Genetic polymorphisms of interleukin genes and the risk of Alzheimer’s disease: An update meta-analysis

Myung-Jin Mun a,b,c, Jin-Ho Kim b, Ji-Young Choi b, Won-Cheoul Jang b,⁎

a Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, South Korea
b Department of Chemistry, School of Natural Science, Dankook University, Cheonan 330-714, South Korea
c Institute of Tissue Regeneration Engineering (ITREN), Dankook University Graduate School, South Korea

A B S T R A C T

Objective: Recently, several meta-analyses have reported an association between interleukin (IL) gene polymorphisms and the risk of Alzheimer’s disease (AD). Several further papers discussing the relationship with the risk of AD have recently been published. The aim of this meta-analysis was to re-evaluate and update the associations between IL gene polymorphisms and the risk of AD.

Methods: The search sources were PubMed, Science Direct, Scopus, and Google Scholar up to July 2015, and the following search terms were used: “interleukin 1 or interleukin 6 or interleukin 10” and “variant or polymorphism or SNP” in combination with “Alzheimer’s disease”. A meta-analysis using the pooled odds ratios and 95% confidence intervals was carried out to assess the associations between four polymorphisms of IL genes (−889C>T in IL-1α, −511C>T in IL-1β, −174G>C in IL-6 and −1082G>A in IL-10) and the risk of AD under the heterozygous, homozygous, dominant, and recessive models with fixed- or random-effects models.

Results: A total of 21,864 cases and 40,321 controls from 93 individual studies were included in this meta-analysis. Our results indicated that the −889C>T polymorphism was strongly associated with the increased risk of AD. However, three polymorphisms were not associated with the risk of AD.

Conclusions: Similar to previous meta-analyses, our updated meta-analysis suggested that the −889C>T polymorphism may be a factor in AD. However, the results of our meta-analysis of the −174G>C polymorphism differed from those of previous meta-analyses. Consequently, we suggest that the −174G>C polymorphism may not be a risk factor for AD.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Dementia is an overall term for conditions characterized by a decline in memory, cognitive and other thinking skills that affect a person’s abilities. The total number of people with dementia worldwide was estimated at 35.6 million in 2010, and is projected to be 65.7 million in 2030 and 115.4 million in 2050 (WHO, 2012). Among the several types of dementia, Alzheimer’s disease (AD) is the most common. AD was first identified more than 100 years ago. However, its symptoms, causes and risk factors were only discovered in the last 30 years (Alzheimer’s Association, 2014).

Several cytokines including interleukin 1 (IL-1), IL-6, tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) have been reported to be associated with AD (Wilson et al., 2002). Interleukins (ILs) are important components of the immune system, and a deficiency in them may lead to autoimmune disease or immune deficiency. Several studies have suggested that IL-1 is related to the pathogenesis of AD. Griffin et al. reported that IL-1 immunoreactivity was increased in AD compared with non-AD subjects (Griffin et al., 1989). Sheng et al. suggested that overexpression of IL-1 was associated with evolution of neuritic plaques from diffuse amyloid-β (Aβ) deposits in AD (Sheng et al., 1995). In addition, IL-1 promotes the amyloid precursor protein (APP) cleavage pathway (Buxbaum et al., 1992). Similarly, IL-6 has been reported to be involved in AD pathogenesis. Quintanilla et al. reported that IL-6 was associated with increased levels of hyperphosphorylated tau protein in neurons (Quintanilla et al., 2004). Furthermore, Braida et al. suggested that IL-6 deficiency was associated with learning and memory skills in mice (Braida et al., 2004). These findings suggested ILs to be important factors in AD pathogenesis.

Several epidemiological studies have investigated the association between genetic polymorphisms of IL genes and the risk of AD, including −889C>T (rs1800587) in IL-1α, −511C>T (rs16944) in IL-1β, −174G>C (rs1800795) in IL-6 and −1082G>A (rs1800896) in IL-10 (Bagli et al., 2000; Bhojak et al., 2000; Du et al., 2000;...
Grimaldi et al., 2000; Minster et al., 2000; Nicoll et al., 2000; Rebeck, 2000; Kim et al., 2001; Prince et al., 2001; Combarros et al., 2002; Fidani et al., 2002; Green et al., 2002; Hedley et al., 2002; Mattila et al., 2002; Pirskanen et al., 2002; Pola et al., 2002; Shibata et al., 2002; Clarimon et al., 2003; Depboylu et al., 2003; Faltraco et al., 2003; Kuo et al., 2003; Li et al., 2003; Lieto et al., 2003; Ma et al., 2003; McCarron et al., 2003; Sciaccia et al., 2003; Tsai et al., 2003; Arosio et al., 2004; Capurso et al., 2004; Depboylu et al., 2004; Hayes et al., 2004; Li et al., 2004; McCulley et al., 2004; Nishimura et al., 2004; Scassellati et al., 2004; Zhang et al., 2004; Koivisto et al., 2005; Ma et al., 2005; Seripa et al., 2005; Wang et al., 2005; Culpan et al., 2006; Ramos et al., 2006; Ravaglia et al., 2006; Zhou et al., 2006; Bagnoli et al., 2007; Wang et al., 2007; Combarros et al., 2008; Deniz-Naranjo et al., 2008; Paradowski et al., 2008; Dursun et al., 2009; Hu et al., 2009; Klimkowicz-Mrowiec et al., 2009; Serretti et al., 2009; Vural et al., 2009; Capurso et al., 2010; Combarros et al., 2010; Klimkowicz-Mrowiec et al., 2010; Ribizzi et al., 2010; Shawkatova et al., 2010; Cousin et al., 2011; Vendramini et al., 2011; Heun et al., 2012; Mansoori et al., 2012; Payao et al., 2012; Moraes et al., 2013; Rasmussen et al., 2013; Torres et al., 2013; Flex et al., 2014; Kang et al., 2014; Tian et al., 2015; Toral-Rios et al., 2015). However, these epidemiological studies have reported inconsistent results. In addition, several previous meta-analyses have assessed the associations between four polymorphisms of the IL genes and the risk of AD. However, several further papers regarding this relationship between IL gene polymorphisms and the risk of AD have been published recently. It is thus necessary to update the data regarding the association between IL gene polymorphisms and the risk of AD.

Therefore, we have re-evaluated and updated the associations between the polymorphisms of four IL genes and the risk of AD using published studies.

2. Materials and methods

2.1. Search strategy

Two clinical researchers independently searched and reviewed the literature. We conducted a meta-analysis of the published literature to analyze the associations between IL gene polymorphisms and Alzheimer’s disease. The search sources were the PubMed, Science Direct, Scopus, and Google Scholar databases, the search was conducted up to July 2015, and the following search terms were used: “interleukin 1 or interleukin 6 or interleukin 10 and variant or polymorphism or SNP” in combination with “Alzheimer’s disease”. The reference lists in the published articles were reviewed to identify any studies missing from the database search. The workflow of the literature search is shown in Fig 1.

2.2. Selection criteria

All articles reporting the genotype frequencies of the following IL gene single-nucleotide polymorphisms (SNPs) were included: −889C>T, −511C>T, −174C>G and −1082G>A. As the studies were heterogeneous in terms of the number of cases and controls, racial composition, and the polymorphisms analyzed, we used the following inclusion criteria: hospital-based or population-based case–control studies on the associations of IL gene polymorphisms with AD, genotype frequencies of each polymorphism provided for cases and controls, genotype distribution in the control group confirmed by Hardy–Weinberg equilibrium (HWE), and English-language articles only. If overlapping cases and controls between studies were identified, only the most-complete study was included in this meta-analysis.

2.3. Data extraction

Data extraction was performed by two reviewers. The following data were extracted from each study: last name of the first author, publication year, study region, participants’ ethnicity, sample size, genotype distribution of the polymorphisms of four interleukin genes in both cases and controls, and p-values for the HWE of genotype distribution of controls (p value less than 0.05 of HWE was considered to indicate significance).

2.4. Statistical analysis

The chi-squared test was used to determine whether the distribution of genotypes in the control group was in agreement with HWE. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the associations between four IL gene polymorphisms (−889C>T, −511C>T, −174C>G and −1082G>A) and AD risk under the heterozygous, homozygous, dominant, and recessive models with fixed-effects (Mantel–Haenszel method) and random-effects models (Mantel–Haenszel method). Statistical heterogeneity between studies was evaluated using the I² statistic. A random-effects model was used to calculate the pooled OR and 95% CI when I² values > 50% were considered to indicate significant heterogeneity between studies. A fixed-effects model was used when I² values ≤ 50% were considered to indicate low heterogeneity between studies. We also performed subgroup analyses by ethnicity (Caucasian and Asian). The risk of small study bias, such as publication bias, was measured using funnel plots and further evaluated with Egger’s linear regression test. It was assumed that large-sized studies would plot close to the mean in the absence of publication bias, whereas small-sized studies would be spread smoothly on both sides of the mean. All meta-statistical analyses were performed using the RevMan ver. 5.1 software (Cochrane Collaboration, Copenhagen, Denmark) and confirmed using the Comprehensive Meta-Analysis trial version. Two-sided p-values < 0.05 were considered to indicate significance.

3. Results

3.1. Characteristics of the included studies

A total of 529 papers published before July 2015 was identified in the search of the four databases. Of them, a total of 21,864 cases and 40,321 controls from 93 individual studies were included in our meta-
Study region	Ethnicity	Criteria	Sample size (case/control)	Genotype distribution (case/control)	HWE (p-value)	Reference		
IL-1α (−889C>T)								
Spanish	Caucasian	NINCDS-ADRDA	111/89	61/42	41/34	9/13	0.171	Clarimon et al. (2003)
American	Caucasian	NINCDS-ADRDA	298/306	161/195	119/104	18/7	0.108	Combarros et al. (2002)
British	Caucasian	NINCDS-ADRDA-CERAD	235/310	123/111	93/78	19/21	0.192	Combarros et al. (2010)
Nottingham	Caucasian	NINCDS-ADRDA	189/56	87/24	86/29	25/3	0.125	Combarros et al. (2010)
Slovak	Caucasian	NINCDS-ADRDA	83/96	36/46	38/38	9/12	0.353	Combarros et al. (2010)
American	Caucasian	NINCDS-ADRDA	237/262	124/102	80/110	29/25	0.56	Combarros et al. (2010)
Swedish	Caucasian	NINCDS-ADRDA	187/109	95/52	77/50	15/7	0.269	Combarros et al. (2010)
Dutch	Caucasian	NINCDS-ADRDA	391/510	185/2574	162/2111	44/425	0.789	Combarros et al. (2010)
American	Caucasian	NINCDS-ADRDA	302/374	162/220	114/127	26/27	0.15	Combarros et al. (2010)
Finland	Caucasian	NINCDS-ADRDA	129/190	60/90	61/85	8/15	0.409	Combarros et al. (2010)
American	Caucasian	NINCDS-ADRDA	282/312	138/168	118/121	26/23	0.85	Deniz-Naranjo et al. (2008)
German	Caucasian	NINCDS-ADRDA	259/191	141/126	97/62	21/3	0.131	Du et al. (2000)
Turkish	Caucasian	DSM-IV	104/103	60/45	41/32	3/6	0.07	Dursun et al. (2009)
USA	Caucasian	NINCDS-ADRDA	142/119	73/50	59/49	10/11	0.858	Fidani et al. (2002)
UK	Caucasian	NINCDS-ADRDA	294/503	134/221	162/217	34/65	0.309	Green et al. (2002)
Italian	Caucasian	NINCDS-ADRDA	318/335	140/142	125/163	53/30	0.08	Grimaldi et al. (2000)
UK	Caucasian	CERAD	68/503	30/221	31/210	7/62	0.528	Hayes et al. (2000)
Australian	Caucasian	NINCDS-ADRDA	221/351	98/153	94/168	29/30	0.897	Hedley et al. (2002)
Chinese	Asian	NINCDS-ADRDA	172/163	61/44	77/82	34/37	0.919	Nishimura et al. (2004)
Asian	Caucasian	NINCDS-ADRDA-DSM-III-R	335/204	131/72	164/112	40/19	0.009	Minster et al. (2000)
Asian	Caucasian	NINCDS-ADRDA-DSM-IV	232/221	103/82	99/74	30/11	0.291	McCarron et al. (2003)
Asian	Caucasian	NINCDS-ADRDA	110/73	42/33	39/25	29/11	0.281	Mattila et al. (2002)
Asian	Caucasian	NINCDS-ADRDA	125/93	104/72	104/168	20/27	0.032	Kuo et al. (2003)
Asian	Mediterranean	NINCDS-ADRDA-DSM-IV	145/181	103/128	118/121	26/23	0.85	Wang et al. (2007)
Asian	Mediterranean	NINCDS-ADRDA-DSM-IV	131/219	152/118	147/85	32/16	0.897	Klimkowicz-Mrowiec et al. (2009)
Brazilian	Asian	NINCDS-ADRDA	201/260	182/248	46/103	17/26	0.756	Wang et al. (2005)
Asian	Mediterranean	NINCDS-ADRDA-DSM-IV	219/209	74/105	118/105	38/48	0.928	Wang et al. (2007)

Note: The table continues on the next page.
analysis. A total of 8641 cases and 14,214 controls from 34 studies (42 subgroup studies) that reported on the association between the IL-1α gene polymorphism (−889C>T) and risk of AD were included in the meta-analysis. A total of 3194 cases and 4621 controls from 18 studies (42 subgroup studies) that reported on the association between the IL-1β gene polymorphism (−511C>T) and risk of AD were included in the meta-analysis. A total of 5755 cases and 12,456 controls from 24 studies (30 subgroup studies) of IL-6 gene polymorphism (−174G>C) were included in the meta-analysis. Seventeen IL-10 gene polymorphism (−1082G>A) studies (23 subgroup studies) involving 4274 cases and 9030 controls were included in the meta-analysis. Most of the studies were performed in Caucasian populations. However, several studies were conducted in Asian populations (nine subgroup studies in IL-1α, six subgroup studies in IL-1β, one subgroup

Table 1 (continued)

IL-6 (−174G>C) study (author/year)	Study region	Ethnicity	Criteria	Sample size (case/control)	Genotype distribution (case/control)	HWE (p-value)	Reference
Arosio et al. (2004)	Italy	Caucasian	NINCDS-ADRA-DSM-IV	59/64	17/32 34/27 8/5	0.833	Arosio et al. (2004)
Bagli et al. (2000)	Germany	Caucasian	NINCDS-ADRA	102/351	33/99 56/208 13/44	<0.001	Bagli et al. (2000)
Bhojak et al. (2000)	USA	Caucasian	NINCDS-ADRA	464/337	178/126 221/155 65/56	0.478	Bhojak et al. (2000)
Capurso et al. (2004)	Italy	Caucasian	NINCDS-ADRA	168/220	90/129 71/82 7/9	0.364	Capurso et al. (2004)
Capurso et al. (2010)	Italy	Caucasian	NINCDS-ADRA	149/298	81/172 61/111 7/15	0.590	Capurso et al. (2010)
Combarros et al. (2010) (i)	Bonn	Caucasian	NINCDS-ADRA-CERAD	241/224	81/77 123/95 37/52	0.035	Combarros et al. (2010)
Combarros et al. (2010) (ii)	Bristol	Caucasian	NINCDS-ADRA	189/54	66/9 83/29 40/16	0.497	
Combarros et al. (2010) (iii)	Nottingham	Caucasian	NINCDS-ADRA	84/95	33/32 36/41 15/22	0.215	
Combarros et al. (2010) (iv)	OPTIMA	Caucasian	NINCDS-ADRA	243/240	88/65 106/141 49/34	0.002	
Combarros et al. (2010) (v)	Oviedo	Caucasian	NINCDS-ADRA	190/119	89/60 82/51 19/8	0.517	
Combarros et al. (2010) (vi)	Rotterdam	Caucasian	NINCDS-ADRA	391/510	127/1824 191/246 73/860	0.270	
Combarros et al. (2010) (vii)	Santander	Caucasian	NINCDS-ADRA	333/381	148/169 137/163 48/49	0.328	
Cousin et al. (2011)	France	Caucasian	NINCDS-ADRA	231/470	96/171 100/229 35/70	0.639	Cousin et al. (2011)
Dephyo et al. (2004)	Germany	Caucasian	NINCDS-ADRA	113/108	33/26 65/64 15/18	0.046	Dephyo et al. (2004)
Faltraco et al. (2003)	Germany	Caucasian	NINCDS-ADRA	101/133	44/43 47/70 10/20	0.326	Faltraco et al. (2003)
Flex et al. (2014)	Italy	Caucasian	NINCDS-ADRA	533/713	216/160 241/317 76/216	0.192	Flex et al. (2014)
Klimkowis-mrowieic et al. (2010)	Poland	Caucasian	NINCDS-ADRA	361/200	119/66 185/91 57/43	0.271	Klimkowis-Mrowic et al. (2010)
Koivisto et al. (2005)	Finland	Caucasian	NINCDS-ADRA	65/542	18/136 32/260 15/146	0.349	Koivisto et al. (2005)
Licastro et al. (2003)	Italy	Caucasian	NINCDS-ADRA-DSM-IV-R	332/393	137/209 161/165 34/19	0.057	Licastro et al. (2003)
Mansorri et al. (2012)	India	Caucasian	NINCDS-ADRA	80/120	55/88 24/29 1/3	0.743	Mansorri et al. (2012)
Moraes et al. (2013)	Brazil	Caucasian	NINCDS-ADRA	120/412	71/260 38/136 11/16	0.732	Moraes et al. (2013)
Paradowski et al. (2008)	Poland	Caucasian	NINCDS-ADRA	51/36	11/12 31/16 9/8	0.549	Paradowski et al. (2008)
Pola et al. (2002)	Italy	Caucasian	NINCDS-ADRA	124/134	56/29 51/38 17/47	0.170	Pola et al. (2002)
Rasmussen et al. (2013)	Brazil	Caucasian	NINCDS-ADRA-DSM-IV	197/163	88/82 91/65 18/16	0.557	Rasmussen et al. (2013)
Ravaglia et al. (2006)	Italy	Caucasian	NINCDS-ADRA	105/644	50/251 43/304 12/89	0.842	Ravaglia et al. (2006)
Shakwatova et al. (2010)	Slovakia	Caucasian	NINCDS-ADRA	50/140	23/53 21/66 6/21	0.951	Shakwatova et al. (2010)
Shibata et al. (2002)	Japan	Asian	NINCDS-ADRA	128/83	4/7 74/23 50/53	0.068	Shibata et al. (2002)
Toral-Rios et al. (2015)	Mexico	Caucasian	NINCDS-ADRA	94/100	5/3 23/15 66/82	0.040	Toral-Rios et al. (2015)
Vural et al. (2009)	Turkey	Caucasian	NINCDS-ADRA	101/138	54/76 43/51 4/11	0.556	Vural et al. (2009)
Zhang et al. (2004)	UK	Caucasian	NINCDS-ADRA-DSM-III-R	356/434	132/152 171/213 53/69	0.095	Zhang et al. (2004)

Bonn, Ethics Review Board of the University of Bonn; Bristol, Frenchay Local Research Ethics committee Bristol; Nottingham, Nottingham Research Committee 2 (NHS); OPTIMA, Central Oxford Ethics Committee No 1656; Oviedo, Medical Ethical Committee of the Erasmus MC; Santander, Ethical Committee of the University Hospital “Marqués de Valdecilla”; Santander; NINCDS-ADRA, National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s disease and Related Disorders Association; CERAD, The Consortium to Establish a Registry for Alzheimer’s Disease; DSM, Diagnostic and Statistical Manual of Mental Disorder. * Zhou et al. data from abstract.
study in IL-6, and one subgroup study in IL-10). The characteristics of the studies are summarized in Table 1.

3.2. IL genes polymorphisms and risk of AD

Forty-two subgroup studies involving 8641 cases and 14,214 controls identified an association between the −889C>T polymorphism and risk of AD. The distributions of the genotypes in the control groups followed HWE. Our comprehensive meta-analysis indicated that the −889C>T polymorphism was significantly associated with an increased risk of AD by three genetic models. The ORs of the homozygote (CC vs. TT), dominant (TT/CT vs. CC) and recessive (TT vs. CC/CT) models were 1.32, 1.09 and 1.32, respectively (95% CI: 1.18–1.49, 1.03–1.16 and 1.18–1.45, respectively) using a fixed-effects model (Fig. 2). However, the heterozygote model (CC vs. TC) was not associated with risk of AD (OR: 1.05, 95% CI: 0.98–1.12).

Our meta-analysis suggested that the −889C>T polymorphism was not related to risk of AD. Thirty subgroup studies on the −174G>C polymorphism included 5755 cases and 12,456 controls. Of them, five studies deviated from HWE (p < 0.05) (Bagli et al., 2000; Depboylu et al., 2004; Combarros et al., 2010; Toral-Rios et al., 2015). The tendency of our meta-analysis indicated that the −174G>C polymorphism was related to a decreased risk of AD. However, this polymorphism was statistically not associated with risk of AD (homozygote: OR = 0.85, 95% CI = 0.64–1.13; heterozygote: OR = 0.99, 95% CI = 0.85–1.13; dominant: OR = 0.95, 95% CI = 0.80–1.13; recessive: OR = 0.83, 95% CI = 0.67–1.03) by a random-effects model. Consequently, our results suggested that the −174G>C polymorphism was not associated with risk of AD.

Twenty-three subgroup studies involving 4274 cases and 9030 controls identified an association between the −1082G>A polymorphism and risk of AD. Two studies of the association between the −1082G>A polymorphism and AD risk were conducted in Asian populations. Among previous studies, the results of four studies departed from HWE (p < 0.05) (Lio et al., 2003; Ma et al., 2003; Heun et al., 2012). Our meta-analysis results showed that the −1082G>A polymorphism of IL-10 was not related to risk of AD. The ORs of four genetic
models (homozygote, heterozygote, dominant and recessive) were 1.04, 1.12, 1.10 and 0.97, respectively, using a random-effects model (95% CIs: 0.85–1.28, 0.94–1.33, 0.93–1.29 and 0.83–1.14, respectively). The results of the meta-analysis are summarized in Tables 2 and 3. The results by sequentially deleting each subgroup study from the meta-analysis (Tables 2 and 3). We also performed a sensitivity test to assess the stability and reliability of the results by sequentially deleting each subgroup study from the meta-analysis. The sensitivity test results indicated that none of the subgroup studies altered the pooled OR, suggesting that our meta-analysis was stable and reliable.

4. Discussion

Our meta-analysis summarizes the evidence to date regarding the association between four polymorphisms (−889C>T, −1082G>A, −172G>C and −1082G>A) and the risk of AD. The results indicate that −889C>T was significantly associated with an increased risk of AD. However, three polymorphisms (−511C>T, −172G>C and −1082G>A) were statistically not related to the risk of AD.

Over the past decades, many genetic studies and meta-analyses have been performed to investigate the relationship between IL gene polymorphisms and the risk of AD. The most recent meta-analyses of the association between the four IL gene polymorphisms (−889C>T, −511C>T, −172G>C and −1082G>A) and the risk of AD were reported in 2012 and 2013 (Dai et al., 2012; Di Bona et al., 2012; Hua et al., 2012; Qi et al., 2012; Li et al., 2013; Yuan et al., 2013). A previous meta-analysis of −889C>T polymorphism had included twenty-eight studies and a total 12,817 subjects (Li et al., 2013). Their results indicated that −889C>T polymorphism was significantly associated with increased risk of AD. Furthermore, Caucasian studies revealed that this polymorphism was associated with increased risk of AD. However, most genetic models (dominant, recessive and T allele vs. C allele) showed that −889C>T polymorphism was not associated with risk of AD in Asian. Similarly, our results showed that −889C>T polymorphism was associated with increased risk of AD in overall and Caucasian subgroup studies. In −511C>T polymorphisms, Yuan et al. reported that −511C>T polymorphism was not associated with risk of AD. Furthermore, subgroup studies demonstrated that −511C>T polymorphism was not related with AD in Europe, non-Europe, Caucasian and non-Caucasian. In addition, many genetic models showed that heterogeneity (Yuan et al., 2013). Similar to previous meta-analysis, our results indicated that −511C>T polymorphism was not associated with risk of AD in overall and Caucasian subgroup studies. In 2012, Bona et al. suggested that GG vs. AG/AA model of −1082G>A polymorphism was modestly associated with risk of AD (OR: 0.82, 95% CI: 0.65–1.02). In addition, results of meta-analysis showed that moderate degree of heterogeneity between studies (Di Bona et al., 2012). In contrast, our
results suggested that −1082G>A polymorphism was statistically not associated with risk of AD. However, degree of heterogeneity was similar to previous meta-analysis. As mentioned above, meta-analysis results of three polymorphisms (−889C>T, −511C>T and −1082G>A) were similar to previous meta-analysis. However, the results of the −174C>T polymorphism were different. In 2012, Dai et al. reported an association between the −174C>T polymorphism and the risk of AD in a meta-analysis including 3101 cases and 3860 controls. The overall analysis showed that the −174C>T polymorphism was significantly associated with a decreased risk of AD using a recessive model (OR: 0.70, 95% CI: 0.54–0.90). In addition, the heterozygote model revealed that the −174C>T polymorphism was strongly associated with a decreased risk of AD (OR: 0.83, 95% CI: 0.60–0.96) (Dai et al., 2012). Similarly, Qi et al.’s meta-analysis (4280 cases and 8788 controls) suggested that the recessive model (CC vs. GC/GG) was significantly associated with a decreased risk of AD (OR: 0.65, 95% CI: 0.52–0.82) (Qi et al., 2012). However, our meta-analysis (5755 cases and 12,456 controls) shows that all genetic models (homozygote, CC vs. GC; heterozygote, CC vs. GG; dominant CC/GC vs. GC; recessive models, CC vs. GC/GG) were significantly not associated with the risk of AD. The conflicting results between Qi et al. and our meta-analysis may be due to the included studies. Our meta-analysis contains an additional eight studies (Ravaglia et al., 2006; Combarros et al., 2010; Shawkatova et al., 2010; Cousin et al., 2011; Moraes et al., 2013; Rasmussen et al., 2013; Flex et al., 2014; Toral-Rios et al., 2015). In addition, we deleted four studies (Infante et al., 2004; Combarros et al.,

Table 3

SNP	Gene models	Fixed effect model OR (95% CI)	Random effect model OR (95% CI)	Heterogeneity I² value	Publication bias P-value	Departed from the HWE
rs1800587 (IL-10; −889C>T)	Homozygote model (TT vs. CC) 1.32 (1.18–1.49)	1.31 (1.13–1.51)	22%	0.110	0.900	/
	Heterozygote model (CT vs. CC) 1.05 (0.98–1.12)	1.04 (0.97–1.13)	24%	0.080	0.174	
	Dominant model (CT/CT vs. CC) 1.09 (1.03–1.16)	1.08 (1.00–1.17)	31%	0.030	0.164	
	Recessive model (TT vs. CC/CT) 1.32 (1.18–1.45)	1.30 (1.14–1.49)	18%	0.160	0.897	
rs16544 (IL-1; −511C>T)	Homozygote model (TT vs. CC) 0.95 (0.81–1.12)	0.94 (0.75–1.18)	42%	0.040	0.284	Ma et al. (2003) and Minster et al. (2000)
	Heterozygote model (CT vs. CC) 0.94 (0.84–1.06)	0.94 (0.82–1.08)	32%	0.130	0.924	
	Dominant model (CT/CT vs. CC) 0.95 (0.86–1.06)	0.94 (0.82–1.08)	32%	0.100	0.528	
	Recessive model (TT vs. CC/CT) 0.96 (0.82–1.11)	0.98 (0.75–1.28)	63%	<0.001	0.475	
rs1800795 (IL-6; −174C>G)	Homozygote model (GG vs. CC) 0.79 (0.70–0.88)	0.85 (0.64–1.13)	78%	<0.001	0.670	Bagli et al. (2000), Combarros et al. (2010) (I),
	Heterozygote model (GG vs. GC) 0.97 (0.89–1.05)	0.99 (0.85–1.15)	64%	<0.001	0.953	Combarros et al. (2010) (IV),
	Dominant model (GG/GC vs. GC) 0.93 (0.86–1.01)	0.95 (0.80–1.13)	76%	<0.001	0.917	Combarros et al. (2010) (IV),
	Recessive model (GG vs. GC/GC) 0.79 (0.71–0.88)	0.83 (0.67–1.03)	70%	<0.001	0.616	Depboylu et al. (2004), and Toral-Rios et al. (2015)
rs1800896 (IL-10; −1082G>A)	Homozygote model (AA vs. GG) 0.98 (0.86–1.12)	1.04 (0.85–1.28)	51%	<0.005	0.158	Heun et al. (2012) (II),
	Heterozygote model (GA vs. GG) 1.07 (0.96–1.20)	1.12 (0.94–1.33)	51%	<0.006	0.631	Lio et al. (2003), Ma et al. (2005) and Toral-Rios et al. (2015)
	Dominant model (AA/GA vs. GG) 1.04 (0.94–1.16)	1.10 (0.93–1.29)	51%	<0.005	0.353	
	Recessive model (AA vs. GG/GA) 0.93 (0.84–1.03)	0.97 (0.83–1.14)	55%	<0.002	0.144	

Combarros et al. (2010) (I), Bonn, Ethics Review Board of the University of Bonn; Combarros et al. (2010) (IV), OPTIMA, Central Oxford Ethics Committee No 1656; Heun et al. (2012), Nottingham, Nottingham Research Committee 2 (NHS).

−889C>T polymorphism of IL-10x studies were not departed from HWE.

⁎ Statistically significant (p < 0.05).

Fig. 3. Funnel plot for the association between the −889C>T polymorphism and Alzheimer's disease.
Many studies have reported the association between several gene polymorphisms and the risk of AD. Coon et al., suggested that c2/e4, ε3/ε4 and ε4/ε4 variant types of ApoE significantly increased the risk of AD (odds ratios: 3.49, 4.32 and 25.31, respectively) compared with c3/e3 (Coon et al., 2007). In addition, meta-analysis data suggested that ApoE ε4/ε4 type was significantly associated with the prevalence of AD. Interestingly, meta-analyses indicated that the highest estimates were in Northern Europe and the lowest estimates were in Asia (prevalence: 14.1%, 95% CI: 12.2–16.0 in Northern Europe; prevalence: 7.70%, 95% CI: 5.84–9.55 in Asia) (Ward et al., 2012). In addition, it is known that mutations in the presenilin-1 (PSEN-1) and presenilin-2 (PSEN-2) genes are related to AD. Manotas-Rodriguez et al. reported that the PSEN-1 polymorphism (rs165932) was probably associated with the risk of AD in the European sub-group (fixed effect model). OR: 1.19, 95% CI: 1.02–1.37, p-value < 0.05) (Rodrigue-Manotas et al., 2007). In addition, a meta-analysis by Chen et al. suggested that the rs8383 polymorphism of PSEN-2 was associated with an increased risk of AD (OR: 1.16, 95% CI: 1.00–1.33, p-value: 0.043; CC vs. TT, OR: 1.37, 95% CI: 1.02–1.84, p-value: 0.037) (Chen et al., 2012). Furthermore, genome-wide association studies have provided several polymorphisms of candidate genes and loci for AD (Li et al., 2008; Harold et al., 2009). However, the associations between several polymorphisms of candidate genes and the risk of AD are still unclear. To better understand the genetic risk factors for AD, large scale studies are needed to validate the associations and further investigations should consider the effects of environmental factors and genetic interactions.

5. Conclusions

In summary, our updated meta-analysis of 93 studies showed that the results of --889C>T polymorphism was statistically associated with the risk of AD. In contrast, three other polymorphisms were not associated with the risk of AD. In addition, our results of three polymorphisms (~889C>T, ~511C>T and 1082G>A) were similar to those of previous meta-analyses. However, our results for the ~174G>C polymorphism differed from those of previous meta-analyses. Consequently, our results suggested that the ~889C>T polymorphism may be a potential risk factor in AD. However, the other three polymorphisms may not be a risk factor for AD.

Conflict of interest statement

The authors declare that they have no conflict of interest.
promoter region polymorphisms with Alzheimer’s disease. Neurosci. Lett. 342, 132–134.

Deppe, P., C. Lohmuller, F. Gocke, P. Du, Y. Zimmer, R. Gasser, T. Kloeckgether, T. Dodel, R.C. 2004. An interleukin-6 promoter variant is not associated with an increased risk for Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 17, 170–173.

Di Bona, D., Rizzo, C., Bonaventura, G., Candore, G., Caruso, C. 2012. Association between interleukin-10 and Parkinson’s and Alzheimer’s disease: a systematic review and meta-analysis. J. Alzheimers Dis. 29, 751–759.

Du, Y., Dodel, R.C., Eastwood, B.J., Bales, K.R., Gao, F., Lohmuller, F., Muller, U., Kurz, A., 2005. Association of an interleukin-1 alpha gene polymorphism with Alzheimer’s disease. Neurology 60, 480–483.

Dursun, E., Cezen-Ak, D., Ertan, T., Bilgic, B., Gurvit, H., Emre, M., Eker, E., Engin, F., Uysal, O., Yilmaz, S. 2009. Interleukin-1alpha-889C/T polymorphism in Turkish patients with Alzheimer disease. Dement. Geriatr. Cogn. Disord. 26, 256–258.

Faltraco, F., Burger, K., Zill, P., Trilpel, S., Moller, H.J., Bondy, B., Ackenheil, M., 2003. Interleukin-6–174 G/C promoter gene polymorphism C allele reduces the risk of late-onset Alzheimer’s disease. J. Am. Geriatr. Soc. 51, 578–579.

Fidani, L., Gouais, B., Mirtsova, V., Petersen, R.C., Tangalos, E., Crook, R., Hardy, J. 2002. Interleukin-1β polymorphism is not associated with late onset Alzheimer’s disease. Neurosci. Lett. 323, 81–83.

Flex, A., Giovanni, S., Biscetti, F., Lipertori, R., Spalletta, G., Straface, G., Landi, F., Angelini, F., Faltcargiane, C., Chialinda, C., Bernabei, R. 2014. Effect of proinflammatory cytokine gene polymorphisms on the risk of Alzheimer’s disease. Neurodegener. Dis. 13, 230–236.

Fontalba, A., Gutierrez, O., Ilorca, J., Mateo, I., Vazquez-Higuera, J.L., Berciano, J., Fernandez-Luna, J.L., Combarros, O., 2009. Gene–gene interaction between interleukin-1 alpha polymorphism and Alzheimer’s disease. Neurology 55, 480–485.

Green, E.K., Harris, J.M., Lennon, H., Lambert, J.C., Chartier-Harlin, M.C., St Clair, D., Mann, D.M., Ivatsbou, T., Land, C.L. 2002. Are interleukin-1 gene polymorphisms risk factors or disease modifiers in AD? Neurology 58, 929–936.

Griffiths, S., Stanley, L.C., White, C., Macdonald, Y., Arora, C. 1989. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 86, 7611–7615.

Grimaldi, M.A., Gessa, G.L., Mancini, A., Albonizio, C., Albonizio, A.,’s, Maroni, G., Del Beli, G., Sorbi, S., Mariani, C., Canal, N., Griffiths, W.S., Franceschi, M. 2000. Association of early-onset Alzheimer’s disease with an interleukin-1 alpha gene polymorphism. Ann. Neurol. 47, 361–365.

Harold, D., Abraham, R., Hollingworth, P., Deppe, P., C. Lohmuller, F., Gocke, P., Hung, H., Davis, J., Tsuang, M.T., Koeppen, K., Beek, D., Ong, Y., Westman, E., Kendler, K.S., Sullivan, P.F., Pedersen, N.L., Rioux, J.D., Gelernter, J., G Logan, M., 2009. Meta-analysis of the association between the interleukin-1B gene polymorphism and Alzheimer’s disease. Nat. Genet. 41, 1088–1093.

Hua, Y., Zhao, H., Kong, Y., Lu, X., 2012. Meta-analysis of the association between the interleukin-1B gene polymorphism and Alzheimer’s disease in the Finnish population. J. Neurol. 219, 155–161.

Kuo, Y.M., Liao, P.C., Lin, C., Wu, C.W., Huang, H.M., Lin, C.C., Chuo, L.I. 2003. Lack of association between interleukin-1alpha polymorphism and Alzheimer disease or vascular dementia. Alzheimer Dis. Assoc. Disord. 17, 94–97.

Li, X.Q., Zhang, J.W., Zhang, X.Z., Chen, D., Qi, Q.M. 2004. Interleukin-1 gene cluster polymorphisms and risk of Alzheimer’s disease in Chinese Han population. J. Neural Transm. 111, 1183–1190.

Li, W., Kivipelto, M., Li, L., Stige, P.L., Upmanyu, R., Suh, L., Hosford, D., Barnes, M.R., Birley, J.D., Burie, M., Coletta, D., Delisle, R., Dhall, A., Ehm, M.G., Feldman, H.H., Fornazzari, L., Gauthier, S., Goodgame, N., Guzman, D., Hammond, S., Hollingsworth, P., Hisuarg, G.Y., Johnson, J., Kelly, D.D., Keren, R., Kertzes, A., King, K.S., Lovestone, S., Loy, M., Matthews, P.W., Owen, M.J., Plumpton, M., Przyby-Phillips, W., Prinzha, R.K., Richardson, J.C., Saunders, A., Slater, A., Stjg, A.J., Sr, Gezhy, T., Sturl, S., Schin, S., Solt, S., W. Zhou, X., Xiong, J., Li, J. 2013. Association between interleukin-1beta C(–889)T polymorphism and Alzheimer’s disease: a meta-analysis including 12,817 subjects. J. Neural Transm. 120, 497–505.

Mansoori, N., Tripathi, M., Luthra, K., Alam, R., Sharma, S., Arulselvi, S., Reddy, G. 2012. Lack of association of the interleukin-1beta gene interaction C(-889)T polymorphism and Alzheimer’s disease in the Finnish population. J. Neurol. Neurosurg. Psychiatry. 83, 774–779.

Matlin, K.M., Rinne, J.O., Lehtimaki, T., Roitt, A., Ahonen, J.P., Hurme, M. 2002. Association of an interleukin 1B gene polymorphism (−511) with Parkinson’s disease in Finnish patients. J. Med. Genet. 39, 400–402.

McCarron, M.O., Stewart, J., McCarron, P., Love, S., Vinters, H.V., Ironside, J.W., Mann, D.M., Graham, D.I., Nicoll, J.A. 2003. Association between interleukin-1alpha-4820T/C and Alzheimer’s disease in an elderly Korean population. Ann. Neurol. 53, 579–589.

McCully, M.C., Day, I.N., Holmes, C. 2004. Association between interleukin 1-beta polymorphism (−511) and Alzheimer’s disease. Neurobiol. Aging 26, 265–268.

McLennan, M.C., Day, I.N., Holmes, C. 2004. The association between interleukin-1β polymorphism and Alzheimer’s disease. Neurobiol. Aging 26, 1005–1010.

Mansoori, N., Tripathi, M., Luthra, K., Alam, R., Sharma, S., Arulselvi, S., Reddy, G. 2012. Lack of association of the interleukin-1beta gene interaction C(-889)T polymorphism and Alzheimer’s disease in the Finnish population. J. Neurol. Neurosurg. Psychiatry. 83, 774–779.

Moraes, C.F., Benedet, A.L., Souza, V.C., Lins, T.C., Camargos, E.F., Naves, J.O., Brito, C.J., 2003. Lack of association of the interleukin-1beta gene promoter region polymorphisms with Alzheimer’s disease. Neurosci. Lett. 342, 81–85.

Nishimura, M., Sakamoto, T., Kaji, R., Kawakami, H., 2004. Inflammation-related cytokine genes on the genes for cytokines and glutathione S-transferase omega on sporadic Alzheimer’s disease: an analysis of 15 polymorphisms in prior candidate genes for sporadic Alzheimer’s disease. Am. J. Med. Genet. B, Neuropsychiatr. Genet. 124B, 50–55.

Prince, J.A., Feuk, L., Sawyer, S.L., Gottfries, J., Rickstten, A., Nagga, K., Bogdanovic, N., Blenno, K., Brooks, A.J. 2001. Lack of replication of association findings in complex diseases: a reanalysis of an analysis of candidate gene polymorphisms for sporadic Alzheimer disease. Eur. J. Hum. Genet. 9, 437–444.

Klimkowicz-Mrowiec, A., Wolkow, P., Spisak, K., Maruszak, A., Stycznyska, M., Barcikowska, M., Zekanowski, C., Szcudluk, A., Slowik, A. 2009. Interleukin-1 gene (−511 C/T) polymorphism and the risk of Alzheimer’s disease in a Polish population. Dement. Geriatr. Cogn. Disord. 28, 461–464.
Shawkatova, I., Javor, J., Parnicka, Z., Vrazda, L., Novak, M., Buc, M., 2010. No association between interleukin 10 promoter region polymorphisms and risk of late-onset Alzheimer disease. Arch. Neurol. 63, 1165–1169.

Rasmussen, L., Delabio, R., Horiguchi, L., Mizumoto, I., Terazaki, C.R., Mazzotti, D., Bertolucci, P.H., Pinhel, M.A., Souza, D., Krieger, H., Kawamura, C., Minett, T., Smith, M.C., Payao, S.L., 2013. Association between interleukin 6 gene haplotype and Alzheimer's disease: a Brazilian case–control study. J. Alzheimers Dis. 36, 733–738.

Ravaglia, G., Paola, F., Maioli, F., Martelli, M., Montesi, F., Bastaghi, D., Bianchin, M., Chiappelli, M., Tumin, E., Bolondi, L., Licastro, F., 2006. Interleukin-1beta and interleukin-6 gene polymorphisms as risk factors for AD: a prospective study. Exp. Gerontol. 41, 85–92.

Rebeck, G.W., 2000. Confirmation of the genetic association of interleukin-1A with early onset sporadic Alzheimer's disease. Neurosci. Lett. 293, 75–77.

Ribizzi, G., Fiordoro, S., Barocci, S., Ferrari, E., Megna, M., 2010. Cytokine polymorphisms and Alzheimer disease: possible associations. Neurosci. Lett. 321, 325–329.

Rodriguez-Manotias, M., Amorin-Diaz, M., Canizares-Hernandez, F., Ruiz-Espejo, F., Martinez-Vidal, S., Gonzalez-Sarmiento, R., Martinez-Hernandez, P., Cabezadas-Herrera, J., 2007. Association study and meta-analysis of Alzheimer's disease risk and presenilin-1 intronic polymorphism. Brain Res. 1170, 119–128.

Scassellati, C., Zanardini, R., Squitti, R., Bocchio-Chiavetto, L., Bonvicini, C., Martinelli, F., Zanetti, O., Cassetta, E., Gennarelli, M., 2004. Promoter haplotypes of interleukin-10 gene and sporadic Alzheimer's disease. Neurosci. Lett. 356, 119–122.

Sciacca, F.L., Ferri, C., Licastro, F., Veglia, F., Biunno, I., Gavazzi, A., Calabrese, E., Martinelli, Bonechi, F., Sorbi, S., Mariani, C., Franceschi, M., Grimaldi, L.M., 2003. Interleukin-1B polymorphism is associated with age at onset of Alzheimer's disease. Neurobiol. Aging 24, 927–934.

Shibata, N., Ohnuma, T., Takahashi, T., Baba, H., Ishizuaka, T., Ohtsuka, M., Ueki, A., Nagao, M., Arai, H., 2002. Effect of IL-6 polymorphism on risk of Alzheimer disease: genotype-phenotype association study in Japanese cases. Am. J. Med. Genet. 114, 436–439.

Tian, M., Deng, Y.Y., Hou, D.R., Li, W., Feng, X.L., Yu, Z.L., 2015. Association of IL-1, IL-18, and IL-33 gene polymorphisms with late-onset Alzheimers disease in a Hunan Han Chinese population. Brain Res. 1596, 136–145.

Toral-Rios, D., Franco-Bocanegra, D., Rosas-Carrasco, O., Mena-Barranco, F., Carvaljal-Garcia, R., Meraz-Rios, M.A., Campos-Pena, V., 2015. Evaluation of inflammation-related genes polymorphisms in Mexican with Alzheimer's disease: a pilot study. Front. Cell. Neurosci. 9, 148.

Torres, K.C., Araujo Pereira, P., Lima, G.S., Bozza, I.C., Rezende, V.B., Bicalho, M.A., Moraes, E.N., Miranda, D.M., Romano-Silva, M.A., 2013. Increased frequency of T cells expressing IL-10 in Alzheimer disease but not in late-onset depression patients. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 47, 40–45.

Tsai, S.J., Liu, H.C., Liu, T.Y., Wang, K.Y., Hong, C.J., 2003. Lack of association between the interleukin-1alpha gene C(−889)T polymorphism and Alzheimer's disease in a Chinese population. Neurosci. Lett. 343, 93–96.

van Oijen, M., Arp, P.P., de Jong, F.J., Hofman, A., Koudstaal, P.J., Uitterlinden, A.G., Breteler, M.M., 2006. Polymorphisms in the interleukin 6 and transforming growth factor beta1 gene and risk of dementia. The Rotterdam Study. Neurosci. Lett. 402, 113–117.

Vendramini, A.A., de Lobo, R.W., Rasmussen, L.T., Dos Reis, N.M., Minett, T., Bertolucci, P.H., de Souza Pinhel, M.A., Souza, D.R., Mazzotti, D.R., de Arruda Cardoso Smith, M., Payao, S.L., 2011. Interleukin–8: critical role in innate immunity, innate memory, and age-related cognitive decline. Exp. Neuropathol. Appl. Neurobiol. 47, 290–311.