An Application of Linear Programming in the Estimation of Technical Efficiency of DMU

B. Venkateswarlu, B. Mahaboob, K.A. Azmath, C. Narayana, C. Muralidaran

Abstract: The main objective of this research article is to propose linear programming problems for estimating the technical efficiency of DMU. This research article deals with the Shepard’s [1] input distance function and its properties are also evaluated. In addition to these extreme efficiency, efficiency but not extreme, weak efficiency and inefficient of a DMU are specifically examined here. In DEA the nature of returns to scale can be inferred. But we cannot quantify the returns to scale. The computations for the classification of RTS of a DMU are also derived in this discourse. In 2009, Barbara A. Mark et al. [2] in their paper, depicted an innovative method which is non-parametric to estimate technical efficiency. In 2011 S. Nuti et al. [3] inquired into the interrelations among technical efficiency scores, weighted per capita cost and overall performance.

I. INTRODUCTION

Efficiency measurement dates back to Farrell [6] who in his path breaking article introduced technical, allocative and cost efficiencies and their pictorial representations. Adding mathematical regour Charness et al. [7] proposed multiplier problems, input and output oriented, which can be readily transformed into linear programming problems. Banker et al. [8] formulated linear programming problems constructed axiomatically whose dual problems coincide with CCR multiplier problems. By the principle of duality the extreme values of the primal and dual objective functions are equal provided that both the problems are feasible. The BCC [9] problems are called the ‘envelopment problems’. A decision making unit (DMU) under evaluation turns out to be efficient or inefficient. The efficient DMUs are of three types, extremely efficient, efficient but not extremely efficient and or inefficient. The efficient units are ‘peerless’. Since the envelop is piecewise linear convex set, an extremely efficient DMU represents one of its vertices. If an efficient unit is efficient but not extremely efficient then its efficiency rating is unity. The input and output representation of such a unit belongs to the envelop, but it cannot represent a vertex. Two or more extremely efficient decision making units are its peers. For such DMU efficiency rating emerges to be unity and all input and output slacks are found vanishing.

II. INPUT DISTANCE FUNCTION

In the contest of multiple inputs and multiple output scenarios, Shephard [1] introduced the concept of IDF which is inversely related to Farrell’s input technical efficiency. The IDF is related to input level sets.

\[L(u) = \{ x: x \text{ produces } u \} \]

where \(x \in \mathbb{R}^m_+ \) and \(u \in \mathbb{R}^s_+ \)

The structure imposed on \(L(u) \) forces \(L(u) \) to satisfy the following conditions.

1. \(L(0) = \mathbb{R}^m_+ \), every input vector produces null output vector due to inefficiency.
2. \(u_1 \geq u_2 \Rightarrow L(u_1) \subseteq L(u_2) \).
3. \(L(u) \) is closed set,
4. \(\lim_{u \to \infty} L(u) = \varnothing \). No input vector can produce infinite output vector
5. \(L(u) \) is convex set of inputs, if returns to scale are constant, \(L(\lambda \cdot u) = \lambda \cdot L(u), \lambda \geq 1 \)
6. \(L(u) \) satisfies the strong disposability of inputs. No cost is involved in disposing additional inputs due to inefficiency.

Shepard’s IDF is defined as follows:

\[D(u_0, \lambda, \lambda_x) = \left[\min \{ \lambda \cdot \lambda_x \in L(u_0) \} \right]^{-1} = F(u_0, x_0) \]

(i) The IDF is inversely related to the Farrell’s input technical efficiency measure.
(ii) \(D(u_0, \lambda, \lambda_x) \geq 1, D(u_0, \lambda, \lambda_x) = \lambda \cdot D(u_0, x_0) \)

\(u_0 \geq u_2 \Rightarrow D(u_0, x_0) \leq D(u_2, x_0) \)

Revised Manuscript Received on August 22, 2019

Dr B. Venkateswarlu, School of Advanced Science (SAS), Vellore Institute of Technology, Vellore, Tamilnadu

Dr B. Mahaboob, Department of Mathematics, Koneru Lakshmaiah Educational Foundation, Vaddeswaram, Guntur, A.P., INDIA

Dr K.A. Azmath, Department of Mathematics, Sri Vidyanikethan Engineering College, Tirupati, Andhra Pradesh

Dr C. Narayana, Mathematics Department, Sri Harsha institute of P.G Studies, Nellore

C. Muralidaran, School of Advanced Science (SAS), Vellore Institute of Technology, Vellore, Tamilnadu

Email id: murailidaran.c@vit.ac.in

DOI: 10.35940/ijeat.F7931.088619

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-8 Issue-6, August, 2019

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication
Let \(u_0 \geq u_1, x_0 \in L(u_0) \Rightarrow x \) produces \(u_0 \)
Where \(x_0 \) can also produce every output vector smaller than \(u_0 \) \(\Rightarrow x \) produces \(u_1 \)
\[x \in L(u_0) \Rightarrow x \in L(u_1), \quad L(u_0) \subseteq L(u_1) \]
Min \(\{ \lambda : \lambda x_0 \in L(u_1) \} \geq \min \{ \lambda : \lambda x_0 \in L(u_1) \} \]
\[D(u_0, x_0) \geq D(u_0, x_1) \]

(iii) A DMU \(D \) is extremely efficient, if \(\hat{\lambda} = \min \lambda = 1 \), not all the slacks vanish.

(iii) A DMU \(D \) is inefficient, if \(\hat{\lambda} = \min \lambda < 1 \), if I denote the index set of the DMUs, then I = E U E^* U F U N

Where E: Index set of extremely efficient DMUs
E^*: Index set of efficient but not extremely efficient DMUs
F: Index set of weakly efficient DMUs and N: Index set of inefficient DMUs.

III. THE EFFICIENT OF A DMU

The convexity constraint \(\sum_{j=1}^{n} \lambda_j = 1 \) models variable returns to scale. BCC formulated a DEA model, which is input oriented under the axioms of inefficiency, ray unboundedness and minimum extrapolation.

The LP model admits constant return to scale.

\[\hat{\lambda} = \min \lambda \]

Subject to \(\hat{\lambda} x_1 + \hat{\lambda}_2 x_2 + \ldots + \hat{\lambda}_n x_n \leq \hat{\lambda} x_0 \)
\[\hat{\lambda}_1 y_{11} + \hat{\lambda}_2 y_{22} + \ldots + \hat{\lambda}_n y_{nn} \leq \hat{\lambda} y_{r0} \]

Where \(\hat{\lambda}_j \) are non-negative.

The final solution of (3.1) leads to an optimal solution for which,

(i) \(\sum_{j=1}^{n} \hat{\lambda}_j = 1 \Rightarrow \) Constant returns to scale

(ii) \(\sum_{j=1}^{n} \hat{\lambda}_j \geq 1 \Rightarrow \) Non-increasing returns to scale

(iii) \(\sum_{j=1}^{n} \hat{\lambda}_j \leq 1 \Rightarrow \) Non-decreasing returns to scale.
The decision making units A and E are with week efficiency. G is a decision making unit without efficiency. Identifying weak efficient as inefficiency, (2.1) can be reformulated as,

\[\lambda' = \min \{ \lambda : \lambda X_0 \in L_k(u_0) \} \]

subject to

\[\sum_{j=1}^{n} \lambda_j x_j + \epsilon_j = \lambda x_m, \quad i = 1, 2, \ldots, m \]

\[\sum_{j=1}^{s} \lambda_j y_j - \epsilon_j = y_r, \quad r = 1, 2, \ldots, s \]

\[\sum_{j=1}^{k} \lambda_j = 1, \lambda_j \geq 0 \]

(3.2)

In the case of weak efficiency, we have, 1 - \left(s_1^i + s_2^i + \ldots + s_m^i \right) \left(s_1^v + s_2^v + \ldots + s_s^v \right) is less than unity. Since in the case of weak efficiency at least one slack emerges with a non-zero value, the input level sets \(L^l(u_0) \) and \(L^r(u_0) \) admit respectively constant, variable returns to scale.

\(L^l(u_0) \leq L^r(u_0) \)

To achieve pure technical efficiency, the producer should operate at Q; its input pure technical efficiency is,

\[D^p(u_0, x_0) = \frac{OP}{OQ} = [\min \{ \lambda : \lambda x_0 \in L^k(u_0) \}]^{-1} \]

To achieve scale efficiency as well as technical efficiency the DMU shall operates at R.

\[D^s(u_r, x_r) = \frac{OP}{OQ} = [\min \{ \lambda : \lambda x_r \in L^k(u_r) \}] \]

\[D^s(u_r, x_r) \geq D^p(u_r, x_r) \]

\[[D^s(u_r, x_r)]^{-1} \leq [D^p(u_r, x_r)]^{-1} \]

In data envelopment analysis the nature of returns to scale can be inferred. But we cannot quantify the returns to scale.

For DMU E returns to scale are constant

\[D^k(x_0, u_0) = D^{NI}(x_0, u_0) = D^I(x_0, u_0) \]

To classify returns to scale of a DMU, we compute,

\[D^I(u_0, x_0) \quad D^{NI}(u_0, x_0) \quad \text{and} \quad D^k(u_0, x_0) \]

If (i) \(D^I(x_0, u_0) > D^{NI}(x_0, u_0) \), RTS are increasing

(ii) \(D^I(x_0, u_0) \geq D^k(x_0, u_0) \), RTS are decreasing

(iii) \(D^I(x_0, u_0) < D^k(x_0, u_0) \)

\[D^{NI}(u_0, x_0) = D^I(u_0, x_0) \]

Fig (3.5)
An Application of Linear Programming in the Estimation of Technical Efficiency of DMU

\[D^k(u_0, x_0) \]

RTS are constant

IV. CONCLUSION

In the above research paper LPPs are formulated to estimate the technical efficiency of a DMU and the pure technical and scale efficiency are achieved. The expressions by which the returns to scale of a DMU are classified are proposed. In addition to these the concept of input distance function is defined and its properties are discussed.

REFERENCES

1. Shepherd R.W (1970) “The Theory of Cost and Production Function”, Princeton University Press, Princeton.
2. Barbara A Mark, Bland Jones and Lisa Lindley (2009), “An Examination of Technical Efficiency, Quality and Patient Safety in Acute Care Nursing Units”, Policy Poit Nurs Pract, Pp.180-186, doi: 10.1177/1527154409346322.
3. S. Nuti, C Darao and M Vainieri (2011), “Relationships between technical efficiency and the quality and costs of health care in Italy, International journal for Quality in Health Care, Pp. 324-330.
4. Gahe Zing Samuel Yannik, Zhao Hongzhong, Belinga Thierry (2016), “Technical efficiency assessment using data envelopment analysis: An application to the banking sector of Cate d’ in 12th international journal strategic Management Conference, ISMC-2016, Antalya, Turkey.
5. Smita Verma, Ankit Kumavat and Anita Biswas (2015), ‘Measurement of Technical Efficiency using DEA: A case of Indian Textile Industry’, ICAESAM, LONDON (UK).
6. Fare, M J.(1957), “The Measurement of Productive efficiency”, Journal of Royal Statistical Society, Series-A, 120, 253-290.
7. Banker Rajiv D, Charness A, Cooper W.W. (1984) “Some Models for Estimation Technical and Scale Inefficiencies in Data Envelopment Analysis”, Management Science 30, 1078-1092.
8. Timmer, C P.(1971), “Using a Probabilistic Frontier Production Function to Measure Technical Efficiency”, Journal of Political Economy, 79, 776-794.
9. Green, W H.(1980) “Maximum likelihood Estimation of Econometric Frontier Functions”, Journal of Econometrics, Vol. (13). pp. 21-56.
10. Kalirajan, K (1985), “On measuring Absolute Technical and Allocative efficiencies”, Sankhya, Series-B, Vol. (47), pp. 385-400.
11. B. Venkateswarlu, T. Subramanyam (2015), “Efficiency Evaluation of Total Manufacturing Sectors of India-DEA Approach”, Global journal of Pure and Applied Mathematics, Vol. (11), Pp. 3145-3155.
12. B. Venkateswarlu, C.S Reddy, T. Subramanyam (2009), “Assurance region efficiency of Total manufacturing sectors of Indian States”, Asian journal of Economics and Econometrics, Vol. 9, pp.75-84.
13. Charness A., Cooper W.W and Rhodes E. (1981) “Evaluating Programme and Managerial Efficiency: An Application of Data Envelopment Analysis to Programme follow Through “Management Science 27, 688-697.
14. Fare, R.C. (1978), “Measuring the Technical Efficiency of Production”, Journal of Economic Theory, 19, 150-162.
15. Fare, R., Grosskoff, S. and Lovell, C.A.K. (1985), "The Measurement of Efficiency Production", Kluwer Nijhoff Publishing, Boston.
16. Fare, R.C. Grosskoff, S., Norris, M., and Zang Z. (1995), “Productivity Growth, Technical Progress and Efficiency change in Industrialized Countries”, American Economic Review, 84, 64-83.

AUTHORS PROFILE

Dr.B.Venkateswarlu has been working as Senior Assistant professor in the Department of Mathematics. He has been working as Associate professor in the Department of Mathematics, Koneru Lakshmiah Education Foundation Deemed to be University, Vaddeswaram, Guntur dist, A.P for 2 years. He completed his Ph.D. from Sri Venkateswara University in 2016, Tirupati, A.P, India. He stood as university Gold Medalist in his post-graduation (M.Sc. Mathematics) during the academic year 1996-1998. He has published 25 research articles in reputed international journals. His areas of research are Nonlinear Regression Models, Stochastic models, Econometric models and Operations Research. His total experience in teaching is 21 years.

Dr.K.A.Ajmath is also discharging duties as Student Welfare Officer for Sree Vidyanikethan Educational Institutions. Dr.K.A.Ajmath published a number of research papers in the field of cryptography in prestigious national and international journals.