O Teste do Degrau de Seis Minutos como Preditor de Capacidade Funcional de acordo com o Consumo de Oxigênio de Pico em Pacientes Cardíacos

The Six-Minute Step Test as a Predictor of Functional Capacity according to Peak VO₂ in Cardiac Patients

Luiz Eduardo Fonteles Ritt,1,2 Eduardo Sahade Darzé,1,2 Gustavo Freitas Feitosa,1 Jessica Santana Porto,1 Gabriela Bastos,1 Renata Braga Linhares de Albuquerque,2 Cristiane Miura Feitosa,1 Thaissa Costa Claro,1 Eloisa Ferreira Prado,1 Queila Borges de Oliveira,1 Ricardo Stein3,4

Hospital Cârdio Pulmonar,1 Salvador, BA - Brasil
Escola Bahiana de Medicina e Saúde Pública,2 Salvador, BA - Brasil
Hospital de Clínicas de Porto Alegre,3 Porto Alegre, RS - Brasil
Universidade Federal do Rio Grande do Sul,4 Porto Alegre, RS - Brasil

Resumo

Fundamento: O teste do degrau de seis minutos (TD6) é uma forma simples de avaliar a capacidade funcional, embora tenha sido pouco estudado em pacientes com doença arterial coronariana (DAC) ou insuficiência cardíaca (IC).

Objetivo: Analisar a associação entre o TD6 e o consumo de oxigênio de pico (VO₂pico) e desenvolver uma equação que estime o VO₂pico com base no TD6, bem como determinar um ponto de corte para o TD6 que preveja um VO₂pico ≥ 20 mL.kg⁻¹.min⁻¹.

Métodos: Nos 171 pacientes submetidos ao TD6 e a um teste de exercício cardiopulmonar, análises da curva ROC, de regressão e de correlação foram usadas, e um p < 0,05 foi admitido como significativo.

Resultados: A idade média foi 60±14 anos, e 74% eram do sexo masculino. A média da fração de ejeção ventricular esquerda foi 57±16%; 74% apresentavam DAC, e 28%, IC. A média do VO₂pico foi 19±6 mL.kg⁻¹.min⁻¹, e o desempenho médio do TD6 foi 87±45 passos. A associação entre o TD6 e o VO₂pico foi r 0,69 (p < 0,001). Os modelos VO₂pico = 19,6 + (0,075 x TD6) – (0,10 x idade) para homens e VO₂pico = 19,6 + (0,075 x TD6) – (0,10 x idade) – 2 para mulheres poderiam prever o VO₂pico com base nos resultados do TD6 (R² ajustado 0,72; R² ajustado 0,53). O ponto de corte mais acurado para que o TD6 preveja um VO₂pico ≥ 20 mL.kg⁻¹.min⁻¹ foi de > 105 passos [área sob a curva 0,85; intervalo de confiança de 95% 0,79 – 0,90; p < 0,001].

Conclusão: Uma equação que preveja o VO₂pico, com base nos resultados do TD6 foi derivada, e foi encontrada uma associação significativa entre o TD6 e o VO₂pico. O ponto de corte do TD6, que prevê um VO₂pico ≥ 20 mL.kg⁻¹.min⁻¹, foi > 105 passos. (Arq Bras Cardiol. 2021; 116(5):889-895)

Palavras-chave: Insuficiência Cardíaca; Consumo de Oxigênio; Capacidade Respiratória; Volume de Ventilação Pulmonar; Teste de Esforço.

Abstract

Background: Six-minute step test (6MST) is a simple way to evaluate functional capacity, although it has not been well studied in patients with coronary artery disease (CAD) or heart failure (HF).

Objective: Analyze the association between the 6MST and peak oxygen uptake (VO₂peak) and develop an equation for estimating VO₂peak based on the 6MST, as well as to determine a cutoff point for the 6MST that predicts a VO₂peak ≥ 20 mL.Kg⁻¹.min⁻¹.

Methods: In 171 patients who underwent the 6MST and a cardiopulmonary exercise test, correlation, regression, and ROC analysis were used and a p < 0.05 was admitted as significant.
Results: Mean age was 60±14 years and 74% were male. Mean left ventricle ejection fraction was 57±16%, 74% had CAD and 28% had HF. Mean VO_{2peak} was 19±6 mL·kg⁻¹·min⁻¹ and mean 6MST performance was 87±45 steps. Association between 6MST and VO_{2peak} was r 0.69 (p <0.001). The model VO_{2peak} = 19.6 + (0.075 x 6MST) – (0.10 x age) for men and VO_{2peak} = 19.6 + (0.075 x 6MST) – (0.10 x age) – 2 for women could predict VO_{2peak}, based on 6MST results (adjusted R 0.72; adjusted R² 0.53). The most accurate cutoff point for 6MST to predict a VO_{2peak} ≥20 mL·kg⁻¹·min⁻¹ was >105 steps (AUC 0.85; 95% CI 0.79–0.90; p <0.001).

Conclusion: An equation for predicting VO_{2peak}, based on 6MST results was derived, and a significant association was found between 6MST and VO_{2peak}. The cutoff point for 6MST, which predicts a VO_{2peak} ≥20 mL·kg⁻¹·min⁻¹, was >105 steps. (Arq Bras Cardiol. 2021; 116(5):889-895)

Keywords: Heart Failure; Oxygen Consumption; Respiratory Capacity; Tidal Volume; Exercise Test.

Introdução

Na doença cardiovascular, a capacidade funcional está diretamente relacionada ao prognóstico.1 O desempenho funcional, conforme determinado pelo consumo de oxigênio de pico (VO_{2peak}) e medido por um teste de exercício funcional, conforme determinado pelo consumo de oxigênio, poderia ser uma forma de determinar o prognóstico de insuficiência cardíaca (IC) e seleção de transplante cardíaco, bem como para avaliar a resposta terapêutica.2-4 Pacientes com VO_{2peak} abaixo de 15 mL·kg⁻¹·min⁻¹ apresentam um perfil prognóstico pior, e aqueles com VO_{2peak} acima de 20 mL·kg⁻¹·min⁻¹ apresentam um perfil prognóstico melhor, independentemente da etiologia da IC e da função ventricular.5,6 Embora amplamente utilizado e validado, o TECP não está disponível na maioria dos centros, pois o equipamento é caro e é necessário que um médico especializado administre o teste einterprete seus resultados.

Uma alternativa ao TECP é o teste de caminhada de seis minutos (TC6), o qual é bem validado e apresenta boa correlação com o TECP em pacientes com cardiomiopatia.7 No entanto, o TC6 requer um longo corredor (com pelo menos 30 metros), o que pode limitar seu uso na prática comum.

O teste do degrau de seis minutos (TD6) é um teste simples no qual o paciente sobe e desce uma escada de 2 degraus por 6 minutos em cadência livre, e o número de passos é contabilizado. Não requer equipamentos sofisticados nem espaços grandes. Embora estudado em pacientes com doença pulmonar crônica e em indivíduos normais,8-11 não há dados sobre o desempenho do TC6 em pacientes cardíacos.

Os objetivos deste estudo foram: (1) analisar a associação entre o TD6 e o VO_{2peak}; (2) desenvolver uma equação para estimar o VO_{2peak} com base nos resultados do TD6; e (3) determinar um ponto de corte para a categoria de baixo risco no TD6 (VO_{2peak} ≥20 mL·kg⁻¹·min⁻¹).
foram utilizados para determinar a normalidade. As variáveis categóricas foram apresentadas em número ou porcentagem. A correlação de Pearson foi aplicada para determinar associações entre variáveis contínuas, e os gráficos de Bland-Altman foram utilizados para analisar sua concordância. Análises de regressão linear univariada e multivariada (após análise das suposições adequadas) foram realizadas para determinar a previsão de VO$_2$ pico. A análise da curva ROC foi aplicada para determinar os melhores pontos de corte para prever VO$_2$ pico ≥ 20 mL.kg$^{-1}$.min$^{-1}$. Um valor de p de < 0,05 foi considerado estatisticamente significativo.

Resultados

A amostra total consistiu em 171 indivíduos. Suas características clínicas e demográficas são apresentadas na Tabela 1. A maioria dos pacientes apresentou classe funcional I ou II da New York Heart Association (NYHA) com VO$_2$ pico médio de 19±6 mL.kg$^{-1}$.min$^{-1}$.

A associação entre o TD6 e o VO$_2$ pico é apresentada na Figura 1; o índice de correlação r foi 0,69 (IC95% 0,60 – 0,78; p < 0,001), e o de R2 foi 0,47. A análise do gráfico de Bland-Altman é apresentada na Figura 2; a concordância estava distante do limite de referência superior ou inferior em apenas cinco pacientes.

Na análise multivariada, a idade, o sexo e os resultados do TD6 foram preditores independentes do VO$_2$ pico (Tabela 2). As equações para a estimativa do VO$_2$ pico com base no TD6 foram: VO$_2$ pico = 19,6 + (0,075 x TD6) – (0,10 x idade) para homens e VO$_2$ pico = 19,6 + (0,075 x TD6)– (0,10 x idade) – 2 para mulheres. O r ajustado do modelo final foi 0,72, e o R2 ajustado foi 0,53.

A curva ROC para o TD6 como preditor de VO$_2$ pico ≥ 20 mL.kg$^{-1}$.min$^{-1}$ é apresentada na Figura 3. O ponto de corte mais acurado para que o TD6 prevê VO$_2$ pico ≥ 20 mL.kg$^{-1}$.min$^{-1}$ foi > 105 passos (área sob a curva 0,85; IC95% 0,79-0,90; p <0,001).

Discussão

A capacidade funcional é um dos parâmetros clínicos mais importantes para avaliar a capacidade funcional. O comprometimento funcional está relacionado a pior prognóstico, independentemente do diagnóstico ou cenário clínico. A aptidão cardiorrespiratória (ACR) pode ser estimada por diversos métodos, embora o TCEP seja o único método que permite determinação direta com base no VO$_2$ pico. Uma vez que o TCEP requer equipamento específico e equipe médica bem treinada, uma medição indireta e acurada da capacidade funcional é muito desejável. É importante que sejam validados formulários alternativos mais simples para a avaliação de ACR, já que podem ser aplicados de forma mais ampla.

Em uma população de pacientes com DAC e IC, demonstramos que o TD6 apresentou boa correlação com o VO$_2$ pico. Conforme medido pelo TCEP. Também conseguimos derivar uma equação para prever o VO$_2$ pico com base nos resultados do TD6, bem como para determinar um ponto de corte para o número de passos necessários para identificar pacientes de baixo risco (valor mínimo do VO$_2$ pico de 20 mL.kg$^{-1}$.min$^{-1}$).

Tabela 1 – Características clínicas e demográficas gerais da população

Variável	Resultado
Sexo masculino % (n)	74% (121)
Idade (anos)	60±14
DAC % (n)	74% (121)
Insuficiência cardíaca % (n)	28% (47)
Valvulopatias % (n)	13% (22)
Diabetes % (n)	25% (44)
HP % (n)	62% (102)
NYHA I, II, III%	53%/24%/10%
Inibidor de ECA-BRA % (n)	65% (110)
Betabloqueador % (n)	77% (130)
Estatinas % (n)	75% (128)
Fração de ejeção (%)	57±16
VO$_2$ pico (mL.kg$^{-1}$.min$^{-1}$)	19±6
VO$_2$ no limiar anaeróbio (mL.kg$^{-1}$.min$^{-1}$)	12,6±3
RER	1,12±0,8
Inclinação VE/VCO$_2$	36±10
TD6 (passos)	85±47

BRA: bloqueador dos receptores da angiotensina; DAC: doença arterial coronariana; ECA: enzima conversora da angiotensina; NYHA: New York Heart Association; RER: razão de troca respiratória; VE/VCO$_2$: relação entre a ventilação e a produção de dióxido de carbono.
Figura 1 – Associação entre o TD6 e o VO2pico.

Figura 2 – Gráfico de Bland-Altman para VO2pico previsto vs. Determinado.
prevista por testes de exercício regulares ou testes funcionais submáximos, como o TC6; no entanto, o TCEP é a única forma de avaliar e determinar diretamente a capacidade funcional. Com base em estudos clássicos em pacientes cardíacos, um VO2\text{pico} acima de 20 mL.kg\(^{-1}\).min\(^{-1}\) é um marcador de bom prognóstico, independentemente de outros parâmetros. Por outro lado, aqueles com VO2\text{pico} abaixo de 12 mL.kg\(^{-1}\).min\(^{-1}\) e IC podem ser considerados candidatos a transplante cardíaco.5,6

Como alternativa ao TCEP, o TC6 foi validado e é utilizado para avaliação prognóstica em diferentes doenças.11 É de fácil reprodução e pode ser relacionado ao desfecho, mas a necessidade de um espaço grande impede seu uso no consultório, por exemplo. Portanto, um teste que consiga estimar a capacidade funcional mesmo em espaço pequeno sem a necessidade de equipamentos sofisticados é de grande utilidade. É importante destacar que o TD6 foi previamente comparado ao TC6 em uma população sem doenças pulmonares ou cardíacas, apresentando boa correlação.12

O teste do degrau de seis minutos é uma forma simples de predizer capacidade funcional O TD6 é um teste simples que não necessita de muito espaço. Pode ser realizado em um consultório médico ou por outros profissionais da saúde. O teste foi usado previamente em pacientes com doença pulmonar crônica, mas ainda não foi validado em pacientes cardíacos.

Em pacientes com doença pulmonar obstrutiva crônica, um ponto de corte de < 78 passos foi associado a pior prognóstico.13 Em uma população saudável com média de idade de 39 anos, a contagem média de passos foi 149±34.14

De acordo com nossos dados, o TD6 apresenta acurácia aceitável para prever o VO2\text{pico} em uma amostra de pacientes DAC/IC, e os profissionais de saúde podem querer usar esses resultados em sua prática clínica.

Observamos que o ponto de corte de > 105 passos está relacionado ao alcance de um VO2\text{pico} acima de 20 mL.kg\(^{-1}\).min\(^{-1}\). Esse ponto de corte pode ser útil, por exemplo, quando o TCEP não estiver disponível. Além disso, se o paciente consegue subir mais de 105 degraus, o TCEP pode não ser necessário, pois estima-se um VO2\text{pico} acima de 20 mL.kg\(^{-1}\).min\(^{-1}\).
As estatísticas de capacidade funcional baseadas em atividades de rotina são imprecisas e não foram validadas diretamente por meio de dados do TCEP15 embora essa estratégia ainda seja utilizada quando estatísticas imediatas são necessárias, mesmo para avaliação em série. Assim, o TD6 pode ser aplicado de forma fácil e rápida, porém com mais segurança no que se refere à determinação da capacidade funcional.

Limitações

O presente estudo apresenta algumas limitações. Uma amostra maior e uma validação prospectiva dos resultados em outras populações devem ser consideradas. Nossa população consistiu em pacientes com DAC e/ou IC, os quais foram analisados em conjunto. Pode ser interessante analisar esses fenótipos separadamente. Para atenuar a influência do diagnóstico clínico na realização do teste, controlamos a análise multivariada para o diagnóstico de IC ou DAC e constatamos que o diagnóstico não influenciou o resultado. Também controlamos a análise para a fração de ejeção. Como a DAC é a causa mais prevalente de IC e a capacidade funcional é um fator prognóstico independente para ambos, a existência de um teste e um único ponto de corte que possa ser aplicado em um espectro mais amplo de doenças cardíacas pode ser de grande utilidade, já que o TD6 pode ser mais bem aplicado em triagem e acompanhamento.

A análise dos gráficos de Bland-Altman mostrou que a concordância foi considerada distante dos limites de controle superior ou inferior em apenas cinco pacientes. Desses, quatro apresentaram VO\textsubscript{2peak} acima de 20 mL.kg-1.min-1, e o valor previsto no TD6 também foi maior de 20 mL.kg-1.min-1. Dessa forma, os quatro pacientes não seriam erroneamente classificados como de menor risco do que o esperado. Em um paciente, o VO\textsubscript{2peak} previsto pelo TD6 foi maior do que o medido. Ao analisar esse caso, observamos que a razão de troca respiratória do TCEP apresentou compatibilidade de apenas 0,94 com um esforço submáximo, causada pela má adaptação à esteira e à máscara. O mesmo paciente subiu e desceu 91 degraus em 6 minutos. Pode-se entender que o TD6 é mais adequado como ferramenta de triagem e não como um substituto do TCEP. Portanto, embora sejam correlacionados, o TCEP ainda é necessário em casos em que a capacidade funcional precisa ser determinada com exatidão.

No momento, não temos dados de desempenho do TC6 para esses indivíduos, embora uma correlação entre os testes nesses pacientes possa ser útil. Estudos correlacionando o desempenho do TD6 em termos de desfechos clínicos demoram fornecer mais informações sobre os melhores pontos de corte. Por fim, embora o TCEP VO\textsubscript{2peak} seja o padrão-ouro para a avaliação funcional, é possível que o TD6 possa fornecer algumas implicações prognósticas, de acordo com os resultados.

Conclusão

Foram derivadas uma equação capaz de prever o VO\textsubscript{2peak} com base nos resultados do TD6, e foi encontrada associação significativa entre o TD6 e o VO\textsubscript{2peak}. O ponto de corte do TD6, que prevê um VO\textsubscript{2peak} \(\geq 20 \text{ mL.kg}^{-1}.\text{min}^{-1}\), foi \(>105\) passos.

Agradecimentos

Foi fornecido apoio financeiro parcial pelo FIP-E-HCPA (Fundo de Amparo à Pesquisa do Hospital de Clínicas de Porto Alegre).

Contribuição dos Autores

Concepção e desenho da pesquisa: Ritt LE, Porto JS, Bastos G, Feitosa CM, Claro TC, Prado EF, Oliveira QB, Stein R; Obtenção de dados: Ritt LE, Feitosa GF, Porto JS, Bastos G, Albuquerque RBL, Feitosa CM, Claro TC, Prado EF, Oliveira QB, Stein R; Análise e interpretação dos dados: Ritt LE, Darzé ES, Feitosa GF, Porto JS, Bastos G, Prado EF, Stein R; Análise estatística: Ritt LE, Darzé ES, Porto JS, Bastos G, Albuquerque RBL, Oliveira QB, Stein R; Obtenção de financiamento: Ritt LE, Stein R; Redação do manuscrito: Ritt LE, Darzé ES, Feitosa GF, Porto JS, Bastos G, Albuquerque RBL, Oliveira QB, Stein R; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Ritt LE, Darzé ES, Feitosa GF, Porto JS, Bastos G, Feitosa CM, Claro TC, Prado EF, Oliveira QB, Stein R.

Potencial Conflito de Interesses

Declaro não haver conflito de interesses pertinentes.

Fontes de Financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação Acadêmica

Não há vinculação deste estudo a programas de pós-graduação.

Referências

1. Forman DE, Arena R, Boxer R, Dolanský MA, Eng JJ, Hegl JL, et al. Prioritizing Functional Capacity as a Principal End Point for Therapies Oriented to Older Adults with Cardiovascular Disease: A Scientific Statement for Healthcare Professionals from the American Heart Association. Circulation. 2017;135(16):e894–918.

2. Task Force of the Italian Working Group on Cardiac Rehabilitation and Prevention. Statement on cardiopulmonary exercise testing in chronic heart failure due to left ventricular dysfunction: recommendations for performance and interpretation Part III: Interpretation of cardiopulmonary exercise testing in chronic heart failure and future. Eur J Cardiovasc Prev Rehabil. 2006;13(4):485–94.

3. Fletcher GF, Ades PA, Klopp P, Arena R, Balady GJ, Bittner VA, et al. Exercise standards for testing and training: A scientific statement from the American heart association. Circulation. 2013;128(8):873–934.

4. Malhotra R, Balken K, D’Elia E, Lewis GD. Cardiopulmonary Exercise Testing in Heart Failure. JACC Hear Fail. 2016;4(8):607–16.

5. Myers J, Gullestad L, Vagelos R, Bellin D, Ross H, Fowler MB. Cardiopulmonary exercise testing and prognosis in severe heart failure: 14 mL/kg/min revised. Am Heart J. 2000;139(1):I:78–84.
6. Mancini DM, Eisen H, Kussmaul W, Mull R, Edmonds LH, Wilson JR. Value of pico exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991;83(3):778–86.

7. Arena R, Myers J, Williams MA, Gulati M, Kligfield P, Balady GJ, et al. Assessment of functional capacity in clinical and research settings: A scientific statement from the American Heart Association committee on exercise, rehabilitation, and prevention of the council on clinical cardiology and the council on cardiovascular n. Circulation. 2007;116(3):329–43.

8. Master A, Oppenheimer E. A simple exercise tolerance test for circulatory efficiency with standard tables for normal individuals. Vol. 177, Am J Med Sci.. 1929. p. 223–42.

9. Peterson PN, Magid DJ, Ross C, Ho PM, Rumsfeld JS, Lauer MS, Lyons EE, Smith SS MF. Association of Exercise Capacity on Treadmill With Future Cardiac Events in Patients Referred for Exercise Testing. 2014;168(2):174–9.

10. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N SH. Cardiorespiratory Fitness as a Quantitative Predictor of All-Cause Mortality and Cardiovascular Events. J Am Med Assoc. 2009;301(19):2024–35.

11. ATS. Guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–7.

12. da Costa CH, da Silva KM, Maisvorm A, Raphael Y, Parnayha J, Da Cal M, et al. Can we use the 6-minute step test instead of the 6-minute walking test? An observational study. Physiother (United Kingdom) [Internet]. 2017;103(1):48–52. Available from: http://dx.doi.org/10.1016/j.physio.2015.11.003.

13. Pessoa B V, Arcuri JF, Labadessa IG, Costa JNE, Sentanin AC, Di Lorenzo VAP. Validity of the six-minute step test of free cadence in patients with chronic obstructive pulmonary disease. Brazilian J Phys Ther [Internet]. 2014;18(3):228–36. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-35552014000300228&lng=en&nrm=iso&tlng=en.

14. Arcuri JF, Borghi-Silva A, Labadessa IG, Sentanin AC, Candolo C PDLV. Validity and reliability of the 6-minute step test in healthy individuals: A Cross-sectional study. Clin J Sport Med. 2016;26(1):69–75.

15. Ritt LEF, Stein R, Ribeiro DS, Ribeiro RS, Pilar I, Borges Q, et al. Low Concordance Between the NYHA Class and Cardiopulmonary Exercise Test Variables in Heart Failure Patients. J Am Coll Cardiol [Internet]. 2019;73(9):1828. Available from: http://dx.doi.org/10.1016/S0735-1097(19)32434-9.