RESEARCH ARTICLE

Cloning and expression of *Burkholderia* polyyne biosynthetic gene clusters in *Paraburkholderia* hosts provides a strategy for biopesticide development

Yoana D. Petrova | Jinlian Zhao | Gordon Webster | Alex J. Mullins | Katherine Williams | Amal S. Alswat | Gregory L. Challis | Andy M. Bailey | Eshwar Mahenthiralingam

1School of Biosciences, Cardiff University, Cardiff, UK
2School of Biological Sciences, University of Bristol, Bristol, UK
3School of Biological Sciences, University of Warwick, Coventry, UK
4Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
5Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
6ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia

Correspondence
Eshwar Mahenthiralingam, School of Biosciences, Cardiff University, Cardiff, UK.
Email: mahenthiralingame@cardiff.ac.uk

Funding Information
YDP is funded by a Biotechnology and Biological Sciences Research Council (BBSRC) South West doctoral training partnership award (BV19107109). We acknowledge additional funding from BBSRC grants BB/S007652/1 (EM, AJM and GW) and BB/S008020/1 (JZ and GLC).

Abstract
Burkholderia have potential as biocontrol agents because they encode diverse biosynthetic gene clusters (BGCs) for a range of antimicrobial metabolites. Given the opportunistic pathogenicity associated with *Burkholderia* species, heterologous BGC expression within non-pathogenic hosts is a strategy to construct safe biocontrol strains. We constructed a yeast-adapted *Burkholderia-Escherichia* shuttle vector (pMLBAD_yeast) with a yeast replication origin 2μ and URA3 selection marker and optimised it for cloning BGCs using the in vivo recombination ability of *Saccharomyces cerevisiae*. Two *Burkholderia* polyyne BGCs, cepacin (13 kb) and caryoynencin (11 kb), were PCR-amplified as three overlapping fragments, cloned downstream of the pBAD arabinose promoter in pMLBAD_yeast and mobilised into *Burkholderia* and *Paraburkholderia* heterologous hosts. *Paraburkholderia phytofirmans* carrying the heterologous polyyne constructs displayed in vitro bioactivity against a variety of fungal and bacterial plant pathogens similar to the native polyyne producers. Thirteen *Paraburkholderia* strains with preferential growth at 30°C compared with 37°C were also identified, and four of these were amenable to genetic manipulation and heterologous expression of the caryoynencin construct. The cloning and successful heterologous expression of *Burkholderia* biosynthetic gene clusters within *Paraburkholderia* with restricted growth at 37°C opens avenues for engineering non-pathogenic biocontrol strains.

INTRODUCTION

Burkholderia is a phylogenetically diverse genus that thrive in a variety of environments, ranging from the rhizosphere to the cystic fibrosis lung (Eberl & Vandamme, 2016). Certain *Burkholderia* species such *Burkholderia glumae* are plant pathogens causing rot of rice grains (Jeong et al., 2003), whilst others like
Burkholderia ambifaria form beneficial interactions with their plant hosts and protect them from fungal and bacterial pathogens (Mullins et al., 2019). Members of the Burkholderia cepacia complex (Bcc) found in the rhizosphere of wheat, maize and legumes have been shown to be useful as biocontrol agents, protecting the crops from damping-off disease caused by oomycete and fungal pathogens including Pythium and Fusarium species (Bowers & Parke, 1993; Mao et al., 1998).

A key component of Burkholderia's biocontrol properties is biosynthetic gene clusters (BGC) encoding the production of diverse antimicrobial specialised metabolites, including alkaloids, polyenes, polynyes, macrolides, terpenes and quinolone derivatives (Kunakom & Eustaquio, 2019; Masschelein et al., 2017). Recently, by using comparative genomic approaches, the BGC encoding cepacin A biosynthetic enzymes was identified and demonstrated to be a key mediator in B. ambifaria suppressing damping-off disease caused by the oomycete Globisporangium (formerly Pythium ultimum in Pismum sativum) (Mullins et al., 2019). Cepacin was first isolated from 'Pseudomonas cepacia' (strain LMG 292043; now Burkholderia diffusa) and was shown to have good activity against Staphylococcus aureus but minimal activity against Gram-negative organisms (Parker et al., 1984). Cepacin belongs to a group of compounds called polyynes, characterised by alternating single and triple carbon–carbon bonds. From bioinformatic analysis, the core B. ambifaria cepacin A BGC is approximately 13kb and consists of 13 biosynthetic genes organised in a single operon with luxRl regulatory genes located upstream (Mullins et al., 2019). Another characterised Burkholderia polyyne is caryoyencin that was first discovered in Burkholderia caryophyllii (Kusumi et al., 1987), with further characterisation of the metabolite and its BGC in Burkholderia gladioli (Ross et al., 2014). Caryoyencin has activity against Gram-positive and Gram-negative bacteria (Kusumi et al., 1987) and fungi (Florez et al., 2017).

Fungal and bacterial plant pathogens lead to major crop and economic losses, and there is an urgent need to develop new pesticides for use in agriculture (Savary et al., 2012). Cepacin and caryoyencin are potent antimicrobial molecules, but are unstable and challenging to purify (Mullins et al., 2021; Ross et al., 2014), making them difficult for a development into a direct-application commercial product. However, a proven way to exploit the beneficial properties of polyynes has been to employ the producer strains directly as crop seed coats, enabling them to act as biopesticides (Mullins et al., 2019). Products containing live Burkholderia spp. were registered with the US Environmental Protection Agency (EPA) under the trade names Deny®, Blue Circle®, Intercept® (Parke & Gurnian-Sherman, 2001). However, concerns over the opportunistic pathogenicity of the Bcc species in cystic fibrosis (CF) and immunocompromised patients, coupled with an inability to distinguish between pathogenic and environmental strains, led to US Environmental Protection Agency (EPA) placing a moratorium on Burkholderia-based biopesticides (Parke & Gurnian-Sherman, 2001). Consequently, given the concerns about safety (Parke & Gurnian-Sherman, 2001), the exploitation of Burkholderia as biocontrol agents has been limited in the last 20 years (Mullins et al., 2019).

Recently, advances in genomic-based taxonomy have led to a split in the Burkholderia genus and the subsequent reclassification of a distinct clade of environmentally prevalent taxa into the new genus, Paraburkholderia (Sawana et al., 2014). Species such as Paraburkholderia phytofirmans has been particularly studied for their plant-protective and growth-promoting properties (Sessitsch et al., 2005). Isolated from onion roots (Frommel et al., 1991), P. phytofirmans strain PsJN (LMG 22146T) has restricted growth at 37°C (Sessitsch et al., 2005), making it unlikely to act as a human pathogen. Engineering non-pathogenic Paraburkholderia strains to express biosynthetic gene clusters would be a way forward to improve the safety of future biocontrol preparations.

A limited number of plasmid vectors have been used for heterologous expression of genes in Burkholderia. The pMLBAD arabinose-inducible system, capable of shuttling from Escherichia coli to Burkholderia has been used in several studies (Lefebre & Valvano, 2002; Masschelein et al., 2019). In addition to vectors, systems to clone and express biosynthetic gene clusters include the in vivo homologous recombination ability of Saccharomyces cerevisiae which offers multiple genetic engineering possibilities (Schimming et al., 2014). The yeast recombination strategy is a very efficient cloning method that enables the single-step assembly of multiple fragments into a vector, requiring only 30 bases overlap between fragments (Oldenburg et al., 1997; Pahirulzaman et al., 2012).

Our objective was to evaluate whether complex BGCs from Burkholderia could be expressed in Paraburkholderia as a strategy for the development of biopesticides and biotechnological production platforms. This was met by developing an E. coli-Burkholderia-S. cerevisiae shuttle vector based on pMLBAD (Lefebre & Valvano, 2002) and employing the in vivo homologous recombination of S. cerevisiae for cloning Burkholderia polyyne BGCs. The suitability of the yeast-adapted shuttle vector for gene pathway expression was initially evaluated and successfully demonstrated by placing a promoterless luxCDABE luminescent operon within it. Subsequently, the B. ambifaria cepacin A (from this point forward cepacin refers to cepacin A) and B. gladioli caryoyencin BGCs were cloned and investigated for metabolite production and bioactivity in different Burkholderia and Paraburkholderia strains. A panel of environmental Paraburkholderia isolates was also screened for defective growth at 37°C, and selected strains with restricted growth at these elevated infection-associated temperatures were shown to be suitable
for heterologous expression of polyynes. Overall, we describe a successful strategy for producing novel Paraburkholderia biocontrol and biotechnological strains that are capable of expressing high-value Burkholderia specialised metabolite BGCs.

EXPERIMENTAL PROCEDURES

Microbial strains and molecular biology reagents

The bacterial and yeast strains used in the study are given in the Supplementary Materials (Table S1). In addition, a collection of 43 Paraburkholderia reference strains and novel isolates from the natural environment were screened as potential heterologous expression hosts (Table S2). Microbial strains used for polyyne susceptibility testing and the antagonism assay conditions are provided in Table S3. The plasmids (Table S4), PCR primers (Table S5) and PCR thermocycling conditions (Tables S6, S7 and S8) are also provided in the Supplementary Materials. Additional methods related to the strain collection, conjugal transfer of plasmids and their copy number, and metabolite analysis by high-resolution mass spectrometry, and growth rate analysis at 30 vs. 37°C, are given in the Supplementary Information.

Yeast adaptation of pMLBAD vector in Saccharomyces cerevisiae

The yeast fragment containing the replication origin 2 μ and the orotidine-5′-phosphate decarboxylase gene URA3 (2867bp) was amplified from pE-YA plasmid (Pahirulzaman et al., 2012) (Table S4) using Q5® High-Fidelity DNA Polymerase (NEB) with PCR thermal cycling conditions as per Table S6. The PCR primers, Yeast_fwd (forward primer) and Yeast_rev (reverse primer) (Table S5) were designed to incorporate 30 bp overlap with the pMLBAD vector backbone. The E. coli–Burkholderia cloning plasmid pMLBAD was linearized with AseI (NEB) and transformed into S. cerevisiae YPH500 alongside the yeast fragment PCR product, using the LiOAc yeast transformation method previously described (Pahirulzaman et al., 2012). The transformation mixture was plated on synthetic media (SM) containing 0.68% yeast nitrogen base without amino acids, 2.0% D-glucose, 0.077% complete supplement mixture drop-out URA (Formedium), 1.5% bacteriological agar 1 (Oxoid) and incubated at 30°C for 3–4 days until yeast colonies appeared. Plasmids were extracted from the yeast using Yeast Plasmid Miniprep (Zymo Research) and transformed into E. coli DH5α. The transformed E. coli were screened for the presence of the yeast fragment by colony PCR using Yeast_conf_fwd (forward primer) and Yeast_conf_rev (reverse primer), with PCR thermo-cycling conditions as per Table S7.

luxCDABE and polyne pathway cloning using yeast-adapted pMLBAD in S. cerevisiae

Prior to each transformation, pMLBAD_yeast plasmid was digested with HindIII and EcoRI (NEB). The polyyne pathways were PCR-amplified in three overlapping fragments, whilst the luxCDABE operon in two overlapping fragments (see primers in Table S5), and overlap was 30bp between the fragments and the vector backbone as appropriate. The cepacin BGC fragments were amplified from genomic DNA of Burkholderia ambifaria BCC0191, the caryoynencin fragments from Burkholderia gladioli BCC1697 and luxCDABE fragments from mini-Tn5 luxCDABE plasmid (Winson et al., 1998). Q5® High-Fidelity DNA polymerase (ThermoFisher Scientific) was used to confirm the presence of the correct constructs (Table S7). The construction of the plasmids was further confirmed by restriction digest and Sanger sequencing (Eurofins, UK) of a portion of the operon immediately downstream of Pbad promoter. Yeast homologous recombination was also used to replace the araC-Pbad portion of the plasmid polyne constructs with the native promoter of each polyne cluster. Briefly, a kanamycin resistance cassette (including its transcriptional terminator) and the polyne native promoter were PCR-amplified with 30 bp homolgous regions between them and with the plasmid backbone either side of the araC-Pbad region. The homologous recombination in yeast yielded a polyne construct with the native promoter directly upstream of the corresponding polyne gene cluster and a kanamycin resistance cassette to allow for the selection of the correct constructs in E. coli.

Luminescence assay for Pbad regulation characterisation

Luminescence assays were performed using a Tecan Infinite 200 PRO microplate plate reader for the bacteria harbouring the luxCDABE operon downstream of Pbad. Overnight cultures of strains containing pMLBAD_yeast_luxCDABE or pMLBAD_yeast_luxCDABE_rev were grown for 20 h at 30°C on a rocking platform (50rpm) in minimal media containing 25μg/ml trimethoprim; modified BSM-G media without yeast extract or casamino acids was used for the
Burkholderia and **Paraburkholderia** species. The cultures were then diluted to \(\sim 1 \times 10^6\) cfu/ml in test media. Test media employed was minimal media with 25 \(\mu\)g/ml trimethoprim supplemented with either 0.2\% (w/v) D-glucose or L-arabinose at a concentration range 0.05\% to 0.8\% (w/v). The cultures were grown for 24 h at 30°C in clear flat-bottom 96-microwell plates (200 \(\mu\)l per well; four technical replicates) on a rocking platform, and the optical density OD\(_{600}\) of the bacterial suspension was measured. The bacteria were then transferred to a white LUMITRAC flat-bottom 96-microplate, incubated in the dark for 10 min, followed by a 5 s orbital shake and measurement of the luminescence (relative light units; RLU). Each RLU measurement was divided by the corresponding OD\(_{600}\) to normalise for differences in cell densities. Response ratio for each strain under each test condition was calculated by dividing the normalised RLU value of the strain harbouring the pMLBAD_yeast_luxCDABE by the normalised RLU of the same strain containing pMLBAD_yeast_luxCDABE_rev.

Plasmid stability in the absence of antibiotic selection

Overnight cultures of strains labelled with the pMLBAD_yeast_luxCDABE construct were grown for 20 h in 30°C on a rocking platform (50 rpm) in minimal media containing 25 \(\mu\)g/ml trimethoprim; modified BSM-G media without yeast extract was used for the **Burkholderia** and **Paraburkholderia** species. The cultures were diluted to \(\sim 1 \times 10^6\) cfu/ml in minimal media supplemented with 0.2\% (w/v) L-arabinose and 25 \(\mu\)g/ml trimethoprim, grown for 24 h at 30°C in clear flat-bottom 96-microwell plates (200 \(\mu\)l per well; four technical replicates) followed by OD\(_{600}\) and luminescence measures as described above to obtain initial measurements (day 0). The four technical replicates were then pooled, washed twice with sterile PBS to remove traces of antibiotic, diluted to \(\sim 1 \times 10^5\) cfu/ml in antibiotic-free minimal media containing 0.2\% (w/v) arabinose and grown 24 h at 30°C in clear flat-bottom 96-microwell plates prior to obtaining the OD\(_{600}\) and luminescence measurements for day 1. The process was repeated for 3 passages in total. After each passage, the cultures were serially diluted and enumerated via drop counts on TSA plates with and without antibiotic (50 \(\mu\)g/ml trimethoprim) in order to calculate percentage of resistant colonies.

Quantification of polyyne production using HPLC

Overnight cultures of strains were grown at 30°C on a rocking platform in tryptone soya broth (TSB), supplemented with 50 \(\mu\)g/ml trimethoprim. The cultures were adjusted to \(\sim 5 \times 10^8\) cfu/ml and 7 \(\times\) 20 \(\mu\)l streaks of the bacterial culture applied to solid test media containing 25 \(\mu\)g/ml trimethoprim. Following a 3-day incubation at 22°C, the bacterial growth was removed with a sterile cell lifter, placed on preweighed nitrocellulose filter, dried at 80°C for 24 h and the dry biomass weight recorded. 20 mm discs were excised from each agar plate and metabolites were extracted from the agar piece by incubation in 0.5 ml extraction solvent for 2 h with gentle shaking. Ethyl acetate (EtOAc) was used for the extraction of cepacin, whilst dichloromethane (DCM) was used for caryoyncencin (Webster et al., 2020). HPLC analysis was conducted as previously described (Webster et al., 2020). Polynes such as caryoyncencin are known to be unstable (Ross et al., 2014). Key technical steps that enabled working with polynes included: growing bacteria in the dark and keeping the incubation temperature low (22°C), extracting the compounds only from fresh \(\leq 3\) day growth plates, using a low water bath temperature (\(< 30°C\)) to rotary evaporate extracts for LC–MS analysis, and not freeze-drying extracts to concentrate or store them.

Bioactivity overlay and contact antagonism assays with native and heterologous hosts

Test strains of native and heterologous polyyne hosts were tested for bioactivity against a range of susceptibility organisms using either an overlay (Mahenthiralingam et al., 2011; Mullins et al., 2019) or contact antagonism assay (Table S3). Overnight cultures of test strains grown at 30°C on a rocking platform in TSB, supplemented with 50 \(\mu\)g/ml trimethoprim were adjusted to \(\sim 5 \times 10^6\) cfu/ml. The adapted overlay assay (Mahenthiralingam et al., 2011) involved inoculating 2 \(\mu\l\) (\(\sim 1 \times 10^5\) cfu) of each test organism at the centre of a 90-mm Petri dish and incubating at 22°C for 48 h. The bacteria were killed by exposing them to chloroform vapour for 3 min and overlaid with 15 ml half-strength iso-sensitest agar (Oxoid) seeded with \(\sim 1 \times 10^6\) cfu/ml of susceptibility organism. The plates were incubated at the optimum incubation temperature and duration for each susceptibility organism (Table S3) and the diameter of the zones of inhibition measured in mm.

The contact antagonism assay was performed as described with slight modifications (Tenorio-Salgado et al., 2013). Briefly, 6 mm diameter mycelial disc was excised from a 7-day-old potato dextrose agar (PDA) culture of oomycetes and filamentous fungi tested (see Table S3 for details of strains), placed in the centre of a 90-mm Petri dish and incubated for 24 h at 22°C. The Petri dishes were the inoculated with 10 \(\mu\l\) bacterial culture, adjusted to \(5 \times 10^5\) cfu/ml, in the form of four 15-mm long streaks placed 30 mm away from the centre of
the mycelial disc; a control plate without bacteria was used for each susceptibility organism used. Following a 6-day incubation at 22°C, the bacterial antagonism was calculated percentage inhibition on mycelial growth as described (Tenorio-Salgado et al., 2013). The assay for *Gl. ultimum* was slightly modified to account for faster growth of the organism—the bacterial streaks were inoculated to the Petri dish and incubated for 24 h at 22°C, following the addition of a mycelial disc from a 3-day-old PDA *Gl. ultimum* culture. The radial inhibition percentage was calculated following a further 48 h incubation.

RESULTS

Yeast-adapting the *E. coli*-Burkholderia pMLBAD vector

The vector pMLBAD was selected as the basis for the transgene expression study due to its successful historical use in *Burkholderia* and *E. coli*, and its arabinose-inducible expression (Lefebre & Valvano, 2002). The first step in design was to adapt the vector to allow yeast-based recombination cloning (Pahirulzaman et al., 2012). The yeast 2 μ origin of replication was derived from an endogenous 2 μ plasmid, which is a high-copy, stable and non-selectable yeast plasmid (Ludwig & Bruschi, 1991). The *URA3* gene encodes orotidine-5′-phosphate decarboxylase, allowing the survival of a *URA3*-deficient strain of *S. cerevisiae* in the absence of uracil (Boeke et al., 1987). These yeast markers were amplified from the yeast plasmid pE-YA and cloned into pMLBAD to give the yeast-adapted vector, pMLBAD_yeast (Figure 1A).

Expression of luxCDABE pathway from yeast-adapted pMLBAD vector

Having yeast-adapted the pMLBAD vector, our next step was to show that this can express transgenes under arabinose-based induction. The reporter system selected for this was the *Photorhabdus luminescens* luciferase operon luxCDABE (Winson et al., 1998), which consists of five genes, with *luxA* and *luxB* encoding a heterodimeric luciferase, whilst *luxC*, *luxD* and *luxE* encode the enzymes responsible for the biosynthesis of the luciferase substrate (Close et al., 2012). Using yeast recombination, the promoterless *luxCDABE* gene cluster was cloned in pMLBAD_yeast downstream of the Pbad promoter, in two fragments (*luxCD* and *luxABE*), with 30 bp overlap between them, to make pMLBAD_yeast_luxCDABE (Figure 1A). A construct containing the *luxCDABE* operon in reverse orientation to the Pbad promoter, pMLBAD_yeast_luxCDABE_rev (Figure 1A), was also assembled to act as a control for the background luminescence due to read through transcription. Detailed restriction digest maps for both vectors are given in the Supplementary Information (Figure S1A, B).

The Pbad promoter of pMLBAD has been shown to be activated by addition of 0.2% (w/v) arabinose and suppressed by addition of 0.2% (w/v) glucose in both *E. coli* and *Burkholderia* (Guzman et al., 1995; Lefebre & Valvano, 2002). This regulation was assessed in heterologous hosts, *B. ambifaria*, *B. vietnamiensis* and *P. phytofirmans*, using the pMLBAD_yeast_luxCDABE construct as a positive expression control, prior to the more complex polyyne BGC cloning. The expression of the luciferase operon under the Pbad promoter was assayed by comparing the response ratios (see Methods) at different concentrations of L-arabinose and in the presence of D-glucose (Figure 1B, C). In *E. coli*, the basal level response ratio in the absence of L-arabinose or D-glucose, increases 100-fold when arabinose is added at a concentration 0.05% (w/v) (Figure 1B). Further increasing the arabinose concentration to 0.8% did not yield significant increase in the response ratio in this host species (Figure 1B). Adding 0.2% (w/v) glucose significantly (*p < 0.001; one-way ANOVA; F_{4,10} = 9.692) suppresses the Pbad promoter in *E. coli* from the basal uninduced level, consistent with previous reports on Pbad promoter regulation in *E. coli* (Winson et al., 1998).

To our knowledge, there are no previous studies exploring the regulation of Pbad in *Burkholderia ambifaria* or *Paraburkholderia phytofirmans*. Pbad regulation performed in the species *B. cepacia* and *B. vietnamiensis* strains showed that addition of 0.2% (w/v) L-arabinose leads to activation from baseline and addition of 0.2% (w/v) glucose to repression, measured by GFP fluorescence (Lefebre & Valvano, 2002). Our results demonstrate that addition of 0.05% (w/v) arabinose leads to an increased response ratio from basal level in *P. phytofirmans* PSJN, *B. vietnamiensis* G4, *B. ambifaria* BCC1105, but not *B. ambifaria* BCC0191 (Figure 1B). Increasing the arabinose concentration above this did not lead to significant increases in lux response ratio; in *P. phytofirmans* PSJN 0.05% L-arabinose yielded greater response ratios than 0.8% arabinose (*p < 0.001; one-way ANOVA; F_{4,10} = 198.2*).

Interestingly, our results also suggest that the addition of 0.2% D-glucose does not suppress the Pbad promoter below the basal level in the 3 *Burkholderia* species examined; in the case of *B. ambifaria* BCC1105 and *B. vietnamiensis* G4, the presence of glucose led to increases in response ratio (Figure 1B). However, an interesting result was the reduced light emission of *B. vietnamiensis* grown in the presence of 0.4% glycerol which demonstrated for this species there was either a significant lack of Pbad induction (compared with when either glucose or arabinose was present), or that an active repression of the promoter by glycerol was occurring (Figure 1B).

Since the addition of concentrations of L-arabinose above 0.05% did not lead to any significant increase in
the response ratio, we explored the possibility that the increased arabinose concentrations may have led to promoter induction, but the higher expression levels of the \textit{luxCDABE} caused toxicity and cell death. However, the comparison of viable cell numbers for all the pMLBAD_yeast_luxCDABE constructs did not show this was occurring (Figure 1C).

Cepacin and caryoynencin BGC cloning and heterologous expression

For the construction of pMLBAD_yeast_Pbadcep and pMLBAD_yeast_Pbadcay, the 13 kb cepacin gene cluster (Figure S2A) from \textit{B. ambifaria} BCC0191 (Mullins et al., 2019) and the 11 kb caryoynencin gene cluster (Figure S2A) from \textit{B. gladioli} BCC1697 (Jones et al., 2021) were PCR-amplified and cloned into pMLBAD_yeast (Figure S2B). Cloning of the biosynthetic pathways was carried out using a design which incorporated 6–9 bases upstream of the first ATG codon of the operon and placed the promoterless gene cluster downstream of the Pbad promoter. The already optimised Shine Dalgarno of pMLBAD (Lefebre & Valvano, 2002) was used for both constructs. Multiple constructs containing the cepacin and caryoynencin BGC were obtained, and one from each experiment was evaluated for heterologous expression.

Comparative LC–MS analyses confirmed that cepacin and caryoynencin are produced by the recombinant
P. phytofirmans PsJN (Figure 2A, B) and *B. ambifaria* BCC1105 (Figures S3C and S4C) strains. The *B. ambifaria* BCC1105 and *P. phytofirmans* PsJN hosts containing the cloned cepacin and caryoynencin BGCs also gained new antagonistic activity against *S. aureus* (Figure 2C), a bacterium specifically susceptible to polyynes (Webster et al., 2020).

Following successful expression of the cepacin and caryoynencin BGCs under the Pbad promoter in *Burkholderia* and *Paraburkholderia* host backgrounds, replacement of the arabinose promoter for the native promoter for each polyyne cluster was carried out as shown (Figure 3A). Exploring heterologous expression driven by the native promoter enabled further comparison of polyyne production on different growth media, including a biomimetic pea exudate medium (PEM), reflecting nutrients available during pea germination and therefore mimicking the biocontrol assay conditions previously described (Mullins et al., 2021). In addition, if polyyne expression occurred from the native promoters, it would facilitate future engineering approaches that do not need supplementation with L-arabinose. Furthermore, understanding heterologous BGC expression from native promoters is helpful prior to moving forward with synthetic biology approaches using engineered regulatory elements (Li et al., 2017). Finally, arabinose may have acted as an alternative carbon source which is also known to influence *Burkholderia* BGC expression (Mahenthiralingam et al., 2011).

Since the polyynes are challenging to quantify due to their inherent instability (Mullins et al., 2021; Ross et al., 2014), a semi-quantitative method of comparing HPLC peak areas was employed (Figure 3) (see Methods). The HPLC peak area of the native polyyne producer on a well-characterised specialised metabolite induction growth medium, BSM-G pH 7 (Mahenthiralingam et al., 2011; Mullins et al., 2019), was taken as a benchmark from which the induction level of all the other metabolite

![Figure 2](image-url)
peak areas was evaluated (Figure 3B, C). Greater quantities of cepacin and caryoynencin were produced by the native producers, *B. ambifaria* BCC0191 (Figure 3B; EV) and *B. gladioli* BCC1697 (Figure 3C; EV), respectively, when grown on BSM-G compared to PEM. The difference was particularly striking in *B. gladioli* BCC1697 with 28-fold more caryoynencin produced on BSM-G medium (Figure 3C; EV). In addition, growth at pH 5 vs. pH 7 altered the polyyne production, causing an increase in cepacin production by *B. ambifaria* BCC0191 (Figure 3B), but a decrease in caryoynencin for *B. gladioli* BCC1697 (Figure 3C). PEM also naturally reached a pH of 5.5, but the production of both polyynes was lower on this growth medium as noted above.

Polyyne production by the heterologous hosts was also dependent on the medium type. The production of caryoynencin by the heterologous hosts grown on BSM-G was between 18-fold (*P. phytofirmans* PsJN; Figure 3C, Npcay) and 3-fold (*B. ambifaria* BCC1105; Figure 3C, Npcay) lower than the native producer *B. gladioli* BCC1697 (Figure 3C; EV). However, the normalised peak areas obtained for caryoynencin production on the biomimetic PEM were comparable between the native and heterologous hosts (Figure 3C). It was also interesting to observe that the caryoynencin BGC is expressed in *B. ambifaria* BCC0191, the native cepacin producer, and results in the recombinant strain producing both of the polyyne compounds. The production level of cepacin in *P. phytofirmans* PsJN and *B. ambifaria* BCC1105 when grown on BSM-G was also lower than the native host *B. ambifaria* BCC0191 (Figure 3B; EV). The presence of L-arabinose in the media also influenced the production of polyynes by the native hosts, leading to an increase in cepacin production by *B. ambifaria* BCC0191 (Figure 3B; EV) and a decrease in caryoynencin production by *B. gladioli* BCC1697 (Figure 3C; EV). This further supported the rationale to explore the use of native promoters in heterologous expression in work going forward.
pMLBAD_yeast stability and copy number in heterologous hosts

Overall, the pMLBAD_yeast vector proved to be suitable for the heterologous expression of polyyne BGCs under the control of both the arabinose-inducible and native promoters. Next, we investigated the stability of the shuttle vector in the absence of antibiotic selection, using the luxCDABE construct which provided a direct readout of functional pathway expression efficacy as a reporter construct. Both light emission (Figure S5A) and the number of viable bacterial cells carrying the plasmid resistance marker (Figure S5B) diminished within 3 days for both the Burkholderia and Paraburkholderia hosts; in contrast the luciferase carrying plasmid remained stable in E. coli (Figure S5). Using quantitative PCRs targeting the plasmid vs. chromosome of each host (see Supplementary Methods), the copy number of the pMLBAD_yeast vector and recombinant polyyne pathway clones was found to vary between 2 and 19 copies per cell, dependent on the strain, host species and the specific construct. The copy number of all constructs in P. phytofirmans never exceeded 3, but in B. ambifaria the empty vector was at 18 copies per cell in strain BCC1105, with the cepacin construct reaching a copy number of 11 in the same host (Figure S5C).

Bioactivity of native and heterologous polyyne-producing hosts

The bioactivity of the P. phytofirmans PsJN containing the cepacin and caryoyncencin BGCs was compared to that of the native producers B. ambifaria BCC0191 and B. gladioli BCC1697, respectively, under a range of growth conditions (Figure 4). Native producers with insertional mutations in the fatty acyl-AMP ligase gene of both the cepacin (B. ambifaria BCC0191::ccnJ) (Mullins et al., 2019) and caryoyncencin BGCs (B. gladioli BCC1697::cayA) (Jones et al., 2021), were also included in the assays as negative production controls. Trimethoprim selection was maintained in all experiments (except the S. aureus antagonism assays due to its sensitivity) and an empty vector control used to enable comparison of polyyne expression in wild-type strains under this selection.

As the expected baseline, P. phytofirmans PsJN containing only the empty vector had no bioactivity against susceptible bacteria and fungi (Figure 4A, B). The cepacin BGC-containing P. phytofirmans PsJN_NPcep exhibited a bioactivity spectrum that was broadly comparable to the native producer B. ambifaria BCC0191, against Staphyloccocus aureus, Zymoseptoria tritici and Corynespora cassicola when grown at BSM-G pH 5 media both with and without 0.2% arabinose (Figure 4). This was in line with the observation that low heterologous production levels of cepacin for the BGC under the control of the native promoter occurred in the heterologous hosts (Figure 3B). However, P. phytofirmans PsJN containing the cepacin BGC under control of the Pbad promoter exhibited comparable bioactivity (Figure 4) to the native cepacin producer B. ambifaria BCC0191 EV, demonstrating that greater heterologous expression in Paraburkholderia can be achieved if the BGC is placed under the control of a suitable promoter.

The native cepacin producer B. ambifaria BCC0191, possessed broad antibacterial and antifungal activity under all conditions, reflecting antagonism as a result of the production of the polyyne and other antimicrobials (Figure 4). This was demonstrated by the insertional mutant, BCC0191::ccnJ still possessing residual bioactivity (Figure 4), corroborating previous results that the strain possesses multiple BGCs encoding potential antimicrobial metabolites (Mullins et al., 2019). The bioactivity gained by P. phytofirmans PsJN containing the caryoyncencin BGC was much broader than that seen with the strain containing the cepacin BGC, matching the overall bioactivity spectrum of the native producer B. gladioli BCC1697 EV, but not showing the same outright antagonism levels against the bacterial and fungal susceptibility test organisms (Figure 4). Disruption of the caryoyncencin BGC in the native B. gladioli host (B. gladioli BCC1697::cayA) did not eliminate bioactivity, correlating to previous analysis demonstrating the strain produces multiple antimicrobials (Jones et al., 2021). Overall, the successful introduction of potent antagonism towards a range of bacterial and fungal plant pathogens by heterologous expression of polyyne BGCs in P. phytofirmans PsJN validated that our strategy to create novel Paraburkholderia biocontrol strains is feasible.

Temperature-dependent differential growth of Paraburkholderia strains

Following the successful heterologous expression of polyyne BGCs in P. phytofirmans PsJN as model plant beneficial Paraburkholderia strain (Sessitsch et al., 2005), we screened a panel of 42 additional Paraburkholderia (representing 27 further species; Table S2) for preferential growth at 30°C over 37°C (Figure S7). This was carried out to characterise additional Paraburkholderia for use as heterologous expression hosts and specifically identify those with reduced potential for opportunistic pathogenicity. Out of the total of 43 Paraburkholderia (including P. phytofirmans) strains screened, 13 had significantly (p < 0.01) lower growth at 37°C compared to 30°C (Figure S6). The carrying capacity (K) and area under the growth curve (AUC) were evaluated using a two-way ANOVA with Fisher LSD post hoc test to determine growth differences (see Supplementary Information). Reduced capacity for growth at 37°C was observed in
of the 27 Paraburkholderia species examined and was a common phenotype for 2 of the 3 P. bannensis strains evaluated (Figure 5A and Figure S6). Seven of the strains with defective growth at 37°C were characterised reference strains (P. aspalathi LMG 27731T, P. caffeiinilytica LMG 28690T, P. gisengisoli LMG 24044T, P. piptadeniae LMG 29163T, P. caledonica LMG 19076T, P. caribensis LMG 18531T see Figure S8; and P. phytofirmans PsJN, see Figure 5A), whilst the remaining five were isolated from the Bornean jungle, Sabah, Malaysia (P. bannensis BCC1915, P. bannensis BCC1914, Paraburkholderia sp. BCC1909, P. tropica BCC1950, P. tropica BCC1933, P. tropica BCC1943). The growth curves for 11 of the 13 strains showed considerable growth impairment at 37°C (Figure 5A; Figure S7), whilst a complete inhibition of growth at 37°C was seen with P. bannensis strain BCC1915 (Figure 5A).

Three of the Paraburkholderia strains with temperature preferential growth at 30°C over 37°C were selected as potential heterologous hosts for polyyne BGC expression: P. bannensis BCC1915, P. tropica BCC1950 and Paraburkholderia sp. BCC1909 (Figure 5A). All three were genetically amenable to mobilisation of the empty vector and the construct containing the caryoynencin BGC, including P. bannensis BCC1915. This strain had no observable growth at 37°C, but possessed a normal sigmoidal growth at 30°C (Figure 5A). Examination of cellular viability measured at the 48-h end-point of the growth curve, demonstrated that it was significantly higher for all three heterologous hosts strains at 30°C than at 37°C, with a 3-log difference seen for P. bannensis BCC1915 (Figure 5B). Caryoynencin was produced by all three novel Paraburkholderia heterologous hosts (see LC–MS data within the Supplementary Information; Figure
EXPRESSION OF POLYYNES IN PARABUKHOLDERIA

S4F, G, H) and they were bioactive against S. aureus (Figure 5C) and the oomycete G. ultimum (Figure S8).

DISCUSSION

Heterologous expression of specialised metabolite BGCs from Burkholderia in a suitable heterologous host is the first step towards engineering a biocontrol strain for use as a safe biopesticide. This study achieved cloning and heterologous expression of the cepacin and caryoynencin BGCs in B. ambifaria and P. phytofirmans. In addition, by using the arabinose-inducible Pbad promoter as a proof of principle, it was shown that a non-native promoter can drive the expression of the biosynthetic genes in the polyyne BGCs. The caryoynencin BGC was also expressed in three novel environmental Paraburkholderia strains with considerably reduced ability to grow at 37°C, providing an avenue for engineering of safer, non-pathogenic strains for biotechnological applications.

pMLBAD was chosen as a vector for this study following successful use in cloning and gene expression in E. coli and B. cepacia complex bacteria (Lefebre & Valvano, 2002). It contains the broad host pBBR1 origin of replication from Bordetella bronchiseptica (Antoine & Locht, 1992) and a mobilisation domain, mob, encoding for a relaxase, enabling conjugal transfer (Spirer et al., 2001). The pBBR1 replicon is maintained at around five copies per cell in E. coli, making pMLBAD a low-copy plasmid allowing for expression similar to chromosomal levels (Jahn et al., 2016) for this host bacterium. The copy number of pMLBAD in Burkholderia and Paraburkholderia species was previously unknown. Our study determined the copy number of the pMLBAD plasmid to be variable (between 2–19 copies/cell) for this host bacterium due to high plasmid copy number is a limitation of this approach to heterologous expression. However,
given that both polyyne clusters successfully expressed cepacin and caryoynencin using the pMLBAD vector in \textit{Paraburkholderia} and \textit{B. ambifaria} across a range of 3 to 11 in the copy number, respectively, it suggests a range of tolerance for this plasmid system and the cloned polyyne pathways. The Pbad promoter is rapidly activated by the addition of 0.2% (w/v) arabinose and repressed by 0.2% (w/v) glucose to achieve tight transgene regulation as determined by using an alkaline phosphatase reporter in \textit{E. coli} (Guzman et al., 1995). The use of pMLBAD-eGFP in \textit{B. cepacia} complex species showed activation of Pbad by arabinose from the baseline by the addition of L-arabinose at concentrations 0.2% and 2.0% (w/v), as assessed by a fluorescent assay (Lefebre & Valvano, 2002).

However, the supposed repression of the promoter by glucose was not as apparent in the assay and the study concluded that the observation was due to changes in cell metabolism due to the different carbon sources and potential auto-fluorescence (Lefebre & Valvano, 2002). We show that whilst the Pbad promoter is activated by arabinose and suppressed by glucose in \textit{E. coli}, the suppression by glucose was not achieved in the \textit{Burkholderiales} strains evaluated. \textit{Burkholderiales} are known to have extensive, paralogous pathways for the catabolism of different carbon sources (Chain et al., 2006) and our data support that repression of these pathways by glucose as observed in \textit{E. coli}, may not always hold true. Furthermore, our findings demonstrate that the addition of higher arabinose concentrations did not lead to greater promoter activation, as measured by the luminescence intensity, supporting the previous reports of all-or-no regulation of Pbad (Khlebnikov et al., 2000). The difference in induction responses between \textit{E. coli} and the \textit{Burkholderia} species examined in this study may be down to difference in the consumption of arabinose and the regulatory responses this metabolism subsequently elicits. Different responses to arabinose presence were seen in \textit{B. ambifaria} where cepacin production increased (Figure 3B), compared to \textit{B. gladioli} where caryoynencin production was repressed, which supports the fact that regulation of BGCs in \textit{Burkholderia} is complex and variable.

Polyyne BGC cloning using in vivo yeast recombination

Our study cloned and expressed two \textit{Burkholderia} polyyne BGCs in yeast-adapted shuttle vectors using a homologous recombination approach. The in vivo homology recombination assembly in \textit{S. cerevisiae} has been used to clone and express heterologous bacterial pathways in model organisms like \textit{Streptomyces} (Bauman et al., 2019) and \textit{E. coli} (Schimming et al., 2014). Although BGCs from \textit{Burkholderia} have been cloned by RecE/RecT mediated linear-linear homologous recombination in (LLHR) and heterologously expressed in \textit{E. coli} (Thongkongkaew et al., 2018), there are currently no reports of cloning \textit{Burkholderia} BGCs using in vivo homology recombination in yeast. Unlike \textit{E. coli} and \textit{Streptomyces}, \textit{Burkholderia} and \textit{Paraburkholderia} species have not been extensively used and characterised as heterologous hosts. A recent study reported the heterologous expression of a lasso peptide capstruin in a \textit{Burkholderia} heterologous host with production 60–500× higher than in \textit{E. coli} host (Kunakom & Eustaquio, 2020). This is not surprising given the differences in GC content, codon usage, regulatory elements and level of post-translational modification that influence the ability of the heterologous host to produce the BGC of interest (Zhang et al., 2019). The low stability of the pMLBAD-based polyyne encoding constructs in the absence of antibiotic selection (Figure S5) would likely prove insufficient for agricultural applications. Future work in relation to biostical applications would need to consider stable cloning via integrative vector constructs from which other markers such as antibiotic resistance cassettes could be removed.

Polyyne BGC heterologous expression and in vitro bioactivity evaluation

The level of production of caryoynencin by all three heterologous hosts (\textit{B. ambifaria} BCC1105, \textit{B. ambifaria} BCC0191 and \textit{P. phytofirmans} PsJN) was comparable to the native \textit{B. gladioli} BCC1697 producer on our biomimetic pea exudate medium. Additionally, the caryoynencin-producing \textit{P. phytofirmans} PsJN host had a similar in vitro bioactivity against a range of fungal, oomycete and bacterial plant pathogens to the native \textit{B. gladioli} producer. On the other hand, for the BGC regulated by the native promoter, cepacin was produced in lower quantities by \textit{P. phytofirmans} PsJN and \textit{B. ambifaria} BCC1105 compared to the \textit{B. ambifaria} BCC0191 native producer (Figure 3). This was reflected by the limited in vitro bioactivity of the \textit{P. phytofirmans} PsJN containing the cepacin BGC against susceptible organisms (Table S3). \textit{P. phytofirmans} PsJN expressing the cepacin BGC under the control of the arabinose-inducible Pbad promoter produced similar levels of cepacin and comparable bioactivity to the native producer. This suggests that the heterologous hosts have the biosynthetic capability to produce cepacin, but the native promoter may not be as active in these strains. This variation was not surprising because the cepacin BGC has a quorum sensing-dependent LuxR-based regulator associated with it (Mullins et al., 2019), which is absent from the caryoynencin BGC. Overall, the regulation and expression of polyyne BGCs within different \textit{Burkholderia} host strains is highly variable and requires further study to evaluate key factors that alter production of these metabolites.
To our knowledge, there have been no reports of a wild type Burkholderia strain encoding and making multiple polyynes. The successful expression of the caryoyncencin BGC in B. ambifaria BCC0191, a native cepacin producer, was a unique achievement of this study. It is interesting to note that, despite the high degree of similarity between some of the enzymes encoded by the two gene clusters, no structural variants of caryoyncencin and cepacin appear to be produced. This suggests that the two pathways function completely independently, and no crossover of homologous enzymes between pathways occurs to drive the formation of novel polyynes or shunt metabolites. This biosynthetic independence opens up the possibility of building heterologous hosts containing multiple polyyne and other specialised metabolite BGCs.

Paraburkholderia as heterologous expression hosts and less pathogenic biocontrol strains

A key concern about the use of Burkholderia as biocides is the opportunistic pathogenicity of multiple species and the potential health threat to vulnerable individuals (Parke & Gurrain-Sherman, 2001). Paraburkholderia, a newly classified genus of predominantly non-pathogenic, environmental Burkholderiales (Sawana et al., 2014) could offer the opportunity for engineering a ‘safer’ biopesticide based on heterologous production of antimicrobial Burkholderia metabolites. *P. phytofirmans* PsJN used in this study does not produce known antimicrobial metabolites, and LC–MS analyses indicate that very few specialised metabolites are produced by this strain, suggesting it offers strong potential to be developed into a broadly applicable heterologous host. *P. phytofirmans* PsJN stimulates the production of antifungal phenolic compounds in grapevine (Mirotto-Vilanova et al., 2019) and induces resistance in *Arabidopsis thaliana* against *Pseudomonas syringae pv. tomato* by activating salicylic acid-, jasmonate-, and ethylene-signalling pathways (Timmermann et al., 2017). The strain has also been reported to have plant growth-promoting properties in tomato (Pillay & Nowak, 1997), potato (Frommel et al., 1991; Kurepin et al., 2015), grapevine (Barka et al., 2000) and *A. thaliana* (Poupin et al., 2013). These reports of the beneficial interaction of *P. phytofirmans* with plants make this bacterium an appealing species to explore for optimising heterologous expression and engineering for biocontrol purposes. Furthermore, by screening 42 additional Paraburkholderia for temperature-dependent differential growth, we identified 12 strains with poor growth at 37°C compared with 30°C. Three of these novel Paraburkholderia successfully expressed caryoyncencin and demonstrated in vitro bioactivity.

Given that either reclassification of the genus Paraburkholderia or the restricted growth at 37°C are not proof that strains from these taxa will not show pathogenicity towards humans, animals or plants, further work on their potential for infection is needed. Cases of Paraburkholderia fungorum isolation from human and veterinary sources, including human cerebrospinal fluid, vaginal secretions, sputum of CF patients, murine noses, porcine brain, and deer brain stem, have been reported (Coenye et al., 2001; Vandamme & Peeters, 2014). A case of *P. tropica* infection post-surgery in a very young and heavily immunocompromised child was also documented and noted to have been successfully cleared through antibiotic therapy (Deris et al., 2010). However, a search of the current literature post the 2014 proposal of Paraburkholderia (Sawana et al., 2014) only further linked *P. fungorum* to a human skin granuloma (Zhang et al., 2014), indicating very limited cases of infection attributable to the genus are being reported in comparison to *Burkholderia* species. Testing using mammalian, non-mammalian and plant infection models are needed to understand the exact pathogenic potential of the Paraburkholderia strains characterised in this study is required. In addition, the cytotoxicity of polyynes will also need to be evaluated to show these natural products do not have acute safety issues. Overall, the successful expression of polyyne pathways in Paraburkholderia with restricted growth at 37°C potentially opens multiple avenues for engineering safe biopesticides which require further exploration.

AUTHOR CONTRIBUTIONS

E.M., A.B., G.L.C. and Y.D.P. contributed to conceptualisation; Y.D.P., A.J.M., G.W. and E.M. contributed to data curation; Y.D.P and J.Z. contributed to formal analysis, investigation and visualisation; E.M., A.B. and G.L.C. contributed to funding acquisition; Y.D.P., K.W., J.Z., G.W., A.J.M. and E.M. contributed to methodology; Y.D.P., G.L.C. and E.M. contributed to project administration; E.M., A.B., A.A., G.W., A.J.M. and G.L.C. contributed to resources; Y.D.P. contributed to resources and validation; E.M., G.L.C. and A.B. contributed to supervision; Y.D.P. and E.M. contributed to writing—original draft; all authors contributed to writing—review and editing.

ACKNOWLEDGEMENTS

YDP is funded by a Biotechnology and Biological Sciences Research Council (BBSRC) South West doctoral training partnership award (BV19107109). We acknowledge additional funding from BBSRC grants BB/S007652/1 (EM, AJM and GW) and BB/S008020/1 (JZ and GLC). We thank Tania Chancellor and Javier Palma-Guerrero from the take-all team at Rothamsted Research for providing *Gaumannomyces tritici* isolate Gt19LH(4)19d2, which was isolated as part of their Designing Future Wheat strategic programme.
CONFLICT OF INTEREST
The authors do not declare any conflicts of interest in relation to this research or its funding.

ORCID
Yoana D. Petrova @ https://orcid.org/0000-0002-2273-3390
Jinlian Zhao @ https://orcid.org/0000-0002-7924-0589
Gordon Webster @ https://orcid.org/0000-0002-9530-7835
Alex J. Mullins @ https://orcid.org/0000-0001-5804-9008
Katherine Williams @ https://orcid.org/0000-0002-1988-8818
Gregory L. Challis @ https://orcid.org/0000-0002-9530-7835
Eshwar Mahenthiralingam @ https://orcid.org/0000-0002-2273-3390

REFERENCES
Antoine, R. & Locht, C. (1992) Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from gram-positive organisms. Molecular Microbiology, 6, 1785–1799.
Barka, E.A., Belarbì, A., Hachet, C., Nowak, J. & Audran, J.C. (2000) Enhancement of in vitro growth and resistance to grey mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiology Letters, 186, 91–95.
Bauman, K.D., Li, J., Murata, K., Mantovani, S.M., Dahesh, S., Nizet, V. et al. (2019) Refactoring the cryptic streptophenazine biosynthetic gene cluster unites phenazine, polyketide, and non-ribosomal peptide biochemistry. Cell Chemical Biology, 26, 724–736.e7.
Boeke, J.D., Trueheart, J., Natsoulis, G. & Fink, G.R. (1987) 5-fluoroorotic acid as a selective agent in yeast molecular genetics. Methods in Enzymology, 154, 164–175.
Bowers, J.H. & Parke, J.L. (1993) Epidemiology of Pythium damping-off and Aphanomyces root-rot of peas after seed treatment with bacterial agents for biological-control. Phytopathology, 83, 1466–1473.
Chain, P.S., Denef, V.J., Konstantinidis, K.T., Vergez, L.M., Agullo, L., Reyes, V.L. et al. (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proceedings of the National Academy of Sciences of the United States of America, 103, 15280–15287.
Close, D., Xu, T.T., Smartt, A., Rogers, A., Crossley, R., Price, S. et al. (2012) The evolution of the bacterial luciferase gene cassette (lux) as a real-time bioreporter. Sensors, 12, 732–752.
Coenye, T., Laevens, S., Willems, A., Ohlen, M., Hannant, W., Govan, J.R. et al. (2001) Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. International Journal of Systematic and Evolutionary Microbiology, 51, 1099–1107.
Deris, Z.Z., Van Rostenbergh, H., Habsah, H., Noraida, R., Tan, G.C., Chan, Y.Y. et al. (2010) First isolation of Burkholderia tropica from a neonatal patient successfully treated with imipenem. International Journal of Infectious Diseases, 14, e73–e74.
Eberl, L. & Vandamme, P. (2016) Members of the genus Burkholderia: good and bad guys. F1000Research, 5(F1000 Faculty Rev), 1007. Available from: https://doi.org/10.12688/f1000research.8221.1
Flórez, L.V., Scherlach, K., Gaube, P., Ross, C., Sitte, E., Hermes, C. et al. (2017) Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nature Communications, 8, Article number: 15172.
Frommel, M.I., Nowak, J. & Lazarovits, G. (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum ssp. tuberosum) as affected by a non-fluorescent pseudomonas sp. Plant Physiology, 96, 928–936.
Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. Journal of Bacteriology, 177, 4121–4130.
Jahn, M., Vorpahl, C., Hubschmann, T., Harms, H. & Muller, S. (2016) Copy number variability of expression plasmids determined by cell sorting and droplet digital PCR. Microbial Cell Factories, 15, 211. Available from: https://doi.org/10.1186/s12934-016-0610-8
Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T. & Hwang, I. (2003) Toxoffavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Disease, 87, 890–895.
Jones, C., Webster, G., Mullins, A.J., Jennen, M., Bull, M.J., Dashl, Y. et al. (2021) Kill and cure: genomic phylogeny and bioactivity of Burkholderia gladioli bacteria capable of pathogenic and beneficial lifestyles. Microbial Genomics, 7, mgen000515. Available from: https://doi.org/10.1093/mgen/mgen.000515
Khlebnikov, A., Risa, Ø., Skaug, T., Carrier Trent, A. & Keasling, J.D. (2000) Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture. Journal of Bacteriology, 182, 7029–7034.
Kunakom, S. & Eustaquio, A.S. (2019) Burkholderia as a source of natural products. Journal of Natural Products, 82, 2018–2037.
Kunakom, S. & Eustaquio, A.S. (2020) Heterologous production of lasso peptide capistrin in a Burkholderia host. ACS Synthetic Biology, 9, 241–248.
Kurepin, L.V., Park, J.M., Lazarovits, G. & Bernardis, M.A. (2015) Burkholderia phytofirmans-induced shoot and root growth promotion is associated with endogenous changes in plant growth hormone levels. Plant Growth Regulation, 75, 199–207.
Kusumi, T., Ohtani, I., Nishiyama, K. & Kakisawa, H. (1987) Caryoyncencins, potent antibiotics from a plant pathogen pseudomonas caryophyllii. Tetrahedron Letters, 28, 3981–3984.
Lefebre, M.D. & Valzano, M.A. (2002) Construction and evaluation of plasmid vectors optimized for constitutive and regulated gene expression in Burkholderia cepacia complex isolates. Applied and Environmental Microbiology, 68, 5956–5964.
Li, Y.L., He, F., Lai, H.X. & Xue, Q.H. (2017) Mechanism of in vitro antagonism of phytopathogenic Sclerotium rolfsii by actinomycetes. European Journal of Plant Pathology, 149, 299–311.
Ludwig, D.L. & Bruschi, C.V. (1991) The 2-µm plasmid as a non-selectable, stable, high copy number yeast vector. Plasmid, 25, 81–95.
Mahenthiralingam, E., Song, L.J., Sass, A., White, J., Wilmot, C., Marchbank, A. et al. (2011) Enacyloxins are products of an unusual hybrid modular polyketide synthase encoded by a cryptic plasmid as a non-selectable, stable, high copy number yeast vector. Plasmid, 25, 81–95.
Masschelein, J., Jennen, M. & Challis, G.L. (2017) Antibiotics from gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Natural Product Reports, 34, 712–783.
Masschelein, J., Sydor, P.K., Hobson, C., Howe, R., Jones, C., Roberts, D.M. et al. (2019) A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis. *Nature Chemistry*, 11, 906–912.

Miotto-Vilanova, L., Courteaux, B., Padilla, R., Rabeneolina, F., Jacquard, C., Clément, C. et al. (2019) Impact of *Paraburkholderia phytofirmans* PsJN on grapevine phenolic metabolism. *International Journal of Molecular Sciences*, 20(22), 5775. Available from: https://doi.org/10.3390/ijms20225775

Mullins, A.J., Murray, J.A.H., Bull, M.J., Jenner, M., Jones, C., Webster, G. et al. (2019) Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium *Burkholderia ambifaria*. *Nature Microbiology*, 4, 996–1005.

Mullins, A.J., Webster, G., Kim, H.J., Zhao, J., Petrova, Y.D., Ramming, C.E. et al. (2021) Discovery of the *pseudomonas* Polyyne Protegencin by a phylogeny-guided study of Polyyne biosynthetic gene cluster diversity. *mBio*, 12, e0071521.

Oldenburg, K.R., Vo, K.T., Michaelis, S. & Paddon, C. (1997) Recombination-mediated PCR-directed plasmid construction *in vivo* in yeast. *Nucleic Acids Research*, 25, 451–452.

Pahirluzaman, K.A.K., Williams, K. & Lazarus, C.M. (2012) A toolkit for heterologous expression of metabolic pathways in aspergillus oryzae. *Natural Product Biosynthesis by Microorganisms and Plants*, Pt C, 517, 241–260.

Parke, J.L. & Gurian-Sherman, D. (2001) Diversity of the *Burkholderia cepacia* complex and implications for risk assessment of biological control strains. *Annual Review of Phytopathology*, 39, 225–258.

Parker, W.L., Rathnum, M.L., Seiner, V., Trejo, W.H., Principe, P.A. & Sykes, R.B. (1984) Cepacin-a and cepacin-b, 2 new antibiotics produced by *pseudomonas cepacia*. *The Journal of Antibiotics*, 37, 431–440.

Pillay, V.K. & Nowak, J. (1997) Inoculum density, temperature, and genotype effects on *in vitro* growth promotion and epiphytic and endophytic colonization of tomato (*Lycopersicon esculentum*) seedlings inoculated with *pseudomonas* bacitracin. *Canadian Journal of Microbiology*, 43, 354–361.

Poupin, M.J., Timmermann, T., Vega, A., Uniga, A. & Gonzalez, B. (2013) Effects of the plant growth-promoting bacterium *Burkholderia phytofirmans* PsJN throughout the life cycle of *Arabidopsis thaliana*. *Plos One*, 8(7), e69435. Available from: https://doi.org/10.1371/journal.pone.0069435

Ross, C., Scherlach, K., Kloss, F. & Hertweck, C. (2014) The molecular basis of conjugated polyene biosynthesis in phytopathogenic bacteria. *Angewandte Chemie, International Edition*, 53, 7794–7798.

Savary, S., Ficke, A., Aubertot, J.N. & Hollier, C. (2012) Crop losses due to diseases and their implications for global food production losses and food security. *Food Security*, 4, 519–537.

Sawana, A., Adeolu, M. & Gupta, R.S. (2014) Molecular signatures and phylogenomic analysis of the genus *Burkholderia*: proposal for division of this genus into the emended genus *Burkholderia* containing pathogenic organisms and a new genus *Paraburkholderia* gen. nov harboring environmental species. *Frontiers in Genetics*, 5, 429. Available from: https://doi.org/10.3389/fgene.2014.00429

Schimming, O., Fleischacker, F., Nollmann, F.I. & Bode, H.B. (2014) Yeast homologous recombination cloning leading to the novel peptides ambactin and xenolidincin. *Chem biochem*, 15, 1290–1294.

Sessitsch, A., Coenye, T., Sturz, A.V., Vandamme, P., Barka, E.A., Salles, J.F. et al. (2005) *Burkholderia phytofirmans* sp. nov., a novel plant-associates bacterium with plant-beneficial properties. *International Journal of Systematic and Evolutionary Microbiology*, 55, 1187–1192.

Sziper, C.Y., Faelen, M. & Couturier, M. (2001) Mobilization function of the pBB1R plasmid, a derivative of the broad-host-range plasmid pBB1R. *Journal of Bacteriology*, 183, 2101–2110.

Tenorio-Salgado, S., Tinoco, R., Vazquez-Duhalt, R., Caballero-Mellado, J. & Perez-Rueda, E. (2013) Identification of volatile compounds produced by the bacterium *Burkholderia tropica* that inhibit the growth of fungal pathogens. *Bioengineered*, 4, 236–243.

Thongkongkaew, T., Ding, W., Bratovanov, E., Oueis, E., Garcia-Altares, M., Zaburannya, N. et al. (2018) Two types of threonine-tagged lipopeptides synergize in host colonization by pathogenic *Burkholderia* species. *ACS Chemical Biology*, 13, 1370–1379.

Timmermann, T., Armijo, G., Donoso, R., Seguel, A., Holuigue, L. & Gonzalez, B. (2017) *Paraburkholderia phytofirmans* PsJN produces *Arabidopsis thaliana* against a virulent strain of *pseudomonas syringae* through the activation of induced resistance. *Molecular Plant-Microbe Interactions*, 30, 215–230.

Vandamme, P. & Peeters, C. (2014) Time to revisit polyphasic taxonomy. *Antoni Van Leeuwenhoek*, 106, 57–65.

Webster, G., Jones, C., Mullins, A.J. & Mahenthiralingam, E. (2020) A rapid screening method for the detection of specialised metabolites from bacteria: induction and suppression of metabolites from *Burkholderia* species. *Journal of Microbiological Methods*, 178, 106057.

Winson, M.K., Swift, S., Hill, P.J., Sims, C.M., Griesmayr, G., Bycroft, B.W. et al. (1998) Engineering the luxCDABE genes from *Photorhabdus luminescens* to produce a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. *FEMS Microbiology Letters*, 163, 193–202.

Zhang, J.J., Tang, X.Y. & Moore, B.S. (2019) Genetic platforms for heterologous expression of microbial natural products. *Natural Product Reports*, 36, 1313–1332.

Zhang, R., Ran, Y., Dai, Y., Yang, H., Zhang, H., Lu, Y. et al. (2014) Infectious granuloma caused by *Burkholderia fungorum* confirmed by laser-capture microdissection and polymerase chain reaction. *The British Journal of Dermatology*, 171, 1261–1263.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Petrova, Y.D., Zhao, J., Webster, G., Mullins, A.J., Williams, K., Alswat, A.S. et al. (2022) Cloning and expression of *Burkholderia* polyene biosynthetic gene clusters in *Paraburkholderia* hosts provides a strategy for biopesticide development. *Microbial Biotechnology*, 00, 1–15. Available from: https://doi.org/10.1111/1751-7915.14106