Tauopathy in the $APP_{swe}/PSI_{A\varepsilon9}$ mouse model of familial Alzheimer’s disease

Athanasios Metaxas1*, Camilla Thygesen1,2†, Stefan J. Kempf2, Marco Anzalone1, Ramanan Vaitheeswaran1, Sussanne Petersen1, Anne M. Landau3,4, Hélène Audrain3, Jessica L. Teeling5, Sultan Darvesh6,7, David J. Brooks3,8, Martin R. Larsen2, Bente Finsen1

Affiliations:

1Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.

2Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.

3Department of Nuclear Medicine and PET Centre, Aarhus University and Hospital, Denmark.

4Translational Neuropsychiatry Unit, Aarhus University and Hospital, Denmark.

5Biological Sciences, University of Southampton, United Kingdom.

6Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.

7Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.

8Division of Neuroscience, Department of Medicine, Newcastle University, United Kingdom.

†Shared first authorship

*To whom correspondence should be addressed:
ametaxas@health.sdu.dk; a.metaxas@hotmail.com

One Sentence Summary: Neurofibrillary tangles in amyloidosis mice
Abstract

Despite compelling evidence that the accumulation of amyloid-beta (Aβ) promotes cortical MAPT (tau) aggregation in familial and idiopathic Alzheimer’s disease (AD), murine models of cerebral amyloidosis are not considered to develop tau-associated pathology. The absence of neurofibrillary lesions in amyloidosis mice remains a challenge for the amyloidocentric paradigm of AD pathogenesis. It has resulted in the generation of transgenic mice harboring mutations in their tau gene, which may be inappropriate for studying a disease with no known TAU mutations, such as AD. Here, we have used APPswe/PS1ΔE9 mice to show that tau pathology can develop spontaneously in murine models of familial AD. Tauopathy was abundant around Aβ deposits, with Gallyas- and thioflavin-S-positive perinuclear inclusions accumulating in the APPswe/PS1ΔE9 cortex by 18 months of age. Age-dependent increases in Gallyas signal correlated positively with binding levels of the paired helical filament (PHF) ligand [18F]Flortaucipir, in all brain areas examined. Sarkosyl-insoluble PHFs were visualized by electron microscopy. Tandem mass tag proteomics identified sequences of hyperphosphorylated tau in transgenic mice, along with signs of RNA missplicing, ribosomal dysregulation and disturbed energy metabolism. Human frontal gyrus tissue was used to validate these findings, revealing primarily quantitative differences between the tauopathy observed in AD patient vs. transgenic mouse tissue. Levels of tau mRNA were not different between APPswe/PS1ΔE9 and littermate control animals. As physiological levels of endogenous, ‘wild-type’ tau aggregate secondarily to Aβ in transgenic mice, this study demonstrates that amyloidosis is both necessary and sufficient to drive tauopathy in experimental models of familial AD.
Introduction

Genetically-inherited and sporadic forms of Alzheimer’s disease (AD) are characterized by a common set of hallmark brain lesions, which include the accumulation of amyloid-β (Aβ) peptides into plaques, neuroinflammation, aggregation of hyperphosphorylated MAPT (tau) into neurofibrillary tangles (NFTs), and neurodegeneration. Transgenic mouse models that reproduce aspects of the aforementioned lesions have been generated based on mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) and 2 (PSEN2) genes, which are known to cause familial AD (1). Despite playing important roles in evaluating APP processing, Aβ toxicity, and amyloid-targeting therapeutic strategies, transgenic mice are not being regarded as models that can replicate the full spectrum of AD histopathology (2). In particular, while the overexpression of mutant APP and APP/PSEN1 has been shown to yield amyloidosis (3), neuroinflammation (4) and neurodegeneration (5) in mice, it is generally not considered to promote the conversion of endogenous tau into neurofibrillary structures (6).

To address the in vivo role of tau hyperphosphorylation and NFT formation in AD pathogenesis, human MAPT (TAU) has been introduced into the mouse genome, either mutated or non-mutated, on a Tau-knockout background (7, 8). TAU overexpressing mice demonstrate progressive neurofibrillary pathology, albeit in the marked absence of cerebral amyloidosis, which is required for a neuropathological diagnosis of AD. Moreover, mutations in TAU have been linked to non-AD tauopathies, most commonly frontotemporal lobar degeneration [FTLD; (9)], a condition with neuropathological hallmarks distinct from AD. Thus, murine models of amyloidosis and combined amyloidosis-tauopathy models have been widely criticized for their translational relevance to the human condition. It has been argued that virtually all existing
murine models would be considered as ‘not’ AD (10) according to the ABC scoring system of neuropathology (11). The inability of amyloidosis mice to develop neurofibrillary lesions is thought to contribute to the poor translation of preclinical research into clinical benefits (12), and has raised concern about the amyloidocentric model of AD pathogenesis (13).

Two principal explanations have been put forward for the lack of tau-associated pathology in amyloidosis mice (14). First, adult mice express fewer isoforms of the tau protein than humans (three vs. six), which might render them less liable to the post-translational modifications (PTMs) that are associated with the accumulation of tau into NFTs, such as phosphorylation (15). However, murine tau has been shown to readily fibrillize in vitro upon treatment with polyanionic factors, including RNA (16), and there is ample evidence of tau hyperphosphorylation in the transgenic mouse brain [(17), Table S1], indicating that no differences exist in the propensity of murine and human tau for aggregation and PTMs. A second reason that is often cited for the absence of tauopathy in amyloidosis models is that the murine lifespan may be too short for the complete sequence of neurofibrillary pathology to unfold in transgenic mice. Although age scaling studies suggest otherwise (18), the aging factor has been neglected in the design of preclinical studies.

Transgenic Fischer rats (TgF344-AD), expressing human APP harboring the Swedish double mutations (KM670/671NL) and PSEN1 lacking exon 9 (APP_{swe}/PS1_{ΔE9}), both under control of the mouse prion protein promoter, develop progressive neurofibrillary pathology (19). In this study, transgenic APP_{swe}/PS1_{ΔE9} mice that were constructed in an identical manner as TgF344-AD rats were used to demonstrate neurofibrillary pathology in aging amyloidosis mice.
Results

Neurofibrillary pathology in aging APPswe/PS1ΔE9 mice

Fresh-frozen brain sections from 3-, 6-, 12-, 18- and 24-month-old APPswe/PS1ΔE9 transgenic (TG) mice and their wild-type (WT) counterparts were processed for the detection of neurofibrillary alterations with the Gallyas silver stain (n=6/group). Thioflavin-S and DAPI (4’,6-diamidino-2-phenylindole) were used to detect perinuclear β-pleated structures. Co-staining for amyloid and Gallyas was used to probe the relationship between amyloidosis and tau-associated pathology in aging TG animals. Fresh-frozen sections of the middle frontal gyrus from a patient with definite AD were processed in parallel with sections from APPswe/PS1ΔE9 mice, to compare Gallyas-positive structures in mouse vs. human tissue.

Aβ deposition was the predominant lesion in the 6-month-old APPswe/PS1ΔE9 brain (Fig. 1A&B), with age-dependent increases in argyrophilic density observed exclusively in TG mice (Fig. 1C-F). Only mild and diffuse silver staining was observed in the neocortex of 6-month-old animals (Fig. 1G). Densely-labeled, round structures, surrounded by a halo of argyrophilic staining, constituted the majority of Gallyas-positive signal in the neuropil of the neocortex and hippocampus at 12-24 months of age (Fig. 1H&I). In addition, diffuse and compact argyrophilic staining was observed surrounding red-stained nuclei in the neocortex of 18- and 24-month-old APPswe/PS1ΔE9 mice (Fig. 1J&K). The perinuclear structures were positive for thioflavin-S (Fig. 1L-N), which colocalized with nuclear DAPI (Fig. 1O) and was further detected in cell-sized structures lacking a stainable nucleus (Fig. 1P). There were no apparent differences in morphology between the argyrophilic structures in brain tissue from 24-month-old TG mice (Fig 1Q-U) and AD-confirmed patient material (Fig. 1V-Z), although neuropil threads were detected
exclusively in AD tissue (Fig. 1Q-Z). Coronal brain sections of 20-month-old Tg2576 mice, harboring the Swedish double mutations, were used to examine 6E10- and Gallyas-positive pathology in a second mouse model of amyloidosis (Fig. 1AA-AD). Amorphous argyrophilic signal (AC) and perinuclear lesions (AD) were also present in the Tg2576 mouse brain, albeit at lower levels compared to 18-month-old $\textit{APP}_{\text{swe}}/\textit{PSI}_{\Delta E9}$ mice.

The fraction of brain tissue occupied by Gallyas-positive staining in aging $\textit{APP}_{\text{swe}}/\textit{PSI}_{\Delta E9}$ mice is shown in Fig. S1A. Conformationally-altered tau was detected with the MC-1 monoclonal antibody (Fig. S1B). Vascular and meningeal lesions were present in 18- and 24-month-old animals (Fig. S1C).
Fig. 1. Neurofibrillary alterations in amyloidosis mice. (A&B) Sagittal brain sections of 6-month-old APP_{swe}/PSI_{AE9} mice, processed for 6E10 immunohistochemistry (A) and the Gallyas silver stain (B). Silver-labeled sections were counterstained with nuclear fast red. β-amyloidosis dominates over argyrophilic pathology in 6-month-old APP_{swe}/PSI_{AE9} mice. (C-F) Progressive increase in Gallyas-positive signal in 12- (C), 18- (D), and 24-month-old transgenic mice (E). Wild-type animals showed no silver deposition up to 24 months of age (F). (G-P) All photomicrographs are from the neocortex of APP_{swe}/PSI_{AE9} mice. Argyrophilic signal was scarce in 6-month-old TG animals (G). Gallyas-positive structures in 18- (H) and 24-month-old animals (I), likely of neuritic nature. Gallyas silver (J & K) and thioflavin-S stainings (L-P), showing perinuclear and intranuclear signal in 18- and 24-month-old transgenic mice. The insert in J shows compact Gallyas staining in the absence of nuclear fast red. Note potential fragmented nuclei in (M) and (N), intranuclear signal in (O), and absence of DAPI signal in (P). (Q-Z) Gallyas/6E10 doubly-labeled sections from a 24-month-old transgenic mouse (Q-U) and an AD patient (V-Z),
showing dense-core plaques (Q & V), teardrop-shaped structures (R & W, arrows), tuft-shaped filaments (S & X, arrows), and globose structures in close proximity (T & Y) and over 200 µm afar from Aβ deposits (U & Z). (AA-AD) 6E10/Gallyas- (AA) and Gallyas-labeled (AB-AD) sections of 20-month-old Tg2576 mice. Scale bar is 2 mm for A&B, 1 mm for C-F, 10 µm for G-I, 5 µm for J-K, L-P, 10 µm for Q & V, 20 µm for R-U & W-Z, 200 µm for AA&AB, 20 µm for AC, and 5 µm for AD.

[^F]Flortaucipir autoradiography

The paired helical filament (PHF) ligand [[^F]Flortaucipir ([[^F]AV-1451, [[^F]T807] was used to quantify tau pathology in aging APP_{swe}/PSI_{ΔE9} TG mice by autoradiography (Table 1). Increased binding was observed in the neocortex, hippocampus, amygdala and the cerebellum of 12-month-old APP_{swe}/PSI_{ΔE9} mice, compared to age-matched WT, 3- and 6-month-old TG animals (P<0.001 for all regions; Bonferroni post-hoc tests). [[^F]Flortaucipir binding was further elevated in the visual (P<0.001), somatosensory (P<0.001), motor cortex (P<0.001), and the amygdala (P<0.05) of 18- vs. 12-month-old APP_{swe}/PSI_{ΔE9} TG mice. Increased binding over age-matched WT mice was first observed in the thalamus of TG animals at 18 months of age (P<0.001). In 24-month-old APP_{swe}/PSI_{ΔE9} mice, [[^F]Flortaucipir signal had increased in all brain regions examined compared to age-matched controls. Three-way ANOVA confirmed genotype- [F(1,476)=2603.1, P<0.001], age- [F(4,476)=457.3, P<0.001] and brain region-specific increases in the binding levels of [[^F]Flortaucipir [F(9,476)=42.9, P<0.001], as well as significant age x genotype x region interaction effects [F(36,476)=5.5, P<0.001].

Within each brain area analyzed, there was a positive correlation between the age-dependent increase in the binding levels of [[^F]Flortaucipir and the progressive increases in the density of Gallyas-positive lesions (Pearson r for all brain regions: 0.92, P<0.001; Fig. S2).
Table 1. Autoradiography of [18F]Flortaucipir binding sites in aging APP^{swe}/PS1^{ΔE9} mice. Fresh-frozen brain sections from APP^{swe}/PS1^{ΔE9} and age-matched wild-type (WT) animals were incubated with 38.4±9.6 MBq [18F]Flortaucipir for a period of 60 min (specific activity: 145±68 GBq/µmol). Autoradiography data are presented as the mean specific binding of [18F]Flortaucipir (kBq/mL) ± standard error of the mean in brain regions of 5-6 animals/group. By 24 months of age, [18F]Flortaucipir binding in APP^{swe}/PS1^{ΔE9} mice had increased across all brain areas examined vs. age-matched WT animals. The age-dependent increase in [18F]Flortaucipir binding levels was positively correlated with the progressive increase in Gallyas-positive argyrophilic signal, in all TG brain areas examined.

P<0.01, *P<0.001 vs. age-matched littermate control mice, Bonferroni post-hoc tests. Symbols of significant differences between groups of 24 & 18 vs. 3-, 6- and 12-month-old-mice were omitted from the table for clarity of presentation.

Brain region	3 months	6 months	12 months	18 months	24 months	Correlation with Gallyas-positive fraction (Pearson r (Significance))
	WT APP/PS1					
Frontal	2.2 ± 0.7 3.6 ± 1.3	2.3 ± 0.9 10.0 ± 1.6	4.0 ± 1.0 46.7 ± 2.7***	4.7 ± 1.1 53.2 ± 3.0	4.2 ± 1.0 55.2 ± 5.7	0.74 (P<0.001)
Motor	2.5 ± 0.5 2.8 ± 0.8	2.5 ± 0.7 7.3 ± 1.3	3.2 ± 0.7 31.0 ± 1.3***	3.2 ± 0.8 45.1 ± 2.0	4.3 ± 1.1 55.7 ± 2.9	0.90 (P<0.001)
Somatosensory	5.2 ± 1.3 5.0 ± 2.0	4.0 ± 0.9 11.6 ± 1.9	6.7 ± 4.5 34.9 ± 2.6***	6.5 ± 1.8 50.3 ± 1.5	5.8 ± 1.6 57.8 ± 2.7	0.93 (P<0.001)
Visual	6.8 ± 2.4 4.7 ± 1.4	2.4 ± 1.1 11.8 ± 2.5	8.2 ± 1.8 35.5 ± 3.2***	6.3 ± 1.9 52.9 ± 2.8	5.0 ± 1.3 56.4 ± 2.9	0.92 (P<0.001)
Entorhinal	3.2 ± 1.0 2.9 ± 1.0	3.3 ± 0.8 8.8 ± 1.1	6.7 ± 1.5 29.8 ± 1.9***	4.1 ± 2.6 40.6 ± 3.8	6.3 ± 1.7 42.8 ± 4.0	0.84 (P<0.001)
Subcortical						
Hippocampus	3.1 ± 1.3 2.8 ± 0.8	3.0 ± 0.7 7.5 ± 1.3	4.3 ± 1.3 31.3 ± 2.4***	4.3 ± 1.2 40.9 ± 2.5	5.6 ± 1.5 49.1 ± 3.1	0.86 (P<0.001)
Striatum	2.6 ± 1.4 3.1 ± 1.0	3.1 ± 0.7 4.8 ± 0.9	4.4 ± 1.1 10.9 ± 2.4	5.1 ± 1.5 17.2 ± 1.2	5.4 ± 1.5 19.7 ± 2.8**	0.64 (P<0.001)
Amygdala	1.8 ± 1.5 2.9 ± 0.9	3.1 ± 0.7 7.4 ± 1.0	4.2 ± 1.1 27.8 ± 2.9***	5.2 ± 1.5 40.0 ± 2.5	5.2 ± 1.1 47.7 ± 4.8	0.79 (P<0.001)
Thalamus	2.6 ± 0.6 2.2 ± 0.6	3.3 ± 1.0 3.5 ± 0.5	3.6 ± 0.9 11.2 ± 3.2	3.9 ± 1.3 17.5 ± 2.0***	4.1 ± 1.0 27.2 ± 4.5	0.87 (P<0.001)
Cerebellum	4.2 ± 0.8 3.1 ± 1.1	4.1 ± 1.2 10.3 ± 1.1	3.3 ± 1.0 23.0 ± 3.1***	4.5 ± 1.5 31.2 ± 3.6	5.8 ± 1.6 32.4 ± 3.7	0.83 (P<0.001)
Mean binding levels (all brain regions)	3.4 ± 1.1 3.3 ± 1.1	3.1 ± 0.9 8.3 ± 1.3	4.9 ± 1.5 28.2 ± 2.6	4.8 ± 1.5 38.9 ± 2.5	5.2 ± 1.3 44.4 ± 3.7	0.92 (P<0.001)
Representative autoradiograms of $[^{18}F]$Flortaucipir binding sites are shown in Fig. 2. Binding was decreased in the presence of 50 µM unlabeled flortaucipir but was not reversed by 1 µM of the amyloid-preferring Pittsburgh compound B (PIB).

Fig. 2. Representative autoradiograms of $[^{18}F]$Flortaucipir binding sites. (A) Sagittal brain sections of aging transgenic (top panel) and wild-type mice (WT, lower panel), taken at the level of the entorhinal cortex [lateral 2.88±0.12 mm of the Paxinos and Franklin mouse atlas (74)]. Images were analyzed on a black & white display mode, and presented as a pseudocolor interpretation of black & white pixel intensity, calibrated in kBq/mL of $[^{18}F]$Flortaucipir solution. Age-dependent increases in binding levels were observed exclusively in $APP_{swe}/PS1\Delta E9$ mice. (B) $[^{18}F]$Flortaucipir binding in sections from the middle frontal gyrus of AD-confirmed patients, 18-month-old $APP_{swe}/PS1\Delta E9$ mice and 20-month-old Tg2576 animals, showing the magnitude of tau pathology in patient vs. transgenic mouse tissue. Non-specific binding (NSB) was assessed in the presence of 50 µM ‘cold’ flortaucipir. (C) Binding was not blocked by co-incubating sections with $[^{18}F]$Flortaucipir and 1 µM of the amyloid-targeting agent Pittsburgh Compound B (PIB).
Mapt expression

Relative expression of total *Mapt* mRNA was determined by RT-qPCR (Fig. 3). There were no age \([F(4,50)=0.29, \ P>0.05]\), genotype \([F(1,50)=0.93, \ P>0.05]\), or age x genotype interaction effects on the expression levels of *Mapt* \([F(4,50)=1.21, \ P>0.05]\).

![Graph showing expression levels of Mapt mRNA](image)

Fig. 3. Regulation of Mapt mRNA in aging mice. Levels of endogenous murine tau mRNA were not altered by age or genotype. PCR products of x4 diluted tau cDNA were determined after 24 cycles. A single peak was obtained by melt-curve analysis, and no signal was detected in the genomic DNA and buffer controls. The efficiency of amplification was 99.2±0.2% for *Hprt1* and 100.3±2.1% for *Mapt*.

Isolation and Transmission Electron Microscopy (TEM) of sarkosyl-insoluble tau

The general methods of Sahara et al. (20) and Greenberg and Davies (21) were evaluated for the extraction of PHFs from the 24-month-old *APP_{swd/PS1ΔE9} TG* brain (Fig. S3). Although longer filaments were isolated by the procedure of Sahara et al., the Greenberg and Davies method was chosen for the isolation of sarkosyl-insoluble tau from 3- and 24-month-old mice, based on immunoblotting experiments, solubility considerations, and to allow for comparisons with literature data (22). Soluble and insoluble tau levels were measured in mouse brain homogenates.
by using the mouse Total Tau Meso Scale kit (Meso Scale Diagnostics LLC). TEM was used to visualize filaments in the sarkosyl-insoluble extracts from the TG mouse and AD patient brains by negative staining.

Tau protein levels increased with age in the pellet obtained by centrifuging WT and APP_{swe}/PSI_{ΔE9} homogenates at 27,000 x g [Fig. 4A; age effect: F_{(1,18)=50.0, P<0.001}; genotype effect: F_{(1,18)=2.4, P>0.05}]. Levels of tau in the supernatant fraction were not different between 3- and 24-month old, WT and APP_{swe}/PSI_{ΔE9} TG animals [age: F_{(1,16)=0.6, P>0.05}; genotype: F_{(1,16)=0.0, P>0.05}]. Treatment of the supernatant with 1% sarkosyl for 2 h at 37°C increased the concentration of tau in the detergent-soluble fraction by >3-fold. Sarkosyl-soluble tau levels were lower in the 24- vs. 3-month-old mouse brain [F_{(1,16)=12.5, P<0.01}], irrespective of genotype [F_{(1,16)=0.5, P>0.05}]. Sarkosyl-insoluble tau was not detected in 3-month-old animals, and its levels were not different between 24-month-old APP_{swe}/PSI_{ΔE9} and WT mice [t_{(8)=0.7, P>0.05}; independent two-tailed Student’s t-test].

Fig. 4B shows negatively-stained filaments in the sarkosyl-insoluble extract from the 24-month-old APP_{swe}/PSI_{ΔE9} mouse and AD patient brain. Fibrils of mean length 104.9±8.3 nm and width 10.1±0.5 nm were isolated from TG mice. Wider fibrils (~20 nm), with or without a pronounced twist, were readily detected (a & e). Longer filaments (271.7±11.3 nm), with axial periodicities of 78.7±9.8 nm, constituted ~8% and ~34% of the fibril population analyzed in the APP_{swe}/PSI_{ΔE9} and AD brains, respectively (b & f). Clusters of long filaments, which were denser in AD patient material, were present in the insoluble preparation from APP_{swe}/PSI_{ΔE9} mice (b & f, inserts). Thin, bent fibrils (c & g) and rod-shaped particles (d & h) were observed in
both 24-month-old APP_{swe}/PS1_{ΔE9} and AD brains. There were no between-species differences in the dimensions of the isolated filaments [short filaments, length: t(82)=0.1, P>0.05, width: t(82)=1.2, P>0.05; long filaments, length: t(16)=0.3, P>0.05, width: t(16)=0.8, P>0.05; independent two-tailed t-tests].

Fig. 4. Isolation and electron microscopy of sarkosyl-insoluble tau. (A) Levels of soluble and insoluble tau were determined with the mouse Total Tau Meso Scale kit. Tau levels increased with age in the pellet obtained by centrifuging brain homogenates at 27,000 x g. The resulting supernatant was treated with 1% sarkosyl and centrifuged at 200,000 x g. The solubility of tau in sarkosyl was decreased with age, irrespective of genotype. (B) Overview of negatively-stained filament types in the sarkosyl-insoluble fraction from 24-month-old APP_{swe}/PS1_{ΔE9} and AD brain tissue. Fibrils of ~20 nm in width, appearing as straight filaments (a) or as two intertwined fibrils (e), each with a diameter of ~10 nm. PHFs with axial periodicities of ~80 nm (b & f; arrows) were present in APP_{swe}/PS1_{ΔE9} mice, and more frequently observed in AD patient material. The inserts show ‘stacked’ PHFs, which
were denser in the AD preparation. Structures commonly identified in the detergent-insoluble fractions of the mouse and human brain included bent fibrils of ~7 nm in width (c & g), and rod-shaped particles (d & h; arrows). Scale bars: 200 nm (a, b, e, f), 100 nm (c, d, g, h).

Proteomics of sarkosyl-insoluble tau

The sarkosyl-insoluble fractions extracted from 3- and 24-month-old mouse brain, AD and non-AD individuals, were pooled and digested with trypsin & Lys-C. The peptides were labeled with Tandem Mass Tags (TMT), fractionated, and analyzed by nanoLiquid Chromatography-Electrospray Ionization Mass Spectrometry (LC-ESI MS/MS).

A list of tau-associated proteins quantified in the sarkosyl-insoluble proteome is shown in Table 2. Lists of between-group abundance ratios for all regulated proteins are shown in Data File S1. There were 583 proteins identified in the sarkosyl-insoluble mouse proteome, of which 456 were also present in the human samples. Isoforms of tau with three (3R) and four (4R) microtubule-binding repeats were extracted from both human and the murine brain. In mice, all isoforms collapsed under the term microtubule associated protein (MAP; UniProt accession number: B1AQW2). Mouse MAP was regulated by age, rather than genotype. The protein was enriched 2.1-fold in 24- vs. 3-month-old TG mice, and 1.8-fold in 24- vs. 3-month-old WT mice. Genotype-specific enrichment was observed for mouse tau isoform-B (UniProt accession number: P10637-3), a 3R isoform of tau with an extended C-terminal domain, which was identified by the sequence \(^{205}\text{KVQIVYKPVDSLKV}^{218}\). Tau isoform-B increased 3.2-fold in 24-month-old TG vs. WT mice, and 4.5-fold in 24- vs. 3-month-old TG animals. Human MAP (UniProt accession number: A0A0G2JMX7), containing tau isoforms P10637-2, -4, -6 & -8, was 37-fold enriched in the sarkosyl-insoluble fraction of AD compared to non-AD brain.
Table 2. Proteomics of sarkosyl-insoluble tau. Tau-associated proteins quantified in the detergent-insoluble fractions of the mouse and human brain. The presented proteins have been selected for their documented roles in the regulation and binding of tau.

UniProt Accession Number	Protein(s)	Involvement	TG vs. WT 3 months	TG vs. WT 24 months	TG 24 vs. 3 months	WT 24 vs. 3 months	AD vs. non-AD
B1AQW2	Microtubule-associated protein	Tau	0.86	1.00	2.06	1.77	37.15
P10637-3	Microtubule-associated protein tau	Tau Isoform-B	0.61	3.21	4.52	0.86	Fetal form present
Multiple	Small nuclear ribonucleoproteins (snRPN)	Core spliceosomal components	Age- and genotype-specific regulation (Data File S1)				
Multiple	Heterogeneous nuclear ribonucleoproteins	Exon 10 splicing regulation	Multiple proteins regulated (Data File S1)				
Q8BL97	Serine/arginine-rich splicing factor 7	Exon 10 exclusion	0.82	1.05	1.11	0.87	0.69
Q9Z0H4	CUGBP Elav-like family member 2	Exon 10 exclusion	0.40	1.85	1.94	0.42	1.49
P62996	Transformer-2 protein homolog beta	Exon 10 inclusion	0.85	1.13	0.74	0.56	Not identified
Multiple	Tubulin	Tau binding partner	Alpha & beta chains regulated (Data File S1)				
P60710	Actin, cytoplasmic 1	Tau binding partner	0.80	0.53	1.43	2.16	0.71
P08551, P08553, P19246	Neurofilament	Tau binding partner	Light, medium & heavy polypeptides regulated (Data File S1)				
Multiple	Ribosomal proteins 60S, 40S	Tau binding partner	Age- and genotype-specific changes, particularly in the acidic proteins of the 60S subunit (Data File S1)				
O08788	Dynactin	Tau binding partner	1.01	1.34	0.79	0.59	Not identified
P28738	Kinesin	Tau binding partner	0.92	0.75	1.03	1.28	0.90
P11499, Q80Y52, Q3UAD6	Heat shock protein 90	Tau binding partner	Isoforms alpha & beta identified (Data File S1)				
P48722, P17156, Q3U2G2, Q8K0U4	Heat shock protein 70	Tau binding partner	Members 2 & 4 common in mice & humans (Data File S1)				
P0DP26	Calmodulin-1	Tau binding partner	1.68	0.31	0.68	3.63	0.93
Q3UY00	S100β	Tau binding partner	0.99	0.52	1.27	2.44	0.34
O55042	α-Synuclein	Tau binding partner	0.81	0.70	1.29	1.49	0.79
A8IP69, P68510, F6VW30, Q9CQV8, P63101	14-3-3 proteins	Tau binding partner	Isoform-specific changes (Data File S1)				
Q3TXU4	Apolipoprotein E	Tau binding partner/AD risk factor	0.65	3.58	7.51	1.37	Not identified
Q3T259	Bin1	Tau binding partner/AD risk factor	2.11	0.44	0.71	3.41	1.44
Q549A5	Clusterin	Tau interacting partner/AD risk factor	1.17	1.82	1.87	1.20	Not identified
P11798, Q923T9, A0A0G2JGS4	Cu2+/calmodulin-dependent protein kinase II	Tau kinase	Multiple subunits identified (Data File S1)				
P63318	Protein kinase C, gamma type	Tau kinase	0.71	1.48	1.30	0.62	1.05
P31324	cyclic AMP-dependent protein kinase II	Tau kinase	0.57	0.91	1.61	1.01	0.84
Q63810	Calcineurin subunit B type I	Tau phosphatase	1.36	0.34	0.96	3.84	Not identified
Q76MZ3	Serine/threonine-protein phosphatase 2A	Tau phosphatase	1.25	0.58	0.87	1.88	0.73
The mouse MAP sequence $^{174}\text{KVAVVRTPPKSPSSAKS}^{190}$, phosphorylated at Threonine (T) 180 and Serine (S) 188, was more than 20-fold enriched in 24-month-old TG, compared to age-matched WT and 3-month-old $APP_{swe}/PSI_{\Delta E9}$ mice. The peptide sequence was not regulated in aging WT animals. An orthologous sequence of the human MAP was phosphorylated at Threonine (T) 566 and Serine (S) 573 ($^{560}\text{KVAVVRTPPKSPSSAKS}^{576}$). The reported phosphorylation sites correspond to amino acids (aa) T231 and S238 of the human tau isoform with 441 aa. Indications of additional phosphorylation sites were obtained by searching modified peptides against tau isoform- and species-specific databases. Phosphorylated S396, S400 and S404 on the conserved sequence $^{396}\text{SPVSVGDTSPR}^{406}$ of the human 441 aa isoform were identified in the sarkosyl-insoluble mouse proteome. Phosphorylation at S404 in 24-month-old TG mice was confirmed by immunoblotting (Fig. S4). In addition to phosphorylation, murine MAP was deamidated at Asparagine (N) 44, a site on the N-terminal domain of tau that is not conserved in humans ($^{34}\text{AEEAGIGDTPNQEDQAAGHVTQAR}^{57}$). Human MAP was deamidated at position N484, corresponding to N167 of the 441 aa tau isoform ($^{473}\text{GAAPPGQKGQANATRIPAK}^{491}$).

The database for annotation, visualization and integrated discovery (DAVID, v6.8) was used for gene ontology (GO) enrichment analysis of the sarkosyl-insoluble proteome (23, 24). RNA splicing, mRNA processing and translation were among the 10 most enriched biological processes associated with protein upregulation in 24-month-old $APP_{swe}/PSI_{\Delta E9}$ vs. WT mice and AD vs. non-AD subjects. Ribonucleoprotein complexes, ribosomes, and exosomes were among the 10 most enriched cellular components in the insoluble extracts from the mouse and human brain (Fig. 5A). The top 10 molecular functions of the enriched proteins were associated with
poly(A) RNA binding, as well as binding of molecules contributing to the structural integrity of ribosomes and the cytoskeleton (Fig. 5B). Pathway-based enrichment analysis of upregulated proteins in 24-month-old \(APP_{swd}/PS1_{\Delta E9} \) vs. WT mice involved GO terms such as Alzheimer’s and Huntington’s disease, long-term depression, cholinergic, serotonergic and glutamatergic synapse (Fig. 5C). Glycolysis/gluconeogenesis and the Krebs cycle were among the top 10 pathways for downregulated proteins (Fig. 5D).

Fig. 5. Gene Ontology (GO) enrichment analysis of the sarkosyl-insoluble proteome. (A) Enriched cellular components; (B) Enriched molecular functions; (C) Top 10 enriched pathways based on protein upregulation in 24-month-old TG vs. WT mice, according to the Kyoto Encyclopedia of Genes and Genomes (KEGG); (D) Top 10 enriched KEGG pathways based on protein downregulation in 24-month-old TG vs. WT mice. Functional annotation clustering was generated by using DAVID software. Maximum enrichment probability (\(P \) value) was based on an EASE score threshold value of 0.05.
Discussion

The present study describes tauopathy in murine models of familial AD. Neurofibrillary alterations in \(APP_{swe}/PSI_{AE9} \) and Tg2576 mice were demonstrated by a set of tools that are currently used for the evaluation of pathological tau clinically, such as the Gallyas silver stain and \([^{18}F]Flortaucipir\). The presence of PHF tau was confirmed by TEM of sarkosyl-insoluble preparations from the \(APP_{swe}/PSI_{AE9} \) mouse brain. As murine tau possesses a remarkably high number of 76 potential serine/threonine and 4 tyrosine phosphorylation sites, an antibody-free proteomics approach was used for the detection of tauopathy-related epitopes. Of the five hyperphosphorylated sites identified, S404 has been associated with the intraneuronal and extracellular deposition of NFTs in AD (25). The pathology observed in the present study occurred at physiological levels of endogenous tau, as there was no difference in total tau mRNA and protein between \(APP_{swe}/PSI_{AE9} \) and WT mice. Hence, in addition to progressive amyloidosis (3), neuroinflammation (4) and neurodegeneration (5), \(APP_{swe}/PSI_{AE9} \) mice develop progressive neurofibrillary pathology of the AD type, mimicking a range of AD pathologies, in a translationally-relevant manner. The observation that endogenous tau accumulates secondarily to \(A\beta \) in models of cerebral amyloidosis is entirely consistent with post-mortem (26) and in vivo imaging data (27), showing that the development of cortical tau pathology in AD patients is associated with, and may depend on, pre-existing amyloid pathology.

Current approaches to induce tauopathy in mice have been criticized for generating models that poorly recapitulate the situation in the AD brain, as \(TAU \) in AD is neither overexpressed, nor mutated (28). FLTD-linked mutations, in particular, induce tauopathy that is not only morphologically different than that of AD (e.g. Pick bodies), but further characterized by distinct
neurodegenerative processes. For example, cholinergic neurons are extensively lost in AD, but not in FTLD (29). Acetylcholinesterase inhibitors, which are prescribed for the symptomatic relief of cognitive impairment in AD, are largely ineffective in FTLD and may even worsen its symptoms (30). Thus, the pathophysiology that differentiates AD from primary tauopathies is unlikely to be modeled in mutant TAU models. Moreover, neurofibrillary alterations in TAU overexpressing mice occur in the absence of Aβ deposition, which is a defining feature of AD histopathology. The present results indicate that amyloidosis models may overcome these limitations, by reproducing both the neurofibrillary pathology of familial AD and the molecular heterogeneity that is associated with it. In addition to the spontaneous aggregation of tau in APPswel/PS1ΔE9 and Tg2576 mice, analysis of the sarkosyl-insoluble APPswel/PS1ΔE9 proteome identified proteins that have been strongly linked to AD pathogenesis, in general, and tau pathology in particular. Among them, APOE and BIN1 are encoded by genes whose variants are known to increase the risk of late-onset AD, through pathways involving interactions with both APP (31, 32) and tau (33-35). Core components of the spliceosome, on the other hand, particularly Sm-D1 and Sm-D2, are closely related to the deposition of NFTs, but not plaques in familial AD (36). This literature implicates multiple mechanisms in AD tauopathy, which occur downstream of Aβ processing in cases of autosomal dominant AD (ADAD) and, as shown here, APPswel/PS1ΔE9 mice.

Although the sporadic and familial forms of AD share common clinical and histopathological features, it is becoming increasingly recognized that they are not precisely equivalent (37). Positron emission tomography (PET) with [11C]PIB demonstrates accumulation of Aβ in the cerebellum of familial AD cases, which is not typical of sporadic AD (38). Cerebellar deposition
of hyperphosphorylated tau has been observed in ADAD cases harboring the \textit{PSEN1} E280A mutation, but not in sporadic AD (39). Thus, the pronounced cerebellar involvement in \textit{APP_{swe}/PSI_{AE9}} mice, which are known to accumulate \(\text{A}\beta\) in this region (40), suggests that the model mimics familial, rather than the sporadic forms of AD. Reports of cerebellar pathology in ADAD cases and \textit{APP_{swe}/PSI_{AE9}} mice warrant caution in using the cerebellum as a reference region for the quantification of \(^{11}\text{C}\)PIB and \(^{18}\text{F}\)Flortaucipir PET (41, 42), as this is likely to underestimate cortical \(\text{A}\beta\) and tau pathology, respectively.

Unlike the imbalance in \(\text{A}\beta\) homeostasis, which is thought to be central in the pathogenesis of AD, gross changes in tau production and clearance were not observed in this study. On the one hand, Gallyas-, \(^{18}\text{F}\)Flortaucipir- and thioflavin-S-positive signal was observed in the vasculature of 18-24-month-old \textit{APP_{swe}/PSI_{AE9}} mice. Moreover, there were age- and genotype-specific changes in multiple components of the phagosome and proteasome in TG vs. WT animals (Data File S1). On the other hand, total tau mRNA and protein levels were not different between 24-month-old WT and TG mice, as evidenced by tau mesoscale, proteomics and PCR. Moreover, age-dependent decreases in the solubility of tau were equally observed in \textit{APP_{swe}/PSI_{AE9}} and control animals. Notwithstanding that the contribution of individual pathways to tau degradation was not assessed in this study, these findings suggest that the neurofibrillary alterations observed in \textit{APP_{swe}/PSI_{AE9}} mice are not mediated by an imbalance between the production and clearance of tau. It is important to note that, unlike in TG mice, sarkosyl-insoluble tau was increased in AD vs. non-AD tissue, a finding that is consistent with literature data on the regulation of human tau in AD (43). It might be that the increased concentration of brain tau in late-stage AD is associated with heavily impaired clearance pathways or pronounced neuronal damage, processes
that may not be modeled in 24-month-old \(\text{APP}_{\text{swd}}/\text{PS1}_{\Delta E9} \) mice. Alternatively, the present data may highlight the involvement of transcriptional and translational mechanisms, rather than production and clearance pathways, in the assembly of PHF tau.

A prevalence of 3R isoforms in the composition of NFTs has been observed in the AD hippocampus by immunohistochemical and biochemical methods (44). Moreover, a shift from 4R to 3R isoforms has been associated with the morphological evolution of tau-positive neurons from a pre-tangle to the NFT state (45). Although the literature on the regulation of tau isoforms in AD remains scarce, the present results support the notion that an imbalance in tau isoform ratio is involved in the neurofibrillary alterations of AD, with 3R isoforms being preferentially sequestered into the insoluble tau fraction. The identification of tau isoform-B, a 3R isoform that is predominantly expressed in the fetal mouse brain, supports the suggestion that immature tau isoforms participate in AD tauopathy (46), and implicates aberrant transcription and translation mechanisms in the disease process. A re-induction of fetal tau may be attributed to the deregulation of core splicing machinery, which was marked in this study and considered to occur early and selectively in AD (47). Moreover, as the selection of splice sites is determined by canonical sequences encoded into the genome, the re-expression of fetal isoforms might be a consequence of aberrant DNA replication during cell cycle re-entry (48). Cell cycle proteins that were deregulated in an age- and genotype-specific manner in this study include Sub1, cdc42, CEND1, Histone H3 and nucleolin (Data File S1). Clearly, the exact mechanisms underlying tauopathy in AD cannot be resolved by the present set of experiments. The data demonstrate, however, that the formation of PHF tau is associated with loss of regulatory control over \(\tau \) splicing \textit{in vivo}, which may have important implications for the origins and management of
tauopathy in AD. It is tempting to speculate that tau hyperphosphorylation may partly be due to
the re-emergence of fetal isoforms, which are known to be over-phosphorylated compared to
adult tau (49). Moreover, it is plausible that an imbalance in tau isoform ratio mediates protein
misllocalization from the axonal to the somatodendritic compartment, as distinct tau isoforms are
differentially sorted across the cell (50). Of note, cofilin-dependent, ‘classical’ pathways of tau
missorting (51) may also be involved in the pathology observed in this study, as cofilin was
reduced in the sarkosyl-insoluble proteome of 24-month-old APP_{swe}/PS1_{ΔE9} mice. Collectively,
these data highlight the relevance of amyloidosis models for studying the diverse macroscopic
and molecular aspects of AD tauopathy.

The limitations associated with models overexpressing APP and PSEN mutations have been
discussed previously (2). To exclude the possibility that tauopathy is an artefact of APP or PSEN
overexpression, it would be important to determine whether it develops in second-generation
amyloidosis models, carrying AD-related mutations in endogenous genes. Moreover, as there is
evidence of [18F]Flortaucipir binding to monoamine oxidases (MAO; 52), signal quantification in
the presence of MAO inhibitors is warranted to determine the extent of off-target binding, if any
(53). Practical considerations in using amyloidosis mice to study tauopathy include long waiting
times for the accumulation of endogenous murine tau, mouse-on-mouse antibody issues, and the
low abundance of pathology as compared to human AD. While ~30% of all Nissl-positive cells
in the prefrontal cortex of Braak stage V-VI brains may contain NFTs (54), Gallyas-positive
signal in this study occupied ~1% of the frontal cortex of 24-month-old APP_{swe}/PS1_{ΔE9} mice, neuritic structures included. Nevertheless, cognitive impairment in AD is known to correlate
with the spread of tau pathology, and the number of brain areas containing at least one NFT has
been shown to be the best explanatory variable of intellectual status in AD (55). In this context, it is worth evaluating whether measurements of tauopathy in aging APP_{swe}/PSI_{A49} mice correlate with the progressive cognitive impairment that these animals exhibit in the Barnes maze assay (56).

Materials and Methods

Study design

Mice were grouped according to age and genotype. Sample numbers were based on preliminary studies, showing absence of Gallyas and $[^{18}\text{F}]$Flortaucipir signal in 18-month-old WT vs. TG animals. (Immuno)histochemistry, autoradiography, the isolation of sarkosyl-insoluble tau, and electron microscopy studies were repeated at least three independent times. Tau Meso Scale was performed two independent times. Remaining samples were pooled and subjected to proteomics. To avoid cross-contamination during the isolation of sarkosyl-insoluble tau, glassware was washed in ultrapure de-ionized H$_2$O (dH$_2$O, Ultra Clear™, Siemens), followed by rinses in formic acid (FA, 98-100%; Merck Millipore), dH$_2$O, ethanol (99%; VWR International) and dH$_2$O. No samples were excluded from data analysis, which was performed in an unblinded manner. To compare tau pathology in transgenic mouse vs. human brain, tissue from the middle frontal gyrus of an AD-confirmed patient [BB08-002, Female, 80 years old, *post-mortem* interval (PMI): 9 h] and a non-AD subject (BB16-023, Female, 83 years old, PMI unknown) were processed along with the murine samples for the Gallyas silver stain, autoradiography, electron microscopy and proteomics experiments. The AD and non-AD samples were chosen for their abundance and complete lack of tau pathology respectively, as assessed by Gallyas silver
staining and [18F]Flortaucipir autoradiography. To avoid confounding effects of anesthesia on tau phosphorylation, mice were euthanized by cervical dislocation.

Ethical statement

Mouse tissue: All procedures complied with Danish law (Dyreværnsloven-Protection of Animals Act, nr 344/2005) and European Union directive 2010/63/EU, regulating animal research. Ethical permission was granted by the Animal Ethics Inspectorate of Denmark (nr 2011/561-1950).

Human tissue: Fresh-frozen samples from the middle frontal gyrus were obtained from the Maritime Brain Tissue Bank, Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Building, 5850 College Street, Halifax Nova Scotia B3H 4R2. Ethical approval was obtained from the Nova Scotia Health Authority Research Board in Halifax, Canada, and the Danish Biomedical Research Ethical Committee of the region of Southern Denmark (Project ID: S-20070047). Informed, written consent forms were obtained for all subjects.

Animals and tissue sectioning

$\text{APP}_\text{swe}/\text{PSI}_{\Delta E9}$ mice (57), originally purchased from the Jackson Laboratories (MMRRC Stock No: 34832-JAX), were bred and maintained on a C57BL/6J background. The animals were group-housed (4-8/cage) in a temperature (21±1°C) and humidity controlled environment (45-65%), under a 12:12 h light:dark cycle (lights on: 7 am). Food and water were available *ad libitum*. Female $\text{APP}_\text{swe}/\text{PSI}_{\Delta E9}$ mice were used at 3, 6, 12, and 18 months of age. Sex- and age-matched WT littermates were used as control. Both male and female mice were used in the 24-
month-old groups (n=6/genotype & age-group, total animal number: 60). The animals were euthanized by cervical dislocation, and brains immediately removed and bisected along the midline. Right hemispheres were frozen in isopentane on dry-ice (-30°C). The olfactory bulb, striatum, cortex, hippocampus, diencephalon, brainstem and cerebellum from the left hemisphere were dissected on a petri dish on ice, collected in Eppendorf® tubes, and frozen on dry-ice. The tissue was stored at -80°C until use.

Sectioning was carried out at -17°C using a Leica CM3050S cryostat (Leica Biosystems GmbH). Series of 20 µm-thick sagittal sections were collected at 300 µm intervals. The sections were mounted onto ice-cold Superfrost™ Plus slides (Thermo Fisher Scientific), dried at 4°C in a box containing silica gel for at least 2 h, and stored at -80°C for future experiments. Every 13th and 14th section was collected in Eppendorf® tubes for RNA extraction with Trizol™.

Fresh-frozen coronal brain sections of male and female, 20-month-old Tg2576 and WT mice were provided by the Centre for Biological Sciences, University of Southampton, U.K.

(Immuno)histochemistry, autoradiography and proteomics

The Gallyas silver stain was performed according to Kuninaka et al. (58), thioflavin-S according to Sun et al. (59), [18F]Flortaucipir autoradiography according to Marquié et al. (60), proteomics according to Kempf et al. (61). Protocol details are provided in Supplementary Materials and Methods.
Statistical analysis

Parametric testing was employed following inspection of the data for normality with the Kolmogorov-Smirnov test in Prism (v6.01; GraphPad Software). Data sets were analyzed by Statistica™ v10 (TIBCO Software Inc., USA). The effects of age, genotype and brain region on the binding levels of [18F]Flortaucipir were analyzed by three-way ANOVA. Gallyas-positive area fraction and tau gene/protein levels were analyzed by two-way ANOVA for the independent factors age and brain region or genotype, respectively. Where ANOVA yielded significant effects, Bonferroni post-hoc comparisons were used to detect between-group regional and age-dependent differences. Levels of sarkosyl-insoluble tau between 24-month-old TG and WT mice, and PHF dimensions extracted from TG vs. AD brain were compared by two-tailed independent Student’s t-tests. Significance was set at $\alpha=0.05$. A 1.3-fold change cut-off value for all TMT ratios was used to rank proteins as up- or down-regulated in the proteomics study (62).

Supplementary Materials

Materials and Methods.

Fig. S1. Quantification of Gallyas-positive lesions, photomicrographs of MC-1 immunoreactivity and vascular pathology in $APP_{swe}/PSI_{\Delta E9}$ mice.

Fig. S2. Correlation between Gallyas-positive area fraction and [18F]Flortaucipir binding levels.

Fig. S3. Evaluation of methods for extracting sarkosyl-insoluble tau.

Fig. S4. pS404 immunoblot.

Table S1. Evidence of tau hyperphosphorylation in $APP_{swe}/PSI_{\Delta E9}$ mice.

Data file S1. Regulated proteins in the sarkosyl-insoluble fraction.
References:

1. G. Esquerda-Canals, L. Montoliu-Gaya, J. Guell-Bosch, S. Villegas, Mouse Models of Alzheimer's Disease. *Journal of Alzheimer's disease : JAD* **57**, 1171-1183 (2017).

2. H. Sasaguri, P. Nilsson, S. Hashimoto, K. Nagata, T. Saito, B. De Strooper, J. Hardy, R. Vassar, B. Winblad, T. C. Saido, APP mouse models for Alzheimer's disease preclinical studies. *EMBO J* **36**, 2473-2487 (2017).

3. A. A. Babcock, L. Ilkjaer, B. H. Clausen, B. Villadsen, L. Dissing-Olesen, A. T. Bendixen, L. Lyck, K. L. Lambertsen, B. Finsen, Cytokine-producing microglia have an altered beta-amyloid load in aged APP/PS1 Tg mice. *Brain, behavior, and immunity*, (2015).

4. S. Serriere, C. Tauber, J. Vercouillie, C. Mothes, C. Pruckner, D. Guilloteau, M. Kassiou, A. Domene, L. Garreau, G. Page, S. Chalon, Amyloid load and translocator protein 18 kDa in APPswePS1-dE9 mice: a longitudinal study. *Neurobiology of aging* **36**, 1639-1652 (2015).

5. Y. Liu, M. J. Yoo, A. Savonenko, W. Stirling, D. L. Price, D. R. Borchelt, L. Mamounas, W. E. Lyons, M. E. Blue, M. K. Lee, Amyloid pathology is associated with progressive monoaminergic neurodegeneration in a transgenic mouse model of Alzheimer's disease. The *Journal of neuroscience : the official journal of the Society for Neuroscience* **28**, 13805-13814 (2008).

6. T. A. Kokjohn, A. E. Roher, Amyloid precursor protein transgenic mouse models and Alzheimer's disease: understanding the paradigms, limitations, and contributions. *Alzheimers Dement* **5**, 340-347 (2009).

7. C. Andorfer, Y. Kress, M. Espinoza, R. de Silva, K. L. Tucker, Y. A. Barde, K. Duff, P. Davies, Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. *Journal of neurochemistry* **86**, 582-590 (2003).

8. J. Gotz, N. Deters, A. Doldissen, L. Bokhari, Y. Ke, A. Wiesner, N. Schonrock, L. M. Ittner, A decade of tau transgenic animal models and beyond. *Brain Pathol* **17**, 91-103 (2007).

9. D. Galimberti, E. Scarpini, Genetics of frontotemporal lobar degeneration. *Front Neurol* **3**, 52 (2012).

10. C. D. Keene, M. Darvas, B. Kraemer, D. Liggitt, C. Sigurdson, W. Ladiges, Neuropathological assessment and validation of mouse models for Alzheimer's disease: applying NIA-AA guidelines. *Pathobiol Aging Age Relat Dis* **6**, 32397 (2016).

11. B. T. Hyman, C. H. Phelps, T. G. Beach, E. H. Bigio, N. J. Cairns, M. C. Carrillo, D. W. Dickson, C. Duyckaerts, M. P. Frosch, E. Masliah, S. S. Mirra, P. T. Nelson, J. A. Schneider, D. R. Thal, B. Thies, J. Q. Trojanowski, H. V. Vinters, T. J. Montine, National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. *Alzheimers Dement* **8**, 1-13 (2012).

12. E. Drummond, T. Wisniewski, Alzheimer's disease: experimental models and reality. *Acta Neuropathol* **133**, 155-175 (2017).

13. K. Herrup, The case for rejecting the amyloid cascade hypothesis. *Nat Neurosci* **18**, 794-799 (2015).

14. A. Metaxas, S. J. Kempf, Neurofibrillary tangles in Alzheimer's disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. *Neural Regen Res* **11**, 1579-1581 (2016).

15. J. Gotz, A. Gladbach, L. Pennanen, J. van Eersel, A. Schild, D. David, L. M. Ittner, Animal models reveal role for tau phosphorylation in human disease. *Biochim Biophys Acta* **1802**, 860-871 (2010).

16. T. Kampers, M. Pangalos, H. Geerts, H. Wiech, E. Mandelkow, Assembly of paired helical filaments from mouse tau: implications for the neurofibrillary pathology in transgenic mouse models for Alzheimer's disease. *FEBS Lett* **451**, 39-44 (1999).

17. I. C. Stancu, B. Vasconcelos, D. Terwel, I. Dewachter, Models of beta-amyloid induced Tau-pathology: the long and "folded" road to understand the mechanism. *Molecular neurodegeneration* **9**, 51 (2014).

18. S. Dutta, P. Sengupta, Men and mice: Relating their ages. *Life Sci* **152**, 244-248 (2016).

19. R. M. Cohen, K. Rezaei-Zadeh, T. M. Weitz, A. Rentsendorj, D. Gate, I. Spivak, Y. Bholat, V. Vasilevko, C. G. Glabe, J. J. Breunig, P. Rakic, H. Davtyan, M. G. Agadjanyan, V. Kepe, J. R. Barrio, S. Bannykh, C. A. Szekely, R. N. Pechnick, T. Town, A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric abeta, and frank neuronal loss. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **33**, 6245-6256 (2013).

20. N. Sahara, J. Lewis, M. DeTure, E. McGowan, D. W. Dickson, M. Hutton, S. H. Yen, Assembly of tau in transgenic animals expressing P301L tau: alteration of phosphorylation and solubility. *Journal of neurochemistry* **83**, 1498-1508 (2002).
21. S. G. Greenberg, P. Davies, A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. *Proceedings of the National Academy of Sciences of the United States of America* **87**, 5827-5831 (1990).

22. C. Julien, A. Bretteville, E. Planel, Biochemical isolation of insoluble tau in transgenic mouse models of tauopathies. *Methods Mol Biol* **849**, 473-491 (2012).

23. W. Huang da, B. T. Sherman, R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat Protoc* **4**, 44-57 (2009).

24. W. Huang da, B. T. Sherman, R. A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res* **37**, 1-13 (2009).

25. J. C. Augustinack, A. Schneider, E. M. Mandelkow, B. T. Hyman, Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease. *Acta Neuropathol* **103**, 26-35 (2002).

26. P. T. Nelson, H. Braak, W. R. Markesbery, Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. *Journal of neuropathology and experimental neurology* **68**, 1-14 (2009).

27. M. J. Pontecorvo, M. D. Devous, Sr., M. Navitsky, M. Lu, S. Salloway, F. W. Schaerf, D. Jennings, A. K. Arora, A. McGeehan, N. C. Lim, H. Xiong, A. D. Joshi, A. Siderowf, M. A. Mintun, F. A.-A. investigators, Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. *Brain* **140**, 748-763 (2017).

28. C. Czech, F. Grueninger, Recent advances in the treatment of Alzheimer's. *Drug Discovery Today: Therapeutic Strategies* **10**, e73-e78 (2013).

29. E. D. Huey, K. T. Putnam, J. Grafman, A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia. *Neurology* **66**, 17-22 (2006).

30. R. M. Tsai, A. L. Boxer, Treatment of frontotemporal dementia. *Curr Treat Options Neurol* **16**, 319 (2014).

31. F. Ubelmann, T. Burrinha, L. Salavessa, R. Gomes, C. Ferreira, N. Moreno, C. Guimas Almeida, Bin1 and CD2AP polarise the endocytic generation of beta-amyloid. *EMBO Rep* **18**, 102-122 (2017).

32. Y. A. Huang, B. Zhou, M. Wernig, T. C. Sudhof, ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and Abeta Secretion. *Molecular psychiatry* **18**, 1225-1234 (2013).

33. J. Chapuis, F. Hansmannel, M. Gistelinck, A. Mounier, C. Van Cauwenberghhe, K. V. Kolen, F. Geller, Y. Sottejeau, D. Harold, P. Douren, B. Grenier-Boley, Y. Kamatani, B. Delepine, F. Demiautte, D. Zelenika, N. Sommer, M. Hamdane, C. Bellenguez, J. F. Dartigues, J. J. Hauw, F. Lebrun, A. M. Ayral, K. Sleeegers, A. Schellens, L. V. Broeck, S. Engelborghs, P. P. De Deyn, R. Vandenberghe, M. O'Donovan, M. Owen, J. Epelbaum, M. Mercken, E. Karran, M. Bantscheff, G. Drewe, G. Jöbert, D. Campion, J. N. Octave, C. Berr, M. Lahrop, P. Callaerts, D. Mann, J. Williams, L. Buee, I. Dewachter, C. Van Broeckhoven, P. Amouyel, D. Mocchairs, B. Dermaut, J. C. Lambert, G. consortium, Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. *Molecular psychiatry* **18**, 1282-1284 (2013).

34. Y. Shi, K. Yamada, S. A. Liddelow, S. T. Smith, L. Zhao, W. Luo, R. M. Tsai, S. Spina, L. T. Grinberg, J. C. Rojas, G. Gallardo, K. Wang, J. Roh, G. Robinson, M. B. Fin, H. Jiang, P. M. Sullivan, C. Baufeld, M. W. Wood, C. Stuphen, L. McCue, C. Xiong, J. L. Del-Aguila, J. C. Morris, C. Cruchaga, I. Alzheimer's Disease Neuroimaging, A. M. Fagan, B. L. Miller, A. L. Boxer, W. W. Seeley, O. Butovsky, B. A. Barres, S. M. Paul, D. M. Holtzman, ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. *Nature* **549**, 523-527 (2017).

35. S. Calafate, W. Flavin, P. Verstreken, D. Mocchairs, Loss of Bin1 Promotes the Propagation of Tau Pathology. *Cell Rep* **17**, 931-940 (2016).

36. C. M. Hales, N. T. Seyfried, E. B. Dammer, D. Duong, H. Yi, M. Gearing, J. C. Troncoso, E. J. Mufson, M. Thambisetty, A. I. Levey, J. J. Lah, U1 small nuclear ribonucleoproteins (snRNPs) aggregate in Alzheimer's disease due to autosomal dominant genetic mutations and trisomy 21. *Molecular neurodegeneration* **9**, 15 (2014).

37. A. E. Roher, C. L. Maarouf, T. A. Kokjohn, Familial Presenilin Mutations and Sporadic Alzheimer's Disease Pathology: Is the Assumption of Biochemical Equivalence Justified? *Journal of Alzheimer's disease : JAD* **50**, 645-658 (2016).

38. W. D. Knight, A. A. Okello, N. S. Ryan, F. E. Turkheimer, S. Rodriguez Martinez de Llanos, P. Edison, J. Douglas, N. C. Fox, D. J. Brooks, M. N. Rossor, Carbon-11-Pittsburgh compound B positron emission tomography imaging of amyloid deposition in presenilin 1 mutation carriers. *Brain* **134**, 293-300 (2011).
39. D. Sepulveda-Falla, J. Matschke, C. Bernreuther, C. Hagel, B. Puig, A. Villegas, G. Garcia, J. Zea, B. Gomez-Mancilla, I. Ferrer, F. Lopera, M. Glatzel, Deposition of hyperphosphorylated tau in cerebellum of PS1 E280A Alzheimer's disease. *Brain Pathol* 21, 452-463 (2011).

40. M. Brendel, A. Jaworska, E. Griessinger, C. Rotzer, S. Burgold, F. J. Gildehaus, J. Carlsen, P. Cumming, K. Baumann, C. Haass, H. Steiner, P. Bartenstein, J. Herms, A. Rominger, Cross-sectional comparison of small animal [18F]-Florbetaben amyloid-PET between transgenic AD mouse models. *PloS one* 10, e0116678 (2015).

41. Y. T. Quiroz, R. A. Sperling, D. J. Norton, A. Baena, J. F. Arboleda-Velasquez, D. Cosio, A. Schultz, M. Lapoint, E. Guzman-Velez, J. B. Miller, L. A. Kim, K. Chen, P. N. Tariot, F. Lopera, E. M. Reiman, K. A. Johnson, Association Between Amyloid and Tau Accumulation in Young Adults With Autosomal Dominant Alzheimer Disease. *JAMA Neurol*, (2018).

42. B. A. Gordon, T. M. Blazey, Y. Su, A. Hari-Raj, A. Dincer, S. Flores, J. Christensen, E. McDade, G. Wang, C. Xiong, N. J. Cairns, J. Hasenstab, D. S. Marcus, A. M. Fagan, C. R. Jack, Jr., R. C. Hornbeck, K. L. Paumier, B. M. Ances, S. B. Berman, A. M. Brickman, D. M. Cash, J. P. Chhatwal, S. Correia, S. Forster, N. C. Fox, N. R. Graff-Radford, C. la Fougere, J. Levin, C. L. Masters, M. N. Rossor, S. Salloway, A. J. Saykin, P. R. Schofield, P. M. Thompson, M. M. Weiner, J. C. Morris, R. J. Bateman, T. L. S. Benzinger, Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study. *Lancet Neurol* 17, 241-250 (2018).

43. K. Iqbal, F. Liu, C. X. Gong, I. Grundke-Iqbal, Tau in Alzheimer disease and related tauopathies. *Current Alzheimer research* 7, 656-664 (2010).

44. M. Espinoza, R. de Silva, D. W. Dickson, P. Davies, Differential incorporation of tau isoforms in Alzheimer's disease. *Journal of Alzheimer's disease : JAD* 14, 1-16 (2008).

45. M. Hara, K. Hirokawa, S. Kamei, T. Uchihara, Isoform transition from four-repeat to three-repeat tau underlies dendrosomatic and regional progression of neurofibrillary pathology. *Acta Neuropathol* 125, 565-579 (2013).

46. K. S. Kosik, L. D. Orecchio, S. Bakalis, R. L. Neve, Developmentally regulated expression of specific tau sequences. *Neuron* 2, 1389-1397 (1989).

47. B. Bai, C. M. Hales, P. C. Chen, Y. Gozal, E. B. Dammer, J. J. Fritz, X. Wang, Q. Xia, D. M. Duong, C. Street, G. Cantero, D. Cheng, D. R. Jones, Z. Wu, Y. Li, I. Diner, C. J. Heilman, H. D. Rees, H. Wu, L. Lin, K. E. Szulwach, M. Gearing, E. J. Mufson, D. A. Bennett, T. J. Montine, N. T. Seyfried, T. S. Wingo, Y. E. Sun, P. Jin, J. Hanfelt, D. M. Willcock, A. Levey, J. J. Lah, J. Peng, U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer's disease. *Proceedings of the National Academy of Sciences of the United States of America* 110, 16562-16567 (2013).

48. D. Kim, L. H. Tsai, Linking cell cycle reentry and DNA damage in neurodegeneration. *Annals of the New York Academy of Sciences* 1170, 674-679 (2009).

49. G. T. Bramblett, M. Goedert, R. Jakes, S. E. Merrick, J. Q. Trojanowski, V. M. Lee, Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. *Neuron* 10, 1089-1099 (1993).

50. C. Liu, J. Gotz, Profiling murine tau with 0N, 1N and 2N isoform-specific antibodies in brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform being enriched in the nucleus. *PloS one* 8, e84849 (2013).

51. H. Zempel, F. J. A. Dennissen, Y. Kumar, J. Luedtke, J. Biernat, E. M. Mandelkow, E. Mandelkow, Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture. *J Biol Chem* 292, 12192-12207 (2017).

52. C. Vermeiren, P. Motte, D. Viot, G. Mairet-Coelho, J. P. Courade, M. Citron, J. Mercier, J. Hannestad, M. Gillard, The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases. *Mov Disord* 33, 273-281 (2018).

53. A. K. Hansen, D. J. Brooks, P. Borghammer, MAO-B Inhibitors Do Not Block In Vivo Flortaucipir([18F]-AV-1451) Binding. *Mol Imaging Biol* 20, 356-360 (2018).

54. T. Bussiere, G. Gold, E. Kovari, P. Giannakopoulos, C. Bouras, D. P. Perl, J. H. Morrison, P. R. Hof, Stereologic analysis of neurofibrillary tangle formation in prefrontal cortex area 9 in aging and Alzheimer's disease. *Neuroscience* 117, 577-592 (2003).

55. C. Duyckaerts, M. Bennecey, Y. Grignon, T. Uchihara, Y. He, F. Piette, J. J. Hauw, Modeling the relation between neurofibrillary tangles and intellectual status. *Neurobiology of aging* 18, 267-273 (1997).
56. A. Metaxas, R. Vaitheeswaran, S. Li, K. L. Lambertsen, B. Finsen, Modeling progressive cognitive impairment in the APPswe/PS1dE9 mouse model of amyloidosis by using the Barnes maze test. Program No. 012.02. 2017 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience, 2017. Online.

57. J. L. Jankowsky, D. J. Fadale, J. Anderson, G. M. Xu, V. Gonzales, N. A. Jenkins, N. G. Copeland, M. K. Lee, L. H. Younkin, S. L. Wagner, S. G. Younkin, D. R. Borchelt, Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. *Hum Mol Genet* **13**, 159-170 (2004).

58. N. Kuninaka, M. Kawaguchi, M. Ogawa, A. Sato, K. Arima, S. Murayama, Y. Saito, Simplification of the modified Gallyas method. *Neuropathology* **35**, 10-15 (2015).

59. A. Sun, X. V. Nguyen, G. Bing, Comparative analysis of an improved thioflavin-s stain, Gallyas silver stain, and immunohistochemistry for neurofibrillary tangle demonstration on the same sections. *J Histochem Cytochem* **50**, 463-472 (2002).

60. M. Marquie, M. D. Normandion, C. R. Vanderburg, I. M. Costantino, E. A. Bien, L. G. Rycyna, W. E. Klunk, C. A. Mathis, M. D. Ikonomovic, M. L. Debnath, N. Vasdev, B. C. Dickerson, S. N. Gomperts, J. H. Growdon, K. A. Johnson, M. P. Frosch, T. Hyman, T. Gomez-Isla, Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. *Annals of neurology* **78**, 787-800 (2015).

61. S. J. Kempf, A. Metaxas, M. Ibanez-Vea, S. Darvesh, B. Finsen, M. R. Larsen, An integrated proteomics approach shows synaptic plasticity changes in an APP/PS1 Alzheimer's mouse model. *Oncotarget* **7**, 33627-33648 (2016).

62. S. J. Kempf, A. Casciati, S. Buratovic, D. Janik, C. von Toerne, M. Ueffing, F. Neff, S. Moertl, B. Stenerlow, A. Saran, M. J. Atkinson, P. Eriksson, S. Pazzaglia, S. Tapio, The cognitive defects of neonatally irradiated mice are accompanied by changed synaptic plasticity, adult neurogenesis and neuroinflammation. *Molecular neurodegeneration* **9**, 57 (2014).

63. E. W. Deutsch, A. Csordas, Z. Sun, A. Jarnuczak, Y. Perez-Riverol, T. Ternent, D. S. Campbell, M. Bernal-Llinares, S. Okuda, S. Kawano, R. L. Moritz, J. J. Carver, M. Wang, Y. Ishihama, N. Bandeira, H. Hermjakob, J. A. Vizcaino, The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. *Nucleic Acids Res* **45**, D1100-D1106 (2017).

64. J. A. Vizcaino, A. Csordas, N. del-Toro, J. A. Dianes, J. Griss, I. Lavidas, G. Mayer, Y. Perez-Riverol, F. Reisinger, T. Ternent, Q. W. Xu, R. Wang, H. Hermjakob, 2016 update of the PRIDE database and its related tools. *Nucleic Acids Res* **44**, D447-456 (2016).

65. F. Gallyas, Silver staining of Alzheimer's neurofibrillary changes by means of physical development. *Acta Morphol Acad Sci Hung* **19**, 1-8 (1971).

66. T. M. Shoup, D. L. Yokell, P. A. Rice, R. N. Jackson, E. Livni, K. A. Johnson, T. J. Brady, N. Vasdev, A concise radiosynthesis of the tau radiopharmaceutical, [(18) F]T807. *J Labelled Comp Radiopharm* **56**, 736-740 (2013).

67. K. Engholm-Keller, P. Birck, J. Storling, F. Pociot, T. Mandrup-Poulsen, M. R. Larsen, TiSH--a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC. *J Proteomics* **75**, 5749-5761 (2012).

68. M. N. Melo-Braga, M. Ibanez-Vea, L. A. Jakobsen, N. H. Heegaard, Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. *Mol Cell Proteomics* **6**, 1778-1787 (2007).

69. D. E. McNulty, R. S. Annan, Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. *Mol Cell Proteomics* **7**, 971-980 (2008).

70. M. N. Melo-Braga, M. Ibanez-Vea, M. R. Larsen, K. Kulej, Comprehensive protocol to simultaneously study protein phosphorylation, acetylation, and N-linked sialylated glycosylation. *Methods Mol Biol* **1295**, 275-292 (2015).

71. M. Morris, G. M. Knudsen, S. Maeda, J. C. Trinidad, A. Ioanoviciu, A. L. Burlingame, L. Mucke, Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. *Nat Neurosci* **18**, 1183-1189 (2015).

72. M. Grebing, H. H. Nielsen, C. D. Fenger, T. J. K. C. U. von Linstow, B. H. Clausen, M. Soderman, K. L. Lambertsen, M. Thomassen, T. A. Kruse, B. Finsen, Myelin-specific T cells induce interleukin-1beta expression in lesion-reactive microglial-like cells in zones of axonal degeneration. *Glia* **64**, 407-424 (2016).
73. P. McMillan, E. Korvatska, P. Pöorkaj, Z. Evstafjeva, L. Robinson, L. Greenup, J. Leverenz, G. D. Schellenberg, I. D'Souza, Tau isoform regulation is region- and cell-specific in mouse brain. *J Comp Neurol* 511, 788-803 (2008).

74. G. Paxinos, K. B. J. Franklin, *The mouse brain in stereotaxic coordinates*. (Academic Press, San Diego, ed. 2nd, 2001).

75. A. Metaxas, R. Vaitheeswaran, K. T. Jensen, C. Thygesen, L. Ilkjaer, S. Darvesh, B. Finsen, Reduced Serotonin Transporter Levels and Inflammation in the Midbrain Raphe of 12 Month Old APPswe/PSEN1dE9 Mice. *Current Alzheimer research* 15, 420-428 (2018).

76. C. Li, X. D. Guo, M. Lei, J. Y. Wu, J. Z. Jin, X. F. Shi, Z. Y. Zhu, V. Rukachaisriruk, L. H. Hu, T. Q. Wen, X. Shen, Thamnolia vermicularis extract improves learning ability in APP/PS1 transgenic mice by ameliorating both Abeta and Tau pathologies. *Acta Pharmacol Sin* 38, 9-28 (2017).

77. C. Tapia-Rojas, F. Aranguiz, L. Varela-Nallar, N. C. Inestrosa, Voluntary Running Attenuates Memory Loss, Decreases Neuropathological Changes and Induces Neurogenesis in a Mouse Model of Alzheimer's Disease. *Brain Pathol* 26, 62-74 (2016).

78. T. Li, K. E. Braunstein, J. Zhang, A. Lau, L. Sibener, C. Deeble, P. C. Wong, The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model. *Nature communications* 7, 12082 (2016).

79. X. T. Huang, Z. M. Qian, X. He, Q. Gong, K. C. Wu, L. R. Jiang, L. N. Lu, Z. J. Zhu, H. Y. Zhang, W. H. Yung, Y. Ke, Reducing iron in the brain: a novel pharmacological mechanism of huperzine A in the treatment of Alzheimer's disease. *Neurobiology of aging* 35, 1045-1054 (2014).

80. E. Barbero-Camps, A. Fernandez, L. Martinez, J. C. Fernandez-Checa, A. Colell, APP/PS1 mice overexpressing SREBP-2 exhibit combined Abeta accumulation and tau pathology underlying Alzheimer's disease. *Hum Mol Genet* 22, 3460-3476 (2013).

81. I. Carrera, I. Etcheverria, L. Fernandez-Novoa, V. Lombardi, R. Cacabelos, C. Vigo, Vaccine Development to Treat Alzheimer's Disease Neuropathology in APP/PS1 Transgenic Mice. *Int J Alzheimers Dis* 2012, 376138 (2012).

82. G. I. Cancino, K. Perez de Arce, P. U. Castro, E. M. Toledo, R. von Bernhardi, A. R. Alvarez, c-Abl tyrosine kinase modulates tau pathology and Cdk5 phosphorylation in AD transgenic mice. *Neurobiology of aging* 32, 1249-1261 (2011).

83. N. C. Inestrosa, C. Tapia-Rojas, T. N. Griffith, F. J. Carvajal, M. J. Benito, A. Rivera-Dietter, A. R. Alvarez, F. G. Serrano, J. L. Hancke, P. V. Burgos, J. Parodi, L. Varela-Nallar, Tetrahydrohyperforin prevents cognitive deficit, Abeta deposition, tau phosphorylation and synaptotoxicity in the APPswe/PSEN1DeltaE9 model of Alzheimer's disease: a possible effect on APP processing. *Transl Psychiatry* 1, e20 (2011).

84. Y. Ding, A. Qiao, Z. Wang, J. S. Goodwin, E. S. Lee, M. L. Block, M. Allsbrook, M. P. McDonald, G. H. Fan, Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model. *Molecular psychiatry*. (2017).

85. Y. Du, J. Qu, W. Zhang, M. Bai, Q. Zhou, Z. Zhang, Z. Li, J. Miao, Morin reverses neuropathological and cognitive impairments in APPswe/PS1dE9 mice by targeting multiple pathogenic mechanisms. *Neuropharmacology* 108, 1-13 (2016).

86. S. Jeon, J. E. Park, J. Lee, Q. F. Liu, H. J. Jeong, S. C. Pak, S. Yi, M. H. Kim, C. W. Kim, J. K. Park, G. W. Kim, B. S. Koo, Illite improves memory impairment and reduces Abeta level in the Tg-APPswe/PS1dE9
mouse model of Alzheimer's disease through Akt/CREB and GSK-3beta phosphorylation in the brain. *J Ethnopharmacol* **160**, 69-77 (2015).
91. J. Y. Vargas, J. Ahumada, M. S. Arrazola, M. Fuenzalida, N. C. Inestrosa, WASP-1, a canonical Wnt signaling potentiator, rescues hippocampal synaptic impairments induced by Abeta oligomers. *Experimental neurology* **264**, 14-25 (2015).
92. Q. Zhou, M. Wang, Y. Du, W. Zhang, M. Bai, Z. Zhang, Z. Li, J. Miao, Inhibition of c-Jun N-terminal kinase activation reverses Alzheimer disease phenotypes in APPswe/PS1dE9 mice. *Annals of neurology* **77**, 637-654 (2015).
93. I. Pedros, D. Petrov, M. Allgaier, F. Sureda, E. Barroso, C. Beas-Zarate, C. Auladell, M. Pallas, M. Vazquez-Carrera, G. Casadesus, J. Folch, A. Camins, Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease. *Biochim Biophys Acta* **1842**, 1556-1566 (2014).
94. E. Aso, S. Juves, R. Maldonado, I. Ferrer, CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AbetaPP/PS1 mice. *Journal of Alzheimer's disease : JAD* **35**, 847-858 (2013).
95. E. Aso, S. Lomoio, I. Lopez-Gonzalez, L. Joda, M. Carmona, N. Fernandez-Yague, J. Moreno, S. Juves, A. Pujol, R. Pamplona, M. Portero-Otin, V. Martin, M. Diaz, I. Ferrer, Amyloid generation and dysfunctional immunoproteasome activation with disease progression in animal model of familial Alzheimer's disease. *Brain Pathol* **22**, 636-653 (2012).
96. L. Li, T. Cheung, J. Chen, K. Herrup, A comparative study of five mouse models of Alzheimer's disease: cell cycle events reveal new insights into neurons at risk for death. *Int J Alzheimers Dis* **2011**, 171464 (2011).
97. C. Wei, W. Zhang, Q. Zhou, C. Zhao, Y. Du, Q. Yan, Z. Li, J. Miao, Mithramycin A Alleviates Cognitive Deficits and Reduces Neuropathology in a Transgenic Mouse Model of Alzheimer's Disease. *Neurochem Res* **41**, 1924-1938 (2016).
98. D. Porquet, P. Andres-Benito, C. Grinan-Ferre, A. Camins, I. Ferrer, A. M. Canudas, J. Del Valle, M. Pallas, Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8). *Age (Dordr)* **37**, 9747 (2015).
99. J. J. Ramos-Rodriguez, O. Ortiz-Barajas, C. Gamero-Carrasco, P. R. de la Rosa, C. Infante-Garcia, N. Zopeque-Garcia, A. M. Lechuga-Sanco, M. Garcia-Alloza, Prediabetes-induced vascular alterations exacerbate central pathology in APPswe/PS1dE9 mice. *Psychoneuroendocrinology* **48**, 123-135 (2014).
100. J. Q. Shi, B. R. Wang, Y. Y. Tian, J. Xu, L. Gao, S. L. Zhao, T. Jiang, H. G. Xie, Y. D. Zhang, Antiepileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice. *CNS Neurosci Ther* **19**, 871-881 (2013).
101. J. J. Ramos-Rodriguez, S. Molina-Gil, R. Rey-Brea, E. Berrocoso, M. Garcia-Alloza, Specific serotonergic denervation affects tau pathology and cognition without altering senile plaques deposition in APP/PS1 mice. *PloS one* **8**, e79947 (2013).
102. S. Lomoio, I. Lopez-Gonzalez, E. Aso, M. Carmona, B. Torrejon-Escribano, E. Scherini, I. Ferrer, Cerebellar amyloid-beta plaques: disturbed cortical circuitry in AbetaPP/PS1 transgenic mice as a model of familial Alzheimer's disease. *Journal of Alzheimer's disease : JAD* **31**, 285-300 (2012).
103. Y. S. Hu, P. Xu, G. Pigino, S. T. Brady, J. Larson, O. Lazarov, Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer's disease-linked APPswe/PS1DeltaE9 mice. *FASEB J* **24**, 1667-1681 (2010).
104. M. Demars, Y. S. Hu, A. Gadadhar, O. Lazarov, Impaired neurogenesis is an early event in the etiology of familial Alzheimer's disease in transgenic mice. *J Neurosci Res* **88**, 2103-2117 (2010).
Acknowledgments: We thank Andrew Reid, senior technician and manager of the Maritime Brain Tissue Bank, for organizing the transportation of human tissue. We acknowledge the Core Facility for Integrated Microscopy, Faculty of Health and Medical Sciences, University of Copenhagen, for assisting with TEM. The Villum Center for Bioanalytical Sciences at SDU is acknowledged for supporting the proteomics part of the study. Precursor material for the synthesis of $[^{18}\text{F}]$Flortaucipir was generously supplied by AVID Radiopharmaceuticals, Philadelphia, PA, USA.

Funding: This work was supported by SDU2020 (CoPING AD: Collaborative Project on the Interaction between Neurons and Glia in AD) and the A.P. Møller og Hustru Chastine McKinney Møllers Fond.

Author contributions: AM designed the project and wrote the manuscript, performed (immuno)histochemistry, autoradiography, tau isolation studies, and assisted with TEM. CT and SJK performed proteomics and immunoblotting. MA and RV performed tissue sectioning, (immuno)histochemistry, autoradiography and tau filament analysis. SP performed PCR and tau Meso Scale. AML organized and performed autoradiography. HA synthesized $[^{18}\text{F}]$Flortaucipir. JLT performed (immuno)histochemistry and provided Tg2576 tissue, SD provided human tissues and critically reviewed the manuscript. DJB, MRL and BF supervised the project and contributed to its design. All authors assisted with data interpretation, participated in drafting the manuscript and approved its final version.

Competing interests: None related to the design and completion of this study.

Data and materials availability: The proteomics data have been deposited to the ProteomeXchange Consortium (63) via the PRIDE partner repository with the dataset identifier.
PXD009306 [username: reviewer39090@ebi.ac.uk; password: HdJxxVxU (64)]. The MC-1 antibody, and material for the synthesis of $[^{18}F]$Flortaucipir were obtained through an MTA.
Supplementary Materials:

Materials and Methods

Gallyas silver staining

The Kuninaka et al. simplification of the modified Gallyas method was used to examine neurofibrillary pathology (58, 65). Fresh-frozen sections were directly immersed in 4% neutral buffered formalin (NBF) at 4°C for 24 h. The sections were thoroughly washed in ultrapure deionized H2O (dH2O; Ultra Clear™, Siemens), dried at room temperature (RT) for 10 min and defatted for 1 h in a solution of chloroform/99% ethanol (1:1) in the dark. Following hydration through a series of graded ethanols into dH2O (2 x 1 min: 99%, 96%, 70%), slides were immersed into an aqueous solution of 0.25% potassium permanganate (20 min), washed in dH2O (1 min), and incubated in 1% oxalic acid (2 min). After washing in dH2O (2 x 5 min), sections were transferred into the alkaline silver iodide solution (1 min), washed with 0.5% acetic acid (2 x 5 min), and developed in a water bath at 15°C, until the appearance of a brownish shade (12-14 min). The developed sections were washed in 0.5% acetic acid (3 min), toned with 0.1% gold chloride (10 min), fixed with 1% sodium thiosulfate (5 min), and counterstained with 0.1% nuclear fast red (3 min). Ethanol and chloroform were from VWR International. The remaining chemicals were from Sigma-Aldrich Co.

Aβ immunohistochemistry on silver-stained sections

The biotinylated 6E10 antibody (SIG-39340, Nordic BioSite) was used to investigate the association between neurofibrillary pathology and Aβ load in APP_{swe/PS1_{ΔE9}} mice. Clone 6E10 is raised against amino acids 1-16 of human Aβ, recognizing multiple amyloid peptides and precursor forms (manufacturer information). Silver-stained sections were immersed in 70%
formic acid for 30 min, rinsed for 10 min in 50 mM Tris-buffered saline (TBS, pH 7.4), and further washed/permeabilised in TBS containing 1% Triton X-100 (3 x 15 min). Sections were subsequently blocked for 30 min in TBS, containing 10% fetal bovine serum (FBS). Incubation with the 6E10 anti-β-amyloid antibody was carried out overnight at 4°C, in TBS containing 10% FBS (1:500 dilution of stock). Adjacent, negative control sections were incubated with biotin-labeled mouse IgG1 (MG115, Thermo Fisher Scientific), diluted to the same protein concentration as the primary antibody. Following incubation with 6E10, the sections were adjusted to RT for 30 min and washed in TBS+1% Triton X-100 (3 x 15 min). Endogenous peroxidase activity was quenched for 20 min in a solution of TBS/methanol/H₂O₂ (8:1:1). After washing in TBS+1% Triton X-100 (3 x 15 min), sections were incubated for 3 h with HRP-streptavidin in TBS/10% FBS (1:200; GE Healthcare Life Sciences). After a final wash in TBS (3 x 10 min), peroxidase activity was visualised with 0.05% 3,3′diaminobenzidine (DAB) in TBS buffer, containing 0.01% H₂O₂ (Sigma Aldrich Co.).

MC-1 immunohistochemistry

Fresh-frozen sections were directly immersed in 4% NBF at 4°C for 24 h. The sections were thoroughly washed in dH₂O, dried at RT for 10 min, and defatted for 1 h in a solution of chloroform/99% ethanol (1:1) in the dark. Following hydration through a series of graded ethanols into dH₂O (2 x 1 min: 99%, 96%, 70%), endogenous peroxidase activity was quenched for 30 min with 1.5% H₂O₂ in TBS. The sections were washed and blocked for 1 h at RT using 10% FBS in 0.05% Triton X-100 (TBS-Tx; blocking buffer). The mouse anti-human MC-1 antibody, a generous gift from Dr. Peter Davies, was diluted in blocking buffer (1:10 dilution of stock). Negative control sections were incubated in blocking buffer with mouse IgG1 (1:100;
MG100, Thermo Fisher Scientific). Following overnight incubation at 4°C, the sections were washed in TBS-Tx (4 x 5 min) and incubated at RT for 3 h with biotin-labeled goat anti-mouse IgG1 (abcam, ab97238), diluted 1:300 in TBS-Tx, containing 50% Superblock (Thermo Fisher Scientific; #37580). After washing in TBS-Tx (4 x 5 min), sections were incubated for 1 h with HRP-streptavidin, diluted 1:200 in TBS-Tx containing 50% Superblock. The sections were washed in TBS (4 x 5 min) and developed with 50 mg DAB and 0.01% H₂O₂, in TBS containing 10 mM imidazole and 0.5% nickel ammonium hexahydrate (pH 7.4).

For all light microscopy studies, the developed sections were thoroughly washed in dH₂O, dehydrated in graded alcohols, cleared in xylene, and cover-slipped with PERTEX® (Histolab Products AB).

Thioflavin-S staining

Thioflavin-S staining was performed according to Sun et al. (59). Fresh-frozen sections were directly immersed in 4% NBF at 4°C for 24 h. The sections were thoroughly washed in ultrapure dH₂O, dried at RT for 10 min, and defatted for 1 h in a solution of chloroform/99% ethanol (1:1) in the dark. Following hydration through a series of graded ethanols into dH₂O (2 x 1 min: 99%, 96%, 70%), slides were immersed into an aqueous solution of 0.25% potassium permanganate (5 min), washed in dH₂O (1 min), and incubated in 1% oxalic acid (2 min). After washing in dH₂O (2 x 2.5 min), the sections were incubated with freshly-prepared 0.25% NaBH₄ (2 x 5 min), washed in dH₂O (5 x 2 min), and transferred into a 0.1% thioflavin-S solution (8 min; dark incubation). The sections were differentiated in 80% ethanol (2 x 10 s), washed in dH₂O (3 x 5 dips), and incubated for 30 min at 4°C in the dark with high-concentration phosphate buffer, to
prevent photobleaching (411 mM NaCl, 8.1 mM KCl, 30 mM Na₂HPO₄; 5.2 mM KH₂PO₄). Following a dip in dH₂O, the sections were counterstained with DAPI (30 µM) for 10 min and mounted with Aquatex® mounting medium (Sigma Aldrich Co.).

Immuno(histochemistry) images were acquired with an Olympus DP71 digital camera, mounted on an Olympus BX51 microscope equipped for Epi-Fluorescence illumination, or an Olympus DP80 Dual Monochrome CCD camera, mounted on a motorized BX63 Olympus microscope.

[^18F]Flortaucipir autoradiography
Autoradiography experiments were conducted at the Department of Nuclear Medicine and PET-centre, Aarhus University, Denmark.[^18F]Flortaucipir was synthesised in Aarhus using previously detailed methods (66).

[^18F]Flortaucipir autoradiography was performed as described previously (60), with minor modifications. Sections were thawed to RT for 20 min and fixed/permeabilised in 100% methanol for 20 min. The sections were incubated for a period of 60 min in a 160 mL bath of 10 mM phosphate buffered saline (PBS, pH 7.4), containing 38.4±9.6 MBq[^18F]Flortaucipir (specific activity: 145±68 GBq/µmol). A series of adjacent brain sections was incubated with identical amounts of radioligand in the presence of 50 µM ‘cold’ flortaucipir, to assess non-specific binding (NSB). Following incubation, sections were serially washed in PBS (1 min), 70% ethanol in PBS (2 x 1min), 30% ethanol in PBS (1 min) and PBS (1 min). After rapid drying under a stream of cold air, the sections were placed in light-tight cassettes and exposed against FUJI multi-sensitive phosphor screens for 30 min (BAS-IP SR2025, GE Healthcare Life
Sciences). To allow quantification, standards of known radioactive concentration were prepared by serial dilution of the \[^{18}F\]Flortaucipir incubation solution, and exposed along with the sections. Images were developed in a BAS-5000 phosphor-imager at 25 µm resolution.

For image analysis, the intensity values produced by the \(^{18}\)F standards were entered with their corresponding radioactivity values (kBq/mL) into a calibration table, and the relationship between radioactivity and intensity determined by using ImageJ software (v. 1.51c; National Institutes of Health, USA). Adjustments were undertaken to allow for the radioactive decay of \[^{18}F\]Flortaucipir. Values of specific binding were derived after subtraction of NSB from total binding images.

Isolation of sarkosyl-insoluble Tau

The general procedure by Greenberg and Davies (21) was used to isolate PHFs. Left brain hemispheres from two mice per group were pooled and weighed (467.1±3.1 mg). The tissue was thoroughly homogenised with a motor driven Potter-Elvehjem tissue grinder (WHEATON), in a 5-fold excess (v/w) of 10 mM Tris-HCl buffer (pH 7.4), containing 800 mM NaCl, 1 mM EGTA, 10% sucrose, protease inhibitors (cOmpleteTM Protease Inhibitor; Roche Diagnostics) and phosphatase inhibitors (PhosSTOPTM; Roche Diagnostics; H buffer). The homogenate was centrifuged at 4°C for 20 min in a refrigerated ultracentrifuge (27,000 x g; Sorvall RC M150 GX). The supernatant was decanted and kept on ice, the pellet (P1) suspended in 5 vol of H-buffer and re-centrifuged at 27,000 x g for 20 min (4°C). The combined supernatants (S1) were brought to 1% sarkosyl in H buffer and incubated for 2 h at 37°C in a C24 incubator shaker (100 rpm; New Brunswick Scientific). Following centrifugation at 200,000 x g for 40 min (4°C), the
sarkosyl-soluble fraction was decanted and kept on ice, and the sarkosyl-insoluble pellet suspended in H buffer, containing 1% CHAPS hydrate (Sigma Aldrich Co.). After filtering through acetate cellulose filters (0.45 µm; VWR International), the filtrates were centrifuged at 200,000 g for 70 min, and the final pellet suspended in 250 µL dH₂O. Aliquots of 150 µL from the P1, S1, sarkosyl soluble and insoluble fractions were kept for determining Tau protein levels. Samples were stored at -80°C until further processed.

Tau Meso Scale

Tau protein concentration in soluble and insoluble fractions was measured with the mouse Total Tau kit (K151DSD-1; Mesoscale Diagnostics LLC). The anti-mouse monoclonal antibody used for detection binds between amino acids 150-200 of Tau, but the clone number and exact epitope recognition site(s) are proprietary. Plates were processed in a SECTOR® Imager 6000 plate reader (Meso Scale Diagnostics LLC), and data acquired with Discovery Workbench software (v.4.0; Meso Scale Diagnostics LLC). Results are presented as pg of Tau/mg of total protein, the latter measured at A562 nm with a Pierce™ BCA protein kit and bovine serum albumin as standard (Thermo Fisher Scientific).

Transmission electron microscopy (TEM)

Electron microscopy was performed in the Core Facility for Integrated Microscopy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark. Carbon-coated copper grids (200 mesh; Ted Pella Inc.) were glow-discharged with a Leica EM ACE 200 (Leica Biosystems Nussloch GmbH), and loaded with 6 µL of sarkosyl-insoluble sample. The sample was adsorbed for 1 min, blotted and stained with 2% phosphotungstic acid in dH₂O for 2 min. After blotting
and a quick wash with d\(\text{H}_2\text{O}\), the samples were examined with a Philips CM 100 TEM (Koninklijke Philips N.V.), operated at an accelerating voltage of 80 kV. Digital images were acquired at a nominal magnification of x180,000, by using an OSIS Veleta digital slow scan 2k x 2k CCD camera and the iTEM software package (Olympus Corporation). Filaments shorter and longer than 200 µm were analyzed in at least two fields of view with ImageJ software. Reported values are mean ± SEM of 70 and 32 PHFs for \(\text{APP}_\text{swe}/\text{PSI}_{\Delta \text{E}9}\) and AD tissue, respectively.

Mass spectrometry-based proteomics

Reduction, alkylation and enzymatic digestion

Sarkosyl-insoluble samples were dried down and denatured at RT with 6 M Urea, 2 M Thiourea and 10 mM dithiothreithol (DTT; Sigma-Aldrich Co.) in d\(\text{H}_2\text{O}\) (pH 7.5), supplemented with cOmplete™ protease inhibitors and PhosSTOP™ phosphatase inhibitors (Roche Diagnostics). After vortexing and sonication, 100 µg total protein/condition was alkylated in 20 mM iodoacetamide (IAA) for 20 min in the dark. A total of 2 µL of endoproteinase Lys-C was added to the protein sample (6 µg/µL; Wako Chemicals GmbH), and the solution incubated for 2 h at RT. The sample was then diluted 10 times with 20 mM TEAB, pH 7.5, and digested with trypsin overnight (1:50 w/w trypsin:protein). The enzymatic digestion was stopped with 5% formic acid (FA) and the peptide sample cleared by centrifugation (14,000 x g, 15 min). Protein and peptide quantification was performed by Qubit™ fluorometric quantitation (Invitrogen™).

Tandem Mass Tag (TMT) labeling

A total of 100 µg tryptic peptides were dried and desalted with R2/R3 columns, before TMT-10plex labeling (AB Sciex Pte. Ltd.). The desalting procedure is detailed below. Labeling was
performed according to manufacturer instructions: TMT-126 for WT-3 months(1), TMT-127N WT-3 months(2), TMT-127C Tg-3 months(1), TMT-128N Tg-3 months(2), TMT-128C for WT-24 months(1), TMT-129N for WT-24 months(2), TMT-129C for Tg-24 months(1), 130N for Tg-24 months(2), TMT-130C for human non-AD and TMT-131 for human AD. The labeled peptides from all groups were mixed 1:1, dried down and stored for further enrichment and analysis. Human AD and non-AD samples were included for validation, as well as for taking advantage of the stacking effect of the TMT10-plex, in order to increase identification rates.

Enrichment of phosphopeptides and formerly sialylated N-linked glycopeptides (deglycosylated)

Multi- and mono-phosphorylated peptides, as well as sialylated N-linked glycopeptides, were separated from unmodified peptides by using a TiO2 workflow (67). Modified peptides bind to TiO2 beads because the phospho and sialic groups are acidic and retained on the column, whereas unmodified peptides flow-through. The eluted modified peptides were deglycosylated to remove N-linked glycans (68). Hydrophilic interaction chromatography (HILIC) was used for sample fractionation prior to nano liquid chromatography-tandem mass spectrometry [LC-MS/MS; (67)].

Briefly, the combined labelled peptides (~1000 µg) were dissolved in TiO2 loading buffer [80% acetonitrile (ACN), 5% trifluoroacetic acid (TFA), 1 M glycolic acid] and incubated for 30 min at RT with 6 mg of TiO2 beads (5020 Titansphere™ TiO2, 5 µm; gift from GL Sciences). The beads were sequentially washed with TiO2 loading buffer, 80% ACN/1% TFA and 10% ACN/0.1% TFA. Modified peptides were eluted with 1.5% ammonium hydroxide solution, pH 11.3, and dried-down in a vacuum centrifuge. The unbound TiO2 fraction and the combined
washing fractions contain unmodified peptides. The dried modified peptides were deglycosylated at 37°C overnight in 20 mM TEAB buffer, pH 8.0, containing N-glycosidase F (P0705L, New England Biolabs Inc.) and Sialidase A™ (GK80046, ProZyme). Unmodified and modified peptides were dried and desalted on micro-columns before capillary HILIC fractionation.

Sample desalting with R2/R3 micro-column

Samples were desalted by using home-made P200 tip-based columns, packed with equal ratios of reversed-phase resin material Poros R2 (Oligo R2 Reversed Phase Resin 1-1112-46, Thermo Fisher Scientific) and Poros R3 (OligoR3 Reversed Phase Resin 1-1339-03, Thermo Fisher Scientific). The end of the tip was blocked with C8 material (Model 2314, 3m Empore™ C8). The column was prepared by short centrifugation (1000 x g) of the R3 reversed-phase resin (100% ACN), equilibrated with 0.1% TFA, and centrifuged again. The acidified samples were loaded onto the columns and washed three times with 0.1% TFA. Peptides were eluted with 50% ACN, 0.1% TFA and dried by vacuum centrifugation.

HILIC fractionation

The fractions containing unmodified peptides were fractionated prior to nanoLC-MS/MS analysis using HILIC, as described previously (69, 70). Peptides were dissolved in 90% ACN, 0.1% TFA (solvent B), and loaded onto a 450 μm OD x 320 μm ID x 17 cm micro-capillary column packed with TSK Amide-80 (3 μm; Tosoh Bioscience LLC). The peptides were separated on a 1200 Series HPLC (Agilent Technologies) over 30 min, by using a gradient from 100–60% solvent B (A = 0.1% TFA), at a flow-rate of 6 μL/min. Fractions were collected every
1 min based on the UV chromatogram. Subsequently, the peptide fractions were dried by vacuum centrifugation.

Reversed-phase nanoLC-ESI-MS/MS

The peptides were resuspended in 0.1% FA, and automatically injected on a ReproSil-Pur C18 AQ, in-house packed-trap column (Dr. Maisch GmbH; 2 cm x 100 µm inner diameter; 5 µm). The peptides were separated by reversed phase chromatography at 250 nL/min on an analytical ReproSil-Pur C18 AQ column (Dr. Maisch GmbH), packed in-house (17 cm x 75 µm; 3 µm), which was operated on an EASY-nanoLC system (Thermo Fisher Scientific). Mobile phase was 95% ACN/ 0.1% FA (B) and water/0.1% FA (A). The gradient was from 1% to 30% B over 80 min for mono-phosphorylated, deglycosylated and unmodified peptides, and 1% to 30% solvent B over 110 min for multi-phosphorylated peptides, followed by 30 - 50% B over 10 min, 50 - 100% B over 5 min, and 8 min at 100% B. The nano-LC was connected online to a Q Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific), operating in positive ion mode and using data-dependent acquisition. The eluent was directed toward the ion transfer tube of the Orbitrap instrument by dynamic electrospray ionization. The Orbitrap acquired the full MS scan with an automatic gain control target value of 3x10^6 ions and a maximum fill time of 100 ms. Each MS scan was acquired in the Orbitrap at high-resolution [120,000 full-width half maximum (FWHM)] at m/z 200 with a mass range of 400-1400 Da. The 12 most abundant peptide ions were selected from the MS for higher energy collision-induced dissociation fragmentation (collision energy: 34 V) if they were at least doubly-charged. Fragmentation was performed at high resolution (60,000 FWHM) for a target of 1x10^5.
maximum injection time of 60 ms using an isolation window of 1.2 m/z and a dynamic exclusion of 20 s.

Data search & analysis

Raw data were searched against the *mus musculus* or *homo sapiens* reference databases from swissprot and uniprot via Mascot (v2.3.02, Matrix Science) and Sequest HT search engines, respectively, using Proteome Discoverer (v2.1, Thermo Fisher Scientific). A precursor mass tolerance of 20 ppm and a product ion mass tolerance of 0.05 Da was applied, allowing two missed cleavages for trypsin. Fixed modifications included carboxamidomethylation of Cys/Arg and TMT-10plex labeling for Lys and N-termini. Variable modifications contained phosphorylation on Ser/Thr/Tyr, acetylation on the N-termini, oxidation of Met and deamidation of Asn. The TMT datasets were quantified using the centroid peak intensity with the ‘reporter ions quantifier’ node. To ensure high-confident identification, the Mascot percolator algorithm (q value filter set to 0.01), Mascot and Sequest HT peptide rank 1, a cut-off Mascot score value of ≥18, and a Sequest HT∆Cn of 0.1 were used. Only high confident peptides were used for further analysis. The peptides were filtered against a Decoy database resulting into a false discovery rate (FDR) of <0.01. Two murine biological replicates per group without missing values were considered for the analysis, and normalization was performed on the protein median. Based on the mean technical variation from repetitive measurements of murine brain samples (61, 62), the threshold for determining regulated proteins was set to 1.3-fold, i.e. proteins with TMT ratios >1.30 were considered upregulated and <0.77 downregulated. Tau isoform-specific searches were performed by creating a Uniprot database of isoform sequences for mouse Tau (Uniprot ID: P10637-1, -2, -3, -4, -5, -6) and human Tau (Uniprot ID: P10636-1, -2, -3, -4, -5, -6, -7, -8, -9),
as performed by Morris et al. (71). Moderate confidence peptides (FDR<0.05) were included in the isoform-specific search.

RT-qPCR

For reverse transcription, quantitative polymerase chain reaction (RT-qPCR), Trizol™-isolated RNA (2 μg) from brain sections of WT and TG mice was reverse-transcribed to cDNA, by using the Applied Biosystems™ high-capacity cDNA transcription kit (Thermo Fisher Scientific). Samples were analyzed in triplicate on a StepOnePlus™ Real-Time PCR system (Applied Biosystems™, Thermo Fisher Scientific). Each 20 μL sample contained nuclease-free H₂O (Thermo Fisher Scientific), 1x Maxima SYBR® green/probe master mix (Thermo Fisher Scientific), 500 nM forward and reverse primers (TAG Copenhagen A/S), 4x diluted cDNA for Mapt and 10x diluted cDNA for hypoxanthine phosphoribosyltransferase (Hprt1), which was used as a reference gene. Hprt1 sequences (72) and mouse-specific Mapt primers spanning exon 10 have been described previously (73). Conventional PCR cycling conditions were used [95°C (10 min), followed by 40 cycles of 95°C (15s)/60°C (1 min)], followed by a melt curve. After normalization to Hprt1, data were expressed as fold change from the mean value of the 3-month-old WT samples. Nuclease-free H₂O and genomic DNA were used as controls.

Immunoblotting of sarkosyl-insoluble Tau

Ten μg of lysed, denatured protein were separated on 4-12% Bolt Bis-Tris gradient gels (NW04125Box, Novex®), and transferred to polyvinylidene fluoride (PVDF) membranes using the Trans-Blot SD Semi-Dry Transfer Cell system (Bio-Rad Laboratories Inc.). Protein content on the PVDF membranes was visualized with PonceauS. Following washing (10 min) and blocking for 1 h in Roti®-Block (Carl Roth GmbH), the membranes were incubated overnight at
4°C in blocking solution, containing rabbit anti-tau (1:1000; A0024, Dako Agilent) or rabbit anti-phopshoSer404 primary antibodies (1:200; OAAF07796, Aviva Systems Biology). The blots were washed in TBS+1% Triton X-100 (3 x 15 min; TBS-Tx) and incubated for 2 h with horseradish peroxidase-conjugated secondary antibody (anti-rabbit IgG, HRP-linked antibody, #7074; Cell Signaling Technology®). After a final wash in TBS-Tx (3 x 15 min), the blots were developed with enhanced chemiluminescent substrate (ECL), according to manufacturer instructions (Luminata™ Forte Western HRP Substrate, WBLUF0100, Merck Millipore).
Fig. S1. (A) Quantification of Gallyas-positive signal in aging *APP^{swe}/PS_{IΔE9} mice. Regions of interest were manually drawn by reference to the mouse brain atlas of Paxinos and Franklin (74). Gallyas-positive particles were measured with the particle analysis plugin in ImageJ, after thresholding ROIs on a black and white image display mode, by using default software settings. Data are presented as the mean area fraction occupied by Gallyas-positive particles ± standard error of the mean (SEM), in brain regions of 5-6 animals/group. Asterisks denote the age when
Gallyas signal was first increased compared to 3-month old \textit{APP}_{swe}/\textit{PSI}_{\Delta E9} mice (**\(P<0.01\), ***\(P<0.001\), Bonferroni post-hoc tests). Increased silver deposition across all brain areas analyzed was detected in 12- vs. 3- and 6-month-old \textit{APP}_{swe}/\textit{PSI}_{\Delta E9} mice (\(P<0.001\)), with additional accumulation occurring in 18- vs. 12- (\(P<0.001\)), and 24- vs. 18-month-old TG animals (\(P<0.05\), Bonferroni post hoc tests). Two-way ANOVA confirmed significant main effects of age [\(F(4,245)=169.9, P<0.001\)] and brain region [\(F(9,245)=11.4, P<0.001\)], as well as significant age x region interaction effects on the fraction of brain tissue bearing Gallyas-positive signal [\(F(36,245)=3.2, P<0.001\)]. (B) MC-1 immunoreactivity in the neocortex of 24-month-old TG and WT mice. Indications of conformationally modified tau were obtained by using the conformation-dependent MC-1 antibody. In mice, part of the MC-1 signal may be derived from non-specific binding to mouse immunoglobulin 1 (IgG1). Scale bar: 20 µm. (C) Vascular and meningeal lesions in 18-month-old \textit{APP}_{swe}/\textit{PSI}_{\Delta E9} mice. Gallyas/6E10- (a) and thioflavin-S-positive vascular pathology (b). The arrows in (c) & (d) respectively point to thioflavin-S and Gallyas signal in the meninges of the cerebellum. Scale bars: 10 µm (a & b), 200 µm (c & d).
Fig. S2. Correlation between Gallyas-positive area fraction and \(^{18}\text{F}\)Flortaucipir binding levels. Signals from the Gallyas silver stain and \(^{18}\text{F}\)Flortaucipir autoradiography monitor the propagation of identical pathology, most likely tau-associated lesions. Each dot represents values from a single TG animal.
Fig. S3. Evaluation of methods for extracting sarkosyl-insoluble tau. TEM and immunoblotting of sarkosyl-insoluble tau, extracted according to (A) Sahara et al. (20) and (B) Greenberg and Davies (21). A triplet of immunoreactive bands in the 55-70 kDa range was detected by both methods, by using a rabbit antibody directed to the C-terminal domain of unmodified tau (aa 243-441; A0024, Dako Agilent). (C) Bands in A & B were spliced from gel in C, showing total tau immunoreactivity in the following groups: (1) TG 24 months, (6) WT 24 months (Greenberg and Davies method). (2) WT 24 months, (3) Human AD, (4) TG 18 months, (5) TG 24 months (Sahara et al. method).
Fig. S4. pS404 immunoblot. The accumulation of sarkosyl-insoluble tau hyperphosphorylated at pS404 in 24-month-old transgenic (TG) mice was confirmed with a rabbit anti-phosphoSer404 antibody (1:200; OAAF07796, Aviva Systems Biology).
Background strain	Age (Months)	Gender	Method of Euthanasia	Method of Tau Evaluation	Antibody/Epitope	Brain Region	Reference	
B6.C3	12	Female	Anesthesia	IHC	pS262	NCx	(75)	
B6.C3	~9	Male	Not reported	IF & WB	pS396	NCx & Hip	(76)	
B6.C3	~7.5	Male & Female	Anesthesia	IF	AT8 (pS202/pT205)	NCx & Hip	(77)	
B6.C3	6 to >24	Male	Anesthesia	IHC	PHF1, CP13, pT231, p262, pS396, pS422	Entire Brain	(78)	
B6.C3	8	Not reported	Anesthesia	IHC	AT8 (pS202/pT205)	NCx & Hip	(79)	
B6.C3	11 & 18	Male	Not reported	WB & Gallyas	AT8 (pS202/pT205)	Entire Brain	(80)	
B6.C3	11	Male	Not reported	IHC	AB1518 (not reported)	Hip	(81)	
B6.C3	6 to >24	Male	Anesthesia	IHC	PHF1 (pS396/pS404)	NCx & Hip	(82)	
B6.C3	~7.5	Male	Anesthesia	IF & IHC	AT8 (pS202/pT205)	NCx & Hip	(83)	
B6.C3	~7	Male	Anesthesia	WB	pS199, pS202, pS235, pS396, pS404	FrCx & Hip	(84)	
C57BL/6	6	Female	Cervical dislocation	WB & IHC	pT205, pS396, pS404	Hip	(85)	
C57BL/6J	22	Female	Anesthesia	WB & IHC	pS199, pS396	NCx & Entire Brain	(86)	
C57BL/6J	7	Male	Not reported	IF	pS199	NCx & Hip	(87)	
C57BL/6J	3-12	Not reported	Not reported	WB	PHF1 (pS396/pS404)	FrCx	(88)	
C57BL/6J	12	Male	Cervical dislocation	Proteomics & Gallyas	N/A	NCx & Hip, Olf. Bulb, Brainstem	(61)	
C57BL/6	~9	Female	Anesthesia	WB	pS235, pT205	Entire Brain	(89)	
C57BL/6J	~7.5	Male	Not reported	WB	pS262	NCx & Hip	(90)	
C57BL/6	7	Male	Decapitation	WB	PHF1 (pS396/pS404)	Hip	(91)	
C57BL/6	~12	Female	Anesthesia	WB	pS235, pT205	NCx & Hip	(92)	
C57BL/6	3 & 6	Male	Not reported	WB	pS199, pT205, pS396, pS404	Hip	(93)	
C57BL/6J	~7.5	Male	Not reported	IF	pT181	NCx & Hip	(94)	
C57BL/6J	6 & 9	Male	Anesthesia	IF	pS199, pS202, pS262, pT181	NCx	(95)	
C57BL/6	6-7	Not reported	Anesthesia	IHC	AT8 (pS202/pT205)	Amygdala	(96)	
C57BL/6J	12	Not reported	Anesthesia	IHC/IF	AT8 (pS202/pT205)	PHF1 (pS396/pS404)	N/C	(5)
Not reported	~12	Male	Anesthesia	WB	pS235, pT205	Entire Brain	(97)	
Not reported	3-12	Not reported	Anesthesia	WB	pS199, pT205, pS396, pS404	Entire Brain	(98)	
Not reported	6	Not reported	Anesthesia	WB	AT8 (pS202/pT205)	NCx	(99)	
Not reported	7	Not reported	Anesthesia	WB	pS396	Brain hemisphere	(100)	
Not reported	~7	Not reported	Anesthesia	WB	AT8 (pS202/pT205)	NCx	(101)	
Not reported	>18	Not reported	Anesthesia	IHC	pS199, pT231	Cerebellum	(102)	
Not reported	~2-3	Male	Anesthesia	WB	PHF1 (pS396/pS404)	NCx & Hip	(103)	
Not reported	2	Male	Anesthesia	WB	AT8 (pS202/pT205)	PHF1 (pS396/pS404)	Subventricular zone, NCx & Hip	(104)

Table S1. Evidence of tau hyperphosphorylation in APP_{swe}/PSI_{ΔE9} mice. Abbreviations: IHC: Immunohistochemistry; WB: Western Blot; IF: Immunofluorescence; NCx: Neocortex; Fr Cx: Frontal Cortex; Hip: Hippocampus.
Accession	Description	Abundance Ratio: (TG3) / (WT3)			
Q3YV117	ATP-citrate synthase OS=Mus musculus GN=Acly PE=1 SV=1	5,526			
Q3TTY5	Keratin, type II cytoskeletal 2 epidermal OS=Mus musculus GN=Krt2 PE=1 SV=1	2,979			
Q8BL66	Early endosome antigen 1 OS=Mus musculus GN=Seal1 PE=1 SV=2	2,834			
B1AQ77	Keratin 15, isoform CRA_a OS=Mus musculus GN=Krt15 PE=1 SV=1	2,777			
Q3P0P4	Keratin 5 OS=Mus musculus GN=Krt5 PE=2 SV=2	2,716			
Q4VW25	Acyl-CoA-binding protein OS=Mus musculus GN=Dbi PE=1 SV=1	2,416			
Q61782	Type I epidermal keratin mRNA, 3'end (Fragment) OS=Mus musculus PE=2 SV=1	2,363			
Q91VB8	Alpha globin 1 OS=Mus musculus GN=haemoglobin alpha PE=1 SV=1	2,309			
Q3UBP6	Putative uncharacterized protein OS=Mus musculus GN=Actb PE=2 SV=1	2,147			
D3YXH0	Immunoglobulin superfamily member 5 OS=Mus musculus GN=Igsf5 PE=4 SV=1	2,139			
Q08539	Myc box-dependent-interacting protein 1 OS=Mus musculus GN=Bin1 PE=1 SV=1	2,109			
Q3UV17	Keratin, type II cytoskeletal 2 oral OS=Mus musculus GN=Krt76 PE=2 SV=1	2,096			
P63005	Platelet-activating factor acetylhydrolase IB subunit alpha OS=Mus musculus GN=Palh1b1 PE=1 SV=2	2,078			
Q548F2	Guanine deaminase OS=Mus musculus GN=Gda PE=2 SV=1	1,997			
Q6E902	MCG10343, isoform CRA_b OS=Mus musculus GN=Slc25a3 PE=1 SV=1	1,993			
Q9DCW4	Electron transfer flavoprotein subunit beta OS=Mus musculus GN=Etfb PE=1 SV=3	1,984			
Q14929	Histone cluster 1, H1d OS=Mus musculus GN=Hist1h1d PE=2 SV=1	1,883			
Q62W42	Thymosin, beta 4, X chromosome OS=Mus musculus GN=Tmsb4x PE=2 SV=1	1,832			
B1AWD9	Clathrin light chain A OS=Mus musculus GN=Clta PE=1 SV=1	1,816			
Q08331	Calretinin OS=Mus musculus GN=Calb2 PE=1 SV=3	1,814			
P14115	60S ribosomal protein L27a OS=Mus musculus GN=Rpl27a PE=2 SV=5	1,809			
P84086	Complexin-2 OS=Mus musculus GN=Cplx2 PE=1 SV=1	1,806			
P02802	Metallothionein-1 OS=Mus musculus GN=Mt1 PE=1 SV=1	1,796			
Q9043	Myosin light chain 6B OS=Mus musculus GN=Mylb PE=2 SV=1	1,771			
P47962	60S ribosomal protein L5 OS=Mus musculus GN=Rpl5 PE=1 SV=3	1,757			
A8DUK4	Beta-globin OS=Mus musculus GN=Hbbt1 PE=1 SV=1	1,749			
P99024	Tubulin beta-5 chain OS=Mus musculus GN=Tubb5 PE=1 SV=1	1,713			
Q546G4	Albumin 1 OS=Mus musculus GN=Alb PE=2 SV=1	1,688			
P30065	Thymosin beta-4 OS=Mus musculus GN=Tmsb4a PE=1 SV=1	1,682			
P62717	60S ribosomal protein L18a OS=Mus musculus GN=Rpl18a PE=1 SV=1	1,688			
P62204	Calmodulin OS=Mus musculus GN=Calm1 PE=1 SV=2	1,677			
P19157	Glutathione S-transferase P 1 OS=Mus musculus GN=Gstp1 PE=1 SV=2	1,651			
Q90P9	Ubiquitin carboxyl-terminal hydrolase isozyme L1 OS=Mus musculus GN=Uch1 PE=1 SV=1	1,647			
Q8VD05	Myosin-9 OS=Mus musculus GN=Myh9 PE=1 SV=4	1,624			
Q0EQUS5-2	Isoform 2 of Protein SET OS=Mus musculus GN=Set	1,604			
P17742	Peptidyl-prolyl cis-trans isomerase A OS=Mus musculus GN=Ppia PE=1 SV=2	1,595			
Q810U4	Neuronal cell adhesion molecule OS=Mus musculus GN=Nrcam PE=1 SV=2	1,586			
Q6FX2	Keratin, type I cytoskeletal 42 OS=Mus musculus GN=Krt42 PE=1 SV=1	1,586			
P14869	60S acidic ribosomal protein P0 OS=Mus musculus GN=Rplp0 PE=1 SV=3	1,576			
Q9WV69	Dematin OS=Mus musculus GN=Dmnt PE=1 SV=1	1,561			
Accession	Protein Name	Organism	Gene Name	Protein Feature	Entry Count
-----------	--------------	----------	-----------	----------------	-------------
Q5BLK1	40S ribosomal protein S6	Mus musculus	Rps6	PE=1 SV=1	3072
17751	Triosephosphate isomerase	Mus musculus	Tpi1	PE=1 SV=4	1556
P99027	60S acidic ribosomal protein P2	Mus musculus	Rplp2	PE=1 SV=3	1519
P55091	Protein IMPACT	Mus musculus	Impact	PE=1 SV=2	1514
P98086	Complement C1q subcomponent subunit A	Mus musculus	C1qa	PE=1 SV=2	1493
E9Q557	Desmoplakin	Mus musculus	Dsp	PE=1 SV=1	1474
P98086	Complement C1q subcomponent subunit B	Mus musculus	C1qb	PE=2 SV=1	1429
Q2RCZ8	Secerin-1	Mus musculus	Scrn1	PE=1 SV=1	1415
Q9D8J1	Phosphoglycerate mutase 1	Mus musculus	Pgaml	PE=1 SV=3	1411
P68510	14-3-3 protein eta	Mus musculus	Ywhah	PE=1 SV=2	1394
Q8K183	Pyridoxal kinase	Mus musculus	Pdxk	PE=1 SV=1	1391
Q3UR55	ATPase, Na+/K+ transporting, beta 2 polypeptide	Mus musculus	Atp1b2	PE=2 SV=1	1366
Q63810	Calcinurin subunit B type 1	Mus musculus	Ppp3r1	PE=1 SV=3	1355
Q55866	Splicing factor 3B subunit 1	Mus musculus	Sf3b1	PE=1 SV=2	1353
P01352	cAMP-dependent protein kinase catalytic subunit alpha	Mus musculus	Prkaca	PE=1 SV=3	1349
Q8K2O8	Cytochrome b-c1 complex subunit 6, mitochondrial	Mus musculus	Uqcrh	PE=1 SV=2	1367
Q3U857	Myosin-10	Mus musculus	Myh10	PE=1 SV=1	132
Q79863	60S ribosomal protein L13	Mus musculus	Rpl13	PE=1 SV=3	1319
Q80YN3	Breast carcinoma-amplified sequence 1 homolog	Mus musculus	Bcas1	PE=1 SV=3	1312
Q5X7F6	Ribosomal protein O	Mus musculus	Rpl10a	PE=1 SV=1	1302
Q90X10	Tenascin	Mus musculus	Tnc	PE=1 SV=1	775
Q99K10	Aconitate hydratase, mitochondrial	Mus musculus	Aco2	PE=1 SV=1	773
Q52K1C	Eukaryotic translation initiation factor 4A2	Mus musculus	Elf4a2	PE=2 SV=1	772
Q919V5	Brain acid soluble protein 1	Mus musculus	Basp1	PE=1 SV=3	771
Q548L4	Glutamate decarboxylase X	Mus musculus	Gad2	PE=2 SV=1	771
A0A075B5P2	Protein Igk (Fragment)	Mus musculus	Igk	PE=1 SV=1	779
Q80Y1X	Tenascin-O	Mus musculus	Tnc	PE=1 SV=1	769
V9G7X6	Unconventional myosin-VI	Mus musculus	Myo6	PE=1 SV=1	768
P63163	Small nuclear ribonucleoprotein-associated protein N	Mus musculus	Snrnp	PE=2 SV=1	766
S4R1P5	Dystonin	Mus musculus	Dst	PE=1 SV=1	765
P670766	Cell division control protein 42 homolog	Mus musculus	Cdc42	PE=1 SV=2	765
Q9C213	Cytochrome b-c1 complex subunit 1	Mus musculus	Uqcrbc1	PE=1 SV=2	764
P61264	Syntaxin-1B	Mus musculus	Stxb1	PE=1 SV=1	764
P40336	Vacuolar protein sorting-associated protein 26A	Mus musculus	Vps26a	PE=1 SV=1	763
B2RTL5	Aldehyde dehydrogenase family 1, subfamily A7	Mus musculus	Aldh1a7	PE=2 SV=1	76
E9Q455	Tropomyosin alpha-1 chain	Mus musculus	Tpm1	PE=1 SV=1	759
Q92ZT6	Keratin, type II cuticular Hb5	Mus musculus	Krt85	PE=2 SV=2	758
Accession Number	Description	E-Value	Score		
------------------	--	---------	-------		
Q9CZU6	Citrate synthase, mitochondrial OS=Mus musculus GN=Cs PE=1 SV=1	0,757			
P62858	40S ribosomal protein S28 OS=Mus musculus GN=Rps28 PE=1 SV=1	0,757			
P26883	Peptidyl-prolyl cis-trans isomerase FKBP1A OS=Mus musculus GN=Fkbp1a PE=1 SV=2	0,755			
P53395	Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial OS=Mus musculus GN=Dbt PE=1 SV=2	0,755			
Q61838	Alpha-2-macroglobulin OS=Mus musculus GN=A2m PE=1 SV=3	0,754			
Q3TL9P	RAS-related C3 botulinum substrate 1, isoform CRA_a OS=Mus musculus GN=Rac1 PE=1 SV=1	0,753			
Q9HU4	Cytoplasmic dyn1 1 heavy chain 1 OS=Mus musculus GN=Dynclh1 PE=1 SV=2	0,753			
S4R349	Ankyrin-2 OS=Mus musculus GN=Ank2 PE=1 SV=1	0,753			
Q9EF6	Dihydropyrimidinase-related protein 5 OS=Mus musculus GN=Dpy5s1 PE=1 SV=1	0,746			
F6TY7	Myelin basic protein (Fragment) OS=Mus musculus GN=Mbpe PE=1 SV=1	0,745			
QWUM4	Coronin-1C OS=Mus musculus GN=Coro1c PE=1 SV=2	0,744			
Q9WUB3	Glycogen phosphorylase, muscle form OS=Mus musculus GN=Pygm PE=1 SV=3	0,744			
Q8CE0	Sodium/potassium-transporting ATPase subunit alpha OS=Mus musculus GN=Atpa1a3 PE=1 SV=1	0,74			
P17427	AP-2 complex subunit alpha-2 OS=Mus musculus GN=Ap2a2 PE=1 SV=2	0,739			
Q8C94	Glycogen phosphorylase, brain form OS=Mus musculus GN=Pgpb PE=1 SV=3	0,737			
Q3U2G2	Heat shock 70 kDa protein 4 OS=Mus musculus GN=Hspa4 PE=1 SV=1	0,736			
P3S4G8	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial OS=Mus musculus GN=Pdha1 PE=1 SV=1	0,735			
Q9JLM8	Serine/threonine-protein kinase DCLK1 OS=Mus musculus GN=Dclk1 PE=1 SV=1	0,731			
Q5XR6	Clathrin heavy chain OS=Mus musculus GN=Cltc PE=1 SV=1	0,73			
Q5S22	Endonuclease domain-containing 1 protein OS=Mus musculus GN=Endod1 PE=1 SV=2	0,729			
Q9JK6	Cell cycle exit and neuronal differentiation protein 1 OS=Mus musculus GN=Cend1 PE=1 SV=1	0,725			
B2RTM0	Histone H4 OS=Mus musculus GN=Hist2h4 PE=2 SV=1	0,725			
P63276	40S ribosomal protein S17 OS=Mus musculus GN=Rps17 PE=1 SV=2	0,724			
Q62621	Sprectin beta chain, non-erythrocytic 1 OS=Mus musculus GN=Sptb3 PE=1 SV=2	0,724			
A2AUKS	Band 4.1-like protein 1 OS=Mus musculus GN=Epb41I1 PE=1 SV=1	0,722			
Q8BV14	Dihydropyrimidinase reductase OS=Mus musculus GN=Qdpr PE=1 SV=2	0,72			
P47857	ATP-dependent 6-phosphofructokinase, muscle type OS=Mus musculus GN=Pfkme PE=1 SV=3	0,72			
P60202	Myelin proteolipid protein OS=Mus musculus GN=Plp1 PE=1 SV=2	0,719			
E9Q7Q3	Tropomyosin alpha-3 chain OS=Mus musculus GN=Tpm3 PE=1 SV=1	0,718			
Q5SYD0	Unconventional myosin-7d OS=Mus musculus GN=Myo1d PE=1 SV=1	0,718			
Q9QLW7	Keratin, type I cytoskeletal 17 OS=Mus musculus GN=Krt17 PE=1 SV=3	0,71			
P84078	ADP-ribosylation factor 1 OS=Mus musculus GN=Art1 PE=1 SV=2	0,71			
P43274	Histone H1.4 OS=Mus musculus GN=Hist1h1e PE=1 SV=2	0,71			
Q9WW92	Band 4.1-like protein 3 OS=Mus musculus GN=Ep41I13 PE=1 SV=1	0,709			
G5E924	Heterogeneous nuclear ribonucleoprotein L (Fragment) OS=Mus musculus GN=Hnrnpl PE=1 SV=1	0,708			
P63318	Protein kinase C gamma type OS=Mus musculus GN=Prkcg PE=1 SV=1	0,707			
Q9CZY3	Ubiquitin-conjugating enzyme E2 variant 1 OS=Mus musculus GN=Ube2v1 PE=1 SV=1	0,707			
P48771	Cytochrome c oxidase subunit 7A2, mitochondrial OS=Mus musculus GN=Cox7a2 PE=1 SV=2	0,706			
Q3T10S	Chaperonin containingTcp1, subunit 6a (Zeta) OS=Mus musculus GN=Cct6a PE=2 SV=1	0,706			
B2RXK2	Serine/threonine-protein phosphatase OS=Mus musculus GN=Ppp3ca PE=2 SV=1	0,704			
Q9DOM3	Cytochrome c1, heme protein, mitochondrial OS=Mus musculus GN=Cyc1 PE=1 SV=1	0,701			
P56399	Ubiquitin carboxyl-terminal hydrolase 5 OS=Mus musculus GN=Usp5 PE=1 SV=1	0,701			
Q543Y7	Putative uncharacterized protein OS=Mus musculus GN=Pacs1 PE=2 SV=1	0,7			
Q9DCD0	6-phosphogluconate dehydrogenase, decarboxylating OS=Mus musculus GN=Pgd PE=1 SV=3	0,693			
Accession	Protein Name	Gene Name	Organism	PE	SV
-----------	--	-------------	-------------------	----	----
A0A0MQA5	Tubulin alpha chain (Fragment)	Tuba4a	Mus musculus	1	1
P46097	Synaptotagmin-2	Syt2	Mus musculus	1	1
P39053	Dynamin-1	Dnm1	Mus musculus	1	2
Q21G4	V-type proton ATPase subunit a isoform 1	Ap6v0a1	Mus musculus	1	3
Q2CX86	Heterogeneous nuclear ribonucleoprotein A0	Hnrnpa0	Mus musculus	1	1
P26645	Myristoylated alanine-rich C-kinase substrate	Marcks	Mus musculus	1	1
Q7Z28J	MGC22989, isoform CRA_b	Rab11b	Mus musculus	1	2
Q4R001	Microtubule-associated protein RP/EB family member	Mapre2	Mus musculus	1	1
P11798	Calcium/calmodulin-dependent protein kinase type II	Camk2a	Mus musculus	1	1
Q33UV7	Putative uncharacterized protein	Mlf2	Mus musculus	1	2
E9Q401	Ryanodine receptor 2	Ryr2	Mus musculus	1	1
Q9D051	Pyruvate dehydrogenase E1 component subunit beta	Pdhb	Mus musculus	1	1
Q2UMU9	Hepatoma-derived growth factor-related protein	Ral7	Mus musculus	1	2
Q92Z19	Succinate-CoA ligase [ADP-forming] subunit beta	Scl2a	Mus musculus	1	2
P14148	60S ribosomal protein L7	Rpl7	Mus musculus	1	2
P62317	Small nuclear ribonucleoprotein Sm D2	Snpd2	Mus musculus	3	1
Q92Z26	Tetraspanin-2	Tspan2	Mus musculus	1	1
Q19001	Keratin, type I cytoskeletal 19	Krt19	Mus musculus	1	1
Q27318	Band 4.1-like protein 2	Ebp4112	Mus musculus	1	2
Q923T9	Calcium/calmodulin-dependent protein kinase type II	Camk2g	Mus musculus	1	1
A0A0G2JFT8	Protein RUFY3	Rufy3	Mus musculus	1	1
Q3UHL1	CaM kinase-like vesicle-associated protein	Camk4v	Mus musculus	1	2
P62305	Small nuclear ribonucleoprotein E	Snrpe	Mus musculus	1	1
Q5DQ3	Capping protein (Actin filament) muscle Z-line, alpha 2, isoform CRA_c	Capza2	Mus musculus	2	1
Q7TSI2	Microtubule-associated protein 6	Map6	Mus musculus	1	2
Q92B13	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1	Plcb1	Mus musculus	1	2
Q3UYK6	Amino acid transporter	Sc1a2	Mus musculus	2	1
B2RXY7	Carbonyl reductase 1	Cbr1	Mus musculus	2	1
P52480-2	Isoform M1 of Pyruvate kinase PKM	Pkm	Mus musculus	1	1
Q3TXU4	Apolipoprotein E, isoform CRA_h	Apoe	Mus musculus	2	1
P62715	Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform	Ppp2cb	Mus musculus	1	1
P80313	T-complex protein 1 subunit eta	Cct7	Mus musculus	1	1
P61255	60S ribosomal protein L26	Rpl26	Mus musculus	1	1
Q4FX4	Csrp1 protein OS=Mus musculus	Csrp1	Mus musculus	1	1
Q8VEK3	Heterogeneous nuclear ribonucleoprotein U	Hnrnpu	Mus musculus	1	1
Q3UAD6	Heat shock protein 90kDa beta (Grp94)	Hsp90b1	Mus musculus	1	2
Q90UM9	Proteasome subunit alpha-6 OS=Mus musculus	Poma6	Mus musculus	1	1
P47757	F-actin-capping protein subunit beta OS=Mus musculus	Capzb	Mus musculus	1	2
Q9R1P1	Proteasome subunit beta-3 OS=Mus musculus	Psmb3	Mus musculus	1	1
P12382	ATP-dependent 6-phosphofructokinase, liver type OS=Mus musculus	Pfk1	Mus musculus	1	1
Q88MS1	Trifunctional enzyme subunit alpha, mitochondrial OS=Mus musculus	Hadha	Mus musculus	1	1
E9PYH0	Versican core protein OS=Mus musculus	Vcan	Mus musculus	1	1
P27773	Protein disulfide-isomerase A3 OS=Mus musculus	Pdla3	Mus musculus	1	1
Q8BG05	Heterogeneous nuclear ribonucleoprotein A3	Hnrnpa3	Mus musculus	1	1
Accession	Name and Description	Score			
------------	--	-------			
P00920	Carbonic anhydrase 2 OS=Mus musculus GN=Ca2 PE=1 SV=4	0.626			
E9QA2X	Unconventional myosin-XVIIIA OS=Mus musculus GN=Myo18a PE=1 SV=1	0.625			
P19246	Neurofilament heavy polypeptide OS=Mus musculus GN=Nefh PE=1 SV=3	0.623			
P17426	AP-2 complex subunit alpha-1 OS=Mus musculus GN=Ap2a1 PE=1 SV=1	0.623			
Q68FL4	Putative adenosylhomocysteinase 3 OS=Mus musculus GN=Ahcy2 PE=1 SV=1	0.619			
Q2PFD7	PH and SEC7 domain-containing protein 3 OS=Mus musculus GN=Psd3 PE=1 SV=2	0.615			
Q3UYY1	Myelin-oligodendrocyte glycoprotein OS=Mus musculus GN=Mog PE=1 SV=1	0.614			
P10637-3	Isomorph Tau-B of Microtubule-associated protein tau OS=Mus musculus GN=Mapt	0.611			
Q88F92	Elin-2 OS=Mus musculus GN=Elin2 PE=1 SV=1	0.610			
E9PVP0	PCTP-like protein OS=Mus musculus GN=Stard10 PE=1 SV=1	0.609			
Q8R0Y6	Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Aldh111 PE=1 SV=1	0.608			
Q62182	Aggreca core protein OS=Mus musculus GN=Acan PE=1 SV=2	0.607			
O09061	Proteasome subunit beta type-1 OS=Mus musculus GN=Psmb1 PE=1 SV=1	0.599			
Q542X7	Chaperonin subunit 2 (Beta), isoform CRA_b OS=Mus musculus GN=Cct2 PE=2 SV=1	0.597			
O55143	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 OS=Mus musculus GN=Atpa2a PE=2 SV=2	0.591			
Q5FW9	Adaptor protein complex CP2, mu1 OS=Mus musculus GN=Ap2m1 PE=2 SV=2	0.587			
Q7M6W1	Reticulin OS=Mus musculus GN=Rtn1 PE=1 SV=1	0.587			
P50066	Neurocan core protein OS=Mus musculus GN=Ncan PE=2 SV=1	0.584			
Q8BY9Y	Tenasin-C OS=Mus musculus GN=Tnr PE=1 SV=2	0.584			
Q9JL3	Methylglutacol-CoA hydtratase, mitochondrial OS=Mus musculus GN=Auh PE=1 SV=1	0.58			
P62307	Small nuclear ribonucleoprotein F OS=Mus musculus GN=Snrfp PE=1 SV=1	0.58			
Q544E3	Phosphatidylinositol-4-phosphate 5-kinase, type II, alpha OS=Mus musculus GN=Pipk2a PE=2 SV=1	0.579			
P48036	Annexin A5 OS=Mus musculus GN=Anxa5 PE=1 SV=1	0.573			
P31324	cAMP-dependent protein kinase type II-beta regulatory subunit OS=Mus musculus GN=Prkra2b PE=1 SV=3	0.572			
Q99M71	Mammalian epipodemin-related protein 1 OS=Mus musculus GN=Epdr1 PE=2 SV=1	0.571			
P70202	Latexin OS=Mus musculus GN=Lx1 PE=1 SV=2	0.57			
P12023	Amyloid beta A4 protein OS=Mus musculus GN=App PE=1 SV=3	0.57			
Q9QUP5	Hyaluronan and proteoglycan link protein 1 OS=Mus musculus GN=Hapln1 PE=1 SV=1	0.568			
Q04690	Neurofibromin OS=Mus musculus GN=NT1 PE=1 SV=1	0.566			
Q9CU62	Structural maintenance of chromosomes protein 1A OS=Mus musculus GN=Smc1a PE=1 SV=4	0.566			
Q9QYC0	Alpha-actinin OS=Mus musculus GN=Adc1 PE=1 SV=2	0.564			
Q9ES5M	Hyaluronan and proteoglycan link protein 2 OS=Mus musculus GN=Hapln2 PE=1 SV=1	0.563			
Q5BLK0	MCG18564, isoform CRA_a OS=Mus musculus GN=Rpl12 PE=2 SV=1	0.56			
P31550	Sodium- and chloride-dependent GABA transporter 3 OS=Mus musculus GN=Scl6a11 PE=1 SV=2	0.56			
Q9R19P	Proteasome subunit alpha type-4 OS=Mus musculus GN=Psma4 PE=1 SV=1	0.56			
Q9QX51	Plectin OS=Mus musculus GN=Plec PE=1 SV=3	0.559			
Q92331	Keratin, type II cytoskeletal 6B OS=Mus musculus GN=Krt6b PE=1 SV=3	0.558			
P09528	Ferritin heavy chain OS=Mus musculus GN=Fth1 PE=1 SV=2	0.558			
P11881	Inositol 1,4,5-trisphosphate receptor type 1 OS=Mus musculus GN=Itrp1 PE=1 SV=2	0.557			
F8WB81	Calcium-transporting ATPase OS=Mus musculus GN=Atp2b2 PE=1 SV=1	0.556			
P97300	Neuroplastin OS=Mus musculus GN=Nptn PE=1 SV=3	0.555			
Q5SS83	Flotillin 2, isoform CRA_b OS=Mus musculus GN=Flot2 PE=1 SV=1	0.555			
Q912X7	Prolow-density lipoprotein receptor-related protein 1 OS=Mus musculus GN=Lrp1 PE=1 SV=1	0.554			
Q3TQ70	Beta1 subunit of GTP-binding protein OS=Mus musculus GN=Gnb1 PE=2 SV=1	0.549			
Gene ID	Description	Species	Gene ID	Description	Species
-----------	---	---------------	-----------	---	---------------
Q60692	Proteasome subunit beta type-6 OS=Mus musculus GN=Psmb6 PE=1 SV=3		A6H611	Mitochondrial intermediate peptidase OS=Mus musculus GN=Mipep PE=1 SV=1	
Q9CX54	Centromere protein V OS=Mus musculus GN=Centp PE=1 SV=2		Q922U0	Proteasome subunit alpha type-7 OS=Mus musculus GN=Psma7 PE=1 SV=1	
Q8C605	ATP-dependent 6-phosphofructokinase OS=Mus musculus GN=Pfkp PE=1 SV=1		P48722	Heat shock 70 kDa protein 4L OS=Mus musculus GN=Hspa4l PE=1 SV=2	
P63011	Ras-related protein Rab-3A OS=Mus musculus GN=Rab3a PE=1 SV=1		A0A0G2JG54	Calcium/calmodulin-dependent protein kinase type II subunit delta OS=Mus musculus GN=Camk2d PE=4 SV=1	
P17156	Heat shock-related 70 kDa protein 2 OS=Mus musculus GN=Hspa2 PE=1 SV=2		P99026	Proteasome subunit beta type-4 OS=Mus musculus GN=Psmb4 PE=1 SV=1	
Q9R1P4	Proteasome subunit alpha type-1 OS=Mus musculus GN=Poma1 PE=1 SV=1		P01592	Immunoglobulin J chain OS=Mus musculus GN=Igj PE=2 SV=4	
P35235	Tyrosine-protein phosphatase non-receptor type 11 OS=Mus musculus GN=Ptpn11 PE=1 SV=2		Q99PUS	Long-chain-fatty-acid-CoA ligase ACSBG1 OS=Mus musculus GN=Acsbg1 PE=1 SV=1	
P60879	Synaptosomal-associated protein 25 OS=Mus musculus GN=Snap25 PE=1 SV=1		P80TL4	PHD finger protein 24 OS=Mus musculus GN=Phf24 PE=1 SV=2	
Q545X8	40S ribosomal protein S4 OS=Mus musculus GN=Rps4x PE=2 SV=1		Q9QYX7	Protein piccolo OS=Mus musculus GN=Pclo PE=1 SV=4	
D0VYV6	Erythrocyte protein band 4.1-like 3 isoform B OS=Mus musculus GN=Epb4.13 PE=2 SV=1		Q88VE3	V-type proton ATPase subunit H OS=Mus musculus GN=Atp6v1h PE=1 SV=1	
Q08917	Flotillin-1 OS=Mus musculus GN=Flot1 PE=1 SV=1		Q9WT4	Insulin-receptor-related protein OS=Mus musculus GN=Insr PE=2 SV=2	
P21460	Cystatin-C OS=Mus musculus GN=Cst3 PE=1 SV=2		P62814	V-type proton ATPase subunit B, brain isoform OS=Mus musculus GN=Atp6v1b2 PE=1 SV=1	
A0A076FRG6	KCC2a variant 1 OS=Mus musculus GN=Slc12a5 PE=2 SV=1		O55234	Proteasome subunit beta type-5 OS=Mus musculus GN=Psmb5 PE=1 SV=3	
P49722	Proteasome subunit alpha type-2 OS=Mus musculus GN=Psma2 PE=1 SV=3		Q0D2G2	Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial OS=Mus musculus GN=Dist PE=1 SV=1	
Q9CPX4	Ferritin OS=Mus musculus GN=Fht1 PE=1 SV=1		Q9BGT8	Phytanoyl-CoA hydroxylase-interacting protein-like OS=Mus musculus GN=Phyhipl PE=2 SV=1	
Q8BF4	Na(+)/H(+) exchange regulatory cofactor NHE-RF1 OS=Mus musculus GN=Slc9a3r1 PE=1 SV=3		Q0VF55	Calcium-transporting ATPase OS=Mus musculus GN=Atp2b3 PE=1 SV=1	
P63085	Mitogen-activated protein kinase 1 OS=Mus musculus GN=Mapk1 PE=1 SV=3		Q2UGC8	Propionyl-Coenzyme A carboxylase, alpha polypeptide, isoform CRA_b OS=Mus musculus GN=Pcca PE=2 SV=1	
Q22U1	Proteasome subunit alpha type-5 OS=Mus musculus GN=Psma5 PE=1 SV=1		P62827	GTP-binding nuclear protein Ran OS=Mus musculus GN=Ran PE=1 SV=3	
Q0RSS5	Synaptic vesicle glycoprotein 2A OS=Mus musculus GN=Svga2a PE=1 SV=1		Q9R1P3	Proteasome subunit beta type-2 OS=Mus musculus GN=Psmb2 PE=1 SV=1	
Q9QOZ8	Core histone macro-H2A.1 OS=Mus musculus GN=H2afy PE=1 SV=3		Q9V1E0	Long-chain fatty acid transport protein 4 OS=Mus musculus GN=Cla27a4 PE=1 SV=1	
O35955	Proteasome subunit beta type-10 OS=Mus musculus GN=Psmb10 PE=1 SV=1		O35962	Barrier-to-autointegration factor OS=Mus musculus GN=Banf1 PE=1 SV=1	
A2AWN8	YTH domain family 1, isoform CRA_a OS=Mus musculus GN=Ythdf1 PE=1 SV=1		P70195	Proteasome subunit beta type-7 OS=Mus musculus GN=Psmb7 PE=1 SV=1	
Accession	Description	Organism	Gene Name	Peptide	Score
-----------	--	------------	-----------	---------	-------
P14106	Complement C1q subcomponent subunit B	Mus musculus	C1qb	PE=1	0.441
Q8BKZ9	Pyruvate dehydrogenase protein X component, mitochondrial	Mus musculus	Pdhx	PE=1	0.438
Q91ZU6	Dystonin	Mus musculus	Dst	PE=1	0.438
Q8R016	Bleomycin hydrolase	Mus musculus	Blmh	PE=1	0.438
Q3U7E0	Putative uncharacterized protein	Mus musculus	Atp6v1g1	PE=2	0.436
A2CEK3	Phosphoglucomutase-2	Mus musculus	Pgm2	PE=1	0.431
B9EIC7	MCG3853	Mus musculus	Pdhx	PE=2	0.421
L9PUA3	IQ motif and SEC7 domain-containing protein	Mus musculus	Iqsec1	PE=1	0.407
Q88MF4	Dihydropolylysine-residue acetyltransferase component of pyruvate dehydrogenase complex	Mus musculus	Dlat	PE=1	0.407
P42669	Transcriptional activator protein Pur-alpha	Mus musculus	Pura	PE=1	0.398
Q9ZO4H	CUGBP Elav-like family member 2	Mus musculus	Celh2	PE=1	0.395
Q58EV4	Proteasome subunit alpha type	Mus musculus	Psma3	PE=2	0.393
Q920E0	Neurochondrin	Mus musculus	Ncdn	PE=1	0.39
Q58EA6	MCG10725, isoform CRA_a	Mus musculus	Rps25	PE=2	0.366
P11983	T-complex protein 1 subunit alpha	Mus musculus	Tcp1	PE=1	0.365
Q9JM93	ADP-ribosylation factor-like protein 6-interacting protein 4	Mus musculus	Arl6ip4	PE=1	0.34
Q5SQX6	Cytoplasmic FMR1-interacting protein 2	Mus musculus	Cyfip2	PE=1	0.327
F6VYP7	Protein Gm10260	Mus musculus	Gm10260	PE=3	0.286
F6VPT0	Protein Ccdc163 (Fragment)	Mus musculus	Ccdc163	PE=4	0.284
Q02105	Complement C1q subcomponent subunit C	Mus musculus	C1qc	PE=2	0.274
Q99MN9	Propionyl-CoA carboxylase beta chain, mitochondrial	Mus musculus	Pccb	PE=1	0.229
Q3V0Q1	Dynein heavy chain 12, axonemal	Mus musculus	Dnah12	PE=1	0.227
Q3TVK3	Aspartyl aminopeptidase	Mus musculus	Dnpep	PE=1	0.224
Q9D8B3	Charged multivesicular body protein 4b	Mus musculus	Chmp4b	PE=1	0.201
Q8R184	Eukaryotic translation initiation factor 3 subunit C	Mus musculus	Eif3c	PE=1	0.189
DATA FILE S1
REGULATED PROTEINS 24 MONTHS: TG vs. WT

Accession	Description	Description	Abundance Ratio: (TG24) / (WT24)				
P12023	Amyloid beta A4 protein OS=Mus musculus GN=App PE=1 SV=3		14,021				
Q35Y5	Keratin 16 OS=Mus musculus GN=Krt16 PE=2 SV=1		8,4				
Q9Z31	Keratin, type II cytoskeletal 6B OS=Mus musculus GN=Krt6b PE=1 SV=3		5,956				
Q6IFX2	Keratin, type I cytoskeletal 42 OS=Mus musculus GN=Krt42 PE=1 SV=1		5,635				
Q9IM93	ADP-ribosylation factor-like protein 6-interacting protein 4 OS=Mus musculus GN=Arl6ip4 PE=1 SV=1		5,486				
Q61782	Type I epidermal keratin mRNA, 3’end (Fragment) OS=Mus musculus PE=2 SV=1		4,628				
Q9QW17	Keratin, type I cytoskeletal 17 OS=Mus musculus GN=Krt17 PE=1 SV=3		4,351				
Q99MN9	Propionyl-CoA carboxylase beta chain, mitochondrial OS=Mus musculus GN=Pccb PE=1 SV=2		3,96				
Q9CZY3	Ubiquitin-conjugating enzyme E2 variant 1 OS=Mus musculus GN=Ube2v1 PE=1 SV=1		3,89				
Q9WTL4	Insulin receptor-related protein OS=Mus musculus GN=Insr PE=1 SV=2		3,852				
P62715	Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform OS=Mus musculus GN=Ppp2cb PE=1 SV=1		3,674				
Q61781	Keratin, type I cytoskeletal 14 OS=Mus musculus GN=Krt14 PE=1 SV=2		3,606				
P19001	Keratin, type I cytoskeletal 19 OS=Mus musculus GN=Krt19 PE=1 SV=1		3,598				
Q3TXU4	Apolipoprotein E, isoform CRA_h OS=Mus musculus GN=Apoe PE=2 SV=1		3,577				
P43276	Histone H1.5 OS=Mus musculus GN=Hist1h1b PE=1 SV=2		3,402				
P10637-3	Isoform Tau-B of Microtubule-associated protein tau OS=Mus musculus GN=Mapt		3,212				
P14685	26S proteasome non-ATPase regulatory subunit 3 OS=Mus musculus GN=Psmd3 PE=1 SV=3		3,164				
Q9D0M3	Cytochrome c1, heme protein, mitochondrial OS=Mus musculus GN=Cyc1 PE=1 SV=1		2,935				
Q80Y1	Tenascin OS=Mus musculus GN=Tnc PE=1 SV=1		2,749				
Q9JLM8	Serine/threonine-protein kinase DCLK1 OS=Mus musculus GN=Dclk1 PE=1 SV=1		2,726				
AOA140T8K6	60S ribosomal protein L36 OS=Mus musculus GN=Rpl36-ps3 PE=3 SV=1		2,694				
P12787	Cytochrome c oxidase subunit 5A, mitochondrial OS=Mus musculus GN=Cox5a PE=1 SV=2		2,555				
Q3V0Q1	Dynein heavy chain 12, axonemal OS=Mus musculus GN=Dnah12 PE=1 SV=2		2,526				
Q91VE0	Long-chain fatty acid transport protein 4 OS=Mus musculus GN=Slc27a4 PE=1 SV=1		2,47				
Q6S4G0	Guanylate kinase OS=Mus musculus GN=Guk1 PE=1 SV=1		2,384				
Q8R366	Immunoglobulin superfamily member 8 OS=Mus musculus GN=Igsf8 PE=1 SV=2		2,374				
E9Q5S7	Desmoplakin OS=Mus musculus GN=Dsp PE=1 SV=1		2,319				
Q9D0823	60S ribosomal protein L37 OS=Mus musculus GN=Rpl37 PE=3 SV=3		2,302				
P62855	40S ribosomal protein S26 OS=Mus musculus GN=Rps26 PE=1 SV=3		2,296				
Q3P204	Keratin 5 OS=Mus musculus GN=Krt5 PE=2 SV=2		2,268				
Q8R1B4	Eukaryotic translation initiation factor 3 subunit C OS=Mus musculus GN=If3c PE=1 SV=1		2,204				
Q8C1Y8	Vacuolar fusion protein CCZ1 homolog OS=Mus musculus GN=Ccz1 PE=1 SV=1		2,201				
V9G6X76	Unconventional myosin-VI OS=Mus musculus GN=Myo6 PE=1 SV=1		2,143				
Q9CXS4	Centromere protein V OS=Mus musculus GN=Cenpv PE=1 SV=2		2,142				
Q9QX51	Plectin OS=Mus musculus GN=Plec PE=1 SV=3		2,138				
P62717	60S ribosomal protein L18a OS=Mus musculus GN=Rpl18a PE=1 SV=1		2,133				
P62307	Small nuclear ribonucleoprotein F OS=Mus musculus GN=Snrpf PE=1 SV=1		2,066				
Q9CYR0	Single-stranded DNA-binding protein, mitochondrial OS=Mus musculus GN=Ssbp1 PE=1 SV=1		2,033				
Accession	Description	Organism	Gene Name	Protein Entry	Similarity Score		
-----------	---	-----------	-----------	----------------	------------------		
Q8C522	Endonuclease domain-containing 1 protein OS=Mus musculus GN=Endod1 PE=1 SV=2	Mus musculus	Endod1	2,031			
P97499	Telomerase protein component 1 OS=Mus musculus GN=Tep1 PE=1 SV=1	Mus musculus	Tep1	2,01			
Q9R062	Glycogenin-1 OS=Mus musculus GN=Gyg1 PE=1 SV=3	Mus musculus	Gyg1	1,985			
Q9QW6	SRC kinase signaling inhibitor 1 OS=Mus musculus GN=Srcin1 PE=1 SV=2	Mus musculus	Srcin1	1,98			
P63163	Small nuclear ribonucleoprotein-associated protein OS=Mus musculus GN=Snrp PE=2	Mus musculus	Snrp	1,948			
P17427	AP-2 complex subunit alpha-2 OS=Mus musculus GN=Ap2a2 PE=1 SV=2	Mus musculus	Ap2a2	1,948			
Q5BKL0	MCG1B564, isoform CRA-a OS=Mus musculus GN=Rpl12 PE=2 SV=1	Mus musculus	Rpl12	1,948			
J3QMG3	Voltage-dependent anion-selective channel protein OS=Mus musculus GN=Vdac3 PE=1	Mus musculus	Vdac3	1,911			
Q9DCW4	Electron transfer flavoprotein subunit beta OS=Mus musculus GN=Etfb PE=1 SV=3	Mus musculus	Etfb	1,906			
Q5BEW0	60S ribosomal protein L18 OS=Mus musculus GN=Rpl18 PE=2 SV=2	Mus musculus	Rpl18	1,886			
Q8BFM4	Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial OS=Mus musculus GN=DiOS=Mus musculus GN=Di	Mus musculus	Di	1,856			
Q9Z0H4	CUGBP Elav-like family member 2 OS=Mus musculus GN=Cell2 PE=1 SV=1	Mus musculus	Cell2	1,845			
P46660	Alpha-internexin OS=Mus musculus GN=Ina PE=1 SV=3	Mus musculus	Ina	1,828			
P08752	Guanine nucleotide-binding protein G(i) subunit alpha-2 OS=Mus musculus GN=Gna2 PE=1 SV=5	Mus musculus	Gna2	1,823			
Q549A5	Clusterin OS=Mus musculus GN=Cli PE=2 SV=1	Mus musculus	Clu	1,822			
Q8BTI8	Serine/arginine repetitive matrix protein 2 OS=Mus musculus GN=Srrm2 PE=1 SV=3	Mus musculus	Srrm2	1,819			
Q3TI05	Chaperonin containing Tcp1, subunit 6a (Zeta) OS=Mus musculus GN=Cct6a PE=2 SV=1	Mus musculus	Cct6a	1,814			
OS5091	Protein IMPACT OS=Mus musculus GN=Impact PE=1 SV=2	Mus musculus	Impact	1,778			
F6TBY7	Myelin basic protein (Fragment) OS=Mus musculus GN=Mbp PE=1 SV=1	Mus musculus	Mbp	1,776			
Q04690	Neurofilament OS=Mus musculus GN=Nf1 PE=1 SV=1	Mus musculus	Nf1	1,722			
P03995	Gial fibrillary acidic protein OS=Mus musculus GN=Gfap PE=1 SV=4	Mus musculus	Gfap	1,694			
E9Q401	Ryanodine receptor 2 OS=Mus musculus GN=Ryr2 PE=1 SV=1	Mus musculus	Ryr2	1,689			
Q5BLL9	60S ribosomal protein L27 OS=Mus musculus GN=Rpl27 PE=1 SV=1	Mus musculus	Rpl27	1,688			
A2CEK3	Phosphoglucomutase-2 OS=Mus musculus GN=Pgm2 PE=1 SV=1	Mus musculus	Pgm2	1,675			
P61514	60S ribosomal protein L37a OS=Mus musculus GN=Rpl37a PE=3 SV=2	Mus musculus	Rpl37a	1,667			
Q5OSA8	MCG17585 OS=Mus musculus GN=Rpl39 PE=2 SV=1	Mus musculus	Rpl39	1,64			
P11983	T-complex protein 1 subunit alpha OS=Mus musculus GN=Tcp1 PE=1 SV=3	Mus musculus	Tcp1	1,637			
Q9DO5M5	Dynein light chain 2, cytoplasmic OS=Mus musculus GN=Dynl2 PE=1 SV=1	Mus musculus	Dynl2	1,626			
Q5MR98	MCG13936 OS=Mus musculus GN=Rpl28 PE=2 SV=1	Mus musculus	Rpl28	1,621			
P31938	Dual specificity mitogen-activated protein kinase 1 OS=Mus musculus GN=Map2k1 PE=1 SV=2	Mus musculus	Map2k1	1,596			
Q8BG78	Phytanoyl-CoA hydroxylase-interacting protein-like OS=Mus musculus GN=Phyhipl PE=2 SV=1	Mus musculus	Phyhipl	1,584			
E9PYK3	Poly [ADP-ribose] polymerase OS=Mus musculus GN=Parp4 PE=1 SV=1	Mus musculus	Parp4	1,583			
Q4VAG4	MCG12304 OS=Mus musculus GN=Rpl22 PE=2 SV=1	Mus musculus	Rpl22	1,575			
Q8BL66	Early endosome antigen 1 OS=Mus musculus GN=Eea1 PE=1 SV=2	Mus musculus	Eea1	1,564			
P11881	Inositol 1,4,5-trisphosphate receptor type 1 OS=Mus musculus GN=Itpr1 PE=1 SV=2	Mus musculus	Itpr1	1,562			
P12382	ATP-dependent 6-phosphofructokinase, liver type OS=Mus musculus GN=Pfk1 PE=1 SV=4	Mus musculus	Pfk1	1,544			
P62320	Small nuclear ribonucleoprotein 5m D3 OS=Mus musculus GN=Snrpd3 PE=1 SV=1	Mus musculus	Snrpd3	1,523			
A0A0A0MHAQ5	Tubulin alpha chain (Fragment) OS=Mus musculus GN=Tub4a4a PE=1 SV=1	Mus musculus	Tub4a4a	1,516			
Q2PFD7	PH and SEC7 domain-containing protein 3 OS=Mus musculus GN=Ps3 PE=1 SV=2	Mus musculus	Ps3	1,487			
Q9JHU4	Cytoplasmic dynein 1 heavy chain 1 OS=Mus musculus GN=Dynch1 PE=1 SV=2	Mus musculus	Dynch1	1,48			
P63318	Protein kinase C gamma type OS=Mus musculus GN=Prkgc PE=1 SV=1	Mus musculus	Prkgc	1,476			
P14106	Complement C1q subcomponent subunit B OS=Mus musculus GN=C1qb PE=1 SV=2	Mus musculus	C1qb	1,473			
Accession	Description	Organism	Gene Name	Protein ID	Evidence Level	Start Position	End Position
-----------	--	------------	-----------	-------------	----------------	----------------	--------------
P01592	Immunoglobulin J chain	Mus musculus	Igj	PE=2	SV=4	1,472	
Q8VD05	Myosin-9	Mus musculus	Myh9	PE=1	SV=4	1,471	
Q3TG70	Beta1 subunit of GTP-binding protein	Mus musculus	Gnb1	PE=2	SV=1	1,468	
P62918	60S ribosomal protein L8	Mus musculus	Rpl8	PE=1	SV=2	1,461	
P66048	60S ribosomal protein L10-like	Mus musculus	Rpl10i	PE=2	SV=1	1,461	
Q8BM51	Trifunctional enzyme subunit alpha, mitochondrial	Mus musculus	Hadha	PE=1	SV=1	1,458	
P14148	60S ribosomal protein L7	Mus musculus	Rpl7	PE=1	SV=2	1,449	
Q9CSR7	60S ribosomal protein L14	Mus musculus	Rpl14	PE=1	SV=3	1,443	
Q9EQK5	Major vault protein	Mus musculus	Mvpp	PE=1	SV=4	1,426	
A0A097PUG4	Anti-lox-1 15C4 light chain	Mus musculus	P2777	PE=2	SV=1	1,416	
Q9WU34	MAGUK p55 subfamily member 2	Mus musculus	Mpp2	PE=1	SV=1	1,391	
P27659	60S ribosomal protein L3	Mus musculus	Rpl3	PE=1	SV=3	1,384	
Q8HS58	TIP41-like protein	Mus musculus	Tipr1	PE=1	SV=1	1,384	
P62267	40S ribosomal protein S23	Mus musculus	Rps23	PE=1	SV=3	1,379	
Q9CQV8	14-3-3 protein beta alpha	Mus musculus	Ywhab	PE=1	SV=3	1,378	
Q99104	Unconventional myosin-Va	Mus musculus	Myo5a	PE=1	SV=2	1,378	
Q4FJX4	Crsp1 protein	Mus musculus	Crsp1	PE=2	SV=1	1,375	
Q9WU83	Glycogen phosphorylase, muscle form	Mus musculus	Pygm	PE=1	SV=3	1,374	
Q3JUV7	Putative uncharacterized protein	Mus musculus	Mlf2	PE=2	SV=1	1,373	
P20152	Vimentin	Mus musculus	Vim	PE=1	SV=3	1,368	
P62880	Guanine nucleotide-binding protein (G)/G(S)/G(T) subunit beta-2	Mus musculus	Gnb2	PE=1	SV=3	1,368	
Q3U7E0	Putative uncharacterized protein	Mus musculus	Atp6v1g1	PE=2	SV=1	1,364	
P49722	Proteasome subunit alpha type-2	Mus musculus	Psma2	PE=1	SV=3	1,356	
P19096	Fatty acid synthase	Mus musculus	Fasn	PE=1	SV=2	1,355	
Q9DAK9	14 kDa phosphohistidine phosphate	Mus musculus	Phept1	PE=1	SV=1	1,355	
P62827	GTP-binding nuclear protein Ran	Mus musculus	Ran	PE=1	SV=3	1,343	
O08778	Dynactin subunit 1	Mus musculus	Dctn1	PE=1	SV=3	1,341	
P29341	Polyadenylate-binding protein 1	Mus musculus	Pabpc1	PE=1	SV=2	1,341	
P56480	ATP synthase subunit beta, mitochondrial	Mus musculus	Atp5b	PE=1	SV=2	1,335	
Q3UJS9	Myosin-10	Mus musculus	Myh10	PE=1	SV=1	1,334	
Q497E9	40S ribosomal protein S8	Mus musculus	Rps8	PE=2	SV=1	1,325	
P62305	Small nuclear ribonucleoprotein E	Mus musculus	Snrpe	PE=1	SV=1	1,322	
Q61838	Alpha-2-macroglobulin	Mus musculus	A2m	PE=1	SV=3	1,321	
Q5SQX6	Cytoplasmic FMR1-interacting protein 2	Mus musculus	Cyfip2	PE=1	SV=2	1,319	
P68040	Receptor of activated protein C kinase 1	Mus musculus	Rack1	PE=1	SV=3	1,313	
O70318	Band 4.1-like protein 2	Mus musculus	Epb41l2	PE=1	SV=2	1,311	
Gene ID	Description	Species	Gene Symbol	Protein Accession	Protein Description	Description	Score
---------	--	------------------	-------------	-------------------	--------------------	-------------	-------
Q9OZQ8	Core histone macro-H2A.1	Mus musculus	H2afy	Q8VEK3	Heterogeneous nuclear ribonucleoprotein U	OS=Mus musculus	1,308
Q9JIS5	Synaptic vesicle glycoprotein 2A	Mus musculus	Sv2a			OS=Mus musculus	1,302
Q548L4	Glutamate decarboxylase	Mus musculus	Gad2	P19253	60S ribosomal protein L13a	OS=Mus musculus	0,774
Q91V12-2	Isoform A of Cytosolic acyl coenzyme A thioster hydrolase OS=Mus musculus	GN=Acot7				0,772	
A0A075B6A0	Ig mu chain C region (Fragment) OS=Mus musculus GN=Ighm PE=1 SV=2	Mus musculus				0,77	
P60202	Myelin proteolipid protein OS=Mus musculus GN=Plp1 PE=1 SV=2	Mus musculus				0,77	
P47963	60S ribosomal protein L13 OS=Mus musculus GN=Rpl13 PE=1 SV=3	Mus musculus				0,763	
P06745	Glucose-6-phosphate isomerase OS=Mus musculus GN=Gpi PE=1 SV=4	Mus musculus				0,762	
Q5YLW3	Ribosomal protein S3 OS=Mus musculus GN=Rps3 PE=2 SV=1	Mus musculus				0,762	
P47962	60S ribosomal protein L5 OS=Mus musculus GN=Rpl5 PE=1 SV=3	Mus musculus				0,762	
B2RTM0	Histone H4 OS=Mus musculus GN=H2ht4 PE=2 SV=1	Mus musculus				0,753	
Q9D051	Pyruvate dehydrogenase E1 component subunit beta, mitochondrial OS=Mus musculus GN=Fdhb PE=1 SV=1	0,753					
P17710	Hexokinase-1 OS=Mus musculus GN=Hk1 PE=1 SV=3	Mus musculus				0,749	
P28738	Kinesin heavy chain isoform 5C OS=Mus musculus GN=Kif5c PE=1 SV=3	Mus musculus				0,746	
P62281	405 ribosomal protein S11 OS=Mus musculus GN=Rps11 PE=1 SV=2	Mus musculus				0,743	
P21460	Cystatin-C OS=Mus musculus GN=Cst3 PE=1 SV=2	Mus musculus				0,742	
O08553	Dihydropyrimidinase-related protein 2 OS=Mus musculus GN=Dyps12 PE=1 SV=2	Mus musculus				0,735	
P97351	405 ribosomal protein S3a OS=Mus musculus GN=Rps3a PE=1 SV=3	Mus musculus				0,735	
P35486	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial OS=Mus musculus GN=Pdha1 PE=1 SV=1	0,734					
Q9CPU0	Lactoylglutathione lyase OS=Mus musculus GN=Glo1 PE=1 SV=3	Mus musculus				0,732	
Q7TJS2	Microtubule-associated protein 6 OS=Mus musculus GN=Map6 PE=1 SV=2	Mus musculus				0,732	
Q8OYN3	Breast carcinoma-amplified sequence 1 homolog OS=Mus musculus GN=Bcat1 PE=1 SV=3	0,731					
P62137	Serine/threonine-protein phosphatase PP1-alpha catalytic subunit OS=Mus musculus GN=Ppp1ca PE=1 SV=1	0,731					
Q8K183	Pyridoxal kinase OS=Mus musculus GN=Pdk1 PE=1 SV=1	Mus musculus				0,729	
Q02105	Complement C1q subcomponent subunit C OS=Mus musculus GN=C1qc PE=2 SV=2	Mus musculus				0,728	
Q90883	Charged multisvesicular body protein 4B OS=Mus musculus GN=Chmp4b PE=1 SV=2	Mus musculus				0,728	
Q3TVK3	Aspartyl aminopeptidase OS=Mus musculus GN=Dnpep PE=1 SV=1	Mus musculus				0,727	
Q7TMM9	Tubulin beta-2A chain OS=Mus musculus GN=Tubb2a PE=1 SV=1	Mus musculus				0,724	
B9EHNO	Ubiquitin-activating enzyme E1, Chr X OS=Mus musculus GN=Uba1 PE=2 SV=1	Mus musculus				0,721	
P70349	Histidine triad nucleotide-binding protein 1 OS=Mus musculus GN=Hnt1 PE=1 SV=3	0,716					
Q8OYS2	Heat shock protein 90, alpha (Cytosolic), class A member 1 OS=Mus musculus GN=Hsp90a1a PE=2 SV=2	0,716					
G5E902	MCG10343, isoform CRA_b OS=Mus musculus GN=Slc25a3 PE=1 SV=1	Mus musculus				0,71	
H38KH6	S-formylglutathione hydrolase OS=Mus musculus GN=Esrd PE=1 SV=1	Mus musculus				0,709	
P63017	Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hspa8 PE=1 SV=1	Mus musculus				0,708	
F6RSK3	Protein Gm17430 OS=Mus musculus GN=Gm17430 PE=4 SV=1	Mus musculus				0,705	
Q7M6W1	Reticulin OS=Mus musculus GN=Rtn1 PE=1 SV=1	Mus musculus				0,705	
O5S042	Alpha-synuclein OS=Mus musculus GN=Snca PE=1 SV=2	Mus musculus				0,704	
F6YVP7	Protein Gm10260 OS=Mus musculus GN=Gm10260 PE=3 SV=2	Mus musculus				0,704	
Q546G4	Albumin 1 OS=Mus musculus GN=Alb PE=2 SV=1	Mus musculus				0,703	
P70202	Lactein OS=Mus musculus GN=Lxm PE=1 SV=2	Mus musculus				0,703	
P50396 Rab GDP dissociation inhibitor alpha OS=Mus musculus GN=Gdi1 PE=1 SV=3 0,701							
Q810U4 Neuronal cell adhesion molecule OS=Mus musculus GN=Cam1 OS=1 SV=2 0,699							
P11499 Heat shock protein 90-beta OS=Mus musculus GN=Hspa1a PE=1 SV=3 0,699							
Q542X7 Chaperonin subunit 2 (Beta), isoform CRA_a OS=Mus musculus GN=Cc2 PE=2 SV=1 0,699							
Q642L7 MCI1 OS=Mus musculus GN=Rps27a PE=2 SV=1 0,692							
A2ARP8 Microtubule-associated protein 1A OS=Mus musculus GN=Map1a PE=1 SV=1 0,692							
P99028 Cytochrome b-c1 complex subunit 6, mitochondrial OS=Mus musculus GN=Uqcrf1 PE=1 SV=2 0,691							
Q3UMU9 Hepatoma-derived growth factor-related 0 OS=Mus musculus GN=Hdgfrp2 PE=1 SV=1 0,69							
D0VYV6 Erythrocyte protein band 4.1-like 3 OS=Mus musculus GN=Epb4.13 PE=2 SV=1 0,689							
P77780 Alpha-actinin-4 OS=Mus musculus GN=Actn4 PE=1 SV=1 0,686							
A2ALV3 Endophilin-A1 OS=Mus musculus GN=Sh3gl2 PE=1 SV=1 0,68							
Q92204 Heterogeneous nuclear ribonucleoproteins C1/C2 OS=Mus musculus GN=Hnrnc PE=1 SV=1 0,679							
Q91V88 Alpha globin 1 OS=Mus musculus GN=Haemoglobin alpha 2 PE=1 SV=1 0,67							
P17742 Peptidyl-prolyl cis-trans isomerase A OS=Mus musculus GN=Ppia PE=1 SV=1 0,669							
Q92ZG4 V-type proton ATPase 116 kDa subunit a OS=Mus musculus GN=Atp6v0a1 PE=1 SV=3 0,669							
Q01853 Transitional endoplasmic reticulum ATPase OS=Mus musculus GN=Vcpe PE=1 SV=4 0,668							
Q3V117 ATP-citrate synthase OS=Mus musculus GN=Acly PE=1 SV=1 0,665							
Q9ERD7 Tubulin beta-3 chain OS=Mus musculus GN=Tubb3 PE=1 SV=1 0,665							
P28651 Carbonic anhydrase-related protein OS=Mus musculus GN=Ga3 PE=1 SV=5 0,664							
Q92ZT6 Keratin, type II cuticular OS=Mus musculus GN=Krt8 Pe=1 SV=2 0,66							
P52480 Pyruvate kinase PMI OS=Mus musculus GN=Pkm PE=1 SV=4 0,659							
Q58864 Elongation factor 1-alpha OS=Mus musculus GN=Eef1a1 PE=2 SV=1 0,658							
Q906R2 Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial OS=Mus musculus GN=Idh3a PE=1 SV=1 0,657							
Q60829 Protein phosphatase 1 regulatory subunit 1B OS=Mus musculus GN=Ppp1r1b PE=2 SV=2 0,656							
Q77Q02 Tubulin polymerization-promoting protein OS=Mus musculus GN=Tppp PE=1 SV=1 0,656							
A0A087WQN2 Prothymosin alpha (Fragment) OS=Mus musculus GN=Ptma PE=1 SV=1 0,654							
P62082 40S ribosomal protein S7 OS=Mus musculus GN=Rps7 PE=2 SV=1 0,654							
B0QZ5N Vesicle-associated membrane protein 2 OS=Mus musculus GN=Vamp2 PE=1 SV=1 0,648							
P68369 Tubulin alpha-1A chain OS=Mus musculus GN=Tuba1a PE=1 SV=1 0,648							
Q8331 Calretinin OS=Mus musculus GN=Cale2 PE=1 SV=3 0,647							
P26443 Glutamate dehydrogenase 1, mitochondrial OS=Mus musculus GN=Giud1 PE=1 SV=1 0,646							
P01787 Ig heavy chain V regions TEP1 OS=S/M107/HPCM1/HPCM2/HPCM3 OS=Mus musculus PE=1 SV=1 0,644							
P61255 60S ribosomal protein L26 OS=Mus musculus GN=Rpl26 PE=1 SV=1 0,644							
D32722 40S ribosomal protein S19 OS=Mus musculus GN=Rps19 PE=1 SV=1 0,637							
B9EK81 Receptor-type tyrosine-protein phosphatase zeta OS=Mus musculus GN=Ptprz1 PE=1 SV=1 0,635							
P63005 Platelet-activating factor acetylhydrolase IB subunit alpha OS=Mus musculus GN=Pafah1b1 PE=1 SV=2 0,629							
Q55XR6 Clathrin heavy chain OS=Mus musculus GN=Clcte PE=1 SV=1 0,621							
P18872 Guanine nucleotide-binding protein G(o) subunit alpha OS=Mus musculus GN=Gnao1 PE=1 SV=1 0,619							
Q60864 Stress-induced phosphoprotein 1 OS=Mus musculus GN=Stip1 PE=1 SV=1 0,612							
P62889 60S ribosomal protein L30 OS=Mus musculus GN=Rpl30 PE=1 SV=2 0,611							
F6RT34 Myelin basic protein (Fragment) OS=Mus musculus GN=Mbp PE=1 SV=1 0,61							
O54962 Barrier-to-autoinhibition factor OS=Mus musculus GN=Banf1 PE=1 SV=1 0,608							
UniProt ID	Description	物种	GN	PE	SV	Score	
-----------	--	--------	-------------	----	----	-------	
A8DUK4	Beta-globin OS=Mus musculus GN=Hbbt1 PE=1 SV=1	0,603					
P62259	14-3-3 protein epsilon OS=Mus musculus GN=Ywhea PE=1 SV=1	0,603					
Q9D6F9	Tubulin beta-4A chain OS=Mus musculus GN=Tubb4a PE=1 SV=3	0,6					
Q99PT1	Rho GDP-dissociation inhibitor 1 OS=Mus musculus GN=Arhgdia PE=1 SV=3	0,596					
Q91L23	Methylglutaconyl-CoA hydratase, mitochondrial OS=Mus musculus GN=Auh PE=1 SV=1	0,596					
Q9QXY7	Protein piccolo OS=Mus musculus GN=Pclo PE=1 SV=4	0,596					
Q04447	Creatine kinase B-type OS=Mus musculus GN=Ckb PE=1 SV=1	0,595					
Q8K0U4	Heat shock 70 kDa protein 12A OS=Mus musculus GN=Hspa12a PE=1 SV=1	0,595					
F6VW30	14-3-3 protein theta (Fragment) OS=Mus musculus GN=Ywhaq PE=1 SV=1	0,594					
P14873	Microtubule-associated protein 18 OS=Mus musculus GN=Map1b PE=1 SV=2	0,591					
Q548F2	Guanine deaminase OS=Mus musculus GN=Gda PE=2 SV=1	0,59					
A0A075B5P2	Protein Igk (Fragment) OS=Mus musculus GN=Igk PE=1 SV=1	0,59					
A0A0AYWX6	Protein Igfa (Fragment) OS=Mus musculus GN=Igfa PE=1 SV=1	0,589					
F8WGL3	Cofilin-1 OS=Mus musculus GN=Cfl1 PE=1 SV=1	0,584					
Q76MZ3	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform OS=Mus musculus GN=Ppp2r1a PE=1 SV=3	0,584					
P09411	Phosphoglycerate kinase 1 OS=Mus musculus GN=Pgk1 PE=1 SV=4	0,584					
P05063	Fructose-bisphosphate aldolase C OS=Mus musculus GN=Aldoc PE=1 SV=4	0,583					
PS8252	Elongation factor 2 OS=Mus musculus GN=Eef2 PE=1 SV=2	0,583					
Q6WQ83	Purkinje cell protein 4-like protein 1 OS=Mus musculus GN=Pcp4l1 PE=1 SV=1	0,582					
Q9DBJ1	Phosphoglycerate mutase 1 OS=Mus musculus GN=Pgam1 PE=1 SV=3	0,579					
Q99K10	Aconitase hydratase, mitochondrial OS=Mus musculus GN=Aco2 PE=1 SV=1	0,579					
P27661	Histone H2AX OS=Mus musculus GN=H2afx PE=1 SV=2	0,577					
P60766	Cell division control protein 42 homolog OS=Mus musculus GN=Cdc42 PE=1 SV=2	0,577					
P52760	Ribonuclease UK114 OS=Mus musculus GN=Hrsp12 PE=1 SV=3	0,576					
Q5EBQ2	MCG7941, isoform CRA_f OS=Mus musculus GN=Pebp1 PE=2 SV=1	0,576					
Q545B6	Stathmin OS=Mus musculus GN=Stmn1 PE=2 SV=1	0,574					
P20357	Microtubule-associated protein 2 OS=Mus musculus GN=Map2 PE=2 SV=2	0,574					
P62858	40S ribosomal protein S28 OS=Mus musculus GN=Rps28 PE=1 SV=1	0,574					
Q545P0	ATPase, Na+/K+ transporting, beta 1 polypeptide OS=Mus musculus GN=Atplb1 PE=2 SV=1	0,565					
A0A087WP80	Limbic system-associated membrane protein OS=Mus musculus GN=Lsamp PE=1 SV=1	0,559					
Q9R0V5	Adenylate kinase isozyme 1 OS=Mus musculus GN=Ak1 PE=1 SV=1	0,559					
Q3UL22	Chaperonin subunit 8 (Theta), isoform CRA_a OS=Mus musculus GN=Cct8 PE=2 SV=1	0,557					
P35700	Peroxiredoxin-1 OS=Mus musculus GN=Prdx1 PE=1 SV=1	0,556					
P16125	L-lactate dehydrogenase B chain OS=Mus musculus GN=Ldhb PE=1 SV=2	0,552					
P16049	Glutathione S-transferase Mu 1 OS=Mus musculus GN=Gstm1 PE=1 SV=2	0,55					
D3Z4B2	Gamma-soluble NSF attachment protein (Fragment) OS=Mus musculus GN=Nagp PE=1 SV=1	0,545					
P98086	Complement C1q subcomponent subunit A OS=Mus musculus GN=C1qa PE=1 SV=2	0,542					
P08249	Malate dehydrogenase, mitochondrial OS=Mus musculus GN=Mdh2 PE=1 SV=3	0,542					
Q61361	Brevican core protein OS=Mus musculus GN=Bcan PE=1 SV=2	0,54					
P63101	14-3-3 protein zeta/delta OS=Mus musculus GN=Ywhae PE=1 SV=1	0,537					
E9PV0	PCTP-like protein OS=Mus musculus GN=Stard10 PE=1 SV=1	0,537					
Q91Z3	Beta-synuclein OS=Mus musculus GN=Sncb PE=1 SV=1	0,535					
Accession	Description	Species	Gene Name	Protein Entrez	Spectrum Entrez		
------------	--	---------------	---------------------------	----------------	-----------------		
P62631	Elongation factor 1-alpha 2	Mus musculus	Eef1a2	1	1		
Q90DB63	AP-2 complex subunit beta	Mus musculus	Ap2b1	1	1		
P51863	V-type proton ATPase subunit d	Mus musculus	Atp6v0d1	2	1		
P60710	Actin, cytoplasmic 1	Mus musculus	Actb	1	1		
P68433	Histone H3.1	Mus musculus	Hist1h3a	2	1		
Q3U1Y0	Protein S100 OS=Mus musculus 1	Mus musculus	S100b	2	1		
Q3U1N0	Coronin	Mus musculus	Coro1a	2	1		
Q5FW97	Enolase 1 alpha non-neuron	Mus musculus	EG433182	2	1		
E9P2F0	Nucleoside diphosphate kinase	Mus musculus	Gm20390	3	1		
A6ZI44	Fructose-bisphosphate aldolase	Mus musculus	Aldoa	1	1		
Q3U2G2	Heat shock 70 kDa protein 4	Mus musculus	Hspa4	1	1		
P90405	Nucleolin	Mus musculus	Ncl	2	1		
P61922	4-aminobutyrate aminotransferase, mitochondrial	Mus musculus	Abat	1	1		
Q2Z2D6-2	Isoform B of Methyl-CpG-binding protein 2	Mus musculus	Mecp2				
P80313	T-complex protein 1 subunit eta	Mus musculus	Cct7	1	1		
Q14929	Histone cluster 1, H1d	Mus musculus	Hist1h1d	2	1		
P17755	Triosephosphate isomerase	Mus musculus	Tpi1	4	1		
Q9R0P9	Ubiquitin carboxyl-terminal hydrolase isoyzme	Mus musculus	Uchli	1	1		
Q8EQU-2	Isoform 2 of Protein SET	Mus musculus	Set				
Q8C2Q7	Heterogeneous nuclear ribonucleoprotein H	Mus musculus	Hrnnp1	1	1		
Q8JVU-2	Profilin-2 OS=Mus musculus	Mus musculus	Phn2	3			
P68372	Tubulin beta-4B chain	Mus musculus	Tubb4b	1	1		
Q60668	Heterogeneous nuclear ribonucleoprotein D10	Mus musculus	Hnrnpd	2			
Q8BV4	Dihydropteridine reductase	Mus musculus	Qdpr	2			
Q543Y7	Putative uncharacterized protein	Mus musculus	Pascin1	2			
P28474	Alcohol dehydrogenase class-3	Mus musculus	Adh5	3			
P14869	60S acidic ribosomal protein P0	Mus musculus	Riplp0	3			
P61979	Heterogeneous nuclear ribonucleoprotein K	Mus musculus	Hnrnpk	1			
Q6GT24	Peroxiredoxin 6 OS=Mus musculus	Mus musculus	Prdx6	1			
P26883	Peptidyl-prolyl cis-trans isomerase FKB1A	Mus musculus	Fkbp1a	2			
P84086	Complexin-2 OS=Mus musculus	Mus musculus	Cplx2	1			
O8B569	Heterogeneous nuclear ribonucleoprotein A2/B1	Mus musculus	Hnrnpa2b1	2			
Q9J1M7	Protein FAM49B OS=Mus musculus	Mus musculus	Fam49b	2			
P20029	78 kDa glucose-regulated protein	Mus musculus	Hspa5	2			
Q9CZC8	Secerin-1 OS=Mus musculus	Mus musculus	Scrn1	1			
P99024	Tubulin beta-5 chain	Mus musculus	Tubb5	1			
P42669	Transcriptional activator protein Pur-alpha	Mus musculus	Pura	1			
P68510	14-3-3 protein eta	Mus musculus	Ywhae	2			
B2RTK3	Histone H2B OS=Mus musculus	Mus musculus	Hist1h2bm	2			
A0A0A0M0QF6	Glyceraldehyde-3-phosphate dehydrogenase OS=Mus musculus	Mus musculus	Gapdh	1			
Q99PU5	Long-chain-fatty-acid-CoA ligase ANS1OS=Mus musculus	Mus musculus	Acslb1	1			
O0B539	Myc box-dependent-interacting protein 1 OS=Mus musculus	Mus musculus	Bin1	1			
Accession	Description	Organism	Gene Name	Protein Name	Score		
-----------	--	-------------------	-----------	--------------	-------		
P19157	Glutathione S-transferase P 1	Mus musculus	Gstp1	Gstp1	0.438		
Q9CZ13	Cytochrome b-c1 complex subunit 1, mitochondrial	Mus musculus	Uqcrcl	Uqcrcl1	0.438		
Q9QYCO	Alpha-2uCinin OS=Mus musculus GN=Add1 P1 SV=2				0.437		
A2AWN8	YTH domain family 1, isoform CRA_a	Mus musculus	Ythd1	Ythd1	0.434		
Q9WTT4	V-type proton ATPase subunit G 2	Mus musculus	Atp6v1g2	Atp6v1g2	0.432		
Q61598	Rab GDP dissociation inhibitor beta OS=Mus musculus GN=Gdi2 PE=1 SV=1				0.432		
P50518	V-type proton ATPase subunit E 1	Mus musculus	Atp6v1e1	Atp6v1e1	0.428		
P12658	Calbindin OS=Mus musculus GN=Calb1 PE=1 SV=2				0.427		
P14152	Malate dehydrogenase, cytoplasmic OS=Mus musculus GN=Mdh1 PE=1 SV=3				0.419		
B2RSH2	Guanine nucleotide-binding protein G(i) subunit alpha-1 OS=Mus musculus GN=Gna1 PE=1 SV=1			0.419			
Q92216	Tetraspanin-2 OS=Mus musculus GN=Tspan2 PE=1 SV=1				0.417		
P48722	Heat shock 70 kDa protein 4L OS=Mus musculus GN=Hspa4l PE=1 SV=2				0.417		
Q60631	Growth factor receptor-bound protein 2 OS=Mus musculus GN=Grb2 PE=1 SV=1				0.409		
A0A076FRG6	KCC2a variant 1 OS=Mus musculus GN=Slc12a5 PE=2 SV=1				0.407		
Q80TL4	PHD finger protein 24 OS=Mus musculus GN=Phf24 PE=1 SV=2				0.403		
Q7TQ3	Ubiquitin thioesterase OTUB1 OS=Mus musculus GN=Otub1 PE=1 SV=2				0.394		
P63038	60 kDa heat shock protein, mitochondrial OS=Mus musculus GN=Hspa1d1 PE=1 SV=1			0.393			
P06837	Neumodulin OS=Mus musculus GN=Gap43 PE=1 SV=2				0.381		
P62774	Myotrophin OS=Mus musculus GN=Mtnp PE=1 SV=2				0.379		
A0A0G2JFTB	Protein RUFY3 OS=Mus musculus GN=Rufy3 PE=1 SV=1				0.372		
Q9CPW4	Actin-related protein 2/3 complex subunit 5 OS=Mus musculus GN=Arpc5 PE=2 SV=3			0.371			
Q68FL4	Putative adenosylhomocysteinase 3 OS=Mus musculus GN=Ahcy12 PE=1 SV=1				0.368		
Q61R5U5	Clathrin light chain B OS=Mus musculus GN=Cltb PE=1 SV=1				0.366		
P31650	Sodium- and chloride-dependent GABA transporter 3 OS=Mus musculus GN=Slc6a11 PE=1 SV=2			0.366			
P60761	Neurogranin OS=Mus musculus GN=Nrgn PE=1 SV=1				0.364		
O08749	Dihydrolipoil dehydrogenase, mitochondrial OS=Mus musculus GN=Old PE=1 SV=2			0.362			
P99027	60s acidic ribosomal protein P2 OS=Mus musculus GN=Rplp2 PE=1 SV=3				0.355		
P08228	Superoxide dismutase [Cu-Zn] OS=Mus musculus GN=Sod1 PE=1 SV=2				0.346		
Q9JKD3	Secretory carrier-associated membrane protein 5 OS=Mus musculus GN=Tscamp5 PE=1 SV=1			0.34			
P48036	Annexin A5 OS=Mus musculus GN=Anxa5 PE=1 SV=1				0.339		
Q9CX86	Heterogeneous nuclear ribonucleoprotein A0 OS=Mus musculus GN=Hnrnpo0 PE=1 SV=1			0.338			
Q63810	Calcineurin subunit B type 1 OS=Mus musculus GN=Ppp3r1 PE=1 SV=3				0.337		
P63040	Complexin-1 OS=Mus musculus GN=Cpx1 PE=1 SV=1				0.335		
P32848	Parvalbumin alpha OS=Mus musculus GN=Pvalb PE=1 SV=3				0.327		
Q4VWZ5	Acyl-CoA-binding protein OS=Mus musculus GN=Dbi PE=1 SV=1				0.324		
F6VPT0	Protein Ccdc163 (Fragment) OS=Mus musculus GN=Cdc163 PE=4 SV=1				0.323		
P02802	Metallothionein-1 OS=Mus musculus GN=Mt1 PE=1 SV=1				0.322		
P62204	Calmodulin OS=Mus musculus GN=Calm1 PE=1 SV=2				0.313		
D3YXH0	Immunoglobulin superfamily member 5 OS=Mus musculus GN=Igsf5 PE=4 SV=1				0.311		
Q90D309	ATP synthase subunit delta, mitochondrial OS=Mus musculus GN=Atpsd PE=1 SV=1			0.297			
Q91XV3	Brain acid soluble protein 1 OS=Mus musculus GN=Basp1 PE=1 SV=3				0.284		
Q9CRB6	Tubulin polymerization-promoting protein family member 3 OS=Mus musculus GN=Tppp3 PE=1 SV=1			0.274			
Accession	Gene Name	Organism	Gene Symbol	Protein Expression	Score		
------------	---------------------------------	------------	-------------	--------------------	-------		
P26645	Myristoylated alanine-rich C-kinase substrate	Mus musculus	Marcks	PE=1 SV=2	0.273		
Q9WV69	Dematin	Mus musculus	Dmtn	PE=1	0.269		
Q9JKC6	Cell cycle exit and neuronal differentiation protein 1	Mus musculus	Cend1	PE=1 SV=1	0.269		
P43274	Histone H1.4	Mus musculus	Hist1h1e	PE=1 SV=2	0.256		
B1AWD9	Clathrin light chain A	Mus musculus	Clta	PE=1 SV=1	0.255		
Q8CI43	Myosin light chain 6B	Mus musculus	Myl6b	PE=2 SV=1	0.252		
P61089	Ubiquitin-conjugating enzyme E2 N	Mus musculus	Ube2n	PE=1 SV=1	0.249		
G5E8N5	L-lactate dehydrogenase	Mus musculus	Ldha	PE=1 SV=1	0.248		
Q6ZWX2	Thymosin, beta 4, X chromosome	Mus musculus	Tmsb4x	PE=2 SV=1	0.239		
P13595	Neural cell adhesion molecule 1	Mus musculus	Ncam1	PE=1 SV=3	0.224		
E9PYN1	Cell adhesion molecule 1	Mus musculus	Cadm1	PE=1 SV=1	0.212		
P28663	Beta-soluble NSF attachment protein	Mus musculus	Napb	PE=1 SV=2	0.21		
P20065	Thymosin beta-4	Mus musculus	Tmsb4x	PE=1 SV=1	0.207		
P60904	DnaJ homolog subfamily C member 5	Mus musculus	Dnajc5	PE=1 SV=1	0.204		
Accession	Description						
-----------	-------------						
P43276	Histone H1.5 OS=Mus musculus GN=H1h1b PE=1 SV=2						
Q02331	Keratin, type II cytoskeletal 68 OS=Mus musculus GN=Krt6b PE=1 SV=3						
Q552A3	Histone cluster 1, H1c OS=Mus musculus GN=H1h1c PE=2 SV=1						
P12023	Amyloid beta A4 protein OS=Mus musculus GN=Abp PE=1 SV=3						
Q35YP5	Keratin 16 OS=Mus musculus GN=Krt16 PE=2 SV=1						
Q8R1B4	Eukaryotic translation initiation factor 3 subunit C OS=Mus musculus GN=Eif3c PE=1 SV=1						
Q2105	Complement C1q subcomponent subunit C OS=Mus musculus GN=C1qc PE=2 SV=2						
Q04690	Neurofibromin OS=Mus musculus GN=Nf1 PE=1 SV=1						
Q37TX4	Apolipoprotein E, isoform CRA_h OS=Mus musculus GN=ApoE PE=2 SV=1						
P14106	Complement C1q subcomponent subunit B OS=Mus musculus GN=C1qb PE=1 SV=2						
P01592	Immunoglobulin J chain OS=Mus musculus GN=Igj PE=2 SV=4						
J3QM63	Voltage-dependent anion-selective channel protein 3 OS=Mus musculus GN=Vdac3 PE=1 SV=1						
Q9WTL4	Insulin receptor-related protein OS=Mus musculus GN=Insr PE=1 SV=2						
P28651	Carbonic anhydrase-related protein OS=Mus musculus GN=Ca8 PE=1 SV=5						
Q3U7E0	Putative uncharacterized protein OS=Mus musculus GN=Atp6v1g1 PE=2 SV=1						
Q617B2	Type I epidermal keratin mRNA, 3'end (Fragment) OS=Mus musculus PE=2 SV=1						
Q9ESM3	Hyaluronan and proteoglycan link protein 2 OS=Mus musculus GN=Hapl2 PE=1 SV=1						
Q9WUL7	Keratin, type I cytoskeletal 17 OS=Mus musculus GN=Krt17 PE=1 SV=3						
Q88GT8	Phytanoyl-CoA hydroxylase-interacting protein-like OS=Mus musculus GN=Phyhipl PE=2 SV=1						
P10637-3	Isoform Tau-B of Microtubule-associated protein tau OS=Mus musculus GN=Mapt						
E9Q7G3	Tropomyosin alpha-3 chain OS=Mus musculus GN=Tpm3 PE=1 SV=1						
A6H611	Mitochondrial intermediate peptidase OS=Mus musculus GN=Mipep PE=1 SV=1						
P21460	Cystatin-C OS=Mus musculus GN=Cst3 PE=1 SV=2						
Q61282	Aggrecan core protein OS=Mus musculus GN=Acan PE=1 SV=2						
Q99MN9	ADP-ribosylation factor-like protein 6-interacting protein 4 OS=Mus musculus GN=Ar6ip4 PE=1 SV=1						
Q9QUP5	Hyaluronan and proteoglycan link protein 1 OS=Mus musculus GN=Hapl1 PE=1 SV=1						
E9P9Y0	Versican core protein OS=Mus musculus GN=Vcan PE=1 SV=1						
F6YVP7	Protein Gm10260 OS=Mus musculus GN=Gm10260 PE=3 SV=2						
Q903D9	ATP synthase subunit delta, mitochondrial OS=Mus musculus GN=Atpd5 PE=1 SV=1						
P11983	T-complex protein 1 subunit alpha OS=Mus musculus GN=Tcpl1 PE=1 SV=3						
P10922	Histone H1.0 OS=Mus musculus GN=H1f0 PE=2 SV=4						
P28663	Beta-soluble NSF attachment protein OS=Mus musculus GN=Napb PE=1 SV=2						
P28184	Metallothionein-3 OS=Mus musculus GN=Mt3 PE=1 SV=1						
Q99MN9	Propionyl-CoA carboxylase beta chain, mitochondrial OS=Mus musculus GN=Pccb PE=1 SV=2						
E9Q905	Protein Gm20425 OS=Mus musculus GN=Gm20425 PE=4 SV=1						
Q88MS1	Trifunctional enzyme subunit alpha, mitochondrial OS=Mus musculus GN=Hadha PE=1 SV=1						
P17156	Heat shock-related 70 kDa protein 2 OS=Mus musculus GN=Hspa2 PE=1 SV=2						
Q564G0	Guanylate kinase OS=Mus musculus GN=Guk1 PE=1 SV=1						
P55066	Neurocan core protein OS=Mus musculus GN=Ncan PE=2 SV=1						
P19001	Keratin, type I cytoskeletal 19 OS=Mus musculus GN=Krt19 PE=1 SV=1						
Accession	Description	Species	Gene Name	Peptide	Spectrum Value		
-----------	--	------------------	-----------	----------	----------------		
P09920	Carbonic anhydrase 2	Mus musculus	Ca2	PE=1	SV=4		
Q9QYC0	Alpha-adducin	Mus musculus	Add1	PE=1	SV=2		
Q9QCD0	6-phosphogluconate dehydrogenase, decarboxylating	Mus musculus	Pgd	PE=1	SV=3		
Q58EA6	MCG10725, isoform CRA_a	Mus musculus	Rps25	PE=2	SV=1		
P26883	Peptidyl-prolyl cis-trans isomerase FKBPIA	Mus musculus	Fkbpi1a	PE=1	SV=2		
P63040	Complexin-1	Mus musculus	Cplx1	PE=1	SV=1		
Q9CK54	Centromere protein V	Mus musculus	Cenpv	PE=1	SV=2		
Q2UJV7	Putative uncharacterized protein OS=Mus musculus GN=MIF2 PE=2 SV=1	Mus musculus	MIF2	PE=2	SV=1		
P70441	Na(+)/H(+) exchange regulatory cofactor NHE-RF1	Mus musculus	Slc9a3r1	PE=2	SV=1		
Q06781	Keratin, type I cytoskeletal 14	Mus musculus	Krt14	PE=1	SV=2		
B9EJC7	MCG3853	Mus musculus	Phyp	PE=2	SV=1		
Q4FJK9	Superoxide dismutase	Mus musculus	Sod2	PE=2	SV=1		
P26645	Myristoylated alanine-rich C-kinase substrate	Mus musculus	Marcks	PE=1	SV=2		
Q60829	Protein phosphatase 1 regulatory subunit 18	Mus musculus	Ppp1r1b	PE=2	SV=2		
A0A075B6A0	Ig mu chain C region (Fragment)	Mus musculus	Igmm1	PE=1	SV=2		
Q0AA0G2FE8	Amphilophysin	Mus musculus	Amphil	PE=1	SV=1		
Q8BVI4	Dihydropteridine reductase	Mus musculus	Qdpr	PE=1	SV=2		
A2CEK3	Phosphoglucomutase-2	Mus musculus	Pgm2	PE=1	SV=1		
A0A075B5P2	Protein IgkC (Fragment)	Mus musculus	IgkC	PE=1	SV=1		
B2RXY7	Carbonyl reductase 1	Mus musculus	Cbr1	PE=2	SV=1		
P61089	Ubiquitin-conjugating enzyme E2 N OS=Mus musculus GNA=Ube2n PE=1 SV=1	Mus musculus	Ube2n	PE=1	SV=1		
Q5347Y	Putative uncharacterized protein OS=Mus musculus GN=Pacsin1 PE=2 SV=1	Mus musculus	Pacsin1	PE=2	SV=1		
Q9CZU6	Citrate synthase, mitochondrial	Mus musculus	Cs	PE=1	SV=1		
P62827	GTP-binding nuclear protein Ran OS=Mus musculus GN=Ran PE=1 SV=3	Mus musculus	Ran	PE=1	SV=3		
Q6FX2	Keratin, type I cytoskeletal 42	Mus musculus	Krt42	PE=1	SV=1		
Q92ZT6	Keratin, type II cuticular Hb5	Mus musculus	KrtB5	PE=2	SV=2		
Q60692	Proteasome subunit beta type-6	Mus musculus	Psmb6	PE=1	SV=3		
Q9CPW4	Actin-related protein 2/3 complex subunit 5	Mus musculus	Arpc5	PE=2	SV=3		
Q9CZY3	Ubiquitin-conjugating enzyme E2 variant 1	Mus musculus	Ube2v1	PE=1	SV=1		
P12382	ATP-dependent 6-phosphofructokinase, liver type OS=Mus musculus GN=PfkA	Mus musculus	PfkA	PE=1	SV=4		
Q9R062	Glycogenin-1 OS=Mus musculus GN=Gygl PE=1 SV=3	Mus musculus	Gygl	PE=1	SV=3		
E9PYN1	Cell adhesion molecule 1 OS=Mus musculus GN=Cadm1	Mus musculus	Cadm1	PE=1	SV=1		
Q9KD3	Secretory carrier-associated membrane protein 5 OS=Mus musculus GN=Scamp5	Mus musculus	Scamp5	PE=1	SV=1		
Q74MV1	Reticulon OS=Mus musculus GN=Rtn1	Mus musculus	Rtn1	PE=1	SV=1		
P43274	Histone H1.4 OS=Mus musculus GN=Hist1h1e	Mus musculus	Hist1h1e	PE=1	SV=2		
Q92Z04	Heterogeneous nuclear ribonucleoproteins C1/C2 OS=Mus musculus GN=Hnmpc	Mus musculus	Hnmpc	PE=1	SV=1		
P12787	Cytochrome c oxidase subunit 5, mitochondrial	Mus musculus	Cox5a	PE=1	SV=2		
P62774	Myotrophin OS=Mus musculus GN=Mtrpn	Mus musculus	Mtrpn	PE=1	SV=2		
Q05201	Aspartate aminotransferase, cytoplasmic OS=Mus musculus GN=Got1	Mus musculus	Got1	PE=1	SV=3		
Q5155	Schematic vesicle glycoprotein 2A OS=Mus musculus GN=Vva2	Mus musculus	Vva2	PE=1	SV=1		
Q9R0Y6	Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Aldh11l1	Mus musculus	Aldh11l1	PE=1	SV=1		
P13707	Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic OS=Mus musculus GN=Gpd1	Mus musculus	Gpd1	PE=1	SV=3		
A0A087WQCN2	Prothymosin alpha (Fragment) OS=Mus musculus GN=Ptmalpha	Mus musculus	Ptmalpha	PE=1	SV=1		
Q8BVE3	V-type proton ATPase subunit H OS=Mus musculus GN=Atp6v1h	Mus musculus	Atp6v1h	PE=1	SV=1		
Accession	Description	Species	Entrez ID	SV	PE		
-----------	--	--------------	-----------	----	----		
Q91VE0	Long-chain fatty acid transport protein 4	Mus musculus	2,134	1	1		
Q53955	Proteasome subunit beta type-10	Mus musculus	2,112	1	1		
AA0A97PU8G4	Anti-lox-1 15C4 light chain	Mus musculus	2,103	2	1		
P19783	Cytochrome c oxidase subunit 4 isofrom 1, mitochondrial	Mus musculus	2,101	2	1		
Q9QZQ0	Core histone macro-H2A.1	Mus musculus	2,087	3	1		
AA0A75BSP3	Protein lghg2b (Fragment)	Mus musculus	2,086	1	1		
Q7S8J8	MCGG29889, isofrom CRA b	Mus musculus	2,07	2	1		
Q920E0	Neurochordin OS	Mus musculus	2,07	1	1		
B1AQW2	Microtubule-associated protein OS	Mus musculus	2,064	1	1		
OS0901	Protein IMPACT OS	Mus musculus	2,043	2	1		
P08228	Superoxide dismutase [Cu-Zn] OS	Mus musculus	2,017	1	1		
P62305	Small nuclear ribonucleoprotein E	Mus musculus	2,004	1	1		
P61979	Heterogeneous nuclear ribonucleoprotein K OS	Mus musculus	2,001	1	1		
Q8WF0	Succinate-semialdehyde dehydrogenase, mitochondrial OS	Mus musculus	1,992	1	1		
Q9OXS1	Plectin OS	Mus musculus	1,992	3	1		
Q3T7Q0	Beta1 subunit of GTP-binding protein OS	Mus musculus	1,987	2	1		
Q8BT18	Serine/arginine repetitive matrix protein 2 OS	Mus musculus	1,98	3	1		
P56399	Ubiquitin carboxyl-terminal hydrolase 5 OS	Mus musculus	1,973	1	1		
E9Q557	Desmoplakin OS	Mus musculus	1,968	1	1		
P68040	Receptor of activated protein C kinase 1 OS	Mus musculus	1,968	1	1		
Q9WUB8	Glycogen phosphorylase, muscle form OS	Mus musculus	1,957	3	1		
Q9QY7X	Protein piccolo OS	Mus musculus	1,957	4	1		
D3L722	40S ribosomal protein S19	Mus musculus	1,947	1	1		
Q2Z6G4	V-type proton ATPase 116 kDa subunit a isofrom 1 OS	Mus musculus	1,947	1	1		
Q2Z0H4	CUGBP Elav-like family member 2 OS	Mus musculus	1,944	1	1		
P62715	Serine/threonine-protein phosphatase 2A catalytic subunit beta isofrom OS	Mus musculus	1,938	1	1		
Q3ULD5	Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial OS	Mus musculus	1,928	1	1		
P46460	Vesicle-fusing ATPase OS	Mus musculus	1,902	2	1		
Q9OXXV0	ProSAAS OS	Mus musculus	1,901	2	1		
G61838	Alpha-2-macroglobulin OS	Mus musculus	1,893	3	1		
E9PFAA3	IQ motif and SEC7 domain-containing protein 1 OS	Mus musculus	1,891	1	1		
Q3UYK6	Amino acid transporter OS	Mus musculus	1,882	1	1		
Q97300	Neuroplastin OS	Mus musculus	1,877	1	1		
Q6GT24	Peroxiredoxin 6 OS	Mus musculus	1,869	2	1		
Q9D7M5	Dynein light chain 2, cytoplasmic OS	Mus musculus	1,852	1	1		
Q564G5	Clusterin OS	Mus musculus	1,851	2	1		
P62814	V-type proton ATPase subunit B, brain isofrom OS	Mus musculus	1,851	2	1		
Q4FJX4	Crsp1 protein OS	Mus musculus	1,846	1	1		
Q8RRO1	Microtubule-associated protein RP/EB family member 2 OS	Mus musculus	1,821	1	1		
Q3UY2J	Myelin-oligodendrocyte glycoprotein OS	Mus musculus	1,821	1	1		
P63726	40S ribosomal protein S17 OS	Mus musculus	1,818	1	1		
Q9D2G2	Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate	Mus musculus	1,81	1	1		
Q2Z1G3	V-type proton ATPase subunit C 1 OS	Mus musculus	1,805	4	1		
Q3TVK3	Aspartyl aminopeptidase OS	Mus musculus	1,8	1	1		
P48036	Annexin A5	OS=Mus musculus	GN=Anxa5	PE=1	SV=1	1,795	
P62858	40S ribosomal protein S28	OS=Mus musculus	GN=Rps28	PE=1	SV=1	1,794	
Q92ZD6-2	Isoform B of Methyl-CpG-binding protein 2	OS=Mus musculus	GN=Mecp2	PE=1	SV=1	1,784	
F6VP70	Protein Ccdc163 [Fragment]	OS=Mus musculus	GN=Ccdc163	PE=4	SV=1	1,783	
E9P2F0	Nucleoside diphosphate kinase	OS=Mus musculus	GN=Gn20390	PE=3	SV=1	1,782	
E9Q4J5	Tropomyosin alpha-1 chain	OS=Mus musculus	GN=Tpm1	PE=1	SV=1	1,78	
Q8BG05	Heterogeneous nuclear ribonucleoprotein A3	OS=Mus musculus	GN=Hnmpa3	PE=1	SV=1	1,778	
Q7TSJ2	Microtubule-associated protein 6	OS=Mus musculus	GN=Map6	PE=1	SV=2	1,777	
P11881	Inositol 1,4,5-trisphosphate receptor type 1	OS=Mus musculus	GN=Itr1	PE=1	SV=2	1,774	
P05202	Aspartate aminotransferase, mitochondrial	OS=Mus musculus	GN=Got2	PE=1	SV=1	1,772	
Q9D0M3	Cytochrome c, heme protein, mitochondrial	OS=Mus musculus	GN=Cyc1	PE=1	SV=1	1,764	
Q9C6E0	ATP-dependent 6-phosphofructokinase	OS=Mus musculus	GN=Pkf	PE=1	SV=1	1,751	
Q9PT1	Rh GDP-dissociation inhibitor 1	OS=Mus musculus	GN=Arhgdia	PE=1	SV=3	1,738	
P47857	ATP-dependent 6-phosphofructokinase, muscle type	OS=Mus musculus	GN=Pkm	PE=1	SV=3	1,736	
Q91L23	Methylglutaconyl-CoA hydratase, mitochondrial	OS=Mus musculus	GN=Auh	PE=1	SV=1	1,714	
Q8BY1	Tenasin-R	OS=Mus musculus	GN=Tnr	PE=1	SV=2	1,703	
Q2Z2I9	Succinate-CoA ligase [ADP-forming] subunit beta, mitochondrial	OS=Mus musculus	GN=Sucld2	PE=1	SV=2	1,691	
Q6ZWX2	Thymosin, beta 4, X chromosome	OS=Mus musculus	GN=Tmsb4x	PE=2	SV=1	1,688	
O5S143	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2	OS=Mus musculus	GN=Atp2a2	PE=1	SV=2	1,68	
P57780	Alpha-actinin-4	OS=Mus musculus	GN=Actn4	PE=1	SV=1	1,674	
Q0VF55	Calcium-transporting ATPase	OS=Mus musculus	GN=Atp2b3	PE=1	SV=1	1,674	
Q9C0PU	Lactoylglutathione lyase	OS=Mus musculus	GN=Glo1	PE=1	SV=3	1,664	
B2RTE	Aldehyde dehydrogenase family 1, subfamily A7	OS=Mus musculus	GN=Aldh1a7	PE=2	SV=1	1,663	
Q3UM9	Hepatoma-derived growth factor-related protein 2	OS=Mus musculus	GN=Hdgfrp2	PE=1	SV=1	1,66	
Q3VQ0	Dynein heavy chain 12, axonemal	OS=Mus musculus	GN=Dnah12	PE=1	SV=2	1,655	
Q9DBG3	AP-2 complex subunit beta OS	Mus musculus	GN=Ap2b1	PE=1	SV=1	1,651	
P47757	F-actin-capping protein subunit beta	OS=Mus musculus	GN=Capzb	PE=1	SV=3	1,641	
Q9R01	Bleomycin hydrolase	OS=Mus musculus	GN=Blmh	PE=1	SV=1	1,639	
G5E924	Heterogeneous nuclear ribonucleoprotein L (Fragment)	OS=Mus musculus	GN=Hnmp1	PE=1	SV=1	1,636	
P1422	Calreticulin OS	Mus musculus	GN=Calr	PE=1	SV=1	1,616	
P80316	T-complex protein 1 subunit epsilon	OS=Mus musculus	GN=Cct5	PE=1	SV=1	1,613	
P31324	cAMP-dependent protein kinase type II-beta regulatory subunit OS	Mus musculus	GN=Prkar2b	PE=1	SV=3	1,608	
H38KH6	S-formylglutathione hydrolase OS	Mus musculus	GN=Esd	PE=1	SV=1	1,605	
P61922	4-aminobutyrate aminotransferase, mitochondrial	OS=Mus musculus	GN=Abat	PE=1	SV=1	1,589	
Q99KIO	Acotinate hydratase, mitochondrial	OS=Mus musculus	GN=Aco2	PE=1	SV=1	1,588	
Q99M71	Mammalian ependymin-related protein 1	OS=Mus musculus	GN=Eprd1	PE=2	SV=1	1,587	
O61598	Rab GDP dissociation inhibitor beta OS	Mus musculus	GN=Gdi2	PE=1	SV=1	1,586	
Q542X7	Chaperonin subunit 2 (Beta), isoform CRA_a OS	Mus musculus	GN=Cct2	PE=2	SV=1	1,584	
P70	Importin subunit beta-1 OS	Mus musculus	GN=Kpnb1	PE=1	SV=2	1,574	
Q8K2C9	Very-long-chain (3R)-3-hydroxyacyl-Coa dehydratase	OS=Mus musculus	GN=Hcad3	PE=1	SV=2	1,574	
Q88MF4	Dihydrolipoamide-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial	OS=Mus musculus	GN=Diat	PE=1	SV=2	1,574	
P48771	Cytochrome c oxidase subunit 7A2, mitochondrial	OS=Mus musculus	GN=Cox7a2	PE=2	SV=1	1,573	
E0CYV0	Protein-L-isoaspartate O-methyltransferase	OS=Mus musculus	GN=Pcm1	PE=1	SV=1	1,568	
P08249	Malate dehydrogenase, mitochondrial	OS=Mus musculus	GN=Mdh2	PE=1	SV=3	1,566	
Q3TGU7 Proliferation-associated 2G4 OS=Mus musculus GN=Pa2g4 PE=2 SV=1 1,565							
P63011 Ras-related protein Rab-3A OS=Mus musculus GN=Rab3a PE=1 SV=1 1,565							
P40336 Vacuolar protein sorting-associated protein 26A OS=Mus musculus GN=Vps26a PE=1 SV=1 1,562							
Q99P5U Long-chain-fatty-acid--CoA ligase ACSBG1 OS=Mus musculus GN=Acsbg1 PE=1 SV=1 1,561							
Q9D8B3 Charged multivesicular body protein 4b OS=Mus musculus GN=Chmp4b PE=1 SV=2 1,557							
A2AWN8 YTH domain family 1, isoform CRA_a OS=Mus musculus GN=Ythdf1 PE=1 SV=1 1,554							
Q5A4E3 Phosphatidylinositol-4-phosphate 5-kinase, type II, alpha OS=Mus musculus GN=Pip4k2a PE=2 SV=1 1,552							
Q61361 Breccin core protein OS=Mus musculus GN=Bcan PE=1 SV=2 1,544							
P60335 Poly(rC)-binding protein 1 OS=Mus musculus GN=Pcbp1 PE=1 SV=1 1,542							
E9Q8N8 Anion exchange protein OS=Mus musculus GN=Sclc4a4 PE=1 SV=1 1,539							
Q3U1N0 Coronin OS=Mus musculus GN=Coro1a PE=2 SV=1 1,538							
Q5B8X0 MCG18564, isoform CRA_a OS=Mus musculus GN=Rpl12 PE=2 SV=1 1,528							
Q61900 Poly(rC)-binding protein 2 OS=Mus musculus GN=Pcbp2 PE=1 SV=1 1,52							
P20357 Microtubule-associated protein 12 OS=Mus musculus GN=Ct12 PE=2 SV=1 1,508							
P50396 Rab GDP dissociation inhibitor alpha OS=Mus musculus GN=Rdi1 PE=1 SV=3 1,501							
P14148 60S ribosomal protein L7 OS=Mus musculus GN=Rpl7 PE=1 SV=2 1,5							
Q01853 Transitional endoplasmic reticulum ATPase OS=Mus musculus GN=Cp PE=1 SV=4 1,493							
Q9IZU6 Dystonin OS=Mus musculus GN=Dst PE=1 SV=2 1,493							
P05063 Fructose-bisphosphatase aldolase C OS=Mus musculus GN=Aldc PE=1 SV=4 1,492							
Q68FL4 Putative adenosylhomocysteinase 3 OS=Mus musculus GN=Ahcy3 PE=1 SV=1 1,485							
P35235 Tyrosine-protein phosphatase non-receptor type 11 OS=Mus musculus GN=Ptpn11 PE=1 SV=2 1,484							
Q61711 Peroxiredoxin-2 OS=Mus musculus GN=Prdx2 PE=1 SV=3 1,483							
P51190 Ras-related protein Rab-7a OS=Mus musculus GN=Rab7a PE=1 SV=2 1,473							
Q80YX1 Tenascin OS=Mus musculus GN=Tnc PE=1 SV=1 1,473							
Q2PF07 PH and SEC7 domain-containing protein 3 OS=Mus musculus GN=Psdc3 PE=1 SV=2 1,473							
Q91ZZ3 Beta-synuclein OS=Mus musculus GN=Sncb PE=1 SV=1 1,469							
Q7TQD2 Tubulin polymerization-promoting protein OS=Mus musculus GN=Tpp1 PE=1 SV=1 1,468							
Q9IK65 Cell cycle exit and neuronal differentiation protein 1 OS=Mus musculus GN=Cend1 PE=1 SV=1 1,468							
B2RRX2 Serine/threonine-protein phosphatase OS=Mus musculus GN=Ppp2ca PE=2 SV=1 1,464							
Q3UAD6 Heat shock protein 90kDa beta (Grp94), member 1 OS=Mus musculus GN=Hsp90b1 PE=1 SV=2 1,462							
Q5M9B8 MCG13936 OS=Mus musculus GN=Rpl28 PE=2 SV=1 1,458							
Q52C1C Eukaryotic translation initiation factor 4A2 OS=Mus musculus GN=Elf4a2 PE=2 SV=1 1,458							
P60761 Neurilin OS=Mus musculus GN=Nrgn PE=1 SV=1 1,457							
P01552 Vimentin OS=Mus musculus GN=Vim PE=1 SV=3 1,454							
Q5DOQ5 Capping protein (Actin filament) muscle Z-line, alpha 2, isoform CRA_a OS=Mus musculus GN=Capza2 PE=2 SV=1 1,45							
P52760 Ribonuclease U114 OS=Mus musculus GN=Hrps12 PE=1 SV=3 1,449							
P63085 Mitogen-activated protein kinase 1 OS=Mus musculus GN=Mapk1 PE=1 SV=3 1,448							
F8WHB1 Calcium-transporting ATPase OS=Mus musculus GN=Atp2b2 PE=1 SV=1 1,441							
P27661 Histone H2AX OS=Mus musculus GN=H2afx PE=1 SV=2 1,438							
Q9D0A9 14 kDa phosphohistidine phosphatase OS=Mus musculus GN=Phpt1 PE=1 SV=1 1,437							
P60710 Actin, cytoplasmic 1 OS=Mus musculus GN=Actb PE=1 SV=1 1,43							
P70349 Histidine triad nucleotide-binding protein 1 OS=Mus musculus GN=Hnt1 PE=1 SV=3 1,429							
Q9CPX4 Ferritin OS=Mus musculus GN=Fth1 PE=1 SV=1 1,423							
P31650 Sodium- and chloride-dependent GABA transporter 3 OS=Mus musculus GN=Slc6a11 PE=1 SV=2 1,42							
O08749 Dihydrolipoyl dehydrogenase, mitochondrial OS=Mus musculus GN=Dld PE=1 SV=2 1,419							
Q80TL4 PHD finger protein 24 OS=Mus musculus GN=Phf24 PE=1 SV=2 1,417							
P61264 Syntaxin-1B OS=Mus musculus GN=Stx1b PE=1 SV=1 1,414							
B9HN0 Ubiquitin-activating enzyme E1, Chr X OS=Mus musculus GN=Uba1 PE=2 SV=1 1,398							
P15105 Glutamine synthetase OS=Mus musculus GN=Glul PE=1 SV=6 1,392							
Q9R1P0 Proteasome subunit alpha type-4 OS=Mus musculus GN=Psmα4 PE=1 SV=1 1,392							
QV0CE0 Sodium/potassium-transporting ATPase subunit alpha OS=Mus musculus GN=Atpα1a1 PE=1 SV=1 1,39							
Q8CBQ4 Glycogen phosphorylase, brain form OS=Mus musculus GN=Pygb PE=1 SV=3 1,385							
O83842 WD repeat-containing protein 1 OS=Mus musculus GN=Wdr1 PE=1 SV=3 1,383							
P68369 Tubulin alpha-1A chain OS=Mus musculus GN=Tuba1a PE=1 SV=1 1,378							
Q8VDN2 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Mus musculus GN=Atpα1a1 PE=1 SV=1 1,377							
A2ARP8 Microtubule-associated protein 1A OS=Mus musculus GN=Mapα1a PE=1 SV=1 1,372							
Q8VEK3 Heterogeneous nuclear ribonucleoprotein U OS=Mus musculus GN=Hnrnpu PE=1 SV=1 1,37							
Q912X7 Proline-density lipoprotein receptor-related protein 1 OS=Mus musculus GN=Lrp1 PE=1 SV=1 1,368							
P58252 Elongation factor 2 OS=Mus musculus GN=Efε2 PE=1 SV=2 1,364							
Q9C213 Cytochrome b-c1 complex subunit 1, mitochondrial OS=Mus musculus GN=Uqrc1 PE=1 SV=2 1,363							
A0A0AMQA5 Tubulin alpha chain (Fragment) OS=Mus musculus GN=Tuba4a PE=1 SV=1 1,353							
P84078 ADP-ribosylation factor 1 OS=Mus musculus GN=Arfα1 PE=1 SV=2 1,352							
P08752 Guanine nucleotide-binding protein G(i) subunit alpha-2 OS=Mus musculus GN=Gna12 PE=1 SV=5 1,35							
Q90051 Pyruvate dehydrogenase E1 component subunit beta, mitochondrial OS=Mus musculus GN=Pdhβ PE=1 SV=1 1,345							
Q9WTT4 V-type proton ATPase subunit G OS=Mus musculus GN=Atpβ1g2 PE=3 SV=1 1,344							
G5E902 MCG10343, isoform CRA_b OS=Mus musculus GN=Slc25a3 PE=1 SV=1 1,338							
P62317 Small nuclear ribonucleoprotein Sm D2 OS=Mus musculus GN=Snrdp2 PE=3 SV=1 1,331							
A0A0G2JFT8 Protein RUFY3 OS=Mus musculus GN=Rufy3 PE=1 SV=1 1,328							
F6R5K3 Protein Gm17430 OS=Mus musculus GN=Gm17430 PE=4 SV=1 1,325							
P55088 Aquaporin-4 OS=Mus musculus GN=Aqp4 PE=1 SV=2 1,323							
P11031 Activated RNA polymerase II transcriptional coactivator p15 OS=Mus musculus GN=Gsub1 PE=1 SV=3 1,321							
Q8C522 Endonuclease domain-containing 1 protein OS=Mus musculus GN=Endод1 PE=1 SV=2 1,321							
Q8X0T0 Reticulin-1 OS=Mus musculus GN=Rtn1 PE=1 SV=1 1,321							
A8I6P9 14-3-3 protein gamma subtype OS=Mus musculus GN=Ywhag PE=2 SV=1 1,308							
P63318 Protein kinase C gamma type OS=Mus musculus GN=PrkγC PE=1 SV=1 1,304							
Q60668 Heterogeneous nuclear ribonucleoprotein D0 OS=Mus musculus GN=Hnrnpd PE=1 SV=2 1,303							
Q0R1F4 Proteasome subunit alpha type-1 OS=Mus musculus GN=Psmα1 PE=1 SV=1 1,301							
Q546D4 Albumin 1 OS=Mus musculus GN=Ab PE=2 SV=1 0,775							
P47915 60S ribosomal protein L29 OS=Mus musculus GN=Rpl29 PE=2 SV=2 0,76							
Q9C6U2 Structural maintenance of chromosomes protein 1A OS=Mus musculus GN=Smcα1a PE=1 SV=4 0,757							
P62855 40S ribosomal protein S26 OS=Mus musculus GN=Rps26 PE=1 SV=3 0,752							
Q3TT94 Serine/threonine-protein phosphatase 2A OS=Mus musculus GN=Pp2ra2 PE=2 SV=1 0,751							
P01831 Thy-1 membrane glycoprotein OS=Mus musculus GN=Thy1 PE=1 SV=1 0,75							
P83882 60S ribosomal protein L36a OS=Mus musculus GN=Rpl36a PE=1 SV=2 0,744							
P62996 Transformer-2 protein homolog beta OS=Mus musculus GN=Tra2b PE=1 SV=1 0,744							
Q91VB8 Alpha globin 1 OS=Mus musculus GN=Haemoglobin alpha 2 PE=1 SV=1 0,733							
D32AB2 Gamma-soluble NSF attachment protein (Fragment) OS=Mus musculus GN=Napg PE=1 SV=1 0,726							
Gene ID	Description	Organism	Protein ID	Expression			
---	---	---	---	---	---	---	
O08539	Myc box-dependent-interacting protein 1 OS=Mus musculus GN=Bin1 PE=1 SV=1	0,711	P18872	0,709			
Q99P00	Pre-mRNA-processing-splicing factor B OS=Mus musculus GN=Prp8 PE=1 SV=2						
P18872	Guanine nucleotide-binding protein G1 alpha OS=Mus musculus GN=Gnao1 PE=1 SV=3						
D0V066	Erythocyte protein band 4.1-like isoform B OS=Mus musculus GN=Epba13 PE=2 SV=1			0,708			
Q9WUM5	Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial OS=Mus musculus GN=Succlg1 PE=1 SV=4			0,705			
Q31LP8	RAS-related C3 botulinum substrate 1, isoform CRA_a OS=Mus musculus GN=Rac1 PE=1 SV=1			0,693			
P02802	Metallothionein-1 OS=Mus musculus GN=Mt1 PE=1 SV=1	0,689	P36308				
P17742	Peptidyl-prolyl cis-trans isomerase A OS=Mus musculus GN=Pinpe PE=2 SV=2	0,681					
P12970	60S ribosomal protein L7a OS=Mus musculus GN=Rpl7a PE=1 SV=2	0,68					
P62204	Calmodulin OS=Mus musculus GN=Calm1 PE=1 SV=2	0,679					
B1AQ20	Septin-8 OS=Mus musculus GN=Sept8 PE=1 SV=1	0,678					
P68510	14-3-3 protein eta OS=Mus musculus GN=Ywhah PE=1 SV=2	0,677					
Q9CVB6	Actin-related protein 2/3 complex subunit 2 OS=Mus musculus GN=Arpc2 PE=1 SV=3	0,665					
P08551	Neurofilament light polypeptide OS=Mus musculus GN=Neft PE=1 SV=5	0,66					
P99024	Tubulin beta-5 chain OS=Mus musculus GN=Tubb5 PE=1 SV=1	0,659					
O09167	60S ribosomal protein L21 OS=Mus musculus GN=Rpl21 PE=1 SV=3	0,659					
Q6IR05	Clathrin light chain B OS=Mus musculus GN=Cltb PE=1 SV=1	0,657					
E9Q05Q	Kinesin-like protein KIF21A OS=Mus musculus GN=Kif21a PE=1 SV=2	0,657					
P20065	Thymosin beta-4 OS=Mus musculus GN=Tmsb4x PE=1 SV=1	0,656					
Q54GL4	Glutamate decarboxylase OS=Mus musculus GN=Gad2 PE=2 SV=1	0,655					
F8WGL3	Cofilin-1 OS=Mus musculus GN=Cfl1 PE=1 SV=1	0,651					
Q8BK29	Pyruvate dehydrogenase protein X component, mitochondrial OS=Mus musculus GN=Pdhx PE=1 SV=1	0,643					
Q8CQ27	Heterogeneous nuclear ribonucleoprotein H OS=Mus musculus GN=Hnmp1 PE=1 SV=1	0,627					
Q5SM9M5	MCIG10806 OS=Mus musculus GN=Rpl23a PE=2 SV=1	0,624					
P99028	Cytochrome b-c1 complex subunit 6, mitochondrial OS=Mus musculus GN=Uqcrh PE=1 SV=2	0,622					
P99027	60S acidic ribosomal protein P2 OS=Mus musculus GN=Rplp2 PE=1 SV=3	0,62					
P63163	Small nuclear ribonucleoprotein-associated protein N OS=Mus musculus GN=Snrnp PE=2 SV=1	0,612					
Q9CQZ8	Secerin-1 OS=Mus musculus GN=Srn1 PE=1 SV=1	0,61					
P63017	Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hspa8 PE=1 SV=1	0,61					
Q921M7	Protein FAM49B OS=Mus musculus GN=Fam49b PE=2 SV=1	0,61					
P27659	60S ribosomal protein L3 OS=Mus musculus GN=Rpl3 PE=1 SV=3	0,606					
O08599	Syntaxin-binding protein 1 OS=Mus musculus GN=Stxbp1 PE=1 SV=2	0,606					
P08553	Neurofilament medium polypeptide OS=Mus musculus GN=Nefm PE=1 SV=4	0,604					
Q8R366	Immunoglobulin superfamily member 8 OS=Mus musculus GN=Igfbf PE=1 SV=2	0,592					
Q80YN3	Breast carcinoma-amplified sequence 1 homolog OS=Mus musculus GN=Bcas1 PE=1 SV=3	0,59					
F6RT34	Myelin basic protein (Fragment) OS=Mus musculus GN=Mbp PE=1 SV=1	0,58					
P06837	Neuronomulbin OS=Mus musculus GN=Gap43 PE=1 SV=1	0,58					
Q99104	Unconventional myosin-Va OS=Mus musculus GN=Myos1a PE=1 SV=2	0,58					
Q3UR55	ATPase, Na+/K+ transporting, beta 2 polypeptide, isoform CRA_b OS=Mus musculus GN=Atp1b2 PE=2 SV=1	0,573					
Q54BF2	Guanine deaminase OS=Mus musculus GN=Gda PE=2 SV=1	0,567					
Q6ZWV7	60S ribosomal protein L35 OS=Mus musculus GN=Rpl35 PE=1 SV=1	0,561					
Q923T9	Calcium/calmodulin-dependent protein kinase type II subunit gamma OS=Mus musculus GN=Camk2g PE=1 SV=1	0,556					
Q60631	Growth factor receptor-bound protein 2 OS=Mus musculus GN=Ghrb2 PE=1 SV=1	0,553					
GeneID	Protein Name	OS	GN	PE	SV	Score	
--------	-------------------------------------	-------------	---------	-----	-----	-------	
Q08331	Calretinin	Mus musculus	Calb2	1	3	0.551	
P62267	40S ribosomal protein S23	Mus musculus	Rps23	1	3	0.549	
P68433	Histone H3.1	Mus musculus	Hist1h3a	1	2	0.544	
G5E866	Splicing factor 3B subunit 1	Mus musculus	Sf3b1	1	1	0.533	
P12658	Calbindin	Mus musculus	Calb1	1	2	0.525	
Q6CQK5	Major vault protein	Mus musculus	Mvp	1	4	0.525	
Q9WV69	Dematin	Mus musculus	Dmnt	1	1	0.524	
P29341	Polyadenylate-binding protein 1	Mus musculus	Pabp1	1	2	0.522	
Q9CR57	Myosin-10	Mus musculus	Myh10	1	1	0.520	
Q3UH59	Small nuclear ribonucleoprotein F	Mus musculus	Snrpf	1	1	0.519	
P62307	Flotillin 2, isoform CRA_a	Mus musculus	Flot2	1	1	0.519	
P62911	60S ribosomal protein L32	Mus musculus	Rpl32	1	2	0.506	
Q51078	Ribosomal protein L19	Mus musculus	Rpl19	2	1	0.506	
Q9CRB6	Tubulin polymerization-promoting protein family member 3	Mus musculus	Tppp3	1	1	0.5	
P97499	Telomerase protein component 1	Mus musculus	Tep1	1	1	0.499	
Q9R1T4	Septin-6	Mus musculus	Sept6	1	4	0.493	
Q8BL66	Early endosome antigen 1	Mus musculus	Eea1	1	2	0.487	
Q3TYV5	Cyclic nucleotide phosphodiesterase 1, isoform CRA_b	Mus musculus	Cnp	2	1	0.487	
Q9CYR0	Single-stranded DNA-binding protein, mitochondrial OSMus musculus	Mus musculus	Ssbp1	1	1	0.487	
P20029	78 kDa glucose-regulated protein OSMus musculus	Hspa5	1	3	0.48		
Q4VWZ5	Acyl-CoA-binding protein OSMus musculus	Dbi	1	1	0.461		
Q497E9	40S ribosomal protein S8 OSMus musculus	Rps8	2	1	0.457		
P63101	14-3-3 protein zeta/delta OSMus musculus	Ywhaz	1	1	0.456		
Q50SA8	MCG17585 OSMus musculus	Rpl39	2	1	0.456		
Q7TQ13	Ubiquitin thioesterase OTUB1 OSMus musculus	Otub1	1	2	0.456		
P47911	60S ribosomal protein L6 OSMus musculus	Rpl6	1	3	0.452		
Q8VDD5	Myosin-9	Mus musculus	Myh9	1	4	0.451	
Q60864	Stress-induced-phosphoprotein 1 OSMus musculus	Stip1	1	1	0.448		
E9QA2	Ribosomal protein L15 OSMus musculus	Gm10020	3	1	0.447		
P14869	60S acidic ribosomal protein P0 OSMus musculus	Rplp0	1	3	0.438		
Q5S64E	Ribosomal protein L4 OSMus musculus	Rpl4	2	1	0.437		
P32067	Lupus La protein homolog OSMus musculus	Srb	1	1	0.425		
P47963	60S ribosomal protein L13 OSMus musculus	Rpl13	1	3	0.414		
Q2UBP6	Putative uncharacterized protein OSMus musculus	Actb	2	1	0.407		
P62264	40S ribosomal protein S14 OSMus musculus	Rps14	1	3	0.399		
P63005	Platelet-activating factor acetylhydrolase IB subunit alpha OSMus musculus	Pafah1b1	1	2	0.396		
Q8CI43	Myosin light chain 6B OSMus musculus	Myl6b	2	1	0.388		
B2RSH2	Guanine nucleotide-binding protein G1 subunit alpha-1 OSMus musculus	Gna1	1	1	0.382		
Q5SV10	Calcium/calmodulin-dependent protein kinase I, beta, isoform CRA_b OSMus musculus	Camk2b	1	1	0.37		
B1AQ77	Keratin 15, isoform CRA_a OSMus musculus	Krt15	1	1	0.367		
Q5XJF6	Ribosomal protein OSMus musculus	Rpl10a	1	1	0.367		
P62320	Small nuclear ribonucleoprotein Sm D3 OSMus musculus	Snrpd3	1	1	0.36		
Q9D1R9	60S ribosomal protein L34 OSMus musculus	Rpl34	1	2	0.347		
Accession	Description	Organism	Gene Symbol	Protein Description	E-value		
-----------	-------------	---------------	-------------	---------------------	---------		
P14115	60S ribosomal protein L27a	Mus musculus	Rpl27a	60S ribosomal protein L27a	0.344		
Z4Y123	Fer-1-like protein 4	Mus musculus	Fer1l4	Fer-1-like protein 4	0.336		
P62889	60S ribosomal protein L30	Mus musculus	Rpl30	60S ribosomal protein L30	0.319		
P62918	60S ribosomal protein L8	Mus musculus	Rpl8	60S ribosomal protein L8	0.311		
Q5BLK1	40S ribosomal protein S6	Mus musculus	Rps6	40S ribosomal protein S6	0.298		
Q8CAK3	UPF0515 protein C19orf66 homolog	Mus musculus	Snrpd1	UPF0515 protein C19orf66 homolog	0.292		
P62315	Small nuclear ribonucleoprotein Sm D1	Mus musculus	Snrpd1	Small nuclear ribonucleoprotein Sm D1	0.275		
P62717	60S ribosomal protein L18a	Mus musculus	Rpl18a	60S ribosomal protein L18a	0.245		
P60904	DnaJ homolog subfamily C member 5	Mus musculus	Dnajc5	DnaJ homolog subfamily C member 5	0.231		
Q8C1Y8	Vacuolar fusion protein CCZ1 homolog	Mus musculus	Ccz1	Vacuolar fusion protein CCZ1 homolog	0.217		
P47962	60S ribosomal protein L5	Mus musculus	Rpl5	60S ribosomal protein L5	0.203		
Q3V117	ATP-citrate synthase	Mus musculus	Acly	ATP-citrate synthase	0.173		
DATA FILE S1

REGULATED PROTEINS WT: 24 vs. 3 months

Accession	Description	Abundance Ratio: (WT24) / (WT3)																																																																			
P28663	Beta-soluble NSF attachment protein OS=Mus musculus GN=Napb PE=1 SV=2	17,199																																																																			
Q6ZWX2	Thymosin, beta 4, X chromosome OS=Mus musculus GN=Tmsb4x PE=2 SV=1	12,952																																																																			
E9PYN1	Cell adhesion molecule 1 OS=Mus musculus GN=Cadm1 PE=1 SV=1	11,645																																																																			
Q9D309	ATP synthase subunit delta, mitochondrial OS=Mus musculus GN=Atpsd PE=1 SV=1	10,358																																																																			
P28651	Carbonic anhydrase-related protein OS=Mus musculus GN=Ca8 PE=1 SV=5	9,736																																																																			
P61089	Ubiquitin-conjugating enzyme E2 N OS=Mus musculus GN=Ube2n PE=1 SV=1	9,43																																																																			
Q55ZA3	Histone cluster 1, H1c OS=Mus musculus GN=Hist1h1c PE=2 SV=1	8,966																																																																			
Q9JKD3	Secretory carrier-associated membrane protein 5 OS=Mus musculus GN=Scamp5 PE=1 SV=1	7,509																																																																			
P63040	Complexin-1 OS=Mus musculus GN=Cplx1 PE=1 SV=1	6,894																																																																			
Q9CPW4	Actin-related protein 2/3 complex subunit 5 OS=Mus musculus GN=Arpc5 PE=2 SV=3	6,543																																																																			
P26645	Myristoylated alanine-rich C-kinase substrate OS=Mus musculus GN=Marcks PE=1 SV=2	6,515																																																																			
B1AWD9	Clathrin light chain A OS=Mus musculus GN=CltA PE=1 SV=1	6,296																																																																			
D3YXH0	Immunoglobulin superfamily member 5 OS=Mus musculus GN=Igsf5 PE=4 SV=1	6,247																																																																			
P43274	Histone H1.4 OS=Mus musculus GN=Hist1h1e PE=1 SV=2	6,212																																																																			
P20065	Thymosin beta-4 OS=Mus musculus GN=Tmsb4x PE=1 SV=1	5,338																																																																			
P08228	Superoxide dismutase [Cu-Zn] OS=Mus musculus GN=Sod1 PE=1 SV=2	5,303																																																																			
P43276	Histone H1.5 OS=Mus musculus GN=Hist1h1b PE=1 SV=2	5,115																																																																			
P62774	Myotrophin OS=Mus musculus GN=Mtpn PE=1 SV=2	5,082																																																																			
P60761	Neurogranin OS=Mus musculus GN=Nrgn PE=1 SV=1	4,966																																																																			
P26883	Peptidyl-prolyl cis-trans isomerase FKBP1A OS=Mus musculus GN=Fkbp1a PE=1 SV=2	4,695																																																																			
Q14927	Histone cluster 1, H1d OS=Mus musculus GN=Hist1h1d PE=2 SV=1	4,689																																																																			
P84086	Complexin-2 OS=Mus musculus GN=Cplx2 PE=1 SV=1	4,52																																																																			
Q60829	Protein phosphatase 1 regulatory subunit 1B OS=Mus musculus GN=Ppp1r1b PE=2 SV=2	4,487																																																																			
Q6GT24	Peroxiredoxin 6 OS=Mus musculus GN=Prdx6 PE=1 SV=1	4,479																																																																			
P13595	Neural cell adhesion molecule 1 OS=Mus musculus GN=Ncam1 PE=1 SV=3	4,18																																																																			
Q08749	Dihydrolipoyl dehydrogenase, mitochondrial OS=Mus musculus GN=Dld PE=1 SV=2	4,18																																																																			
P61979	Heterogeneous nuclear ribonucleoprotein K OS=Mus musculus GN=Hnrnpk PE=1 SV=1	4,093																																																																			
Q9JK6C	Cell cycle exit and neuronal differentiation protein 1 OS=Mus musculus GN=Cend1 PE=1 SV=1	3,964																																																																			
P02802	Metallothionein-1 OS=Mus musculus GN=Mt1 PE=1 SV=1	3,841																																																																			
accession	description	organism	protein	gene	symbol	version	length																																																														
------------	--	----------------	---------	------	--------	---------	--------																																																														
Q63810	Calcineurin subunit B type 1	Mus musculus	Ppp3r1	GN	Ppp3r1	3	3,837																																																														
Q8BVI4	Dihydropteridine reductase	Mus musculus	Qdpr	GN	Qdpr	2	3,815																																																														
Q9QYC0	Alpha-adducin	Mus musculus	Add1	GN	Add1	1	3,773																																																														
G5E902	MCG10343, isoform CRA_b	Mus musculus	Slc25a3	GN	Slc25a3	1	3,754																																																														
P32848	Parvalbumin alpha	Mus musculus	Pvvalb	GN	Pvvalb	3	3,748																																																														
P28184	Metallothionein-3	Mus musculus	Mt3	GN	Mt3	1	3,637																																																														
P62204	Calmodulin	Mus musculus	Calm1	GN	Calm1	1	3,634																																																														
Q543Y7	Putative uncharacterized protein	Mus musculus	Pacsin1	GN	Pacsin1	2	3,629																																																														
Q92ZD6-2	Isoform B of Methyl-CpG-binding protein	Mus musculus	MeCP2	GN	MeCP2	2	3,602																																																														
G5E8N5	L-lactate dehydrogenase	Mus musculus	Ldha	GN	Ldha	1	3,561																																																														
Q9WWT4	V-type proton ATPase subunit G	Mus musculus	Atp6v1g2	GN	Atp6v1g2	3	3,54																																																														
A0A087WQN2	Prothymosin alpha (Fragment)	Mus musculus	Ptm1	GN	Ptm1	1	3,536																																																														
Q61361	Brevican core protein	Mus musculus	Bcan	GN	Bcan	1	3,507																																																														
P19157	Glutathione S-transferase P	Mus musculus	Gstp1	GN	Gstp1	1	3,447																																																														
Q4VWZ5	Acyl-CoA-binding protein	Mus musculus	Dbi	GN	Dbi	1	3,436																																																														
Q3TTY5	Keratin, type II cytoskeletal 2 epidermal	Mus musculus	Krt2	GN	Krt2	1	3,424																																																														
O08539	Myc box-dependent-interacting protein	Mus musculus	BIn1	GN	BIn1	1	3,412																																																														
P10922	Histone H1.0	Mus musculus	H1f0	GN	H1f0	2	3,345																																																														
P08249	Malate dehydrogenase, mitochondrial	Mus musculus	Mdha	GN	Mdha	2	3,329																																																														
Q91XV3	Brain acid soluble protein	Mus musculus	Basp1	GN	Basp1	1	3,237																																																														
A0A075B5P2	Protein Igkc (Fragment)	Mus musculus	Igkc	GN	Igkc	1	3,216																																																														
E9Q035	Protein Gm20425	Mus musculus	Gm20425	GN	Gm20425	4	3,149																																																														
Q99PT1	Rho GDP-dissociation inhibitor	Mus musculus	Arhgdia	GN	Arhgdia	1	3,105																																																														
E9PZF0	Nucleoside diphosphate kinase	Mus musculus	Gm20390	GN	Gm20390	3	3,097																																																														
P52760	Ribonuclease UK114	Mus musculus	Hrsp12	GN	Hrsp12	1	3,075																																																														
Q9WV69	Dematin	Mus musculus	Dmtn	GN	Dmtn	1	3,036																																																														
P48036	Annexin A5	Mus musculus	Anxa5	GN	Anxa5	1	3,036																																																														
Q02105	Complement C1q subcomponent subunit C	Mus musculus	C1qc	GN	C1qc	2	3,033																																																														
O88569	Heterogeneous nuclear ribonucleoproteins A2/B1	Mus musculus	Hnrrnpa2b1	GN	Hnrrnpa2b1	2	2,987																																																														
P27661	Histone H2AX	Mus musculus	H2afx	GN	H2afx	1	2,98																																																														
Q9DBJ1	Phosphoglycerate mutase 1	Mus musculus	Pgam1	GN	Pgam1	1	2,963																																																														
Q9ESM3	Hyaluronan and proteoglycan link protein	Mus musculus	Hapln2	GN	Hapln2	1	2,956																																																														
Q9Z204	Heterogeneous nuclear ribonucleoproteins C1/C2	Mus musculus	Hnrrnpc	GN	Hnrrnpc	1	2,944																																																														
Accession	Protein Name	Organism	Gene Name	Protein Expression	Sequence Variation																																																																
-----------	--------------	--------------	-----------	--------------------	--------------------																																																																
P61922	4-aminobutyrate aminotransferase, mitochondrial	Mus musculus	Abat	PE=1	SV=1																																																																
P17751	Triosephosphate isomerase	Mus musculus	Tpi1	PE=1	SV=4																																																																
Q9DBG3	AP-2 complex subunit beta	Mus musculus	Ap2b1	PE=1	SV=1																																																																
Q61598	Rab GDP dissociation inhibitor beta	Mus musculus	Gdi2	PE=1	SV=1																																																																
A0A075B6A0	Ig mu chain C region (Fragment)	Mus musculus	Ighm	PE=1	SV=2																																																																
P05063	Fructose-bisphosphate aldolase C	Mus musculus	Aldoc	PE=1	SV=4																																																																
P21460	Cystatin-C	Mus musculus	Cst3	PE=1	SV=2																																																																
P50518	V-type proton ATPase subunit E	Mus musculus	Atp6v1e1	PE=1	SV=2																																																																
E9Q7Q3	Tropomyosin alpha-3 chain	Mus musculus	Tpm3	PE=1	SV=1																																																																
Q61782	Type I epidermal keratin mRNA, 3'end (Fragment)	Mus musculus	Alp35	PE=2	SV=1																																																																
Q8CI43	Myosin light chain 6B	Mus musculus	Myl6b	PE=2	SV=1																																																																
Q9Z2T6	Keratin, type II cuticular Hb5	Mus musculus	Krt85	PE=2	SV=2																																																																
A0A0G2JEG8	Amphiphysin	Mus musculus	Amph	PE=1	SV=1																																																																
Q9R0P9	Ubiquitin carboxyl-terminal hydrolase isozyme	Mus musculus	Uchl1	PE=1	SV=1																																																																
P98086	Complement C1q subcomponent subunit A	Mus musculus	C1qa	PE=1	SV=2																																																																
Q8BWFF0	Succinate-semialdehyde dehydrogenase, mitochondrial	Mus musculus	Aldh5a1	PE=1	SV=1																																																																
P99027	60S acidic ribosomal protein P2	Mus musculus	Rplp2	PE=1	SV=3																																																																
Q60668	Heterogeneous nuclear ribonucleoprotein D0	Mus musculus	Hnmpd	PE=1	SV=2																																																																
Q9EQUS-2	Isoform 2 of Protein SET	Mus musculus	Set																																																																		
Q91VB8	Alpha globin 1	Mus musculus	Hbalpha	PE=1	SV=1																																																																
P14152	Malate dehydrogenase, cytoplasmic	Mus musculus	Mdh1	PE=1	SV=3																																																																
P99024	Tubulin beta-5 chain	Mus musculus	Tubb5	PE=1	SV=1																																																																
Q6BFL4	Putative adenosylhomocysteinase 3	Mus musculus	Ahcy1	PE=1	SV=1																																																																
Q04690	Neurofibromin	Mus musculus	Nf1	PE=1	SV=1																																																																
D3Z722	40S ribosomal protein S19	Mus musculus	Rps19	PE=1	SV=1																																																																
Q9DCD0	6-phosphogluconate dehydrogenase, decarboxylating	Mus musculus	Pgd	PE=1	SV=3																																																																
P28474	Alcohol dehydrogenase class-3	Mus musculus	Adh5	PE=1	SV=3																																																																
B2RTK3	Histone H2B	Mus musculus	Hist1h2bm	PE=2	SV=1																																																																
Q3UY00	Protein S100	Mus musculus	S100b	PE=2	SV=1																																																																
Q6W8Q3	Purkinje cell protein 4-like	Mus musculus	Pcp4l1	PE=1	SV=1																																																																
P62259	14-3-3 protein epsilon	Mus musculus	Ywthae	PE=1	SV=1																																																																
A8DUK4	Beta-globin	Mus musculus	Hbhb1	PE=1	SV=1																																																																
H3BKH6	S-formylglutathione hydrolase	Mus musculus	Esd	PE=1	SV=1																																																																
Accession	Description	Mus musculus	Gene Name	Protein Number	SV																																																																
------------	---	--------------	-----------	----------------	-----																																																																
J3QMG3	Voltage-dependent anion-selective channel protein 3	2,378	Vdac3	1	1																																																																
Q9CZ13	Cytochrome b-c1 complex subunit 1, mitochondrial	2,378	Uqcr1	1	2																																																																
A0A0G2JFT8	Protein RUFY3	2,374	Rufy3	1	1																																																																
Q4FI9X	Superoxide dismutase	2,373	Sod2	2	1																																																																
P62858	40S ribosomal protein S28	2,364	Rps28	1	1																																																																
P09405	Nucleolin	2,353	Ncl	1	2																																																																
Q91ZZ3	Beta-synuclein	2,347	Sncl	1	1																																																																
Q3ULD5	Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial	2,338	Mccc2	1	1																																																																
Q3U1N0	Coronin	2,33	Coro1a	1	2																																																																
Q54B6	Stathmin	2,29	Stmn1	1	1																																																																
Q5EBQ2	MCG7941, isoform CRA_f	2,28	Pebp1	2	1																																																																
E9PYH0	Versican core protein	2,276	Vcan	1	1																																																																
Q6IRU5	Clathrin light chain B	2,269	Cltb	1	1																																																																
Q61282	Aggrecan core protein	2,244	Acan	1	2																																																																
P05201	Aspartate aminotransferase, cytoplasmic	2,22	Got1	1	3																																																																
P20357	Microtubule-associated protein 2	2,209	Map2	1	1																																																																
A0A0A0MQF6	Glyceraldehyde-3-phosphate dehydrogenase	2,205	Gapdh	1	1																																																																
P10649	Glutathione S-transferase Mu 1	2,176	Gstm1	1	1																																																																
P31650	Sodium- and chloride-dependent GABA transporter 3	2,176	Slc6a11	1	1																																																																
P60710	Actin, cytoplasmic 1	2,161	Actb	1	1																																																																
Q99K0	Aconitase hydratase, mitochondrial	2,121	Aco2	1	1																																																																
P14873	Microtubule-associated protein 1B	2,117	Map1b	1	1																																																																
P68510	14-3-3 protein eta	2,114	Ywha	1	2																																																																
P01592	Immunoglobulin J chain	2,078	Igj	2	1																																																																
Q9CX86	Heterogeneous nuclear ribonucleoprotein A0	2,055	Hnnapa0	1	1																																																																
P60335	Poly(rC)-binding protein 1	2,049	Pcbp1	1	1																																																																
P51863	V-type proton ATPase subunit d 1	2,047	Atp6v0d1	1	1																																																																
Q92Z1G3	V-type proton ATPase subunit C 1	2,041	Atp6v1c1	1	1																																																																
Q9CRB6	Tubulin polymerization-promoting protein family member 3	2,031	Tppp3	1	1																																																																
P50396	Rab GDP dissociation inhibitor alpha	2,031	Gdi1	1	3																																																																
Q77Q2D2	Tubulin polymerization-promoting protein	2,02	Tppp	1	1																																																																
Q9CPU0	Lactoylglutathione lyase	2,019	Glo1	1	3																																																																
Q810U4	Neuronal cell adhesion molecule	2,014	Nrcam	1	1																																																																
Accession	Description	Species	Gene Name	Protein Name	Score																																																																
-----------	--	------------------	-----------	-------------------------------	-------																																																																
Q9Z1G4	V-type proton ATPase 116 kDa subunit a isoform 1	Mus musculus	Atp6v0a1		2,005																																																																
Q9JJV2	Profilin-2	Mus musculus	Pfn2		1,989																																																																
P17156	Heat shock-related 70 kDa protein 2	Mus musculus	Hspa2		1,973																																																																
P06745	Glucose-6-phosphate isomerase	Mus musculus	Gpi		1,963																																																																
Q01853	Transitional endoplasmic reticulum ATPase	Mus musculus	Vcp		1,962																																																																
P68372	Tubulin beta-4B chain	Mus musculus	Tubb4b		1,96																																																																
Q3UL22	Chaperonin subunit 8 (Theta), isoform CRA_a	Mus musculus	Cct8		1,946																																																																
A6ZI44	Fructose-bisphosphate aldolase	Mus musculus	Aldoa		1,942																																																																
P57780	Alpha-actinin-4	Mus musculus	Actn4		1,93																																																																
Q9R0V5	Adenylate kinase isoenzyme 1	Mus musculus	Ak1		1,925																																																																
P13707	Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic	Mus musculus	Gpd1		1,92																																																																
Q546F2	Guanine deaminase	Mus musculus	Gda		1,919																																																																
Q9CZC8	Secernin-1	Mus musculus	Scrn1		1,909																																																																
P35700	Peroxiredoxin-1	Mus musculus	Prdx1		1,904																																																																
P05202	Aspartate aminotransferase, mitochondrial	Mus musculus	Got2		1,903																																																																
P16125	L-lactate dehydrogenase B chain	Mus musculus	Ldhb		1,882																																																																
P14106	Complement C1q subcomponent subunit B	Mus musculus	C1qb		1,876																																																																
Q76M23	Serine/threonine-protein phosphatase A 65 kDa regulatory subunit A alpha isoform	Mus musculus			1,875																																																																
Q7M6W1	Reticulin	Mus musculus	Rtn1		1,87																																																																
Q546G4	Albumin 1	Mus musculus	Alb		1,863																																																																
F6VW30	14-3-3 protein theta (Fragment)	Mus musculus	Ywhaq		1,861																																																																
Q9QUP5	Hyaluronan and proteoglycan link protein 1	Mus musculus	Hapl1		1,85																																																																
Q99P05	Long-chain-fatty-acid--CoA ligase ACSBG1	Mus musculus	Acsg1		1,847																																																																
P00920	Carbonic anhydrase 2	Mus musculus	Ca2		1,834																																																																
P58252	Elongation factor 2	Mus musculus	Eef2		1,833																																																																
Q80TL4	PHD finger protein 24	Mus musculus	Phf24		1,832																																																																
P46460	Vesicle-fusing ATPase	Mus musculus	Nsf		1,825																																																																
D3Z4B2	Gamma-soluble NSF attachment protein (Fragment)	Mus musculus	Napp		1,823																																																																
Q8C2Q7	Heterogeneous nuclear ribonucleoprotein H	Mus musculus	Hnrnph1		1,819																																																																
Q64L7	MCG13441	Mus musculus	Rps27a		1,815																																																																
Q5FW97	Enolase 1, alpha non-neuron	Mus musculus	EG433182		1,814																																																																
P63038	60 kDa heat shock protein, mitochondrial	Mus musculus	Hspa4		1,812																																																																
Q3U2G2	Heat shock 70 kDa protein 4	Mus musculus	Hspa4		1,806																																																																
Accession	Name	Species	Gene Symbol	Peptide	Spectrum Count																																																																
-----------	--	-----------------	-------------	----------	----------------																																																																
A6H611	Mitochondrial intermediate peptidase	Mus musculus	Mipep	PE=1	1,805																																																																
B2RXY7	Carbonyl reductase 1	Mus musculus	Cbr1	PE=2	1,802																																																																
A2ALV3	Endophilin-A1	Mus musculus	Sh3gl2	PE=1	1,796																																																																
P11031	Activated RNA polymerase II transcriptional coactivator p15	Mus musculus	Sub1	PE=1	1,789																																																																
B1AQW2	Microtubule-associated protein	Mus musculus	Mapt	PE=1	1,773																																																																
Q8K183	Pyridoxal kinase	Mus musculus	Pdxk	PE=1	1,772																																																																
B0QZN5	Vesicle-associated membrane protein 2	Mus musculus	Vamp2	PE=1	1,764																																																																
P26443	Glutamate dehydrogenase 1, mitochondrial	Mus musculus	Glud1	PE=1	1,759																																																																
Q9CZU6	Citrate synthase, mitochondrial	Mus musculus	Cs	PE=1	1,753																																																																
Q78J18	MCG22989, isoform CRA_b	Mus musculus	Rab11b	PE=2	1,747																																																																
O55091	Protein IMPACT	Mus musculus	Impact	PE=1	1,743																																																																
A0A097PUG4	Anti-15C4 light chain OS=Mus musculus	Mus musculus	Polc	PE=1	1,734																																																																
Q3U7E0	Putative uncharacterized protein	Mus musculus	Atp6v1g1	PE=2	1,72																																																																
Q3UV17	Keratin, type II cytoskeletal 2 oral	Mus musculus	Krt76	PE=2	1,71																																																																
Q9QYX7	Protein piccolo	Mus musculus	Pcoo	PE=1	1,702																																																																
B9EKK1	Receptor-type tyrosine-protein phosphatase zeta	Mus musculus	Ptprz1	PE=1	1,687																																																																
P70349	Histidine triad nucleotide-binding protein 1	Mus musculus	Hint1	PE=1	1,683																																																																
A2ARP8	Microtubule-associated protein 1A	Mus musculus	Map1a	PE=1	1,663																																																																
Q9JLZ3	Methylglutaconyl-CoA hydratase, mitochondrial	Mus musculus	Auh	PE=1	1,669																																																																
P68369	Tubulin alpha-1A chain OS=Mus musculus	Mus musculus	Tuba1a	PE=1	1,656																																																																
A0A087WP80	Limbic system-associated membrane protein OS=Mus musculus	Mus musculus	Lsamp	PE=1	1,649																																																																
Q9Z2J6	Tetraspanin-2	Mus musculus	Tspan2	PE=1	1,635																																																																
Q9D6F9	Tubulin beta-4A chain OS=Mus musculus	Mus musculus	Tubb4a	PE=1	1,627																																																																
P17742	Peptidyl-prolyl cis-trans isomerase A	Mus musculus	Ppia	PE=1	1,624																																																																
Q3UMU9	Hepatoma-derived growth factor-related protein 2	Mus musculus	Hdgfrp2	PE=1	1,622																																																																
A2AWN8	YTH domain family 1, isoform CRA_a	Mus musculus	Ythdf1	PE=1	1,601																																																																
Q9QXV0	ProSAAS OS=Mus musculus	Mus musculus	Pcsk1n	PE=1	1,6																																																																
Q7TSJ2	Microtubule-associated protein 6	Mus musculus	Map6	PE=1	1,596																																																																
F8WGL3	Cofilin-1 OS=Mus musculus	Mus musculus	Cfl1	PE=1	1,593																																																																
F6RSK3	Protein Gm17430	Mus musculus	Gm17430	PE=4	1,587																																																																
P56399	Ubiquitin carboxyl-terminal hydrolase 5	Mus musculus	Usp5	PE=1	1,586																																																																
P55066	Neurocan core protein OS=Mus musculus	Mus musculus	Ncan	PE=2	1,586																																																																
A0A075B5P3	Protein lghg2b (Fragment) OS=Mus musculus	Mus musculus	Lghg2b	PE=1	1,586																																																																
Accession	Description	Species	Description	Peptide	Spectrum Count																																																																
-----------	--	-----------	-------------	----------	----------------																																																																
P14211	Calreticulin OS=Mus musculus GN=Calr PE=1 SV=1	1,577																																																																			
Q04447	Creatine kinase B-type OS=Mus musculus GN=Ckb PE=1 SV=1	1,576																																																																			
F6VPT0	Protein Ccdc163 (Fragment) OS=Mus musculus GN=Ccdc163 PE=4 SV=1	1,571																																																																			
Q61171	Peroxiredoxin-2 OS=Mus musculus GN=Prdx2 PE=1 SV=3	1,57																																																																			
P05132	cAMP-dependent protein kinase catalytic subunit alpha OS=Mus musculus GN=Prkaca PE=1 SV=3	1,568																																																																			
P62137	Serine/threonine-protein phosphatase PP1-alpha catalytic subunit OS=Mus musculus GN=Ppp1ca PE=	1,565																																																																			
P12658	Calbindin OS=Mus musculus GN=Calb1 PE=1 SV=2	1,561																																																																			
B9EHN0	Ubiquitin-activating enzyme E1, Chr X OS=Mus musculus GN=Uba1 PE=2 SV=1	1,554																																																																			
Q08331	Calretinin OS=Mus musculus GN=Calb2 PE=1 SV=3	1,545																																																																			
A8IP69	14-3-3 protein gamma subtype OS=Mus musculus GN=Ywhag PE=2 SV=1	1,537																																																																			
P80316	T-complex protein 1 subunit epsilon OS=Mus musculus GN=Cct5 PE=1 SV=1	1,536																																																																			
F6YVP7	Protein Gm10260 OS=Mus musculus GN=Gm10260 PE=3 SV=2	1,53																																																																			
P63276	40S ribosomal protein S17 OS=Mus musculus GN=Rps17 PE=1 SV=2	1,523																																																																			
P09411	Phosphoglycerate kinase 1 OS=Mus musculus GN=Pgk1 PE=1 SV=4	1,521																																																																			
Q3U4U6	T-complex protein 1 subunit gamma OS=Mus musculus GN=Cct3 PE=2 SV=1	1,52																																																																			
P47857	ATP-dependent 6-phosphofructokinase, muscle type OS=Mus musculus GN=Pfkem PE=1 SV=3	1,517																																																																			
Q55X6	Clathrin heavy chain OS=Mus musculus GN=Cltc PE=1 SV=1	1,512																																																																			
E0CYV0	Protein-L-isooaspartate O-methyltransferase OS=Mus musculus GN=PCmt1 PE=1 SV=1	1,491																																																																			
P14869	60S acidic ribosomal protein P0 OS=Mus musculus GN=Rplp0 PE=1 SV=3	1,486																																																																			
O55042	Alpha-synuclein OS=Mus musculus GN=Snca PE=1 SV=2	1,486																																																																			
P01787	Ig heavy chain V regions TEPC 15/S107/HPCM1/HPCM2/HPCM3 OS=Mus musculus PE=1 SV=1	1,482																																																																			
Q8BG78	Phytanoyl-CoA hydroxylase-interacting protein-like OS=Mus musculus GN=Phyhipl PE=2 SV=1	1,481																																																																			
P40142	Transketolase OS=Mus musculus GN=Tkt PE=1 SV=1	1,476																																																																			
Q3U5Y6	Amino acid transporter OS=Mus musculus GN=Slci2a2 PE=2 SV=1	1,465																																																																			
Q8C187	Septin-11 OS=Mus musculus GN=Sept11 PE=1 SV=4	1,454																																																																			
P19783	Cytochrome c oxidase subunit 4 isoform 1, mitochondrial OS=Mus musculus GN=Cox4i1 PE=1 SV=2	1,454																																																																			
A0A0A6YXW6	Protein Igha (Fragment) OS=Mus musculus GN=Igha PE=1 SV=1	1,442																																																																			
O88342	WD repeat-containing protein 1 OS=Mus musculus GN=Wdr1 PE=1 SV=3	1,437																																																																			
Q3V117	ATP-citrate synthase OS=Mus musculus GN=Acly PE=1 SV=1	1,434																																																																			
Q92219	Succinate--CoA ligase [ADP-forming] subunit beta, mitochondrial OS=Mus musculus GN=Sucl2 PE=1	1,429																																																																			
P52480	Pyruvate kinase PKM OS=Mus musculus GN=Pkm PE=1 SV=4	1,422																																																																			
Q921M7	Protein FAM49B OS=Mus musculus GN=Fam49b PE=2 SV=1	1,415																																																																			
Q8BMS1	Trifunctional enzyme subunit alpha, mitochondrial OS=Mus musculus GN=Hadha PE=1 SV=1	1,406																																																																			
Accession	Description	Organism	Gene Name	Protein Name	Accession	Description	Organism	Gene Name	Protein Name	Accession	Description	Organism	Gene Name	Protein Name	Accession	Description	Organism	Gene Name	Protein Name	Accession	Description	Organism	Gene Name	Protein Name	Accession	Description	Organism	Gene Name	Protein Name	Accession	Description	Organism	Gene Name	Protein Name	Accession																																		
------------	--	----------------	-----------	------------------------	-----------	--	----------------	-----------	----------------------	-----------	--	----------------	-----------	----------------------	-----------	--	----------------	-----------	----------------------	-----------	--	----------------	-----------	----------------------	-----------	--	----------------	-----------	----------------------	-----------	--	----------------	-----------	----------------------	-----------	--	----------------	-----------	----------------------	-----------	--	----------------	-----------	----------------------	-----------	--	----------------	-----------	----------------------	-----------	--	----------------	-----------	----------------------	-----------	--	----------------	-----------	----------------------	-----------	--	----------------	-----------	----------------------	-----------				
Q8K0T0	Reticulon-1 OS=Mus musculus GN=Rtn1 PE=1 SV=1	1,403	P70168	Importin subunit beta-1 OS=Mus musculus GN=Kpnb1 PE=1 SV=2	1,402	P545V3 Enolase 2, gamma neuronal, isoform CRA_a OS=Mus musculus GN=Eno2 PE=2 SV=1	1,399	Q62631	Elongation factor 1-alpha 2 OS=Mus musculus GN=Eef1a2 PE=1 SV=1	1,398	Q56A15 Cytochrome c OS=Mus musculus GN=Cytc PE=2 SV=1	1,378	P17710	Hexokinase-1 OS=Mus musculus GN=Hk1 PE=1 SV=3	1,369	Q3TXU4 Apolipoprotein E, isoform CRA_h OS=Mus musculus GN=Apoe PE=2 SV=1	1,369	Q3UNV7 Putative uncharacterized protein OS=Mus musculus GN=Mif2 PE=2 SV=1	1,367	Q9ERD7 Tubulin beta-3 chain OS=Mus musculus GN=Tubb3 PE=1 SV=1	1,361	Q9D6R2 Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial OS=Mus musculus GN=Idh3a PE=1	1,355	Q542X7 Chaperonin subunit 2 (Beta), isoform CRA_a OS=Mus musculus GN=Cct2 PE=2 SV=1	1,355	P40336 Vacular protein sorting-associated protein 26A OS=Mus musculus GN=Vps26a PE=1	1,348	Q586E4 Elongation factor 1-alpha OS=Mus musculus GN=Eef1a1 PE=2 SV=1	1,342	P48722 Heat shock 70 kDa protein 4L OS=Mus musculus GN=Hspa4l PE=1 SV=2	1,338	O08553 Dihydropyrimidinase-related protein 2 OS=Mus musculus GN=Dpsy1 PE=1 SV=2	1,333	A0A076FRG6 KCC2a variant 1 OS=Mus musculus GN=S12a5 PE=2 SV=1	1,332	Q5YLW3 Ribosomal protein S3 OS=Mus musculus GN=Rps3 PE=2 SV=1	1,322	Q3UY21 Myelin-oligodendrocyte glycoprotein OS=Mus musculus GN=Mog PE=1 SV=1	1,309	P97300 Neuroplastin OS=Mus musculus GN=Nptn PE=1 SV=3	1,309	P63005 Platelet-activating factor acetylhydrolase IB subunit alpha OS=Mus musculus GN=Pafah1b1 PE=1	1,308	P63101 14-3-3 protein zeta/delta OS=Mus musculus GN=Ywhaz PE=1 SV=1	1,308	Q9DCW4 Electron transfer flavoprotein subunit beta OS=Mus musculus GN=Etfa PE=1 SV=3	1,303	Q61990 Poly(rC)-binding protein 2 OS=Mus musculus GN=Pcbp2 PE=1 SV=1	1,303	P06837 Neurmodulin OS=Mus musculus GN=Gap43 PE=1 SV=1	1,302	P60766 Cell division control protein 42 homolog OS=Mus musculus GN=Cdc42 PE=1 SV=2	1,3	P62880 Guanine nucleotide-binding protein G(i)/G(S)/G(T) subunit beta-2 OS=Mus musculus GN=Gnb2 PE=1 S	0,749	P46097 Synaptotagmin-2 OS=Mus musculus GN=Syt2 PE=1 SV=1	0,746	P97427 Dihydropyrimidinase-related protein 1 OS=Mus musculus GN=Crmp1 PE=1 SV=1	0,743	Q3TQ70 Beta1 subunit of GTP-binding protein OS=Mus musculus GN=Gnb1 PE=2 SV=1	0,743	A2AQR0 Glycerol-3-phosphate dehydrogenase OS=Mus musculus GN=Gpd2 PE=1 SV=1	0,738	D32656 Synaptotanin-1 OS=Mus musculus GN=Syn1 PE=1 SV=1	0,733	Q9C8V6 Actin-related protein 2/3 complex subunit 2 OS=Mus musculus GN=Arpc2 PE=1 SV=3	0,732	Q9WTL4 Insulin receptor-related protein OS=Mus musculus GN=Insrr PE=1 SV=2	0,731
Accession	Description	Organism	Gene Symbol	Peptide Count																																																																	
-----------	--	--------------	-------------	---------------																																																																	
Q9QZQ8	Core histone macro-H2A.1	Mus musculus	H2afy	3																																																																	
P52480-2	Isoform M1 of Pyruvate kinase PKM	Mus musculus	Pkm	1																																																																	
P47963	60S ribosomal protein L13	Mus musculus	Rpl13	3																																																																	
O54962	Barrier-to-autointegration factor	Mus musculus	Banf1	1																																																																	
Q912U6	Dystonin	Mus musculus	Dst	2																																																																	
Q99M71	Mammalian ependymin-related protein 1	Mus musculus	Epdr1	2																																																																	
Q9CX54	Centromere protein V	Mus musculus	Cenpv	2																																																																	
P12787	Cytochrome c oxidase subunit 5A, mitochondrial	Mus musculus	Cox5a	2																																																																	
P08752	Guanine nucleotide-binding protein G(i) subunit alpha-2	Mus musculus	Gna1i	5																																																																	
P35235	Tyrosine-protein phosphatase non-receptor type 11	Mus musculus	Ptpn11	2																																																																	
Q8R1B4	Eukaryotic translation initiation factor 3 subunit C	Mus musculus	Eif3c	1																																																																	
Q9EQF6	Dihydropyrimidinase-related protein 5	Mus musculus	Dpysl5	1																																																																	
Q9WV34	MAGUK p55 subfamily member 2	Mus musculus	Mpp2	1																																																																	
P14148	60S ribosomal protein L7	Mus musculus	Rpl7	2																																																																	
P19096	Fatty acid synthase	Mus musculus	Fasn	1																																																																	
Q9R1P1	Proteasome subunit beta type-3	Mus musculus	Psmb3	1																																																																	
E9PUA3	IQ motif and SEC7 domain-containing protein 1	Mus musculus	Iqsec1	1																																																																	
Q8BFZ9	Erlin-2	Mus musculus	Erlin2	1																																																																	
Q8VEK3	Heterogeneous nuclear ribonucleoprotein U	Mus musculus	Hnrnpu	1																																																																	
Q62WNS	40S ribosomal protein S9	Mus musculus	Rps9	3																																																																	
Q6IFX2	Keratin, type I cytoskeletal 42	Mus musculus	Krt42	1																																																																	
Q9WUM5	Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial	Mus musculus	Suclg1	1																																																																	
Q9R1P4	Proteasome subunit alpha type-1	Mus musculus	Psma1	1																																																																	
S4R249	Ankyrin-2	Mus musculus	Ank2	1																																																																	
E9OAX2	Unconventional myosin-XVIIIa subunit alpha	Mus musculus	Myo18a	1																																																																	
Q9Z1B3	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1	Mus musculus	Plcb1	1																																																																	
Q548L4	Glutamate decarboxylase	Mus musculus	Gad2	2																																																																	
P47915	60S ribosomal protein L29	Mus musculus	Rpl29	2																																																																	
A2CEK3	Phosphoglucomutase-2	Mus musculus	Pgm2	1																																																																	
A0A0G2JGS4	Calcium/calmodulin-dependent protein kinase type II subunit delta	Mus musculus	Camk2d	1																																																																	
P14115	60S ribosomal protein L27a	Mus musculus	Rpl27a	2																																																																	
G5E866	Splicing factor 3B subunit 1	Mus musculus	Sf3b1	1																																																																	
O09061	Proteasome subunit beta type-1	Mus musculus	Psmb1	1																																																																	
Accession	Description	Species	Gene	Peptide	Score																																																																
----------	--	-----------	--------	---------	-------																																																																
Q3TVK3	Aspartyl aminopeptidase OS=Mus musculus GN=Dnpep PE=1 SV=1				0.555																																																																
Q3TLP8	RAS-related C3 botulinum substrate 1, isoform CRA_a OS=Mus musculus GN=Rac1 PE=1 SV=1				0.552																																																																
D0VYV6	Erythrocyte protein band 4.1-like 3 isoform B OS=Mus musculus GN=Epb4.1l3 PE=2 SV=1				0.532																																																																
Q545X8	40S ribosomal protein S4 OS=Mus musculus GN=Rps4x PE=2 SV=1				0.527																																																																
Q9R1T4	Septin-6 OS=Mus musculus GN=Sept6 PE=1 SV=4				0.526																																																																
P60879	Synaptosomal-associated protein 25 OS=Mus musculus GN=Snap25 PE=1 SV=1				0.525																																																																
Q9QWI6	SRC kinase signaling inhibitor 1 OS=Mus musculus GN=Srclin1 PE=1 SV=2				0.522																																																																
P62264	40S ribosomal protein S14 OS=Mus musculus GN=Rps14 PE=1 SV=3				0.521																																																																
Q9QXS1	Plectin OS=Mus musculus GN=Plec PE=1 SV=3				0.521																																																																
P47911	60S ribosomal protein L6 OS=Mus musculus GN=Rpl6 PE=1 SV=3				0.52																																																																
P63085	Mitogen-activated protein kinase 1 OS=Mus musculus GN=Mapk1 PE=1 SV=3				0.516																																																																
Q3UH59	Myosin-10 OS=Mus musculus GN=Myh10 PE=1 SV=1				0.514																																																																
Q9QUM9	Proteasome subunit alpha type-6 OS=Mus musculus GN=Psma6 PE=1 SV=1				0.514																																																																
Q08599	Syntaxin-binding protein 1 OS=Mus musculus GN=Stxbp1 PE=1 SV=2				0.513																																																																
Q92U1	Proteasome subunit alpha type-5 OS=Mus musculus GN=Psma5 PE=1 SV=1				0.507																																																																
P19246	Neurofilament heavy polypeptide OS=Mus musculus GN=Nefh PE=1 SV=3				0.505																																																																
O09167	60S ribosomal protein L21 OS=Mus musculus GN=Rpl21 PE=1 SV=3				0.504																																																																
Q8VDD5	Myosin-9 OS=Mus musculus GN=Myh9 PE=1 SV=4				0.498																																																																
E9QAZ2	Ribosomal protein L15 OS=Mus musculus GN=Gm10020 PE=3 SV=1				0.497																																																																
Q3TI05	Chaperonin containing Tcp1, subunit 6a (Zeta) OS=Mus musculus GN=Cct6a PE=2 SV=1				0.491																																																																
A0A140T8K6	60S ribosomal protein L36 OS=Mus musculus GN=Rpl36-ps3 PE=3 SV=1				0.49																																																																
P90026	Proteasome subunit beta type-4 OS=Mus musculus GN=Psmb4 PE=1 SV=1				0.49																																																																
P27659	60S ribosomal protein L3 OS=Mus musculus GN=Rpl3 PE=1 SV=3				0.485																																																																
P31938	Dual specificity mitogen-activated protein kinase kinase 1 OS=Mus musculus GN=Map2k1 PE=1 SV=2				0.484																																																																
P53395	Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mi				0.477																																																																
Q9JHU4	Cytoplasmic dynein 1 heavy chain 1 OS=Mus musculus GN=Dync1h1 PE=1 SV=2				0.475																																																																
Q8C522	Endonuclease domain-containing 1 protein OS=Mus musculus GN=Endod1 PE=1 SV=2				0.474																																																																
O70318	Band 4.1-like protein 2 OS=Mus musculus GN=Epb41l2 PE=1 SV=2				0.474																																																																
P47962	60S ribosomal protein L5 OS=Mus musculus GN=Rpl5 PE=1 SV=3				0.471																																																																
E9Q401	Ryanodine receptor 2 OS=Mus musculus GN=Ryr2 PE=1 SV=1				0.466																																																																
Q50T8	Ribosomal protein L19 OS=Mus musculus GN=Rpl19 PE=2 SV=1				0.447																																																																
Q9Z2U0	Proteasome subunit alpha type-7 OS=Mus musculus GN=Psma7 PE=1 SV=1				0.441																																																																
Q5BLK0	MCG18564, isoform CRA_a OS=Mus musculus GN=Rpl12 PE=2 SV=1				0.44																																																																
Accession	Description	Organism	Gene Name	Protein Name	Peptide	Spectrum	Score																																																														
-----------	-------------	----------	-----------	--------------	---------	---------	-------																																																														
P62911	60S ribosomal protein L32	Mus musculus	Rpl32	0.439																																																																	
E9PYK3	Poly [ADP-ribose] polymerase	Mus musculus	Parp4	0.439																																																																	
Q4VAG4	MCG12304	Mus musculus	Rpl22	0.439																																																																	
P12023	Amyloid beta A4 protein	Mus musculus	App	0.432																																																																	
Q9D8B3	Charged multivesicular body protein 4b	Mus musculus	Chmp4b	0.431																																																																	
P49722	Proteasome subunit alpha type-2	Mus musculus	Psma2	0.425																																																																	
Q9CZY3	Ubiquitin-conjugating enzyme E2 variant 1	Mus musculus	Ube2v1	0.423																																																																	
Q9D0M3	Cytochrome c1, heme protein, mitochondrial	Mus musculus	Cyc1	0.421																																																																	
Q9R1P3	Proteasome subunit beta type-2	Mus musculus	Psmb2	0.419																																																																	
Q58EW0	60S ribosomal protein L18	Mus musculus	Rpl18	0.416																																																																	
Q9Z0H4	CUGBP Elav-like family member 2	Mus musculus	Celf2	0.416																																																																	
Q5BLJ9	60S ribosomal protein L27	Mus musculus	Rpl27	0.414																																																																	
Q497E9	40S ribosomal protein S8	Mus musculus	Rps8	0.412																																																																	
Q80YX1	Tenascin	Mus musculus	Tnc	0.412																																																																	
Q5BLK1	40S ribosomal protein S6	Mus musculus	Rps6	0.411																																																																	
Z4YL23	Fer-1-like protein 4	Mus musculus	Fer1l4	0.399																																																																	
Q923T9	Calcium/calmodulin-dependent protein kinase II subunit gamma	Mus musculus	Camk2g	0.399																																																																	
O08917	Flotillin-1	Mus musculus	Flot1	0.399																																																																	
Q91VE0	Long-chain fatty acid transport protein 4	Mus musculus	Slc27a4	0.392																																																																	
Q50SA8	MCG17585	Mus musculus	Rpl39	0.389																																																																	
P46660	Alpha-internexin	Mus musculus	Ina	0.389																																																																	
Q5SVJ0	Calcium/calmodulin-dependent protein kinase II, beta, isoform CRA_b	Mus musculus	Camk2b	0.386																																																																	
P62267	40S ribosomal protein S23	Mus musculus	Rps23	0.383																																																																	
P29341	Polyadenylate-binding protein 1	Mus musculus	Pabpc1	0.38																																																																	
P08553	Neurofilament medium polypeptide	Mus musculus	Nefm	0.377																																																																	
Q9CU62	Structural maintenance of chromosomes protein 1A	Mus musculus	Smc1a	0.376																																																																	
O55234	Proteasome subunit beta type-5	Mus musculus	Psmb5	0.376																																																																	
P17427	AP-2 complex subunit alpha-2	Mus musculus	Ap2a2	0.371																																																																	
Q9D1R9	60S ribosomal protein L34	Mus musculus	Rpl34	0.37																																																																	
P09528	Ferritin heavy chain	Mus musculus	Fth1	0.369																																																																	
Q564E8	Ribosomal protein L4	Mus musculus	Rpl4	0.367																																																																	
P14685	26S proteasome non-ATPase regulatory subunit 3	Mus musculus	Psmd3	0.367																																																																	
Q8BKZ9	Pyruvate dehydrogenase protein X component, mitochondrial	Mus musculus	Pdhx	0.362																																																																	
Accession	Description	Organism	Gene Name	Protein Description	Score																																																																
-----------	--	----------------	-----------	---	-------																																																																
P32067	Lupus La protein homolog OS=Mus musculus GN=Ssb PE=1 SV=1				0.358																																																																
Q58E4	Proteasome subunit alpha type OS=Mus musculus GN=Psma3 PE=2 SV=1				0.353																																																																
Q8BFM4	Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial				0.345																																																																
P62715	Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform OS=Mus musculus GN=Ppp2c				0.344																																																																
Q99104	Unconventional myosin-Va OS=Mus musculus GN=Myo5a PE=1 SV=2				0.337																																																																
F6TB7	Myelin basic protein (Fragment) OS=Mus musculus GN=Mbp PE=1 SV=1				0.334																																																																
Q9JLM8	Serine/threonine-protein kinase DCLK1 OS=Mus musculus GN=Dclk1 PE=1 SV=1				0.321																																																																
P62855	40S ribosomal protein S26 OS=Mus musculus GN=Rps26 PE=1 SV=3				0.316																																																																
Q9CR57	60S ribosomal protein L14 OS=Mus musculus GN=Rpl14 PE=1 SV=3				0.313																																																																
P70195	Proteasome subunit beta type-7 OS=Mus musculus GN=Psmb7 PE=1 SV=1				0.31																																																																
Q9D823	60S ribosomal protein L37 OS=Mus musculus GN=Rpl37 PE=3 SV=3				0.305																																																																
Q9EQ5	Major vault protein OS=Mus musculus GN=Mvp PE=1 SV=4				0.292																																																																
Q5SXS6	Cytoplasmic FMR1-interacting protein 2 OS=Mus musculus GN=Cyfip2 PE=1 SV=2				0.291																																																																
V9GX76	Unconventional myosin-VI OS=Mus musculus GN=Myo6 PE=1 SV=1				0.285																																																																
P97499	Telomerase protein component 1 OS=Mus musculus GN=Tep1 PE=1 SV=1				0.273																																																																
Q9JNM3	ADP-ribosylation factor-like protein 6-interacting protein 4 OS=Mus musculus GN=Arl6ip4 PE=1 SV=1				0.251																																																																
Q5SS83	Flotillin 2, isoform CRA_a OS=Mus musculus GN=Flot2 PE=1 SV=1				0.25																																																																
P62918	60S ribosomal protein L8 OS=Mus musculus GN=Rpl8 PE=1 SV=2				0.244																																																																
P63163	Small nuclear ribonucleoprotein-associated protein N OS=Mus musculus GN=Snrpn PE=2 SV=1				0.241																																																																
Q8R366	Immunoglobulin superfamily member 8 OS=Mus musculus GN=Igsf8 PE=1 SV=2				0.234																																																																
Q8AC8K3	UPF0515 protein C19orf66 homolog OS=Mus musculus PE=2 SV=1				0.229																																																																
Q9CYR0	Single-stranded DNA-binding protein, mitochondrial OS=Mus musculus GN=Ssbp1 PE=1 SV=1				0.205																																																																
P62320	Small nuclear ribonucleoprotein Sm D3 OS=Mus musculus GN=Snrd3 PE=1 SV=1				0.204																																																																
P62315	Small nuclear ribonucleoprotein Sm D1 OS=Mus musculus GN=Snrd1 PE=1 SV=1				0.203																																																																
P62717	60S ribosomal protein L18a OS=Mus musculus GN=Rpl18a PE=1 SV=1				0.193																																																																
Q99MN9	Propionyl-CoA carboxylase beta chain, mitochondrial OS=Mus musculus GN=Pccb PE=1 SV=2				0.187																																																																
Q3V0Q	Dynein heavy chain 12, axonemal OS=Mus musculus GN=Dnah12 PE=1 SV=2				0.149																																																																
P62307	Small nuclear ribonucleoprotein F OS=Mus musculus GN=Snrfp PE=1 SV=1				0.146																																																																
Q8C1Y8	Vacuolar fusion protein CCZ1 homolog OS=Mus musculus GN=Ccz1 PE=1 SV=1				0.126																																																																
Accession	Description	Abundance Ratio: (AD) / (non-AD)																																																																			
-----------	---	----------------------------------																																																																			
P10636-6	Isoform of P10636, Isoform Tau-D of Microtubule-associated protein tau OS=Homo sapiens GN=MAPT	60,425																																																																			
P10636-4	Isoform of P10636, Isoform Tau-B of Microtubule-associated protein tau OS=Homo sapiens GN=MAPT	43,146																																																																			
A0A0G2JMX7	Microtubule-associated protein OS=Homo sapiens GN=MAPT PE=1 SV=1	37,151																																																																			
P62979	Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens GN=RPS27A PE=1 SV=2	8,079																																																																			
Q13867	Bleomycin hydrolase OS=Homo sapiens GN=BLMH PE=1 SV=1	7,447																																																																			
Q727K6	Centromere protein V OS=Homo sapiens GN=CENPV PE=1 SV=1	5,332																																																																			
P63244	Receptor of activated protein C kinase 1 OS=Homo sapiens GN=RACK1 PE=1 SV=3	4,905																																																																			
P08670	Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4	4,749																																																																			
Q99747	Gamma-soluble NSF attachment protein OS=Homo sapiens GN=NAPG PE=1 SV=1	4,461																																																																			
A0A087WV75	Isoform of P13591, Neural cell adhesion molecule 1 OS=Homo sapiens GN=NCAM1 PE=1 SV=1	4,26																																																																			
P11182	Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial OS=Homo sapiens GN=PRDX5 PE=1 SV=4	3,851																																																																			
B726Z4	Isoform of P60660, Myosin light polypeptide 6 OS=Homo sapiens GN=MV6 PE=1 SV=1	3,766																																																																			
Q9UBB6	Neurochondrin OS=Homo sapiens GN=NCDN PE=1 SV=1	3,646																																																																			
A0A087X165	Isoform of Q9C0H9, SRC kinase-signaling inhibitor 1 OS=Homo sapiens GN=SRCIN1 PE=1 SV=1	3,564																																																																			
P05067	Amyloid beta A4 protein OS=Homo sapiens GN=APP PE=1 SV=3	2,998																																																																			
P61927	60S ribosomal protein L37 OS=Homo sapiens GN=RPL37 PE=1 SV=2	2,831																																																																			
Q01813	ATP-dependent 6-phosphofructokinase, platelet type OS=Homo sapiens GN=PFKP PE=1 SV=2	2,762																																																																			
Q13509	Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2	2,732																																																																			
P11021	78 kDa glucose-regulated protein OS=Homo sapiens GN=HSP55 PE=1 SV=2	2,656																																																																			
P0DME0	Protein SETSIP OS=Homo sapiens GN=SETPSIP PE=1 SV=1	2,477																																																																			
G8JLB6	Heterogeneous nuclear ribonucleoprotein H OS=Homo sapiens GN=HNRNP1 PE=1 SV=1	2,471																																																																			
P02144	Myoglobin OS=Homo sapiens GN=MB PE=1 SV=2	2,414																																																																			
P30044	Peroxiredoxin-5, mitochondrial OS=Homo sapiens GN=PRDX5 PE=1 SV=4	2,327																																																																			
P52306	Rap1 GTPase-GDP dissociation stimulator 1 OS=Homo sapiens GN=RAP1GDS1 PE=1 SV=3	2,291																																																																			
P19338	Nucleolin OS=Homo sapiens GN=NCL PE=1 SV=3	1,952																																																																			
P62888	60S ribosomal protein L30 OS=Homo sapiens GN=RPL30 PE=1 SV=2	1,935																																																																			
P0C055	Histone H2A.Z OS=Homo sapiens GN=H2AFZ PE=1 SV=2	1,784																																																																			
Q00839	Heterogeneous nuclear ribonucleoprotein U OS=Homo sapiens GN=HNRNP1 PE=1 SV=6	1,71																																																																			
Q9UQ80	Proliferation-associated protein 2G4 OS=Homo sapiens GN=PA2G4 PE=1 SV=3	1,702																																																																			
P50990	T-complex protein 1 subunit theta OS=Homo sapiens GN=CCT8 PE=1 SV=4	1,702																																																																			
P61513	60S ribosomal protein L37a OS=Homo sapiens GN=RPL37A PE=1 SV=2	1,693																																																																			
P62266	40S ribosomal protein S23 OS=Homo sapiens GN=RPS23 PE=1 SV=3	1,689																																																																			
P02792	Ferritin light chain OS=Homo sapiens GN=FTL PE=1 SV=2	1,674																																																																			
Q13243	Serine/arginine-rich splicing factor 5 OS=Homo sapiens GN=SRSF5 PE=1 SV=1	1,643																																																																			
Q07954	Proline-density lipoprotein receptor-related protein 1 OS=Homo sapiens GN=LRP1 PE=1 SV=2	1,633																																																																			
P07737	Profilin-1 OS=Homo sapiens GN=PFN1 PE=1 SV=2	1,567																																																																			
P62318	Small nuclear ribonucleoprotein Sm D3 OS=Homo sapiens GN=SNRPD3 PE=1 SV=1	1,522																																																																			
P15531	Nucleoside diphosphate kinase A OS=Homo sapiens GN=NME1 PE=1 SV=1	1,504																																																																			
Q9NQ66	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 OS=Homo sapiens GN=PLCB1 PE=1	1,499																																																																			
P39019	40S ribosomal protein S19 OS=Homo sapiens GN=RPS19 PE=1 SV=2	1,495																																																																			
P04899	Guanine nucleotide-binding protein G(i) subunit alpha-2 OS=Homo sapiens GN=GNAI2 PE=1 SV=3	1,493																																																																			
A0A0J9YXJ0	Isoform of O95319, CUGBP Elav-like family member 2 OS=Homo sapiens GN=CELF2 PE=1 SV=1	1,488																																																																			
H0YKD8	Isoform of P46779, 60S ribosomal protein L28 OS=Homo sapiens GN=RPL28 PE=1 SV=1	1,469																																																																			
P06454	Prothymosin alpha OS=Homo sapiens GN=PTMA PE=1 SV=2	1,456																																																																			
P31146	Coronin-1A OS=Homo sapiens GN=CORO1A PE=1 SV=4	1,451																																																																			
O00499	Myc box-dependent-interacting protein 1 OS=Homo sapiens GN=BIN1 PE=1 SV=1	1,439																																																																			
A0A075B767	Peptidyl-prolyl cis-trans isomerase OS=Homo sapiens GN=LOC105371242 PE=3 SV=1	1,439																																																																			
P21291	Cysteine and glycine-rich protein 1 OS=Homo sapiens GN=CSRIP1 PE=1 SV=3	1,437																																																																			
Q01484	Ankyrin-2 OS=Homo sapiens GN=ANK2 PE=1 SV=4	1,429																																																																			
O60636	Tetraspanin-2 OS=Homo sapiens GN=TSPAN2 PE=1 SV=2	1,427																																																																			
P78386	Keratin, type II cuticular Hb5 OS=Homo sapiens GN=KRT85 PE=1 SV=1	1,404																																																																			
P14678	Small nuclear ribonucleoprotein-associated proteins B and B’ OS=Homo sapiens GN=SNRPB PE=1 SV=2	1,403																																																																			
P39023	60S ribosomal protein L3 OS=Homo sapiens GN=RPL3 PE=1 SV=2	1,389																																																																			
U3KQK0	Isoform of Q99877, Histone H2B OS=Homo sapiens GN=HIST1H2BN PE=1 SV=1	1,376																																																																			
P18621-3	Isoform of P18621, Isoform 3 of 60S ribosomal protein L17 OS=Homo sapiens GN=RPL17	1,375																																																																			
Q9UQ35	Serine/arginine repetitive matrix protein 2 OS=Homo sapiens GN=SRRM2 PE=1 SV=2	1,366																																																																			
Q9ULV4	Coronin-1C OS=Homo sapiens GN=CORO1C PE=1 SV=1	1,36																																																																			
Q92599	Septin-8 OS=Homo sapiens GN=SEPT8 PE=1 SV=4	1,359																																																																			
P53396	ATP-citrate synthase OS=Homo sapiens GN=ACLY PE=1 SV=3	1,344																																																																			
P61254	60S ribosomal protein L26 OS=Homo sapiens GN=RPL26 PE=1 SV=1	1,343																																																																			
P51991	Heterogeneous nuclear ribonucleoprotein A3 OS=Homo sapiens GN=HNRNPA3 PE=1 SV=2	1,332																																																																			
P35080	Profilin-2 OS=Homo sapiens GN=PFN2 PE=1 SV=3	0,774																																																																			
P55072	Transitional endoplasmic reticulum ATPase	OS=Homo sapiens	GN=VCP	PE=1	SV=4	0.771																																																															
--------	---	-----------------	--------	------	------	------																																																															
P62195	26S protease regulatory subunit 8	OS=Homo sapiens	GN=PSMC5	PE=1	SV=1	0.767																																																															
P48426	Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha	OS=Homo sapiens	GN=PIP4K2A	PE=1	SV=2	0.755																																																															
P12277	Creatine kinase B-type	OS=Homo sapiens	GN=CKB	PE=1	SV=1	0.751																																																															
P14625	Endoplasmin	OS=Homo sapiens	GN=HSP90B1	PE=1	SV=1	0.748																																																															
A0A01RRH7	Histone H2A	OS=Homo sapiens	PE=3	SV=1	0.746																																																																
Q86Y23	Hornerin	OS=Homo sapiens	GN=HRNR	PE=1	SV=2	0.746																																																															
P16615	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2	OS=Homo sapiens	GN=ATP2A2	PE=1	SV=1	0.738																																																															
A0A087WUS0	40S ribosomal protein S24	OS=Homo sapiens	GN=RPS24	PE=1	SV=1	0.734																																																															
P53597	Succinate--CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial	OS=Homo sapiens	GN=SUCLG1	PE=1	SV=1	0.733																																																															
P00558	Phosphoglycerate kinase 1	OS=Homo sapiens	GN=PGK1	PE=1	SV=3	0.733																																																															
P35219	Carbonic anhydrase-related protein	OS=Homo sapiens	GN=CA8	PE=1	SV=3	0.731																																																															
P63151	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform	OS=Homo sapiens	PE=1	SV=2	0.729																																																																
Q08554	Desmocollin-1	OS=Homo sapiens	GN=DSC1	PE=1	SV=2	0.725																																																															
P17600	Synapsin-1	OS=Homo sapiens	GN=SYN1	PE=1	SV=3	0.719																																																															
Q15366	Poly(rC)-binding protein 2	OS=Homo sapiens	GN=PCBP2	PE=1	SV=1	0.719																																																															
P08621	U1 small nuclear ribonucleoprotein 70 kDa	OS=Homo sapiens	GN=SNRNP70	PE=1	SV=2	0.716																																																															
P23528	Cofilin-1	OS=Homo sapiens	GN=CFL1	PE=1	SV=3	0.714																																																															
P60709	Actin, cytoplasmic 1	OS=Homo sapiens	GN=ACTB	PE=1	SV=1	0.709																																																															
P13797	Plastin-3	OS=Homo sapiens	GN=PLS3	PE=1	SV=4	0.707																																																															
P62937	Peptidyl-prolyl cis-trans isomerase A	OS=Homo sapiens	GN=PPIA	PE=1	SV=2	0.707																																																															
P61764	Syntaxin-binding protein 1	OS=Homo sapiens	GN=STXB1	PE=1	SV=1	0.703																																																															
Q16143	Beta-synuclein	OS=Homo sapiens	GN=SNCB	PE=1	SV=1	0.701																																																															
Q8TAC9	Secretory carrier-associated membrane protein 5	OS=Homo sapiens	GN=SCAMP5	PE=1	SV=1	0.698																																																															
Q5JXB2	Putative ubiquitin-conjugating enzyme E2 N-like	OS=Homo sapiens	GN=UBE2NL	PE=1	SV=1	0.692																																																															
P40925	Malate dehydrogenase, cytoplasmic	OS=Homo sapiens	GN=MDH1	PE=1	SV=4	0.692																																																															
P20336	Ras-related protein Rab-3A	OS=Homo sapiens	GN=RAB3A	PE=1	SV=1	0.691																																																															
P40227	T-complex protein 1 subunit zeta	OS=Homo sapiens	GN=CCT6A	PE=1	SV=3	0.691																																																															
Q16629	Serine/arginine-rich splicing factor 7	OS=Homo sapiens	GN=SRSF7	PE=1	SV=1	0.687																																																															
P11766	Alcohol dehydrogenase class-3	OS=Homo sapiens	GN=ADH5	PE=1	SV=4	0.683																																																															
P05771	Protein kinase C beta type	OS=Homo sapiens	GN=PRKCB	PE=1	SV=4	0.68																																																															
P07900	Heat shock protein HSP 90-alpha	OS=Homo sapiens	GN=HSP90AA1	PE=1	SV=5	0.679																																																															
Q9Y2J2	Band 4.1-like protein 3	OS=Homo sapiens	GN=EPB41L3	PE=1	SV=2	0.678																																																															
Accession	Description	Organism	Gene Name	Protein Name	Score																																																																
-----------	--	---------------------	-----------	--------------	-------																																																																
Q04837	Single-stranded DNA-binding protein, mitochondrial	Homo sapiens	SSBP1	SSBP1	0.674																																																																
P06576	ATP synthase subunit beta, mitochondrial	Homo sapiens	ATP5B	ATP synthase subunit beta	0.674																																																																
Q8NCB2	CaM kinase-like vesicle-associated protein	Homo sapiens	CAMKV	CAMKV	0.672																																																																
Q02413	Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV=2	Homo sapiens	DSG1	Desmoglein-1	0.671																																																																
Q14982	Opioid-binding protein/cell adhesion molecule	Homo sapiens	OPCML	OPCML	0.671																																																																
P21579	Synaptotagmin-1 OS=Homo sapiens GN=SYT1 PE=1 SV=1	Homo sapiens	SYT1	Synaptotagmin-1	0.669																																																																
P19367	Hexokinase-1 OS=Homo sapiens GN=HK1 PE=1 SV=3	Homo sapiens	HK1	Hexokinase-1	0.667																																																																
P10412	Histone H1.4 OS=Homo sapiens GN=HIST1H1E PE=1 SV=2	Homo sapiens	HIST1H1E	Histone H1.4	0.666																																																																
P02768	Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2	Homo sapiens	ALB	Serum albumin	0.665																																																																
P18669	Phosphoglycerate mutase 1 OS=Homo sapiens GN=PGAM1 PE=1 SV=2	Homo sapiens	PGAM1	Phosphoglycerate mutase-1	0.663																																																																
Q05639	Elongation factor 1-alpha 2 OS=Homo sapiens GN=EEF1A2 PE=1 SV=1	Homo sapiens	EEF1A2	Elongation factor-1-alpha-2	0.662																																																																
Q7Z456	Kinesin-like protein KIF21A OS=Homo sapiens GN=KIF21A PE=1 SV=2	Homo sapiens	KIF21A	Kinesin-like protein KIF21A	0.662																																																																
P18124	60S ribosomal protein L7 OS=Homo sapiens GN=RPL7 PE=1 SV=1	Homo sapiens	RPL7	60S ribosomal protein L7	0.661																																																																
P61981	14-3-3 protein gamma OS=Homo sapiens GN=YWHAG PE=1 SV=2	Homo sapiens	YWHAG	14-3-3 protein gamma	0.655																																																																
Q92598	Heat shock protein 105 kDa OS=Homo sapiens GN=HSPH1 PE=1 SV=1	Homo sapiens	HSPH1	Heat shock protein 105 kDa	0.655																																																																
Q9UJ21	Stomatin-like protein 2, mitochondrial OS=Homo sapiens GN=STOML2 PE=1 SV=1	Homo sapiens	STOML2	Stomatin-like protein 2	0.654																																																																
A0A1B0GTW6	Isoform of Q9H4G0, Band 4.1-like protein 1 (Fragment) OS=Homo sapiens GN=EPB41L1 PE=1 SV=1	Homo sapiens	EPB41L1	Isoform of Q9H4G0, Band 4.1-like protein 1	0.65																																																																
P17858	ATP-dependent 6-phosphofructokinase, liver type OS=Homo sapiens GN=PFKL PE=1 SV=6	Homo sapiens	PFKL	ATP-dependent 6-phosphofructokinase, liver type	0.65																																																																
P49720	Proteasome subunit beta type-3 OS=Homo sapiens GN=PSMB3 PE=1 SV=2	Homo sapiens	PSMB3	Proteasome subunit beta type-3	0.648																																																																
P46777	60S ribosomal protein L5 OS=Homo sapiens GN=RPL5 PE=1 SV=3	Homo sapiens	RPL5	60S ribosomal protein L5	0.641																																																																
Q14141	Septin-6 OS=Homo sapiens GN=SEPT6 PE=1 SV=4	Homo sapiens	SEPT6	Septin-6	0.639																																																																
O15075	Serine/threonine-protein kinase DCLK1 OS=Homo sapiens GN=DCLK1 PE=1 SV=2	Homo sapiens	DCLK1	Serine/threonine-protein kinase DCLK1	0.631																																																																
E7EQ64	Isoform of P07477, Trypsin-1 OS=Homo sapiens GN=PRSS1 PE=1 SV=1	Homo sapiens	PRSS1	Isoform of P07477, Trypsin-1	0.63																																																																
Q9Y277	Voltage-dependent anion-selective channel protein 3 OS=Homo sapiens GN=VDAC3 PE=1 SV=1	Homo sapiens	VDAC3	Voltage-dependent anion-selective channel protein 3	0.628																																																																
H3BR70	Isoform of P14618, Pyruvate kinase OS=Homo sapiens GN=PKM PE=1 SV=1	Homo sapiens	PKM	Isoform of P14618, Pyruvate kinase	0.627																																																																
P35908	Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2	Homo sapiens	KRT2	Keratin, type II cytoskeletal 2 epidermal	0.625																																																																
Q15773	Myeloid leukemia factor 2 OS=Homo sapiens GN=MLF2 PE=1 SV=1	Homo sapiens	MLF2	Myeloid leukemia factor 2	0.623																																																																
A0A0B4J2C3	Translational-controlled tumor protein OS=Homo sapiens GN=TPT1 PE=1 SV=1	Homo sapiens	TPT1	Translational-controlled tumor protein	0.622																																																																
Q6ZN40	Tropomyosin 1 (Alpha), isoform CRA_f OS=Homo sapiens GN=TPM1 PE=1 SV=1	Homo sapiens	TPM1	Tropomyosin 1 (Alpha), isoform CRA_f	0.621																																																																
Q6PUV4	Complexin-2 OS=Homo sapiens GN=CPLX2 PE=2 SV=2	Homo sapiens	CPLX2	Complexin-2	0.621																																																																
P60201	Myelin proteolipid protein OS=Homo sapiens GN=PLP1 PE=1 SV=2	Homo sapiens	PLP1	Myelin proteolipid protein	0.614																																																																
Q15365	Poly(rC)-binding protein 1 OS=Homo sapiens GN=PCBP1 PE=1 SV=2	Homo sapiens	PCBP1	Poly(rC)-binding protein 1	0.612																																																																
P28070	Proteasome subunit beta type-4 OS=Homo sapiens GN=PSMB4 PE=1 SV=4	Homo sapiens	PSMB4	Proteasome subunit beta type-4	0.61																																																																
Accession	Description	OS	GN	PE	SV																																																																
-----------	-------------	----	----	----	----																																																																
A0A024RA52	Proteasome subunit alpha type	Homo sapiens	PSMA2	1	1																																																																
P13929	Beta-enolase	Homo sapiens	ENO3	1	5																																																																
O14818	Proteasome subunit alpha type-7	Homo sapiens	PSMA7	1	1																																																																
P62316	Small nuclear ribonucleoprotein Sm D2	Homo sapiens	SNRPD2	1	1																																																																
P07195	L-lactate dehydrogenase B chain	Homo sapiens	LDHB	1	2																																																																
Q14683	Structural maintenance of chromosomes protein 1A	Homo sapiens	SMC1A	1	2																																																																
P13647	Keratin, type II cytoskeletal	Homo sapiens	KRT5	1	3																																																																
P28066	Proteasome subunit alpha type-5	Homo sapiens	PSMA5	1	3																																																																
P09471	Guanine nucleotide-binding protein G(o) subunit alpha	Homo sapiens	GNAO1	1	4																																																																
P58546	Myotrophin	Homo sapiens	MTPN	1	1																																																																
Q92752	Tenascin-R	Homo sapiens	TNR	1	3																																																																
P13645	Keratin, type I cytoskeletal 10	Homo sapiens	KRT10	1	6																																																																
P20930	Filaggrin	Homo sapiens	FLG	1	3																																																																
Q9BP6U6	Dihydropyrimidinase-related protein 5	Homo sapiens	DPYSL5	1	1																																																																
P62750	60S ribosomal protein L23a	Homo sapiens	RPL23A	1	1																																																																
P51149	Ras-related protein Rab-7a	Homo sapiens	RAB7A	1	1																																																																
Q9Y639	Neuroplastin	Homo sapiens	NPTN	1	2																																																																
P02538	Keratin, type II cytoskeletal 6A	Homo sapiens	KRT6A	1	3																																																																
O00330	Pyruvate dehydrogenase protein X component, mitochondrial	Homo sapiens	PDHX	1	1																																																																
P50395	Rab GDP dissociation inhibitor beta	Homo sapiens	GDI2	1	2																																																																
P07910	Heterogeneous nuclear ribonucleoproteins C1/C2	Homo sapiens	HNRNPC	1	4																																																																
P21796	Voltage-dependent anion-selective channel protein 1	Homo sapiens	VDAC1	1	2																																																																
E7EMK3	Isoform of Q14254, Flotillin-2	Homo sapiens	FLOT2	1	1																																																																
P25705	ATP synthase subunit alpha, mitochondrial	Homo sapiens	ATP5A1	1	1																																																																
F5GYJ8	Isoform of Q96FW1, Ubiquitin thioesterase OTUB1	Homo sapiens	OTUB1	1	1																																																																
P07437	Tubulin beta chain	Homo sapiens	TUBB	1	2																																																																
P05388	60S acidic ribosomal protein P0	Homo sapiens	RPLP0	1	1																																																																
P22676	Calretinin	Homo sapiens	CALB2	1	2																																																																
P07305	Histone H1.0	Homo sapiens	H1F0	1	3																																																																
O76013	Keratin, type I cuticular Ha6	Homo sapiens	KRT36	1	2																																																																
O75390	Citrate synthase, mitochondrial	Homo sapiens	CS	1	2																																																																
Q9Y2T3	Guanine deaminase	Homo sapiens	GDA	1	1																																																																
P04350	Tubulin beta-4A chain	Homo sapiens	TUBB4A	1	2																																																																
Accession	Description	GO ID	Score																																																																		
-----------	--	-------	-------																																																																		
P30153	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform		0.561																																																																		
Q7L0J3	Synaptic vesicle glycoprotein 2A OS=Homo sapiens GN=SV2A PE=1 SV=1		0.559																																																																		
F8WF69	Isoform of P09496, Clathrin light chain A OS=Homo sapiens GN=CLTA PE=1 SV=1		0.559																																																																		
H7BY58	Isoform of P22061, Protein-L-isopropyl side-chain O-methyltransferase OS=Homo sapiens GN=PCMT1 PE=1 SV=4		0.559																																																																		
Q04695	Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT17 PE=1 SV=2		0.555																																																																		
P06702	Protein S100-A9 OS=Homo sapiens GN=S100A9 PE=1 SV=1		0.554																																																																		
P05387	60S acidic ribosomal protein P2 OS=Homo sapiens GN=RPLP2 PE=1 SV=1		0.552																																																																		
P28072	Proteasome subunit beta type-6 OS=Homo sapiens GN=PSMB6 PE=1 SV=4		0.55																																																																		
A0A1C7CYX9	Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1		0.548																																																																		
P31946	14-3-3 protein beta/alpha OS=Homo sapiens GN=YWHAB PE=1 SV=3		0.545																																																																		
P46459	Vesicle-fusing ATPase OS=Homo sapiens GN=NSF PE=1 SV=3		0.544																																																																		
Q9UPV7	PHD finger protein 24 OS=Homo sapiens GN=PHF24 PE=1 SV=2		0.539																																																																		
A0A0B4J231	Isoform of B9A064, Immunoglobulin lambda-like polypeptide 5 OS=Homo sapiens GN=IGLL5 PE=1 SV=1		0.531																																																																		
P46821	Microtubule-associated protein 1B OS=Homo sapiens GN=MAP1B PE=1 SV=2		0.529																																																																		
E7EPK1	Isoform of Q16181, Septin-7 OS=Homo sapiens GN=SEPT7 PE=1 SV=2		0.525																																																																		
P09936	Ubiquitin carboxyl-terminal hydrolase isoform L1 OS=Homo sapiens GN=UCHL1 PE=1 SV=2		0.525																																																																		
P61266	Syntaxin-1B OS=Homo sapiens GN=STX1B PE=1 SV=1		0.52																																																																		
P62701	40S ribosomal protein S4, X isoform OS=Homo sapiens GN=RPS4X PE=1 SV=2		0.52																																																																		
P21281	V-type proton ATPase subunit B, brain isoform OS=Homo sapiens GN=ATP6V1B2 PE=1 SV=3		0.514																																																																		
P17987	T-complex protein 1 subunit alpha OS=Homo sapiens GN=TCP1 PE=1 SV=1		0.512																																																																		
P08779	Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 SV=4		0.51																																																																		
Q14194	Dihydropyrimidinase-related protein 1 OS=Homo sapiens GN=CRMP1 PE=1 SV=1		0.509																																																																		
Q12860	Contactin-1 OS=Homo sapiens GN=CNTN1 PE=1 SV=1		0.503																																																																		
P40926	Malate dehydrogenase, mitochondrial OS=Homo sapiens GN=MDH2 PE=1 SV=3		0.502																																																																		
Q9NZT1	Calmodulin-like protein 5 OS=Homo sapiens GN=CALML5 PE=1 SV=2		0.501																																																																		
P23396	40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 PE=1 SV=2		0.501																																																																		
P02533	Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 SV=4		0.493																																																																		
Q9BY11	Protein kinase C and casein kinase substrate in neurons protein 1 OS=Homo sapiens GN=PACSIN1 PE=1 SV=1		0.489																																																																		
P11142	Heat shock cognate 71 kDa protein OS=Homo sapiens GN=HSPA8 PE=1 SV=1		0.487																																																																		
Q16720	Plasma membrane calcium-transporting ATPase 3 OS=Homo sapiens GN=ATP2B3 PE=1 SV=3		0.483																																																																		
P04264	Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 SV=6		0.481																																																																		
P31944	Caspase-14 OS=Homo sapiens GN=CASP14 PE=1 SV=2		0.48																																																																		
P81605	Dermcidin OS=Homo sapiens GN=DCD PE=1 SV=2		0.479																																																																		
Accession	Description	Organism	Gene Name	Protein Name	Ensembl Transcript ID	Score																																																															
-----------	---	----------------	-----------	--------------	-----------------------	-------																																																															
P04075	Fructose-bisphosphate aldolase A	Homo sapiens	ALDOA	Fructose-bisphosphate aldolase A	0.478																																																																
P63104	14-3-3 protein zeta/delta	Homo sapiens	YWHAZ	14-3-3 protein zeta/delta	0.474																																																																
P04259	Keratin, type II cytoskeletal 6B	Homo sapiens	KRT6B	Keratin, type II cytoskeletal 6B	0.473																																																																
A0A0A0MT26	Isoform of P13637, Sodium/potassium-transporting ATPase subunit alpha-3	Homo sapiens	AT	Sodium/potassium-transporting ATPase subunit alpha-3	0.472																																																																
P30101	Protein disulfide-isomerase A	Homo sapiens	PDIA3	Protein disulfide-isomerase A	0.472																																																																
P32119	Peroxiredoxin-2 OS	Homo sapiens	PRDX2	Peroxiredoxin-2 OS	0.467																																																																
P14136	Glial fibrillary acidic protein OS	Homo sapiens	GFAP	Glial fibrillary acidic protein OS	0.466																																																																
P13646	Keratin, type I cytoskeletal 13	Homo sapiens	KRT13	Keratin, type I cytoskeletal 13	0.461																																																																
P69905	Hemoglobin subunit alpha OS	Homo sapiens	HBA1	Hemoglobin subunit alpha OS	0.46																																																																
P68366	Tubulin alpha-4A chain OS	Homo sapiens	TUBA4A	Tubulin alpha-4A chain OS	0.457																																																																
P27797	Calreticulin OS	Homo sapiens	CALR	Calreticulin OS	0.454																																																																
P35527	Keratin, type I cytoskeletal 9	Homo sapiens	KRT9	Keratin, type I cytoskeletal 9	0.452																																																																
D6RER5	Isoform of Q9NVA2, Septin-11 OS	Homo sapiens	SEPT11	Isoform of Q9NVA2, Septin-11 OS	0.452																																																																
P27348	14-3-3 protein theta OS	Homo sapiens	YWHAQ	14-3-3 protein theta OS	0.451																																																																
Q04917	14-3-3 protein eta OS	Homo sapiens	YWHAH	14-3-3 protein eta OS	0.45																																																																
Q14103	Heterogeneous nuclear ribonucleoprotein D0 OS	Homo sapiens	HNRNPD	Heterogeneous nuclear ribonucleoprotein D0 OS	0.443																																																																
P20618	Proteasome subunit beta type-1 OS	Homo sapiens	PSMB1	Proteasome subunit beta type-1 OS	0.441																																																																
P34932	Heat shock 70 kDa protein 4 OS	Homo sapiens	HSPA4	Heat shock 70 kDa protein 4 OS	0.434																																																																
V9G217	Isoform of Q9NY65, Tubulin alpha-8 chain (Fragment) OS	Homo sapiens	TUBA8	Isoform of Q9NY65, Tubulin alpha-8 chain (Fragment) OS	0.431																																																																
P43004	Excitatory amino acid transporter 2 OS	Homo sapiens	SLC1A2	Excitatory amino acid transporter 2 OS	0.429																																																																
P61978	Heterogeneous nuclear ribonucleoprotein K OS	Homo sapiens	HNRNPK	Heterogeneous nuclear ribonucleoprotein K OS	0.425																																																																
P47914	60S ribosomal protein L29 OS	Homo sapiens	RPL29	60S ribosomal protein L29 OS	0.424																																																																
G3V5Z7	Isoform of P60900, Proteasome subunit alpha type OS	Homo sapiens	PSMA6	Isoform of P60900, Proteasome subunit alpha type OS	0.422																																																																
Q99436	Proteasome subunit beta type-7 OS	Homo sapiens	PSMB7	Proteasome subunit beta type-7 OS	0.417																																																																
Q96IE9	Microtubule-associated protein 6 OS	Homo sapiens	MAP6	Microtubule-associated protein 6 OS	0.412																																																																
Q13825	Methylglutaconyl-CoA hydratase, mitochondrial OS	Homo sapiens	AUH	Methylglutaconyl-CoA hydratase, mitochondrial OS	0.406																																																																
P00918	Carbonic anhydrase 2 OS	Homo sapiens	CA2	Carbonic anhydrase 2 OS	0.403																																																																
P45880	Voltage-dependent anion-selective channel protein 2 OS	Homo sapiens	VDAC2	Voltage-dependent anion-selective channel protein 2 OS	0.403																																																																
P54652	Heat shock-related 70 kDa protein 2 OS	Homo sapiens	HSPA2	Heat shock-related 70 kDa protein 2 OS	0.403																																																																
Q9H3Z4	DnaJ homolog subfamily C member 5 OS	Homo sapiens	DNAJC5	DnaJ homolog subfamily C member 5 OS	0.399																																																																
P61313	60S ribosomal protein L15 OS	Homo sapiens	RPL15	60S ribosomal protein L15 OS	0.396																																																																
Q96F2J	Dynein light chain 2, cytoplasmic OS	Homo sapiens	DYNLL2	Dynein light chain 2, cytoplasmic OS	0.395																																																																
O14594	Neurocan core protein OS	Homo sapiens	NCAN	Neurocan core protein OS	0.38																																																																
P55087	Aquaporin-4 OS=Homo sapiens GN=AQP4 PE=1 SV=2	0,379																																																																			
P68871	Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2	0,378																																																																			
O75822	Eukaryotic translation initiation factor 3 subunit J OS=Homo sapiens GN=EIF3J PE=1 SV=2	0,375																																																																			
A0A0D9SGF6	Isoform of Q13813, Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 PE=1 SV=2	0,371																																																																			
Q96HN2	Adenosylhomocysteinase 3 OS=Homo sapiens GN=AHCYL2 PE=1 SV=1	0,367																																																																			
P49721	Proteasome subunit beta type-2 OS=Homo sapiens GN=PSMB2 PE=1 SV=1	0,358																																																																			
P36543	V-type proton ATPase subunit E 1 OS=Homo sapiens GN=ATP6V1E1 PE=1 SV=1	0,358																																																																			
P46776	60S ribosomal protein L27a OS=Homo sapiens GN=RPL27A PE=1 SV=2	0,355																																																																			
P36871	Phosphoglucomutase-1 OS=Homo sapiens GN=PGM1 PE=1 SV=3	0,353																																																																			
A0A087WZQ7	Isoform of Q9H115, Beta-soluble NSF attachment protein OS=Homo sapiens GN=NAPB PE=1 SV=1	0,35																																																																			
P21283	V-type proton ATPase subunit C 1 OS=Homo sapiens GN=ATP6V1C1 PE=1 SV=4	0,347																																																																			
P15104	Glutamine synthetase OS=Homo sapiens GN=GLUL PE=1 SV=1	0,345																																																																			
P04271	Protein S100-B OS=Homo sapiens GN=S100B PE=1 SV=2	0,344																																																																			
P62942	Peptidyl-prolyl cis-trans isomerase FKBP1A OS=Homo sapiens GN=FKBP1A PE=1 SV=2	0,341																																																																			
P78371	T-complex protein 1 subunit beta OS=Homo sapiens GN=CCT2 PE=1 SV=4	0,332																																																																			
A0A087WUZ3	Spectrin beta chain OS=Homo sapiens GN=SPTBN1 PE=1 SV=1	0,326																																																																			
Q93050	V-type proton ATPase 116 kDa subunit a isoform 1 OS=Homo sapiens GN=ATP6V0A1 PE=1 SV=3	0,314																																																																			
O95670	V-type proton ATPase subunit G 2 OS=Homo sapiens GN=ATP6V1G2 PE=2 SV=1	0,313																																																																			
P50993	Sodium/potassium-transporting ATPase subunit alpha-2 OS=Homo sapiens GN=ATP1A2 PE=1 SV=1	0,305																																																																			
F5GYQ1	Isoform of P61421, V-type proton ATPase subunit d 1 OS=Homo sapiens GN=ATP6V0D1 PE=1 SV=1	0,304																																																																			
H7BYR8	Isoform of P02686, Myelin basic protein OS=Homo sapiens GN=MBP PE=1 SV=1	0,299																																																																			
P52209	6-phosphogluconate dehydrogenase, decarboxylating OS=Homo sapiens GN=PGD PE=1 SV=3	0,286																																																																			
Q08380	Galectin-3-binding protein OS=Homo sapiens GN=LGALS3BP PE=1 SV=1	0,284																																																																			
P02686	Myelin basic protein OS=Homo sapiens GN=MBP PE=1 SV=3	0,284																																																																			
P80723	Brain acid soluble protein 1 OS=Homo sapiens GN=BASP1 PE=1 SV=2	0,271																																																																			
P46976	Glycogenin-1 OS=Homo sapiens GN=GYG1 PE=1 SV=4	0,269																																																																			
Q15907	Ras-related protein Rab-11B OS=Homo sapiens GN=RAB11B PE=1 SV=4	0,268																																																																			
P05026	Sodium/potassium-transporting ATPase subunit beta-1 OS=Homo sapiens GN=ATP1B1 PE=1 SV=1	0,267																																																																			
P62873	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 OS=Homo sapiens GN=GNB1 PE=1 SV=1	0,267																																																																			
H3BNQ7	Isoform of P80404, 4-aminobutyrate aminotransferase, mitochondrial OS=Homo sapiens GN=ABAT PE=1	0,266																																																																			
P09543	2',3'-cyclic-nucleotide 3'-phosphodiesterase OS=Homo sapiens GN=CNP PE=1 SV=2	0,265																																																																			
P30041	Peroxiredoxin-6 OS=Homo sapiens GN=PRDX6 PE=1 SV=3	0,263																																																																			
E7EX88	Aggrecan core protein OS=Homo sapiens GN=ACAN PE=1 SV=2	0,257																																																																			
Accession	Description	Organism	Gene	Protein	Version	Score																																																															
-----------	--	----------------	------------	---------------	---------	--------																																																															
Q96GW7	Brevican core protein	Homo sapiens	BCAN	PE=1	SV=2	0.255																																																															
Q9Y2A7	Nck-associated protein 1	Homo sapiens	NCKAP1	PE=1	SV=1	0.213																																																															
Q5D862	Filaggrin-2	Homo sapiens	FLG2	PE=1	SV=1	0.209																																																															
Q9HCC0	Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial	Homo sapiens	MCCC2	PE=1	SV=1	0.207																																																															
Q92747	Actin-related protein 2/3 complex subunit 1A	Homo sapiens	ARPC1A	PE=1	SV=2	0.204																																																															
A0A0G2JHM8	Myelin-oligodendrocyte glycoprotein	Homo sapiens	MOG	PE=1	SV=1	0.2																																																															
Q9GZV7	Hyaluronan and proteoglycan link protein 2	Homo sapiens	HAPLN2	PE=2	SV=1	0.187																																																															
Q13404	Ubiquitin-conjugating enzyme E2 variant	Homo sapiens	UBE2V1	PE=1	SV=2	0.178																																																															
P10915	Hyaluronan and proteoglycan link protein 1	Homo sapiens	HAPLN1	PE=2	SV=2	0.155																																																															
H3BLU2	Limbic system-associated membrane protein (Fragment)	Homo sapiens	LSAMP	PE=1	SV=1	0.15																																																															
P00441	Superoxide dismutase [Cu-Zn]	Homo sapiens	SOD1	PE=1	SV=2	0.146																																																															
P41222	Prostaglandin-H2 D-isomerase	Homo sapiens	PTGDS	PE=1	SV=1	0.141																																																															
A0A075B6H6	Isoform of P01834, Ig kappa chain C region (Fragment)	Homo sapiens	IGKC	PE=1	SV=1	0.125																																																															
P40306	Proteasome subunit beta type-10	Homo sapiens	PSMB10	PE=1	SV=1	0.098																																																															
P00738	Haptoglobin	Homo sapiens	HP	PE=1	SV=1	0.079																																																															
P13611	Versican core protein	Homo sapiens	VCAN	PE=1	SV=3	0.075																																																															
A0A180GUA9	Isoform of P01871, Ig mu chain C region (Fragment)	Homo sapiens	IGHM	PE=1	SV=1	0.06																																																															