Enhanced chlorine evolution from dimensionally stable anode by heterojunction with Ti and Bi based mixed metal oxide layers prepared from nanoparticle slurry

Sukhwa Hong, Tai-kyu Lee, Michael R. Hoffmann, Kangwoo Cho

1. Introduction

Chlorine (Cl2) is a widely utilized industrial reagent for polymer synthesis globally. In chemical industry, chlor-alkali process would side reaction with respect to the water treatment. A sufficient anodic potential bias on hydrous metal oxide (>MOx) would initiate the formation of surface hydroxyl radical (>MOx-·OH), Eq. (1)) whose further oxidation could lead to higher oxide (>MOx+1, via Eq. (2)) formation. It has been widely accepted that the overall adsorption energy of oxygen to metal (M–O bond strength) is known to be the principal factor of OER activity mostly via Eq. (4) [7–10].

\[\text{MO}_x + \text{H}_2\text{O} \rightarrow \text{MO}_x(\cdot\text{OH}) + \text{H}^+ + e^- \]
\[\text{MO}_x(\cdot\text{OH}) \rightarrow \text{MO}_{x+1} + \text{H}^+ + e^- \]
\[\text{MO}_x(\cdot\text{OH}) \rightarrow \text{MO}_x + 1/2 \text{O}_2 + \text{H}^+ + e^- \]
\[\text{MO}_{x+1} \rightarrow \text{MO}_x + 1/2 \text{O}_2 \]

In a presence of chloride ions, parallel CIER mechanism on metal oxide electrocatalysts can be described by Eqs. (5) and (6), where the CIER could share active sites with the competing OER [6,8]; i.e., \(\text{MO}_x(\cdot\text{OH}) \) and \(\text{MO}_{x+1} \) mediate the CIER as well.
> MOx(OH) + Cl− → MOx + 1/2 Cl2 + OH− \hspace{1cm} (5)

> MOx+1 + Cl− → MOx + ClO− \hspace{1cm} (6)

Therefore, the selectivity towards CIER should be an important consideration for an energy-efficient electrochemical RCS mediated water treatment, especially considering limited Cl− concentration (<50 mM) in (waste)water electrolyte [11].

Specific group of metal oxides such as PbO2, SnO2, and TiO2 could be characterized by a weak bond strength between metal and active oxygen to predominantly exist in the >MOx(OH) form which would prefer CIER due to stronger oxidation power than MOx+1. In particular, TiO2 is non-toxic and widely-used earth-abundant catalysts to provide > Ti(OH) under an anodic potential with high surface density. Nevertheless, relatively large kinetic barrier for the water discharge has limited the utilization of TiO2 as an electrocatalyst. We previously proposed a hetero-junction architecture with coating TiO2 layers with or without mixing Bi (Bi2TiO5) on top of IrTaOy DSA for an enhanced RCS generation in dilute aqueous solutions [11]. In these configurations, conductor-like nature of IrTaOy could serve as an ohmic contact to Ti substrate [11,12], while surface hydrous TiO2 (> Ti(OH)−) provided elevated quasi-stationary concentration of >MOx+1. In spite of limited consideration for limited active sites and different kinetic parameters to predict selectivity in parallel reactions, density functional theory (DFT) calculations on model RuO2/TiO2 architecture [13] further suggested that the TiO2 heterojunction layer could shift locations in volcano plots of OER and CIER, which in-turn influences the CIER selectivity. In addition, mixing Bi in the outer layer was evinced to increase electrostatic sorption of anions (Cl−). In our earlier contribution, nevertheless, the peroxo-route for aqueous Ti-glycolate complex and solution casting of the Bi2Ti1−xOy layer were rather dangerous and labor consuming.

This study reports simplified preparation methods for coating TiO2 based heterojunction layers (on IrTaOy DSA) which was either decorated by Bi2O3 micro-particles or mixed with Bi3+. In particular, employing nanoparticle slurry precursors was expected not only to augment the catalytic edge sites [3], but also to allow an effective passivation owing to greater viscosity than aqueous precursor [14]. In dilute (50 mM) NaCl solutions, the activity and selectivity for CIER were comparatively evaluated for the heterojunction anodes with variable outer layer loading (thickness) and mixing levels of Bi. In addition, the roles of > MOx(OH)− and > MOx+1 on the RCS generation were interrogated by correlation with formate ion degradation.

2. Experimental section

2.1. Preparation and characterization of the anodes

All chemical reagents were analytical grade and obtained from Sigma-Aldrich or Daejung chemicals to be used without further purification. Solutions were prepared with MilliQ water (Millipore) with a specific resistivity of 18 MΩ cm−1. For pretreatment of the anode base, Ti foils (99.5% Alfa-Aesar) were cleaned with SiC paper, sonicated in organic solvent solutions (equimolar deionized water, ethanol, and acetonitrile) for 0.5 h, and immersed in 10 wt% oxalic acid for 50 min at 80 °C. The IrTaOy layer was prepared by soaking the Ti substrate (3 × 2 cm², distance = 5 mm) into solutions with 73 mM H2IrCl6 and 27 mM TaCl5. 4 N HCl and equivalent ethanol/isopropanol solutions were compared as solvents. The loaded precursor was sequentially dried at 80 °C and annealed at 525 °C for 10 min, which was repeated five times before final annealing at 525 °C for 1 h. For preparation of outer heterojunction layers, three different types of precursor were prepared as follows. A) P90 TiO2 (Evonik Industries) and Bi2O3 particles separately ball-milled (Ultra Apex mill) in ethanol to have particle size range of 80–100 nm and 1–2 μm, respectively. The TiO2 nanoparticles (3.8 wt%) were dispersed in ethanol/terpinelon (16:19 wt%) solution with added ethyl cellulose binder (2.2 wt%). Bi2O3 micro-particles were added with variable Bi to Ti ratios (0:10, 1:9, and 3:7). B) 6 mL titanium butoxide was added to 150 mL ethylene glycol to be stirred for 8 h in room temperature. The mixture was poured into 510 mL acetone and 8 mL of deionized (DI) water was added before vigorous stirring for 1 h. Resulting precipitate was collected using a centrifuge (6000 rpm for 4 min), washed with ethanol 5 times, and re-dispersed in ethanol with a given concentration of bismuth citrate. C) titanium tetraisopropoxide (1.25 mL) in ethanol (25 mL) was added to 8 mM Bi(NO3)3 solution (pH 1.5 adjusted by acetic acid) by dropwise and the mixture was stirred overnight. Resulting precipitate was collected (11000 rpm for 10 min), washed with DI water 5 times, and re-dispersed in DI water. These precursors were sprayed on the IrTaOy layer and annealed at 450 °C for 30 min and the coating procedure was performed for 3 times. In this study, heterojunction anodes from precursor A were denoted as Bi2O3(x)(TiO2)y−x(x = 0, 0.1, and 0.3), while the outer layers with low mass loading (L) were prepared without repetition to compare the performance with analogues with high mass loading (H). The anodes from precursor B and C with nominal Bi to Ti ratio of 3:7 were named as Bi2TiOx−1 and Bi2Ti0x−2, respectively, to describe greater mixing level of Bi.

The surface morphologies were observed by using a Zeiss 1550VP field emission scanning electron microscope (SEM) and elemental compositions were estimated using an Oxford X-Max EDX (Panalytical) diffractometer with Cu–Kα radiation.

2.2. Electroanalysis

The electrochemical activities of (Bi2O3)(TiO2)y−x and Bi2TiOx−1/2 heterojunction anodes were assessed using linear sweep voltammetry (LSV) and cyclic voltammetry (CV). In a single compartment cell (working volume = 60 mL), each anode was parallel matched with AISI 304 stainless steel cathode (distance = 5 mm) with active geometric surface area of 3 × 2 cm². Ag/AgCl/sat. KCl reference electrode (BASI Inc.) was located 3 mm away from the anode center. The three electrodes configuration was connected to a potentiostat (SP-50, Bio-Logic) to control anodic potential (Ea) in normal hydrogen electrode (NHE) scale (Ea (NHE) = E (Ag/AgCl) + 0.197 V). The CV and LSV data were recorded with E1 values of 0.2–1.0 V NHE (scan rate of 20 mV s−1) and of 0.8–2.0 V NHE (scan rate of 5 mV s−1), respectively. Before all electrochemical experiments, open circuit potentials were measured for 30 min and ohmic resistances were measured by current interruption method at 200 mA current bias.

2.3. Potentiostatic Electrolysis

The efficiency of RCS generation was evaluated during potentiostatic electrolysis of 50 mM NaCl solutions at variable Ea values (2.0, 2.5, and 3.0 V NHE). The evolution of [RCS] was measured by DPD (N, N-diethyl-p-phenylenediamine) reagents 3 times at 2 min intervals and, during this period, further oxidation of RCS to ClO3− or ClO4 could be negligible [15]. The specific rate (SR), current (CE) and energy efficiency (EE) of the RCS generation were estimated by the following equations (Eqs. (7)–(9)).
3. Results and discussion

3.1. Physico-chemical characteristics of (Bi2O3)x(TiO2)1–x heterojunction layers

For the heterojunction electrodes, the primary IrTaOy layer was synthesized using an organic solvent (ethanol/isopropanol solutions), due to more uniform surface coverage and moderately greater electrochemically active surface area (ECSA) than analogous from hydrochloric acid solvents (Figure S1 and S2). SEM images in Figure S3 show the horizontal surface morphology of the (Bi2O3)x(TiO2)1–x heterojunction anodes with variable molar ratios of Ti to Bi and catalysts loading (thickness). Cross-sectional SEM images estimated the average thickness of (TiO2)-L and (TiO2)-H to be ca. 2 and 5 µm, respectively. (TiO2)-H and -L showed marginal numbers of cracks and pinholes that are typically observed for thermally decomposed (mixed) metal oxide electrodes. Since P60 TiO2 nanoparticles already underwent annealing, further thermal expansion of the crystalline TiO2 particles could be limited, while the aggregation of nanoparticles would alleviate the topological distortion. For samples with added Bi2O3 particles in precursor solutions, discrete islands of bismuth oxide scattered on the surface were noted. EDS mapping in Figure S3g–h clearly identified the immobilized particles (diameter ~ 1 µm) to be Bi2O3.

In the absence of Bi mixing ((TiO2)-L and -H), the primary XRD peaks in Fig. 1 (individual patterns in Figure S4) commonly involved standard patterns of anatase TiO2 (2θ = 25.2, 37.7, and 47.9°) and less prominently of rutile TiO2 (2θ = 27.5, 36.1, and 54.4°), being in compatible with the composition of precursory TiO2 particles (92:8 wt% of anatase:rutile for P60). A phase transition during the thermal annealing at 450 °C would be limited since transformation into the rutile structure is known to occur at a temperature normally exceeding 600 °C [16]. Negligible characteristic pattern of IrO2 (2θ = 34.7, 40, 54, and 69.3°) on surface of these anodes indicated relatively thorough covering even with single spray coating. In comparison, (Bi2O3)x(TiO2)1–L electrodes showed clear patterns of standard α-Bi2O3 (2θ = 27.5, 33.2, and 46.5°), while the repeated coating of the Bi/Ti mixed precursor (-H) alleviated the signal from Bi2O3 buried in TiO2 matrix. The addition of Bi2O3 particles to the precursor gave negligible changes in diffraction peak positions of TiO2, indicating limited thermal diffusion between the separate crystalline lattice structures (TiO2 and Bi2O3) [17]. Therefore, each metal oxide phase was expected to maintain the intrinsic physicochemical properties with minimal doping effects; thus, the outer heterojunction layers could be denoted as (Bi2O3)x(TiO2)1–x. In the presence of Bi2O3 particles, signals from underlying IrO2 (peak near 35°) and Ti substrate (peak near 40°) were invigorated. Considering that the XRD analysis was performed after the electrochemical analyses described hereinafter, these observations suggest the instability of bismuth oxide in anodic environment (vide infra).

3.2. Voltammetric responses of IrTaOy/(Bi2O3)x(TiO2)1–x heterojunction anodes

Areal capacitance from CV within the potential window of water splitting has often been utilized to estimate the ECSA [18,19]. Fig. 2a (raw CV data in Figure S5) illustrates the areal capacitance measured under anodic potential between 0.2 and 1.0 V NHE in 50 mM NaCl solutions (circum-neutral pH). The highest areal capacitance (22 mF cm−2) of IrTaOy was reduced by about 30% upon addition of surface TiO2 layers. Mixing Bi2O3 particles on surface insignificantly affected or even further decreased the areal capacitance. Within the potential scan range, oxidative transformations of hydrous > TiOH or > BiOH (e.g., to oxyhydroxide or higher oxide) could be limited to especially due to the fully oxidized TiO2. Nevertheless, considering rather thorough surface passivation by TiO2 layers (at least for IrTaOy/TiO2 anodes as shown in Fig. 1), the electrochemical activity for the heterojunction anodes would be ascribed to a thermal diffusion of Ir components into the upper layer (vide infra) [11].

Linear sweep voltammetry (scan range: 0.8 - 2.0 V NHE, scan rate: 5 mV s−1) in 50 mM NaCl solutions (Fig. 2b) estimated the anodic potential at 10 mA cm−2 in the order of TiO2-L < IrTaOy < TiO2-H < (Bi2O3)x(TiO2)1-L < (Bi2O3)x(TiO2)1-H (Table 1). In these experimental
conditions, the current generation would be ascribed to parallel OER and CIER. Electrical conductivity of semiconductor electrocatalysts should be another consideration especially for thick catalyst film. To this end, the outer heterojunction layer mostly lowered the current generation due to the inherently poor electrical conductivity of TiO$_2$ and Bi$_2$O$_3$. More pronounced current decline with included Bi$_2$O$_3$ particles, particularly with higher loading (Bi$_2$O$_3$)$_x$(TiO$_2$)$_{1-x}$H and (Bi$_2$O$_3$)$_x$(TiO$_2$)$_{1-x}$L, agreed with the concurrent increase in ohmic resistance measured by a current interruption method. The current interruption would collectively evaluate the electrolyte resistance of ion migration, polarization resistance and resistance across the catalytic film, often described as resistances in series in an equivalent circuit [20]. Since the Bi$_2$O$_3$ particles were speculated to be anchored within TiO$_2$ matrix without a direct contact with IrTaO$_y$ layer, (Bi$_2$O$_3$)$_x$(TiO$_2$)$_{1-x}$ anodes would suffer from invigorated resistance across the multiple junctions (IrTaO$_y$/TiO$_2$/Bi$_2$O$_3$).

Nevertheless, the observed OER and CIER activities were incompletely justified with the areal capacitance and ohmic resistance, particularly for the unexpected elevated current generation from TiO$_2$-L anode. A recent report presented evidences that the OER and CIER overpotential values of IrO$_2$ could be reduced upon a few cycles of atomic layer deposition (ALD) of thin TiO$_2$ layer by shifting surface charge density and overall M-O bond strength [21]. Underlying Ir$^{4+}$ was speculated to be partly oxidized to result in sub-stoichiometric TiO$_2$-x outer layer, significantly elevating the electrical conductivity. Even for much thicker TiO$_2$ coating (greater than 1 μm) in this study, Ir ions might be diffused into the TiO$_2$ matrix during the thermal annealing, leading to a vertical concentration gradient of Ir (in mixture with Ti). Effective ionic radius of Ir$^{4+}$ (62.5 pm) is more similar with Ti$^{4+}$ (60.5 pm) than Bi$^{3+}$ (103 pm), supporting the observed enhancement only with the TiO$_2$-L layer. For the TiO$_2$-H heterojunction anode, more pronounced increase in ohmic resistance led to net reduction in anodic wave, as in the case of far thicker (~30 μm) TiO$_2$ layers on IrTaO$_y$ in our previous report [11].

Table 1

Electrode	E_a (V, $j = 10$ mA cm$^{-2}$)	R_s from current interruption (Ω)
IrTaO$_y$	1.777	4.115
TiO$_2$-H	1.834	4.080
TiO$_2$-L	1.716	3.414
(Bi$_2$O$_3$)$_x$(TiO$_2$)$_{1-x}$-H	1.940	4.846
(Bi$_2$O$_3$)$_x$(TiO$_2$)$_{1-x}$-L	1.829	3.676
Bi$_3$Ti$_7$O$_{19}$-L	1.912	5.427
Bi$_3$Ti$_7$O$_{19}$-H	1.809	4.054
Bi$_3$Ti$_7$O$_{19}$	1.862	4.455
Bi$_3$Ti$_7$O$_{19}$-2	1.887	5.383

Fig. 2. (a) Areal capacitance measured by cyclic voltammetry (scan range: 0.2–1.0 V NHE, scan rate: 20 mV s$^{-1}$) and (b) linear sweep voltammograms (scan range: 0.8–2.0 V NHE, scan rate: 5 mV s$^{-1}$) of IrTaO$_y/(Bi$_2O_3$)$_x$(TiO$_2$)$_{1-x}$ heterojunction anodes ($x = 0, 0.1, and 0.3$, mass loading = high (H) and low (L)); electrolyte: 50 mM NaCl (pH 7); cathode: stainless steel, geometric surface area: 3×2 cm2. Data for IrTaO$_y$ anode are shown as references.

3.3. Reactive chlorine generation by IrTaO$_y/(Bi$_2O_3$)$_x$(TiO$_2$)$_{1-x}$ heterojunction anodes

Reactive chlorine generation was comparatively evaluated in 50 mM NaCl solutions (Fig. 3) at variable applied anodic potentials (2.0, 2.5, and 3.0 V NHE). Throughout this study, the corresponding cell voltage and ohmic resistance (measured by current interruption at 200 mA) ranged 4–6 V and 3.3–5.6 Ω, respectively. The current density in potentiostatic condition (Fig. 3a) was in general agreement with the LSV shown in Fig. 2b. EE always decreased with the greater applied potential (cell voltage) due to the increment in ohmic drop, whereas CE varied insignificantly. Despite moderate variations in ohmic drop and iR-compensated anodic potential among anodes, the insignificant dependency of CE on the applied potential would allow a qualitative comparison. The CE and EE values of the control IrTaO$_y$ electrode were averaged to 52% and 4.23 mmol Wh$^{-1}$ at 2.5 V NHE, respectively, while the heterojunction layers substantially augmented the CE and EE for RCS generation (in Fig. 3b and d). Accordingly, despite the general reductions in the operational current density, heterojunction anodes marked greater specific RCS generation rates (Fig. 3c) than the control. The most considerable enhancement was noted for TiO$_2$-L with more than 70% increase in SR$_{RCS}$ due to the elevated voltammetric response. Utilizing nanoparticle slurry precursor with relatively simple preparation procedure, these results outperformed our previous report on IrTaO$_y$/Bi$_3$Ti$_7$O$_{19}$-xO$_2$ heterojunction anodes by casting aqueous Ti-glycolate solutions prepared by a peroxo-route [11].

It would be a rational postulation that the RCS generation through charge transfer between the physi-sorbed -OH and Cl$^-$ (Eq. (5)) would be far more facile than oxygen atom transfer from higher oxide (Eq. (6)) [5]. In comparison, the >MO$_x$ form would more preferentially mediate OER (Eq. (4)) than (>MO$_x$ (OH)$^-$, Eq. (3)) [10]. Therefore, the speciation of hydrous metal oxide under an anodic bias (MO$_x$(-OH)$^-$ versus MO$_x$) is expected to determine the selectivity between OER and CIER [22,23]. More predominant steady-state surface concentration of >MO$_x$(-OH) would account for the overall enhancements of CE and EE for RCS generation on heterojunction architectures, as suggested previously [11,13]. In order words, primary Ti$^{4+}$ species on surface of heterojunction anodes would prevent transformation into the higher oxide, whereas the control IrTaO$_y$ would favor >MO$_x$ formation by Ir$^{4+}$/Ir$^{3+}$ transition.
Although the improved CE and EE of RCS generation on (Bi₂O₃)₃(TiO₂)₇–H, limited stability in anodic environments was noted specifically due to the dissolution of Bi₂O₃ particles. Figure S6a illustrates the concentrations of Bi and Ti in electrolyte during an accelerated life test at 1000 mA cm⁻² operation for the (Bi₂O₃)₃(TiO₂)₇–H heterojunction anode. Bi₂O₃ particles were expected to maintain intrinsic properties so as to be vulnerable to anodic potential bias and local acidity from OER, as confirmed by a distinct accumulation of Bi in electrolyte. EDS mapping (Figure S6b-f) after the life test also located intensified signals of Ir on remains with dissolution/detachment of Bi₂O₃ particles. The concurrent rise of Ti concentration would be associated with detachment of TiO₂ nanoparticles along with the collapse of particle aggregation. In summary, decoration of micron-sized Bi₂O₃ particles on the TiO₂ heterojunction brought about limited or even adverse effects both for RCS generation and stability.

3.4. Reactive chlorine generation by IrTaO₄/Bi₃Ti₇Oₓ heterojunction anodes

In order to address the drawbacks of Bi₂O₃ decoration, this study evaluated two different Bi₃Ti₇Oₓ heterojunction layers with more uniform doping of Bi into the TiO₂ matrix. For Bi₃Ti₇Oₓ–1 anode, titanium glycolate nano-particle slurry was prepared by polyol-mediated synthesis [14], to be mixed with a bismuth citrate solution (Bi:Ti = 3:7) overnight. During this process, Bi³⁺ was expected to be randomly substituted with Ti⁴⁺ in the polyol structure by ligand exchange to form a homogeneous solid mixture during the subsequent thermal decomposition. In addition, a well-established co-precipitation procedure for metal ion doped nanosized TiO₂ colloidal suspension [24] was employed for preparation of Bi₃Ti₇Oₓ–2 anode. Under the same spraying procedure, the mass loading of Bi₃Ti₇Oₓ–1 layer was far greater (3.20 mg cm⁻²) than Bi₃Ti₇Oₓ–2 (0.342 mg cm⁻²) due to the different precursor viscosity (aqueous versus organic solvent).

The SEM images on the horizontal surface of Bi₃Ti₇Oₓ anodes (Figure S7) showed rugged morphology without specific grains of Bi₂O₃. The outer film contained multiple cracks that have been typically found for annealed mixed metal oxide due to the variable thermal expansion coefficients [25]. In addition, XRD profiles (Fig. 4 and S8) for the both Bi₃Ti₇Oₓ anodes showed insignificant peaks relevant to Bi₂O₃. These observations would substantiate homogeneous mixed metal oxide formation by the modified preparation schemes. Besides reflections from Ti substrate, intense signals from rutile TiO₂ dominated on Bi₃Ti₇Oₓ–2. Insertion of Bi³⁺ into the TiO₂ lattice would distort the crystalline structure to facilitate transformation of anatase to rutile at relatively low annealing temperature (450 °C) [16]. At superimposable locations, by far smaller peaks were noted on Bi₃Ti₇Oₓ–1, suggesting predominant amorphous phase. Evidences were presented that polyol-mediated Ti-glycolate could remain amorphous up to 500 °C [14].

Compared to IrTaO₄/TiO₂ anodes, on the other hand, Bi₂O₃ particles on surface generally lessened the CEₜₐₖ and EEₜₐₖ, except for (Bi₂O₃)₃[TiO₂]₇–H. Our previous report [11] proposed competitive roles of Bi mixing for CIER on the solution casted IrTaO₄/Bi₃Ti₇Oₓ anodes; accelerating interaction with Cl⁻ (via a positive shift in surface charge) but hampering CIER kinetics through the higher oxide formation (via Bi³⁺/Bi⁵⁺ redox transition). Accordingly, CE values of CIER were noted to be maximized at Bi fraction of 0.1–0.3 [11]. In this study, the former effect was insignificant, most presumably because of spatially separated TiO₂ and Bi₂O₃ phase. Nevertheless, (Bi₂O₃)₃[TiO₂]₇–H with the highest surface loading of Bi showed comparable CE and EE values with IrTaO₄/TiO₂ anodes.
(De Nora) which showed lower values of CERCS (40.9% on average) and EE_{RCS} (3.1 mmol Wh^{-1} at 2.5 V NHE) as shown in Figure S10. These results demonstrated that even with the analogous composition, mixing level of constituents could significantly affect the electronic and electrostatic properties. In particular, relatively homogenous intercalation of Bi component might avoid the ohmic resistance across multiple junctions, while increase the point of zero charge for enhanced electro-sorption of Cl-. Furthermore, accelerated life test at 1000 mA cm-2 indicated insignificant dissolution of Bi and Ti during operation for 30 h (data not shown).

In order to evaluate the effects of ion migration upon the potential bias (increasing [Cl-] in the anode vicinity), the RCS generation experiments were performed in 50 mM NaCl solutions with or without another electrolyte (50 mM NaClO\textsubscript{4}) under a galvanostatic condition (Figure S11). The measured values of SR_{RCS}, CERCS, and EE_{RCS} in the mixed solutions were 82, 86, and 97% of those in NaCl solutions, respectively. Moderate reductions could be associated with the competing ion migration and lower potential bias in the presence of other electrolyte, which would be a consideration to understand the performance in real (waste)water matrix. On the other hand, one may argue that the elevated CERCS by the heterojunction architecture would be ascribed to the reduced current density, since an increasing current could invigorate OER only when ClER is rate-limited by diffusion of Cl-. However, the operational current density in this study would be lower than the limiting current density for CIER, as corroborated by Figure S12. The observed CERCS values showed negligible correlation with the current density. Therefore, the shift in ClER selectivity should be understood by speciation of surface intermediates with variable reactivity with Cl- (vide infra).

![Fig. 4.](image1) X-ray diffraction patterns of (a) IrTaO\textsubscript{y}/(Bi\textsubscript{3}Ti\textsubscript{7}O\textsubscript{x-1,2}) heterojunction anodes, referenced with (b) IrO\textsubscript{2}, TiO\textsubscript{2} (anatase, rutile) and α-Bi\textsubscript{2}O\textsubscript{3}.

![Fig. 5.](image2) (a) Current density, (b) current efficiency, (c) specific rate and (d) energy efficiency of reactive chlorine species generation during potentiostatic electrolysis of 50 mM NaCl solutions (pH 7) with IrTaO\textsubscript{y}/(Bi\textsubscript{3}Ti\textsubscript{7}O\textsubscript{x-1,2}) heterojunction anodes; cathode: stainless steel, geometric surface area: 3 \times 2 cm2, applied anodic potential: 2.0, 2.5, and 3.0 V NHE. Data for IrTaO\textsubscript{y}/(Bi\textsubscript{2}O\textsubscript{3})(TiO\textsubscript{2})\textsubscript{7}-H anode are shown as references.
3.5. Formate ion degradation versus RCS generation to assess intermediate speculation

In this study, the hydroxyl radical (·OH) on anode surface could be a nonselective oxidant to be utilized for Cl− oxidation to RCS. Due to the short lifetime (10−6 – 10−3 s), free or bound ·OH has been quantified using an array of probe compounds such as salicylic acid, benzoic acid, coumarin, benzoquinone, and RNO (p-nitrosodimethylaniline) [26]. Formate ion could be another surface cyclic acid, benzoic acid, coumarin, benzoquinone, and RNO (·OH) prove due to superb reactivity with ·OH [27], simple quantification method using IC, and relatively low molecular weight to avoid diffusion limitation.

In order to further interrogate the speciation between MOx(·OH) and MOx+1, and their roles on RCS generation, potentiostatic (Ea = 2.0 or 2.5 V NHE) formate ion degradation experiments (initial concentration = 50 mM) were performed using the series of (Bi2-O3)x(TiO2)1−x and Bi2Ti5O14 heterojunction anodes (Figure S13). We limited the applied anodic potential up to 2.5 V NHE due to slightly lower electrical conductivity of 50 mM NaCOOH solutions (4.3 mS cm−1) than 50 mM NaCl solutions (5.4 mS cm−1). The differences in ohmic drop between two solutions were estimated to be 0.16 V at maximum. The reaction between HCOO− and >MOx(·OH) could be approximated to pseudo-first-order owing to the facile kinetics (Eq. (10)).

\[
>M\text{O}_x(\cdot \text{OH}) + \text{HCOO}^- \rightarrow >M\text{O}_x + \text{COO}^- + \text{H}_2\text{O} \tag{10}
\]

Fig. 6a illustrates the observed pseudo-first-order rate constants of formate decay (kobs/formate) in relation with the pseudo-first order rate constants of RCS generation (kobs/RCS) that were estimated from the SrRCS (Figs. 3c and 5c) and initial chloride concentration (kobs/RCS = SrRCS A/V[Cl−]). The kobs/RCS was observed to be linearly correlated with kobs/formate and, more importantly, the slope of the regression line was close to the ratio of bimolecular rate constant of ·OH with Cl− (kformate/chloride = 4.3 × 109 M−1 s−1) to that with HCOO− (kformate/chloride = 3.2 × 109 M−1 s−1). These findings strongly evinced that MOx(·OH) would be the exclusive intermediate for the RCS generation (Eq. (5)), while MOx+1 driven CIER (Eq. (6)) would play a minor role for our heterojunction anodes. In spite of previous reports [28] on OER degradation by IrO2/IrO3 couple in acid (pH 0), oxygen atom transfer from MOx+1 to HCOO− could be excluded in the current experimental conditions. Ozone, as a presumed analog of the higher oxide, is known to undergo sluggish kinetics both with Cl− (<3 × 10−3 M−1 s−1) and HCOO− (1 × 109 M−1 s−1) [29,30].

Provided that free and bound ·OH react with HCOO− at analogous bimolecular rate constants, the steady-state concentration of surface bound ·OH ([>MOx(·OH)]SS) could be estimated from kobs/formate using eq. (11).

\[
>[>\text{MO}_x(\cdot \text{OH})]_{\text{SS}} = \frac{k_{\text{obs/formate}}(\text{s}^{-1}) \text{V} / (A \text{k_{\text{formate}}})} {1.2} \tag{11}
\]

As shown in Figure S14a, the [>MOx(·OH)]SS estimates were in similar order with our previous study [11]. Eq. (12) given by a pseudo-steady-state approximation further estimated the rate constant for Eq. (2) (k2), assuming that >MOx(·OH) and >MOx+1 are exclusively responsible to the formate ion oxidation and OER, respectively.

\[
k_2 = \frac{\text{CE}_{\text{RCS}}}{2F} \times \frac{1}{A[>\text{MO}_x(\cdot \text{OH})]_{\text{SS}}} \tag{12}
\]

where CE_{RCS} is the CE of OER calculated from the charge balance (1 – CE of formate ion degradation). Figure S14b substantiated that the outer heterojunction layers significantly lowered k2 values of IrTaOx. Under further assumption that transition from >MOx(·OH) to >MOx+1 (Eq. (2)) is limiting the OER rate, CE_{RCS} could be determined by the ratio of k2 to k^{chloride}_{formate}. Despite the apparent inverse relation between k2 and CE_{RCS} noted in Fig. 6b, relatively weak correlation suggested the liberation of O2 from >MOx+1 (Eq. (4)) could also determine the OER rate depending on the outer layer composition. For example, a strong binding of O on Bi might allow the CIER to overwhelm OER on the Bi2Ti5O14−2 anode with relatively high k2 value.

4. Conclusions

This study prepared Ir7Ta3O9 DSAs with outer heterojunction layers based on mixed Bi and Ti oxide to compare the RCS generation efficiency during competitive OER and CIER in dilute (50 mM) NaCl solutions. Crack free, anatase dominant TiO2 layers prepared from ball-milled P60 nanoparticles brought about significantly enhanced SrRCS, CE_{RCS}, and EE_{RCS}, while TiO2-L even elevated the anodic current wave possibly owing to a tuned overall M-O bond strength. However, decoration of Bi2O3 particles on the outer TiO2 films ((Bi2O3)x(TiO2)1−x) gave limited or adverse effects on voltammetric response, RCS generation, and stability presumably...
because of multiple junction formation and specially separated Bi$_2$O$_3$ phase. To this end, Bi$_x$Ti$_{1-x}$O$_y$ heterojunction layers with elevated mixing level of Bi marked CRCS values near unity, by an effective increase in the point of zero charge. Consequently, the highest CRCS and EERCS were noted by Ir-Ta$_2$O$_5$/TiO$_2$-L and Ir-Ta$_3$O$_5$/Bi$_x$Ti$_{1-x}$O$_y$, respectively. Parallel formate ion degradation experiments revealed that the RGS generation would be exclusively mediated by $>$MO$_x$(OH) whose further transition to $>$MO$_{x+1}$ was proven to be retarded by the heterojunction layer. Our heterojunction anodes with simplified preparation procedure would allow an energy-efficient electrochemical oxidation processes for water disinfection and high salinity wastewater treatment through the enhanced chlorine evolution. Improvements in the industrial chlorine generation (chlor-alkali process) are also expected with reduced power input and operational cost. Further study should tackle the effects of outer layer TiO$_2$ loading (thickness) on film resistance and CRCS, as well as stability of the Bi-doped TiO$_2$ layers in more systematic manners based on periodic CRCS measurements during accelerated life test.

Acknowledgment

The authors would like to acknowledge the financial support of the Bill and Melinda Gates Foundation (BMGF RTTC Grant OPP1149755). This work was also supported by the Basic Research Laboratory (NRF-2018R1A4A1022194), Young Researcher Program (NRF-2019R1C1C1003435), and Nano Material Technology Development Program (NRF-2016M3A7B4908161) through the National Research Foundation of Korea.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcat.2020.04.009.

References

[1] W. Hu, Y. Wang, X. Hu, Y. Zhou, S. Chen, Three-dimensional ordered macroporous IrO$_2$ as electrocatalyst for oxygen evolution reaction in acidic medium, J. Mater. Chem. 22 (2012).
[2] N. Mamac, E. Mayoussis, S. Ariri-Cacens, T.W. Napporn, K. Servat, N. Guillot, K.B. Kokoh, Electrocatalytic activity of ruthenium and iridium based catalysts for oxygen evolution reaction, Appl. Catal. B 111-112 (2012) 376–380.
[3] N. Menzel, E. Oriel, K. Mette, R. Krahneht, P. Strasser, Dimensionally Stable Ru/Ir/TiO$_2$-Anodes with Tailored Mesoporosity for Efficient Electrochemical Chirone Evolution, ACS Catal. 3 (2013) 1324–1333.
[4] C. Comninellis, C.P. Verges, Characterization of DSA$_x$-Type Oxygen Evolving Electrodes: Choice of a Coating 21 (1991) 335–345.
[5] C.M. Chung, W. Lee, S.W. Hong, K. Cho, Effects of anode materials and chloride ions on current efficiency of electrochemical oxidation of carbohydrate compounds, J. Electrochem Soc 166 (2019) H628–H634.
[6] H.A. Hansen, I.C. Man, F. Studd, F. Ablid-Pedersen, T. Bliagaard, J. Rossmeisl, Electrochemical chlorine evolution at rutile oxide (110) surfaces, Phys Chem Chem Phys 12 (2010) 283–290.
[7] M. Panaza, G.J.C. Cerisola, Direct and mediated anodic oxidation of organic pollutants, 100 (2009) 6541–6569.
[8] C.A. Martinez-Huitte, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes, Chem. Soc. Rev. 35 (2006) 1324–1340.
[9] J.-J. Zhang, J.-M. Hu, J.-Q. Zhang, C.-N. Cao, IrO$_2$–SiO$_2$ binary oxide films: Geometric or kinetic interpretation of the improved electrocatalytic activity for the oxygen evolution reaction, Int. J. Hydrogen Energy 36 (2011) 5218–5226.
[10] C.J.E.A. Comninellis, Electrocatysis in the electrochemical conversion/combustion of organic pollutants for water waste treatment, 39 (1994) 1857–1862.
[11] K. Cho, M.R. Hoffmann, BioTi1→xO2 Functionalized heterojunction anode with an enhanced reactive chlorine generation efficiency in dilute aqueous solutions, Chemistry of Materials, 27 (2015) 2224–2233.
[12] C.X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D.A. Wheeler, J.Z. Zhang, B.R. Auton, S.S. Mao, A perspective on solar-driven water splitting with all-oxide hetero-nanostuctures, Energy Environ. Sci. 4 (2011).
[13] K.S. Ezer, J. Anton, T. Jacob, H. Oever, Controlling Selectivity in the Chlorine Evolution Reaction over RuO$_2$-Based catalysts, Angew. Chem. Int. Ed. 53 (2014) 11032–11035.
[14] Y. Wei, J.X. Zhu, Y.X. Gan, G. Cheng, Titanium glycolate-derived TiO$_2$ nanomaterials: Synthesis and applications, Adv. Powder Technol. 29 (2018) 2289–2311.
[15] A. Kraft, M. Stadelmann, M. Blaschke, D. Kreybig, B. Sandt, F. Schröder, J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Nørskov, Electrolysis of water on Ir$_7$Ta$_3$O$_y$/IrO$_2$-L Ir7Ta3-Oxidized Ceramics for Advanced Catalytic Applications, J. Phys. Chem. C 120 (2016) 11611–11615.
[16] Y.-Y. Hou, J.-M. Hu, L. Liu, J.-Q. Zhang, C.-N. Cao, Effect of calcination temperature on electrocatalytic activities of Ti/IrO$_2$ electrodes in methanol aqueous solutions, Electrochim. Acta 51 (2006) 6258–6267.
[17] K.R. Cooper, M. Smith, Electrical test methods for on-line fuel cell ohmic resistance measurement, J. Power Sources 160 (2006) 1088–1095.
[18] C.E. Finke, S.T. Omelchenko, J.T. Jasper, M.F. Lichterman, C.G. Read, N.S. Lewis, M.R. Hoffmann, Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO$_2$, Energy Environ. Sci. 12 (2019) 358–365.
[19] J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kros, J.K. Nørskov, Electrolysis of water on oxide surfaces, J. Electroanal. Chem. 607 (2007) 83–89.
[20] S.J.E.A. Trasatti, Electrocatysis in the anodic evolution of oxygen and chlorine, 29 (1994) 1503–1512.
[21] W.Y. Choi, A. Termin, M.R. Hoffmann, The Role of Metal-Ion Dopants in Quantum-Sized TiO$_2$ - Correlation between Photoreactivity and Charge-Carrier Recombination Dynamics, J. Phys Chem-U. 98 (1994) 13669–13679.
[22] L. Da Silva, V. Alves, M. Da Silva, S. Trasatti, J.J.E.A. Boedts, Oxygen evolution in acid solution on IrO$_2$– TiO$_2$ ceramic films. A study by impedance, voltammetry and SEM, 42 (1997) 271–281.
[23] Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis, Chem. Rev. 117 (2017) 11302–11336.
[24] J.M. Kesselman, O. Were, N.S. Lewis, M.R. Hoffmann, Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO$_2$ electrodes and estimation of the partitioning between hydroxyl radical and direct hole oxidation pathways, J. Phys. Chem. B 101 (1997) 2637–2643.
[25] S. Fierroa, L. Ouattara, E.H. Calderon, E. Passas-Lagos, H. Baltruschat, C. Comninellis, Investigation of formic acid oxidation on Ti/IrO$_2$ electrodes, Electrochim. Acta 54 (2009) 2053–2061.
[26] P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data 17 (1988) 1027–1284.
[27] G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/•OH in Aqueous Solution, J. Phys. Chem. Ref. Data 17 (1988) 513–886.