Sapphires in southern Vietnam have been discovered in alluvial gem fields derived from Cenozoic basalts. Several syngenetic mineral inclusions were identified by Raman spectroscopy and electron probe microanalysis; they were classified as ferrocolumbite, zircon, alkali feldspar (albite-anorthoclase-oligoclase), pyrochlore, hercynite spinel, and ilmenite (titanohematite series). Geochemical characteristics of these inclusions appear to have evolved from an alkaline felsic suite. Consequently, the original formation of these sapphires would be related to alkaline felsic magmatic processes before basaltic magmatism, which was derived from the deeper upper mantle, had passed through and transported the sapphires and their associated minerals to the surface via volcanic eruption.

In 2017, we carried out field trips in southern Vietnam encompassing Binh Thuan Province, Di Linh [Lam Dong Province], Dak Nong Province, and Krong Nang [Dak Lak Province], where sapphire samples were collected directly from the mines (see figure 2). Gem mining activities in these areas are conducted by a few local miners. Pits are dug with basic tools before washing and hand picking along streams by artisanal miners (figure 3), and mines worked by machinery (figure 4) can also be found. Sapphires in this region usually range from dark blue to bluish green, yellowish green to green, with rare yellow sapphire. The natural intense blue sapphire is the best known and has been specifically recovered from the Dak Nong and Di Linh gem fields (figure 1, left). Other colors such as bluish green and yellowish green to green are common, particularly in the Binh Thuan and Krong Nang gem fields, respectively (figure 1, right). However, these sapphire varieties are generally heat treated for color enhancement. In addition, trapiche-type sapphires (figure 5) are sometimes found in these gem fields.
physical conditions directly related to the original formation of the basaltic-type sapphire. Subsequently, various analytical techniques such as Raman spectroscopy, scanning electron microscopy.

Figure 1. High-quality sapphires from southern Vietnam set in rings. Left: The center blue sapphire is approximately 8.8 ct, and the side stones range from 0.3 to 0.4 ct; all are from Di Linh. Right: An approximately 18 ct yellow sapphire from Binh Thuan surrounded by small diamonds. The yellow sapphire was heated to improve its color. Photos by Doan Thi Anh Vu.

Figure 2. Map of Vietnam showing the distribution of Cenozoic basalts and the main sapphire mining areas in southern Vietnam with the four occurrences where samples were collected (Binh Thuan, Di Linh, Dak Nong, and Krong Nang); modified from Hoa et al. (2005), Lepvrier et al. (2008), Tri and Khuc (2011), and Hoang et al. (2018).
with energy-dispersive spectroscopy (SEM-EDS), and electron probe microanalysis (EPMA) have been applied for identification of inclusions in sapphire from southern Vietnam. For example, Smith et al. (1995) and Long et al. (2004) used SEM-EDS to identify various mineral inclusions in sapphires from Dak Nong and Phan Thiet, whereas Izokh et al. (2010) applied EPMA for chemical analyses of a few inclusions in sapphires from Dak Nong.

Although a variety of mineral inclusions in sapphires from southern Vietnam were previously reported, the chemistry of these inclusions has not been widely analyzed. Therefore, this study is focused on a wider variety of mineral inclusions and
their chemical analyses using EPMA. These analytical data lead to a reconstruction of a genetic model of sapphire formation related to basaltic volcanism in this region. They also yield significant information for origin determination by gem testing laboratories.

GEOLOGICAL SETTING

Southern Vietnam geologically belongs to a large-scale structure of the Da Lat active continental margin (Da Lat zone) and the Indosinian polypelodonic orogenic belt (Srepok orogenic belt) (figure 2, left) (Tri and Khuc, 2011), which separated from Gondwana in the Devonian (Şengör et al., 1988; Hutchison, 1989; Metcalfe, 1988, 1996, 2009, 2011). Rock formations range widely: Precambrian basement rocks, Jurassic sedimentary rocks, late Mesozoic igneous rocks, and Cenozoic basaltic rocks (Hoa et al., 2005) (figure 2, right). The basement rocks in this area are composed of metamorphic complexes of granulites and gneiss Granite. A thick pile of Jurassic rocks covering the basement rocks is composed of sandstone, siltstone, and shale. These basement rocks and Jurassic rocks are intruded by a number of late Mesozoic rocks, including Triassic granite and granosyenite and Cretaceous granite.

The uppermost part of the area was eventually covered by Cenozoic basaltic, which are directly associated with sapphires in southern Vietnam. These Cenozoic Neogene-Quaternary basaltic rocks range in age from 0.8 to 17.6 Ma (Hoang and Flower, 1998; Garnier et al., 2005) and appear to have been related to the most recent tectonic event, the opening of the East Sea after the Indian-Eurasian collision (from 35 to 17 Ma) (Barr and MacDonald, 1981; Rangin et al., 1995; Hoang and Flower, 1998; Lee et al., 1998). According to Hoang and Flower (1998), these basaltic covering an area of about 23,000 km² with a thickness of several hundred meters erupted in two main episodes. The early stages mostly included tholeiite basalts, which erupted from extensional fissures trending along the NE-SW and NW-SE directions, derived from the lithosphere. On the other hand, the latter alkali basalts usually flowed along conjugate strike-slip faults originating from the asthenosphere. Only the alkali basalts in particular are associated with sapphire (Smith et al., 1995; Garnier et al., 2005; Izokh et al., 2010). According to Garnier et al. (2005), alkali basalts in Dak Nong are characterized by porphyritic olivine basalts that comprise olivine, clinopyroxene, plagioclase, and spinel. These compositions are associated with megacrysts, xenocrysts, and xenoliths of the mantle and lower crust. Mantle xenoliths embedded in Dak Nong basalts are recognized as garnet lherzolite and spinel lherzolite, while xenocrysts include olivine, Al-rich clinopyroxene, orthopyroxene, phlogopite, sapphire, and zircon. Lower crustal xenoliths usually contain plagioclase and quartz. The presence of mantle xenoliths, xenocrysts, and lower crustal xenoliths may indicate that crystallization of these minerals occurred at high pressure in a magma chamber close to the boundary between the upper mantle and lower crust.

MATERIALS AND METHODS

Over a thousand unheated, gem-quality rough sapphires were collected directly from the gem fields in southern Vietnam (Dak Nong, Di Linh, Krong Nang, and Binh Thuan) for this study. Most of the samples from the Dak Nong and Di Linh mines were collected by the first author over 20 years, while sapphires from Binh Thuan and Krong Nang were collected in 2001 and 2012, respectively. Moreover, more samples from all areas were collected by the authors during the field trip in 2017. These were initially investigated under a gemological microscope to find suitable samples containing mineral inclusions. Subsequently, a total of 274 sapphire samples (77 from Dak Nong, 75 from Di Linh, 45 from Krong Nang, and 77 from Binh Thuan) were then selected and polished to expose the inclusions.

These inclusions were then identified by a Renishaw InVia 1000 laser Raman spectroscope at the Gem and Jewellery Institute of Thailand (Public Organization) (GIT). Subsequently, they were analyzed for major and minor compositions using a JEOL JXA-8100 electron probe microanalyzer at the Depart-
ment of Geology, Faculty of Science, Chulalongkorn University. Operating conditions were set at 15 kV acceleration voltage and 24 nA filament current with 30 seconds of peak and background counts for each element prior to automatic ZAF calculation and reporting in oxide forms. The general detection limits of major and minor analyses obtained from EPMA are typically lower than 0.01 oxide wt.%. Various natural minerals and artificial standards were used for calibration. These included quartz, corundum, eskolaite, fayalite, manganosite, periclase, nickel oxide, wollastonite, jadeite, potassium titanium phosphate, strontium barium niobate, zirconium, yttrium phosphate, cerium phosphate, and neodymium phosphate for SiO₂, Al₂O₃, Cr₂O₃, FeO, MnO, MgO, NiO, CaO, Na₂O, K₂O, Nb₂O₅, ZrO₂, Y₂O₃, Ce₂O₃, and Nd₂O₃, respectively. Fe²⁺ and Fe³⁺ ratios of some specific minerals (e.g., spinel and ilmenite) were estimated by stoichiometric calculation as suggested by Droop (1987). Additionally, a total of four samples that contained zircon inclusions, one from each area, were analyzed for their rare earth elements (REE). These were analyzed using an Agilent 7700 quadrupole ICP-MS instrument, attached to a Photon Machines Excimer 193 nm laser ablation (LA) system at Macquarie University in Sydney, Australia. The analyses were carried out using the same laser conditions as for U-Pb dating. Detailed descriptions of analytical and calibration procedures were given by Belousova et al. (2002). These zircon inclusions were analyzed using a 2 Hz pulse rate with about 0.5 mJ beam energy per pulse, achieving a spatial resolution of about 30 μm. Quantitative results for the trace elements reported here were obtained through calibration of relative element sensitivities using NIST-610 standard glass as the external calibration standard. The BCR-2g and zircon 91500 and GJ-1 reference materials were analyzed within the run as an independent control on reproducibility and instrument stability. Zr content was used for internal calibration for unknown zircon samples (66 wt.% of ZrO₂ as the stoichiometric amount of this oxide in zircon). The precision and accuracy of the NIST-610 analyses were determined to be 1–2% for rare earth elements at the ppm concentration level. Typical detection limits (99% confidence) are provided in table 4.

RESULTS
The most common internal feature of sapphire from southern Vietnam was strong color zoning (figure 6A). Other features included parallel twin planes, needle-like inclusions (figure 6B), liquid-filled inclusions (figure 6C), and negative crystals (figure 6D). Based on Raman spectroscopic and EPMA analyses, 290 mineral inclusions were identified; they were mainly Nb-Ta oxides, followed by silicate and other oxide minerals. The types of mineral inclusions in each sample group are summarized in table 1. Mineral inclusions previously reported in sapphires from Thailand, Laos, and Cambodia are also compared in the same table. Columbite and zircon were the most

Figure 6. Typical internal features observed in sapphire from southern Vietnam: strong color zones (A), needle-like inclusions (B), liquid-filled inclusions (C), and negative crystals situated in healed fractures (D). Darkfield illumination. Photomicrographs by Doan Thi Anh Vu; magnified 50x.
common inclusions in these sapphire samples, while alkali feldspar and spinel were often identified. Ilmenite, pyrochlore, and unidentified iron minerals were rarely detected. Details of these inclusions are provided below.

Columbite was the predominant mineral inclusion observed in sapphires from all gem fields in southern Vietnam, accounting for nearly 47% of the 290 mineral inclusions contained in the 274 samples. They generally formed as opaque black euhedral crystals with a rhombic prism with pyramidal shape and a truncated rhombic pyramid shape, ranging in sizes from <10 μm up to several millimeters (figure 7, A and B). They were often associated with zircon, with or without feldspar (figures 7C and 9B). Representative EPMA analyses of columbite inclusions

TABLE 1. Summary of mineral inclusions found in sapphire from southern Vietnam, compared to those reported from basaltic gem fields elsewhere in Southeast Asia.

Area	Nb-Ta oxides	Silicate	Other oxides
Dak Nong	Columbite*	Zircon*a,b	Spinel*
	Pyrochlore*	Alkali feldspar*	Ilmenite*
Di Linh	Columbite*	Zircon*c	Spinel*c
	Pyrochlore*	Alkali feldspar*	Ilmenite*
			Unidentified iron*
Krong Nang	Columbite*	Zircon*	Spinel*
	Pyrochlore*	Alkali feldspar*	Ilmenite*
			Unidentified iron*
Binh Thuan	Columbite*	Zircon*	Spinel*
	Pyrochlore*	Alkali feldspar*	Ilmenite*
			Unidentified iron*
Chanthaburi (Thailand)	Columbite*	Zircon*	Spinel*
		Alkali feldspar*	
Kanchanaburi (Thailand)	-	Zircon*	Spinel*
		Alkali feldspar*	
Ban Huai Sai (Laos)	Columbite*	Zircon*	Spinel*
		Alkali feldspar*	
Pailin (Cambodia)	Pyrochlore*	Zircon*	Spinel*
		Alkali feldspar*	

*This study, using Raman and EPMA
Izokh et al. (2010), using EPMA
Long et al. (2004), using SEM-EDS
Smith et al. (1995), using SEM-EDS
Promwongnan and Sutheath (2019), using Raman and EPMA
Saminpanya and Sutherland (2011), using EPMA
Khamloet et al. (2014), using EPMA
Sutherland et al. (1998b), using EPMA
Sutherland et al. (2002), using EPMA
Palke et al. (2019), using Raman

Figure 7. A: A larger prismatic columbite inclusion. B: Two truncated-rhombic columbite inclusions surrounded by healed fractures. C: A cluster of several tiny columbites with colorless feldspar and zircon inclusions. Darkfield illumination. Photomicrographs by Doan Thi Anh Vu; magnified 50×.
TABLE 2. Representative EPMA analyses of columbite inclusions found in sapphires from southern Vietnam, Thailand, and Australia.

Mineral phase analysis (wt.%)	Southern Vietnam	Thailand	Australia													
	Dak Nong	Di Linh	Krong Nang	Binh Thuan	Dak Nong	Chanthaburi	Lava Plains	New England								
	DN63	DN68	DL70	DL74	KN25	KN54	PT11	PT73	DN63	DN68	DL70	DL74	KN25	KN54	PT11	PT73
TiO₂	2.85	4.06	0.28	1.14	4.78	0.26	nd	12.04	na	0.43	3.57	3.03				
FeO	1.23	1.23	15.24	12.35	21.35	15.99	15.96	15.29	15.90	9.79	16.59	17.44				
MnO	6.45	6.81	14.64	8.12	0.70	6.55	3.77	4.27	2.93	1.58	2.99	2.19				
MgO	0.52	1.38	0.16	2.93	0.77	0.09	nd	0.08	na	0.08	1.18	0.54				
CaO	nd	0.05	0.01	0.02	nd	nd	nd	nd	na	0.42	0.03	0.00				
Nb₂O₅	75.92	70.02	68.54	72.59	70.80	64.56	76.98	66.03	77.10	74.37	71.98	73.95				
Ta₂O₅	0.74	4.45	1.76	1.57	0.50	1.21	3.78	0.46	3.61	0.25	2.98	2.38				
ThO₃	nd	0.02	nd	nd	0.02	nd	nd	nd	na	0.85	0.01	na				
UO₂	nd	0.08	0.09	nd	0.13	9.97	nd	0.04	na	3.50	0.12	na				
ZrO₂	0.41	0.17	0.18	0.26	1.23	0.95	0.03	0.52	0.79	0.78	0.40	0.52				
Y₂O₃	nd	nd	nd	nd	nd	0.16	nd	0.15	na	2.76	0.01	na				
Nb₂O₅	nd	nd	nd	nd	0.87	nd	nd	nd	na	1.42	na	na				
Sm₂O₃	nd	nd	nd	nd	nd	nd	nd	nd	na	0.72	na	na				

Total (oxides) 99.2 99.78 100.90 98.98 100.28 100.60 100.53 98.87 100.40 98.61 99.94 100.43

Formula 3(O)

Mineral phase analysis (wt.%)	Southern Vietnam	Thailand	Australia									
	Dak Nong	Di Linh	Krong Nang	Binh Thuan	Dak Nong	Chanthaburi	Lava Plains	New England				
	DN63	DN68	DL70	DL74	KN25	KN54	PT11	PT73				
Ti	0.060	0.086	0.006	0.024	0.099	0.006	–	0.247	–	0.010	0.075	0.064
Fe	0.288	0.299	0.365	0.290	0.494	0.404	0.377	0.348	0.376	0.243	0.388	0.407
Mn	0.152	0.162	0.355	0.193	0.016	0.168	0.090	0.098	0.070	0.040	0.071	0.052
Mg	0.022	0.058	0.007	0.123	0.032	0.004	–	0.003	–	0.004	0.049	0.022
Ca	–	0.002	0.000	0.001	–	–	–	–	–	0.013	0.001	0.000
Nb	0.957	0.888	0.888	0.923	0.886	0.882	0.984	0.813	0.985	0.997	0.909	0.933
Ta	0.006	0.034	0.014	0.012	0.004	0.010	0.029	0.003	0.028	0.002	0.023	0.018
Th	–	0.000	–	0.000	–	–	–	–	–	0.006	–	–
U	–	0.001	0.001	0.001	0.006	–	0.000	–	–	0.237	–	–
Zr	0.006	0.002	0.002	0.003	0.017	0.014	0.000	0.007	0.011	0.011	0.005	0.007
Y	–	–	–	–	–	–	–	–	–	0.044	–	–
Nd	–	–	–	–	–	–	–	–	–	0.019	–	–
Sm	–	–	–	–	0.000	–	–	–	–	0.007	–	–

Total (cations) 1.490 1.538 1.638 1.570 1.549 1.568 1.481 1.522 1.470 1.417 1.521 1.503

Abbreviations: na = not analyzed; nd = not detected

†Izokh et al. (2010)
‡Promwongnan and Sutthirat (2019)
§Guo et al. (1996)
∥Sutherland et al. (1998a)

ranged between 65–77 wt. % Nb₂O₅, ≤4.5 wt. % Ta₂O₅, ≤12 wt. % TiO₂, ≤3 wt. % MgO, 12–21 wt. % FeO, and <15 wt. % MnO (table 2). The chemical formula of these columbite inclusions can be expressed as

\[
\begin{align*}
\text{Fe}_{0.373}\text{Mn}_{0.133}\text{Mg}_{0.133}\text{Ca}_{0.228}\text{Ti}_{0.091}(\text{Nb}_{0.938}\text{Ta}_{0.010}\text{U}_{0.001}\text{Zr}_{0.007})\text{O}_6
\end{align*}
\]

which fits very well within the compositional range of ferrocolumbite (figure 8). Their compositions were also equivalent to those previously reported for sapphires from Dak Nong by Izokh et al. (2010) as well as from Lava Plains and New England in Australia (Guo et al., 1996; Sutherland et al., 1998b). Lower FeO contents of columbite inclusions in Bo Welu sapphire...
from Chanthaburi, Thailand, were reported by Promwongnan and Sutthirat (2019). Ferrocolumbite inclusions in sapphire from southern Vietnam contained low Ta content, yielding a $\text{Ta} / (\text{Ta} + \text{Nb})$ ratio < 0.05 within a wide range of Mn contents (<15 wt.% MnO and Mn/(Mn+Fe) ratio <0.5) (figure 8), which may have derived from peralkaline complexes [peralkaline granite/syenite] (Mackay and Simandl, 2015). The hafnium contents showed a slightly wider range of about 1–4 wt.%, leading to Hf/Zr ratios of 0.01 to 0.04, which fall in the range of magmatic zircon, particularly syenite and granite zircons (Deer et al., 2013). Significant trace elements included <1.5 wt.% ThO$_2$, <1.8 wt.% UO$_2$, and <0.6 wt.% Y$_2$O$_3$; these elements appeared to be higher in zircon inclusions of Di Linh sapphire. On the other hand, these zircon inclusions yielded Th/U ratios >0.2, indicating a magmatic source [Williams and Claesson, 1987; Rubatto and Gebauer, 2000; Huong et al., 2016]. These were similar in composition to zircon analyses previously reported from Dak Nong (Izokh et al., 2010) and other basalt-associated sources such as Ban Huai Sai in Laos, Kanchanaburi in Thailand, and Kings Plains and New England in Australia (Guo et al., 1996; Sutherland et al., 1998a; 2002; Khamloet et al., 2014), although the Y$_2$O$_3$ content of zircon inclusions from Bo Welu in Thailand [Promwongnan and Sutthirat, 2019] has recently been reported with a higher content. Total REE contents of representative zircon inclusions ranged from 1156 to 2710 ppm [table 4], more similar to those from syenite pegmatite (2043 ppm) and granitoid (1813 ppm) than those from carbonatite (600–700 ppm) (Belousova et al., 2002).

Alkali feldspar inclusions were sometimes observed in the sapphire samples, making up about 13% of the mineral inclusions. They generally presented subhedral or euhedral grains with small sizes ranging from about 40 μm, with some rare examples reaching 1 mm. These included crystals were commonly transparent and colorless [figures 7C and 9C].
Their chemical compositions were rather uniformly
oligoclase (Ab\textsubscript{77–98} An\textsubscript{15–17} Or\textsubscript{1–11}'; see table 5 and figure
10). However, feldspar in Krong Nang sapphires
mostly plotted close to the junction of albite-anorthoclase-oligoclase compositions (Ab\textsubscript{82–86} An\textsubscript{6–11} Or\textsubscript{6–11}').

Mineral phase analysis (wt.%)	Dak Nong	Di Linh	Krong Nang	Binh Thuan	Dak Nonga	Ban Hua Saia	Chantha-buria	Kanchanaburia	Kings Plainsa	New Englanda
SiO\textsubscript{2}	32.16	32.43	34.34	32.59	33.84	33.43	31.19	33.86	32.34	31.23
TiO\textsubscript{2}	0.03	0.02	nd	0.01	0.01	0.06	nd	0.06	na	na
Al\textsubscript{2}O\textsubscript{3}	0.27	0.30	nd	nd	nd	0.28	0.01	na	0.01	0.01
FeO	nd	0.02	0.04	nd	nd	0.31	nd	nd	0.07	0.04
MgO	0.02	0.02	0.02	0.04	nd	0.02	0.01	0.01	0.07	0.04
CaO	0.06	0.05	0.06	nd	nd	0.01	0.01	0.01	0.06	0.02
Na\textsubscript{2}O	nd	nd	nd	nd	nd	0.04	nd	nd	0.04	0.06
K\textsubscript{2}O	0.02	0.06	0.05	nd	0.05	0.67	nd	nd	0.26	0.06
Th\textsubscript{2}O	0.03	0.31	0.01	0.33	0.32	0.13	0.09	0.13	0.76	0.18
UO\textsubscript{2}	0.12	1.40	0.11	1.40	0.32	0.13	0.09	0.13	1.21	0.49
HfO\textsubscript{2}	0.12	1.40	0.11	1.40	0.32	0.13	0.09	0.13	1.21	0.49
TiO\textsubscript{2}	0.03	0.11	0.03	0.11	0.11	0.03	0.11	0.03	0.11	0.03
MgO	0.02	0.02	0.02	0.02	0.02	0.27	0.06	0.27	0.27	0.27
K\textsubscript{2}O	0.02	0.08	0.02	0.08	0.02	0.08	0.02	0.08	0.08	0.08
Th\textsubscript{2}O	0.03	0.31	0.01	0.33	0.32	0.13	0.09	0.13	1.21	0.49

TABLE 3. Representative EPMA analyses of zircon inclusions found in sapphires from southern Vietnam, Laos, Thailand, and Australia.
whereas Di Linh feldspar was divided into two groups: the first group close to the albite-anorthoclase boundary (Ab 82–85An 6–9 Or 8–11) and the second containing lower K content near the albite-oligoclase boundary (Ab 85–87An 7–11 Or 4–5). Binh Thuan feldspar ranged between albite and oligoclase compositions, while most Dak Nong feldspar fell within albite composition (Ab 83–98An 1–10 Or 1–8). These compositional ranges were wider than those previously reported, as only oligoclase was identified in sapphires from Dak Nong (Izokh et al., 2010) and from Ban Huai Sai in Laos (Sutherland et al., 2002), but An and Or components were narrower in range than those in Thai sapphires from Kanchanaburi (An 9–23 Or 6–14) (Khamloet et al., 2014) and Chanthaburi (An 14 Or 7–17) (Promwongnan and Sutthirat, 2019) and Australian sapphires from Kings Plains (An <14 Or 7–17).

Table 4. REE analyses (ppm) of representative zircons found in southern Vietnam sapphire, determined by LA-ICP-MS.

Element	Dak Nong	Di Linh	Krong Nang	Binh Thuan	Typical detection limits (99% confidence)
Y	1468.21	4220.35	1194.74	2868.13	0.004
La	0.02	nd	0.01	nd	0.004
Ce	2.79	12.00	1.65	13.33	0.003
Pr	0.01	0.06	0.02	0.0523	0.003
Nd	0.27	1.11	0.26	1.451	0.014
Sm	1.23	5.62	0.68	5.62	0.019
Eu	0.96	5.12	0.59	2.177	0.006
Gd	12.91	54.66	5.74	44.06	0.019
Tb	7.23	27.58	3.91	21.66	0.003
Dy	122.00	416.17	76.25	310.13	0.013
Ho	50.02	152.71	38.25	104.29	0.003
Er	258.30	672.98	258.42	442.14	0.009
Tm	60.40	134.11	83.73	89.21	0.003
Yb	566.33	115.50	1081.3	721.34	0.018
Lu	80.77	140.18	179.34	81.68	0.003
Total REE	1155.94	2710.22	1762.23	1815.47	

Abbreviation: nd = not detected

![Figure 10](image1.png)
Figure 10. Ternary plot of An-Ab-Or in alkali feldspar inclusions in sapphires from southern Vietnam. Modified from N.N. Greenwood and A. Earnshaw, Chemistry of Elements (1998), p. 357.

![Figure 11](image2.png)
Figure 11. Inclusions of black octahedral hercynite spinel (A) and euhedral rhombohedral ilmenite (B). Darkfield illumination. Photomicrographs by Doan Thi Anh Vu; magnified 50x.
Guo et al. (1996) and New England (Guo et al., 1996) and New England (An

Spinel inclusions accounted for about 4% of the mineral inclusions contained in the samples from southern Vietnam. They usually occurred as black cubic crystals (figure 11A). Spinel inclusions with compositions ranging between chromite-hercynite and magnetite-hercynite have been previously reported, on the basis of SEM-EDS analyses, in sapphires from Binh Thuan and Di Linh (Smith et al., 1995). However, EPMA analyses of spinel inclusions in this study revealed significant components of hercynite (FeAl2O4·Hc64·10w) and spinel [MgAl2O4·Sp23], whereas other components were negligible (table 6). The spinel inclusions’ Mg:Fe2+ ratios were mostly less than 1:4, falling into hercynite spinel (Deer et al., 2013). In comparison, these hercynite spinel inclusions contained a moderately lower spinel composition than those in

TABLE 5. Representative EPMA analyses of feldspar inclusions in sapphires from southern Vietnam, Laos, Thailand, and Australia.

Mineral phase analysis (wt.%	Dak Nong	Di Linh	Krong Nang	Binh Thuan	Dak Nong	Ban Huai	Saip	Kanchanaburi	Chanthaburi	Kings Plains	New England				
SiO2	67.93	64.13	65.66	62.30	65.83	64.38	68.89	64.31	64.20	65.60	66.97	68.41	53.47		
TiO2	0.02	nd	0.01	0.02	0.01	0.01	nd	nd	0.00	0.01	0.02	0.00			
Al₂O₃	19.06	21.92	23.72	23.73	22.86	21.79	19.70	22.39	22.10	21.45	21.50	21.40	18.56	29.28	
FeO	0.03	0.06	0.19	0.09	0.07	nd	0.06	nd	0.06	0.03	0.04	0.65	na	0.09	
MnO	nd	nd	nd	nd	nd	nd	nd	nd	0.02	0.00	0.04	na	0.00		
MgO	nd	nd	nd	nd	nd	nd	nd	nd	0.00	0.05	nd	na	0.00		
BaO	0.07	0.01	0.03	0.06	0.07	nd	0.02	0.03	na	na	na	na	na	na	
CaO	0.17	2.24	1.09	1.64	1.54	2.24	nd	2.98	3.13	1.96	2.59	0.73	<0.01	11.19	
Na₂O	11.33	9.65	7.63	10.76	8.73	9.22	11.37	9.02	9.71	9.37	4.31	2.69	0.73	5.50	
K₂O	0.22	1.15	1.60	1.02	1.70	1.44	0.32	1.43	0.82	1.53	6.52	8.47	15.50	0.48	
Total (oxides)	98.83	99.16	99.76	99.72	100.84	99.15	100.31	100.22	100.10	99.17	100.62	100.97	99.60	100.01	
Formula 8(O)	Si	3.003	2.857	2.787	2.775	2.872	2.868	2.998	2.841	2.840	2.885	2.908	2.957	2.997	2.425
	Ti	0.001	–	0.001	0.000	0.000	0.000	–	–	–	0.000	0.000	0.000	–	
	Al	0.993	1.151	1.223	1.245	1.175	1.144	1.010	1.166	1.152	1.125	1.124	1.114	1.011	1.565
	Fe	0.001	0.002	0.001	0.007	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.024	–	
	Mn	–	–	–	–	–	–	–	0.001	–	0.001	–	–	–	
	Mg	–	–	–	–	–	–	–	–	–	0.003	0.000	0.000	–	
	Ba	0.001	0.000	0.000	0.001	–	0.000	0.001	–	–	0.000	0.000	–	–	
	Ca	0.008	0.107	0.051	0.078	0.072	0.107	0.141	0.148	0.093	0.123	0.035	–	0.544	
	Na	0.971	0.833	0.647	0.929	0.738	0.796	0.959	0.772	0.833	0.808	0.371	0.230	0.065	0.484
	K	0.012	0.065	0.089	0.058	0.095	0.082	0.018	0.081	0.046	0.087	0.369	0.477	0.914	0.028
Total (cations)	4.991	5.016	4.884	5.095	4.957	4.999	4.986	5.003	5.023	5.000	4.899	4.893	4.988	5.048	
Atomic (%)	Albite	97.9	82.9	82.1	87.2	81.6	80.8	98.2	77.7	81.1	81.8	43.0	31.0	6.7	45.8
	Anorthite	8.8	10.6	6.5	7.4	8.0	10.9	0.0	14.2	14.4	9.5	14.2	4.7	0.0	51.5
	Orthoclase	1.3	6.5	11.3	5.4	10.5	8.3	1.8	8.1	4.5	8.8	42.8	64.3	93.3	2.7

*Abbreviations: na = not analyzed; nd = not detected

*Zeekh et al. (2010)
*Sutherland et al. (2002)
*Khamlaot et al. (2014)
*Promwongnan and Suthirat (2019)
*Guo et al. (1996)
*Sutherland et al. (1998a)
sapphires from Pailin in Cambodia or from New England in Australia.

Ilmenite (FeTiO₃) was found in only two samples from Di Linh and one sample from Dak Nong. These inclusions were black, opaque, and euhedral (figure 11B), and their identity was confirmed by Raman spectroscopic identification. A previous study, based on SEM-EDS analysis, also recognized ilmenite in sapphires from Di Linh and Binh Thuan (Smith et al., 1995). The chemical composition of the ilmenite inclusions in this study clearly belonged to the titanohematite series [ilmenite-hematite, \(\text{Il}_{54-49}\text{He}_{40-34} \)] (table 7). The low Mn content (<0.15 wt. % MnO) of these titanohematites was closer to that from an igneous magma source (Lindsley, 1991) as reported by Sybille Monzosnyite (Fuhrman et al., 1988), and different from ilmenite with higher Mn originating from metamorphic rocks from Western Australia (Cassidy et al., 1988). Moreover, their Mn contents

TABLE 6. Representative EPMA analyses of spinel inclusions in sapphires from southern Vietnam, Thailand, Cambodia, and Australia.

Mineral phase analysis (wt. %)	Southern Vietnam	Thailand	Cambodia	New England							
	Dak Nong	Di Linh	Krong Nang	Binh Thuan	Kanchanaburi	Pailin	Australia				
	DN12	DN16	DL62	KN42	KN47	PT22	PT34				
SiO₂	nd	nd	0.01	nd	nd	nd	0.25	0.03	0.03	0.00	
TiO₂	0.12	0.08	0.70	0.13	0.18	nd	1.91	0.07	0.26	0.13	
Al₂O₃	60.99	60.93	60.76	60.31	60.11	61.18	61.58	59.52	63.00	57.04	
Cr₂O₃	nd	nd	0.09	nd	nd	nd	nd	0.16	0.29	0.00	
FeO₅mal	33.99	34.18	33.87	34.96	33.77	33.35	35.53	35.39	21.77	34.66	
MnO	nd	0.89	0.34	0.05	1.18	0.53	1.44	0.22	0.15	0.48	
MgO	4.02	4.29	4.62	3.17	4.31	4.60	0.08	5.85	13.50	6.09	
ZnO	0.12	0.38	0.18	nd	0.51	0.93	0.07	0.14	na	0.69	
CaO	0.06	nd	nd	nd	nd	nd	nd	0.00	<0.005	0.00	
Total (oxides)	99.29	100.74	100.58	98.61	100.06	100.58	100.95	101.36	99.00	99.15	
Formula 32(O)	Si	–	0.002	–	–	–	0.056	0.007	0.006	0.00	
	Ti	0.020	0.014	0.117	0.023	0.030	–	0.321	0.011	0.042	0.022
	Al	16.134	15.975	15.886	16.153	15.881	16.018	16.194	15.570	15.774	15.364
	Cr	–	–	0.016	–	–	–	–	0.028	0.049	–
	Fe₃⁺	0.000	0.000	0.000	0.000	0.078	0.000	0.000	0.041	0.000	0.779
	Fe²⁺	6.380	6.359	6.285	6.645	6.253	6.196	6.630	6.157	3.868	5.846
	Mn	–	0.168	0.064	0.009	0.224	0.100	0.272	0.041	0.027	0.093
	Mg	1.344	1.421	1.529	1.072	1.440	1.524	0.026	1.934	4.276	2.075
	Zn	0.020	0.062	0.030	–	0.122	0.152	0.012	0.023	–	0.116
	Ca	0.015	–	–	–	–	–	–	–	–	–
Total (cations)	23.913	23.999	23.929	23.901	24.029	23.991	23.526	24.183	24.041	24.296	
\(\Sigma \text{R}^{2⁺} \)	7.759	8.010	7.907	7.726	8.040	7.973	6.956	8.155	8.171	8.131	
\(\Sigma \text{R}^{3⁺} \)	16.154	15.989	16.022	16.175	15.989	16.018	16.571	16.028	15.870	16.165	
Atomic (%)	Spinel	17.3	17.7	19.3	22.5	13.9	19.1	0.4	23.9	52.5	26.2
	Hercynite	82.2	79.4	79.5	77.5	86.1	80.3	99.6	76.1	47.5	73.8

Abbreviations: na = not analyzed; nd = not detected

\(\text{Fe}^{2⁺} \) and \(\text{Fe}^{3⁺} \) were recalculated from total FeO after the method of Droop (1987).

\(\Sigma \text{R}^{2⁺} = \text{Fe}^{2⁺}+\text{Mn}+\text{Mg}+\text{Zn}+\text{Ca} \). \(\Sigma \text{R}^{3⁺} = \text{Ti}+\text{Al}+\text{Cr}+\text{Fe}^{3⁺} \).

1Khamloot et al. (2014)
2Sutherland et al. (1998B)
3Sutherland et al. (1998A)
were similar to those of ilmenite in New England sapphires originating from silicate melt (Sutherland et al., 1998a) and different from those of ilmenite in Kanchanaburi sapphires from melt involved by subsequent contact metamorphism (Khamloet et al., 2014) (table 7).

Unidentified iron-bearing minerals were also observed in these sapphire samples. They presented as tiny black cubic crystals (less than 10 μm and a few around 30 μm) (figure 12A) with morphological forms similar to those identified for spinel inclusions. They were commonly associated with spinel inclusions and sometimes formed as composite inclusions (figure 12B). These iron-rich minerals contained up to 96% FeO and had aluminum contents ranging from 0.1 to 13% Al2O3 (table 8) and their Raman spectra indicated the presence of magnetite, with characteristic bands at 663 to 652 cm⁻¹ (Faria et al., 1997). However, their atomic proportions, based on stoichiometric calculation as suggested by Droop (1987), yielded a ΣR²⁺/ΣR³⁺ ratio of almost 1:1, particularly Fe³⁺/Fe²⁺ [see table 8], which was inconsistent with the formula of magnetite [Fe₃O₄], with an Fe³⁺/Fe²⁺ ratio of 2:1. More details of these inclusions need to be worked out in the future.

![Figure 12. A: Several tiny unidentified iron-bearing minerals with cubic shape, shown in darkfield illumination. Photomicrograph by Doan Thi Anh Vu; magnified 50×. B: Backscattered electron image of unidentified cubic iron oxides and euhedral hercynite-spinel.](image)

![Figure 13. A red cubic pyrochlore inclusion displaying halo and radial cracks in darkfield illumination. Photomicrograph by Doan Thi Anh Vu; magnified 50×.](image)

Table 7. Representative EPMA analyses of ilmenite inclusions in sapphires from southern Vietnam, Thailand, and Australia.

Mineral phase analysis (wt.%)	Southern Vietnam	Thailand	Australia			
	Dak Nong	Di Linh	Kanchanaburi	New England		
	DN39	DL23	DL85	a	b	
SiO₂	0.11	0.10	nd	0.00	0.70	
TiO₂	34.94	37.08	33.77	45.73	59.04	
Al₂O₃	0.02	1.50	0.58	6.90	0.45	
FeO	nd	0.04	0.12	na	0.00	
FeO_{total}	61.43	61.58	63.48	27.64	32.05	
MnO	0.14	0.06	0.05	17.59	0.40	
MgO	nd	0.18	0.64	0.98	1.85	
ZnO	0.80	nd	nd	na	0.00	
FeO	nd	0.01	nd	0.00	0.00	
NiO	0.02	nd	0.03	na	na	
Total (oxides)	97.46	100.54	98.67	98.84	94.57	
Formula 3(O)	Si	0.003	0.003	–	0.000	0.017
	Ti	0.752	0.757	0.718	0.857	1.102
Ta	0.001	0.048	0.019	0.202	0.013	
Cr	–	0.007	0.036	0.371	0.008	
FeO	0.655	0.584	0.715	0.124	0.000	
FeO	0.814	0.814	0.786	0.452	1.330	
MnO	0.003	0.001	0.001	0.000	0.000	
MgO	0.003	0.007	0.027	0.036	0.068	
ZnO	0.017	–	–	0.000	0.000	
CaO	–	0.000	–	0.000	0.000	
NiO	0.000	–	0.000	–	–	
Total (cations)	2.245	2.216	2.271	2.042	1.874	
ΣR²⁺	0.835	0.823	0.815	0.859	0.742	
ΣR³⁺	1.410	1.393	1.455	1.183	1.132	
Atomic (%)	Ilmenite	53.1	54.5	49.4	56.7	98.8
Magnetite	6.8	6.9	8.3	0.0	0.0	
Hematite	38.7	33.7	39.8	29.9	0.0	

Abbreviations: na = not analyzed, nd = not detected

Fe²⁺ and Fe³⁺ were recalculated from total FeO after the method of Droop (1987).

ΣR²⁺ = Fe²⁺+Mn⁺+Mg⁺+Zn⁺+Ca⁺+Ni⁺; ΣR³⁺ = Ti⁺+Al⁺+Cr⁺+Fe³⁺.

aKhamloet et al. (2014)
bSutherland et al. (1998a)
Pyrochlore was recognized as an inclusion in three sapphire samples from Dak Nong and a couple of samples from Krong Nang. They formed similarly red cubic crystals, which were commonly surrounded by radial cracks (figure 13). Based on SEM-EDS analysis, Smith et al. [1995] previously reported uranopyrochlore, (Ca,U)2(Ti,Nb,Ta)2O6, in sapphires from Di Linh and Binh Thuan. EPMA analyses of pyrochlore in this study yielded a high U content [about 19–22% in ΣR^{II}], a high Nb content leading to a Nb/Ta ratio \geq 8, and a [Nb+Ta]/Ti ratio of about 2 [table 9], all within the compositional range of uranopyrochlore [Hogarth, 1977]. These compositions were similar to those found in Australian sapphires from Anakie [Guo et al., 1996] and New England [Sutherland et al., 1998a].

DISCUSSION

It has been suggested that sapphire and ruby deposited within basaltic terranes could not have crystallized directly from basaltic magma [Coenraads, 1992; Levinson and Cook, 1994; Guo et al., 1996; Sutherland et al., 1998a, 2002, 2015; Khamloet et al., 2014; Promwongnan and Surthirat, 2019]. A corroded surface is a typical feature observed in basalt-associated sapphires, clearly indicating transport by the hot magma. This has also been reported for sapphires from Di Linh and Binh Thuan [Smith et al., 1995]. A petrochemical study of sapphire-associated basalts from Dak Nong has also suggested that these xenocrystic sapphires may have formed in the boundary between the lower crust and upper mantle prior to corrosive transport in alkali basaltic magma.

TABLE 8. Representative EPMA analyses of unidentified iron-rich inclusions in sapphires from southern Vietnam.

Mineral phase analysis (wt.%)	Dak Nong	Di Linh	Krong Nang	Binh Thuan
	DN73	DN89	DL14	DL50
SiO$_2$	0.33	0.02	nd	0.02
TiO$_2$	4.43	1.57	1.53	2.33
Al$_2$O$_3$	12.51	8.78	6.66	0.21
Cr$_2$O$_3$	0.18	nd	0.04	0.02
FeO$_{total}$	77.55	87.90	89.29	96.45
MnO	nd	0.14	1.49	0.41
MgO	0.98	0.18	0.29	1.36
ZnO	0.43	0.33	0.36	nd
CaO	0.12	nd	nd	nd
NiO	0.02	nd	nd	nd

	PT17	PT18
Si	0.110	0.001
Ti	1.106	0.051
Al	4.892	3.598
Cr	0.047	–
Fe$^{3+}$	9.753	12.429
Fe$^{2+}$	11.769	13.121
Mn	–	0.041
Mg	0.485	0.092
Zn	0.105	0.085
Ca	0.043	–
Ni	0.005	–

	PT17	PT18
SiO$_2$	0.110	0.001
TiO$_2$	1.106	0.051
Al$_2$O$_3$	12.51	8.78
Cr$_2$O$_3$	0.18	nd
FeO$_{total}$	77.55	87.90
MnO	nd	0.14
MgO	0.98	0.18
ZnO	0.43	0.33
CaO	0.12	nd
NiO	0.02	nd

Total (oxides)	96.54	98.92
Formula 32(O)		
Si	0.110	0.001
Ti	1.106	0.051
Al	4.892	3.598
Cr	0.047	–
Fe$^{3+}$	9.753	12.429
Fe$^{2+}$	11.769	13.121
Mn	–	0.041
Mg	0.485	0.092
Zn	0.105	0.085
Ca	0.043	–
Ni	0.005	–

Total (cations)	28.315	29.784
ΣR^{II}	12.407	13.339
ΣR^{IV}	15.908	16.078

Abbreviation: nd = not detected
Fe$^{3+}$ and Fe$^{2+}$ were recalculated from total FeO after the method of Droop (1987).

$\Sigma R^{II} = Fe^{2+}+Mn^2++Mg^2++Zn^2++Ca^2++Ni^2+$

$\Sigma R^{IV} = Ti^4++Al^3++Cr^3++Fe^{3+}$
TABLE 9. Representative EPMA analyses of pyrochlore inclusions found in sapphires from southern Vietnam and Australia.

Mineral phase analysis (wt.%)	Southern Vietnam	Australia				
	Dak Nong	Krong Nang	Anakie	New England		
	DN35	DN77	KN18	KN36	na	0.00
Nb2O5	33.61	32.24	33.88	33.03	na	na
K2O	0.04	0.05	0.06	0.09	na	na
Ce2O3	0.12	0.35	0.34	0.28	na	na
(Nb+Ta)/Ti	2	2	2	2	2	2
Nb/Ta	9.00	8.00	8.00	8.00	8.00	8.00
(Nb+Ta)/Ti	2	2	2	2	2	2
U/ΣR2+	0.34	0.35	0.34	0.34	0.34	0.34
ΣR2+	1.674	1.719	1.651	1.767	1.628	1.694
Si	0.016	0.026	0.039	0.023	–	0.00
Ti	0.605	0.591	0.601	0.601	0.607	0.518
Fe	0.097	0.081	0.090	0.090	0.089	0.017
Mn	0.022	0.011	0.005	0.002	–	–
Ca	0.506	0.498	0.469	0.508	0.420	0.400
Na	0.578	0.643	0.601	0.698	0.582	0.780
K	0.003	0.004	0.005	0.008	–	–
Nb	1.046	1.022	1.070	1.026	1.048	1.182
Ta	0.113	0.124	0.113	0.118	0.126	0.082
Th	0.123	0.117	0.111	0.119	0.137	0.031
U	0.341	0.360	0.370	0.341	0.341	0.467
Zr	0.003	0.005	0.000	0.001	0.007	0.000
Y	–	0.003	0.005	0.003	0.025	–
Ce	0.003	0.009	0.009	0.007	0.012	–
Nd	0.000	0.000	0.000	0.000	0.000	0.014
Total (oxides)	95.36	94.40	94.67	95.51	94.90	97.64
Total (cations)	3.460	3.498	3.444	3.546	3.411	3.477

Abbreviation: na = not analyzed; nd = not detected

ΣR2+ = Fe+Mn+Ca+Na+K+Th+U+Zr+Y+Ce+Nd

(Garnier et al., 2005). Moreover, a hypothesis has recently been proposed that the original crystallization of alluvial Dak Nong sapphires would have taken place in the shallow crust within an iron-rich syenite melt in collaboration with carbonate-H2O-CO2 fluid phases, based on the geochemistry of syngenetic mineral inclusions (i.e., zircon, columbite, oligoclase, and Al-Ti-hematite) [Izokh et al., 2010].

Based on the results of this detailed study, the most common syngenetic mineral inclusions (ferro-columbite, alkali feldspar, and zircon) were similar in composition to those in Dak Nong sapphires [Izokh et al., 2010] as well as alkaline felsic inclusion groups in other alluvial basalt-related sapphires [Guo et al., 1996]. Although hercynite spinel and ilmenite (titanohematite) inclusions observed in this study were quite different from Al-Ti-hematite in Dak Nong sapphires (containing 85.6 wt. % Fe2O3, 11.9 wt. % Al2O3, and 1.57 wt. % TiO2 as reported by Izokh et al., 2010), they still favored igneous sources instead of metamorphic sources. Although columbite and pyrochlore in these sapphires were chemically close to the inclusions Guo et al. [1996] proposed as representing a carbonatite assemblage, they were also similar to those found in alluvial basalt-associated sapphires from silicate melt origin [Sutherland et al., 1998a]. Therefore, both columbite and pyrochlore may relate to silicate melts to indicate the original source of these sapphires.

Consequently, a unique mineral inclusion suite including alkali feldspar, zircon, hercynitic spinel, and ilmenite appears to have crystallized from alkaline felsic magma, which is relevant to the original source of sapphires from southern Vietnam. This magmatism should have taken place extensively prior to fractionated crystallization in the lower crust. This model agrees well with the genetic model proposed by Aspen et al. [1990], Sutherland et al. [1998a, 2009], Pin et al. [2006], Zaw et al. [2006], Upton et al. [2009], Khamloet et al. [2014], and Prommongnu and Sutthirat [2019].

Based on the geological setting in southern Vietnam, granite and granosyenite occurred in the Triassic and Cretaceous during orogenic periods due to Indosinian-Yangtze [South China] collision and Paleo-Pacific plate subduction, respectively [Carter et al., 2001; Nguyen et al., 2004; Tri and Khuc, 2011; Shellnutt et al., 2013]. Subsequently, alkali basaltic magmas in southern Vietnam had probably been derived from garnet peridotite of the asthenosphere at high pressure (>4 GPa) and high temperature (about 1470°C) [Hoang and Flower, 1998], and mixed with recycling oceanic crustal materials from Paleo-Pa-
Specific plates that subducted beneath the Southeast Asian continental margin [Anh et al., 2018] during the early Tertiary Indian-Eurasian collision. Rising penetration at close to the Moho, an unconformity zone boundary between lower continental crust and upper mantle, located at about 32–75 km depth [Teng et al., 2013], the heat and volatility separated from these alkaline mafic melts caused the extensive melting of silicate rocks [granite and granosyenite] at lower-crust level with the formation of alkaline felsic melt (figure 14). Sapphires should have crystallized directly during the slow cooling of this alkaline felsic melt. Afterwards, the alkali basaltic magma from the asthenosphere of mantle rose and then brought these sapphires onto the surface via volcanic eruption.

CONCLUSIONS

Mineral inclusions including ferrocolumbite, zircon, alkali feldspar, hercynite spinel, ilmenite [titanohematite], and pyrochlore were identified in sapphires from the main deposits in southern Vietnam. On the basis of chemical composition, they can be mostly grouped into alkaline felsic suites. An alkaline felsic melt is proposed as the crystallization environment for the original formation of these sapphires. Detailed studies on U/Pb dating and trace analysis of zircon inclusions should be carried out to support time scale and original formation of the sapphire hosts. Moreover, unidentified iron-bearing inclusions may give more significant information related to the crystallization environment.

Figure 14. This illustration shows an alkaline felsic melt as the environment for sapphire origin, based on the alkali basalt and crustal evolution models for southern Vietnam (Hoang and Flower, 1998; Tri and Khuc, 2011; Anh et al., 2018).

ABOUT THE AUTHORS

Mrs. Vu is a doctor’s degree student in geology at Chulalongkorn University in Bangkok and a lecturer at the Faculty of Geology, University of Science, Vietnam National University in Ho Chi Minh City. Dr. Salam and Dr. Fanka are lecturers at the Geology Department, Faculty of Science, Chulalongkorn University. Dr. Belousova is a research fellow at the Department of Earth and Planetary Science, Macquarie University in Sydney. Dr. Sutthirat (chakkaphan.s@chula.ac.th) is a professor of earth sciences at the Geology Department, Faculty of Science, Chulalongkorn University and an academic advisor to the Gem Testing Laboratory of the Gem and Jewelry Institute of Thailand (GIT).

ACKNOWLEDGMENTS

The authors would like to thank all staff members of the Geology Department, Faculty of Science, Chulalongkorn University, for their support in sample preparation and analyses. This research is a part of PhD thesis of the first author who has been supported by the Scholarship Program for ASIAN Countries of Chulalongkorn University.
REFERENCES

Anh H.T.H., Choi S.H., Yu Y., Hieu P.T., Hoang N.K., Ryu J. (2018) Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam. Lithos, Vol. 296, pp. 382–395, http://dx.doi.org/10.1016/j.lithos.2017.11.020

Aspen P., Upton B.G.J., Dicken A.P. (1990) Anorthoclase, sanidine and associated megacrysts in Scottish alkaline basalts: High pressure syenitic debris from upper mantle sources? European Journal of Mineralogy, Vol. 2, pp. 503–517, http://dx.doi.org/10.10117/ejm/2/4/0503

Barr S., MacDonald A. (1981) Geochemistry and geochronology of late Cenozoic basalts of Southeast Asia: Summary. Geological Society of America Bulletin, Vol. 92, No. 8, pp. 1069–1142, http://dx.doi.org/10.1130/0016-7606(1981)92%3C1069:GAGOC%3E2.0.CO;2

Belousova E., Griffin W., O'Reilly S., Fisher N. (2002) Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, Vol. 143, No. 5, pp. 602–622, http://dx.doi.org/10.1007/s00410-002-0364-7

Carter A., Roques D., Bristow C., Kinny P. (2001) Understanding Mesozoic to Cenozoic tectonics of southern Australia. Canadian Mineralogist, Vol. 26, pp. 999–1012.

Cerný P., Ercit T.S. (1985) Some recent advances in the mineralogy of Triassic magnetites. Journal of Mineralogy, Vol. 59, No. 3, pp. 211–214, http://dx.doi.org/10.1130/0091-7613(2001)029

Cassidy K., Groves D.I., Binns R.A. (1988) Manganoan ilmenite from ultramafic rocks from Western Australia. Canadian Mineralogist, Vol. 26, pp. 999–1012.

Deer W.A., Howie R.A., Zussman J. (2013) An Introduction to the Rock-Forming Minerals. Longman, Essex, UK, 696 pp.

Droop G.T.R. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, Vol. 51, No. 361, pp. 431–435, http://dx.doi.org/10.1180/MINMAG.1987.051.361.10

Faria D.L.A., Silva S.V., Oliveira M.T.M. (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy, Vol. 28, No. 11, pp. 873–878, http://dx.doi.org/10.1002/jrs.1998.7846

Fuhrman M., Frost B.R., Lindsley D.H. (1988) Crystallization conditions of the Sybille Monzosyenite, Laramie Anorthosite Complex, Wyoming. Journal of Petrology, Vol. 29, No. 3, pp. 699–729, http://dx.doi.org/10.1083/petrology.29.3.699

Garnier V., Ohnemisterter D., Giuliani G., Fallick A.E., Trinh P., Quang V., Van L., Schwarz D. (2005) Basalt petrology, zircon ages and sapphire genesis from Dak Nong, southern Vietnam. Mineralogical Magazine, Vol. 69, No. 1, pp. 21–38, http://dx.doi.org/10.1180/0026461056910233

Guo J., O'Reilly S.Y., Griffin W.L. (1996) Corundum from basaltic terrains: A link in the Australian crust to Asia; to cratonic terrains. Contributions to Mineralogy and Petrology, Vol. 122, No. 4, pp. 365–386, http://dx.doi.org/10.1007/s004100050134

Hoa T.T., Phuong N.T., Anh T.T., Van V.V., N.V., Hoang N., Thanh H.H., Anh P.L., Nien B.A., Hung T.Q., Dung P.T., Lam T.H., Hang H.V., Anh T.V., Chong V.D., Hung P.V., Quan V.M. and eds. (2005) Study of forming conditions and distribution laws of precious and rare minerals related to magmatic activity in Central Vietnam and Tay Nguyen Highlands. State-level Project, code DTDL-2003/07, Vol. I, pp. 347 [in Vietnamese].

Hoang N., Flower M. (1998) Petrogenesis of Cenozoic basalts from Vietnam: Implication for origins of a ‘diffuse igneous province’. Journal of Petrology, Vol. 39, No. 3, pp. 369–395, http://dx.doi.org/10.1093/petroj/39.3.369

Hoa T.H.A., Choi S.H., Yu Y., Pham T.H., Nguyen K.H., Ryu Y. (2018) Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam. Lithos, Vol. 296–299, pp. 382–395, http://dx.doi.org/10.1016/j.lithos.2017.11.020

Hogarth D.D. (1977) Classification and nomenclature of the pyrocloric group. American Mineralogist, Vol. 62, No. 5–6, pp. 403–410.

Huong L.T.T., Vuong B.T.S., Khoi N.N., Satikunde S., Wantanachaisaeng B., Hofmeister W., Häger T., Hauzenberger C. (2016) Geology, gemmological properties and preliminary heat treatment of gem-quality sapphire from the Central Highlands of Vietnam. Journal of Gemmology, Vol. 35, No. 4, pp. 308–318, http://dx.doi.org/10.15506/JG-2016.35.4.308

Hutchinson C.S. (1989) Geological Evolution of South-East Asia. Clarendon Press, Oxford, UK.

Izokh A.E., Smirnov S.Z., Egorova V.V., Anh T.T., Kovyazin S.V., Hoang N., Flower M. (1998) 40Ar/39Ar Dating Result of Neogene Basalts in Vietnam and its Tectonic Implication. Mantle Geochemistry and Plate Interactions in East Asia, AGU Monograph, Vol. 27, pp. 317–330, http://dx.doi.org/10.1029/GD027p0317

Lee T., Lo C.H., Chung S.L., Chen C.Y., Wang P.L., Lin W.P., Hoang N., Chi C., Yenn N. (1998) *Ar/*Ar Dating Result of Neogene Basals in Vietnam and its Tectonic Implication. Mantle Geochemistry and Plate Interactions in East Asia, AGU Monograph, Vol. 27, pp. 317–330, http://dx.doi.org/10.1029/GD027p0317

Lepvrier C., Vuong N.V., Maluski H., Thi P.T., Vu T.V. (2008) Indosinian tectonics in Vietnam. Comptes Rendus Geoscience, Vol. 340, No. 2, pp. 94–111, http://dx.doi.org/10.1016/j.crg.2007.10.005

Levinson A.A., Cook F.A. (1994) Gem corundum in alkaline basalt: Origin and occurrence. Geoscience, Vol. 30, No. 4, pp. 253–262, http://dx.doi.org/10.155741/GEMS.30.4.253

Lindsay D.H. (1991) Experimental studies of oxide minerals. In D.H. Lindsay, Ed., Oxide Minerals: Petrologic and Magnetic Significance. Reviews in Mineralogy, Vol. 25, Mineralogical Society of America, pp. 69–106.

Long PV, Vinh H, Garnier V, Giuliani G, Fallick A.E, Trinh P, Quang V, Van L, Schwarz D. (2005) Basalt petrology, zircon ages and sapphire genesis from Dak Nong, southern Vietnam. Mineralogical Magazine, Vol. 69, No. 1, pp. 21–38, http://dx.doi.org/10.1180/0026461056910233

Mackay D., Simandl G. (2013) Pyrochlore and columbite-tantalite as indicator minerals for specialty metal deposits. Geochemistry: Exploration, Environment, Analysis, Vol. 15, No. 2–3, pp. 167–178, http://dx.doi.org/10.1144/geochem2014-289

Metcalfe I. (1988) Origin and assembly of South-east Asian continental terranes. Geological Society, London, Special Publications, Vol. 37, No. 1, pp. 101–118, http://dx.doi.org/10.10111/GSLSP.1988.037.01.08

——— (1996) Pre-Cretaceous evolution of SE Asian terranes. Geological Society, London, Special Publications, Vol. 106, No. 1, pp. 97–122, http://dx.doi.org/10.1111/GSLSP.1996.106.01.09

——— (2009) Late Palaeozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia. In E. Buffetaut, G. Cuny, J. Le Locouët, and V. Suteethorn, Eds., Late Palaeozoic and Mesozoic Ecosystems in SE Asia. The Geological Society of London, Special Publication, Vol. 315, No. 1, pp. 7–23.
Sutherland F., Hoskin P., Fanning C., Coenraads R. (1998a) Models of corundum origin from alkali basaltic terrains: A reappraisal.

Rubatto D., Gebauer D. (2000) Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps. In M. Pagel et al., Eds., Cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps.

Rangin C., Huchon P., Le Pichon X., Bellon H., Lepvrier C., Roques D., Hoe N.D., Quynh P.V. (1995) Cenozoic deformation of central and south Vietnam. Tectonophysics, Vol. 251, No. 1-4, pp. 180–196, http://dx.doi.org/10.1016/0040-1951(95)00006-2

Rubatto D., Gebauer D. (2000) Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps. In M. Pagel et al., Eds., Cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps.

Rangin C., Huchon P., Le Pichon X., Bellon H., Lepvrier C., Roques D., Hoe N.D., Quynh P.V. (1995) Cenozoic deformation of central and south Vietnam. Tectonophysics, Vol. 251, No. 1-4, pp. 180–196, http://dx.doi.org/10.1016/0040-1951(95)00006-2

Sutherland F.L., Pulonen P.C., Zaw K., Mefre S., Thompson J. (2015) Sapphire within zircon-rich gem deposits, Bo Loei, Ratanakiri Province, Cambodia: Trace elements, inclusions, U-Pb dating and genesis. Australian Journal of Earth Sciences, Vol. 62, No. 6, pp. 761–773.

Teng J., Zhang Z., Zhang Y., Pi J., Deng Y., Zhang X., Wang C.-Y., Gao R., Liu C. (2013) Moho depth, seismicity and seismogenic structure in China mainland. Tectonophysics, Vol. 627, pp. 108–121, http://dx.doi.org/10.1016/j.tecto.2013.11.008

Tri T.V., Khue V. (2011) Geology and Earth Resources of Vietnam. General Department of Geology and Minerals of Vietnam, Ha Noi, Publishing House for Science and Technology, 634 pp.

Upton B.J.G., Finch A.A., Slaby E. (2009) Megacrysts and saline xenoliths in Scottish alkali basalts: Derivatives of deep crustal intrusions and small melt fractions from the upper mantle. Mineralogical Magazine, Vol. 73, No. 6, pp. 943–956, http://dx.doi.org/10.1180/minmag.2009.073.6.943

Vu D.T.A. (2010) Petrographical characteristics and genesis of corundum in Vietnam. University of Science, VNU-Ho Chi Minh City, 120 pp.

——— (2018) Gemological characteristics and the quality of sapphire from Krong H’Nang - Dak Lak. Science and Technology Development Journal – Natural Sciences, Vol. 1, No. T5, pp. 263–269, http://dx.doi.org/10.32508/stdns.v1tT5.559

Williams I.S., Claesson S. (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. Contributions to Mineralogy and Petrology, Vol. 97, No. 2, pp. 205–217, http://dx.doi.org/10.1007/bf00371240

Zaw K., Sutherland F.L., Dellapasqua F., Ryan C.G., Yui T., Mernagh T.P., Duncan D. (2006) Contrasts in gem corundum characteristics, eastern Australian basaltic fields: Trace elements, fluid/melt inclusions and oxygen isotopes. Mineralogical Magazine Vol. 70, No. 6, pp. 669–687, http://dx.doi.org/10.1180/0026461067060356

——— (2011) Palaeozoic-Mesozoic history of SE Asia. Geological Society of London Special Publications, Vol. 355, No. 1, pp. 7–35, http://dx.doi.org/10.1144/SPS355.2

Nguyen T., Satir M., Siebel W., Chen F. (2004) Granitoids in the Dalat zone, southern Vietnam: Age constraints on magmatism and regional geological implications. International Journal of Earth Sciences, Vol. 93, No. 3, pp. 329–340, http://dx.doi.org/10.1007/s00531-004-0387-6

Palke A.C., Saeseaw S., Renfro N.D., Sun Z., McClure S. (2019) Geographic origin determination of blue sapphire. G&G, Vol. 55, No. 4, pp. 536–579, http://dx.doi.org/10.1016/j/gems.55.4.536

Pin C., Monchoux P., Paquette J.L., Azambre B., Wang P.C., Martin R.F. (2006) Igneous alkali dikes in orogenic Iherzolites, Western Pyrenees, France: A possible source for corundum and alkali feldspar xenocrysts in basaltic terranes. II. Geochemical and petrogenetic considerations. Canadian Mineralogist, Vol. 44, No. 4, pp. 817–842, http://dx.doi.org/10.2113/gscamin.44.4.817

Prommongn S., Suthirat C. (2019) Mineral inclusions in ruby and sapphire from the Bo Welu gem deposit in Chanthaburi, Thailand. G&G, Vol. 55, No. 3, pp. 354–369, http://dx.doi.org/10.1016/J/GEMS.55.3.354

Rangin C., Hucho P., Le Pichon X., Bellon H., Lepvrier C., Roques D., Hoe N.D., Quynh P.V. (1995) Cenozoic deformation of central and south Vietnam. Tectonophysics, Vol. 251, No. 1-4, pp. 180–196, http://dx.doi.org/10.1016/0040-1951(95)00006-2

Rubatto D., Gebauer D. (2000) Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps. In M. Pagel et al., Eds., Cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps.