Ethnomedicinal plants used for treatment of snakebites in Tanzania – a systematic review

Neema Gideon Mogha, Olivia John Kalokora, Halima Mvungi Amir and David Sylvester Kacholi

Department of Biological Sciences, Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania

ABSTRACT

Context: Snake envenomation is one of the neglected health problems in Tanzania. Since most people, especially in rural areas, suffer from its burden, their cases are not documented due to reliance on medicinal plants. Despite the pivotal role of medicinal plants in treating snakebites, there is a paucity of information.

Objective: This review documents medicinal plants used to treat snakebites in Tanzania.

Materials and methods: A systematic search using electronic databases such as PubMed, Google Scholar, Scopus, Science Direct and grey literature was conducted to retrieve relevant information on medicinal plants used to treat snakebites in Tanzania. The review was conducted as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The obtained information from 19 published articles was organized and analyzed based on citation frequency.

Results: A total of 109 plant species belonging to 49 families are used as snakebite antivenom in Tanzania. Fabaceae had the highest number of medicinal plants (19.3%). The dominant plant growth forms were trees (35%) and shrubs (33%). Roots were the most frequently used plant part (54%), followed by leaves (26%) and bark (11%). Annona senegalensis Pers. (Annonaceae), Dichrostachys cinerea (L.) (Fabaceae), Suregada zanzibariensis Baill. (Euphorbiaceae), Antidesma venosum E.Mey. ex Tul. (Phyllanthaceae), Cissampelas pareira L. (Menispermaceae) and Dalbergia melanoxylon Guill. & Perr. (Fabaceae) were the most cited medicinal plants.

Conclusions: Tanzania has diverse plants used for snakebite treatment; a few have been analysed for their bioactive components. Further study of the phytochemicals may provide scientific information to develop snakebite drugs.

Introduction

Globally, snake envenomation is considered a neglected disease and a significant public health concern (World Health Organization (WHO) 2007). About 5.5 million people are envenomed annually, whereas 9% of the cases are reported in Africa (Chippaux 1998; Giovannini and Howes 2017). Of the reported cases globally, 36% die due to snakebites, and about 7% survive permanent injuries (WHO 2007; Omara 2020). These figures can be lower than the truth because most snakebite incidences occur in rural areas where there are insufficient health facilities, and most cases are not recorded (Zolfagharian and Dounighi 2015; Yirgu and Chippaux 2019; Omara 2020). In sub-Saharan Africa, about one million cases of snake envenomation are reported annually, causing 2% of death cases and 1% get permanent injuries (Chippaux 2015). In East Africa, 108 and 151 cases of snakebite were reported in Uganda (Wangoda et al. 2004) and Kenya (Snow et al. 1994), respectively. In Tanzania, there are no proper records on snakebite cases despite diverse types of snakes (Chippaux 2011; Kipanyula and Kimaro 2015).

Venomous snakes are found in most parts of the world, in all climatic conditions except in frozen environments and at higher altitudes (WHO 2007; Kasturiratne et al. 2008). Africa alone is a home of 400 different snake types, whereby nearly 50% are found in East Africa. Some of them are black mamba (Dendroaspis polylepis Günther (Elapidae)), spitting cobra (Naja nigricollis Hallowell (Elapidae)), Rhus-leafed-beaked snake (Ramphiophis rostratus Peters (Psammophiidae)), puff adder (Bitis arietans Parker (Viperidae)) and green mamba (Dendroaspis jamesoni Traill (Elapidae)) (Kipanyula and Kimaro 2015; Omara 2020). Snakebites are life-threatening due to the scarcity of proven medication. Although antivenom serum has been developed as a lifesaving option, it is associated with the development of immediate or delayed hypersensitivity (anaphylaxis) and does not avert local tissue damage (Maya Devi et al. 2002). For example, an antidote such as immunoglobulin G produced in horses could react to serum and cause sickness, renal failure and anaphylaxis (Cannon et al. 2008; Giovannini and Howes 2017). Still, antivenom administration is considered chiefly a definitive treatment for snakebites. Other treatments include respiratory support therapy, surgical of affected necrosis tissues or even amputation (Cannon et al. 2008; de Moura et al. 2015).

Regardless of the funding issues, there is a paucity of snake venom antiserum in most African countries, predominantly rural areas. Tanzania faces a similar problem that makes the rural...
inhabitants depend on traditional medicines, particularly herbal remedies (Maregesi et al. 2013). Other reasons for reliance on traditional medication are distance to medical facilities, poor infrastructure, storage conditions, scarcity of antidotes in hospitals, restricted application, traditional beliefs, and the high cost of antivenom and modern facilities (Giovannini and Howes 2017; Steinhorst et al. 2021; Kacholi and Amir 2022). Therefore, the use of medicinal plants in addressing snakebite problems has been increasing in the modern era due to their safety, effectiveness, cultural preferences, inexpensiveness, abundance and availability (Maregesi et al. 2013; Omara et al. 2020). Despite the critical role of medicinal plants in combating snakebite problems, there is no specific ethnobotanical study that has compiled data on medicinal plants used to manage snakebites in Tanzania. Thus, this review fills that gap by documenting medicinal plants used in various parts of the country to treat snakebites.

Methods

Description of the country

Tanzania is a country located in East Africa, covering an area of 947,303 km². It is bordered in the North by Uganda, South by Malawi and Mozambique, Northeast by Kenya, East by the Indian Ocean and Comoro Island, Southwest by Zambia, and West by Burundi, Rwanda and the Democratic Republic of Congo. The country is estimated to have about 56.31 million population, making it the second-most-populous country south of the equator after South Africa. The population comprises over 120 ethnic groups with different beliefs and cultural practices. The great African lakes are partly within this country. Lake Victoria, Africa’s largest lake, is located to the north; Lake Tanganyika, Africa’s deepest lake, is to the west, and Lake Nyasa lies to the south. Africa’s highest mountain, Mount Kilimanjaro, is found on the north-eastern side of the country.

Literature search strategy

This systematic review has compiled information on ethnomedicinal plants used to treat snakebites in different parts of Tanzania. The study was conducted following the recommendations stated in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Liberati et al. 2009). The PRISMA flow diagram is presented in Figure 1. A web-based literature search was carried out using various electronic databases, including Google Scholar, Web of Science, African Journals Online (AJOL), Science Direct, Scopus, PubMed, Wiley online library and grey literature to access relevant studies. The following search terms and combinations were used to gather relevant studies; medicinal plants, traditional medicines, ethnomedicine, ethnopharmacology, ethnobotany, alternative medicine, antivenin plants, antivenom, antitoxin, antiophidian, snake antidotes, antisera, snakebite, snake envenomation and Tanzania.

All the searches were conducted independently in all the databases, and only articles published and theses or dissertations having any of the above key terms were considered. The studies written in the English language were only searched and considered. Finally, Tanzanian traditional medicinal plants exclusively utilized to treat snakebites were selected. Records from outside Tanzania, ethnoveterinary studies, pharmacological studies and reviewed articles were excluded from the present study. Also, the studies with no scientific names and the plant parts used were excluded. Studies that possessed required information, such as family name, scientific name, local name, growth habits, method of preparation (if available) and route of administration
The predominance of the family Fabaceae was similarly reported in Uganda (Omara et al. 2020), Ethiopia (Yirgu and Chippaux 2019) and India (Upasani et al. 2017). This family's highest usage is associated with richness in terms of species and comprehensive coverage of ecological habitats (Kadir et al. 2015; Ajao et al. 2019). The family Fabaceae is characterized by active phytochemical compounds such as tannins, phenols and alkaloids (Luís et al. 2011; Żarnowski et al. 2014). Other families reported in this study were also reported to possess antivenin potential for treating or avoiding snakebites in other countries within and outside Africa. For example, Aristolochiaceae and Lamiaceae in Djibouti (Hasan et al. 2016; Yirgu and Chippaux 2019), Acanthaceae, Apocynaceae, Asterolaeae, Euphorbiaceae, Moraceae, Rubiaceae and Rutaceae in India (Upasani et al. 2017), Bangladesh (Hasan et al. 2016) and Central America (Giovannini and Howes 2017), Euphorbiaceae, Asterolaeae, Amaryllidaceae and Solanaceae in Uganda (Omara et al. 2020), and Malvaceae, Annonaceae, Combretaceae and Lamiaceae in Kenya (Omara 2020).

Growth forms of medicinal plants

Among the reported medicinal plants in this review, trees (35%) and shrubs (33%) constituted the greatest proportions, followed by herbs (22%), and the remaining growth forms had a small proportion of less than 10% (Figure 3). The finding is consistent with an ethnobotanical study conducted in Uganda (Omara et al. 2020), which reported that trees and shrubs were the most dominant plant growth forms used for making herbal remedies against snakebites. The predominance of trees and shrubs in treating snakebites could be due to their accessibility throughout the year, local socio-cultural beliefs, and the practice of healers in treating snakebites (Asmeron et al. 2021; Kacholi and Amir 2022). Also, the frequent use of the two growth forms indicates that the locals are conversant with using higher plants in the formulation and preparations of herbal remedies (Kacholi and Amir 2022).

Plant parts used

This review observed that locals in Tanzania use different plant parts to treat snakebites. Roots were the most frequently used plant part (54%), followed by leaves (26%), bark (11%) and whole plant (6%). Other parts, such as fruits, seeds and aerial parts, were rarely used (Figure 4). The common use of roots for treating snakebites was also reported in Kenya (Omara 2020), Ethiopia (Yirgu and Chippaux 2019), Uganda (Omara et al. 2020) and India (Upasani et al. 2017). The regular use of roots and leaves in antivenin preparations is a characteristic feature of traditional antivenin therapy (Owuor and Kisangau 2006; Yirgu and Chippaux 2019); that is why some of these medicinal plants are named ‘snakeroot’ in some rural communities.

The recurrent use of roots is also reported in treating various ailments in other countries apart from snakebites (Maroyi 2013;
Family	Species name	Local name	Growth form	Parts used	MoP and RoA	Reference
Acanthaceae	Crassocephalum mannii (Hook. f.)	Mgangogango	Shrub	Leaves	Decoction drunk	Maregesi et al. (2013)
	Justicia heterocarpa L.	Mwidi	Herb	Roots, leaves	Powdered parts taken orally	Amiri and Kisangau (2012)
	Thunbergia alata Bojer ex Sims	Nyakatoa	Herb	Leaves	Powdered leaves mixed with water to give a paste which is then applied in a small incision made on the bite	Maregesi et al. (2013)
Amaranthaceae	Aerva lanata (L.) Juss. ex Schultz	Kambunyenye	Herb	Roots	Not specified	Chhabra et al. (1987)
Anacardiaceae	Lannea schimperi (Hochst. ex A.Rich) Engl.	Mzulu	Herb	Roots	Crushed and applied to the bite	Augustino et al. (2011)
	Ozoroa mucronata (Krauss) R. & A. Fern.	Mgbombokilingu	Tree	Leaves	Not specified	Chhabra et al. (1987)
Annonaceae	Annona senegalensis Pers.	Mtopotope	Tree	Roots, bark, leaves	Decoction drunk	Augustino et al. (2011), Kapcholi (2014), Maregesi et al. (2013), Ruffo (1991)
	Friesodelia obovata (Benth.) Verdc.	Masalasi	Shrub	Roots	Crush and then massage the affected area	Augustino et al. (2011), Ruffo (1991)
Apocinaceae	Uvaria acuminata Oliv.	Msafu	Shrub	Roots	Decoction drunk	Chhabra et al. (1987)
Araceae	Xylopia longipetala De Wild & T. Durand	Mlavilira	Tree	Bark	Decoction drunk	Augustino et al. (2011), Kapcholi (2014)
Aristolochiaceae	Aristolochia spp.	Kilikamo	Climber	Roots	Not specified	Ruffo (1991)
Asteraceae	Blephurispermum zanguiecubicum Oliv. & Hiern	Mcokele	Shrub	Roots	Decoction drunk	Chhabra et al. (1989)
	Coryza canadensis L. Cronq.	Akamwisanga	Herb	Whole plant	Decoction drunk	Maregesi et al. (2013)
	Spilanthes mauritana (Rich. ex Pers.) DC	Mtango	Herb	Whole plant	Not specified	Chhabra et al. (1989)
	Vernonia amygdalina Del.	Mtugutu	Shrub	Leaves	Leaves chewed, and extract swallowed	Chhabra et al. (1989)
Bignoniaceae	Markhamia obtusifolia (Baker) Sprague	Ng'ubu	Tree	Roots	Chew and swallow the extracts	Chhabra and Mahannah (1994)
Burseraceae	Commiphora africana (A.Rich.) Engl.	Mutonto	Tree	Bark	Crush and massage the affected area	Augustino et al. (2011), Chhabra et al. (1989)
Cannoraceae	Byrsocarpus orientalis (Baill.) Baker	Mpandaradu	Herb	Roots	Dried roots are burnt, mixed with powdered charcoal and tobacco, and the infusion drunk	Chhabra et al. (1989)
Capparaceae	Capparis tomentosa Lam.	Mtungulu'osa	Tree	Leaves	Not specified	Chhabra et al. (1989)
	Thyelochium dhianum Lour.	Mtomoni	Tree	Roots	Not specified	Chhabra et al. (1989)
Celastraceae	Maytenus senegalensis (Lam.) Exell	Mwambangoma	Tree	Roots	Not specified	Ruffo (1991), Chhabra et al. (1989)
Combretaceae	Combretum apiculatum Sond.	Muhuluka	Tree	Roots	Not specified	Chhabra et al. (1989)
	Combretum collinum Fresen.	Mulandala	Tree	Roots	Not specified	Ruffo (1991)
	Combretum obovatum F. Hoffm	Vugoveko	Tree	Roots	Crush roots, then massage the affected part	Augustino et al. (2011)
	Combretum zeyheri Sond.	Musana	Tree	Leaves	Crush roots, then massage the affected part	Augustino et al. (2011)
Convulaceae	Jacquelmontia paniculata (Burm. f.) Hall. F.	Mwi'limbiti	Herb	Leaves	Fresh pounded leaves are applied to the bite	Chhabra et al. (1989)
Cucurbitaceae	Momordica foetida Schumach	Ruhunduhundu	Herb	Leaves	Not specified	Chhabra et al. (1989)
Dilleniaceae	Tetracera boiviana Hall.	Mpingga	Tree	Roots, leaves	Powdered roots mixed with water and taken orally, while leaves are crushed and juice drunk	Chhabra et al. (1989)
Ebenaceae	Diospyros fischeri Guerke	Mufubata	Shrub	Roots	Crushing, then massage the affected part	Augustino et al. (2011)
	Diospyros usambarensis F. White	Mwiloilo	Shrub	Roots	Not specified	Chhabra et al. (1989)
	Euclea divinorum Hiern.	Mdiaa	Shrub	Leaves	Crush leaves and massage the affected part	Augustino et al. (2011)
Euphorbiaceae	Acalypha fruticosa Forssk.	Mluwe	Shrub	Aerial parts	Crushed and applied on incisions made on the bitten area	Chhabra et al. (1990b), Hedberg et al. (1983a)
	Cyathogeus buskii Pax	Mzidishanguvu	Shrub	Roots	Not specified	Chhabra et al. (1990b)
	Euphorbia canadensis Tremaux	Ganga	Shrub	Roots	Not specified	Hedberg et al. (1983a)

(continued)
Family	Species name	Local name	Growth form	Parts used	MoP and RoA	Reference
Euphorbiaceae	Euphorbia grantii Oliv.	Mudulansongo	Tree	Roots	Crushing, then massage the affected part	Augustino et al. (2011)
	Euphorbia hirta L.	Mziwaziwa	Herb	Roots	Crushing, then massage the affected part. Decoction drunk	Augustino et al. (2011), Chhabra et al. (1990b)
	Euphorbia tirucalli L.	Mnyaa	Shrub	Roots	Crushing, then massage the affected part	Augustino et al. (2011), Ramathal and Ngassapa (2001)
	Phylanthus reticulatus Poir.	Mkwanambamazi	Shrub	Roots	Infusion drunk	Chhabra et al. (1990b)
	Securinega virosa (Roxb. ex Wind.) Pax & K. Hoffm.	Masoke	Shrub	Roots, fruits	Infusion drunk	Hedberg et al. (1983a)
	Suregada zanzibariensis Baill.	Mdimumwitu	Shrub	Roots, leaves	Pounded, then massage the affected part after a small incision is made and decoction drunk	Augustino et al. (2011), Augustino and Gillah (2005), Chhabra et al. (1990b), Hedberg et al. (1983a)
Fabaceae	Abrus precatorius L.	Lufambo	Herb	Roots	Chewed and extracts swallowed	Chhabra et al. (1990a), Hedberg et al. (1983b)
	Acacia brevispica Harms	Mwawo	Tree	Roots	Decoction drunk	Chhabra et al. (1990a)
	Acacia polyacantha Willd. subsp.	Mgungu	Tree	Roots	Infusion drunk, and the same is applied to the bite	Chhabra et al. (1990a), Hedberg et al. (1983a)
	campylacantha (Hochst. ex A. Rich.) Brenan	Mngong	Tree	Roots	Not specified	Chhabra et al. (1987)
	Afzelia quanzensis Welw.	Mkongo	Tree	Roots	Not specified	Augustino et al. (2011)
	Brachystegia boehmi Benth.	Muyombo	Tree	Leaves	Pound and massage the affected part. Decoction is drunk	Augustino et al. (2011)
	Brachystegia specifloris Benth.	Mugaluka	Tree	Bark	Pound and massage the affected part. Decoction is drunk	Augustino et al. (2011)
	Pterocarpus angolensis	Mninga	Tree	Roots	Chewed and applied on the bite	Augustino et al. (2011)
	Cassia abbreviata Oliv.	Muzoka	Shrub	Roots	Decoction drunk	Chhabra et al. (1987)
	Cassia alata L.	Mchingu	Shrub	Leaves	Decoction drunk	Chhabra et al. (1987)
	Cassia occidentalis L.	Mlingajini	Herb	Leaves	Decoction drunk	Chhabra et al. (1987)
	Dalbergia melanarxylon Guill. & Perr.	Mpingo	Tree	Bark, leaves	Fresh leaves are pounded, and juice is drunk	Chhabra et al. (1990a), Rufio (1991), Salimbo et al. (2017)
	Dichrostachys cinerea (L.) Wight et Arn. subsp. africana Brenan et Brummitt	Mkulagenbe	Shrub	Roots, bark, leaves	Leaves are chewed, and the paste is applied to the bite. Roots and bark are chewed or macerated and put on the bite	Chhabra et al. (1990a), Hedberg et al. (1983a), Kacholi (2020), Rufio (1991)
	Erythrina abyssinica DC.	Mukalawhanhuba	Tree	Roots	Crushing and then massaging the affected part and sap is used as an antidote	Augustino et al. (2011)
	Indigofera arrecta Hochst. A. Rich.	Umusororo	Herb	Whole plant	The plant is dried and ground into a powder, then applied to the affected part	Ramathal and Ngassapa (2001)
	Isoberlinia angolensis (Welw. ex Benth.) Hoyle & Brenan	Muva	Shrub	Bark	Chewed and pasted on the bite	Augustino et al. (2011), Rufio (1991)
	Lonchocarpus capassa Rolfe	Mfumbili	Tree	Whole plant	Not specified	Chhabra et al. (1990a)
	Millettia usaramensis Taub.	Mhaf	Tree	Roots	Decoction drunk	Chhabra et al. (1990a)
	Oromocarpum trachycarpum (Taub.) Harms	Mukondwanhulu	Shrub	Leaves	Crushed, then applied to the bite	Augustino et al. (2011)
	Pterocarpus angolensis (Baker) Meeuwen	Mwungu	Tree	Leaves	Not specified	Rufio (1991)
	Phaseolus radiatus L.	Ebhisanda	Climber	Seeds	Make powder, then mix with honey and rub to the affected area after a small razor incision	Maregesi et al. (2013)
	Piliostigma thonningii (Schum.) Milne-Redh.	Mutindambogo	Tree	Bark	Crushing, then massage the affected part	Augustino et al. (2011)
Family	Species name	Local name	Growth form	Parts used	MoP and RoA	Reference
----------------------	--------------------------------	------------	-------------	---------------------	---	--------------------------------
Flacourtia	*Flacourtia indica* (Burm.f.) Merr.	Mupugusa	Tree	Roots	Crushing, then massage the affected part	Augustino et al. (2011)
Gramineae	*Brachiaria reptans* (L.) Gardner et C.E. Hubbard	Lukoka	Grass	Whole plant	The whole dried plant is burned and the ashes applied to the bite	Chhabra et al. (1990b)
	Pennisetum purpureum Schum.	Urubingo	Herb	Whole plant	The plant is dried and ground into a powder, then applied to the affected part	Ramathal and Ngassapa (2001)
Icacinaceae	*Hoslundia opposita* Vahl	Mulavula	Shrub	Leaves	Crushed and applied to the bite	Chhabra et al. (1990b), Chhabra et al. (1990b)
Ocimum	*Ocimum basilicum* Linn.	Mvumbasi	Herb	Roots	Not specified	Chhabra et al. (1990b), Chhabra et al. (1990b)
Lamiaceae	*Leonotis mollissima* Guerke	Kitalante	Herb	Leaves	Not specified	Chhabra et al. (1990b), Chhabra et al. (1990b)
Lyciaceae	*Lycium arabicum* L.	Mlumbia	Shrub	Roots	Pounding, then massage the affected part or chew and swallow	Augustino et al. (2011), Chhabra et al. (1990b), Hedberg et al. (1983a)
Malvaceae	*Hibiscus micranthus* L. f.	Muambe	Shrub	Roots	Not specified	Chhabra et al. (1990b), Chhabra et al. (1990b)
	Sida rhombifolia L.	Mase	Shrub	Roots	Decoction drunk	Chhabra et al. (1990b), Chhabra et al. (1990b)
Lauraceae	*Cassia filiformis* Linn.	Mlangoam	Herb	Whole plant	Not specified	Chhabra et al. (1990b), Chhabra et al. (1990b)
Loganiaceae	*Strychnos spinosa* Lam.	Mtonga	Shrub	Roots	Pounding, then massage the affected part or chew and swallow	Augustino et al. (2011), Chhabra et al. (1990b), Hedberg et al. (1983a)
Menispermaceae	*Cassypelos mucronata* A. Rich.	Msangwi	Climber	Roots	Root scrapings are taken orally and also rubbed into scars at the place of the bite	Chhabra et al. (1990b)
Moraceae	*Ficus natalensis* Hochst.	Mlumbia	Tree	Roots	Not specified	Chhabra et al. (1990b), Chhabra et al. (1990a)
Ochnaceae	*Ochna schweinfurthiana* F. Hoffm.	Kavuhwampako	Shrub	Roots	Not specified	Chhabra et al. (1990b), Chhabra et al. (1990b)
Olacaceae	*Ximenia caffra* Sond.	Mnembwa	Tree	Roots	A decoction is taken orally	Augustino et al. (2011), Maregesi et al. (2013)
Oleaceae	*Jasminum flavum* Vell.	Muafu	Climber	Roots, Leaves	Pounded and compressed in cotton cloth to get the juice which is taken orally	Chhabra et al. (1990a), Maregesi et al. (2013)
Orchidaceae	*Schrebera trichokola* Welw.	Muputika	Shrub	Bark	Pound and massage the affected part	Augustino et al. (2011)
Passifloraceae	*Adenia gummifera* (Harv.) Harms	Inyazya	Herb	Bark	Not specified	Ruffo (1991)
Phylanthaceae	*Antidesma venosum* E. Mey. ex Tul.	Mnyembelezu, Musukela	Shrub	Roots	Chewed and extracts swallowed	Hedberg et al. (1983b)
Poaceae	*Sporobolus pyramidalis* Beav.	Chinswi	Grass	Roots	Decoction taken orally twice a day	Maregesi et al. (2013)
Polygalaceae	*Securidaca longepedunculata* Fresen	Masig	Shrub	Roots, bark, leaves	Decoction of roots, leaves and stem bark drunk	Chhabra et al. (1991), Hedberg et al. (1983b)
Ranunculaceae	*Clematis brachiata* Thumb.	Tambariko	Climber	Leaves	Not specified	Chhabra et al. (1991)
Rhamnaceae	*Zaithus mucronata* Wild.	Kagovole	Tree	Roots	Infusion drunk	Hedberg et al. (1983b), Ruffo (1991)
Rubiaceae	*Agathisanthemum bojeri* Klotzsch	Mtutuma	Shrub	Roots	Infusion drunk	Chhabra et al. (1991)

(continued)
Family	Species name	Local name	Growth form	Parts used	MoP and RoA	Reference
Rutaceae	Citrus limon (L.) Osbeck	Mlimao	Tree	Leaves	Not specified	Augustino and Gillah (2005), Ruffo (1991)
Sapindaceae	Paullinia pinnata L.	Lugoto	Climber	Leaves	Dried and pounded and then applied to the bite. Sap and juice from fruits are applied directly to the bite.	Chhabra et al. (1991)
Solanaceae	Solanum incanum L.	Nyanjapori	Herb	Roots, fruits, leaves	Not specified	Ramathal and Ngassapa (2001), Chhabra et al. (1993), Hedberg et al. (1983b)
Sterculiaceae	Sterculia africana (Lour.) Flori	Muhozya	Tree	Bark	Not specified	Ruffo (1991)
Sterculia appendiculata K. Schum.	Muhozya	Tree	Bark	Not specified	Decoction drunk	Chhabra et al. (1993), Hedberg et al. (1983b)
Thymelaeaceae	Synaptolepis kirkii Oliv.	Mjanungu	Climber	Roots	Not specified	Chhabra et al. (1993)
Tiliaceae	Grewia bicolor Juss	Mkagari	Shrub	Roots	Crushed roots and wipe on the bite Powdered leaves are tied to the affected site and decoction drunk once a day	Chhabra et al. (1993)
	Grewia fallax K. Schum	Mfungang'ombe	Herb	Leaves		Chhabra et al. (1993), Maregesi et al. (2013)
Umbelliferae	Steganotaenia araliacea Hochst.	Msumi	Tree	Roots	Pound and then massage the affected part	Augustino et al. (2011), Chhabra et al. (1993), Hedberg et al. (1983b)
Verbenaceae	Premna chrysacolada (Bojer) Gurke	Mtulanwha	Shrub	Roots, leaves	Not specified	Chhabra et al. (1993), Hedberg et al. (1983b)
Vitaceae	Cissus hildebrandii Gilg.	Mtuha	Herb	Leaves	Not specified	Chhabra et al. (1993)

MoP: mode of preparations; RoA: route of administration.
Jima and Megersa 2018; Mathibela et al. 2019; Hu et al. 2020; Kacholi and Amir 2022). Plant roots are believed to possess more bioactive compounds than other parts (Chinsembu 2016; Tugume and Nyakoojo 2019). The over-exploitation of roots for herbal preparations may endanger plants’ existence, especially when uprooting (Kacholi and Mvungi 2021). Plants whose roots are preferred for medicinal purposes have been reported to be the most threatened species (Cunningham 2001). Thus, this study suggests that local and traditional healers’ awareness of harvesting and conserving medicinal plants is paramount.

Preparation and administration of remedies

The treatment of snakebite in most of the areas in Tanzania involves mono-preparations of plant extracts, while in a few cases, mixtures of various plants and parts are used to prepare the antidotes. The common mode of preparation of herbal remedies may endanger plants’ existence, especially when uprooting (Kacholi and Mvungi 2021). Plants whose roots are preferred for medicinal purposes have been reported to be the most threatened species (Cunningham 2001). Thus, this study suggests that local and traditional healers’ awareness of harvesting and conserving medicinal plants is paramount.

Pharmacological evidence against snake venoms

Various pharmacological studies (Núñez et al. 2004; Mali 2010; Sonibare et al. 2016) have proven the wide use of medicinal plants, which revealed that different plant metabolites could antagonize the activity of various crude venoms and purified toxins. For instance, Solanaceae is reported to possess atropine, an alkaloid which inhibits the activity of green and dark mamba (Dendroaspis angusticeps A. Smith (Elapidae) and D. polyxenis) venoms by blocking cholinergic nerve terminals (Omara et al. 2020). Additionally, the family Aristolochiaceae contains aristolochic acid, an alkaloid that acts similarly to atropine (Kini 2005; Kemparaju and Girish 2006).

Moreover, the reported species in the present study have been reported elsewhere to have antivenin activities. For instance, the extract from combined roots, bark and leaves of Securidaca longipedunculata Fresen (Polygalaceae) (Sanusi et al. 2014), stem bark of Commiphora africana (A.Rich.) Engl. (Burseraceae) (Isa et al. 2015), folium extract of Dicistrochys cinerea (L.) Wight et Arn. (Fabaceae) (Agusi and Ogbunachi 2018), roots of Capparis tomentosa Lam. (Capparaceae) and Ziziphus mucronata Wild. (Rhamnaceae) (Molander et al. 2014), and those from the whole plant of Euphorbia hirta L. (Euphorbiaceae) inhibit venom activities of N. nigricollis. Also, extracts from leaves and roots of A. senegalensis inhibit venom activities of Echis ocellatus Steenmler (Viperidae), N. nigricollis and B. arietans (Molander et al. 2014), whereas extracts from aerial parts and roots of Cissampelos parvirea L. var. orbiculata (DC.) Miq. (Menispermacaceae) are reported to neutralize venom activity of Bothrops diporus Cope (Viperidae) (Verrastro et al. 2018). Leaves and roots extracts of Cassia occidentalis L. (Fabaceae) are reported to inhibit venom activities and accelerate wound healing caused by Bothrops moojeni Hoge (Viperidae) (Molander et al. 2014), while the roots and bark extract of Acalypha fruticos Forssk. (Euphorbiaceae) (Molander et al. 2014), and Paullinia pinnata (Ifil 2008; Sanusi et al. 2014) are reported to inhibit venom activities of Echis carinatus Schneider (Viperidae). Therefore, the present study highlights the wealth knowledge locals in Tanzania possess in dealing with snakebites. It also suggests that further pharmacological scrutiny of the recorded medicinal plants is imperative in prepared and administered as 35.7% of the reported species lack the information (Table 1). Thus, it suggests that a significant effort is still needed to gather information on the mode of preparation and administration route.

Figure 3. Growth forms of plants used for the treatment of snakebites.

Figure 4. Plants parts used for preparations of herbal remedies against snakebites.

Figure 5. Modes of preparation (MoP) and Routes of administration (RoA) of snakebite remedies.
understanding bioactive compounds that can be used to prepare antivenin in modern science.

Conclusions
This review presents compiled information on medicinal plant species used to treat snakebites in Tanzania. One hundred and nine medicinal plants representing 48 families were documented. Fabaceae and Euphorbiaceae were the families with the highest number of antivenom plants. Trees and shrubs were the most preferred growth forms to prepare herbal remedies for snakebites, and root was the most used plant part. Despite the diversity of plant species used to treat snakebites problems in Tanzania compiled in this review, few have been analysed for their bioactive components and potential for developing modern drugs. Therefore, effort should be geared towards this area to provide scientific information to develop snakebite drugs and solve the major health challenge. We believe that the data presented in this review will provide baseline information for future research on developing modern drugs for treating snakebite.

Author contributions
Conceptualization and data collection, D.S.K. and N.G.M.; data analysis and manuscript writing, D.S.K., O.J.K., N.G.M. and H.A.M.; manuscript revision, D.S.K. and N.G.M.

Disclosure statement
The authors declare that they have no competing interests.

Funding
The author(s) reported that there is no funding associated with the work featured in this article.

ORCID
David Sylvester Kacholi http://orcid.org/0000-0001-6049-2201

References
Agusi K, Ogbonachi O. 2018. Effects of ethanolic leaf extract of Euphorbia hirta on Snake Venom Induced Toxicity in Mice. Trop J Appl Nat Sci. 2(2):34–41.
Ajaa AA, Sibya NP, Moteeteen AN. 2019. Sexual prowess from nature: a systematic review of medicinal plants used as aphrodisiacs and sexual dysfunction in sub-Saharan Africa. South Afr J Bot. 122:342–359.
Amiri E, Kisanzui DP. 2012. Ethnomedicinal study of plants used in villages around Kimboza forest reserve in Morogoro, Tanzania. J Ethnobiol Ethnomed. 8:1–9.
Asmerom D, Kalay T H, Araya T Y, Desta DM, Wondafrash DZ, Tafere GG. 2021. Medicinal plants used for the treatment of erectile dysfunction in Ethiopia: a systematic review. BioMed Res Int. 2021:1–12.
Augustino S, Gillah PR. 2005. Medicinal plants in urban districts of Tanzania: plants, gender roles and sustainable use. Int Forest Rev. 7(1):44–58.
Augustino S, Hall JB, Makonda FBS, Ishengoma RC. 2011. Medicinal resources of the Miombo woodlands of Urumwa, Tanzania: plants and their uses. J Med Plants Res. 5:6352–6372.
Cannon R, Ruha A-M, Kashani J. 2008. Acute hypersensitivity reactions associated with administration of Crotaleda polyvalent immune fab anti-venom. Ann Emerg Med. 51(4):407–411.
Chhabra SC, Mahunnah BLA, Mshiu EN. 1987. Plants used in traditional medicine in eastern Tanzania. I. Pteridophytes and angiosperms (Acanthaceae to Canellaceae). J Ethnopharmacol. 21(3):253–277.
Chhabra SC, Mahunnah RLA, Mshiu EN. 1989. Plants used in traditional medicine in Eastern Tanzania. II. Angiosperms (Capparidaceae to Ebenaceae). J Ethnopharmacol. 25(3):339–359.
Chhabra SC, Mahunnah RLA, Mshiu EN. 1990a. Plants used in traditional medicine in Eastern Tanzania. IV. Angiosperms (Mimosaceae to Papilionaceae). J Ethnopharmacol. 29(3):295–323.
Chhabra SC, Mahunnah RLA, Mshiu EN. 1990b. Plants used in traditional medicine in Eastern Tanzania. III. Angiosperms (Euphorbiaceae to Menispermaceae). J Ethnopharmacol. 28(3):255–283.
Chhabra SC, Mahunnah RLA, Mshiu EN. 1991. Plants used in traditional medicine in eastern Tanzania. V. Angiosperms (Passifloraceae to Sapindaceae). J Ethnopharmacol. 33(1–2):143–157.
Chhabra SC, Mahunnah RLA, Mshiu EN. 1993. Plants used in traditional medicine in Eastern Tanzania. VI. Angiosperms (Sapotaceae to Zingiberaceae). J Ethnopharmacol. 39(2):83–103.
Chhabra SC, Mahunnah RLA. 1994. Plants used in traditional medicine by Hayas of the Kagera region, Tanzania. Econ Bot. 48(2):121–129.
Chinsensb KC. 2016. Ethnobotanical study of medicinal flora utilised by traditional healers in the management of sexually transmitted infections in Sesheke district, Western Province, Zambia. Rev Bras Farmacogn. 26(2):260–274.
Chippaux JP. 1998. Snake-bites: appraisal of the global situation. Bull World Health Organ. 76(5):515–524.
Chippaux J-P. 2011. Estimate of the burden of snakebites in sub-Saharan Africa: a meta-analytic approach. Toxicicon. 57(4):586–599.
Chippaux J-P. 2015. Management of snakebites in sub-Saharan Africa. Med Sante Trop. 25(3):245–248.
Cunningham AB. 2001. Applied ethnobotany: people, wild plant use, and conservation. London: Earthscan.
de Moura VM, Freitas de Sousa LA, Cristina Dos-Santos M, Almeida Raposo JD, Evangelista Lima A, da Oliveira RB, da Silva MN, Veras Mourão RH. 2015. Plants used to treat snakebites in Santarém, Western Pará, Brazil: an assessment of their effectiveness in inhibiting hemorrhagic activity induced by Bothrops jararaca venom. J Ethnopharmacol. 161:224–232.
Gianinni P, Howes M-JR. 2017. Medicinal plants used to treat snakebite in Central America: review and assessment of scientific evidence. J Ethnopharmacol. 199:240–256.
Hasan N, Azam NK, Ahmed N, Hirashima A. 2016. A randomized ethnomedicinal survey of snakebite treatment in southwestern parts of Bangladesh. J Tradit Complement Med. 6(4):337–342.
Hedberg I, Hedberg O, Madat PJ, Mshigene KE, Mshiu EN, Samuelsson G. 1983a. Inventory of plants used in traditional medicine in Tanzania. Part II. Plants of the families Dilleniaceae–Opiliaceae. J Ethnopharmacol. 9(1):105–127.
Hedberg I, Hedberg O, Madat PJ, Mshigene KE, Mshiu EN, Samuelsson G. 1983b. Inventory of plants used in traditional medicine in Tanzania. Part III. Plants of the families Papilionaceae–Vitaceae. J Ethnopharmacol. 9(2–3):237–260.
Hilonga S, Otieno JN, Ghorbani A, Pereus D, Kocyan A, de Boer H. 2019. Plants of the families Euphorbiaceae–Menispermaceae, and Commiphora africana A. Rich. (Burseraceae) for anti-inflammatory and anti-cancer potential in Tanzania and its implications for conservation. South Afr J Bot. 122:179–192.
Hu R, Lin C, Xu W, Liu Y, Long C. 2020. Ethnobotanical study on medicinal plants used by Mulam people in Guangxi, China. J Ethnobiol Ethnomed. 8:1–12.
Husein H, El-Maghraby M, El-Sayed F, Kechamy A. 2021. Medicinal plants used by traditional healers in managing gonorrhoea and syphilis in Urambo district, Tabora Region, Tanzania. J Herbs Spices Med Plants. 28(2):179–189.
Kacholi DS, Mvungi HA. 2021. Plants used by Nyamwezi traditional health practitioners to remedy sexually transmitted infections in Sikonge, Tanzania. J Educ Humanit Sci. 10:89–101.
Kajoh K, Lubega J, Kasozi J, Muziga J. 2017. The effect of ethanolic stem-bark extracts of Paullinia pinnata and Commiphora africana A. Rich. (Burseraceae) on the platelet aggregation induced by arachidonic acid and ADP in vitro. IOSR J Pharmaceut Biol Chem Eng. 17(2):23–27.
Kacholi DS. 2014. Indigenous tree uses, use values and impact of human population on forest size, structure and species richness in Uluguru, Morogoro, Tanzania. Tanz J Sci. 40:34–50.

Kacholi DS. 2020. Density and aboriginal uses of wild tree species in Milawillila forest reserve in Morogoro region, Tanzania. Tanzania J Sci. 46:85–100.

Kadir MF, Karmoker JR, Alam M, Jahan SR, Mahbub S, Mia MMK. 2015. Ethnopharmacological survey of medicinal plants used by traditional healers and indigenous people in Chittagong Hill tracts, Bangladesh for the treatment of snakebite. Evid Based Complement Alternat Med. 2015:871675.

Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Laloo DG, de Silva HJ. 2008. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 5(11):e218.

Kemparaju K, Girish KS. 2006. Snake venom hyaluronidase: a therapeutic target. Cell Biochem Funct. 24(1):7–12.

Kini RM. 2005. Structure-function relationships and mechanism of anti-coagulant phospholipase A2 enzymes from snake venoms. Toxicon. 45(8):1147–1161.

Kipanyula MJ, Kimaro WH. 2015. Snakes and snakebite envenoming in northern Tanzania: a neglected tropical health problem. J Venom Anim Toxins Incl Trop Dis. 21:32.

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Kipanyula MJ, Kimaro WH. 2015. snakes and snakebite envenoming in Tanzania. PLoS Negl Trop Dis. 15(4):e0009298.

Mali RG. 2010. Cleome viscosa (wild mustard): a review on ethnobotany, phytochemistry, and pharmacology. Pharm Biol. 48(1):105–112.

Maregesi S, Kagashe G, Masatu K. 2013. Ethnopharmacological survey of snakebite treatment in Uluguru forest reserve, Tanzania. Sch Acad J Pharm. 2:381–386.

Maroyi A. 2013. Traditional use of medicinal plants in south-central Zimbabwe: review and perspectives. J Ethnobiol Ethnomed. 9:31.

Mathibela MK, Potgieter MJ, Tshikalange TE. 2019. Medicinal plants used to treat snakebite envenoming in Ghana. PLoS Negl Trop Dis. 15(4):e0009298.

Nyiruguta D. 2020. Plants used in antivenom therapy in rural Kenya: ethnobotany and future perspectives. J Toxicol. 2020:1828521.

Owuo BO, Kizangau DP. 2006. Kenyan medicinal plants used as antivenin: a comparison of plant usage. J Ethnobiol Ethnomed. 2:7.

Ramathal DC, Ngassapa OD. 2001. Medicinal plants used by Rwandese traditional healers in refugee camps in Tanzania. Pharm Biol. 39(2):132–137.

Ruffo CK. 1991. A survey of medicinal plants in Tabora region, Tanzania. In Traditional medicinal plants, ed. KE Mshigeni, MHH Nkunya, V Fupi, RLA Mahunnah, N Mshiu. 1st ed. Dar es Salaam: Dar es Salaam University Press – Ministry of Health, Tanzania; p. 391–406.

Sanlittro M, Vicentini R, Bonomi C, Tassoni A. 2017. Traditional knowledge on wild and cultivated plants in the Kilombero valley (Morogoro region, Tanzania). J Ethnobiol Ethnomed. 13:17.

Sanusi J, Shehu K, Jibia AB, Mohammed I, Liadi S. 2014. Anti-snake venom potential of Securidaca longepedunculata leaf and root bark on spitting cobra (Naja nigricollis Hallowel) in envenommed Wister rats. IOSR J Pharm Biol Sci. 9(6):92–96.

Snow RW, Bronzan R, Roques T, Nyamawi C, Murphy S, Marsh K. 1994. The prevalence and morbidity of snake bite and treatment-seeking behaviour among a rural Kenyan population. Ann Trop Med Parasitol. 88(6):665–671.

Sonibare MA, Aremu OT, Okorie PN. 2016. Antioxidant and antimicrobial activities of solvent fractions of Vernonia cinerea (L.) Less leaf extract. Afr Health Sci. 16(2):629–639.

Steinhorst J, Aglanu LM, Ravensbergen SJ, Dari CD, Abass KM, Mireku SO, Adu Poku JK, Enuameh YAK, Blessmann J, Harrison RA, et al. 2021. ‘The medicine is not for sale’: practices of traditional snakebite envenoming in Ghana. PLoS Negl Trop Dis. 15(4):e0009298.

Tugume P, Nyakoojo C. 2019. Ethnopharmacological survey of herbal remedies used in the treatment of paediatric diseases in Buhanga parish, Rukungiri district, Uganda. BMC Complement Altern Med. 19(1):353.

Upasani SV, Beldar VG, Tatiya AU, Upasani MS, Surana SJ, Patil DS. 2017. Ethnomedicinal plants used for snakebite in India: a brief overview. Integr Med Res. 6(2):114–130.

Vipera lebetina snakes used in traditional healers in snakebite envenoming. J Ethnopharmacol. 212:36–112.

Wangoda R, Watmon B, Kisige M. 2004. Snakebite management: experiences from Gulu regional hospital Uganda. East Cent Afr J Surg. 9:1–29.

World Health Organization (WHO). 2007. Rabies and envenomings: a neglected public health issue: report of a consultative meeting. Geneva: World Health Organization; p. 391–406.

World Health Organization (WHO). 2007. Rabies and envenomings: A neglected public health issue: report of a consultative meeting. Geneva: World Health Organization; p. 32.

Yirgu A, Chippaux J-P. 2019. Ethnomedicinal plants used for snakebite treatments in Ethiopia: a comprehensive overview. J Venom Anim Toxins Incl Trop Dis. 25:e20190017.

Żarnowski R, Żarnowska ED, Kozubek A. 2014. Alkylresorcinols in the family Fabaceae. Acta Soc Bot Pol. 70(1):25–29.

Zolfašgarhian H, Dounighi NM. 2015. Study on development of Vipera lebetina snake antivenom in chicken egg yolk for passive immunization. Hum Vaccines Immunother. 11:2734–2739.