ABSTRACT

Spontaneous brain activity changes across states of consciousness. A particular consciousness-mediated configuration is the anticorrelations between the default mode network and other brain regions. What this antagonistic organization implies about consciousness to date remains inconclusive. In this Perspective Article, we propose that anticorrelations are the physiological expression of the concept of segregation, namely the brain’s capacity to show selectivity in the way areas will be functionally connected. We postulate that this effect is mediated by the process of neural inhibition, by regulating global and local inhibitory activity. While recognizing that this effect can also result from other mechanisms, neural inhibition helps the understanding of how network metastability is affected after disrupting local and global neural balance. In combination with relevant theories of consciousness, we suggest that anticorrelations are a physiological prior that can work as a marker of preserved consciousness. We predict that if the brain is not in a state to host anticorrelations, then most likely the individual does not entertain subjective experience. We believe that this link between anticorrelations and the underlying physiology will help not only to comprehend how consciousness happens, but also conceptualize effective interventions for treating consciousness disorders in which anticorrelations seem particularly affected.

AUTHOR SUMMARY

The fMRI resting paradigm can quantify brain function by surpassing communication and sophisticated setups, hence helping to infer consciousness in individuals who are unable to
communicate with their environment. A particular consciousness-mediated rsfMRI configuration is that of functional anticorrelations, that is, the antagonistic relationship between a specific set of brain regions. We suggest that anticorrelations are a key physiological prior, without which consciousness cannot be supported, because the brain cannot segregate how regions get connected. We postulate that segregation is possible thanks to neural inhibition, by regulating global and local inhibitory activity. We believe that the link between anticorrelations and the underlying physiology can help not only to comprehend how consciousness happens, but also conceptualize effective interventions for treating its disorders.

INTRODUCTION

Individuals during sleep, anesthesia, and in disorders of consciousness are unable to communicate intentionally with the environment. Consequently, their mental state needs to be inferred by means of meaningful proxies. The fMRI resting paradigm has been a great asset to that matter, as it quantifies brain function by surpassing the need for communication of experience or behavioral output (Zhang et al., 2021). Overall, studies in such states of consciousness point to lesser functional connectivity (FC) between regions that are within the same “network,” in that they show positive FC during wakefulness (Heine et al., 2012). The positive coupling between brain regions, especially those of the default mode network (DMN), was shown to enable fast and accurate performance during higher order cognitive tasks concerning, for example, executive function (Shine et al., 2016) or working memory (Cohen & D’Esposito, 2016). Such integrative profiles reduce dramatically in states of unconsciousness—yet within-network FC persists and does not entirely disappear (Boveroux et al., 2010; Di Perri et al., 2016). Therefore, DMN correlations might be more about shaping connectivity interactions rather than reflecting conscious mental activity (Boly et al., 2008).

A rather consciousness-sensitive connectivity profile is that of functional anticorrelations, that is, the negative FC that some regions show with the DMN. Depending on the state of consciousness anticorrelations reduce in intensity, like after sleep deprivation (De Havas et al., 2012; Yeo et al., 2015), in slow wave sleep and REM (Chow et al., 2013), hypnosis (Demertzi et al., 2011), and deep sedation (Luppi et al., 2019). Or they are undetectable, like in deep anesthesia (Boveroux et al., 2010), and unresponsive brain-damaged patients (Di Perri et al., 2016; Threlkeld et al., 2018). Importantly, anticorrelations’ FC recovers during the immediate postanesthetic period (Nir et al., 2020) and after emergence from a disorder of consciousness (Di Perri et al., 2016; Threlkeld et al., 2018). Within the state of typical wakefulness, the presence of anticorrelations was shown to contributes to cognitive function (J. B. Keller et al., 2015; Vanhaudenhuyse et al., 2011), with greater intensity leading to better within-subject (e.g., Kucyi et al., 2017) and between-subject performance (e.g., Spreng et al., 2010). Also, anticorrelations seem to contribute to life span, starting weak in children, strengthening during adolescence, ending up fully anticorrelated in young adulthood (Chai et al., 2014), and getting selectively decreased during healthy aging (J. B. Keller et al., 2015). Considering that anticorrelations are implicated in cognition and consciousness, an emerging question is what this antagonistic configuration implies about the brain’s physiology and conscious experience. To our knowledge, no such formulation has been suggested yet. To address this, we discuss conceptual and methodological debates around anticorrelations, and, by tackling their physiological underpinnings, we postulate a mechanistic link between micro- and macrocircuitry, which may explain the function of anticorrelations in the context of conscious experience.
FUNCTIONAL ANTICORRELATIONS CONTAIN MEANINGFUL NEURAL ACTIVITY

Anticorrelations refer to brain regions showing negative FC in contrast to the positive FC within intrinsic networks, such as the DMN. The regions showing negative FC with the DMN concern primarily the intraparietal sulcus, the frontal eye fields, and the middle temporal + area (Fox et al., 2005). Historically, the areas showing anticorrelations were coined as “task-positive” in contrast to a “task-negative” DMN (Fox et al., 2005). This connotation was given to highlight, respectively, activations and deactivations exhibited by these systems during task performance, initially measured with positron emission tomography, and later confirmed by fMRI (Raichle & Mintun, 2006). It has been proposed, however, that the dichotomization between “task-positive” and “task-negative” might be misleading because it insinuates that the DMN is not engaged actively in cognitive processes (Spreng, 2012). As the DMN indeed collaborates with other task-related areas (Elton & Gao, 2015) and networks (Spreng, 2012) to promote cognitive performance and mental flexibility (Spreng et al., 2014), we will here preferentially utilize the term **anticorrelations**.

The discussion about anticorrelations very often goes hand in hand with the methodological debate about correcting or not for the brain’s global signal (GS) during fMRI data preprocessing. The GS can be obtained by averaging the resting-state time courses over the entire brain (Desjardins et al., 2001). This whole-brain averaging implies the possibility that non-neuronal sources can contribute to the GS along with neural signal. As most functional connectivity studies are interested in identifying the neural counterparts of a task or a condition, this implies that GS needs to be accounted for. GS correction can happen via linear regression, subtraction, or normalization (T. T. Liu et al., 2017). Such a process, however, can lead to systematically shifting the distribution of correlation values in the negative direction (Anderson et al., 2011; Murphy et al., 2009) and, so, anticorrelations emerge. This implies that anticorrelations are a matter of mathematical treatment, spurious, and not neurona lly meaningful. To date, however, there is support both for the nonneuronal and the neuronal significance of the GS. On the one hand, the GS is shown to reflect fMRI nuisance sources such as motion, scanner artifacts, respiration (Power et al., 2017), cardiac rate (Chang & Glover, 2010), and vascular activity (Colenbier et al., 2020; Zhu et al., 2015). On the other hand, GS is considered to have a neuronal counterpart (Schölvinck et al., 2010) that promotes behavior (Li et al., 2019), it was shown to correlate with spontaneous fluctuations in the local field potentials as measured with implanted electrodes in monkeys (Schölvinck et al., 2010), and it was associated with vigilance (Wen & Liu, 2016; Wong et al., 2013) and arousal (X. Liu et al., 2018) as measured with EEG in humans. Together, the debate about whether to employ GS correction as a preprocessing step or not remains unresolved, while the choice can be driven by the research question at hand (Murphy & Fox, 2017; Uddin, 2017). Generally, we align with the view that the spontaneous anticorrelations are not mere artifacts and that they actually reflect neural activity. This is after considering that GS correction does not preferentially affect only systems exhibiting positive correlations but also those which show anticorrelations in the first place (Fox et al., 2009). Anticorrelations between the DMN and the executive attention system can also be found using independent component analysis (without GS correction), suggesting that the anticorrelations are not merely a mathematical issue. Also, anticorrelations are shown to increase after caffeine intake, pointing to their physiological dynamism (Wong et al., 2013). The anticorrelations between networks homologous to DMN and the dorsal attention network (DAN) are also observed in rodents, dogs, and nonhuman primates, confirming interspecies consistency (Belloy et al., 2018a; Gozzi & Schwarz, 2016; Hutchison & Everling, 2012; Szabó et al., 2019). Furthermore, the strength of anticorrelations is shown to be predictive of disease phenotype (Adhikari et al., 2021; Belloy et al., 2018).
Neural inhibition mediates the formulation of anticorrelations

We postulate that anticorrelations may be emerging thanks to the process of neural inhibition. Neural inhibition is a pivotal mechanism for the brain to sustain balanced cortical activity (Isaacson & Scanziani, 2011). This is done by the orchestrated coordination between excitatory pyramidal spiking neurons occupying 70%–80% of the cortex and the remaining inhibitory nonpyramidal cells (DeFelipe & Fariñas, 1992), such that for every five excitatory synapses there is approximately one inhibitory (Beaulieu & Colonnier, 1985). Excitation and inhibition happen in a balanced way, leaving it unlikely to observe an increase in one without observing an increase in the other; otherwise, no cell would reach firing threshold (Scannell & Young, 1999). The recruitment of GABAergic inhibitory interneurons via the thalamus, corticocortical, or other excitation pathways has been shown to assist cognition and motor behavior (Swanson & Maffei, 2019). Also, it is via this synchronous activation of excitatory and inhibitory activity that anticorrelated cortical network activity emerges (Arthurs & Boniface, 2002; Logothetis, 2008).

Considering this mechanism in relation to anticorrelations, we do not claim that neural inhibition directly promotes anticorrelated patterns, that is, by having networks straightly inhibiting one another (of note, most interareal connections are glutamatergic/excitatory). Nor do we claim that neural inhibition always leads to anticorrelated profiles. Rather, we suggest that neural inhibition mediates the rise of the anticorrelations indirectly, by breaking the local neural balance which affects network metastability and which eventually permits anticorrelations to appear. More particularly, current computational whole-brain models assume that distant brain regions establish connections between their corresponding excitatory neural populations (Figure 1, E-E blue solid line connectivity). The resulting local increase of excitation produces an increase of inhibition through the local E-I loop (feedback inhibition). Apart from the interareal excitatory activity, one brain region (A) can also effectively inhibit the activity of a distal brain region (B), by A targeting B’s inhibitory interneurons (Figure 1, E-I blue dashed line connectivity), which in turn, locally connect to the pyramidal cells (Figure 1, I-E red connector;
i.e., feedforward inhibition; Isaacson & Scanziani, 2011). However, little attention has been paid to this indirect long-range inhibition in modeling studies and how specifically feedforward inhibition interacts with the local excitation-inhibition (E/I) ratio. Although previous theoretical work has separately examined the effect of regulating the E/I ratio through feedback inhibition or feedforward inhibition in whole-brain models (Deco et al., 2014), a model that takes both effects into account has not been studied yet. Local heterogenous feedback inhibition, in particular, signifies that the excitability of local population activity is achieved by variably determining each region’s gain response function. Recent studies using heterogeneous and homogeneous whole-brain modeling have mechanistically shown that, besides increasing the level of fitting of the empirical data, an increase in ignition was observed (Deco et al., 2021). Based on this evidence, one could speculate that ignition is related to the presence of regional heterogeneity. Although the type of heterogeneity that is the most relevant for ignition remains open, one can nevertheless say that thanks to heterogeneity in general, ignition-like dynamics may happen (Deco et al., 2021), which are thought to support conscious experience (see next section).

Critically, it has been shown that, when feedback projections and randomization of the connectivity weights were removed, dynamic network behavior was abolished, suggesting that feedback connectivity and heterogeneity in connection strength gives rise to ignition-like activity (Joglekar et al., 2018). We here hypothesize that the generation of the anticorrelations can be a matter of both inhibitory effects (local feedback inhibition, long-range feedforward inhibition), which will eventually affect network metastability, allowing the emergence of the anticorrelations. To date, the behavior of this model remains to be theoretically studied and empirically supported.

THE ANTICORRELATIONS’ SIGNIFICANCE TO CONSCIOUSNESS

On our quest to tackle the meaning of the anticorrelations to consciousness we lean toward theoretical frameworks in order to see how they embrace the mechanism of inhibition. We
notice that especially the global neuronal workspace theory (GNWT; Dehaene et al., 2003) and the integrated information theory (IIT; Oizumi et al., 2014) are two such theories that utilize inhibition when accounting for consciousness in their models.

The GNWT describes how reportable experience happens. The theory proposes a model with various local processors that are all linked at a central executive. Its model suggests to view the local processors as specialized modular cortical areas that process specific perceptual, motor, memory, and evaluative information. The central executive (composed of widely distributed excitatory neurons) can be considered as a second computational space, which forms reciprocal connections to specific processor neurons. Based on this architecture, at any moment, a piece of information within one or several processors can be selected, amplified, and broadcasted to all other processors, thus rendering it consciously accessible and available for reporting. This global broadcasting happens thanks to ignition (Dehaene et al., 2003; Mashour et al., 2020). Ignition is characterized by the sudden, coherent, and exclusive activation of a subset of workspace neurons that codes the current conscious content, while the remainder of the workspace neurons remain inhibited. Regardless of how ignition may be triggered, simulations show that if feedforward connections are carefully balanced by local inhibitory influences, incoming stimuli elicit a stable cascade of activity characterized by a late and sudden ignition. In other words, ignition of a global neural state coding for particular conscious content leads to the active inhibition of other potential contents (as we also showed before; Vanhaudenhuyse et al., 2011).

The IIT begins the quest of consciousness by experience itself. The theory first identifies the experience’s essential properties (axioms) and then infers what kind of properties a physical system must have in order to account for these properties (postulates). The postulates specify which conditions (such as neurons and their connections) must be satisfied by physical mechanisms to account for the phenomenology of experience. To generate consciousness, a physical system must be able to discriminate among a large repertoire of states (information), and it must be doing so as a single system, therefore not decomposable into a collection of causally independent parts (integration). For integrated information to be high, a system must be connected in such a way that information is generated by causal interactions among its parts, rather than within them. In balanced states, the corticothalamic system is a fine example of a functionally integrated and specialized network, able to generate high values of integrated information peaks that are characterized by a complex spatiotemporal pattern of signal propagations in different directions (feedforward, feedback, contralateral) and with variant weights, including inhibitory. In unbalanced states, like those of low arousal, the cortical neurons are inactivated due to the neuronal bistability of their membrane potential or active inhibition, and thus cannot specify a conceptual structure. In that case, the system then collapses, leading to low values of integrated information, and hence diminished conscious experience.

If we try to link the inhibitory mechanisms described in these models with functional anticorrelations, we can observe that these promote the notion of functional segregation. In that respect, anticorrelations can be considered as an FC segregated profile, which mediates various states of consciousness. In the past, Fox et al. (2005) similarly suggested that “while correlations may serve as an integrative role in combining neuronal activity subserving similar goals or representations, anticorrelations may serve as a differentiating role segregating neuronal processes, subserving opposite goals or competing representations” (Fox et al., 2005, p. 9677). This view on segregation refers to the ability of a system to distinguish information into distinct modules that can perform specialized local computations (Shannon, 1948). This definition may slightly deviate from how graph theory considers segregation, that is, close to the notion of modularity and as a measure of the relative strength between a graph’s nodes (Sporns, 2013). In that respect,
inhibition as described in the GNWT can be viewed as the segregative processes that hinder widespread FC, leading to negative functional correlations. Similarly, differentiation as described in the IIT can be similarly considered as parallel to the processes of segregation, also expressed as anticomrelated FC.

Taken together, our view is that anticomrelations are the physiological expression of segregation, and we propose that neural inhibition is the mediating link. Our stance, of course, does not prevent other measures from being linked to unconsciousness. Indeed, low values in sample entropy (which quantifies how unpredictable a signal is; Luppi et al., 2019) or “small-worldeness” (which allows for a cost-efficient network organization; Uehara et al., 2014) are also affected in reduced consciousness. We also remain mindful of the fact that anticomrelations can still result by fMRI preprocessing steps, as described above, or from changes in the hemodynamics in some regions or even from time delays that produce phase lags. The DAN, for instance, was found to precede DMN deactivation by up to hundreds of milliseconds (Kucyi et al., 2020; Raccah et al., 2018). One possible explanation for that is that the anticomrelations are driven by sequences of spontaneous neuronal population events across the DMN and antagonistic systems that involve interregional temporal delays (Kucyi et al., 2020). The observed zero-lag anticomrelations could therefore be due to “blurring” of such delays, meaning anticomrelations could be the result of transient events that are comprised of spontaneous activations that are systematically coupled to subsequent DMN deactivations, as observed in transient coactivation patterns at rest (Karahanoğlu & Van De Ville, 2015; X. Liu & Duyn, 2013). However, this hypothesis requires further investigation. These issues keep our hypothesis about anticomrelations being a metric of consciousness in check and call for experimental and mechanistic explanations.

Collectively, we consider that FC anticomrelations are an essential ingredient for conscious mental activity and might work as another marker of preserved consciousness. We, therefore, predict that if the brain is not in a state to host the physiological prior of inhibitory activity, then most likely the individual does not entertain subjective experience. This stance opens new avenues for the understating and treatment of clinical cases of consciousness alternations by targeting anticomrelations specifically as the outcome measure, like it has been shown using neurofeedback (Bauer et al., 2020) or meditation (Bauer et al., 2019) for psychiatric disorders. We think that the introduction of yet another metric is justified by the difference this metric makes and the pragmatic issues it addresses (Demertzi et al., 2017). Hence, we align with the view that, when searching for consciousness, accumulative evidence stemming from multiple nonoverlapping assessments with different modalities needs to be applied (Seth et al., 2008)—ideally, those that receive theoretical framing in order to account for the mechanistic explanations of the metric at hand. What this view of the anticomrelations essentially offers is a link between the level of neuronal microcircuitry and the computational level, which starts gaining support when attempting to describe how consciousness happens (Changeux, 2017).

CONCLUSIONS

We suggest that the FC anticomrelations emerge thanks to local and global neural inhibitory activity, which leads to variant spatiotemporal configurations. Such rich network organization was previously shown to characterize typical conscious conditions, while simpler interregional connectivity was most frequently seen in anesthetized states and states of low reportability (Barttfeld et al., 2014; Demertzi et al., 2019; Huang et al., 2020). We eventually invite researchers to view anticomrelations as the physiological expression of segregation via neural inhibition, which can help us not only comprehend how consciousness happens, but also
conceptualize and design effective interventions for treating consciousness disorders in which anticorrelations seem particularly affected.

ACKNOWLEDGMENTS

We would like to thank Mr. Fort Larry, M.A., for proofreading the manuscript for grammar and syntax.

AUTHOR CONTRIBUTIONS

Athena Demertzi: Conceptualization; Investigation; Project administration; Resources; Writing – original draft; Writing – review & editing. Aaron Kucyi: Investigation; Resources; Validation. Adrián Ponce-Alvarez: Methodology; Validation; Visualization; Writing – review & editing. Georgios A. Keliris: Investigation; Methodology; Resources; Validation. Susan Whitfield-Gabrieli: Resources; Supervision; Validation. Gustavo Deco: Methodology; Resources; Supervision; Validation; Visualization.

FUNDING INFORMATION

Athena Demertzi, Fonds De La Recherche Scientifique - FNRS (https://dx.doi.org/10.13039/501100002661).

REFERENCES

Adhikari, M. H., Belloy, M. E., Van der Linden, A., Keliris, G. A., & Verhoye, M. (2021). Resting-state co-activation patterns as promising candidates for prediction of Alzheimer’s disease in aged mice. Frontiers in Neural Circuits, 14, 612529. https://doi.org/10.3389/fncir.2020.612529, PubMed: 33551755

Anderson, J. S., Druzgal, T. J., Lopez-Larson, M., Jeong, E. K., Desai, K., & Yurgelun-Todd, D. (2011). Network anticorrelations, global regression, and phase-shifted soft tissue correction. Human Brain Mapping, 32(6), 919–934. https://doi.org/10.1002/hbm.21079, PubMed: 20533557

Arthurs, O. J., & Boniface, S. (2002). How well do we understand the neural origins of the fMRI BOLD signal? Trends in Neurosciences, 25(1), 27–31. https://doi.org/10.1016/s0166-2236(00)01995-0, PubMed: 11801335

Barttfeld, P., Uhrig, L., Sitt, J. D., Sigman, M., Jarraya, B., & Dehaene, S. (2014). Signature of consciousness in the dynamics of resting-state brain activity. Proceedings of the National Academy of Sciences, 112(3), 887–892. https://doi.org/10.1073/pnas.1418031112, PubMed: 25561541

Bauer, C. C. C., Okano, K., Ghosh, S. S., Lee, Y. J., Melero, H., Angeles, C. d. L., Nestor, P. G., Del Re, E. C., Northoff, G., Niznikiewicz, M. A., & Whitfield-Gabrieli, S. (2020). Real-time fMRI neurofeedback reduces auditory hallucinations and modulates resting state connectivity of involved brain regions: Part 2: Default mode network-preliminary evidence. Psychiatry Research, 284, 112770. https://doi.org/10.1016/j.psychres.2020.112770, PubMed: 32004893

Bauer, C. C. C., Whitfield-Gabrieli, S., Diaz, J. L., Pasaye, E. H., & Barrios, F. A. (2019). From state-to-trait meditation: Reconfiguration of central executive and default mode networks. ENeuro, 6(6). https://doi.org/10.1523/ENEURO.0335-18.2019, PubMed: 31694816

Beaulieu, C., & Colonnier, M. (1985). A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. Journal of Comparative Neurology, 231(2), 180–189. https://doi.org/10.1002/cne.902310206, PubMed: 3968234

Belloy, M. E., Naeyaert, M., Abbas, A., Shah, D., Vanreusel, V., van Audekerke, J., Keilholz, S. D., Keliris, G. A., Van der Linden, A., & Verhoye, M. (2018a). Dynamic resting state fMRI analysis in mice reveals a set of quasi-periodic patterns and illustrates their relationship with the global signal. NeuroImage, 180(Pt B), 463–484. https://doi.org/10.1016/j.neuroimage.2018.01.075, PubMed: 29454935

Belloy, M. E., Shah, D., Abbas, A., Kashyap, A., Roßner, S., Van der Linden, A., Keilholz, S. D., Keliris, G. A., & Verhoye, M. (2018b). Quasi-periodic patterns of neural activity improve classification of Alzheimer’s disease in mice. Scientific Reports, 8(1), 10024. https://doi.org/10.1038/s41598-018-28237-9, PubMed: 29968786

Boly, M., Phillips, C., Tshibanda, L., Vanhaudenhuyse, A., Schabus, M., Dang-Vu, T. T., Moonen, G., Hustinx, R., Maquet, P., & Laureys, S. (2008). Intrinsic brain activity in altered states of consciousness: How conscious is the default mode of brain function? Annals of the New York Academy of Sciences, 1129, 119–129. https://doi.org/10.1196/annals.1417.015, PubMed: 18591474

Boveroux, P., Vanhaudenhuyse, A., Bruno, M. A., Noirhomme, Q., Lauwick, S., Luxen, A., Degueldre, C., Plenevaux, A., Schnakers,
Anticorrelations and consciousness

C., Phillips, C., Brichant, J. F., Bonhomme, V., Maquet, P., Greicius, M. D., Laureys, S., & Boly, M. (2010). Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. *Anesthesiology, 113*(5), 1038–1053. https://doi.org/10.1097/ALN.0b013e3181f97e15, PubMed: 20885292

Chai, J. X., Olen, N., Gabrieli, J. D. E., & Whitfield-Gabrieli, S. (2014). Selective development of anticorrelated networks in the intrinsic functional organization of the human brain. *Journal of Cognitive Neuroscience, 26*(3), 501–513. https://doi.org/10.1162/jocn_a_00517, PubMed: 24188367

Chang, C., & Glover, G. H. (2010). Time–frequency dynamics of resting-state brain connectivity measured with fMRI. *NeuroImage, 50*(1), 81–98. https://doi.org/10.1016/j.neuroimage.2009.12.011, PubMed: 2006716

Chang, C., Liu, Z., Chen, M. C., Liu, X., & Duyn, J. H. (2013). EEG correlates of time-varying BOLD functional connectivity. *NeuroImage, 72*, 227–236. https://doi.org/10.1016/j.neuroimage.2013.01.049, PubMed: 23376790

Changeux, J.-P. (2017). Climbing brain levels of organisation from genes to consciousness. *Trends in Cognitive Sciences, 21*(3), 168–181. https://doi.org/10.1016/j.tics.2017.01.004, PubMed: 28161289

Chow, H. M., Horovitz, S. G., Carr, W. S., Picchioni, D., Coddington, N., Fukunaga, M., Xu, Y., Balkin, T. J., Duyn, J. H., & Braun, A. R. (2013). Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. *Proceedings of the National Academy of Sciences of the United States of America, 110*(25), 10300–10305. https://doi.org/10.1073/pnas.1217691110, PubMed: 23733938

Cohen, J. R., & D’Esposito, M. (2016). The segregation and integration of distinct brain networks and their relationship to cognition. *Journal of Neuroscience, 36*(48), 12083–12094. https://doi.org/10.1523/JNEUROSCI.2965-15.2016, PubMed: 27903719

Colenbier, N., Van de Steen, F., Uddin, L. Q., Poldrack, R. A., Calhoun, V. D., & Marinnazzo, D. (2020). Disambiguating the role of blood flow and global signal with partial information decomposition. *NeuroImage, 213*, 116699. https://doi.org/10.1016/j.neuroimage.2020.116699, PubMed: 32179104

Dalitz, A. L., & Parviz, I. (2018). Spatial and temporal heterogeneity of neural responses in human posteromedial cortex. *Proceedings of the National Academy of Sciences of the United States of America, 115*(18), 4785–4790. https://doi.org/10.1073/pnas.1721711115, PubMed: 29666262

De Havas, J. A., Parimal, S., Soon, C. S., & Chee, M. W. L. (2012). Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance. *NeuroImage, 59*(2), 1745–1751. https://doi.org/10.1016/j.neuroimage.2011.08.026, PubMed: 21872664

Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O., & Kötter, R. (2009). Key role of coupling, delay, and noise in resting brain fluctuations. *Proceedings of the National Academy of Sciences of the United States of America, 106*(25), 10302–10307. https://doi.org/10.1073/pnas.0901831106, PubMed: 19497858

Deco, G., Kringlebach, M. L., Arnakveicuiate, A., Oldham, S., Sabaroodin, K., Rogasch, N. C., Aquino, K. M., & Fornito, A. (2021). Dynamical consequences of regional heterogeneity in the brain’s transcriptional landscape. *Science Advances, 7*(29), eabf4752. https://doi.org/10.1126/sciadv.abf4752, PubMed: 34261652

Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G. L., Mantini, D., & Corbetta, M. (2014). How local excitation-inhibition ratio impacts the whole brain dynamics. *Journal of Neuroscience, 34*(23), 7866–7896. https://doi.org/10.1523/JNEUROSCI.5068-13.2014, PubMed: 24899711

DeFelipe, J., & Fariñas, I. (1992). The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. *Progress in Neurobiology*, 39(6), 563–607. https://doi.org/10.1016/0301-0082(92)90015-7, PubMed: 1410442

Dehaene, S., Sergent, C., & Changeux, J.-P. (2003). A neuronal network model linking subjective reports and objective physiological data during conscious perception. *Proceedings of the National Academy of Sciences of the United States of America, 100*(14), 8520–8525. https://doi.org/10.1073/pnas.1332574100, PubMed: 12829797

Demertzi, A., Sitt, J. D., Sarasso, S., & Pinxten, W. (2017). Measuring states of pathological (un)consciousness: Research dimensions, clinical applications and ethics. *Neuroscience of Consciousness, 3*(1), 1–13. https://doi.org/10.1016/j.nco.2016.11.010, PubMed: 30042843

Demertzi, A., Soddu, A., Faymonville, M.,Bahri, M. A., Gossieres, O., Vanhaudenhuyse, A., Phillips, C., Maquet, P., Noirhomme, Q., Luxen, A., & Laureys, S. (2011). Hypnotic modulation of resting state fMRI default mode and extrinsic network connectivity. *Progress in Brain Research, 193*, 309–322. https://doi.org/10.1016/B978-0-444-53839-0.00020-X, PubMed: 21854971

Demertzi, A., Taglialozzuc, E., Dehaene, S., Deco, G., Barttfeld, P., Raimondo, F., Martial, C., Fernández-Espejo, D., Rothaut, B., Voss, H. U., Schiff, N. D., Owen, A. M., Laureys, S., Naccache, L., & Sitt, J. D. (2019). Human consciousness is supported by dynamic complex patterns of brain signal coordination. *Science Advances, 5*(2), eaat7603. https://doi.org/10.1126/sciadv.aat7603, PubMed: 30775433

Desjardins, A. E., Kiehl, K. A., & Liddle, P. F. (2001). Removal of confounding effects of global signal in functional MRI analyses. *NeuroImage, 13*(4), 751–758. https://doi.org/10.1006/nimg.2000.0719, PubMed: 11305902

Di Perri, C., Bahri, M. A., Amico, E., Thibaut, A., Heine, L., Antonopoulos, G., Charland-Verville, V., Wannese, Z., Gomez, F., Hustinx, R., Tshibanda, L., Demertzi, A., Soddu, A., & Laureys, S. (2016). Neural correlates of consciousness in patients who have emerged from a minimally conscious state: A cross-sectional multimodal imaging study. *The Lancet Neurology, 15*(6), 830–842. https://doi.org/10.1016/S1474-4422(16)00111-3, PubMed: 27131917

Elton, A., & Gao, W. (2015). Task-positive functional connectivity of the default mode network transsects task domain. *Journal of Cognitive Neuroscience, 27*(12), 2369–2381. https://doi.org/10.1162/jocn_a_00859, PubMed: 26244722

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. *Proceedings of the National Academy of Sciences of the United States of America, 102*(41), 14444–14449. https://doi.org/10.1073/pnas.0504198102, PubMed: 16178221

Greicius, M. D., Al Ö, & R. (2004). Increased resting-state functional connectivity in the default-mode network. *NeuroImage, 23*(2), 216–221. https://doi.org/10.1016/j.neuroimage.2004.02.012, PubMed: 15087734
Anticorrelations and consciousness

States of America, 102(27), 9673–9678. https://doi.org/10.1073/pnas.0504136102, PubMed: 15976020

Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101, 3270–3283. https://doi.org/10.1152/jn.90777.2008, PubMed: 19339462

Gozzi, A., & Schwarz, A. J. (2016). Large-scale functional connectivity in the rodent brain. NeuroImage, 127, 496–509. https://doi.org/10.1016/j.neuroimage.2015.12.017, PubMed: 26706448

Heine, L., Soddu, A., Gómez, F., Vanhaudenhuyse, A., Tshibanda, L., Thonnard, M., Charland-Verville, V., Kirsch, M., Laureys, S., & Demertzi, A. (2012). Resting state networks and consciousness: Alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness states. Frontiers in Psychology, 3, 295. https://doi.org/10.3389/fpsyg.2012.00295, PubMed: 22969735

Hinz, R., Peeters, L. M., Shah, D., Missault, S., Belloy, M., Vanreusel, V., Malekzadeh, M., Verhoye, M., Van der Linden, A., & Keliris, G. A. (2019). Bottom-up sensory processing can induce negative BOLD responses and reduce functional connectivity in nodes of the default mode-like network in rats. NeuroImage, 197, 167–176. https://doi.org/10.1016/j.neuroimage.2019.04.065, PubMed: 31029872

Huang, Z., Zhang, J., Wu, J., Mashour, G. A., & Hudetz, A. G. (2020). Temporal circuit of macroscale dynamic brain activity supports human consciousness. Science Advances, 6(11), eaaz0087. https://doi.org/10.1126/sciadv.aaz0087, PubMed: 32195349

Hutchison, R. M., & Everling, S. (2012). Monkey in the middle: Why non-human primates are needed to bridge the gap in resting-state investigations. Frontiers in Neuroanatomy, 6, 29. https://doi.org/10.3389/fnana.2012.00029, PubMed: 22855672

Isaacson, J. S., & Scanziani, M. (2011). How inhibition shapes cortical activity. Neuron, 72(2), 231–243. https://doi.org/10.1016/j.neuron.2011.09.027, PubMed: 22017986

Joglekar, M. R., Mejias, J. F., Yang, G. R., & Wang, X-J. (2018). Inter-areal balanced amplification enhances signal propagation in a large-scale circuit model of the primate cortex. Neuron, 98(1), 222–234. https://doi.org/10.1016/j.neuron.2018.02.031, PubMed: 29576389

Karahanoglu, F. I., & Van De Ville, D. (2015). Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks. Nature Communications, 6, 7751. https://doi.org/10.1038/ncomms8751, PubMed: 26178017

Keller, C. J., Bickel, S., Honey, C. J., Groppe, D. M., Entz, L., Craddock, R. C., Lado, F. A., Kelly, C., Milham, M., & Mehta, A. D. (2013). Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal. Journal of Neuroscience, 33(15), 6333–6342. https://doi.org/10.1523/JNEUROSCI.4837-12.2013, PubMed: 23575832

Keller, J. B., Hedden, T., Thompson, T. W., Anteraper, S. A., Gabrieli, J. D. E., & Whitfield-Gabrieli, S. (2015). Resting-state anticorrelations between medial and lateral prefrontal cortex: Association with working memory, aging, and individual differences. Cortex, 64, 271–280. https://doi.org/10.1016/j.cortex.2014.12.001, PubMed: 25562175

Kucyi, A., Daitch, A., Racci, O., Zhao, B., Zhang, C., Esterman, M., Zeineh, M., Halpern, C. H., Zhang, K., Zhang, J., & Parvizi, J. (2020). Electrophysiological dynamics of antagonistic brain networks reflect attentional fluctuations. Nature Communications, 11(1), 325. https://doi.org/10.1038/s41467-019-14166-2, PubMed: 31949140

Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M., & Valera, E. M. (2017). Dynamic brain network correlates of spontaneous fluctuations in attention. Cerebral Cortex, 27(3), 1831–1840. https://doi.org/10.1093/cercor/bhw029, PubMed: 26874182

Kucyi, A., & Parvizi, J. (2020). Pupillary dynamics link spontaneous and task-activated evolutions recorded directly from human insula. Journal of Neuroscience, 40(32), 6207–6218. https://doi.org/10.1523/JNEUROSCI.0435-20.2020, PubMed: 32631937

Li, J., Kong, R., Liégeois, R., Orban, C., Tan, Y., Sun, N., Holmes, A. J., Sabuncu, M. R., Ge, T., & Yeo, B. T. T. (2019). Global signal regression strengthens association between resting-state functional connectivity and behavior. NeuroImage, 196, 126–141. https://doi.org/10.1016/j.neuroimage.2019.04.016, PubMed: 30974241

Liu, T. T., Nalci, A., & Falahpour, M. (2017). The global signal in fMRI: Nuisance or Information? NeuroImage, 150, 213–229. https://doi.org/10.1016/j.neuroimage.2017.02.036, PubMed: 28213118

Liu, X., de Zwart, J. A., Schölvinck, M. L., Chang, C., Ye, F. Q., Leopold, D. A., & Duyn, J. H. (2018). Subcortical evidence for a contribution of arousal to fMRI studies of brain activity. Nature Communications, 9(1), 395. https://doi.org/10.1038/s41467-017-02815-3, PubMed: 29374172

Liu, X., & Duyn, J. H. (2013). Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4392–4397. https://doi.org/10.1073/pnas.1216561110, PubMed: 23440216

Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878. https://doi.org/10.1038/nature06976, PubMed: 18548064

Luppi, A. L., Craig, M. M., Pappas, I., Finoia, P., Williams, G. B., Allanson, J., Pickard, J. D., Owen, A. M., Naci, L., Menon, D. K., & Stamatakis, E. A. (2019). Consciousness-specific dynamic interactions of brain integration and functional diversity. Nature Communications, 10(1), 4616. https://doi.org/10.1038/s41467-019-12658-9, PubMed: 31601811

Manning, J. R., Jacobs, J., Fried, I., & Kahana, M. J. (2009). Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. Journal of Neuroscience, 29(43), 13613–13620. https://doi.org/10.1523/JNEUROSCI.2041-09.2009, PubMed: 19864573

Mashour, G. A., Roelfsema, P., Changeux, J.-P., & Dehaene, S. (2020). Conscious processing and the global neuronal workspace hypothesis. Neuron, 105(5), 776–798. https://doi.org/10.1016/j.neuron.2020.01.026, PubMed: 32135090

Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? NeuroImage, 44(3), 893–905. https://doi.org/10.1016/j.neuroimage.2008.09.036, PubMed: 18976716

Network Neuroscience 1007
Anticorrelations and consciousness

Murphy, K., & Fox, M. D. (2017). Towards a consensus regarding global signal regression for resting state functional connectivity MRI. *NeuroImage*, 154, 169–173. https://doi.org/10.1016/j.neuroimage.2016.07.052, PubMed: 27888059

Nir, T., Jacob, Y., Huang, K.-H., Schwartz, A. E., Brallier, J. W., Ahn, H., Kundu, P., Tang, C. Y., Delman, B. N., McCormick, P. J., Sano, M., Deiner, S., Baxter, M. G., & Minc, J. S. (2020). Resting-state functional connectivity in early postanaesthesia recovery is characterised by globally reduced anticorrelations. *British Journal of Anaesthesia*, 125(4), 529–538. https://doi.org/10.1016/j.bja.2020.06.058, PubMed: 32800503

Oizumi, M., Albantakis, L., & Tononi, G. (2014). From the phenomenology to the mechanisms of consciousness: Integrated information theory 3.0. *PloS Computational Biology*, 10(5), e1003588. https://doi.org/10.1371/journal.pcbi.1003588, PubMed: 24811198

Ossandón, T., Jerbi, K., Vidal, J. R., Bayle, D. J., Henaff, M.-A., Jung, J., Minotti, L., Bertrand, O., Kahane, P., & Lachaux, J.-P. (2011). Transient suppression of broadband gamma power in the default-mode network is correlated with task complexity and subject performance. *Journal of Neuroscience*, 31(41), 14521–14530. https://doi.org/10.1523/JNEUROSCI.2483-11.2011, PubMed: 21994368

Peeters, L. M., van den Berg, M., Hinz, R., Majumdar, G., Pintelon, I., & Kellis, G. A. (2020). Cholinergic modulation of the default-mode like network in rats. *iScience*, 23(9), 101455. https://doi.org/10.1016/j.isci.2020.101455, PubMed: 32846343

Popa, D., Popescu, A. T., & Paré, D. (2009). Contrasting activity profile of two distributed cortical networks as a function of attentional demands. *Journal of Neuroscience*, 29(4), 1191–1201. https://doi.org/10.1523/JNEUROSCI.4867-08.2009, PubMed: 19176827

Power, J. D., Plitt, M., Laumann, T. O., & Martin, A. (2017). Sources and implications of whole-brain fMRI signals in humans. *NeuroImage*, 146, 609–625. https://doi.org/10.1016/j.neuroimage.2016.09.038, PubMed: 27751941

Raccah, O., Daitch, A. L., Kucyi, A., & Parvizi, J. (2018). Direct cortical recordings suggest temporal order of task-evoked responses in human dorsal attention and default networks. *Journal of Neuroscience*, 38(48), 10305–10313. https://doi.org/10.1523/JNEUROSCI.0079-18.2018, PubMed: 30315126

Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. *Annual Review of Neuroscience*, 29(1), 449–476. https://doi.org/10.1146/annurev.neuro.29.051605.112819, PubMed: 16776593

Ramot, M., Fisch, L., Harel, M., Kipervasser, S., Andelman, F., Neufeld, M. Y., Kramer, U., Fried, I., & Malach, R. (2012). A widely distributed spectral signature of task-negative electrocorticography responses revealed during a visuomotor task in the human cortex. *Journal of Neuroscience*, 32(31), 10458–10469. https://doi.org/10.1523/JNEUROSCI.0877-12.2012, PubMed: 22855795

Scannell, J. W., & Young, M. P. (1999). Neuronal population activity and functional imaging. *Proceedings of the Royal Society B: Biological Sciences*, 266(1422), 875–881. https://doi.org/10.1098/rspb.1999.0718, PubMed: 10380677

Schölvinkel, M. L., Maier, A., Ye, F. Q., Duyn, J. H., & Leopold, D. A. (2010). Neural basis of global resting-state fMRI activity. *Proceedings of the National Academy of Sciences of the United States of America*, 107(22), 10238–10243. https://doi.org/10.1073/pnas.0913110107, PubMed: 20439733

Seth, A. K., Dienes, Z., Cleeremans, A., Overgaard, M., & Pessoa, L. (2008). Measuring consciousness: Relating behavioural and neurophysiological approaches. *Trends in Cognitive Sciences*, 12(8), 314–321. https://doi.org/10.1016/j.tics.2008.04.008, PubMed: 18606562

Shannon, C. E. (1948). A mathematical theory of communication. *Bell System Technical Journal*, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Shine, J. M., Bissett, P. G., Bell, P. T., Koyejo, O., Balsters, J. H., Gorgolewski, K. J., Moodie, C. A., & Poldrack, R. A. (2016). The dynamics of functional brain networks: Integrated network states during cognitive task performance. *Neuron*, 92(2), 544–554. https://doi.org/10.1016/j.neuron.2016.09.018, PubMed: 27693256

Sporns, O. (2013). Network attributes for segregation and integration in the human brain. *Current Opinion in Neurobiology*, 23(2), 162–171. https://doi.org/10.1016/j.conb.2012.11.015, PubMed: 23294553

Spreng, R. N. (2012). The fallacy of a “task-negative” network. *Frontiers in Psychology*, 3, 145. https://doi.org/10.3389/fpsyg.2012.00145, PubMed: 22593750

Spreng, R. N., DuPre, E., Selarka, D., Garcia, J., Gogokvic, S., Mildner, J., Luh, W.-M., & Turner, G. R. (2014). Goal-congruent default network activity facilitates cognitive control. *Journal of Neuroscience*, 34(42), 14108–14114. https://doi.org/10.1523/JNEUROSCI.2815-14.2014, PubMed: 25319706

Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. *NeuroImage*, 53(1), 303–317. https://doi.org/10.1016/j.neuroimage.2010.06.016, PubMed: 20600998

Sripada, C. S., Kessler, D., & Angstadt, M. (2014). Lag in maturation of the brain’s intrinsic functional architecture in attention-deficit/ hyperactivity disorder. *Proceedings of the National Academy of Sciences of the United States of America*, 111(39), 14259–14264. https://doi.org/10.1073/pnas.1407787111, PubMed: 25225387

Swanson, O. K., & Maffei, A. (2019). From hiring to firing: Activation of inhibitory neurons and their recruitment in behavior. *Frontiers in Molecular Neuroscience*, 12, 168. https://doi.org/10.3389/fnmol.2019.00168, PubMed: 31333413

Szabó, D., Czelbert, K., Kettinger, Á., Gácsi, M., Andics, A., Miklós, Á., & Kubinyi, E. (2019). Resting-state fMRI data of awake dogs (Canis familiaris) via group-level independent component analysis reveal multiple, spatially distributed resting-state networks. *Scientific Reports*, 9(1), 15270. https://doi.org/10.1038/s41598-019-15722-2, PubMed: 31649271

Threkelde, Z. D., Bodien, Y. G., Rosenthal, E. S., Giacino, J. T., Nieto-Castanon, A., Wu, O., Whittlefield-Gabrieli, S., & Edlow, B. L. (2018). Functional networks reemerge during recovery of consciousness after acute severe traumatic brain injury. *Cortex*, 106, 299–308. https://doi.org/10.1016/j.cortex.2018.05.004, PubMed: 29871771

Uddin, L. Q. (2017). Mixed signals: On separating brain signal from noise. *Trends in Cognitive Sciences*, 21(6), 405–406. https://doi.org/10.1016/j.tics.2017.04.002, PubMed: 28461113
Uehara, T., Yamasaki, T., Okamoto, T., Koike, T., Kan, S., Miyauchi, S., Kira, J.-I., & Tobimatsu, S. (2014). Efficiency of a “small-world” brain network depends on consciousness level: A resting-state fMRI study. *Cerebral Cortex, 24*(6), 1529–1539. https://doi.org/10.1093/cercor/bht004, PubMed: 23349223

Vanhaudenhuyse, A., Demertzi, A., Schabus, M., Noirhomme, Q., Bredart, S., Boly, M., Phillips, C., Soddu, A., Luxen, A., Moonen, G., & Laureys, S. (2011). Two distinct neuronal networks mediate the awareness of environment and of self. *Journal of Cognitive Neuroscience, 23*(3), 570–578. https://doi.org/10.1162/jocn.2010.21488, PubMed: 20515407

Wen, H., & Liu, Z. (2016). Broadband electrophysiological dynamics contribute to global resting-State fMRI signal. *Journal of Neuroscience, 36*(22), 6030–6040. https://doi.org/10.1523/JNEUROSCI.0187-16.2016, PubMed: 27251624

Wong, C. W., Olafsson, V., Tal, O., & Liu, T. T. (2013). The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures. *NeuroImage, 83*, 983–990. https://doi.org/10.1016/j.neuroimage.2013.07.057, PubMed: 23899724

Yeo, B. T. T., Tandi, J., & Chee, M. W. L. (2015). Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation. *NeuroImage, 111*, 147–158. https://doi.org/10.1016/j.neuroimage.2015.02.018, PubMed: 25700949

Zhang, J., Kucyi, A., Raya, J., Nielsen, A. N., Nomi, J. S., Damoiseaux, J. S., Greene, D. J., Horovitz, S. G., Uddin, L. Q., & Whitfield-Gabrieli, S. (2021). What have we really learned from functional connectivity in clinical populations? *NeuroImage, 242*, 118466. https://doi.org/10.1016/j.neuroimage.2021.118466, PubMed: 34389443

Zhu, D. C., Tarumi, T., Khan, M. A., & Zhang, R. (2015). Vascular coupling in resting-state fMRI: Evidence from multiple modalities. *Journal of Cerebral Blood Flow & Metabolism, 35*(12), 1910–1920. https://doi.org/10.1038/jcbfm.2015.166, PubMed: 26174326