MULTILINEAR HARDY-CESÀRO OPERATOR AND
COMMUTATOR ON THE PRODUCT OF MORREY-HERZ
SPACES

NGUYEN MINH CHUONG, NGUYEN THI HONG, AND HA DUY HUNG

ABSTRACT. We obtain sufficient and necessary conditions on weight functions $s_1(t), \ldots, s_m(t)$ and $\psi(t)$ so that the weighted multilinear Hardy-Cesàro operator

$$(f_1, \ldots, f_m) \mapsto \int_{[0,1]^n} \left(\prod_{k=1}^{n} f_k(s_k(t)x) \right) \psi(t) dt$$

is bounded from $\dot{K}^{0,\alpha_1, p_1}(\omega_1) \times \cdots \times \dot{K}^{0,\alpha_m, p_m}(\omega_m)$ to $\dot{K}^{0,\alpha}(\omega)$ and from $MK^{0,\lambda_1}(\omega_1) \times \cdots \times MK^{0,\lambda_m}(\omega_m)$ to $MK^{0,\lambda}(\omega)$. The sharp bounds are also obtained and these results hold for both cases $0 < p < 1$ and $1 \leq p < \infty$. We give a sufficient condition so that if symbols b_1, \ldots, b_m are Lipschitz, then the commutator of the weighted Hardy-Cesàro operator

$$(f_1, \ldots, f_m) \mapsto \int_{[0,1]^n} \left(\prod_{k=1}^{m} f_k(s_k(t)x) \right) \left(\prod_{k=1}^{m} (b_k(x) - b_k(s_k(t)x)) \right) \psi(t) dt$$

is bounded from $\dot{M} \dot{K}^{0,\alpha_1, \lambda_1}(\omega_1) \times \cdots \times \dot{M} \dot{K}^{0,\alpha_m, \lambda_m}(\omega_m)$ to $\dot{M} \dot{K}^{0,\lambda}(\omega)$ for both cases $0 < p < 1$ and $1 \leq p < \infty$. By these we extend and strengthen previous results due to Tang, Xue, and Zhou [16].

1. INTRODUCTION

Let $\psi : (0, 1] \to \mathbb{R}_{\geq 0}$ then the weighted Hardy-Littlewood average operator U_ψ is defined as the following

$$(1.1) \quad U_\psi f(x) = \int_{0}^{1} f(tx) \psi(t) dt, \quad x \in \mathbb{R}^d.$$
In 2001, J. Xiao \[14\] obtained an interesting result that U_ψ is bounded on $L^p(\mathbb{R}^d)$, with $1 < p < \infty$, if and only if

\begin{equation}
\int_0^1 t^{-d/p} \psi(t) dt < \infty.
\end{equation}

Moreover, the corresponding operator norm is

\begin{equation}
\|U_\psi\|_{L^p} = \int_0^1 t^{-d/p} \psi(t) dt.
\end{equation}

In case $\psi \equiv 1$, U_ψ reduces to the classical Hardy operator S, where

$$Sf(x) = \frac{1}{x} \int_0^x f(t) dt.$$

Thus Xiao’s result reduces the classical Hardy’s integral inequality: if $f \geq 0$, $1 < p < \infty$ then

$$\int_0^\infty \left(\frac{1}{x} \int_0^x f(t) dt \right)^p dx \leq \left(\frac{p}{p-1} \right)^p \int_0^\infty f(x)^p dx,$$

and the constant $\left(\frac{p}{p-1} \right)^p$ is the best possible.

Xiao’s results has been followed by a vast amount of research geared towards understanding the weighted Hardy-Littlewood average operators U_ψ, see for examples \[1, 5, 6, 8, 7, 9, 13, 16\] and the references therein. These includes the work of Chuong and Hung in \[1\], where they introduced a class of integral transforms as follows.

Definition 1.1. Let $\psi : [0, 1] \rightarrow [0, \infty)$, $s : [0, 1] \rightarrow \mathbb{R}$ be measurable functions. The weighted Hardy-Cesàro operator $U_{\psi,s}$, associated to the parameter curve $s(x,t) := s(t)x$, is defined by

\begin{equation}
U_{\psi,s} f(x) = \int_0^1 f(s(t)x) \psi(t) dt,
\end{equation}

for all measurable complex valued functions f on \mathbb{R}^d.

It turns out that such operators are still keeping almost all nice properties as the weighted Hardy-Littlewood average operators. With certain conditions on functions s and ω, the authors \[1\] proved $U_{\psi,s}$ is bounded on weighted Lebesgue spaces and weighted BMO spaces. The corresponding operator norms are worked out too. The authors also give a necessary condition on the
weight function ψ, for the boundedness of the commutators of operator $U_{\psi,s}$ on weighted Lebesgue spaces and BMO spaces, with homogeneous weights.

Recently, Hung and Ky \cite{11} introduced the weighted multilinear Hardy-Cesàro operator which was defined as following

Definition 1.2. Let $m,n \in \mathbb{N}$, $\psi : [0,1]^n \to [0,\infty)$, $s_1,\ldots,s_m : [0,1]^n \to \mathbb{R}$ be measurable functions. Given $f_1,\ldots,f_m : \mathbb{R}^d \to \mathbb{C}$ be measurable functions. The weighted multilinear Hardy-Cesàro operator $U_{\psi,\vec{s}}^{m,n}$, is defined by

$$U_{\psi,\vec{s}}^{m,n}(f_1,\ldots,f_m)(x) = \int_{[0,1]^n} \left(\prod_{k=1}^{n} f_k(s_k(t)x) \right) \psi(t) dt,$$

where $\vec{s} = (s_1,\ldots,s_m)$.

When $s_k(t) \equiv t$, and $m = n$, $U_{\psi,\vec{s}}^{m,n}$ turns to H_{ψ}^m which was introduced by Fu et al. \cite{4}. In \cite{11}, the authors obtain the sharp bounds of $U_{\psi,\vec{s}}^{m,n}$ on the product of Lebesgue spaces and central Morrey spaces. More details, under certain conditions, they proved that $U_{\psi,\vec{s}}^{m,n}$ is bounded from $L_{\omega_1}^p(\mathbb{R}^d) \times \cdots \times L_{\omega_m}^p(\mathbb{R}^d)$ to $L_p^\infty(\mathbb{R}^d)$ if and only if

$$A = \int_{[0,1]^n} \left(\prod_{i=1}^{m} |s_i(t)|^{-\frac{d}{p}+\gamma_i} \right) \psi(t) dt < \infty.$$

Furthermore,

$$\left\| U_{\psi,\vec{s}}^{m,n} \right\|_{L_{\omega_1}^p(\mathbb{R}^d) \times \cdots \times L_{\omega_m}^p(\mathbb{R}^d) \to L_p^\infty(\mathbb{R}^d)} = A.$$

They also proved sufficient and necessary conditions of the weighted functions so that the commutators of $U_{\psi,\vec{s}}^{m,n}$ (with symbols in central BMO spaces) are bounded on the product of central Morrey spaces. Their results extends known results obtained by Fu, Gong, Lu and Yuan in \cite{4} and by Chuong, Hung in \cite{11}.

It is well known that Herz and Morrey-Herz spaces are natural generalisations of Lebesgue spaces with power weights (see definitions in Section 2). So it is natural to study the boundedness and bounds of $U_{\psi,\vec{s}}^{m,n}$ on these functional spaces. Such problems for the weighted Hardy-Littlewood average operator U_{ψ} are studied in \cite{10} \cite{13}. Results for the boundedness and bounds of H_{ψ}^m on the product of Morrey-Herz spaces, was recently obtained by Gong, Fu and Ma in \cite{9}. In this paper, we obtain necessary and sufficient conditions for the weighted boundedness of the Hardy-Cesàro operators for the product of Herz and Morrey-Herz spaces. In each cases, the estimates for operator norms are worked out.
On the other hand, recently Tang, Xue, and Zhou [16] find a sufficient condition on weights so that U_ψ is bounded on Morrey-Herz spaces. In this paper we make use of another approach which allows us to obtain a sufficient condition in terms of a finite integrals on ψ and s_1, \ldots, s_m such that $U^{m,n,\vec{b}}_{\psi,\vec{s}}$ (see definition in Section 4) is bounded on the product of Morrey-Herz spaces. When reduce to the case of U_ψ, we will show that our sufficient condition is weaker than one obtained in [16].

Our paper is organized as follows. In Section 2 we give necessary preliminaries on Morrey-Herz spaces and on a class of homogeneous weights. In Section 3, we prove the theorems on the bounds and boundedness of multilinear Hardy-Cesàro operator in the product of Morrey-Herz spaces. In Section 4, we give a sufficient condition on weights such that the commutator of $U^{m,n}_{\psi,\vec{s}}$, with symbols are Lipschitz, is bounded on the product of Morrey-Herz spaces.

2. Preliminaries

Throughout this paper $\omega(x)$ will denote a nonnegative measurable function on \mathbb{R}^d, and $L^q_\omega(\mathbb{R}^d)$ be the space of all measurable functions f such that

$$\|f\|_{q,\omega} = \left(\int_{\mathbb{R}^d} |f(x)|^q \omega(x) dx\right)^{1/q} < \infty.$$

In the following definitions $\chi_k = \chi_{C_k}$; $C_k = B_k \setminus B_{k-1}$ and $B_k = \{x \in \mathbb{R}^d : |x| \leq 2^k\}$, for $k \in \mathbb{Z}$, where χ_E is the characteristic function of a set E.

Definition 2.1. Let $\alpha \in \mathbb{R}$, $0 < p \leq \infty$, $0 < q \leq \infty$. The weighted homogeneous Herz-type space $\dot{K}^\alpha_{q,p}(\omega)$ is defined by

$$\dot{K}^\alpha_{q,p}(\omega) = \{ f \in L^q_{\text{loc}}(\mathbb{R}^d \setminus \{0\}, \omega) : \|f\|_{\dot{K}^\alpha_{q,p}(\omega)} < \infty\},$$

where

$$\|f\|_{\dot{K}^\alpha_{q,p}(\omega)} = \left(\sum_{k=-\infty}^{\infty} 2^{k\alpha p} \|f \chi_k\|^p_{q,\omega}\right)^{1/p}.$$

(The usual modifications are made when $p = \infty$ and/or $q = \infty$.)

Definition 2.2. Let $\alpha \in \mathbb{R}$, $0 < p \leq \infty$, $0 < q \leq \infty$, $\lambda \geq 0$ and ω be non-negative weighted function. The homogeneous weighted Morrey-Herz-type space $M\dot{K}^\alpha_{p,q}(\omega)$ is defined by

$$M\dot{K}^\alpha_{p,q}(\omega) = \{ f \in L^q_{\text{loc}}(\mathbb{R}^d \setminus \{0\}, \omega) : \|f\|_{M\dot{K}^\alpha_{p,q}(\omega)} < \infty\},$$
where
\[
\|f\|_{M\dot{K}^{\alpha,\lambda}_{p,q}(\omega)} = \sup_{k_0 \in \mathbb{Z}} 2^{-k_0\lambda} \left\{ \sum_{k = -\infty}^{k_0} 2^{k\alpha p} \|f\chi_k\|_{L^p_{q,\omega}}^p \right\}^{1/p},
\]
with the usual modifications made when \(p = \infty \) or \(q = \infty \).

If \(\omega \equiv 1 \), then we denote \(\dot{K}^{\alpha,p}_{q}(\omega) \) and \(\dot{M}\dot{K}^{\alpha,\lambda}_{p,q}(\omega) \) respectively by \(\dot{K}^{\alpha,p}_{\mathbb{R}^d} \) and \(\dot{M}\dot{K}^{\alpha,\lambda}_{\mathbb{R}^d} \), which are standard Herz spaces. Obviously, \(\dot{K}^{0,p}_{\mathbb{R}^d} = L^p(\mathbb{R}^d) \) for \(0 < p \leq \infty \); \(\dot{K}^{\alpha,p}_{\mathbb{R}^d} = \dot{M}\dot{K}^{\alpha,0}_{p,q}(\mathbb{R}^d) \), so the special cases of Morrey-Herz spaces are Herz spaces.

We would like to recall the definition of the class of homogeneous weights introduced by [1].

Definition 2.3. Let \(\gamma \) be a real number. Let \(\mathcal{W}_\gamma \) be the set of all functions \(\omega \) on \(\mathbb{R}^d \), which are measurable, \(\omega(x) > 0 \) for almost everywhere \(x \in \mathbb{R}^d \), \(\int_{S_d} \omega(y) \sigma(y) < \infty \), and are absolutely homogeneous of degree \(\gamma \), that is \(\omega(tx) = |t|^\gamma \omega(x) \), for all \(t \in \mathbb{R} \setminus \{0\}, x \in \mathbb{R}^d \).

We remark that \(\mathcal{W} = \bigcup \mathcal{W}_\gamma \) contains strictly the set of power weights \(\omega(x) = |x|^\gamma \). For further discussions, we refer to [1].

Throughout the whole paper, \(S_d = \{ x \in \mathbb{R}^d : |x| = 1 \} \) and we also denote \(S_d = \frac{2\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}\right)} \). By \(\omega \) we will denote a weight from \(\mathcal{W}_\gamma \), where \(\gamma > -d \). We also denote by \(\psi \) a nonnegative and measurable function on \([0,1]^n \).

Definition 2.4. Suppose that \(0 < \beta < 1 \), the Lipschitz space \(\text{Lip}^\beta(\mathbb{R}^n) \) is defined as the set of all functions \(f : \mathbb{R}^n \rightarrow \mathbb{C} \) such that
\[
\|f\|_{\text{Lip}^\beta(\mathbb{R}^n)} := \sup_{x,y \in \mathbb{R}^n, x \neq y} \frac{|f(x) - f(y)|}{|x - y|^\beta} < \infty.
\]

If \((X, \| \cdot \|), (X_1, \| \cdot \|_1), \ldots, (X_m, \| \cdot \|_m)\) are normed spaces and \(T \) is a sublinear operator \(T : X_1 \times \cdots \times X_m \rightarrow X \) then we set
\[
\|T\|_{X_1 \times \cdots \times X_m \rightarrow X} = \sup_{\|x_1\|_1 \leq 1, \ldots, \|x_m\|_m \leq 1} \|T(x_1, \ldots, x_m)\|.
\]

3. Boundedness of \(\mathbf{U}_{\psi,\vec{s}}^{m,n} \) on the Product of Herz and Morrey-Herz Spaces

In this section we will state and prove the results on the boundedness and bounds of the multilinear Hardy-Cesàro operators on the product of Herz spaces.
spaces and Morrey-Herz spaces. Before state our main results, let us intro-
duction some notations.

Throughout this section, $\beta > 0, \gamma, \alpha, \alpha_1, \ldots, \alpha_m$ are real numbers, $\gamma_1, \ldots, \gamma_m > -d$, $0 < p < \infty$, $1 \leq q < \infty$, $1 \leq p_i, q_i < \infty$ for $i = 1, \ldots, m$ and
$\lambda, \lambda_1, \ldots, \lambda_m \geq 0$. All such constants satisfy the following relations

$$\alpha_1 + \alpha_2 + \cdots + \alpha_m = \alpha,$$
$$\frac{1}{p_1} + \frac{1}{p_2} + \cdots + \frac{1}{p_m} = \frac{1}{p},$$
$$\frac{1}{q_1} + \frac{1}{q_2} + \cdots + \frac{1}{q_m} = \frac{1}{q},$$
$$\frac{\gamma_1}{q_1} + \frac{\gamma_2}{q_2} + \cdots + \frac{\gamma_m}{q_m} = \gamma,$$
$$\lambda_1 + \lambda_2 + \cdots + \lambda_m = \lambda.$$

Functions ω_i belong to W_{γ_i} for all $i = 1, \ldots, m$, and we set

$$\omega(x) = \prod_{i=1}^{m} \omega_i^{\frac{\lambda_i}{\lambda}}(x).$$

Obviously that $\omega \in W_{\gamma}$. Such weights ω as defined in (3.1) arise naturally in
the theory of multilinear operators.

The main results in this section are as follows

Theorem 3.1. (i) Let $s_1(t), \ldots, s_m(t) \neq 0$ almost everywhere in $[0, 1]^n$ and

$$\mathcal{A}_1 = \int_{[0, 1]^n} \left(\prod_{i=1}^{m} |s_i(t)|^{-\alpha_i-\frac{d+\gamma_i}{m}+\lambda_i} \right) \psi(t) dt < \infty.$$

Suppose that $1 \leq p < \infty$ or $0 < p < 1$ and at least one of $\lambda_1, \ldots, \lambda_m$ is positive.

Then

$$\|U_{\psi, \mathbf{s}}^{m,n}(f_1, \ldots, f_m)\|_{MK^p,\lambda_m(\omega)} \leq C_{\mathbf{a}, \lambda} \cdot \mathcal{A}_1 \cdot \prod_{i=1}^{m} \|f_i\|_{MK^{p_i,\lambda_i}(\omega_i)}.$$

Here

$$C_{\mathbf{a}, \lambda} = \begin{cases}
\prod_{k=1}^{m} \left(2^{\alpha_k - \lambda_k} + 1 \right) & \text{if } 1 \leq p < \infty \\
\frac{2^{\lambda}}{(2^{\lambda p} - 1)^{1/p}} \prod_{k=1}^{m} \left(2^{\alpha_k - \lambda_k} + 1 \right) & \text{if } 0 < p < 1 \text{ and } \lambda > 0.
\end{cases}$$
Conversely, let $0 < p < \infty$, $0 < \lambda_i < \infty$ for $i = 1, \ldots, m$. Suppose that $U_{\psi, \vec{s}}^{m, n}$ is defined as a bounded operator from $M \hat{K}_{p_1, q_1}^{\alpha (\omega_1)}(\omega_1) \times \cdots \times M \hat{K}_{p_m, q_m}^{\alpha (\omega_m)}(\omega_m)$ to $M \hat{K}_{p, q}^{\alpha (\omega)}(\omega)$. Then we have that (3.1) holds and

$$
\begin{align*}
\|U_{\psi, \vec{s}}^{m, n}\|_{M \hat{K}_{p_1, q_1}^{\alpha (\omega_1)}(\omega_1) \times \cdots \times M \hat{K}_{p_m, q_m}^{\alpha (\omega_m)}(\omega_m)} & \geq A_1 \cdot D_{\vec{a}, \vec{s}}, \\
\text{where} \\
D_{\vec{a}, \vec{s}} & = \frac{\prod_{i=1}^{m} (2^{\lambda_i p_i} - 1)^{1/p_i}}{(2^p - 1)^{1/p}} \cdot \frac{(1 - (2^{\lambda_i - \alpha_i})^{1/q_i}}{\prod_{i=1}^{m} (1 - 2^{\lambda_i - \alpha_i})^{1/q_i}} \cdot \frac{\prod_{i=1}^{m} (q_i (\lambda_i - \alpha_i))^{1/q_i}}{\prod_{i=1}^{m} (q_i (\lambda - \alpha_i))^{1/q_i}} \cdot \frac{(\omega(S))^{1/q}}{\prod_{i=1}^{m} (\omega_i(S))^{1/q_i}}.
\end{align*}
$$

Theorem 3.2. (i) If $1 \leq p < \infty$, $s_1(t), \ldots, s_m(t) \neq 0$ almost everywhere in $[0, 1]^{n}$ and

$$
\begin{align*}
A_2 & = \int_{[0, 1]^{n}} \left(\prod_{i=1}^{m} |s_i(t)| \cdot \frac{d\gamma_i}{m} - \alpha_i \right) \psi(t) dt < \infty,
\end{align*}
$$

then

$$
\begin{align*}
\|U_{\psi, \vec{s}}^{m, n}(f_1, \ldots, f_m)\|_{K_{q_1}^{\alpha, p}((\omega_1))} & \leq A_2 \cdot \prod_{k=1}^{m} (2^{\alpha_k} + 1) \cdot \prod_{i=1}^{m} \|f_i\|_{K_{q_i}^{\alpha, p_1}(\omega_i)}.
\end{align*}
$$

(ii) Let assume that $|s_i(t_1, \ldots, t_m)| \geq \min\{t_1^\beta, \ldots, t_m^\beta\}$ for $i = 1, \ldots, m$ and $U_{\psi, \vec{s}}^{m, n}$ is bounded from $K_{q_1}^{\alpha, p_1}(\omega_1) \times \cdots \times K_{q_m}^{\alpha, p_m}(\omega_m)$ to $K_{q, p}^{\alpha}(\omega)$. Then (3.3) holds and

$$
\begin{align*}
\|U_{\psi, \vec{s}}^{m, n}\|_{K_{q_1}^{\alpha, p_1}(\omega_1) \times \cdots \times K_{q_m}^{\alpha, p_m}(\omega_m)} & \geq A_2 \cdot E_{\vec{a}}.
\end{align*}
$$

Where

$$
\begin{align*}
E_{\vec{a}} & = \frac{(mp)^{1/p}}{\prod_{i=1}^{m} p_i^{1/p_i}} \cdot \left(\frac{2^{q_\alpha} - 1}{q_\alpha} \right)^{1/q} \cdot \prod_{i=1}^{m} \left(\frac{q_i \alpha_i}{2^{q_i \alpha_i} - 1} \right)^{1/q_i} \cdot \frac{(\omega(S))^{1/q}}{\prod_{i=1}^{m} (\omega_i(S))^{1/q_i}}.
\end{align*}
$$

When $\alpha_1 = \cdots = \alpha_m = 0$ we obtain the boundedness and bounds for multilinear Hardy-Cesàro operator on the product Lebesgue spaces. However, the results are worse than those obtained in [11]. In fact, Hung and Ky [11] Theorem 3.1] proved that the norm of $U_{\psi, \vec{s}}^{m, n}$ from $L_{p_1}^{\alpha_1} \times \cdots \times L_{p_m}^{\alpha_m}$ to L_{p}^{α} is exactly $\int_{[0, 1]^{n}} \left(\prod_{i=1}^{m} |s_i(t)| \cdot \frac{d\gamma_i}{m} - \alpha_i \right) \psi(t) dt$.

Proof of Theorem 3.4. Suppose that $s_1(t), \ldots, s_m(t) \neq 0$ a.e $t \in [0, 1]^{n}$ such that (3.1) holds. Fix an $k \in \mathbb{Z}$ and consider functions $f_i \in M \hat{K}_{p_i, q_i}^{\alpha_i (\omega_i)}$ for $i = 1, \ldots, m$. By Hölder, Minkowski inequalities

$$
\|U_{\psi, \vec{s}}^{m, n}(f_1, \ldots, f_m)\|_{q, \omega} \leq A_2 \cdot E_{\vec{a}}.
$$
For each t such that $|s_1(t)\cdots s_m(t)| > 0$, there exists integer numbers ℓ_1, \ldots, ℓ_m such that $2^{\ell_i-1} < |s_i(t)| \leq 2^{\ell_i}$ for $i = 1, \ldots, m$. After setting $\psi_\ell(t) = \left(\prod_{i=1}^{m} |s_i(t)|^{-\frac{d+\gamma}{q_i}}\right) \psi(t)$, we have that
\[
\|U_{\psi,\bar{s}}^m(f_1, \ldots, f_m)\chi_k\|_{q,\omega} \leq \int \prod_{i=1}^{m} \left(\int_{C_k+\ell_i-1}^{C_k+\ell_i} |f_i(x)|^{q_i} \omega_i(x) dx \right)^{1/q_i} \psi_\ell(t) dt.
\]
Thus,
\[
(3.8)
\]
\[
\|U_{\psi,\bar{s}}^m(f_1, \ldots, f_m)\chi_k\|_{q,\omega} \leq \int \prod_{i=1}^{m} (\|f_i\chi_{k+\ell_i-1}\|_{q_i,\omega_i} + \|f_i\chi_{k+\ell_i}\|_{q_i,\omega_i}) \psi_\ell(t) dt.
\]
Now we consider the following cases:

Case 1: Suppose that $1 \leq p < \infty$. To estimate the norm of $U_{\psi,\bar{s}}^m(f_1, \ldots, f_m)$ in $MK^{\alpha,\lambda}_{p,q}(\omega)$ space, we shall require the Minkowski integral inequality in the following form.

Lemma 3.1. Let $p \geq 1$ and $(f_k)_{k \geq 1}$ be nonnegative and measurable functions on $[0, 1]^n$. Then
\[
\sum_{k=1}^{\infty} \left(\int_{[0,1]^n} f_k(t) dt \right)^p \leq \left(\int_{[0,1]^n} \left(\sum_{k=1}^{\infty} f_k^p(t) \right)^{1/p} dt \right)^p.
\]
Since the proof of Lemma 3.1 is straightforward by using the characterization of $\|\cdot\|_{p}$-norm, it is left to the reader. Consequently, by the definition of $U_{m,n}^{\psi,\overline{\psi}}$, Hölder's inequality, Lemma 3.1 and (3.3) one has

$$
\|U_{m,n}^{\psi,\overline{\psi}}(f_1, \ldots, f_m)\|_{MK_{p,q}^{\alpha,\lambda}(\omega)} \leq \sup_{k_0 \in \mathbb{Z}} 2^{-k_0\lambda} \left(\sum_{k=-\infty}^{k_0} 2^{k\alpha} \left(\int_{[0,1]^n} \left(\sum_{\ell_0}^{\ell_i} \left(\int_{q_i,\omega_i} \|f_i\|^{p_i} \psi(t) dt \right)^{p_i} \right) dt \right)^{1/p} \right) \left(\sum_{k=-\infty}^{k_0} 2^{k\alpha} \left(\int_{[0,1]^n} \left(\sum_{\ell_0}^{\ell_i} \left(\int_{q_i,\omega_i} \|f_i\|^{p_i} \psi(t) dt \right)^{p_i} \right) dt \right)^{1/p} \right)
$$

$$
\leq \sup_{k_0 \in \mathbb{Z}} 2^{-k_0\lambda} \left(\sum_{k=-\infty}^{k_0} 2^{k\alpha} \left(\int_{[0,1]^n} \left(\sum_{\ell_0}^{\ell_i} \left(\int_{q_i,\omega_i} \|f_i\|^{p_i} \psi(t) dt \right)^{p_i} \right) dt \right)^{1/p} \right) \left(\sum_{k=-\infty}^{k_0} 2^{k\alpha} \left(\int_{[0,1]^n} \left(\sum_{\ell_0}^{\ell_i} \left(\int_{q_i,\omega_i} \|f_i\|^{p_i} \psi(t) dt \right)^{p_i} \right) dt \right)^{1/p} \right)
$$

$$
\leq \sup_{k_0 \in \mathbb{Z}} \left(\sum_{k=-\infty}^{k_0} 2^{k\alpha} \left(\int_{[0,1]^n} \left(\sum_{\ell_0}^{\ell_i} \left(\int_{q_i,\omega_i} \|f_i\|^{p_i} \psi(t) dt \right)^{p_i} \right) dt \right)^{1/p} \right) \left(\sum_{k=-\infty}^{k_0} 2^{k\alpha} \left(\int_{[0,1]^n} \left(\sum_{\ell_0}^{\ell_i} \left(\int_{q_i,\omega_i} \|f_i\|^{p_i} \psi(t) dt \right)^{p_i} \right) dt \right)^{1/p} \right)
$$

$$
\leq \prod_{i=1}^{m} \|f_i\|_{MK_{p_i,q_i}^{\alpha_i,\lambda_i}(\omega_i)} \int_{[0,1]^n} \left(\sum_{\ell_0}^{\ell_i} \left(\int_{q_i,\omega_i} \|f_i\|^{p_i} \psi(t) dt \right)^{p_i} \right) dt
$$

$$
\leq \prod_{i=1}^{m} \left(2^{\alpha_i-\lambda_i} + 1 \right) \prod_{i=1}^{m} \|f_i\|_{MK_{p_i,q_i}^{\alpha_i,\lambda_i}(\omega_i)} \int_{[0,1]^n} \left(\sum_{\ell_0}^{\ell_i} \left(\int_{q_i,\omega_i} \|f_i\|^{p_i} \psi(t) dt \right)^{p_i} \right) dt.
$$

Therefore,

$$
\|U_{m,n}^{\psi,\overline{\psi}}(f_1, \ldots, f_m)\|_{MK_{p,q}^{\alpha,\lambda}(\omega)} \leq C_{\alpha,\lambda} \cdot A_1 \cdot \prod_{i=1}^{m} \|f_i\|_{MK_{p_i,q_i}^{\alpha_i,\lambda_i}(\omega_i)}.
$$

It means that $U_{m,n}^{\psi,\overline{\psi}}$ is bounded from $MK_{p_i,q_i}^{\alpha_i,\lambda_i}(\omega_i) \times \cdots \times MK_{p_m,q_m}^{\alpha_m,\lambda_m}(\omega_m)$ to $MK_{p,q}^{\alpha,\lambda}(\omega)$ and its norm is not greater than $C_{\alpha,\lambda} \cdot A_1$.

Case 2: Suppose that $0 < p < 1$ and $\lambda_1, \ldots, \lambda_m$ are not equal to zero. We shall need the following lemma.

Lemma 3.2. If $f \in MK_{p,q}^{\alpha,\lambda}(\omega)$ then $\|f\|_{p,q} \leq 2^{\alpha-\lambda} \|f\|_{MK_{p,q}^{\alpha,\lambda}(\omega)}$.

The proof of Lemma 3.2 follows directly from Definition 2.2 thus we omit it here. By 3.9 and Lemma 3.2, we have
\[
\|U_{\psi,\widetilde{s}}^{m,n}(f_1, \ldots, f_m)\|_{M_{K_{p,q}}^{\alpha,\lambda}(\omega)} \\
\leq \sup_{k_0 \in \mathbb{Z}} 2^{-k_0 \lambda} \left(\sum_{k=-\infty}^{k_0} 2^{kp} \left(\int_{[0,1]^n} \prod_{i=1}^{m} \left(\|f_i x^{\ell_i} - \alpha_i\|_{q_i,\omega_i} + \|f_i x^{\ell_i} - \alpha_i\|_{q_i,\omega_i} \psi(t) dt \right) \right)^p \right)^{1/p}
\]
\[
\leq \sup_{k_0 \in \mathbb{Z}} 2^{-k_0 \lambda} \left(\sum_{k=-\infty}^{k_0} 2^{kp} \left(\int_{[0,1]^n} \prod_{i=1}^{m} \left(2^{(k+\ell_i-1)(\lambda_i - \alpha_i)} + 2^{(k+\ell_i)(\lambda_i - \alpha_i)} \right) \|f_i \|_{M_{K_{p,q}}^{\alpha,\lambda}(\omega_i)} \psi(t) dt \right) \right)^p \leq \left(\sum_{k=-\infty}^{k_0} 2^{(k-k_0)\lambda p} \right)^{1/p}.
\]
We here remind that \(\lambda = \lambda_1 + \cdots + \lambda_m \) and \(\alpha = \alpha_1 + \cdots + \alpha_m \). Since \(\lambda > 0 \), the series \(\sum_{k=-\infty}^{k_0} 2^{(k-k_0)\lambda p} \) is convergent and its sum is \(\frac{2\lambda p}{2\lambda p - 1} \). Therefore
\[
\|U_{\psi,\widetilde{s}}^{m,n}(f_1, \ldots, f_m)\|_{M_{K_{p,q}}^{\alpha,\lambda}(\omega)} \leq C_{\alpha,\lambda} \cdot A_1 \cdot \left(\prod_{i=1}^{m} \|f_i \|_{M_{K_{p,q}}^{\alpha,\lambda}(\omega_i)} \right),
\]
as desired.

Now, we assume that \(U_{\psi,\widetilde{s}}^{m,n} \) is defined as a bounded operator from \(M_{K_{p,q}}^{\alpha,\lambda}(\omega_1) \times \cdots \times M_{K_{p,q}}^{\alpha,\lambda}(\omega_m) \) to \(M_{K_{p,q}}^{\alpha,\lambda}(\omega) \). Hence,
\[
(3.9)
\]
\[
\|U_{\psi,\widetilde{s}}^{m,n}(f_1, \ldots, f_m)\|_{M_{K_{p,q}}^{\alpha,\lambda}(\omega)} \leq \|U_{\psi,\widetilde{s}}^{m,n}\|_{M_{K_{p,q}}^{\alpha,\lambda}(\omega_1) \times \cdots \times M_{K_{p,q}}^{\alpha,\lambda}(\omega_m)} \|f_i \|_{M_{K_{p,q}}^{\alpha,\lambda}(\omega)} \prod_{i=1}^{m} \|f_i \|_{M_{K_{p,q}}^{\alpha,\lambda}(\omega_i)}.
\]
For each \(i = 1, \ldots, m \) we set
\[
(3.10) \quad f_i(x) = |x|^{-\alpha_i - \frac{d+\lambda_i}{q_i} + \lambda_i}.
\]
Then, it is not hard to see that
\[
(3.11) \quad \|f_i \|_{M_{K_{p,q}}^{\alpha,\lambda}(\omega)} = \frac{2^{\lambda_i}}{(2^{\lambda p_i} - 1)^{1/p_i} \cdot \left(\frac{1 - 2^{-q_i(\lambda_i - \alpha_i)}}{q_i(\lambda_i - \alpha_i)} \right)^{1/q_i} \cdot (\omega_i(S_d))^{1/q_i}},
\]
and
\[
U_{\psi,\widetilde{s}}^{m,n}(f_1, \ldots, f_m)(x) = |x|^{-\alpha + \lambda - \frac{d+\lambda}{n}} \int_{[0,1]^n} \prod_{i=1}^{m} \left| s_i(t) \right|^{-\alpha_i + \lambda_i - \frac{d+\lambda_i}{q_i}} \psi(t) dt.
\]
This implies that
\[(3.12)\]
\[\|U_{ψ,δ}^{m,n}(f_1, \ldots, f_m)\|_{Mκ^{α,λ}_{p,q}(ω)} = A \cdot \frac{2^{λ}}{(2^{p_i} - 1)^{1/p}} \cdot \left(\frac{1 - 2^{q(λ - α)}}{q(λ - α)} \right)^{1/q} \cdot (ω(S_d))^{1/q}.\]

Therefore, by (3.9), (3.11) and (3.12), we get (3.7). This completes the proof of Theorem 3.1. \(□\)

Proof of Theorem 3.2. Since Morrey-Herz spaces \(Mκ^{α,λ}_{q,ω}(ω)\) reduces to Herz spaces \(Κ^{α,p}_{q,ω}(ω)\), thus part (i) of Theorem 3.2 is a special case of Theorem 3.1 part (i). To prove the second part, we suppose that \(U_{ψ,δ}^{m,n}\) is bounded from \(Κ^{α_{1}p_{1}}_{q_{1},ω_{1}}(ω_{1}) \times \cdots \times Κ^{α_{m}p_{m}}_{q_{m},ω_{m}}(ω_{m})\) to \(Κ^{α,p}_{q,ω}(ω)\). Fix \(0 < ϵ < 1\), for \(i = 1, \ldots, m\) we set
\[f_i(x) = \begin{cases} 0 & \text{if } |x| \leq 1 \\ |x|^{-α_i - \frac{d + γ_i}{q_i} - ϵ} & \text{if } |x| > 1. \end{cases}\]
Then, a simple computation gives \(f_i \in Κ^{α_{i},p_{i}}_{q_{i},ω_i}(ω_i)\) and
\[\|f_i\|_{Κ^{α_{i},p_{i}}_{q_{i},ω_i}(ω_i)} = \frac{1}{(2^{p_i} - 1)^{1/p_i}} \cdot \left(\frac{2^{q(α_i + ϵ)} - 1}{q_i(α_i + ϵ)} \right)^{1/q_i} \cdot (ω_i(S_d))^{1/q_i}.\]

We see that
\[U_{ψ,δ}^{m,n}(f_1, \ldots, f_m)(x) = |x|^{-α - \frac{d + γ_i}{q_i} - ϵ} \cdot \left(\prod_{i=1}^{m} |s_i(t)|^{-α_i - \frac{d + γ_i}{q_i} - ϵ} \cdot ψ(t)dt, \right)\]
here \(E_x\) is the set of \(t \in [0, 1]^n\) such that \(|s_i(t)x| > 1\). By the assumption of the hypothesis, \(|s_i(t_1, \ldots, t_n)| \geq \min\{t_1, \ldots, t_n\}\)\(\beta\), it gives \([1/|x|^{1/β}, 1] \subseteq E_x\) for any \(|x| > 1\). Let \(k_0\) be the smallest integer number such that \(2^{(1-k)/β} < ϵ\) for any \(k \geq k_0\). Then
\[\|U_{ψ,δ}^{m,n}(f_1, \ldots, f_m)\|_{Κ^{α,p}_{q,ω}(ω)}^p \geq \sum_{k=k_0}^{∞} 2^{kp_0} \left(\int_{2^{k-1} \leq |x| \leq 2^k} |x|^{-(α + mc)q - (d + γ_i)} \cdot \left(\int_{[1/|x|^{1/β}, 1]} |s_i(t)|^{-α_i - \frac{d + γ_i}{q_i} - ϵ} \cdot ψ(t)dt \right)^{q/p} \cdot dx \right)^{p/q} \geq \left(\sum_{k=k_0}^{∞} 2^{-kp_0} \cdot \left(\frac{2^{q(α + mc) - 1}}{q(α + mc)} \right)^{p/q} \cdot (ω(S_d))^{p/q} \cdot \left(\int_{[1/|x|^{1/β}, 1]} |s_i(t)|^{-α_i - \frac{d + γ_i}{q_i} - ϵ} \cdot ψ(t)dt \right)^{p/q} \right).\]

On the other hand
\[\prod_{i=1}^{m} \|f_i\|_{Κ^{α_{i},p_{i}}_{q_{i},ω_i}(ω_i)} = \prod_{i=1}^{m} \left(\frac{1}{(2^{p_i} - 1)^{1/p_i}} \cdot \left(\frac{2^{q(α_i + ϵ)} - 1}{q_i(α_i + ϵ)} \right)^{1/q_i} \cdot (ω_i(S_d))^{1/q_i} \right).\]
Thus, letting $\epsilon \to 0$, by the Lebesgue’s dominated convergence Theorem and the above estimate give (3.5). This completes the proof of Theorem 3.2. □

4. Commutator of weighted multilinear Hardy-Cesàro operator

In 1976, a famous result of Coifman, Rochberg and Weiss [3] stated that if $b \in BMO(\mathbb{R}^d)$ then the commutator $[b, T]$ is bounded on $L^p(\mathbb{R}^d)$ for every $p \in (1, \infty)$ and T is a classical Calderón-Zygmund operator. Moreover $BMO(\mathbb{R}^d)$ is the largest space having this property. Similarly to the classical result of Coifman-Rochberg-Weiss, Z.W. Fu, Z.G. Liu and S.Z. Lu [5] proved that if $b \in BMO(\mathbb{R}^d)$ then $[b, U_\psi]$ is bounded on $L^p(\mathbb{R}^d)$ if and only if

$$
\int_0^1 t^{-d/p} \psi(t) \log 2^t dt < \infty.
$$

From conditions (1.4) and (4.1), we observe that the commutator $[b, U_\psi]$ is more singular than U_ψ. Such results were extended by Z. Fu, S. Lu [8] to Morrey spaces, by N.M. Chuong, H.D. Hung [1] in case T is Hardy-Cesàro operators. In [11], H.D. Hung and L.D. Ky obtained sufficient and necessary conditions on weight functions so that the commutator of these weighted multilinear Hardy-Cesàro operator (with symbols in central BMO space) are bounded on the product of central Morrey spaces.

Notice that there are several results on commutator for other type of Hardy operators or even for some class of Hausdorff operators (for example see [1, 7, 8, 6, 10, 11] and references therein). But there is only partial such results for the commutator operator $[b, U_\psi]$, with symbols are Lipschitz, in Morrey-Herz space by Tang-Xue-Zhou [16]. In this section, we will improve this result and extend it to the operator $U_{\psi, s}^{m,n}$. At first, let us remind the definition of the multilinear commutator generated by $U_{\psi, s}^{m,n}$.

Definition 4.1. Let $m, n \in \mathbb{N}$, $\psi : [0, 1]^n \to [0, \infty)$, $s_1, \ldots, s_m : [0, 1]^n \to \mathbb{R}$, b_1, \ldots, b_m be locally integrable functions on \mathbb{R}^d and $f_1, \ldots, f_m : \mathbb{R}^d \to \mathbb{C}$ be measurable functions. The commutator of weighted multilinear Hardy-Cesàro operator $U_{\psi, s}^{m,n}$ is defined as

$$
U_{\psi, s}^{m,n} \overrightarrow{b} (f_1, \ldots, f_m) (x) := \int_{[0,1]^n} \left(\prod_{k=1}^m f_k (s_k(t)x) \right) \left(\prod_{k=1}^m (b_k(x) - b_k (s_k(t)x)) \right) \psi(t) dt.
$$

Our main result in this section is as follows.

Theorem 4.1. Let $\alpha_i > -d$, $1 \leq q \leq q_i < \infty$, $0 \leq r_i$, $1 \leq p_i < \infty$, $0 < \beta_i < 1$, $0 < \beta < 1$, $0 \leq \lambda_i$, $\lambda \leq 1$ for $i = 1, \ldots, m$ with $\alpha = \alpha_1 + \cdots + \alpha_m > -d$, $\beta = \beta_1 + \cdots + \beta_m$, $\lambda = \lambda_1 + \cdots + \lambda_m$, $\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m}$, and $\frac{1}{q} = \frac{1}{q_1} + \cdots +$
Suppose that \(b_i \in \text{Lip}^{\beta_i} \) and \(\omega_i \) as in (3.1) for \(i = 1, \ldots, m \). Functions \(s_1(t), \ldots, s_m(t) \neq 0 \) almost everywhere \(t \in [0,1]^n \) such that

\[
\int_{[0,1]^n} \left(\prod_{i=1}^{m} |s_i(t)|^{-\frac{d + \gamma_i}{q_i} + \lambda_i - \alpha_i} |1 - s_i(t)|^{\beta_i} \right) \psi(t) dt < \infty
\]

Then the commutator \(U_{\psi, s}^{m, n, \bar{b}} \) is determined as a bounded operator from \(M^{\dot{K}^{\alpha_1, \lambda_1}_{p_1, q_1}}(\omega_1) \times \cdots \times M^{\dot{K}^{\alpha_m, \lambda_m}_{p_m, q_m}}(\omega_m) \) to \(M^{\dot{K}^{\alpha', \lambda}_{p, q}}(\omega) \) when \(0 < p < 1 \) and \(\lambda > 0 \) or when \(1 \leq p < \infty \) and \(\lambda \geq 0 \). Here

\[
\alpha' = \alpha - \sum_{i=1}^{m} \beta_i - \sum_{i=1}^{m} \frac{d + \gamma_i}{r_i}.
\]

When \(m = n = 1 \), \(\omega_1 = \frac{1}{|\mathbb{Z}|^d} \), \(s_1(t) \equiv t \), let \(U_{\psi}^b = U_{\psi, s}^{1, 1, \bar{b}} \), we obtain the following result.

Corollary 4.1. Let \(\psi : [0; 1] \to [0; \infty) \) be a measurable function, \(0 < \beta < 1 \), \(b \in \text{Lip}^{\beta}(\mathbb{R}^d) \), \(1 \leq q_2 \leq q_1 < \infty \). If

\[
\mathcal{A} = \int_0^1 t^{-\left(\gamma_1 - \lambda - \frac{d}{q_1}\right)} (1 - t) \psi(t) dt < \infty,
\]

then \(U_{\psi}^b \) is bounded from \(M^{\dot{K}^{\alpha_1, \lambda}_{p_1, q_1}} \) to \(M^{\dot{K}^{\alpha_2, \lambda}_{p_2, q_2}} \), where \(\alpha_1 = \alpha_2 + \beta + d \left(\frac{1}{q_2} - \frac{1}{q_1} \right) \).

In [16], to obtain the boundedness of \(U_{\psi}^b \) from \(M^{\dot{K}^{\gamma_1, \lambda}_{p_1, q_1}} \) to \(M^{\dot{K}^{\gamma_2, \lambda}_{p_2, q_2}} \), the authors required a sufficient condition condition on \(\psi \) that

\[
\mathcal{C} = \int_0^1 t^{-\left(\gamma_1 - \lambda - \frac{d}{q_1}\right)} \psi(t) dt < \infty.
\]

Since \(0 \leq t \leq 1 \), then \(\mathcal{A} \leq \mathcal{C} \). In fact by choosing \(\psi(t) = \frac{t}{1-t} \), \(\gamma_1 - \lambda - \frac{d}{q_1} = 1 \) then it is easy to see that \(\mathcal{C} = \infty \) but \(\mathcal{A} < \infty \). Thus our results extend and strengthen results in [16].

Proof of Theorem 4.1. If \(f \) and \(g \) are expressions, we will write \(f \preceq g \) if there is some constant \(C \) such that \(f \leq C g \). To simplify the proof we denote

\[
\mathcal{B} = \prod_{i=1}^{m} \| b_i \|_{\text{Lip}^{\beta_i}},
\]

\[
\tilde{\psi}(t) = \left(\prod_{i=1}^{m} (1 - s_i(t))^{\beta_i} \right) \psi(t),
\]
and
\[\overline{\psi}(t) = \left(\prod_{i=1}^{m} |s_i(t)|^{-\frac{d+\gamma_i}{r_i}} \right) \overline{\psi}(t), \]

For any \(x \in C_k \) and \(b_i \in Lip^{\beta_i} \), it is easy to check that
\[\prod_{i=1}^{m} |b_i(x) - b_i(s_i(t)x)| \leq B \cdot \left(\prod_{i=1}^{m} |s_i(t) - 1|^{\beta_i} \right) \cdot 2^{k(\beta_1 + \cdots + \beta_m)}. \]

Hence,
\[\|U_{\psi}^{m,n,b}(f_1, \ldots, f_m)\chi_k\|_{q,\omega} \]
\[\leq \int_{[0,1]^n} \left(\prod_{i=1}^{m} |f_i(s_i(t)x)|^{q_i} \prod_{i=1}^{m} |b_i(x) - b_i(s_i(t)x)|^{q_i} \right)^{1/q} \omega(x)dx \psi(t)dt \]
\[\leq 2^{k(\beta_1 + \cdots + \beta_m)} B \int_{[0,1]^n} \left(\prod_{i=1}^{m} |f_i(s_i(t)x)|^{q_i} \omega(x)dx \right)^{1/q} \overline{\psi}(t)dt \]
\[\leq 2^{k(\beta_1 + \cdots + \beta_m)} B \prod_{i=1}^{m} \left(\int_{C_k} \omega_i(x)dx \right)^{1/q_i} \prod_{i=1}^{m} \left(\int_{C_k} \omega_i(x)dx \right)^{1/r_i} \overline{\psi}(t)dt, \]

where the last inequality is obtained by using Hölder’s inequality. Noting that \(\omega_i \in \mathcal{W}_{\gamma_i} \) gives
\[\int_{C_k} \omega_i(x)dx \lesssim 2^{k(d+\gamma_i)}. \]

Hence, by simple change of variables using (4.5), we get
\[\|U_{\psi}^{m,n,b}(f_1, \ldots, f_m)\chi_k\|_{q,\omega} \]
\[\leq 2^{k(\beta_1 + \cdots + \beta_m)} B \prod_{i=1}^{m} \left(\int_{\psi_i(t)C_k} |f_i(y)|^{q_i} \omega_i(t)dy \right)^{1/q_i} \prod_{i=1}^{m} \left(\omega_i(C_k) \right)^{1/r_i} \overline{\psi}(t)dt \]
\[\leq 2^{k(\alpha - \alpha')} B \prod_{i=1}^{m} \left(\int_{\psi_i(t)C_k} |f_i(x)|^{q_i} \omega_i(x)dx \right)^{1/q_i} \overline{\psi}(t)dt. \]

Since \(s_i(t) \neq 0 \) almost everywhere \(t \in [0,1]^n \), we could find an integer \(\ell_i \) such that \(2^{\ell_i-1} < s_i(t) \leq 2^{\ell_i} \). Thus \(s_i(t)x \in C_{k+\ell_i-1} \cup C_{k+\ell_i} \) for any \(x \in C_k \).
Therefore
\[(4.8)\]
\[\|U_{\psi,\delta}^{m,n,b}(f_1, \ldots, f_m)\chi_k\|_{q,\omega} \lesssim 2^{k(a-a')} B \int_{[0,1]^n} \prod_{i=1}^{m} (\|f_i \chi_{k+\ell_i-1}\|_{q_i,\omega_i} + \|f_i \chi_{k+\ell_i}\|_{q_i,\omega_i}) \overline{\psi}(t) dt.\]

Now we consider the following cases:

Case 1: Suppose that \(1 \leq p < \infty\) and \(\lambda \geq 0\). By Lemma 3.1, we have
\[
\|U_{\psi,\delta}^{m,n,b}(f_1, \ldots, f_m)\|_{M^{p,q}\cdot\lambda}(\omega)
\leq B \sup_{k_0 \in \mathbb{Z}} 2^{-k_0\lambda} \left(\sum_{k = -\infty}^{k_0} 2^{kp\alpha} \|U_{\psi,\delta}^{m,n,b}(f_1, \ldots, f_m)\chi_k\|_{q,\omega}^p \right)^{1/p}
\leq B \sup_{k_0 \in \mathbb{Z}} 2^{-k_0\lambda} \left(\sum_{k = -\infty}^{k_0} 2^{kp\alpha} \left(\int_{[0,1]^n} \prod_{i=1}^{m} (\|f_i \chi_{k+\ell_i-1}\|_{q_i,\omega_i} + \|f_i \chi_{k+\ell_i}\|_{q_i,\omega_i}) \overline{\psi}(t) dt \right)^p \right)^{1/p}
\leq B \sup_{k_0 \in \mathbb{Z}} 2^{-k_0\lambda} \int_{[0,1]^n} \left(\sum_{k = -\infty}^{k_0} 2^{kp\alpha} \prod_{i=1}^{m} (\|f_i \chi_{k+\ell_i-1}\|_{q_i,\omega_i} + \|f_i \chi_{k+\ell_i}\|_{q_i,\omega_i}) \right)^{1/p} \overline{\psi}(t) dt.
\]

It is worth noting that
\[
\prod_{i=1}^{m} (a_{i,0} + b_{i,0}) = \sum_{j_1, \ldots, j_m = 0, 1} \prod_{i=1}^{m} a_{i,j_i},
\]
where the sum is taken over all \((j_1, \ldots, j_m)\) for which \(j_1, \ldots, j_m \in \{0, 1\}\). Thus,
\[
\|U_{\psi,\delta}^{m,n,b}(f_1, \ldots, f_m)\|_{M^{p,q}\cdot\lambda}(\omega)
\leq B \sup_{k_0 \in \mathbb{Z}} 2^{-k_0\lambda} \int_{[0,1]^n} \left(\sum_{k = -\infty}^{k_0} 2^{kp\alpha} \left(\sum_{j_1, \ldots, j_m = 0, 1} \prod_{i=1}^{m} \|f_i \chi_{k+\ell_i-1}\|_{q_i,\omega_i} \right) \right)^{1/p} \overline{\psi}(t) dt
\leq B \sup_{k_0 \in \mathbb{Z}} 2^{-k_0\lambda} \int_{[0,1]^n} \left(\sum_{j_1, \ldots, j_m = 0, 1} \left(\sum_{k = -\infty}^{k_0} 2^{kp\alpha} \prod_{i=1}^{m} \|f_i \chi_{k+\ell_i-1}\|_{q_i,\omega_i} \right) \right)^{1/p} \overline{\psi}(t) dt.
\]
\[
\lesssim \mathcal{B} \sup_{k_0 \in \mathbb{Z}} 2^{-k_0 \lambda} \int_{[0,1]^n} \sum_{j_1, \ldots, j_m = 0,1} \left(\sum_{k = -\infty}^{k_0} 2^{kp_0} \prod_{i=1}^{m} \left\| f_i \chi_{k + \ell_i - j_i} \right\|_{q_i, \omega_i}^{p_i} \right)^{1/p} \psi(t) dt
\]
\[
\lesssim \mathcal{B} \sup_{k_0 \in \mathbb{Z}} 2^{-k_0 \lambda} \int_{[0,1]^n} \sum_{j_1, \ldots, j_m = 0,1} \left(\prod_{i=1}^{m} \left(\sum_{k = -\infty}^{k_0} 2^{kp_0 \alpha_i} \left\| f_i \chi_{k + \ell_i - j_i} \right\|_{q_i, \omega_i}^{p_i} \right) \right)^{1/p_i} \psi(t) dt
\]
\[
\lesssim \mathcal{B} \int_{[0,1]^n} \sum_{j_1, \ldots, j_m = 0,1} \left(\prod_{i=1}^{m} \sup_{k_0 \in \mathbb{Z}} 2^{-k_0 \lambda_i} \left(\sum_{k = -\infty}^{k_0} 2^{kp_0 \alpha_i} \left\| f_i \chi_{k + \ell_i - j_i} \right\|_{q_i, \omega_i}^{p_i} \right) \right)^{1/p_i} \psi(t) dt
\]
\[
\lesssim \mathcal{B} \int_{[0,1]^n} \sum_{j_1, \ldots, j_m = 0,1} \left(\prod_{i=1}^{m} \| f_i \|_{MK^{\alpha_i, \lambda_i} p_0, q_0 (\omega_i)} \left(\prod_{i=1}^{m} 2^{(t_i - j_i) \lambda_i} \right) \left(\prod_{i=1}^{m} 2^{-p_0 \alpha_i} \right) \right) \psi(t) dt
\]
\[
\lesssim \mathcal{B} \left(\prod_{i=1}^{m} \| f_i \|_{MK^{\alpha_i, \lambda_i} p_0, q_0 (\omega_i)} \right) \int_{[0,1]^n} \sum_{j_1, \ldots, j_m = 0,1} \left(\prod_{i=1}^{m} \| s_i(t) \|_{\lambda_i - \alpha_i} \right) \psi(t) dt
\]
\[
\lesssim \mathcal{B} \left(\prod_{i=1}^{m} \| f_i \|_{MK^{\alpha_i, \lambda_i} p_0, q_0 (\omega_i)} \right) \int_{[0,1]^n} \left(\prod_{i=1}^{m} \| s_i(t) \|_{\lambda_i - \alpha_i} \right) \psi(t) dt.
\]

From the hypothesis (1.3), we deduce that \(\int_{[0,1]^n} \left(\prod_{i=1}^{m} \| s_i(t) \|_{\lambda_i - \alpha_i} \right) \psi(t) dt \) is finite. Thus \(U_{\psi, \lambda} \) is bounded from \(MK^{\alpha_1, \lambda_1} p_1, q_1 (\omega_1) \times \cdots \times MK^{\alpha_m, \lambda_m} p_m, q_m (\omega_m) \) to \(MK^{\alpha', \lambda} p_0, q_0 (\omega). \)

Case 2: Suppose that \(0 < p < 1 \) and \(\lambda > 0 \). The following lemma will be useful for proving the second case. By (1.6) and Lemma 3.2, we have

\[
\| U_{\psi, \lambda} (f_1, \ldots, f_m) \|_{MK^{\alpha', \lambda} p_0, q_0 (\omega)}
\]
\[
\lesssim \mathcal{B} \sup_{k_0 \in \mathbb{Z}} 2^{-k_0 \lambda} \left(\sum_{k = -\infty}^{k_0} 2^{kp} \left(\int_{[0,1]^n} \prod_{i=1}^{m} \left(\| f_i \chi_{k + \ell_i - j_i} \|_{q_i, \omega_i} + \| f_i \chi_{k + \ell_i} \|_{q_i, \omega_i} \right) \psi(t) dt \right)^{1/p} \right)^{p}
\]
We here remind that

\[\sup_{k_{0} \in \mathbb{Z}} 2^{-k_{0} \lambda} \left(\sum_{k = -\infty}^{k_{0}} 2^{k \alpha} \left(\int_{[0,1]^{n}} \prod_{i=1}^{m} \left((2^{(k+\ell_{i}-1)}(\lambda_{i} - \alpha_{i}) + 2^{(k+\ell_{i})}(\lambda_{i} - \alpha_{i})) \right) \| f_{i} \|_{MK_{\alpha_{i},\lambda_{i}}'(\omega)(\psi(t))} dt \right)^{p} \right)^{1/p} \]

\[\lesssim \mathcal{B} \left(\prod_{i=1}^{m} \| f_{i} \|_{MK_{p,q}^{\alpha_{i},\lambda_{i}}(\omega)} \right) \cdot \sup_{k_{0} \in \mathbb{Z}} 2^{-k_{0} \lambda} \left(\sum_{k = -\infty}^{k_{0}} 2^{k \alpha} \cdot \prod_{i=1}^{m} 2^{k(\lambda_{i} - \alpha_{i})} \left(\int_{[0,1]^{n}} \prod_{i=1}^{m} |s_{i}(t)|^{\lambda_{i} - \alpha_{i}} \psi(t) dt \right)^{p} \right)^{1/p} \]

\[\lesssim \mathcal{B} \left(\prod_{i=1}^{m} \| f_{i} \|_{MK_{p,q}^{\alpha_{i},\lambda_{i}}(\omega)} \right) \left(\int_{[0,1]^{n}} \prod_{i=1}^{m} |s_{i}(t)|^{\lambda_{i} - \alpha_{i}} \psi(t) dt \right) \sup_{k_{0} \in \mathbb{Z}} \left(\sum_{k = -\infty}^{k_{0}} 2^{(k-k_{0})\lambda} \right)^{1/p}. \]

We here remind that \(\lambda = \lambda_{1} + \cdots + \lambda_{m} \) and \(\alpha = \alpha_{1} + \cdots + \alpha_{m}. \) Since \(\lambda > 0, \) the series \(\sum_{k = -\infty}^{k_{0}} 2^{(k-k_{0})\lambda} \) is convergent and its sum is a constant, not depend on \(k_{0}. \) Therefore

\[\| U_{\psi}^{m,n,k}(f_{1}, \ldots, f_{m}) \|_{MK_{p,q}^{\alpha',\lambda'}(\omega)} \lesssim \mathcal{B} \left(\prod_{i=1}^{m} \| f_{i} \|_{MK_{p,q}^{\alpha_{i},\lambda_{i}}'(\omega)} \right) \left(\int_{[0,1]^{n}} \prod_{i=1}^{m} |s_{i}(t)|^{\lambda_{i} - \alpha_{i}} \psi(t) dt \right). \]

This completes our proof of Theorem 1.1. \(\square \)

Acknowledgement. This paper is supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02 - 2014.51.

References

[1] N.M. Chuong, H.D. Hung, Weighted \(L^{p} \) and weighted \(BMO \)–bounds for a new generalized weighted Hardy-Cesàro operator. Integral Transforms Spec. Funct. 25 (2014), no. 9, 697–710.
[2] N.M. Chuong, H.D. Hung, D.V. Duong, Bounds for the weighted Hardy-Cesàro operator and its commutator on weighted Morrey-Herz type spaces. Submitted.
[3] R.R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables. Ann. of Math. (2) 103 (1976), no. 3, 611–635.
[4] Z.W. Fu, S. L. Gong, S. Z. Lu and W. Yuan, Weighted multilinear Hardy operators and commutators. Forum Math. 27 (2015), no. 5, 2825–2851.
[5] Z.W. Fu, Z.G. Liu, S.Z. Lu, Commutators of weighted Hardy operators on \(\mathbb{R}^{n}. \) Proc. Amer. Math. Soc. 137 (2009), no. 10, 3319–3328.
[6] Z.W. Fu, S.Z. Lu, A remark on weighted Hardy-Littlewood averages on Herz spaces. Advances in Math. 37 (2008), 632–636.
[7] Z.W. Fu, S.Z. Lu, Commutators of generalized Hardy operators. Math. Nachr. 282 (2009), no. 6, 832–845.
[8] Z.W. Fu, S.Z. Lu, Weighted Hardy operators and commutators on Morrey spaces. Front. Math. China 5 (2010), no. 3, 531–549.
[9] S. Gong, Z.W. Fu, B. Ma, Weighted multilinear Hardy operators on Herz-type spaces. The Sci. World. J., 2014 (2014), 420480, 10 pages.
[10] G. Gao and Y. Zhong, Some inequalities for Hausdorff operators. Math. Inequal. Appl. 17 (2014), no. 3, 1061–1078.
[11] H.D. Hung, L.D. Ky, New weighted multilinear operators and commutators of Hardy-Cesàro type. Acta Math. Sci., Ser. B, Engl. Ed. 35B (2015), no. 6, 1-15.
[12] Y. Komori, S. Shirai, Weighted Morrey spaces and a singular integral operator. Math. Nachr. 282 (2009), no. 2, 219–231 (2009).
[13] Z.G. Liu, Z.W. Fu, Weighted Hardy-Littlewood averages on Herz spaces. Acta Mathematics Sinica. 49, 1085–1090 (2006).
[14] J. Xiao, L^p and BMO bounds of weighted Hardy-Littlewood Averages. J. Math. Anal. Appl. 262 (2001), 660-666.
[15] W. Yuan, W. Sickel, D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel. Lecture Notes in Math. 2005 (Springer, Berlin, Germany, 2010).
[16] C. Tang, F. Xue, Y. Zhou, Commutators of weighted Hardy operators on Herz-type spaces. Ann. Pol. Math. 101 (2011), no. 3, 267–273.

Institute of mathematics, Vietnamese Academy of Science and Technology, Hanoi, Vietnam.
E-mail address: nmchuong@math.ac.vn

Hanoi Metropolitan University, 98 Duong Quang Ham, Hanoi, Vietnam.
E-mail address: nthong@hnmu.vn

High School for Gifted Students, Hanoi National University of Education, 136 Xuan Thuy, Hanoi, Vietnam
E-mail address: hunghaduy@gmail.com