Companion diagnostic for the chloroquine use in the treatment of COVID-19: systems biology report of candidate markers.

SERHIY SOUCHELNYTSKYI (serhiy8085@gmail.com)
Qatar University https://orcid.org/0000-0001-8243-9276

Nazariy Souchelnytskyi
Uppsala Universitet

Research

Keywords: COVID-19, chloroquine, companion diagnostic, systems biology

DOI: https://doi.org/10.21203/rs.3.rs-64108/v1

License: ☏️ ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

BACKGROUND

Chloroquine is used for the treatment of COVID-19 patients. However, efficacy of the chloroquine has been under discussion. Variability of clinical outputs of the drug application requires implementation of a companion diagnostic that would allow monitoring responsiveness to chloroquine. The first line of such markers would be markers already used in clinics. Analysis of reported mechanisms of COVID-19 and chloroquine may lead to such markers.

METHODS

Systemic analysis of molecular mechanisms and markers engaged by chloroquine and COVID-19 virus was performed. The networks of regulatory mechanisms were explored for an intersection and relevance to clinical markers.

RESULTS

Reported here systemic analysis describes the intersection of molecular mechanisms of chloroquine and processes engaged by COVID-19. 266 nodes provide insight into the mechanisms of chloroquine impact on the infection and represent a pool of companion diagnostic markers. As an example, an intersection with the markers of heart arrhythmia retrieved 19 nodes. Thirteen of them were reported in human plasma: levels of albumin, amyloid precursor protein, and endoglin correlate with adverse cardiac effects.

CONCLUSIONS

Reported nodes are the candidate markers for companion diagnostic of the chloroquine application to COVID-19 patients. Some of these markers are already used in the clinic and their interpretation may contribute to monitoring for adverse effects of chloroquine.

Background

The use of chloroquine for the treatment of COVID-19 patients has been under discussion (1–3). To be effective, chloroquine has to act on its targets that would lead to a therapeutic response. To discriminate between responding, non-responding and adverse effects-prone patients, there is a need of a companion diagnostic for chloroquine. Such markers are routine in oncology (4, 5). These markers inform clinicians whether a drug would be useful for a given patient. Without these markers, an effect of drugs is frequently non-conclusive when evaluated at the population level. Companion diagnostics allows selection of responsive patients and prediction of the disease development.
Chloroquine has been used since the 1940th. Studies of this remedy generated information about molecular mechanisms of its action. An international DrugBank depository (drugbank.ca) is an example of a curated and proven drug target database (6). The studies of COVID-19 are not yet as extensive as studies of chloroquine, but there are already reports of COVID-19 targets in human cells (7–9). Identified targets reflect molecular mechanisms engaged by chloroquine and COVID-19, and systems biology allows identification of these regulatory processes. A number of network building tools and high-quality databases are available for systemic analysis of molecular mechanisms engaged by COVID-19 and chloroquine (7, 10–13). An analysis of regulatory networks is the most comprehensive way to explore mechanisms that are initiated or dependent on the targets of COVID-19 and chloroquine. Comprehensiveness is ensured by the incorporation of the experimental data from hundreds to thousands of reports. For example, UniProt database contains 562,755 records of experimental data (uniprot.org) (14). This a rich source for systemic network analysis.

COVID-19 infection manifests in many different clinical symptoms (15–17). It indicates that the virus employs different molecular mechanisms and attacks different types of cells. Here we report an identification of potential markers to evaluate the efficacy of chloroquine in the treatment of COVID-19 patients. Our systemic analysis identified 266 nodes, i.e. genes and proteins that represent common molecular mechanisms engaged by chloroquine and COVID-19. An example of cardiac arrhythmia showed 19 potential companion diagnostic markers for chloroquine use and prediction of cardiac adverse effects.

Methods

The datasets for building networks were collected as follows, and are listed in Supplementary Table S1. For chloroquine, the targets were retrieved from the Drug Bank depository (drugbank.ca) (6). For COVID-19 interacting proteins, 322 interactors were reported by Gordon et al., and ACE2 and TMPRSS2 were used (7, 18). For arrhythmia, markers described by Bose et al. were used (19).

The networks building and analysis was performed in Cytoscape (10). The significance for the inclusion of nodes and edges was set to p < 0.05. For the building of the networks, we used the UniProt database (14). For extraction of intersections, the “Network Analysis” tool of Cytoscape was used. Statistical significance of network building (inclusion of nodes and confidence of edges) was set on p < 0.05. BiNGO tool was used for the analysis of affected biological processes. For statistical significance, the level was set at p < 0.05, and the hypergeometric statistical test was used, with Benjamini and Hochberg false discovery rate correction.

A cross-validation analysis of identified nodes with published reports about their clinical values and a role in physiology was performed. We searched PubMed with the Medical Subject Headings (MeSH) of a node and words “COVID-19”, “chloroquine”, and “heart”. Retrieved publications were scrutinized for information about clinical values of the nodes as markers and for involvement of the nodes in molecular mechanisms and biological processes of relevance for a virus infection, predictive marker value, correlation with clinical outputs and adverse effects, and a role in crucial intracellular regulatory mechanisms, e.g. proliferation, death and differentiation of cells.

Results
Identification of common targets of COVID-19 and chloroquine

For chloroquine, there have been reported 11 direct targets, i.e. GSTA2, TNF, TLR9, GST, HMGB1, GSTM1, CYP2C8, CYP3A4, CYP3A5, CYP2D6 and CYP1A1 (Supplementary Table S1). Chloroquine impact on these targets may lead to engagement of a regulatory network containing 1,336 nodes and 2,526 edges (Supplementary Figure S1; Supplementary File S1, network “Chloroquine_UniProt”). The network was built with the retrieval of interaction data from the UniProt database. The same database was used to build networks of angiotensin-converting enzyme 2 (ACE2) and type 2 transmembrane serine protease (TMPRSS2) and COVID-19 interactors that are listed in Supplementary Table S1. The structure of the networks are shown in Supplementary Figures S2 and S3, and the networks are presented in Supplementary File S1 (networks “Cov_UniProt” and “ACE2TMPRSS2_UniProt”). The ACE2/TMPRSS2 network contains 15 nodes and 19 edges, and the COVID-19 network contains 828 nodes and 1,545 edges. These 3 networks represent molecular mechanisms engaged by chloroquine and COVID-19 directly or via ACE2-TMPRSS2. Note that the graphical presentation of the networks is to illustrate structure of the networks. Cytoscape Session file (Supplementary File S1) provides access to the networks and allows exploration of the networks, zooming on identifiers, perform selection of sub-networks, clustering and search for biological processes of clinical relevance.

To identify mechanisms shared by COVID-19 and chloroquine, we searched for intersections between these 3 networks. The intersection of the chloroquine and ACE2/TMPRSS2 networks extracted only 2 nodes, i.e. albumin and 14-3-3 zeta/delta. This shows that chloroquine has rather a narrow impact on ACE2 and TMPRSS2-dependent mechanisms. The intersection of the chloroquine and COVID-19 target networks extracted 266 nodes interconnected by 347 edges (Figure 1A; Supplementary Table S2, Supplementary File S1, network “Intersection_ChloroqUniProt_CovUniProt...”). This large number of common nodes indicates a significant molecular cross-talk between chloroquine and COVID-19. One hundred nine of these nodes were also detected in the human plasma (Table 1). These intersections identify mechanisms of chloroquine interference with COVID-19 action and list potential plasma markers (Figure 2). The intersection nodes may represent markers of companion diagnostic for chloroquine use. If these nodes are affected in a patient infected with the virus, then the chloroquine prescription may be of help, as chloroquine would markers act on/via these affected nodes.

COVID-19 and cardiac arrhythmia markers

To evaluate whether the intersection nodes would lead to the identification of clinically relevant markers, we used an example of cardiac arrhythmia. Markers of arrhythmia were used to generate a network (Supplementary Figure S4). The arrhythmia markers are OPN, ANXA5, GDF15, MPO, LGALS3, TNNT2, TNNI3, ANFB, REN, IL6 and CRP (Supplementary Table S1) (19). The arrhythmia network was explored further for the intersection with common nodes of chloroquine and COVID-19 regulatory mechanisms (Figure 1B; Supplementary File S1 network “Intersection_Arhythmia_Cov19...”). There were no edges retrieved between these nodes and amyloid precursor protein was retrieved with 3 different accession numbers. We identified 19 nodes linking arrhythmia markers to chloroquine and COVID-19 (Table 2). Analysis of these 19 nodes showed an engagement of processes affecting the heart and regulation of cell death and proliferation.
Detection of proteins in serum or plasma suggest their suitability as makers for repeatable sampling by blood collection. We used a database of proteins detected in plasma (http://www.plasmaproteomedatabase.org) and retrieved 13 proteins (Table 2). Then, we searched for reports of clinical applications of these 13 proteins as markers of cardiac conditions. Levels of human serum albumin (ALB), amyloid proteins (APP) and soluble endoglin (ENG) correlate with cardiovascular diseases (Figure 2). Albumin concentration below 10 g/L correlates with cardiovascular diseases (20). Levels of amyloid precursor protein (APP) higher than 150 pg/mL correlate with cardiomyopathy (21). Amyloid-beta (1-40) protein was associated with the incidence of coronary heart failure (22). Two of other identified by us proteins, i.e. microtubule-associated protein tau (MART) and prion protein (PRNP) are also associated with the onset of cellular degeneration (23-25). Endoglin is involved in the development and regulation of vasculature. Elevated levels of soluble endoglin in plasma correlate with enhanced left ventricular filling pressure (26). 14-3-3zeta/delta (YWHAZ) is one of the 10 genes enhanced in ischemic stroke (27).

The systems biology approach allowed us to explore published original experimental data in the search for companion diagnostic markers for chloroquine. Reported here 109 nodes represent a pool of these markers. The example of the search for markers to guide the use of chloroquine and preventing cardiac arrhythmia identified 19 candidates. Four of these were reported to correlate with adverse effects, thus confirming the clinical value of our approach.

Discussion

Systemic network analysis becomes a potent and efficient tool for the investigation of correlations and molecular mechanisms (8, 12, 13). Well-developed and curated databases contain large volumes of original experimental data. This data are available for analysis with a number of tools. Here, we used Cytoscape that allows retrieval of molecular interactions, functional dependencies, correlation and clinical data (10). Used by us the UniProt database contains more than 500,000 curated entries (14). This rich source of data in combination with the efficient analysis tool, i.e. Cytoscape, leads to unveiling novel dependencies. Two hundred sixty-six nodes common for COVID-19 and chloroquine show an extensive impact of chloroquine on the infection (Figs. 1 and 2; Supplementary Table S2). That may explain the clinical efficacy of chloroquine. However, changes in expression and/or activity of many of these nodes may also have undesirable consequences, leading to adverse effects of chloroquine.

This manuscript reports the identification of potential companion markers of chloroquine. As an example of applicability of our data, we report 19 marker candidates for guiding chloroquine treatment of COVID-19-infected patients and monitoring for cardiac arrhythmia (Table 2). Four of these markers are already known to affect cardiac conditions. The decrease in albumin to concentrations below 10 g/L correlates with cardiac adverse effects (20). Albumin levels have been recommended for clinical monitoring of COVID-19 patients (20, 28–31). Hypoalbuminemia with the albumin levels lower than 35 g/L was associated with the 2-time higher risk of the long-term mortality in heart failure (31). Chloroquine was described as a drug against prion and Alzheimer’s diseases (32). Prion protein and amyloid beta peptide are likely to be components of the innate immune system (33). Amyloid-beta protein association with coronary heart disease and amyloidosis-
related heart disease was reported (21, 22). Identification of amyloid precursor protein, microtubule-associated tau and prion proteins indicate a link of cell damage and degeneration to cardiac conditions.

Similar observations were made for other nodes annotated in Table 2. For example, proliferating cell nuclear antigen (PCNA) level increases in arrhythmia, and when chloroquine has an effect, it prevents PCNA increase (34). CD177 was reported to contribute to blocking atrial fibrillation (35). Chloroquine inhibits autophagy and promotes apoptosis, and METTL2, SHLD3, TP53BP1 are engaged nodes in these processes (Table 2) (36–38). Cardiomyocyte proliferation is regulated by another identified node, disabled homolog 2 (Dab2) (39). Dab2 is involved in suppression of apoptosis by Epstein-Barr virus (EBV) (40). Two nodes, mitochondrial antiviral signaling protein (MAVS) and DExD/H-Box Helicase 58 (DDX58) were reported as antiviral proteins (41, 42). Inhibition of MAVS expression decreased efficacy of hydroxychloroquine against dengue virus (42). These examples show that the identified nodes have a high probability to be markers for a companion diagnostic. The 19 markers annotated in Table 2 are the example of using the pool of 266 common nodes of COVID-19 and chloroquine. Our report provides a basis for further clinical studies of the potential markers.

Reported by us results can be used in clinical practice already now, as some of identified by us nodes are used in routine clinical diagnostics, e.g. albumin, soluble endoglin and amyloid precursor protein. Repurposing of their use for COVID-19 patients treated with chloroquine can be applied now. For example, a higher risk of adverse cardiac effects would be indicated by downregulation of albumin and up-regulation of amyloid precursor protein, tau protein, prion protein and soluble endoglin (21, 22, 26, 43).

Conclusion

Presented here network analysis describes potential markers of a companion diagnostic for the use of chloroquine for the treatment of COVID-19 patients. Some of the markers, e.g. albumin, soluble endoglin and amyloid precursor protein have records of clinical correlations of their expression and cardiac adverse effects. Other proteins are candidates for companion diagnostic in clinical trials of chloroquine in the treatment of COVID-19 infection.

Abbreviations

ACE2, angiotensin-converting enzyme 2; TMPRSS2, type 2 transmembrane serine protease; MeSH, Medical Subject Headings; ALB, human serum albumin; APP, amyloid proteins; ENG, soluble endoglin; PCNA, proliferating cell nuclear antigen; MART, microtubule-associated protein tau; PRNP, prion protein; YWHAZ, 14-3-3zeta/delta; MAVS, mitochondrial antiviral signaling protein; DDX58, DExD/H-box helicase 58; disabled homolog 2 (Dab2); EBV, Epstein-Barr virus.

Declarations

Ethics approval and consent to participate: Not required for this work.

Consent to publication: Not required for this work.
Availability of data and material: All data are freely available. The .cys file of the networks and analysis is also available without restrictions (Supplementary File S1). The .cys file is available for download at https://figshare.com/articles/online_resource/SupplementaryFileS1_Cytoscape_DataNetwork_cys/12793580. This file would allow further clinical use of data reported in this publication. The systemic network analysis file (.cys file) may be useful for clinicians who want to use this publication for clinical applications. The .cys file allows clinicians to do own analysis of reported here data, e.g. search for markers and evaluate clinical conditions of their interest.

Competing interests: The authors declare no conflict of interest in relation to the subject matter and financial interests of this publication. Contribution from Oranta CancerDiagnostics AB was pro bono.

Funding: QUCG-CMED-20/21-1, QUCG-CMED-18/19-2, QU Proteomics Core Facility support, NPRP9-453-3-089 to S.S.

Authors’ contribution: Design of the study: S.S.; Retrieval and analysis of data: S.S., N.S.; Writing and revision of the manuscript: S.S., N.S.; Final approval: S.S., N.S.

Acknowledgments: We are grateful to Andriy Nera, Andriy Kost and Johan Ericsson for discussions.

References

1. Funck-Brentano C, Salem JE. Chloroquine or hydroxychloroquine for COVID-19: why might they be hazardous? Lancet 2020;S0140-6736(20)31174-0. doi: 10.1016/S0140-6736(20)31174-0.

2. Hernandez AV, Roman YM, Pasupuleti V, Barboza JJ, White CM Hydroxychloroquine or Chloroquine for Treatment or Prophylaxis of COVID-19: A Living Systematic Review. Ann. Intern. Med. 2020; Online May 27. doi: 10.7326/M20-2496, 2020.

3. Borba MGS, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, et al. CloroCovid-19 Team: Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Randomized Clinical Trial. JAMA Netw. Open. 2020; 3(4):e208857. doi: 10.1001/jamanetworkopen.2020.8857.

4. Jørgensen JT. A paradigm shift in biomarker guided oncology drug development. Ann. Transl. Med. 2019; 7(7):148. doi: 10.21037/atm.2019.03.36.

5. McLachlan J, George A, Banerjee S. The Current Status of PARP Inhibitors in Ovarian Cancer. Tumori 2016;102(5):433-440. doi: 10.5301/tj.5000558.

6. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1): D1074-D1082. doi: 10.1093/nar/gkx1037.

7. Gordon GE, Jang GM, Bouhaddou M, Xu J, Obernier K, O’Meara MJ, et al. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug Repurposing. 2020; bioRxiv March 27: https://doi.org/10.1101/2020.03.22.002386.

8. Ostaszewski M, Mazein A, Gillespie ME, Kuperstein I, Niarakis A, et al. COVID-19 Disease Map, building a computational repository of SARS-CoV-2 virus-host interaction mechanisms. Sci. Data 2020;7(1):136.
9. Du M, Cai G, Chen F, Christiani DC, Zhang Z, Wang M. Multi-omics Evaluation of Gastrointestinal and Other Clinical Characteristics of SARS-CoV-2 and COVID-19. Gastroenterology 2020; pii: S0016-5085(20)30399-1. doi: 10.1053/j.gastro.2020.03.045.

10. Shannon P, Shannon P, Markiel A, Ozier O, O, Baliga NS, Wang JT, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 2003;13(11): 2498-504.

11. Souchelytskyi S, Nera A, Souchelytskyi N. COVID-19 engages clinical markers for the management of cancer and cancer-relevant regulators of cell proliferation, death, migration and immune response. Sci. Rep. 2020; August.

12. Silverman EK, Schmidt HHHW, Anastasiadou E, Altucci L, Angelini M, Badimon L, et al. Molecular networks in Network Medicine: Development and applications. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020; e1489. doi: 10.1002/wsbm.1489.

13. Bowen JR, Ferris MT, Suthar MS. Systems biology: A tool for charting the antiviral landscape. Virus Res. 2016;218: 2-9. doi: 10.1016/j.viruses.2016.01.005.

14. The UniProt Consortium: UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47: D506-515.

15. Extance A. Covid-19 and long term conditions: what if you have cancer, diabetes, or chronic kidney disease? BMJ 2020; Mar 25: 368:m1174. doi: 10.1136/bmj.m1174.

16. Patel KP, Patel PA, Vunnam RR, Hewlett AT, Jain R, Jing R, Vunnam SR. Gastrointestinal, hepatobiliary, and pancreatic manifestations of COVID-19. J. Clin. Virol. 2020;128: 104386. doi: 10.1016/j.jcv.2020.104386.

17. Henry BM, Santos de Oliveira MH, Benoit S, Plebani M, Lippi G. Hematologic, Biochemical and Immune Biomarker Abnormalities Associated With Severe Illness and Mortality in Coronavirus Disease 2019 (COVID-19): A Meta-Analysis. Clin. Chem. Lab. Med. 2020;58(7): 1021-28.

18. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020;181(2): 271-80.e8. doi: 10.1016/j.cell.2020.02.052.

19. Bose A, Truong QA, Singh JP. Biomarkers in electrophysiology: role in arrhythmias and resynchronization therapy. J. Inter. Card. Electrophysiol. 2015;43(1):31-44. doi: 10.1007/s10840-015-9982-7.

20. Ronit A, Kirkegaard-Klitbo DM, Dohlmann TL, Lundgren J, Sabin CA, Phillips AN, Nordestgaard BG, Afzal S. Plasma albumin and incident cardiovascular disease: results from the CGPS and an updated meta-analysis, Arterioscler. Thromb. Vasc. Biol. 2020;40(2): 473-82. doi: 10.1161/ATVBAHA.119.313681.

21. Wolfson AW, Shah KS and Patel JK: Amyloid and the heart. Curr. Cardiol. Rep. 2019;21(12): 164. doi: 10.1007/s11886-019-1230-9.

22. Stamatelopoulos K, Mueller-Hennessen M, Georgiopoulos G, Sachse M, Boedinghaus J, Sopova K, et al. Amyloid-beta (1-40) and the Risk of Death From Cardiovascular Causes in Patients With Coronary Heart Disease. J. Am. Coll. Cardiol.2015; 65(9): 904-16. doi: 10.1016/j.jacc.2014.12.035.
23. Mehrpour M, Codogno P. Prion Protein: From Physiology to Cancer Biology. Cancer Lett. 2010;290(1):1-23. doi: 10.1016/j.canlet.2009.07.009.

24. Galenko O, Jacobs V, Knight S, Bride D, Cutler MJ, Muhlestein JB, Carlquist JL, Anderson JL, Knowlton KU, Bunch J. Circulating Levels of Biomarkers of Cerebral Injury in Patients With Atrial Fibrillation. Am. J. Cardiol. 2019;124(11):1697-1700. doi: 10.1016/j.amjcard.2019.08.027.

25. Murakami N, Oyama F, Gu Y, McLennan IS, Nonaka I, Ihara Y. Accumulation of Tau in Autophagic Vacuoles in Chloroquine Myopathy. J. Neuropathol. Exp. Neurol. 1998;57(7):664-673. doi: 10.1097/00005072-199807000-00003.

26. Meluzín J, Tomandl J. Can biomarkers help to diagnose early heart failure with preserved ejection fraction? Dis. Markers 2015;426045. doi: 10.1155/2015/426045.

27. Eyileten C, Wicik Z, De Rosa S, Mirowska-Guzel D, Soplinska A, Indolfi C, Jastrzebska-Kurkowska I, Czlonkowska A, Postula M. MicroRNAs as Diagnostic and Prognostic Biomarkers in Ischemic Stroke-A Comprehensive Review and Bioinformatic Analysis. Cells 2018;7(12):249. doi: 10.3390/cells7120249.

28. Kavsak PA, de Wit K, Worster A. Clinical Chemistry Tests for Patients With COVID-19 - Important Caveats for Interpretation. Clin. Chem. Lab. Med. 2020;Apr 16;j/cclm-ahead-of-print/cclm-2020-0436/cclm-2020-0436.xml. doi: 10.1515/cclm-2020-0436.

29. Kavsak PA, de Wit K, Worster A. Emerging Key Laboratory Tests for Patients With COVID-19. Clin. Biochem. 2020;Apr 30;S0009-9120(20)30391-X. doi: 10.1016/j.clinbiochem.2020.04.009.

30. Suzuki S, Hashizume N, Kanzaki Y, Maruyama T, Kozuka A, Yahikozawa K. Prognostic Significance of Serum Albumin in Patients With Stable Coronary Artery Disease Treated by Percutaneous Coronary Intervention. PLoS One 2019;14(7):e0219044. doi: 10.1371/journal.pone.0219044. eCollection 2019.

31. Ancio A, Allepaerts S, Robinet S, Oury C, Pierard LA, Lancellotti P. Serum Albumin Level and Long-Term Outcome in Acute Heart Failure. Acta Cardiol. 2019;74(6):465-71. doi: 10.1080/00015385.2018.1521557.

32. Gay M, Carato P, Coevoet M, Renault N, Larchanché PE, Barczyk A, Yous S, Buée L, Sergeant N, Melnyk P. New Phenylaniline Derivatives as Modulators of Amyloid Protein Precursor Metabolism. Bioorg. Med. Chem. 2018;26(8):2151-2164. doi: 10.1016/j.bmc.2018.03.016.

33. Lathe R, Darlix JL. Prion Protein PRNP: A New Player in Innate Immunity? The Aβ Connection. J. Alzheimers Dis. Rep. 2017;1(1):263-75. doi: 10.3233/ADR-170037.

34. Zhang S, Zhu C, Liu Q, Wang W. Effects of Chloroquine on GFAP, PCNA and Cyclin D1 in Hippocampus and Cerebral Cortex of Rats With Seizures Induced by Pentylenetetrazole. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2005;25(6):625-28. doi: 10.1007/BF02896153.

35. Yue H, Liang W, Gu J, Zhao X, Zhang T, Qin X, Zhu G, Wu Z. Comparative transcriptome analysis to elucidate the therapeutic mechanism of colchicine against atrial fibrillation. Biomed. Pharmacother. 2019;109422. doi: 10.1016/j.biopharma.2019.109422, 2019.

36. Song H, Feng X, Zhang H, Luo Y, Huang J, Lin M, et al. METTL3 and ALKBH5 Oppositely Regulate M 6 A Modification of TFEB mRNA, Which Dictates the Fate of Hypoxia/Reoxygenation-Treated Cardiomyocytes. Autophagy 2019;15(8):1419-1437. doi: 10.1080/15548627.2019.1586246.
37. Noordermeer SM, Adam S, Setiaputra D, Barazas M, Pettitt SJ, Ling AK, et al. The Shieldin Complex Mediates 53BP1-dependent DNA Repair. Nature 2018;560(7716):117-21. doi: 10.1038/s41586-018-0340-7.

38. Vucicevic L, Misirkic-Marjanovic M, Paunovic V, Kravic-Stevovic T, Martinovic T, Ciric D, et al. Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine. Autophagy 2014;10(12):2362-78. doi: 10.4161/15548627.2014.984270.

39. Hofsteen P, Robitaille AM, Chapman DP, Moon RT, Murry CE. Quantitative Proteomics Identify DAB2 as a Cardiac Developmental Regulator That Inhibits WNT/β-catenin Signaling. Proc. Natl. Acad. Sci. U S A 2016;113(4):1002-7. doi: 10.1073/pnas.1523930113.

40. Min K, Kim JY, Lee SK. Epstein-Barr Virus miR-BART1-3p Suppresses Apoptosis and Promotes Migration of Gastric Carcinoma Cells by Targeting DAB2. Int. J. Biol. Sci. 2020;16(4):694-707. doi: 10.7150/ijbs.36595.

41. Wang R, Zhu Y, Lin X, Ren C, Zhao J, Wang F, Gao X, Xiao R, Zhao L. et al.: Influenza M2 Protein Regulates MAVS-mediated Signaling Pathway Through Interacting With MAVS and Increasing ROS Production. Autophagy 2019;15(7):1163-1181. doi: 10.1080/15548627.2019.1580089.

42. Wang LF, Lin YS, Huang NC, Yu CY, Tsai WL, Chen JJ, et al. Hydroxychloroquine-inhibited Dengue Virus Is Associated With Host Defense Machinery. J. Interferon Cytokine Res. 2015;35(3):143-156. doi: 10.1089/jir.2014.0038.

43. Vitverova B, Najmanova I, Vicen M, Tripska K, Igreja Sa IC, et al. Long Term Effects of Soluble Endoglin and Mild Hypercholesterolemia in Mice Hearts. PLoS One 2020;15(5):e0233725. doi: 10.1371/journal.pone.0233725.

Tables

Table 1 List of nodes common for COVID-19 and chloroquine that have been observed in the human plasma. These 109 nodes are candidate plasma or serum markers for assessment of chloroquine efficacy in treating COVID-19 infection.

At the end of the table are listed 35 nodes that were not observed in the human plasma.
Gene symbol	Gene name	
HPRD_01228	HMGB1 high mobility group box 1	
HPRD_01456	PCNA proliferating cell nuclear antigen	
HPRD_02717	NCBP1 nuclear cap binding protein subunit 1, 80kDa	
HPRD_01592	RPS6 ribosomal protein S6	
HPRD_10941	RPS3 ribosomal protein S3	
HPRD_01245	NCL nucleolin	
HPRD_00883	HTT huntingtin	
HPRD_04323	TLR2 toll-like receptor 2	
HPRD_02514	SYK spleen tyrosine kinase	
HPRD_03703	MYD88 myeloid differentiation primary response 88	
HPRD_13847	MAVS mitochondrial antiviral signaling protein	
HPRD_04462	IKKB inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta	
HPRD_00660	FUS fused in sarcoma	
HPRD_01142	MAPT microtubule-associated protein tau	
HPRD_11299	USE1 unconventional SNARE in the ER 1 homolog (S. cerevisiae)	
HPRD_14389	METTL3 methyltransferase like 3	
HPRD_00087	PSEN1 presenilin 1	
HPRD_00100	APP amyloid beta (A4) precursor protein	
HPRD_01222	CD177 CD177 molecule	
HPRD_03333	ATXN1 ataxin 1	
HPRD_00831	SIRT1 sirtuin 1	
HPRD_02391	IL2RG interleukin 2 receptor, gamma	
HPRD_00989	IL4 interleukin 4	
HPRD_07259	RTN4 reticulin 4	
HPRD_04087	APBB1 amyloid beta (A4) precursor protein-binding, family B, member 1 (Fe65)	
HPRD_01861	TNFRSF1A tumor necrosis factor receptor superfamily, member 1A	
HPRD_04583	RIPK1 receptor (TNFRSF)-interacting serine-threonine kinase 1	
HPRD_02739	CSNK1A1 casein kinase 1, alpha 1	
HPRD_02217	IKKBG inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma	
HPRD_05155	PPARGC1A peroxisome proliferator-activated receptor gamma, coactivator 1 alpha	
HPRD_05258	AKAP8 A kinase (PRKA) anchor protein 8	
HPRD_01238	NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1	
HPRD_02799	CASP3 caspase 3, apoptosis-related cysteine peptidase	
HPRD_03538	TRAF2 TNF receptor-associated factor 2	
HPRD_03685	PA2G4 proliferation-associated 2G4, 38kDa	
HPRD_05521	HDAC2 histone deacetylase 2	
HPRD_01453	PRNP prion protein	
HPRD_01470	PTPN11 protein tyrosine phosphatase, non-receptor type 11	
HPRD_02480	INSM1 insulinoma-associated 1	
HPRD_08950	HDAC3 histone deacetylase 3	
HPRD_03143	HDAC1 histone deacetylase 1	
HPRD_06942	AGO1 argonaute RISC catalytic component 1	
HPRD_06943	AGO2 argonaute RISC catalytic component 2	
HPRD_01494	EPHA2 EPH receptor A2	
HPRD_09694	TET1 tet methylcytosine dioxygenase 1	
HPRD_01242	HNRNPA1 heterogeneous nuclear ribonucleoprotein A1	
HPRD_02911	NCOR1 nuclear receptor corepressor 1	
HPRD_04078	EP300 E1A binding protein p300	
HPRD_07211	NR1H3 nuclear receptor subfamily 1, group H, member 3	
HPRD_02660	NR1H2 nuclear receptor subfamily 1, group H, member 2	
HPRD_01574	RB1 retinoblastoma 1	
HPRD_08406	MYCBP	c-myc binding protein
HPRD_09709	DACT1	dishevelled-binding antagonist of beta-catenin 1
HPRD_03388	PRKACA	protein kinase, cAMP-dependent, catalytic, alpha
HPRD_01615	DDX5	DEAD (Asp-Glu-Ala-Asp) box helicase 5
HPRD_03402	RPS6KA1	ribosomal protein S6 kinase, 90kDa, polypeptide 1
HPRD_00303	MCM2	minichromosome maintenance complex component 2
HPRD_10641	AKAP8L	A kinase (PRKA) anchor protein 8-like
HPRD_05397	AURKB	aurora kinase B
HPRD_02910	NCOR2	nuclear receptor corepressor 2
HPRD_10566	SSX32	synovial sarcoma, X breakpoint 2 interacting protein
HPRD_11331	SNX33	sorting nexin 33
HPRD_12072	SNX9	sorting nexin 9
HPRD_02786	TEC	tec protein tyrosine kinase
HPRD_15407	SNX18	sorting nexin 18
HPRD_01835	ZFP36	ZFP36 ring finger protein
HPRD_05390	NFKBIA	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
HPRD_05759	TNFRSF21	tumor necrosis factor receptor superfamily, member 21
HPRD_14732	MOV10	M0v10, Moloney leukemia virus 10, homolog (mouse)
HPRD_05247	PABPC1	poly(A) binding protein, cytoplasmic 1
HPRD_04703	ADAM17	ADAM metallopeptidase domain 17
HPRD_01903	ITGAV	integrin, alpha V
HPRD_00628	ITGB1	integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)
HPRD_05936	PACSIN1	protein kinase C and casein kinase substrate in neurons 1
HPRD_05390	PACSIN2	protein kinase C and casein kinase substrate in neurons 2
HPRD_05937	PACSIN3	protein kinase C and casein kinase substrate in neurons 3
HPRD_03254	UPF1	UPF1 regulator of nonsense transcripts homolog (yeast)
HPRD_03570	NCOA3	nuclear receptor coactivator 3
HPRD_02534	CREBBP	CREB binding protein
HPRD_03274	MAD2L1	MAD2 mitotic arrest deficient-like 1 (yeast)
HPRD_04541	IQGAP1	IQ motif containing GTPase activating protein 1
HPRD_06343	LRPPRC	leucine-rich pentatricopeptide repeat containing
HPRD_05944	HDAC9	histone deacetylase 9
HPRD_01197	NGFR	nerve growth factor receptor
HPRD_00532	COMT	catechol-O-methyltransferase
HPRD_04870	TANK	TRAF family member-associated NFKB activator
HPRD_05367	CNOT2	CCR4-NOT transcription complex, subunit 2
HPRD_02698	FABP4	fatty acid binding protein 4, adipocyte
HPRD_02811	CHUK	conserved helix-loop-helix ubiquitous kinase
HPRD_00589	ESR1	Estrogen receptor alpha
HPRD_01166	MYD1	myogenic differentiation 1
HPRD_01320	CBL	Cbl proto-oncogene, E3 ubiquitin protein ligase
HPRD_06780	KAT2B	K(lysine) acetyltransferase 2B
HPRD_02557	TLE1	transducin-like enhancer of split 1 (E(sp1) homolog, Drosophila)
HPRD_03139	DAB2	Dab, mitogen-responsive phosphoprotein, homolog 2 (Drosophila)
HPRD_13006	CBX8	chromobox homolog 8
HPRD_05569	TP53BP1	tumor protein p53 binding protein 1
HPRD_00565	ENG	endoglin
HPRD_00279	CSNK2A2	casein kinase 2, alpha prime polypeptide
HPRD_00532	DNMT1	DNA (cytosine-5-)methyltransferase 1
HPRD_01812	TFCR	transferrin receptor (p90, CD71)
HPRD_01296	RAB8A	RAB8A, member RAS oncogene family
Table 2. 19 common nodes for arrhythmia, COVID-19 and chloroquine.

13 nodes were described in human plasma. 6 nodes at the end of the table are nodes that were not described in human plasma. Figure 2 describes reported information about these nodes as clinical markers.

PPD ID	Gene symbol	Gene name
HPRD_01456	PCNA	proliferating cell nuclear antigen
HPRD_13847	MAVS	mitochondrial antiviral signaling protein
HPRD_01142	MAPT	microtubule-associated protein tau
HPRD_14389	METTL3	methyltransferase like 3
HPRD_00100	APP	amyloid beta (A4) precursor protein
HPRD_01222	CD177	CD177
HPRD_03333	ATXN1	ataxin 1
HPRD_01453	PRNP	prion protein
HPRD_03139	DAB2	Dab, mitogen-responsive phosphoprotein, homolog 2 (Drosophila)
HPRD_05569	TP53BP1	tumor protein p53 binding protein 1
HPRD_00565	ENG	endoglin
HPRD_00062	ALB	albumin
HPRD_03183	YWHAZ	tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein, zeta polypeptide

Nodes not detected in plasma

- MAD2L2
- DDX58
- SHLD3
- METTL14
- PRKN
- ATAD3A

Supplementary Materials Legends

Supplementary Table S1. List of GO terms used for the networks COVID-19, chloroquine and arrhythmia markers.

Supplementary Table S2. List of the nodes of intersection of COVID-19 and chloroquine (264 nodes) and ACE2/TMPRSS2 and chloroquine (2 nodes).
Supplementary Figures show structure of the networks. To explore the networks and zoom on identifiers, edges or search for clusters, please use the Cytoscape Session file available at https://figshare.com/articles/online_resource/SupplementaryFileS1_Cytoscape_DataNetwork_cys/12793580.

Supplementary Figure S1. Network generated with the targets of chloroquine (A) and biological processes represented by that network (B). The network was built with Cytoscape and UniProt database. Biological processes were retrieved with BiNGO tool.

Supplementary Figure S2. Network generated with the targets of COVID-19 (A) and biological processes represented by that network (B). The network was built with Cytoscape and UniProt database. Biological processes were retrieved with BiNGO tool.

Supplementary Figure S3. Network generated with the targets of ACE2 and TMPRSS2 (A) and biological processes represented by that network (B). The network was built with Cytoscape and UniProt database. Biological processes were retrieved with BiNGO tool.

Supplementary Figure S4. Network generated with the targets of arrhythmia (A) and biological processes represented by that network (B). The network was built with Cytoscape and UniProt database. Biological processes were retrieved with BiNGO tool.

Supplementary File S1. Cytoscape Session file (.cys) contains networks used in this study. These networks can be evaluated for nodes and edges of interest, e.g. to see identifiers. See the text for annotation of the networks. The file is uploaded at FigShare for free access; link is https://figshare.com/articles/online_resource/SupplementaryFileS1_Cytoscape_DataNetwork_cys/12793580.

Figures
Figure 1

Structure of the network formed by common targets of chloroquine and COVID-19 (A) and common nodes retrieved by intersection of the networks of markers of arrhythmia and targets of chloroquine and COVID-19 (B). The networks were built with Cytoscape and UniProt database, as described in the text. Numbers of nodes and edges are indicated for (A). Common nodes of arrhythmia markers and targets of chloroquine and COVID-19 did not show connections/edges. The retrieved nodes are shown in (B). The network (A) and nodes (B) are shown to illustrate the structure of the network (A) or absence of it (B). For zooming in the networks for identifiers (nodes and edges identities) and the networks analysis, the networks are in Supplementary File S1 as a Cytoscape Session file (.cys file), available for download at https://figshare.com/articles/online_resource/SupplementaryFileS1_Cytoscape_DataNetwork_cys/12793580.
Figure 2

Workflow of selection of potential companion diagnostic markers. Two hundred sixty-six common COVID-19 and chloroquine nodes were evaluated for representation of biological functions and relevance to adverse effects. Retrieved with BiNGO tool biological processes and the nodes of the relevance to the heart arrhythmia markers are annotated.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- SupplMaterialsALL200821.pdf