Integrated Analysis of COX-2 and iNOS Derived Inflammatory Mediators in LPS-Stimulated RAW Macrophages Pre-Exposed to *Echium plantagineum* L. Bee Pollen Extract

Eduarda Moita¹, Angel Gil-Izquierdo²*, Carla Sousa¹, Federico Ferreres², Luís R. Silva¹, Patrícia Valentão¹, Raúl Domínguez-Perles², Nieves Baenas², Paula B. Andrade¹*

¹ Rede de Química e Tecnologia (REQUIMTE)/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal, ² Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain

Abstract

Oxidative stress and inflammation play important roles in disease development. This study intended to evaluate the anti-inflammatory and antioxidant potential of *Echium plantagineum* L. bee pollen to support its claimed health beneficial effects. The hydromethanol extract efficiently scavenged nitric oxide (NO) although against superoxide (O$_2^-$) it behaved as antioxidant at lower concentrations and as pro-oxidant at higher concentrations. The anti-inflammatory potential was evaluated in LPS-stimulated macrophages. The levels of NO and L-citrulline decreased for all extract concentrations tested, while the levels of prostaglandins, their metabolites and isoprostanes, evaluated by UPLC-MS, decreased with low extract concentrations. So, *E. plantagineum* bee pollen extract can exert anti-inflammatory activity by reducing NO and prostaglandins. The extract is able to scavenge the reactive species NO and O$_2^-$ and reduce markers of oxidative stress in cells at low concentrations.

Introduction

Bee pollen, used as a dietary supplement, is promoted as a health food with a wide range of nutritional and therapeutic properties. *Echium plantagineum* L., native to southern Europe, is known by its characteristic flower with a purple corolla and two protruding stamens and one stigma, thus being commonly known as purple viper’s bugloss (Figure 1). This species is visited by bees especially at the end of the floral period and dark blue bee pollen pellets (Figure 1) are then collected and commercialized [1]. Furthermore, pollen from *Echium* species is commonly found in honeys [2].

From a nutritional point of view, pollen is a good source of proteins and essential amino acids. The total amino acids content in *E. plantagineum* pollen can reach 32% [3]. Other metabolites previously described in *E. plantagineum* are phenolic compounds [1,4].

Phenolic compounds are thought to be the active ingredients in many dietary plants and traditional medicines used for the treatment of disorders related to oxidative stress and inflammation [5]. There is increasing evidence that phenolic compounds present in natural foods may reduce the risk of chronic diseases, such as cancer, inflammation, cardiovascular and neurodegenerative disorders [6].

Although the inflammatory response is a defence mechanism against infection or injury, sustained inflammation is a pathological condition. Over-expression of several pro-inflammatory enzymes and reactive species, like superoxide (O$_2^-$) and nitric oxide (NO) radicals, are produced during inflammation [7]. NO is generated from oxygen and L-arginine by inducible nitric oxide synthase (iNOS), this enzyme being up-regulated during the inflammatory process [8].

Other important mediators over-expressed during inflammation are prostaglandins (PGs). PGs are bioactive signalling molecules derived from cyclooxygenase (COX) and subsequent PG synthase activity on arachidonic acid. Like iNOS, COX-2 is highly up-regulated in response to infection, atherosclerosis and a number of cancers [9]. It plays a pivotal role in the mediation of inflammation, and catalyzes the rate-limiting step in prostaglandin biosynthesis. PG synthases can form important signalling molecules, including PGIL, thromboxane A$_2$, PGE$_2$, PGD$_2$ and PGF$_{2\alpha}$ [10]. Thus, inhibiting the activity or expression of these enzymes might be important for cancer and inflammation chemoprevention.

The up-regulation of iNOS and COX-2 during inflammation is controlled by the pro-inflammatory transcription factor NF-κB. Flavonoids that inhibit the induction of this factor are regarded as interesting tools for inflammation control [11,12].
Besides PGs, isoprostanes (IsoPs), resulting from the free radical-catalyzed peroxidation of arachidonic acid in a COX independent mechanism, exert potent biological activities. They are seen as oxidative stress markers and potentially mediate some of the adverse effects of oxidant injury [13].

Eicosanoids (PGs and IsoPs) determination is currently performed by enzyme-linked immunosorbent assays, but UPLC-MS is more suitable for the simultaneous analysis of multiple eicosanoids that can be involved in inflammatory processes or are markers of oxidative stress. This metabolic approach can successfully be used to determine bioactive molecules that are produced in these complex biological processes [14].

The aim of this study was to assess the anti-inflammatory and antioxidative potential of E. plantagineum bee pollen. A hydroethanolic extract was chosen since it is known to be rich in non-coloured flavonoids [4]. Besides, plants contain a complex mixture of compounds that can act in concert to exert a specific bioactivity, more effectively than individual compounds [15].

As far as we know, it is the first time that E. plantagineum bee pollen is studied regarding these biological activities.

Materials and Methods

Standards and reagents

Lipopolysaccharide (LPS) from Salmonella enterica and quercetin-3-O-rutinoside were from Sigma-Aldrich (St. Louis, MO, USA) and kaempferol-3-O-rutinoside and kaempferol-3-O-glucoside from Extrasynthese (Genay, France). Dulbecco’s Phosphate Buffered Saline (DPBS), DMEM + GlutaMAX™ I, heat inactivated foetal bovine serum (FBS) and Pen Strep solution (Penicillin G, 9,11-dideoxy-9,11-dehydro-thromboxane B2-d4 were from Cayman Chemicals (Ann Arbor, Michigan, USA). 9,11-dideoxy-9,11-dehydro-thromboxane B2, 8-iso-PGF2α, 2,3-dinor-11β-PGF2α, 11β-PGF2α, 2,3-dinor-11β-PGF2α, tetrano-PGEM, tetrox-PGAM, 20-hydroxy-PGE2, 6-keto-PGF1α, 11β-epoxymethano-PGF2α, 11β-dideoxy-9α,11β-epoxymethano-PGF2α (U-44069), 11β-dideoxy-9α,11β-methanoepoxy-PGF2α (U-46619), 11-dehydrobromobuxane B2, 8-iso-PGF2α, 2,3-dinor-8-iso-PGF2α, 8-iso-15(R)-PGF2α, 8-iso-15-keto-PGF2α, 8-isoprostaglandin F2α-d4 and 11-dehydrobromobuxane B2-d4 were from Cayman Chemicals (Ann Arbor, Michigan, USA).

Sampling

Echium plantagineum L. bee pollen sample was provided by beekeepers in Extremadura Spanish region. The botanical origin was assured by Prof. Paula B. Andrade (Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto). Pollen was stored protected from light under desiccating conditions to prevent alteration.

Extract preparation

The extraction was adapted from a method previously described [4]. Bee pollen (0.2 g) was thoroughly mixed with 1 mL methanol:water (7:3), ultra-sonicated for 1 h, centrifuged at 2,900 × g during 10 min (Rotofix 32A, Hettichlab, Germany).

For the HPLC-DAD analysis of phenolic compounds the supernatant was filtered through a 0.45 μm filter.

For the bioactivity assays the supernatant was evaporated under reduced pressure at 40 °C. The residue was dissolved in the appropriate solvent and kept at -20°C until use.

HPLC-DAD analysis of phenolic compounds

The extract was analysed as described before [4] using a LiChroCART column (250 × 4 mm, RP-18, 5 μm particle size, LiChrospher®100 stationary phase, Merck, Darmstadt, Germany). The mobile phase consisted of two solvents: water-formic acid (1%) (A) and methanol (B). Elution started with 30% B and a gradient was used to obtain 40% at 20 min, 50% at 23 min, 60% at 30 min and 80% at 32 min. The flow rate was 1 mL/min, and the injection volume 20 μL. Spectral data from all peaks were accumulated in the range 240–600 nm, and chromatograms were recorded at 350 nm. The data were processed on a Unipoint Software system (Gilson Medical Electronics, Villiers le Bel, France). Peak purity was checked by the software contrast facilities.

Phenolic compounds quantification was achieved by the absorbance recorded at 350 nm relative to external standards. Because standards of all identified flavonoid derivatives were not commercially available, quercetin-3-O-neohesperidoside was quantified as quercetin-3-O-rutinoside, and kaempferol derivatives as kaempferol-3-O-rutinoside, except kaempferol-3-O-glucoside, which was quantified as itself.

Superoxide radical (O2•-) scavenging in cell free system

The radical generated by the phenazine methosulphate (PMS)/NADH system and monitored by the reduction of nitroblue tetrazolium chloride (NBT) to formazan [16]. The reaction mixtures consisted of NADH (166 μM), PMS (2.7 μM), NBT (43 μM) and the appropriate extract concentration. All components were dissolved in phosphate buffer (19 mM, pH 7.4). The reaction was conducted at room temperature for 2 min and initiated by the addition of PMS. The absorbance variation was measured spectrophotometrically at 562 nm, in a Multiskan Ascent plate reader (Thermo, Electron Corporation). Five different extract concentrations were tested. Three experiments were performed, in which each concentration was tested in triplicate.

Nitric oxide (NO) scavenging in cell free system

Nitric oxide was generated from sodium nitroprusside (SNP) and measured by the Griess reagent as before [17]. SNP (6 mg/mL) in phosphate buffer was mixed with different concentrations of bee pollen extract dissolved in the same solvent, and incubated at room temperature for 1 hour under light. After the incubation period the nitrite accumulated in the reaction medium was measured. Based on the Griess reaction, equal volumes of reaction medium and Griess reagent [1:1 mixture (v/v)] of 1% sulphanilamide and 0.1% N-[1-naphthyl] ethylenediamine in 2% H3PO4 were mixed and incubated for 10 min in the dark, at room temperature. The cromophore was determined in a Multiskan Ascent plate reader at 562 nm. Five different extract concentrations were tested. Three experiments were performed, in which each concentration was tested in triplicate.
RAW 264.7 macrophages culture and treatments

Macrophage RAW 264.7 cells were from the American Type Culture Collection (LGC Standards S.L.U., Spain) and were kindly provided by Prof. Maria S. J. Nascimento (Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto). They were cultured at 37 °C, in DMEM supplemented with 10% FBS and 2% Pen Strep solution in a humidified atmosphere of 5% CO₂, as previously reported [18]. Cells were seeded in 48-well plates (150 000 cells/well) and cultured until 80–90% confluence.

Two groups of RAW 264.7 cells were considered: control group (C group) and LPS-treated group (T group). Both C and T groups were cultured in cell media containing growing doses of bee pollen extract (C0 and T0; 0; C1 and T1: 0.5; C2 and T2: 1.0; C3 and T3: 2.1; C4 and T4: 4.2; C5 and T5: 8.3 mg mL⁻¹) for viability assays 16.7 and 33.3 mg mL⁻¹ were also tested) dissolved in medium containing 0.5% DMSO. Exposure periods were 19 h for viability and L-citrulline assays and 9 h for eicosanoids determination. One μg mL⁻¹ of LPS was added to the culture media of T group cells after the first hour of extract exposure and this inflammatory stimulus was maintained during the following 8 or 18 h.

LDH release

After the treatment period, the culture medium was taken to determine the activity of lactate dehydrogenase (LDH) leaked through cell membranes according to a described procedure [17]. LDH activity was determined at 340 nm. Results are expressed as a percentage of the respective control (with or without LPS). Five independent assays were performed in duplicate.

MTT reduction

After the incubation period, RAW 264.7 cells were washed with DPBS and then incubated for 30 minutes with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; 0.5 mg mL⁻¹ in DMEM). The extent of the reduction to formazan within the cells was quantified at 510 nm [17]. Results are expressed as a percentage of the respective control (with or without LPS). Five independent assays were performed in duplicate.

'NO in RAW 264.7 cells culture medium

Nitrite accumulated in the culture medium of C and T-group cells was measured after 18 h incubation. This determination was based on the Griess reaction as in “Nitric oxide (NO) scavenging in cell free system” section [17,19]. Five independent assays were performed in duplicate.

Determination of L-citrulline

L-citrulline was quantified using the method of Scenshu and collaborators [20] with the modifications of Marzingig and collaborators [21]. Briefly, after 18 h incubation, 100 μL of culture medium of RAW 264.7 cells of C and T-groups were deproteinized with 200 μL of trichloroacetic acid (2.45 M). After centrifugation (10 min; 2,900 x g), 250 μL supernatant was mixed with 100 μL of reaction mixture containing 40% (v/v) diacetylmonoxime (79 mM in 83 mM acetic acid), 18% (v/v) antipyrine E (47.8 mM in H₂O) and 42% (v/v) H₂SO₄ 7.5 M, and incubated at 96 °C for 25 minutes. The solution was then cooled down to room temperature and the absorption was read at 405 nm. Five independent assays were performed in duplicate.

Extraction of eicosanoids from cells and culture medium

Eicosanoids were determined in the whole cell extracts and in the culture media of RAW 264.7 cells. The culture medium was collected after 9 h exposure, 0.005% BHT (final concentration) was added and the medium was kept at −80 °C until eicosanoids extraction. To precipitate the serum proteins present in the culture media 3 mL of methanol/HCl 200 mM was added to 2 mL medium and spun at 10000 x g, for 5 min.

After removing the culture medium cells were lysed by incubation with lysis buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% Triton X-100, containing 0.005% BHT) for 1 h, at 0 °C. Lysates were centrifuged at 8,000 x g for 5 min. The resulting supernatants were kept at −80 °C until eicosanoids extraction.

Before eicosanoids extraction one replicate of each culture condition was hydrolyzed using ~5000 U.E mL⁻¹ of β-glucuronidase, type H2 from Helix pomatia [22].

After samples hydrolysis, both hydrolyzed and non-hydrolyzed supernatants were subjected to solid-phase extraction (SPE) by Strata X-AW cartridge (100 mg 3 mL⁻¹) following the procedure of Medina et al. [22]. Target compounds were eluted with methanol and dried using a SpeedVac concentrator.

UPLC-QqQ-MS/MS analyses of eicosanoids

The separation of eicosanoids in the cell lysates and culture medium was performed by UPLC coupled to 6460 QqQ-MS/MS (Agilent Technologies, Waldbronn, Germany) using the set up of Medina and collaborators [22,23].

The quantification of the separate eicosanoids detected was performed using the standard compounds PGE₁₁, PGE₂₂, tetranor-PGEM, tetranor-PGAM, 20-hydroxy-PGÉ₂, 6-keto-PGF₁₂, 2,3-dinor-6-keto-PGF₁₂, 11β-PGF₂ₐ, 2,3-dinor-11β-PGF₂ₐ, tetranor-PGFM, 9,11-dideoxy-9α,11β-epoxymethano-PGF₂ₐ [U-44069], 9,11-dideoxy-9α,11β-methanoxy-PGF₂ₐ [U-46619], 11-dehydrothromboxane B₂, 8-iso-PGF₂ₐ, 2,3-dinor-8-iso-PGF₂ₐ, 8-iso-15β-PGF₂₉, 8-iso-15-keto-PGF₂₉. The 8-isoprostaglandin F₂₉-d4 (contains 4 deuterium atoms at positions 3, 3’, 4, and 4’) and 11-dehydro-thromboxane B₂-d₄ (contains 4 deuterium atoms at positions 3, 3’, 4, and 4’) were used as internal standards [22,23].

Statistical analysis

Statistical analysis was performed using Graphpad Prism 5 Software (San Diego, CA, USA). One-way ANOVA and Bonferroni’s test, as post-hoc test, were used to determine the statistical significance in comparison to control. Two-way ANOVA and Sidak’s multiple comparisons test were used to determine the interaction between extract and LPS in cell viability and differences in citrulline and 'NO release in LPS-stimulated macrophages. Data are expressed as the mean ± SEM. p Values of 0.05 or less were considered significant.

Results

Phenolic profile

The phenolic profile of E. plantagineum bee pollen hydromethanolic extract was established by HPLC-DAD (Figure 2). The chromatogram showed kaempferol-3-O-neohesperidoside (4) as a major peak, followed by its acylated derivative, kaempferol-3-O-(3’/4’-acetyl)-neohesperidoside (6), and eight minor peaks, comprising both quercetin and kaempferol derivatives. The content of compounds 4 and 6 was ca. 9 and 3 g kg⁻¹, respectively. The other phenolics accounted together for 0.4 g kg⁻¹ (Table 1).
Antioxidant activity

The hydromethanolic extract of *E. plantagineum* bee pollen scavenged the sodium nitroprusside-generated \(^\text{1} \text{NO} \) in a concentration dependent manner (IC \(_{25} = 1.9 \text{ mg mL}^{-1}\)) (Figure 3). However, a dual behaviour was seen against \(^\text{2} \text{O}_2^\cdot \) generated by the PMS/NADH system: until 0.8 mg mL\(^{-1}\) a dose-dependent scavenging effect was observed, but a pro-oxidant response was noticed with higher concentrations (Figure 3).

RAW 264.7 macrophages viability

The extract was not cytotoxic until 8.3 mg mL\(^{-1}\) (equivalent to 172 \(\mu \text{M} \) of kaempferol and quercetin derivatives). The exposure to 16.7 mg mL\(^{-1}\) for 19 h induced a significant decrease in cell viability (\(p<0.01 \)), as assessed by the MTT assay. The cellular viability was further decreased by the extract at 33.3 mg mL\(^{-1}\), being statistically significant in both LDH and MTT assays (\(p<0.001 \)) (Figure 4).

Cell treatment with 1 \(\mu \text{g mL}^{-1} \) LPS did not significantly alter cell viability and the results obtained with cells exposed to extract and LPS were similar to the ones found with cells exposed only to the extract (\(p>0.05 \)) (Figure 4). In fact, for the concentration of 8.33 mg mL\(^{-1}\) an increase in viability was shown (\(p<0.01 \)).

NO and L-citrulline in culture medium

The levels of \(^\text{1} \text{NO} \) and L-citrulline in the culture medium of LPS stimulated cells (T group) after 18 h exposure were 11.8±1.7 and 10.8±0.9 \(\mu \text{M} \), respectively. The levels of these metabolites in the C-group were below the quantification limit. *E. plantagineum* bee pollen extract at non-toxic concentrations dose-dependently decreased \(^\text{1} \text{NO} \) in the culture medium of LPS-stimulated cells (\(p<0.001 \)) (Figure 5). Accordingly, the formation of L-citrulline was also inhibited by the extract at all concentrations, being significant for concentrations higher than 2.1 mg mL\(^{-1}\) (\(p<0.001 \)) (Figure 5).

Table 1. Phenolic compounds from *E. plantaginum* bee pollen extract.

Phenolic compounds	(mg kg\(^{-1}\))^a
1 Quercetin-3-O-neohesperidoside	24.8±0.1
2+3 Kaempferol-3-O-sophoroside + kaempferol-3-O-(4'—rhamnosyl)-neohesperidoside	120.9±0.1
4 Kaempferol-3-O-neohesperidoside	8864.1±14.3
5 Kaempferol-3-O-neohesperidoside derivative	25.8±0.6
6 Kaempferol-3-O-(3'4'—acetyl)-neohesperidoside	2988.1±10.0
7 Kaempferol-3-O-neohesperidoside-7-O-rhamnoside	20.7±0.7
8 Kaempferol-3-O-glucoside	15.1±0.1
9+10 Kaempferol-3-O-rutinoside + kaempferol-3-O-(3'4'—acetyl)-neohesperidoside isomer	213.6±2.1
∑	**12273.2**

*Values are expressed as mean ± standard deviation of three determinations.

doi:10.1371/journal.pone.0059131.g002
Intracellular eicosanoid levels

The levels of prostaglandins and isoprostanes were measured in RAW macrophages whole-cell lysate obtained under mild conditions (Figure 6). Two prostaglandins (PGE\(_2\) and 11\(\beta\)-PGF\(_2\)\(_\alpha\)) were quantified both in control cells and in cells exposed to LPS, but higher levels were observed in the latter (Fig. 6A). The levels of PGE\(_2\) (about 1 ng mL\(^{-1}\)) in non-stimulated cells were not significantly affected by bee pollen extract. The increased levels of PGE\(_2\) in LPS-stimulated cells were reduced by the extract at 0.5 and 1 mg mL\(^{-1}\) (\(p, 0.01\)), but for higher concentrations weren’t significantly different from cells exposed only to LPS (Figure 6A).

Besides prostaglandins, three isoprostanes (8-iso-15(\(R\))-PGF\(_2\)\(_\alpha\), 8-iso-15-keto-PGF\(_2\)\(_\alpha\) and 8-iso-PGF\(_2\)\(_\alpha\)) were quantified in the cellular lysate (Figure 6B). Their contents in control cells were increased by the extract. LPS by itself raised the levels of isoprostanes inside the cell and, in general, bee pollen extract LPS exposed cells the levels of 11\(\beta\)-PGF\(_2\)\(_\alpha\) were dose-dependently decreased by the extract at 0.5 and 1 mg mL\(^{-1}\), but raised for higher concentrations, being similar to that found in LPS-only exposed cells for the highest extract concentration tested (Figure 6A).

In what concerns to 11\(\beta\)-PGF\(_2\)\(_\alpha\), the extract showed a tendency to increase the levels of this PGD\(_2\) metabolite in control cells. In
decreased IsoPs below the basal level at 1 mg mL\(^{-1}\). Higher extract concentrations raised IsoPs levels (Figure 6B).

Eicosanoid levels in culture medium

The eicosanoids profile in the culture medium of RAW 264.7 macrophages is shown in Figure 7. Two prostaglandins (PGE\(_1\) and PGE\(_2\)) and three prostaglandins metabolites (6-keto-PGF\(_{1\alpha}\), 20-hydroxy PGE\(_2\) and 11\(\beta\)-PGF\(_{2\alpha}\)) were determined (Figure 7A). PGE\(_1\) release to the medium was increased by LPS exposure and the extract at all concentrations tested was able to decrease the levels of this PG. PGE\(_1\) returned to the levels observed in the culture medium of non-stimulated cells, for extract concentrations higher than 0.5 mg mL\(^{-1}\) (Figure 7A).

Also PGE\(_2\) release was highly increased by LPS exposure (Figure 7A). Although this prostaglandin was also measured in non-stimulated cells, a 20 fold increase was observed after 8 hours exposure to LPS. The extract decreased PGE\(_2\) release into the medium at 1 mg mL\(^{-1}\) in control cells and at 0.5 mg mL\(^{-1}\) in LPS exposed cells. For higher extract concentrations the levels of PGE\(_2\) in the T group were higher than the ones found in LPS-only exposed cells (\(p<0.05\)). On the other hand, considerable amounts of 20-hydroxy PGE\(_2\) were found only in the medium of LPS exposed cells and LPS plus extract at 0.5 mg mL\(^{-1}\). A similar behaviour was observed for 6-keto-PGF\(_{1\alpha}\), a PGF\(_2\) metabolite that was only quantified in the medium of LPS exposed cells and LPS plus extract at 0.5 mg mL\(^{-1}\).

Considering 11\(\beta\)-PGF\(_{2\alpha}\), the amount of this PG metabolite was higher in the culture medium of non-stimulated cells, compared to LPS-stimulated cells. Particularly in LPS-stimulated RAW macrophages, the extract did not have a significant effect on the release of 11\(\beta\)-PGF\(_{2\alpha}\), except when at 2.1 mg mL\(^{-1}\).

In what concerns to IsoPs, it was observed that both 8-iso-15(\(R\))-PGF\(_{2\alpha}\) and 8-iso-15-keto-PGF\(_{2\alpha}\) increased with LPS exposure, while the levels of 8-iso-PGF\(_{2\alpha}\) decreased (Figure 7B). The effect in the former IsoPs was significantly reduced by the extract only at the lowest concentration tested (\(p<0.05\)). However, in control cells, the extract at 0.5 mg mL\(^{-1}\) significantly increased the levels of 8-iso-15(\(R\))-PGF\(_{2\alpha}\), 8-iso-15-keto-PGF\(_{2\alpha}\), as well as that of the prostaglandin metabolite 11\(\beta\)-PGF\(_{2\alpha}\).

Regarding 8-iso-PGF\(_{2\alpha}\), the extract at 1 mg mL\(^{-1}\) further decreased its level in LPS-exposed cells.

Although PGF\(_{2\alpha}\) has been implicated in acute inflammation, in this model of inflammation, tetranor-PGFM, which is PGF\(_{2\alpha}\) main metabolite [24], was not detected neither in whole cell extracts nor in the culture medium.
U-44069, an analogue of PGH₂, thromboxane A₂ (as its stable analogue U-46619) and 11-dehydrothromboxane B₂ were not encountered in whole cell lysates or culture medium of macrophages.

The search for 2,3-dinor-6-keto-PGF₁α (a PGL₂ metabolite) and the IsoP 2,3-dinor-8-iso-PGF₂α in the cell lysate and culture medium gave negative results.

Comparing the levels of eicosanoids in the culture medium and inside the cell (Figures 6 and 7B and 7C) it can be observed that...

Figure 7. Effect of E. plantagineum bee pollen extract pre-exposure in eicosanoids release of LPS-stimulated macrophages.

Eicosanoids were determined in the culture media of RAW 264.7 macrophages pre-exposed to the extract for 1 h followed by 8 h co-exposition with 1 mg mL⁻¹ of LPS. C group: control group exposed to extract only. T group: extract and LPS co-exposed group. Extract concentrations: C0 and T0: 0; C1 and T1: 0.5 mg mL⁻¹; C2 and T2: 1.0 mg mL⁻¹; C3 and T3: 2.1 mg mL⁻¹; C4 and T4: 4.2 mg mL⁻¹; C5 and T5: 8.3 mg mL⁻¹. Values show mean ± SEM of two independent assays experiments performed in triplicate. (A) Prostaglandin and prostaglandin metabolites. (B) Isoprostanes. *p<0.05; **p<0.01 compared to the respective control (with or without LPS).

doi:10.1371/journal.pone.0059131.g007
eicosanoids are mainly secreted into the medium, with the exception of 11β-PGF2α, and 8-iso-PGF2α that are present at similar levels inside and outside the cell.

Discussion

The HPLC-DAD analysis of *E. plantagineum* bee pollen hydromethanolic extract showed its richness in non-coloured flavonoids, being mainly constituted by kaempferol heterosides, some of them acylated with acetate (Figure 2, Table 1). The extract was then assayed for its antioxidant and anti-inflammatory potential in a cellular model taking into account that the extract was then assayed for its antioxidant and anti-inflammatory potential in a cellular model taking into account that the absorption of bioactive compounds, extracted from natural products, is a potential source of pyrrolizidine alkaloids, a class of secondary metabolites with hepatotoxic properties [26], the presence of alkaloids in the extract was screened by the general alkaloid precipitation tests (Dragendorff’s, Mayer’s and Bertrand’s) [27], giving negative results.

The cellular model of LPS-stimulated macrophages is widely used to assess anti-inflammatory activity [5,11,17,18]. It is well known that infection of cells by microorganisms activates the inflammatory response due to recognition by macrophages receptors of LPS present in microorganisms’ cell wall: the initial sensing of infection is mediated by innate pattern recognition receptors that are expressed by macrophages dendritic cells and various nonprofessional immune cells. Although inflammation is a protective response of the body to ensure removal of detrimental stimuli, as well as a healing process for repairing damaged tissue, the stimulation of macrophages, initiated by microorganisms (or other agent) can result in the overproduction of inflammatory mediators like PGE2 and PGI2, which enhance edema formation and leukocyte infiltration by promoting blood flow in the inflamed region. This process can be at the origin of inflammatory diseases like type 2 diabetes, atherosclerosis, and Alzheimer’s disease [28,29].

Before testing in macrophages, the extract was screened for antioxidant activity against NO and O₂⁻ in cell-free systems. These preliminary results revealed that the extract was able to scavenge the sodium nitroprusside-generated NO (Figure 3). Concerning O₂⁻, an antioxidant effect was observed only for the lowest concentrations tested. At higher concentrations, the compounds present seem to participate in the formation of O₂⁻ in the PMS/NADH system (Figure 3). The direct interaction of the compounds present in the extract with NBT was excluded because the reduction of NBT to formazan did not occur when the assay was performed in the absence of PMS and NADH. Furthermore, we can also assume that superoxide is not generated by the direct oxidation of kaempferol derivatives by molecular oxygen. So, the apparent pro-oxidant behaviour at higher extract concentrations observed in this evaluating system for O₂⁻ scavenging potential can be without biological significance since PMS and NBT are not endogenous molecules. Nevertheless a pro-oxidant behaviour has been previously observed with flavonoids and flavonoid-rich extracts [30,31].

The anti-inflammatory potential of the extract was assessed in vitro using the LPS-stimulated RAW macrophages model. Inflammatory mediators derived from iNOS and COX-2 were measured in an integrated approach. In relation to NO, LPS induces its production by iNOS accompanied by L-citrulline formation in stoichiometric amounts [8]. Accordingly, the decrease of the radical was paralleled by the decrease of L-citrulline in the culture medium of LPS-stimulated macrophages exposed to the extract (Figure 5). Given these results, we can state that the extract inhibits iNOS induction by LPS.

Besides NO, LPS-stimulated macrophages produce PGs as a consequence of COX-2 up-regulation. Attending to the evanesence of primary PGs, we proceeded to the measurement of some PGs metabolites by UPLC-MS. As isoprostanes suffer glucuronidation [23,32], and UDP-glucuronosyltransferases are present in macrophages [33] an hydrolysis step was included in the eicosanoid extraction protocol to ensure that all eicosanoids found in the macrophages lysate and/or cell culture supernatants were totally determined by UPLC-MS and to avoid underestimations of their concentrations, as we have detailed in previous reports [22,23].

The action of COX on arachidonic acid leads to the formation of PGH2, the substrate for the various PG synthases (Figure 8). In vivo studies have shown that COX-2 inhibitors reduce PGE2 more profoundly than other PGs [34]. PGE2 was the prostaglandin with the highest increase both in the whole cell lysate and culture medium of LPS-stimulated macrophages (Figures 6 and 7). The selective increase of this PG in LPS-stimulated rat macrophages is probably due to the up-regulation of PGE2 synthase in concert with COX-2 [35,36].

PGE2 undergoes hydroxylation at C-20 catalyzed by cytochrome P450 enzymes, originating 20-hydroxy PGE2 [37]. This PGE2 metabolite was released to the culture medium of macrophages in response to LPS stimulation, but the extract at concentrations higher than 1 mg mL⁻¹ decreased the release of 20-hydroxy PGE2 below the quantification limits as observed in the culture medium of non-exposed cells (Figure 7). Therefore, concentrations of the extract >1 mg mL⁻¹ were able to neutralize the toxic effect exerted by LPS. This result can be attributed to the known inhibition of cytochrome P450 enzymes by flavonoids [38]. In opposition, the effect of the extract on PGE2 was not so pronounced, being more effective at lower concentrations (Figures 6 and 7). Tetrano-PEGM and tetrano-PGAM, PGE2 metabolites [10], were not detected.

PGE1α, a PG derived from dihomo-γ-linolenic acid (Figure 8), was found in the culture medium of LPS-stimulated macrophages. The extract was more effective in decreasing the release of PGE1α than of PGE2 (Figure 7).

Another prostanoid found in the culture medium of cells exposed to LPS was 6-keto PGF1α, a PGL1 metabolite (Figure 7). PGI2 formation is mediated by prostacyclin synthase, a member of the cytochrome P450 monooxygenase family. PGI1 is readily hydrolyzed to form the stable 6-keto PGF1α [10]. Interestingly, cells treated with the lowest extract concentration did not significantly alter the concentration of this metabolite, although for all the other extract concentrations 6-keto PGF1α levels were below quantification limits. So, it is possible that the phenolic compounds present in the extract exert an inhibitory effect on prostacyclin synthase, under inflammatory conditions, as seen for the inducible form of NOS.

Thromboxane A2 biosynthesis is also catalysed by a member of the cytochrome P450 enzymes and it counteracts PGI2 action [10]. The absence of thromboxane A2 and its metabolite could be expected, since thromboxane A2 formation is mediated by COX-1, although in LPS-stimulated cells COX-2 can also be involved [35].

PGD2 has important roles in the mediation and resolution of inflammation. This PG is converted to several metabolites, including 11β-PGF2α, which maintains the biological activity of PGE2 [39]. 11β-PGF2α was quantified in the cellular lysate and culture medium of control and LPS-exposed cells (Figures 6 and 7).
... decrease of PGE2 release was only observed for this concentration by the extract, except for the lowest concentration tested, while a coupled to the constitutive COX-1 [35]. So, the decrease of 11b-PGF2a is less studied, but is also partly attributed to NF-kB induction [19]. On the other hand, COX-2 inhibition by flavonoids group. The hydroxyl group at C-3 decreases the inhibitory potency [19]. The intracellular level of 11b-PGF2a was increased by LPS and a decrease of this metabolite was observed when cells were also exposed to extract (except for the highest concentration) in comparison with cells exposed only to LPS (Figure 6).

As previously said, the bee pollen extract used in this work was characterized by the presence of kaempferol and quercetin derivatives. It is well known that kaempferol inhibits iNOS, COX-2 expression and PGE2 formation in LPS-activated RAW macrophages [40]. Also quercetin was found to decrease PGE2 in the culture medium of LPS-stimulated RAW macrophages [41], the reduction being much stronger in J774A.1 macrophages [11]. The iNOS inhibitory activity of flavonoids is attributed to the inhibition of NF-κB induction [40]. The more active flavonoids possess a double bond between C-2 and C-3 and a 5,7-dihydroxyl pattern. It can be expected polyphenol aglycones to be more potent than their heterosides. For instance, Kim and collaborators showed that isoliquiritigenin was significantly more active than its 4-O-glucoside (isoliquiritin) in reducing NO and PGE2 production, as well as protein and mRNA expression of iNOS and COX-2 [12]. This result was explained by the different lipophilicity, which affects the cellular uptake and compatibility with cellular membranes [12]. Also the inhibition of iNOS and COX-2 expression by quercetin was higher than the one of its 3-O-rutinoside, rutin [41]. Nevertheless, the decrease of PG observed when cells were exposed to the extract at 0.5 or 0.1 mg mL−1 is probably due to the inhibitory action of the flavonol heterosides that characterize the bee pollen extract.

It has been suggested a cross-talk between NOS and COX enzymes [43]. NO may act through generation of peroxynitrite as the endogenous oxidant needed to create the tyrosyl radical required for catalytic activity of COX enzymes. NO exerts divergent effects on constitutive and inducible COX isoforms, activating COX-1, but inactivating COX-2 [43]. This may explain why extract concentrations that reduce NO to lower levels failed to reduce the levels of PGE2, the major PG released by LPS stimulated macrophages (Figures 5 and 7).

Conversely, PGE2 demonstrated to modulate NO pathway in LPS-stimulated macrophages [44]. These results were not confirmed by Swierkosz and collaborators, who found that the formation of COX metabolites had no effect on NOS activity, whereas NO inhibits both COX-2 activity and induction [45].

IsoPs are derived from the free radical-catalyzed peroxidation of arachidonic acid in a COX independent mechanism (Figure 8). Due to the lack of enzymatic control, a series of stereoisomers can be formed [10]. IsoPs are reliable markers of lipid peroxidation in vivo and potentially mediate some of the adverse effects of oxidant injury [13]. In this study three IsoPs of the δ-series (containing the nonprostanoid hydroxyl group at C-8) were encountered, both in the cell lysate and in the culture medium (Figures 6 and 7). In general, LPS treatment leads to an increase of IsoPS, which can be a consequence of the increase of NO in LPS-exposed macrophages.

Figure 8. Metabolic pathways of eicosanoids determined in LPS-stimulated macrophages pre-exposed to E. plantagineum bee pollen extract. AA, arachidonic acid; COX, cyclooxygenase; Cyp 450, cytochrome P450 enzyme; DGLA, dihomo-γ-linolenic acid; PG, prostaglandin; PGS, PG synthase.

doi:10.1371/journal.pone.0059131.g008
The excess of NO production can lead to peroxynitrite formation, which is associated with increased IsoP generation in vitro and in vivo [46,47]. 8-iso-PGF2α showed a different behaviour, since the release of this IsoP into the culture medium after 8 h exposition to LPS decreased when compared with control cells (Figure 7). 8-iso-PGF2α can be formed via COX-2 in monocytes and, as so, it was expected to increase under a pro-inflammatory stimulus [48]. Nevertheless, at this time the level of 8-iso-PGF2α in cell lysate of LPS stimulated cells was higher than in control cells (Figure 6).

IsoPs levels showed a tendency to be increased by extract concentrations above 1 mg mL⁻¹, despite the decrease of NO contents (Figures 5, 6, and 7). This can be attributed to a pro-oxidant behaviour of phenolic compounds when present at high concentrations (observed in the O₂⁻ cell-free assay), despite the ability of these compounds to inhibit iNOS induction in macrophages under an inflammatory stimulus [11,30,41].

Conclusions

E. plantagineum bee pollen extract contains significant amounts of phenolic compounds, which can exert antioxidant and anti-inflammatory activity. In vitro assays demonstrated that the extract is able to scavenge the reactive species NO and O₂⁻, although for the later a pro-oxidant behaviour was observed for the higher concentrations tested. The extract reduces NO and prostaglandins release in LPS-stimulated macrophages but, in what concerns to prostaglandins, this is true only if the extract concentrations were maintained below certain levels. Conversely, the levels of prostaglandin metabolites derived from cytochrome P450 enzymes, like 20-hydroxy-PGF2α and 6-keto-PGF1α, were reduced by high extract concentrations. However, under those conditions several isoprostanes were increased in LPS-stimulated and extract-only exposed cells. These results demonstrate that the beneficial anti-inflammatory effects of the extract can be superimposed by a pro-oxidant behaviour. Further in vivo experiments are needed to determine the levels of pollen consumption that can constitute a hazard for human health. Nevertheless, the consumption of moderate amounts of pollen or of its bioactive compounds can impart beneficial health effects by reducing the levels of oxidative stress and inflammatory mediators involved in the genesis of many diseases.

Author Contributions

Conceived and designed the experiments: AGI CS PBA. Performed the experiments: EM FF LRS CS RDP NB. Analyzed the data: EM CS PV PBA FF AGI. Contributed reagents/materials/analysis tools: PV PBA. AGI. Wrote the paper: EM CS PV PBA.

References

1. Di Paola-Naranjo RD, Sánchez-Sánchez J, González-Paramás AM, Rivas-Gonzalo JC (2004) Liquid chromatographic-mass spectrometric analysis of anthocyanin composition of dark blue bee pollen from *Eichium plantagineum*. J Chromatogr A 1054: 205–210.
2. Escuredo O, Silva LR, Valenço P, Seijo MC, Andrade PB (2012) Assessing *Rhus* honey value: Pollen and phenolic compounds content and antibacterial capacity. Food Chem 130: 671–678.
3. Paramás AMG, Baez JAG, Marcos CC, García-Villanova RJ, Sánchez JS (2006) HPLC-fluorimetric method for analysis of amino acids in products of the hive (honey and bee-pollen). Food Chem 95: 148–156.
4. Ferreres F, Pereira DM, Valentão P, Andrade PB (2010) First report of non-coloured flavonoids in *Eichium plantagineum* bee pollen: Differentiation of isomers by liquid chromatography/ion trap mass spectrometry. Rapid Commmun Mass Spectrom 24: 801–806.
5. Wadsworth TL, Koop DR (1999) Effects of wine polyphenolics quercetin and resveratrol on cellular antioxidant capacity. Food Chem 30: 253–260.
6. Luthria DL (2006) Significance of sample preparation in developing analytical methodologies for accurate estimation of bioactive compounds in functional foods. J Sci Food Agric 86: 2266–2272.
7. Oksik CO, Akah PA (2004) Mechanisms of the anti-inflammatory activity of the leaf extracts of *Calotasia scandens* P. Beauv (Araeaceae). Pharmacol Biochem Behav 79: 473–481.
8. Tayed MA, Marletta MA (1989) Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. J Biol Chem 264: 19654–19658.
9. Simmons DL, Boting RM, Hla T (2004) Cyclooxygenase isoforms: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56: 387–437.
10. Buczyński MW, Dumłao DS, Dennis EA (2009) An integrated omics analysis of eicosanoid biology. J Lipid Res 50: 1015–1038.
11. Rao GM, Meli R, Di Carlo G, Pacilio M, Di Carlo R (2001) Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774.A1. Life Sci 69: 921–931.
12. Kim JY, Park SY, Yun KJ, Choi YW, Park HJ, et al. (2008) Isoquiritigrinin isolated from the roots of *Glycyrrhiza uralensis* inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-κB in RAW 264.7 macrophages. Eur J Pharmacol 580: 175–184.
13. Roberts LJ II, Morrow JD (2002) Products of the isoprostane pathway: Unique bioactive compounds and markers of lipid peroxidation. Cell Mol Life Sci 59: 808–820.
14. Buczyński MW, Stephens DL, Bowers-Gentry RC, Grković A, Deems RA, et al. (2007) TLR-4 and sustained calcium agonists synergistically produce eicosanoids independent of protein synthesis in RAW264.7 cells. J Biol Chem 282: 22834–22847.
15. Kim JH, Gupta SC, Park B, Yadav VR, Aggarwal BB (2012) Turmeric (*Curcuma longa*) inhibits inflammatory nuclear factor (NF)-κB and NF-κB-regulated gene products and induces death receptors leading to suppressed proliferation, induced chemosensitization, and suppressed osteoclastogenesis. Mol Nutr Food Res 56: 454–463.
16. Oliveira AP, Valentão P, Pereira JA, Silva BM, Tavares F, et al. (2009) Flow cytometry L.: metabolic and biological screening. Food Chem Toxicol 47: 2841–2846.
17. Lopes G, Sousa C, Silva LR, Pinto E, Paula RA, et al. (2012) Can phlorotannins purified extracts constitute a novel pharmacological alternative for microbial infections with associated inflammatory conditions? Plos One 7(2): e31145. doi:10.1371/journal.pone.0031143.
18. Pinho BR, Sousa C, Valentão P, Andrade PB (2011) Is nitric oxide decrease observed with naphthoquinones in LPS stimulated RAW 264.7 macrophages a beneficial property? Plos One 6(3): e14096. doi:10.1371/journal.pone.0024096.
19. Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP (1999) Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure–activity relationships. Biochem Pharmacol 58: 759–765.
20. Senshu T, Sato T, Inoue T, Akiyama K, Asaga H (1992) Detection of citrulline residues in deimmunized proteins on polyvinylidene difluoride membrane. Anal Biochem 203: 94–100.
21. Marzinig M, Naouler AK, Stadler J, Marzinig E, Barthlen W, et al. (1997) Improved methods to measure end products of nitric oxide in biological fluids: nitrite, nitrate, and S-nitrosothiols. Nitric Oxide-Biol Chem 1: 177–189.
22. Medina S, Domínguez-Perles R, Gil JL, Ferreres F, García-Viguera C, et al. (2012) A ultra-pressure liquid chromatography/triple quadrupole tandem mass spectrometry method for the analysis of 13 eicosanoids in human urine and quantitative 24 h values in healthy volunteers in a controlled constant diet. Rapid Commmun Mass Spectrom 26: 1249–1257.
23. Medina S, Domeinguez-Perles R, Cerdeño-Santa R, Villalón D, Martínez-Sanz JM, et al. (2012) Assessment of oxidative stress markers and prostaglandins after chronic training of triathletes. Prostaglandins Other Lipid Mediat 99: 79–86.
24. Basu S (2007) Novel cyclooxygenase-catalyzed bioactive prostaglandin F3 from physiology to new principles in inflammation. Med Res Rev 27: 435–468.
25. Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130: 2073S–2085S.
26. Boëpré M, Cogelat SM, Edgar JA (2005) Pyrroloazidine alkaloids of *Echium vulgare* honey found in pure pollen. J Agric Food Chem 53: 594–600.
27. Bruneton J (1999) Phytochimie – Plantes médicinales. Paris: Éditions médicales internationales. 1120 p.
28. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140: 803–820.
29. Andreasen AS, Krabbe KS, Krogh-Madsen R, Taudorf S, Pedersen BK, et al. (2008) Human endotoxemia as a model of systemic inflammation. Curr Med Chem 15: 1607–1705.
30. Galati G, Salzvarzi O, Wilson JX, O’Brien PJ (2002) Proxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenols. Toxicology 177: 91–104.
31. Fernandes F, Sousa C, Ferreres F, Valentão P, Remião F, et al. (2012) Kale extract increases glutathione levels in V79 cells but does not protect them against acute toxicity induced by hydrogen peroxide. Molecules 17: 5269–5280.
32. Yan Z, Mas E, Mori TA, Croft KD, Barden AE (2010) A significant proportion of F2-isoprostanes in human urine are excreted as glucuronide conjugates. Anal Biochem 403: 126–128.

33. Trottein F, Schaffer L, Ivanov S, Paget C, Vendeville C, et al. (2009) Glycosyltransferase and sulfotransferase gene expression profiles in human monocytes, dendritic cells and macrophages. Glycocon J 26:1259–1274.

34. Harada Y, Hatanaka K, Kawamura M, Saito M, Ogino M, et al. (1996) Role of prostaglandin H synthase-2 in prostaglandin E2 formation in rat carrageenin-induced pleurisy. Prostaglandins 51: 19–33.

35. Matsumoto H, Naraba H, Murakami M, Kudo I, Yamaka K, et al. (1997) Concordant induction of prostaglandin E2 synthase with cyclooxygenase-2 leads to preferred production of prostaglandin E2 over thromboxane and prostaglandin D2 in lipopolysaccharide-stimulated rat peritoneal macrophages. Biochem Biophys Res Commun 230: 110–114.

36. Murakami M, Naraba H, Tanioka T, Semmyo N, Nakatani Y, et al. (2000) Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem 275: 32763–32792.

37. Vatsis KP, Theoharides AD, Kupfer D, Coon MJ (1982) Hydroxylation of prostaglandins by inducible isozymes of rabbit liver microsomal cytochrome P-450. Participation of cytochrome b5. J Biol Chem 257: 11221–11229.

38. Hodek P, Trefil P, Suhorová M (2002) Flavonoid-potent and versatile biologically active compounds interacting with cytochromes P450. Chem Biol Interact 139: 1–21.

39. Song W-L, Wang M, Ricciardi E, Fries S, Yu Y, et al. (2008) Tetranor PGDM, an abundant urinary metabolite reflects biosynthesis of prostaglandin D2 in mice and humans. J Biol Chem 283: 1179–1180.

40. Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, et al. (1999) Suppression of inducible cyclooxygenase and nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20: 1945–1952.

41. Chen Y-C, Shen S-C, Lee W-R, Hou W-C, Yang LL, et al. (2001) Inhibition of nitric oxide synthase inhibitors and lipopolysaccharide induced inducible NOS and cyclooxygenase-2 gene expressions by rutin, quercetin, and quercetin pentaacetate in RAW 264.7 macrophages. J Cell Biochem 82: 537–548.

42. D’Acquisto F, Iavone T, Rombolda L, Saubtin L, Di Rosa M, et al. (1997) Involvement of NF-κB in the regulation of cyclooxygenase-2 protein expression in LPS-stimulated J774 macrophages. FEBS Lett 418: 175–178.

43. Clancy R, Varenika B, Huang W, Ballou L, Attur M, et al. (2000) Nitric oxide synthase/COX cross-talk: Nitric oxide activates COX-1 but inhibits COX-2- derived prostaglandin production. J Immunol 165: 1582–1587.

44. Marotta P, Saubtin L, Di Rosa M (1992) Modulation of the induction of nitric oxide synthase by eicosanoids in the murine macrophage cell line J774. Br J Pharmacol 107: 640–641.

45. Swierkows T, Mitchell JA, Warner TD, Botting RM, Vane JR (1995) Co-induction of nitric oxide synthase and cyclo-oxygenase: interactions between nitric oxide and prostanooids. Br J Pharmacol 114: 1335–1342.

46. Moore KP, Darley-Usmar V, Morrow J, Roberts LJ II (1995) Formation of F2-isoprostanes during oxidation of human low-density lipoprotein and plasma by peroxynitrite. Cire Res 77: 335–341.

47. Marnett LJ, Wright TL, Crews BC, Tannenbaum SR, Morrow JD (2000) Regulation of prostaglandin biosynthesis by nitric oxide is revealed by targeted deletion of inducible nitric-oxide synthase. J Biol Chem 275: 13427–13430.

48. Oʒdoł NC, Melli M (2004) Formation of 8-isoprostaglandin F2α and prostaglandin E2 in carrageenan-induced air pouch model in rats. Eur J Pharmacol 506: 189–197.