Turner syndrome with positive SRY gene and non-classical congenital adrenal hyperplasia: A case report

Mei-Nan He, Shan-Chao Zhao, Ji-Min Li, Lu-Lu Tong, Xin-Zhao Fan, Yao-Ming Xue, Xiao-Hong Lin, Ying Cao

Abstract

BACKGROUND
Co-morbidity of SRY gene turner syndrome (TS) with positive SRY gene and non-classical congenital adrenal hyperplasia (NCAH) is extremely rare and has never been reported to date.

CASE SUMMARY
In this article, we present a 14-year-old girl who was referred to our hospital with short stature (weight of 43 kg and height of 143 cm, < -2 SD) with no secondary sexual characteristics (labia minora dysplasia). Laboratory tests indicated hypergonadotropic hypogonadism with significantly increased androstenedione and 17-hydroxyprogesterone (17-OHP) levels. This was accompanied by the thickening of the extremity of the left adrenal medial limb. The patient’s karyotype was 45,X/46,X, +mar, and cytogenetic analysis using high-throughput sequencing indicated that the SRY gene was positive with compound heterozygous mutations in CYP21A2 as the causative gene for congenital adrenal hyperplasia. The sites of the suspected candidate mutations were amplified and verified using Sanger sequencing. The patient was finally diagnosed as having SRY positive TS with NCAH. The patient and her family initially refused medical treatment. At her most recent follow-up visit (age = 15 years old), the patient presented facial hair, height increase to 148 cm, and weight of 52 kg, while androstenedione and 17-OHP levels remained high. The patient was finally willing to take small doses of hydrocortisone (10 mg/d).
INTRODUCTION

Turner syndrome (TS) is the most common chromosomal abnormality in females. It has a prevalence of 1:2500, which approaches to 3% of live female births and approximately 15% of miscarriages\[^{1,2}\]. TS patients are characterized by short stature, broad chest, low posterior hairline, prominent ears, narrow and acutely arched palate, lack of pubertal onset at adolescence, and presence of streak ovaries with normal intelligence\[^{3}\]. Monosomy X is the most common karyotype observed in patients with TS (50%-60%), in addition to other structural abnormalities in the X chromosome or mosaicism karyotype reported\[^{4,5}\]. Additionally, the presence of Y chromosome material has been reported in about 10%-18% of patients. The role of the Y chromosome in human tumorigenesis remains controversial. However, the risk of virilization during puberty, gonadoblastoma, and malignant transformation increases by 7%-10% when Y chromosome material is present in gonadal tissue or peripheral blood in TS patients\[^{6,7}\].

Non-classical congenital adrenal hyperplasia (NCAH) is a common autosomal recessive disorder that manifests due to P450c21 (21-hydroxylase) deficiency. NCAH is caused by mutations in the CYP21A2 gene or microconversions between CYP21 pseudogenes and active genes\[^{8,9}\]. The disorder is a mild form of congenital adrenal hyperplasia (CAH) and may result in infertility, miscarriages, oligomenorrhea, hirsutism, acne, advanced bone age, and clitoromegaly in females. 17-hydroxyprogesterone (17-OHP) levels could be used for diagnosis, but the gold standard is the adrenocorticotropic hormone (ACTH) stimulation test and 17-OHP measurement based on several studies and guidelines. However, the optimal cutoff for baseline 17-OHP levels or post-ACTH peak 17-OHP levels for NCAH diagnosis remains controversial\[^{10-14}\]. Based on a large data set in combination with genetic diagnosis, NCAH could be diagnosed using baseline 17-OHP levels > 6 nmol/L or > 30 nmol/L after ACTH stimulation\[^{10-14}\]. The diagnosis could be substantiated using CYP21A2 mutation analysis. In contrast to CAH patients, the majority of patients with NCAH are never diagnosed due to very mild symptoms. In addition, compared to the majority of patients with classic CAH requiring life-long glucocorticoid treatment for survival, NCAH patients are seldom diagnosed and treated only when

CONCLUSION

In conclusion, upon evaluation of the patient mentioned in the report, we feel that 17-OHP measurement and cytogenetic analysis are necessary for TS patients even in the absence of significant virilization signs. This will play a significant role in guiding diagnosis and treatment.

Key Words: Turner syndrome; SRY gene; Congenital adrenal hyperplasia; Tumor; Diagnosis; Endocrinology and metabolism; Case report

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Citation: He MN, Zhao SC, Li JM, Tong LL, Fan XZ, Xue YM, Lin XH, Cao Y. Turner syndrome with positive SRY gene and non-classical congenital adrenal hyperplasia: A case report. World J Clin Cases 2021; 9(10): 2259-2267
URL: https://www.wjgnet.com/2307-8960/full/v9/i10/2259.htm
DOI: https://dx.doi.org/10.12998/wjcc.v9.i10.2259
symptomatic\(^{(10)}\).

The diagnosis of CAH is difficult in females with TS. This is because of the shared common clinical features like short stature, amenorrhea, and infertility and the rare reports of the condition. Moreover, patients with a combination of TS with a positive SRY gene and NCAH have never been reported. In this article, we present a 14-year-old girl who was diagnosed with NCAH and TS with a positive SRY gene concurrently. The combination of these three factors increases the difficulty of diagnosis and treatment but provides insights into the understanding of TS. It also suggests that 17-OHP together with genetic screening is necessary for TS patients.

CASE PRESENTATION

Chief complaints
A 14-year-old girl was referred to our hospital with growth and developmental retardation.

History of present illness
Based on her medical history, the patient was born after a normal full-term delivery and her parents were not genetically related. She appeared to be in good health. Her height and weight were 51 cm and 3.2 kg, respectively, at birth. However, her growth rate was slow (1 cm/year) and her height was 143 cm at age 12 years (< -2 SD), which was significantly lower than normal when she visited our hospital.

Physical examination
On physical examination, the patient’s general status was good, her vital signs were stable, and no masculine features such as hirsutism, acne, and clitoromegaly were observed. Axillary and pubic hair was absent. Breast and labia minora dysplasia was observed.

Laboratory examinations
Biochemistry and electrolyte analysis showed no abnormalities (Table 1). Hormone profiles indicated hypergonadotropic hypogonadism, and karyotype analysis indicated 45,X/46,X, +mar, and mosaicism with suspected Y chromosome material (Figure 1).

Imaging examinations
Ultrasonic gynecopathy examinations and pelvic magnetic resonance showed no development of the uterus or ovaries (Figure 2).

FINAL DIAGNOSIS
The patient’s final diagnosis was SRY positive TS with NCAH.

TREATMENT
The patient initially refused medical treatment. At the most recent follow-up visit (one year later), the patient finally accepted low doses of hydrocortisone (10 mg/d).

OUTCOME AND FOLLOW-UP
At the most recent follow-up visit (patient’s age was 15 years old), the electrolytes were normal. However, the patient had facial hair, her height increased to 148 cm, and her weight was 52 kg, with androstenedione and 17-OHP levels remaining high (Table 1). Human chorionic gonadotropin (HCG) stimulation test showed absence of Leydig cell function (Table 2). We will continue to follow the patient for therapeutic effects.
Table 1 Patient electrolyte and hormone profile

Parameter	First visit	Follow-up (after 1 yr)	Reference range
Serum sodium, mmol/L	138	140	135-145
Serum potassium, mmol/L	3.82	4.38	3.50-5.30
Serum chloride, mmol/L	102.9	103.9	137-147
Serum calcium, mmol/L	2.40	2.40	2.20-2.65
Serum phosphorus, mmol/L	1.36	1.40	0.81-1.45
Serum magnesium, mmol/L	0.78	0.80	0.77-1.03
Follicle stimulating hormone, mIU/mL	60.86	60.83	3.50-12.50
Lateinizing hormone, mIU/mL	19.98	23.88	2.40-12.60
Estradiol, pg/mL	< 5.00	11.96	12.40-233.00
Progesterone, ng/mL	0.101	0.722	0.00-0.89
Testosterone, ng/mL	0.200	0.310	0.025-0.481
Free testosterone, pg/mL	3.48	4.12	0.00-4.20
17Hydroxyprogesterone, ng/mL (first time)	24.70	27.26	0.05-1.02
17Hydroxyprogesterone, ng/mL (second time)	12.10	-	0.05-1.02
Dehydroepiandrosterone, µg/dL	4.15	4.77	4.30-22.40
Androstenedione, ng/mL	7.12	8.18	0.30-3.30
Adrenocorticotropic hormone, pg/mL	39.74	51.06	7.20-63.30
Cortisol (8:00), nmol/L	15.32	13.20	1.65-9.23
Cortisol (16:00), nmol/L	4.96	-	3.44-16.76
Cortisol (0:00), nmol/L	1.83	-	-
AMH, ng/mL	< 0.06	-	-

AMH: Anti-Mullerian hormone.

Table 2 Human chorionic gonadotropin stimulation test results

Parameter	0 min	24 h	48 h	72 h
Testosterone, ng/mL	0.250	0.300	0.260	0.290
Androstenedione, mmol/L	8.18	-	-	4.86
Dihydrotestosterone	35.59	-	-	28.90

DISCUSSION

As mentioned previously, CAH diagnosis is difficult in females with TS. The majority of previously reported cases with concomitant TS and CAH were diagnosed as TS. They had ambiguous genitalia or their NCAH was misdiagnosed as TS\[^{9,16-26}\]. Although our patient was of short stature with no virilization signs and ambiguous genitalia, Larizza \textit{et al.}\[^{21}\] reported that the frequencies of both abnormal 17-OHP response to ACTH stimulation test and \textit{CYP21} gene mutation carriers were prominently higher in patients with TS than in healthy controls. Next, Linglart \textit{et al.}\[^{27}\] found that the proportion of 21-hydroxylase deficiency carriers in TS patients was up to 21.6%, which was significantly higher than that in the general Italian population\[^{27}\]. Based on previous studies and the labia minora dysplasia observed in our patient, we measured 17-OHP levels and performed karyotyping and cytogenetic analysis. Our results demonstrated that 17-OHP levels were significantly increased and karyotype and cytogenetic analysis demonstrated 45,X/46,X,+mar with a positive SRY gene with compound heterozygous mutations in \textit{CYP21A2}, suggesting it to be the causative gene for CAH.
The reason for the absence of typical clinical manifestations despite the presence of the causative gene mutation for CAH is the wide phenotypic variability of the non-classical form. This is due to different enzymatic activity levels induced by several gene mutations in the CYP21A2, as well as microconversions between CYP21 pseudogenes and active genes. To-date, > 200 CYP21A2 inactivating mutations have been recorded in the Human Gene Mutation Database (www.hgmd.org). New et al. extensively investigated the genotype-phenotype correlation in 1507 patients with CAH and demonstrated the presence of genotype-phenotype discordance. Moura-Massari et al. investigated the correlation between genotypes and the severity of hyperandrogenic phenotype in a cohort of 114 NCAH patients. Their results demonstrated that CYP21A2 genotypes do not predict the severity of hyperandrogenic manifestation in the non-classical form of CAH.

Gonadal dysgenesis observed in TS patients is associated with gonadoblastomas and malignant transformation when Y-chromosome-derived genetic material is present in the genome. If the presence of Y chromosome fragments in TS patients

Figure 1 Computed tomography scan and Karyotype analysis indicated 45,X/46,X, +mar, and mosaicism with suspected Y chromosome material. A-D: Magnetic resonance imaging showed no uterus or ovary; E: Computed tomography of the adrenal gland indicated left adrenal hyperplasia; F: The patient’s karyotype is 45,X/46,X, +mar.
He MN et al. SRY positive TS with NCAH
could be detected at an early stage, the incidence of gonadoblastomas could be reduced or even prevented. Treatment of TS could be guided with prophylactic gonadectomy considered\(^2\).

Regrettably, our patient refused laparoscopic exploration to further determine the

Figure 2 The sequences of the patients and her parents. A, C, and E: The patient’s sequence; B and D: The sequence of the patient’s father; F: The sequence of the patient’s mother.
presence and nature of gonadal tissue and determine whether she was at risk for gonadoblastoma. HCG stimulation test showed the absence of Leydig cell function. We will assess disease progression during follow-up.

CONCLUSION

In conclusion, upon evaluation of the patient mentioned in the report, we feel that 17-OHP measurement and cytogenetic analysis are necessary for TS patients even in the absence of significant virilization signs. This will play a significant role in guiding diagnosis and treatment.

ACKNOWLEDGEMENTS

The authors are grateful to Professors Ying Cao, Shan-Chao Zhao, and Yao-Ming Xue for their assistance in providing insights to the diagnosis and reviewing this manuscript. In addition, we are thankful to Jin-Min Li, Lu-Lu Tong, and Xin-Zhao Fang who were involved in the patient’s care and cytogenetic analysis. We also thank the patient and her family for their cooperation and permission.

REFERENCES

1 Kurnaz E, Çetinkaya S, Savaş-Erdeve Ş, Aycan Z. Detection of the SRY gene in patients with Turner Syndrome. J Gynecol Obstet Hum Reprod 2019; 48: 265-267 [PMID: 30685428 DOI: 10.1016/j.jogoh.2019.01.012]
2 Ibrahim MN, Laghari TM, Hanif MI, Khoso ZA, Riza M, Raza J. Comparison of Classical and Non-Classical Turner Syndrome at NICH Karachi. J Coll Physicians Surg Pak 2018; 28: 840-843 [PMID: 30369375 DOI: 10.29271/jcpsp.2018.11.840]
3 Kavoussi SK, Christman GM, Smith YR. Healthcare for adolescents with Turner syndrome. J Pediatr Adolesc Gynecol 2006; 19: 257-265 [PMID: 16873029 DOI: 10.1016/j.jpag.2006.05.012]
4 Baer TG, Freeman CE, Cujar C, Mansukhani M, Singh B, Chen X, Abellar R, Oberfield SE, Levy B. Prevalence and Physical Distribution of SRY in the Gonads of a Woman with Turner Syndrome: Phenotypic Presentation, Tubal Formation, and Malignancy Risk. Horm Res Pediatr 2017; 88: 291-297 [PMID: 28618411 DOI: 10.1159/000477240]
5 Bispo AV, Dos Santos LO, Burégio-Frota P, Galdino MB, Duarte AR, Leal GF, Araújo J, Gomes B, Soares-Ventura EM, Muniz MT, Santos N. Effect of chromosome constitution variations on the expression of Turner phenotype. Genet Mol Res 2013; 12: 4243-4250 [PMID: 23546984 DOI: 10.4238/2013.March.13.13]
6 Saenger P, Wikland KA, Conway GS, Davenport M, Gravholt CH, Hintz R, Hovatta O, Hultcrantz M, Landin-Wilhelmsen K, Lippe B, Pasquino AM, Ranke MB, Rosenfeld R, Silberbach M; Fifth International Symposium on Turner Syndrome. Recommendations for the diagnosis and management of Turner syndrome. J Clin Endocrinol Metab 2001; 86: 3061-3069 [PMID: 11443168 DOI: 10.1210/jcem.86.7.7683]
7 Gravholt CH, Fedder J, Naeraa RW, Müller J. Occurrence of gonadoblastoma in females with Turner syndrome and Y chromosome material: a population study. J Clin Endocrinol Metab 2000; 85: 3199-3202 [PMID: 10999808 DOI: 10.1210/jcem.85.9.6800]
8 Freriks K, Timmers HJ, Netea-Maier RT, Beerendonk CC, Otten BJ, van Alfen-van der Velden JA, Traas MA, Mieloo H, van de Zande GW, Hoefsloot LH, Hermus AR, Smeets DF. Buccal cell FISH and blood PCR-Y detect high rates of X chromosomal mosaicism and Y chromosomal derivatives in patients with Turner syndrome. Eur J Med Genet 2013; 56: 497-501 [PMID: 23933307 DOI: 10.1016/j.ejmg.2013.07.008]
9 Mishra VV, Pritti K, Aggarwal R, Choudhary S. Nonclassic congenital adrenal hyperplasia misdiagnosed as Turner syndrome. J Hum Reprod Sci 2015; 8: 239-241 [PMID: 26751945 DOI: 10.4103/0974-1208.170416]
10 Araújo RS, Mendonca BB, Barbosa AS, Lin CJ, Marcondes JA, Billerbeck AE, Bachega TA. Microconversion between CYP21A2 and CYP21A1P promoter regions causes the nonclassical form of 21-hydroxylase deficiency. J Clin Endocrinol Metab 2007; 92: 4028-4034 [PMID: 17666484 DOI: 10.1210/jc.2006-2163]
11 Trapp CM, Oberfeld SE. Recommendations for treatment of nonclassic congenital adrenal hyperplasia (NCACH): an update. Steroids 2012; 77: 342-346 [PMID: 22186144 DOI: 10.1016/j.steroids.2011.12.009]
12 Speiser PW, Aziz R, Baskin LS, Ghizzoni L, Hensle TW, Merko DP, Meyer-Bahlburg HF, Miller WL, Montori VM, Oberfield SE, Ritzen M, White PC; Endocrine Society. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice
Sex Development (DSD) patients with a mosaic karyotype. SRY mutation analysis by next generation (deep) sequencing in a cohort of chromosomal Disorders of

10.1055/s-0032-1330007

10.1016/s0015-0282(99)00378-7

10.1007/00006534-198506000-00021

10.1111/j.1399-0004.1997.tb02487.x

10.1007/s12020-015-0656-0

10.1097/00006699.1997.9212186.DOI:

10.1056/0015-0282(99)00037-8

10.1151/jpem-2017-00088

10.1055/s-0032-1330007

10.1097/00006699.1997.9212186.DOI:

10.1007/00006534-198506000-00021

10.1097/00006534-198506000-00021

10.1097/MD.0000000000006994

10.1111/j.1399-0004.1997.tb02487.x

10.1097/00006534-198506000-00021

10.1007/00006534-198506000-00021

10.1097/00006534-198506000-00021

10.1016/s0015-0282(99)00037-8

10.1101/jc.2009-2631

13 Livadas S, Dracopoulos M, Dastamani A, Sertedaki A, Mariati-Christidi M, Magiakou AM, Kanaka-Gantenbein C, Chrousos GP, Dacou-Voutetakis C. The spectrum of clinical, hormonal and molecular findings in 280 individuals with nonclassical congenital adrenal hyperplasia caused by mutations of the CYP21A2 gene. Clin Endocrinol (Oxf) 2015; 82: 543-549 [PMID: 25041270 DOI: 10.1111/cen.12543]

14 Savay-Erdeye Ş, Çetinkaya S, Abali ZY, Poyrazoğlu Ş, Baş F, Berberoğlu M, Sıklar Z, Korkmaz Ö, Buluş D, Akbaş ED, Güran T, Böber E, Akin Ö, Yılmaz GC, Aycan Z. Clinical, biochemical and genetic features with nonclassical 21-hydroxylase deficiency and final height. J Pediatr Endocrinol Metab 2017; 30: 759-766 [PMID: 28672743 DOI: 10.1515/jpem-2017-00088

15 Falhammar H, Nordenström A. Nonclassic congenital adrenal hyperplasia due to 21-hydroxylase deficiency: clinical presentation, diagnosis, treatment, and outcome. Endocrine 2015; 50: 32-50 [PMID: 26082286 DOI: 10.1007/s12020-015-0656-0

16 Maciel-Guerra AT, Guerra G Jr, Marini SH, Matias Baptista MT, Marques-de-Faria AP. Female pseudohermaphroditism due to classical 21-hydroxylase deficiency in a girl with Turner syndrome. Clin Genet 1997; 51: 351-353 [PMID: 9212186 DOI: 10.1111/j.1399-0004.1997.tb02487.x]

17 Atabek ME, Kurtoglu S, Keskin M. Female pseudohermaphroditism due to classical 21-hydroxylase deficiency and insulin resistance in a girl with Turner syndrome. Turk J Pediatr 2005; 47: 176-179 [PMID: 16052861]

18 del Arbol JL, Soto Más JA, Fernández-Abril JA, Raya Muñoz J, Martínez Tormo F, Gómez Rodriguez J, Gómez Capilla JA, Peña Yáñez A. [Turner syndrome caused by deletion of the long arm of the X chromosome associated with adrenogenital syndrome caused by partial deficiency of 21-hydroxylase]. Rev ClinExp 1983; 171: 67-71 [PMID: 6606831]

19 Montemayor-Jauregui MC, Ulloa-Gregori AO, Flores-Briseño GA. Associated adrenogenital and Turner's syndrome mosaicism. Plast Reconstr Surg 1985; 75: 877-881 [PMID: 4001208 DOI: 10.1097/00006699.1997.00006534-198506000-00021]

20 Cohen MA, Sauer MV, Lindheim SR. 21-hydroxylase deficiency and Turner's syndrome: a reason for diminished endometrial receptivity. Fertil Steril 1999; 72: 937-939 [PMID: 10561003 DOI: 10.1016/s0015-0282(99)00378-7]

21 Larizza D, Cuccia M, Martinetti M, Maghnie M, Dondi E, Salvaneschi L, Severi F. Adrenocorticotropic stimulation and HLA polymorphisms suggest a high frequency of heterozygosity for steroid 21-hydroxylase deficiency in patients with Turner's syndrome and their families. Clin Endocrinol (Oxf) 1994; 40: 39-45 [PMID: 8306479 DOI: 10.1111/j.1365-2265.1994.tb02441.x]

22 Jia HY, Sun SY, Chen YH, Yang ZW, Zhang J, Qi Y, Zhang YW, Wang WQ, Ning G. A case of 21-hydroxylase deficiency in Turner's syndrome and literature review. Zhonghua Neifenmi Daise Zachi 2017; 33: 760-764 [DOI: 10.3760/cma.j.issn.1000-6699.2017.09.011]

23 Kendirci HN, Aycan Z, Çetinkaya S, Baş VN, Ağlaşo֞ğlu SY, Önder A. A rare combination: congenital adrenal hyperplasia due to 21 hydroxylase deficiency and Turner syndrome. J Clin Res Pediatr Endocrinol 2012; 4: 213-215 [PMID: 23261864 DOI: 10.4274/jrpe.767]

24 Lee KF, Chan AO, Fok JM, Mak MW, Yu KC, Lee KM, Shek CC. Late presentation of simple virilising 21-hydroxylase deficiency in a Chinese woman with Turner's syndrome. Hong Kong Med J 2013; 19: 268-271 [PMID: 23732434 DOI: 10.12809/hkmj133717]

25 Fu R, Lu L, Jiang J, Nie M, Wang X, Lu Z. A case report of pedigree of a homozygous mutation of the steroidogenic acute regulatory protein causing lipid congenital adrenal hyperplasia. Medicine (Baltimore) 2017; 96: e6994 [PMID: 28538409 DOI: 10.1097/MD.0000000000006994]

26 New MI, Abraham M, Gonzalez B, Dunic M, Razzaghy-Azar M, Chiatayat D, Sun L, Zaidi M, Wilson RC, Yuen T. Genotype-phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proc Natl Acad Sci USA 2013; 110: 2611-2616 [PMID: 23359698 DOI: 10.1073/pnas.1300057110]

27 Linglart A, Cabrol S, Berlier P, Stuckens C, Wagner K, de Kerndanet M, Límoni C, Carel JC, Chausain JL; French Collaborative Young Turner Study Group. Growth hormone treatment before the age of 4 years prevents short stature in young girls with Turner syndrome. Eur J Endocrinol 2011; 164: 891-897 [PMID: 21396400 DOI: 10.1530/EJE-10-1046]

28 Moura-Massari VO, Bugano DD, Marcondes JA, Gomes LG, Mendonca BB, Bachega TA. CYP21A2 genotypes do not predict the severity of hyperandrogeneric manifestations in the nonclassical form of congenital adrenal hyperplasia. Horm Metab Res 2013; 45: 301-307 [PMID: 23322511 DOI: 10.1055/s-0033-1330007]

29 Hersmus R, Stoop H, Turbitt E, Oosterhuis JW, Drop SL, Sinclair AH, White SJ, Looijenga LH. SRY mutation analysis by next generation (deep) sequencing in a cohort of chromosomal Disorders of Sex Development (DSD) patients with a mosaic karyotype. BMC Med Genet 2012; 13: 108 [PMID: 23157850 DOI: 10.1186/1471-2350-13-108]
