Genome-wide analysis and characterization of Aux/IAA family genes related to fruit ripening in papaya (Carica papaya L.)

Kaidong Liu1*,†, Changchun Yuan1*, Shaoxian Feng1, Shuting Zhong1, Haili Li1, Jundi Zhong1, Chenjia Shen2 and Jinxiang Liu1

Abstract

Background: Auxin/indole-3-acetic acid (Aux/IAA) family genes encode short-lived nuclear proteins that mediate the responses of auxin-related genes and are involved in several plant developmental and growth processes. However, how Aux/IAA genes function in the fruit development and ripening of papaya (Carica papaya L.) is largely unknown.

Results: In this study, a comprehensive identification and a distinctive expression analysis of 18 C. papaya Aux/IAA (CpIAA) genes were performed using newly updated papaya reference genome data. The Aux/IAA gene family in papaya is slightly smaller than that in Arabidopsis, but all of the phylogenetic subfamilies are represented. Most of the CpIAA genes are responsive to various phytohormones and expressed in a tissues-specific manner. To understand the putative biological functions of the CpIAA genes involved in fruit development and ripening, quantitative real-time PCR was used to test the expression profiling of CpIAA genes at different stages. Furthermore, an IAA treatment significantly delayed the ripening process in papaya fruit at the early stages. The expression changes of CpIAA genes in ACC and 1-MCP treatments suggested a crosstalk between auxin and ethylene during the fruit ripening process of papaya.

Conclusions: Our study provided comprehensive information on the Aux/IAA family in papaya, including gene structures, phylogenetic relationships and expression profiles. The involvement of CpIAA gene expression changes in fruit development and ripening gives us an opportunity to understand the roles of auxin signaling in the maturation of papaya reproductive organs.

Keywords: Auxin, Aux/IAA family, Papaya, Expression profile, Fruit ripening

Background

Auxin, the most ubiquitous phytohormone in plants, is involved in various biological processes, such as organ development, fruit ripening, responses to environmental stimuli and phototropism [1, 2]. At an early stage in auxin signal transduction, several gene families, including Aux/IAA (auxin/indole-3-acetic acid), GH3 (Gretchen Hagen3) and SAUR (small auxin up RNA), respond to auxin treatments [3]. The Aux/IAA genes represent a classical auxin-responsive gene family that are mostly rapidly induced by auxin [4]. The first Aux/IAA family member was isolated in soybean and then was identified in many different plant species [5–7]. As an important component of the auxin signaling pathway, Aux/IAA proteins are involved in the expression regulation of a large number genes downstream of auxin signaling through the release of auxin response factors (ARFs) [8].

Most of the Aux/IAA proteins contain four conserved domains, I, II, III and IV [9, 10]. Briefly, domain I is a repressor domain that contains a leucine repeat motif (LxLxL) [11]. Recent studies found that the TOPELESS (TPL) protein mediates auxin-dependent transcriptional repression by interacting with domain I of an Aux/IAA protein [12]. Domain II is a key component responsible for the instability of Aux/IAA proteins and is recognized by the ubiquitin-proteasome protein (TIRI) degradation
pathway. Domains III and IV are the binding sites for the formation of Aux/IAA-ARF hetero-dimerization [13, 14].

Due to the functional redundancy among family members, phenotypes associated with a loss of function in Aux/IAA genes are scarce. Based on the characterizations of gain-of-function mutants in model plants, the diverse roles of Aux/IAAs in plants have been well elucidated. In Arabidopsis, the iaa16–1 mutation, a dominant gain-of-function mutation in IAA16, reduces the sensitivity to both auxin and abscisic acid (ABA) [15]. Domain II mutations in other AUX/IAAs affect various aspects of plant growth and development, including lateral root formation, gravitropism, phototropism, pollination and adventitious formation [16].

Recently, many studies have revealed the involvement of Aux/IAA proteins in the development of reproductive organs. In Arabidopsis, the over-expression of IAA1 with a domain II mutation damages cell elongation and cell division in inflorescences [17]. In maize, two Aux/IAA proteins, BIF1 and BIF4, control inflorescence architecture by regulating the expression of BARREN STALK1, which is a basic helix-loop-helix transcriptional regulator necessary for axillary meristem formation, that shows a striking boundary expression pattern [18]. Due to the minimal level of auxin signaling, the inflorescences of a dominant IAA7 mutant, axr2, display negative phototropism, with a similar response curve to the positive phototropism of Arabidopsis wild-type stems [19]. In tomato, SlIAA9 is a negative auxin response regulator and its down-regulation triggers fruit set before pollination [20]. Sl-IAA27, another Aux/IAA protein that is closely related to SlIAA9 in terms of sequence homology, regulates fruit initiation and development in a distinct manner [21].

As important components of the auxin signaling pathway, Aux/IAA family proteins have been identified in many plant species. Thus far, 34 Aux/IAA family members in Arabidopsis, 26 members in tomato (Solanum lycopersicon), 34 members in maize (Zea mays L.), 17 members in Medicago (Medicago truncatula), 27 members in cucumber (Cucumis sativus L.), and 31 members in rice (Oryza sativa L.) have been identified [10, 22–26]. As a climacteric fruit, the market value of papaya is significantly limited by its short-term shelf life and rapid softening [27]. Fruit ripening is associated with auxin signaling involved in the postharvest storage of fruits [28]. The elucidation of how AUX/IAA-mediated auxin signaling function in postharvest decay is therefore of importance to both plant biologists and agronomists [29]. In the present work, we provide comprehensive information on the genomic structures, sequence homology levels and expression patterns of Aux/IAA genes in papaya. Our studies provide a new insight into the complexity of papaya Aux/IAA expression during the fruit ripening process. The distinct spatio-temporal expression patterns of papaya Aux/IAA (henceforth referred to as CplIAA) genes, and their differential responses to ripening-related hormones, provide clues for the functional characterizations of the auxin-responsive genes involved in fruit development and ripening.

Methods

Plant material, growth conditions and hormone
Two-year-old C. papaya cv. ‘Sunrise’ trees were planted in a 3 m × 3 m plot with drip irrigation at the field experimental station (Match 2014) in Lingnan Normal University, Zhanjiang, China. The distance among trees are: 2 m between rows and 1.5 m along rows. Papaya fruits at the color break stage (5% ≤ peel color ≤ 15% yellow) were harvested in October 2014. The selected fruit were washed with deionized water, and then dipped in 75% (w/w) alcohol for 45 s to eliminate potential microbes. This station has a gentle tropical oceanic monsoon climate with an average daily temperature of 22.8°C, minimum temperature of 15.7°C and maximum temperature of 28.8°C. The total yearly rainfall ranges between 1,100 and 1,800 mm [30]. The environmental conditions were strictly recorded during the sampling period.

Five tissue samples were used for tissue-specific expression pattern analysis. In detail, the shoot, leaf, root samples were selected from 2-years-old papaya trees. The fruit samples were harvested from fruits at the color break stage (5% ≤ peel color ≤ 15% yellow) of two-old-year trees. The flower samples were selected from mature flower with opened petals of two-old-year trees.

Fruit samples were soaked in liquid Murashige and Skoog (MS) medium with various hormone treatments, including 10 μM IAA for 3 h, 10 μM salicylic acid (SA) for 3 h, 10 μM abscisic acid (ABA) for 3 h and 10 μM gibberellic acid for 3 h. For ethylene regulation treatments, 1-aminocyclopropane-1-carboxylic acid (ACC) and 1-methylethylene (1-MCP) treatments were included. For ACC treatment, papaya fruits were dipped into 10 μM ACC solutions for 3 h and then taken out to be air-dried at room temperature. For 1-MCP treatment, papaya fruits were incubated with 300 nL L⁻¹ of 1-MCP, which was calculated from the active ingredient, for 16 h in the airtight containers. Untreated fruits were used as controls. Samples from each treatment were collected, and the total RNA was isolated for qRT-PCR analysis.

The papaya fruit samples at different developmental stages were harvested at 20, 40, 60, 80, 100 and 120 days after anthesis. The time points after harvest of 0, 5, 10, 15, 20 and 25 d were defined as postharvest stage 1–6, respectively. For each fruit sample, the fruit kernel was excluded, and the sarcocarp with the pericarp was chopped up, frozen in liquid nitrogen and stored at –80°C for further experiments. To avoid environmental effects, the fruits were collected from different places in the field.
RNA isolation and quantitative real time PCR (qRT-PCR)
Total RNA from different organs, such as shoots, leaves, flowers, fruits and roots, was extracted using a Plant RNeasy Mini kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions [31]. To test the expression of CplIAA genes during different fruit developmental, 30 fruits were divided into six groups (five fruits in each group). To test the expression of CplIAA genes during different fruit ripening stages, another 30 fruits were divided into six groups (five fruits in each group).

Genomic DNA contamination in total RNA was removed by DNase I. The qRT-PCR analysis was performed as previously described [32]. To visualize the qRT-PCR data, a heat map was constructed by MeV software using the average Ct values. The CplActin gene was used as an internal standard to calculate relative fold-differences based on comparative cycle threshold (2^-ΔΔCt) values [33]. All of the primer sequences are listed in Additional file 1.

Genome-wide identification of CplIAA genes
Arabidopsis IAAs protein sequences were used to search against the C. papaya proteome database on Phytozome 11.0.2 using the TBLASTN algorithm (http://phytozome.jgi.doe.gov). The hidden Markov model profile of the Aux/IAA protein family (Pfam: 02309 AUX/IAA family) was employed to identify the Aux/IAA genes from the papaya genome. All of the obtained sequences were sorted as unique genes for a detailed analysis.

Phylogenetic tree building, gene structure and motif prediction
A multiple sequence alignment was performed with the full length sequences of CplIAA proteins using ClustalW and the default parameters. A phylogenetic tree was constructed with the aligned AtIAA protein sequences and CplIAA protein sequences using MEGA5.1 (http://www.megasoftware.net/) employing the neighbor-joining method. Bootstrap values were calculated from 1,000 iterations. The predictions of four classical domains (I, II, III and IV) in CplIAA proteins was performed by the software MEGA 5.1. The DNA and cDNA sequences corresponding to each predicted gene were obtained from Phytozome 11.0.2, and the intron distribution patterns of the CplIAA genes were analyzed by the software GSDS (http://gsds.cbi.pku.edu.cn/) [34].

Analysis of hormone-related cis-elements
The promoter regions (1,500 bp before ATG) of the CplIAA genes were scanned for several hormone-related cis-elements, including the ABA-responsive element (ABRE), gibberellin-responsive element (GARE), SA-responsive element (SARE), and auxin-responsive element (AuxRE). Furthermore, the results were confirmed by the software PLACE (http://www.dna.affrc.go.jp/).

Statistical analysis
Differences between values were calculated using Student's t-test at a significance level of 0.05 in Microsoft Excel software. All of the expression analyses were performed for five biological replicates, and the values shown in the figures represent the average values of five replicates.

Results
Genome-wide identification of CplIAA genes
The new version (v0.4) of the papaya genome, which is approximately 135 Mb arranged in 4,114 contigs with at least one gene model, was used to identify 18 IAA genes in C. papaya. The scores of the search results for CplIAA proteins are listed in Additional file 2. All of these genes were named according to the phylogenetic relationship between C. papaya and the model plant Arabidopsis. Detailed information on these CplIAA genes, including gene names, locus IDs, open reading frame (ORF) lengths, intron numbers and deduced polypeptide basic parameters, is listed in Additional file 3.

Protein structure, gene structure and phylogenetic relationship analysis of IAA family genes
The multiple sequence alignment results showed that four conserved domains (I, II, III and IV) were contained in most CplIAA proteins. A classical LxLxLx motif was identified in domain I of most of the CplIAA proteins, except CplIAA17, CplIAA29 and CplIAA31-33. Two nuclear localization signals (NLSs), a bipartite NLS and a Simian virus 40-like NLS, were found in most of the identified CplIAA proteins. The bipartite NLS, containing two stretches of lysine/arginine residues, was found between domains I and II, while the Simian virus 40-like NLS, consisting of several positively charged amino acid residues, was found in domain IV [22]. These putative NLSs indicate that CplIAAs are nuclear-located proteins (Fig. 1). The distribution pattern of the exons and introns for each CplIAA gene was analyzed by a comparison of the full-length transcript sequences with the corresponding genomic DNA sequences. The number of introns varied from one to four in the CplIAA family and is similar to the numbers found in other plant species [24, 25, 35] (Additional file 4).

To explore the phylogenetic relationships of the IAA proteins between papaya and the model plant Arabidopsis, a phylogenetic tree was constructed, including 31 members in Arabidopsis and 18 members in C. papaya [36]. An unrooted phylogenetic tree was generated by the alignments of these IAA protein sequences. The phylogenetic tree grouped all of the IAAs into three
major classes, Groups I, II and III, with well-supported bootstrap values. Group I was further divided into five subgroups, a, b, c, d and e (Fig. 2a).

The Multiple Expectation Maximization for Motif Elicitation (MEME) web server (http://meme-suite.org/) was used to analyze the domain distributions in *C. papaya* and *Arabidopsis* IAA proteins. Four different conserved domains were mapped to all of the IAA proteins, as seen in Fig. 2b. Interestingly, most of the IAA proteins containing the four domains belonged to Groups I and II, while most of the IAA proteins with truncated domains were classed into Group III. For the CpIAA proteins, ‘domain I’ is missing in CpIAA29, CpIAA32 and CpIAA33; ‘domain II’ is missing in CpIAA31, CpIAA32 and CpIAA33; only CpIAA12 does not contain ‘domain III’; and ‘domain IV’ is missing in CpIAA11, CpIAA19, CpIAA27 and CpIAA31 (Fig. 2b).

Analysis of hormone-related cis-elements in the promoter regions of CpIAA and AtIAA genes

Some cis-elements that are involved in hormone-related gene expression regulation have been identified in plants, including ABRE, AuxRE, SARE and GARE [3]. We scanned the 1,500-bp upstream promoter regions found in most of the *CpIAA* and *AtIAA* genes with five important hormone-related cis-elements to gain insights into how the expression levels of *CpIAA* and *AtIAA* genes were responsive to hormone stimuli. Several hormone-related cis-elements were enriched in the promoter regions of *CpIAA* genes. Interestingly, the promoters of *CpIAA1*, *CpIAA2* and *CpIAA3* contained many hormone-related cis-elements (more than five elements). One AuxRE, two SAREs and two GAREs were contained in the promoter of *CpIAA2*; three AuxREs, one ABRE and one SARE were contained in the promoter of *CpIAA1*; and three AuxREs, one ABRE and one GARE were contained in the promoter of *CpIAA3* (Fig. 3a). For AtIAA family genes, the four hormone-related cis-elements were enriched in the promoter regions. The promoters of *AtIAA19*, *AtIAA20* and *AtIAA30* contained many hormone-related cis-elements (more than five elements). Three AuxREs and two ABREs were contained in the promoter of *AtIAA19*; one AuxRE, three ABRE and one SARE were contained in the promoter of *AtIAA20*; and two AuxREs, one
ABRE and two SARE were contained in the promoter of

\textit{CpIAA3} (Fig. 3a). The numbers of stress-related \textit{cis}-

elements in the upstream 1.5-kb regions of the

\textit{CpIAA} and

\textit{AtIAA} family genes are listed in Additional file 5.

Expression of \textit{CpIAA} and \textit{AtIAA} genes in response to auxin, ABA, SA and GA treatments

Auxin, ABA, SA and GA are four major hormones involved in fruit development and ripening [37–39]. The expression levels of \textit{CpIAA} genes were tested in the \textit{C. papaya} fruits by qRT-PCR under auxin, ABA, SA and GA treatments. The expression levels of

\textit{CpIAA3},

\textit{CpIAA8},

\textit{CpIAA11} and

\textit{CpIAA29} were significantly up-regulated over five-fold under the auxin treatment, while

\textit{CpIAA31} and

\textit{CpIAA32} were significantly reduced by the auxin treatment (Fig. 3b). Under the SA treatment,

\textit{CpIAA2},

\textit{CpIAA27},

\textit{CpIAA19} and

\textit{CpIAA12} were significantly induced, while

\textit{CpIAA14} and

\textit{CpIAA31} were significantly down-regulated (Fig. 3c). Under the GA treatment,

\textit{CpIAA2},

\textit{CpIAA7},

\textit{CpIAA12} and

\textit{CpIAA31}, were significantly induced and no \textit{CpIAA} gene was significantly reduced (Fig. 3d). The expression levels of

\textit{CpIAA17},

\textit{CpIAA19} and

\textit{CpIAA15b} were up-regulated under ABA treatment (Fig. 3e).

The expression levels of \textit{AtIAA} genes response to various hormones was publicly available. Furthermore, the expression of \textit{AtIAA} genes in response to Auxin, SA, ABA and GA were searched at NCBI in the dataset GSE39384. Interestingly, more than two AuxREs were contained in the promoter regions of \textit{AtIAA} genes, \textit{AtIAA} and \textit{AtIAA} were significantly up-regulated by auxin treatment. Few GAREs were contained in the promoter regions of \textit{AtIAA} family gene, and the expression of most \textit{AtIAA} family genes showed no changes to GA treatment (Additional file 6).

\textbf{CpIAA gene expression patterns in different \textit{C. papaya} tissues}

There is a close relationship between biological functions and the organ-specific expression patterns of \textit{CpIAA} genes. In this study, the spatio-specific expression of each member of the \textit{CpIAA} family was assessed in various tissues, such as roots, flowers, shoots, leaves and fruits. The \textit{CpIAA} gene transcript accumulations were detectable in four different organs. However, some \textit{CpIAA} genes displayed a clear preferential expression in a specific organ, such as \textit{CpIAA11} showing the highest expression level in shoot, \textit{CpIAA8}, \textit{CpIAA17} and
CpIAA32 in leaf, CpIAA14 in root, CpIAA7 and CpIAA15b in flower, and CpIAA1, CpIAA12 and CpIAA33 in fruit (Fig. 4). Overall, the organ-preferential expression displayed by some CpIAA genes could be indicative of their involvement in specific C. papaya tissues and developmental processes.

Expression of CpIAA genes at different fruit developmental and ripening stages
Several genetic studies have uncovered that fruit development and ripening is an auxin-related process [40]. Firstly, we analyzed the expression levels of CpIAA genes during six different developmental stages. Several CpIAA genes, including CpIAA19, CpIAA3, CpIAA32 and CpIAA15b, were induced during the developmental process and some CpIAA genes, including CpIAA17, CpIAA29 and CpIAA33, were reduced (Fig. 5a). The six different developmental stages are shown in Fig. 5b.

To elucidate the functions of the CpIAA genes during the fruit ripening period, their expression levels at six different postharvest stages were analyzed. The expression levels of most of the CpIAA genes were significantly changed during fruit ripening and softening. CpIAA3, CpIAA19 and CpIAA31 expression levels significantly increased, while CpIAA2, CpIAA11, CpIAA14 and CpIAA29 expression levels significantly decreased. The expression of CpIAA27 peaked at Stage 5, and then declined slightly at Stage 6. The expression of CpIAA15b was induced significantly at Stage 3, and reached its peak at Stage 4 (Fig. 6).

Expression of CpIAA genes under ACC and 1-MCP treatments
Ethylene is a major hormone that enhances fruit ripening. In our study, an ethylene precursor, ACC, and an ethylene inhibitor, 1-MCP, were used to test how the expression of Aux/IAA family genes was involved in fruit ripening [41]. The data showed that the expression of CpIAA3, CpIAA15a, CpIAA15b, CpIAA19, CpIAA27 and CpIAA32 was significantly induced by ACC treatment;
Fig. 4 Tissues-specific expression patterns of CpIAA genes. The expression patterns of the CpIAA genes in the five indicated organs were analyzed by absolute qRT-PCR. The data were analyzed by five independent replicates, and the standard deviations are shown with error bars.

Fig. 5 Heatmap of CpIAA gene expression during different fruit developmental stages. (a) Changes in the expression levels during different fruit developmental stages, which are schematically depicted above the displayed qRT-PCR data, are relative to RNA accumulation levels. Levels of down-regulated expression (green) or up-regulated expression (red) are shown on a log2 scale from the highest to the lowest expression for each CpIAA gene. Significant (P < 0.05) differences are indicated by an asterisk. (b) Different fruit developmental stages are shown as pictures.
while the expression of CpIAA2, CpIAA9, CpIAA17, CpIAA29 and CpIAA31 was significantly up-regulated by 1-MCP treatment. Four genes, including CpIAA2, CpIAA17, CpIAA29 and CpIAA31, were significantly reduced under ACC treatment; while two genes, CpIAA3 and CpIAA32, were significantly down-regulated under 1-MCP treatment (Fig. 7).

Discussion

Auxin is key signaling molecule for most growth and developmental processes in plants [42–45]. Aux/IAAs repress the expression of down-stream genes by binding to ARFs, which are also involved in auxin gene expression responses [46]. However, in papaya, there is little available information on IAA genes. The characterization and expression pattern analysis of CpIAA genes allowed us to uncover the mechanisms behind auxin involvement in fruit development and the ripening of papaya. In total, 18 IAA genes were identified in papaya, which was less than in model plants, such as Arabidopsis (34 members) and rice (31 members) [47].

In plants, the expression levels of IAA family genes was regulated by different hormones [35]. Our data showed that the transcript levels of many CpIAA genes...
were regulated by various hormone treatments (Fig. 3b–e). Consistent with the changes in CplAA expression, the promoter analysis revealed the presence of several well-identified hormone response elements in the promoter regions of the majority of CplAA genes (Fig. 3a). This suggested that crosstalk among various hormones existed in papaya.

Many AtIAA and OsIAA genes have been identified in previous reports [16, 48]. Comparative studies on phylogenetic relationships may provide useful information on the respective biological functions in papaya. Floral initiation is a major step in the life cycle of plants. In Arabidopsis, a gain-of-function mutation in IAA7 reduces the light-dependent gravitropism and phototropism of inflorescences, and confers late flowering under short-day light [46, 49]. Interestingly, CplIAA7, a orthologous gene of AtIAA7, was most highly expressed in flowers (Fig. 4), suggesting a putative role for CplIAA7 in the flowering process of papaya. AtIAA19 is highly expressed in stamen filaments, and its gain-of-function mutant, msg2, is defective in stamen filament development [50]. However, the expression of CplIAA19, a orthologous gene of AtIAA19, is very weak in flowers (Fig. 4). In addition, AtIAA14 may be involved in both lateral and adventitious root formation [51]. The orthologous gene of AtIAA14 in papaya, CplIAA14, was preferentially expressed in roots, indicating its importance in papaya root development.

We also built a phylogenetic tree to show the relationships of IAA genes between papaya and rice (Additional file 7). In rice, OsIAA11 and OsIAA23 both play essential roles in root system development [52, 53]. Based on the phylogenetic tree, the homologous gene of OsIAA11 in papaya is CplIAA17 and the homologous gene of OsIAA23 in papaya is CplIAA15b, suggesting that these two genes may play roles in papaya root development.

Fruit development and ripening are complex developmental programs characterized by intense metabolic and textural changes [54]. Previous studies have presumed a close relationship between auxin and fruit development and ripening in various plant species [55]. Endogenous IAA plays roles in the flower and fruit development in papaya. However, how IAA genes function in the fruit development and ripening of papaya is largely unknown. In tomato, a model plant in fruit development studies, many IAA genes were identified as being involved in fruit development and ripening. For example, SIIAA17 regulates quality parameters during tomato fruit development by interacting with several ARF proteins [54, 56]. The expression of CplIAA17, a homologous gene of SIIAA17 in papaya, was significantly reduced during the fruit developmental process, suggesting a putative function in papaya fruit development and ripening (Fig. 5). SIIAA9, an Aux/IAA family member in tomato, takes part in fruit development. SIIAA9 showed constitutive expression in different organs and a rapid induction by auxin [6]. In our study, the expression of CplIAA9, the papaya homolog of SIIAA9, was also detectable in all of the tested organs and was induced significantly by an auxin treatment (Fig. 3b). Silencing SIIAA27, a gene closely related to SIIAA9 in terms of sequence homology, causes a dramatic loss of fertility in tomato [21]. Here, the homologous gene of SIIAA27 has been identified in papaya (CplIAA27). The expression of CplIAA27 was significantly increased during the fruit ripening process and reached its peak at Stage 5 (Fig. 6). Our data indicated that CplIAA9, CplIAA17 and CplIAA27 may be candidate genes for further studies on papaya fruit ripening. On the other hand, it has been widely known that ethylene plays an important role during the ripening process of climacteric fruit [41]. Some studies showed that papaya displayed a dependence on ethylene, with an increase in production during its ripening process [57]. The significant changes in the expression of some CplIAA family genes under ACC and 1-MCP treatments indicated a crosstalk between auxin and ethylene during the ripening process of papaya fruits.

Conclusion

In this study, comprehensive information on the Aux/IAA family in papaya, including gene structures, phylogenetic relationships and expression profiles, was provided. The involvement of CplIAA gene expression changes in fruit development and ripening gives us an opportunity to understand the roles of auxin signaling in the maturation of papaya reproductive organs.

Additional files

Additional file	Description	Size	
Additional file 1	The primer sequences of papaya Aux/IAA family genes. (DOCX 11 kb)		
Additional file 2	The scores of the search results for CplAA proteins. (DOCX 12 kb)		
Additional file 3	Aux/IAA family genes in Carica papaya. (DOCX 15 kb)		
Additional file 4	Exon-intron structure analysis of CplAA genes. (DOCX 35 kb)		
Additional file 5	The numbers of stress-related cis-elements in the upstream 1.5-kb regions of the CplAA and AtIAA family genes. (DOCX 13 kb)		
Additional file 6	The expression levels of AtIAA genes response to various hormones. (DOCX 294 kb)		
Additional file 7	The relationships of IAA genes between papaya and rice. (DOCX 77 kb)		

Abbreviations

ABA: Abscisic acid; ABRE: ABA-responsive element; ARFs: Auxin response factors; Aux/IAA: Auxin/Indole-3-acetic acid; AuxRE: Auxin-responsive element; CplAA: C. papaya Aux/IAA; GARE: Gibberellin-responsive element; GCC: Ethylene-responsive element; GH3: Gretchen hagen3; MEME: Multiple expectation maximization for motif elicitation; MS: Murashige and skoog; NLS: Nuclear localization signals; ORF: Open reading frame; qRT-PCR: Quantitative real time PCR; SA: Salicylic acid; SARE: SA-responsive element; SAUR: Small auxin up RNA; TPL: TOPLESS
Acknowledgments
The authors would like to thank Shangguo Feng for help in bioinformatic analysis. Editing of the manuscript was provided by International Science Editing company.

Funding
This work was supported by the National Natural Science Foundation of China (grant no. 31201586; Science and Technology Program of Guangdong, China (grant no. 2014A020208138 and 2015A020208018); Natural Science Foundation of Guangdong Province, China (grant no. 2016A030307016); National Undergraduate Training Programs for Innovation and Entrepreneurship (grant no.201510579240 and 201510579300); Natural Science Foundation of Lingnan Normal University (grant no. L2L1507). All these funding play roles in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The datasets supporting the conclusions of this article are included within the article and its additional files.

Authors’ contributions
KL, SF, SZ and HL carried out the molecular studies. JZ took care the plants. KL and CY drafted the manuscript. SZ and CS performed the cis-motifs analysis. KL and CY conceived of the study, and participated in its design. KL acquired of funding. CS helped to acquire the plants. KL, SF, SZ and HL carried out the molecular studies. JZ took care the plants.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
The authors declare that they have no competing interests.

Availability of data and materials
The datasets supporting the conclusions of this article are included within the article and its additional files.

Authors’ contributions
KL, SF, SZ and HL carried out the molecular studies. JZ took care the plants. KL and CY drafted the manuscript. SZ and CS performed the cis-motifs analysis. KL and CY conceived of the study, and participated in its design. KL acquired of funding. CS helped to acquire the plants. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The C. papaya cv. ‘Sunrise’ trees are widely planted in China. This project uses plant materials and does not utilize transgenic technology. It does not require ethical approval.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong 524048, China. 2College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China.

Received: 9 July 2016 Accepted: 25 April 2017
Published online: 05 May 2017

References
1. Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol. 2002;49(3–4):373–85.
2. Shen C, Yue R, Sun T, Zhang L, Yang Y, Wang H. OsARF16, a transcription factor regulating auxin response, is required for iron deficiency response in rice (Oryza sativa L.). Plant Sci. 2015;231:148–58.
3. Feng S, Yue R, Tao S, Yang Y, Zhang L, Xu M, Wang H, Shen C. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. J Integr Plant Biol. 2015;57(9):783–95.
4. Yamamoto M, Yamamoto KT. Differential effects of 1-naphthaleneacetic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid on the gravitropic response of roots in an auxin-resistant mutant of arabidopsis, aux1. Plant Cell Physiol. 1998;39(6):660–4.
5. Walker JC, Key JL. Isolation of cloned CDNA’s to auxin-responsive poly(A)RNAs of elongating soybean hypocotyl. Proc Natl Acad Sci U S A. 1982;79(23):7185–9.
6. Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaibouni S, Lynch A, Pech JC, Bouzyazen M. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell. 2005;17(10):2676–92.
7. Jun N, Gaohang W, Zhenxing Z, Huaxuan Z, Yunong W, Ping W. OsIAA23-mediated auxin signaling defines postembryonic maintenance of QC in rice. Plant J. 2011;68(3):433–42.
8. Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ. AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell. 2001;13(12):2809–22.
9. Abel S, Theologis A. A polymorphic bipartite motif signals nuclear targeting of early auxin-inducible proteins related to PSA44 from pea (Pisum sativum). Plant J. 1995;8:187–96.
10. Shen C, Yue R, Yang Y, Zhang L, Sun T, Xu L, Tie S, Wang H. Genome-wide identification and expression profiling analysis of the Aux/IAA gene family in Medicago truncatula during the early phase of Sinorhizobium meliloti infection. PLoS One. 2014;9(9):e107495.
11. Tiwari SB, Hagen G, Guilfoyle TJ. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell. 2004;16(2):533–43.
12. Szymeneyi H, Hannon M, Long JA. TOLPRES mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science. 2008;319(3621):1384–6.
13. Ullman S, Hagen G, Guilfoyle TJ. ARF1, a transcription factor that binds to auxin response elements. Science. 1997;276(5320):1865–8.
14. Shen C, Yue R, Sun T, Zhang L, Xu L, Tie S, Wang H, Yang Y. Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula. Front Plant Sci. 2015;6:73.
15. Rinaldi MA, Liu J, Enders TA, Bartel B, Strader LC. A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid in Arabidopsis. Plant Physiol. 2016;170:651–65.
16. Uhara T, Okushima Y, Mimura T, Tasaka M, Fukaki H. Domain II mutations in CRANE/AA1A suppress lateral root formation and affect shoot development in Arabidopsis thaliana. Plant Cell Physiol. 2008;49(7):1025–38.
17. Ku SJ, Park JY, Ha SB, Kim J. Overexpression of IAA1 with domain II mutation impairs cell elongation and cell division in inflorescences and leaves of Arabidopsis. J Plant Physiol. 2009;166(5):548–53.
18. Galli M, Liu Q, Moss BL, Malcomber S, Li W, Gaines C, Federici S, Roshchikov J, Meeley R, Nemhauser JL, et al. Auxin signaling modules regulate maize inflorescence architecture. Proc Natl Acad Sci U S A. 2015;112(14):13372–7.
19. Sato A, Sasaki S, Matsuoka J, Yamamoto KT. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2. Plant Signal Behav. 2015;10(11):e99088.
20. Wang H, Schauer N, Usadel B, Frasse P, Zouine M, Hermoudt M, Latche A, Pech JC, Fernie AR, Bouzyazen M. Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell. 2009;21(5):1428–52.
21. Bassa C, Mila I, Bouzyazen M, Audran-Delalande C. Phenotypes associated with down-regulation of SL-IAA27 support functional diversity among Aux/IAA family members in tomato. Plant Cell Physiol. 2012;53(9):1583–93.
22. Jian W, Zhen P, Liu S, He Y, Lai C, Kong F, Jie W, Gang L. Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model. Mol Genet Genomics. 2012;287(4):295–311.
23. Audran-Delalande C, Bassa C, Mila I, Regaid F, Zouine M, Bouzyazen M. Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato. Plant Cell Physiol. 2012;53(4):659–72.
24. Wang Y, Deng D, Bao Y, Lu Y, Xie Q. Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays L.). Mol Biol Rep. 2010;37(8):3991–4001.
25. Jain M, Kaur N, Gang R, Thakur JK, Tyagi AK, Khurana JP. Structure and functional classification of AUX/IAA proteins from rice (Oryza sativa). Funct Integr Genomics. 2006;6(1):47–59.
26. Jian W, Liu S, Guan X, Chen L, He Y, Jie W, Gang L. Genome-wide identification and transcriptional profiling analysis of auxin response-related gene families in cucumber. BMC Res Notes. 2014;7(1):1–13.
27. Jain SK, Verma RC, Murdia LK, Jain HK, Sharma GP. Optimization of process parameters for osmotic dehydration of papaya cubes. J Food Sci Technol. 2011;48(2):211–7.
28. Liu K, Wang J, Li H, Zhong J, Feng S, Pan Y, Yuan C. Identification, expression and IAA-Amide synthetase activity analysis of Gretched Hagen 3 in papaya fruit (Carica papaya L) during postharvest process. Front Plant Sci. 2016;7:1555.
29. Chen J, Mao L, Lu W, Ying T, Luo Z. Transcriptome profiling of postharvest papaya fruit in response to exogenous auxin and abscisic acid. Planta. 2016;243(1):1183–97.
41. Watkins CB. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. J Exp Bot. 2016;67(4):1479–93.

42. Liu K, Yuan C, Liu J, Zhang L, Sun T, Wang H. Involvement of endogenous salicylic acid in iron-deficiency responses in Arabidopsis. J Exp Bot. 2016;67(14):4091–100.

43. Pan L, Zeng W, Niu L, Lu Z, Wang X, Liu H, Cui G, Zhu Y, Chu J, Li W, et al. Comprehensive RNA-Seq analysis of the Aux/IAA superfamily in Arabidopsis. Nat Genet. 2016;48(5):574–80.

44. Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B, et al. Auxin receptor binding sites intersect hormonal signals in the regulation of tomato fruit ripening. PLoS Genet. 2016;12(3):e1006076.

45. Lopez-Bucio J, Ortiz-Castro R, Ruiz-Herrera LF, Juarez CV, Hernandez-Madrigal F, Carreón-Abud Y, Martinez-Trujillo M. Chromatin induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana. Biometals. 2015;28(2):353–65.

46. Zhu ZX, Liu Y, Liu SJ, Mao CZ, Wu YR, Wu P. A gain-of-function mutation in OIAA11 affects lateral root development in rice. Mol Plant. 2012;5(1):154–61.

47. Ni J, Zhu Z, Wang G, Shen Y, Zhang Y, Wu P. Infragenic suppressor of Osia23 reveals a conserved tryptophan residue crucial for protein-protein interactions. PLoS One. 2014;9(10):e111538.

48. Su LY, Audran C, Bouzayen M, Roustian JP, Chevrich C. The Aux/IAA, SI-IAA17 regulates quality parameters over tomato fruit development. Plant Signal Behav. 2015;10(11):e1071001.

49. Remington DL, Vision TJ, Guilfoyle TJ. The auxin transporter, OsAUX1, is involved in primary root and root hair formation of rice (Oryza sativa). Mol Plant. 2014;7(3):1738–52.

50. Pan L, Zeng W, Niu L, Lu Z, Wang X, Liu H, Cui G, Zhu Y, Chu J, Li W, et al. Comprehensive RNA-Seq analysis of the Aux/IAA superfamily in Arabidopsis. Nat Genet. 2016;48(5):574–80.

51. Lopez-Bucio J, Ortiz-Castro R, Ruiz-Herrera LF, Juarez CV, Hernandez-Madrigal F, Carreón-Abud Y, Martinez-Trujillo M. Chromatin induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana. Biometals. 2015;28(2):353–65.

52. Zhu ZX, Liu Y, Liu SJ, Mao CZ, Wu YR, Wu P. A gain-of-function mutation in OIAA11 affects lateral root development in rice. Mol Plant. 2012;5(1):154–61.

53. Ni J, Zhu Z, Wang G, Shen Y, Zhang Y, Wu P. Infragenic suppressor of Osia23 reveals a conserved tryptophan residue crucial for protein-protein interactions. PLoS One. 2014;9(10):e111538.

54. Su LY, Audran C, Bouzayen M, Roustian JP, Chevrich C. The Aux/IAA, SI-IAA17 regulates quality parameters over tomato fruit development. Plant Signal Behav. 2015;10(11):e1071001.

55. Breitel DA, Chappell-Maar L, Meir S, Panizel I, Puig C, Hao Y, Yifhar T, Yasuor H, Zouine M, Bouzayen M, et al. AUXIN RESPONSE FACTOR 2 intersects hormonal signals in the regulation of tomato fruit ripening. PLoS Genet. 2016;12(3):e1006076.

56. Su L, Bassa C, Audran C, Mila I, Cheniclet C, Chevalier C, Bouzayen M, Roustian JP, Chevrich C. The auxin SI-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion. Plant Cell Physiol. 2014;55(11):1969–76.

57. Ballbontin C, Gaete Eastman C, Vergara M, Herrera R, Moyea Leon MA. Treatment with 1-MCP and the role of ethylene in aromadventement of mountain papaya fruit. Postharvest Biol Technol. 2007;43(1):67–77.