Isolation and characterization of adult gut microflora of Xenocatantops humilis (Orthoptera: Catantopidae)

Dr. Pinakin Wagh, Tejas Dhoot, Kaushik Karandikar, Shreevatsa Deogaonkar, Rutuja Sakore and Aditya Ruikar

DOI: https://doi.org/10.22271/j.ento.2021.v9.i10.8713

Abstract
Grasshoppers are an integral part of food chain, food web and ecosystem balance. They are consumed in many parts of the world by humans as a protein source. Some species are a serious threat to agriculture and vegetation. Gut microflora plays an essential role in the metabolic activities of insects including reproduction and behavior. Identification and Characterization of gut microbial taxa can lead to better understanding of insect-microbe interactions and development of advanced, more efficient biological methods of pest control. Microbiological and genomic analyses of gut isolates of adult Xenocatantops showed the occurrence of Bacillus paramycoïdes of the Bacillus cereus group along with other diverse microbial genera.

Keywords: Bacillus, grasshoppers, gut microbiome, 16SrRNA, phylogeny, orthoptera, insects

Introduction
Orthopterans which include both short-horned and long-horned grasshoppers, are the key herbivores in grassland ecosystems across the world and are considered as one of the most important insect groups both ecologically and economically. Grasshoppers form an essential part of grassland ecosystems and serve as a food source for birds and also affect the soil enzymatic activity significantly [1]. Xenocatantops humilis is a grasshopper species belonging to family Acrididae and subfamily Catantopidae [2]. It is mainly found in temperate Asian regions of India, China, Malaysia and Papua New Guinea and it is generally found in forests [3]. Heavy infestation of X. humilis has been found on hill slopes adjoining cultivated fields of paddy, maize, oat cow pea. Adults and nymphs are found in groups under the leaves and also near the edges of the rice fields near aquatic sources [4, 5]. It is mainly consumed as a protein source in the South-East Asian regions like Singapore and are generally bred for the same [6]. According to several surveys, Xenocatantops humilis was found to be a predominant pest on tea plants and paddy fields [7-8]. Out of total 56 species of Xenocatantops, X. humilis is a pest on pepper leaves thereby reducing its production [9]. Insect microbiomes play an important role in the health and fitness of insect hosts by contributing to nutrient absorption, immune health, and overall ecological fitness [1]. They are also involved in multitrophic interactions between the host and other biological factors, including enhancement of the host's immune response. During evolution mutualism between gut microbes and insect host has been established, and the gut microbes developed strategies for adapting to the environment of the insect gut [10]. Insects, which generally harbor a lower microbial diversity than vertebrates and have recently emerged as potential model systems to study these interactions [11]. Recently microbiomes of economically important insects such as Honeybee, Fruit fly and Beetles are widely studied [12-16] but grasshoppers being the pest insects for many crops are still not in forefront with respect to the microbiome studies [1, 17-19]. Study of microflora may play a role in the development of new methods of biological pest control and for studying unknown microbes influencing insect physiology and ecology. Insect microbiome studies may contribute in increasing the protein value of edible insects such as Xenocatantops humilis. Gene transcriptomics data of Xenocatantops brachycerus will provide a useful molecular resource for gene prediction, molecular marker development, studies on...
cellular signaling pathways and will be a reference for the efficient use of other grasshoppers [21]. Similar genomics approach can be used for X. humilis which will lead to better understanding of biology of grasshoppers and their uses as proteinaceous food source and development of next generation pesticides. In this paper we have isolated and characterized the microflora of Xenocatantops humilis which is one of the major pests involved in crop destruction as well as a source of food.

Materials and Methods

Xenocatantops. humilis adults were collected from Vetal Tekdi, Kothrud, Pune (Fig.1). Genus and species were confirmed by using relevant references and expert guidance (S.K. Tandon, 1972). X. humilis were subjected to euthanasia (cold treatment). After euthanasia induction, the organisms were surface sterilized using 70% EtOH. Decapitation was performed, body appendages were removed and the entire abdomen was transferred ice-cold 0.1 M 1X PBS (pH 7.4). Abdomen was homogenized in Teflon-coated Potter Elvehjem homogenizer. Homogenate was serially diluted from 10-1 to 10-4 for obtaining pure colonies. 100 µL of sample was plated on Luria Agar (LA) plates by Spread plate method after performing serial dilutions. Colony characterization and CFU/ml estimation was done post inoculation (1 -2 days). Sub-culturing was done on differential and selective media by streak plate method to obtain pure isolates. Gram staining [22] and biochemical characterization was performed for identification and characterization of pure isolates. A single isolate was selected for identification, biochemical characterization, genomic, and phylogenetic analyses using the gold standard 16S rRNA gene sequencing method. 1200 bp sequence length was used for finding out extent of homology with the closest neighbor in the database (EzBioCloud 16S db). Phylogenetic Tree Construction was done using MEGA X 10.2.5 version and ClustalX. Neighbour Joining method (N-J) was used for the same.

Results

Fig 1: Xenocatantops humilis collection site (Occurrence and habitat)
The isolate showed no growth on EMB agar (Fig. 6).

Bioinformatics

Using standard genomic techniques of RNA isolation, purification and PCR, the following 16S rRNA sequence was used for *in silico* analysis involving NCBI BLAST (Fig. 9, 10).

Table 1: Colony Characterisation

Sr. no.	Colony Characteristics	Isolate 1
1	Grams Nature	+ve (Fig. 8)
2	Shape	Rods
3	Size	Pin point to pin head size 1 mm
4	Margin	Entire
5	Colour of Colony	White
6	Opacity	Opaque
7	Elevation	Flat
8	Surface	Smooth
9	Consistency	Mucoid
10	Catalase Test	+ve (Fig. 7)
11	Motility Test	-ve

The isolate showed no growth on EMB agar (Fig. 6).
>16S rRNA sequence of *Xenocatantops* isolate B_FEB_21_131

GATTAAGACCTTGCTTATGAGTATACGGCAGGACGAGTTAGATACACGGTACGGTACGAGACACGGGCAAGCTCAGCTCAAGACGTCGAGCTAGCCGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGGATTCTCCGCACATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAAGAACAAGTGCTAGTTGAAT

AAGCTGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAAATTGGGCGTAAAGCGCGCGCAGGTGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACACTGAGGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCATGAGTGCTAAGTGTTAGAGGGTTTCCGCCCTTTAGTGCTGAAGTTAACGCATTAACCTCCGGCTGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAAATGCAAGCAACCGCAGAAGAACCCTTACCAGGTCTTGGATCTCTCATCCTCTGACAAACCCCTAGAAGATAGGCGTCTCTCCTTCTCGGGAAGAGATGCAACGGTGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCTCCGATCTCTAGTGCCCATCTATTTAGTGGTGGCACTTAAGGTGACTCCGGGTGACAAACCAGGAAAGAGGGTGAGTCCGCAACCCCTTGAACCTGCACTACCCTTGATTATGCGCTATGCTGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACACTGAGGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCATGAGTGCTAAGTGTTAGAGGGTTTCCGCCCTTTAGTGCTGAAGTTAACGCATTAACCTCCGGCTGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAAATGCAAGCAACCGCAGAAGAACCCTTACCAGGTCTTGGATCTCTCATCCTCTGACAAACCCCTAGAAGATAGGCGTCTCTCCTTCTCGGGAAGAGATGCAACGGTGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCA

NCBI-BLAST Multiple Sequence Alignment (MSA) for 16SrRNA sequence of *Xenocatantops* sp. abdominal Isolate

![NCBI BLAST Significant hits](image-url)
Fig 10: 16SrRNA sequencing followed by *in silico* analysis using Ez Bio Cloud DB showed the following results

PRN	Strain No.	Closest Neighbour*	Taxonomic Designation	Accession No.	% Similarity
B_FEB_21_131	1	*Bacillus paraamycoides* NH24A2(T)	MA0101000012	99.85	

Fig 11: Closest Neighbour*

Fig 12: Clustal X Multiple Sequence Alignment (MSA) of BLAST hits for 16SrRNA sequence of *Xenocatantops humilis* abdominal isolate
Fig 13: MSA of 16S rRNA sequence of the isolate yielded significant hits for Genus Bacillus with highest similarity to Bacillus paramycoides

Based on colony characterization and 16S rRNA sequencing the isolate was found to belong to Bacillus cereus group further it with 99.85 % confirmed similarity to Bacillus paramycoides (Fig.13,14).

Discussion

Most herbivorous insect intestines contain various cellulose and other biopolymer degrading symbiotic microorganisms (Mannesmann 1972). Insect diet profoundly affects gut microflora and gut microbes can adapt remarkably to changes in insect diet (Kaufman and Klug 1991; Santo Domingo et al. 1998). Occurrence of Bacillus cereus group members in the gut of insects like grasshoppers may be co-related to their herbivorous diet, since Bacillus cereus group is commonly found in soil, on vegetables and even processed foods [23]. Bacillus paramycoides hydrolyses starch, skimmed milk and casein [20]. This indicates the possible role of B. paramycoides in metabolism of starch and cellulose by secretion of extracellular amylases in X. humilis gut [20].

Conclusion

Genomic analysis of entire gut microbiome of Xenocatantops
Oryctes will definitely lead to development of novel bio-control strategies (bio-pesticides) and pest control.

References

1. Muratore M, Prather C, Sun Y. The gut bacterial communities across six grasshopper species from a coastal tallgrass prairie. PLoS ONE 2020;15(1):e0228406. https://doi.org/10.1371/journal.pone.0228406.
2. Xenocatantops humilis, wikipedia.org, 19 Jan, 2021. Available: https://en.wikipedia.org/wiki/Xenocatantops_humilis#cite_note-COL-2
3. Catalogue of Life: 2011 Annual Checklist, Xenocatantops humilis, 28 April, 2010. Available: http://www.catalogueoflife.org/annual-checklist/2011/details/species/id/7667330
4. Mandal SK, Dey A, Hazra AK. Pictorial Handbook on Indian Short-horned Grasshopper Pests (Acridoidea : Orthoptera) : 1-57. (Published by the Director, Zool. Surv. India, Kolkata) 2007.
5. Sugiaarto A. Impact of Standing Water on the Existence of Several Species of Grasshoppers (Orthoptera) in the Rice Field Ecosystem 2018, https://doi.org/10.31220/osf.io/abkgz.
6. Choo YR, Yan AT, Rachel HJ et al, Can waste vegetables and weeds be used to farm crickets and grasshoppers in Singapore? A laboratory experiment on the use of vegetables and weeds for farming crickets and grasshoppers. Utar Agriculture Science Journal, Vol. 3. November 2017, 18-22. Available: https://www.researchgate.net/profile/Tan_Kai/publication/328214790_Can_waste_vegetables_and_weeds_be_used_to_farm_crickets_and_grasshoppers_in_Singapore/links/5e9bb2564585150839e7f5fd/Can-waste-vegetables-and-weeds-be-used-to-farm-crickets-and-grasshoppers-in-Singapore.pdf
7. Sharma RK, Bisht RS. Arthropod pest complex of tea, Camelina sinensis (L.) O. Kuntze in Uttarakhand. International Journal of Tea Science (IJTS) 2011;8(1):53-57 ref.15
8. Chitra N, Soundararajan RP, Gunathilagaraj K. Orthoptera in Rice Fields of Coimbatore, Zoos Print Journal 15(8):309-311.
9. Devasahayam S. Insect Pests of Black Pepper. P. N. Ravindran, Black Pepper Piper nigrum, Hardwood Academic Publisher (CRC press), August 7, 2000, 309. ISBN: 9789057024535
10. Xiang Hui, Huang Yong-Ping. Symbiosis between gut microbiota and insects, Chinese Bulletin of Entomology, 2008. Available: http://en.cnki.com.cn/Article_en/CJFDTotal-KCZS200805002.htm
11. Mathieu Pernice, Stephen J Simpson, Fleur Ponton. Towards an integrated understanding of gut microbiota using insects as model systems, Journal of Insect Physiology 2014;69:12-18. Available: https://doi.org/10.1016/j.jinsphys.2014.05.01
12. Majumder R, Sutcliffe B, Taylor PW, Chapman TA. Microbiome of the Queensland Fruit Fly through Metamorphosis. Microorganisms 2020;8:795. https://doi.org/10.3390/microorganisms8060795
13. Cassondra L Vernier, Iris M Chin, Bohemaa Adu-Oppong et al, The gut microbiome defines social group membership in honey bee colonies, Science Advances 14 Oct 2020;6(42):eabd3431.
14. Raza MF, Yao Z, Bai S, Cai Z, Zhang H. Tephritidae fruit fly gut microbiome diversity, function and potential for applications. Bulletin of Entomological Research 2020; 1-15. https://doi.org/10.1017/S0007485319000853
15. Hamdi C, Baillo A, Essana J, Crotti E, Gonella E, Raddadi N, Ricci I et al. Gut microbiome dysbiosis and honeybee health. Journal of Applied Entomology 2011; 135:524-533. https://doi.org/10.1111/j.1439-0418.2010.01609.x
16. Shelomi M, Lin SS, Liu LY. Transcriptome and microbiome of coconut rhinoceros beetle (Oryctes rhinoceros) larvae. BMC Genomics 2019;20:957 https://doi.org/10.1186/s12864-019-6352-3
17. Kehinde O. Ademolu and Adewunmi B. Idowu, Occurrence and Distribution of Microflora in the Gut Regions of the Variegated Grasshopper Zonocerus variegatus (Orthoptera: Pyrgomorphidae) during Development. Zoological Studies 2011;50(4):409-415.
18. Lorna J Mead, Khachaturians GG, Jones GA. Microbial Ecology of the Gut in Laboratory Stocks of the Migratory Grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae), Applied and Environmental Microbiology, May 1988, 1174-1181.
19. Wang J-M, Bai J, Zheng F-Y, Ling Y, Li X, Wang J et al. Diversity of the gut microbiome in three grasshopper species using 16S rRNA and determination of cellulose digestibility. Peer J 2020;8:e10194 DOI 10.7717/peerj.10194
20. Ullah, Irfan et al. “Identification and characterization of thermophilic amylase producing bacterial isolates from the brick kiln soil.” Saudi journal of biological sciences 2021;28(1):970-979. doi:10.1016/j.sjbs.2020.11.017
21. Zhao L, Zhang X, Qiu Z, Huang Y. De Novo Assembly and Characterization of the Xenocatantops brachycerus Transcriptome. Int J Mol Sci 2018;19(2):520. doi: 10.3390/ijms19020520. PMID: 29419810; PMCID: PMC5855742.
22. Coico R. Gram staining. Curr Protoc Microbiol. 2005 Oct; Appendix 3: Appendix 3C. doi: 10.1002/0471729259.mca03cs00. PMID: 18770544.
23. Edward Bottone, Bacillus cereus, a volatile Human Pathogen, Clinical Microbiology Rev 2010;23(2):382-398.