Relationship Between Helicobacter pylori Infection and Arteriosclerosis

Yoshitaka Furuto 1,2
Mariko Kawamura
Junpei Yamashita
Takahiro Yoshikawa
Akio Namikawa 3
Rei Isshiki
Hiroyo Takahashi
Yuko Shibuya

Department of Hypertension and Nephrology, NTT Medical Centre, Tokyo, Japan

Abstract: It is reported that Helicobacter pylori (H. pylori) infection may be linked to non-digestive tract diseases, such as arteriosclerosis including dyslipidemia, diabetes, obesity, hypertension, and cardiovascular disease. Therefore, we reviewed recent studies available in PubMed dealing with the mechanisms of arteriosclerosis due to H. pylori infection and the effects of H. pylori eradication. Conventional studies suggested that H. pylori infection may increase the risk of arteriosclerosis. A large interventional study is required to clarify the causal relationships and the effects of bacterial eradication.

Keywords: Helicobacter pylori infection, arteriosclerosis, hypertension

Introduction

While it is widely known that Helicobacter pylori (H. pylori) may cause gastritis, gastric ulcer, gastric cancer, gastric lymphoma, idiopathic thrombocytopenic purpura, and iron-deficiency anemia, this infection may also be involved in non-digestive tract diseases such as chronic urticaria, Alzheimer’s disease, Parkinson’s disease, atrial fibrillation, liver diseases, Behçet’s disease, hyperemesis gravidarum, infertility, glaucoma, alopecia areata, and arteriosclerosis disease including dyslipidemia, diabetes, obesity, hypertension, chronic kidney disease and cardiovascular disease. Several reports have indicated a relationship between H. pylori and acute coronary syndrome, which suggests that H. pylori infection is a risk factor for cardiovascular disease (CVD); moreover, patients with H. pylori infection show an approximately 3-times higher risk of coronary artery disease than do healthy individuals. Furthermore, in a study of H. pylori patients below 65 years of age, who were categorized into bacterial eradication or non-eradication groups, the eradication group showed a significantly lower incidence of coronary heart disease during a 1-year follow-up period. H. pylori infection was found to be an independent risk factor for carotid artery plaque and stroke.

A relationship between H. pylori infection and lifestyle-based diseases has also been suggested. Associations of H. pylori infection with hypercholesterolemia, low levels of high-density lipoprotein-cholesterol (HDL-C), and high levels of low-density lipoprotein-cholesterol (LDL-C) have been reported. Several studies have found that H. pylori is associated with insulin resistance and diabetes mellitus. Furthermore, H. pylori infection has been reported to be positively correlated with body mass index (BMI). Among patients with chronic kidney disease, the risk of developing end-stage renal disease is 3.72-times higher for H. pylori-infected individuals than for patients without the infection. Hypertension has also been associated with H. pylori...
infection.15 \textit{H. pylori}-positive hypertensive patients show significantly higher arterial blood pressure than that of hypertensive patients without the infection.21 Furthermore, the eradication of \textit{H. pylori} has been reported to improve hypertension.22,23

Conversely, findings related to arteriosclerosis accompanied by \textit{H. pylori} infection vary,5,36–39 and the relationship between both pathologies remains unclear. Moreover, while the precise nature of this relationship is still unclear, it is important to update this information because the eradication of \textit{H. pylori} may be beneficial for treatment of arteriosclerosis. To fill current gaps in knowledge, we reviewed recent studies on the mechanisms of arteriosclerosis due to \textit{H. pylori} infection and the effects of \textit{H. pylori} eradication.

Methods

We performed a detailed review of the recent literature to study the relationship between \textit{H. pylori} infection and arteriosclerosis. A literature screen was conducted by reviewing PubMed. We screened the following keywords: “Helicobacter pylori infection,” and/or “eradication” with “arteriosclerosis,” “hypertension,” “dyslipidemia,” “diabetes,” “obesity,” and “cardiovascular disease.” We examined the mechanism of arteriosclerosis by \textit{H. pylori} infection and the role of eradication of \textit{H. pylori} for arteriosclerosis. Moreover, we present a narrative review of the literature obtained from these screenings as brief summary. We have described the mechanism of disease onset in detail and the most recent information on the relationship between \textit{H. pylori} infection and arteriosclerosis.

Helicobacter pylori Infection and Arteriosclerosis

\textit{H. pylori} may influence the development of arteriosclerosis due to hypertension, as suggested in previous reports.15,21–23 Two possible explanations may account for the higher incidence of hypertension in \textit{H. pylori}-positive patients. Firstly, high-salt intake, which is a known risk factor for hypertension, favors the colonization of \textit{H. pylori}.40–42 Moreover, experiments in mice have shown that high-salt intake facilitates the formation of \textit{H. pylori} colonies.40 Another study revealed that high-salt intake increases the surface mucous cell mucin with an affinity to \textit{H. pylori}, decreases the \textit{H. pylori}-resistant gland mucous cell mucin, and damages the gastric mucosal gel layer.41 As further proof, the 1991 EUROGAST study, which examined global \textit{H. pylori} infection rates, revealed that the Akita region in Japan had the highest \textit{H. pylori} infection rate (70%).42 Akita is located in the Tohoku region, where the diet is known for being particularly high in salt intake compared to the rest of Japan. The high \textit{H. pylori} infection rate in Akita, a developed prefecture with elevated standards of hygiene, suggests a relationship between \textit{H. pylori} infection rate and the high-salt diet.43 Therefore, the incidence of hypertension in a region with high-salt intake may be more closely associated with \textit{H. pylori} presence than with \textit{H. pylori} absence, although this most likely depends also on the levels of hygiene and sociocultural factors.44,45

Secondly, since epidemiological research46 indicates that \textit{H. pylori} infection may be a new risk factor for CVD, the higher prevalence of hypertension in patients with \textit{H. pylori} infection may be a result of the existence of factors specific to \textit{H. pylori} that also play a role in arteriosclerosis. Possible mechanisms by which atherosclerosis could be caused by \textit{H. pylori} have been reported (Box 1).23,27 \textit{H. pylori} infection was reported associated with increased prevalence of metabolic syndrome, CVD, and high levels of fibrinogen, total cholesterol, uric acid, and blood glucose.26,47 Moreover, \textit{H. pylori} causes persistent long-term infections48 that lead to chronic inflammation,27,49,50 platelet activation,28,51 dyslipidemia,14,15,52 glucose intolerance,16–18,53 hyperhomocysteinemia,27,54 increased resorption of sodium due to elevated ammonia levels in the digestive tract,23 direct invasion of the vascular walls,55,56 and reaction in atheromas.28

Additionally, chronic inflammation due to \textit{H. pylori} infection activates a variety of chemical mediators that have been linked to endothelial dysfunction.49 Specifically, \textit{H. pylori} increases the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, IL-8, gamma interferon, fibrinogen, thrombin, intercellular adhesion molecule, and vascular cell adhesion molecule; these inflammatory cytokines directly or indirectly damage the vascular walls, thereby causing arteriosclerosis.57–59

Box 1 Possible Mechanisms by Which Atherosclerosis May Be Caused by Helicobacter pylori

| Chronic inflammation |
| Platelet aggregation |
| Hypercoagulability |
| Dyslipidemia |
| Impaired glucose metabolism |
| Hyperhomocysteinemia |
| Excessive fluid and salt retention |
| Direct effect |
| Endothelial damage |
| Oxidative stress |
| Molecular mimicry |

Note: Adapted from Nasrat et al73 and Vijayvergiya et al.27
H. pylori also causes an immune response through the activation of cyclooxygenase enzyme-2 (COX-2), which increases the production of prostaglandin and nitric oxide (NO). Lipopolysaccharide (LPS) on the **H. pylori** cell wall activates Toll-like receptor-4, which activates secondary mediators, such as mitogen-activated protein kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 kinase, and further stimulates NO synthase and COX-2 gene expression. This immune response to LPS could also increase the risk of atherosclerosis.

Another mechanism related to chronic inflammation is the antigen cross-reactivity of **H. pylori**, which has been shown to activate an autoimmune response that causes vascular endothelial damage. Antigenic cross-reactivity between human heat shock protein and **H. pylori** has been reported to cause coronary artery calcification and atherosclerosis; as well as the activation of helper T-cells.

CagA (cytotoxin-associated gene A) is a very important **H. pylori** virulence factor associated with a greater inflammatory response. After CagA undergoes tyrosine phosphorylation in gastric epithelial cells, it can induce a variety of cellular responses, including cell proliferation, cell movement, and suppression of cell death. CagA-positive **H. pylori** patients showed a higher risk of CVD and stroke. CagA, at a molecular level, mimics human tropomyosin and cardiac adenosine triphosphatase that can cause myocardial damage; it also promotes secretion of cytokines that induce severe inflammation and atherosclerotic destabilization. Moreover, CagA was reported to promote atherosclerosis by increasing the levels of COX-1 and COX-2 in the vascular endothelium, thus promoting prostacyclin production, platelet activation, and increased levels of oxidized LDL-C, high-sensitivity C-reactive protein (CRP), and Apolipoprotein B.

H. pylori infection has been reported to induce thromboxane, which activates platelets and promotes their binding to the Von Willebrand factor, causing platelet aggregation and destabilization of atherosclerotic plaques. Furthermore, TNF-α, interferon-α, IL-6, and IL-1, which are activated due to **H. pylori** infection, in turn, activate lipoprotein lipase, which can affect lipid metabolism and result in dyslipidemia.

In relation to glucose intolerance, **H. pylori**-positive patients have elevated levels of the oxidative stress marker paraoxonase, suggesting a relationship between this infection and oxidative stress. Additionally, atrophic gastritis due to **H. pylori** infection leads to vitamin B12 and folic acid deficiency, which results in hyperhomocysteinemia, and damages the vascular endothelial cells. Increased ammonia in the intestinal tract and the accompanying intestinal spasms are induced through **H. pylori** infection, which can damage absorption within the digestive tract and result in increased resorption of sodium through the kidney, causing hypertension.

Invasion of **H. pylori** into atheromas has been observed using PCR. Direct **H. pylori** colonization in the arterial walls has also been suggested. In addition, **H. pylori** reacts with monocytes and activates the proliferation of fibroblasts in atheromas. Therefore, **H. pylori** has been linked to atherosclerosis through a variety of mechanisms, thus potentially causing hypertension. **H. pylori** infection may independently be involved in atherosclerosis and hypertension through mechanisms that differ from the classical well-known causes of atherosclerosis.

H. pylori eradication results in a variety of reported outcomes in patients. This holds true for atherosclerosis-related disease; according to recent research (Table 1), outcomes include increased HDL-C, apolipoprotein AI, apolipoprotein AII, and BMI levels, as well as higher diastolic blood pressure, decreased levels of CRP, fibrinogen, total oxidant status, LDL-C, total cholesterol, triglycerides, insulin resistance, BMI, blood pressure, coronary artery lumen, and coronary heart disease and improved endothelial dysfunction (Table 2). Although there might be favorable effects of treating **H. pylori** on atherosclerosis, in some studies the effects of **H. pylori** eradication on sugar, lipid and fibrinolytic parameters, inflammatory parameters and platelet activation markers were not confirmed. The contradictory results for BMI and blood pressure might be related to the study design; the effects of **H. pylori** eradication are controversial.

The incidence of **H. pylori** infection is influenced by social, economic, cultural, regional, and sanitary factors. Large, long-term, prospective, randomized controlled, interventional studies are required to elucidate the role of eradication for **H. pylori** infection.

Conclusion

H. pylori infection may increase the risk of atherosclerosis through mechanisms other than those classically associated with the disease. A large interventional study is required to clarify the causal relationships and effects of bacterial eradication.
Table 1 Recent Research Regarding the Role of Eradication of *Helicobacter pylori* in the Evolution of Atherosclerosis-Related Disease

First Author (Reference No.)	Year	Country	Subjects	Outcome
Kowalski et al.	2001	Germany	100 patients with coronary artery disease vs 100 patients without	Mean coronary artery lumen reduction in patients undergoing percutaneous coronary angioplasty + *Helicobacter pylori* eradication therapy was significantly (p<0.05) smaller compared to percutaneous coronary angioplasty + placebo-treated.
Lu et al.	2002	Taiwan	48 patients with gastric *H. pylori* infection	Coronary risk factors including fasting sugar, lipid and fibrinolytic profiles were not changed after successful *H. pylori* eradication treatment.
Yusuf et al.	2002	United Kingdom	40 patients over the age of 65 years presenting with symptomatic ischemic heart disease vs age-matched control group of 21 patients	The fibrinogen level decreased significantly after eradication treatment of *H. pylori* in patients with raised fibrinogen levels (p<0.01).
Elizalde et al.	2004	Spain	487 received eradication treatment vs 199 did not receive eradication treatment	*H. pylori* eradication has no influence on blood lipids or fibrinogen levels.
Migneo et al.	2003	Italy	72 hypertensive patients vs 70 normotensive controls	A significant reduction in blood pressure after eradication of *H. pylori* in hypertensive subjects.
Elizalde et al.	2004	Spain	92 patients with recent acute coronary syndromes	There was not any change in inflammatory parameters or platelet activation markers after *H. pylori* eradication in patients with acute coronary syndrome.
Scarnaglia et al.	2004	Austria	87 patients with duodenal ulcers	A significant increase was observed in high-density lipoprotein (HDL) cholesterol, apolipoprotein AI, and apolipoprotein AII after eradication.
Kanbay et al.	2005	Turkey	78 patients with *H. pylori* antigen positivity, 57 patients with *H. pylori* eradication vs 21 patients without *H. pylori* eradication	Increase in HDL-C and reduction in CRP with successful eradication (p<0.05).
Pellicano et al.	2006	Italy	496 patients with *H. pylori*-positive dyspepsia and/or peptic ulcer were studied after cure of the bacterium	HDL-C increased (p=0.02) while C reactive protein and fibrinogen levels diminished (p=0.0001) significantly. BMI and diastolic blood pressure increased in a significant (p=0.032 and p=0.039 respectively) manner compared to baseline.
Kebapcilar et al.	2009	Turkey	In 33 patients, *H. pylori* infection was successfully eradicated	Soluble CD40 ligand, and total oxidant status levels were significantly decreased after *H. pylori* eradication.
Gen et al.	2010	Turkey	88 patients with *H. pylori* infection vs 71 patients without *H. pylori* infection	Improvement in insulin resistance, lipid abnormalities and CRP levels with *H. pylori* eradication (p<0.05).
Nazligul et al.	2011	Turkey	30 patients with *H. pylori* infection	After eradication treatment, serum myeloperoxidase activity and total oxidant status were significantly lower.
Blum et al.	2011	USA	31 dyspeptic patients were diagnosed as *H. pylori* positive using histopathological evaluation. 11 dyspeptic patients were negative to *H. pylori* (controls).	*H. pylori* eradication can improve endothelial dysfunction (p=0.001) significantly.
Jalalzadeh et al.	2012	Iran	59 patients negative for *H. pylori* vs 39 patients positive for *H. pylori*	In hemodialysis patients positive for *H. pylori*, 6 months after eradication of *H. pylori*, the BMI was significantly decreased (p=0.001). The mean serum albumin level, cholesterol, and blood urea nitrogen were also significantly decreased after the eradication.
Nasr et al.	2015	Saudi Arabia	99 middle-aged male patients on treatment for essential hypertension and positive for *H. pylori* dyspepsia	Most patients of the study (90.9%) were able to discontinue medication and maintain normal blood pressure values after *H. pylori* eradication.

(Continued)
Table 1 (Continued).

First Author (Reference No.)	Year	Country	Subjects	Outcome
Wang	2018	Taiwan	In patients with peptic ulcer disease, 3164 patients with \textit{H. pylori} eradication vs 3164 patients without \textit{H. pylori} eradication	There was significant difference observed in composite end-points for coronary heart disease and death in early eradication subgroup compared to those without eradication (0.16% vs 0.57%, p=0.0133).
Iwai	2019	Japan	163 patients with \textit{H. pylori}-associated chronic gastritis	\textit{H. pylori} eradication therapy increased the HDL cholesterol level significantly (p=0.001).

Table 2 Change in Atherosclerosis Markers After Eradication of \textit{Helicobacter pylori}

Clinical Parameter	Reference: First Author (Reference No.)
Increased	Pellicano74, Gen75, Kanbay76, Scarnagl77, Iwai78
HDL-C	Scarnagl77
Apolipoprotein AI, apolipoprotein All	Pellicano74
BMI	Pellicano74
Diastolic blood pressure	Pellicano74
No Change	Lu85
Blood sugar	Lu85, Elizalde86
Lipid and fibrinolytic parameters	Elizalde87
Inflammatory parameters and platelet activation markers	Elizalde87
Decreased	Pellicano74, Gen75, Kanbay76
CRP	Pellicano74, Yusuf79
Fibrinogen	Pellicano74, Yusuf79
Total oxidant status levels	Kebapci80, Nazligil81
LDL-C	Gen75
Total Cholesterol	Gen75, Jalalzadeh82
Triglyceride	Gen75
Insulin resistance	Gen75
BMI	Jalalzadeh82
Blood pressure	Migneco22, Nasrat23
Coronary artery lumen	Kowalski83
Coronary heart disease	Wang79
Improved	Blum84

Abbreviations

CVD, cardiovascular disease; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; BMI, body mass index; TNF, tumor necrosis factor; IL, interleukin; COX, cyclooxygenase enzyme; LPS, lipopolysaccharide; NO, nitric oxide; CagA, cytoxin-associated gene A; CRP, C-reactive protein.

Acknowledgments

We would like to thank Editage for English language editing.

Author Contributions

YF: Conceptualization; YF, MK, JY, TY, AN, RI, HT, and YS: Data curation; YF: Formal analysis; YF: Investigation;
YF: Methodology; YF: Project administration; YF: Supervision; YF: Validation; YF: Roles/Writing; YF: original draft; YF: Writing; YF: review & editing. All authors read and approved the final manuscript.

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.

Funding
This work was not supported by any funding.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Nakamura S, Sugiyama T, Matsumoto T, et al.; JAPAN GAST Study Group. Long-term clinical outcome of gastric MALT lymphoma after eradication of Helicobacter pylori: a Multicentre Cohort Follow-Up Study of 420 patients in Japan. Gut. 2012;61(4):507–513. doi:10.1136/gutjnl-2011-300495
2. Pellicano R, Franceschi F, Saracco G, Fagonee S, Roccarnia D, Gassanrnia A. Helicobacteris and extragastic diseases. Helicobacter. 2009;14(Suppl 1):58–68. doi:10.1111/j.1523-5378.2009.00699.x
3. Watanabe J, Shimamoto J, Kotani K. The effects of antibiotics for Helicobacter pylori eradication or dapsone on chronic spontaneous urticaria: a systematic review and meta-analysis. Antibiotics (Basel). 2021;10(2):156. doi:10.3390/antibiotics10020156
4. Beydoun MA, Beydoun HA, Elbejiani M, Dore GA, Zonderman AB. Helicobacter pylori seropositivity and its association with incident all-cause and Alzheimer’s disease dementia in large national surveys. Alzheimers Dement. 2018;14(9):1148–1158. doi:10.1016/j.alzd.2018.04.009
5. Pierantozzi P, Pietroisutti A, Brusa L, et al. Helicobacter pylori eradication and d-1 absorption in patients with PD and motor fluctuations. Neurology. 2006;66(12):1824–1829. doi:10.1212/01.wnl.0000221672.01272.7a
6. Wang DZ, Chen W, Yang S, et al. Helicobacter pylori infection in Chinese patients with atrial fibrillation. Clin Interv Aging. 2015;10:813–819. doi:10.2147/CIA.S72724
7. Pellicano R, Ménard A, Rizzetto P, Mégraud F. Helicobacter species and liver diseases: association or causation? Lancet Infect Dis. 2008;8(4):254–260. doi:10.1016/S1473-3099(08)70066-5
8. Cakmak SK, Cakmak A, Gül U, Sulaimanov M, Bingöl P, Hazinedaroğlu MS. Upper gastrointestinal abnormalities and Helicobacter pylori in Behçet’s disease. Int J Dermatol. 2009;48(11):1174–1176. doi:10.1111/j.1365-4632.2009.04145.x
9. Ng QX, Venkatakrayanan S, De Deyn MLQ, Ho CYX, Mo Y, Yeo WS. A meta-analysis of the association between Helicobacter pylori (H.pylori) infection and hyperemesis gravidarum. Helicobacter. 2018;23(1):e12455. doi:10.1111/hel.12455
10. Ambrosini G, Andrisani A, Fiore C, et al. Anti-Helicobacter pylori antibodies in cervical mucus: a new cause of infertility. Eur J Obstet Gynecol Reprod Biol. 2011;155(2):157–160. doi:10.1016/j.ejogrb.2010.12.001
11. Bagnis A, Izzotti A, Saccà SC. Helicobacter pylori, oxidative stress and glaucoma. Dig Liver Dis. 2012;44(11):963–964. doi:10.1016/j.dld.2012.05.009
12. Campuzano-Mayá G. Cure of alopecia areata after eradication of Helicobacter pylori: a new association? World J Gastroenterol. 2011;17(26):3165–3170. doi:10.3748/wjg.v17.i26.3165
13. Moyaert H, Franceschi F, Roccarina D, Ducatellete R, Haesebrouck F, Gasbarrini A. Extragastric manifestations of Helicobacter pylori infection: other Helicobacters. Helicobacter. 2008;13(Suppl 1):47–57. doi:10.1111/j.1523-5378.2008.00634.x
14. Satoh H, Sajiyo Y, Yoshikoa E, Tsutisui H. Helicobacter pylori infection is a significant risk for modified lipid profile in male subjects. J Atheroscler Thromb. 2010;17:1041–1048. doi:10.5551/jat.5157
15. Jukic A, Bozic D, Kardum D, et al. Helicobacter pylori infection and severity of coronary atherosclerosis in patients with chronic coronary artery disease. Ther Clin Risk Manag. 2017;13:933–938. doi:10.21275/TCRM.S142193
16. Mestrovic T, Profozic Z, Profozic V. Helicobacter pylori and insulin resistance. Lijec Vjesn. 2012;134(9–10):292–296.
17. Yang GH, Wu JS, Yang YC, Huang YH, Lu FH, Chang CJ. Gastric Helicobacter pylori infection associated with risk of diabetes mellitus, but not prediabetes. J Gastroenterol Hepatol. 2014;29(10):1794–1799. doi:10.1111/jgh.12617
18. Zhou X, Zhang C, Wu J, et al. Association between Helicobacter pylori infection and diabetes mellitus: a meta-analysis of observational studies. Diabetes Res Clin Pract. 2013;99(2):200–208. doi:10.1016/j.diabres.2012.11.012
19. Xu C, Yan M, Sun Y, et al. Prevalence of Helicobacter pylori infection and its relation with body mass index in a Chinese population. Helicobacter. 2014;19(6):437–442. doi:10.1111/hel.12153
20. Thjodleifsson B, Olafsson I, Gislason D, Gislason T, Jögi R, Janson C. Infections and obesity: a Multinational Epidemiological Study. Scand J Infect Dis. 2008;40(5):381–386. doi:10.1080/0361527080210929
21. Van Z, Hu L, Hu M, Lei X, Huang Y, Lv Y. Helicobacter pylori infection and prevalence of high blood pressure among Chinese adults. J Hum Hypertens. 2018;32(2):158–164. doi:10.1038/s41437-017-0028-8
22. Migneco A, Ojetti V, Specchia L, et al. Eradication of Helicobacter pylori infection improves blood pressure values in patients affected by hypertension. Helicobacter. 2003;8(6):585–589. doi:10.1111/j.1523-5378.2003.00180.x
23. Nasrat SAM, Nasrat AM. An alternative approach for the rising challenge of hypertensive illness via Helicobacter pylori eradication. Cardioil Res. 2015;6;1:221–225. doi:10.14740/cr382e
24. Lin SY, Lin CL, Liu JH, Yang YF, Huang CC, Kao CH. Association between Helicobacter pylori infection and the subsequent risk of end-stage renal disease: a Nationwide Population-Based Cohort Study. Int J Clin Pract. 2015;69(5):604–610. doi:10.1111/ijc.12602
25. Eskandarian R, Ghorbani R, Shiyasi M, Momeni B, Hajifathalian K, Madani M. Prognostic role of Helicobacter pylori infection in acute coronary syndrome: a Prospective Cohort Study. Cardiovasc J Afr. 2012;23(3):131–135. doi:10.5830/CVJA-2011-016
26. Longo-Mbenza B, Nsenga JN, Mokondjimboe E, et al. Helicobacter pylori infection is identified as a cardiovascular risk factor in Central Africans. Vasc Health Risk Manag. 2012;8:455–461. doi:10.2147/VHRM.S28680
27. Vlasyvergiya R, Vadivelu R. Role of Helicobacter pylori infection in pathogenesis of atherosclerosis. World J Cardiol. 2015;7(3):134–143. doi:10.4330/wjc.v7.i3.134
28. Rogha M, Nikvarz M, Pourmoghadess Z, Shirnessha K, Dadkhah D, Pourmoghadess M. Is Helicobacter pylori infection a risk factor for coronary heart disease? AYA Atheroscler. 2012;8(1):5–8.
29. Wang JW, Tseng KL, Hsu CN, et al. Association between Helicobacter pylori eradication and the risk of coronary heart diseases. PLoS One. 2018;13(1):e0190219. doi:10.1371/journal.pone.0190219
30. Whincup PH, Mendall MA, Perry IJ, Strachan DP, Walker M. Prospective relations between Helicobacter pylori infection, coronary heart disease and stroke in middle-aged men. Heart. 1997;77(3):294. doi: 10.1161/hrt.77.3.294

31. Heuchmann PU, Neureiter D, Gesslein M, et al. Association between infection with Helicobacter pylori and chlamydia pneumo-

32. Mayr M, Kichele S, Tsimias S, et al. Oxidized low-density lipopro-

33. Akbas HS, Basyigit S, Suleymantar I, et al. The assessment of carotid

34. Oluyemi A, Anomneze E, Smith S, Fastamade O. Prevalence of a marker of active Helicobacter pylori infection among patients with type 2 diabetes mellitus in Lagos, Nigeria. BMC Res Notes. 2012;5(1):284. doi:10.1186/1756-0500-5-284

35. Cho I, Blaser MJ, Francois F, et al. Helicobacter pylori and overweight

36. Kong X, Xu D, Li F, Ma X, Su H, Xu D. Association of H. pylori

37. Sotunse N, Hosseini SR, Shokri-Shirvari J, Bijani A, Ghadimi R. Helicobacter pylori infection and metabolic parameters: is there

38. Kocapova M, Koupl I, Seifert B, et al. Blood pressure and stress

39. Danesh J, Petro R. Risk factors for coronary heart disease and in-

40. Fox JG, Dangler CA, Taylor NS, King A, Koh TJ, Wang TC. High-

41. Kato S, Tsukamoto T, Mizoshita T, et al. High salt diets dose-

42. The EUROGAST Study Group. An international association between Helicobacter pylori infection and gastric cancer. Lancet. 1993;341(8857):1359–1362. doi:10.1016/0140-6736(93)90938-D

43. Dahl LK. Possible role of salt intake in the development of essential hypertension. Int J Epidemiol. 2005;34(5):967–972. doi:10.1093/ije/ dyh317

44. Asaka M, Kimura T, Kudo M, et al. Relationship of Helicobacter

45. Lee YY, Ismail AW, Mustaffa N, et al. Socio-cultural and dietary

46. Longo-Mbenza B, Mwinebwe HF, Kasiama JB, et al. Relationship

47. Longo-Mbenza B, Nkondi NJ, Vangu ND. Prevention of the meta-

48. Cammarata G, Pascreci V, Gasbarrini A, Gasbarrini G. Helicobacter pylori is an aetiological factor for ischaemic heart disease: the case against. Dig Liver Dis. 2000;32(1):65–68. doi:10.1016/S1590-8658(00)80407-X

49. Coskun S, Kasiirga E, Yilmaz O, et al. Is Helicobacter pylori related to endothelial dysfunction during childhood? Pediatr Int. 2008;50(2):150–153. doi:10.1111/j.1442-200X.2008.02542.x

50. Rogha M, Dadkhah D, Pourmoghadass Z, Shirmeshan K, Nikzavr M, Pourmoghadass M. Association of Helicobacter pylori infection with severity of coronary heart disease. ARYA Atheroscler. 2011;7:138–141.

51. Fagonee S, De Angelis C, Elia C, et al. Potential link between Helicobacter pylori and ischemic heart disease: does the bacteria elicited thrombosis? Minerva Med. 2010;101(2):121–125.

52. Albaker WI. Helicobacter pylori infection and its relationship to metabolic syndrome: is it a myth or fact? Saudi J Gastroenterol. 2011;17(3):165–169. doi:10.4103/1319-3767.80377

53. Aslan M, Nasligul Y, Horoz M, et al. Serum paraoxonase-1 activity in Helicobacter pylori infected subjects. Atherosclerosis. 2008;196(1):270–274. doi:10.1016/j.atherosclerosis.2006.10.024

54. Tamura A, Fujikoa T, Nasu M. Relation of Helicobacter pylori infection to plasma vitamin B12, folic acid, and homocysteine levels in patients who underwent diagnostic coronary arteriography. Am J Gastroenterol. 2002;97(4):861–866. doi:10.1111/j.1572-0241.2002.05601.x

55. Martinez Torres A, Martinez Gaensly M. Helicobacter pylori: ¿un nuevo factor de riesgo cardiovascular? Rev Esp Cardiol. 2002;55(6):652–656. doi:10.1016/S0306-8932(02)76736-9

56. Murray LJ, Bamford KB, Kee F, et al. Infection with virulent strains of Helicobacter pylori is not associated with ischaemic heart disease; evidence from a population-based case-control study of myocardial infarction. Atherosclerosis. 2000;149(2):379–385. doi:10.1016/S0021-9150(99)00325-1

57. Consolazio A, Borgia MC, Ferro D, et al. Increased thrombin gen-

58. Russo F, Jirillo E, Clemente C, et al. Circulating cytokines and gastrin levels in asymptomatic subjects infected by Helicobacter pylori (H. pylori). Immunopharmacol Immunotoxicol. 2001;23(1):13–24. doi:10.1081/IPH-100102563

59. Maciorowska E, Kaczmarski M, Panasiuk A, Kondej-Muszynska K, Kernoni A. Soluble adhesion molecules ICAM-1, VCAM-1, P-selectin in children with Helicobacter pylori infection. World J Gastroenterol. 2005;11(43):6745–6750. doi:10.3748/wjg.v11.i43.6745

60. Slomiany BL, Slomiany A. Involvement of p38 MAPK-dependent activator protein (AP-1) activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori by ghrelin. Inflammopharmacology. 2013;21(1):67–78. doi:10.1007/s10787-012-0141-9

61. Slomiany BL, Slomiany A. Induction in gastric mucosal prostaglan-

62. Grebowska A, Rechechinski T, Bak-Romaniszyn L, et al. Potential role of LPS in the outcome of Helicobacter pylori related diseases. Pol J Microbiol. 2006;55(1):25–30.
63. Rechcinski T, Kasprzak JD, Chmiela M, Krzemincka-Pakula M, Rudnicka W. Patients with unstable angina pectoris present increased humoral response against Helicobacter pylori in comparison with patients with aggravated dyspepsia. Acta Microbiol Pol. 2002;51:339–344.

64. Strachan DP. Non-gastrointestinal consequences of Helicobacter pylori infection. Br Med Bull. 1998;54(1):87–93. doi:10.1093/oxfordjournals.bmb.a011684

65. Zhu J, Katz BJ, Quyyumi AA, et al. Association of serum antibodies to heat-shock protein 65 with coronary calcification level: suggestion of pathogen-triggered autoimmunity in early atherosclerosis. Circulation. 2004;109(1):36–41. doi:10.1161/01.CIR.0000105513.37677.B3

66. Ayada K, Yokota K, Kobayashi K, Shenfeld Y, Matsuura E, Oguma K. Chronic infection and atherosclerosis. Clin Rev Allergy Immunol. 2009;37(1):44–48. doi:10.1007/s12016-008-0897-7

67. Jafarzadeh A, Hassanshahi GH, Nemati M. Serum levels of high-sensitivity C-reactive protein (hs-CRP) in Helicobacter pylori-infected peptic ulcer patients and its association with bacterial CagA virulence factor. Dig Dis Sci. 2009;54(12):2612–2616. doi:10.1007/s10620-008-0868-z

68. Niccoli G, Franceschi F, Cosentino N, et al. Coronary atherosclerotic burden in patients with infection by Caga-positive strains of Helicobacter pylori. Coron Artery Dis. 2010;21(4):217–221. doi:10.1097/MCA.0b013e3283399d6

69. Suzuki M, Mimuro H, Kiga K, et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe. 2009;5(1):23–34. doi:10.1016/j.chom.2008.11.010

70. Tamer GS, Tenzig I, Ercan E, Duman C, Alioglu E, Turk UO. Helicobacter pylori seropositivity in patients with acute coronary syndromes. Dig Dis Sci. 2009;54(6):1253–1256. doi:10.1007/s10620-008-0482-9

71. Zhang S, Guo Y, Ma Y, Teng Y. Cytotoxin-associated gene-A-seropositive virulent strains of Helicobacter pylori and atherosclerotic diseases: a systematic review. Chin Med J (Engl). 2008;121(10):946–951. doi:10.1097/00002933-200805200-00015

72. Huang B, Chen Y, Xie Q, et al. CagA-positive Helicobacter pylori strains enhanced coronary atherosclerosis by increasing serum OxLDL and HsCRP in patients with coronary heart disease. Dig Dis Sci. 2011;56(1):109–114. doi:10.1007/s10620-010-1274-6

73. Figura N, Palazzuoli A, Vaira D, et al. Cross-sectional study: cagA-positive Helicobacter pylori infection, acute coronary artery disease and systemic levels of B-type natriuretic peptide. J Clin Pathol. 2014;67(3):251–257. doi:10.1111/jcp.120743

74. Pellicano R, Oliaro E, Fagonee S, et al. Clinical and biochemical parameters related to cardiovascular disease after Helicobacter pylori eradication. Int Angiol. 2009;28(6):469–473.

75. Gen R, Demir M, Ataseven H. Effect of Helicobacter pylori eradication on insulin resistance, serum lipids and low-grade inflammation. South Med J. 2010;103(3):190–196. doi:10.1097.SMJ.0b013e3181cf3737

76. Kanbay M, Gür G, Yücel M, Yilmaz U, Bayacioglu S. Does eradication of Helicobacter pylori infection help normalize serum lipids and CRP levels? Dig Dis Sci. 2005;50(7):1228–1231. doi:10.1007/s10620-005-2764-9

77. Scharnagl H, Kist M, Grawitz AB, Koenig W, Wieland H, März W. Effect of Helicobacter pylori eradication on high-density lipoprotein cholesterol. Am J Cardiol. 2004;93(2):219–220. doi:10.1016/j.amjcard.2003.09.045

78. Iwai N, Okuda T, Oka K, et al. Helicobacter pylori eradication increases the serum high density lipoprotein cholesterol level in the infected patients with chronic gastritis: a Single-Center Observational Study. PLoS One. 2019;14(8):e0221349. doi:10.1371/journal.pone.0221349

79. Yusuf SW, Mishra RM. Effect of Helicobacter pylori infection on fibrinogen level in elderly patients with ischaemic heart disease. Acta Cardiol. 2002;57(5):317–322. doi:10.2143/AC.57.5.2005446

80. Kebapci L, Sari I, Renkal AH, et al. The influence of Helicobacter pylori eradication on leptin, soluble CD40 ligand, oxidative stress and body composition in patients with peptic ulcer disease. Intern Med. 2009;48(24):2055–2059. doi:10.2169/internalmedicine.48.2562

81. Nazligul Y, Aslan M, Horoz M, et al. The effect on serum myeloperoxidase activity and oxidative status of eradication treatment in patients Helicobacter pylori infected. Clin Biochem. 2011;44(8–9):647–649. doi:10.1016/j.clinbiochem.2011.03.001

82. Jalalzadeh M, Ghadiani MH, Mousavinasab N. Association between Helicobacter pylori infection and body mass index, before and after eradication of infection in hemodialysis patients. J Nephropathol. 2012;1(3):170–176. doi:10.5812/nephropathol.8115

83. Kowalski M. Helicobacter pylori (H. pylori) infection in coronary artery disease: influence of H. pylori eradication on coronary artery lumen after percutaneous transluminal coronary angioplasty. The detection of H. pylori specific DNA in human coronary atherosclerotic plaque. J Physiol Pharmacol. 2001;52(1 Suppl 1):3–31.

84. Blum A, Tamir S, Maulem K, Ben-Shushan RS, Keinan-Boker L, Paritsky M. Endothelial dysfunction is reversible in Helicobacter pylori-positive subjects. Am J Med. 2011;124(12):1171–1174. doi:10.1016/j.amjmed.2011.08.015

85. Lu YH, Yen HW, Lin TH, et al. Changes of coronary risk factors after eradication of Helicobacter pylori infection. Kaohsiung J Med Sci. 2002;18(6):266–272

86. Elizalde JI, Piqué JM, Moreno V, et al.; Group of Study on Oesophageal and Gastric Diseases from The Spanish Gastroenterological Association. Influence of Helicobacter pylori infection and eradication on blood lipids and fibrinogen. Aliment Pharmacol Ther. 2002;16(3):577–586. doi:10.1046/j.1365-2036.2002.01202.x

87. Elizalde JI, Pérez-Pujol S, Heras M, et al. Effects of Helicobacter pylori eradication on platelet activation and disease recurrence in patients with acute coronary syndromes. Helicobacter. 2004;9(6):681–689. doi:10.1111/j.1083-3592.2004.00271.x