Effective cluster typical medium theory for the diagonal Anderson disorder model in one- and two-dimensions

Chinedu E Ekuma1,2, Hanna Terletska1,3, Zi Yang Meng1,2, Juana Moreno1,2, Mark Jarrell1,2, Samiyeh Mahmoudian4 and Vladimir Dobrosavljević4

1 Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
2 Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA
3 Brookhaven National Laboratory, Upton, NY 11973, USA
4 Department of Physics, Florida State University, Tallahassee, FL 32301, USA

E-mail: cekuma1@lsu.edu and jarrellphysics@gmail.com

Received 3 July 2013, revised 2 September 2013
Published 17 June 2014

Abstract

We develop a cluster typical medium theory to study localization in disordered electronic systems. Our formalism is able to incorporate non-local correlations beyond the local typical medium theory in a systematic way. The cluster typical medium theory utilizes the momentum-resolved typical density of states and hybridization function to characterize the localization transition. We apply the formalism to the Anderson model of localization in one- and two-dimensions. In one-dimension, we find that the critical disorder strength scales inversely with the linear cluster size with a power law, $W_c \sim (1/L_c)^{1/\nu}$, whereas in two-dimensions, the critical disorder strength decreases logarithmically with the linear cluster size. Our results are consistent with previous numerical work and are in agreement with the one-parameter scaling theory.

1. Introduction

Over the past several decades, disorder-driven (Anderson) localization has been a subject of intensive theoretical [1–13] and experimental [14–21] study. It has recently been realized experimentally with atomic matter waves [22–24]. In the seminal paper of Anderson [3], localization is defined as the absence of diffusion. It generally arises from quantum interference between different particle trajectories and depends strongly on the dimensionality of the system. According to the one-parameter scaling theory [1], there is no delocalized phase in one- and two-dimensions, whereas, a metal–insulator-transition (localization/delocalization phase) occurs at finite disorder strength in three-dimensions. Effective medium theories like the coherent potential approximation (CPA) [10] and its cluster extensions, including the dynamical cluster approximation (DCA) [25–27], average over disorder, favoring a metallic solution, and fail to capture the localized state in 1D and 2D, and even the transition in 3D.

Here, we develop an extension of the typical medium theory [9] which is able to capture the localized state. The study of disordered systems rely on probability distribution functions (PDFs) to measure ‘random’ quantities of interest. To characterize localization, the most important quantity in the majority of physical or statistical problems is usually the ‘typical’ value of the ‘random’ variable, which corresponds to the most probable value of the PDF. In most systems

5 The most probable value of a random quantity is the mode, which is the value for which its PDF becomes maximal. A property X of a given system is self-averaging if most realizations of the randomness in the thermodynamic limit have the same value of X. The Anderson localization does not have this property. Close to the critical point, physical observables are not Gaussian and generally have log-normal behavior. For discussions, see [28].
the nature of the PDF is not known a priori; as such, we have limited information via the moments or cumulants of the PDFs. Under such a situation, the ‘typical’ or the most probable value of the PDF (see footnote 5) contains important and direct information. Different from some systems where the first moment (the arithmetic average) is a good estimate of the random variable, the Anderson localization is a non-self-averaging phenomenon. Close to the critical point the electronic quantities fluctuate strongly and the corresponding PDF of the local density of states (DOS) is very asymmetric with long tails [29, 30] such that infinitely many moments are needed to describe it (see footnote 5). In some cases, the corresponding moments might not even exist especially close to the critical point [31].

The arithmetic average of random one-particle quantities is not critical at the Anderson localization transition. This is the reason why most mean field theories like the CPA [10] and its cluster extensions including the DCA [25–27], fail to provide a proper description of Anderson localization in disordered systems. This failure is intrinsic to these theories as the algebraically averaged quantities, i.e. averaged DOS, used in these methods always favor the metallic state. This can be understood from the fact that in an infinite system with localized states, the average DOS will remain continuous while the local DOS become discrete. See for example [4, 9, 29, 32–35] for a detailed discussion.

In contrast to the arithmetic average, the geometrical average [9, 29, 30, 34, 36], gives a better approximation to the most probable value of the local DOS. Dobrosavljević et al [9] proposed the typical medium theory (TMT) to study disorder systems, where the arithmetically averaged local DOS is replaced with the typical density of states (TDOS), where the geometrical average is used. They demonstrated that the TDOS vanishes continuously as the disorder strength increases towards the critical point, and it can be used as an effective mean field order parameter for the Anderson localization.

However, the TMT proposed in [9] is a single-site self-consistent mean field theory. Due to its local nature, it fails to capture the effect of spatial correlations. In this work, we extend the local typical medium theory [TMT] to a cluster version utilizing the ideas from the dynamical cluster approximation [25–27]. The DCA systematically incorporates spatial inter-site correlations. Therefore quantum coherence, which is important for Anderson localization, is captured. This is the key motivation of our work. A concomitant motivation is that recent theoretical work shows that rare events [12] play an important role in Anderson localization; our formalism might be able to take rare events into consideration.

We develop a cluster typical medium theory (CTMT) for studying disordered systems. Our cluster self-consistent mean field theory systematically incorporates non-local correlation effects into the local TMT (for a review of cluster approximation see [26]). In our formalism, the TDOS is calculated using the geometrical average of the imaginary part of the Green function. We utilize the TDOS and the hybridization rate to characterize the localization transition. The imaginary part of the hybridization rate measures the hopping amplitude or diffusion of electrons from the cluster to the typical medium (see figure 1(a)). Then, the point where this quantity vanishes corresponds to the absence of diffusion and the onset of Anderson localization. We also note that the TDOS vanishes at the same point as the hybridization rate. We apply the developed CTMT approach to study the non-interacting Anderson model in 1D and 2D, and we briefly describe the failure of the method in 3D. For a review of the progress in lower-dimensional Anderson localization see, for example, [5, 16, 38–42]. Our results show that the CTMT provides a proper mean field description of Anderson localization for lower-dimensional systems. While the present study is for the diagonal Anderson disorder model, the method can easily be extended to other disorder distributions such as Gaussian, binary disorder etc.

The rest of this paper is organized as follows. After section 1, the basic formalism and description of the CTMT self-consistency is provided in section 2. Section 3 shows our computed results. We conclude in section 4.

6 The problems encountered in early attempts to formulate cluster corrections to the DMFA are the same as those encountered in the CPA for disordered systems. For a detailed discussion of earlier work on the inclusion of non-local corrections to the CPA see [37].
2. Model and formalism

We consider the Anderson model [3] with a diagonal on-site random disorder potential. The Hamiltonian is given by

\[\hat{H} = -t \sum_{\langle i,j \rangle} (c_i^\dagger c_j + c_j^\dagger c_i) + \sum_i (V_i - \mu) n_i. \]

(1)

The operators \(c_i^\dagger (c_i) \) create (annihilate) a quasi-particle in a Wannier orbital on site \(i \) and \(n_i = c_i^\dagger c_i \) is the number operator, \(\mu \) is the chemical potential and \(t \) is the hopping matrix element between nearest-neighbor \(\langle i, j \rangle \), which we set with \(4t = 1 \) as the energy unit. The local potentials \(V_i \in [-W, W] \) are randomly distributed according to a probability distribution \(P(V_i) \) with a box distribution function:

\[P(V_i) = \frac{1}{2W} \Theta(W - |V_i|) \]

(2)

where the strength of the disorder in units of 4 is parametrized by the width \(W \) of the box and \(\Theta(x) \) is the step function.

The CTMT combines the self-consistent frameworks of the DCA [25] and the single-site TMT approaches [9]. In particular, the CTMT maps the given disordered lattice system into a finite cluster which is embedded in an effective self-consistent typical medium (see figure 1(a)). Note that unlike in the usual DCA scheme where the effective medium is constructed via algebraic averaging over disorder configurations, in the CTMT scheme, geometric averaging is used. By mapping a \(d \)-dimensional lattice containing \(N \) sites to a finite small cluster containing \(N_c = L^d/N \) sites, where \(L \) is the linear dimension of the cluster, we dramatically reduce the computational effort [26]. Unlike the single-site methods commonly used to study disordered systems, such as the CPA [10, 43] or the local TMT [9], the CTMT ensures that non-local, spatial fluctuations, which are neglected in single-site approaches, are systematically incorporated as the cluster size \(N_c \) increases. Short length scale correlations inside the cluster are treated with exact numerical methods such as Monte Carlo (MC) or exact diagonalization, while long length scale correlations are treated within the typical medium (see figure 1(a)). At the limit of cluster size \(N_c = 1 \), the CTMT recovers the local TMT, and at the limit of \(N_c \rightarrow \infty \), the CTMT becomes exact. Hence, between these two limits, the CTMT systematically incorporates non-local correlations into the local TMT.

Let us describe our formalism in detail. In the DCA, the average DOS at each cluster momentum \(K \) is defined as

\[\rho_{\text{avg}}^c(K, \omega) = \langle \rho^c(K, \omega) \rangle = -\frac{1}{\pi} \text{Im} G^c(K, K, \omega), \]

(3)

where the superscript ‘c’ denotes cluster and \(\langle \rangle \) is the disorder average. For a single-site \(N_c = 1 \), we recover the CPA. The \(K \)-dependent cluster Green function is obtained from the site dependent Green function \(G_c(i, j, \omega) \) via

\[G^c(K, K, \omega) = \frac{1}{N_c} \sum_{i,j} e^{i\mathbf{K} \cdot (\mathbf{R}_i - \mathbf{R}_j)} G_c(i, j, \omega). \]

(4)

In the CTMT, we first obtain \(\rho^c(K, \omega) = -\text{Im} G^c(K, K, \omega)/\pi \) for each cluster disorder configuration. It is easy to show, using the Lehmann representation [44, 45], that \(\rho^c(K, \omega) \geq 0 \) for each \(K, \omega \) and disorder configuration. We then calculate using geometric averaging the cluster-momentum-resolved TDOS for each \(K \) as

\[\rho_{\text{typ}}^c(K, \omega) = \exp(\ln \rho^c(K, \omega)). \]

(5)

To ensure the causality of the Green function, we carry out the Hilbert transformation of the TDOS to obtain the typical cluster Green function as

\[G_{\text{typ}}^c(K, \omega) = \int d\omega' \rho_{\text{typ}}^c(K, \omega')/\omega - \omega' \]

(6)

and we use the typical Green function to continue the self-consistency loop. A schematic diagram of the CTMT self-consistency loop is shown in figure 1(b).

We have adopted the hybridization rate function \(\Gamma(K, \omega) \) as the order parameter to control the convergence. This stems from the fact that \(\text{Im}(\Gamma(K, \omega)) \) measures the rate of electron hybridization between the cluster and the typical medium. When \(\text{Im}(\Gamma(K, \omega)) \) is zero, the hopping between cluster and medium vanishes and the electrons in the system are localized. We note that at this point the TDOS also becomes zero and, as such, the TDOS and \(\text{Im}(\Gamma(K, \omega)) \) act as mean field order parameters within our effective medium for detecting Anderson localization. The CTMT iterative procedure is described as follows.

1. We start by proposing an initial hybridization function \(\Gamma_0(K, \omega) \), where the subscript \(o \) denotes old. The choice of the starting guess for the hybridization function may be based on \(a \) priori knowledge, i.e. in case we have information about the self-energy \(\Sigma(K, \omega) \) and cluster Green function \(G^c(K, \omega) \), \(\Gamma_0(K, \omega) \) can be calculated as

\[\Gamma_0(K, \omega) = \omega - \Sigma(K, \omega) - 1/G^c(K, \omega) \]

(7)

where \(\Sigma(K, \omega) = N_c^{-1} \sum_{\mathbf{K}} \epsilon(\mathbf{K} + \mathbf{k}) \) is the coarse-grained bare dispersion with \(\mathbf{k} \) summed over \(N_c \) momenta inside the cell centered at the cluster momentum \(K \) [27]. However, if nothing is known \(a \) priori, the guess \(\Gamma_0(K, \omega) \equiv 0 \) may serve as the starting point.

2. The cluster problem is now set up by calculating the cluster-excluded Green function \(G(K, \omega) \) as

\[G(K, \omega) = (\omega - \Gamma_0(K, \omega) - \Sigma(K))^{-1}. \]

(8)

Since the cluster problem is solved in real space, we then Fourier transform \(G(K, \omega) : G_{n,m} = \sum_K G(K) \exp(iK \cdot (r_n - r_m)). \)

3. Next, we solve the cluster problem using, e.g. an MC simulation. Here, we stochastically generate random configurations of the disorder potential \(V \). For each disordered configuration, we use the Dyson equation to calculate the new fully dressed cluster Green function

\[G^c(V) = (G^{-1} - V)^{-1}. \]

(9)
This is Fourier transformed to \(G^c(K, K, \omega) \) to obtain the cluster DOS \(\rho^c(K, \omega) = -\frac{1}{i\pi} G^c(K, K, \omega) \). The typical cluster DOS is then calculated via geometric averaging using equation (5). Then, we calculate the disorder averaged, typical cluster Green function \(G^c_{\text{typ}}(K, \omega) \) via a Hilbert transform using equation (6).

(4) With the cluster problem solved, we use the typical cluster Green function \(G^c_{\text{typ}}(K, \omega) \), to calculate the coarse-grained cluster Green function \(\overline{G}(K, \omega) \) as

\[
\frac{1}{(G^c_{\text{typ}}(K, \omega))^{-1} + \Gamma_0(K, \omega) - \epsilon(K + \hat{k}) + \bar{\epsilon}(K) + \mu}.
\]

(10)

(5) Finally, we calculate the new hybridization function using linear mixing

\[
\Gamma_n(K, \omega) = \Gamma_0(K, \omega) + \xi [(G^c_{\text{typ}}(K, \omega))^{-1} - (\overline{G}(K, \omega))^{-1}]
\]

(11)

where the subscripts n and o denote new and old, respectively. The mixing parameter \(\xi > 0 \) controls the ratio of the new and old \(\Gamma(K, \omega) \) entering the next iteration. For very small \(\xi \), convergence may be slowed down unnecessarily, while for very large \(\xi \), oscillations about the self-consistent solution may occur. Instead of linear mixing, the convergence of the computations can be improved by using the Broyden method [46].

(6) We repeat this procedure until the hybridization function converges to the desired accuracy, \(\Gamma_0(K, \omega) = \Gamma_n(K, \omega) \). When this happens, the Green functions are also converged, \(\overline{G}(K, \omega) = G^c_{\text{typ}}(K, \omega) \) within the computational error.

We note that instead of using the hybridization function \(\Gamma(K, \omega) \) in the self-consistency, one can also use the self-energy \(\Sigma(K, \omega) \) of the cluster solver. Both procedures should lead to the same solution since they are related by equation (7).

This method is causal, provided that the cluster solver produces a causal result. The argument is the same as that for the DCA [27] and will not be repeated here.

3. Results and discussion

We apply the CTMT scheme to one- and two-dimensional disordered systems describe by the Hamiltonian in equation (1). Figure 2 shows the local TDOS (TDOS \(R = 0 \)) for a cluster of size \(N_c = 8 \) at various disorder strengths. For both one- and two-dimensional systems, the TDOS systematically goes to zero as the disorder strength is gradually increased. In 1D, the TDOS is practically zero for all frequencies at a critical disorder strength \(W_c \approx 0.8 \); whereas in 2D, \(W_c \approx 2.3 \). Above the critical disorder strength, the electrons are localized. The TDOS calculated in our CTMT scheme indeed provides key information about the Anderson localization transition.

According to the one-parameter scaling theory [1–3, 5], in 1D an arbitrary weak disorder strength localizes the electrons; whereas in 2D, the system is also always localized, but with the difference that the conductivity only decreases logarithmically with disorder strength.

As we discussed in preceding sections, mean field theories, such as the single-site CPA, or the DCA, cannot capture the localization transition due to the use of an algebraic averaging scheme in their self-consistency. The single-site TMT, on the other hand, is able to qualitatively describe the localization transition in 1D, 2D and 3D [11], but with critical disorder strength different from the exact values, i.e. in 1D and 2D \(W_c = 0 \) and in 3D \(W_c = 2.1 \) (in units where \(4\pi = 1 \) [6, 9, 11]. This is not surprising as the local TMT completely neglects non-local inter-site correlations. The CTMT proposed in this paper gives a better qualitative and quantitative mean field theory for studying disordered systems in 1D and 2D. We expect that as the cluster sizes increase, the critical disorder strength will systematically converge to the exact value of zero in the thermodynamic limit. This is demonstrated in figures 3 and 4.

Figure 3 shows the local TDOS at the band center, TDOS \(R = 0, \omega = 0 \), for a one-dimensional system as a function of disorder strength, \(W \). By increasing the cluster size the critical disorder strength decreases and eventually will go to zero for a reasonably large \(N_c \). Similarly, figure 4 displays the local TDOS at the band center for a two-dimensional system. The critical disorder strength also decreases as \(N_c \) increases. However, the decrease of \(W_c \) as a function of \(N_c \) is slower than that of the 1D case. This implies that the scaling form of \(W_c \) versus \(N_c \) (or \(L_c \)) for 1D and 2D systems is different. The former follows a power law whereas the latter has a logarithmic form. This is consistent with the one-parameter scaling theory [1–3, 5] which shows that a 1D system is strongly localized, while 2D is the lower critical dimension of the Anderson localization transition. The insets of figures 3
function, in a 2D system. Our data can be fitted with a logarithmic figure 5 is a log–log plot of also with the one-parameter scaling theory [1]. The inset of theory [1], as 2D is generally believed to be the lower localized. This behavior agrees with the one-parameter scaling size and only for very large clusters is the system completely critical disorder strength decreases slowly with cluster 695.97/179.91 + 96.8 × ln(Lc)) in agreement with the results of MacKinnon and Kramer [2]. The inset shows the logarithmic behavior in a semi-log plot.

Figures 5 and 6 address the scaling of Wc versus Nc, the critical disorder strength Wc is symmetric with the shape of TDOS the same as the Gaussian distribution (where all states are metallic, the PDF changes from a tails (where all states are localized, the local DOS strongly becomes localized, the PDFs of the DOS change from a

As explained in the previous sections, when a system becomes localized, the PDFs of the DOS change from a Gaussian distribution (where all states are metallic, the PDF is symmetric with the shape of TDOS the same as the average DOS) to a very asymmetric distribution with long tails (where all states are localized, the local DOS strongly fluctuating at all sites, and the TDOS is very different from

Figure 6 displays the scaling of Wc versus Lc (Nc = Lc2) in a 2D system. Our data can be fitted with a logarithmic function, Wc = 695.97/179.91 + 96.8 × ln(Lc)). Therefore, the critical disorder strength decreases slowly with cluster size and only for very large clusters is the system completely localized. This behavior agrees with the one-parameter scaling theory [1], as 2D is generally believed to be the lower critical dimension for the Anderson localization [48]. The inset of figure 6 is a semi-log plot of Wc versus ln Nc where the logarithmic behavior is seen as a straight line. We note that our data fit nicely to an exponent form Lc = exp(4.73/Vc0.98)/Vc0.98, in basic agreement with the results of MacKinnon and Kramer [2].
similar calculations. Within the CTMT scheme, we obtain the PDFs of the momentum-resolved DOS $\rho(K, \omega = \bar{\epsilon}_K)$ at different momenta cells centered at cluster momentum point K and at the averaged energy $\omega = \bar{\epsilon}_K$ of the cell K. When sampled over a large enough number of disorder configurations in our MC procedure, we indeed find, as the disorder strength W is increasing, that the PDF $\rho(K, \omega = \bar{\epsilon}_K)$ (shown in figures 7 and 8 for 1D and 2D systems, respectively) develop log-normal distributions, consistent with the observation in [7]. Moreover, we find for the 1D system that the log-normal distribution happens for all the momentum cells at a very small disorder strength ($W = 0.4, 0.5$ (see (b) and (c))), all the cells show a log-normal distribution.

N_c, the CTMT recovers the exact critical behavior around W_c. Second, for modest cluster sizes, while the TDOS becomes small as W increases, its width increases monotonically with disorder strength until the critical value is reached. However, in exact diagonalization calculations the width first increases and then decreases with disorder strength [11, 53, 54], indicating that our current formalism fails to correctly capture the localization edge for modest cluster sizes. In addition, while the hybridization rates also become small, they do not all vanish at the critical disorder strength W_c. Rather, only the hybridizations corresponding to states near the top and bottom of the bands vanish while the states at the band center only vanish for values of the disorder strength much larger than W_c. Apparently, while our current CTMT formalism is able to capture weak localization effects in lower-dimensional systems, it is not able to capture the evolution of the localization edge which characterizes the transition in 3D until the cluster sizes are very large. We are working to develop a fully causal formalism which is able to efficiently capture the localization transition in 3D.

4. Conclusion

We develop a cluster extension to the local TMT via the dynamical cluster approximation for studying localization in low-dimensional disordered electronic systems. The developed CTMT systematically incorporates non-local corrections to capture quantum coherence. The formalism recovers the local TMT when the cluster size is $N_c = 1$, and becomes exact as $N_c \rightarrow \infty$. Such an approach opens a new avenue to study localization effects in lower-dimensional model systems.

Acknowledgments

We thank K M Tam and S X Yang for useful discussions. Work at LSU is funded by the National Science Foundation.
LA-SiGMA award: EPS-1003897. Work at BNL is supported by the US Department of Energy (DOE) under contract DE-AC02-98CH10886. High performance computational resources are provided by the Louisiana Optical Network Initiative (LONI) and HPC@LSU computing resources. Work at FSU is supported by the National High Magnetic Field Laboratory and NSF Grant No. DMR-1005751.

References

[1] Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673
[2] MacKinnon A and Kramer B 1981 Phys. Rev. Lett. 47 1546
[3] Anderson P W 1958 Phys. Rev. 109 1492
[4] Lagendijk A, van Tiggelen B and Wiersma D S 2009 Phys. Today 62 24
[5] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[6] Slevin K and Ohtsuki T 1999 Phys. Rev. Lett. 82 382
[7] Schubert G, Schleede J, Byczuk K, Fehske H and Vollhardt D 2010 Phys. Rev. B 81 155106
[8] Pichard J P and Sarma G 1981 J. Phys. C: Solid State Phys. 14 L127
[9] Dobrosavljević V, Pastor A A and Nikolić B K 2003 Europhys. Lett. 62 76
[10] Elliott R J, Krumhansl J A and Leath P L 1974 Rev. Mod. Phys. 46 465
[11] Song Y, Atkinson W A and Wortis R 2007 Phys. Rev. B 76 045105
[12] Bhatt R N and Johri S 2012 Int. J. Mod. Phys.: Conf. Ser. 11 79
[13] Gorkov L P, Larkin A I and Khmelnitskii D E 1979 JETP Lett. 30 228
[14] Clark A H 1967 Phys. Rev. 154 750
[15] Morgan M and Walley P A 1971 Phys. Mag. 23 661
[16] Kramer B and MacKinnon A 1993 Rep. Prog. Phys. 56 1469
[17] Sharvin D Y and Sharvin Y V 1982 JETP Lett. 34 272
[18] Bergmann G 1984 Phys. Rep. 107 1
[19] Kravchenko S V, Kravchenko G V, Fyodorov Y V, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
[20] Byczuk K, Hofstetter W and Vollhardt D 2005 Phys. Rev. Lett. 94 056404
[21] Thouless D J 1974 Phys. Rep. 13 93
[22] Thouless D J 1970 J. Phys. C: Solid State Phys. 3 1559
[23] Janssen M 1998 Phys. Rep. 287 1
[24] Chabé J, Lemarie G, Grémaud B, Delande D, Szriftgiser P and Garreau J C 2008 Phys. Rev. Lett. 101 255702
[25] Jarrell M and Krishnamurthy H R 2001 Phys. Rev. B 63 125102
[26] Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027
[27] Hettler M H, Mukherjee M, Jarrell M and Krishnamurthy H R 2000 Phys. Rev. B 61 12739
[28] Wiseman S and Domany E 1995 Phys. Rev. E 52 3469–84
[29] Mirin A D and Fyodorov Y V 1994 Phys. Rev. Lett. 72 526
[30] Janssen M 1994 Int. J. Mod. Phys. B 8 843
[31] Byczuk K, Hofstetter W and Vollhardt D 2005 Phys. Rev. Lett. 94 056404
[32] Thouless D J 1974 Phys. Rep. 13 93
[33] Thouless D J 1970 J. Phys. C: Solid State Phys. 3 1559
[34] Janssen M 1998 Phys. Rep. 287 1
[35] Brindl J and Markoš P 2006 Phys. Rev. B 74 153103
[36] Crow E and Shimizu K (ed) 1988 Log-Normal Distribution—Theory and Applications (New York: Marcel Dekker)
[37] Gonis A 1992 Green Functions for Ordered and Disordered Systems (Studies in Mathematical Physics) ed E van Groesen and E M DeJager (Amsterdam: North-Holland)
[38] Ishii K 1973 Prog. Theor. Phys. Suppl. 53 77
[39] Vollhardt D and Wölfle P 1980 Phys. Rev. Lett. 45 842
[40] Thouless D 2010 Int. J. Mod. Phys. B 24 1507
[41] MacKinnon A and Kramer B 1983 Z. Phys. B 53 1
[42] Wischmann B and Müller-Hartmann E 1990 Z. Phys. B 79 91
[43] Soven P 1967 Phys. Rev. 156 809
[44] Gross E, Runge E and Heinonen O 1991 Many-Particle Theory (Bristol: Hilger) ISBN 9780750301558
[45] Fetter A and Walecka J 1971 Quantum Theory of Many-Particle Systems (Dover Books on Physics) (New York: Dover) ISBN 9780486428277
[46] Johnson D J 1988 Phys. Rev. B 38 12807
[47] Yakubo K and Mizutaka S 2012 J. Phys. Soc. Japan. 81 104707
[48] Lee P A and Fisher D S 1981 Phys. Rev. Lett. 47 882
[49] Dunlap D H, Kundu K and Phillips P 1989 Phys. Rev. B 40 10999
[50] Blackman J A, Esterling D M and Berk N F 1971 Phys. Rev. B 4 2412
[51] Eilmes A, Römer R A and Schreiber M 2001 Physica B 296 49
[52] Biswas P, Cain P, Römer R and Schreiber M 2000 Phys. Status Solidi b 218 205
[53] Jung D, Czycholl G and Ketzmann S 2012 Int. J. Mod. Phys.: Conf. Ser. 11 108
[54] Schubert G, Weiße A, Wellin G and Fehske H 2005 HQS@HPC: comparative numerical study of Anderson localisation in disordered electron systems High Performance Computing in Science and Engineering, Garching 2004 (Berlin: Springer)