A NEW PINCHING THEOREM FOR COMPLETE SELF-SHRINKERS AND ITS GENERALIZATION

LI LEI, HONGWEI XU, AND ZHIYUAN XU

Abstract. In this paper, we firstly verify that if \(M \) is a complete self-shrinker with polynomial volume growth in \(\mathbb{R}^{n+1} \), and if the squared norm of the second fundamental form of \(M \) satisfies \(0 \leq |A|^2 - 1 \leq \frac{1}{18} \), then \(|A|^2 \equiv 1 \) and \(M \) is a round sphere or a cylinder. More generally, let \(M \) be a complete \(\lambda \)-hypersurface with polynomial volume growth in \(\mathbb{R}^{n+1} \) with \(\lambda \neq 0 \). Then we prove that there exists an positive constant \(\gamma \), such that if \(|\lambda| \leq \gamma \) and the squared norm of the second fundamental form of \(M \) satisfies \(0 \leq |A|^2 - \beta \lambda \leq \frac{1}{18} \), then \(|A|^2 \equiv \beta \lambda \), \(\lambda > 0 \) and \(M \) is a cylinder. Here \(\beta \lambda = \left(\frac{1}{2} + \lambda^2 + |\lambda|\sqrt{\lambda^2 + 4} \right) \).

1. Introduction

Suppose \(X : M \to \mathbb{R}^{n+1} \) is an isometric immersion. If the position vector \(X \) evolves in the direction of the mean curvature vector \(\vec{H} \), this yields a solution of mean curvature flow:

\[
\begin{align*}
\frac{\partial}{\partial t} X(x, t) &= \vec{H}(x, t), \quad x \in M, \\
X(x, 0) &= X(x).
\end{align*}
\]

An important class of solutions to the above mean curvature flow equations are self-shrinkers [17], which satisfy

\[H = -X^N, \]

where \(X^N \) is the projection of \(X \) on the unit normal vector \(\xi \), i.e., \(X^N = \langle X, \xi \rangle \).

We remark that some authors have a factor \(\frac{1}{2} \) on the right-hand side of the defining equation for self-shrinkers.

Rigidity problems of self-shrinkers have been studied extensively. As is known, there are close relations between self-shrinkers and minimal submanifolds. But they are quite different on many aspects. We refer the readers to [14] for the rigidity problems of minimal submanifolds. In [11], Abresch–Langer classified all smooth closed self-shrinker curves in \(\mathbb{R}^2 \). In 1990, Huisken [17] proved that the only smooth closed self-shrinkers with nonnegative mean curvature in \(\mathbb{R}^{n+1} \) are round spheres for \(n \geq 2 \). Based on the work due to Huisken [17, 18], Colding–Minicozzi [11] proved that if \(M \) is an \(n \)-dimensional complete self-shrinker with nonnegative mean curvature and polynomial volume growth in \(\mathbb{R}^{n+1} \), then \(M \) is isometric to either

2000 Mathematics Subject Classification. 53C44; 53C40.

Key words and phrases. Rigidity theorem, the second fundamental form, self-shrinkers, \(\lambda \)-hypersurfaces.

Research supported by the National Natural Science Foundation of China, Grant Nos. 11531012, 11371315, 11601478; and the China Postdoctoral Science Foundation, Grant No. 2016M590530.
the hyperplane \mathbb{R}^n, a round sphere or a cylinder. In [2], Brendle verified that the round sphere is the only compact embedded self-shrinker in \mathbb{R}^3 of genus zero.

In 2011, Le–Sesum [20] proved that any n-dimensional complete self-shrinker with polynomial volume growth in \mathbb{R}^{n+1} whose squared norm of the second fundamental form satisfies $|A|^2 < 1$ must be a hyperplane. Afterwards, Cao–Li [3] generalized this rigidity result to arbitrary codimension and proved that if M is an n-dimensional complete self-shrinker with polynomial volume growth in \mathbb{R}^{n+1}, and if $|A|^2 \leq 1$, then M must be one of the generalized cylinders. In 2014, Ding–Xin [13] proved the following rigidity theorem for self-shrinkers in the Euclidean space.

Theorem A. Let M be an n-dimensional complete self-shrinker with polynomial volume growth in \mathbb{R}^{n+1}. If the squared norm of the second fundamental form satisfies $0 \leq |A|^2 - 1 \leq \frac{1}{|\lambda|}$, then $|A|^2 \equiv 1$ and M is a round sphere or a cylinder.

In [8], Cheng–Wei proved that if M is an n-dimensional complete self-shrinker with polynomial volume growth in \mathbb{R}^{n+1}, and if $0 \leq |A|^2 - 1 \leq \frac{2}{|\lambda|}$, where $|A|$ is constant, then $|A|^2 = 1$.

Recently, Xu–Xu [37] improve Theorem A and proved the following rigidity theorem.

Theorem B. Let M be an n-dimensional complete self-shrinker with polynomial volume growth in \mathbb{R}^{n+1}. If the squared norm of the second fundamental form satisfies $0 \leq |A|^2 - 1 \leq \frac{1}{|\lambda|}$, then $|A|^2 \equiv 1$ and M is a round sphere or a cylinder.

In this paper, we firstly prove the following rigidity theorem for self-shrinkers in the Euclidean space.

Theorem 1.1. Let M be an n-dimensional complete self-shrinker with polynomial volume growth in \mathbb{R}^{n+1}. If the squared norm of the second fundamental form satisfies $0 \leq |A|^2 - 1 \leq \frac{1}{|\lambda|}$, then $|A|^2 \equiv 1$ and M is one of the following cases:

(i) the round sphere $S^n(\sqrt{n})$;

(ii) the cylinder $S^k(\sqrt{k}) \times \mathbb{R}^{n-k}$, $1 \leq k \leq n-1$.

More generally, we consider the rigidity of λ-hypersurfaces. The concept of λ-hypersurfaces was introduced independently by Cheng–Wei [7] via the weighted volume-preserving mean curvature flow and McGonagle–Ross [25] via isoperimetric type problem in a Gaussian weighted Euclidean space. Precisely, the hypersurfaces of Euclidean space satisfying the following equation are called λ-hypersurfaces:

\[
H = -X^N + \lambda,
\]

where X^N is the projection of X on the unit normal vector ξ and λ is a constant.

In recent years, the rigidity of λ-hypersurfaces has been investigated by several authors [2, 3, 7, 13, 33]. In [13], Guang showed that if M is a λ-hypersurface with polynomial volume growth in \mathbb{R}^{n+1}, and if $|A|^2 \leq \alpha_\lambda$, then M must be one of the generalized cylinders, where $\alpha_\lambda = \frac{1}{2}(2 + \lambda^2 - |\lambda|\sqrt{\lambda^2 + 4})$. In the second part of this paper, we prove the following second pinching theorem for λ-hypersurfaces in the Euclidean space.

Theorem 1.2. Let M be an n-dimensional complete λ-hypersurface with polynomial volume growth in \mathbb{R}^{n+1} with $\lambda \neq 0$. There exists an positive constant γ, such that if $|\lambda| \leq \gamma$ and the squared norm of the second fundamental form satisfies $0 \leq |A|^2 - \beta_\lambda \leq \frac{1}{|\lambda|}$, then $|A|^2 \equiv \beta_\lambda$, $\lambda > 0$ and M must be the cylinder $S^{(\sqrt{n+1}-|A|)}(\frac{\sqrt{n+1}-|A|}{2}) \times \mathbb{R}^{n-1}$. Here $\beta_\lambda = \frac{1}{2}(2 + \lambda^2 + |\lambda|\sqrt{\lambda^2 + 4})$.
2. Rigidity of self-shrinkers

Let M be an n-dimensional complete hypersurface in \mathbb{R}^{n+1}. We shall make use of the following convention on the range of indices:

$$1 \leq i, j, k, \ldots \leq n.$$

We choose a local orthonormal frame field $\{e_1, e_2, \ldots, e_{n+1}\}$ near a fixed point $x \in M$ over \mathbb{R}^{n+1} such that $\{e_i\}_{i=1}^n$ are tangent to M and e_{n+1} equals to the unit normal vector ξ. Let $\{\omega_1, \omega_2, \ldots, \omega_{n+1}\}$ be the dual frame fields of $\{e_1, e_2, \ldots, e_{n+1}\}$. Denote by R_{ijkl}, $A := \sum_{ij} h_{ij} \omega_i \otimes \omega_j$, $H := \text{Trace } A$ and $S := \text{Trace } A^2$ the Riemann curvature tensor, the second fundamental form, the mean curvature and the squared norm of the second fundamental form of M, respectively. We denote the first, the second and the third covariant derivatives of the second fundamental form of M by

$$\nabla A = \sum_{i,j,k} h_{ijk} \omega_i \otimes \omega_j \otimes \omega_k,$$

$$\nabla^2 A = \sum_{i,j,k,l} h_{ijkl} \omega_i \otimes \omega_j \otimes \omega_k \otimes \omega_l,$$

$$\nabla^3 A = \sum_{i,j,k,l,m} h_{ijklm} \omega_i \otimes \omega_j \otimes \omega_k \otimes \omega_l \otimes \omega_m.$$

The Gauss and Codazzi equations are given by

(2.1)

$$R_{ijkl} = h_{ik} h_{jl} - h_{il} h_{jk},$$

(2.2)

$$h_{ijk} = h_{ikj}.$$

We have the Ricci identities on M

(2.3)

$$h_{ijkl} - h_{ijk l} = \sum_m h_{im} R_{mkjl} + \sum_m h_{mj} R_{mikl},$$

(2.4)

$$h_{ijklm} - h_{ijkm} = \sum_r h_{rjk} R_{ritl} + \sum_r h_{irk} R_{rjlm} + \sum_r h_{ijr} R_{rklm}.$$}

We choose a local orthonormal frame $\{e_i\}$ such that $h_{ij} = \mu_i \delta_{ij}$ at x. By the Gauss equation (2.1) and the Ricci identity (2.3), we have

(2.5)

$$t_{ij} := h_{ijij} - h_{jiji} = \mu_i \mu_j (\mu_i - \mu_j).$$

Set $u_{ijkl} = \frac{1}{4} (h_{ijkl} + h_{ijlk} + h_{ikjl} + h_{kijl})$. Then we have

$$\sum_{i,j,k,l} (h_{ijkl}^2 - u_{ijkl}^2) \geq \frac{6}{16} \sum_{i \neq j} [(h_{ijij} - h_{jiji})^2 + (h_{jiji} - h_{ijij})^2]$$

(2.6)

$$= \frac{3}{4} G,$$

i.e.,

(2.7)

$$|\nabla^2 A|^2 \geq \frac{3}{4} G,$$

where $G = \sum_{i,j} t_{ij}^2 = 2(S f_4 - f_j^2)$ and $f_k = \text{Trace } A^k = \sum_i \mu_i^k$. In [11], Colding-Minicozzi introduced the linear operator

$$\mathcal{L} = \Delta - \langle X, \nabla (\cdot) \rangle = e^{\frac{3x^2}{2}} \text{Div} \left(e^{-\frac{3x^2}{2}} \nabla (\cdot) \right).$$
They showed that L is self-adjoint respect to the measure $\rho \, d\mu$, where $\rho = e^{-\frac{|X|^2}{2}}$.

Let M be a self-shrinker with polynomial volume growth. By a computation (see [13, 37]), we have following equalities

(2.8) $L|A|^2 = 2|\nabla A|^2 - 2|A|^4 + 2|\nabla A|^2$,

(2.9) $|\nabla S|^2 = \frac{1}{2}LS^2 + 2S^2(S - 1) - 2S|\nabla A|^2$,

(2.10) $|\nabla^2 A|^2 = \frac{1}{2}L|\nabla A|^2 + (|A|^2 - 2)|\nabla A|^2 + 3(B_1 - 2B_2) + \frac{3}{2}|\nabla S|^2$,

(2.11) $\int_M (B_1 - 2B_2) \rho \, d\mu = \int_M \left(\frac{1}{2}G - \frac{1}{4}|\nabla S|^2 \right) \rho \, d\mu$,

where $B_1 = \sum_{i,j,k,l,m} h_{ij}h_{ijkl}h_{klm}$ and $B_2 = \sum_{i,j,k,l,m} h_{ijkl}h_{ijkl}h_{ijkl}$.

Now we are in a position to prove our rigidity theorem for self-shrinkers in the Euclidean space.

Proof of Theorem 1.1. From (2.7), (2.10) and (2.11), we have

(2.12) $\int_M (B_1 - 2B_2) \rho \, d\mu = \int_M \left(\frac{1}{2}G - \frac{1}{4}|\nabla S|^2 \right) \rho \, d\mu$

This implies that

(2.13) $\int_M (B_1 - 2B_2) \rho \, d\mu \geq \int_M \left[\frac{2}{3}(2 - S)|\nabla A|^2 - \frac{3}{4}|\nabla S|^2 \right] \rho \, d\mu$.

By Lemma 4.2 in [13] and Young’s inequality, for $\sigma > 0$, we have

(2.14) $3(B_1 - 2B_2) \leq (S + C_1 G^{1/3})|\nabla A|^2 \leq S|\nabla A|^2 + \frac{1}{3}C_1 \sigma^2 G + \frac{2}{3}C_1 \sigma^{-1}|\nabla A|^3$,

where $C_1 = \frac{2\sqrt{2} + 3}{\sqrt{21\sqrt{6} + 103/2}}$. Notice that

(2.15) $-\int_M (\nabla |\nabla A|, \nabla S) \rho \, d\mu = \int_M |\nabla A|L\nabla S \rho \, d\mu$.

This together with (2.8) implies

(2.16) $\int_M |\nabla A|^3 \rho \, d\mu = \int_M \left(\frac{1}{2}LS - S^2 \right) |\nabla A| \rho \, d\mu$

$\leq \int_M \left[(S^2 - S)|\nabla A| - \frac{1}{2} (|\nabla A|, \nabla S) \right] \rho \, d\mu$

$\leq \int_M \left[(S^2 - S)|\nabla A| + \epsilon |\nabla^2 A|^2 + \frac{1}{16\epsilon}|\nabla S|^2 \right] \rho \, d\mu.$
From (2.10), (2.11), (2.14), (2.16), we have

\[
3 \int_M (B_1 - 2B_2) \rho \, d\mu \\
\leq \int_M \left(S|\nabla A|^2 + \frac{2}{3} C_1 \sigma^2 G + \frac{2}{3} C_1 \sigma^{-1} |\nabla A|^3 \right) \rho \, d\mu \\
\leq \int_M \left(S|\nabla A|^2 + \frac{1}{3} C_1 \sigma^2 G \right) \rho \, d\mu \\
+ \frac{2}{3} C_1 \sigma^{-1} \int_M \left[(S^2 - S)|\nabla A| + \epsilon|\nabla^2 A|^2 + \frac{1}{16\epsilon} |\nabla S|^2 \right] \rho \, d\mu \\
= \int_M \left(S|\nabla A|^2 + \frac{2}{3} C_1 \sigma^2 \left(B_1 - 2B_2 + \frac{1}{4} |\nabla S|^2 \right) \right) \rho \, d\mu \\
+ \frac{2}{3} C_1 \sigma^{-1} \int_M \left[(S^2 - S)|\nabla A| + \frac{1}{16\epsilon} |\nabla S|^2 \right] \rho \, d\mu \\
(2.17)
\]

Thus, we obtain

\[
3 \theta \int_M (B_1 - 2B_2) \rho \, d\mu \\
\leq \int_M \left[S + \frac{2}{3} C_1 \sigma^{-1} \epsilon (S - 2) \right] |\nabla A|^2 \rho \, d\mu \\
+ \left(\frac{1}{6} C_1 \sigma^2 + C_1 \sigma^{-1} \epsilon + \frac{1}{24\epsilon} C_1 \sigma^{-1} \right) \int_M |\nabla S|^2 \rho \, d\mu \\
+ \frac{2}{3} C_1 \sigma^{-1} \int_M (S^2 - S)|\nabla A| \rho \, d\mu,
\]

where \(\theta = 1 - \left(\frac{2}{3} C_1 \sigma^2 + \frac{2}{3} C_1 \sigma^{-1} \epsilon \right) \). We restrict \(\sigma \) and \(\epsilon \) such that \(\theta \geq 0 \).

Combining (2.13) and (2.18), we have

\[
0 \leq \int_M \left[S + \frac{2}{3} C_1 \sigma^{-1} \epsilon + 2\theta (S - 2) \right] |\nabla A|^2 \rho \, d\mu \\
+ \left(\frac{1}{6} C_1 \sigma^2 + C_1 \sigma^{-1} \epsilon + \frac{1}{24\epsilon} C_1 \sigma^{-1} + \frac{9}{4} \theta \right) \int_M |\nabla S|^2 \rho \, d\mu \\
+ \frac{2}{3} C_1 \sigma^{-1} \int_M (S^2 - S)|\nabla A| \rho \, d\mu.
\]

(2.19)

To simplify the notation, we put

\[
L_1 := \frac{2}{3} C_1 \sigma^{-1} \epsilon + 2\theta,
\]

\[
L_2 := \frac{1}{6} C_1 \sigma^2 + C_1 \sigma^{-1} \epsilon + \frac{1}{24\epsilon} C_1 \sigma^{-1} + \frac{9}{4} \theta.
\]

Then (2.19) is reduced to

\[
0 \leq \int_M \left[S + L_1 (S - 2) \right] |\nabla A|^2 \rho \, d\mu \\
+ L_2 \int_M |\nabla S|^2 \rho \, d\mu + \frac{2}{3} C_1 \sigma^{-1} \int_M (S^2 - S)|\nabla A| \rho \, d\mu.
\]

(2.20)
When \(0 \leq S - 1 \leq \delta\), we have
\[
\frac{1}{2} \int_M |\nabla S|^2 \rho \, d\mu = \int_M S(S - 1)^2 \rho \, dM - \int_M (S - 1)|\nabla A|^2 \rho \, d\mu \\
\leq \int_M (1 - S + \delta)|\nabla A|^2 \rho \, d\mu.
\] (2.21)

For \(\kappa > 0\), we have
\[
\int_M S(S - 1)|\nabla A| \rho \, dM \leq 2(1 + \delta)\kappa \int_M S(S - 1) \rho \, dM \\
+ \frac{1}{8(1 + \delta)\kappa} \int_M S(S - 1)|\nabla A|^2 \rho \, d\mu \\
\leq 2(1 + \delta)\kappa \int_M |\nabla A|^2 \rho \, d\mu \\
+ \frac{1}{8\kappa} \int_M (S - 1)|\nabla A|^2 \rho \, dM.
\] (2.22)

Substituting (2.21) and (2.22) into (2.20), we obtain
\[
0 \leq \int_M [(1 + L_1)(S - 1) + 1 - L_1]|\nabla A|^2 \rho \, d\mu \\
+ 2L_2 \int_M (1 - S + \delta)|\nabla A|^2 \rho \, d\mu \\
+ \frac{4}{3}C_1\sigma^{-1}(1 + \delta)\kappa \int_M |\nabla A|^2 \rho \, d\mu \\
+ \frac{1}{12\kappa}C_1\sigma^{-1} \int_M (S - 1)|\nabla A|^2 \rho \, dM \\
= \int_M \left(1 + L_1 - 2L_2 + \frac{1}{12\kappa}C_1\sigma^{-1} \right)(S - 1)|\nabla A|^2 \rho \, d\mu \\
+ \int_M \left[1 - L_1 + \frac{4}{3}C_1\sigma^{-1}\kappa + \left(\frac{4}{3}C_1\sigma^{-1}\kappa + 2L_2 \right)\delta \right]|\nabla A|^2 \rho \, d\mu.
\] (2.23)

Let \(\sigma = 0.616, \epsilon = 0.0577\) and \(\kappa = 0.0434\). By a computation, we have
\[
\theta > 0, \quad 1 + L_1 - 2L_2 + \frac{1}{12\kappa}C_1\sigma^{-1} < 0, \\
1 - L_1 + \frac{4}{3}C_1\sigma^{-1}\kappa < -0.452, \\
\frac{4}{3}C_1\sigma^{-1}\kappa + 2L_2 < 8.03.
\]

We take \(\delta = 1/18\). Then the coefficients of the integrals in (2.23) are both negative.

Therefore, we have \(|\nabla A| \equiv 0\) and \(S \equiv 1\), i.e., \(M\) either the round sphere \(S^n(\sqrt{n})\),
or the cylinder \(S^k(\sqrt{k}) \times \mathbb{R}^{n-k}, 1 \leq k \leq n - 1\). \(\square\)

3. RIGIDITY OF \(\lambda\)-HYPERSURFACES

Let \(M\) be an \(n\)-dimensional complete \(\lambda\)-hypersurface with polynomial volume growth in \(\mathbb{R}^{n+1}\).
We adopt the same notations as in Section 2. To simplify the computation, we choose local frame \(\{e_i\}\), such that \(\nabla e_i e_j = 0\) at \(p \in M\), i.e.,
\[
\nabla e_i e_j = h_{ij} \xi, \text{ and } h_{ij} = \mu_i \delta_{ij}.
\]
Then we have
\[
\nabla e_i H = -\nabla e_i \langle X, \xi \rangle = h_{ik} \langle X, e_k \rangle,
\] (3.1)
Lemma 3.1. If \(M \) is a \(\lambda \)-hypersurface of \(\mathbb{R}^{n+1} \), then we have:

\(\nabla^2 A \) is complete self-shrinkers and its generalization.

and

\[
\text{Hess} H(e_i, e_j) = -\nabla e_i \nabla e_j (X, \xi)
\]

(3.2) \[= h_{ijk}(X, e_k) + h_{ij} - (H - \lambda) h_{i} h_{kj}. \]

Taking \(f_k = \text{Trace} A_k = \sum_i \mu_i \), we obtain

\[
\mathcal{L} |A|^2 = \Delta |A|^2 - \langle X, \nabla |A|^2 \rangle
\]

(3.3) \[= 2 \sum_{i,j} h_{ij} \Delta h_{ij} + 2 |\nabla A|^2 - 2 \sum_{i,j,k} h_{ij} h_{ijk}(X, e_k) \]

\[= 2 \sum_{i,j} h_{ij} \nabla e_i \nabla e_j H + \sum_{i,j,k} h_{ij} h_{ijk} h_{ki} - |A|^4 \]

\[+ 2 |\nabla A|^2 - 2 \sum_{i,j,k} h_{ij} h_{ijk}(X, e_k) \]

(3.4) \[= 2 |A|^2 - 2 |A|^4 + 2 \lambda f_3 + 2 |\nabla A|^2. \]

Proof of Theorem. Putting \(F_\lambda = |A|^4 - |A|^2 - \lambda f_3 \), we have

(3.5) \[\int_M F_\lambda \rho dM = \int_M |\nabla A|^2 \rho dM. \]

We also have

\[|\nabla S|^2 = \frac{1}{2} \mathcal{L} S^2 + 2SF_\lambda - 2S|\nabla A|^2. \]

Notice that

(3.6) \[F_\lambda \geq |A|^2(|A|^2 - 1 - |\lambda| \cdot |A|). \]

If \(|A|^2 \geq \beta_\lambda = \frac{1}{2}(2 + \lambda^2 + |\lambda|\sqrt{\lambda^2 + 4}) \), then \(F_\lambda \geq 0 \). Moreover, if \(F_\lambda = 0 \), then \(|A|^2 = \beta_\lambda \). Denote by \(\alpha_\lambda = \frac{1}{2}(2 + \lambda^2 - |\lambda|\sqrt{\lambda^2 + 4}) \). When \(\beta \leq |A|^2 \leq \beta_\lambda + \delta \), we have the following upper bound for \(F_\lambda \).

\[
F_\lambda \leq |A|^2(|A|^2 - 1 + |\lambda| \cdot |A|)
\]

(3.7) \[= |A|^2(|A| + \sqrt{\beta_\lambda})(|A| + \sqrt{\alpha_\lambda})^{-1}(|A|^2 - \beta_\lambda + q_\lambda)
\]

\[\leq |A|^2(|A|^2 - \beta_\lambda + q_\lambda) \left(1 + \frac{\sqrt{\beta_\lambda} - \sqrt{\alpha_\lambda}}{\sqrt{\beta_\lambda} + \sqrt{\alpha_\lambda}} \right)
\]

where \(q_\lambda = |\lambda|\sqrt{\lambda^2 + 4} \), \(r_\lambda = q_\lambda + \lambda^2 + \frac{|\lambda|\delta}{\lambda^2 + 4} \).

For \(|\nabla^2 A| \) and the integral of \(B_1 - 2B_2 \), we obtain the following lemma.

Lemma 3.1. If \(M \) is a \(\lambda \)-hypersurface of \(\mathbb{R}^{n+1} \), then we have:

(i) \(|\nabla^2 A|^2 = \frac{1}{2} \mathcal{L} |A|^2 + (|A|^2 - 2) |\nabla A|^2 + 3(B_1 - 2B_2) + \frac{3}{2} |\nabla S|^2 - 3\lambda C \),

(ii) \(\int_M (B_1 - 2B_2) \rho dM = \int_M \left(\frac{1}{2} G - \frac{3}{4} |\nabla S|^2 \right) \rho dM \),

where \(B_1 = \sum_{i,j,k,m} h_{ijk} h_{ijk} h_{km}, B_2 = \sum_{i,j,k,l,m} h_{ijk} h_{klm} h_{im}, C = \sum_{i,j,k,l} h_{ijk} h_{ijkl} \),

\[G = \sum_{i,j} t_{ij}^2 = 2(Sf_4 - f_3^2) \]

and \(t_{ij} = h_{ij} - h_{i} h_{jj} = \mu_i \mu_j (\mu_i - \mu_j) \).
Proof. (i) Applying Ricci identities (2.3) and (2.4), we have

\[\Delta h_{ijkl} = (h_{ijlk} + h_{ir} R_{rjkl} + h_{rj} R_{rkl})_l \]

\[= h_{ijlk} + h_{rj} R_{rkl} + h_{ir} R_{rjlk} + h_{ir} R_{rkl} + (h_{ir} R_{rjkl} + h_{rj} R_{rkl})_l \]

\[= (h_{ijlk} + h_{ir} R_{rjkl} + h_{rj} R_{rkl})_k + h_{rj} R_{rkl} + h_{ir} R_{rjkl} + h_{ir} R_{rkl} \]

\[+ h_{ir} R_{rjkl} + h_{rj} R_{rkl} - h_{ij} R_{rijkl} \]

\[+ h_{ir} (R_{rjkl})_l + h_{rj} (R_{rkl})_l + h_{ir} (R_{rjkl})_l + h_{rj} (R_{rkl})_l \]

(3.8)

It follows from (3.2) that

\[H_{ji} = h_{jli} \langle X, e_l \rangle + h_{ij} + (\lambda - H)h_{ij}h_{ji}. \]

Since \(\langle X, \xi \rangle = \lambda - H \), we compute the covariant derivative of \(H_{ji} \)

\[H_{jik} = h_{jik} \langle X, e_l \rangle + h_{jli} \langle e_k, e_l \rangle + h_{jil} (X, \nabla e_i e_l) + h_{ijk} \]

\[- H_k h_{il} h_{ji} + (\lambda - H) (h_{kl} h_{ji} + h_{ij} h_{jkl}) \]

\[= h_{jik} \langle X, e_l \rangle + 2h_{ijk} - H_k h_{il} h_{ji} \]

\[+ (\lambda - H) (h_{li} h_{jkl} + h_{ji} h_{ikl} + h_{kl} h_{jli}). \]

Combining (3.8) and (3.10), we have

\[\Delta h_{ijk} = h_{jik} \langle X, e_l \rangle + 2h_{ijk} - h_{ij} h_{ji} H_k \]

\[+ (\lambda - H) (h_{li} h_{jkl} + h_{ji} h_{ikl} + h_{kl} h_{jli}) \]

\[+ h_{rkl} R_{rjkl} + h_{rjkl} R_{rjkl} + 2h_{rj} R_{rkl} + 2h_{rj} R_{rkl} + h_{rj} R_{rkl} \]

\[+ h_{ir} (R_{rjkl})_l + h_{rj} (R_{rkl})_l + h_{ir} (R_{rjkl})_l + h_{rj} (R_{rkl})_l \]

(3.11)

The Gauss equation (2.15) implies

\[h_{ijk}(h_{rkl} R_{rjkl} + h_{rj} R_{rkl} + 2h_{rj} R_{rkl} + 2h_{rj} R_{rkl} + h_{rj} R_{rkl}) \]

\[+ h_{ir} (R_{rjkl})_l + h_{rj} (R_{rkl})_l + h_{ir} (R_{rjkl})_l + h_{rj} (R_{rkl})_l \]

\[= h_{ijk} (6h_{rkl} h_{rj} h_{ji} - 6h_{rkl} h_{rj} h_{ji} + 3h_{rj} h_{rkl} h_{ij} + 3h_{rj} h_{rkl} h_{ij} - 3h_{rj} h_{rkl} h_{ij} \]

\[+ 3h_{ir} h_{rj} h_{ij} - 2h_{ir} h_{rj} h_{ij} - h_{ijk} h_{rkl}^2). \]

(3.12)

From (2.3) and (3.1), we have

\[h_{ijk}(h_{ijlk} - h_{ijk}) \langle X, e_l \rangle = h_{ijk} (h_{ir} R_{rjlk} + h_{rj} R_{rkl}) \langle X, e_l \rangle \]

\[= 2h_{ijk} h_{ir} h_{jkl} H + 2h_{ijk} h_{ir} h_{jkl} H. \]

(3.13)
Substituting (3.12) and (3.13) into (3.11), we obtain

\[
\frac{1}{2}(\Delta - \langle X, \nabla \rangle)h^2_{ijk} = h_{ijk}(\Delta h_{ijk} - h_{ijkl}(X, e_i)) + h^2_{ijkl}
\]

Therefore, we have

\[
\frac{1}{2}(\Delta - \langle X, \nabla \rangle)h^2_{ijk} = h_{ijk}(\Delta h_{ijk} - h_{ijkl}(X, e_i)) + h^2_{ijkl}
\]

This together with the divergence theorem implies

\[
\frac{1}{2}(\Delta - \langle X, \nabla \rangle)h^2_{ijk} = h_{ijk}(\Delta h_{ijk} - h_{ijkl}(X, e_i)) + h^2_{ijkl}
\]

Substituting (3.12) and (3.13) into (3.11), we obtain

\[
\frac{1}{2}(\Delta - \langle X, \nabla \rangle)h^2_{ijk} = h_{ijk}(\Delta h_{ijk} - h_{ijkl}(X, e_i)) + h^2_{ijkl}
\]

Applying Ricci identity (2.3), we get

\[
\frac{1}{2}(\Delta - \langle X, \nabla \rangle)h^2_{ijk} = h_{ijk}(\Delta h_{ijk} - h_{ijkl}(X, e_i)) + h^2_{ijkl}
\]

(ii) It follows from the divergence theorem that

\[
\int_M \sum_{i,j} (f_3)_{ij} h_{ij} \rho dM = - \int_M \sum_{i,j} (f_3)_{ij} (h_{ij} \rho)_j dM.
\]

By the condition \(H = -X^N + \lambda \), we have

\[
\sum_{i,j} (h_{ij} \rho)_j = \sum_{i,j} h_{jjij} \rho - \sum_{i,j} h_{ij} \rho (e_i, X)
\]

\[
= -\epsilon_i(\langle \xi, X \rangle) \rho + \sum_{i,j} (\nabla e_i \xi, X) \rho
\]

(3.16)

\[
= 0.
\]

This together with the divergence theorem implies

\[
\int_M \sum_{i,j,k} h_{ik} h_{kj} S_{ij} \rho dM = - \int_M \sum_{i,j,k} h_{ikj} h_{kj} S_{ij} \rho dM
\]

(3.17)

\[
= - \frac{1}{2} \int_M |\nabla S|^2 \rho dM.
\]

Applying Ricci identity (2.3), we get

\[
h_{ijij} - h_{ijji} = \mu_i \mu_j (\mu_i - \mu_j).
\]

Thus, we have

\[
\frac{1}{3} \sum_{i,j} (f_3)_{ij} = \sum_{i,k} h_{iikk} \mu_k \mu_i^2 + 2 \sum_{i,j,k} h^2_{ijk} \mu_i \mu_k
\]

\[
= \sum_{i,k} [h_{kii} + (\mu_i - \mu_k) \mu_i \mu_k] \mu_k \mu_i^2 + 2B_2
\]

\[
= \sum_i (\frac{S_{ii}}{2} - \sum_{j,k} h^2_{ijk}) \mu_i^2 + \sum_{i,k} \mu_i^3 \mu_k (\mu_i - \mu_k) + 2B_2
\]

(3.19)

\[
= \sum_{i,j,k} \frac{h_{ik} h_{kj}}{2} S_{ij} + S f_4 - f_3^2 - (B_1 - 2B_2).
\]
Substituting (3.16), (3.17) and (3.19) into (3.15), we obtain
\begin{equation}
\int_M (B_1 - 2B_2) \rho dM = \int_M \left[S f_4 - f_3^2 - \frac{1}{4} |\nabla S|^2 \right] \rho dM.
\end{equation}
\(\square\)

Combining (2.7) and Lemma 3.1, we derive the following inequality.
\begin{equation}
\int_M (B_1 - 2B_2) \rho dM = \int_M \left[\frac{1}{2} G - \frac{1}{4} |\nabla S|^2 \right] \rho dM \\
\leq \frac{2}{3} \int_M |\nabla A|^2 \rho dM - \frac{1}{4} \int_M |\nabla S|^2 \rho dM \\
= \frac{2}{3} \int_M (S - 2) |\nabla A|^2 \rho dM + 2 \int_M (B_1 - 2B_2) \rho dM \\
+ \frac{3}{4} \int_M |\nabla S|^2 \rho dM - 2\lambda \int_M C \rho dM.
\end{equation}
This implies
\begin{equation}
\int_M (B_1 - 2B_2) \rho dM \geq - \frac{2}{3} \int_M (S - 2) |\nabla A|^2 \rho dM \\
- \frac{3}{4} \int_M |\nabla S|^2 \rho dM + 2\lambda \int_M C \rho dM.
\end{equation}

For any \(\sigma > 0\), using Lemma 4.2 in [13] and Young’s inequality, we have
\begin{equation}
3(B_1 - 2B_2) \leq (S + C_1 G^{1/3}) |\nabla A|^2 \leq S |\nabla A|^2 + \frac{1}{3} C_1 \sigma^2 G + \frac{2}{3} C_1 \sigma^{-1} |\nabla A|^3,
\end{equation}
where \(C_1 = \frac{2\sqrt{5} + 3}{\sqrt{21\sqrt{6+103}/2}}\). Notice that
\begin{equation}
- \int_M \nabla |\nabla A| \cdot \nabla S \rho dM = \int_M |\nabla A| \nabla S \rho dM.
\end{equation}
This together with (3.18) implies
\begin{equation}
\int_M |\nabla A|^3 \rho dM \\
= \int_M (F_\lambda + \frac{1}{2} \mathcal{L} |A|^2) |\nabla A| \rho dM \\
= \int_M F_\lambda |\nabla A| \rho dM - \frac{1}{2} \int_M |\nabla A| \cdot \nabla S \rho dM \\
\leq \int_M F_\lambda |\nabla A| \rho dM + \epsilon \int_M |\nabla^2 A|^2 \rho dM + \frac{1}{10\epsilon} \int_M |\nabla S|^2 \rho dM,
\end{equation}
for arbitrary \(\epsilon > 0\). We assume that \(S\) satisfies the pinching condition \(\beta_\lambda \leq S \leq \beta_\lambda + \delta\). From (3.4) and (3.5), we have
\begin{equation}
\frac{1}{2} \int_M |\nabla S|^2 \rho dM = \int_M (S - \beta_\lambda) F_\lambda \rho dM - \int_M (S - \beta_\lambda) |\nabla A|^2 \rho dM \\
\leq \int_M (-S + \beta_\lambda + \delta) |\nabla A|^2 \rho dM.
\end{equation}
For any $\kappa > 0$, (3.7) implies
\[
\int_M F_\lambda |\nabla A| \rho dM \leq 2(\beta_\lambda + \delta)\kappa \int_M F_\lambda \rho dM \\
+ \frac{1}{8(\beta_\lambda + \delta)\kappa} \int_M F_\lambda |\nabla A|^2 \rho dM \\
\leq 2(\beta_\lambda + \delta)\kappa \int_M F_\lambda \rho dM \\
+ \frac{1}{8(\beta_\lambda + \delta)\kappa} \int_M (|A|^2 - \beta_\lambda + r_\lambda)|A|^2 |\nabla A|^2 \rho dM \\
\leq 2(\beta_\lambda + \delta)\kappa \int_M |\nabla A|^2 \rho dM \\
+ \frac{1}{8\kappa} \int_M (|A|^2 - \beta_\lambda + r_\lambda)|\nabla A|^2 \rho dM.
\]
(3.27)

For C, we have the estimate
\[
|C| = \left| \sum_{i,j,k} \mu_i h_{ijk}^2 \right| \leq |A||\nabla A|^2.
\]
(3.28)

Combining (3.23), (3.25) and Lemma 3.1, we obtain
\[
3 \int_M (B_1 - 2B_2) \rho dM \\
\leq \int_M \left(S|\nabla A|^2 + \frac{1}{3} C_1 \sigma^2 G + \frac{2}{3} C_1 \sigma^{-1} |\nabla A|^3 \right) \rho dM \\
\leq \int_M S|\nabla A|^2 \rho dM + \frac{1}{3} C_1 \sigma^2 \int_M G \rho dM \\
+ \frac{2}{3} C_1 \sigma^{-1} \int_M F_\lambda |\nabla A| \rho dM + \frac{C_1}{24\sigma \epsilon} \int_M |\nabla S|^2 \rho dM \\
+ \frac{2}{3} C_1 \sigma^{-1} \epsilon \int_M |\nabla^2 A|^2 \rho dM \\
= \int_M S|\nabla A|^2 \rho dM + \frac{2}{3} C_1 \sigma^2 \int_M \left(B_1 - 2B_2 + \frac{1}{4}|\nabla S|^2 \right) \rho dM \\
+ \frac{2}{3} C_1 \sigma^{-1} \int_M F_\lambda |\nabla A| \rho dM + \frac{C_1}{24\sigma \epsilon} \int_M |\nabla S|^2 \rho dM \\
+ \frac{2}{3} C_1 \sigma^{-1} \epsilon \int_M \left((S - 2)|\nabla A|^2 + 3(B_1 - 2B_2) + \frac{3}{2}|\nabla S|^2 - 3\lambda C \right) \rho dM.
\]
(3.29)

Hence
\[
3\theta \int_M (B_1 - 2B_2) \rho dM \\
\leq \int_M \left[S + \frac{2}{3} C_1 \sigma^{-1} \epsilon (S - 2) \right] |\nabla A|^2 \rho dM \\
+ \left(\frac{1}{6} C_1 \sigma^2 + \frac{C_1}{24\sigma \epsilon} + C_1 \sigma^{-1} \epsilon \right) \int_M |\nabla S|^2 \rho dM \\
+ \frac{2}{3} C_1 \sigma^{-1} \int_M F_\lambda |\nabla A| \rho dM - 2C_1 \sigma^{-1} \epsilon \lambda \int_M C \rho dM.
\]
(3.30)
where $\theta = 1 - \left(\frac{2}{3} C_1 \sigma^2 + \frac{2}{3} C_1^{-1} \epsilon \right)$. When $\theta > 0$, this together with (3.22) implies

\[
0 \leq \int_M \left[(S + L_1(S - 2)) \left| \nabla A \right|^2 \rho dM + L_1 \int_M \left| \nabla S \right|^2 \rho dM \right] + \frac{2}{3} C_1^{-1} \int_M F_\lambda \left| \nabla A \right| \rho dM - 2\lambda (C_1^{-1} \epsilon + 3\theta) \int_M C \rho dM,
\]

(3.31)

where $L_1 = \frac{2}{3} C_1^{-1} \epsilon + 2\theta$. Substituting (3.26), (3.27) and (3.28) into (3.31), we obtain

\[
0 \leq \int_M \left[(S + L_1(S - 2)) \left| \nabla A \right|^2 \rho dM + L_1 \int_M \left| \nabla S \right|^2 \rho dM \right] + \frac{2}{3} C_1^{-1} \int_M F_\lambda \left| \nabla A \right| \rho dM - 2\lambda (C_1^{-1} \epsilon + 3\theta) \int_M C \rho dM,
\]

(3.32)

where $L_1 = \frac{2}{3} C_1^{-1} \epsilon + 2\theta$. Substituting (3.26), (3.27) and (3.28) into (3.31), we obtain

\[
0 \leq \int_M \left[(S + L_1(S - 2)) \left| \nabla A \right|^2 \rho dM + L_1 \int_M \left| \nabla S \right|^2 \rho dM \right] + \frac{2}{3} C_1^{-1} \int_M F_\lambda \left| \nabla A \right| \rho dM - 2\lambda (C_1^{-1} \epsilon + 3\theta) \int_M C \rho dM,
\]

(3.33)

By a computation, we have

\[
\theta > 0, \quad 1 + L_1 - 2L_2 + \frac{C_1}{12\sigma \kappa} < 0,
\]

(3.34)

\[
1 - L_1 + \frac{4}{3\sigma} C_1 \kappa < -0.452, \quad 2L_2 + \frac{4}{3\sigma} C_1 \kappa < 8.03.
\]

Take $\delta = 1/18$. There exists an positive constant γ, such that $\eta_\lambda \leq 0.005$ when $|\lambda| \leq \gamma$. Then the coefficients of the integral in (3.33) are both negative. Therefore, $|\nabla A| \equiv 0$. By a classification theorem due to Lawson [19], M must be $\mathcal{S}^k(r) \times \mathbb{R}^{n-k}$, $1 \leq k \leq n$. For $\lambda \neq 0$, the radius r satisfies $|\lambda| = \frac{r}{\tau} - r$. Hence,

\[
r = \frac{\sqrt{\lambda^2 + 4k} - \lambda}{2},
\]

(3.35)

\[
\mu_1 = \ldots = \mu_k = \frac{1}{2k} (\sqrt{\lambda^2 + 4k} + \lambda),
\]

where μ_k is the k-th principal curvature of M.

We consider the following two cases:

(i) for $\lambda > 0$, the squared norm of the second fundamental form M satisfies

\[
S_k = \sum_{i=1}^k \mu_i^2 = \frac{1}{2k} (\lambda^2 + 2k + |\lambda|\sqrt{\lambda^2 + 4k}).
\]
A NEW PINCHING THEOREM FOR COMPLETE SELF-SHRINKERS AND ITS GENERALIZATION

Hence, \(S_1 = \beta \lambda \). When \(k \geq 2 \), \(S_k < \beta \lambda \).

(ii) for \(\lambda < 0 \), by a computation, we have

\[
S_k = \sum_{i=1}^{k} \mu_i^2 = \frac{1}{2k} (\lambda^2 + 2k - |\lambda| \sqrt{\lambda^2 + 4k}).
\]

When \(1 \leq k \leq n \), \(S_k < \beta \lambda \).

Therefore, \(\lambda > 0 \) and \(M \) must be \(\mathbb{S}\left(\frac{\sqrt{\lambda^2 + 4k} - |\lambda|}{2}\right) \times \mathbb{R}^{n-1} \).

\[\square\]

REFERENCES

[1] U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions, \textit{J. Differential Geom.}, \textbf{23}(1986), 175-196.
[2] S. Brendle, Embedded self-similar shrinkers of genus 0, \textit{Ann. of Math.}, \textbf{183}(2016), 715-728.
[3] H. D. Cao and H. Z. Li, A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension, \textit{Calc. Var. Partial Differential Equations}, \textbf{46}(2013), 879-889.
[4] Q. M. Cheng and H. Nakagawa, Totally umbilic hypersurfaces, \textit{Hiroshima Math. J.}, \textbf{20}(1990), 1-10.
[5] Q. M. Cheng, S. Ogata and G. X. Wei, Rigidity theorems of \(\lambda \)-hypersurfaces, \textit{Comm. Anal. Geom.}, \textbf{24}(2016), 45-58.
[6] Q. M. Cheng and Y. J. Peng, Complete self-shrinkers of the mean curvature flow, \textit{Calc. Var. Partial Differential Equations}, \textbf{52}(2015), 497-506.
[7] Q. M. Cheng and G. X. Wei, Complete \(\lambda \)-hypersurfaces of weighted volume-preserving mean curvature flow. [arXiv:1405.3177]
[8] Q. M. Cheng and G. X. Wei, A gap theorem of self-shrinkers, \textit{Trans. Amer. Math. Soc.}, \textbf{367}(2015), 4895-4915.
[9] S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, \textit{Functional Analysis and Related Fields}, Springer-Verlag, Berlin, 1970, 59-75.
[10] T. H. Colding, T. Ilmanen, W. P. Minicozzi II and B. White, The round sphere minimizes entropy among closed self-shrinkers, \textit{J. Differential Geom.}, \textbf{95}(2013), 53-69.
[11] T. H. Colding and W. P. Minicozzi II, Generic mean curvature flow I: generic singularities, \textit{Ann. of Math.}, \textbf{175}(2012), 755-833.
[12] Q. Ding and Y. L. Xin, On Chern’s problem for rigidity of minimal hypersurfaces in the spheres, \textit{Adv. Math.}, \textbf{227}(2011), 131-145.
[13] Q. Ding and Y. L. Xin, The rigidity theorems of self-shrinkers, \textit{Trans. Amer. Math. Soc.}, \textbf{366}(2014), 5067-5085.
[14] J. R. Gu, H. W. Xu, Z. Y. Xu and E. T. Zhao, A survey on rigidity problems in geometry and topology of submanifolds, Proceedings of the 6th International Congress of Chinese Mathematicians, \textit{Adv. Lect. Math.}, \textbf{37}, Higher Education Press & International Press, Beijing-Boston, 2016, 79-99.
[15] Q. Guang, Gap and rigidity theorems of \(\lambda \)-hypersurfaces. [arXiv:1405.4871]-2.
[16] G. Huisken, Flow by mean curvature of convex surfaces into spheres, \textit{J. Differential Geom.}, \textbf{22}(1984), 237-266.
[17] G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, \textit{J. Differential Geom.}, \textbf{31}(1990), 285-299.
[18] G. Huisken, Local and global behaviour of hypersurfaces moving by mean curvature, Differential geometry: partial differential equations on manifolds, \textit{Proc. Sympos. Pure Math.}, \textbf{54}, Amer. Math. Soc., 1993, 175-191.
[19] B. Lawson, Local rigidity theorems for minimal hypersurfaces, \textit{Ann. of Math.}, \textbf{89}(1969), 187-197.
[20] N. Q. Le and N. Sesum, Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers, \textit{Comm. Anal. Geom.}, \textbf{19}(2011), 1-27.
[21] L. Lei, H. W. Xu and Z. Y. Xu, On Chern’s conjecture for minimal hypersurfaces in spheres, [arXiv:1712.01175v1].
[22] L. Lei, H. W. Xu and Z. Y. Xu, The second pinching theorem on generalized Chern conjecture, in preparation.
[23] A. M. Li and J. M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, *Arch. Math. (Basel)*, 58(1992), 582-594.

[24] H. Z. Li and Y. Wei, Classification and rigidity of self-shrinkers in the mean curvature flow, *J. Math. Soc. Japan*, 66(2014), 709-734.

[25] M. McGonagle and J. Ross, The hyperplane is the only stable smooth solution to the isoperimetric problem in gaussian space, *Geom. Dedicata*, 178(2015), 277-296.

[26] C. K. Peng and C. L. Terng, Minimal hypersurfaces of sphere with constant scalar curvature, *Ann. of Math. Stud.*, 103, Princeton Univ. Press, Princeton, NJ, 1983, 177-198.

[27] C. K. Peng and C. L. Terng, The scalar curvature of minimal hypersurfaces in spheres, *Math. Ann.*, 266(1983), 105-113.

[28] J. Simons, Minimal varieties in Riemannian manifolds, *Ann. of Math.*, 88(1968), 62-105.

[29] Y. J. Suh, and H. Y. Yang, The scalar curvature of minimal hypersurfaces in a unit sphere, *Comm. Contemp. Math.*, 9(2007), 183-200.

[30] S. M. Wei and H. W. Xu, Scalar curvature of minimal hypersurfaces in a sphere, *Math. Res. Lett.*, 14(2007), 423-432.

[31] H. W. Xu, Pinching theorems, global pinching theorems and eigenvalues for Riemannian submanifolds, Ph.D. dissertation, Fudan University, 1990.

[32] H. W. Xu, A rigidity theorem for submanifolds with parallel mean curvature in a sphere, *Arch. Math. (Basel)*, 61(1993), 489-496.

[33] H. W. Xu, L. Lei and Z. Y. Xu, The second pinching theorem for complete λ-hypersurfaces(in Chinese), *Sci. Sin. Math.*, 48(2018), 1-10.

[34] H. W. Xu and L. Tian, A new pinching theorem for closed hypersurfaces with constant mean curvature in S^{n+1}, *Asian J. Math.*, 15(2011), 611-630.

[35] H. W. Xu and Z. Y. Xu, The second pinching theorem for hypersurfaces with constant mean curvature in a sphere, *Math. Ann.*, 356(2013), 869-883.

[36] H. W. Xu and Z. Y. Xu, A new characterization of the Clifford torus via scalar curvature pinching, *J. Funct. Anal.*, 267(2014), 3931-3962.

[37] H. W. Xu and Z. Y. Xu, On Chern’s conjecture for minimal hypersurfaces and rigidity of self-shrinkers, *J. Funct. Anal.*, 273(2017), 3406-3425.

[38] H. C. Yang and Q. M. Cheng, Chern’s conjecture on minimal hypersurfaces, *Math. Z.*, 227(1998), 377-390.

[39] Q. Zhang, The pinching constant of minimal hypersurfaces in the unit spheres, *Proc. Amer. Math. Soc.*, 138(2010), 1833-1841.