Non-coding RNAs in skin cancers: An update

Shivani B. Kaushik, MD a,*, Nitin Kaushik, MD b

a Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
b Maulana Azad Medical College, New Delhi, India

1. Introduction

Skin cancers are the most common form of cancer in humans. They can largely be categorized into Melanoma and Non-melanoma skin cancers. The latter mainly includes Squamous Cell Carcinoma (SCC) and Basal Cell Carcinoma (BCC), and have a higher incidence than melanomas. There has been a recent emergence of interest in the role of non-coding RNA’s (ncRNAs) in pathogenesis of skin cancers. The transcripts which lack any protein coding capacity are called non-coding RNA. These non-coding RNA are further classified based on their length; small non-coding RNA (<200 nucleotides) and long non-coding RNA (>200 nucleotides). ncRNA They are involved at multiple transcriptional, post transcriptional and epigenetic levels, modulating cell proliferation, angiogenesis, senescence and apoptosis. Their expression pattern has also been linked to metastases, drug resistance and long term prognosis. They have both diagnostic and prognostic significance for skin cancers, and can also be a target for future therapies for cutaneous malignancies. More research is needed to further utilize their potential as therapeutic targets.

2. Role of ncRNA in skin cancers

Skin cancers are becoming a leading cause of morbidity and mortality worldwide. Non-melanoma skin cancers are more
common than melanomas but the latter is a major cause of skin cancer related deaths. Early detection of melanoma is very important in improving survival rates. Treatment options for advanced melanoma are limited and need more innovative strategies and targets. Pathogenesis of melanoma is very complex and involves interaction between a network of genes, regulatory mechanisms and various signaling pathways. Non-coding RNAs have garnered huge interest in the recent years regarding their role in tumorogenesis, not limited to melanomas. Their potential role in pathogenesis and as an early prognostic indicator needs further elucidation.

Melanocytes are pigment producing cells that are derived from neural crest cells. A series of steps ultimately lead to melanoblast formation and transport as melanosomes to keratinocytes. A number of melanocyte-specific proteins are expressed on melanocytes such as: Tyrosinase, Tyrosinase Protein 1 and 2, Melanosomal Matrix Protein and Microphthalmia Transcription Factor (MITF) [10]. Other genes including MITF, SOX 10, PAX3, MITF, BCL2, BRAF are shown to indirectly control the cell cycle through p27 and p53 tumor suppressor genes. A few studies have shown that miR-221/222 directly inhibit p27 and lead to increased proliferation of melanoma cells [22]. The level of miR-211 expression in melanoma cells has been found to be inversely proportional to the invasive potential of melanomas—with melanomas exhibiting reduced expression of miR-211 being highly invasive and vice versa [20,21,24]. Bell et al. have identified a new miR-211 target, NUAK1 which promotes melanoma cell adhesion [23]. Another miRNA, namely miR-196a was also shown to exhibit tumor suppressor properties as its expression was significantly reduced in malignant melanoma cells [25] (see Fig. 1).

Conversely, overexpression of several miRNA’s (miR-210, miR-30b and miR-30) was seen to be upregulated in melanomas. These miRNAs are linked to stimulation of an immunosuppressive environment through cell-lysis by antigen-specific cytotoxic T lymphocytes (CTLs), changes in glycosylating proteins and increased synthesis of immunosuppressive molecules [26,27].

2.2. Role of miRNA in melanoma cell cycle and cell proliferation

Undifferentiated and uncontrolled cell proliferation is a hallmark of skin cancer. Cyclin dependent kinases and EF2 transcription factors are the main cell cycle regulators. Other proteins such as asc-my c, p27 and pTEN upregulate the CDKs and indirectly function as cell cycle regulators. Non-coding RNAs particularly miRNA directly target these cell cycle regulators [28–30]. Let-7b is a miRNA that decreases cell proliferation by targeting cell cycle proteins. Other studies have confirmed the aberrant expression of miRNAs in melanoma cells specifically miR-211. Several groups have demonstrated that miR-211 as the most common miRNA expressed differentially in normal vs melanoma cells. Ectopic expression of miR-211 results in inhibition of growth and invasion of melanoma cells suggesting their role as tumor suppressor gene [20,21]. This miR-211 is encoded by a region in the sixth intron of TRPM1 (Transient Receptor Potential cation channel subfamily Member M) [22]. The level of miR-211 expression in melanoma cells has been found to be inversely proportional to the invasive potential of melanomas—with melanomas exhibiting reduced expression of miR-211 being highly invasive and vice versa [20,21,23,24]. Bell et al. have identified a new miR-211 target, NUAK1 which promotes melanoma cell adhesion [23]. Another miRNA, namely miR-196a was also shown to exhibit tumor suppressor properties as its expression was significantly reduced in malignant melanoma cells [25] (see Fig. 1).

Conversely, overexpression of several miRNA’s (miR-210, miR-30b and miR-30) was seen to be upregulated in melanomas. These miRNAs are linked to stimulation of an immunosuppressive environment through cell-lysis by antigen-specific cytotoxic T lymphocytes (CTLs), changes in glycosylating proteins and increased synthesis of immunosuppressive molecules [26,27].

2.3. Role of miRNA in tumor invasion

Multiple factors are responsible for cell migration and tumor

Table 1

Non-coding RNA	Target gene	Type of non-coding RNA	Expression	Skin Cancer association	References
miR-211	BRN2, KCNMA1, NFAT5, TGFB2	microRNA	Downregulated	Melanoma	[20,21,23,45]
miR-200c	ZEB1, DEFI, Nil-2-A	microRNA	Downregulated	Melanoma	[46]
miR-210	PTEN1, TP53, TFRA1	microRNA	Upregulated	Melanoma	[27,47,48]
miR-196a	HOX-B7, BFGF, BMP-4	microRNA	Downregulated	Melanoma	[25]
miR-30b	GALNT7	microRNA	Upregulated	Melanoma	[26,49]
Let-7a	Integrin beta 3	microRNA	Downregulated	Melanoma, BCC	[50,51]
SPRY4-IT1	n/a	Antisense long non-coding RNA (lncRNA)	Upregulated	Melanoma	[52,53]
BANCR	CXCR1	Long intergenic noncoding RNA (lncRNA)	Upregulated	Melanoma	[54]
LIME23	PSF	Long intergenic noncoding RNA (lncRNA)	Upregulated	Melanoma	[55]
ANKIR	n/a	Long intergenic noncoding RNA (lncRNA)	Upregulated	Melanoma	[56]
HOTAIR	HOXC	Long intergenic noncoding RNA (lncRNA)	Upregulated	Melanoma	[57]
miR-21	PTEN, BCL2	microRNA	Upregulated	BCC, SCC, Melanoma	[51,58–60]
miR-29c	DNMT3A and DNMT3B	microRNA	Downregulated	BCC	[61]
miR-124	ERK2	microRNA	Downregulated	SCC	[62]
miR-130a	BCL-2	microRNA	Upregulated	BCC	[61]
invasion including BSG, FSCN1, β3integrin, MARKS, GALANT 7, c-met and NFK-b. Like other regulatory processes, miRNA have been shown to actively regulate the above-mentioned proteins. In a study by Segura et al., it was demonstrated that miR182 was differentially expressed in melanoma vs benign melanocytes, directly targeting proteins such as FOXO3 and MITF which are differentially expressed in melanoma vs benign melanocytes, met and NFK-b. Like other regulatory processes, miRNA have been shown to be significantly involved in cancers respectively. The expression levels of miRNA machinery are the most common and the second most common forms of human malignancies. Skin cancers especially melanoma is resistant to many chemotherapy agents which is the main clinical barrier to improving treatment outcomes and reducing melanoma related mortality. With the increase in worldwide incidence of melanoma, it is important to find new and effective therapeutic targets. As described in this article, non-coding RNAs play a very crucial role in the pathology of skin cancers. They have both diagnostic and prognostic significance for skin cancers, and can also be a target for future therapies for cutaneous malignancies. Early diagnosis of melanoma remains the key to better treatment outcomes. There is sufficient evidence suggesting the key role of miRNA and IncRNA in early diagnostic markers. More research is needed to further utilize their potential as therapeutic targets.

References
[1] F. Bath-Hextall, S. Nalubega, C. Evans, The needs and experiences of skin cancer patients: a qualitative systematic review with meta-synthesis, Br. J. Dermatol. (2016).
[2] S. Djebari, C.A. Davis, A. Merkel, A. Dobin, T. Lassmann, A. Mortazavi, et al., Landscape of transcription in human cells, Nature 489 (7414) (2012) 101–108.
[3] E. Deniz, B. Erman, Long noncoding RNA (lncRNA), a new paradigm in gene expression control, Funct. Integr. Genomics (2016).
[4] S. Feng, J. Yao, Y. Chen, P. Geng, H. Zhang, X. Ma, et al., Expression and functional role of reprogramming-related long noncoding RNA (lincRNA-ROR) in glioma, J. Mol. Neurosci. 56 (3) (2015) 623–630.
[5] L. Hu, Y. Wu, D. Tan, H. Meng, K. Wang, Y. Bai, et al., Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in melanoma, Cancer Res. 74 (2014) 7475–7483.
[6] J.R. Prens, A.M. Chinnaiyan, The emergence of lncRNAs in cancer biology, Cancer Discov. 1 (5) (2011) 391–407.
[7] X. Yang, X. Xie, Y.F. Xiao, R. Xie, C.J. Hu, B. Tang, et al., The emergence of long noncoding RNAs in the tumorigenesis of hepatocellular carcinoma, Cancer Lett. 360 (2) (2015) 119–124.
[8] F. Chen, Y. Tian, E.J. Pang, Y. Wang, L. Li, MALAT2-activated long noncoding RNA indicates a biomarker of poor prognosis in gastric cancer, Cancer Gene Ther. (2015).
[9] L. Han, J.B. Zhang, D.D. Yin, R. Kong, T.P. Xu, W.M. Chen, et al., Low expression of long noncoding RNA PANDAR predicts a poor prognosis of non-small cell lung cancer and affects cell apoptosis by regulating Bcl-2, Cell Death Dis. 6 (2015) e1665.
[10] L. Naddodi, V. Setaluri, Role of UV in cutaneous melanoma, Photochem. Photobiol. 84 (2) (2008) 528–536.
[11] M. Wegner, Secrets to a healthy life: lessons for melanocytes, Pigment. Cell Mol. Biol. Res. 18 (2) (2005) 74–85.
[12] M. Verastegui, A.J. Obaya, J.M. Sedivy, c-Myc regulates cyclin D-Cdk4 and Cdk2 activation, or E2F1-dependent transcription, Mol. Cell Biol. 22 (8) (2002) 3176–3186.
[13] S. Medic, M. Ziman, PAX3 expression in normal skin melanocytes and melanocytic lesions (naevi and melanomas), PLoS One 5 (4) (2010) e9977.
[14] A.T. Weeraratna, Y. Jiang, G. Hostetter, K. Rosenblatt, P. Duray, M. Bittner, et al., Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma, Cancer Cell. 1 (3) (2002) 279–288.
[15] K. Balint, M. Xiao, C.C. Pinnix, A. Soma, I. Veres, I. Juhász, et al., Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression, J. Clin. Invest. 115 (11) (2005) 3106–3116.
[16] S.E. Zabierowski, V. Baubet, B. Himes, L. Li, M. Fukunaga-Kalabis, S. Patel, et al., Direct reprogramming of melanocytes to neural crest stem-like cells by one defined factor, Stem Cells 29 (11) (2011) 1752–1762.
[17] J.M. Grichnik, J.A. Burch, J. Burchette, C.R. Share, The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis, J. Invest. Dermatol. 111 (2) (1998) 233–238.
[18] R.C. Friedman, K.K. Farh, C.B. Burge, D.P. Bartel, Most mammalian miRNAs are conserved targets of miRNAs, Genome Res. 19 (1) (2009) 92–105.
[19] B. John, A.J. Enright, A. Aravin, T. Tsischl, C. Sander, D.S. Marks, Human MicroRNA targets, PLoS Biol. 2 (11) (2004) e363.
[20] J. Mazar, K. DeYoung, D. Khaitan, E. Meister, A. Almodovar, J. Goydos, et al., The regulation of miRNA-211 expression and its role in melanoma cell invasiveness, PLoS One 5 (11) (2010) e13779.
[21] C. Levy, M. Khaled, D. Ilipoulos, M.M. Janas, S. Schubert, S. Pinner, et al., Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma, Mol. Cancer. 10 (5) (2011) 841–850.
[22] R. Valdes-Rodriguez, S.B. Kaushik, G. Yosipovitch, Transient receptor potential channels and dermatological disorders, Curr. Top. Med. Chem. 13 (3) (2013) 325–345.
[23] R.E. Bell, M. Khaled, D. Netanely, S. Schubert, T. Golan, A. Buxbaum, et al., Transcription factor/microRNA axis blocks melanoma invasion program by miR-211 targeting NSD1, J. Invest. Dermatol. 134 (2) (2014) 441–451.
[24] C. Margue, D. Philipidou, S.E. Reinsbach, M. Schmitt, I. Behrmann, S. Kreis, New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion, PLoS One 8 (9) (2013) e73473.
[25] D.W. Mueller, A.K. Bosserhoff, MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression, Int. J. Cancer 129 (5) (2011) 1064–1074.
[26] A. Gazieli-Sovran, M.F. Segura, R. Di Micco, M.K. Collins, D. Hanniford, E. Vega-Saenz de Miera, et al., miR-30b/30d regulation of Gai/NR2A transfers enhanced invasiveness and immunosuppression during metastasis, Cancer Cell. 20 (1) (2011) 104–118.
[27] M.Z. Noman, S. Buart, P. Romero, S. Ketari, B. Janji, B. Mari, et al., Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells, Cancer Res. 72 (18) (2012) 4629–4641.
[28] M.K. Mateyak, A.J. Obaya, J.M. Sedivy, c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points, Mol. Cell Biol. 30 (5) (2010) 841–850.
[29] M.A. Walter, M.A. Hysain, C. Luddy, N. Goel, T.E. Reznik, J. Laterra, Scatter factor/hepatocyte growth factor stimulation of glioblastoma cell cycle progression through G1/c-Myc dependent and independent of p27 suppression, Cdk2 activation, or E2F1-dependent transcription, Mol. Cell Biol. 22 (8) (2002) 2701–2715.
[30] R. Mammillapalli, N. Gavrilova, V.T. Mihaylova, L.M. Tsvetkov, H. Wu, H. Zhang, et al., PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(3F2), Curr. Biol. 11 (4) (2001) 263–267.
J. Schultz, P. Lorenz, G. Gross, S. Ibrahim, M. Kunz, MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth, Cell Res. 18 (5) (2008) 549–557.

J. Chen, H.E. Feilotter, G.C. Pare, X. Zhang, J.C. Pemberton, C. Garady, et al., MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma, Am. J. Pathol. 176 (5) (2010) 2520–2528.

O. Iguscheva, V. Alexeev, MicroRNA-dependent regulation of cKit in cutaneous melanoma, Biochem. Biophys. Res. Commun. 379 (3) (2009) 790–794.

F. Felicetti, M.C. Errico, L. Bottero, P. Segnalini, A. Stoppacciaro, M. Biffoni, et al., The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms, Cancer Res. 68 (8) (2008) 2745–2754.

A.A. Dar, S. Majid, D. de Semir, M. Nosrati, V. Bezrookove, M. Kashani-Sabet, miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of EZF1 protein, J. Biol. Chem. 286 (19) (2011) 16606–16614.

M.F. Segura, D. Hanniford, S. Menendez, L. Reavie, X. Zou, S. Alvarez-Diaz, et al., Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor, Proc. Natl. Acad. Sci. U. S. A. 106 (6) (2009) 1814–1819.

O. Iguscheva, V. Alexeev, MicroRNA-dependent regulation of cKit in cutaneous melanoma, Biochem. Biophys. Res. Commun. 379 (3) (2009) 790–794.

F. Felicetti, M.C. Errico, L. Bottero, P. Segnalini, A. Stoppacciaro, M. Biffoni, et al., The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms, Cancer Res. 68 (8) (2008) 2745–2754.

A.A. Dar, S. Majid, D. de Semir, M. Nosrati, V. Bezrookove, M. Kashani-Sabet, miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of EZF1 protein, J. Biol. Chem. 286 (19) (2011) 16606–16614.

M.F. Segura, D. Hanniford, S. Menendez, L. Reavie, X. Zou, S. Alvarez-Diaz, et al., Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor, Proc. Natl. Acad. Sci. U. S. A. 106 (6) (2009) 1814–1819.

O. Iguscheva, V. Alexeev, MicroRNA-dependent regulation of cKit in cutaneous melanoma, Biochem. Biophys. Res. Commun. 379 (3) (2009) 790–794.