Human Action Recognition Using Deep Learning Methods on Limited Sensory Data

Nilay Tufek, Murat Yalcin, Mucahit Altintas, Fatma Kalaoglu, Yi Li, and Senem Kursun Bahadir

Abstract—In recent years, due to the widespread usage of various sensors action recognition is becoming more popular in many fields such as person surveillance, human-robot interaction etc. In this study, we aimed to develop an action recognition system by using only limited accelerometer and gyroscope data. Several deep learning methods like Convolutional Neural Network (CNN), Long-Short Term Memory (LSTM) with classical machine learning algorithms and their combinations were implemented and a performance analysis was carried out. Data balancing and data augmentation methods were applied and accuracy rates were increased noticeably. We achieved new state-of-the-art result on the UCI HAR dataset by 97.4% accuracy rate with using 3 layer LSTM model. Also, we implemented same model on collected dataset (ETEXWELD) and 99.0% accuracy rate was obtained which means a solid contribution. Moreover, the performance analysis is not only based on accuracy results, but also includes precision, recall and F1-score metrics. Additionally, a real-time application was developed by using 3 layer LSTM network for evaluating how the best model classifies activities robustly.

Index Terms— Activity recognition, deep learning, CNN, LSTM, data augmentation, data balancing.

I. INTRODUCTION

HUMAN action recognition is a still challenging task due to the fact that actions can be carried out by different persons in various places. Moreover, length of time interval can vary for same and different types of actions. Since actions consist of sequential data, getting spatio-temporal information from the data becomes a challenge [1].

Wearable devices have started to change our lives, such as smartphones have changed our habits and behavior within ten years. Wearable devices appeared to be seen in many areas e.g. health care, fitness tracking, entertainment and they are expected to spread rapidly in the near future. For instance;

- Several deep learning methods like Convolutional Neural Network (CNN), Long-Short Term Memory (LSTM) with classical machine learning algorithms and their combinations were implemented and a performance analysis was carried out. Data balancing and data augmentation methods were applied and accuracy rates were increased noticeably.
- We achieved new state-of-the-art result on the UCI HAR dataset by 97.4% accuracy rate with using 3 layer LSTM model. Also, we implemented same model on collected dataset (ETEXWELD) and 99.0% accuracy rate was obtained which means a solid contribution. Moreover, the performance analysis is not only based on accuracy results, but also includes precision, recall and F1-score metrics. Additionally, a real-time application was developed by using 3 layer LSTM network for evaluating how the best model classifies activities robustly.

This study focus on activity recognition based on state-of-the-art deep learning methods using wearable sensors. These sensors are able to be integrated in textile products and they benefit from improvements on both textile and electronics’ technology [11]. Technology is used for accelerometer based systems for different purposes [12].

This study focus on activity recognition based on state-of-the-art deep learning methods using wearable sensors. These sensors are able to be integrated in textile products and they benefit from improvements on both textile and electronics’ technology [11]. Technology is used for accelerometer based systems for different purposes [12].
In this work, data was collected by using these sensors at 5 Hz frequency while subjects were performing 7 different activities. The dataset was generated based on experimental study implemented under European Union project (ETEXWELD H2020: RISE. 644268) so that the dataset is called as ETEXWELD dataset. In the literature, several works have been carried out using accelerometer and gyroscope for activity recognition and authorization. UCI HAR is the first large dataset including daily activities of subjects which are measured via inertial sensors in mobile phone [13]. It includes 6 different activities including “walking”, “sitting”, “standing”, “lying”, ”up-stairs” and “down-stairs”. These are similar that we used in this project, but in this study we have also added “falling” activity. Therefore, UCI HAR dataset is used in this study as a benchmark dataset to compare ETEXWELD dataset results.

In the literature, there are numerous strategies for performance analysis on sensor based activity recognition. These strategies are occurred by supervised, unsupervised and semi-supervised techniques. However, this is a classification problem and we used supervised learning methods. The UCI HAR dataset which is used as benchmark dataset is also used in several studies [14], [15]. In these works, mostly classical machine learning algorithms such as Support Vector Machines (SVM) [16], k Nearest Neighbour, Linear Discriminant Analysis (LDA) [17], Multilayer Perceptron(MLP) [18] and deep learning methods are used on this dataset.

[19], [20] recognizes daily activities by using wearable sensors and additionally environmental sound with DNN (Deep Neural Network). [21] uses S transform and Gaussian windows to extract features of the activities but its success related with length of the activity which is very dataset specific. Many studies uses kNN algorithm to classify activities on. But it is not possible to implement to kNN to real-time applications due to computational cost causes delay in recognition. [22] demonstrates that using the combination of accelerometer and gyroscope sensors together to detect human activities properly by using feature selectors and kNN algorithm. While classical machine learning algorithms present around 85% accuracy, deep learning algorithms including CNN and LSTM [23] give better result over 90% [24]. While CNN gets 95% accuracy, [25] uses histogram of gradient (HG) and the Fourier descriptor (FD) to extract features, kNN and SVM is deployed for recognition. This kind of hand-crafted feature extraction techniques requires special feature engineering for every dataset. They achieved the latest state-of-the-art result by 97.1% using these methods on UCI HAR dataset. But, by using deep learning method we have found new state-of-the-art results on UCI HAR this dataset. Moreover, we have implemented several methods in order to compare the results of the deep learning methods including Dynamic Time Warping (DTW) [26] and kNN, one dimensional CNN (1D CNN [27]), two-dimensional CNN 2D CNN [28]), 2 layer LSTM [29], 3 layer LSTM [30], bidirectional LSTM [31], 1D CNN and LSTM on UCI HAR dataset in the paper. Additionally, we have implemented all these methods on ETEXWELD dataset to see comparison of result of the methods for sensor based activity recognition problems over UCI HAR and ETEXWELD datasets.

In this study, we have worked on how to improve accuracy, precision, recall and f1-score metrics [32] by using data augmentation and data balancing methods. After using data set balancing, we have observed much higher accuracy and precision results. Then, data augmentation is used after balancing as well and it also improved the results. All these interventions are applied only on training set. During the implementation of all methods, 10 fold cross validation was used to check how to model optimize on training dataset.

There are several contributions to literature including original deep learning architectures, improvement algorithms, a new dataset, comparison of several methods in different metrics and improving the state of the art results on public dataset in the content of this study. First of all, our results beat the state of the art results on UCI HAR public dataset in the literature. In order to achieve it, we have developed new deep learning networks with a novel data balancing algorithm. Above all, new dataset is designed and created for this project specifically, but it would be used in several projects in the future. One of the most challenging part was to create new dataset using integrated sensors and to work on a real sampled data acquired from those embedded sensors. It is not possible to collect thousands samples data from different subjects. Therefore, data augmentation approach within the study was also designed to improve generalization ability of the models. It is one of the novel step as well, because of improvement the results and being unique. For the recognition, scratch deep learning and machine learning algorithms which are used on both datasets were deployed. Finally, the comparisons of several learning methods for each dataset are shown from
the aspects of accuracy, precision, recall, time and space consumption.

II. DESIGN ARCHITECTURE OF SENSORS EMBEDDED TO A TEXTILE STRUCTURE

End-to-end system design including the human, sensors, monitoring, and communication modules integrated to textile products is shown in Fig. 1. Several setups occurred by electronic modules and flexible covering band for various parts of the body are prepared as seen in Fig. 2. However, in this study, only chest module is used, because [33] shows that chest is the best position to place just a single wearable device to distinguish human activities. Therefore, just a single wearable device placed to the chest with its covering band and all activities were performed by this setup. Wearable sensor device can be seen on the chest clearly in Fig. 3.

All data from each sensor is tracked via a desktop application as shown in Fig. 4. Some of the activities such as walking, falling, upstairs and jogging also could be seen in Fig. 5.

III. DATASETS

In the scope of this study, there are two similar datasets including UCI HAR [13] benchmark dataset and ETEXWELD dataset. Both are created for activity recognition via accelerometer and gyroscope sensors. These datasets include data for the actions of “walking”, “sitting”, “lying”, “standing”, “up-stairs” and “down-stairs”. Despite these datasets have similarities, there are also differences including sampling rate, number of actions and hardware platforms.

Firstly, while UCI HAR dataset has 50 Hz sampling rate, ETEXWELD dataset has 5 Hz sampling rate, which is highly challenging to detect activities. Requirement of a low sampling rate comes from the power consumption constraint of the system. Therefore, sampling rate and number of the samples are less in ETEXWELD dataset.

Secondly, while UCI HAR dataset has 6 different actions, ETEXWELD dataset has 7 different activities with extra added “falling” and “jogging” actions and discarded “sitting” action. Because these activities are more related to our user stories.

Finally, although first dataset is collected from the accelerometer and gyroscope sensors of a mobile device, ETEXWELD dataset is required since the new hardware platform is a custom hardware board with different accelerometer and gyroscope sensors. Table I shows all physical activities in the scope of the project and the number of collected data samples. As seen on the Table I, we can consider this as a small size dataset and some activities has much more samples compare to the others.

In order to make dataset balanced, data augmentation algorithms have been implemented and a comparison between these different type of datasets has been made.

Action	Number of Sample
Walking	10000
Jogging	9000
Lying	8000
Standing	8000
Falling	1000
Up-stairs	5000
Down-stairs	5000
IV. THE DESIGN OF THE AUTOMATION SYSTEM

The automated system is managed by data collection, pre-processing with data augmentation, machine learning algorithms and real time application.

A. Data Acquisition

The data is collected with an automation system that uses ZigBee module on both clothing architecture and ground station. This module works with 2.4 GHz frequency and transmission distance is between 10 and 20 m for indoor environment, up to 200 m for outdoor environment. For instance, Fig. 6 and Fig. 7 shows the collected data based on 3-axis accelerometer and 3-axis gyroscope, respectively. 7 different activities were carried out by 10 different subjects during data acquisition. Volunteers consist of 5 male and 5 female aged between 22 and 40 years. All experiments were conducted with the consent of the persons. After data acquisition, this collected data should be pre-processed in order to apply deep learning algorithms.

B. Data Preparation

Data preparation is done by preprocessing, data balancing and data augmentation. Pre-processing includes parsing the data into the format of input shape for each model with 15% to get samples throughout activity. Also, it separates the dataset into train and test data as shown in Fig. 8. Train set consist of 3 males and 3 females subjects and it corresponds 75% of the whole dataset. Other remaining 25% part which consist of 2 males and 2 females subjects which is completely different from train dataset was left as test set to determine model performance.

The distribution of activities in native train and test subsets are shown in Fig. 9.

As it is seen in Fig. 8, the native data set has unbalanced distribution for both train and test data sets. Because of the unbalanced number of collected samples for different actions, we have faced with high accuracy but low precision. In order to improve precision, data balancing algorithms were used. Sufficiency is based on random stop. The only thing we considered before stop the balancing that any proportion of number of any action should be less than 2.
Algorithm 1 Data Augmentation Algorithm

1: procedure AUGMENTDATA(Data, n, m)
2: NewData ← data
3: randomness ← Random(1, n)
4: NewData ← RandomShift(r, data)
5: randomness ← Random(1, m)
6: NewData ← AddRandomNoise(rndmnss, NewData)

Algorithm 2 Balancing Dataset Algorithm

1: procedure BALANCE(Data, n, m)
2: randomness ← Random(1, n)
3: for action ∈ Dataset.actions do
4: if action.len * 2 > maxAction then
5: Continue
6: if action.len * 2 < maxAction then
7: realSample ← getDtFrmThtAction(action)
8: for i <= randomness do
9: newSample ← AugmntDt(realSample, n, m)

After balancing, the number of samples are increased seen in Fig. 10.

The core code of balancing algorithm is also used in data augmentation. The data augmentation step was necessary due to the lack of sampled data for each action. The idea behind this augmentation algorithm is after taking any real data for any action, we would like to create similar data to improve our dataset. In order to do that, we add noise to raw data and shift it randomly left and right. While determining the noise and shifting amount, the correlation matrix was taken into account. For each action correlation matrices have been created in order to keep the similarity level of each action type in collected dataset. The correlation matrix for balanced and native train dataset can be seen in Fig. 11. The higher level pseudo-code is shown in Algorithm 1 and Algorithm 2.

After balancing and augmentation of the dataset, the similar values in correlation matrices were observed. This was our benchmark during the determining randomness border on balancing and augmentation. The distribution of augmented dataset is shown in Fig. 12.

C. Creation of Deep Learning Models

The research problem in this study is handled as a supervised classification process. All of the evaluated supervised deep learning [34] methods in this study are trained and tested as seen in Fig. 13 and Fig. 14.

These methods are 1D CNN, 2D CNN, 2 Layer LSTM [30], 3 Layer LSTM, Bi-directional LSTM, 1D CNN+LSTM. Each network is designed and implemented with a unique architecture and is trained from scratch. In addition to these state-of-the-art deep learning methods, DTW+kNN is also implemented with the parameter k equals to 5. Moreover, all methods were applied on both UCI HAR dataset and newly created dataset.
D. CNN Models

Convolutional neural network (CNN) is applied through signal data to extract features automatically and to classify [35], [36]. CNNs have capabilities to consider both dependencies in both time and signal dimensions. Weight sharing in CNN improves the recognition performance while decreasing the number of trainable weights. We used two different type of CNN models. Algorithm 3 shows general algorithm for CNN models.

1D CNN Model: Input for 1D CNN from scratch model is 1x90 vectors. Consecutive samples of accelerometer and gyroscope data is ordered by 1D vector. For feature extraction task, architecture consists of 2 convolution layers with 2x1 kernels, stride 2 and 1x1 kernels and stride 1, respectively. 32 different filters is used for all layers. After this step 1x1440 flattened feature vector is obtained. For classification, this features is fed to a fully connected layers which consist of 100 neurons with RELU activation function. Learning rate is determined 0.01 and optimization method is chosen Stochastic Gradient Descent with categorical cross-entropy loss function. After 250 epochs 10 fold-cross-validation presented the best performance. Fig. 15 shows 1D CNN model.

2D CNN Model: Before being fed to 2D CNN, the data were converted into image format. When we consider the image as a matrix, 3 coordinates of accelerometer value comes to first 3 column and gyroscope value comes to next 3 column, respectively. Row by row, every sample is arranged horizontally throughout until the activity ends. Every activity is carried out within 3 seconds. Data input is 15x6 activity map for both model. In 1D model, convolution operator works on just one time sample instead of other in 2D model. Notice that the kernel height is responsible for extracting temporal patterns while the kernel width extracts the correlation between neighboring axes.

Scratch model consists of 2 convolution layers, 1 maxpooling layer, 1 fully connected layer and 2 dropout layers. Learning rate was chosen 0.0001 and Adam [37] optimization method is used for learning weights. Data was fed into groups of 24 batches and the highest performance was achieved with 10 fold-cross-validation as a result of 300 iterations.

To learn relations between features, 1000 neurons were used in hidden layer for classification. There is no pre-trained network for training with less effort. So, we developed completely from scratch network. Fig. 16 shows 2D CNN network model.

E. LSTM Models

There are plenty studies that take advantage of interpreting capability of sequential data for activity recognition by using wearables [38], [39]. When implementing LSTM models, most commonly used architecture is described in [9]. A LSTM memory block consist of three gates: an input gate (i), a forget gate (f), and an output gate (o), which overwrite, keep, or retrieve the memory from the memory cell (c) at the time t.

Firstly, input gate (i t) and forget gates (f t) are computed by following equations:

\[i_t = \text{sigmoid}(W_i \cdot x_t + H_i \cdot h_{t-1} + C_i \cdot c_{t-1} + b_i) \]
\[f_t = \text{sigmoid}(W_f \cdot x_t + H_f \cdot h_{t-1} + C_f \cdot c_{t-1} + b_f) \]

Afterwards, by using an amount of the previous contents (c t−1), the current memory cell (c t) is updated for forgetting and the new memory (c̃) for including. They can be calculated by following equations:

\[\tilde{c}_t = \tanh(W_c \cdot x_t + H_c \cdot h_{t-1} + b_c), \]
\[c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t, \]

Finally, the final activation at the current position (h t) is calculated with the output gate (o t) which regulates the amount of information to output.

\[o_t = \text{sigmoid}(W_o \cdot x_t + H_o \cdot h_{t-1} + C_o \cdot c_t + b_o) \]
\[h_t = o_t \odot \tanh(c_t) \]

Where, x, i, f, c, o, h ∈ ℝ T, where T is the length of the input. x t is the input activation at the current time (t), and h t−1 is
the output activations from the past time \((t-1) \). \(W, H, \) and \(C \) are weight matrices for input to gates, recurrent connections, and cell to gates.

In the study of Zebin at al. [40] only 6 different activities were classified with 2 layered LSTM Network. In our work, beside that two different layered LSTM Network, Bidirectional LSTM Network [41] is also used. Standard LSTM network have restrictions as the future input information cannot be reached from the current state. On the contrary, bidirectional LSTM network do not require its input data as the same dimension. Moreover, their future input information can be reached from the current state. The main idea of Bidirectional LSTM is to connect two hidden layers of opposite directions to the same output. By this structure, the output layer can access information from past and future states and interprets better.

After pre-processing step, data should be converted to fixed form for feeding LSTM network model. Data constructed with appropriate dimensions are fed to the successive LSTM blocks with vectors formed by 32 batches. Overall flow chart of the LSTM model is seen in Fig. 16 with different number of hidden layers. The main idea of Bidirectional LSTM is to connect two hidden layers of opposite directions to the same output. By this structure, the output layer can access information from past and future states and interprets better.

After pre-processing step, data should be converted to fixed form for feeding LSTM network model. Data constructed with appropriate dimensions are fed to the successive LSTM blocks with vectors formed by 32 batches. Overall flow chart of the LSTM model is seen in Fig. 16 with different number of hidden layers. To understand sequential relationship between spatio-temporal data, window size and overlap rate hyperparameters are very important and were selected as 32 and 50%, respectively. 2 and 3 layers LSTM models have been deployed for two different experiments. Every layer in the network consist of 32 neurons. In experiments, 10-fold cross-validation, 0.0025 learning rate, 0.0015 loss account coefficient and 15 epochs are the common hyper-parameters for both LSTM models. Binary cross-entropy optimization has been determined as the optimization method. The dropout layer is applied with 20% probability to prevent overfitting. Bidirectional LSTM network model consists of 2 hidden layer that includes 100 and 32 hidden layer, seperately. Bidirectional LSTM network model consists of 2 hidden layer that includes of 100 and 32 hidden layer, seperately. Fig. 17 shows general LSTM model with different number of hidden layers.

F. Hybrid Models

CNN + LSTM Model: In this model, CNN and LSTM models took part for the recognition task as a hybrid model. At first, 1D CNN was used in different time steps as a feature extractor. After implementing 2 convolutional layer that each of them have 64 filter maps and 2 max pooling layer with stride 2, 1536 features were obtained. For classification task 3 LSTM layer that every hidden layer consist of 128 neurons was deployed. To get sequential relationship between samples and time intervals, data was fed to network as 1x124 vectors. Adam [37] optimization method was used and categorical cross-entropy selected as a loss function during training. Fig. 18 illustrate overall scheme of the model.

KNN + DTW Model: [42] used KNN algorithm for UCI dataset. Although KNN is classical machine learning algorithm for classification, it is very simple and effective. It is very important to determine optimal k value which has a great role in terms of classification accuracy. Algorithm was run with different k values and was chosen as 4 for best performance. DTW [43] used to calculate similarity between two temporal sequences and combined with KNN algorithm for classification task. It finds optimum mapping by using minimum
distance between arbitrary length signal samples rather than just customary calculating Euclidean distance as a similarity measure criteria in KNN algorithm. Equation 8 shows how minimum distance calculation using Euclidean distance formula in Equation 7. Here, Euclidean distance was used with neighbourhood of \(k = 4 \) nearest training samples with the initial condition \(D(1, 1) = | t(1) - r(1) | \).

\[
D_{Euclidean}(x, y) = \sqrt{\sum_{i=1}^{k} (x_i - y_i)^2} \tag{7}
\]

\[
D(i, j) = | t(i) - r(j) | + \min \left\{ \frac{D(i-1, j)}{D(i-1, j-1)}, \frac{D(i, j-1)}{D(i, j-1)} \right\} \tag{8}
\]

G. Real-Time Application

In the work carried out, one real-time desktop application which uses the deep learning method as an analyzer was implemented to track fire-fighters activity. Interface of the application can be seen on Fig. 19.

V. Experimental Test Results

All results were obtained using the same hardware circumstance that involves Intel i7 2.6 GHz CPU, 8 GB RAM and without GPU. All software is implemented using Python programming language and Tensorflow library. After preparing the data, all deep learning methods on datasets were tested. In order to test it, several considerations and comparison criteria were evaluated. These criteria are based on popular evaluation metrics including precision, recall, f1-score and accuracy. All these metrics are based on the true and false results and their real values. They are called true negative (TN), true positive(TP), false negative (FN) and false positive(FP). TP is an outcome where the model correctly predicts the positive class while TN is an outcome where the model correctly predicts the negative class. FP, a false positive, is an outcome where the model incorrectly predicts the positive class and a false negative is an outcome where the model incorrectly predicts the negative class. These outcomes help to calculate metrics as shown on Table II.

Training time and number of updating parameters are also measured for time and space consumption in algorithm comparisons. Training time do not effect accuracy rate. But if there is big amount of data, training procedure cost much more computation time. All of the deep learning networks that designed were tested on two different datasets including UCI HAR and ETEXWELD dataset. On UCI HAR dataset, two different approach was deployed. Firstly, experiments were carried out by using just accelerometer and gyroscope data. Then, another experiments, accelerometer, gyroscope and total data consist of accelerometer and gyroscope data together were used. Moreover, ETEXWELD dataset is used in three different training set forms which are native, balanced and augmented. The most important metric in this study is accuracy. Comparative results which based on accuracy are obtained on the UCI HAR and ETEXWELD dataset. For UCI HAR dataset when only accelerometer and gyroscope is used, accuracy results, time and space consumption points of view

Models	UCI HAR Test Accuracy (%)	Training Time (minutes)	Updated Parameters
DTW + kNN	65	185	-
1D CNN	76	90	23,460
2D CNN	85	132	7,314,270
2 Layer LSTM	91	15	202, 146
3 Layer LSTM	93	20	362,342
Bi-directional	77	121	362,342
LSTM			
1D CNN+ LSTM	76	30	1,208,106

TABLE II

EVALUATION METRICS FOR CLASSIFICATION WHICH ARE USED IN THIS WORK

Metric	Calculation
Accuracy	\((TP+TN)/(TP+FP+FN+TN)\)
Precision	\(TP/(TP+FP)\)
Recall	\(TP/(TP+FN)\)
F1 score	\(2*TP/(2*TP+FP+FN)\)

TABLE III

TEST ACCURACY, TIME AND SPACE CONSUMPTIONS DURING TRAINING ON UCI HAR DATASET (ACCELEROMETER AND GYROSCOPE ONLY) FOR EACH MACHINE LEARNING MODEL
are shown on the Table III. It is empirically observed the most accurate model is 3 Layer LSTM with 93%.

There is also one more parameter comes with UCI HAR dataset called “total”. After adding this input into training model, the results are summarized in Table IV. As it is seen, the accuracy was improved and new state-of-the-art result was obtained with 93.7% accuracy rate.

The same approach was also implemented to ETEXWELD train dataset. Results of native test accuracies are given in Table V.

As it is seen in Table V from accuracy point of view, the best result was obtained with 3 Layer LSTM. However, accuracy may not be enough to determine whether the model is good or not. Therefore, precision, recall, f1-score and support metrics for 3-Layer LSTM have been also checked in Table VI.

While accuracy is relatively high, the precision, recall and f1-score are very low for several activities. When we examine the results, it is observed that, lower precision results are also small sampled activities. The reason of this low precision is that of unbalancing dataset that is trained. Confusion matrix of test results by using 3 layer LSTM model which trained with native dataset can be seen on Fig. 20.

In order to solve this problem, the data augmentation and dataset balancing have been done. After the balancing process, balanced train set for all machine learning methods is again used. As it is seen in the Table VII, accuracy is highly improved for all machine learning models and again, the best performance was obtained with 3 layer LSTM as before.

After this observation, other parameters in balanced dataset training model were re-checked. As given in Table VIII, there is an important improvement.

It could be also clearly seen in confusion matrix how much it is improved with balanced data in Fig. 21. After this big improvement on not only accuracy, but also precision, recall and f1-score, the dataset and model became more trustful.
Training process results on balanced data is also followed on epochs for 3 layer LSTM model. Accuracy and loss chances could be seen for both train and test set as well in Fig. 22.

In addition to this balancing, all models have been tested on the augmented dataset to see how data augmentation is effecting classification accuracy and the accuracy results on all models are seen in Table IX and also confusion matrix can be seen in Fig. 23.

The improvement on the accuracy still exists, although it is very small. The training time is increased because of increasing iteration number. Other metrics also examined with augmented data in Table X.

VI. CONCLUSION

In this study, a unique dataset based on real experiments acquired from wearable devices was used for human activity recognition. We have achieved state-of-the-art results with two different data set with using deep learning techniques including from scratch trained and designed CNN and LSTM networks. It is proven that 3-Layer LSTM model is the best solution for sensor-based activity recognition problems in real time applications particularly for wearable devices. Additionally, kNN may not be an efficient option for classification of activities for big datasets like UCI HAR because of lower accuracy rate and computational cost. Therefore, we contribute to the literature while showing the comparison of different deep learning results according to accuracy, time and space complexity. Moreover, we have shown that the data augmentation on small size datasets and balancing for the unbalanced...
dataset are critical in order to obtain higher scores. They do not only improve test accuracy but also improve other metrics such as precision, recall and F1-score dramatically. In order to achieve that, we have design and implement our original algorithms for time series sensory data specifically as one of the novel steps. This study can be implemented to detect activities of firefighters to determine their health condition and performances. In future studies, it is planning to use multiple sensors and recognize more complicated activities.

References

[1] M. D. Rodríguez, J. Ahmed, and M. Shah, “Action MACH a spatio-temporal maximum average correlation height filter for action recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Anchorage, AK, USA, Jun. 2008, pp. 1–8.
[2] P. Salvo, F. Di Francesco, D. Costanzo, C. Ferrari, M. G. Trivella, and D. De Rossi, “A wearable sensor for measuring sweat rate,” IEEE Sensors J., vol. 10, no. 10, pp. 1557–1558, Oct. 2010.
[3] C. Tommasini, H. Harms, C. Kappeler-Stoll, and G. Troster, “Monitering kinematic changes with fatigue in running using body-worn sensors,” IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 5, pp. 983–990, Sep. 2012.
[4] C. Strohrmann, R. E. Labruyère, C. N. Gerber, H. J. A. van Hedel, B. Arnrich, and G. Troster, “Monitoring motor capacity changes of children during rehabilitation using body-worn sensors,” J. Neurom. Rehabil., vol. 10, p. 83, Dec. 2013.
[5] H. Jin, Y. Shibli Abu-Rayha, and H. Haick, “Advanced materials for health monitoring with skin-based wearable devices,” Adv. Healthcare Mater., vol. 6, no. 11, Mar. 2017, Art. no. 1700024.
[6] S. Kursun Bahadir, V. Koncar, and F. Kalaoğlu, “Wearable obstacle detection system fully integrated to textile structures for visually impaired people,” Sens. Actuators A, Phys., vol. 179, pp. 297–311, Jun. 2012.
[7] F. O. Rincon, E. Tommasini, M. Rainoldi, and R. Egger, “The future of wearable devices on-site: A scenario technique approach,” in Proc. Int. Conf. Inf. Commun. Technol. Tourism, Rome, Italy, Springer, Jan. 2017, pp. 285–299.
[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in Proc. NIPS, vol. 1, 2012, pp. 1097–1105.
[9] A. Graves, Supervised Sequence Labelling With Recurrent Neural Networks (Studies in Computational Intelligence). Berlin, Germany: Springer, 2012. [Online]. Available: https://cds.cern.ch/record/1503877, pp. 1097–1105.
[10] M. Zhang and A. A. Sawchuk, “Usc-had: A daily activity dataset for impaired people,” Sensors J., vol. 16, no. 11, pp. 4566–4578, Jun. 2016.
[11] J. Zhu, R. San-Segundo, and J. M. Pardo, “Feature extraction for robust time series sensory data specifically as one of the novel steps. This study can be implemented to detect activities of firefighters to determine their health condition and performances. In future studies, it is planning to use multiple sensors and recognize more complicated activities.”
Nilay Tufek received the M.Sc. degree in computer engineering from Istanbul Technical University (ITU) in 2019. She has also studied electronics engineering and computer engineering (Double Major) at ITU. She is currently pursuing the Ph.D. degree in computer engineering with Bogazici University. Also, she had been at Royal Technical University (KTH), Sweden, as an exchange student for six months. After that, she has worked in industry as a software developer, team leader, and researcher for seven years. She has spent around five months in The University of Manchester for academic research on Horizon 2020 EU ETEXWELD Project in 2018. She is working in a company as a Senior Artificial Intelligence Researcher. She has five accepted conference papers and ongoing five patent applications.

Murat Yalcin received the B.Sc. degree in electronic engineering from Uludag University in 2013, and the M.Sc. degree in telecommunications engineering from Istanbul Technical University in 2019. He is currently pursuing the Ph.D. degree in computer engineering with Istanbul Technical University. He worked at the Visual Intelligence Laboratory as a Research Engineer for two years. Then, he worked at EU H2020 Project (ETEXWELD) as a Researcher at The University of Manchester for four months. He is currently working as the R&D Computer Vision Engineer at A2 Labs. His research interests are computer vision, machine learning/deep learning, and sensor-based systems. He has three conference paper publications.

Mucalit Altintas received the B.Sc. degree from Dumlupinar University, and the M.Sc. degree from Istanbul Technical University in computer science. He is currently pursuing the Ph.D. degree with Istanbul Technical University. He has been with Manchester University as a Visitor Researcher via an EU H2020 Project. He is currently a Researcher on machine learning and pattern recognition at the Computer Science Department, Istanbul Technical University.

Fatma Kalaoglu received the Ph.D. degree from Istanbul Technical University in 1991. She is currently a Professor with the Faculty of Textile Technologies and Design Faculty, Istanbul Technical University. Her research interests are smart textile structures, electronic textiles, clothing technologies, clothing comfort, and virtual prototyping. She is the author of more than 200 scientific papers, including SCI-indexed papers, conference proceedings, book chapters, a book, and a patent. She has conducted 1 FP 7 Project, as well as four International and six national projects. She is currently the Coordinator of the H2020 EU ETEXWELD Project.

Yi Li secured over £10 million research funding and obtained support from government funding bodies and industry, establishing the Textile Bioengineering Framework to conduct systematic research in textile thermal bioengineering, biomechanical engineering, sensory bioengineering, and biomedical engineering, with significant research outputs in biomaterials, nanoscale delivery systems, nanofiber-based scaffolds and textile devices for tissue engineering and stents, graphene and 2D material fibers and fabrics, smart e-textile materials and components, intelligent wearables, textile material functional testing and characterization, digital apparel and clothing functional design, and computational textile design and bid data business models, textile ecological and carbon footprint and industry sustainability and strategic technology roadmap development, which has become an international platform of design and engineering textiles to promote industry-university cooperation and accelerate technology transfer. On-going projects include EU H2020 “Welding e-textile for interactive clothing” and “Fashion Bid Data Business Models.” He has supervised over 50 Ph.D. students and more than 130 research personnel. He has over 500 scientific publications, including 422 SCI/CPCI papers and peer-reviewed conference papers with 10583 citations and h-index of 55 and i10-index 208 as being recognized as an international leading expert in smart functional textiles. He is selected on the list of “Highly Cited Researcher” in 2013 by THOMSON REUTERS. He owns more than 80 patents, including 46 patents granted in China, USA, and Australia, as well as 27 IP properties transferred to industry. He is a Life Fellow of the Royal Society of Art, Commerce and Manufacturing and International Biographical Association and a Fellow of the Textile Institute. He is also an adjunct professor for a number of universities in China and a member of several professional bodies. He is the Chairman of the Textile Bioengineering and Informatics Society and the Editor-in-Chief of “Journal of Fiber Bioengineering and Informatics”. With over 110 invited keynote/plenary lectures in conferences, he has more than 54 awards on outstanding research papers, patent inventions, and technology transfer. The inventions from his team have been successfully commercialized.

Senem Kursun Bahadir received the B.Sc. degree in textile engineering and the M.Sc. degree in industrial engineering, and the Ph.D. degree in automatic control/computer engineer- ing from the University of Lille, France, and in textile engineering from Istanbul Technical Uni- versity, Turkey, in 2011. From 2015 to 2016, she was the Vice Head of the Textile Engineering Department and later became the Vice Dean of the Faculty of Textile Technologies and Design, Istanbul Technical University. She is currently an Associate Professor at the Mechanical Engineering Faculty. Her areas of research activities include electronic textiles, smart clothing system designs, and simulation techniques in the clothing area. She has authored and co-authored over 60 scientific publications in inter- national and national peer-reviewed journals and conferences. She has been involved in many projects (European or national funding) as a Researcher and Coordinator in the field of textile technology: 1) design of textile-based sensors (temperature, ultrasonic, and so on); 2) actuator implementations to textile structures (pressure and vibration motors); 3) energy harvesting and thermal heating e-textiles; and 4) design and development of interactive clothings. She is currently the ITU Coordinator of the EU H2020 Project (ETEXWELD), where the aim is the development of e-textile structures for interactive clothing. She was also awarded two international awards and one national award for textile innovation in the field of smart textiles and wearable technologies.