A genome-wide association and admixture mapping study of bronchodilator drug response in African Americans with asthma

Melissa L. Spear1 · Donglei Hu2 · Maria Pino-Yanes3,4,5 · Scott Huntsman2 · Celeste Eng2 · Albert M. Levin6 · Victor E. Ortega7 · Marquitta J. White2 · Meghan E. McGarry8 · Neeta Thakur2 · Joshua Galanter1,2,9 · Angel C. Y. Mak2 · Sam S. Oh2 · Elizabeth Ampleford7 · Stephen P. Peters7 · Adam Davis10 · Rajesh Kumar11 · Harold J. Farber12 · Kelley Meade13 · Pedro C. Avila14 · Denise Serebrisky15,16 · Michael A. Lenoir17 · Emerita Brigino-Buenaventura18 · William Rodriguez Cintron19 · Shannon M. Thyne20 · Jose R. Rodriguez-Santana21 · Jean G. Ford22 · Rocio Chapela23 · Andrés Moreno Estrada24 · Karla Sandoval24 · Max A. Seibold25 · Cheryl A. Winkler26 · Eugene R. Bleecker27 · Deborah A. Myers27 · L. Keoki Williams28,29 · Ryan D. Hernandez21,30,31 · Dara G. Torgerson2 · Esteban G. Burchard1,2

Received: 18 August 2017 / Revised: 8 June 2018 / Accepted: 19 June 2018 / Published online: 12 September 2018 © Springer Nature Limited 2018

Abstract
Short-acting β2-adrenergic receptor agonists (SABAs) are the most commonly prescribed asthma medications worldwide. Response to SABAs is measured as bronchodilator drug response (BDR), which varies among racial/ethnic groups in the United States. However, the genetic variation that contributes to BDR is largely undefined in African Americans with asthma. To identify genetic variants that may contribute to differences in BDR in African Americans with asthma, we performed a genome-wide association study (GWAS) of BDR in 949 African-American children with asthma, genotyped with the Axiom World Array 4 (Affymetrix, Santa Clara, CA) followed by imputation using 1000 Genomes phase III genotypes. We used linear regression models adjusting for age, sex, body mass index (BMI) and genetic ancestry to test for an association between BDR and genotype at single-nucleotide polymorphisms (SNPs). To increase power and distinguish between shared vs. population-specific associations with BDR in children with asthma, we performed a meta-analysis across 949 African Americans and 1830 Latinos (total = 2779). Finally, we performed genome-wide admixture mapping to identify regions whereby local African or European ancestry is associated with BDR in African Americans. We identified a population-specific association with an intergenic SNP on chromosome 9q21 that was significantly associated with BDR (rs73650726, \(p = 7.69 \times 10^{-9} \)). A trans-ethnic meta-analysis across African Americans and Latinos identified three additional SNPs within the intron of \(PRKG1 \) that were significantly associated with BDR (rs7903366, rs7070958 and rs7081864, \(p \leq 5 \times 10^{-8} \)). Our results failed to replicate in three additional populations of 416 Latinos and 1615 African Americans. Our findings indicate that both population-specific and shared genetic variation contributes to differences in BDR in minority children with asthma, and that the genetic underpinnings of BDR may differ between racial/ethnic groups.

Introduction
Albuterol, a short-acting β2-adrenergic receptor agonist (SABA) [1–2], is the most commonly prescribed asthma medication worldwide [3, 4]. SABAs cause rapid smooth muscle relaxation of the airways. Bronchodilator drug response (BDR) is a measure of a patient’s clinical response to SABA treatment and is quantitatively assessed as a change in forced expiratory volume in 1 second (FEV1) after administration of a SABA. BDR is a complex trait involving interactions among inflammatory cells [5], airway epithelium [6], smooth muscle cells [7] and the autonomic nervous system [8]. Variation in BDR is likely influenced by both population-specific and shared environmental and genetic factors [9–11]. In the United States (US), BDR in children with asthma differs significantly between racial/ethnic groups.

Electronic supplementary material
The online version of this article (https://doi.org/10.1038/s41397-018-0042-4) contains supplementary material, which is available to authorized users.

Esteban G. Burchard
esteban.burchard@ucsf.edu

Extended author information available on the last page of the article.
ethnic groups [1, 9, 12]. Specifically, African Americans have lower BDR compared with European populations even after controlling for asthma severity [13]. Compared with European Americans, African Americans suffer increased asthma morbidity and mortality [1, 10, 14] and decreased BDR likely contributes to these disparities in disease progression and outcomes. The extensive use of albuterol as a first-line therapy for asthma, coupled with the decreased drug response (BDR) and increased disease burden in African Americans underscores the importance of identifying genetic factors that influence BDR in African-American children with asthma. Once identified, these factors may lead to the generation of novel therapies and targeted interventions that will serve to improve patient care and asthma outcomes in an over-burdened and understudied population.

To date, knowledge of genetic variation that contributes to BDR in African Americans is limited to a single genome-wide association study (GWAS) in 328 individuals [2]. Previous GWAS and candidate gene studies performed in populations of predominantly European ancestry with asthma have identified several BDR candidate genes [11, 15–24]. A recent study in Latinos with asthma replicated a number of these findings, and also identified novel population-specific associations with BDR [9]. Genetic effects identified in one population are not always generalizable across populations and several population-specific asthma-risk variants have been discovered in African-descent populations (e.g., African Americans and Latinos) [25–27]. Additionally, previous studies have shown that the varying degrees of African and European ancestry present in the African-American population can be leveraged, through a technique known as admixture mapping, to identify the missing heritability of complex traits [28]. Admixture mapping is a genome-wide approach that uses the variable allele frequencies of multiple single-nucleotide polymorphisms (SNPs) between different ancestral populations to test for an association between local ancestry and phenotype [28]. The likelihood of population-specific effects, the limited number and scale of prior studies of BDR performed in African Americans, and ability to perform admixture mapping analysis highlights the possibility of gaining novel information through evaluating the impact of common genetic factors on BDR in African-American children with asthma.

In this study, we performed a GWAS and admixture mapping study of BDR in 949 African-American children with asthma from the Study of African Americans, Asthma, Genes and Environments (SAGE I and II) [29]. To increase power and distinguish between population-specific vs. shared associations, we also performed a trans-ethnic meta-analysis across our SAGE I and SAGE II participants and 1830 Latinos from GALA II (Genes-environments and Admixture in Latino Americans) studies [26], respectively (total N = 2779). We further attempted replication of our population-specific and trans-ethnic meta-analysis results in 416 Latinos from the Genetics of Asthma in Latino Americans study (GALA I) [10, 30], 1325 African Americans from the Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity (SAPPHIRE) [30, 31] and 290 African Americans from the Severe Asthma Research Program (SARP) [32, 33].

Methods

Study subjects from the Study of African Americans, Asthma, Genes & Environments

The Study of African Americans, Asthma, Genes & Environments (SAGE) is an ongoing case–control study of asthma in children and adolescents recruited from the San Francisco Bay Area in California [29]. Subjects were eligible if they were 8–21 years of age and self-identified all four grandparents as African American. Exclusion criteria included: (1) 10 or more pack-years of smoking; (2) any smoking within 1 year of recruitment date; (3) pregnancy in the third trimester; or (4) history of one of the following conditions: sickle cell disease, cystic fibrosis, sarcoidosis, cerebral palsy, or history of heart or chest surgery. Asthma was defined by physician diagnosis, asthma medication use and reported symptoms of coughing, wheezing or shortness of breath in the 2 years preceding enrollment. Detailed clinical measurements were recorded for each individual whom DNA was collected from. In addition, trained interviewers administered questionnaires to obtain baseline demographic data, as well as information on general health, asthma status, social and environmental exposures. Pulmonary function testing was conducted with a KoKo® PFT Spirometer (nSpire Health Inc., Louisville, CO) according to American Thoracic Society (ATS) recommendations [34], to obtain FEV1 in addition to other standard measurements of airway obstruction. Subjects with asthma were instructed to withhold their bronchodilator medications for at least 8 hours before testing. After completing baseline spirometry, subjects were given albuterol administered through a metered-dose inhaler (MDI; 90 mcg/puff) with a spacer, and spirometry was repeated after 15 minutes to obtain post-bronchodilator measurements. The dose of albuterol was different in early stages of SAGE recruitment (2001–2005: SAGE I) than in more recent participants (2006–present: SAGE II). In SAGE I, post-bronchodilator FEV1 values were measured after providing the participants two puffs of albuterol (180µg) if they were younger than 16 years of age and four puffs of albuterol (360µg) if they were 16 years of age or older. In SAGE II, two doses of
A genome-wide association and admixture mapping study of bronchodilator drug response in African Americans

Table 1: Descriptive statistics of SAGE I, SAGE II and GALA II asthma cases

	SAGE I	SAGE II	GALA II			
Total (N)	190	759	1830			
Age (year)	18 (9.3)	14 (3.6)	13 (3.2)			
<18 years (%)	64%	86%	93%			
Sex (% male)	41%	52%	55%			
Race/ethnicity	African American	African American	Latino			
Global African ancestry	0.81 (0.13)	0.72 (0.12)	0.15 (0.13)			
Global Native American ancestry	-	-	0.30 (0.25)			
BMI <20 years	25 (7.3)	(N = 132)	25 (7.2)	(N = 722)	23 (6.5)	(N = 1782)
>20 years	31 (7.8)	(N = 58)	29 (7.0)	(N = 37)	30 (6.6)	(N = 48)
Pulmonary function						
Pre-FEV1 % predicted	92 (16)	99 (14)	91 (16)			
Pre-FVC % predicted	100 (17)	104 (13)	95 (16)			
BDR (%)	9 (9.1)	9.5 (6.9)	11 (8.2)			

Values shown are the means, with the standard deviation in parentheses.

Genotyping and quality control (SAGE)

A total of 1821 samples (1011 asthma cases and 810 controls) were genotyped with the Axiom® World Array 4 (Affymetrix, Santa Clara, CA) at ~800,000 SNPs. Quality control was performed by removing SNPs that failed manufacturer’s quality control, had genotyping call rates below 95%, and/or had a deviation from Hardy–Weinberg equilibrium (p < 10^-6) within controls. In all, 772,135 genotyped SNPs passed quality control. Samples were filtered based on discrepancy between genetic sex and reported gender and cryptic relatedness (PL_HAT > 0.3). We excluded three subjects who were outliers for BDR (BDR of >60, or <−10). After sample quality control, we included 759 SAGE II and 190 SAGE I asthma cases, for a total of 949 individuals with both genome-wide SNP data and measurements of BDR in the current study (Table 1). Phasing of genotyped SNPs was performed using SHAPEIT [35], and genotype imputation was performed using IMPUTE2 [36, 37] using all populations from 1000 Genomes Project Phase III [38] as a reference. Following imputation, a total of 9,573,507 genotyped and imputed (info score > 0.3) SNPs with a Minor Allele Frequency (MAF) > 0.05 were analyzed for SAGE II and 9,605,653 were analyzed for SAGE I.

Study subjects from the Genes-environments & Admixture in Latino Americans study

A total of 1830 Latino children with asthma genotyped with the Axiom LAT1 array (World Array 4, Affymetrix) for the Genes-environments and Admixture in Latino Americans (GALA II) study were included in our analysis (Table 1). Asthma cases were defined in a similar manner as SAGE with detailed clinical measurements recorded for each individual whom DNA was collected from. Additionally, each individual underwent spirometry with BDR calculated as the percentage change in FEV1 after two doses of albuterol (post-FEV1) compared with baseline values before administration of albuterol (pre-FEV1). Post-bronchodilator FEV1 values were measured after providing the participants two doses of albuterol, with a 15 minute waiting period after each dose. A total of six (if <16 years of age) to eight (if ≥16 years of age) puffs of albuterol were administered. A total of 408 patients from the Centro de Neumología Pediatrica in Puerto Rico were recruited based on having a BDR of at least 8%; of these, 121 patients were recruited based on having a BDR of at least 12%. Further details about GALA II are described in the Supplementary Text.

Institutional review boards approved the study and all subjects/parents provided written assent/consent, respectively.
Study subjects from the Genetics of Asthma in Latino Americans study

Our replication phase included 247 Mexican and 169 Puerto Rican asthma cases genotyped with the Genome-Wide Human SNP Array 6.0 (Affymetrix) for the Genetics of Asthma in Latino Americans (GALA I) study. Subjects were included in the study if they were between the ages of 8 and 40 with physician diagnosed mild to moderate-severe asthma and had experienced two or more symptoms during the 2 years preceding time of recruitment (including wheezing, coughing and/or shortness of breath). BDR was measured in a similar way to GALA II, but with a lower dosage of albuterol. Specifically, post-FEV₁ values were measured after only a single dose of albuterol (compared with two doses in GALA II). Two (if < 16 years of age) to four (if ≥ 16 years of age) total puffs of albuterol were administered (compared with four [if < 16 years of age] and six [if ≥ 16 years of age] in GALA II). Further details of the study are described in the Supplementary Text, Supplementary Table 1 and elsewhere [10, 30].

Study subjects from the Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity

For additional replication, we included 1325 Africans Americans with asthma from the Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity SAPPHIRE [2] genotyped with the Genome-Wide Human SNP Array 6.0 (Affymetrix). Subjects met the following criteria: age 12–56 years, had a diagnosis of asthma (based on both patient report and documentation in the medical record), did not have a prior diagnosis of chronic obstructive pulmonary disease or congestive heart failure, a baseline FEV₁ between 40 and 90% predicted, > 12% baseline bronchodilator reversibility, no smoking in the preceding year or < 10 pack-year smoking history total, no oral or inhaled corticosteroid use in the 4 weeks preceding screening, and not pregnant at the time of enrollment and not intending to get pregnant during the study period. Spirometry testing was performed using a KoKo® PFT Spirometer, (nSpire Health Inc., Louisville, CO) following 2005 ATS/ERS spirometry recommendations [34]. Patients with asthma who were using inhaled bronchodilators were asked to withhold these medications for 12 hours prior to spirometry tests. To assess BDR a 360 µg dose (i.e., four puffs) of inhaled albuterol sulfate hydrofluoroalkane (GlaxoSmithKline, Research Triangle Park, NC) from a standard MDI using an AeroChamber Plus Flow-Vu® spacer (Monahan Medical Corp., Plattsburgh, NY) was administered to patients. Pulmonary function was reassessed 15 minutes after administering albuterol. BDR was measured as the change in FEV₁ between the baseline (pre-bronchodilator) measure and post-bronchodilator FEV₁. Estimates of local ancestry were obtained using RFMix [39].

Study subjects from the Severe Asthma Research Program

We included 290 African Americans with mild to severe asthma from the Severe Asthma Research Program (SARP) genotyped with the Illumina 1Mv1 platform [25]. SARP is a comprehensively characterized cohort with a range of asthma severities from mild to severe, but was enriched for severe disease defined by the ATS criteria for refractory asthma. Subjects met the definition of severe persistent asthma [32, 33, 40]. A physician’s diagnosis of asthma was confirmed by evidence of methacholine bronchial hyperresponsiveness or bronchodilator reversibility and documented asthma symptoms. Baseline pre-bronchodilator spirometry was performed after withholding long and short-acting bronchodilators. Post-bronchodilator FEV₁ measurements were performed by increasing doses of albuterol of 200 µg (two inhalations) up to a maximum dose of 800 µg (eight inhalations).

Assessment of genetic ancestry

Genotypes from two populations were used to represent the ancestral haplotypes of African Americans for estimating local ancestry: HapMap European (CEU) and HapMap Africans (YRI). For Latinos, genotypes from 71 Native Americans were used as an additional ancestral population [41]. These 71 individuals included: 14 Zapotec, 2 Mixe and 11 Mixtec from the southern State of Oaxaca [42] and 44 Nahua individuals from Central Mexico [43]. Global ancestry was estimated using ADMIXTURE [44] in a supervised analysis assuming two ancestral populations for African Americans and three ancestral populations for Latinos. Local ancestry was estimated using the program LAMP-LD [42] in the GALA and SAGE studies and with RFMix in SAPPHIRE [39].

Genotype association testing

All statistical analyses were conducted using R (version 2.15.3). For SAGE individuals, we used standard linear regression to test for an association between BDR and allele dosage at each individual SNP, adjusting for age, sex, BMI category, and both global and local African ancestry. A GWAS of BDR in GALA II has been previously published [9], however, since this previous work did not include adjustment for BMI, we re-ran the GWAS using a new reference imputation panel and further adjusted by BMI in
the present study [45]. For GALA II individuals, we adjusted for age, sex, BMI category, ethnicity, global Native American and African ancestry, and local ancestry. All analyses were performed using imputed genotypes from 1000 Genomes phase III. Using the fixed-effects model implemented in METAL [46], we performed a meta-analysis of common variants (MAF ≥ 5%) across African Americans (SAGE I and SAGE II) and Latinos (GALA II). We selected variants that were common (MAF ≥ 5%) within each individual study and then took the intersection of SNPs for the meta-analysis.

Admixture mapping

We used local ancestry estimates generated across the genome to perform admixture mapping in African Americans. Linear regression models adjusted for age, sex, BMI category and global African ancestry were used to identify significant associations between local ancestry estimates and BDR. The threshold for genome-wide significance was calculated using the empirical autoregression framework with the package coda in R to estimate the total number of ancestral blocks [47, 48]. The Bonferroni threshold was calculated as $\alpha = 2.4 \times 10^{-4}$ based on 245 ancestral blocks. For African Americans, admixture mapping was performed separately in SAGE I and SAGE II and combined in a meta-analysis using METAL [46]. An admixture mapping study of BDR in GALA II has been previously published [9], but did not include adjustment for BMI. In the current study, we re-ran the admixture mapping study further adjusting by BMI [45] to be consistent with the SAGE I and SAGE II analyses. For GALA II Latinos, linear regression models adjusted for age, sex, ethnicity, BMI category, global Native American and African ancestry were used to identify significant associations between local ancestry estimates and BDR. We further combined the African ancestry results of SAGE I, SAGE II and GALA II in a meta-analysis using METAL [46].

Replication in GALA I, SAPPHIRE and SARP

We attempted replication of significant population-specific (SAGE I and SAGE II) and cosmopolitan (SAGE I, SAGE II, GALA II) associations with BDR in the GALA I, SAPPHIRE and SARP studies. Replication in GALA I was performed using genotype imputation (i.e., in silico replication), followed by an examination at a locus-wide level for SNPs within ± 50 kb. We imputed 100-kb regions around each SNP using the program IMPUTE2 for Mexican and Puerto Rican participants run separately using 1000 Genomes phase III haplotypes as a reference. Linear regression was used to test for an association between allele dosage and BDR separately in Mexicans and Puerto Ricans, adjusting for age, sex, BMI category, global and local ancestry. Replication in SAPPHIRE was performed using linear regression to test for an association between allele dosage and BDR in African Americans while adjusting for age, sex, BMI category, and global and local African ancestry. Replication in SARP was performed using linear regression to test for an association between allele dosage and BDR in African Americans while adjusting for age, sex, BMI and global African ancestry. For GALA I and SAPPHIRE replication, statistical significance at the SNP level was evaluated at $p < 0.05$, and at the locus-wide level was established using a conservative Bonferroni correction adjusting by the number of SNPs within ± 50 kb of the original candidate SNP. For SARP replication, statistical significance was evaluated at $p < 0.05$ at the SNP level only.

Results

GWAS results

After filtering variants with a MAF ≥ 5% and with imputation quality score (info score) ≥ 0.3, we tested for an association of BDR at a total of 9,190,349 SNPs in 949 African Americans with asthma ($\lambda = 1.006$). We identified a single genome-wide significantly associated SNP within an intergenic region on chromosome 9 (rs73650726, imputation quality score = 0.86) (Figs. 1, 2, Supplementary Figure 1A, Table 2). At this variant, additional copies of the A1 allele (A) was associated with decreased drug response ($\beta = -3.8$, $p = 7.69 \times 10^{-5}$) (Table 2 and Supplementary Figure 2, Table 2). The SNP rs73650726 is common in African Americans but rare in Latinos, with a minor allele frequency of 8% in both SAGE studies, but at a frequency of 1% in GALA II. This is consistent with allele frequencies observed in the 1000 Genomes Project, where the variant is common in African populations (8%), rare in Latino populations (1–2%), and absent in European and Asian populations (Fig. 3) [49].

Fig. 1 Meta-analysis of genome-wide association studies with BDR in African Americans. Association testing for BDR was performed using linear regression including age, sex, BMI category, local and global ancestry as covariates separately in SAGE I and II and combined in a meta-analysis. Dotted line indicates the genome-wide significance threshold of 5×10^{-8}.
In order to increase power and identify associations shared between populations, we performed a trans-ethnic meta-analysis across African-American and Latino participants from SAGE I, SAGE II and GALA II. Following quality control and filtering on variants common in each study (MAF ≥ 5%), we took the overlap between the three studies and performed a meta-analysis on 6,570,864 SNPs. We identified genome-wide significant associations at three SNPs located on chromosome 10 within the intron of PRKGI: rs7903366 (β = 1.23, p = 3.94 × 10⁻⁸), rs7070958 (β = −1.24, p = 4.09 × 10⁻⁸), and rs7081864 (β = 1.23, p = 4.94 × 10⁻⁸) (imputation quality scores > 0.98, Figs. 4, 5, Table 2, Supplementary Figures 1B and 2, Table 2). All three SNPs are in linkage disequilibrium and are expression quantitative trait loci (eQTLs) for PRKGI in lung tissue from the Genotype-Tissue Expression (GTEX) database (Table 3) [50], with the minor allele associated with decreased expression.

Replication of African-American population-specific (rs73650726) and shared (rs7903366, rs7070958 and rs7081864) variants was attempted in three independent Latino (GALA I) and African-American (SAPPHIRE and SARP) studies. The African-American population-specific association between rs73650726 and BDR, identified in the SAGE studies, was in the same direction in GALA I Puerto Ricans (β = −6.22) and the SAPPHIRE cohort of African Americans (β = −0.65), but in the SARP African-American cohort the association was in the opposite direction (β = 6.12, p = 0.04) (Supplementary Table 3). In addition, none of the SNPs within 50 kb of the four original SNPs were significantly associated with BDR following Bonferroni correction (Supplementary Table 4). Finally, we evaluated previously identified candidate SNPs from prior candidate gene and GWAS with BDR in patients with asthma. After accounting for 15 comparisons, no SNPs met the statistical significance threshold (p < 3.33 × 10⁻⁶) (Supplementary Table 5); only rs9551086 in SPATA13 had a p-value below 0.05 (p = 0.02).

Admixture mapping results

We tested for an association of BDR with local genetic ancestry inferred at 478,441 SNPs in 949 African Americans with asthma (190 from SAGE I and 759 from SAGE II) (Supplementary Figures 3 and 4). A meta-analysis across both studies yielded no significant associations with ancestry (p < 2.4 × 10⁻⁴) (Supplementary Figure 5). The most significant peak was located on chromosome 8p11, where African ancestry was associated with higher BDR (β = 1.49, p = 6.34 × 10⁻⁴) (Supplementary Table 6). A meta-analysis across SAGE I, SAGE II and GALA II yielded results consistent with previous findings in the original admixture mapping study of GALA II (see ref. [9]) (Supplementary Figure 6).

Discussion

We performed a GWAS for BDR in African Americans and identified a population-specific association between BDR and rs73650726, located on chromosome 9. Specifically, we discovered that the G (A2) allele of rs73650726 was associated with increased BDR and is more common in African Americans compared with European populations (Fig. 3).

![Figure 2](image-url) **Fig. 2** LocusZoom plot of chr9:84653000–85653000. Region includes genotyped and imputed variants from 1000 Genomes phase III. Blue = variants common in SAGE I and II. Dotted line indicates the genome-wide significance threshold of 5 × 10⁻⁸ (color figure online).

Table 2 Genome-wide significant associations identified through a meta-analysis within African Americans (SAGE I and II), and within African Americans and Latinos (SAGE I, SAGE II, and GALA II)

Chr/SNP	Position (hg19)	A1/A2	Effect (A1)	Std Err	p-Value	Direction
9q21 rs73650726	85152666	A/G	−3.8	0.66	7.69 × 10⁻⁹	--0
10q21 rs7903366	53689774	T/C	1.23	0.22	3.94 × 10⁻⁸	++++
10q21 rs7070958	53691116	A/G	−1.24	0.23	4.09 × 10⁻⁸	--
10q21 rs7081864	53690331	A/G	1.23	0.22	4.94 × 10⁻⁸	++++

Under ‘Direction’, the first symbol refers to SAGE I, second to SAGE II and third to GALA II. 0 = absent/rare in study.
The variant rs73650726, located on chromosome 9, does not map to any gene, but SNPs in high linkage disequilibrium ($r^2 \geq 0.8$) with this marker are located in enhancer histone marks in lung tissues [36].

Our results show that population-specific genetic variation contributes to variation in BDR in African-American children with asthma. We further combined our results in a meta-analysis for BDR in African Americans and Latinos and identified multiple intronic variants in *PRKG1* that were associated with BDR in both populations. Overall, our results show that population-specific and shared genetic factors contribute to variation in BDR among African-American children with asthma.

Three of our significantly associated variants fell within the intronic region of an annotated gene, Protein Kinase, CGMP-Dependent, Type I (*PRKG1*). *PRKG1* encodes for a
cyclic GMP-dependent protein kinase, which phosphor-ylates proteins involved in regulating platelet activation and adhesion [51], gene expression [52, 53], vascular smooth muscle cell contraction [54] and feedback of the nitric-oxide (NO) signaling pathway [55]. Notably, the NO pathway is a key pathway in modulating vasodilation in response to beta-agonists such as albuterol via β2-adrenergic receptors [56], making PRKG1 a highly plausible BDR candidate gene. The three SNPs are in high linkage disequilibrium (r² ≥ 0.8) with variants known to be functional [57], and are all associated with the expression of PRKG1 in the lung – a tissue highly relevant to BDR. From the GTEx project database, the reference allele for all three SNPs was associated with decreased expression of the gene in lung tissue [50]. Thus, additional studies are required to identify the causal underlying variation at this locus, such as direct sequencing of this locus, and how the expression of PRKG1 may be related to differences in BDR.

We sought to replicate our study findings and candidate SNPs previously found to be associated with BDR. The African-American population-specific SNP, rs73650726, replicated in the opposite direction in the SARP cohort, which could be due to differences in study design (Supplementary Figure 7). In candidate gene studies of BDR, the gly16arg variant in the Beta-2 adrenergic receptor gene (ADRB2) has consistently replicated opposite effects on BDR depending on whether medication exposure was acute or chronic [11, 58–60]. The SARP and SAGE studies administered different albuterol doses, had differences in medication withholding periods, and SARP individuals were more likely to be treated with long-acting β2-adrenergic receptor agonists over extended periods for severe disease. Additional factors that may have impacted replication include the presence of population-specific differences in genetic contributions to BDR, lack of power due to small populations sizes and/or varying patterns of linkage disequilibrium between populations. Furthermore, we were limited in sample size in GALA I [25] to evaluate associations at low frequency variants, and note that SAPPHIRE is comprised of mainly adults [31] in comparison with SAGE and GALA II, which are comprised of mainly children.

In conclusion, we identified two novel loci with biological plausibility whereby genetic variation is associated with differential response to albuterol, the most commonly prescribed asthma medication. One of these loci contains variation associated with BDR that is common to African Americans, a population that has historically been understudied in genetic studies [61–63]. Further genetic studies in African Americans are essential for identifying a more comprehensive set of genetic variants that contribute to differences in BDR, which in turn will lead to a better understanding of the pharmacogenetic response to asthma therapies. This will provide the foundation for genetic risk profiling and precision medicine, identifying novel genes and pathways associated with BDR and the development of novel asthma therapies.

Acknowledgements This work was supported in part by the Sandler Family Foundation, the American Asthma Foundation, the RWJF Amos Medical Faculty Development Program, National Institutes of Health R01HL117004, R01HL128439, National Institute of Health and Environmental Health Sciences R01 ES015794, R21ES24844, National Institute on Minority Health and Health Disparities 1P60 MD006902, U54MD009523, 1R01MD010443, and the National Institutes of Health National Heart, Lung, and Blood Institute K08 HL118128, U10 HL109164, HL69116, R01 HL69167, HL69170, HL69174 and U10 HL098103. This project has been funded part with federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN26120080001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the U.S. Government. This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. MSL was supported in part by a National Science Foundation Graduate Research Fellowship under grant no. 1144247. MP-Y was funded by the Ramón y Cajal Program (RYC-2015–17205) by the Spanish Ministry of Economy and Competitive-ness. MP-Y was also supported by award number AC15/00015 by Instituto de Salud Carlos III thorough AES and EC within AAL framework, and the SysPharmPedia grant awarded from the ERACo SysMed 1st Joint Transnational Call from the European Union under the Horizon 2020; DGT was supported in part by the California Institute for Quantitative Biosciences (QB3). JG was supported in part by NIH Training Grant T32 (T32GM007546) and career development awards from the NHLBI K23 (5K23HL111636) and NCATS KL2 (5KL2TR000143), as well as the Hewett Fellowship; NT was supported in part by a institutional training grant from the NIGMS (T32GM007546) and career development awards from the NHLBI (5K12HL119997 and K23-HL125551-01A1), Parker B. Francis Fellowship Program, and the American Thoracic Society; RK was supported with a career development award from the NHLBI (5K23HL093023); HJF was supported in part by the GCRC (RR00188); PCA was supported in part by the Ernest S. Bazley Grant. LKW received grant support from the Fund for Henry Ford Hospital, the American Asthma Foundation and the following NIH institutes: NHLBI (R01HL118267, R01HL079055), NIAID (R01AI079139) and
NIDDK (R01DK064695). Study accession numbers in dbGaP are phs000921.v2.p1 and phs001180.v1.p1. The authors acknowledge the patients, families, recruiters, health-care providers and community clinics for their participation in SAGE and GALA II. In particular, we thank study coordinator Sandra Salazar and the recruiters who obtained the data: Duanny Alva, MD; Gaby Ayala-Rodriguez; Lisa Caine; Elizabeth Castellanos; Jaime Colon; Denise DeJesus; Blanca Lopez; Brenda Lopez, MD; Louis Martins; Vivian Medina; Juana Olivo; Mario Peralta; Esther Pomares, MD; Jianh Quraishi; Johanna Rodriguez; Shahdad Saeedi; Dean Soto; and Ana Taveras. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Naqvi M, Thyne S, Choudhry S, Tsai HJ, Navarro D, Castro RA, et al. Ethnic-specific differences in bronchodilator responsiveness among African Americans, Puerto Ricans, and Mexicans with asthma. J Asthma. 2007;44:639–48.
2. Padhukasahasram B, Yang JJ, Levin AM, Yang M, Burchard EG, Kumar R, et al. Gene-based association identifies SPATA13–AS1 as a pharmacogenomic predictor of inhaled short-acting beta-agonist response in multiple population groups. Pharmacogenomics J 2014;14:365–71.
3. Palmer LJ, Silverman ES, Weiss ST, Drazen JM. Pharmacoge
genetic differences in response to albuterol between African Americans, Puerto Ricans, and Mexicans with asthma. J Respir Crit Care Med. 2008;178:688–94.
4. Duan QL, Du R, Lasky-Su J, Klanderman BJ, Partch AB, Peters SP, et al. A polymorphism in the thyroid hormone receptor gene is associated with bronchodilator response in asthmatics. Pharm J. 2013;13:130–6.
5. Reilfsa E, Innis M, MacIntyre N, Liggitt SB. Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol. 1993;8:334–9.
6. Duan QL, Lasky-Su J, Himes BE, Qiu W, Litonjua AA, Damask A, et al. A genome-wide association study of broncho
dilator response in asthmatics. Pharm J. 2014;14:41–47.
7. Israel E, Lasky-Su J, Markezich A, Damask A, Szefler SJ, Schuermann B, et al. Genome-wide association study of short-acting beta-2 agonists. A novel genome-wide significant locus on chromosome 2 near ASB3. Am J Respir Crit Care Med. 2015;191:530–7.
8. Himes BE, Jiang X, Hu R, Wu AC, Lasky-Su JA, Klanderman BJ, et al. Genome-wide association analysis in asthma subjects identifies SPATS2L as a novel bronchodilator response gene. PLoS Genet. 2012;8:e1002824.
9. Torgerson DG, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR, Graves PE, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North Ameri
can populations. Nat Genet. 2011;43:887–92.
10. Galaner JM, Gignoux CR, Torgerson DG, Roth LA, Eng C, Oh SS, et al. Genome-wide association study and admixture mapping identify different asthma-associated loci in Latinos: the Genes-environments & Admixture in Latino Americans study. J Allergy Clin Immunol. 2014;134:295–305.
11. White MJ, Risse-Adams O, Goddard P, Contreras MG, Adams J, Hu D, et al. Novel genetic risk factors for asthma in African American children: precision medicine and the SAGE II Study. Immunogenetics. 2016;68:391–400.
12. Winkler CA, Nelson GW, Smith MW. Admixture mapping comes of age. Annu Rev Genom Hum Genet. 2010;11:65–89.
13. Nishimura KK, Kalanter JM, Roth LA, Oh SS, Thakur N, Nguyen EA, et al. Early-life air pollution and asthma risk in minority children. The GALA II and SAGE II studies. Am J Respir Crit Care Med. 2013;188:309–18.
14. Torgerson DG, Gignoux CR, Galaner JM, Drake KA, Roth LA, Eng C, et al. Case-control admixture mapping in Latino populations enriches for known asthma-associated genes. J Allergy Clin Immunol. 2012;130:76–82 e12.
asthma phenotype by the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program. J Allergy Clin Immunol. 2007;119:405–13.
33. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181:315–23.
34. Standardization of Spirometry. 1994 Update. American Thoracic Society. Am J Respir Crit Care Med. 1995;152:1107–36.
35. Delaneau O, Zagury JF. Haplotype inference. Methods Mol Biol. 2012;888:177–96.
36. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5:e1000529.
37. Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3. 2011;1:457–70.
38. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.
39. Maples BK, Gravel S, Kenny EE, Bustamante CD. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am J Hum Genet. 2013;93:278–88.
40. Proceedings of the ATS workshop on refractory asthma: current understanding, recommendations, and unanswered questions. American Thoracic Society. Am J Respir Crit Care Med. 2000;162:2341–51.
41. Pino-Yanes M, Thakur N, Gignoux CR, Galanter JM, Roth LA, Eng C, et al. Genetic ancestry influences asthma susceptibility and lung function among Latinos. J Allergy Clin Immunol. 2015;135:228–35.
42. Baran Y, Pasaniuc B, Sankararaman S, Torgerson DG, Gignoux C, Eng C, et al. Fast and accurate inference of local ancestry in Latino populations. Bioinformatics. 2012;28:1359–67.
43. Kumar R, Nguyen EA, Roth LA, Oh SS, Gignoux CR, Huntsman S, et al. Factors associated with degree of atopy in Latino children in a nationwide pediatric sample: the Genes-Huntsman study. J Allergy Clin Immunol. 2012;129:1655–64.
44. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.
45. McGarry ME, Castellanos E, Thakur N, Oh SS, Eng C, Davis A, et al. Obesity and bronchodilator response in black and Hispanic children and adolescents with asthma. Chest. 2015;147:1591–8.
46. Miller CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genome-wide association scans. Bioinformatics. 2010;26:2190–1.
47. PLUMMER MBN, COWLES K, VINES K. CODA: convergence diagnosis and output analysis for MCMC. R News. 2012;6:7–11.
48. Sobotka RS, Shriner D, Kodaman N, Goodloe R, Zheng W, Gao YT, et al. Addressing population-specific multiple testing burdens in genetic association studies. Ann Hum Genet. 2015;79:136–47.
49. Marcus JH, Novembre J. Visualizing the geography of genetic variants. Bioinformatics 2016;33:594–595.
50. Consortium GT. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580–5.
51. Li Z, Xi X, Gu M, Feil R, Ye RD, Eigenthaler M, et al. A stimulating role for cGMP-dependent protein kinase in platelet activation. Cell. 2003;112:77–86.
52. Tamura N, Itoh H, Ogawa Y, Nakagawa O, Harada M, Chun TH, et al. cDNA cloning and gene expression of human type I alpha cGMP-dependent protein kinase. Hypertension. 1996;27 (3 Pt 2):552–7.
53. Orstavik S, Natarajan V, Tasken K, Jahnsen T, Sandberg M. Characterization of the human gene encoding the type I alpha and type I beta cGMP-dependent protein kinase (PRKG1). Genomics. 1997;42:311–8.
54. Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP, Schroder E, et al. Cysteine redox sensor in PKGIIa oxidant-induced activation. Science. 2007;317:1393–9.
55. Pfeifer A, Klett P, Massberg S, Nyl S, Sausbier M, Hrinic E, et al. Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J. 1998;17:3045–51.
56. Dawes M, Chowienczyk PJ, Ritter JM. Effects of inhibition of the L-arginine/nitric oxide pathway on vasodilation caused by beta-adrenergic agonists in human forearm. Circulation. 1997;95:2293–7.
57. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7.
58. Lima JJ, Thomason DB, Mohamed MH, Eberle LV, Self TH, Johnson JA. Impact of genetic polymorphisms of the beta2-adrenergic receptor on albuterol bronchodilator pharmacodynamics. Clin Pharmacol Ther. 1999;65:519–25.
59. Taylor DR, Drazen JM, Herbison GP, Yandava CN, Hancox RJ, Town GI. Asthma exacerbations during long term beta agonist use: influence of beta(2) adrenoeceptor polymorphism. Thorax. 2000;55:762–7.
60. Israel E, Drazen JM, Liggitt SB, Boushey HA, Cherniack RM, Chinchilli VM, et al. The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am J Respir Crit Care Med. 2000;162:75–80.
61. Bustamante CD, Burchard EG, De la Vega FM. Genomics for the world. Nature. 2011;475:163–5.
62. Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nat Genet. 2013;45:580–5.
63. Editors PM, Rid A, Johansson MA, Leung G, Valantine H, editors. Burdens in genetic association studies. Ann Hum Genet. 2015;79:136–47.
64. Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirner E, et al. Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J. 1998;17:3045–51.
65. Dawes M, Chowienczyk PJ, Ritter JM. Effects of inhibition of the L-arginine/nitric oxide pathway on vasodilation caused by beta-adrenergic agonists in human forearm. Circulation. 1997;95:2293–7.
66. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7.
67. Lima JJ, Thomason DB, Mohamed MH, Eberle LV, Self TH, Johnson JA. Impact of genetic polymorphisms of the beta2-adrenergic receptor on albuterol bronchodilator pharmacodynamics. Clin Pharmacol Ther. 1999;65:519–25.
68. Taylor DR, Drazen JM, Herbison GP, Yandava CN, Hancox RJ, Town GI. Asthma exacerbations during long term beta agonist use: influence of beta(2) adrenoeceptor polymorphism. Thorax. 2000;55:762–7.
69. Israel E, Drazen JM, Liggitt SB, Boushey HA, Cherniack RM, Chinchilli VM, et al. The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am J Respir Crit Care Med. 2000;162:75–80.
70. Bustamante CD, Burchard EG, De la Vega FM. Genomics for the world. Nature. 2011;475:163–5.
71. Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nat Genet. 2013;45:580–5.
72. Editors PM, Rid A, Johansson MA, Leung G, Valantine H, editors. Burdens in genetic association studies. Ann Hum Genet. 2015;79:136–47.

Affiliations

Melissa L. Spear1 · Donglei Hu2 · Maria Pino-Yanes3,4,5 · Scott Huntsman2 · Celeste Eng2 · Albert M. Levin6 · Victor E. Ortega7 · Marquitta J. White2 · Meghan E. McGarry8 · Neeta Thakur2 · Joshua Galanter1,2,9 · Angel C. Y. Mak2 · Sam S. Oh2 · Elizabeth Ampleford7 · Stephen P. Peters2 · Adam Davis10 · Rajesh Kumar11 · Harold J. Farber12 · Kelley Meade13 · Pedro C. Avila14 · Denise Serebrisky15,16 · Michael A. Lenoir17 · Emerita Brigno-Buenaventura18 · William Rodriguez Cintron19 · Shannon M. Thyne20 · Jose R. Rodriguez-Santana21 · Jean G. Ford22 · Rocio Chapela23 · Andrés Moreno Estrada24 · Karla Sandoval24 · Max A. Seibold25 · Cheryl A. Winkler26 · Eugene R. Bleecker27 · Deborah A. Myers27 · L. Keoki Williams28,29 · Ryan D. Hernandez1,30,31 · Dara G. Torgerson2 · Esteban G. Burchard1,2

SPRINGER NATURE
A genome-wide association and admixture mapping study of bronchodilator drug response in African...