Correlates of preschoolers’ screen time in China: parental factors

Xinyao Wang
Jiaxing University

Sunyue Ye (✉ syye@zjxu.edu.cn)
Jiaxing University

Research Article

Keywords: Preschooler, Screen exposure, Sedentary behavior, Early development, Risk factors

Posted Date: January 5th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1162022/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

With the advent of the electronic age, the long-term screen time (ST) of preschoolers in China is relatively high and is on the rise, which is likely to affect preschoolers’ physical and mental health. This study aimed to explore the factors influencing ST in preschoolers, especially the role of parental factors, and to provide a basis for the prevention, control, and intervention of ST in preschoolers in China.

Methods

A questionnaire was completed by the parents of 1,546 preschoolers from four kindergartens in Pinghu City, Zhejiang Province, China, and a logistic regression model was used to analyze the correlates of excessive ST in preschoolers.

Results

A total of 43.8% of preschoolers, of which 50.3% were boys and 49.7% were girls, had > 1 hour/day of ST. For older preschoolers, greater screen accessibility, greater frequency of eating in front of a screen, longer ST of parents, and unclear rules of screen behavior were the risk factors for ST being > 1 hour/day (P < 0.05). After adjusting for confounders, the relationship between the ST of fathers and ST of preschoolers was still significant (P < 0.01), and the dose-effect relationship was observed (P < 0.001).

Conclusion

Prolonged parental ST (especially of fathers) and lack of rules for screen behavior of were independent risk factors for prolonged preschoolers’ ST in this study.

Background

Screen time (ST) refers to the time spent doing sedentary activities in front of a screen, for example, watching television, using a computer, and playing on smartphones or electronic games [1], and is closely related to many health problems such as myopia and obesity [2, 3]. Preschoolers, known as the “electronic media generation,” grow up in families and social environments surrounded by various screens. There is a trend of children using electronic media for the first time at younger ages, with long-term screen exposure being common in preschoolers at school and at home [4]. According to previous studies, the ST of preschoolers in China is relatively high and shows a rising trend [5, 6]. The average ST of children aged three to six is > 1 hour/day, and on weekends is > 2 hours/day [7]. At the same time, the overall prevalence of myopia in children and adolescents in China remains high (57.2%) and shows a trend of affecting children at a younger age. This may be closely related to exposure of near-sighted
environments, such as excessive ST [8]. The health behavior-related guidelines issued by the World Health Organization, developed countries in Europe, the United States, and relevant institutions in China all recommend that the ST of preschoolers be restricted (for example, to no more than 1 hour/day and as few hours as possible) [9]. Therefore, this study aimed to explore the factors affecting the home-based ST of preschoolers, and especially the influence of parents, in order to effectively prevent and control home-based ST in Chinese preschoolers.

Methods

Participants

From September to October 2019, the parents of preschoolers aged three to six years old (n = 1,546) from four kindergartens in Pinghu, China, participated in this study. A total of 1,424 subjects were analyzed after excluding participants with missing information.

Questionnaire

The questionnaire was designed with reference to previous studies [10-12], and was administered by trained teachers in each class. The contents of the questionnaire included: (1) children's information, including gender, date of birth, home-based ST per day, screen accessibility (“How easy it is for preschoolers to touch the screens of televisions, computers, mobile phones, or tablets”), and the number of meals eaten in front of a screen; (2) parents’ information, including education level, home-based ST per day, parent-child screen-viewing behavior, parental perception of child ST (“Children spending too much time in front of screens is unhealthy”); and (3) the family rules regarding child ST (“There are clear rules for children's behavior in front of a screen such as strict control of the duration of watching animation”). The options used for the five-point Likert scale included “strongly agree,” “relatively agree,” “neutral,” “relatively disagree,” and “strongly disagree.” The weighted kappa coefficients of the ST questions for preschool children, fathers, and mothers were 0.76, 0.69, and 0.72, respectively.

Statistical analysis

Categories were expressed as percentages, and the chi-square test was used for comparison between groups. Continuous variables were expressed as the mean and standard deviation, and an independent sample t-test was used for comparison between groups. A multivariate logistic regression model was used to analyze the factors influencing excessive ST in preschoolers. We used the odds ratio (OR) and a 95% confidence interval to describe the degree of influence of each factor on home-based ST and used an analysis of variance to test the trend. We used SPSS software (version 20.0) for statistical analysis. The significance level was P < 0.05.

Results

Characteristics of preschoolers’ home-based ST
There were 624 (43.8%) preschoolers with a home-based ST of >1 hour/day; among them, 314 (50.3%) were boys and 310 (49.7%) were girls. The gender difference was not significant (P > 0.05), as shown in Table 1. The average age of preschoolers whose home-based ST was >1 hour/day was greater than those whose home-based ST was ≤1 hour/day (P < 0.05). The easier it was for preschoolers to touch an electronic screen at home, and the more time they spend eating while viewing the screen, the longer their ST was at home (P < 0.05). There were significant differences between the ST of ≤1 hour/day and >1 hour/day among preschoolers with different parental ST, fathers’ age and education levels, parent-child ST, daily caregivers, and family rules on ST (P < 0.05).

Multivariate logistic regression on factors affecting preschoolers’ home-based ST

Taking preschoolers’ home-based ST as the dependent variable (≤1 hour/day = 0; >1 hour/day = 1), and preschoolers’ gender, age, and the parents’ ST as independent variables in the model (Model 1), child age, parent-child screen behaviors, eating while screen viewing, screen accessibility, daily caregivers, mothers’ ST, parental perception, and family rules for child ST were shown to be significant (P < 0.05), as can be seen in Table 2. When the father’s education level, age, and ST were included (Model 2), the fathers’ age and ST were significant (P < 0.001), but mothers’ ST was not (P > 0.05).

To further explore the dose-effect relationship between ST and related factors, the home-based ST of preschoolers was further divided into three levels: ≤1 hour/day, 1–2 hours/day, and >2 hours/day. The results showed that older ages of preschoolers, longer fathers’ ST, easier access to ST, more frequent eating by preschoolers while screen viewing, worse parental perception of child ST, and less clear family rules about ST were associated with longer preschoolers’ home-based ST (P < 0.05; Table 3). In addition, the trend relationship (changes in OR) between fathers’ ST and preschoolers’ home-based ST was significant (P < 0.001; data not shown).

Discussion

The results of this study show that preschoolers’ ST is closely related to the preschoolers’ age, fathers’ ST, eating while screen viewing, screen accessibility, parents’ perception of child ST, and family ST rules. Meanwhile, the potential adverse impact of the mothers’ ST on preschoolers’ screen viewing was explained mostly by the fathers’ ST in our results. This suggests that reducing parents’ (especially fathers’) ST, improving parental awareness of the harmful effects of prolonged home-based ST for preschoolers, formulating family ST rules, and reducing screen accessibility may be of great significance for controlling preschoolers’ ST in China.

The results on the positive correlation between parental ST and preschoolers’ ST are consistent with those of previous related studies [11, 13–15]. Many studies have shown that parents’ ST is closely related to children’s ST. Longer daily ST of parents is a risk factor for children’s ST being > 1 hour/day [13, 16]. Studies have also shown that the use of electronic media by preschoolers is easily influenced by family members, and this influence can be exerted in a variety of ways (e.g., children learning from their parents’ screen-viewing behavior) [11, 15]. The theory of social cognition suggests that children may develop their
own screen-viewing behavior by observing and learning from that of their parents’. Therefore, reducing the home-based ST of preschoolers should start with the people around them (such as parents, grandparents, or other caregivers), especially to make parents aware of the modeling effect of their behavior on preschoolers. However, studies have shown that some parents appear to be unaware that their screen-viewing behavior is setting standards and imitation targets for preschoolers [5]. In contrast, the rules of parents regulating preschoolers’ screen viewing are related to less home-based ST [11], which is consistent with the results of the present study. However, more than half of the parents seldom formulate rules related to children's ST [17, 18]. Therefore, clear rules of screen-viewing behavior may have a positive influence on reducing the ST of preschoolers at home.

The results of this study show that the influence of fathers and mothers on the ST of Chinese preschoolers at home does not appear independently, and that the fathers’ ST seems to have a greater influence on the preschoolers’ ST. This may be due to the fact that fathers are often better at using electronic media than mothers and have more knowledge of and more opportunities to be exposed to electronic media, which has a greater impact on children's related behavior. Moreover, fathers in China are often less involved in the upbringing of preschoolers. Studies have shown that there are currently unscientific parenting methods and fewer father-son interactions than mother-son interactions, that family education concepts include an insufficient understanding of the unique educational significance of fathers [19]. Therefore, fathers’ own ST and related perceptions need to be highlighted in the prevention and control of Chinese preschoolers’ home-based ST in the future.

Conclusions

Parents’ (especially fathers’) ST, family rules regarding child ST, and screen accessibility are important risk factors for excessive home-based preschoolers’ ST in our cross-sectional study, with a dose-effect relationship also having been observed. This suggests that we should focus on intervening in parental behavior of screen viewing, formulating family ST rules, declining screen accessibility, and reducing preschoolers’ ST at home as much as possible to improve preschoolers’ physical health. Further studies using a longitudinal design are required.

Abbreviations

OR
Odds ratio
ST
Screen time

Declarations

Ethics approval and consent to participate
All participants signed an informed consent form, and the research proposal was approved by the Ethics Committee of Jiaxing First Hospital (LS2019-107).

Consent for publication

The consent for publication was obtained from the parents of the preschoolers.

Availability of data and materials

The data of this study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by the Undergraduate Science and Technology Innovation Plan in Zhejiang Province (2021R417036) and by the Jiaxing University Bai-Qing Talents Project (2020-23).

Authors’ contributions

SY and XYW conceptualized and designed the study, drafted the initial manuscript, and critically reviewed and revised the manuscript. CY, XTW, and YR were in charge of the collected data, and reviewed and revised the manuscript. Dr. YW reviewed and revised the manuscript. All authors have read and approved the final manuscript.

Acknowledgments

We would like to thank the parents of the preschoolers for their participation in this study.

References

1. Ye Sunyue, Huang Xin. Interventions on screen-based sedentary behavior among children: a review[J]. Chin J Public Health, 2019, 35(9): 1276–1280.

2. Sun Lili, Qi Lili, Ji Tuo. Correlation analysis of electronic products with myopia in preschool and school aged children[J]. Int Eye Sci, 2016, 16(2): 382–385.

3. Zhang Yuelun, Zhang Huan, Wang Huan, et al. Advances in research on the effects of screen time on childhood and adolescent obesity[J]. Chin J Sch Health, 2012, 33(11): 1403–1405.

4. Zhao Jin, Zhang Yiwen. Screen exposure and early child development[J]. Journal of Bio-education, 2019, 7(1): 1–5.

5. Tandon PS, Zhou C, Lozano P, et al. Preschoolers’ Total Daily Screen Time at Home and By Type of Child Care[J]. The Journal of Pediatrics, 2011, 158(2): 297–300.
6. Qu Xiao, Wang Xiaojuan, Wang Bo, et al. Study on the association between physical activity and executive function in preschoolers [J]. Chinese Journal of Child Health Care, 2020, 28(9): 975-979.

7. Xiong Xueqin, Liu Jia, Shi Han, et al. Study on the relationship between screen time and parent-child relationship, social ability and behavior problems of school-age children [J]. Maternal and Child Health Care of China, 2019, 34(04): 899-904.

8. Dong Yanhui, Liu Huibin, Wang Zhenghe, et al. Prevalence of myopia and increase trend in children and adolescents aged 7-18 years in Han ethnic group in China, 2005-2014. Chinese Journal of Epidemiology, 2017, 38(5): 583-587.

9. World Health Organization. Guidelines on physical activity, sedentary behaviour and sleep for children under 5 years of age [R]. Geneva: World Health Organization, 2019.

10. Tremblay MS, Aubert S, Barnes JD, et al. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int J Behav Nutr Phy., 2017; 14: 75.

11. Teng Xiaoyu, Ding Lei, Shao Jing, et al. Research on the current status and influencing factors of electronic screen exposure in children aged 4 to 6 years in Shandong [J]. Chinese Journal of Child Health Care, 2019, 27(12): 1300–1303, 1307.

12. Ye Sunyue. Sedentary behavior: a lifestyle of "Jiuzuobudong"[M]. Hangzhou: Zhejiang Gongshang University Press, 2017.2.

13. An Meijing, Chen Tianjiao, Ma Jun. Parental influences on screen time among children and adolescents and associated gender disparity [J]. Chinese Journal of School Health, 2019, 40(2): 202–205.

14. Jago R, Thompson JL, Sebire SJ, et al. Cross-sectional Associations Between the Screen-time of Parents and Young Children: Differences By Parent and Child Gender and Day of the Week[J]. International Journal of Behavioral Nutrition and Physical Activity, 2014, 11(1): 54.

15. Wang Xinzhe. Research on Parents' New Media Education, Children's Use Status and its Relationship[D]. Shenyang Normal University, 2018.

16. Xing Yanfei, Jiang Lin, Ma Ying, et al. The relationship between mobile media devices use in preschool children and their parents' behavior[J]. Maternal and Child Health Care of China, 2019, 34(13): 3064–3066.

17. Pavelka J, Husarova D, Sevcikova A, et al. Country, Age, and Gender Differences in the Prevalence of Screen-based Behaviour and Family-related Factors Among School-aged Children[J]. Acta Gymnica, 2016, 46(3): 1–9.

18. Wang Xinghua, Wang Hui, Liu Cong. The Relationship Between Family Media Ecology and Young Children's Screen Time in Digital Era [J]. Early Childhood Education (Educational Sciences), 2019(33): 47–50.

19. Zou Yang. Investigation and Problem Analysis on father's participation in child's early Education in Shanghai [D]. East China Normal University, 2006.
Table 1 Characteristics of correlates of screen time in Chinese preschoolers

Variables	Screen time (ST), `X (SD)/n(%), n=1424				X² or t	P value
	Total ≤1 h/d, n=800 >1 h/d, n=624					
Child sex						
Girls	704(49.4) 394(49.2) 310(49.7)	0.03	0.872			
Boys	720(50.6) 406(50.8) 314(50.3)					
Child age (years)	4.52(0.86) 4.45(0.87) 4.60(0.84)	-3.24	0.001			
Parental age						
Father (≥40 years)	137(9.6) 96(12.0) 41(6.6)	11.89	0.001			
Mother (≥40 years)	74(5.2) 45(5.6) 29(4.6)	0.68	0.410			
Parental education levels						
Father (high school and more)	1133(79.6) 621(77.6) 512(82.1)	4.22	0.040			
Mother (high school and more)	1098(77.1) 603(75.4) 495(79.3)	3.10	0.078			
Parental ST						
Father (>1 h/d)	1080(75.8) 560(70.0) 520(83.3)	34.02	0.000			
Mother (>1 h/d)	996(69.9) 515(64.4) 481(77.1)	26.93	0.000			
Accessibility of screen devices	3.68(1.03) 3.47(1.07) 3.95(0.91)	-8.92	0.000			
Eats while screen viewing	2.74(1.06) 2.47(1.03) 3.09(1.00)	-11.53	0.000			
Parent-child screen viewing	2.67(0.90) 2.54(0.88) 2.84(0.89)	-6.49	0.000			
Child cared by parent	809(56.8) 484(60.5) 325(52.1)	10.12	0.001			
Parental perception on child ST	1.43(0.82) 1.40(0.82) 1.48(0.82)	-1.95	0.051			
Family rules on child ST	1.63(0.82) 1.46(0.74) 1.84(0.87)	-8.85	0.000			

h/d: hour per day; `X(SD): mean (standardized deviation); n(%): number(percentage).

Table 2 Logistic regression models for correlates of screen time in Chinese preschoolers
Variables	References	Screen time (ST, ≤1 h/d vs. >1 h/d)			
		Model 1	Model 2		
		OR(95%CI)	P	OR(95%CI)	P
Child					
sex	Girls	1.03 (0.82, 1.30)	0.787	1.03 (0.82, 1.31)	0.782
age	Younger	**1.21 (1.05, 1.39)**	0.008	**1.23 (1.07, 1.41)**	0.004
Eats while screen viewing	Less	**1.58 (1.40, 1.77)**	0.000	**1.59 (1.41, 1.79)**	0.000
Screen Accessibility	Poor	**1.36 (1.20, 1.53)**	0.000	**1.35 (1.19, 1.52)**	0.000
Caregiver (grandparent)	Parent	**1.40 (1.10, 1.77)**	0.006	**1.39 (1.09, 1.76)**	0.007
Parent-child screen viewing	Less	**1.24 (1.08, 1.42)**	0.002	**1.22 (1.06, 1.40)**	0.005
Parental perception on child ST	Harmful	1.14 (0.98, 1.32)	0.082	1.16 (1.00, 1.35)	0.058
Family rules on child ST	Clear	**1.60 (1.38, 1.86)**	**0.000**	**1.63 (1.40, 1.88)**	**0.000**
Mother					
ST ≤1 h/d	1.58 (1.22, 2.06)	**0.001**	1.26 (0.92, 1.71)	0.147	
education levels ≥high school	0.91 (0.68, 1.22)	0.543	1.10 (0.76, 1.58)	0.612	
age ≥40 years	1.11 (0.64, 1.92)	0.702	0.65 (0.34, 1.26)	0.200	
Father					
ST ≤1 h/d	1.63 (1.16, 2.28)	**0.005**			
education levels ≥high school	0.87 (0.60, 1.27)	0.481			
age ≥40 years	**2.26 (1.34, 3.81)**	**0.002**			

h/d: hour per day; OR: Odds ratio; CI: confidence interval.

Table 3 Multinomial logistic regression model for screen time in Chinese preschoolers
Variables	References	Screen time (ST)			
		1-2h/d vs. ≤1 h/d	>2h/d vs. ≤1 h/d		
		OR(95%CI)	P	OR(95%CI)	P
Child					
sex	Girls	1.01(0.78,1.29)	0.969	1.06(0.74,1.52)	0.753
age	Younger	**1.19(1.03,1.39)**	**0.021**	**1.40(1.12,1.75)**	**0.003**
Eats while screen viewing	Less	**1.52(1.34,1.73)**	**0.000**	**1.86(1.54,2.25)**	**0.000**
Screen Accessibility	Poor	**1.22(1.07,1.39)**	**0.003**	**1.83(1.48,2.27)**	**0.000**
Caregiver (grandparent)	Parent	**1.38(1.06,1.78)**	**0.015**	**1.45(1.00,2.10)**	**0.048**
Parent-child screen viewing	Less	**1.23(1.06,1.42)**	**0.006**	**1.22(0.99,1.50)**	**0.061**
Father ST					
1-2h/d	≤1h/d	1.22(0.84,1.79)	0.297	**3.06(1.53,6.11)**	**0.002**
>2h/d	≤1h/d	1.44(0.95,2.19)	0.083	**5.93(2.88,12.21)**	**0.000**
Mother ST					
1-2h/d	≤1h/d	1.32(0.92,1.88)	0.127	0.94(0.54,1.64)	0.819
>2h/d	≤1h/d	1.11(0.74,1.66)	0.627	1.15(0.64,2.08)	0.637
Father education levels	≥high school	0.85(0.57,1.28)	0.432	0.99(0.56,1.76)	0.974
Mother education levels	<high school	0.95(0.64,1.42)	0.811	1.70(0.98,2.95)	0.061
Father age	≥40 years	**2.17(1.22,3.83)**	**0.008**	2.27(0.97,5.34)	0.059
Mother age	≥40 years	0.76(0.37,1.58)	0.460	0.49(0.18,1.36)	0.171
Parental perception on child ST	Harmful	1.08(0.91,1.28)	0.375	**1.41(1.14,1.76)**	**0.002**
Family rules on child ST	Clear	**1.54(1.32,1.81)**	**0.000**	**1.96(1.58,2.43)**	**0.000**

h/d: hour per day; OR: Odds ratio; CI: confidence interval.