LINES ON CUBIC SURFACES AND WITT INVARIANTS

EVA BAYER-FLUCKIGER AND JEAN-PIERRE SERRE

Introduction

The aim of this note is to give a formula expressing the trace form associated with the 27 lines of a cubic surface. We start with a few properties of the group \text{Weyl}(E_6) and the associated quadratic forms; the application to cubic surfaces is given at the end.

The main tool of the proof is the theory of the Witt invariants and especially their detection via “cubes”, following [Se 03] and [Se 18].

§1. Lattices associated with \text{Weyl}(E_6).

Let R be a root system of type E_6, with basis $\{\alpha_1, \ldots, \alpha_6\}$ as in Bourbaki [Bo 68], §4.12, and let $\{\omega_1, \ldots, \omega_6\}$ be the corresponding fundamental weights. Let Q be the root lattice, which is generated by the α_i, and let P be the weight lattice, which is generated by the ω_i. We have $Q \subset P$ and $(P : Q) = 3$; let $e : P \to \mathbb{Z}/3\mathbb{Z}$ be the homomorphism with kernel Q such that $e(\omega_1) = 1$. [This choice of e means that we have “oriented” the Dynkin diagram, by choosing one of its extremities.]

The scalar product on P will be denoted by $x.y$; it takes values in $\frac{1}{3}\mathbb{Z}$; for instance $\omega_1.\omega_1 = \frac{4}{3}$. We have $x.y \in \mathbb{Z}$ if $x \in P, y \in Q$; if α is a root, we have $\alpha.\alpha = 2$; we have $\alpha_i.\omega_j = \delta_{ij}$.

Let now L be the sublattice of $\mathbb{Z} \oplus P$ made up of the pairs (n, p) such that $n \equiv e(p) \pmod{3}$. We define a scalar product q_L on L by the formula:

$$q_L(n, p; n', p') = nn'/3 - p.p'.$$

Its values lie in \mathbb{Z}, and it is “\mathbb{Z}-unimodular”, i.e., it gives an isomorphism of L onto its \mathbb{Z}-dual.

[As we shall recall in §7, the lattice L is isomorphic to the Néron-Severi group of a smooth cubic surface, and the scalar product q_L corresponds to the intersection form.]

Note that Q embeds in L by $x \mapsto (0, x)$; this embedding transforms q_L into the opposite of the scalar product of Q. In particular, a root α may be viewed as an element of L such that $q_L(\alpha, \alpha) = -2$.

The intersection of L with \mathbb{Z} is generated by the element $h = (3, 0)$. We have $q_L(h, h) = 3$ and $q_L(h, x) = 0$ if $x \in Q$.

Let G be the Weyl group of R, i.e., the subgroup of $\text{Aut}(Q \otimes \mathbb{R})$ generated by the reflections s_α associated to the roots $\alpha \in R$. The group G acts on P and Q. We extend its action to $\mathbb{Z} \oplus P$, and hence to L, by making it act trivially on the factor \mathbb{Z}.

\textit{Date:} September 13, 2019.
Proofs of the following theorem can be found in the standard texts on cubic surfaces (cf. [Ma 74], chap.IV, [De 80], [Do 12], chap.9):

Theorem 1.

(a) Let \(Y \) be the set of \(y \in L \) such that \(q_L(h, y) = 1 \) and \(q_L(y, y) = -1 \). This set has 27 elements, namely the pairs \((1, \omega)\) where \(\omega \) belongs to the \(G \)-orbit of \(\omega_1 \).

(b) If \(y, y' \) are two distinct elements of \(Y \), then \(q_L(y, y') = 0 \) or 1.

(c) Let \(\Omega \) be the graph with set of vertices \(Y \), two vertices \(y, y' \) being adjacent if \(q_L(y, y') = 1 \). The natural injection \(G \to \text{Aut}(\Omega) \) is bijective.

Remark.

Since \(\omega_1 \) is orthogonal to the \(\alpha_i \) for \(i \geq 2 \), it is fixed by the group \(H \) generated by \((s_{\alpha_2}, \ldots, s_{\alpha_6}) \), which is a Weyl group of type \(D_5 \), and has index 27 in \(G \). Hence \(Y \simeq G/H \simeq \text{Weyl}(E_6)/\text{Weyl}(D_5) \).

§2. A combinatorial description of the 27-vertices graph \(\Omega \).

Let us recall how one can describe the graph of Theorem 1 in terms of a so-called “double-six”.

Let \(X = \{1, \ldots, 6\} \), and let \(X' \) be a copy of \(X \); if \(x \in X \), the corresponding point of \(X' \) is denoted by \(x' \); let \(S \) be the set of all subsets of \(X \) with 2 elements. The graph \(\Omega \) of Theorem 1 is isomorphic to the graph \(\Omega_X \) whose set of vertices is the disjoint union \(X \cup X' \cup S \), two vertices being adjacent in the following cases (and only in those):

\[
\begin{align*}
& x \in X \text{ adjacent to } y' \in X' \iff x \neq y, \\
& x \in X \text{ adjacent to } s \in S \iff x \in s, \\
& x' \in X' \text{ adjacent to } s \in S \iff x \in s, \\
& s_1 \in S \text{ adjacent to } s_2 \in S \iff s_1 \cap s_2 = \varnothing.
\end{align*}
\]

The group \(\text{Sym}_6 \) of permutations of \(X \) acts on \(\Omega_X \). Let \(\epsilon \) be the automorphism of order 2 of \(\Omega_X \) which fixes the points of \(S \) and exchanges \(x \in X \) with \(x' \in X' \); that automorphism commutes with the action of \(\text{Sym}_6 \), and we thus obtain an embedding of the group \(\{1, \epsilon\} \times \text{Sym}_6 \) into \(\text{Aut}(\Omega_X) \). From the Weyl group point of view, this corresponds to the embedding of \(\text{Weyl}(A_1 \times A_5) \simeq \{1, \epsilon\} \times \text{Sym}_6 \) into \(\text{Weyl}(E_6) \) defined by the inclusion \(A_1 \times A_5 \to E_6 \).

§3. A maximal cube of \(\text{Weyl}(E_6) \).

According to [Se 18], a cube of a Weyl group is an abelian subgroup generated by reflections. In the case of \(G = \text{Weyl}(E_6) \), the maximal cubes of \(G \) have order \(2^4 \) and are conjugate to each other; there are 135 of them.

In terms of the combinatorial description of §2, we may choose for maximal cube the group \(C \) generated by the following four reflections: the three transpositions \((12),(34),(56)\), and the automorphism \(\epsilon \).

We shall need later:

Lemma 1. The action of \(C \) on the set \(Y \) has three fixed points, and six orbits of order 4; these orbits are isomorphic to \(C/C_i \), \(i = 1, \ldots, 6 \), where the \(C_i \) are the six cubes of order 4 contained in \(C \).
Proof. The action of C fixes the points $\{1, 2\}, \{3, 4\}, \{5, 6\}$ of S. The four points $\{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}$ of S make up an orbit isomorphic to C/C_1 where C_1 is the subgroup of C generated by ϵ and the transposition (56); there are two other similar orbits in S. In $X \cup X'$, the points $1, 1', 2, 2'$ make up an orbit isomorphic to C/C_4, where C_4 is generated by the transpositions (34) and (56); there are two other similar orbits.

§4. The G-quadratic forms q_6, q_7, q_{27} and the C-quadratic form q_4.

4.1. Recall that, if G is any finite group, a G-quadratic form over a commutative ring A is a symmetric bilinear form q over an A-module E, together with an A-linear action of G on E which fixes q. In the above case, where $G = \text{Weyl}(E_6)$, we have three such examples, with $A = \mathbb{Z}$, namely:

(i) The bilinear form $\alpha.\beta$ on Q.

(ii) The bilinear form q_L on L.

(iii) The bilinear form q_Y on \mathbb{Z}^Y, given by $q_Y(e_y, e_{y'}) = \delta_{y'}^y$, where $(e_y)_{y \in Y}$ is the natural basis of Y.

In each case, the action of G is the obvious one.

4.2. Let k be a field of characteristic $\neq 2, 3$. The base change $\mathbb{Z} \to k$ transforms the three G-quadratic forms above into G-quadratic forms over k. These forms are non-degenerate (and q_7, q_{27} are also non-degenerate in characteristic 3). We shall denote them by q_6, q_7, q_{27}, but, for convenience we shall divide by 2 the first one. In other words, we put:

$$q_6(\alpha, \beta) = \frac{1}{2} \alpha.\beta,$$

so that $q_6(\alpha, \alpha) = 1$ for every $\alpha \in R$.

With standard notation, we have an isomorphism of G-quadratic forms:

$$(4.2.1)\quad q_7 = \langle 3 \rangle \oplus \langle -2 \rangle q_6,$$

with G acting trivially on the rank-1 form $\langle 3 \rangle$.

There is no such simple formula for the G-form q_{27}, since the underlying linear representation of G is not a linear combination of exterior powers of the standard degree 6 representation.

4.3. The C-quadratic form q_4.

Let C be the maximal cube introduced in §3. It contains four reflections s_1, \ldots, s_4, corresponding to mutually orthogonal roots β_1, \ldots, β_4. Let V be the k-vector subspace of $Q \otimes k$ generated by the β_i, and let q_4 denote the restriction of q_6 to V; we have $q_4(\beta_i, \beta_j) = \delta^i_j$. The group C acts in a natural way on V; hence q_4 is a C-quadratic form of rank 4. The space V splits under the action of C into four 1-dimensional subspaces, orthogonal to each other. This gives a splitting of q_4 as:

$$(4.3.1)\quad q_4 = r_1 + \cdots + r_4,$$

where r_i is the C-quadratic form of rank 1 generated by β_i, on which s_i acts by -1, and the other s_j act trivially.

4.4. Relations between the G-quadratic forms q_6, q_7, q_{27} and the C-quadratic form q_4.
Any G-quadratic form q defines, by restriction of the action of the group, a C-quadratic form, which we shall denote by $q|C$. This applies in particular to q_6, q_7, q_{27}. The C-quadratic forms so obtained can all be expressed in terms of q_4. Namely:

Theorem 2. We have the following isomorphisms of C-quadratic forms:

\[(4.4.1)\] $q_6|C = q_4 + \langle 2, 6 \rangle$,

\[(4.4.2)\] $q_7|C = \langle -2 \rangle q_4 + \langle -1, -1, 1 \rangle$,

\[(4.4.3)\] $q_{27}|C = \lambda^2 q_4 + 3 q_4 + 9$.

[Here, $\langle 2, 6 \rangle$ means the quadratic form $\langle 2 \rangle \oplus \langle 6 \rangle$ with trivial action of C. Similarly, $3q_4$ means $\langle 1, 1, 1 \rangle \otimes q_4 = q_4 \oplus q_4 \oplus q_4$ and 9 means the direct sum of nine copies of $\langle 1 \rangle$. As for $\lambda^2 q_4$, it is the second exterior power of q_4, with its natural action of C.]

Proof of (4.4.1). This is a simple computation in the root lattice Q. With Bourbaki’s notation ([Bo 68], §4.12), we may choose for β_i the roots $\epsilon_1 + \epsilon_2, \epsilon_1 - \epsilon_2, \epsilon_3 + \epsilon_4, \epsilon_3 - \epsilon_4$. They are orthogonal to $\gamma = \epsilon_5$ and $\delta = \epsilon_8 - \epsilon_6 - \epsilon_7$. Moreover, γ and δ are orthogonal to each other, $\frac{1}{2} \gamma, \gamma = \frac{1}{2}$, and $\frac{1}{2} \delta, \delta = \frac{3}{2}$. Hence the orthogonal V' of V in $Q \otimes k$ is quadratically isomorphic to $\langle \frac{1}{2}, \frac{3}{2} \rangle = (2, 6)$, and the action of C on V' is trivial.

Proof of (4.4.2). We have

\[q_7|C = \langle 3 \rangle + \langle -2 \rangle q_6|C\] by (4.2.1),

\[= \langle 3 \rangle + \langle -2 \rangle (q_4 + \langle 2, 6 \rangle)\] by (4.4.1),

\[= \langle -2 \rangle q_4 + \langle 3, -1, -1 \rangle,\]

\[= \langle -2 \rangle q_4 + \langle -1, -1, 1 \rangle \text{ since } \langle 3, -3 \rangle = \langle 1, -1 \rangle.

Proof of (4.4.3). Lemma 1 gives a decomposition of $q_{27}|C$ as the orthogonal sum of $\langle 1, 1, 1 \rangle$ with trivial action, and six C-quadratic forms q_i' associated with the permutation sets C/C_i, where the C_i are the six cubes of order 4 contained in C. Consider for instance the case where C_i is generated by s_1, s_2, as in §4.3. In that case, one finds that $q_i' = 1 + r_3 + r_4 + r_3r_4$, where the r_i are the C-quadratic forms of rank 1 occurring in (4.3.1). The other q_i' correspond similarly to the pairs (13), (14), (23), (24), (34). Adding up gives:

\[q_{27}|C = 3 + 6 + 3 \sum_{n=1}^{4} r_n + \sum_{1 \leq m < n \leq 4} r_mr_n,\]

By (4.3.1), we have $\sum_{n=1}^{4} r_n = q_4$ and $\sum_{1 \leq m < n \leq 4} r_mr_n = \lambda^2 q_4$. We thus obtain (4.4.3).

§5. Twists.

We keep the assumption that the characteristic of k is $\neq 2, 3$. Let k_s be a separable closure of k. Let $\Gamma_k = \text{Gal}(k_s/k)$ be the “absolute Galois group” of k. If $\varphi : \Gamma_k \rightarrow G$ is a continuous homomorphism, we can use φ to twist (cf. [Se 94], chap.III, §1) any G-quadratic form q over k and we thus find a quadratic form q_φ over k. This applies in particular to the G-forms q_6, q_7, q_{27} above. Relation (4.2.1) implies:

\[(5.1)\] $q_7, \varphi = \langle 3 \rangle + \langle -2 \rangle q_6, \varphi,$
where the + sign means addition in the Witt-Grothendieck group of \(k \).

What is less obvious is that there is also a formula for \(q_{27,\varphi} \) in terms of \(q_{6,\varphi} \):

Theorem 3. We have:

\[
q_{27,\varphi} = \lambda^2(q_{6,\varphi}) + \langle 3 \rangle q_{6,\varphi} + 6.
\]

The proof will be given in §6.

Remarks.

1. By using (4.2.1), we may express \(q_{27,\varphi} \) in terms of \(q_{7,\varphi} \). The result is:

\[
q_{27,\varphi} = \lambda^2(q_{7,\varphi}) + \langle -1 \rangle - \langle 2 \rangle q_{7,\varphi} + 7 - \langle -2 \rangle.
\]

This less appetizing formula has the advantage of making sense (and being true) also in characteristic 3, in which case it reduces to \(q_{27,\varphi} = \lambda^2(q_{7,\varphi}) + 6 \).

2. The quadratic form \(q_{27,\varphi} \) may also be viewed as a trace form. Indeed, the group \(\Gamma_k \) acts on \(Y \) via \(\varphi \), and this defines an étale algebra of rank 27 over \(k \) whose trace form is \(q_{27,\varphi} \), cf. e.g., [BS 94], §1.

3. We have here chosen the case of \(Y = G/H \), where \(H = \text{Weyl}(D_5) \). A similar method can be applied to any \(G \)-set; it gives a formula expressing the corresponding trace form as a linear combination of the \(\lambda^n(q_{7,\varphi}) \), \(n = 0, 1, ..., 4 \), the coefficients being \(\mathbb{Z} \)-linear combinations of \(1 \), \(\langle -1 \rangle \), \(\langle 2 \rangle \), and \(\langle -2 \rangle \). What is remarkable in the case \(H = \text{Weyl}(D_5) \) is that the higher exterior powers \(\lambda^3 \) and \(\lambda^4 \) do not occur in the formula.

The proof follows the method used in [Se 03] for the symmetric groups, and generalized in [Se 18] to all Weyl groups: checking first the case where \(\varphi : \Gamma_k \to G \) takes values in the maximal cube \(C \), and then showing that this special case implies the general one.

The quadratic form \(q_{5,\varphi} \).

Lemma 2. The quadratic form \(q_{6,\varphi} \) represents 6.

(Hence, there is a uniquely defined \(q_{5,\varphi} \) such that \(q_{5,\varphi} = q_{5,\varphi} + \langle 6 \rangle \).

Proof. By a standard theorem on quadratic forms, it is enough to prove this after replacing \(k \) by any odd-degree finite extension. Since \(H \) has odd degree in \(G \), this means that we may assume that \(\varphi \) maps \(\Gamma_k \) into \(H \). The group \(H = \text{Weyl}(D_5) \) has a natural representation of degree 5 (namely on its root lattice), which is isomorphic to the standard one (on \(k^5 \), by permutations and odd number of sign changes on the natural basis \(e_1, ..., e_5 \) of \(k^5 \)); let \(q_5 \) be the unit quadratic form \(\langle 1, 1, 1, 1, 1 \rangle \) on \(k^5 \); it is invariant by \(H \), hence its twist \(q_{5,\varphi} \) by \(\varphi \) makes sense. We have the following isomorphism of \(H \)-quadratic forms:

\[
(*) \quad q_6|H = q_5 + \langle 6 \rangle,
\]

where \(q_6|H \) means \(q_6 \), viewed as an \(H \)-form.

§6. Proof of Theorem 3.

6.1. **Proof of Theorem 3 when \(\varphi \) maps \(\Gamma_k \) into \(C \).**

By (4.4.1) and (4.4.3), we have:

\[
q_{6,\varphi} = q_{4,\varphi} + \langle 2, 6 \rangle,
\]
(6.1.2) \(q_{27,\varphi} = \lambda^2 q_{4,\varphi} + 3q_{4,\varphi} + 9. \)

The first formula implies:

(6.1.3) \(\lambda^2 q_{6,\varphi} = \lambda^2 q_{4,\varphi} + \langle 2, 6 \rangle q_{4,\varphi} + \langle 3 \rangle, \)

hence:

(6.1.4) \(\lambda^2 q_{6,\varphi} + \langle 3 \rangle q_{6,\varphi} + 6 = \lambda^2 q_{4,\varphi} + \langle 2, 3, 6 \rangle q_{4,\varphi} + \langle 2, 3, 6 \rangle + 6; \)

since \(\langle 3, 6 \rangle \) represents 1 (because \(3 + 6 = 3^2 \)), we have \(\langle 3, 6 \rangle = \langle 2, 1 \rangle \), hence \(\langle 2, 3, 6 \rangle = \langle 2, 2, 1 \rangle = (1, 1, 1) = 3 \), and we may rewrite (6.1.4) as:

(6.1.5) \(\lambda^2 q_{6,\varphi} + \langle 3 \rangle q_{6,\varphi} + 6 = \lambda^2 q_{4,\varphi} + 3q_{4,\varphi} + 9. \)

By comparing (6.1.2) and (6.1.5) we obtain (5.2).

6.2. The Witt-Grothendieck invariants defined by \(q_6, q_7, q_{27} \).

(In what follows, we use freely the definitions and the elementary properties of the “invariant” of an algebraic group given in the first sections of [Se 03].)

The cohomology set \(H^1(k, G) \) of all \(G \)-torsors over \(k \) can be canonically identified with the conjugation classes of continuous homomorphisms \(\varphi : \Gamma_k \to G \), cf. e.g. [BS 94], §1. Since the Galois twists defined by conjugate homomorphisms are the same, we may interpret the maps \(\varphi \mapsto q_{6,\varphi}, q_{7,\varphi}, q_{27,\varphi} \) as maps of \(H^1(k, G) \) into the Witt-Grothendieck ring \(WGr(k) \) of \(k \); let us denote them by \(a_{6,k}, a_{7,k}, a_{27,k} \). This construction applies to all the field extensions \(K \) of \(k \), and we thus obtain three Witt-Grothendieck invariants \(a_6, a_7, a_{27} \) of \(G \), i.e. three elements of the group \(\text{Inv}(G, WGr) \), cf. [Se 03], VIII. For every subgroup \(H \) of \(G \), there is a natural restriction map \(\text{Inv}(G, WGr) \to \text{Inv}(H, WGr) \), cf. [Se 03], §13.

A basic fact about invariants is:

Theorem 4. Assume that the characteristic of \(k \) is \(\neq 2 \). Let \(G \) be a Weyl group, and let \(a \in \text{Inv}(G, WGr) \). Assume that the restriction of \(a \) to every cube of \(G \) is 0. Then \(a = 0 \).

This is proved in [Se 03], §29, when \(G \) is a symmetric group (for Witt invariants - the case of the Witt-Grothendieck invariants follows). The proof for an arbitrary Weyl group is similar; it only requires some extra arguments for the small characteristics, such as 3 for \(G_2, E_6, E_7, E_8 \) and 5 for \(E_8 \). Details will hopefully be given in [Se ??].

6.3. End of the proof of Theorem 3.

We apply Theorem 4 with \(G = G \), and with \(a \in \text{Inv}(G, WGr) \) defined by:

(6.3.1) \(a = a_{27} - \lambda^2 a_6 - \langle 3 \rangle a_6 - 6. \)

By §6.1, the restriction of \(a \) to \(C \) is 0. Since every cube \(C' \) of \(G \) is conjugate to a subgroup of \(C \), the restriction of \(a \) to \(C' \) is 0. By Theorem 4, this implies \(a = 0 \); hence (5.2).

Remark. The same method can be used to give the structure of \(\text{Inv}(G, WGr) \). The result is simpler to state for the Witt invariant ring \(\text{Inv}(G, W) \): this ring is a free \(W(k) \)-module with basis the five elements \(\lambda^i a_6, i = 0, \ldots, 4 \).

§7. The cubic surfaces and their 27 lines.
7.1. Here, we drop our assumptions on the ground field k, i.e., we accept \(\text{char}(k) = 2 \) or 3.

Let $V \subset \mathbb{P}_3$ be a smooth cubic surface over k. It is well known that, over a suitable field extension of k, it contains 27 lines, cf. [Do 12], chap.9 and [Ma 74], chap.IV. These lines are rational over k, cf. [Co 88], Theorem 1 and [KW 17], Corollary 52. Let L_V be the Néron-Severi group of V over k_s, equipped with the symmetric \mathbb{Z}-bilinear form “intersection product”. It is a lattice of rank 7, and it contains the following elements:

(a) The class h_V of the hyperplane sections of V; we have $h_V.h_V = 3$.

(b) The set Y_V of the classes of the 27 lines; if $y \in Y_V$, we have $y.y = -1$ and $h_V.y = 1$; if $y' \in Y_V$ is distinct from y, we have $y.y' = 0$ if the corresponding lines are disjoint, and $y.y' = 1$ if they meet.

It is well known that the triple $T_V = (L_V, h_V, \text{intersection product})$ is isomorphic to the triple $T = (L, h, q_L)$ of §1; see the above references. More precisely, let Θ_V denote the set of isomorphisms $\theta : T_V \to T$. We have a left action of $G = \text{Weyl}(\mathbb{E}_6) = \text{Aut}(T)$ on Θ_V, by $g\theta = g \circ \theta$; that action is free, and transitive. On the other hand, we have a right action of Γ_k on Θ_V, by $\theta \gamma = \theta \circ \gamma$, for $\gamma \in \Gamma_k$. These two actions commute. We may view such a situation in the following equivalent ways (cf. [BS 94], §1.3):

\begin{enumerate}
\item[(7.1.1)] The action of Γ_k on Θ_V defines an étale algebra E_V, on which G acts, and one hence gets a G-Galois algebra over k.
\item[(7.1.2)] The k-finite étale scheme Spec E_V is a G-torsor over k, whose set of k_s-points is Θ_V.
\item[(7.1.3)] If we choose a point θ of Θ_V, for every $\gamma \in \Gamma_k$ there is a unique element $\varphi(\gamma)$ of G such that $\varphi(\gamma)\theta = \theta\gamma$, and the map $\gamma \mapsto \varphi(\gamma)$ is a continuous homomorphism $\varphi : \Gamma_k \to G$. Changing the choice of θ replaces φ by a conjugate.
\end{enumerate}

Each of these points of view show that \textit{we have associated to V a G-torsor over k, i.e. an element e_V of $H^1(k, G)$}.

7.2. Assume now that $\text{char}(k) \neq 2$. As in §5, we may twist the quadratic forms q_7 and q_{27} by the torsor e_V defined above. If we define $\varphi : \Gamma_k \to G$ as in (7.1.3), we obtain the quadratic forms $q_{7, \varphi}$ and $q_{27, \varphi}$; if, moreover $\text{char}(k) \neq 3$, we obtain similarly a quadratic form $q_{6, \varphi}$. Since these forms depend only of the cubic surface V, we may denote them by $q_{7,V}$, $q_{27,V}$ and $q_{6,V}$. By (5.2) and (5.3), we have:

Theorem 5.

\begin{enumerate}
\item[(7.2.1)] $q_{27,V} = \lambda^2(q_{6,V}) + \langle 3 \rangle q_{6,V} + 6$, if $\text{char}(k) \neq 3$.
\item[(7.2.2)] $q_{27,V} = \lambda^2(q_{7,V}) + \langle -1 - 2 \rangle q_{7,V} + 7 - \langle -2 \rangle$.
\end{enumerate}

7.3. **Interpretations of $q_{7,V}$ and $q_{27,V}$**.

(a) The case of $q_{7,V}$.

Let us denote by V_s the k_s-variety deduced from V by the base change $k \to k_s$. The Néron-Severi group L_V is equal to the divisor class group $H^1(V_s, \mathcal{O}^*_{V_s})$. The map $f \mapsto df/f$ gives a homomorphism $\mathcal{O}^*_{V_s} \to \Omega^1_{V_s}$; we thus get an homomorphism $L_V \to H^1(V_s, \Omega^1_{V_s})$, hence also $k_s \otimes \mathbb{Z} L_V \to H^1(V_s, \Omega^1_{V_s})$.

Since V_s is a smooth rational surface, this map is an isomorphism. Moreover, it transforms the intersection form on $k_s \otimes \mathbb{Z} L_V$ into the cup-product $H^1(V_s, \Omega^1_{V_s}) \otimes H^1(V_s, \Omega^1_{V_s}) \to H^2(V_s, \Omega^2_{V_s}) \simeq k_s$. By descent, this gives an interpretation of $q_{7,V}$ as the quadratic space $H^1(V_s, \Omega^1_{V_s})$ endowed with its natural cup-product form.

(b) The case of $q_{27,V}$.

That quadratic form is the trace form of the étale algebra A_{27} defined by the Γ-set Y_V of the 27 lines. One may also view A_{27} as the subalgebra of the G-Galois algebra E_V of (7.1.1) which is fixed by the subgroup $H \simeq \text{Weyl}(D_5)$ defined at the end of §1.

7.4. A question.

It would be interesting to be able to compute the quadratic form $q_{7,V}$ (and hence also $q_{27,V}$) directly from the knowledge of the cubic equation F defining V; this would certainly involve using the invariants of F defined by Sylvester. A first step in that direction is the computation of the first Stiefel-Whitney class $w_1(q_{7,V})$ by T. Saito ([Sa 12], §5.4)): it is the element of $H^1(k, \mu_2) = k^*/k^{*2}$ defined by $-\text{disc}_d(F)$, where disc_d is the “divided discriminant”; this amounts to computing the homomorphism $\Gamma_k \to G \to \{1, -1\}$ associated with V. The next step would be the determination of $w_2(q_{7,V})$.

Bibliography

[Bo 68] N. Bourbaki, Groupes et algèbres de Lie, Chap. VI, Systèmes de racines, Hermann, Paris, 1968.
[BS 94] E. Bayer-Fluckiger & J-P. Serre, Torsions quadratiques et bases normales autoduales, Amer. J. Math. 116 (1994), 1-63.
[Co 88] C.M. Coombes, Every rational surface is separably split, Comm. Math. Helv. 63 (1988), 305-311.
[De 80] M. Demazure, Surfaces de Del Pezzo II-V, L.N.M. 777 (1980), 23-69.
[Do 12] I.V. Dolgachev, Classical Algebraic Geometry: a modern view, Cambridge Univ. Press, 2012.
[KW 17] J. Kass, K. Wickelgren, An arithmetic count of the lines of a smooth cubic surface, preprint (2017), arXiv:1708.01175.
[Ma 74] Y. Manin, Cubic Forms, Algebra, Geometry, Arithmetic, North-Holland, 1974; second edit., 1986.
[Sa 12] T. Saito, The discriminant and the determinant of a hypersurface of even dimension, Math. Res. Lett. 19 (2012), 855-871.
[Se 94] J-P. Serre, Cohomologie galoisienne, LN 5, fifth edit., Springer-Verlag, 1994.
[Se 03] —–, Cohomological invariants, Witt invariants and trace forms, ULS 28, 1-100, AMS (2003).
[Se 18] —–, Cohomological invariants mod 2 of Weyl groups, to appear in Oberwolfach reports (2018); arXiv: 1805.07172 (math.AG).
[Se ??] —– , Invariants cohomologiques et invariants de Witt des groupes de Weyl, in preparation.