Paulihedral: A Generalized Block-Wise Compiler Optimization Framework For Quantum Simulation Kernels

Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, Yuan Xie
University of California, Santa Barbara, CA, USA
Amazon Braket, NY, USA
IBM Quantum, NY, USA

Abstract
The quantum simulation kernel is an important subroutine appearing as a very long gate sequence in many quantum programs. In this paper, we propose Paulihedral, a block-wise compiler framework that can deeply optimize this subroutine by exploiting high-level program structure and optimization opportunities. Paulihedral first employs a new Pauli intermediate representation that can maintain the high-level semantics and constraints in quantum simulation kernels. This naturally enables new large-scale optimizations that are hard to implement at the low gate-level. In particular, we propose two technology-independent instruction scheduling passes, and two technology-dependent code optimization passes which reconcile the circuit synthesis, gate cancellation, and qubit mapping stages of the compiler. Experimental results show that Paulihedral can outperform state-of-the-art compiler infrastructures in a wide-range of applications on both near-term superconducting quantum processors and future fault-tolerant quantum computers.

1. Introduction
One of the most important quantum algorithm design principles is quantum simulation (or Hamiltonian simulation). Simulating a quantum physical system, which motivated Feynman’s proposal to build a quantum computer [1], is by itself an important application of quantum computing [2, 3]. Later, the idea of quantum simulation was extended to quantum algorithms for other applications, e.g., linear systems [4], quantum principal component analysis [5], and quantum support vector machine [6]. These algorithms involve simulating an artificial quantum system crafted based on the target problem. In recently developed variational quantum algorithms for near-term quantum computers (e.g., VQE for chemistry [7] and QAOA for combinatorial optimization [8]), the program structures are also inspired by the simulation principle.

Because the quantum simulation principle is shared among many algorithms, one subroutine, which we term the quantum simulation kernel in this paper, appears frequently in quantum programs. This kernel is to implement the operator (controlled-exponentiation) $\exp(iHt)$ where H is the Hamiltonian of the simulated system and $t \in \mathbb{R}$ is system evolution time. Since it is hard in general to directly compile $\exp(iHt)$ into executable single- and two-qubit gates, a compiler usually decomposes H into the sum of local Hamiltonians [2] (simulation of which can be easily compiled to basic gates) and then synthesize them one-by-one. Consequently, the quantum simulation kernel will be compiled to a very long gate sequence and constitute the vast majority of cost in post-compilation quantum programs.

Optimizing the compilation of this kernel can immediately benefit a wide range of quantum applications. However, three key challenges have so far hindered deeper compiler optimizations for quantum simulation kernels.

First, state-of-the-art quantum compilers (e.g., Qiskit [9], Quilc [10], $\ket{t}\ket{\text{ket}}$ [11]) lack a good formal high-level intermediate representation (IR). Once programs are converted to low-level gate sequences, the high-level semantics of quantum simulation kernels are lost and hard to reconstruct from assembly-style gate sequences. Moreover, simulation kernels face different constraints in different algorithms. Previous ad-hoc optimizations of quantum simulation [12–23] are mostly algorithm-specific and do not generalize due to the lack of a formal IR that can uniformly represent simulations kernels as well as varying constraints that are attached to them in different algorithms.

Second, most optimizations (e.g., circuit rewriting [24], gate cancellation [25], template matching [26], qubit mapping [27]) in today’s quantum compilers [9, 10] are local program transformations at small scale. However, these passes are designed for generic input program and fail to leverage the deeper optimization opportunities present in quantum simulation kernels which mainly arise from Pauli algebra, flexible synthesis of Pauli strings, and approximations.

Third, quantum simulation kernels appear in a wide range of algorithms. Some algorithms [2–6] are designed for fault-tolerant quantum computers with quantum error correction while others [7, 8] target near-term noisy quantum computers. The hardware models of these backends can be very different and one single optimization pass may not be suitable for all of them. Adapting the high-level algorithmic optimizations to the various (and ever-evolving) hardware platforms with different constraints and optimization objectives naturally invokes a reconfigurable compiler infrastructure.

To overcome these challenges, we propose Paulihedral, a compiler framework backed by a formal IR to deeply optimize quantum simulation kernels. A brief comparison between Paulihedral and conventional quantum compilers is shown in
Quantum Simulation Kernels

Conventional compiler, e.g., Qiskit, \(t|\text{ket}\rangle\) Paulihedral compiler

Gate Sequence

Pauli IR

Inter-block: instruction scheduling

Block-wise optimization: circuit synthesis, gate cancellation, layout & routing,

Pauli IR

Gate Sequence

 Compiler frontend:

Quantum Simulation Kernels

Conventional compiler, e.g., Qiskit, \(t|\text{ket}\rangle\) Paulihedral compiler

Gate Sequence

Pauli IR

Inter-block: instruction scheduling

Block-wise optimization: circuit synthesis, gate cancellation, layout & routing,

Pauli IR

Gate Sequence

Compiler frontend:

Figure 1: Paulihedral vs conventional compilers

Figure 1. First, Paulihedral comes with a new IR, namely Pauli IR, to represent the quantum simulation kernels at the Pauli string level rather than the gate level. The syntax of Pauli IR has a novel block structure which can uniformly represent the simulation kernels of different forms and constraints. The semantics of Pauli IR is defined on the commutative matrix addition operation. Such semantics guarantees that the follow-up high-level algorithmic optimizations are always semantics-preserving and can be safely applied. Second, we propose several novel optimization passes to reconcile instruction scheduling, circuit synthesis, gate cancellation, and qubit layout/routing at the Pauli IR level. All these passes are much more effective than their counterparts in conventional gate-based compilers because they are operating in a large scope where the algorithmic properties of Pauli strings (quantum simulation kernel) are fully exploited. The optimization algorithms in these passes are also highly scalable since analyzing and processing Pauli strings are much easier than handling the gate matrices on a classical computer. Third, we decouple the technology-independent and technology-dependent optimizations at different stages and Paulihedral can be extended to different backends by adding/modifying the technology-dependent passes. To showcase, we develop technology-dependent optimizations for two different backends, the fault-tolerant quantum computer and the noisy near-term superconducting quantum processor.

Our comprehensive evaluations show that Paulihedral outperforms state-of-the-art baseline compilers (Qiskit [9], \(t|\text{ket}\rangle\) [11]) and algorithm-specific compilers [20, 28, 29]) with significant gate count and circuit depth reduction on both fault-tolerant and superconducting backends, and only introduces very small additional compilation time. We also perform real-system experiments to show that Paulihedral can significantly increase the end-to-end success rate of QAOA programs on IBM’s superconducting quantum devices.

Our major contributions can be summarized as follows:

1. We propose Paulihedral, an extensible algorithmic compiler framework that can deeply optimize quantum simulation kernels and thus benefit the compilation of a wide range of quantum programs, with passes that make it retargettable to various backends and optimization objectives.

2. We define a new Pauli IR with formal syntax and semantics which can uniformly represent quantum simulation kernels and encode algorithmic constraints of seemingly very different algorithms, and safely expose high-level information to the compiler for optimizations.

3. We propose several compiler passes for different optimization objectives and backends. They can outperform previous works by systematically leveraging the algorithmic information and they are scalable to efficiently handle larger-size programs.

4. Our experiments on 31 different benchmarks show that Paulihedral can outperform state-of-the-art baseline compilers with significant gate count and circuit depth reduction. For example, compared with \(t|\text{ket}\rangle\) [11], Paulihedral achieves 53.1% gate count reduction and 53.3% circuit depth reduction on average on the superconducting backend, as well as 33.6% gate count and 65.0% circuit depth reduction on the fault-tolerant backend, using only \(\sim 5\%\) additional compilation time. For QAOA on a real quantum device, Paulihedral achieves end-to-end success probability improvement on average (up to 1.87×) against the baseline Qiskit compiler [9].

2. Background

In the section we introduce the necessary background about quantum simulation kernels. We do not cover basic quantum computing concepts (e.g., qubit, gate, linear operator, circuit) and we recommend [30] for more details.

2.1. Pauli String and Compilation

We start with the Pauli string, the basic concept in quantum simulation. For an \(n\)-qubit system, a Pauli string is defined as \(P = \sigma_{n-1} \sigma_{n-2} \cdots \sigma_0\) where \(\sigma_i \in \{I, X, Y, Z\}, 0 \leq i \leq n-1\). \(X, Y, Z\) are the three Pauli operators, and \(I\) is the identity. \(\sigma_i\) corresponds to the \(i\)-th qubit. The operators in a Pauli string \(P\) can represent a Hermitian operator \(\otimes_{i=0}^{n-1} \sigma_i\) (\(\otimes\) is the Kronecker product), which can be denoted by \(P\) without ambiguity. In the rest of this paper, we do not distinguish a Pauli string \(P\) and the Hermitian operator generated by \(P\).

One important property of a Pauli string is that the operator \(\exp(iP\theta)\) can be easily synthesized into basic gates. Figure 2 shows an example of synthesizing \(\exp(iY_4Z_3I_2X_1Z_0\theta)\). There are two identical layers of single-qubit gates at the beginning and the end of the synthesized circuit. In this single-qubit gate layer, there are \(H\) or \(Y\) gates on those qubits whose operators are \(X\) (i.e., \(q_1\)) or \(Y\) (i.e., \(q_4\)) in the Pauli string, respectively.

Figure 2: Synthesis example of \(\exp(iY_4Z_3I_2X_1Z_0\theta)\)
In the middle is a left CNOT tree, a central Rz(θ) gate, and a right CNOT tree. The left tree can be generated in different ways and the only requirement is to connect all the qubits whose operators are not the identity in P (e.g., q_0, q_1, q_3, q_4 in Figure 2). The lower half of Figure 2 shows three different but valid ways to generate the CNOT tree circuits and their corresponding tree graphs. In these trees, the CNOT gates should connect the qubits from the leaf nodes to the root node. Any qubit in the tree can become the root (e.g., q_4 in Figure 2 (1) (2), q_1 in Figure 2 (3)). The central Rz(θ) gate is applied on the root qubit and the right CNOT tree has the same CNOT gates in the left tree but in a reversed order. Paulihedral uses this algorithmic flexibility in synthesis to increase gate cancellation and also reduce mapping overhead.

2.2. Quantum Simulation Kernels

The quantum simulation kernel is to (approximately) implement the operator $\exp(iHt)$ where H is the Hamiltonian of the simulated system and $t \in \mathbb{R}$. Since directly compiling $\exp(iHt)$ into single- and two-qubit gates is hard, a compiler usually expands H in the Pauli basis, i.e., $H = \sum_{j=1}^{N} w_j P_j$ where $w_j \in \mathbb{R}$ and P_j is a Pauli string. Then $\exp(iHt)$ is approximated using the Trotter formula [31]:

$$\exp(iHt) = \left[\prod_{j=1}^{N} \exp(iP_j w_j t) \right]^{\frac{\theta}{\gamma}} + O(t\Delta t).$$

Δt is a parameter determined by the simulation accuracy. Figure 3 (a) shows the expansion process. $\exp(iHt)$ is first converted to $\frac{\theta}{\gamma}$ terms of $\exp(iH\Delta t)$. Each $\exp(iH\Delta t)$ is then expanded to an array of $\exp(iP_j w_j \Delta t)$ and converted to basic gates.

Quantum simulation kernels also appear in recently developed variational quantum algorithms, in which the vast majority of the program is an ansatz (parameterized quantum circuit). One popular type of ansatz with good trainability is the application-inspired ansatz [32] which can be considered as a simulation kernel. Compared with implementing $\exp(iH\Delta t)$, the only difference is that the Δt is changed to some tunable parameters associated with different Pauli strings and the overall program structure remains the same. For example, Figure 3 (b) shows the ansatz of QAOA algorithm [8] on a 4-node graph Max-Cut problem. The graph of the problem has 5 edges of different weights, and the Hamiltonian of this problem is the weighted sum of 5 Pauli strings associated with the 5 edges. The majority of the QAOA ansatz [8] is to implement the 5 operators on the right (γ is the parameter).

3. Foundations of Paulihedral

In this section, we first introduce the opportunities and challenges of compiler optimizations for the simulation kernel. Then we formally introduce a new IR that maintains the high-level information and the algorithm constraints in Paulihedral.

3.1. Opportunities and Challenges

The optimization opportunities used in this paper come from the properties of Pauli strings mentioned above. We introduce them by the examples in Figure 4. 1) **Gate cancellation:** It is possible to have more gate cancellation by selecting a different synthesis plan for the $\exp(iP\theta)$. Suppose the naive synthesis is the one in Figure 2 (1) and we have two Pauli strings, ZZY and ZZI. Under the naive synthesis (on the left of Figure 4 (a)) there is no gate cancellation. However, in an alternative synthesis of ZZY, we can have two CNOT gates cancelled (on the right of Figure 4 (a)). 2) **Mapping:** The mapping overhead onto connectivity-constrained architectures can also be reduced. For example, we wish to map the ZZZ simulation circuit onto a linear architecture with the current mapping shown in Figure 4 (b). Under the naive synthesis we need to insert one SWAP between q_0 and q_1. While a better synthesis plan on the right of Figure 4 (b) does not require any SWAPs.

Although there is much optimization space for quantum simulation kernels, such optimizations are not yet widely deployed in today’s quantum compiler infrastructures due to the following challenges. 1) **Missing high-level information:** Once the program is converted to basic gates, where today’s compilers perform most optimizations, it is hard to identify and reconstruct the high-level semantics of Pauli string simulation circuit blocks from an assembly-style gate sequence. 2) **Non-semantics-preserving optimization:** To leverage some optimization opportunities would require non-semantics-preserving operations that are usually not allowed in a compiler. For example, consider the program in Figure 4 (c). It is known from Figure 4 (a) that gates can be cancelled between ZZY and ZZI but now there is an ZXI simulation circuit between them. We observe that the order of the simulation terms with respect to different Pauli strings is not specified in the Trotter formula or the variational form requirement. So, from an algorithmic perspective, the compiler may exchange the order of ZZI and ZXI, making ZZY and ZZI adjacent for gate cancellation. However, such operation is not semantics preserving from a gate-level perspective because, in general, $\exp(iZZI\theta_1)\exp(iZXI\theta_2) \neq \exp(iZXI\theta_2)\exp(iZZI\theta_1)$. This

![Figure 3: Example of quantum simulation kernels](image1)

![Figure 4: Optimization opportunities and challenges](image2)
would be impossible to leverage without an IR that is able to encode such algorithmic knowledge.

3.2. Pauli IR: Syntax and Semantics

To overcome the challenges above, the objective of the new IR is to maintain high-level algorithmic information and make all transformations semantics-preserving. Our new IR, namely Pauli IR, realizes them with its syntax and semantics.

Syntax: The syntax is shown in Figure 5 and explained as follows. A program is recursively defined as a list of pauli_blocks. Each pauli_block is a tuple with two elements. The first element is a list of weighted Pauli strings (pauli_str_lists) and the second element is a real-valued parameter shared by all Pauli strings in this pauli_block. One element in the pauli_str_list is an n-qubit Pauli string and a real-value weight. Figure 6 shows the Pauli IR code of three example programs. Figure 6 (a) simulates the Hamiltonian of H_2 and each pauli_block has one pauli_str. Figure 6 (b)(c) are variational quantum algorithms so that parameters are labeled by θ and γ. In the UCCSD program (Figure 6 (b)), each pauli_block has multiple pauli_strs which share the same θ in the pauli_block. In the QAOA program (Figure 6 (c)), all pauli_strs are in one pauli_block, sharing the parameter γ.

Encoding constraints: One key advantage of the IR syntax is that the algorithmic constraints in all simulation kernels, as far as we know, can be naturally encoded. In some simulation kernels (e.g., UCCSD [7], QAOA for constrained optimization [33]), the algorithm requires that some Pauli strings should always appear together for some algorithmic purposes like symmetry preserving [34], parameter sharing [7, 8], error suppression [13], etc. Pauli IR employs a pauli_block structure to represent such constraints. The compiler can extract such information and all the pauli_strs inside one pauli_block are always scheduled together in follow-up optimization passes. In the rest of this paper, pauli_block is denoted by block for simplicity.

Semantics: The IR’s semantics function (denoted by $\langle \text{program} \rangle$) can be formally defined by the rules in Figure 7. This function is a mapping from the IR syntax to the set of all Hermitian operators in a 2^n-dimensional Hilbert space as our IR is to represent the Hamiltonian to be simulated. Note that the rules in the second and the fourth rows are defined based on matrix addition which is always commutative. As a result, exchanging the order of the pauli_blocks in a program would not change the semantics.

4. Block-Wise Instruction Scheduling Passes

The first step in Paulihedral is to schedule the blocks and the instructions within each block. Intuitively for two adjacent Pauli strings, more gates can be cancelled if they share the same non-identity operators on more qubits. Trying to maximize the number of shared operators between consecutive strings would be desirable. Also, it is possible to execute multiple blocks which have non-identity operators on disjoint sets of qubits in parallel and reduce the final circuit depth. In this paper, we present two block scheduling algorithms for two optimization objectives, reducing the total gate count or the circuit depth. We explain our block scheduling optimizations using the example in Figure 8. Suppose we will schedule 10 blocks on 8 qubits (Figure 8 (a)). In these blocks, each column is a Pauli string. The identity operators are omitted since they do not result in any circuit.

4.1. Gate-Count-Oriented Scheduling

Lexicographic ordering of Pauli strings has been shown to be effective at enabling gate cancellation between them [13, 35]. Here we adapt this principle to the multi-string-per-block case for our gate-count-oriented scheduling algorithm. In the lexicographic order, the Pauli strings are scheduled in the alphabetical order. In Figure 8, we assume $X < Y < Z < I$ and use little-endian to lexicographically order from $q7$ down to $q0$. When a block has multiple strings, we first apply the lexicographic order on all strings in this block and then use the first string to represent this block when compared with other blocks. The first Pauli string can be representative because the strings in one block are usually mutually commutative in practical algorithmic constraints [7, 8, 13]. Two strings in a mutually commutative set can share the same operators on many qubits and all strings in one block are similar. Figure 8 (b) shows the result of gate-count-oriented scheduling.
Algorithm 1: Depth-oriented scheduling

Input: List of Pauli blocks.

Output: Pauli Layers L.

1. Sort Pauli blocks by active-length-decreasing order, then sort blocks of the same active length by lexicographic order;
2. $R = \text{the set of all Pauli blocks remaining}; L = \emptyset$;
3. Initialize the first layer;
4. **while** R is not empty **do**

 5. $next_block = \arg\max_{\text{block} \in R} \text{Overlap}(\text{block}, \text{last Pauli layer})$;
 6. $\text{pauli_layer} = [next_block]$;
 7. $R.remove(next_block)$;
 8. **while** total depth of the small padding blocks $< \text{the depth of next_block}$ **do**

 9. find small Pauli block not overlapped with $next_block$;
 10. Append these blocks to pauli_layer;
 11. Remove these blocks from R;
 12. $L.append(\text{pauli_layer})$;

4.2. Depth-Oriented Scheduling

The blocks can also be scheduled for reducing circuit depth. For example, in Figure 8, q0 to q5 are idle when executing block 9, 7, and 6. We may execute block 1 with them in parallel so that the overall circuit depth can be reduced. We propose a new depth-oriented block scheduling algorithm, whose pseudocode is in Algorithm 1. For the example in Figure 8, we first sort all blocks by the active length of the Pauli strings of the blocks in a decreasing order. The active length of a block is defined by the number of qubits which have a non-identity operator in at least one Pauli string of this block. This is an over-approximated estimation on how a block will occupy the qubits. The blocks of the same active length are ordered by the lexicographic order above. Figure 8 (c) shows the sorting result. Block 3, 1, 8, 2 have the largest active length of 4 so they are at the beginning. Block 9, 7, 6, 5 have the smallest active length of 2 and they are at the end.

Then we begin to schedule all blocks and put the blocks in different layers to increase the parallelism. For each layer, we first schedule a large active length block. Then we search for small active length blocks that can be executed in parallel with the large block. For the example in Figure 8 (d), we initialize the first layer by selecting the first block after the sorting. We place the block 3 at the beginning. Then we search for small blocks that have no overlapped active qubits with the large block and can be executed in parallel. There are no such small blocks for block 3 so we continue by start another layer with block 1. In this layer, block 4, 9, 7, 6 can be placed in parallel with block 1. We iterate over the sorted block and find the first few blocks that can padded in this layer. In this example, we select block 4 and 9. We also estimate the depth of these small blocks so that total depth of these blocks will not exceed the depth of the original large block in this layer. We repeat this padding process until we cannot find any new blocks that can be added in this layer. We then continue to the next layer and start with block 2 because its first Pauli string has the most overlapped Pauli operators with the Pauli strings at the end of the previous layer. We iterate until all blocks are scheduled. Figure 8 (d) shows the final result of our depth-oriented scheduling and we can expect that the circuit depth can be reduced even if we do not convert the program to the gates. This is another benefit of Pauli IR because the compiler can operate on a fairly compact description of the program. Once the program is lowered to gates, then the size blows up and parallelizing gates becomes much more expensive.

5. Block-Wise Optimization Passes

In this section, we introduce two optimization passes that can exploit the gate cancellation potential created by our scheduling passes in the last section, and convert the Pauli IR programs to gate sequences with different optimization objectives onto the fault-tolerant quantum computer (FT) backend and the near-term superconducting quantum computer (SC) backend.

5.1. On the Fault-Tolerant Backend

Our strategy for the FT backend is to adaptively find the synthesis plan that can maximize gate cancellation since the mapping overhead can usually be neglected after applying quantum er-
Algorithm 2: Optimization for FT backend

Input: List of Pauli layers pls
Output: A quantum circuit of basic gates

1: pl_paired = []; // paired Pauli layer list
2: while neighboring layers exist in pls do
3: i = argmax_{i \in IndexSet(pls)} Overlap(pl_{i}, pl_{i+1});
4: pls.remove(pl_{i}); pls.remove(pl_{i+1});
5: pl_paired.append((pl_{i}, pl_{i+1}));
6: for (pl_{1}, pl_{2}) in pl_paired do
7: ps_list1 = last Pauli string of pl_{1};
8: ps_list2 = first Pauli string of pl_{2};
9: analyze string overlap then do synthesis on (ps_list1, ps_list2);
10: pl_{1}.remove(ps_list1); pl_{2}.remove(ps_list2);
11: for pb in (pl_{1} + pl_{2}) do
12: most_overlap_sort(pb); // find overlap at Pauli-string-level
13: analyze string overlap then do synthesis on the sorted strings in pb;
14: for pb in pls do
15: most_overlap_sort(pb); analyze string overlap then do synthesis on the sorted strings in pb;

error correction [36]. The pseudocode is shown in Algorithm 2, and we explain it with Figure 9. To capture the major gate cancellation opportunities, we scan over all layered blocks and try to select consecutive layer pairs that share the most Pauli operators. There should be significant operator overlap between consecutive layers since this was considered in our scheduling. The blocks on the left of Figure 9 are in five layers. Layer 1, 2, 3, 5 have one block in each and layer 4 has two blocks. We will pair the layer 3 and 4 together first since they share the same Pauli operators on 6 qubits. Then the first two layers are paired since they share Pauli operators on only 2 qubits. The last layer is left alone.

We first realize gate cancellation between the paired layers. For all layer pairs, we synthesize the Pauli strings at the end of the first layer and the Pauli strings at the beginning the second layer in the pair. For the layer 3 (block 3) and the layer 4 (block 4 and 5), we need to handle the IYXYXXI in the layer 3 and (IIIIVYXX, YXXXIII) in the layer 4. There are two sets of overlapped operators, YXX on qubit 3-1 and YXX on qubit 6-4. For each set, most gates can be directly cancelled, and we can select one qubit from each set and connect them with CNOT gates. The synthesis result for these two layers with gates cancelled is shown on the right of Figure 9. We repeat this process to optimize the synthesis of Pauli strings at the junction of two paired layers. Here we will synthesize the last string in layer 1 and the first string in layer 2.

We then realize the gate cancellation between strings inside a block. For those Pauli strings in the paired layer but not synthesized (one block with multiple strings), we employ a similar strategy at the string level for all Pauli strings inside one block. For each block, we search for string pairs that share the same Pauli operators on the most qubits and then synthesize these pairs first. In the block 1 in Figure 9, the first three Pauli strings are not yet synthesized. We will pair and synthesize the first two Pauli strings since they share 5 Pauli operators and a lot of gates can be cancelled. For the individual Pauli strings left, they are not paired with other strings (e.g., the third string in block 1). We check if it shares more Pauli operators with its left neighbor string or right neighbor string. Then we select the one with more gate cancellation and synthesize the Pauli string accordingly. For the blocks that are not paired with other blocks at the beginning of this algorithm (e.g., block 6), we treat them as unsynthesized Pauli strings and apply the same strategy, pairing and synthesizing the strings with high gate cancellation potential first then dealing with individual strings. Finally, all Pauli strings are compiled and we obtain a gate sequence of the input Pauli IR program. The final gate count is substantially reduced because the gate cancellation potential created by our block scheduling passes is maximally exploited through the adaptive synthesis plan in our block-wise optimization pass.

5.2. On the Near-Term Superconducting Backend

The compilation is more complicated for the SC backend because the SWAP gates are necessary to change the qubit mapping due to the qubit connectivity constraints. The gates are not uniform as they have different error rates on different qubits. We assume that the device calibration information (qubit coupling graph and the gate error rates on each qubit and qubit pair) is provided by the vendor. The major objective on the SC backend is to reduce the mapping overhead.

Our key idea is to find a tree embedding in the coupling map that can support the Pauli strings in the current layer and also minimize the mapping transition overhead between layers. Algorithm 3 shows the pseudocode, and we explain it using the example in Figure 10. For the initial qubit layout, we map all qubits to the most connected subgraph in the device coupling map. Suppose the coupling map and the current mapping of Figure 10 (b). We then begin to generate the simulation circuits and insert SWAPs for the blocks that appear in the critical path. In our block scheduling, we have already placed the blocks in different layers. In each layer, the largest block (involving the most qubits) is most likely on the critical path. Our optimization pass will first process the largest block in each layer, followed by the small blocks remaining. The
program in Figure 10 (a) has two layers in which block 3 and 4 are the largest blocks.

For each block, we first select a root qubit. We define that the core qubit list of a block contains the qubits which have a non-identity operator on all Pauli strings in the block (e.g., q2-5 for block 3, q(2,4,6) for block 4). For block 3, since it is the first layer, we only need to consider it. For q2-5 in its core list, they are already in a connected subgraph (Figure 10 (b)). We select any one of them (e.g., q2) as the root. And we only need to attach q6 to this subgraph by connecting it to any node of this graph. Suppose we swap q6 with q0 and now all active qubits in this block are connected in a subgraph. Active qubits are those qubits that have a non-identity operator in at least one string in this block. We can naturally generate an embedded tree from the coupling map (Figure 10 (c)).

Next we can synthesize the strings in block 3. The key idea is to naturally implement the CNOT tree in the Pauli circuits on the embedded tree so that we do not need to insert SWAPs for all individual CNOTs. We generate CNOT gates and single-qubit gates from the outermost qubits to the root for all the Pauli strings in the current block. If a qubit is active in the current Pauli string, we will check if its parent node is also active in the current Pauli string. If so, we insert a CNOT between the qubit and its parent. Otherwise, we swap it with its parent so that the qubit can get closer to the root and will be connected by CNOT later. In Figure 10 (c), the generated CNOTs are labeled by red arrows. After we determine the left CNOT tree, the right CNOT tree can be generated by reversing the order of CNOTs in the left tree.

After we process block 3, we will compile block 4, the next block in the critical path. As our block scheduling passes tend to maximize the overlap between two consecutive layers, the core lists of two consecutive layers are similar. For example, q(2,4,6) are in the core list of block 4 and they all appear in the core list of block 3. We evaluate all these qubits to select the root qubit with the largest connected component (within the core list) in the current mapping (Figure 10 (c)) to minimize the transition overhead. For q(2,4,6), we will select q2 or q4 since they are in a size-2 connected component while q6 is in a size-1 connected component. Similarly, we then move all other active qubits to the tree through the path with the smallest error rate estimated by the device information. Here we select q2 as the root and then swap q6 and q5 to transit from block 3 to 4 with only 1 SWAP (Figure 10 (d)). After that the core qubits in block 4 are connected and we can begin synthesizing all strings in block 4.

The procedure above is to process the largest blocks in each layer. For other small blocks in the same layer, we follow a similar strategy and attempt to construct the trees for active qubits in those small blocks. If the trees of the small blocks do not affect the tree construction of the large block, we just process the small blocks in parallel with the large block since they will not affect each other. This will create parallelism and reduce the depth of the generated circuit. For example, block 2 and 3 can be processed in parallel because q0 and q1 are connected after swapping q6 with q0. However, if the trees of the small blocks affect the processing of the large block, we will put it in remain_layer and process them at the end. For example, block 1 will be in the remain_layer because connecting q0 and q7 will affect block 3.
After we process all the large blocks in the critical path and those small blocks that can executed in parallel, we will compile the blocks in the remain_layer. The order of processing these blocks is determined by whether the active qubits are close in the current mapping. We compute the cumulative distance between active qubits in a block and then compile the block with the smallest cumulative distance and update the qubit mapping. This process is repeated until all the blocks are processed and the compilation finishes.

6. Evaluation

In this section, we evaluate Paulihedral by comparing with state-of-the-art baselines, analyze the effects of individual passes, and perform real system study.

6.1. Experiment Setup

Backend: The optimizations in this paper target two different backends, the fault-tolerant backend (FT) and near-term superconducting backend (SC). We will cover both of them. We select IBM’s latest 65-qubit Manhattan architecture [37] as the SC backend. For real system study, we use IBM’s 16-qubit Melbourne chip, the largest publicly available one.

Metric: We use the CNOT/single-qubit gate count, and the circuit depth in the post-compilation program to evaluate Paulihedral. For the SC backend, the CNOT gate count is more important due to its higher error rate and latency. The depth is also important due to short qubit coherence times. For the FT backend, T gate is usually more expensive but for the simulation kernels, the ratio between the H, Y, CNOT gate count and the T gate count grows linearly as the number of qubits increases. Because a Pauli string of length n will have O(n) H, Y, and CNOT gates but the number of Rz gates (the only source of T gates) is always one. It has also been shown that CNOT count is a significant cost in fault-tolerant algorithms and should not be neglected compared to T gates [38]. Hence, we estimate the performance with total gate count and circuit depth, following convention in previous work [12, 14–16].

Benchmark: We select 31 benchmarks of different sizes and various applications. For the SC backend, we select VQE UCCSD ansatzes [7] of six sizes, and the QAOA programs [8] for graph max-cut on regular (REG) graphs of degrees 4, 8, 12, and random (Rand) graphs of edge probability 0.1, 0.3, 0.5, as well as traveling salesman problem (TSP) of different sizes. For the FT backend, we first generate the Hamiltonians of five molecules using PySCF [39] (N2, H2S, MgO, CO2, NaCl). We also prepare the Hamiltonians of three Ising models and three Heisenberg models, both of which are widely used in condensed matter physics, of different dimensions. We finally generate random Hamiltonians (Rand) of various sizes (30 to 80 qubits) for a more comprehensive evaluation. For a Hamiltonian of n qubits, we prepare 5n^2 Pauli strings. In each Pauli string, we first randomly select one integer m between 1 and n. Then we randomly select m qubits and assign random Pauli operators to them. The rest n − m qubits will be assigned with the identity. Table 1 shows the details of these benchmarks. Note that ‘Pauli #’ represents the number of Pauli strings. We include the CNOT and single-qubit gate counts when naively converting these benchmarks into gates without any optimization/transformations, and neglecting mapping overhead.

Implementation: We prototype Paulihedral in Python 3.8 (denoted by ‘PH’). The entire compilation flow has two stages. The first stage is the quantum simulation program optimizations. The baselines include the CQC tket [11] compiler which employs the simultaneous diagonalization [15–17], a popular technique for optimizing quantum simulation programs (‘TK’), and the QAOA compiler [20, 28, 29], an algorithm-specific compiler for unconstrained optimization QAOA on graphs (‘QAOA compiler’). The second stage is the generic compilation and we have two industry generic compilers, the IBM’s Qiskit [9] at the highest optimization level 3 (‘Qiskit_L3’) and the CQC tket generic compiler [11] at the highest optimization level 2 (‘tket_O2’). The experiments are performed on a server with a 28-core Intel Xeon Platinum 8280 CPU and 1TB RAM. Note that due to the limited representation ability of tket, the algorithmic constraints are hard to be encoded in ‘TK’. To run our experiments and perform a fair comparison at our best, we relax those constraints in ‘TK’ and this relaxation allows a larger optimization space.

Table 1: Benchmark information

Benchmark	Type	Qubit #	Pauli #	CNOT #	Circuit depth
SC	UCCSD-12	12	1479	16792	15598
	UCCSD-16	16	5556	65562	56566
	UCCSD-20	20	24239	25239	24239
	UCCSD-24	24	80932	80932	80932
	UCCSD-28	28	10724	10724	10724
	Rand-20-0.1	20	40	40	40
	Rand-20-0.3	20	160	160	160
	Rand-20-0.5	20	320	320	320
	Rand-20-1.0	20	480	480	480
	Rand-20-1.5	20	640	640	640
	Rand-20-2.0	20	800	800	800
	Rand-20-2.5	20	960	960	960
	Rand-20-3.0	20	1120	1120	1120
	Rand-20-3.5	20	1280	1280	1280
	Rand-20-4.0	20	1440	1440	1440
	Rand-20-4.5	20	1600	1600	1600
	Rand-20-5.0	20	1760	1760	1760
	Rand-80	80	10762	10762	10762
	Rand-60	60	5380	5380	5380
	Rand-40	40	2690	2690	2690
	Rand-20	20	1345	1345	1345
	Ising-8	8	52686	52686	52686
	Ising-16	16	210992	210992	210992
	Ising-32	32	843968	843968	843968
	Heisenberg-B3	3	147	147	147
	Heisenberg-B4	4	590	590	590
	Heisenberg-B5	5	1171	1171	1171
	Heisenberg-B6	6	2093	2093	2093
	Heisenberg-B8	8	4096	4096	4096
	Heisenberg-B10	10	7684	7684	7684
	Heisenberg-B12	12	146312	146312	146312
	Heisenberg-B14	14	260600	260600	260600
	Heisenberg-B16	16	470440	470440	470440
	Heisenberg-B18	18	873560	873560	873560
	Heisenberg-B20	20	1558800	1558800	1558800
	Heisenberg-B22	22	2917600	2917600	2917600
	Heisenberg-B24	24	5579800	5579800	5579800
	Heisenberg-B26	26	10141600	10141600	10141600
	Heisenberg-B28	28	18508000	18508000	18508000
	Heisenberg-B30	30	33016000	33016000	33016000
	Random-8	8	1249768	1249768	1249768
	Random-16	16	510519	510519	510519
	Random-32	32	1558832	1558832	1558832
	Random-64	64	4704400	4704400	4704400
	Random-128	128	15588000	15588000	15588000
	Random-256	256	47044000	47044000	47044000

Table 2 shows the compilation time and results of the four state-of-the-art baselines, analyze the effects of individual passes, and perform real system study.

6.2. Comparing with tket and the QAOA Compiler

Table 2 shows the compilation time and results of the four configurations of all benchmarks on the two backends. Note that ‘>72 hrs’ indicates that the ‘tket_O2’ takes over 72 hours and was shut down in the middle. In summary, ‘PH’ outperforms ‘TK’ with substantial gate count and circuit depth reduction while only introducing ~ 5% additional time (‘PH’ vs ‘Qiskit/tket time’) in the entire compilation flow.

On the SC backend, ‘PH’ can reduce the CNOT, single-qubit, total gate count, and circuit depth by 66.2% (43.3%),
53.4% (-22.7%), 62.6% (41.2%), and 60.8% (44.3%), respectively on average, compared with ‘TK’ using ‘Qiskit_L3’ (‘ket_O2’) generic compilation. PH can achieve such significant improvement because ‘TK’ does not support mapping-aware optimization for general Pauli strings and can only do an inefficient generic qubit mapping. The single-qubit gate count increases when using ‘tket_O2’ but this does not affect the overall improvement since the CNOT gates have much higher error rates on the SC backend and latency and the total single-qubit gate count is still relatively low.

On the FT backend, ‘PH’ can reduce the CNOT, single-qubit, total gate count, and circuit depth by 38.7% (44.5%), 18.6% (3.0%), 32.8% (34.4%), and 61.7% (68.0%), respectively on average, compared with ‘TK’ using ‘Qiskit_L3’ (‘ket_O2’). The circuit depth reduction is significant due to the depth-oriented scheduling in ‘PH’. Our block-wise optimization is also much more effective compared with ‘TK’ strategy. The details of ‘TK’ are not public and what we can infer, at our best, from their limited documents [11, 15–17] is that the simultaneous diagonalization may introduce too much overhead. For example, the ‘Ising-1D’ program has even more gates after ‘TK’. One possible reason is that all Pauli strings in Ising-1D are mutually commutative and it takes many additional gates to simultaneously diagonalize all these Pauli strings.

Table 3 shows the compilation results of ‘PH’ and the QAOA compiler [20] on the 6 MaxCut problems. We ran the QAOA compiler with 20 random seeds for each program and collected the averaged compilation results. Comparing with the QAOA compiler, Paulihedral can achieve 31.2%, 16.3%, and 24.1% reduction in CNOT count, total gate count, and circuit depth, respectively on average, using only 1.7% compilation time. The overhead is about 50% in single-qubit gate count, but in QAOA the CNOT count is usually over 3 × 4 times higher than single-qubit gate count and CNOT error rate is usually 10 × higher on the SC backend. Therefore, ‘PH’ significantly outperforms QAOA compiler, even though it is more general purpose and not tailored to a single algorithm. This is because ‘PH’ employs a block-wise optimization for searching SWAPs and the search scope is much larger than that of the QAOA compiler’s greedy search.

6.3. Effect of the Passes

Now we study the effect of the individual passes in Paulihedral. We first compare the two block scheduling passes.

DO vs GCO scheduling: On the left of Table 4 we show the difference between the depth-oriented (DO) scheduling and the gate-count-oriented (GCO) scheduling (in Section 4). Overall, across the 17 benchmarks on the FT backend, ‘DO’ can yield low-depth circuits while ‘GCO’ can reduce the gate count more. The circuit depth of DO is 46.7% (geometric) compared with that of GCO and the gate count overhead is 5.9%, 0.64%, and 3.3% for CNOT, single-qubit, and total gate count, respectively. For benchmarks on the SC backend, the effect of the block scheduling is largely amortized by mapping overhead reduction since the tested Manhattan architecture has very sparse qubit connection. For the UCSCD benchmarks, ‘DO’ and ‘GCO’ show similar overall performance. For the QAOA benchmarks, there is no difference between ‘DO’ and ‘GCO’ since the entire kernel has only one block.

BC improvement: Our block-wise compilation (BC) passes (in Section 5) can significantly reduce the gate count and circuit depth. On the right of Table 4 we show the comparison between using BC against a naive synthesis and Qiskit_L3. For the 17 benchmarks on the FT backend, BC reduces the
be inefficient in both gate count and circuit depth for them because GCO cannot create gate count reduction while DO can create additional single-qubit gate reduction opportunities between consecutive layers by putting many small-size blocks in one layer. On these benchmarks, DO completely outperforms GCO with on average 84.2% circuit depth reduction and 7.5% total gate count reduction. Similarly on the SC backend, the BC improvement on the UCCSD benchmarks (first category) is also more significant compared with the QAOA benchmarks (second category) because more gate can be cancelled and more SWAPs in the mapping overhead can be eliminated when the tree sizes are large for Pauli strings with more non-identity operators.

6.4. Real System Study

Finally, we evaluate ‘PH’ on IBM’s 16-qubit Melbourne chip with 8 QAOA MaxCut programs. We generate 4 regular graphs of 7 to 10 nodes with 4 edges per node (‘REG-n(7-10)-d4’), and 4 random graphs of 7 to 10 nodes with edge probability 0.5 (‘RD-n(7-10)-p0.5’). We prepare 1-level QAOA circuits on these graphs and then optimize the parameters in the simulator. Those circuits with the optimized parameters are then evaluated on the Melbourne chip (40960 shots per circuit). The baseline is ‘Qiskit_L3’ with the Pauli strings ordered by iterating over the adjacency matrix (Qiskit default configuration). Figure 11 shows the improvement of the success probability after applying ‘PH’ optimizations. The ‘Estimated Success Probability’ (ESP), a widely used metric in guiding the compiler optimization [27, 40, 41], is a theoretical estimation of the success probability based on the program and the hardware noise model. The ‘Real System Success Probability’ (RSP) is the number of trials with correct measurement results divided by the total number of trials when executing on the real machine. Applying ‘PH’ can improve the ESP by 2.11 × on average (up to 3.00 ×) based on the noise model of the tested device, by reducing the CNOT count and circuit depth by 15.1% and 36.2%, respectively on average. On the real machine, ‘PH’ can improve the RSP by 1.24 × on average (up to 1.87 ×). There is a gap between the results from ESP and RSP because the noise model only provides limited hardware information. We expect that the compilation can be further improved with more detailed hardware models.

7. Discussion

A recent trend developing in quantum compiler optimizations [27, 42–48] is to exploit more potential from the hardware with more detailed device information. Different from

Table 4: Effect of passes

DO vs GCO	Block-Wise Compilation improvement					
CNOT	Single	Total	Depth	Single	Total	Depth
UCCSD-8	2.96%	0.00%	3.96%	2.96%	0.00%	3.96%
UCCSD-12	1.08%	0.02%	1.10%	1.08%	0.02%	1.10%
UCCSD-16	0.43%	0.00%	0.43%	0.43%	0.00%	0.43%
UCCSD-20	-0.80%	0.00%	-0.80%	-0.80%	0.00%	-0.80%

- **Table 4**: Effect of passes

- **Figure 11**: Success Probability Improvement for QAOA on IBM’s 16-qubit Melbourne Chip

- Circuit depth, the CNOT, single-qubit, and total gate counts by 15.5%, 6.0%, 3.1%, and 5.0%, respectively. On the SC backend, the BC pass is even more effective since the large mapping overhead can be greatly reduced. For the UCCSD (QAOA) benchmarks, BC can reduce the CNOT, single-qubit, total gate count, and circuit depth by 54% (56%), 31% (20%), 47% (47%), and 45% (23%), respectively on average.

- **Pauli string pattern effects**: It can be observed that the effect of the passes vary on different benchmarks. The reason is that the Pauli strings in the benchmarks have different patterns which can be classified into two categories based on the numbers of non-identity operators in each Pauli string. As mentioned in Section 2, a Pauli string with more non-identity operators on more qubits will in general be converted to a larger circuit block involving more qubits and gates. The first category includes the molecule Hamiltonians, the random Ising, and the HCCSD. In these Hamiltonians, many Pauli strings have non-identity operators on various numbers of qubits (up to all qubits). The second category includes the Ising, Heisenberg, and the selected QAOA benchmarks, of which the Hamiltonians only have Pauli strings with non-identity operators on at most two qubits. Such a difference in the operator distribution affects the compilation results.

- On the FT backend, benchmarks in the first category (molecule and random Hamiltonians) benefit more from the BC optimizations since Pauli strings with more non-identity operators have larger potential in gate cancellation and depth reduction. Benchmarks in the second category (Ising and Heisenberg) cannot benefit from BC since those Pauli strings with only two non-identity operators can only be synthesized in a single way and there is no space BC can explore to further reduce the gate count and circuit depth. However, these benchmarks can benefit a lot from DO. GCO turns out to

![Image](image_url)
the innovations in this direction that are mostly driven by the underlying technologies, Paulihedral takes another approach which is to enable deeper compiler optimizations by leveraging the algorithmic properties of the high-level quantum programs. Relatively little attention has been paid to this direction because 1) it is exceedingly difficult to extract useful high-level semantics from gate sequences, which is the level that most compiler infrastructures today operate at, and 2) scalable yet effective static analysis of quantum programs is also very hard as the size of the operation matrices grows exponentially with the number of qubits. We believe that these are two critical yet difficult open problems in the future development of quantum compiler/software infrastructure since they prevent the compiler from automatically detecting high-level and large-scale optimization opportunities.

Paulihedral tackles these two problems for the quantum simulation kernel, a widely used subroutine, and thus can benefit the compiler optimization for many quantum algorithms. In particular, we define a new Pauli IR which can capture the high-level semantics and encode the constraints of all simulation kernels, as far as we know. The large optimization space of simulation kernels can thus be explored by the compiler automatically, yielding optimization passes that are hard to be implemented in the conventional gate-based representation or ad-hoc algorithm optimizations. We expect that Paulihedral will continue to benefit future quantum algorithms since quantum simulation has been a long-lived algorithm design principle in the last few decades.

Looking forward, although Paulihedral is designed from an algorithmic perspective, it can incorporate those technology-driven optimizations. For example, our technology-dependent passes can be further optimized with more comprehensive models of the target devices. Paulihedral can be extended to other technologies (e.g., ion trap [49, 50], photonics [51]) by adding new passes. It is also possible to make Paulihedral more intelligent by automatically managing the passes based on the input program characteristics. We have already observed that the different Pauli string patterns can affect the final improvement under different pass configurations as discussed in Section 6. How to tune the pass algorithms or derive new suitable passes base on the simulation kernel characteristics is worth exploring. Finally, we believe that the idea of high-level optimization can be extended to other quantum algorithm design techniques (e.g., phase estimation [30], amplitude amplification [52]) and promising quantum application domains (e.g., quantum machine learning [53]).

8. Related Work

Paulihedral is a compiler framework with a new IR abstraction and deeper optimizations for general quantum simulation kernels. We first review the program representation and optimizations in quantum compilers. Then we discuss existing optimizations for quantum simulation programs.

IR in quantum compilers: Modern classical compilers employ multiple IRs (e.g., control flow graph, static single assignment) from high level to low level and different optimizations are applied on different IRs. Today’s quantum compilers [9, 11, 54–56], on the other hand, are mostly built around low-level representations [57–59], which makes it difficult to extract high-level information about the semantics of the algorithm and discover non-commutative yet semantics-preserving re-orderings. The most recent version of open quantum assembly language (OpenQASM) [60] recognizes the need for higher-level semantics such as control, inverse and power operations, but is still incapable of representing Pauli-level semantics which are prevalent in quantum simulation kernels. As we have shown, our Pauli IR can carry high-level semantics through multiple optimization stages, encode all known algorithm constraints, and is compatible with further low-level optimizations by these tools.

Quantum compiler optimizations: The state-of-the-art quantum compilers [9, 58] usually have multiple passes to execute different optimizations, (e.g., circuit rewriting [24], gate cancellation [25], template matching [26], qubit mapping [27]). These passes applied on the low-level gate sequences usually only rewrite the circuit locally on very few qubits or gates every time and only focus on one optimization objective in each pass. Different from these optimizations, all passes in Paulihedral perform program transformations at a much larger scope in a scalable way and multiple optimization opportunities can be reconciled because the high-level algorithmic information is leveraged. This makes Paulihedral optimizations more effective than simply combining those small-scale single-objective passes.

Optimizations for simulation algorithms: One common optimization technique is to group the Pauli strings into sets of mutually commutative strings and then apply simultaneous diagonalization [14–17]. This technique, adopted by tket [11, 15–17], can simplify the circuit inside each set while the simultaneous diagonalization step introduces substantial overhead before and after the circuit of each set, limiting the overall optimization performance. Some other works [12, 13, 18–22] explore the simulation program optimization or synthesis but these works are mostly ad-hoc, limited to specific algorithms/architectures, and not easily generalizable to a broader range of programs and employed by a compiler infrastructure. In Paulihedral, the Pauli IR’s recursive, block-wise structure can support simulation kernels in all related algorithms, as far as we know. And our optimization algorithms have been shown to be much more effective in the evaluation above.

9. Conclusion

We propose Paulihedral, an algorithmic quantum compiler targeting the quantum simulation kernel, a subroutine widely used in many quantum algorithms. Paulihedral enables deep compiler optimizations by defining a new Pauli-string-based IR, which can encode high-level algorithmic information and
constraints of many seemingly different quantum algorithms in a unified manner. All follow-up optimizations in Paulihe-
dral operate at a large scope with good scalability and can
reconcile multiple optimization opportunities. Paulihedral can
be extended to different backends by adding or modifying
technology-dependent passes. Comprehensive experimental
results show that Paulihedral can significantly outperform
state-of-the-art quantum compilers with more effective, scal-
able optimizations and better reconfigurability.

References

[1] Richard P Feynman. Simulating physics with computers. Int. J. Theor.
Phys. 21(6/7), 1982.
[2] Seth Lloyd. Universal quantum simulators. Science, pages 1073–1078,
1996.
[3] Daniel S. Abrams and Seth Lloyd. Quantum algorithm providing expen-
tial speed increase for finding eigenvalues and eigenvectors. Phys. Rev.
Lett., 83:5162–5165, Dec 1999.
[4] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algo-
rimth for linear systems of equations. Phys. Rev. Lett., 103:150502, Oct
2009.
[5] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum prin-
cipal component analysis. Nature Physics, 10(9):631–633, 2014.
[6] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Support vector
machine for big data classification. Phys. Rev. Lett., 113:130503, Sep 2014.
[7] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung,
Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O'brien.
A variational eigenvalue solver on a photonic quantum processor. Nature
communications, 5(1):1–7, 2014.
[8] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum ap-
proximation optimization algorithm. arXiv preprint arXiv:1411.4028,
2014.
[9] Héctor Abraham, AdruOffei, Rochisa Garward, Ismail Unyus Akhal-
waya, Gadi Aleksandrowicz, Thomas Alexander, Matthew Amy, Eli
Arbel, Arijito2, Abraham Asfaw, Artur Avkhadiev, Carlos Azusta-
tre, AzizNgoueya, Abhik Banerjee, Aman Bansal, Panagiotis Barkoutos-
Ashik Barnawa, George Barron, George S. Barron, Luciano Bello,
Yael Ben-Haim, Daniel Bevenius, Azin Bhobe, Lev S. Bishop, Carsten
Blank, Sorin Boles, Samuel Bosch, Brandon, Sergey Brayvi, Bryce-
Fuller, David Bucher, Armani Burov, Fren Cabrada, Padraic Calpin,
Lauren Capelluto, Jorge Carballo, Gíneis Carrascal, Adrian Chen, Chun-
Fu Chen, Edward Chen, Jielun (Chris) Chen, Richard Chen, Jerry M.
Chow, Spencer Churchhill, Christian Claus, Christian Clauss, Romilly
Cocking, Filip Correa, Abigail J. Cross, Andrew W. Cross, Simon Cross,
Juan Cruz-Benito, Chris Culver, Antonio D. Corcoles-Gonzales,
Sean Dague, Tareq El Dandachi, Marcu Daniels, Matthieu Dartialha,
DavideFir, Abdón Rodríguez Davila, Anton Dekusar, Delton Ding, Jun
Doi, Eric Drechsler, Drew, Eugene Dumitrescu, Karel Dumon, Ivan
Duran, Kareem EL-Salty, Eric Eastman, Grant Eberle, Pieter Eendebak,
Daniel Egger, Mark Everitt, Paco Martín Fernández, Axel Hernández
Ferrera, Romain Fouilland, FranckChevallier, Albert Frisch, Andreas
Fuhrer, Bryce Fuller, MELVIN GEORGE, Julien Gacon, Borja Godoy
Gago, Claudio Gambella, Jay M. Gambetta, Adhisha Gammanpila, Luis
Garcia, Tanya Garg, Shelly Garion, Austin Gilliam, Aditya Giridha-
ran, Juan Gomez-Mosquera, Gonzalo, Salvador de la Puente González,
Jesse Gorzinski, Ian Gould, Donny Greenberg, Dmitry Grinko, Wen
Guan, John A. Gunnels, Mikael Haglund, Isabel Haide, Ikko Ham-
mura, Oscar Costa Hamido, Frank Harkins, Vojtech Havlicek, Joe
Hellmers, Lukasz Herok, Stefan Hillmich, Hiroshi Horii, Connor How-
ington, Shaohan Hu, Wei Hu, Junye Huang, Rolf Huisman, Haruki
Imai, Takashi Imamiichi, Kazuaki Ishizaki, Raban Iten, Toshihiko Isho,
JamesSeaward, Ali Javadi, Ali Javadi-Abhari, Wahaj Javed, Jessica,
Madhav Jivrajani, Kiran Johns, Scott Johnstun, Jonathan-Shoemaker,
Vismai K, Tal Kachmann, Akshay Kale, Naoki Kanazawa, Kang-Bae,
Anton Karazeev, Paul Kassebaum, Josh Kelson, Spencer King, Knab-
berjoe, Yori Kobayashi, Arseny Kovyrshin, Rajiv Krishnakumar, Vivek
Krishnan, Kevin Krsulich, Prasad Kumkar, Gawel Kus, Ryan LaRose,
Enrique Lacal, Raphael Lambert, John Lapeyre, Joe Latone, Scott
Lawrence, Christina Lee, Gushu Li, Denis Liu, Peng Liu, Yunho
Maeng, Kahan Majumdar, Aleksi Malyshév, Joshua Manela, Jakub
Marecek, Manoel Marques, Dmitri Maslov, Dolph Mathews, Atsushi
Matsuo, Douglas T. McClure, Cameron McGregor, David McKay, Dan
McPherson, Srijan Meesala, Thomas Metcalfe, Martin Mevissen, An-
drew Meyer, Antonio Mezzacapo, Rohit Midha, Zlatko Minev, Abby
Mitchell, Nikolaj Moll, Jhon Montanze, Gabriel Monteiro, Michael Du-
ane Mooring, Renier Morales, Nillan Moral, Mario Motta, MrF, Prakash
Murali, Ian Møggenburg, David Nadlinger, Ken Nakanishi, Giacomo
Nanninici, Paul Nation, Edwin Navarro, Yehuda Naveh, Scott Wyman
Neagle, Patrick Neuweiler, Joan Nicander, Pradeep Niroula, Hassi
Norlen, NuoWeiLei, Lee James O’Riordan, Oluwatosi Ogunbayo,
Pauline Ollitrault, Raul Otaolea, Steven Oud, DanPadilha, Hanhee
Paik, Soham Pal, Yunchan Pang, Vincent R. Pascuzzi, Simone Perriello,
Anna Phan, Francesco Piro, Marco Pistoia, Christophe Piveteau, Pierre
Pocreau, Alejandro Pozas-Kerstjens, Miloš Prokop, Viktor Prutyanov,
Daniele Puzzuolo, Jesús Pérez, Quintill, Raúl Rey Jalal, Ramun Raja,
Nipun Ramagiri, Aniruddh Rao, Rudy Raymond, Rafael Martín-
Cuevas Redonzo, Max Reuter, Julia Rice, Matt Riedemann, Marcello La
Rocca, Diego M. Rodríguez, RohithKarar, Murat Rossmannek, Mingi
Ryu, Tharshamashtha SAPV, SamFerracin, Martin Sandberg, Hirnay
Sandesara, Ritiwk Sapra, Hayk Sargsyan, Aniruddha Sarkar, Ninad
Sathaye, Bruno Schmitt, Christ Schwab, Zachary Schoenfeld, Travis L.
Scholten, Eddie Schoute, Joachim Schward, Ismael Faro Sertage,
Katana Setia, Nathan Shammah, Yunong Shi, Adenilton Silva, Andrea
Simonetto, Nick Singstock, Yukio Siraichi, Iskandar Siddiqui, Seyon
Sivarajah, Magnus Berg Slettjerding, John A. Smolin, Mathias Soeken,
Igor Olegovich Sokolov, Igor Sokolov, SooliThomas, Starfish, Dominik
Steeken, Matt Stypulkoski, Shaoujun Sun, Kevin J. Sung, Hitomi Taka-
hashi, Tanvesh Takawale, Ivano Tavernelli, Charles Taylor, Pete Taylor,
Soolu Thomas, Mathieu Tillet, Maddy Tod, Miroslaw Tomasik, En-
rique de la Torre, Kenso Trabing, Matthew Treinsh, TrishaPe, Davindra
Tulsi, Wes Turner, Yotam Vaknin, Carmen Recio Valcarce, Francois
Varchon, Almudena Carrera Vazquez, Victor Villar, Desiree Vogt-Lee,
Christophe Vuilloit, James Weaver, Johannes Weidenfeller, Ralf Wie-
zorek, Jonathan A. Wildstrom, Erick Winston, Jack J. Woehr, Stefan
Woeber, Ryan Woo, Christopher J. Wood, Ryan Wood, Stephen Wood,
Steve Wood, James Wootton, Danayar Yeralin, David Yonge-Mallo,
Richard Young, Jesse Yu, Christopher Zachow, Laura Zdzianksi, He-
lena Zhang, Christa Zoufal, and Mants Čepulkovskis. Qiskit: An
open-source framework for quantum computing, 2019.
[10] Robert S Smith, Eric C Peterson, Mark G Skibbe, and Erik J Davis.
An open-source, industrial-strength optimizing compiler for quantum
programs. Quantum Science and Technology, 5(4):044001, 2020.
[11] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec
Edgington, and Ross Duncan. (tket): a retargetable compiler for nisq
devices. Quantum Science and Technology, 6(1):014003, 2020.
[12] Matthew B Hastings, Dave Vecker, Bela Bauer, and Matthias Troyer.
Improving quantum algorithms for quantum chemistry. Quantum Infor-
malisation & Computation, 15(1–2):1–21, 2015.
[13] Kaiwen Gui, Teague Tomesh, Pranay Gokhale, Yunong Shi, Frederic T
Chong, Margaret Martonosi, and Martin Suchara. Term grouping and
travelling salesperson for digital quantum simulation. arXiv preprint
arXiv:2001.05983, 2020.
[14] Ewout van den Berg and Kristan Temme. Circuit optimization of
hamiltonian simulation by simultaneous diagonalization of pauli clusters.
Quantum, 4:322, 2020.
[15] Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and
Seyon Sivarajah. Phase gadget synthesis for shallow circuits. arXiv
preprint arXiv:1906.01734, 2019.
[16] Alexander Cowtan, Will Simmons, and Ross Duncan. A generic com-
pilation strategy for the unitary coupled cluster ansatz. arXiv preprint
arXiv:2007.10515, 2020.
with many photons on a programmable nanophotonic chip. *Nature*, 591(7848):54–60, Mar 2021.

[52] G. Brassard and P. Hoyer. An exact quantum polynomial-time algorithm for Simon’s problem. In *Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems*, pages 12–23, 1997.

[53] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algorithms for supervised and unsupervised machine learning. *arXiv preprint arXiv:1307.0411*, 2013.

[54] Matthew Amy and Vlad Gheorghiu. staq—a full-stack quantum processing toolkit. *Quantum Science and Technology*, 5(3):034016, 2020.

[55] Nader Khammassi, Imran Ashraf, J v Someren, Razvan Nane, AM Krol, M Adriaan Rol, L Lao, Koen Bertels, and Carmen G Almudever. OpenQ: A portable quantum programming framework for quantum accelerators. *arXiv preprint arXiv:2005.13283*, 2020.

[56] Alexander McCaskey and Thien Nguyen. A mlir dialect for quantum assembly languages. *arXiv preprint arXiv:2101.11365*, 2021.

[57] Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. Open quantum assembly language. *arXiv preprint arXiv:1707.03429*, 2017.

[58] Robert S Smith, Michael J Curtis, and William J Zeng. A practical quantum instruction set architecture. *arXiv preprint arXiv:1608.03355*, 2016.

[59] Aleks Kissinger and John van de Wetering. Pyzx: Large scale automated diagrammatic reasoning. *arXiv preprint arXiv:1904.04735*, 2019.

[60] Andrew W Cross, Ali Javadi-Abhari, Thomas Alexander, Niel de Beaudrap, Lev S Bishop, Steven Heidel, Colm A Ryan, John Smolin, Jay M Gambetta, and Blake R Johnson. Openqasm 3: A broader and deeper quantum assembly language. *arXiv preprint arXiv:2104.14722*, 2021.