Inadvertent internal carotid artery (ICA) injury during transsphenoidal surgery: review of literature

Hieder Al-Shami¹* and Ahmad K. Alnemare²

Abstract

Background: Internal carotid artery (ICA) injury is a hazardous catastrophe for the skull base surgery team. We aimed to illustrate the vital joints in this hazardous event during endoscopic surgery.

Main text: The condition is rare (1.1%) but fatal per se. Working in the field of endoscopic surgery is not free of charges. It demands a thorough knowledge of anatomy, variations, and pathoanatomy to expect what can be seen thereafter. Once the injury occurs, one must have a quite clear plan to proceed. Marvelous bleeding is confusing not only in the field but also in the mind process.

Conclusion: Endoscope teams when expose to this event should think in a stepwise manner. In our review, we explained the pathoanatomy of the field after an injury, pre-conditions of injury, and how to avoid certain drawbacks during management.

Keywords: ICA, Pituitary surgery, Intraoperative injury, Skull base surgery

Background

Carotid artery injury (CAI) is regarded as a nightmare for every skull base surgeon during his carrier [1, 2]. This derangement can change the roadmap of a successful surgery into a catastrophe. Endoscopic skull base surgery has been evolved over the last decades and recruited many candidates to its field [3, 4]. However, it requires a long learning curve and a strong anatomical base. The anatomical knowledge in endoscopic skull base surgery is not confined to typical parameters and fixed points. In contrast, strong skull base knowledge is embedded in the exact identification of variations, anomalies and pathoanatomical changes that exerted by the diverse pathologies [5]. These “obstacles” were prophylactically prohibited by advanced neuroimaging modalities.

Although, carotid artery injury is still possible whatever the complexity of lesion and the experience of the surgeon [6]. The insult of the carotid artery (as any other hemorrhage) is immediate, unlike cerebrospinal fluid (CSF) leakage which can be delayed and under low pressure. Other insults that can happen to the carotid artery are vessel spasm, thrombosis, pseudoaneurysm formation, and finally carotid-cavernous fistula [7, 8].

The incidence of carotid artery injury in transsphenoidal surgery is 1.1% [1, 2, 6]. It has been recorded previously in different situations like sinus surgery [9] and during treatment of giant cell tumors of clival regions [10]. It is higher in extended lesions like chordomas and expanded endonasal endoscopic surgeries and reach up to 9% [2].

In the works of literature, no standard protocols have existed for management [6–8, 11–13]. We shall represent our review of the current management ideas previously reported.
Main text

Systematic reviews
During the past 5 years, two systematic reviews discussing the reported incidence of ICA injury in endoscopic endonasal surgery were conducted. The first one was held by Chin and colleagues (2016) [8]. They reviewed 25 articles with 50 cases in different endoscopic purposes and not exclusively discussing pituitary surgery. They found that the most commonly injured ICA segment was the cavernous (34 cases), followed by the ophtalmic (three cases). Injuries occurred more commonly on the left than right and throughout all steps of expanded endonasal sphenoidal surgery (EESS). The second review was conducted by Perry and colleagues (2019) [14]. They estimated the incidence of ICA injury in different approaches of transsphenoidal pituitary surgery (microscopic versus endoscopic) exclusively. They reported 35 cases/11149 patients (5/2672 (0.2%) versus 30/8477 (0.4%)) for microscopic and endoscopic transsphenoidal surgery respectively.

Preoperative measures
Skull base surgery has long-run evolution from the first elementary steps of sinus surgery up to extended skull base surgery [13]. The whole skeleton of endoscopic surgery is made up of anatomy [5]. Solid knowledge is a good shield against carotid artery injury. Kassam and co-workers developed a special classification system to minimize neurovascular complications and enhance anatomical knowledge [15]. Prophylactic identification of injury susceptibility always wins. Valentine and Wormald published their article that identified the risk factors for carotid artery injury and failure to obtain visualization of carotid was one of these factors [16]. In 2016, Valentine and co-workers reproduced the scenario of carotid injury in sheep and they applied effective training strategies to control bleeding [17].

Anatomy factor
The relationship between the artery and sphenoid sinus is not anatomically fixed [5]. The internal carotid artery (ICA) is shielded with a very thin layer of bone (0.5 mm) thick and is not sufficient to protect the artery from trivial manipulation around it [18]. It has been found that up to 4% of cases, the internal carotid artery is separated from sinus but a mucosal membrane and dura [18]. Fernandez-Miranda and colleagues studied the anatomic relationships of sphenoid septa and ICA anatomically, they found that most (87%) of the intrasphenoidal septations insert at the carotid artery in the parasellar or paracervical segments [19]. When more than one septation is present, at least one of them will insert into the carotid prominence [20, 21]. Previous studies, however, have shown varying results. Abdullah et al. [22] examined by computed tomography (CT) with 5-mm slice thickness of 70 studies, however, have shown varying results. Abdullah et al. found that in only 22 of 70 subjects (31%), the septa were related to the internal carotid artery. Unal and colleagues studied the anatomic variations in the sphenoidal septa were related to the internal carotid artery [23]. They studied the anatomic variations in the sphenoid sinus of 56 subjects through 3-mm slice thickness CTs and showed that in 34 of 112 sides (30.3%), a septum protruded the ICA. However, in Fernandez-Miranda et al. study, the CT slice thickness was only 1 mm. Rhoton examined sphenoidal septa and found they are terminating into the carotid artery in 40% of specimens [24]. He also examined 50 adult sphenoid sinuses and recorded about 30% incidence of septa inserting into the carotid prominence.

However, all approaches in transsphenoidal surgery are directed to the midline. The distance between the two arteries is ranging from 8 to 10 mm. So, tracking the midline is not always a working step; for example, multiple septations of the sphenoid sinus may include septal walls inserted into the ICA bony canal [25]. Cavernous ICA anomalies are rare in the general population [26] and merely recorded in patients with pituitary pathology. Few reports on concurrent association with cavernous ICA aneurysms which result in ICA rupture [27–29].

Patient factor
Several factors were associated with cavernous ICA injury. These factors included revision surgery, radiotherapy, large clival mass, acromegalic features, and bromocriptine therapy for a long time [4, 8, 9].

Tumor factor
High-definition, multi-slice CT scan of paranasal sinuses should be available to the pituitary surgery team before the induction of general anesthesia [13]. Computed tomography is important to delineate the bony skeleton of the surgical corridor while magnetic resonance (MR) angiography shows the vascular tree around the pituitary tumors. Recent studies recommended the utilization of intraoperative neuro-navigation to avoid vascular injury [6, 30].

Tumors come in contact with ICA are mainly encasing tumors other than destructive in nature. This encasement weakens the artery wall from without and makes it susceptible to bleed and vasospasm [31]. Vasospasm can result from tumor dissection over a vessel or cavernous sinus hemostasis by inserting multiple layers of surgic-foam [16].

Intraoperative measures
The ICA injury harbor high pressure and flow stream of blood that can disturb the scene immediately. It is important to control the field immediately to apply a quiet
environment able to set strategies to deal with this catas-
trophe [32].

Surgical field control
From the literature review, certain points are important
to be achieved. These points are the following:

- Blunt instruments like a blunt suction tube, curettes,
 and dissectors are advocated by the authors [33].
- Bone chips should be removed better by serial
cutting with low profile Kerrison other than twisting
and grasping. Besides, using diamond burrs are
preferred than cutting burrs [34].
- The endoscopic surgery team is usually composed of
neurosurgeons and ENT specialists. Usually, the
operative steps before durotomy are held by ENT
(ear, nose, and throat) surgeons. At the event, two
surgeons should be involved. One should direct the
bloodstream away from the camera while the other
tries to get visualization to achieve hemostasis [2].
- Large bore suction tubes (two 8–10F) should be
introduced in the field. The suction tubes should be
applied at the inferior angle of the field to direct
blood away from the endoscope [2, 10].
- A pedicled septal flap should be prepared at once
and applied gently to the nasopharynx [35].
- The second surgeon must put the suction tip to the
puncture site [1].

Hemostasis
Many methods were tried to save the catastrophic situ-
atation and ICA ligation was one of them. Carotid artery
ligation is not a wise decision as to its principle [7, 36,
37]. Generally, in endoscopic pituitary surgery, the dom-
inance of ICA is not in question. Hence, ligation can
lead to remarkable stroke and death. Besides, endovas-
cular treatment will be omitted as an option. The mainstay
of treatment is nasal packing [4, 7, 33]. Nasal packing is
not advocated if the dura is opened if so, shift to other
strategies [1].

Sphenoid ostium should be widened sufficiently to
nadal packing. Carotid artery compression is advocated
ipsilaterally. Weidenbecher and coworkers advised com-
pressing both carotids [38]. Head elevation and con-
trolled hypotension are not scientific strategies to stop
bleeding [6, 7]. In contrast, normotensive is advised to
preserve cerebral perfusion pressure. There are many
options for nasal packing in the market, gauze still the
easiest, most available, and sufficient to do the required
compression [16]. On the contrary, nasal packing has its
own complications. Overpacking and infection are the
main complications of nasal packing [39]. Overpacking
exerts enormous pressure on the carotid artery that
leads to ischemia thereafter [34, 39].

Muscle patch
Muscle patch achieved hemostasis in animal models of
ICA injury [34, 39]. Muscle patch contains specific ma-
terials that enhance hemostasis better than cellulose and
thrombin-gelatin matrix [3, 8]. A pseudoaneurysm can
be developed even in the presence of a muscle patch.
Muscle patch is prepared from quadriceps, fascia lata,
and sternoclodelomostoid muscle. The muscle patch is
harvested and crushed by metal surfaces to maintain its
delicate or sheet-like appearance [39]. The graft is then
introduced by using Blakesley forceps with tight adher-
ence to the injury site [1]. The graft needs 10–15 min to
maintain hemostasis. Septal flap might be applied then
over the muscle graft when the carotid artery needed to
be dissected thereafter. Fibrin glue might also be used
over the muscle patch [16, 38].

Closure of injured vessel
There is a delicate line between having good hemostasis
by closing the defect and achieving no stenosis [32].
Laws and colleagues described a method of carotid ar-
tery repair by suturing [40, 41]. Other experimental
studies reformed a special clip for ICA injury. A special-
ized U-clip device to close the rupture site by using vas-
cular clamp [16, 34, 40, 42]. This method was found to
be very effective when exposure around the artery is suf-
ficient. Unfortunately, this type of clips is no longer
available from the manufacturers.

Aneurysm clip (T2) was capable of achieving hemostasis in all injury types as studied by Padhye and co-workers [34].

Bipolar electrocauterization is not an effective model
treatment even in animal studies. Cauterization pro-
duced a coagulum at the site of injury; this coagulum
makes the wall vulnerable to further bleeding, enlarging
the defect and stenosis [34].

Endovascular treatment
Vessel occlusion and decreased arterial flow are both
can be achieved by endovascular treatment [2]. In many
scenarios, the endoscopic achievement of hemostasis is
before transfer to an angiography suite. Endovascular oc-
closure of the vessel is done usually by coil or balloon
[43]. Either method used, the coil should be deployed at
the site of injury to prevent extravasation of blood
through a defect in an anterograde or retrograde direc-
tion [27]. Therefore, care should be paid to avoid oph-
thalmic artery occlusion. If time permits, collateral
circulation should be studied well as well as the feasibil-
ity to occlude the offending vessel (Wada test) [7, 44].
The stent graft is now performed by many intervention-
ists. This technique is a challenging process but still ef-
fective in achieving vessel patency. Spasm of ICA,
distant migration, and stenosis are possible
complications [27, 43]. Sylvester and colleagues [43] suggested an algorithm for treatment of ICA injury by implementation of several endovascular methods, and high flow external carotid-to-internal carotid (EC-IC) bypass was the final choice when all methods failed.

Postoperative measures

Pseudoaneurysm and carotid-cavernous fistula are both hazardous and late complications to ICA injury [45]. Pseudoaneurysms are as high as 60% after ICA injury; there is a risk of rupture for up to 3 months [7]. Angiographic repair by grafting of occluding is the most powerful preventive measure ever estimated. Similarly, carotid-cavernous fistula can be treated in the same way as well [7].

Conclusion

Endoscope teams when expose to this event should think in a stepwise manner. In our review, we explained the pathoanatomy of the field after an injury, preconditions of injury, and how to avoid certain drawbacks during management.

Abbreviations

CAI: Carotid artery injury; CSF: Cerebrospinal fluid; CT: Computed tomography; EC-IC: External carotid-Internal carotid; ENT: Ear, nose, and throat specialty; EESS: Expanded endonasal sphenoidal surgery; ICA: Internal carotid artery; MR: Magnetic resonance

Acknowledgements

Many thanks to our neurosurgery team for their support, knowledge, and empowering our skills especially in the precious field of skull base surgery.

Authors’ contributions

HA is responsible for collecting data, skeletonizing the manuscript, writing of the manuscript, and revision as well. AN provided language editing, citing additional references, manuscript revision, and proofreading. All authors have read and approved the final manuscript.

Funding

The authors funded this work.

Availability of data and materials

All the data retrieved in this article are already published previously and available at ease.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Al-Ahly Bank Hospital, Al-Amal Hospital, Cairo, Egypt. 2. Otolaryngology Department, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia.

Received: 24 February 2020 Accepted: 15 May 2021
Published online: 10 May 2021

References

1. Al-Qahtani AA, Castelnuovo P, Nicolai P, Prevedello DM, Locatelli D, Carrau RL. Injury of the internal carotid artery during endoscopic skull base surgery: Prevention and management protocol. Otolaryngology Clinics of North America. 2016;49(1):237–52. https://doi.org/10.1016/j.otc.2015.09.009.

2. Padhye V, Valentine R, Wormald P-J. Management of carotid artery injury in endonasal surgery. Int Arch Otorhinolaryngol. 2014;185(2):5173–8.

3. Duek I, Sviit GE. Endoscopic repair of carotid artery injury. Otolaryngol. 2015; 09(06):5–7.

4. Duek I, Sviit G, Amtit M, Gil Z. Endoscopic reparative repair of internal carotid artery injury during endoscopic endonasal surgery. J Neurol Surg Rep. 2017;78(04):e125–8.

5. Abuzyad B, Tanimoto N, Gazioglu N, Sanus GZ, Ozen F, Biceroglu H, et al. Endoscopic endonasal anatomy and approaches to the anterior skull base. J Craniofacial Surg. 2010;21(2):529–37.

6. Rarey C, Moncef B, Timothee I, Gerard R, Emmanuel J. Tips and tricks to manage vascular risks using the transnasal endoscopic approach to pituitary adenomas. Acta Medica Marisiensis. 2015;61(4):349–55. https://doi.org/10.1515/amma-2015-0100.

7. Lum SG, Gendeh BS, Husain S, Gendeh HS, Ismail MR, Toh CJ, et al. Internal carotid artery injury during endonasal sinus surgery: Our experience and review of the literature. Acta Otorhinolaryngologica Italica. 2019;39(2):130–6.

8. Chin OY, Ghost R, Fang CH, Baredes S, Liu JK, Eloy JA. Internal carotid artery injury in endoscopic endonasal surgery: a systematic review. Laryngoscope. 2016;126(3):582–90. https://doi.org/10.1002/lary.25748.

9. Iacoangeli M, Di Rienzo A, Re M, Alvaro L, Nocchi N, Gladi M, et al. Endoscopic endonasal approach for the treatment of a large clival giant cell tumor complicated by an intraoperative internal carotid artery rupture. Cancer Management Res. 2013;5(1):21–4.

10. Gardner PA, Snyderman CH, Fernandez-Miranda JC, Jankowitz BT. Prevention and management protocol. Otolaryngologic Clinics of North America. 2016;49(3):819–28. https://doi.org/10.1016/j.otc.2016.03.003.

11. Stankiewicz JA, Park AH, Chow JM. Internal carotid artery injury during sinus surgery: A protocol for management. Operative Techniques in Otalaryngology-Head and Neck Surgery. 2001;12(1):25–7. https://doi.org/10.1053/oto.2001.22200.

12. Vaz-Guimaraes F, Gardner PA, Fernandez-Miranda JC, Wang EW, Snyderman CH. Endoscopic endonasal skull base surgery for vascular lesions: A systematic review of the literature. J Neurosurg Sci. 2016;60(4):503–13.

13. Koitschev A, Simon C, Lowenheim H, Naegele T, Emernm U. Management and outcome after internal carotid artery laceration during surgery of the paranasal sinuses. Acta Oto-Laryngologica. 2006;126(7):730–9. https://doi.org/10.1080/00016640500469578.

14. Perry A, Graffeo CS, Meyer J, Carlstrom LP, Oshy S, Driscoll CLW, et al. Beyond the learning curve: Comparison of microscopic and endoscopic incidences of internal carotid injury in a series of highly experienced operators. World Neurosurg. 2019;131:e128–35. https://doi.org/10.1016/j.wneu.2019.07.074.

15. Kassam AB, Gardner P, Snyderman C, Mintz A, Carrau R. Expanded endonasal approach: fully endoscopic, completely transnasal approach to the middle third of the clivus, petrous bone, middle cranial fossa, and infratemporal fossa. Neurosurgical Focus. 2005 Jul 15;19(1):E6.

16. Valentine R, Wormald P-J. Carotid artery injury. Otolaryngologic Clin North Am. 2011;44(3):1059–79. https://doi.org/10.1016/j. otcl.2011.06.009.

17. Valentine R, Padhye V, Wormald P-J. Management of arterial injury during endoscopic sinus and skull base surgery. Current Opinion in Otolaryngology and Head and Neck Surgery. 2016;24(2):170–4. https://doi.org/10.1097/MOC. 000000000000239.

18. Fujii K, Chambers SM, Rhoton ALJ. Neurovascular relationships of the sphenoid sinus. A microsurgical study. J Neurosurg. 1979;50(1):31–9. https://doi.org/10.3171/jns.1979.50.1.0031.

19. Fernandez-Miranda JC, Prevedello DM, Madhok R, Morena V, Barges-Coll J, Reineman K, et al. Sphenoid septations and their relationship with internal carotid arteries: Anatomical and radiological study. Laryngoscope. 2009;119(10):1893–6. https://doi.org/10.1002/lary.20623.
