Non-periodic geodesic ball packings to infinite regular prism tilings in $\tilde{\text{SL}}_2\mathbb{R}$ space

Jenő Szirmai
Budapest University of Technology and Economics Institute of Mathematics,
Department of Geometry
Budapest, P. O. Box: 91, H-1521
szirmai@math.bme.hu

Abstract

In [14] we defined and described the regular infinite or bounded p-gonal prism tilings in $\tilde{\text{SL}}_2\mathbb{R}$ space. We proved that there exist infinitely many regular infinite p-gonal face-to-face prism tilings $T_p(q)$ and infinitely many regular bounded p-gonal non-face-to-face prism tilings $T_p(q)$ for integer parameters p, q; $3 \leq p, \frac{2p}{p-2} < q$. Moreover, in [5] and [7] we have determined the symmetry group of $T_p(q)$ via its index 2 rotational subgroup, denoted by $pq2_1$ and investigated the corresponding geodesic and translation ball packings.

In this paper we study the structure of the regular infinite or bounded p-gonal prism tilings, prove that the side curves of their base figures are arcs of Euclidean circles for each parameter. Moreover, we examine the non-periodic geodesic ball packings of congruent regular non-periodic prism tilings derived from the regular infinite p-gonal face-to-face prism tilings.

*Mathematics Subject Classification 2010: 52C17, 52C22, 52B15, 53A35, 51M20.
Key words and phrases: Thurston geometries, $\tilde{\text{SL}}_2\mathbb{R}$ geometry, density of ball packing, regular prism tiling, non-periodic geodesic ball packing.
\(T_p^q(q) \) in \(\widetilde{\text{SL}_2}\mathbb{R} \) geometry. We develop a procedure to determine the densities of the above non-periodic optimal geodesic ball packings and apply this algorithm to them. We look for those parameters \(p \) and \(q \) above, where the packing density large enough as possible. Now, we obtain larger density \(\approx 0.626606 \) for \((p, q) = (29, 3)\) then the maximal density of the corresponding periodical geodesic ball packings under the groups \(pq2^1 \).

In our work we will use the projective model of \(\widetilde{\text{SL}_2}\mathbb{R} \) introduced by E. Molnár in [2].

1 Basic notions

The real \(2 \times 2 \) matrices \(\begin{pmatrix} d & b \\ c & a \end{pmatrix} \) with unit determinant \(ad - bc = 1 \) constitute a Lie transformation group by the usual product operation, taken to act on row matrices as on point coordinates on the right as follows

\[
(z^0, z^1) \begin{pmatrix} d & b \\ c & a \end{pmatrix} = (z^0 d + z^1 c, z^0 b + z^1 a) = (w^0, w^1)
\]

with \(w = \frac{w^1}{w^0} = \frac{b + \frac{z^1 a}{d + \frac{z^1 c}{b}}}{d + \frac{z^1 c}{b}} = \frac{b + za}{d + zc}. \)

as action on the complex projective line \(\mathbb{C}^\infty \) (see [2], [3]). This group is a 3-dimensional manifold, because of its 3 independent real coordinates and with its usual neighbourhood topology ([9], [16], [8]). In order to model the above structure in the projective sphere \(\mathcal{P}S^3 \) and in the projective space \(\mathcal{P}^3 \) (see [2]), we introduce the new projective coordinates \((x^0, x^1, x^2, x^3)\) where \(a := x^0 + x^3, b := x^1 + x^2, c := -x^1 + x^2, d := x^0 - x^3 \) with the positive, then the non-zero multiplicative equivalence as projective freedom in \(\mathcal{P}S^3 \) and in \(\mathcal{P}^3 \), respectively. Then it follows that \(0 > bc - ad = -x^0 x^0 - x^1 x^1 + x^2 x^2 + x^3 x^3 \) describes the interior of the above one-sheeted hyperboloid solid \(\mathcal{H} \) in the usual Euclidean coordinate simplex with the origin \(E_0(1; 0; 0; 0) \) and the ideal points of the axes \(E_1^\infty(0; 1; 0; 0), E_2^\infty(0; 0; 1; 0), E_3^\infty(0; 0; 0; 1) \). We consider the collineation group \(\text{G}_s \) that acts on the projective sphere \(\mathcal{S} \mathcal{P}^3 \) and preserves a polarity i.e. a scalar product of signature \((- + +)\), this group leaves the one sheeted hyperboloid solid \(\mathcal{H} \) invariant. We have to choose an appropriate subgroup \(\text{G}_s \) of \(\text{G}_s \) as isometry group, then the universal covering group and space \(\widetilde{\mathcal{H}} \) of \(\mathcal{H} \) will be the hyperboloid model of \(\widetilde{\text{SL}_2}\mathbb{R} \) [2].
The specific isometries \(S(\phi) \) \((\phi \in \mathbb{R}) \) constitute a one parameter group given by the matrices:

\[
S(\phi) : (s^j_i(\phi)) = \begin{pmatrix}
\cos \phi & \sin \phi & 0 & 0 \\
-\sin \phi & \cos \phi & 0 & 0 \\
0 & 0 & \cos \phi & -\sin \phi \\
0 & 0 & \sin \phi & \cos \phi
\end{pmatrix}
\] \hspace{1cm} (1.2)

The elements of \(S(\phi) \) are the so-called fibre translations. We obtain a unique fibre line to each \(X(x^0; x^1; x^2; x^3) \in \widetilde{\mathcal{H}} \) as the orbit by right action of \(S(\phi) \) on \(X \). The coordinates of points lying on the fibre line through \(X \) can be expressed as the images of \(X \) by \(S(\phi) \):

\[
(x^0; x^1; x^2; x^3) \overset{S(\phi)}{\longrightarrow} (x^0 \cos \phi - x^1 \sin \phi; x^0 \sin \phi + x^1 \cos \phi; \\
x^2 \cos \phi + x^3 \sin \phi; -x^2 \sin \phi + x^3 \cos \phi).
\] \hspace{1cm} (1.3)

The points of a fibre line through \(X \) by usual inhomogeneous Euclidean coordinates \(x = \frac{x^1}{x^0}, y = \frac{x^2}{x^0}, z = \frac{x^3}{x^0}, x^0 \neq 0 \) are given by

\[
(1; x; y; z) \overset{S(\phi)}{\longrightarrow} \left(1; \frac{x + \tan \phi}{1 - x \tan \phi}; \frac{y + z \tan \phi}{1 - x \tan \phi}; \frac{z - y \tan \phi}{1 - x \tan \phi}\right)
\] \hspace{1cm} (1.4)

for the projective space \(\mathbb{P}^3 \), where ideal points (at infinity) conventionally occur.

In (1.3) and (1.4) we can see the \(2\pi \) periodicity of \(\phi \), moreover the (logical) extension to \(\phi \in \mathbb{R} \), as real parameter, to have the universal covers \(\widetilde{\mathcal{H}} \) and \(\widetilde{\text{SL}_2}\mathbb{R} \), respectively, through the projective sphere \(\mathbb{P}S^3 \). The elements of the isometry group of \(\text{SL}_2\mathbb{R} \) (and so by the above extension the isometries of \(\widetilde{\text{SL}_2}\mathbb{R} \)) can be described by the matrix \((a^j_i)\) (see [2] and [3]). Moreover, we have the projective proportionality, of course. We define the translation group \(G_T \), as a subgroup of the isometry group of \(\text{SL}_2\mathbb{R} \), the isometries acting transitively on the points of \(\mathcal{H} \) and by the above extension on the points of \(\widetilde{\text{SL}_2}\mathbb{R} \) and \(\widetilde{\mathcal{H}} \). \(G_T \) maps the origin \(E_0(1; 0; 0; 0) \) onto \(X(x^0; x^1; x^2; x^3) \). These isometries and their inverses (up to a positive determinant factor) can be given by the following matrices:

\[
T : (t^j_i) = \begin{pmatrix}
x^0 & x^1 & x^2 & x^3 \\
-x^1 & x^0 & x^3 & -x^2 \\
x^2 & x^3 & x^0 & x^1 \\
x^3 & -x^2 & -x^1 & x^0
\end{pmatrix}.
\] \hspace{1cm} (1.5)
The rotation about the fibre line through the origin $E_0(1; 0; 0; 0)$ by angle ω ($-\pi < \omega \leq \pi$) can be expressed by the following matrix (see [2])

$$R_{E_0}(\omega) : \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \omega & \sin \omega \\ 0 & 0 & -\sin \omega & \cos \omega \end{pmatrix},$$ \quad (1.6)

and the rotation $R_X(\omega)$ about the fibre line through $X(x^0; x^1; x^2; x^3)$ by angle ω can be derived by formulas (1.5) and (1.6):

$$R_X(\omega) = T^{-1} R_{E_0}(\omega) T : \begin{pmatrix} r^j_i(X, \omega) \end{pmatrix}.$$ \quad (1.7)

Horizontal intersection of the hyperboloid solid H with the plane E_0E_∞ provides the hyperbolic H^2 base plane of the model $\tilde{H} = \tilde{\text{SL}_2}\mathbb{R}$. The fibre through X intersects the base plane $z^1 = x = 0$ in the foot point

$$Z(z^0 = x^0x^0 + x^1x^1; z^1 = 0; z^2 = x^0x^2 - x^1x^3; z^3 = x^0x^3 + x^1x^2).$$ \quad (1.8)

We introduce a so-called hyperboloid parametrization by [2] as follows

$$x^0 = \cosh r \cos \phi, \quad x^1 = \cosh r \sin \phi, \quad x^2 = \sinh r \cos (\theta - \phi), \quad x^3 = \sinh r \sin (\theta - \phi),$$ \quad (1.9)

where (r, θ) are the polar coordinates of the base plane and ϕ is just the fibre coordinate. We note that

$$-x^0x^0 - x^1x^1 + x^2x^2 + x^3x^3 = -\cosh^2 r + \sinh^2 r = -1 < 0.$$

The inhomogeneous coordinates corresponding to (1.9), that play an important role in the later visualization of prism tilings in E^3, are given by

$$x = \frac{x^1}{x^0} = \tan \phi, \quad y = \frac{x^2}{x^0} = \tanh r \frac{\cos (\theta - \phi)}{\cos \phi}, \quad z = \frac{x^3}{x^0} = \tanh r \frac{\sin (\theta - \phi)}{\cos \phi}.$$ \quad (1.10)

1.1 Geodesic balls in $\tilde{\text{SL}_2}\mathbb{R}$

Definition 1.1 The distance $d(P_1, P_2)$ between the points P_1 and P_2 is defined by the arc length of the geodesic curve from P_1 to P_2.
Definition 1.2 The geodesic sphere of radius ρ (denoted by $S_{P_1}(\rho)$) with the center in point P_1 is defined as the set of all points P_2 with the condition $d(P_1, P_2) = \rho$. Moreover, we require that the geodesic sphere is a simply connected surface without selfintersection.

Definition 1.3 The body of the geodesic sphere of centre P_1 and with radius ρ is called geodesic ball, denoted by $B_{P_1}(\rho)$, i.e., $Q \in B_{P_1}(\rho)$ iff $0 \leq d(P_1, Q) \leq \rho$.

From [5] it follows that $S(\rho)$ is a simply connected surface in E^3 and $\widetilde{\text{SL}_2}\mathbb{R}$, respectively, if $\rho \in [0, \frac{\pi}{2})$. If $\rho \geq \frac{\pi}{2}$ then the universal cover should be discussed. Therefore, we consider geodesic spheres and balls only with radii $\rho \in [0, \frac{\pi}{2})$ in the following.

1.2 The volume of a geodesic ball

The volume formula of the geodesic ball $B(\rho)$ follows from the metric tensor g_{ij} (see [5]). We obtain the connection between the hyperboloid coordinates (r, θ, ϕ) and the geographical coordinates (s, λ, α) in a standard way. Therefore, the volume of the geodesic ball of radius ρ can be computed by the following

Theorem 1.1

\[\text{Vol}(B(\rho)) = \int_B \frac{1}{2} \sinh(2r) \, dr \, d\theta \, d\phi = \]

\[= 4\pi \int_0^\rho \int_0^{\pi/2} \frac{1}{2} \sinh(2r(s, \alpha)) \lvert J_1 \rvert \, d\alpha \, ds \]

\[+ 4\pi \int_0^\rho \int_{\pi/2}^{\pi} \frac{1}{2} \sinh(2r(s, \alpha)) \lvert J_2 \rvert \, d\alpha \, ds \]

where $\lvert J_1 \rvert = \left| \frac{\partial r}{\partial s} \frac{\partial r}{\partial \alpha} - \frac{\partial \theta}{\partial s} \frac{\partial \alpha}{\partial \alpha} \right|$ and similarly $\lvert J_2 \rvert$ (by Table 1 and $\frac{\partial \theta}{\partial \lambda} = 1$) are the corresponding Jacobians.

The complicated formulas above need numerical approximations by computer.

1.3 Regular bounded periodic prism tilings and their space groups $pq2_1$

In [14] we have defined and described the regular prisms and prism tilings with a space group class $\Gamma = pq2_1$ of $\widetilde{\text{SL}_2}\mathbb{R}$. These will be summarized in this section.
Definition 1.4 Let \mathcal{P}^i be an infinite solid that is bounded by certain surfaces that can be determined (in [14]) by ,,side fibre lines” passing through the vertices of a regular p-gon \mathcal{P}^b lying in the base plane. The images of solids \mathcal{P}^i by $\widetilde{\text{SL}}_2\mathbb{R}$ isometries are called infinite regular p-sided prisms. Here regular means that the side surfaces are congruent to each other under rotations about a fiber line (e.g. through the origin).

The common part of \mathcal{P}^i with the base plane is the base figure of \mathcal{P}^i that is denoted by \mathcal{P} and its vertices coincide with the vertices of \mathcal{P}^b, but \mathcal{P} is not assumed to be a polygon.

Definition 1.5 A bounded regular p-sided prism is analogously defined if the face of the base figure \mathcal{P} and its translated copy \mathcal{P}^t, under a fibre translation by (1.2) and so (1.3), are also introduced. The faces \mathcal{P} and \mathcal{P}^t are called cover faces.

We consider regular prism tilings $\mathcal{T}_p(q)$ by prisms $\mathcal{P}_p(q)$ where q pieces regularly meet at each side edge by q-rotation.

The following theorem has been proved in [14]:

Theorem 1.2 There exist regular bounded not face-to-face prism tilings $\mathcal{T}_p(q)$ in $\widetilde{\text{SL}}_2\mathbb{R}$ for each $3 \leq p \in \mathbb{N}$ where $\frac{2p}{p-2} < q \in \mathbb{N}$.

We assume that the prism $\mathcal{P}_p(q)$ is a topological polyhedron having at each vertex one p-gonal cover face (it is not a polygon at all) and two skew quadrangles which lie on certain side surfaces in the model. Let $\mathcal{P}_p(q)$ be one of the tiles of $\mathcal{T}_p(q)$, \mathcal{P}^b is centered in the origin with vertices $A_1A_2A_3 \ldots A_p$ in the base plane (Fig. 1 and 2). It is clear that the side curves $c_{A_iA_{i+1}}$ ($i = 1 \ldots p, A_{p+1} \equiv A_1$) of the base figure are derived from each other by $\frac{2\pi}{p}$ rotation about the vertical x axis, so there are congruent in $\widetilde{\text{SL}}_2\mathbb{R}$ sense. The corresponding vertices $B_1B_2B_3 \ldots B_p$ are generated by a fibre translation τ given by (1.3) with parameter $0 < \Phi \in \mathbb{R}$. The fibre lines through the vertices A_iB_i are denoted by f_i, $i = 1, \ldots, p$ and the fibre line through the “midpoint” H of the curve $c_{A_1A_p}$ is denoted by f_0. This f_0 will be a half-screw axis as follows below.

The tiling $\mathcal{T}_p(q)$ is generated by a discrete isometry group $\Gamma_p(q) = pq2_1 \subset Isom(\widetilde{\text{SL}}_2\mathbb{R})$ which is given by its fundamental domain $A_1A_2OA_1^aA_2^bO^s$ a topological polyhedron and the group presentation (see Fig. 1 and 4 for details):

$$pq2_1 = \{a, b, s : a^p = b^q = asa^{-1}s^{-1} = babs^{-1} = 1\} = \{a, b : a^p = b^q = ababa^{-1}b^{-1}a^{-1}b^{-1} = 1\}.$$ (1.12)
Here a is a p-rotation about the fibre line through the origin (x axis), b is a q-rotation about the fibre line through A_1 and $s = bab$ is a screw motion $s: OA_1A_2 \rightarrow O^sB_pB_1$. All these can be obtained by formulas (1.5) and (1.6). Then we get that $abab = baba =: \tau$ is a fibre translation. Then ab is a 2_1 half-screw motion about $f_0 = HH^\tau$ (look at Fig. 1) that also determines the fibre translation τ above. This group in (3.1) surprisingly occurred in § 6 of our paper [6] at double links $K_{p,q}$. The coordinates of the vertices $A_1A_2A_3\ldots A_p$ of the base figure and the corresponding vertices $B_1B_2B_3\ldots B_p$ of the cover face can be computed for all given parameters p, q by

$$\tanh(OA_1) = b := \sqrt{\frac{1 - \tan \frac{\pi}{p} \tan \frac{\pi}{q}}{1 + \tan \frac{\pi}{q} \tan \frac{\pi}{q}}}.$$ (1.13)

1.4 The volume of the bounded regular prisms

The volume formula of a sector-like 3-dimensional domain $Vol(D(\Psi))$ can standardly be computed by the metric tensor g_{ij} (see [5]), in hyperboloid coordinates. This defined by the base figure D lying in the base plane and by fibre translation τ given by (1.3) with the height parameter Ψ.

Figure 1: The regular prism $P_p(q)$ and the fundamental domain of the space group $pq2_1$
Theorem 1.3 Suppose we are given a sector-like region \(D \), so a continuous function \(r = r(\theta) \) where the radius \(r \) depends upon the polar angle \(\theta \). The volume of domain \(D(\Psi) \) is derived by the following integral:

\[
\text{Vol}(D(\Psi)) = \int_D \frac{1}{2} \sinh(2r(\theta)) dr \, d\theta \, d\psi = \\
= \int_0^\Psi \int_{\theta_1}^{\theta_2} \int_0^{r(\theta)} \frac{1}{2} \sinh(2r(\theta)) \, dr \, d\theta \, d\psi = \Psi \int_{\theta_1}^{\theta_2} \frac{1}{4} (\cosh(2r(\theta)) - 1) \, d\theta.
\]

(1.14)

\(\mathcal{P}_p(q) \) be an arbitrary bounded regular prism. We get the following

Theorem 1.4 The volume of the bounded regular prism \(\mathcal{P}_p(q) \) \((3 \leq p \in \mathbb{N}, \frac{2p}{p-2} < q \in \mathbb{N}) \) can be computed by the following simple formula:

\[
\text{Vol}(\mathcal{P}_p(q)) = \text{Vol}(D(p, q, \Psi)) \cdot p,
\]

where \(\text{Vol}(D(p, q, \Psi)) \) is the volume of the sector-like 3-dimensional domain that is given by the sector region \(OA_1A_2 \subset \mathcal{P} \) (see Fig. 1 and 3) and by \(\Psi \) the \(\widehat{\text{SL}_2 \mathbb{R}} \) height of the prism, depending on \(p, q \).

Figure 2: Regular infinite 4-gonal prism \(\mathcal{P}_{4}^4(6) \) of the infinite regular prism tiling \(\mathcal{T}_{4}^4(6) \)
2 Regular infinite prism tilings and non-periodic ball packings

2.1 Infinite regular prism tilings

In this subsection we study the regular infinite prism tilings $T_p^i(q)$. Let $T_p(q)$ be a regular prism tiling and let $P_p(q)$ be one of its tiles which is given by its base figure P that is centered at the origin K with vertices $G_1G_2G_3...G_p$ in the base plane of the model and the corresponding vertices $A_1A_2A_3...A_p$ and $B_1B_2B_3...B_p$ are generated by fibre translations $-\tau$ and τ given by (1.3) with parameter $\Psi = \frac{\pi}{2} - \frac{\pi}{p} - \frac{\pi}{q}$. The images of the topological polyhedron $P_p(q)$ by the translations $\langle \tau \rangle$ form an infinite prism $P_i^p(q)$ (see Definitions 1. 4-5).

![Image of a prism tiling]

Figure 3: The maximal radius $\rho^{opt}(K)$ and the optimal half prism $A_1A_2A_3G_1G_2G_3$ with optimal half sphere for parameters $p = 3$, $q = 7$ with the maximal radius.

The construction of the bounded prism tilings follows that rotations through $\omega = \frac{2\pi}{q}$ about the fibre lines f_i maps the corresponding side face onto the neighbouring one. Therefore, we have got the following (see [14]):

Theorem 2.1 There exist regular infinite face-to-face prism tilings $T_p^i(q)$ for integer parameters p, q where $3 \leq p$, $\frac{2p}{p-2} < q$.

For example, we have described $P_i^3(6)$ with its base polygon in Fig. 2, where the parameter $b = \sqrt{6} - \sqrt{2}$.
2.2 Non-periodic geodesic ball packings

We consider a infinite regular prism tiling $T_p^i(q)$ and let $P_p^i(q)$ one of its tiles with base figure P centered at the origin with vertices $G_1G_2\ldots G_p$ in the base plane of the model. Let B_K^opt be the geodesic ball with center at the origin K that touches the side surfaces of the infinite regular prism $P_p^i(q)$. The radius of the ball B_K^opt is denoted by ρ_K^opt. Moreover, we define the regular prism $P_p^\text{opt}(q) = A_1A_2\ldots A_pB_1B_2\ldots B_p$ with base figur P and with cover faces $A_1A_2\ldots A_p$ and $B_1B_2\ldots B_p$ touching B_K^opt. It is clear, that the height $h_p^\text{opt}(q)$ of $P_p^\text{opt}(q)$ is $2\rho_K^\text{opt}$.

The images of $P_p^\text{opt}(q)$ by the fibre translations $\langle \tau \rangle$ where $h_p^\text{opt}(q) = |\tau| = 2\rho_K^\text{opt}(K)$ cover the infinite regular prism $P_p^i(q)$ and by the structure of the infinite prism tilings follows that rotations through $\omega = \frac{2\pi}{q}$ about the fibre lines f_i maps the corresponding side face onto the neighbouring one and thus the images of $P_p^\text{opt}(q)$ fill the $\text{SL}_2\mathbb{R}$ space without overlap. These tilings are denoted by $T_p^\alpha(q)$.

The height $h_p^\text{opt}(q)$ of the prism $P_p^\text{opt}(q)$ is not equal to $\pi - \frac{2\pi}{p} - \frac{2\pi}{q}$ so the corresponding regular prism tiling is non-periodic. We note here, that there are infinitely many non-periodic prism tilings derived from $T_p^\alpha(q)$.

For the density of the packing it is sufficient to relate the volume of the optimal ball to that of the solid $P_p^\text{opt}(q)$. The density of the optimal ball packing of the prism tiling $T_p^\alpha(q)$ ($3 \leq p$, $\frac{2p}{p-2} < q$, integer parameters) can be computed by the following formula:

$$\delta_p^\text{opt}(q) := \frac{\text{Vol}(B_K^\text{opt})}{\text{Vol}(P_p^\text{opt}(q))}.$$

In order to determine the optimal radius $\rho_K^\text{opt}(K)$ we will use the following Lemmas. The equation of the side curve $c_{G_1G_2}$ is derived as the foot points (see (1.3) and (1.8)) of the corresponding fibre lines ($3 \leq p$, $\frac{2p}{p-2} < q$, where p and q are integer parameters):

Lemma 2.2 The parametric equation of the side curve $c_{G_1G_2}$ of the base figur P
Figure 4: The optimal prism $A_1A_2A_3B_1B_2B_3$ with optimal sphere for parameters $p = 3, q = 7$ with the maximal radius $\rho^{opt}(K)$

is

$$c^2(t) = 0, \sqrt{\sin\left(\frac{2\pi}{p} + \frac{2\pi}{q}\right)} \left(t \cos\left(\frac{2\pi}{p}\right) \sin^2\left(\frac{\pi}{p} + \frac{\pi}{q}\right) - \frac{t}{2} \sin\left(\frac{2\pi}{p}\right) \sin\left(\frac{2\pi}{p} + \frac{2\pi}{q}\right) + \\
\sin^2\left(\frac{\pi}{p} + \frac{\pi}{q}\right) (1 - t) + t^2 \cos\left(\frac{\pi}{p} + \frac{\pi}{q}\right) \cos\left(\frac{\pi}{p} - \frac{\pi}{q}\right) \right) / \\
\left(\sqrt{\sin\left(\frac{2\pi}{p}\right) + \sin\left(\frac{2\pi}{q}\right)} \left(\sin^2\left(\frac{\pi}{p} + \frac{\pi}{q}\right) + t^2 \cos^2\left(\frac{\pi}{p} + \frac{\pi}{q}\right) \right) \right).$$

(2.1)

The side curves c_{Gi+1} ($i = 1 \ldots p, G_{p+1} \equiv G_1$) of the base figure are derived from each other by $\frac{2\pi}{p}$ rotation about the vertical x axis, so there are congruent and their curvatures are equal in $\widehat{SL_2\mathbb{R}}$ sense. Moreover, the above side curves are congruent also in Euclidean sense, therefore their curvatures are equal in Euclidean sense, as well. We obtain by the usual machinery of the differential geometry the next
Lemma 2.3 The curvature $C_p(q)$ of the side curves $c_{G_iG_{i+1}} (i = 1 \ldots p, G_{p+1} \equiv G_1)$ in the Euclidean sense is

$$C_p(q) = \sqrt{\frac{\cos \left(\frac{\pi}{p} + \frac{\pi}{q} \right) \left(\sin \left(\frac{2\pi}{p} \right) + \sin \left(\frac{2\pi}{q} \right) \right)}{\sin \left(\frac{\pi}{p} + \frac{\pi}{q} \right) \left(1 - \cos \left(\frac{2\pi}{p} \right) \right)}}$$

(2.2)

therefore, the side curves $c_{G_iG_{i+1}} (i = 1 \ldots p, G_{p+1} \equiv G_1)$ are Euclidean circular arcs of radius $r^q_p = \frac{1}{C_p(q)}$.

Remark 2.1

1. It is easy to see, that the asymptotic behaviour of $C_p(q)$ is the following: $\lim_{q \to \infty}(C_p(q)) = \cot \left(\frac{\pi}{p} \right)$, $\lim_{p \to \infty}(C_p(q)) = \infty$.

2. Given a point off of a line, if we drop a perpendicular to the above line from the given point, then x is the distance along this perpendicular segment, and let $\phi = \Pi(x)$ is the least angle such that the line drawn through the point at that angle does not intersect the given line. The angle ϕ is the angle of parallelism. By the famous formel of J. Bolyai follows, that $\log(\cot(\phi)) = x$. Therefore, if we denote the distance of parallelism of the angle ϕ by $\Lambda(\phi)$ then $\log \left(\lim_{q \to \infty}(C_p(q)) \right) = \log \left(\cot \left(\frac{\pi}{p} \right) \right) = \Lambda \left(\frac{\pi}{p} \right)$.

In the Table 1 we have collected some values of the radii of curvature r^q_3 of the side curve $c_{G_1G_2}$ of the base figur P.

| Table 1 |
|-----------------|-----------------|-----------------|-----------------|
| (p, q) | $(3, 7)$ | $(3, 8)$ | $(3, 10)$ | $(3, 1000)$ |
| $C_p(q)$ | 0.286926 | 0.371579 | 0.453885 | 0.577339 |
| r^q_3 | 3.485219 | 2.691215 | 2.203203 | 1.732085 |

The maximal radius $\rho_{\text{opt}}(K)$ of the balls B_{K}^{opt} can be determined using the above Lemmas for all possible parameters as the distance between the origin and $c_{G_1G_2}$. The volumes $\text{Vol}(B_{K}^{\text{opt}})$ can be computed by the Theorem 1.3 and the volumes of the prisms $P_{p}^{\text{opt}}(q)$ can be determined by the Theorem 1.4.

The above locally densest geodesic ball packings can be determined for all regular prism tilings $T_p^n(q)$ (p, q as above). We have summarized in the following Tables some results to tilings $T_p^n(q)$.

\((p, q)\)	\(\rho^{\text{opt}}(K)\)	\(\text{Vol}(B^{\text{opt}}_K)\)	\(\text{Vol}(P^{\text{opt}}_p(q))\)	\(\delta^{\text{opt}}_p(q)\)
(3, 7)	0.141564	0.011963	0.031767	0.376592
(3, 8)	0.181760	0.025431	0.071377	0.356287
(3, 10)	0.219795	0.045198	0.138101	0.327281
(3, 1000)	0.274648	0.088981	0.428828	0.207499
(4, 5)	0.265319	0.080085	0.166705	0.480397
(4, 6)	0.329239	0.154965	0.344779	0.449464
(4, 10)	0.404230	0.292043	0.761956	0.383280
(4, 1000)	0.440683	0.382228	1.378910	0.277196
(5, 4)	0.313435	0.133256	0.246171	0.541312
(5, 5)	0.421241	0.332010	0.661684	0.501765
(5, 10)	0.530638	0.686600	1.667047	0.411866
(5, 1000)	0.562086	0.825191	2.639937	0.312580
(6, 4)	0.440687	0.382237	0.692229	0.552183
(6, 5)	0.530638	0.686600	1.333638	0.514833
(6, 10)	0.629251	1.188024	2.767592	0.429263
(6, 1000)	0.658476	1.377893	4.124915	0.334042
(7, 3)	0.272637	0.087010	0.142753	0.609513
(7, 4)	0.535202	0.705586	1.261041	0.559527
(7, 5)	0.617496	1.117400	2.133913	0.523639
(7, 10)	0.710652	1.772033	4.018646	0.440953
(7, 1000)	0.738668	2.015812	5.785244	0.348440
(8, 3)	0.382143	0.245334	0.400179	0.613062
(8, 4)	0.612113	1.086117	1.923010	0.564800
(8, 5)	0.690221	1.608804	3.035751	0.529953
(8, 10)	0.780165	2.422804	5.392115	0.449324
(8, 1000)	0.807443	2.722797	7.589676	0.358750
(p, q)	$\rho_{opt}(K)$	$Vol(B_{opt}^K)$	$Vol(P_{opt}^q(p))$	$\delta_{opt}^p(q)$
---------	----------------	-----------------	-------------------	-----------------
(10, 3)	0.530638	0.686600	1.111365	0.617799
(20, 3)	0.914848	4.195479	6.706186	0.625613
(20, 4)	1.094612	8.023914	13.755306	0.583332
(20, 5)	1.163424	10.092704	18.275027	0.552268
(20, 10)	1.245625	13.132701	27.392724	0.479423
(20,1000)	1.271043	14.216772	35.858024	0.396474
(28, 3)	1.088398	7.855861	12.537440	0.626592
(29, 3)	1.106311	**8.348310**	**13.323054**	**0.626606**
(30, 3)	1.123593	8.847342	14.119487	0.626605
(35, 3)	1.201914	11.432334	18.250297	0.626419
(40, 3)	1.269482	14.148085	22.599777	0.626028
(52, 3)	1.401728	21.089811	33.761388	0.624673
(72, 3)	1.565173	33.642710	54.088487	0.621994

Remark 2.2
1. The best density that we found ≈ 0.626606 for parameters $p = 29, q = 3$ that is larger then the maximal density of the corresponding periodical geodesic ball packings under the groups $pq\mathbb{Z}_1$.

2. The problems of finding the densest geodesic and translation ball packings in the Thurston geometries are timely (see e.g. [4], [10], [11], [12], [13]).

References

[1] Böröczky, K. – Florian, A. Über die dichteste Kugelpackung im hyperbolischen Raum, *Acta Math. Hung.*, (1964) 15, 237–245.
Molnár, E. The projective interpretation of the eight 3-dimensional homogeneous geometries. *Beitr. Algebra Geom.*, **38** (1997) No. 2, 261–288.

Molnár, E. – Szirmai, J. Symmetries in the 8 homogeneous 3 geometries. *Symmetry Cult. Sci.*, **21/1-3** (2010), 87-117.

Molnár, E. – Szirmai, J. Classification of Sol lattices. *Geom. Dedicata*, **161/1** (2012), 251-275, DOI: 10.1007/s10711-012-9705-5.

Molnár, E. – Szirmai, J. Volumes and geodesic ball packings to the regular prism tilings in $\tilde{\text{SL}}_2\mathbb{R}$ space. *Publ. Math. Debrecen*, (to appear) (2014).

Molnár, E. – Szirmai, J. – Vesnin, A. Projective metric realizations of cone-manifolds with singularities along 2-bridge knots and links. *J. Geometry*, **95** (2009), 91-133.

Molnár, E. – Szirmai, J. – Vesnin, A. Packings by translation balls in $\tilde{\text{SL}}_2\mathbb{R}$. *J. Geometry*, (to appear) (2014), DOI: 10.1007/s00022-013-0207-x.

Ratcliffe, J. G. *Foundations of hyperbolic manifolds*, (2nd ed.). Graduate Texts in Mathematics 149. New York, NY: Springer., (2006).

Scott, P. The geometries of 3-manifolds. *Bull. London Math. Soc.*, **15** (1983) 401–487.

Szirmai, J. The densest geodesic ball packing by a type of Nil lattices. *Beitr. Algebra Geom.*, **48(2)** (2007) 383–398.

Szirmai, J. Geodesic ball packing in $\mathbb{S}^2 \times \mathbb{R}$ space for generalized Coxeter space groups. *Beitr. Algebra Geom.*, **52(2)** (2011), 413–430.

Szirmai, J. Geodesic ball packing in $\mathbb{H}^2 \times \mathbb{R}$ space for generalized Coxeter space groups. *Math. Commun.*, **17/1** (2012), 151-170.

Szirmai, J. Lattice-like translation ball packings in Nil space. *Publ. Math. Debrecen*, **80/3-4** (2012), 427–440 DOI: 10.5486/PMD.2012.5117.
[14] Szirmai, J. Regular prism tilings in $\text{SL}_2\mathbb{R}$ space. *Aequat. Math.*, (to appear) (2014), DOI 10.1007/s00010-013-0221-y.

[15] Szirmai, J. A candidate to the densest packing with equal balls in the Thurston geometries. *Beitr. Algebra Geom.*, (to appear) (2014), DOI 10.1007/s13366-013-0158-2.

[16] Thurston, W. P. (and Levy, S. editor) *Three-Dimensional Geometry and Topology*. Princeton University Press, Princeton, New Jersey, Vol. 1 (1997).