Influence of anaesthetic drugs on immune response: from inflammation to immunosuppression

DG Colucci¹, NR Puig¹, R Hernandez-Pando²*

Abstract

Introduction

The immune system is vital for survival because our environment has plenty of potentially deadly microbes and immune system protects us from infectious pathogens. The immune system recognises and eliminates pathogens with the induction of innate and then adaptive immune responses. Innate immunity, also called natural or native immunity, is the first line of defence and refers to protective mechanisms that are present even before infection. Principal components of innate immunity are epithelial membranes that block the entry of microbes, phagocytic cells (neutrophils and macrophages), dendritic cells, natural killer (NK) cells, and several plasma proteins, including the complement system. Most important cellular reactions of innate immunity are inflammation—the process in which phagocytic cells are recruited and activated to eliminate microbes—and virus elimination, mediated by dendritic and NK cells. Adaptive immunity, also called acquired or specific immunity, consists of mechanisms that are induced by microbes and are capable of specifically recognising microbial and nonmicrobial molecules called antigens. The adaptive immune system consists of lymphocytes and their products, including antibodies and cytokines. The receptors of lymphocytes are much more diverse than those of the innate immune system, and they are capable of recognising a vast array of foreign substances.

Introduction

The immune system is vital for survival because our environment has plenty of potentially deadly microbes and immune system protects us from infectious pathogens. The immune system recognises and eliminates pathogens with the induction of innate and then adaptive immune responses. Innate immunity, also called natural or native immunity, is the first line of defence and refers to protective mechanisms that are present even before infection. Principal components of innate immunity are epithelial membranes that block the entry of microbes, phagocytic cells (neutrophils and macrophages), dendritic cells, natural killer (NK) cells, and several plasma proteins, including the complement system. Most important cellular reactions of innate immunity are inflammation—the process in which phagocytic cells are recruited and activated to eliminate microbes—and virus elimination, mediated by dendritic and NK cells. Adaptive immunity, also called acquired or specific immunity, consists of mechanisms that are induced by microbes and are capable of specifically recognising microbial and nonmicrobial molecules called antigens. The adaptive immune system consists of lymphocytes and their products, including antibodies and cytokines. The receptors of lymphocytes are much more diverse than those of the innate immune system, and they are capable of recognising a vast array of foreign substances. There are two types of adaptive immunity: humoral immunity, which is mediated by B lymphocytes and their toxins, and cell-mediated or cellular immunity, which is mediated by T lymphocytes which mainly protect against intracellular microbes. Both types of acquired immunity are linked by a broad family of proteins called cytokines, which play an important role in immune cell activation, regulation and communication.

Discussion

As it is difficult to isolate the effects of anaesthetic drugs in the case of surgery, diverse in vitro studies with human immune cells or in vivo with animal models have been used to study the effect of anaesthetic drugs on the immune system. These studies have demonstrated diverse effects, such as changes in immune cell counts and functionality, and on the secretion patterns of diverse cytokines affecting the inflammatory response in the postoperative period.

Conclusion

Effects of anaesthetic drugs on the immune system are clinically important because the amount and function of the immune cells, as well as the balance between pro- and anti-inflammatory cytokines secretion, are related to postoperative infections and tissue injury.

*Corresponding author
Email: rhpdezpando@hotmail.com

¹Facultad de Ciencias Médicas, Instituto de Inmunologia, Universidad Nacional de Rosario, Argentina
²Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Dr. Salvador Zubirán, Mexico

For citation purposes: Colucci DG, Puig NR, Hernandez Pando R. Influence of anaesthetic drugs on immune response: from inflammation to immunosuppression. OA Anaesthetics 2013 Dec 30;1(3):21.
These studies have demonstrated diverse effects, such as changes in immune cell counts and functionality, and effect on the secretion patterns of diverse immune mediators, affecting the inflammatory response through the cytokine release in the postoperative period. These effects are clinically important because the balance between the pro- and anti-inflammatory cytokines secretion is related to postoperative infections and tissue injury. Here, we review the effects of some of the most common anaesthetic drugs (Table 1) on the immune system. Although some studies have showed effects of anaesthetic drugs on immune response even several days after their administration, we will focus mainly on the effects within 24 hours after procedure, describing their effects on cells and cytokines of the innate and acquired immune systems.

Discussion

The authors have referenced some of their own studies in this review. The protocols of these studies have been approved by the relevant ethics committees related to the institution in which they were performed. Animal care was in accordance with the institution guidelines.

Effects of anaesthetic drugs on immune cells

Anaesthetic drugs generally induce an increase in leucocytes counts exerting diverse effects on each of different immune cell subpopulation (Table 2). In the next section, most significant functions of each immune cell type and the effect of specific anaesthetic drugs are described.

Neutrophils

Neutrophils are the most abundant population of circulating leucocytes. These cells are significant participants in the earliest phase of the inflammatory response. Neutrophils rapidly migrate to sites of infection, where they identify, ingest (phagocytosis) and destroy microbes (respiratory burst, lysosome degranulation). The neutrophil cytoplasm contains granules with microbicidal substances. Activated neutrophils release cytokines [tumour necrosis factor (TNF-α), interleukin (IL)-1β, IL-8 and transforming growth factor (TGF-β)], prostaglandins, thromboxanes and leukotrienes. Anaesthetic drugs affect both count and functionality of neutrophils. Thiopental and midazolam inhibit phagocytosis; and fentanyl, isoflurane, bupivacaine and lidocaine inhibit both phagocytosis and respiratory burst. Propofol and desflurane increase neutrophil counts in peripheral circulating blood, although several studies have reported contradictory effects of sevoflurane on neutrophil count.

Mononuclear phagocytes

The mononuclear phagocytic system consists of cells whose primary function is phagocytosis and plays central role in both the innate and adaptive immune responses. Monocytes are circulating cells which are incompletely differentiated until they migrate to tissues, where they mature and become macrophages. Despite their primary function being phagocytosis, these cells also produce and release cytokines that stimulate inflammation (IL-1, IL-6, IL-12 and TNF-α). Anaesthetic drugs affect both monocyte circulating levels and functionality. Sevoflurane decreases circulating monocytes without affecting their phagocytic activity. Experiments carried out with halothane have contributed to understand the tissue specialisation of macrophages. Halothane does not have an effect on spleen macrophage phagocytic activity, but enhance peritoneal macrophage phagocytosis and respiratory burst. Intravenous anaesthetics, such as propofol, midazolam and thiopental, inhibit both phagocytosis and respiratory burst. Halothane and lidocaine decrease mononuclear cell counts by enhancing their apoptosis.

Lymphocytes

This subpopulation of leucocytes has a common cell precursor and has several subtypes: NK cells, T cells (CD3), CD4 and CD8, and B cells (CD19) among others. Anaesthetic drugs exert effects on these cells. Some studies have reported a decrease in lymphocyte counts after anaesthesia with propofol. Inhalational anaesthetics induced different effects on lymphocytes. Some studies have showed an increase in lymphocyte counts after sevoflurane, halothane and desflurane anaesthesia, while others showed lower counts. Sevoflurane and isoflurane induced lymphocyte apoptosis in vitro. Ketamine and local anaesthetics, such as bupivacaine and lidocaine, inhibited proliferation after mitogen stimuli. These are the reported effects of anaesthetic drugs in each lymphocyte subtype.

Natural killer cells

NK cells are large lymphocytes with abundant cytoplasmic granules and specific membrane markers. They are participants of the innate immune response, and essentially recognise:

Table 1 Classification of anaesthetics

General anaesthetics	Inhalational anaesthetics	Local anaesthetics
Ketamine	Halothane	Lidocaine
Thiopental	Sevoflurane	Bupivacaine
Propofol	Desflurane	Levobupivacaine
Fentanyl	Isoflurane	
Remifentanil	Enflurane	

Licensee OA Publishing London 2013. Creative Commons Attribution License (CC-BY)

For citation purposes: Colucci DG, Puig NR, Hernandez Pando R. Influence of anaesthetic drugs on immune response: from inflammation to immunosuppression. OA Anaesthetics 2013 Dec 30;1(3):21.
Table 2 Anaesthetic drugs and their effect on immune cells

Immune cells	Effect of anaesthetic drugs
Leucocytes	Sevoflurane ↑ cell counts\(^1\)
	Desflurane ↑ cell counts\(^1\)
	Propofol ↑ cell counts\(^1\)
	Isoflurane ↑ cell counts\(^1\)
	Levobupivacaine ↑ cell counts
Neutrophils	Thiopental ↓ phagocytosis\(^{16,18}\)
	Propofol ↓ phagocytosis and respiratory burst and ↑ cell counts\(^{13,14,16,18}\)
	Isoflurane ↓ phagocytosis and respiratory burst\(^{16,18}\)
	Bupivacaine ↓ phagocytosis and chemotaxis\(^{16,18}\)
	Lidocaine ↓ phagocytosis and chemotaxis\(^{16,18}\)
	Desflurane ↑ cell counts\(^{13,14}\)
Mononuclear phagocytes	Sevoflurane ↓ monocyte counts\(^1\)
	Halothane ↑ peritoneal macrophage phagocytosis and respiratory burst\(^4\) ↓ cell counts\(^{10}\)
	Propofol ↓ phagocytosis and respiratory burst\(^{15,18}\)
	Midazolam ↓ phagocytosis and respiratory burst\(^{15,18}\)
	Thiopental ↓ phagocytosis and respiratory burst\(^{15,18}\)
	Lidocaine ↓ cell counts\(^10\)
Lymphocytes	Propofol ↓ cell counts\(^7\), ↓ cytotoxic activity\(^7\)
	Sevoflurane ↓ cell counts\(^2\)
	Isoflurane ↓ cell counts\(^2\)
	Ketamine ↓ proliferation\(^2\)
	Bupivacaine ↓ proliferation\(^2\)
	Lidocaine ↓ proliferation\(^2\)
NK cells	Propofol ↑ cell counts\(^{2,14}\), ↓ cytotoxic activity\(^7\)
	Sevoflurane ↑ cell counts\(^1\)
	Desflurane ↑ cell counts\(^1\)
	Isoflurane ↓ cell counts\(^2\)
	Halothanes ↓ cytotoxic activity\(^7\)
CD4 Helper T lymphocytes	Halothane ↓ cell counts\(^2\)
	Sevofluranes ↓ cell counts\(^{13}\), ↓ Th1 and ↑ Th2\(^{17}\)
	Isoflurane ↓ cell counts\(^2\)
	Propofol ↓ cell counts\(^{14}\) and ↓ Th1\(^{17}\)
CD8 Cytotoxic T lymphocytes	Propofol ↓ cell counts\(^{24,21}\)
	Sevoflurane ↓ cell counts\(^{24,21}\)
	Halothane ↓ cell counts\(^{24,21}\)
	Isoflurane ↑ cell counts\(^{13,25}\)
	Desflurane ↑ cell counts\(^{13,25}\)
	Isoflurane ↑ apoptosis\(^2\)
CD19 B lymphocytes	Isoflurane ↑ cell counts\(^{13,25}\)
	Desflurane ↑ cell counts\(^{13,25}\)
	Halothanes ↑ antibody titre\(^8\)
	Sevoflurane ↑ Primary and secondary immune responses\(^{5,8,9,20,21,27}\)
	Opioids ↓ proliferation and antibody production\(^{55}\)

virus-infected and stressed cells, and respond by direct cell killing and secretion of inflammatory cytokines [interferon (IFN)-γ]. An antibody receptor on the NK surface, called CD16 (FcγRIIIa), recognises the Fc regions of IgG1 and IgG3 antibodies. Thus, NK cells kill target cells that have been coated with antibody molecules (antibody-dependent cell-mediated cytotoxicity). The anaesthetic drug propofol induces an increase in NK

Licensee OA Publishing London 2013. Creative Commons Attribution License (CC-BY)

For citation purposes: Colucci DG, Puig NR, Hernandez Pando R. Influence of anaesthetic drugs on immune response: from inflammation to immunosuppression. OA Anaesthetics 2013 Dec 30;1(3):21.
cell count and decreases cytotoxic activity. Inhalational anaesthetics such as sevoflurane and halothane enhance NK cell counts and isoflurane decreases them. Halothane reduces NK cytotoxic activity.

T lymphocytes (CD3)

T lymphocytes (CD3) are produced in the bone marrow and their precursors migrate to and mature in the thymus. Two major T-cell subsets are helper T lymphocytes (CD4) and cytotoxic T lymphocytes (CD8), which express in the membrane of the CD3 molecule that is part of the antigen receptor complex. Both CD4 and CD8 are involved in adaptive immune response. The effects of anaesthetic drugs depend on the T cell type. Isoflurane, sevoflurane and halothane enhance both CD4 and CD8 apoptosis not only by upregulation of the Fas/FasL system but also by affecting the expression of other anti-apoptotic and pro-apoptotic factors.

Helper T lymphocyte (CD4): CD4 lymphocytes are key mediators directing the adaptive immune response either to a cellular response (Th1) or to a humoral response by activating B cells (Th2). Repeated anaesthesia with halothane and desflurane decreases CD4 cells. Propofol increases cells counts or decrease, while, depending on the model, sevoflurane may increase or decrease CD4 cell counts. Regarding the type of response, propofol decreases Th1 and sevoflurane diminishes Th1 and enhances Th2 responses.

Cytotoxic T lymphocytes (CD8): The main function of these cells of the adaptive immune response is their specific cytotoxic activity against infected cells with intracellular organisms or neoplastic cells. CD8 cells are activated by cytokines (IL-2 and IFN-γ) secreted by Th1 lymphocytes. Anaesthesia with propofol, sevoflurane and halothane decreases CD8 cell numbers, while isoflurane and desflurane increases CD8 cell numbers.

B lymphocytes (CD19)

B cells are able to recognise soluble antigens by membrane antibodies. This recognition induces B-cell activation, proliferation and differentiation to plasma cells that secrete antibodies. The effect on the number of B lymphocytes depends on the drug type. Isoflurane and desflurane increase the cell numbers, while sevoflurane and propofol can increase or decrease it.

Anaesthetics also affect B lymphocyte

Cytokines	Effect of anaesthetic drugs
IL-1	Propofol ↓ plasmatic levels¹⁵ Ketamine ↓ plasmatic levels¹⁵ Thiopental ↓ plasmatic levels¹⁵ Isoflurane ↑ plasmatic levels²⁸ Sevoflurane ↓ plasmatic levels¹⁵ Desflurane ↓ plasmatic levels¹⁵ Opioids ↓ plasmatic levels¹⁵ Lidocaine ↓ release³⁰ Bupivacaine ↓ release³⁰
IL-6	Propofol ↑ plasmatic levels¹⁴,¹⁸,¹⁹,³¹ Ketamine ↓ plasmatic levels¹⁵ Thiopental ↓ plasmatic levels¹⁵ Remifentanil ↑ plasmatic levels³⁰ Fentanyl ↑ plasmatic levels³⁰ Sevoflurane ↑ plasmatic levels¹⁴ Isoflurane ↑ plasmatic levels⁴,²⁸,³¹ Opioids ↓ plasmatic levels¹⁵ Levobupivacaine ↑ plasmatic levels²⁹ Bupivacaine ↑ plasmatic levels⁴
IL-8	Ketamine ↓ plasmatic levels¹⁵ Propofol ↑ plasmatic levels³¹ Thiopental ↓ plasmatic levels¹⁵ Midazolam ↓ plasmatic levels¹⁵ Isofluranes ↑ plasmatic levels¹⁵ Propofol in vitro ↓ release from neutrophils¹⁸
IL-10	Ketamine ↑ plasmatic levels¹⁵ Propofol ↑ plasmatic levels¹⁴,¹⁵ Thiopental ↑ plasmatic levels¹⁵ Fentanyl ↑ plasmatic levels³⁰ Remifentanil ↑ plasmatic levels³⁰ Isoflurane ↑ plasmatic levels⁴ Sevoflurane ↑ plasmatic levels¹⁴ Bupivacaine ↑ plasmatic levels⁴
TNFa	Ketamine ↓ plasmatic levels¹⁵ Propofol ↓ plasmatic levels¹⁵ Thiopental ↓ plasmatic levels¹⁵ Fentanyl ↓ plasmatic levels³⁰ Remifentanil ↑ plasmatic levels³⁰ Isoflurane ↓ plasmatic levels²⁵ Sevoflurane ↓ plasmatic levels¹⁵ Enflurane ↓ plasmatic levels¹⁵ Opioids ↓ plasmatic levels¹⁵ Bupivacaine ↓ plasmatic levels⁴
It is actually a chemokine produced by leucocytes that stimulates neutrophil chemotaxis and degranulation. Propofol and isoflurane increase IL-8, whereas ketamine, thiopental and midazolam inhibit its liberation. In vitro experiments have demonstrated that propofol inhibits neutrophil IL-8 liberation.

IL-10: It is produced by monocytes, macrophages, T-regulatory cells and B lymphocytes. It is the main anti-inflammatory cytokine because it inhibits the synthesis of IFN-γ, TNF-α, IL-2 and IL-12. IL-10 also induces IgG synthesis. Many anaesthetic drugs such as ketamine, thiopental, propofol, fentanyl, remifentanil, isoflurane, sevoflurane and bupivacaine increase IL-10 levels.

Effect of anaesthetic drugs on cytokines

Many interactions and effector functions of leucocytes are mediated by short-acting secreted mediators called cytokines, a heterogeneous group of molecules mainly produced by leucocytes, although, under certain conditions, they are also mediated by other cell types. Cytokine expression is highly regulated, and cell activation is necessary for their synthesis to exert their biological activity. They can act in autocrine, paracrine or endocrine way and their functions are also pleiotropic and redundant. Some of them are considered as innate immune response regulators and others regulate the adaptive immune response. In the following section, we describe the effects of anaesthetic drugs on cytokines; in fact, these are the better studied effects of anaesthetics on the immune system.

Cytokines of innate immunity

Cytokines such as IL-1, IL-6, IL-8, IL-10 and TNF-γ are produced and released mainly by cells of the innate immune response, such as activated macrophages and monocytes. Lymphocytes and endothelial cells can also produce these cytokines (Table 3). The production of these cytokines can be affected by anaesthetic drugs.

IL-1: It is produced by monocytes, macrophages, dendritic and NK cells. There are two forms: IL-1α and IL-1β. IL-1 has significant inflammatory effects, such as histamine release induction, fever and the synthesis of acute-phase proteins. Isoflurane induces high mRNA expression, and enhances IL-1 levels. Anaesthetic drugs such as ketamine, thiopental, sevoflurane, enflurane, propofol and opiates decrease IL-1 plasmatic levels. In vitro, local anaesthetics such as lidocaine and bupivacaine inhibit IL-1 release.

IL-6: It is produced mainly by monocytes, macrophages and T lymphocytes; and among other functions, it stimulates acute phase protein synthesis. IL-6 also affects adaptive immune response, stimulates antibodies production and enhances IL-2. Anaesthetic drugs such as propofol, remifentanil, fentanyl, sevoflurane, isoflurane, levobupivacaine and bupivacaine increase IL-6 levels, whereas ketamine, thiopental and opiates decrease IL-6 concentration. The mechanism is not clear, but it is known that IL-6 increases mRNA expression and sevoflurane enhances the level of the alarmin homeobox protein 1.

IL-8: It is actually a chemokine produced by leucocytes that stimulates neutrophil chemotaxis and degranulation. Propofol and isoflurane increase IL-8, whereas ketamine, thiopental and midazolam inhibit its liberation. In vitro experiments have demonstrated that propofol inhibits neutrophil IL-8 liberation.

Table 4 Effects of anaesthetic drugs on adaptive immune response cytokines

Cytokines	Effect of anaesthetic drugs
IL-2	Propofol ↓ production²⁹
Ketamine ↓ release¹⁵	
Morphine ↓ plasmatic levels¹⁵	
IFN-γ	Propofol ↑ plasmatic levels¹⁵
Thiopental ↓ plasmatic levels¹⁵	
Remifentanil ↓ plasmatic levels¹⁵	
Opioids (morphine) ↓ plasmatic levels¹⁵	
IL-4	Thiopental ↓ plasmatic levels¹⁵
Morphine ↓ plasmatic levels¹⁵	
TGF-β	Sevoflurane ↑ plasmatic levels¹⁴
Morphine ↑ plasmatic levels¹⁵ |

Cytokines that regulate adaptive immune response

T CD4 lymphocyte activation, proliferation and differentiation after antigenic stimuli lead to an adaptive immune response towards Th1 or Th2 immunity. Th1 lymphocytes produce IL-2, IFN-γ and TNF-α, while Th2 lymphocytes mainly produce IL-4, IL-10 and IL-13 cytokines (Table 4). In fact, some of these cytokines are produced by the innate and adaptive immune responses; those that are specific for the adaptive response are affected by anaesthetic drugs.

IL-2: It is released by activated T lymphocytes (CD4 and CD8) after activation. Halothane increases the antibody titre, and as sevoflurane does, it increases the primary and secondary responses. Anaesthetic drugs such as propofol, fentanyl, remifentanil and sevoflurane inhibit neutrophil IL-8 production.
antigenic stimuli. IL-2 is the main inducer of lymphocyte proliferation (T, B and NK cells). IL-2 also enhances natural (by NK cells) and specific (by CD8) cytotoxicity and increases MHC type II molecule expression. Anaesthetic drugs, through different mechanisms, decrease its effects. Ketamine inhibits its release, morphine diminishes its levels and propofol suppresses IL-2 production.

IFN-γ This cytokine is produced mainly by Th1, CD8 and NK lymphocytes. IFN-γ activates macrophages and inhibits Th2 differentiation, so it is considered a proinflammatory cytokine. In vitro, propofol increases its concentration, whereas thiopental and remifentanil decrease its concentration. The same effect has been observed during chronic opioid administration, such as morphine.

IL-4 It is produced by Th2 cells, NK lymphocytes and mast cells. IL-4 promotes Th2 differentiation and inhibits Th1 response. IL-4 also blocks the action of IL-1 inducing the production of IL-1Ra. IL-4 is related to parasitic infections and allergic processes as it enhances IgE production. Thiopental inhibits IL-4 liberation, while morphine increases it.

TGF-β It is produced by activated T-regulatory lymphocytes and macrophages. TGF-β has immunosuppressive effects because it inhibits the synthesis of IFN-γ, TNF-α, IL-1 and IL-2, and it also inhibits NK and CD8 cytotoxic activity. Sevoflurane increases its levels and after chronic administration, morphine favours its production by lymphocytes, monocyes and macrophages.

Effect of anaesthetic drugs on glucocorticoids

Glucocorticoids (GCs) are significant immunomodulatory hormones. They bind to specific receptors that translocate to the nucleus and modulate cytokine expression. The GC-receptor complex binds to and inactivates nuclear factor-kB (NF-kB), one of the most important immune transcription factors. In human blood mononuclear cells in culture, GCs strongly decrease the production of IL-1, TNF-α, IL-2, IL-3, IL-4, IL-5, IL-10, IL-12, IFN-γ, IL-6 and IL-8. Sevoflurane and desflurane increase Gc plasmatic level, while propofol decreases it.

NF-kB regulates T- and B-lymphocyte activation, and pro-inflammatory cytokine production and release, as well as adhesion molecule expression. NF-kB is located in the cytoplasm in an inactivated form; after specific external signal, it is activated, translocated to the nucleus and promotes cytokine synthesis. Anaesthetic drugs such as ketamine, propofol and morphine inhibit cytokine production by blocking NF-kB activation.

Conclusion

Several immune functions are modified after anaesthetic drugs are administered by direct or indirect effects on stress responses. Significant activities such as phagocytosis, respiratory burst, proliferation and cell count are modified after anaesthetic procedures. Anaesthesia also affects the immune response by suppressing or by releasing different cytokines, affecting the inflammatory response. Thus, the type of anaesthetic drug is important to consider the surgical procedures for animal models because they are able to affect diverse immune system functions and should be taken into account when choosing the anaesthetic drug. Regarding the clinical practice, it has been reported that some alterations in the immune system persist several days after the end of the anaesthetic exposure. However, the post-anaesthetic immunological complications are rare in patients with proper immune system function; while in patients with certain immunodeficiency, the choice of appropriate pain therapy should be carefully selected, considering that the interaction between anaesthesia and the immune system can lead to complications.

This is the case in HIV-infected patients that in addition to the effects of anaesthetics on the immune system, it is also important to consider the interactions between antiretroviral drugs and anaesthetics. Antiretrovirals increase or decrease the activity of liver enzymes shortening or lengthening, respectively, the effects of anaesthetic drugs. This subject is also important in other conditions, such as in cancer, considering that immunosuppression induced by anaesthetic drugs enhances progression of metastasis after tumour removal surgery. NK cells, through the release of IFN-γ and their cytotoxic activity, are significant factors that contribute for the elimination of neoplastic cells; anaesthetic drugs that affect these functions provoke decreased IFN-γ release or cytotoxic activity impairing the elimination of tumour cells. This is a situation that must be considered in each patient, which includes trying to find the best anaesthetic technique that leads to a better outcome.

Abbreviations list

- **GC**, glucocorticoids; **IL**, interleukin; **INF**, interferon; **NF-kB**, nuclear factor-kB; **NK**, natural killer; **TGF**, transforming growth factor; **TNF**, tumour necrosis factor.

References

1. Wu J, Harata N, Akaike N. Potentiation by sevoflurane of the gam-ma-aminobutyric acid-induced chloride current in acutely dissociated CA1 pyramidal neurones from rat hippocampus. Br J Pharmacol. 1996 Nov;119(5):1013–21.
2. Grazialda E. Influencia del estrés-quirúrgico sobre la distribución y función de los leucocitos. Rev Arg Anest. 2002;60:387–90. In Spanish.
3. Brattsand R, Linden M. Cytokine modulation by glucocorticoids: mechanisms and action in cellular studies. Aliment Pharmacol Ther. 1996 Feb;10(Suppl. 2):81–90.
4. Amin OA1, Salah HE. The effect of general or spinal anaesthesia on pro- and anti-inflammatory intracellular cytokines in patients undergoing appendectomy.

Licensee OA Publishing London 2013. Creative Commons Attribution License (CC-BY)
using flowcytometric method. Egypt J Anaesthes. 2011 Apr;27(2):121–5.
5. Puig NR, Elena GA, Barragán J, Comba JO, Amerio N. Oxygen tensio-associated changes on secondary immune response in halothane or isoflurane anesthetized mice. Acta Anesthesiol Scand. 1995 Oct;39(7):945–8.
6. Colucci D, Harvey G, Gayol MC, Elena G, Puig N. Halothane anesthesia in mice: effect on the phagocytic activity and respiratory burst of peritoneal macrophages. Neurumimmunomodulation. 2011 Sep;18(1):11–8.
7. Miyata T, Kodama T, Honma R, Nezu Y, Harada Y, Yogo T, et al. Influence of general anesthesia with isoflurane following propofol induction on natural killer cell cytotoxic activities of peripheral blood lymphocytes in dogs. J Med Vet Sci. 2013 Jul;75(7):1971–21.
8. Puig N, Elena GA, Barragán J, Comba JO, Amerio N. Halothane-associated enhancement of the secondary immune response to sheep erythrocytes in mice: cell transfer studies. Acta Anesthesiol Scand. 1993 Oct;37(7):647–51.
9. Elena G, Amerio N, Ferrero P, Bay ML, Valenti J, Colucci D, et al. Effects of repetitive sevoflurane anesthesia on immune response, select biochemical parameters and organ histology in mice. Lab Anim. 2003 Jul;37(3):193–203.
10. Simeonova GP, Slovov E, Usunov R, Halacheva K, Dinev DN. Increased apoptosis of peripheral blood mononuclear cells (PBMC) during general and epidural anesthesia in dogs. Vet Res Commun. 2008 Dec;32(8):619–26.
11. Hildebrand E, Pape HC, Krettek C. The importance of cytokines in the posttraumatic inflammatory reaction. Unfallchirurg. 2001 Dec;105(10):793–803.
12. Lin E, Calvano SE, Lowry SF. Inflammatory cytokines and cell response in surgery. Surgery 2000 Feb;127(2):117–26.
13. Cocellip LL, Ugur MG, Karadasi H. Comparison of effects of low-flow sevoflurane and desflurane anesthesia on neutrophil and T-cell. Curr Therapeut Res. 2012 Feb/Apr;73(1–2):41–51.
14. Schneemilch CE, Ittenson A, Ansong S, Hachemberg T, Bank U. Effect of 2 anesthetic techniques on the postoperative proinflammatory and anti-inflammatory cytokine response and cellular immune function to minor surgery. J Clin Anesth. 2005 Nov;17(7):517–27.
15. Lisowska B, Szymańska M, Nowacka E, Olszewska M. Anesthesiology and the cytokine network. Postepy Hig Med Dosw(Online). 2013 Aug;67:761–9.
16. Heine J, Jaeger K, Osth A, Weingartner N, Münte S, Piepenbrock S, et al. Anaesthesia with propofol decreases FMLP-induced neutrophil respiratory burst but not phagocytosis compared with isoflurane. Br J Anaesth. 2000 Sep;85(3):424–30.
17. Inada T, Yamanouchi Y, Jomura S, Sakamoto S, Takahashi M, Kambara T, et al. Effect of propofol and isoflurane anesthesia on the immune response to surgery. Anaesthesia. 2004 Oct;59(10):954–9.
18. Rizzo A, Campanile D, Spedicato M, Minoa G, Sciosci RL. Update on anesthesia and the immune response in newborns delivered by cesarian section. Immunopharmacol Immunotoxicol. 2011 Dec;33(4):581–5.
19. Morisaki H, Aoyama Y, Shimada M, Ochri R, Taken a J. Leukocyte distribution during sevoflurane anaesthesia. Br J Anaesth. 1998 Apr;80(4):502–3.
20. Puig NR, Ferrero P, Bay ML, Hidalgo G, Valenti J, Amerio N, et al. Effects of sevoflurane general anesthesia: immunological changes in mice. Int Immunopharmacol. 2002 Jan;2(1):95–104.
21. Elena G, Puig NR, Bay ML, Urizar L, Barragán J, Comba J, et al. Inhalational anesthetic (halothane) associated changes in the immune response in mice. Int J Immunopharmacol. 1997 Nov-Dec;19(11–12):699–707.
22. Matsuoka H, Kurosawa S, Horinouchi T, Kato M, Hashimoto Y. Inhalation anesthetics induce apoptosis in normal peripheral lymphocytes in vitro. Anesthesiology. 2001 Dec;95(6):1467–72.
23. Bellin B, Rusabrov Y, Shapiro Y, Roybl L, Greenberg L, Yardeni IZ, et al. Low-dose ketamine affects immune response and respiratory burst but not phagocytosis compared with isoflurane. Br J Anaesth. 2008 Apr;100(4):522–7.
24. Ramus GV, Cesano L, Barbalonga A. Different concentration of local anaesthetics have different modes of action on human lymphocytes. Agents Actions. 1983 Jun;13(4):333–41.
25. Brand JM, Kirchner H, Poppe C, Schmuckler P. The effects of general anesthesia on human peripheral immune cell distribution and cytokine production.

Clin Immunol Immunopathol. 1997 May; 83(2):190–4.
26. Delogu G, Moretti S, Antonucci A, Maccollini S, Masciangelo R, Fumalo G, et al. Apoptosis and surgical trauma. dysregulated expression of death and survival factors on peripheral lymphocytes. Arch Surg. 2000 Oct;135(10):1141–7.
27. Colucci D, Ferrero P, Ferreyra P, Elena G, Puig NR. Effects of sevoflurane anesthesia on the immune response and biochemical parameters in mice. Comparison between single exposure and repeated anesthesia. Rev Esp Anestesiol Reanim. 2003 Apr;50(4):170–5.
28. Wu X, Lu Y, Dong Y, Zhang G, Zhang Y, Xu Z, et al. The inhalational anesthetic-sevoflurane increases levels of proinflammatory TNFα, IL-6 and IL-1β. Neurobiol Aging. 2012 Jul;33(7):1364–78.
29. Žura M, Kozmar A, Šakić K, Malenica B, Hrgovic Z. Effect of spinal and general anesthesia on serum concentration of pro-inflammatory and anti-inflammatory cytokines. Immunobiology 2012 Jun; 217(6):622–7.
30. Ke JJ, Zhan J, Feng XB, Wu Y, Rao Y, Wang YL. A comparison of the effects of total intravenous anaesthesia with propofol and remifentanil and inhalational anaesthesia with isoflurane on the release of pro- and anti-inflammatory cytokines in patients undergoing open cholecystectomy. Anesth Intens Care. 2008 Jan;36(1):74–8.
31. Mazotti MA, Braz MG, de Assis Golim M, Braz LG, Dias NH, Salvadori DM, et al. Comparison of inflammatory cytokine profiles in plasma of patients undergoing otorhinological surgery with propofol or isoflurane anesthesia. Inflamm Res. 2013 Oct;62(10):879–85.
32. Manganelli V, Signore M, Pacini I, Miasini R, Tellam G, Garofalo T, et al. Increased HMBG1 expression and release by mononuclear cells following surgical/anaesthesia trauma. Crit Care. 2010 Nov;14(6):R197.
33. Rajaj RS, Kulshrestha A. The potential anesthetic threats, challenges and intensive care considerations in patients with HIV infection. J Pharm Bioallied Sci. 2013 Jan;5(1):10–6.
34. Deegan CA, Murray D, Doran P, Ecimovic P, Moriarty D, Buggy DJ. Effect of anaesthetic technique on oestrogen receptor-negative breast cancer cell function in vitro. Br J Anaesth. 2009 Nov;103(5):685–90.