Accelerating BLAS and LAPACK via Efficient Floating Point Architecture Design

Farhad Merchant and Anupam Chattopadhyay
School of Computer Science and Engineering, Nanyang Technological University, Singapore

Soumyendu Raha and S. K. Nandy
Department of Computational and Data Science, Indian Institute of Science, Bangalore, India 560012

Ranjani Narayan
Morphing Machines Pvt. Ltd

Received 16 August 2016
Accepted 5 February 2017
Published 7 December 2017

ABSTRACT

Basic Linear Algebra Subprograms (BLAS) and Linear Algebra Package (LAPACK) form basic building blocks for several High Performance Computing (HPC) applications and hence dictate performance of the HPC applications. Performance in such tuned packages is attained through tuning of several algorithmic and architectural parameters such as number of parallel operations in the Directed Acyclic Graph of the BLAS/LAPACK routines, sizes of the memories in the memory hierarchy of the underlying platform, bandwidth of the memory, and structure of the compute resources in the underlying platform. In this paper, we closely investigate the impact of the Floating Point Unit (FPU) micro-architecture for performance tuning of BLAS and LAPACK. We present theoretical analysis for pipeline depth of different floating point operations like multiplier, adder, square root, and divider followed by characterization of BLAS and LAPACK to determine several parameters required in the theoretical framework for deciding optimum pipeline depth of the floating operations. A simple design of a Processing Element (PE) is presented and shown that the PE outperforms the most recent custom realizations of BLAS and LAPACK by 1.1X to 1.5X in GFlops/W, and 1.9X to 2.1X in GFlops/mm². Compared to multicore, General Purpose Graphics Processing Unit (GPGPU), Field Programmable Gate Array (FPGA), and ClearSpeed CSX700, performance improvement of 1.8-80X is reported in PE.

Keywords: Parallel computing; instruction level parallelism; power-performance trade-offs; high performance computing; floating point unit.

1. Introduction

Domain specific computing platforms have gained immense popularity in the last decade. For domain specific computing, custom architectures are developed for efficient realization of several algorithms/computations pertaining to the domain of interest. Several
architectural parameter such as size of the memory, bandwidth in the memory subsystem, and compute resource choices are chosen that are specific to the domain of interest. For domain specific computing, accelerators are preferred as an ideal underlying platform due to their better power performance over general purpose computers [12] [15]. While accelerators like General Purpose Graphic Processing Units (GPGPUs) dissipate more power than desired, there are several domain specific accelerators designed to overcome this shortcoming of GPGPUs [15].

Domain customized platforms and/or accelerators are gaining popularity due to their area and power performance [14] [6]. Performance in these accelerators is achieved by setting several architectural parameters that are well suited for computations pertaining to the domain. Parameters such as size of the memory at different levels and bandwidth of the memory that is nearest to the compute resources is well experimented in the literature [15]. Through pipelining of the processor and memory subsystem it is ensured that the processor is able to operate at the highest possible speed with lowest power penalty for the technology node [17] [18]. Several design space exploration techniques are developed to arrive at an optimum architectural parameters for optimal performance in the domain. These techniques are computer architecture simulator based techniques and allow tweaking of parameters such as memory size and memory bandwidth.

Basic Linear Algebra Subprograms (BLAS) and Linear Algebra Package (LAPACK) and/or their platform dependent variants are the basic building block for several high level software packages like Intel’s DAAL, Spark’s MLlib, Berkeley’s CAFFE, UTK’s PLASMA, and MAGMA packages [7] [16]. Performance of BLAS and LAPACK eventually decides performance of these packages. Hence, it is important to have a high performance realization of these packages. Efficient realization of BLAS and LAPACK on different contemporary platforms has been ever researched topic [15] [10] [8]. All these efforts of efficient realizations are through software optimizations and efficient exploitation of memory hierarchy. Major reason for centralization of efforts toward software optimizations and efficient exploitation of memory hierarchy is mainly due to several architectural parameters that are not in the control of programmer. For example, the depth of the pipeline (pipeline stages) in the underlying platform. In this paper, we present a theoretical framework that assists in establishing a relation between pipeline depth of different floating point operations with size and type of the workload. Major contributions in this paper are as follows:

- We present a comprehensive theoretical framework that allows us to predict processor performance based on pipeline depths of different floating point operations like multiplier, adder, square root, and divider for BLAS and LAPACK
- Characterization of BLAS and LAPACK is presented where we try to determine several parameters to be fitted in our theoretical framework to arrive at optimum number of pipeline stages for floating point operations
- Extensive simulations are carried out to arrive at an optimum pipeline depth of multiplier, adder, square root, and divider for BLAS and LAPACK in a Processing Element (PE). It is shown that our theoretical curves corroborate to our sim-
ulations. Finally with synthesis results it is shown that our PE outperforms recently presented custom linear algebra accelerator, multicore, GPGPU, FPGA, and ClearSpeed CSX700.

We choose a scalar processor for our initial theoretical framework and then extend framework for superscalar processor. The paper is organized as follows: In Sec. 2, we discuss some of the works in the literature focusing on optimum pipeline depth of the processor. In Sec. 3, we focus on theoretical framework and derive expression for optimum pipeline depth for several operations encountered in BLAS and LAPACK. Characterization of BLAS and LAPACK is presented in Sec. 4. We present PE design in Sec. 5 as part of our experimental setup to validate the proposed theoretical framework and discuss results. In Sec. 6, we conclude our work.

2. Related work

There is a significant theoretical and experimental work done in the recent past that establishes relation between pipeline depth of a microprocessor and cache size [17] [18].

In [17], authors have presented interesting work that focuses on improving processor performance by having deeper pipeline considering Intel Pentium 4 as a baseline case. Relation between processor performance, pipeline depth, and cache size is established for several benchmarks. The paper presents simulator based experimental results. It is concluded that with 100% increase in the performance in the Pentium 4 like processors, performance improvement of 35-90% can be attained. A major shortcoming of the work presented in [17] is that the work presents interesting empirical results and does not establish succinct theory for predicting performance by varying pipeline depth and cache size.

In [18], authors have presented an analytical model that derives optimal pipeline depth as a function of power and performance for a superscalar processor. The model is validated using a cycle accurate simulator of a contemporary superscalar processor. Authors in [18] build on the base case presented in [2] where it is shown that for s_i pipeline stages, if t_i is the latch free time to complete the operation in pipe i, then in the scenario where all the pipe stages operate at same frequency, $T_i = s_i / t_i$, $\forall i,j$. If c_i is latch overhead in i^{th} pipeline stage than time per stage of pipe i is $T_i = s_i / t_i + c_i$, $\forall i$. In case of absence of pipeline stalls, throughput of such a machine would be $G = \frac{1}{\sum_{i=1}^{k} T_i}$, where k is number of pipe stages in the pipeline. In [18], authors have extended this baseline model to incorporate pipeline stalls. The work presented in [18] becomes one of the starting point for the work presented in this paper.

In [4], authors have analyzed trade-off between greater throughput in deeper pipeline and penalty due to hazards in deeper pipeline. Sensitivity in Cycles-per-Instruction and cycle time are considered as parameters to arrive at optimum pipeline depth. It is shown that the total time can be modeled as a sum busy and non busy time of the pipeline considering pipeline hazards as a parameter. Simulation is performed for 35 different types of workloads and it is clearly shown that the optimum pipeline depth varies between 13 to 35 for these workloads. Such a revelation gives us motivation to work further on a class of workloads for the workload specific (or domain specific) accelerator. The theoretical
framework presented in [4] forms foundation of our theoretical framework and the framework presented in [4] is revisited in the prelude of Sec. 3.

Theoretical framework presented in [3] is continuation of the theoretical framework presented in [4]. In [3], authors have optimized pipeline for power and performance considering 55 workloads. The problem of optimum pipeline depth is well studied by considering parameters like dynamic power increase, clock gating, and leakage power in [3].

In [13], authors have presented several floating point unit architecture extensions to accelerate matrix factorizations. The work presented in [13] is interesting and through several extension to the floating point unit architecture, significant performance improvement over baseline accelerator is achieved. The limitation of the work presented in [13] is lack of theoretical framework that helps to decide the architectural parameters. The work presented in [13] serves as a major benchmark for the work presented in this paper.

In this paper, we have considered several theoretical and experimental framework as a motivation and/or baseline for our theoretical framework. We dwell on the idea of arriving at optimum pipeline depth for the domain customized accelerator. We perform analysis of the workload which is BLAS and LAPACK in this case and based on that we arrive at optimum pipeline depth of multiplier, adder, square root, and divider for the accelerator. Number of independent operations in the Directed Acyclic Graphs (DAGs) of the several routines BLAS and LAPACK are considered as parameters for floating point unit co-design for domain specific accelerator.

3. Theoretical framework

In the initial part of this section, we revisit theory presented in [17], [18], and [4]. We extend theory for domain customized architectures by considering workload characterization. The total time T for the pipeline of the processor can be given by

$$T = T_{BZ} + T_{NBZ}$$

(1)

where T_{BZ}, and T_{NBZ} represent busy and non-busy time respectively. Typically, T_{BZ} is when pipeline is busy while T_{NBZ} is when pipeline is stalled due one of the hazards. From [4], ratio of total time T to the total number of instructions N_I is given by

$$\frac{T}{N_I} = \left(t_o + \frac{\gamma N_H t_p}{N_I} \right) + \left(\frac{t_p}{p} \right) + \left(\frac{\gamma N_H t_o p}{N_I} \right)$$

(2)

In Eq. (2), t_p is the total logic delay of the processor, p is the number of pipeline stages in the design, t_o is the latch overhead for the technology, N_I is total number of instructions, N_H is total number of pipeline hazards, and $\gamma = \frac{1}{N_I} \sum_{h} \beta_h$ where β_h is the fraction of the total pipeline delay encountered by each particular hazard.

In Eq. (2), the first term is independent of pipeline depth; the second term varies inversely with p; and the last term varies linearly with p. To obtain minimum at particular value of p, Eq. (2) can be differentiated and equated to 0. That will give p_{opt}

$$p_{opt}^2 = \frac{N_I t_o}{\gamma N_H t_o}$$

(3)
Few observations about optimum pipeline depth can be made from Eq. (3). As t_o which is latch overhead decreases with lowering node of technology, optimum pipeline depth increases. Lower the hazards in the workload the pipeline depth increases. As γ which is fraction of the pipeline that hazards stall decreases, the optimum pipeline depth increases.

We extend this theory for BLAS and LAPACK through workload characterization where we consider characteristics of the specific workload to arrive at an optimum pipeline depth of different operations in encountered in the workload. To extend theoretical frame work, we consider analytical pipeline model presented in [18] that encompasses several pipes namely fixed point unit pipe, load-store pipe, and branch pipe. We extend the theoretical model presented in [18] and incorporate a floating point pipe as shown in Fig. 1.

As shown in the Fig. 1, the model has four pipes: fixed point, floating point, load store, and branch. Since, in BLAS and LAPACK, the operations are floating point in nature and the operations encountered are multiply, addition, division, and square root, we further divide floating point unit pipeline into multiplier pipe, adder pipe, divide pipe, and square root pipelines. Our objective is to arrive at an optimum pipeline depth of these floating point hardware units. The types of arithmetic instructions encountered in BLAS and LAPACK can be given by a set $K = \{ M, A, S, D \}$ where M, A, S, and D are for multiplication, adder, square root and divider instructions respectively. The total number of instructions in a routine of BLAS and/or LAPACK is given by

$$N_I = \sum_i^K N_{iI} \text{ where } i \in K$$

Similarly, total number of hazards are given by

$$N_H = \sum_i^K N_{iH} \text{ where } i \in K$$

1750006-5
To arrive at an optimum pipeline depth of each pipes shown in Fig. 1, we can replace \(N_I \) and \(N_H \) by corresponding pipe parameters. From Eq. (2), Time per Instruction (TPI) is given by

\[
TPI = \sum_{i}^{K} \frac{T_i}{N_{iI}} \quad \text{where } i \in K
\]

where \(T_i = (t_o + \frac{\gamma N_i t_{p_e}}{N_{iI}}) + (\frac{t_{p_e}}{p}) + (\frac{\gamma N_i t_{o p}}{N_{iI}}) \), \(i \in K \). \(T_M \), \(T_A \), \(T_D \), and \(T_S \) are the total execution times for multiplier, adder, divider, and square root pipelines for an instruction stream. Parameter \(t_o \) is technology dependent and not dependent on the type of the instruction. Equation (3) can be modified as

\[
p_{o_{\text{opt}}}^2 = \frac{N_{iI} t_{p_o}}{\gamma_i N_{iH} t_o} \quad \text{where } i \in K
\]

In Eq. (7), \(p_M, p_A, p_D, \) and \(p_S \) is the total number of pipeline stages in multiplier, adder, divider, and square root hardware units respectively. Similarly, \(\gamma_M, \gamma_A, \gamma_D, \) and \(\gamma_S \) are the total pipeline delay for each pipeline averaged over total number of hazards for each pipe. From [4], \(\gamma = \frac{1}{N_{iH}} \sum_{h} N_{iH} \beta_h \) where \(\beta_h \) is fraction of total pipeline delay encountered by each particular hazard.

In general, in absence of workload characterization, we can vary different parameters like \(\gamma, N_I, N_H, \) and \(p \) in Eq. (2) and comment on effect of different parameters on the time \(T \).

In Fig. 2, it can be observed that for a fixed number of pipeline stages \(p \), as the problem size increases, the TPI saturates. For example, \(p = 2 \) and \(\frac{N_H}{N_I} = 0.1, 0.01, \) and \(0.001 \) then TPI saturates at instruction count of \(10 \times 10^5 \) in the workload. This is mainly because smaller pipelines require large number of instruction to saturate and approach lower bound of TPI. It can also be observed in Fig. 2 that for relatively larger pipelines (for \(p = 4, 6, \) and \(8 \)) attained TPI progressively increases. This is mainly because of increased operating frequency of the pipeline stages.

![Fig. 2. TPI for different sizes of workload for 2, 4, 6, and 8 (keeping \(\frac{N_H}{N_I} = 0.1, 0.01, \) and 0.001).](image-url)
Effect on TPI of varying pipeline depth for a particular workload with varying hazards is shown in Fig. 3. It can be observed in Fig. 3 that as we increase pipeline depth, TPI decreases and optimum is achieved. Beyond optimum, a linear increase in the TPI is observed. It can also be observed that the theoretical curve presented in 3 is fairly flat around optimum leaving considerable scope in choosing best design point for the optimum pipeline depth.

Effect of varying γ and pipeline stages p on TPI is shown in Fig. 4. It can be observed in Fig. 4 that for a smaller values of γ, optimum achieved in the theoretical curve is around 4 and as we increase value of γ, a deeper pipeline becomes optimum pipeline. From Figs. 2, 3, and 4, we can make following remarks:

Remark 1: Pipeline will saturate as we increase the size of the workload. Higher the ratio $\frac{N_H}{N_I}$, TPI degrades for small size of workloads.

Remark 2: Higher the ratio $\frac{N_H}{N_I}$, a shallow pipeline with fewer pipeline stages is optimal. It is better to have less number of pipeline stages if workload contains large number
of hazards. For large number of hazards, if pipeline stages are higher than the optimum pipeline stages then the TPI attained deteriorates significantly as shown by red line (for \(\frac{N_H}{N_I} = 0.8 \)) in Fig. 3.

Remark 3: Parameter \(\gamma \) that solely depends on the total number of hazards \(N_H \) and \(\beta_h \) which is fraction of the total pipeline delay encountered by each particular hazard plays an important role in determination of optimum pipeline depth. For large value of \(\gamma \), if the pipeline stages are more than 20 and increased further, TPI deteriorates significantly as shown by blue line in Fig. 4. For small value of \(\gamma \), even if the number of pipeline stages are increased beyond optimum number, the increase in TPI is observed minimal.

Based on the observations from the theoretical curves in Figs. 2, 3, and 4, we can establish that it is important to characterize workloads of the domain of interest to arrive at an optimum pipeline depth of the different operations encountered in the computations pertaining to the domain.

4. BLAS and LAPACK characterization

Based on remarks in Sec. 3 and theory presented in [17], and [18], we present detailed characterization of different routines in BLAS and LAPACK for determining several parameters that help us arriving at optimum pipeline depths of multiplier adder, square root and divider for these packages.

4.1. Characterization of BLAS

For characterization of BLAS, we consider *inner product* (Level-1 BLAS), *matrix–vector* multiplication (Level-2 BLAS), and *general matrix–matrix* multiplication (Level-3 BLAS) as representative routines. These routines are known as *ddot*, *dgemv*, and *dgemm* respectively where ‘d’ is for double precision [1].

For vectors \(x = [a_1 \ a_2 \ldots \ a_n] \), and \(y = [b_1 \ b_2 \ldots \ b_n] \), inner product is given by

\[
c = x^T y
\]

\[
= [a_1 \ a_2 \ a_3 \ a_4] \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \text{ for } n = 4
\]

(8)

Directed Acyclic Graph (DAG) for \(n = 4 \) is shown in Fig. 5. It can be observed in Fig. 5 that all the multiplications in the *inner product* of 4-element vector can be performed in parallel. In general for \(n \)-element vector there are \(n \) multiplications and all the multiplications can be executed in parallel. There are \(n - 1 \) additions in the *inner product*, and there is a dependency from the output of the multiplier for the first level of the addition as shown in Fig. 5 and there are dependencies in the addition for each next level from the additions.
in the previous level. Considering, only dependency hazards, there will be no hazards in the multiplier pipeline. Associated parameters with multiplier, and adder pipelines shown in Fig. 11 will be as follows:

\[N_I = N_{IM} + N_{IA} = n + n - 1 = 2n - 1 \]
\[N_{HM} = 0 \] (considering only dependency hazards)
\[\gamma_M = \infty \]

Determining \(\gamma_A \) is difficult as mentioned in [4]. Hence, we have to determine value of \(\gamma_A \) through a theoretical curve shown in Fig. 6. It can be observed that for large value of \(\gamma_A \), a sharp rise in TPI is observed. For small value of \(\gamma_A \), the curve becomes almost flat. Near optimum value in the curve, it is considerably flat allowing designer multiple choices for the number of pipeline stages. For Fig. 6, we have considered \(\frac{N_H}{N_I} = 0.1 \). Decreasing \(\frac{N_H}{N_I} \) further gives a flat theoretical curve as observed in Fig. 3. For multiplier, theoretical curve for TPI becomes a flat horizontal line as we increase the pipeline depth. This is mainly due to absence of dependency hazards in the multiplication.

For \textit{matrix–vector}, and \textit{matrix–matrix} multiplication,

\[y = Ax \] \hspace{1cm} (9)
\[C = AB \] \hspace{1cm} (10)
Fig. 7. TPI for different pipeline stages \(p \) in adder and \(\gamma = 0.2, 0.4, 0.6, \) and \(0.8 \) for 1000-element vector inner product.

Fig. 8. TPI for different pipeline stages \(p \) in adder and \(\frac{N_H}{N_I} = 0.1, 0.05, 0.15, 0.25, \) and \(0.35. \)

where \(y \) and \(x \) are vectors, and \(A, B, \) and \(C \) are matrices. Since, \textit{matrix–vector} multiplication, and \textit{matrix–matrix} multiplication can be viewed as a series of calls of \textit{inner products}, the optimum number of pipeline stages for these routines for adder and multiplier are expected to be the same as what we achieved for \textit{inner product}. It is well established that, in practical implementations of \textit{matrix–vector} multiplication (DGEMV in BLAS) and \textit{matrix–matrix} multiplication (DGEMM in BLAS), due to compiler optimizations the dependency hazards reduce [5]. This reduction in the hazards will lead to increase in the \(\gamma_A \) and decrease in the ratio \(\frac{N_H}{N_I}. \) In Fig. 8, TPI for different ratio of \(\frac{N_H}{N_I} \) is shown. It can be observed in Fig. 8 that as the ratio \(\frac{N_H}{N_I} \) increases, the growth in TPI is sharper.

4.2. Characterization of LAPACK

For LAPACK, we consider two most popular factorization routines namely DGEQRF (QR factorization), and DGETRF (LU factorization with partial pivoting) for characterization.

For these factorizations, it can be observed in Fig. 9 that the \textit{matrix–matrix} operations (DGEMM) are dominant, and hence the optimum number of pipeline stages for multiplier
and adder would remain same as derived in Sec. 4.1. It is important to arrive at an optimum pipeline depth of divider and square root shown in Fig. 11 through characterization.

In QR factorization, division and square root operations are required in panel factorization and the order of division and square root operations is $O(n^2)$ while the total operations in the factorization are $O(n^3)$. There is always dependency in the square root operation that stalls the program execution. The ratios $\frac{N_{HD}}{N_{ID}}$, and $\frac{N_{HS}}{N_{IS}}$ are observed to be high in QR factorization. With varying pipeline and varying number of hazards in the square root pipeline N_{HS}, the theoretical curve is shown in Fig. 10. For optimum number of stages in the divider, we expect trend that is similar to shown in Fig. 10 since the number of dependency hazards in square root and divider are expected to be same in QR factorization.

In LU factorization there are multiplications, additions, and divisions. Since the occurrence of division instruction in the program is similar to the square root/divider in the QR factorization, we expect similar trend for optimum pipeline stages for divider as shown in Fig. 10.
5. Experimental setup and results

Experimental setup is shown in Fig. 11. As shown in Fig. 11, we have a Processing Element (PE) and an Auxiliary Processing Element (APE) where PE is responsible for floating point computations and APE is responsible for ensuring data availability for compute resources through load/store operations [9]. PE consists of different floating point operations like multiplier, adder, square root, and divider, a small register file, an instruction memory, and an instruction decoder, and APE consists of two small instruction memories, corresponding instruction decoders, and a Local Memory (LM). The operation of PE and APE can be described as follows:

Step 1: Load data from upper level of memory to LM in APE
Step 2: Load data from LM to Register File
Step 3: Perform computations in the PE and store results back in the Register File
Step 4: Store results back from Register File to LM
Step 5: Store final result to the upper level of memory

As shown in Fig. 11, the pipeline depths of the floating point arithmetic units are kept variable. Usually, it is not possible vary pipeline stages of the floating point unit in RTL. For simulation purpose, we use Bluespec System Verilog (BSV) that lets us incorporation of C program along with RTL registers to mimic the different number of pipeline stages for different floating point operations. The simulation environment also becomes non-synthesizable due to presence of floating point operation written in C. For simulation results, we report Cycles-per-Instructions (CPI) for varying number of pipeline stages for adder and multiplier for matrix–matrix multiplication, QR factorization, and LU factorization as shown in Fig. 12. It can be observed in Fig. 12 that our simulation results corroborate to our theoretical curve observed in Sec. 3.

For synthesis, we use enhanced version of PE where we attach 4 multipliers and 3 adders in a reconfigurable way to enhance the performance of the PE. Table 1 presents comparison between LAP-PE and PE. It can be observed from Table 1 that PE has more area and consumes more power. This is mainly because of SRAM and DOT4 instruction.
Fig. 12. CPI in matrix multiplication, QR factorization, and LU factorization with varying number of pipeline stages in adder and multiplier for a matrix of size 100×100.

Fig. 13. CPI in QR factorization, and LU factorization with varying number of pipeline stages in square root and divider for a matrix of size 100×100.

Table 1. Comparison between LAP-PE and PE at different frequencies with 16 Kbytes of dual-ported SRAM with double precision floating point arithmetic.

Architecture	Speed (GHz)	Area (mm^2)	Memory (mW)	FMAC (mW)	PE (mW)
LAP-PE	1.81	0.181	13.25	105.5	118.7
LAP-PE	0.95	0.174	6.95	31.0	38.0
LAP-PE	0.33	0.167	2.41	6.0	8.4
LAP-PE	0.20	0.169	1.46	3.4	4.8
PE	1.81	0.301	26.50	422	448.5
PE	0.95	0.28	13.90	124	137.9
PE	0.33	0.273	4.82	24	28.82
PE	0.20	0.275	2.92	13.6	16.5
Table 2. Comparison of LAP-PE and PE.

Speed	LAP-PE (GFlops/mm²)	LAP-PE (GFlops/W)	PE (GFlops/mm²)	PE (GFlops/W)
1.81	19.92	29.7	42.09	28.24
0.95	10.92	46.4	23.75	48.54
0.33	3.95	57.8	8.46	82.5
0.2	2.37	51.1	5.09	84.84

we take GFlops/mm² and GFlops/W as a performance measure as shown in Table 2 then at 1.81 GHz, LAP-PE attains 19.92 GFlops/mm² while PE attains 42.09 GFlops/mm². Similarly, at 0.20 GHz, LAP-PE attains 2.37 GFlops/mm² while PE attains 5.09 GFlops/mm².

Similarly, at 1.81 GHz, LAP-PE attains 29.7 GFlops/W while PE attains 28.28 GFlops/W. At 0.95 GHz, LAP-PE attains 46.4 GFlops/W while in PE it is 48.54 GFlops/W. At 0.2 GHz, LAP-PE achieves 51.1 GFlops/W while PE achieves 84.84 GFlops/W.

It can be concluded from above observations that PE performs better than LAP-PE at lower frequencies. This is mainly because lower power consumed by double precision floating point operations at low frequencies.

5.1. Benchmarking

We evaluate some of the routines in BLAS, LAPACK, PLASMA, and MAGMA on Intel Core i7 and Nvidia Tesla C2050 General Purpose Graphics Processing Unit (GPGPU) and report results as shown in Fig. 14(a) and compare performance of PE with multicore, GPGPU, FPGA, and ClearSpeed CSX700 as depicted in Fig. 14(c). In Fig. 14(a), nomenclature according to NAME_OF_SOFTWARE_PACKAGE_NAME_OF_ROUTINE is followed. For example, MAGMA_DGEMM translates into DGEMM belonging to MAGMA software package. As shown in the Fig. 14(a), performance attained by MAGMA_DGEMM is 1.23 Gflops/watt on Nvidia Tesla C2050 GPGPU while performance attained by BLAS_DGEMM is 0.13 Gflops/watt on Intel Core i7.

Performance attained by other routines like MAGMA_DGEQRF, and MAGMA_DGETRF is usually 80-85% of the performance attained by MAGMA_DGEMM and similar trend is observed in LAPACK and its multicore version PLASMA. Performance of PE for a subset of BLAS and LAPACK is depicted in 14(b). In the realization of the PE, we use multiplier and adder design presented in [11] and tune them for high throughput considering theoretical framework presented in Sec. 3. As shown in Fig. 14(c) it can be observed that the performance improvement in PE for DGEMM over multicore ranges from 2.85-80x, for DGEQR2 it ranges from 1.4-40x, for DGESRQF it ranges from 2.4-69x, and for DGETRF 2.34-66.5x. Similarly, for GPGPU the performance improvement for the routines ranges from 5-30x, for Altera FPGA, the performance improvement ranges from 8-10x, and for ClearSpeed CSX700 the performance improvement ranges from 1.4-2.8x. The performance improvement reported for DGEQR2 is the least since DGEQR2 operation in LAPACK is dominated by matrix–vector operations and not matrix–matrix operations.
6. Conclusion

We presented theoretical framework to arrive at an optimum number of pipeline stages for adder, multiplier, square root, and divider for BLAS and LAPACK. We presented characterization of BLAS and LAPACK to estimate parameters. The estimated parameters were used to arrive at theoretical curves. We also presented a PE that has extensible pipelines in the simulation environment. Through simulations, we show that our theoretical results corroborates to our simulation results. We synthesize PE with RTL of floating point unit and show better performance than the most recent custom realization of BLAS and LAPACK. Through our theoretical framework and experimental studies, it was shown that for domain specific platforms, it is possible and advisable to first derive an optimum pipeline depth theoretically for better performance of the platform. The theoretical framework pre-
sented can be extended with more precise determination of parameters like γ and N_H. Near accurate determination of these parameters would result in better estimation of the optimum number of pipeline stages in domain specific platforms.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, *LAPACK Users' Guide* (Society for Industrial and Applied Mathematics, Philadelphia, PA), third edition, 1999.

[2] M. J. Flynn, P. Hung, and K. W. Rudd, Deep-submicron microprocessor design issues. *IEEE Micro*, 19(4):11–22, July 1999.

[3] A. Hartstein and T. R. Puzak, Optimum power/performance pipeline depth, in *Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 36*, pages 117–, Washington, DC, USA, 2003. IEEE Computer Society.

[4] A. Hartstein and T. R. Puzak, The optimum pipeline depth for a microprocessor, in *29th International Symposium on Computer Architecture (ISCA 2002)*, 25–29 May 2002, Anchorage, AK, USA, pages 7–13, 2002.

[5] N. J. Higham, Exploiting fast matrix multiplication within the level 3 BLAS. *ACM Trans. Math. Softw.*, 16(4):352–368, 1990.

[6] M. H. Ionica and D. Gregg, The movidius myriad architecture’s potential for scientific computing. *IEEE Micro*, 35(1):6–14, 2015.

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, Caffe: Convolutional architecture for fast feature embedding. *arXiv preprint arXiv:1408.5093*, 2014.

[8] G. Mahale, S. K. Nandy, E. Bhatia, S. K. Nandy, and R. Narayan, VOP: Architecture of a processor for vector operations in on-line learning of neural networks, in *29th International Conference on VLSI Design and 15th International Conference on Embedded Systems, VL-SID 2016*, Kolkata, India, January 4–8, 2016, pages 391–396, 2016.

[9] F. Merchant, A. Maity, M. Mahadurkar, K. Vatwani, I. Munje, M. Krishna, S. Nalesh, N. Gopalan, S. Raha, S. K. Nandy, and R. Narayan. Micro-architectural enhancements in distributed memory CGRAS for LU and QR factorizations, in *28th International Conference on VLSI Design (VLSID), 2015*, pages 153–158, January 2015.

[10] F. Merchant, A. Chattopadhyay, G. Garga, S. K. Nandy, R. Narayan, and N. Gopalan, Efficient QR decomposition using low complexity column-wise givens rotation (CGR), in 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems, Mumbai, India, January 5–9, 2014, pages 258–263, 2014.

[11] F. Merchant, N. Choudhary, S. K. Nandy, and R. Narayan, Efficient realization of table look-up based double precision floating point arithmetic, in *29th International Conference on VLSI Design, VLSID 2016*, Kolkata, India, January 4–8, 2016.

[12] T. N. Mudge, The specialization trend in computer hardware: technical perspective. *Commun. ACM*, 58(4):84, 2015.

[13] A. Pedram, A. Gerstlauer, and R. A. van de Geijn, Floating point architecture extensions for optimized matrix factorization, in *21st IEEE Symposium on Computer Arithmetic, ARITH 2013*, Austin, TX, USA, April 7–10, 2013, pages 49–58, 2013.

[14] A. Pedram, A. Gerstlauer, and R. A. van de Geijn, Algorithm, architecture, and floating-point unit codesign of a matrix factorization accelerator. *IEEE Trans. Computers*, 63(8):1854–1867, 2014.

[15] A. Pedram, S. Z. Gilani, N. S. Kim, R. A. van de Geijn, M. J. Schulte, and A. Gerstlauer. A linear algebra core design for efficient level-3 blas, in *ASAP*, pages 149–152, 2012.
[16] B. J. Smith, R package MAGMA: Matrix algebra on GPU and multicore architectures, version 0.2.2, September 3, 2010. [On-line] http://cran.r-project.org/package=magma.

[17] E. Sprangle and D. Carmean, Increasing processor performance by implementing deeper pipelines, in Proceedings of the 29th Annual International Symposium on Computer Architecture, ISCA ’02, pages 25–34, Washington, DC, USA, 2002. IEEE Computer Society.

[18] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. N. Strenski, and P. G. Emma, Optimizing pipelines for power and performance, in Proceedings of the 35th Annual ACM/IEEE International Symposium on Microarchitecture, MICRO 35, pages 333–344, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.