The Isolated Photon Cross Section in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV*

B. Abbott, V. Abolins, V. Abramov, B.S. Acharya, D.L. Adams, M. Adams, S. Ahn, V. Akimov, G.A. Alves, N. Amos, E.W. Anderson, M.M. Baarmand, V.V. Babintsev, L. Babukhadia, A. Baden, B. Baldin, S. Banerjee, J. Bantly, E. Barberis, P. Baringer, J.F. Bartlett, U. Bassler, A. Belyaev, S.B. Beri, G. Bernardi, I. Bertram, V.A. Bezzubov, P.C. Bhat, V. Bhatnagar, M. Bhattacharjee, G. Blazey, S. Blessing, A. Boehnlein, N.I. Bojko, F. Borcherding, A. Brandt, R. Breedon, G. Briskin, R. Brock, G. Brooijmans, A. Bros, D. Buchholz, V. Buescher, V.S. Burтовoi, J.M. Butler, W. Carvalho, D. Casey, Z. Cai, H. Castilla-Valdez, D. Chakraborty, K.M. Chan, S.V. Chekulaev, W. Chen, D.K. Cho, S. Choi, S. Chopra, B.C. Choudhary, J.H. Christenson, M. Chung, D. Claes, A.R. Clark, W.G. Cobau, J. Cochran, L. Coney, B. Connolly, W.E. Cooper, D. Coppage, D. Cullen-Vidal, M.A.C. Cummings, D. Cutts, O.I. Dahl, K. Davis, K. De, K. Del Signore, M. Demarteau, D. Denisov, S.P. Denisov, H.T. Diehl, M. Diesburg, G. Di Loreto, P. Draper, Y. Ducros, L.V. Dudko, S.R. Dugad, A. Dyshkant, D. Edmunds, J. Ellison, V.D. Elvira, R. Engelmann, S. Eno, G. Epple, P. Ermolov, O.V. Eroshin, J. Estrada, H. Evans, V.N. Evdokimov, T. Fahland, S. Feher, D. Fein, T. Ferbel, H.E. Fisk, Y. Fisyak, E. Flattum, F. Fleuret, M. Fortner, K.C. Frame, S. Fuess, E. Gallas, A.N. Galyaev, P. Gartung, V. Gavrilov, R.J. Genik II, K. Genser, C.E. Gerber, Y. Gershtein, R. Gilmartin, G. Ginther, B. Gobbi, B. Gómez, G. Gómez, P.I. Goncharov, J.L. González Solís, H. Gordon, L.T. Goss, K. Gounder, A. Goussiou, H. Greenlee, H. Greenlee, S. Grinstein, P. Grudberg, S. Grünendahl, G. Guglielmo, A. Gupta, S.N. Gurzhiev, G. Gutierrez, P. Gutierrez, N.J. Hadley, H. Haggerty, S. Hagopian, V. Hagopian, K.S. Hahn, R.E. Hall, P. Hanlet, S. Hansen, J.M. Hauptman, C. Hays, C. Hebert, D. Hedin, A.P. Heinson, U. Heintz, T. Heuring, R. Hirosky, J.D. Hobbs, B. Hoeneisen, J.S. Hoftun, F. Hsieh, A.S. Ito, S.A. Jerger, R. Jesik, T. Joffe-Minor, K. Johns, M. Johnson, A. Jonckheere, M. Jones, H. Jöstlein, S.Y. Jun, S. Kahn, E. Kajfasz, D. Karmanov, D. Karmgard, R. Keheo, S.K. Kim, B. Klima, C. Klopfenstein, M. Knuteson, W. Ko, J.M. Kohli, D. Koltick, A.V. Kostritskiy, J. Kotcher, A.V. Kotwal, A.V. Kozelov, E.A. Kozlovsky, J. Krane, M.R. Krishnaswamy, S. Krzywdzinski, M. Kubantsev, * submitted to Physical Review Letters
S. Kuleshov,17 Y. Kulik,49 S. Kunori,40 G. Landsberg,53 A. Leflat,18 F. Lehner,29 J. Li,54 Q.Z. Li,29 J.G.R. Lima,5 D. Lincoln,29 S.L. Linn,27 J. Linnemann,44 R. Lipton,29 J.G. Lu,4 A. Lucotte,49 L. Lueking,29 C. Lundstedt,45 A.K.A. Maciel,31 R.J. Madaras,22 V. Manankov,18 S. Mani,23 H.S. Mao,5 R. Markeloff,51 T. Marshall,33 M.I. Martin,29 R.D. Martin,30 K.M. Mauritz,36 B. May,32 A.A. Mayorov,33 R. McCarthy,49 J. McDonald,27 T. McKibben,30 T. McMahon,51 H.L. Melanson,29 M. Merkin,18 K.W. Merritt,29 C. Miao,53 H. Miettinen,56 A. Mincer,47 C.S. Mishra,29 N. Mokhov,29 N.K. Mondal,13 H.E. Montgomery,29 M. Mostafa,1 H. da Motta,2 E. Nagy,8 F. Nang,21 M. Narain,41 V.S. Narasimham,13 H.A. Neal,43 J.P. Negret,5 S. Negroni,8 D. Norman,55 L. Oesch,43 V. Oguri,3 B. Olivier,9 N. Oshima,29 D. Owen,44 P. Padley,56 A. Para,29 N. Parashar,42 R. Partridge,53 N. Parua,7 M. Paterno,48 A. Patwa,49 B. Pawlik,16 J. Perkins,54 M. Peters,28 R. Piegaia,1 H. Piekarz,27 Y. Pischalnikov,35 B.G. Pope,44 E. Popkov,34 H.B. Prosper,27 S. Protopopescu,50 J. Qian,43 P.Z. Quintas,29 R. Raja,29 S. Rajagopal,50 N.W. Reay,38 S. Reucroft,42 M. Riijsenbeek,49 T. Rockwell,44 M. Roco,29 P. Rubinov,32 R. Ruchti,34 J. Rutherfoord,21 A. Santoro,2 L. Sawyer,39 R.D. Schamberger,49 H. Schellman,32 A. Schwartzman,1 J. Sculli,47 N. Sen,56 E. Shabrina,18 H.C. Shankar,13 R.K. ShivPuri,12 D. Shpakov,49 M. Shupe,21 R.A. Sidwell,38 H. Singh,26 J.B. Singh,11 V. Sirotenko,31 P. Slattery,48 E. Smith,52 R.P. Smith,29 R. Snihur,32 G.R. Snow,45 J. Snow,51 S. Snyder,50 J. Solomon,30 X.F. Song,4 V. Sorín,1 M. Sosebee,54 N. Sotnikova,18 M. Souza,2 N.R. Stanton,38 G. Steinbrück,46 R.W. Stephens,54 M.L. Stevenson,22 F. Stichelbaut,50 D. Stoker,25 V. Stolin,17 D.A. Stoyanova,19 M. Strauss,52 K. Streets,47 M. Strovink,22 L. Stutte,29 A. Sznajder,3 J. Tarazi,25 M. Tartaglia,29 T.L.T. Thomas,32 J. Thompson,30 D. Toback,40 T.G. Trippe,22 A.S. Turcot,43 P.M. Tuts,46 P. van Gemmeren,29 V. Vaniev,19 N. Varelas,30 A.A. Volkov,19 A.P. Vorobiev,19 H.D. Wahl,27 J. Warchol,34 G. Watts,57 M. Wayne,34 H. Weerts,44 A. White,54 J.T. White,55 J.A. Wightman,36 S. Willis,31 S.J. Wimpenny,26 J.V.D. Wirjawan,55 J. Womersley,29 D.R. Wood,42 R. Yamada,29 P. Yamin,50 T. Yasuda,29 K. Yip,29 S. Youssef,27 J. Yu,29 Y. Yu,14 M. Zanabria,5 H. Zheng,34 Z. Zhou,36 Z.H. Zhu,48 M. Zielinski,48 D. Zieminski,33 A. Zieminski,33 V. Zutshi,48 E.G. Zverev,18 and A. Zylberstejn10
(DØ Collaboration)

1Universidad de Buenos Aires, Buenos Aires, Argentina
2LAIFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4Institute of High Energy Physics, Beijing, People’s Republic of China
5Universidad de los Andes, Bogotá, Colombia
6Universidad San Francisco de Quito, Quito, Ecuador
7Institut des Sciences Nucléaires, IN2P3-CNRS, Université de Grenoble 1, Grenoble, France
8Centre de Physique des Particules de Marseille, IN2P3-CNRS, Marseille, France
9LPNHE, Universités Paris VI and VII, IN2P3-CNRS, Paris, France
10DAPNIA/Service de Physique des Particules, CEA, Saclay, France
11Panjab University, Chandigarh, India
12Delhi University, Delhi, India
13Tata Institute of Fundamental Research, Mumbai, India
14Seoul National University, Seoul, Korea
CINVESTAV, Mexico City, Mexico

Institute of Nuclear Physics, Kraków, Poland

Institute for Theoretical and Experimental Physics, Moscow, Russia

Moscow State University, Moscow, Russia

Institute for High Energy Physics, Protvino, Russia

Lancaster University, Lancaster, United Kingdom

University of Arizona, Tucson, Arizona 85721

Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720

University of California, Davis, California 95616

California State University, Fresno, California 93740

University of California, Irvine, California 92697

University of California, Riverside, California 92521

Florida State University, Tallahassee, Florida 32306

University of Hawaii, Honolulu, Hawaii 96822

Fermi National Accelerator Laboratory, Batavia, Illinois 60510

University of Illinois at Chicago, Chicago, Illinois 60607

Northern Illinois University, DeKalb, Illinois 60115

Northwestern University, Evanston, Illinois 60208

Indiana University, Bloomington, Indiana 47405

University of Notre Dame, Notre Dame, Indiana 46556

Purdue University, West Lafayette, Indiana 47907

Iowa State University, Ames, Iowa 50011

University of Kansas, Lawrence, Kansas 66045

Kansas State University, Manhattan, Kansas 66506

Louisiana Tech University, Ruston, Louisiana 71272

University of Maryland, College Park, Maryland 20742

Boston University, Boston, Massachusetts 02215

Northeastern University, Boston, Massachusetts 02115

University of Michigan, Ann Arbor, Michigan 48109

Michigan State University, East Lansing, Michigan 48824

University of Nebraska, Lincoln, Nebraska 68588

Columbia University, New York, New York 10027

New York University, New York, New York 10003

University of Rochester, Rochester, New York 14627

State University of New York, Stony Brook, New York 11794

Brookhaven National Laboratory, Upton, New York 11973

Langston University, Langston, Oklahoma 73050

University of Oklahoma, Norman, Oklahoma 73019

Brown University, Providence, Rhode Island 02912

University of Texas, Arlington, Texas 76019

Texas A&M University, College Station, Texas 77843

Rice University, Houston, Texas 77005

University of Washington, Seattle, Washington 98195

(February 8, 2018)
Abstract

We report a new measurement of the cross section for the production of isolated photons, with transverse energies ($E_T^\gamma$) above 10 GeV and pseudorapidities $|\eta| < 2.5$, in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. The results are based on a data sample of 107.6 pb$^{-1}$ recorded during 1992–1995 with the DØ detector at the Fermilab Tevatron collider. The background, predominantly from jets which fragment to neutral mesons, was estimated using the longitudinal shower shape of photon candidates in the calorimeter. The measured cross section is in good agreement with the next-to-leading order (NLO) QCD calculation for $E_T^\gamma \gtrsim 36$ GeV.
Direct (or prompt) photons, by which we mean those produced in a hard parton-parton interaction, provide a probe of the hard scattering process which minimizes confusion from parton fragmentation or from experimental issues related to jet identification and energy measurement [1]. In high energy $p\bar{p}$ collisions the dominant mode for production of photons with moderate transverse energy $E_T^\gamma$ is through the strong Compton process $qg \rightarrow q\gamma$. The direct photon cross section is thus sensitive to the gluon distribution in the proton. Direct-photon measurements allow tests of NLO and resummed QCD calculations, phenomenological models of gluon radiation, and studies of photon isolation and the fragmentation process.

Data from previous collider measurements [2–4] have indicated an excess of photons at low $E_T^\gamma$ ($\lesssim 25$ GeV) compared with predictions of NLO QCD. This excess may originate in additional gluon radiation beyond that included in the QCD calculation [5], or reflect inadequacies in the parton distributions and fragmentation contributions [6].

In this Letter, we present a new measurement of the cross section for production of isolated photons with $E_T^\gamma \geq 10$ GeV and pseudorapidity $|\eta| < 2.5$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, which supersedes our previous publication [4]. (Pseudorapidity is defined as $\eta = -\ln \tan \frac{\theta}{2}$ where $\theta$ is the polar angle with respect to the proton beam.) The higher statistical precision afforded by the increased luminosity (12.9 ± 0.7 pb$^{-1}$ recorded during 1992–1993 and 94.7 ± 5.1 pb$^{-1}$ recorded during 1994–1995) motivated a refined estimation of the backgrounds. In particular, fully-simulated jet events were used in place of single neutral mesons to model background.

Photon candidates were identified in the DØ detector [7] as isolated clusters of energy depositions in the uranium and liquid-argon sampling calorimeter. The calorimeter covered $|\eta| < 4$ and had electromagnetic (EM) energy resolution $\sigma_E/E \approx 15%/\sqrt{E}$(GeV) $\oplus 0.3\%$. The EM section of the calorimeter was segmented longitudinally into four layers (EM1–EM4) of 2, 2, 7, and 10 radiation lengths respectively, and transversely into cells in pseudorapidity and azimuthal angle $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ (0.05 $\times$ 0.05 at shower maximum in EM3). Drift chambers in front of the calorimeter were used to distinguish photons from electrons, or from photon conversions, by ionization measurement.

A three-level trigger was employed during data taking. The first level used scintillation counters near the beam pipe to detect an inelastic interaction; the second level required that the EM energy in calorimeter towers of size $\Delta \eta \times \Delta \phi = 0.2 \times 0.2$ be above a programmable threshold. The third level was a software trigger in which clusters of calorimeter cells were required to pass minimal criteria on shower shape.

Offline, candidate clusters were accepted within the regions $|\eta| < 0.9$ (central) and $1.6 < |\eta| < 2.5$ (forward) to avoid inter-calorimeter boundaries; in the central region, clusters were required to be more than 1.6 cm from azimuthal boundaries of modules. The event vertex was required to be within 50 cm of the nominal center of the detector along the beam. Each candidate was required to have a shape consistent with that of a single EM shower, to deposit more than 96% of the energy detected in the calorimeter in the EM section, and
to be isolated as defined by the following requirements on the transverse energy observed in the annular region between $R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.2$ and $R = 0.4$ around the cluster: $E_T^{R \leq 0.4} - E_T^{R \leq 0.2} < 2$ GeV. The combined efficiency of these selections was estimated as a function of $E_T^\gamma$ using a detailed Monte Carlo simulation of the detector and verified with electrons from $Z \to ee$ events, and found to be $0.65 \pm 0.01$ ($0.83 \pm 0.01$) at $E_T^\gamma = 40$ GeV for central (forward) photons. An uncertainty of 2.5% was added in quadrature to this to allow for a possible dependence on instantaneous luminosity. Photon candidates were rejected if there were tracks within a road $\Delta \theta \times \Delta \phi \approx 0.2 \times 0.2$ radians between the calorimeter cluster and the primary vertex. The mean efficiency of this requirement was measured to be $0.83 \pm 0.01$ ($0.54 \pm 0.03$) in the central (forward) region. The inefficiency stemmed mainly from photon conversions and overlaps of photons with charged tracks (either from the underlying event or from other $p\bar{p}$ interactions).

Background to the direct-photon signal comes primarily from two-photon decays of $\pi^0$ and $\eta$ mesons produced in jets. While the bulk of this background is rejected by the selection criteria (especially the isolation requirement), substantial contamination remains, predominantly from fluctuations in jet fragmentation, which can produce neutral mesons that carry most of the jet energy. For a $\pi^0$ meson with $E_T^\gamma > \sim 10$ GeV, the showers from its two-photon decay coalesce and mimic a single photon in the calorimeter.

The fraction of the remaining candidates that are genuine direct photons (the purity $P$) was determined using the energy $E_1$ deposited in the first layer (EM1) of the calorimeter. The decays of neutral mesons primarily responsible for background produce two nearby photons, and the probability that at least one of them undergoes a conversion to an $e^+e^-$ pair either in the cryostat of the calorimeter or the first absorber plate is roughly twice that for a single photon. Such showers due to meson decays therefore start earlier in the calorimeter than showers due to single photons, and yield larger $E_1$ depositions for any initial energy. A typical distribution in our discriminant, $\log_{10} [1 + \log_{10} \{1 + E_1(\text{GeV})\}]$, is shown in Fig. 1. This variable emphasized differences between direct photons and background, and was insensitive to noise and event pileup. A small correction, based on electrons from $W$ decays, was made to bring the $E_1$ distribution for the 1992–1993 data into agreement with the 1994–1995 data. The distribution in the discriminant was then fitted to the sum of a photon signal and jet background, both of which were obtained from Monte Carlo simulation. Two components of the jet background were included separately: those with and those without charged tracks inside the inner isolation cone ($R = 0.2$ from the photon candidate). This was done to minimize constraints in the fit from the (relatively poorly determined) tracking efficiency and from the model used for jet fragmentation.

Direct photon and QCD jet events were generated using PYTHIA and then passed through the GEANT detector-simulation package, and overlaid with data acquired using a random trigger to model noise, pileup, underlying event, and multiple $p\bar{p}$ interactions. The simulated $E_1$ was corrected for imperfect modeling of the material in the detector. We assumed that the Monte Carlo energy could be parametrized as $E_1^{\text{MC}} = \alpha + \beta E_1$, with the parameters $\alpha$ and $\beta$ determined from data: $\beta$ from the $W \to e\nu$ sample and $\alpha$ from the photon data. The fits to extract the purity $P$ were performed for different values of $\alpha$, and
FIG. 1. Distribution of the discriminant variable for $21 < E_T^\gamma < 26$ GeV central photon candidates (points with error bars), and the fitted distribution (solid curve) composed of Monte Carlo photons (curve labelled (a)) and jets with and without charged particles (curves labelled (c) and (b), respectively). The Monte Carlo curves shown here were smoothed for clarity (this was not done in the fitting itself). Results of these fits provide the purity $P$ of the signal: for this bin, $P = 0.58 \pm 0.07$.

The total $\chi^2$ was minimized for all $E_T^\gamma$.

To reduce computation time, the jet background events were preselected just after their generation to have highly electromagnetic jets. The background subtraction technique used in this analysis employs fully-simulated jet events, whereas the previous analysis modeled the background with isolated neutral mesons. With our increased statistics, it was found that individual isolated mesons could not adequately model the background. Indeed, our simulation shows that less than half of the background can be attributed to the presence of single neutral mesons within the inner isolation cones (of $R = 0.2$). The new approach provided a much better description of the shower shape and isolation energy, and resulted in an increased estimate of the signal purity.

Fitting was done separately for samples at central and forward regions, for each $E_T^\gamma$ bin, using the package hmcml [10], with the constraint that the fractions of signal and background were between 0.0 and 1.0. The resulting purity $P$ and its uncertainty is shown.
FIG. 2. The fraction of photon candidates that are direct photons as a function of $E_T^\gamma$, for central and forward photons.

in Fig. 2 as a function of $E_T^\gamma$. As well as the fitting error, a systematic error was assigned to the use of PYTHIA to model jets. This uncertainty was estimated by varying the multiplicity of neutral mesons in the core of the jet by ±10% [11].

The differential cross section $d^2\sigma/dE_T^\gamma d\eta$, determined after correction for purity and efficiency (but not corrected for energy resolution) is shown as a function of $E_T^\gamma$ in Fig. 3 and in Table 1. The purity corrections were applied point by point, using the same binning for the cross section as for the determination of purity. The correlated errors consist of the quadrature sum of the uncertainties on luminosity, vertex requirements, and energy scale in the Monte Carlo (which are energy independent) and the model for fragmentation (large uncertainty at low $E_T^\gamma$ because of the low purity in this region). The uncorrelated errors include the statistical uncertainty, the fitting error, and the statistical uncertainties on the determination of acceptance, trigger efficiency, and the efficiency of the selection criteria.

These new measurements are $\approx 20 - 30%$ higher than our previously published results. The change is well understood, and is due to the improvements in the Monte Carlo model used to estimate the purity, and in calculations of the acceptance and luminosity [12].

We compare the measured cross section with NLO QCD calculations using the program
FIG. 3. The cross section $d^2\sigma/dE_T^\gamma d\eta$ for isolated photons as a function of transverse energy $E_T^\gamma$, for central and forward regions. The curves show the NLO QCD calculated cross sections.

of Baer, Ohnemus, and Owens [13]. This calculation includes $\gamma +$ jet, $\gamma +$ two jets, and two jets with bremsstrahlung in the final state. In the latter case, a jet collinear with the photon was created with the remaining fraction of the energy of the relevant final-state parton, so that the isolation cut could be modeled. For all sources of signal, the final-state parton energies were smeared using the measured EM and jet resolutions. The isolation criterion was imposed by rejecting events with a jet of $E_T > 2$ GeV within $R \leq 0.4$ of the photon. (Smearing photon and jet energies changed the QCD prediction by less than 4%.) CTEQ4M parton distributions [14] were used in the NLO calculations, with renormalization and factorization scales $\mu_R = \mu_F = E_T^{\text{max}}$, where $E_T^{\text{max}}$ is the larger of the transverse energies of the photon or the leading jet. If, instead, the scales $\mu_R = \mu_F = 2E_T^{\text{max}}$ or $E_T^{\text{max}}/2$ were employed, the predicted cross sections changed by $\lesssim 6\%$.

Figure 4 shows the difference between experimental and theoretical differential cross sections ($d^2\sigma/dE_T^\gamma d\eta$), divided by the theoretical values. In both central and forward regions, the NLO QCD predictions agree with the data for transverse energies $E_T^\gamma \gtrsim 36$ GeV. At lower transverse energies, particularly for $|\eta| < 0.9$, our measured cross section exceeds the expectation from NLO QCD, a trend consistent with previous observations at collider [2,4] and fixed target [15] energies. Using contributions from both correlated and uncorrelated errors, the $\chi^2$ value for the data compared with NLO QCD is 8.9 in the central region and
FIG. 4. Difference between the measured differential cross section for isolated photon production and the prediction from NLO QCD, using CTEQ4M parton distributions.

1.9 in the forward region, for $E_T^\gamma \leq 36$ GeV in each case (the first 4 data points).

These data complement and extend previous measurements, and provide additional input for extraction of parton distributions through global fits to all data. The difference between the data and NLO QCD for $E_T^\gamma \lesssim 36$ GeV suggests that a more complete theoretical understanding of processes that contribute to the low-$E_T^\gamma$ behavior of the photon cross section is needed.

We thank J. F. Owens for his assistance with the theoretical calculations. We thank the Fermilab and collaborating institution staffs for contributions to this work, and acknowledge support from the Department of Energy and National Science Foundation (USA), Commissariat à L’Energie Atomique (France), Ministry for Science and Technology and Ministry for Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), CONICET and UBACyT (Argentina), A.P. Sloan Foundation, and the Humboldt Foundation.
TABLE I. The predicted and measured cross sections in bins of $E_T^\gamma$. $\langle E_T^\gamma \rangle$ is the average photon transverse energy in each bin. The columns labelled $\delta \sigma_U$ and $\delta \sigma_C$ show the magnitude of the uncorrelated and correlated uncertainties, respectively. (The statistical error is contained in $\delta \sigma_U$.)

| $E_T^\gamma$ bin (GeV) | $\langle E_T^\gamma \rangle$ (GeV) | $d^2\sigma/dE_T^\gamma d\eta$ (pb/GeV) | NLO QCD measured | $\delta \sigma_U$ (%) | $\delta \sigma_C$ (%) |
|------------------------|---------------------------------|-----------------------------------|------------------|----------------------|----------------------|
| $|\eta| < 0.9$          |                                 |                                   |                  |                      |                      |
| 10.0 – 14.0            | 11.7                            | 6030                              | 9270             | 35                   | 74                   |
| 14.0 – 21.0            | 16.9                            | 1250                              | 1910             | 34                   | 27                   |
| 21.0 – 26.0            | 23.3                            | 310                               | 579              | 13                   | 17                   |
| 26.0 – 36.0            | 30.3                            | 97.9                              | 146              | 15                   | 14                   |
| 36.0 – 42.0            | 38.8                            | 32.5                              | 37.8             | 7.1                  | 13                   |
| 42.0 – 54.0            | 47.4                            | 13.1                              | 14.1             | 6.7                  | 12                   |
| 54.0 – 75.0            | 63.0                            | 3.52                              | 3.69             | 4.8                  | 11                   |
| 75.0 – 85.0            | 79.8                            | 1.12                              | 1.28             | 8.3                  | 11                   |
| 85.0 – 140.0           | 106.8                           | 0.258                             | 0.264            | 7.1                  | 10                   |
| $1.6 < |\eta| < 2.5$   |                                 |                                   |                  |                      |                      |
| 10.0 – 14.0            | 11.8                            | 5760                              | 4850             | 56                   | 34                   |
| 14.0 – 21.0            | 17.0                            | 1160                              | 1780             | 34                   | 26                   |
| 21.0 – 26.0            | 23.3                            | 279                               | 318              | 27                   | 20                   |
| 26.0 – 36.0            | 30.5                            | 77.9                              | 115              | 26                   | 17                   |
| 36.0 – 42.0            | 38.8                            | 23.6                              | 23.8             | 12                   | 14                   |
| 42.0 – 54.0            | 47.2                            | 8.36                              | 8.97             | 11                   | 12                   |
| 54.0 – 75.0            | 62.6                            | 1.61                              | 1.85             | 8.3                  | 11                   |
| 75.0 – 85.0            | 79.7                            | 0.327                             | 0.384            | 11                   | 10                   |
| 85.0 – 140.0           | 105.1                           | 0.0414                            | 0.0366           | 23                   | 10                   |
REFERENCES

[1] G.R. Farrar, Phys. Lett. B 67, 337 (1977).
[2] UA2 Collaboration, J. Alitti et al., Phys. Lett. B 263, 544 (1991).
[3] CDF Collaboration, F. Abe et al., Phys. Rev. D 48, 2998 (1993); Phys. Rev. Lett. 73, 2662 (1994).
[4] DØ Collaboration, S. Abachi et al., Phys. Rev. Lett. 77, 5011 (1996).
[5] J. Huston et al., Phys. Rev. D 51, 6139 (1995);
   H.-L. Lai and H.-N. Li, Phys. Rev. D 58, 114020 (1998);
   L. Apanasevich et al., Phys. Rev. D 59, 074007 (1999).
[6] M. Glück, L.E. Gordon, E. Reya, and W. Vogelsang, Phys. Rev. Lett. 73, 388 (1994);
   W. Vogelsang and A. Vogt, Nucl. Phys. B 453, 334 (1995).
[7] DØ Collaboration, S. Abachi et al., Nucl. Instrum. Methods A 338, 185 (1994).
[8] T. Sjöstrand, Comp. Phys. Commun. 82, 74 (1994). Version 5.7 was used in this analysis.
[9] J. Womersley, “The DØ Monte Carlo”, in Proc. of the 26th Int. Conf. on High Energy Physics, Dallas, TX, 1992, Fermilab-Conf-92-306.
[10] R. Barlow and C. Beeston, Comp. Phys. Commun. 77, 219 (1993).
[11] Suggested as an estimate of uncertainty in the neutral meson multiplicity, based on
     comparisons with LEP data (T. Sjöstrand, private communication).
[12] J. Bantly et al., Fermilab-TM-1930, 1996 (unpublished). In order to facilitate comparison
     with earlier data, this analysis does not use the luminosity normalization given
     in DØ Collaboration, B. Abbott et al., hep-ex/990625, sec. VII, pp. 21-22 (submitted
     to Phys. Rev. D). The updated normalization would have the effect of increasing the
     luminosity by 3.2%.
[13] H. Baer, J. Ohnemus, and J.F. Owens, Phys. Rev. D 42, 61 (1990).
[14] CTEQ Collaboration, H.L. Lai et al., Phys. Rev. D 55, 1280 (1997).
[15] E706 Collaboration, L. Apanasevich et al., Phys. Rev. Lett. 81, 2642 (1998).