BIGNESS OF THE TANGENT BUNDLES
OF PROJECTIVE BUNDLES OVER CURVES

JEONG-SEOP KIM

ABSTRACT. In this short article, we determine the bigness of the tangent bundle T_X of the projective bundle $X = \mathbb{P}_C(E)$ associated to a vector bundle E on a smooth projective curve C.

1. Introduction

In this article, all varieties are defined over the field of complex numbers \mathbb{C}. After Mori’s proof of the Hartshorne’s conjecture on the ampleness of the tangent bundle T_X [Mor79], it has been asked to characterize a smooth projective variety X with certain positivity of T_X. For example, a conjecture proposed by Campana and Peternell asks whether the homogeneous varieties are the only smooth Fano varieties X with nef T_X, and the conjecture is settled for low dimensions or Picard number one [CP91], [MOSWW15]. Recently, a series of work done by Höring, Liu, Shao [HLS20], and Höring, Liu [HL21] investigates smooth Fano varieties X with big T_X as follows.

Theorem 1.1 ([HLS20], [HL21]). Let X be a smooth Fano variety.

1. If X has dimension 2, then T_X is big if and only if $(K_X)^2 \geq 5$.
2. If X has dimension 3 and Picard number 1, then T_X is big if and only if $(K_X)^3 \geq 40$.
3. If X has Picard number 1, and if X contains a rational curve with trivial normal bundle, then T_X is not big unless X is isomorphic to the quintic del Pezzo threefold.

The second statement is extended to the following case.

Theorem 1.2 ([KKL22]). Let X be a smooth Fano variety of dimension 3 and Picard number 2. Then T_X is big if and only if $(K_X)^3 \geq 34$.

These results make use of a special divisor on the projective bundle $\mathbb{P}_X(T_X)$, called the total dual VMRT \mathcal{C} (see [HR04], [OSW16]). In [HLS20], they find a formula for \mathcal{C}, which can be written as follows in the case where X attains a conic bundle structure $X \to Y$.

$$[\mathcal{C}] \sim \zeta + \Pi^* K_{X/Y}$$

where $\Pi : \mathbb{P}_X(T_X) \to X$ is the projection and ζ is the tautological divisor on $\mathbb{P}_X(T_X)$. In other words, \mathcal{C} arises as the divisor on $\mathbb{P}_X(T_X)$ corresponding to the natural subsheaf $T_{X/Y} \to T_X$ of rank 1.

In this article, we deal with a question on the bigness of T_X in the case of the projective bundle $X = \mathbb{P}_C(E)$ over a smooth projective curve C. When E has rank 2, X becomes a ruled surface, and the classification of X with big T_X is a consequence of some known facts. Indeed, if E is semi-stable, then $h^0(S^kT_X)$ is bounded above by a sum of dimensions of certain family of curves on X, whose bound can
be obtained from a remark of [Ros02] (see Remark 3.4). Otherwise, if E is unstable, then the bigness of T_X easily follows from the formula introduced above (cf. [KKL22, Remark 2.4]). However, when the rank of E gets larger, we cannot apply the formula because $X \to C$ is not a conic bundle.

In the case of higher ranks, when E is unstable, we can find a rank 1 subsheaf of S^mT_X instead of T_X to conclude that T_X is big. Also, when E is semi-stable, by computing an upper bound of $h^0(S^kT_X)$, we can determine the bigness of T_X according to the stability of E as follows.

Main Theorem. Let C be a smooth projective curve and E be a vector bundle on C. Then the projective bundle $X = \mathbb{P}_C(E)$ has big tangent bundle T_X if and only if E is unstable or $C = \mathbb{P}^1$.

The proof is divided into two parts; the case where E is semi-stable (Theorem 3.3) and E is unstable (Theorem 4.3). The exceptional case is explained in Remark 3.5. It is worth noting that the result is no longer true for varieties other than curves; there exist stable bundles E of rank 2 on \mathbb{P}^2 such that one of E gives big T_X whereas another choice of E gives not big T_X for $X = \mathbb{P}_{\mathbb{P}^2}(E)$ (see No. 24, 27, and 32 of Table 1 in [KKL22]; No. 24 is the only case with not big T_X, and see also [SW90]).

Acknowledgement. I would like to thank my thesis advisor Prof. Yongnam Lee for suggestion of this problem and valuable comments. I also thank Chih-Wei Chang for pointing out an error in the previous manuscript.

2. Preliminaries

Let X be a smooth projective variety of dimension $n > 0$ and V be a vector bundle of rank $r > 0$ on X. In this article, $\mathbb{P}_X(V)$ denotes the projective bundle with the projection $\Pi : \mathbb{P}_X(V) \to X$ in the sense of Grothendieck. That is, for the tautological line bundle $O_{\mathbb{P}_X(V)}(1)$ on $\mathbb{P}_X(V)$, we have

$$\Pi_*O_{\mathbb{P}_X(V)}(m) = \begin{cases} S^mV & \text{for } m \geq 0, \\ 0 & \text{for } m < 0 \end{cases}$$

where the 0-th power is taken to be $S^0V = O_X$ for convenience.

For $m \geq -r$ and any vector bundle W on X,

$$R^i\Pi_*((\Pi^*W \otimes O_{\mathbb{P}_X(V)}(m))) = W \otimes R^i\Pi_*O_{\mathbb{P}_X(V)}(m) = 0 \text{ for all } i > 0.$$

Thus, when $m \geq -r$,

$$H^i(\mathbb{P}_X(V), \Pi^*W \otimes O_{\mathbb{P}_X(V)}(m)) \cong H^i(X, W \otimes \Pi_*O_{\mathbb{P}_X(V)}(m)) \text{ for all } i \geq 0.$$

In particular, $H^0(\Pi^*W \otimes O_{\mathbb{P}_X(V)}(-1)) = 0$.

2.1. Bigness of Vector Bundle.

In this article, we define certain positivity of a vector bundle by the same positivity of the tautological line bundle on the projective bundle associated to the given vector bundle. The definition may differ by articles, for example, there are distinct notions of bigness of vector bundles; L-big and V-big (see [BKKMSU15]).
Definition. A vector bundle V is said to be ample (resp., nef, big, effective, and pseudo-effective) on X if the tautological line bundle $\mathcal{O}_{\mathbb{P}_X(V)}(1)$ is ample (resp., nef, big, effective, and pseudo-effective) on $\mathbb{P}_X(V)$.

Remark 2.1. Recall that a line bundle $L = \mathcal{O}_X(D)$ on X is big if and only if it satisfies one of the followings (see \cite[Laz04, Section 2.2]{Laz04}).

- $h^0(L^k) \sim k^n$ (which is the maximum possible).
- $mD \equiv_{\text{num}} A + E$ for some integer $m > 0$, ample divisor A, and effective divisor E on X.
- D lies in the interior of the closure $\text{Eff}(X) \subseteq N^1(X)$ of the cone of effective divisors (as bigness is well-defined under numerical equivalence).

In the case of vector bundles, we have the following (see also \cite[Laz04, Section 6.1]{Laz04}).

- V is big if and only if $h^0(S^kV) \sim k^{n+r-1}$ (which is the maximum possible). In particular, T_X is big if and only if $h^0(S^kT_X) \sim k^{2n-1}$.

We will denote by ζ the tautological divisor on $\mathbb{P}_X(V)$. By the fact that $\zeta + m\Pi^*A$ is ample for some integer $m > 0$ and ample divisor A on X \cite[Proposition 1.45]{KM98}, the following lemma can be shown.

Lemma 2.2 (HLS20 Lemma 2.3). Let V be a vector bundle on a normal projective variety X. Then V is big if and only if $V \otimes \mathcal{O}_X(-D)$ is pseudo-effective for some big \mathbb{Q}-Cartier \mathbb{Q}-divisor D on X.

Note that $V \otimes \mathcal{O}_X(-D)$ is pseudo-effective if and only if $\mathcal{O}_{\mathbb{P}_X(V)}(1) \otimes \Pi^*\mathcal{O}_X(-D)$ is pseudo-effective, and it is equivalent to saying that $\mathcal{O}_{\mathbb{P}_X(V)}(k) \otimes \Pi^*\mathcal{O}_X(-kD)$ is pseudo-effective for some $k > 0$. Thus if $S^kV \otimes \mathcal{O}_X(-D')$ is effective for some big divisor D' on X, then we can say that V is big by the lemma. As an application of the lemma, we present a proof of the following fact.

Proposition 2.3. Let X and Y be smooth projective varieties with big tangent bundles T_X and T_Y. Then the tangent bundle $T_{X \times Y}$ of $X \times Y$ is big.

Proof. Let D and E be big and effective divisors on X and Y respectively. As T_X and T_Y are big, there exist integers $m, n > 0$ such that $S^mT_X(-D)$ and $S^nT_Y(-E)$ are effective by Kodaira’s Lemma. Note that $T_{X \times Y} = p^*T_X \oplus q^*T_Y$ for the natural projections $p : X \times Y \to X$ and $q : X \times Y \to Y$, and $p^*D + q^*E$ is a big divisor on $X \times Y$. Since $S^{m+n}T_{X \times Y}$ contains $S^mp^*T_X \otimes S^nq^*T_Y$ as a direct summand, we have

$$H^0(S^{m+n}T_{X \times Y} \otimes \mathcal{O}_{X \times Y}(-p^*D - q^*E)) \supseteq H^0(S^mp^*T_X \otimes \mathcal{O}_{X \times Y}(-p^*D) \otimes S^nq^*T_Y \otimes \mathcal{O}_{X \times Y}(-q^*E)) \neq 0.$$

Thus $S^{m+n}T_{X \times Y} \otimes \mathcal{O}_{X \times Y}(-(p^*D + q^*E))$ is effective, and hence $T_{X \times Y}$ is big by Lemma 2.2. \hfill \Box

2.2. Stability of Vector Bundle. In this article, the stability is defined in the sense of Mumford and Takemoto. For the definitions introduced in this section, we add a mild condition (torsion-freeness) from the definitions in the reference \cite[Chapter 1]{HL10}.

Let Y be a smooth projective variety and E be a coherent sheaf on Y with $\text{Supp}(E) = Y$. Then there exists an open dense subset $U \subseteq Y$ such that $E|_U$ is locally free. The rank of E is defined by $\text{rank } E = \text{rank } E|_U$.

3
Definition. Fix an ample divisor H on Y. For a coherent sheaf E on Y with $\text{Supp}(E) = Y$, the H-slope of E is defined by

$$\mu_H(E) = \frac{\deg_H E}{\text{rank } E}$$

where the H-degree of E is defined by $\deg_H E = c_1(E).H^{n-1}$.

Let E be a torsion-free coherent sheaf of rank $r > 0$ on Y. Then E is said to be μ_H-stable (resp., μ_H-semi-stable) if for every coherent subsheaf F of E with $0 < \text{rank } F < r$,

$$\mu_H(F) < \mu_H(E) \quad (\text{resp., } \mu(F) \leq \mu(E)).$$

Also, E is said to be μ_H-unstable if it is not μ_H-semi-stable. If there is no confusion in the choice of H, then we just denote it by μ-stable (resp. μ-semi-stable, μ-unstable), or stable (resp. semi-stable, unstable) in the case where Y is a curve.

Remark 2.4. The followings are some known facts on the μ-stability and slope of torsion-free coherent sheaves E and F on Y. For the proofs, we may refer [HL10, Chapter 3].

- If E and F are μ-semi-stable and $\mu(E) < \mu(F)$, then $\text{Hom}(F,E) = 0$.
- If E and F are μ-semi-stable, then $E \otimes F$ is μ-semi-stable.
- If E is μ-semi-stable, then $S^m E$ is μ-semi-stable for all $m > 0$.
- $\text{rank}(S^m E) = \binom{m+r-1}{r-1}$, $c_1(S^m E) = c_1(E)^{\otimes \binom{m+r-1}{r-1}}$, and $\mu(S^m E) = m \cdot \mu(E)$.
- Assume that E fits into the following exact sequence of vector bundles on Y.

$$0 \to F \to E \to Q \to 0$$

If $\mu(F) = \mu(E) = \mu(Q)$, then E is μ-semi-stable if and only if both F and Q are μ-semi-stable.
- When E is a vector bundle, E is μ-semi-stable if and only if its dual E^\vee is μ-semi-stable, and $\mu(E^\vee) = -\mu(E)$.

For a torsion-free coherent sheaf E on Y, there exists a canonical filtration

$$0 = E_0 \subset E_1 \subset \cdots \subset E_k = E,$$

which satisfies

- E_i/E_{i-1} is μ-semi-stable (also, torsion-free) for all $0 < i \leq k$, and
- $\mu(E_{i+1}/E_i) < \mu(E_i/E_{i-1})$ for all $0 < i < k$.

This filtration is called the **Harder-Narasimhan filtration** of E. We call $F = E_1$ the **maximal destabilizing subsheaf** of E. When E is μ-unstable, we must have $\mu(F) > \mu(E)$. Also, it follows from the definition that E/F is torsion-free. Note that, in the case of curves $Y = C$, a coherent sheaf is torsion-free if and only if it is locally free, so we can further say that E/F is locally free.

3. Semi-Stable Case

In this section, let Y be a smooth projective variety of dimension $n > 0$, and fix an ample divisor H on Y. Let E be a vector bundle of rank $r > 0$ on Y. We denote by $X = \mathbb{P}_Y(E)$ the projective bundle
associated to E with the projection $\pi : \mathbb{P}_Y(E) \to Y$, and by $\mathcal{O}_X(\xi)$ the tautological line bundle of X.

Then, after taking symmetric powers to the relative Euler sequence

$$0 \to \mathcal{O}_X \to \pi^* E^\vee \otimes \mathcal{O}_X(\xi) \to T_{X/Y} \to 0,$$

we obtain the following exact sequence on X.

$$0 \to S^{m-1} \pi^* E^\vee \otimes \mathcal{O}_X((m-1)\xi) \to S^m \pi^* E^\vee \otimes \mathcal{O}_X(m\xi) \to S^m T_{X/Y} \to 0 \quad (3.1)$$

By pushing forward the exact sequence via π, we have the following exact sequence on Y.

$$0 \to S^{m-1} E^\vee \otimes S^{m-1} E \to S^m E^\vee \otimes S^m E \to \pi_* S^m T_{X/Y} \to 0$$

Lemma 3.1. If E is μ-semi-stable, then $\pi_* S^m T_{X/Y}$ is a μ-semi-stable bundle of deg $H^0(\pi_* S^m T_{X/Y}) = 0$ on Y where $X = \mathbb{P}_Y(E)$ and $\pi : \mathbb{P}_Y(E) \to Y$ is the projection.

Proof. Note that $S^m E^\vee \otimes S^m E$ is μ-semi-stable for all $m > 0$ because E is μ-semi-stable. Moreover, we have deg $H^0(\pi_* S^m T_{X/Y}) = 0$ due to the above sequence and

$$\deg(H^0(S^m E^\vee \otimes S^m E)) = \text{rank}(S^m E) \cdot \deg(H^0(S^m E^\vee)) + \text{rank}(S^m E^\vee) \cdot \deg(H^0(S^m E)) = 0.$$

Since $\pi_* S^m T_{X/Y}$ is a quotient of a μ-semi-stable bundle of the same H-slope, it is μ-semi-stable. \qed

Proposition 3.2. Assume that T_Y is μ-semi-stable and $\deg_H T_Y < 0$. If E is μ-semi-stable, then the tangent bundle T_X of $X = \mathbb{P}_Y(E)$ is not big.

Proof. Since the projection $\pi : X \to Y$ is a smooth morphism, there is the following exact sequence of vector bundles on X.

$$0 \to T_{X/Y} \to T_X \to \pi^* T_Y \to 0$$

From the above sequence, we can bound the dimension of the global sections of $S^k T_X$ as follows.

$$h^0(S^k T_X) \leq \sum_{m=0}^k h^0(S^m T_{X/Y} \otimes S^{k-m} \pi^* T_Y).$$

By the assumption, $(S^{k-m} T_Y)^\vee$ is μ-semi-stable, and $\deg_H (S^{k-m} T_Y)^\vee > 0$ so that

$$h^0(S^m T_{X/Y} \otimes S^{k-m} \pi^* T_Y) = h^0(\pi_* S^m T_{X/Y} \otimes S^{k-m} T_Y) = \dim \text{Hom}(\pi_* (S^{k-m} T_Y)^\vee, \pi_* S^m T_{X/Y}) = 0$$

whenever $0 \leq m < k$ due to Lemma 3.1. Thus

$$h^0(S^k T_X) \leq h^0(S^k T_{X/Y}) = O(k^{n+r-2}).$$

That is, T_X is not big. \qed
Theorem 3.3. Let C be a smooth projective curve of genus $g > 0$ and E be a vector bundle on C. If E is semi-stable, then the tangent bundle T_X of $X = \mathbb{P}_C(E)$ is not big.

Proof. If $g \geq 2$, then π^*T_C is stable as it is a line bundle, thus T_X is not big by Proposition 3.2. Otherwise, if $g = 1$, then $T_C = \mathcal{O}_C$. According to [Ati57, Lemma 15], $h^0(S^mT_{X/C}) = h^0(\pi_*S^mT_{X/C})$ is bounded above by the number of indecomposable direct summands of $\pi_*S^mT_{X/C}$ as $\pi_*S^mT_{X/C}$ is a semi-stable bundle of degree 0 on C. Thus we have

$$h^0(S^mT_{X/C}) \leq \text{rank}(\pi_*S^mT_{X/C}) = \text{rank}(S^mE^\vee \otimes S^mE) - \text{rank}(S^{m-1}E^\vee \otimes S^{m-1}E).$$

After telescoping, we can conclude that

$$h^0(S^kT_X) \leq \sum_{m=0}^k h^0(S^mT_{X/C}) \leq \text{rank}(S^kE^\vee \otimes S^kE) = O(k^{2r-2}).$$

That is, T_X is not big as X has dimension r. \hfill \square

Remark 3.4. Let E be a semi-stable bundle of rank 2 on a smooth projective curve C of genus $g > 0$. Then $T_{X/C}$ is a line bundle on X, and

$$S^mT_{X/C} = T_{X/C} \otimes S^m \cong \mathcal{O}_X(2mc_0)$$

for some \mathbb{Q}-divisor c_0 on X with $c_0^2 = 0$. For a divisor b on C, we denote by $\mathcal{O}_X(bf) = \pi^*\mathcal{O}_C(b)$.

If $\deg b < 0$, then $h^0(\mathcal{O}_X(2mc_0 + bf)) = 0$ because there is no effective divisor D on X with $D^2 < 0$ (cf. [Laz04, Section 1.5.A]). If $\deg b = 0$, then it is known from [Ros02] Remark in p. 122 that $h^0(\mathcal{O}_X(2mc_0 + bf)) \leq 1$ whenever there is an integral effective divisor $D \sim 2mc_0 + bf$ for some $m > 0$. Due to the remark, if such D is not integral, then it must given by a multiple of divisors numerically equivalent to c_0. In this case, we can find an upper bound of the dimension of the family of such D as E splits once we have $h^0(\mathcal{O}_X(c_0 + af)) \geq 2$ for any divisor a of degree 0 on C [NR09] Lemma 5.4.

Remark 3.5. If $g = 0$ and E is semi-stable, then $C = \mathbb{P}^1$ and $E = \mathcal{O}_C(a)^{\oplus r}$ for some $a \in \mathbb{Z}$. Thus $X \cong \mathbb{P}^{r-1} \times \mathbb{P}^1$ and T_X is big by Lemma 2.3.

Remark 3.6. Using the result on curves, we can state the non-bigness of T_X without the μ-semi-stability of T_Y under some special assumptions on Y and E. Assume that Y has a fibration $p : Y \to B$ with a smooth base B and general fiber f being a smooth curve of genus $g > 0$. If $E|_f$ is semi-stable on a general fiber f, then the tangent bundle T_X of $X = \mathbb{P}_Y(E)$ is big.

Suppose that T_X is big. Let $Z = \mathbb{P}_f(E|_f)$ and $\pi_f : Z \to f$ be the induced projection. Then, for general $Z = \mathbb{P}_f(E|_f)$, $T_{X|Z}$ is big, so T_{Z} is necessarily big. Indeed, from the exact sequence

$$0 \to T_Z \to T_{X|Z} \to N_{Z/X} \to 0,$$

we have $N_{Z/X} \cong \pi_f^*N_{f|Y} \cong \pi_f^*\mathcal{O}_f^{\oplus n-1} \cong \mathcal{O}_Z^{\oplus n-1}$, and it gives the following bound.

$$h^0(S^kT_{X|Z}) \leq \sum_{m=0}^k h^0(S^mT_Z \otimes S^{k-m}(\mathcal{O}_f^{\oplus n-1})) = \sum_{m=0}^k O(k^{n-2}) \cdot h^0(S^mT_Z) = O(k^{n-1}) \cdot h^0(S^kT_Z)$$

However, as $E|_f$ is assumed to be semi-stable, $Z = \mathbb{P}_f(E|_f)$ cannot have big T_Z by Theorem 3.3 which is a contradiction.
4. Unstable Case

In this section, we concentrate on the case where \(Y \) is a smooth projective curve \(C \) of genus \(g \geq 0 \). We continue to use the notation in the previous section, e.g., \(E \) denotes a vector bundle on \(C \).

Proposition 4.1. If \(E \) is unstable, then \(S^m E \) is unstabilized by a line subbundle for some \(m > 0 \); there exists a line subbundle \(L \) of \(S^m E \) with \(\mu(L) > \mu(S^m E) \).

Proof. Let \(F \) be the maximal destabilizing subbundle of \(E \). Then \(\mu(F) - \mu(E) > 0 \) as \(E \) is unstable. Also, the quotient \(Q \) is locally free, so we obtain the following exact sequence of vector bundles on \(C \).

\[
0 \to F \to E \to Q \to 0
\]

By taking the symmetric powers to the exact sequence,

\[
0 \to S^m F \to S^m E \to S^{m-1} E \otimes Q \to S^{m-2} E \otimes \wedge^2 Q \to \cdots \to S^{m-\text{rank } Q} E \otimes \wedge^{\text{rank } Q} Q \to 0,
\]

we can observe that \(S^m F \) is a subbundle of \(S^m E \). Note that \(\mu(S^m F) - \mu(S^m E) = m \cdot (\mu(F) - \mu(E)) > 0 \).

Due to \([\text{MS85}]\), for each \(m > 0 \), there exists a line subbundle \(L \) of \(S^m F \) satisfying

\[
\mu(S^m F) - \mu(L) = \frac{\text{rank}(S^m F) - \text{rank}(L)}{\text{rank}(S^m F) \cdot \text{rank}(L)} \cdot g < g.
\]

So we can find a line subbundle \(L \) of \(S^m F \) such that

\[
\mu(L) - \mu(S^m E) = \{ \mu(S^m F) - \mu(S^m E) \} - \{ \mu(S^m F) - \mu(L) \} > m \cdot (\mu(F) - \mu(E)) - g > 0
\]

by taking \(m > 0 \) large enough. As \(S^m F \) is a subbundle of \(S^m E \), \(L \) is also a nonzero subbundle of \(S^m E \). Hence we obtain a line subbundle \(L \) of \(S^m E \) satisfying \(\mu(L) > \mu(S^m E) \) for some \(m > 0 \). \(\square \)

A direct application of the proposition is the following.

Lemma 4.2. If \(\deg E > 0 \), then \(E \) is big on \(C \). Equivalently, if \(\deg E > 0 \), then the tautological line bundle \(\mathcal{O}_X(\xi) \) is big on \(X = \mathbb{P}_C(E) \).

Proof. Assume that \(\deg E > 0 \). If \(E \) is semi-stable, then \(E \) is ample by \([\text{Har71}]\) (see also “Main Claim” below \([\text{Laz04}]\) Theorem 6.4.15]). Thus \(E \) is big. Otherwise, if \(E \) is unstable, then \(S^m E \) has a line subbundle \(L \to S^m E \) with \(\mu(L) > \mu(S^m E) > 0 \), so \(S^m E \otimes L^{-1} \) is (pseudo-)effective with \(\deg L > 0 \). Thus \(S^m E \) is big by Lemma 2.2. That is, \(E \) is big. \(\square \)

The lemma remains true for \(\mathbb{Q} \)-twisted vector bundles (see \([\text{Laz04}]\) Section 6.2). Let \(X = \mathbb{P}_C(E) \). Then, for a \(\mathbb{Q} \)-divisor \(a \) on \(C \), the \(\mathbb{Q} \)-twisted vector bundle \(E(a) \) is big on \(C \) if and only if \(\mathcal{O}_X(\xi + af) \) is big on \(X \) if and only if \(\deg(E(a)) > 0 \) for \(\mathcal{O}_X(af) = \pi^* \mathcal{O}_C(a) \). Thus we can say that \(\mathcal{O}_X(m\xi + bf) \) is big on \(X \) if and only if \(\deg(S^m E \otimes L) > 0 \) for \(\mathcal{O}_X(bf) = \pi^* L \) by taking \(b = ma \) for all \(m > 0 \).
Theorem 4.3. If E is unstable, then the tangent bundle T_X of $X = \mathbb{P}_C(E)$ is big.

Proof. As E^\vee is also unstable, there exists an integer $m > 0$ such that $S^m E^\vee$ has a line subbundle $L \to S^m E^\vee$ with $\mu(L) > \mu(S^m E^\vee)$ by Proposition 4.1. By twisting $O_X(m\xi)$ after pulling-back via π, it gives a nonzero subbundle

$$\pi^* L \otimes O_X(m\xi) \to \pi^* S^m E^\vee \otimes O_X(m\xi).$$

(4.1)

Note that there cannot exist a nonzero morphism $\pi^* L \otimes O_X(m\xi) \to S^{m-1} \pi^* E^\vee \otimes O_X((m-1)\xi)$ as $\pi^*(S^{m-1} E^\vee \otimes L^{-1}) \otimes O_X(-\xi)$ never has a global section. Thus (4.1) induces a nonzero subsheaf

$$\pi^* L \otimes O_X(m\xi) \to S^m T_{X/C}$$

(4.2)

via (3.1) as follows.

$$
\begin{array}{c}
\pi^* L \otimes O_X(m\xi) \\
\downarrow \\
0 \rightarrow S^{m-1} \pi^* E^\vee \otimes O_X((m-1)\xi) \rightarrow S^m \pi^* E^\vee \otimes O_X(m\xi) \rightarrow S^m T_{X/C} \rightarrow 0
\end{array}
$$

Because $S^m T_{X/C}$ is a subbundle of $S^m T_X$, (4.2) induces a nonzero subsheaf

$$\pi^* L \otimes O_X(m\xi) \to S^m T_X,$$

and hence $S^m T_X \otimes O_X(-m\xi - bf)$ becomes effective for $O_X(bf) = \pi^* L$. Due to Lemma 4.2 and the argument after the lemma, $O_X(m\xi + bf)$ is big on X since $S^m E \otimes L$ has positive degree;

$$\deg(S^m E \otimes L) = \text{rank}(S^m E \otimes L) \cdot \mu(S^m E \otimes L) = \text{rank}(S^m E \otimes L) \cdot (\mu(L) - \mu(S^m E^\vee)) > 0.$$

Thus, by applying Lemma 2.2 we can conclude that T_X is big.

□

References

[Ati57] M. F. Atiyah, *Vector bundles over an elliptic curve*, Proc. London Math. Soc. (3) 7 (1957), 414–452.

[BKKMSU15] T. Bauer, S. Kovács, A. Küronya, E. Mistretta, T. Szemberg, S. Urbinati, *On positivity and base loci of vector bundles*, Eur. J. Math. 1(2) (2015), 229–249.

[CP91] F. Campana, T. Peternell, *Projective manifolds whose tangent bundles are numerically effective*, Math. Ann. 289(1) (1991), 169–187.

[Har71] R. Hartshorne, *Ample vector bundles on curves*, Nagoya Math. J. 43 (1971), 73–89.

[HL21] A. Höring, J. Liu, *Fano manifolds with big tangent bundle: a characterisation of V_5*, to appear in Collect. Math., preprint available at arXiv:2110.07237

[HLS20] A. Höring, J. Liu, F. Shao, *Examples of Fano manifolds with non-pseudoeffective tangent bundle*, to appear in J. London Math. Soc. (2), preprint available at arXiv:2003.09476.

[HL10] D. Huybrechts, M. Lehn, *The geometry of moduli spaces of sheaves, Second edition*, Cambridge University Press, Cambridge, 2010.

[HR04] J.-M. Hwang, S. Ramanan, *Hecke curves and Hitchin discriminant*, Ann. Sci. École Norm. Sup. (4) 37(5) (2004), 801–817.

[KKL22] H. Kim, J.-S. Kim, Y. Lee, *Bigness of the tangent bundle of a Fano threefold with Picard number two*, preprint available at arXiv:2201.06351.
[KM98] J. Kollár, S. Mori, *Birational geometry of algebraic varieties*, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original, Cambridge Tracts in Mathematics 134, Cambridge University Press, Cambridge, 1998.

[Laz04] R. Lazarsfeld, *Positivity in Algebraic Geometry I & II*, A Series of Modern Surveys in Mathematics 48 & 49, Springer-Verlag, Berlin, 2004.

[Mor79] S. Mori, *Projective manifolds with ample tangent bundles*, Ann. of Math. (2) 110(3) (1979), 593–606.

[MS85] S. Mukai, F. Sakai, *Maximal subbundles of vector bundles on a curve*, Manuscripta Math. 52(1–3) (1985), 251–256.

[MOSWW15] R. Muñoz, G. Occhetta, L. E. Solá Conde, K. Watanabe, J. A. Wiśniewski, *A survey on the Campana-Peternell conjecture*, Rend. Istit. Mat. Univ. Trieste 47 (2015), 127–185.

[NR69] M. S. Narasimhan, S. Ramanan, *Moduli of vector bundles on a compact Riemann surface*. Ann. of Math. (2) 89 (1969), 14–51.

[OSW16] G. Occhetta, L. E. Solá Conde, K. Watanabe, *Uniform families of minimal rational curves on Fano manifolds*, Rev. Mat. Complut. 29(2) (2016), 423–437.

[SW90] M. Szurek, J. A. Wiśniewski, *Fano bundles of rank 2 on surfaces*, Compositio Math. 76(1–2) (1990), 295–305.

[Ros02] J. Rosoff, *Effective divisor classes on a ruled surface*, Pacific J. Math. 202(1) (2002), 119–124.

Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Korea

Email address: jeongseop@kaist.ac.kr