A Glimpse of the Structural Biology of the Metabolism of Sphingosine-1-Phosphate

Ruobing Ren, Bin Pang, Yufei Han, and Yihao Li

Abstract
As a key sphingolipid metabolite, sphingosine-1-phosphate (S1P) plays crucial roles in vascular and immune systems. It regulates angiogenesis, vascular integrity and homeostasis, allergic responses, and lymphocyte trafficking. S1P is interconverted with sphingosine, which is also derived from the deacylation of ceramide. S1P levels and the ratio to ceramide in cells are tightly regulated by its metabolic pathways. Abnormal S1P production causes the occurrence and progression of numerous severe diseases, such as metabolic syndrome, cancers, autoimmune disorders such as multiple sclerosis, and kidney and cardiovascular diseases. In recent years, huge advances on the structure of S1P metabolic pathways have been accomplished. In this review, we have got a glimpse of S1P metabolism through structural and biochemical studies of: sphingosine kinases, S1P transporters and S1P receptors, and the development of therapeutics targeting S1P signaling. The progress we summarize here could provide fresh perspectives to further the exploration of S1P functions and facilitate the development of therapeutic molecules targeting S1P signaling with improved specificity and therapeutic effects.

Keywords
structural biology, sphingosine-1-phosphate, biochemistry, therapeutics discovery

Introduction – Sphingolipid Metabolism and S1P Signaling
Sphingolipids, named after the sphinx in Egypt to represent its mysterious role, were isolated from the hydrolysis products of phrenosin in the 1870s by Johann Thudichum (Thudichum, 1884; Spiegel and Milstien, 2003; Chun and Hartung, 2010). The chemical structures of sphingolipids attracted the attention of chemists in the early 20th century (Spiegel and Milstien, 2003). Then, its biological mysteries have been gradually unveiled to show irreplaceable roles in forming the cell membrane and functioning as signaling molecules in recent decades (Takabe et al., 2008). Complex sphingolipids, including glycosphingolipids and sphingomyelins, are structural components to form the mechanically stable and chemically resistant outer leaflet of eukaryotic cell membranes (Kumari et al., 2018). The general structure of sphingolipids is composed of a long-chain sphingoid base, O-linked to a polar head group on sn-1 site, and amide-linked to a fatty acid on sn-2 site of the backbone (Figure 1(a)). Variations of functional groups attached to the backbone determine the physical, chemical, and biological properties of sphingolipids. For instance, the phosphorylation of sphingosine, which is derived from the deacylation of ceramide, on the sn-1 hydroxyl group creates the lysophospholipid S1P (Figures 1(b) and 2).

The metabolism of sphingolipids in cells is complex and dynamic (Figure 2). There are three major pathways to generate ceramides. Firstly, sphingomyelinase breaks down sphingomyelins within the plasma membrane to release ceramides (Nganga et al., 2018). Secondly, the de novo pathway generates ceramide starting from less complicated substrates in the smooth endoplasmic reticulum (sER) (Lucaciu et al., 2020b). Condensation of serine and palmitoyl-CoA by serine palmitoyl transferase, which is the limiting step of the pathway,
generates 3-keto-dihydrosphingosine (Futerman et al., 1990; Satsu et al., 2013). In turn, 3-keto-dihydrosphingosine is reduced to dihydrosphingosines, which is then acylated by ceramide synthases to produce dihydroceramides (Linn et al., 2001; Galadari et al., 2006; Xu et al., 2006). The final step to produce ceramide is catalyzed by dihydro-ceramide desaturase (Hannun and Obeid, 2008). Thirdly, the salvage pathway in acidic subcellular compartments (Ditaranto-Desimone et al., 2003; Li et al., 2015), which facilitates the degradation of complex sphingolipids including sphingomyelin and glycosphingolipids, and contributes to the generation of ceramides (Takabe et al., 2008; Zhang et al., 2009; Tukijan et al., 2018). Ceramide is subsequently transported to the Golgi apparatus and further converted to other sphingolipids (Funato et al., 2002; Jain and Holthuis, 2017).

Ceramidases catalyze the reverse process to yield sphingosine by deacylation of ceramide (el Bawab et al., 2002). Additionally, sphingosine can be yielded from the diet (Ebenezer et al., 2017). Sphingosine can be further converted to S1P by sphingosine kinases (SPHK1 and -2) through phosphorylation (Olivera, 1993; Liu et al., 2000a; Gao and Smith, 2011). In contrast, dephosphorylation of S1P by S1P phosphatases (SGPP1 and -2) allows S1P to be transformed back to sphingosine (Le Stunff et al., 2002; Takabe et al., 2008; Tukijan et al., 2018). S1P lyase (SPL), S1P phosphatase, and three lysophospholipid hydrolases are responsible for S1P’s degradation (Tukijan et al., 2018). S1P lyase, which acts as a crucial regulator of S1P and other sphingolipid intermediates, is the last enzyme for S1P degradation at the ER membrane (Serra and Saba, 2010). To date, the extracellularly located broad substrate-specific lipid phosphate phosphohydrolases (LPPs) are the only known enzymes that can act as ecto-enzymes for S1P (Ksiazek et al., 2015).

(Intra-)cellular S1P levels are a function of the dynamic relation to compartmental (including extracellular) S1P levels (Cartier and Hla, 2019). Different cellular stress conditions, the relative intracellular concentrations of S1P, sphingosine, and ceramide determine the cell fate through pathways described as the series of “drains” and “faucets” (Shaw et al., 2018). Ceramide is well characterized as a pro-apoptotic signal (Mizushima et al., 1996; Pettus et al., 2002; Lewis et al., 2018). Ceramidases hydrolyze ceramide to sphingosine to allow cellular escape from apoptosis.

Figure 1. General structures of sphingolipids. (a) Chemical structures of sphingolipids. The sphingoid base is shown in gray shadow. R₁ and R₂ representing functional groups are highlighted red and green, respectively. (b) The compositions of R₁ and R₂ in different types of sphingolipids are listed.

Figure 2. Metabolic pathways of S1P. S1P is generated by phosphorylation of sphingosine by sphingosine kinases (SPHK1 and -2) and converted to sphingosine by sphingosine phosphatases (SGPP1 and -2). Sphingosine is generated by deacylation from ceramide by ceramidase and converted back by ceramide synthase. Ceramide can also be produced through de novo synthesis or recycling from other sphingolipids. FTY720 (fingolimod) is a prodrug, which serves as a functional antagonist of S1P1 after phosphorylation to FTY720-phosphate by SPHK2.
S1P promotes cellular proliferation (Goetzl et al., 1999; Lewis et al., 2018). These discoveries suggest that S1P acts not only as a building block of cell membranes but also as a bioactive lipid mediator. From then on, S1P has been extensively studied and closely linked to a myriad of essential cellular processes including immune cell trafficking (Dorsam et al., 2003; Neubauer et al., 2016; Ebenezer et al., 2017), cell motility (Lee et al., 2001; Guerrero et al., 2011; Neubauer et al., 2016; Sanna et al., 2016; Lucaciu et al., 2020a), angiogenesis and vascular maturation (Liu et al., 2000b; Watson et al., 2010; Ohotski et al., 2014; Gaire et al., 2018; Lucaciu et al., 2020a), and neurogenesis (Lucaciu et al., 2020a). Plasma S1P also helps to maintain vascular integrity and regulate vascular leaks (Baek et al., 2013a). Besides, S1P was identified as an early risk factor of lung cancer in an epidemiological study (Bagdanoff et al., 2009) and as a crucial mediator of cardio-protection (Billich et al., 2013). The consequences of S1P signaling are not exclusively exerted within cells (Sanna et al., 2016; Xiong et al., 2019), but also by ligating to its five G protein-coupled receptors (GPCRs), designated as S1P 1-5. Vascular endothelial cells comprise the predominant secretory source for S1P in the circulation (Chun et al., 2002; Pan et al., 2006; Sanna et al., 2016; Hur et al., 2017; Xiong et al., 2019). S1P receptors regulate cell proliferation, apoptosis, cell adhesion, cell motility, angiogenesis, and inflammation, by coupling different downstream heterotrimeric G proteins (Takabe et al., 2008; Lucaciu et al., 2020b). S1P1 prefers to bind to G$_{25i/o}$ (Cyster and Schwab, 2012). S1P2, besides binding to G$_{25i/o}$, is also associated with G$_{5q}$, G$_{12/13}$, and G$_{ps}$ (Chun and Hartung, 2010; Cyster and Schwab, 2012). It couples most efficiently with G$_{12/13}$, in the wake of activation of the small GTPase Rho (Gonda et al., 1999; Windh et al., 1999; Okamoto et al., 2000). S1P3 is reported to couple with G$_{25i/o}$, G$_{5q}$, and G$_{12/13}$, and S1P4 and S1P5 couple to G$_{25i}$, G$_{5q}$, and G$_{12/13}$ (Ancellin and Hla, 1999; Windh et al., 1999). This partially explains why S1P, such a simple molecule bears the potential to induce various systemic consequences (Figure 3).

Within the last two decades, atomic structures of many sphingolipid metabolizing enzymes were determined, including human sphingosine kinase 1 (Wang et al., 2013), three types of ceramidases (Inoue et al., 2009; Airola et al., 2015; Gebai et al., 2018; Vasiliauskaite-Brooks et al., 2018; Dementiev et al., 2019), human S1P receptor S1P1 (Hanson et al., 2012), bacterial homologs of serine-palmitoyltransferase (Raman et al., 2010), S1P lyase (Bourquín et al., 2010), some sphingolipids transfer proteins (Christoffersen et al., 2011; Blaho et al., 2015), and so on. However, there are still various other essential enzymes and receptors, such as ceramide synthases, sphingosine kinase 2, and S1P2-5, for which the structures and molecular mechanisms remain yet to be uncovered. Here, we catch a glimpse of the progress made in the metabolism, transportation, and sensing of S1P. From a structural viewpoint, this may pave the way for the development of therapeutic molecules targeting S1P signaling.

Molecular Mechanism of Sphingosine Kinases

To yield S1P in cells, SPHKs phosphorylate sphingosine on its primary hydroxyl group (Gustin et al., 2013). There are two SPHKs isoforms encoded in the human genome, designated as SPHK1 and -2 (Murakami et al., 2010; Gao and Smith, 2011). It appears that SPHK1 and -2 have important roles in cell fate determination (Maceyka et al., 2005) and angiogenesis (Mizugishi et al., 2005). The SPHK1/-2 double knockout mouse confers embryonic lethality due to detrimental effects on severe defects in angiogenesis and neurogenesis (Mizugishi et al., 2005). Apart from the large N terminal

![Figure 3](https://example.com/figure3.png)
and internal insertions in the sequence of SPHK2, human SPHK1 and -2 share 48% primary sequence identity and 73% similarity, respectively. Although catalyzing the same reaction and having some functional redundancy (Allende et al., 2004), SPHK1 and -2 present different substrate specificities, tissue distributions, and subcellular localizations (Liu et al., 2003; Maceyka et al., 2005; Taha et al., 2006). For instance, SPHK1 is recruited to the plasma membrane in response to extracellular signals, such as TNFα, by generating S1P that binds to TNF receptor associated factor 2 and regulates cell survival (Alvarez et al., 2010; Jarman et al., 2010). While the S1P generated by SPHK2 stabilizes telomerase to enhance proliferation, it inhibits HDAC to maintain histone acetylation and to regulate PPARγ in nucleus and regulates the electron transport chain assembly in mitochondria (Hait et al., 2009; Panneer Selvam et al., 2015; Parham et al., 2015). Moreover, studies have shown abundant SPHK1 expression in several cancers (Van Brocklyn et al., 2005; Ruckhaberle et al., 2008) and inflammatory conditions (French et al., 2003). SPHK2 also shows the oncogenic effect in various tumors, such as lymphoblastic leukemia (Weigert et al., 2009; Neubauer et al., 2016). The silencing of SPHK2 signaling prominently reduces tumor growth of human xenograft models in mice (Weigert et al., 2009). Enhancement of SPHK2 expression is related to the progression of non-small cell lung cancer and multiple myeloma (Gao and Smith, 2011; Ebenezer et al., 2016), and the blockage of SPHK2 expression induces cell death and increases sensitivity to various cancer cell types (Sankala et al., 2007). Thus, SPHK inhibitors bear the potential to alter mitochondria function, regulate S1P signaling, and prevent cellular immortality in cancer (Adams et al., 2020).

Apo and inhibitor bounded structures of human SPHK1 are available in Protein Data Banks (Wang et al., 2013; 2014). Based on the sequence and structural alignments, human SPHK1 belongs to the phosphofructokinase (PFK)-like superfamily, sharing the same protein fold with NAD kinases, diacylglycerol kinases (DGKs), and ceramide kinases, but not other lipid kinases, such as phosphatidylinositol-3 kinase (PI3K) (Wang et al., 2013). Five motifs (C1-C5) are highly conserved between SPHK1, -2 and ceramide kinase (CERK) (Wang et al., 2013). Among these motifs, the C4 domain varies the most, suggesting a possible molecular basis of substrate specificity (Yokota et al., 2004; Wang et al., 2013). SPHK1 exhibits the overall fold of two lobes, the nucleotide-binding site in the N-lobe and a hydrophobic lipid-binding pocket in the C-lobe, whereas the catalytic motif (S/G)GDG is positioned in between (Figure 4(a)). The lipid-binding pocket, a J-shape hydrophobic tunnel that can accommodate substrates with 14 to 18 carbon alkyl chains, is largely buried inside the kinase (Figure 4(b)). Although it is hard to distinguish the suitable length of the acyl chain from the omitted map observed in the structure (PDB code: 3VZB), the head group of sphingosine fits the density well and coordinates with the surrounding residues through three pairs of hydrogen bonds (Figure 4(c)). The nucleotide-binding site is also verified by obtaining the SPHK1-ADP-inhibitor complex structure (PDB code: 3VZD) (Wang et al., 2013). The SPHK1 structural model, bound with ATP and sphingosine, was generated based on the structures described above. The γ-phosphate of the ATP, as a nucleophile, attacks the primary hydroxyl group of sphingosine, resulting in the phosphoryl transfer. The conserved Asp81 in SPHK1 and -2, as a general base, deprotonates and increases the nucleophilicity of the primary hydroxyl group of sphingosine (Wang et al., 2013). Some molecular modeling works raised other possibilities on the catalyzing mechanism of SPHK1, suggesting D178 as the catalytic residue, since inhibitors may interact with D81 (Baek et al., 2013a). Thus, an atomic resolution complex structure of SPHK1 with both sphingosine and ATP analog is needed to confirm the catalytic residues and reveal the precise catalyzing mechanism of S1P phosphorylation.

SPHK1 inhibitors have been investigated with scrutiny since SPHK1 was identified as a potential therapeutic target in many diseases (Lynch et al., 2016; Cao et al., 2018). There are several types of SPHK inhibitors, including lipidic, non-lipidic, and natural products, which are in use or under development for different diseases (Kono et al., 2000a; 2000b; French et al., 2003; Salma et al., 2009; Pitman et al., 2015). Most of the early developed inhibitors, such as Safingol (Buehrer and Bell, 1992), dimethyl-sphingosine (DMS) (Yatomi et al., 1996), and trimethyl-sphingosine (TMS) (Endo et al., 1991), are sphingosine analogs with poor potency and selectivity. Although Safingol showed the therapeutic potential in certain solid tumors and was applied to phase I clinical trials (NCT00084812) (Dickson et al., 2011), it had severe off-targets on protein kinase C (PKC) and ceramide synthase (CerS) (Schwartz et al., 1995). DMS and TMS also showed cross activities with SPHK2 (Liu et al., 2000a) and CERK (Sugiura et al., 2002), making them difficult to decipher the role of SPHK1. Soon afterward, four different types of non-lipidic small molecules, named SKI-I, -II, -III, and -IV, were developed with sub-micromolar to micromolar inhibition of SPHK1 specifically (French et al., 2003). These compounds, showing anti-tumor activities in vivo without obvious toxicities, shed light on SPHK inhibitors to be developed as anticancer drugs. Some other non-lipidic SPHK1 inhibitors, such as PF-543 (Schnute et al., 2012), compound 23 (Baek et al., 2013b), and RB-005 (Baek et al., 2013b), have been identified through different approaches as well. To date, three...
non-lipidic inhibitors, all occupying the sphingosine binding pocket competitively, have been co-crystallized with SPHK1. The superposition of SPHK1 structures bound with different inhibitors suggests the convergent inhibitory mechanism with unique interaction features (Figure 4(d) and (e)). Although these inhibitors showed significant inhibitions of SPHK1 activity in vitro and favorable PK/PD properties, the therapeutic effects in patients remain to be further explored. The first selective SPHK2 inhibitor, ABC294640, reducing the total

Figure 4. Structures of human SPHK1. (a) Human SPHK1 exhibits the overall fold of two lobes, designated N-/C-lobe, with a hydrophobic lipid-binding pocket highlighted in gray shadow, and a nucleotide-binding site highlighted in orange shadow. (b) Surface representation of sphingosine binding pocket. Sphingosine is shown in yellow sticks. (c) Detailed interactions between sphingosine and SPHK1. Hydrogen bonds are highlighted in brown dashes. (d) Superposition of sphingosine and three competitive inhibitors in SPHK1 structures. (e) Chemical structures of SPHK1 inhibitors.
amount of S1P in the nucleus (Ebenezer et al., 2017), also completed phase I clinical trials for the treatment of advanced solid tumors (NCT01488513) (French et al., 2010; Gestaut et al., 2014).

SIP Degradation by SIP Lyase

The degradation of S1P, mainly through interconversion with sphingosine or irreversible degradation to phosphoethanolamine (PE) and trans-2-hexadecenal, synergistically matches SIP synthesis according to the metabolic demand (Kumar and Saba, 2009; Lucaciu et al., 2020b). Dephosphorylation of SIP to form sphingosine is mainly employed by two SIP phosphatases (SGPP1/2). SIP lyase (SPL) and lipid phosphate phosphohydrolases (LPPs) act as the crucial enzymes for SIP degradation in the intracellular and extracellular spaces, respectively. Here we only focus on SPLs as their structures have been well characterized. Further structural studies on SGPP1/2 and LPPs are needed.

Eukaryotic SPLs associate with the ER through the N-terminal transmembrane helix. The catalytic domains of eukaryotic SPLs are evolutionary conserved and operate on the cytosolic leaflet of the ER membrane (Ikeda et al., 2004). Numerous bacterial and mammalian SPL structures have been determined. The bacterial and yeast homolog structures of StSPL (Symbiobacterium thermophilum SPL) (Figure 5(a)) and Dpl1p (yeast SPL) were solved first to characterize the substrate and co-factor binding sites to elucidate the mechanism of SIP degradation (Bourquin et al., 2010). Unsurprisingly, the human SPL exhibits the ideal dimerization state and, for each protomer, an overall r.m.s.d (root-mean-square deviation) of 0.8 Å over 400 Ca atoms in an overlay of the human SPL and Dpl1p (Weiler et al., 2014). SPLs are members of the pyridoxal phosphate (PLP)-dependent superfamily. Here we use StSPL structures to present the interaction of PLP and the catalytic reaction of SPLs. PLP covalently links to the residue K311 in substrate-free structures (Figure 5(b)). The phosphate group of PLP is well coordinated by residues G168, T169, H310 in one protomer, and S353 from the adjacent protomer through hydrogen bonds (Figure 5(c)). The pyridinium ring forms a hydrogen bond with D274 and faces H201 to form cation-pi interaction (Figure 5(b)). The consistent phosphate ions, which are close to PLP and interact with residues Y105 in one protomer and N126, H129, and S353 in the adjacent protomer, are observed in all structures and may mimic the head group recognition of SIP (Bourquin et al., 2010) (Figure 5(c)). The PE bound structure of StSPL also demonstrates substrate-binding residues such as A103, Y105, H129, and K317 (Figure 5(d)). Besides, the Schiff base structure of PE-PLP unveils the mechanistic convergence of SIP degradation with the classic PLP-dependent decarboxylation reactions (Figure 5(d)). The substrate S1P could replace K311 of StSPL, which initially forms an internal aldimine with PLP, to be a Schiff base partner of PLP. Then the retroaldol cleavage occurs by nucleophilic attack on S1P, releasing hexadecenal. The following re-protonation of the quinonoid intermediate will lead to the release of PE and allows the active site to revert to the original state.

Since inhibition of SPL causes T cell sequestration and immunosuppression (Schwab et al., 2005), SPL is considered as an important therapeutic target in the treatment of autoimmune diseases such as multiple sclerosis and rheumatoid arthritis (Bagdanoff et al., 2009; Fleischmann et al., 2012; Billich et al., 2013). Several SPL specific inhibitors have been developed and their complex structures with SPL were determined in the past few years, including compound 31 with human SPL, and compound 1 and -2 with StSPL surrogate. SPL dimer only leaves a narrow hydrophobic tunnel linking to its active site, so the inhibitors bind at the entrance of this tunnel through hydrophobic interactions (Figure 5(e)). Because a structure of SPL in complex with S1P is lacking, it is not clear if these inhibitors occupy the SIP binding site competitively or block the entry of SIP. The precise SIP binding mode may help in designing small molecule inhibitors with improved specificity and efficacy. Nevertheless, these structural observations shed light on possibilities to study the development of SPL inhibitors for therapeutic purposes.

Molecular Mechanism of Ceramidases

Ceramidases hydrolyze membrane ceramide into sphingosine, which in turn is phosphorylated to form SIP, to regulate SIP/ceramide ratio and multiple cellular processes. Based on the primary sequences, subcellular localizations, functions, and pH preferences, five ceramidases are classified into three categories (acid, neutral, and alkaline). Neutral ceramidase (ASAH2) is crucial for the digestion of dietary sphingolipids (Kono et al., 2006), regulation of the level of sphingolipid metabolites in the intestinal tract (Symolon et al., 2004), and protection against inflammatory cytokines (Kono et al., 2006). Alkaline ceramidases, including ACER1-3, mediate cell differentiation by controlling sphingosine and SIP (Sun et al., 2008), DNA damage-induced cell death (Xu et al., 2016), and cell proliferation (Hu et al., 2010). Acid ceramidase (ASAHI1), which hydrolyzes lysosomal ceramide into sphingosine, is the best-characterized member of the family due to the association with Farber disease, the extremely rare autosomal recessive lysosomal storage disease (Schuchman, 2016). The structural characteristics of ceramidases were extensively explored in the last decade. All three categories of ceramidases exhibit different structural folds and
perform ceramide hydrolysis activities through distinct mechanisms. ASAH1 belongs to the N-terminal nucleophile (Ntn) superfamily of hydrolases (Pei and Grishin, 2003; Schulze et al., 2007), which are synthesized as a proenzyme and activated through auto-cleavage (Brannigan et al., 1995). Three structures of mammalian ASAH1 (Gebai et al., 2018) indicate that both proenzyme and active states of ASAH1 are similar regarding overall structure and subunit organization. However, auto-cleavage results in conformational changes that uncover a hydrophobic groove (13 Å) leading to the active site that probably accommodates ceramide (Figure 6(a)). The deprotonated catalytic residue Cys143 of human ASAH1 is employed for both auto-cleavage and ceramide hydrolysis, although the precise mechanisms are different. The active site exposure mode was also observed in the human ASAH2 structure previously (Airola et al., 2015). The major difference is that the larger tunnel (20 Å) uncovered in ASAH2 could accommodate ceramide with longer acyl chains (Figure 6(b)). Besides, ASAH2 is a single-pass transmembrane protein on epithelial cell membranes and functions at neutral pH (Kono et al., 2006). It belongs to a unique structural family, which displays little sequence homology to other proteins, and catalyzes ceramide hydrolysis mediated by Zn$^{2+}$ ion. ACERs, the

Figure 5. Structures of bacterial S1P lyase StSPL. (a) Dimer structure of StSPL (PDB code: 3MAD) is shown, in which one protomer is in cylindrical mode (white) and the other protomer is in surface mode (light blue). (b) Detailed interactions between K311-PLP and the surrounding residues. Hydrogen bonds are highlighted in brown dashes. (c) Detailed interactions between PLP, phosphate ion, and the surrounding residues in one protomer of PE bound S1P lyase structure (PDB code: 2MAU). (d) Detailed interactions between PE-PLP and the surrounding residues in the other protomer of PE bound S1P lyase structure (PDB code: 2MAU). (e) Compound 31 acts as an inhibitor to block the narrow substrate entrance of StSPL (PDB code: 4Q6R). Two perpendicular views are shown, in which the protein is in surface mode and compound 31 (yellow) and PLP (green) are in stick mode.
integumentary membrane proteins comprised of seven transmembrane helices, are less well understood in part because of the hydrophobicity nature. By analyzing the structure of human ACER3, the large hook-shaped cavity is entirely embedded in the membrane (Figure 6 (c)). Computational docking and molecular dynamic simulation results suggest that the carbonyl group and primary alcohol of ceramide could directly interact with Zn$^{2+}$ ion. Considering the function of crystallographic water in the active site as a nucleophile attacking the carbonyl of ceramide, a general acid-base catalytic mechanism was proposed (Vasiliauskaite-Brooks et al., 2018).

A number of ceramide-mimicking inhibitors of ceramidase (first-generation inhibitors) have been developed in the past two decades. N-Oleylethanolamide (NOE) was first used to increase the cellular ceramide level and induce apoptosis in various cell lines (Sugita et al., 1975). However, the low potency and poor selectivity limit its therapeutic use (Grijalvo et al., 2006; Houben et al., 2007). Then, a series of NOE analogs were developed as potent and selective lysosomal acid ceramidase inhibitors (Grijalvo et al., 2006; Bedia et al., 2008). Besides, some lipophilic aromatic ceramide analogs, such as D-e-MAPP, B13, and LCL compounds, were developed to induce apoptosis via inhibition of ceramidases as anticancer agents (Bielawska et al., 1992; Samsel et al., 2004; Szulc et al., 2008). The rational design of first-generation inhibitors is limited by lacking enough heteroatoms on ceramide, making it difficult to increase much higher potency than their natural progenitor. The only exception is SABRAC, which is the irreversible inhibitor likely forming a covalent bond with the enzyme (Camacho et al., 2013). The first-generation inhibitors help to highlight the therapeutic potentials of inhibiting ceramidases in cancer treatments. The non-ceramide-like inhibitors (second-generation inhibitors), usually obtained by high throughput screening, are more likely potent and drug-like than ceramide-mimicking compounds. Series of second-generation inhibitors of ceramidases have been developed. Cerenib-2, a representative quinolinone-based compound showed dose-dependent inhibition to ceramidase, led to ceramide accumulation, and sphingosine and S1P reduction (Draper et al., 2011). Carmofur and its derivatives, the novel acidic ceramidase inhibitors, act synergistically with standard anti-cancer therapeutics to inhibit cancer cell proliferation (Realini et al., 2013). However, the short half-life times of these compounds in vivo hinder their therapeutic use despite the strong inhibition (Ouairy et al., 2015). Then, the benzoazolone carboxamide compounds are screened as the irreversible inhibitors of intracellular acidic ceramidase. The representative compound 17a efficiently inhibits acidic ceramidase activity and is metabolically stable in vivo (Pizzirani et al., 2015).

Mechanism of S1P Transport

S1P prompts its physiological roles through two mechanisms, binding to its intracellular targets or by extracellular secretion. In this review, the focus is drawn on the secretion of S1P and its subsequent transport in the circulation. Hematopoietic cells and endothelial cells comprise the major source of extracellular S1P (Fukuhara et al., 2012; Vu et al., 2017). Since it contains a negatively charged phosphate group, S1P cannot diffuse freely but has to be transported across the cell membrane through active transport. Several types of transporters have been identified in the past two decades.

Mfsd2b, which belongs to the major facilitator superfamily (MFS), is an orphan transporter that is expressed in erythrocytes and platelets (Vu et al., 2017). Mutations of the conserved D97 and T159 in human Mfsd2b resulted in a loss of S1P export activity (Vu et al., 2017). About 42-54% of the S1P reduction in the plasma was also observed in Mfsd2b$^{-/}$ mice (Vu et al., 2017). Through a comprehensive lipomics analysis, S1P was specifically accumulated in Mfsd2b knockout red blood cells and platelets (Vu et al., 2017). As a
blood-borne lipid mediator, S1P is more abundant in circulatory fluids than tissue fluids (referring to the S1P gradient) to facilitate lymphocyte egress both from lymph nodes into the lymph, but also from the lymphatic system into the blood system, respectively (Fukuhara et al., 2012; Lucaciu et al., 2020a). However, the abolishment of S1P export through Mfsd2b did not affect lymphocyte egress and trafficking (Allende et al., 2004), indicating a functional overlap with other means of S1P export. In that regard, spinster homolog 2 (Spns2), originally identified in zebrafish as an S1P transporter (Kawahara et al., 2009), contributes approximately 25–50% to lymphatic S1P through lymphatic endothelial cells in humans while it is dispensable for contributing to plasma S1P (Fukuhara et al., 2012; Nagahashi et al., 2013; Mendoza et al., 2017). It plays a crucial role in S1P export that regulates lymphocyte egress and trafficking (Mendoza et al., 2012) by creating an S1P gradient (Schwab et al., 2005). Spns2 knockout mice featured an increase in mature thymic T cells, whilst decreased numbers of T cells in the hematopoietic system and secondary lymphoid organs were observed (Fukuhara et al., 2012). A possible reason is that the export of S1P by SPNS2 is also essential for the survival of circulating naive T cells (Mendoza et al., 2017).

Moreover, some ATP-binding cassette (ABC) family transporters have been reported to export S1P, including ABCA1 in astrocytes (Sato et al., 2007), ABCC1 in mast cells (Mitra et al., 2006), ABCG2 in breast cancer cells (Takabe et al., 2010), and others in platelets and erythrocytes (Kobayashi et al., 2006; Kobayashi et al., 2009). However, the downregulation of these ABC transporters did not decrease the S1P levels in plasma, rendering them debatable in terms of physiological contribution to S1P transport. Another ABC transporter, the cystic fibrosis transmembrane regulator (CFTR), was also reported to be involved in the uptake of S1P, dihydrosphingosine 1-phosphate (dhS1P), and lysophosphatidic acid (Brown et al., 2014).

The structural and biochemical studies of transmembrane proteins have been drawn attention to but difficult to study because of the technical challenges in the past decades. Thus, the molecular basis of S1P export crossing the membrane remains unclear. Recently, a crystal structure of HnSPNS, the bacterial homolog from Hyphomonas neptunium shared 18% of sequence identity and 29% similarity with human Spns2, was reported at 3.1 Å in an inward-facing conformation (PDB Code 6E9C) (Zhou et al., 2019) (Figure 7(a)). Similar to other MFS transporters, HnSPNS consists of 12 transmembrane α-helices, assembling two structural repeats with pseudo-symmetry: the N- and C-terminal domains by TM1-6 and TM7-12, respectively (Figure 7(a)). Among species from bacteria to mammals, the most conserved residues gather in the N-terminal domain of Spinster proteins (Zhou et al., 2019). Notably, the contacts between TM2 and -4 in the inner cavity, where the best-characterized residues E129 and R122 are located, are significantly conserved. Besides, 13 of 25 residues composing this cavity are highly hydrophobic. There is an obvious and continuous omitted density in the center of the cavity surrounded by those conserved residues, such as R42, R122, F71, Y277, and Y371. Taken together, an acidic hydrophobic small molecule may be accommodated into the evolutionarily conserved cavity (Figure 7(b)), suggesting S1P may serve as a potential substrate for eukaryotic Spinster proteins.

Once exported from cells, S1P must bind to apolipoproteins and albumin in the bloodstream, due to the hydrophobic characteristics, to be effectively transported. More than half of the S1P molecules are occupied by the apolipoprotein M (ApoM), associated with high-density lipoprotein (HDL) in the plasma (Christoffersen et al., 2011; Blaho et al., 2015). From the crystal structure of ApoM in complex with S1P, the hydrophilic groups of S1P are mainly recognized by R98, W100, and R116 via direct hydrogen bonds, whereas other water-mediated interactions also contribute to the interactions (Christoffersen et al., 2011). As a similar strategy of inhibiting S1P transporters, targeting S1P, ApoM, or S1P-ApoM complexes in the plasma are possible ways for anti-angiogenic therapeutics. Some antibodies targeting plasma S1P have been developed. However, it is controversial to deplete plasma S1P due to its possible athero-protective effects (Poti et al., 2014), antihypertensive functions via S1P1/3 signaling (Cantalupo et al., 2017), endothelial-sealing effect through signaling to endothelial junctions (Xiong and Hla, 2014), and cardio-protective functions in several cardiovascular diseases such as hypertrophic heart disease, myocardial infarction and chronic heart failure (Cartier and Hla, 2019; Jozeefczuk et al., 2020). Therefore, the balance of S1P in both cancer and cardiovascular disease models still needs to be better characterized.

S1P Signaling via S1P Receptors

There are five S1P receptors, designated as S1P1-5, encoded in the human genome and activated by the endogenous ligand S1P. All five S1P receptors belong to the cell surface class A G protein-coupled receptor (GPCR) family, but regulate different cellular responses, such as cell proliferation, apoptosis, cell adhesion, cell motility, angiogenesis, and inflammation, by coupling different downstream heterotrimeric G proteins (Takabe et al., 2008). Among S1P1-5, S1P1 stands out due to its non-redundant functions. In particular, S1P1 mediates the egress of T and B cells from the thymus and secondary lymphoid tissues (Ebenezer et al., 2017;
Lucaciu et al., 2020a), making it a potential therapeutic target similar to SPL. Thus, the structure and biochemical properties of S1P1 have been studied extensively.

The crystal structure of S1P1 was yielded using the classic lipidic cubic phase crystallization method with the addition of a T4-lysozyme fusion, which stabilizes the conformation of the intracellular side of the receptor (Thorsen et al., 2014) and increases the possibility of crystal contacts (Chun et al., 2012; Hanson et al., 2012). The receptor was co-crystallized in complex with the sphingolipid mimic antagonist ML056, which is selected to stabilize the receptor by constraining the extracellular side of the receptor. Multiple microcrystal datasets are merged to reach the acceptable completeness to determine the S1P1 structure at 2.8 Å resolution. S1P1 adopts the identical fold of typical inactive GPCRs (Figure 8(a)), which are composed of seven transmembrane helices (TM) (Figure 8(b)). However, the structural analysis reflects some unique features for lipid binding. Firstly, the extracellular loops ECL1-3 and the N-terminal region are coordinated to exclude the antagonist ML056 from the extracellular solvent. Meanwhile, there is a cleft between TM1 and TM7 facing the membrane bilayer. Similar structural features are also observed in other lipid receptors, such as cannabinoid receptors and CRTH2 (Pei et al., 2008; Hurst et al., 2010; Wang et al., 2018a) (Figure 8(a)). These observations suggest a common mechanism that these lipidic molecules, such as S1P, cannabinoid, and prostaglandins, are first integrated into the lipid bilayer before binding to the receptor occurs (Hua et al., 2016; Shao et al., 2016; Wang et al., 2018a). ML056 mimics the zwitterionic nature of S1P and forms equivalent contacts in the orthosteric binding pocket of S1P1 (Figure 8(b)). The benzene ring and acyl chain of ML056 are surrounded by numbers of hydrophobic residues, such as F125, F210, W269, and F273 on TM3 and TM5-7, respectively (Figure 8(b)). Residues N101 and E201 interact with the amine group of ML056, while Y29, K34, and R120 coordinate the phosphate group.
(Figure 8(b)). Together, these interactions provide a high-affinity binding site for ML056 or S1P (Hanson et al., 2012). Considering the similar structures of S1P and ML056 but distinct functions as agonist or antagonist, the activation of S1P$_1$ may depend on the conformations of the acyl chain as well as the lengths of ligands. Besides, S1P$_1$ is reported to be activated by CD44 and aPC (activated Protein C), whilst inhibited by CD69, S1P$_2$, and LPA$_1$ (Lucaciu et al., 2020b). However, determination of the structure only in an inactive conformation, is insufficient to elucidate the activation mechanism of S1P$_1$. Taking advantage of the recent development of cryo-electron microscopy, several GPCR structures in complex with G proteins and β-arrestin have been determined (Scheerer and Sommer, 2017; Hilger et al., 2018; Huang et al., 2020). The S1P$_1$ structure in complex with agonist and G proteins is worth studying to better understand the mechanism of activation.

Currently, the therapeutic molecules targeting S1P$_1$ can be divided into two classes: the lipid-like S1P mimic such as FTY720-P or the non-lipid-like molecules such as BAF-312 (Siponimod) and RPC-1063 (Ozanimod) (Zemann et al., 2006; Pan et al., 2013; Scott et al., 2016). S1P$_{1-5}$ show complete conservation of residues (N101 and E201 in S1P$_1$) for S1P head group recognition, which is reflected in the lack of selectivity of S1P mimicking drugs. For instance, FTY720 is an agonist for receptors S1P$_3$-5 as well, causing severe off-target side effects like bronchoconstriction and cardiovascular dysfunction (Guerrero et al., 2010). In contrast, the residues in interacting with the acyl chain of S1P among five S1P receptors are significantly distinct, making a promising strategy to screen the selective molecule.
targeting the specific S1P receptor(s). Notably, the binding pockets of S1P1 and S1P5 are nearly identical, resulting in the lack of ligand specificity between the two receptors. For instance, Siponimod and Ozanimod target both S1P1 and S1P5. By improving the specificity, allosteric modulators rather than orthosteric agonists should be better choices. Recently, an increasing number of S1P1 agonists have been developed, including ponesimod (ACT-128800, Actelion), cenerimod (ACT-334441, Idorsia), mocrenimod (KR-203, Kyorin Pharmaceutical and Novartis), CS-0777 (Daichi Sankyo), AUY954, CS-2100, CYM5442, GSK1842799, RP001, SEW2871, Syl948, Amgen 8 (TC-G 1006), and Amgen 14 (TC-SP 14) (Pan et al., 2006; Zhang et al., 2009; Gaire et al., 2018). Notably, Novartis developed NIBR-0213 as a potent and selective S1P1 antagonist with an IC50 value of 2.5 nM to human S1P1 (Quancard et al., 2012).

Moreover, S1P1 is essential for endothelial cell functions (Xiong and Hla, 2014), indicating its potential as an agent for endothelial protection. However, the activation of S1P1 by commercialized drugs causes receptor over-desensitization and a long-lasting internalization. This results in the damage of endothelial function and limits the therapeutic potential of these molecules on the endothelial axis. A recently identified biased S1P1 agonist SAR247799 may act as a possible S1P1-targeted endothelial-protective agent. SAR247799 can activate S1P1 in a G protein-biased manner instead of recruiting β-arrestin, which will minimize the receptor internalization. The amelioration of coronary endothelial dysfunction in a pig model and the protection of renal function in a rat model were observed (Poirier et al., 2020). Although more characterizations are needed, the discovery of a biased S1P1 agonist shows great potential to expand indications via distinct S1P signaling transduction pathways.

Summary and Discussion

The sphingolipid metabolism has attracted the attention of structural biologists for the past three decades. On the one hand, the available structural information unveils the recognition specificities of S1P to different targets demonstrating possible reactions, transportation, and mechanisms of sensing. This explains the biochemical and clinical observations at the atomic level and sheds light on the prospect of developing therapeutic molecules. On the other hand, we have only obtained limited structural snapshots of executors in the sphingolipid metabolism. Many questions concerning the regulation of the metabolism of sphingolipids and the impact of this information in the development of therapeutics remain unanswered. It is needed to build the whole picture of sphingolipid metabolism from a structural viewpoint.

To begin, a mass of data shows that SPHK isoforms differ not only in cellular locations and in regulations, but also exhibit distinct substrate specificities. What is the structural basis for SPHK substrate selectivity? What is the stereochemical nature of inhibitor head groups in SPHK inhibition? Although biochemical data suggest that SPHK2 may be more tolerant of changes in hydrophilic groups than SPHK1 (Adams et al., 2020), the detailed conformations of SPHKs and organizations of surrounding residues are not revealed. From a wider perspective, the determination of substrate and inhibitor selectivity of SPHKs confers specific targeting in various cancers with elevated expression levels of both SPHK1 and SPHK2. It also facilitates the investigation of the physiological roles in the homeostatic regulation of S1P-dependent signaling.

After that, as we reviewed above, ceramidases and ceramide synthases are critical regulators that maintain intracellular ceramide, sphingosine, and S1P homeostasis. Although crystal structures and catalytic residues of all acid, neutral and alkaline ceramidases have been characterized, the structural based therapeutic inhibitor development is lagging behind. The development of novel inhibitors of ceramidases is boosted by the availability of high-throughput ceramidase assays. However, too little is known about the exact functions of ceramide in triggering downstream cellular signaling. The novel inhibitors may promote the solid mechanistic study of ceramide biology, which is the prerequisite for the development of therapeutics.

Then, none of the ceramide synthases’ structures have been determined yet. In mammals, ceramides are synthesized by a family of six ceramide synthases (CerSs), each of which uses acyl-CoAs of distinct chain lengths for N-acylation (Raichur, 2020). From a metabolic perspective, these enzymes occupy a unique niche in that they catalyze the synthesis of ceramide via both de novo and salvage pathways. Although numbers of mutagenesis study and *in silico* predictions demonstrated the importance of the Lag1p motif in CerS activity (Turpin-Nolan and Bruning, 2020), detailed structures and topology of CerSs are needed to verify many unclear questions, including the precise functional domains accommodating acyl-CoAs and sphingosines, the substrate specificity of CerS isoforms, and regulation and inhibition mechanisms of CerSs. In addition, several studies have suggested that CerS activity can be modulated by homo- and heterodimer formation (Laviad et al., 2012), hence the interface of CerS dimers also awaits to be characterized.

Furthermore, there are still plenty of chances for S1P transportation studies from a structural viewpoint. Firstly, the structural information of Spinster proteins is still limited. The alternating access model of MFS transporters, the well-accepted hypothesis in explaining
the transportation crossing the membranes, suggests at least three conformations including outward open, occluded, and inward open as intermediate states. Without obtaining complete structural information in the transporting cycle, it is impossible to unveil the transportation mechanism at the molecular level. Thus, more structures of Spinster proteins, especially in humans, are still worth getting due to the low sequence similarity among HnSPNS and other species. Secondly, the incomplete omitted electron density in HnSPNS is most likely the contaminant from the cell-culturing medium. Lacking the detailed recognition of S1P with its transporters, the rational design of specific inhibitors targeting S1P transportation crossing the membrane is contrived. Moreover, the structural information and biochemical characterizations of Mfsd2b and those ABC transporters with S1P are even less. Pharmacologically targeting S1P transporters would be an alternative way of inhibiting the activation of S1P to its receptors or intracellular responses if uptake was inhibited. These inhibitors may act as anti-angiogenic and anti-lymphangiogenic drugs in cancers or inhibit the “inside-out signaling” of the SPHK1/SIP axis (French et al., 2003; Anelli et al., 2010). It is of great importance to elucidate these structures to guide rational drug design as well as provide insight into the underlying mechanisms.

Besides, compared to S1P1, functions of S1P2,5 are less characterized. For instance, it is reported that conjugated bile acids (CBAs) and FAM19A5 were other activators of S1P2 (Studer et al., 2012; Wang et al., 2018b). For better elucidating the functions of these receptors, numerous selective agonists and antagonists targeting S1P2-5 were developed. JTE-013, a selective antagonist targeting S1P2 with an IC50 of 17 nM, was widely used to study possible functions of S1P2 (Ikeda et al., 2003). AB1, the analog of JTE-013 with improved potency, inhibited the growth of neuroblastoma xenografts more effectively (Li et al., 2015). There is a lack of in vivo studies of S1P2 selective agonists, such as CYM5520, CYM5478, and XAX-126 (Satsu et al., 2013). The S1P3 antagonists, such as CAY10444 (Koide et al., 2002), TY-52156 (Murakami et al., 2010), SPM-354 (Sanna et al., 2016) were also developed. However, the function of S1P3 in inflammation remains controversial, as both pro- and anti-inflammatory effects were observed (Hirata et al., 2014; Zhao et al., 2016). The physiological function of S1P4 is also poorly understood. So the selective agonists ML178, ML248 (Guerrero et al., 2010), CYM50260 (Onuma et al., 2017), and benzo-thiophene analogs (Hur et al., 2017) or S1P4 antagonists CYM50358 and compounds ground on a 5-aryl furan-2-arylcarboxamide scaffold (Guerrero et al., 2011; Hur et al., 2017) are expected to provide insights into the functional studies of S1P4. Besides, A-971432 is a selective S1P3 agonist (Hobson et al., 2015). Since the structure-based optimizations of orthosteric and allosteric modulators have been applied to many GPCRs (Congreve et al., 2017; Christopher et al., 2019; Xu et al., 2020), it is vital to obtain more structures of S1P receptors in different conformations bound with diverse ligands.

At last, the importance and complexity of sphingolipids are also exemplified by recent studies, such as the divergent impact of sphingolipid species and pathological backgrounds (Saville and Fuller, 2020) and the linkage of SPHKs and S1P receptors to the level of various blood cell traits (Astle et al., 2016). With the discoveries of novel physiological and pathological roles of sphingolipids, the importance of the molecular mechanistic understandings will get increased over time.

Table 1. Abbreviations.

Abbreviation	Full name
ABC	ATP-binding cassette
ACER	Alkaline ceramidase
ApoM	Apolipoprotein M
ASAH	Acid ceramidase
CERK	Ceramide kinase
CerS	Ceramide synthase
CFTR	Cystic fibrosis transmembrane conductance regulator
CRTH2	Prostaglandin D2 receptor 2
DGK	Diacylglycerol kinase
DMS	Dimethyl-sphingosine
Dpl1p	Dihydrosphingosine-1-phosphate lyase
GPCR	G protein-coupled receptor
HDL	High-density lipoprotein
LPP	Lipid phosphate phosphohydrolase
MFS	Major facilitator superfamily
MS	Multiple sclerosis
NAD	Nicotinamide adenine dinucleotide
Ntn	N-terminal nucleophile
PE	Phosphoethanolamine
PFK	Phosphofructokinase
PI3K	Phosphatidylinositol-3 kinase
PK/PD	Pharmacokinetics/pharmacodynamics
PKC	Protein kinase C
PLP	Pyridoxal phosphate
r.m.s.d	Root-mean-square deviation
sER	Smooth endoplasmic reticulum
SGPP	Sphingosine-1-phosphate phosphatases
SPHK	Sphingosine kinase
SPL	Sphingosine-1-phosphate lyase
SPNS2	Spinster homolog 2
StSPL	Symbiobacterium Thermophilum sphingosine-1-phosphate lyase
TM	Transmembrane helix
TMS	Trimethyl-sphingosine
Data
All structural coordinates are downloaded from Protein Data Bank (www.rcsb.org). The figures representing structures are generated by PyMOL (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.)
See Table 1 for abbreviations and Table 2 for definitions.

Acknowledgments
R. R. is supported in part by Kobilka Institute of Innovative Drug Discovery and Presidential Fellowship at the Chinese University of Hong Kong, Shenzhen.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest for the research, authorship, and/or publication of this review article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work is supported by the National Natural Science Foundation of China (Project No. 31971218), and Shenzhen Science and Technology Innovation Committee (Projects No. JCYJ-20180307-151618765 and JCYJ-20180508-163206306)

ORCID iDs
Ruobing Ren https://orcid.org/0000-0003-4517-7216
Yufei Han https://orcid.org/0000-0002-4034-6263

References
Adams DR, Pyne S, Pyne NJ (2020). Structure-function analysis of lipid substrates and inhibitors of sphingosine kinases. Cell Signal 76, 109806. http://doi.org/10.1016/j.cellsig.2020.109806

Airola MV, Allen WJ, Pulkoski-Gross MJ, Obeid LM, Rizzo RC, Hannun YA (2015). structural basis for ceramide recognition and hydrolysis by human neutral ceramidase. Structure 23, 1482–1491. http://doi.org/10.1016/j.str.2015.06.013

Allende ML, Sasaki T, Kawai H, Olivera A, Mi Y, van Echten-Deckert G, Hajdu R, Rosenbach M, Kehoe CA, Mandala S, et al. (2004). Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279, 52487–52492. http://doi.org/10.1074/jbc.M406512200

Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, Maceyka M, Jiang H, Luo C, Kordula T, et al. (2010). Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465, 1084–1088. http://doi.org/10.1038/nature09128

Ancelin N, Hla T (1999). Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. J Biol Chem 274, 18997–19002. https://doi.org/10.1074/jbc.274.27.18997

Anelli V, Gault CR, Snider AJ, Obeid LM (2010). Role of sphingosine kinase-1 in paracrine/transcellular angiogenesis and lymphangiogenesis in vitro. FASEB J 24, 2727–2738. http://doi.org/10.1096/fj.09-150540

Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riveros-Mckay F, Kostadima MA, et al. (2016). The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, 1415–1429 e1419. http://doi.org/10.1016/j.cell.2016.10.042

Baek DJ, MacRitchie N, Anthony NG, Mackay SP, Pyne S, Pyne NJ, Bittman R (2013a). Structure-activity relationships and molecular modeling of sphingosine kinase inhibitors. J Med Chem 56, 9310–9327. http://doi.org/10.1021/jm401399c

Baek DJ, MacRitchie N, Pyne NJ, Pyne S, Bittman R (2013b). Synthesis of selective inhibitors of sphingosine kinase 1. Chem Commun 49, 2136–2138. http://doi.org/10.1039/c3cc00181d

Table 2. Definitions.

Terminology	Definition
Protomer	The structural unit of an oligomeric protein in structural biology. It is the minimal unit, which assembles a larger homo-oligomer by the association of two or more copies of this unit.
Orthosteric and allosteric ligands	There are two types of ligands: orthosteric, which binds to the active site of the protein; and allosteric, which binds somewhere else on the protein surface, and allosterically changes the conformation of the orthosteric-binding pocket.
Similarity	It defines the “likeness” of two different residues upon sequence alignment. The residues with similar structures would possess similar functions.
Identity	It describes that the residues are identical with the corresponding positions upon sequence alignment.
Apo-enzyme	The protein part of an enzyme without its characteristic co-factor, prosthetic group, substrate, and inhibitor.
Protein fold	It is defined by the arrangement of the secondary structure elements of the protein relative to each other.
Bagdanoff JT, Donoviel MS, Nouralieen A, Tarver J, Fu Q, Carlsten M, Jessop TC, Zhang H, Hazelwood J, Nguyen H, et al. (2009). Inhibition of sphingosine-1-phosphate lyase for the treatment of autoimmune disorders. J Med Chem 52, 3941–3953. http://doi.org/10.1021/jm900278w

Bedia C, Canals D, Matabosch X, Harrak Y, Casas J, Llebaria A, Delgado A, Fabriàs G (2008). Cytoxicity and acid ceramidase inhibitory activity of 2-substituted aminoethanol amides. Chem Phys Lipids 156, 33–40. https://doi.org/10.1016/j.chemphyslip.2008.07.012

BielaWSka A, LinaRdic C, HamnUN Y (1992). Ceramide-mediated biology. Determination of structural and stereospecific requirements through the use of N-acyl-phenylaminoalcohol analogs. J Biol Chem 267, 18493–18497. https://doi.org/10.1016/S0021-9258(19)50708-6

Billich A, Beerli C, Bergmann R, Bruns C, Loetscher E (2013). Cellular assay for the characterization of sphingosine-1-phosphate lyase inhibitors. Anal Biochem 434, 247–253. http://doi.org/10.1016/j.ab.2012.11.026

Blaho VA, Galvani S, Engelbrecht E, Liu C, Swendeman SL, Kono M, Proia RL, Steinman L, Han MH, Hla T (2015). HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature 523, 342–346. http://doi.org/10.1038/nature14462

Bourquin F, Riezman H, Grutter MG (2010). Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphingolipid metabolism. Structure 18, 1054–1065. http://doi.org/10.1016/j.str.2010.05.011

Brannigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, Tomchick DR, Murzin AG (1995). A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378, 416–419. https://doi.org/10.1038/378416a0

Brown MB, Hunt WR, Noe JE, Rush NI, Schweitzer KS, Leece TC, Moldobaeva A, Wagner EM, Dudek SM, Poirier C, et al. (2014). Loss of cyctic fibrosis transmembrane conductance regulator impairs lung endothelial cell barrier function and increases susceptibility to microvascular damage from cigarette smoke. Pulmonary Circ 4, 260–268. http://doi.org/10.1086/675989

Buehrer BM, Bell RM (1992). Inhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways. J Biol Chem 267, 3154–3159. https://doi.org/10.1016/S0021-9258(19)50708-6

Camacho L, Meca-Cortés O, Abad JL, García S, Rubio N, Díaz A, Celiá-Terrasa T, Cingolani F, Bermudo R, Fernández PL (2013). Acid ceramidase as a therapeutic target in metastatic prostate cancer. J Lipid Res 54, 1207–1220. https://doi.org/10.1194/jlr.M032375

Cantalupo A, Gargiulo A, Dautaj E, Liu C, Zhang Y, Hla T, Di Lorenzo A (2017). SIPR1 (sphingosine-1-phosphate receptor 1) signaling regulates blood flow and pressure. Hypertension 70, 426–434. http://doi.org/10.1161/HYPERTENSIONAHA.117.09088

Cao M, Ji C, Zhou Y, Huang W, Ni W, Tong X, Wei JF (2018). Sphingosine kinase inhibitors: a patent review. Int J Mol Med 41, 2450–2460. http://doi.org/10.3892/ijmm.2018.3505

Cartier A, Hla T (2019). Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 366. http://doi.org/10.1126/science.aar5551

Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnström J, Sevvana M, Egerer-Sieber C, Muller YA, Hla T, Nielsen LB, et al. (2011). Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci 108, 9613–9618. http://doi.org/10.1073/pnas.1103187108

Christopher JA, Orgovan Z, Congreve M, Dore AS, Errey JC, Marshall FH, Mason JS, Okrasa K, Rucktooa P, Serrano-Vega MJ, et al. (2019). Structure-based optimization strategies for G protein-coupled receptor (GPCR) allosteric modulators: a case study from analyses of new metabolotropic glutamate receptor 5 (mGlur5) X-ray structures. J Med Chem 62, 207–222. http://doi.org/10.1021/acs.jmedchem.7b01722

Chun J, Goetzl EJ, Hla T, Igarashi Y, Lynch KR, Moolenaar W, Pyne S, Tigyi G (2002). International union of pharmacology. XXXIV. Lysoospholipid receptor nomenclature. Pharmacol Rev 54, 265–269. http://doi.org/10.1016/j.str.2012.04.010

Chun J, Hartung HP (2010). Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol 33, 91–101. http://doi.org/10.1124/pr.54.2.265

Chun E, Thompson AA, Liu W, Roth CB, Griffith MT, Katritch V, Kunken J, Xu F, Chererezov V, Hanson MA, et al. (2012). Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976. http://doi.org/10.1097/WNF.0b013e3181cbf825

Congreve M, Oswald C, Marshall FH (2017). Applying structure-based drug design approaches to allosteric modulators of GPCRs. Trends Pharmacol Sci 38, 837–847. http://doi.org/10.1016/j.tips.2017.05.010

Cyster JG, Schwab SR (2012). Sphingosine-1-Phosphate and Lymphocyte Egress from Lymphoid Organs. Annu Rev Immunol, 30, 69–94. https://doi.org/10.1146/annurev-immunol-020711-075011

Dementiev A, Joachimiak A, Nguyen H, Gorelik A, Illes K, Shabani S, Gelsomino M, Ahn EE, Nagar B, Doan N (2019). Molecular mechanism of inhibition of acid ceramidase by carmofur. J Med Chem 62, 987–992. http://doi.org/10.1021/acs.jmedchem.8b01723

Dickson MA, Carvajal RD, Merrill AH Jr, Gonen M, Cane LM, Schwartz GK (2011). A phase I clinical trial of safingol for the treatment of autoimmune disorders. J Immunol 187, 1078-0432.CCR-10-2323

Ditiranto-Desimone K, Saito M, Tekirian TL, Saito M, Berg M, Dubowchik G, Soreghan B, Thomas S, Marks N, Yang AJ (2003). Neuronal endosomal/lysosomal membrane destabilization activates caspases and induces abnormal accumulation of the lipid secondary messenger ceramide. Brain Res Bull 59, 523–531. https://doi.org/10.1016/S0361-9230(02)00948-6

Dorsam G, Gnaele MH, Seroogy C, Kong Y, Voice JK, Goetzl EJ (2003). Transduction of multiple effects of
sphingosine 1-phosphate (SIP) on T cell functions by the SIP1 G protein-coupled receptor. J Immunol 171, 3500–3507. http://doi.org/10.4049/jimmunol.171.7.3500

Draper JM, Xia Z, Smith RA, Zhuang Y, Wang W, Smith CD (2011). Discovery and evaluation of inhibitors of human ceramidase. Mol Cancer Therapeut 10, 2052–2061. http://doi.org/10.1158/1535-7163.MCT-11-0365

Ebenzer DL, Fu P, Natarajan V (2016). Targeting sphingosine 1-phosphate signaling in lung diseases. Pharmacol Therapeut 168, 143–157. http://doi.org/10.1016/j.pharmthera.2016.09.008

Ebenzer DL, Fu P, Suryadevara V, Zhao Y, Natarajan V (2017). Epigenetic regulation of pro-inflammatory cytokine secretion by sphingosine 1-phosphate (SIP) in acute lung injury: role of SIP lyase. Adv Biol Regul 63, 156–166. http://doi.org/10.1016/j.bior.2016.09.007

el Bawab SMC, Obeid LM, Hannun YA (2002). Ceramidases in the regulation of ceramide levels and function. Subcell Biochem 36, 187–205. https://doi.org/10.1007/0-306-47931-1_10

Endo K, Igarashi Y, Nisar M, Zhou Q, Hakomori S-I (1991). Cell membrane signaling as target in cancer therapy: inhibitory effect of N,N-dimethyl and N,N,N-trimethyl sphingosine derivatives on in vitro and in vivo growth of human tumor cells in nude mice. Cancer Res 51, 1613–1618.DOI: Published March 1991

Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connell CA, Bradley JD, Gruben D, Wallenstein GV, Zwillich SH, Kanik KS, et al. (2012). Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med 367, 495–507. http://doi.org/10.1056/NEJMoa1109071

French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL, Yun JK, Smith CD (2003). Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 63, 5962–5969. DOI: Published September 2003

French KJ, Zhuang Y, Maines LW, Gao P, Wang W, Beljanski Y, Upson JJ, Green CL, Keller SN, Smith CD (2010). Pharmacology and antitumor activity of ABC294640, a selective inhibitor of sphingosine kinase-2. J Pharmacol Exp Ther 333, 129–139. https://doi.org/10.1124/jpet.109.163444

Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y, Tokudome T, Sunden Y, Arai Y, Moriwaki K, Ishida J, et al. (2012). The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 122, 1416–1426. http://doi.org/10.1172/JCI60746

Funato K, Vallee B, Riezman H (2002). Biosynthesis and trafficking of sphingolipids in the yeast cell wall. Biochemistry 41, 15105–15114. http://doi.org/10.1021/bi026616d

Futerman AH, Steiger B, Hubbard AL, Pagano RE (1990). Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem 265, 8650–8657. https://doi.org/10.1016/S0021-9258(19)38937-9

Gaire BP, Lee CH, Sapkota A, Lee SY, Chun J, Cho HJ, Nam TG, Choi JW (2018). Identification of sphingosine 1-phosphate receptor subtype 1 (S1P1) as a pathogenic factor in transient focal cerebral ischemia. Mol Neurobiol 55, 2320–2332. http://doi.org/10.1007/s12035-017-0468-8

Galadari S, Wu BX, Mao C, Roddy P, El Bawab S, Hannun YA (2006). Identification of a novel amidase motif in neutral ceramidase. Biochem J 393, 687–695. http://doi.org/10.1042/Bj0205682

Gao P, Smith CD (2011). Ablation of sphingosine kinase-2 inhibits tumor cell proliferation and migration. Mol Cancer Res 9, 1509–1519. http://doi.org/10.1158/1541-7786.MCR-11-0336

Gebai A, Gorelik A, Li Z, Illes K, Nagar B (2018). Structural basis for the activation of acid ceramidase. Nat Commun 9, 1621. http://doi.org/10.1038/s41467-018-03844-2

Gestaut MM, Antoon JW, Burow ME, Beckman BS (2014). Inhibition of sphingosine kinase-2 ablates androgen resistant prostate cancer proliferation and survival. Pharmacol Rep 66, 174–178. http://doi.org/10.1016/j.pharep.2013.08.014

Goetzl EJ, Kong Y, Mei BS (1999). Lyso phosphatic acid and sphingosine 1-phosphate protection of T cells from apoptosis in association with suppression of Bax. J Immunol 162, 2049–2056.

Gonda K, Okamoto H, Takuwa N, Yatomi Y, Okazaki H, Sakurai T, Kimura S, Sillard R, Harii K, Takuwa Y (1999). The novel sphingosine 1-phosphate receptor AGR16 is coupled via pertussis toxin-sensitive and-insensitive G-proteins to multiple signalling pathways. Biochem J 337, 67–75. https://doi.org/10.1042/bj3370067

Grijalvo S, Bedia C, Triola G, Casas J, Llebaria A, Teixidó J., Rabal O, Levade T, Delgado A, Fabriás G (2006). Design, synthesis and activity as acid ceramidase inhibitors of 2-oxooctanoyl and N-oleoylthanolamine analogues. Chem Phys Lipids 144, 69–84. https://doi.org/10.1016/j.chemphys.2006.07.001

Guerrero M, Urbano M, Velaparthi S, Schaeffer MT, Brown SJ, Crisp M, Ferguson J, Hodder P, Rosen H, Oldstone M, et al. (2010). Identification of a novel agonist of the sphingosine 1-phosphate receptor 4 (SIP4), in Probe Reports from the NIH Molecular Libraries Program, National Center for Biotechnology Information (2010).

Guerrero M, Urbano M, Velaparthi S, Zhao J, Schaeffer MT, Brown S, Rosen H, Roberts E (2011). Discovery, design and synthesis of the first reported potent and selective sphingosine 1-phosphate 4 (SIP4) receptor antagonists. Bioorg Med Chem Lett 21, 3632–3636. http://doi.org/10.1016/j.bmcl.2011.04.097

Gustin DJ, Li Y, Brown ML, Min X, Schmitt MJ, Wanska M, Wang X, Connors R, Johnstone S, Cardozo M, et al. (2013). Structure guided design of a series of sphingosine kinase (SphK) inhibitors. Bioorg Med Chem Lett 23, 4608–4616. http://doi.org/10.1016/j.bmcl.2013.06.030

Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S, et al. (2009). Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325, 1254–1257. http://doi.org/10.1126/science.1176709

Hannun YA, Obeid LM (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9, 139–150. http://doi.org/10.1038/nrm2329
Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC, et al. (2012). Crystal structure of a lipid g protein–coupled receptor. Science 335, 851. http://doi.org/10.1126/science.1215904

Hilger D, Masureel M, Kobilka BK (2018). Structure and dynamics of GPCR signaling complexes. Nature Struct Mol Biol 25, 4–12. http://doi.org/10.1038/s41594-017-0011-7

Hirata N, Yamada S, Shoda T, Kurihara M, Sekino Y, Kanda Y (2014). Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation. Nat Commun 5, 4806. http://doi.org/10.1038/ncomms5806

Hobson AD, Harris CM, van der Kam EL, Turner SC, Abibi A, Aguirre AL, Bousquet P, Kebede T, Konopacki DB, Gintant G, et al. (2015). Discovery of A-971432, an orally bioavailable selective sphingosine-1-phosphate receptor 5 (S1P5) agonist for the potential treatment of neurodegenerative disorders. J Med Chem 58, 9154–9170. http://doi.org/10.1021/acs.jmedchem.5b00928

Houben E, Uchida Y, Nieuwenhuiizen W, De Paepe K, Vanhaecke T, Holleran W, Rogiers V (2007). Kinetic characteristics of acidic and alkaline ceramidase in human epidermis. Skin Pharmacol Physiol 20, 187–194. https://doi.org/10.1159/000101388

Hu W, Xu R, Sun W, Szulc ZM, Bielawski J, Obeid LM, Mao C (2010). Alkaline ceramidase 3 (ACER3) hydrolyzes unsaturated long-chain ceramides, and its down-regulation inhibits both cell proliferation and apoptosis. J Biol Chem 285, 7964–7976. http://doi.org/10.1074/jbc.M109.063586

Hua T, Vemuri K, Pu M, Qu L, Han GW, Wu Y, Zhao S, Shui W, Li S, Korde A, et al. (2016). Crystal structure of the human cannabinoid receptor CB1. Cell 167, 750 e714–762 e714. http://doi.org/10.1016/j.cell.2016.10.004

Huang W, Masureel M, Qu Q, Janetzko J, Inoue A, Kato HE, Robertson MJ, Nguyen KC, Glenn JS, Skiniotis G, et al. (2020). Structure of the neurotensin receptor 1 in complex with beta-arrestin 1. Nature 579, 476–492. http://doi.org/10.1074/jbc.M109.068395

Huang Y, Yamaguchi A, Mochizuki N (2009). The sphingolipid transporter smp2 functions in migration of zebrafish myocardial precursors. Science 323, 524–527. http://doi.org/10.1126/science.1167449

Kobayashi N, Kobayashi N, Yamaguchi A, Nishi T (2009). Characterization of the ATP-Dependent Sphingosine 1-Phosphate Transporter in Rat Erythrocytes. Journal of Biological Chemistry, 284, 21192–21200. http://doi.org/10.1074/jbc.M109.066163

Kobayashi N, Nishi T, Hirata K, Hikara A, Sano T, Igarashi Y, Yamaguchi A (2006). Sphingosine-1-phosphate is released from the Cytosol of Rat Platelets in a Carrier-Mediated Manner. Journal of Lipid Research, 47, 614–621. https://doi.org/10.1126/jlr.M500468-JLR200

Koide Y, Hasegawa T, Takahashi A, Endo A, Mochizuki N, Nakagawa M, Nishida A (2002). Development of novel Edg3 antagonists using a 3D database search and their structure-activity relationships. J Med Chem 45, 4629–4638. http://doi.org/10.1021/jm020080c

Kono M, Dreier JL, Ellis JM, Allende ML, Kalkofen DN, Sanders KM, Bielawski J, Bielawska A, Hannun YA, Proia RL (2006). Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J Biol Chem 281, 7324–7331. http://doi.org/10.1074/jbc.M508382200

Kono K, Tanaka M, Mizuno T, Kodama K, Ogita T, Kohama T (2000a). B-535a, b and c, new sphingosine kinase inhibitors, produced by a marine bacterium; taxonomy, fermentation, isolation, physico-chemical properties and structure determination. J Antibiotics 53, 753–758. http://doi.org/10.7164/antibiotics.53.753

Kono K, Tanaka M, Ogita T, Kohama T (2000b). Characterization of B-535ac, a new sphingosine kinase inhibitor, produced by a marine bacterium. J Antibiotics 53, 759–764. http://doi.org/10.7164/antibiotics.53.759

Ksiezak M, Chacinska M, Chabowski A, Baranowski M (2015). Sources, metabolism, and regulation of circulating...
sphingosine-1-phosphate. J Lipid Res 56, 1271–1281. http://doi.org/10.1194/jlr.R059543

Kumar A, Saba JD (2009). Lyase to live by: sphingosine phosphate lyase as a therapeutic target. Expert Opin Ther Targets 13, 1013–1025. http://doi.org/10.1517/1472822090309722

Kumari P, Kaur S, Sharma S, Kashyap HK (2018). Impact of amphiphilic molecules on the structure and stability of homogeneous sphingomyelin bilayer: Insights from atomistic simulations. J Chem Phys 148, 165102. http://doi.org/10.1063/1.5021310

Laviad EL, Kelly S, Merrill AH Jr, Futerman AH (2012). Liu H, Sugiura M, Nava VE, Edsall LC, Kono K, Poulton S, Linn SC, Kim HS, Keane EM, Ras LM, Wang E, Merrill AH Jr. Lewis AC, Wallington-Beddoe CT, Powell JA, Pitson SM. Li MH, Swenson R, Harel M, Jana S, Stolarzewicz E, Hla T, Kumari P, Kaur S, Sharma S, Kashyap HK (2018). Impact of amphiphilic molecules on the structure and stability of homogeneous sphingomyelin bilayer: Insights from atomistic simulations. J Chem Phys 148, 165102. http://doi.org/10.1063/1.5021310

Laviad EL, Kelly S, Merrill AH Jr, Futerman AH (2012). Modulation of ceramide synthase activity via dimerization. J Biol Chem 287, 21025–21033. http://doi.org/10.1074/jbc.M112.363580

Le Stunff H, Peterson C, Fureman AH (2012). Characterization of murine sphingosine-1-phosphate phosphohydrolase. J Biol Chem 277, 8920–8927. http://doi.org/10.1074/jbc.M109968200

Lee MJ, Thanagada S, Paik JH, Sapkota GP, Ancellin N, Chae SS, Wu M, Morales-Ruiz M, Sessa WC, Alessi DR, et al. (2001). Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol Cell 6, 693–704. http://doi.org/10.1016/s1097-2765(01)00324-0

Lewis AC, Wallington-Beddoe CT, Powell JA, Pitson SM (2018). Targeting sphingolipid metabolism as an approach for combination therapies in haematological malignancies. Cell Death Discov 4, 72. http://doi.org/10.1038/s41420-018-0075-0

Li MH, Swenson R, Harel M, Jana S, Stolarzewicz E, Hla T, Shapiro LH, Ferrer F (2015). Antitumor activity of a novel sphingosine-1-phosphate 2 antagonist, AB1, in neuroblastoma. J Pharmacol Exp Ther 354, 261–268. http://doi.org/10.1124/jpet.115.224519

Linn SC, Kim HS, Keane EM, Wang E, Merrill AH Jr (2001). Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem Soc Trans 29, 831–835. http://doi.org/10.1042/0300-5127:0290831

Liu H, Sugiuira M, Nava VE, Edsall LC, Kono K, Poulton S, Milstien S, Kohama T, Spiegel S (2000a). Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 275, 19513–19520. http://doi.org/10.1074/jbc.M002759200

Liu H, Tomam RE, Goparaju SK, Maceyka M, Nava VE, Sankala H, Payne SG, Bektas M, Ishii I, Chun J, et al. (2003). Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem 278, 40330–40336. http://doi.org/10.1074/jbc.M304455200

Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE, Chae SS, Lee MJ, et al. (2000b). Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 106, 951–961. http://doi.org/10.1172/JCI10905

Lucaciu A, Kuhn H, Trautmann S, Ferreiros N, Steinmetz H, Pfeilschifter J, Brunkhorst R, Pfeilschifter W, Subburayalu J, Vutukuri R (2020a). A sphingosine 1-phosphate gradient is linked to the cellular recruitment of T helper and regulatory T helper cells during acute ischemic stroke. Int J Mol Sci 21, 6242. https://doi.org/10.3390/ijms21176242

Lucaciu A, Brunkhorst R, Pfeilschifter JM, Pfeilschifter W, Subburayalu J (2020b). The S1P-S1PR axis in neurological disorders—insights into current and future therapeutic perspectives. Cells 9, 1515. http://doi.org/10.3390/cells9061515

Lynch KR, Thorpe SB, Santos WL (2016). Sphingosine kinase inhibitors: a review of patent literature (2006–2015). Exp Opin Ther Patents 26, 1409–1416. http://doi.org/10.1080/13543776.2016.1226282

Maceyka M, Sankala H, Hacet NC, Le Stunff H, Liu H, Toman R, Collier C, Zhang M, Satin LS, Merrill AH Jr, et al. (2005). SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 280, 37118–37129. http://doi.org/10.1074/jbc.M502207200

Mendoza A, Breart B, Ramos-Perez WD, Pitt LA, Gobert M, Sunkara M, Lafaille JJ, Morris AJ, Schwab SR (2012). The transporter Spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate. Cell Rep 2, 1104–1110. http://doi.org/10.1016/j.celrep.2012.09.021

Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, Chaluvadi VS, Dustin ML, Hla T, Elemento O, et al. (2017). Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature 546, 158–161. http://doi.org/10.1038/nature22352

Mitra P, Oskeritzian CA, Payne SG, Beaven MA, Milstien S, Spiegel S (2006). Role of ABCC1 in Export of Sphingosine-1-Phosphate from Mast Cells. Proceedings of the National Academy of Sciences 103, 16394–16399. https://doi.org/10.1073/pnas.0603734103

Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL (2005). Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25, 11113–11121. http://doi.org/10.1128/MCB.25.24.11113-11121.2005

Mizushima N, Koike R, Kohsaka H, Kushi Y, Handa S, Yagitla, Miyasaka N (1996). Ceramide induces apoptosis via CPP32 activation. FEBS Lett 395, 267–271. http://doi.org/10.1016/0014-5793(96)01050-2

Murakami A, Takasugi H, Ohnuma S, Koide Y, Sakurai A, Takeda S, Hasegawa T, Sasamori J, Konno T, Hayashi K, et al. (2010). Sphingosine 1-phosphate (S1P) regulates vascular contraction via S1P3 receptor: investigation based on a new S1P3 receptor antagonist. Mol Pharmacol 77, 704–713. http://doi.org/10.1124/mol.109.0961481

Nagahashi M, Kim EY, Yamada A, Ramachandran S, Allegood JC, Hacet NC, Maceyka M, Milstien S, Takabe K, Spiegel S (2013). Spns2, a transporter of phosphorylated sphingoid bases, regulates their blood and lymph levels, and the lymphatic network. FASEB J 27, 1001–1011. http://doi.org/10.1096/fj.12-219618

Neubauer HA, Pham DH, Zebol JR, Moretti PA, Peterson AL, Leecrcoq TM, Chan H, Powell JA, Pitman MR, Samuel MS, et al. (2016). An oncogenic role for sphingosine kinase 2. Oncotarget 7, 64886–64899. http://doi.org/10.18632/oncotarget.11714
Nganga R, Oleinik N, Ogretmen B (2018). Mechanisms of ceramide-dependent cancer cell death. Adv Cancer Res 140, 1–25. http://doi.org/10.1016/bs.acr.2018.04.007

Ohotski J, Rosen H, Bittman R, Pyne S, Pyne NJ (2014). Sphingosine kinase 2 prevents the nuclear translocation of sphingosine 1-phosphate receptor-2 and tyrosine 416 phosphorylated c-Src and increases estrogen receptor negative MDA-MB-231 breast cancer cell growth: the role of sphingosine 1-phosphate receptor-4. Cell Signal 26, 1040–1047. http://doi.org/10.1016/j.cellsig.2014.01.023

Okamoto H, Takuwa N, Yokomizo T; Sugimoto N, Sakurada S, Shigematsu H, Takuwa Y (2000). Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Mol Cell Biol 20, 9247–9261. http://doi.org/10.1128/MCB.20.24.9247-9261.2000

Oliveira A SS (1993). Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature, 557–560. https://doi.org/10.1038/365557a0

Onuma T, Tanabe K, Kito Y, Tsujimoto M, Uematsu K, Enomoto Y, Matsuhashi-Nishikawa R, Doi T, Nagase K, Akamatsu S, et al. (2017). Sphingosine 1-phosphate (SIP) suppresses the collagen-induced activation of human platelets via SIP4 receptor. Thromb Res 156, 91–100. http://doi.org/10.1016/j.thromres.2017.06.001

Ouairy CM, Ferraz MJ, Boot RG, Baggeelaar MP, van der Stelt M, Appelman M, van der Marel GA, Florea BI, Aerts JM, Overkleeft HS (2015). Development of an acid ceramidase modulator. ACS Med Chem Lett 6, 333–337. http://doi.org/10.1021/ml500396r

Pan S, Gray NS, Gao W, Mi Y, Fan Y, Wang X, Tuntland T, Che J, Lefebvre S, Chen Y, et al. (2013). Discovery of BAF312 (siponimod), a potent and selective S1P receptor modulator. ACS Med Chem Lett 4, 333–337. http://doi.org/10.1021/ml300396r

Pan S, Mi Y, Pally C, Beeri C, Chen A, Guerini D, Hinterding K, Nuesslein-Hildesheim B, Tuntland T, Lefebvre S, et al. (2006). A monoselective sphingosine-1-phosphate receptor agonist prevents allograft rejection in a stringent rat heart transplantation model. Chem Biol 13, 1227–1234. http://doi.org/10.1016/j.chembiol.2006.09.017

Panneer Selvam S, De Palma RM, Oaks JJ, Oleinik N, Peterson YK, Stahlhen RV, Skordalakes E, Ponnusamy S, Garrett-Mayer E, Smith CD, et al. (2015). Binding of the sphingolipid SIP to hTERT stabilizes telomerase at the nuclear periphery by allosterically mimicking protein phosphorylation. Sci Signal 8, ra58. http://doi.org/10.1126/scisignal.aaa4998

Parham KA, Zebol JR, Tooley KL, Sun WY, Moldenhauer LM, Cockshell MP, Gliddon BL, Moretti PA, Tiggy G, Pitson SM, et al. (2015). Sphingosine 1-phosphate is a ligand for peroxisome proliferator-activated receptor-gamma that regulates neoangiogenesis. FASEB J 29, 3638–3653. http://doi.org/10.1096/fj.14-261289

Pei J, Grishin NV (2003). Peptidase family U34 belongs to the superfamily of N-terminal nucleophile hydrolases. Protein Sci 12, 1131–1135. http://doi.org/10.1110/ps.0240803

Pei Y, Mercier RW, Anday JK, Thakur GA, Zvonok AM, Hurst D, Reggio PH, Janero DR, Makriyannis A (2008). Ligand-binding architecture of human CB2 cannabinoid receptor: evidence for receptor subtype-specific binding motif and modeling GPCR activation. Chem Biol 15, 1207–1219. http://doi.org/10.1016/j.chembiol.2008.10.011

Pettus BJ, Chalfant CE, Hunnun YA (2002). Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585, 114–125. http://doi.org/10.1016/s1388-1981(02)00331-1

Pitman MR, Powell JA, Coolen C, Moretti PA, Zebol JR, Pham DH, Finnie JW, Don AS, Ebert LM, Bonder CS, et al. (2015). A selective ATP-competitive sphingosine kinase inhibitor demonstrates anti-cancer properties. Oncotarget 6, 7065–7083. http://doi.org/10.18632/oncotarget.3178

Pizzirani D, Bach A, Realini N, Armironti A, Mengatto L, Bauer I, Girotto S, Pagliuca C, De Vivo M, Summa M (2015). Benzoxazolone carboxamides: potent and systemically active inhibitors of intracellular acid ceramidase. Angew Chem Int Ed Engl 127, 495–499. https://doi.org/10.1002/ange.201409042

Poirier B, Briand V, Kadereit D, Schafer M, Wohlfart P, Philippo MC, Caillaud D, Gouraud L, Grailhe P, Bidouard JP, et al. (2020). A G protein-biased S1P1 agonist, SAR247799, protects endothelial cells without affecting lymphocyte numbers. Sci Signal 13, eaax8050. http://doi.org/10.1126/scisignal.aax8050

Poti F, Simoni M, Nofer JR (2014). Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P). Cardiovasc Res 103, 395–404. http://doi.org/10.1093/cvr/cvu136

Quancard J, Bollbuck B, Janser P, Angst D, Berst F, Poirier B, Briand V, Kadereit D, Schafer M, Wohlfart P, et al. (2012). A potent and selective S1P(1) antagonist, SAR247799, protects endothelial cells without affecting lymphocyte numbers. Sci Signal 13, eaax8050. http://doi.org/10.1126/scisignal.aax8050

Ren et al.
Salma Y, Lafont E, Therville N, Carpentier S, Bonnafe MJ, Sankala HM, Hait NC, Paugh SW, Shida D, Lepine S, Elmore Schnute ME, McReynolds MD, Kasten T, Yates M, Jerome G, Samsel L, Zaidel G, Drumgoole HM, Jelovac D, Drachenberg Schuchman EH (2016). Acid ceramidase and the treatment of Scheerer P, Sommer ME (2017). Structural mechanism of Satsu H, Schaeffer MT, Guerrero M, Saldana A, Eberhart C, Sato K, Malchinkhuu E, Horiuchi Y, Mogi C, Tomura H, Sanna MG, Vincent KP, Repetto E, Nguyen N, Brown SJ, Xu R, Wand K, Mileva I, Hannun YA, Obeid LM, Mao C (2016). Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response. Oncotarget 7, 18440–18457. http://doi.org/10.18632/oncotarget.7825

Salma Y, Lafont E, Therville N, Carpentier S, Bonnafe MJ, Levade T, Genisson Y, Andrieu-Abadie N (2009). The natural marine anhydrophytosphingosine, Jaspine B, induces apoptosis in melanoma cells by interfering with ceramide metabolism. Biochem Pharmacol 78, 477–485. http://doi.org/10.1016/j.bcp.2009.05.002

Samsel L, Zaidel G, Drumgoole HM, Jelovac D, Drachenberg C, Rhee JG, Brodie AM, Bielawska A, Smyth MJ (2004). Involvement of sphingosine 1-phosphate kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Res 64, 10466–10474. http://doi.org/10.1158/0008-5472.CAN-07-2090

Sanna MG, Vincent KP, Repetto E, Nguyen N, Brown SJ, Abgaryan L, Riley SW, Shida D, Lepine S, Elmore LW, Dent P, Milstien S, Spiegel S (2007). Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Res 67, 1394–1399. http://doi.org/10.1093/jnci/dj817.1394

Scott FL, Clemons B, Brooks J, Brahmachary E, Powell R, Dedman H, Desale HG, Timony GA, Martinborough E, Rosen H, et al. (2016). Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (SIP1) and receptor-5 (SIP5) agonist with autoimmune disease-modifying activity. Br J Pharmacol 173, 1778–1792. http://doi.org/10.1111/bph.13476

Serra M, Saba JD (2010). Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv Enzyme Regul 50, 349–362. http://doi.org/10.1016/j.advenzreg.2009.10.024

Shao Z, Yin J, Chapman K, Grzemska M, Clark L, Wang J, Rosenbaum DM (2016). High-resolution crystal structure of the human CBI cannabinoid receptor. Nature 540, 602–606. http://doi.org/10.1038/nature20613

Shaw J, Costa-Pinheiro P, Patterson L, Drews K, Spiegel S, Kester M (2018). Novel sphingolipid-based cancer therapeutics in the personalized medicine era. Adv Cancer Res 140, 327–366. http://doi.org/10.1016/bs.acr.2018.04.016

Spiegel S, Milstien S (2003). Sphingosine-1-phosphate: an enigmatic signalling lipid. Nature reviews. Mol Cell Biol 4, 397–407. http://doi.org/10.1038/nrm1103

Studer E, Zhou X, Zhao R, Wang Y, Takabe K, Nagahashi M, Pandak WM, Dent P, Spiegel S, Shi R, et al. (2012). Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 55, 267–276. http://doi.org/10.1002/hep.24681

Sugita M, Williams M, Dulaney JT, Moser HW (1975). Ceramide and ceramide synthesis in human kidney and cerebellum: description of a new alkaline ceramidase. Biochim Biophys Acta 398, 125–131. https://doi.org/10.1016/0005-2760(75)90176-9

Sugiera M, Kono K, Liu H, Shimizugawa T, Minekura H, Spiegel S, Kohama T (2002). Ceramide kinase, a novel lipid kinase. Molecular cloning and functional characterization. J Biol Chem 277, 23294–23300. http://doi.org/10.1074/jbc.M201535200

Sun W, Xu R, Hu W, Jin J, Crellin HA, Bielawski J, Szulc ZM, Thiers BH, Obeid LM, Mao C (2008). Upregulation of the human alkaline ceramidase 1 and acid ceramidase mediates calcium-induced differentiation of epidermal keratinocytes. J Investig Dermatol 128, 389–397. http://doi.org/10.1038/sj.jid.5701025

Symolon H, Schmelz EM, Dillehay DL, Merrill AH Jr (2004). Dietary soy sphingolipids suppress tumorigenesis and gene expression in 1,2-dimethylhydrazine-treated CF1 mice and ceramidase. Biol Chem 388, 1333–1343. http://doi.org/10.1515/BC.2007.152

Schrab SG, Pereira JP, Matloubian M, Xu Y, Huang Y, Cyster JG (2005). Lymphocyte sequestration through SIP lyase inhibition and disruption of SIP gradients. Science 309, 1735–1739. http://doi.org/10.1126/science.1113640

Schwartz GK, Haimovitz-Friedman A, Dhupar SK, Ehleiter D, Maslak P, Lai L, Loganzo F Jr, Kelsen DP, Fuks Z, Albino AP (1995). Potentiation of apoptosis by treatment with the protein kinase C-specific inhibitor sainfingol in mitomycin C-treated gastric cancer cells. J Natl Cancer Inst 87, 1394–1399. http://doi.org/10.1093/jnci/87.18.1394

Scheuer P, Sommer ME (2017). Structural mechanism of arrestin activation. Curr Opin Struct Biol 45, 160–169. http://doi.org/10.1016/j.sbi.2017.05.001

Schmute ME, McReynolds MD, Kasten T, Yates M, Jerome G, Rains JW, Hall T, Chrenick J, Kraus M, Cronin CN, et al. (2012). Modulation of cellular SIP levels with a novel, potent and specific inhibitor of sphingosine kinase-1. Biochem J 444, 79–88. http://doi.org/10.1042/Bjc201111929

Schuchman EH (2016). Acid ceramidase and the treatment of ceramide diseases: the expanding role of enzyme replacement therapy. Biochim Biophys Acta 1862, 1459–1471. http://doi.org/10.1016/j.bbadis.2016.05.001

Schulze H, Schepers U, Sandhoff K (2007). Overexpression and mass spectrometry analysis of mature human acid
Yatomi Y, Ruan F, Megidish T, Toyokuni T, Hakomori S, Igarashi Y (1996). N,N-dimethylsphingosine inhibition of sphingosine kinase and sphingosine 1-phosphate activity in human platelets. Biochemistry 35, 626–633. http://doi.org/10.1021/bi9515533

Yokota S, Taniguchi Y, Kihara A, Mitsutake S, Igarashi Y (2004). Asp177 in C4 domain of mouse sphingosine kinase 1a is important for the sphingosine recognition. FEBS Lett 578, 106–110. http://doi.org/10.1016/j.febslet.2004.10.081

Zemann B, Kinzel B, Müller M, Reuschel R, Mechtcheriakova D, Urtz N, Bornancin Fd.r., Baumruker T, Billich A (2006). Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood 107, 1454–1458. http://doi.org/10.1182/blood-2005-07-2628

Zhang ZY, Zhang Z, Zug C, Nuesslein-Hildesheim B, Leppert D, Schluesener HJ (2009). AUY954, a selective S1P(1) modulator, prevents experimental autoimmune neuritis. J Neuroimmunol 216, 59–65. http://doi.org/10.1016/j.jneuroim.2009.09.010

Zhao J, Liu J, Lee J-F., Zhang W, Kandouz M, VanHecke GC, Chen S, Ahn Y-H., Lonardo F, Lee M-J (2016). TGF-β/SMAD3 Pathway stimulates sphingosine-1 phosphate receptor 3 expression implication of sphingosine-1 phosphate receptor 3 in lung adenocarcinoma progression. J Biol Chem 291, 27343–27353. https://doi.org/10.1074/jbc.M116.740084

Zhou F, Yao D, Rao B, Zhang L, Nie W, Zou Y, Zhao J, Cao Y (2019). Crystal structure of a bacterial homolog to human lysosomal transporter, spinster. Sci Bull 64, 1310–1317. http://doi.org/10.1016/j.scib.2019.08.010