Is there a place for serum laminin determination in patients with liver disease and cancer?

Heitor Rosa, Edison Roberto Parise

Abstract

Laminin is a glycoprotein which has an important role in the mechanism of fibrogenesis and is, thus, related to hepatic fibrosis in addition to presenting increased levels in several types of neoplasias. However, its determination is not routinely considered in the study of hepatic fibrosis. In this review, the authors critically comment on the role of this glycoprotein compared to other markers of fibrosis through non-invasive procedures (Fibroscan). They also consider its clinical investigational potential and believe that the continuation of these investigations might contribute to a better understanding of the fibrogenic mechanism, which could in turn either lead to the identification of patients at risk of developing fibrosis non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) or at least be used as an indicator for hepatic biopsy in such patients. Finally, the authors believe that serum laminin determination might contribute to the diagnosis of epithelial tumor metastasis and peritoneal carcinomatosis.

© 2008 The WJG Press. All rights reserved.

Key words: Laminin; Hepatic fibrosis; Cancer; Cirrhosis; Fibrosis markers

Peer reviewers: Dr. Maribel Rodriguez-Torres, Fundacion De Investigacion De Diego, ave. De diego 359 suite 302, Santurce 00909, Puerto Rico; Dr. Devanshi Seth, Drug Health Services & Centenary Institute, Royal Prince Alfred Hospital, Missenden Road, Camperdown NSW 2050, Australia

Author contributions: Rosa H and Parise ER contributed equally to this work.

Correspondence to: Heitor Rosa, Professor, MD, PhD, Chief, Unit of Gastroenterology and Hepatology, Federal University of Goiás School of Medicine, Goiânia, Goiás 74093-080, Brazil. hrosa@cultura.com.br

Telephone: +55-62-32816128 Fax: +55-62-32096248

Received: January 24, 2008 **Revised:** April 18, 2008 **Accepted:** April 25, 2008 **Published online:** June 21, 2008

INTRODUCTION

Laminin was initially identified by TIMPL and MARTIN in 1979\(^1\), from a murine fibrosarcoma, the Engelbreth-Holm-Swan (EHS) tumor. Its molecule is a large complex (approximately 850 kilodaltons) made up of three polypeptidic chains called α1 (with approximately 440 kDa), β1 e γ1 (each one with approximately 200 kDa). These chains are interwoven by disulphide bridges, forming a characteristic cross-shaped asymmetrical structure\(^2-3\).

Laminin is one of the main glycoproteins of the basement membrane and participates in a series of such biological phenomena as adhesion, migration, cellular differentiation and growth, inflammatory response and the maintenance of the cytoskeleton upon its binding to several components of the matrix, such as collagen type IV, heparan-sulphate and entacin\(^4,5\).

Laminin receptors are also found on the surface of a wide range of cells, such as platelets, muscle cells, neutrophils, endothelial cells and hepatocytes\(^6,8\). Recently, the existence of a class of transmembrane receptors for laminin known as integrins has been demonstrated. These integrins are involved in the mechanisms of cell-cell, cell-matrix and, more recently, pathogen-cell adhesion\(^6,7,8\). Laminin binding proteins have been described in a number of such pathogenic agents as Staphylococcus aureus, Escherichia coli, Helicobacter pylori (H pylori), and Candida albicans.

LAMININ IN THE LIVER

In normal liver, laminin is found around the vessels and biliary ducts, where basement membranes are identified. Little or only a slight reaction for antibodies against laminin can be observed in the hepatic sinusoids\(^9-11\). In this organ, glycoprotein is also involved in intracellular activities, such as the normal differentiation of the biliary ducts, genetic expressions for albumin messenger RNA in hepatocyte, and regeneration with normal
lobular organization following partial hepatectomy. Laminin is thought to be synthesized by hepatocytes and sinusoidal cells. Among all cellular types in the sinusoids, special attention should be given to stellate cells or lipocytes, which produce the largest amount of serum laminin.

With the development of hepatic cirrhosis, laminin and collagen deposition occurs both along the fibers of septal fibrosis and subendothelial sinusoids or Disse's space. At the latter site, laminin deposition, together with collagen deposition, determine the formation of a true basement membrane along sinusoids. This phenomenon is called capillarization of Disse's space. Besides the increased production of laminin in the liver an additional effect due to a lack of degradation of this protein by liver endothelial cells should also be taken into consideration. As demonstrated by Smedsrod et al. in an experimental model, apart from an increase in tissue deposition or turnover, there would be a decrease in the liver's ability to degrade this protein. With the development of anti-laminin antibodies, directed against the laminin P1 portion, increased levels of this circulating protein were observed in the more advanced stages of fibrosis in patients with hepatic disease and as expected these serum levels have a positive correlation with portal pressure. Kropf et al. have proposed laminin serum concentration as a sensitive screening test for hepatic fibrotic disease and portal hypertension, if the test is carried out together with hyaluronic acid determination. Laminin as an isolated parameter was found to be highly sensitive, but with low specificity to detect portal pressure above 5 mmHg.

We have assessed laminin serum levels in patients with alcoholic liver cirrhosis and with preserved hepatic function in an attempt to evaluate its predictive value for the risk of variceal bleeding, which is assessed through a portal pressure level equal to or higher than 12 mmHg. In these patients, serum laminin levels were significantly correlated with portal pressure levels (r = 0.70). Such correlation enabled us to find a cut-off level for serum laminin that could correspond more closely to a portal pressure of 12 mmHg, accepted as a threshold for esophageal rupture in those patients. As it was found by others, these laminin levels presented very low specificity and negative predictive values to identify those patients with increased portal hypertension. In fact, patients presenting laminin serum concentration of less than 2.20 U/mL have almost 50% chance of having or not a portal pressure of 12 mmHg or higher.

This low specificity of serum laminin determination in portal hypertension could be related to the fact that laminin levels reflect only structural changes and do not take into account changes in the systemic and portal blood flow, which contribute significantly to portal pressure.

On the other hand, due to the great distribution of laminin in the body's basement membranes, and its limited participation in the liver's extracellular matrix, some issues need to be further investigated and clarified as for the origin of this protein. A study of concentrations of serum laminin in different vascular territories showed that its levels in supra-hepatic veins were higher compared to those found in the renal and femoral veins of patients with fibrosis or hepatic cirrhosis, which would be indicative of its hepatic synthesis. Similar findings were also demonstrated in control and carbon tetrachloride treated animals; there was also a significant correlation found between laminin serum levels and the degree of hepatic fibrosis and an important increase was observed in the concentration of this glycoprotein in the supra-hepatic vein when compared to its amount in portal blood. However, the hepatic contribution was much smaller in cirrhotic animals than in those with fibrosis as the sole condition. This fact could point towards decreased hepatic extraction of the protein or an increase in laminin synthesis in other organs of the splanchnic circulation, secondary to the venous congestion of this system. The latter possibility seems to be reinforced by studies with patients infected by Schistosoma mansoni. In the hepatosplenic form of the disease portal hypertension is due to perportal fibrosis, which determines pre-sinusoidal portal hypertension with large splenomegaly. Because these patients do not present hepatic cirrhosis, collagenization and capillarization of with Disse's space are not usually found. In these patients, initial studies revealed a significant increase in the levels of circulating laminin, when compared to patients presenting hepatointestinal form and the control group. This increase correlated with the levels of portal pressure measured via the splenic vein. But, when these patients where submitted to splenectomy, a significantly decrease in the levels of type IV collagen and laminin in the serum of these patients was observed. Since an increased synthesis of basement membrane in the spleen of such patients has been reported, the reduced levels of laminin after splenectomy strongly suggest an important participation of an extra-hepatic source for the serum levels of laminin in these patients. Thus, not only might circulating levels of laminin reflect the hepatic processes of synthesis and degradation, but also the increase of the synthesis of basement membranes, as a result of the congestion observed in other splanchnic organs.

Hence, the use of serum laminin as a marker of portal hypertension for clinical use suffers from other extra-hepatic factors which might influence its blood concentration. In addition, recent studies with Fibroscan have found sensitivity and specificity for the diagnosis of portal hypertension in cirrhotic patients far higher than those found through the determination of serum laminin.

Due to this relationship between laminin tissue deposition and advanced fibrosis, serum levels of laminin have been used by several authors as a non-invasive parameter to assess liver fibrosis in alcoholic patients as well as in those presenting with viral hepatitis and hemochromatosis. Such determination, however, was progressively discontinued as it did not demonstrate to be superior to those of other such components of the extracellular matrix as TIMPs and hyaluronic acid. However,
In recent studies laminin determination has been included in a set of tests together with PHIHP, hydroxyproline, prothrombin activity, and AST/ALT in the diagnosis of advanced fibrosis in chronic hepatitis C[35,38-41].

In non-alcoholic fatty liver disease (NAFLD), however, laminin serum levels should be further investigated. In this condition, the fibrogenic stimulus in the perisinusoidal region occurs earlier, with the detection of pericellular and perisinusoidal fibrosis in the early stages of fibrosis[39].

We have more recently been able to assess serum laminin values in NAFLD, and to measure collagen type IV and hyaluronic acid[40]. Ballooning and hepatic fibrosis in these patients is associated with the progression of the disease[40]. In this preliminary study, we analyzed the discriminative ability of serum laminin, type IV collagen and hyaluronic acid and hepatic enzymes levels to predict the presence of fibrosis in 30 overweight patients divided into two groups according to the absence or presence of fibrosis upon liver biopsy. All the three biochemical markers of fibrosis were able to differentiate between these two groups, but laminin presented the best correlation (r = 0.65) with hepatic fibrosis and the best diagnostic performance, with 87% accuracy. When compared with the BAAT criteria proposed by Ratziu et al[41], laminin values presented a better diagnostic accuracy for the diagnosis of septal fibrosis (83% × 70%) and for the presence of any fibrosis.

Although laminin was not evaluated, in a study with 112 patients with NAFLD, 70 of whom with at least grade 1 fibrosis, Sakugawa et al[38] were able to confirm our findings that hyaluronic acid and type IV collagen were useful in discriminating the patients with fibrosis from those with steatosis only. The subtle differences in diagnostic accuracy performance for these biochemical markers of liver fibrosis found in our study and that by Sakugawa et al[38] might be attributable to the fact that their study included a higher number of patients with any given degree of fibrosis (62% × 37%) or advanced fibrosis (37% × 10%). On the other hand, Lydakis et al[38] showed that HA determination was more useful in the diagnosis of fibrosis than serum laminin and type IV collagen. No correlation was observed among laminin level and the grade of hepatic fibrosis, possibly due to the method and patients selection. It’s important to take into account the small number of studies on fibrosis markers by indirect method.

In studies by Sakugawa et al[38] HA serum levels have been well demonstrated to significantly increase in cirrhotic patients when compared to the other degrees of fibrosis. In this manner, the determination of serum laminin values can not only play a useful role in the identification of NAFLD patients with a certain degree of fibrosis, but also in the distinction between patients with simple steatosis and those with non-alcoholic steatohepatitis (NASH) and a certain degree of fibrosis. Finally, the determination of serum laminin values might become a selection parameter of patients for the indication of fibrosis. A study bearing this purpose is currently being conducted in our laboratories.

ACKNOWLEDGMENTS

The authors thank Mr. Edmilson Chagas for his excellent linguistics assistance.

REFERENCES

1 Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM,
Martin GR. Laminin--a glycoprotein from basement membranes. J Biol Chem 1979; 254: 9933-9937

2 Burgeson RE, Chiquet M, Deutzmann R, Ekblom P, Engel J, Kleinnan H, Martin GR, Meneguzzi G, Paulsson M, Sanes J. A new nomenclature for the laminins. Matrix Biol 1994; 14: 209-211

3 Aumailley M, Smyth N. The role of laminins in basement membrane function. J Anat 1998; 193 (Pt 1): 1-21

4 Kleinnan HK, Cannon BF, Laurie GW, Hassell JR, Aumailley M, Terranova VP, Martin GR, DuBois-Dalcq M. Biological activities of laminin. J Cell Biochem 1985; 27: 317-325

5 Kershonobih Stalnikowitz D, Weissbord AB. Liver fibrosis and inflammation. A review. Ann Hepatol 2003; 2: 159-163

6 Mecham RP. Receptors for laminin on mammalian cells. FASEB J 1991; 5: 2538-2546

7 Haas TA, Plow EF. Integrin-ligand interactions: a year in review. Curr Opin Cell Biol 1994; 6: 566-662

8 Valkonen KH, Ringner M, Ljungh A, Wadstrom T. High-affinity binding of laminin by Helicobacter pylori: evidence for a lectin-like interaction. FEMS Immunol Med Microbiol 1993; 7: 29-37

9 Martinez-Hernandez A. The hepatic extracellular matrix. I. Electron immunohistochemical studies in normal rat liver. Lab Invest 1984; 51: 57-74

10 Parise ER, Summerfield JA, Hahn E, Wiedmann KH, Doenhoff MJ. Basement membrane proteins and type III procollagen in murine schistosomiasis. Trans R Soc Trop Med Hyg 1985; 79: 663-670

11 Shah KD, Gerber MA. Development of intrahepatic bile ducts in humans. Possible role of laminin. Arch Pathol Lab Med 1990; 114: 597-600

12 Caron JM. Induction of albumin gene transcription in hepatocytes by extracellular matrix proteins. Mol Cell Biol 1990; 10: 1239-1243

13 Martinez-Hernandez A, Delgado FM, Amenta PS. The extracellular matrix in hepatic regeneration. Localization of collagen types I, III, IV, laminin, and fibronectin. Lab Invest 1991; 64: 157-166

14 Voss B, Rauterberg J. Investigation on the biosynthesis of connective tissue components by cultured mouse liver macrophages and mouse peritoneal macrophages. In: Sinusoidal liver cells. Amsterdam: Elsevier, 1982; 201-208

15 Gressner AM, Bachem MG. Cellular sources of noncollagenous matrix proteins: role of fat-storing cells in fibrogenesis. Semin Liver Dis 1990; 10: 30-46

16 Schaffner F, Popper H. Capillarization of hepatic sinusoids in man. Gastroenterology 1963; 44: 239-242

17 Smedsrod B, Paulsson M, Johansson S. Uptake and degradation in vivo and in vitro of laminin and nidogen by rat liver cells. Biochem J 1989; 261: 37-42

18 Hahn E, Wick G, Pencev D, Timpl R. Distribution of basement membrane proteins in normal and fibrotic human liver: collagen type IV, laminin, and fibronectin. Gut 1980; 21: 63-71

19 Schneider M, Voss B, Hogemann B, Eberhardt G, Gerlach U. Evaluation of serum laminin PI, procollagen-III peptides, and N-acetyl-beta-glucosaminidase for monitoring the activity of liver fibrosis. Hepatogastroenterology 1989; 36: 506-510

20 Niemela O, Risteli J, Blake JE, Risteli L, Compton KV, Oberg H. Markers of fibrogenesis and basement membrane formation in alcoholic liver disease. Relation to severity, presence of hepatitis, and alcohol intake. Gastroenterology 1990; 98: 1612-1619

21 Korner T, Kropf J, Gressner AM. Serum laminin and hyaluronic acid in liver cirrhosis: markers of progression with high prognostic value. J Hepatol 1996; 25: 684-688

22 Kropf J, Gressner AM, Tittor W. Logistic-regression model for assessing portal hypertension by measuring hyaluronic acid (hyaluronan) and laminin in serum. Clin Chem 1991; 37: 30-35

23 Annoni G, Colombo M, Cantaluppi MC, Khat B, Lampertico P, Rojkind M. Serum type III procollagen peptide and laminin (Lam-P1) detect alcoholic hepatitis in chronic alcohol abusers. Hepatology 1989; 9: 693-697

24 Gressner AM, Tittor W. Serum laminin--its concentration increases with portal hypertension in cirrhotic liver disease. Klin Wochenschr 1989; 64: 1240-1248

25 Mal F, Hartmann DJ, Trinchet JC, Lacombe F, Ville G, Beauprand M. [Serum laminin and portal pressure in alcoholic cirrhosis. A study of 39 patients] Gastroentet Clin Biol 1988; 12: 841-844

26 Kondo M, Miszputen SJ, Leite-mor MM, Parise ER. The predictive value of serum laminin for the risk of variceal bleeding related to portal pressure levels. Hepatogastroenterology 1995; 42: 542-545

27 Gressner AM, Tittor W, Negwe A. Serum concentrations of N-terminal propeptide of type III procollagen and laminin in the outflow of fibrotic livers compared with liver-distal regions. Hepatogastroenterology 1986; 33: 191-195

28 Neves LB, Catarino RM, Silva MR, Parise ER. [Increased serum levels of laminin in the experimental cirrhosis induced by carbon tetrachloride] Arq Gastroenterol 2003; 40: 173-176

29 Neves LB. Estudo da laminina sérica e de sua deposição no figado de ratos com fibrose hepática induzida pelo tetracloreto de carbono. Thesis UNIFESP, 2000

30 Parise ER, Rosa H. Serum laminin in hepatic schistosomiasis. Trans R Soc Trop Med Hyg 1992; 86: 179-181

31 Parise ER, Leite-Mor MM, Rosa H. Serum laminin in hepatosplenic human schistosomiasis. Mem Inst Oswaldo Cruz 1992; 87 Suppl 4: 127-128

32 Grimaud JA, Borovjeic R. Chronic human schistosomiasis mansoni. Pathology of the Disse's space. Lab Invest 1977; 36: 268-273

33 Wyszomirska R. RMAF. Determinação sérica dos marcadores de fibrose hepática em portadores de esquistossomose mansônica: avaliação do colágeno tipo IV e laminina. Thesis. 1999 University of Campinas 1999. Sao Paulo, 118: 1117-1123

34 Borovjeic R, Grimaud JA. Collagen fibers in enlarged basement membranes in human schistosomal liver and spleen. Cell Mol Biol Incl Cyto Enzymol 1980; 26: 247-250

35 Li ZX, He Y, Wu J, Liang DM, Zhang BL, Yang H, Wang LL, Ma Y, Wei KL. Noninvasive evaluation of hepatic fibrosis in children with infant hepatitis syndrome. World J Gastroenterol 2006; 12: 7155-7160

36 Lydatkas H, Hager IP, Kosadelou E, Mpoumpoulos S, Pappas S, Diamantis I. Non-invasive markers to predict the liver fibrosis in non-alcoholic fatty liver disease. Liver Int 2006; 26: 864-871

37 Lebensztejn DM, Skiba E, Sobaniec-Lotowska ME, Kaczmarski M. Serum hyaluronan and laminin level in children with chronic hepatitis B during long-term lamivudine treatment. Hepatogastroenterology 2007; 54: 834-838

38 Sakugawa H, Nakayoshi T, Kobashigawa K, Yamashiro T, Maeshiro T, Miyagi S, Shirama J, Toyama A, Nakayoshi T, Kinjo F, Saito A. Clinical usefulness of biochemical markers of liver fibrosis in patients with nonalcoholic fatty liver disease. World J Gastroenterol 2005; 11: 255-259

39 Attallah AM, Toson EA, Shiha GE, Omran MM, Abdel-Aziz MM, El-Disoky I. Evaluation of serum procollagen aminoterminal propeptide III, laminin, and hydroxyproline as predictors of severe fibrosis in patients with chronic hepatitis C. J Immunossay Immunochenn 2007; 28: 199-211

40 Katayama M, Funakoshi A, Sumii T, Sanzen N, Sekiguchi K. Laminin gamma2-chain fragment circulating level increases in patients with metastatic pancreatic ductal cell adenocarcinomas. Cancer Lett 2005; 223: 167-176

41 Gressner OA, Weiskirchen R, Gressner AM. Biomarkers of liver fibrosis: clinical translation of molecular pathogenesis or based on liver-dependent malfunction tests. Clin Chim Acta 2007; 381: 107-113

www.wjgnet.com
Santos VN, Leite-Mor MM, Kondo M, Martins JR, Nader H, Lanzoni VP, Parise ER. Serum laminin, type IV collagen and hyaluronan as fibrosis markers in non-alcoholic fatty liver disease. *Braz J Med Biol Res* 2005; 38: 747-753

Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. *Gastroenterology* 1999; 116: 1413-1419

Ratziu V, Giral P, Charlotte F, Bruckert E, Thibault V, Theodorou I, Khalil L, Turpin G, Opolon P, Poynard T. Liver fibrosis in overweight patients. *Gastroenterology* 2000; 118: 1117-1123

Liotta LA, Rao CN, Wewer UM. Biochemical interactions of tumor cells with the basement membrane. *Annu Rev Biochem* 1986; 55: 1037-1057

AbouFarha KM, Menheere PP, Nieman FH, Arends JW, Janknegt RA. Value of serum laminin P1 as a diagnostic and monitoring parameter in transitional cell carcinoma of the bladder. *Urol Int* 1992; 49: 130-136

Nakano T, Iwahashi N, Maeda J, Hada T, Higashino K. Serum laminin P1 in small cell lung cancer: a valuable indicator of distant metastasis? *Br J Cancer* 1992; 65: 608-612

Rochlitz C, Hasslacher C, Brocks DG, Herrmann R. Serum concentration of laminin, and course of the disease in patients with various malignancies. *J Clin Oncol* 1987; 5: 1424-1429

Saito N, Kameoka S. Serum laminin is an independent prognostic factor in colorectal cancer. *Int J Colorectal Dis* 2005; 20: 238-244

Gao ZL, Zhang C, Du GY, Lu ZJ. Clinical significance of changes in tumor markers, extracellular matrix, MMP-9 and VEGF in patients with gastric carcinoma. *Hepatogastroenterology* 2007; 54: 1591-1595

Qin LX, Tang ZY. Recent progress in predictive biomarkers for metastatic recurrence of human hepatocellular carcinoma: a review of the literature. *J Cancer Res Clin Oncol* 2004; 130: 497-513

Burchardt ER, Hein R, Bosserhoff AK. Laminin, hyaluronan, tenascin-C and type VI collagen levels in sera from patients with malignant melanoma. *Clin Exp Dermatol* 2003; 28: 515-520

Byers LJ, Osborne JL, Carson LF, Carter JR, Haney AF, Weinberg JB, Ramakrishnan S. Increased levels of laminin in ascitic fluid of patients with ovarian cancer. *Cancer Lett* 1995; 88: 67-72

Chu Y, Yang Y, Lin M, Wang Z. Detection of laminin in serum and ascites from patients with epithelial ovarian tumor. *J Huazhong Univ Sci Technolog Med Sci* 2002; 22: 58-59, 68

Catarino RM, Lopes JD, Forones NM, Parise ER. Laminin concentration in ascites of patients with hepatic cirrhosis and peritoneal carcinomatosis. *Braz J Med Biol Res* 2005; 38: 271-276

Su Q, Fu Y, Liu YF, Zhang W, Liu J, Wang CM. Laminin induces the expression of cytokeratin 19 in hepatocellular carcinoma cells growing in culture. *World J Gastroenterol* 2003; 9: 921-929

Yoshida K, Tadaoka Y, Manabe T. Expression of laminin in hepatocellular carcinoma: an adjunct for its histological diagnosis. *Jpn J Clin Oncol* 1996; 26: 70-76

S-Editor Li DL L-Editor Alpini GD E-Editor Yin DH