Two-step magnetic ordering into a canted state in ferrimagnetic monoclinic \(\text{Mn}_3\text{As}_2 \)

Manohar H. Karigerasi, 1 Bao H. Lam, 1 Maxim Avdeev, 2 and Daniel P. Shoemaker 1, *

1 Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2 Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Kirrawee 2232, Australia

We report the magnetic structure of room-temperature-stable, monoclinic \(\text{Mn}_3\text{As}_2 \) at 3 K and 250 K using neutron powder diffraction measurements. From magnetometry data, the Curie temperature of \(\text{Mn}_3\text{As}_2 \) was confirmed to be around 270 K. Calorimetry analysis showed the presence of another transition at 225 K. At 270 K, \(\text{Mn}_3\text{As}_2 \) undergoes a \(k = 0 \) ferrimagnetic ordering in the magnetic space group \(C2/m \) (#12.58) with Mn moments pointing along \(b \). Below 225 K, there is a canting of Mn moments in the \(ac \) plane which produces a multi-\(k \) non-collinear magnetic structure in space group \(C2/c \) (#15.85). The components of Mn moments along \(b \) follow \(k = 0 \) ordering and the components along \(a \) and \(c \) have \(k = [00\frac{1}{2}] \) propagation vector. The change in the magnetic ground state with temperature provides a deeper insight into the factors that govern magnetic ordering in Mn-As compounds.

I. INTRODUCTION

The Mn-As phase diagram contains a rich collection of phases with various magnetic structures. 1–7 Most of the known compounds in this phase-space can be roughly divided into two groups. Compounds in one group are of the form \(\text{Mn}_{2+n}\text{As}_{1+n} \) where, starting with stripes of square-planar Mn-As units running along \(a \) at \(n = 0 \), every additional Mn-As involves adding an Mn-As octahedral unit in between the stripes. In this series, monoclinic \(\text{Mn}_3\text{As}_2 \) and \(\text{Mn}_4\text{As}_3 \) correspond to \(n = 1 \) and 2, respectively. It also includes both phases of MnAs where \(n = \infty \). The other group consists of tetragonal \(\text{Mn}_2\text{As} \), both the high temperature phases of \(\text{Mn}_3\text{As}_2 \) and \(\text{Mn}_5\text{As}_4 \). The structures in this group can be built by constructing slabs from the components of NiAs and Ni3In structure type. 7 \(\text{Mn}_3\text{As} \) and an orthorhombic Fe3P structure type \(\text{Mn}_2\text{As} \) are few other compounds that exist in the phase space.3, 8

\(\text{MnAs} \) orders ferromagnetically (FM) with the Mn moments pointing perpendicular to \(c \). 1 It changes from a hexagonal NiAs type to an orthorhombic MnP type upon change in temperature, pressure, magnetic field or chemical doping. 9–13 The FM ordering of MnAs changes to a spiral or a canted antiferromagnetic (AFM) structure at low temperatures and high pressures. 1, 9, 14 \(\text{Mn}_2\text{As} \), on the other hand, has an AFM ordering with Néel vector perpendicular to \(c \). 15 Despite the presence of many compounds in the Mn-As phase diagram, the magnetic structures have been studied only for MnAs and \(\text{Mn}_2\text{As} \). 1, 15 Most known Mn-As compounds provide a metallic lustre upon cleaving. 4–7 With increasing interest in metallic antiferromagnets for spintronic applications, 16–18 the Mn-As phase space provides an ideal collection of compounds to explore magnetism.

\(\text{Mn}_3\text{As}_2 \) is known to exist in three different structure types depending on the stoichiometry and the synthesis procedure. 4–6 The first variant is in monoclinic space group, which is obtained by quenching after annealing above 750°C for 9-12 days, and contains a deficiency of Mn atoms. Transport measurements indicate that the compound is metallic. 4 The second variant of \(\text{Mn}_3\text{As}_2 \) is in orthorhombic space group but the structure can be derived from the previous variant by changing one of the building block in Ni3In structure type. It is obtained by annealing between 600°C to 750°C for 9-12 days and is always found to be intergrown with \(\text{Mn}_5\text{As}_4 \) crystals. 5 The final variant is the structure that is stable at room temperature when Mn and As are mixed stoichiometrically. Single crystal needles of length 0.2 mm can also be obtained with I2 as a transporting agent. 6 It crystallizes in a monoclinic space group \(C2/m \) with four inequivalent Mn atoms as shown in Figure 1. Mn atoms form square planar, square pyramidal and octahedral units with As and the structure is very similar to that of tetragonal

![FIG. 1. The chemical structure of \(\text{Mn}_3\text{As}_2 \) showing the four different Mn atom sites when viewed (a) along \(b \) and (b) perpendicular to \(b \). \(\text{Mn}1 \) and \(\text{Mn}2 \) form square pyramidal units with As, while \(\text{Mn}3 \) and \(\text{Mn}4 \) form octahedral and square planar units, respectively.](image-url)
V$_3$As$_2$.6,7 Magnetometry measurements have indicated that the compound is ferromagnetic below 0°C and the moments saturate at 17.2 gauss per gram or 0.31 μ_B per Mn atom at low temperature.2

In this paper, we grow room temperature stable monoclinic Mn$_3$As$_2$ using solid state synthesis and carry out magnetometry and differential scanning calorimetry (DSC) measurements to determine the transition temperatures. Using neutron powder diffraction (NPD) measurements, we identify two steps in the magnetic ordering of Mn$_3$As$_2$ and investigate the crossover from a uniaxial to a canted magnetic ordering.

II. METHODS

Bulk polycrystalline Mn$_3$As$_2$ was synthesized by mixing Mn (99.98% metals basis) and As (99.9999% metals basis) powders in 3:1:2 ratio using a mortar and pestle inside an Ar filled glovebox. The powders were transferred into a quartz tube, vacuum sealed and heated to 600°C at 2°C/min and held for 2 hours, followed by a ramp at 1°C/min to 1000°C for 1 hour. The sample was then cooled to 850°C at 1°C/min and held for 1 hour before it was furnace-cooled down to room temperature. The purity of the compound was checked using synchrotron powder x-ray diffraction measurements at the 11-BM beamline of the Advanced Photon Source in Argonne National Laboratory as shown in Figure S1.19 The final product obtained was a solid ingot that was dark gray in color with a metallic luster. Secondary electron images of the crushed Mn$_3$As$_2$ ingot were taken using JEOL JSM-6060LV low-vacuum scanning electron microscope as shown in Figure S2(a) and (b).19

DSC measurement was carried out on 3.6 mg of powdered sample using Al pans under N$_2$ atmosphere in a TA Instruments DSC 2500. The sample was subjected to a heat-cool-heat cycle between 93 K and 673 K at 10 K/min rate. Magnetometry was performed on 30.6 mg of powder in a snap-shot sample holder in a Quantum Design MPMS3. The sample was cycled between 400 K and 5 K at 5 K/min in the presence of 10 kOe magnetic field for measuring field cooling (FC) and zero field cooling (ZFC) curves. NPD measurements were carried out on 1.13 g of Mn$_3$As$_2$ powder at the ECHIDNA high-resolution powder diffractometer20 at the Australian Centre for Neutron Scattering. The measurements were done at 3 K, 150 K, 250 K and 350 K. Magnetic structure refinement was carried out using the GSAS-II software21 and the K-SUBGROUPSMAG program22 available at the Bilbao Crystallographic Server.

III. RESULTS AND DISCUSSION

FC and ZFC curves in Figure 2(a) show a clear onset of local magnetic moments near 270 K and the saturation magnetization of 0.33 μ_B/Mn for field cooling is very

![Figure 2](image-url)

FIG. 2. Field cooling (FC) and zero field cooling (ZFC) of Mn$_3$As$_2$ powder in the presence of 10 kOe field clearly shows a ferromagnetic transition at around 270 K in (a). Heating and cooling curves from the DSC data in (b) show the two transitions at around 270 K and 225 K.

![Figure 3](image-url)

FIG. 3. Rietveld fit to the Mn$_3$As$_2$ NPD data at 350 K is shown in (a). The contribution from the MnO impurity to the fit is also shown. The change in the NPD data due to magnetic transitions upon cooling from 350 K to 3 K is shown in (b). At $T_C = 270$ K, the intensity grows noticeably in the lowest-angle peak, while new peaks appear at the spin-canting transition around 225 K at $Q = 1.65$ Å$^{-1}$ and 2.0 Å$^{-1}$.3
The Curie temperature was also confirmed by DSC measurements in Figure 2(b). Surprisingly, another transition at around 225 K was observed in the DSC data. This transition is not obvious in the magnetometry data. To determine the nature of this transition, whether structural or magnetic, neutron powder diffraction was carried out on these samples at varying temperatures.

The Rietveld fit to the NPD data at 350 K in Figure 3(a) confirms the paramagnetic nature of Mn$_3$As$_2$ above 270 K. About 0.6 wt% of MnO was present as impurity and its contribution to the NPD data is shown in Figure 3(a). Cooling from 350 K to 3 K introduces additional peaks that are magnetic in nature as seen in Figure 3(b). At 250 K, the intensities of the peaks near $Q = 0.95 \text{ Å}^{-1}$ and 1.4 Å^{-1} increase considerably. Since both peaks are not structurally forbidden, the magnetic unit cell remains the same as the chemical unit cell. At 150 K, we can see new magnetic peaks near $Q = 1.65 \text{ Å}^{-1}$ and 2.0 Å^{-1}. Fits to these patterns confirm the kink observed in the DSC data at 225 K to be a magnetic transition. The NPD patterns remain consistent upon further cooling, so we are confident the magnetic structure does not change between 150 K and 3 K.

The magnetic ordering vector of Mn$_3$As$_2$ at 250 K is $k = 0$. The indices of the two magnetic peaks correspond to (001) and (202) respectively. Since the magnetic peaks are of the form $(h0l)$, it is likely that the Mn moments would prefer to orient along b. In the $C2/m$ space group with propagation vector $k = 0$, there are four possible k-maximal subgroups that are consistent with this propagation vector. The four subgroups correspond to different combinations of the addition of the time reversal operator to the 2-fold axis and the mirror plane. Of the four models, two models restrict the Mn moment orientation to the b axis and the other two restrict Mn moments to lie in the ac plane. One model from each pair results in an AFM structure and provides a poor fit to the NPD data. The best fit ($R_{wp} = 5.429\%$) is unambiguously obtained for the model with $C2/m$ space group symmetry where all Mn moments point along the b axis. The magnitudes of the refined Mn moments for this ferrimagnetic structure are shown in Table I. The net moment is $0.34(6) \mu_B/\text{Mn}$ which is close to the saturation moment of $0.33 \mu_B/\text{Mn}$ from magnetometry. The Rietveld fit of this model to the NPD data and the magnetic structure are shown in Figure 4(a) and (b), respectively.

All magnetic peaks in the NPD data at 3 K and 150 K can be fit using a propagation vector of $k = [001/2]$. However, none of the magnetic structures from the subgroups consistent with this propagation vector provide a good fit to data and all magnetic structures obtained are AFM, inconsistent with magnetometry. Refining the 250 K model to the low-temperature NPD data provides
TABLE I. The magnetic space groups, propagation vectors (k-vectors), magnetic irreducible representations (mag IRs) and the magnitude of Mn moments in μ_B for the magnetic structures at two different temperatures.

T (K)	MSG	k-vectors	mag IRs	Mn1	Mn2	Mn3	Mn4
250	$C2/m$	0	mGM_1^+	0.76(10)	2.39(11)	1.70(16)	0.50(7)
	(#12.58)						
3	$C2/c$	$[00\frac{1}{2}]$	$mA_1^+ + mA_2^+$	2.82(33)	2.97(24)	3.62(13)	1.36(31)
	(#15.85)						

A good fit to the two previously-existing magnetic peaks but none of the additional peaks can be fit using this model. For these reasons, it is clear that below 225 K, Mn$_3$As$_2$ contains two propagation vectors, $k = 0$ and $k = [00\frac{1}{2}]$.

With $C2/m$ as the parent space group and using both propagation vectors, there are 16 possible k-maximal subgroups. Since the magnetic irreducible representations (irreps) of the 4 k-maximal subgroups in each propagation vector are one-dimensional, there is a one to one correspondence between the irreps and the space groups. The 16 k-maximal subgroups are obtained by mixing the 4 irreps from one propagation vector with the 4 irreps from the other propagation vector. Expecting that the low-temperature magnetic ordering is similar to the one at 250 K, we can choose the 4 subgroups that contain the same irrep as the 250 K structure. This leaves us with 2 magnetic structures each in $C2/c$ and $C2/m$ space groups. The $C2/m$ magnetic structures contain all Mn moments pointing along b, but none of the fits provide required intensity at the $Q = 2.0$ Å$^{-1}$ magnetic peak. Out of the 2 magnetic structures with $C2/c$ space group, the best fit ($R_{wp} = 5.866\%$) was obtained for the structure where the Mn3 moment was constrained by symmetry to be along b and all other moments were allowed to tilt away from b. Moving to lower symmetry does not justify the additional 7 or 8 variables in the refinement. The magnitudes of the refined Mn moments are given in the Table I. The magnetic structure along with the refined fit to the NPD data at 3 K is given in Figure 5. The mcif files for both the magnetic structures are attached as Supplementary Materials.

The symmetry-breaking spin canting in Mn$_3$As$_2$ may at first glance seem surprising, given the nominal Mn$^{2+}$ and 3d^5 electron configuration, but magnetocrystalline anisotropy in Mn-containing arsenides is quite complex. Even within a set of compounds with common cation oxidation state and anion character and coordination, the spin-orbit coupling of excited and occupied states plays a major role, and typically requires computational investigation. In metallic antiferromagnets such as Mn$_2$As, tetragonal and orthorhombic CuMnAs, all Mn moments in square pyramidal units with As are oriented within the basal plane rather than along the 4-fold symmetric axis. There are no magnetic structures reported in the MAGNDATA database, where Mn forms square planar units with As, as in Mn4 atoms in Mn$_3$As$_2$. The canting of spins in Mn$_3$As$_2$ can be explained if we assume that the Mn spins, when bonded with As in these square planar units, prefer to orient in-plane. In Mn$_3$As$_2$ at high temperatures, the molecular fields from other Mn moments induces a net moment in square-planar Mn4 along b, as shown in Figure 6. The value is small (0.5 μ_B) at 250 K from Table I. Such behavior has also been observed in other arsenides such as Cr$_2$As where the Cr2 sublattice orders first at 393 K and induces weak moment in the Cr1 atoms. The Cr1 moments order at a much lower temperature at around 175 K.

At 225 K, the magnetocrystalline anisotropy of Mn4 moments becomes significant compared to the thermal energy and the moments acquire components along a and c. Through exchange interactions with Mn1 and Mn2 moments, there is a canting of the Mn1 and Mn2 moments as well away from b, as shown in Figure 6(a). The non-collinear arrangement of Mn spins is further enhanced through geometric frustration in the $a - c$ plane.

FIG. 6. At 250 K, large moments are present within the basal plane of square pyramidal units of Mn1 and Mn2 atoms (left, (a)). Upon decrease in temperature, there is ordering of Mn4 moments (right, (a)) which induces canting in Mn1 and Mn2 moments as well. (b) shows the geometric frustration due to antiferromagnetic interactions between Mn1, Mn2 and Mn4 moments.
due to competing AFM interactions between Mn1, Mn2 and Mn4 moments sitting on a distorted equilateral triangle as shown in Figure 6(b). There are not enough data points in the linear paramagnetic regime of the inverse susceptibility curve to provide a Curie-Weiss fit as shown in Figure S3.19 The coordination environments of Mn atoms in Mn\textsubscript{3}As\textsubscript{2} have point symmetry \(m\) and \(2/m\), not the highest allowed by their immediate coordination environments (which are distorted), but the single-site anisotropies still seem to broadly obey the trend of basal-plane preference in square pyramids and square planes. This consistency provides opportunity to design magnetic structures by choosing specific magnetic motifs, even in low-symmetry compounds. The specific energy scales that are relevant require further computational work and a broader set of materials to investigate.

IV. CONCLUSION

The magnetic structure of monoclinic Mn\textsubscript{3}As\textsubscript{2} was identified using neutron powder diffraction experiments. From SQUID magnetometry measurements, it was identified that the material is a weak ferromagnet below 270 K. DSC data indicated another transition at around 225 K. From NPD data at 250 K, it was found that Mn\textsubscript{3}As\textsubscript{2} is a ferrimagnet with all Mn moments ordering along \(b\). Between 225 K to 270 K, the compound has a \(k = 0\) magnetic ordering. Below 225 K, there is a canting of spins in the \(a - c\) plane and it has a multi-k ordering structure with an additional \(k = \left[00\frac{1}{2}\right]\) propagation vector. Here, the component of Mn moments along \(b\) follow \(k = 0\) ordering and the moments are uncompensated. The component of Mn moments along \(a\) and \(c\) follow \(k = \left[00\frac{1}{2}\right]\) ordering. This behavior can be explained by considering that Mn moments align in the plane of the square planar or square pyramidal Mn-As units. Mn4 atoms are bonded to As in square-planar units within the \(a-c\) plane. The lower temperature transition simply corresponds to the ordering temperature of the Mn4 sublattice. Below 225 K, Mn4 moments cause spin canting in Mn1 and Mn2 moments through exchange interactions. Geometric frustration between Mn1, Mn2 and Mn4 moments cause significant deviation from the collinear arrangement of spins.

V. ACKNOWLEDGMENTS

This work was undertaken as part of the Illinois Materials Research Science and Engineering Center, supported by the National Science Foundation MRSEC program under NSF Award No. DMR-1720633. The characterization was carried out in part in the Materials Research Laboratory Central Research Facilities, University of Illinois. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

* dpshoema@illinois.edu

1 G. E. Bacon and R. Street, Nature 175, 518 (1955).
2 M. Yuzuri and M. Yamada, J. Phys. Soc. Jpn. 15, 1845 (1960).
3 W. Carrillo-Cabrera, Acta Chem. Scand. A 37, 93 (1983).
4 L. H. Dietrich, W. Jeitschko, and M. H. Møller, Z. Kristallogr. Cryst. Mater. 190, 259 (1990).
5 M. H. Möller and W. Jeitschko, Z Krist-New Cryst. St. 204, 77 (1993).
6 M. F. Hagedorn and W. Jeitschko, J. Solid State Chem. 113, 257 (1994).
7 M. F. Hagedorn and W. Jeitschko, J. Solid State Chem. 119, 344 (1995).
8 W. Jeitschko and V. Johnson, Acta Crystall. B-Stru. 28, 1971 (1972).
9 V. P. Glazkov, D. P. Kozenko, K. M. Podurets, B. N. Savenko, and V. A. Somenkov, Crystallogr. Rep+ 48, 59 (2003).
10 F. Ishikawa, K. Koyama, K. Watanabe, T. Asano, and H. Wada, J. Phys. Soc. Jpn. 75, 1 (2006).
11 N. N. Sirota, E. A. Vasilev, and G. A. Govor, J. Phys. Paris 32, 987 (1971).
12 L. Pytlik and A. Zieba, J. Magn. Mag. Mater. 51, 199 (1985).
13 L. H. Schwartz, E. L. Hall, and G. P. Felcher, J. Appl. Phys. 42, 1621 (1971).
14 A. F. Andresen, H. Fjellvåg, and B. Lebech, J. Magn. Mag. Mater. 43, 158 (1984).
15 A. E. Austin, E. Adelson, and W. H. Cloud, J. Appl. Phys. 33, 1356 (1962).
16 V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 15005 (2018).
17 S. A. Siddiqui, J. Sklenar, K. Kang, M. J. Gilbert, A. Schleife, N. Mason, and A. Hoffmann, arxiv (2020), arXiv:2005.05247.
18 M. B. Jungfleisch, W. Zhang, and A. Hoffmann, Phys. Lett. A 382, 865 (2018).
19 Supplementary Material available online.
20 M. Avdeev and J. R. Hester, J. Appl. Crystallogr. 51, 1597 (2018).
21 B. H. Toby and R. B. Von Dreele, J. Appl. Crystallogr. 46, 544 (2013).
22 J. Perez-Mato, S. Gallego, E. Tasci, L. Elcoro, G. de la Flor, and M. Aroyo, Ann. Rev. Mater. Res. 45, 217 (2015).
23 C. Duboc, Chem. Soc. Rev. 45, 5834 (2016).
24 S. V. Gallego, J. M. Perez-Mato, L. Elcoro, E. S. Tasci, R. M. Hanson, M. I. Aroyo, and G. Madariaga, J. Appl. Crystallogr. 49, 1750 (2016).
25 S. V. Gallego, J. M. Perez-Mato, L. Elcoro, E. S. Tasci, R. M. Hanson, M. I. Aroyo, and G. Madariaga, J. Appl. Crystallogr. 49, 1941 (2016).
K. Ishimoto, M. Okonogi, K. Ohoyama, K. Nakajima, M. Ohashi, H. Yamauchi, Y. Yamaguchi, and S. Funahashi, Physica B 213-214, 336 (1995).
Two-step magnetic ordering into a canted state in ferrimagnetic monoclinic Mn$_3$As$_2$

Supplementary Material

Manohar H. Karigerasi, Bao H. Lam, Maxim Avdeev, Daniel P. Shoemaker

Figure 1: Rietveld fit to the synchrotron powder x-ray diffraction data of Mn$_3$As$_2$ showed 7.4 wt.% Mn$_4$As$_3$ impurity. The contribution of the Mn$_4$A$_3$ impurity phase to the diffraction data is also shown in the figure. This impurity was, however, not seen in the NPD data.
Figure 2: Scanning electron microscopy image of Mn$_3$As$_2$ crystals crushed from an ingot is shown in (a) and (b). Clear facets in the crystals indicate melting of the elemental powders during synthesis.
Figure 3: Inverse susceptibility of the field cooling curve in Mn$_3$A$_2$. There are not enough data points at the linear regime to provide a Curie-Weiss fit. The red dotted line indicates the extrapolation from the visible linear regime.

Cif file for Mn$_3$As$_2$ at 250 K

data_As2_Mn3

phase info for As2 Mn3 follows
_pd_phase_name "As2 Mn3"
_cell_length_a 13.166866
_cell_length_b 3.681129
_cell_length_c 8.987757
_cell_angle_alpha 90
_cell_angle_beta 132.2013
_cell_angle_gamma 90
_cell_volume 322.708
_exptl_crystal_density_diffrn 6.4765
_symmetry_cell_setting monoclinic
_parent_space_group.name_H-M_alt "C 2/m"
_space_group_magn.name_BNS "C 2/m"
_space_group.magn_point_group 2/m
loop_
_space_group_symop_magn_operation.id
_space_group_symop_magn_operation.xyz
1 x,y,z,+1
2 -x,y,-z,+1
3 -x,-y,-z,+1
4 x,-y,z,+1
5 1/2+x,1/2+y,z,+1
6 1/2-x,1/2+y,-z,+1
7 1/2-x,1/2-y,-z,+1
8 1/2+x,1/2-y,z,+1

ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS

atom_site_label	atom_site_type_symbol	atom_site_fract_x	atom_site_fract_y	atom_site_fract_z	atom_site_occupancy	atom_site_U_iso_or_equiv	atom_site_symmetry_multiplicity
Mn1_0	Mn2+	0.308200	0.00000	0.683200	1.00000	Uiso 0.0111453	4
Mn2_1	Mn2+	0.388830	0.00000	0.0869000	1.00000	Uiso 0.0105121	4
Mn3_2	Mn2+	0.00000	0.50000	0.50000	1.00000	Uiso 0.0155781	2
Mn4_3	Mn2+	0.00000	0.00000	0.00000	1.00000	Uiso 0.00987882	2
As1	As	0.06069	0.00000	0.34317	1.00000	Uiso 0.010	4
As2	As	0.24682	0.00000	0.17768	1.00000	Uiso 0.010	4

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_moment.label
_atom_site_moment.crystalaxis_x
_atom_site_moment.crystalaxis_y
_atom_site_moment.crystalaxis_z

atom_site_moment.label	atom_site_moment.crystalaxis_x	atom_site_moment.crystalaxis_y	atom_site_moment.crystalaxis_z
Mn1_0	0.00000	-0.76(10)	0.00000
Mn2_1	0.00000	2.39(11)	0.00000
Mn3_2	0.00000	-1.69(16)	0.00000
Mn4_3	0.00000	0.50(7)	0.00000

loop_
_atom_type_symbol
_atom_type_number_in_cell

atom_type_symbol	atom_type_number_in_cell
As	8
Mn	12

Note that Z affects _cell_formula_sum and _weight
_cell_formula_units_Z 2
_chemical_formula_sum "As4 Mn6"
_chemical_formula_weight 629.32
Cif file for Mn$_3$As$_2$ at 3 K

data_As2_Mn3

phase info for As$_2$ Mn$_3$ follows
_pd_phase_name "As$_2$ Mn$_3"
_cell_length_a 13.083988
_cell_length_b 3.658425
_cell_length_c 17.830616
_cell_angle_alpha 90
_cell_angle_beta 132.1835
_cell_angle_gamma 90
_cell_volume 632.438
_exptl_crystal_density_diffrn 6.6094
_symmetry_cell_setting monoclinic
_parent_space_group.name_H-M_alt "C 2/c"
_space_group_magn.name_BNS "C 2/c"
_space_group.magn_point_group 2/m

loop_
 _space_group_symop_magn_operation.id
 _space_group_symop_magn_operation.xyz
 1 x,y,z,+1
 2 -x,y,1/2-z,+1
 3 -x,-y,-z,+1
 4 x,-y,1/2+z,+1
 5 1/2+x,1/2+y,z,+1
 6 1/2-x,1/2+y,1/2-z,+1
 7 1/2-x,1/2-y,-z,+1
 8 1/2+x,1/2-y,1/2+z,+1

ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS
loop_
 _atom_site_label
 _atom_site_type_symbol
 _atom_site_fract_x
 _atom_site_fract_y
 _atom_site_fract_z
 _atom_site_occupancy
 _atom_site_adp_type
 _atom_site_U_iso_or_equiv
 _atom_site_symmetry_multiplicity
Mn1_0 Mn2+ 0.308200 0.00000 0.341600 1.00000 Uiso 0.000001000000 8
Mn2_1 Mn2+ 0.388830 0.00000 0.043450 1.00000 Uiso 0.000001000000 8
Mn3_2 Mn2+ 0.00000 0.500000 0.25000 1.00000 Uiso 0.000001000000 4
Mn4_3 Mn2+ 0.00000 0.00000 0.00000 1.00000 Uiso 0.000001000000 4
Atom	Symbol	X	Y	Z	Uiso	Z	Z
As1	As	0.06069	0.00000	0.171585	1.00000	0.00001000000	4
As2	As	0.24682	0.00000	0.08884	1.00000	0.00001000000	4

loop_
- _atom_site_moment.label
- _atom_site_moment.crystalaxis_x
- _atom_site_moment.crystalaxis_y
- _atom_site_moment.crystalaxis_z

Atom	Symbol	X	Y	Z	Uiso	Z	Z
Mn1	Mn	0.84(14)	2.63(7)	1.79(10)			
Mn2	Mn	0.00000	-3.62(13)	0.00000			
Mn3	Mn	-0.95(17)	1.17(6)	-0.57(11)			

loop_
- _atom_type_symbol
- _atom_type_number_in_cell

Symbol	Number
As	16
Mn	24

Note that Z affects _cell_formula_sum and _weight

_cell_formula_units_Z	4
_chemical_formula_sum	"As4 Mn6"
_chemical_formula_weight	629.32