Design and Performance of Transverse-Type Thin-Film Nano-Thermoelectric Generators

To cite this article: N Chiwaki et al 2018 J. Phys.: Conf. Ser. 1052 012133

View the article online for updates and enhancements.
Design and Performance of Transverse-Type Thin-Film Nano-Thermoelectric Generators

N Chiwaki¹, T Seino¹ and S Sugahara¹

Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology 4259-J3-14 Nagatsuta, Yokohama, 226-8503, Japan

E-mail: chiwaki.n.aa@m.titech.ac.jp

Abstract. Design methodology and performance of nano thermoelectric generators (nTEGs) using human body heat are investigated for wearable device applications. A transverse type of module suitable for a thin-film thermopile is employed for the nTEGs. It is revealed that the thermal and electrical insulation of the interspace of their modules is an important factor to determine the output power of the nTEGs. A new module structure using insulator/vacuum hybrid insulation with its design methodology that maximizes the output power is developed. Output power of a few milliwatts can be achieved by a wrist-band style mounting of the nTEG module with an optimized design.

1. Introduction

Internet of humans (IoH) is a new system for health and medical care using accumulated vital/medical data of humans, which enables us to give useful/important knowledges for improving/maintaining quality of life. Wearable devices play an essential role as a man-machine interface for IoH systems, and micro/nano thermoelectric generators (µ/nTEGs) [1, 2] can be applied to a power source of these wearable devices. The wearable devices for IoH postulate the following performances and features: (i) the devices need power of a few mW for short-distance wireless communication, since they are expected to be used with communication devices/facilities such as a smartphone or wireless LAN. (ii) A driving voltage of 0.5-1 V also needs to drive CMOS circuits in the wearable devices. (iii) A thin-film thermoelectric material is required for size/weight saving and cost reduction, which also gives rise to the usage of a micro- or nano-fabricated thermopile for µ/nTEGs. It is worthy to note that fabrication process technologies used for very-large-scale integrated circuits (VLSIs), such as lithography, can be diverted to µ/nTEGs fabrication, and these technologies highly enhances the degree of freedom of design for µ/nTEGs [2]. Also note that sophisticated minute-contact technologies used for VLSIs are also useful for forming thermal and electrical contacts of µ/nTEGs.

Recently, we proposed a transverse-type µTEG with highly integrated thin-film Seebeck elements and developed its design methodology [2]. Since the heat flow through the Seebeck elements are horizontal to the cold and hot plates of the module, high output power adaptable to wearable devices can be generated even by means of a thin-film thermopile. The thermal insulation of the interspace between the cold and hot plates of the module is one of the important factors to determine the output power, and thus the performance limits of the module can be obtained using the vacuum isolation [2].

In this paper, design methodology of transverse-type thin-film nTEGs with various module structures is developed and their performances are computationally analyzed. Although the thermal-electrical insulator of the interspace of the module severely degrades the performance, a newly proposed module structure using insulator/vacuum hybrid insulation that would be preferable to the device fabrication can achieve sufficient output power applicable to wearable devices.
2. Module structures and design methodology

Figs. 1 (a)-(c) show schematics of various transverse-type nTEG modules. The Seebeck elements occupy the $D \times L$ region on the inside of the $D \times D$ module area for all the modules. The interspace between the hot and cold plates in the $D \times L$ region is thermally and electrically insulated by vacuum (V) isolation (Fig. 1 (a)) or porous silica (PS) filling (Figs. 1 (b) and (c)), and its outside region of the module is insulated by V isolation (Figs. 1 (a) and (c)) or PS filling (Fig. 1 (b)). Hereafter, these insulation structures shown in Figs. 1 (a), (b) and (c) are simply denoted by V/V, PS/PS and PS/V, respectively.

Fig. 2 shows a homeothermic human model used for module design. The model includes heat flow limitation due to the thermogenic action of humans. In this system model, the maximum heat flow depends on the thermal resistance K_M of the module and K_{air} that is a sum of the thermal resistance K_{air} from the module surface to ambient and the thermal resistance K_{sh} of human skin near the skin. Therefore, these (K_{air} and K_M) are optimized to achieve maximized output power under the homeothermic human model. In this paper, a maximum heat flow of $Q = 10 \text{ mW/cm}^2$ is assumed [3].

To maximize output power, the electrical resistance R_M of the module and K_M that are in the trade-off relation need to be optimized. For this purpose, a single trade-off parameter γ ($0<\gamma<1$) that represents a ratio of the width γd of a thermoelectric element to the unit area width d (see Fig.1) is introduced. The number and size of the thermoelectric elements and the resulting output voltage and power can be completely determined by γ instead of the thermal and electrical resistances [2]. The important design parameters are the width γd, the length L, the number m_0 of pair of the Seebeck element and the thickness t_C of the contact metal layer, and the useful design indices are the electromotive force V_S of each Seebeck element, the temperature difference ΔT of each Seebeck element, K_M, K_{air} and R_M. The physical constants used for the following designs are shown in Table 1. Thermal and electrical resistance network models are used to analyse the output characteristics of the nTEGs. Thermal resistance due to radiation heat and spreading thermal resistance are used for the V and PS insulation portions, respectively. The output power on electrical matched load, given by $P_{out} = \frac{V_S^2}{4R_M} = \frac{(m_0V_S)^2}{4R_M}$, is used for the module designs, in which $V_S = \frac{m_0V_S}{2}$ represents the total electromotive force of the module.

Table 1. Physical constants used for module design.

Module size $D \times D$	Physical constants
1 cm\times1 cm	

Thermoelectric material (BiTe)	Thickness t_0	Seebeck coefficient $S = S_p - S_n$	Thermal conductivity $\lambda = (\rho(\lambda + \rho_S)/2$	Electrical resistivity $\rho = (\rho_{n\rho_S})/2$
	100 nm	434 μV/K	1.43 W/(m2K)	8.11 μΩm

Temperature difference ΔT	10 K	
Interconnect/contact material (Cu)	λ_{Cu} = 386 W/(m2K)	R_{Cu} = 17 nΩm
Interlayer insulator (Porous Silica)	λ_{PS} = 35.7 mW/(m2K)	

Fig. 1. Schematics of transverse-type nTEGs using (a) V/V, (b) PS/PS and (c) PS/V modules.

Fig. 2. Homeothermic human model of a human body/wearable device/ambient system.

Fig. 3. P_{out} and design parameters/indices as a function of γ for the V/V insulation module.
Fig. 4. P_{out} and design parameters/indices as a function of (a) t_c, (b) L and (c) m_0 for the V/V module, in which all the parameters/indices are optimized by γ. t_c is set to $t_c = (1+\gamma)d$ for (b) and (c).

Fig. 5. P_{out} and design parameters/indices as a function of (a) t_c, (b) L and (c) m_0 for the PS/PS module, in which all the parameters/indices are optimized by γ.

Fig. 6. P_{out} and design parameters/indices as a function of (a) t_c, (b) L and (c) m_0 for the PS/V module, in which all the parameters/indices are optimized by γ. t_c is set to $t_c = (1+\gamma)d$ for (b) and (c).

3. Design and performance

Firstly, the optimum design and resulting performance of the V/V module that gives the performance limit of the nTEGs are discussed. Fig. 3 shows P_{out}, v_S, ΔT, $\beta \Delta T$, γd, K_M, and R_M as a function of γ, in which t_c, L, m_0, and K_M' are fixed for simplicity ($K_{M'}$ is adjusted to a particular value so that Q reaches 10 mW at the P_{out} peak). K_M and R_M increase with increasing γ owing to the increase in γd, and P_{out} shows the peak shape. Therefore, P_{out} is optimized by the single parameter γ. The γ value at the peak position represents the optimum condition of K_M and R_M.

Fig. 4 (a) shows P_{out} and the other design parameters/indices as a function of t_c for the V/V module. P_{out} is almost independent of t_c and remains constant at a maximized high value (~28 μW). Although v_S is maintained constant and m_0 decreases with increasing t_c, i.e., the total electromotive force V_S decreases with increasing t_c, R_M can be reduced (or designed) so that P_{out} is kept constant. The constant v_S can be achieved by the constant $\beta \Delta T$ (or K_M). Note that m_0 (which is a determination factor of V_S) can decreases with increasing L (which determines R_M) with K_M kept constant so that P_{out} remains constant at the highest value. Figs. 4 (b) and (c) show P_{out} and the other design parameters/indices as a function of L and m_0, respectively, for the V/V module. In both the cases, P_{out} also remains constant at 28 μW, since v_S is almost unchanged and the correlation between m_0 and L (or R_M) is substantively the same as the case in Fig. 4 (a). The maximized P_{out} value can be achieved by a number of combinations of L and m_0, and γd is determined by a selected m_0 (or L) value. The wide γd range between a few hundreds of nanometers to a few micrometers is applicable for the V/V module.
design.

The PS/PS module is preferable from the point of view of device fabrication. However, the output power is severely degraded. Fig. 5 (a) shows P_{out} and the other design parameters/indices as a function of I_{C} for the PS/PS module. P_{out} exhibits a single peak shape that results from the I_{C}-dependence on V_{S}, m_{0}, and R_{M}. Figs. 5 (b) and (c) show P_{out} and the other design parameters/indices as a function of L and m_{0}, respectively, for the PS/PS module. In both the cases, P_{out} achieves a peak. The maximum P_{out} value is severely lowered in comparison with the case of the V/V module. The PS/PS module requires the contact metal layer with thicker I_{C} in order to achieve a K_{M} value comparable to that of the V/V module. This is due to the high thermal conductivity of the PS insulation. In this situation, m_{0} of the PS/PS module is smaller than that of the V/V module, and L (R_{M}) of the PS/PS module is reduced (enlarged) in comparison with the case of the V/V module. Therefore, P_{out} is degraded for the PS/PS module.

The PS/V module that would be relatively easy-to-fabricate insulation structure is effective at improving output characteristics of nTEGs. Fig. 6 (a) shows P_{out} and the other design parameters/indices as a function of I_{C} for the PS/V module. P_{out} is enhanced when the contact metal layer with thinner I_{C} is used. This is because V_{S} and m_{0}, i.e., V_{S}, can effectively increase with decreasing I_{C}, compared with the increase in R_{M}. Note that although m_{0} decreases with increasing L so that K_{M} is kept constant, $\beta \Delta T$ (V_{S}) drops with increasing I_{C} owing to the effect of the parasitic thermal resistance of the metal contacts. Fig. 6 (b) shows P_{out} and the other design parameters/indices as a function of L for the PS/V module. P_{out} is strongly enhanced by reducing L. Owing to the correlation between m_{0} and L, m_{0} increases with decreasing L so that K_{M} is almost kept constant, although K_{M} drops for wider L values. Therefore, V_{S} and V_{S} are enhanced by reducing L, resulting in the increase in P_{out}. Fig. 6 (c) shows P_{out} and the other design parameters/indices as a function of m_{0} for the PS/V module. L decreases with increasing m_{0} with K_{M} held constant owing to the correlation between these parameters. In this case, V_{S} is successfully maintained constant. Therefore, V_{S} and thus P_{out} are enhanced with increasing m_{0}. Note that R_{M} increases with P_{out} and overhigh R_{M} suppresses the enhancement of P_{out}, as shown in Figs. 6 (a)-(c). It is worthy to note that the optimum feature size of the Seebeck elements is in 20-80 nm as shown in Fig. 6, i.e., the “nano” TEG structure is required for this module.

Fig. 7 (a) shows P_{out}, Q and K_{M} as a function of K_{M}' for the PS/V module, in which no restrictions are imposed on Q. P_{out} decreases with increasing K_{M}'. K_{M}' needs to be selected within the heat flow limit of humans. An alumite-treated fine-fin plate structure would allow $K_{M}' \approx 700$ K/W cm$^{-2}$, and thus $P_{\text{out}} > 20 \mu$W/cm$^{-2}$ can be achieved. This K_{M}' value also adapts the thermogenic ability of humans at room temperature. Fig. 7 (b) shows output characteristics of the PS/V insulation module, in which an optimum design at $L=10$ μm shown in Figs. 6 (b) and (c) is used and the module-mounting area is varied from 20 to 120 cm2. When the module is mounted to a wrist-band style (100 cm2), P_{out} of 1.6 mW can be achieved. This output value is sufficiently applicable to wearable devices with short-distance communication functionality.

Acknowledgment
This work was partly supported by Research and Development Project for Innovative Thermal Management Materials and Technologies from NEDO.

References
[1] Leonov V, Torfs T, Fiorini P and Van Hoof C 2007 IEEE Sensors Journal 7 pp 650-657
[2] Kondo T, Chiwaki N and Sugahara S 2017 IEEE Electron Devices Technology and Manufacturing Conf. (Toyama, Japan) pp 201-203
[3] Leonov V 2013 IEEE Sensors Journal 14 pp 2284-2291