Datasets

Simulated NOE data sets.

In order to test the program performance, we used the medium size protein lysozyme as a model with various simulated NOE data sets. The first case (NOE\textsubscript{SIM}\textsubscript{1}) simulates an ideal case. For that, the NOE interaction graph G^exp and the 3D structure contact graph G^theo were generated from the same 3D structure (PDB-code 193L (Vaney et al, 1996), X-ray, 1.33Å resolution) and with the same distance threshold $d^\text{exp}_{\text{max}} = 5$Å (283 NOEs and 283 distances). Unfortunately not all theoretical possible NOEs are usually measured, resulting in a graph G^exp sparser than G^theo. Ambiguous NOEs were identified as described in the article by identifying the superposed experimental $[^{15}N, ^1H_N]$ HSQC peaks (taken from the BMRB: bmr4831.str (Schwalbe et al, 2001) for 15N-CS and bmr4562.str (Wang et al, 2000) for $^1H - CS$). Removing the ambiguous NOEs reduced the number of simulated NOEs from 283 to 253 (NOE\textsubscript{SIM}\textsubscript{2}). The sparseness of G^exp also comes from the decreasing completeness of NOEs with increasing proton-proton distances. A simple completeness function $c(d)$ with a cutoff distance of $d^\text{exp}_{\text{max}} = 6$Å was chosen (Figure S1), approximating experimental distributions (Doreleijers et al, 1999; Koharudin et al, 2003). The reduction in the number of edges in the graph G^exp in comparison to G^theo is already important, if only the completeness function $c(d)$ is applied without the removal of ambiguous NOEs: G^exp - 297 edges ($d^\text{exp}_{\text{max}} = 6$Å), G^theo - 385 edges ($d^\text{theo}_{\text{max}} = 6$Å) (NOE\textsubscript{SIM}\textsubscript{3}). Removing also the ambiguous NOEs yielded only 263 edges (NOE\textsubscript{SIM}\textsubscript{4}).

To test the effect of imperfect matches between experimental NOEs and the reference 3D structure, we generated a more realistic simulated NOE data set (see table S5) using the NMR structure 1E8L (model 49) (Schwalbe et al, 2001) with a cutoff distance of $d^\text{exp}_{\text{max}} = 6$Å for the generation of G^exp and the X-ray structure 193L (Vaney et al, 1996) for the generation of G^theo with $d^\text{theo}_{\text{max}} = 7.5$Å. The RMSD over the heavy backbone atoms between 193L and 1E8L (model 49) is equal to 1.3Å. As for NOE\textsubscript{SIM}\textsubscript{4}, the ambiguous NOEs were removed and the completeness function $c(d)$ was applied, yielding the simulated NOE data set NOE\textsubscript{SIM}\textsubscript{5}. NOE classes were introduced here: a distance threshold of $d < 3$Å generated 79 simulated NOEs from the NMR structure, classified as strong NOEs, distance ranges of 3Å < $d < 4$Å and 4Å < $d < 6$Å yielded 42 medium and 159 weak NOEs, respectively.
Parameter optimizations

The principle of the parameters optimization is described in the article. Tables S1 and S2 show all the trials performed for the thresholds optimization on lysozyme with realistic simulated (NOE$_{\text{SIM}}$) and experimental NOE data (see main text), respectively, without or with adding CS and RDCs experimental data. The trials for EIN are shown in table S3. The optimized threshold combinations that have been retained for the results section of the article are marked by a star.

Realistic NOE simulations for Lysozyme (table S1)

Even without the NOE outlier approach (trial #3), the standard values $d_{\text{max}}^{\text{th}}$ = (5Å, 6Å, 7Å) for short, medium and long distances were not compatible with the simulated NOE data set, as always one or more holes occurred in the assignment list. Hole-free assignment ensembles can be obtained with a distance threshold for the weak NOEs increased from 7Å to 7.5Å, after incrementing T_{NOE} from 3 to 10. We tried to obtain better results by the application of tighter CS- or RDC-filter thresholds, but almost all tighter thresholds resulted in assignment errors. The best optimization trials #11, #15, #20 and #22 were retained for further discussion, and are called cases 1, 2, 3 and 4, respectively, in the results section below and in table S5.

Sparse experimental NOE data in combination with RDC data on Lysozyme (table S2).

Hole free assignment ensembles can be obtained here with standard distance thresholds and only one NOE outlier. Additionally, the outlier-range could be increased to 1.2Å. The low value of $T_{\text{NOE}} = 1$ in comparison with the high value optimized for the simulated NOE data set ($T_{\text{NOE}} \geq 10$) can be explained by the fact that the simulated NOE data set contained a higher number of NOEs and thus a higher number of NOE-outliers in the same outlier range. The sparseness of the measured NOE data set brings out the use of tighter thresholds not only for the number of NOE outliers, but also for the CS- and RDC-data as shown in the optimizations of CS and RDC parameters. It should be noted that the precision of the assignment is anyway lower for sparser data. We could reduce the decay constants c_{CS} and c_{RDC} to 10 with the same end-point as for the simulated NOE data set ($m_{\text{CS}} = 3\text{ppm}, m_{\text{RDC}} = 3\text{Hz}$). Although CS- and RDC-data are the same for both cases (simulated and experimental NOEs), the occurrence of incompatibilities in the constraint framework depends on all available data taken together (NOE+CS+RDC). Contrary to CS data, the adding of RDC data yielded a significant increase of unique assignments (trials #6, #19 and #31). The RDC data set contains here two almost independent values per HSQC peak, thanks to the use of two different alignment media. The CS data set only contains one significant value per HSQC peak, namely the ^{15}N CS (the ^1H CS does not restrict efficiently the assignment). This can explain the different impact of RDC and CS data. The best optimization trials, #6, #19 and #31, were retained as results in the article, and correspond to cases 1, 2 and 3 in table 2, respectively.

The case of a larger protein : EIN (table S3).

We started with slightly different values for the theoretical distance threshold $d_{\text{max}}^{\text{th}}$ = (4.5Å, 6Å, 7.5Å). We chose 7.5Å as upper distance limit because of the long mixing time (170ms) employed for the NOESY experiment. We reduced the distance limit for strong NOEs from 5Å to 4.5Å due to their low number (36 out of 407 NOEs in total). For $T_{\text{NOE}} = 3$, we obtained an error-free result with 46 uniquely assigned peaks and 37 peaks with SAR < 10Å (trial #4). We obtained a significant improvement (trials #5 and #6) for $T_{\text{NOE}} = 2$, with the limited drawback that the correct assignment has been removed for two peaks (a swap of assignment possibilities: residue 207<>208) without being detected. A value of $T_{\text{NOE}} = 1$ resulted in more assignment errors and finally holes in the assignment list. We also tried to tighten the CS-filter thresholds without success (holes being always generated).

Adding the two simulated RDC data sets showed that $T_{\text{NOE}} = 2$ is too low, as even with highly relaxed RDC thresholds ($m_{\text{RDC}} = 7.5\text{Hz}$, trial #17) no hole-free assignment ensemble could be obtained. $T_{\text{NOE}} = 3$ corresponds better to the given NOE data set, as even with highly restricted RDC thresholds ($m_{\text{RDC}} = 1\text{Hz}, c_{\text{RDC}} = 5$, trial #26) an error-free and hole-free assignment ensemble could be obtained. The RDC thresholds should not be too close to those yielding holes in the ensemble (trial #28), otherwise small assignment errors may remain undetected (trial #27).

The addition of carbon chemical shifts $^{13}\text{C}_\alpha(i-1),^{13}\text{C}_\beta(i-1),^{13}\text{CO}(i-1)$ improves the precision of the assignment ensemble significantly, especially if the individual peak assignment refinement procedure (see article in Methods) is applied on the obtained assignment ensembles (trial #31 and #34).

The best optimization trials, #4, #5, #6, #26, #30, #31, #33 and #34, were retained as results in the article, and correspond to cases 2 to 9 in table 3, respectively.
Table S1 Tested threshold parameters on lysozyme with realistic simulated NOEs (NOESIM) and experimental CS and RDC data

	runtime	\(T_{N O E} \)	\(\Delta d(\text{Å}) \)	\(c_{C S} \)	\(m_{C S} \)	\(c_{R D C} \)	\(m_{R D C} \)	Result	Status	\(N_c \)	\(N_{10} \)	\(N_e \)	\(N_u \)	SAR\textsubscript{max}	
1	1 s	3	2	hole	0	0	3	0							
5	1 min	4	*	hole	21	19	4	0							
3	10 min	0	0	hole	4	50	6	0							
4	10 s	3	1	hole	41	42	3	0							
6	20 min	5	*	hole	28	67	5	3	4.5Å						
7	20 min	6	*	hole	27	82	3	1	4.5Å						
8	2 h	7	*	hole	36	83	7	1	2.7Å						
9	15 h	8	*	hole	34	89	5	1	2.7Å						
10	5 days	9	*	hole	42	81	6	3	4.5Å						
11*	31 h	10	*	not finished	13	100	0	0							
12	48 h	11	*	not finished	11	101	0	0							
13	47 h	12	*	not finished	8	74	0	0							
14	65 h	10	1	30 ppm	hole	65	58	8	4	5Å					
15*	19 h	11	*	not finished	18	95	0	0							
16	22 h	12	*	not finished	17	95	0	0							
17	11 h	11	1	20 ppm	not finished	40	82	3	1	2.7Å					
18	7.5 h	*	10	*	hole	52	72	2	0						
19	4 h 30	10	1	30 ppm	30 Hz	hole	82	42	8	4	5Å				
20*	11 h	11	*	*	*	*	*	finished	115	10	8	6	4.5Å		
21	12 h	12	*	*	*	*	*	not finished	50	73	3	1	2.7Å		
22*	16 h	13	*	*	*	*	*	not finished	42	78	0	0			
23	17 h	14	*	*	*	*	*	not finished	41	79	0	0			
24	19 h	15	*	*	*	*	*	not finished	40	79	0	0			
25	3 h	11	1	20 ppm	30 Hz	finished	116	9	7	6	4.5Å				
26	7 h	13	*	*	*	*	*	not finished	50	73	0	0			
27	1 h	11	1	30 ppm	20 Hz	finished	13	66	3	0					
28	1 h	13	*	*	*	*	*	hole	13	49	3	0			
29	1 h	15	*	*	*	*	*	hole	11	26	2	1	2.6Å		

Three separated parameter optimizations are shown in this table. The first optimization assumes that only NOE data (NOESIM described above) are available. The second one assumes that NOE and CS data are available and the last one assumes that NOE, CS and RDC data are available. The theoretical distance thresholds for the three NOE classes are here either \(d_{\text{NOE}}^{\text{SIM}} = (5Å, 6Å, 7Å) \) or \(d_{\text{NOE}}^{\text{exp}} = (5Å, 6Å, 7.5Å) \), yielding \(N_{\text{dist}} (292, 98, 138) \) or \(N_{\text{dist}} (292, 98, 224) \) distances in each class (short, medium, long) using the X-ray structure 193L. The number of simulated NOEs is here \(N_{\text{SIM}} = (79, 42, 159) \) for strong, medium and weak NOEs, respectively. The number of HSQC peaks is here \(N_{\text{peaks}} = 132 \). The following parameters were optimized: \(T_{N O E} \) - maximum number of permitted NOE outliers for an arbitrary matching, \(\Delta d \) - the theoretical distance range \([d_{\text{NOE}}^{\text{SIM}} - \Delta d, d_{\text{NOE}}^{\text{SIM}}] \) in Å for which a NOE is considered as outlier, \(c_{C S} \) and \(m_{C S} \) - decay constant in number of currently assigned peaks for the decreasing exponential threshold function, \(c_{R D C} \) and \(m_{R D C} \) - minimum limit of the threshold function. Status: hole indicates the presence of peaks, which have no assignment possibility left in the assignment table; finished and not finished indicates whether the trial run converged or not for the given runtime. \(N_c \) - number of uniquely assigned peaks. \(N_{10} \) - number of peaks having a SAR-value below 10Å and which are not uniquely assigned. \(N_e \) - number of peaks for which the correct assignment is missing. \(N_{eu} \) - number of uniquely, but wrongly assigned peaks. SAR\textsubscript{max} - the maximum distance to the correct residue among the \(N_{eu} \) peaks.

* Optimized parameter combinations that have been retained for further analysis in the results section of this supplementary material. Trials #11, #15, #20 and #22 correspond to cases 5, 6, 7 and 8 of table S5, respectively.

Results

Introduction.

The results obtained after the parameter optimization using experimental NOE data are analyzed in the article. In order to best delineate the potential of the structure-based method, the influence of data completeness and the impact of differences between the solution and reference 3D structures, we analyze here the results obtained using simulated NOE data sets of increasing realism on lysozyme.

Simulated NOE data on lysozyme using ideal conditions.

NOEnet yields 95% of unique and correct assignments when using a distance threshold equal to 5Å for both experimental and 3D-structure graphs (case 1 in Table S4). This shows that there exists almost only one possibility to match graph \(G_{\text{exp}} \) onto \(G_{\text{theo}} \) if the two graphs are identical. In this case the subgraph monomorphism problem is reduced to an automorphism problem. Removing the ambiguous NOEs reduces the part of uniquely assigned peaks from 95% to 79% (case 2). The majority of the peaks with multiple assign-
Three separated parameter optimizations are shown in this table. The first optimization assumes that only NOE data are available. The second one assumes that NOE and CS data are available and the last one assumes that NOE, CS and RDC data are available. The theoretical distance thresholds for the three NOE classes are here $d_{\text{theo}}^{\text{max}} = (5\text{Å}, 6\text{Å}, 7\text{Å})$, yielding $N_{\text{dist}} = (292, 98, 138)$ distances in each class (short, medium, long) using the X-ray structure 193L. The number of experimental NOEs is here $N_{\text{NOEs}} = (52, 55, 62)$ for strong, medium and weak NOEs, respectively. The number of HSQC peaks is here $N_{\text{peaks}} = 132$. See table S1 for the variable definitions. * Optimized parameter combinations that have been retained for further analysis in the results section of the article. Trials #6, #19 and #31 correspond to cases 1, 2 and 3 of table 2, respectively.

Table S 2 Tested threshold parameters on lysozyme with experimental NOE, CS and RDC data

#	runtime	T_{NOE}	Δd_{d} (Å)	c_{CS}	m_{CS}	c_{RDC}	m_{RDC}	Status	N_{d}	N_{e}	N_{eu}	SAR_{max}	Result	
1	6 h	1	Not finished	0	27	0	0							
2	6 h	*	Not finished	0	27	0	0							
3	20 min	1	Not finished	18	11	0	0							
4	19.5 h	*	Not finished	18	11	0	0							
5	15 min	*	Not finished	22	9	0	0							
6*	5 h	*	Finished	22	9	0	0							
7	10 sec	*	Hole	0	0	4	0							
8	60 min	3	Not finished	4	25	0	0							
9	6 h	*	Not finished	4	25	0	0							
10	30 min	2	Not finished	5	24	0	0							
11	5 h	*	Not finished	5	24	0	0							
12	20 min	1	Not finished	23	7	0	0							
13	12 h	*	Not finished	23	7	0	0							
14	50 min	1	Not finished	24	7	0	0							
15	2 h	*	Finished	24	7	0	0							
16	5 sec	*	Hole	0	0	4	0							
17	75 min	1.2	30 3ppm	Finished	24	7	0							
18	30 min	*	20	Finished	24	7	0							
19*	10 min	*	10	Finished	27	17	0							
20	45 min	3	30 3.5ppm	Not finished	5	24	0	0						
21	50 min	2	"	Not finished	6	26	0	0						
22	11 h	*	"	Not finished	6	26	0	0						
23	10 min	1	"	Finished	38	46	0	0						
24	1 min	1.2	"	Finished	41	46	0	0						
25	5 sec	1.5	"	Hole	0	0	4	0						
26	1 min	1.2	30 3ppm	Finished	42	45	0	0						
27	1 min	"	20	Finished	41	46	0	0						
28	1 min	"	10	Finished	47	41	0	0						
29	1 min	1.2	10 3ppm	Finished	47	44	0	0						
30	1 min	"	10	Finished	58	41	0	0						
31*	30 sec	*	"	Hole	0	0	4	0						

Simulated NOE data on lysozyme using realistic conditions.

The first four test cases shown in the previous paragraph make the unrealistic assumption that G_{exp} and G_{theo} are generated from the same 3D structure. We simulated a more realistic case, where G_{exp} and G_{theo} are generated from different 3D structures (see Datasets section). The structure discrepancies require the use of higher theoretical distance thresholds, yielding a much higher number of edges in G_{theo} than in G_{exp} (614 vs 280). Otherwise G_{exp} cannot be matched correctly onto G_{theo} (occurrence of holes in the assignment list). NOE intensities were classified and NOE outliers introduced through labeling of the graph edges (Stratmann et al, 2009). Only a few NOEs correspond to distances near to the maximum allowed distance $d_{\text{max}}^{\text{theo}}$ and can thus be considered as outliers of the distance distribution. To reflect this, the
Table S 3 Tested threshold parameters on EIN with experimental NOE and CS data and with simulated RDC data.

#	runtime	\(T_{\text{NOE}}\)	\(\Delta R_{\text{d}}\)	\(m_{\text{NOE}}\)	\(m_{\text{DCS}}\)	Status	\(N_e\)	\(N_m\)	\(N_e\)	\(N_m\)	\(\text{SAR}_{\text{max}}\)
1	13.5 h	5	1	30	3.5ppm	not finished	16	61	0	0	
2	11 h	4	*	*	*	not finished	19	59	0	0	
3	9 h	3	*	*	*	not finished	32	49	0	0	
4	107 h	*	*	*	*	not finished	73	56	one swap 207 <-> 208	2	
5*	6 h	*	*	*	*	finished	76	94	one swap 207 <-> 208	2	5.8Å
6*	15 min	1	*	*	*	hole	35	45	10	4	

Optimize CS

8	25 min	2	1	30	3ppm	hole	25	51	6	2	5.8Å
9	15 min	*	*	20	3.5ppm	hole	29	48	5	3	5.3Å
10	15 min	*	*	20	3ppm	hole	14	24	2	0	
11	10 min	*	*	10	3ppm	hole	12	21	4	1	1.6Å
12	3.5 days	3	1	30	3ppm	finished	73	10	2	2	4.3Å
13	15 min	*	*	20	3ppm	hole	24	32	0	0	
14	10 min	*	*	10	3ppm	hole	20	29	2	1	1.8Å

NOE + CS + RDC

15	25 min	2	1	30	3.5ppm	30	3.5 Hz	hole	36	44	2	1	4.4Å
16	7 h	*	*	*	*	*	6.5 Hz	hole	80	90	0	0	
17	7.5 h	*	*	*	*	*	7.5 Hz	hole	77	93	0	0	
18	2.5 h	3	1	*	*	*	3.5 Hz	finished	78	94	0	0	
19	2 h	*	*	*	*	*	3 Hz	finished	76	97	0	0	
20	70 min	*	*	*	*	*	3 Hz	finished	81	96	0	0	
21	55 min	*	*	*	*	*	3 Hz	finished	80	106	0	0	
22	50 min	*	*	*	*	*	10 Hz	finished	97	100	0	0	
23	50 min	*	*	*	*	*	10 Hz	finished	121	77	0	0	
24	50 min	*	*	*	*	*	10 Hz	finished	136	65	0	0	
25	50 min	*	*	*	*	*	6 Hz	finished	142	63	0	0	
26*	50 min	*	*	*	*	*	5 Hz	finished	153	52	0	0	
27	45 min	*	*	*	*	*	5 Hz	finished	165	41	1	1	2.8Å
28	40 min	*	*	*	*	*	3 Hz	finished	175	31	1	1	2.8Å

NOE + CS + CScarbon\(^{13C_{\alpha}}+^{13C_{\beta}}+^{13CO}\) only for \(^{13C}\)-CS only

29	10 min	3	1	30	2ppm	finished	91	93	0	0													
30*	5 min	*	*	1.5ppm	*	*	*	*	1.5ppm	*	*	1.5ppm	*	1.5ppm	finished	103	91	0	0				
31*	1 sec	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	refined	160	41	1	0	
32	1 min	*	*	*	*	*	1ppm	hole	45	32	0	0											

NOE + CS + CScarbon\(^{13C_{\alpha}}+^{13C_{\beta}}+^{13CO}\) + RDC

| 33* | 5 min | 3 | 1 | 30 | 1.5ppm | 5 | 1 Hz | finished | 162 | 43 | 0 | 0 | |
| 34* | 1 sec | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | refined | 194 | 13 | 2 | 2 | 2.8Å |

The parameter optimizations using NOE and CS data for EIN are shown in this table. The theoretical distance thresholds for the three NOE classes are here \(d_{\text{theo}} = (4.5Å, 6Å, 7.5Å)\), yielding \(N_{\text{dist}} = (391, 320, 323)\) distances in each class (short, medium, long) using the X-ray structure 1ZYM. The number of experimental NOEs is here \(N_{\text{NOEs}} = (36, 208, 163)\) for strong, medium and weak NOEs, respectively. The number of HSQC peaks is here \(N_{\text{peaks}} = 243\). See table S1 for the variable definitions.

* Optimized parameter combinations that have been retained for further analysis in the results section of the article. Trials #4, #5, #6, #26, #30, #31, #33 and #34 correspond to cases 2 to 9 of table 3, respectively.

The number of NOEs which can be matched to distances labeled as outlier-distance is limited by the threshold \(T_{\text{NOE}}\).

This organization of experimental NOEs reduced significantly the matching possibilities of \(G^{\text{exp}}\) onto \(G^{\text{theo}}\), yielding 86% of all peaks with a SAR value below 10Å (case 5, Table S5 and Figure S2). Addition of \(^1H^N\) and \(^{15}N\) chemical shifts (CS) did not bring a significant improvement of the assignment ensemble (case 6 in Table S5, trial #15 of the optimization table S1). Compared to this, adding residual dipolar couplings (RDC) greatly improved the number of uniquely assigned peaks. However, just adding RDC data using the parameters previously optimized for NOE and CS data yielded undetected errors in the assignment (cases 8 / trial #20). This can be due to either a too low number of allowed NOE outliers or too tight thresholds for RDC data. Both cases can generate assignment constraints that are not compatible anymore with the correct assignment, but that can still be compatible with some incorrect assignments and thus do not generate holes in the assignment list. Here, increasing the number of allowed NOE outliers to \(T_{\text{NOE}} = 13\) without changing the thresholds for the RDC data yielded again a 100% accurate assignment ensemble (case 7 / trial #22). Using the actual number of outliers (\(T_{\text{NOE}} = 14\)) does not change notably the result. The huge increase in the num-
Fig. S 2 Result of NOE net on lysozyme with realistic simulated NOE data. Only case 5 of table S5 is shown, i.e. no CS or RDC data are included here. (a) The 280 simulated NOEs are shown by red lines on the lysozyme NMR structure 1E8L (Schwalbe et al, 2001). The residues having only one assignment possibility are shown in black and more than one in yellow. Proline residues are shown in gray. (b) The 614 theoretical contacts are represented on the X-ray structure 193L (Vaney et al, 1996) by blue, green and red lines corresponding to the three distance classes, short ($d < 5\text{Å}$), medium ($d < 6\text{Å}$) and long ($d < 7.5\text{Å}$), respectively. (c) The spatial assignment range (SAR) values are mapped on the NMR structure using the correct assignment and the indicated color code. Unique assignments are shown in black. (d) Spatial assignment range (SAR) for each peak. The peaks are ordered by increasing SAR values. A SAR-value of 10Å has been considered as the upper limit for the class of exploitable peaks.

Influence of the completeness of NOEs on the assignment results

Taking the same sparse experimental NOE data of lysozyme as in described in the article, the number of unambiguous NOEs was increased by assuming higher resolution spectra with [tolN, tolH] equal to [0.1ppm, 0.01ppm] instead of [0.2ppm, 0.02ppm]. The resulting data set contains 183 unambiguous NOEs (NOE1 data set in figure S3) to be compared to 169 for the larger tolerances (data set NOE2 in figure S3). The gain brought by the 14 additional NOEs is notable mostly when all experimental data (NOE+CS+RDC) are used (Figure S3).

This indicates that the more constraints are available, the more the assignment ensemble is precise, especially if a critical quantity of assignment constraints is already achieved, so that a small number of additional constraints increases the number of unique assignment significantly. The combination of three orthogonal constraint sources (NOE, CS and
Table S 4 Simulated NOE data on lysozyme using ideal conditions.

case	N_{peaks}	runtime	data	ambiguous removed	d_{exp}^{\text{max}}	N_{NOEs}	d_{theo}^{\text{max}}	N_{dist}	N_{unique} N_{peaks}	N_{SAR<10Å} N_{peaks}	accuracy
1	132	1 min	NOE_1^{SIM}	no	5Å	283	5Å	283	95%	100%	100%
2	132	1 min	NOE_2^{SIM}	yes	5Å	253	5Å	283	79%	94%	100%
3	132	16.5h	NOE_3^{SIM}	no	6Å	297	6Å	385	55%	100%	100%
4	132	21h	NOE_4^{SIM}	yes	6Å	269	6Å	385	40%	93%	100%

The same structure (PDB 193L, X-ray) has been used to generate the N_{NOEs}, NOEs and the N_{dist} distances.

Table S 5 Simulated NOE data on lysozyme using realistic conditions.

case	trial #	N_{peaks}	runtime	data	NOE_1^{SIM}	d_{exp}^{\text{max}}	N_{NOEs}	d_{theo}^{\text{max}}	N_{dist}	N_{unique} N_{peaks}	N_{SAR<10Å} N_{peaks}	accuracy
5	11	132	31h	NOE_5^{SIM}	6Å	280	7.5Å	614	10%	86%	100%	100%
6	15	132	19h	NOE_5^{SIM}	6Å	280	7.5Å	614	14%	86%	100%	100%
7	22	132	16h	NOE_5^{SIM}	6Å	280	7.5Å	614	32%	91%	100%	100%
8	20	132	11h	NOE_5^{SIM}	6Å	280	7.5Å	614	87%	95%	94%	94%

The NMR structure 1E8L has been used to generate the N_{NOEs}, NOEs and the X-ray structure 193L for the N_{dist} distances. For all three cases the ambiguous NOEs have been removed as described in the datasets section above. NOE classes and NOE outliers have been used.

RDC) allows here to achieve such a critical quantity of assignment constraints.

Comparing the second column ‘NOE2+CS+RDC’ with the third column ‘NOE1+CS’ in figure S3, shows that RDC data can compensate for a lower completeness of NOEs.

Influence of the use of intensity-based classification of NOEs on the assignment result

The results shown in figure 3 of the article and figure S3 here were obtained considering the classification of the d_{NN} into weak, medium and strong NOEs proposed by (Schwalbe et al, 2001). This permitted the application of three different theoretical threshold distances, one for each class (Stratmann et al, 2009). The effect of the repartition of the NOEs in various NOE-classes is illustrated in Figure S4 for the previously described dataset NOE1.

Comparing columns one to four or five to eight, it appears that NOEs classification clearly improves the assignment precision. The identification of strong NOEs that can be assigned to short distances seems to be particularly relevant to obtain a high level of uniquely assigned peaks.

Koharudin LM, Bonvin AM, Kaptein R, Boelens R (2003) Use of very long-distance NOEs in a fully deuterated protein: an approach for rapid protein fold determination. J Magn Reson 163:228–235
Schwalbe H, Grimshaw SB, Spencer A, Buck M, Boyd J, Dobson CM, Redfield C, Smith LJ (2001) A refined solution structure of hen lysozyme determined using residual dipolar coupling data. Protein Sci 10:677–688
Stratmann D, van Heijenoort C, Guittet E (2009) NOEnet – Use of NOE networks for NMR resonance assignment of proteins with known 3D structure. Bioinformatics 25(4):474–481
Vanec MC, Maignan S, Rieux-Kautt M, Ducruix A (1996) High-resolution structure (1.33 A) of a HEW lysozyme tetragonal crystal grown in the APCF apparatus. data and structural comparison with a crystal grown under microgravity from SpaceHab-01 mission. Acta Crystallogr D Biol Crystallogr 52:505–517
Wang Y, Bjorndahl TC, Wishart DS (2000) Complete 1H and non-carbonylic 13C assignments of native hen egg-white lysozyme. J Biomol NMR 17:83–84

References

Doreleijers JF, Raves ML, Rullmann T, Kaptein R (1999) Completeness of NOEs in protein structure: a statistical analysis of NMR. J Biomol NMR 14:123–132
Fig. S3 Assignment results on lysozyme using experimental data obtained by (Schwalbe et al, 2001) presented by spatial assignment range (SAR) classes, see legend on the right. NOE1 and NOE2 are defined in the text. NOE2 is the same NOE data set as in figure 3 of the article.

Fig. S4 Assignment results on lysozyme presented by spatial assignment range (SAR). The input data are the same in Figure S3, only the number of NOE-classes varies. The abbreviations for the input data are: N1 = NOE1, C = CS, R = RDC, w = weak NOEs, m = medium NOEs and s = strong NOEs. The following combinations are reported, from left to right: 1) for comparison purposes: The three classes (strong, medium and weak) like in Figure S3. 2) All 64 medium NOEs are converted into weak NOEs (two classes, N1(sw)). 3) All 52 strong NOEs are converted into medium NOEs (two classes, N1(mw)). 4) All strong and medium NOEs are converted into weak NOEs, i.e. the theoretical distance threshold is the same for all 183 NOEs (one class, N1(w). 5-8) the same order of combinations without RDC-data.