Zorn’s Matrices and finite index subloops

Carmen Rosa Giraldo Vergara
Instituto de Matemática, Universidade Federal do Rio de Janeiro
CEP 21945-970, Rio de Janeiro, Brasil
E-mail: carmita@pg.im.ufrj.br

Fabio Enrique Brochero Martínez
Instituto de Matemática Pura e Aplicada
CEP 22460-320, Rio de Janeiro RJ, Brasil
E-mail: fbrocher@impa.br

Abstract

The Zorn’s Algebra \(\mathcal{Z}(R) \) has a multiplicative function called determinant with properties similar to the usual one. The set of elements in \(\mathcal{Z}(R) \) with determinant 1 is a Moufang loop that we will denote by \(\mathbb{I} \). In our main result we prove that if \(R \) is a Dedekind algebraic number domain that contains an infinite order unit, each finite index subloop \(\mathcal{L} \), such that \(\mathbb{I} \) has the weak Lagrange property relative to \(\mathcal{L} \), is congruence subloop. In addition, if \(R = \mathbb{Z} \), then we present normal subloops of finite index in \(\mathbb{I} \) that are not congruence subloops.

1 Introduction

Let \(R \) be a commutative ring with unit 1, \(I \) an ideal of \(R \) and \(SL(n, R) \) the \(n \times n \) special linear group over \(R \). The principal congruence group of level \(I \)

\footnote{2000 Mathematics Subject Classification: Primary 20N05, 20H05; Secondary 17D05. This research was supported by CNPq, Brasil.}
in $SL(n, R)$ is a set of matrices congruent to the identity modulo the ideal I. It said that $SL(n, R)$ satisfies the congruence subgroups property if every finite index subgroup contains a principal congruence group.

In the last decades the congruence groups achieved own relevance, different from the traditional application in the geometric field about the classification of elliptic curves over \mathbb{C} and the study of modular forms. This relevance is due to the works of Mennicke, Serre, Lazard, Bass, Vaseršteı̇n, Newman and some others. Mennicke [5] proved that $SL(n, \mathbb{Z})$ with $n \geq 3$ satisfies the congruence subgroups property. In addition Bass, Milnor, Serre [4] proved that $SL(n, R)$ satisfies that property for $n \geq 3$ for an ample variety of rings (in particular for any ring of algebraic numbers). For $n = 2$, Wohlfahrt (See [7]) showed a criterion of determining when a finite index subgroup is a congruence group, and used this criterion to show that in $SL(2, \mathbb{Z})$ exists finite index subgroups that is not congruence subgroup. In general,

Theorem 1.1 (Serre [8]) Let R be an algebraic integer domain that contains an infinite order unit. Then $SL(2, R)$ satisfies the congruence subgroups property.

In that article, Serre also proved that if R is an algebraic integer ring \mathcal{O}_d of the field $\mathbb{Q}(\sqrt{-d})$ with $d \in \mathbb{N}^*$, then the group $SL(2, \mathcal{O}_d)$ does not have the congruence subgroups property.

In addition, Vaseršteı̇n showed a relationship between congruence subgroup and groups generated by elementary matrices when R is a Dedekind algebraic domain that contains infinitely many units.

Theorem 1.2 (Vaseršteı̇n [9]) Let R be a Dedekind algebraic numbers domain that contains infinitely many units, \mathfrak{q} an ideal of R and $E(\mathfrak{q})$ the subgroup generated by the matrices \(\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \) with $a \in \mathfrak{q}$. Then the group $E(\mathfrak{q})$ has finite index in $SL(2, R)$, in particular $E(R) = SL(2, R)$.

On the other side, Zorn’s algebra $3(R)$ contains Moufang loops analogous to the groups $GL(2, R)$ and $SL(2, R)$. In fact, denote by R^3 the three
dimensional vector space over R. Zorn’s Algebra $\mathcal{Z}(R)$ over R is the set of 2×2 matrices

$$\begin{bmatrix} a & x \\ y & b \end{bmatrix} \quad a, b \in R \quad x, y \in R^3,$$

with the binary operations sum and product, where the sum is defined by the natural form, component to component, and the product is given by the rule

$$\begin{bmatrix} a_1 & x_1 \\ y_1 & b_1 \end{bmatrix} \cdot \begin{bmatrix} a_2 & x_2 \\ y_2 & b_2 \end{bmatrix} = \begin{bmatrix} a_1a_2 + x_1\cdot y_2 & a_1x_2 + b_2x_1 - y_1\times y_2 \\ a_2y_1 + b_1y_2 + x_1\times x_2 & b_1b_2 + y_1\cdot x_2 \end{bmatrix}$$

where \cdot and \times denote the dot and cross vectorial product in R^3.

The determinant function $\det : \mathcal{Z}(R) \to R$ defined by $\det(A) = ab - x\cdot y$, where $A = \begin{bmatrix} a & x \\ y & b \end{bmatrix}$, is a multiplicative function. Thus, an element A is invertible if and only if $\det(A) \in R^*$ and then $A^{-1} = \frac{1}{\det A} \begin{bmatrix} b & -x \\ -y & a \end{bmatrix}$.

Zorn’s Algebra is alternative, it follows that the invertible elements set is a Moufang Loop. This set is called a general linear loop and it is denoted by

$$\text{GLL}(2, R) = \{ A \in \mathcal{Z}(R) | \det(A) \in R^* \}.$$

Similarly, we define the special linear loop as follows

$$\Gamma = \text{SLL}(2, R) = \{ A \in \text{GLL}(2, R) | \det A = 1 \}.$$

We are going to developed for loops an analogue theory to the congruences groups theory, where R is a Dedekind algebraic numbers domain. In particular, if R contains an infinite order unit, we will prove an analogous Serre’s Theorem for these loop. In addition, if $R = \mathbb{Z}$, we find a family of finite index subloops that are not congruence loops.

2 Congruence subloop and finite index subloop

Let q be an ideal of R. We define a principal congruence subloop of Γ of level q as a set of all matrices A of Γ such that

$$A \equiv I \pmod{q},$$

$$\text{GLL}(2, R) = \{ A \in \mathcal{Z}(R) | \det(A) \in R^* \}.$$
where the congruence is component by component. This loop is denoted by $\Gamma(q)$. In particular, $\Gamma(R) = \Gamma$. A subloop of Γ is called a congruence subloop if it contains a principal congruence subloop $\Gamma(q)$ for some ideal q of R.

In the follow, R denote a Dedekind domain, and for each non zero ideal of R, $\Delta(q)$ denotes the smallest normal subloop of Γ that contains every matrix of the form
\[
\begin{bmatrix}
1 & x \\
0 & 1
\end{bmatrix}, \begin{bmatrix}
1 & 0 \\
y & 1
\end{bmatrix}
\]
where $x, y \in q^3$.

Definition 2.1 Let \mathcal{L} be a subloop of Γ, and suppose that the set
\[S = \{q \subset R | \Delta(q) \subset \mathcal{L}\}\]
is not empty. Define the level of \mathcal{L} as the maximal element of S.

Lemma 2.1 Let q be an non zero ideal of R and $A \in \Gamma(q)$. If $A = \begin{bmatrix} v \\ 1 \\ u \end{bmatrix}$, then A can be written as product of the matrices
\[
\begin{bmatrix}
1 & \ae_j \\
0 & 1
\end{bmatrix}
\]
and
\[
\begin{bmatrix}
1 & 0 \\
\ae_j & 1
\end{bmatrix}
\]
where $a \in q$, $e_1 = (1,0,0)$, $e_2 = (0,1,0)$ and $e_3 = (0,0,1)$.

Proof. First, suppose A has the form
\[
\begin{bmatrix}
1 & (0,0,0) \\
(u_1, u_2, u_3) & 1
\end{bmatrix}
\]
then define
\[
B = \begin{bmatrix}
1 \\
(0, u_2, u_3)
\end{bmatrix}
\]
\[
\begin{bmatrix}
0 \\
1
\end{bmatrix}
\]
\[
\in \Gamma(q), \text{ thus}
\]
\[
A = B + \begin{bmatrix}
u e_1 \\
0
\end{bmatrix}
\]
\[
= B \left(I + B^{-1} \begin{bmatrix}
0 \\
u e_1
\end{bmatrix} \right)
\]
\[
= B \begin{bmatrix}
1 \\
(0, u_1, 0)
\end{bmatrix}
\begin{bmatrix}
0 \\
1
\end{bmatrix}
\begin{bmatrix}
0, u_1 u_3, -u_1 u_2 \\
1
\end{bmatrix}
\]
By the same procedure, we obtain that
\[
B = \begin{bmatrix}
1 \\
u e_3
\end{bmatrix}
\begin{bmatrix}
1 \\
u e_3
\end{bmatrix}
\begin{bmatrix}
1 \\
u e_2
\end{bmatrix}
\]
and
\[
\begin{bmatrix}
1 & (0, u_1 u_3, -u_1 u_2) \\
0 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & -u_1 u_2 e_3 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
u_1^2 u_2 u_3 e_1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & u_1 u_3 e_2 \\
0 & 1
\end{bmatrix}
\]

In the general case, if
\[A = \begin{bmatrix}
1 & (v_1, v_2, v_3) \\
(u_1, u_2, u_3) & b
\end{bmatrix},\]
we have
\[A = ((CA_3)A_2)A_1\]
where
\[A_j = \begin{bmatrix}
1 & v_j e_j \\
0 & 1
\end{bmatrix}\]
and
\[C = \begin{bmatrix}
1 & (u_1 + v_3 v_2, u_2 - v_3 v_1, u_3 + v_2 v_1) \\
0 & 1
\end{bmatrix}
\]
The result follows from the first case. ■

Let \(\Gamma_j(q)\) denote a subloop
\[\Gamma_j(q) := \left\{ \begin{bmatrix} a & b \\ c e_j & d \end{bmatrix} \in \Gamma \left| \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv I \pmod{q} \right. \right\} \quad \text{and} \quad G\Gamma_j := G\Gamma_j(R).
\]

We are going to show that these three subloops generate the loop \(\Gamma(q)\), but before we need a result from commutative ring theory. Let \(R\) be a commutative ring with unit 1, and \(M\) be a \(R\)-module. \(R\) is called a local ring if there is an unique local maximal ideal, and when there are a finite number of maximal ideals, it is called semilocal. An element \(x \in M\) is called unimodular if there is a linear form \(L : M \to R\) such that \(L(x) = 1\).

Lemma 2.2 Let \(x = (x_1, \ldots, x_m)\) be an unimodular element of \(R^m\). If \(R\) is a semilocal noetherian ring, then there are \(y_2, \ldots, y_m \in R\) such that
\[x_1 + y_2 x_2 + \cdots + y_m x_m
\]
is invertible in \(R\).

Proof. See [1] page 386. ■

Theorem 2.1 Let \(R\) be a Dedekind domain. For every \(q\) non zero ideal of \(R\), \(\Gamma(q)\) is generated by \(\Gamma_1(q), \Gamma_2(q)\) and \(\Gamma_3(q)\).

Proof. Let \(\mathcal{L} = \langle \Gamma_1(q), \Gamma_2(q), \Gamma_3(q) \rangle\). It is clear that \(\mathcal{L} \subset \Gamma(q)\), thus, we only need to show \(\Gamma(q) \subset \mathcal{L}\). Let \(A \in \Gamma(q)\), i.e., \(A\) is a matrix of the
form \[\begin{bmatrix} a \\ (v_1, v_2, v_3) \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \] with \(ab - (v_1u_1 + v_2u_2 + v_3u_3) = 1 \) and \(a \) and \(b \) congruent to 1 modulo \(q \), in particular, \(a \neq 0 \). If \(q = R \) and \(a = 0 \), since \(ab - (v_1u_1 + v_2u_2 + v_3u_3) = 1 \), there is \(j \) such that \(v_ju_j \neq 0 \). It follows that it is sufficient to prove

\[T_jA = \begin{bmatrix} e_j \cdot u & be_j + e_j \times v \\ -ae_j + e_j \times v & -e_j \cdot v \end{bmatrix} \]

is in \(L \), and therefore we can suppose, in this case too, that \(a \neq 0 \).

Since \(R \) is Dedekind, \(\mathbb{R}_a \) is a semilocal ring and \((-v_1)u_1 + (-u_2)v_2 + (-u_3)v_3 \equiv 1 \pmod{a} \), thus \((u_1, v_2, v_3)\) is unimodular in \(\mathbb{R}_a^3 \). Therefore from the lemma 2.3, exist \(t \) and \(s \) such that \(u_1 + v_2t + v_3s = u_1' \) is invertible in \(\mathbb{R}_a \) and it follows that \(a \) and \(u_1' \) are relative primes. Define

\[u_2' = -v_1t + u_2 \quad \text{and} \quad u_3' = -v_1s + u_3. \]

It is easy to prove that \(B = \begin{bmatrix} a \\ (v_1, v_2, v_3) \end{bmatrix} \begin{bmatrix} u_1' \\ u_2' \\ u_3' \end{bmatrix} \in \mathbb{I}(q) \) and

\[A = B \begin{bmatrix} 1 \\ -(u_2'v_3 - u_3'u_2, u_3'u_1 - u_1'u_3, u_1'u_2 - u_2'u_1) \end{bmatrix} B(u_1 - u_1', u_2 - u_2', u_3 - u_3') \]

It follows from lemma 2.1 that we only need to prove that \(B \in \mathcal{L} \). Let \(q \) be an arbitrary element of \(q^* \). Since \((a, qu_1') = 1 \), there are \(x, y \) integer numbers such that \(ax + qu_1'y = 1 \). But \(a \equiv 1 \pmod{q} \), therefore \(x \equiv 1 \pmod{q} \) and

\[\begin{bmatrix} a \\ (-qy, 0, 0) \end{bmatrix} \in \mathbb{I}(1)(q). \]

Thus

\[\begin{bmatrix} a \\ (v_1, v_2, v_3) \end{bmatrix} \begin{bmatrix} u_1' \\ u_2' \\ u_3' \end{bmatrix} = \begin{bmatrix} (xu_1 + bqu_2, xu_2 - u_1'u_1, xu_3 + u_2'u_1) \\ (xv_1 + bqu_2, xv_2 - u_1'u_1, xv_3 + u_2'u_1) \end{bmatrix} \begin{bmatrix} a \\ (-qy, 0, 0) \end{bmatrix} \]

Finally, lemma 2.1 shows that \(B \in \mathcal{L} \).

Corollary 2.1 Let \(R \) be a Dedekind algebraic domain that contains infinitely many units. Then \(\mathbb{I} \) is generated by the matrices \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \(\begin{bmatrix} 1 \\ ae_j \end{bmatrix} \), where \(a \in R \) and \(j = 1, 2, 3 \).
Proof. It follows from Vaseršteǐn theorem. □

The following theorem is a generalization of Wohlfahrt’s criterion to Π.

Theorem 2.2 Let q_1, q_2 be ideals of the Dedekind domain R. Then $\Pi(q_1) \subseteq \Delta(q_1)\Pi(q_2)$.

Proof. This proof is similar to the proof of Wohlfahrt’s theorem made by Mason and Stothers (see [4]). Let $A = \begin{bmatrix} a & (v_1, v_2, v_3) \\ (u_1, u_2, u_3) & b \end{bmatrix}$ be an arbitrary element of $\Pi(q_1)$, we need to find $B \in \Delta(q_1)$ such that $A \equiv B \pmod{q_2}$, and therefore $A = B(B^{-1}A)$ where $B^{-1}A \in \Pi(q_2)$.

Case 1: If $a \equiv 1 \pmod{q_2}$, then it is sufficient to take $B = \begin{bmatrix} 1 & (v_1, v_2, v_3) \\ (u_1, u_2, u_3) & ab \end{bmatrix}$, because lemma 2.1 shows that $B \in \Delta(q_1)$. In addition,

$$B^{-1}A = \begin{bmatrix} a^2b - (u_1v_1 + u_2v_2 + u_3v_3) & (ab - b)(v_1, v_2, v_3) \\ (1 - a)(u_1, u_2, u_3) & b - (u_1v_1 + u_2v_2 + u_3v_3) \end{bmatrix}$$

Thus $A \in \Delta(q_1)\Pi(q_2)$.

Case 2: If $(a, q_2) = 1$, then the congruence $ax \equiv 1 \pmod{q_2}$ has solution. Let a' be a solution, $c = gcd(v_1, v_2, v_3)$, $v'_j = \frac{v_j}{c}$ for $j = 1, 2, 3$ and $X = \begin{bmatrix} 1 & a'(1 - a - c)(v'_1, v'_2, v'_3) \\ (0, 0, 0) & 1 \end{bmatrix}$. Notice that $a'(1 - a - c)$ is in q_1 since $1 - a \in q_1$ and $c \in q_1$, thus $X \in \Delta(q_1)$. In addition,

$$AX \equiv \begin{bmatrix} a & (1 - a)(v'_1, v'_2, v'_3) \\ (u_1, u_2, u_3) & b + a'(1 - a - c)(\frac{ab - 1}{c}) \end{bmatrix} \pmod{q_2}.$$

Define $T_1 = \begin{bmatrix} 1 & (0, 0, 0) \\ (t_1, t_2, t_3) & 1 \end{bmatrix}$ where $v'_1t_1 + v'_2t_2 + v'_3t_3 = 1$. We have

$$T_1^{-1}(AX)T_1 \equiv \begin{bmatrix} 1 & * \\ * & * \end{bmatrix} \pmod{q_2}.$$

7
It follows from Case 1 that \(T_1^{-1}(AX)T_1 \equiv B \pmod{q_2} \) for some \(B \in \Delta(q_1) \), therefore \(A \equiv (T_1BT_1^{-1})X^{-1} \pmod{q_2} \), with \((T_1BT_1^{-1})X^{-1} \in \Delta(q_1) \).

Case 3: In the general case, denoting \(d = (u_1v_1 + u_2v_2 + u_3v_3) \), we have \(ab - d = 1 \). Then \((a, d) \) seen as an element of \(\left(\mathcal{R}_{q_2} \right)^2 \) is unimodular, and since \(\mathcal{R}_{q_2} \) is semilocal ring, from lemma 2.2, exists \(t \) such that \(a - td \) is invertible in \(\mathcal{R}_{q_2} \). Define \(T = \begin{bmatrix} 1 & (0, 0, 0) \\ -t(u_1, u_2, u_3) & 1 \end{bmatrix} \), then

\[
T^{-1}AT = \begin{bmatrix} a - td & (v_1, v_2, v_3) \\ -(at - 1 + bt + t^2d)(u_1, u_2, u_3) & b + td \end{bmatrix},
\]

where \((a + td, q_2) = 1 \), and from Case 2, \(T^{-1}AT \equiv B \pmod{q_2} \) for some \(B \in \Delta(q_1) \). Therefore \(A \equiv TBT^{-1} \pmod{q_2} \), with \(TBT^{-1} \in \Delta(q_1) \).

Corollary 2.2 Let \(L \) be a congruence subloop of \(\Gamma \) of level \(q \). Then \(L \supset \Gamma(q) \).

Proof. Since \(L \) is a congruence subloop, then there is an ideal \(q' \) such that \(\Gamma(q') \subset L \), furthermore \(\Delta(q) \subset L \), then \(\Gamma(q) \subset \Delta(q) \Gamma(q') \subset L \). ■

To show a generalization of Serre’s Theorem to \(\Gamma \), we need the following fact about Loop Theory

Definition 2.2 Let \(L \) be a loop with the inverse property and \(H \) a subloop of \(L \). We said that \(L \) has the Lagrange property relative to \(H \), if \(L \) and \(H \) satisfy one of the following equivalent conditions (see [3] page 52)

1. \(Hx \cap Hy \neq \emptyset \), \(x, y \in L \) if and only if \(Hx = Hy \).
2. \(H(hx) = Hx \) for all \(x \in L \) and \(h \in H \)

We said that \(L \) has the weak Lagrange property relative to \(H \), if there exists \(F \), finite index subloop of \(H \), such that \(L \) has the Lagrange property relative to \(F \).
Observe that if H is normal subloop of L, then L has the Lagrange property relative to H, and there exist subloops, such that Γ have not the Lagrange property relative to these subloops. For instance, $I_\Gamma(1) \subset \{ [0 (a,b,c) (0,d,e) c] \in I_\Gamma \}$ and $\Gamma(1) = [2,3,2] \notin \Gamma \Gamma(1) \{ 1 e_1 = (1) e_1 = 0 e_1 + e_2 - e_2 + e_3 0 \} = (0, -3, 4) 3 \notin \Gamma \Gamma(1) \{ 1 e_1 = (1) e_1 = 0 e_1 + e_2 - e_2 + e_3 0 \}$, thus Γ has not the Lagrange property relative to $G_A(1)$. Similarly, Γ has not the Lagrange property relative to $\Gamma(1) \Gamma(n)$, for all $n \geq 2$. In addition, when L has the Lagrange property relative to H, there exists a subset T of \mathcal{H} called a transversal of H such that $L = \bigcup_{x \in T} \mathcal{H}x$ with $\mathcal{H}x \cap \mathcal{H}y = \emptyset$ for $x, y \in T$.

Lemma 2.3 Let L be a loop with the inverse property and suppose that \mathcal{H} is a finite index subloop of L such that L has the Lagrange property relative to \mathcal{H}. Let F be a subloop of L. Then $\mathcal{H} \cap F$ is a finite index subloop of F and F has the Lagrange property relative to $\mathcal{H} \cap F$.

Proof. For all $a \in \mathcal{H} \cap F$ and $f \in F$, we have

$$(\mathcal{H} \cap F)(af) = \mathcal{H}(af) \cap F(af) = \mathcal{H}f \cap Ff = (H \cap F)f,$$

thus F has the Lagrange property relative to $H \cap F$. Let $n = [L : H]$ and $T = \{ t_1, \ldots t_n \}$ a transversal of \mathcal{H}. We can suppose that $\mathcal{H}t_j \cap F \neq \emptyset$ if and only if $j \leq m$ for some $m \leq n$, thus $F = \bigcup_{j=1}^{m} \mathcal{H}t_j \cap F$. Let s_j be an arbitrary element of $\mathcal{H}t_j \cap F$. We claim that $(\mathcal{H} \cap F)s_j = \mathcal{H}t_j \cap F$. In fact, since $s_j = ht_j$ for some $h \in \mathcal{H}$, then

$$(\mathcal{H} \cap F)s_j = \mathcal{H}(ht_j) \cap Fs_j = \mathcal{H}t_j \cap F, \text{ thus } [\mathcal{H} \cap F : F] = m. \quad \blacksquare$$

Theorem 2.3 Let R be a Dedekind algebraic integer domain, and suppose that R contains an infinite order unit. If L is a finite index subloop of Γ and Γ has the weak Lagrange property, then L is a congruence subloop.
Proof. Let \mathcal{F} be a finite index subloop of \mathcal{H}, such that Γ has the Lagrange property relative to \mathcal{F}. From lemma 2.3 follows

$$[\Gamma_{(j)} : \Gamma_{(j)} \cap \mathcal{F}] \leq [\Gamma : \mathcal{F}] \leq [\Gamma : \mathcal{L}][\mathcal{L} : \mathcal{F}] < \infty.$$

Then from Serre’s Theorem follows that there are ideals q_j for $j = 1, 2, 3$, such that $\Gamma_{(j)}(q_j) \subset \mathcal{F} \cap \Gamma_{(j)} \subset \mathcal{L}$. Define $q = q_1 \cap q_2 \cap q_3$, then $\Gamma_{(j)}(q) \subset \mathcal{L}$ for $j = 1, 2, 3$, and from theorem 2.1 follows that $I_{\Gamma}(q) \subset \mathcal{F} \subset \mathcal{L}$. ■

Proposition 2.1 Let R be a Dedekind algebraic integer domain with an infinite order unit and q an ideal of R. Then $\Delta(q) = \Gamma(q)$.

Proof. From Varserštai theorem $\Delta(q) \cap \Gamma_{(j)}$ is a finite index subgroup of $\Gamma_{(j)}$, then from Serre’s Theorem there are q_j ideals such that $\Gamma_{(j)}(q_j) \subset \Delta(q) \cap \Gamma_{(j)} \subset \Delta(q)$. Thus, from theorem 2.1 follows that $I_{\Gamma}(q') \subset \Delta(q)$ where $q' = q_1 \cap q_2 \cap q_3$. Finally, from corollary 2.2 follows that $\Delta(q) = I_{\Gamma}(q)$. ■

3 The Loop $SLL(2, \mathbb{Z})$

In this section, Γ denotes the loop $SLL(2, \mathbb{Z})$. For each $n \geq 1$ $\Gamma(n)$ is a principal congruence subloop of level n and $\Gamma'(n)$ is a subloop of $\Gamma(n)$ generated by the associators and commutators, i.e., the smallest loop that contains any element of the form

$$[A, B] = ABA^{-1}B^{-1} \quad \text{and} \quad [A, B, C] = ((AB)C)(A(BC))^{-1},$$

with A, B and $C \in \Gamma(n)$. For $j = 1, 2, 3$, we denote

$$T_j = \begin{bmatrix} 0 & e_j \\ -e_j & 0 \end{bmatrix} \quad S_j = \begin{bmatrix} 1 & e_j \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad U_j = \begin{bmatrix} 0 & e_j \\ -e_j & 1 \end{bmatrix}$$

Observe that $\Gamma_{(j)} \cong SL(2, \mathbb{Z})$ for each $j = 1, 2, 3$. Specially, $\Gamma_{(j)}$ is generated by two of the following matrices T_j, S_j and U_j (See [1] pag 139).

Proposition 3.1 Γ has minimal set of generators $\{S_1, S_2, U_3\}$. In general, for every positive integer n, $\Gamma(n)$ is finitely generated.
Proof. Since T_1, T_2, S_3 and T_3 can be written as a product of S_1, S_2 and U_3 (see [14] pag 190) and Γ is dissociative, it follows that this is a minimal set of generator. For every $n > 1$, each $\Gamma(j)(n)$ are finitely generated free groups. The proposition follows as a trivial consequences of theorem 2.1. ■

Remark 3.1 From proof of theorem 2.1, we can observe that $\Gamma(n)$ can be generated by the generators of $\Gamma(1)(n)$ and the matrices $\begin{bmatrix} 1 & ne_j \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ ne_j & 1 \end{bmatrix}$ for $j = 2, 3$. Thus $\Gamma(n) = \Gamma(1)(n)\Delta(n)$.

Proposition 3.2 Let p be a prime number and $k \in \mathbb{N}$. Then $\Gamma(p^k)$ is a normal subloop of Γ and it has index $p^{7k}(1 - \frac{1}{p^4})$.

Proof. Consider a loop homomorphism from Γ onto $SLL(2, \mathbb{Z}_{p^k})$

$$\Theta : \Gamma \longrightarrow SLL(2, \mathbb{Z}_{p^k})$$

$$A \longrightarrow A \pmod{p^k}$$

It is easy to prove that $\ker(\Theta) = \Gamma(p^k)$. Then

$$[\Gamma : \Gamma(p^k)] = \text{cardinality of } SLL(2, \mathbb{Z}_{p^k}).$$

Now to obtain the cardinality of $SLL(2, \mathbb{Z}_{p^k})$, let us take an arbitrary element $A = \begin{pmatrix} a \\ (v_1, v_2, v_3) \\ b \end{pmatrix}$, such that

$$\det A = ab - v_1u_1 - v_2u_2 - v_3u_3 \equiv 1 \pmod{p^k}.$$

Observe that (a, v_1, v_2, v_3) can assume any value different from $p(n_1, n_2, n_3, n_4)$, i.e. this vector can assume $p^{4k} - p^{4(k-1)}$ different values. Fixing this vector, we know that there is a coordinate non-divisible by p. Without loss of generality, suppose that a is not divisible by p (In the case a is divisible by p there is some v_j that is not divisible by p and the argument follows similarly). Then, when we fix the values u_1, u_2, u_3 the congruence

$$ab \equiv 1 + v_1u_1 + v_2u_2 + v_3u_3 \pmod{p^k}$$

has an unique solution b modulo p^k, i.e., u_1, u_2 and u_3 determine exactly one value of b modulo p^k and thus (b, u_1, u_2, u_3) can assume p^{3k} values. ■
Theorem 3.1 \(\Gamma(n) \) is a normal subloop of \(\Gamma \) with index \(n^7 \prod_{p \mid n} \left(1 - \frac{1}{p^4} \right) \).

Proof. Suppose \(n = p_1^{k_1} \cdots p_l^{k_l} \). Consider the surjective loops homomorphism

\[
\Theta : \Gamma \longrightarrow \prod_{j=1}^{l} \text{SLL}(2, \mathbb{Z}_{p_j^{k_j}})
\]

\[
A \longmapsto \prod_{j=1}^{l} A \pmod{p_j^{k_j}}
\]

It is easy to prove that \(\ker(\Theta) = \Gamma(n) \) and then \(\Gamma(n) \) is a normal subloop of \(\Gamma \), in addition

\[
[\Gamma : \Gamma(n)] = \text{number of elements of } \prod_{j=1}^{l} \text{SLL}(2, \mathbb{Z}_{p_j^{k_j}}).
\]

Then the theorem follows from the proposition before. □

Lemma 3.1 Let \(\mathcal{L} \) be a normal subloop \(\Gamma \), \(m \) and \(n \) positive integers such that \(\Delta(n) \subset \mathcal{L} \) and \(\Delta(m) \subset \mathcal{L} \). If \(d = (n, m) \), then \(\Delta(d) \subset \mathcal{L} \).

Proof. Since \(d = tn + sm \) where \(t, s \in \mathbb{Z} \), then lemma follows from

\[
\begin{bmatrix}
1 & dx \\
0 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & nx \\
0 & 1
\end{bmatrix}^t \begin{bmatrix}
1 & mx \\
0 & 1
\end{bmatrix}^s \quad \text{and} \quad
\begin{bmatrix}
1 & 0 \\
dx & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 \\
mx & 1
\end{bmatrix}^t
\]

for every \(x \in \mathbb{Z}^3 \). □

It is known that \(\Gamma'(n) \) is a normal subloop of \(\Gamma(n) \) (ver \{3\} pág. 56). Let \(G(n) \) denote the group \(\frac{\Gamma(n)}{\Gamma'(n)} \). From proposition 3.1 follows that \(\Gamma(n) \) is finitely generated, and thus \(G(n) \) is a finite generated abelian group.

Lemma 3.2 For \(n > 5 \), \(G(n) \) is infinite.
Proof. For each $A \in \Pi(n)$, from observation 3.1 we know that $A = BC$ where $B \in \Pi(1)(n)$ and $C \in \Delta(n)$. Let $\Theta : \Pi(n) \to \frac{\Pi(1)(n)}{\Delta(1)(n)}$ defined by the rule $\Theta(A) = B\Delta(1)(n)$. To show that Θ is well defined, suppose that $A = B_1C_1 = B_2C_2$ where $B_1, B_2 \in \Pi(1)(n)$ and $C_1, C_2 \in \Delta(n)$. Since $\Delta(n)$ is normal,

$$B_1\Delta(n) = (B_1C_1)\Delta(n) = (B_2C_2)\Delta(n) = B_2\Delta(n),$$

thus $B_1^{-1}B_2 \in \Delta(n) \cap \Pi(1)(n) = \Delta(1)(n)$ and Θ is a loop homomorphism with kernel $\Delta(n)$. It follows that

$$\frac{\Pi(n)}{\Delta(n)} \simeq \frac{\Pi(1)(n)}{\Delta(1)(n)}.$$

Now, from the second and third homomorphism theorems for loops, we have

$$\frac{\Pi(n)}{\Delta(n)} \simeq \frac{\Pi(n)}{\Delta(n) \cap \Pi(1)(n)} \simeq \frac{\Pi(n)}{\Pi'(n)\Delta(n)} \simeq \frac{\Pi(n)}{\Pi'(n)\Delta(n)}.$$

Let $C(n)$ denote the group $\frac{\Pi(1)(n)}{\Delta(1)(n)}$. In [1] it proved that profinite cohomology group

$$H^1(\lim_\leftarrow C(n), \mathbb{Q}/\mathbb{Z}) = \text{Hom}(\frac{C(n)}{C(n)'}, \mathbb{Q}/\mathbb{Z}) = 0$$

and

$$H^1(\lim_\leftarrow C(n), \mathbb{Q}/\mathbb{Z}) = \text{Hom}(\frac{C(n)}{C(n)'}, \mathbb{Z})$$

is infinity, thus $\frac{C(n)}{C(n)'}$ is a abelian torsion-free group for all $n \geq 1$. Since $C(n)$ is an infinite group for $n > 5$ (see [1] pag 145), it follows that $[C(n) : (C(n))']$ is infinite for $n > 5$ and

$$|\mathbb{G}(n)| = [\Pi(n) : \Pi'(n)] \geq [\Pi(n) : \Pi'(n)\Delta(n)] = [C(n) : (C(n))'] = \infty.$$

Denote $\mathbb{G}_s(n)$ the subgroup of $\mathbb{G}(n)$ generated by the s-th powers, i.e. $\mathbb{G}_s(n) = \langle A^s | A \in \mathbb{G}(n) \rangle$, then $\mathbb{G}(n)/\mathbb{G}_s(n)$ is finite, in fact, $[\mathbb{G}(n) : \mathbb{G}_s(n)] \leq s^k$ where k is the number of generators of $\mathbb{G}(n)$. Observe that the homomorphisms

$$\Pi(n) \xrightarrow{\pi} \mathbb{G}(n) \xrightarrow{\psi} \frac{\mathbb{G}(n)}{\mathbb{G}_s(n)}$$
are well defined and surjective. Denote $\Gamma(n, s) = \ker(\psi \circ \pi) = \pi^{-1}(G_s(n))$. It is easy to see that $\Gamma(n, s)$ is generated by the commutators, associators and the set $\{A^s | A \in \Gamma(n)\}$.

Theorem 3.2 Let $n > 5$ and s be an odd integer such that $(n, s) = 1$. Then $\Gamma(n, s)$ is a finite index subloop of Γ that is not a congruence subloop.

Proof. Since $\left[\Gamma : \Gamma(n, s)\right] = \left[\Gamma : \Gamma(n)\right]\left[\Gamma(n) : \Gamma(n, s)\right]$, from theorem 3.1, the definition of $\Gamma(n, s)$ and the homomorphisms theorem we have

$$\left[\Gamma : \Gamma(n)\right] = n^7 \prod_{p|n} \left(1 - \frac{1}{p^t}\right) \quad \text{and} \quad \left[\Gamma(n) : \Gamma(n, s)\right] = [G(n) : G_s(n)]$$

thus $[\Gamma : \Gamma(n, s)]$ is finite. In addition, since $G(n)$ is a finite generated abelian group and for $n > 5$ is infinite, it follows that $G(n)$ has a factor isomorphic to \mathbb{Z}, and thus

$$\left[\Gamma(n) : \Gamma(n, s)\right] = [G(n) : G_s(n)] \geq s > 1,$$

in particular $\Gamma(n, s) \subsetneq \Gamma(n)$. Now, suppose $\Gamma(n, s)$ is a congruence subloop, since $A_{jn}^2, B_{jn}^2 \in \Gamma'(n)$ for every $j = 1, 2, 3$, then

$$\Delta(2n^2) \subset \Gamma'(n) \subset \Gamma(n, s).$$

In the same way, from the definition of $\Gamma(n, s)$, we have that $A^s \in \Gamma(n, s)$ for every $A \in \Gamma(n)$, in particular $\begin{bmatrix} 1 & nx \\ 0 & 1 \end{bmatrix}^s, \begin{bmatrix} 1 & 0 \\ nx & 1 \end{bmatrix}^s \in \Gamma(n, s)$ for every $x \in \mathbb{Z}^3$. Then $\Delta(ns) \subset \Gamma(n, s)$. Now, $(ns, 2n^2) = n$, then from lemma 3.1, we have $\Delta(n) \subset \Gamma(n, s)$ and, finally from corollary 2.2, it follows that

$$\Gamma(n) \subset \Gamma(n, s) \subsetneq \Gamma(n),$$

but this is impossible. ■

If $s > 120$ is even, the theorem above is also true. In fact, since $(ns, 2n^2) = 2n$, from lemma 3.1 we have $\Delta(2n) \subset \Gamma(n, s)$, it follows that $\Gamma(2n) \subset \Gamma(n, s)$ and

$$s \leq \left[\Gamma(n) : \Gamma(n, s)\right] \leq [\Gamma(n) : \Gamma(2n)] = 120,$$

but this is a contradiction, since $s > 120$.

14
Acknowledgement

The authors are grateful to Guilherme Leal for suggesting the problem and helpful conversations.

References

[1] H. Bass, M. Lazard and J. P. Serre, Sous-groupes d’indice fini dans $SL(n,\mathbb{Z})$, *Bull. Amer. Math. Soc.* 70 (1964), 385-392.

[2] H. Bass, J. Milnor and J. P. Serre, Solution of the congruence group problem for SL_n ($n \geq 3$) and Sp_{2n} ($n \geq 2$), *Publ. Math. I.H.E.S.* 33 (1967), 59-137.

[3] E. G. Goodaire, E. Jesper and C. P. Miles, “Alternative loop Rings”, North-Holland Math. Studies, Vol 184, Elsevier, Amsterdam, 1996.

[4] A. W. Mason and W. W. Stothers, On subgroups of $GL(n, A)$ which are Generated by Commutators, *Inventiones Math.* 23 (1974), 327-346.

[5] J. L. Mennicke, Finite factor groups of the unimodular group, *Ann. of Math.* 81 (1965), 31-37.

[6] M. Newman, “Integral Matrices”, Academic Press, New York, 1972.

[7] I. Reiner, Normal Subgroups of the unimodular group, *Illinois J. Math.* 2 (1958), 142-144.

[8] J. P. Serre, Le problème des groupes de congruence pour SL_2, *Ann of Math.* 92 (1970), 489-527.

[9] L. N. Varščtein, On the group SL_2 over Dedekind Rings of arithmetic type, *Math USSR Sbornik* 18 (1972), 321-332.

[10] P. Vojtěchovský, Generators of Nonassociative simple Moufang loops over finite prime Fields, *Journal of Algebra* 241 (2001), 181-192, doi:10.1006/jabr.2001.8776

[11] Zhevlakov, Slin’ko, Shestakov and Shirshov. “Rings that are nearly associative”. Academic Press, New York, 1982.