Supplementary Materials for Hwang et al. (2014)

Supplementary text

Thiamine pyrophosphate biosynthesis homologs of Hfx. volcanii identified by comparison to bacterial and yeast pathways. Reconstruction of thiamine biosynthesis in halophilic archaea has been previously reported [1, 2]. Here we update the annotation of the complete genome sequence of Hfx. volcanii DS2 [3] with respect to homologs related to bacterial and eukaryotic enzymes of de novo and salvage pathways used for thiamine pyrophosphate (TPP) biosynthesis. For details and references to support biological function of these enzymes see Fig. S1 and Table S1-2. Conserved homologs were identified based on clustering to proteins classified with thiamine biosynthetic pathways in InterPro [4] and NCBI Conserved Domain Databases (CDD) [5] as well as 3D structural homology modeling using Phyre2 [6].

De novo biosynthesis of thiamine. De novo biosynthesis of thiamine (Fig. S1A-B) involves separate synthesis of two intermediate molecules: 4-amino-hydroxymethyl-2-methylpyrimidine pyrophosphate (HMP-PP) and 4-methyl-5-(β-hydroxyethyl)thiazole phosphate (HET-P or THZ-P). Once formed, HMP-PP and HET-P are condensed to generate thiamine monophosphate (TMP). TMP is then phosphorylated to TPP.

(a) HMP-PP synthesis. In bacteria, HMP-PP synthesis is described as starting from 5-amino-1-(5-phospho-D-ribosyl)imidazole (AIR), an intermediate of purine biosynthesis that is generated by PurM. AIR is converted to 4-amino-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P) in a complex rearrangement by the radical SAM enzyme ThiC, the key enzyme for the bacterial pathway. HMP-P is phosphorylated by ThiD leading to HMP-PP, which is one substrate of the condensation reaction. In yeast, the key enzyme THI5p mediates the synthesis of HMP-P from histidine and pyridoxal-phosphate (PLP). HMP-P is subsequently phosphorylated to HMP-PP by THI21 and THI20 paralogues, which have N-terminal domains related to bacterial ThiD that are important for function. As can be seen by the provided ORF codes, Hfx. volcanii encodes a homolog to each of these enzymes with exception of the key enzyme THI5. THI5 pyrimidine synthase family (IPR027939) members are found in some archaea and bacteria but not Hfx. volcanii.

(b) HET-P synthesis. HET-P is generated in bacteria from iminoacetate (derived from glycine or tyrosine), 1-deoxy-D-xylulose 5-phosphate (DXP), and a sulfur atom in activated form. These intermediates are condensed to a tautomer of hydroxyethylthiazole phosphate (cTHZ*P) by ThiG and then tautomerized by Tenl to HET-P, the other substrate of the condensation reaction. Generation of iminoacetate from glycine requires ThiO and from tyrosine requires ThiH (not shown). As can be seen by the absence of ORF codes, there are no homologs to any of these enzymes (ThiG, ThiO, Tenl, or ThiH) in Hfx. volcanii. Note that the description of sulfur activation and eukaryotic synthesis of HET-P is described in later sections.

(c) Condensation of HMP-PP and HET-P. Two alternate enzymes (ThiE and ThiN) catalyze the condensation of HMP-PP and HET-P to thiamine monophosphate (TMP) in bacteria. Yeast encode a bifunctional THI6p that has a ThiE-type TMP synthase fused to a C-terminal ThiM domain, which salvages HET-P by phosphorylation of 4-methyl-5-(β-hydroxyethyl)thiazole (THZ). Hfx. volcanii genome codes for both ThiE- and ThiN-type TMP synthases with the ThiN homolog (HVO_0662) fused to an N-terminal helix-turn-helix (HTH) DNA binding domain (Fig. S2) suggesting it may function in transcriptional regulation of the pathway. After condensation, TMP is phosphorylated by Thil (bacteria) or hydrolyzed and then pyrophosphorylated by THI80p (yeast) to the final product thiamine pyrophosphate (TPP).

Similarly to other archaea, Hfx. volcanii codes for a Thil (not a THI80p) homolog.
Thiamine salvage. Microbes have evolved transporters and kinases to uptake and salvage thiamine derivatives present in the environment (Fig. 1C). In bacteria, an ABC-type transporter (ThiBPQ) is used for the uptake of thiamine and TPP and appears conserved in *Hfx. volcanii*. The putative transmembrane protein HVO_0023 of the UPF0118 superfamily may associate with this ABC-type thiamine transporter based on genome neighborhood linkage. *Hfx. volcanii* is also predicted to uptake thiamine precursors by a symport mechanism based on coding sequence overlap of HVO_B0379 (PtuP2, a Na+/solute symporter homolog) with HVO_B0380 (TenA2, a homolog of bacterial TenA and yeast THI20 C-terminal domain thiaminase II enzymes). Thiaminase II cleaves thiamine related compounds including those generated by YlmB-mediated deformylation to generate hydroxymethylpyrimidine (HMP). HMP is successively phosphorylated through a series of ThiD mediated kinase reactions to synthesize HMP-PP. *Hfx. volcanii* has homologs to all of these enzymes (TenA, YlmB and ThiD) suggesting it can synthesize HMP-PP by a salvage pathway. *Hfx. volcanii* also appears to salvage HET-P through phosphorylation of THZ based on identification of the ThiM homolog HVO_2667. Thiamine pyrophosphokinase (TPK) enzymes of the IPR006282 family that convert thiamine to TPP were restricted to bacteria and eukaryotes with no homologs identified in *Hfx. volcanii* or other archaea.

Sulfur activation for the thiazole ring. In the bacterial pathway, sulfur is provided for ThiG in an activated form, as thiocarboxylate on the C-terminal glycine of the carrier protein ThiS. Generation of this thiocarboxylate starts with activation of ThiS by adenylation, which is catalyzed by ThiF. The adenylate is then exchanged against a sulfur atom provided by Thil. Homologs for all of these proteins are identified in *Hfx. volcanii*. ThiS has a ubiquitin-fold, and its *Hfx. volcanii* structural homologs (SAMP1, HVO_2619; SAMP2, HVO_0202; SAMP3, HVO_2177 with a corrected start codon to result in a 92 aa protein) were shown to be covalently attached to target proteins in a process called sampaylation [7, 8]. SAMP1 and SAMP2 were also shown to be involved in sulfur chemistry, SAMP1 participating in biosynthesis of molybdopterin while SAMP2 participates in thiolation of tRNA [9]. *Hfx. volcanii* has only a single E1-type enzyme (UbaA, HVO_0558) which belongs to the ThiF/MoeB/HesA family and adenylates all three SAMPs based on its requirement for SAMP function [8, 9]. Thus, we have the rare opportunity to determine if any of the SAMPs are involved in sulfur chemistry of thiamine biosynthesis by analyzing a Δ*ubaA* strain (this study).

An eventual involvement of the This-ThiF homologs, SAMP(1-3)-UbaA, would require sulfur transfer from Thil (HVO_1651). However, *Salmonella enterica* Thil provides sulfur for thiamine biosynthesis via its rhodanese domain, a domain also occurring in the *E. coli* ortholog [10]. This rhodanese domain is found in a minority of the Thil homologs and is missing from HVO_1651, making involvement on HVO_1651 in thiamine biosynthesis rather unlikely. In addition to thiamine biosynthesis, *S. enterica* Thil is also involved in thiolation of tRNA, a function which requires only the two N-terminal domains [10]. Thus, nearly all of the proteins named “thiamine biosynthesis protein Thil” in the databases are concluded to be completely unrelated to thiamine biosynthesis but instead are involved in generation of the modified tRNA base 4-thiouridine [11]. Similarly to the methanogen homolog MMP1354, this is also the likely function of HVO_1651 as we find it is not required for growth of *Hfx. volcanii* in the absence of thiamine (data not shown).
Supplementary Tables

Suppl. Table S1. Haloferax volcanii DS2 gene homologs of thiamine (vitamin B1) metabolism and transport.

Gene	Hfx. volcanii ORF locus tag, aa	Hfx. volcanii ORF Gi, UniProtKB	Thiamine biosynthesis function	Highly conserved domain(s), E value	Hfx. volcanii ORF aCOG / COG	Evidence (organism, ref.)
thiQ	HVO_0020, 361 aa	Gi:292654197, UniProtKB:D4GYL5	ABC thiamine transporter ATPase	COG3842: PotA, ABC-type spermidine/putrescine transport systems, ATPase components, 1.03e-123	arCOG00177, COG3842	B, *S. typhimurium* ABC transporter (ThiBPQ) required for transport of thiamine and TPP [12]
thiP	HVO_0021, 573 aa	Gi:292654198, UniProtKB:D4GYL6	ABC thiamine transporter permease	COG1178: ThiP, ABC-type Fe3+ transport system, permease component, 2.55e-65	arCOG00163, COG1178	
thiB	HVO_0022, 378 aa	Gi:292654199, UniProtKB:D4GYL7	ABC thiamine transporter substrate-binding protein	COG4143: ABC-type thiamine transport system, periplasmic component, 1.80e-85	arCOG00226, COG4143	
thiF	HVO_0558 (UbaA), 270 aa	Gi:292654724, UniProtKB:D4GSF3	Thiazole biosynthesis adenyllytransferase	cd00757: ThiF/MoeB/HesA family, 3.70e-102	arCOG01676, COG0476	B, *E. coli* ThiF [13]
thiN	HVO_0662, 299 aa	Gi:292654826, UniProtKB:D4GSS2	TMP synthase (ThiN) with N-terminal helix-turn-helix (HTH) domain	pfam10120: Putative aldolase; Members of this family of archaeal and bacterial proteins are likely to be aldolases, 1.12e-47	arCOG00021, COG1992	B, *T. maritima* ThiN domain [14] A, *P. caldifontis* ThiN domain [15]
THI4	HVO_0665, 307 aa	Gi:292654829, UniProtKB:D4GSSS5	Suicide thiamine thiazole synthase	PRK04176: ribulose-1,5-biphosphate synthetase, provisional, 1.22e-124	arCOG00574, COG1635	E, *S. cerevisiae* THI4p [16]
thiL	HVO_1651, 391 aa	Gi:292655800, UniProtKB:D4GZL6	Thiamine/ thioruridine biosynthesis	COG0301: ThiL, thiamine biosynthesis ATP pyrophosphatase, 6.12e-112	arCOG0038, COG0301	B, *S. enterica* Th rhodanese-like (RHD) domain [10, 17]
thiC	HVO_1861, 297 aa	Gi:292655996, UniProtKB:D4GSW4	TMP kinase	cd02194: ThiL (TMP kinase) plays a dual role in de novo biosynthesis and in salvage of exogenous thiamine, 2.60e-66	arCOG00638, COG0611	B, *S. typhimurium* ThiL [19]
purM	HVO_1557, 324 aa	Gi:292655707, UniProtKB:D4GYY6	AIR synthase	IPR004733, phosphorosbyformylglycinamidine cyclophosphylase family (HVO_1557 is only *Hfx. volcanii* member)	arCOG00536, COG0309	B, *E. coli* PurM [23, 24]
thiS	HVO_2619 (SAMP1), 47aa	Gi:292656738, UniProtKB:D4GUF6	Thiamine biosynthesis sulfur carrier protein	Ubiquitin-fold superfamily, small ubiquitin-fold archael	arCOG00536, COG1977 arCOG00535,	B, *B. subtilis* and *E. coli* ThiS [25, 26]

Notes:
- “...” indicates that the gene is not present in the listed organism.
- “...” indicates that the gene is present in the listed organism but not fully characterized.
- “...” indicates that the gene is present in the listed organism and fully characterized.

References:
- [10, 17]...
| **thiD** | HVO_2666, 279 aa | GI:292656785, UniProtKB:D4GV38 | HMP and HMP-P kinase (ThiD) (or synonym pyridoxine, pyridoxal, and pyridoxamine kinase, PdxK) | cd01169: HMP and HMP-P kinase, 4.66e-81 | arCOG00020, COG0351 | B, B. subtilis ThiD (PdxK) [31] E. S. cerevisiae THI21p and THI20p (ThiD domains) [32, 33] |
| **thiM** | HVO_2667, 298 aa | GI:292656786, UniProtKB:D4GV40 | THZ kinase | cd01170: THZ kinase, catalyzes the phosphorylation of the hydroxyl group of THZ, 1.02e-47 | arCOG00019, COG2145 | B, E. coli ThiM [34] E. A. thaliana THIMp (potential origins from mitochondria/chloroplast) [35] |
| **thiE** | HVO_2668, 214 aa | GI:292656787, UniProtKB:D4GV42 | TMP synthase | cd00564: TMP synthase, Ten, 6.21e-47 | arCOG01089, COG352 | B, B. subtilis ThiE [36, 37] |
| **tenA** | HVO_B0381, 221 aa HVO_B0380, 261 aa | GI:292494313, UniProtKB:D4GQ27 GI:292494312, UniProtKB:D4GQ26 | Thiaminase II | Thiaminase II (IPR027574); COG0819: TenA, THI-4, PQQ family, 1.34e-73 and 1.37e-36 | arCOG01128, COG0819 | B, B. subtilis TenA [38, 39] E. S. cerevisiae THI20p [40] |
| **ylmB** | HVO_B0002, 385 aa | GI:292493940, UniProtKB:D4GP03 | AMPF deformylase? | Acetylornithine deacetylase/succinyl-diaminopimelate desuccinylase family (IPR010182) | arCOG01107, COG0624 | B, B. subtilis BsYlmB [39]; Predicted AMPF deformylase based only on co-clustering with BsYlmB to IPR010182 and genomic linkage with HVO_B0381 (tenA1) and HVO_B0380 (tenA2) |
| **SSSF protein** | HVO_B0379, 509 aa | GI:292494311, UniProtKB:D4GQ25 | Sodium:solute symporter family (SSSF) (IPR001734) protein | cl00456: SLC5-6-like_sbd Superfamily, 3.70e-87 | arCOG01319, COG0591 | Predicted uptake of thiamine-related compounds based on clustering to SSSF and coding sequence overlap with HVO_B0380 (tenA2) |
| **THI5** | -- | -- | -- | -- | -- | E. S. cerevisiae THI5p [41] |
| **thiG** | -- | -- | thiazole synthase | IPR008867: thiazole biosynthesis family | -- | B, B. subtilis ThiG [26] |
| **tenI** | -- | -- | thiazole tautomerase | cd00564: TenI TMP synthase | -- | B, B. subtilis TenI [42] |
| **thiO** | -- | -- | glycine oxidase | TIGR02352: thiamin_ThiO glycine | -- | B, B. subtilis ThiO [43, 44] |
	thiH	--	tyrosine lyase	cd01335: Radical_SAM superfamily; PRK09240: thiamine biosynthesis protein ThiH	B, E. coli ThiH [45, 46]
	THI6	--	bifunctional TMP diphosphorylase / hydroxyethyl-thiazole kinase	N-terminal domain COG0352: ThiE, TMP synthase; C-terminal domain COG2145: ThiM, hydroxyethylthiazole kinase, sugar kinase family	E, S. cerevisiae THI6p [47, 48]
	THI80	--	thiamine pyrophosphokinase	COG1564: THI80 Thiamine pyrophosphokinase; cd07995: Thiamine pyrophosphokinase (TPK, EC:2.7.6.2)	E, S. cerevisiae THI80 [49]
	tpk	--	thiamine pyrophosphokinase	(IPR006282) Thiamine pyrophosphokinase (EC:2.7.6.2); TPK catalytic domain (IPR007371)	E, S. cerevisiae TPK [50]; B, S. aureus TPK [51]

\(^a\) ThiH gene homologs not predicted or not applicable. COG and aCOG classification according to Wolf et al. [52].

\(^b\) Abbreviations: A, Archaea; B, Bacteria; E, Eukarya; ADP-thiazole (ADT); deoxy-D-xylulose 5-phosphate (DXP); 5-aminomimidazole ribotide or 5-aminol-(5-phospho-D-ribosyl)imidazole (AIR); S-adenosyl-methionine (SAM); thiazole tautomer (R,Z)-2-(2-carboxy-4-methylthiazol-5(2H)-ylidene)ethyl phosphate (cTHZ*-P); pyridoxal 5'-phosphate (PLP), nicotinamide adenine dinucleotide (NAD); 4-methyl-5-(β-hydroxyethyl)thiazole (THZ); 4-methyl-5-(β-hydroxyethyl)thiazole phosphate (THZ-P; synonym 4-methyl-5-(β-hydroxyethyl)thiazole phosphate, HET-P); thiamine monophosphosphate (TMP); thiamine pyrophosphate (TPP); hydroxymethylpyrimidine (HMP); 4-amino-hydroxymethyl-2-methylpyrimidine pyrophosphate (HMP-PP); 4-amino-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P); N-[4-amino-2-methylpyrimidin-5-yl]methyl]formamide (AMPF); 4-amino-5-aminomethyl-2-methylpyrimidine (AAMP); Salmonella typhimurium (S. typhimurium); Escherichia coli (E. coli); Thermotoga maritima (T. maritima); Pyrobaculum calidifontis (P. calidifontis); Saccharomyces cerevisiae (S. cerevisiae); Salmonella enterica (S. enterica); Bacillus subtilis (B. subtilis); Haloferax volcanii (Hfx. volcanii); Staphylococcus aureus (S. aureus); Arabidopsis thaliana (A. thaliana).

\(^c\) While UbaA shares 39% amino acid identity (over a query coverage 90%) with E. coli ThiF, UbaA is not required for thiamine biosynthesis (this study) and instead functions with the ubiquitin-fold SAMPs in the formation of ubiquitin-like isopeptide bonds, the thiolation of tRNA, and the biosynthesis of molybdopterin (MPT) [8, 9].

\(^d\) HVO_1651 is related to Thil but devoid of the rhodanes domain (RHD). HVO_1651 is not required for thiamine biosynthesis (this study) and likely functions in tRNA modification based on analogy to methanogens [18].

\(^e\) Hfx. volcanii SAMPs are Ub-fold proteins structurally related to ThiS [28-30] and function with UbaA in sulfur transfer and protein modification [8, 9, 27]. However, SAMPs do not appear to be linked with thiamine metabolism based on analysis of UbaA (this study).
Suppl. Table S2. Yeast THI4p active site cysteine (Cys205) is conserved among select archaeal Th4 homologs.

Eukaryotes		
F32318	Saccharomyces cerevisiae ScTHI4p	VTAANGTCQMDPNVIELAG
Q38814	Arabidopsis thaliana AtTHI4p	VAQNHHTQCMDPNVMEAKI

Euryarchaeota – Haloarchaea		
D4GSS5	Haloferax volcanii (HVO_0665)	VHALPREITVDPIAVESDL
B0R844	Halobacterium salinarum R1	VHALPREITVDPIALEADV
B9LMD6	Halorubrum lacusprofundi	VHALPREITVDPIAVESEL
C7NOF3	Halorhodobacter utahensis	VHALPREITVDPIAVESKL
C7NVN8	Halomicrobium mukohatae	VHALPREITVDPIAVEADL
E2RLQ7	Haloterrigena rakuyahensis	VHALPREITVDPIAVESDL
E2QUG8	Halorhodobacter tiamatea	VHALPREITVDPIAVESDL
F7PLY7	Halorhabdus tepidus	VHALPREITVDPIAVESDL
F8D479	Halopiger xanaduensis	VHALPREITVDPIAVESDL
G0LHM9	Haloquadratum walsbyi DSM16854	VHALPREITVDPIAVESDL
G2M276	Haloquadratum walsbyi DSM16790	VHALPREITVDPIAVESDL
G4G9D1	Natronobacterium gregoryi	VHALPREITVDPIAVESDL
G4GE57	Natrinema pellirubrum	VHALPREITVDPIAVESDL
Q18KP1	Haloquadratum walsbyi DSM16790	VHALPREITVDPIAVESDL
Q3IMI0	Natronomonas pharaonis	VHALPREITVDPIAVESDL
Q3V7Z9	Haloarcula marismortui	VHALPREITVDPIAVESDL

Euryarchaeota – select species of methanogens and pyrococci		
F4HJT0	Pyrococcus sp. (strain NA2)	VSALPRQITVDPIAVESKI
F8AJA7	Pyrococcus yayanosii (strain CH1)	VSALPRQITVDPIAVESKI
F6D358	Methanobacterium sp. strain SW	VSALPRAITVDPIAVESKI
F1O6Y7	Methanobacterium sp. (strain AL-21)	VSALPRAITVDPIAVESKI
H8I7V6	Methanocella conradii	VSALPRAITVDPIAVESKI
K2QAU0	Methanobacterium formicicum	VSALPRAITVDPIAVESKI

Thaumarchaeota		
A0RUI0	Cenarchaeum symbiosum strain A	VSALPRAITVDPIAVESKI
A9A48S	Nitrosoarchaeum limnia	VSALPRAITVDPIAVESKI
B3T7X2	uncultured marine crenarchaeote	VSALPRAITVDPIAVESKI
B6M1J9	Methanosarcina acetivorans (MA_2851)	VSALPRAITVDPIAVESKI
A0B980	Methanosaeta thermophila	VSALPRAITVDPIAVESKI

Crenarchaeota - Aeropyrum		
Q9Y9Z0	Aeropyrum pernix	VQGLPRAITVDPVGRLAEY

Archaea - with ‘histidine-containing’ TH4 homologs		
Q58018	Methanoalkalococcus jannaschii(MJ0601)	IERAK---HIDPLTIRSKV
Q5CD25	Thermococcus kodakaraensis (TK0434)	VMTGG---HDVDPLVEAKF
Q8TM19	Methanosarcina acetivorans (MA_2851)	VTTQR---HDVDPLMRKIN
A0B080	Methanoseta thermophila	ADMA---HDVDPLAIRAV
A1W13	Pyrobasilicatium	IQMS---HDVDPLTAQKA
A2BJG4	Hyperthermus butylicus	VEAG---HDVDPIYIEAR
A2SQ47	Methanococcus maripaludis	VVREG---HDVDPLSFRKI
A3CS64	Methanothrix marina	VDMAG---HDVDPLTMABC
A3DK5S	Methanopyrus kandleri	IFEAG---HDVDPLTFVEAKF
A3NP61	Pyrobaculum calidifontis	IQMS---HDVDPLQZQA
A4FVG7	Methanococcus maripaludis	IEKAG---HDVDPLTISAKY
A4WLY7	Pyrobasilicatium	IQMS---HDVDPLTMKA
A4Y7V7	Metallosphaeroides sedula	TMAV---HDVDPLTSAKA
A6U67	Methanococcus vannielii	IEKAG---HDVDPLTISAKY
A6UV59	Methanococcus aeolicus	IKNAG---HDVDPLTISAKY
A6VGT9	Methanococcus maripaludis	IEKAG---HDVDPLTISAKY
A8A290	Tignicoccus hospitalis	IEJAG---HDVDPIFFKE
A9M926	Caldivirga maquilingens	IQMAG---HDVDPLTSKESN
A9A9W1	Methanococcus maripaludis	IEKAG---HDVDPLTISAKY
B1L513	Korarchaeum cryptofilum	VLLAG---HDVDPLTISAKY
B1YDXX	Thermoproteus neutrophilus	IQMS---HDVDPLQZQA
B1D4X8	Desulfurococcus kamchatkensis	VQLS---HDVDPLTSKESN
Protein ID	Organism	Sequence Alignment
------------	--------------------------------	--------------------
C3MQY1	Sulfolobus islandicus	TQMAS---HVDPIFISAKA
C3MWW5	Sulfolobus islandicus	TQMAS---HVDPIFISAKA
C3N6N6	Sulfolobus islandicus	TQMAS---HVDPIFISAKA
C3N745	Sulfolobus islandicus	TQMAS---HVDPIFISAKA
C3NG16	Sulfolobus islandicus	TQMAS---HVDPIFISAKA
C4K1A7	Sulfolobus islandicus	TQMAS---HVDPIFISAKA
CS6A00	Thermococcus gammatolerans	VMRTG---HVDPLTVEARF
C79PGQ	Methanocaldococcus fervidus	IEKAG---HIDPLTSKSI
C9RDQ9	Methanocaldococcus vulcani	IERAG---HIDPLTRSKV
D0K5C6	Sulfolobus solfataricus	TQMAS---HVDPIFISAKA
D2P013	Sulfolobus islandicus	TQMAS---HVDPIFISAKA
D2REC7	Archaeoglobus profundus	TFMAG---HVDPLVLRSKV
D3S3G6	Ferrolobus pacidus	VQ1AG---HVDPLMIESKA
D3SSY8	Methanocaldococcus sp.	IERAG---HIDPLTRSKV
D3EH9H	Methanohalophilus mahli	VE1GR---HVDPLTRSRL
D5V99M	Methanocaldococcus infermus	IERAG---HVDPLAESKV
D7DYA4	Staphylythermus helenicus	IYEAG---HVDPPYEIEANA
D7D7D7	Methanococcus voltae	IKAAG---HVDPHYYIEANA
D7E696	Methanolobum evestigatum	VSIAN---HVDPLTRAKV
D9PUB7	Methanothermobacter marburgensis	VEMAG---HVDPLTVRAAGA
EOSQ9J	Ignisphaera aggregans	VVMSG---HVDPLFITSRA
E1QR50	Vulcanisaeta distributa	VMAG---HVDPPFIEAKA
E1RE05	Methanoplanus petrolearius	VEMAG---HVDPLMTKTKV
E3GXE6	Methanothermus fervidus	AEMAK---HVDPLVFISAKA
F0NKN1	Sulfolobus islandicus	TQMAS---HVDPIFISAKA
F0QW10	Vulcanisaeta moutnovski	IQAAN---HVDPPFIEAKA
F0T955	Methanobacterium sp. strain AL-21	VMSSG---HVDPLTRSKA
F1KN2T	Archaeoglobus veneficus	VEMAG---HVDPLTRSRK
F2L34J	Thermoproteus uzoniensis	IQMAG---HVDPLVZTAKA
F4B7H4	Acidianus hospitalis	TCMAG---HVDPLFITSRA
F4BUD4	Methanosaeta concilii	AEMAG---HVDPPCIRARY
F4FZ8X	Metallosphaera cuprina	TMAG---HVDPLFITSRA
F4HLX9	Pyrococcus sp. strain NA2	VLMTG---HVDPLTRVEAKY
F6BCS4	Methanoterris veneficus	IEGAG---HIDPITIYAK
F6BQUU	Methanoterris igneus	IEKAG---HIDPITIYAK
F6D5C3	Methanobacterium sp. strain SW	VEMAG---HVDPLTRSRK
F7XMG6	Methanosalms zilliae	VGIKG---HVDPLTRSKV
F8A1S2	Pyrococcus yamanoi	VRMAG---HVDPLTVREAKF
F8AL44	Methanothermococcus okinawensis	IDKAG---HVDPLTINAKY
G0EF7R	Pyrolobus fumarii IA	VGIAN---HVDPLMEFKA
G0HLR3	Thermococcus sp. strain	VMAG---HVDPLTVREAKF
G27657	Methanothermabacter thermotrophicus	VEMAG---HVDPLTRARAA
G29556	Archaeoglobus fulgidus	VEGAG---HVDPLFITSRA
G50982	Pyrococcus horikoshii	VLMAG---HVDPLTIEAKY
G12O93	Methanococcoideae burtonii	VE1GK---HVDPLAIRSK
G2PM60	Methanospirillum hungatei	VEATG---HVDPLITGCM
G4NE31	Methanascarcina barkeri	VTVQR---HVDPLMRTKLN
G4JAF8	Sulfolobus acidocaldarium	TQMA---HVDPLFITSKA
G6LQK8	Methanococcus maripaludis	IEKAG---HVDPLFITSKA
Q80QBS	Methanosarcina mazei	VTTQR---HVDPLMRTKLN
Q8T67S	Methanopyrus kandleri	VKAAN---HVDPLALEAYE
Q8U0Q5	Pyrococcus furiosus	VKMG---HVDPLTVREAKY
Q8Z2MS	Pyrobaculum aerophilum	IQMG---HVDPLVYQAKA
Q975R0	Sulfolobus tokodai	TCMAG---HVDPLFITSKA
Q97YS9	Sulfolobus solfataricus	TQMAS---HVDPIFISAKA
Q9V0OJ	Pyrococcus abyssi	VLMVG---HVDPLTVREAKY

Archaea - with 'proline-containing' THI4p homologs

Protein ID	Organism	Sequence Alignment
B5ID81	Aciduliprofundus boonei	-VIGE---HIDPLSITYAKY
B5IDDO	Aciduliprofundus boonei	-VIGE---HIDPLSITYKY

Select bacteria

Protein ID	Organism	Sequence Alignment
Q9MWZP4	Thermotoga maritima	VMRTG---HVDPLTVREAKF

4Residues in analogous position to conserved active site cysteine (Cys205) of ScTHI4p are highlighted (i.e., cysteine residues in red, histidine residues in black, and proline residues in blue). Hfx. volcanii HVO_0665 is the THI4p homolog of this study. MJ0601 and MA_2851 are described as a D-ribose-1,5-bisphosphate isomerases [53]. TK0434 is annotated as a putative ribose 1,5-bisphosphate isomerase but was demonstrated to lack this activity in vitro [54]. Note that select species of methanogens and pyrococci have two THI4 homologs including one with a conserved active site cysteine and another with a histidine in this position. UniProtKB/Swiss-Prot numbers are listed for each protein sequence. Gaps introduced to optimize multiple amino acid sequence alignment are indicated by -.

7
Figure S1 [cont].
Figure S1. De novo biosynthesis (A, B) and salvage (C) pathways of thiamine metabolism. Thiamine biosynthetic enzymes are summarized in Table S1 with reference to function, gene locus tag and UnitProtKB accession numbers. Enzymes of bacteria and yeast are indicated in blue and purple, respectively. Hfx. volcanii ORF code homologs associated with thiamine metabolism based on homology are indicated in green (where X indicates no homolog detected and ? is used when the enzyme is yet unassigned), while those based on gene synteny and limited homology are indicated in orange. THI4-SH indicates the catalytic cysteine side chain. THI4-C=CH indicates the dehydroalanine form of the enzyme after sulfur transfer. The sulfur atom associated with formation of the thiazole ring is highlighted in red. Abbreviations: 4-amino-5-aminomethyl-2-methylpyrimidine (AAMP); ADP-thiazole (ADT); 5-amino-1-(5-phospho-D-riboyl)imidazole (AIR, synonym 5-aminoimidazole ribotide); N-[4-amino-2-methylpyrimidin-5-yl]methylformamide (AMPF); deoxy-D-xylulose 5-phosphate (DXP); 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP); 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P); 4-amino-5-hydroxyethyl-2-methylpyrimidine phosphate pyrophosphate (HMP-PP); nicotinamide adenine dinucleotide (NAD); pyridoxal 5'-phosphate (PLP); S-adenosyl-methionine (SAM); 4-methyl-5-β-hydroxyethylthiazole (THZ); 4-methyl-5-β-hydroxyethylthiazole phosphate (THZ-P or HET-P); thiazole tautomer (RZ)-2-(2-carboxy-4-methylthiazol-5(2H)-ylidene)ethyl phosphate (cTHZ*-P); thiamine monophosphate (TMP); thiamine pyrophosphate (TPP). Hfx. volcanii ORFs not listed in Table S1 include: HVO_0109 [D4GQ28, SufS-type cysteine desulfurase][55]; HVO_0001 [D4GQ22, Orc1-type DNA replication protein]; HVO_B0382 (D4GQ23, TATA-box-binding protein 3 or Tbp3). Hfx. volcanii homologs of bacterial glycine oxidase (ThiO), thiazole synthase (ThiG), thiamine pyrophosphokinase (TPK) and thiazole tautomerase (TenI) in addition to yeast HMP-P synthase (THI5) and thiamine pyrophosphokinase (THI80) were not detected. Conversion of ADT to THZ-P is predicted to be catalyzed by a NUDIX hydrolase domain enzyme that has yet to be identified [56]. Members of the RHD (IPR001763) and NUDIX hydrolase domain (IPR000086) are common in Hfx. volcanii. HVO_1651 is related to bacterial Thi but devoid of the rhodanese-like domain (RHD), which alone mediates the catalytic function of Thi in thiamine biosynthesis [10, 11].
Suppl. Figure S2. Domain organization and 3D-structural modeling suggest *Hfx. volcanii* HVO_0662 functions as transcriptional regulator of thiamine metabolism. (A) HVO_0662 is organized as fusion of an N-terminal helix-turn-helix (HTH) DNA binding domain and C-terminal ThiN domain based on InterProScan domain recognition [4]. Protein homologs with this HTH-ThiN domain configuration are widespread in halophilic archaea and identified in species of Crenarchaeota (*Pyrobaculum*, *Thermofilum*, *Sulfolobus*, *Metallosphaera*, *Caldivirga*, *Hyperthermus*, *Vulcanisaeta* and *Acidianus*) and Euryarchaeota (*Thermococcus* and *Pyrococcus*). Other archaea and bacteria are predicted to encode ThiD-ThiN protein fusions. Overview (B) and selected close-up views (C) of the 3D structural models of HVO_0662 HTH (left) and ThiN (right) domains generated at 97.7% and >99.9% confidence, respectively, by Phyre2 based fold-recognition and model building [6]. Models were overlaid onto x-ray crystal structures with PDB, UniProtKB reference and amino acid residue numbering as indicated. The ThiN domain of the ThiDN fusion protein, TM0790, from the bacterium *Thermotoga maritima* catalyzes thiamine phosphate synthase (TPS) activity in vitro and complements an *E. coli* ΔthiE strain for thiamine auxotrophy (although additional factors in *E. coli* cell lysate as well as the N-terminal ThiD domain were important for full activity) [14]. The archaeal ThiDN (of *Pyrobaculum caldifontis*) is multifunctional in formation of TMP from HMP and THZ-P in the presence of Mg-ATP [15], and its ThiN domain is a functional analog of the bacterial ThiE, catalyzing formation of TMP with release of PPI from HMP-PP and THZ-P (also known as HET-P or 4-methyl-5-(β-hydroxyethyl)thiazole phosphate) [15]. X-ray crystal structure (PDB 2P89) guided site-directed mutagenesis [15] suggest the *Pyrococcus* ThiN R320 and H341 are involved in the catalytic reaction (residues of structural analogy are predicted for HVO_0662; R183 and H204, respectively). Whether HTH-ThiN fusion proteins such as HVO_0662 synthesize TMP and/or bind intermediates/products of thiamine biosynthesis to modulate transcription remains to be determined.
Supplementary References

1. Falb M, Müller K, Königsmaier L, Oberwinkler T, Horn P, von Gronau S, Gonzalez O, Pfeiffer F, Bornberg-Bauer E, Oesterhelt D: Metabolism of halophilic archaea. Extremophiles 2008, 12(2):177-196.

2. Siddaramappa S, Challacombe JF, DeCastro RE, Pfeiffer F, Sastre DE, Gimenez MI, Paggi RA, Dettter JC, Davenport KW, Goodwin LA et al: A comparative genomics perspective on the genetic content of the alkaliophilic haloarchaeon Natrrialba magadíi ATCC 43099T. BMC Genomics 2012, 13:165.

3. Hartman A, Norais C, Badger J, Delmas S, Haldenby S, Madupu R, Robinson J, Khouri H, Ren Q, Lowe T et al: The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS One 2010, 5(3):e9605.

4. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R: InterProScan: protein domains identifier. Nucleic Acids Res 2005, 33(Web Server issue):W116-120.

5. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR et al: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011, 39(Database issue):D225-229.

6. Kelley LA, Sternberg MJ: Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009, 4(3):363-371.

7. Humbard M, Miranda H, Lim J, Krause D, Pritz J, Zhou G, Chen S, Wells L, Maupin-Furlow J: Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 2010, 463(7277):54-60.

8. Miranda HV, Antelmann H, Hepowit N, Chavarria NE, Krause DJ, Pritz JR, Bässel K, Becher D, Humbard MA, Brocchieri L et al: Archaeal ubiquitin-like SAMP3 is isopeptide-linked to proteins via a UbaA-dependent mechanism. Mol Cell Proteomics 2014, 13(1):220-239.

9. Miranda H, Nembhard N, Su D, Hepowit N, Krause D, Pritz J, Phillips C, Söll D, Maupin-Furlow J: E1- and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea. Proc Natl Acad Sci U S A 2011, 108(11):4417-4422.

10. Martinez-Gomez NC, Palmer LD, Vivas E, Roach PL, Downs DM: The rhodanese domain of Thil is both necessary and sufficient for synthesis of the thiazole moiety of thiamine in Salmonella enterica. J Bacteriol 2011, 193(18):4582-4587.

11. Bender RA: The danger of annotation by analogy: most ";thil" genes play no role in thiamine biosynthesis. J Bacteriol 2011, 193(18):4574-4575.

12. Webb E, Claas K, Downs D: thiBPQ encodes an ABC transporter required for transport of thiamine and thiamine pyrophosphate in Salmonella typhimurium. J Biol Chem 1998, 273(15):8946-8950.

13. Xi J, Ge Y, Kinsland C, McLafferty FW, Begley TP: Biosynthesis of the thiazole moiety of thiamin in Escherichia coli: identification of an acyldisulfide-linked protein--protein conjugate that is functionally analogous to the ubiquitin/E1 complex. Proc Natl Acad Sci U S A 2001, 98(15):8513-8518.

14. Morett E, Korbel JO, Rajan E, Saab-Rincon G, Olvera L, Olvera M, Schmidt S, Snel B, Bork P: Systematic discovery of analogous enzymes in thiamin biosynthesis. Nat Biotechnol 2003, 21(7):790-795.

15. Hayashi M, Kobayashi K, Esaki H, Konno H, Akaji K, Tazuya K, Yamada K, Nakabayashi T, Nosaka K: Enzymatic and structural characterization of an archaeal thiamin phosphate synthase. Biochim Biophys Acta 2014, 1844(4):803-809.
16. Chatterjee A, Abeydeera ND, Bale S, Pai PJ, Dorrestein PC, Russell DH, Ealick SE, Begley TP: *Saccharomyces cerevisiae* THI4p is a suicide thiamine thiazole synthase. *Nature* 2011, 478(7370):542-546.

17. Bender RA: The danger of annotation by analogy: most thi genes play no role in thiamine biosynthesis. *J Bacteriol* 2011, 193(18):4574-4575.

18. Liu Y, Zhu X, Nakamura A, Orlando R, Söll D, Whitman WB: Biosynthesis of 4-thiouridine in tRNA in the methanogenic archaeon *Methanococcus maripaludis*. *J Biol Chem* 2012, 287(44):36683-36692.

19. Webb E, Downs D: Characterization of thiI, encoding thiamin-monophosphate kinase, in *Salmonella typhimurium*. *J Biol Chem* 1997, 272(25):15702-15707.

20. Chatterjee A, Li Y, Zhang Y, Grove TL, Lee M, Krebs C, Booker SJ, Begley TP, Ealick SE: Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily. *Nat Chem Biol* 2008, 4(12):758-765.

21. Lawhorn BG, Mehl RA, Begley TP: Biosynthesis of the thiamine pyrimidine: the reconstitution of a remarkable rearrangement reaction. *Org Biomol Chem* 2004, 2(17):2538-2546.

22. Zhang Y, Begley TP: Cloning, sequencing and regulation of thiA, a thiamin biosynthesis gene from *Bacillus subtilis*. *Gene* 1997, 198(1-2):73-82.

23. Smith JM, Daum HA: Nucleotide sequence of the purM gene encoding 5'-phosphoribosyl-5-aminomidazole synthetase of *Escherichia coli* K12. *J Biol Chem* 1986, 261(23):10632-10636.

24. Schrimsher JL, Schendel FJ, Stubbe J, Smith JM: Purification and characterization of aminimidazole ribonucleotide synthetase from *Escherichia coli*. *Biochemistry* 1986, 25(15):4366-4371.

25. Taylor SV, Kelleher NL, Kinsland C, Chiu HJ, Costello CA, Backstrom AD, McLafferty FW, Begley TP: Thiamin biosynthesis in *Escherichia coli*. Identification of ThiS thiocarboxylate as the immediate sulfur donor in the thiazole formation. *J Biol Chem* 1998, 273(26):16555-16560.

26. Park JH, Dorrestein PC, Zhai H, Kinsland C, McLafferty FW, Begley TP: Biosynthesis of the thiazole moiety of thiamin pyrophosphate (vitamin B1). *Biochemistry* 2003, 42(42):12430-12438.

27. Hubbard M, Miranda H, Lim J, Krause D, Pritz J, Zhou G, Chen S, Wells L, Maupin-Furlow J: Ubiquitin-like small archaeal modifier proteins (SAMPs) in *Haloferax volcanii*. *Nature* 2010, 463:54-60.

28. Jeong YJ, Jeong BC, Song HK: Crystal structure of ubiquitin-like small archaeal modifier protein 1 (SAMP1) from *Haloferax volcanii*. *Biochem Biophys Res Commun* 2011, 405(1):112-117.

29. Li Y, Maciejewski MW, Martin J, Jin K, Zhang Y, Maupin-Furlow JA, Hao B: Crystal structure of the ubiquitin-like small archaeal modifier protein 2 from *Haloferax volcanii*. *Protein Sci* 2013, 22(9):1206-1217.

30. Liao S, Zhang W, Fan K, Ye K, Zhang X, Zhang J, Xu C, Tu X: Ionic strength-dependent conformations of a ubiquitin-like small archaeal modifier protein (SAMP2) from *Haloferax volcanii*. *Sci Rep* 2013, 3:2136.

31. Park JH, Burns K, Kinsland C, Begley TP: Characterization of two kinases involved in thiamine pyrophosphate and pyridoxal phosphate biosynthesis in *Bacillus subtilis*: 4-amino-5-hydroxymethyl-2methylpyrimidine kinase and pyridoxal kinase. *J Bacteriol* 2004, 186(5):1571-1573.

32. Kawasaki Y, Onozuka M, Mizote T, Nosaka K: Biosynthesis of hydroxymethylpyrimidine pyrophosphate in *Saccharomyces cerevisiae*. *Curr Genet* 2005, 47(3):156-162.

33. Llorente B, Fairhead C, Dujon B: Genetic redundancy and gene fusion in the genome of the Baker’s yeast *Saccharomyces cerevisiae*: functional characterization of a three-member gene family involved in the thiamine biosynthetic pathway. *Mol Microbiol* 1999, 32(6):1140-1152.
34. Mizote T, Nakayama H: The thiM locus and its relation to phosphorylation of hydroxyethylthiazole in *Escherichia coli*. *J Bacteriol* 1989, **171**(6):3228-3232.

35. Yazdani M, Zallot R, Tunc-Ozdemir M, de Crécy-Lagarde V, Shintani DK, Hanson AD: Identification of the thiamin salvage enzyme thiazone kinase in *Arabidopsis* and *maize*. *Phytochemistry* 2013, **94**:68-73.

36. Backstrom AD, McMordie RAS, Begley TP: *Biosynthesis of thiamin I: the function of the thIE gene product*. *J Am Chem Soc* 1995, **117**:2351-2352.

37. Reddick JJ, Nicewonger R, Begley TP: *Mechanistic studies on thiamin phosphate synthase: evidence for a dissociative mechanism*. *Biochemistry* 2001, **40**(34):10095-10102.

38. Toms AV, Haas AL, Park JH, Begley TP, Ealick SE: Structural characterization of the regulatory proteins TenA and TenI from *Bacillus subtilis* and identification of TenA as a thiaminase II. *Biochemistry* 2005, **44**(7):2319-2329.

39. Jenkins AH, Schyns G, Potot S, Sun G, Begley TP: *A new thiamin salvage pathway*. *Nat Chem Biol* 2007, **3**(8):492-497.

40. Onozuka M, Konno H, Kawasaki Y, Akaji K, Nosaka K: *Involvement of thiaminase II encoded by the THI20 gene in thiamin salvage of *Saccharomyces cerevisiae*. FEMS Yeast Res* 2008, **8**(2):266-275.

41. Coquille S, Roux C, Fitzpatrick TB, Thore S: *The last piece in the vitamin B1 biosynthesis puzzle: structural and functional insight into yeast 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P) synthase*. *J Biol Chem* 2012, **287**(50):42333-42343.

42. Hazra AB, Han Y, Chatterjee A, Zhang Y, Rai RY, Ealick SE, Begley TP: *A missing enzyme in thiamin thiazole biosynthesis: identification of Teni as a thiazone tautomerase*. *J Am Chem Soc* 2011, **133**(24):9311-9319.

43. Settembre EC, Dorrestein PC, Park JH, Augustine AM, Begley TP, Ealick SE: *Structural and mechanistic studies on ThiO, a glycine oxidase essential for thiamin biosynthesis in *Bacillus subtilis*. Biochemistry* 2003, **42**(10):2971-2981.

44. Nishiya Y, Imanaka T: *Purification and characterization of a novel glycine oxidase from *Bacillus subtilis*. FEBS Lett* 1998, **438**(3):263-266.

45. Challand MR, Martins FT, Roach PL: *Catalytic activity of the anaerobic tyrosine lyase required for thiamine biosynthesis in *Escherichia coli*. J Biol Chem* 2010, **285**(8):5240-5248.

46. Kriek M, Martins F, Challand MR, Croft A, Roach PL: *Thiamine biosynthesis in *Escherichia coli*: identification of the intermediate and by-product derived from tyrosine*. *Angew Chem Int Ed Engl* 2007, **46**(48):9223-9226.

47. Kawasaki Y: *Copurification of hydroxyethylthiazole kinase and thiamine-phosphate pyrophosphorylase of *Saccharomyces cerevisiae*: characterization of hydroxyethylthiazole kinase as a bifunctional enzyme in the thiamine biosynthetic pathway. J Bacteriol* 1993, **175**(16):5153-5158.

48. Nosaka K, Nishimura H, Kawasaki Y, Tsujihara T, Iwashima A: *Isolation and characterization of the THI6 gene encoding a bifunctional thiamin-phosphate pyrophosphorylase/hydroxyethylthiazole kinase from *Saccharomyces cerevisiae*. J Biol Chem* 1994, **269**(48):30510-30516.

49. Nosaka K, Kaneko Y, Nishimura H, Iwashima A: *Isolation and characterization of a thiamin pyrophosphokinase gene, THI80, from *Saccharomyces cerevisiae*. J Biol Chem* 1993, **268**(23):17440-17447.

50. Baker LJ, Dorocke JA, Harris RA, Timm DE: *The crystal structure of yeast thiamin pyrophosphokinase*. *Structure* 2001, **9**(6):539-546.

51. Müller IB, Bergmann B, Groves MR, Couto I, Amaral L, Begley TP, Walter RD, Wrencher C: *The vitamin B1 metabolism of *Staphylococcus aureus* is controlled at enzymatic and transcriptional levels*. *PLoS One* 2009, **4**(11):e7656.
52. Wolf YI, Makarova KS, Yutin N, Koonin EV: ***Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer.*** *Biol Direct* 2012, 7:46.

53. Finn MW, Tabita FR: ***Synthesis of catalytically active form III ribulose 1,5-bisphosphate carboxylase/oxygenase in archaea.*** *J Bacteriol* 2003, 185(10):3049-3059.

54. Sato T, Atomi H, Imanaka T: ***Archaeal type III RuBisCOs function in a pathway for AMP metabolism.*** *Science* 2007, 315(5814):1003-1006.

55. Zafrilla B, Martínez-Espinosa RM, Esclapez J, Pérez-Pomares F, Bonete MJ: ***SufS protein from Haloferax volcanii involved in Fe-S cluster assembly in haloarchaea.*** *Biochim Biophys Acta* 2010, 1804(7):1476-1482.

56. Begley TP, Ealick SE, McLafferty FW: ***Thiamin biosynthesis: still yielding fascinating biological chemistry.*** *Biochem Soc Trans* 2012, 40(3):555-560.