Search for gluinos in events with an isolated lepton, jets and missing transverse momentum at $\sqrt{s} = 13$ TeV with the ATLAS detector

ATLAS Collaboration*

CERN, 1211 Geneva 23, Switzerland

Received: 16 May 2016 / Accepted: 26 September 2016 / Published online: 21 October 2016
© CERN for the benefit of the ATLAS collaboration 2016. This article is published with open access at Springerlink.com

Abstract The results of a search for gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton–proton collision data at a centre-of-mass energy of $\sqrt{s} = 13$ TeV are presented. The dataset used was recorded in 2015 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Six signal selections are defined that best exploit the signal characteristics. The data agree with the Standard Model background expectations in all six signal selections, and the largest deviation is a 2.1 standard deviation excess. The results are interpreted in a simplified model where pair-produced gluinos decay via the lightest chargino to the lightest neutralino. In this model, gluinos are excluded up to masses of approximately 1.6 TeV depending on the mass spectrum of the simplified model, thus surpassing the limits of previous searches.

1 Introduction

Supersymmetry (SUSY) [1–6] is a theoretical framework of physics beyond the Standard Model (SM) that predicts for each SM particle the existence of a supersymmetric partner differing by half a unit of spin. The partner particles of the SM fermions (quarks and leptons) are the scalar squarks ($\tilde{q}$) and sleptons ($\tilde{\ell}$). In the boson sector, the supersymmetric partner of the gluon is the fermionic gluino (\tilde{g}), whereas the supersymmetric partners of the Higgs (higgsinos) and the electroweak gauge bosons (winos and bino) mix to form charged and neutral mass eigenstates called charginos ($\chi^{\pm}_{1,2}$) and neutralinos ($\chi^{0}_{1,2,3,4}$). In the Minimal Supersymmetric extension of the Standard Model (MSSM) [7,8] two scalar Higgs doublets along with their Higgsino partners are predicted. SUSY addresses the SM hierarchy problem [9–12] provided that the masses of at least some of the supersymmetric particles (most notably the higgsinos, the top squarks and the gluinos) are near the TeV scale.

In R-parity-conserving SUSY [13], gluinos might be pair-produced at the Large Hadron Collider (LHC) via the strong interaction and decay either directly or via intermediate states to the lightest supersymmetric particle (LSP). The LSP is stable and is assumed to be only weakly interacting, making it a candidate for dark matter [14,15].

This paper considers a SUSY-inspired model where pair-produced gluinos decay via the lightest chargino ($\chi^{\pm}_{1}$) to the LSP, which is assumed to be the lightest neutralino ($\chi^{0}_{1}$). The three-body decay of the gluino to the chargino proceeds via $\tilde{g} \rightarrow q\tilde{\chi}^\pm_{1}$. The chargino decays to the LSP by emitting an on- or off-shell W boson, depending on the available phase space. In the MSSM this decay chain is realised when the gluino decays via a virtual squark that is the partner of the left-handed SM quark, to the chargino with a dominant wino component. In the MSSM the mass of the chargino is independent of the mass of the gluino.

The experimental signature characterising this search consists of a lepton (electron or muon), several jets, and missing transverse momentum ($p_T^{miss}$ with magnitude $E_T^{miss}$) from the undetectable neutralinos and neutrino(s). The analysis is based on two complementary sets of search channels. The first set requires a low transverse momentum ($p_T$) lepton ($7/6 < p_T(e/\mu) < 35$ GeV), and is referred to as the soft-lepton channel, while the second set requires a high-$p_T$ lepton ($p_T(e/\mu) > 35$ GeV) and is referred to as the hard-lepton channel. The two sets target SUSY models with small and large mass differences between the predicted supersymmetric particles, respectively. The search uses the ATLAS data collected in proton–proton LHC collisions in 2015 corresponding to an integrated luminosity of 3.2 fb$^{-1}$ at a centre-of-mass energy of 13 TeV.

The analysis extends previous ATLAS searches with similar event selections [16] which were performed with data collected during the first data-taking campaign between 2010...
and 2012 (LHC Run 1) at a centre-of-mass energy of up to 8 TeV. The results of all Run 1 ATLAS searches targeting squark and gluino pair production are summarised in Ref. [17]. The CMS Collaboration has performed similar searches for gluinos with decays via intermediate supersymmetric particles in Run 1 [18,19] and Run 2 [20].

This paper is structured as follows. After a brief description of the ATLAS detector in Sect. 2, the simulated data samples for the background and signal processes used in the analysis as well as the dataset and the trigger strategy are detailed in Sect. 3. The reconstructed objects and quantities used in the analysis are described in Sect. 4 and the event selection is presented in Sect. 5. The background estimation and the systematic uncertainties associated with the expected event yields are discussed in Sects. 6 and 7, respectively, while details of the statistical interpretation are given in Sect. 8. Finally, the results of the analysis are presented in Sect. 9 and are followed by a conclusion.

2 ATLAS detector

ATLAS [21] is a general-purpose detector with a forward-backward symmetric design that provides almost full solid angle coverage around the interaction point.1 The main components of ATLAS are the inner detector (ID), which is surrounded by a superconducting solenoid providing a 2 T axial magnetic field, the calorimeter system, and the muon spectrometer (MS), which is immersed in a magnetic field generated by three large superconducting toroidal magnets. The ID provides track reconstruction within |η| < 2.5, employing pixel detectors close to the beam pipe, silicon microstrip detectors at intermediate radii, and a straw-tube tracker with particle identification capabilities based on transition radiation at radii up to 1080 mm. The innermost pixel detector layer, the insertable B-layer [22], was added during the shutdown between LHC Run 1 and Run 2, at a radius of 33 mm around a new, narrower, beam pipe. The calorimeters cover |η| < 4.9, the forward region (3.2 < |η| < 4.9) being instrumented with a liquid-argon (LAr) calorimeter for both the electromagnetic and the hadronic measurements. In the central region, a lead/LAr electromagnetic calorimeter covers |η| < 3.2, while the hadronic calorimeter uses two different detector technologies, with scintillator tiles (|η| < 1.7) or LAr (1.5 < |η| < 3.2) as the active medium. The MS consists of three layers of precision tracking chambers providing coverage over |η| < 2.7, while dedicated fast chambers allow triggering over |η| < 2.4. The ATLAS trigger system (developed from Ref. [23]) consists of a hardware-based first-level trigger and a software-based high-level trigger.

3 Simulated event samples and data samples

The signal model considered in this search is a simplified model [24–26] that has been used in previous similar ATLAS searches [16]. In this model, exclusive pair-production of gluinos is assumed. The gluinos decay via an intermediate chargino, here the lightest chargino \( \tilde{\chi}_1^\pm \), into the lightest supersymmetric particle, the lightest neutralino \( \tilde{\chi}_1^0 \). The branching ratio of each supersymmetric particle decay considered is assumed to be 100%. Other supersymmetric particles not entering the decay chain described are not considered in this simplified model and their masses are set to high values. The gluino decay is assumed to proceed only via virtual first- and second-generation quarks, hence no bottom or top quarks are produced in the simplified model. The free parameters of the model are the masses of the gluino (\( m_{\tilde{g}} \)), the chargino (\( m_{\tilde{\chi}_1^\pm} \)), and the neutralino (\( m_{\tilde{\chi}_1^0} \)). Two types of scenarios are considered: in the first type, the mass of the neutralino is fixed to 60 GeV, and the sensitivity is assessed as a function of the gluino mass and a mass-ratio parameter defined as \( x = (m_{\tilde{\chi}_1^\pm} - m_{\tilde{\chi}_1^0})/(m_{\tilde{g}} - m_{\tilde{\chi}_1^0}) \). In the second type, \( m_{\tilde{g}} \) and \( m_{\tilde{\chi}_1^0} \) are free parameters, while \( m_{\tilde{\chi}_1^\pm} \) is set to \( m_{\tilde{\chi}_1^\pm} = (m_{\tilde{g}} + m_{\tilde{\chi}_1^0})/2 \). The decay topology of the simplified model is illustrated in Fig. 1.

The signal samples are generated using MG5_aMC@NLO 2.2.2 [27] with up to two extra partons in the matrix element, interfaced to PYTHIA 8.186 [28] for parton showers and hadronisation. For the combination of the

---

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle \(\theta\) as \(\eta = -\ln \tan(\theta/2)\) and the rapidity is defined as \(y = 0.5 \ln((E + p_\perp)/(E - p_\perp))\), where \(E\) is the energy and \(p_\perp\) the longitudinal momentum of the object of interest.

---

![Image](image-url)
matrix element and the parton shower the CKKW-L matching scheme [29] is applied with a scale parameter that is set to a quarter of the mass of the gluino. The ATLAS A14 [30] set of tuned parameters (tune) for the underlying event is used together with the NNPDF2.3 LO [31] parton distribution function (PDF) set. The EvtGen v1.2.0 program [32] is used to describe the properties of the bottom and charm hadron decays in the signal samples.

The signal cross-sections are calculated at next-to-leading order (NLO) in the strong coupling constant, adding the resummation of soft gluon emission at next-to-leading-logarithmic accuracy (NLL) [33–37]. The nominal cross-section and its uncertainty are taken from an envelope of cross-section predictions using different PDF sets and factorisation and renormalisation scales [38,39].

The simulated event samples for the SM backgrounds are summarised in Table 1, along with the PDFs and tunes used. Further samples are also used to assess systematic uncertainties, as explained in Sect. 7.

For the production of $t\bar{t}$ and single top quarks in the $Wt$ and $s$-channel [43] the POWHEG-BOX v2 [44] generator with the CT10 [45] PDF sets in the matrix-element calculations is used. Electroweak $t$-channel single-top-quark events are generated using the POWHEG-BOX v1 generator. This generator uses the four-flavour scheme for the NLO matrix-element calculations together with the fixed four-flavour PDF set CT10f4. For all top-quark processes, top-quark spin correlations are preserved (for the single-top $t$-channel, top quarks are decayed using MadSpin [46]). The parton shower, fragmentation and the underlying event are simulated using Pythia 6.428 with the CTEQ6L1 [47] PDF set and the corresponding Perugia2012 tune (P2012) [42]. The top-quark mass is assumed to be 172.5 GeV. The $t\bar{t}$ events are normalised to the NNLO+NNLL cross-sections. The single-top-quark events are normalised to the NLO cross-sections.

Events containing $W$ or $Z$ bosons with associated jets ($W/Z+$jets) [48] are simulated using the SHERPA 2.1.1 generator with massive $b/c$-quarks. Matrix elements are calculated for up to two partons at NLO and four partons at leading order (LO). The matrix elements are calculated using the Comix [49] and OpenLoops [50] generators and merged with the SHERPA 2.1.1 parton shower [51] using the ME+PS@NLO prescription [52]. The CT10 PDF set is used in conjunction with a dedicated parton-shower tuning developed by the SHERPA authors. The $W/Z+$jets events are normalised to their NNLO cross-sections [53].

The diboson samples [54] are generated with the same generator and PDF setup as the $W/Z+$jets samples described above. The diboson processes are simulated including final states with four charged leptons, three charged leptons and one neutrino, two charged leptons and two neutrinos, and one charged lepton and three neutrinos. The matrix elements contain all diagrams with four electroweak vertices. They are

| Table 1 Simulated background event samples: the corresponding generator, parton shower, cross-section normalisation, PDF set and underlying-event tune are shown |
|---|---|---|---|---|---|
| Physics process | Generator | Parton shower | Cross-section normalisation | PDF set | Tune |
| $W$ ($\rightarrow \ell \nu$) + jets | SHERPA 2.1.1 | SHERPA 2.1.1 | NNLO | CT10 | default |
| $Z$ ($\rightarrow \ell \ell$) + jets | SHERPA 2.1.1 | SHERPA 2.1.1 | NLO | CT10 | default |
| $t\bar{t}$ | POWHEG-BOX v2 | POWHEG-BOX v1 | NLO | CT10 | A14 |
| Single-top ($t$-channel) | SHERPA 2.1.1 | SHERPA 2.1.1 | NLO | CT10 | default |
| Single-top ($s$-channel) | SHERPA 2.1.1 | SHERPA 2.1.1 | NLO | CT10 | default |
| $t\bar{t}$ + $W/Z$ + jets | SHERPA 2.1.1 | SHERPA 2.1.1 | NNLO | CT10 | default |

[40]
calculated for up to one parton (4ℓ, 2ℓ+2ν) or no additional partons (3ℓ+1ν, 1ℓ+3ν) at NLO and up to three partons at LO. The diboson cross-sections are taken from the NLO generator used.

For the t¯t + W/Z/WW processes [55], all events are simulated using MG5_aMC@NLO 2.2.2 at LO interfaced to the PYTHIA 8.186 parton-shower model, with up to two (t¯t + W), one (t¯t + Z) or no (t¯t + WW) extra partons included in the matrix element. The ATLAS underlying-event tune A14 is used together with the NNPDF2.3 LO PDF set. The events are normalised to their respective NLO cross-sections [56, 57].

The response of the detector to particles is modelled with a full ATLAS detector simulation [58] using GEANT4 [59], or using a fast simulation [60] based on a parameterisation of the performance of the electromagnetic and hadronic calorimeters and on GEANT4 elsewhere. All background (signal) samples are prepared using the full (fast) detector simulation.

All simulated samples are generated with a varying number of minimum-bias interactions (simulated using PYTHIA 8 with the MSTW2008LO PDF set [61] and the A2 tune [62]) overlaid on the hard-scattering event to model the multiple proton–proton interactions in the same and the nearby bunch crossings. Corrections are applied to the simulated samples to account for differences between data and simulation for trigger, identification and reconstruction efficiencies.

The proton–proton data analysed in this paper were collected by ATLAS in 2015 at a centre-of-mass energy of 13 TeV. During this period the instantaneous luminosity of the LHC reached 5.0 × 10^33 cm^-2 s^-1 with a mean number of additional pp interactions per bunch crossing of approximately 14. After application of data-quality requirements related to the beam and detector conditions, the total integrated luminosity amounts to 3.2 fb^-1, with an associated uncertainty of ±5%. These values are derived following the same methodology as the one detailed in Ref. [63].

The data are collected using an E_T^{miss} trigger with a threshold of 70 GeV. This trigger is close to fully efficient after applying the requirement on the offline E_T^{miss} to be larger than 200 GeV.

4 Object reconstruction and identification

The reconstructed primary vertex of an event is required to be consistent with the interaction region and to have at least two associated tracks with p_T > 400 MeV. When more than one such vertex is found, the vertex with the largest \( \sum p_T^2 \) of the associated tracks is chosen.

In the analysis, a distinction is made between preselected reconstructed objects, which fulfil a set of basic criteria and are used in the E_T^{miss} computation, and signal objects that enter the various control, validation and signal regions and are subject to more stringent requirements.

Jets are reconstructed from topological clusters in the calorimeters using the anti-k_T algorithm with a radius parameter R = 0.4 [64, 65]. Prior to jet reconstruction, clusters are calibrated to the electromagnetic scale response. Additional correction factors derived from simulation and data are applied to the measured jet energy to calibrate it to the particle level [65]. To mitigate the contributions from pile-up, the median energy density of all the jets in the event, multiplied by the jet area, is subtracted from the reconstructed jet energy [66, 67]. Preselected jets are required to have p_T > 20 GeV and |η| < 4.5. The contamination from cosmic rays, other sources of non-collision background and detector noise is suppressed using dedicated jet-quality criteria [68]: when such criteria are not fulfilled, the event is rejected.

Electron candidates are reconstructed using ID tracks matched to energy clusters in the electromagnetic calorimeter. They are identified according to the likelihood-based loose criteria [69]. Preselected electrons in the soft-lepton (hard-lepton) channel must satisfy p_T > 7(10) GeV and |η| < 2.47. When the angular separation ΔR = \( √(Δη)^2 + (Δφ)^2 \) between an electron candidate and a pre-selected jet amounts to 0.2 < ΔR(e, jet) < 0.4, the jet is retained and the electron is rejected to remove electrons originating from b-hadron decays. Since all electrons are also reconstructed as jets, if ΔR(e, jet) < 0.2 the electron is kept and the jet is discarded. Finally, electron candidates with a ΔR(e, µ) < 0.01 with respect to a preselected muon (defined below) are rejected and the muon is kept to suppress the contribution of electron candidates from muon bremsstrahlung and subsequent photon conversion.

Muon candidates are reconstructed by combining tracks formed in the ID and the MS sub-systems. The medium identification criteria are applied, which offer good efficiency and purity for the selected muons [70]. Preselected muons in the soft-lepton (hard-lepton) channel are required to have p_T > 6(10) GeV and |η| < 2.4. Muons with an angular separation of ΔR(µ, jet) < 0.4 with respect to the closest preselected jet are rejected, after the electron–jet overlap ambiguities are resolved. However, if the number of tracks with p_T > 500 MeV associated with the jet is less than three the jet is discarded and the muon kept.

The E_T^{miss} is calculated as the magnitude of the negative vector sum of the transverse momenta of identified and calibrated muons, electrons, jets and photons, in addition to the soft-track term. The soft-track term is defined as the vectorial sum of the p_T of all reconstructed tracks associated with the primary vertex that are not associated with the identified objects entering explicitly the E_T^{miss} computation [71, 72].

Signal jets are required to have p_T > 25 GeV and |η| < 2.8. A likelihood discriminant, the jet-vertex tagger (JVT), is used to remove the residual contamination of pile-up jets. The JVT is constructed from track-based variables that are
Signal jets containing $b$-hadrons are identified using the MV2c20 algorithm [74] and are hereafter referred to as $b$-tagged jets. The MV2c20 algorithm uses as input the impact parameters of all associated tracks and any reconstructed secondary vertex. The requirement chosen in the analysis provides an inclusive $b$-tagging efficiency of 77% in simulated $t\bar{t}$ events, along with a rejection factor of 140 for gluon and light-quark jets and of 4.5 for charm jets [74,75].

Signal muons and electrons in the soft-lepton and hard-lepton channels are subject to an additional $p_T < 35$ GeV or $p_T \geq 35$ GeV requirement, respectively. Electrons must satisfy likelihood-based tight criteria which are defined in Ref. [69]. In both channels, signal leptons must satisfy the GradientLoose [70] isolation requirements, which rely on the use of tracking-based and calorimeter-based variables and implement a set of $\eta$- and $p_T$-dependent criteria. The efficiency for prompt leptons with transverse momentum $< 40$ GeV to satisfy the GradientLoose requirements is measured to be about 95% in $Z \rightarrow \ell\ell$ events, progressively rising up to 99% at 100 GeV [70].

To enforce compatibility with the primary vertex, the distance $|z_0 \cdot \sin(\theta)|$ is required to be less than 0.5 mm for signal lepton tracks, where $z_0$ is the longitudinal impact parameter with respect to the primary-vertex position. Moreover, in the transverse plane the distance of closest approach of the lepton track to the proton beam line, divided by the corresponding uncertainty, must be less than three for muons and less than five for electrons.

Reconstruction, identification and isolation efficiencies in simulation, when applicable, are calibrated to data for all reconstructed objects.

### 5 Event selection

Events selected by the trigger are further required to have a reconstructed primary vertex. An event is rejected if it contains a preselected jet which fails to satisfy the quality criteria designed to suppress non-collision backgrounds and detector noise [68]. Exactly one signal lepton is required in both the soft- and the hard-lepton channels. Any event with additional preselected leptons is vetoed to suppress the dilepton $t\bar{t}$, single-top ($Wt$-channel) and diboson backgrounds.

A dedicated optimisation study was performed to design signal region (SR) selection criteria and to maximise the signal sensitivity. Four hard-lepton signal regions and two soft-lepton signal regions are defined, targeting different mass hierarchy scenarios in the simplified model. The selection criteria used to define the signal regions are summarised in Table 2 for the soft-lepton channel and in Table 3 for the hard-lepton channel.

The observables defined below are used in the event selection.

The transverse mass ($m_T$) of the lepton and the $p_T^{\text{miss}}$ is defined as

$$m_T = \sqrt{2E_T^{\text{miss}}(1 - \cos[\Delta\phi(p_T^\ell, p_T^{\text{miss}})])},$$

where $\Delta\phi(p_T^\ell, p_T^{\text{miss}})$ is the azimuthal angle between the lepton and the missing transverse momentum. This is used in the soft-lepton 2-jet signal region and all hard-lepton signal regions to reject $W+\text{jets}$ and semileptonic $t\bar{t}$ events.

The inclusive effective mass ($m_{\text{eff}}^{\text{inc}}$) is the scalar sum of the $p_T$ of the signal lepton and jets and the $E_T^{\text{miss}}$:

$$m_{\text{eff}}^{\text{inc}} = p_T^\ell + \sum_{j=1}^{N_{\text{jet}}} p_T,j + E_T^{\text{miss}},$$

where the index $j$ runs over all the signal jets in the event with $p_T > 30$ GeV. The inclusive effective mass provides good discrimination against SM backgrounds, without being too sensitive to the details of the SUSY cascade decay chain.

The transverse momentum scalar sum ($H_T$) is defined as

$$H_T = p_T^\ell + \sum_{j=1}^{N_{\text{jet}}} p_T,j,$$

where the index $j$ runs over all the signal jets in the event. The $H_T$ variable is used to define the soft-lepton 5-jet signal region, as the many energetic jets in the signal model render this variable useful to separate signal from background.

The ratio $E_T^{\text{miss}}/m_{\text{eff}}^{\text{inc}}$ is used in both the soft- and the hard-lepton channels; it provides good discrimination power between signal and background with fake $E_T^{\text{miss}}$ due to instrumental effects.

Additional suppression of background processes is based on the aplanarity variable, which is defined as $A = \frac{1}{3} \lambda_3$, where $\lambda_3$ is the smallest eigenvalue of the normalised momentum tensor of the jets [76]. Typical measured values lie in the range $0 \leq A < 0.3$, with values near zero indicating relatively planar background-like events.

The hard-lepton 5-jet region targets scenarios with high gluino masses and low $\tilde{\chi}_1^0$ masses in models with the chargino mass $m_{\tilde{\chi}_1^\pm}$ chosen such that the mass-ratio parameter $x = \frac{1}{2}$. Tight requirements on $m_T$ and $m_{\text{eff}}^{\text{inc}}$ are applied. For the same set of models, the hard-lepton 6-jet region is designed to provide sensitivity to scenarios where the mass separation between the gluino and the neutralino is smaller. For this reason, the requirements on $m_T$ and $m_{\text{eff}}^{\text{inc}}$ are relaxed with respect to the hard-lepton 5-jet region. Two distinct hard-lepton 4-jet
Table 2 Overview of the selection criteria for the soft-lepton signal regions. The symbol $p_T^{\ell}$ refers to signal leptons.

| 2-jet soft-lepton SR | 5-jet soft-lepton SR |
|---------------------|---------------------|
| $N_{lep}(p_T^{\ell,\ell/\mu}) > 7(6)$ GeV | = 1 | = 1 |
| $p_T^{\ell,\ell/\mu}$ (GeV) | = 7(6)–35 | = 7(6)–35 |
| $N_{jet}$ | $\geq 2$ | $\geq 5$ |
| $p_T^{{jet}}$ (GeV) | $> 180, 30$ | $> 200, 200, 200, 30, 30$ |
| $E_{miss}$ (GeV) | $> 530$ | $> 375$ |
| $m_T$ (GeV) | $> 100$ | – |
| $E_T^{miss,miss,\mu}$ (GeV) | $> 0.38$ | – |
| $H_T$ (GeV) | – | $> 1100$ |
| Jet aplanarity | – | $> 0.02$ |

Table 3 Overview of the selection criteria for the hard-lepton signal regions. The symbol $p_T^{\ell}$ refers to signal leptons. The mass-ratio parameter $x$ used in the signal region labels is defined in Sect. 3.

| 4-jet high-$x$ SR | 4-jet low-$x$ SR | 5-jet SR | 6-jet SR |
|------------------|------------------|---------|---------|
| $N_{lep}(p_T^{\ell,\ell/\mu}) > 10$ GeV | = 1 | = 1 | = 1 | = 1 |
| $p_T^{\ell,\ell/\mu}$ (GeV) | $> 35$ | $> 35$ | $> 35$ | $> 35$ |
| $N_{jet}$ | $\geq 4$ | $\geq 4$ | $\geq 4$ | $\geq 6$ |
| $p_T^{{jet}}$ (GeV) | $> 325, 30, \ldots, 30$ | $> 325, 150, \ldots, 150$ | $> 225, 50, \ldots, 50$ | $> 125, 30, \ldots, 30$ |
| $E_{miss}$ (GeV) | $> 200$ | $> 200$ | $> 250$ | $> 250$ |
| $m_T$ (GeV) | $> 425$ | $> 125$ | $> 275$ | $> 225$ |
| $E_T^{miss,miss,\mu}$ (GeV) | $> 0.3$ | – | $> 0.1$ | $> 0.2$ |
| $m_{\mu}^{\mu}$ (GeV) | $> 1800$ | $> 2000$ | $> 1800$ | $> 1000$ |
| Jet aplanarity | – | $> 0.04$ | $> 0.04$ | $> 0.04$ |

regions are used, both designed to target models where the neutralino mass is fixed to 60 GeV, while the gluino mass and the mass-ratio $x$ vary. The 4-jet high-$x$ region is designed for regions of the parameter space where the $W$ boson produced in the chargino decay is significantly boosted, leading to high-$p_T$ leptons. The main characteristics of signal events in the phase-space of this model are large $m_T$ values and relatively soft jets emitted from the gluino decays. In the 4-jet low-$x$ region, the $W$ boson tends to be virtual while the jets from the gluino decays tend to have high $p_T$ due to the large gluino–chargino mass difference. Therefore, the $m_T$ requirement is relaxed and more stringent jet $p_T$ requirements are imposed.

The soft-lepton channels focus on models with compressed mass spectra. The soft-lepton 2- and 5-jet regions provide sensitivity to scenarios characterised by a relatively heavy neutralino and a small mass separation between the gluino, the chargino and the neutralino. Due to the small mass separation, most of the decay products tend to be low $p_T$, or soft. Thus, a high-$p_T$ initial-state radiation (ISR) jet recoiling against the rest of the event is required, in order to enhance the kinematic properties of the signal and to provide separation with respect to the backgrounds. The soft-lepton 5-jet region is designed to be sensitive to the configurations in parameter space with a large mass gap between the gluino and chargino and a small separation between $m_{\tilde{\chi}_1^{\pm}}$ and $m_{\tilde{\chi}_1^0}$. As a consequence, several energetic jets from the decay of the two gluinos to the charginos are expected, while the virtual $W$ bosons produced in the decay of the charginos result in low-$p_T$ jets and leptons.

6 Background estimation

The two dominant background processes in final states with one isolated lepton, multiple jets and large missing transverse momentum are $t\bar{t}$ and $W$+jets. The differential distributions arising from these two background processes as predicted from simulation are simultaneously normalised to the number of data events observed in dedicated control regions (CR), through the fitting procedure explained in Sect. 8. The simulation is then used to extrapolate the measured background rates to the corresponding signal region.

The control regions are designed to have high purity in the process of interest, a small contamination from the signal model and enough events to result in a small statistical uncertainty in the background prediction. Moreover, they are designed to have kinematic properties resembling as closely
as possible those of the signal regions, in order to provide
good estimates of the kinematics of background processes
there. This procedure limits the impact of potentially large
systematic uncertainties in the expected yields.

Additional sources of background events are single-top
events (s-channel, t-channel and associated production with
a W boson), Z+jets and diboson processes (WW, WZ, ZZ,
Wγ, Zγ), and t̅t̅ production in association with a W or a Z
boson. Their contributions are estimated entirely using sim-
ulated event samples normalised to the most accurate theo-
retical cross-sections available.

The contribution from multi-jet processes with a misiden-
tified lepton is found to be negligible once lepton isolation
criteria and a stringent \( E_{T}^{\text{miss}} \) requirement are imposed. A
data-driven matrix method, following the implementation
described in Ref. [16], confirms this background is consis-
tent with zero. This is mainly a result of the improved lepton
reconstruction and identification and the higher threshold on
\( E_{T}^{\text{miss}} \) with respect to the previous searches performed in this
final state [16]. As this background is found to be negligible
it is ignored in all aspects of the analysis.

Figure 2 visualises the criteria that define the control
regions in the soft-lepton and hard-lepton channels. Based
on these, separate control regions are defined to extract the
normalisation factors for \( tt \) and W+jets by requiring at least
one, or no, \( b \)-tagged signal jets, respectively. The cross-
contamination between these two types of control regions
is accounted for in the fit.

Figure 3 shows the \( E_{T}^{\text{miss}} \) distribution in selected soft-
lepton and hard-lepton control regions. The normalisation
of the W+jets and \( tt \) simulations are adjusted to match the
observed number of data events in the control region, so that
the plots illustrate the modelling of the shape of each vari-
able’s distribution. In general, good agreement between data
and background simulations is found within the uncertainties
in all the control regions used in the analysis.

To gain confidence in the extrapolation from control to
signal regions using simulated event samples, the results of
the simultaneous fit are cross-checked in validation regions
which are disjoint with both the control and the signal
regions. The validation regions are designed to be kinemati-
cally close to the signal regions, as shown in Fig. 2, while
expecting only a small contamination from the signal in the
models considered in this search. The validation regions are
not used to constrain parameters in the fit, but they provide a
statistically independent cross-check of the extrapolation.

This analysis uses two validation regions per signal region.
In the hard-lepton channel, one of the validation regions is
used to test the extrapolation to larger \( m_{T} \) values, while the
other validation region tests the extrapolation to larger apla-
narity values or, in the case of the 4-jet high-\( x \) selection, to
larger values in \( E_{T}^{\text{miss}}/m_{\text{eff}}^{\text{incl}} \). In the soft-lepton channel, the
validation regions are used to test the extrapolation to larger
\( E_{T}^{\text{miss}}, m_{T} \) or \( H_{T} \) values.

7 Systematic uncertainties

Two categories of systematic uncertainties have an impact on
the results presented here: uncertainties arising from experi-
mental effects and uncertainties associated with theoretical
predictions and modelling. Their effects are evaluated for all
signal samples and background processes. Since the normal-
isation of the dominant background processes is extracted in
dedicated control regions, the systematic uncertainties only
affect the extrapolation to the signal regions in these cases.

Among the dominant experimental systematic uncertain-
ancies are the jet energy scale (JES) and resolution (JER) and
the muon momentum resolution. The jet uncertainties are
derived as a function of \( p_{T} \) and \( \eta \) of the jet, as well as of
the pile-up conditions and the jet flavour composition of the
selected jet sample. They are determined using a combination
of simulated samples and studies of data, such as measure-
ments of the jet balance in dijet, Z+jet and \( \gamma+\)jet events [77].

In the soft-lepton channel, the \( E_{T}^{\text{miss}} \) and \( m_{T} \) selections
are applied to the \( \ell^{-} \) lepton with a missing \( E_{T} \) arising from
\( W \rightarrow \ell^{-} \nu_{\ell} \) or \( Z \rightarrow \ell^{-}\ell^{+} \) decays in
data and simulation are exploited to estimate the uncertain-
ties in lepton reconstruction, identification, momentum/energy
scale and resolution and isolation criteria [69,70]. In partic-
ular, muon momentum resolution and scale calibrations are
derived for simulation as a template fit that compares the
invariant mass of \( Z \rightarrow \mu\mu \) and \( J/\psi \rightarrow \mu\mu \) candidates
in data and simulation. The corresponding uncertainties are
computed from variations of several fit parameters, following
the procedure described in Ref. [78].

The simulation is reweighted to match the distribution of
the average number of proton-proton interactions per bunch
crossing observed in data. In the signal regions characterised
by a higher jet multiplicity, the uncertainty arising from this
reweighting also becomes relevant.

The systematic uncertainties related to the modelling of
\( E_{T}^{\text{miss}} \) in the simulation are estimated by propagating the
uncertainties on the energy and momentum scale of each
of the objects entering the calculation, as well as the uncertain-
ties on the soft term resolution and scale.

Different uncertainties in the theoretical modelling of the
SM production processes are considered, as described in the
following.

For \( tt \), single-top and \( W/Z+jets \) samples, the uncertain-
ties related to the choice of QCD renormalisation and fac-
torisation scales are assessed by varying the corresponding
generator parameters up and down by a factor of two around
their nominal values. Uncertainties in the resummation scale
and the matching scale between matrix elements and parton
shower are evaluated for the \( W+jets \) samples by varying up
Fig. 2 Graphical illustration of the soft-lepton 2-jet (top left), soft-lepton 5-jet (top right), hard-lepton 4-jet high-\(x\) (middle left), 4-jet low-\(x\) (middle right), 5-jet (bottom left) and 6-jet (bottom right) signal (SR), control (CR) and validation (VR) regions. In addition to the two variables shown on the \(x\) and \(y\) axes, labels indicate other event selections that differ between the corresponding control regions, validation regions and signal regions. The control regions exist in two variants: the \(t\bar{t}\) control regions require at least one \(b\)-tagged jet, while no \(b\)-tagged jets are required in the \(W\)+jets control regions.

and down by a factor of two the corresponding parameters in SHERPA.

For \(t\bar{t}\) and single-top production, specific samples with an increased and decreased amount of initial- and final-state radiation are compared to the nominal sample. The relative difference in the extrapolation factors (\(t\bar{t}\)) or expected rates (single top) is assigned as an uncertainty. Moreover, the uncertainty associated with the parton-shower modelling...
Fig. 3 The distribution of the missing transverse momentum is shown in hard-lepton 6-jet $t\bar{t}$ (top left) and W+jets (top right) and in the soft-lepton 2-jet $t\bar{t}$ (bottom left) and W+jets (bottom right) control regions after normalising the $t\bar{t}$ and W+jets background processes in the simultaneous fit. In the soft-lepton 2-jet plots, the upper bound on $E_{T}^{miss}$ defining the control region is not applied. The lower panels of the plots show the ratio of the observed data to the total SM background expected from simulations scaled to the number of events observed in the data. The uncertainty bands include all statistical and systematic uncertainties on simulation, as discussed in Sect. 7. The component ‘Others’ is the sum of Z+jets and $t\bar{t}+V$

is assessed as the difference between the predictions from POWHEG+PYTHIA and POWHEG+HERWIG++\(^\text{2}\) [79].

An uncertainty arising from the choice of parton level generator is estimated for $t\bar{t}$, diboson and W/Z+jets processes. In the former case, the predictions from POWHEG- BOX are compared to AMC@NLO\(^\text{3}\) [80]; for dibosons, SHERPA is compared to POWHEG- BOX; for W/Z+jets, SHERPA is compared to MADGRAPH [81].

An uncertainty of 5 % in the inclusive Z+jets cross-section is assumed [82]. Uncertainties in the inclusive single-top cross-sections are assigned as 3.7 % (s-channel, top), 4.7 % (s-channel, anti-top), 4 % (t-channel, top), 5 % (t-channel, anti-top) and 5.3 % (Wt-channel) [83]. Samples using diagram subtraction and diagram removal schemes are compared for assessing the sensitivity to the treatment of interference effects between single-top and $t\bar{t}$ production at NLO.

An overall systematic uncertainty of 6 % in the inclusive cross-section is assigned to the small contribution from WW, WZ, ZZ, Wγ and Zγ processes, which are estimated entirely from simulation. The uncertainty accounts for missing higher-order corrections, for the uncertainty in the value of the strong coupling constant and for the uncertainties on the PDF sets. The uncertainties associated with the resummation, factorisation and renormalisation scales are computed by varying the corresponding SHERPA parameters.

For the very small contributions of $t\bar{t}+W/Z/WW$, an uncertainty of 30 % is assigned.

Among the main systematic uncertainties on the total background predictions in the various signal regions are the

\(^{2}\) The HERWIG++ version 2.7.1 used.

\(^{3}\) The AMC@NLO version 2.1.1 is used.
ones associated with the finite size of the MC samples, which range from 11% in the hard-lepton 6-jet SR to 33% in the hard-lepton 4-jet high-x SR. Moreover, the uncertainties associated with the normalisation of the t\bar{t} background, ranging from 7% in the soft-lepton 5-jet SR to 21% in the hard-lepton 4-jet low-x SR. Further important uncertainties are the theoretical uncertainties associated with the single-top background in the hard-lepton regions, which amount to 3% in the 4-jet high-x signal region and increase to as much as 34% in the 4-jet low-x signal region, and the theoretical uncertainties on the W+jets background in the soft-lepton regions (up to 11%).

The theoretical systematic uncertainty affecting the modelling of ISR can become sizeable in the simplified signal models used in this analysis, especially when the SUSY particles’ mass splitting becomes small. Variations of a factor of

![Diagram](image-url)

**Fig. 4** Expected background yields as obtained in the background-only fits in all hard-lepton and soft-lepton validation (top plot) and signal (bottom plot) regions together with observed data are given in the top parts of the plots. Uncertainties in the fitted background estimates combine statistical (in the simulated event yields) and systematic uncertainties. The bottom parts of the plots show the differences between observed (n_{obs}) and predicted (n_{pred}) event yields, divided by the total (statistical and systematic) uncertainty in the prediction (\sigma_{tot}). Bars sharing the same colour belong to regions fitted in the same background-only fit.
Table 4 Background fit results for the hard-lepton and soft-lepton signal regions, for an integrated luminosity of 3.2 fb\(^{-1}\). Uncertainties in the fitted background estimates combine statistical (in the simulated event yields) and systematic uncertainties. The uncertainties in this table are symmetrised for propagation purposes but truncated at zero to remain within the physical boundaries.

|                | Hard-lepton |           |           |           | Soft-lepton |           |
|----------------|-------------|-----------|-----------|-----------|-------------|-----------|
|                | 4-jet low \(x\) | 4-jet high \(x\) | 5-jet     | 6-jet     | 2-jet       | 5-jet     |
| Observed events| 1           | 0         | 0         | 0         | 2           | 9         |
| Fitted background events| \(1.3 \pm 0.5\) | \(0.9 \pm 0.5\) | \(1.3 \pm 0.6\) | \(4.4 \pm 1.0\) | \(3.6 \pm 0.7\) | \(7.7 \pm 1.9\) |
| \(t\bar{t}\)     | \(0.40 \pm 0.31\) | \(0.08 \pm 0.07\) | \(0.40 \pm 0.24\) | \(2.5 \pm 0.9\) | \(0.64 \pm 0.33\) | \(3.6 \pm 1.2\) |
| \(W+\text{jets}\) | \(0.19 \pm 0.12\) | \(0.8 \pm 0.5\) | \(0.16 \pm 0.12\) | \(0.23 \pm 0.16\) | \(1.9 \pm 0.5\) | \(2.5 \pm 1.3\) |
| \(Z+\text{jets}\) | \(0.045 \pm 0.023\) | \(0.028 \pm 0.027\) | \(0.073 \pm 0.035\) | \(0.08 \pm 0.08\) | \(0.47 \pm 0.12\) | \(0.09 \pm 0.04\) |
| Single top      | \(0.5 \pm 0.5\) | \(0.04^{+0.10}_{-0.04}\) | \(0.21^{+0.22}_{-0.21}\) | \(0.4 \pm 0.4\) | \(0.16 \pm 0.14\) | \(0.42 \pm 0.33\) |
| Diboson         | \(0.06^{+0.20}_{-0.06}\) | \(0.002^{+0.014}_{-0.002}\) | \(0.37 \pm 0.23\) | \(0.9 \pm 0.5\) | \(0.38 \pm 0.16\) | \(0.9 \pm 0.6\) |
| \(t\bar{t}+V\)  | \(0.048 \pm 0.021\) | \(0.024 \pm 0.012\) | \(0.059 \pm 0.029\) | \(0.23 \pm 0.08\) | \(0.085 \pm 0.028\) | \(0.065 \pm 0.024\) |

The parameters are used to estimate these uncertainties: the renormalisation and factorisation scales, the initial- and the final-state radiation scales, as well as the MADGRAPH jet matching scale. The overall uncertainties range from about 5% for signal models with large mass differences between the gluino, the chargino and the neutralino, to 25% for models with very compressed mass spectra.

8 Statistical analysis

The final results are based on a profile likelihood method [84] using the HistFitter framework [85]. To obtain a set of background predictions that is independent of the observation in the signal regions, the fit can be configured to use only the control regions to constrain the fit parameters; this is referred to as the background-only fit. For each signal region a background-only fit is performed, based on the following inputs:

- the observed number of events in each of the control regions associated with the signal region, together with the number of events expected from simulation;
- the extrapolation factors, including uncertainties, from control regions to the signal region, as obtained from simulation, for the \(W+\text{jets}\) and the \(t\bar{t}\) backgrounds;
- the yields of the smaller backgrounds such as the single top, \(t\bar{t}+V\), \(Z+\text{jets}\) and diboson backgrounds as obtained from simulation, including uncertainties.

Using this information a likelihood is constructed for every background-only fit. It consists of a product of Poisson probability density functions for every region and of constraint terms for systematic uncertainties as described below.

Multiple parameters are included in each likelihood: two normalisation parameters describing the normalisation of the \(W+\text{jets}\) and \(t\bar{t}\) backgrounds and nuisance parameters associated with the systematic uncertainties (as described in Sect. 7) or the statistical uncertainties in simulated event yields. The nuisance parameters associated with the systematic uncertainties are constrained by Gaussian functions with their widths corresponding to the size of the uncertainty, while the statistical uncertainties are constrained by Poisson functions. The parameters are correlated between the control regions and the signal region.

In the fit, the likelihood is maximised by adjusting normalisation and nuisance parameters. The normalisation scale factor of the \(t\bar{t}\) background is fitted to values between \(0.34^{+0.28}_{-0.25}\) (4-jet high-\(x\) control regions) and \(0.92^{+0.14}_{-0.12}\) (5-jet soft-lepton control regions), the normalisation of the \(W+\text{jets}\) background to values between \(0.72^{+0.31}_{-0.33}\) (6-jet control regions) and \(1.00 \pm 0.04\) (2-jet soft-lepton control regions). Previous analyses [16] also found normalisation factors considerably smaller than unity for these background processes in similarly extreme regions of phase space. The fit introduces correlations between the normalisation parameters associated with the \(t\bar{t}\) and the \(W+\text{jets}\) backgrounds and the nuisance parameters associated with systematic uncertainties. The uncertainty in the total background estimate may thus be smaller or larger than the sum in quadrature of the individual uncertainties.

9 Results

The results of the background-only fit described in Sect. 8 in the validation and signal regions are shown in Fig. 4 and are further detailed for the signal regions in Table 4. Good agreement between predicted and observed event yields is seen in all validation regions.

Figure 5 shows the \(m_T, E_T^\text{miss} \) and \(E_T^\text{miss}/m_{\text{eff}}^{\text{incl}}\) distributions before applying the requirement on the plotted variable in the signal regions.
Fig. 5 Distributions of $m_T$ for the hard-lepton 4-jet low-x (top left), 5-jet (middle left), 6-jet (middle right) signal regions, of $E_{T\text{miss}}/m_{\text{eff}}$ for the 4-jet high-x signal region (top right) and of $E_{T\text{miss}}$ for the soft-lepton 2-jet (bottom left) and soft-lepton 5-jet (bottom right) signal regions. The requirement on the variable plotted is removed from the definitions of the signal regions, where the arrow indicates the position of the cut in the signal region. The lower panels of the plots show the ratio of the observed data to the total background prediction as derived in the background-only fit. The uncertainty bands plotted include all statistical and systematic uncertainties as discussed in Sect. 7. The component ‘Others’ is the sum of Z+jets and $t\bar{t}$+V. The last bin includes the overflow.

The predicted background yields and the observed number of events agree in all signal regions. The largest deviation, 2.1 standard deviations, is observed in the 6-jet hard-lepton signal region. This excess arises only from the muon channel, in which 8 events are observed, while 2.5 ± 0.7 events are predicted (local significance of 2.6 standard deviations).
The electron channel shows good agreement, with 2 events observed and $1.9 \pm 0.6$ predicted.

Model-independent upper limits and discovery $p$ values [85] in the signal regions are calculated in a modified fit configuration with respect to the background-only fit. The only region considered in these fits is the respective signal region. Control regions are not explicitly included and thus any signal contamination in the control regions is not taken into account, thus giving conservative limits. These fits use the background estimates as derived in the background-only fits as input and allow for a non-negative signal contribution in the signal region. An additional normalisation parameter for the signal contribution is included.

Observed and expected upper limits at 95 % confidence level (CL) on the number of events signifying new phenomena beyond the SM ($S_{\text{obs}}^{95}$, $S_{\text{exp}}^{95}$) are derived based on the $C_L_s$ prescription [86] and are shown in Table 5 together with the upper limits on the visible beyond the SM cross-section ($\sigma_{\text{vis}}$, defined as the product of acceptance, selection efficiency and production cross-section). The latter is calculated by dividing the observed upper limit on the beyond-SM events by the integrated luminosity of 3.2 fb$^{-1}$. The table also gives the background-only confidence level $C_L_b$.

Table 5 also shows the discovery $p$ values, giving the probability for the background-only assumption to produce event yields greater or equal to the observed data. The $C_L_b$ and $p$ values use different definitions of test statistics in their calculation, the former with the signal-strength parameter set to one and the latter to zero.

Model-dependent limits are calculated in a modified fit configuration with respect to the background-only fit. A signal contribution is allowed and considered in all control and signal regions, with a non-negative signal-strength normalisation parameter included. For the signal processes, uncertainties due to detector effects and theoretical modelling are considered. The signal regions are explicitly used in the fit to constrain the likelihood parameters. Figure 6 shows the combined 95 % CL exclusion limits in the simplified models with gluino production using for each model point the signal region with the best expected sensitivity. The limits are presented in the ($m_{\tilde{g}}$, $m_{\tilde{\chi}^{\pm}}$) mass plane (top) for the scenario where the mass of the chargino $\tilde{\chi}^{\pm}$ is fixed to $x = (m_{\tilde{\chi}^{\pm}} - m_{\tilde{\chi}_1^{0}})/(m_{\tilde{g}} - m_{\tilde{\chi}_1^{0}}) = 1/2$ and in the ($m_{\tilde{g}}$, $x$) plane (bottom) for the $m_{\tilde{\chi}^{\pm}} = 60$ GeV models. The red solid line corresponds to the observed limit with the red dotted lines indicating the ±1σ variation of this limit due to the effect of theoretical scale and PDF uncertainties in the signal cross-section. The dark grey dashed line indicates the expected limit with the yellow band representing the ±1σ variation of the median expected limit due to the experimental and theoretical uncertainties. The exclusion limits at 95 % CL by previous ATLAS analyses [17] are shown as the grey area.

The electron channel shows good agreement, with 2 events observed and $1.9 \pm 0.6$ predicted.

Model-independent upper limits and discovery $p$ values [85] in the signal regions are calculated in a modified fit configuration with respect to the background-only fit. The only region considered in these fits is the respective signal region. Control regions are not explicitly included and thus any signal contamination in the control regions is not taken into account, thus giving conservative limits. These fits use the background estimates as derived in the background-only fits as input and allow for a non-negative signal contribution in the signal region. An additional normalisation parameter for the signal contribution is included.

Observed and expected upper limits at 95 % confidence level (CL) on the number of events signifying new phenomena beyond the SM ($S_{\text{obs}}^{95}$, $S_{\text{exp}}^{95}$) are derived based on the $C_L_s$ prescription [86] and are shown in Table 5 together with the upper limits on the visible beyond the SM cross-section ($\sigma_{\text{vis}}$, defined as the product of acceptance, selection efficiency and production cross-section). The latter is calculated by dividing the observed upper limit on the beyond-SM events by the integrated luminosity of 3.2 fb$^{-1}$. The table also gives the background-only confidence level $C_L_b$.

Table 5 also shows the discovery $p$ values, giving the probability for the background-only assumption to produce event yields greater or equal to the observed data. The $C_L_b$ and $p$ values use different definitions of test statistics in their calculation, the former with the signal-strength parameter set to one and the latter to zero.

Model-dependent limits are calculated in a modified fit configuration with respect to the background-only fit. A signal contribution is allowed and considered in all control and signal regions, with a non-negative signal-strength normalisation parameter included. For the signal processes, uncertainties due to detector effects and theoretical modelling are considered. The signal regions are explicitly used in the fit to constrain the likelihood parameters. Figure 6 shows the combined 95 % CL exclusion limits in the simplified models with gluino production using for each model point the signal region with the best expected sensitivity. The limits are presented in the ($m_{\tilde{g}}$, $m_{\tilde{\chi}^{\pm}}$) mass plane (top) for the scenario where the mass of the chargino $\tilde{\chi}^{\pm}$ is fixed to $x = (m_{\tilde{\chi}^{\pm}} - m_{\tilde{\chi}_1^{0}})/(m_{\tilde{g}} - m_{\tilde{\chi}_1^{0}}) = 1/2$ and in the ($m_{\tilde{g}}$, $x$) plane (bottom) for the $m_{\tilde{\chi}^{\pm}} = 60$ GeV models. The red solid line corresponds to the observed limit with the red dotted lines indicating the ±1σ variation of this limit due to the effect of theoretical scale and PDF uncertainties in the signal cross-section. The dark grey dashed line indicates the expected limit with the yellow band representing the ±1σ variation of the median expected limit due to the experimental and theoretical uncertainties. The exclusion limits at 95 % CL by previous ATLAS analyses [17] are shown as the grey area.
and for models with a small mass difference between the gluino and the neutralino, gluino masses up to 870 GeV are excluded. The signal regions address very different sets of models and are complementary to each other. In the case of the hard-lepton 6-jet signal region (covering the central part in the \((m_{\tilde{g}}, m_{\tilde{\chi}_1^0})\) mass plane in Fig. 6), the observed exclusion limit is considerably weaker than the expected one due to the excess seen in this region.

10 Conclusion

A search for gluinos in events with one isolated lepton, jets and missing transverse momentum is presented. The analysis uses 3.2 fb\(^{-1}\) of proton–proton collision data collected by the ATLAS experiment in 2015 at \(\sqrt{s} = 13\) TeV at the LHC. Six signal regions requiring at least two to six jets are used to cover a broad spectrum of the targeted SUSY model parameter space. While four signal regions are based on high-\(p_T\) lepton selections and target models with large mass differences between the supersymmetric particles, two dedicated low-\(p_T\) lepton regions are designed to enhance the sensitivity to models with compressed mass spectra.

The observed data agree with the Standard Model background prediction in the signal regions. The largest deviation is a 2.1 standard deviation excess in a channel requiring a high-\(p_T\) lepton and six jets. For all signal regions, limits on the visible cross-section are derived in models of new physics within the kinematic requirements of this search. In addition, exclusion limits are placed on models with gluino production and subsequent decays via an intermediate chargino to the lightest neutralino. The exclusion limits of previous searches conducted in LHC Run 1 are significantly extended. Gluino masses up to 1.6 TeV are excluded for low neutralino masses (\(\lesssim 300\) GeV) and chargino masses of \(\sim 850\) GeV.

Acknowledgments
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DSTN/ NRF, South Africa; MINECO, Spain; SRC and Wallace Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [87].

Open Access
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Funded by SCOAP3.

References

1. Yu. A. Golfand, E.P. Likhtman, Extension of the Algebra of Poincaré Group generators and violation of invariance, JETP Lett. 13, 323–326 (1971) [Pisma Zh. Eksp. Teor. Fiz.13,452(1971)].
2. D.V. Volkov, V.P. Akulov, Is the Neutrino a Goldstone Particle? Phys. Lett. B 46, 109–110 (1973)
3. J. Wess, B. Zumino, Supergauge transformations in four-dimensions. Nucl. Phys. B 70, 39–50 (1974)
4. J. Wess, B. Zumino, Supergauge invariant extension of quantum electrodynamics. Nucl. Phys. B 78, 1 (1974)
5. S. Ferrara, B. Zumino, Supergauge invariant Yang-Mills theories. Nucl. Phys. B 79, 413 (1974)
6. A. Salam, J.A. Strathdee, Supersymmetric and Nonabelian gauges. Phys. Lett. B 51, 353–355 (1974)
7. P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions. Phys. Lett. B 64, 159 (1976)
8. P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions. Phys. Lett. B 69, 489 (1977)
9. N. Sakai, Naturalness in supersymmetric guts. Z. Phys. C 11, 153 (1981)
10. S. Dimopoulos, S. Raby, W. Wilczek, Supersymmetry and the scale of unification. Phys. Rev. D 24, 1681–1683 (1981)
11. L.E. Ibanez, G.G. Ross, Low-energy predictions in supersymmetric grand unified theories. Phys. Lett. B 105, 439 (1981)
12. S. Dimopoulos, H. Georgi, Softly broken supersymmetry and SU(5). Nucl. Phys. B 193, 150 (1981)
13. G.R. Farrar, P. Fayet, Phenomenology of the production, decay, and detection of new Hadronic States associated with supersymmetry. Phys. Lett. B 76, 575–579 (1978)
14. H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50, 1419 (1983) [Erratum: Phys. Rev. Lett.103,099905(2009)].
15. J.R. Ellis et al., Supersymmetric relics from the big bang. Nucl. Phys. B 238, 453–476 (1984)
16. ATLAS Collaboration, Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at \(\sqrt{s} = 8\) TeV with the ATLAS detector, JHEP 04, 116 (2015). arXiv:1501.03555 [hep-ex]
ATLAS Collaboration

G. Aad\textsuperscript{87}, B. Abbott\textsuperscript{114}, J. Abdallah\textsuperscript{65}, O. Abidin\textsuperscript{12}, B. Abeloos\textsuperscript{118}, R. Aben\textsuperscript{108}, M. Abolins\textsuperscript{92}, O. S. AbouZeid\textsuperscript{138}, G. Abbas\textsuperscript{133a,133b}, F. Bauer\textsuperscript{137}, H. S. Bawa\textsuperscript{144,f}, J. B. Beacham\textsuperscript{112}, M. D. Beattie\textsuperscript{74}, P. H. Beauchemin\textsuperscript{162}, A. A. E. Bannoura\textsuperscript{175}, L. Barak\textsuperscript{32}, E. L. Barberio\textsuperscript{90}, D. Barberis\textsuperscript{52a,52b}, M. Barbero\textsuperscript{87}, T. Barillari\textsuperscript{102}, T. Barklow\textsuperscript{144}, O. K. Baker\textsuperscript{176}, E. M. Baldi\textsuperscript{110,c}, P. Balek\textsuperscript{130}, T. Balestri\textsuperscript{149}, F. Balli\textsuperscript{137}, W. K. Balunas\textsuperscript{123}, E. Banas\textsuperscript{41}, S. Banerjee\textsuperscript{173,e}, K. Bachas\textsuperscript{75a,75b}, M. Backes\textsuperscript{32}, M. Backhaus\textsuperscript{32}, P. Bagiacchi\textsuperscript{133a,133b}, P. Bagnaia\textsuperscript{133a,133b}, Y. Bai\textsuperscript{35a}, J. T. Baines\textsuperscript{132}, B. Åsman\textsuperscript{147a,147b}, L. Asquith\textsuperscript{150}, K. Assamagan\textsuperscript{27}, R. Astalos\textsuperscript{145a}, M. Atkinson\textsuperscript{166}, N. B. Atlay\textsuperscript{142}, K. Augsten\textsuperscript{129}, H. Arnold\textsuperscript{50}, M. Arratia\textsuperscript{30}, O. Arslan\textsuperscript{23}, A. Artamonov\textsuperscript{98}, G. Artoni\textsuperscript{121}, S. Artz\textsuperscript{85}, S. Asai\textsuperscript{156}, N. Asbah\textsuperscript{44}, A. Ashkenazi\textsuperscript{154}, F. A. Arduh\textsuperscript{73}, J-F. Arguin\textsuperscript{96}, S. Argyropoulos\textsuperscript{65}, M. Arik\textsuperscript{20a}, A. J. Armbruster\textsuperscript{32}, L. J. Armitage\textsuperscript{78}, O. Arnaez\textsuperscript{32}, J. Antos\textsuperscript{145b}, F. Anulli\textsuperscript{133a}, M. Aoki\textsuperscript{68}, L. Aperio Bella\textsuperscript{19}, G. Arabidze\textsuperscript{92}, Y. Arai\textsuperscript{68}, J. P. Araque\textsuperscript{127a}, A. T. H. Arce\textsuperscript{47}, J. K. Anders\textsuperscript{76}, K. J. Anderson\textsuperscript{33}, A. Andreazza\textsuperscript{93a,93b}, V. Andrei\textsuperscript{60a}, S. Angelidakis\textsuperscript{9}, I. Angelozzi\textsuperscript{108}, P. Anger\textsuperscript{46}, N. Amram\textsuperscript{154}, G. Amundsen\textsuperscript{25}, C. Anastopoulos\textsuperscript{140}, L. S. Ancu\textsuperscript{51}, N. Andari\textsuperscript{109}, T. Andeen\textsuperscript{11}, C. F. Anders\textsuperscript{60b}, G. Anders\textsuperscript{32}, C. Alpigiani\textsuperscript{139}, B. Alvarez Gonzalez\textsuperscript{32}, D. Álvarez Piqueras\textsuperscript{167}, M. G. Alviggi\textsuperscript{105a,105b}, B. T. Amadio\textsuperscript{16}, K. Amako\textsuperscript{68}, I. N. Aleksandrov\textsuperscript{67}, C. Alexa\textsuperscript{28b}, G. Alexander\textsuperscript{154}, T. Alexopoulos\textsuperscript{10}, M. Alhroob\textsuperscript{114}, G. Alimonti\textsuperscript{93a}, J. Alison\textsuperscript{33}, P. Kant\textsuperscript{et al.}, HatHor for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions. Comput. Phys. Commun. \textbf{191}, 74–89 (2015). arXiv:1406.4403 [hep-ph]

G. Cowan\textsuperscript{et al.}, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C \textbf{71}, 1554 (2011). arXiv:1007.1727 [physics.data-an]

M. Baak\textsuperscript{et al.}, HistFitter software framework for statistical data analysis. Eur. Phys. J. C \textbf{75}, 153 (2015). arXiv:1410.1280 [hep-ex]

A. L. Read, Presentation of search results: The CL(s) technique. J. Phys. G \textbf{28}, 2693–2704 (2002)

ATLAS Collaboration, ATLAS computing acknowledgements 2016–2017, ATL-GEN-PUB-2016-002, http://cds.cern.ch/record/2202407

ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in \( pp \) collisions at \( \sqrt{s} = 8 \) TeV using the ATLAS detector (2015). arXiv:1510.03823 [hep-ex]

ATLAS Collaboration, Selection of jets produced in 13 TeV proton-proton collisions with the ATLAS detector (2015). http://cds.cern.ch/record/2047831

ATLAS Collaboration, Electron identification measurements in ATLAS using \( \sqrt{s} = 13 \) TeV data with 50 ns bunch spacing (2015). http://cds.cern.ch/record/2048202

ATLAS Collaboration, Muon reconstruction performance in early \( \sqrt{s} = 13 \) TeV data (2015). http://cds.cern.ch/record/2047871

ATLAS Collaboration, Performance of missing transverse momentum reconstruction for the ATLAS detector in the first proton-proton collisions at at \( \sqrt{s} = 13 \) TeV (2015). http://cds.cern.ch/record/20377904

ATLAS Collaboration, Tagging and suppression of pileup jets with the ATLAS detector (2014). http://cds.cern.ch/record/1700870

ATLAS Collaboration, Expected performance of the ATLAS b-tagging algorithms in Run-2 (2015). http://cds.cern.ch/record/2037697

ATLAS Collaboration, Commissioning of the ATLAS b-tagging algorithms using \( tt \) events in early Run-2 data (2015). http://cds.cern.ch/record/2047871

C. Chen, New approach to identifying boosted hadronically decaying particles using jet substructure in its center-of-mass frame. Phys. Rev. D \textbf{85}, 034007 (2012). arXiv:1112.2567 [hep-ph]

J. Alwall\textsuperscript{et al.}, MadGraph 5: going beyond. JHEP \textbf{06}, 065 (2011). arXiv:1106.0522 [hep-ph]

P. Kant\textsuperscript{et al.}, HatHor for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions. Comput. Phys. Commun. \textbf{191}, 74–89 (2015). arXiv:1406.4403 [hep-ph]

G. Cowan\textsuperscript{et al.}, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C \textbf{71}, 1554 (2011). arXiv:1007.1727 [physics.data-an]

M. Baak\textsuperscript{et al.}, HistFitter software framework for statistical data analysis. Eur. Phys. J. C \textbf{75}, 153 (2015). arXiv:1410.1280 [hep-ex]

A. L. Read, Presentation of search results: The CL(s) technique. J. Phys. G \textbf{28}, 2693–2704 (2002)

ATLAS Collaboration, ATLAS computing acknowledgements 2016–2017, ATL-GEN-PUB-2016-002, http://cds.cern.ch/record/2202407
null
4 (a) Department of Physics, Ankara University, Ankara, Turkey; (b) Istanbul Aydin University, Istanbul, Turkey; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey

5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France

6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA

7 Department of Physics, University of Arizona, Tucson, AZ, USA

8 Department of Physics, The University of Texas at Arlington, Arlington, TX, USA

9 Physics Department, University of Athens, Athens, Greece

10 Physics Department, National Technical University of Athens, Zografou, Greece

11 Department of Physics, The University of Texas at Austin, Austin, TX, USA

12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

13 Institut de Fisica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain

14 Institute of Physics, University of Belgrade, Belgrade, Serbia

15 Department for Physics and Technology, University of Bergen, Bergen, Norway

16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA

17 Department of Physics, Humboldt University, Berlin, Germany

18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

19 School of Physics and Astronomy, University of Birmingham, Birmingham, UK

20 (a) Department of Physics, Bogazici University, Istanbul, Turkey; (b) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey; (c) Faculty of Engineering and Natural Sciences, Istanbul Bilgi University, Istanbul, Turkey; (d) Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey

21 Centro de Investigaciones, Universidad Antonio Narino, Bogotá, Colombia

22 (a) INFN Sezione di Bologna, Bologna, Italy; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy

23 Physikalisches Institut, University of Bonn, Bonn, Germany

24 Department of Physics, Boston University, Boston, MA, USA

25 Department of Physics, Brandeis University, Waltham, MA, USA

26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil

27 Physics Department, Brookhaven National Laboratory, Upton, NY, USA

28 (a) Transilvania University of Brasov, Brasov, Romania; (b) National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (c) Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (d) University Politehnica Bucharest, Bucharest, Romania; (e) West University in Timisoara, Timisoara, Romania

29 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

30 Cavendish Laboratory, University of Cambridge, Cambridge, UK

31 Department of Physics, Carleton University, Ottawa, ON, Canada

32 CERN, Geneva, Switzerland

33 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA

34 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; (c) Department of Physics, Nanjing University, Nanjing, Jiangsu, China; (d) School of Physics, Shandong University, Jinan, Shandong, China; (e) Shanghai Key Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai Jiao Tong University (also affiliated with PKU-CHEP), Shanghai, China; (f) Physics Department, Tsinghua University, Beijing 100084, China

36 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France

37 Nevis Laboratory, Columbia University, Irvington, NY, USA

38 Niels Bohr Institute, University of Copenhagen, København, Denmark

39 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland; Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas, TX, USA

Physics Department, University of Texas at Dallas, Richardson, TX, USA

DESY, Hamburg, Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

Department of Physics, Duke University, Durham, NC, USA

SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

Section de Physique, Université de Genève, Geneva, Switzerland

INFN Sezione di Genova, Genoa, Italy; Dipartimento di Fisica, Università di Genova, Genoa, Italy

E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France

Department of Physics, Hampton University, Hampton, VA, USA

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA

Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; Department of Physics, The University of Hong Kong, Hong Kong, Hong Kong; Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Department of Physics, Indiana University, Bloomington, IN, USA

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City, IA, USA

Department of Physics and Astronomy, Iowa State University, Ames, IA, USA

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, UK

INFN Sezione di Lecce, Lecce, Italy; Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK

Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, UK

Department of Physics, Royal Holloway University of London, Surrey, UK

Department of Physics and Astronomy, University College London, London, UK

Louisiana Tech University, Ruston, LA, USA

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

Fysiska institutionen, Lunds universitet, Lund, Sweden

Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany
State Research Center Institute for High Energy Physics (Protvino), NRC KI, Moscow, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK

INFN Sezione di Roma, Rome, Italy; (b) Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy

INFN Sezione di Roma Tor Vergata, Rome, Italy; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy

INFN Sezione di Roma Tre, Rome, Italy; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy

(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, L.P.H.E.A-Marrakech, Marrakech, Morocco; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; (e) Faculté des Sciences, Université Mohammed V, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA

Department of Physics, University of Washington, Seattle, WA, USA

Department of Physics and Astronomy, University of Sheffield, Sheffield, UK

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby, BC, Canada

SLAC National Accelerator Laboratory, Stanford, CA, USA

(a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

(a) Department of Physics, University of Cape Town, Cape Town, South Africa; (b) Department of Physics, University of Johannesburg, Johannesburg, South Africa; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

(a) Department of Physics, Stockholm University, Stockholm, Sweden; (b) The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA

Department of Physics and Astronomy, University of Sussex, Brighton, UK

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto, ON, Canada

(a) TRIUMF, Vancouver, BC, Canada; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada

Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford, MA, USA

Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA

(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b) ICTP, Trieste, Italy; (c) Dipartimento di Chimica Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Department of Physics, University of Illinois, Urbana, IL, USA

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver, BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada

Department of Physics, University of Warwick, Coventry, UK
171 Waseda University, Tokyo, Japan
172 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173 Department of Physics, University of Wisconsin, Madison, WI, USA
174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
175 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
176 Department of Physics, Yale University, New Haven, CT, USA
177 Yerevan Physics Institute, Yerevan, Armenia
178 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, United Kingdom
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Novosibirsk State University, Novosibirsk, Russia
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America
f Also at Department of Physics, California State University, Fresno CA, United States of America
g Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
h Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
i Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal
j Also at Tomsk State University, Tomsk, Russia
k Also at Universita di Napoli Parthenope, Napoli, Italy
l Also at Institute of Particle Physics (IPP), Canada
m Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
n Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
o Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa
p Also at Louisiana Tech University, Ruston LA, United States of America
q Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
r Also at Graduate School of Science, Osaka University, Osaka, Japan
s Also at Department of Physics, National Tsing Hua University, Taiwan
t Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
u Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
v Also at Institute of Theoretical Physics, Iia State University, Tbilisi, Georgia
w Also at CERN, Geneva, Switzerland
x Also at Georgian Technical University (GTU), Tbilisi, Georgia
y Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
z Also at Manhattan College, New York NY, United States of America
aa Also at Hellenic Open University, Patras, Greece
ab Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
ac Also at School of Physics, Shandong University, Shandong, China
ad Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
ae Also at Section de Physique, Université de Genève, Geneva, Switzerland
af Also at Eotvos Lorand University, Budapest, Hungary
ag Also at International School for Advanced Studies (SISSA), Trieste, Italy
ah Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
ai Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
aj Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
ak Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
al Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
am Also at National Research Nuclear University MEPhI, Moscow, Russia
an Also at Department of Physics, Stanford University, Stanford CA, United States of America
ao Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
ap Also at Flensburg University of Applied Sciences, Flensburg, Germany
aq Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
ar Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
* Deceased