INTRODUCTION

One year into this century's worst pandemic yet, India, Brazil, the USA, and UK, among others, have emerged as the worst-hit countries by COVID-19 in the world, which shows the unsparing nature of the crisis, spanning different geographies in every continent across the globe. COVID-19 has affected approximately 235 million people with more than 4.5 million fatalities and the quality of their lives worldwide. Though past respiratory illnesses like Swine flu, Avian Influenza, Middle East Respiratory Syndrome also had the potential to grow into a pandemic, COVID-19 has succeeded in infecting the global community. The pandemic brought about an 180° shift in the relationship between the government, policy makers, and the scientific community. The community of the entire world is eagerly hoping that a group of scientists, researchers, and entrepreneurs’ despite their country or background to find a solution for COVID-19 (Sharma & Varshney, 2020a). However, most of developed or developing countries have locked their borders and taken unilateral actions. The friction is very much observed not only in the different governments but between international organisations, and global bodies such as the World Health Organization (WHO).

In spite of the extensive measures, the pandemic continues to rage in the Global South like Argentina, Brazil, Chile, Cuba, India, Peru, Nepal, South Africa and so on. As the countries in the Global North turn increasingly protectionist and inward-looking, both due to the restrictions imposed by the COVID-19 crisis as well as power politics, the developing and least developed countries of the Global South are left to fend for

Abstract

Apart from economic, political, and cultural cooperation for an equal growth of all developing countries, science and technology are an integral significant component in these levels of engagement for leveraging mutual gains. The current pandemic not only brought about an 180° shift in the relationship between the government, policy makers, and the scientific community but highlights the importance of South–South Cooperation (SSC). SSC may serve as a mode of cooperation to foster the transfer of need-based technologies among developing and least developing countries and open many fronts for mutual sharing in terms of geopolitical, available resources, and expertise. The cooperation under the SSC does not substitute but complements North–South development cooperation to achieve the Sustainable Development Goals (SDGs). The use of science diplomacy would be an effective tool to bring all the stakeholders of the Global South to a common platform to combat future global challenges. Science policy instruments would need to incorporate scope for international collaborations as a means of furthering the national and global imperatives.
they themselves. Facing a crunch in available medical resources, health facilities and research infrastructure, these countries are suffering on both preventive and reactive healthcare fronts, and hence, bearing a disproportionate brunt of the pandemic in terms of the caseload, fatalities, and vaccination coverage. By August 2021, approximately one billion doses of coronavirus vaccines have been administered worldwide. However, only 2.3 per 100 people were administered vaccine doses in low-income countries as compared to the 105 doses per 100 people in rich countries (Malik, 2021). The policy decision of the G7 club to stockpile almost one billion additional doses of COVID vaccines would further increase the difficulty of poorer nations in the coming future. The post-pandemic situation will certainly be different in countries like the Republic of the Congo, Haiti, Chad, and Tanzania where only 0.1, 0.24, 0.27, and 0.36 percent population, respectively, is vaccinated (Malik, 2021). The COVID policies of developed countries may be more likely to widen the gap of North–South.

The current pandemic taught several lessons and open many fronts in terms of geopolitical, available resources, and expertise. The need of the hour highlights the importance of South–South Cooperation (SSC) and its urgency to enhance the cooperation to get quicker and reliable recovery post-pandemic. The experience gained during the pandemic reveals that self-sustainability is far behind even for the developed nations. The SSC may serve as a mode of cooperation to foster the development of complementary capacities of countries facing similar kinds of challenges (UNCTAD, 2020).

2 | POSITION OF SOUTH AMERICAN COUNTRIES DURING THE CURRENT PANDEMIC

The openness in sharing the best practices, data, and traditional scientific knowledge could be a milestone of new foreign policies in SSC. Each developing country and least developing countries (classified by the United Nations based on economies and socio-economic developmental factors; Country Classification, 2014) can mutually assist others in the transfer of need-based technologies that are crucial for achieving the Sustainable Development Goals (SDGs) targets and deal with the post-pandemic crises. Recognising this exigency, Brazilian scientists published the complete genome sequence of the virus within 48 hours after the first case in Latin America was reported. Access to this information gave insights to virologists and public health specialists on how the virus was spreading and mutating around the world (EurekAlert, 2020). To aid the development of drugs against novel coronavirus, Brazil's National Laboratory for Scientific Computing (LNCC) updated the DockThor-Virtual Screening platform (Dockthor, 2021) to allow users across the globe to access the 3D structures of COVID-19 target proteins and perform large-scale docking experiments for exploring multiple binding modes at Santos Dumont supercomputer. Countries like Cuba have already shown their strength in having a solid biopharmaceutical industry and human resources in health matters during the pandemic to implement SSC actions. Cuba is one of the performers with the longest experience in the SSC modality, with a demand for its technical expertise focused on the health, education, and disaster prevention sectors. From a geopolitical point of view, Cuban President Miguel Diaz Canel has stated that to face the pandemic 'it is essential to unify the criteria that based on scientific knowledge linked to international cooperation and solidarity; it is possible to obtain positive results and improve the global health situation' (Díaz-Canel Bermúdez & Núñez Jover, 2020). Since March 2020, some 3,800 Cuban doctors have travelled to 40 nations in Latin America and the Caribbean, Africa, the Middle East, and Europe (NBC News, 2020).

Important coordination has been carried out during the pandemic and other post-pandemics are planned through WHO, PAHO, UNICEF, UNDP, UNSSC, among others. These links are based on the real possibilities of exercising a dual role as a provider of cooperation and recipient of Official Development Assistance (ODA, 2020). This possibility has allowed in practice the recognition of the principles and methodologies of traditional cooperation while promoting cooperation based on solidarity, peaceful coexistence, and non-interference in internal affairs, to achieve its objectives through the exchange of knowledge, skills, resources, and technical assistance.

COVID-19 encouraged the sharing of existing low-cost technologies within the Global South, which are likely to be more suitable and cost-effective for other similar kinds of countries. Technologies that exist in one part of the world or country require its broader application through SSC. The best example during the pandemic is Uruguay which is relatively small in terms of territory and showed the capability to share the technology of their indigenous COVID-19 diagnosis kit with other countries in the Latin American region (Organización Panamericana de la Salud, 2020). Regarding bilateral agreements, Uruguay facilitated SSC with the governments of Chile to strengthen SARS-CoV-2 sequencing in Uruguay and have signed an accord with Brazil in a joint effort to combat and respond to the COVID-19 epidemic along the common border areas (Presidencia de la República, 2020). From a regional point of view, the MERCOSUR countries have also agreed to intensify cooperation and to coordinate their efforts in their response to the pandemic. MERCOSUR, a regional integration process, established by Argentina, Brazil, Paraguay, and Uruguay, and subsequently joined by...
Venezuela and Bolivia has approved a US$16 million fund for a plurinational project by the name of “Research, Education and Biotechnology applied to Health” to cooperate with scientific research throughout the current COVID-19 pandemic. The funds are non-refundable, and they are also without charge of any financial interests (Mercociudades, 2020; MERCOSUR, 2020).

The similar geo-climate, cultural, and socio-economic conditions of the Global South encouraged all the developing countries to share their knowledge, and a great variety of approaches and technologies to use biomass for low-emission energy solutions, increasing resource efficiencies in agriculture and industry, enhancing food security, generating jobs, and reducing gender inequalities (UNOSSC, 2020).

3 | IMPORTANCE OF SCIENCE DIPLOMACY IN SUB-SAHARAN AFRICA (SSA)

Science diplomacy plays an important role in Sub-Saharan Africa (SSA) comprising 48 countries with a collective population of over 800 million people. According to a recent report by the African Capacity Building Foundation (2017), 91 percent of African states value science and technology and have already started to invest in this area. Science diplomacy may help to utilise their traditional scientific and technological wisdom and convert the African states from ‘consumers’ to ‘producers’ of knowledge and expertise. Organisations like the Standards in Trade Development Facility (STDF) are assisting SSA states in developing the necessary scientific and technical capacity to participate in international trade in the field of science and technology (Hornsby & Parshotam, 2018). Capacity building through training and transfer of technologies are two main components explored in more detail under the umbrella of science diplomacy. The assistant provided by the STDF has played a pivotal role in bringing together expertise to assist SSA countries to grow the role of African scientists in international negotiations of standards.

As a part of India’s foreign policy initiatives of the Indian government like ‘Neighbours First’, ‘Act East’, and ‘India-Africa Partnership’, India already facilitating a ‘technology transfer Cell’ in Ethiopia and Rwanda (Sharma & Varshney, 2019). These centres are playing a significant role to match the socio-economic needs by linking Ethiopian and Rwandan industries with leading-edge Indian technologies and innovations. Recently, Zambia has also shown interest in being part of such activity (IEITCP, 2019; IRIGP, 2017). Apart from technology transfer, support may also be extended for human capacity building. The India Science and Research Fellowship (ISRF) and C V Raman International Fellowship, aims to provide an opportunity to African researchers and scientists from these countries to undertake R&D in contemporary research areas across all major disciplines of science and technology at premier research laboratories and academic institutions in India (CV Raman Fellowship, 2008).

Apart from developing countries, a distinct group of 50 low-lying coastal countries (Small Island Developing States, SIDS) and 46 least developed countries (LDCs) are at a particular disadvantage in this knowledge economy. All SIDS and LDCs rarely share in the economic benefits and lacking opportunities for international collaboration. Moreover, the nationals of these countries are far away from basic health facilities, education, and international research outcomes without becoming a part of the SSC (Elizabeth Thompson, 2018).

4 | MULTILATERAL ORGANISATIONS IN SSC

The organisations responsible for SSC such as the Association of South-East Asian Nations (ASEAN), South Asian Association for Regional Cooperation (SAARC), Brazil, Russia, India, China, and South Africa (BRICS), Shanghai Cooperation Organisation (SCO), and India-Africa Science & Technology (S&T) cooperation mainly targets economic, political, cultural, and technological facets. Though, this cooperation is facing many challenges and gaps at the policy level concerning confidence in some areas of cooperation, the success and future resilience of SSC organisations like BRICS and IBSA will depend on the shared roadmap and joint response to mobilise resources to protect people’s health during the current pandemic. For instance, tapping into this opportunity, a special coordinated R&D call was launched in response to COVID-19 under the BRICS STI (Science, Technology, and Innovation) Framework Programme (2021). Yet the establishment of the BRICS Vaccine R&D Centre, first envisaged in the 2018 Johannesburg Declaration, still needs to be prioritised. It is worthwhile to mention that approximately one-quarter of those COVID-19 infected belong to the BRICS countries that represent about 42 per cent of the world population, 23 per cent of GDP, 30 per cent of the territory, and almost 50 per cent of the world’s economic growth of global trade (Sharma & Varshney, 2020a).

5 | ROLE OF EMERGING POWERS IN SSC

All major emerging powers from the developing countries have been instrumental in SSC through platforms like BRICS and playing a significant role due to its geopolitical position. These multilateral platforms also showed their incredible roles during the crises by facilitating
effective countries. BRICS National Development Bank (NDB) has approved COVID-19 Emergency Programme Loans of US$1 billion, respectively, to India, Brazil, and South Africa with an additional US$1 billion to Brazil and India for assisting economic recovery (Niu & Hong, 2021).

Countries that are proficient in providing all kinds of technical assistance, capacity building programmes, knowledge sharing, production cooperation financial assistance, and technology transfer to neighbouring countries, extended their help in the form of medical supplies, human resources, and vaccines to countries that were in a vulnerable situation. The government of the People’s Republic of China not only pledged US$100 million towards equitable access to COVID-19 vaccines for lower-income countries through Gavi COVAX (GAVI, 2021) but exported protective materials and medical expert teams to more than 200 countries (Verma & Papa, 2021). India used the US$10 million SAARC emergency fund for the transfer of supplies to prevent COVID-19 to neighbouring countries like Afghanistan, Bhutan, Bangladesh, Nepal, Maldives, and Sri Lanka. This assistance is adapted to fulfill their needs and priorities during the current pandemic. The Indian government also ensured the medical supply of over 123 partner countries, including 59 members of the Non-Aligned Movement (NAM) during the initial phase of the pandemic (Sharma & Varshney, 2020a). Home-made COVID vaccines were developed, manufactured, and shared among other members by China, India, and Russia (Verma & Papa, 2021).

The impact of the international financial crisis accelerated the creation of BRICS with the involvement of three important emerging powers, namely, China, India, and Russia. Despite India-China border frictions, both China and India maintained an open and inclusive attitude to support multilateral initiatives (Verma & Papa, 2021). Multilateral platforms are central for these emerging powers in absence of the good bilateral cooperation.

6 | CONCLUSION

Each global crisis teaches lessons to the community, policy makers, and government. It is an opportunity to know the existing gap areas and act accordingly to achieve future goals. The international scientific cooperation would provide mutual benefits to all partners in terms of complementary research, time, utilisation of the existing capabilities, and sharing of the best practices & resources. This would facilitate the nations to become self-reliant and build their capacities for sustainable growth.

In the growing clamour for unilateralism and protectionism, science diplomacy was viewed by many as receding from the international policy sphere in the Global South during the early stages of the COVID-19 pandemic. The unfolding of the crisis a year later has, however, revealed that the pandemic provided an excellent springboard for taking concerted action to stop the virus in its tracks. The pandemic experience has shown that science policy framers have been successful in their prognosis but not in their lobbying – an area where science diplomacy can prove a crucial tool. Going forward, international scientific cooperation would need to work in tandem with science diplomacy to ensure that the benefits of advancements in science are reaped in an equitable manner. Science policy instruments would need to incorporate scope for international collaborations as a means of furthering the national and global imperatives. Initiatives like the ‘ITEC Program on Science Diplomacy’ by the Ministry of External Affairs (MEA), Government of India (ITEC: Science Diplomacy, 2017) and Brazilian Ministry of Foreign Affairs’ Working Program of Innovation Diplomacy and can be scaled on multilateral or regional levels to provide an institutionalised platform for regular exchange of technology, research, and innovations among nations, and serve as a cornerstone of South– South cooperation. Science diplomacy practitioners have a collective responsibility to ensure that the COVID-19 pandemic does not create closed communities, rather only brings the communities closer.

Though most of the countries are committed to following the United Nations Sustainable Development Agenda 2030 and achieving the 17 Sustainable Development Goals (SDGs) and the 169 associated targets (Sharma & Varshney, 2020b), there will be many challenges such as health, climate, energy, trade, and ensuring food security after the pandemic that may affect the advancement of the SDGs. SSC is necessary for the enhancement of the livelihood of people of the south and as a necessary tool to achieve the SDGs goals. The main aim of SSC cooperation is to promote the welfare of peoples, enhance the quality of their lives, accelerate economic growth, and social progress by adopting a common approach. The Intervention of science and technology might play an important role in matters of common interest. Many recent reports have revealed that 70 percent of future jobs would be in the field of science and technology (Sharma & Yarlagadda, 2018). There is a need to revisit, reformulate, and re-energise their domestic and foreign science and technology (S&T) policies to anticipate trans-national risks and exploit opportunities for collaboration after the pandemic (Sharma & Varshney, 2020a). The countries may also examine their ongoing international bilateral and multilateral projects after the present crises.

The use of science diplomacy would be an effective tool to bring all the stakeholders of the Global South to a common platform to combat future global challenges. There is a need for intensified SSC on STI for SDGs. Additionally, countries in the Global
South have mostly relied on bilateral scientific cooperation in dealing with other nations of the group to consolidate their efforts against the crisis which is global in nature. Multilateral science diplomacy, within the ambit of SSC, has unprecedented potential to buttress the bilateral science diplomacy to combat not just the present COVID-19 crisis but also to act as a bulwark against the current and future crises of climate change, food security, cyber terrorism and even disinformation. A strong and sustainable partnership of all emerging powers from the Global South will determine how far the SSC can go. SSC is a way forward after the pandemic to strengthen the collective self-reliance to achieve a greater degree of participation in international scientific and technological cooperation promoting new innovative and affordable solutions. Otherwise, many developing, and least developing countries will be going to fall far short of other goals. Collaborative efforts, better coordination, and complementarity may change the trajectory and accelerate progress towards the achievement of SDG. We must not forget that we may not go over the pandemic till there is one infected person remaining in any part of the world, which again brings in the need for diplomacy.

DISCLAIMER

The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official policy or position of any agency.

REFERENCES

BRICS STI Framework Programme. (2021) Available from: http://brics-sti.org/ [Accessed 12th July 2021].

CV Raman Fellowship. (2008) The Federation of Indian Chamber of Commerce & Industry. Available from: http://www.indoafrika-cvrf.in/fellowship.aspx [Accessed 12th July 2021].

Díaz-Canel Bermúdez, M. & Núñez Jover, J. (2020) Government management and Cuban science in the confrontation with COVID-19. *Anales De La Academia De Ciencias De Cuba*, 10(2), 881.

Docktor. (2021) Available from: https://dockthor.incc.br/v2/ [Accessed 16th June 2021].

Elizabeth Thompson, H. (2018) Science diplomacy within sustainable development: A SIDS perspective. *Global Policy*, 9, 45–47.

EurekAlert. (2020) Two complete genome sequences for coronavirus in Brazil were published. 3 March 2020. Available from: https://www.eurekalert.org/pub_releases/2020-03/fda-tcg030320.php [Accessed 14th April 2021].

GAVI. (2021) China pledges US$ 100 million towards equitable access to COVID-19 vaccines for lower-income countries. Available from: https://www.gavi.org/news/media-room/china-pledges-us-100-million-towards-equitable-access-covid-19-vaccines [Accessed 2nd September 2021].

Hornsby, D.J. & Parshotam, A. (2018) Science diplomacy, epistemic communities, and practice in sub-Saharan Africa. *Global Policy*, 9, 29–34.

India-Ethiopia Innovation & Technology Commercialization Programme (IIETCP). (2019) The Federation of Indian Chambers of Commerce & Industry (FICCI). Available from: https://iietcp.org/ [Accessed 21st March 2021].

ITEC: Science Diplomacy. (2017) Research and innovation system for developing countries (RIS). Available from: https://www.ris.org.in/itec-science-diplomacy [Accessed 21st March 2021].

Malik, K. (2021) The rich nations’ take on the world post-pandemic? ‘I’m all right, Jack’. *The Guardian*, 29 August 2021. Available from: https://www.theguardian.com/commentisfree/2021/aug/29/the-rich-nations-take-on-the-world-post-pandemic-im-all-right-jack [Accessed 16th September 2021].

Mercociudades. (2020) Mercosur asigna Fondo de Emergencia de 16 millones de dólares para combatir el COVID-19 En La Región. Mercociudades, April 13, 2020. Available from: https://cutt.ly/GbFGVIW [Accessed 14th June 2021].

MERCOSUR. (2020) Available from: https://www.mercosur.int/en/ [Accessed 14th June 2021].

NBC News. (2020) Cuba sends ‘white coat army’ of doctors to fight coronavirus in different countries. Available from: https://www.nbcnews.com/news/latinocu/white-coat-army-Doctors-fight-coronavirus-different-countries-n1240028 [Accessed 15th September 2021].

Niu, H. & Hong, S. (2021) A Chinese perspective: Will China-India friction paralyze the BRICS? *Global Policy*, 12(4), 524–528.

Official Development Assistance (ODA). (2020) The Organisation for Economic Co-operation and Development (OECD). Available from: [https://www.oecd.org/dac/financing-sustainable-development/development-finance-standards/official-development- assistance.htm](https://www.oecd.org/dac/financing-sustainable-development/development-finance-standards/official-development-assistance.htm) [Accessed 11th June 2021].

Organización Panamericana de la Salud & Cómo Uruguay desarrolló kits propios para diagnosticar la COVID-19 en un contexto de escasez mundial. (2020) Organización Panamericana de la Salud. Available from: https://cutt.ly/kbFHJ5q [Accessed 11th May 2021].

Presidencia de la República. (2020) Uruguay y Brasil Firmaron Acuerdo Para Seguimiento Conjunto de COVID-19 en fronteras de Artigas y Bella Unión. Presidencia de La República. Available from: https://cutt.ly/ZbFG0mn [Accessed 11th May 2021].

Sharma, J. & Varshney, S. (2019) Science Diplomacy and Cooperation in Science and Technology in India. *Science Diplomacy Review*, 1(2), 11–22.

Sharma, J. & Varshney, S.K. (2020a) Role of Indian science diplomacy in combating COVID-19. *Science Diplomacy Review*, 2(2), 11–22. Available from: http://www.fisd.in/sites/default/files/SDR%20July%202020-min.pdf [Accessed 24th April 2021].

Sharma, J. & Varshney, S.K. (2020b) Role of science, technology, and innovation to achieve the sustainable development goals. *Science Diplomacy*, 4(1), July-September. Available from: https://www.niscair.res.in/includes/images/sciencediplomacy/Science-Diplomacy-July-September-2020.pdf [Accessed 24th April 2021].

Sharma, J. & Yarlagadda, P.K. (2018) Perspectives of ‘STEM education and policies’ for the development of a skilled workforce in Australia and India. *International Journal of Science Education, 40*(16), 1999–2022.

The India-Rwanda Innovation Growth Programme (IRIGP). (2017) Technology Commercialisation. The Federation of Indian Chambers of Commerce & Industry (FICCI). Available from: http://www.ficci.in/programme-activityDeDetail_id=20041 [Accessed 15th May 2021].

UNCTAD. (2020) COVID-19 crisis: How South—South cooperation can support economic recovery. United Nations Conference on Trade and Development (UNCTAD). Available from: https://unctad.org/news/covid-19-crisis-how-south-south-cooperation-can-support-economic-recovery [Accessed 15th May 2021].

United Nations Country Classification. (2014) The United Nations. Available from: https://www.un.org/en/development/desa/policy/wesp/wesp_current/2014wesp_country_classification.pdf [Accessed 21st March 2021].
UNOSSC. (2020) South–South and Triangular Cooperation on the Bioeconomy in light of the Paris Agreement and the 2030 Agenda. United Nations Office for South–South Cooperation. Available from: https://www.unsoutheast.org/2020/08/11/South-South-and-triangular-cooperation-on-the-bioeconomy-in-light-of-the-paris-agreement-and-the-2030-agenda-for-sustainable-development/ [Accessed 10th March 2021].

Verma, R. & Papa, M. (2021) BRICS amidst India-China rivalry. *Global Policy*, 12(4), 509–513.

AUTHOR BIOGRAPHIES

Jyoti Sharma is Director/ Senior Scientist in the International Cooperation Division of the Department of Science and Technology, Ministry of Science and Technology, Govt. of India. Her expertise is in policy making, international cooperation, science diplomacy, diversity and inclusion, process improvement, and strategic project management.

Danev Ricardo Pérez Valerino is Head of International Relations at Finlay Vaccine Institute, Havana, Cuba.

Claudia Natalie Widmaier is Science Diplomacy Committee Chair of OWSD Uruguay Chapter and a specialised technician in Foreign Trade in the National Customs Directorate of Uruguay.

Roberta Lima is a Brazilian diplomat and currently serving as a Head of Energy, Environment and Science, Technology & Innovation Section, Embassy of Brazil in New Delhi. Her career is dedicated mostly to multilateral negotiations related to agriculture, environment, and sustainable development, as well as to cultural & public diplomacy.

Nidhi Gupta is working as an Assistant in the Energy, Environment and Science, Technology & Innovation Section, Embassy of Brazil in New Delhi.

Sanjeev Kumar Varshney is Head and Advisor in the International Cooperation Division of the Department of Science and Technology, Ministry of Science and Technology, Govt. of India. He was a Science Counsellor in the Embassy of India, Moscow.

How to cite this article: Sharma, J., Ricardo Pérez Valerino, D., Natalie Widmaier, C., Lima, R., Gupta, N. & Varshney, S.K. (2022) Science diplomacy and COVID-19: Future perspectives for south–south cooperation. *Global Policy*, 13, 294–299. https://doi.org/10.1111/1758-5899.13027