How Proprioception Gives Rise to Self-Others-Knowledge

Anita Pacholik-Żuromska*

Nicolaus Copernicus University in Toruń, Toruń, Poland

Keywords: proprioception, multisensory integration, bodily self-consciousness, social perception, body-social problem

INTRODUCTION

The already rich professional literature broadly informs about the role of the body in establishing the self-others distinction (Jeannerod, 2006; Iacoboni, 2009; Kyselo, 2015; Maister et al., 2015; Noel et al., 2017; Palmer and Tsakiris, 2018). The internal sense of ownership and sense of agency are the fundamentals of self-identification (Jeannerod, 2004; Blanke et al., 2015; Tsakiris, 2016; Braun et al., 2018). The lack of these two fundamentals (natural or artificially induced) also conveys important information, specifically that the action was executed by someone else (Iacoboni, 2009; Tsakiris, 2010). In my opinion, owing to its neural fundamentals, bodily self-consciousness (BSC) not only allows us to differentiate between self and others but also leads to the propositional knowledge of the subject and influences the social functioning of the subject (the self-others-knowledge—SOK).

Assigning the important role of the body and multisensory integration in the self-others distinction is not new (Keromnes et al., 2019). However, what I add to this opinion is the recognition of the role of proprioception in shaping propositional SOK, i.e., shaping a specific type of metacognition.

THE ROLE OF PROPRIOCEPTION FOR BODILY SELF-CONSCIOUSNESS

The viewpoint presented in this article is in line with the enactivism, which is in turn deeply rooted in the phenomenological tradition (Maturana and Varela, 1998; Gallagher, 2006). According to this line what forms the mind is the body and its interaction with the environment (Wilson, 2002; Di Paolo and De Jaegher, 2012). The role of the body has been described particularly in relation to neural mechanisms underlying BSC—especially multisensory integration constituting proprioception (Blanke and Metzinger, 2009; Blanke et al., 2015; Limanowski, 2017). BSC manifested in the sense of ownership and sense of agency is therefore a psychological outcome of the synchronisation of sensorimotor information (Cf. Jeannerod, 2006; Blanke et al., 2015). However, given that BSC, built from different information including proprioceptive cues, closes the subject in the internal loop at the neuronal level of information processing, the problem arises of a link between self-awareness and awareness of others, i.e., how an individual subject becomes a social subject.

Proprioception can be defined in different ways. On the one hand, it is an unconscious registration in the central nervous system of one’s own joint positions (Gallagher, 2006). The information coming from proprioceptors placed in the inner ear and muscles is analysed and integrated by the brain, which on this basis creates a body scheme (Cole, 1995; Gallagher and Cole, 1995). On the other hand, proprioception can be understood as non-conceptual bodily self-awareness (Bermúdez, 2005). In this case it is a kind of direct knowledge about the subject’s basic experiences, which are the sense of the body’s position and of being embedded in the
world (Seth, 2015). Although such sensations are usually consciously inaccessible, they become apparent by paying attention to the subject’s own movement, especially by performing certain kinds of action controlling whether the proprioception works properly. The basic multisensory information processing, when integrated, produces an experience being a self—an autonomous minimal selfhood (Blanke and Metzinger, 2009; Blanke et al., 2015).

In ecological psychology represented by Gibson (2002), proprioception is understood as the awareness of the perceiver regarding their existence in the environment, which accompanies the perception of the environment, hence the perception and proprioception come together. Having in mind Gibson’s theory of ecological self, I think that the particular constitution of BSC is possible thanks to the sense of vision playing an important role in proprioception by increasing one’s self-experience as an individual distinctive from the rest of the world. It is the vision which provides information via exteroception regarding which objects do and do not belong to the body (Gibson, 2002, p. 78). An example is the distinction between object motion and locomotion. In the first case it is perception which reveals the movement of an object in the static environment; in the second case, it is proprioception which informs that the observed movement is the activity of the organism’s own body (cf. Gibson, 2002, p. 78). To illustrate this, one can use the example of an illusion which occurs while sitting on the train; while waiting for its departure, we observe another stationary train through the window and, suddenly, we see windows passing and believe that our train has started to move. However, after a second, we realise that our train is still static and that another train is moving. The example of the illusion of the movement shows how strong the visual information about our position towards other bodies is. The role of vision in the formation of BSC is also featured in the conception of associative system learning, where the motor representation of one’s own movements and the sensory representation of this movement connect with each other increasingly whilst self-observation (Heyes, 2016).

SELF-OTHER KNOWLEDGE

I claim that not only BSC but also the particular constitution of a SOK is possible thanks to the sense of vision playing an important role in proprioception by increasing self-experience as being an individual distinctive from the rest of the world (Cf. Jeannerod, 2004; Limanowski and Friston, 2019). Vision serves as the exteroception, i.e., the perception of external objects; proprioception, on the other hand, gives information about the body itself (Gibson, 2002, p. 78). A synchronisation of sensorimotor information coming from vision and proprioception results in representation of the acting body (Cf. Limanowski and Friston, 2019). The recognition whether it is one’s own body which is acting is an ultimate factor influencing self-other distinction (Jeannerod, 2004) and establishing self-representation as distinctive from the representation of the others (Palmer and Tsakiris, 2018).

My thesis is that the bodily mechanisms of self-recognition not only lead to distinction me-others (bodily self-others knowledge—BSOK) but also contribute to the formation of propositional SOK (PSOK), i.e., that non-conceptual bodily representations are transformed into conceptual ones, by a recognition of a movement as an action. The meaning is namely an intention: a goal of the movement performed. In other words the ascription of a meaning to the observed movement rests on a connexion of a movement with a goal. I suppose that the recognition of a movement as intentional is the link connecting BSC with metacognition: SK and SOK. The ability to make a distinction between one’s own action and the action of others underlies recognition of intentions and, i.e., understanding the actions of others by ascribing them the intention on the basis of the subject’s own intentions and goals. As representations can be divided into sensorimotor (bodily) and cognitive (conceptual), the knowledge of others can be divided into sensorimotor and conceptual (Mul et al., 2019). Given that sensorimotor representations underlie the conceptual, BSOK underlies PSOK. In other words, the transition from BSOK to PSOK is the transformation of the sensorimotor representation into conceptual ones.

The claim that vision and proprioception build BSC and consequently SK and SOK is not beyond dispute. For example O’Regan and Noë (2001) trait vision as a way of acting, i.e., active exploration of the environment, which may be an argument against the importance of vision in constructing self-other boundaries. However, this discussion does not apply to the position presented here. I claim, namely, that the internal sense of ownership and sense of agency are the fundamentals of self-identification in BSC. In other words, in BSC resting on vision and proprioception an agent gains the information that it is their body rather than someone else’s which is acting and, by using this acting body, they can achieve the intended goal. Thus, the BSC constituted in action provides important information for BSOK: self-others distinction by ascribing the action to oneself or to the other. BSOK underlies the higher-level cognition involving conceptual knowledge. The bodily experience provides a basis for the development of an intentional level of understanding, i.e., PSOK. But why do we need propositional knowledge about others at all if the differentiation has already been made at the bodily level of information processing? The answer is simple: to understand their intentions, to ascribe them mental states, and to interpret them as rational agents. For all this we need a conceptualisation.

A BRIEF DISCUSSION OF ALTERNATIVE APPROACHES

An interesting conception how the neuronal basis gives rise to SOK without the involvement of proprioception refers to the role of mirror neurons system (MNS) in cognition, which facilitates a distinction between an agent’s own action and the action of the others. There are two interpretations of the role of mirror neurons in cognition. The first is broader and states that mirror neurons are involved in reading the intentions of others;
The Model of SOK

![Figure 1](image)

CONCLUSION

In my opinion the conceptualised knowledge about the others (PSOK), i.e., the recognition of other bodies as intentionally acting individuals necessarily involves the primacy of the non-conceptual bodily self-other knowledge (BSOK). Hence if one wants to build a model of how SOK is created, must refer to the neural constitution of BSOK involving the sense of vision and proprioception, triggered and tuned in a goal-directed movement, i.e., an action (Figure 1). Vision and proprioception are namely significant indicators of the source of the action—the sense of agency. In such an account not only the individual mind, but also the social mind is shaped by body and its interaction with the world.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and has approved it for publication.

FUNDING

This research was supported by the Emerging Field Logic and Philosophy of Science in the frame of Excellence Initiative—Research University Programme at NCU.
Gallagher, S. (2006). How the Body Shapes the Mind. Oxford: Oxford University Press. doi: 10.1093/0199271941.001.0001

Gallagher, S., and Cole, J. (1995). Body schema and body image in a deafferented subject. J. Mind Behav. 16, 369–390.

Gibson, J. J. (2002). “A theory of direct visual perception,” in Vision and Mind. Selected Readings in the Philosophy of Perception, eds A. Noé and E. Thompson (London: MIT Press), 77–91.

Heyes, C. (2016). Who knows? Metacognitive social learning strategies. Trends Cogn. Sci. 20, 2014–2213. doi: 10.1016/j.tics.2015.12.007

Iacoboni, M. (2009). Mirroring People. The Science of Empathy and How We Connect with Others. New York, NY: Picador.

Jeannerod, M. (1994). The representing brain. Neural correlates of motor intention and imagery. Behav. Brain Sci. 17, 187–245. doi: 10.1017/S0140525X00034026

Jeannerod, M. (2006). Motor Cognition: What Actions Tell the Self. Oxford: Oxford University Press. doi: 10.1093/acprof:oso/9780198569657.001.0001

Jeannerod, M. (2006). Motor Cognition: What Actions Tell the Self. Oxford: Oxford University Press. doi: 10.1093/acprof:oso/9780198569657.001.0001

Keromnes, G., Chokron, S., Celnue, M. P., Berthoz, A., Botbol, M., Canitano, R., et al. (2019). Exploring self-consciousness from selfand other-image recognition in the mirror: concepts and evaluation. Front. Psychol. 10:719. doi: 10.3389/fpsyg.2019.00719

Kyselo, M. (2015). “The fragile nature of the social mind. An commentary on Alva Noè,” in Open Mind, eds T. Metzinger and J. M. Windt (Cambridge, MA: MIT Press), 1–11. doi: 10.15502/97883958570573

Limanowski, J. (2017). ” “(Dis-)Attending to the Body - Action and self-experience in the active inference framework,” in Philosophy and Predictive Processing: 18, eds T. Metzinger and W. Wiese (Frankfurt am Main: MIND Group), 1–13. doi: 10.15502/9783958573192

Limanowski, J., and Friston, K. (2019). Attentional modulation of vision versus proprioception during action. Cereb. Cortex 30, 1637–1648. doi: 10.1093/cercor/bhz192

Maister, L., Slater, M., Sanchez-Vives, M. V., and Tsakiris, M. (2015). Changing bodies changed minds: owning another body affects social cognition. Trends Cogn. Sci. 19, 6–12. doi: 10.1016/j.tics.2014.11.001

Maturana, H. R., and Varela, F. J. (1998). “The tree of knowledge,” in The Biological Roots of Human Understanding, translated by R. Paolucci, Foreword by J. Z. Young (Boston, MA: London: Shambhala).

Mul, C. L., Cardini, F., Stagg, S. D., Sadeghi Esfahani, S., Kiourtsooglou, D., Cardellicchio, P., et al. (2019). Altered bodily self-consciousness and peripersonal space in autism. Autism 3:1362361319838950. doi: 10.1177/1362361319838950

Noel, J. P., Cascio, C. J., Wallace, M. T., and Park, S. (2017). The spatial self in schizophrenia and autism spectrum disorder. Schizophr Res. 179, 8–12. doi: 10.1016/j.schres.2016.09.021

O’Regan, K., and Noé, A. (2001). A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24, 939–973. doi: 10.1017/S0140525X01000115

Palmer, C. E., and Tsakiris, M. (2018). Going at the heart of social cognition: is there a role for interoception in self-other distinction? Curr. Opin. Psychol. 24, 21–26. doi: 10.1016/j.copsyc.2018.04.008

Rizzolatti, G., Fadiga, L., Gallese, V., and Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cogn. Brain Res. 3, 131–141. doi: 10.1016/0926-6410(95)00038-0

Rizzolatti, G., Fadiga, L., Gallese, V., and Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cogn. Brain Res. 3, 131–141. doi: 10.1016/0926-6410(95)00038-0

Seth, A. K. (2015). “The cybernetic bayesian brain - From interoceptive inference to sensorimotor contingencies,” in Open Mind, eds T. Metzinger and J. M. Windt (Cambridge MA: MIT Press), 1–24. doi: 10.15502/9783958570986

Tomassello, M. (2019). Becoming Human: A Theory of Ontogeny. Cambridge, MA: Harvard University Press. doi: 10.4159/9780674988651

Tomassello, M., and Rakoczy, H. (2003). What makes human cognition unique? From individual to shared to collective intentionality. Mind Lang. 18, 121–147. doi: 10.1111/1468-0017.00217

Tsakiris, M. (2010). My body in the brain: A neurocognitive model of body-ownership. Neuropsychologia. 48, 703–712.

Tsakiris, M. (2016). The multisensory basis of the self: from body to identity to others. Q. J. Exp. Psychol. 70, 597–609. doi: 10.1080/17470218.2016.1181768

Wilson, M. (2002). The six views of embodied cognition. Psychon. Bull. Rev. 9, 625–636.

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.