Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing Mef2c

Yi-Chuan Chen1,7, Hsiao-Ying Kuo1,7, Ulrich Bornschein2, Hiroshi Takahashi3, Shih-Yun Chen1, Kuan-Ming Lu1, Hao-Yu Yang1, Gui-May Chen1, Jing-Ruei Lin1, Yi-Hsin Lee1, Yun-Chia Chou1, Sin-Jhong Cheng1, Cheng-Ting Chien4, Wolfgang Enard5, Wulf Hevers2, Svante Pääbo2, Ann M Graybiel6 & Fu-Chin Liu1

Cortico-basal ganglia circuits are critical for speech and language and are implicated in autism spectrum disorder, in which language function can be severely affected. We demonstrate that in the mouse striatum, the gene Foxp2 negatively interacts with the synapse suppressor gene Mef2c. We present causal evidence that Mef2c inhibition by Foxp2 in neonatal mouse striatum controls synaptogenesis of corticostriatal inputs and vocalization in neonates. Mef2c suppresses corticostriatal synapse formation and striatal spinogenesis, but can itself be repressed by Foxp2 through direct DNA binding. Foxp2 deletion de-represses Mef2c, and both intrastriatal and global decrease of Mef2c rescue vocalization and striatal spinogenesis defects of Foxp2-deletion mutants. These findings suggest that Foxp2–Mef2c signaling is critical to corticostriatal circuit formation. If found in humans, such signaling defects could contribute to a range of neurologic and neuropsychiatric disorders.

Speech and language endow human beings with unrivalled refinement and breadth in their social communications. In autism spectrum disorder (ASD), these communicative abilities can be severely compromised along with other problems related to social communication and repetitive behavior. The neural mechanisms underlying language difficulties in individuals with ASD present a challenge to neuroscientists, but neuroimaging studies have detected aberrant neuronal activity and connectivity in the neocortex and striatum of individuals with ASD. We were struck by the parallels between these findings and findings linking mutations of the FOXP2 gene to spoken language disabilities. In both individuals with ASD and those with FOXP2 mutations, corticostriatal dysfunction has been found, along with behavioral problems in humans and in mutant mouse models. We therefore sought signaling pathways within corticostriatal circuits that could link these two functional domains.

Human FOXP2 has been shown to interact with several known ASD-risk genes, including CNTNAP2, MET and uPAR (also known as PLAUR), but what links FOXP2 and these ASD-risk genes to specific neural circuits with defined neurobiological functions has not been clear. Nor is it known how such interactions could alter the development of language-related circuits in ASD brains. Given the potential involvement of the striatum in both ASD and language dysfunction, we searched for evidence that might link influences of ASD-risk genes and language-linked FOXP2 during postnatal striatal development, a time of particular vulnerability in ASD. We focused on ASD candidate genes associated with synapse formation, which is at risk in ASD.

We chose for study myocyte enhancer factor 2C (MEF2C), which is suggested as a possible ASD risk gene, one of 175 FOXP2 targets identified by chromatin-immunoprecipitation (ChIP)-chip analysis of human basal ganglia during development and known to be an intellectual disability risk gene. Mef2c has been shown to regulate negatively dendritic spines and excitatory synapses in hippocampal neurons and in cultured striatal neurons. Here we demonstrate in mice that Mef2c also negatively regulates synaptogenesis in the striatum in vivo, but that negative interactions between Foxp2 and Mef2c lead to repression of the effects of Mef2c coinciding spatially and temporally with the development of corticostriatal connections during early postnatal development. We show that Foxp2 can suppress Mef2c through direct DNA binding and that the negative Foxp2–Mef2c signaling interactions have specific synaptic and behavioral effects including control of ultrasonic vocalizations (USVs) in young mouse pups. We suggest that negative Foxp2–Mef2c interactions could allow cortical fibers to synapse progressively onto striatal neurons, thus building the corticostriatal pathway by de-repression of synaptogenesis in the striatum. Such Foxp2–Mef2c signaling could provide a valuable model for identifying candidate molecular mechanisms underlying developmental defects in corticostriatal circuits.

RESULTS
Progressive dissociation of striatal Foxp2 and Mef2C

We performed immunostaining for Mef2C and Foxp2 in the mouse brain with antibodies validated by the absence of corresponding

1Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan. 2Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. 3Department of Neurology, National Hospital Organization, Tottori Medical Center, Tottori, Japan. 4Neuroscience Program in Academia Sinica, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan. 5Anthropology and Human Genomics, Department Biology II, Ludwig-Maximilians University, Munich, Germany. 6McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 7These authors contributed equally to this work. Correspondence should be addressed to A.M.G. (graybiel@mit.edu) or F.-C.L. (fuchin@ym.edu.tw).
immunofluorescent signals in Mef2c and Foxp2 knockout striatum (Supplementary Fig. 1a–f). Mef2C and Foxp2 colocalized in many individual striatal projection neurons (SPNs) at birth, but their expression patterns soon became complementary and non-overlapping (Figs. 1 and 2). This inverse patterning was first evident in the striosome compartment of the striatum, where we found the earliest incoming corticostriatal terminals as marked by vesicular glutamate transporters 1 (VGluT1; Fig. 1a). During the early postnatal (P) period, P0–P4, striosomes, marked by dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP)-32, were nearly devoid of Mef2C despite strong Mef2C expression in the surrounding matrix (Figs. 1b and 2d). Strong Foxp2 expression, by contrast, was found in striosomes (Fig. 1c). By P8 and P14, the inverse expression patterns of Foxp2 and Mef2C had extended across the striatum (Fig. 2b,c,f), paralleled by a progressive expansion of the corticostriatal innervation from the striosomes to the entire striatum (Fig. 2a–c)24, with dorsolateral expansion leading slightly (Fig. 2g). This striking progression from colocalization to dissociation of Mef2C and Foxp2 expression coincided with the postnatal time period during which corticostriatal axonal collaterals arborize and the dendritic spines of SPNs develop25–26, suggesting that Mef2C and Foxp2 might oppositely regulate corticostriatal synapse formation.

Foxp2 and Mef2c inversely control corticostriatal synaptogenesis

To examine the relationship of Foxp2 and Mef2c expression to the development of the corticostriatal projection system, we analyzed synaptogenesis in Mef2c knockout mice (Nestin-cre;Mef2c conditional Mef2c-knockout mice relative to control Nestin-cre;Mef2c mice (Fig. 3c and Supplementary Fig. 2g–i). Thus, Foxp2 and Mef2c had opposite effects on synaptogenesis in the developing striatum.

Markers of striosomes (μ-opioid receptor 1, MOR1) and of the matrix (calcium and diacylglycerol-guanylate cyclase exchange factor 1, CalDAG-GEFI) showed that striosomes–matrix compartmentation was maintained in the three genotypes (Supplementary Fig. 3a–f). No abnormal cell death was found in P0 or P8 Foxp2+/− mice, nor in Nestin-cre;Mef2c conditional Mef2c-knockout mice relative to control Nestin-cre;Mef2c mice (Fig. 3a and Supplementary Fig. 2a–c). The alterations in synaptic markers were thus likely not secondary to loss of compartmentation or to widespread cell death in the mutant mice.

Foxp2 and Mef2c oppositely regulate SPN spinogenesis

The dendritic spines of striatal SPNs are the main sites of corticostriatal synapses. We examined the development of these synapses in the three mouse genotypes (Fig. 3d–f, Supplementary Fig. 4 and Supplementary Tables 1–3). Golgi staining in P12 Foxp2+/− mice showed reductions in the total spine density of SPNs of 14.0% dorsolaterally and 19.1% dorsomedially (Fig. 3d, Supplementary Fig. 4a and Supplementary Table 1). In heterozygous Foxp2+/− mice, only the most mature spine types28 were reduced (Fig. 3d, Supplementary Fig. 4a and Supplementary Table 1), a finding potentially relevant to pathophysiology in KE patients, who carry heterozygous FOXP2 missense mutations8. In the positive control mice carrying humanized Foxp2H/H, SPN spine densities were increased both dorsolaterally and dorsomedially relative to those in wild-type littermates (Fig. 3e, Supplementary Fig. 4b and Supplementary Table 2). We microinjected HSV-Cre-GFP viruses into the striatum of P2 Foxp2 conditional mice carrying loxP-flanked (floxed) human versions of Foxp2 alleles9. Immunostaining demonstrated a loss of Foxp2 protein expression in HSV-Cre-GFP virus-infected cells (Supplementary Fig. 5d–e), and this postnatal deletion of Foxp2+H decreased spines by 68% in HSV-Cre-GFP virus-infected SPNs at P8 (Fig. 3g). These findings suggested that Foxp2 positively regulated synaptogenesis but that Mef2c negatively regulated synaptogenesis, as found in hippocampal neurons20–22.

We used in utero electroporation to overexpress Foxp2 in wild-type striatal cells. Introduction of a Foxp2 plasmid coexpressing EYFP into the E13.5 striatal primordium increased dendritic spine numbers, as tested by EYFP and GFP immunostaining of P14 SPNs (Fig. 3h). Conversely, spine density was significantly increased in striatal SPNs in Nestin-cre;Mef2c conditional Mef2c+/− mice for all but the least mature subtypes (Fig. 3f, Supplementary Fig. 4c and Supplementary Table 3).

Figure 1 Dissociation of Foxp2 and Mef2C in SPNs is initiated in VGluT1+ striosomes in neonatal striatum. (a,b) Dual-antibody immunostaining shows VGluT1+ corticostriatal axon terminals in P0 striatum (a, left, arrows) clustered in DARPP-32+ striosomes (a, middle, arrows) that are devoid of Mef2C (b, arrows). Boxed regions in a and b are shown as merged images at higher magnification in the right panels of a and b. (c) In P4 striatum, VGluT1-rich, Mef2C-poor striosomes contain clustered, strongly Foxp2+ cells. Images represent five repeats. Scale bars: 100 μm (in a,b, left and middle), 25 μm (a,b, right), 20 μm (in c, left and middle) and 10 μm (in c, right).
We also microinjected HSV-Cre-GFP virus into the striatum of P2 Mef2c(fl/fl) pups and examined their brains at P8. Immunostaining confirmed loss of Mef2C protein expression in HSV-Cre-GFP virus-infected cells (Supplementary Fig. 5a–c) and indicated significant increases in spine counts in the HSV-Cre-GFP virus-infected SNPs (Fig. 3i). Intrastratial injection of HSV-Cre-GFP viruses in Mef2c(fl/fl) mice at P14–P15, when Mef2C expression already was low (Fig. 2h), showed no detectable changes in dendritic spines of SNPs at P19–P20 (Fig. 3j). Finally, we overexpressed Mef2c by in utero electroporation of pcBGI-Mef2C-VP16 plasmids into the E12.5 striatal primordium of wild types. This procedure decreased the number of spines in P14 SNPs (Fig. 3k). These findings identify Mef2C as a negative regulator of spine and synapse formation in SNPs of the developing postnatal striatum, consonant with in vitro work on Mef2-class proteins.23

In slice preparations, we analyzed miniature excitatory postsynaptic currents (mEPSCs) of dorsolateral SNPs in Foxp2(+/−)/Foxp2(+/−) knockout and Nestin-cre;Mef2c(+/−)/Nestin-cre;Mef2c(+/−) brains relative to their wild-type controls. Whole-cell patch-clamp recordings indicated an increase in mEPSC frequency in 36.2% of SNPs in P14 Foxp2(+/−) mice without significant change in mEPSC amplitudes (Fig. 3l). In P8 Foxp2(−/−) mice, mEPSC frequency was decreased in SNPs but mEPSC amplitude was increased compared to wild type (Fig. 3m). In P14 Nestin-cre;Mef2c(+/−) brains, Mef2c protein frequency, but not amplitude, was increased in SNPs relative to control Nestin-cre;Mef2c(+/−) mice (Fig. 3n). These findings demonstrate that synaptic activity in striatal SNPs is positively regulated by Foxp2 but negatively regulated by Mef2C, consistent with our anatomical findings (Fig. 3, Supplementary Fig. 4 and Supplementary Tables 1–3).

Foxp2 suppresses Mef2C expression in striatal SNPs

The opposing functions of Mef2c and Foxp2 in regulating corticostriatal synapse formation and SN spinogenesis, and their striking spatiotemporal dissociation during neonatal development, suggested that the positive regulation of spine and synapse formation in striatal SNPs by Foxp2 might depend on its ability to suppress Mef2c. As an initial probe for this potential interaction, we asked whether the near-absence of Mef2C expression in striosomes in the normal neonatal striatum could be reversed by deletion of Foxp2. We found...

Figure 2 Progressive dissociation of Foxp2 and Mef2C in SNPs during postnatal development. (a–c) Triple-antibody immunostaining shows predominant concentration of VGluT1+ corticostriatal axonal puncta in striosomes that are Mef2C-poor but exhibit strong Foxp2 immunostaining in P0 (a) and P8 (b) striatum. By P14 (c), VGluT1+ corticostriatal axonal puncta become widespread and relatively evenly distributed in the striatum and Foxp2 expression is equally widespread, whereas Mef2C is downregulated. The boxed regions in a–c are shown at high magnification at bottom rows. Note that strongly Foxp2+ cells express weak Mef2C and vice versa. Yellow arrows in a mark the boundary of a striosome. Scale bars: 20 µm (top rows) and 10 µm (bottom rows). Images represent five repeats. (d,e) Mef2C (d) and Foxp2 (e) immunofluorescence intensity in P0–P8 wild-type striatum. (f) Ratio of cells positive for both Foxp2 and Mef2C relative to total Foxp2+ cells in the dorsolateral striatum. (g) Ratio of Foxp2 (left) or Mef2C (right) immunofluorescence intensity in striosomes of dorsolateral striatum (DLS) relative to that in dorsolateral striatum (DLS). (h) The densities of Foxp2+ and Mef2C+ cells in DLS and DMS of wild-type mice. * P < 0.05, ** P < 0.01, *** P < 0.001. Error bars represent s.e.m. Two-way ANOVA with Tukey’s honest significant difference (HSD) post hoc test are used in d (F(2, 16) = 4.400, P = 0.033 for interaction; F(1, 16) = 49.072, P = 0.000006 for compartment; F(2, 16) = 4.000, P = 0.033 for age), e (F(2, 16) = 3.456, P = 0.060 for interaction; F(1, 16) = 110.852, P = 0 for compartment; F(2, 16) = 3.001, P = 0.060 for age), and g (for Foxp2, F(2, 139) = 0.039, P = 0.962 for interaction; F(1, 139) = 40.321, P = 0 for region; F(2, 139) = 0.039, P = 0.962 for age; for Mef2C, F(2, 139) = 5.838, P = 0.004 for interaction; F(1, 139) = 25.477, P = 0.000001 for region; F(2, 141) = 5.838, P < 0.004 for age). One-way ANOVA with Tukey’s HSD post hoc test is used in f (F(2, 15) = 41.852, P = 0.000001) and h (for Foxp2, F(2, 6) = 56.571, P = 0.000128 in DLS; F(2, 6) = 67.197, P = 0.000078 in DMS; for Mef2C, F(2, 6) = 50.443, P = 0.000177 in DLS; F(2, 6) = 75.536, P = 0.000056 in DMS).
striking de-repression of Mef2C expression in striosomes in the P7 Foxp2−/− striatum (Fig. 4a,b), with the striosome predominance of immunofluorescence intensity of Mef2C-positive cells increased in the Foxp2−/− knockout mice compared to levels in wild types (Fig. 4c). In western blots, Mef2C protein levels were increased by 68.3% over control levels in the P12 Foxp2−/− striatum (Fig. 4d).
and were decreased in P14 Foxp2H/H mice (Fig. 4e). In quantitative real-time PCR (qRT-PCR) assays, Mef2c mRNA was increased in Foxp2H/H striatum (Fig. 4f) but decreased in Foxp2H/H striatum (Fig. 4g). In vitro overexpression of Foxp2 in the Neuro2A cell line was sufficient to decrease Mef2C protein by 23.5% (Fig. 4h). These findings are consistent with an antagonism of Mef2C by Foxp2 in the striatum. Mef2C was persistently expressed in neocortex of postnatal wild-type mice (Supplementary Fig. 1h–j). We found no changes in Mef2C protein levels or numbers of Mef2C-positive cells in the neocortex of P8 Foxp2H/H mice (Supplementary Fig. 6a–d).

We tracked striatal Mef2C and Foxp2 protein levels by western blot analysis from P4 to P21. For Foxp2 knockout striatum, at P4 the levels of Mef2C and the synaptic markers VGlut1, PSD-95 and GluR1 were not different from controls (Supplementary Fig. 6e), but by P8 there was an increase of Mef2C and decreases of VGlut1, PSD-95 and GluR1 (Supplementary Fig. 6f), patterns maintained at P12 (Supplementary Fig. 6g). In the Foxp2H/H striatum, Mef2C was decreased, and VGlut1 and GluR1 were increased as early as P4 relative to controls (Supplementary Fig. 6h) and remained elevated at P18 and P21 (Supplementary Fig. 6i). These results delineated consistent negative interactions of Foxp2 and Mef2C in their effects on striatal synaptogenesis detectable around P4–P8 and persisting for at least 3 postnatal weeks, suggesting Foxp2 could act to repress Mef2C expression in the striatum.

Mef2c is a direct downstream target gene of Foxp2

One mechanism by which repression of Mef2c by Foxp2 could occur would be if the Mef2c gene were to contain the canonical FOX2 binding site, CAATAAT, and the binding site core, AATA (ref. 18). Foxp2 binds to DNA by dimerization. We found two pairs of putative Foxp2 binding sites in the second intron of the Mef2c gene: ACAAT (−1948 bp) plus AAAT (−1948 bp), and AAAT

Figure 3 Synaptic proteins and dendritic spines of SPNs are oppositely regulated by Foxp2 and Mef2c. (a–c) Western blots showing expression of PSD-95 and VGlut1 proteins in the P12 Foxp2+/− striatum (a), P14 Foxp2+/− striatum (b) and P14 Mef2c knockout striatum (c); N-cres. Nestin-cres. Full-length blots are presented in Supplementary Figure 10. (d–f) Golgi staining showing dendritic spines in dorsolateral SPNs of Foxp2+/− (d), Foxp2+/− (e) and Mef2c knockout (f) mice. Insert in e: multi-branched spines. Aly: atypical. Scale bars: 2.5 μm. (g) Intrastriatal injection of HSV-Cre-GFP virus in P2 Foxp2+/− mice decreases spine density in GFP-positive SPNs at P8. (h) In utero electroporation of pcBIG-Mef2C-VP16 at E12.5 decreases spines of P14 wild-type mice. Scale bars: 5 μm. (i) Intrastriatal injection of HSV-Cre-GFP virus in Mef2c+/− mice (Mef2C was persistently expressed in neocortex of postnatal wild-type mice) is consistent with an antagonism of Mef2C by Foxp2 in the striatum. In Fig. 4h, in vitro electroperoration of Foxp2 at E12.5 decreases spines of P14 wild-type SPNs. Scale bar: 5 μm. (j) Western blot analysis from P4 to P21. For atypical, P<0.05; for amplitude, P<0.01; ***P<0.001. Error bars represent s.e.m. One-way ANOVA with Tukey’s HSD post hoc test was used in b (for VGlut1, F2,6 = 14.649, P = 0.005; for PSD-95, F2,6 = 19.954, P = 0.002) and d (for stubby, F2,8, g = 2.992, P = 0.055; for thin/filopoidal, F2,8, g = 8.396, P = 0.000646; for mushroom, F2,8, g = 12.889, P = 0.00013; for branched, F2,8, g = 4.169, P = 0.019; for atypical, F2,8, g = 0.293, P = 0.747; for sum, F2,8, g = 28.470, P = 0). In Supplementary Fig. 1h–j, Student’s t test is used in b (for VGlut1, t9, g = 3.155, P = 0.004; for atypical, t9, g = −2.249, P = 0.032; for mushroom, t9, g = −2.041, P = 0.050; for branched, t9, g = −2.300, P = 0.029; for multi-branched, t9, g = −3.525, P = 0.001; for atypical, t14, g = 0.769, P = 0.448; for sum, t14, g = −4.216, P = 0.000383), g (t13, i = 9.429, P = 0), h (t23, j = −7.612, P = 0.000001), i (t29, k = −3.509, P = 0.002), j (t38, l = −1.122, P = 0.269), k (t8, m = 9.453, P = 0), l (for frequency, t13, n = 2.890, P = 0.013; for amplitude, t13, n = −2.2505, P = 0.043) and n (for frequency, t14, n = −4.022, P = 0.001; for amplitude, t14, n = −1.131, P = 0.237). Mann–Whitney U test is used in m (U = 167.5, P = 0.009 for frequency; U = 273, P = 0.471 for amplitude).
Mef2c deletion rescues USVs and SPN spines in Foxp2+/− mice
Foxp2 heterozygous and homozygous knockout mice exhibit defective neonatal isolation-induced USVs, a form of vocal communication in neonatal rodents. Our finding that Mef2c is normally repressed by Foxp2 suggested that, by reducing abnormally overactive Mef2c in Foxp2 knockout mice, we might be able to rescue such defective USV in Foxp2 mutants. If so, this link would constitute functional evidence for an interaction of the two proteins in vocal communication.

We tested this possibility in Foxp2+/− heterozygotes, mouse models of humans carrying one allele of the FOXP2 mutation. We confirmed that these Foxp2+/− mutants had abnormal USVs (Supplementary Fig. 8a) and then examined the effects of inactivation of one allele in Mef2cfl/− mice by genetic introduction of striatum-enriched Dlx5/6-cre in Dlx5/6-cre;Foxp2+/−;Mef2cfl/+ mice. This partial inactivation of Mef2c substantially rescued many features of the abnormal USVs characteristic of P8 Foxp2+/− mice, as compared to USVs of control P8 Dlx5/6-cre;Foxp2+/−;Mef2cfl/+ mice (Fig. 6a–d and Supplementary Fig. 8b).

The single-allele genetic reduction of Mef2c levels also substantially rescued VGluT1 and PSD-95 protein levels in the striatum of Mef2c-deficient Dlx5/6-cre;Foxp2+/−;Mef2cfl/+ mice compared to those in control Dlx5/6-cre;Foxp2+/−;Mef2cfl/+ mice (Fig. 6e). SPN spine counts were markedly increased dorsolaterally and dorsomedially (Fig. 6f, Supplementary Fig. 4d and Supplementary Table 4). These synaptic rescue effects were evident in both striosome and matrix compartments, judging by significantly increased immunostaining for GluR1 (Fig. 6g–i).

To test the possibility that the spine rescue occurred because of general effects of genetic deletion on development, we restricted deletion of Mef2c specifically in the neonatal striatum by microinjecting HSV-Cre-GFP virus into the striatum of P2 Foxp2+/−;Mef2cfl/+ pups and performing GFP immunostaining and Golgi assays at P8. This striatum-specific decrease of Mef2c resulted in significant increases in dendritic spines in HSV-Cre-GFP virus-infected SPNs of Foxp2+/−;Mef2cfl/+ mice compared to the spines of SPNs in control Foxp2+/−;Mef2cfl/+ mice (Fig. 6j). The USV events and frequency-jump scores of the pups were also rescued in the HSV-Cre-GFP;Foxp2+/−;Mef2cfl/+ pups (Fig. 6k and Supplementary Fig. 8d).

These multiple lines of evidence directly suggest that cortico-striatal synaptic protein levels are suppressed by Mef2c and can be rescued along with behavioral rescue of USVs by expression of Foxp2. These findings suggest that Mef2c acts downstream of Foxp2 to regulate synaptic wiring of corticostriatal circuits that contribute to vocalization.

USV deficits occur in Mef2c knockout mice
Conditional Mef2c knockout (Nestin-cre;Mef2cfl/+ mice) exhibit autistic-like behavioral phenotypes: putative murine counterparts of Rett syndrome features, including increased anxiety, decreased cognition and paw wringing and clapping stereotypies. It remained unclear whether such Nestin-cre;Mef2cfl/+ mice displayed deficits in vocal communication. Because our rescue experiments suggested that Mef2c acts downstream of Foxp2 to regulate USVs (Fig. 6a–d,k–l),
we expected that deletion of Mef2c would alter USVs. We tested this possibility and found that the numbers of emitted USVs were significantly reduced in the Nestin-cre;Mef2cfl/fl mice compared to those in control Nestin-cre;Mef2c+/+ mice (Fig. 7a) and that the deficit included significant reductions in many USV features (Fig. 7a–d,j), though some USV features were unaffected (Fig. 7e–i). Thus Mef2c

![Figure 6](image-url)

Figure 6 Inactivation of one allele of Mef2c rescues USV, dendritic spines and synaptic protein changes in P8 Foxp2+/− mice. (a–d) Analysis of USVs in P8 Dlx5/6-cre;Foxp2+/−;Mef2c+/− (white), Dlx5/6-cre;Foxp2+/−;Mef2c+/+ (blue) and Dlx5/6-cre;Foxp2+/−;Mef2cfl/fl (yellow) mice. Box plots show the median (horizontal line in the box), range between the 25th and 75th percentiles (box) and 1.5 times this interquartile range (T-bars). Circles show outlying values. (e) Western blot showing increased expression of PSD-95 and VGLUT1 protein expression in P8 Dlx5/6-cre;Foxp2+/−;Mef2c+/−, Dlx5/6-cre;Foxp2+/−;Mef2c+/+ and Dlx5/6-cre;Foxp2+/−;Mef2cfl/fl striatum. Full-length blots are presented in Supplementary Figure 10. (f) SPN dendritic spines of P8 Dlx5/6-cre;Foxp2+/−;Mef2c+/− (top), Dlx5/6-cre;Foxp2+/−;Mef2cfl/fl (middle) and Dlx5/6-cre;Foxp2+/−;Mef2cfl/fl (bottom) mice. Scale bars: 2.5 μm. (g–i) GluR1 immunofluorescence in striosomes and matrix of P8 Dlx5/6-cre;Foxp2+/−;Mef2c+/− (g), Dlx5/6-cre;Foxp2+/−;Mef2c+/+ (h) and Dlx5/6-cre;Foxp2+/−;Mef2cfl/fl (i) striatum. Scale bars: 50 μm. (j,l) The events (k) and frequency jump (l) are increased in HSV-Cre-GFP;Foxp2+/−;Mef2c+/− mice compared to control HSV-Cre-GFP;Foxp2+/−;Mef2c+/+ mice. *P < 0.05, **P < 0.01, ***P < 0.001. Error bars represent s.e.m. Kruskal-Wallis one-way ANOVA followed by Dunn’s pairwise multiple comparisons test are used in a (test statistic = 21.474, P < 0.001) and c (test statistic = 15.832, P < 0.001). One-way ANOVA is used in b (F\textsubscript{2,36} = 10.768, P = 0.000238), d (F\textsubscript{2,36} = 7.296, P = 0.002), e (for PSD-95, F\textsubscript{2,36} = 12.645, P = 0.007; for VGLUT1, F\textsubscript{2,36} = 21.487, P = 0.002), f (for stubby, F\textsubscript{2,98} = 4.521, P = 0.013; for thin/filopodial, F\textsubscript{2,98} = 13.875, P = 0.000005; for mushroom, F\textsubscript{2,98} = 3.816, P = 0.029; for branched, F\textsubscript{2,98} = 11.563, P = 0.000031; for multi-branched, F\textsubscript{2,98} = 2.023, P = 0.138; for atypical (atyp), F\textsubscript{2,98} = 4.701, P = 0.011; for sum, F\textsubscript{2,98} = 30.794, P = 0) and g–i (for striosome, F\textsubscript{2,6} = 54.063, P = 0.000145; for matrix, F\textsubscript{2,6} = 15.055, P = 0.005; for total striatum, F\textsubscript{2,6} = 117.718, P = 0.000015). Student’s t test is used in j (t\textsubscript{2,6} = −7.410, P = 0), k (t\textsubscript{13} = −2.789, P = 0.014) and l, (t\textsubscript{13} = −2.727, P = 0.016).
deletion can result in a deficit in USVs, a vocalization phenotype, adding evidence consistent with our working hypothesis that Foxp2–Mef2C signaling could regulate vocalization along with regulating corticostriatal connectivity.

DISCUSSION

Our findings provide causal evidence that Mef2C is directly implicated in the conjoint deleterious behavioral and morphological effects of reductions in Foxp2. We demonstrated that Mef2C is a negative regulator of synapse formation in the projection neurons of the developing striatum and that Mef2C expression is itself a direct target of RGS4, a regulator of synapse formation in the projection neurons of the developing striatum. Our findings suggest that Foxp2 acts in the early postnatal period by coordinately promoting corticostriatal synaptogenesis and retarding the expression of Mef2C in the striatum. Deletion of Foxp2 increased neonatal striatal Mef2C expression and, in parallel, decreased corticostriatal synaptogenesis and spinogenesis of striatal SPNs. Engineered expression of humanized Foxp2 in mouse had opposite effects on the developing corticostriatal circuits and striatal neurons. Our evidence that canonical Foxp2 binding sites are required for the Foxp2 inhibition of Mef2C expression suggests that there are direct molecular interactions between Foxp2 and Mef2C. We found that intrastral as well as genome-wide decreases in Mef2C could rescue defects in USVs and striatal spinogenesis otherwise occurring in Foxp2 mutants. Finally, our study of USVs suggests that these Foxp2–Mef2C interactions exert orchestrated control over corticostriatal systems affecting social vocalization in neonates. Our findings are based on mouse models and so might not be relevant to clinical conditions. Given that MEF2C has been suggested as an ASD candidate risk gene and is known to be related to intellectual disability15–17,19 and that FOX2 has been identified as a language-associated gene9, a plausible hypothesis raised by our findings is that the Foxp2–Mef2C interactions we demonstrate here, and their profound effects on corticostriatal circuitry, could be relevant to mechanisms underlying spoken language dysfunction in ASD. More generally, such interactions, controlling the development of the corticostriatal system, could be relevant to a range of normal and abnormal functions in which this massive corticostriatal circuitry has been implicated clinically, notably including Huntington’s disease.

Foxp2–Mef2C control of USVs and corticostriatal circuit

The potential behavioral significance of interactions between Foxp2 and Mef2C was demonstrated by assays of USVs in mice that lacked one allele of Foxp2 and one allele of Mef2c (Dlx5/6-cre;Foxp2+/−;Mef2c+/− mice). Genetic reduction of Mef2c levels rescued four of the seven USV defects exhibited by Foxp2 heterozygotes and increased VGlut1 and PSD-95 synaptic proteins in the striatum relative to levels of the corresponding proteins in control Dlx5/6-cre;Foxp2+/−;Mef2c+/− mice. The USV and spine formation deficits were also partially rescued by selective early postnatal reduction of Mef2C. While not ruling out other contributions, these findings support the striatal specificity of Foxp2–Mef2C interactions in regulating synaptogenesis in SPNs and vocalization behavior of the pups. We also found a clear correlation between synaptic alterations in Dlx5/6-cre;Foxp2+/−;Mef2c+/− mice (Foxp2 heterozygotes) and the USV deficits in these mice, further linking anatomical and functional control by Foxp2–Mef2C signaling.

Foxp2 as a molecular key to unlock Mef2C-induced inhibition

Our findings demonstrate that interactions between Foxp2 and Mef2c are required for establishing the normal synaptic connectivity of corticostriatal circuits. In the hippocampus, Mef2 protein interacts with the ASD-risk genes FMRP and Pdcdh10 to induce degradation of PSD-95 protein, which eliminates excitatory synapses22. This work suggests a central role for Mef2 in negative regulation of hippocampal synapses. Our findings identify Foxp2 as a molecular key to unlock the inhibition of striatal synapse formation imposed by Mef2C, thereby...
allowing the initiation of synaptic connectivity of corticostriatal circuits within the striatum. Our data support a postnatal role, as early as P2, for Foxp2-mediated repression of Mef2C in the regulation of spineogenesis. As spines start to grow in postnatal SPNs, Mef2C, which inhibits spine formation, presumably must be downregulated to permit the progression of spine formation in SPNs. The gradual decrease in Mef2C in the postnatal striatum and the maintenance of these low levels at least until P14 are consistent with this hypothesis. The evidence of increased spine formation in SPNs by postnatal deletion of Mef2C at P2 further supports this working model. Our experiments did not clarify whether Mef2C acts to prune exuberant striatal SPN synapses or to inhibit synapse formation in these SPNs. However, given our observation that Mef2C is strongly expressed in striatal matrix SPNs before these SPNs are innervated by corticostriatal axon terminals in newborn striatum (Fig. 1b), an intriguing possibility is that Mef2C functions as a molecular gate to prevent immature synapse formation unless it is triggered by an appropriate input.

This gate-control role for Mef2C would suggest that a rigorously timed and specific molecular mechanism is implemented for developmental control of synaptic wiring of corticostriatal circuits. We suggest that Foxp2 inhibition of Mef2C could provide such a mechanism, potentially through direct DNA binding of Foxp2 to Mef2c, and that defects in this inhibition by Foxp2 could have deleterious effects.

ChIP-chip analysis has identified MEF2D in addition to MEF2C as potential target genes of FOXP2 in embryonic human brains18. For other members of Mef2 family, in contrast to the low levels of Mef2C in the mature striatum, levels of Me2D and Me2A are high in the mature mouse striatum, where they have been implicated in the plasticity of dendritic spines in SPNs induced by exposure to cocaine32. In the hippocampus, dendritic spine formation is negatively regulated by Mef2c in the dentate gyrus of hGFAP-cre;Mef2c mice21 but not in the CA1 region of hGFAP-cre;Mef2a;Mef2d double-knockout mice or hGFAP-cre;Mef2a;Mef2d triple-knockout mice, apparently reflecting low Mef2C expression in the CA1 region33. Postnatal deletion of Mef2c also results in increased spines in the dentate gyrus in CaMKII-cre;Mef2c knockout mice34.

Comparison of Foxp2 in striatal and cortical synaptogenesis
In contrast to the developmental downregulation of Mef2c in postnatal striatum, Me2C was persistently expressed in postnatal neocortex of wild-type mice. Our finding that Mef2C was not altered in the neocortex of Foxp2 knockout mice suggests that Foxp2–Mef2C interaction does not dominate the development of cortical neurons, but it leaves open the possibility of some compensatory mechanism in the neocortex. In cultured neocortical neurons, Foxp2 has been found to regulate negatively excitatory synaptogenesis via inhibition of SPRX2, an epilepsy- and language-associated gene35. The positive action of Foxp2–Mef2C signaling on synaptogenesis in the striatum, shown here, and the reported negative action of Foxp2–SPRX2 signaling on synaptogenesis in cortical neurons, suggest a commanding and highly differentiated role for Foxp2 in developmental control of neural circuits that have been related to language. In the avian model of vocal communication, knocking down songbird Foxp2 in Area X decreases spine density in neurons of Area X and decreases vocal motor learning36,37. Our findings add to evidence for a controlling role for Foxp2, explicitly by introducing its ability to suppress Mef2c as a potential critical mechanism contributing to the control of vocalization.

Potential clinical relevance of Foxp2–Mef2C interactions
Our findings suggest a molecular mechanism by which Foxp2 can regulate excitatory corticostriatal synapses onto striatal projection neurons in mice through suppression of Mef2c, whose progressive downregulation is synchronized spatially and temporally with the development and synaptogenesis of corticostriatal circuits. Our evidence specifically suggests that Foxp2 transcriptionally suppresses the spineogenesis suppressor Mef2c, thereby allowing corticostriatal synaptogenesis.

There is no direct evidence from our work that these interactions occur in the human brain or that they relate to human conditions including ASD and speech and language development. FOXP2 is considered a “language-related gene”9, but its precise relation to speech and language is still a matter of study. Similarly, MEF2C has been identified as a candidate ASD gene15–17, but evidence for linkage of MEF2C mutations to ASD is still incomplete. MEF2C mutations have been linked to phenotypes including mental retardation in humans15,19, a matter of current research. It is known, however, that MEF2C is a putative target gene of FOXP2 in the developing human basal ganglia36, and our findings suggest that the human FOXP2 protein is at least as effective as, or more effective than, the mouse Foxp2 protein in promoting synapse and complex spine formation in SPNs in the mouse striatum. Our findings raise the possibility that the interactions we have documented in the mouse may hold in some form in humans. If so, our findings could be interpreted as relevant to a molecular linkage between the putative ASD candidate gene MEF2C and the putative language-associated gene FOXP2. Notably, Mef2c is regulated by Me2cP2, a well-established Rett syndrome gene with broad effects38, and Me2C is implicated in regulation of the ASD-risk genes DIA1 and PCDH10 (ref. 39). Thus, our findings could be relevant in the context of multiple ASD-risk genes interacting in signaling networks for neuronal development13,14.

Human patients with MEF2C deletion and mutation have complex neurological syndromes15,16,19. In addition to defective language communication, stereotypic behaviors, potentially linked to striaomes40, have been reported in patients with MEF2C deletion and mutation15,19 and in the Me2c knockout mouse model of ASD31,41. Our findings indicate that part of the etiology of MEF2C-related ASD symptoms could be rooted in the basal ganglia. We raise the possibility that defective FOXP2–MEF2C signaling affecting developing corticostriatal synaptic circuits could be a previously underestimated pathologic mechanism in conditions characterized by corticostriatal abnormalities.

METHODS
Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS
We thank P. Arrollta of Harvard University, K. Campbell of Cincinnati Children’s Hospital Medical Center, H.C. Hemmings of Rockefeller University, O. Marin of King’s College London and E. Olson of University of Texas Southwestern Medical Center for providing transgenic mice and reagents; M. Baset, M. Sur, M.-M. Poo and D. Homma for discussion; and Y. Kubota for help with illustrations and manuscript preparation. This work was supported by NIH/NCID grant R3T HD023431 (A.M.G.), the Nancy Lurie Marks Family Foundation (A.M.G.), the Simons Center for the Social Brain at MIT (A.M.G.), the Paul G. Allen Family Foundation (S.P.), National Science Council grants NSC97-2321-B-010-006, NSC98-2321-B-010-002, NSC99-2321-B-010-002, NSC100-2321-B-010-002, NSC101-2321-B-010-021, NSC102-2321-B-010-018 and NSC102-2911-I-010-506 (F.-C.L.), Ministry of Science and Technology grants MOST103-2321-B-009-009 and MOST104-2321-B-010-032 (F.-C.L.), National Health Research Institutes grants NRHI-EX104-104290N1 and NRHI-EX105-104290N1 (F.-C.L.) and by an Aiming for Top University grant from the Ministry of Education, Taiwan (F.-C.L.).
AUTHOR CONTRIBUTIONS

F.-C.L. conceived and supervised the project. Y.-C. Chen, H.-Y.K., H.T., S.-Y.C., K.-M.L., C.-T.C., U.B., W.H., W.E., S.P., A.M.G. and F.-C.L. designed the experiments. Y.-C. Chen, H.-Y.K., U.B., W.H., S.-Y.C., H.-Y.Y., G.-M.C., Y.-H.L. and S.-J.C. performed experiments on Foxp2 and Mef2c mutant mice; K.-M.L., I.-R.L. and Y.-C. Chou performed Foxp2 and Mef2C overexpression experiments; H.T., Y.-C. Chen and S.-Y.C. characterized Foxp2 binding sites; and W.E. and S.P. provided Foxp2 mutant mice and interpretation of data and discussion. Y.-C. Chen, H.-Y.K., S.-Y.C., K.-M.L., H.T., U.B., W.H., W.E., S.P., A.M.G. and F.-C.L. analyzed the data. A.M.G. and F.-C.L. wrote the paper with input from all authors.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.
Virus transduction. STHSV-Cre-GFP viruses (Viral Core Facility, McGovern Institute for Brain Research, MIT) were diluted at 1:1 in D-PBS buffer. Foxp21-/- Mef2C+/+, Mef2C1-/- Mef2C+/+ and Mef2C1-/- Mef2C+/+ mouse pups were anesthetized by hypothermia at P2, and virus solution (0.2 µL) was injected (0.1 µL/min) bilaterally in the rostral (AP: +2.85 mm, ML: ± 1.5 mm, DV: −1.5 mm) and middle (AP: +2.55 mm, ML: ± 1.51 mm, DV: −1.50 and −1.70 mm) striatum. After injections, the needle was left for 2 min before slow retraction. A few pups received injections only in the middle striatum. The pups were allowed to survive until P8, and following perfusion, the brains were prepared for Golgi staining and immunostaining. In another set of experiments, intrastriatal viral injections were made in P14–15 at rostral (AP: +3.75 mm, ML: ± 2.20 mm, DV: −2.5 and −2.8 mm) and middle (AP: +3.33 mm, ML: ± 2.35 mm, DV: −3.0 and −3.5 mm) levels. The mice were killed for analysis and the brains harvested at P19–P20.

Preparation of brain tissue. For western blotting analysis, P4, P8, P12, P14 and P21 mice were deeply anesthetized by intraperitoneal injection of sodium pentobarbital, and brains were cut into 1 mm coronal slices using acrylic brain slice matrix (Alto). The selected slices containing the regions of interest were then frozen with dry ice and used for analysis. For immunohistochemical analysis, P0, P4, P7, P8, P14 and P30 mice were perfused transcardially with 0.9% saline followed by 4% paraformaldehyde (PFA) in 0.1 M phosphate buffered saline (PBS, pH 7.4). The perfused brains were postfixed in 4% PFA at 4 °C overnight and were then cryoprotected with 30% sucrose in 0.1 M PBS. Brains were cut in the coronal plane on a cryostat at 20 µm (Leica).

Golgi staining. P12 and P14 brain tissues were processed and processed for Golgi staining using the FD Rapid GolgiStain Kit (FD NeuroTechnologies) according to the manufacturer’s instruction. Transverse sections were cut at 80 µm on a cryostat (Leica). P8 brains infected with HSV-Cre-EGFV viruses were processed using the sliceGolgi Kit (Bioenno Tech) for double Golgi staining and GFP immunostaining with DAB substrate.

Immunohistochemistry. Immunohistochemistry was performed as previously described44. Primary antibodies were as follows: rabbit anti-Foxp2 (1:2,000; #ab16046, Abcam), rabbit anti-MOR1 (1:10,000; #24216, ImmunoStar), rabbit anti-CalDAG-GEFI (produced in-house; 1:10,000)49, rabbit anti-GluR1 (1:2,000; #ab1504, Millipore), rabbit anti-activated caspase3 (1:1,000, #9661, Cell Signaling), rabbit anti-PSD95 (1:10; #20665-1-A, Proteintech), goat anti-Mef2C (1:1,000; #sc-13266, Santa Cruz), guinea pig anti-VGlut1 (1:5,000; #ab5905, Millipore), mouse anti-DARPP-32 (1:10,000; kindly provided by Dr. H.C. Hemmings)48 and chicken anti-GFP (1:500; #ab13970, Abcam). For triple immunostaining of Foxp2, Me2C and VGlut1, Alexa555-conjugated goat anti-rabbit antibody (A21428, Invitrogen) and Alexa647-conjugated goat anti-guinea pig antibody (A21054, Invitrogen) were used to detect Foxp2 and VGlut1 signals. For detecting Me2C signals, sections were incubated sequentially in biotin-conjugated donkey anti-goat antibody (705-065-147, Jackson Immunolab), ABC complex (ABC kit, Vector Laboratories) and tyramide-FITC (1:2,000, Invitrogen) with several rinses in between. For double immunostaining of DARPP-32 and VGlut1, Alexa660-conjugated goat anti-mouse (A21054, Invitrogen) and Alexa488-conjugated goat anti-guinea pig (A11073, Invitrogen) antibodies were used. For double immunostaining of DARPP-32 and Mef2C, Alexa555-conjugated goat anti-mouse (A21422, Invitrogen) and biotin-conjugated donkey anti-goat (705-065-147, Jackson Immunolab) antibodies were used, followed by tyramide-FITC amplification as described above. For double Golgi staining and GFP immunostaining, after Golgi staining the brain sections were processed for GFP immunostaining using the ABC method with DAB substrate.

TUNEL staining. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining to identify apoptotic cells was performed using In situ Cell Death Detection Kit, POD (#1168487910, Roche) following the manufacturer’s instructions.

Western blotting. Western blotting was performed as previously described46. Brain tissue lysates containing denatured proteins were resolved by 7.5% Tricine-SDS-PAGE and wet-transferred with transfer buffer (25 mM Tris, 192 mM glycine and 20% methanol in distilled H\textsubscript{2}O) to polyvinyl difluoride (PVDF) membranes (HybBond-P, Amersham Biosciences) for 90 min. The protein–bound membranes were blocked with 5% nonfat dry milk in Tris-buffered saline with Tween-20 (TBST; 150 mM NaCl, 25 mM Tris and 0.05% Tween-20, pH 7.4) at room temperature for 1 h with agitation and then were incubated with the appropriate primary antibody. The dilutions of the primary antibodies were as follows: goat anti-Mef2C (1:1,000; #sc-13266, Santa Cruz), mouse anti-PSD95 (1:4,000; #7E3-1B8, Affinity BioReagents), guinea pig anti-VGlut1 (1:5000; #ab5905, Millipore), rabbit anti-GluR1 (1:2,000; #ab1504, Millipore), mouse anti-β-actin (1:10,000; #A5411, Sigma) and mouse anti-alpha-tubulin (1:10,000; #T9026, Sigma).
The primary antibodies were diluted in TBST containing 1% nonfat dry milk at 4 °C overnight with gentle shaking. After being washed with TBST three times, the membranes were incubated with appropriate secondary antibodies (H. Takahashi) for 1 h and then washed with TBST three times. For Mef2C detection, biotinylated rabbit anti-goat IgG (rabbit anti-goat IgG (RA-5000, Vector); 1:10,000) was used with 30 min incubations. After being washed with TBST three times, the membranes were incubated with avidin-biotin-peroxidase complex (Elite kit, Vector Laboratories) for 20 min. The membranes were then developed with enhanced chemiluminescence (ECL) Plus (Millipore). For western blots presented in Figures 3 and 4, the ECL signals were visualized on X-ray films. Otherwise, the ECL signals were detected using Fujiﬁlm LAS-4000 Image System. The immunoblotting proteins in the gel were normalized with the internal controls of β-actin or α-tubulin proteins in the same lane.

Quantitative PCR. RNA was extracted from the dissected brain tissue and then was reverse transcribed to cDNA. The cDNA was used as the template for a SYBR Green-based qRT-PCR (ABI) reaction, performed by the National Yang-Ming University Genome Center. Mef2c forward (5′-GGATGACGCTTACACAGCAGCT-3′) and reverse (5′-ATCAGTGGAGACTATAGTAAATGCAGAAAAGATGACGATAGTGCCACAGGTCTCAGCTAAGAG-3′) primers were used for detecting expression levels of Mef2c (NM_025282). The PCR program was as follows: 95 °C for 60 s, 45 cycles at 95 °C for 15 s, 60 °C for 15 s and 72 °C for 45 s. The Ct value (cycle of threshold) was used for the calculation of gene fold change with the formula 2−(ΔΔCt) = 2−(Ctwild-type−CttgAAGCAAGCAGCTGTCAGAAGTAAATGCAGAAAAGATGACGATAGTGCCACAGGTCTCAGCTAAGAG−Ctmutant). For overexpression studies of Foxp2, pCAG-EYFP-CAG-mFoxp2 or pCAG-EYFP-CAG-hFOXP2 plasmids were transfected into N2A cells with Lipofectamine 2000.

DNA cloning and site-directed mutagenesis. The nucleotides of mouse Mef2c gene (−2,131 to −1,718, transcriptional initiation site +1; TAAAGATTTAGGC AGGCTATGCGGCTAAGCCGATAGTGCCACAGGTCTCAGCTAAGAG−3′) and human Mef2c (−1718 to −2131 bp, transcription initiation site +1) were cloned into the KpnI and NheI sites of the pGL3-c-Fos-Luc plasmid by site-directed mutagenesis (Neogene Biomedicals Taiwan/Genscript). The sequences of the four Foxp2 binding motifs were mutated to AGGCATAGTCCGGTAAGCCGATAGTGCCACAGGTCTCAGCTAAGAG using the PCR into the KpnI and NheI sites of the pGL3-c-Fos-Luc plasmid using genomic DNA of SH-SY5Y cells.

Cell culture and transfection. Primary striatal cells from E16 mouse brains were cultured with 5% FCS and 5% horse serum in Dulbecco’s Modified Eagle Medium (DMEM), and were used for ChIP assays. NeuroA2 (N2A) cells were cultured in DMEM supplemented with 10% FBS and maintained in a humidified incubator with 5% CO2 at 37 °C. N2A cells were seeded in six-well plates 1 d before transfection at a density that reached 50% confluency on the following day. For overexpression studies of Foxp2, pCAG-EYFP-CAG-mFoxp2 or pCAG-EYFP-CAG-hFOXP2 plasmids were transfected into N2A cells with Lipofectamine 2000.

Reporter gene assay. Mouse Mef2c-pGL3-c-Fos-Luc or pGL3-c-Fos-Luc plasmids were cotransfected along with pCAG-EYFP-CAG-mFoxp2, pCAG-EYFP-CAG-hFOXP2 or pCAG-EYFP-CAG-hFOXP2853H and pGL4-Renilla plasmids into N2A cells. For the mutant reporter gene assay, Mef2c-MT1-c-Fos-Luc or Mef2c-MT2-c-Fos-Luc plasmids were cotransfected along with pCAG-EYFP-CAG-mFoxp2 and pCAG-EYFP-CAG-hFOXP2853H and pGL4-Renilla plasmids into SH-SY5Y cells.
Membrane potentials were held at ~70 mV by voltage clamp. mEPSCs were recorded with Axon MultiClamp 700B (AutoMate Scientific, USA) for ~10 min. The recorded currents were analyzed with MiniAnalysis (Synaptosoft, USA). The investigator who performed electrophysiological recordings of Foxp2 knock-out and Mef2c knockout mice was blind to the genotype of the mice.

USV analysis. The USV recordings were performed with the experimenter blinded to mouse genotypes. USVs were recorded in pups on P8 during the daylight period of the light/dark cycle. After a 30-min habituation period in a soundproof room, each pup was removed from the cage containing its mother and littersmates and placed in a glass beaker (diameter: 6 cm) in a sound-attenuating plastic chamber. Within the beaker, a microphone (condenser ultrasound microphone Avisoft-Bioacoustics CM16) was hung 6 cm above the pup. After ~1 min of habituation, recordings began and were continued for 5 min (Avisoft UltraSoundGate 116, Avisoft-RECORDER software). The recorded data were transferred to Avisoft-SASLab Pro (Version 5.2) to analyze spectrograms of vocalizations with settings of 50% overlapping FlatTop windows, 100% frame size and 256 points fast Fourier transform (FFT) length. After de-noising, the automatic single threshold was set to 2 dB above the baseline. The post-filter was set to a maximal entropy of 100. Emitted events with frequencies between 40 and 100 kHz were included, and the following measures were recorded and averaged for each group: events (number of calls); elements (discontinuous signals separated by more than 5 ms within a single event); peak frequency at start (the peak frequency at the beginning of each event); peak frequency at end (the peak frequency at the end point of each event); peak amplitude at start (the peak amplitude at the beginning of each event); peak amplitude at end (the peak amplitude at the end point of each event); peak frequency at max (the peak frequency at the point of the maximum amplitude of the entire event); peak amplitude at max (the peak amplitude of the entire event); and frequency jump (abrupt upward increase in frequency exceeding 25 kHz within a single event).

Quantification of dendritic spine density. Dendritic spines were counted in Golgi-stained material with the aid of light microscopy using a 100× oil immersion objective (Nikon Eclipse E800M; Olympus BX63). Coronal sections of Golgi-stained material with the aid of light microscopy using a 100× oil immersion objective (Nikon Eclipse E800M; Olympus BX63). Coronal sections of each brain, we counted 10–12 neurons in the dorsomedial striatum and 13–19 neurons in the dorsolateral striatum. For each Nestin-cre;Mef2c brain, we counted 13–19 neurons in the dorsomedial striatum and 15–22 neurons in the dorsolateral striatum. For each Dlx5/6-cre;Fioxp2;Mef2c brain, we counted 10–12 neurons in the dorsomedial striatum and 11–17 neurons in the dorsolateral striatum. The number of spines in the proximal parts of secondary dendrites was counted for each neuron. Spine densities were quantified by tracing dendritic segments in which spines were counted. The data were presented as averaged spine number per 10 µm. The dendritic spines were categorized into six types (stubby, thin/filopodial, mushroom, branched, multi-branched and atypical) according to Harris et al.28 with slight modifications. Thin spines and filopodia were grouped, because it was difficult to distinguish them with light microscopy. Atypical spines were those that could not be assigned to a specific group. Spines were categorized as stubby if the diameter of the neck was similar to the total length of the spine. Spines were categorized as thin/filopodial if the length was longer than the neck diameter and the diameters of the head and neck were similar or the head/neck ratio was less than two. Spines were categorized as mushroom if the diameter of the head was at least 2.5 fold the diameter of the neck. Spines were categorized as branched if they had two heads and as multi-branched if they had more than two heads. For photomicrographic illustration of dendritic spines (Fig. 3d–f and Supplementary Fig. 4a–c), the images were processed with the AutoQuant deconvolution software (Media Cybernetics) to deblur the images caused by spines oriented in different depths of focal planes.

Microscopic image analyses. Photomicrographs were acquired using Olympus BX51, BX63 fluorescence microscopes and a Zeiss LSM700 confocal microscope. Quantification of cell number was performed with the aid of ImageJ software. For comparison between the brains with different genotypes, we analyzed photomicrographs at matched anatomical levels. Fluorescence intensity was measured for single cells (Fig. 2g) or in the region of interest (Figs. 2d,e, 4c, 6g–i and Supplementary Fig. 2) using the RGB measure plugins of ImageJ. For quantification of striatal compartmentation (Supplementary Fig. 3a–h), the sum of MOR1-positive striosome areas or CalDAG-GEFI-poor matrix areas was normalized with the total striatal area. For quantification of Foxp2- or Mef2C-positive cells (Fig. 2h and Supplementary Fig. 3), Foxp2- or Mef2C-positive cells were counted in six 0.05-mm² squares that were placed evenly in the striatum of each section, and the cell numbers, averaged over 3 sections from rostral to caudal striatal levels, were analyzed with statistical tests described below.

Statistics. No statistical methods were used to predetermine sample sizes, but our sample sizes are similar to those generally employed in the field. For small sample sizes, we assumed normal distributions because the numbers of samples were too small for normality tests. Statistical analyses for the data of cell counts, dendritic spine counts, and biochemical and immunohistochemical measurements of protein levels were done with Student’s two-tailed t-tests or ANOVA followed by Tukey’s post hoc tests. Statistical analysis for the USV data was performed with SPSS (IBM, version 21). The USV data were first assessed by the Kolmogorov-Smirnov test for normal distribution exploration. Normally distributed data were processed with one-way ANOVA followed by Tukey’s test for post hoc comparisons between two groups. For data sets without normal distributions, the data were analyzed with Kruskal-Wallis one-way ANOVA followed by Dunn’s pairwise multiple comparisons test between two groups. All statistical data are presented as mean ± s.e.m. A Supplementary Methods Checklist is available.

Data collection and analysis. Animals/samples were assigned to various experimental groups according to their genotypes. Data collection and analysis were not performed blind to the conditions of the experiments, unless otherwise noted. No data points were excluded from analyses for any reason.

Data availability. The data that support the findings of this study are available from the corresponding authors upon reasonable request.

42. Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. *Nat. Genet.* 23, 99–103 (1999).
43. Sternman, J., Toresson, H. & Campbell, K. Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatofugal and olfactory bulb neurogenesis. *J. Neurosci.* 23, 167–174 (2003).
44. Lu, K.M., Evans, S.M., Hirano, S. & Liu, F.C. Dual role for Islet-1 in promoting striatonigral and repressing striatopallidal genetic programs to specify striatonigral cell identity. *Proc. Natl. Acad. Sci. USA* 111, E168–E177 (2014).
45. Quinet, C.C., Miller, P.E., Hemnings, H.C. Jr., Walaas, S.I. & Greengard, P. DARPP-32, 3′5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunochemical localization. *J. Neurosci.* 4, 111–124 (1984).
46. Chang, S.L. et al. Ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation accompanying with abnormal apoptosis in the developing mouse telencephalon. *PLoS One* 8, e74975 (2013).
47. Kauru, T., et al. Molecular characterization of the intercalated cell masses of the amygdala: implications for the relationship with the striatum. *Neuroscience* 166, 220–230 (2010).
48. Pawlik, V. & Kerr, J.N. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. *J. Neurosci.* 28, 2435–2446 (2008).