Concerted gene recruitment in early plant evolution

Jinling Huang J. Peter Gogarten

1. Materials and methods

Data sources: Protein sequences for the red alga Cyanidioschyzon merolae were obtained from the Cyanidioschyzon Genome Project [41, 73]. EST sequences of several protists were obtained from TBestDB [74]. All other sequences were from the NCBI protein sequence database.

Identification of ancient HGT: Anciently acquired genes in this study include those horizontally acquired prior to the split of red algae and green plants. A list of ancient HGT candidates was first identified based on phylogenomic screening of the Cyanidioschyzon genome using PhyloGenie and the NCBI non-redundant protein sequence database. The vast majority of the genes on this list are predominantly identified in bacteria and archaea, and therefore are likely of prokaryotic origin. To reduce the complications arising from potential cases of IGT, we adopted an approach combining sequence comparison, phylogenetic analyses, and statistical tests. Each gene on the list was first used to search the NCBI protein sequence database. Because of the cyanobacterial origin of plastids and the α-proteobacterial origin of mitochondria, genes with cyanobacterial and plastid-containing eukaryotic homologs as top hits were considered as likely plastid-derived; those with proteobacterial and other eukaryotic homologs were considered as likely mitochondrion-derived. These potentially organelle-derived genes were removed from the candidate list and the remaining genes were subject to detailed phylogenetic analyses (see below). Gene tree topologies generated through detailed phylogenetic analyses were subject to careful inspections; any genes that formed a monophyly with cyanobacterial homologs or with proteobacterial and other eukaryotic sequences were also eliminated from further consideration. Additionally, alternative topologies representing various evolutionary scenarios for each gene were statistically evaluated based on AU tests [43] (see below); genes for which a straightforward IGT scenario (versus IGT followed by secondary transfers) could not be rejected (p-value > 0.05) were also removed from the HGT candidate list.

Detailed phylogenetic analyses: Sequences were sampled from representative groups (including major phyla of bacteria and major groups of eukaryotes) within each domain of life (bacteria, archaea, and eukaryotes). Because of the potential for sequence contaminations, eukaryotic EST sequences whose authenticity is suspicious (e.g., high nucleotide sequence percent identity with bacterial homologs and/or absence of homologs in genomes of closely related taxa) were not included in the analyses. Multiple protein sequence alignments were performed using MUSCLE [77] and clustalx [78], followed by cross-comparisons and manual refinement. Only unambiguously aligned sequence portions were used. Phylogenetic analyses were performed with a maximum likelihood method using PHYML [79], a Bayesian inference method using MrBayes [80], and a distance method using the program neighbor of PHYLIP version 3.65 [81] with maximum likelihood distances calculated using TREE-PUZZLE [82]. All maximum likelihood calculations were based on a substitution matrix determined using ProtTest [83] and a mixed model of 4 gamma-distributed rate classes plus invariant sites.
Maximum likelihood distances for bootstrap analyses were calculated using TREE-PUZZLE and PUZZLEBOOT v1.03 (by Michael E. Holder and Andrew J. Roger, available on the web [84]). Branch lengths and topologies of the trees depicted in all figures were calculated with PHYML. For the convenience of presentation, gene trees were rooted using archaeal (or archaeal + eukaryotic) sequences, or paralogous gene copies if ancient gene families were involved, as outgroups; otherwise, trees were rooted in a way that no top hits of the sequence similarity search were used as an outgroup. Nevertheless, all gene trees should be strictly interpreted as unrooted.

AU tests on alternative tree topologies: Following detailed phylogenetic analyses, alternative tree topologies for each remaining HGT candidates were assessed for their statistical confidence using Treefinder [85]. In most cases, multiple constraint trees were generated using Treefinder for each HGT candidate by enforcing a) monophyly of all eukaryotic sequences, b) monophyly of cyanobacterial, plant and other plastid-containing eukaryotic sequences, and c) monophyly of cyanobacterial, plant, and closely related bacterial sequences. These alternative topologies assumed that the subject gene in plants are not HGT-derived; they served as null hypotheses that all eukaryotic sequences have the same eukaryotic or mitochondrial origin or that plants acquired the subject gene from plastids, sometimes followed by secondary HGT to other bacterial groups. AU tests, which have been recommended for general tree tests, were performed on alternative tree topologies (non-HGT hypotheses) and the tree generated from detailed phylogenetic analyses (HGT hypothesis). In this study, topologies with a p-value < 0.05 were rejected.

Prediction of protein localization: Targeting signal of identified protein sequences was predicted using ChloroP [86] and TargetP [87]. Additional information about protein localization in green plants was obtained from The Arabidopsis Information Resource (TAIR).

2. Protein sequence alignment used for phylogenetic analyses and resulting phylogenetic trees. Each sequence name includes a GI number from GenBank (or ID number from other databases) followed by species name. Numbers above the branches of the gene tree show bootstrap support values for maximum-likelihood analyses and distance analyses, and posterior probability from Bayesian analyses, respectively. Asterisks indicate support values below 50%. N denotes genes whose homologs are rarely found in cyanobacteria and that likely possessed novel functions; E denotes genes for which plastid-derived homologs already exist in plants; D denotes genes for which a possible replacement of an endogenous homolog cannot be excluded.

1. GCN5-related N-acetyltransferase (E)

CLUSTAL X (1.83.1) multiple sequence alignment

Sequence Name	Alignment
32444545_Rhodopirellula_baltic	KADTLIEAMGWRFRGKTTVRIKGLSSLEDREALQH1LLLVIFMETVGL
21541979_Mycobacterium_leprae	KAEVLAEALPWLQRIKVGVRVYSGNAMTDMLRRAFAADMAFLRNCGI
488344901_Thermobifida_fusca	KAKTLIEALPWLSAHHGKTVVYKGNAMIDEDLAAFAQDFFFVYVGL
7106696_Streptomyces_coelic	KAQTLIEALPWLQRIKVGVRVYSGNAMTDMLRRAFAADMAFLRNCGI
30409279_Cyanidioschyzon_merol	RVQVLTEALPYQIKWNEIMVIRYGGAVVQKD---ADITKDIILFLXCGF
Note: All top hits of GenBank Searches (using Cyanidioschyzon sequence and Arabidopsis accession number NP_974701 as queries) are from gamma and beta-proteobacteria. Multiple copies of this gene exist in plants and in bacteria. One of these copies in red algae and green plants forms a group with homologs from gamma and beta-proteobacteria with strong support, whereas the other copy groups with cyanobacterial sequences with modest support (the Cyanidioschyzon sequence in that group is encoded in the plastidic genome). In Arabidopsis, the protein product of the gamma and beta-proteobacteria-related gene copy is annotated as located in cytoplasm (GenBank accession number NP_974701 and TAIR locus AT4G37670). The EST sequence of glaucophyte Cyanophora was obtained from tbESTdb; this sequences groups with homologs of red algae and green plants in preliminary analyses, but was removed from the detailed phylogenetic analyses because of its very short length (only 32 aa).
Figure 1. Molecular phylogeny of GCN5-related N-acetyltransferase. P-value = 0.235 from AU test on the presented tree. AU tests were also performed on alternative topologies including (A) monophyly of all red algal and green plant sequences, and (B) monophyly of cyanobacterial and all red algal, green plant sequences. These alternative topologies investigate if both copies of this gene in red algae and green plants have the same plastidic origin. P-values < 0.001 from AU tests on both alternative topologies.

2. Glycyl-tRNA synthetase (D)

Note: GlyRS in living organisms exists in forms of homodimer (α_2) and heterotetramer ($\alpha_2\beta_2$); the former is distributed in eukaryotes, archaea, and many bacteria whereas the latter is only found in bacteria, red algae and green plants. Few bacteria contain both glyRS types. The α- and β-subunits of tetrameric glyRS are usually encoded in separate genes. In a few groups, the two subunits are encoded in a single fused gene; these include actinomycetes, chlamydiae, red algae, and green plants. Not only are sequences from actinomycetes, red algae and green plants similar in gene structure, they also have the highest percent identity and share several conserved amino acid residues. Phylogenetic analyses of each of the subunits strongly suggest a common origin of actinomycete, red algal and plant sequences (Figures 2A-2B). Based on
the gene structure and molecular phylogeny, it is likely that primary photosynthetic eukaryotes acquired this gene from either actinomycetes or chlamydiae (Chlamydiae are the only bacterial group aside from actinomycetes and plants that possess a fused gene in our database searches). The second scenario requires an independent HGT event from photosynthetic eukaryotes or chlamydiae to actinomycetes. The *Arabidopsis* sequence (GenBank accession number NP_190394, TAIR locus AT3G48110) is experimentally determined to be targeted to both chloroplasts and mitochondria.

2A. Alpha subunit

CLUSTAL X (1.83.1) multiple sequence alignment

	Accession	Species	Clusters	Sequence

Accession	Species	Clusters	Sequence
Figure 2A. Molecular phylogeny of alpha subunit of glycyl-tRNA synthetase. P-value = 0.838 from AU test on the presented tree. AU tests were also performed for alternative topologies, including (A) monophyly of cyanobacterial and photosynthetic eukaryotic sequences, (B) monophyly of cyanobacterial, *Frankia*, *Trocheryma*, and photosynthetic eukaryotic sequences, and (C) monophyly of chlamydial, *Frankia*, *Trocheryma*, and photosynthetic eukaryotic sequences. These tests investigate different evolutionary scenarios, including a) plastidic origin of photosynthetic eukaryotic sequences, b) photosynthetic eukaryotes acquired this gene from plastids and subsequently spread to *Frankia* and *Trocheryma* by a secondary HGT event, c) photosynthetic eukaryotes acquired this gene from chlamydiae and subsequently spread to *Frankia* and *Trocheryma*. P-value < 0.001 from AU test for topology A whereas P-values = 0.247 and 0.287 for topologies B and C, respectively. Therefore, the scenario of a plastidic or chlamydial origin of this gene in red algae and green plants, though less parsimonious, cannot be confidently rejected.

2B. Beta subunit

CLUSTAL X (1.83.1) multiple sequence alignment

Accession	Organism	Sequence
68172611	*Frankia sp.*	LFEIGTEELPAEVTREVTRVEAVRAGLVERLAATRILTGTIPRIVALIVATDEVA
68230323	*Frankia*	-------------- ---
28572421	*Trocheryma whippl*	LFEIGTEEMPSS-TQEITTTVNLKRELGRSLQKDATPRIVIYKMH
46399968	*Parachlamydia sp.*	VIEIGSELPLAPSVIGQGMQLLERALLKEGISGTFPRIVAYYLYLS
C_130039	*Chlamydomonas reinh*	VLEIGVEELPDDVYASVQRLERYPVAKKALGLSKEGTPRIVALVYEPAAL
15863647	*Chlamydomphila pneumo*	LIEEGSEELPFFVPIQGLQESLARKVQDNLGSPRALTLLVYNVA
15659330	*Chlamydia tracho*	VIEIGTEELPPADLDAEVRQLEHQLQDNRLRATPRHAILVUOGVA
55296761	*Oryza sativa*	LIEIGEELPLFRLPHLSKSWTTLKQRMETYFTPTVLRLVLSQFAP
30629278	*Arabidopsis thalia*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
CM269	*Cyanidioschyzon merolae*	LIEIGEELPPADLDAEVRQLEHQLQDNRLRATPRHAILVUOGVA
34482366	*Wolinella succin*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
15611973	*Helicobacter pylori*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
15607085	*Aquifex aeolic*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
66855634	*Anaeromyxobacter deha*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
46580306	*Desulfuvibrio vulgar*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
4990715	*Thermotoga marit*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
68207212	*Desulfotobacterium ha*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
50914778	*Streptococcus pyogen*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
17133246	*Nostoc sp.*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
45508785	*Anabaena variabilis*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
72382003	*Prochlorococcus marinus*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
46907686	*Listeria monocytogenes*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
23099403	*Oceanococcus thieyanus*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
68179078	*Desulforudomona acetox*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
39982449	*Geobacter sulfurreducens*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
51891713	*Symbio bacterium thermophilus*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
67931182	*Solibacter usitatimuricus*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
1573946	*Haemophilus influenzae*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
26986005	*Pseudomonas putida*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
13476182	*Mesorhizobium loti*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
39944122	*Rhodopseudomonas palustris*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
23013833	*Magnetospirillum gryphiswaldense*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS
68213210	*Methyllococcus flagellatus*	LIEIGEELPPQDNQVTNLLECQRLQVLVYDANS

Table continued...
Figure 2B. Molecular phylogeny of beta subunit of glycyl-tRNA synthetase. P-value = 0.731 from AU test for the presented tree. AU tests were also performed on alternative topologies, including (A) monophyly of cyanobacterial and photosynthetic eukaryotic sequences, and (B) monophyly of chlamydial, *Frankia*, *Trophieryma*, and photosynthetic eukaryotic sequences. These tests investigate different scenarios, including a) plastid origin of photosynthetic eukaryotic sequences, and b) photosynthetic eukaryotes acquired this gene from chlamydiae and subsequently spread to *Frankia* and *Trophieryma*. P-values = 0.085 and 0.446 from AU tests for these alternative topologies respectively. Therefore, the scenario of a plastidic or chlamydial origin of this gene in red algae and green plants cannot be confidently rejected based on these statistical tests. However, given that the two glycyl-tRNA subunits likely acquired from a single event, we have chosen to present this gene here as a likely case of HGT.

3. Dihydrodipicolinate synthase (dapA) (D)

CLUSTAL X (1.83.1) multiple sequence alignment
Accession	Organism	Sequence
A0A0240141	Pseudoalteromonas_sp.	SLLFQANIPPVKLMHQLQRGLTSVLRLPLTHL
A0A0240142	Alteromonadales_bact	SLFANIPPVKLMHQLQRGLTSVLRLPLTHL
A0A0240143	Pseudoalteromonas_sp.	SLLFANIPPVKLMHQLQRGLTSVLRLPLTHL
A0A0240144	Aspergillus_oryzae	WLFCEPNPIAINTALMMTWGAVKPVFRLPYVPL
A0A0240145	Ostreococcus_tauri	WLFCEPNPIAINTALMMTWGAVKPVFRLPYVPL
A0A0240146	Oryza_sativa	WLFCEPNPIAINTALMMTWGAVKPVFRLPYVPL
A0A0240147	Arabidopsis_thalialist	WLFCEPNPIAINTALMMTWGAVKPVFRLPYVPL
A0A0240148	Pseudomonas_aeruginosa	SLFQANIPPVKLMHQLQRGLTSVLRLPLTHL
A0A0240149	Mycobacterium_avium	AMARLGGVTMSKAGLRLQGIDVGDPRLPQVPA
A0A0240150	Streptomyces_coei	GMFRTQGVMTTKGALALQGLPAGPLRAPMVGL
A0A0240151	Bacillus_halodul	GLFTAPNPTCVKAALQGLPAGPLRAPMVGL
A0A0240152	Cyanidioschyzon_merolae	ALFVMANPIPAINTALMLGVPNVLQLRPLPQ
A0A0240153	Crocosphaera_watson	VLFCTSNPIPAINTALMLGVPNVLQLRPLPQ
A0A0240154	Prochlorococcus_marinus	SLFATTNPIPVKAAITLMLGVPNVLQLRPLPQ
A0A0240155	Gloeobacter_violace	GLFWEANIPPVKAAITLMLGVPNVLQLRPLPQ
A0A0240156	Cytophaga_hutchi	LMYEEQGNPVGKSLMLMGCSSEVRLPQLVA
A0A0240157	Bacteroides_fragil	LLFVDGNPAGVKSMLNAMGDIENKRPLAPV
A0A0240158	Thermotoga_maritil	ALFVETNPIPAINTALMLGVPNVLQLRPLPQ
A0A0240159	Haloarcula_marism	AMFVETNPIPAINTALMLGVPNVLQLRPLPQ
A0A0240160	Methanosarcina_acetic	ALFLETNPIPAINTALMLGVPNVLQLRPLPQ
A0A0240161	Chlorobium_limicola	LNFIESNVPVYKALMLGMIEEVRPLPVKL
A0A0240162	Acidobacteria_bacter	ANFLESNPGVXAMMKRFEYNNRPLPVKL
A0A0240163	Rhodopirellla_baltica	KMLLATNPIPAKAMQNGQTVDTEMLRPLPVKL
A0A0240164	Brucella_suis	ALFLEPNPVSQTKALGRLKHIENLRPLPVKL
A0A0240165	Caulobacter_sp.	ALFLEPNPVSQTKALGRLKHIENLRPLPVKL
A0A0240166	Leptospira_interr	TFLATNPIPAKAMQNGQTVDTEMLRPLPVKL
A0A0240167	Clostridium_diffic	ALFIEQNPVTKALMLGMIEEVRPLPVKL
A0A0240168	Guillardia_theta	AMFCTENPIPAKAMQNGQTVDTEMLRPLPVKL
A0A0240169	Euglena_gracilis	AMFCTENPIPAKAMQNGQTVDTEMLRPLPVKL
A0A0240170	Aquifex_aeolic	VLFIEQNPVTKALMLGMIEEVRPLPVKL
A0A0240171	Geobacter_uranii	AMFIEQNPVTKALMLGMIEEVRPLPVKL
Figure 3. Molecular phylogeny of dihydrodipicolinate synthase (dapA). The red algal Cyanidioschyzon sequence forms a group with cyanobacterial and Dehalococcoides homologs with strong support whereas green algal and glaucophyte sequences form another strongly supported group with gamma-proteobacterial homologs. This could be explained by an HGT from gamma-proteobacteria and subsequent gene losses among primary photosynthetic eukaryotes. See text for explanations. Sequences of Cyanophora, Guillardia, Hartmanella, and Euglena were obtained from TBestDB. P-value = 0.199 from the AU test for the presented tree.

AU tests were also performed on alternative topologies, including (A) monophyly of all eukaryotic sequences except Cyanidioschyzon that appears to be plastid-derived, (B) monophyly of Cyanidioschyzon and cyanobacterial sequences, and (C) monophyly of all plastid-containing eukaryotic and cyanobacterial sequences. P-values < 0.001 from AU test for topologies A and C, suggesting that green plant and glaucophyte sequences are unlikely of the same origin (mitochondrial or plastidic origin) with other eukaryotic sequences. P-value = 0.801 from AU test for topology B, confirming the likely plastidic origin of the Cyanidioschyzon sequence.
4. ThiC family protein (D)

CLUSTAL X (1.83.1) multiple sequence alignment

Accession	Species	Sequence
15922177	Sulfolobus tokoda	MAIIDDARKG II I TDEM KKKKL SIEK LEKISEK KPVK RIVEK GKM I RNEK YS K
18311872	Pyrobaculum aeroph	VVAIAG GLKSTI NVL GTS TEEV DLEK SVKVEVNA KGK DTVMD SG
15789982	Halobacterium sp.	NTTIIR AEGR KEKDMK IERAEGSKE KLEKRAKE KQA VYHRNWS K
34541691	Porphyromonas gingiv	NTTIIR AEGR KEKDMK IERAEGSKE KLEKRAKE KQA VYHRNWS K
48766428	Rhodospirillum rubrum	PTQLY ARAQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
71863643	Pelobacter propio	VTMQIYARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
67938921	Chlorobium phaeob	VTMQIYARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
54072970	Nocardia farcin	RQCLAR QIVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
45658515	Leptosira intern	MQHFMKEAKG I EYAR N FE Y RD E VAI R GAI RAINPinHEE
67977524	Thermococcus geoth	VTMQIYARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
73593919	Halobacterium sp.	VTMQIYARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
19236156	Arabidopsis thalia	VTMQIYARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
CP000022869	Cyanophora paradox	VTMQIYARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
32454237	Rhodoopisellula baltic	VTMQIYARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
67930575	Solibacter usitad	VTQLYAARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
15605979	Aquifex aeolic	VTQLYAARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
33241220	Prochlorococcus marin	VTQLYAARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
71635503	Synnechocystis sp.	VTQLYAARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
51758962	Thermococcus kodakla	VTQLYAARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
18977903	Pyrococcus furios	VTQLYAARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
71831809	Pelobacter propio	VTQLYAARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
19712998	Fusobacterium nuclea	VTQLYAARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE
67875148	Clostridium thermod	VTQLYAARQG IVTDMV VAINENRTPFEVQVGEAVGAI RAINPinHEE

5. ThiC family protein (E)

Accession	Species	Sequence
16331858	Synechocystis sp.	VTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
149920854	Plesiocystis pacific	VTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
48855688	Cytophaga Hutchi	VTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
26250765	Escherichia coli	VTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
26991600	Pseudomonas putida	VTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
5402178	Nocardia farcin	VTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
67938921	Chlorobium phaeob	VTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
71836834	Pelobacter propio	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
48764428	Rhodospirillum rubrum	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
67938921	Chlorobium phaeob	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE

6. ThiC family protein (F)

Accession	Species	Sequence
15922177	Sulfolobus tokoda	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
18311872	Pyrobaculum aeroph	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
15789982	Halobacterium sp.	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
34541691	Porphyromonas gingiv	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
48766428	Rhodospirillum rubrum	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
71863643	Pelobacter propio	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
67938921	Chlorobium phaeob	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
54072970	Nocardia farcin	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
45658515	Leptosira intern	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
19712998	Fusobacterium nuclea	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE

7. ThiC family protein (G)

Accession	Species	Sequence
15922177	Sulfolobus tokoda	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
18311872	Pyrobaculum aeroph	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
15789982	Halobacterium sp.	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
34541691	Porphyromonas gingiv	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
48766428	Rhodospirillum rubrum	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
71863643	Pelobacter propio	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
67938921	Chlorobium phaeob	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
54072970	Nocardia farcin	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
45658515	Leptosira intern	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
19712998	Fusobacterium nuclea	YTSQGHRARE GRIDDE MRKIA E XEKKERK RYRERSTV AAVKAK RAINPinHEE
Gene Name	Accession	
------------------------	---------------	
Plesiocystis pacifica	ASMCGHFCSMKLTQDV	
Ralstonia eutropica	ASMCGKFCSMKITQEV	
Deinococcus geotherma	ASMC	
Leptospira inter media	ASMCGHFCSMNLTQEL	
Nocardia farcinii	ASMCGKFCSMRISADV	
Chlorobium phaeo bob	GMTMCGDFCSMKKSQEV	
Pelobacter propionic	DSMCGDFCAMRITRNI	
Rhodospirillum rubrum	HSMCGKFCSMKIS	
Porphyromonas gingival	HSMCGHFCSMRANKNF	
Halobacterium sp.	YSMCGDFCSMRIDQDA	
Pyrobaculum aerophilus	KTMCGGYCPMNMVIQQ	
Clostridium thermo taxon	DIAKGIKGAREWDYQMSEARRNLDWNRMFELAIDREKAERYRKSSMPEDE	
Fusobacterium nucleatum	DLAKGHPGAQVRDDALSKARFEFRWDQFALSDFLTDPRQTHERDETMPEA	
Sulfolobus tokodai	HITSAIGGAIAAAAGADFLCYVTPAEHLGLPDVQDVREDVQRFAVIAKIAAHAV	
Deinococcus geotherma	DLAKGHPGAQVRDDALSKARFEFRWDQFALSDFLTDPRQTHERDETMPEA	
Rhodopirellula baltica	HIAGAIGGALAGWAGAAMLCYVTPKEHLGLPNEDVRMTREYHDATLPADG	
Note: All top hits in GenBank searches (using Cyanidioschyzon sequence and Arabidopsis GI 22136156 as queries) are from proteobacteria, firmicutes and spirochaetes. Primary photosynthetic eukaryotic sequences share many conserved residues with non-cyanobacterial sequences, and likely are not of cyanobacterial origin. The same is also supported by the phylogenetic analyses. The Arabidopsis sequence (GenBank accession number NP_180524 and TAIR locus AT2G29630) is annotated as a chloroplast precursor. The glaucophyte Cyanophora sequence was obtained from TBESTDB.
Figure 4. Molecular phylogeny of ThiC. P-value = 0.539 from AU test for the presented tree. AU tests were also performed on alternative topologies, including (A) monophyly of red algal, green plant and cyanobacterial sequences, and (B) monophyly of red alga, green plant and archaeal sequences. These tests investigate if red algal and green plant sequences has a plastidic or an archaeal (or eukaryotic) origin. P-values < 0.001 from AU tests for both alternative topologies.

5. Diaminopimelate decarboxylase (lysA) (D)

CLUSTAL X (1.83.1) multiple sequence alignment

Accession	Organism	Sequence
66825991	Dicyostelium discoi	TPFHIYNGDIKKEGELLMNYFAYKATPNPSILKLLKEIGMKGVDCSSLAE
24213747	Leptospira_interr	TPVFYVRERIEKCSVEALVRYAMKANPNRTVEIMKRKGIGIDASESEYE
116056027	Ostreococcus tauri	TPTYVYDIAPTEARAAAVKVRAMKAPNNAIKFKEKLHVDAATAGE
87306324	Blastopirellula_marin	TPFYYDAKVERIEDLRIRIAYAQRKACSNILDLMLMKEGIVDAYSAME
21224744	Streptomyces_coelic	TPLYYLSQVQRGQQLAYACKANTNAIKLMEKGGIDAVIGE
11835090	Tetrahymena_thermo	TPLYVYDEIIKRQQTITVLYACKANTNNAIKLMEKGGIDAVIGE
145525334	Paramecium_tetrau	TPLYYVSVQIKERCQQLAYACKANTNAIKLMEKGGIDAVIGE
48477088	Picrophilus_torrid	TPLITYVSQIKERCQQLAYACKANTNAIKLMEKGGIDAVIGE
126007985	Ferrobacillus_marina	TPFVYNMARVREIIRIRYAVSHYKSNPFIYVSQIKEETGIADAVINE
60682355	Bacteroides_fragil	TPFYYDTKVRLDTCLVKHNYVAKNANPKVILTIREGLGADYSGE
123416580	Trichomonas_vagina	TPLYYVSETQTVSNFTRYVISFAYKANTNLAFTLSSKLGCADYSAGE
45358763	Methanococcus_mariposa	---
Note: All top hits in GenBank searches (using *Cyanidioschyzon* sequence and *Arabidopsis* GI 15231844 as queries) are from various non-cyanobacterial groups. The donor of the acquired gene in primary photosynthetic eukaryotes (upper part of the tree) is difficult to pinpoint because of the lack of sufficient internal support on the gene tree, but it is unlikely from cyanobacteria based on AU tests. The *Arabidopsis* sequence (GenBank GI 15231844 and TAIR locus AT3G14390) is annotated as a chloroplast precursor.

Figure 5. Molecular phylogeny of lysA. See text for detailed explanation. P-value = 0.235 from AU tests for the presented tree. AU tests were also performed on alternative topologies, including (A) monophyly of all eukaryotic sequences, (B) monophyly of cyanobacterial and primary photosynthetic eukaryotic sequences (except for the *Ostreococcus* sequence that appears to be distant). These tests investigate if red algal, green plant and glaucophyte sequences have the same origin (mitochondrial or eukaryotic) with other eukaryotic sequences and if red algae, green plants and glaucophytes acquired this gene from plastids. P-values < 0.001 from AU tests for both alternative topologies.

6. MGDG synthase (N)

CLUSTAL X (1.83.1) multiple sequence alignment
Figure 6. Molecular phylogeny of MGDG synthase. See text for detailed explanation. P-value = 0.235 from AU test on the presented tree. AU tests were also performed an alternative topology enforcing a monophyly of photosynthetic eukaryotic sequences with the rare cyanobacterial homolog (i.e., *Gloeobacter* in this case). P-value < 0.001 from AU test for the alternative topology.

7. Alpha amylase (D)

CLUSTAL X (1.83.1) multiple sequence alignment

```
CM1405_Cyanidioschyzon_merolae      YGCPTVNYAIYSTEQRHMSLIIYRMKGVKHAVAQAGYRMYRVRGKG-
33635247_Prochlorococcus_marin     LGSTIGVNSVATATKAVELVLLFHRSGSVGVEVMETGCGYFRGFPH-
149177467_Plantomycyes_maris      LGETWYMNFIYSKHEASVSLFFKNTAEWKCRIPPAYYQIEGPSD
32390865_Rhodopirellula_baltic     LGASWGFNFSYRHTAVHLHLYNKSVPWCRVREWAYAIYRVDGAPD
33236242_Chlamydophila_pneumo     LASKRVRɣLAMYQATSEVEILALMRTGAIWHIIEQGSYAFRNGF-S
42525620_Treponema_dentic        LAGKLVNFSVSNRKPEVHLHFTKGTGWHVVFNSWAFYLTADGFD
19714344_Fusobacterium_nuclea     LGANLGFSYALYANLVNSLSQFFHKLGDFWIFLEEGTVLWY-
150017328_Clostridium_bijer       LGASQGINFAVFSQATSCODELFGTVHFLKGYRFDGKFD
48894542_Trichoscladium_eurthr     FGTAGYNFNSIFSSYTTSTCVLFLFGRIGNYCHVFENIEYRGMDEN
16330244_Synechocystis_sp.        LGATIGVNSVATATKAVELVLLFHRSGSVGVEVMETGCGYFRGFPH-
CM4050_Cyanidioschyzon_merolae     LGVSLGPMNFIYSTQATSEVEILALMRTGAIWHIIEQGSYAFRNGF-
22328517_Arabidopsis_thalia       LQDSQINFAVNTSQSTCDELFAGTWHFLKGYRFDGKFD
15225595_Arabidopsis_thalia       LGASWGFNFSYRHTAVHLHLYNKSVPWCRVREWAYAIYRVDGAPD
46446740_Parachlamydia_sp.        FMRPNKYNFLYKNIKESLCLNTGVNTHAIYEPYLYAFR-
1166210_Solibacter_usitatus       LGATGNFNSYKQAAGVFLLRPFARDKLWBCAVRQAGQYKVGSHEN-
48785636_Rhodospirillum_rubrum     LQAMAGVENAVFSEARQIDCLCLARTDGIWGLFLPPGLVGLRAGFY-
24370369_Shewanella_oneida        LGATGNFNSYKHAYKESLCLNTGVNTHAIYEPYLYAFR-
1707700_Sulfofolobus_solfat       LGSNWGNFSYKSAENKELVLLKNTGDKVQPYGLQAYRIGFVY-
48784580_Burkholderia_fungor       LGASWGFNFSYRHTAVHLHLYNKSVPWCRVREWAYAIYRVDGAPD
17548459_Ralstonia_solana         LGANLTVGFVNSYRRTAVHLHLYNKSVPWCRVREWAYAIYRVDGAPD
118048461_Chloroflexus_aggrega     LGATGNYVAFYSAHKVRELHFSAVIMRTAVIDCLFCDTVEWGLFLPPGLVGLRAGFY-
```

25028566_Corynebacterium_efficacis
108803168_Rubrobacter_xylanophilus
64576111_Streptomyces_coelicoflavus
25028566_Corynebacterium_efficacis
32398065_Rhodopirellula_baltica
149177467_Planctomyces_maris
16330244_Synechocystis_sp.
143186879_Pseudomonas_putida
116622006_Solibacter_usitatus
46446740_Parachlamydia_sp.
33635247_Picrobacter_maris
33236242_Chloroflexus_agregatus
46446740_Parachlamydia_sp.
16330244_Synechocystis_sp.
48894542_Trichodesmium_erythraeum
149177467_Planctomyces_maris
16330244_Synechocystis_sp.
16329290_Synechocystis_erythraeum
149177467_Planctomyces_maris
16330244_Synechocystis_sp.
21223814_Streptomyces_coelicoflavus
116622206_Solibacter_usitatus
48893487_Trichodesmium_erythraeum
149177467_Planctomyces_maris
16330244_Synechocystis_sp.
48894542_Trichodesmium_erythraeum
149177467_Planctomyces_maris
16330244_Synechocystis_sp.
21223814_Streptomyces_coelicoflavus
116622006_Solibacter_usitatus
48893487_Trichodesmium_erythraeum
149177467_Planctomyces_maris
16330244_Synechocystis_sp.
48894542_Trichodesmium_erythraeum
149177467_Planctomyces_maris
16330244_Synechocystis_sp.
21223814_Streptomyces_coelicoflavus
116622006_Solibacter_usitatus
35430870_Cyanidioschyzon_merolae
16329290_Synechocystis_sp.
116622006_Solibacter_usitatus
48893487_Trichodesmium_erythraeum
149177467_Planctomyces_maris
16330244_Synechocystis_sp.
48894542_Trichodesmium_erythraeum
149177467_Planctomyces_maris
16330244_Synechocystis_sp.
21223814_Streptomyces_coelicoflavus
116622006_Solibacter_usitatus
48893487_Trichodesmium_erythraeum
149177467_Planctomyces_maris
16330244_Synechocystis_sp.
Note: Top hits in GenBank searches (using Cyanidioschyzon and Arabidopsis sequences) are from chlamydiae and cyanobacteria. The Arabidopsis sequences are annotated as chloroplast precursors.
Figure 7. Molecular phylogeny of alpha amylase. P-value = 0.983 from AU test for the presented gene tree. AU tests were also performed on alternative topologies, including (A) monophyly of red algal and green plant sequences with different copies of cyanobacterial homologs, and (B) monophyly of red algal, green plants, cyanobacterial, and chlamydial sequences. These tests investigate if red algal and green plant sequences are plastid-derived and if red algae and green plants acquired the gene from plastids and subsequently spread to chlamydiae. P-values < 0.001 from AU tests for scenarios A whereas the P-value = 0.017 for scenario B.

8. 3-dehydroquinate synthase (D)

CLUSTAL X (1.83.1) multiple sequence alignment

Accession	Organism	Sequence
45508724	Anabaena variabilis	IELRFFITITEFDTIKTKQRSSRFVADFKVKEPVLVVGGLITDVV
KM000293952	Karlodinium	IKFTRKFLVSGNEADKDIORDVERILVAKLEIGLARNEPLLVVGGGIADIA
Note: All top hits in GenBank searches (using *Cyanidioschyzon* and *Arabidopsis* sequences as queries) are from gamma-proteobacteria. Phylogenetic analyses show that red algal and green plant sequences group with beta and gamma-proteobacterial homologs with strong support. The *Arabidopsis* sequence (GenBank accession number AAM98284 and TAIR locus AT5G66120) is annotated as a chloroplast precursor. Sequences of *Euglena* and *Karlodinium* were obtained from TBestDB.

Figure 8. Molecular phylogeny of 3-dehydroquinate synthase. P-value = 0.997 from AU test on the presented tree. AU tests were also performed on alternative topologies, including (A) monophyly of all eukaryotic sequences (except for *Karlodinium*, which appears to be of cyanobacterial origin), (B) monophyly of cyanobacterial, green plant...
and red algal sequences. These tests investigate if red algal and green plant sequences have the same origin (mitochondrial or eukaryotic) and if they acquired the gene from plastids. P-values < 0.001 from AU tests for both alternative topologies.

9-10. 2-methylthioadenine synthetase (E, D)

CLUSTAL X (1.83.1) multiple sequence alignment

and red algal sequences. These tests investigate if red algal and green plant sequences have the same origin (mitochondrial or eukaryotic) and if they acquired the gene from plastids. P-values < 0.001 from AU tests for both alternative topologies.

9-10. 2-methylthioadenine synthetase (E, D)

CLUSTAL X (1.83.1) multiple sequence alignment

and red algal sequences. These tests investigate if red algal and green plant sequences have the same origin (mitochondrial or eukaryotic) and if they acquired the gene from plastids. P-values < 0.001 from AU tests for both alternative topologies.

9-10. 2-methylthioadenine synthetase (E, D)

CLUSTAL X (1.83.1) multiple sequence alignment

and red algal sequences. These tests investigate if red algal and green plant sequences have the same origin (mitochondrial or eukaryotic) and if they acquired the gene from plastids. P-values < 0.001 from AU tests for both alternative topologies.

9-10. 2-methylthioadenine synthetase (E, D)

CLUSTAL X (1.83.1) multiple sequence alignment

and red algal sequences. These tests investigate if red algal and green plant sequences have the same origin (mitochondrial or eukaryotic) and if they acquired the gene from plastids. P-values < 0.001 from AU tests for both alternative topologies.

9-10. 2-methylthioadenine synthetase (E, D)

CLUSTAL X (1.83.1) multiple sequence alignment

and red algal sequences. These tests investigate if red algal and green plant sequences have the same origin (mitochondrial or eukaryotic) and if they acquired the gene from plastids. P-values < 0.001 from AU tests for both alternative topologies.

9-10. 2-methylthioadenine synthetase (E, D)

CLUSTAL X (1.83.1) multiple sequence alignment

and red algal sequences. These tests investigate if red algal and green plant sequences have the same origin (mitochondrial or eukaryotic) and if they acquired the gene from plastids. P-values < 0.001 from AU tests for both alternative topologies.

9-10. 2-methylthioadenine synthetase (E, D)

CLUSTAL X (1.83.1) multiple sequence alignment

and red algal sequences. These tests investigate if red algal and green plant sequences have the same origin (mitochondrial or eukaryotic) and if they acquired the gene from plastids. P-values < 0.001 from AU tests for both alternative topologies.
Accession	Organism Name	Abbreviation
15836008	Chlamydia pneumoniae	GLIGE
24213088	Leptospira interrata	DKEGT
66576257	Chlorobium tepidum	QLHGR
19705459	Porphyromonas gingivalis	--SGE
12663485	Flavobacterium bacterium	SVRLQ
11063813	Cytophaga hutchii	LVEIE
32477342	Rhodopirellula baltica	RLELA
16079957	Bacillus subtilis	YNEQG
118444753	Clostridium novyi	YAVGK
15605955	Aquiex aeolic	--VGK
32475869	Rhodopirellula baltica	TLIGE
76261232	Chloroflexus auranti	SLQGV
94905469	Deinococcus geothermalis	MLYGR
116625754	Solibacter usitats	SLVGE
66807387	Dictyostelium discoidei	TLKGR
118402077	Tetrahymena thermophilus	SLFCT
116061814	Ostreococcus tauri	TLVAE
CM1685	Cyanidioschyzon merolae	RLIKE
24213805	Leptospira interrata	TLKGR
Jakaba bahamensis	TLRRAE	
28872782	Homo sapien	TLRGH
21674804	Chlorobium tepidum	TLIGE
30690642	Arabidopsis thaliana	SLFGE
34540755	Porphyromonas gingivalis	TLIGE
126663275	Flavobacterium bacterium	TLIGE
110638221	Cytophaga hutchii	TLIGE
119885210	Thermotoga petrop	PLYGK
108759982	Myxococcus xanthus	QLAGK
34581161	Rickettsia sibirica	SLIGE
94417083	Pseudomonas aerugine	SLIGE
CM4402	Cyanidioschyzon merolae	SLIGE
33862596	Prochlorococcus marinus	SLIGE
16329745	Synechocystis sp.	SLIGE
11225071	Frankia alni	HLTAD
19703810	Fusobacterium nucleatum	TLIGE
15605821	Aquiex aeolic	SLIGE
118443818	Clostridium novyi	SLIGE
51892897	Symbiobacterium thermophilus	TLEGRE
16078764	Bacillus subtilis	SLIGE
71075619	Giardia lama	ALIGS
13542169	Thermoplasma volcanii	SLIGE
71029160	Theileria parva	HLECR
71661088	Trypanosoma cruzi	SVVGR
93277076	Homo sapien	FMKGQ
118373032	Tetrahymena thermophilus	HIEGE
116056662	Ostreococcus tauri	SCKAR
18409989	Arabidopsis thaliana	SVFGE
121522286	Methanococcococcus maripal	GLSGK
18978284	Pyrococcus furios	YLLGE
15920732	Sulfolobus tokodai	DLRGE
119871859	Pyrolobus island	YLYGE
Figure 9. Molecular phylogeny of 2-methylthioadenine synthetase. P-value = 0.983 from AU test for the presented tree. See text for a more detailed discussion. AU tests were also performed on alternative topologies, including (A) miaB1 and miaB2 forming a monophyly, (B) miaB1 and miaB2 forming a monophyly that in turn groups with archaeal sequences, and (C) miaB2 forming a monophyly with proteobacterial sequences from the top part of the tree. These tests investigate if (a) miaB1 and miaB2 have the same origin, (b) miaB1 and miaB2 have an eukaryotic origin and are related to archaeal homologs, and (c) miaB2 has a mitochondrial origin. P-values < 0.001 from AU tests for these alternative topologies.

11. Uroporphyrinogen III synthase (D)
Note: This sequence has identifiable homologs only in green plants and bacteria (using *Cyanidioschyzon* and *Arabidopsis* GI 20196944 as queries). The top hits in GenBank searches are from firmicute and *Deinococcus* homologs. The *Arabidopsis* sequence (GenBank accession number NP_565625 and TAIR locus AT2G26540) is annotated as a chloroplast precursor, but appears not likely to be plastid-derived. Cyanobacterial sequences have a 1-aa insertion not shared by any other sequences.

Figure 11. Molecular phylogeny of Uroporphyrinogen-III synthase. P-value = 0.959 from the AU test on the presented tree. AU tests were also performed on alternative topologies including (A) monophyly of red algal, green plant and cyanobacterial sequences, and (B) red algal, green plant and *Deinococcus* sequences forming a monophyly that in turn groups with cyanobacterial homologs. These tests investigate if a) red algae and green plants acquired this genes from plastids, and b) red algae and green plants acquired the genes from plastids and subsequently spread to *Deinococcus* by secondary HGT. P-value < 0.001 from AU test for topology A and p-value = 0.04 for topology B.
Note: Identifiable homologs of this gene (using Cyanidioschyzon sequence and Arabidopsis GI 9758449 as queries) are restricted to red algae, green plants, proteobacteria and firmicutes with low sequence similarities (Evalue e-4 and lower). The annotation of the
Arabidopsis sequence (TAIR locus AT5G04740) indicates that the protein is located on the chloroplast thylakoid membrane.

Figure 12. Molecular phylogeny of ACT-domain containing protein. Since no other eukaryotic or cyanobacterial homologs were identified, no statistical test on alternative topologies was given.

13. Queuine tRNA-ribozymyltransferase (D)

CLUSTAL X (1.83.1) multiple sequence alignment

Accession	Organism	Sequence
42520578	Wolbachia_endosy	SGSARVGTIKTPNGSVETPAFIFCAPATKAA1KAADIERISTRGQ1LNSNTYH
58613533	Heterocapsa_trique	--
45656892	Leptospira_interr	--
19068923	Encephalitozoon_cunic	--
3881825	Caenorhabditis_elegans	--
56473322	Entamoeba_histol	--
46229743	Cryptosporidium_parvulus	--
12597314	Homo_sapiens	--
60463331	Dicyostelium_discoi	--
62360604	Trypanosoma_brucei	--
50900348	Oryza_sativa	--
JBO00061016	Jakoba_bahamensis	--
28850382	Dicyostelium_discoi	--
116059209	Ostreococcus_tauri	--
2419163	Cyanidioschyzon_merolae	--
46444428	Parachlamydia_sp	--
76788915	Chlamydia_trachomat	--
29840339	Chlamydomena_caviae	--
11499080	Archaeoglobus_fulgid	--
21674218	Chlorobium_tepidum	--
48855228	Cytophaga_hutchin	--
53713592	Bacteroides_fragsil	--
76258015	Chloroflexus_auranti	--
15644309	Thermotoga_maritii	--
6460406	Deinococcus_radiod	--
48891133	Trichodesmium_erythrophy	--
56751072	Synechococcus_elongata	--

Arabidopsis sequence (TAIR locus AT5G04740) indicates that the protein is located on the chloroplast thylakoid membrane.

Figure 12. Molecular phylogeny of ACT-domain containing protein. Since no other eukaryotic or cyanobacterial homologs were identified, no statistical test on alternative topologies was given.

13. Queuine tRNA-ribozymyltransferase (D)

CLUSTAL X (1.83.1) multiple sequence alignment

Accession	Organism	Sequence
42520578	Wolbachia_endosy	SGSARVGTIKTPNGSVETPAFIFCAPATKAA1KAADIERISTRGQ1LNSNTYH
58613533	Heterocapsa_trique	--
45656892	Leptospira_interr	--
19068923	Encephalitozoon_cunic	--
3881825	Caenorhabditis_elegans	--
56473322	Entamoeba_histol	--
46229743	Cryptosporidium_parvulus	--
12597314	Homo_sapiens	--
60463331	Dicyostelium_discoi	--
62360604	Trypanosoma_brucei	--
50900348	Oryza_sativa	--
JBO00061016	Jakoba_bahamensis	--
28850382	Dicyostelium_discoi	--
116059209	Ostreococcus_tauri	--
2419163	Cyanidioschyzon_merolae	--
46444428	Parachlamydia_sp	--
76788915	Chlamydia_trachomat	--
29840339	Chlamydomena_caviae	--
11499080	Archaeoglobus_fulgid	--
21674218	Chlorobium_tepidum	--
48855228	Cytophaga_hutchin	--
53713592	Bacteroides_fragsil	--
76258015	Chloroflexus_auranti	--
15644309	Thermotoga_maritii	--
6460406	Deinococcus_radiod	--
48891133	Trichodesmium_erythrophy	--
56751072	Synechococcus_elongata	--
Genus	Species	Sequence
---------------------	----------------------------------	--------------
Helicobacter	pylori	SLHNLHFYLELVKNARNAI
Bdellovibrio	bacter	TIHNIHFYMKVMEKAREAIAQGRW
Rubrobacter	xylano	SLHNVRFVTELCRSARREILAGTY
Nostoc	sp	SIHNITELIRFTQKIREAILSDRF
Synechococcus	elongata	SIHNITE
Trichodesmium	erythra	SLHNVTELISFTQRIRDAILKDRF
Deinococcus	radiod	SLHNLRYLHRLVERMRVAINGQQF
Thermotoga	maritii	TIHNINFMISLMKEVRRSIESGTF
Bacteroides	fragil	SLHNLAFYLWLVGEARKHIIAGDF
Cytophaga	hutchi	TIQNISFYLWLMREARKQIVAGTF
Chlorobium	tepidu	TMQNLSFYLWLTRTAREHIAAGDF
Archaeoglobus	fulgid	TYHNIYFVVKLMERIRESIADGSF
Chlamydia	trachomat	GMILPLKINNQYRSLLNPSCASLCAGQITRAYLHLFVKEHPPNAI
Chlamydia	trachomat	GTALILHRSLFKASKEPIDAQRHCMVUCHEYMTGRHLQACED---GELI
Rickettsia	prowaz	GQAFTVNIRNSKYADDKEPLEHDCKCPACTNYTKAYL
Silicibacter	sp	GQAFVVNIKNARHQDDPRPLDENCSCPACSNYSRAYLHHVFRSNEMIMLL
Rhodopseudomonas	palau	GLAFPINLRNAKHADDPRPLDEESDWPSARTYSRAYLHHLVRSSETLMLL
Leptospira	interrup	GTCMRLVIKNAKFTHDFRPIDENCDCYTCKKNYSRAYLHLRMSGKCEILRLN
Bacillus	clausi	GTCMRLVVRNAKYARDFSPLDEKCDCHVCRTYSRAYIRHLIKVQEVLRLT
Pseudomonas	fluores	ATLFKIRLTHRNYRDFYVPDCTYCYTRCTNYRAYLHLFVNEIATLL
Geobacter	sulfur	GTLYVYDIRHKSEFSDPLPDECDYTCRNFNSKAYLHLFVAEESVLN
Cyanidioschyzon	merolae	GTLLRIQIKSRKWERVFEPVDTTCEGFVSQNHLYTAYHLHLVHNEMILGA
Rickettsia	prowaz	GQAFVVNIKNARHQDDPRPLDENCSCPACSNYSRAYLHHVFRSNEMIMLL
Silicibacter	sp	GQAFVVNIKNARHQDDPRPLDENCSCPACSNYSRAYLHHVFRSNEMIMLL
Thermotoga	maritii	GMFLFVNRMLRDDRQPLQECPCYTCHRSAYLHLFVKEHPPNAI
Dicystostelium	discoi	TQHNLRAMSRLMENYRNLKQEVL
Bacteroides	fragil	GAALRWNLKNAQFREDQPLDECDNCYCyCNQFSRAYLHLREISITLL
Cytophaga	hutchi	GMLFIINIRNKKWFVTDPDQLDYLNDYTYKAYHRVLHNVNMELQA
Chlorobium	tepidu	GTLYVVDIRHSKWKEDFSPLDPECDYTCKNFTRSYIHHLFVAGKELTLL
Archaeoglobus	fulgid	GTALKLNLKASYNKRSLEPVDERGCGTCKNTRTSYHLHLFVAGKELTLL
Rickettsia	prowaz	GQAFVVNIKNARHQDDPRPLDENCSCPACSNYSRAYLHHVFRSNEMIMLL
Thermotoga	maritii	GMFLFVNRMLRDDRQPLQECPCYTCHRSAYLHLFVKEHPPNAI
Dicystostelium	discoi	TQHNLRAMSRLMENYRNLKQEVL
Bacteroides	fragil	GAALRWNLKNAQFREDQPLDECDNCYCyCNQFSRAYLHLREISITLL
Cytophaga	hutchi	GMLFIINIRNKKWFVTDPDQLDYLNDYTYKAYHRVLHNVNMELQA
Chlorobium	tepidu	GTLYVVDIRHSKWKEDFSPLDPECDYTCKNFTRSYIHHLFVAGKELTLL
Archaeoglobus	fulgid	GTALKLNLKASYNKRSLEPVDERGCGTCKNTRTSYHLHLFVAGKELTLL
Rickettsia	prowaz	GQAFVVNIKNARHQDDPRPLDENCSCPACSNYSRAYLHHVFRSNEMIMLL
Thermotoga	maritii	GMFLFVNRMLRDDRQPLQECPCYTCHRSAYLHLFVKEHPPNAI
Dicystostelium	discoi	TQHNLRAMSRLMENYRNLKQEVL
Bacteroides	fragil	GAALRWNLKNAQFREDQPLDECDNCYCyCNQFSRAYLHLREISITLL
Cytophaga	hutchi	GMLFIINIRNKKWFVTDPDQLDYLNDYTYKAYHRVLHNVNMELQA
Chlorobium	tepidu	GTLYVVDIRHSKWKEDFSPLDPECDYTCKNFTRSYIHHLFVAGKELTLL
Archaeoglobus	fulgid	GTALKLNLKASYNKRSLEPVDERGCGTCKNTRTSYHLHLFVAGKELTLL
Rickettsia	prowaz	GQAFVVNIKNARHQDDPRPLDENCSCPACSNYSRAYLHHVFRSNEMIMLL
Thermotoga	maritii	GMFLFVNRMLRDDRQPLQECPCYTCHRSAYLHLFVKEHPPNAI
Dicystostelium	discoi	TQHNLRAMSRLMENYRNLKQEVL
Bacteroides	fragil	GAALRWNLKNAQFREDQPLDECDNCYCyCNQFSRAYLHLREISITLL
Cytophaga	hutchi	GMLFIINIRNKKWFVTDPDQLDYLNDYTYKAYHRVLHNVNMELQA
Chlorobium	tepidu	GTLYVVDIRHSKWKEDFSPLDPECDYTCKNFTRSYIHHLFVAGKELTLL
Archaeoglobus	fulgid	GTALKLNLKASYNKRSLEPVDERGCGTCKNTRTSYHLHLFVAGKELTLL
Rickettsia	prowaz	GQAFVVNIKNARHQDDPRPLDENCSCPACSNYSRAYLHHVFRSNEMIMLL
Thermotoga	maritii	GMFLFVNRMLRDDRQPLQECPCYTCHRSAYLHLFVKEHPPNAI
Dicystostelium	discoi	TQHNLRAMSRLMENYRNLKQEVL
Bacteroides	fragil	GAALRWNLKNAQFREDQPLDECDNCYCyCNQFSRAYLHLREISITLL
Cytophaga	hutchi	GMLFIINIRNKKWFVTDPDQLDYLNDYTYKAYHRVLHNVNMELQA
Chlorobium	tepidu	GTLYVVDIRHSKWKEDFSPLDPECDYTCKNFTRSYIHHLFVAGKELTLL
Archaeoglobus	fulgid	GTALKLNLKASYNKRSLEPVDERGCGTCKNTRTSYHLHLFVAGKELTLL
Rickettsia	prowaz	GQAFVVNIKNARHQDDPRPLDENCSCPACSNYSRAYLHHVFRSNEMIMLL
Thermotoga	maritii	GMFLFVNRMLRDDRQPLQECPCYTCHRSAYLHLFVKEHPPNAI
Dicystostelium	discoi	TQHNLRAMSRLMENYRNLKQEVL
Bacteroides	fragil	GAALRWNLKNAQFREDQPLDECDNCYCyCNQFSRAYLHLREISITLL
Cytophaga	hutchi	GMLFIINIRNKKWFVTDPDQLDYLNDYTYKAYHRVLHNVNMELQA
Chlorobium	tepidu	GTLYVVDIRHSKWKEDFSPLDPECDYTCKNFTRSYIHHLFVAGKELTLL
Archaeoglobus	fulgid	GTALKLNLKASYNKRSLEPVDERGCGTCKNTRTSYHLHLFVAGKELTLL
Rickettsia	prowaz	GQAFVVNIKNARHQDDPRPLDENCSCPACSNYSRAYLHHVFRSNEMIMLL
Thermotoga	maritii	GMFLFVNRMLRDDRQPLQECPCYTCHRSAYLHLFVKEHPPNAI
Dicystostelium	discoi	TQHNLRAMSRLMENYRNLKQEVL
Bacteroides	fragil	GAALRWNLKNAQFREDQPLDECDNCYCyCNQFSRAYLHLREISITLL
Cytophaga	hutchi	GMLFIINIRNKKWFVTDPDQLDYLNDYTYKAYHRVLHNVNMELQA
Chlorobium	tepidu	GTLYVVDIRHSKWKEDFSPLDPECDYTCKNFTRSYIHHLFVAGKELTLL
Archaeoglobus	fulgid	GTALKLNLKASYNKRSLEPVDERGCGTCKNTRTSYHLHLFVAGKELTLL
Rickettsia	prowaz	GQAFVVNIKNARHQDDPRPLDENCSCPACSNYSRAYLHHVFRSNEMIMLL
Thermotoga	maritii	GMFLFVNRMLRDDRQPLQECPCYTCHRSAYLHLFVKEHPPNAI
Dicystostelium	discoi	TQHNLRAMSRLMENYRNLKQEVL
Bacteroides	fragil	GAALRWNLKNAQFREDQPLDECDNCYCyCNQFSRAYLHLREISITLL
Note: This is an intriguing case of ancient HGT. The Dictyostelium sequence forms a group with homologs of green and red algae as well as chlamydiae. This specific affiliation of Dictyostelium and plant sequences has been observed in multiple cases (Huang, unpublished data), likely resulting from plant-Dictyostelium transfer. A plausible explanation is that primary photosynthetic eukaryotes acquired this gene from chlamydiae and then further spread to Dictyostelium via secondary gene transfer. Heterocapsa sequence is a chloroplast precursor based on the original GenBank annotation. Heterocapsa and Wolbachia sequences also share indels and many conserved residues. The remaining eukaryotic sequences are much more similar to bacterial than to archaeal homologs, and they are likely of bacterial origin. One possible explanation is that they are derived from mitochondria. Nevertheless, most of these eukaryotic sequences lack a N-terminal extension. Sequences of Trimastix and Jakoba were obtained from TBestDB.

Figure 13. Molecular phylogeny of queuine tRNA-ribosyltransferase. P-value = 0.369 from the AU test for the presented gene tree. AU tests were also performed on alternative topologies including (A) monophyly of all eukaryotic sequences, and (B) monophyly of red algal, green...
14. SAM-dependent methyltransferase (N)

CLUSTAL X (1.83.1) multiple sequence alignment

Accession	Organism	Sequence
2350973	Plasmodium falciparum	INGFNWLSKDKIEYENENIGVGYRNSISISSLFEFFNIR1KRAYEKLE
16080887	Bacillus subtilis	KGYPILQKEDL6SLSKQARLGOEYESGKNNQGNNLSSFQCLFEEISREKTT
29375834	Enterococcus faecalis	KQGGFLQICSERGLGCaBFCFLGAGYNEHSL1NYRVL5LITHR1QASL1RVRK
54294134	Legionella pneumo	LCGHPWFPFKA2SKEG5GFLCGAGYNEHSL1NYRVL5LITHR1QASL1RVRK
42571865	Arabidopsis thalia	KDSGMPWVQ5GZEPNG5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
CM2295	Cyanidioschyzon merolae	RQVRPLIFGRAITPFPVGLGFYNPD9MYRVLRLTFLPAWLRLEH
42522494	Bdellovibrio bacteri	KQGHWPYFWL5CNEYEGN5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
59980234	Geobacter sulfurreducens	QJLGDWYPIFA5GFLGNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
34763641	Rhodopirellula baltica	LNFPN1KDE5ISDMLKQ5IARAAEQVLRK
6457710	Deinococcus radiodurans	RDGHPWYESSVRDFLAI5GFYDPSPRLRFVWLRDAAALARRAT
21110809	Xanthomonas axonopodii	RS6HWPQFKL6V6GEGN5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
53797508	Chloroflexus aurantii	QCGHPWYNLR5CGLTVGL5DQ5ESPQG5IARAAEQVLRK
22960169	Rhodobacter sphaericus	RGHMPW5FVGGN5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
56679104	Silicibacter pomerorum	RGHAGPWF5VGRG5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
15650998	Aquifex aeolicus	KTHF5MPW5ORE5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
34564576	Wolinella succinogenes	RTLPAW5YL5GEGN5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
64546677	Parachlamydia sp.	RNYBHWP5GQ5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
53712322	Bacteroides fragilis	IQ6HPW5FPSA5GGLGNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
48584326	Cytophaga cynctica	NRHMPWS5FV6GNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
20094503	Methanopyrus kandler	RSGALSVP5AV5GNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
14591657	Pyrococcus horikoshii	K6GHVPFK5FPSA5GGLGNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
15607307	Aquifex aeolicus	K6GHVPFK5FPSA5GGLGNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
26246990	Escherichia coli	LRRHPW5FPSA5GGLGNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
29142267	Salmonella enterica	LRRHPW5FPSA5GGLGNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
47573089	Rubrivivax gelatin	LRRHPW5FPSA5GGLGNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
48770361	Rasoplasteria metallica	LRRHPW5FPSA5GGLGNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
48786349	Burkholderia fungorum	LRRHPW5FPSA5GGLGNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
21674038	Chlorobium tepidum	V5GLHMPW5FPSA5GGLGNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
15644445	Thermotoga maritima	SG6LMPW5FPSA5GGLGNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
39997720	Geobacter sulfurreducens	RSG6HPW5FPSA5GGLGNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
4619218	Thermus thermus	LSRHHPW5FPSA5GGLGNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
48857855	Clostridium thermus	K6GHWP5FGR5GNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
37523934	Gloeobacter violaceus	KRTHHPW5FPSA5GGLGNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK
51894272	Symbiobacterium thermosphaer	QAGHPWIFQ5GNSW5GCMGLNSVSVMCFVRLMLKQ5IARAAEQVLRK

Tests for both alternative topologies.

- Values < 0.001 from AU tests for both alternative topologies.

Plant, *Dictyostelium*, and cyanobacterial sequences. These tests investigate if all euukaryotic sequences have the same origin (mitochondrial or eukaryotic) and if red algal and green plant sequences are likely derived from plastids. P-values < 0.001 from AU tests for both alternative topologies.
Note: This gene has identifiable homologs only in prokaryotes and plastid-containing eukaryotes (red algae, green plants, and apicomplexan Plasmodium) in our GenBank and TBestDB searches (using Cyanidioschyzon and Arabidopsis sequences as queries). Homologs of the gene are rarely found in cyanobacteria. All top hits are from gamma and beta-proteobacteria.
Figure 14. Molecular phylogeny of SAM-dependent methyltransferase. P-value = 0.921 from AU test for the presented gene tree. AU tests were also performed on alternative topologies including (A) monophyly of red algal, green plant and Plasmodium sequences, (B) monophyly of red algal, green plant, Plasmodium and cyanobacterial sequences, and (C) monophyly of red algal, green plant, Plasmodium, and archaeal sequences. Topology A investigates if red algal, green plant, and Plasmodium (which also has a relict plastid) sequences have the same origin. Topology B investigates if the three plastid-containing groups acquired the genes from plastids. Topology C investigates if these plastid-containing eukaryotic sequences have an archaeal or eukaryotic origin. P-value = 0.082 from AU test for topology A whereas p-values < 0.001 for topologies B and C.

15. Semialdehyde dehydrogenase (D)

CLUSTAL X (1.83.1) multiple sequence alignment

Accession	Species	Sequence
NU000054019	Capsaspora owczar	RVGLIGARGFTGGMVLVRLIDCHPMNSSTNGKFPITTEFPQLKPKENIDGW
60466242	Dictyostelium discoi	RVGLIGARGFTGGMVLVRLIDCHPMNSSTNGKFPITTEFPQLKPKENIDGW
32408531	Neurospora crassa	RVALIGARGTYQELIDSHPNRELGKLEGYNQKVSPEDVIDCW
5155	Saccharomyces cerevis	RVALIGARGTYQELIDSHPNRELGKLEGYNQKVSPEDVIDCW
2421478	Leptosira interr	EISILGAGGLTGKELLMFSRQKRESKLAGKTISETVEFSVFKKKVL
21673935	Chlorobium tepidum	TVSVIGASGYSAGELVLRMKMFQAMTQARFTDNLTPQTPYSCTDV
27360910	Vibrio vulnif	KTTIIGAGSGAELLMWSRTVEPAGTKMCSQKEVACELL
5711832	Bacteroides fragil	KAGIIGGAGTAGEELLMWSRTVEPAGTKMCSQKEVACELL
34558370	Wolinella succin	PAVVAGASGAGGELLWSRTVEPAGTKMCSQKEVACELL
47529651	Bacillus anthra	KVAVAGASGAGGELLWSRTVEPAGTKMCSQKEVACELL
38233757	Corynebacterium diphtheriae	KVAIVGASGAGGELLWSRTVEPAGTKMCSQKEVACELL
29610427	Streptomyces avermii	KVAVAGASGAGGELLWSRTVEPAGTKMCSQKEVACELL
Note: This gene is found in green plants, red algae, fungi, Capsaspora and prokaryotes. All top hits in GenBank searches are from alpha-proteobacteria. Phylogenetic analyses also support an alpha-proteobacterial origin of the gene in red algae and green plants. Fungal and Capsaspora sequences are apparently different (with an about 500 aa N-terminal extension and many conserved residues shared between them) from red algal, green plant and prokaryotic sequences. The *Neurospora* sequence (GenBank accession number P54898) is experimentally determined to be a mitochondrial precursor. Red algal and green plant sequences share many conserved residues with alpha-proteobacterial homologs. The *Arabidopsis* sequences (GenBank accession numbers and TAIR loci NP_565461, AT2G19940 and NP_649993, AT2G19940 respectively) are annotated to be located in cytoplasm. Sequence of *Capsaspora* was obtained from TBestDB.

Figure 15. Molecular phylogeny of semialdehyde dehydrogenase. P-value = 0.981 from AU test for the presented tree. AU tests were also performed on alternative topologies including (A) monophyly of all eukaryotic sequences, and (B) monophyly of cyanobacterial, red algal, green plant, and alpha-proteobacterial sequences. Topology A investigates if all eukaryotic sequences have the same origin (mitochondrial or eukaryotic) whereas topology B investigates if red algae and green plants acquired this gene from plastids and further spread to alpha-proteobacteria. P-value = 0.045 from AU test for topology A and p-value < 0.001 for topology B.

16. Dihydrodipicolinate reductase (dapB) (D)
Figure 16. Molecular phylogeny of dihydrodipicolinate reductase (dapB). P-value = 0.995 from AU test for the presented tree. AU test was also performed on an alternative topology that enforces a monophyly of
Desulfovoccus, cyanobacterial (i.e., Prochlorococcus since this gene is very rarely identified in cyanobacteria in our similarity searches), and photosynthetic eukaryotic sequences. P-value < 0.001 from AU test for the alternative topology. See text for more detailed explanation.

17. Leucyl-tRNA synthetase (D)

CLUSTAL X (1.83.1) multiple sequence alignment

Sequence Name	Alignment
Dictyostelium discoi	FYSLSQFPYPSGA-LHMGHVRVYTISDCAIRLRKMQGVDYIDHPWYDAGF
Homo sapien	FYYLVMFPYPSGK-LHMGHVRYTISDIARQFMRQMGVQINHPWYDAGF
_Mycobacterium_leprae_	LFVQDMFPYPSGAGDGHVQHGLYIAUSDYAYKQRKQNFVYDSFAG
Ostreococcus tauri	LFVQDMFPYPSGAGDGHVQHGLYIAUSDYAYKQRKQNFVYDSFAG
Rhodobacter sphaeroides	YYVLSQFPYPSGAGDGHVQHGLYIAUSDYAYKQRKQNFVYDSFAG
Rhodospirillum rubrum	YYVLSQFPYPSGAGDGHVQHGLYIAUSDYAYKQRKQNFVYDSFAG
_Thermotoga_maritima_	YYVLSQFPYPSGAGDGHVQHGLYIAUSDYAYKQRKQNFVYDSFAG
Nexisseria meningitidis	YYVLSQFPYPSGAGDGHVQHGLYIAUSDYAYKQRKQNFVYDSFAG

< 0.001 from AU test

Since this gene is
Rhodobacter sphaeroi

Deinococcus radiodurans

Helicobacter pylori

Ostreococcus tauri

Bacillus halodurans

Victivallis vadensis

Salinibacter ruber

Blastopirellula marin

Cyanidioschyzon merolae

Treponema denticola

Pavlova lutheri

Chlamydia pneumonitis

Clostridium phytofermentans

Mycobacterium leprae

Halobacterium sp.

Tetrahit yessoensis

Homo sapiens

Dictyostelium discoideum

Geobacter metallireducens

Parachlamydia sp.

Rhodospirillum rubrum

Chlamydia trachomatis

Bacteroides fragilis

hymenaea thermoformis

Escherichia coli

Neisseria meningitidis

Nitrosomonas europa

Escherichia coli

Anaerobacter anginosus

* ***...* ; * ; * ; **; ; **; ** **:* *: : ** : ** : .:*.*
60463472_Dicyostelium_discoi
61963964_Homo_sapien
89306112_Tetrahymena_thermophila
15791045_Halobacterium_sp.
11595633_Neurospora_crassa
53715865_Bacteroides_fragilis
78678931_Chamydia_trachomatis
32325997_Chamyphila_pneumoniae
46446681_Parachlamydia_sp.
503072_Cyanobacteria
87311335_Blastopirellula_marina
42527840_Treponema_denticola
21674468_Chlorobium_tepidum
15826893_Mycobacterium_leprae
10175904_Bacillus_halodurans
116058126_Ostreococcus_tauri
73351135_Blastocystis
83816700_Salinitabacter_ruber
48846878_Geobacter_metallireducens

Note: All top hits in GenBank searches (using the Cyanidioschyzon sequence and Arabidopsis NP_192344 as queries) are from firmicutes, CFB bacteria and lenti/phaerae. These sequences also differ from others in sharing several unique residues and a 1-bp insertion. Sequences of Neurospora and Homo are mitochondrial precursors according to GenBank annotations. In Arabidopsis (GenBank accession number NP_192344 and TAIR locus AT4G04350), the protein product is targeted to both chloroplasts and mitochondria. The plant sequences are distantly related to other eukaryotic homologs based on both sequence similarity and phylogenetic analyses. Sequence of Pavlova was obtained from TBestDB.
Figure 17. Molecular phylogeny of leucyl-tRNA synthetase. P-value = 0.235 from AU test for the presented tree. AU tests were also performed on alternative topologies including (A) monophyly of all eukaryotic sequences, and (B) monophyly of cyanobacterial and photosynthetic eukaryotic sequences. Topology A investigates if all eukaryotic sequences have the same origin (e.g. mitochondrial) whereas topology B investigates if photosynthetic eukaryotes acquired this gene from plastids. P-values < 0.001 from AU tests for both alternative topologies.

18. Ribosomal protein L11 methyltransferase (D)

CLUSTAL X (1.83.1) multiple sequence alignment

Accession	Organism	Sequence
24214091	Leptospira interr	EYEAXKYEFYKFISSYRYV1PTWFPYLLVNPGLAFGTGHETTRLVGLRNG
91206171	Rickettsia bellii	DMVAYQNLVPQTRFFICTTSLILIEASRAFGTGHETTSGCIALE
67940209	Chlorobium phaeob	NNNRAWEANLPVEIRIN1VQSSLIEINPKGSFGTGYHATTTLMLQIE
34540441	Porphyromonas gingiv	NNNQWKKFPIRKCLVRAPFLEIISPQMAFGTGHETTSLMSYLL
108866182	Aedes aegypti	NNNRAWEKNIPINVKLIRAESFEEIIOPKMSFGTGHATTLMIQQMM
RA00324465	Reclinomonas ameri	NNNRAWEWSFEPV1FVVAAVHRHFQIEITPRMSFGTGHATTWMMIRSIEME
787778668	Thiomicrospira denitr	DNNVYQDDSTPLRHKFY1HPTWINAIDPALAPGTGHATTTASALRAIA
33240884	Prochlorococcus marinus	DNNSSWKKFKNKVDPKILSPVWIKLDPGSFGTGHATPTLRCLLEDLE
77464128	Rhodobacter sphaer	DNNVKVRRELSPVFEARFFVFYGSIALQIEATVAFGTVGRHTTGLCLRALD
Note: The identifiable homologs of this gene (using *Cyanidioschyzon* and *Arabidopsis* sequences as queries) are found only in bacteria and eukaryotes, with all top hits being from beta and gamma-proteobacteria. This disjunct distribution suggests that the eukaryotic sequences are likely of bacterial origin. Phylogenetic analyses show a common ancestry of sequences from red algae, green plants and gamma, beta-proteobacteria. The gene was likely transferred independently to two groups of eukaryotes, one to the ancestor of red algae and green plants, another to the bacteriotrophic *Reclinomonas*. *Reclinomonas* and *Aedes* share several conserved residues and their grouping together likely resulted from eukaryote-to-eukaryote gene transfer. The *Arabidopsis* gene product is localized in cytoplasm according to GenBank annotation. Sequence of *Reclinomonas* was obtained from TBESTDB.

Figure 18. Molecular phylogeny of ribosomal protein L11 methyltransferase. P-value = 0.959 from AU test for the presented gene tree. AU tests were also performed on alternative topologies including (A) monophyly of all eukaryotic sequences, and (B) monophyly of red algal, green plant, and cyanobacterial sequences. P-value < 0.001 from AU tests for topology A and p-value = 0.041 for topology B.

19. GTP binding protein typA (D)

CLUSTAL X (1.83.1) multiple sequence alignment
Note: This gene is distributed in bacteria and various eukaryotes, including several protists. Sequences from TBestDB are too short for phylogenetic analyses. There are multiple versions of this gene in photosynthetic eukaryotes, one of which forms a monophyletic group with homologs GNS bacterial sequences with strong support (middle part of the tree). The other eukaryotic sequences group with alpha-proteobacterial homologs, likely resulting from intracellular gene transfer from mitochondria to the nucleus. Protein products of GNS bacteria-related genes (GIs: 30684514 and 30684509) are targeted to chloroplasts and intracellular components in Arabidopsis.
Figure 19. Molecular phylogeny of GTP binding protein, typA. P-value = 0.811 from AU test for the presented gene tree. AU tests were performed on alternative topologies including (A) monophyly of all eukaryotic sequences, (B) monophyly of red algal, green plant and cyanobacterial sequences, and (C) monophyly of red algal, green plant, cyanobacterial, and chloroflexi sequences. Topologies A and B investigate if red algae and green plants acquired the gene from mitochondria or plastids respectively, without invoking scenarios of secondary HGT. Topology C investigates if red algae and green plants acquired their genes from plastids and subsequently spread to chloroflexi through secondary HGT events. P-values < 0.001 from AU tests for topologies A and B whereas p-value = 0.195 for topology C. Therefore, the scenario of a plastidic origin in red algae and green plants and secondary HGT, although less parsimonious, cannot be confidently rejected.

20. Histidinol-phosphate transaminase (D)

CLUSTAL X (1.83.1) multiple sequence alignment
Identifiable homologs of this gene are only found in bacteria, primary photosynthetic euukaryotes and fungi. Protein sequences of primary photosynthetic euukaryotes and chloroflexi have the highest percent identity and they also share many conserved residues. As expected, these sequences also form a well-supported group in phylogenetic analyses. Fungal sequences have the highest percent identity with those of CFB bacteria and form another group with them. It is likely that primary photosynthetic euukaryotes and fungi acquired this gene from chloroflexi and CFB bacteria, respectively. The Arabidopsis sequence (GenBank accession number NP_568226 and TAIR locus AT5G10330) is annotated to be a chloroplast precursor. Sequence of Cyanophora paradoxa was obtained from TBESTDB.
Figure 20. Molecular phylogeny of histidinol-phosphate transaminase. P-value = 0.999 from AU test for the presented tree. AU tests were also performed on alternative topologies including (A) monophyly of all eukaryotic sequences, and (B) monophyly of red algal, green plant, glaucophyte, and different versions of cyanobacterial sequences. P-values < 0.001 from AU tests for both alternative topologies.

21. tRNA methyltransferase (D)

CLUSTAL X (1.83.1) multiple sequence alignment

21357477_Drosophila_melanogaster RVVIGMSGGVDSSVAAHLLLHLYHSLVFMYKDMRQFVYKDFVY
39997644_Geobacter_sulfurreducens RVVIGMSGGVDSSAVALLLYFNVVYNQETFQVQSVKDFVY
IEELKQMGNTPSDIDPFPCNMRKFGAPGYPDLYTVGTHYAKLTKQQAKKIDQKSYQ
LKDQYKMDPLPDVWNCVFKFDLVDFVYATHVGHNLIRRAIDKQFTQF
KVAKASAPTPNPCLDLCNRSVCKGFALGLDATHAVERTLRRLGVIDETQKSY
INAYEVEQTPNPNCALCNLMKFGALACXATHAVYRIQVLEALDIKQSY
KROLKLTPNPCACHRCFVKFGYLFDAFASGHYAIKIKVGLDLKQSY
IEDEYQGRTPNQPVCMNCLFLFRRMLCDIATHAVYRLIVAGDDDKQSY
EFLNQKQGPPQPCNLCCVFNQVTRPVIFGLKLDLATKASGHYAIKIKVGLDLKQSY
IEDEYQGRTPNQPVCMNCLFLFRRMLCDIATHAVYRLIVAGDDDKQSY
EFLNQKQGPPQPCNLCCVFNQVTRPVIFGLKLDLATKASGHYAIKIKVGLDLKQSY
IEDEYQGRTPNQPVCMNCLFLFRRMLCDIATHAVYRLIVAGDDDKQSY
EGLYRQGTTPNPCVCRQCKVTFELADPLATHAVYRRLGLDLKQSY
VFLHGTLTPNPCVCRQCKVTFELADPLATHAVYRRLGLDLKQSY
Note: This gene appears to be restricted to bacteria and eukaryotes. All top hits of GenBank searches are from Borrelia, Lentisphaeria, and CFb bacteria. Protein product of the Arabidopsis sequence (GenBank accession number NP_175542 and TAIR locus AT1G51310) is localized in both chloroplasts and cytoplasm. The major eukaryotic sequence group contains some mitochondrial precursors (e.g. Homo sequence) and is likely of mitochondrial origin, although it is not particularly related to alpha-proteobacterial homologs. Please also note that the green alga Ostreococcus contains two versions of this gene, one of which groups with the eukaryotic mitochondrial clade while the other version with sequences of red algae, Theileria, CFb bacteria and spirochaetes. Sequences of Reclinomonas and Hartmanella were obtained from TbBestDB; these two sequences formed a group with Homo, Dictyostelium, and other eukaryotic sequences in preliminary phylogenetic analyses, but were excluded from detailed phylogenetic analyses because of their short length. Theileria is an apicomplexan parasite containing a plastid derived from an algal endosymbiont.
Figure 21. Molecular phylogeny of tRNA methyltransferase. P-value = 0.977 from AU test for the presented tree. AU tests were also performed on alternative topologies including (A) monophyly of all eukaryotic sequences, and (B) monophyly of cyanobacterial, red algal, and green plant sequences. These alternative topologies investigate if red algae and green plants acquired the genes from mitochondria or plastids respectively. P-values < 0.001 from AU tests for both alternative topologies.

22. Isoleucyl-tRNA synthetase (D)

CLUSTAL X (1.83.1) multiple sequence alignment

Accession	Species	Sequence
118193839	Cenarchaeum symbio	VRSHLEGADL-DRNIVMFIEGPFTWNGPHAGHLGRVRKIDLWYRXNTLR
6325217	Saccharomyces mt	LVYKEQLRDFFEEFSFILHDGPPYANGELHLGHANLKKLTDINRYQLSQQ
66800699	Dictyostelium mt	
118751539	Marinomonas sp.	
46129096	Haemophilus influenza	
75237181	Escherichia coli	
47572014	Rubrivivax gelati	
1174519	Pseudomonas fluorescens	
83594296	Rhodospirillum rubrum	
94968888	Acidobacteria bacter	
15644113	Thermotoga maritima	
15605834	Aquifex aeolic	
116747573	Syntrophobacter fumar	
116507018	Ostreococcus tauri	
CM546_Cyanidioschyzon_merolae		IQRFWENRIYEGLYFLLHDGPPYANGSLHMGHLNKLKDINRYFILC
45023744 Nocardia farcin

19074910 Entecophilozoon_cunic

1599084 Borrelia garini

42528163 Treponema dentica

51599084 Borrelia garini

46461128 Protochloramylae_aeomaeba

89989154 Chlamydia_felis

11874931 Marinomonas_sp.

63193874 Escherichia_coli

57157197 Trichoma_viridula

84477483 Picrophilus_torrid

80429573 Thermoanaerobacter_vanilli

60681847 Bacteroides_fragil

81185002 Salinibacter_halofermen

21673155 Chlorobium_tepidum

11122641 Frankia_alni

28210025 Clostridium

36680069 Dictyostelium_montanum

63193874 Escherichia_coli

57157197 Trichoma_viridula

48477483 Picrophilus_torrid

80429573 Thermoanaerobacter_vanilli

60681847 Bacteroides_fragil

81185002 Salinibacter_halofermen

21673155 Chlorobium_tepidum

11122641 Frankia_alni

28210025 Clostridium

36680069 Dictyostelium_montanum

63193874 Escherichia_coli

57157197 Trichoma_viridula

48477483 Picrophilus_torrid

80429573 Thermoanaerobacter_vanilli

60681847 Bacteroides_fragil

81185002 Salinibacter_halofermen

21673155 Chlorobium_tepidum

11122641 Frankia_alni

28210025 Clostridium

36680069 Dictyostelium_montanum

63193874 Escherichia_coli

57157197 Trichoma_viridula

48477483 Picrophilus_torrid

80429573 Thermoanaerobacter_vanilli

60681847 Bacteroides_fragil

81185002 Salinibacter_halofermen

21673155 Chlorobium_tepidum

11122641 Frankia_alni

28210025 Clostridium

36680069 Dictyostelium_montanum

63193874 Escherichia_coli

57157197 Trichoma_viridula

48477483 Picrophilus_torrid

80429573 Thermoanaerobacter_vanilli

60681847 Bacteroides_fragil

81185002 Salinibacter_halofermen

21673155 Chlorobium_tepidum

11122641 Frankia_alni

28210025 Clostridium

36680069 Dictyostelium_montanum

63193874 Escherichia_coli

57157197 Trichoma_viridula

48477483 Picrophilus_torrid

80429573 Thermoanaerobacter_vanilli

60681847 Bacteroides_fragil

81185002 Salinibacter_halofermen

21673155 Chlorobium_tepidum

11122641 Frankia_alni

28210025 Clostridium

36680069 Dictyostelium_montanum

63193874 Escherichia_coli

57157197 Trichoma_viridula

48477483 Picrophilus_torrid

80429573 Thermoanaerobacter_vanilli

60681847 Bacteroides_fragil

81185002 Salinibacter_halofermen

21673155 Chlorobium_tepidum

11122641 Frankia_alni

28210025 Clostridium

36680069 Dictyostelium_montanum

63193874 Escherichia_coli

57157197 Trichoma_viridula

48477483 Picrophilus_torrid

80429573 Thermoanaerobacter_vanilli

60681847 Bacteroides_fragil

81185002 Salinibacter_halofermen

21673155 Chlorobium_tepidum

11122641 Frankia_alni

28210025 Clostridium

36680069 Dictyostelium_montanum

63193874 Escherichia_coli

57157197 Trichoma_viridula

48477483 Picrophilus_torrid

80429573 Thermoanaerobacter_vanilli

60681847 Bacteroides_fragil

81185002 Salinibacter_halofermen

21673155 Chlorobium_tepidum

11122641 Frankia_alni

28210025 Clostridium

36680069 Dictyostelium_montanum

63193874 Escherichia_coli

57157197 Trichoma_viridula

48477483 Picrophilus_torrid

80429573 Thermoanaerobacter_vanilli

60681847 Bacteroides_fragil

81185002 Salinibacter_halofermen

21673155 Chlorobium_tepidum

11122641 Frankia_alni

28210025 Clostridium

36680069 Dictyostelium_montanum

63193874 Escherichia_coli

57157197 Trichoma_viridula

48477483 Picrophilus_torrid

80429573 Thermoanaerobacter_vanilli

60681847 Bacteroides_fragil

81185002 Salinibacter_halofermen

21673155 Chlorobium_tepidum

11122641 Frankia_alni

28210025 Clostridium

36680069 Dictyostelium_montanum

63193874 Escherichia_coli

57157197 Trichoma_viridula

48477483 Picrophilus_torrid

80429573 Thermoanaerobacter_vanilli

60681847 Bacteroides_fragil

81185002 Salinibacter_halofermen

21673155 Chlorobium_tepidum

11122641 Frankia_alni

28210025 Clostridium

36680069 Dictyostelium_montanum

63193874 Escherichia_coli

57157197 Trichoma_viridula

48477483 Picrophilus_torrid

80429573 Thermoanaerobacter_vanilli

60681847 Bacteroides_fragil

81185002 Salinibacter_halofermen

21673155 Chlorobium_tepidum

11122641 Frankia_alni

28210025 Clostridium

36680069 Dictyostelium_montanum

63193874 Escherichia_coli

57157197 Trichoma_viridula

48477483 Picrophilus_torrid

80429573 Thermoanaerobacter_vanilli

60681847 Bacteroides_fragil

81185002 Salinibacter_halofermen

21673155 Chlorobium_tepidum

11122641 Frankia_alni

28210025 Clostridium
Genus/Moniker	Sequence
Salinibacter_ruber	AARAVEDFVEELSNWHLRRSRPRFWYQTIHECLAATAKLMSPIAPFFGEW
Chlorobium_tepidu	ACRLIGDFVDDLSNWYIRRSRKRFWYQTLSTVLETLAKLMAPFVPFIAEK
Frankia_alni	AGRRIARFIDDLSNWYVRRSRRRFWYTLYTCLALTATRAFFPFPFLTW
Blastopirellula_marin	ACGALTIFVDAALSNWVRSSRDRFWYTLTVLYECLITCCKLIAAPFTPFLAEAG
Deinococcus_geothede	GGRALERFVHDLSNWYVRRNRSRFWYATLHEALLTVSQQLAPFPTFLAEAG
Clostridium_symbio	LYSILLEGW
Saccharomyces_tetani	VWNPMRGKW
Dictyostelium_tetani	VFSVFAHGW
Marinomonas_sp.	IWSVFLETW
Syntrophobacter_fuma	VSFVFAHGW
Bacillus_fundu	AREIAVLDEVSNNYVRSSRNRFYWTLEHVLTSSKLIAAPFTPFLAEAG
Clostridium_tetani	AALAIEDFVDELSNWYVRRNRSRFWYVTLYKVLTTVSLAIPFVTFLAEAG
Eubacterium_fundu	VWSVQLTDM
Homo_mt	VFSVFRTGW
Oroccobacter_fundu	VSFVFRTGW
Pyrobaculum_aeroph	LWSVHLAQY
Sulfolobus_acidoc	IYSISMEKI
Archaeoglobus_fundu	FYSIFMEEY
Pyrococcus_abyssi	IYSVHMLDW
Pseudoalteromonas_fundu	IWSVFQRYW
Prochlorococcus_marin	IWSVFQRYW
Thalassospira_fundu	IWSVFQRYW
Synechocystis_praeternalis	LYSIFQNGW
Thalassospira_fundu	IWSVFQRYW
Arthrobacter_fundu	VWSVHLTDW
Leishmania_major	MYSIHFWAV
Vibrionaceae_fundu	LYSIFQNGW
Aeromonas_fundu	VWSVHLTDW
Heliobacter_fundu	LYSIFQNGW
Clostridium_fundu	VWSVHLTDW
Eubacterium_fundu	VWSVHLTDW
Thalassospira_fundu	IWSVFQRYW
Synechocystis_praeternalis	LYSIFQNGW
Thalassospira_fundu	IWSVFQRYW
Arthrobacter_fundu	VWSVHLTDW
Leishmania_major	MYSIHFWAV
Vibrionaceae_fundu	LYSIFQNGW
Aeromonas_fundu	VWSVHLTDW
Heliobacter_fundu	LYSIFQNGW
Clostridium_fundu	VWSVHLTDW
Note: There are two eukaryotic sequence clades for this gene, each of which clusters within bacterial homologs with strong support. The minor eukaryotic sequence clade (lower part of the tree) contains chloroplast precursors from plants and mitochondrial precursors from opisthokonts. Sequences in the major eukaryotic sequence clade are cytosolic. It is likely that the major eukaryotic sequence clade resulted from an ancient HGT event prior to the split of most eukaryotic super groups. An alternative explanation is that the common ancestor of cellular organisms contained two copies of this gene, which were differentially retained among lineages.

Figure 22. Molecular phylogeny of isolecucyl-tRNA synthetase. P-value = 0.235 from AU test for the presented tree. AU test was also performed on an alternative topology enforcing a sequence monophyly of archaea and the major eukaryotic group. Such an alternative topology is based on the common belief that archaea and eukaryotes are more closely related than each is to bacteria. P-value < 0.001 from AU test for the alternative topology.
23. IspD (D)
See Huang and Gogarten 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biology 8:R99.

24. Polynucleotide phosphorylase (D)
See Huang and Gogarten 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biology 8:R99.

25. ATP/ADP translocase (N)
See Huang and Gogarten 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biology 8:R99.

26. Glycerol-3-phosphate acyltransferase (N)
See Huang and Gogarten 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biology 8:R99.

27. Sodium:hydrogen antiporter (N)
See Huang and Gogarten 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biology 8:R99.

28. GcpE (D)
See Huang and Gogarten 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biology 8:R99.

29. Beta-ketoacyl-ACP synthase (fabF) (D)
See Huang and Gogarten 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biology 8:R99.

30. Aspartate aminotransferase (D)
See Huang and Gogarten 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biology 8:R99.
31. Tyrosyl-tRNA synthetase (D)

See Huang and Gogarten 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biology 8:R99.

32. Cu-ATPase (D)

See Huang and Gogarten 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biology 8:R99.

33. IspE (D)

See Huang and Gogarten 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biology 8:R99.

34. Enoyl-ACP reductase (fabI) (D)

See Huang and Gogarten 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biology 8:R99.

35. Florfenicol resistance protein (E)

See Huang and Gogarten 2006. Ancient horizontal gene transfer can benefit phylogenetic reconstruction. Trends in Genetics 22:361-366.

36. 23S rRNA (Uracil-5')-methyltransferase (D)

See Huang and Gogarten 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biology 8:R99.

37. Topoisomerase 6 subunit B (TOP6B) (N)

See Huang and Gogarten 2006. Ancient horizontal gene transfer can benefit phylogenetic reconstruction. Trends in Genetics 22:361-366.