A CLASS OF HARMONIC FUNCTIONS ASSOCIATED WITH A GENERALIZED DIFFERENTIAL OPERATOR

Sarika Verma, Deepali Khurana, and Raj Kumar

ABSTRACT. We introduce a new class of harmonic univalent functions by using a generalized differential operator and investigate some of its geometric properties, like, coefficient estimates, extreme points and inclusion relations. Finally, we show that this class is invariant under Bernandi–Libera–Livingston integral for harmonic functions.

1. Introduction

Let \(A \) denote the class of analytic functions \(f \), in the open unit disk \(\mathbb{E} = \{ z \in \mathbb{C} : |z| < 1 \} \), normalized by \(f(0) = f'(0) - 1 = 0 \) thus functions in the class \(A \) has the form \(f(z) = z + \sum_{k=2}^{\infty} a_k z^k \). Let \(S \) be the subclass of \(A \) whose functions are univalent in \(\mathbb{E} \) and further \(S^* \) and \(K \) are subclasses of \(S \) whose functions map \(\mathbb{E} \) on to starlike and convex domains, respectively. For \(\mu \geq 0 \) and \(\nu \geq 0 \), let \(D^m(\mu, \nu) : A \to A \) be a linear differential operator defined by

\[
D^m(\mu, \nu)f(z) = z + \sum_{k=2}^{\infty} \phi^m_k(\mu, \nu)a_k z^k
\]

where, \(m \in \mathbb{N} \cup \{0\} \) and \(\phi^m_{k+1}(\mu, \nu) = [(k\mu + 1)(k\nu + 1)]^m \). Setting \(\mu = 0 \) and \(\nu = 1 \) the operator \(D^m(\mu, \nu) \) becomes the well known Salagean differential operator. In the past three decades, many researchers, using \(D^m(\mu, \nu) \) for particular choices of \(\mu, \nu \), defined various subclasses of \(A \) whose functions satisfy certain geometric properties. In particular,

(i) Fournier and Ruscheweyh \([6] \) defined the class \(P(\beta) \), where

\[
P(\beta) = \left\{ f \in A : \text{Re} \frac{D^1(0,1)f(z)}{z} > \beta \right\}.
\]

(ii) Kim and Rønning \([11] \) defined the class \(P_\alpha(\beta) \), where

\[
P_\alpha(\beta) = \left\{ f \in A : \text{Re} \frac{D^1(0,\alpha)f(z)}{z} > \beta \right\}.
\]

2010 Mathematics Subject Classification: Primary 30C45; Secondary 30C50.

Key words and phrases: harmonic mapping, convolution, Bernardi operator, coefficient conditions.
(iii) Ponnusamy and Rønning [14] defined the class \(R_\gamma(\beta) \), where
\[
R_\gamma(\beta) = \left\{ f \in A : \text{Re} \frac{D^1(1, \gamma)f(z)}{z} > \beta \right\}.
\]

(iv) For \(\mu \geq 0, \nu \geq 0 \) and \(m = 1 \), define \(\alpha \geq 0 \) and \(\gamma \geq 0 \) such that \(\alpha - \gamma = \mu + \nu \) and \(\gamma = \mu \nu \). Ali et al. [11] defined the class \(W_\beta(\alpha, \gamma) \), where
\[
W_\beta(\alpha, \gamma) = \left\{ f \in A : \text{Re} \frac{D^k(\mu, \nu)f(z)}{z} > \beta \right\}.
\]

The authors applied the Duality theory to prove the starlikeness of the linear integral transform over functions \(f \) in these classes.

We apply this operator on complex valued harmonic functions \(f = h + \overline{g} \) and explore its various geometric properties. Here, we call \(h \) the analytic part and \(g \) the co-analytic part of \(f \). Let \(\mathcal{H} \) be the class of complex valued harmonic mappings, \(f = h + \overline{g} \), defined in \(\mathbb{E} \) and normalized by \(h(0) = g(0) = h'(0) - 1 = 0 \). Such mappings have the following power series representation
\[
f(z) = z + \sum_{k=2}^{\infty} a_k z^k + \overline{\sum_{k=1}^{\infty} b_k z^k}.
\]

A necessary and sufficient condition for \(f \in \mathcal{H} \) to be locally univalent and sense-preserving in \(\mathbb{E} \) is that \(|h'(z)| > |g'(z)| \) for all \(z \in \mathbb{E} \) (see [13]). Clunie and Sheil-Small, in 1984, studied the harmonic mappings as a generalization of analytic functions and defined analogues classes, see [5]. They defined the class \(S_{\mathcal{H}} \), of univalent and sense-preserving harmonic mappings, as a generalization of the class \(S \) and explored geometric properties of \(S_{\mathcal{H}} \) including its subclasses. Denote by \(S^*_\mathcal{H} \) and \(K_\mathcal{H} \) the analogues subclasses of \(S^* \) and \(K \), respectively. After the induction of Clunie and Sheil-Small’s paper intensive research has been done in this area and researchers defined various subclasses of \(S_{\mathcal{H}} \) by using some linear operators, see (24710121520) and references therein.

In this paper, we define a new subclass \(S^m_{\mathcal{H}}(\mu, \nu, \lambda, b) \) of \(S_{\mathcal{H}} \) consisting of harmonic functions \(f = h + \overline{g} \) of the form (1.1) and satisfying
\[
\text{Re} \left[\frac{D^{m+1}(\mu, \nu)f(z)}{\lambda z + (1 - \lambda)D^m(\mu, \nu)f(z)} \right] > b,
\]
here \(D^m(\mu, \nu)f(z) = D^m(\mu, \nu)h(z) + (-1)^m D^m(\mu, \nu)g(z) \), \(0 \leq \lambda \leq 1 \) and \(0 \leq b < 1 \).

Let \(S^m_{\mathcal{H}} \) denote the subclass of \(S_{\mathcal{H}} \) consisting of functions of the type \(f_m = h + \overline{g}_m \), where
\[
h(z) = z - \sum_{k=2}^{\infty} |a_k| z^k, \quad g_m(z) = (-1)^m \sum_{k=1}^{\infty} |b_k| z^k.
\]

Let \(\overline{S^m_{\mathcal{H}}}(\mu, \nu, \lambda, b) \) be the subclass of \(\overline{S_{\mathcal{H}}} \) whose functions satisfy condition (1.2). In subsequent sections, we obtain a sufficient condition for harmonic functions \(f = h + \overline{g} \) given by (1.1) to be in \(S^m_{\mathcal{H}}(\mu, \nu, \lambda, b) \) and then we prove that this condition is also necessary for the functions in the class \(\overline{S^m_{\mathcal{H}}}(\mu, \nu, \lambda, b) \). We investigate
extreme points, covering theorem, convolution properties, convex combinations and Bernardi–Libera–Livingston integral for the functions in the class $S^m_H(\mu, \nu, \lambda, b)$.

2. Characterization Properties

THEOREM 2.1. For $\mu, \nu \geq 0$, $m \in \mathbb{N} \cup \{0\}$, $0 \leq \lambda \leq 1$, and $0 \leq b < 1$, let a function $f = h + \overline{g}$ be given by (1.1) and satisfy

$$\sum_{k=2}^{\infty} \Phi(k, m, \mu, \nu, \lambda, b)|a_k| + \sum_{k=1}^{\infty} \Psi(k, m, \mu, \nu, \lambda, b)|b_k| \leq (1 - b),$$

where

$$\Phi(k, m, \mu, \nu, \lambda, b) = \phi^m_k(\mu, \nu) \left(\phi^1_k(\mu, \nu) - b(1 - \lambda)\right),$$

$$\Psi(k, m, \mu, \nu, \lambda, b) = \phi^m_k(\mu, \nu) \left(\phi^1_k(\mu, \nu) + b(1 - \lambda)\right)$$

with $\phi^m_{k+1}(\mu, \nu) = [(k\mu + 1)(kv + 1)]^m$; then $f \in S^m_H(\mu, \nu, \lambda, b)$.

PROOF. First we shall prove that f is sense-preserving and univalent in E. Since $|z| < 1$, we have

$$|h'(z)| = 1 - \sum_{k=2}^{\infty} k|a_k||z|^{k-1} > 1 - \sum_{k=2}^{\infty} k|a_k|$$

$$> 1 - \sum_{k=2}^{\infty} \Phi(k, m, \mu, \nu, \lambda, b) \frac{1}{1 - b}|a_k|$$

$$\geq \sum_{k=1}^{\infty} \Psi(k, m, \mu, \nu, \lambda, b) \frac{1}{1 - b}|b_k|,$$

in view of (2.1).

$$\sum_{k=1}^{\infty} k|b_k||z|^{k-1} \geq |g'(z)|.$$

It gives that f is sense-preserving in E. Next we prove the univalence of f in E. For $z_1 \neq z_2 \in E$,

$$\frac{|f(z_1) - f(z_2)|}{|h(z_1) - h(z_2)|} = 1 - \frac{|g(z_1) - g(z_2)|}{|h(z_1) - h(z_2)|} > 1 - \sum_{k=2}^{\infty} k|b_k| \frac{1}{1 - \sum_{k=2}^{\infty} k|a_k|}$$

$$\geq 1 - \sum_{k=1}^{\infty} \Psi(k, m, \mu, \nu, \lambda, b) \frac{|b_k|}{1 - \sum_{k=1}^{\infty} \Phi(k, m, \mu, \nu, \lambda, b)|a_k|} \geq 0.$$

Hence in view of condition (2.1), f is univalent in E. Next we shall show that

$$\operatorname{Re}(\frac{D^{m+1}(\mu, \nu) f(z)}{D^{m+1}(\nu, \nu) f(z)}) \geq b.$$ We know that $\operatorname{Re}(w) \geq \alpha$ if and only if $|1 - \alpha + w| \geq |1 + \alpha - w|$. So, it suffices to show that

$$|\lambda(1 - b)z + (1 - \lambda)(1 - b)D^m(\mu, \nu)f(z) + D^{m+1}(\mu, \nu)f(z)|$$

$$- |\lambda(1 + b)z + (1 - \lambda)(1 + b)D^m(\mu, \nu)f(z) - D^{m+1}(\mu, \nu)f(z)| \geq 0.$$
Now,
\[
\left| \lambda(1 - b)z + (1 - \lambda)(1 - b)D^m(\mu, \nu)f(z) + D^{m+1}(\mu, \nu)f(z) \right|
- \left| \lambda(1 + b)z + (1 - \lambda)(1 + b)D^m(\mu, \nu)f(z) - D^{m+1}(\mu, \nu)f(z) \right|
\]
\[= \left| (2 - b)z + \sum_{k=2}^{\infty} \left[((k - 1)\mu + 1) ((k - 1)\nu + 1) \right]^m \left[((k - 1)\mu + 1) ((k - 1)\nu + 1) \right]^{m} \right|
\]
\[+ (1 - \lambda)(1 - b) a_k z^k - (-1)^m \sum_{k=1}^{\infty} \left[((k - 1)\mu + 1) ((k - 1)\nu + 1) \right]^m \left[((k - 1)\mu + 1) ((k - 1)\nu + 1) \right]^{m} \]
\[+ b - \sum_{k=2}^{\infty} \left[((k - 1)\mu + 1) ((k - 1)\nu + 1) \right] ((1 - \lambda)(1 - b)) b_k z^k \]
\[\geq 2|z| \left(1 - \sum_{k=2}^\infty \Phi(k, m, \mu, \nu, \lambda, b) |a_k| |z|^{k-1} - \sum_{k=1}^{\infty} \Psi(k, m, \mu, \nu, \lambda, b) |b_k| |z|^{k} \right) \]
\[\geq 0, \quad \text{in view of (2.1).} \]
\]

\(\square\)

Theorem 2.2. Let \(f_m = h + g_m \) be given by (1.3). Then \(f_m \in \mathcal{S}_H^m(\mu, \nu, \lambda, b) \) if and only if \(f_m \) satisfy condition (2.1).

Proof. Since \(\mathcal{S}_H^m(\mu, \nu, \lambda, b) \subset \mathcal{S}_H^m(\mu, \nu, \lambda, b) \) therefore, ‘if’ part can be proved from Theorem 2.1 thus we prove ‘only if’ part. Let \(f_m = h + g_m \in \mathcal{S}_H^m(\mu, \nu, \lambda, b) \), thus
\[
\Re \left[\frac{D^{m+1}(\mu, \nu)f_m(z)}{\lambda z + (1 - \lambda)D^m(\mu, \nu)f_m(z)} - b \right] \geq 0.
\]
After applying the differential operator \(D^m(\mu, \nu) \), the above inequality reduces to,
\[
\Re \left[\frac{z(1 - b) - \sum_{k=2}^{\infty} \phi_k^m(\mu, \nu) \left(\phi_k^m(\mu, \nu) - b(1 - \lambda) \right) |a_k|^k z^k}{\lambda z + (1 - \lambda)D^m(\mu, \nu)f_m(z)} \right] - \frac{(-1)^{2m} \sum_{k=1}^{\infty} \phi_k^m(\mu, \nu) \left(\phi_k^m(\mu, \nu) + b(1 - \lambda) \right) |b_k|^k z^k}{\lambda z + (1 - \lambda)D^m(\mu, \nu)f_m(z)} \geq 0.
\]
The above condition holds for all values of \(z, |z| = r < 1 \). Choosing the values of \(z \) on positive real axis, where \(0 \leq z = r < 1 \), we have
\[
\Re \left[\frac{(1 - b) \sum_{k=2}^{\infty} \Phi(k, m, \mu, \nu, \lambda, b) |a_k|^k z^k - \sum_{k=1}^{\infty} \Psi(k, m, \mu, \nu, \lambda, b) |b_k|^k z^k}{1 - (1 - \lambda) \sum_{k=2}^{\infty} \phi_k^m(\mu, \nu) |a_k|^k z^k + (-1)^{2m}(1 - \lambda) \sum_{k=1}^{\infty} \phi_k^m(\mu, \nu) |b_k|^k z^k} \right] \geq 0.
\]
In case condition (2.1) does not hold, then the numerator of the left-hand side of (2.2) becomes negative for \(r \) sufficiently close to 1. This leads to a contradiction. \(\square \)
Theorem 2.3. If \(f \in S^*_H(\mu, \nu, \lambda, b) \), then \(f \in S^*_H \).

Proof. A function \(f_m = h + \overline{g_m} \in S_H(\mu, \nu, \lambda, b) \) maps the unit disk \(\mathbb{E} \) onto a starlike domain if and only if for \(z \in \mathbb{E} \),

\[
\text{Re} \left\{ \frac{zh'(z) - zg'_m(z)}{h(z) + g_m(z)} \right\} > 0.
\]

We know that \(\text{Re}(w) > 0 \) if and only if \(|1 + w| > |1 - w| \). Therefore to prove (2.3), it suffices to show that

\[
|h(z) + \overline{g_m(z)} + zh'(z) - zg'_m(z)| > |h(z) + g_m(z) - zg'(z) + zg'_m(z)| > 0.
\]

Since

\[
|h(z) + \overline{g_m(z)} + zh'(z) - zg'_m(z)| - |h(z) + g_m(z) - zg'(z) + zg'_m(z)|
\]

\[
= |z - \sum_{k=2}^{\infty} |a_k||z|^{k-1}(1 - \sum_{k=2}^{\infty} k|a_k||z|^{k-1}) - \sum_{k=2}^{\infty} k|b_k||z|^{k-1}|
\]

\[
= |z| 2 - \sum_{k=2}^{\infty} (k + 1)|a_k||z|^{k-1} - \sum_{k=2}^{\infty} k|b_k||z|^{k-1}|
\]

\[
\geq 2|z| 1 - \sum_{k=2}^{\infty} k|a_k||z|^{k-1} - \sum_{k=1}^{\infty} k|b_k||z|^{k-1}|
\]

\[
\geq 2|z| 1 - \sum_{k=2}^{\infty} k|a_k| - \sum_{k=1}^{\infty} k|b_k| > 0.
\]

In view of condition (2.1). Hence it completes the proof. \(\square \)

Next we establish that the family \(S_H^*(\mu, \nu, \lambda, b) \) is non-empty, that is we prove that there exist harmonic functions which are members of the class \(S_H^*(\mu, \nu, \lambda, b) \) and moreover these functions are the extremum for the family \(S_H^*(\mu, \nu, \lambda, b) \). In the next result we obtain the extreme points for the class \(S_H^*(\mu, \nu, \lambda, b) \).

Theorem 2.4. If \(f_m = h + \overline{g_m} \), then \(f_m \in S_H^*(\mu, \nu, \lambda, b) \) if and only if \(f_m(z) = \sum_{k=1}^{\infty} (X_kh_k(z) + Y_\nu g_{m_k}(z)) \), where \(h_1(z) = z \) and

\[
h_k(z) = \frac{(1 - b)}{\Phi(k, m, \mu, \nu, \lambda, b)} z, \quad k = 2, 3, 4 \ldots
\]
\[g_{mk}(z) = z + (-1)^m \frac{(1 - b)}{\Psi(k, m, \nu, \lambda, b)} z^k, \quad k = 1, 2, 3, \ldots \]

and \(\sum_{k=1}^{\infty} (X_k + Y_k) = 1, \quad X_k \geq 0, \quad Y_k \geq 0. \) In particular, the extreme points of \(S^H(\mu, \nu, \lambda, b) \) are \(\{ h_k \} \) and \(\{ g_{mk} \}. \)

Proof. Suppose

\[
 f_m(z) = \sum_{k=1}^{\infty} (X_k h_k + Y_k g_{mk})
\]

\[
 = \sum_{k=1}^{\infty} (X_k + Y_k) z - \sum_{k=2}^{\infty} \frac{(1 - b)}{\Phi(k, m, \nu, \lambda, b)} X_k z^k + \sum_{k=1}^{\infty} \frac{(1 - b)^m (1 - b)}{\Psi(k, m, \nu, \lambda, b)} Y_k z^k
\]

\[
 = z - \sum_{k=2}^{\infty} \frac{(1 - b)}{\Phi(k, m, \nu, \lambda, b)} X_k z^k + (1 - b) \sum_{k=1}^{\infty} \frac{(1 - b)}{\Psi(k, m, \nu, \lambda, b)} Y_k z^k
\]

Then

\[
 = \sum_{k=2}^{\infty} \frac{\Phi(k, m, \nu, \lambda, b)}{(1 - b)} |a_k| + \sum_{k=1}^{\infty} \frac{\Psi(k, m, \nu, \lambda, b)}{(1 - b)} |b_k|
\]

\[
 = \sum_{k=2}^{\infty} \frac{\Phi(k, m, \nu, \lambda, b)}{(1 - b)} \left(\frac{1 - b}{\Phi(k, m, \nu, \lambda, b)} X_k \right)
\]

\[
 + \sum_{k=1}^{\infty} \frac{\Psi(k, m, \nu, \lambda, b)}{1 - b} \left(\frac{1 - b}{\Psi(k, m, \nu, \lambda, b)} Y_k \right)
\]

\[
 = \sum_{k=2}^{\infty} X_k + \sum_{k=1}^{\infty} Y_k = 1 - X_1 \leq 1.
\]

Therefore, \(f_m(z) \in S^H(\mu, \nu, \lambda, b). \) Conversely, if \(f_m(z) \in S^H(\mu, \nu, \lambda, b), \) let

\[
 (1 - b)X_k = \Phi(k, m, \nu, \lambda, b)|a_k| \quad (k = 2, 3, \ldots),
\]

\[
 (1 - b)Y_k = \Psi(k, m, \nu, \lambda, b)|b_k| \quad (k = 1, 2, 3 \ldots)
\]

and \(X_1 = 1 - \sum_{k=2}^{\infty} X_k - \sum_{k=1}^{\infty} Y_k. \) Then the required representation is

\[
 f_m(z) = z - \sum_{k=2}^{\infty} |a_k| z^k + (1 - b)^m \sum_{k=1}^{\infty} |b_k| z^k
\]

\[
 = z - \sum_{k=2}^{\infty} \frac{(1 - b)}{\Phi(k, m, \nu, \lambda, b)} X_k z^k + (1 - b)^m \sum_{k=1}^{\infty} \frac{(1 - b)}{\Psi(k, m, \nu, \lambda, b)} Y_k z^k
\]

\[
 = z - \sum_{k=2}^{\infty} \frac{|z - h_k(z)|}{X_k + (1 - b)^m \sum_{k=1}^{\infty} |z - g_{mk}(z)|} Y_k z^k
\]

\[
 = \left[1 - \sum_{k=2}^{\infty} X_k - \sum_{k=1}^{\infty} Y_k \right] z + \sum_{k=2}^{\infty} h_k(z) X_k + \sum_{k=1}^{\infty} g_{mk}(z) Y_k = \sum_{k=1}^{\infty} (X_k h_k + Y_k g_{mk}). \square
Our next theorem is on the distortion bounds for functions in $S^m_H(\mu, \nu, \lambda, b)$, which yields a covering result for this family.

Theorem 2.5. If $F_m = H + G_m \in S^m_H(\mu, \nu, \lambda, b)$, given by

$$F_m(z) = z - \sum_{k=2}^{\infty} |A_k|z^k + (-1)^m \sum_{k=1}^{\infty} |B_k|z^k,$$

and $|z| = r < 1$, then

$$\frac{1 - |B_1|}{\Phi(2, m, \mu, \nu, \lambda, b)} M \leq |F_m(z)| \leq \frac{1}{\Phi(2, m, \mu, \nu, \lambda, b)} M$$

where $M = [(1 - b) - \Psi(1, m, \mu, \nu, \lambda, b)|B_1|]r^2$.

Proof. First, we shall prove the left-hand side of inequality (2.4). Let $F_m \in S^m_H(\mu, \nu, \lambda, b)$; then

$$|F_m(z)| = \left| z + |B_1|z - \sum_{k=2}^{\infty} (|A_k|z^k - |B_k|z^k) \right|$$

$$\geq (1 - |B_1|)r - \sum_{k=2}^{\infty} (|A_k| + |B_k|) r^k$$

$$\geq (1 - |B_1|)r - \sum_{k=2}^{\infty} (|A_k| + |B_k|) r^2$$

$$= (1 - |B_1|)r - \frac{(1 - b)}{\Phi(2, m, \mu, \nu, \lambda, b)} \sum_{k=2}^{\infty} \Phi(k, m, \mu, \nu, \lambda, b) \frac{1}{1 - b} (|A_k| + |B_k|) r^2$$

$$\geq (1 - |B_1|)r - \frac{(1 - b)}{\Phi(2, m, \mu, \nu, \lambda, b)} \sum_{k=2}^{\infty} \Phi(k, m, \mu, \nu, \lambda, b) \frac{1}{1 - b} |A_k|$$

$$+ \frac{\Psi(k, m, \mu, \nu, \lambda, b)}{1 - b} |B_k| r^2$$

$$\geq (1 - |B_1|)r - \frac{(1 - b)}{\Phi(2, m, \mu, \nu, \lambda, b)} \times \left(1 - \frac{\Psi(1, m, \mu, \nu, \lambda, b)}{1 - b} |B_1| \right) |r|^2$$

$$\geq (1 - |B_1|)r - \frac{1}{\Phi(2, m, \mu, \nu, \lambda, b)} ((1 - b) - \Psi(1, m, \mu, \nu, \lambda, b)|B_1|) r^2.$$

By similar arguments, we can easily prove the right-hand inequality in (2.4). □

3. Inclusion Properties

In this section, we show that the class $S^m_H(\mu, \nu, \lambda, b)$ is closed under convolution. For harmonic functions

$$f_m(z) = z - \sum_{k=2}^{\infty} |a_k|z^k + (-1)^m \sum_{k=1}^{\infty} |b_k|z^k,$$
\[F_m(z) = z - \sum_{k=2}^{\infty} |A_k|z^k + (-1)^m \sum_{k=1}^{\infty} |B_k|z^k, \]

their convolution \(f_m \ast F_m \) is given by

\[
(f_m \ast F_m)(z) = f_m(z) \ast F_m(z) = z - \sum_{k=2}^{\infty} |a_k A_k|z^k + (-1)^m \sum_{k=1}^{\infty} |b_k B_k|z^k.
\]

Theorem 3.1. For \(0 \leq b' \leq b'' < 1 \), let \(f_m \in \overline{S_H^m}(\mu, \nu, \lambda, b') \) and \(F_m \in \overline{S_H^m}(\mu, \nu, \lambda, b'') \); then \(f_m \ast F_m \in \overline{S_H^m}(\mu, \nu, \lambda, b') \).

Proof. We need to show that the coefficients of \(f_m \ast F_m \) satisfy condition (2.1). For \(F_m \in \overline{S_H^m}(\mu, \nu, \lambda, b'') \), note that \(|A_k| < 1 \) and \(|B_k| < 1 \). Now for the convolution function \(f_m \ast F_m \), we have

\[
\sum_{k=2}^{\infty} \frac{\Phi(k, m, \mu, \nu, \lambda, b'')|a_k A_k| + \sum_{k=1}^{\infty} \frac{\Psi(k, m, \mu, \nu, \lambda, b'')|b_k B_k|}{(1 - b'')}} = \sum_{k=2}^{\infty} \frac{\Phi(k, m, \mu, \nu, \lambda, b')|a_k A_k|}{(1 - b')} + \sum_{k=1}^{\infty} \frac{\Psi(k, m, \mu, \nu, \lambda, b')|b_k B_k|}{(1 - b')} \leq 1.
\]

Therefore, \(f_m \ast F_m \in \overline{S_H^m}(\mu, \nu, \lambda, b') \subset \overline{S_H^m}(\mu, \nu, \lambda, b''). \)

Here, we prove that the class \(\overline{S_H^m}(\mu, \nu, \lambda, b) \) is closed under the convex combinations of its members. Let the function \(f_{m,i}(z) \) be defined for \(i = 1, 2, \ldots \) by

\[
f_{m,i}(z) = z - \sum_{k=2}^{\infty} |a_{k,i}|z^k + (-1)^m \sum_{k=1}^{\infty} |b_{k,i}|z^k.
\]

Theorem 3.2. Let the functions \(f_{m,i}(z) \), defined by (3.1) be in \(\overline{S_H^m}(\mu, \nu, \lambda, b) \), for every \(i = 1, 2, 3 \ldots \) Then the functions \(c(z) \) defined by

\[
c(z) = \sum_{i=1}^{\infty} t_i f_{m,i}(z), \quad 0 \leq t_i \leq 1
\]

are also in the class \(\overline{S_H^m}(\mu, \nu, \lambda, b) \), where \(\sum_{k=1}^{\infty} t_k = 1 \).

Proof. By the definition of \(c(z) \), we have

\[
c(z) = z - \sum_{k=2}^{\infty} \left(\sum_{i=1}^{\infty} t_i |a_{k,i}| \right)z^k + (-1)^m \sum_{k=1}^{\infty} \left(\sum_{i=1}^{\infty} t_i |b_{k,i}| \right)z^k.
\]

Further, since \(f_{m,i}(z) \) are in \(\overline{S_H^m}(\mu, \nu, \lambda, b) \) for every \(i = 1, 2, 3 \ldots \), by Theorem 2.2 we have

\[
\sum_{k=2}^{\infty} \Phi(k, m, \mu, \nu, \lambda, b) \left(\sum_{i=1}^{\infty} t_i |a_{k,i}| \right) + \sum_{k=1}^{\infty} \Psi(k, m, \mu, \nu, \lambda, b) \left(\sum_{i=1}^{\infty} t_i |b_{k,i}| \right)
\]
HARMONIC FUNCTIONS DEFINED BY DIFFERENTIAL OPERATOR 153

\[= \sum_{i=1}^{\infty} \left(\sum_{k=2}^{\infty} \Phi(k, m, \mu, \nu, \lambda, b) |a_{k,i}| + \sum_{k=1}^{\infty} \Psi(k, m, \mu, \nu, \lambda, b) |b_{k,i}| \right) t_i \]

\[\leq (1 - b) \sum_{i=1}^{\infty} t_i = 1 - b, \]

thus the required result follows in the view of condition (2.1). \(\square \)

Finally, we prove that the class \(\mathcal{SH}_m(\mu, \nu, \lambda, b) \) is closed under the generalized Bernardi–Libera–Livingston integral operator \(\mathcal{L}_c \). For an analytic function \(f \), its generalized Bernardi–Libera–Livingston integral operator is defined by

\[\mathcal{L}_c[f(z)] = \left(\frac{c+1}{z^c} \right) \int_0^z t^{c-1} f(t) \, dt, \quad (c > -1), \]

whereas for harmonic functions \(f = h + \overline{g} \) it is defined by

\[(3.2) \quad \mathcal{L}_c[f(z)] = \left(\frac{c+1}{z^c} \right) \int_0^z t^{c-1} h(t) \, dt + \left(\frac{c+1}{z^c} \right) \int_0^z t^{c-1} g(t) \, dt, \quad (c > -1). \]

Theorem 3.3. If \(f_m \in \mathcal{SH}_m(\mu, \nu, \lambda, b) \), then \(\mathcal{L}_c[f_m(z)] \in \mathcal{SH}_m(\mu, \nu, \lambda, b) \).

Proof. By definition of \(\mathcal{L}_c[f_m(z)] \) given in (3.2), it follows that

\[\mathcal{L}_c[f_m(z)] = \left(\frac{c+1}{z^c} \right) \int_0^z t^{c-1} \left(t - \sum_{k=2}^{\infty} |a_k| t^k + (-1)^m \sum_{k=1}^{\infty} |b_k| t^k \right) dt \]

\[= z - \sum_{k=2}^{\infty} \left(\frac{c+1}{c+k} \right) |a_k| z^k + (-1)^m \sum_{k=1}^{\infty} \left(\frac{c+1}{c+k} \right) |b_k| z^k \]

\[= z - \sum_{k=2}^{\infty} A_k z^k + (-1)^m \sum_{k=1}^{\infty} B_k z^k. \]

Here \(A_k = \left(\frac{c+1}{c+k} \right) |a_k| \), \(B_k = \left(\frac{c+1}{c+k} \right) |b_k| \). Hence,

\[\sum_{k=2}^{\infty} \Phi(k, m, \mu, \nu, \lambda, b) \left(\frac{c+1}{c+k} \right) |a_k| + \sum_{k=1}^{\infty} \Psi(k, m, \mu, \nu, \lambda, b) \left(\frac{c+1}{c+k} \right) |b_k| \]

\[\leq \sum_{k=2}^{\infty} \Phi(k, m, \mu, \nu, \lambda, b) |a_k| + \sum_{k=1}^{\infty} \Psi(k, m, \mu, \nu, \lambda, b) |b_k| \leq 1 - b. \]

Therefore, by Theorem 2.2, we have \(L_c[f_m(z)] \in \mathcal{SH}_m(\mu, \nu, \lambda, b). \) \(\square \)

References

1. R. M. Ali, A. O. Badghaish, V. Ravichandran, A. Swaminathan, Starlikeness of integral transforms and duality, J. Math. Anal. Appl. 385 (2012), 808–822.
2. M. Arif, O. Barkub, H. M. Srivastava, S. Abdullah, S. A. Khan, Some Janowski type harmonic q-starlike functions associated with symmetrical points, Mathematics 8 (2020), Article ID 629, 1–16.
3. H. Bayram, S. Yalçın, On a new subclass of harmonic univalent functions, Malaysian J. Math. Sci. 14(1) (2020), 63–75.
4. N. E. Cho, T. H. Kim, *Multiplier transformation and strongly close-to-convex functions*, Bull. Korean Math. Soc. **40** (2003), 399–410.

5. J. Clunie, T. Sheil-Small, *Harmonic univalent functions*, Ann. Acad. Sci. Fenn. Ser. A I Math. **9** (1984), 3–25.

6. R. Fournier, S. Ruscheweyh, *On two extremal problems related to univalent functions*, Rocky Mountain J. Math. **24**(2) (1994), 529–538.

7. S. A. Halim, A. Janteng, *Harmonic functions starlike of complex order*, Proc. Int. Symp. on New Development of Geometric Function Theory and Its Appl. (2008), 132–140.

8. J. M. Jahangiri, Y. C. Kim, H. M. Srivastava, *Construction of a certain class of harmonic close-to-convex functions associated with the alexander integral transform*, Integral Transforms Spec. Funct. **14**(3) (2003), 237–242.

9. J. M. Jahangiri, G. Murugusundaramoorthy, K. Vijaya, *Salagean type harmonic functions*, Southwest J. Pure Appl. Math. **2** (2002), 77–82.

10. D. Khurana, R. Kumar, S. Yalçin, *A class of harmonic starlike functions defined by multiplier transformations*, Adv. Math. Sci. J. **9**(1) (2020), 455–469.

11. Y. C. Kim, F. Rønning, *Integral transforms of certain subclasses of analytic functions*, J. Math. Anal. Appl. **258**(2) (2001), 466–489.

12. R. Kumar, S. Gupta, S. Singh, *A class of univalent harmonic functions defined by multiplier transformation*, Rev. Roumaine Math. Pures Appl. **57**(1) (2012), 371–382.

13. H. Lewy, *On the non-vanishing of the Jacobian in certain one-to-one mappings*, Bull. Amer. Math. Soc. **42**(10) (1936), 689–692.

14. S. Ponnusamy, F. Rønning, *Integral transforms of a class of analytic functions*, Complex Var. Elliptic Equ. **53**(5) (2008), 423–434.

15. T. Rosy, B. A. Stephen, K. G. Subramanian, *Goodman-Rønning type harmonic univalent functions*, Kyungpook Math. J. **41** (2001), 45–54.

16. G. S. Salagean, *Subclasses of Univalent Functions*, Lect. Notes Math. **1013**, Springer-Verlag, Heidelberg, 1983, 362–372.

17. G. S. Salagean, A. O. Pall-Szao, *On a certain class of harmonic functions and the generalized Bernardi-Libera-Livingston integral operator*, Stud. Univ. Babes-Bolyai Math. **65**(3) (2020), 365–371.

18. H. Silverman, *Harmonic univalent functions with negative coefficients*, J. Math. Anal. Appl. **220** (1998), 283–289.

19. E. Yasar, S. Yalçin, *Harmonic univalent functions starlike or convex of complex order*, Tamsui Oxford J. Inf. Math. Sci. **27**(3) (2011), 269–277.

20. A. T. Yousef, Z. Salleh, *On a harmonic univalent subclass of functions involving a generalized linear operator*, Axioms **9**,32 (2020), 1–10.

Department of Mathematics, DAV University (Received 01 07 2020)
Jalandhar, India (Revised 29 10 2020)
sarika.16984@gmail.com

Department of Mathematics
Sant Longowal Institute of Engineering and Technology
Longowal, India
depali.02.08.88@gmail.com

Department of Mathematics, Hans Raj Mahila Maha Vidyalaya
Jalandhar, India
rajgarg2012@yahoo.co.in

Department of Mathematics, DAV University
Jalandhar, India

Department of Mathematics, DAV University
Jalandhar, India