Successful treatment of chronic lower respiratory tract infection by macrolide administration in a patient with intralobar pulmonary sequestration and primary ciliary dyskinesia

Hironobu Tsubouchi*, Nobuhiro Matsumoto, Shigehisa Yanagi, Jun-ichi Ashitani, Masamitsu Nakazato

Division of Neurology, Respiratory, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, 889-1032, Japan

1. Introduction

Primary ciliary dyskinesia (PCD) is a relatively rare autosomal recessive disease associated with defective ciliary structure and function, in which defective cilia cause impairment of mucociliary clearance [1]. PCD is characterized by recurrent respiratory tract infections, sinusitis, bronchiectasis, male infertility and a randomization of the left–right (LR) body asymmetry. In addition, PCD occasionally coexists with other congenital diseases that require surgical treatment, such as congenital heart disease [2]. Although the non-infective condition is thought to be an important preoperative factor, there are no standardized treatments for recurrent respiratory infection in PCD patients.

Bronchopulmonary sequestration (BPS) is a congenital malformation characterized by a mass of non-functioning lung tissue separated from the normal bronchopulmonary tree and vascularized by an aberrant systemic artery [3]. Intralobar sequestration (ILS), a more common type of BPS, is an abnormal region within the normal pulmonary parenchyma without its own pleural covering [3]. In patients with ILS, surgical intervention is recommended to protect the lung parenchyma and to prevent possible complications, including hemoptysis [4], cardiovascular problems [5], and recurrent respiratory infections [3,6]. Here, we describe a patient with PCD and ILS in whom the respiratory tract infection was treated by clarithromycin before surgical resection of the ILS.

2. Clinical report

A 15-year-old non-smoking Japanese female was admitted to our hospital because of the symptoms of productive cough and...
dyspnea on exertion, which appeared 6 months before admission. She had been diagnosed with alopecia universalis as a 1-year-old, and was hospitalized for 1–2 weeks for recurrent lower respiratory tract infections at the ages of 1, 4, and 10 years old. At 12 years old, she was treated for chronic sinusitis by antibiotics and some mucolytic agents.

The physical examination on admission revealed a body temperature of 36.6 °C, blood pressure of 99/56 mmHg, and regular pulse of 87 beats/min. The skin was normal apart from the absence of hair, and lung auscultation revealed coarse crackles in the right chest. The results of the laboratory data, an arterial blood gas analysis on room air and a pulmonary function test on admission showed a white blood cell count of 8800/μL; hemoglobin, 9.7 g/dL; cold agglutinin × 64; pH, 7.43; PaCO2, 42 Torr; PaO2, 96 Torr; vital capacity (VC), 2.18 L; %vital capacity (%VC), 75.2%; forced expiratory volume in one second (FEV1.0), 1.51 L; and forced expiratory volume % in one second (FEV1.0%), 67.9%. Reversibility of airway obstruction was not noted in the patient.

A chest X-ray revealed cystic changes with an air-fluid level localized in the right lower lung field (Fig. 1A). The chest CT scan on admission showed complex cystic lesions with an air-fluid level in the right lower lobe, and diffuse centrilobular nodules in the whole lobe of the lung (Fig. 2A). On flexible bronchoscopy examination, sputum and bronchoalveolar lavage fluid (BALF) cultures revealed methicillin-sensitive Staphylococcus aureus (S. aureus) which was sensitive to clarithromycin (the minimal inhibitory concentration is < 2 μg/mL). The differential cell counts of BALF obtained from the medial segmental bronchus and the CD 4/8 ratio were as follows: total cell count, 3.77 × 105/mL; alveolar macrophages, 2.46 × 105 (65.3%); neutrophils, 0.58 × 105 (15.4%); lymphocytes 0.73 × 105 (19.3%); and CD 4/8 ratio, 1.8. The pathologic examination of transbronchial lung biopsy (TBLB) specimens obtained from the lateral segmental bronchus demonstrated noncaseating granuloma in the alveolar spaces and neutrophil infiltration (Fig. 1B). No acid-fast bacilli were detected by Ziehl-Neelsen staining of TBLB specimens and culture of BALF. An electron microscopic examination of the biopsy specimens obtained from the bronchial mucosa showed deficiency of the inner dynein arm in the cilia (Fig. 1C). Left nasal polyps were detected by CT scan. Based on these findings, we diagnosed the patient with PCD.

Treatment with clarithromycin (400 mg/day) was commenced 2 weeks after admission and was continued for 6 months. As a result of the treatment, there was improvement in the patient’s symptoms of productive cough and dyspnea on exertion, and in pulmonary function (VC, 2.59 L; %VC, 87.2%; FEV1.0, 2.15 L; and FEV1.0%, 80.1%). In addition, the 6-month chest CT scan revealed that the diffuse nodular shadows and the fluid in cystic lesions were diminished (Fig. 2B), whereas CT angiography demonstrated an aberrant systemic artery arising from the celiac trunk and supplying the cystic mass lesions with systemic blood flow (Fig. 2C). The cystic lesions were located in the normal lobe and lacked their own pleural covering.

These results indicated that this patient, diagnosed with PCD, was also affected by ILS. A right lower lobectomy and closure of the anomalous systemic artery was performed by video-assisted thoracic surgery. The aberrant artery arising from the celiac trunk, and penetrating the right lower lobe, was detected in the right pulmonary ligament. After isolation and cutting of the aberrant artery, a right lower lobectomy was performed.

The diagnosis of ILS with PCD was based on the macroscopic and microscopic appearance of specimens obtained from the patient’s resected lung that showed multiple cystic lesions without pleural covering and an aberrant artery penetrating the right lower lobe (Fig. 3A,B). At present, 3 months after the surgery, the patient is free from respiratory symptoms such as dyspnea and cough.

3. Discussion

We report the case of a patient with PCD and ILS treated with long-term macrolides that improved her lower respiratory tract infection. Whereas ILS should be resected due to potential complications including hemoptysis, recurrent pneumonia, and congestive heart failure [7–9], a standard treatment for recurrent respiratory infections associated with PCD has not been defined [10]. In regard to the perioperative management of ILS, because the
presence of a respiratory tract infection is related to adverse respiratory events perioperatively, the control of the respiratory infection is essential [11,12]. In the present case, we observed that long-term macrolide administration was useful for the management of the lower respiratory tract infection of a patient with PCD and ILS.

The appearance of cystic changes is a feature of both PCD and BPS including ILS [13,14]. With regard to the cause of cystic changes in the right lower lobe in this case, we concluded that the cystic changes in the right lower lobe were due to BPS, not due to PCD, because of the absence of the connections of cystic lesions to bronchioles in the gross appearance of the resected right lower lobe and the confinement of the cystic changes in the right lower lobe.

Bronchiectasis is a relatively frequent complication of lower respiratory tract infection and is one of the common features of PCD detected by chest CT. The presence of bronchiectasis in pediatric PCD patients has been reported to be approximately 56%–73% [15]. In regard to the absence of bronchiectasis in our 15-year-old patient, we considered the possibility that the degree of recurrent airway infections in PCD patients may be related to the type of ciliary defect. Chilvers et al. reported different ultrastructural defects responsible for ciliary malfunction. While the mean ciliary beat frequency of healthy children was found to be 12.8/sec, the mean ciliary beat frequencies were 8.1, 2.3, and 0.8 in patients with an isolated inner dynein arm defect, isolated outer dynein arm defect, and combined defects of inner and outer arms, respectively [16].

Mucociliary clearance is a critical determinant of the host airway defense against infection in PCD patients [17], and the clearance is dependent on ciliary beat frequency [18]; thus, in PCD patients with an isolated inner dynein arm defect, the degree and incidence of bronchiectasis may be less severe and less frequent compared to PCD patients with another type of ciliary defect.

Although a standard clinical approach to treatment of recurrent respiratory tract infection in PCD patients has not been defined, the use of antibiotic therapy against the most frequently isolated agents such as *S. aureus*, *Streptococcus pneumoniae* and *Haemophilus influenzae* has been a common and effective treatment [19]. In the present patient, we observed the considerable effectiveness of clarithromycin against chronic lower respiratory infections. The reasons for the successful treatment of the patient are thought to be as follows: first, *S. aureus* detected in the airway was sensitive to clarithromycin (the minimal inhibitory concentration is < 2.0 μg/mL). Second, macrolides including clarithromycin have the mechanisms of inhibition of mucus secretion [20] and the production of proinflammatory cytokines, including interleukin (IL)-1, IL-6, IL-8, and tumor necrosis factor-alpha (TNF-α) by suppressing the transcription factor nuclear factor-kappa B (NF-kB) [21]. The long-term administration of clarithromycin has been reported as an empirically effective treatment for respiratory tract infection in patients with PCD and has been expected to have antimicrobial and...
immune-modulating functions that reduce inflammatory cytokines in the respiratory tract [22]. Furthermore, Kid et al. reported different ultrastructural defects responsible for clinical and radiological improvements provided by clarithromycin treatment [23]. In that study, the patients with only an inner dynein arm defect had a good response to clarithromycin treatment, but patients with defects of inner and outer dynein arms showed no response. The specific inner dynein arm defect of the cilium may also be the contributing factor for the high sensitivity to clarithromycin treatment in our patient.

Because of potentially serious late complications, including fungal infection [24], massive hemoptysis [4], cardiovascular problems [5], and recurrent respiratory tract infection, the surgical management of PCD is unclear. A. Du Vivier, D.D. Munro, Alopecia areata, autoimmunity, and Down’s syndrome, Br. Med. J. 1 (1975) 191, P. Laje, K. W. Liechty, Postnatal management and outcome of prenatally diagnosed lung lesions, Prenat. Diagn. 28 (2008) 612–618, M. M. Levine, D.B. Nudel, N. Gootman, A. Wolpowitz, B.G. Wisoff, Pulmonary sequestration causing congestive heart failure in infancy: a report of two cases and review of the literature, Ann. Thorac. Surg. 34 (1982) 581–585.

A. Bush, P. Cole, M. Hariri, I. Mackay, G. Phillips, C. O’Callaghan, R. Wilson, J.O. Warner, Primary ciliary dyskinesia: diagnosis and standards of care, Eur. Respir. J. 12 (1998) 982–988, A.T. Tait, S. Malviya, T. Voegel, M.H. Munro, M. Seiwert, U.A. Pandit, Risk factors for perioperative adverse respiratory events in children with upper respiratory tract infections, Anesthesiology 95 (2001) 299–306.

B. S. von Ungern-Sternberg, K. Boda, N.A. Chambers, C. Rebmann, C. Johnson, P. S. Sly, W. Habe, Risk assessment for respiratory complications in paediatric anaesthesia: a prospective cohort study, Lancet 376 (2010) 773–783.

J. Ikezoe, S. Murayama, J.D. Godwin, S.L. Done, J.A. Verschaeke, Broncho-pulmonary sequestration: CT assessment, Radiology 176 (1990) 375–379.

M. Boon, M. Jorissen, M. Proesmans, K. De Boeck, Primary ciliary dyskinesia, an orphan disease, Eur. J. Pediatr. 172 (2013) 151–162.

K. Jain, S.P. Padley, E.J. Goldstraw, S.J. Kidd, C. Hogg, A. Bush, Primary ciliary dyskinesia in the paediatric population: range and severity of radiological findings in a cohort of patients receiving tertiary care, Clin. Radiol. 62 (2007) 986–993, M.A. Chivers, A. Rutman, C. O’Callaghan, Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia, J. Allergy Clin. Immunol. 112 (2003) 518–524.

M.R. Knowles, R.C. Boucher, Mucus clearance as a primary innate defense mechanism for mammalian airways, J. Clin. Invest. 109 (2002) 571–577.

A. Braiman, Z. Priel, Efficient mucociliary transport relies on efficient regulation of ciliary beating, Respir. Physiol. Neurobiol. 163 (2008) 202–207.

A. Ellerman, H. Bisgaard, Longitudinal study of lung function in a cohort of primary ciliary dyskinesia, Eur. Respir. J. 10 (1997) 2376–2379.

Y. Morinaga, K. Yanagihara, M. Seki, N. Miyashita, H. Kakeya, Y. Yamamoto, H. Muke, Y. Yamada, S. Kohno, S. Kamihara, Azithromycin, clarithromycin and telithromycin inhibit MUC5AC induction by Chlamydia phila pneumoniae in airway epithelial cells, Pulm. Pharmacol. Ther. 22 (2009) 555–566.

J. Tamaoki, J. Kadota, H. Takizawa, Clinical implications of the immunomodulatory effects of macrolides, Am. J. Med. 117 (Suppl. 9A) (2004) 55–115.

P.A. Crosbie, M.A. Woodhead, Long-term macrolide therapy in chronic inflammatory airway diseases, Eur. Respir. J. 32 (2008) 171–181.

T. Kidb, K. Vatera, K. Yamasaki, N. Nagata, Y. Chouj, C. Yamaga, K. Hara, H. Ishimoto, M. Hinoaka, H. Muke, Two cases of primary ciliary dyskinesia with different responses to macrolide treatment, Intern. Med. 51 (2012) 1093–1098.

J. Freixenet, J. de Cos, F. Rodriguez de Castro, G. Jula, T. Romero, Colomansia with Apergilus of an intralobar pulmonary sequestration, Thorax 59 (1995) 810–811.

W. Lu, J. Shapiro, M. Yu, A. Barekatain, B. Lo, A. Finner, K. McElwee, Alopecia areata: pathogenesis and potential for therapy, Expert Rev. Mol. Med. 8 (2006) 1–19.

C. Betterle, N.A. Greggio, M. Volpato, Clinical review 93: autoimmune polyglandular syndrome type 1, J. Clin. Endocrinol. Metab. 83 (1998) 1049–1055.

A. Du Vivier, D.D. Munro, Alopecia areata, autoimmunity, and Down's syndrome, Br. Med. J. 1 (1975) 191–192.

H. Omran, K. Haffner, A. Volkel, J. Kuehr, U.P. Ketelsen, U.H. Ross, N. Konietzko, T. Wienker, M. Brandis, F. Hildebrandt, Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene, Am. J. Respir. Cell Mol. Biol. 23 (2000) 696–702.

G. Pennanen, E. Escudier, C. Chapelin, A.M. Birduix, V. Cacheux, G. Roger, A. Clement, M. Goossens, S. Amselem, B. Duriez, Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia, Am. J. Hum. Genet. 65 (1999) 1508–1519.

J. Neesen, M.R. Kochler, R. Kirschner, C. Steinelein, J. Kreutzberger, W. Engel, M. Boon, Identification of dynein heavy chain genes expressed in human and mouse testis: chromosomal localization of an axonemal dynein gene, Gene 200 (1997) 193–202.