Changing patterns of urologic emergency visits and admissions during the COVID-19 pandemic: a retrospective, multicenter, nationwide study

Pawel Rajwa1, Mikolaj Przydacz2, Wojciech Krajewski3, Blazej Kuffel4, Piotr Zapala5, Aleksandra Krzywon6, Alexander J. Cortez6, Bartosz Dybowski7, Remigiusz Stamirowski8, Marcin Jarzemska9, Rafal B. Drobot10, Pawel Stelmach11,12, Krystyna Mlynarek13, Mateusz Marcinek14, Maciej Przudzik15, Wiktor Krawczyk8, Jakub Ryszawy1, Dominik Choragwicki2, Lukasz Zapala2, Marcin Lipa15, Michal Pozniak4, Dawid Janczak11,12, Szymon Słomian13, Jan Taszkiewicz1, Marcel Nowak14, Marcin Miszczyk16, Marek Roslan15, Michal Tkocz14, Romuald Zdrojowy1, Andrzej Potyka13, Tomasz Szydełko11,12, Tomasz Drewa1, Piotr Jarzemski6, Piotr Radziszewski2, Marcin Slojewski9, Artur Antoniewicz15, Andrzej Paradyż1, Piotr L. Chlosta2

Abstract

Introduction: We aimed to examine the change in the number and severity of visits to the emergency departments (EDs) and subsequent admissions for urgent urologic conditions in the early stage of the coronavirus disease 2019 (COVID-19) pandemic in Poland.

Material and methods: We evaluated data from 13 urologic centers in Poland and compared the number of visits to the EDs and subsequent admis-
sions before and after the advent of COVID-19 in 2020, and before and after the escalating national restrictions. Furthermore, data on types of urologic complaints, crucial laboratory parameters, and post-admission procedures were analyzed.

Results: In total, 1,696 and 2,187 urologic visits (22.45% decrease) and 387 and 439 urologic urgent admissions (11.85% decrease) were reported in given periods in 2020 and 2019, respectively. The year-over-year difference in daily mean visits was clear (36.1 vs. 46.5; p < 0.001). Declines were seen in all complaints but device malfunction. In 2020 daily mean visits and admissions decreased from 40.9 and 9.6 before lockdowns to 30.9 (p < 0.001) and 6.9 (p = 0.001) after severe restrictions, respectively. There was a trend towards more negative laboratory parameter profiles in 2020, with patients who visited the EDs after severe restrictions having twice as high median levels of C-reactive protein (15.39 vs. 7.84, p = 0.03).

Conclusions: The observed declines in ED visits and admissions were apparent with the significant effect of national lockdowns. Our results indicate that some of the patients requiring urgent medical help did not appear at the ED or came later than they would have done before the pandemic, presenting with more severe complaints.

Key words: coronavirus, COVID-19, urology, emergency, admissions, visits.

Introduction

The pandemic of coronavirus disease 2019 (COVID-19) has had a tremendous impact on healthcare utilization worldwide, including drastically reduced patient care-seeking for medical emergencies unrelated to COVID-19. In China, Italy, the UK, and the US, initial reports suggest a decrease in visits to emergency departments (EDs) and admissions for urgent cardiac and neurological conditions [1–5]. In Italy and Portugal, there is also evidence of a decrease in ED visits and admissions for urgent urologic conditions but mostly reported in studies of a single center or a short duration [6–10].

Poland, a Central European country of 38 million people, had an initial peak of 475 COVID-19 cases on April 5, 2020 and saw its healthcare infrastructure generally less disrupted by the surge of COVID-19 cases than many other countries. However, in the early stage of the pandemic, because healthcare resources must be preserved and nosocomial and community transmission must be limited [11], the Polish National Health Fund (obligatory public insurance) and other major healthcare organizations recommended postponing routine and elective procedures [12, 13], and the Polish government introduced an initial national lockdown on March 14, 2020 and additional severe restrictions on March 25, 2020 [14, 15]. In detail, from March 14, 2020 shopping malls, sports centers, bars, cinemas, and libraries were closed. Public gatherings of 50 or more people were banned. The most severe restrictions (e.g., bans on non-essential movements outside the home and gatherings of more than two people) were applied from March 25, 2020. Nevertheless, many urgent urologic conditions, such as gross hematuria, urinary retention, and acute scrotum, require prompt interventions and if untreated can lead to serious morbidity and mortality. Patients with such conditions must seek care even during the COVID-19 era.

In this retrospective, multicenter, nationwide study, we aim to examine the change in the number and severity of visits to the ED and subsequent admissions for urgent urologic conditions in the early stage of the COVID-19 pandemic in Poland. We hypothesize that the number of visits to the ED and subsequent admissions decreased with increased severity of reported conditions.

Material and methods

In this retrospective, multicenter, nationwide study, we analyzed all emergency visits and admissions for urologic complaints at 13 urologic centers in Poland. All of the EDs in the study provided 24-hour urology service. We compared (1) the number of visits to the ED and subsequent admissions and (2) the laboratory patterns of urologic conditions for these visits and admissions before and after the advent of COVID-19 in 2020 and before and after the state of epidemic threat (initial national lockdown) in Poland on March 14, 2020, and after the most severe restrictions as implemented on March 25, 2020. The specific period of COVID-19 in this study was from February 29, 2020 to April 15, 2020 (2 weeks before to 1 month after the initial national lockdown); a pre-COVID-19 reference period was selected as from February 28, 2019 to April 15, 2019 (Figure 1).

Due to heterogeneity in coding systems across institutions, we categorized urologic conditions into eight major groups by author consensus based on initial patient complaints, brief case descriptions, and reported the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) codes: renal colic, hematuria, urinary retention, urinary tract infection (UTI), device (urinary drainage tube) malfunction (e.g., nephrostomy tube dislocation, urinary catheter obstruction), acute scrotum, trauma, and others. We additionally collected patients’ demographic and laboratory data, includ-
ing C-reactive protein (CRP), hemoglobin (HGB), serum creatinine, and white blood count (WBC). Of note, because one center was transformed into a dedicated COVID-19 hospital on March 19, 2020, we censored data collected from this center (n = 81) up to March 18, 2019, and March 18, 2020 and did not include this center in analyzing the number of emergency visits and admissions before and after the lockdowns.

Statistical analysis
Continuous data are shown as median values with interquartile ranges (IQR) and categorical data are presented as absolute and relative frequencies (percentages), unless otherwise stated. Data were analyzed using nonparametric methods. Differences between two groups were determined using the Mann-Whitney U test. Associations between categorical variables were assessed using the χ^2 test. Two-sided p-values < 0.05 were considered statistically significant. Analyses were carried out using R software package version 4.0.1.

Results
In 47 days prior to April 15 at 13 urologic centers in Poland, we reported 1,696 ED visits for urological complaints in 2020, a 22.5% decrease from 2,187 in 2019, and 387 subsequent admissions in 2020, an 11.8% decrease from 439 in 2019. These changes corresponded to an increase in the admissions-to-ED-visits ratio from 20.1% in 2019 to 22.8% in 2020 (p = 0.04), as presented in Table I. The daily numbers of ED visits and admissions are depicted in Figure 1. Mean daily urology emergency visits decreased from 46.5 (95% confidence interval (CI): 44.0–49.1) visits in 2019 to 36.1 (95% CI: 33.8–38.4) visits in 2020 (p < 0.001). There was also a non-significant decrease in mean admissions from 9.3 (95% CI: 8.5–10.2) in 2019 to 8.2 (95% CI: 7.4–9.1) in 2020 (p = 0.13). Moreover, in 2020, a higher percentage of patients underwent urgent (within 24 h) surgical intervention after admission (72.89% vs. 81.14%, p = 0.006).

In the 1 month after the national lockdown (Table II), we reported 32.8 (95% CI: 30.5–35.1) daily mean ED visits for urological complaints and 7.5 (95% CI: 6.5–8.5) mean subsequent admissions, in comparison to 40.9 (95% CI: 37.6–44.3) and 9.6 (95% CI: 8.2–10.9), respectively, in the 2 weeks before the national lockdown (p < 0.001 and p = 0.014, respectively). The declines were even greater after March 25, 2020 with daily mean visits and admissions decreasing to 30.9 (95% CI: 28.2–33.7) (p < 0.001) and 6.9 (95% CI: 5.7–8.1) (p = 0.007), respectively. Notably, despite a downtrend, no significant differences in visits or admissions were noticed before March 14, 2020 in comparison with the corresponding period (i.e., before March 14, 2019) (Table III). No significant differences in hospital length of stay were noted with a median of 4 days for all analyzed periods.

Urologic complaints reported at EDs were different between 2019 and 2020 (Table I). In our study, there was a year-over-year decrease in the absolute number of visits in renal colic (32%), hematuria (25%), urinary retention (10%), acute scrotum (18%), UTI (36%), and trauma (7%), but device malfunction, which increased by 66% (Table I). Also, consulted patients with device malfunction had higher median levels of creatinine:
Table I. Clinical characteristics of the patients in 2019 and 2020

Parameter	2019	2020	P-value
Admissions/visits ratio	20.10%	22.80%	0.038
Daily mean visits (SD)	46.5 (8.6)	36.1 (7.8)	< 0.001
IRR (95% CI) visits	0.78 (0.73–0.83)		
Daily mean admissions (SD)	9.3 (2.9)	8.2 (2.9)	0.13
IRR (95% CI) admissions	0.88 (0.77–1.01)		
Age (visits) median (IQR)	62 (41–73)	63 (44–74)	0.642
Sex (male)	69.45%	70.82%	0.406
Diagnosis			0.001
Renal colic	658 (34.31%)	449 (29.52%)	
Hematuria	306 (15.95%)	229 (15.06%)	
Urinary retention	206 (10.74%)	186 (12.23%)	
Acute scrotum	157 (8.19%)	128 (8.42%)	
UTI	253 (13.19%)	163 (10.72%)	
Device malfunction	119 (6.20%)	198 (13.02%)	
Trauma	28 (1.46%)	26 (1.71%)	
Others	191 (9.96%)	142 (9.34%)	
Laboratory parameters (visits):			
CRP [ng/ml]	10.00 (2.09–56.83)	11.19 (2.00–86.46)	0.171
HGB [g/dl]	13.37 (11.90–14.60)	13.21 (11.50–14.70)	0.452
WBC [K/µl]	10.08 (7.70–13.30)	10.30 (8.12–13.50)	0.161
sCR [µmol/l]	91.50 (75.14–123.76)	94.59 (73.37–126.85)	0.526
Laboratory parameters (admissions):			
CRP [ng/ml]	36.50 (6.25–123.55)	46.00 (6.87–144.12)	0.144
HGB [g/dl]	12.60 (11.00–13.86)	12.41 (10.63–14.10)	0.608
WBC [K/µl]	10.40 (7.70–14.00)	11.00 (8.32–14.10)	0.196
sCR [µmol/l]	106.08 (79.67–150.28)	106.04 (78.17–159.12)	0.724
Urgent intervention after admission	320 (72.89%)	314 (81.14%)	0.006
Type of intervention:			0.866
Endoscopic	185 (57.81%)	170 (53.50%)	
Open	39 (12.19%)	46 (14.65%)	
Percutaneous	85 (26.56%)	94 (29.62%)	
Others	9 (2.81%)	6 (1.91%)	
Hospitalization [days]	4.00 (2.00–7.00)	4.00 (2.00–7.00)	0.283

Continuous variables are presented as median (interquartile range). Dichotomous variables are presented as percentages. CI – confidence interval, CRP – C-reactive protein, HGB – hemoglobin, IRR – incidence rate ratio, IQR – interquartile range, sCR – serum creatinine, SD – standard deviation, UTI – urinary tract infection, WBC – white blood count.
Table II. Clinical characteristics of the patients before lockdowns, after March 14th 2020 and after March 25th, 2020

Parameter	Before March 14, 2020	After March 14, 2020	After March 25, 2020	P-value*	P-value*
Admissions/visits ratio	23.40%	22.70%	0.76	22.35%	0.66
Daily mean visits (SD)	40.9 (5.8)	32.8 (6.5)	< 0.001	30.9 (6.3)	< 0.001
IRR (95% CI) visits after March 14, 2020	0.8 (0.73–0.89)	0.76 (0.68–0.84)	0.014	6.9 (2.8)	0.007
Daily mean admissions (SD)	9.6 (2.3)	7.5 (2.8)	0.78 (0.63–0.96)	0.72 (0.57–0.91)	
Age (visits)	63 (44.00–73.00)	63 (44.00–75.00)	0.199	64 (45.00–75.00)	0.201
Sex (male)	67.20%	72.54%	0.038	72.28%	0.076
Diagnosis					
Renal colic	167 (33.00%)	275 (28.21%)	159 (25.94%)		
Hematuria	82 (16.21%)	139 (14.26%)	84 (13.70%)		
Urinary retention	53 (10.47%)	127 (13.03%)	82 (13.38%)		
Acute scrotum	39 (7.71%)	82 (8.41%)	53 (8.65%)		
UTI	51 (10.08%)	109 (11.18%)	77 (12.56%)		
Device malfunction	52 (10.28%)	141 (14.46%)	94 (15.33%)		
Trauma	11 (2.17%)	14 (1.44%)	10 (1.63%)		
Others	51 (10.08%)	88 (9.03%)	54 (8.81%)		
Laboratory parameters (visits):					
CRP [ng/ml]	7.84 (1.42–83.98)	13.00 (2.12–88.30)	0.059	15.39 (2.17–91.70)	0.032
HGB [g/dl]	13.21 (11.60–14.73)	13.21 (11.40–14.65)	0.886	13.30 (11.40–14.70)	0.753
WBC [K/µl]	10.05 (8.30–13.05)	10.39 (8.09–13.68)	0.291	10.67 (8.27–13.83)	0.247
sCR [µmol/l]	96.00 (76.91–127.96)	91.60 (72.49–128.05)	0.291	90.17 (72.49–130.83)	0.288
Laboratory parameters (admissions):					
CRP [ng/ml]	45.03 (3.10–137.23)	58.24 (10.60–150.00)	0.103	59.97 (13.14–150.00)	0.099
HGB [g/dl]	12.50 (10.31–14.10)	12.40 (10.80–14.12)	0.696	12.50 (11.00–14.40)	0.320
WBC [K/µl]	11.00 (8.00–14.30)	11.06 (8.49–14.06)	0.805	11.23 (8.44–14.10)	0.199
sCR [µmol/l]	108.73 (79.56–181.22)	102.00 (77.13–148.29)	0.291	99.89 (73.37–150.28)	0.277
Urgent intervention after admission	112 (79.43%)	202 (82.11%)	0.607	128 (84.21%)	0.335
Type of intervention:					
Endoscopic	62 (55.36%)	106 (52.48%)	65 (50.78%)		
Open	19 (16.96%)	27 (13.37%)	20 (15.63%)		
Percutaneous	28 (25.00%)	65 (32.18%)	40 (31.25%)		
Others	3 (2.68%)	3 (1.49%)	3 (2.34%)		
Hospitalization [days]	4.00 (2.00–7.00)	4.00 (2.00–7.00)	0.508	4.00 (2.00–7.00)	0.344

*Compared to the pre-March 14, 2020 period. Continuous variables are presented as median (interquartile range). Dichotomous variables are presented as percentages. CI – confidence interval, CRP – C-reactive protein, HGB – hemoglobin, IRR – incidence rate ratio, IQR – interquartile range, sCR – serum creatinine, SD – standard deviation, UTI – urinary tract infection, WBC – white blood count.
Table III. Comparisons of visits and admissions in 2019 vs. 2020 in periods before March 14th (A), periods from March 14th (B), periods from March 25th (C)

Parameter	28.02–13.03.2019	29.02–13.03.2020	P-value
Daily mean visits	47.1	40.9	0.1
IRR (95% CI)	0.87 (0.78–0.97)		
Daily mean admissions	9.6	9.6	0.91
IRR (95% CI)	0.99 (0.78–1.26)		

Parameter	14.03–15.04.2019	14.03–15.04.2020	P-value
Daily mean visits	45	32.8	< 0.001
IRR (95% CI)	0.73 (0.68–0.79)		
Daily mean admissions	9.1	7.5	0.037
IRR (95% CI)	0.82 (0.69–0.97)		

Parameter	25.03–15.04.2019	25.03–15.04.2020	P-value
Daily mean visits	46.5	30.9	< 0.001
IRR (95% CI)	0.66 (0.6–0.73)		
Daily mean admissions	9.6	6.9	0.001
IRR (95% CI)	0.72 (0.58–0.89)		

CI – confidence interval, IRR – incidence rate ratio.

Discussion

In this study, we report a 22.5% year-over-year decrease in the number of visits to the EDs for urgent urologic conditions after the advent of COVID-19 but a 2.7 percentage points (p.p.) year-over-year increase in the number of the admissions-to-ED-visit ratio. Also, in 2020 there were 20% and 24% decreases in the number of visits to the ED and 22% and 28% decreases in the number of subsequent admissions for urgent urologic conditions after the initial lockdown and after further severe restrictions, respectively. Considering laboratory parameters, there was a trend towards more negative laboratory parameter profiles in 2020 patients (Table I).

Finally, patients visiting the EDs after the lockdowns (Table II) had a higher level of CRP: 7.84 (IQR: 1.42–83.98) before, 13.00 (IQR: 2.12–88.30) after the initial lockdown (p = 0.06), and 15.39 (IQR: 2.17–91.70) after the introduction of severe restrictions (p = 0.03). Importantly, patients admitted after the initial lockdown for renal colic had a significantly higher level of CRP – 32.60 (IQR: 6.75–97.00) compared to patients admitted before the lockdown – 7.77 (IQR: 1.30–83.37) (p = 0.02) (Table V). After the initial lockdown patients consulted due to hematuria had due to hematuria had borderline significantly lower median HGB levels – 11.60 (IQR: 10.10–13.65) compared to patients visiting the EDs before the initial lockdown – 12.70 (IQR: 10.90–14.40) (p = 0.05).

To our knowledge, we present the largest, multi-center, nationwide study delineating urologic ED visits and urgent admissions during the COVID-19 era, with the subsequent impact of escalating national lockdowns. Furthermore, our study is the first one that has directly aimed to examine the impact of the pandemic on patients visiting the EDs.
Table IV. Crucial laboratory parameters in patients visiting EDs and admitted in 2019 and 2020

Parameter	Visits	All diseases	Renal colic	Hematuria	Urinary retention	Acute scrotum	Trauma	Others	Device malfunction	UTI	Others
CRP [ng/ml]		10.00 (2.09–56.83)	11.19 (2.00–86.46)	3.85 (1.38–19.52)	4.42 (1.30–28.00)	79.67 (16.00–180.30)	80.05 (16.30–167.00)	28.59 (5.08–123.48)	117.50 (28.84–234.12)	79.67 (16.00–180.30)	117.50 (28.84–234.12)
HGB [g/dl]		13.37 (11.90–14.60)	13.21 (11.50–14.70)	13.90 (12.80–14.90)	12.90 (11.16–14.66)	13.90 (12.80–14.90)	13.90 (12.80–14.90)	13.90 (12.80–14.90)	13.90 (12.80–14.90)	13.90 (12.80–14.90)	13.90 (12.80–14.90)
sCR [µmol/l]		91.50 (75.14–123.76)	94.59 (73.37–126.85)	89.00 (74.00–114.92)	113.19 (85.00–182.00)	93.70 (77.45–123.88)	116.00 (77.77–119.77)	89.00 (74.00–114.92)	94.00 (76.02–140.22)	88.40 (74.26–117.46)	88.40 (74.26–117.46)
WBC [K/µl]		10.08 (7.70–13.30)	10.30 (8.12–13.50)	10.23 (8.43–12.84)	9.10 (7.40–11.73)	10.70 (8.62–15.45)	10.70 (8.62–15.45)	9.10 (7.40–11.73)	9.10 (7.40–11.73)	9.10 (7.40–11.73)	9.10 (7.40–11.73)

All diseases 2019 vs. 2020: P 2019 2020 | P 2019 2020 |

CPE [ng/ml]	0.264	0.558	0.682	0.792
HGB [g/dl]	13.20 (11.50–14.60)	88.84 (70.72–167.94)	9.60 (7.53–13.46)	10.20 (8.07–12.93)
sCR [µmol/l]	0.366	0.521	0.405	0.05
WBC [K/µl]	13.10 (4.24–46.20)	12.50 (10.30–14.25)	90.00 (79.56–125.53)	15.43 (11.42–18.40)
CRP [ng/ml]	5.70 (0.99–25.24)	12.90 (11.16–14.66)	88.40 (74.26–117.46)	9.66 (7.09–13.30)
HGB [g/dl]	0.73	0.004	0.035	0.005
sCR [µmol/l]	80.05 (16.30–167.00)	10.70 (9.30–12.06)	141.44 (98.00–262.33)	12.47 (9.80–15.08)
WBC [K/µl]	28.59 (5.08–123.48)	12.86 (11.00–13.80)	108.87 (86.00–134.03)	8.92 (7.30–12.25)
CRP [ng/ml]	117.50 (28.84–234.12)	12.00 (10.58–13.59)	101.66 (79.67–183.65)	12.06 (9.30–16.20)
HGB [g/dl]	79.67 (16.00–180.30)	12.60 (11.30–13.70)	95.03 (72.75–136.80)	11.01 (8.30–15.01)
sCR [µmol/l]	40.55 (1.53–147.63)	14.66 (13.40–15.80)	84.50 (70.72–93.62)	11.10 (8.15–15.30)
WBC [K/µl]	21.90 (4.20–76.33)	14.40 (13.40–15.30)	83.10 (76.00–97.24)	10.70 (8.62–15.45)
CRP [ng/ml]	19.00 (3.80–89.00)	12.90 (11.70–14.50)	92.00 (75.57–170.46)	10.02 (7.25–13.02)
HGB [g/dl]	21.90 (4.20–76.33)	12.58 (11.00–13.93)	113.19 (85.00–182.00)	9.10 (7.40–11.73)
sCR [µmol/l]	5.16	0.715	0.228	0.639
WBC [K/µl]	10.70 (3.20–41.28)	12.30 (10.42–13.90)	93.70 (77.45–123.88)	8.87 (6.87–11.70)
CRP [ng/ml]	7.20 (2.10–42.38)	12.24 (10.40–13.98)	91.00 (74.13–123.76)	9.03 (7.00–11.57)
HGB [g/dl]	10.788	0.895	0.825	0.919
sCR [µmol/l]	4.42 (1.30–28.00)	13.90 (12.60–15.08)	94.15 (72.00–113.15)	10.20 (8.43–12.84)
WBC [K/µl]	3.85 (1.38–19.52)	13.90 (12.80–14.90)	89.00 (74.00–114.92)	10.23 (8.13–13.09)
CRP [ng/ml]	0.171	0.452	0.526	0.161
HGB [g/dl]	11.19 (2.00–86.46)	13.21 (11.50–14.70)	94.59 (73.37–126.85)	10.30 (8.12–13.50)
sCR [µmol/l]	10.00 (2.09–56.83)	13.37 (11.90–14.60)	91.50 (75.14–123.76)	10.08 (7.70–13.30)
WBC [K/µl]				
Table IV.

Parameter

Admissions	All diseases	2019 vs. 2020	CRP [ng/ml]	HGB [g/dl]	sCr [µmol/l]	WBC [K/µl]
			0.985	0.961	0.986	0.721
			18.27 (5.35–81.80)	12.08 (10.00–14.70)	90.58 (70.72–253.49)	11.00 (7.80–12.93)
			24.24 (5.80–64.00)	11.85 (10.31–14.65)	93.26 (74.92–210.17)	9.88 (7.63–14.00)
			0.194	0.174	0.055	0.031
			74.10 (16.30–127.20)	11.40 (9.70–13.18)	163.10 (117.13–293.27)	17.80 (15.47–23.08)
			6.00 (3.19–7.01)	13.60 (10.95–14.89)	97.24 (77.79–116.19)	10.05 (7.14–11.83)
			0.079	0.007	0.0613	0.128
			146.29 (16.71–229.03)	10.30 (8.88–11.67)	216.44 (136.36–301.67)	12.11 (9.37–15.80)
			34.05 (8.85–123.91)	12.61 (10.68–13.50)	119.08 (100.78–155.36)	10.75 (7.15–12.32)
			0.265	0.446	0.867	0.301
			168.80 (94.10–272.00)	11.55 (10.68–12.89)	119.34 (81.33–194.04)	13.25 (10.15–17.69)
			154.47 (77.70–239.40)	12.04 (10.73–13.38)	123.76 (85.75–176.80)	12.02 (8.93–16.42)
			0.987	0.559	0.907	0.42
			107.00 (40.30–171.60)	13.15 (12.20–15.30)	92.00 (78.68–106.08)	13.59 (9.91–16.95)
			118.68 (19.53–170.75)	13.60 (13.05–14.70)	88.40 (80.00–106.08)	15.00 (10.00–21.00)
			0.094	0.243	0.415	0.088
			21.00 (3.44–74.10)	13.80 (11.65–15.33)	125.97 (78.39–359.13)	8.85 (6.69–10.83)
			77.60 (69.00–116.30)	12.20 (10.80–13.55)	248.40 (108.51–429.62)	10.91 (9.00–13.43)
			0.674	0.721	0.11	0.943
			15.00 (3.95–94.11)	11.00 (8.90–12.70)	89.28 (74.04–146.30)	9.10 (6.95–12.20)
			24.00 (6.96–83.40)	10.98 (8.87–12.68)	106.52 (85.97–150.28)	9.40 (6.50–11.81)
			0.328	0.543	0.563	0.51
			27.50 (3.61–89.53)	11.00 (12.23–14.35)	106.04 (78.23–135.44)	10.25 (8.57–12.69)
			21.00 (2.68–58.92)	10.98 (12.24–14.50)	99.95 (79.56–133.71)	10.13 (7.70–13.15)
			0.144	0.608	0.724	0.196
			46.00 (6.87–144.12)	12.41 (10.63–14.10)	106.04 (78.17–159.12)	11.00 (8.32–14.10)
			36.50 (6.25–123.55)	12.60 (11.00–13.86)	106.08 (79.67–150.28)	10.40 (7.70–14.00)

Continuous variables are presented as median (interquartile range). CRP – C-reactive protein, HGB – hemoglobin, sCr – serum creatinine, WBC – white blood count.
Table V. Crucial laboratory parameters in patients visiting EDs and admitted before the initial lockdown and in those after the initial lockdown

Parameter	CRP [ng/ml]	HGB [g/dl]	sCR [µmol/l]	WBC [K/µl]	
Before the LD	11.16 (3.20–75.71)	13.16 (11.60–14.58)	9.64 (71.15–143.36)	11.14 (8.06–13.53)	
After the LD	7.15 (0.94–34.23)	13.25 (10.67–14.60)	88.40 (70.72–181.22)	9.67 (8.06–12.69)	
Before the LD	0.171	0.935	0.126	0.832	
After the LD	46.20 (9.75–113.93)	13.50 (10.20–14.50)	83.98 (79.56–101.66)	15.59 (12.24–16.80)	
Before the LD	8.36 (1.57–13.10)	12.30 (11.24–13.18)	125.53 (98.44–183.65)	14.12 (11.15–18.86)	
After the LD	0.936	0.151	0.909	0.758	
Before the LD	59.58 (16.68–168.15)	11.12 (9.60–13.40)	152.05 (84.34–285.09)	11.92 (9.70–15.50)	
After the LD	110.27 (13.03–157.43)	10.31 (8.70–11.60)	154.72 (106.96–223.21)	13.00 (11.10–14.72)	
Before the LD	0.749	0.109	0.686	0.935	
After the LD	145.00 (20.50–231.00)	11.60 (10.40–12.90)	103.87 (79.56–195.14)	11.88 (9.17–15.56)	
Before the LD	113.00 (46.10–243.08)	12.17 (10.90–14.03)	101.66 (82.65–144.16)	12.52 (9.75–16.50)	
After the LD	0.290	0.470	0.012	0.364	
Before the LD	52.00 (1.60–151.30)	14.40 (13.40–15.47)	82.21 (70.72–87.70)	11.80 (8.59–15.30)	
After the LD	16.40 (1.13–99.83)	15.15 (12.55–15.90)	97.24 (79.56–106.08)	9.06 (7.20–14.70)	
Before the LD	0.762	0.564	0.367	0.415	
After the LD	27.25 (4.28–90.25)	12.90 (11.80–14.25)	88.40 (75.14–162.06)	10.09 (7.90–13.30)	
Before the LD	27.00 (2.59–88.75)	12.90 (10.13–14.38)	114.00 (80.90–216.58)	9.12 (6.86–12.00)	
After the LD	0.611	0.051	0.182	0.682	
Before the LD	10.00 (2.10–42.00)	11.60 (10.10–13.65)	88.40 (72.49–123.76)	9.10 (6.97–11.43)	
After the LD	4.10 (1.80–61.90)	12.70 (10.90–14.40)	90.58 (80.86–125.50)	8.90 (7.30–11.50)	
Before the LD	0.318	0.110	0.998	0.568	
After the LD	4.72 (1.40–31.13)	14.00 (13.00–15.10)	94.00 (72.49–114.04)	10.15 (8.30–12.98)	
Before the LD	3.60 (1.10–21.00)	13.70 (12.40–14.99)	92.38 (71.70–114.48)	10.30 (8.60–12.62)	
After the LD	0.059	0.886	0.291	0.799	
Before the LD	13.00 (2.12–88.30)	13.21 (11.40–14.65)	91.60 (72.49–128.05)	10.39 (8.09–13.68)	
After the LD	7.84 (1.42–83.98)	13.21 (11.60–14.73)	96.00 (76.91–127.96)	10.05 (8.30–13.05)	
Parameter	Admissions before and after March 14, 2020	CRP [ng/ml]	HGB [g/dl]	sCR [µmol/l]	WBC [K/µl]
-----------	--	-------------	------------	-------------	-----------
All diseases, before vs. after the LD	Before the LD	0.948	12.50 (11.40–12.95)	8.70 (8.25–9.55)	0.596
	After the LD	0.964	20.24 (163.10–262.99)	221.88 (166.63–302.33)	0.018
Renal colic	Before the LD	0.646	83.54 (69.88–241.55)	211.00 (121.11–287.30)	0.751
	After the LD	0.466	11.96 (8.20–13.54)	15.60 (11.06–19.85)	0.751
Hematuria	Before the LD	25.64 (6.01–82.80)	12.04 (10.35–14.68)	1.149	
	After the LD	18.90 (6.25–83.30)	12.40 (9.80–14.52)	0.663	
Urinary retention	Before the LD	0.149	103.40 (76.25–254.81)	14.60 (9.72–357.46)	0.513
	After the LD	127.20 (100.65–145.10)	9.50 (7.90–11.75)	114.92 (97.24–357.46)	0.517
Acute scrotum	Before the LD	8.25 (4.23–12.28)	12.50 (11.40–12.95)	0.526	
	After the LD	179.70 (72.75–264.23)	8.70 (8.25–9.55)	221.88 (166.63–302.33)	0.245
Device malfunction	Before the LD	0.526	80.05 (21.81–193.55)	165.90 (78.85–276.35)	11.60 (10.80–12.84)
	After the LD	0.596	179.70 (72.75–264.23)	121.11–287.30	0.751
Trauma	Before the LD	0.018	107.00 (29.65–189.90)	166.40 (80.44–192.71)	13.00 (10.65–18.90)
	After the LD	0.596	185.20 (124.40–264.00)	101.66 (85.75–193.60)	12.00 (8.42–14.50)
Others	Before the LD	0.911	165.90 (78.85–276.35)	121.11–287.30	0.128
	After the LD	0.911	185.20 (124.40–264.00)	101.66 (85.75–193.60)	0.128
UTI	Before the LD	0.526	107.00 (29.65–189.90)	86.05 (72.71–96.14)	0.06
	After the LD	0.526	116.75 (90.48–131.25)	106.08 (87.78–119.04)	0.06
Device malfunction	Before the LD	0.018	21.00 (6.50–74.10)	13.40 (12.50–15.30)	0.149
	After the LD	0.018	4.44 (2.87–90.63)	12.57 (11.70–15.14)	0.948
Trauma	Before the LD	0.853	107.00 (29.65–189.90)	86.05 (72.71–96.14)	0.296
	After the LD	0.853	116.75 (90.48–131.25)	106.08 (87.78–119.04)	0.296
Renal colic	Before the LD	14.35 (13.15–15.58)	111.38 (78.00–150.28)	3.44 (2.87–90.63)	12.57 (11.70–15.14)
	After the LD	21.00 (6.50–74.10)	107.00 (29.65–189.90)	86.05 (72.71–96.14)	0.104
Hematuria	Before the LD	8.92 (7.05–13.78)	9.10 (6.90–12.00)	4.10 (2.30–135.00)	11.50 (9.13–12.93)
	After the LD	15.75 (4.45–93.63)	10.63 (8.90–12.50)	9.52 (82.88–167.96)	0.384
Urinary retention	Before the LD	0.021	15.75 (4.45–93.63)	88.40 (73.37–129.29)	0.248
	After the LD	0.010	4.10 (2.30–135.00)	95.12 (82.88–167.96)	0.384
Acute scrotum	Before the LD	0.010	32.60 (6.75–97.00)	103.43 (79.12–135.13)	0.384
	After the LD	4.10 (2.30-135.00)	13.60 (12.30–14.66)	108.22 (72.30–138.73)	0.384
Device malfunction	Before the LD	0.103	32.60 (6.75–97.00)	103.43 (79.12–135.13)	0.384
	After the LD	0.103	4.10 (2.30–135.00)	103.43 (79.12–135.13)	0.384
Trauma	Before the LD	0.696	58.24 (10.60–150.00)	102.00 (77.13–148.29)	0.805
	After the LD	0.696	45.03 (3.10–137.23)	108.73 (79.56–181.22)	0.805
Renal colic	Before the LD	0.010	15.75 (4.45–93.63)	88.40 (73.37–129.29)	0.384
	After the LD	0.010	4.10 (2.30–135.00)	95.12 (82.88–167.96)	0.384
Hematuria	Before the LD	0.010	32.60 (6.75–97.00)	103.43 (79.12–135.13)	0.384
	After the LD	0.010	4.10 (2.30–135.00)	103.43 (79.12–135.13)	0.384
Urinary retention	Before the LD	0.021	58.24 (10.60–150.00)	102.00 (77.13–148.29)	0.805
	After the LD	0.021	45.03 (3.10–137.23)	108.73 (79.56–181.22)	0.805

Continuous variables are presented as median (interquartile range). CRP – C-reactive protein, HGB – hemoglobin, LD – lockdown, sCR – serum creatinine, UTI – urinary tract infection, WBC – white blood count.
complaining about all urologic conditions by analyses of daily mean visits and admissions, crucial laboratory parameters, post-admission procedures, and hospital length of stay.

Our analyses revealed lower (22.5%) year-over-year decreases in urologic ED visits, compared to recently published Italian and Portuguese studies, which found over 50% declines during the COVID-19 period [7–10]. In Poland, the changes were slightly more comparable to more affected countries after the introduction of more severe restrictions on March 25, 2020, with declines up to 34% (Table III). This has been also seen in another Polish study of Legutko et al., who evaluated pre-COVID-19 and COVID-19 periods (all 2020) in terms of coronary angiography and percutaneous coronary interventions for myocardial infarctions. The authors also found smaller decreases in emergency cases after the lockdown (30%) when compared to the US (38%), Spain (40%), or Austria (39%) [4]. There are several possible explanations for smaller declines in Poland. From the end of February, following massive outbreaks in Italy, France, Spain, and Germany, in Poland the fear and expectance of a COVID-19 outbreak were present. As the first expected COVID-19 case in Poland (March 4, 2020), with subsequent logarithmic case growth, appeared later (Figure 1) when compared to the abovementioned countries, early precautions were taken, leading to a lower, stable COVID-19 incidence ratio, more smoothly manageable for healthcare [16]. Therefore, we speculate that Poland serves as an example of a country where the possible changes in emergency visits and admissions were not due to impaired access to emergency health care but were mainly related to the escalating restrictions (including isolations and limited access to urologic and other specialization outpatient services) followed by fear or patients’ perception of hospitals as COVID-19 reservoirs [17, 18]. Further, as fewer doctors in Poland, compared to countries more affected by COVID-19, were directly engaged in managing COVID-19 patients, greater availability and unparalleled popularity of telemedicine consultations could have led to fewer urgent and sometimes unnecessary visits. Finally, cultural differences, media coverage, and population fear level, which varies significantly among nations (e.g. lower COVID-19 fear level in Eastern Europeans), may also have played a role in our lower declines in ED attendance [19–21].

In 2020, problems with device malfunctions increased by 66%, while all other groups of urologic problems subsided. The distribution of diseases was significantly different between 2019 and 2020 (p = 0.001), which was also noted in a study of Novara et al. (n = 399), although in their cohort declines were seen in all disease groups (p = 0.04) [9]. Conversely, in another study from Porto, Portugal (n = 385), a higher proportion of patients visited the ED for administrative and clinical reasons and due to device malfunctions (n = 12 (9.8%) in 2020 and 15 (5.7%) in 2019) [8]. These results can be related to ours, as more patients with device malfunction were noted in EDs, presumably due to limited access to regular outpatient care.

The initial reports from outbreak regions indicate higher general mortality, which cannot be directly linked to COVID-19 deaths [1, 18, 22]. As mortality rates in urologic emergencies are relatively very low, we believe crucial laboratory parameters could substantiate the patients’ condition. In our cohort, there were no significant differences between tested laboratory parameters between 2019 and 2020, in either consulted or admitted patients, although a clear more negative tendency was noticed. Requiring particular attention are the higher levels of creatinine, CRP, and WBC in the device malfunction group in 2020, which were either significant or borderline significant for both consulted and admitted patients. In 2020 patients visiting EDs due to UTI had significantly higher levels of CRP. After the lockdowns, compared to the pre-lockdown period, all the visiting patients had approximately twice as high median CRP level and patients consulted due to hematuria had borderline significantly lower HGB levels. All these results may somewhat mirror the delayed care-seeking in 2020 and ED avoidance in milder cases. The only study that evaluated laboratory parameters during the COVID-19 pandemic in urologic emergencies, particularly in renal colic patients (n = 80), was conducted by Flammia et al. [10]. Surprisingly, the patients visiting during the COVID-19 era had non-significantly lower WBC levels (p = 0.052), but significantly higher serum creatinine levels (p = 0.026), which we did not observe in our cohort. Nevertheless, after lockdowns, we found significantly higher median levels of CRP in admitted renal colic patients (Tables V and VI).

The admissions-to-ED-visit ratio was significantly higher in 2020 compared to 2019, which indicates that presumably in general more “mild” visits were avoided in 2020. On the other hand, in 2020 a higher percentage of admitted patients underwent urgent intervention after admission with general stable absolute numbers of operations between 2019 and 2020, which could indicate a more severe condition of admitted patients. No differences in hospitalization time were noted, which could also be due to a general tendency to shorten patients’ hospital length of stay during the COVID-19 pandemic, as also observed in other countries [19]. In a study conducted by the Italian AGILE group, there was an over 50% decline in the ureterorenoscopy (and/
Table VI. Laboratory parameters in patients visiting and admitted before March 14th, 2020 and in those after March 25th, 2020 (severe lockdown)

Parameter	VISITS before March 14, 2020	All diseases, before vs. after the LD	P	VISITS before March 25, 2020	All diseases, before vs. after the LD	P
CRP [ng/ml]	7.84 (1.42–83.98)	13.21 (12.06–14.78)	0.429	89.64 (70.93–132.15)	11.55 (8.29–13.38)	0.365
HGB [g/dl]	13.60 (2.10–40.10)	10.05 (8.30–13.05)	0.666	11.20 (10.18–14.18)	12.06 (9.50–14.69)	0.715
sCR [µmol/l]	7.41 (1.63–31.9)	5.30 (1.30–19.30)	0.095	61.00 (21.90–130.80)	20.10 (4.00–77.00)	0.074
WBC [K/µl]	9.67 (8.06–12.69)	9.06 (7.20–14.70)	0.948	9.06 (7.20–14.70)	7.84 (5.00–11.0)	0.941

LD = lockdown
Table VI. Cont.

Parameter	All diseases, before vs after the LD	Admissions March 14, 2020 and after March 25, 2020
	Before the LD	After the LD
CRP [ng/ml]	45.03 (3.10–137.23)	59.97 (13.14–150.00)
HGB [g/dl]	12.50 (10.31–14.10)	12.50 (11.00–14.40)
sCR [µmol/l]	108.73 (79.56–181.22)	99.89 (73.37–150.28)
WBC [K/µl]	11.00 (8.00–14.30)	11.23 (8.44–14.10)

Continuous variables are presented as median (interquartile range). CRP – C-reactive protein, HGB – hemoglobin, LD – lockdown, sCR – serum creatinine, UTI – urinary tract infection, WBC – white blood count.
or ureteral stenting), transurethral resection of bladder tumor, and testicular detorsion between a pre-COVID period in 2020 and during the massive outbreak in Italy [6]. In our cohort, the distribution of the interventions was non-significantly different with an 8% decrease in absolute numbers of endoscopic procedures in 2020. At the same time, we noted a higher number of open and percutaneous interventions in 2020 and a higher proportion of percutaneous interventions after the lockdowns.

Our results illustrate a distressing tendency that some of the patients who truly needed urgent medical help and/or hospitalization were not seen at urologic EDs or came later than they would have done before the COVID-19 era. In our opinion, the Polish case may arise in other developed countries, after the pandemic stabilizes and in a case of local outbreaks with maintained access to urologic EDs. Lastly, our paper underlines the necessity for adjustment of urology centers during the COVID-19 pandemic. Primarily, despite the unprecedented integration of telemedicine in outpatient clinics, more meticulous patients’ qualifications for in-person visits should be implemented. Given the presumable scenario with the COVID-19 pandemic lasting for an unknown period, maintaining regular face-to-face access for needy patients should become a critical aim of health care providers. Additionally, we believe that broader and easily available information provision concerning current epidemiological status should be immediately implemented to both EDs and outpatient service, which could partly mitigate patients’ fear and uncertainty.

There are some limitations of our study. Firstly, this is a time-limited, retrospective, single-country study. However, the majority of our 13 study centers have high-volume urology departments, thus providing a robust national sample. Second, there were missing demographic, ICD-10 and laboratory data on ED visits at one center and some missing laboratory data due to a lack of clinical indication. Lastly, we did not control for confounding factors that might have influenced laboratory results in our analyses.

In conclusion, our study compiled several important and exclusive aspects of urology ED visits and admissions during the COVID-19 pandemic, in a country with barely impaired access to emergency medicine. Declines in urologic emergency visits and admissions were apparent, especially after the introduction of restrictions, with alarming trends indicating that some of the patients requiring urgent medical help did not appear at the ED, or came later than they would have done before the pandemic, presenting worse laboratory profiles.

Acknowledgments

AJC is supported by the European Union through the European Social Fund (POWR.03.02.00-00-I029).

Conflict of interest

The authors declare no conflict of interest.

References

1. De Filippo O, D’Ascenzo F, Angelini F, et al. Reduced rate of hospital admissions for ACS during Covid-19 outbreak in Northern Italy. N Engl J Med 2020; 383: 88-9.
2. Thornton J. Stroke: “striking reductions” are seen in number of people with symptoms seeking help. BMJ 2020; 369: m1406.
3. Tam CE, Cheung KS, Lam S, et al. Impact of coronavirus disease 2019 (COVID-19) outbreak on outcome of myocardial infarction in Hong Kong, China. Catheter Cardiovasc Interv 2020; 13: e006631.
4. Legutko J, Niewiara T, Bartuś S, et al. The decline of coronary angiography and percutaneous coronary intervention procedures in patients with acute myocardial infarction in Poland during the COVID-19 pandemic. LiD - 10.33963/KP.15393 [doi] FAU - Legutko, Jack. (1897-4279 (Electronic)).
5. Baum A, Schwartz MD. Admissions to veterans affairs hospitals for emergency conditions during the COVID-19 pandemic. JAMA 2020; 324: 96-9.
6. Porreca A, Colichchia M, D’Agostino D, et al. Urology in the time of coronavirus: reduced access to urgent and emergent urological care during the coronavirus disease 2019 outbreak in Italy. Urol Int 2020; 104: 7-8.
7. Motterle G, Morlacco A, Iafrete M, et al. The impact of COVID-19 pandemic on urological emergencies: a single-center experience. World J Urol 2020; 1-5. doi: 10.1007/s00345-020-03264-2.
8. Madanelo M, Ferreira C, Nunes-Carneiro D, et al. The impact of the COVID-19 pandemic on the utilization of emergency urological services. BJU Int 2020; 126: 256-8.
9. Novara G, Bartoletti R, Crestani A, et al. Impact of COVID-19 pandemic on the urologic practice in the emergency departments in Italy. BJU Int 2020; 126: 245-7.
10. Flammia S, Salciccia S, Tufano A, Busetto GM, Ricciuti GP, Sciarrà A. How urinary stone emergencies changed in the time of COVID-19? Urolithiasis 2020; 48: 467-9.
11. Black JRM, Bailey C, Przewrocka J, Dijkstra KK, Swanton C, COVID-19: the case for health-care worker screening to prevent hospital transmission. Lancet 2020; 395: 1418-20.
12. Stensland KD, Morgan TM, Mainzadeh A, et al. Considerations in the triage of urologic surgeries during the COVID-19 pandemic. Eur Urol 2020; 77: 663-6.
13. Teoh JY, Ong WLK, Gonzalez-Padilla D, et al. A global survey on the impact of COVID-19 on urological services. Eur Urol 2020; 78: 265-75.
14. Rozporządzenie Ministra Zdrowia. 13th March 2020. [http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?ipDocId=WDU20200000433]
15. Rozporządzenie Ministra Zdrowia. 24th marca 2020. [http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?ipDocId=WDU20200000433]
16. Gujski M, Raciborski F, Jankowski M, Nowicka PM, Rakocy K, Pinkas J. Epidemiological analysis of the first 1389
cases of COVID-19 in Poland: a preliminary report. Med Sci Monit 2020; 26: e924702.
17. Hiremath P, Suhas Kowshik CS, Manjunath M, Shettar M. COVID 19: impact of lock-down on mental health and tips to overcome. Asian J Psychiatr 2020; 51: 102088-8.
18. Wong L, Hawkind JE, Langness S, Murrell KL, Iris P, Sammann A. Where are all the patients? Addressing Covid-19 Fear to encourage sick patients to seek emergency care. NEJM Catalyst Innovations in Care Delivery 2020.
19. Reznik A, Gritsenko V, Konstantinov V, Khamenka N, Isralowitz R. COVID-19 fear in Eastern Europe: validation of the fear of COVID-19 scale. Int J Ment Health Addict 2020: 1–6. doi: 10.1007/s11469-020-00283-3.
20. Stein DJ, Lim CCW, Roest AM, et al. The cross-national epidemiology of social anxiety disorder: Data from the World Mental Health Survey Initiative. BMC Med 2017; 15: 143.
21. Dimitriu MCT, Pantea-Stoian A, Smaranda AC, et al. Burnout syndrome in Romanian medical residents in time of the COVID-19 pandemic. Med Hypotheses 2020;144: 109972.
22. Burlacu A, Mavrichi I, Crisan-Dabija R, Jugrin D, Buju S, Arterne B, Covic A. “Celebrating old age”: an obsolete expression during the COVID-19 pandemic? Medical, social, psychological, and religious consequences of home isolation and loneliness among the elderly. Arch Med Sci 2020; 17: 285-95.