Reclassification of the polyphyletic genus *Prosthecomicrobium* to form two novel genera, *Vasilyevaea* gen. nov. and *Bauldia* gen. nov. with four new combinations: *Vasilyevaea enhydra* comb. nov., *Vasilyevaea mishustinii* comb. nov., *Bauldia consociata* comb. nov. and *Bauldia litoralis* comb. nov.

Benjamin Yee,1,2 Gary E. Oertli,1 John A. Fuerst2 and James T. Staley1

1Department of Microbiology, University of Washington, Seattle, WA 98193, USA
2School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia

Species of the genus *Prosthecomicrobium* are noted for their numerous cellular appendages or prosthecae that extend from the cells. This investigation confirms that the genus is polyphyletic based on an extensive analysis of the 16S rRNA gene sequences of several named species of the genus. The analyses indicate that some *Prosthecomicrobium* species are more closely related to non-prosthecate genera, including *Devosia*, *Labrenzia*, *Blastochloris*, *Methylosinus*, *Mesorhizobium* and *Kaistia*, than they are to other species of the genus *Prosthecomicrobium*. For this reason, two of the *Prosthecomicrobium* clades which are polyphyletic with the type species, *Prosthecomicrobium pneumaticum*, are renamed as new genera. The currently named species *Prosthecomicrobium enhydrum*, *Prosthecomicrobium mishustinii*, *Prosthecomicrobium consociatum* and *Prosthecomicrobium litoralum* are reclassified in two new genera, *Vasilyevaea* gen. nov. and *Bauldia* gen. nov. with four new combinations: *Vasilyevaea enhydra* comb. nov. (the type species) and *Vasilyevaea mishustinii* comb. nov., and *Bauldia consociata* comb. nov. and *Bauldia litoralis* comb. nov. (the type species). The type strain of *Vasilyevaea enhydra* is strain 9bT (=ATCC 23634T =VKM B-1376T). The type strain of the other species in this genus is *Vasilyevaea mishustinii* strain 17T (=VKM B-2499T =CCM 7569T). The type strain of *Bauldia litoralis* is strain 524-16T (=NCIB 2233T =ATCC 35022T). The type strain of the other species in this genus is *Bauldia consociata* strain 11T (=VKM B-2498T =CCM 7594T).

Bacteria of the genus *Prosthecomicrobium*, which is a member of the class *Alphaproteobacteria*, reproduce by budding and produce several cellular appendages or prosthecae that extend from each cell in all directions. They were first described from isolates obtained from fresh water (Staley, 1968). Subsequently, other species were reported that were isolated from various other habitats including soil (Vasil’eva et al., 1974), pulp mill aeration ponds, and brackish and marine water (Stanley et al., 1979; Bauld et al., 1983; Schlesner et al., 1989). Species with validly published names include *Prosthecomicrobium pneumaticum*, *P. enhydrum* (Staley, 1968), *P. litoralum* (Bauld et al., 1983), *P. hirschii* (Staley, 1984), *P. mishustinii* and *P. consociatum* (Lafitskaya et al., 1976; Vasil’eva et al., 1991). The names of the latter two species were recently validly published (Vasil’eva et al., 2009).

The primary phenotypic, differentiating features among species of the genus *Prosthecomicrobium* are morphological, in particular the number and length of the prosthecae and whether or not cells are motile. Other differentiating features among species of these aerobic bacteria are colony pigmentation, carbon source utilization and presence of gas vesicles.

Phylogenetic analyses of 16S rRNA genes of strains representing species of the genus *Prosthecomicrobium* have revealed the polyphyletic nature of the group, which forms several independent clusters within the class *Alphaproteobacteria* (Schlesner et al., 1989; Oertli et al., 2006). Furthermore, chemotaxonomic analysis of fatty
acids, in which three identified type species were included, also indicated that at least five distinct subgroups exist within the current genus *Prosthecomicrobium* (Sittig & Schlesner, 1993). The reason for the polyphyly is not understood; however, two explanations are possible. First, the genes that are responsible for the formation of prosthecae may be ancestral to the family that contains these bacteria. Then, through evolution, some of the genera and species lost these genes whereas others retained them. Alternatively, one could postulate that genetic exchange has occurred in which the genes responsible for prosthecae formation were transferred from one prosthecate species to another closely related, non-prosthecate species through horizontal gene transfer. Perhaps the genome sequences of several representative prosthecate and non-prosthecate species in this group will aid in resolving this issue.

Until now, no attempt has been made to reclassify the genus *Prosthecomicrobium* to reflect its polyphyletic nature. In this paper, we report the results we have obtained from further comparative phenotypic and phylogenetic analyses. Based on these findings, we propose the reclassification of several species of the genus *Prosthecomicrobium* into two new genera.

16S rRNA gene reference sequences were selected from representatives of different orders within the class **Alphaproteobacteria**. These were then compared to 16S rRNA gene sequences of the various species of the genus *Prosthecomicrobium* including all type strains (Oertli et al., 2006) as well as others from the RNA database (Cole et al., 2003). The sequence match tool within the RDP-II website was used to identify the sequences for alignment based on best matches. Sequence alignment for phylogenetic tree reconstruction was performed using the NAST (Nearest Alignment Space Termination; DeSantis et al., 2006) function available at the Greengenes website (http://greengenes.lbl.gov) (DeSantis et al., 2006) and the alignment was also subjected to Lane masking (Lane, 1991) of ambiguous sites using the column masking tool available at the Greengenes website.

Phylogenetic trees were reconstructed using TreeFinder (Jobb et al., 2004) by applying the substitution model of GTR + I + G, the optimal substitution model selected by Modelgenerator (Keane et al., 2006). A maximum-likelihood tree was reconstructed using TreeFinder (Jobb et al., 2004). Distance and maximum-parsimony trees were reconstructed using the **PHYLIP** package (Felsenstein, 2007). Bootstrap analysis was performed using 1000 replicates for all trees. Similarity values were calculated using **PHYLIP**.

The 16S rRNA gene sequence tree of the genus *Prosthecomicrobium* and those genera and species to which it is most closely related illustrates its polyphyletic nature (Fig. 1). It is noteworthy that the type species of the genus, *Prosthecomicrobium pneumaticum*, the only known gas vacuolate species in the genus, is clustered with only one other strain, *Prosthecomicrobium* sp. ATCC 27835, to which it has 99% sequence similarity. These two strains are separated from the other named species of the genus *Prosthecomicrobium* by the genera *Methylosinus*, Blastochloris and *Kaistia* within the class **Alphaproteobacteria**. Therefore, *P. pneumaticum* is more closely related to the methanoxidizing bacteria *Methylosinus trichosporium* and *Methylcystis echinoides* (Whittenbury et al., 1970) and the phototrophic bacterial genus *Blastochloris* (Keppen & Golenko, 1975; Hiraishi, 1997) than it is to other species of the genus *Prosthecomicrobium*.

There is strong bootstrap support in Fig. 1 (>75% at the primary and secondary nodes of the trees) for the clustering of the other species of the genus *Prosthecomicrobium* with other genera and separate from the type species *P. pneumaticum*. Therefore, this is the basis for the reclassification of several described species of the genus *Prosthecomicrobium* into new genera.

Consider the described species *P. enhydrum* and *P. mishustinii* that form an isolated group with *Devisia neptuniae* (Fig. 1). The phylogenetic difference between this cluster and *P. pneumaticum* is illustrated by a comparison of *P. pneumaticum* and *P. enhydrum*, which share only 93.3% 16S rRNA gene sequence similarity (data not shown). Furthermore, these two species have different phospholipids and fatty acids (Sittig & Schlesner, 1993). For example, the phospholipids of *P. pneumaticum* include large amounts of phosphatidylglycerol, phosphatidylethanolamine and phosphatidyltrimethylethanolamine with lower amounts of bisphosphatidylglycerol whereas *P. enhydrum* contains only phosphatidylglycerol and bisphosphatidylglycerol (Sittig & Schlesner, 1993). Since *P. enhydrum* and *P. mishustinii* are clustered independently of *P. pneumaticum*, we propose a new genus, *Vasilyevaea* gen. nov., with two species, *Vasilyevaea enhydrum* comb. nov. and *Vasilyevaea mishustinii* comb. nov., for this novel cluster. It should be noted that although these two species are quite closely related to one another with 98.9% 16S rRNA gene sequence similarity, they are separate species based upon DNA hybridization analyses (Vasil’eva et al., 1991).

Similarly, *P. litoralum* and *P. consociatum* (with 97.1% 16S rRNA gene sequence similarity between them) form a clade that is separate from the type species *P. pneumaticum*, with which they have only 93.7% and 94.4% rRNA gene sequence similarity, respectively, as well as from *Vasilyevaea enhydrum* comb. nov. and other clusters containing members of the genus *Prosthecomicrobium*. A new genus is therefore proposed for this group of prosthecate bacteria, *Baudlia* gen. nov., with two species, *Baudlia litoralis* comb. nov. and *Baudlia consociata* comb. nov.

Prosthecomicrobium hirschii strains also cluster in separate clade away from *P. pneumaticum* and other species of the genus *Prosthecomicrobium*. This prosthecate species has a life cycle with two different morphological stages that distinguishes it from all other *Prosthecomicrobium* species (Staley, 1984). This species should also be reclassified in a new genus (G. E. Oertli & J. T. Staley, unpublished).
In addition to prostheca formation, another major feature that distinguishes the genus *Prosthecomicrobium* as well as the two newly proposed genera, *Vasilyevaea* gen. nov. and *Bauldia* gen. nov., from the other non-prosthecate genera is reproduction by budding (Table 1). Also, some of the non-prosthecate genera that are closely related to the genera *Prosthecomicrobium*, *Vasilyevaea* gen. nov. and *Bauldia* gen. nov. are phototrophs (*Blastochloris*) whereas others are methanotrophs (*Methylocystis* and *Methylosinus*), nitrogen fixers (*Mesorhizobium*) or are simply non-budding, non-prosthecate heterotrophic bacteria (*Kaistia*, *Devosia* and *Labrenzia*) (Table 2).

Species of the genera *Vasilyevaea* gen. nov. and *Bauldia* gen. nov. can be differentiated from the genus *Prosthecomicrobium pneumaticum* by their lack of gas vesicles. Species of the genus *Bauldia* gen. nov. differ from those of the genus *Vasilyevaea* gen. nov. and from *Prosthecomicrobium pneumaticum* by their ability to use methanol as a sole carbon source. Colonies of species belonging to the genus *Vasilyevaea* are typically pigmented whereas those of *Prosthecomicrobium pneumaticum* and species of the genus *Bauldia* are white or grey (Table 2). Individual species within the two new genera can be readily differentiated on the basis of phenotypic properties such as agar digestion, motility, fatty acid composition and carbon source utilization (Tables 2 and 3).

Therefore, both phylogenetic and phenotypic properties of this group of closely related genera support the proposed reclassification. A description of the two new genera follows.

Description of Vasilyevaea gen. nov.

Vasilyevaea (Va.sil’ye.vae.a. N.L. fem. n. *Vasilyevaea* of Vasilyeva, named in honour of Lina Vasilyeva, a Russian microbiologist who has dedicated her career to the investigation of prostheteate bacteria and has named several new genera within this group).
Gram-negative, budding, prosthecate bacteria with numerous short appendages, less than 1 μm in length, that cover the cell surface. Aerobic and heterotrophic. Use a variety of carbon sources including sugars and sugar alcohols for growth. Cells may be pigmented. Organisms are found in fresh water or soils. DNA G+C content

Table 1. Differentiation of the genus *Prosthecomicrobium* from closely related genera

Genera: 1, *Prosthecomicrobium*; 2, *Vasilyevaea* gen. nov.; 3, *Bauldia* gen. nov.; 4, *Devosia*; 5, *Labrenzia*; 6, *Methylosinus* and *Methylcystis*; 7, *Blastochloris*; 8, *Mesorhizobium*; 9, *Kaistia*. +, Positive; −, negative.

Characteristic	1	2	3	4	5	6	7	8	9
Prosthecate	+	+	+	−	−	−	−	−	−
Budding division	+	+	+	−	−	−	−	−	−
Gas vesicles	+	−	−	−	−	−	−	−	−
Phototrophic	−	−	−	−	−	+	−	−	−
Methanotrophic	−	−	−	−	+	−	−	−	−
Nitrogen fixation	−	−	−	−	−	−	−	−	+
DNA G+C content (mol%)	69–70	63–66	66–69	61–62	56–60	61–67	66–72	59–64	67–68

*Features listed are for the type species of the genus *Prosthecomicrobium* only.*

Table 2. Selected characteristics of *Vasilyevaea enhydra* comb. nov. and *V. mishustinii* comb. nov. in comparison with the closely related species *Devosia neptuniae* and *Mesorhizobium mediterraneum*

Species: 1, *Vasilyevaea enhydra* comb. nov. (data from this study; fatty acid data from Sittig & Schlesner, 1993); 2, *V. mishustinii* comb. nov. (this study); 3, *D. neptuniae* (Rivas et al., 2003; fatty acid data from Yoon et al., 2007); 4, *M. mediterraneum* (Nour et al., 1994; fatty acid data from Tighe et al., 2000). Universal fatty acid nomenclature is used; data not provided if less than 0.2 % for a known fatty acid. +, Positive; −, negative; ±, indefinite; ND, no data available; NA, not applicable.

Characteristic	1	2	3	4
Cell shape	Irregular	Thick rods	Rods	Rods
Presence of prosthecae	+	+	−	−
Prostheca length (μm)	0.5	<0.65	NA	NA
Motility	+	−	+	+
Gas vacuoles	−	−	−	−
Carbon source				
D-Glucose	+	+	+	+
Maltose	+	+	+	+
Lactose	+	−	ND	ND
Sorbitol	−	−	ND	+
Mannitol	−	+	+	+
Malate	+	+	+	+
Pyruvate	+	±	ND	+
Methanol	−	−	ND	ND
Non-hydroxy fatty acids (%)	15.1	ND	25.6	10.3
C16:0	0.3	ND	−	1.7
iso-C17:0	−	ND	−	4.2
C17:0 cyclo	−	ND	2.6	0.9
C18:0	5.0	ND	6.7	4.2
C18:1ω7t	50.5	ND	21.6	36*
11-Methyl C18:1ω6	26.9	ND	−	−
11-Methyl C18:1ω7t	−	ND	−	5.6
C19:0 cyclo ω8c	−	ND	7.8	33.4
DNA G+C content (mol%)	66	64–65	62–64	63–64
Colony colour	White; yellow; red	Yellow–orange	Pearl white	Opaque

Summed feature 7 of Tighe et al. (2000) that contains C18:1ω7cω9t/ω12t and/or C18:1ω7cω9cω12t.
(mol%) ranges from 63 to 66. The type species is Vasilyevaea enhydra.

Description of Vasilyevaea enhydra comb. nov.

Vasilyevaea enhydra (en.hy’dra N.L. adj. enhydra living in water, aquatic).

Basonym: Prosthecomicrobium enhydrum Staley 1968.

Characteristics are as described by Staley (1968) and Oertli et al. (2006). In addition, this species contains phosphatidylglycerol and bisphosphatidylglycerol (Sittig & Schlesner, 1993). The DNA G+C content of the type strain is 65.8 mol% (buoyant density).

The type strain is strain 9bT (ATCC 23634T =VKM B-1376T).

Description of Vasilyevaea mishustinii comb. nov.

Vasilyevaea mishustinii (mi.shu.sti’ni.i. N.L. masc. gen. n. mishustinii of Mishustin, named in honour of E. N. Mishustin, a noted Russian soil microbiologist).

Basonym: Prosthecomicrobium mishustinii Vasil’eva et al. 2009.

Characteristics are as described by Vasil’eva et al. (1991). Cells are thick, short rods, 0.6–1.2 µm in diameter and 0.8–1.5 µm in length. Cells are unicellular or paired. Non-motile. Prosthecae are from 0.2 to 0.65 µm in length. Cells reproduce by budding. Cells are aerobic and catalase- and oxidase-positive. Uses many mono- and disaccharides and sugar alcohols, some organic acids as well as amino acids as energy sources for growth. Yeast extract or B-vitamins are required for growth. Optimum growth temperature range is 28 to 30°C at neutral pH. Colonies are yellowish-orange, have an entire margin and a thick consistency so that they can be removed from agar medium. Colony variants lacking pigment may be produced. Widespread in soil, manure and other organically enriched habitats. The DNA G+C content of the type strain is 63.7–65.2 mol% (Tm).

The type strain is strain 17T (VKM B-2499T =CCM 7569T).

Description of Bauldia gen. nov.

Bauldia (Baul’di.a. N.L. fem. n. Bauldia of Bauld, named in honour of John Bauld, an Australian microbiologist who isolated, investigated and named members of the genus Prosthecomicrobium and Planctomyces maris).

Gram-negative, budding prosthecate bacteria with numerous short appendages, less than 0.65 µm in length, extending from the cell surface. Aerobic and heterotrophic. Various carbon sources can be used for growth including

Table 3. Selected characteristics of Bauldia litoralis comb. nov. and **Bauldia consociata** comb. nov. in comparison with those of closely related species

Characteristic	1	2	3	4	5	6
Cell shape	Rods	Rods	Rods	Rods	Ovoid	Rods
Presence of prosthecae	+	+	+	–	–	–
Prostheca length (µm)	<1	<0.25	<1	NA	NA	NA
Motility	–	–	–	–	+	+
Exospores	–	–	–	–	–	+
Gas vacuoles	–	–	–	–	+	–
Carbon source						
D-Glucose	+	+	+	+	+	–
Maltose	+	–	+	+	+	–
Lactose	+	+	+	+	ND	–
Mannitol	+	+	+	–	–	ND
Sorbitol	+	–	+	+	+	–
Malate	+	–	–	–	+	–
Propionate	–	–	–	–	–	ND
Pyruvate	+	–	–	ND	–	–
Methanol	+	±	–	ND	–	+
Methane	ND	ND	ND	ND	ND	+
Agar digestion	+	–	–	–	–	–
DNA G+C content (mol%)	66–67	66–69	69–70	67.4	67.8–68.4	62–63
Colony colour	White	Grey	White	Ivory	Olive green	White–Yellow

Inhibited by high concentrations.

Table 3. Selected characteristics of Bauldia litoralis comb. nov. and Bauldia consociata comb. nov. in comparison with those of closely related species

Species: 1, Bauldia litoralis comb. nov.; 2, Bauldia consociata comb. nov.; 3, Prosthecomicrobium pneumaticum; 4, Kaistia adipata (data from Im et al., 2004); 5, Blastochloris sulfpiridis (Keppen and Gorlenko, 1975); 6, Methylosinus trichosporium (Whittenbury et al., 1970). +, Positive; –, negative; ±, indefinite; ND, no data available; NA, not applicable.
some mono- and disaccharides and organic acids. Found in brackish water and soil habitats. DNA G+C content (mol%) is 66 to 69. The type species is \textit{Bauldia litoralis}.

Description of \textit{Bauldia litoralis} comb. nov.

\textit{Bauldia litoralis} (l.i.to.\textit{ra’lis}. L. fem. adj. \textit{litoralis} living in water, aquatic).

Basonym: \textit{Prosthecomicrobium litoralum} Bauld \textit{et al.} 1983.

Characteristics are as described by Bauld \textit{et al.} (1983). The DNA G+C content of the type strain is 66–67 mol% (buoyant density).

The type strain is strain 524-16T (=NCIB 2233T = ATCC 35022T).

Description of \textit{Bauldia consociata} comb. nov.

\textit{Bauldia consociata} (con.so.cia’a.ta. L. part. fem. adj. \textit{con-sociata} associated, intended to mean living in a community).

Basonym: \textit{Prosthecomicrobium consociatum} Vasil’eva \textit{et al.} 2009.

Characteristics are as described by Vasil’eva \textit{et al.} (1991). Cells are short, thick rods, 0.5–1.0 \textmu m in diameter and 0.8–1.35 \textmu m in length. Prosthecae are 0.2 to 0.25 \textmu m in length and arranged in five rows along cells. End view of cells shows a five-pointed star. Non-motile. Reproduce by budding. Aerobic and catalase- and oxidase-positive. Chemoheterotrophic. Uses some monosaccharides as carbon and energy sources for growth. Does not hydrolyse cellulose or other polysaccharides. Some sugar alcohols, organic acids of the TCA cycle and methanol and methyamine can be used as carbon sources. Yeast extract or B-vitamins are required for growth. Optimum growth temperature is 28–30 °C at neutral pH. Colonies are small (up to 1 mm in diameter) and grey with an entire margin. Widespread in soil habitats and compost where cellulolytic activity is high. The DNA G+C content of the type strain is 66.0–68.5 mol% (\textit{Tm})

The type strain is strain 11T (=VKM B-2498T = CCM 7594T).

Acknowledgements

The authors wish to thank J. P. Euzéby for his advice on the proper nomenclature and A. Ventosa and H. Christensen for their editorial assistance. In addition, the authors are grateful to Dow AgroSciences for partial support to enable B.Y. to conduct this research. B.Y. is participating in a University of Washington–University of Queensland graduate student exchange program. G. E. O. was supported in part by the University of Washington Developmental Biology Training Grant National Institutes of Health Training Grant T32HD007183-25.

References

Bauld, J., Bigford, R. & Staley, J. T. (1983). \textit{Prosthecomicrobium litoralum}, a new species from marine habitats. \textit{Int J Syst Bacteriol} 33, 613–617.

Cole, J. R., Chai, B., Marsh, T. L., Farris, R. J., Wang, Q., Kula, S. A., Chandra, S., McGarrell, D. M., Schmidt, T. M. \& other authors (2003). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. \textit{Nucleic Acids Res} 31, 442–443.

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rohas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P. \& Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. \textit{Appl Environ Microbiol} 72, 5069–5072.

Felsenstein, J. (2007). \textit{PHYLIP} (phylogeny inference package) version 3.67. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA. http://evolution.genetics.washington.edu/phylip.html

Hiraishi, A. (1997). Transfer of the bacteriochlorophyll b-containing phototrophic bacteria \textit{Rhodopseudomonas viridis} and \textit{Rhodopseudomonas sulfoviridis} to the genus \textit{Blastochloris} gen. nov. \textit{Int J Syst Bacteriol} 47, 217–219.

Im, W.-T., Yokota, A., Kim, M.-K. \& Lee, S.-T. (2004). \textit{Kastia adipata} gen. nov., sp. nov., a novel \textit{x-proteobacterium}. \textit{J Gen Appl Microbiol} 50, 249–254.

Jebb, G., von Haeseler, A. \& Strimmer, K. (2004). \textit{TREEFINDER}: a powerful graphical analysis environment for molecular phylogenetics. \textit{BMC Evol Biol} 4, 18.

Keane, T. M., Creevey, C. J., Pentyon, M. M., Naughton, T. J. \& Mcinerney, J. O. (2006). Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. \textit{BMC Evol Biol} 6, 29.

Keppen, O. I. \& Gorlenko, V. M. (1975). Characteristics of a new species of budding purple bacteria containing bacteriochlorophyll b. \textit{Microbiologiya} 44, 258–264 (in Russian).

Lafitskaya, T. N., Vasil’eva, L. V., Krasilnikova, E. N. \& Alexandrushkina, N. I. (1976). \textit{Physiology of Prosthecomicrobium polyphoridum}. Izv Akad Nauk SSSR Ser Biol 6, 849–857 (in Russian).

Lane, D. J. (1991). 16S/23S rDNA sequencing. In \textit{Nucleic Acid Techniques in Bacterial Systematics}, pp. 115–175. Edited by E. Stackebrandt \& M. Goodfellow. Chichester: Wiley.

Nour, S. M., Cleyet-Marel, J. C., Beck, D., Effosse, A. \& Fernandez, M. P. (1994). Genotypic and phenotypic diversity of \textit{Rhizobium} isolated from chickpea (\textit{Cicer arietinum} L.). \textit{Can J Microbiol} 40, 345–354.

Oertli, G. E., Jenkins, C., Ward, N., Rainey, F., Stackebrandt, E. \& Staley, J. T. (2006). The Genera \textit{Prosthecomicrobium} and \textit{Ancalomicrobium}. In \textit{The Prokaryotes: a Handbook on the Biology of Bacteria}, 3rd edn, vol. 5, pp. 65–71. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer \& E. Stackebrandt. New York: Springer.

Rivas, R., Willems, A., Subba-Rao, N. S., Mateos, P. F., Dazzo, F. B., Kroppenstedt, R. M., Martinez-Molina, E., Gillis, M. \& Velázquez, E. (2003). Description of \textit{Devisia neptuniae} sp. nov. that nodulates and fixes nitrogen in symbiosis with \textit{Neptunia natans}, an aquatic legume from India. \textit{Syst Appl Microbiol} 26, 47–53.

Schlesner, H., Kath, T., Fischer, A. \& Stackebrandt, E. (1989). Studies on the phylogenetic position of \textit{Prosthecomicrobium pneuman}ticum, \textit{Prosthecomicrobium enhydrum}, \textit{Ancalomicrobium adetum}, and various \textit{Prosthecomicrobium}-like bacteria. \textit{Syst Appl Microbiol} 12, 150–155.

Sittig, M. \& Schlesner, H. (1993). Chemotaxonomic investigation of various prosthetece and/or budding bacteria. \textit{Syst Appl Microbiol} 16, 92–103.

Staley, J. T. (1968). \textit{Prosthecomicrobium} and \textit{Ancalomicrobium}: new prosthetece freshwater bacteria. \textit{J Bacteriol} 95, 1921–1942.
Staley, J. T. (1984). Prosthecomicrobium hirschii, a new species in a redefined genus. *Int J Syst Bacteriol* 34, 304–308.

Stanley, P. M., Ordal, E. J. & Staley, J. T. (1979). High numbers of prosthecate bacteria in pulp mill waste aeration lagoons. *Appl Environ Microbiol* 37, 1007–1011.

Tighe, S. W., de Lajudie, P., Dipietro, K., Lindström, K., Nick, G. & Jarvis, B. D. W. (2000). Analysis of cellular fatty acids and phenotypic relationships of *Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium* and *Sinorhizobium* species using the Sherlock microbial identification system. *Int J Syst Evol Microbiol* 50, 787–801.

Vasil'eva, L. V., Lafitskaya, T. N., Aleksandrushkina, N. I. & Krasilnikova, E. N. (1974). Physiologo-biochemical peculiarities of prosthecobacteria *Stella humosa* and *Prosthecomicrobium* sp. *Izv Akad Nauk SSSR Ser Biol* 5, 699–714 (in Russian).

Vasil'eva, L. V., Semenov, A. M. & Giniyatullina, A. I. (1991). A new species of soil bacteria of the genus *Prosthecomicrobium*. *Microbiology (English translation of Mikrobiologiya)* 60, 243–250.

Vasil'eva, L. V., Semenov, A. M. & Giniyatullina, A. I. (2009). *Prosthecomicrobium consociatum* sp. nov. and *Prosthecomicrobium mishustini* sp. nov. In *List of New Names and New Combinations Previously Effectively, but not Validly, Published*, Validation List no. 127. *Int J Syst Evol Microbiol* 59, 923–925.

Whittenbury, R., Phillips, K. C. & Wilkinson, J. F. (1970). Enrichment, isolation and some properties of methane-utilizing bacteria. *J Gen Microbiol* 61, 205–218.

Yoon, J.-H., Kang, S.-J., Park, S. & Oh, T.-K. (2007). *Devosia insulae* sp. nov., isolated from soil, and emended description of the genus *Devosia*. *Int J Syst Evol Microbiol* 57, 1310–1314.