Effects of Mechanical Properties of Concrete with TiO$_2$ and GGBS

Gajjala Pavan Kumar, A. Ravi Theja

ABSTRACT: Concrete is the abundant man made material in the world. The quantity of CO$_2$ emission through the industrialized of OPC is almost one ton. The CO$_2$ emission is approximately 7% of the worlds CO$_2$ emission. In order to decrease the CO$_2$ emission and create the sustainable environment we have to develop greener building material. In this the TiO$_2$ and GGBS is use in cement on mixing of concrete. In this TiO$_2$ go about as a self cleaning material and the solid with expansion of TiO$_2$ is 1% by mass of the concrete dependent on the past tasks are finished by the scientists and GGBS with 5%, 10% and 15% by mass of cement was prepared. In this research hardened tests are Compressive, Flexural, Split Tensile strength tests of concrete observations mixed with TiO$_2$ and GGBS for optimum content was considered.

KEYWORDS: Titanium dioxide, GGBS, Compressive, Flexural, Split Tensile strength

I. INTRODUCTION

Concrete is the most usable abundant material on the earth for infrastructure development. It is used in construction industry for buildings, roadways, dams, bridges and for developing infrastructure of a country. Generally normal concrete or conventional concrete is made up of cement, water and aggregates. But a modern concrete consist of two more components in addition to the above four components [1]. Mineral admixtures are the kind of materials which goes into the concrete and sometimes even in cement manufacturing like fly ash, silica fume, rice husk ash and other pozzolans or other similar materials. In the present study the admixture which is used is GGBS and the chemical compound TiO$_2$. Now days the GGBS is mostly common used material in concrete [2].The utilization of photograph reactant building materials to decrease barometrical contaminations, which negatively affect health, especially among kids and the old, is getting progressively vital. Vehicular traffic outflows and contaminant brings about by lodging and industry are the primary wellsprings of barometrical contamination in thick urban zones[3]. Photo catalytic substances incorporates nano titanium dioxide (TiO$_2$), with the nearness of UV light (daylight), can quicken the photograph reactant process through the decay of natural and inorganic materials, for example, air contaminations including NOx, SOx, and volatile organic compounds (VOCs)[4].

II. LITERATURE REVIEW

Shihui Shen (2012) their study has utilizing TiO$_2$ to asphalts would perhaps upgrade the end of emanations at street level. Dislike customary non-pervious asphalts, the unnecessary porosity and surface harshness of pervious solid asphalt grant more TiO$_2$ particles to have direct contact with UV lighting and subsequently improve disposal execution. When DPM coatings were looked at changed TiO$_2$ on focuses (5%, 10%, 15%, and 18% TiO$_2$), each of the four fixation had comparable outcomes for NO decrease, keeping up somewhere in the range of 94% and 98% static NO% decrease. This shows the DPM covering can even now function admirably with lower measures of TiO$_2$. The effect of the TiO$_2$ to the surface and contact properties of the asphalt should be contemplated.

Decheng Feng (2013) has been explored by means of trial concentrates on the mechanical properties and microstructure of the concrete glues containing TiO$_2$ nanoparticles. The research center testing demonstrated that the 28-day 3-point twist quality of the concrete glue with a water/concrete proportion of 0.4 improved regarding 0.1%, 0.5%, 1.0%, and 1.5% TiO$_2$ nanoparticles by methods for mass of concrete had been incorporated. Such overhauls inside the mechanical properties can be credited to advancement of the glue microstructure by method of the expansion of a little amount (1.0%/by methods for mass) of TiO$_2$ nanoparticles and accomplishment of attractive scattering, nano change expanded the amount of cementitious portion inside the glue, diminished the small scale porosity and amount of interior miniaturized scale splits and imperfections, obtained a denser microstructure with decreased nano harshness, and prompted the development of needle-formed nano accelerates.

Jitendra Patil (2016) have studied that the compressive strength of Nano particles such as Alumina, Silica and Titania are reduced when compared to the normal concrete. The compressive strength of Titania is reduced by 63.31% for 7 days and 42.85% for 14 days. As the compressive strength of concrete and cement by using Nano products is not achieved up to the desired degree although workability is achieved up to some extent also the Nano products are not easily available in market at present. So the other alternatives which are easily available are preferable as compare to Nano products, in case 10 % replacement of cement is adopted. Nano Products used are costlier than other additives and admixtures, so use of Nano product increases the overall cost of the project.
B. Mangamma (2016) has carried out experiments on GGBS. It gives good strength when compared to normal mix. Partial replacement of GGBS decrease the environmental pollution such as ground pollution, water pollution etc. Partial replacements of GGBS increase the strengths at 10%, 20%, 30% as well as reduce the strength at 40%, 50%. It also reduces the cost of construction.

III. MATERIALS USED

1. Cement: Cement is used as a binding material in concrete. In this research we preferred Zuari Cement Company of 53 grade of cement is used.

2. Aggregates: Basically aggregates are very important to the concrete without aggregates concrete can’t be formed. Aggregates are classified into two types
 a. Fine Aggregates
 b. Coarse Aggregates

 a. Fine aggregates: Aggregates which are passing through the 4.75mm sieve is defined as fine aggregate. River sand is the most regularly used fine aggregate in the concrete. In addition, crushed rock fines can be used as fine aggregate. In this research we preferred River sand for the good finishing and to fill the voids between the coarse aggregate.

 b. Coarse Aggregates: Aggregates which are retained on the 4.75 mm sieve is defined as coarse aggregate. Frequently, the size of coarse aggregate is from 5 to 150 mm. For normal concrete which is used for structural members including beams and columns, the maximum size of coarse aggregate is about 25 mm. In this research we preferred the 20mm size of coarse aggregate is used.

3. Titanium Dioxide: The principle reason TiO2 was stacked with cementitious materials on the grounds that solutary water, oxygen and sun based light required for photograph catalysis response. Also, TiO2 is a photograph impetus that can separate practically any natural compound with the nearness of daylight. On the off chance that any earth present on a superficial level, the water will infiltrates under the soil and expels it. The specific gravity of TiO2 is 3.7.

4. GGBS: GGBS is a mineral admixture which has the synthetic segments like that of Portland concrete. Because of hydraulicity, accordingly, it contributes improvement of solid execution, yet in addition in asset and vitality reserve funds. The specific gravity of GGBS is 2.9.

IV. EXPERIMENTAL PROGRAM

a. Mix Proportions: In the present investigation M30 concrete is prepared with the water cement ratio 0.5. Concrete mixes are prepared by different proportions of cement replacing with TiO2 (1%) and GGBS (0%, 5%, 10% and 15%). i.e. the percentages with different combinations of 1% TiO2 with 0% GGBS, 1% TiO2 with 5% GGBS, 1% TiO2 with 10% GGBS and 1% TiO2 with 15% GGBS along with normal concrete without TiO2 and GGBS. The mix designations are follows:

 1. CM refers to the Control Mix
 2. G_1T_1 refers to 1% TiO2 and 0% GGBS
 3. G_2T_1 refers to 1% TiO2 and 5% GGBS
 4. G_3T_1 refers to 1% TiO2 and 10% GGBS
 5. G_4T_1 refers to 1% TiO2 and 15% GGBS

b. Casting of Specimens: After mix proportions next we can do casting the concrete the cube dimensions is 150X150X150mm and height of the cylinder is 300mm and diameter of the cylinder is 150mm and for beam dimensions is 150X150X700mm for 7, 14, 28 days casting of concrete specimens are required.

c. Mix Proportions:

 Mix Proportions for M30 Control Mix concrete.

Table 1: Mix Proportions of Concrete
Material

Cement
F.A
C.A
Water

V. EXPERIMENTAL RESULTS

A. Compressive strength: The compressive strength of concrete with different proportions are increased up to 1%TiO2 and 10% GGBS concrete, then it is decreased for 1% TiO2 and 15% GGBS of concrete.

 The concrete with TiO2 (G_1T_1) of compressive strength is decreased by 10.61%, 6.96% and 4.65% with respect to normal OPC Concrete (CM) in 7 days, 14 days and 28 days. When compared with normal OPC concrete, the compressive strength is decreased by 28.32%, 16.16% and 7.79% for 1% TiO2 + 5% GGBS (G_2T_1) in 7, 14 and 28 days respectively. It is decreased by 28.1% in 7 days, 11.04% in 14 days and increased by 0.42% in 28 days for 1% TiO2 + 10% GGBS (G_3T_1). It is decreased by 31.65% for 7 days, 8.28% for 14 days and 7.30% for 28 days for 1% TiO2 + 15% GGBS (G_4T_1). When compared with normal concrete (CM) the compressive strength is decreased while adding with TiO2 and GGBS in concrete with respect to these curing days. The test results of the concrete with different proportions are listed in above table. The comparison of conventional OPC concrete (CM) and concrete with TiO2 and GGBS are represented in below chart.

Fig.1: Compressive Strength test

B. Split Tensile Strength:

 The Split tensile strength of the concrete is increases up to G_1T_1 from CM. The split tensile strength of OPC Concrete (CM) is more compared to the all mix combinations of the concrete G_1T_1, G_2T_1, G_3T_1 and G_4T_1. The tensile strength decreases by 0.35% for 7 days, 13.37% for 14 days and 10.10% for 28 days for concrete with 1% TiO2 (G_2T_1) when compared with conventional OPC concrete (CM).
When compared with Conventional OPC concrete, the tensile strength of concrete is decreased while adding GGBS to the concrete, by 6.32% in 7 days, 17.15% in 14 days, 3.88% in 28 days for 1% TiO$_2$ + 5% GGBS (G$_{10}$T$_1$). Decreased by 3.86% for 7 days, 14.82% for 14 days, 0.26% for 28 days for 1% TiO$_2$ + 10% GGBS (G$_{15}$T$_1$). Decreased by 14.03% in 7 days, 24.71% in 14 days and 18.65% in 28 days for 1% TiO$_2$ + 15% GGBS (G$_{15}$T$_1$), while adding GGBS to the concrete the tensile strength decreases in these curing days. The maximum strength is obtained at G$_{10}$T$_1$ among the concrete with GGBS. The graphical representation of the tensile strength of concrete is shown in below chart.

The flexural strength is 1% TiO$_2$ + 10% GGBS concrete is more in 1% TiO$_2$ and 10% GGBS concrete when compared with all mix proportions. The bending strength of concrete is more for 1% TiO$_2$ + 10% GGBS (G$_{10}$T$_1$) increases by 25.73% compared to normal concrete (CM). 10.49% increases for 1% TiO$_2$ + 0% GGBS (G$_{0}$T$_1$), 3.28% decreases for 1% TiO$_2$ + 5% GGBS (G$_{15}$T$_1$), 3.68% increases for 1% TiO$_2$ + 15% GGBS (G$_{15}$T$_1$) concrete while compare with normal concrete. The strength of concrete is less in 1% TiO$_2$ and 5% GGBS concrete while compared with normal conventional OPC concrete.

REFERENCES

1. Shihui Shen and Maria Burton, “Pervious concrete with titanium dioxide as a photocatalyst compound for a greener urban road environment”, Construction and Building Materials, in Elsevier 35 (2012) 874–883, 2012.

2. Decheng Feng and Ning Xie (2013), “Portland Cement Paste Modified by TiO2 Nanoparticles: A Microstructure Perspective”, Industrial & Engineering Chemistry Research, in ACS publications, 52, 11575–11582.

3. Jitendra Patil and Dr. Umesh Pendharkar (2016), “Study of Effect of Nano materials as Cement Replacement on Physical Properties of Concrete”, in International Research Journal of Engineering and Technology (IRJET), e-ISSN: 2395-0056, Volume: 03, Issue: 01 Jan-2016.

4. B.Mangamnal and N.Victor babu (2016), “An Experimental Study on Behavior of Partial Replacement of Cement with Ground Granulated Blast Furnace Slag”, in Int. Journal of Engineering Research and Application, ISSN : 2248-9622, Vol. 6, Issue 12, (Part -3) December 2016, pp.01-04.

5. Chetan A. Rajgor and Y. V. Akbari (2017). “A Study on Hardened Properties of High Performance Concrete by Partial Replacement of Cement with GGBS and Fly Ash”, in International Journal for Scientific Research & Development, Vol.5, Issue 02, 2017, ISSN (online): 2321-0613.

6. M.S Shetty, “Concrete Technology Theory and Practice”, by S. Chand & Company Ltd. pp.1-3.

7. IS 10262:2009, “Recommended guidelines for concrete mix design”, Bureau of Indian standards, New Delhi.

8. IS 456:2000, “Indian standard code of practice for plain and reinforced concrete”, Bureau of Indian standards, New Delhi.

9. IS 383: 1970, “Specification for coarse aggregate and fine aggregate from natural sources for concrete”, Bureau of Indian standards, New Delhi.

10. IS 5816:1999, “Splitting tensile strength of concrete method of test”, Bureau of Indian standards, New Delhi.

11. IS 516:1959, “Methods to tests for strength of concrete”, Bureau of Indian Standards, New Delhi.
AUTHORS PROFILE

Gajjala Pavan Kumar received his Master’s Degree in Structural Engineering from Anamacharya Institute of Technology and sciences, JNTU Anantapur, A.P, India in 2017. Bachelor’s Degree in Department of civil engineering, SVR Engineering College, Nandyal, Kurnool (DT), A.P, India in 2015. Working as Assistant Professor in SVR Engineering College.

A. Ravi Theja, research scholar in JNTU Anantapur. His received master’s Degree in Structural Engineering from G. Pulla Reddy Engineering College, Kurnool, A.P, India in 2015. Bachelor’s Degree in Department of civil engineering, SVR Engineering College, Kurnool (DT), A.P, India Nandyal in 2013. Working as Assistant Professor in SVR Engineering College.