Research Article

Finitely Generated Modules over Group Rings of a Direct Product of Two Cyclic Groups

Ahmed Najim and Mohammed Elhassani Charkani

Department of Mathematics and Informatics, Faculty of Science Dhar Mahraz, Sidi Mohamed Ben Abdellah University, 30000 Fez, Morocco

Correspondence should be addressed to Ahmed Najim; najim.sefrou@gmail.com

Received 27 August 2014; Accepted 15 November 2014; Published 1 December 2014

Academic Editor: Zhongshan Li

Copyright © 2014 A. Najim and M. E. Charkani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let K be a commutative field of characteristic $p > 0$ and let $G = G_1 \times G_2$, where G_1 and G_2 are two finite cyclic groups. We give some structure results of finitely generated $K[G]$-modules in the case where the order of G is divisible by p. Extensions of modules are also investigated. Based on these extensions and in the same previous case, we show that $K[G]$-modules satisfying some conditions have a fairly simple form.

1. Introduction

Let K be a field of characteristic $p > 0$ and let G be a finite group. The study of $K[G]$-modules in the case where the order of G is divisible by p is a very difficult task. When G is a finite abelian p-group, we find in [1] the following statement: a complete classification of finitely generated $K[G]$-modules is available only when G is cyclic or equal to $C_2 \times C_2$, where C_2 is the cyclic group of order 2. In [2] we find this classification in these two cases. Still more, in the case where the Sylow p-subgroup P of G is not cyclic, the groups G such that $p = 2$ and P is dihedral, semidihedral, or generalized quaternion are the only groups for which we can (in principle) classify the indecomposable $K[G]$-modules (see [2]). These reasons just cited show the importance of the study of $K[G]$-modules when G is of order divisible by p and equal to a direct product of two cyclic groups.

Now, let K be a commutative field of characteristic $p > 0$ and let $G = G_1 \times G_2$, where G_1 and G_2 are two finite cyclic groups. Let M be a finitely generated $K[G]$-module. When M is considered as a module over a subalgebra $K[H]$ of $K[G]$ for a subgroup H of the group G, we write $M_{\downarrow H}$.

In Section 2, we show that if G_1 is a cyclic p-group and the characteristic of K does not divide the order of G_2, then we can have a complete system of indecomposable pairwise nonisomorphic $K[G]$-modules. In the rest, we assume that $G_1 = \langle \sigma_1 \rangle$ and $G_2 = \langle \sigma_2 \rangle$ are cyclic p-groups. Under conditions that $M_{\downarrow G_1}$ is a free $K[G_1]$-module and that $M/(\sigma_1 - 1)M$ is a free $K[G_2]$-module, we show that M is a free $K[G]$-module. We also show that if σ_2 is of order p^n, $n \neq 0$, and H_2 is the subgroup of G_2 generated by $a_2^{p^n}$, with $0 < r \leq n$, then under certain conditions M is a free $K[G_1 \times H_2]$-module. The fact that $M_{\downarrow G_1}$ must be a free $K[G_1]$-module is one of these conditions, and exactly in the end of this section we give a result that shows when this condition is satisfied. In Section 3 and always in the case where G_1 and G_2 are cyclic p-groups, we show that under some conditions $K[G]$-modules have a fairly simple form. But in case $p = 2$, G_1 and G_2 are two cyclic groups of respective orders 2 and 2^n, $n \neq 0$; these modules have this simple form without any other assumptions other than that they must be finitely generated over $K[G]$.

2. Free $K[C_{p^m} \times C_{p^n}]$-Modules of Finite Rank

Throughout this paper, rings are assumed to be commutative with unity. We begin this section by giving a weak version of Nakayama’s lemma with an elementary proof.

Lemma 1 (Nakayama). Let G be a p-group with p odd, R a ring of characteristic p^k where k is a natural number,
Let M be an $R[G]$-module (not necessarily finitely generated), and N a submodule of M and $\sigma \in G$. Then, one has the following:

1. if $(\sigma - 1)M = M$, then $M = 0$;
2. if $M = (\sigma - 1)M + N$, then $M = N$;
3. if $x_i, i \in I$, are representatives in M of a generating family of $M/(\sigma - 1)M$, then $(x_i)_{i \in I}$ generate M.

Proof. (1) Let p' be the order of G. We have

$$
(\sigma - 1)^{p'} = \sum_{i=0}^{p'} C_{p'}^i (-1)^i \sigma^{p' - i}
$$

$$
= \sigma^{p'} + (-1)^{p'} + \sum_{i=1}^{p'-1} C_{p'}^i (-1)^i \sigma^{p' - i}
$$

$$
= \sum_{i=1}^{p'-1} C_i^{p'} (-1)^i \sigma^{p' - i}
$$

$$
= p \sum_{i=1}^{p'-1} \frac{1}{i} C_i^{p'} (-1)^i \sigma^{p' - i}.
$$

For $1 \leq i \leq p' - 1$, $p \mid C_i^{p'}$, so $(1/p)C_i^{p'}$ is a natural number. So

$$
(\sigma - 1)^{kp'} = \left((\sigma - 1)^p \right)^{k}
$$

$$
= \left(p \sum_{i=1}^{p'-1} \frac{1}{i} C_i^{p'} (-1)^i \sigma^{p' - i} \right)^k
$$

$$
= p^k \left(\sum_{i=1}^{p'-1} \frac{1}{i} C_i^{p'} (-1)^i \sigma^{p' - i} \right)^k
$$

$$
= 0,
$$

since R has characteristic p. Now $M = (\sigma - 1)M = (\sigma - 1)^2 M = \cdots = (\sigma - 1)^{kp'} M = 0$.

(2) If $M = (\sigma - 1)M + N$, then $M/N = ((\sigma - 1)M + N)/N = (\sigma - 1)(M/N)$, and then, by (1), $M/N = 0$ and then $M = N$.

(3) If N is the submodule generated by x_i, then $M = (\sigma - 1)M + N$, and then by (2) we have $M = N$. □

Remark 2. Lemma 1 remains true if $p = 2$ and R is of characteristic 2.

For a ring R of prime characteristic p and for a cyclic group G of order p' generated by an element σ, we have the following lemma.

Lemma 3. Let $k = p'$ with $0 < r' \leq r$ and let H be a subgroup of G generated by $\sigma^{p'/k}$. Then, one has $R[G]/(\sigma - 1)^k R[G] \cong R[H]$ (as R-algebras).

Proof. Define

$$
\psi : \frac{R[G]}{(\sigma - 1)^k R[G]} \rightarrow R[H],
$$

where ψ is a well-defined R-algebra homomorphism. It is easy to see that ψ is surjective. As $R[G]/(\sigma - 1)^k R[G]$ and $R[H]$ are finite free modules of the same rank k over R, ψ is an isomorphism. □

Remark 4. With the notation of Lemma 3, H is simply the subgroup of G generated by $\sigma^{p'/k}$.

Let K be a commutative field of characteristic $p > 0$ and let G be a direct product of two finite groups G_1 and G_2. We have $K[G] = K[G_1 \times G_2] \cong R[G_2]$, where $R = K[G_1]$.

Assume that G_1 is a cyclic group of order p^m generated by σ_1 and p does not divide the order of G_2, $R = K[G_2]$ is a principal Artinian local ring. Indeed $K[G_1] \cong K[X]/(X - 1)^{p^m}$; this isomorphism is induced by the homomorphism $\Psi : K[X] \rightarrow K[G]$ defined by $\Psi(X) = \sigma_1$. $K[X]/(X - 1)^{p^m}$ is a principal Artinian local ring with residue field K (up to isomorphism) whose maximal ideal is generated by $X - 1$. So R is a principal Artinian local ring with residue field K (up to isomorphism) whose maximal ideal is generated by $\sigma_1 - 1$. We have $K[G] \cong R[G_2]$, where R is a principal Artinian local ring of residue field K. The characteristic of K does not divide the order of G_2. Under these conditions, we can apply [3, Theorem 3.6] to have a complete system of indecomposable pairwise nonisomorphic $K[G]$-modules.

In the remainder of this section, we assume that $G_1 = C_{p^m}$ and $G_2 = C_{p^n}$ are two cyclic groups of respective orders p^m and p^n and are generated, respectively, by σ_1 and σ_2. We have $K[G] \cong R[G_2]$. As R is a commutative ring and local and G_2 is a p-group, by [4, Proposition 10, page 239], $R[G_2]$ is a local ring. Therefore $K[G]$ is a local ring. As K is commutative ring and local and G is a p-group, $K[G]$ is a local ring by [4, Proposition 10, page 239]. So the $K[G]$-projective modules are free $K[G]$-modules.

Lemma 5. Let M be a $K[G]$-module. Then, $M/(\sigma_1 - 1)M$ is a $K[G_1]$-module (also $M/(\sigma_2 - 1)M$ is a $K[G_2]$-module).

Proof. This lemma is a particular case of a more general result (see [5, page 386]). But for this particular case, we can give the following direct proof: $M/(\sigma_1 - 1)M$ is a $(K[G_1]/(\sigma_1 - 1)K[G_1])K[G_2]$-module, and we have already seen that $(\sigma_1 - 1)K[G_1]$ is the unique maximal ideal of $K[G_1]$. $K[G_1]/(\sigma_1 - 1)K[G_1] \cong K$. So $M/(\sigma_1 - 1)M$ is a $K[G_2]$-module.

Similarly we show that $M/(\sigma_2 - 1)M$ is a $K[G_1]$-module. □

Proposition 6. Let M be a free $K[G]$-module of rank l. Then, $M/(\sigma_1 - 1)M$ is a free $K[G_2]$-module and $M/(\sigma_2 - 1)M$ is a free $K[G_1]$-module of the same rank l. □
Proof. As $K[G]$ is a local ring, $K[G]$-projective modules are free $K[G]$-modules, and therefore this proposition is only a particular case of a more general result (see [5, Lemma 2.2]). But for this particular case, we can give the following specific proof: we have $M \cong (K[G])^\ell = (K[G_1 \times G_2])^\ell$. So $M \cong (K[G_1][G_2])^\ell$. Then, we have

$$\begin{align*}
(\sigma_1 - 1)M &\cong (\sigma_1 - 1)(K[G_1][G_2])^\ell \\
&\cong ((\sigma_1 - 1)K[G_1][G_2])^\ell.
\end{align*}$$

Hence,

$$\begin{align*}
(M / (\sigma_1 - 1)M) &\cong (K[G_1][G_2])^\ell / ((\sigma_1 - 1)K[G_1][G_2])^\ell \\
&\cong \left(\begin{array}{c} K[G_1][G_2] \\ (\sigma_1 - 1)K[G_1][G_2] \end{array}\right)^\ell.
\end{align*}$$

As $K[G_1]/(\sigma_1 - 1)K[G_1] = K$ (as we have already seen), $M / (\sigma_1 - 1)M \cong (K[G_2])^\ell$. So $M / (\sigma_1 - 1)M$ is a free $K[G_2]$-module of rank l.

Similarly we show that $M / (\sigma_2 - 1)M$ is a free $K[G_1]$-module of rank l.

Proposition 7. Let M be a $K[G]$-module. If $M_{\mathfrak{g}}$ is a free $K[G_1]$-module and $M / (\sigma_1 - 1)M$ is a free $K[G_2]$-module, then M is a free $K[G]$-module.

Proof. $R = K[G_1]$ is a principal Artinian local ring with residue field K and $\sigma_1 - 1$ is a generator of its maximal ideal. $M_{\mathfrak{g}}$ is a free R-module and $Q = M / (\sigma_1 - 1)M$ is a projective $K[G_2]$-submodule of $M / (\sigma_1 - 1)M$. Then, $M = P \oplus M'$, where P is a projective $R[G_2]$-module and $P / (\sigma_1 - 1)P \cong Q = M / (\sigma_1 - 1)M$ (according to [3, Proposition 4.13]). We have

$$\begin{align*}
(M / (\sigma_1 - 1)M) &\cong (P \oplus M') / (\sigma_1 - 1)(P \oplus M') \\
&\cong \left(\begin{array}{c} P \\ (\sigma_1 - 1)P \oplus (\sigma_1 - 1)M' \end{array}\right) \\
&\cong \left(\begin{array}{c} P \\ (\sigma_1 - 1)M' \end{array}\right),
\end{align*}$$

So $M' / (\sigma_1 - 1)M' = 0$. By Nakayama’s lemma and the remark following it, $M' = 0$. Therefore, $M = P$ which is projective $R[G_2]$-module. As $R[G_2] \cong K[G]$ is a local ring, M is a free $K[G]$-module.

Let J_i be the Jacobson radical of $K[G_i]$ for $i \in \{1, 2\}$. Note that if K is of characteristic p (as here) and G' is a cyclic p-group, then the Jacobson radical of $K[G']$ is none other than $(\sigma - 1)K[G']$, where σ is a generator of G' (see [5, page 122]).

Let M be a finitely generated $K[G]$-module and k a natural number such that $1 \leq k \leq p^r$. As $K[G] \equiv R[G_2]$, M is a $R[G_2]$-module. So M / J_iM is a $K[X]/(X - 1)^k$-module. M is called of type k if M / J_iM is a free $K[X]/(X - 1)^k$-module (terminology of [6]).

Lemma 8. If M is a $K[G]$-module of type k with $k = p^r$ and $0 < r \leq n$ and H_2 is the subgroup of G_2 generated by $\sigma_2^{p^{r-1}}$, then M / J_iM is a free $K[H_2]$-module.

Proof. As M is of type k, M / J_iM is a free $K[X]/(X - 1)^k$-module. Define

$$\psi : \frac{K[X]}{(X - 1)^k} \to K[H_2] ,$$

where ψ is a well-defined K-algebra homomorphism. It is not difficult to show that ψ is an isomorphism (using an argument similar to that done in the proof of Lemma 3). So M / J_iM is a free $K[H_2]$-module.

Theorem 9. Let M be a $K[G]$-module of type k, with $J_iM = 0$, and let H_2 be the subgroup of G_2 generated by $\sigma_2^{p^{r-1}}$ with $0 < r \leq n$. If $M_{\mathfrak{g}_1}$ is R-free and $k = p^r$, then M is a free $K[G_1 \times H_2]$-module.

Proof. M is an $R[G_2]$-module R-free. We have $J_iM = 0$, so $(\sigma_2 - 1)^kM = 0$, and therefore $((\sigma_2 - 1)^kR[G_2])M = 0$. So M is an $R[G_2]/((\sigma_2 - 1)^kR[G_2])$-module R-free. By Lemma 3, $R[G_2] / (\sigma_2 - 1)^kR[G_2] \equiv R[H_2]$; then M is an $R[H_2]$-module R-free. M / J_iM is a free $K[X]/(X - 1)^k$-module, so by Lemma 8 this is a free $K[H_2]$-module. In conclusion M is a $K[G_1 \times H_2]$-module such that

$$M_{\mathfrak{g}_1} \cong K[G_1] - \text{module},$$

$$M / J_iM \text{ is a free } K[H_2] - \text{module.}$$

So by Proposition 7 M is a free $K[G_1 \times H_2]$-module.

In Theorem 9 we assumed that the $k[G]$-module M satisfies the following condition: $M_{\mathfrak{g}_1}$ is R-free. So it is useful to know when this condition is satisfied. This is the subject of the following result.

Theorem 10. Let M be a $k[G]$-module and σ an element of G of order p^r. The following conditions are equivalent:

1. $M_{\mathfrak{g}_1}$ is free;
2. $\dim_k(M) = \binom{p^r}{(p^r - 1)} \dim_k((\sigma - 1)M)$;
3. $\dim_k(M) = \dim_k((\sigma - 1)M) + \dim_k((\sigma - 1)^{p^{r-1}}M)$.

Proof. (1) \Rightarrow (2) Assume that $M_{\mathfrak{g}_1}$ is free. There exists a nonzero natural number n such that $M_{\mathfrak{g}_1} \equiv (k[\langle \sigma \rangle])^n$. The endomorphism φ of M defined by $\varphi(m) = (\sigma - 1)m$ for all
be a pair of extensions of M_2 by M_1. These two extensions are equivalent if there exists an isomorphism of $R[G]$-modules \(\Phi : X \to X' \) such that $\Phi u = u'$ and $\nu' \circ \Phi = \nu$. These equivalence classes of extensions form an R-module $\text{Ext}^1_{R[G]}(M_2, M_1)$. The $R[G]$-modules sequence $O \to M_1 \rightarrow M_1 \times F M_2 \rightarrow M_2 \rightarrow O$, where i and j denote, respectively, the canonical injection from M_1 to $M_1 \times F M_2$ and the second projection from $M_1 \times F M_2$ to M_2, is exact. The equivalence class of this sequence is denoted by $[M_1 \times F M_2]$.

Remark II. With the previous notations, derivations F and modules $M_1 \times F M_2$ play the same role as the cocycles α and modules $M_1 \times M_2$ defined in [8].

From Proposition 25.10 of [7] we have the following result.

Proposition 12. The correspondence $\theta : \text{Der}(R[G], T) \rightarrow \text{Ext}^1_{R[G]}(M_2, M_1)$ defined by $\theta(F) = [M_1 \times F M_2]$ is surjective whenever M_2 is finitely generated and projective as R-module.

From Theorems 5.2 and 5.3 of [9] we have the following result.

Proposition 13. Let G be a cyclic group of order p' generated by an element σ, K a field of characteristic p, and M an indecomposable $K[G]$-module. Then, M is isomorphic to $\sigma \cap 1'K[G]$, where s is a natural number strictly less than p'.

Lemma 14. Let R be a ring and $G = G_1 \times G_2$ a direct product of two finite groups. Let M be an $R[G]$-module such that the action of G_1 on M is trivial and let M' be an $R[G_2]$-module. If M is isomorphic to M' as $R[G_2]$-modules and if we extend the action of G_2 on M' to G by $\sigma \cdot m' = m'$, $\forall(\sigma, m') \in G_1 \times M'$, then M is isomorphic to M' as $R[G]$-modules.

Proof. Let $\psi : M \to M'$ be an isomorphism of $R[G_2]$-modules. We extend the action of G_2 on M' to G by $\sigma \cdot m' = m'$, $\forall(\sigma, m') \in G_1 \times M'$. We easily see that the application $\psi : M \to M'$ is an isomorphism of $R[G]$-modules.

Let K be a commutative field of characteristic $p > 0$. Let $G = G_1 \times G_2$, where $G_1 = C_{p^m}$ and $G_2 = C_{p^n}$ are two cyclic groups of respective orders p^m and p^n and are generated, respectively, by σ_1 and σ_2, and let I_j be the Jacobson radical of $K[G_1]$.

Proposition 15. Let M be a finitely generated $K[G]$-module. If $I_j M = 0$, then there exists a nonzero natural number n' such that $M \cong \phi^{n'}_{s,j} K[G_2]$, $0 \leq k_j < p$, as $K[G]$-modules, where the action of G_1 on $\phi^{n'}_{s,j}(\sigma_2 - 1)^k K[G_2]$ is trivial.

Proof. If $I_j M = 0$, then the action of G_1 on M is trivial since $I_j = (\sigma_1 - 1)K[G_1]$. By Proposition 13, there exists a nonzero natural number n' such that $M \cong \phi^{n'}_{s,j} (\sigma_2 - 1)^k K[G_2]$, $0 \leq k_j < p$, as $K[G_2]$-modules. Then, Lemma 14 allows concluding the following.\]
Theorem 16. Let M be a finitely generated $K[G]$-module. If $J_2^1 M = 0$, then there exist two nonzero natural numbers n' and n'' and two $K[G]$-modules $M_1 = \psi_{n'}^n(\sigma_2 - 1)^k K[G_2]$, $0 \leq k < p^n$, and $M_2 = \psi_{n''}^n(\sigma_2 - 1)^k K[G_2]$, $0 \leq k' < p^n$, where the action of G_2 on M_1 and M_2 is trivial, and there exists a derivation F from $K[G]$ in Hom$_K(M_2, M_1)$ such that $M \cong M_1 \times_F M_2$.

Proof. We have the exact sequence of $K[G]$-modules $O \rightarrow J_1 M \hookrightarrow M \rightarrow J_1 J_1 M \rightarrow O$. As $J_2^1 M = 0$, $J_1 (J_1 M) = 0$. So by Proposition 15 there exists a nonzero natural number n' such that $J_1 M \cong \psi_{n'}^n(\sigma_2 - 1)^k K[G_2]$, $0 \leq k < p^n$, as $K[G]$-modules, where the action of G_1 on $\psi_{n'}^n(\sigma_2 - 1)^k K[G_2]$ is trivial. We set $M_1 = \psi_{n'}^n(\sigma_2 - 1)^k K[G_2]$. We have $J_1 (J_1 J_1 M) = 0$. So by Proposition 15 there exists a nonzero natural number n'' such that $M/J_1 M \cong \psi_{n''}^n(\sigma_2 - 1)^k K[G_2]$, $0 \leq k' < p^n$, as $K[G]$-modules, where the action of G_1 on $\psi_{n''}^n(\sigma_2 - 1)^k K[G_2]$ is trivial. We set $M_2 = \psi_{n''}^n(\sigma_2 - 1)^k K[G_2]$. Then, Proposition 12 shows that $M \cong M_1 \times_F M_2$ for a derivation F from $K[G]$ in Hom$_K(M_2, M_1)$.

If $p = 2$, $G_1 = C_2$, and $G_2 = C_{2^n}$, then we have the following corollary.

Corollary 17. For all finitely generated $K[G]$-modules there exist two nonzero natural numbers n' and n'' and two $K[G]$-modules $M_1 = \psi_{n'}^n(\sigma_2 - 1)^k K[G_2]$, $0 \leq k < 2^n$, and $M_2 = \psi_{n''}^n(\sigma_2 - 1)^k K[G_2]$, $0 \leq k' < 2^n$, where the action of G_1 on $\psi_{n'}^n(\sigma_2 - 1)^k K[G_2]$ is trivial. We set $M_1 = \psi_{n'}^n(\sigma_2 - 1)^k K[G_2]$ and $M_2 = \psi_{n''}^n(\sigma_2 - 1)^k K[G_2]$, then there is a derivation F from $K[G]$ in Hom$_K(M_2, M_1)$ such that $M \cong M_1 \times_F M_2$.

Proof. We have $J_1 = (\sigma_2 - 1)K[G_1]$ and as $(\sigma_2 - 1)^2 = 0$ since the field K is of characteristic $p = 2$, $J_2^1 M = 0$. So $J_1 J_1 M = 0$ for $K[G]$-module of finite type M. The rest is a simple application of Theorem 16.

Now we return to cases $G_1 = C_{p^n}$ and $G_2 = C_{p^n}$, where G_2 is generated by an element σ_2, and let J_2 be the Jacobson radical of $K[G_2]$. For an integer $k = p^n$ with $0 < r \leq n$ and for the subgroup H_2 of G_2 generated by σ_2^p, we have the following result.

Theorem 18. Let M be a finitely generated $K[G]$-module, with $J_2^{k+1} M = 0$. If $M/J_2^k M \cong K[G_2]$ is R-free and of type k, then there exist two nonzero natural numbers n' and n'' and two $K[G]$-modules $M_1 = \psi_{n'}^n(\sigma_2 - 1)^k K[G_2]$, $0 \leq k < p^n$, and $M_2 = (K[G_2 \times H_2])^n$, where the action of G_2 on M_1 is trivial, and there exists a derivation F from $K[G]$ in Hom$_K(M_2, M_1)$ such that $M \cong M_1 \times_F M_2$.

Proof. We have the following exact sequence:

$$O \rightarrow J_2^k M \hookrightarrow M \rightarrow \frac{M}{J_2^k M} \rightarrow O. \quad (13)$$

As $J_2^k (J_2^k M) = 0$, by Proposition 15, there exists a nonzero natural number n' such that $J_2^k M = \psi_{n'}^n(\sigma_1 - 1)^k K[G_1]$, $0 \leq k_1 < p^n$, as $K[G]$-modules, where the action of G_2 on $\psi_{n'}^n(\sigma_1 - 1)^k K[G_1]$ is trivial. $M/J_2^k M$ is a $K[G]$-module of type k with $J_2^k (M/J_2^k M) = 0$, more $M/J_2^k M |_{G_1}$ is R-free, and $k = p^n$ with $0 < r \leq n$. Then, Theorem 9 shows that $M/J_2^k M$ is a free $K[G_2 \times H_2]$-module. Therefore there exists a nonzero natural number n'' such that $M/J_2^k M \cong (K[G_2 \times H_2])^n$. The rest is a simple application of Proposition 12.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] S. Ö. Kaptanoğlu, “Structure and detection theorems for $k[C_2 \times C_2]$-modules,” The Rendiconti del Seminario Matematico della Università di Padova, vol. 123, pp. 169–189, 2010.
[2] P. Webb, Finite Group Representations for the Pure Mathematician, University of Minnesota, 2013.
[3] J. Thévenaz, Représentations linéaires de groupes finis en caractéristique p^n, Université de Genève, 1980.
[4] K. W. Gruenberg, Cohomological Topics in Group Theory, vol. 143 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1970.
[5] G. Karpilovsky, The Jacobson Radical of Group Algebras, Notes De Mathematique, vol. 135, Elsevier Science, New York, NY, USA, 1987.
[6] J. Thévenaz, "Representations of finite groups in characteristic $p^n"$, Journal of Algebra, vol. 72, no. 2, pp. 478–500, 1981.
[7] C. W. Curtis and I. Reiner, Methods of Representation Theory, Wiley-Interscience, New York, NY, USA, 1981.
[8] M. E. Charkani and S. Bouhamidi, "Modular representations of Loewy length two," International Journal of Mathematics and Mathematical Sciences, no. 70, pp. 4399–4408, 2003.
[9] B. Huppert and N. Blackburn, Finite Groups II, Springer, Berlin, Germany, 1982.
Submit your manuscripts at
http://www.hindawi.com

Hindawi