Influence of Storage and Roasting on the Quality Properties of Kernel and Oils of Raw and Roasted Peanuts

Fahad Al Juhaimi¹*, Kashif Ghafoor¹, Elfadil E Babiker¹, Mehmet Musa Özcan², Oladipupu Q. Aadiamo¹ and Omer N. Alsawmahi¹

¹ Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, SAUDI ARABIA
² Department of Food Engineering, Faculty of Agriculture, Selcuk University, 42031 Konya, TURKEY

Abstract: The changes in chemical properties of the peanut varieties (NC-7 and ÇOM) in the raw and roasted forms stored at 30°C for 8 months were monitored. Acidity and peroxide values of raw and roasted NC-7 and ÇOM kernel oils increased during storage. The unsaturated fatty acids such as oleic, linoleic acids of roasted peanut oils gradually decreased during storage. While the oleic acid contents of raw NC-7 oil changed 46.14% (month 0) and 43.14% (month 8), the oleic acid contents of roasted NC-7 kernel oils varied between 42.38% (month 8) and 45.61% (month 0) during storage. In addition, while the oleic acid contents of raw ÇOM kernel oil decreased from 49.87% (month 0) to 46.09% (month 7), the oleic acid contents of roasted ÇOM kernel oil decreased from 48.88% (month 0) to 45.24% (month 8) during storage. The highest linoleic acid were found in the initial periods of storage for raw and roasted NC-7 and ÇOM oils. In addition, the α-tocopherol contents of both raw and roasted peanut kernel oils changed between 20.38 mg/100 g (0.month) and 17.58 mg/100 g (month 8) to 21.45 mg/100g (month 0) and 18.64 mg/100 g (month 8) during storage, respectively. Significant variations were observed in tocopherol contents of peanut varieties due to processing.

Key words: peanut, roasting, storage, fatty acid composition, tocopherols

1 INTRODUCTION

Peanut (Arachis hypogaea L.) is an the important edible oilseed crop cultivated in tropical and sub-tropical countries. The peanut plays an important role in the economy of several countries¹. Peanuts contain important components for human nutrition including tocopherols, resveratrol, protein². In addition to cooking, peanut oil is also utilized in cosmetic, surfactants, pharmaceuticals and margarines manufacture³–⁶. Microwave energy and conventional heating are currently being employed in different food processing operations such as drying, tempering, baking, pasteurization, cooking and sterilization of foods⁷–⁹. The process temperature, unsaturated fatty acids contents and the occurrence of trace metals, enzymes, and antioxidants e.g. tocopherols may influence microwave heating¹⁰,¹¹. Roasting promotes different changes in the kernels¹⁰,¹². Gou et al.¹⁰ studied the influence of oven roasting on the physicochemical properties of almond observed an increase in rancidity when treatment time was increased attributed to autooxidation. The existing reports on the storage of peanut kernel investigated the effects of temperature, roasting, irradiation and packaging on different quality attributes of peanuts¹³. Peanuts are marketed in different commercial forms such as unshelled peanut, shelled kernels, roasted and salty kernels. Peanut kernels are good source of protein, lipid, and fatty acids for human nutrition. The fatty acid composition of endogenous fats plays an important role in determining the shelf life, nutrition, and flavour of food products. The lipids and proteins of cultivated peanut seeds have been widely studied⁶,¹⁴,¹⁵. Prevention of rancidity is one of the most important quality parameters during storage of peanuts. Consequently, delaying the onset of rancidity could lengthen the available market period of these products. The peanut kernels are stored until roasting, then marketed. During this storage, some chemical changes in the oil will be monitored during certain periods. The detailed chemical properties on the storage of raw and oven roasted peanuts (NC-7 and ÇOM...
varieties have not been reported. The objective of this work was to determine the effects of storage and oven roasting on the oil yield, peroxide value, acidity, protein content, fatty acid compositions and tocopherol contents of kernel and oils of raw and roasted two peanut varieties.

2 MATERIAL AND METHODS

2.1 Material

For this study, peanuts (NC-7 and ÇOM varieties) were obtained from Mersin district in Turkey. The kernels were packed in amber glass bottles and transported to the laboratory from Mersin district. The peanut pods were cleaned and shelled before analysis. The blanched samples (1 h/20 min) were used for all the chemical analyses.

2.2 Methods

2.2.1 Oven roasting

About 50 g of peanut kernels were distributed uniformly as a thin layer on the trays, and roasted in an oven (Nuve FNO55, Ankara, Turkey) at 200°C for 10 min. Overheating was avoided and roasting was controlled by monitoring the color change.

2.2.2 Storage of peanut kernels

About 1 kg raw and roasted peanut kernels (NC-7 and ÇOM cv) were stored at 30°C temperature in sealed cloth bag in the dark for 8 months. Each analysis was replicated 3 times. Moisture, oil content, acidity, peroxide value, fatty acid composition and tocopherol content were determined every 30 days for a total period of 8 months.

2.2.3 Proximate analysis

Raw and roasted peanut kernels were ground to pass through a 0.4 screen for subsequent chemical analysis. Determination of moisture content, crude oil, acidity and peroxide values were made according to AOAC approved methods. The determination of crude protein was based on nitrogen combustion method. The protein determination was made in Leco combustion analyzer and 6.25 was used as the conversion factor.

2.2.4 Fatty acid composition

The fatty acid profiles of raw and roasted peanut kernel oils (about 0.5 mg) were determined according to the Ce-62 method of American Oil Chemists’ Society. Fatty acid methyl esters of samples are analyzed using gas chromatography (Shimadzu GC-2010) equipped with a flame-ionization detector (FID) and capillary column (Tecnocroma TR-CN100, 60 m × 0.25 mm, film thickness: 0.20 μm).

2.2.5 Tocopherol analyses

Tocopherol contents of raw and roasted peanut kernel oils were performed according to Spica et al. 0.1 g of oil was dissolved in 10 ml of n-hexane and filtered through a 0.45 μm nylon filter. HPLC analyses of tocopherols were determined using Shimadzu-HPLC equipped with PDA detector and LiChroCART Silica 60 (4.6 × 250 mm, 5 μ; Merck, Darmstadt, Germany) column.

2.3 Statistical Analysis

A complete randomized split plot block design was used, and analysis of variance (ANOVA) was performed by using JMP version 9.0 (SAS Inst. Inc., Cary, N.C.U.S.A). All analyses were carried out three times and the results are mean ± standard deviation (MSTAT C) of independent peanut samples.

3 RESULTS AND DISCUSSION

The chemical properties of the raw and roasted peanut kernels (NC-7 and ÇOM) stored at 30°C for 8 months are given in Table 1. While the moisture contents of raw NC-7 kernels vary between 6.62% (4th month of storage) and 6.79% (initial of storage-month 0) during storage, the moisture contents of roasted NC-7 kernels changed between 3.57% (month 0) and 3.92% (month 8). For the moisture content of raw and roasted ÇOM kernels, while it change between 7.46% (month 4) and 7.87% (month 8), the moisture contents of roasted ÇOM kernels varied between 3.73% (month 0) and 4.74% (month 8), respectively. There are significant differences in the raw peanut moisture content in all cases at 0 month (p<0.05). While oil contents of raw NC-7 peanut kernels change between 30.45% (month 2) and 30.84% (month 8), oil contents of roasted NC-7 kernels varied between 31.56% (month 1) and 31.93% (month 8). In addition, protein contents of roasted NC-7 kernels were determined between 33.58% (month 1) and 33.95% (month 8). While acidity values of raw NC-7 oil change between 0.98% (month 1) and 4.86% (month 8), acidity values of roasted NC-7 oils ranged from 1.78% (month 1) to 3.89% (month 8). While oil contents of raw ÇOM kernels change between 36.62% (month 6) and 36.95% (month 1), oil contents of roasted ÇOM kernel were determined between 37.17% (month 1) and 37.93% (month 5). Also, while acidity values of raw ÇOM oils vary between 1.08% (month 1) and 4.67% (month 8), acidity values of roasted ÇOM oils changed between 2.25% (month 1) and 5.38% (month 8). In addition, while peroxide values of raw ÇOM oils change between 1.82 meqO _2/kg (month 1) and 4.21 meqO _2/kg (month 8), peroxide values of roasted ÇOM oils varied between 3.67 meqO _2/kg (month 1) and 7.94 meqO _2/kg (month 8). During roasting, while oil contents of both NC-7 and ÇOM peanut kernels increase, protein contents of both samples partly decreased during storage. Also, the protein content probably increased with decreasing moisture content during storage. In addition, both acidity and peroxide values of raw and roasted NC-7 and ÇOM kernel oils increased during storage. After 4th storage, the acidity value of raw peanut kernel oils was
Table 1 Chemical properties of raw and roasted peanut kernel and oils.

Storage (Months)	Moisture (%)	Oil (%)	Protein* (%)	Acidity (%)	Peroxide value (meq O₂/kg)	Moisture (%)	Oil (%)	Protein* (%)	Acidity (%)	Peroxide value (meq O₂/kg)
0										
Raw	6.79 ± 0.98**a	30.64 ± 1.25b	36.21 ± 1.68a	0.98 ± 0.09b	1.67 ± 0.21b	7.47 ± 1.18a	36.83 ± 1.14b	37.81 ± 1.25a	1.08 ± 0.16b	1.82 ± 0.32b
Roasted	3.57 ± 0.61b***	31.56 ± 1.53a	33.58 ± 1.24b	1.78 ± 0.11a	2.64 ± 0.13a	3.73 ± 0.67b	34.26 ± 1.13b	2.25 ± 0.49a	3.67 ± 0.14a	
1										
Raw	6.73 ± 0.36a	30.53 ± 1.61b	35.89 ± 1.73a	1.76 ± 0.13b	1.94 ± 0.09b	7.59 ± 0.45a	36.95 ± 2.36b	37.03 ± 1.17a	1.59 ± 0.54b	2.17 ± 0.13b
Roasted	3.64 ± 0.57b	31.65 ± 1.27a	33.71 ± 2.17b	1.95 ± 0.21a	2.97 ± 0.25a	3.81 ± 0.42b	37.33 ± 2.24a	34.37 ± 1.42b	2.67 ± 0.71a	3.81 ± 0.43a
2										
Raw	6.70 ± 0.44a	30.45 ± 1.13b	35.93 ± 1.89a	1.93 ± 0.27b	2.16 ± 0.43b	7.56 ± 1.29a	36.88 ± 1.09b	37.64 ± 1.64a	1.87 ± 0.45b	2.67 ± 0.61b
Roasted	3.66 ± 1.13b	31.74 ± 1.65a	33.86 ± 0.96b	2.14 ± 0.81a	3.56 ± 0.47a	3.78 ± 0.58b	37.78 ± 1.17a	34.56 ± 1.43b	3.56 ± 0.38a	4.18 ± 1.14a
3										
Raw	6.75 ± 1.09a	30.49 ± 1.09b	35.97 ± 2.18a	2.36 ± 0.35a	2.56 ± 0.64b	7.73 ± 0.89a	36.85 ± 1.62b	37.58 ± 1.57a	1.94 ± 0.54b	2.88 ± 0.21b
Roasted	3.71 ± 0.48b	31.78 ± 1.14a	33.79 ± 1.43b	2.46 ± 0.49a	3.95 ± 0.62a	3.83 ± 0.67b	37.92 ± 1.45a	34.48 ± 1.78b	3.78 ± 0.17a	4.86 ± 0.98a
4										
Raw	6.62 ± 0.71a	30.52 ± 0.98b	35.95 ± 1.56a	3.17 ± 0.74a	2.87 ± 0.35b	7.46 ± 1.13a	36.93 ± 1.51b	37.41 ± 1.46a	2.56 ± 0.52b	3.13 ± 0.87b
Roasted	3.68 ± 0.86b	31.83 ± 0.57a	33.91 ± 1.24b	2.67 ± 0.98b	4.35 ± 0.23a	3.88 ± 0.37b	37.68 ± 1.49a	34.61 ± 1.32b	3.98 ± 0.43a	5.32 ± 1.09a
5										
Raw	6.73 ± 0.93a	30.57 ± 1.45b	35.88 ± 1.21a	3.85 ± 0.67a	2.96 ± 0.17b	7.68 ± 1.28a	36.74 ± 2.36b	37.64 ± 1.73a	2.98 ± 0.29b	3.56 ± 0.38b
Roasted	3.71 ± 0.32b	31.85 ± 2.32a	33.83 ± 1.54b	3.38 ± 0.87a	4.79 ± 0.59a	3.93 ± 0.41b	37.93 ± 1.39a	34.71 ± 1.45b	4.29 ± 0.09a	6.59 ± 0.41a
6										
Raw	6.75 ± 0.13a	30.63 ± 1.49b	35.57 ± 1.43a	4.17 ± 0.98a	3.27 ± 0.32b	7.84 ± 0.84a	36.62 ± 1.27b	37.73 ± 1.59a	3.65 ± 0.25b	3.78 ± 0.13b
Roasted	3.77 ± 0.21b	31.79 ± 1.53a	33.78 ± 1.38b	3.53 ± 0.94b	5.56 ± 1.19a	3.95 ± 0.26b	37.73 ± 1.76a	34.79 ± 3.22b	4.57 ± 0.46a	6.98 ± 0.67a
7										
Raw	6.81 ± 0.27a	30.78 ± 1.61b	35.78 ± 1.64a	4.78 ± 0.25a	3.68 ± 0.28b	7.79 ± 0.98a	36.74 ± 1.68b	37.87 ± 1.83a	3.93 ± 0.29b	3.94 ± 0.21b
Roasted	3.83 ± 0.55b	31.89 ± 1.26a	33.89 ± 2.09b	3.75 ± 0.48b	6.95 ± 1.32a	3.97 ± 0.64b	37.56 ± 1.33a	34.65 ± 0.98b	4.91 ± 0.13a	7.36 ± 0.74a
8										
Raw	6.88 ± 0.24a	30.84 ± 1.18b	35.69 ± 1.07a	4.86 ± 0.87a	3.94 ± 0.46b	7.87 ± 1.35a	36.81 ± 1.28b	37.81 ± 0.64a	4.67 ± 0.21b	4.21 ± 0.53b
Roasted	3.92 ± 0.39b	31.93 ± 1.43a	33.95 ± 1.35b	3.89 ± 0.63b	7.38 ± 1.67a	4.75 ± 1.13b	37.63 ± 1.43a	34.58 ± 0.78b	5.38 ± 1.28a	7.94 ± 0.88a

*Nx6.25, **mean ± standard deviation; ***Values within each column followed by different letters are significantly different (p<0.05); (n=3)
higher than that of roasted peanut. Whereas, this parameter did not change in ÇOM variety. However, the acidity value of roasted ÇOM peanut kernel oils were found to be higher than that of raw kernels during storage. In the NC variety, after 4th month of storage, the increase of the acidity may be due to the high enzyme activity in the kernels. In addition, the peroxide values of ÇOM variety was found to be high compared to NC-7 kernel oils during storage. The increase in peroxide value of ÇOM kernel oils may be probably due to the high initial values of peroxides in the ÇOM variety. The fatty acid of the roasted peanut kernel oils was found high compared to raw peanut oil. These differences in chemical properties of samples may be due to hydrolyses enzyme activity and heating during the storage conditions and roasting conditions in oven. The peroxide value of roasted peanut oil heated in oven was found higher than results of NC-7 peanut oil. This increase was attributed to genetic factors and the structure of peanut kernels during storage. Initial peroxide values of peanut kernel oils were significantly different among the two peanut varieties considered.

The fatty acid composition of raw and roasted peanut kernels oils are shown in Table 2. The palmitic acid contents of the roasted NC-7 peanut kernel oils increased after the first month of storage compared to raw NC-7 kernel oils, while the palmitic acid contents of the roasted ÇOM kernel oils increased partially after 5th month of storage. The palmitic acid contents of raw NC-7 oils changed from 9.17% (month 0) to 8.27% (month 8), while the roasted NC-7 oils change from 9.34% (month 3) to 8.98% (month 8). In addition, while the palmitic acid contents of raw ÇOM oils are determined between 11.59% (month 8) and 12.56% (month 0), the palmitic acid content of roasted ÇOM oil changed between 12.05% (month 8) and 12.36% (month 5). The palmitic acid contents of ÇOM oil were higher than the NC-7 oil. Stearic acid contents of raw NC-7 and ÇOM oils changed between 4.26% (month 3) and 4.76% (month 7) to 2.59% (month 8) and 2.98% (month 0), respectively. In addition, stearic acid contents of roasted NC-7 and ÇOM kernel oils varied between 4.08% (month 6) and 4.83% (month 7) to 2.75% (month 8) and 2.83% (month 1 and 3), respectively. With the roasting of peanut kernels, the unsaturated fatty acids such as oleic, linoleic acids of peanut oils gradually decreased during storage. Also, there was a partial increase in saturated fatty acids such as palmitic after 6th month of storage. While the oleic acid contents of raw NC-7 oil change between 43.14% (month 8) and 46.38% (month 0), the oleic acid contents of roasted NC-7 kernel oils varied between 45.61% (month 0) and 42.38% (month 8) during storage. In addition, while the oleic acid contents of raw ÇOM kernel oils are determined between 49.87% (month 0) and 46.09% (month 7), the oleic acid contents of roasted ÇOM kernel oil changed decreased to 48.88% (month 0) and 45.24% (month 8) during storage. The highest linoleic acid in levels both raw and roasted NC-7 and ÇOM kernel oils were found in the initial periods of storage. The amounts were gradually decreased with storage. Fatty acids, particularly oleic and linoleic, have a large effect on the stability and nutritional quality of peanut oil\(^{10}\). Pokorny et al.\(^{21}\) reported that Virginia and SunOleic peanut oils contained 12.2 and 6.2% palmitic, 3.1 and 1.9% stearic, 48.4 and 81.7% oleic, 30.5 and 2.7% linoleic and 0.9 and 2% eicosenoic acids. Megahed\(^{6}\) reported that freshly extracted peanut oils subjected directly to microwave heating showed increase of formation of conjugated trienes. Such oils are more stable against autoxidation on storage or heating than are conventional oils.

Tocopherol contents of raw and roasted peanut (NC-7 and ÇOM varieties) kernel oils at the selected on storage times are presented in Table 3. α-Tocopherol and γ-tocopherols were the major tocopherol of oils of both peanut varieties. While α-tocopherol contents of raw NC-7 oil change between 11.36 mg/100 g (month 8) and 17.29 mg/100 g (month 0), the α-tocopherol contents of roasted NC-7 oil were determined between 16.07 mg/100 g (month 8) and 17.98 mg/100 g (month 0). Also, while γ-tocopherol contents of raw NC-7 oil change between 15.02 mg/100 g (month 8) and 15.75 mg/100 g (month 0), the γ-tocopherol contents of roasted NC-7 oil varied between 15.08 mg/100 g (month 8) and 16.13 mg/100 g (month 0) during storage. In addition, α-tocopherol contents of both raw and roasted peanut kernels (NC-7 and ÇOM cv) changed between 17.58 mg/100 g (month 9) and 20.38 mg/100 g (month 0) to 18.64 mg/100 g (8th month) and 21.45 mg/100 g (month 0) during storage, respectively. While δ-tocopherol contents of raw NC-7 oil change between 0.43 mg/100 g (month 8) and 0.75 mg/100 g (month 2), δ-tocopherol contents of ÇOM oil varied between 0.47 mg/100 g (month 8) and 0.98 mg/100 g (month 1). In addition, δ-tocopherol contents of roasted ÇOM oil changed between 0.45 mg/100 g (month 8) and 1.17 mg/100 g (month 0). The highest γ-tocopherol were found on the initial period of storage in both raw and roasted NC-7 and ÇOM peanut kernel oil samples. As seen in Table 3, α-tocopherol and γ-tocopherol contents of both raw and roasted NC-7 kernel oils were found slightly lower compared to results of ÇOM oil during storage. The total tocopherol contents of the peanut oils changed between 30.81 and 33.57 to 31.58 and 35.31 mg/100 g for raw and roasted NC-7 oils and 37.84 and 42.52 to 39.16 and 45.19 mg/100 g for raw and roasted ÇOM oils, respectively. Significant variations in tocopherol contents of peanut varieties and processing differences were observed. However, the tocopherol contents of both peanut varieties increased gradually with roasting. Also, while the peroxide values of both peanut variety oils, the tocopherol contents increased, and unsaturated fatty acid composition were decreased depending on storage time. A statistically significant relation-
Table 2 Fatty acid composition of raw and roasted peanut oils (%).

Storage (months)	NC-7	COM										
	Palmitic	Stearic	Oleic	Linolenic	Linolenic	Arachidonic	Palmitic	Stearic	Oleic	Linolenic	Linolenic	Arachidonic
0 Raw	9.17 ± 0.56a	4.37 ± 0.38a	46.38 ± 1.16a	37.21 ± 0.56a	0.43 ± 0.09a	0.98 ± 0.09a	12.56 ± 0.45a	2.98 ± 0.17a	0.98 ± 0.74a	0.37 ± 0.03a	0.76 ± 0.18a	
Roasted	9.11 ± 0.74a	4.28 ± 0.27b	45.61 ± 1.28b	36.13 ± 0.45b	0.33 ± 0.07b	0.87 ± 0.13b	12.24 ± 0.34a	2.83 ± 0.21b	0.88 ± 0.11b	0.23 ± 0.02b	0.73 ± 0.23b	
1 Raw	9.13 ± 0.68a	4.44 ± 0.41a	45.63 ± 0.97a	36.58 ± 0.13a	0.41 ± 0.03a	0.86 ± 0.21a	12.45 ± 0.21a	2.93 ± 0.38a	0.94 ± 0.23a	0.35 ± 0.09a	0.75 ± 0.43a	
Roasted	9.04 ± 0.21a	4.32 ± 0.64b	44.38 ± 0.56b	35.76 ± 1.21b	0.27 ± 0.03b	0.81 ± 0.07b	12.18 ± 0.37b	2.79 ± 0.53b	0.48 ± 2.36b	0.19 ± 0.10b	0.74 ± 0.30b	
2 Raw	8.97 ± 1.17b	4.28 ± 0.57a	45.51 ± 1.61a	36.35 ± 0.98a	0.39 ± 0.03a	0.83 ± 0.09a	12.48 ± 0.46a	2.91 ± 0.36a	0.91 ± 0.23a	0.36 ± 0.13a	0.81 ± 0.23a	
Roasted	9.28 ± 1.13a	4.11 ± 1.32b	44.27 ± 1.25b	35.21 ± 0.74b	0.25 ± 0.07b	0.77 ± 0.03b	12.09 ± 0.84b	2.81 ± 0.73b	0.47 ± 1.78b	0.21 ± 0.09b	0.76 ± 0.17b	
3 Raw	8.86 ± 0.57b	4.26 ± 1.28a	45.29 ± 1.13a	36.13 ± 0.34a	0.35 ± 0.09a	0.80 ± 0.05a	12.37 ± 0.56a	2.89 ± 0.67a	0.47 ± 2.47a	0.39 ± 0.11a	0.74 ± 0.13a	
Roasted	9.34 ± 0.98a	4.18 ± 1.27b	44.09 ± 1.17b	34.77 ± 0.47b	0.23 ± 0.05b	0.73 ± 0.07b	12.01 ± 0.48b	2.83 ± 0.46b	0.46 ± 2.39b	0.25 ± 0.13b	0.69 ± 0.25b	
4 Raw	8.85 ± 0.11b	4.35 ± 0.49a	45.11 ± 0.37a	36.08 ± 0.29a	0.37 ± 0.04a	0.78 ± 0.05a	12.29 ± 0.93a	2.78 ± 0.91b	0.47 ± 2.67a	0.34 ± 0.08a	0.72 ± 0.43a	
Roasted	9.33 ± 0.17a	4.27 ± 0.64b	43.96 ± 0.13b	34.53 ± 0.46b	0.26 ± 0.03b	0.67 ± 0.03b	12.17 ± 0.97a	2.81 ± 0.85a	0.46 ± 2.48b	0.22 ± 0.03b	0.61 ± 0.15b	
5 Raw	8.56 ± 0.85b	4.41 ± 0.47a	44.57 ± 1.43a	35.89 ± 0.73a	0.32 ± 0.01a	0.83 ± 0.09a	12.33 ± 0.86a	2.73 ± 0.83b	0.47 ± 2.89a	0.39 ± 0.07a	0.69 ± 0.13a	
Roasted	9.17 ± 0.49a	4.18 ± 0.56b	42.88 ± 0.86b	34.42 ± 0.85b	0.24 ± 0.07b	0.74 ± 0.11b	12.30 ± 0.58a	2.80 ± 0.38a	0.46 ± 2.18b	0.19 ± 0.03b	0.57 ± 0.09b	
6 Raw	8.43 ± 1.56b	4.48 ± 0.38a	44.47 ± 0.66a	35.74 ± 1.19a	0.39 ± 0.03a	0.81 ± 0.23a	11.89 ± 0.49b	2.75 ± 0.75b	0.46 ± 3.28a	0.34 ± 0.05a	0.71 ± 0.20a	
Roasted	9.13 ± 1.72a	4.03 ± 1.09b	42.68 ± 0.71b	34.17 ± 1.61b	0.23 ± 0.07b	0.69 ± 0.15b	12.13 ± 0.13a	2.81 ± 0.73a	0.45 ± 1.86b	0.21 ± 0.03b	0.63 ± 0.21b	
7 Raw	8.45 ± 1.15b	4.76 ± 1.17b	43.35 ± 1.25a	35.48 ± 1.54a	0.25 ± 0.05a	0.78 ± 0.09a	11.76 ± 0.21b	2.70 ± 0.39b	0.46 ± 1.67a	0.29 ± 0.07a	0.65 ± 0.09a	
Roasted	9.06 ± 1.45a	4.83 ± 0.23a	42.52 ± 1.63b	33.98 ± 0.86b	0.19 ± 0.03b	0.67 ± 0.08b	12.24 ± 0.45a	2.79 ± 0.66a	0.53 ± 2.47b	0.19 ± 0.03b	0.54 ± 0.07b	
8 Raw	8.27 ± 1.14bc	4.55 ± 0.19b	43.14 ± 1.54a	35.33 ± 0.98a	0.21 ± 0.03a	0.75 ± 0.13a	11.59 ± 0.07b	2.59 ± 1.18b	0.46 ± 2.56a	0.31 ± 0.07a	0.61 ± 0.08a	
Roasted	8.98 ± 0.68b	4.68 ± 0.54a	42.38 ± 1.31b	32.84 ± 0.91b	0.17 ± 0.06b	0.64 ± 0.05b	12.05 ± 0.35a	2.75 ± 1.32a	0.45 ± 1.89b	0.23 ± 0.09b	0.48 ± 0.11b	

*mean = standard deviation; **Values with in each column followed by different letters are significantly different (p<0.05); (n=3)
Table 3 Tocopherol of raw and roasted peanut kernel oils (mg/100 g).

Storage (months)	NC-7	COM						
	α-tocopherol	γ-tocopherol	δ-tocopherol	Total (mg/100 g)	α-tocopherol	γ-tocopherol	δ-tocopherol	Total (mg/100 g)
0 Raw	17.29 ± 1.23*a	15.76 ± 0.52b	0.71 ± 0.13b	33.57	20.38 ± 0.76b	21.57 ± 1.11b	0.98 ± 0.13b	42.52
Roasted	17.98 ± 1.18**a	16.13 ± 0.87a	0.93 ± 0.21a	35.31	21.45 ± 1.26a	22.57 ± 1.45a	1.17 ± 0.07a	45.19
1 Raw	17.23 ± 1.45a	15.63 ± 0.43b	0.75 ± 0.09b	33.80	20.18 ± 1.13b	21.36 ± 2.37b	0.95 ± 0.13b	42.86
Roasted	17.41 ± 0.96a	15.89 ± 0.89b	0.89 ± 0.11a	34.19	20.67 ± 0.87b	22.09 ± 2.06a	0.98 ± 0.09a	43.74
2 Raw	16.96 ± 0.63b	15.36 ± 0.47b	0.68 ± 0.07b	33.00	20.13 ± 0.45b	21.35 ± 1.53b	0.85 ± 0.21a	42.33
Roasted	17.11 ± 0.78a	15.55 ± 0.33b	0.81 ± 0.23a	33.47	20.25 ± 1.28b	21.78 ± 2.43b	0.76 ± 0.03b	42.79
3 Raw	16.13 ± 2.36b	15.17 ± 0.36c	0.61 ± 0.11b	31.91	19.87 ± 1.45c	21.14 ± 2.67b	0.68 ± 0.01a	41.69
Roasted	16.98 ± 1.56b	15.23 ± 0.32c	0.73 ± 0.09a	32.94	20.07 ± 1.63b	21.46 ± 3.48b	0.65 ± 0.07b	42.18
4 Raw	15.78 ± 0.87c	15.03 ± 0.98c	0.57 ± 0.03b	31.38	19.66 ± 1.38c	20.89 ± 1.38c	0.67 ± 0.12a	41.22
Roasted	16.67 ± 0.56b	15.18 ± 1.28c	0.69 ± 0.12a	32.54	19.98 ± 1.24c	21.15 ± 2.56b	0.59 ± 0.09b	41.72
5 Raw	15.88 ± 1.25c	15.21 ± 1.45c	0.51 ± 0.07b	31.60	19.32 ± 1.89c	20.56 ± 1.67c	0.56 ± 0.05a	40.44
Roasted	16.45 ± 0.56b	15.36 ± 1.76b	0.63 ± 0.03a	32.44	19.44 ± 2.36c	21.03 ± 2.54b	0.55 ± 0.01b	41.02
6 Raw	15.67 ± 0.23c	15.13 ± 1.68c	0.46 ± 0.04b	31.26	19.21 ± 2.56c	20.33 ± 1.48c	0.53 ± 0.07a	40.07
Roasted	16.35 ± 0.19b	15.24 ± 1.93b	0.58 ± 0.07a	32.17	19.25 ± 1.56c	20.67 ± 1.76c	0.51 ± 0.11b	40.43
7 Raw	15.55 ± 0.45c	15.04 ± 1.34c	0.47 ± 0.03b	31.06	18.45 ± 1.87d	20.14 ± 2.48c	0.48 ± 0.07c	39.07
Roasted	16.13 ± 0.73b	15.11 ± 1.46c	0.57 ± 0.07a	31.81	19.09 ± 1.34c	20.28 ± 2.89c	0.46 ± 0.09d	39.83
8 Raw	15.36 ± 0.81c	15.02 ± 1.33c	0.43 ± 0.09b	30.81	17.58 ± 0.98c	19.79 ± 1.76d	0.47 ± 0.03c	37.84
Roasted	16.07 ± 0.48b	15.08 ± 1.29c	0.46 ± 0.05a	31.58	18.64 ± 1.09d	20.07 ± 1.42c	0.45 ± 0.07d	39.16

*mean ± standard deviation; **Values within each column followed by different letters are significantly different (p<0.05); (n=3)
ship between in peroxide values and the reduction tocopherol contents were found. α-Tocopherol, γ-tocopherol and δ-tocopherol contents of Virginia and SunOleic peanut oils were determined as 162 and 201 mg/100 g, 134 and 214 mg/100 g and 6 and 11 mg/100 g, respectively. This agree with the results of some researchers.11, 22) Also, the oxidation of fatty acids becomes significant after an induction period during which antioxidants are destroyed11, 22). According to Zacheo et al.11, and Garcia-Pascual et al.13, shelf-life could be due to reduction of peroxidation, and natural antioxidants such as tocopherol could be increase. All the peanut samples showed differences in their tocopherol contents and fatty acid composition, and the differences were significant at the levels of p < 0.05. The influence of temperature on the rate of rancidity development must be taken into account when shelf-life studies are undertaken. The variety of peanut can play important role in composition and the shelf-life of the product. The composition and oil properties of plant kernels depends upon the variety, soil structure, climates, growing and processing conditions.

4 CONCLUSION

Moisture and oil contents were not affected by the storage e of the raw samples. Significantly in the roasted kernels in comparison to raw ones i.e. moisture content decreased whereas oil content increased. A significant relationship was found between the increase of the peroxide value and fatty acids and the decrease of tocopherol contents and fatty acid compositions of both raw and roasted peanut oils. Raw and roasted peanut kernels could be stored till 4-5 months without a serious loss in quality when they were stored in sealed cloth bag at 30°C. An increase in peroxide was observed throughout storage time. The tocopherol and fatty acids especially oleic, linoleic) contents decreased throughout the experiment in kernel of the two peanut varieties. The crude oil, peroxide value and free fatty acidity values, fatty acid composition and mineral contents of peanut and its oil were found to be different depending on the processing and analyses conditions. Oven roasting did not increase the oleic and linoleic of roasted peanut oil, while oven roasting increase peroxide values and tocopherol contents of roasted peanut oil. From acidity and peroxide value results obtained, raw and roasted peanut kernels of NC-7 cv and ÇOM peanut cv became unacceptable after 5 and 4 months storage, respectively. But, because of the high content of oil, protein, oleic and linoleic acid, α-, β- and δ-tocopherol contents of the ÇOM peanut variety, it is preferable to NC-7 cv.

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding the Research group NO (RG-1435-049).

References

1) Campos-Mondragón, M.G.; Calderón De La Barca, A.M.; Durán-Prado, A.; Campos-Reyes, L.C.; Oliart-Ros, R.M.; Ortega-García, J.; Medina-Juárez, L.A.; Angulo, O. Nutritional composition of new peanut (Arachis hypogaea L.) cultivars. Grasas Y Aceites 60, 161-167 (2009).
2) Venkatachalam, M.; Sathe, S. Chemical composition of selected edible nut seeds. J. Agric. Food Chem. 54, 4705-4714 (2006).
3) Plessis, K.D.; Steiman, H. Practical aspects of adverse reaction to peanut. Current Allergy Clinic. Immunol. 17, 10-14 (2004).
4) Schirack, A.V.; Drake, M.; Sanders, T.H.; Sandeep, K.P. Impact of microwave blancing on the flavour of roasted peanuts. J. Food Sci. 71, 513-520 (2006).
5) Nakai, V.K.; Rocha, L.O.; Gonçalez, E.; Fonseca, H.; Ortega, E.M.M.; Correa, B. Distribution of fungi and aflatoxins in a stored peanut variety. Food Chem. 106, 285-290 (2008).
6) Sebei, K.; Gnouma, A.; Herchi, W.; Sakouhi, F.; Boukhchina, S. Lipids, proteins, phenolic composition, antioxidant and antibacterial activities of seeds of peanuts (Arachis hypogaea L.) cultivated in Tunisia. Biot. Res. 46, 257-263 (2013).
7) Rosenberg, U.; Bogl, W. Microwave thawing, drying and baking in the food industry. Food Technol. 41, 85-91 (1987).
8) Tatsumi, M.; Kajimoto, G. Influence of fatty acids on the tocopherol stability in vegetable oils during microwave heating. J. Am. Oil Chem. Soc. 69, 119-125 (1991).
9) Megahed, M.G. Microwave roasting of peanuts: Effects on oil characteristics and composition. Nahrung 45, 255-257 (2001).
10) Gou, P.; Díaz, L.; Guerrero, L.; Valero, A.; Arnau. Physico-chemical and sensory properties changes in almonds of Desmayo Largueta variety during roasting. Food Sci. Technol. 6, 1-7 (2000).
11) Zacheo, G.; Cappello, M.S.; Gallo, A.; Santino, A.; Cappello, A.R. Changes associated with postharvest ageing in almond seeds. Lebensmittel Wiss. Technol. 33, 415-423 (2000).
12) Young, C.K.; Cunningham, S. Exploring the partnership of almonds with cereal foods. Cereal Foods World 36, 412, 414-415, 417-418 (1991).
13) Kornsteiner, M.; Wagner, K.H.; Elmadfa, I. Tocopherols and total phenolics in 10 different nut types. *Food Chem.* **98**, 381-387 (2006).

14) Gliszczynska-Świglo, A.; Sikorska, E.; Khmelinskii, I.; Sikorski, M. Tocopherol content in edible plant oils. *Pol. J. Food Nutr. Sci.* **57**, 157-161 (2007).

15) Nile, S.H.; Park, S.W. Fatty acid composition and antioxidant activity of groundnut (*Arachis hypogaea* L.) products. *Food Sci. Technol. Res.* **19**, 957-962 (2013).

16) AOAC. Official Methods of Analysis, 15th ed. Association of Official Analytical Chemists, Washington DC (1990).

17) AACC International. Method 46-30. 01. Crude Protein - Combustion Method. in *Approved Methods of Analysis*, 11th AACC International, St. Paul, MN, USA (1999).

18) AOCS. Official and Tentative Methods (3rd ed.). Champaign, IL (1983).

19) Spica, M.J.; Kraljic, K.; Koprivnjak, O.; Skevin, D.; Zanetic, M.; Katalinic, M. Effect of agronomical factors and storage conditions on the tocopherol content of Oblica and Leccino virgin olive oil. *J. Am. Oil Chem. Soc.* **92**, 1293-1301 (2015).

20) Puskulucu, H.; Ikiz, F. *Introduction Statistic (İstatistige Giriş)*. Bilgehan Press, Bornova-İzmir, Turkey p. 333 (1989). (in Turkish)

21) Pokorny, J.; Parkanyiova, L.; Reblova, Z.; Trajakova, L.; Sakurai, H.; Uematsu, T.; Miyahara, M.; Yano, T. Changes on storage of peanut oils containing high levels of tocopherols and β-carotene. *Czech J. Food Sci.* **21**, 19-27 (2003).

22) Sun, W.; Kawano, Y.; Shiomori, K.; Yonekura, M.; Mitani, H.; Hatate, Y. Auto-oxidation rate of linoleic acid and effect of antioxidants on the oxidation. *Kagaku Kogaku Ronbunshu* **27**, 76-84 (2001).

23) Garcia-Pascual, P.; Mateos, M.; Carbonell, V.; Salazar, D.M. Influence of storage conditions on the quality of shelled and roasted almonds. *Biosyst. Eng.* **84**, 201-209 (2003).