IMMUNOCHEMICAL STUDIES ON BLOOD GROUPS

LXVI. Competitive Binding Assays of A₁ and A₂ Blood Group Substances with Insolubilized Anti-A Serum and Insolubilized A Agglutinin from Dolichos biflorus*

BY EDWARD C. KISAILUS† AND ELVIN A. KABAT

(From the Departments of Microbiology, Human Genetics and Development, and Neurology, Columbia University, New York 10032)

There are conflicting views on the nature of subgroups A₁ and A₂ of blood group A. One holds that the same determinants are present on either, but that there are fewer determinants on A₂ than on A₁ erythrocytes. Soluble A₂ and A₁ substances would thus have the same kinds of determinants, but in different numbers. The A₁ and A₂ transferases are different enzymes, but the A₂ enzyme is less efficient than the A₁ transferase, but it has the same specificity (1) in adding terminal N-acetyl-D-galactosaminyl residues to precursor blood group H oligosaccharide side chains. Such a difference in enzymatic activity has been proposed to be responsible for the H activity of A₂ cells (2). A population of those anti-A₁ antibodies which do not agglutinate A₂ erythrocytes is known and has been prepared from the purified IgM fraction of anti-A sera by absorption with A₂ erythrocytes, but not from the IgG fractions of the same sera (3). Such anti-A antibodies have been assumed (3) to have a low affinity so that if they use only one of their ten valences per erythrocyte, they would be unable to hold two erythrocytes together. The anti-A₁ antibodies are hypothesized to agglutinate A₁ erythrocytes which have receptors that are more numerous and closer together, so that each erythrocyte could be bound by two or more of the combining sites of each antibody molecule.

The other concept, based predominantly on immunochemical studies with A₁ and A₂ glycoproteins, favors a qualitative difference (4). Absorption with insolubilized polyleucyl A₂ substance did not remove all of the anti-A₁, but left anti-A₁ had all determinants been present on A₂ as well as on A₁ substances, no anti-A should have remained. Since several different determinants on soluble blood group A substances have been found (5, 6, 7), a basis for a structural difference between A₁ and A₂ exists. All A determinants have the structure

\[\text{L-Fucose} \]
\[\downarrow \]
\[\text{2} \]
\[\text{D-GalNAc} \rightarrow 3 \text{D-Gal} \]

but differ in that this trisaccharide may be linked β₁→3 or β₁→4 to GlcNAc to give

* Aided by National Science Foundation grants BMS-72-02219 A04 and PCM 76-81029. From Part II of a dissertation submitted by Edward C. Kisailus in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Pure Science, Columbia University, New York.

† Present address: Department of Oral Biology, State University of New York at Buffalo, Buffalo, New York.
FIG. 1. (a) Structure in blood group A glycoprotein proposed for A specificity; dGalNAc, substituted α1→3 on the type 1 chain, is hypothesized to be A₁-specific, and on the type 2 chain, A₂-specific. (b) Structure in blood group A glycoprotein proposed for A₂ specificity; the chain lacking the nGalNAc is HLeᵦ-specific. (c) Type 2 chain joined β1→6 to N-acetylgalactosamine, compound JS B₉₃.91 (14).

what have been termed (8, 9, 10) type 1 and type 2 blood group A determinants (Fig. 1). A second lFuc linked α1→4 or α1→3 to the dGlcNAc also gives two additional A determinants, and antibodies specific for the mono- or difucosyl determinants have been recognized (11). In the intact blood group substance, these oligosaccharide type 1 and type 2 determinants are linked β1→3 and β1→6, respectively, to dGal.

The type 2 H determinant may be linked β1→6 to the dGalNAc which had been cleaved from the polypeptide backbone (Fig. 1 c), and by analogy to oligosaccharides isolated from blood group B substance (12, 13) it could have an additional dGalNAca₁→3,
linked to the subterminal βGal of the H determinant in Fig. 1c (14), to give a second type
2 A determinant. If, as hypothesized (4), A, substances have both type 1 and type 2 A
determinants (Fig. 1a) whereas A, substances lack the nonreducing βGalNAc linked
α1→3 of the type 1 A determinant (Fig. 1b), anti-A, would consist of antibodies specific
for type 1 A determinants, and it would not be removed by insoluble A, substance, as
was found. Moreover, the absence of the terminal βGalNAcα1→3 on the type 1 chains
would provide the many H determinants found on A, substances, and these should be
type 1 H specific.

The distinction between A, and A, is further complicated by the inference that
erythrocytes contain only type 2 chains (15) from experiments in which an HLeb
glycoprotein purified from O erythrocytes by the procedure of Marchesi and Andrews
(16) was radiolabeled with [14C]N-acetyl-β-galactosamine by an enzyme from group A
human milk. After alkaline borohydride degradation (17), all of the label in the reduced
oligosaccharides was subsequently released by an endo-β-galactosidase (18) which
specifically cleaves the β1→4 link in

\[
\begin{align*}
\text{LFucα1} & \\
\downarrow & \\
\text{βGalNAcα1→3βGalβ1→4βGlcNAc or βGlc} & \\
or & \\
\text{βGal}.
\end{align*}
\]

Had type 1 chains been present and had they been labeled, they would not have been
split (18); no type 1 chain was found. However, it is well established that HLeb
specificity (19, 20) requires a second fucose on the type 1 chain, and that the N-acetyl-galactosami-
nyl blood group A transferase does not act on difucosyl H determinants (21, 22). There is
thus no reason to believe that the type 1 HLeb determinants were labeled.

A competitive binding assay is used in the present study to compare inhibition by A,
and A, blood group substances of binding of tritium-labeled blood group A substance by
insolubilized lectin and antiserum. Slopes of inhibition curves reflect the nature of the
interaction of antigens with the combining sites of the antibodies. Structurally related or
identical antigens should yield parallel inhibition lines, whereas structurally different
ones will give nonparallel lines. Slopes of curves were the same with insolubilized
Dolichos biflorus, a lectin which precipitates blood group A substances and has a
specificity for terminal α-linked βGalNAc, and for the trisaccharide moiety

\[
\begin{align*}
\text{LFucα1} & \\
\downarrow & \\
\text{βGalNAcα1→3βGalβ1→4βGlcNAc or βGlc} & \\
or & \\
\text{βGal}.
\end{align*}
\]

With human anti-A, differences in slope between A, and A, were found, indicating a
qualitative difference between these substances themselves and the population of
antibodies with which each reacts.

The affinities of anti-A sera and anti-A sera absorbed on polyleucyl-A, or polyleucyl-
A insolubilized blood group substances were analyzed by a modified competition assay
(24, 25). The slopes of the inhibition curves are proportional to the relative affinities
of the antibodies. Anti-A, antibodies not absorbed on polyleucyl-A, substance retained
their high affinity for labeled blood group A substance, whereas partial absorption of the
same anti-A serum with polyleucyl blood group substances having A, and A, determin-
ants left antibodies of much lower affinity in the supernate. This is in substantial
disagreement with a key assumption of the hypothesis that the differences between A,
and A, are only quantitative (3) which requires that the anti-A, antibodies be of low
affinity.
This evidence strongly favors a structural difference in the A determinants of water soluble A, and A2 glycoproteins with a distinct population of antibodies specific for each determinant, and thus raises the question of whether or not type 1 A determinants will not eventually be found on the blood group A erythrocyte.

Materials and Methods

Blood group substance used in competitive binding assays (CBA)\(^1\) was isolated from \(^{1}\text{H} \) acetic anhydride-labeled hog mucin A + H (26, 27) by affinity chromatography on a Dolichos-Sepharose 2B column. The absorbed, A-active material was eluted with \(\text{GalNAc} \) as previously described (26, 27). Inhibitors used in CBA included human blood group A, substances MSM 10%, MSS 10% (28), and Cyst 9 from Dr. Harold Baer (29), and human blood group A\(_{2} \) substance Cyst 14 phenol insoluble (4). Cyst 14 fucose eluate and Cyst 14 effluent are fractions from Cyst 14 phenol insoluble separated by affinity chromatography on Lotus-Sepharose (30). An A\(_{2} \) substance prepared from human saliva W. G. phenol insoluble was also available (31). Hog blood group A, substances, hog gastric mucin (HGM) GalNAc eluate was also used; it reacts like human A, substances (30).

Ethyl chloroformate insolubilized (32, 33) human anti-A serum Chris D\(_{2}\) (34) and D. biflorus (23) insolubilized on cyanoener bromide-activated Sepharose 2B (30, 35-37) were prepared as described earlier (26). Whole anti-A serum was acidified by adding 1.0 M sodium acetate-acetic acid buffer, pH 4.6, to a final concentration of 0.20 M (pH 4.9-5.0). Ethyl chloroformate (0.05 ml/ml serum) was added by drops with sufficient stirring to keep it in suspension. An abundant precipitate formed within 15 min; stirring was stopped and the mixture was placed in a refrigerator for 16 h. The insoluble serum was dispersed with a Kontes glass homogenizer (Kontes Co., Vineland, N. J.), centrifuged at 1,200 g at 4°C for 1 h, the precipitate washed once with cold 0.1% \(\text{Na}_{2}\text{CO}_{3} \), and then repeatedly with 10 mM phosphate-buffered saline containing 0.1% \(\text{NaN}_{3} \) until the OD\(_{280}\) of the washings was <0.02. The final pellet was stored at 4°C until needed. The Dolichos lectin was coupled to Sepharose 2B in the presence of 0.1 M \(\text{GalNAc} \) to protect the sites.

Sera were absorbed by passing samples of Chris D\(_{1}\) or Jos D\(_{1} + D_{2}\) (34) through columns of polyleucyl insolubilized blood group substance (4). Two 5-ml portions were passed through individual columns of PL-Cyst 14 phenol insoluble (A\(_{2} \)) and PL-Hog A (A\(_{1} \)). The effluent sera from the PL-BGS columns were tested for their precipitating capacity by quantitative precipitin assay (38). Samples of Christ and Jos absorbed in the previous study (4) on PL-Cyst 14 (A\(_{2} \)), PL-Hog A (A\(_{1} \)), and PL-McDon (A\(_{3} \)) were available.

Two types of CBA were performed. One measured competition for insolubilized Chris, or Dolichos-Sepharose between labeled and unlabeled blood group substance; in the other, competition for the labeled blood group substance between insolubilized Chris and soluble antibodies was assayed. For the competition assay with unlabeled blood group substance, = 2,000 cpm of HGM GalNAc eluate were mixed with varying amounts of unlabeled blood group substance followed by an amount of insolubilized Chris or of Dolichos-Sepharose sufficient to bind 50-60% of the labeled material. The tubes were mixed by rotation for 16 h at 4°C. Separation of bound from free radioactivity and preparation of the samples for counting was as previously described (26, 27). In the soluble antibody CBA, a constant amount of insolubilized Chris, sufficient to bind 50-60% of the labeled HGM GalNAc eluate, was mixed with varying amounts (measured in ng AbN/ml from a quantitative precipitin curve with MSM 10%) of antiserum containing the competing antibodies. A constant amount, = 2,000 cpm of labeled blood group substance, was then added. The tubes were rotated in the cold for 16 h and processed as above. The total volume in both assays was 350 \(\mu \)l.

In both assays, the data were expressed graphically as the percent of inhibition (of binding of labeled antigen) versus nanograms of blood group substance, or of AbN added. The formula used to compute percent of inhibition was:

\[
\left(\frac{1 - \text{total cpm added} - \text{cpm in supernate with inhibitor}}{\text{total cpm added} - \text{cpm in supernate without inhibitor}} \right) \times 100.
\]

The slopes of the lines in the linear portion of the sigmoid plot expressed as the change in percent of inhibition per one log unit, are computed as the difference in percent of inhibition for two points

\(^{1}\)Abbreviations used in this paper: CBA, competitive binding assay; HGM, hog gastric mucin.
one log unit apart on the linear part of the graph. All determinations were set up in duplicate, and analyses did not generally differ by more than ±5%. Competitive binding data in the figures give combined results of three experiments with each substance.

Binding data presented in this manner will take the form of a sigmoid curve for a uniform set of sites. We will be discussing the apparent slopes of the lines in the linear portion of the curves and the concentration (blood group substance or antibody added) at half saturation. The concentration at half saturation reflects the apparent binding constant. The apparent slope gives an indication of interactions or heterogeneity or both.

Results

CBAs of A₁ and A₂ Blood Group Substances with Insolubilized Antiserum and Lectin. Fig. 2 a is the CBA with Dolichos-Sepharose and various A₁ and A₂ substances. A₁ and A₂ substances differ in the amount required to inhibit 50% binding; 11-12 times more A₂ than A₁ substance by weight is needed, reflecting a quantitative difference between them with respect to the number of A determinants of the structure

\[
\text{LFuc} \downarrow \ \text{DGalNAc} \rightarrow \text{3pGal} \rightarrow.
\]

The two human A₁ substances and the HGM GalNAc eluate fall on the same line and therefore they have similar numbers of determinants. The various A₂ substances, WG phenol insoluble, the Cyst 14 fucose eluate, and unfractionated Cyst 14, also have the same number of determinants, but 1/11 as many as the A₁ substances, and they fall on another line. The slopes of the lines are similar, indicating a similar binding affinity for the Dolichos site of the determinants in both A₁ and A₂ substances.

Fig. 2 b is a CBA using the same blood group substances with insolubilized human anti-A Chris. The A₁ substances are 7- to 10-fold better inhibitors of binding than are the A₂ substances, as reflected by the amounts needed for 50% inhibition. In contrast to the findings with Dolichos, individual A₁ substances vary in inhibiting power per unit of weight, and hence in their numbers of determinants. Quantitative precipitin data (4, 30) support these findings; MSM 10%, the best inhibitor, with 140 ng for 50% inhibition, requires 1.6 μg of substance to precipitate 50% of the Chris N which it precipitated at equivalence, whereas the HGM GalNAc eluate, 190 ng for 50% inhibition, or 25% less active than MSM 10%, needs 2.0 μg for 50% precipitation. There are no data for MSS 10%. Cyst 14 phenol insoluble, WG phenol insoluble, and Cyst 14 fucose eluate are all equal within experimental error. Cyst 14 effluent is ≈2.5 times poorer in CBA than are the other A₂ substances, in agreement with the finding that more than twice as much Cyst 14 effluent, as Cyst 14 phenol insoluble, is needed for 50% precipitation, 5 and 2 μg, respectively.

As in the case of Dolichos assay, these differences between A₁ and A₂ are consistent with a larger number of receptors on A₁ substances than on A₂. The slopes of the A₁ and A₂ lines differ; e.g., the ratio of amount of A₁ to A₂ substance required to inhibit a given percent of binding decreases as the percent of inhibition increases, indicating that A₁ substance competes relatively stronger with the labeled HGM GalNAc eluate for antibody combining sites.
than does the A₂ substance. This is consistent with some qualitative differences between them, as well as with heterogeneity of the antibody populations reacting with each.

Competition for Binding of Labeled Blood Group Substance Between Insolubilized Antiserum and Soluble Antibody. The sera used in the soluble antibody CBA were human anti-A Chris D₂ and Jos D₁ + D₂, either unabsorbed or absorbed on columns of PL-Cyst 14 (A₂) or PL-Hog A (A₁). The precipitating activities of these sera are shown in Fig. 3. The curves are typical, reaching a maximum and then decreasing as more antigen is added. Antibodies reacting with A₂ substances were specifically removed (Figs. 3 b and 3 e) by absorption with PL-Cyst 14 (A₂). Repeated absorption with PL-Cyst 14 (A₂) failed to effect total removal of the antibodies reacting with the A₁ substance. Absorption with
PL-Hog A (A1), performed to remove only part of the antibodies, leaves the proportion of antibodies in the effluent reacting with A1 and A2 substance unchanged (Fig. 3 c and 3 f). These data agree with earlier findings (4).

Assays of the ability of the variously absorbed antisera to compete with insolubilized, unabsorbed Chris D2 for the labeled HGM GalNAc eluate are shown in Fig. 4. The slopes of the inhibition lines measure the ability of the soluble antibodies to compete with the insolubilized antiserum for A determinants. Soluble antibodies with higher affinity can compete more effectively than antibodies of lower affinities; the slope of the inhibition line is directly proportional to relative affinity. Figs. 4 a and 4 b show the curves for the inhibition of binding with the Chris D2 and Jos D1 + D2 sera from Fig. 3. They were absorbed at least twice through the indicated PL-BGS column. The slope of the curve for the unabsorbed Chris is 108, and for Jos, 78; therefore, Chris has a higher relative affinity than Jos. After absorption with PL-Cyst 14 A2 substance Chris and Jos have about the same affinities within the experimental error that were found for the unabsorbed serum, i.e., 97 for Chris and 73 for Jos. There is little or no change in the amounts of absorbed Chris and Jos for 50% inhibition as compared to the unabsorbed, 40 and 50 ng for Chris (Fig. 4 a) and 92 and 88 ng for Jos (Fig. 4 b) respectively.

Chris and Jos partially absorbed on PL-Hog A, which is like human A1 substances (4, 30), have lower binding affinities for [3H]HGM GalNAc eluate than the unabsorbed sera. This is reflected in the lower slopes, 36 for Chris (Fig. 4 a), and 31 for Jos (Fig. 4 b). With both sera, about five times more AbN is needed to inhibit 50% binding as compared to the unabsorbed serum.

Figs. 4 c and d show a set of inhibition curves with the samples of Chris and Jos that had been absorbed and remained from the previous study (4). One set of curves, Chris and Jos absorbed with PL-McDon (A1), were not done for Figs.
EDWARD C. KISAILUS AND ELVIN A. KABAT

FIG. 4. Competitive binding assay with [3H]HGM GalNAc eluate and insolubilized human anti-A serum Chris by (a) Chris- and (b) Jos-absorbed (in this study) and (c) Chris- and (d) Jos-absorbed samples used in (4) (●), unabsorbed; (○), absorbed with PL-A1; (★), absorbed with PL-Hog A; (●), absorbed with PL-McDon. The quantity giving 50% inhibition of binding is indicated by an arrow and number. The number at the end of each line is the apparent slope (semilog plot).

Discussion

It is clear that there are more A determinants on A1 than on A2 glycoproteins or on erythrocytes (39), and this study firmly supports the views that there is also a qualitative immunochemical difference, and that A1 involves a structure not present in A2 soluble glycoproteins. The CBA inhibition curves with A1 and A2 substances and antibodies or lectin yield information not obtainable by
IMMUNOCHEMICAL STUDIES ON BLOOD GROUPS

quantitative precipitin inhibition, since slopes of the inhibition lines should be parallel if the differences are exclusively quantitative.

D. biflorus has a homogeneous combining site specific (23) for the A trisaccharide which both A determinants, A\(^1\) and A\(^2\), have in common. By CBA and quantitative precipitin assay (23) with *Dolichos*, there are quantitatively more of these terminal groups in A\(^1\) than in A\(^2\) saliva and cyst substances, and by CBA, the slopes are parallel as expected (Fig. 2a). There are also about five times more *Dolichos*-reactive sites on A\(^1\) than on A\(^2\) erythrocytes, as determined by electron microscopy of human erythrocytes with ferritin-conjugated *Dolichos* (40).

The findings in Fig. 2a are of interest because they show that A\(^1\) and A\(^2\) macromolecules which differ 11-fold in their number of reactive groups per unit of weight will give lines with the same slope in CBA, provided the receptor site (*Dolichos*) is recognizing the same structure on each determinant. Thus, variation in the number of sites per glycoprotein molecule, e.g., in their valence and despite their polydispersity, does not significantly affect the slope.

With anti-A, which is a heterogeneous population of antibody molecules, however, the individual A\(^1\) substances varied about twofold in number of their determinants per unit of weight. However, A\(^2\) substances from two individuals, WG phenol insoluble from human saliva, and Cyst 14 phenol insoluble (A\(^2\)), fell on the same curve. Cyst 14 phenol insoluble (A\(^2\)) was separated on Lotus-Sepharose into two portions, the nonabsorbed effluent (about one-third) and the absorbed fraction elutable by fucose (two-thirds). The finding (30) that the fucose eluate was about as potent in precipitating anti-A while the effluent had only 54% of the precipitating activity is in good agreement with experimental values in Fig. 2b, the effluent having \(\approx40\)% of the activity of the original Cyst 14 phenol insoluble (A\(^2\)) or the fucose eluate.

The slopes of the A\(^1\) and A\(^2\) inhibition curves with insolubilized anti-A serum are not parallel (Fig. 2b), indicating a qualitative difference. This is supported by the quantitative precipitin finding that although both A\(^1\) and A\(^2\) substances reach equivalence in the same region and decrease as more antigen is added, the amount of AbN precipitated at equivalence by A\(^2\) substance is less than that precipitated by A\(^1\) substance (4). If the difference were only quantitative, one would expect to reach the same maximum with A\(^2\) substance and the inhibition lines to be parallel in CBA. Thus, there is a proportion of anti-A antibodies, anti-A\(^1\), which do not precipitate with A\(^2\) substance and do bind in CBA. The specificity of these antibodies could be for the A-specific trisaccharide linked \(\beta1\rightarrow3\) to \(\alpha\)GlcNAc to give a type 1 determinant. Such antibodies must have sites large enough to accommodate the whole determinant. The antibodies from Chris anti-A have been purified (34) according to size of the combining site by elution from PL-Hog A with \(\alpha\)GalNAc followed by the ARL 0.52 pentasaccharide with the structure (5, 7)

\[
\begin{align*}
1\text{Fuc} & \\
\downarrow & \\
2 \text{GalNAc} & \\
\rightarrow3 \text{Gal} & \\
\rightarrow4 \alpha\text{GlcNAc} & \\
\rightarrow6 \text{R}.
\end{align*}
\]

Both IgG and IgM were eluted and subsequently separated by density gradient
centrifugation. The IgG and IgM from the GalNAc and AR\textsubscript{L} 0.52 eluates were similar in precipitating A\textsubscript{1} substance, whereas a smaller proportion of both IgG eluates was precipitated by A\textsubscript{2} substance. The IgM eluates were not tested. A\textsubscript{2} substance precipitated a larger proportion of antibodies from the IgG GalNAc eluate than from the IgG AR\textsubscript{L} 0.52 eluate (4). The GalNAc eluate would be expected to have more sites specific for the smaller trisaccharide structure

\[
\text{LFuc} \downarrow \\
2
\text{dGalNAc} \rightarrow 3\text{dGal}
\]

which A\textsubscript{1} and A\textsubscript{2} share, whereas the AR\textsubscript{L} 0.52 eluate would have more sites of larger size. The suggestion that a portion of the IgG anti-A is A\textsubscript{1} specific is contrary to the assumption of the quantitative theory that IgG anti-A agglutinates both A\textsubscript{1} and A\textsubscript{2} cells (3).

Only a small proportion of the absorbed Chris (31\%) is eluted with AR\textsubscript{L} 0.52, and the slope difference in CBA is presumably measuring this antibody. The absorption experiments are consistent with this. Removal of A\textsubscript{2}-reactive antibodies by absorption with PL-Cyst 14 (A\textsubscript{2}) leaves an effluent which is A\textsubscript{1} specific (4), and has the same relative affinity as the unabsorbed serum (Figs. 4 a and b), or even higher (Fig. 4 c). Removal of a proportion of high-affinity antibodies by absorption on PL-Hog A or PL-McDon (A\textsubscript{1}) yields effluents of lower affinity.

The AR\textsubscript{L} 0.52 eluate from Chris was found to contain 18\% IgM anti-A, whereas that from Jos had no IgM anti-A (34). This is in accord with the finding that after absorption with PL-Cyst 14 (A\textsubscript{2}), Chris had enhanced its capacity to inhibit per unit of weight as compared to the unabsorbed serum; with Jos, the PL-Cyst 14 (A\textsubscript{2}) absorbed and the unabsorbed serum had the same binding affinities.

The ability to prepare anti-A\textsubscript{1}-specific antibodies by absorption with A\textsubscript{2} erythrocytes (3) or insolubilized A\textsubscript{2} glycoprotein from ovarian cyst fluid (4) casts doubt on findings that only type 2 chains are present on the glycoprotein ABH determinants of erythrocytes. Moreover, there are two important independent immunological observations which strongly support the association of A\textsubscript{1} determinants with the type 1 chain and A\textsubscript{2} determinants with the type 2 chain. One of these is the discovery of an antibody which reacted only with OIL\textsubscript{e}(a-b+) erythrocytes (41). Since this antibody cannot react with the type 1 A determinant on A\textsubscript{1} erythrocytes in which a GalNAc would be substituted on the Gal of the HLeb determinant, but can react with A\textsubscript{2} or O erythrocytes which would lack the type 1 A determinant, type 1 A chains that are A\textsubscript{1} determinants must be present on the erythrocytes. The second is the demonstration of an antibody specific for an A\textsubscript{1}Leb determinant (42-44) which reacted only with A\textsubscript{1}Leb erythrocytes but not with A\textsubscript{2}Leb, OLeb, or A\textsubscript{1}Lea erythrocytes. Thus, the combining site of this antibody requires a type 1 A chain for the A\textsubscript{1} specificity on erythrocytes.

Mohn et al. (45) have recently demonstrated a qualitative difference between A\textsubscript{1} and A\textsubscript{2} erythrocytes by gel diffusion using erythrocyte stromata and antisera to human A\textsubscript{1} and A\textsubscript{2} saliva produced in rabbits which secreted an A-like substance in their saliva.
Hakomori et al. (46) demonstrated that two of four A active glycolipids isolated from A₁ erythrocytes were absent from A₂ erythrocytes but all four were built of type 2 chains, one linked β1→3 and the other β1→6 to the same DGal. One of the four glycolipids has an additional branch of undetermined structure. These A glycolipids, excluding the undetermined branch, all involve type 2 chains and would not account for our findings, nor for those of Mohn et al. (45).

Summary

Competitive binding assays using ³H-labeled blood group A substance and insolubilized Dolichos biflorus lectin or human anti-A were carried out, measuring competition by blood group A₁ and A₂ glycoproteins, and by unabsorbed anti-A sera, and with these sera absorbed with the A₁ and A₂ glycoproteins. With Dolichos lectin specific for

\[
\begin{align*}
\text{LFuc}_1 \\
\downarrow \\
2 \\
\text{DGalNAc}_1 \rightarrow 3 \text{DGal} \\
\end{align*}
\]

A₁ substances had about 11 times as many determinants as did A₂ substances, but the slopes of the lines in the competitive binding assays were the same. With insolubilized anti-A, A₂ substances gave lines of lower slopes. Although individual A₁ populations varied in the amounts giving 50% inhibition in the assays, as did A₂ substances, the slopes of the lines for the A₁ substances were the same and always higher than the slopes of the lines for the A₂ substances. Competitive binding assays with unabsorbed anti-A sera and with these sera absorbed with insoluble polyleucyl A₁ and A₂ substances showed that partial absorption of polyleucyl A₁ substances left antibodies of lower slope in the supernate, whereas absorption with polyleucyl A₂ substance left antibodies (anti-A₁) having the same or an even higher slope than the unabsorbed sera. The findings indicate that human A₁ and A₂ glycoproteins differ in their determinants, and that A₂ specificity is determined by the type 2 chain in which the A trisaccharide

\[
\begin{align*}
\text{LFuc}_1 \\
\downarrow \\
2 \\
\text{DGalNAc} \alpha 1 \rightarrow 3 \text{dGal} \\
\end{align*}
\]

is linked β1→4 to dGlcNAc, whereas the A₁ specificity is determined by the type 1 chain in which this trisaccharide is linked β1→3 to dGlcNAc; most of the determinants in the glycoproteins have a second LFuc linked α1→3 and α1→4 to the dGlcNAc of the type 2 and type 1 chains, respectively.

Received for publication 21 November 1977.

References
1. Schachter, H., M. A. Michaels, C. A. Tilley, M. C. Crookston, and J. H. Crookston. 1973. Qualitative differences in the N-Acetyl-d-galactosaminyl transferases produced by human A₁ and A₂ genes. Proc. Natl. Acad. Sci. U. S. A. 70:220.
EDWARD C. KISAILUS AND ELVIN A. KABAT 841

2. Watkins, W. M., and W. T. J. Morgan. 1957. The A and H character of the blood group substances secreted by persons belonging to group A. *Acta Genet. Stat. Med.* 6:521.

3. Mäkelä, O., E. Ruoslahti, and C. Ehnholm. 1969. Subtypes of human ABO blood groups and subtype-specific antibodies. *J. Immunol.* 102:763.

4. Moreno, C., A. Lundblad, and E. A. Kabat. 1971. Immunochemical studies on blood groups. Ll. A comparative study of the reaction of A, and A2 blood group glycoproteins with human anti-A. *J. Exp. Med.* 134:439.

5. Lloyd, K. O., and E. A. Kabat. 1964. Some products of the degradation of blood group substances by alkaline borohydride. *Biochem. Biophys. Res. Commun.* 16:385.

6. Painter, T. J., W. M. Watkins, and W. T. J. Morgan. 1965. Serologically active fucose-containing oligosaccharides isolated from human blood-group A and B substances. *Nature (Lond.)* 206:594.

7. Lloyd, K. O., E. A. Kabat, E. J. Layug, and F. Gruezo. 1966. Immunochemical studies on blood groups. XXXIV. Structures of some oligosaccharides produced by alkaline degradation of blood group A, B, and H substances. *Biochemistry.* 5:1489.

8. Cheese, I. A. F. L., and W. T. J. Morgan. 1961. Two serologically active trisaccharides isolated from human blood group A substance. *Nature (Lond.)* 191:149.

9. Watkins, W. M. 1972. Blood group specific substances. In *Glycoproteins.* Part B. A. Gottschalk, editor. Elsevier, U. M., Amsterdam. 2nd edition. 830–891.

10. Kabat, E. A. 1973. Immunochemical studies on the carbohydrate moiety of water soluble blood group A, B, H, Le* a* and Le* b* substances and their precursor I antigens. In Advances in Chemistry. American Chemical Society, Washington, D. C. 117:334.

11. Lundblad, A., and E. A. Kabat. 1971. Immunochemical studies on blood groups. XLVIII. Activity of fucose-containing oligosaccharides isolated from human urine and from human ovarian cyst A and B blood group substances. *J. Immunol.* 106:1572.

12. Newman, W., and E. A. Kabat. 1976. Immunochemical studies on blood groups. Structures and immunochemical properties of nine oligosaccharides from B-active and non-B-active blood group substances of horse gastric mucosae. *Arch. Biochem. Biophys.* 172:535.

13. Maisonrouge-McAuliffe, F., and E. A. Kabat. 1976. Immunochemical studies on blood groups. LXV. Structures and immunochemical properties of oligosaccharides from two fractions of blood group substance from human ovarian cyst fluid differing in B, I, and i activities and reactivity toward concanavalin A. *Arch. Biochem. Biophys.* 175:90.

14. Rovis, L., B. Anderson, E. A. Kabat, F. Gruezo, and J. Liao. 1973. Structures of oligosaccharides produced by base-borohydride degradation of human ovarian cyst blood group H, Le* a* and Le* b* active glycoproteins. *Biochemistry.* 12:5340.

15. Takasaki, S., and A. Kobata. 1978. Chemical characterization and distribution of ABO blood group active glycoprotein in human erythrocyte membrane. *J. Biol. Chem.* 251:3610.

16. Marchesi, V. T., and E. P. Andrews. 1971. Glycoprotein: isolation from cell membranes with lithium diiodosalicylate. *Science (Wash. D. C.)* 174:1247.

17. Iyer, R. N., and D. M. Carlson. 1971. Alkaline borohydride degradation of blood group H substance. *Arch. Biochem. Biophys.* 142:101.

18. Takasaki, S., and A. Kobata. 1976. Purification and characterization of an endo-β-galactosidase produced by *Diplococcus pneumoniae.* *J. Biol. Chem.* 251:3603.

19. Watkins, W. M., and W. T. J. Morgan. 1962. Further observations on the inhibition of blood-group specific serological reactions by simple sugars of known structure. *Vox Sang.* 7:129.

20. Marr, A. M. S., A. S. R. Donald, W. M. Watkins, and W. T. J. Morgan. 1967.
Molecular and genetic aspects of human blood-group Le\(^b\) specificity. *Nature (Lond.)* 215:1345.

21. Kobata, A., E. F. Grollman, and V. Ginsburg. 1968. An enzymic basis for blood type A in humans. *Arch. Biochem. Biophys.* 124:609.

22. Hearn, V. M., Z. G. Smith, and W. M. Watkins. 1968. An α-N acetylgalactosaminyltransferase associated with the human blood-group A character. *Biochem. J.* 109:315.

23. Etzler, M. E., and E. A. Kabat. 1970. Purification and characterization of a lectin (plant agglutinin) with blood group A specificity from *Dolichos biflorus*. *Biochemistry*. 9:869.

24. Steiner, L. A., and H. N. Eisen. 1967. An assay for determining the relative affinity of trace amounts of labeled antibodies. *J. Exp. Med.* 126:1143.

25. Greene, E. J., and J. G. Tew. 1976. A competition assay for antibody affinity. *Cell. Immunol.* 26:1.

26. Kisailus, E. C. 1977. Competitive binding assays in studies of the reactions of blood group substances and oligosaccharides with lectins and antibodies. Ph.D. Thesis, Part 1. Columbia University, New York.

27. Pereira, M. E. A., E. C. Kisailus, F. Gruezo, and E. A. Kabat. 1978. Immunochemical studies on the combining site of the blood group H-specific lectin 1 from *Ulex europaeus* seeds. *Arch. Biochem. Biophys.* 185:108.

28. Schiffman, G., E. A. Kabat, and W. Thompson. 1964. Immunochemical studies on blood groups. XXX. Cleavage of A, B, and H blood group substances by alkali. *Biochemistry*. 3:113.

29. Baer, H., I. Naylor, N. Gibbel, and R. E. Rosenfield. 1959. The production of precipitating antibody in chickens to a substance present in the fluids of nonsecretors of blood groups A, B and O. *J. Immunol.* 82:183.

30. Pereira, M. E. A., and E. A. Kabat. 1976. Immunochemical studies on blood groups. LXII. Fractionation of hog and human A, H, and AH blood group active substance on insoluble immunoadsorbents of *Dolichos and Lotus* lectins. *J. Exp. Med.* 143:422.

31. Kabat, E. A., A. Bendich, A. E. Bezer, and S. M. Beiser. 1947. Immunochemical studies on blood groups. IV. Preparation of blood-group A substances from human sources and a comparison of their chemical and immunochemical properties with those of the blood group A substance from hog stomach. *J. Exp. Med.* 85:685.

32. Avrameas, S., and T. Ternynck. 1967. Biologically active water insoluble protein polymer. I. Their use for isolation of antigens and antibodies. *J. Biol. Chem.* 242:1651.

33. Torresani, J. 1973. Insolubilized anti-thyroglobulin antibodies: properties and interest in the study of thyroglobulin. *J. Immunol. Methods*. 3:35.

34. Moreno, C., and E. A. Kabat. 1968. Studies on human antibodies. VIII. Properties and association constants of human antibodies to blood group A substance purified with insoluble specific adsorbents and fractionally eluted with mono- and oligosaccharide. *J. Exp. Med.* 129:871.

35. Axén, R., J. Porath, and S. Ernbäck. 1967. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. *Nature (Lond.)* 214:1302.

36. Cuatrecasas, P. 1971. Protein purification by affinity chromatography. Derivatization of agarose and polycrylamide beads. *J. Biol. Chem.* 245:3059.

37. Parikh, I., and P. Cuatrecasas. 1977. Affinity chromatography in immunology. In *Immunochemistry of Proteins*. M. Z. Atassi, editor. Plenum Publishing Corp., New York. 2:1.

38. Kabat, E. A. 1961. Kabat and Mayer's Experimental Immunochemistry. Charles C Thomas, Publisher, Springfield, Illinois. 2nd edition.
39. Economidou, J., N. C. Hughes-Jones, and B. Gardner. 1967. Quantitative measurements concerning A and B antigen sites. Vox Sang. 12:321.
40. Williams, M. A., and D. Voak. 1972. Studies with ferritin-labeled *Dolichos biflorus* lectin on numbers and distribution of A sites on A, and A, erythrocytes and on the nature of its specificity and enhancement by enzymes. Br. J. Haematol. 23:427.
41. Tegoli, J., M. Cortez, L. Jensen, and W. L. Marsh. 1971. A new antibody, anti-ILe^h, specific for a determinant formed by the combined action of the I, Le, Se and H gene products. Vox Sang. 21:397.
42. Seaman, M. J., D. G. Chalmers, and D. Franks. 1968. An antibody which reacts with A, Le (a<--b->) red cells. Vox Sang. 15:25.
43. Crookston, M. C., A. C. Tilley, and J. A. Crookston. 1970. Human blood group chimera with seeming breakdown of immune tolerance. Lancet II:1110.
44. Swanson, J. M., M. C. Crookston, A. Yunis, M. Azar, R. A. Gatti, and R. G. Good. 1971. Lewis substances in a human marrow-transplantation chimera. Lancet 1:396.
45. Mohn, J. F., R. K. Cunningham, and J. F. Bates. 1977. Qualitative distinctions between subgroups A₁ and A₂. Fifth International Convocation on Immunology, Buffalo, N. Y. 1976. S. Karger, A. G. Basel, Switzerland. 316.
46. Hakomori, S., K. Watanabe, and R. A. Laine. 1977. Glycosphingolipids with blood group A, H and I activity: their status in A₁ and A₂ erythrocytes and their changes associated with ontogeny and oncogeny. Fifth International Convocation on Immunology, Buffalo, N. Y. 1976. S. Karger, A. G. Basel, Switzerland. 150.