ION-EXCHANGE PROPERTIES OF THE NATURAL ZEOLITE AMICITE

Nikita V. Chukanov1*, Olga N. Kazheva1, Nadezhda A. Chervonnaya1, Dmitry A. Varlamov2, Vera N. Ermolaeva1, Igor V. Pekov3, Gennadiy V. Shilov1

1Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russian Federation
2Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russian Federation
3Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow 119991, Russian Federation
chukanov@icp.ac.ru

Crystals of the natural zeolite amicite, ideally K₄Na₄(Al₈Si₈O₃₂)·10H₂O, were ion-exchanged in the reactions with 0.1 N aqueous solutions of AgNO₃, RbNO₃, CsNO₃ and Pb(NO₃)₂ at 363 K for 24 h. Under these conditions, Cs⁺ substitutes K⁺ whereas the most part of Na⁺ remains unexchanged; Rb⁺ partly substitutes both Na⁺ and K⁺; Pb²⁺ and Ag⁺ completely substitute Na⁺ and K⁺. All the compounds are monoclinic. The Cs- and Rb-substituted samples have unit-cell parameters close to those of initial amicite. The exchange of Na⁺ and K⁺ for Ag⁺ is accompanied by a significant decrease of the unit-cell volume. The unit-cell parameter c of Pb-amicite is nearly threefold larger than the c parameter of initial amicite. Infrared spectra show that framework topology is preserved during the ion exchange. The crystal structures of initial and Cs-exchanged amicites have been solved by direct methods.

Keywords: amicite; zeolite; ion exchange; crystal structure; infrared spectroscopy

1. INTRODUCTION

The rare zeolite-group mineral amicite, ideally K₄Na₄(Al₈Si₈O₃₂)-10H₂O, was discovered as pseudo-tetragonal dipyramidal crystals, up to 5 mm across, in a hydrothermal assemblage related to melilite nephelines of the Höwenegg paleovolcano, Hegau, SW Germany [1]. Amicite is characterized by the same framework topology as gismondine, Ca₄(Al₈Si₈O₃₂)-18H₂O, which is com-
posed of double crankshaft tetrahedral chains with ordered Si, Al and Na, K distributions, space group $I2$ and unit-cell parameters $a = 10.226(1)$ Å, $b = 10.422(1)$ Å, $c = 9.884(1)$ Å and $\beta = 88.19(1)^\circ$ [2]. Later amicite was found in several peralkaline pegmatites in the Khibiny alkaline complex, Kola Peninsula, Russia as pseudotetragonal dipyramidal crystals up to 8 mm across, as well as simple and polysynthetic contact twins on (110) [3, 4].

Garronite NaCa$_2$[Si$_5$O$_{10}$]\cdot14H$_2$O and gobbinsite Na$_2$(Al$_5$Si$_5$O$_{10}$)\cdot12H$_2$O are two other minerals belonging to this subgroup of natural zeolites. They have the same framework topology as amicite and gismondine, but Si and Al in their crystal structures are essentially disordered [5, 6].

Crystals of natural gismondine were ion-exchanged in reactions with solutions containing Ag, Cs, Ba, Li, Na, K and Rb at 368 K [7]. Crystal structures of the ion-exchanged samples were examined using the Rietveld powder refinement method because single crystals broke into tiny pieces during cation-exchange experiments. The Ag- and Cs-exchanged gismondines preserved the space group $P2_1/c$ of the original crystals. The symmetry of other samples changed to $P2_1$ (Bagismondine). $I2/a$ (Li-, Na- and Rb-gismondines), or $I2$ (K-gismondine).

The zeolite MAP ("Maximum Aluminium P" where "P" denotes "zeolite P" = gismondine), Na$_8$(Al$_8$Si$_5$O$_{12}$)$_2$$\cdotnH_2$O, the synthetic analogue of amicite in which K$^+$ is substituted by Na$^+$, is used as a commercial detergent builder [8, 9]. In this microporous material, Si and Al are completely ordered. MAP exhibits a high framework flexibility and a high intrinsic thermodynamic selectivity for Ca$^{2+}$ over Na$^+$ [8]. Exchanges of Na$^+$ by Li$^+$, K$^+$, Rb$^+$, Cs$^+$, Mg$^{2+}$, Ca$^{2+}$, Sr$^{2+}$, and Ba$^{2+}$ in MAP have been examined [9]. Structural data showed that cation exchange often caused changes in symmetry.

Amicite is characterized by a fairly high degree of framework flexibility; its dehydroxylation in vacuum for 56 h or 6 days resulted in the removal of two-thirds of the water molecules or complete dehydration, accompanied by a strong decrease in the unit cell volume (11.3 %), respectively [10]. Dehydrated amicite preserves original symmetry and framework topology, but sites of the extra-framework cations split into half-occupied sub-sites. Unlike amicite, complete dehydroxylation of gismondine and garronite is accompanied by destruction of the structure.

In this paper, we report the crystal structure of natural amicite (initial sample from the Kukisvumchhorr Mountain, Khibiny), its cation-exchange properties and crystal structure of the Cs-exchanged form of this zeolite determined from single-crystal X-ray diffraction data.

2. EXPERIMENTAL SECTION

Fragments of amicite single crystals from 0.4 to 1 mm across were used in ion-exchange experiments. They were placed in closed Teflon vessels, mixed with 50 mg of 0.1 M solutions of AgNO$_3$, RbNO$_3$, CsNO$_3$, or Pb(NO$_3$)$_2$, and heated at 363 K for 24 h. The products were carefully washed free from entrained salts with distilled water and dried at 60 °C before further investigation.

In order to obtain infrared (IR) absorption spectra, powdered samples were mixed with anhydrous KBr, pelletized, and analyzed using an ALPHA Fourier transform IR spectrometer (Bruker Optics) with a resolution of 4 cm$^{-1}$. Sixteen scans were collected for each spectrum. The IR spectrum of an analogous pellet of pure KBr was used as a reference.

Chemical composition was studied using a digital scanning electron microscope Tescan VEGA-II XMU with an energy-dispersive spectrometer INCA Energy 450. Data reduction was carried out by the INCA Energy 300 software package. The analyses were carried out at an accelerating voltage of 20 kV. The beam current measured on a reference sample of cobalt was 510–520 pA, and on the studied polished samples, it ranged from 150 to 400 pA (depending on the micro-relief, structure, and composition of samples). The size of the electronic beam varied from 157 to 180 nm in analytical mode and up to 60 nm in scanning mode. The excitation zone reached 4–5 μm. The sample-to-detector distance was 25 mm. The standards used are albite for Na, Al$_2$O$_3$ for Al, SiO$_2$ for Si, sandine for K, PbTe for Pb, pure Ag for Ag, and synthetic Rb$_2$ReCl$_6$ and Cs$_2$ReCl$_6$ for Rb and Cs, respectively. Water content was determined by weight loss upon heating to 800 °C.

Single-crystal X-ray diffraction (XRD) studies of initial amicite and its Cs-exchanged form were carried out on an Xcalibur diffractometer at 100 K using MoKα radiation. The crystal structures were solved by direct methods, followed by the Fourier difference synthesis, and refined by the full-matrix least squares method in an anisotropic approximation for all non-hydrogen atoms using SHELX-97 [11]. Coordinates of H atoms were not localized. Other details of data collection and structure refinement are given in Tables 1 and 2.
Table 1

Crystal data, data collection information and structure refinement details for initial amicite

Property	Value
Formula	K4Na4(Al8Si8O32)·11H2O
Formula weight	1399.09
Temperature, K	100(2)
Radiation and wavelength, Å	MoKα; 0.71073
Crystal system, space group, Z	Monoclinic, P21, 1
Unit cell dimensions	a = 9.8424(5) Å, b = 10.4488(5) Å, c = 10.1917(5) Å, β = 91.816(5)°, V = 1047.59(9) Å³
Density, g/cm³	2.218 (involving non-localized H atoms)
Absorption coefficient µ, mm⁻¹	0.992
Crystal size, mm	0.13 × 0.12 × 0.10
Diffractometer	XCaliburS CCD
2θ range for data collection, °	7.80 – 68.14
h, k, l ranges	−15 → 15, −16 → 16, −16 → 5
Reflections collected	4211
Independent reflections	3433 (Rint = 0.0225)
Independent reflections with I > 4σ(I)	3212
Data reduction	CrysAlis PRO, version 1.171.36.20, Agilent Technologies Ltd (Agilent Technologies, 2012) [12]
Absorption correction	Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Structure solution	Direct methods
Refinement method	Full-matrix least-squares on F²
Number of refined parameters	156
Final R indices [I > 4σ(I)]	R1 = 0.037, wR2 = 0.085
R indices (all data)	R1 = 0.041, wR2 = 0.089
GoF	1.075
Largest diff. peak and hole, e/Å³	0.706 and −0.669

Table 2

Crystal data, data collection information and structure refinement details for Cs-exchanged amicite

Property	Value
Formula	Cs3.7Na3.6(H3O)0.7(Al8Si8O32)·7.2H2O
Formula weight	1670.12
Temperature, K	100(2)
Radiation and wavelength, Å	MoKα; 0.71073
Crystal system, space group, Z	Monoclinic, P21, 1
Unit cell dimensions	a = 10.0349(3) Å, b = 10.0534(4) Å, c = 10.0586(4) Å, β = 90.474(3)°, V = 1014.73(6) Å³
Density, g/cm³	2.733 (involving non-localized H atoms)
Absorption coefficient µ, mm⁻¹	3.869
Crystal size, mm	0.15 × 0.12 × 0.10
Diffractometer	XCaliburS CCD
2θ range for data collection, °	5.71 – 68.14
h, k, l ranges	−15 → 15, −15 → 12, −15 → 15
Reflections collected	14299
Independent reflections	6067 (Rint = 0.0372)
Independent reflections with I > 4σ(I)	5639
Data reduction	CrysAlis PRO, version 1.171.36.20, Agilent Technologies Ltd (Agilent Technologies, 2012) [12]
Absorption correction	Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Structure solution	Direct methods
Refinement method	Full-matrix least-squares on F²
Number of refined parameters	297
Final R indices [I > 4σ(I)]	R1 = 0.053, wR2 = 0.146
R indices (all data)	R1 = 0.058, wR2 = 0.148
GoF	1.134
Largest diff. peak and hole, e/Å³	2.100 and −1.221

Maced. J. Chem. Chem. Eng. **39** (2), 207–216 (2020)
3. RESULTS AND DISCUSSION

Chemical data for initial amicite and its ion-exchanged forms are given in Table 3. They correspond to the following empirical formulae, calculated on the basis of 16 Si+Al atoms per formula unit:

- initial amicite, \(\text{H}_20.20\text{Na}_{3.62}\text{K}_{4.06}(\text{Al}_{7.71}\text{Si}_{8.29}\text{O}_{32})\text{O}_{10.09} \);
- Cs-amicite, \(\text{H}_{16.45}\text{Na}_{3.44}\text{Cs}_{4.19}(\text{Al}_{8.10}\text{Si}_{7.90}\text{O}_{32})\text{O}_{8.00} \);
- Rb-amicite, \(\text{H}_{30.98}\text{Na}_{0.77}\text{K}_{0.44}\text{Rb}_{6.55}(\text{Al}_{7.86}\text{Si}_{8.14}\text{O}_{32})\text{O}_{4.27} \);
- Pb-amicite, \(\text{H}_{9.09}\text{Pb}_{3.98}(\text{Al}_{7.89}\text{Si}_{8.11}\text{O}_{32})\text{O}_{15.51} \);
- Ag-amicite, \(\text{H}_{27.90}\text{Ag}_{8.00}(\text{Al}_{7.96}\text{Si}_{8.04}\text{O}_{32})\text{O}_{13.97} \).

As seen from these data, Cs\(^+\) substitutes K\(^+\), whereas most Na\(^+\) remains unexchanged. Rb\(^+\) substitutes both Na\(^+\) and K\(^+\), but a minor part of these cations is preserved. Pb\(^{2+}\) and Ag\(^+\) completely substitute Na and K. The reaction with Rb\(^+\) is accompanied by partial dehydration, whereas reactions with Pb\(^{2+}\) and Ag\(^+\) are accompanied by additional hydration.

Rb-, Pb- and Ag-amicites are chemically homogeneous. The reaction of amicite with CsNO\(_3\) solution under the above-described conditions is completed only in the smallest particles, whereas only peripheral parts and zones near cracks are substituted in larger particles (light zones in Fig. 1a), indicating a frontal mechanism of the reaction. The border between cation-exchanged and unexchanged zones is sharp.

Component	Initial amicite	Cs-amicite	Rb-amicite	Pb-amicite	Ag-amicite
\(\text{Na}_2\text{O} \)	8.07	6.05	1.48	0	0
\(\text{K}_2\text{O} \)	13.77	0	1.28	0	0
\(\text{Al}_2\text{O}_3 \)	28.28	23.39	24.73	19.32	19.53
\(\text{SiO}_2 \)	35.85	28.69	30.15	23.42	23.25
\(\text{H}_2\text{O} \)	13.10	8.40	4.80	13.40	12.10
Total	99.07	99.98\(^{a}\)	100.20\(^{b}\)	98.85\(^{c}\)	99.48\(^{d}\)

The total includes a) 33.45 wt. % \(\text{Cs}_2\text{O} \), b) 37.76 wt. % \(\text{Rb}_2\text{O} \), c) 42.71 wt. % \(\text{PbO} \), d) 44.60 wt. % \(\text{Ag}_2\text{O} \).

Fig. 1. Products of ion-exchange reactions of amicite with aqueous solutions of CsNO\(_3\) (a), RbNO\(_3\) (b), Pb(NO\(_3\))\(_2\) (c) and AgNO\(_3\) (d). SEM (BSE) images of polished sections are shown.
In the course of ion-exchange processes, single crystals crack due to internal strains (Figs. 1a–c). This results in significant distortions of single-crystal XRD patterns and makes the determination of the crystal structures impossible using single-crystal data for all ion-exchanged samples, except Cs-amicite.

The IR spectra of initial amicite and its ion exchange products (Fig. 2) in the range from 360 to 1200 cm\(^{-1}\), corresponding to vibrations of the tetrahedral Al-Si-O framework, are rather similar, indicating possible preservation of the framework topology. Bands in the structure-sensitive range, 500–800 cm\(^{-1}\), in the IR spectrum of Pb-amicite are poorly resolved compared with IR spectra of other samples. The most significant differences between the IR spectra of amicite and its cation-exchanged forms are observed in the range of vibrations of H\(_2\)O molecules (1500–3800 cm\(^{-1}\)). In particular, the IR spectra confirm a high degree of Pb-amicite hydration and a low degree of Rb-amicite hydration.

Three distinct bands (at 1590, 1648, 1699 cm\(^{-1}\)) and a shoulder above 1700 cm\(^{-1}\) which correspond to nondegenerate H–O–H bending modes of H\(_2\)O in the IR spectrum of initial amicite indicate the presence of numerous (at least four) locally different water molecules. This is in good agreement with structural data (see below). In particular, the band of O–H stretching vibrations at 3136 cm\(^{-1}\) corresponds to H\(_2\)O molecules forming strong hydrogen bonds. Bands of H–O–H bending and O–H stretching vibrations in the IR spectra of all ion-exchanged amicites are split, though to a less extent, and broadened (possibly as a result of overlap of numerous close bands), which may correspond to the presence of multiple states of H\(_2\)O molecules forming hydrogen bonds of medium strengths.

![Fig. 2. IR spectra of initial amicite (a), Ag-amicite (b), Rb-amicite (c), Pb-amicite (d), Cs-amicite (e).](image-url)
The unit-cell parameters of amicite and its ion-exchanged forms, determined from single-crystal XRD data, are given in Table 4. All the compounds are monoclinic. The Cs- and Rb-substituted samples have unit-cell parameters which are close to those of initial amicite, but the exchange of Na and K for Ag is accompanied by a significant (more than 8%) decrease of the unit-cell volume. A similar contraction of the unit cell was observed in the ion-exchange reaction of gismondine with Ag⁺ [7], as well. The unit-cell parameter, c, of Pb-amicite is nearly threefold larger than the c parameter of initial amicite, which, together with IR spectroscopy data, indicates an essential change of the crystal structure as a result of the reaction with Pb(NO₃)₂.

Table 4

Compound	Initial amicite	Cs-amicite	Rb-amicite	Pb-amicite	Ag-amicite
a (Å)	9.8424(5)	10.0349(3)	10.043(2)	9.8571(5)	9.272(2)
b (Å)	10.4488(5)	10.0534(4)	9.748(2)	10.6079(5)	9.997(2)
c (Å)	10.1917(5)	10.0586(4)	10.265(2)	29.453(2)	10.380(3)
β (°)	91.816(5)	90.474(3)	90.09(3)	90.756(5)	90.821(8)
V (Å³)	1047.59(9)	1014.72(6)	1005.0(3)	3079.4(3)	962.0(4)

The crystal structure of initial amicite from Kukisvumchorr (Tables 5 and 6, Figs. 3 and 4) is generally the same as that of amicite from its type locality, Höwenegg [2]. In both samples, Si and Al atoms, as well as Na⁺ and K⁺ ions, are ordered. The coordination polyhedron of the Na atom can be described as a distorted one-capped trigonal antiprism. The coordination polyhedron of K⁺ can be represented as a distorted hexagonal pyramid, with one of the apical vertices replaced by two O atoms. In the channel running along (001) (Fig. 4), Na⁺ ions are attached to its walls, whereas K⁺ ions are shifted towards its centrum. Perhaps due to this feature, only K⁺ ions are involved in the reaction with Cs⁺, whereas Na⁺ ions remain unchanged.

Table 5

Site	x/a	y/b	z/c	Ueq, Å²	Q
K	0.5308(7)	0.2621(8)	0.3042(6)	0.0108(1)	4
Na	0.6738(2)	0.5057(2)	0.0684(1)	0.0160(3)	4
Si(1)	0.1750(3)	0.2723(8)	0.1532(7)	0.0034(2)	4
Si(2)	0.3245(2)	-0.0020(4)	-0.1538(6)	0.0034(2)	4
Al(1)	-0.1516(9)	0.2566(1)	0.1588(1)	0.0036(2)	4
Al(2)	0.3443(9)	0.0104(1)	0.1543(4)	0.0037(2)	4
O(1)	0.4824(2)	0.0314(2)	-0.1688(2)	0.0065(5)	4
O(2)	0.2803(2)	-0.1224(2)	-0.2459(2)	0.0056(5)	4
O(3)	0.0220(2)	0.2293(2)	0.1837(3)	0.0075(5)	4
O(4)	0.2202(2)	0.3980(2)	0.2375(2)	0.0060(4)	4
O(5)	0.1968(3)	0.3042(3)	0.0000(2)	0.0080(5)	4
O(6)	0.2358(3)	0.1181(2)	-0.2065(2)	0.0064(4)	4
O(7)	0.2758(2)	0.1570(2)	0.2023(2)	0.0060(4)	4
O(8)	0.2889(2)	-0.0364(2)	-0.0033(2)	0.0066(4)	4
OW1	0.5	0.4334(4)	0.5	0.0137(7)	2
OW2	0.7156(3)	0.1899(3)	0.5216(3)	0.0125(5)	4
OW3	0.4540(3)	0.5085(3)	0.1546(3)	0.0152(5)	4
OW4	0.5	0.2835(8)	0	0.0192(2)	2

The OW4 site occupancy factor is 0.49(1)
Table 6

Selected interatomic distances (Å) in the crystal structure of initial amicite

T-tetrahedra	K- and Na-polyhedra
Si(1)–O(3)	K–OW1
–O(5)	–O(1)#3
–O(4)	–O(2)#5
–O(7)	–O(7)
Si(2)–O(1)	–OW2
–O(6)	–O(6)#3
–O(2)	–OW3
–O(8)	–OW4
Al(1)–O(5)#1	–OW2#6
–O(2)#2	–O(4)
–O(3)	Na–OW3
–O(6)#1	–OW2#7
Al(2)–O(1)#3	–O(2)#5
–O(4)#4	–OW3#3
–O(8)	–OW4
–O(7)	2.361(3)
	2.407(3)
	2.5(2)
	2.562(3)
	2.568(3)
	2.632(3)
	2.954(7)

*The symmetry transformations used to generate equivalent atoms are:
#1 –x, y, –z; #2 x–1/2, y+1/2, z+1/2; #3 –x+1, y, –z; #4 –x+1/2, y–1/2, –z+1/2;
#5 x+1/2, y+1/2, z+1/2; #6 –x+1, y, –z+1; #7 –x+3/2, y+1/2, –z+1/2.*

Fig. 3. The crystal structure of initial amicite from Kukisvumchorr: the *bc* projection.
Grey tetrahedra refer to SiO$_4$, black tetrahedra to AlO$_4$.

Fig. 4. The crystal structure of initial amicite from Kukisvumchorr: the *ab* projection.
Grey tetrahedra refer to SiO$_4$, black tetrahedra to AlO$_4$.
In the crystal structure of Cs-substituted amici-
te from Kukisvumcherr (Tables 7 and 8, Figs. 5 and
6), Na atoms occupy two sites, whose coordination
 polyhedra are distorted pentagonal pyramids. Cs at-
oms occupy two sites having 11-fold coordination.
All sites of extra-framework cations contained minor
admixtures of H₂O or H₂O. Unfortunately, H₂O and
H₂O cannot be distinguished by X-ray structural
analysis, but the presence of about 0.45 H₂O⁺ cations
per formula unit can be supposed based on the charge
balance in the empirical formula.

Table 7

Site	x/a	y/b	z/c	U_eq, Å²	q	Q
Cs1	-0.09539(7)	0.12630(8)	0.26480(7)	0.0218(2)	Cs1: 0.915(7)	2
Cs2	0.23769(5)	0.37014(7)	0.41789(7)	0.0189(2)	Cs2: 0.923(7)	2
Na1	-0.4596(5)	0.9264(5)	0.1856(5)	0.022(1)	Na1: 0.90(6)	2
Na2	0.3311(5)	0.1780(6)	0.0585(6)	0.033(2)	Na2: 0.88(7)	2
Si1	0.3864(2)	-0.2695(3)	0.3910(2)	0.0118(4)	Si1: 0.261	1
Si2	0.1117(2)	0.0325(3)	0.5728(3)	0.0116(4)	Si2: 0.262(1)	2
Si3	0.0688(2)	-0.2607(3)	0.0739(3)	0.0130(5)	Si3: 0.2178(8)	1
Si4	0.5689(2)	-0.5674(3)	0.1096(3)	0.0115(4)	Si4: 0.077(7)	2
Al1	0.4229(3)	-0.0215(3)	0.5769(3)	0.0111(5)	Al1: 0.078(7)	2
Al2	0.0783(3)	-0.2158(3)	0.3833(3)	0.0115(5)	Al2: 0.2321(7)	1
Al3	0.3770(3)	-0.3182(3)	0.0751(3)	0.0114(5)	Al3: 0.83(4)	2
Al4	0.8826(3)	-0.5122(3)	0.1177(3)	0.0129(5)	Al4: 0.1263	0.29(3)
O1	0.4583(7)	-0.4020(7)	0.4511(7)	0.0161(1)	O1: 0.1780(6)	1
O2	0.2321(7)	-0.2816(9)	0.4286(7)	0.021(1)	O2: 0.0498(7)	1
O3	0.4557(6)	-0.1400(8)	0.4557(7)	0.017(1)	O3: 0.2698(6)	1
O4	0.2698(6)	0.0593(8)	0.5518(9)	0.020(1)	O4: 0.0697(7)	1
O5	0.0498(7)	-0.0629(7)	0.4598(7)	0.017(1)	O5: 0.0786(5)	1
O6	-0.0420(6)	-0.3231(7)	0.4392(8)	0.018(1)	O6: 0.033(2)	1
O7	0.0697(9)	-0.1811(8)	0.2138(8)	0.023(1)	O7: 0.0754(7)	1
O8	-0.0540(7)	-0.3636(9)	0.0581(9)	0.026(2)	O8: 0.0231(6)	1
O9	0.0445(8)	-0.1496(8)	-0.0424(8)	0.023(1)	O9: 0.0754(7)	1
O10	0.2074(6)	-0.3401(8)	0.0474(7)	0.019(1)	O10: 0.011(1)	1
O11	0.4121(7)	-0.2602(8)	0.2312(7)	0.017(1)	O11: 0.0754(7)	1
O12	0.4543(6)	-0.2062(7)	-0.0332(7)	0.014(1)	O12: 0.0231(6)	1
O13	0.4518(8)	-0.4682(7)	0.0461(8)	0.020(1)	O13: 0.0754(7)	1
O14	0.5524(6)	-0.5923(7)	0.2662(6)	0.014(1)	O14: 0.0231(6)	1
O15	0.7126(7)	-0.5050(8)	0.0789(8)	0.020(1)	O15: 0.0754(7)	1
O16	-0.0833(7)	0.4644(9)	0.2858(8)	0.020(1)	O16: 0.0754(7)	1
OW1	-0.4101(8)	0.1178(9)	0.2787(8)	0.024(1)	OW1: 0.0754(7)	1
OW2	0.2178(8)	0.364(1)	0.109(1)	0.034(2)	OW2: 0.0754(7)	1
OW3	0.262(1)	0.046(1)	0.239(1)	0.027(3)	OW3: 0.75(4)	2
OW4	-0.2615(9)	-0.199(1)	0.230(1)	0.029(3)	OW4: 0.83(4)	2
The sizes of the channels of studied amicites are slightly different. In the initial amicite, the minimum diameter of the channel formed by eight-membered rings of the tetrahedra is about 3.3 Å in the projection along the \(a\) axis and 2.9 Å in the projection along the \(c\) axis; the maximum channel size in both projections is about 5.0 Å. For Cs-amicite, the minimum values of the diameter of the eight-membered channel in different projections are 3.3 Å, and the maximum ones are 5.6 Å. Thus, the substitution of K for Cs in amicite mainly results in an increase in the larger cross-sectional diameter of the eight-membered channel.

In the structure of Na,Cs-gismondine, refined by the Rietveld method [7], there are multiple Cs sites and a Na site located off center, closer to the wall of the channel. Cs-substituted amicite and Na,Cs-gismondine have similar unit-cell volumes (1014.7 and 1022.6 Å\(^3\), respectively).

4. CONCLUSIONS

Amicite shows high activity in ion-exchange reactions with Ag\(^+\), Rb\(^+\), Cs\(^+\) and Pb\(^{2+}\) under mild conditions. Synthetic analogues of this zeolite and related zeolites with the same framework topology can be used for wastewater purification. The data obtained in this work demonstrate high flexibility of the amicite framework; changes in the unit-cell volume reaching 9% do not result in framework

Table 8

Selected interatomic distances (in Å)
in the crystal structure of Cs-substituted amicite

	Selected distances		
Si(1)–O(2)	1.601(7)	Al(1)–O(1)#1	1.718(7)
–O(3)	1.611(8)	–O(3)	1.737(8)
–O(1)	1.629(7)	–O(14)#1	1.747(7)
–O(11)	1.632(8)	–O(4)	1.754(7)
Si(2)–O(16)#2	1.606(8)	Al(2)–O(6)	1.717(7)
–O(5)	1.608(8)	–O(2)	1.736(7)
–O(6)#3	1.616(8)	–O(7)	1.742(8)
–O(4)	1.625(7)	–O(5)	1.744(8)
Si(3)–O(8)	1.615(8)	Al(3)–O(11)	1.709(8)
–O(7)	1.618(8)	–O(10)	1.736(7)
–O(10)	1.628(7)	–O(13)	1.739(8)
–O(9)	1.633(8)	–O(12)	1.752(7)
Si(4)–O(14)	1.605(7)	Al(4)–O(8)#5	1.733(9)
–O(15)	1.605(7)	–O(16)#6	1.738(8)
–O(12)#4	1.610(8)	–O(9)#4	1.740(8)
–O(13)	1.621(8)	–O(15)	1.748(8)

Cs- and Na-polyhedra

	Cs(1)–O(5)	Cs(2)–OW2	3.111(1)
–OW1	3.164(8)	–O(6)#3	3.120(7)
–O(9)#7	3.219(8)	–O(1)#8	3.201(7)
–O(6)#3	3.311(8)	–O(15)#1	3.321(7)
–O(10)#7	3.344(7)	–O(3)#4	3.317(7)
–O(16)	3.408(9)	–O(4)	3.418(8)
–O(2)#3	3.510(8)	–O(2)#8	3.504(9)
–O(7)	3.546(8)	–O(14)#8	3.539(6)
–O(8)#7	3.590(9)	–O(16)	3.601(8)
–OW4	3.681(1)	–OW4#3	3.62(1)
–OW3	3.691(1)	–OW3	3.74(1)
Na(1)–OW1#8	2.20(1)	Na(2)–OW2	2.25(1)
–O(11)#9	2.322(9)	–O(15)#11	2.34(1)
–OW4#8	2.39(1)	–OW3	2.35(1)
–O(13)#10	2.560(9)	–O(12)#11	2.463(8)
–O(12)#9	2.708(9)	–O(13)#11	2.79(1)
–O(3)#9	2.931(9)	–O(8)#7	3.038(8)

*The symmetry transformations used to generate equivalent atoms are:
\#1 \(x+1, y+1/2, z+1\); \#2 \(-x, -y+1/2, -z+1\); \#3 \(-x, y+1/2, -z+1\); \#4 \(-x+1, y+1/2, z\); \#5 \(x+1, y, z\); \#6 \(x+1, y, z\); \#7 \(-x, y+1/2, -z\); \#8 \(x, y+1, z\); \#9 \(-x+1, y+1, z\); \#10 \(-x, y+3/2, -z\); \#11 \(-x+1, y+1/2, -z\).
destruction. In the reaction with the largest cation, Cs⁺, only K⁺ is involved in ion exchange. In contrast, Ag⁺, Rb⁺, and Pb²⁺ substitute both K⁺ and Na⁺. This distinction may have a steric nature.

Acknowledgments. This work was carried out in accordance with the state task, state registration number No. AAAA-A19-119092300076-7. Chemical analyses and IR spectroscopic study were supported by the Russian Foundation for Basic Research (grant No. 18-29-12007-mk).

REFERENCES

[1] A. Alberti, G. Hentschel, G. Vezzalini, Amicite, a new natural zeolite, Neues Jahrbuch für Mineralogie, Monatshefte, 481–488 (1979).
[2] A. Alberti, G. Vezzalini, The crystal structure of amicite, a zeolite, Acta Crystallographica, 35, 2866–2869 (1979). DOI: https://doi.org/10.1107/S0567740879010852
[3] A. P. Khomyakov, G. E. Cherepivskaya, T. A. Kurova, V. V. Kaptsov, Amicite K₂Na₂Al₄Si₄O₁₆·5H₂O – the first find in the U.S.S.R, Doklady Akademii Nauk SSSR, 283, 978–980 (1982) (Russian).
[4] I. V. Pekov, Kukisvumchorr Deposit: Mineralogy of Alkaline Pegmatites and Hydrothermalites, Ocean Pictures Ltd., Littleton (2004).
[5] G. Artioli. The crystal structure of garronite, American Mineralogist, 77, 189–196 (1992). https://pubs.geoscienceworld.org/msa/ammin/article-abstract/77/1-2/189/42585/The-crystal-structure-of-garronite?redirectedFrom=fulltext
[6] L. B. McCusker, C. Baerlocher, R. Nawaz, Rietveld refinement of the crystal structure of the new zeolite mineral gobbinsite, Zeitschrift für Kristallographie, 171, 281–289 (1985). https://truff.info/doci/zb/171/ZK171_281.pdf
[7] T. Bauer, W. Baur, Structural changes in the natural zeolite gismondine (GIS) induced by cation exchange with Ag, Cs, Ba, Li, Na, K and Rb, European Journal of Mineralogy, 10, 133–147 (1998). DOI: 10.1127/ejm/10/1/0133.
[8] C. J. Adams, A. Araya, S. W. Carr, A. P. Chapple, P. Graham, A. R. Minihan, T. J. Osinga, Zeolite MAP: A new detergent builder, Zeolite Science 1994: Recent Progress and Discussions Studies in Surface Science and Catalysis, H. G. Karge and J. Weitkamp (Eds.), Elsevier Sci., 98, 206–207 (1995).
[9] S. Allen, S. Carr, A. Chapple, A. Dyer, B. Heywood, Ion exchange in the synthetic gismondine, zeolite MAP. Physical Chemistry, Chemical Physics, 4, 2409–2415 (2002). DOI: https://doi.org/10.1039/B111490P
[10] G. Vezzalini, A. Alberti, A. Sani, M. Triscari. The dehydration process in amicite, Microporous and Mesoporous Materials, 31, 253–262 (1999). DOI: 10.1016/S1387-1811(99)00076-1.
[11] G. M. Sheldrick, SHELX-97, University of Göttingen, Germany (1997). http://shelx.uni-ac.gwdg.de/SHELX/
[12] Agilent, CrysAlis PRO, version 1.171.36.20, Agilent Technologies Ltd, Yarnton, Oxfordshire, England (2012). https://www.agilent.com/cs/library/usermanuals/Public/CrysAlis_Pro_User_Manual.pdf