This paper covers a broadly used methodology used in travel behavior research aiming at determining individual and alternative-specific variables that influence the choice of the transportation mode for commuting trips. Data used in the analysis were obtained in July 2015 by means of a computer-assisted telephonic interview survey conducted in Cluj Metropolitan Area, Romania. The survey collected a wide range of day-by-day travel patterns, socioeconomic data, and attitudes and perceptions toward urban transportation services. Given the lack of studies from emerging, post-socialist countries, the survey assigned a section dedicated to an alternative ticketing policy for public transport services in order to evaluate the willingness of commuters to switch to a more sustainable transportation through non-coercive interventions. A revealed preference — stated preference modelling methodology was adopted in order to reveal the role of socioeconomic characteristics, along with features of transport supply and built environment in explaining commuting patterns and forecast sustainable modal splits. Both the survey and the methodology are scalable and flexible to be used, adapted, and applied in a wide range of transport policies regarding modal shifting strategies.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The dataset described in this paper contains socio-economic and demographic characteristics, travel behavior, associated spatial features, and attitudinal indicators. Data was collected using a stratified sample representing the daily, morning rush-hour commuters from the Metropolitan Area of Cluj, Romania (Fig. 1). Several studies were previously conducted [1,2] with regards to data collection from individuals for the assessment of sustainable urban mobility in post-socialist urban areas [3], but data was scarce, and studies were exploratory. Toşa et al. [4] conducted a comprehensive study by revealing the generational differences and their demographic, socioeconomic, and attitudinal characteristics in quantitatively explaining commuting patterns within Cluj Metropolitan Area, Romania. To those were added elements of transport supply and built environment that contribute to the refinement of the choice process. The associated data and the methodology will be described in the following. The cleaned and processed dataset is part from a total of 1079 respondents who participated in the data collection process, and it comprises of a quota of 544 individuals (50.42%).

The socio-economic and demographic section in the questionnaire collected information related to the respondent, such as on gender, family size, age, education level and occupation, marital status, driver’s license, household type, and income and. Table 1 integrates these characteristics by their associated levels and shows the percentage distribution. For each variable, the sum of the elements sample sizes equals the final quota of the respondents, i.e. 544 individuals.

The commuting behavior section of the questionnaire addressed questions to track the transport modes used for commuting and their corresponding weekly frequency. The transport modes included...
both motorized modes, such as public transport, car, motorcycle or taxi, and non-motorized modes, such as bicycle, and walking. These travel modes were selected for the questionnaire in order to emphasize their impact on traffic congestion and level of service. Therefore, modes such as motorcycle, car, and taxi represent personal motorized modes, and walking and bicycle represent non-motorized modes. The frequency data was processed in order to obtain the representative transport mode used for commuting, i.e. the mode with the highest weekly frequency. Therefore, the merged modes considered were named (1) non-motorized, (2) Private motorized, and (3) Public transport. The modal split data is revealed in Table 2. As in Table 1, for each variable, the sum of the elements sample sizes equals the final quota of the respondents.

Information on the place of residence and work was requested, but this data was considered sensitive, and therefore is not shared within the dataset. Nevertheless, the associated spatial features that include distances, consider the location of respondent origin and destination within the study area, correlated with the relative position of downtown area, and the bus station locations. Accordingly, population density was extracted from the geographic information system (GIS) model, as well as the accessibility of public transport stations to respondent’s home and workplace and were shared in the dataset. This information was synthesized in Table 3. For each variable, the sum of the elements sample sizes equals the final quota of the respondents.

Attitudinal questions were selected from the questionnaire to capture opinions related to the adequacy of the public transport network, car dependency, and issues related to traffic congestion within metropolitan area (see Table 4).
Table 1
Socio-economic and demographic characteristics.

Variable	Element	Sample	Percentage
Gender	Male	283	52.02
	Female	261	47.98
Family size	Alone	37	6.8
	2	151	27.76
	3	180	33.09
	4 or more	176	32.35
Age cohorts	18–25	33	6.07
	26–35	138	25.37
	36–45	161	29.6
	46–55	142	26.1
	>55	70	12.87
Education	Bachelor and below	197	36.21
	Higher education	347	63.79
Occupation	Public worker	169	31.07
	Private worker	375	68.93
Marital status	Married	144	26.47
	Not married	400	73.53
Driver’s license	Yes	426	78.31
	No	118	21.69
Household type	Individual home	123	22.61
	Apartment	421	77.39
Average income household (in RON)	<1000	31	5.7
	1001–2000	168	30.88
	2001–3000	133	24.45
	3001–4000	77	14.15
	4001–5000	53	9.74
	5001–6000	26	4.78
	>6000	56	10.29
Monthly transportation expenditure (in RON)	<50	22	4.04
	51–100	118	21.69
	101–200	155	28.49
	201–300	93	17.1
	301–400	57	10.48
	>400	99	18.2

Table 2
Modal split characteristics and mobility tools ownership.

Variable	Element	Sample	Percentage
Current commuting travel mode before experiment (RP)	Non-motorized	86	15.81
	Private motorized	222	40.81
	Public transport	236	43.38
Intended commuting travel mode after experiment (SP)	Non-motorized	69	12.68
	Private motorized	169	31.07
	Public transport	306	56.25
Cars per household	0	74	13.6
	1	296	54.41
	2	144	26.47
	3 or more	30	5.51
Time travel to work (minutes)	<10	7	1.29
	10–20	40	7.35
	21–30	69	12.68
	>30	428	78.68
Travel distance to work (kilometers)	<5	416	76.47
	5–10	108	19.85
	>10	20	3.68
2. Experimental design, materials, and methods

We employed a combined estimation method between Revealed Preferences (RP) and Stated Preferences (SP). While RP-data models describe real-life choices and represent actual travel behavior, SP-data-based choice experiments set hypothetical alternatives and record individuals’ preferences [5]. The adopted methodology uses disaggregated data on respondents’ travel behavior and related individual data and provides rich behavioral predictions [6–9]. This modelling methodology has been proven to be highly effective in determining the role of selected variables in the selection process and identifying the effects of new policy interventions within transportation sector [10,11].

When modeling RP and SP as random utility models with discrete choices, the utility associated with each transport mode can be expressed as an additive function between regressor vectors describing characteristics X_i of an individual i, and characteristics Y_{ij} and Y_{ik}, of the transport alternatives j or k, and characteristics of the specific effect of the SP experiment (Z_{ik}), scaled with respect to corresponding parameter vectors α_i, β_{ij}, β_{ik} and γ_{ik}, respectively. The RP and SP models could be jointly estimated and subsequently maximizing the log-likelihood of the following function:

Variable	Element	Sample	Percentage
Origin to public transport station	<400 m	511	93.93
	400 … 800 m	31	5.7
	>800 m	2	0.37
Destination to public transport station	<400 m	522	95.96
	400 … 800 m	20	3.68
	>800 m	2	0.37
Origin to downtown area (Euclidian distance, kilometers)	<1	25	4.6
	1–2	109	20.04
	2–3	213	39.15
	3–4	145	26.65
	4–5	15	2.76
	>5	37	6.8
Destination to downtown area (Euclidian distance, kilometers)	<1	41	7.54
	1–2	104	19.12
	2–3	114	20.96
	3–4	104	19.12
	4–5	55	10.11
	>5	126	23.16
Origin - Destination route through downtown area	Yes	167	30.7
	No	377	69.3
Population density at origin (inhabitants per sqkm)	<4000	115	21.14
	4000–6000	58	10.66
	6000–8000	36	6.62
	8000–10000	96	17.65
	10000–12000	48	8.82
	>12000	191	35.11
Population density at origin (inhabitants per sqkm)	<2000	102	18.75
	2000–4000	119	21.88
	4000–6000	80	14.71
	6000–8000	82	15.07
	8000–10000	61	11.21
	>10000	100	18.38

Table 3
Spatial characteristics derived from the GIS model.

Variable	Element	Sample	Percentage
Origin to public transport station	<400 m	511	93.93
	400 … 800 m	31	5.7
	>800 m	2	0.37
Destination to public transport station	<400 m	522	95.96
	400 … 800 m	20	3.68
	>800 m	2	0.37
Origin to downtown area (Euclidian distance, kilometers)	<1	25	4.6
	1–2	109	20.04
	2–3	213	39.15
	3–4	145	26.65
	4–5	15	2.76
	>5	37	6.8
Destination to downtown area (Euclidian distance, kilometers)	<1	41	7.54
	1–2	104	19.12
	2–3	114	20.96
	3–4	104	19.12
	4–5	55	10.11
	>5	126	23.16
Origin - Destination route through downtown area	Yes	167	30.7
	No	377	69.3
Population density at origin (inhabitants per sqkm)	<4000	115	21.14
	4000–6000	58	10.66
	6000–8000	36	6.62
	8000–10000	96	17.65
	10000–12000	48	8.82
	>12000	191	35.11
Population density at origin (inhabitants per sqkm)	<2000	102	18.75
	2000–4000	119	21.88
	4000–6000	80	14.71
	6000–8000	82	15.07
	8000–10000	61	11.21
	>10000	100	18.38

2. Experimental design, materials, and methods

We employed a combined estimation method between Revealed Preferences (RP) and Stated Preferences (SP). While RP-data models describe real-life choices and represent actual travel behavior, SP-data-based choice experiments set hypothetical alternatives and record individuals’ preferences [5]. The adopted methodology uses disaggregated data on respondents’ travel behavior and related individual data and provides rich behavioral predictions [6–9]. This modelling methodology has been proven to be highly effective in determining the role of selected variables in the selection process and identifying the effects of new policy interventions within transportation sector [10,11].

When modeling RP and SP as random utility models with discrete choices, the utility associated with each transport mode can be expressed as an additive function between regressor vectors describing characteristics X_i of an individual i, and characteristics Y_{ij} and Y_{ik}, of the transport alternatives j or k, and characteristics of the specific effect of the SP experiment (Z_{ik}), scaled with respect to corresponding parameter vectors α_i, β_{ij}, β_{ik} and γ_{ik}, respectively. The RP and SP models could be jointly estimated and subsequently maximizing the log-likelihood of the following function:

Table 4
Attitudinal statements regarding traffic and transport system.

Statement	Fully disagree (%)	Disagree (%)	Agree (%)	Fully Agree (%)	No Response (%)
Inappropriate public transport network	18.01	23.53	34.74	19.12	4.6
Car necessary in daily life	21.14	17.65	18.2	42.1	0.91
Traffic is congested in the city	2.39	2.76	14.34	79.78	0.73
where δ_{ij} and δ_{ki} represent modal choice indicators ($=1$ if alternatives j and k are selected by an individual i in the RP and SP models, respectively; and 0 otherwise), and scale parameter m. PRP_{ij} and PSP_{ik} represent the marginal probabilities of the selection of the j or k transport mode, in RP, and SP model respectively. The unknown parameters within the three mode-choice models (RP, SP, and the combined RP–SP) were estimated by using the GAUSS econometric software (version 3.2.32).

The commuting data employed in this paper were gathered from a cross-sectional survey conducted in the CNMA in July 2015 by means of a computer assisted telephone interview (CATI). The SP section was based on the experimental design intended to test the respondent’s likelihood to change the current commuting habits over the introduction of the alternative ticketing policy. The alternatives are characterized by a set of relevant attributes and must offer clear and simple choices to the respondent [12,13]. The attributes of the proposed policy included a monthly pass consisting of (1) type, with 2 assigned levels, (2) price, with 3 assigned levels, and (3) incentive bonus, with 3 assigned levels. The public transport types of monthly tickets considered were the two-line and the all-line passes. For each type of monthly pass, 3 levels of pricing were considered, a low, medium, and high costs. The bonus values were considered as percentage of the monthly cost, and set to 2, 5 and 15% points. A full factorial design was employed to generate 18 cases of preference, as a combination of the attributes, as seen in Table 5. Out of the total 18 scenarios for the transport policy alternative, each respondent was presented a single case to accept or reject during the interview.

The combined estimation of RP and SP models reveals the values and significance levels of certain coefficients and helps identify the role of certain variables in the choice process [14]. This study assesses differences between generations and their role in tailoring travel demand in emerging urban areas. In this way, several models can be customized by specific socio-economic and demographic features, in order to reveal idiosyncrasies between groups of interest.

Acknowledgments

The author acknowledges financial support for data collection from the KAKENHI Grant-in-Aid for Scientific Research (number 2604707 and 15F14707) received from the Japan Society for the Promotion of Science (JSPS).
This research was partially supported by the project 21 PFE in the frame of the programme PDI-PFE-CDI 2018.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104703.

References

[1] C. Toşa, A. Mitrea, Toys for carpet knights: Urban travel behaviour and attitudes in the city of Cluj, Urbanism, Arch. Constr. (2018) 39–54.
[2] M.R. Boitor, D. Antov, M. Iliescu, I. Antso, R. Mæe, Sustainable urban transport planning, Romanian J. Transp. Infrastr. 2 (1) (2013) 2218–2286, https://doi.org/10.1515/rjti-2015-0010.
[3] N. Petrovici, Workers and the city: rethinking the geographies of power in post-socialist urbanisation, Urban Stud. 49 (11) (2012) 2377–2397, https://doi.org/10.1177/0042098011428175.
[4] C. Toşa, H. Sato, T. Morikawa, T. Miwa, Commuting behavior in emerging urban areas: findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania, J. Transp. Geogr. 68 (2018) 78–93, https://doi.org/10.1016/j.jtrangeo.2018.02.011.
[5] J.J. Louviere, A.D. Hensher, D.J. Swait, Stated Choice Methods Analysis and Applications, 2000. Cambridge.
[6] S. Sugiarito, T. Miwa, T. Morikawa, Inclusion of latent constructs in utilitarian resource allocation model for analyzing revenue spending options in congestion charging policy, Transp. Res. Part A 103 (2017) 36–53, https://doi.org/10.1016/j.traa.2017.05.019.
[7] S. Sugiarito, T. Miwa, T. Morikawa, Recursive bivariate response models of the ex-ante intentions to link perceived acceptability among charge and refund options for alternative road pricing schemes, Transp. Lett. 10 (1) (2018) 52–63, https://doi.org/10.1080/19427667.2016.1228747.
[8] S.M. Saleh, S. Sugiarito, R. Anggraini, Analysis on public’s response toward bus reform policy in Indonesia considering latent variables, Open Transp. J. 13 (1) (2019), https://doi.org/10.2174/1874447801913010017.
[9] D. Dissanayake, T. Morikawa, Investigating household vehicle ownership, mode choice and trip sharing decisions using a combined revealed preference/stated preference Nested Logit model: case study in Bangkok Metropolitan Region, J. Transp. Geogr. 18 (3) (2010) 402–410, https://doi.org/10.1016/j.jtrangeo.2009.07.003.
[10] F.S. Koppelman, C. Bhat, A Self-Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models, US Department of Transportation, Federal Transit Administration, 2006, p. 31.
[11] M. Ben-Akiva, T. Morikawa, Estimation of switching models from revealed preferences and stated intentions, Transp. Res. A Gen. 24 (6) (1990) 485–495.
[12] B. Walker, A. Marsh, M. Wardman, P. Niner, Modelling tenants’ choices in the public rented sector: a stated preference approach, Urban Stud. 39 (4) (2002) 665–688.
[13] N. Sanko, T. Yamamoto, Estimation efficiency of RP/SP models considering SP design and error structures, J. Choice Modell. 6 (2013) 60–73.
[14] A.O. Idris, K.M.N. Habib, A. Shalaby, An investigation on the performances of mode shift models in transit ridership forecasting, Transp. Res. A Policy Pract. 78 (2015) 551–565, https://doi.org/10.1016/j.tranpr.2015.06.012.