Labview and Internet of Things (IoT) Based Remote Monitoring of Lab Experiments to Enhance Collaboration between Universities

Arshad Ali

Abstract: This paper presents the implementation of Remote Monitoring Laboratory system that is used to perform experiment remotely by using Internet of Things. This paper discusses required hardware equipment and software developments for Remote Laboratory. To verify the proposed framework, a room temperature control experiment made available remotely to control the parameters and hardware. The experiment which is made online accessible for students is named Temperature Control System (TCS). The basic idea presented in this paper is to acquire and present data in Lab View and control it by sitting on remote computer. As the experiments take long time to take place in laboratory and during that time a person needs to be present in laboratory to supervise the running experiment. But by making remotely accessible it become easy to supervise by sitting own office and during that time the person can do other tasks meanwhile experiment is running. Live video is also published with remote panel for hardware observation which is setup in laboratory. The results presented in this paper are very satisfactory and reliable.

Keywords: Remote Control, Internet of Things, Laboratory, Lab View.

I. INTRODUCTION

With the increasing number of things on the internet the concept of providing integrated services as a result of communication amongst heterogeneous networks is gaining momentum [3]. In last half century, advancement in electronics and communication technology enable the scientist to connect the machineries with computer system which can be operated over the internet remotely. With increasing the use of internet in the globe, many people work from home instead of going to office premises. It saves time as well as cost for both employer and employee. These technologies are also beneficial for students to perform experiments remotely instead of going into laboratories. In this way students do not have to wait for the equipment time slot but they need to register for an online experiment slot according to their convenience. By registering, system allocate time slot to each user for conducting experiment.

In this context National Instruments has great contribution by developing Lab View which is graphical programming and Lab View has built in servers and can be configured those servers according to the requirements. After configuring the servers one can perform experiments from a remote computer [1]. In most of the organization the National Instruments equipment is also used in laboratories with Lab View software, but in various organizations this software is not used in this context.

With the traditional laboratories this is not possible for all students to perform the experiment at the same time because experiment equipment limitation. By using the IoT based resources it is possible that all the students perform experiment sitting remotely from home or from anywhere in the world. In this way distant learning students can also perform their experiments from their residences.

The major aim of this research work is to make it able to perform and monitor experiments remotely and collaboration between the organizations to share the resources by using Internet of Things (IoT).

For monitoring purposes live video is also published in the panel by using web cameras to facilitate the experiment performer to monitor the hardware set up and other things in the laboratory while performing the experiments.

II. RELATED WORK

In last few decade, the technology especially Internet of Things (IoT) gained lot of attention from researcher who developed new models and architecture to build smart services, home and cities. Traditional laboratories are not enough for all students to perform the experiment at the same time. Most of the laboratories have limited hardware and connectivity due to lake of funding. Due to this limitation it results in a limited number of students which could perform the experiment at the same time and for utilizing all the students. Tutors need to make groups to perform experiments and during the experiment the laboratory supervisor needs to be in the laboratory. However there is another option that we can create virtual laboratories and at the same time many students can access that virtual experimentation but the drawback of this type of labs are that the experiment results of virtual lab are entirely different as compared with the real world experiments results.

By implementing the Remote Labs it gives more opportunities to perform experiments more than once and gain the correct results of the experiments. The major benefit is for the distance learning students who learn from home and they cannot come into the university every day or even once a week and making remote labs in universities, the student can get more practical knowledge than relying on theory [4]. Technologies are rapidly growing and penetrate in every field of life in last few decades. In the education field it provides the new teaching techniques like Remote Monitoring or Tele Labs and etc. (e.g. a microscope is set up in NASA America and that is accessible from Russia and one benefit of this setup is that when Russian Scientists access that microscope at that time it is night time in USA).
Labview and Internet of Things (IoT) Based Remote Monitoring of Lab Experiments to Enhance Collaboration between Universities

In this system both countries can utilize that microscope and other hardware. And there is no time clash between two countries because when it is day time in Russia it is America’s night time. Due to this time difference, scientists of both of the countries utilize that microscope with no time problem [26]. Traditional laboratories are not enough for all students to perform the experiment at the same time. Most of the laboratories have limited hardware. Due to this limitation it results in a limited number of students which could perform the experiment at the same time and for utilizing all the students, the tutor need to make groups and due to this grouping this time spans to a longer length and during the experiment the laboratory supervisor needs to be in the laboratory. However there is another option that we can create virtual laboratories and at the same time many students can access that virtual experiment but the drawback of this type of labs are that the experiment results of virtual lab are entirely different as compared with the real world experiments results.

Making the real setup of hardware in the laboratory and making it online for students to perform the experiment from anywhere in the globe. This reduces the costs and the time of the students. By making the Remote Labs it gives more opportunities to perform experiments more than once and gain the correct results of the experiments. The major benefit is for the distance learning students who learn from home and they cannot come into the university every day or even once a week and making remote labs in universities, the student can get more practical knowledge than relying on theory [4]. The operation modal of remote lab is show in figure 1. The figure shows that students present at different geographical location can access remote lab via internet to perform desired experiments. The hardware is setup for an experiment in remote lab. Multiple students can access the experiment at same time but only one student can control the experiment at same time. Every student can perform experiment in his allocated time slot and the results of experiments are stored in database and can be retrieved and analyzed later. [2]

Making the real setup of hardware in the laboratory and making it online for students to perform the experiment from anywhere in the globe. This reduces the costs and the time of the students. By making the Remote Labs it gives more opportunities to perform experiments more than once and gain the correct results of the experiments. The major benefit is for the distance learning students who learn from home and they cannot come into the university every day or even once a week and making remote labs in universities, the student can get more practical knowledge than relying on theory [4]. The operation modal of remote lab is show in figure 1. The figure shows that students present at different geographical location can access remote lab via internet to perform desired experiments. The hardware is setup for an experiment in remote lab. Multiple students can access the experiment at same time but only one student can control the experiment at same time. Every student can perform experiment in his allocated time slot and the results of experiments are stored in database and can be retrieved and analyzed later. [2]

III. REMOTE LAB ARCHITECTURE AND HARDWARE WORK

A. Architecture

Basically when any client is connected with the server for performing an experiment through web browse by using user name and password. The server sends confirmation to the client, that username and password is correct. Then the client clicks on the remote panel for performing the experiment through web browser. Web browser sends a request to the experiment server and remote panel is downloaded for remote client and the whole system as shown in the following figure 3.

B. User Datagram Protocol:

UDP is a connectionless protocol and it does not establish a connection with destination before sending data.
It also provides ability to sending data to other programs with minimum handling.

Fig. 4. Client/server communication model

It contains eight bit header information and it does not grantee to the destination for reliable data. The working of UDP is as follow. [18]

C. Hardware

To perform the experiment remotely, a sample experiment is performed. To setup the experimentation following hardware is needed:

Transistor:
The BDW93C is a silicon epitaxial-Base NPN power transistor in monolithic Darlington configuration mounted and is shown in the figure below.

Resistor:
Light Bulb: 5 volt light bulb is used for increasing or decreasing the intensity of light and by varying the light of the bulb through DAQ input voltage, it varies the resistance of the Thermistor and by varying the resistance of the Thermistor temperature varies.

Power Supply: Power supply is needed to provide voltage to drive the circuit.

DAQ NI-USB 6008: DAQ is used for attaching all the hardware with the computer. The DAQ which is used in this project is shown below: [1]

Fig. 5. Data Acquisition card (DAQ)

A. Hardware Design:
The block diagram of hardware design shown below.

![Hardware Block Diagram](image)

Fig. 6. Block diagram of experimentation hardware

The working of the hardware is as follow:
To turn on the hardware 5volt supply is connected with hardware through the transistor with +ve end and –ve end is connected with the resistor to complete the circuit and a 5volt is supplied through the DAQ and it can be varied between 1volt and 5volt to vary the brightness of the bulb. Designed hardware is shown in the figure below.

![Hardware Setup](image)

Fig. 7. Experiment setup for temperature control

Thermistor Theory:
Mathematical calculation of the VI is given below:

\[V = \text{Voltage from supply, } V_{\text{in}} = \text{Voltage across Thermistor, } \]

\[R_A = \text{Resistor Resistance, } R_B = \text{Thermistor Resistance} \]

\[r = R_0 \cdot e^{B/T} \]

Where \(R_0 \) resistance at \(T_0 \) (room temperature 289.15K) [25] \(T = \text{Temperature, } B = \text{Parameter at room Temperature} \).

By using the following equations:

\[R_B = \frac{(V_{\text{in}} \cdot R_A)}{(V - V_{\text{in}})} \]

Here \(R_B \) is Thermistor resistance and it now equal to \(R \)

\[T = \frac{B}{\ln(R/r)} \]

Temperature is in Kelvin. To calculate resistance across Thermistors:

\[R_B = \frac{(2.4 \times 10000)}{(5-2.4)} = 9231 \]

By using the second equation, Here \(R_B \) is a Thermistor resistance and it is now equal to \(R \).
IV. REMOTELY CONTROLLED EXPERIMENT SETUP

Experiment setup shown in the figure 8 is designed in LabView to perform the experiment remotely, the designed system enable the performer to control the experiment parameters remotely. The performer can control the hardware remotely, the user can change the voltage of the bulb by varying voltage supply by the DAQ. The DAQ assistant is used to read voltage across the thermistor, supply voltage and voltage across resistor. The voltage across the thermistor and supply voltage is also used to calculate temperature, after implementing the formula which is explained section III. To read the values from hardware through the DAQ we need to configure the DAQ, the number of samples, sample rate and timeout or delay between reading the samples from the circuit. If more samples are read from the circuit then the update becomes too slow and therefore, different values sets are used and based on the experimentation results the number of samples is less than 100 are fairly good.

The DAQ assistant 2 is used to change the voltage which is supplied through the DAQ and due to this change in voltage to the circuit the brightness of the bulb is changed and due to this change the temperature of the surrounding is also changed which is read through the Thermistor. The voltage timeout can be changed and by changing the timeout, the speed of the system varies and this is measured in seconds. By increasing the timeout the update becomes slow and decreasing the timeout update becomes fast. It is tested by using different values and by analyzing the results;

\[T = \frac{B}{\ln(R/r)} \]
\[= \frac{3450}{\ln (9231/0.0943296)} \]
\[= \frac{3450}{\ln (97859)} \]
\[= \frac{3450}{11.4913} \]
\[= 300.228 \text{ Kelvin} \]

V. RESULTS AND DISCUSSION

Experiment results and analysis of the presented in this section based on the obtained result by using the designed experiment bed. The designed experiment control the room temperature remotely with varying the voltage supplied to the bulb and due to variation in voltage, the surrounding temperature also varies. The following figure shows recorded readings of the experiment while changing of DAQ voltage. By increasing the DAQ voltage the temperature increases because of the brightness of the light bulb. Figure 10 shows that by increasing the voltage, the temperature increases and Vice Versa.

![Average Temperature Vs Voltage](image)

This graph in figure 11 shows the relationship between Thermistor resistance and DAQ voltage. DAQ voltage is taken along the x-axis and Thermistor resistance is along the y-axis. As the DAQ voltage increases the Thermistor resistance decreases and by decreasing DAQ voltage Thermistor resistance increase.
The graph in figure 12 explains the relation between DAQ voltage and temperature. In this graph DAQ voltage is taken along the x-axis and temperature is along the y-axis. By analyzing the graph it concludes that by increasing the DAQ voltage to the circuit temperature increases and by decreasing the DAQ voltage to circuit temperature decreases.

Fig. 11. DAQ voltage vs average thermistor resistance

Fig. 12. DAQ voltage vs average temperature

Thermistor Resistance and Temperature relationship is shown in figure 13. According to graph resistance decreases when temperature increases and it increases when temperature decreases.

Fig. 13. Average thermistor resistance vs average temperature

VI. CONCLUSION

In 21st century, it is need of the universities to collaborate and benefitted from the equipment by using online laboratories. In this paper an efforts is done to design a sample experiment by using LabView integrated with IoT for remote handling of lab experiments. The results presented in this paper is very much satisfactory and this model can be used to enhance collaboration between academia. By using this model, the universities which are lack of the latest experimental bed can be benefitted from other universities labs. Based on this the lab experiment can be done any time even out of hours from home or anywhere from the globe.

REFERENCES

1. Caragiliu, A.; Del Bo, C.; Nijkamp, P. Smart cities in Europe. J. Urban Technol. 2011, 18, 65–82.
2. Ishida, T.; Ishibster, K. Digital Cities: Technologies, Experiences, and Future Perspectives; Number 1765; Springer Science & Business Media: Berlin, Germany, 2000.
3. Alshmrany, Sami & Ali, Arshad “Health Monitoring and Management System by Using Wireless Sensor Network and Internet of Things (IoT)”, VOL.19 No.12, December 2019, 179-184
4. H. Benmohamed, A. Lelevé, and P. Prévot, “Remote laboratories: new technology and standard based architecture,” ArXiv Prepr. ArXiv07062974, 2007
5. University of South Indiana (http://health.usi.edu/distlern/disc3.jpg) (access 23-08-2019)
6. Specification of remote Lab V.2.0 (access 11-07-2019)
7. Asraf, H.M. & Dalila, Nur & Zakiah, M.Y. & Faiz, Z.A. & Tahir, Nooritawati. (2018). Using the Virtual Online Laboratories for the pre-University. 0609-0813. 10.1109/ICEPE.2018.8559617. [9]Lab View Manual and Tutorials (access 15-09-2019)
8. Donose, Costel & Schreiner, Cristina-Mihaela & Macovei, Stefan. (2018). Using the Virtual Online Laboratories for the pre-University. 0609-0813. 10.1109/ICEPE.2018.8559617. [9]Lab View Manual and Tutorials (access 15-09-2019)
9. http://telerobot.mech.uwa.edu.au/Information/Trevelyan-M2VIP2003.pdf (access 02-07-2019)
10. http://www.uwosh.edu/news_bureau/documents/spring06web.pdf (access 22-06-2019)
11. Stoll S., Hopp c. 2002, Information Technology Online, Networked Learning Conference Berlin (access 22-10-2019)
12. http://telerobot.mech.uwa.edu.au/Information/Data Socket) (access 17-12-2019)
13. Software system for control web laboratory (access 29-01-2020)
14. Chew A.S 1997, Development of a Feedback System for Position Control, Western Australia, Perth (access 02-01-2020)
Labview and Internet of Things (IoT) Based Remote Monitoring of Lab Experiments to Enhance Collaboration between Universities

15. Davies T., Chan D. 2002 Network Cameras versus Streaming Video, Vacation work project, The University of Western Australia, Perth (access 05-11-2019)

16. http://www.ni.com/labview (Data Socket Technical Overview) (access 12-01-2020)

17. National Instrument 2000 (access 27-09-2019)

18. http://www.umd.umich.edu/~jdennis (access 21-09-2019)

19. Online lab and Learning Management System Co-op Work Report by Magdalena Pasecka Internet Logic Group NRC – National Research Council of Canada Fredericton, NB December 2004 (access 13-11-2019)

20. A Java-based Remote Laboratory for Distance Learning Sam Hsu, Bassem Alhalabi, and Mohammad Ilyas Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL 33431 (access 03-11-2019)

21. International Conference on Engineering Education August 6 – 10, 2001 Oslo, Norway (access 23-12-2019)

22. Department of Signal Processing, School of Engineering, Blekinge Institute of Technology, Sweden/2Department of Electro science, Lund University, Sweden (access 29-01-2020)

23. V. M. Cvjetkovic and U. Stankovic, “Arduino Based Physics and Engineering Remote Laboratory,” Int. J. Online Eng. IJOE, vol. 13, no. 1, p. 87, Jan. 2017. https://doi.org/10.39

24. http://en.wikipedia.org/wiki/Thermistor#Self-heating_effects (access 01-10-2019)

25. A. S. Ahmed, K. Yassine, M. Mohamed, A. Youness, F. Ahmed, and A. A. Mohamed, “Remote-Controlled Laboratories of Experimental Physics: Measuring the Stiffness of a Spring,” Trans. Mach. Learn. Artif. Intell., vol. 5, no. 4, Aug. 2017. https://doi.org/10.14738/tmai.54.3187

26. A. Malaoui, “Low cost pedagogic device for practical works using embedded system.” in 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA), 2015, pp. 1–8. https://doi.org/10.1109/aiccsa.2015.7507160

27. O. A. Herrera, G. R. Alves, D. Fuller, and R. G. Aldunate, “Remote lab experiments: opening possibilities for distance learning in engineering fields,” in IFIP World Computer Congress, TC 3, 2006, pp. 321–325.

AUTHORS PROFILE

Dr. Arshad Ali is Associate Professor of Information Technology since May 2018 in Faculty of Computer and Information Systems, Islamic University of Madinah. He finish his BSc in Mathematics and Statistics from University of Punjab, Lahore, Pakistan in 2000 and completed his Masters in Computer Sciences from Iqra University, Lahore, Pakistan.

In 2005, he moved to Birmingham, UK for further studies. He joined Aston University, Birmingham, UK and obtained his MSc Telecommunication Technology in 2007. In 2007, he joined Geotechnical Group, Department of Engineering, and University of Cambridge as Research Ass. (2007-2009). In 2009, he was awarded a PhD (2009-2012) scholarship from the Lancaster University, UK and he awarded PhD in 2012. He worked on the UK-NEES project and designed communication system for live experimentation between UK Universities (Cambridge, Oxford and Bristol).