Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A novel single nucleotide polymorphism assay for the detection of N501Y SARS-CoV-2 variants

M. Sandoval Torrientes, C. Castelló Abietar, J. Boga Riveiro, M. E. Álvarez-Argüelles, S. Rojo-Alba, F. Abreu Salinas, I. Costales González, Z. Pérez Martínez, G. Martín Rodríguez, J. Gómez de Oña, E. Coto García, S. Melón García

Microbiology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
Genetic Department, Hospital Universitario Central de Asturias, Oviedo, Spain

ABSTRACT

The N501Y mutation in SARS-CoV-2 variants found in several strains from the UK, South Africa and Brazil has been linked to increased transmission. In order to discriminate N501Y variants quickly, a single nucleotide polymorphism (SNP) discrimination assay was designed and validated. It was then deployed prospectively in 757 nasopharyngeal swabs. Validation of the novel variant discrimination assay corroborated the results in all validation panel samples (n = 63) through sequencing. This novel variant discrimination assay was then deployed prospectively in 757 clinical nasopharyngeal swabs during the last week of January 2021. N501Y was found in 206 (27.4 %) of the samples: 94 (28.2 %) men and 112 (26.85 %) women (p = 0.73). The patients in whom it was identified had a mean age of 47.8 ± 25.9 (0–104) years, similar to that of patients without this variant: 51.7 ± 25.9 (0–104) years (p = 0.06). N501Y variant was confirmed in 34 samples by sequence method and 501 N wild type was confirmed in 67.

1. Introduction

During the evolution and adaptation of a virus it is very common for variants to be seen, particularly in RNA viruses like SARS-CoV-2 (van Dorp et al., 2020). The worrying thing about these variants is their potential capacity to elude the defense response (natural defense mechanisms as well as a vaccine).

The detection of SARS-CoV-2 variants has principally been through the use of the traditional Sanger sequencing. In order to achieve a faster and cheaper method a new one-step variant discrimination real time PCR method was designed and validated. It was then deployed prospectively in 757 nasopharyngeal swabs.

ARTICLE INFO

Keywords:
SARS-CoV-2
Mutation
Variant discrimination assay
N501Y
Sequencing
New generation sequencing

Received 22 February 2021; Received in revised form 17 March 2021; Accepted 22 March 2021
Available online 24 March 2021

https://doi.org/10.1016/j.jviromet.2021.114143
PCR (VD RT-PCR) assay to detect the N501Y SARS-CoV-2 mutation was designed and developed, and then assayed in clinical samples.

2. Materials and methods

2.1. Nasopharyngeal samples

A total of 64 SARS-CoV-2 positive nasopharyngeal swabs collected in UTM media (Copan, Italy) between December 2020-January 2021 and 2021, under the same conditions as previous samples. Patients were 335 pharyngeal swabs collected prospectively between January 20 and 27 samples was below 30.

2.2. Processing of nasopharyngeal samples and SARS-CoV-2 detection

In the first step of the initial SARS-CoV-2 detection from the nasopharyngeal swabs, RNA was isolated using a MagNA Pure 96 System (Roche Diagnostics, Switzerland) following the manufacturer’s protocol. Amplification and detection were then carried out using in-house real-time (RT)-PCR developed to detect the Orf1ab and nucleoprotein genes of SARS-CoV-2.

Viral genomes were amplified using TaqMan® Fast Virus 1-Step Master Mix (Life Technologies, CA) and the primers and FAM/VIC-labelled MGB (minor groove binding) probes shown in Table 1. Amplifications and data analysis were performed using either a 7500 or a QS5 Real-Time PCR System (Applied Biosystems, CA) under the following conditions: retrotranscription at 50 °C for 15 min; denaturation at 95 °C for 5 min; 40 cycles at 95 °C for 5 s and 60 °C for 30 s. Pre- and post-readings were carried out at 50 °C and acquisition of other data was obtained during the annealing/extension stage of each cycle in both FAM and VIC filters. The total duration of the process was approximately 46 min.

As negative controls, four non-template controls (water) were included in each VD RT-PCR assay run. Three positive controls were also tested in each run: a confirmed N501 N variant sequence, a confirmed N501Y variant sequence and a mixture of the two.

2.4. Sequencing

For the identification of the SARS-CoV-2 N501 variants, a fragment of 450 bp from the spike gene (Nt 1412-1862; aa 472-620) was amplified with primers designed in our laboratory (Table 1). The PCR mix contained 25 pmol of each primer, 0.2 mM of each deoxynucleotide triphosphate, 1 μL reaction volume with the same primers using a BigDye Terminator (Applied Biosystems, Life Technologies Corporation, Foster City, CA, USA) and then removes unincorporated reaction components with the BigDye Terminator purification kit (Life Technologies Corporation, Bedford, USA). Genome sequences were obtained with an ABI PRISM 3130x Genetic Analyzer Avant Sequencer (Applied Biosystems, Life Technologies Corporation, Foster City, CA, USA). The chromatogram files were edited and assembled using Chromas.
amplify, but in the other 63, complete concordance was observed between the results of the RNA sequencing and the novel VD RT-PCR assay method was performed in 101 cases, 67 using Sanger sequencing and 34 using NGS.

2.5. Data and statistical analysis and ethical approval

All statistical tests were performed using GraphPad InStat version 3.00 for Windows 95 (GraphPad Software, San Diego, CA) following the manufacturer’s instructions.

This study was approved by the Local Ethical Committee.

3. Results

3.1. Validation panel

The validation panel was assembled using 29 SARS-CoV-2 501 N (wild) strains and 35 501Y variant strains. One wild variant did not amplify, but in the other 63, complete concordance was observed between the results of the RNA sequencing and the novel VD RT-PCR assay (Fig. 1).

NGS was performed on 11 of these 63 strain N501Y variants to ascertain the specific genotypes and linages. All of them where characterized like SARS-CoV-2 B.1.1.7 strain by Pangolin program (https://pangolin.cog-uk.io/).

3.2. Results for prospective determination of variant

Between January 20 and 27 2021, variant discrimination assays were performed on 757 nasopharyngeal swab samples. Conclusive results were achieved in 750 cases (99.07 %).

The N501Y mutation was present in 206 samples (27.4 %). These variants were found in 94 (28.2 %) men and 112 (26.85 %) women (p = 0.73).

Mean age of patients with N501Y was 47.8 ± 25.8 years (range 0–96) compared to 51.7 ± 25.9 years (range 0–104) for patients without this mutation (p = 0.06).

With the method described above, amplification of samples resulted in Cts of between 15 and 35. The N501Y mutation was present in 12 samples (5.8 %) with Ct of over 30 and wild type in 34 (6.25 %) such samples (p = 0.9).

In 101 sequenced, variants was present in 67 (36 by Sanger and 31 by NGS) and no present in 34 (31 by Sanger and 3 by NGS).

4. Discussion

Mutations in the SARS-CoV-2 spike protein could be linked to loss of natural/vaccine-induced immune response and increased virulence, which could have significant impacts on public health provisions. To this end, it is important internationally for health organizations to detect these variants quickly in order to take actions and adopt specific measures to minimize its community transmission (ECDC, 2021; WHO, 2021).

In 2020, the SARS-CoV-2 spike protein variant D614 G which replaced the original strains identified, was found to be associated with increased transmissibility and more serious pathology (Korber et al., 2020; Zhang et al., 2020; Volz et al., 2021). Variants with this mutation are now globally dominant (Conti et al., 2020).

Recently, the newly identified SARS-CoV-2 variants B.1.1.7, B1.351, and B.1.1.28.1 have come under scrutiny because they can increase transmissibility and reduce neutralization (Leung et al., 2021; WHO, 2021; Weisblum et al., 2020; Conti et al., 2020). All of these variants share the spike protein mutation N501Y, which is involved in virus binding, and is principally found in mutations associated with virus transmission (ECDC, 2020; Leung et al., 2021; WHO, 2021; Weisblum et al., 2020; Virological, 2021; Makowski et al., 2021).

The method designed was able to discriminate the variant in all but one instance: a wild type SARS-CoV-2 which was collected 20 days before the assay and had a Ct of 32. These characteristics could have influenced in the result.

In the other 63 samples (35 of them the N510Y variant), the correlation between the novel VD RT-PCR method and the sequencing method was complete.

Importantly, this VD RT-PCR method can be performed and provide results in less than one hour. What is more, this work indicates that it would be possible to design and develop a real time RT-PCR system that includes both diagnosis and variant detection. This would be a fast and simple system, the drawback being that more reagents would be needed.

The eleven samples analyzed by NGS confirmed that the N501Y variant found was most similar to strain B.1.1.7.

This method was implemented in clinical samples collected prospectively over 7 days at the end of January 2021. Results were possible in close to 100 % of cases. Only in 7 (0.9 %) samples with Ct over 30 was amplification not possible. N501Y variant was present in almost 30 % of these samples. Since the presence of these variants in our locality only

Fig. 1. Variant discrimination assay. a) Variant discrimination assay plot: samples with sequence confirmed SARS-CoV-2 wild strain (N501) in blue, N501Y variants in either red, and mixed variants in green. b) Graph of variant amplification assay: amplification of wild type variant in green and N501Y variants in blue (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
began in early January, these results suggest that the N501Y variant can now replace circulating wild-type strains very early. No differences in the presence of the N501Y variant were found in terms gender or mean age.

As before, in all samples sequenced, the correlation with this method was complete.

The method developed in this work to identify N501Y SARS-CoV-2 variants is fast and simple, and can be performed in any basic laboratory in less than one hour.

Author statement

Conceptualization; Santiago Melón García, Jose Antonio Boga, Marta Elena Alvarez Argüelles, Susana Rojo Alba, Santiago Melón García. Data curation; Marta Sandoval Torrientes, Jose Antonio Boga, Marta Elena Alvarez Argüelles, Susana Rojo Alba, Santiago Melón García. Formal analysis; Marta Sandoval Torrientes, Marta Elena Alvarez Argüelles, Susana Rojo Alba, Santiago Melón García.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of Competing Interest

The authors report no declarations of interest.

Acknowledgements

We thank Ronnie Lendrum for her help with correcting the English, and ASCOL for his technical support.

References

Álvarez-Argüelles, M.E., de Oña-Navarro, M., Rojo-Alba, S., Torres-Muno, M., Junquera-Llanaza, M.I., Antonio-Boga, J., Pérez-Castro, S., Melón-García, S., 2015. Quantification of human papilloma virus (HPV) DNA using the Cobas 4800 system in women with and without pathological alterations attributable to the virus. J. Virol. Methods 222 (September 15), 95–102 doi: 10.1016/j.jviromet.2015.05.016. Epub 2015 Jun 6. PMID: 26057211.

Conti, P., Caraffa, A., Gallenga, C.E., Kritas, S.K., Frydas, S.K., Younes, A., Emidio, P.D., Tette, G., Pregiasco, F., Ronconi, G., 2020. The British variant of the new coronavirus (Sars-CoV-2) should not create a vaccine problem. J. Biol. Regul. Homeost. Agents Agents 35 (December 20 (1)). https://doi.org/10.23812/21-3-E.

European Centre for Disease Prevention and Control, 2020. Threat Assessment Brief: Rapid Increase of a SARS-CoV-2 Variant With Multiple Spike Protein Mutations Observed in the United Kingdom.

ECDC, 2021. Sequencing of SARS-Cov-2 [internet]: European Centre for Disease Prevention and Control [January 13th, 2021]. https://www.ecdc.europa.eu/en/publications-data/sequencing-sars-cov-2.

Faria, N.R., Morales, I., Candido, D., Moyes, L.A., Andrade, P.S., Coleti, T.M., Silva, C.A., Sales, F.C., Manuli, E.R., Aguilar, R.S., Gaburo, N., Camilo, C., Frajii, N.A., Esahikha, M.A., Carvalho, M.P., Rambaut, A., Loman, N., Pybus, O.G., Sabino, E.C., Virological, 2021. Genomic Characterisation of an Emergent SARS-CoV-2 Lineage in Manaus: Preliminary Findings. https://virological.org/gene:virological-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings.

Korber, B., Fischer, W.M., Gnannakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E.E., Bhattacharya, T., Foley, B., Hastie, R.M., Parker, M.D., Partridge, D.G., Evans, C.M., Freeman, T.M., de Silva, T.I., Sheffield COVID-19 Genomics Group, McDanal, C., Perez, L.G., Tang, H., Moon-Walker, A., Whelan, S.P., Laihlanche, C.C., Squyres, E.O., Monteiori, D.C., 2020. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 162 (August 20 (4)), 812–827.e19. https://doi.org/10.1016/j.cell.2020.06.043, Epub 2020 Jul 3. PMID: 32697968; PMCID: PMC7324349.

Leung, K., Shum, M., Leung, G., Lam, T., Wu, J., 2021. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill. 26 (Jan. (1)), 2002106 https://doi.org/10.2807/1560-7917.ES.2020.26.2.2002106.

Makowski, L., Olson-Sidford, W., W-Weisel, J., 2021. Biological and clinical consequences of integemin binding via a rogue RGD motif in the SARS-CoV-2 spike protein. Viruses 13 (January 20 (2)), E146. https://doi.org/10.3390/v13020146, PMID: 33498225.

van Dorp, L., Lopez, D., Cao, T.C.S., Shaw, L.P., Acman, M., Balloux, F., 2020. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. Nat. Commun. 11 (November 25 (1)), 5986. https://doi.org/10.1038/s41467-020-1981-2. PMID: 32339633; PMCID: PMC7688939.

Volz, E., Hill, V., McCrone, J.T., Price, A., Jorgensen, D., O’Toole, A., Southgate, J., Johnson, R., Jackson, B., Nascimento, F.F., Rey, S.M., Nicholls, S.M., Colquhoun, R. M., da Silva Filipe, A., Shepherd, J., Pascall, D.J., Shah, R., Jezudason, N., Li, K., Jarrett, R., Pachaciari, N., Bull, M., Geidelberg, L., Siveroni, L., COG-UK Consortium, Goodfellow, I., Loman, N.J., Pybus, O.G., Robertson, D.I., Thomson, E.C., Rambaut, A., Connor, T.R., 2021. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell 184 (January 7 (1)), 64–75.e11. https://doi.org/10.1016/j.cell.2020.11.020, Epub 2020 Nov 19. PMID: 33275900.

Weisblum, Y., Schmidt, F., Zhang, F., DaSilva, J., Poston, D., Lorenzi, J.C., Muecksch, F., Rutkowski, M., Hoffmann, H.H., Michaelidis, E., Gaebler, C., Agudelo, M., Cho, A., Wang, Z., Gazumyan, A., Cipolla, M., Luchsinger, L., Hillery, C.D., Caskey, M., Robbiani, D.F., Rice, C.M., Nussenzweig, M.C., Hatziioannou, T., Brienza, P.D., 2020. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife 9 (October 28), e61312. https://doi.org/10.7554/eLife.61312, PMID: 33112236; PMCID: PMC7723407.

SARS-CoV-2 Variants. WHO. https://www.who.int/csr/don/31-december-2020-sars-cov2-variants/en/.

WHO, 2021. Genomic Sequencing of SARS-CoV-2: A Guide to Implementation for Maximum Impact on Public Health [January 13th, 2021]. https://www.who.int/publications-detail-redirect/9789249001844.

Yahav, D., Yelin, D., Eckerle, I., Eberhardt, C.S., Wang, J., Cao, B., Kaiser, L., 2021. Definitions for coronavirus disease 2019 reinfection, relapse and PCR re-positivity. Clin. Microbiol. Infect. 27 (March (3)), 315–318. https://doi.org/10.1016/j.cmi.2020.11.028, Epub 2020 Dec 5. PMID: 33285276; PMCID: PMC7718119.

Zhang, L., Jackson, C.B., Mou, H., Ojha, A., Rangarajan, E.S., Izard, T., Farzan, M., Choe, H., 2020. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv [Preprint]. (Jun 12) https://doi.org/10.1101/2020.06.12.148726, 2020.06.12.148726, Update in: Nat. Commun. 2020 Nov 26;11(1):6013. PMID: 32587973; PMCID: PMC7310631.