Synergistic effect of heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin and X-rays, but not carbon-ion beams, on lethality in human oral squamous cell carcinoma cells

Atsushi MUSHA1,2, Yukari YOSHIDA3, Takeo TAKAHASHI1,4, Koichi ANDO3, Tomoo FUNAYAMA5, Yasuhiko KOBAYASHI2, Akihide NEGISHI2, Satoshi YOKOO2 and Takashi NAKANO1,3,*

1Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
2Department of Stomatology and Oral Surgery, Gunma University Graduate School of Medicine, Gunma, Japan
3Gunma University Heavy Ion Medical Center, Gunma, Japan
4Department of Radiology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
5Microbeam Radiation Biology Group, Japan Atomic Energy Agency, Gunma, Japan
*Corresponding author: Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan; Tel: +81(27)220-8838; Fax: +81(27)220-8397; Email: tnakano@med.gunma-u.ac.jp

(Received 16 November 2011; revised 9 March 2012; accepted 9 March 2012)

The purpose of this study is to clarify the effect of a heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), in combination with X-rays or carbon-ion beams on cell killing in human oral squamous cell carcinoma LMF4 cells. Cell survival was measured by colony formation assay. Cell-cycle distribution was analyzed by flow cytometry. Expression of DNA repair-related proteins was investigated by western blotting. The results showed 17-AAG to have synergistic effects on cell lethality with X-rays, but not with carbon-ion beams. The 17-AAG decreased G2/M arrest induced by X-rays, but not by carbon-ion beams. Both X-ray and carbon-ion irradiation up-regulated expression of non-homologous end-joining-associated proteins, Ku70 and Ku80, but 17-AAG inhibited only X-ray-induced up-regulation of these proteins. These results show that 17-AAG with X-rays releases G2/M phase arrest; cells carrying misrepaired DNA damage then move on to the G1 phase. We demonstrate, for the first time, that the radiosensitization effect of 17-AAG is not seen with carbon-ion beams because 17-AAG does not affect these changes.

Keywords: heat shock protein 90; 17-allylamino-17-demethoxygeldanamycin (17-AAG); carbon-ion beam irradiation; radiosensitization

INTRODUCTION

High linear energy transfer (LET) carbon-ion radiotherapy has a superior dose distribution to, and higher biological effect than, X-rays. Radiosensitivity to X-rays is known to depend on the status of the tumor suppressor gene, p53, but some studies of the relationship between carbon-ion beams and p53 status have reported that irradiation effects do not depend on p53 status [1–3]. Carbon-ion beam irradiation inhibits phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways in tumor cells [4], and induces cell death by mitogen-activated protein kinase–extracellular signal-regulated kinase (MEK–ERK)-dependent multiple caspase activation [5]. These aspects of carbon-ion radiotherapy give excellent local control of radioresistant tumors [6]. However, control of metastases outside irradiated fields causes a problem when linking this local effect with an improvement in the overall survival rate [6]. Chemotherapy is one option for combined use with carbon-ion radiotherapy. Indeed, head and neck cancer is treated by a combination of carbon-ion radiotherapy and chemotherapy at the National Institute of Radiological Sciences (NIRS) [7].

In numerous tumor cells, heat shock protein 90 (Hsp90) is over-expressed and forms multi-chaperone complexes with client proteins that are involved in processes characteristic to malignant phenotypes, such as invasion, angiogenesis and
metastasis [8–10]. Moreover, Hsp90 stabilizes several proteins such as Raf-1 [11], Akt [12], ErbB2 [13] and hypoxia-inducible factor-1α (HIF-1α) [14], which are known to be associated with protection against radiation-induced cell death. Therefore, these results suggest that Hsp90 inhibitors could provide a promising strategy for implementing a multitarget approach to radiosensitization.

Actually, a number of studies have already explored Hsp90 as a potential molecular target for sensitization by X-rays of tumor cells [15–18]. However, there are no studies of the combined effects of Hsp90 inhibitor and high LET carbon-ion beams on cell lethality.

Here, we used Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), which is a derivative of geldanamycin, a benzoquinoid ansamycin compound. 17-AAG binds to the ATP binding site of Hsp90 protein and specifically inhibits its chaperone functions in tumor cells [19]. This study explores the combined effects of 17-AAG and carbon-ion beams in human squamous cell carcinoma cells in vitro. In particular, we have found, for the first time, that carbon-ion beam irradiation is less affected by 17-AAG than X-ray irradiation.

MATERIALS AND METHODS

Cell culture and treatments

Human oral squamous cell carcinoma (SCC) LMF4 cells were obtained from the Department of Oral and Maxillofacial Surgery, Tokyo Medical and Dental University (Tokyo, Japan) [20]. Cells were grown in RPMI-1640 (Life Technologies Japan Ltd, Tokyo, Japan), augmented with 10% fetal bovine serum (FBS), 100 unit/ml penicillin and 100 μg/ml streptomycin (Life Technologies Corporation, Carlsbad, CA, USA). The 17-AAG (Wako Pure Chemical Industries, Ltd, Osaka, Japan) was dissolved in 99.0% dimethyl sulfoxide (DMSO) to a stock concentration of 100 μM and stored at −20°C. This stock solution was diluted to reach a final concentration of 100 nM before use. X-ray irradiation was performed using a Faxitron X-650 X-ray machine (Faxitron Bioptics, LCC, Lincolnshire, IL, USA) operated at 100 kVp with a dose rate of 1.1–1.3 Gy/min. The broad beam of carbon particles was accelerated by the azimuthally varying field (AVF) cyclotron of Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Japan Atomic Energy Agency. Monolayered cells were irradiated with 18.3 MeV/u carbon particles, which provided a dose-averaged LET of 108 keV/μm.

Clonogenic assay and cell cycle analysis

Cells were treated with or without 17-AAG for 24 h at 37°C, then irradiated with X-rays or carbon-ion beams. Shortly after irradiation, for colony formation assay, cells were trypsinized, diluted, counted and seeded in 60-mm dishes at various cell densities. After 2 weeks of incubation, cells were fixed by 100% ethanol and stained with 2% crystal violet. Colonies that consisted of more than 50 cells were counted. Plating efficiencies of untreated cells ranged from 43.6 to 52.8%. All radiation dose–response curves were analyzed by linear regression analysis for survival slopes versus radiation dose curves. For cell-cycle analysis, cells treated with the drug and radiation were subsequently fixed by 70% ethanol to which 500 μl/ml RNase A (Sigma-Aldrich Corporation, St. Louis, MO, USA) was added, and stained with propidium iodide (Sigma-Aldrich Corporation) at each indicated time point (0, 6, 12, 24, 36 and 48 h) after irradiation. Cell-cycle distribution was analyzed by FACS Calibur (Becton Dickinson, Franklin Lakes, NJ, USA) using the CellQuest program.

Western blots

At 24 h after irradiation, cells were lysed with Cell Lysis buffer (Millipore, Billerica, MA, USA) containing phosphatase inhibitor cocktails 1 and 2 (Sigma-Aldrich Corporation) and protease inhibitor cocktail 3 (Calbiochem, Darmstadt, Germany). The protein levels in supernatants obtained after centrifugation (15 000 g) were quantified using a BCA Protein Assay Kit (Pierce, Rockford, IL, USA). Proteins (30 μg per lane) were resolved by electrophoresis on 4–15% Mini-Protein TGX gels (Bio-Rad Laboratories, Inc, Hercules, CA, USA). Thereafter, the proteins were transferred onto nitrocellulose membranes. Target protein levels were assessed using antibodies to Ku70, Ku80 (Santa Cruz Biotechnology, Santa Cruz, CA, USA) or actin (Sigma-Aldrich Corporation). Primary antibodies were detected by horseradish peroxidase-conjugated secondary antibodies and the electrochemiluminescent (ECL) detection system (Amersham, Piscataway, NJ, USA). Quantification was done using image acquisition and analysis software, Labo 1D (Kurabo, Osaka, Japan). Results are expressed as means and SD relative to internal controls of actin.

RESULTS

Effect of 17-AAG on radiosensitivity

Survival curves for LMF4 cells treated with 17-AAG and irradiation are shown in Fig. 1. Data points and bars represent the averages and SDs, respectively, from three separate experiments. The 17-AAG (100 nM) cytotoxicity (compared with DMSO) was 30–40% (data not shown). The radiation doses to reduce the surviving fraction to 10% (D10) and D0 (A dose of D0 reduces survival from 1 to 0.37) values of X-rays or carbon-ion beams with and without 17-AAG treatment are shown in Table 1. Notably, carbon-ion irradiation was more lethal than X-ray irradiation plus 17-AAG.

Downloaded from https://academic.oup.com/jrr/article-abstract/53/4/545/1121146 by guest on 30 October 2018
Effect of 17-AAG on radiation-induced G2/M phase arrest

The combination of 17-AAG with X-rays additively induces G2/M phase arrest [18], while the same is not reported with carbon-ion beams. Therefore, we analyzed the percentage of cells in the G2/M phase after treatment with 17-AAG and/or exposure to X-rays or carbon-ion beams. The cell percentage in the G2/M phase was calculated from the resulting histograms. When treated with 17-AAG for 12 h, the percentage of G2/M phase cells increased from 26.5 ± 1.3% to 49.6 ± 1.2% (Fig. 2A). The G2/M phase cells significantly increased after X-ray and carbon-ion beam irradiation (Fig. 2B, C). The G2/M arrest induced by irradiation thus showed dose-dependency for both X-ray and carbon-ion beam irradiation, and reached a maximum after 12 h of irradiation, followed by a decrease thereafter (Fig. 2B, C).

Twelve hours after cells were irradiated with 10-Gy X-rays or 2-Gy carbon-ion beams, their cell cycle phases were analyzed (Fig. 2D). These doses were selected as their relative biological effectiveness value was around 5. On the other hand, cells in the G2/M phase had decreased with treatment of 17-AAG alone (Fig. 2Db). The fraction of untreated cells in the G2/M phase was 32.5 ± 2.8%, while in cells 12 h after exposure to X-rays or carbon-ion beams it was 71.2 ± 1.8% or 72.7 ± 6.5%, respectively, meaning that X-rays and carbon-ion beams produced an identical degree of G2/M arrest (Fig. 2Dc, e). However, when 17-AAG was added, X-rays or carbon-ion beams decreased the number of cells in the G2/M phase to 49.6 ± 8.8% or 62.2 ± 1.2%, respectively, 12 h after irradiation (Fig. 2Dd, f). A significant difference was seen between 10-Gy X-rays (Fig. 2Dc) and 10-Gy X-rays combined with 17-AAG (Fig. 2Dd).

Effect of 17-AAG on relative amount of radiation-induced NHEJ-related proteins

It is well known that radiosensitivity is determined by the repair of radiation-induced DNA double-strand breaks (DSBs). To determine whether DNA DSB repair proteins are affected by 17-AAG, we investigated the expression levels of non-homologous end-joining (NHEJ)-associated proteins (Ku70 and Ku80) after treatment with irradiation and 100 nM 17-AAG (Fig. 3). Expression of Ku70 and Ku80 proteins increased 24 h after X-ray irradiation; however, 17-AAG reduced these X-ray-induced increases in Ku70 and Ku80 proteins. Expression of the Ku70 protein increased in carbon-ion beams, with or without 17-AAG treatment. However, Ku80 protein expression did not change. No significant change in Ku70 or Ku80 protein levels was detected between those treated with carbon-ion beam irradiation alone and those treated with carbon-ion beam irradiation in combination with 17-AAG.

Table 1. D10, D0 and relative biological effectiveness (RBE) values of X-rays or carbon-ion beams with or without 17-AAG treatment

17-AAG (nM)	X-rays D10 (Gy)	Carbon-ion beams D10 (Gy)	RBE	X-rays D0 (Gy)	Carbon-ion beams D0 (Gy)	RBE
0	7.73 ± 0.62	1.51 ± 0.23	5.12	3.23 ± 0.01	0.61 ± 0.08	5.30
100	4.69 ± 0.34	1.32 ± 0.20	3.55	2.14 ± 0.02	0.54 ± 0.08	3.96
Sensitization rate	1.65	1.14	-	1.51	1.13	-
P	P < 0.05	P = 0.22	-	P < 0.01	P = 0.14	-

RBE: relative biological effectiveness. Sensitization rate = (D10 or D0 values of 0 nM 17-AAg)/(D10 or D0 values of 100 nM 17-AAG).
DISCUSSION

The cytotoxic mechanism of Hsp90 inhibitor 17-AAG affects multiple pathways that relate to programmed cell death and cell-cycle regulation. We showed here that 17-AAG sensitized cells to the lethal effect of X-rays but not those of carbon-ion beams in SCC LMF4 cells (Fig. 1). The X-ray sensitizing effects of 17-AAG in the present study could partly be due to activities exerted by 17-AAG, including DNA DSB restoration inhibition [17], modification of cell-cycle progression [18], Raf-1 and Akt inhibition [21] and PI3K/Akt inhibition [22]. However, the sensitizing effects of 17-AAG on carbon-ion beam irradiation have not been examined till now. High-LET irradiation is more effective in both killing cells [23–26] and delaying the G2 phase than photon irradiation, whereas DNA damage repair before cells enter mitosis is critical after photon irradiation [24]. 17-AAG decreased the X-ray-induced G2/M accumulation more prominently than the carbon-ion-induced G2/M accumulation (Fig. 2). As radiosensitivity increases when cells are released from the G2/M phase [27], we hypothesize that modification of G2/M delay by 17-AAG would have a different effect on cell killing caused by photon irradiation from carbon-ion beam irradiation. Another Hsp90 inhibitor is also known to abrogate the G2- and S phase arrest induced by X-ray irradiation [28]. On the other hand,
high LET irradiation is more effective in increasing phosphorylation of c-jun NH₂-terminal kinases (JNK) than low LET [29]. JNK induces the degradation of Cdc25B and Cdc25C, which play a key role for cells entering into mitosis [30, 31]. Therefore, JNK phosphorylation increased by carbon-ion beams may prevent G₂ phase cells from progressing into metaphase. This prevention activity could have overwhelmed another function of 17-AAG, i.e. inhibition of proteins Chk1 and Wee1, which are clients of Hsp90 and important for G₂ arrest.

The response of tumor cells to radiation often depends on DNA DSB repair [17, 18, 32]. DNA DSB can be repaired by two basic processes: homologous recombination repair (HR), requiring an undamaged DNA strand as a participant in the repair as a template; and NHEJ, which mediates end-to-end joining [32]. High-LET irradiation affects only the Ku-dependent NHEJ but not HR, a feature totally different from low-LET irradiation [33]. The key proteins associated with NHEJ are Ku70, Ku80 and DNA-PKcs [32]. In this report, both Ku70 and Ku80 were up-regulated by X-rays, while 17-AAG inhibited these up-regulations (Fig. 3). Falsone et al. [34] report that DNA-PKcs is a client of Hsp90. DNA-PKcs levels in the cytosol of HeLa cells are degraded by treatment with Hsp90 inhibitor [34]. The Ku/DNA-PK complex is necessary for NHEJ repair and binds DNA ends first [32]. In the present study, if 17-AAG also suppressed DNA-PKcs activity, the Ku/DNA-PK complex would be inactivated. This results in inhibition of NHEJ. Therefore, it seems likely that the mechanism for radiosensitization caused by 17-AAG could be its inhibitory effect on Ku70 and Ku80, which otherwise would be up-regulated by X-ray irradiation. This inference agrees with the lack of influence of 17-AAG on Ku-protein up-regulation that is induced by carbon-ion beams treatment (Fig. 3).

We conclude that the radiosensitizing effect of 17-AAG is not seen when combined with carbon-ion beams probably because 17-AAG does not affect NHEJ of DNA DSB induced by carbon-ion beams.

REFERENCES

1. Takahashi A, Ohnishi K, Wang X. The dependence of p53 on the radiation enhancement of thermosensitivity at different LET. Int J Radiat Oncol Biol Phys 2000;47:489–94.
10. Koga F, Mizoe J, Osaka Y et al. High linear energy transfer carbon radiation effectively kills cultured glioma cells with either mutant or wild-type p53. Int J Radiat Oncol Biol Phys 2001;50:803–8.

11. Takahashi A, Matsumoto H, Yuki K et al. High-LET radiation enhanced apoptosis but not necrosis regardless of p53 status. Int J Radiat Oncol Biol Phys 2004;60:591–7.

12. Ogata T, Teshima T, Inaoka M et al. Carbon ion irradiation suppresses metastatic potential of human non-small cell lung cancer A549 cells through the phosphatidylinositol-3-kinase/Akt signaling pathway. J Radiat Res 2011;52:374–9.

13. Tomiyama A, Tachibana K, Suzuki K et al. MEK-ERK dependent multiple caspase activation by mitochondrial proapoptotic Bel-2 family proteins is essential for heavy ion irradiation-induced glioma cell death. Cell Death Dis 2010;1:e60.

14. Takahashi T, Yoshida Y, Ando K et al. Signal transduction and heavy ion radiation therapy: biological mechanisms, biological quality assurance, and new multimodality approach. Curr Signal Transduct Ther 2010;5:237–43.

15. Jing K, Kishimoto R, Mizoe JS et al. Malignant mucosal melanoma treated with carbon ion radiotherapy with concurrent chemotherapy: prognostic value of pretreatment apparent diffusion coefficient (ADC). Radiother Oncol 2011;98:68–73.

16. Eustace BK, Sakurai T, Stewart JK et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 2004;6:507–14.

17. Tsutsumi S, Neckers L. Extracellular heat shock protein 90: a shock protein 90. Int J Oncol 2006;24:1501–6.

18. Peng X, Guo X, Borkan SC et al. High-LET radiation enhanced apoptosis but not necrosis regardless of different metastatic potentials selected in nude mice from human oral squamous cell carcinomas. J Oral Pathol Med 1989;18:391–5.

19. Koga F, Osaka Y et al. High-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003;425:407–10.

20. Momose F, Araida T, Negishi A et al. Variant sub-lines with different metastatic potentials selected in nude mice from human oral squamous cell carcinomas. J Oral Pathol Med 1989;18:391–5.

21. Shintani S, Zhang T, Aslam A et al. P53-dependent radiosensitizing effects of Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin on human oral squamous cell carcinoma cell lines. Int J Oncol 2006;29:1111–17.

22. Machida H, Nakajima S, Shikano N et al. Heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin potentiates the radiation response of tumor cells grown as monolayer cultures and spheroids by inducing apoptosis. Cancer Sci 2005;96:911–17.

23. Hamada N, Imaoka T, Masunaga S et al. Recent advances in the biology of heavy-ion cancer therapy. J Radiat Res 2010;51:365–83.

24. Matsunuma S. Comparative analysis of G2 arrest after irradiation with 75 keV carbon-ion beams and 137Cs γ-rays in a human lymphoblastoid cell line. Cancer Detect Prev 2003;27:222–8.

25. Takahashi T, Fukawa T, Hirayama R et al. In vitro interaction of high-LET heavy-ion irradiation and chemotherapeutic agents in two cell lines with different radiosensitivities and different p53 status. Anticancer Res 2010;30:1961–7.

26. Kitabayashi H, Shimada H, Yamada S et al. Synergistic growth suppression induced in esophageal squamous cell carcinoma cells by combined treatment with docetaxel and heavy carbon-ion beam irradiation. Oncol Rep 2006;15:913–18.

27. Sarcab C, Kakali S, Prabhu AH et al. Targeting radiation-induced G2 checkpoint activation with the Wee-1 inhibitor MK-1775 in glioblastoma cell lines. Mol Cancer Ther 2011;10:2405–14.

28. Bull EE, Dote H, Brady KJ et al. Enhanced tumor cell radiosensitivity and abrogation of G2 and S phase arrest by the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin. Clin Cancer Res 2004;10:8077–84.

29. Stähle S, Fung E, Adams C et al. Proteomics and pathway analysis identifies JNK signaling as critical for high linear energy transfer radiation-induced apoptosis in non-small lung cancer cells. Mol Cell Proteomics 2009;8:1117–29.

30. Uchida S, Yoshioka K, Kizu R et al. Stress-activated mitogen-activated protein kinases c-Jun NH2-terminal kinase and p38 target Cdc25B for degradation. Cancer Res 2009;69:6438–44.

31. Gutierrez GJ, Tsuji T, Cross J et al. JK-mediated phosphorylation of Cdc25C regulates cell cycle entry and G/M DNA damage checkpoint. J Biol Chem 2010;285:14217–28.

32. Hall EJ, Giaccia A-J. Repair of radiation damage and the dose-rate effect. Radiobiology for the Radiologist. 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2005, 60–84.

33. Wang H, Zhang X, Wang P et al. Characteristics of DNA-binding proteins determine the biological sensitivity to high-linear energy transfer radiation. Nucleic Acids Res 2010;38:3245–51.

34. Falsone SF, Gesslbauer B, Tirk F et al. A proteomic snapshot of the human heat shock protein 90 interactome. FEBS Lett 2005;579:6350–4.