q-Calculus Revisited

Si Hyung Joo
Department of Industrial Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
E-mail: innovation@jnu.ac.kr
June 2021

Abstract. In this study, a new representation is obtained for q-calculus, as proposed by Borges [Physica A 340 (2004) 95], and a new dual q-integral is suggested.

Keywords: q-calculus, q-exponential, q-logarithm

1. Introduction

With a generalization of the Boltzmann-Gibbs entropy [1], the q-logarithm and q-exponential functions were first proposed by Tsallis [2].

\[
\ln_q(x) \equiv \frac{x^{1-q} - 1}{1 - q} \quad (x > 0) \quad (1)
\]

\[
e_q(x) \equiv [1 + (1 - q)x]^{1/(1-q)} \quad (x, q \in \mathbb{R}) \quad (2)
\]

where \([A]_+ \equiv \max\{A, 0\}\)

A q-calculus associated with non-extensive statistical mechanics and thermodynamics was developed by Borges in 2004 [3]. He developed a primal q-derivative operator, \(D_q\), for which the q-exponential function is an eigenfunction, as the ordinary exponential function is the eigenfunction of the ordinary derivative operator.

\[
D_q(e_q(x)) = e_q(x) \quad (3)
\]

A primal q-integral operator, \(I_q\), which is the inverse operator of the primal q-derivative operator, was also developed. The primal q-integral of a q-exponential function is a q-exponential function.

\[
I_q(e_q(x)) = e_q(x) + c \quad (4)
\]

In general, the following relationships hold for the primal q-derivative and q-integral.
operator is proposed herein, which satisfies equation (3)

\[D_{(q)} \left(I_{(q)}^{x}(f(t)) \right) = f(x) \] (5)

\[I_{(q)}^{x} \left(D_{(q)} \left(F(t) \right) \right) = F(x) + c \]

where \(I_{(q)}^{x}(f(t)) = F(x) - F(a), F(t) = I_{(q)} \left(f(t) \right) - c \)

For the \(q \)-logarithm function, which is the inverse function of the \(q \)-exponential function, he developed a dual \(q \)-derivative operator, \(D_{(q)} \). The dual \(q \)-derivative of the \(q \)-logarithm function is \(1/x \), analogous to the fact that the ordinary derivative operator on the logarithm function gives \(1/x \).

\[D_{(q)} \left(\ln_{q}(x) \right) = \frac{1}{x} \] (6)

Finally, he suggested a dual \(q \)-integral operator, \(I_{(q)}^{x} \), which is the inverse operator of the dual \(q \)-derivative. However, the dual \(q \)-integral of \(1/x \) is found to be \(\ln(x) - \frac{1}{\ln(x)} + c \), and the following relationship does not hold:

\[I_{(q)}^{x} \left(\frac{1}{x} \right) = \ln_{q}(x) + c \] (7)

In general, the following relationship does not hold for the dual \(q \)-derivative and \(q \)-integral, and it is a significant weakness of the dual \(q \)-calculus suggested by Borges.

\[D_{(q)} \left(I_{(q)}^{x}(f(t)) \right) = f(x) \] (8)

\[I_{(q)}^{x} \left(D_{(q)} \left(F(t) \right) \right) = F(x) + c \]

where \(I_{(q)}^{x}(f(t)) = F(x) - F(a), F(t) = I_{(q)} \left(f(t) \right) - c \)

To address this issue, a new representation of \(q \)-calculus with a new dual \(q \)-integral operator is proposed herein, which satisfies equation (8) with a modification of ordinary addition to \(q \)-difference (\(\oplus_{q} \)) or \(q \)-addition (\(\ominus_{q} \)) in equations (7) and (8):

\[D_{[q]} \left(F(x) \right) \equiv \lim_{y \to x} \frac{F(x) - F(y)}{E_{q}(x) - E_{q}(y)} \] (9)

\[I_{[q]}^{x} \left(f(t) \right) \equiv \int_{t=x_{0}}^{x} f(t) \, du(t) \] (10)

where \(u(t) = \ln \left[\frac{1 + (1 - q)t}{1 - qt} \right] \)

\[D_{[q]}^{x} F(x) \equiv \lim_{y \to x} \frac{\ln(c_{q}(F(x))) - \ln(c_{q}(F(y)))}{x - y} \] (11)

\[I_{[q]}^{x} \left(f(t) \right) \equiv \ln_{q} \left[\exp \left(\int_{x_{0}}^{x} f(t) \, dt \right) \right] \] (12)

The new representation of \(q \)-calculus is based on the concept of primal and dual \(q \)-tangent lines, analogous to ordinary tangent lines. The primal and dual \(q \)-derivatives are defined as the slope of the primal and dual \(q \)-tangent lines at each point on the curve \(y = f(x) \); this is analogous to the fact that the ordinary derivative of a function
is the slope of the tangent line at each point on the curve $y = f(x)$. The primal and dual q-integrals are defined as the signed primal and dual q-area between the curve $y = f(x)$ and the horizontal axis, as the ordinary integral of a function is the signed area between the curve $y = f(x)$ and the horizontal axis.

The remainder of this paper is organized as follows. Section 2 provides some background on q-algebra, q-calculus of Borges, and ordinary calculus. Section 3 involves the derivation of a new representation of q-calculus and the new dual q-integral operator. Section 4 presents the relationship between the primal and dual q-derivatives and integrals.

2. Review of q-Algebra, q-Calculus and Ordinary Calculus

2.1. q-Algebra

q-algebra was first proposed by Borges [3].

\[
x \oplus_q y = x + y + (1-q)xy
\]

\[
x \odot_q y = \frac{x-y}{1+(1-q)y}
\]

\[
x \otimes_q y = \begin{cases} [x^{1-q} + y^{1-q} - 1]_+^{1/(1-q)} & (x, y > 0) \\ [x^{1-q} - y^{1-q} + 1]_+^{1/(1-q)} & (x, y > 0) \end{cases}
\]

\[
x \oslash_q^n x = \underbrace{x \odot_q x \odot_q x \cdots \odot_q x}_{n \text{ times}} = [nx^{1-q} - (n-1)]_+^{1/(1-q)}
\]

\[
n \odot_q x = \underbrace{x \odot_q x \odot_q x \cdots \odot_q x}_{n \text{ times}} = \frac{1}{1-q} \left\{ [1 + (1-q)x]^n - 1 \right\}
\]

The properties of the q-logarithm and the q-exponential can be expressed as follows.

\[
\ln_q(xy) = \ln_q(x) \oplus_q \ln_q(y), \quad e_q(x) e_q(y) = e_q(x \oplus_q y)
\]

\[
\ln_q(x \odot_q y) = \ln_q(x) + \ln_q(y), \quad e_q(x) \odot_q e_q(y) = e_q(x + y)
\]

\[
\ln_q(x/y) = \ln_q(x) \ominus_q \ln_q(y), \quad e_q(x)/e_q(y) = e_q(x \ominus_q y)
\]

\[
\ln_q(x \otimes_q y) = \ln_q(x) - \ln_q(y), \quad e_q(x) \otimes_q e_q(y) = e_q(x - y)
\]

2.2. q-Calculus

Borges [3] defined primal and dual q-derivatives and q-integrals as follows.

\[
D_{(q)} \left(f(x) \right) = \lim_{y \to x} \frac{f(x) - f(y)}{x \odot_q y} = [1 + (1-q)x] \frac{df(x)}{dx}
\]

\[
I_{(q)} \left(f(x) \right) = \int \frac{f(x)}{1 + (1-q)x} \, dx
\]

\[
D^{(q)} \left(f(x) \right) = \lim_{y \to x} \frac{f(x) \odot_q f(y)}{x - y} = \frac{1}{1 + (1-q)f(x)} \frac{df(x)}{dx}
\]
\[I^q(f(x)) = \int [1 + (1 - q)f(x)]f(x)dx \quad (26) \]

2.3. Ordinary Calculus

2.3.1. Derivative

Let \(f(x) \) be the ordinary derivative function of \(F(x) \).

\[
\frac{d}{dx}F(x) \equiv \lim_{t \to x} \frac{F(x) - F(t)}{x - t} = f(x) \quad (27)
\]

A derivative operation is a function that takes a function \(F(x) \) as an argument and produces another function \(f(x) \) as an output.

In ordinary calculus, \(f(x_0) \), the value of \(f(x) \) evaluated at \(x_0 \), represents the slope of the tangent line \(T(C, P) : y = T(x; F(x), x_0) = k_{(C,P)}x + c_{(C,P)} \) at the point \(P = (x, y) = (x_0, F(x_0)) \) on the curve \(C : y = F(x) \).

Let the line passing through two points \(P_i = (x_i, F(x_i)) \) and \(P_j = (x_j, F(x_j)) \) on the curve \(C \) be \(L(C, P_i, P_j) : y = L(x; F(x), x_i, x_j) \).

\[
L(x; F(x), x_i, x_j) = \frac{F(x_i) - F(x_j)}{x_i - x_j} (x - x_i) + F(x_i) \quad (28)
\]

The line \(L(C, P, Q) \) passing through \(P = (x_0, F(x_0)) \) and another point \(Q = (t, F(t)) \) on the curve \(C \) tends to \(T(C, P) \), as \(Q \) approaches \(P \), and the slope of \(L(C, P, Q) \) converges to that of \(T(C, P) \).

\[
f(x_0) = \lim_{t \to x_0} \frac{L(x_0; F(x), x_0, t) - L(t; F(x), x_0, t)}{x_0 - t} = k_{(C,P)} \quad (29)
\]
Note that
\[
\frac{d}{dx} H(x) = \frac{d}{dx} F(x) \iff H(x) = F(x) + c \tag{30}
\]

If \(C \) is a line, that is, \(C : F(x) = kx + c \), the curve (line) \(C \) itself is regarded as the tangent line at each point on it, and the slope of the tangent line is constant, \(k \), for all points on \(C \).

2.3.2. Integral A definite integral operation is a function that takes a function \(f(x) \) and a pair of values \((x_L, x_H)\) as arguments and outputs the difference between the values of primitive function, \(F(x) \), evaluated at \(x_H \) and \(x_L \).

\[
\int_{x_L}^{x_H} f(x)dx \equiv F(x_H) - F(x_L). \tag{31}
\]

Let the signed area between the curve \(C' : y = f(x) \) and the horizontal axis \((y = 0)\) from \(x_L \) to \(x_H \) be \(A(f(x), x_L, x_H) \). The value of \(A(f(x), x_L, x_H) \) is equal to the difference between the two values of the primitive function \(F(x) \) evaluated at \(x_H \) and \(x_L \),

\[
\int_{x_L}^{x_H} f(x)dx \equiv F(x_H) - F(x_L) = A(f(x), x_L, x_H). \tag{32}
\]

The relationship is clear when the primitive function is \(F(x) = kx + c \), and its derivative is a constant; that is, \(\frac{d}{dx} F(x) = k \) (see Figure 2).

\[
A(k, x_L, x_H) = k(x_H - x_L)
\]

\[
y = f(x) = k
\]

\[
y = F(x) = kx + c
\]

Figure 2. Definite integral and the signed area when \(\frac{d}{dx} F(x) = k \)
In general, \(A(f(x), x_L, x_H) \) can be evaluated as follows:

Let \(T = \{x_0, x_1, \ldots, x_{n-1}, x_n\} \) be the \(n \)-partitions of \([x_L, x_H]\), \(\Delta t_i = x_i - x_{i-1} \), and the length of the longest sub-interval is the norm of the partition, \(|T|\). The signed area \(A_i = A(f(x), x_{i-1}, x_i) \) between the curve \(C' : y = f(x) \) and the horizontal axis \((y = 0)\) over the \(i \)-th partition \([x_{i-1}, x_i]\) can be approximated by the signed area of a rectangle with height \(f(x_i) \) and base \(\Delta t_i \); that is, \(A_i \approx f(x_i)\Delta t_i \). Note that \(A_i = f(x_i)\Delta t_i \) if \(f(x) \) is constant over \([x_L, x_H]\).

As the norm of the partition approaches zero, the sum of areas of rectangles converges to the signed area between the curve \(C \) and the horizontal axis \((y = 0)\) over \([x_L, x_H]\), and the definite integral is defined as the limit.

\[
\int_{x_L}^{x_H} f(x) \, dx = A(f(x), x_L, x_H) = \lim_{|T| \to 0} \sum_{i=1}^{n} f(x_i)\Delta t_i \quad (33)
\]

In contrast, an indefinite integral is a function that takes a function \(f(x) \) as an argument and produces a family of functions \(F = \{F(x) + c, c \in \mathbb{R}\} \). The codomain of an indefinite integral operation is a set of families of functions, and the image of an indefinite integral is a translation family of functions along the \(y \) axis.

\[
\int f(x) \, dx = F(x) + c = \mathcal{F} \quad (34)
\]

We can recover the exact function \(F(x) \) only if we know a point \(P = (x_0, F(x_0)) \) on the curve \(C \) with \(f(x) \).

\[
F(x) = \int_{x_0}^{x} f(t) \, dt + F(x_0) = A(f(x), x, x_0) + F(x_0) \quad (35)
\]
3. New Representation of q-Calculus and New Dual q-integral

3.1. Primal

3.1.1. Primal q-derivative Let a family of curves $L_q(k_q, \cdot) = \{y = L_q(x; k_q, c)\}$ have a constant primal q-derivative (defined by equation (23)), k_q, at every point in their domain.

$L_q(x; k_q, c)$ must satisfy the condition $D_{(q)} \left(L_q(x; k_q, c)\right) = k_q$.

$$D_{(q)} \left(L_q(x; k_q, c)\right) = \{1 + (1 - q)x\} \frac{d}{dx} L_q(x; k_q, c) = k_q$$ \hspace{1cm} (36)

Therefore,

$$L_q(x; k_q, c) = \int \frac{k_q}{1 + (1 - q)x} dx$$

$$= \frac{k_q}{1 - q} \cdot \ln(|1 + (1 - q)x|) + c$$

$$= k_q \cdot \ln(|1 + (1 - q)x|^{1/\alpha}) + c = k_q \cdot \ln[L_q(x)] + c$$ \hspace{1cm} (37)

where

$$L_q(x) = |1 + (1 - q)x|^{1/\alpha}$$ \hspace{1cm} (38)

Note that $E_q(x) = e_q(x)$, where $1 + (1 - q)x > 0$.

Let us call the curve $L_q(k_q, c) : y = L_q(x; k_q, c) = k_q \cdot \ln(E_q(x)) + c$ a primal q-line with primal q-slope k_q and y-intercept c.

Note that $L_q(0, c) : y = L_q(x; 0, c)$ is a horizontal line, $y = c$.

The line $L_q(x; k_q, c)$ has an interesting property:

$$\frac{L_q(x_i; k_q, c) - L_q(x_j; k_q, c)}{\ln(E_q(x_i)) - \ln(E_q(x_j))} = k_q, \forall x_i, x_j \in \mathbb{R}, x_i \neq x_j, x_i, x_j \neq \frac{1}{q - 1}$$ \hspace{1cm} (39)

From this finding, we define a new primal q-derivative operator $D_{[q]}$,

$$D_{[q]} \left(F(x)\right) = \lim_{y \to x} \frac{F(x) - F(y)}{\ln[E_q(x)] - \ln[E_q(y)]}$$ \hspace{1cm} (40)

Note that

$$D_{[q]} \left(H(x)\right) = D_{[q]} \left(F(x)\right) \iff H(x) = F(x) + c.$$ \hspace{1cm} (41)

$e_q(x)$ is the eigenfunction of $D_{[q]}$.

$$D_{[q]} \left(e_q(x)\right) = \lim_{y \to x} \frac{e_q(x) - e_q(y)}{\ln[E_q(x)] - \ln[E_q(y)]} = e_q(x), \text{ if } 1 + (1 - q)x > 0$$ \hspace{1cm} (42)

In general, $D_{[q]}$ is equivalent to $D_{(q)}$; that is, $D_{[q]} \left(F(x)\right) = D_{(q)} \left(F(x)\right)$, in general, because

$$\lim_{y \to x} \frac{\ln[E_q(x)] - \ln[E_q(y)]}{x \ominus_q y} = 1$$ \hspace{1cm} (43)
Let \(L_q(C, P, P_j) : y = L_q(x; F(x), x_i, x_j) \) be a primal \(q \)-line that passes through the two points \(P_i = (x_i, y_i) = (x_i, F(x_i)) \) and \(P_j = (x_j, y_j) = (x_i, F(x_j)) \) on the curve \(C : y = F(x) \).

\[
L_q(x; F(x), x_i, x_j) = k_q \cdot \ln(E_q(x_i)) + c
\]

\[
k_q = \frac{F(x_i) - F(x_j)}{\ln(E_q(x_i)) - \ln(E_q(x_j))}
\]

\[
c = y_i - k_q \cdot \ln(E_q(x_i))
\]

\(L_q(x; F(x), x_i, x_j) \) can also be expressed as follows:

\[
L_q(x; F(x), x_i, x_j) = k_q \cdot \ln(E_q(x \ominus_q x_i)) + F(x_i)
\]

\[
L_q(x; F(x), x_i, x_j) = k_q \cdot \ln(E_q(x \ominus_q x_j)) + F(x_j)
\]

Figure 4. Primal \(q \)-derivative as the slope of the primal \(q \)-tangent line

We call \(T_q(C, P) : y = T_q(x; F(x), x_0) = k_{q(C,P)} \cdot \ln(E_q(x)) + c_{q(C,P)} \) as the primal \(q \)-tangent line of the curve \(C : y = F(x) \) at the point \(P = (x_0, F(x_0)) \) when \(F(x_0) = T_q(x_0) \) and \(D_{[q]} \big(F(x)\big)\big|_{x=x_0} = k_{q(C,P)}. \)

\[
D_{[q]} \big(F(x)\big)\big|_{x=x_0} \text{ is the primal } q \text{-slope of the primal } q \text{-tangent line at point } P \text{ on the curve } C.
\]

The primal \(q \)-line \(L_q(C, P, Q) \) passing through \(P = (x_0, F(x_0)) \) and another point \(Q = (t, F(t)) \) on the curve \(C \) tends to \(T_q(C, P) \) as \(Q \) approaches \(P \), and the primal \(q \)-slope of \(L_q(C, P, Q) \) converges to that of \(T_q(C, P) \).
3.1.2. **Primal q-integral** If \(f(x) = D_q[F(x)] \), the definite primal q-integral of \(f(x) \) from \(x_L \) to \(x_H \), denoted as \(I_{[q]}^{x_H}_{x_L} f(x) \), is equal to \(F(x_H) - F(x_L) \).

\[
I_{[q]}^{x_H}_{x_L} f(x) = F(x_H) - F(x_L) \tag{51}
\]

Equation (39) gives us a hint on how a primal q-integral can be related to a (deformed) signed area.

Consider the most immediate example, the case of primal q-lines. Let \(F(x) = k_q \cdot \ln(E_q(x)) + c \) and \(f(x) = D_q[F(x)] = k_q \). Let us consider the transformation \((x, y) = (x, f(x)) \rightarrow (u, v) = (\ln(E_q(x)), f(x))\).

Figure 5 shows the graph of \(y = F(x) \) at the top and that of \(u \) and \(v \) at the bottom. The bottom left graph shows the case \(x_{L_1}, x_{H_1} < -\frac{1}{1-q} \), and the bottom right graph shows the case \(x_{L_2}, x_{H_2} > -\frac{1}{1-q} \). \(x_{L_2} \) and \(x_{H_2} \) are set as \(x_{L_2} = \frac{-2}{1-q} - x_{H_1} \) and \(x_{H_2} = \frac{-2}{1-q} - x_{L_1} \).
q-Calculus Revisited

\[y_{L_1} = y_{H_2} \text{ and } y_{H_1} = y_{L_2} \text{ because} \]
\[E_q(x) = |1 + (1 - q)x|^{\frac{1}{1-q}} \]
\[= | -1 - (1 - q)x|^{\frac{1}{1-q}} = \left| 1 + (1 - q) \left(-\frac{2}{1-q} - x \right) \right|^{\frac{1}{1-q}} \]
\[= E_q(-\frac{2}{1-q} - x) \]

Let \(A_q(k_q, u_L, u_H) \) be the signed rectangular area formed by \(v = k_q \) and \(v = 0 \) over the range \([u_L, u_H] \); this is called the primal \(q \)-area.

\[A_q(k_q, u_L, u_H) = k_q \cdot (u_H - u_L) \] (53)

With equation (53), we find that the signed area of each shaded rectangle in the \(u - v \) graph is equal to the corresponding definite integral.

\[A_q(k_q, u_{L_1}, u_{H_1}) = k_q \cdot (u_{H_1} - u_{L_1}) \]
\[= k_q \cdot \{ \ln(E_q(x_{H_1})) - \ln(E_q(x_{L_1})) \} \]
\[= L_q(x_{H_1}; k_q, c) - L_q(x_{L_1}; k_q, c) \]
\[= \int_{[q]x_{L_1}}^{x_{H_1}} L_q(x; k_q, c) \] (54)

\[A_q(k_q, u_{L_2}, u_{H_2}) = k_q \cdot (u_{H_2} - u_{L_2}) \]
\[= k_q \cdot \{ \ln(E_q(x_{H_2})) - \ln(E_q(x_{L_2})) \} \]
\[= L_q(x_{H_2}; k_q, c) - L_q(x_{L_2}; k_q, c) \]
\[= \int_{[q]x_{L_2}}^{x_{H_2}} L_q(x; k_q, c) \] (55)

\[y_{H_1} - y_{L_1} = -(y_{H_2} - y_{L_2}) \text{, because } y_{L_1} = y_{H_2} \text{ and } y_{H_1} = y_{L_2}. \]

From this, we find that

\[\int_{[q]x_{L}}^{x_{H}} L_q(x; k_q, c) = -\int_{[q]x_{H}}^{x_{L}} E_q(-\frac{2}{1-q} - x) \] (56)

From this, we get

\[\int_{[q]x_{L}}^{x_{H}} L_q(x; k_q, c) = \int_{[q]x_{L}}^{x_{H}} L_q(x; k_q, c) + \int_{[q]x_{H}}^{x_{L}} E_q(-\frac{2}{1-q} - x) \] (57)

\[= \int_{[q]x_{L}}^{x_{H}} L_q(x; k_q, c) - \int_{[q]x_{L}}^{x_{H}} E_q(-\frac{2}{1-q} - x) \]
\[= \int_{[q]x_{L}}^{x_{H}} L_q(x; k_q, c), \]
\[\text{ when } x_{L} < -\frac{1}{1-q} < x_{H} \]

Based on the above findings, we define the definite primal \(q \)-integral of \(f(x) \) from \(x_L \) to \(x_H \), \(\int_{[q]x_{L}}^{x_{H}} f(x) \), as follows:

\[\int_{[q]x_{L}}^{x_{H}} f(x) = F(x_{H}) - F(x_{L}) \equiv A_q(f(x), u_L, u_H) \] (58)
We derive the primal q-integral of the q-exponential function, $I_{[q]}^{x_H} (e_q(x))$, with $A_q(k_q, u_L, u_H)$. We can use $A_q(k_q, u_L, u_H) = k_q \cdot \{ \ln(e_q(x_H)) - \ln(e_q(x_L)) \}$ instead of $A_q(k_q, u_L, u_H) = k_q \cdot \{ \ln(E_q(x_H)) - \ln(E_q(x_L)) \}$ because $k_q = e_q(x) = 0$ when $1 + (1-q)x \leq 0$.

Split $[x_L, x_H]$ into n-partitions, $T_q = \{ x_L = x_0, x_1, x_2, \ldots, x_{n-1}, x_n = x_H \}$, where $x_i = x_L \oplus_q (i \odot_q t)$,

$$t = \frac{1}{1 - q} \left[\frac{1}{n} \cdot (x_H \ominus_q x_L) \right]^{\frac{1}{q-1}} - 1$$

![Figure 6. Definite primal q-integral of a q-exponential function](image)

T_q transforms into $U_q = \{ \ln[e_q(x_L)] = u_0, u_1, u_2, \ldots, u_{n-1}, u_n = \ln[e_q(x_H)] \}$, where $u_i = \ln[e_q(x_i)]$, with a transformation $(x, y) = (x, f(x)) = (x, e_q(x)) \rightarrow (u, v) = (\ln[e_q(x)], f(x)) = (\ln[e_q(x)], e_q(x))$.

$$u_i = \ln[e_q(x_i)] = \ln[e_q(x_L)] + i \cdot \ln \{ e_q(t) \}$$

$$u_i - u_{i-1} = \ln \{ e_q(t) \}$$

$$e_q(t) = 1 + (1 - q) \cdot (x_H \ominus_q x_L) \left[\frac{1}{1 - q} \right]^{\frac{1}{q-1}}$$

$$= e_q(x_H \ominus_q x_L) \left[\frac{1}{1 - q} \right]^{\frac{1}{q-1}}$$
\[
\ln \left(e_q(t) \right) = \frac{1}{n(1-q)} \ln \left[1 + (1-q) \cdot (x_H \oplus_q x_L) \right] \\
= \frac{1}{n} \ln \left[e_q(x_H \oplus_q x_L) \right]
\]

Equation (63) shows that the norm of the partition \(U_q, \| U_q \| \), approaches zero when the number of partitions approaches infinity.

Let \(A_{qi} \) be the primal \(q \)-area formed by \(v = e_q(x_i) \) and \(v = 0 \) over the \(i \)-th partition \([u_{i-1}, u_i]\).

\[
e_q(x_i) = e_q(x_L \oplus_q (i \oplus_q t)) = e_q(x_L) \cdot e_q(i \oplus_q t) = e_q(x_L) \cdot \{ e_q(t) \}^i
\]

\[
A_{qi} = A_q(e_q(x_i), u_{i-1}, u_i) = e_q(x_i) \cdot (u_i - u_{i-1}) \\
= \left[e_q(x_L) \cdot \{ e_q(t) \}^i \right] \ln [e_q(t)] \\
= e_q(x_L) \cdot \{ 1 + (1-q) \cdot (x_H \oplus_q x_L) \}^{\frac{1}{(1-q)}} \cdot \frac{1}{n(1-q)} \ln \left[1 + (1-q) \cdot (x_H \oplus_q x_L) \right] \\
= e_q(x_L) \cdot \frac{\ln(z)}{1-q} \cdot \frac{1}{n} \left(\frac{z^{\frac{1}{(1-q)}}}{z^{\frac{1}{(1-q)}} - 1} \right) \\
\text{where } z = 1 + (1-q) \cdot (x_H \oplus_q x_L)
\]

\[A_q(k_q, u_L, u_H)\) can be evaluated as the sum of \(A_{qi} \) when the norm of the partition \(U_q, \| U_q \| \), approaches zero,

\[
\sum_{i=1}^{n} A_{qi} = \sum_{i=1}^{n} \left\{ e_q(x_L) \cdot \frac{\ln(z)}{1-q} \cdot \frac{1}{n} \left(\frac{z^{\frac{1}{(1-q)}}}{z^{\frac{1}{(1-q)}} - 1} \right) \right\} \\
= e_q(x_L) \cdot \frac{\ln(z)}{1-q} \cdot \frac{1}{n} \left(\frac{z^{\frac{1}{(1-q)}}}{z^{\frac{1}{(1-q)}} - 1} \right) \\
= e_q(x_L) \cdot \frac{\ln(z)}{1-q} \cdot \left(\frac{z^{\frac{1}{(1-q)}} - 1}{z^{\frac{1}{(1-q)}} - 1} \right) \\
\]

\[
A_q(k_q, u_L, u_H) = \lim_{\| U_q \| \to 0} \sum_{i=1}^{n} A_{qi} \\
= e_q(x_L) \cdot \frac{\ln(z)}{1-q} \cdot \left(\frac{z^{\frac{1}{(1-q)}} - 1}{z^{\frac{1}{(1-q)}} - 1} \right) \\
= e_q(x_L) \cdot \frac{\ln(z)}{1-q} \cdot \left(\frac{z^{\frac{1}{(1-q)}} - 1}{\ln(z)} \right) \\
= e_q(x_L) \cdot \left(\frac{z^{\frac{1}{(1-q)}} - 1}{\ln(z)} \right) \\
= e_q(x_L) \cdot \{ e_q(x_H \oplus_q x_L) - 1 \} \\
= e_q(x_L) \cdot \{ e_q(x_H) - e_q(x_L) \} \\
\]

Therefore,

\[
\int_{[q]x_L}^{x_H} e_q(x) = F(x_H) - F(x_L) = e_q(x_H) - e_q(x_L)
\]
If \(F(x) = e_q(x) \), we know that \(D_{[q]} \left(F(x) \right) = e_q(x) \) and \(F(0) = 1 \), for all \(q \).

\[
F(x) = 1 + \int_{0}^{x} \left(e_q(t) \right) = 1 + \left\{ e_q(x) - e_q(0) \right\} = e_q(x) \tag{69}
\]

Indefinite primal \(q \)-integral of the \(q \)-exponential function can be expressed as follows:

\[
F(x) = I_{[q]} \left(e_q(x) \right) = \int_{0}^{x} \left(e_q(t) \right) = e_q(x) - e_q(x_0) = e_q(x) + c \tag{70}
\]

In general, the signed area between the trajectory formed by \((u, v)\) over the range \([x_L, x_H]\) and \(v = 0 \) can be evaluated using the Riemann–Stieltjes integral, \(\int_{x=x_L}^{x=x_H} f(x) \, du(x) \) \[1\], where \(u(x) = \ln(E_q(x)) \).

Therefore, when \(f(x) = D_{[q]} \left(F(x) \right) \),

\[
I_{[q]}_{x=x_L}^{x=x_H} \left(f(x) \right) = F(x_H) - F(x_L) \tag{71}
\]

\[
= \int_{x=x_L}^{x=x_H} f(x) \, du(x)
= \int_{x=x_L}^{x=x_H} \frac{f(x)}{1 + (1-q)x} \, dx
\]

Equation \(71\) shows that the new primal \(q \)-integral, \(I_{[q]} \), is equivalent to the primal \(q \)-integral \(I_{(q)} \) in equation \(24\).

Equation \(7\) holds for \(D_{[q]} \) and \(I \) because they are equivalent to \(D_{(q)} \) and \(I_{(q)} \), respectively.

When \(f(x) = D_{[q]} \left(F(x) \right) \) and \(F(x_0) = -c \), the new primal indefinite \(q \)-integral can be expressed as follows:

\[
I_{[q]}_{x=x_0}^{x} \left(f(t) \right) = F(x) + c \tag{72}
\]
3.2. Dual

3.2.1. Dual q-derivative Let a family of curves $L^q_{(k^q,)} = \{y = L^q(x; k^q, c)\}$ have a constant dual q-derivative (as defined by equation (25)), k^q, at every point on their domain.

$L^q(x; k^q, c)$ must satisfy the condition $D^{(q)} L^q(x; k^q, c) = k^q$,

$$D^{(q)} L^q(x; k^q, c) = \frac{1}{1 - q} \frac{d}{dx} L^q(x; k^q, c) = k^q$$ (73)

Therefore,

$$L^q(x; k^q, c) = c' \cdot \exp((1 - q)k^q x) - \frac{1}{1 - q}$$

$$= \frac{c}{1 - q} \exp((1 - q)k^q x) - \frac{1}{1 - q}$$

$$= \left\{ \frac{1}{1 - q} \exp((1 - q)k^q x) + \frac{1}{1 - q} \right\} + \frac{c - 1}{1 - q}$$

$$+ (1 - q) \frac{c - 1}{1 - q} \left\{ \frac{1}{1 - q} \exp((1 - q)k^q x) + \frac{c - 1}{1 - q} \right\}$$

$$= \left\{ \frac{1}{1 - q} \exp((1 - q)k^q x) + \frac{1}{1 - q} \right\} \oplus_q \frac{c - 1}{1 - q}$$

$$= \ln_q (\exp(k^q x)) \oplus_q \frac{c - 1}{1 - q}$$ (74)

Note that $L^q_{(k^q,)}$ is a \oplus_q translation family of a curve along the y axis.

Consider the curve $L^q(k^q, c) : y = L^q(x; k^q, c) = \ln_q (\exp(k^q x)) \oplus_q \frac{c - 1}{1 - q}$ as the dual q-line with dual q-slope k^q and y-intercept $\frac{c - 1}{1 - q}$.

$L^q(x; k^q, c)$ also has the property,

$$\frac{\ln(e_q(L^q(x_i; k^q, c))) - \ln(e_q(L^q(x_j; k^q, c)))}{x_i - x_j} = k^q, \forall x_i, x_j \in \mathbb{R}, x_i \neq x_j.$$ (75)

From this finding, we define a new dual q-derivative operator $D[q]$, as

$$D[q] \left(F(x) \right) \equiv \lim_{y \rightarrow x} \ln(e_q(F(x))) - \ln(e_q(F(y))) \over x - y$$ (66)

Note that

$$D[q] \left(H(x) \right) = D[q] \left(F(x) \right) \iff H(x) = F(x) \oplus_q c$$ (77)

It follows that $D[q] \ln_q(x) = \frac{1}{x}$.

$$D[q] \ln_q(x) = \lim_{y \rightarrow x} \ln(e_q(\ln_q(x))) - \ln(e_q(\ln_q(y))) \over x - y$$

$$= \lim_{y \rightarrow x} \ln(x) - \ln(y) \over x - y = \frac{1}{x}$$ (78)

$D[q]$ turns out to be equivalent to $D^{(q)}$; that is, $D[q]F(x) = D^{(q)}F(x)$, in general, because

$$\lim_{y \rightarrow x} \ln(e_q(F(x))) - \ln(e_q(F(y))) \over F(x) \oplus_q F(y) = 1$$ (79)
\[D_q(F(x)) = \lim_{y \to x} \frac{\ln(e_q(F(x))) - \ln(e_q(F(y)))}{x - y} \]
\[= \lim_{y \to x} \frac{\ln(e_q(F(x))) - \ln(e_q(F(y)))}{F(x) \ominus_q F(y)} \cdot \frac{F(x) \ominus_q F(y)}{x - y} \]
\[= \lim_{y \to x} \frac{F(x) \ominus_q F(y)}{x - y} = D_q(F(x)) \quad (80) \]

Let \(L^q(C, P_i, P_j) : y = L^q(x; F(x), x_i, x_j) \) be the dual \(q \)-line that passes through the two points \(P_i = (x_i, y_i) = (x_i, F(x_i)) \) and \(P_j = (x_j, y_j) = (x_j, F(x_j)) \) on the curve \(C : y = F(x) \).

\[L^q(x; F(x), x_i, x_j) = \ln_q(\exp(k^q x)) \ominus_q \left(\frac{c - 1}{1 - q} \right) \quad (81) \]

\[k^q = \frac{\ln(e_q(F(x_i))) - \ln(e_q(F(x_j)))}{x_i - x_j} \quad (82) \]

\[\frac{c - 1}{1 - q} = y_i \ominus_q \ln_q(\exp(k^q x_i)) \quad (83) \]

\(L^q(x; F(x), x_i, x_j) \) can also be expressed as follows:

\[L^q(x; F(x), x_i, x_j) = \ln_q(\exp(k^q(x - x_i)) \ominus_q F(x_i)) \quad (84) \]

\[L^q(x; F(x), x_i, x_j) = \ln_q(\exp(k^q(x - x_j)) \ominus_q F(x_j)) \quad (85) \]

We call \(T^q(C, P) : y = T^q(x; F(x), x_0) = \ln_q(\exp(k^q(x, C, p)x)) \ominus_q \left(\frac{c^q_{C, p} - 1}{1 - q} \right) \) as the dual \(q \)-tangent line of the curve \(C : y = F(x) \) at the point \(P = (x_0, F(x_0)) \) when \(F(x_0) = T^q(x_0) \) and \(D_q(F(x)) \big|_{x=x_0} = k^q_{C, P} \).
\[D[q] \left(F(x) \right) \bigg|_{x=x_0} \text{ is the dual } q\text{-slope of the dual } q\text{-tangent line at the point } P \text{ on the curve } C. \]

The dual \(q \)-line \(L^q(x; C, P, Q) \) passing through \(P = (x_0, F(x_0)) \) and another point \(Q = (t, F(t)) \) on the curve \(C \) tends to \(T^q(C, P) \) as \(Q \) approaches \(P \), and the dual \(q \)-slope of \(L^q(x; C, P, Q) \) converges to that of \(T^q(C, P) \).

\[
D[q] \left(F(x) \right) \bigg|_{x=x_0} = \lim_{t \to x_0} \frac{\ln(c_q(L^q(x_0; F(x), x_0, t))) - \ln(c_q(L^q(t; F(x), x_0, t)))}{x_0 - t} = k^q_{(C, P)} \tag{86}
\]

3.2.2. New dual \(q \)-integral

Let the indefinite dual \(q \)-integral operator, \([q]_I\), be the inverse operator of the dual \(q \)-derivative operator, \(D[q] \). Because the \(\oplus_q \)-translation family of a function has the same \(q \)-derivative (see equation \(\tag{77} \)), the indefinite dual \(q \)-integral operator should produce a \(\oplus_q \)-translation family of a function.

\[
f(x) = D[q] \left(F(x) \right) \implies [q]_I \left(f(x) \right) = F(x) \oplus_q c. \tag{87}
\]

Let us denote the definite dual \(q \)-integral of \(f(x) \) from \(x_L \) to \(x_h \) as \([q]^{x_h \rightarrow x_L}_I \left(f(x) \right)\).

It is desirable and natural that a definite dual \(q \)-integral vanishes when the integrating range is zero.

\[
[q]^c_I \left(f(x) \right) = 0, \quad \forall c \in \mathbb{R}. \tag{88}
\]

From equation \(\tag{88} \), the function \(F(x) \), with \(D[q] \left(F(x) \right) = f(x) \) and \(F(x_0) = 0 \), can be represented as follows:

\[
F(x) = [q]^{x}_{x_0} \left(f(t) \right). \tag{89}
\]

If \(H(x) = F(x) \oplus_q c \), \(D[q] \left(H(x) \right) = f(x) \) and \(H(x_0) = F(x_0) \oplus_q c = c \). \(H(x) \) can be represented as

\[
H(x) = F(x) \oplus_q c = [q]^{x}_{x_0} \left(f(t) \right) \oplus_q c. \tag{90}
\]

Therefore,

\[
[q]^{x}_{x_0} \left(f(t) \right) = H(x) \oplus_q H(x_0) = \left(F(x) \oplus_q c \right) \oplus_q \left(F(x_0) \oplus_q c \right) = F(x) \oplus_q F(x_0) \tag{91}
\]

Therefore,

\[
[q]^{x_H \rightarrow x_L}_I \left(f(x) \right) = F(x_H) \oplus_q F(x_L) = \ln_q (c_q(F(x_H))) \tag{92}
\]
From equation (92), we find that the following relationship holds for the definite dual q-integral.

$$\int_{x_L}^{x_H} [q] f(x) = \int_{x_L}^{c} [q] f(x) \oplus_q \int_{c}^{x_H} [q] f(x), \quad \forall c \in \mathbb{R} \quad (93)$$

Equation (75) gives us a hint on how a definite dual q-integral can be related to a signed area.

Consider the immediate example, the case of dual q-lines. Let $F(x) = L^q(x; k^q, c) = \ln_q(\exp(k^q x)) \oplus_q \frac{1}{1-q} 1 - q^{x_0}$ and $f(x) = D[eq](F(x)) = k^q$.

$$\int_{x_L}^{x_H} [q] k^q = L^q(x_H; k^q, c) \oplus_q L^q(x_L; k^q, c) \quad (94)$$

Let us consider the transformation $(x, Y) = (x, F(x)) = (x, L^q(x; k^q, c)) \rightarrow (x, w) = (x, \ln(eq(Y))) = (x, \ln(eq(L^q(x; k^q, c))))$.

Figure 8. Relationship between the dual q-integral and signed dual q-area.

Figure 8 shows the graph of $Y = F(x)$ at the top, the graph of x and w in the middle, and the graph of $y = f(x)$ at the bottom.

With equation (75), we find that the signed area of the shaded rectangle at the bottom graph is equal to $w_H - w_L$ in the middle graph.

Let $A^q(k^q, x_L, x_H)$ be the ordinary signed rectangular area formed by $y = k^q$ and $y = 0$ over the range $[x_L, x_H]$.
\[A(q^q, x_L, x_H) = k^q \cdot (x_H - x_L) \] (95)

\[w_H - w_L = \ln [e_q(L^q(x_H; k^q, c))] - \ln [e_q(L^q(x_L; k^q, c))] \]

\[= \ln \left(\frac{e_q(L^q(x_H; k^q, c))}{e_q(L^q(x_L; k^q, c))} \right) \]

\[= \ln \left([e_q(L^q(x_H; k^q, c))] [e_q(L^q(x_L; k^q, c))] \right) \]

\[= \ln \left(e_q(q^q, x_L) \right) = \ln_q(\exp [A(q^q, x_L, x_H)]) = \ln_q(\exp [k^q \cdot (x_H - x_L)]) \]

Let \(A^q(k^q, x_L, x_H) \equiv \ln_q(\exp [A(k^q, x_L, x_H)]) = \ln_q(\exp [k^q \cdot (x_H - x_L)]) \) be a dual \(q \)-area,

\[\int_{x_L}^{x_H} (k^q) = \ln_q(\exp [A(k^q, x_L, x_H)]) \] (96)

\[= A^q(k^q, x_L, x_H) \]

For \(f(x) = D[q](F(x)) \), in general, the ordinary signed area, \(A(f(x), x_L, x_H) \), formed by \(y = f(x) \) and \(y = 0 \) over the range \([x_L, x_H]\) is equal to the ordinary definite integral \(\int_{x_L}^{x_H} f(x)dx \). Therefore, the following relationship holds true:

\[\int_{x_L}^{x_H} (f(x)) = A^q(f(x), x_L, x_H) \] (97)

\[= \ln_q(\exp [A(f(x), x_L, x_H)]) \]

\[= \ln_q \left(\exp \left[\int_{x_L}^{x_H} f(x)dx \right] \right) \]

Using equation (97), \(\int_{x_0}^{x} (\frac{1}{t}) \) is found to be a \(q \)-logarithmic function,

\[\int_{x_0}^{x} (\frac{1}{t}) = \ln_q (\exp \left[\int_{x_0}^{x} \frac{1}{t} dt \right]) \] (98)

\[= \ln_q (\exp [\ln(x) - \ln(x_0)]) \]

\[= \ln_q (\frac{x}{x_0}) = \ln_q(x) \odot_q \ln_q(x_0) \]

If \(F(x) = \ln_q(x) \), we know that \(D[q](\ln_q(x)) = \frac{1}{x} \) and \(F(1) = 0 \) for all \(q \),

\[F(x) = \int_{x_0}^{x} (\frac{1}{t}) = \ln_q(x) \odot_q \ln_q(1) = \ln_q(x) \]

(99)

The indefinite dual \(q \)-integral of \(\frac{1}{t} \) can be expressed as follows, and equation (17) holds with a modification of ordinary addition to \(q \)-difference (\(\odot_q \)).

\[F(x) = \int_{x_0}^{x} (\frac{1}{t}) = \ln_q(x) \odot_q \ln_q(x_0) = \ln_q(x) \odot_q x. \]

(100)
Equation (8) also holds with a modification of ordinary addition to q-difference (\ominus_q).

\begin{align}
D_{[q]} \left(\frac{[q]^x}{a} \left(f(x) \right) \right) &= D_{[q]} \left(F(x) \ominus_q F(a) \right) = f(x) \\
\frac{[q]^x}{a} \left(D_{[q]} \left(F(x) \right) \right) &= \frac{[q]^y}{b} \left(f(x) \right) = F(x) \ominus_q c
\end{align}

4. Relationship Between the Primal and Dual

4.1. Relationship Between Primal and Dual q-derivatives

Let $G(y)$ be the inverse function of $F(x)$, that is, $y = F(x)$ and $x = G(y)$, and $P = (x_0, y_0)$, $Q = (x_1, y_1)$ be points on the curve $C : y = F(x)$. The curve C can also be represented by $C : x = G(y)$.

Let $L_q(C, P, Q)$ be a primal q-line that passes through P and Q.

\begin{equation}
L_q(C, P, Q) : y = k_q \cdot \ln(\exp(\frac{1}{k_q}(y - y_1))) \oplus_q x_1
\end{equation}

Equations (103) and (104) show that the primal q-line that passes through P and Q is the dual q-line passing through P and Q, $L^q(C, P, Q)$, and k^q; the dual q-slope of $L^q(C, P, Q)$ is $\frac{1}{k_q}$.

Let $T_q(C, P)$ and $T^q(C, P)$ be the primal and dual q-tangent lines at P on C, respectively, and let k_q^\ast and $k^q\ast$ be the primal and dual q-slopes of the corresponding q-tangent line. As Q approaches P, k_q converges to k_q^\ast, and k^q converges to $k^q\ast$. Therefore, the primal q-derivative and the dual q-derivative are inversely related.

\begin{equation}
k^q\ast = \frac{1}{k_q}.
\end{equation}

4.2. Relationship Between Primal and Dual q-integrals

Let $f(x) = D_{[q]} \left(F(x) \right)$ and $g(x) = D_{[q]} \left(G(x) \right)$.

\begin{align}
I_{[q]} x_1 \left(f(x) \right) &= y_1 - y_0 \\
I_{[q]} \left(\frac{[g]^y}{y_0} \right) \left(g(y) \right) &= x_1 \ominus_q x_0
\end{align}

\begin{align}
I_{[q]} x_1 \left(f(x) \right) &= y_1 - y_0 \\
I_{[q]} \left(\frac{[g]^y}{y_0} \right) \left(g(y) \right) &= x_1 \ominus_q x_0 = k_q = \frac{1}{k^q}
\end{align}

where $k_q = \frac{y_1 - y_0}{\ln(\exp(\frac{1}{k_q}(y_1))) - \ln(\exp(\frac{1}{k_q}(y_0)))}$.

Therefore, the definite primal and dual q-integrals are proportionally related to the q-slope of the q-line passing through two points P and Q.
Acknowledgments

The author would like to thank Prof. Borges for his helpful advice and insights on the issue examined in this study.

Reference

[1] Tsallis C 1988 Possible generalization of Boltzmann-Gibbs statistics Journal of Statistical Physics, 52, 479-487
[2] Tsallis C 1994 What are the numbers that experiments provide? Quimica Nova, 17, 468-471.
[3] Borges E P 2004 A possible deformed algebra and calculus inspired in nonextensive thermostatistics, Physica A, 340, 95-101.
[4] Lang S 1993 Real and Functional Analysis 3rd edn (New York: Springer)