CORRECTION TO "TOPOLOGICAL NONREALIZATION RESULTS VIA THE GOODWILLIE TOWER APPROACH TO ITERATED LOOPSPACE HOMOLOGY"

NICHOLAS J. KUHN

Abstract. Manfred Stelzer has pointed out that part of Corollary 4.5 of [K] was not sufficiently proved, and, indeed, is likely incorrect as stated. This necessitates a little more argument to finish the proof of the main theorem of [K]. The statement of this theorem, and all the examples, remain unchanged.

In [K], the author showed that certain unstable modules over the mod 2 Steenrod algebra couldn’t be realized as the reduced mod 2 cohomology of a space. The modules have the form $\Sigma^n M$, where M is an unstable module of a special sort. The method of proof was to use a 2nd quadrant spectral sequence converging to $H^*(\Omega^n X; \mathbb{Z}/2)$ to show that, were a space X to exist whose cohomology realized $\Sigma^n M$, $H^*(\Omega^n X; \mathbb{Z}/2)$ could not admit a cup product compatible with Steenrod operations.

The spectral sequence for $n > 1$ is a newish one, arising from the Goodwillie tower of the functor $X \mapsto \Sigma^\infty \Omega^n X$, and section 4 of [K] is devoted to collecting and proving some basic facts about this spectral sequence. I thank Manfred Stelzer for pointing out that part of Corollary 4.5 is likely over optimistic, and certainly was not sufficiently proved.

We assume notation as in [K].

In Corollary 4.5, it was asserted that, if $\tilde{H}^*(X; \mathbb{Z}/2) \simeq \Sigma^n M$ with M unstable, and also has no nontrivial cup products, then in the spectral sequence, one will have $E^{-1,*}_3 = E^{-1,*}_2 = E^{-1,*}_1$, and $E^{-2,*}_2 = E^{-2,*}_1$. My mistake was in not adequately considering possible differentials on elements in $E^{-3,*}_1$ of the form $\sigma^3 L_{n-1}(x \otimes y \otimes z)$. Under the hypotheses on the cup product, the d_1 differential on such terms will be 0, by the same argument given explaining why d_1 is zero on terms of the form $L(x \otimes y)$: by comparison to the classical Eilenberg–Moore spectral sequence. But there is no apparent reason why d_2 need also be zero on such terms. We can only conclude that $E^{-1,*}_2 = E^{-1,*}_1$, and $E^{-2,*}_2 = E^{-2,*}_1$.

Corollary 4.5 is used at one critical point in the proof of the main theorem given in section 5. Lemma 5.3 asserts that a certain element in $E^{-1,2d+2k+2+1}_1$ is not a boundary. The argument given is that for dimension reasons, no
d_r for $r > 2$ could have nonzero image in this bigrading. Implicit is that Corollary 4.5 takes care of d_1 and d_2. In light of the comments above, one needs a new argument for d_2.

It turns out that, except for one special case, a dimension argument still works: $E^{-3,2d+2k^2+2}_q$ contains no elements of the form $\sigma^3 L_{n-1}(x \otimes y \otimes z)$. There are two extreme cases to consider: if x, y, and z are all chosen from the top of N_0, and if x and y are chosen from the bottom of N_0 and z is chosen from the bottom of M_1.

In the first case, $|x| = |y| = |z| = m + 2^k$, and so $\sigma^3 L_{n-1}(x \otimes y \otimes z)$ has bidegree $(-3, 3m + 3 \cdot 2^k + 2n + 1)$. In the second case, $|x| = |y| = d + 2^k$ and $|z| = l + 2k + 1$, and so $\sigma^3 L_{n-1}(x \otimes y \otimes z)$ has bidegree $(-3, 2d + l + 2k^2 + 2n + 1)$.

We are assuming inequality (5–3), which says that $2^k > 4m - 2l + 2n - 2$. One also has that $0 \leq l \leq d \leq m$ and $n \geq 1$. One can then check that, indeed,

\[3m + 3 \cdot 2^k + 2n + 1 < 2d + 2k^2 + 2 < 2d + l + 2k^2 + 2n + 1,\]

unless we are in the special case $k = 0, n = 1, l = d = m = 0$.

In this final special case, $n = 1$, so we are trying to use the classical Eilenberg–Moore spectral sequence to show that, if M is a $\mathbb{Z}/2$ vector space concentrated in degree 0, there cannot exist a space X with $\tilde{H}^*(X; \mathbb{Z}/2) \cong \Sigma M \otimes \Phi(0, 2)$, if all cup products are zero. Such a space will necessarily fit into a cofibration sequence of the form

\[\bigvee S^4 \to \bigvee \Sigma \mathbb{R}P^2 \to X.\]

We leave it to the reader to check that, by appropriately including S^4 into the first wedge, and projecting out onto a $\Sigma \mathbb{R}P^2$ in the second wedge, one sees that X will have a ‘subquotient’ Y with $\tilde{H}^*(Y; \mathbb{Z}/2) \cong \Sigma \Phi(0, 2)$, and still with all cup products 0.

Similar to, but simpler than, arguments in section 6 of [K] (which dealt with $\Sigma^2 \Phi(1, 3)$), our arguments show that such a Y can’t exist. Repressing some suspensions from the notation, Figure 1 shows all of $E^{3,\ast}_2$ in total degree less than or equal to 4, in the Eilenberg–Moore spectral sequence converging to $\tilde{H}^*(\Omega Y; \mathbb{Z}/2)$.

As cup products are assumed zero, $E^{3,\ast}_2 = E^{\ast,\ast}_1$. Furthermore, $d_2(a \otimes a) = 0$ (and thus not c), because $a \otimes a \otimes a = (a \otimes a) \ast a$ and d_2 is a derivation with respect to the shuffle product \ast. Thus through degree 4, $F^{-2} \tilde{H}^*(\Omega Y; \mathbb{Z}/2)$ would have a basis given by elements 1, a, β, δ, ϵ_1, ϵ_2, γ, and ω, in respective degrees 0, 1, 2, 2, 3, 3, 4, and 4, and represented by 1, a, b, $a \otimes a$, $a \otimes b$, $b \otimes a$, c, and $b \otimes b$. The structure of $\Phi(0, 2)$ ($S^q a = b$, $S^q b = c$) shows that $\gamma = \beta^2 = \alpha^4$. Furthermore, $S^q \delta = \epsilon_1 + \epsilon_2 = \alpha \cup \beta$, as all three are represented by $a \otimes b + b \otimes a$. One then gets a contradiction, as

\[0 = S^q S^q \delta = S^q (\alpha \cup \beta) = \beta^2 = \gamma \neq 0.\]

We end by observing that $\tilde{H}^*(SU(3)/SO(3); \mathbb{Z}/2) \cong \Sigma \Phi(0, 2)$. Here, of course, cup products are not zero, due to Poincaré duality.
Corrections to Nonrealization Results via Goodwillie Towers

\[E^s_{t} \text{ when } \tilde{H}^s(Y; \mathbb{Z}/2) \simeq \Sigma \Phi(0, 2) \]

References

[K] N. J. Kuhn, Topological nonrealization results via the Goodwillie tower approach to iterated loop space homology, Algebraic and Geometric Topology 8 (2008), 2109–2129.

Department of Mathematics, University of Virginia, Charlottesville, VA 22904

E-mail address: njk4x@virginia.edu