinflammatory cytokines and the increased expression of the anti-inflammatory cytokine IL-10.30,40,62,68,105,155 Optimal therapeutics for cutaneous wound healing aim to combine cells and cell signaling molecules that modulate inflammation with matrices that allow these cells to respond to endogenous signals in a spatiotemporal manner.29,156

Although regenerative healing may never be achieved for burn wounds, basic research continues to provide novel approaches and products aimed at restoring normal skin architecture and reducing adverse outcomes, including infection, delayed reepithelialization, and scarring.29 The following section will discuss skin substitutes for burn wound healing, give examples of products currently available in the United States, and describe the components being researched for new therapeutic development.

\textit{Skin substitutes for burns}

Although autografts are preferred for the treatment of acute burn wounds, they create another wound that can lead to pain, scarring, and reduced quality of life.158,159 Additionally, in the case of extensive burn wounds, an individual may not have enough uninjured skin to provide sufficient coverage, creating a need for skin substitutes.159 There are many different ways to classify skin substitutes. The categories in Table 2 depend on the origin of the components (human, xenogeneic, and synthetic), the types of components (cells and ECM/scaffold), whether the product contains human cells or tissue, and whether the product is autologous or allogeneic. Depending on the product composition, some products are intended to provide temporary coverage, while others can be used in place of autografts or allografts.

Unlike autograft transplantation, skin substitutes can elicit both innate and adaptive immune responses that can lead to rejection of the substitute.159 Skin substitutes with bioactive keratinocytes and fibroblasts generate growth factors and cytokines that can elicit a host response that aids in the wound healing process.159–162 These substitutes may avoid rejection because they do not contain antigen-presenting immune cells.160,162 Substitutes that are acellular, or that have synthetic components, are also less likely to be rejected.159 Although many of these products can reduce the
Product category	Description and components	Indications and use	FDA regulatory pathway	Comments
Synthetic Wound coverings made up of nonbiological materials. Products may reduce inflammation, increase the rate of epithelialization, and provide a scaffold for tissue regeneration.	For temporary coverage of burn wounds.	217–220	510(k) FRO	Contraindicated for clinically infected wounds.
BioDegradable Temporizing Matrix/NovoSorb BTM (PolyNovo Biomaterials Pty Ltd.)	For partial-thickness burns.	217,220,221	510(k) FRO	Contraindicated for clinically infected wounds.
Suprathel (PolyMedics Innovations, Inc.)	For partial-thickness burns.	217	510(k) FRO	Contraindicated for clinically infected wounds.
Synthetic and allogeneic nonviable cells - tissues Wound coverings made from a synthetic scaffolding embedded with cells or tissues (human or xenogeneic). Products may increase the healing and reepithelialization rate.	For temporary coverage of burn wounds or autograft donor sites, depending on the product.	222,223	510(k) FRO	Contraindicated for patients with a history of anaphylaxis to vancomycin, amikacin, and amphotericin; patients sensitive to materials with a bovine or murine origin; and clinically infected wounds.
Biobrane (Smith & Nephew)	For partial-thickness burns.	223,224	510(k) FRO	For partial- and full-thickness burns.
TransCyte (Organogenesis, Inc.)	For partial- and full-thickness burns.	224	PMA	Contraindicated for clinically infected wounds.
Epicel (Vericel Corporation)	For the treatment of adult and pediatric burn wounds. These products may be used alone or with autografts.	226	HDE	For full-thickness burns.
ReCell (Avita Medical, Inc.)	For the treatment of adult and pediatric burn wounds.	225	PMA	Contraindicated for wounds with an active or latent infection and patients with a hypersensitivity to trypsin or compound sodium lactate solution (Hartmann's Solution).
Placental tissue allografts Allografts made from dehydrated human amnion and/or chorion membrane.	For the treatment of burn wounds.	225,226	HCTP-3600	For partial- and full-thickness burns.
AmnioBurn/EpiFix/AmnioFix (MiMedx Tissue Services, LLC)	For partial- and full-thickness burns.	227,228	510(k) FRO	Contraindicated for wounds with an active or latent infection and patients with an unacceptable risk of postoperative complications.

(continued)
Product category	Description and components	Indications and use^a	Products (manufacturer)	FDA regulatory pathway^b	Comments
Xenografts	Acellular wound coverings of animal origin, such as bovine or porcine. Products may mitigate the inflammatory response, provide a scaffold for tissue regeneration, and facilitate remodeling.	For the coverage of burn wounds. Some products may be used in conjunction with standard of care.	Cytalar® Burn Matrix/sheet MatriStem® (ACell, Inc.)	510(k) KGN¹⁶³	For partial-thickness burns. ²³⁰
			Oasis® Burn Matrix (Smith & Nephew)	510(k) KGN¹⁶³	For partial-thickness burns. ²³⁴
			Integra® DRT/ Omnimatrix® DRM (Integra Life Sciences Corporation)	PMA¹⁶³	Contraindicated for full-thickness burns and patients with sensitivity to porcine material. ²³⁴
Other human tissue allografts	Acellular human cadaveric dermis allograft.	For the replacement of tissue in burn wound repair.	AlloDerm™ RTM (LifeCell Corporation, an Abbvie company)	HCT/P 361^{d,235}	For partial- and full-thickness burns. ²³⁵
			Apligraf® (Organogenesis, Inc.)	PMA²³⁸	Contraindicated for patients with sensitivity to polysorbate 20 or any antibiotic listed on the package label. ²³⁵
Bioengineered constructs combining cells and/or tissues	Products using bioactive human keratinocytes on a xenogeneic matrix embedded with human fibroblasts. Products may contain stem or progenitor cells.	For the treatment of burn wounds.	StrataGraft® (StrataTech Corporation, a Mallinckrodt company)	BLA²⁴⁰	For partial-thickness burns. ¹⁹⁶

^aProducts may also be indicated for other wound types.

^bPathways through which currently marketed products for burn wounds have been cleared.

^cFormerly Dermagraft-TC. TransCyte is FDA cleared, but not on the U.S. market.

^d361 Indicates HCT/P products regulated under the Center for Biologics Evaluation and Research under 21 Code of Federal Regulations 1271.3(d)(1) and Section 361 of the Public Health Service Act. Previously, the FDA exercised enforcement discretion for certain regenerative medicine products so that they did not require premarket review and approval. As of May 31, 2021, all HCT/P manufacturers were required to file an Investigational New Drug application or a BLA to legally market their products.

^eApligraf is used off-label to treat burns.

BLA, biologics license application; DRM, dermal regeneration matrix; DRT, dermal regeneration template; FDA, U.S. Food and Drug Administration; FRO/KGN, product code for medical devices; HCT/P, human cells, tissues, and cellular and tissue-based product; HDE, Humanitarian Device Exemption; PMA, premarket approval.
need for autografting and improve burn wound repair, consideration of the product composition and its potential immunogenicity are important for clinical practice.

U.S. Food and Drug Administration regulation of skin substitutes

The products in this section and in Table 2 were chosen because they are U.S. Food and Drug Administration (FDA) cleared and marketed in the United States. While the products may all be considered skin substitutes in clinical practice and for insurance billing purposes, the specific indications for use (and subsequent cost) of these products are determined by the FDA. The FDA regulatory category of a product is determined by the product’s components and its level of risk to the patient.163 The categories, from lowest to highest level of risk, are human cells, tissues, and cellular and tissue-based products (HCT/Ps), humanitarian use device (HUD), 510(k), premarket approval (PMA), and biologics license application (BLA).163

The least-rigorous regulatory category is HCT/Ps.163,164 This categorization applies to products that are minimally manipulated and intended for homologous use.163 Until recently, the FDA exercised enforcement discretion for some HCT/Ps to give manufacturers time to determine if an application for more rigorous regulation was needed.165 As of May 31, 2021, products that do not meet all the requirements for HCT/Ps are required to have a BLA or an investigational new drug application to be marketed.165,166 Products that are derived from human and/or animal tissue are regulated under an HUD or PMA, and xenogeneic and synthetic products are regulated under the 510(k) pathway.163 A BLA is used for products using human cells and tissues that make a specific action claim.163

Tissue-engineered products without live cells may be considered medical devices, which are classified from Class I (lowest risk) to Class III (highest risk), with the level of regulation increasing with the class.163 Acellular products are then regulated through two pathways: Class I devices are generally exempt from the 510(k) pathway, Class II devices are usually regulated using the 510(k) pathway, and Class III devices usually require a PMA.163

For a more in-depth discussion of FDA regulation of skin substitute products for burns, see Belsky and Smiell.161 These products may also be regulated differently outside the United States, and there are additional products that are not indicated for use in U.S. settings. Oberweis et al. discussed various regulatory frameworks worldwide for tissue-based products, and the alliance for regenerative medicine lists skin substitutes and where they are approved on their website (https://alliancerm.org/available-products).167,168

Components of regenerative healing used for burn wound research

One of the components of regenerative healing that is being explored for wound healing is stem cells. In regenerative healing, stem cells help mediate wound repair through a variety of molecular signals that promote angiogenesis and ECM formation, recruit endogenous progenitor cells, induce cell differentiation, and reduce inflammation and scarring.169–177 Preclinical burn studies in murine models have found that treatment with bone marrow-derived mesenchymal stem cells accelerated wound closure, improved mobility, and reduced fibrosis, and may mediate inflammation, myofibroblast differentiation, and collagen deposition.178–180

There are few skin substitute products for burns in clinical trials or on the market that are made with stem cells; the use of autologous or allogeneic cells is more common (Table 2 and Supplementary Table S1). In a real-world study, cultured human keratinocyte autografts, used alone or adjunctively with a wide-meshed autograft, improved survival in patients with large (mean TBSA, 67.5%) burn wounds.181 Treatment with autologous epidermal cells on a fibrin matrix reduced contraction and helped maintain skin pliability in patients with burn wounds.182 In addition, the incorporation of allogeneic progenitor cells with an acellular matrix may, under appropriate conditions, form an epidermal structure that can respond to local signaling.161,183,184

Dermal matrices are another approach to harnessing properties of regenerative healing.185,186 Made of synthetic materials or decellularized tissue (human or xenogeneic) (Table 2), these products aim to provide a structured scaffold to guide the development of nonfibrotic tissue.187 A study of patients with severe burns found that a decellularized dermal scaffold used over joints helped prevent scarring, and resulted in better conservation of joint function.188 In addition, a case study of a patient with extensive HTSs from a burn wound demonstrated that scar excision followed by treatment with a decellularized dermal scaffold and a split-thickness skin graft resulted in limited scar formation, supple skin, and increased range of motion.189

Signaling molecules are difficult to incorporate into skin substitutes.156,190 When applied without a scaffold, exosomes from mesenchymal stem cells have been shown to reduce inflammation in burn wounds in rats, mirroring the low inflammation seen in regenerative healing.191 Platelet-rich plasma, which has high levels of growth factors, is also being explored as a burn treatment.192–194 Rats with burn wounds treated with platelet-derived biomaterials showed accelerated healing and fewer inflammatory cells than controls.195 While some skin substitute products contain bioactive cells that secrete signaling molecules (Table 2), there are no acellular products for burns with published data showing that they provide signaling molecules at optimal dosages in a relevant spatiotemporal manner.156,162,190,196 This may be one aspect for future research to address.

Shaping the future of regenerative medicine for burn wound healing requires further understanding of the processes that have led to the currently available products. The principles and components of regenerative wound healing have not changed over time, but how researchers understand and apply them to the development of new therapeutics has continued to shift. For example, inflammation and a strong immune response are linked to reparative healing, but recent research has linked both processes as also being important to regenerative in animal models.25,43,49,197,198 Continued improvement in the understanding of pathways, cells, and signals involved in regenerative healing will allow for the identification of new targets that can be used to drive the development of new therapeutics.199
Summary

Scarring is a natural consequence of reparative healing, including for wounds that heal quickly with minimal interference. All scarring—even in the absence of pathological scarring—results in tissue that does not have the same appearance, strength, or function as the surrounding skin and contributes to physical and psychological burdens for patients with severe burn wounds. To ensure long-term patient well-being and quality of life, burn care approaches necessitate advancements that move toward regenerative healing, reduced scarring, and restored strength and function. An increased understanding of the underlying mechanisms of regenerative and reparative healing will contribute to the development of innovative strategies that better incorporate aspects of regenerative healing and improve outcomes for patients with severe burns.

Acknowledgments

Medical writing and editorial support, conducted in accordance with Good Publication Practice 3 (GPP3) and the International Committee of Medical Journal Editors (ICMJE) guidelines, were provided by Caroline Leitschuh, PhD, of Oxford PharmaGenesis Inc., Newtown, PA.

Author’s Contributions

A.J.S. conceived the original ideas of this article, reviewed all drafts, and provided critical feedback throughout the development of this article, and has read and approved the final article. The sponsor, Mallinckrodt Pharmaceuticals, plc., Hampton, NJ, did not contribute to the content development, but did participate in the review of the final article and the decision to submit.

Disclosure Statement

No competing financial interests exist.

Funding Information

Medical writing and editorial support were provided by Oxford PharmaGenesis Inc., and funded by Mallinckrodt Pharmaceuticals, plc.

Supplementary Material

Supplementary Table S1

References

1. Nussbaum, S.R., Carter, M.J., Fife, C.E., et al. An economic evaluation of the impact, cost, and Medicare policy implications of chronic nonhealing wounds. Value Health 21, 27, 2018.
2. Guest, J.F., Vowden, K., and Vowden, P. The health economic burden that acute and chronic wounds impose on an average clinical commissioning group/health board in the UK. J Wound Care 26, 292, 2017.
3. Guest, J.F., Ayoub, N., Melllwrath, T., et al. Health economic burden that wounds impose on the National Health Service in the UK. BMJ Open 5, e009283, 2015.
4. Heyer, K., Herberger, K., Protz, K., Glaeske, G., and Augustin, M. Epidemiology of chronic wounds in Germany: analysis of statutory health insurance data. Wound Repair Regen 24, 434, 2016.
5. Järbrink, K., Ni, G., Sönnergren, H., et al. Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review. Syst Rev 5, 152, 2016.
6. Sen, C.K. Human wounds and its burden: an updated compendium of estimates. Adv Wound Care 8, 39, 2019.
7. Sen, C.K., Gordillo, G.M., Roy, S., et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17, 763, 2009.
8. Nunan, R., Harding, K.G., and Martin, P. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech 7, 1205, 2014.
9. Zhao, R., Liang, H., Clarke, E., Jackson, C., and Xue, M. Inflammation in chronic wounds. Int J Mol Sci 17, 2085, 2016.
10. Beanes, S.R., Hu, F.Y., Soo, C., et al. Confocal microscopic analysis of scarless repair in the fetal rat: defining the transition. Plast Reconstr Surg 109, 160, 2002.
11. Han, G., and Ceilley, R. Chronic wound healing: a review of current management and treatments. Adv Ther 34, 599, 2017.
12. American Burn Association. National Burn Repository 2019 update: report of data from 2009–2018, Version 14.0. Chicago, IL: American burn association, national burn repository, 2019.
13. James, S.L., Lucchesi, L.R., Bisignano, C., et al. Epidemiology of injuries from fire, heat and hot substances: global, regional and national morbidity and mortality estimates from the Global Burden of Disease 2017 study. Inj Prev 26, i36, 2020.
14. Randall, S.M., Fear, M.W., Wood, F.M., Rea, S., Boyd, J.H., and Duke, J.M. Long-term musculoskeletal morbidity after adult burn injury: a population-based cohort study. BMJ Open 5, e009395, 2015.
15. Chin, T.L., Carrougher, G.J., Amtmann, D., et al. Trends 10 years after burn injury: a Burn Model System National Database study. Burns 44, 1882, 2018.
16. Damkat-Thomas, L., and Greenwood, J.E. Scarring after burn injury. In: Scars [working title]. Intechopen. 2019.
17. Willyard, C. Unlocking the secrets of scar-free skin healing. Nature 563, 886, 2018.
18. Choi, Y.H., Kim, K.M., Kim, H.O., Jang, Y.C., and Kwak, I.S. Clinical and histological correlation in post-burn hypertrophic scar for pain and itching sensation. Ann Dermatol 25, 428, 2013.
19. Hoogewerf, C.J., van Baar, M.E., Middelkoop, E., and van Loey, N.E. Impact of facial burns: relationship between depressive symptoms, self-esteem and scar severity. Gen Hosp Psychiatry 36, 271, 2014.
20. Jain, M., Khadilkar, N., and De Sousa, A. Burn-related factors affecting anxiety, depression and self-esteem in burn patients: an exploratory study. Ann Burns Fire Disasters 30, 30, 2017.
21. Lawrence, J.W., Mason, S.T., Schomer, K., and Klein, M.B. Epidemiology and impact of scarring after burn injury: a systematic review of the literature. J Burn Care Res 33, 136, 2012.
22. Khedr, E.M., Khedr, T., el-Oteify, M.A., and Hassan, H.A. Peripheral neuropathy in burn patients. Burns 23, 579, 1997.
23. Spronk, I., Legemate, C., Oen, I., van Loey, N., Polinder, S., and van Baar, M. Health related quality of life in adults after burn injuries: a systematic review. PLoS One 13, e0197507, 2018.
24. Summer, G.J., Puntillo, K.A., Miaskowski, C., Green, P.G., and Levine, J.D. Burn injury pain: the continuing challenge. J Pain 8, 533, 2007.
25. Karppinen, S.M., Heljasvaara, R., Gullberg, D., Tasanen, K., and Pihlajaniemi, T. Toward understanding scarless skin wound healing and pathological scarring. F1000Res 8, 787, 2019.
26. Hu, M.S., Rennert, R.C., McArdle, A., et al. The role of stem cells during scarless skin wound healing. Adv Wound Care (New Rochelle) 3, 304, 2014.
27. Reinek, J.M., and Sorg, H. Wound repair and regeneration. Eur Surg Res 49, 35, 2012.
28. Jeschke, M.G., van Baar, M.E., Choudhry, M.A., Chung, K.K., Gibran, N.S., and Logsetty, S. Burn injury. Nat Rev Dis Primers 6, 11, 2020.
29. Stone II, R., Natesan, S., Kowalczewski, C.J., et al. Advancements in regenerative strategies through the continuum of burn care. Front Pharmacol 9, 672, 2018.
30. Moore, A.L., Marshall, C.D., Barnes, L.A., Murphy, M.P., Ransom, R.C., and Longaker, M.T. Scarless wound healing: transitioning from fetal research to regenerative healing. Wiley Interdiscip Rev Dev Biol 7, e309, 2018.
31. Abdullahi, A., Amini-Nik, S., Jeschke, M.G. Animal models in burn research. Cell Mol Life Sci 71, 3241, 2014.
32. Nuutila, K., Katayama, S., Vuola, J., and Kankuri, E. Human wound-healing research: issues and perspectives for studies using wide-scale analytic platforms. Adv Wound Care (New Rochelle) 3, 264, 2014.
33. Coolen, N.A., Schouten, K.C., Boekema, B.K., Middelkoop, E., and Ulrich, M.M. Wound healing in a fetal, adult, and scar tissue model: a comparative study. Wound Repair Regen 18, 291, 2010.
34. Rose, L.F., and Chan, R.K. The burn wound microenvironment. Adv Wound Care (New Rochelle) 5, 106, 2016.
35. Szuldrzynski, K., Jankowski, M., Potaczek, D.P., and Undas, A. Plasma fibrin clot properties as determinants of bleeding time in human subjects: association with histidine-rich glycoprotein. Dis Markers 2020, 7190828, 2020.
36. Chan, L.W., Wang, X., Wei, H., Pozzo, L.D., White, N.J., and Pun, S.H. A synthetic fibrin cross-linking polymer for modulating clot properties and inducing hemostasis. Sci Transl Med 7, 277ra229, 2015.
37. Macrae, F.L., Duval, C., Papareddy, P., et al. A fibrin biofilm covers blood clots and protects from microbial invasion. J Clin Invest 128, 3356, 2018.
38. Hadjipanayi, E., Kuhn, P.H., Moog, P., et al. The fibrin matrix regulates angiogenic responses within the hemostatic microenvironment through biochemical control. PLoS One 10, e0135618, 2015.
39. Whitby, D.J., Longaker, M.T., Harrison, M.R., Adzick, N.S., and Ferguson, M.W. Rapid epithelialisation of fetal wounds is associated with the early deposition of tenascin. J Cell Sci 99, 583, 1991a.
40. Ihara, S., Motobayashi, Y., Nagao, E., and Kistler, A. Ontogenetic transition of wound healing pattern in rat skin occurring at the fetal stage. Development 110, 671, 1990.
41. Redd, M.J., Cooper, L., Wood, W., Stramer, B., and Martin, P. Wound healing and inflammation: embryos reveal the way to perfect repair. Philos Trans R Soc Lond B Biol Sci 359, 777, 2004.
42. Jeschke, M.G., Mlacak, R.P., Finnerty, C.C., et al. Burn size determines the inflammatory and hypermetabolic response. Crit Care 11, R90, 2007.
43. Strbo, N., Yin, N., and Stojadinovic, O. Innate and adaptive immune responses in wound epithelialization. Adv Wound Care (New Rochelle) 3, 492, 2014.
44. Chen, L., Guo, S., Ranzer, M.J., and DiPietro, L.A. Toll-like receptor 4 has an essential role in early skin wound healing. J Invest Dermatol 133, 258, 2013.
45. Ellis, S., Lin, E.J., and Tartar, D. Immunology of wound healing. Curr Dermatol Rep 7, 350, 2018.
46. Peng, D., Huang, W., Ai, S., and Wang, S. Clinical significance of leukocyte infiltrative response in deep wound of patients with major burns. Burns 32, 946, 2006.
47. Krzyszczak, P., Schloss, R., Palmer, A., and Berthiaume, F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol 9, 419, 2018.
48. von Müller, C., Bulman, F., Wagner, L., et al. Active neutrophil responses counteract candida albicans burn wound infection of ex vivo human skin explants. Sci Rep 10, 21818, 2020.
49. Lateef, Z., Stuart, G., Jones, N., Mercer, A., Fleming, S., and Wise, L. The cutaneous inflammatory response to thermal burn injury in a murine model. Int J Mol Sci 20, 538, 2019.
50. Leibovich, S.J., and Ross, R. The role of the macrophage in wound repair. A study with hydrocortisone and anti-macrophage serum. Am J Pathol 78, 71, 1975.
51. Zgheib, C., Xu, J., and Liechty, K.W. Targeting inflammatory cytokines and extracellular matrix composition to promote wound regeneration. Adv Wound Care (New Rochelle) 3, 344, 2014.
52. Samoszuk, M., Corwin, M., and Hazen, S.L. Effects of human mast cell tryptase and eosinophil granule proteins on the kinetics of blood clotting. Am J Hematol 73, 18, 2003.
53. Weller, K., Foitizik, K., Paus, R., Syska, W., and Maurer, M. Mast cells are required for normal healing of skin wounds in mice. FASEB J 20, 2366, 2006.
54. McCourt, M., Wang, J.H., Sookhai, S., and Redmond, H.P. Activated human neutrophils release hepatocyte growth factor/scatter factor. Eur J Surg Oncol 27, 396, 2001.
55. Tashiro, Y., Nishida, C., Sato-Kusubata, K., et al. Inhibition of PAI-1 induces neutrophil-driven neangiogenesis and promotes tissue regeneration via production of angiocrine factors in mice. Blood 119, 6382, 2012.
56. Fischer, M.A., Davies, M.L., Reider, I.E., et al. CD11b+ Ly6G+ cells produce type I interferon and exhibit tissue protective properties following peripheral virus infection. PLoS Pathog 7, e1002374, 2011.
57. Gregorio, J., Muller, S., Conrad, C., et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med 207, 2921, 2010.
58. Petri, R.M., Hackel, A., Hahnel, K., et al. Activated tissue-resident mesenchymal stromal cells regulate natural killer cell immune and tissue-regenerative function. Stem Cell Reports 9, 985, 2017.
59. Schenk, J.M., Kabasaki, I.C., Dolubzino, H., et al. Therapeutic NK2G2I ligatin facilitates improved wound healing. J Immunol 198, 221,218, 2017.
60. Cañedo-Dorantes, L., and Cañedo-Ayala, M. Skin acute wound healing: a comprehensive review. Int J Inflamm 2019, 3706315, 2019.
61. Cowin, A.J., Brosnan, M.P., Holmes, T.M., and Ferguson, M.W. Endogenous inflammatory response to dermal wound healing in the fetal and adult mouse. Dev Dyn 212, 385, 1998.
62. Whitby, D., and Ferguson, M. The extracellular matrix of lip wounds in fetal, neonatal and adult mice. Development 112, 651, 1991b.
63. Hopkinson-Woolley, J., Hughes, D., Gordon, S., and Martin, P. Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. J Cell Sci 107, 1159, 1994.

64. Wulff, B.C., Parent, A.E., Meleski, M.A., DiPietro, L.A., Schrementi, M.E., and Wilgus, T.A. Mast cells contribute to scar formation during fetal wound healing. J Invest Dermatol 132, 458, 2012.

65. Brant, J.O., Lopez, M.C., Baker, H.V., Barbazuk, W.B., and Maden, M. A comparative analysis of gene expression profiles during skin regeneration in Mus and Acomys. PLOS One 10, e0142931, 2015.

66. Liechty, K.W., Adzick, N.S., and Crombleholme, T.M. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine 12, 671, 2000.

67. Liechty, K.W., Crombleholme, T.M., Cass, D.L., Martin, B., and Adzick, N.S. Diminished interleukin-8 (IL-8) production in the fetal wound healing response. J Surg Res 77, 80, 1998.

68. Gordon, A., Kozin, E.D., Keswani, S.G., et al. Permissive environment in postnatal wounds induced by adenoviral-mediated overexpression of the anti-inflammatory cytokine interleukin-10 prevents scar formation. Wound Repair Regen 16, 70, 2008.

69. Peranteau, W.H., Zhang, L., Muvarak, N., et al. IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J Invest Dermatol 128, 1852, 2008.

70. Wulff, B.C., Pappa, N.K., and Wilgus, T.A. Interleukin-33 encourages scar formation in murine fetal skin wounds. Wound Repair Regen 27, 19, 2019.

71. Kobayashi, M., Jeschke, M.G., Shigematsu, K., et al. M2b monocytes predominated in peripheral blood of severely burned patients. J Immunol 185, 7174, 2010.

72. Laato, M., Kähäri, V.M., Niinikoski, J., and Vuorio, E. Epidermal growth factor increases collagen production in granulation tissue by stimulation of fibroblast proliferation and not by activation of procollagen genes. Biochem J 247, 385, 1987.

73. Oksala, O., Salo, T., Tammi, R., et al. Expression of proteoglycans and hyaluronan during wound healing. J Histochem Cytochem 43, 125, 1995.

74. Tefft, J.B., Chen, C.S., and Eyckmans, J. Reconstituting the dynamics of endothelial cells and fibroblasts in wound closure. APL Bioeng 5, 016102, 2021.

75. Theocharidis, G., Drymousi, Z., Kao, A.P., et al. Type VI collagen regulates dermal matrix assembly and fibroblast motility. J Invest Dermatol 136, 74, 2016.

76. Wolak, M., Bojansowska, E., Staszewska, T., Piera, L., Szymański, I., and Drobnik, J. Histamine augments collagen content via H1 receptor stimulation in cultures of myofibroblasts taken from wound granulation tissue. Mol Cell Biochem 476, 1083, 2021.

77. Asahara, T., Masuda, H., Takahashi, T., et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85, 221, 1999.

78. Landen, N.X., Li, D., and Stahle, M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 73, 3861, 2016.

79. Carr, M.J., Toma, J.S., Johnston, A.P.W., et al. Mesenchymal precursor cells in adult nerves contribute to mammalian tissue repair and regeneration. Cell Stem Cell 24, 240, 2019.

80. Fathke, C., Wilson, L., Hutter, J., et al. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells 22, 812, 2004.

81. Katou-Ichikawa, C., Nishina, H., Tanaka, M., et al. Participation of somatic stem cells, labeled by a unique antibody (A3) recognizing both α-glycan and peptide, to hair follicle cycle and cutaneous wound healing in rats. Int J Mol Sci 21, 3806, 2020.

82. Shook, B.A., Wasko, R.R., Mano, O., et al. Dermal adipocyte lipolysis and myofibroblast conversion are required for efficient skin repair. Cell Stem Cell 26, 880, 2020.

83. Arif, S., Larochelle, S., and Moulin, V.J. PLGF-1 contained in normal wound myofibroblast-derived microvesicles stimulates collagen production by dermal fibroblasts. J Cell Commun Signal 14, 427, 2020.

84. Desmoulière, A., Geinaz, O., Gabbiani, F., and Gabbiani, G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122, 103, 1993.

85. Putra, A., Alif, I., Hamra, N., et al. MSC-released TGF-β regulate α-SMA expression of myofibroblast during wound healing. J Stem Cells Regen Med 16, 73, 2020.

86. Kilarski, W.W., Samolov, B., Petersson, L., Kvanta, A., and Gerwins, P. Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med 15, 657, 2009.

87. Engelhardt, E., Toksoy, A., Goeberer, M., Debus, S., Bröcker, E.-B., and Gillitzer, R. Chemokines IL-8, GROz, MCP-1, IP-10, and Mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing. Am J Pathol 153, 1849, 1998.

88. Ito, M., Liu, Y., Yang, Z., et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11, 1351, 2005.

89. Joost, S., Jacob, T., Sun, X., et al. Single-cell transcriptomics of traced epidermal and hair follicle stem cells reveals rapid adaptations during wound healing. Cell Rep 25, 585, 2018.

90. Nunan, R., Campbell, J., Mori, R., et al. Ephrin-Bs drive junctional downregulation and actin stress fiber disassembly to enable wound re-epithelialization. Cell Rep 13, 1380, 2015.

91. Patel, G.K., Wilson, C.H., Harding, K.G., Finlay, A.Y., and Bowden, P.E. Numerous keratinocyte subtypes involved in wound re-epithelialization. J Invest Dermatol 126, 497, 2006.

92. Chen, M., Zhao, F., Wang, Z., et al. Low-expression of microRNA-203a in mid-gestational human fetal keratinocytes contributes to cutaneous scarless wound healing by targeting Tenascin-C. ScienceAsia 46, 133, 2020.

93. Beredjiklian, P.K., Favata, M., Cartmell, J.S., Flanagan, C.L., Crombleholme, T.M., and Soslowsky, L.J. Regenerative versus reparative healing in tendon: a study of biomechanical and histological properties in fetal sheep. Ann Biomed Eng 31, 1143, 2003.

94. Rowlett, U. Intrauterine wound healing in a 20 week human fetus. Virchows Arch A Pathol Anat Histol 381, 353, 1979.

95. Leung, A., Balaji, S., Le, L.D., et al. Interleukin-10 and hyaluronan are essential to the fetal fibroblast functional phenotype. J Surg Res 179, 257, 2013.
1163

HEALING MECHANISMS IN CUTANEOUS WOUNDS

96. Balaji, S., Wang, X., King, A., et al. Interleukin-10-mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling. FASEB J 31, 868, 2017.

97. King, A., Balaji, S., Marsh, E., et al. Interleukin-10 regulates the fetal hyaluronan-rich extracellular matrix via a STAT3-dependent mechanism. J Surg Res 184, 671, 2013.

98. Longaker, M.T., Chiu, E.S., Harrison, M.R., et al. Studies in fetal wound healing. IV. Hyaluronic acid-stimulating activity distinguishes fetal wound fluid from adult wound fluid. Ann Surg 210, 667, 1989.

99. Wang, Y., Chen, Q., Zhang, Z., Jiang, F., Meng, X., and Yan, H. Interleukin-10 overexpression improves the function of endothelial progenitor cells stimulated with TNF-α through the activation of the STAT3 signaling pathway. Int J Mol Med 35, 471, 2015.

100. DiPietro, L.A. Angiogenesis and wound repair: when enough is enough. J Leukoc Biol 100, 979, 2016.

101. Szpaderska, A.M., Walsh, C.G., Steinberg, M.J., and DiPietro, L.A. Distinct patterns of angiogenesis in oral and skin wounds. J Dent Res 84, 309, 2005.

102. Wilgus, T.A., Ferreira, A.M., Oberyszyn, T.M., Bergdall, V.K., and Dipietro, L.A. Regulation of scar formation by vascular endothelial growth factor. Lab Invest 88, 579, 2008.

103. Bucur, M., Dinca, O., Vladian, C., et al. Variation in expression of inflammation-related signaling molecules with profibrotic and antifibrotic effects in cutaneous and oral mucosa scars. J Immunol Res 2018, 5196023, 2018.

104. Jerrell, R.J., Leih, M.J., and Parekh, A. The altered mechanical phenotype of fetal fibroblasts hinders myofibroblast differentiation. Wound Repair Regen 27, 29, 2019.

105. Lang, H., Zhao, F., Zhang, T., et al. Microrna-149 contributes to scarless wound healing by attenuating inflammatory response. Mol Med Rep 16, 2156, 2017.

106. Zheng, Z., Zhang, X., Dang, C., et al. Fibromodulin is essential for fetal-type scarless cutaneous wound healing. Am J Pathol 186, 2824, 2016.

107. McCluskey, J., and Martin, P. Analysis of the tissue remodelling of anchored collagen gels by structural reorganization. J Invest Dermatol 115, 1097, 1996.

108. Rege, A., Thakor, N.V., Rhie, K., and Pathak, A.P. In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis. Angiogenesis 15, 87, 2012.

109. Lee, Y.I., Kim, S.M., Kim, J., et al. Tissue-remodelling M2 macrophages recruits matrix metalloproteinase-9 for cryotherapy-induced fibrotic resolution during keloid treatment. Acta Derm Venereol 100, adv00306, 2020.

110. Pins, G.D., Collins-Pavao, M.E., Van De Water, L., Yarmush, M.L., and Morgan, J.R. Plasmin triggers rapid contraction and degradation of fibroblast-populated collagen lattices. J Invest Dermatol 114, 647, 2000.

111. Tandara, A.A., and Mustoe, T.A. MMP- and TIMP-secretion by human cutaneous keratinocytes and fibroblasts—impact of coculture and hydration. J Plast Reconstr Aesthet Surg 64, 108, 2011.

112. Rawlins, J.M., Lam, W.L., Karoo, R.O., Naylor, I.L., and Sharpe, D.T. Quantifying collagen type in mature burn scars: a novel approach using histology and digital image analysis. J Burn Care Regen 30, 670, 2006.

113. Iocono, J.A., Krummel, T.M., Keefer, K.A., Allison, G.M., and Paul, H. Repeated additions of hyaluronan alters granulation tissue deposition in sponge implants in mice. Wound Repair Regen 6, 442, 1998.

114. Goldberg, S.R., Quirk, G.L., Sykes, V.W., Kordula, T., and Lanning, D.A. Altered procollagen gene expression in mid-gestational mouse excisional wounds. J Surg Res 143, 27, 2007.

115. Yamamoto, T., Eckes, B., and Krieg, T. Effect of interleukin-10 on the gene expression of type i collagen, fibronectin, and decorin in human skin fibroblasts: differential regulation by transforming growth factor-beta and monocoye chemotactic protein-1. Biochem Biophys Res Commun 281, 200, 2001.

116. Cuttle, L., Nataatmadja, M., Fraser, J.F., Kempf, M., Kimble, R.M., and Hayes, M.T. Collagen in the scarless fetal skin wound: detection with picrosirisus-polarization. Wound Repair Regen 13, 198, 2005.

117. Longaker, M.T., Whitby, D.J., Adzick, N.S., et al. Studies in fetal wound healing. VI. second and early third trimester fetal wounds demonstrate rapid collagen deposition without scar formation. J Pediatr Surg 25, 63, 1990.

118. Juengler, J.P., Kratz, C., Tollback, A., and Kratz, G. Mechanical tension stimulates the transdifferentiation of fibroblasts into myofibroblasts in human burn scars. Burns 34, 942, 2008.

119. Du, Y., Lv, G.Z., Yu, S., Wang, D., and Tan, Q. Long-term medical treatment of patients with severe burns at exposed sites. World J Clin Cases 8, 3515, 2020.

120. Leblebici, B., Adam, M., Bagis, S., et al. Quality of life after burn injury: the impact of joint contracture. J Burn Care Regen 27, 864, 2006.

121. Palmieri, T.L., Petuskey, K., Bagley, A., Takashiba, S., Greenhalgh, D.G., and Rab, G.T. Alterations in functional movement after axillary burn scar contracture: a motion analysis study. J Burn Care Rehabil 24, 104, 2003.

122. Aarabi, S., Bhatt, K.A., Shi, Y., et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J 21, 3250, 2007.

123. Gao, Y., Zhou, J., Xie, Z., et al. Mechanical strain promotes skin fibrosis through LRG-1 induction mediated by ELK1 and ERK signalling. Commun Biol 2, 359, 2019.

124. Ghabary, A., Shen, Y.J., Nedelec, B., Wang, R., Scott, P.G., and Tredget, E.E. Collagenase production is lower in post-burn hypertrophic scar fibroblasts than in normal fibroblasts and is reduced by insulin-like growth factor-I. J Invest Dermatol 106, 476, 1996.

125. Linge, C., Richardson, J., Vigor, C., Clayton, E., Hardas, B., and Rolfe, K. Hypertrophic scar cells fail to undergo a form of apoptosis specific to contractile collagen-the role of tissue transglutaminase. J Invest Dermatol 125, 72, 2005.

126. Oliveira, G.V., Hawkins, H.K., Chinkes, D., et al. Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens. Int Wound J 6, 445, 2009.
129. Zhou, Y., Zhao, Y., Du, H., et al. Downregulation of CFTR is involved in the formation of hypertrophic scars. Biomed Res Int 2020, 9526289, 2020.

130. Jiao, H., Zhang, T., Fan, J., and Xiao, R. The superficial dermis may initiate keloid formation: histological analysis of the keloid dermis at different depths. Front Physiol 8, 885, 2017.

131. Arbi, S., Eksteen, E., Oberholdzer, H., Taute, H., and Bester, M. Premature collagen fibril formation, fibroblast-mast cell interactions and mast cell-mediated phagocytosis of collagen in keloids. Ultrastruct Pathol 39, 95, 2015.

132. Bhatia, A., O’Brien, K., Chen, M., et al. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs. Mol Ther Methods Clin Dev 3, 16041, 2016.

133. Bhatia, A., O’Brien, K., Chen, M., et al. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs. Mol Ther Methods Clin Dev 3, 16041, 2016.

134. Xiao, M., Li, L., Li, C., et al. Experimental study of burn damage progression in a human composite tissue model. Biology (Basel) 10, 40, 2021.

135. Xiao, M., Li, L., Li, C., et al. Role of autophagy and apoptosis in wound tissue of deep second-degree burn in rats. Acad Emerg Med 21, 383, 2014.

136. Liu, A., Ocotl, E., Karim, A., et al. Modelling early thermal injury using an ex vivo human skin model of contact burns. Burns 47, 611, 2021.

137. Gauglitz, G.G., Song, J., Herndon, D.N., et al. Characterization of the inflammatory response during acute and post-acute phases after severe burn. Shock 30, 503, 2008.

138. Hwang, J., Wang, Y., Ling, T., Chuang, S., Johnson, F., and Hew, J.J., Parungao, R.J., Chen, M., et al. Mouse models in burns research: characterisation of the hypermetabolic response to burn injury. Burns 46, 663, 2020.

139. Huang, J., Wang, Y., Ling, T., Chuang, S., Johnson, F., and Huang, S. Synthetic TGF-beta antagonist accelerates wound healing and reduces scarring. FASEB J 16, 1269, 2002.

140. Qian, L.W., Fourcaudot, A.B., Yamane, K., You, T., Chan, R.K., and Leung, K.P. Exacerbated and prolonged inflammation impairs wound healing and increases scarring. Wound Repair Regen 24, 26, 2016.

141. Singer, A., and McClain, S. Persistent wound infection delays epidermal maturation and increases scarring in thermal burns. Wound Repair Regen 10, 372, 2002.

142. van der Veer, W.M., Bloemen, M.C., Ulrich, M.M., et al. Potential cellular and molecular causes of hypertrophic scar formation. Burns 35, 15, 2009.

143. Cheema, S., Ahmed, U., Nasir, H., Dogar, S., and Mustafa, Z. Effects of propranolol in accelerating wound healing and attenuation of hypermetabolism in adult burn patients. J Coll Physicians Surg Pak 30, 46, 2020.

144. Ueno, M., Lyons, B.L., Burzenski, L.M., et al. Accelerated wound healing of alkali-burned corneas in MRL mice is associated with a reduced inflammatory signature. Invest Ophthalmol Vis Sci 46, 4097, 2005.

145. Fraser, J., Cuttles, L., Kempf, M., et al. Deep dermal burn injury results in scarless wound healing in the ovine fetus. Wound Repair Regen 13, 189, 2005.

146. Januszky, M., Wong, V.W., Bhatt, K.A., et al. Mechanical offloading of incisional wounds is associated with transcriptional downregulation of inflammatory pathways in a large animal model. Organogenesis 10, 186, 2014.

147. Tsai, C.H., and Ogawa, R. Keloid research: current status and future directions. Scars Burn Heal 5, 1–8, 2019.

148. Wong, V.W., Rustad, K.C., Akaishi, S., et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med 18, 148, 2011.

149. Yannas, I.V., and Tzeranis, D.S. Mammals fail to regenerate organs when wound contraction drives scar formation. NPJ Regen Med 6, 39, 2021.

150. Derderian, C.A., Bastidas, N., Lerman, O.Z., et al. Mechanical strain alters gene expression in an in vitro model of hypertrophic scarring. Ann Plast Surg 55, 69; discussion 75, 2005.

151. Harri, H.O., Ogawa, R., Hsu, C.K., Hughes, M.W., Tang, M.J., and Chong, C.M. The tension biology of wound healing. Exp Dermatol 28, 464, 2019.

152. Ishise, H., Larson, B., Hirata, Y., et al. Hypertrophic scar contracture is mediated by the trpc3 mechanical force transducer via NFKB activation. Sci Rep 5, 11620, 2015.

153. Gangemi, E., Gregori, D., Berchialla, P., et al. Epidemiology and risk factors for pathologic scarring after burn wounds. Arch Facial Plast Surg 10, 93, 2008.

154. Barnes, L.A., Marshall, C.D., Leavitt, T., et al. Mechanical forces in cutaneous wound healing: emerging therapies to minimize scar formation. Adv Wound Care (New Rochelle) 7, 47, 2018.

155. Young, J., Lin, W., Ding, J., and Tredget, E.E. Prevention and management of scarring after thermal injury. Plast Aesthet Res 2021, 2021.

156. Szpaderska, A.M., Zuckerman, J.D., and DiPietro, L.A. Differential injury responses in oral mucosal and cutaneous wounds. J Dent Res 82, 621, 2003.

157. Park, J.W., Hwang, S.R., and Yoon, I.S. Advanced growth factor delivery systems in wound management and skin regeneration. Molecules 22, 1259, 2017.

158. Dekhordi, R.S., Babaezyar, M.F., Chehelgerdi, M., and Dekhordi, R.S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 10, 1199, 2019.

159. Asuku, M., Yu, T.C., Yan, Q., et al. Split-thickness skin graft donor-site morbidity: a systematic literature review. Burns 47, 1525, 2021.

160. Dixit, S., Baganizi, D.R., Sahu, R., et al. Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin. J Biol Eng 11, 49, 2017.

161. Centanni, J.M., Straseski, J.A., Wicks, A., et al. Stratafraft skin substitute is well-tolerated and is not acutely immunogenic in patients with traumatic wounds: results from a prospective, randomized, controlled dose escalation trial. Ann Surg 253, 672, 2011.

162. Holmes, J.H., Tavakoli, S., and Klar, A.S. Bioengineered skin substitutes: advances and future trends. Adv Wound Care 10, 1269, 2021.

163. Belsky, K., and Smiell, J. Navigating the regulatory pathways and requirements for tissue-engineered products in the treatment of burns in the United States. J Burn Care Res 42, 774, 2021.

164. U.S. Food & Drug Administration. FDA regulation of human cells, tissues, and cellular and tissue-based products (HCT/P’s) product list. 2018. htps://www.fda.gov/vaccines-blood-biologics/tissue-tissue-products/fda-regulation-human-cells-tissues-and-cellular-and-tissue-based-products-hctps-product-list (Accessed October 2021).

165. U.S. Food & Drug Administration. Questions and answers regarding the end of the compliance and enforcement
policy for certain human cells, tissues, or cellular or tissue-based products (HCT/Ps). 2021. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/questions-and-answers-regarding-end-compliance-and-enforcement-policy-certain-human-cells-tissues-or (Accessed October 2021).

166. U.S. Food & Drug Administration. Regulatory considerations for human cells, tissues, and cellular and tissue-based products: minimal manipulation and homologous use. 2020. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/regulatory-considerations-human-cells-tissues-and-cellular-and-tissue-based-products-minimal (Accessed October 2021).

167. Oberweiss, C.V., Marchal, J.A., Lopez-Ruiz, E., and Galveze-Martin, P. A worldwide overview of regulatory frameworks for tissue-based products. Tissue Eng Part B Rev 26, 181, 2020.

168. Alliance for Regenerative Medicine. Available products. 2021. https://alliancerm.org (Accessed October 2021).

169. Aragona, M., Dekoninck, S., Rulands, S., et al. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat Commun 8, 14684, 2017.

170. Duscher, D., Barrera, J., Wong, V.W., et al. Stem cells in wound healing: the future of regenerative medicine? A mini-review. Gerontology 62, 216, 2016.

171. Li, M., Luan, F., Zhao, Y., et al. Mesenchymal stem cell-conditioned medium accelerates wound healing with fewer scars. Int Wound J 14, 64, 2017.

172. Liu, L., Yu, Y., Hou, Y., et al. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One 9, e88348, 2014.

173. Nie, C., Yang, D., Xu, J., Si, Z., Jin, X., and Zhang, J. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant 20, 205, 2011.

174. Shpichka, A., Butnaru, D., Bezrukov, E.A., et al. Skin tissue regeneration for burn injury. Stem Cell Res Ther 10, 94, 2019.

175. Wu, Y., Chen, L., Scott, P.G., and Tredget, E.E. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25, 2648, 2007.

176. Yu, J., Wang, M.-Y., Tai, H.-C., and Cheng, N.-C. Cell sheet composed of adipose-derived stem cells demonstrates enhanced skin wound healing with reduced scar formation. Acta Biomater 77, 191, 2018.

177. Zhang, Q.Z., Su, W.R., Shi, S.H., et al. Human gingival-derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing. Stem Cells 28, 1856, 2010.

178. Chantre, C.O., Campbell, P.H., Goleciki, H.M., et al. Production-scale fibroinectin nanofibers promote wound closure and tissue repair in a dermal mouse model. Biomaterials 166, 96, 2018.

179. Wu, Y., Huang, S., Enhe, J., et al. Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice. Int Wound J 11, 701, 2014.

180. Xue, L., Xu, Y.B., Xie, J.L., et al. Effects of human bone marrow mesenchymal stem cells on burn injury healing in a mouse model. Int J Clin Exp Pathol 6, 1327, 2013.

181. Hickerson, W.L., Remmers, A.E., and Recker, D.P. Twenty-five years’ experience and beyond with cultured epidermal autografts for coverage of large burn wounds in adult and pediatric patients, 1989–2015. J Burn Care Res 40, 157, 2019.

182. Ronfard, V., Rives, J., Neveux, Y., Carsin, H., and Barrandon, Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation 70, 1588, 2000.

183. Leirós, G.J., Kusinsky, A.G., Drago, H., et al. Dermal papilla cells improve the wound healing process and generate hair bud-like structures in grafted skin substitutes using hair follicle stem cells. Stem Cells Transl Med 3, 1209, 2014.

184. Mirzáei-Parsa, M.J., Ghahbani, H., Alipoor, B., Tavakoli, A., Najafabadi, M.R.H., and Faridi-Majidi, R. Nanofiber-acellular dermal matrix as a bilayer scaffold containing mesenchymal stem cell for healing of full-thickness skin wounds. Cell Tissue Res 375, 709, 2019.

185. Milan, P.B., Lotfibakhshiaesh, N., Joghataie, M., et al. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater 45, 234, 2016.

186. Wang, C., Li, G., Cui, K., et al. Sulfated glycosaminoglycans in decellularized placenta matrix as critical regulators for cutaneous wound healing. Acta Biomater 122, 199, 2021a.

187. Khan, U., and Bayat, A. Microarchitectural analysis of decellularised unscared and scarred dermis provides insight into the organisation and ultrastructure of the human skin with implications for future dermal substitute scaffold design. J Tissue Eng 10, 1–12, 2019.

188. Yim, H., Cho, Y.S., Seo, C.H., et al. The use of Alloderm on major burn patients: Alloderm prevents post-burn joint contracture. Burns 36, 322, 2010.

189. Chen, S.G., Tseng, Y.S., and Wang, C.H. Treatment of severe burn with Dermacell®), an acellular dermal matrix. Int J Burns Trauma 2, 105, 2012.

190. Briquez, P.S., Hubbell, J.A., and Martino, M.M. Extracellular matrix-inspired growth factor delivery systems for skin wound healing. Adv Wound Care (New Rochelle) 4, 479, 2015.

191. Li, X., Liu, L., Yang, J., et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates mir-181c attenuating burn-induced excessive inflammation. EBioMedicine 8, 72, 2016.

192. Marck, R.E., Gardien, K.L., Stekelenburg, C.M., et al. The application of platelet-rich plasma in the treatment of deep dermal burns: a randomized, double-blind, inpatient controlled study. Wound Repair Regen 24, 712, 2016.

193. Marck, R.E., Gardien, K.L., Vlig, M., Breederveld, R.S., and Middelkoop, E. Growth factor quantification of platelet-rich plasma in burn patients compared to matched healthy volunteers. Int J Mol Sci 20, 288, 2019.

194. Venter, N.G., Marques, R.G., Santos, J.S., and Monte-Agro Costa, A. Use of platelet-rich plasma in deep second- and third-degree burns. Burns 42, 807, 2016.

195. Shariati, A., Moradabadi, A., Azimi, T., and Ghaznavi-Rad, E. Wound healing properties and antimicrobial activity of platelet-derived biomaterials. Sci Rep 10, 1032, 2020.

196. Mallinckrodt Pharmaceuticals. Stratagraft® package insert. 2021. https://www.fda.gov/media/150129/download (Accessed October 2021).

197. Rabiller, L., Robert, V., Arlat, A., et al. Driving regeneration, instead of healing, in adult mammals: the decisive
role of resident macrophages through efferocytosis. NPJ Regen Med 6, 41, 2021.

198. Wang, M.H., Hsu, C.L., Wu, C.H., et al. Timing does matter: nerve-mediated HDAC1 paces the temporal expression of morphogenetic genes during axolotl limb regeneration. Front Cell Dev Biol 9, 641987, 2021b.

199. Dolan, C.P., Dawson, L.A., and Muneoka, K. Digit tip regeneration: merging regeneration biology with regenerative medicine. Stem Cells Transl Med 7, 262, 2018.

200. Deegan, A.J., Wang, W., Men, S., et al. Optical coherence tomography angiography monitors human cutaneous wound healing over time. Quant Imaging Med Surg 8, 135, 2018.

201. Weltermann, A., Wolzt, M., Petersmann, K., et al. Large amounts of vascular endothelial growth factor at the site of hemostatic plug formation in vivo. Arterioscler Thromb Vase Biol 19, 1757, 1999.

202. Bekeschus, S., Lackmann, J.W., Gümbel, D., Napp, M., Schmidt, A., and Wende, K. A neutrophil proteomic signature in surgical trauma wounds. Int J Mol Sci 19, 761, 2018.

203. Kim, H.S., Kim, J.H., Yim, H., and Kim, D. Changes in the levels of interleukins 6, 8, and 10, tumor necrosis factor alpha, and granulocyte-colony stimulating factor in Korean burn patients: relation to burn size and postburn time. Ann Lab Med 32, 339, 2012.

204. Mirastschijski, U., Lupše, B., Maedler, K., et al. Matrix metalloproteinase-3 is key effector of TNF-z-induced collagen degradation in skin. Int J Mol Sci 20, 5234, 2019.

205. Chen, L., Wang, J., Li, S., et al. The clinical dynamic changes of macrophage phenotype and function in different stages of human wound healing and hypertrophic scar formation. Int Wound J 16, 360, 2019.

206. Jia, R., Zhou, M., Tuttle, C.S.L., and Maier, A.B. Immune capacity determines outcome following surgery or trauma: a systematic review and meta-analysis. Eur J Trauma Emerg Surg 46, 979, 2020.

207. Shi, H., Lo, T.H., Ma, D., et al. Dihydropyosterone (DHT) enhances wound healing of major burn injury by accelerating resolution of inflammation in mice. Int J Mol Sci 21, 6231, 2020.

208. Wulff, B.C., and Wilgus, T.A. Mast cell activity in the dermal fibroblasts-myofibroblasts transition via inhibiting the TGF-β1/SMAD 2/3 signaling pathway. Exp Mol Pathol 115, 104468, 2020.

209. Younan, G.J., Heit, Y.I., Dastouri, P., et al. Mast cells are required in the proliferation and remodeling phases of microdeformational wound therapy. Plast Reconstr Surg 128, 649e, 2011.

210. Hu, J., Chen, Y., Huang, Y., and Su, Y. Human umbilical cord mesenchymal stem cell-derived exosomes suppress dermal fibroblasts-myofibroblasts transition via inhibiting the TGF-β1/SMAD 2/3 signaling pathway. Exp Mol Pathol 115, 104468, 2020.

211. Meran, S., Thomas, D., Stephens, P., et al. Involvement of hyaluronan in regulation of fibroblast phenotype. J Biol Chem 282, 25687, 2007.

212. Failla, C.M., Odorisco, T., Cianfarani, F., Schietroma, C., Puddu, P., and Zambruno, G. Placenta growth factor is required in the proliferation and remodeling phases of healing wound: more than meets the eye? Exp Dermatol 27, 623, 2009.

213. Lorenz, H., Longaker, M., Perkocha, L., Jennings, R., Harrison, M., and Adzick, N. Scarless wound repair: a human fetal skin model. Development 114, 253, 1992.

214. Lorenz, H., Whitby, D., Longaker, M., and Adzick, N. Fetal wound healing. The ontogeny of scar formation in the non-human primate. Ann Surg 217, 391, 1993.

215. Brink, H.E., Bernstein, J., and Nicoll, S.B. Fetal dermal fibroblasts exhibit enhanced growth and collagen production in two- and three-dimensional culture in comparison to adult fibroblasts. J Tissue Eng Regen Med 3, 623, 2009.

216. U.S. Food & Drug Administration. Suprathel 510(k) summary. 2009. https://www.accessdata.fda.gov/scripts/cdrh_docs/pdf9/K090160.pdf (Accessed October 2021).

217. Greenwood, J.E., Schmitt, B.J., and Wagstaff, M.J.D. Experience with a synthetic bilayer biodegradable temporising matrix in significant burn injury. Burns Open 2, 17, 2018.

218. PolyMedics, Inc. Suprathel®. 2020. https://polymedics.com/wp-content/uploads/2020/11/MA-P-SUPRATHEL-ONE-Page-US-2020-10-FINletter-Vista.pdf (Accessed October 2021).

219. PolyNovo. Novosorb® BTM instructions for use. 2019.

220. U.S. Food & Drug Administration. BTM wound dressing 510(k) premarket notification. 2015. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?ID=K142879 (Accessed October 2021).

221. Organogenesis, Inc. Dermagraft® directions for use. 2015. https://dermagraft.com/pdf/Dermagraft-Directions-for-Use.pdf (Accessed October 2021).

222. Smith & Nephew. Biobrane®. 2021. https://www.smith-nephew.com/key-products/advanced-wound-management/other-wound-care-products/biobrane/ (Accessed October 2021).

223. U.S. Food & Drug Administration. Premarket approval (PMA): transcyte search results. 2021. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?start_search=1&sortcolumn=do_desc&PAGENUM=500&pmanumber=P960007 (Accessed October 2021).

224. Avita Medical, Inc. U.S. Food and Drug Administration approved expanded use of the Recell® system for the treatment of extensive burns and pediatric patients. 2021. https://ir.avitamedical.com/static-files/541377a8-a052-4c82-a2a3-68eea25d1f0 (Accessed October 2021).

225. Vericel. Epicel surgical guidelines. 2021. https://www.epicel.com/pdfs/Epicel%20SurgicalGuide%202018%20DIGITAL.pdf (Accessed October 2021).

226. MiMedx. Amnioburn®. Product information. 2021. https://www.mimedx.com/wp-content/uploads/2021/06/AB105.001-AMNIOBURN-Product-Brochure.pdf (Accessed October 2021).

227. MiMedx. Epifix® instructions for use. 2017. https://www.regenmedical.co.uk/wp-content/uploads/2021/03/ES101.004-EpiFix-Mesh-IFU.pdf (Accessed October 2021).

228. U.S. Food & Drug Administration. MiMedx establishment registration and listing for human cells, tissues, and cellular and tissue-based products described in 21 cfr 1271.2021. https://www.fda.gov/vaccines-blood-biologics/biologics-establishment-registration/tissue-establishment-registration (Accessed October 2021).

229. ACell. Our Technology. 2021. https://www.acell.com/how-it-works/ (Accessed October 2021).
232. Integra. Integra® Dermal Regeneration Template. 2012. https://www.integralife.com/file/general/1453795605-1.pdf (Accessed October 2021).

233. Integra. Integra® Dermal Regeneration Template brief summary. 2020. https://www.integralife.com/file/general/1608151762.pdf (Accessed October 2021).

234. Smith & Nephew. Oasis®, 2021. https://www.smith-nephew.com/professional/products/advanced-wound-management/oasis/ (Accessed October 2021).

235. Allergan. AlloDerm™ Regenerative Tissue Matrix Instructions for Use. 2020. https://media.allergan.com/actavis/actavis/media/allergan-pdf-documents/labeling/alleoderm_rtm_ifu.pdf (Accessed October 2021).

236. Wainwright, D.J., and Bury, S.B. Acellular dermal matrix in the management of the burn patient. Aesthet Surg J 31, 13S, 2011.

237. Allergan Aesthetics. AlloDerm® Regenerative Tissue Matrix. 2021. https://hcp.alloderm.com/ (Accessed October 2021).

238. Organogenesis, Inc. Apligraf® package insert. 2016. https://organogenesis.com/pdf/advanced-wound-care-apligraf-package-insert.pdf (Accessed October 2021).

239. Organogenesis, Inc. Apligraf® fact sheet. 2017. https://apligraf.com/pdf/Apligraf-FactSheet.pdf (Accessed October 2021).

240. U.S. Food & Drug Administration. Stratagraft BLA approval. 2021. https://www.fda.gov/vaccines-blood-biologics/stratagraft (Accessed October 2021).

241. ClinicalTrials.gov. Evaluation of safety of Xeno-Skin™ for treatment of severe and extensive, partial and full thickness burns. 2021. https://clinicaltrials.gov/ct2/show/NCT03695939 (Accessed October 2021).

242. Albritton, A., Leonard, D.A., Leto Barone, A., et al. Lack of cross-sensitization between alpha-1,3-galactosyltransferase knockout porcine and allogeneic skin grafts permits serial grafting. Transplantation 97, 1209, 2014.

243. ClinicalTrials.gov. CellMist™ autologous cells to treat deep second-degree burns (CELLMIST1). 2021. https://clinicaltrials.gov/ct2/show/NCT04890574 (Accessed October 2021).

244. ClinicalTrials.gov. Stratagraft overlay of meshed autograft in full-thickness thermal burns (StrataSOMA). 2021. https://clinicaltrials.gov/ct2/show/NCT04765202 (Accessed October 2021).

245. ClinicalTrials.gov. A clinical evaluation of an esterified hyaluronic acid matrix in burn patients for STSG. 2020. https://clinicaltrials.gov/ct2/history/NCT03723590?V_6=View (Accessed October 2021).

246. ClinicalTrials.gov. RES® prepared with RECELL® compared to standard of care dressings of partial-thickness burns in ages 1–16 years. 2021. https://clinicaltrials.gov/ct2/show/NCT03626701 (Accessed October 2021).

Address correspondence to:
Adam J. Singer, MD
Department of Emergency Medicine
Renaissance School of Medicine
Stony Brook University
101 Nicolls Road
Health Sciences Center, Level 4
Stony Brook, NY 11794-8434
USA

E-mail: adam.singer@stonybrookmedicine.edu

Received: May 27, 2021
Accepted: December 8, 2021
Online Publication Date: March 11, 2022