Multi-shell gold nanowires under compression

G. Bilalbegović

Department of Physics, University of Rijeka, Omladinska 14, 51000 Rijeka, Croatia
(to be published in J. Phys: Condens. Matter)

Abstract

Deformation properties of multi-wall gold nanowires under compressive loading are studied. Nanowires are simulated using a realistic many-body potential. Simulations start from cylindrical fcc (111) structures at $T = 0$ K. After annealing cycles axial compression is applied on multi-shell nanowires for a number of radii and lengths at $T = 300$ K. Several types of deformation are found, such as large buckling distortions and progressive crushing. Compressed nanowires are found to recover their initial lengths and radii even after severe structural deformations. However, in contrast to carbon nanotubes irreversible local atomic rearrangements occur even under small compressions.

I. INTRODUCTION

Carbon nanotubes are the subject of intensive research last several years\cite{1}. Their electrical and thermal conductivity, as well as mechanical properties are of great scientific and technological interest. Depending on the diameter and the helicity carbon nanotubes can be either metallic or semiconducting, and exhibit quantum wire properties. Therefore, they are important for nanoelectronic devices. Promising applications of carbon nanotubes are also based on their extraordinary mechanical properties. Investigations have shown that carbon nanotubes are among strongest materials\cite{1}. The effects of deformations and various defects are studied for single-wall and multi-wall tubes, as well as for ropes composed of carbon nanotubes\cite{2,3}. It was found that very distorted carbon nanotubes return to their original form when loading is released. As a consequence, carbon nanotubes are useful in applications, such as high-strength fibers, components of composite materials and tips in scanning-probe microscopy\cite{4,5}.

The property of carbon nanotubes to deform elastically is in part the outcome of the strength and rigidity of the graphitic bond. The cylindrical structure of nanotubes increases their elasticity and strength. It is important to investigate mechanical properties for cylindrical nanostructures made of other materials where a different type of bonding exists. These investigations may shed light onto the choice of optimal materials and structures for elements in nanomechanical devices. Metallic wires are important for applications. For example, gold wires are already used as interconnections in the chips. The miniaturization of electronic and mechanical devices requires investigations of very small wires whose diameters and lengths are in the range from 1 nm to 10 nm. Recently a technique for fabrication of
metallic nanowires with diameters down to $d = 3$ nm was invented \[7\]. This method is based on the thickness resolution of molecular-beam epitaxy and formation of extremely precise templates for metal deposition. The mechanical properties of metallic nanowires till now were investigated because of the experiments dealing with the contact between two pieces of metal. For example, metallic nanobridges were obtained in Scanning Tunneling Microscopy (STM) experiments \[8\], mechanically controllable break-junctions \[4\], and macroscopic table top metallic contacts \[11\]. In this context the stability of tip-suspended nanowires, their behavior under tensile strain, fracture properties, and conductance were investigated by Molecular Dynamics (MD) simulations and density functional theory calculations \[11–24\]. Mechanical properties of metallic nanocontacts under compressive strain are less studied \[13,14,18\]. However, compression of free single-wall carbon nanotubes was investigated by MD simulations \[3–6\].

Multi-shell structures were obtained in MD simulations of finite and infinite gold nanowires \[22–27\]. Finite nanowires with radii around a nanometer and of a length/diameter ratio between 1 and 3 were studied \[25,26\]. Cylindrical multi-shell structures were found for a length/diameter ratio between 2 and 3. Structures and melting of infinite gold nanowires with radii around a nanometer and an initial orientation along the (111), (110), and (100) directions were also investigated \[27\]. The results have shown that a formation of cylindrical shells is the most pronounced for an initial fcc (111) orientation. Similar gold nanostructures were found in experiments \[28–30\]. These studies are enabled by recent advances in microscopic techniques which now produce images of atomic scale resolution. Gold nanostructures were prepared by contacting a gold substrate with a STM tip, and they were simultaneously imaged using an ultrahigh-vacuum electron microscope \[28,30\]. The conductance of these gold nanostructures was measured during retraction of the STM tip. It was found that the conductance is quantized in units of $2e^2/h$, where e is the electron charge and h is the Planck’s constant \[28,30\]. Stable and regular strands of gold atoms that are from one nanometer to several nanometers in length were observed. The diameters of these wires were around one nanometer. In MD simulations of Pb and Al ultrathin infinite wires at $T = 0$ K several exotic structures were found, for example icosahedral and helical forms \[31\]. Similar simulation has been carried out for gold nanowires \[24\]. Aluminum and copper infinite nanowires were also simulated at the room temperature and multi-shell and filled structures were obtained \[32\]. Recently Zach and coworkers have developed a method for producing metallic wires with diameters ranging from 15 nanometers to 1.0 micrometers and lengths of up to half a millimeter \[33\]. They were using the graphite substrate as a template for growing molybdenum wires. The mechanical strength of these nanowires was tested and it was found that they were able sometimes to bend at 90 degrees without breaking. In this work a MD simulation study of free multi-shell gold nanowires under axial compression at $T = 300$ K is presented. Our results show that these gold nanostructures are able to sustain very large values of the strain and recover initial radii and lengths even after severe deformations. In the following the interatomic potential, the wires preparation method, and simulation details are described in Sec. II. Results and discussion are presented in Sec. III. A summary and conclusions are given in Sec. IV.
II. COMPUTATIONAL METHOD

The interaction between gold atoms was modeled by the well-tested embedded-atom potential [34]. It is known that embedded-atom potentials provide a satisfactory description of metallic bonding in the bulk, for surfaces, and nanoparticles [35]. In comparison with pair interactions, such as the Lennard-Jones and Morse potentials, the embedded-atom model takes an account of many-body effects in metals. The particular realization of the embedded-atom potential used here, the so-called glue model, has been shown to accurately reproduce experimental values for a wide range of physical properties of gold [34]. The classical MD simulation method was carried out. The equations of motion were integrated using a time step of \(\Delta t = 7.14 \times 10^{-15} \) s. In all simulations presented in this work the temperature control was realized through velocity rescaling of all active atoms.

It is known that bulk gold crystallizes in a face-centered cubic lattice. Initially, for nanowires at \(T = 0 \) K, atoms were arranged in an fcc structure with the (111) direction parallel to the axis of the wire. The prepared nanowires were approximately cylindrical in cross-sections. All atoms further than a chosen value of the radius from the nanowire axis were removed. Several nanowires with the length \(L_0 \) between 4 nm and 12 nm, the number of atoms between 540 and 2067, and the radius \(R_0 \) between 0.5 nm and 1.2 nm were investigated. All wires were first relaxed at \(T = 0 \) K. Then samples were heated to 1000 K. This was followed by a quench to \(T = 0 \) K, and heating to \(T = 300 \) K. In previous simulations, where structural and vibrational properties of finite gold nanowires were investigated, MD boxes in the annealing cycles were heated to 600 K [25,26]. However, it was found here that even finite nanowires are robust, and preserve their cylindrical structures when heated up to \(\sim 0.75 \) of the bulk melting temperature. Properties of nanowires under compression were investigated after evolution of \(10^5 \) time steps at \(T = 300 \) K. As in previous simulations for finite [25,26] and infinite gold nanowires [27], after a preparation procedure stable multi-shell cylindrical structures were obtained. In comparison with previous simulations of finite gold nanowires, a higher annealing temperature applied here produces more regular multi-shell structures. After equilibration, as in simulations of single-wall carbon nanotubes [3,4], the edge rings were fixed, and then compressive axial loading was applied. These simulations under compression most often were taken out to \(2 \times 10^4 \) time steps. It was checked that typical deformation patterns formed during this time did not change up to \(10^5 \) time steps.

III. RESULTS AND DISCUSSION

Several structures of multi-shell wires at 300 K and before compression was applied are presented in Fig. 1. Figure 1(a) shows a three-shell structure with the central core. This type of the multi-shell configuration with a single central strand of gold atoms forms most often. A nanowire with the smallest investigated radius forms a two-wall structure with a large empty core shown in Fig. 1(b). The core of two strands of atoms, as in the four-wall structure shown in Fig. 1(c), was also obtained.

Short and narrow nanowires (e.g., \(R_0 = 0.9 \) nm, \(L_0 = 4 \) nm) under compression exhibit only one morphological pattern. They progressively shorten when compression increases, but remain straight. As an exception, long and extremely narrow nanowires (e.g., \(R_0 = 0.5 \) nm, \(L_0 = 12 \) nm) under compression often crush into irregular ellipsoidal morphologies. Thicker
short nanowires (e.g., \(R_0 = 1.2 \) nm, \(L_0 = 8 \) nm) show three morphological patterns. For small compressions these nanowires deform by rippling. However, rippling is less pronounced than in single-wall carbon nanotubes [3], and only isolated ripples appear. At 16 GPa of the stress one end of the nanowire deforms more than the other. Such a deformation is shown in Fig. 2. For larger stress (\(\geq 32 \) GPa) these nanowires also deform by crushing, flatten and preserve their cylindrical shapes. Nanowires return to the configuration with approximately initial \(R_0 \) and \(L_0 \) when compression is released. The outer cylindrical surface of those straight wires is more rough than in initial ones.

The most interesting behavior exhibit long and narrow nanowires [e.g., \(R_0 = 0.9 \) nm, \(L_0 = 12 \) nm, shown in Fig. 3(a)]. These slender nanowires under compression buckle and sometimes exhibit largely distorted configurations. Figure 3(b) shows deformation of the nanowire in Fig. 3(a) at 4.81 GPa of the stress. The structure formed in this sideways deformation is almost symmetric. Figure 4(a) shows a configuration of the same nanowire at 6.41 GPa of the stress. Although, deformed substantially [Fig. 4(a)], this structure immediately straightens [Fig. 4(b)] when compression is released. This structural change already takes place within 7 ps of a time evolution after loading is released. The resulting configuration (shown in Fig. 4(b) after 35 ps, i.e., \(5 \times 10^3 \) time steps) is less regular than initial nanowire, but has the same average radius and length. In further simulations at the same temperature this nanowire does not change substantially up to 0.7 ns. The same stress of 6.41 GPa applied on the structure shown in Fig. 4(b) produces a buckled morphology similar to one shown in Fig. 4(a). When loading is released in this repeated compression, a nanowire again returns to the straight form similar to one shown in Fig. 4(b). Large buckling deformations [as shown in Figs. 3(b) and 4(a)] exist for average compressions. For the highest values of the stress slender nanowires deform by crushing and flattening, and remain straight.

These simulations show that a multi-shell structure disappears under compression. The density plots in Fig. 5 illustrate the changes in a multi-shell structure under compression. For the stress of 3.2 GPa the shell structure is still present [Fig. 5(b)], whereas at 4.81 GPa the shells are much less pronounced [Fig. 5(c)]. The shell structure is almost absent at 6.41 GPa [Fig. 5(d)]. When compression is released nanowires straighten, but their internal multi-shell structure only partially recovers in the simulation of \(2 \times 10^4 \) time steps. Disordering of a multi-shell structure is more pronounced in longer nanowires and for a higher applied stress. As in initial annealing cycles, it is possible to improve this partially ordered multi-shell structure by heating. In multi-shell gold nanowires atomic rearrangements occur for the smallest applied stress. In contrast, carbon nanotubes up to certain values of stress are in the elastic regime. There virtually no defects are found after compressive loading is released [3, 6]. Beyond the elastic regime carbon nanotubes deform plastically. In the plastic regime, as here for gold nanowires, compressed carbon nanotubes recover from severe structural deformations, but local atomic rearrangements exist.

A plot of the stress vs. the strain for several nanowires is presented in Fig. 6. All shells of multi-wall nanowires are stressed and it is assumed that the axial strain and stress are uniformly distributed over the cross section. Therefore, in calculation of the stress the whole cross-sectional area of the nanowire is used. These results show that multi-shell gold nanowires are able to sustain a large compressive stress. Multi-shell gold nanowires at large compressions behave in similar way as ropes of single-wall carbon nanotubes under pressure.
These ropes of nanotubes act as a mechanical energy storage. This was attributed to crushing and flattening of the tube cross section. A flattening along the wire axis was found in this simulation for gold nanowires. Those morphological patterns correspond to the vertical portions of the curves in Fig. 6. Therefore, because of the property to recover their shapes even for large values of the strain, multi-shell gold nanowires also act as a mechanical energy storage. Although the chemical bonding in carbon nanotubes and gold nanowires is different, the packing effects at nanometre length scales are also important. Regular axially symmetrical distribution of carbon nanotubes in ropes and cylindrical gold shells in nanowires enable them to store a mechanical energy.

IV. CONCLUSIONS

Molecular dynamics simulation was carried out to study deformations of multi-shell gold nanowires under axial compressive loading at $T = 300$ K. This simulation is based on a well-tested embedded-atom potential. It was found that multi-shell nanowires are able to sustain large values of the compressive strain. The most interesting behavior show long and narrow nanowires where large buckling distortions without a failure are possible when axial compression is applied and then released. The property of carbon nanotubes to recover without a damage after large deformations was explained as a consequence of the carbon bonding in the graphite layer and the cylindrical structure of the tube. The simulation presented here shows that multi-shell gold nanowires after large deformations recover their cylindrical forms, as well as initial radii and lengths. A similar result (i.e., that large bending deformations without breaking are possible) was recently obtained experimentally for molybdenum nanowires [33]. In contrast to carbon nanotubes, because of different type of chemical bonding in gold, atomic rearrangements occur even under small compressions. As a result, defects and local structural changes are always present in gold nanowires when loading is released. The property of multi-shell gold nanowires to store a mechanical energy is useful for applications. Mechanical properties of various metallic nanowires deserve further experimental and theoretical investigations.

ACKNOWLEDGMENTS

This work has been carried under the HR-MZT project 119206 “Dynamical Properties of Surfaces and Nanostructures” and the EC Research Action COST P3 “Simulation of Physical Phenomena in Technological Applications”.

5
REFERENCES

[1] P. L. McEuen, Phys. World 13, 31 (2000); C. Schönenberger and L. Forro, ibid 13, 37 (2000); H. Dai, ibid 13, 43 (2000); W. A. de Heer and R. Martell, ibid 13, 49 (2000).
[2] B. I. Yakobson and Ph. Avouris, Carbon Nanotubes, ed. M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Berlin, Springer), p. 287 (2001).
[3] B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996).
[4] C. F. Cornwell and L. T. Wille, Solid State Commun. 101, 555 (1997).
[5] D. Srivastava, M. Menon, and K. Cho, Phys. Rev. Lett. 83, 2973 (1999).
[6] T. Ozaki, Y. Iwasa, and T. Mitani, Phys. Rev. Lett. 84, 1712 (2000).
[7] D. Natelson, R. L. Willet, K. W. West, and L. N. Pfeiffer, Appl. Phys. Lett. 77, 1991 (2000).
[8] J. I. Pascual, J. Mendez, J. Gomez-Herrero, A. M. Baro, N. Garcia, and V. T. Binh, Phys. Rev. Lett. 71, 1852 (1993).
[9] C. J. Muller, J. M. van Ruitenbeek, and L. J. de Jongh, Physica C 191, 485 (1992).
[10] J. L. Costa-Krämer, N. Garcia, P. Garcia-Mochales, and P. A. Serena, Surf. Sci. 342, L1144 (1995).
[11] M. Brandbyge, J. Shiøtz, M. R. Sørensen, P. Stoltze, K. W. Jacobsen, J. K. Nørskov, L. Olsen, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Phys. Rev. B 52, 8499 (1995).
[12] A. M. Bratkovsky, A. P. Sutton, and T. N. Todorov, Phys. Rev. B 52, 5036 (1995).
[13] J. A. Torres and J. J. Saenz, Phys. Rev. Lett. 77, 2245 (1996).
[14] U. Landman, W. D. Luedtke, B. E. Salisbury, and R. L. Whetten, Phys. Rev. Lett. 77, 1362 (1996).
[15] R. N. Barnett and U. Landman, Nature 387, 788 (1997).
[16] H. Mehrez and S. Ciraci, Phys. Rev. B 56, 12632 (1997).
[17] G. M. Finbow, R. M. Lynden-Bell, and I. R. McDonald, Molecular Phys. 92, 705 (1997).
[18] H. Hääkkinen and M. Manninen, Europhys. Lett. 44, 80 (1998).
[19] G. Taraschi, J. L. Mozos, C. C. Wang, H. Guo, and J. Wang, Phys. Rev. B 58, 13138 (1998).
[20] A. Nakamura, M. Brandbyge, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. Lett. 82, 1538 (1999).
[21] H. Ikeda, Y. Qi, T. Cagin, K. Samwer, W. L. Johnson, and W. A. Goddard, Phys. Rev. Lett. 82, 2900 (1999).
[22] P. S. Branicio and J. P. Rino, Phys. Rev. B. 62, 16950 (2000).
[23] E. Tosatti, S. Prestipino, S. Kostlmeier, A. DalCorso, and F. D. Di Tolla, Science 291, 288 (2001).
[24] B. Wang, S. Yin, G. Wang, A. Buldum, and J. Zhao, Phys. Rev. Lett. 86, 2046 (2001).
[25] G. Bilalbegović, Phys. Rev. B 58, 15412 (1998).
[26] G. Bilalbegović, Mol. Simulation 24, 87 (2000).
[27] G. Bilalbegović, Solid State Commun. 115, 73 (2000).
[28] H. Ohnishi, Y. Kondo, and K. Takayanagi, Nature 395, 781 (1998); Y. Kondo and K. Takayanagi, Science 289, 606 (2000).
[29] A. I. Yanson, G. Rubio Bollinger, H. E. van den Brom, N. Agrait, and J. M. van Ruitenbeek, Nature 395, 783 (1998).
[30] V. Rodrigues, T. Fuhrer, and D. Ugarte, Phys. Rev. Lett. 85, 4124 (2000).
[31] O. Gulseren, F. Ercolessi, and E. Tosatti, Phys. Rev. Lett. 80, 3775 (1998).
[32] G. Bilalbegović, Comput. Mater. Sci. 18, 333 (2000).
[33] M. Zach, K. Ng, and R. Penner, Science 290, 2120 (2000).
[34] F. Ercolessi, M. Parrinello, and E. Tosatti, Philos. Mag. A 58, 213 (1988).
[35] M. S. Daw, S. M. Foiles, and M. I. Baskes, Mater. Sci. Rep. 9, 251 (1993).
[36] S. A. Chesnokov, V. A. Nalimova, A. G. Rinzler, R. E. Smalley, and J. E. Fisher, Phys. Rev. Lett. 82, 343 (1999).
FIGURES

FIG. 1. Top view of initial uncompressed multi-shell nanowires: (a) $R_0 = 0.9$ nm, $L_0 = 12$ nm, (b) $R_0 = 0.5$ nm, $L_0 = 12$ nm, (c) $R_0 = 1.2$ nm, $L_0 = 8.0$ nm. The trajectory plots refer to a time span of ~ 7 ps, and include all atoms in the slice of the thickness of 4 nm along the wire axis.

FIG. 2. Deformation of a nanowire with $R_0 = 1.2$ nm and $L_0 = 8$ nm, at the stress of 19.23 GPa.

FIG. 3. Nanowire with $R_0 = 0.9$ nm and $L_0 = 12$ nm: (a) uncompressed configuration [a top view of the same nanowire is shown in Fig. 1(a)], (b) deformation of this nanowire at the stress of 4.81 GPa.

FIG. 4. Structural changes in a nanowire shown in Fig. 3(a) and Fig. 1(a): (a) nanowire deformed at the stress of 6.41 GPa, (b) the same nanowire simulated after compression [producing a configuration shown in Fig. 4(a)] is released.

FIG. 5. The radial density plots for a nanowire with $R_0 = 0.9$ nm, $L_0 = 12$ nm, at the stress of: (a) 0 GPa, (b) 3.2 GPa, (c) 4.81 GPa, (d) 6.41 GPa.

FIG. 6. Stress versus strain curves: (a) $R_0 = 0.9$ nm, $L_0 = 4$ nm, (b) $R_0 = 0.9$ nm, $L_0 = 8$ nm, (c) $R_0 = 0.9$ nm, $L_0 = 12$ nm, (d) $R_0 = 1.2$ nm, $L_0 = 8$ nm.
This figure "Fig1.gif" is available in "gif" format from:

http://arxiv.org/ps/cond-mat/0110087v1
Fig. 4
Fig. 5
Fig. 6