Halal Risk Analysis at Indonesia Slaughterhouses Using the Supply Chain Operations Reference (SCOR) and House of Risk (HOR) Methods

D Wahyuni*, A H Nasution¹, I Budiman², and N Arfidhila¹

¹Industrial Engineering Department, Faculty of Engineering, Universitas Sumatera Utara Medan Indonesia
²Industrial Engineering Department, Faculty of Technology and Computer Sciences, Universitas Prima Indonesia

Emails: *diniwahyuni2015@gmail.com, amrunhamidi@gmail.com, irwanb01@gmail.com, nurularfidhila7@gmail.com

Abstract. The Halal supply chain is one of the most important factors for Muslim because the product to be consumed must be halal, from the source to the end consumers. This research was conducted at several feedlots (fattening cattle), slaughterhouses (RPH), and traditional markets in the city of Medan and surrounding areas. In this study identified all activities in the slaughterhouse, activity mapping, determination of risk events, risk agents, and Aggregate Risk Potential (ARP) calculations in the red meat supply chain with the adoption of the SCOR model namely plan, source, make, deliver, and return and HOR (House of Risk). The results showed that there were 19 activities (sub-processes), 28 risk events and 28 risk agents. The selected risk agents based on the five highest ARP values are less cleaned floor after slaughtering (Ag17), the accumulation of blood into clots (Ag20), lack of machine maintenance management (Ag2), too many cattle to be slaughtered (Ag3), and increased consumer demand (Ag1). Knowing the risks and causes of risks will facilitate handling so that supply chain performance can be improved. It is necessary to study appropriate risk mitigation actions so that risk events can be reduced.

1. Introduction
A supply chain is a concept where there is a regulatory system related to product flow, information flow, and financial flow. This arrangement is important to do with the number of links involved in the red meat supply chain and the price is relatively high when compared to other livestock commodity yields [1]. A complex supply chain structure that involves many parties, both internal and external, can cause problems if the company does not know the extent to which supply chain performance has been achieved. A well-managed supply chain can produce cheap, quality, and timely products so that the target market is met and can generate profits for the company [2].

Halal is the main requirement for Muslim in consuming food products. There is a halal guarantee to be added value in the competition of the food industry today. A halal guarantee is not only needed for the final product but also at every stage of the supply chain. This can be assessed by consumers through halal traceability of a product or commodity. Halal traceability in the supply chain of a commodity makes consumers aware of the halal status of the products they consume [3].
The Halal supply chain is a supply chain network, starting from the preparation and enforcement of halal materials for production and delivering final products to customers following Sharia law. The concept of a halal supply chain is to maintain the integrity of halal food and ensure that the food is Tayyip. The Halal supply chain also avoids direct contact with haram goods, manages cross-contamination between halal and haram goods, pays attention to special facilities for halal products, and ensures supply chain management is in line with the perception of Muslim consumers [4].

Halal guarantee system is a management system developed, implemented and maintained by a halal certificate holder company to maintain the continuity of the halal production process following the provisions of LPPOM MUI. There are 12 halal guarantee system criteria, namely: Halal policy, halal management team, training and education, materials, products, written procedures for critical activities, traceability, handling of products that do not meet criteria, internal audit, management review, and food safety [5]. Halal supply chain management is halal network management to expand the integrity of halal from the source to the point of purchase of consumers. Halal supply chain covers all activities such as product coordination, inventory, location and transportation used along the supply chain. When the process of slaughtering, Muslim slaughter must use a knife (equipment) that is sharp following Islamic law [6].

The principles in halal logistics function to create a global halal logistics system, minimize difficulties for the halal industry, define cross-contamination between halal and haram and how to avoid them that need to be considered in supply chain management [7]. Previous research by Cahya Kusnida, et al, regarding risk management in the supply chain concluded that risk identification can be done using the Supply Chain Operations Reference (SCOR) model by determining risk events and risk agents to get the Aggregate Risk Potential (ARP) [8].

SCOR divides supply chain processes into 5 core processes, namely plan (the process of balancing demand and supply), source (the process of procuring goods or services to meet demand), make (the process to transform raw materials/components into products the customer wants), deliver is a process to fulfill the demand for goods or services, including order management, transportation, and distribution and return (the process of returning or receiving product returns for various reasons) [9].

In this research, identification of the causes of contamination risk to halal products is done by taking the SCOR (Supply Chain Operations Reference) and HOR (House of Risk) approaches so that red meat supply chain performance can be improved.

2. Methodology
This research was conducted in 3 Slaughterhouses in Medan and surrounding areas. The research carried out is an analysis of the activity and risk of contamination that can cause obstructions to slaughtered cattle. The object observed was the activities and working environment conditions at the slaughterhouse. Information needed to be obtained from leaders, employees, and workers on the production floor of 3 Slaughterhouses in Medan and surrounding areas. The steps in data collection and processing are:

1. Observation of all activities and working environment conditions at the slaughterhouses
2. Mapping the slaughterhouses activity using the SCOR model (plan, source, make, deliver, return)
3. Classification and assessment of risk events
4. Classification and assessment of risk agents
5. House of risk I [9]

Rp calculation is done by the following formula: Rp = Oj Σ Si Rsj

Where:
Rp: Aggregate Risk Potential
Oj: Occurrence
Si: Severity
Rsj: Relationship
3. Results and Discussions
The first stage carried out in this study is to map the activities of slaughterhouses based on the SCOR (Supply Chain Operations Reference) model that can assist in determining the supply chain sequence from the planning, sourcing, making, delivering and returning stage. The results of mapping activities based on the SCOR model can be seen in Figure 1.

Figure 1. Activity Mapping Based On SCOR Model

The events that could disrupt activities of the supply chain are called risk events. Risk events are obtained from observation of slaughtering activities and interviews which are then coded using the “Ev”. The risk event assessment is carried out by giving a severity score to the form. The classification and assessment of risk events in slaughterhouses can be seen in Table 1.

Table 1. Classification and Value Assessment of Risk Event in Slaughterhouses

Risk Event	Code	Severity
Sudden cattle demand	Ev₁	3
Damage to the engine and equipment during the slaughtering	Ev₂	7
Changes to the slaughter system	Ev₃	3
Change in the cutting area	Ev₄	4
Error in red meat delivery plan	Ev₅	4
Error in Delivery Order number	Ev₆	4
Great distance between feedlots and slaughterhouses	Ev₇	5
Lateness delivery of cattle from feedlot to slaughterhouses	Ev₈	4
An agent that can cause a risk event to occur is called a risk agent. Risk agents are obtained from observation and interviews which are then coded using “Ag”. Risk agent assessment is done by giving the occurrence value on the form. The classification and assessment of risk agents in slaughterhouses as in Table 2.

Table 2. Risk Agent Classification and Assessment in Slaughterhouses

Risk Agent	Code	Occurrence
Increased consumer demand	Ag1	4
Lack of machine maintenance management	Ag2	7
Too many cattle to be slaughtered	Ag3	4
Insufficient cutting area	Ag4	4
Lack of coordination	Ag5	5
Lack of checker’s accuracy	Ag6	4
Feedlot location is far away from slaughterhouses	Ag7	6
There is interference with the conveyance	Ag8	3
Lack of communication	Ag9	4
Inaccurate checking in the reception	Ag10	5
Lack of accuracy in cattle transport drivers	Ag11	2
Fatigue in cattle due to a fairly long trip	Ag12	6
Too long stored in a cage	Ag13	5
Slaughter knives are less sharp	Ag14	1
The lateness of the slaughterer	Ag15	5
Lack of slaughterer with halal certification	Ag16	2
Less cleaned floor after slaughtering	Ag17	7
Less skilled red meat cutting operator	Ag18	5
The innards are not cleaned properly	Ag19	4
The accumulation of blood becomes clots	Ag20	7
Limited transportation containers \(Ag_{21} \) \(\text{5} \)
Less precise transport operator \(Ag_{22} \) \(\text{4} \)
Interference during travel \(Ag_{23} \) \(\text{4} \)
Late to slaughter \(Ag_{24} \) \(\text{3} \)
Distributor/ carrier not yet certified halal \(Ag_{25} \) \(\text{5} \)
Lack of coordination \(Ag_{26} \) \(\text{5} \)
Limited transportation \(Ag_{27} \) \(\text{4} \)
The conveyance is broken \(Ag_{28} \) \(\text{4} \)

In Phase I, House of Risk is used to determine which risk agents are prioritized and then mitigation actions are planned as shown in Table 3 and Table 4. In the House of risk phase I, each risk event looks at the level of relationship with the risk agent and is given a value of 1 (level of relationship low), 3 (medium relationship level), and 9 (high relationship level).

Table 3. House of Risk Phase I: A1-A14

Business Processes	Risk Event	Risk Agent	Sev.											
Plan	Ev1	3	1	1	3	3								
	Ev2	1	9	3	1	1	7							
	Ev3	3	3	1	1	3								
	Ev4	3	3	3	1	1	4							
	Ev5	1	1	1	1	1	1	4						
	Ev6	1	1	1	1	1	1	4						
Source	Ev7	1	3	1	1	3	5							
	Ev8	1	3	1	1	1	4							
	Ev9	1	1	1	2									
	Ev10	1	3	1	3	3								
	Ev11	1	1	1	2									
	Ev12	1	1	3	4									
	Ev13	1	1	1	4									
Make	Ev14	1	3	1	2									
	Ev15	1	3	1	4									
	Ev16	1	1	1	2									
	Ev17	1	3	7										
	Ev18	1	1	3										
	Ev19	1	1	4										
	Ev20	1	3	7										
	Ev21	1	1	5										
Deliver	Ev22	1	1	1	1	4								
	Ev23	1	1	3	1	4								
	Ev24	1	1	1	4									
Return	Ev25	1	3											
	Ev26	1	3											
Occurrence	4	7	4	4	5	4	6	3	4	5	2	6	5	1
Aggregate Risk Potential	372	525	512	96	245	100	186	39	220	85	48	162	20	8
Peringkat Potensial	5	3	4	13	6	12	9	22	8	16	20	10	25	28
Table 4. House of Risk Phase I: A15-A28

Business Processes	Risk Event	Risk Agent	Sev.													
		Ag15	Ag16	Ag17	Ag18	Ag19	Ag20	Ag21	Ag22	Ag23	Ag24	Ag25	Ag26	Ag27	Ag28	
Plan	Ev1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Ev2	1	1		1	1	1	1	1	1	1	1	1	1	1	
	Ev3	1	1													
	Ev4	1		1												
	Ev5	1		1												
	Ev6	1			1											
Source	Ev7	1	1		1											
	Ev8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Ev9	1														
	Ev10	1														
	Ev11	1														
	Ev12	1														
	Ev13	1														
Make	Ev14	1														
	Ev15	1														
	Ev16	1														
	Ev17	9														
	Ev18	1														
	Ev19	3														
	Ev20	9														
	Ev21	9														
Deliver	Ev22	3														
	Ev23	3														
	Ev24	3														
	Ev25	3														
	Ev26	3														
Return	Ev17	1														
	Ev18	1														
Occurrence																
Aggregate Risk Potential	50	16	882	15	60	609	130	32	88	24	95	225	56	76		
Peringkat Potensial	21	26	1	27	18	2	11	23	15	24	14	7	19	17		

ARP values are sorted from largest to smallest and risk agent handling priorities are chosen using the Pareto concept as shown in Figure 2.

![Figure 2. Pareto ARP Risk Agent Diagram](image-url)
Details of the Pareto diagram above can be seen in Table 5. In Table 5 can be seen that the highest risk agent is Ag17 (17.76%) and the lowest is Ag14 (0.16%).

Risk Agent	ARP	Rank	Percentase	Kumulatif
Ag17	882	1	17.76%	17.76%
Ag20	609	2	12.26%	30.02%
Ag12	525	3	10.57%	40.60%
Ag11	512	4	10.31%	50.91%
Ag7	372	5	7.49%	58.40%
Ag6	245	6	4.93%	63.33%
Ag25	225	7	4.53%	67.86%
Ag9	220	8	4.43%	72.29%
Ag12	186	9	3.75%	76.04%
Ag11	162	10	3.26%	79.30%
Ag21	130	11	2.62%	81.92%
Ag6	100	12	2.01%	83.93%
Ag4	96	13	1.93%	85.86%
Ag25	95	14	1.91%	87.78%
Ag23	88	15	1.77%	89.55%
Ag10	85	16	1.71%	91.26%
Ag28	76	17	1.53%	92.79%
Ag9	60	18	1.21%	94.00%
Ag7	56	19	1.13%	95.13%
Ag11	48	20	0.97%	96.09%
Ag15	40	21	0.81%	96.90%
Ag8	39	22	0.79%	97.68%
Ag22	32	23	0.64%	98.33%
Ag24	24	24	0.48%	98.81%
Ag13	20	25	0.40%	99.21%
Ag6	16	26	0.32%	99.54%
Ag18	15	27	0.30%	99.84%
Ag14	8	28	0.16%	100.00%
Total	**4966**			

With the Pareto approach, the 5 causes of risk can result in the greatest potential risk impact. In Table 5 above, it can be seen that 5 risk agents have a percentage of 17.85%, giving an impact of 58.40% to the potential risk. The five risk agents are:

a. Less cleaned floor after the slaughtering (Ag17)
b. The accumulation of blood becomes clots (Ag20)
c. Lack of machine maintenance management (Ag2)
d. Too many cattle to be slaughtered (Ag3)
e. Increased consumer demand (Ag1)

Handling of risk agent priorities is a further task that must be done so that most risk events can be reduced and supply chain performance can be improved.
4. Conclusions
Conclusions obtained from this research are:
1. Identification of the risks inherent in the red meat supply chain activity produces 19 sub-processes, 28 risk events, and 28 risk agents.
2. The dominant cause of risk in the supply chain at slaughterhouses is the lack of cleaning the floor after the slaughter process (Ag17), the accumulation of blood into clots (Ag20), the lack of maintenance management on the machine (Ag2), the number of cattle to be cut too much (Ag3), and increasing consumer demand (Ag1).

5. References
[1] Syakur, Moh. A, dkk. 2017. Analisis Rantai Pasokan (Supply Chain) Daging Sapi dari Rumah Pemotongan Hewan sampai Konsumen di Kota Surakarta. Surakarta: Jurnal Universitas Sebelas Maret
[2] Parinduri, Ismi Rajab. 2016. Pengukuran dan Peningkatan Performansi Supply Chain dengan Pendekatan Supply Chain Operation Reference (SCOR) pada PT. Indah Kiat Pulp and Paper. Medan. Repository Jurnal Mahasiswa Universitas Sumatera Utara
[3] Ma’rifat, Tian Nur, Purwanto, Selamet, Windarwati, Sri. 2017. Perception On Halal Tracebility On Chicken Meat Supply Chain: Agroindustrial Technology Journal
[4] Syazwan, Mohammed, dkk. 2015. Halal Supply Chain Critical Success Factor : A Literatur Review, Journal of Islamic Marketing
[5] LPPOM-MUI.org.id
[6] Moh, Yusoff, Fara Adura, dkk. Halal Food Supply Chain Knowledge and Purchase Intention. International journal of Economic and Management, 2015
[7] Tieman, Marco. Establishing the Principle in Halal Logistic. Journal of Emerging Economics and Islamic Research, 2013
[8] Kusnida, cahaya dkk. 2016. Pengelolaan Risiko pada Supply Chain dengan Menggunakan Metode House of Risk (HOR) (Studi Kasus di PT. XYZ. Malang. Teknik Industri Universitas Brawijaya
[9] Pujawan, Dr. Nyoman. 2005. Supply Chain Management. Surabaya: Andi Yogyakarta

Acknowledgment
This research was supported by Universitas Sumatera Utara as per TALENTA research contract no: 4167/UN5.1.R/PPM/2019 dated on 1st April 2019. We thank you for our colleagues who provided insight and expertise that greatly assisted the research. We would also like to thank the slaughterhouse and feedlot for providing the observation opportunities.