Comparative ovicidal activity of *Moringa oleifera* leaf extracts on *Fasciola gigantica* eggs

Ahmed G. Hegazi¹, Kadria N. Abdel Megeed², Soad E. Hassan², M. M. Abdelaziz², Nagwa I. Toaleb², Eman E. El Shanawany² and Dina Abeelsoued²

1. Department of Zoonotic Diseases, National Research Centre, Dokki, Giza, Egypt; 2. Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Giza, Egypt.

Corresponding author: Dina Abeelsoued, e-mail: Dr.Dina.Abeelsoued@gmail.com

Co-authors: AGH: ahmedhegazi128@gmail.com, KNA: kadrianasr_57@hotmail.com, SEH: soadeh@yahoo.com, AMM: mabdelaziz59@yahoo.com, NIT: nagwaibrahim26@yahoo.com, EEE: emy_science@yahoo.com

Received: 14-09-2017, **Accepted:** 10-01-2018, **Published online:** 19-02-2018

doi: 10.14202/vetworld.2018.215-220

How to cite this article: Hegazi AG, Abdel Megeed KN, Hassan SE, Abdelaziz MM, Toaleb NI, El Shanawany EE, Abeelsoued D (2018) Comparative ovicidal activity of *Moringa oleifera* leaf extracts on *Fasciola gigantica* eggs, *Veterinary World*, 11(2): 215-220.

Abstract

Background: Fasciolosis is an important zoonotic disease affecting the productive performance of farm animals in Egypt.

Aim: The aim of the present study was comparing the ovicidal effect of different extracts as an alcoholic (Methanolic and Ethanolic) and aqueous *Moringa oleifera* leaf extracts on *Fasciola gigantica* non-embryonated and developed eggs.

Materials and Methods: Tested concentrations of extracts ranged from 12.5 to 800 mg/ml. Nitroxynil was used as reference drug with a dose of 100 mg/ml.

Results: *M. oleifera* alcoholic and aqueous extracts showed a concentration-dependent ovicidal effect on *F. gigantica* non-embryonated and developed eggs. Based on LC₅₀ values, water extract showed the highest ovicidal activity since it registered the lowest values of 2.6 mg/ml on non-embryonated eggs. Non-embryonated eggs were more susceptible to aqueous extract than developed eggs. On the other hand, the developed eggs were more susceptible to ethanolic extract than non-embryonated eggs even the lowest LC₅₀ (12.38 mg/ml).

Conclusion: *M. oleifera* leaf extracts especially aqueous extract could be a promising step in the field of controlling fascioliasis. Further, *in vivo* studies are needed to enlighten the therapeutic potential of *M. oleifera* extracts in treating *F. gigantica* infection.

Keywords: *Fasciola gigantica*, leaf extract, *Moringa oleifera*, nitroxynil, ovicidal activity.

Introduction

Fasciolosis is considered one of the most important helminthic diseases affecting livestock in many countries around the world. It is commonly found in sheep and cattle [1]. Bovine fasciolosis usually had no visible clinical signs. However, if the cattle infection was chronic, it might cause weight gain loss, reduction in the milk yield, and fertility problems [2,3].

Many available chemotherapeutic anthelmintics had side effects on the host, and it is necessary to decrease the use of these drugs for parasitic control, not only for their resistance but also because of growing concerns about the adverse consequences on the ecosystem. Naturally produced plant anthelmintics offer an alternative that overcomes some of these effects and is both sustainable and environmentally acceptable [4]. Around the world, new plants having medicinal properties against parasites of ruminants had been explored, and they had shown good results [5]. *Moringa oleifera* is considered as one of the most useful trees for the reason that every part has many beneficial properties [6]. *M. oleifera* is commonly known as Drumstick and contains many active compounds such as alkaloids, flavonoids, saponins, tannins, and triterpenoids [7]. Extracts from this plant have several pharmacological effects such as anthelmintic [8-10], anti-inflammatory, antimicrobial, and antioxidant [11].

The aim of the current study was to compare the ovicidal effect of different extracts as an alcoholic (methanol and ethanol) and aqueous *M. oleifera* leaf extracts on *Fasciola gigantica* non-embryonated and developed eggs.

Materials and Methods

Ethical approval

F. gigantica eggs were recovered from gallbladders of cattle and buffaloes slaughtered in the government abattoir according to governmental regulations.

Collection of plant materials

Moringa leaves were collected from Pilbis, Sharqia Governorate, Egypt, kindly by Prof. Aboelfetoh M Abdalla, Moringa Unit, National Research Centre. The leaves were cleaned with tap water 3 times then by phosphate buffer (pH 7.4).
Preparation of extracts

Alcoholic extract

150 g of M. oleifera green leaves were separately extracted in 1500 ml of 80% ethanol (ethanolic extract) and 80% methanol (methanolic extract), then manually shaken for 30 min and allowed to stand with continuous shaking at a shaking water bath for 3 days. After that, solutions were filtered with sterile filter papers (Whatman No.1) into a clean conical flask and dried under reduced pressure in a rotary evaporator at a temperature below 50°C and stored at 4°C until use.

Aqueous extract

10 g of M. oleifera shade dried leaves were ground into powder and extracted by maceration in 1000 ml of double distilled water accompanied by stirring for 24 h in cold conditions 4°C then filtered with sterile filter papers (Whatman No.1) into a clean conical flask and stored at −20°C until use.

Drug of choice

Nitroxynil 25% (Devomor®) (Arabcomed for El-Nehesi Company, Egypt) and the dose was 100 mg/ml.

Collection of F. gigantica eggs

F. gigantica eggs were recovered from bile of the gallbladders of infected cattle and buffaloes slaughtered in Cairo local abattoir, Egypt. Gallbladders were washed and examined individually. Each gallbladder was evacuated separately in the 1 L cylinder, mixed with tap water, left to sediment and then the supernatant was decanted without disturbance of the sediment. This process was repeated 3-5 times. The clean F. gigantica eggs were collected after sedimentation and stored in distilled water to be used as fresh as possible.

Ovicidal effect of M. oleifera on F. gigantica eggs

Two experiments were involved in the present study; one was for non-embryonated and the other was for developed (morula stage) F. gigantica eggs. The alcoholic extracts concentrations were 12.5, 25, 50, 100, and 200 mg/ml, while in aqueous extract they were 100, 200, 400, and 800 mg/ml. Three replicates of every dilution were prepared in each treatment. Each replicate was contained 10 ml double distilled water accompanied by stirring for 24 h in cold conditions 4°C then filtered with sterile filter papers (Whatman No.1) into a clean conical flask and stored at −20°C until use.

Aqueous extract

10 g of M. oleifera shade dried leaves were ground into powder and extracted by maceration in 1000 ml of double distilled water accompanied by stirring for 24 h in cold conditions 4°C then filtered with sterile filter papers (Whatman No.1) into a clean conical flask and stored at −20°C until use.

Statistical analysis

Data of ovicidal effect of different treatment groups were analyzed for the means and standard deviations. The significance of the results was evaluated using independent sample t-test and analysis of variance and Duncan test using Statistical Package for the Social Sciences computer programs [15].

Results

The ovicidal effects of the different M. oleifera extract on the F. gigantica eggs are displayed in Tables 1 and 2. M. oleifera alcoholic and aqueous extracts, as well as nitroxynil, showed an ovicidal effect on Fasciola non-embryonated and developed eggs (Figures 1-6). The effect of these extracts on eggs was concentration dependent. There were no statistically significant differences between the ovicidal activity of M. oleifera methanolic and ethanolic extracts in non-embryonated eggs. Water extract at a concentration of 800 mg/ml had the same effect on eggs as 100 mg/ml methanolic and ethanolic extracts. In the developed eggs experiment, the highest concentrations of the three extracts were statistically the same.

Regarding the comparing the ovicidal activity of the three extracts on the eggs with independent sample t-test, significant differences were found between the 2 stages of eggs development at almost all concentrations of methanolic and aqueous extracts. Almost all concentrations of ethanolic extract had the same effect on non-embryonated and developed eggs (Table 3).

LC50 of the different concentrations was calculated as shown in Table 4. LC50 was higher in non-embryonated eggs than developed eggs for methanolic and ethanolic extracts. Water extract exhibited a different effect as LC50 of aqueous extract on developed was higher than that of non-embryonated eggs.

Discussion

In the current study, M. oleifera leaf extracts presented concentration-dependent activities against the two developmental stages of F. gigantica eggs tested. These results are similar to those obtained by Pessoa et al. [16] against Haemonchus contortus by the essential oil of Ocimum gratissimum. Furthermore, they confirmed the results obtained previously on rdhbitiform larvae of Anclylostoma caninum by Poné et al. [17] and on eggs of the nematode A. caninum with the extracts of the shrub Canthium mamii by Poné et al. [18].

Alcoholic and aqueous extracts of M. oleifera represented high anthelmintic activity on eggs. In addition, all extracts rendered most of non-embryonated F. gigantica eggs undeveloped suggesting that the bioactive compounds were lethal to the blastomeres. Furthermore, Rastogi et al. [8] found that the ethanolic extract of M. oleifera showed strong anthelmintic activity at 25, 50, and 100 mg/ml against Indian earthworm. On the contrary, M. oleifera did not give satisfactory
in vitro anthelmintic results on *Ascaris suum* with Peter and Deogracious [19] with a median effective dose more than 50 mg/ml in the initial screening.

The ovicidal activities observed in the present study using different extracts might be attributed to the presence of saponins, steroids, carbohydrates, alkaloids, tannins, and flavonoids which were

Figure-1: Ovicidal activities of *Moringa* extracts and nitroxynil on non-embryonated and developed *Fasciola* eggs.

Figure-2: Control untreated *Fasciola gigantica* eggs. (a): Hatched miracidia with eye spots, (b): Hatched eggs (empty eggs with opened operculum) (40×).

Figure-3: *Moringa* treated *Fasciola* eggs (methanol extract) at highest concentration 200 mg/ml: (A) Empty *Fasciola* eggs with a closed operculum, (B) dead eggs with lysed embryo, (C) eggs of early development (40×).

Figure-4: *Moringa* treated *Fasciola* eggs (Ethanol extract) at highest concentration 200 mg/ml: (a) Degenerated eggs, (b) dead miracidium inside the egg, (c) empty *Fasciola* egg with a closed operculum (40×).

Figure-5: *Moringa* treated *Fasciola* eggs (water extract) at highest concentration 800 mg/ml: (A) Degenerated eggs and (B) empty *Fasciola* egg with a closed operculum (40×).
reported in *M. oleifera* leaves [20, 21]. Previously, it was suggested that tannins and saponins possibly penetrated the egg affecting the morula [22] and stop hatching [23] of *H. contortus* eggs.

In the current study, there were no statistically significant differences between ovicidal activity of *M. oleifera* methanolic and ethanolic extracts in non-embryonated and developed eggs. The probable reason for the minor differences between aqueous and alcoholic extracts could be due to variation in solubility of the active compounds in the solvent. Infused aqueous extract and ethanolic extract of *M. oleifera* tested by Tayo et al. [24] on *H. contortus*, in vitro, presented comparable activity on eggs. The observed similar activity of ethanolic extract and infused aqueous extract of *M. oleifera* leaves on eggs could be due to the presence of similar or related chemicals having ovicidal properties in approximately equivalent proportions. On the contrary, Poné et al. [18] found that the ethanol extract was more potent on the eggs when compared to hot and cold water extracts.

Based on LC$_{50}$ values, water extract presented the highest ovicidal activity since it registered the lowest values of 2.6 mg/ml on immature non-embryonated eggs suggesting that non-embryonated eggs were more susceptible to aqueous extract than developed eggs. On the other hand, developing eggs were more susceptible to ethanolic extract than non-embryonated eggs as ethanolic extract had the lowest LC$_{50}$ (12.38 mg/ml). These results agreed with Tayo et al. [24].

Table 1: Ovicidal effect of *Moringa* on *Fasciola* non-embryonated eggs.

Treatment	Conc. (mg/ml)	Non-developed eggs (%)	Hatched eggs (%)	Hatching ratio	Ovicidal activity (%)
Moringa methanolic extract	12.5	38.22±1.03h	61.78±1.03h	0.74±0.01b	31.36±1.14b
	25	67.68±1.49g	32.32±1.49g	0.37±0.02d	64.09±1.65d
	50	79.49±2.91a	20.51±2.91a	0.24±0.03a	77.22±3.23a
	100	88.63±0.66b	11.37±0.66b	0.13±0.01b	87.36±0.73b
	200	98.98±0.01a	1.02±0.01a	0.01±0.01a	98.87±0.01a
Moringa ethanolic extract	12.5	42.55±0.77h	57.45±0.77h	0.64±0.01c	36.17±0.85c
	25	43.31±1.26a	56.69±1.26a	0.63±0.14a	37.01±1.44a
	50	79.76±0.5d	20.24±0.5e	0.22±0.01d	77.51±0.56d
	100	89.25±3.0b	10.75±3.0e	0.12±0.03b	88.06±3.4b
	200	98.33±1.53b	1.67±1.53b	0.02±0.01b	98.15±1.7b
Moringa water extract	100	85.74±1.06c	14.26±1.06c	0.24±0.02c	84.16±1.18c
Control (Dist. water)	-	10±0.91d	99.99±0.95e	1±0a	0±0i
Nitroxynil	100	81.84±1.57e	18.16±1.57e	0.25±0.02e	79.82±1.74e
F value		859.94	859.94	744.23	881.83
p		p<0.001	p<0.001	p<0.001	p<0.001

All data expressed as mean±SD. Means followed by different letters indicated significance. SD=Standard deviation

Table 2: Ovicidal effect of *Moringa* on *Fasciola* developed eggs.

Treatment	Conc. (mg/ml)	Non-developed eggs (%)	Hatched eggs (%)	Hatching ratio	Ovicidal activity (%)
Moringa methanolic extract	12.5	46.48±1.38h	53.91±1.01h	0.61±0.02b	39.06±1.14b
	25	59.96±1.65a	40.03±1.65a	0.46±0.02a	55.09±1.61a
	50	72.02±2.11a	27.98±2.11a	0.53±0.02a	68.29±2.10a
	100	88.58±2.01b	11.87±2.01b	0.13±0.02b	86.59±2.10b
	200	94.68±2.1c	5.01±2.1e	0.06±0.02c	94.24±2.07c
Moringa ethanolic extract	12.5	47.06±2.6b	52.94±2.6b	0.60±0.03b	40.16±3.02b
	25	63.99±1.48b	36.01±1.48b	0.41±0.02b	59.34±1.67b
	50	80.07±0.95a	19.93±0.95a	0.23±0.01a	77.47±1.07a
	100	86.33±0.72a	13.67±0.72a	0.16±0.01a	84.54±0.81a
	200	94.10±2.35a	5.90±2.15e	0.05±0.03a	93.33±2.65a
Moringa water extract	100	64.4±1.6a	35.6±1.68e	0.39±0.02a	62.31±1.78e
	200	79.6±1.22b	20.4±1.22a	0.22±0.01b	78.4±1.29a
	400	84.09±2.01e	15.91±2.01e	0.17±0.02e	83.16±2.13e
	800	95.37±1.46e	4.63±1.46e	0.05±0.02e	95.09±1.54e
Control (Dist. water)	-	11.54±1.54i	88.46±1.68a	1±0a	0±0i
Nitroxynil	100	75.03±2.4a	24.97±2.4a	0.28±0.03e	71.77±2.72e
F value		454.07	522.79	473.97	577.01
p		p<0.001	p<0.001	p<0.001	p<0.001

All data expressed as mean±SD. Means followed by different letters indicated significance. SD=Standard deviation
that ethanolic extracts of *M. oleifera* leave presented the highest activity on late stages of development of *H. contortus* eggs since it registered the lowest values of LC$_{50}$. They disagreed with Poné *et al.* [18] found that LC$_{50}$ value of the ethanol extract of *C. mannii* was relatively low, indicating that this extract is more active on non-embryonated eggs than aqueous extracts. This conflict might be due to they used *H. contortus* eggs, and in the current study, *F. gigantica* eggs were used.

Although not quite exact on how *M. oleifera* inhibit egg embryonation, Sreelatha *et al.* [25] explained that *M. oleifera* leaf extract could induce cellular apoptosis, morphological change and DNA fragmentation in a type of human cancer cell.

Conclusion

The current study introduced *M. oleifera* leaf aqueous extract which offered a promising ovicidal effect on *F. gigantica* eggs. The future scope involves the need of *in vivo* study to enlighten the therapeutic potential of *M. oleifera* extracts in treating *F. gigantica* infection. Furthermore, isolation of phytoconstituents responsible for these activities is required.

Authors’ Contributions

This study was designed and supervised by AGH. While, SEH, EEE and DA carried out extracts preparation. AMM and NIT collected the samples. KNA, SEH, EEE and DA examined gallbladders. KNA, SEH, DA and EEE carried out the application of plant extracts on eggs. DA analyzed and interpreted the data. All authors have prepared, read and approved the final manuscript.

Acknowledgments

This work was financially supported by the project number 11020201 entitled: “Evaluation of..."
antimicrobial effect of propolis and Moringa on Fasciola gigantica and Clostridium oedematiens (Clostridium novyi) type B, which is funded by a grant from National Research Centre (NRC), Egypt.

Competing Interests

The authors declare that they have no competing interests.

References

1. Shokier, K.M., Aboelhadid, S.M. and Waleed, M.A. (2013) Efficacy of five anthelmintics against a natural Fasciola species infection in cattle. *BIBAS*, 2: 4-5.
2. Schweizer, G., Braun, U., Deplazes, P. and Torgerson, P.R. (2005) Estimating the financial losses due to bovine fasciolosis in Switzerland. *Vet. Rec.*, 157: 188-193.
3. Charlier, J., Duchateau, L., Claerebout, E., Williams, D. and Vercruysse, J. (2007) Associations between anti-Fasciola hepatica antibody levels in bulk-tank milk samples and production parameters in dairy herds. *Prev. Vet. Med.*, 78: 57-66.
4. Veerakumari, L. (2015) Botanical anthelmintics. *Asian J. Sci. Tech.*, 6: 1881-1894.
5. Bauri, R.K., Tigga, M.N. and Kullu S.S. (2015) A review on use of medicinal plants to control parasites. *Ind. J. Nat. Prod. Resour.*, 6: 268-277.
6. Devendra, B.N., Srinivas, N., Talluri, P.S. and Latha, P.S. (2011) Antimicrobial Activity of Moringa oleifera Lam., leaf extract, against selected bacterial and fungal strains. *Int. J. Pharm. BioSci.*, 2: 1-18.
7. Nilani, P., Pinaka, M.K., Duraisamy, B., Dhamodaran, P. and Jeyaprakash, M.R. (2012) Anthelmintic activity of Moringa Oleifera seed oil - Validation of traditional use. *J. Adv. Sci. Res.*, 3: 65-66.
8. Rastogi, T., Bhutda, V., Moon, K., Aswar, P.B. and Khadabadi, S.S. (2009) Comparative studies on anthelmintic activity of Moringa oleifera and Vitiex negundo. *Asian J. Res. Chem.*, 2: 181-182.
9. Konny, B.B.S., Olounladé, P.A., Doko-allou, S., Azando, E.B.V. and Hounzangbé-Adoté, S.E.G. (2016) A review on phytochemistry and pharmacology of Moringa oleifera leaves (Moringaceae). *J. Pharm. Phytochem.*, 5: 325-330.
10. Martínez-González, C.L., Martínez, L., Martínez-Ortiz, E.J., González-Trujano, M.E., Déciga-Campos, M., Ventura-Martínez, R. and Díaz-Revál, I. (2017) Moringa oleifera, a species with potential analgesic and anti-inflammatory activities. *Biomed. Pharmacother.*, 87: 482-488.
11. Mibikay, M. (2012), Therapeutic postellital of Moringa oleifera leaves in chronic hyper-glycemicemia and dyslipidemia: A review. *Front. Pharmacol.*, 3: 1-37.
12. Fairweather, I., McShane, D., Shaw, L., Ellison, S.E., O’Hagan, N.T., York, E.A., Trudgett, A. and Brennan, G.P. (2012), Development of an egg hatch assay for the diagnosis of triclabendazole resistance in Fasciola hepatica: Proof of concept. *Vet. Parasitol.*, 183: 249-259.
13. Arafà, W.A., Shokeir, K.M. and Khatib, A.M. (2015) Comparing an in vivo egg reduction test and in vitro egg hatching assay for different anthelmintics against Fasciola species, in cattle. *Vet. Parasitol.*, 214: 152-158.
14. Canevari, J., Ceballos, L., Sanabria, R. and Romero, J. (2014) Testing albendazole resistance in Fasciola hepatica: Validation of an egg hatch test with isolates from South America and the United Kingdom. *J. Helminthol.*, 88: 286-292.
15. SPSS 15.0. (2006) Statistical Package for Social Science, SPSS for Windows Evaluation Version. Standard Version, Copyright SPSS Inc., 1989-2006. Buckingham.
16. Pessoa, L.M., Movais, S.M., Bevilaquialu, C.M.L. and Luciano, J.H.S. (2002) Anthelmintic activity of essential oil of Ocimum gratissimum Linn. and eugenol against Haemonchus contortus. *Vet. Parasitol.*, 109: 59-63.
17. Poné, W.J., Mpoame, M., Bilong, B.C.F. and Kerboeuf, D. (2005) Etude compare in vitro de l’activité nématódie de l’extrait éthanolique de la poudre d’écorce de Canthium mannii (Rubiaceae) et du Mébendazole. *Rev. Méd. Vét.*, 156: 633-636.
18. Poné, W.J., Bilong, B.C.F., Mpoame, M., Ngwa, C.F. and Coles, C.G. (2006) In vitro activity of ethanolic, cold and hot water extracts of the stem bark of Canthium mannii (Rubiaceae) stem on Anclylostoma caninum eggs. *East Cent. Afr. J. Pharm. Sci.*, 9: 14-18.
19. Peter, W. and Deogracious, O. (2006) The in-vitro ascaricidal activity of selected indigenous medicinal plants used in ethno veterinary practices in Uganda. *Afr. J. Trad. Cam.*, 3: 94-103.
20. Fatima, T., Sajid, M.S., Hassan, M.J.U., Siddique, R.M. and Iqbal, Z. (2014) Phytomedicinal value of Moringa oleifera with special reference to antiparasitics. *Pak. J. Agric. Sci.*, 51: 251-262.
21. Ali, S.A., Mohamed, A.H., Gameel, A.A. and Hassan, T. (2010) Protective Effect of Moringa Oleifera Leaves Aqueous Extract against Carbon Tetrachloride Induced Hepatotoxicity in Rats. *Ind. J. Adv. Sci.*, 5: 30-34.
22. Vargas-Magaña, J.J., Torres-Acosta, J.F.J., Aguilar-Caballero, A.J., Sandoval-Castro, C.A., Hoste, H. and Chan-Pérez, J.J. (2014) Anthelmintic activity of acetone-water extracts against Haemonchus contortus eggs: Interactions between tannins and other plant secondary compounds. *Vet. Parasitol.*, 206: 322-327.
23. Varghese, M.G., Poné, J.W., Komtangi, M.C., Yondo, J., Ngangout, A.M. and Mbida, M. (2014) Anthelmintic activity of Moringa oleifera leaf extracts evaluated in vitro on four developmental stages of Haemonchus contortus from goats. *Am. J. Plant Sci.*, 5: 1702-1710.
24. Streevalna, S., Jayachitra, A. and Padma, P.R. (2011) Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. *Food Chem. Toxicol.*, 49: 1270-1275.

Available at www.veterinaryworld.org/Vol.11/February-2018/20.pdf