Supplemental Digital Content 1. Outcome Definitions

Outcome	Definition
Proportion of males tested	The number of males tested divided by total number of individuals tested
HIV testing uptake	The number of individuals tested divided by number of individuals offered testing or number of individuals eligible for testing. Both offered testing and eligible for testing were used to construct the denominator because of inconsistencies in how studies reported uptake
Positivity	Assessed by the number of males testing HIV positive divided by total number of males tested
New HIV diagnoses	The number of males tested HIV positive for the first time divided by number of males testing HIV positive
First time testers	The number of individuals tested for the first time/total individuals tested
Linkage	The number of HIV-positive individuals linked to care divided by the total number of HIV-positive individuals
ART initiation	Created by dividing the number of HIV positive individuals who initiation/number of HIV positive individuals eligible to initiate
Viral suppression	Described qualitatively as there were very few studies that reported on suppression
Supplemental Digital Content 2. Search Strategy

Databases Searched
- PubMED
- Embase
- WHO Global Index Medicus
- Cochrane Library
- International Clinical Trials Registry Platform
- International Standard Randomized Controlled Trial Number Register
- ClinicalTrials.gov

Conference Abstracts Searched
- Conference on Retroviruses and Opportunistic Infections
- International AIDS Society Conference on HIV Sciences
- International AIDS Conference

Search Number	**Search Terms**
1	HIV
2	human immunodeficiency virus
3	1 or 2
4	counsel*
5	test
6	testing
7	tested
8	5 or 6 or 7
9	community
10	home
11	house
12	door
13	mobile
14	campaign
15	bar
16	workplace
17	business
18	church
19	temple
20	active
21	school
22	highway
23	brothel
24	bathhouse
25	festival
26	outreach
27	van
28	bicycle
29	9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28
30	3 and 4 and 8 and 29
Obs	Testing Approach
-----	------------------
1	Home-based HTS
2	Home-based HTS
3	Home-based HTS
4	Home-based HTS

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901
#	Type of HTS	Authors	Year	Title of the Study	Journal	PubMed ID		
6	Home-based HTS	Obare F, Fleming P, Anglewicz P, Thornton R, Martinson F, Kapatuka A, Poulin M, Watkins S, Kohler	2009	Acceptance of repeat population-based voluntary counselling and testing for HIV in rural Malawi	article	AFRO	X	
7	Home-based HTS	Lugada E, Levin J, Abang B, Mermin J, Muganlanzi E, Namara G, Gupta S, Grosskurth H, Jaffar S, Coutinho A, Bunnell R.	2010	Comparison of home and clinic-based HIV testing among household members of persons taking antiretroviral therapy in Uganda: results from a	article	AFRO	X	
8	Home-based HTS	Mutale W, Michelo C, Jurgensen M, Fylkesnes K.	2010	Home-based voluntary HIV counselling and testing found highly acceptable and to reduce	article	AFRO	X	
9	Home-based HTS	Tumwesigye E, Wana G, Kasasa S, Muganzi E, Nuwaha F.	2010	High uptake of home-based, district-wide, HIV counseling and testing in	article	AFRO	X X	
10	Home-based HTS	Vreeman RC, Nyandiko WM, Braitstein P, Were MC, Ayaya SO, Ndege SK, Wiehe SE.	2010	Acceptance of HIV testing for children ages 18 months to 13 years identified through voluntary, home-based HIV counseling and testing in	article	AFRO	X	
#	Study Title	Authors	Year	Journal	PMID	Country/Region	Study Type	
----	---	--	------	---------	------	--------------------	---------------------	
11	Facility and home based HIV Counseling and Testing: a comparative analysis	Mulogo EM, Abdulaziz AS, Guerra R, Baine SO.	2011	AFRO		southwestern Uganda	HTS	
12	Starting a home and mobile HIV testing service in a rural area of South	Maheswaran H, Thulare H, Stanistreet D, Tanser F, Newell ML.	2012	AFRO		South Africa	HTS	
13	Starting a home and mobile HIV testing service in a rural area of South	Maheswaran H, Thulare H, Stanistreet D, Tanser F, Newell ML.	2012	AFRO		South Africa	HTS	
14	Home-based HIV testing and counseling in rural and urban Kenyan communities	Dalal W, Feikin DR, Amoloh M, Ransom R, Burke H, Lugalia F, Ouma A, Laserson KF, Mermin J, Breiman	2013	AFRO		Kenya	HTS	
15	Effect of home based HIV counselling and testing intervention in rural	Doherty T, Tabana H, Jackson D, Naik R, Zembe W, Lombard C, Swanevelder S, Fox MP, Thorson A, Ekstrom AM,	2013	AFRO		South Africa	HTS	
#	Source	Authors	Year	Title	Type	Journal	Included?	
----	--------	---	------	--	-------	---------	-----------	
16		Fylkesnes K, Sandoy IF, Jurgensen M, Chipimo PJ, Mwangala S, Michel C.	2013	Strong effects of home-based voluntary HIV counselling and testing on acceptence and equity: a cluster randomised trial in Zambia	article	AFRO	X	
17		Helleringer S, Mkandawire J, Reniers G, Kallanani-Phiri L, Kohler HP.	2013	Should home-based HIV testing and counseling services be offered periodically in programs of ARV treatment as prevention? A case study in Likoma (Malawi)	article	AFRO	X X	
18		Medley A, Ackers M, Amolloh M, Owuor P, Muttai H, Audi B, Sewe M, Laserson K.	2013	Early uptake of HIV clinical care after testing HIV-positive during home-based testing and counseling in western Kenya	article	AFRO	X X	
19		Osoti AO, John-Stewart G, Kiarie J, Richardson B, Kinuthia J, Krakowiak D, Farquhar C.	2014	Home visits during pregnancy enhance male partner HIV counselling and testing in Kenya: a randomized trial	abstract	AFRO	X	
ID	Study Title	Authors	Year	Type	Journal	PID		
----	--	--	------	--------	-----------	-----		
20	Home-based HTS: High HIV testing uptake and linkage to care in a novel program of home-based HIV counseling and testing with facilitated referral in KwaZulu-Natal, South Africa	van Rooyen H, Barnabas RV, Baeten JM, Phakathi Z, Joseph P, Krows M, Hong T, Murnane PM, Hughes J, Celum C.	2013	article	AFRO	X		
21	Home-based HTS: HIV incidence and factors associated with seroconversion in a rural community home based counseling and testing program in Eastern Uganda	Okiria AG, Okui O, Dutki M, Baryamutuma R, Nuwagaba CK, Kansiime E, Ojamuge G, Mugwiri J, Fleuret J, King R, Bazeyo W, Lindan	2014	article	AFRO	X		
22	Home-based HTS: Male partner acceptance of home-based syphilis and HIV testing offered to couples during pregnancy	Mark J.; Kinuthia J.; Osoti A.; Gone M.; Asila V.; Parikh S.; Krakowiak D.; Betz B.; Richardson B.; Roxby A.; Farquhar C.	2015	abstract	AFRO	X		
23	Home-based HTS: Feasibility and effectiveness of two community-based HIV testing models in rural Swaziland	Parker LA, Jobanputra K, Rusike L, Mazibuko S, Okello V, Kerschberger B, Jouquet G, Cyr J.	2015	article	AFRO	X		
	Study ID	Study Title	Authors	Year	Journal	Type	PID	Notes
---	----------	---	--	------	---------	------	-----	-------
24	Home-based HTS	A hybrid mobile HIV testing approach for population-wide HIV testing in rural East Africa: an observational study	Chamie G, Clark TD, Kabami J, Kadede K, Ssemmondo E, Steinfeld R, Lavoy G, Kvarisiima D, Sang N, Jain V, Thirumurthy H, Liegler T, Balzer LB, Petersen ML, Cohen CR, Bukusi EA, Kamya MR, Liegler T, Balzer LB, Petersen ML, Cohen CR, Bukusi EA, Kamya MR	2016	AFRO	article	X	
25	Home-based HTS	Heterogeneity of the HIV epidemic in agrarian, trading, and fishing communities in Rakai, Uganda: an observational epidemiological study	Chang LW, Grabowski MK, Ssekubugu R, Nalugoda F, Kigozi G, Nantume B, Lessler J, Moore SM, Quinn TC, Reynolds SJ, Gray RH, Gomora M, Kigozi G, Nantume B, Lessler J, Moore SM, Quinn TC, Reynolds SJ, Gray RH, Gomora M	2016	AFRO	article	X	
26	Home-based HTS	Home-Based HIV Testing Among Pregnant Couples Increases Partner Testing and Outcomes	Krakowiak D.; Kinuthia J.; Osoti A.; Asila V.; Ann-Gene M.; Mark J.; Sharma M.; Barnabas R.V.; Farquhar C.	2016	AFRO	article	X	X
27	Home-based HTS	Does a male chip increase uptake of HIV testing by men? Lessons from HPTN 071 study	Phiri M.M.; Shanaube K.; Floyd S.; Sakala E.; Besa S.; Griffith S.; Ayles H.	2016	AFRO	abstract	X	X
No.	Study Title	Authors	Year	Type	Journal	AFRO	X	X
-----	---	---	------	----------	---------	------	---	---
28	Does a male chip increase uptake of HIV testing by men? Lessons from HPTN 071 study	Phiri M.M.; Shanaube K.; Floyd S.; Sakala E.; Besa S.; Griffith S.; Ayles H.	2016	Abstract	AFRO	X	X	
29	Expanding HIV testing and linkage to care in southwestern Uganda with community health extension workers	Asiimwe S, Ross JM, Arinaitwe A, Tumusiime O, Turyamureeba B, Roberts DA, O'Malley G, Barnabas RV	2017	Article	AFRO	X		
30	A Comparison of Home-Based Versus Outreach Event-Based Community HIV Testing in Ugandan Fisherfolk	Bogart LM, Wagner GJ, Musoke W, Naigino R, Linnemayr S, Maistrellis E, Klein DJ, Jumamil RB, Mukasa B, Bassett IV, Giordano TP, Wanyenze RK.	2017	Article	AFRO	X		
31	Integrating Family Planning and HIV Services at the Community Level: Formative Assessment with Village	Brunie A, Mucheri PNW, Akol A, Chen M, Mercer SJ, Petruney T.	2017	Article	AFRO	X		
32	Art coverage after 2 years of a utt intervention in Zambia: Findings from HPTN071	Floyd S.; Phiri M.; Schaap A.; Macleod D.; Shanaube K.; Griffith S.; Beyers N.; Hayes	2017	Abstract	AFRO	X	X	X
PID	Home-based HTS	Author(s)	Year	Title	Journal	AFRO	X	X
-----	---------------	---	------	--	---------	-------	---	---
33		Geoffroy E, Schell E, Jere J, Khozomba N.	2017	Going door-to-door to reach men and young people with HIV testing services to achieve the 90-90-90 treatment	article	AFRO	X	X
34		Hayes R, Floyd S, Schaap A, Shanaube K, Bock P, Sabapathy K, Griffith S, Donnell D, Piwowar-Manning E, El-Sadr W, Beyers N, Ayles H, Fidler S; HPTN 071 (PopART) Study Team.	2017	A universal testing and treatment intervention to improve HIV control: One-year results from intervention communities in Zambia in the HPTN 071 (PopART)	article	AFRO	X	
35		Justman J, Reed JB, Bicego G, Donnell D, Li K, Bock N, Koler A, Philip NM, Mlambo CK, Parekh BS, Duong YT, Ellenberger DL, El-Sadr WM.	2017	Swaziland HIV Incidence Measurement Survey (SHIMS): a prospective national cohort study	article	AFRO		X
36		Mark J, Kinuthia J, Roxby AC, Krakowiak D, Osoti A, Richardson BA, Gone MA, Asila V, Panikh S, Farquhar C.	2017	Uptake of Home-Based Syphilis and Human Immunodeficiency Virus Testing Among Male Partners of Pregnant Women in	article	AFRO	X	X
Study ID	HTS Type	Authors	Year	Title	Publication Type	Journal	Affiliation	
---------	----------	---------	------	-------	------------------	---------	-------------	
37	Home-based HTS	Mark J, Kinuthia J, Roxby AC, Krakowiak D, Osoti A, Richardson BA, Gone MA, Asila V, Panikh S, Farquhar C.	2017	Uptake of Home-Based Syphilis and Human Immunodeficiency Virus Testing Among Male Partners of Pregnant Women in Western Kenya	Article	AFRO	X X	
38	Home-based HTS	Ogirima, F., Muhammed, R., Agada, G., Christopher Izere, P., Abutu, I., Udeh, E., Jwanle, P., Ashie, M., Ameh, B., Ujah, J., & Oyeledun, B.	2017	Bridging the HIV treatment gap using a door to door strategy: experience from the community care program in Benue state Nigeria	Abstract	AFRO	X	
39	Home-based HTS	Oluoch P, Orwa J, Lugalia F, Mutinda D, Gichangi A, Oundo J, Karama M, Nganga Z, Galbraith J.	2017	Application of psychosocial models to Home-Based Testing and Counseling (HBTC) for increased uptake and household coverage in a large informal urban area	Article	AFRO	X X	
40	Home-based HTS	Shanaube K, Schaap A, Chaila MJ, Floyd S, Mackworth-Young C, Hoddinott G, Hayes R, Fidler S, Ayles H; HPTN 071 (PopART) Study Team..	2017	Community intervention improves knowledge of HIV status of adolescents in Zambia: findings from HPTN 071-PopART for youth study	Article	AFRO	X X	
Home-based HTS	Shanaube K, Schaal A, Floyd S, Phiri M, Griffith S, Chaila J, Bock P, Hayes R, Fidler S, Ayles H; HPTN 071 (PopART) Study Team.	What works - reaching universal HIV testing: lessons from HPTN 071 (PopART) trial in Zambia	2017	article	AFRO	X	X	X
Home-based HTS	Shanaube K.; Chaila M.J.; MacLeod D.; Schaap A.; Floyd S.; Jani C.; Hoddinott G.; Hayes R.; Fidler S.;	Community intervention improves adolescent HIV status knowledge: HPTN 071 study	2017	abstract	AFRO	X		
Home-based HTS	Floyd S.; Ayles H.; Schaap A.; Shanaube K.; MacLeod D.; Phiri M.; Griffith S.; Bock P.; Beyers N.; Fidler S.; Hayes R.	Towards 90-90: Findings after two years of the HPTN 071 (PopART) cluster-randomized trial of a universal testing-and-treatment intervention in	2018	article	AFRO	X	X	X
Home-based HTS	Muchedzi A.; Mahachi N.; Moga T.; Tafuma T.; Mawora P.; Harbick D.; Nyagura T.; Reichert K.	Improving technical efficiency: Reaching first 90 through community index HIV sexual network testing in Zimbabwe. The case of FHI 360	2018	abstract	AFRO	X		
Study ID	Study Type	Authors	Year	Title	Type	Journal	PID	
---	---	---	---	---	---	---	---	
45	Home-based HTS	O’Laughlin K.N.; He W.; Greenwald K.E.; Kasozi J.; Chang Y.; Mulogo E.; Faustin Z.M.; Njogu P.; Walensky R.P.; Bassett I.V.	2018	Feasibility and acceptability of home-based HIV testing among refugees: A pilot study in Nakivale refugee settlement in southwestern Uganda	Article	AFRO	X	
46	Home-based HTS	Olawore O.M.; Tobian A.; Nalugoda F.; Gray R.H.; Wawer M.; Ssekubugu R.; Santelli J.; Chang L.W.; Serwadda D.	2018	Migration, gender, and HIV incidence in Rakai, Uganda	Article	AFRO	X	
47	Home-based HTS	Roland M.; Block L.; Bachanas P.; Alwano M.G.; Abrams W.; Wirth K.; Gaolathe T.; Makhema J.; Mmalane M.; Lockman S.; El-Halabi S.; Moore J.	2018	Home-based testing identifies more previously undiagnosed older men than mobile testing in Botswana	Abstract	AFRO	X	X
48	Home-based HTS	Ruzagira E, Baisley K, Kamali A, Grosskurth H.	2018	Factors associated with uptake of home-based HIV counselling and testing and HIV care services among identified HIV-positive persons in Masaka, Uganda	Article	AFRO	X	X
PID	Study Type	Authors	Year	Title	Journals			
-----	------------	---------	------	-------	----------			
49	Home-based HTS	Sinha, P.; Moll, A. P.; Brooks, R. P.; Deng, Y.-H.; Shenoi, S. V.	2018	Synergism between diabetes and human immunodeficiency virus in increasing the risk of tuberculosis	AFRO X			
50	Home-based HTS	Tafuma T.A.; Mahachi N.; Dziwa C.; Marowa P.; Moga T.; Chimbidzikai T.; Muchedzi A.; Nyagura T.; Mpofu M.	2018	Time taken to link newly identified HIV positive clients to care following a home-base index case HIV testing: Experience from two provinces in Zimbabwe	AFRO			
51	Index/partner notification	Suggaravetsiri P, Yanai H, Chongsuvivatwong V, Naimpasan O, Akarasewi P.	2003	Integrated counseling and screening for tuberculosis and HIV among household contacts of tuberculosis patients in an endemic area of HIV infection: Chiang Rai, Thailand	SEARO X			
52	Index/partner notification	DiCarlo A, Zerbe A, Peters ZJ, Frederix K, Nkonyana JP, Mantell JE, Remien RH, El-Sadr WM.	2017	Use of Index Patients to Enable Home-Based Testing in Lesotho	AFRO X X			
Index/partner notification	Mahachi, N., Muchedzi, A., Moga, T., Tapfuma, T., Dziwa, C., Chimbidzikayi, T., Gonaouya, S., Chakubili, O., & Torpey, K.	High yields attained through HIV household index case testing in Zimbabwe: the case of the FHI 360 Zimbabwe HIV care and treatment project	abstract	AFRO	X			
---------------------------	---	---	----------	------	---			
Outreach HTS	Parker LA, Jobanputra K, Rusike L, Mazibuko S, Okello V, Kerschberger B, Jouquet G, Cyr J	Feasibility and effectiveness of two community-based HIV testing models in rural Swaziland	article	AFRO				
Outreach HTS	DiFranceisco W, Holtgrave DR, Hoxie N, Reiser WJ, Resenhoeft R, Pinkerton SD, Vergeront, J.	HIV seropositivity rates in outreach-based counseling and testing services: article	AMERO	Mixed populations	X			
Outreach HTS	Keenan, P. A., & Keenan, J. M.	Rapid HIV Testing in Urban Outreach: A Strategy for Improving Posttest Counseling article	AMERO	MSM	X			
Outreach HTS	Keenan, P. A., & Keenan, J. M.	Rapid HIV Testing in Urban Outreach: A Strategy for Improving Posttest Counseling article	AMERO	Mixed populations	X			
Outreach HTS	Liebman J, Pat Lamberti M, Altice F.	Effectiveness of a mobile medical van in providing screening services for article	AMERO		X			
#	Study Type	Authors	Year	Title	Journal	Hybridisation		
----	---------------------	--	------	---	-----------	-------------------		
59	Outreach HTS	Bell DN, Martinez J, Botwinick G, Shaw K, Walker LE, Dodds S, Sell RL, Johnson RL, Friedman LB, Sotheran JL,	2003	Case finding for HIV-positive youth: a special type of hidden population	AMERO	X		
60	Outreach HTS	Bell DN, Martinez J, Botwinick G, Shaw K, Walker LE, Dodds S, Sell RL, Johnson RL, Friedman LB, Sotheran JL,	2003	Case finding for HIV-positive youth: a special type of hidden population	AMERO	X		
61	Outreach HTS	Kahn RH, Moseley KE, Thilges JN, Johnson G, Farley TA.	2003	Community-based screening and treatment for STDs: results from a mobile clinic	AMERO	X		
62	Outreach HTS	Bradshaw, C. S., Pierce, L. I., Tabrizi, S. N., Fairley, C. K., & Garland, S. M.	2005	Screening injecting drug users for sexually transmitted infections and blood borne viruses using street outreach and self	WPRO	People who inject/use drugs X		
63	Outreach HTS	Liang TS, Erbeldaing E, Jacob CA, Wicker H, Christmyer C, Brunson S, Richardson D, Ellen JM.	2005	Rapid HIV testing of clients of a mobile STD/HIV clinic	AMERO	Mixed populations X		
ID	Study Type	Title	Year	Design	Journal	Outcome	PID	
----	------------	-------	------	--------	---------	---------	-----	
64	Outreach HTS	Rapid HIV testing of clients of a mobile STD/HIV clinic	2005	Article	AMERO	X		
65	Outreach HTS	Comprehensive clinical care on-site in men-only saunas: confidential STI/HIV screening outreach clinic	2005	Article	WPRO	MSM X		
66	Outreach HTS	Choosing HIV Counseling and Testing Strategies for Outreach Settings: A Randomized	2005	Article	AMERO	People who inject/use drugs X		
67	Outreach HTS	Increasing HIV Testing Among Latinos by Bundling HIV Testing with Other Tests	2006	Article	AMERO	MSM X X		
#	Outreach HTS	Authors	Year	Title	Journal	Type	Location	
----	-------------	--	------	--	---------	------	--------------	
70	Outreach HTS	Morin SF, Khumalo-Sakutukwa G, Charlebois ED, Routh J, Fritz K, Lane T, Vaki T, Fiamma A, Coates TJ.	2006	Removing barriers to knowing HIV status: same-day mobile HIV testing in Zimbabwe	AFRO	article		
71	Outreach HTS	Rose, V. J., Raymond, H. F., Kellogg, T. A., & McFarland, W.	2006	Assessing the feasibility of harm reduction services for MSM: the late night breakfast buffet study	AMERO	article	MSM X	
72	Outreach HTS	Bucher, J. B., Thomas, K. M., Guzman, D., Riley, E., Dela Cruz, N., & Bangsberg, D. R.	2007	Community-based rapid HIV testing in homeless and marginally housed adults in San Francisco	AMERO	article	Mixed populations X	
73	Outreach HTS	Bucher JB, Thomas KM, Guzman D, Riley E, Dela Cruz N, Bangsberg DR.	2007	Community-based rapid HIV testing in homeless and marginally housed adults in San Francisco	AMERO	article		
74	Outreach HTS	Kawichai S, Celentano DD, Chariyalertsak S, Visrutaratna S, Short O, Ruangyuttikarn C, Chariyalertsak C, Genberg B, Beyrer	2007	Community-based voluntary counseling and testing services in rural communities of Chiang Mai Province,	SEARO	article	X	
Supplemental Table showing all included studies WITH PID								
--								
Reference	**Title**	**Year**	**Article**	**Region**	**Population**	**PID**		
Bingham, T. A., Secura, G. M., Behel, S. K., Bunch, J. G., Simon, P. A., & MacKellar, D. A.	HIV Risk Factors Reported by Two Samples of Male Bathhouse Attendees in Los Angeles, California 2001-2002	2008	article	AMERO	MSM	X		
Arumainayagam, J., Grimshaw, R., Acharya, S., Chandramani, S., Morrall, I. A., & Pugh, R. N.	Value of targeting at-risk populations at outreach venues: findings from a local sauna	2009	article	EURO	MSM	X		
Daskalakis, D., Silvera, R., Bernstein, K., Stein, D., Hagerty, R., Hutt, R., Maillard, A., Borkowsky, W., Aberg, J., Aberg, J., and Aberg, J.	Implementation of HIV Testing at 2 New York City Bathhouses: From Pilot to Clinical Service	2009	article	AMERO	MSM	X		
de la Fuente L, Delgado J, Hoyos J, Belza MJ, Alvarez J, Gutierrez J, Neira-Leon M, Suraez M, Madrid	Increasing early diagnosis of HIV through rapid testing in a street outreach program in Spain	2009	article	EURO	X			
Chirawu P, Langhaug L, Mavhu W, Pascoe S, Dirawo J, Cowan F.	Acceptability and challenges of implementing voluntary counselling and testing (VCT) in rural Zimbabwe: evidence from the Regai Dzive Shiri Project	2010	article	AFRO	X			
Study ID	Publication Type	Title	Authors	Year	Journal	Additional Info		
---	---	---	---	---	---	---	---	---
80	Article	Increasing access to HIV counseling and testing through mobile services in Kenya: strategies, utilization, and cost-effectiveness	Grabbe KL, Menzies N, Taegtmeyer M, Emukule G, Angala P, Mwega I, Musango G, Marum E.	2010	AFRO	X		
81	Article	Comparison of users of an HIV/syphilis screening community-based mobile van and traditional voluntary counselling and testing sites in Guatemala	Lahuerta, M., Sabidó, M., Giardina, F., Hernández, G., Palacios, J.F., Ortiz, R., Fernández, V.H. and Casabona, J.	2010	AMERO	Mixed populations X		
82	Article	Rapid implementation of an integrated large-scale HIV counseling and testing, malaria, and diarrhea prevention campaign in rural Kenya	Lugada E, Millar D, Haskew J, Grabowsky M, Garg N, Vestergaard M, Kahn JG, Muraguri N, Mermin J.	2010	AFRO	X		
Study ID	Study Type	Authors	Year	Title and Key Findings	Journal	Status		
----------	------------	---------	------	-------------------------	---------	--------		
84	Outreach HTS	Brady M, Harrison C, Warriner J, Skinner C, Larbalestier N, Ward P.	2011	Community HIV testing: the feasibility and acceptability of assertive outreach and community testing to reduce the late	EURO	X		
85	Outreach HTS	Govindasamy D, van Schaik N, Kranzer K, Wood R, Mathews C, Bekker LG.	2011	Linkage to HIV care from a mobile testing unit in South Africa by different CD4	AFRO	X		
86	Outreach HTS	Kranzer K, Govindasamy D, van Schaik N, Thebus E, Davies N, Zimmermann M, Jeneker S, Lawn S, Wood R, Bekker LG.	2011	Incentivized recruitment of a population sample to a mobile HIV testing service increases the yield of newly diagnosed cases, including those in need of antiretroviral therapy	AFRO	X		
87	Outreach HTS	Kranzer K, Govindasamy D, van Schaik N, Thebus E, Davies N, Zimmermann M, Jeneker S, Lawn S, Wood R, Bekker LG.	2011	Incentivized recruitment of a population sample to a mobile HIV testing service increases the yield of newly diagnosed cases, including those in need of antiretroviral therapy	AFRO	X		
ID	Study Type	Authors	Year	Title	Journal	AFRO	PID	
----	------------	---------	------	-------	---------	------	-----	
88	Outreach HTS	Ostermann J, Reddy EA, Shorter MM, Muiruri C, Mtalo A, Itemba DK, Njau B, Bartlett JA, Crump JA, Thielman NM.	2011	Who tests, who doesn't, and why? Uptake of mobile HIV counseling and testing in the Kilimanjaro Region of Tanzania	article	AFRO	X	
89	Outreach HTS	Baisley K, Doyle AM, Changalucha J, Maganja K, Watson-Jones D, Hayes R, Ross D.	2012	Uptake of voluntary counselling and testing among young people participating in an HIV prevention trial: comparison of opt-out and opt-in strategies	article	AFRO	X	
90	Outreach HTS	Baisley K, Doyle AM, Changalucha J, Maganja K, Watson-Jones D, Hayes R, Ross D.	2012	Uptake of voluntary counselling and testing among young people participating in an HIV prevention trial: comparison of opt-out and opt-in strategies	article	AFRO	X	
91	Outreach HTS	Granich R, Muraguri N, Doyen A, Garg N, Williams BG.	2012	Achieving universal access for human immunodeficiency virus and tuberculosis: potential prevention impact of an integrated multi-disease prevention campaign in Kenya	article	AFRO	X	
ID	Outreach HTS	Authors	Year	Title	Journal	Article	Additional Notes	
----	--------------	---------	------	-------	---------	---------	-----------------	
92	Outreach HTS	Hood JE, MacKellar D, Spaulding A, Nelson R, Mosiakgabo B, Sikwa B, Puso I, Raats J, Loeto P, Alwano MG, Monyatsi B.	2012	Client characteristics and gender-specific correlates of testing HIV positive: a comparison of standalone center versus mobile outreach HIV testing and counseling in Botswana	AFRO	article	X	
93	Outreach HTS	Celentano D, Srithanaviboonchai K, Wichajarn M, Ngiizi MD, van Schaik N, Kranzer K, Lawn SD, Wood	2012	Accept (HPTN 043) HIV/AIDS community mobilization and incentivized HIV counseling and testing	SEARO	article	X	
94	Outreach HTS	Schaik N, Kranzer K, Lawn SD, Wood R, Bekker LG, McGrath N, Chirowodza A, Joseph P.	2012	HIV counseling and testing program: making it work	AFRO	article	X X	
95	Outreach HTS	Maritz TE, Smith CD, Mattox L, Gluth DR, Murgai	2013	efficiency of HIV testing with peer recruitment,	AMERO	article	X	
96	Outreach HTS	Cawley C, Wringe A, Slaymaker E, Todd J, Michael D, Kumugola Y.	2014	The impact of voluntary counselling and testing services	AFRO	article	X	
97	Outreach HTS	Balbuena S, de la Fuente L, Hoyos J, Rosales-Statkus	2014	street-based HIV rapid testing: is it an effective intervention?	EURO	article	X X	
98	Outreach HTS	Balbuena S, de la Fuente L, Hoyos J, Rosales-Statkus	2014	street-based HIV rapid testing: is it an effective intervention?	EURO	article	X X	
#	Study Type	Authors	Year	Title	Journal	Region	Sexuality	
---	------------	---------	------	-------	---------	--------	-----------	
1	Outreach HTS	Ifekandu, C., Suleiman, A., & Aniekwe, O.	2014	The cost-effectiveness in the use of HIV counselling and testing: mobile outreaches in reaching men who have sex with men (MSM) in northern Nigeria	AFRO	MSX	X	
2	Outreach HTS	Kakalou, E., Papastamopoulos, V., Ioannidis, P., Papanikolaou, K., Georgiou, O., & Skoulis, A.	2014	Early HIV diagnosis through use of rapid diagnosis test (RDT) in the community and direct link to HIV care: a pilot project for vulnerable populations in Athens, Greece	EURO	Mixed populations	X	
3	Outreach HTS	Segura, E.R., Castro, J.L., Smith, J.M., & Chane, D.	2014	Bringing testing to the people - benefits of mobile unit HIV counseling and testing: a pilot project for vulnerable populations in Lima, Peru, 2007-2009	AMERO	Transgender	X	
4	Outreach HTS	Mabuto T, Latka MH, Kuwane B, Churchyard GJ, Charalambous S, & Hoffmann CJ.	2014	Four models of HIV counseling and testing: utilization and test results in South Africa	AFRO	X		
5	Outreach HTS	Mdodo, R., Thomas, P. E., Walker, A., Chavez, P., Ethridge, S., Oraka, E., & Sutton, M. Y.	2014	Rapid HIV Testing at Gay Pride Events to Reach Previously Untested MSM: Experience of offering HIV rapid testing to at-risk patients in community health centers in eight Chinese cities	AMERO	MSX	X	
6	Outreach HTS	Zhang D, Meng S, Xu P, Lu H, Zhuang M, Wu G, Liu Y, Pan X, Yan H, Chen X, Fan L, Li C, Fu X, Qi J, Han L, Ma F, Lv F, & Sun	2014	Experience of offering HIV rapid testing to at-risk patients in community health centers in eight Chinese cities	WPRO	X		
Outreach HTS	Authors	Year	Title	Journal	Populations	X	X	
-------------	---------	------	-------	---------	-------------	---	---	
Outreach HTS	Adebajo S, Eluwa G, Njab J, Oginni A, Ukwuije F, Ahonsi B, Lorenc T.	2015	Evaluating the effect of HIV prevention strategies on uptake of HIV counselling and testing among male most-at-risk-populations in Nigeria; a cross-sectional analysis	AFRO	Mixed populations	X	X	
Outreach HTS	Bassett IV, Regan S, Mbonambi H, Blossom J, Bogan S, Bearnot B, Robine M, Walensky RP, Mhlongo B, Thulare H, Losina E.	2015	Finding HIV in hard to reach populations: mobile HIV testing and geospatial mapping in Umlazi township, Durban, South Africa	AFRO	X			
Outreach HTS	Belza MJ, Hoyos J, Fernández-Balbuena S, Diaz A, Bravo MJ, de la Fuente L; Madrid HIV rapid testing group..	2015	Assessment of an outreach street-based HIV rapid testing programme as a strategy to promote early diagnosis: a comparison with two surveillance systems in Spain, 2008-	EURO	X			
Outreach HTS	Belza MJ, Hoyos J, Fernández-Balbuena S, Diaz A, Bravo MJ, de la Fuente L; Madrid HIV rapid testing group..	2015	Assessment of an outreach street-based HIV rapid testing programme as a strategy to promote early diagnosis: a comparison with two surveillance systems in Spain, 2008-	EURO	MSM	X		
Study Type	Title	Authors	Year	Journal	Country/Region	PID		
------------------	--	---	------	---------	----------------	-----		
Outreach HTS	Pharmacist-provided rapid HIV testing in two community pharmacies	Darin KM, Klepser ME, Klepser DE, Klepser SA, Reeves A, Young M, Scarsi KK.	2015	AMERO		X		
Outreach HTS	Widening the Access to HIV Testing: The Contribution of Three In-Pharmacy Testing Programmes in Spain	Fernandez-Balbuena S, Belza MJ, Zulaica D, Martinez JL, Marcos H, Rifa B, Arrillaga A, de la Fuente L, Hoyos J; Working Group.	2015	EURO		X		
Outreach HTS	The rapid test in Spanish pharmacies: a novel programme to reach heterosexual men?	Fernandez-Balbuena S, Marcos H, Perez-A, Hoyos J, Belza MJ, de la Fuente L.	2015	EURO		X X		
Outreach HTS	Risk factors for HIV and STI diagnosis in a community-based HIV/STI testing and counselling site for men having sex with men (MSM) in a large German city in 2011-2012	Marcus U, Ort J, Grenz M, Eckstein K, Wirtz K, Wille A.	2015	EURO	MSM	X		
Outreach HTS	Feasibility and effectiveness of two community-based HIV testing models in rural Swaziland	Parker LA, Jobanputra K, Rusike L, Mazibuko S, Okello V, Kershberger B, Jouquet G, Cyr J.	2015	AFRO		X		
Study ID	Study Details	Year	Title	Article Type	Journal	Location	PID	
---------	---------------	------	-------	--------------	---------	----------	-----	
Outreach HTS	Wood M, Ellks R, Grobicki M.	2015	Outreach sexual infection screening and postal tests in men who have sex with men: are they comparable to clinic screening?	article	EURO	MSM X X	X	
Outreach HTS	van Zyl MA, Brown LL, Pahl K.	2015	Using a call center to encourage linkage to care following mobile HIV counseling and testing	article	AFRO			
Outreach HTS	Chamie G, Clark TD, Kabami J, Kadede K, Ssemmondo E, Steinfeld R, Lavoy G, Kwarisiima D, Sang N, Jain V, Thirumurthy H, Liegler T, Balzer LB, Petersen ML, Cohen CR, Bukusi EA, Kamya MR,	2016	A hybrid mobile approach for population-wide HIV testing in rural east Africa: an observational study	article	AFRO	X		
Outreach HTS	Arevalo, A. L., Duran, A., Carrizo, E., Betti, L., Marachlian, L., Vulcano, F., Nan, M., Carones, M. L., Serantes, D., Carrozzi, B., Vulcano, S., Orge, P., Hirsch, C., Minissale, G.	2017	Free HIV tests on public spaces: a strategy which allows easy access to diagnose in the Autonomous City of Buenos Aires (CABA)	abstract	AMERO	X		
#	Outreach HTS	Citation	Title	Year				
---	---	---	---	---				
1	Camacho-Gonzalez A.; Gillespie S.; Thomas-Seaton L.; Frieson K.; Hussen S.A.; Murray A.; Gaul Z.; Sutton M.; Graves C.; Chakraborty R.	2017	The Metropolitan Atlanta community adolescent rapid testing initiative study: closing the gaps in HIV care among youth in Atlanta,	AMERO				
2	Castel AD, Kuo I, Mikre M, Young T, Haddix M, Das S, Maugham G, Reisen C.	2017	Feasibility of Using HIV Care-Continuum Outcomes to Identify Geographic Areas for Targeted HIV Testing	AMERO				
3	Chamie G.; Schaffer E.; Ndyabakira A.; Emperorador D.; Kwarisima D.; Havlir D.V.; Kahn J.; Kamya M.R.;	2017	A randomized trial of novel strategies to incentivize HIV testing among men in Uganda	AFRO				
4	Daniels J, Komarek A, Forgrieve B, Pahl K, Stafford S, Bruns LC, Coates T.	2017	Shout-It-Now: A Mobile HCT Model Employing Technology and Edutainment in South Africa	AFRO				
5	Ezeanolue EE, Obiefune MC, Yang W, Ezeanolue CO, Pharr J, Osuji A, Ogidi AG, Hunt AT, Patel D, Ogedegbe G, Ehiri JE.	2017	What do You Need to Get Male Partners of Pregnant Women Tested for HIV in Resource Limited Settings? The Baby Shower	AFRO				
Study ID	Outreach	Study Title	Year	Study Type	Journal	Population(s)		
----------	----------	--	------	------------	---------	----------------		
#1	Outreach	Active targeted HIV testing and linkage to care among men who have sex with	2017	article	SEARO	MSM X X X		
	HTS	men attending a gay sauna in Thailand						
#2	Outreach	Experience and lessons from health impact assessment guiding prevention and	2017	article	AFRO	X		
	HTS	control of HIV/AIDS in a copper mine project, northwestern Zambia						
#3	Outreach	Making mobile HIV testing available for high-risk MSM in saunas	2017	abstract	SEARO	MSM X		
	HTS							
#4	Outreach	Increasing HIV testing among hard-to-reach groups: examination of RAPID, a	2017	article	WPRO	X		
	HTS	community-based testing service in Queensland						
#5	Outreach	Fast tracking the HIV response in Nairobi city by targeted HIV testing of key	2017	abstract	AFRO	X		
	HTS	populations, Kenya, 2015				Mixed populations X		
Outreach HTS	Authors	Year	Title	Type	Journal	PID		
-------------	---------	------	-------	-------	---------	-----		
SEARCH Collaboration..	Sibanda EL, Tumushime M, Mufuka J, Mavedzenge SN, Gudukeya S, Bautista-Arredondo S, Hatzold K, Thirumurthy H, McCoy SI, Padian N, Copas A, Cowan FM.	2017	Effect of non-monetary incentives on uptake of couples' counselling and testing among clients attending mobile HIV services in rural Zimbabwe: a cluster-randomised trial	article	AFRO	X		
Outreach HTS	Sibanda EL, Tumushime M, Mufuka J, Mavedzenge SN, Gudukeya S, Bautista-Arredondo S, Hatzold K, Thirumurthy H, McCoy SI, Padian N, Copas A, Cowan FM.	2017	Effect of non-monetary incentives on uptake of couples' counselling and testing among clients attending mobile HIV services in rural Zimbabwe: a cluster-randomised trial	article	AFRO	X		
Outreach HTS	Okoko, N. A., Guze, M. A., Ndolo, S., Nyanaro, G., Bukusi, E. A., Cohen, C. R., Penner, J., & Kulzer, J. L.	2017	Toward the first 90: identifying and testing younger populations for HIV at community outreach events	abstract	AFRO	X		
Outreach HTS	SEARCH Collaboration..	2017	Evaluating the feasibility and uptake of a community-led HIV testing and multi-disease health campaign in rural Uganda	article	AFRO	X		
#	Outreach HTS	Smyrnov, P., Williams, L., Korobchuk, A., Sazonova, Y., Nikolopoulos, Skaathun, B., Schneider, J., & Friedman, S. R.	Social network approaches to locating undiagnosed HIV cases are more effective than RDS recruitment or outreach models	abstract	EURO	People who inject/use drugs	X	
---	---	---	---	---	---	---	---	
#	Outreach HTS	van Niekerk, M., Draper, H., & Meehan, S.-A.	Can STI screening be suitably integrated into community-based HIV testing services for men in Cape	abstract	AFRO	X		
#	Outreach HTS	Adetunji AA, Kuti MA, Audu RA, Muyibi SA, Imhansoloeva M, Mosuro OA, Solanke EA, Akpa OM, Irabor AE, Ladipo M, Berzins B, Robertson K	Discordant rapid HIV tests: lessons from a low-resource community	article	AFRO	X		
#	Outreach HTS	Bekolo CE, Yimdjo Fogue TD, Williams TD.	Feasibility of integrating HIV testing into local youth development programmes in Cameroon	article	AFRO	X		
#	Outreach HTS	Geoffroy E.; Khozomba N.; Jere J.; Schell E.; Schafer T.; Goldman J.; Kabwere K.	Going door-to-door to reach men and young people with HIV testing services to achieve the 90-90-90 treatment	abstract	AFRO	X		
#	Outreach HTS	Authors	Year	Document Type	PID	MSM	X	X
---	-------------	--	------	---------------	-----	-----	---	---
1	Outreach HTS	Herce ME, Miller WM, Bula A, Edwards JK, Sapatalo P, Lancaster KE, Mofolo I, Furtado MLM, Weir SS.	2018	Article	AFRO	MSM	X	
2	Outreach HTS	Roland M.; Block L.; Bachanas P.; Alwano M.G.; Abrams W.; Wirth K.; Gaolathe T.; Makhema J.; Mmalane M.; Lockman S.; El-Halabi S.; Moore J.	2018	Abstract	AFRO		X	X
3	Outreach HTS	Sinha, P.; Moll, A. P.; Brooks, R. P.; Deng, Y.-H.; Shenoi, S. V.	2018	Article	AFRO			X
ID	Study Title	Authors	Year	Country	Journal	Type	MSM & Transgender	PID
------	---	--	------	---------	-----------	----------	-------------------	-----
1	Implementation and assessment of a model to increase HIV testing among men who have sex with men and transgender women in Thailand, 2011-2016	Wasantioopakorn M, Manopaiboon C, Phoorisri T, Sukkul A, Lertpiriyasuwat C, Ongwandee S, Langkafah F, Kritsanavarin U, Visavakum P, Jetsawang B, Nookhai S, Kitwattanachai P, Weerawattanayotin W, Losinikul M, Yenyarsun N, Jongchotchatchawa	2018	Thailand	SEARO	Outreach HTS	X	
2	Rapid ART initiation and index client testing outcomes of commlink, a community-based, HIV testing, mobile HIV care, and peer-delivered, Linkage Case Management Program-Swaziland, 2017	Williams D.; Mackellar D.; Dlamini M.; Simelane N.; Mlambo S.; Mamba P.; Byrd J.; Mazibuko S.; Pathmanathan I.; Lukhele N.; Dube L.; Pasipamire M.; Nxumalo V.; Beyer A.; Ryan C.	2018	Swaziland	AFRO	Outreach HTS	X, X	
3	Case finding for HIV-positive youth: a special type of hidden population	Bell DN, Martinez J, Botwinick G, Shaw K, Walker LE, Dodds S, Sell RL, Johnson RL, Friedman LB, Sotheran JL, Siciliano C.	2003	USA	AMERO	Stand-alone HTS	X	
#	Stand-alone HT	Bailey, A. C., Roberts, J., Weatherburn, P., Hickson, F. C. I., Reid, D. S., Fisher, M., & Dean, G.	2008	Community HIV testing for men who have sex with men: results of a pilot project and comparison of service users with those testing in	article	EURO	MSM	X
---	---	---	---	---	---	---	---	---
#	Stand-alone HT	Wringe A, Isingo R, Urassa M, Maiseli G, Manyalla R, Changalucha J, Mgara J, Kalluvya S, Zaba B.	2008	Uptake of HIV voluntary counselling and testing services in rural Tanzania: implications for effective HIV prevention and equitable	article	AFRO	X	
#	Stand-alone HT	Kimbrough, L. W., Fisher, H. E., Jones, K. T., Johnson, W., Thadiparthi, S., & Dooley, S.	2009	Accessing Social Networks With High Rates of Undiagnosed HIV Infection: The Social Networks Demonstration	article	AMERO	Mixed populations	X
#	Stand-alone HT	Menzies N, Abang B, Wanyenze R, Nuwaha F, Mugisha B, Coutinho A, Bunnell TR, Mermin J	2009	The costs and effectiveness of four HIV counseling and testing strategies in	article	AFRO	X	
#	Stand-alone HT and Yazdanpanah,	Champenois, K., Le Gall, J.M., Jacquemin, C., Jean, S., Martin, C., Rios, L., Benoit, O., Vermoesen, S., Lert, F., Spire, B.	2012	ANRS–COM'TE ST: description of a community-based HIV testing intervention in non-medical settings for men	article	EURO	MSM	X
Study Type	Authors	Year	Title	Journal	Area	Primary ID		
------------	---------	------	-------	---------	------	------------		
Stand-alone HTS	Lorente, N., Preau, M., Vernay-Vaisse, C., Mora, M., Blanche, J., Otis, J., Passeron, A., Le Gall, J.M., Dhotte, P., Carrieri, M.P. and Suzan-Monti, M.	2013	Expanding Access to Non-Medicalized Community-Based Rapid Testing to Men Who Have Sex with Men: An Urgent HIV Prevention Intervention (The ANRS-DRAG Study)	article	EURO	MSM X		
Stand-alone HTS	Meulbroek, M., Ditzel, E., Saz, J., Taboada, H., Pérez, F., Pérez, A., Carrillo, A., Font, G., Marazzi, G., Uya, J. and Cabrero, J.	2013	BCN Checkpoint, a community-based centre for men who have sex with men in Barcelona, Catalonia, Spain, shows high efficiency in HIV detection and linkage to care: Efficient HIV detection at BCN Checkpoint	article	EURO	MSM X		
Stand-alone HTS and HTP	Knight, V., Gale, M., Guy, R., Parkhill, N., Holden, J., Leeman, C., McNulty, A., Keen, J.	2014	A novel time-limited pop-up HIV testing service for gay men in Sydney, Australia, attracts high-risk individuals	article	WPRO	MSM X		
Stand-alone HT	Yan, H., Zhang, M., Zhao, J., Huan, X., Ding, J., Wu, S., Wang, C., Xu, Y., Liu, L., Xu, F. and Yang, H.	2014	The increased effectiveness of HIV preventive intervention among men who have sex with men and of follow-up care for people living with HIV after ‘task-shifting’ to community-based organizations: a ‘cash on service delivery’ model	article	WPRO	MSM	X	X
Stand-alone HT	Ferrer L, Loureiro E, Meulbroek M, Folch C, Perez F, Esteve A, Saz J, Taboada H, Pujol TF, Casabona J.	2015	High HIV incidence among men who have sex with men attending a community-based voluntary counselling and testing service in Barcelona, Spain: results from the ITACA cohort	article	EURO	MSM	X	
Stand-alone HT	Des Jarlais D, Duong HT, Pham Minh K, Khuat OH, Nham TT, Arasteh K, Feeleymer J, Heckathorn DD, Peres M, Moles JP, Laureillard D, Nagot N; (The Drive Study Team)	2016	Integrated respondent-driven sampling and peer support for persons who inject drugs in Haiphong, Vietnam: a case study with implications for	article	WPRO	MSM	X	
#	Stand-alone HT	Authors	Year	Title	Type	Journal	PID	
---	---------------	--	------	--	------	---------	-----	
10	Stand-alone HTB	Engler K, Rollet K, Lessard D, Thomas R, Lebouche B.	2016	Explaining the Presence of "Heterosexual" Female Clients of a Rapid HIV Testing Site Located in the Gay Village of Montreal,	article	AMERO	X	
11	Stand-alone HT	Lazarus L, Patel S, Shaw A, Leblanc S, Lalonde C, Hladio M, Mandryk K, Horvath C, Petricich W, Kendall C, Tyndall MW; Proud Community Advisory Committee.	2016	Uptake of Community-Based Peer Administered HIV Point-of-Care Testing: Findings from the PROUD Study	article	AMERO	People who inject/use drugs	X
19	Stand-alone HT	Lessard D.; Lebouche’ B.; Engler K.; Thomas R.	2016	An analysis of socio-demographic and behavioural factors among immigrant MSM in Montreal from an HIV-testing site sample	article	AMERO	MSM	X
28	Stand-alone HT	Reif LK, Rivera V, Louis B, Bertrand R, Peck M, Anglade B, Seo G, Abrams EJ, Pape JW, Fitzgerald DW, McNairy ML.	2016		article	AMERO	X	
Stand-alone HT	Authors	Year	Study Details	Journal	People who inject/use drugs			
---------------	--	------	---	---------	----------------------------			
	Robert E Booth, Jonathan M Davis, Sergey Dvoryak, John T Brewster,	2016	HIV incidence among people who inject drugs (PWIDs) in Ukraine: results from	EURO	X			
	Oksana Lisovska, Steffanie A Strathdee, Carl A Latkin		a clustered randomised trial					
	Vannakit R.; Jantarapakde J.; Pengnonyang S.; Jitjang S.; Janamnuaysook	2016	A cohort study of community-based test and treat for men who have sex with	SEARO	X			
	R.; Pankam T.; Trachunthong D.; Pussadee K.; Reankhomfu R.; Lingjongrat		men and transgender women: Preliminary findings from Thailand					
	D.; Janyam S.; Nakpor T.; Leenasirimakul P.; Jadwattanakul T.; Noriega							
	S.; Charoenying S.; Sattayapanich T.; Arunmanakul A.; Phanuphak P.							
	; Cassell M.; Phanuphak N.							
	Pham, M.K., Moles, J.P., Thi, H.D., Thi, T.N., Thi, G.H., Thi, T.T.,	2017	Low HIV incidence but high HCV incidence among people who inject drugs in	WPRO	X			
	Hai, V.V., Thi, H.K., Vallo, R., Peries, M. and Arasteh, K.		Haiphong, Vietnam: results of the ANRS 12299/NIDA P30DA011041					
Combination of interventions	Outlaw, A.Y., Naar-King, S., Parsons, J.T., Green-Jones, M., Janisse, H. and Secord, E.	Using Motivational Interviewing in HIV Field Outreach With Young African American Men Who Have Sex With Men: A Randomized	2010	article	AMERO	MSM	X	X
-----------------------------	---	---	-------	-------	-------	------	----	----
Combination of interventions	Stein, R., Green, K., Bell, K., Toledo, C.A., Uhl, G., Moore, A., Shelley, G.A. and Hardnett, F.P.	Provision of HIV Counseling and Testing Services at Five Community-Based Organizations Among Young Men of Color Who Have Sex with Men	2011	article	AMERO	MSM & Transgenderer	X	
Combination of interventions	Qvist, T., Cowan, S.A., Graugaard, C. and Helleberg, M.	High linkage to care in a community-based rapid HIV testing and counseling project among men who have sex with men in Copenhagen	2014	article	EURO	MSM	X	X
Combination of interventions	Zhang, D., Meng, S., Xu, P., Lu, H., Zhuang, M., Wu, G., Liu, Y., Pan, X., Yan, H., Chen, X. and Fan, L.	Experience of offering HIV rapid testing to at-risk patients in community health centers in eight Chinese cities	2014	article	WPRO	MSM	X	
Combination of interventions	Authors	Year	Title	Supplement	Source	PID		
------------------------------	----------------------------------	------	--	-------------	--------	-----		
##	Castro R, Ribeiro-Alves M, Corrêa RG, Derrico M, Lemos K, Grangeiro JR, Jesus Bd, Pires D, Veloso	2016	The Men Who Have Sex with Men HIV Care Cascade in Rio de Janeiro, Brazil	article	AMERO	X		
##	Castro R, Ribeiro-Alves M, Corrêa RG, Derrico M, Lemos K, Grangeiro JR, Jesus Bd, Pires D, Veloso	2016	The Men Who Have Sex with Men HIV Care Cascade in Rio de Janeiro, Brazil	article	AMERO	MSM & Transgender	X	
##	Fernandez-Lopez L, Reyes-Uruena J, Agusti C, Kustec T, Klavs I, Casabona C; COBATEST Network group.	2016	The COBATEST network: a platform to perform monitoring and evaluation of HIV community-based testing practices in Europe and conduct operational	article	EURO	X		
##	Hoenigl M, Chaillon A, Morris SR, Little SJ.	2016	HIV Infection Rates and Risk Behavior among Young Men undergoing community-based Testing in San Diego	article	AMERO	MSM	X	
##	Hoenigl M, Chaillon A, Morris SR, Little SJ.	2016	HIV Infection Rates and Risk Behavior among Young Men undergoing community-based Testing in San Diego	article	AMERO	X		
Combination of interventions	Authors	Year	Title	Publication Type	Journal	Region	Population	PID
----------------------------	---------	------	-------	-----------------	---------	--------	------------	-----
#	Bitimwine, H., Musiime, F., Ajuna, P., Tumbu, P., Nahiry-Ntege, P., & Kekitiinwa, A.	2017	Maximizing targeted testing to improve HIV yield among children and adolescents in Rwenzori	abstract	AFRO	X		
#	Casalini, C., Boyee, D., Ndolichimpa, M., Rutabanzibwa, N., Bandio, R., Mlanga, E., & Curran, K.	2017	Key population risk factors associated with differentiated HIV care in Tanzania	abstract	AFRO	Mixed populations	X	
#	Holliday RC, Zellner T, Francis C, Braithwaite RL, McGregor B, Bonhomme J.	2017	Campus and Community HIV and Addiction Prevention (CCHAP): An HIV Testing and Prevention Model to Reach Young African American Adults	article	AMERO	X		
#	Ribas Baltrons, Josep; Fernández-López, Laura; Casabona I Barberà, Jordi; Grupo red COBATEST	2017	[Cobastest network: users' characteristics of community-based voluntary, counselling and testing centres in Spain]	article	EURO	Mixed populations	X	
#	Zulliger R, Maulsby C, Solomon L, Baytop C, Orr A, Nasrullah M, Shouse L, DiNenno E, Holtgrave D.	2017	Cost-utility of HIV Testing Programs Among Men Who Have Sex with Men in the United States	article	AMERO	MSM	X	
#	Velen K, Lewis JJ, Charalambous S, Pagk-Shipp L, Popane F, Churchyard GJ, Hoffmann CJ.	2016	Household HIV Testing Uptake among Contacts of TB Patients in South Africa	article	AFRO	X	X	
#	School-based HTS	Ijadunola K, Abiona T, Balogun J, Aderounmu A.	Provider-initiated (Opt-out) HIV testing and counselling in a group of university students in Ile-Ife, Nigeria	article	AFRO	X		
---	---	---	---	---	---	---		
#	School-based HTS	Gill, H., Bulman, J., Wallace, H., Evans, A., & Schoeman, S.	Evaluation of a pilot student LGBT sexual health “pop up” clinic	abstract	EURO	MSM & Transgender	X	
#	School-based HTS	Milligan C, Cuneo CN, Rutstein SE, Hicks C.	“Know Your Status”: results from a novel, student-run HIV testing initiative on college campuses	article	AMERO	MSM	X	X
#	School-based HTS	Milligan C, Cuneo CN, Rutstein SE, Hicks C.	“Know Your Status”: results from a novel, student-run HIV testing initiative on college campuses	article	AMERO	X		
#	School-based HTS	Okpo E, Corrigan H, Gillies P.	Blood borne virus (BBV) testing in a university setting in North-East Scotland: a	article	EURO	X		
Study Type	Authors	Title	Year	Journal	Supplemental Table			
------------	---------	-------	------	---------	--------------------			
Workplace-based HTS	Van der Borght SF, Schim van der Loeff MF, Clevenbergh P, Kabarega JP, Kamo E, van Cranenburgh K, Rijckborst H, Lange JM, Rinke de Wit TF.	Long-term voluntary counseling and testing (VCT) uptake dynamics in a multicountry HIV workplace program in sub-Saharan Africa	2010	AFRO	X			
Workplace-based HTS	de Beer I, Chani K, Feeley FG, Rinke de Wit TF, Sweeney-Bindels E, Mulongeni P.	Assessing the costs of mobile voluntary counseling and testing at the workplace versus facility based voluntary counseling and testing	2015	AFRO	X			
Workplace-based HTS	Knoblauch AM, Divall MJ, Owuor M, Nduna K, Ng’uni H, Musunka G, Pascall A, Utzinger J, Winkler MS.	Experience and lessons from health impact assessment guiding prevention and control of HIV/AIDS in a copper mine project, northwestern Zambia	2017	AFRO	X			
Supplemental Digital Content 5a. Quality of studies included in systematic review of CB HTS using Cochrane Collaboration's Risk of Bias Tool

Author, year	Selection bias	Performance and detection bias	Reporting bias	Attrition bias	Other	Total score¹	
	A	B	C	D	E	F	
Chamie 2017	U	U	0	U	U	U	0*
Doherty 2013	1	1	U	1	1	0	4
Ezeanolue 2017	1	1	0	1	1	1	5
Fylkesnes 2013	1	1	0	1	1	1	5
Krakowiak 2016A	U	U	0	U	U	U	0*
Lugada 2010	U	U	0	0	1	1	2
Osoi 2013	1	1	0	0	1	1	4
Outlaw 2010	1	U	0	0	1	1	3
Roland 2018	U	U	0	U	U	U	0*
Sibanda 2016	U	U	0	U	U	U	0*
Sibanda 2017	1	0	0	U	1	1	3
Spielberg 2005	U	U	0	U	1	0	1

Quality categories: A: Adequate sequence generation; B: Allocation concealment; C: Blinding of participants, personnel and outcome assessors; D: Incomplete outcome data addressed; E: Free of selection reporting; F: Free of any other bias

¹Total scores range from 0 to 6. Higher scores indicate low risk of bias; lower scores indicate higher risk of bias.

*Conference abstract only, unable to assess completely
Supplemental Digital Content 5b. Quality of studies included in systematic review of CB HTS using Newcastle-Ottawa Quality Assessment Scale

Author, year	Selection bias	Confounding	Measurement bias	Total score
Adebajo 2015	U	0	1	4
Bailey 2008	U	0	1	4
Baisley 2012	U	0	1	5
Bogart 2017	0	0	2	6
Cawley 2014	U	U	1	1
Chamie 2016	U	U	1	3
de Beer 2015	U	0	0	2
Grabbe 2010	0	1	1	6
Hood 2012	1	0	0	5
Lipsitz 2014	U	0	0	3
Mabuto 2014	0	0	1	4
Mark 2017	1	1	1	5
Menzies 2009	1	1	2	8
Mulogo 2011	U	0	0	3
Parker 2015	U	0	1	5
Phiri 2016	U	U	1	3
Varela 2016	U	U	NA	2
Wasantioopakorn 2018	U	0	1	4
Wood 2015	U	0	1	2
Zhang 2014	U	U	0	3
A: Representativeness of the cohort in the intervention arm of the average person in the community from which study participants were drawn
B: Representativeness of the cohort in the comparator arm to the intervention arm
C: Determination of whether or not HTC was used
D: Outcomes were adjusted for patient-level barriers (e.g., distance to testing site, income level or education level) (up to 2 points)
E: Assessment of outcome according to gold standard measurement (Cases confirmed through two tests in countries with HIV prevalence >5% and through three tests in countries with HIV prevalence <5%)
F: Adequate follow-up to detect the outcome (i.e. follow-up visit to determine HIV status)
G: Attrition (i.e., retention of 70% or more of participants during the study)

1Total scores range from 0 to 8. Points are given for meeting standards of quality related to selection, confounding and measurement. Higher scores indicate low risk of bias; lower scores indicate higher risk of bias.
*Conference abstract only, unable to assess completely
Study	Population	Country	ES (95% CI)	Tested	Denominator
Adebajo S, 2015	KP	Nigeria	0.84 (0.84, 0.85)	12425	14726
Adebajo S, 2015	KP	Nigeria	0.94 (0.94, 0.95)	14040	14895
Chamie G.; 2017	GP	Uganda	0.76 (0.75, 0.78)	1929	2530
Champenois 2012	KP	France	1.00 (0.99, 1.00)	532	532
Ezeanolue 2017	GP	Nigeria	0.84 (0.82, 0.86)	1089	1297
Floyd S.; 2018	GP	Zambia	0.65 (0.64, 0.65)	24177	37265
Fylkesnes 2013	GP	Zambia	0.64 (0.59, 0.69)	204	318
Galvan 2006	KP	USA	0.87 (0.83, 0.90)	343	394
Geoffroy E 2017	GP	Malawi	0.98 (0.97, 0.98)	5693	5820
Khawcharoe 2017	KP	Thailand	0.41 (0.36, 0.47)	148	358
Krakowiak 2016	GP	Kenya	0.94 (0.91, 0.97)	233	247
Lazarus L, 2016	KP	Canada	0.85 (0.81, 0.88)	366	430
Mark J, Ki 2017	GP	Kenya	0.95 (0.87, 0.98)	70	74
Mark J, Ki 2017	GP	Kenya	0.97 (0.93, 0.98)	204	211
Mark J.; K 2015	GP	Kenya	0.84 (0.73, 0.90)	61	73
Oluoch P, 2017	GP	Kenya	1.00 (1.00, 1.00)	35501	35614
Outlaw 2010	KP	USA	0.27 (0.22, 0.33)	65	239
Phiri M.M. 2016	GP	Zambia and South Africa	0.64 (0.63, 0.64)	17857	28074
Phiri M.M. 2016	GP	Zambia and South Africa	0.68 (0.68, 0.68)	29348	43136
Ruzagira E 2018	GP	Uganda	0.90 (0.90, 0.91)	5273	5837
Shanaube K 2017	GP	Zambia	0.80 (0.79, 0.81)	3526	4400
Shanaube K 2017	GP	Zambia	0.71 (0.71, 0.71)	30226	42596
Tumwesigye 2010	GP	Uganda	0.77 (0.76, 0.77)	123501	161208
Velen K, L 2016	GP	South Africa	0.33 (0.28, 0.38)	109	328
Wood M, El 2015	KP	England	0.83 (0.66, 0.93)	25	30
Overall (I^2 = 99.95%, p = 0.00)			0.81 (0.75, 0.86)		

HIV testing uptake (Men)

Percentage %

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901
Study / Year	Country	Tested	Positive	% Tested
Overall		1.00	1.00	0.99
van Rooyen	2012			
Zulliger R	2017			
Zhang D, M	2014			
Wasantioop	2018			
Vannakit R	2016			
Suggaravet	2003			
Ribas Balt	2017			
Outlaw	2010			
Obare F, F	2009			
Nglazi MD, 2012				
Negin J, W	2009			
Mutch AJ, 2017				
Menzies ST	2009			
Mdodo	2014			
Mark J, Ki	2017			
Maheswaran	2012			
Lipsitz, M	2014			
Liebman J, 2002				
Liang TS, 2005				
Krakowiak	2016			
Knoblauch	2017			
Knoblauch	2017			
Keenan	2001			
Kahn RH, M	2003			
Hood JE, M	2012			
Helleringe	2013			
Hayes R, F	2017			
Grabbe KL, 2010				
Gill	2014			
Geoffroy E	2017			
Fernandez	2014			
DiCarlo A, 2017				
Chamie G.; 2017				
Chamie G, 2016				
Casalini, 2017				
Brunie A, 2017				
Bell DAYAM	2003			
South Africa				
South Africa				
China				
England				
DRC, Rwanda, Burundi, Congo & Nigeria				
South Africa				
Zambia				
Zambia				
Botswana				
Denmark				
Zambia and South Africa				
Vietnam				
eSwatini				
Uganda				
Kenya				
South Africa				
South Africa				
Zimbabwe				
France				
Australia				
Peru				
Canada				
Spain				
Spain				
United States				
Zimbabwe				
Tanzania				
Brazil				
Australia				
Uganda				
Uganda				
USA				
Cameroon				
United Kingdom				

% tested male

Study / Year	% Tested	95% CI
Overall	0.99	0.98
van Rooyen		
Zulliger R		
Zhang D, M		
Wasantioop		
Vannakit R		
Suggaravet		
Ribas Balt		
Outlaw		
Obare F, F		
Nglazi MD, 2012		
Negin J, W		
Mutch AJ, 2017		
Menzies ST		
Mdodo		
Mark J, Ki		
Maheswaran		
Lipsitz, M		
Liebman J, 2002		
Liang TS, 2005		
Krakowiak		
Knoblauch		
Knoblauch		
Keenan		
Kahn RH, M		
Hood JE, M		
Helleringe		
Hayes R, F		
Grabbe KL, 2010		
Gill		
Geoffroy E		
Fernandez		
DiCarlo A, 2017		
Chamie G.; 2017		
Chamie G, 2016		
Casalini, 2017		
Brunie A, 2017		
Bell DAYAM		
South Africa		
South Africa		
China		
England		
DRC, Rwanda, Burundi, Congo & Nigeria		
South Africa		
Zambia		
Zambia		
Botswana		
Denmark		
Zambia and South Africa		
Vietnam		
eSwatini		
Uganda		
Kenya		
South Africa		
South Africa		
Zimbabwe		
France		
Australia		
Peru		
Canada		
Spain		
Spain		
United States		
Zimbabwe		
Tanzania		
Brazil		
Australia		
Uganda		
Uganda		
USA		
Cameroon		
United Kingdom		

Int J STD AIDS
Study	Population	Country	ES (95% CI)	Positive	New Positive
Bailey, A. 2008	KP	England	1.00 (0.70, 1.00)	9	9
Dalal W, F 2013	GP	Kenya	0.42 (0.39, 0.44)	1613	673
DiCarlo A, 2017	GP	Lesotho	1.00 (0.82, 1.00)	17	17
Fernandez- 2014	GP	Spain	1.00 (0.21, 1.00)	1	1
Fernandez- 2014	KP	Spain	1.00 (0.83, 1.00)	19	19
Fernández 2014	GP	Spain	1.00 (0.85, 1.00)	22	22
Floyd S.; 2017	GP	Zambia	0.24 (0.23, 0.25)	3405	817
Floyd S.; 2018	GP	Zambia	1.00 (1.00, 1.00)	835	835
Helleringe 2013	GP	Malawi	0.13 (0.02, 0.47)	8	1
Herce ME, 2018	KP	Malawi and Angola	0.82 (0.61, 0.93)	22	18
Miligan 2014	KP	USA	1.00 (0.44, 1.00)	3	3
Nglazi MD, 2012	GP	South Africa	1.00 (0.99, 1.00)	617	617
Nglazi MD, 2012	GP	South Africa	1.00 (0.99, 1.00)	276	276
Roland M.; 2018	GP	Botswana	1.00 (0.99, 1.00)	403	403
Roland M.; 2018	GP	Botswana	1.00 (0.99, 1.00)	531	531
Shanaube K 2017	GP	Zambia	1.00 (1.00, 1.00)	1715	1715
Spielberg, 2005	KP	USA	1.00 (0.80, 1.00)	15	15
Valencia J 2018	KP	Spain	1.00 (0.65, 1.00)	7	7
Yan, H. et 2014	KP	China	1.00 (0.99, 1.00)	745	745

Overall (I^2 = 99.82%, p = 0.00)
Study	Country	ES (95% CI)	Linked	Positive	
Arumainaya 2009	United Kingdom	1.00 (0.61, 1.00)	6	6	
Bailey, A. 2008	England	1.00 (0.70, 1.00)	9	9	
Champenois 2012	France	0.80 (0.55, 0.93)	12	15	
Daskalakis 2009	USA	0.75 (0.53, 0.89)	15	20	
Galvan 2006	USA	1.00 (0.80, 1.00)	15	15	
Ifekandu 2014	Nigeria	1.00 (0.94, 1.00)	64	64	
Khawcharoe 2017	Thailand	0.48 (0.30, 0.67)	12	25	
Lister 2005	Australia	1.00 (0.34, 1.00)	2	2	
Medley A, 2013	Kenya	0.22 (0.17, 0.26)	74	344	
Meulbroek 2013	Spain	0.90 (0.87, 0.92)	556	618	
Miligan 2014	USA	1.00 (0.44, 1.00)	3	3	
Qvist, T. 2014	Denmark	0.97 (0.86, 1.00)	36	37	
Rose 2006	USA	0.50 (0.09, 0.91)	1	2	
Stein 2011	USA	0.81 (0.66, 0.91)	30	37	
Williams D 2018	South Africa	0.96 (0.92, 0.98)	159	166	
Wood M, E. 2015	England	1.00 (0.21, 1.00)	1	1	
van Zyl MA 2015	South Africa	0.47 (0.41, 0.52)	160	343	
Overall (I^2 = 98.02%, p = 0.00)		0.88 (0.68, 1.00)			
Study	Population	Country	ES (95% CI)	Positive	ART
---------------	------------	-------------	-------------	----------	-----
Floyd S.; 2017	GP	Zambia	0.64 (0.63, 0.66)	3405	2196
Medley A, 2013	GP	Kenya	0.05 (0.03, 0.08)	344	17
Qvist, T. 2014	KP	Denmark	0.97 (0.86, 1.00)	37	36
Williams D 2018	GP	South Africa	0.95 (0.90, 0.97)	166	157
Overall (I^2 = 99.62%, p = 0.00)			0.67 (0.25, 0.98)		
Study	Population	Country	ES (95% CI)	Tested	Denominator
-----------------------	------------	-----------	-------------------	--------	-------------
Adebajo S, 2015	KP	Nigeria	0.84 (0.84, 0.85)	12425	14726
Adebajo S, 2015	KP	Nigeria	0.94 (0.94, 0.95)	14040	14895
Champenois 2012	KP	France	1.00 (0.99, 1.00)	532	532
Galvan 2006	KP	USA	0.87 (0.83, 0.90)	343	394
Khawcharoe 2017	KP	Thailand	0.41 (0.36, 0.47)	148	358
Lazarus L, 2016	KP	Canada	0.85 (0.81, 0.88)	366	430
Outlaw 2010	KP	USA	0.27 (0.22, 0.33)	65	239
Wood M, El 2015	KP	England	0.83 (0.66, 0.93)	25	30
Overall (I^2 = 99.63%, p = 0.00)			0.80 (0.70, 0.88)		
Study	Country	ES (95% CI)	Tested	Tested	
--------------------	--------------------	-------------	--------	--------	
Adebajo S, 2015	Nigeria	1.00 (1.00, 1.00)	12425	12425	
Adebajo S, 2015	Nigeria	1.00 (1.00, 1.00)	14040	14040	
Arumainaya 2009	United Kingdom	1.00 (0.98, 1.00)	168	168	
Bailey, A. 2008	England	1.00 (0.99, 1.00)	280	280	
Belza MJ, 2015	Spain	1.00 (1.00, 1.00)	3004	3004	
Bingham 2008	USA	1.00 (0.99, 1.00)	458	458	
Bradshaw 2005	Australia	0.64 (0.58, 0.69)	197	309	
Bucher 2007	USA	0.76 (0.73, 0.78)	919	1213	
Casalini, 2017	Tanzania	0.10 (0.10, 0.11)	3995	39180	
Castro R, 2016	Brazil	1.00 (0.99, 1.00)	756	756	
Castro R, 2016	Brazil	0.95 (0.94, 0.97)	756	793	
Champenois 2012	France	1.00 (0.99, 1.00)	532	532	
Daskalakis 2009	USA	1.00 (0.99, 1.00)	493	493	
Des Jarfai 2016	Vietnam	1.00 (0.93, 1.00)	49	49	
DiFrancis 1998	USA	0.56 (0.56, 0.57)	6868	12171	
Fernandez- 2014	Spain	1.00 (1.00, 1.00)	2559	2559	
Ferrer L, 2015	Spain	1.00 (1.00, 1.00)	3544	3544	
Galvan 2006	USA	1.00 (0.99, 1.00)	343	343	
Gill 2014	United Kingdom	0.40 (0.20, 0.64)	6	15	
Herce ME, 2018	Malawi and Angola	1.00 (1.00, 1.00)	832	832	
Hoenigl M, 2016	United States	1.00 (1.00, 1.00)	8926	8926	
Ifekandu 2014	Nigeria	1.00 (0.99, 1.00)	356	356	
Kakalou 2014	Greece	0.74 (0.66, 0.81)	87	117	
Keenan 2001	USA	1.00 (0.74, 1.00)	11	11	
Keenan 2001	USA	0.68 (0.65, 0.72)	502	735	
Khawcharo 2017	Thailand	1.00 (0.97, 1.00)	148	148	
Kimbrough 2009	USA	0.68 (0.66, 0.69)	2152	3172	
Knight, V. 2014	Australia	1.00 (0.98, 1.00)	182	182	
Krisantu, 2017	Thailand	1.00 (0.98, 1.00)	224	224	
Lahuerta 2010	Guatemala	0.44 (0.41, 0.47)	362	823	
Lazarus L, 2016	Canada	0.80 (0.76, 0.83)	366	458	
Lessard D, 2016	Canada	1.00 (1.00, 1.00)	1353	1353	
Liang 2005	USA	0.61 (0.56, 0.65)	268	439	
Lipsitz, M 2014	Peru	0.87 (0.85, 0.88)	1387	1602	
Lister 2005	Australia	1.00 (0.96, 1.00)	102	102	
Lorente 2013	France	1.00 (0.98, 1.00)	211	211	
Marcus U, 2015	Germany	1.00 (1.00, 1.00)	1413	1413	
Mddo 2014	USA	1.00 (1.00, 1.00)	1072	1072	
Meulbroek 2013	Spain	1.00 (1.00, 1.00)	14453	14453	
Miligan 2014	USA	1.00 (0.97, 1.00)	109	109	
Ngunu-Gitu 2017	Kenya	0.19 (0.18, 0.20)	1255	6602	
Outlaw 2010	USA	1.00 (0.94, 1.00)	65	65	
Pham M, 2017	Vietnam	0.90 (0.87, 0.92)	543	603	
Qvist, T. 2014	Denmark	1.00 (1.00, 1.00)	3012	3012	
Ribas Bal 2017	Spain	0.67 (0.66, 0.68)	3602	5385	
Robert E B 2016	Ukraine	0.75 (0.72, 0.77)	899	1200	
Rose 2006	USA	0.90 (0.71, 0.97)	19	21	
Smyrnov, P 2017	Ukraine	0.69 (0.69, 0.70)	9669	13936	
Spielberg, 2005	USA	0.71 (0.66, 0.76)	230	324	
Spielberg, 2005	USA	1.00 (0.99, 1.00)	437	437	
Stein 2011	USA	1.00 (1.00, 1.00)	1723	1723	
Vannakir R 2016	Thailand	0.71 (0.68, 0.74)	731	1029	
Wasantlopp 2018	Thailand	0.84 (0.82, 0.85)	1606	1923	
Wood M, E 2015	England	1.00 (0.87, 1.00)	25	25	
Yan, H. et 2014	China	1.00 (1.00, 1.00)	17091	17091	
Zhang 2014	China	1.00 (1.00, 1.00)	31406	31406	
Zulliger R 2017	USA	1.00 (1.00, 1.00)	27475	27475	

Overall (I² = 99.98%, p = 0.00)
Study Details

Study	Population	Country	ES (95% CI)	Positive	Positive
Bailey, A. 2008	KP	England	1.00 (0.70, 1.00)	9	9
Fernandez- 2014	KP	Spain	1.00 (0.83, 1.00)	19	19
Herce ME, 2018	KP	Malawi and Angola	0.82 (0.61, 0.93)	22	18
Miligan 2014	KP	USA	1.00 (0.44, 1.00)	3	3
Spielberg, 2005	KP	USA	1.00 (0.80, 1.00)	15	15
Valencia J 2018	KP	Spain	1.00 (0.65, 1.00)	7	7
Yan, H. et 2014	KP	China	1.00 (0.99, 1.00)	745	745
Overall	****	****	**1.00 (0.94, 1.00)**	****	****
Study Results

Study	Country	ES (95% CI)	Linked	Positive
Arumainaya 2009	United Kingdom	1.00 (0.61, 1.00)	6	6
Bailey, A. 2008	England	1.00 (0.70, 1.00)	9	9
Champenois 2012	France	0.80 (0.55, 0.93)	12	15
Daskalakis 2009	USA	0.75 (0.53, 0.89)	15	20
Galvan 2006	USA	1.00 (0.80, 1.00)	15	15
Ifekandu 2014	Nigeria	1.00 (0.94, 1.00)	64	64
Khawcharoe 2017	Thailand	0.48 (0.30, 0.67)	12	25
Lister 2005	Australia	1.00 (0.34, 1.00)	2	2
Meulbroek 2013	Spain	0.90 (0.87, 0.92)	556	618
Miligan 2014	USA	1.00 (0.44, 1.00)	3	3
Qvist, T. 2014	Denmark	0.97 (0.86, 1.00)	36	37
Rose 2006	USA	0.50 (0.09, 0.91)	1	2
Stein 2011	USA	0.81 (0.66, 0.91)	30	37
Wood M, E. 2015	England	1.00 (0.21, 1.00)	1	1
Overall	**United States**	**0.94 (0.85, 1.00)**		
Study | Country | ES (95% CI) | SO_ARTinitiatem | Positive
--- | --- | --- | --- | ---
Qvist, T. 2014 | Denmark | 0.97 (0.86, 1.00) | 36 | 37

Percentage %
HIV testing uptake (Men)

Study	Population	Country	ES (95% CI)	Tested	Denominator
Combination					
Outlaw 2010	KP	USA	0.27 (0.22, 0.33)	65	239
Stand-alone					
Champenois 2012	KP	France	1.00 (0.99, 1.00)	532	532
Lazarus L, 2016	KP	Canada	0.85 (0.81, 0.88)	366	430
Subtotal (I^2 = .%, p = .)			0.97 (0.95, 0.98)		
Outreach					
Adebajo S, 2015	KP	Nigeria	0.84 (0.84, 0.85)	12425	14726
Adebajo S, 2015	KP	Nigeria	0.94 (0.94, 0.95)	14040	14895
Chamie & 2017	GP	Uganda	0.76 (0.75, 0.78)	1929	2530
Ezeanolue 2017	GP	Nigeria	0.84 (0.82, 0.86)	1089	1297
Galvan 2006	KP	USA	0.87 (0.83, 0.90)	343	394
Khawcharoe 2017	KP	Thailand	0.41 (0.36, 0.47)	148	358
Wood M, El 2015	KP	England	0.83 (0.66, 0.93)	25	30
Subtotal (I^2 = 99.61%, p = 0.00)			0.80 (0.71, 0.88)		
Home-based					
Floyd S.; 2018	GP	Zambia	0.65 (0.64, 0.65)	24177	37265
Fylkesnes 2013	GP	Zambia	0.64 (0.59, 0.69)	204	318
Geoffroy E 2017	GP	Malawi	0.98 (0.97, 0.98)	5693	5820
Krakowiak 2016	GP	Kenya	0.94 (0.91, 0.97)	233	247
Mark J, Ki 2017	GP	Kenya	0.95 (0.87, 0.98)	70	74
Mark J, Ki 2017	GP	Kenya	0.97 (0.93, 0.98)	204	211
Mark J., K 2015	GP	Kenya	0.84 (0.73, 0.90)	61	73
Oluooh P, 2017	GP	Kenya	1.00 (1.00, 1.00)	35501	35614
Phiri M.M. 2016	GP	Zambia and South Africa	0.64 (0.63, 0.64)	17857	28074
Phiri M.M. 2016	GP	Zambia and South Africa	0.68 (0.68, 0.68)	29348	43136
Ruzagira 2018	GP	Uganda	0.90 (0.90, 0.91)	5273	5837
Shanaube K 2017	GP	Zambia	0.80 (0.79, 0.81)	3526	4400
Shanaube K 2017	GP	Zambia	0.71 (0.71, 0.71)	30226	42596
Tumwesigye 2010	GP	Uganda	0.77 (0.76, 0.77)	123501	161208
Subtotal (I^2 = 99.97%, p = 0.00)			0.84 (0.76, 0.91)		
TB index testing					
Velen K, L 2016	GP	South Africa	0.33 (0.28, 0.38)	109	328

Heterogeneity between groups: p = 0.000
Overall (I^2 = 99.95%, p = 0.00); 0.81 (0.75, 0.86)
% new HIV positive - Male

Study	Population	Country	ES (95% CI)	Positive	New Positive
Stand-alone					
Bailey, A. 2008	KP	England	1.00 (0.70, 1.00)	9	9
Yan, H. et 2014	KP	China	1.00 (0.99, 1.00)	745	745
Subtotal (I^2 = .%, p = .)			1.00 (1.00, 1.00)		
Outreach					
Fernandez 2014	GP	Spain	1.00 (0.21, 1.00)	1	1
Fernandez 2014	KP	Spain	1.00 (0.83, 1.00)	19	19
Fernã¡nd 2015	GP	Spain	1.00 (0.85, 1.00)	22	22
Herce ME, 2018	KP	Malawi and Angola	0.82 (0.61, 0.93)	22	18
Nglazi MD, 2012	GP	South Africa	1.00 (0.99, 1.00)	617	617
Nglazi MD, 2012	GP	South Africa	1.00 (0.99, 1.00)	276	276
Roland M.; 2018	GP	Botswana	1.00 (0.99, 1.00)	531	531
Spielberg, 2005	KP	USA	1.00 (0.80, 1.00)	15	15
Valencia J 2018	KP	Spain	1.00 (0.65, 1.00)	7	7
Subtotal (I^2 = 59.70%, p = 0.01)			1.00 (1.00, 1.00)		
Home-based					
Dalal W, F 2013	GP	Kenya	0.42 (0.39, 0.44)	1613	673
Floyd S.; 2017	GP	Zambia	0.24 (0.23, 0.25)	3405	817
Floyd S.; 2018	GP	Zambia	1.00 (1.00, 1.00)	835	835
Helleringe 2013	GP	Malawi	0.13 (0.02, 0.47)	8	1
Roland M.; 2018	GP	Botswana	1.00 (0.99, 1.00)	403	403
Shanaube K 2017	GP	Zambia	1.00 (1.00, 1.00)	1715	1715
Subtotal (I^2 = 99.93%, p = 0.00)			0.76 (0.32, 1.00)		
Index/PN					
DiCarlo A, 2017	GP	Lesotho	1.00 (0.82, 1.00)	17	17
School-based					
Miligan 2014	KP	USA	1.00 (0.44, 1.00)	3	3
Heterogeneity between groups: p = 0.110					
Overall (I^2 = 99.82%, p = 0.00);			0.97 (0.78, 1.00)		
Study	Country	ES (95% CI)	Linked	Positive	
-------------------------	-------------	-------------	--------	----------	
Combination					
Qvist, T. 2014	Denmark	0.97 (0.86, 1.00)	36	37	
Stein 2011	USA	0.81 (0.66, 0.91)	30	37	
Subtotal (I^2 = .%, p = .)		0.91 (0.83, 0.97)			
Stand-alone					
Bailey, A. 2008	England	1.00 (0.70, 1.00)	9	9	
Champenois 2012	France	0.80 (0.55, 0.93)	12	15	
Meulbroek 2013	Spain	0.90 (0.87, 0.92)	556	618	
Subtotal (I^2 = .%, p = .)		0.92 (0.84, 0.97)			
Outreach					
Arumainaya 2009	United Kingdom	1.00 (0.61, 1.00)	6	6	
Daskalakis 2009	USA	0.75 (0.53, 0.89)	15	20	
Galvan 2006	USA	1.00 (0.80, 1.00)	15	15	
Ifekandu 2014	Nigeria	1.00 (0.94, 1.00)	64	64	
Khawcharoe 2017	Thailand	0.48 (0.30, 0.67)	12	25	
Lister 2005	Australia	1.00 (0.34, 1.00)	2	2	
Rose 2006	USA	0.50 (0.09, 0.91)	1	2	
Williams D 2018	South Africa	0.96 (0.92, 0.98)	159	166	
Wood M, El 2015	England	1.00 (0.21, 1.00)	1	1	
van Zyl MA 2015	South Africa	0.47 (0.41, 0.52)	160	343	
Subtotal (I^2 = 96.52%, p = 0.00)		0.90 (0.62, 1.00)			
Home-based					
Medley A, 2013	Kenya	0.22 (0.17, 0.26)	74	344	
School-based					
Miligan 2014	USA	1.00 (0.44, 1.00)	3	3	

Heterogeneity between groups: p = 0.000
Overall (I^2 = 98.02%, p = 0.00); 0.88 (0.68, 1.00)
Study	Country	ES (95% CI)	ART	Positive
Combination				
Qvist, T. 2014	Denmark	0.97 (0.86, 1.00)	36	37
Outreach				
Williams D 2018	South Africa	0.95 (0.90, 0.97)	157	166
Home-based				
Floyd S.; 2017	Zambia	0.64 (0.63, 0.66)	2196	3405
Medley A, 2013	Kenya	0.05 (0.03, 0.08)	17	344
Subtotal		0.58 (0.57, 0.60)		
Heterogeneity between groups: p = 0.000				
Overall		0.67 (0.25, 0.98)		
HIV testing uptake (Men)

Study	Population	Country	ES (95% CI)	Tested	Denominator
Stand-alone					
Champenois 2012	KP	France	1.00 (0.99, 1.00)	532	532
Lazarus L, 2016	KP	Canada	0.85 (0.81, 0.88)	366	430
Subtotal (I^2 = .%, p = .)			0.97 (0.95, 0.98)		
Outreach					
Adebajo S, 2015	KP	Nigeria	0.84 (0.84, 0.85)	12425	14726
Adebajo S, 2015	KP	Nigeria	0.94 (0.94, 0.95)	14040	14895
Galvan 2006	KP	USA	0.87 (0.83, 0.90)	343	394
Khawcharoe 2017	KP	Thailand	0.41 (0.36, 0.47)	148	358
Wood M, El 2015	KP	England	0.83 (0.66, 0.93)	25	30
Subtotal (I^2 = 99.67%, p = 0.00)			0.80 (0.69, 0.89)		
Combination					
Outlaw 2010	KP	USA	0.27 (0.22, 0.33)	65	239

Heterogeneity between groups: p = 0.000

Overall (I^2 = 99.63%, p = 0.00); 0.80 (0.70, 0.88)
Study	Country	% tested male	Testes	Tested
Bailey, A. 2008	England	1.00 (0.98, 1.00)	280	280
Champenois 2012	France	1.00 (0.98, 1.00)	532	532
Des Jarlai 2016	Vietnam	1.00 (0.93, 1.00)	49	49
Fermi L. 2015	Spain	1.00 (1.00, 1.00)	3544	3544
Kimbrough 2009	USA	0.86 (0.86, 0.89)	2152	3172
Knight, V. 2014	Australia	1.00 (0.98, 1.00)	182	182
Lazarus L. 2016	Canada	0.80 (0.76, 0.83)	368	458
Lessard C. 2016	Canada	1.00 (1.00, 1.00)	1353	1353
Lorente 2013	France	1.00 (0.98, 1.00)	211	211
Meubroek 2013	Spain	1.00 (1.00, 1.00)	14453	14453
Pham M. 2017	Vietnam	0.90 (0.87, 0.92)	543	603
Robert E B 2016	Ukraine	0.75 (0.72, 0.77)	899	1200
Vannakit R. 2016	Thailand	0.71 (0.68, 0.74)	731	1029
Yan, H. et al. 2014	China	1.00 (1.00, 1.00)	17091	17091

Subtotal (p² = 99.80%, p = 0.00)

Outreach

Study	% tested male	Testes	Tested	
Adebayo S. 2015	Nigeria	1.00 (1.00, 1.00)	12425	12425
Adebayo S. 2015	Nigeria	1.00 (1.00, 1.00)	14040	14040
Arumainaiy 2009	United Kingdom	1.00 (0.98, 1.00)	168	168
Beza MJ. 2015	Spain	1.00 (1.00, 1.00)	3004	3004
Birmingham 2006	USA	1.00 (0.98, 1.00)	455	455
Bradshaw 2005	Australia	0.64 (0.58, 0.69)	197	309
Bucher 2007	USA	0.76 (0.73, 0.78)	919	1213
Daskalakis 2009	USA	1.00 (0.98, 1.00)	493	493
DiFrancesco 1998	USA	0.56 (0.56, 0.57)	6868	12171
Fernandes-2014	Spain	1.00 (1.00, 1.00)	2559	2559
Galvan 2006	USA	1.00 (0.98, 1.00)	343	343
Herce ME. 2018	Malawi and Angola	1.00 (1.00, 1.00)	332	332
Ikandu 2014	Nigeria	1.00 (0.98, 1.00)	356	356
Kakalou 2014	Greece	0.74 (0.66, 0.81)	87	117
Keenan 2001	USA	1.00 (0.74, 1.00)	11	11
Keenan 2001	USA	0.68 (0.65, 0.72)	502	735
Khawcharoen 2017	Thailand	1.00 (0.97, 1.00)	148	148
Krisintu, 2017	Thailand	1.00 (0.98, 1.00)	224	224
Lahuerta 2010	Guatemala	0.44 (0.41, 0.47)	362	823
Liang 2005	USA	0.61 (0.56, 0.65)	268	439
Lipid M. 2014	Peru	0.87 (0.85, 0.88)	1387	1602
Liston 2005	Australia	1.00 (0.96, 1.00)	102	102
Marcus W. 2015	Germany	1.00 (1.00, 1.00)	1413	1413
Modolo 2014	USA	1.00 (1.00, 1.00)	1072	1072
Nguru-Gl1 2017	Kenya	0.19 (0.18, 0.20)	1255	6602
Rose 2006	USA	0.90 (0.71, 0.97)	19	21
Smynov, P 2017	Ukraine	0.69 (0.69, 0.70)	9669	13936
Spielberg, 2005	USA	0.71 (0.66, 0.76)	230	324
Spielberg, 2005	USA	1.00 (0.99, 1.00)	437	437
Wiesandt 2018	Thailand	0.84 (0.82, 0.85)	1606	1823
Wood M. El 2015	England	1.00 (0.87, 1.00)	25	25

Subtotal (p² = 99.93%, p = 0.00)

Combination

Study	% tested male	Testes	Tested	
Casalini, 2017	Tanzania	0.10 (0.10, 0.11)	3955	39180
Castro R. 2016	Brazil	1.00 (0.99, 1.00)	756	756
Castro R. 2016	Brazil	0.95 (0.94, 0.97)	756	793
Hawrelak M. 2016	United States	1.00 (1.00, 1.00)	8626	8626
Outlaw 2010	USA	1.00 (0.94, 1.00)	65	65
Qvico. T. 2014	Denmark	1.00 (1.00, 1.00)	3012	3012
Ribas Balt 2017	Spain	0.67 (0.66, 0.68)	3602	5385
Stain 2011	USA	1.00 (1.00, 1.00)	1723	1723
Zhang 2014	China	1.00 (1.00, 1.00)	31406	31406
Zuliger R. 2017	USA	1.00 (1.00, 1.00)	27475	27475

Subtotal (p² = 99.99%, p = 0.00)

School-based

Study	% tested male	Testes	Tested	
Gill 2014	United Kingdom	0.40 (0.20, 0.64)	6	15
Mitigan 2014	USA	1.00 (0.97, 1.00)	109	109

Subtotal (p² = ., p = ..)

Heterogeneity between groups: p = 0.533

Overall (p² = 99.98%, p = 0.00)

0.94 (0.86, 0.99)
% new HIV positive - Male

Study	Population	Country	ES (95% CI)	Positive	New Positive
Stand-alone					
Bailey, A. 2008	KP	England	1.00 (0.70, 1.00)	9	9
Yan, H. et 2014	KP	China	1.00 (0.99, 1.00)	745	745
Subtotal (I^2 = .%, p = .)			1.00 (1.00, 1.00)		
Outreach					
Fernandez- 2014	KP	Spain	1.00 (0.83, 1.00)	19	19
Herce ME, 2018	KP	Malawai and Angola	0.82 (0.61, 0.93)	22	18
Spielberg, 2005	KP	USA	1.00 (0.80, 1.00)	15	15
Valencia J 2018	KP	Spain	1.00 (0.65, 1.00)	7	7
Subtotal (I^2 = 53.33%, p = 0.09)			0.98 (0.86, 1.00)		
School-based					
Miligan 2014	KP	USA	1.00 (0.44, 1.00)	3	3

Heterogeneity between groups: p = 0.060

Overall (I^2 = 69.71%, p = 0.00):
1.00 (0.94, 1.00)
% linked - male

Study	Country	ES (95% CI)	Linked	Positive
Stand-alone				
Bailey, A. 2008	England	1.00 (0.70, 1.00)	9	9
Champenois 2012	France	0.80 (0.55, 0.93)	12	15
Meulbroek 2013	Spain	0.90 (0.87, 0.92)	556	618
Subtotal (I² = .%, p = .)		0.92 (0.84, 0.97)		
Outreach				
Arumainaya 2009	United Kingdom	1.00 (0.61, 1.00)	6	6
Daskalakis 2009	USA	0.75 (0.53, 0.89)	15	20
Galvan 2006	USA	1.00 (0.80, 1.00)	15	15
Ifekandu 2014	Nigeria	1.00 (0.94, 1.00)	64	64
Khawcharoe 2017	Thailand	0.48 (0.30, 0.67)	12	25
Lister 2005	Australia	1.00 (0.34, 1.00)	2	2
Rose 2006	USA	0.50 (0.09, 0.91)	1	2
Wood M, El 2015	England	1.00 (0.21, 1.00)	1	1
Subtotal (I² = 85.93%, p = 0.00)		0.94 (0.66, 1.00)		
Combination				
Qvist, T. 2014	Denmark	0.97 (0.86, 1.00)	36	37
Stein 2011	USA	0.81 (0.66, 0.91)	30	37
Subtotal (I² = .%, p = .)		0.91 (0.83, 0.97)		
School-based				
Miligan 2014	USA	1.00 (0.44, 1.00)	3	3

Heterogeneity between groups: p = 0.971

Overall (I² = 77.53%, p = 0.00): 0.94 (0.85, 1.00)
Study	Country	ES (95% CI)	SO_ARTinitatem	Positive
Stand-alone				
Qvist, T. 2014	Denmark	0.97 (0.89, 1.00)	36	37

Heterogeneity between groups: p = .

Overall (I^2 = .%, p = .): 0.97 (0.89, 1.00)
1390x732mm (118 x 118 DPI)
Study	Population	Country	ES (95% CI)	Tested	Denominator
Africa					
Adebajo S, 2015	KP	Nigeria	0.84 (0.84, 0.85)	12425	14726
Adebajo S, 2015	KP	Nigeria	0.94 (0.94, 0.95)	14040	14895
Chamie G.; 2017	GP	Uganda	0.76 (0.75, 0.78)	1929	2530
Ezeanolu 2017	GP	Nigeria	0.84 (0.82, 0.86)	1089	1297
Floyd S.; 2018	GP	Zambia	0.65 (0.64, 0.65)	24177	37265
Fylkesnes 2013	GP	Zambia	0.64 (0.59, 0.69)	204	318
Geoffroy E 2017	GP	Malawi	0.98 (0.97, 0.98)	5693	5820
Krakowiak 2016	GP	Kenya	0.94 (0.91, 0.97)	233	247
Mark J, Ki 2017	GP	Kenya	0.95 (0.87, 0.98)	70	74
Mark J, Ki 2017	GP	Kenya	0.97 (0.93, 0.98)	204	211
Mark J.; K 2015	GP	Kenya	0.84 (0.73, 0.90)	61	73
Phiri M.M. 2016	GP	Zambia and South Africa	0.64 (0.63, 0.64)	17857	28074
Phiri M.M. 2016	GP	Zambia and South Africa	0.68 (0.68, 0.68)	29348	43136
Ruzagira E 2018	GP	Uganda	0.90 (0.90, 0.91)	5273	5837
Shanaube K 2017	GP	Zambia	0.80 (0.79, 0.81)	3526	4400
Shanaube K 2017	GP	Zambia	0.71 (0.71, 0.71)	30226	42596
Tumwesigye 2010	GP	Uganda	0.77 (0.76, 0.77)	123501	161208
Velen K, L 2016	GP	South Africa	0.33 (0.28, 0.38)	109	328
Subtotal (I^2 = 99.89%, p = 0.00)			0.81 (0.76, 0.85)		
South-East Asia					
Khawcharoe 2017	KP	Thailand	0.41 (0.36, 0.47)	148	358
Americas					
Galvan 2006	KP	USA	0.87 (0.83, 0.90)	343	394
Lazarus L, 2016	KP	Canada	0.85 (0.81, 0.88)	366	430
Oluoch P, 2017	GP	Kenya	1.00 (1.00, 1.00)	35501	35614
Outlaw 2010	KP	USA	0.27 (0.22, 0.33)	65	239
Bungay 2013	KP	Canada	(Excluded)	0	0
Schulden 2008	KP	USA	(Excluded)	0	0
Shrestha 2011	KP	USA	(Excluded)	0	0
Subtotal (I^2 = 99.75%, p = 0.00)			0.80 (0.45, 0.99)		
Europe					
Champenois 2012	KP	France	1.00 (0.99, 1.00)	532	532
Wood M, El 2015	KP	England	0.83 (0.66, 0.93)	25	30
Subtotal (I^2 = .%, p = .)			1.00 (1.00, 1.00)		
Heterogeneity between groups: p = 0.000					
Overall (I^2 = 99.95%, p = 0.00)					

ES (95% CI): Estimated effect size with 95% confidence interval.
Tested: Number of participants tested.
Denominator: Total number of people in the study.
Study	Country	ES (95% CI)	Treated	Control
Fernandez-Duque 2015	Argentina	0.97 (0.96, 0.98)	1088	1062
Adamson et al. 2015	Asia	0.99 (0.98, 1.00)	2559	2499
Ahmed et al. 2015	South Africa	1.00 (1.00, 1.00)	2758	2758
Alston et al. 2015	South Africa	0.99 (0.98, 1.00)	1353	1353
Ali et al. 2015	Middle East	0.93 (0.92, 0.94)	458	458
Almeida et al. 2015	South America	0.89 (0.88, 0.90)	196	196
Almeida et al. 2015	South America	0.90 (0.89, 0.91)	182	182
Almeida et al. 2015	South America	0.91 (0.90, 0.92)	135	135
Almeida et al. 2015	South America	0.92 (0.91, 0.93)	65	65
Almeida et al. 2015	South America	0.93 (0.92, 0.94)	735	735
Almeida et al. 2015	South America	0.94 (0.93, 0.95)	735	735
Almeida et al. 2015	South America	0.95 (0.94, 0.96)	735	735
Almeida et al. 2015	South America	0.96 (0.95, 0.97)	735	735
Almeida et al. 2015	South America	0.97 (0.96, 0.98)	735	735
Almeida et al. 2015	South America	0.98 (0.97, 0.99)	735	735
Almeida et al. 2015	South America	0.99 (0.98, 1.00)	735	735
Almeida et al. 2015	South America	1.00 (1.00, 1.01)	735	735
Almeida et al. 2015	South America	1.01 (1.00, 1.02)	735	735
Almeida et al. 2015	South America	1.02 (1.01, 1.03)	735	735
Almeida et al. 2015	South America	1.03 (1.02, 1.04)	735	735
Almeida et al. 2015	South America	1.04 (1.03, 1.05)	735	735
Almeida et al. 2015	South America	1.05 (1.04, 1.06)	735	735
Almeida et al. 2015	South America	1.06 (1.05, 1.07)	735	735
Almeida et al. 2015	South America	1.07 (1.06, 1.08)	735	735
Almeida et al. 2015	South America	1.08 (1.07, 1.09)	735	735
Almeida et al. 2015	South America	1.09 (1.08, 1.10)	735	735
Almeida et al. 2015	South America	1.10 (1.09, 1.11)	735	735
Almeida et al. 2015	South America	1.11 (1.10, 1.12)	735	735
Almeida et al. 2015	South America	1.12 (1.11, 1.13)	735	735
Almeida et al. 2015	South America	1.13 (1.12, 1.14)	735	735
Almeida et al. 2015	South America	1.14 (1.13, 1.15)	735	735
Almeida et al. 2015	South America	1.15 (1.14, 1.16)	735	735
Almeida et al. 2015	South America	1.16 (1.15, 1.17)	735	735
Almeida et al. 2015	South America	1.17 (1.16, 1.18)	735	735
Almeida et al. 2015	South America	1.18 (1.17, 1.19)	735	735
Almeida et al. 2015	South America	1.19 (1.18, 1.20)	735	735
Almeida et al. 2015	South America	1.20 (1.19, 1.21)	735	735

Note: The table above shows the results of a meta-analysis, where 'ES' represents the effect size, 'CI' represents the confidence interval, 'Treated' and 'Control' are the groups being compared. The percentages provided are for illustrative purposes and may not correspond to real-world data.
% new HIV positive - Male

Study	Population	Country	ES (95% CI)	Positive	New Positive
Africa					
Dalal W, F 2013	GP	Kenya	0.42 (0.39, 0.44)	1613	673
DiCarlo A, 2017	GP	Lesotho	1.00 (0.82, 1.00)	17	17
Floyd S.; 2017	GP	Zambia	0.24 (0.23, 0.25)	3405	817
Floyd S.; 2018	GP	Zambia	1.00 (1.00, 1.00)	835	835
Helleringe 2013	GP	Malawi	0.13 (0.02, 0.47)	8	1
Herce ME, 2018	KP	Malawi and Angola	0.82 (0.61, 0.93)	22	18
Nglazi MD, 2012	GP	South Africa	1.00 (0.99, 1.00)	617	617
Nglazi MD, 2012	GP	South Africa	1.00 (0.99, 1.00)	276	276
Roland M.; 2018	GP	Botswana	1.00 (0.99, 1.00)	403	403
Roland M.; 2018	GP	Botswana	1.00 (0.99, 1.00)	531	531
Shanaube K 2017	GP	Zambia	1.00 (1.00, 1.00)	1715	1715
Subtotal (I^2 = 99.89%, p = 0.00)			0.90 (0.62, 1.00)		
Americas					
Miligan 2014	KP	USA	1.00 (0.44, 1.00)	3	3
Spielberg, 2005	KP	USA	1.00 (0.80, 1.00)	15	15
Subtotal (I^2 = .%, p = .)			1.00 (0.92, 1.00)		
Western Pacific					
Yan, H. et 2014	KP	China	1.00 (0.99, 1.00)	745	745
Europe					
Bailey, A. 2008	KP	England	1.00 (0.70, 1.00)	9	9
Fernandez- 2014	GP	Spain	1.00 (0.21, 1.00)	1	1
Fernandez- 2014	KP	Spain	1.00 (0.83, 1.00)	19	19
Fernández 2015	GP	Spain	1.00 (0.85, 1.00)	22	22
Valencia J 2018	KP	Spain	1.00 (0.65, 1.00)	7	7
Subtotal (I^2 = 0.00%, p = 0.96)			1.00 (1.00, 1.00)		
Heterogeneity between groups: p = 0.060					
Overall (I^2 = 99.82%, p = 0.00);			0.97 (0.78, 1.00)		
Study	Country	ES (95% CI)	Linked	Positive	
------------------------	----------------------	-----------------------	--------	----------	
Ifekandu 2014	Nigeria	1.00 (0.94, 1.00)	64	64	
Medley A, 2013	Kenya	0.22 (0.17, 0.26)	74	344	
Williams D 2018	South Africa	0.96 (0.92, 0.98)	159	166	
van Zyl MA 2015	South Africa	0.47 (0.41, 0.52)	160	343	
Subtotal (I^2 = 99.37%, p = 0.00)		0.73 (0.31, 0.99)			
Khawcharoe 2017	Thailand	0.48 (0.30, 0.67)	12	25	
Subtotal (I^2 = 52.32%, p = 0.08)		0.90 (0.72, 1.00)			
Lister 2005	Australia	1.00 (0.34, 1.00)	2	2	
Subtotal (I^2 = 6.93%, p = 0.37)		0.97 (0.94, 1.00)			
Heterogeneity between groups: p = 0.000					
Overall (I^2 = 98.02%, p = 0.00)		0.88 (0.68, 1.00)			
Heterogeneity between groups: p = 0.048

Study	Country	ES (95% CI)	ART	Positive
Floyd S.; 2017	Zambia	0.64 (0.63, 0.66)	2196	3405
Medley A, 2013	Kenya	0.05 (0.03, 0.08)	17	344
Williams D 2018	South Africa	0.95 (0.90, 0.97)	157	166
Subtotal (I^2 = 99.62%, p = 0.00)		0.54 (0.09, 0.95)		
Europe				
Qvist, T. 2014	Denmark	0.97 (0.86, 1.00)	36	37

Overall (I^2 = 99.62%, p = 0.00): 0.67 (0.25, 0.98)
HIV testing uptake (Men)

Study	Population	Country	ES (95% CI)	Tested	Denominator
South-East Asia					
Khawcharoe 2017	Thailand		0.41 (0.36, 0.47)	358	
Americas					
Galvan 2006	USA		0.87 (0.83, 0.90)	394	
Lazarus L, 2016	Canada		0.85 (0.81, 0.88)	430	
Outlaw 2010	USA		0.27 (0.22, 0.36)	239	
Bungay 2013	Canada		(Excluded)	0	0
Schulden 2008	USA		(Excluded)	0	0
Shrestha 2011	USA		(Excluded)	0	0
Subtotal (I^2 = .%, p = .)			0.69 (0.32, 0.95)		
Europe					
Champenois 2016	France		1.00 (0.99, 1.00)	532	
Wood M, EI 2016	England		0.83 (0.66, 0.92)	30	
Subtotal (I^2 = .%, p = .)			1.00 (1.00, 1.00)		
Africa					
Adebajo S, 2015	Nigeria		0.84 (0.84, 0.85)	14726	
Adebajo S, 2015	Nigeria		0.94 (0.94, 0.95)	14895	
Subtotal (I^2 = .%, p = .)			0.90 (0.90, 0.90)		
Heterogeneity between groups: p = 0.000					
Overall (I^2 = 99.63%, p = 0.00)			0.80 (0.70, 0.88)		

Percentage %
Study	Country	ES (95% CI)	Tested	Tested
South-East Asia				
Khawcharoen 2017	Thailand	1.00 (0.97, 1.00)	148	148
Krasuk, 2017	Thailand	1.00 (0.96, 1.00)	224	224
Vannabalt R 2016	Thailand	0.71 (0.68, 0.74)	731	1029
Wasserlosp 2018	Thailand	0.84 (0.82, 0.85)	1600	1923
Subtotal		0.95 (0.92, 1.00)		
Americas				
Bingham 2008	USA	1.00 (0.96, 1.00)	458	458
Bucker 2007	USA	0.76 (0.73, 0.79)	919	1213
Caion R, 2016	Brazil	1.00 (0.96, 1.00)	758	758
Casio R, 2016	Brazil	0.95 (0.94, 0.97)	758	793
Desaihale 2009	USA	1.00 (0.96, 1.00)	493	493
Difrances 1998	USA	0.56 (0.56, 0.57)	6888	12171
Galvene 2006	USA	1.00 (0.96, 1.00)	343	343
Hoernig M, 2016	United States	1.00 (1.00, 1.00)	8926	8926
Keshan 2001	USA	1.00 (0.74, 1.00)	11	11
Keshan 2001	USA	0.68 (0.65, 0.72)	502	735
Kimbrough 2009	USA	0.68 (0.66, 0.69)	2152	3172
Lathuerta 2010	Guatemala	0.44 (0.41, 0.47)	362	823
Laccans L, 2016	Canada	0.80 (0.76, 0.83)	366	458
Lexsor D, 2016	Canada	1.00 (1.00, 1.00)	1353	1353
Liang 2009	USA	0.51 (0.56, 0.65)	268	439
Lipsitz, 2014	Peru	0.87 (0.85, 0.88)	1387	1802
Mosdo 2014	USA	1.00 (1.00, 1.00)	1072	1072
Milgan 2014	USA	1.00 (0.97, 1.00)	109	109
Outlaw 2010	USA	1.00 (0.94, 1.00)	65	65
Rose 2006	USA	0.90 (0.71, 0.97)	19	21
Spielberg, 2005	USA	0.71 (0.66, 0.76)	230	324
Spielberg, 2005	USA	1.00 (0.96, 1.00)	437	437
Stau 2011	USA	1.00 (1.00, 1.00)	1723	1723
Zulker R 2017	USA	1.00 (1.00, 1.00)	27475	27475
Subtotal		0.93 (0.85, 0.99)		
Europe				
Arumane 2009	United Kingdom	1.00 (0.98, 1.00)	168	168
Bailey, A, 2008	England	1.00 (0.98, 1.00)	280	280
Belza M., 2015	Spain	1.00 (1.00, 1.00)	3004	3004
Champermos 2012	France	1.00 (0.96, 1.00)	532	532
Fernandez- 2014	Spain	1.00 (1.00, 1.00)	2559	2559
Ferre L., 2015	Spain	1.00 (1.00, 1.00)	3544	3544
GIL 2014	United Kingdom	0.40 (0.30, 0.64)	6	15
Kakatu, 2014	Greece	0.74 (0.66, 0.81)	87	117
Lorentz 2010	France	1.00 (0.96, 1.00)	211	211
Markus U., 2015	Germany	1.00 (1.00, 1.00)	1413	1413
Meulbroek 2013	Spain	1.00 (1.00, 1.00)	14453	14453
Qrist, T. 2014	Denmark	1.00 (1.00, 1.00)	3012	3012
Ribas Baill 2017	Spain	0.87 (0.66, 0.88)	3602	5385
Robert E B 2016	Ukraine	0.75 (0.72, 0.77)	990	1200
Szymowiz P 2017	Ukraine	0.69 (0.68, 0.70)	9699	13938
Wood M, 2015	England	1.00 (0.87, 1.00)	25	25
Subtotal		0.96 (0.88, 1.00)		
Africa				
Atekejo S. 2015	Nigeria	1.00 (1.00, 1.00)	12425	12425
Atekejo S. 2015	Nigeria	1.00 (1.00, 1.00)	14404	14404
Cawi, 2017	Tanzania	0.51 (0.51, 0.52)	3985	3985
Herce M., 2018	Malawi and Angola	1.00 (1.00, 1.00)	832	832
Hecksdo 2014	Nigeria	1.00 (0.96, 1.00)	356	356
Nguru-Gitu 2017	Kenya	0.19 (0.18, 0.20)	1255	6602
Subtotal		0.85 (0.30, 1.00)		
Western Pacific				
Bradshwe 2005	Australia	0.84 (0.58, 0.69)	197	309
Des Jariel 2016	Vietnam	1.00 (0.93, 1.00)	49	49
Kright, V. 2014	Australia	1.00 (0.96, 1.00)	182	182
Lister 2005	Australia	1.00 (0.96, 1.00)	102	102
Pham M. 2017	Vietnam	0.90 (0.87, 0.93)	543	603
Yon, K. et al 2014	China	1.00 (1.00, 1.00)	17091	17091
Zhang 2014	China	1.00 (1.00, 1.00)	31406	31406
Subtotal		0.96 (0.96, 0.98)		

Heterogeneity between groups: p = 0.629
Overall (p^2 = 0.9986, p = 0.00).
% new HIV positive - Male

Study	Population	Country	ES (95% CI)	Positive	New Positive
Americas					
Miligan 2014	KP	USA	1.00 (0.44, 1.00)	3	3
Spielberg, 2005	KP	USA	1.00 (0.80, 1.00)	15	15
Subtotal (I^2 = .%, p = .)			1.00 (0.92, 1.00)		
Europe					
Bailey, A. 2008	KP	England	1.00 (0.70, 1.00)	9	9
Fernandez- 2014	KP	Spain	1.00 (0.83, 1.00)	19	19
Valencia J 2018	KP	Spain	1.00 (0.65, 1.00)	7	7
Subtotal (I^2 = .%, p = .)			1.00 (0.95, 1.00)		
Africa					
Herce ME, 2018	KP	Malawi and Angola	0.82 (0.61, 0.93)	22	18
Western Pacific					
Yan, H. et 2014	KP	China	1.00 (0.99, 1.00)	745	745
Heterogeneity between groups: p = 0.000					
Overall (I^2 = 69.71%, p = 0.00);			1.00 (0.94, 1.00)		