Mutation of *twins* encoding a regulator of protein phosphatase 2A leads to pattern duplication in *Drosophila* imaginal discs

Tadashi Uemura,1,3 Kensuke Shiomi,1 Shin Togashi,2 and Masatoshi Takeichi1

1Department of Biophysics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan; 2Laboratory of Cell Biology, Mitsubishi Kasei Institute of Life Sciences, Machida-shi, Tokyo 194, Japan

The *Drosophila* gene *twins* was identified through a P-element-induced mutation that caused overgrowth in posterior regions of the wing imaginal disc. Analyses using position-specific markers showed that the inactivation of this locus induced the formation of extra wing blade anlagen in the posterior compartment of the disc. The duplication was mirror symmetrical, and the line of the symmetry did not correspond to any of the known compartment borders. We isolated the *twins* gene and found that it encoded one of the regulatory subunits of protein phosphatase 2A (PP2A). These results suggest a novel aspect of physiological roles of protein dephosphorylation; that is, the control of PP2A activity is crucial for specification of tissue patterns.

[Key Words: *Drosophila* imaginal discs; pattern duplication; protein phosphatase 2A]

Received October 29, 1992; revised version accepted January 6, 1993.

To elucidate how tissue-specific patterns generate from initially homogenous cell masses is one of the central issues in developmental biology, and *Drosophila* imaginal discs have been providing attractive model systems for such studies (for reviews, see Bryant 1978; Whittle 1990). Imaginal disc precursors arise from the ectoderm soon after the cellular blastoderm stage, and the primordia continue rapid proliferation during larval stages until the late third instar. The mature imaginal disc is essentially a monolayered epithelial sac. Although cells comprising the disc epithelium look similar, their differentiation fates are already diversified so as to produce an organ with a specific pattern. At metamorphosis, the pattern becomes visible by terminal differentiation of the cells into the exterior structures of the adult body. Topological relationships between adult cuticular structures and their origins in discs have been established. However, in contrast to the well-documented story of determination of the embryonic body axes, we have fragmentary information about the mechanisms of the pattern formation in imaginal discs.

Molecular basis for the pattern formation in imaginal discs has been investigated through isolation and characterization of mutations that alter morphology of the adult body (for reviews, see Whittle 1990; Wilkins and Gubb 1991). Genes that play vital roles in establishment of the body axes of the embryo are often recruited for the formation of adult structures. Many of the segment polarity genes belong to such a class. In imaginal discs, particular segment polarity genes function for cells located in distinct spatial domains to acquire positional identities. For example, at early developmental stages, imaginal discs are divided into two compartments, anterior and posterior, and the compartment borders are stably maintained by the action of *engrailed* throughout disc development (Morata and Lawrence 1975; Lawrence and Struhl 1982).

Besides the genes mentioned above, many others are assumed to operate on the specification of imaginal disc patterns. Such genes could be identified by screening pupal lethal mutants, because severe morphological defects in discs may cause malformation of adult structures. Pupal lethal strains have been screened for imaginal disc abnormalities (for review, see Shearn 1978). Several genes that are necessary for wing development were found and cloned, including *apterous*, *vestigial*, *defective dorsal discs*, and *abnormal wing disc*. Mutations in these loci lead to extensive cell death or blocking of cell proliferation in the wing discs (Butterworth and King 1965; Fristorm 1969; Whittle 1979; Simcox et al. 1987; Dearolf et al. 1988a,b; Williams et al. 1991; Cohen et al. 1992). The present study was aimed at the identification of novel genes involved in the pattern formation of the imaginal disc. To isolate such genes efficiently, we took advantage of a collection of single P element-induced lethal lines (Cooley et al. 1988a,b; Bier et al. 1989). We
were able to obtain mutants in which growth of imaginal discs was not impaired, but discs became morphologically abnormal. Among them, we chose a particular mutant, whose locus we named twins, for detailed analyses. In this mutant, parts of the wing imaginal disc were duplicated in a mirror image fashion. We cloned the twins gene and found that the cDNA encoded a Drosophila homolog of one of the regulatory subunits of protein phosphatase 2A (PP2A), one of the major classes of serine/threonine phosphatases (for review, see Cohen 1989). Thus, our results suggest that regulation of protein phosphatase activity may play a critical role in the specification of imaginal disc patterns.

Results

Identification of the twins locus

The wild-type wing disc consists of a large central pouch, which is the precursor of the adult wing blade, and peripheral regions that give rise to more proximal thoracic structures, the hinge and the notum (Fig. 1A). Using a collection of lethal strains, we performed a screen for mutants that form morphologically aberrant imaginal discs in larvae. One of the mutants obtained was lethal(3)11C8. Larvae homozygous for this mutation had wing discs that exhibited unusual outgrowth in the posterior compartment (Fig. 1B). On a morphological basis, the overgrown region resembled the wing pouch. This phenotype was highly penetrant, as shown by the observation that ~70% of the mutant wing discs showed the extra structures recognizable under a stereo dissecting microscope. Like the wing discs, haltere discs showed similar outgrowth in the mutants. In contrast, no evidence has been obtained for pattern abnormality in eye-antenna and leg discs.

lethal(3)11C8 had a copy of the enhancer-trap vector P-lacW (Bier et al. 1989) inserted into the cytological position 85F. Reversion tests suggested that the insertion was responsible for both pupal lethality and the disc phenotype (see Materials and methods). Because the mutant produced duplicated patterns in wing imaginal discs, as described below, the locus inactivated by the P insertion was named twins, and the original allele was designated twins⁺.

Pattern duplication in twins⁺ imaginal discs

To study how patterns in wing imaginal discs were altered in twins⁺, we employed two types of position-specific molecular probes. One was β-galactosidase [β-gal] expressed in specific patterns in discs owing to the insertions of lacZ into particular loci. The individual chromosomes carrying these lacZ insertions were introduced into a lacZ[−] derivative of twins⁺, and β-gal expression patterns were visualized by X-gal staining. The second approach was to use antibodies that bind to the products of marker genes such as en.

The lacZ insertion strain ryXho38 reproduces the pattern of scabrous (sca) RNA expression in discs (Mlodzik et al. 1990; C. Hama and M. Hoshino, pers. comm.). β-Gal is expressed as scattered patches, each of which contains sensory mother cells (SMCs). In wild-type wing discs, a characteristic double array of the stained cells was observed along the transverse line in the anterior compartment of the wing blade anlage (Fig. 2A). These β-gal-positive cells label the presumptive anterior wing margin (Mlodzik et al. 1990). The mutant wing disc had an extra set of the double array of cells, as well as other patchy signals, in the overgrown area (Fig. 2B). Most of these extra signals appeared to be arranged in a mirror symmetry to the original ones. These observations suggest that the wing pouch region of the disc was duplicated in the posterior compartment and that the additional wing pouch may have both anterior and posterior compartments. The presumptive boundary between the two pattern copies [broken line in Fig. 2B] did not correspond to any of the known compartment boundaries. Use of anti-achaete antibody (Skeath and Carroll, 1991) as an independent marker for SMCs also confirmed the duplication of the wing blade anlage [data not shown].

In the wild-type wing disc, the sca-lacZ signals are considered to localize within the anterior compartment not only in the wing pouch but also in more proximal regions (Garcia-Bellido et al. 1976; Campuzano and Mouldell 1992). Most of these anterior signals, if not all,
Pattern formation and protein phosphatase 2A

Figure 2. Duplication of the wing blade anlage as revealed with the sco-lacZ marker. An enhancer-trap line that reproduces sco expression was used to highlight the patterns of SMCs (Mlodzik et al. 1990; C. Hama and M. Hoshino, pers. comm.). Its lacZ expression was detected by X-gal staining. (A) Wild-type wing disc; (B) twins wing disc. Arrowheads indicate the lacZ expression pattern characteristic of the anterior compartment in the wing pouch; SMCs of the presumptive anterior wing margin are stained. The mutant produced an extra copy of the wing marker (arrow) that was placed in mirror symmetry to the original one. The broken line represents a hypothetical line of symmetry. Bar, 100 μm.

appeared to be preserved in the mutant disc, although perfect assignment of individual signals was difficult (Fig. 2B). Thus, the formation of the anterior structures was probably not so much disturbed in the mutants, in contrast to the posterior compartment that was disorganized by the formation of the extra wing pouch.

To examine in more detail how the twins mutation disrupted imaginal disc patterns, we immunostained tissues for the en and invected (inv) products, as markers of the posterior compartment cells (Patel et al. 1989). The wing duplication in twins was associated with partial losses of the en/inv expression outside the wing pouch, as shown by two examples (Fig. 3B, C). In the case of Figure 3B, only a small area covering the posterior wing pouch expressed the marker genes, suggesting that the proximal domain of the posterior compartment disappeared. According to the fate map (Bryant 1978), the missing region should give rise to the ventral structures of the notum. In the sample of Figure 3C, another en/inv + patch was observed in a posterior-proximal corner of the duplicated structure. This suggests that more complicated disorganization of the posterior compartment, such as triplication, may have taken place. Taken together, the twins phenotype could be interpreted as replacement of the proximal part of the posterior compartment with one or more additional copies of the wing pouch along with other associated anterior structures.

Another lacZ marker enabled us to detect small pattern perturbations in twins imaginal discs. lacZ on the PA49 chromosome is expressed in cells along the anterior and posterior compartment boundary (Williams et al. 1991; C. Hama and M. Hoshino, pers. comm.). In mutant wing discs whose morphology was not grossly affected, ectopic lacZ signals reproducibly appeared at a fixed position in the posterior compartment (Fig. 4B). This result suggested that an initial action of the twins mutation could be to alter cell fates in a subset of the posterior compartment. The pattern of the PA49 β-gal expression was complicated in heavily distorted mutant discs (Fig. 4C), consistent with the notion that pattern duplications may occur at multiple sites in a single wing disc.

In some of previously identified mutations that lead to pattern duplication, cell death is thought to be a primary cause for the abnormal pattern (Bryant 1978, 1987). To detect dead cells in imaginal discs of twins third-instar larvae, we made and observed serial histological sections and also carried out whole-mount staining with acridine orange or trypan blue (see Materials and methods). In neither preparation did we find a higher incidence of cell death as compared with wild-type discs.

twins phenotypes at earlier developmental stages

To help in understanding the mechanisms underlying the twins duplication, we attempted to trace back the abnormal wing disc formation to earlier developmental stages. First, we examined wing disc precursor cells in twins homozygous embryos by immunostaining of the vestigial protein that is present in nuclei of disc primordia (Williams et al. 1991). We were unable to find any significant increase or reduction in the number of cells in the primordia. In all of the wild-type, heterozygous mutant and homozygous mutant embryos examined, ~20 cells were found in each wing disc anlage (data not shown). We then looked for ectopic PA49 β-gal signals in wing discs of younger mutant larvae. Under the sensitivity of our experimental technique, only larvae of in-
Figure 3. Visualization of cells belonging to the posterior compartment by immunostaining of the en/inv product. Wild-type (A) and mutant wing discs (B, C) were stained with anti-en/inv antibody (Patel et al. 1989). Cells belonging to the posterior compartments are assumed to express antigens. In A, a haltere disc and a leg disc remain attached to the wing disc. An immunoreactive proximal region (arrowhead in A) is missing in the mutant discs (B, C). Considering the folding pattern of the epithelium, a hypothetical boundary of the duplicated wing blade anlage was drawn (broken line in C). An extra patch of en/inv cells in a corner of the duplicated region could be produced by partial triplication of the wing pouch (arrow in C). Bar, 100 μm.

Intermediate to late third instar displayed extra β-gal-positive cells outside the compartment border.

Cloning of the twins locus

A stretch of 30 kb of genomic DNA flanking the site of insertion of P-lacW was cloned by the plasmid rescue and chromosomal walking methods (Fig. 5A). Various fragments of the genomic DNA were used as probes for Northern blot analysis of embryonic and larval poly(A)+ RNA to identify putative twins transcripts. P-lacW interrupted one transcription unit from which three mRNAs (3.0, 4.0, and 4.6 kb) were generated (Fig. 5B, probe II). All of the three messengers were undetectable in RNA isolated from homozygous twins larvae (Fig. 5B, probes II and III). On the other hand, messages of two neighboring transcription units (Fig. 5A, broken lines) were detected in the mutant RNA samples (data not shown). These results strongly suggest that the former set of transcripts derive from the twins locus. Using probes I and III, twins cDNA clones were isolated from cDNA libraries made from RNA of embryos, whole larval bodies, and eye–antenna discs. Comparison of the cDNA sequences with that of the genomic region surrounding the P insertion site revealed that the transposon was inserted very close to one of the exon–intron junctions, 7 bp downstream of the first initiation codon (arrowhead in Fig. 6, see also the legend to Fig. 6).

A faint 2.5-kb band was seen in the mutant RNA after long exposures of the Northern blots (Fig. 5B, probes II and III). This finding may be consistent with our result of genetic analysis that the P-lacW insertion did not appear to inactivate the gene completely (see Materials and methods). In the exons that were located downstream of the insertion site, the entire open reading frame (ORF), except the first two amino acids, was preserved. If cryptic transcription starts within the P element or an intron flanking the insert, it might produce a message that encodes a functional product. Another possible explanation of the faint 2.5-kb band is that it could be a minor splicing variant and the P-lacW insertion did not block its formation.

To obtain more information about how the P-lacW insert affected transcription of twins, the mutant RNA was probed on a Northern blot with a genomic fragment I that was located 5' upstream relative to the insertion point (Fig. 5A). Probe I detected multiple RNA bands ranging from 4.0 to 10 kb (Fig. 5B, probe I, lane twinsP). These bands were twins-lacZ fusion transcripts, as demonstrated by reprobing with a lacZ probe; many of the RNA bands hybridized with probe I exactly comigrated with those detected with the lacZ probe (Fig. 5B, probe lacZ, lane twinsP).

The twins locus encodes a regulator of PP2A

Nucleotide sequences of the overlapping cDNA clones were determined, and an ORF of 1329 nucleotides was found. The predicted translation product of this reading frame was a 51-kD protein with 443 amino acid residues...
Pattern formation and protein phosphatase 2A

Figure 4. Altered expression of the compartment boundary marker in twins discs. (A) Normal wing disc. Cells located along the border of the anterior and posterior compartments are marked by β-gal expression of the PA49 chromosome (C. Hama and M. Hoshino, pers. comm.). (B) twins wing disc that had little morphological defects. The arrow shows an ectopic expression of the marker in the posterior compartment. (C) twins wing disc with a severe phenotype. Multiple patches of extra signals are observed in this grossly distorted mutant disc. Bar, 100 μm.

[Fig. 6]. The protein showed extensive similarity to the regulatory B subunits of human PP2A [Fig. 7]. PP2A consists of three subunits: two classes of regulatory subunits, termed A and B, and a catalytic subunit, termed C [Cohen 1989]. The human has two B subunits, hPR55α and hPR55β, encoded by separate genes [Mayer et al. 1991]. The twins product was 78% and 75% identical to hPR55α and hPR55β in amino acid sequences, respectively. The budding yeast Saccharomyces cerevisiae has a homologous gene, CDC55 [Healy et al. 1991]. Four gaps had to be introduced into the alignment of the twins and the CDC55 proteins, and they showed 50% identity.

Expression of twins

The P-lacW construct used for the enhancer–trap screen contains the lacZ reporter gene [Bier et al. 1989]. The spatial expression pattern of β-gal in twins was studied to obtain information about the expression pattern of β-gal in twins mRNAs. The expression of twins transcripts was directly studied by whole-mount in situ hybridization of wild-type imaginal discs. The β-gal reporter gene was expressed ubiquitously in wing discs of heterozygous twins larvae, and this β-gal expression was consistent with results of in situ hybridization [data not shown]. twins expression was not restricted in wing discs, eye–antenna and leg discs also expressed the gene. The transcript level was higher in imaginal discs than in the central nervous system.

To detect the twins protein, polyclonal antibodies against T7 phage gene 10–twins fusion proteins were prepared. We detected a single band of the predicted size [51 kD] in immunoblots of crude extracts from various developmental stages [Fig. 8A]. The gene product was abundant in embryonic lysates, particularly in those made from blastoderm embryos (0–2 hr). This implied the presence of maternal messages, which agreed with strong signals in blastoderm embryos hybridized with a twins cDNA probe [data not shown]. The amount of the protein then gradually decreased during development. Although the 51-kD band was not clearly detected in the extracts made from whole bodies of third-instar larvae or pupae, the protein was enriched in fractions of larval central nervous system and imaginal discs, and of salivary glands. This spatial distribution was similar to those of mRNAs of A and C subunits of Drosophila PP2A [Mayer-Jökel et al. 1992]. Within the limit of detection of our Western analysis, the 51-kD band was missing in extracts prepared from homozygous twins larvae [Fig. 8B], demonstrating that this protein is a product of the twins gene.

Discussion

Pattern duplication in the twins wing disc

We identified a Drosophila gene, twins. Its mutation caused a mirror-symmetrical pattern duplication of specific regions in the wing imaginal disc. The homozygous mutant wing disc had an extra wing blade anlage in the
Figure 5. Molecular map of the twins locus and Northern blot analyses. [A] An isolated 30-kb genomic region and its EcoRI restriction sites. The insert of P-lacW (12 kb) is shown by a large open triangle above the line. [I, II, III] Genomic DNA fragments that were used as probes for Northern analyses in B. The twins gene produced three mRNAs of 3.0, 4.0, and 4.6 kb [see B]. P-lacW was inserted into one of the exon/intron junctions. Boxes represent ORFs of cDNA clones. Size variation among the three messages seemed to be generated at least partially by alternative splicing in noncoding regions. This is because genomic probes I, II, III and the isolated cDNAs hybridized all of the mRNAs, and the nucleotide sequences of the cDNAs were identical except in 5'- or 3'-untranslated regions. Broken lines show two neighboring transcription units encoding 3.6- and 4.3-kb mRNAs, and 1.9-kb mRNA, respectively. End points of those units were not precisely determined. [B] Northern blot analyses. Poly[A]⁺ RNA was prepared from wandering third-instar larvae, either of the wild-type or of the twins⁰ homozygote. Pairs of each RNA (~3.0 μg) were run in a formaldehyde gel, blotted, and hybridized with various probes. Three messages [3.0, 4.0, and 4.6 kb] are present in the wild-type RNA [probe II, lane +], but they are missing in the mutant sample [probe II, lane twins⁰]. Much longer exposure detected a faint 2.5-kb band in the mutant RNA [probe II or III, lane twins⁰]. Transcripts of the 5C actin gene [Fryberg et al. 1983] are present in similar abundance in the wild-type and the mutant. Among the three twins messages, the 3.0-kb band was most abundant in embryonic RNA (0–22 hr; data not shown); and in larval intensity, the 4.0-kb mRNA was the strongest. The twins⁰ allele produced twins–lacZ fusion transcripts as demonstrated by use of probe I or the lacZ probe [lane twins⁰].

posterior compartment. The additional wing pouch itself seemed to have both anterior and posterior compartments; thus, two almost complete pattern copies arose within a single disc. The mode of the twins duplication contrasts with a phenotype of the en⁷ mutant, in which the posterior wing blade structures are replaced by the anterior ones, resulting in the formation of an anterior–anterior mirror image wing (Garcia-Bellido and Santamaria 1972; Brower 1984). Triplication seemed to occur occasionally in the posterior compartment of twins wing discs, resulting in more complicated disc patterns.

Pattern duplication and deficiency were reported in wings of the mutant tetraltera [tet], whose genetic map position is 3-48.5 [James and Bryant 1981]. Although tet is located very closely to twins or within the same chromosome band [85F], our complementation test did not support the possibility that tet and twins⁰ are allelic (see Materials and methods).

PP2A is involved in pattern duplication

Molecular analyses of the twins locus demonstrated that the product is one of the regulatory subunits of PP2A. The subunits of PP2A have been divided into three groups: the catalytic subunit, C, and two classes of regulatory subunits, A and B (Cohen 1989). twins was found to code for a Drosophila homolog of the B subunit. Biochemical analyses of vertebrate enzymes suggest that the B subunit interacts with the AC heterodimer and suppresses the activity of this enzyme toward a variety of substrates in vitro (Imaoka et al. 1983; Usui et al. 1988).

Serine/threonine protein phosphatases have been divided into four major classes, 1, 2A, 2B, and 2C, on the basis of their dependence on divalent cations and response to specific inhibitors. PP2A has been implicated in many cellular events, including glycolysis, lipid metabolism, cell proliferation, and replication of viral DNA (Cohen 1989; Cohen et al. 1990; Mumba and Walter 1991; Thomas 1992). Genetic analyses of yeast mutants revealed physiological roles of PP2A in cell division cycle, cell growth, and/or bud morphogenesis (Kinosita et al. 1990; Sneddon et al. 1990; Healy et al. 1991; Ronne et al. 1991). Although Drosophila genes encoding A and C subunits were cloned, investigation of their functions in vivo has been hampered by the lack of mutations of those genes (Orga et al. 1990; Mayer-Jäkel et al. 1992). Our characterization of the Drosophila twins mutant highlights a new aspect of PP2A function in multicellular organisms, namely, regulation of the activity of this enzyme may be crucial for pattern formation.

Possible mechanisms of pattern duplication in twins⁰

One of the well-known mechanisms to generate duplicated patterns in imaginal discs is cell death and subse-
tion of cell fate took place in that many cells die earlier.

instar, although this does not rule out the possibility we do not think that the twins duplication can simply be the result of cell death, because we did not detect extensive cell death in the mutant imaginal discs during the third instar, although this does not rule out the possibility that many cells die earlier.

Another possible mechanism is that the transformation of cell fate took place in twins mutants. In the twins wing disc, a group of cells showed ectopic expression of the PA49 marker in the posterior compartment, in the wild-type, this marker was expressed only along the anterior-posterior compartment boundary. These observations support the possibility that local cell fate changes trigger the formation of extra pattern copies. If some cells in the posterior compartment are transformed into precursor cells of the wing pouch, they would give rise to extra pattern copies. If some cells in the posterior compartment are transformed into precursor cells of the wing pouch, they would give rise to extra pattern copies.
Figure 7. Similarity of the twins product to regulatory B subunits of PP2A. Amino acid sequences of the two B subunits of human PP2A (hPR55α and hPR55β, Mayer et al. 1991), the S. cerevisiae CDC55 protein (Healy et al. 1991), and the putative twins product are aligned. Amino acids that are identical among the four proteins are shaded. The twins product is 78% and 75% identical to hPR55~ and hPR55B, respectively, and 50% identical to the CDC55 protein.

copies of this structure. Our preliminary analysis of adult lethal alleles of twins favors for the cell transformation hypothesis, during the formation of sensory organs, cell type identity was altered in these alleles (K. Shiomi and T. Uemura, unpubl.). In previous work, pattern duplications or triplications in imaginal discs were observed only in imaginal discs at late larval stages. This may be at least partly the result of the presence of maternal messages. By rapid cell proliferation during larval in a restricted population of cells might disrupt their interactions with the surrounding cells, leading to the formation of ectopic pattern elements.

We observed discrepancies between the twinsproduct phenotype and the spatiotemporal expression pattern of the twins product. Although twins was expressed in embryos, developmental defects in the mutants were observed only in imaginal discs at late larval stages. This may be at least partly the result of the presence of maternal messages. By rapid cell proliferation during larval

Figure 8. Immuno blot analyses of the twins product at various developmental stages. [A] Samples were prepared from wild-type Oregon-R animals at the indicated stages and stages, and immunoblot analyses of the 51-kD protein were performed with the anti-twins antibody, anti-TW-1. The expression of the 51-kD protein was maximum in 0- to 2-hr embryos and decreased gradually. The blot of embryonic samples was exposed for a much shorter time than other samples. In third-instar larvae, the protein was enriched in fractions of the central nervous system (CNS), imaginal discs (Disc), and salivary glands (SG). [B] Immuno blot test for the twins product in twins heterozygotes. Samples enriched with larval central nervous system and discs were prepared from the wild-type (WT) or twins homozygotes. The 51-kD protein was undetectable in the mutant sample. In A and B, 100 μg of protein was run in each lane.
periods, the gene products derived from the maternal messages and zygotic twins mRNA s should be diluted; finally, the mRNA level may become lower than that necessary for establishing cell identities in imaginal discs. Another discrepancy was that although twins expression took place in the entire regions of a wing disc and in other imaginal discs such as the eye–antenna disc, the twins effect was obvious only in a particular domain of the wing disc. This could be explained by restricted localization of the presumptive target molecules of PP2A, although other possible mechanisms cannot be ruled out.

Another insertion of the P element into twins has been independently isolated in other laboratories, and the locus was called abnormal anaphase resolution1 (aar1). Mayer-Jäkel et al. 1993. In larval neuroblasts of aar1, chromosome segregation during anaphase is aberrant. Similar abnormal mitotic figures were observed also in twins neuroblasts, and both the mitotic phenotype and the disc pattern defects could be rescued by germ line transformation with the wild-type twins gene [H. Ohkura and D. Glover, pers. comm.]. These results suggest pleiotropic effects of the twins mutation on different cell types. Neither twins nor aar1 appears to be a complete loss-of-function mutation. To grasp the in vivo roles of twins more accurately, it would be important to isolate and characterize null mutations, although abundant maternal messages might still obscure the null phenotype even in the complete absence of zygotic gene activity.

A critical question that remains to be answered is how PP2A is involved in cell fate determination or other possible mechanisms inducing pattern duplication. This has to be explained at the level of regulation of protein dephosphorylation. It would be necessary to narrow down the physiological targets of PP2A and to eventually identify the key substrates that are involved in pattern specification. It would be also intriguing to identify protein kinases that share the same target molecules. These studies should shed light on our question about a link between protein dephosphorylation and tissue pattern formation.

Materials and methods

Isolation of imaginal disc mutants

Two collections of third-chromosome lethal lines [Cooley et al. 1988a, Bier et al. 1989] were used for screening. Both collections were made through insertional mutagenesis with either of the two P-element vectors. These plasmids were pLChanneo [Steller and Pirrotta 1985] and P-lacW [Bier et al. 1989]. The mutant chromosomes had been kept as balanced stocks over TM3, Stubble. To determine lethal periods of individual strains, those chromosomes carrying mutations were re-balanced over TM6B, Tubby. Of a total of 292 lethals examined, 69 pupal lethal strains were isolated. Late third-instar larval homoygous for each lethal mutation were dissected to observe their imaginal disc morphology under a dissecting microscope. Seven lethal mutants showed imaginal disc defects. In four of those seven lines, the size of discs was normal or even larger, but their overall shapes were quite different from those of the wild type.

One of them was lethal[3]11C8, which had a single copy of P-lacW inserted into the chromosome band 85F or the boundary of 85F/86A. This chromosome was designated as twins in this study. Stocks were grown at 25°C, unless mentioned otherwise. twins homozygous mutants exhibited extended larval periods (~2 days longer than heterozygous mutants or wild-type animals), and wandering mutant third-instar larvae were larger than the wild-type animals. Under uncrowded conditions, the frequency of the homozygous mutant pupae from heterozygous parents (twins+/+) was >90% of that expected on the basis of the number of heterozygous siblings. Thus, most of the twins homozygotes were able to reach the pupal stage. The mutant pupae did not develop into pharate adults.

Excision of P-lacW from twins

The P-lacW element in twins was remobilized by mating to flies carrying the P transposase source Δ2-3 (Robertson et al. 1988). Seventy independent lines were established that had lost the miniwhite + marker gene in P-lacW. Of these, 22 jump-outs were homozygous viable, and the mutant phenotype had reverted to the wild-type in all 22 lines. The genomic DNA of each chromosome was analyzed by Southern blot hybridization. All of the excisions appeared to be precise. Therefore, the pupal lethality and the disc phenotype of twins was solely the result of the P-lacW insertion. The strain Δ2-3 was obtained from T. Tanimura (Kyushu University, Japan).

The other 48 lethal jump-outs were classified into three groups:

1. Fifteen pupal lethal lines that showed disc duplication phenotype. All were associated with internal deletions of P-lacW. twins and twins were two examples of this group. The level of Z expression was reduced in twins, and this was used for pattern analyses with molecular markers [see below]. twins had a much stronger activity of β-gal than twins.

2. Twenty-two adult lethal strains. By genetic criteria, they were hypomorphic alleles of twins [K. Shiomi and T. Uemura, unpubl.].

3. Eleven lethal lines that acquired mutations unrelated to the twins locus.

In this excision experiment, none of imprecise jumpers appeared to delete the genomic sequence under the resolution of Southern analyses.

Complementation test with a deficiency chromosome for the 85F region

To know whether twins is a complete loss-of-function mutation or not, we examined the phenotype of twins carried over a deficiency chromosome for the 85F region. Df(3R)by62, provided by K. Matthews [Bloomington Stock Center] and M. Michinomae (Konan University, Japan), uncoovers a chromosomal region from 85D11-14 to 85F16 [Kemphues et al. 1980, 1983]. Animals of twins/Df(3R)by62 were pupal lethal like twins homozygotes; however, all imaginal discs tended to show retarded growth, and the typical twins duplication phenotype was rarely found. Although Df(3R)by62 presumably affects dosage of many genes, Df(3R)by62/+ larvae produce normal imaginal discs. These observations indicated that (1) twins was not a null mutation but retained a low level of activity, and (2) the amount of the gene products made from only one copy of twins may not be sufficient for proliferation of disc cells.

Complementation test with tet

Because of the following two reasons, it was possible that twins...
might be allelic to tet [Lindsay and Grell 1968]. First, a cytological location of twins [85F] was very close to the genetic map position of tet [34-48.5]. Second, in the background of the outstretched small eye--small eye (os/) mutation that is located on the X chromosome, morphology of the wing discs is similar to that of twins (James and Bryant 1981). These workers reported that 11% of the os/ and tet double mutant adults showed some defects in derivatives of the wing disc. The os/, tet double mutant was obtained from the Blooming-ton Stock Center. Either at 17°C or at 25°C, no obvious disor-
ganization of adult cuticles was found in males of

lacZ

expression patterns in the twins background were examined histologically in homozygous

twins

mutant larvae that contained at least one copy of the P-lacZ insertion.

Histology

To search for dead cells in the mutant imaginal discs, histological serial sections of twins third-instar larvae were prepared. All fixative solutions were made in 0.1 M sodium phosphate buffer (PB, pH 7.2). Larvae were torn into two halves, and the anterior portions containing imaginal disc complexes were fixed in a 2.5% glutaraldehyde solution. After 1 hr, the buffer was gradually replaced with n-butanol. The samples were then transferred into a 1:1 mixture of n-butanol and paraffin, em- bedded in paraffin, and serially sectioned at 4 μm. The sections were stained with methylene blue/azure II and mounted in Eukitt (O. Kindeler). To detect dead cells in whole-mount prepa-

rations, imaginal discs were stained with acridine orange or trypan blue as described by Spreji (1971). The number of dead cells was as small as that in the wild-type tissue and much smaller than that in the cell death mutant lethal(3) [K. Shiomi, and T. Uemura, unpubl.].

X-gal staining was performed according to Bier et al. (1989), with slight modifications. Embryos were fixed for 20-30 min in 3.5% formaldehyde in PB and incubated with X-gal in the pres-

ence of Triton X-100 [Bellen et al. 1989]. Anterior half-larva were everted entirely [Ursprung 1966] and fixed for 15 min in 0.5% glutaraldehyde in PB or in PBS. Triton was not added in staining larval tissues.

Immunohistochemistry

We basically followed the protocol described by Bodmer and Jan (1987). Embryos or larval tissues were fixed in 3.5% formaldehyde in PB. All antibody incubations were done in PB [0.3% Triton X-100 in PB] containing 2% bovine serum albumin [Miles], and washes were in PBT. Rabbit anti-β-gal antibodies [Capell, diluted 1:200] were preabsorbed against Oregon-R samples. The embryos were processed with solutions of the Vectastain ABC kit according to the manufacturer's instruc-
tions. Then 0.5% NiCl2 was added to the peroxidase reaction. To visualize disc primordia, embryos were collected from twins+/+ parents, stained first with X-gal and then with anti-

vesigal antibody provided by J. Williams and S. Carroll [Williams et al. 1991]. We chose lateral views of stage 17 em-

bryos and counted numbers of the wing disc primordia in dark blue embryos (twins+/+ mice) and white embryos (twins+/+ +), and lacZ- embryos (+/+). Primordia of >30 embryos of each genotype were studied.

Dissected imaginal discs were incubated with the anti-

vesigal monoclonal antibody 4D9 [Pate1 et al. 1989] or with the anti-

vesigal antibody 984A11C1 [Skeath and Carroll 1991] overnight at 4°C and washed several times. Biotinylated anti-mouse immunoglobulin and fluorescein-streptavidin [both purchased from Amersham] were used for secondary and tertiary reactions, respectively, at a dilution of 1:100. The samples were mounted in 90% glycerol containing 1 mg/ml of paraphenylenediamine.

Cloning and analysis of the twins gene

The twins gene was isolated using the plasmid rescue procedure [Steller and Pirrotta 1986]. The twins genomic DNA was digested with BglII, BamHI, PstI, or EcoRI and self-ligated before transformation into Escherichia coli MC1061. An Oregon-R geno-
mic library [L. and Y.N. Jan, University of California, San Francisco] was screened to isolate longer genomic DNA from this region. Total RNA was extracted by the CHAOS method [Jonas et al. 1985], and the selection of poly(A)+ RNA was done batchwise using Oligotex [Takara]. The RNA was run on formaldehyde gels, blotted onto Hybond N [Amersham] and UV cross-linked (Stratalinker, Stratagene).

cDNA libraries of 9- to 12-hr embryos [K. Zinn, University of California, Los Angeles], 3- to 12-hr embryos [L. Kauvar and T. Kornberg, University of California, San Francisco], late third-instar larvae [L. Kauvar], and eye-imaginal discs [G. Rubin, Uni-

versity of California, Berkeley] were screened with genomic DNA fragments as probes. Two overlapping cDNA clones [13 and 51] covering 3.1 kb were sequenced with the Sequenase II system [U.S. Biochemical]. Clone 13 was isolated from the eye disc library, and 51 was obtained from the late third-instar larval cDNA library. A precise insertion site of P-lact in twins was determined by partial sequences of the rescued plasmids flank-

ing the P-element ends. A corresponding genomic region of Or-

regon-R was also sequenced, and it was confirmed that the P-lacW insertion was not accompanied by deletion and/or rearrangement of the neighboring genomic DNA. Sequence manipul-

ations and data base searches were done using DNAsis [Hi-
tachi] and IDEAS [Kanehisa 1982].

In situ hybridization

Whole-mount in situ hybridization to embryos and imaginal discs was carried out according to Tautz and Pfeifle [1989] and to protocols written by M. Mlodzik [EMBL] and N. Patel [Car-

negie Institute of Washington]. Single-stranded DNA probes were prepared by polymerase chain reaction. A twins cDNA fragment [nucleotides 1101–1998 in Fig. 6] was used as a tem-

plate.

Preparation of antibodies

The T7 gene10–twins fusion genes were constructed by cloning either an EcoRI–EcoRI 0.45 kb [nucleotides 651–1100 in Fig. 6] or an EcoRI–HindIII 0.9 kb [nucleotides 1101–1998] fragment into pGEMEX-1 (Promega). Fusion proteins [TW-1 and TW-2,
respectively) were overexpressed in *E. coli*, and inclusion bodies were run on SDS–polyacrylamide gels. The fusion proteins were electroeluted with a Biopar elution chamber [Schleicher & Schuell]. SDS was removed by passage over Ampure DT [Amersham]. Recovered protein solutions were used for immunization of rabbits. We followed the protocol of Inuzuka et al. [1991] for affinity purification of the antibodies.

Western blot analysis

Dechorionated embryos, larvae, pupae, and adults were homogenized in 1× Laemmli’s sample buffer containing 1 mM phenylmethylsulfonyl fluoride (but not bromphenol blue), sonicated, and immediately boiled for 5 min. After centrifugation, the supernatants were stored at −80°C. To enrich the larval central nervous system and imaginal discs, extraneous tissues such as trachea, guts, fat bodies, and salivary glands were removed from everted anterior half-larvae and processed as described above. The protein concentration of each sample was determined using the Lowry method [Lowry et al. 1951] with BSA as standard. Proteins in the extracts were separated by SDS-PAGE and transferred to nitrocellulose. To detect the *twins* protein, the ECL kit (Amersham) was used according to the manufacturer’s instructions. We could not detect significant signals in whole-mount staining of embryos and larval tissues with either anti-TW-1 or anti-TW-2.

Acknowledgments

Screening of lethal lines was done in the laboratory of Lily and Yuh Nung Jan. We are very grateful to them for kindly providing us with this opportunity. We also thank Ed Grell and Susan Shepherd in the Jan laboratory; and Peter Bryant, Shinji Hirano, Teiichi Tanimura, and Ryo Ueda for helpful discussions. We are grateful to Kathy Matthews, Masanao Michinomae, and particularly Chihiro Hama for *Drosophila* strains; Gerald Rubin and Yumiko Sano for cDNA libraries; James Skeath, Jim Williams, and Sean Carroll for antibodies; and Satoshi Goto, Fumio Matsuzaki, Seiji Miyatani, Hiroshi Sakamoto, and Kazuhiro Shiozaki for technical advice. Much thanks go to David Glover, Regina Mayer-Jakel, and Hiroyuki Okhura for communicating data before publication. This work was supported by research grants from the Ministry of Education, Science, and Culture of Japan.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

Note

The nucleotide sequence data reported in this paper will appear in the DDBJ, EMBL, and GenBank Nucleotide Sequence data bases under accession number D13004.

References

Bellen, H., C.J. O’kane, C. Wilson, U. Grossniklaus, R.K. Pearson, and W.J. Gehring. 1989. P-element-mediated enhancer detection: A versatile method to study development in *Drosophila*. *Genes & Dev.* 3: 1288–1300.

Bier, E., H. Vaessen, S. Shepherd, K. Lee, K. McCall, S. Barbel, L. Ackerman, R. Carretto, T. Uemura, E. Grell, L. Jan, and Y.N. Jan. 1989. Searching for pattern and mutation in the *Drosophila* genome with a P*-lacZ* vector. *Genes & Dev.* 3: 1273–1287.

Bodmer, R. and Y.N. Jan. 1987. Morphological differentiation of the embryonic peripheral neurons in *Drosophila*. *Wilhelm Roux’s Arch. Dev. Biol.* 196: 69–77.

Brower, D.L. 1984. Posterior-to-anterior transformation in engrafted wing imaginal disks of *Drosophila*. *Nature* 310: 496–497.

Bryant, P.J. 1978. Pattern formation in imaginal discs. In *Genetics and biology of Drosophila*, Vol. 2C [ed. M. Ashburner, and T.R.F. Wright], pp. 229–335. Academic Press, New York/London.

——. 1987. Experimental and genetic analysis of growth and cell proliferation in *Drosophila* imaginal discs. In *Genetic regulation of development* (ed. W.F. Loomis), pp. 339–372. Alan R. Liss, New York.

Bryant, S.V., V. French, and P.J. Bryant. 1981. Distal regeneration and symmetry. *Science* 212: 993–1002.

Campuzano, S. and J. Modolell. 1992. Patterning of the *Drosophila* nervous system: The *achaete-scute* gene complex. *Trends Genet.* 8: 202–207.

Cavener, D.R. 1987. Comparison of the consensus sequence flanking translational start sites in *Drosophila melanogaster* and vertebrates. *Nucleic Acids Res.* 15: 1553–1561.

Cohen, P. 1989. The structure and regulation of protein phosphatases. *Ann. Rev. Biochem.* 58: 453–508.

Cohen, P.T.W., N.D. Brewis, V. Hughes, and D.J. Mann. 1990. Protein serine/threonine phosphatases, an expanding family. *FEBS Lett.* 2: 355–359.

Cohen, B., M.E. McGuffin, C. Pfeifle, D. Segal, and S.M. Cohen. 1992. *apterous*, an gene required for imaginal disc development in *Drosophila* encodes a member of the LIM family of development regulatory proteins. *Genes & Dev.* 6: 715–729.

Cooley, L., R. Kelley, and A. Spradling. 1988a. Insertional mutagenesis of the *Drosophila* genome with single P elements. *Science* 239: 1121–1128.

Cooley, L., C. Berg, and A. Spradling. 1988b. Controlling P element insertional mutagenesis. *Trends Genet.* 4: 254–258.

Dearolf, C.R., E. Hersperger, and A. Shearn. 1988a. Developmental consequences of *awd*^{ts1}, a cell-autonomous lethal mutation of *Drosophila* induced by hybrid dysgenesis. *Dev. Biol.* 129: 159–168.

Dearolf, C.R., N. Tripoulos, J. Biggs, and A. Shearn. 1988b. Molecular consequences of *awd*^{ts1}, a cell-autonomous lethal mutation of *Drosophila* induced by hybrid dysgenesis. *Dev. Biol.* 129: 169–178.

French, V., P.J. Bryant, and S.V. Bryant. 1976. Pattern regulation in epimorphic fields. *Science* 193: 969–981.

Fristrom, D. 1969. Cellular degeneration in the production of some mutant phenotypes in *Drosophila melanogaster*. *Mol. & Gen. Genet.* 103: 363–379.

Fryberg, E.A., J.W. Mahaffey, B.J. Bond, and N. Davidson. 1983. Transcripts of the six *Drosophila* actin genes accumulate in a stage- and tissue-specific manner. *Cell* 33: 115–123.

Garcia-Bellido, A. and P. Santamaria. 1972. Developmental analysis of the wing disc in the mutant engrafted of *Drosophila melanogaster*. *Genetics* 72: 87–104.

Garcia-Bellido, A., P. Ripoll, and G. Morata. 1976. Developmental compartmentalization in the dorsal mesothoracic disc of *Drosophila*. *Dev. Biol.* 48: 132–147.

Hama, C., Z. Ali, and T.B. Kornberg. 1990. Region-specific recombination and expression are directed by portions of the *Drosophila* engrafted promoter. *Genes & Dev.* 4: 1079–1093.

Healy, A.M., S. Zolnierowicz, A.E. Stapleton, M. Goebel, A.A. Depaoli-Roach, and J.H. Pringle. 1991. CDC55, a *Saccharomyces cerevisiae* gene involved in cellular morphogenesis: Identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. *Mol. Cell.
Uemura et al.

Biol. 11: 5764–5780.

Imaoka, T., M. Imazu, H. Usui, N. Kinohara, and M. Takeda. 1983. Resolution and reassocation of three distinct components from pig heart phosphoprotein phosphatase. J. Biol. Chem. 258: 1526–1535.

Inuzuka, H., S. Miyataki, and M. Takeichi. 1991. R-Cadherin: A novel Ca 2+ -dependent cell-cell adhesion molecule expressed in the retina. Neuron 7: 69–79.

James, A. and P.J. Bryant. 1981. Mutations causing pattern deficiencies and duplications in the imaginal wing disk of Drosophila melanogaster. Dev. Biol. 85: 39–54.

Jonas, E., T.D. Sargent, and I.B. Dawid. 1985. Epidermal keratin gene expressed in embryos of Xenopus laevis. Proc. Natl. Acad. Sci. 82: 5413–5417.

Kanchisa, M.I. 1982. Los Alamos sequence analysis package for nucleic acids and proteins. Nucleic Acids Res. 10: 183–192.

Kemphues, K.J., E.C. Raff, R.A. Raff, and T.C. Kaufman. 1980. X-Linked deficiency: a testis-specific form of type 2A protein phosphatase. Mol. Cell. Biol. 1: 287–298.

Kemphues, K.J., E.C. Raff, and T.C. Kaufman. 1983. Genetic analysis of B2t, the structural gene for a testis-specific B-tubulin subunit in Drosophila melanogaster. Genetics 105: 345–356.

Kinosita, N., H. Ohkura, and M. Yanagida. 1990. Distinct, essential roles of type I and 2A protein phosphatase in the control of the fission yeast cell division cycle. Cell 63: 405–415.

Kornberg, T. 1981. Compartments in the abdomen of Drosophila melanogaster. Carnegie Inst. Wash. Publ., p. 249.

Lawrence, P.A. and G. Struhl. 1982. Further studies of the engrailed locus. Dev. Biol. 86: 363–372.

Lawrence, P.A. and G. Struhl. 1982. Further studies of the engrailed phenotype in Drosophila. EMBO J. 1: 827–833.

Lindsley, D. and E.H. Grell. 1968. Genetic variations of Drosophila melanogaster. Carnegie Inst. Wash. Publ. p. 249.

Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 263–275.

Mayer, R.E., P. Hendrix, P. Cron, R. Mathhies, S.R. Stone, J. Goris, W. Merlevede, J. Ho festive, and B.A. Hemmings. 1991. Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: Evidence for a neuronal-specific isomorph. Biochemistry 30: 3589–3597.

Mayer-Jäkel, R.E., S. Baumgartner, G. Bilbe, H. Ohkura, D.M. Glover, and B.A. Hemmings. 1992. Molecular cloning and developmental expression of the catalytic and 65-kDa regulatory subunits of protein phosphatase 2A in Drosophila. Mol. Biol. Cell 3: 287–298.

Mayer-Jäkel, R., H. Ohkura, R. Gomes, C. Sunkel, B. Hemmings, and D. Glover. 1993. The 55kD regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell (in press).

Mlodzik, M., N.E. Baker, and G.M. Rubin. 1990. Isolation and expression of scabrous, a gene regulating neurogenesis in Drosophila. Genes & Dev. 4: 1848–1861.

Morata, G. and P.A. Lawrence. 1975. Control of compartment development by the engrailed gene in Drosophila. Nature 255: 614–617.

Mumby, M.C. and G. Walter. 1991. Protein phosphatases and DNA tumor viruses: Transformation through the back door? Cell Regul. 2: 589–598.

Orga, S., N.D. Brevis, L. Alphey, J.M. Axtom, Y. Dudai, and P. Cohen. 1990. The structure of protein phosphatase 2A is as highly conserved as that of protein phosphatase 1. FEBS Lett. 275: 44–48.

Patel, N.H., E. Martin-Blanco, K.G. Coleman, S.J. Poole, M.C. Ellis, T.B. Kornberg, and C.S. Goodman. 1989. Expression of engrailed proteins in anthropods, annelids, and chordates. Cell 58: 955–968.

Robertson, H.M., C.R. Person, R.W. Phillis, D. Johnson-Schultz, W.K. Benz, and W.R. Engels. 1988. A stable source of P-element transposase in Drosophila melanogaster. Genetics 118: 461–470.

Ronne, H., M. Carlb erg, G.Z. Hu, and J.O. Nehlin. 1991. Protein phosphatase 2A in Saccharomyces cerevisiae: Effect on cell growth and bud morphogenesis. Mol. Cell. Biol. 11: 4876–4884.

Santamaria, P., J. Deatrick, and N.B. Randsholt. 1989. Pattern triplications following genetic ablation on the wing of Drosophila: Effect of eliminating the polyhomeotic gene. Wilhelm Roux’s Arch. Dev. Biol. 198: 65–77.

Shearn, A. 1978. Mutational dissection of imaginal disc development. In The genetics and biology of Drosophila, Vol. 2C [ed. M. Ashburner and T.R.F. Wright], pp. 443–510. Academic Press, New York/London.

Simcox, A.A., E. Wurst, E. Hersperger, and A. Shearn. 1987. The defective dorsal discs gene of Drosophila is required for the growth and bud morphogenesis of specific imaginal discs. Dev. Biol. 122: 559–567.

Simpson, P. and Y. Graul. 1987. The segment polarity gene cos-2 in Drosophila. II. The origin of imaginal pattern duplications. Dev. Biol. 122: 201–209.

Skerath, J. and S.B. Carroll. 1991. Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes & Dev. 5: 984–995.

Snodden, A.A., P.T.W. Cohen, and M.J.R. Stark. 1990. Saccharomyces cerevisiae protein phosphatase 2A performs an essential cellular function and is encoded by two genes. EMBO J. 9: 4339–4346.

Spirej, T.H. 1971. Cell death during the development of the imaginal disks of Calliphora erythrocephala. Neth. J. Zool. 21(3): 221–261.

Steller, H. and V. Pirrotta. 1985. A transposable P vector that confers selectable G418 resistance to Drosophila larvae. EMBO J. 4: 167–171.

Thomas, G. 1992. MAP kinase by any other name smells just as sweet. Cell 68: 3–6.

Ursprung, H. 1966. In vivo culture of Drosophila imaginal discs. In Methods in developmental biology [ed. F. H. Wilt, and N. K. Wessells], pp. 485–492. Thomas Y. Crowell Company, New York.

Usui, H., M. Imazu, K. Maeta, H. Tsukamoto, K. Azuma, and M. Takeda. 1988. Three distinct forms of type 2A protein phosphatase in human erythrocyte cytosol. J. Biol. Chem. 263: 3752–3761.

Whittle, J.R.S. 1975. Replacement of posterior by anterior structures in the Drosophila wing caused by the mutation apterous-blot. In vivo. EMBO J. 4: 167–171.

Wilkins, A.S. and D. Gubb. 1991. Pattern formation in the embryo and imaginal discs of Drosophila: What are the links? Dev. Biol. 145: 1–12.

Williams, J.A., J.B. Bell, and S.B. Carroll. 1991. Control of Drosophila wing and haltere development by the nuclear vestigial gene product. Genes & Dev. 5: 2481–2495.
Mutation of twins encoding a regulator of protein phosphatase 2A leads to pattern duplication in Drosophila imaginal discs.

T Uemura, K Shiomi, S Togashi, et al.

Genes Dev. 1993, 7:
Access the most recent version at doi:10.1101/gad.7.3.429