NDM-based H-infinity robust control of parallel-connected grid-connected converters for V2G

Shilian Zhou¹, Longfang Li¹, Shujun Ben¹, Bo Long²,³ and Yong Chen²,⁴,⁵

¹ Nantong Electric Power Design Institute Co. Ltd, Nantong, Jiangsu, 226001, China; ² Institute of Electric Vehicle Driving System & Safety Technology, University of Electronic Science and Technology of China(UESTC), Chengdu, 611713, China; ³ School of Mechanical and Electrical Engineering, UESTC, Chengdu, 611713, China; ⁴ School of Automation Engineering, UESTC, Chengdu, 611713, China
⁵ Corresponding author: ychencd@uestc.edu.cn

Abstract. Because of the unignoring line-impedance, distorted grid voltage, high penetration and the increased parallel-connected grid-connected converters (GCC) in vehicle-to-grid (V2G) system, the stability of the grid with electric vehicle (EV) faces new challenges. To deal with the stability problem, this paper proposes a numerator-denominator-model (NDM) based H-infinity controller combined with an adaptive capacitive-current-feedback active damping method with explicitly robust stability in terms of variations on filter parameters, time-delay and grid-impedance. Simulation results are investigated in two parallel-connected GCC in EV and show the validity of the proposed method.

1. Introduction
In recent years, the deployment of Electrical Vehicles (EVs) as power storage sources under emergency conditions during the plug-in period has attracted the attention of power researchers. The Vehicle to Grid (V2G) scheme is designed to inject the power back to the electrical grid from the batteries of EVs. The presence of batteries in EVs was behind the techniques of using the plug-in EVs in renewable power systems as an energy source [1]. In the V2G system, the LCL-type grid-connected converter systems (LCL-GCCs), due to their superior harmonic suppression capability, are widely used as the interface between the grid and the EV [2,3]. However, due to the increased parallel-connected LCL-GCCs in the grid, long distribution wires and the use of low-power transformers, the equivalent grid impedance of the GCCs is increased, stabilities of the LCL-GCCs face great challenges. To enhance the system stability, the current control of LCL-GCCs plays a predominant role [4].

Much research work on improving the stability of GCCs has been done [5]. In [6], Yang, etc. proposed a virtual impedance method to reshape the output impedance of the inverter, which improves the robustness of the inverter. In [7], an optimized controller design procedure against grid-impedance change is proposed to improve the robustness of grid-connected inverters with LCL filter. In addition to the stability enhancement of GCCs with capacitor-current-feedback AD and virtual impedance reshaping method, there are also some robust control methods that improve the GCCs under weak grid by optimizing the current controller design without prior knowledge of the uncertain parameter variations, such as μ-synthesis [8] and H-infinity synthesis [9],
From the literature mentioned above, we found that in the conventional method, the dynamic performance of the closed-loop system cannot be precisely designed due to the uncertainties in the synthesis procedure. Meanwhile, the margin of the allowable grid impedance variations is not elaborated, which is important in the stability analysis. In addition to grid impedance, due to the time-delay and zero-holder in the forward loop, the system stability is further degraded. The conventional method utilizes a single capacitor-current proportional coefficient feedback for resonance damping, which cannot guarantee the system stability in a wide parameter variation range. Motivated by this research gap, in this paper, a stability improvement control scheme for LCL-type GCCs with NDM-based H-infinity synthesis and an improved capacitor-current-feedback control method is proposed. The main contributions of this paper are summarized as:

1) Stability of the LCL-GCCs considering grid impedance changes is analyzed, which proves that the system will be unstable with the increase of grid impedance.

2) An NDM-based H-infinity controller is proposed, which is realized by separating the uncertainty from the numerator and denominator of the system, combined with the proposed proportional-integral capacitor-current-feedback loop control, the allowable grid impedance variation is further extended.

2. System description

Figure 1 shows the V2G system configuration for a three-phase GCC inverter with the LCL filter, where the PV modules are interfaced with the grid via three-phase GCC. In this case, a dc-dc boost converter can be employed to boost the PV voltage to the higher voltage that is optimized for the inverter. Wherein, the inductors L_1 and L_2 and the capacitor C constitute the LCL filter. U_{dc} is the input dc voltage; C_{dc} is the dc-link capacitor. U_{mp} and i_t are the inverter output voltage and current, respectively. u_g and i_g are the grid voltage and grid-connected current; i_{l1} and i_{l2} are the grid impedance.

The grid-connected converter aims to regulate the grid current to be sinusoidal and keep it in phase with the voltage at PCC, thus a phase-lock-loop (PLL) is employed to get the phase angle of PCC voltage. The amplitude of the grid current reference is given as I^*. The capacitor current is acquired and fed back to damp the LCL filter resonance. H_{i1} and H_{i2} are the inductive gain of i_c and i_{l2}, respectively.

![Figure 1. Configuration and block diagram of the proposed three-phase LCL-GCC for EV.](a) Power circuit topology. (b) V2G.

The three-phase LCL-type GCCs can be seen as three single-phase circuit, the transfer function of LCL filter considering grid inductance L_g is

$$G_{LCL} = \frac{1}{S^2 (L_1 + L_2 + L_g) + S (L_1 + L_2 + L_g) + L_1 (L_2 + L_g) C}$$

(1)

Thus, the system has a resonant frequency ω_r given by

$$\omega_r = 2\pi f_r = \frac{L_1 + L_2 + L_g}{\sqrt{L_1 (L_2 + L_g) C}}$$

(2)
The block diagram of the closed-loop control system with active damp (AD) is shown in Figure 2. Wherein K_{PWM} is the gain of the inverter, which is equal to V_{dc}/V_{tri}. Where, V_{dc} is the dc-link voltage of the inverter, V_{tri} is the peak-peak voltage of the carrier signal, the control period is equal to PWM carrier frequency, the sampling rate is the same as the PWM frequency. The loop gain of the system and the transfer function of the closed-loop system will be discussed in the followed steps.

![Figure 2. Block diagram of an LCL-GCC with AD and control delays.](image)

Considering the computation delay and the sampling delay, and assuming T_s is the sampling time, T_d is the computation and PWM delays, express as

$$G_d(s) = \frac{1}{T_s} \exp(-\lambda T_d)G_h(s) \approx \exp(-\lambda T_d)G_h(s) = \frac{1-e^{-sT_d}}{s} \approx T_s e^{-0.5sT_d}$$

To reduce the steady-state error, and considering that the PR controller has a very big gain at the desired frequency, assuming the conventional PR controller is employed given by

$$G_{i1}(s) = K_p + \frac{2K_r \omega_0 s}{s^2 + 2\omega_0 s + \omega_0^2}$$

where K_p is the proportional gain, K_r is the resonant gain, $\omega_0 = 2\pi f_0$ is the fundamental angular frequency, ω_i is the bandwidth of the resonant part to reduce the sensitivity to the variation of the fundamental frequency. The block diagram of the system after simplification can be given in Figure 3.

![Figure 3. The equivalent plant transfer function of the system. (a) Before simplification. (b) after simplification.](image)

where $G_{x1}(s)$ is the TF from $i_{ref}(s)$ to $u_{c}(s)$. $G_{x2}(s)$ is the TF from $u_{c}(s)$ to $e_{g}(s)$.

$$G_{x1}(s) = \frac{K_{PWM}G_{d}(s)}{s^2L_1C+sH_1K_{PWM}G_{d}(s)+1}G_{i1}(s)$$

$$G_{x2}(s) = \frac{s^2L_1C+sH_1K_{PWM}G_{d}(s)+1}{s^2L_1C+sH_1K_{PWM}G_{d}(s)+1}$$

According to Figure 3, the loop gain $T(s)$ is given by

$$T(s) = G_{x1}(s)G_{x2}(s)H_{i2} = \frac{H_{i2}K_{PWM}G_{d}(s)}{s^2L_1C+sH_1K_{PWM}G_{d}(s)+s(L_1+L_2)}$$

The grid current is composed of two parts. Namely, the current component caused by reference current $i_{g}(s)$, and by the disturbance voltage $u_{pcc}(s)$. As a result, the grid current can be written as

$$i_g(s) = \frac{1}{H_{i2}} \cdot \frac{T(s)}{1+T(s)} \cdot i_{g}^*(s) - \frac{G_{x2}(s)}{1+T(s)} \cdot u_{pcc}(s) = i_s(s) - \frac{u_{pcc}(s)}{Z_0(s)}$$

Where in Figure 3(b), $i_s(s)$ and $Z_0(s)$ are given by

$$i_s(s) = \frac{1}{H_{i2}} \cdot \frac{T(s)}{1+T(s)}$$

$$Z_0(s) = \frac{1+T(s)}{G_{x2}(s)}$$
3. **H-infinity current controller**

As mentioned before, the perturbations of grid parameters have been proved to have significant influences on the stability of GCCs. A basic setup for an uncertain system is depicted in Figure 4.

![Figure 4. The basic setup for the uncertain system.](image)

According to the small gain theorem, a sufficient condition for a closed-loop system to be stable is

$$\|H\|_\infty < 1, \text{ when } \|H\delta\|_\infty < 1$$ \hspace{1cm} (10)

where $\|\delta\|_\infty$ is the parameter perturbation of the system, $\|H\|_\infty$ is the norm of the system, based on the above model, a method to further design and synthesize the controller is provided, which is called Numerator-Denominator Perturbation. This method relies on the representation of the transfer function H in Figure 4 in fractional form. Assuming the transfer function of a system can be represented in a fractional form as:

$$P = H = \frac{N}{D}$$ \hspace{1cm} (11)

where N and D are the numerator and denominator of the system, respectively, the perturbations in the numerator-denominator can be given by:

$$P_0 = \frac{N_0}{D_0} \rightarrow \frac{N_0 + M_0 N_2}{D_0 + M_0 D_1}$$ \hspace{1cm} (12)

where P_0, N_0, and D_0 represent the nominal transfer function and its numerator and denominator, respectively. For inverters with capacitor current feedback active damping strategy, the open-loop transfer function $G_C(s)$ from the input reference current $i_{ref}(s)$ to output current $i_g(s)$ without considering $G_t(s)$ is:

$$G_C(s) = P_0 = \frac{T(s)}{G_t(s)} = \frac{H_{i2}K_{PWM}}{s^3L_1L_2C + s^2H_{i1}CL_2K_{PWM} + s(L_1 + L_2)}$$ \hspace{1cm} (13)

where $N_0 = H_{i2}K_{PWM}$, $D_0 = s^3L_1L_2C + s^2H_{i1}CL_2K_{PWM} + s(L_1 + L_2)$. It should be mentioned that the control and modulation delay are ignored for simplicity in the synthesis. The terms M_0N_1 and M_0D_2 modeling the uncertainties in the plant. In the condition that the magnitude of δ_N and δ_D is not greater than one, MW_2 and MW_1 represent the largest possible perturbations. The factor M is added for flexibility in design. This model and the block diagram may be rearranged as shown in Figure 5, the block δ_p is described by $\delta_p = [-\delta_D \delta_N]$.

![Figure 5. The Numerator-Denominator Model.](image)

$$p = -\delta_p q_1 + \delta_N q_2 = [-\delta_D \delta_N] \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \delta_p \cdot q$$ \hspace{1cm} (14)

Therefore, Figure 5 can be changed to Figure 6 as

![Figure 6. The rearranged Numerator-Denominator Model.](image)
As a result, the system would be stable when \(\| \delta_p \| < 1 \) and \(\| H \|_\infty < 1 \). H block has input \(p \) and output \(q = [q_1 \ q_2] \). The plant has an output \(z \). The transfer function of \(H \) is
\[
H = \begin{bmatrix}
W_1 S_0 V \\
-W_2 U_0 V
\end{bmatrix}
\]
(15)
wherein \(S_0 \) is the sensitivity function of the system, and \(U_0 \) is the input sensitivity of the system.
\[
S_0 = 1/(1 + P G_c), \quad U_0 = G_c/(1 + P G_c), \quad V = M/D, \quad T_0 = P U_0.
\]
(16)
wherein \(G_c \) is the grid current controller in Figure 2, as a result, the norm \(\| H \|_\infty \) can be written as:
\[
\| H \|_\infty = \text{sup}(|W_1 S_0 V|^2 + |W_2 S_0 V|^2)
\]
(17)
According to Eq. (15), the stability condition of the system in Figure 5 can be expressed as:
\[
|W_1 S_0 V|^2 + |W_2 S_0 V|^2 < 1
\]
(18)
To further design its robustness, assuming that the uncertainness of the denominator and numerator can be respectively defined as:
\[
\Delta_D = \frac{(D-D_0)}{D_0} = M \delta_D W_1 = V W_1 \delta_D = \omega_1 \delta_D
\]
(19)
\[
\Delta_N = \frac{(N-N_0)}{N_0} = M \delta_N W_2 = V W_2 \delta_N = \omega_2 \delta_N
\]
(20)
Rewriting Eq. (11) into, defining \(\omega_1 = W_1 V \) and \(\omega_2 = W_2 V / P \), (18) can be written by:
\[
\| H \|_\infty = \text{sup}(|\omega_1 S_0|^2 + |\omega_2 T_0|^2)
\]
(21)
\(T_0 \) is the complementary sensitivity function of the system, \(S_0 \) and \(T_0 \) must satisfy \(S_0 + T_0 = 1 \), then
\[
|\omega_1 S_0|^2 + |\omega_2 T_0|^2 < 1, \text{ when } \left(\frac{(D-D_0)/D_0}{\omega_1}\right) + \left(\frac{(N-N_0)/N_0}{\omega_2}\right) < 1
\]
(22)
Eq. (17) can be used to design the system’s robustness. The larger the weight function is, the larger perturbation is allowed. Meanwhile, the transfer function of \(S_0 \) and \(T_0 \) can be shaped by properly selecting the weight function \(W_1(s) \) and \(W_2(s) \).
A proportional-resonant transfer function is suitable to shape the sensitivity function to be a notch. Choosing the weight function \(W_1(s) \) as
\[
W_1(s) = \frac{(s^2 + 2 \omega_c + 1)^2}{s^2 + 2 \omega_c s + \omega_c^2} \frac{W_1(s)}{s}
\]
(23)
which provides a significant gain at line frequency to eliminate the disturbances from the grid. The term \(\frac{W_1(s)}{s} \) is reserved to add flexibility in the following design. And double zeros in \(\omega_{c1} \) is added to eliminate the influence of \(W_1(s) \) in higher frequency. In the following synthesis, \(\omega_{c1} = 1 \times 104 \text{ rad/s}, \omega_c = 1 \text{ rad/s}, \omega_0 = 314 \text{ rad/s} \) are adopted.
With the satisfied condition \(\| \delta_p \| < 1 \), the weight function \(W_1(s) \) should be greater than the relative dominator uncertainty over all frequencies. More elaborations are given on this constraint. With the aforementioned result that the system is stable when \(\| H \|_\infty < 1 \) and \(\| \delta \|_\infty < 1 \) are satisfied. And the algorithm for \(H_\infty \) synthesis problem is a numerical solution, which leads to uncertainty in the resulting \(H_\infty \) norm. So, it’s necessary to keep the weight function \(W_1(s) \) to be greater than the relative dominator uncertainty over all frequency ranges, this constraint gives margin in the resulting controller and is convenient to design the desired robustness as long as the parameter perturbation range is known.
The relative dominator uncertainty \(\Delta_D \) is large at low frequency and tends to constant at high frequency. So, the weight function \(W_1(s) \) should be chosen as a low-pass filter. To ensure \(\omega_1 \) to be a constant at high frequency, another zero at \(\omega_{c2} \) is added to \(s \), which makes \(M(s) \) as
\[
M(s) = \frac{(s^2 + 2 \zeta \omega_n + \omega_n^2)}{\omega_n^2} \frac{s}{(s + \omega_{c2})}
\]
(24)
4. Simulation results

It has been indicated that large grid impedance can push the inverters into unstable states. To demonstrate the validity of the proposed method, comparisons between the conventional method and the proposed method with the change of grid impedance under steady-state will be discussed in the first place. Then the dynamic response comparisons between the conventional and proposed method with large grid impedance under a step-up current reference will be given. The grid impedance can be changed to mimic the behavior of a weak grid. Parameter configurations are shown in Table 1.

Table 1. Inverter parameter specifications.

Parameter	Value
Grid Line-line Voltage v_g	380 VRMS
DC-link Voltage v_{dc}	700 V
Line Frequency f	50 Hz
Rated Power P_e	150 VA
Switching Frequency f_{sw}	50 kHz
Sampling Frequency T_s	25 kHz
Control Updating Frequency	25 kHz
Inverter Side Inductance L_1	2 mH
Grid Side Inductance L_2	1 mH
Filter Capacitance C	2.2 µF

The simulations have been carried out under the continuous domain. Two switching periods of control delay is added to simulate the computation delay. Simulations have been developed under different grid conditions to verify the dynamic tracking and stability performance of the proposed controller. Figure 7(a) shows the simulation result of the conventional PR controller with $K_p = 0.633$ and $K_R = 500$. The grid impedance changes from 100 to 600 µH at 0.1s, which makes the system unstable. To maintain its stability, the gain of the PR controller must decrease. However, decreasing the loop gain will significantly worsen the tracking performance and disturbance rejection capability. Figure 7(b) shows the simulation result of the proposed H_{∞} controller with grid impedance changing from 100 µH to 1.5 mH. This result shows that the proposed H_{∞} controller can achieve good robust performance with the grid impedance variations in a wide range.

![Figure 7](image_url)

Figure 7. Grid current when L_g changes from 100 to 600 µH and from 100 µH to 1.5 mH with different controllers at 0.1s. (a) QPR controller (b) H_{∞} controller.

Figure 8 shows the dynamic response of the proposed H_{∞} controller. The reference current changes from 5 to 10 A. The result shows that the proposed controller can achieve a fast response. When the reference changes, the output current follows the command after a short regulation time. Figure 9 shows the grid current with H_{∞} controller when grid inductance changing to 1 to 12 mH at 0.1s, which shows that the maximum allowable grid inductance to ensure system stability is approximately 12 mH, this proves the aforementioned conclusions.
Figure 8. Waveform of the grid current with the proposed controller when a step-up grid-current reference is given.

Figure 9. Waveform of the grid current with the proposed controller when L_g changes from 1 to 12 mH at 0.1s.

5. Conclusions
This paper investigates a current robust controller to guarantee the system stability under wide grid impedance changes for V2G system. The proposed method seeks to reshape the output impedance of the converter by introducing an NDM-based H_∞ controller in the current loop. By properly selecting the weight function, the synthesized proposed controller exhibits high gain at line frequency to eliminate the influences generated by grid disturbance. The results show that strong robustness of the system can be achieved under uncertain parameters when the proposed method is used.

References
[1] F Blaabjerg, R Teodorescu, M Liserre and A V Timbus 2006 Overview of Control and Grid Synchronization for Distributed Power Generation Systems IEEE Trans Ind. Elect 53(5) 1398-1409
[2] C Battistelli, L Baringo, and A J Conejo 2012 Optimal energy management of small electric energy systems including V2G facilities and renewable energy sources Electr. Power Syst. Res. 92(1) 50-59
[3] C Zhou, K Qian, M Allan and W Zhou 2011 Modeling of the Cost of EV Battery Wear Due to V2G Application in Power Systems IEEE Trans. Energy Conv. 26(4) 1041-1050
[4] N Panten, N Hoffmann and F W Fuchs 2016 Finite Control Set Model Predictive Current Control for Grid-Connected Voltage-Source Converters With LCL Filters: A Study Based on Different State Feedbacks IEEE Trans. Power Elect. 31(7) 5189-5200
[5] Z Liu, J Liu, X Hou, Q Dou, D Xue and T Liu 2016 Output Impedance Modeling and Stability Prediction of Three-Phase Parallelled Inverters With Master–Slave Sharing Scheme Based on Terminal Characteristics of Individual Inverters IEEE Trans. Power Elect. 31(7) 5306-5320
[6] D Yang, X Ruan and H Wu 2014 Using virtual impedance network to improve the control performances of LCL-type grid-connected inverter under the weak grid condition, in APEC 2014, 16-20 March 2014, 3048-3054
[7] D Pan, X Ruan, C Bao, W Li and X Wang 2015 Optimized Controller Design for LCL-Type Grid-Connected Inverter to Achieve High Robustness Against Grid-Impedance Variation IEEE Trans Ind. Elect. 62(3) 1537-1547
[8] L Chang, Y Jing and Y Liu 2019 Design of adaptive H_∞ controller for power system based on prescribed performance ISA Transactions DOI: 10.1016/j.isatra.2019.11.030
[9] P Shaw and M Veerachary 2017 Mixed-sensitivity based robust H_∞ controller design for high-gain boost converter, in 2017 International Conference on Computer, Communications and Electronics, 1-2 July 2017, 612-617