AN ANALYTIC GENERALIZATION OF THE CATALAN NUMBERS AND ITS INTEGRAL REPRESENTATION

WEN-HUI LI, JIAN CAO, DA-WEI NIU, JIAO-LIAN ZHAO, AND FENG QI*

Dedicated to people facing and battling COVID-19

Abstract. In the paper, the authors analytically generalize the Catalan numbers in combinatorial number theory, establish an integral representation of the analytic generalization of the Catalan numbers by virtue of Cauchy’s integral formula in the theory of complex functions, and point out potential directions to further study.

Contents

1. Backgrounds and motivations 1
2. An explicit formula for generalized Catalan numbers of the second kind 4
3. An integral representation for generalized Catalan numbers of the second kind 6
4. Potential directions to further study 10
4.1. Generalized Catalan function of the second kind 10
4.2. Central binomial coefficients 10
5. Declarations 11
References 12

1. Backgrounds and motivations

The Catalan numbers

\[C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{4^n \Gamma(n + 1/2)}{\sqrt{\pi} \Gamma(n + 2)} \] (1.1)

form a sequence of integers [8, 10, 51], have combinatorial interpretations [10, 48], have a long history [8, 27], and can be generated [48, 53] by

\[G(x) = \frac{2}{1 + \sqrt{1 - 4x}} = \sum_{n=0}^{\infty} C_n x^n, \] (1.2)

where

\[\Gamma(z) = \lim_{n \to \infty} \frac{n! n^z}{\prod_{k=0}^{n} (z + k)}, \quad z \neq 0, -1, -2, \ldots \]

2020 Mathematics Subject Classification. Primary 05A15; Secondary 11B75, 11B83, 26A09, 30E20, 41A58.

Key words and phrases. Catalan number; generalized Catalan function; generalized Catalan number; Cauchy’s integral formula; generalization; generating function; integral representation.

*Corresponding author.

This paper was typeset using \texttt{AMSG-\LaTeX}.
is the classical Euler gamma function [17, 34].

In the electronic preprint [39] and its formally published version [44], starting from the second expression in terms of gamma functions in [11], the Catalan numbers \(C_n \) were analytically generalized to generalized Catalan function

\[
C(a, b; z) = \frac{\Gamma(b)}{\Gamma(a)} \left(\frac{b}{a} \right)^z \frac{\Gamma(z+a)}{\Gamma(z+b)}, \quad \Re(a), \Re(b) > 0, \quad \Re(z) \geq 0
\]

(1.3)

with

\[
C\left(\frac{1}{2}, 2; n \right) = C_n, \quad n \geq 0.
\]

(1.4)

Hereafter, generalized Catalan function \(C(a, b; z) \) and its analytic generalizations were deeply investigated in [3, 14, 15, 19, 21, 22, 24, 25, 27, 28, 29, 30, 31, 35, 38, 40, 43, 46, 47, 50, 58, 59] and closely related references therein.

The Catalan numbers \(C_n \) for \(n \geq 0 \) have several integral representations which have been surveyed in [27, Section 2]. The integral representation

\[
C_n = \frac{1}{2\pi} \int_0^4 \sqrt{\frac{4-x}{x}} x^n dx, \quad n \geq 0
\]

(1.5)

was discovered in [18] and applied in [47]. An alternative integral representation

\[
C_n = \frac{1}{\pi} \int_0^\infty \frac{\sqrt{t}}{(t+1/4)^{n+2}} dt
\]

(1.6)

was derived from the integral representation

\[
\frac{1}{1 + \sqrt{1-4x}} = \frac{1}{2\pi} \int_0^\infty \frac{\sqrt{t}}{1/4 + t} \frac{1}{1/4 + t - x} dt, \quad x \in \left(-\infty, \frac{1}{4} \right]
\]

(1.7)

which was established in [40, Theorem 1.3] by virtue of Cauchy’s integral formula in the theory of complex functions.

The generalized Catalan function \(C(a, b; z) \) defined by (1.3) has also several integral representations which have been surveyed in [27, Section 2]. For example, corresponding to integral representations in (1.5) and (1.6), integral representations

\[
C(a, b; x) = \left(\frac{a}{b} \right)^{b-1} \frac{1}{B(a, b-a)} \int_0^{b/a} \left(\frac{b}{a} - t \right)^{b-a-1} t^{x+a-1} dt
\]

(1.8)

and

\[
C(a, b; x) = \left(\frac{a}{b} \right)^a \frac{1}{B(a, b-a)} \int_0^\infty \frac{t^{b-a-1}}{(t+a/b)^{x+b}} dt.
\]

(1.9)

for \(b > a > 0 \) and \(x \geq 0 \) were established in [35, Theorem 4], where the classical beta function \(B(z, w) \) can be defined or expressed in [21, 54] by

\[
B(z, w) = \int_0^1 t^{z-1}(1-t)^{w-1} dt = \int_0^\infty \frac{t^{z-1}}{(1+t)^{z+w}} dt = \frac{\Gamma(z)\Gamma(w)}{\Gamma(z+w)}
\]

for \(\Re(z), \Re(w) > 0 \). We note that, when letting \(a = \frac{1}{2} \) and \(b = 2 \), the integral representations (1.8) and (1.9) become those in (1.5) and (1.6) respectively.

The generating function \(G(x) \) in (1.2) can be regarded as a special case \(a = \frac{1}{2}, b = \frac{1}{4}, \) and \(c = 1 \) of the function

\[
G_{a, b, c}(x) = \frac{1}{a + \sqrt{b-cx}}, \quad a \geq 0, b, c > 0.
\]
Essentially, it is better to regard the function
\[G_{a,b}(x) = \frac{1}{a + \sqrt{b - x}}, \quad a \geq 0, b > 0 \]
(1.10)
as a generalization of the generating function \(G(x) \), because
\[G_{1/2,1/4}(x) = G(x), \quad G_{a,b}(x) = G_{a,b,1}(x), \quad G_{a,b,c}(x) = \frac{G_{a/\sqrt{c},b/c}(x)}{\sqrt{c}}, \]
but we cannot express \(G_{a,b}(x) \) in terms of \(G(x) \).

Now we would like to pose the following three problems.

1. Can one establish an explicit formula for the sequence \(C_n(a,b) \) generated by
\[G_{a,b}(x) = \sum_{k=0}^{\infty} C_n(a,b)x^n \]
(1.11)
for \(a \geq 0 \) and \(b > 0 \)?

2. Can one find an integral representation for the sequence \(C_n(a,b) \) by finding an integral representation of the generating function \(G_{a,b}(x) \) in (1.10)?

3. Can one combinatorially interpret the sequence \(C_n(a,b) \) or some special case of \(C_n(a,b) \) except the case \(a = \frac{1}{2} \) and \(b = \frac{1}{4} \)?

It is easy to see that
\[\lim_{a \to 0^+} C_n(a,b) = \frac{(-1)^n}{n!} \left(-\frac{1}{2} \right) \frac{1}{b^{(2n+1)/2}} \]
(1.12)
and
\[C_n\left(\frac{1}{2},\frac{1}{4}\right) = C_n \]
(1.13)
for \(n \geq 0 \), where the notation
\[(\alpha)_n = \prod_{k=0}^{n-1} (\alpha - k) = \begin{cases} \alpha(\alpha - 1)\cdots(\alpha - n + 1), & n \geq 1 \\ 1, & n = 0 \end{cases} \]
for \(\alpha \neq 0 \) is called the falling factorial [36, 37, 41]. Comparing (1.13) with (1.4) reveals that
\[C(a,b;n) \neq C_n(a,b), \]
although it is possible that
\[\{C(a,b;n) : n \geq 0, a \geq 0, b > 0\} = \{C_n(a,b) : n \geq 0, a \geq 0, b > 0\} \]
or that there exist two 2-tuples \((a_n,b_n) \in (0,\infty) \times (0,\infty) \) and \((\alpha_n,\beta_n) \in (0,\infty) \times (0,\infty) \) such that
\[C(a_n,b_n;n) = C_n(\alpha_n,\beta_n) \]
for all \(n \geq 0 \).

For our own convenience and referencing to the convention in mathematical community, while calling \(C(a,b;n) \) for \(n \geq 0, a \geq 0, \) and \(b > 0 \) generalized Catalan numbers of the first kind, we call \(C_n(a,b) \) for \(n \geq 0, a \geq 0, \) and \(b > 0 \) generalized Catalan numbers of the second kind.

In this paper, we will give solutions to the first two problems above: establishing an explicit formula for generalized Catalan numbers of the second kind \(C_n(a,b) \) and finding an integral representation for generalized Catalan numbers of the second kind \(C_n(a,b) \) by finding an integral representation of the generating function \(G_{a,b}(x) \) in (1.10), while leaving the third problem above to interested combinatorists.
2. AN EXPLICIT FORMULA FOR GENERALIZED CATALAN NUMBERS OF THE SECOND KIND

In this section, we will establish an explicit formula for generalized Catalan numbers of the second kind $C_n(a, b)$, which gives a solution to the first problem posed on page 3.

Theorem 2.1. The generalized Catalan numbers of the second kind $C_n(a, b)$ for $n \geq 0$, $a \geq 0$, and $b > 0$ can be explicitly computed by

$$C_n(a, b) = \frac{1}{(2n)!} \frac{1}{b^{n+1/2}} \sum_{k=0}^{n} \frac{(2n-k-1)!!}{2(n-k)} \left(\frac{b}{1 + a/\sqrt{b}} \right)^{k+1},$$

where the double factorial of negative odd integers $-(2\ell + 1)$ is defined by

$$(-2\ell - 1)!! = \frac{(-1)\ell}{(2\ell - 1)!!} = \frac{(-1)^\ell (2\ell)!!}{(2\ell)!}, \quad \ell \geq 0.$$

Proof. The Bell polynomials of the second kind $B_{n,k}(x_1, x_2, \ldots, x_{n-k+1})$ for $n \geq k \geq 0$ are defined in [5] p. 134, Theorem A] by

$$B_{n,k}(x_1, x_2, \ldots, x_{n-k+1}) = \sum_{1 \leq i_1 \leq n-k+1}^{n-k+1} \prod_{i=1}^{n-k+1} \left(\frac{x_i}{i!} \right)^{\ell_i}.$$

The famous Faà di Bruno formula can be described in [5] p. 139, Theorem C] in terms of the Bell polynomials of the second kind $B_{n,k}(x_1, x_2, \ldots, x_{n-k+1})$ by

$$\frac{d^n}{dx^n} f \circ h(x) = \sum_{k=0}^{n} f^{(k)}(h(x)) B_{n,k}(h'(x), h''(x), \ldots, h^{(n-k+1)}(x)).$$

where $f \circ h$ denotes the composite of the n-time differentiable functions f and h.

Let $h = h(x) = \sqrt{b - x}$. Then

$$h^{(k)}(x) = (-1)^k \left(\frac{1}{2} \right)^k (b - x)^{1/2-k} \rightarrow (-1)^k \left(\frac{1}{2} \right)^k h^{1/2-k}, \quad x \to 0$$

for $k \geq 0$ and, in light of the formula (2.2),

$$\frac{d^n}{dx^n} G_{n,b}(x) = \sum_{k=0}^{n} \frac{d^k}{dh^k} \left(\frac{1}{a + h} \right) B_{n,k}(h'(x), h''(x), \ldots, h^{(n-k+1)}(x))$$

$$= \sum_{k=0}^{n} (-1)^k \frac{k!}{a + h(x)^{k+1}} B_{n,k}(h'(x), h''(x), \ldots, h^{(n-k+1)}(x))$$

$$\rightarrow \sum_{k=0}^{n} (-1)^k \frac{k!}{a + (b(0))^{k+1}} B_{n,k} \left(\left(\frac{1}{2} \right)^{1/2}, \left(\frac{1}{2} \right)^{-3/2}, \ldots, \left(\frac{1}{2} \right)^{1/(n-k+1)} \right), \quad x \to 0$$

$$= \sum_{k=0}^{n} (-1)^k \frac{k!}{(a + \sqrt{b})^{k+1}} (1)^{b^{1/2-n}} B_{n,k} \left(\left(\frac{1}{2} \right)^{1/(n-k+1)} \right)$$
AN ANALYTIC GENERALIZATION OF THE CATALAN NUMBERS

\[
\begin{align*}
= & \frac{1}{2n^{b^{n+1/2}}} \sum_{k=0}^{n} k! [2(n-k) - 1]!! \left(\frac{2n-k-1}{2(n-k)} \right) \left(\frac{\sqrt{b}}{a + \sqrt{b}} \right)^{k+1},
\end{align*}
\]

where we used the formulas

\[
B_{n,k}(abx_1, ab^2 x_2, \ldots, ab^{n-k+1} x_{n-k+1}) = a^k b^n B_{n,k}(x_1, x_2, \ldots, x_{n-k+1})
\]

and

\[
B_{n,k}\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}, n-k+1\right) = (-1)^{n+k}[2(n-k) - 1]!! \left(\frac{1}{2} \right)^n \left(\frac{2n-k-1}{2(n-k)} \right)
\]

for \(n \geq k \geq 0 \), see [5, p. 135] and the formula (3.6) in the first two lines on [36, p. 168] respectively. By the way, the formula (2.3) is connected with [32, Remark 1], [37, Section 1.3], [42, Theorem 4], and closely related references therein.

The equation (1.11) means that

\[
\frac{n!}{C_n(a,b)} = \lim_{x \to 0} \frac{d^n G_{a,b}(x)}{d x^n}.
\]

Consequently, we obtain the explicit formula

\[
C_n(a,b) = \frac{1}{(2n)!!b^{n+1/2}} \sum_{k=0}^{n} k! [2(n-k) - 1]!! \left(\frac{2n-k-1}{2(n-k)} \right) \left(\frac{\sqrt{b}}{a + \sqrt{b}} \right)^{k+1},
\]

which can be rearranged as (2.1). The proof of Theorem 2.1 is complete. \(\square \)

Corollary 2.1 ([42, Theorem 1.3]). The Catalan number \(C_n \) for \(n \geq 0 \) can be explicitly computed by

\[
C_n = \frac{1}{n!} \sum_{\ell=0}^{n} \binom{n + \ell - 1}{2\ell} (n - \ell)!(2\ell - 1)!!.
\]

Proof. This follows from utilizing the relation (1.13) and applying \(a = \frac{1}{2} \) and \(b = \frac{1}{4} \) in (2.1). The proof of Corollary 2.1 is complete. \(\square \)

Remark 2.1. Taking \(a \to 0^+ \) on both sides of the formula (2.1) and employing the equation (1.12) result in

\[
\sum_{k=0}^{n} \binom{n + \ell - 1}{2\ell} (n - \ell)!(2\ell - 1)!! = (2n - 1)!!.
\]

Combining (2.4) with the first equality in (1.1) gives

\[
\sum_{\ell=0}^{n} \binom{n + \ell - 1}{2\ell} (n - \ell)!(2\ell - 1)!! 2^\ell = \frac{n!}{n+1} \binom{2n}{n}.
\]

Stimulated by these two identities and the formula (2.1) in Theorem 2.1 we would like to ask a question: can one use a simple quantity to express the sum

\[
\sum_{\ell=0}^{n} \binom{n + \ell - 1}{2\ell} (n - \ell)!(2\ell - 1)!! t^\ell
\]

for \(t \in \mathbb{R} \setminus \{0, 1, 2\} \)?
3. An integral representation for generalized Catalan numbers of the second kind

In this section, we will find an integral representation for generalized Catalan numbers of the second kind \(C_n(a, b) \) by finding an integral representation of the generating function \(G_{a,b}(x) \) in (1.10), which gives a solution to the second problem posed on page 3.

Theorem 3.1. The principal branch of the generating function \(G_{a,b}(z) \) for \(a \geq 0 \) and \(b > 0 \) can be represented by

\[
G_{a,b}(z) = \frac{1}{a + \sqrt{b - z}} = \frac{1}{\pi} \int_0^\infty \frac{\sqrt{t}}{a^2 + t(b + t - z)} dt, \quad z \in \mathbb{C} \setminus [b, \infty).
\]

Consequently, generalized Catalan numbers of the second kind \(C_n(a, b) \) for \(a \geq 0 \) and \(b > 0 \) can be represented by

\[
C_n(a, b) = \frac{1}{\pi} \int_0^\infty \frac{\sqrt{t}}{a^2 + t(b + t)^n} dt, \quad n \geq 0.
\]

Proof. Let

\[
F(z) = \frac{1}{a + \exp \frac{\ln(-z)}{2}}, \quad z \in \mathbb{C} \setminus [0, \infty), \quad \arg z \in (0, 2\pi),
\]

where \(i = \sqrt{-1} \) is the imaginary unit and \(\arg z \) stands for the principal value of the argument of \(z \). By virtue of Cauchy’s integral formula \([3] \) p. 113 in the theory of complex functions, for any fixed point \(z_0 = x_0 + iy_0 \in \mathbb{C} \setminus [0, \infty) \), we have

\[
F(z_0) = \frac{1}{2\pi i} \int_L \frac{F(\xi)}{\xi - z_0} d\xi,
\]

where \(L \) is a positively oriented contour \(L(r, R) \) in \(\mathbb{C} \setminus [0, \infty) \), as showed in Figure 1 satisfying

1. \(0 < r < |z_0| < R \);
2. \(L(r, R) \) consists of the half circle \(z = re^{i\theta} \) for \(\theta \in \left[\frac{\pi}{4}, \frac{3\pi}{4} \right] \);
3. \(L(r, R) \) consists of the line segments \(z = x \pm ir \) for \(x \in (0, R(r)) \), where \(R(r) = \sqrt{R^2 - r^2} \);
4. \(L(r, R) \) consists of the circular arc \(z = Re^{i\theta} \) for

\[
\theta \in \left[\arctan \frac{r}{R(r)}, 2\pi - \arctan \frac{r}{R(r)} \right);
\]

5. the line segments \(z = x \pm ir \) for \(x \in (0, R(r)] \) cut the circle \(|z| = R \) at the points \(R(r) \pm ir \) and \(R(r) \to R \) as \(r \to 0^+ \).

The integral on the circular arc \(z = Re^{i\theta} \) equals

\[
\frac{1}{2\pi i} \int_{\arcsin[r/R(r)]}^{2\pi - \arcsin[r/R(r)]} \frac{Re^{i\theta}}{Re^{i\theta} - z_0} \left[a + \exp \frac{\ln(-Re^{i\theta})}{2} \right] d\theta
\]

\[
= \frac{1}{2\pi} \int_{\arcsin[r/R(r)]}^{2\pi - \arcsin[r/R(r)]} \frac{1}{(1 - z_0 / R \exp[\ln R + i \arg(-Re^{i\theta})] / R) \left[a + \exp \frac{\ln R + i \arg(-Re^{i\theta})}{2} \right]} d\theta
\]

\[
\to 0
\]

uniformly as \(R \to \infty \).
The integral on the half circle $z = re^{i\theta}$ for $\theta \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ is

$$\frac{1}{2\pi i} \int_{\pi/2}^{3\pi/2} r e^{i\theta} \left(\frac{r e^{i\theta} - z_0}{\ln(-r e^{i\theta})}\right) \frac{1}{2} \frac{\ln(-r e^{i\theta})}{e^{i\theta} - z_0} \, d\theta = \frac{1}{2\pi} \int_{\pi/2}^{3\pi/2} \frac{r e^{i\theta}}{e^{i\theta} - z_0} \, d\theta \rightarrow 0$$

uniformly as $r \to 0^+$.
Since
\[F(x + ir) = \frac{1}{a + \exp \frac{\ln(-x-ri)}{2}} = \frac{1}{a + \exp \frac{\ln \sqrt{x^2 + r^2 + i[\arctan(r/x) - \pi]}}{2}} = \frac{1}{a + \sqrt{x^2 + r^2} \left[\cos \frac{\arctan(r/x) - \pi}{2} + i \sin \frac{\arctan(r/x) - \pi}{2} \right]} = \frac{1}{a + \sqrt{x^2 + r^2} \left[\sin \frac{\arctan(r/x)}{2} - i \cos \frac{\arctan(r/x)}{2} \right]} = \frac{1}{a + \sqrt{x^2 + r^2} \left[\frac{\arctan(r/x)}{2} - i \sqrt{x^2 + r^2} \cos \frac{\arctan(r/x)}{2} \right]} = \frac{1}{a + \sqrt{x^2 + r^2} \left[\frac{\arctan(r/x)}{2} + i \sqrt{x^2 + r^2} \cos \frac{\arctan(r/x)}{2} \right]} = \left[a + \sqrt{x^2 + r^2} \left[\frac{\arctan(r/x)}{2} \right] \right]^2 + \left[\sqrt{x^2 + r^2} \cos \frac{\arctan(r/x)}{2} \right] \frac{1}{a^2 + x} \right] is equal to
\[
\frac{1}{2 \pi i} \left[\int_0^{R(r)} \frac{F(x + ir)}{x + ir - z_0} dx + \int_0^0 \frac{F(x - ir)}{x - ir - z_0} dx \right] = \frac{1}{2 \pi i} \int_0^{R(r)} \frac{F(x + ir) - (x + ir - z_0)F(x - ir)}{(x + ir - z_0)(x - ir - z_0)} dx = \frac{1}{2 \pi i} \int_0^{R(r)} \frac{(x - z_0)[F(x + ir) - F(x - ir)] - ir[F(x + ir) + F(x - ir)]}{(x + ir - z_0)(x - ir - z_0)} dx = \frac{1}{2 \pi i} \int_0^{R(r)} \frac{F(x + ir) - F(x - ir)}{(x + ir - z_0)(x - ir - z_0)} dx = \frac{1}{2 \pi i} \int_0^{R(r)} \frac{F(x + ir)(x - z_0)[2i3(F(x + ir))] - ir[2\Re(F(x + ir))]}{(x + ir - z_0)(x - ir - z_0)} dx = \frac{1}{2 \pi i} \int_0^{\infty} \frac{2i \sqrt{x}}{x - z_0} \frac{\sqrt{x}}{a^2 + x} dx, \quad r \to 0^+, \quad R \to \infty
\]
\[
= \frac{1}{\pi} \int_0^{\infty} \frac{\sqrt{x}}{(a^2 + x)(x - z_0)} dx.
\]
Consequently, it follows that
\[
\frac{1}{a + \exp \frac{\ln(-z_0)}{2}} = \frac{1}{\pi} \int_0^{\infty} \frac{\sqrt{x}}{(a^2 + x)(x - z_0)} dx \tag{3.3}
\]
for any \(z_0 \in \mathbb{C} \setminus [0, \infty) \) and \(\arg z_0 \in (0, 2\pi) \). Due to the point \(z_0 \) in (3.3) being arbitrary, the integral formula (3.3) can be rearranged as

\[
F(z) = \frac{1}{a + \exp \frac{\ln(-z)}{2}} = \frac{1}{\pi} \int_0^\infty \frac{\sqrt{x}}{(a^2 + x)(x - z)} \, dx
\]

(3.4)

for \(z \in \mathbb{C} \setminus [0, \infty) \) and \(\arg z \in (0, 2\pi) \).

Let

\[
f(z) = \frac{1}{a + \exp \frac{\ln(b - z)}{2}}, \quad z \in \mathbb{C} \setminus [b, \infty), \quad \arg(b - z) \in (0, 2\pi).
\]

Then \(f(z) = F(z - b) \). Therefore, from (3.4), it follows that

\[
f(z) = \frac{1}{a + \exp \frac{\ln(b - z)}{2}} = \frac{1}{\pi} \int_0^\infty \frac{\sqrt{x}}{(a^2 + x)(b + x - z)} \, dx
\]

for \(z \in \mathbb{C} \setminus [b, \infty) \) and \(\arg(b - z) \in (0, 2\pi) \). The integral representation (3.1) is thus proved.

Differentiating \(n \geq 0 \) times with respect to \(z \) on both sides of (3.1) and taking the limit \(z \to 0 \) yield

\[
G_{a,b}^{(n)}(z) = \frac{d^n}{dz^n} \left(\frac{1}{a + \sqrt{b - z}} \right) = \frac{1}{\pi} \int_0^\infty \frac{\sqrt{t}}{a^2 + t \, dz^n} \left(\frac{1}{b + t - z} \right) \, dt
\]

\[
= \frac{1}{\pi} \int_0^\infty \frac{\sqrt{t}}{a^2 + t \, (b + t - z)^{n+1}} \, dt
\]

\[
\rightarrow \frac{n!}{\pi} \int_0^\infty \frac{\sqrt{t}}{a^2 + t \, (b + t)^{n+1}} \, dt, \quad z \to 0.
\]

As a result, by virtue of (1.11), we have

\[
C_n(a,b) = \frac{G_{a,b}^{(n)}(0)}{n!} = \frac{1}{\pi} \int_0^\infty \frac{\sqrt{t}}{a^2 + t \, (b + t)^{n+1}} \, dt.
\]

The integral representation (3.2) for generalized Catalan numbers of the second kind \(C_n(a,b) \) is thus proved. The proof of Theorem 3.1 is complete. \(\square \)

Remark 3.1. When taking \(z = x \in (-\infty, b) \), the integral formula (3.1) becomes

\[
\frac{1}{a + \sqrt{b - x}} = \frac{1}{\pi} \int_0^\infty \frac{\sqrt{t}}{a^2 + t \, b + t - x} \, dt, \quad a \geq 0, b > 0.
\]

(3.5)

When taking \(x \to b^- \), the integral in (3.5) converges. Consequently, the integral representation (3.5) is valid on \((-\infty, b)\).

Remark 3.2. When taking \(a = \frac{1}{2} \) and \(b = \frac{1}{4} \), integral representations (3.1) and (3.2) reduce to (1.7) and (1.6) respectively.

Remark 3.3. Combining the explicit formula (2.1) with the integral representation (3.2) and simplifying lead to

\[
\int_0^\infty \frac{\sqrt{t}}{a^2 + t \, (b + t)^{n+1}} \, dt = \frac{\pi}{(2n)!!} \frac{1}{b^{n+1/2}} \sum_{k=0}^n \frac{(2n - k - 1)!}{2(n - k)} \left(\frac{b}{1 + a/\sqrt{b}} \right)^{k+1}
\]
for $a \geq 0$, $b > 0$, and $n \geq 0$.

4. Potential directions to further study

In this section, we will try to point out two potential directions to further study.

4.1. Generalized Catalan function of the second kind. Motivated by the integral representation (4.2) for generalized Catalan numbers of the second kind $C_n(a, b)$, we can consider the function

$$C(a, b; z) = \frac{1}{\pi} \int_0^\infty \frac{\sqrt{t}}{a^2 + t} \frac{1}{(b + t)^{z+1}} dt, \quad a \geq 0, b > 0, \Re(z) \geq 0$$

(4.1)

and call it generalized Catalan function of the second kind, while calling $C(a, b; z)$ in (1.3) generalized Catalan function of the first kind.

We can study generalized Catalan function of the second kind $C(a, b; z)$ as a function of three variables a, b, z. It is easy to see that

$$\frac{d^nC(a, b; z)}{db^n} = \frac{1}{\pi} \int_0^\infty \frac{\sqrt{t}}{a^2 + t} \frac{d^n}{db^n} \left[\frac{1}{(b + t)^{z+1}} \right] dt$$

$$= \frac{1}{\pi} \int_0^\infty \frac{\sqrt{t}}{a^2 + t} \frac{(-1)^n (z + 1)_n}{(b + t)^{z+n+1}} dt$$

$$= (-1)^n (z + 1)_n \frac{1}{\pi} \int_0^\infty \frac{\sqrt{t}}{a^2 + t} \frac{1}{(b + t)^{z+n+1}} dt,$$

where the rising factorial $(z)_n$ is defined by

$$(z)_n = \prod_{\ell=0}^{n-1} (z + \ell) = \begin{cases} z(z + 1) \cdots (z + n - 1), & n \geq 1 \\ 1, & n = 0 \end{cases}$$

which is also known as the Pochhammer symbol or shifted factorial in the theory of special functions [17, 44]. This means that generalized Catalan function of the second kind $C(a, b; z)$ is a completely monotonic function [23, 49, 56] with respect to $b \in (0, \infty)$. Utilizing complete monotonicity [20, 49, 56], we can derive many new analytic properties of generalized Catalan function of the second kind $C(a, b; z)$.

In a word, employing the integral representation (4.1), we believe that we can discover some new properties of generalized Catalan function of the second kind $C(a, b; z)$, of generalized Catalan numbers of the second kind $C_n(a, b)$, and the Catalan numbers C_n. For the sake of length limit of this paper, we would not like to further study in details.

4.2. Central binomial coefficients. It is known that

$$\frac{1}{\sqrt{1-4x}} = \sum_{n=0}^{\infty} \binom{2n}{n} x^n = 1 + 2x + 6x^2 + 20x^3 + 70x^4 + 252x^5 + \cdots$$

(4.2)

where $\binom{2n}{n}$ is called central binomial coefficient. It has been an attracting point for mathematicians to study central binomial coefficients. For example, we can rewritten [45, Lemma 3] as

$$\sum_{k=0}^{n-1} \binom{2k}{k} \frac{1}{(k+1)4^k} = 2 \left[1 - \frac{1}{4^n} \binom{2n}{n} \right]$$
and
\[\sum_{k=0}^{n-1} \binom{2k}{k} \frac{4^{n-k}}{n-k} = 2 \binom{2n}{n} \sum_{k=1}^{n} \frac{1}{2k-1}.\]

For more information on results at this point, please refer to [1, 2, 4, 7, 9, 11, 16, 26, 27, 45, 52, 57] and closely related references therein.

Combining (4.2) with (1.11) and (3.2) arrives at
\[
\binom{2n}{n} = \frac{1}{n!} \lim_{x \to 0} d^n d_{x^n} \left(\frac{1}{\sqrt{1-4x}} \right)
\]
\[= \frac{1}{n!} \lim_{x \to 0} d^n d_{x^n} \left(\frac{1}{2} \lim_{a \to 0^+} \frac{1}{b-\frac{1}{4}} \frac{a + \sqrt{b-x}}{a} \right)
\]
\[= \frac{1}{n!} \frac{1}{2} \lim_{b \to 1/4^+} \lim_{a \to 0^+} \frac{1}{dx^n} \left(\frac{1}{a + \sqrt{b-x}} \right)
\]
\[= \frac{1}{2} \lim_{a \to 0^+} \frac{1}{\pi} \int_0^{\infty} \frac{\sqrt{t}}{a^2 + t (b+t)^{n+1}} dt
\]
\[= \frac{1}{2} \pi \int_0^{\infty} \frac{1}{\sqrt{t} \ (1/4 + t)^{n+1}} dt
\]
\[= \frac{1}{\pi} \int_0^{\infty} \frac{1}{(1/4 + s^2)^{n+1}} ds
\]
\[= \frac{2^{2n+1}}{\pi} \int_0^{\infty} \frac{1}{(1 + t^2)^{n+1}} dt.
\]

The last three integral representations should provide effective tools for further studying central binomial coefficients \(\binom{2n}{n}\).

There are several extensions of central binomial coefficients \(\binom{2n}{n}\) in the paper [55].

Remark 4.1. This paper is a revised version of the preprint [33] and a companion of the electronic preprint [12, 13].

5. Declarations

Acknowledgements: The authors thank anonymous referees for their careful corrections to, valuable comments on, and helpful suggestions to the original version of this paper.

Funding: Not applicable.
Availability of data and material: Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Competing interests: The authors declare that they have no conflict of competing interests.
Authors’ contributions: All authors contributed equally to the manuscript and read and approved the final manuscript.
References

[1] K. N. Boyadzhiev, Series with central binomial coefficients, Catalan numbers, and harmonic numbers. J. Integer Seq. 15 (2012), no. 1, Article 12.1.7, 11 pp.

[2] J. M. Campbell, New series involving harmonic numbers and squared central binomial coefficients. Rocky Mountain J. Math. 49 (2019), no. 8, 2513–2544; available online at https://doi.org/10.1216/RMJ-2019-49-8-2513

[3] W. Chamam, Several formulas and identities related to Catalan–Qi and q-Catalan–Qi numbers. Indian J. Pure Appl. Math. 50 (2019), no. 4, 1039–1048; available online at https://doi.org/10.1007/s13226-019-0372-1

[4] H. Chen, Interesting series associated with central binomial coefficients, Catalan numbers and harmonic numbers. J. Integer Seq. 19 (2016), no. 1, Article 16.1.5, 11 pp.

[5] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., 1974; available online at https://doi.org/10.1007/978-94-010-2196-8

[6] T. W. Gamelin, Complex Analysis, Undergraduate Texts in Mathematics, Springer, New York-Berlin-Heidelberg, 2001; available online at https://doi.org/10.1007/978-0-387-21607-2

[7] M. Garcia-Armas and B. A. Seturaman, A note on the Hankel transform of the central binomial coefficients. J. Integer Seq. 11 (2008), Article 08.5.8, 9 pages.

[8] R. P. Grimaldi, Fibonacci and Catalan Numbers, John Wiley & Sons, Inc., Hoboken, NJ, 2012; available online at https://doi.org/10.1002/9781118159743

[9] V. J. W. Guo and S.-D. Wang, Some congruences involving fourth powers of central q-binomial coefficients. Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 3, 1127–1138; available online at https://doi.org/10.1017/prm.2018.96

[10] T. Koshy, Catalan Numbers with Applications, Oxford University Press, Oxford, 2009.

[11] D. H. Lehmer, Interesting series involving the central binomial coefficient. Amer. Math. Monthly 92 (1985), no. 7, 449–457; available online at http://dx.doi.org/10.2307/2322496

[12] W.-H. Li and F. Qi, A further generalization of the Catalan numbers and its explicit formula and integral representation, Authorea (2020), available online at https://doi.org/10.22541/au.159844115.58373605

[13] W.-H. Li, F. Qi, O. Kouba, and I. Kaddoura, A further generalization of the Catalan numbers and its explicit formula and integral representation, OSF Preprints (2020), available online at https://doi.org/10.31219/osf.io/zf9xu

[14] F.-F. Liu, X.-T. Shi, and F. Qi, A logarithmically completely monotonic function involving the gamma function and originating from the Catalan numbers and function, Glob. J. Math. Anal. 3 (2015), no. 4, 140–144; available online at https://doi.org/10.14419/gma.v3i4.5187

[15] M. Mahmoud and F. Qi, Three identities of the Catalan–Qi numbers, Mathematics 4 (2016), no. 2, Art. 35, 7 pages; available online at https://doi.org/10.3390/math4020035

[16] J. Mikić, On certain sums divisible by the central binomial coefficient, J. Integer Seq. 23 (2020), no. 1, Art. 20.1.6, 22 pages.

[17] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010; available online at http://dlmf.nist.gov/

[18] K. A. Penson and J.-M. Sixdeniers, Integral representations of Catalan and related numbers, J. Integer Seq. 4 (2001), no. 2, Article 01.2.5.

[19] F. Qi, An improper integral, the beta function, the Wallis ratio, and the Catalan numbers, Probl. Anal. Issues Anal. 7 (25) (2018), no. 1, 104–115; available online at https://doi.org/10.15393/j3.art.2018.4370

[20] F. Qi, Completely monotonic degree of a function involving trigamma and tetragamma functions, AIMS Math. 5 (2020), no. 4, 3391–3407; available online at https://doi.org/10.3934/math.2020219

[21] F. Qi, Parametric integrals, the Catalan numbers, and the beta function, Elem. Math. 72 (2017), no. 3, 103–110; available online at https://doi.org/10.4171/EM/352

[22] F. Qi, Some properties of the Catalan numbers, Ars Combin. 160 (2022), in press; available online at https://doi.org/10.13140/RG.2.1.4371.6321

[23] F. Qi and R. P. Agarwal, On complete monotonicity for several classes of functions related to ratios of gamma functions, J. Inequal. Appl. 2019, Paper No. 36, 42 pages; available online at https://doi.org/10.1186/s13660-019-1976-z

[24] F. Qi, A. Akkurt, and H. Yıldırım, Catalan numbers, k-gamma and k-beta functions, and parametric integrals, J. Comput. Anal. Appl. 25 (2018), no. 6, 1036–1042.

[25] F. Qi and P. Cerone, Some properties of the Fuss–Catalan numbers, Mathematics 6 (2018), no. 12, Art. 277, 12 pages; available online at https://doi.org/10.3390/math6120277
[47] F. Qi, Q. Zou, and B.-N. Guo, The inverse of a triangular matrix and several identities of the Catalan numbers, Appl. Anal. Discrete Math. 13 (2019), no. 2, 518–541; available online at https://doi.org/10.2298/AADM190118018Q.

[48] S. Roman, An Introduction to Catalan Numbers, with a foreword by Richard Stanley, Compact Textbook in Mathematics, Birkhäuser-Springer, Cham, 2015; available online at https://doi.org/10.1007/978-3-319-22144-1.

[49] R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions, 2nd ed., de Gruyter Studies in Mathematics 37, Walter de Gruyter, Berlin, Germany, 2012; available online at https://doi.org/10.1515/9783110269338.

[50] X.-T. Shi, F.-F. Liu, and F. Qi, An integral representation of the Catalan numbers, Glob. J. Math. Anal. 3 (2015), no. 3, 130–133; available online at https://doi.org/10.14419/gjma.v3i3.5055.

[51] M. Z. Spivey, The Art of Proving Binomial Identities, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2019; available online at https://doi.org/10.1201/9781351215824.

[52] R. Sprugnoli, Sums of reciprocals of the central binomial coefficients, Integers 6 (2006), A27, 18 pp.

[53] R. P. Stanley, Catalan Numbers, Cambridge University Press, New York, 2015; available online at https://doi.org/10.1017/CBO9781139871495.

[54] N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996; available online at https://doi.org/10.1002/9781118032572.

[55] C.-F. Wei, Integral representations and inequalities of extended central binomial coefficients, Authorea (2021), available online at https://doi.org/10.22541/au.163355849.99215800/v1.

[56] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.

[57] L. Yin and F. Qi, Several series identities involving the Catalan numbers, Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, 466–474; available online at https://doi.org/10.1016/j.trmi.2018.07.001.

[58] Q. Zou, Analogues of several identities and supercongruences for the Catalan–Qi numbers, J. Inequal. Spec. Funct. 7 (2016), no. 4, 235–241.

[59] Q. Zou, The q-binomial inverse formula and a recurrence relation for the q-Catalan–Qi numbers, J. Math. Anal. 8 (2017), no. 1, 176–182.