THE MAIN PROGNOSTIC FACTORS INFLUENCING THE RESULTS OF THE SUPERIOR TARSALE MUSCLE RESECTION IN PATIENTS WITH BLEPHAROPTOSIS

© E.V. Goltsman 1, V.V. Potemkin 1,2, D.V. Davydov 3

1 City Multidisciplinary Hospital No. 2, Saint Petersburg, Russia;
2 Academician I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia;
3 Peoples’ Friendship University of Russia, Moscow, Russia

For citation: Goltsman EV, Potemkin VV, Davydov DV. The main prognostic factors influencing the results of the superior tarsal muscle resection in patients with blepharoptosis. Ophthalmology Journal. 2020;13(3):7-12. https://doi.org/10.17816/OV25740

Received: 15.03.2020 Revised: 19.08.2020 Accepted: 23.09.2020

Transconjunctival methods of ptosis correction gain popularity nowadays. The wide use of the technique is limited because of the lack of clear recommendations regarding the volume of the resection, especially in patients with negative phenylephrine test. Purpose. To assess the influence of main predictive factors on superior tarsal muscle (STM) resection result. Materials and methods. Patients were divided into two groups according to the result of phenylephrine test (PE). Patients with positive results were included in the first group, with negative and weak results — in the second group. All patients underwent STM resection according our new algorithm. Results. The result of STM resection was influenced by PE test and intraoperative white line motility test (WLM), but not by levator function and the amount of superior tarsal muscle resection. Conclusions. PE and WLM tests play main role in choosing a method for blepharoptosis correcting.

Keywords: blepharoptosis; superior tarsal muscle resection; phenylephrine test.

ORIGINAL RESEARCHES

OSNOVNYE PROGNOSTICHESkie FAKTOry VLIYANIYA NA REZULTAT RESEKCIYI VERKHNEIY TARZAL'NOI MYS'CHY U PACHIENTOV C BLEFAPOPTOZOM

© E.V. Golyzman 1, V.V. Potemkin 1,2, D.V. Davydov 3

1 Санкт-Петербургское государственное бюджетное учреждение здравоохранения «Городская многопрофильная больница № 2», Санкт-Петербург;
2 Государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова» Министерства здравоохранения Российской Федерации, Санкт-Петербург;
3 Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов», Москва

Для цитирования: Гольцман Е.В., Потемкин В.В., Давыдов Д.В. Основные прогностические факторы влияния на результат резекции верхней тарзальной мышцы у пациентов с блефароптозом // Офтальмологические ведомости. — 2020. — Т. 13. — № 3. — С. 7–12. https://doi.org/10.17816/OV25740

Поступила: 15.03.2020 Одобрена: 19.08.2020 Принята: 23.09.2020

Трансконъюнктивальные методики коррекции птоза верхнего века приобретают всё большее распространение. Однако основной сдерживающий элемент для их широкого применения — это отсутствие чётких рекомендаций, касающихся объёмов операции, особенно у пациентов с отрицательными ответами на фенилэфриновый тест. Цель. Оценить влияние некоторых факторов на результат резекции верхней тарзальной мышцы (ВТМ). Материалы и методы. В рамках работы были обследованы 75 пациентов (103 века), которые поступили для хирургического лечения птоза. Фенилэфриновый (ФЭ) тест стал критерием, определяющим разделение пациентов на 2 группы. Пациенты с положительными результатами вошли в состав первой группы, а пациенты с отрицательными и слабопозитивными — в состав второй группы. Всем пациентам была выполнена резекция ВТМ по типу «открытое небо», в некоторых...
случаях в сочетании с резекцией верхней тарзальной пластинки. Результаты. ФЭ-тест и подвижность белой линии оказывают воздействие на результат резекции ВТМ, в то время как остальные факторы не оказывают. Выводы. При выборе способа коррекции блефароптоза важное значение имеют ФЭ-тест и подвижность белой линии.

Ключевые слова: блефароптоз; резекция верхней тарзальной мышцы; фенилэфриновый тест.

INTRODUCTION

Blepharoptosis treatment of is one of the most controversial aspects of modern ophthalmic plastic surgery. This is due to the lack of clear recommendations for the choice of surgical correction method. When choosing a treatment method, most specialists pay attention to the main factors, namely, the levator palpebrae superioris (LPS) function and blepharoptosis degree. Thus, severe blepharoptosis and poor LPS function (≤ 4 mm) are an indication for surgery using a suspensory material [1–4]. However, as for superior tarsal muscle (STM) or LPS aponeurosis resection, the situation is ambiguous since both methods can be used for moderate or mild blepharoptosis and excellent or good LPS function.

The epoch of transconjunctival approaches in the surgical treatment of blepharoptosis began in 1961 (Fasanella–Servat surgery) [9–11]. During this period, the methodology was modified several times. One latest modification was proposed by Lake et al. in 2003 [7]. Many algorithms are used for calculating STM resection amount. The most commonly used ones are those proposed by J.D. Perry et al. [12], S.C. Dresner [8], and S. Lake et al. [7]. The authors of the article previously proposed a new algorithm for superior tarsal muscle resection, the main difference of which is an intraoperative assessment of white line mobility to determine the possibility of superior tarsal muscle resection and its amount in cases of negative and weakly positive responses to phenylephrine (PE) test [15]. Thus, the need for search of additional factors that could be used as predictors of the superior tarsal muscle resection results is beyond doubt [5, 6].

The aim of present study is to evaluate the effect of PE test, of white line (WL) mobility, resected STM length, and of LPS function on the results of transconjunctival STM resection in patients with mild and moderate blepharoptosis, provided that the LPS function is good or excellent.

MATERIALS AND METHODS

A total of 75 patients (103 eyelids) with mild and moderate blepharoptosis were examined, when admitted for surgical treatment to the ophthalmological department No. 5 of St. Petersburg City Multi-Field Hospital No. 2 from November 2017 to August 2019.

Patients with the following conditions were excluded from the study:
- severe blepharoptosis,
- blepharoptosis of a traumatic or neurogenic nature,
- blepharoptosis accompanied by poor or moderate function of the LPS (8 mm or less),
- history of trauma that led to blepharoptosis development,
- history of surgeries to repair blepharoptosis, as well as any surgeries requiring the blepharostat application, and
- a history of various anti-aging procedures (botulinum therapy, permanent makeup, false eyelashes, etc.).

The patients were divided into two groups based on their PE test results. The PE test was performed according to the standard technique [11, 19]: a 2.5% PE solution (Irifrin, Sentiss, Switzerland) was instilled into the superior conjunctival fornix twice with a 5-min interval [12]. Measurements of the MRD1 (Margin reflex distance 1, the distance from the center of the corneal light reflex to the upper eyelid margin in its middle in millimeters) index were performed before instillation and 5 min after the last phenylephrine’s instillation. The PE test results were assessed as follows: if the differences in MRD1 before and after instillation of 2.5% PE were 0–0.5, 1–1.5, and ≥2 mm, the test was considered to be negative, weakly positive, and positive, respectively [14, 20].

Group 1 included patients with positive (“+”) responses to the PE test (37 patients, 50 eyelids) and group 2 – with negative and weakly positive (“−” and “+/−”) responses (38 patients, 53 eyelids). The average ages of patients in groups 1 and 2 were 62.6 ± 8.6 and 64.6 ± 7.8 years, respectively (p = 0.52). There were 37.8% of men and 62.2% of women in group 1, and 55.2% of men and 44.8% of women in group 2 (p = 0.1).

All patients underwent modified STM resection according to the previously proposed technique, presented below. The PE test, resected superior tarsal muscle length, white line mobility, and LPS function were the factors influencing the STM resection result.
Technique of STM modified resection

After treating the facial skin with an antiseptic solution, a traction suture (Vicryl 4.00) was placed in the upper eyelid middle. Then, the upper eyelid was turned inside out using the Desmarrres lid retractor (Fig. 1, a). After superior tarsal muscle hydrodissection with 1.0 mL of 0.9% isotonic sodium chloride solution (Fig. 1, b), the conjunctiva with STM was cut off from the upper edge of the tarsal plate, and the latter was mobilized bluntly (Fig. 1, c and d). The next stage was the assessment of STM length and of white line mobility.

Method for assessing STM length

After isolation of the STM, its length in the middle was measured using a surgical caliper (Fig. 2).

Method for assessing white line mobility

After isolating the white line, its mobility was assessed using a surgical caliper by pulling the center of the STM myogaster along the line of the muscle fibers until displacement cessation (Fig. 3).

Then, the planned amount of the STM was resected (Fig. 4, e). The STM stump was fixed with a U-shaped suture (Vicryl 6.0) to the edge of the tarsal plate (Fig. 4, f). The surgery ended after the placement of a running suture fixing the conjunctiva to the tarsal plate without bringing the suture out (Vicryl 6.0; Fig. 4, g). Considering that the suture material is absorbable, suture removal was not required.

The LPS function was assessed at the preoperative stage by the amplitude of the upper eyelid movement...
Distribution of received data in groups
Распределение полученных данных в группах

Parameters	Groups	Significance, ρ	
	with “+” responses to phenylephrine test, n = 50	with “+/–” and “–” responses to phenylephrine test, n = 53	
Ptosis degree before surgery, mm	3.3 ± 0.9	3.5 ± 0.8	0.19
Result of STM resection, mm	2.74 ± 1.0	2.46 ± 0.66	0.098
Phenylephrine test, mm	2.18 ± 0.18	0.6 ± 0.5	<0.0001
LPS function, mm	13.4 ± 2.0	13.6 ± 1.7	0.61
Amount of STM resected, mm	12.8 ± 3.4	12.6 ± 2.6	0.35
White line mobility, mm	1.78 ± 1.0	2.0 ± 0.7	0.56

Note. n, number of eyelids; STM, superior tarsal muscle; LPS, levator palpebrae superioris.
Due to the widespread use of PE test, we decided to evaluate the dependence of STM resection primarily on its result. The data obtained indicate a moderate relationship according to the Chaddock scale in both groups \((R = 0.31, p = 0.03\) in group 1 and \(R = 0.33, p = 0.018\) in group 2). This suggests that PE test must be used when deciding on the feasibility of STM resection, but only if other factors are considered.

The resected STM amount and LPS function do not influence the STM resection result.

The “white line” concept was introduced into our practice not long ago by E.A. Vanderson et al. [18], who, in their studies, demonstrated, both macroscopically and histologically, that this zone is a transition from LPS striated muscle fibers to STM smooth muscle fibers. According to our data, the assessment of white line mobility had no effect on the STM resection result in group 1, whereas a significant high dependence was revealed in group 2 \((R = 0.02, p = 0.99,\) and \(R = 0.72, p = 0.0005,\) respectively). Thus, white line mobility has to be studied in cases of negative and weakly positive responses to PE tests. Moreover, this indicator may be the main factor determining the possibility of STM resection in this patient category.

CONCLUSION

The decision on the choice of a particular technique for correcting blepharoptosis and its extent has to be made on the basis of a combination of factors such as the PE test result and the degree of white line mobility.

REFERENCES

1. Finsterer J. Ptosis: causes, presentation, and management. *Aesth Plast Surg*. 2003;27(3):193-204. doi:10.1007/s00266-003-0127-5.

2. Edmonson BC, Wulc AE. Ptosis evaluation and management. *Otolaryngol Clin N Am*. 2005;38(5):921-946. https://doi.org/10.1016/j.otc.2005.08.012.

3. Crawford JS. Repair of ptosis using frontalis muscles and fascia lata a 20-year review. *Ophthalmic Surg*. 1977;8(4):31-40.

4. Rycroft BW. The transconjunctival and transcutaneous approach to levator resection in the treatment of ptosis. In: Troutman R, Converse J, Smith B, editors. *Plastics and reconstructive surgery of the eye and adnexa*. London: Butter-worth; 1962.

5. Patel V, Salam A, Malhotra R. Posterior approach white line advancement ptosis repair: the evolving posterior approach to ptosis surgery. *Br J Ophthalmol*. 2010;94(11):1513-1518. https://doi.org/10.1136/bjo.2009.172353.

6. Ichinose A, Leibovitch I. Transconjunctival levator aponeurosis advancement without resection of Müller’s muscle in aponeurotic ptosis repair. *Open Ophthal mol J*. 2010;4:85-90. https://doi.org/10.2174/1874364101004010085.

7. Lake S, Mohammad-Ali FH, Khooshabeh R. Open sky Müller’s muscle-conjunctival resection for ptosis surgery. *Eye*. 2003;17(9):1008-1012. https://doi.org/10.1038/sj.eye.6700623.

8. Dresner SC. Further modifications of the Müller’s muscle-conjunctival resection procedure for blepharoptosis. *Ophthalm Plast Reconstr Surg*. 1991;7(2):114-122. https://doi.org/10.1097/00002341-199106000-00005.

9. Beard C. History of ptosis surgery. *Adv Ophthalmic Plast Reconstr Surg*. 1986;5:125-131.

10. Fasanella R, Servat J. Levator resection for minimal ptosis. Another simplified operation. *Arch Ophthalmol*. 1961;65:493-496. https://doi.org/10.1001/archophth.1961.01840020495005.

11. Putterman AM, Urist MJ. Müller muscle-conjunctival resection. Technique for treatment of blepharoptosis. *Arch Ophthalmol*. 1975;93(8):619-623. https://doi.org/10.1001/archophth.1975.01010020595007.

12. Perry JD, Kadakia A, Foster JA. A new algorithm for ptosis repair using conjunctival Mullerectomy with or without tarsectomy. *Ophthalm Plast Reconstr Surg*. 2002;18(6):426-429. https://doi.org/10.1097/00002341-200211000-00007.
Information about the authors

Elena V. Goltsman — Ophthalmologist. City Multidisciplinary Hospital No. 2, Saint Petersburg. E-mail: ageeva_elena@inbox.ru.

Vitaly V. Potemkin — PhD, Assistant Professor. Department of Ophthalmology. First Pavlov State Medical University of St. Petersburg, Saint Petersburg; Ophthalmologist, City Multidisciplinary Hospital No. 2, Saint Petersburg. E-mail: potem@inbox.ru.

Dmitriy V. Davydov — MD, PhD, DMedSc, Professor, Head of Department, Reconstructive Surgery Department with Ophthalmology Course. Peoples' Friendship University of Russia, Moscow, Russia. E-mail: d-davydov3@yandex.ru.

13. Потёмкин В.В., Гольцман Е.В. Интраоперационный тест оценки подвижности белой линии при трансконъюнктивальной резекции верхней тарзальной мышцы по поводу блефароптоза // Офтальмологические ведомости. – 2019. – Т. 12. – № 4. – С. 87–91. [Potyomkin VV, Goltsman EV. White line motility test in transconjunctival muellerectomy for blepharoptosis. Ophthalmology journal. 2019;12(4):87-91. (In Russ.)]. https://doi.org/10.17816/ov15811.

14. Потёмкин В.В., Гольцман Е.В. Новый алгоритм планирования резекции верхней тарзальной мышцы при блефароптозе: описание методики и результаты // Офтальмологические ведомости. – 2019. – Т. 12. – № 3. – С. 83–90. [Potyomkin VV, Goltsman EV. New algorithm for planning superior tarsal muscle resection for blepharoptosis: description of technique and results. Ophthalmology journal. 2019;12(3): 83-90. (In Russ.)]. https://doi.org/10.17816/ov16049.

15. Dortzbach RK. Superior tarsal muscle resection to correct blepharoptosis. Ophthalmology. 1979;86(10):1883-1891. https://doi.org/10.1016/s0161-6420(79)35341-6.

16. Baldwin HC, Bhagay J, Khooshabeh R. Open sky Muller muscle conjunctival resection in phenylephrine test-negative blepharoptosis patients. Ophthal Plast Reconstr Surg. 2005;21(4):276-280. https://doi.org/10.1097/01.iop.0000167789.39570.3e.

17. Peter NM, Khooshabeh R. Open-sky isolated subtotal Muller’s muscle resection for ptosis surgery: a review of over 300 cases and assessment of long-term outcome. Eye (Lond). 2013;27(4): 519-524. https://doi.org/10.1038/eye.2012.303.

18. Vanderson EA, Fatima CS, de Ary-Pires B, et al. The human superior tarsal muscle (Muller’s muscle): a morphological classification with surgical correlations. Anat Sci Int. 2010;85(1):1-7. https://doi.org/10.1007/s12565-009-0043-0.

19. Glatt HJ, Fett DR, Puttermann AM. Comparison of 2.5% and 10% phenylephrine in the elevation of upper eyelids with ptosis. Ophthalmic Surg. 1990;21(3):173-176.

20. Grace Lee N, Lin L-W, Mehta S, Freitag SK. Response to phenylephrine testing in upper eyelids with ptosis. Digit J Ophthalmol. 2015;21(3):1-12.