Modulating electrolyte structure for ultralow temperature aqueous zinc batteries

Qiu Zhang1,2, Yilin Ma1,2, Yong Lu1, Lin Li1, Fang Wan1, Kai Zhang1 & Jun Chen1

Rechargeable aqueous batteries are an up-and-coming system for potential large-scale energy storage due to their high safety and low cost. However, the freeze of aqueous electrolyte limits the low-temperature operation of such batteries. Here, we report the breakage of original hydrogen-bond network in ZnCl2 solution by modulating electrolyte structure, and thus suppressing the freeze of water and depressing the solid-liquid transition temperature of the aqueous electrolyte from 0 to -114 °C. This ZnCl2-based low-temperature electrolyte renders polyaniline||Zn batteries available to operate in an ultra-wide temperature range from -90 to +60 °C, which covers the earth surface temperature in record. Such polyaniline||Zn batteries are robust at -70 °C (84.9 mA h g⁻¹) and stable during over 2000 cycles with ~100% capacity retention. This work significantly provides an effective strategy to propel low-temperature aqueous batteries via tuning the electrolyte structure and widens the application range of temperature adaptation of aqueous batteries.
Electrochemical energy storage technologies are of significance for reserve and conversion of renewable natural resources. Rechargeable aqueous Zn batteries have been considered as a promising candidate for large-scale energy storage due to the high safety, materials abundance, and the intrinsic merits of Zn in low redox potential (−0.76 V vs. standard hydrogen electrode) and high theoretical capacity (820 mA h g\(^{-1}\)). However, the aqueous electrolyte owns narrow liquid-state temperature range. When temperature substantially decreases, common aqueous electrolyte easily gets frozen due to the high freezing point of water, which limits the mobility of ions and the wettability of electrolyte toward electrode, resulting in deteriorative electrode-electrolyte interphase. However, there are abundant renewable natural resources in severely cold regions, and most of energy storage devices cannot endure low temperature. Therefore, it is a priority for preventing the electrolyte from solidifying at subzero conditions and constructing low-temperature aqueous Zn batteries (LTZBs).

The freezing process is an intricate rearrangement from orderless water to ordered ice, which is driven by forming extra hydrogen bonds (H-bonds). Up to now, a few strategies have been proposed to suppress the freeze of water, such as forming eutectic with organics and anti-freezing hydrogel. Though the feasibility of LTZBs has been demonstrated at −20 °C, the ultimate low temperature for aqueous Zn batteries is still unknown and unreached. The batteries based on the organic electrolyte with low-freezing-point solvent, such as liquefied CO\(_2\)/fluoromethane gas, ethyl acetate, and perfluorinated ether, can easily reach the ultralow operation temperature of ~−60 °C and ~−85 °C, respectively. However, the solvent of aqueous Zn electrolyte is fixed as water, which has a high freezing point of 0 °C at standard atmospheric pressure. Despite the introduction of organics can suppress the freeze of water, it reduces the ionic conductivity of electrolyte and thus restricts the lowest operation temperature of batteries up to ~−50 °C. In addition, the organic electrolyte is generally evaporable and inflammable. Therefore, developing organics-free ultralow-temperature aqueous electrolyte with superior electrochemical performance is still needed. Metal ions possess strong electrostatic interaction with a dipolar water molecule and can significantly break the original H-bond network, which renders the feasibility of regulating the freezing point of water by modulating H-bonds. ZnCl\(_2\) is one of the most soluble inorganic salts and can reduce H-bonds in water sharply with high concentration. While ‘water in salt’ (WIS) strategies widen the electrochemical window of electrolyte, the further expanding WIS on the broad operating temperature range especially at ultralow temperature is still deficient. Thus, it is considered that how to modulate electrolyte structure to achieve ultralow solid-liquid transition temperature (T\(_{t}\)) and obtain the relationship between electrolyte concentration and T\(_{t}\). In addition, the evolution of the electrolyte structure, as well as the thermodynamic transition properties with concentration, should be studied deeply by multiperspective approach.

In this work, we aim at ZnCl\(_2\)-based aqueous electrolyte and explore the relationship among ZnCl\(_2\) concentration (C\(_{\text{ZnCl}_2}\)), electrolyte structure (including H-bonds and ion interactions) and T\(_{t}\). The main discovery is that the T\(_{t}\) gradually reduces as the C\(_{\text{ZnCl}_2}\) increases dominated by the breakage of H-bonds from 1 to 7.5 m (mol kg\(^{-1}\)) electrolyte, while the T\(_{t}\) increases at higher C\(_{\text{ZnCl}_2}\) (>7.5 m) because of the enhanced ion interactions. Thus, the T\(_{t}\) and C\(_{\text{ZnCl}_2}\) present a V-shape relationship. The lowest T\(_{t}\) of ~−114 °C is achieved at 7.5 m ZnCl\(_2\) electrolyte, and this electrolyte exhibits a high ionic conductivity (1.79 mS cm\(^{-1}\) at ~−60 °C) and good compatibility with Zn in an ultra-wide temperature range of −100~+60 °C. Furthermore, polyaniline (PANI)||Zn batteries with this low-temperature electrolyte (LTE) shows high tolerance at an extremely low temperature of ~−90 °C and stable cycling performance (849 mA h g\(^{-1}\), ~2000 cycles) at ~70 °C. This work will broaden the design philosophy of antifreezing electrolyte and promote the wide-temperature large-scale energy storage adopting aqueous batteries.

Results

Low-T\(_{t}\) solution design. \(\text{H}_2\text{O}\) contains partially positively charged H atoms and partially negatively charged O atom. The H-bond (O−H−O) is formed between the O atom and the H atom of neighboring \(\text{H}_2\text{O}\) via electrostatic interaction mainly. Deviating significantly from the law of chalcogen hydrides (Fig. 1a), water owns the illogically high freezing point owing to its abundant H-bonds. Below 0 °C, water can easily transform into ice, accompanying with the formation of extra 0.52 H-bonds per H\(_2\text{O}\) (Supplementary Note 1). Thus, destructing the H-bonds in water would enlarge the transformation energy gap between water and ice in thermodynamics. In addition, ice nucleation, as the initial stage of freeze, relies on the water molecules with tetraheradally coordinated structure growing into stacked hexagonal sequences (Supplementary Fig. 1). Thus, regulating the H-bond quantity and reducing the highly H-bound water molecules can validly suppress the freeze of water in kinetic pathway. With multiple-valence charge and small radius, Zn\(^{2+}\) owns a large electric field, and generates strong electrostatic interactions with the dipolar water molecule, and thus rearranges the coordination structures of water molecules around metal ions. The O atoms are confined by metal ions via hydration and hardly involved in the formation of H-bonds, resulting in significantly reduced H-bond amount. In principle, as the metal-salt concentration ascends, more H-bonds in water are destroyed. Consequently, the electrolyte with reduced H-bonds is expected to remain in liquid state at subzero temperature. However, introducing a mass of metal salts is a double-edged sword. The physical characteristics of the solution are also plagued by such concentrated content. First, the strengthened interactions between cations and anions bring about high viscosity, leading to a detrimental process of mass transfer and high T\(_{t}\). Meanwhile, the solubility of metal-salts decreases greatly with temperature reducing, and the tendency of expelling salt severely limits the liquid temperature range. Therefore, to achieve low-T\(_{t}\) solution, we introduced the highly soluble salt ZnCl\(_2\), and gave consideration to both modulations of the H-bonds and cation-anion interactions, implemented the maximum inhibition of the liquid-solid transition by regulating C\(_{\text{ZnCl}_2}\). As illustrated in Fig. 1b, the original H-bond structure of water is broken because of the strong dipole-dipole force between ionic species and water molecules, and Zn\(^{2+}\) solvation configurations emerges. This electrolyte is mainly composed of the water molecule with weak H-bond interaction, Zn(H\(_2\text{O})_2\text{Cl}_2\(^{2-}\), Zn\(^{2+}\), and Zn(H\(_2\text{O})_6\(^{2+}\). The weak H-bond reduces the freezing point of water, while the enhanced ion interactions raise the T\(_{t}\) of electrolyte. Thus, balancing the above two aspects can modulate T\(_{t}\), and the critical C\(_{\text{ZnCl}_2}\) renders that this electrolyte can be operated at extremely low temperature, which is revealed by the liquid-state electrolyte with moderate C\(_{\text{ZnCl}_2}\) at ~−70 °C (Fig. 1c).

Electrolyte structures and solid-liquid transitions. Raman spectroscopy was performed to explore the evolutions of the H-bonds and the formations of the solvation configurations in the electrolyte with the increasing C\(_{\text{ZnCl}_2}\). In Fig. 2a, b, O−H stretching vibration of water molecules (3000~3700 cm\(^{-1}\)) shows an obvious wide peak, which is often convoluted into three components. Based on previous reports, the Raman peak...
gradually bluelshifts as the H-bond interaction wanes, so the major peak wavenumbers located at ~3230, ~3450, and ~3620 cm$^{-1}$ correspond to the water molecules with strong, weak and non H-bonds, respectively. With the addition of ZnCl$_2$, the peaks narrow to high frequency, indicating the decrease of strong H-bond proportion in the solution42. To further quantify the water in different H-bound states, the ratios are calculated based on the area of fitted peaks (Supplementary Fig. 2). In Fig. 2c, the strong H-bound water reduces while non H-bound water increases with the C_{ZnCl_2}, suggesting the progressive destruction of H-bond structure with salt concentration. The 1H nuclear magnetic resonance (NMR) was also utilized as a sensitive indicator to further study the H-bond network in the electrolyte43,44. As we can see, 1H chemical shifts to high field as C_{ZnCl_2} owing to the breakage of the H-bonds among water molecules (Supplementary Fig. 3). Moreover, we simulated different C_{ZnCl_2} electrolyte with molecular dynamics (MD). Intuitively, the snapshots of the simulated liquid phase show the massive reduction of H-bonds by inducing ZnCl$_2$ (Fig. 2d). Specifically, to identify the local H-bond coordination of water molecules, the distribution of water molecules with different H-bound number was explored (Fig. 2e). In pure water, the water molecules with 4 H-bonds are dominant and constitute the water with tetrahedrally coordinated structure, which is decisive in the ice nucleation. When increasing the C_{ZnCl_2}, the H-bonds number of dominant water molecules reduces to 2 and even 0 at 7.5 and 30 m C_{ZnCl_2} electrolyte, respectively. Thus, the decrease of 4 H-bound water molecules with C_{ZnCl_2} increasing suppresses ice nucleation, which hinders the freeze of water from aspects of kinetics.

The solvation configurations of Zn$^{2+}$ in the various C_{ZnCl_2} electrolyte are also unveiled by Raman spectroscopy in the region of 200–450 cm$^{-1}$ 35,45. As shown in Fig. 2f, the pure water shows no peaks around this range. In comparison, upon the introduction of ZnCl$_2$, a new peak at 284.0 cm$^{-1}$ appears and keeps increasing with the C_{ZnCl_2} corresponding to the formation of Zn$^{2+}$ solvation configurations. While the concentration increasing to the 30 m, the initial peak turns into two peaks, proving the new coordination way for Zn$^{2+}$. In order to identify the species more precisely, we fitted the peaks and took 7.5 and 30 m ZnCl$_2$ electrolyte as examples of moderate and high C_{ZnCl_2} electrolyte (Fig. 2g and Supplementary Fig. 4). For 7.5 m ZnCl$_2$ electrolyte, there are three peaks located at 284.9, 311.8 and 405.6 cm$^{-1}$, representing Zn(H$_2$O)$_2$Cl$_2$$^{2-}$, ZnCl$^{+}$ and Zn(H$_2$O)$_4$$^{2+}$ respectively. For the almost saturated concentration of 30 m C_{ZnCl_2}, ZnCl$_2$$^{2-}$ and Zn–Cl polynuclear aggregate, of which peaks located at 236.4 and 334.3 cm$^{-1}$, replaces Zn(H$_2$O)$_6$$^{2+}$ and ZnCl$^{+}$. The emerging Zn–Cl polynuclear aggregate is suggested like the melt/solid of ZnCl$_2$.45 Owing to the competition between Cl$^{-}$ and water molecules for positions adjacent to Zn$^{2+}$, the average number of coordinating water around Zn$^{2+}$ is slashed and the water-free ZnCl$_2$$^{2-}$ and Zn–Cl polynuclear aggregate are formed with the C_{ZnCl_2} increasing. The average coordinating numbers of Zn with O (H$_2$O) and Cl are calculated based on MD simulation, demonstrating the dehydration of Zn$^{2+}$ solvation configurations with C_{ZnCl_2} increasing (Supplementary Fig. 5). More importantly, the Raman peak value of Zn(H$_2$O)$_2$Cl$_2$$^{2-}$ and ZnCl$^{+}$ are exhibited in Fig. 2h and the bluelshift of peaks unveil the enhanced ion interactions with increased C_{ZnCl_2}, which is also demonstrated by the total electrostatic interaction potential energy among cations,
anions and water molecules in MD simulation (Fig. 2i). As same as H-bond, the enhanced ion interactions will elevate the Tt of electrolyte. Inevitably, there is a critical C_{ZnCl2} contributing low H-bond and ion interactions, which may achieve the lowest Tt and apply to low-temperature electrolyte.

Toward revealing the mechanism of H-bond breakage and solvation configurations formation resulted from introducing ZnCl2, the interactions among ions and water were conducted by density functional theory (DFT) calculation. Dominated by electrostatic interaction, the H2O-H2O interaction (regarded as H-bond) exhibits binding energy of ~5.1 kcal mol\(^{-1}\). Comparing to the water molecule with no charge, ions show stronger electrostatic and induction interaction, and thus higher binding energies\(^{37}\). The high binding energy of ~98.5 kcal mol\(^{-1}\) between Zn\(^{2+}\) and H2O endows Zn\(^{2+}\) with the ability to break the H-bonds and reconstitutes the electrolyte structure with solvation configurations (Fig. 2i). The Zn\(^{2+}\) solvation configurations are also explored, including Zn\((H2O)6\)\(^{2+}\), Zn\(^{2+}\), Zn\((H2O)4\)\(^{2+}\), and ZnCl\(^{2-}\). The high formation energies imply that they are in a stable and low-energy state, which makes them more stable and difficult to dissociate into ions and water.

To demonstrate our design principle for the low-Tt solution, the characteristic and the temperature of the solid-liquid transitions of different C_{ZnCl2} electrolyte was explored by differential scanning calorimeter (DSC), which can specifically reveal the thermodynamic change accompanied by temperature\(^{46,47}\). Figure 3a shows the heat changes of different C_{ZnCl2} electrolyte by rising temperature from ~150 to 20 °C. It is found that the electrolyte of different C_{ZnCl2} shows various solid-liquid transitions, including ice melting, glass--liquid transition, and salt dissolving. Generally, the ice melting and salt dissolving processes show sharp endothermic peaks and the glass--liquid transition shows up as an obvious step caused by the increased heat capacity\(^{46}\). The occurrence of vitrification results from the abundant existence of low-energy structure, which leads to the electrolyte trapped into the local minima energy\(^{48,49}\). Figure 3b clearly exhibits the V-shape relationship between the major Tt and C_{ZnCl2}, and the lowest Tt of ~114 °C is achieved at a critical concentration of 7.5 m. Below 7.5 m, the Tt is mainly dominated by reduced H-bonds. While above 7.5 m, the Tt increases with the C_{ZnCl2}, because the Tt of this C_{ZnCl2} region is dominated by the enhanced...
ion interactions. At low C_{ZnCl_2} of 1–5 m, the heating process contains two solid-liquid transitions—the minor process of glass–liquid transition below -100°C and the major process of ice melting. In the C_{ZnCl_2} range of 7.5–20 m, only glass–liquid transition occurs. When C_{ZnCl_2} equals 30 m, the solid-liquid transitions include the minor process of glass–liquid transition below -60°C and the major process of salt dissolving corresponding to the sharp endothermic peak at 1.2°C. The specific T_t is summarized in Supplementary Table 1. To visualize those three transitions more intuitively, in situ polarizing microscope observation is applied in accordance with the isotropy and anisotropy of the electrolyte at different states (Fig. 3c). The observation is applied in accordance with the isotropy and anisotropy of the electrolyte at different states (Fig. 3c).

To further unveil the unusual vitrification mechanism of ZnCl$_2$-based electrolyte, we calculated the energy change of 7.5 m ZnCl$_2$ electrolyte in the different states with the energy reference point of ZnCl$_2$(s) and H$_2$O(l) at 300 K. The high energy gap between ZnCl$_2$(s) + H$_2$O(l) separated phase and ZnCl$_2$-H$_2$O(aq) single-phase renders the easy dissolution of ZnCl$_2$ at 300 K. When the temperature decreases to 200 K, the energy gap reduces dramatically owing to the freeze of H$_2$O in the separated phase. With temperature further decreasing, the energy order is inverted, because the amorphous glass is metastable and owns higher thermodynamic energy than that in the form of crystallized ZnCl$_2$ and ice. However, the transition from glass to crystal needs to overcome the energy barrier for the phase separation, which is interdicted owing to the limited thermal motion at the extremely low temperature (Fig. 3e, f). At 100 K, the selected Zn$^{2+}$ was settled and can only move 0.5 Å at most around the origin, of which is 8.3 Å at 300 K (Supplementary Fig. 6). As a result, it is demonstrated by low-temperature Raman spectra that the water and ions are bound as similar as that in liquid state, and can hardly form crystallized ZnCl$_2$ even at -150°C (Supplementary Fig. 7), of which configuration reaches the minimum of system energy. The energy barrier and gap in the crystallization of glass
imply that it occurs at relatively high temperature and is an exothermic process, which is proved by the cold crystallization of the ZnSO4·H2O glass at −52°C (Supplementary Fig. 8).

Low-temperature performance of electrolyte and Zn anode. Apart from preventing electrolyte from freeze, the electrochemical performance of the LTE is also significant for operating LTZBs, especially with reference to the high ionic conduction and the good compatibility with Zn anode. To optimize and choose the appropriate LTE with superior ionic conduction at low temperature, the ionic conductivities of the different C ZnCl2 electrolyte were calculated based on Arrhenius equation 3. Activation energies of ionic conduction in the different electrolyte at normal temperature and low-temperature stages are listed in Supplementary Table 3. Because of the exponential relationship between activation energy and ionic conductivity, the lower activation energy implies the higher ionic conductivity of the electrolyte, which boosts its low-temperature performance. The activation energy in stage I leads to the highest low-temperature ionic conductivity among the above electrolyte. Despite 10 m ZnCl2 electrolyte is unfrozen at this temperature range, the higher concentration and activation energy causes higher activation energy. At stage II, however, 7.5 m ZnCl2 electrolyte shows lowest activation energy of 3.79 × 10⁻² eV at −100 °C, which also shows faster reduction of ionic conductivity than 7.5 m ZnCl2 electrolyte. Based on the widened liquid-phase temperature range and relatively low concentration, the 7.5 m ZnCl2 electrolyte shows the high ionic conductivity of 1.79 mS cm⁻¹ at −60 °C and 0.02 mS cm⁻¹ even at −100 °C.

To precisely reveal the evolution of ionic conductivity with temperature, the activation energies of ionic conduction in electrolyte were calculated based on Arrhenius equation 3. As shown in Fig. 4b, there are two stages including normal temperature stage and low-temperature stage, in which show different activation energies. The specific temperature range and activation energy for the different electrolyte are listed in Supplementary Table 3. Because of the exponential relationship between activation energy and ionic conductivity, the lower activation energy implies the higher ionic conductivity of the electrolyte, which boosts its low-temperature performance. The activation energy in stage I clearly exhibits that the higher concentration of ZnCl2 electrolyte causes higher activation energy. At stage II, however, 7.5 m ZnCl2 electrolyte shows lowest activation energy of 0.374 eV at −100 °C, which leads to the highest low-temperature ionic conductivity among the above electrolyte. Despite 10 m ZnCl2 electrolyte is unfrozen at this temperature range, the higher concentration holds lower activation energy than the unfrozen 7.5 m ZnCl2 electrolyte at −80 °C. Though 10 m ZnCl2 electrolyte owns low Tt below −100 °C, it also shows faster reduction of ionic conductivity than 7.5 m ZnCl2 electrolyte. Based on the widened liquid-phase temperature range and relatively low concentration, the 7.5 m ZnCl2 electrolyte shows the high ionic conductivity of 1.79 mS cm⁻¹ at −60 °C and 0.02 mS cm⁻¹ even at −100 °C.

Fig. 4 The electrochemical performance of the LTE and Zn anode. a The ionic conductivities of the different electrolyte in the temperature range of −100–+60 °C. b The activation energies of ionic conduction in the different electrolyte at normal electrolyte performance and low-temperature stages. c CV curves of asymmetric Zn||Cu cell at −70 °C. d The voltage profiles of Zn plating/stripping in asymmetric Zn||Cu cell at −70 °C. e The cycling performance of symmetric Zn||Zn cell at −70 °C.

A Temperature (°C)

![Graph](attachment:image1)

B Activation energy (eV)

![Graph](attachment:image2)

C Current (mA cm⁻²)

![Graph](attachment:image3)

D Voltage (V vs Zn²⁺/Zn)

![Graph](attachment:image4)

E Zn plating/stripping at 0.2 mA cm⁻², 1 h

![Graph](attachment:image5)
Brings higher activation energy (0.536 eV), causing relatively low ionic conductivity. The partially frozen 1 and 5 m ZnCl₂ electrolytes also show larger activation energy at stage II than the unfrozen 7.5 m ZnCl₂ electrolyte. The 2 m ZnSO₄ and Zn(CF₃SO₃)₂ electrolyte of fully freeze show highest activation energies of 3.067 and 3.641 eV at stage II, respectively. Thus, the unfrozen property and relatively low concentration is required for LTE. The LTE design philosophy can be concluded as that utilizing lowest-concentration electrolyte with the premise of maintaining a liquid state at an ultralow temperature, which owns low activation energy and high ionic conductivity. As a result, we chose 7.5 m ZnCl₂ electrolyte as LTE for further research on its electrochemical performance.

The asymmetric and symmetric Zn batteries were assembled and aimed to investigate the Zn compatibility of LTE. The cyclic voltammetry (CV) curve of asymmetric Zn||Cu batteries show the reversible redox reaction of Zn plating/stripping (Fig. 4c and Supplementary Fig. 10), and the high current density of 1.8 mA cm⁻² can be achieved at ~70°C. For accurately quantifying the reversibility of Zn plating/stripping in LTE, coulombic efficiency (CE) of asymmetric Zn||Cu batteries were tested in common approaches. The high average CE of 97.93 and 99.52% is achieved at 25 and ~70°C, respectively, and the long-term Zn plating/stripping are obtained (Fig. 4d and Supplementary Fig. 11). The high reversibility can be ascribed to the more Zn²⁺ solvation structure and less free solvent caused by the electrolyte of higher concentration. In addition, the symmetric Zn||Zn cells based on 2 m ZnSO₄, Zn(CF₃SO₃)₂ and LTE were tested (Supplementary Fig. 13). The batteries with 2 m ZnSO₄ and Zn(CF₃SO₃)₂ electrolyte show sharply increased overpotential and battery failure due to the fully frozen electrolyte. Despite the symmetric battery using LTE shows enlarged overpotential owing to the reduced ionic conductivity and sluggish Zn plating/stripping kinetics at low temperature, it remains working at ~90°C, shows robust temperature stability and can withstand cycling at ~70°C for 450 h (Fig. 4e). The high ionic conductivity, good Zn compatibility and the wide electrochemical window (Supplementary Fig. 14) of LTE demonstrate its feasibility in the ultra-wide temperature range of ~100~+60°C.

Batteries with LTE and PANI organic cathode. The energy density of full batteries mostly depends on the electrochemical performance of cathode materials. However, Zn²⁺ with high charge exhibits the sluggish insertion kinetics for inorganic materials, leading to the fast decay of capacity at low temperature. Recently, organic materials for low-temperature batteries have received attentions, owing to the charge storage mainly locating at surface groups and the high capacity independence of temperature. Therefore, relying on the redox mechanism of the benzene/quinone structure transformation and the corresponding ions compensation, PANI was chosen for constructing LTZBs. The configurations and redox mechanism of PANI||LTE|Zn are shown in Fig. 5a.

The structure of obtained PANI was characterized by Raman spectroscopy (Supplementary Fig. 15). In order to demonstrate the benzene/quinone structure transformation mechanism and its consistency with temperature, in situ Raman spectroscopy is applied for PANI||LTE|Zn batteries at 20, ~70, and ~90°C. The reversible quinone/benzene signal change of PANI cathode during the redox process at ~70°C, which is consistent in that at 20°C and the extremely low temperature of ~90°C (Supplementary Note 2 and Fig. 16), demonstrates the high redox reversibility and cold tolerance of PANI cathode. With the internal structure transforming, cathode maintains charge balance by ions adsorption/desorption, which is proved by X-ray photoelectron spectroscopy and in situ electrochemical quartz crystal microbalance (Supplementary Figs. 17–18). Specifically, the ions compensation mechanism during discharging is expressed as Zn(H₂O)₆Cl²⁻ desorption and H²/ZnCl²⁺ hybrid adsorption (Supplementary Note 3), rendering the pseudo-capacitance energy storage in PANI||LTE|Zn batteries, which is verified by cyclic voltammetry (Supplementary Fig. 19). Despite the PANI cathode has the same redox mechanism at normal and low temperature, the slow mass transfer kinetics at low temperature renders the weakened redox peaks and enlarged electrochemical polarization.

Figure 5b shows the charge–discharge curves of PANI||LTE|Zn batteries ranged from 90 to +60°C, which covers the recorded earth surface temperature from −89.2°C (Death Valley, California, USA, 1913) to 56.7°C (Vostok Station, Antarctica, 1983), and few batteries can operate in such severe temperature range (Supplementary Fig. 20). At the high current density of 1 A g⁻¹, the capacities have a fast decay and the charge–discharge curves become near-triangular due to the reduced ionic transfer of the LTE and the enlarged electrochemical polarization. When the current reduces to 20 mA g⁻¹, the capacity recovers to 106.2 mA h g⁻¹ at ~70°C. The detailed rate performance at ~70°C is shown in Supplementary Fig. 21. Even if the temperature falls to ~90°C, the PANI||LTE|Zn batteries still remain working and exhibit capacity of 20.4 and 50.6 mA h g⁻¹ at 20 and 10 mA g⁻¹ respectively. As a comparison, the PANI||Zn batteries with 2 m ZnCl₂, ZnSO₄, and Zn(CF₃SO₃)₂ electrolyte are hindered by the decreased operation temperature (Fig. 5c). The battery failure occurs successively at ~25°C for ZnSO₄ electrolyte and ~50°C for Zn(CF₃SO₃)₂ electrolyte, which is consistent with the symmetric Zn cell test. The battery based on 2 m ZnCl₂ electrolyte shows relatively high capacity, because the electrolyte includes two phases at ~50°C: solid ice and ZnCl₂ solution (CZnCl₂ > 2 m, whose concentration maintains liquid at this temperature), and the liquid ZnCl₂ solution sustains the battery operation. However, the ionic conduction impeded by solid ice results in the battery with low capacity retention (44.2%), demonstrating the necessity of the unfrozen electrolyte for LTZBs. The battery using unfrozen LTE shows superior low-temperature tolerance and high capacity retention of 64.7% at ~50°C. The cycling performance of the PANI||LTE|Zn batteries at ~70°C is shown in Fig. 5d, and long cycles (~2000) are achieved with the capacity retention of ~100% at 0.2 A g⁻¹. Furthermore, the pouch cell of 1.15 A h is fabricated with stacked multilayer electrode. In Fig. 5e, the two pouch cells in series can power light-emitting diodes at ~70°C. The PANI||LTE|Zn pouch cell of 1.15 A h can retain the high capacity of 0.50 A h at ~70°C (43.4% capacity retention, Fig. 5f). This LTE-based pouch cell succeeds in the low-temperature tolerance and the energy densities of the pouch cell are estimated to be 97.9 and 42.6 Wh kg⁻¹ at room temperature and ~70°C respectively based on the mass of active materials (The energy densities of 38.9 and 16.9 Wh kg⁻¹ at room temperature and ~70°C are achieved based on the total mass of a cell, Supplementary Table 4). To broaden the application of LTE, in addition, the batteries coupled with the common inorganic cathode V₂O₅·1.6 H₂O and LTE were also investigated. Though the low-temperature capacity retention of the V₂O₅·1.6 H₂O||LTE|Zn batteries (45.9% at ~50°C) cannot come up to that of PANI||LTE|Zn batteries, it shows the higher capacity retention (68.6% at ~25°C) than that use 2 m ZnCl₂, Zn(CF₃SO₃)₂, and ZnSO₄ electrolyte (62.8, 12.7 and 0.4% at ~25°C, respectively, Supplementary Fig. 22). As a result, the superior low-temperature performance of LTE could be employed in applications at extreme temperature.
Discussion

By balancing the strength of H-bonds and ion interactions in solution, we developed low-temperature aqueous electrolyte and batteries. The optimized ZnCl₂-based electrolyte exhibits high ionic conductivity of 1.79 mS cm⁻¹ at −60 °C, extremely low solid-liquid transition temperature (−114 °C), and good compatibility with Zn in an ultra-wide temperature range from −100 to +60 °C. Furthermore, PANI||Zn batteries using this aqueous electrolyte show an ultra-wide operation temperature range of −90~+60 °C (50.6, 105.6, 151.7, and 187.7 mAh g⁻¹ at −90, −40, 20, and 60 °C respectively), and stable cycling performance (84.9 mAh g⁻¹, ~2000 cycles) at −70 °C. This work not only demonstrates the universal application of ZnCl₂-based low-temperature electrolyte, but also provides valuable insights and encouraging pathway towards propelling low-temperature aqueous electrolyte and batteries.

Characterizations. Raman spectroscopy for the electrolyte structure was conducted on a Horiba LabRAM HR Evolution microscope. Raman spectroscopy for low temperature and in situ batteries was tested by confocal Thermo-Fisher Scientific DXR microscope. Both of them used a 532 nm excitation laser. DSC was carried out in METTLER TOLEDO DSC3 in the procedure of −2 m~25 °C with a cooling rate of 10 K min⁻¹, constant temperature for 2 mins and −25~+25 °C with a heating rate of 5 K min⁻¹. The polarizing microscope was using a BX51TRF. The refrigerating system for low-temperature characterizations is Lin- kam THMS600. NMR was characterized on Bruker ASCEND400. XPS was conducted on X-ray Photoelectron Spectrometer (Axis Ultra DLD) with an excitation source of Al Kₐ X-ray.

Electrochemical measurements. The symmetric/asymmetric Zn battery using CR2032 coin cell was assembled with Zn metal electrode (Φ10 mm), 20-μL electrolyte, Celgard 3501 separator and Zn/Cu electrode. The PANI electrode was obtained by pressing the mixture of PANI, Ketjen black and polytetrafluoroethylene (PTFE) at a weight ratio of 6:3.5:0.5 on Ti mesh. DSC was conducted on a Mettler Toledo DSC3 in the procedure of −15 °C with a cooling rate of 10 K min⁻¹, constant temperature for 2 mins and −25~+25 °C with a heating rate of 5 K min⁻¹. The polarizing microscope was using a BX51TRF. The refrigerating system for low-temperature characterizations is Lin- kam THMS600. NMR was characterized on Bruker ASCEND400. XPS was conducted on X-ray Photoelectron Spectrometer (Axis Ultra DLD) with an excitation source of Al Kₐ X-ray.

Methods

Materials. Zn foil (>99.99%) was purchased from Alilán of Tianjin. Zinc chloride (>99.99%) was purchased from Alfa Aesar. Other chemicals were purchased from Aladdin. The PANI was obtained by ammonium persulfate oxidizing aniline (>99.99%) was purchased from Alfa Aesar. Other chemicals were purchased from Aladdin.

Electrochemical performance of PANI||LTE[Zn, V₂O₅·1.6 H₂O] LTE[Zn] batteries and the pouch cell demonstrate the high universality of LTE and the feasibility to meet the demand for large-scale application at the extremely cold conditions.

Fig. 5 The energy storage mechanism and performance of PANI||LTE[Zn, V₂O₅·1.6 H₂O] LTE[Zn] batteries. a The configurations and redox mechanism of PANI||LTE[Zn] batteries. **b** Discharge-charge curves of PANI||LTE[Zn] batteries at the temperature range of −90~+60 °C. **c** The comparison of batteries using common electrolyte and LTE in varying-temperature performance. **d** Cycling performance at −70 °C and 0.2 A g⁻¹. **e** The schematic of assembled pouch cell and the lighted LEDs by two series-wound cells at −70 °C. **f** Discharge-charge curves of PANI||LTE[Zn] pouch cell at −20, −70 °C, and −70 °C.

**for 12 h successively. The V₂O₅·1.6 H₂O powder, 12.5 mL H₂O₂ (30%) and 75-mL-deionized water were mixed and maintained at 190 °C for 10 h. After washed with deionized water, the product was obtained by freeze-drying.
Computational methods. MD simulations for the H-bonds of different ZnCl2 electrolyte was conducted on the GROMACS package with AMBER03 force field. MD simulations were performed for 10 ns at 298.15 K for 10 ns, and then NPT run was performed for 70 ns for ensuring the system equilibrium. The last 20 ns in NPT run was used for analysis. The calculation of H-bonds is based on the geometrical configuration that the distance of two O is -3.5 Å and the angle of O-H-O is -30°. Quantum chemistry calculations were performed using the Gaussian 16 software package. The B3LYP/6-311+G(d) for H, O, Cl and B3LYP/SDD for Zn were used for structure optimization as well as the energy calculation. The snapshot of MD simulation is produced by VMD software.

Data availability. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 24 March 2020; Accepted: 10 August 2020;
Published online: 08 September 2020

References
1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).
2. Yamanada, Y., Wang, J. H., Ko, S., Watanabe, E. & Yamanida, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019).
3. Lu, Y., Li, L., Zhang, Q., Niu, Z. Q. & Chen, J. Electrolyte and interface engineering for solid-state sodium batteries. Joule 2, 1747–1770 (2018).
4. Lu, Y., Zhang, Q., Li, L., Niu, Z. Q. & Chen, J. Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem. 4, 2786–2813 (2018).
5. Kim, H. et al. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014).
6. Jiang, L. W. et al. Building aqueous K-ion batteries for energy storage. Nat. Energy 4, 495–503 (2019).
7. Zhao, Q. et al. Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Sci. Adv. 4, eaau1381 (2018).
8. Zheng, J. X. et al. Reversible epitaxial electrodepositions of metals in battery anodes. Science 366, 645–648 (2019).
9. Li, H. F. et al. Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 556–587 (2019).
10. Zhao, Q. et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4, eaao1761 (2018).
11. Zhang, N. et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017).
12. Wan, F. et al. Aqueous rechargeable Zn/sodium vanadate batteries with excellent performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1658 (2018).
13. Guo, Z. et al. Ice as solid electrolyte to conduct various kinds of ions. Angew. Chem. Int. Ed. 58, 12569–12573 (2019).
14. Liu, Z. Global Energy Interconnection (Academic Press, New York, 2016).
15. Ma, T. et al. Porphyrin-based symmetric redox-intercalation chemistry in graphite. Nature 569, 245–250 (2019).
16. Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Mater. 17, 543–549 (2018).
17. Luo, S. et al. Advanced high-voltage aqueous lithium-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 569, 245–250 (2019).
18. Peng, H. & Nguyen, A. V. A link between viscosity and cation-anion contact pairs: Adventure on the concept of structure-making/breaking for concentrated salt solutions. J. Mol. Liq. 263, 109–117 (2018).
19. Okazaki, Y., Tanitsuchi, T., Mogami, G., Matubayasi, N. & Suzuki, M. Comparative study on the properties of hydration of Na- and K-halide ions by Raman OH/OD-stretching spectroscopy and dielectric relaxation data. J. Phys. Chem. A 118, 2922–2930 (2014).
20. Bhattacharya, T. S. et al. Investigation of the origin of voltage generation in potentized homeopathic medicine through Raman spectroscopy. Homeopathy 108, 121–127 (2019).
21. Zheng, J. et al. Understanding thermodynamic and kinetic contributions in expanding the stability window of aqueous electrolytes. Chem. 4, 2872–2882 (2018).
22. Ebling, F. & Schneider, H. J. Self-association of water and water–solute associations in chlorof orm studied by NMR shift titrations. J. Phys. Chem. 100, 5533–5537 (1996).
23. Mizuno, K., Oda, K., Maeda, S., Shindo, Y. & Okumura, A. 1H-NMR study on water structure in halogenoalcohol-water mixtures. J. Phys. Chem. 99, 3056–3059 (1995).
24. Irish, D. E., McCarron, B. & Young, T. F. Raman study of zinc chloride solutions. J. Phys. Chem. 39, 3436–3444 (1932).
25. Verdonck, E., Schaap, K. & Thomas, L. C. A discussion of the principles and applications of modulated temperature DSC (MTDSC). Int. J. Pharm. 192, 3–20 (1999).
26. Simon, S. L. Temperature-modulated differential scanning calorimetry: theory and application. Thermochim. Acta 374, 55–71 (2001).
27. Royall, C. P., Williams, S. R., Ohtsuka, T. & Tanaka, H. Direct observation of a local structural mechanism for dynamic arrest. Nat. Mater. 7, 556–561 (2008).
28. Royall, C. P. & Williams, S. R. The role of local structure in dynamical arrest. Phys. Rep. 560, 1–75 (2015).
29. Stoiber, R. E. & Morse, S. A. Crystal Identification with the Polarizing Microscope (Springer, Boston, 1994).
30. Dimitrov, V. I. The liquid–glass transition—is it a fourth order phase transition? J. Non-Cryst. Solids 351, 2394–2402 (2005).
31. Sciortino, F. & Tartaglia, P. Glassy colloidal systems. Adv. Phys. 54, 471–524 (2005).
32. Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).
33. Ma, L. et al. Critical factors dictating reversibility of the zinc metal anode. Energy Environ. Mater. https://doi.org/10.1002/eenm.20120770 (2020).
34. Sun, W. et al. Zn/MnO2 battery Chemistry With H+ and Zn2+ coinsepts. J. Am. Chem. Soc. 139, 9787–9788 (2017).
35. Song, M., Tan, H., Chao, D. L. & Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18284-0 | www.nature.com/naturecommunications
57. Dong, X. et al. High-energy rechargeable metallic lithium battery at −70 °C enabled by a cosolvent electrolyte. Angew. Chem. Int. Ed. 58, 5623–5627 (2019).

58. Liang, Y. et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017).

59. Wan, F. et al. An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28, 1804975 (2018).

60. Lindfors, T., Kvarnström, C. & Ivaska, A. Raman and UV–vis spectroscopic study of polyaniline membranes containing a bulky cationic additive. J. Electroanalytical Chem. 518, 131–138 (2002).

61. Huang, S. et al. A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 58, 4313–4317 (2019).

62. Berendsen, H. J., van der Spoel, D. & van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comp. Phys. Comm. 91, 43–56 (1995).

63. Duan, Y. et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24, 1999–2012 (2003).

64. Abascal, J. L. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005).

65. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21835004), the National Programs for Nano-Key Project (2017YFA0206700), and 111 Project from the Ministry of Education of China (B12015). The calculations in this work were performed on TianHe-1(A), National Supercomputer Center in Tianjin.

Author contributions

J.C. proposed the concept and supervised the work; Q.Z. and Y.M. designed and performed the experiments and the calculations; Y.L. and L.L. performed the pouch cell assembly; F.W. prepared the cathode materials; K.Z. helped to discuss and analyze the data; all authors discussed and revised the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-18284-0.

Correspondence and requests for materials should be addressed to J.C.

Peer review information Nature Communications thanks Hong Jin Fan, Minshen Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.