Investigation of the Seabed Profile taking into account the Multiple Scattering Approximation of Radiation

V A Kan¹,², A A Sushchenko¹,², E R Lyu², I A Baranchugov²

¹Institute of Applied Mathematics FEB RAS, 7, Radio Street, Vladivostok, 690041, Russia
²Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690090, Russia

E-mail: kan_va@difu.ru

Abstract. Based on a mathematical model of acoustic signal propagation in an oscillating medium, an inverse problem is formulated, including the definition of a function describing the deviation of the seabed level from the average given horizontal plane. Solution in the approximation of double scattering from the seabed and by volume in the case of a narrow radiation pattern of the receiving antenna is obtained.

1. Introduction

Modern methods of studying the ocean still require improvement due to the fact that each study requires a lot of time and human resources. Many research complexes are being developed to solve bathymetry problems which include monitoring of water basins and determining the bottom topography. The most popular are autonomous unmanned underwater vehicles equipped with side-scan sonar (SSS) for studying coastal waters and the World Ocean. The sonar operation is based on the periodic emission of pulsed sound parcels and the detection of reflected echoes from remote areas of the seabed. When the sonar antenna moves, an acoustic image is formed on both sides of the underwater vehicle [1 – 4].

Previously, the authors proposed to apply a phenomenological approach to the problem of determining the bottom profile by taking into account the inhomogeneity of the medium in an explicit form, namely, volume scattering. In [5] a solution to the inverse problem was obtained in the single scattering approximation with allowance for volume scattering in a medium in the form of a nonlinear differential equation. Also, in [6, 7] studies were carried out of the effect of doubly scattered radiation either from the sea bottom or in the volume on the total detected signal. As studies have shown, double interactions of radiation with a medium make an insignificant contribution. In this work, an attempt was made to obtain an equation describing the total received signal, which interacted once with the bottom surface, and then scattered in the water column and came to the receiver.

2. Formulation of the problem

The process of propagation of acoustic radiation is described by the transfer equation [5–9]:

\[
\frac{1}{c} \frac{\partial I}{\partial t} + k \cdot \nabla_r I(r, k, t) + \mu I(r, k, t) = \frac{\sigma}{2\pi} \int_{\Omega} I(r, k', t) dk' + J(r, k, t)
\] (1)
where \(\mathbf{r} \in \mathbb{R}^2, t \in [0,T] \) and wave vector \(\mathbf{k} \) belongs to the unique sphere \(\Omega = \{ \mathbf{k} \in \mathbb{R}^2; |\mathbf{k}| = 1 \} \). The function \(I(\mathbf{r}, \mathbf{k}, t) \) is interpreted as radiation intensity of wave in moment \(t \) in point \(\mathbf{r} \), propagated in the direction \(\mathbf{k} \) with constant velocity \(c \). The coefficients \(\mu \) and \(\sigma \) denote the attenuation and the scattering, correspondingly. \(J(\mathbf{r}, \mathbf{k}, t) \) describes the density of inner sources.

The process of echo signal propagation occurs in the domain \(G = \{ \mathbf{r} \in \mathbb{R}^2; r_2 > -l + u(r_1) \} \) which is the upper half-space bounded from below by the curve, \(\partial G = \{ \mathbf{y} \in \mathbb{R}^2; y_2 > -l + u(y_1) \} \) where the function \(u(y_1) \) describes the change of the ocean bottom relief.

We assume that the function \(J(\mathbf{r}, \mathbf{k}, t) \) describes a point isotropic sound source [8,9]:

\[
J(\mathbf{r}, \mathbf{k}, t) = J_0 \delta(\mathbf{r}) \delta(t),
\]

where, \(\delta \) denotes the Dirac delta function and \(J_0 \) is source power.

We complement (1) with initial and boundary conditions [5,6]:

\[
I^-(\mathbf{r}, \mathbf{k}, t)|_{t=0} = 0,
\]

\[
I^-(\mathbf{r}, \mathbf{k}, t) = 2\sigma_d \int_{\Omega_+(\mathbf{y})} |\mathbf{n}(\mathbf{r}) \cdot \mathbf{k}'| I^+(\mathbf{r}, \mathbf{k}', t) d\mathbf{k}', \quad \mathbf{r} \in \gamma, \mathbf{k} \in \Omega_-(\mathbf{r}),
\]

\[
I^\pm(\mathbf{r}, \mathbf{k}, t) = \lim_{\varepsilon \to 0} I(\mathbf{r} \pm \varepsilon \mathbf{k}, \mathbf{k}, t \pm \varepsilon/c),
\]

where, \(\mathbf{k} \in \{ \mathbf{k} \in \Omega : \text{sgn}(k_1) = \pm 1 \} \), \(\sigma_d \) denotes the constant sea bottom reflection coefficient, \(\mathbf{n}(\mathbf{r}) \) denotes the external normal to \(\partial G \).

Additional conditions at the receiver’s points:

\[
\int_{\Omega} S^\pm(\mathbf{k}) I^+(\mathbf{O}, \mathbf{k}, t) d\mathbf{k} = P_\pm(t),
\]

where, \(\mathbf{k} \in \{ \mathbf{k} \in \Omega : \text{sgn}(\mathbf{k}) = \pm 1 \} \), functions \(S^\pm(\mathbf{k}) \) characterize the radiation patterns of receiving antennas on the starboard and the portside. Functions \(P_\pm(t) \) describe measured total intensity on different sides of the antenna carrier.

The inverse problem statement: «To determine the curve \(\gamma \) by equations (1) – (5) in which \(\mu, c, \sigma_d, \sigma \) and functions \(J, P_\pm, S^\pm \) are given».

The solution of the initial-boundary problem (1), (3), (4) is deduced to the integral equation [10,11,15]:

\[
l(\mathbf{r}, \mathbf{k}, t) = \int_0^t \exp(-\mu t) J_0 \left(\mathbf{r} - \tau \mathbf{k}, \mathbf{k}, t - \frac{\tau}{c} \right) d\tau +
\]

\[
2\sigma_d \exp(-\mu d(\mathbf{r}, \mathbf{k})) \int_{\Omega+(\mathbf{r}-\mathbf{d}(\mathbf{r}, \mathbf{k}))} |\mathbf{n}(\mathbf{r} - \mathbf{d}(\mathbf{r}, \mathbf{k}) \mathbf{k}) \cdot \mathbf{k}'| \times
\]

\[
x J^+ \left(\mathbf{r} - \mathbf{d}(\mathbf{r}, \mathbf{k}) \mathbf{k}, \mathbf{k}', t - \frac{\mathbf{d}(\mathbf{r}, \mathbf{k})}{c} \right) d\mathbf{k}' +
\]

\[
+ \frac{\sigma}{2\pi} \int_0^t \exp(-\mu t') \int_{\Omega} l \left(\mathbf{r} - t' \mathbf{k}, \mathbf{k}, t - \frac{t'}{c} \right) d\mathbf{k}' dt',
\]

where \(d(\mathbf{r}, \mathbf{k}) \) denotes the distance from the point \(\mathbf{r} \in G \) in the direction \(-\mathbf{k} \) to the boundary of the domain \(G \).

For solving (6) authors construct a simple iteration method. Denote the initial approximation as \(l_0 = \int_0^t \exp(-\mu t) J_0 \left(\mathbf{r} - t' \mathbf{k}, \mathbf{k}, t - \frac{t'}{c} \right) d\tau \)

We present the solution (6) for the non-stationary radiation transfer equation in the operator form [11,13,14]:

\[
l = l_0 + (PB + ES)l, \quad l_0 = EJ
\]

(7)
The solution of the equation could be written as a Neumann series [7]:

\[
I = \sum_{n=1}^{\infty} (PB + ES)^n l_0
\]

where \((PB + ES)^n\) represents the part of the radiation flux that has experienced \(n\)-fold scattering before arrives the point \((r, k, t)\).

The solution responsible for single scattering was obtained in the articles [5], therefore, we will write a double – scattering form:

\[
(PB + ES)^2 l_0 = ((PB)^2 + PBES + ESPB + (ES)^2) l_0.
\]

Let the operators \(E, S, P, B\) be defined by the formulas:

\[
EI(r, k, t) = \int_0^\infty \exp(-\mu \tau) J_0 \left(r - \tau k, k, t - \frac{\tau}{c} \right) d\tau
\]

\[
SI(r, k, t) = \frac{\sigma}{2\pi} \int_{\Omega} I(r, k', t) d\mathbf{k}'
\]

\[
P I(r, k, t) = \exp(-\mu d(r, -k)) I \left(r - d(r, -k)k, k, t - \frac{d(r, -k)}{c} \right)
\]

\[
BI^+(r, k, t) = 2 \sigma_d \int_{\Omega_+} |n(r) \cdot \mathbf{k}'| l^+(r, k', t) d\mathbf{k}'.
\]

In (9), the first and last terms are responsible for the double scattered radiation from the boundary and in the medium, respectively, and were studied in [6,7]. \(PBES, ESPB\) characterizes the radiation that interacted with the medium and with the boundary surface.

The derivation of the signal that was scattered and reflected:

\[
PBESl(r, k, t) = \frac{\sigma_d \sigma}{\pi} \exp(-\mu d(r, -k)) \times
\]

\[
\int_{\Omega_+(r-d(r, -k)k)} |n(r-d(r, -k)k) \cdot \mathbf{k}_l| \int_0^\infty \exp(-\mu \tau) \times
\]

\[
\int_{\Omega} l \left(r - d(r, -k)k - \tau k_l, k_{II}, t - \frac{\tau}{c} - \frac{d(r, -k)}{c} \right) d\mathbf{k}_{II} d\tau d\mathbf{k}_l.
\]

Substitute the initial approximation in (10) and denote \(x_i = r_l - \tau, k_{II,i}, i = 1, 2:\)

\[
PBESl_0(r, k, t) = \frac{\sigma_d \sigma}{\pi} \exp(-\mu d(r, -k)) \int_{\Omega_+(r-d(r, -k)k)} |n(r-d(r, -k)k) \cdot \mathbf{k}_l| \times
\]

\[
\int_{\Omega_+(r-d(r, -k)k-k_l)} \int_{\Omega_+(r-d(r, -k)k-k_{II})} \frac{\exp(-\mu |r-x|)}{|r-x|} \times
\]

\[
\times \int_{\Omega} l \left(x - d(r, -k)k - \tau k_l, \frac{r-x}{|r-x|}, t - \frac{d(r, -k)}{c} - \frac{\tau}{c} - \frac{|r-x|}{c} \right) d\tau d\mathbf{k}_l.
\]

Further, we use properties of the Dirac delta function first with argument \(x\) and then \(\tau\) in (11):

\[
y = y(r, k) = r - d(r, -k)k, \quad t' = t - \frac{d(r, -k)}{c}, \quad s = \frac{\tau + |y - \tau k_l|}{c},
\]

\[
|r - x| = |y - \tau k_l| = (y - \tau k_l, y - \tau k_l)^\frac{1}{2} = (|y|^2 - 2\tau(y, k_l) + |\tau|^2)^\frac{1}{2},
\]

\[
\text{where } (PB + ES)^n\text{ represents the part of the radiation flux that has experienced } n\text{-fold scattering before arrives the point } (r, k, t).
\]
We obtain a nonlinear differential equation in the single-scattering approximation \[5\], where \(t > 2 \rho / c\) and functions \(P_\pm\) is equal to sum the single scattering radiation and functions \(Q_{2\pm}\):

\[\tau = \tau(y, k_l, s) = \frac{(cs)^2 - |y|^2}{2(cs - (y, k_l))}, \frac{ds \tau(y, k_l, s)}{ds} = \frac{c}{2} \frac{|y - cs k_l|^2}{(cs - (y, k_l))^2}.\] (12)

Given (12), the relation (11) is represented the solution of double mixed scattering in the following form:

\[PBESI_0(r, k, k_l, t) = \frac{\sigma_d}{\pi} \exp(-\mu ct) \int_{\Omega_+(r-d(r,-k)k)} |n(r - d(r,-k)k) \cdot k_l| \times \]
\[\times \chi_d(r-d(r,-k)k,k_l)(\tau) \frac{c}{ct - d(r,-k) - (y, k_l)} d k_l.\] (13)

Implement additional condition (5) and deduce a received signal: \(y = y(O, k) = -d(O, k)k\),

\[Q_{2\pm}(t) = \int_{\Omega_+(y)} S^\pm(k) PBESI_0(r, k, k_l, t) d k = \]
\[= \frac{\sigma_d}{\pi} \exp(-\mu ct) \int_{\Omega} S^\pm(k) \int_{\Omega_+(d(O,-k)k)} |n(-d(O,-k)k) \cdot k_l| \times \]
\[\times \chi_d(d(O,-k)k,-k_l)(\tau) c \frac{ct - d(O,-k) - (y, k_l)}{d k_l d k}.\] (14)

Further, we use a polar coordinates transformation and get an equation for calculating the intensity of radiation twice interacting with the medium:

\[k(\phi) = (\cos \phi \sin \phi), \quad k_l(\theta) = (\cos \theta \sin \theta), \quad \rho = \rho(\phi) = d(O, -k).\]

\[n(-d(O, -k(\phi))k(\phi)) = \left(\frac{\rho' \cos \phi - \rho \sin \phi}{\sqrt{\rho'^2 + \rho^2}}, \frac{\rho' \sin \phi + \rho \cos \phi}{\sqrt{\rho'^2 + \rho^2}}\right).\]

\[Q_{2\pm}(t) = \int_{0}^{2\pi} S^\pm(k(\phi)) \frac{\sigma_d}{\pi} \exp(-\mu ct) \int_{\Omega_+(d(O,-k)k)} \rho' \cos(\phi - \theta) + \rho \sin(\theta - \phi) \times \]
\[\times \frac{\rho'}{\sqrt{\rho'^2 + \rho^2}} \frac{c \chi_d(d(O,-k)k,-k_l)(\tau) c}{ct - \rho(1 - \cos(\phi - \theta))} d \theta d \phi \]
\[\times F(\phi, \theta, \rho) \frac{\pi}{\tau} d \phi.\] (15)

\[Q_{2\pm}(t) = \int_{0}^{\pi} S^\pm(k(\phi)) \frac{\sigma_d}{\pi} \exp(-\mu ct) \chi_d(d(O,-k)k,-k_l)(\tau) \times \]
\[\times \frac{c \chi_d(d(O,-k)k,-k_l)(\tau) c}{\sqrt{\rho'^2 + \rho^2}} d \phi.\] (16)

Equation (16) is the desired solution and will allow describing double scattering in the detected signal of the SSS receiving antenna. The derivation of the equation for ESPB is similar.

3. The inverse problem

Further, we consider the inverse problem, which consists in determining the curve \(y\) in polar coordinate.
\[\gamma = \{ r_1 = -\rho \sin \phi, r_2 = \rho \cos \phi \} \]
\[\varphi^2(\rho) = \frac{\rho^2 \left(P_\pm \left(\frac{2\rho}{c} \right) - Q \left(\rho, \varphi_\pm(\rho) \right) \right)^2}{\sigma^2 c^2 \exp(-4\mu\rho) - \rho^4 \left(P_\pm \left(\frac{2\rho}{c} \right) - Q \left(\rho, \varphi_\pm(\rho) \right) \right)} \]

where \(P_\pm \) are functions total intensity of radiation in left and right side, \(Q \) is a function that takes into account the contribution of volume scattering.

For an approximate solution of the differential equation (17), we set the initial condition, \(l \) is the depth under vehicle: \(\rho_0 = \rho(\pi) = l \).

4. Conclusions

We obtain equation (16) describing the contribution of radiation that interacted with inhomogeneities in the medium (volume scattering) and with a surface at the boundary of the medium. This addition to the modeling of the sonar signal will improve the solution of the inverse problem and, as a result, get a high-quality result when restoring the bottom surface. It is worth to note that this type of double scattering is of greater interest for practical purposes, unlike double scattering from the sea bottom and double volume scattering. Double scattering from the bottom can have a large contribution only with a very specific geometry of the boundary. And the double volume scattering itself is very small and reaches about 10% of the attenuation coefficient.

In further research we are going to conduct a quantitative and qualitative analysis of the effect of radiation taking into account double-fold interactions in the environment.

5. References

[1] Matvienko Yu V, Voronin V A, Tarasov S P, Sknarya A V and Tutyryn E V 2009 Some Ways to Improve Technologies for Sonar Survey of the Seabed Using the Autonomous Underwater Unmanned Vehicle Podvodnye Issledovaniya i Robototekhnika vol 8(2) pp 4-15
[2] Ageev A L, Igumnov G A, Kostousov V B, Agafonov I B, Zolotorev V V and Madison E A 2013 Aperture synthesizing for multichannel side-scan sonar with compensation of trajectory instability Izvestiya SfedU. Engineering Sciences vol 140(3) pp 140—148
[3] Quijano J E and Zurk L M 2009 Radiative transfer theory applied to ocean bottom modeling The Journal of the Acoustical Society of America 126(4) pp 711-1723
[4] Griffiths G 2002 Technology and Applications of Autonomous Underwater Vehicles CRC Press
[5] Prokhorov I V and Kan V A 2020 Reconstruction of the Lambert Curve in a Scattering Medium by Using Pulsed Sounding Journal of Applied and Industrial Mathematics, Pleiades Publishing, Ltd. pp 321–329
[6] Prokhorov I V, Sushchenko A A, Kan V A and Lyu E R 2019 Double – scattering approximation for the bathymetry problem Proceedings of SPIE - The International Society for Optical Engineering vol 11208 (112085Q)
[7] Prokhorov I V, Vornovskikh P A and Kim A 2020 The applicability of the approximation of single scattering in pulsed sensing of an inhomogeneous medium Computer Research And Modeling vol 12(1) pp 1-18
[8] Prokhorov I V and Sushchenko A A 2015 Imaging Based on Signal from Side-Scan Sonar Applied Mechanics and Materials vol 756 pp 678-683
[9] Prokhorov I V, Sushchenko A A and Kan V A 2017 Seabottom topography using model based on the radiative transfer equation Proceedings of the International Conference “Days on Diffraction 2017”, IEEE Conference Publications pp 163-167
[10] Dahmen W, Gruber F and Mula O 2020 An adaptive nested source term iteration for radiative transfer equations Math. Comp. vol 89 pp 1605–1646

[11] Florescu L, Markel V A and Schotland J C 2010 Single-scattering optical tomography: simultaneous reconstruction of scattering and absorption Phys. Rev. E. vol. 81 art.number 016602

[12] Prokhorov I V 2012 Solvability of the initial-boundary value problem for an integro-differential equation Siberian mathematical journal 53(2) pp 301-309

[13] Anikonov D S, Koptanyuk A E and Prokhorov I V 1999 Tomography through the transport Equation Proceedings IMA Volumes in Mathematics and its Applications “Computational Radiology and Imaging: Therapy and Diagnostics” 110 pp 33-44

[14] Anikonov D S 1999 Integro-differentiation indicator of non-homogeneity in a tomography problem J. Inverse and Ill-Posed Problems 7(1) pp 17-59

[15] Prokhorov I V, Sushchenko A A and Kan V A 2015 On the Problem of Reconstructing the Floor Topography of a Fluctuating Ocean Journal of Applied and Industrial Mathematics, Pleiades Publishing, Ltd. vol 9(3) pp 412–422

Acknowledgments
The reported study was funded by RFBR according to the research project № 20-01-00173.