Boson sampling for molecular vibronic spectra

Joonsuk Huh*, Gian Giacomo Guerrreschi, Borja Peropadre, Jarrod R. McClean and Alán Aspuru-Guzik*

Controllable quantum devices open novel directions to both quantum computation and quantum simulation. Recently, a problem known as boson sampling has been shown to provide a pathway for solving a computationally intractable problem without the need for a full quantum computer, instead using a linear optics quantum set-up. In this work, we propose a modification of boson sampling for the purpose of quantum simulation. In particular, we show that, by means of squeezed states of light coupled to a boson sampling optical network, one can generate molecular vibronic spectra, a problem for which no efficient classical algorithm is currently known. We provide a general framework for carrying out these simulations via unitary quantum optical transformations and supply specific molecular examples for future experimental realization.

Quantum mechanics allows the storage and manipulation of information in ways that are not possible according to classical physics. At a glance, it appears evident that the set of operations characterizing a quantum computer is strictly larger than the operations possible in a classical hardware. This speculation is at the basis of quantum speedups that have been achieved for oracular and search problems1,2. Particularly significant is the exponential speedup achieved for the prime factorization of large numbers3, a problem for which no efficient classical algorithm is currently known. Another attractive area for quantum computers is quantum simulation4–9, in which it has been shown recently that the dynamics of chemical reactions10 as well as the molecular electronic structure11 are attractive applications for quantum devices. For all these instances, the realization of a quantum computer would challenge the extended Church–Turing thesis (ECT), which claims that a Turing machine can efficiently simulate any physically realizable system, and even disprove it if prime factorization was finally demonstrated to be not efficiently solvable on classical machines.

At the same time, the realization of a full-scale quantum computer is a very demanding technological challenge, even if it is not forbidden by fundamental physics. This fact motivated the search for intermediate quantum hardware that could efficiently solve specific computational problems believed to be intractable with classical machines, without being capable of universal quantum computation. Recently, Aaronson and Arkhipov found that sampling the distribution of photons at the output of a linear photonic network is expected (modulo a few conjectures) to be computationally inefficient for any classical computer, because it requires the evaluation of many matrix permanents12. On the contrary, this task is naturally simulated by indistinguishable photons injected as the input of a photonic network (see the pictorial description of boson sampling in Fig. 1a).

Although boson sampling will probably play a major role in the debate around the ECT, it also appears as a somewhat artificial problem in which we ask a classical computer to predict the behaviour of a quantum machine (under certain working conditions) and then compare its efficiency with the direct operation of the machine itself. In this work, we present a connection between boson sampling and the calculation of molecular vibronic (vibrational and electronic) spectra related to molecular processes such as absorption, emission, photoelectron and resonance Raman spectroscopy (see Table 1)19–24. These molecular spectroscopies are fundamental probes for molecular properties; for example, the corresponding vibronic transitions involve two electronic states and one can extract the molecular structural and force-field changes from the spectra. In particular, the linear absorption spectra of molecules determine important properties, such as their performance as solar cells25 or as dyes, for either biological labels or industrial processes26. The prediction of the linear absorption of molecules is computationally challenging, especially when complicated vibrational features (see, for example, Dierksen and Grimm27 and Hayes et al.28) make the spectra very rich. Moreover, photoelectron spectroscopy is a useful tool to study the ionized states of molecules. The ionizing process is important in chemistry and biology; for example, the photodamage of deoxyribonucleic acid molecules is fatal to life. We show a photoelectron spectrum of thymine29 (the experimental spectrum is also given later in Fig. 4) as an example of the current state of the art.

We propose a new simulation scheme that provides a second, chemically relevant reason to realize boson sampling machines. It replaces the direct calculation of Franck–Condon (FC) factors, including Duschinsky mode mixing30, that represent a computationally difficult problem for which various strategies have been developed in the vibronic spectroscopy community (see, for example, Ruhoff et al.22, Jankowiak et al.31 and Santoro et al.32) with a simple sampling procedure from a quantum photonic device. In particular, we show that the quantum simulation, and hence the calculation of Franck–Condon profiles (FCPs) that lie at the heart of linear spectroscopy, can be efficiently performed on a boson sampling machine simply by modifying the input state. This connection provides a scientific and industrially relevant problem with a physical and chemical meaning that is well separated from the simulation of linear quantum optical networks. A complementary approach for the quantum simulation of molecular vibrations in quantum optics using a time-domain approach was introduced recently (A. Laing, personal communication).
input state whose action is characterized by the unitary operation $\hat{\sum}$ number of photons in the molecule. We show in this work how the fundamental physical process that underlies Boson sampling and vibronic transitions.

Results

Boson sampling and vibronic transitions. Boson sampling considers the input of N photons into M optical modes. This quantum space can be described through a Fock basis that counts the number of photons distributed in each mode. We denote such states by $|n_1, n_2, \ldots, n_M\rangle = |n\rangle$, where n_j corresponds to the number of photons in the jth mode and we have the constraint $\sum_j n_j = N$. These photons are sent through an optical network whose action is characterized by the unitary operation \hat{U}. Any input state $|\phi_{in}\rangle$ is related to the corresponding output state $|\phi_{out}\rangle$ through the relation:

$$|\phi_{out}\rangle = \hat{U}|\phi_{in}\rangle$$ \hspace{1cm} (1)$$

Considering linear quantum optical set-ups poses a restriction on the transformation \hat{U} that is constrained to represent a multimode rotation. We denote such a rotation as \hat{R}_U because its action is characterized by the $M \times M$ unitary matrix U via the expression:

$$\hat{a}^\dagger \hat{R}_U \hat{a}^\dagger = U \hat{a}^\dagger$$ \hspace{1cm} (2)$$

For notational simplicity, we introduce the column vectors of boson-creation operators $\hat{a}^\dagger = (\hat{a}_1^\dagger, \ldots, \hat{a}_M^\dagger)\dagger$ and transformed boson-creation operators $\hat{a}^\dagger = (\hat{a}_1^\dagger, \ldots, \hat{a}_M^\dagger)\dagger$, and adopt a shorthand notation1 for the operator action on \hat{a}^\dagger, that is $\hat{A} \hat{a}^\dagger B = (\hat{A} \hat{a}_1^\dagger B, \ldots, \hat{A} \hat{a}_M^\dagger B)\dagger$.

Given this set-up, the problem is to compute both the transition probability between input and output states in the Fock basis expressed by the quantity:

$$P_{nm} = |\langle m|\hat{R}_U|n\rangle|^2$$ \hspace{1cm} (3)$$

where $|n\rangle$ is the input state and $|m\rangle$ the desired state in output, and, perhaps more importantly, which output states $|m\rangle$ will significantly contribute to the total distribution. As the total number of photons and the number of modes increase, the probability distribution of output states becomes hard to predict and sample from with classical computers, but it can be measured directly with linear optics devices. In particular, each transition probability, P_{nm}, is proportional to the permanent of a different submatrix of U (refs 12,32).

We observe two facts: first, that the calculation of matrix permanents is a computationally hard problem for many classes of matrices belonging to the complexity class #P (ref. 12) and, second, that the space of N photons in M optical modes is isomorphic to the space of N molecular vibrational quanta (phonons) in M vibrational modes. The latter connection suggests that the dynamics of vibrational modes is computationally difficult, at least in some instances. Moreover, as we will show, the computation of spectra requires sampling from a distribution of an

Table 1 | A comparison of boson sampling and the computation of vibronic transitions.

Harmonic oscillators	Vibronic transitions
Boson sampling	**Vibronic transitions**
Linear transform	$\hat{a}^\dagger = \hat{U}\hat{a}^\dagger$
Unitary operators	$\hat{a}^\dagger = \frac{1}{2}(I - (J^{-1})^\dagger)\hat{a}^\dagger + \frac{1}{2}(I + (J^{-1})^\dagger)\hat{a}^\dagger + \frac{1}{\sqrt{2}}\delta$
Particle to simulate	Rotation
Particle in simulator	Photon
Outcome of simulation	[Permanent]2

The QHOs in the first row show the corresponding two-dimensional normal coordinates (q_i and \dot{q}_i for input and output states, respectively) and their respective harmonic frequencies (ω_i and ω_i'). The two sets of QHOs in boson sampling are rotated with respect to each other such that the linear relation with the rotation matrix U of the boson-creation operators are given in the second row. The two sets of QHOs in vibronic transitions are displaced, distorted (frequency changes) and rotated with respect to each other. δ is a displacement vector of the QHOs. The boson-creation operator \hat{a}^\dagger of the output state is now given as a linear combination of the boson-annihilation (\hat{a}) and creation (\hat{a}^\dagger) operators of the input state with the dimensionless displacement vector δ. A matrix J characterizes the rotation and squeezing operations during a vibronic transition. This scenario applies only when U is a real matrix.
extremely large number of permanents, identical to the problem of boson sampling. Thus, even in instances where the individual permanents may be easy to approximate, the overall sampling problem may not be tractable. However, unlike boson sampling, a simple rotation of the modes is not sufficient to reproduce vibronic spectra (see the first row of Table 1) and additional effects need to be taken into account. We now detail these important additional effects.

An electronic transition of a molecule induces nuclear structural and force changes at the new electronic state. This defines a new set of vibrational modes that are displaced, distorted (hence showing a frequency change) and rotated with respect to the vibrational modes of the ground electronic state (see Table 1, first row and second column). Within the harmonic approximation of the electronic energy surfaces and the assumption of a coordinate-independent electronic transition moment (the Condon approximation), the vibronic transition profiles can be obtained by the overlap integral of the two M-dimensional quantum harmonic oscillator (QHO) eigenstates (FC integral), where $M = 3M_{\text{atom}} - 6(5)$ for nonlinear (linear) molecules with M_{atom} atoms.

To describe these effects and compute vibronic profiles, Duschinsky proposed a linear relation between the initial (mass-weighted) normal coordinates (\mathbf{q}) and the final coordinates (\mathbf{q}'), which reads:

$$\mathbf{q}' = U\mathbf{q} + \mathbf{d} \quad (4)$$

where U is the Duschinsky rotation (real) matrix and \mathbf{d} is the displacement (real) vector responsible for the molecular structural changes along the normal coordinates (see the first row of Table 1 for a comparison between the Duschinsky relation and the boson sampling problem). Observe that all the matrices and vectors associated with the electronic excitation of a molecule are real matrices and real vectors, a fact used to simplify all the expressions reported below. The two sets of QHOs are related by the Duschinsky relation, which can be expressed in terms of a modification of the ladder operators as given by:

$$\hat{a}^+ = \frac{1}{2} (J - (J')^{-1}) \hat{a} + \frac{1}{2} (J + (J')^{-1}) \hat{a}^+ + \frac{1}{\sqrt{2}} \delta$$

(5)

with J and δ defined as:

$$J = \Omega \hat{U} \Omega^{-1}, \quad \delta = \hbar^{-(1/2)} \Omega \mathbf{d}$$

(6)

The notation 'diag' denotes a diagonal matrix, and $\{\omega_1\}$ and $\{\omega_i\}$ are the harmonic angular frequencies of the final and initial states. The major differences of equation (5) from the boson sampling problem ($\hat{a}^+ = U \hat{a}^+$) are the appearance of the annihilation operators \hat{a} and the displacement vector δ. The annihilation operators appear in equation (5) to account for the distinct frequencies of the QHOS. Duskin et al. analysed the linear transformation in equation (5) with a set of unitary operators. The linear transform in equation (5) can be written as $\hat{a}^+ = \hat{U}_{\text{Dok}}^\dagger \hat{a} \hat{U}_{\text{Dok}}$, where the Doktorov transformation \hat{U}_{Dok} is:

$$\hat{U}_{\text{Dok}} = \hat{D}_{\omega_1/\sqrt{2}} \hat{S}_{\delta \omega}^J \hat{R}_U \hat{S}_J$$

(7)

With our conventions, any initial vibronic state $|\phi_{\text{init}}\rangle$ is transformed into $|\phi_{\text{Dok}}\rangle = \hat{U}_{\text{Dok}} |\phi_{\text{init}}\rangle$. The Doktorov transformation is composed, in order of application, of (single mode) squeezing \hat{S}_J, rotation \hat{R}_U, squeezing \hat{S}_J^\dagger and coherent state displacement $\hat{D}_{\omega_i/\sqrt{2}}$ operators. The specific form of the unitary operators is given in Ma and Phodes and also in Methods. Unlike the usual boson sampling case, the total number of phonons is not conserved in the scattering process.

The transition probability ($|\langle \mathbf{m} | \hat{U}_{\text{Dok}} | \mathbf{n} \rangle |^2$) is called the FC factor, and through sampling many FC factors one obtains at each given vibrational transition frequency (ω_{vb}) the FCP. Explicitly, the FCP at 0 K is obtained with the initial vacuum state $|0\rangle$ as:

$$\text{FCP}(\omega_{\text{vb}}) = \sum_m |\langle \mathbf{m} | \hat{U}_{\text{Dok}} | \mathbf{0} \rangle|^2 \delta \left(\omega_{\text{vb}} - \sum_k \omega_k m_k\right)$$

(8)

the best-known classical algorithm to compute FCP scales combinatorially in the size of the system. We provide a more thorough discussion of the complexity aspects in Methods.

We summarize the comparison between the boson sampling and the vibronic transition in Table 1 and proceed to show how to simulate the molecular vibronic spectra by sampling photons from a modified boson sampling device.

Boson sampling for FC factors. If all the phonon frequencies are identical and there is no displacement, the Duschinsky relation (equation (5)) can be directly reduced to the original boson sampling problem (equation (2)) when it applies to input Fock states of the form discussed in the original boson sampling. For these molecules, a specific initial Fock state would correspond to the vibronic spectra of molecules in a well-defined initial vibrational state. Therefore, the Duschinsky relation can be considered as a generalized boson sampling problem (see Lund et al. that involves not only rotation, but also displacement and squeezing operations. In this section, we modify boson sampling to simulate the FCP in the Duschinsky relation. We assume that the initial state corresponds to the vibrational ground state (mathematically, a vacuum state), which means that the FCP is produced at 0 K.

Our proposal can be extended to vibronic profiles at a finite temperature by preparing various initial states with a probability
that corresponds to their Boltzmann factor. A detailed finite-temperature experimental proposal is outside the scope of this paper. We can interpret some of the additional operators in the Duschinsky relation as part of the state-preparation process of the input state for boson sampling. To this end, we move the position of the displacement operator in \(U_{\text{Dok}} \) (equation (7)) from the left end to the right end by rotating the corresponding displacement parameter vector, that is:

\[
\tilde{U}_{\text{Dok}} = \frac{\omega^J}{\sqrt{2}} \hat{R}_U \hat{S}_J \hat{D}_J^{-1} \mathbf{1} / \sqrt{2}
\]

(9)

The FC optical apparatus can be set up according to \(\tilde{U}_{\text{Dok}} \) in equation (9). As shown in Fig. 2a, the photons are prepared as squeezed coherent states or squeezed vacuum states, which correspond to the displaced modes and non-displaced modes, respectively. Thus, the input state to the boson sampling optical network is \(|\psi\rangle = \hat{S}_J \hat{D}_J^{-1} / \sqrt{2} |\mathbf{0}\rangle = \hat{S}_J |\mathbf{0}\rangle^{1/2} J^{-1} \delta \rangle \). As depicted in Fig. 2a, the prepared initial state \(|\psi\rangle \) passes through the boson sampling photon scatterer \(\hat{R}_U \) and then the output photons undergo the second squeezing operation \(\hat{S}_J \). Finally, photocounters detect the output Fock states. The resulting probability can be resolved in its transition frequencies to different modes for the corresponding phonon modes; however, the phonon-mode frequencies are different is taken into account by parameters of the state-preparation process and of the optical network.

In practice, the second squeezing operation is difficult to realize in optical set-ups as one needs a nonlinear interaction in situations that may involve only a limited number of photons. For this reason, instead of performing such an operation directly, as described in Fig. 2a, we propose to compress the two squeezing operations into a single one. We can achieve this goal by means of the singular value decomposition of the matrix \(J \) in equation (6),

\[
J = C_J \Sigma C_R^\dagger
\]

(10)

where \(C_J \) and \(C_R \) are real unitary matrices and \(\Sigma \) is a diagonal matrix composed of square roots of the eigenvalues of \(J^* J \). As a result, the Doktorov operator can be rewritten as:

\[
\tilde{U}_{\text{Dok}} = \frac{\omega^J}{\sqrt{2}} \hat{R}_{C_J} \hat{S}_J \hat{D}_J^{-1} \mathbf{1} / \sqrt{2}
\]

(11)

The computation of the \(\tilde{U}_{\text{Dok}} \) operator and the transformation require \(O(M^4) \) operations which remain feasible even when \(M \) exceeds several thousand.

At this point, the Doktorov operator is composed of two rotations, one squeezing operator and one displacement operator. The input state \(|\phi\rangle\) to the boson sampling optical network is prepared by applying the displacement, rotation and squeezing operators sequentially, that is:

\[
|\phi\rangle = \frac{\omega^J}{\sqrt{2}} \hat{R}_{C_J} \hat{S}_J \hat{D}_J^{-1} / \sqrt{2} |\mathbf{0}\rangle
\]

(12)

As one can see from direct inspection, \(|\phi\rangle\) is a squeezed coherent state. The only remaining task is to pass the prepared input state through the boson sampling optical network, which is characterized by the rotation matrix \(C_J \) for \(\hat{R}_{C_J} \). This simplified optical apparatus is depicted in Fig. 2b. Now, the problem is identical to boson sampling with squeezed coherent states as input \(|\phi\rangle \). Boson sampling with inputs different from Fock states, for example with coherent states or squeezed vacuum states, have been proposed and analysed in the context of the study of computational complexity in Lund et al. and Olson et al. The algorithm for computing FCPs from a boson sampling set-up and its scaling behaviour are described in Methods.

Examples. We present two examples of computation of FCPs for molecules. In particular, we propose to simulate the photoelectron spectra of formic acid (CH\(_2\)O\(_2\)) and thymine (C\(_9\)H\(_8\)N\(_2\)O\(_2\)). The photoelectron spectroscopy involves the molecular electronic transition from a neutral state to a cationic state. The spectral profile can be obtained by computing the corresponding FC factors. The molecular parameters for the calculations are reproduced from the Supplementary Material of Jankowiak et al.

The FCPs are calculated with the vibronic structure program hotFCHT. Parameters for the corresponding boson sampling experimental set-up are given in the Supplementary Information.

Formic acid represents a small system for testing the quantum simulation with relatively small optical set-ups. The calculated FCPs for formic acid are presented in Fig. 3 as black sticks, with a bin size \(\Delta_{\text{bin}} = 1 \times 10^{-7} \). The red curve in Fig. 3 is taken from the experimental spectrum in Leach et al. and includes the effects of line broadening. A table for the probabilities with respect to the corresponding quantum numbers and the vibrational transition frequencies is given in the Supplementary Information for a direct verification with boson sampling experiments. Additionally, we simulated the results of what would be expected in a boson sampling simulation of formic acid, and present these in the Supplementary Information. This simulation is done by stochastically sampling the known probability distribution for the output modes and performing the analysis according to equation (8) and the algorithm in Methods. The results from this simulation indicate that relatively few samples are needed from the device to resolve the overall shape of the spectrum, which supports the experimental feasibility of the approach.

The important FC factors (≥ 0.01) in Fig. 3 require at most three photons per mode (see the Supplementary Information). Current photon counters are able to distinguish up to a few photon numbers (≤ 3) per mode. The (single mode) squeezing parameters for formic acid are given as ln(\(\Sigma \)) (ref. 31), that is:

\[
\ln(\Sigma) = \lsp(0.10, 0.07, 0.02, -0.06, -0.08, -0.11, -0.19)
\]

The squeezing parameters are between -0.2 and 0.1. These parameters are related to the frequency ratio between the initial and final frequencies. The experimental implementation of boson
spectrum in Choi whose FCP is shifted to be compared clearly, is taken from the experimental
networks should be randomly distributed according to the Haar
measure; second, the relation
\[M = O(N^2) \]
for the original boson sampling problem to avoid boson collisions in the output
modes. Although there is no reason to believe that the
Duschinsky rotation matrix is randomly distributed according to the
Haar measure, it has both positive and negative entries, and the combinatorial scaling of all known classical methods for
sampling the output of such matrices (approximate and exact)
suggests they fall under the currently unknown necessary (as
opposed to sufficient) conditions for hardness of sampling. Moreover, in contrast to the original boson sampling, alternative implementations with squeezed coherent states preserve hardness as they present mean photon numbers different from unity.

To motivate experimental realizations, we present two small molecules with a \(C_2 \) point-group symmetry. Exploiting the molecular symmetry makes the classical computation of the FCP easier, but molecules often have no symmetry, especially in the case of large molecules. Testing small systems represents an important step that precedes the application of boson sampling to the molecular vibronic spectroscopy of large systems whose calculation with classical computers is expected to be hard. Our work can be extended in various directions, for example, the quantum simulation that we propose can be generalized to vibronic profiles at finite tempera-
ture by exploiting thermal coherent states or one can consider the modification of boson sampling experiments to include
non-Condon and anharmonic effects. Finally, we envision that experimental molecular spectra may be used as a reference to provide partial certification of large quantum devices beyond classical simulation capabilities.

Methods

Methods and any associated references are available in the online version of the paper.

Received 5 January 2015; accepted 17 July 2015; published online 24 August 2015

References

1. Deutsch, D. & Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553–558 (1992).
2. Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997).
3. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999).
4. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).
5. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012).
6. Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).
7. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012).
8. Lloyd, S. Universal quantum simulators. Science 273, 1073–1077 (1996).
9. Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).
10. Kassal, I., Whitfield, J. D., Perdomo-Ortiz, A., Yung, M.-H. & Aspuru-Guzik, A. Simulating chemistry using quantum computers. Ann. Rev. Phys. Chem. 62, 185–207 (2011).
11. Babbush, R., McClean, J., Warburton, L. & Aspuru-Guzik, A. Chemical basis of Trotter–Suzuki errors in quantum chemistry simulation. Phys. Rev. A 91, 022311 (2015).
12. Aaronson, S. & Arkhipov, A. in Proceedings of the 45rd Annual ACM Symposium on Theory of Computing (eds Fortnow, L. & Vadhan, S.) 333–342 (ACM, 2011).
13. Spring, J. B. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).
14. Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).
15. Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nature Photon. 7, 545–549 (2013).
16. Tillmann, M. et al. Experimental boson sampling. Nature Photon. 7, 540–544 (2013).
17. Shchesnovich, V. S. Conditions for an experimental boson-sampling computer to disprove the extended Church–Turing thesis. Preprint at http://arxiv.org/abs/1403.8459v6 (2014).
18. Rohde, P. P., Motes, K. R., Knott, P. A. & Munro, W. J. Will boson-sampling ever disprove the extended Church–Turing thesis? Preprint at http://arxiv.org/abs/1401.2192v2 (2014).
19. Sharp, T. E. & Rosenstock, H. M. Franck–Condon factors for polyatomic molecules. J. Chem. Phys. 41, 3453–3463 (1964).
20. Doktorov, E. V., Malkin, I. A. & Manko, V. I. Dynamical symmetry of vibronic transitions in polyatomic molecules and the Franck–Condon principle. J. Mol. Spectrosc. 64, 302–326 (1977).
21. Malmqvist, P.-Å. & Forsberg, N. Franck–Condon factors for multidimensional harmonic oscillators. *Chem. Phys.* **228**, 227–240 (1998).

22. Ruhoff, P. T. & Ratner, M. A. Algorithm for computing Franck–Condon overlap integrals. *Int. J. Quantum Chem.* **77**, 383–392 (2000).

23. Jankowiak, H.-C., Stuber, J. L. & Berger, R. Vibronic transitions in large molecular systems: rigorous prescreening conditions for Franck–Condon factors. *J. Chem. Phys.* **127**, 234101 (2007).

24. Santoro, F., Lami, A., Improta, R. & Barone, V. Effective method to compute vibrationally resolved optical spectra of large molecules at finite temperatures in the gas phase and in solution. *J. Chem. Phys.* **126**, 184102 (2007).

25. Hachmann, J. et al. The Harvard Clean Energy Project: large-scale computational screening and design of organic photovoltaics on the world community grid. *J. Phys. Chem. Lett.* **2**, 2241–2251 (2011).

26. Gross, M. et al. Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes. *Nature* **405**, 661–665 (2000).

27. Dierksen, M. & Grimmie, S. The vibronic structure of electronic absorption spectra of large molecules: a time-dependent density functional study on the influence of exact Hartree–Fock exchange. *J. Phys. Chem. A* **108**, 10225–10237 (2004).

28. Hayes, D., Wen, J., Panitchayangkoon, G., Blankenship, R. E. & Engel, G. S. Robustness of electronic coherence in the Fenna–Matthews–Olson complex to vibronic and structural modifications. *Faraday Discuss.* **150**, 459–469 (2011).

29. Choi, K.-W., Lee, J.-H. & Kim, S. K. Ionization spectroscopy of DNA base: vacuum-ultraviolet mass-analyzed threshold ionization spectroscopy of jet-cooled thymine. *J. Am. Chem. Soc.* **127**, 15674–15675 (2005).

30. Duschinsky, F. The importance of the electron spectrum in multatomic molecules. Concerning the Franck–Condon principle. *Acta Physicochim. URSS* **7**, 551–566 (1937).

31. Ma, X. & Rhodes, W. Multimode squeeze operators and squeezed states. *Phys. Rev. A* **41**, 4625–4631 (1990).

32. Scheel, S. Permanents in linear optical networks. Preprint at http://arxiv.org/abs/quant-ph/0406127 (2004).

33. Santoro, F., Lami, A., Improta, R. & Barone, V. Effective method for computing the permanent of a matrix with nonnegative entries. *Phys. Rev. Lett.* **96**, 163602 (2006).

34. Ruhoff, P. T. & Ratner, M. A. Algorithm for computing Franck–Condon factors.*J. Chem. Phys.* **127**, 234101 (2007).

35. Malmqvist, P.-Å. & Forsberg, N. Franck–Condon factors for multidimensional harmonic oscillators. *Chem. Phys.* **228**, 227–240 (1998).

36. Rahimi-Keshari, S., Lund, A. P. & Ralph, T. C. What can quantum optics say about complexity theory? Preprint at http://arxiv.org/abs/1408.3712v1 (2014).

37. Olson, J. P., Seshadreesan, K. P., Motes, K. R., Rohde, P. P. & Dowling, J. P. Robustness of electronic coherence in the Fenna–Matthews–Olson complex to vibronic and structural modifications. *Faraday Discuss.* **150**, 459–469 (2011).

38. Santoro, F., Lami, A., Improta, R. & Barone, V. Effective method to compute vibrationally resolved optical spectra of large molecules at finite temperatures in the gas phase and in solution. *J. Chem. Phys.* **126**, 184102 (2007).

39. Berger, R., Fischer, C. & Klessinger, M. Calculation of the vibronic fine structure in electronic spectra at higher temperatures. 1. Benzene and pyrazine. *J. Phys. Chem.* **102**, 7157–7176 (1998).

40. Leach, S. et al. He I photoelectron spectroscopy of four isotopologues of formic acid: HCOOH, HCOOD, DCOOH and DCOOD. *Chem. Phys.* **286**, 15–43 (2003).

41. Carolan, J. et al. On the experimental verification of quantum complexity in linear optics. *Nature Photon.* **8**, 621–626 (2014).

42. Josse, V., Sabuncu, M., Cerf, N., Leuchs, G. & Andersen, U. Universal optical amplification without nonlinearity. *Phys. Rev. Lett.* **96**, 163602 (2006).

43. Yoshikawa, J.-I. et al. Demonstration of deterministic and high fidelity squeezing of quantum information. *Phys. Rev. A* **76**, 060301(R) (2007).

44. Misra, V. et al. Exploring a new regime for processing optical qubits: squeezing and unsqueezing single photons. *Phys. Rev. Lett.* **113**, 013601 (2014).

45. Jerrum, M., Sinclair, A. & Vigoda, E. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. *J. ACM* **51**, 671–697 (2004).

46. Huh, J., Neif, M., Rauhut, G. & Berger, R. Franck–Condon profiles in photodetachment–photoelectron spectra of HS$_2$ and DS$_2$ based on vibrational configuration interaction wavefunctions. *Mol. Phys.* **108**, 409–423 (2010).
Methods

Algorithm and scaling. Although no formal proof of the complexity of computing FCPs exists, we describe an observed computational effort for current algorithms and typical (molecular) problem instances. As the molecular system size and temperature increase, the evaluation of the FCP with classical computers becomes practically intractable (see Jankowiak et al.25 and Santoro et al.26). The size and temperature effects make the resulting spectrum very congested because of the increase of the density of states. Already, the enumeration of the states that contribute to each point of the frequency grid (\(\omega_{\text{ref}}\)) is an issue for evaluating the FCP. That is, one needs to find all sets of \(m\) that satisfy \(\omega_{\text{ref}} = \sum_i \omega_{i} m_i\) at 0 K. To address this issue requires an algorithm to count the vibrational states and determine its limitation with respect to the system size (see, for example, Berger and Klessinger38). The calculation of FC integrals (\(\langle m|U|m\rangle\) (see the Supplementary Information for the detailed expression)) is equivalent to the evaluation of multivariate Hermite polynomials at the origin33,47,48. Indeed, Huh33 showed that it corresponds to a collective variable to calculate the moments of the distribution, and obtained an algorithm that requires

\[
\left(1 + \frac{1}{2} \sum_i (n_i + m_i)\right) \prod_i (n_i + 1)(m_i + 1)
\]

terms, where \([x]\) is a rounded integer of \(x\). This is much smaller than the number of terms from a brute-force evaluation of Wick’s formula, which corresponds to \(\sum_i (n_i + m_i) - 1\)!! (ref. 49), where a similar analysis was done for the squeezed vacuum state input problem in boson sampling26. However, the computation with Kan’s algorithm28 is still likely to be a hard problem.

Here we describe explicitly the algorithm for computing FCPs given a boson sampling set-up and analyse the computational cost of resolving FCPs with this set-up. In the rest of the work we limit ourselves to the case of 0 K with the generalization to finite temperature being the subject of future work.

The goal is to resolve the function FCP(\(\omega_{\text{ref}}\)) in equation (8) to a fixed precision \(\epsilon_{\text{FCP}}\) in the function value at a fixed resolution \(\Delta_{\omega_{\text{ref}}}\) in the value of \(\omega_{\text{ref}}\). We also take as input values the number of vibrational modes \(M\), final vibrational frequencies \(\omega'_k\) and a maximum frequency of interest \(\omega_{\text{max}}\).

Consider the FCP on the interval \([0, \omega_{\text{max}}]\) and discretize this interval uniformly at a resolution of \(\Delta_{\omega_{\text{ref}}}\). The algorithm proceeds as follows. Prepare the state \(|\phi\rangle\), and pass it into the boson sampling set-up. Measure at the output modes the photon numbers \(m_k\) in each mode. Locate the discrete bin of the FCP that is non-zero and \(\approx\) contributes to each point of the frequency grid. Denote the total number of samples taken as \(N_{\text{samp}}\).

To assess the algorithm, we rewrite it as a stochastic sampling problem over a probability distribution given by the boson sampling device. We observe that

\[
P_{\omega_{\text{ref}}} = \frac{1}{N_{\text{samp}}} \sum_{i=1}^{N_{\text{samp}}} f(i).
\]

one obtains an estimate of the FCP. By the central limit theorem, the number of samples required to reach a desired precision \(\epsilon_{\text{FCP}}\) scales as \(\frac{\text{var}(f)}{\epsilon_{\text{FCP}}^2}\). As the Kronecker delta function is constrained to have a value of either 0 or 1, the variance of \(f\) in this case can be bounded by 1, and the number of expected samples to converge FCP for a given frequency may be bounded by a constant dictated by the fixed precision \(\epsilon_{\text{FCP}}\). Also, this constant bound is an upper bound on the number of required samples, and some distributions and experiments will require far fewer samples. For example, distributions with a small number of peaks (at the resolution determined by \(\Delta_{\omega_{\text{ref}}}\)) may converge extremely rapidly.

Unitary transformations. The specific form of the unitary operators that appear in the Doktorov transformation as reported in equation (7) is given by [31]

\[
\hat{D}_{i\omega_{\text{ref}}} \hat{a}^\dagger \hat{D}_{i\omega_{\text{ref}}}^\dagger = \hat{a}^\dagger + \frac{1}{\sqrt{2}} \delta
\]

\[
\hat{S}_{ij} \hat{a}^\dagger \hat{S}_{ij}^\dagger = \frac{1}{2} (\hat{I} + \hat{\omega}_i^+ \hat{\omega}_j^-) \hat{a}^\dagger - \frac{1}{2} (\hat{I} - \hat{\omega}_i^+ \hat{\omega}_j^-) \hat{a}
\]

\[
\hat{S}_{ij} \hat{a} \hat{S}_{ij}^\dagger = \frac{1}{2} (\hat{\omega}_i^+ \hat{\omega}_j^-) \hat{a} - \frac{1}{2} (\hat{\omega}_i^- \hat{\omega}_j^+) \hat{a}
\]

References

47. Huh, J. & Berger. Application of time-independent cumulant expansion to calculation of Franck–Condon profiles for large molecular systems. Faraday Discuss. 150, 363–373 (2011).
48. Huh, J. & Berger. Coherent state-based generating function approach for Franck–Condon transitions and beyond. J. Phys. Conf. Ser. 380, 012019 (2012).
49. Kan, R. From moments of sum to moments of product. J. Multivariate Anal. 99, 542–554 (2008).