Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities

Guo-Jun Qi, Member, IEEE

Abstract—In this paper, we present a novel Loss-Sensitive GAN (LS-GAN) that learns a loss function to separate generated samples from their real examples. An important property of the LS-GAN is it allows the generator to focus on improving poor data points that are far apart from real examples rather than wasting efforts on those samples that have already been well generated, and thus can improve the overall quality of generated samples. The theoretical analysis also shows that the LS-GAN can generate samples following the true data density. In particular, we present a regularity condition on the underlying data density, which allows us to use a class of Lipschitz losses and generators to model the LS-GAN. It relaxes the assumption that the classic GAN should have infinite modeling capacity to obtain the similar theoretical guarantee. Furthermore, we show the generalization ability of the LS-GAN by bounding the difference between the model performances over the empirical and real distributions, as well as deriving a tractable sample complexity to train the LS-GAN model in terms of its generalization ability. We also derive a non-parametric solution that characterizes the upper and lower bounds of the losses learned by the LS-GAN, both of which are cone-shaped and have non-vanishing gradient almost everywhere. This shows there will be sufficient gradient to update the generator of the LS-GAN even if the loss function is over-trained, relieving the vanishing gradient problem in the classic GAN. We also extend the unsupervised LS-GAN to a conditional model generating samples based on given conditions, and show its applications in both supervised and semi-supervised learning problems. We conduct experiments to compare different models on both generation and classification tasks, and show the LS-GAN is resilient against vanishing gradient and model collapse even with overtrained loss function or mildly changed network architecture.

Index Terms—Loss-Sensitive GAN, Lipschitz density, image generation and classification

1 INTRODUCTION

A classic Generative Adversarial Net (GAN) [1] learns a discriminator and a generator simultaneously by playing a two-player minimax game to generate samples following the underlying data density. For this purpose, the discriminator is trained to distinguish real samples from those generated by the generator, which in turn guides the generator to produce samples that can make the discriminator believe they are real.

The family of GAN models has demonstrated very impressive performances on synthesizing a wide range of structured data, as diverse as images [2], videos [3], music [4] and even poems [5]. Take image synthesis as an example. On one hand, the discriminator seeks to learn the probability of a sample being a photo-realistic image. It treats natural image examples as positive examples, while the images produced by a paired generator as negative examples. Meanwhile, the generator aims to produce images that can make the discriminator believe they are real. A minimax optimization problem is solved to jointly optimize the discriminator and the generator.

Here, a dyadic treatment of real and generated data as positive and negative examples may oversimplify the problem of learning a GAN model. Actually, as the generator improves, its generated samples would become more and more closer to the manifold of real examples; however, they are still being treated as negative examples to train the discriminator in the classic GAN. This could lead to an over-pessimistic discriminator characterizing the boundary between real and unreal samples. It would in turn limit the ability of learning a better generator that relies on an exact discriminator to capture the difference between real and unreal examples.

In addition, from a theoretical perspective, the analysis behind the GAN makes a non-parametric assumption that the model has infinite modeling capacity [1] in order to prove the density of generated samples matches the underlying data density we wish to estimate. This is a too strong assumption to hold: even a very deep network could not assume infinite modeling capacity to map any given input to an arbitrarily desired output. Even worse, a generative model with unlimited capacity would also be the cause of vanishing gradient in the classic GAN. As proved in [6], the discriminator with infinite ability of separating real from generated samples will lead to a constant Jensen-Shannon (JS) divergence between the generated density and the true data density if their supports have no or negligible overlap. This causes the vanishing gradient that makes it impossible to update the generator as the discriminator is quickly trained towards its optimality.

Moreover, the GAN with infinite modeling ability could also suffer from severe overfitting problem, and this is probably the reason for a collapsed generator that is stuck in producing the same data point since such a model would be powerful enough to aggressively push its generated samples to the densest mode of the underlying density. The phenomenon has been observed in literature [2], [7], and a properly regularized learning objective is preferred to avoid the mode collapse.

In this paper, we attempt to develop theory and models without assuming infinite modeling ability, which yields the
proposed Loss-Sensitive GAN (LS-GAN). Specifically, we introduce a loss function to quantify the quality of generated samples. Then a constraint is imposed to train the LS-GAN so that the loss of a real sample should be smaller than that of a generated counterpart by an unfixed margin that depends on how close they are to each other in a metric space. In this way, if a generated sample is already very close to a real example, the margin between their losses could vanish. This allows the model to focus on improving poor samples rather than wasting efforts on those samples that have already been well generated with satisfactory quality, thereby improving overall quality of generation results.

We also develop a new theory to analyze the proposed LS-GAN on Lipschitz densities. We note that the reason of having to assume “infinite modeling capacity” in the classic GAN is due to its ambitious goal to model an arbitrary data density without imposing any biases. However, a general principle in learning theory, no free lunch theorem [8], prefers “biased learning approaches” with suitable priors on the underlying data distribution. This prompts us to focus on a specific class of Lipschitz densities to model the underlying data. It contains a large family of real-world distributions, where the data density does not change abruptly over data points that are close to one another. By defining the Lipschitz densities based on the distance metric specifying the loss margin, we prove the resulting data density learned by the LS-GAN exactly matches the true data density even if the model is limited to the space of Lipschitz-continuous functions. This is a nontrivial relaxation of the infinite modeling ability in the classic GAN from the theoretic point of view.

More importantly, by limiting the LS-GAN to this Lipschitz space, we can prove the loss function and generator that are learned from an empirical distribution with finite examples can well generalize to produce data points from the real distribution. We will show this generalization ability by deriving a tractable sample complexity to bound the difference of model performances over empirical and real distributions. We further present a non-parametric solution to the LS-GAN. It does not rely on any parametric form of functions, thereby characterizing the optimal loss function achievable in the whole space of Lipschitz functions. This non-parametric solution gives both the upper and lower bounds of the optimal solution, which have non-vanishing gradient. This suggests that the LS-GAN can provide sufficient gradient to update its LS-GAN generator even if the loss function has been fully optimized, thus avoiding the vanishing gradient problem that could occur in training the GAN models.

Moreover, we generalize the model to a Conditional LS-GAN (CLS-GAN) that can generate samples based on given conditions. In particular, considering different classes as generative conditions, the learned loss function can be used as a classifier for both supervised and semi-supervised learning. The advantage of such a classifier lies in its intrinsic ability of exploring generated examples to reveal unseen variations for different classes. Experiment results demonstrate competitive performance of the CLS-GAN classifier as compared with the state-of-the-art models.

The remainder of this paper is organized as follows. Section 2 reviews the related work and summarizes our contributions. We will present the proposed LS-GAN in Section 3. In Section 4, we will analyze the LS-GAN, showing that its generated samples follow the underlying data density even with a class of Lipschitz losses and generators. We will discuss the algorithm details in Section 5 as well as analyze its generalizability and sample complexity in training loss and generator functions. We will make a non-parametric analysis of the algorithm in Section 6 followed by a comparison with Wasserstein GAN in Section 7. Then we will show how the model can be extended to a conditional model for supervised and semi-supervised learning problems in Section 8. Experiment results are presented in Section 9 and we conclude in Section 10.

2 RELATED WORK AND OUR CONTRIBUTIONS

It has been a long-term goal to enable synthesis of highly structured data such as images and videos.

Deep generative models, especially the Generative Adversarial Net (GAN) [1], have attracted many attentions recently due to their demonstrated abilities of generating real samples following the underlying data densities. In particular, the GAN attempts to learn a pair of discriminator and generator by playing a maximin game to seek an equilibrium, in which the discriminator is trained by distinguishing real samples from generated ones and the generator is optimized to produce samples that can fool the discriminator.

A family of GAN architectures have been proposed to implement this idea. For example, recent progresses [2, 7] have shown impressive performances on synthesizing photo-realistic images by constructing multiple strided and fractional-strided convolutional layers for discriminators and generators. On the contrary, [9] proposed to use a Laplacian pyramid to produce high-quality images by iteratively adding multiple layers of noises at different resolutions [10] presented to train a recurrent generative model by using adversarial training to unroll gradient-based optimizations to create high quality images.

In addition to designing different GAN networks, research efforts have been made to train the GAN by different criteria. For example, [11] presented an energy-based GAN by minimizing an energy function to learn an optimal discriminator, and an auto-encoder structured discriminator is presented to compute the energy. The authors also present a theoretical analysis by showing this variant of GAN can generate samples whose density can recover the underlying true data density. However, it still needs to assume the model has infinite modeling capacity to prove the result in a non-parametric fashion. This is probably due to the use of a fixed margin to separate generated samples from training examples. This is in contrast to the use of a distance metric in the proposed LS-GAN to specify data-dependent margins under the Lipschitz density assumption. In addition, [12] presented to analyze the GAN from information theoretic perspective, and they seek to minimize the variational estimate of f-divergence, and show that the classic GAN is included as a special case of f-GAN. In contrast, InfoGAN [13] proposed another information-theoretic GAN to learn disentangled representations capturing various latent concepts and factors in generating samples. Most recently,
propose to minimize the Earth-Mover distance between the density of generated samples and the true data density, and they show the resultant Wasserstein GAN (WGAN) can address the vanishing gradient problem that the classic GAN suffers.

Besides the class of GANs, there exist other models that also attempt to generate natural images. For example, [15] rendered images by matching features in a convolutional network with respect to reference images. [16] used deconvolutional network to render 3D chair models in various styles and viewpoints. [17] introduced a deep recurrent neutral network architecture for image generation with a sequence of variational auto-encoders to iteratively construct complex images.

Recent efforts have also been made on leveraging the learned representations by deep generative networks to improve the classification accuracy when it is too difficult or expensive to label sufficient training examples. For example, [18] presented variational auto-encoders [19] by combining deep generative models and approximate variational inference to explore both labeled and unlabeled data. [2] treated the samples from the GAN generator as a new class, and explore unlabeled examples by assigning them to a class different from the new one. [20] proposed to train a ladder network [21] by minimizing the sum of supervised and unsupervised cost functions through back-propagation, which avoids the conventional layer-wise pre-training approach. [22] presented an approach to learning a discriminative classifier by trading-off mutual information between observed examples and their predicted classes against an adversarial generative model. [23] sought to jointly distinguish between not only real and generated samples but also their latent variables in an adversarial process. These methods have shown promising results for classification tasks by leveraging deep generative models.

In this paper, we seek to develop models and algorithms that are both theoretically sound and practically competitive for data generation and classification tasks. Our contributions are summarized below.

- We propose a Loss-Sensitive GAN (LS-GAN) model to produce high-quality samples. The LS-GAN learns a loss function to quantify the quality of generated samples. The loss of a real example should be smaller than that of a generated sample by a margin characterized by their distance in a metric space. The well generated samples close to real examples do not need to be treated as negative examples anymore so that more efforts can be focused on improving the quality of poor samples.
- We also generalize LS-GAN to a conditional version that shares the same theoretical merit as the LS-GAN but can generate samples aligned with designed conditions. Specifically, we consider to specify sample classes as conditions, and this model can produce multiple classes of examples that capture intra-class variations. This yields a classifier using the learned loss function and exploring the generated samples to improve classification accuracy.
- We develop a new theory that introduces Lipschitz regularity to characterize underlying data densities.

We will prove the LS-GAN can reveal the true density even with limited modeling ability of bounded Lipschitz constant on the generators and loss functions. This is a nontrivial relaxation of the non-parametric assumption on the classic GAN from both theoretic and practical perspectives. Moreover, we also characterize the optimal loss function by deriving its lower and upper bounds, and show they are cone-shaped and have non-vanishing gradient almost everywhere. The optimal loss function derived between these two bounds are unlikely to saturate with vanishing gradient, and thus can provide sufficient gradient to continuously train the generator.

3 Loss-Sensitive GAN

In the proposed LS-GAN, we abandon to learn a discriminator that uses a probability to characterize the likelihood of real samples. Instead, we introduce a loss function $L_\theta(x)$ to distinguish real and generated samples by the assumption that a real example should have a smaller loss than a generated sample.

Formally, consider a real example x and a generated one $G_\phi(z)$ with $z \sim P_z(z)$. The loss function can be trained with the following constraint:

$$L_\theta(x) \leq L_\theta(G_\phi(z)) - \Delta(x, G_\phi(z))$$

where $\Delta(x, G_\phi(z))$ measures the difference between x and $G_\phi(z)$. This constraint requires a real sample be separated from a generated counterpart in terms of their losses by at least a margin of $\Delta(x, G_\phi(z))$. Figure 1 illustrates this idea.

It is noteworthy that the margin is not fixed to a constant. Instead, it is data-dependent, which could vanish as the generator is gradually improved to produce better samples as they become closer to real examples. For example, one can choose the ℓ_p-distance $|x - G_\phi(z)|_p$ as the margin. This allows the model to focus on improving the poor samples still far away from real examples rather than wasting efforts on those that are already well generated. In the theoretical analysis, such a data-dependent margin will also be used to specify a Lipschitz condition, which plays a critical role in guaranteeing generated samples follow the underlying data density.

![Fig. 1. Illustration of the idea behind LS-GAN. A margin is enforced to separate real samples from generated counterparts. The margin is not fixed to a constant. Instead it is data-dependent, which could vanish as the generator improves to produce better and better samples. We assume the density of real samples is Lipschitz as to prove the theoretical results.](image-url)
Now let us relax the above hard constraint by introducing a slack variable ξ_x, z

\[
L_\theta(x) - \xi_x, z \leq L_\theta(G_\phi(z)) - \Delta(x, G_\phi(z)) \quad (2)
\]

\[
\xi_x, z \geq 0 \quad (3)
\]

where the slack variable would be nonzero when a violation of the constraint occurs.

Therefore, with a fixed generator G_ϕ, the loss function parameterized with θ can be trained by

\[
\min_\theta \mathbb{E}_{x \sim P_{data}(x)} L_\theta(x) + \lambda \mathbb{E}_{z \sim P_{data}(x)} \xi_x, z \quad (4)
\]

s.t.,

\[
L_\theta(x) - \xi_x, z \leq L_\theta(G_\phi(z)) - \Delta(x, G_\phi(z))
\]

where λ is a positive balancing parameter, and $P_{data}(x)$ is the data distribution for real samples. The first term minimizes the expected loss function over data distribution since a smaller value of loss function is preferred on real samples. The second term is the expected error caused by the violation of the constraint. Without loss of generality, we require the loss function should be nonnegative. Later we will show that this nonnegative requirement can be dropped in some case.

On the other hand, for a fixed loss function L_θ, one can solve the following minimization problem to find an optimal generator.

\[
\min_\phi \mathbb{E}_{z \sim P_z(z)} L_\theta(G_\phi(z)) \quad (5)
\]

In summary, L_θ and G_ϕ are alternately optimized by solving an equilibrium (θ^*, ϕ^*) such that θ^* minimizes

\[
S(\theta, \phi^*) = \mathbb{E}_{x \sim P_{data}(x)} L_\theta(x)
\]

\[
+ \lambda \mathbb{E}_{z \sim P_{data}(x)} \left(\Delta(x, z_G) + L_\theta(x) - L_\theta(z_G) \right) \quad (6)
\]

which is an equivalent compact form of (4) with $(a)_+ = \max(a, 0)$, and ϕ^* minimizes

\[
T(\theta^*, \phi) = \mathbb{E}_{z_G \sim P_G(z_G)} L_\theta(z_G) \quad (7)
\]

where $P_G(z_G)$ is the density of samples generated by $G_\phi(z)$. The set of Lipschitz densities on a compact support contain a large family of distributions that are dense in the space of continuous densities. For example, the density of natural images can be consider as Lipschitz continuous, as the densities of two similar images in a neighborhood are unlikely to change abruptly. Moreover, one can restrict the image density in a compact support as an image has bounded pixel values on $[0, 255]$.

This is contrary to the analysis of the classic GAN, where one must assume both discriminator and generator have infinite modeling ability to prove P_G^* equals P_{data}. The Lipschitz assumption on the data density allows us to relax such a strong assumption to Lipschitz loss function L_θ and generator density P_G. This results in the following lemma relating P_G^* to P_{data}.

Lemma 1. Under Assumption τ, given a Nash equilibrium (θ^*, ϕ^*) such that P_G^* is Lipschitz continuous, we have

\[
\int_x |P_{data}(x) - P_G^*(x)| dx \leq \frac{2}{\lambda}
\]

Thus, $P_G^*(x)$ converges to $P_{data}(x)$ as $\lambda \to +\infty$.

The proof of this lemma is given in the appendix.

Remark 1. From this theorem, we find that by allowing λ infinitely large, the learned density $P_G^*(x)$ should exactly match the data density $P_{data}(x)$. In other words, we can simply disregard the first loss minimization term in (6) as it plays no role as $\lambda \to +\infty$. It is also not hard to see that if we disregard the first minimization term, the requirement that the loss function L_θ is nonnegative is not needed anymore to prove the above theorem, and this gives us more flexibility in designing loss function for the LS-GAN.

However, the reason that we still keep the loss minimization term in the formulation will become clear after we develop the conditional LS-GAN later.

Now we can show the existence of Nash equilibrium such that both the loss function L_θ and the density $P_G(z_G)$ of generated samples are Lipschitz.

Let F_κ be the class of functions with a bounded Lipschitz constant κ. It is not difficult to show that the space F_κ is convex and compact if these functions are supported in a compact set \mathcal{F}. In addition, both $S(\theta, \phi)$ and $T(\theta, \phi)$ are convex functions in L_θ and in $P_G(z_G)$. These guarantee the existence of a Nash equilibrium (θ^*, ϕ^*) with both L_θ and P_G^* in F_κ, following the proof of the classic mixed-strategy game theory by applying Kakutani fixed-point theorem [24]. Thus, we have the following lemma.

Lemma 2. Under Assumption τ, there exists a Nash equilibrium (θ^*, ϕ^*) such that L_θ and P_G^* are Lipschitz.

Putting the above two lemmas together, we have the following theorem.

Theorem 1. Under Assumption τ, a Nash equilibrium (θ^*, ϕ^*) exists such that

(i) L_θ and P_G^* are Lipschitz.

1. For example, the space of natural images is compact as their pixel values are restricted to a compact range of $[0, 255]$.
and
(ii) \(\int x |\text{P}_{\text{data}}(x) - P_G^*(x)| \, dx \leq \frac{2}{\lambda} \rightarrow 0 \), as \(\lambda \rightarrow +\infty \);
(iii) \(\text{P}_{\text{data}}(x) \geq \frac{\lambda}{1 + \lambda} P_G^*(x) \).

5 Algorithm and its Generalization Ability

The minimization problems (6) and (7) can be rewritten by replacing the expectation with a given set of examples \(X_m = \{x_1, \cdots, x_m\} \) drawn from a distribution \(P_2(z) \).

This results in the following two problems.

\[
\min_{\theta} S_m(\theta, \phi^*) = \frac{1}{m} \sum_{i=1}^{m} L_0(x_i)
\]

\[
+ \frac{\lambda}{m} \sum_{i=1}^{m} (\Delta(x_i, G_{\phi^*}(z_i)) + L_0(x_i) - L_0(G_{\phi^*}(z_i)))
\]

and

\[
\min_{\phi} T_k(\theta^*, \phi) = \frac{1}{k} \sum_{i=1}^{k} L_{\phi^*}(G_{\phi^*}(z_i))
\]

The random vectors \(Z'_k = \{z'_i | i = 1, \cdots, k\} \) used in (9) can be different from \(Z_m \) used in (8).

The loss function and the generator can be learned by alternating between these two problems over mini-batches. In each mini-batch, a set \(Z_m \) of random noises are sampled from a prior distribution \(P_2(z) \), along with a subset of real samples from the training set \(X_m \). Then, the loss function is updated by descending the gradient of (8), and the generator is updated by minimizing (9) with a set of random vectors \(Z'_k \) sampled from \(P_2(z) \). After the generator \(G_{\phi^*} \) has been updated, the data points \(x^{(m+j)} = G_{\phi^*}(z_j) \) of generated samples will also be updated. Algorithm 1 summarizes the learning algorithm for the LS-GAN.

5.1 Generalization Ability

We have proved the data density of real samples is consistent with the real data density in Theorem 1. This consistency is established on the basis that the LS-GAN is trained by computing the expectation over real distributions \(P_{\text{data}} \) and \(P_G \) in two adversarial objectives (6) and (7). Unfortunately, in a practical algorithm, these population expectations cannot be calculated directly; instead, they can only be approximated over empirical distributions on a finite set of training examples as in (8) and (9).

This raises the concern about the generalizability of the LS-GAN model. In other words, we wonder, with more training examples available, whether the model trained over the empirical distributions can converge to the oracle model that would be learned from the real distributions. If it generalizes, we also wish to estimate the sample complexity characterizing how many samples are required to sufficiently bound the performance difference between the empirical and oracle models.

To this end, first we need to specify the notion of the generalization ability for LS-GAN. The objectives \(S(\theta, \phi^*) \) and \(T(\theta^*, \phi) \) of the LS-GAN are natural choices: \(S(\theta, \phi^*) \) measures the quality of a loss function in distinguishing between real and generated samples, while \(T(\theta^*, \phi) \) measures to what extent a generator can be trained to minimize the loss function. If the LS-GAN generalizes well, the objectives over the empirical and real distributions should have a smaller difference as more examples are drawn from \(P_{\text{data}} \) and \(P_G \).

It is worth noting that Arora et al. [25] has proposed a neural network distance to analyze the generalization ability for the GAN. However, this neural network distance is not a good choice here, as it is not related with the objectives that are used to train the LS-GAN. Thus the generalization ability in terms of this neural network distance does not imply the LS-GAN could also generalize. Instead, a direct generalization analysis is required for the LS-GAN in terms of its own objectives.

Let us consider the generalization in terms of \(S(\theta, \phi^*) \) first. This objective is used to train a loss function \(L_0 \). Thus, it will tell us if a trained loss function would generalize. Consider the true objective

\[
S = \min_{\theta} S(\theta, \phi^*)
\]

and the empirical objective

\[
S_m = \min_{\theta} S_m(\theta, \phi^*)
\]

given a fixed generator \(G_{\phi^*} \).

We wish to show if and how their difference \(|S_m - S| \) would be bounded as the number \(m \) of samples grows. If the LS-GAN generalizes, the difference should converge in probability to zero as a moderate number of samples come. Otherwise, if the generalization failed, \(S_m \) would have a nonvanishing gap to \(S \), implying the model is over-fitted to the empirical samples and could not generalize to the real distribution \(P_{\text{data}} \). From practical point of view, this means the model merely memorized the given examples, unable to produce new data points from the real distribution.

To establish the above notation of generalization, we need the following assumption about the space of loss functions and their domain.

Assumption 2. We have the following assumptions to establish the generalization ability for LS-GAN.

I. The loss function \(L_0(x) \) is \(\kappa_L \)-Lipschitz in its parameter \(\theta \), i.e., \(\|L_0(x) - L_0(x')\| \leq \kappa_L \|\theta - \theta'\| \) for any \(x \);
II. We also assume that \(L_0(x) \) is \(\kappa \)-Lipschitz in \(x \), i.e., \(\|L_0(x) - L_0(x')\| \leq \kappa \|x - x'\| \);
III. The distance between two samples is bounded, i.e., \(\|\Delta(x, x')\| \leq B_\Delta \).

Then we can prove the following theorem.

Theorem 2. Under Assumption 2 with probability \(1 - \eta \), we have

\[
|S_m - S| \leq \varepsilon
\]

when the number of samples

\[
m \geq \frac{CNB_\Delta^2(\kappa + 1)^2 \log(\kappa_L N/\eta \varepsilon)}{\varepsilon^2},
\]

where \(C \) is a sufficiently large constant, and \(N \) is the number of parameters in the loss function.

The proof of this theorem is given in Appendix E.

2. Learning \(G_{\phi^*} \) is due to the other objective function.
Similarly, we can derive the generalizability in terms of the other objective $T(\theta, \phi)$ used to train the generator function by considering

$$T_k = \min_{\phi} T_k(\theta^*, \phi)$$

and

$$T = \min_{\phi} T(\theta^*, \phi)$$

over empirical and real distributions.

We also need the following assumptions on the space of generator functions and their domains, which are symmetric to Assumption2.

Assumption 3. We assume that

I. The generator function $G_\phi(x)$ is ρ_G-Lipschitz in its parameter ϕ, i.e., $|G_\phi(z) - G_{\phi'}(z)| \leq \rho_G \|\phi - \phi'\|$ for any z;

II. Also, we have $G_\phi(z)$ is ρ-Lipschitz in z, i.e., $|G_\phi(z) - G_{\phi'}(z')| \leq \rho \|z - z'\|$;

III. The samples z’s drawn from P_z are bounded, i.e., $\|z\| \leq B_z$.

Then we can show the following theorem about the generalizability in terms of $T(\theta, \phi)$, following the similar idea in proving Theorem3.

Theorem 3. Under Assumption3 with probability $1 - \eta$, we have

$$|T_k - T| \leq \varepsilon$$

when the number of samples

$$k \geq C' MB^2 \kappa^2 \rho^2 \log(\kappa L \beta \gamma M / \eta \varepsilon),$$

where C' is a sufficiently large constant, and M is the number of parameters in the generator function.

Both theorems show the sample complexity to reach a certain level of generalizability ability. For example, the required number of samples m to generalize loss function is proportional to $N \log N$, as well as the square of the Lipschitz constant κ. This implies we should control the sample complexity of training loss and generator functions by limiting not only their parametric sizes but also their Lipschitz constants; the latter appears to be more severe in causing overfitting problem.

6 Non-Parametric Analysis

Now let us characterize the optimal loss functions based on the objective6, which will provide us an insight into the LS-GAN algorithm.

We generalize the non-parametric maximum likelihood method in26 and consider non-parametric solutions to the optimal loss function by minimizing6 over the whole class of Lipschitz loss functions.

Let $x^{(1)} = x_1, x^{(2)} = x_2, \ldots, x^{(m)} = x_m, x^{(m+1)} = G_{\theta^*}(z_1), \ldots, x^{(2m)} = G_{\theta^*}(z_m)$, i.e., the first m data points are real examples and the rest m are generated samples. Then we have the following theorem.

![Fig. 2. Comparison between two optimal loss functions L_{θ^*} and \tilde{L}_{θ^*} in F_{κ}. They are upper and lower bounds of the class of optimal loss functions L_{θ^*} to Problem 8. Both the upper and the lower bounds are cone-shaped, and have non-vanishing gradient almost everywhere. Specifically, in this one-dimensional example, both bounds are piecewise linear, having a slope of $\pm \kappa$ almost everywhere.](image)

Theorem 4. The following functions \tilde{L}_{θ^*} and \hat{L}_{θ^*} both minimize $S_m(\theta, \phi^*)$ in F_{κ}:

$$\tilde{L}_{\theta^*}(x) = \max_{1 \leq i \leq 2m} \{ l^*_i - \kappa \Delta(x, x^{(i)}) \},$$

$$\hat{L}_{\theta^*}(x) = \min_{1 \leq i \leq 2m} \{ l^*_i + \kappa \Delta(x, x^{(i)}) \}$$

with the parameters $\theta^* = \{ l^*_1, \ldots, l^*_m \} \in \mathbb{R}^{m+2m}$. They are supported in the convex hull of $\{x^{(1)}, \ldots, x^{(2m)}\}$, and we have

$$\tilde{L}_{\theta^*}(x^{(i)}) = \hat{L}_{\theta^*}(x^{(i)}) = l^*_i$$

for $i = 1, \ldots, 2m$, i.e., their values coincide on $\{x^{(1)}, x^{(2)}, \ldots, x^{(2m)}\}$.

The proof of this theorem is given in the appendix.

From the theorem, it is not hard to show that any convex combination of these two forms attains the same value of $S_m(\theta, \phi^*)$, and is also a global minimizer. Thus, we have the following corollary.

Corollary 1. All the functions in

$$L_{\theta^*} = \{ \gamma \tilde{L}_{\theta^*} + (1 - \gamma) \hat{L}_{\theta^*} : 0 \leq \gamma \leq 1 \} \subset F_{\kappa}$$

are the global minimizer of S_m in F_{κ}.

This shows that the global minimizer is not unique. Moreover, through the proof of Theorem4 one can find that $L_{\theta^*}(x)$ and $\hat{L}_{\theta^*}(x)$ are the upper and lower bound of any optimal loss function solution to the problem8. In particular, we have the following corollary.

Corollary 2. For any $L_{\theta^*}(x) \in F_{\kappa}$ that minimizes S_m, the corresponding $\tilde{L}_{\theta^*}(x)$ and $\hat{L}_{\theta^*}(x)$ are the lower and upper bounds of $L_{\theta^*}(x)$, i.e.,

$$\tilde{L}_{\theta^*}(x) \leq L_{\theta^*}(x) \leq \hat{L}_{\theta^*}(x)$$

The proof is given in Appendix8.
The parameters $\theta^* = [l_1^*, \ldots, l_{2m}^*]$ in (10) can be sought by minimizing

$$S_m(\phi^*, \theta) \triangleq \frac{1}{m} \sum_{i=1}^{m} l_i + \frac{\lambda}{m} \sum_{i=1}^{m} (\Delta_{i,m+i} + l_i - l_{m+i})_+$$

s.t., $|l_i - l'_i| - \kappa \Delta(x^{(i)}, x'^{(i)})$

$$l_i \geq 0, \quad i,i' = 1, \ldots, 2m$$

where $\Delta_{i,j}$ is short for $\Delta(x^{(i)}, x^{(j)})$, and the constraints are imposed to ensure the learned loss functions stay in \mathcal{F}_κ. For a greater value of κ, a larger class of loss function will be sought. Thus, one can control the modeling ability of the loss function by setting a proper value to κ.

Problem (11) is a typical linear programming problem. In principle, one can solve this problem to obtain a non-parametric loss function for the LS-GAN. Unfortunately, it consists of a large number of constraints, whose size is at an order of $\left(\frac{2m}{2}\right)$. This prevents us from using (11) directly to solve an optimal LS-GAN model with a very large number of training examples.

However, a more tractable solution is to use a parameterized network to solve this non-parametric optimization problem (8) constrained in \mathcal{L}_κ, and this is exactly the gradient descent method adopted in Algorithm 1 that iteratively updates parameterized L_θ and G_ϕ. To ensure the loss function to have a bounded Lipschitz constant, one can use weight decay to avoid too large value of network weights, or directly clamp the weights to a bounded area. In this paper, we adopt weight decay and find it works well with the LS-GAN model in experiments.

Although the non-parametric solution cannot be solved directly, it is valuable in characterizing the loss function learned by a deep network, which can shed some light on how the LS-GAN is trained. It is well known that the training of the classic GAN generator suffers from vanishing gradient and saturated JS distance problems in the classic GAN by showing the EM distance is continuous and differentiable almost everywhere. While the LS-GAN and the WGAN address these problems by different approaches that are independently developed, both turn out to use the Lipschitz constraint to learn the loss function of the LS-GAN and the critic of the WGAN respectively. This constraint plays vital but different roles in the two models. In the LS-GAN, the Lipschitz constraint on the loss function naturally arises from the Lipschitz regularity imposed on the data density. Under this regularity condition, we have proved in Theorem 1 that the density of generated samples is Lipschitz and consistent with the underlying data density. On the contrary, the WGAN introduces the Lipschitz constraint from the Kantorovich-Rubinstein duality of the EM distance but it is unclear in (14) if the WGAN is also based on the same Lipschitz regularity on the underlying data density.

Here we assert that the WGAN also models an underlying Lipschitz density. To prove this, we restate the WGAN as follows. The WGAN seeks to find a critic f^*_w and a generator g^*_ϕ such that

$$f^*_w = \arg \max_{f_w \in \mathcal{F}_1} U(f_w, g^*_\phi) \triangleq \mathbb{E}_{x \sim P_{\text{data}}(x)}[f_w(x)] - \mathbb{E}_{z \sim P_z(z)}[f_w(g^*_\phi(z))]$$

and

$$g^*_\phi = \arg \max_{g_\phi} V(f^*_w, g_\phi) \triangleq \mathbb{E}_{z \sim P_z(z)}[f^*_w(g_\phi(z))]$$

Let $P_{P^*_w}$ be the density of samples generated by g^*_ϕ. Then, we prove the following lemma about the WGAN in Appendix C.

Lemma 3. Under Assumption 1, given an optimal solution (f^*_w, g^*_ϕ) to the WGAN such that $P_{P^*_w}$ is Lipschitz, we have

$$\int_x |P_{\text{data}}(x) - P_{P^*_w}(x)| dx = 0$$

This lemma shows both the LS-GAN and the WGAN are based on the same Lipschitz regularity condition.

Although both methods are derived from very different perspectives, it is interesting to make a comparison between their respective forms. Formally, the WGAN seeks to maximize the difference between the first-order moments of f_w under the densities of real and generated examples. In this sense, the WGAN can be considered as a kind of first-order momentum method. Numerically, as shown in the second term of Eq. (14), f_w tends to be minimized to be arbitrarily small over generated samples, which could make $U(f_w, g_w)$ be unbounded above. This is why the WGAN must be trained by clamping the network weights of f_w on a bounded box to prevent $U(f_w, g_w)$ from becoming unbounded above.

On the contrary, the LS-GAN treats real and generated examples in pairs, and maximizes the difference of their losses up to a data-dependant margin. Specifically, as shown in the second term of Eq. (5), when the loss of a generated sample z_G becomes too large wrt that of a paired real example x, the maximization of $L_\theta(z_G)$ will stop if the
difference \(L_\theta(x, y) - L_\theta(x) \) exceeds \(\Delta(x, z_G) \). This prevents the minimization problem \(6 \) unbounded below, making it better posed to solve.

More importantly, paring real and generated samples in \((\cdot)_+\) prevents their losses from being decomposed into two separate first-order moments like in the WGAN. Instead, the LS-GAN makes pairwise comparison between the losses of real and generated samples, thereby enforcing real and generated samples to coordinate with each other to learn the optimal loss function. Specifically, when a generated sample becomes close to a paired real example, the LS-GAN will stop increasing the difference \(L_\theta(x_G) - L_\theta(x) \) between their losses. This allows the LS-GAN to focus on improved poor samples that are far apart from the manifold of real examples, instead of wasting its modeling capacity on samples that are far apart from the manifold.

Finally, in Appendix \(\ref{sec:appendix} \) we discuss a Generalized LS-GAN (GLS-GAN) model, and show that both WGAN and LS-GAN are simply two special cases of this GLS-GAN with a suitable cost function replacing \((\cdot)_+\) in the minimization problem \(6 \). This unifies these two known regularized GANs, and there should exist some more sweet spot among these GLS-GANs. Although most of theory and algorithms for these GLS-GANs have already been developed for the LS-GAN, we leave a comprehensive study of the GLS-GAN family in our future work.

8 CONDITIONAL LS-GAN

The LS-GAN can easily be generalized to produce a sample based on a given condition \(y \), yielding a new paradigm of Conditional LS-GAN (CLS-GAN).

For example, if the condition is an image class, the CLS-GAN seeks to produce images of the given class; otherwise, if a text description is given as a condition, the model attempts to generate images aligned with the given description. This gives us more flexibility in controlling what samples to be generated.

Formally, the generator of CLS-GAN takes a condition vector \(y \) as input along with a noise vector \(z \) to produce a sample \(G_\phi(z, y) \). To train the model, we define a loss function \(L_\theta(x, y) \) to measure the degree of the misalignment between a data sample \(x \) and a given condition \(y \).

For a real example \(x \) aligned with the condition \(y \), its loss function should be smaller than that of a generated sample by a margin of \(\Delta(x, G_\phi(z, y)) \). This results in the following constraint,

\[
L_\theta(x, y) \leq L_\theta(G_\phi(z, y), y) - \Delta(x, G_\phi(z, y))
\]

Like the LS-GAN, this type of constraint yields the following non-zero-sum game to train the CLS-GAN, which seeks a Nash equilibrium \((\theta^*, \phi^*)\) so that \(\theta^* \) minimizes

\[
S(\theta, \phi^*) = \mathbb{E}_{x, y \sim P_{\text{data}}(x, y)} L_\theta(x, y) + \lambda \mathbb{E}_{x, y \sim P_{\text{data}}(x, y)} (\Delta(x, G_\phi(z, y)) + L_\theta(x, y)) - L_\theta(G_\phi(z, y), y)
\]

and \(\phi^* \) minimizes

\[
T(\theta^*, \phi) = \mathbb{E}_{y \sim P_{\text{data}}(y)} L_\theta^*(G_\phi(z, y), y)
\]

Playing the above game will lead to a trained pair of loss function \(L_\theta \) and generator \(G_\phi \). We can show that the learned generator \(G_\phi(z, y) \) can produce samples whose distribution follows the true data density \(P_{\text{data}}(x|y) \) for a given condition \(y \).

To prove this, we say a loss function \(L_\theta(x, y) \) is Lipschitz if it is Lipschitz continuous in its first argument \(x \). We also impose the following regularity condition on the conditional density \(P_{\text{data}}(x|y) \).

Assumption 4. For each \(y \), the conditional density \(P_{\text{data}}(x|y) \) is Lipschitz, and is supported in a convex compact set of \(x \).

Then it is not difficult to prove the following theorem, which shows that the conditional density \(P_{\text{data}}(x|y) \) becomes \(P_{\text{data}}(x|y) \) as \(\lambda \to +\infty \). Here \(P_{\text{data}}(x|y) \) denotes the density of samples generated by \(G_\phi^*(z, y) \) with sampled random noise \(z \).

Theorem 5. Under Assumption 4 a Nash equilibrium \((\theta^*, \phi^*)\) exists such that

(i) \(L_\theta^*(x, y) \) is Lipschitz continuous in \(x \) for each \(y \);
(ii) \(P_{\text{data}}(x|y) \) is Lipschitz continuous;
(iii) \(\int_x |P_{\text{data}}(x|y) - P_{\text{data}}(x|y)|dx \leq \frac{2}{\lambda} \).

In addition, similar upper and lower bounds can be derived to characterize the learned conditional loss function \(L_\theta(x, y) \) following the same idea for LS-GAN.

A useful byproduct of the CLS-GAN is one can use the learned loss function \(L_\theta^*(x, y) \) to predict the label of an example \(x \) by

\[
y^* = \arg \min_y L_\theta^*(x, y)
\]

The advantage of such a CLS-GAN classifier is it is trained with both labeled and generated examples, the latter of which can improve the training of the classifier by revealing more potential variations within different classes of samples. It also provides a way to evaluate the model based on its classification performance. This is an objective metric we can use to assess the quality of feature representations learned by the model.
For a classification task, a suitable value should be set to \(\lambda \). Although Theorem 5 shows \(P_{G^*} \) to converge to the true conditional density \(P_{data} \) by increasing \(\lambda \), it only ensures it is a good generative rather than classification model. However, a too large value of \(\lambda \) tends to ignore the first loss minimization term of \(15 \) that plays an important role in minimizing classification error. Thus, a trade-off should be made to balance between classification and generation objectives.

8.1 Semi-Supervised LS-GAN

The above CLS-GAN can be considered as a fully supervised model to classify examples into different classes. It can also be extended to a Semi-Supervised model by incorporating unlabeled examples.

Suppose we have \(c \) classes indexed by \(\{1, 2, \cdots, c\} \). In the CLS-GAN, for each class, we choose a loss function that, for example, can be defined as the negative log-softmax,

\[
L_\theta(x, y = l) = -\log \frac{\exp(a_l(x))}{\sum_{l=1}^{c} \exp(a_l(x))}
\]

where \(a_l(x) \) is the \(l \)th activation output from a network layer.

Suppose we also have unlabeled examples available, and we can define a new loss function for these unlabeled examples so that they can be involved in training the CLS-GAN. Consider an unlabeled example \(x \), its groundtruth label is unknown. However, the best guess of its label can be made by choosing the one that minimizes \(L_\theta(x, y = l) \) over \(l \), and this inspires us to define the following loss function for the unlabeled example as

\[
L_\theta^{ul}(x) \triangleq \min_l L_\theta(x, y = l)
\]

Here we modify \(L_\theta(x, y = l) \) to \(-\log \frac{\exp(a_l(x))}{1 + \sum_{l=1}^{c} \exp(a_l(x))} \) so that it can be viewed as the probability that \(x \) does not belong to any known label.

Then we have the following loss-sensitive objective that explores unlabeled examples to train the CLS-GAN,

\[
S^{ul}(\theta, \phi^*) \triangleq \mathbb{E}_{x \sim P_{data}(x)} \left(\Delta(x, G_{\phi^*}(z)) + L_\theta^{ul}(x) - L_\theta^{ul}(G_{\phi^*}(z)) \right)_+
\]

This objective is combined with \(S(\theta, \phi^*) \) defined in 15 to train the loss function network by minimizing

\[
S(\theta, \phi^*) + \gamma S^{ul}(\theta, \phi^*)
\]

where \(\gamma \) is a positive hyperparameter balancing the contributions from labeled and labeled examples.

The idea of extending the GAN for semi-supervised learning has been proposed by Odena [27] and Salimans et al. [2], where generated samples are assigned to an artificial class, and unlabeled examples are treated as the negative examples. Our proposed semi-supervised learning differs in creating a new loss function for unlabeled examples from the losses for existing classes, by minimizing which we make the best guess of the classes of unlabeled examples.

In the generator network, \(\text{Tanh} \) is used to produce images whose pixel values are scaled to \([-1, 1]\). Thus, all image examples in datasets are preprocessed to have their pixel values in \([-1, 1]\). More details about the design of network
TABLE 1

The Network architecture used in LS-GAN for training CIFAR-10 and SVHN, where BN stands for batch normalization, LeakyReLU for Leaky Rectifier with a slope of 0.2 for negative value, and “3c1s96o Conv.” means a 3×3 convolution kernel with stride 1 and 96 outputs, while “UpConv.” denotes the fractionally-stride convolution.

(a) Loss Function Network

Input $32 \times 32 \times 3$
3c1s96o Conv. BN LeakyReLU
3c1s96o Conv. BN LeakyReLU
4c2s96o Conv. BN LeakyReLU
3c1s192o Conv. BN LeakyReLU
3c1s192o Conv. BN LeakyReLU
4c2s192o Conv. BN LeakyReLU
3c1s192o Conv. BN LeakyReLU
3c1s192o Conv. BN LeakyReLU
1c1s192o Conv. BN LeakyReLU
global meanpool
Output $32 \times 32 \times 10$

(b) Generator Network

Input 100-D random vector + 10-D one-hot vector
4c1s128o UpConv. BN LeakyReLU
4c2s256o UpConv. BN LeakyReLU
4c2s128o UpConv. BN LeakyReLU
4c2s3o UpConv. BN LeakyReLU
Elementwise Tanh
Output $32 \times 32 \times 3$

architectures can be found in literature [7]. Table 1 shows the network architecture for the CLS-GAN model on CIFAR-10 and SVHN datasets in the experiments. In particular, the architecture of the loss function network is adapted from that used in [22] with nine hidden layers.

9.2 Training Details

The models are trained in a mini-batch of 64 images, and their weights are initialized from a zero-mean Gaussian distribution with a standard deviation of 0.02. The Adam optimizer [28] is used to train the network with initial learning rate and β_1 being set to 10^{-3} and 0.5 respectively, while the learning rate is annealed every 25 epochs by a factor of 0.8.

The hyperparameter γ and λ are chosen via a five-fold cross-validation. We also test different types of distance metrics for the loss margin $\Delta(\cdot, \cdot)$, and find the L_1 distance achieves better performance among the other compared choices like L_2 distance. We also tried to use intermediate feature maps from the loss function network to compute the loss margin between images. Unfortunately we found the results were not as good as the L_1 distance. The loss margin $\Delta(\cdot, \cdot)$ tends to reduce to zero over epochs as these intermediate feature maps would collapse to a trivial single point.

For the generator network of LS-GAN, it takes a 100-dimensional random vector drawn from Unif$[-1, 1]$ as input. For the CLS-GAN generator, an one-hot vector encoding the image class is concatenated with the sampled random vector as its input. We will train CLS-GAN as presented in Section 8 by involving both unlabeled and labeled examples. This will be compared against the other state-of-the-art supervised deep generative models as well as the other GAN models in literature.

9.3 Generated Images by LS-GAN

First we make a qualitative comparison between the images generated by the DCGAN and the LS-GAN on the celebA dataset.

As illustrated in Figure 3, there is no perceptible difference between the qualities of generated images by two compared GAN models after they are trained after 25 epochs.

The DCGAN architecture has been exhaustively fine-tuned in the context of the classic GAN training criterion to maximize the generation performance. It is susceptible that its architecture could be fragile if we make some change to it. Here we test if the LS-GAN can be more robust than the DCGAN when a structure change is made.

For example, one of the most key components in the DCGAN is the batch normalization inserted between the fractional convolution layers in the generator network. It has been reported in literature [2] that the batch normalization not only plays a key role in training the DCGAN model, but also prevents the mode collapse of the generator into few data points.

The results are illustrated in Figure 4. If one removed the batch normalization layers from the generator, the DCGAN would collapse without producing any face images. On the contrary, the LS-GAN still performs very well even if these batch normalization layers are removed, and there is no perceived deterioration or mode collapse of the generated images. This shows that the LS-GAN is more resilient against the architecture changes than the DCGAN.

We also analyze the magnitude (ℓ_2 norm) of the generator’s gradient (in logarithmic scale) in Figure 5 over iterations. With the loss function being updated every iteration, the generator is only updated every 1, 3, and 5 iterations. In this way, we wish to study if the gradient to update the generator would lessen or vanish if the loss function is overtrained.

From the figure, we note that the magnitude of the generator’s gradient, no matter how frequently the loss function is updated, gradually increases until it stops at the same level. This implies the objective function to update the generator tends to be linear rather than saturated through the training process, which is consistent with our analysis of the non-parametric solution to the optimal loss function. Thus, it provides sufficient gradient to continuously update the generator.

9.4 Image Classification

We conduct experiments on CIFAR-10 and SVHN to compare the classification accuracy of LS-GAN with the other approaches.

9.4.1 CIFAR-10

The CIFAR dataset [33] consists of 50,000 training images and 10,000 test images on ten image categories. We test the proposed CLS-GAN model with class labels as conditions.
Fig. 3. Images generated by the DCGAN and the LS-GAN on the CelebA dataset. The results are obtained after 25 epochs of training the models.

Fig. 4. Images generated by the DCGAN and the LS-GAN on the CelebA dataset without batch normalization for the generator networks. The results are obtained after 25 epochs of training the models.

Fig. 5. The log of the generator’s gradient norm over iterations. The generator is updated every 1, 3, and 5 iterations while the loss function is updated every iteration. The loss function can be quickly updated to be optimal, and the figure shows the generator’s gradient does not vanish even if the loss function is well trained.
In the supervised training, all labeled examples are used to train the CLS-GAN.

We also conduct experiments with 400 labeled examples per class, which is a more challenging task as much fewer labeled examples are used for training. In this case, the remaining unlabeled examples are used to train the model in a semi-supervised fashion as discussed in Section 8. In each mini-batch, the same number of labeled and unlabeled examples are used to update the model by stochastic gradient descent. The experiment results on this task are reported by averaging over ten subsets of labeled examples.

Both hyperparameters γ and λ are chosen via a five-fold cross-validation on the labeled examples from $\{0.25, 0.5, 1.0, 2.0\}$ and $\{0.5, 1.0, 2.0\}$ respectively. Once they are chosen, the model is trained with the chosen hyperparameters on the whole training set, and the performance is reported based on the results on the test set. As in the improved GAN, we also adopt the weight normalization and feature matching mechanisms for the sake of the fair comparison.

We compare the proposed model with the state-of-the-art methods in literature. In particular, we compare with the conditional GAN [32] as well as the DCGAN [7]. For the sake of fair comparison, the conditional GAN shares the same architecture as the CLS-GAN. On the other hand, the DCGAN algorithm [7] max-pools the discriminator’s convolution features from all layers to 4×4 grids as the image features, and a L2-SVM is then trained to classify images. The DCGAN is an unsupervised model which has shown competitive performance on generating photorealistic images. Its feature representations are believed to reach the state-of-the-art performance in modeling images with no supervision.

We also compare with the other recently developed supervised and semi-supervised models in literature, including the baseline 1 Layer K-means feature extraction pipeline, a multi-layer extension of the baseline model (3 Layer K-means Learned RF [29]), View Invariant K-means [50], Examplear CNN [31], Ladder Network [20], as well as CatGAN [22]. In particular, among the compared semi-supervised algorithms, the improved GAN [2] has recorded the best performance in literature. Furthermore, we also compare with the ALI [23] that extends the classic GAN by jointly generating data and inferring their representations, which achieves comparable performance to the Improved GAN. This points out an interesting direction to generalize the CLS-GAN by directly inferring the data representation, and we leave it in the future work.

Table 2 compares the experiment results, showing the CLS-GAN successfully outperforms the compared algorithms in both fully-supervised and semi-supervised settings.

9.4.2 SVHN

The SVHN (i.e., Street View House Number) dataset [34] contains 32×32 color images of house numbers collected by Google Street View. They are roughly centered on a digit in a house number, and the objective is to recognize the digit. The training set has 73,257 digits while the test set consists of 26,032.

To test the model, 1,000 labeled digits are used to train the model, which are uniformly selected from ten digit classes, that is 100 labeled examples per digit class. The remaining unlabeled examples are used as additional data to enhance the generative ability of CLS-GAN in semi-supervised fashion. We expect a good generative model could produce additional examples to augment the training set.

We use the same experiment setup and network architecture for CIFAR-10 to train the LS-GAN on this dataset. Table 3 reports the result on the SVHN, and it shows that the LS-GAN performs the best among the compared algorithms.

9.4.3 Analysis of Generated Images by CLS-GAN

Figure 6 illustrates the generated images by CLS-GAN for MNIST, CIFAR-10 and SVHN datasets. On each dataset, images in a column are generated for the same class. On the MNIST and the SVHN, both handwritten and street-view digits are quite legible. Both also cover many variants for each digit class. For example, the synthesized MNIST digits have various writing styles, rotations and sizes, and the generated SVHN digits have various lighting conditions, sizes and even different co-occurring digits in the cropped bounding boxes. On the CIFAR-10 dataset, image classes can be recognized from the generated images although some visual details are missing. This is because the images in the
CIFAR-10 dataset have very low resolution (32 x 32 pixels), and most details are even missing from input examples.

We also observe that if we set a small value to the hyperparameter λ, the generated images would become very similar to each other within each class. As illustrated in Figure 7, the images are generated by halving λ used for generating images in Figure 6. A smaller λ means a relatively large weight is placed on the first loss minimization term of (6), which tends to collapse generated images to a single mode as it aggressively minimizes their losses to train the generator. This is also consistent with Theorem 5 where the density of generated samples with a smaller λ could have a larger deviation from the underlying density. One should avoid the collapse of trained generator since diversifying generated images can improve the classification performance of the CLS-GAN by revealing more intra-class variations. This will help improve the model’s generalization ability as these variations could appear in future images.

However, one should also avoid setting too large value to λ. Otherwise, the role of the first loss minimization term could be underestimated, which can also adversely affect the classification results without reducing the training loss to a satisfactory level. Therefore, we choose a proper value for λ by cross-validation on the training set in the experiments.

In brief, the comparison between Figure 6 and Figure 7 reveals a trade-off between image generation quality and classification accuracy through the hyperparameter λ. Such a trade-off is intuitive: while a classification task usually focuses on learning class-invariant representations that do not change within a class, image generation should be able to capture many variant factors (e.g., lighting conditions, viewing angles, and object poses) so that it could diversify generated samples for each class. Although diversified examples can augment training dataset, it comes at a cost of trading class-invariance for modeling variant generation factors. Perhaps, this is an intrinsic dilemma between supervised learning and data generation that is worth more theoretical and empirical studies in future.

10 Conclusion and Future Work

In this paper, we present a novel Loss-Sensitive GAN (LS-GAN) approach to generate samples from the underlying distributions. The LS-GAN learns a loss function to distinguish generated samples from given examples by imposing the constraint that the loss of a real sample should be sufficiently small by a data dependent margin than that of a generated sample. As the data generator improves, the gap between the losses of real and generated samples will be gradually closed when the generated samples become better and better.

We prove that this approach can generate samples whose data density matches the underlying true data density. Our analysis also suggests that we do not need to assume the model has infinite modeling capacity to obtain this result. Instead a class of generators and loss functions with bounded Lipschitz constants are sufficient to show the consistency of generated samples with the underlying data density. A non-parametric solution is derived to characterize the lower and upper bounds of the learned loss functions sought by the LS-GAN. We show both bounds are cone-shaped with non-vanishing gradient, which sheds some light on how the LS-GAN generator can be continuously updated by the loss function even if it is trained to be optimal.

Moreover, we generalize the LS-GAN to a Conditional LS-GAN (CLS-GAN) that can generate samples under given
conditions. Similar theoretical guarantee can be established on the CLS-GAN so that the conditional density of its generated samples is consistent with the true conditional density. Experiment results demonstrate the competitive image classification accuracy by using the learned loss function, as well as the high quality of generated images.

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, 2014, pp. 2672–2680.

[2] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved techniques for training gans,” in Advances in Neural Information Processing Systems, 2016, pp. 2226–2234.

[3] M. Saito and E. Matsumoto, “Temporal generative adversarial nets,” arXiv preprint arXiv:1611.06624, 2016.

[4] O. Mogren, “C-rnn-gan: Continuous recurrent neural networks with adversarial training,” arXiv preprint arXiv:1611.09904, 2016.

[5] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seggan: sequence generative adversarial nets with policy gradient,” arXiv preprint arXiv:1609.05473, 2016.

[6] M. Arjovsky and L. Bottou, “Towards principled methods for training generative adversarial networks.”

[7] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[8] D. H. Wolpert, “The lack of a priori distinctions between learning algorithms,” Neural computation, vol. 8, no. 7, pp. 1341–1390, 1996.

[9] E. L. Denton, S. Chintala, R. Fergus et al., “Deep generative image models using a laplacian pyramid of adversarial networks,” in Advances in neural information processing systems, 2015, pp. 1486–1494.

[10] D. J. Im, C. D. Kim, H. Jiang, and R. Memisevic, “Generating images with recurrent adversarial networks,” arXiv preprint arXiv:1602.05110, 2016.

[11] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative adversarial network,” arXiv preprint arXiv:1609.03126, 2016.

[12] S. Nowozin, B. Cseke, and R. Tomioka, “F-gan: Training generative neural samplers using variational divergence minimization,” arXiv preprint arXiv:1606.00709, 2016.

[13] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Infogan: Interpretable representation learning by information maximizing generative adversarial nets,” in Advances in Neural Information Processing Systems, 2016, pp. 2172–2180.

[14] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint arXiv:1701.07875, January 2017.

[15] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,” arXiv preprint arXiv:1508.06576, 2015.

[16] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox, “Learning to generate chairs with convolutional neural networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1538–1546.

[17] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra, “Draw: A recurrent neural network for image generation,” arXiv preprint arXiv:1502.04623, 2015.

[18] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised learning with deep generative models,” in Advances in Neural Information Processing Systems, 2014, pp. 3581–3589.

[19] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.

[20] A. Rasmus, M. Berglund, M. Honkela, H. Valpola, and T. Raiko, “Semi-supervised learning with ladder networks,” in Advances in Neural Information Processing Systems, 2015, pp. 3546–3554.

[21] H. Valpola, “From neural pca to deep unsupervised learning,” Adv. in Independent Component Analysis and Learning Machines, pp. 143–171, 2015.

[22] J. T. Springenberg, “Unsupervised and semi-supervised learning with categorical generative adversarial networks,” arXiv preprint arXiv:1511.06390, 2015.

[23] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro, and A. Courville, “Adversarially learned inference,” arXiv preprint arXiv:1606.00704, 2016.

[24] K. C. Border, Fixed point theorems with applications to economics and game theory. Cambridge university press, 1989.

[25] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang, “Generalization and equilibrium in generative adversarial nets (gans),” arXiv preprint arXiv:1703.00573, 2017.

[26] D. Carando, R. Fraiman, and P. Groisman, “Nonparametric likelihood based estimation for a multivariate lipschitz density,” Journal of Multivariate Analysis, vol. 100, no. 5, pp. 981–992, 2009.

[27] A. Odena, “Semi-supervised learning with generative adversarial networks,” arXiv preprint arXiv:1606.01583, 2016.

[28] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

[29] A. Coates and A. Y. Ng, “Selecting receptive fields in deep networks,” in Advances in Neural Information Processing Systems, 2011, pp. 2528–2536.

[30] K. Y. Hui, “Direct modeling of complex invariances for visual object features,” in International Conference on Machine Learning, 2013, pp. 352–360.

[31] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and T. Brox, “Discriminative unsupervised feature learning with exemplar convolutional neural networks.”

[32] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784, 2014.

[33] A. Krizhevsky, “Learning multiple layers of features from tiny images,” 2009.

[34] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in natural images with unsupervised feature learning,” 2011.

[35] J. Zhao, M. Mathieu, R. Goroshin, and Y. Lecun, “Stacked what-where auto-encoders,” arXiv preprint arXiv:1506.02351, 2015.

[36] T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii, “Distributional smoothing by virtual adversarial example,” arXiv preprint arXiv:1507.00677, 2015.

[37] L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther, “Auxiliary deep generative models,” arXiv preprint arXiv:1602.05473, 2016.

APPENDIX A

PROOF OF LEMMA 1

To prove Lemma 1 we need the following lemma.
Lemma 4. For two probability densities \(p(x) \) and \(q(x) \), if \(p(x) \geq \eta q(x) \) almost everywhere, we have

\[
\int_x |p(x) - q(x)| \, dx \leq \frac{2(1 - \eta)}{\eta}
\]

for \(\eta \in (0, 1] \).

Proof. We have the following equalities and inequalities:

\[
\int_x |p(x) - q(x)| \, dx = \int_x \mathbb{1}_{[p(x) \geq q(x)]}(p(x) - q(x)) \, dx + \int_x \mathbb{1}_{[p(x) < q(x)]}(q(x) - p(x)) \, dx
\]

\[
= \int_x (1 - \mathbb{1}_{[p(x) < q(x)]})(p(x) - q(x)) \, dx + \int_x \mathbb{1}_{[p(x) < q(x)]}(q(x) - p(x)) \, dx
\]

\[
= 2\int_x \mathbb{1}_{[p(x) < q(x)]}(q(x) - p(x)) \, dx \leq 2\frac{1}{\eta} - 1 \int_x \mathbb{1}_{[p(x) < q(x)]} p(x) \, dx \leq \frac{2(1 - \eta)}{\eta}
\]

This completes the proof. \(\square \)

Now we can prove Lemma \(\text{[1]} \)

Proof. Suppose \((\theta^*, \phi^*)\) is a Nash equilibrium for the problem \(\text{[6]} \) and \(\text{[7]} \).

Then, on one hand, we have

\[
S(\theta^*, \phi^*) \geq \mathbb{E}_{x \sim \text{data}(x)} L_{\theta^*}(x) + \lambda \mathbb{E}_{x \sim \text{data}(x)} \mathbb{E}_{z \sim G^*(x)} \Delta(x, z_G)
\]

\[
= \left(\int_x P_{\text{data}}(x) L_{\theta^*}(x) \, dx + \lambda \mathbb{E}_{x \sim \text{data}(x)} \mathbb{E}_{z \sim G^*(x)} \Delta(x, z_G) \right)
\]

\[
= \lambda \int_x P_{\text{data}}(x) L_{\theta^*}(x) \, dx + \lambda \left(\mathbb{E}_{x \sim \text{data}(x)} \mathbb{E}_{z \sim G^*(x)} \Delta(x, z_G) \right)
\]

\[
\geq \lambda \int_x P_{\text{data}}(x) L_{\theta^*}(x) \, dx + \lambda \mathbb{E}_{x \sim \text{data}(x)} \mathbb{E}_{z \sim G^*(x)} \Delta(x, z_G)
\]

\[
\geq \lambda \int_x P_{\text{data}}(x) L_{\theta^*}(x) \, dx + \lambda \mathbb{E}_{x \sim \text{data}(x)} \mathbb{E}_{z \sim G^*(x)} \Delta(x, z_G)
\]

(20)

where the last inequality follows as \(L_{\theta}(x) \) is nonnegative.

On the other hand, consider a particular loss function

\[
L_{\theta}(x) = \alpha (1 + \lambda) P_{\text{data}}(x) - \lambda P_{G^*}(x)
\]

(22)

When \(\alpha \) is a sufficiently small positive coefficient, \(L_{\theta}(x) \) is a nonexpansive function (i.e., a function with Lipschitz constant no larger than 1). This follows from the assumption that \(P_{\text{data}} \) and \(P_{G} \) are Lipschitz. In case, we have

\[
\Delta(x, z_G) + L_{\theta}(x) - L_{\theta}(z_G) \geq 0
\]

(23)

By placing this \(L_{\theta}(x) \) into \(S(\theta, \phi^*) \), one can show that

\[
S(\theta, \phi^*) = \int_x \left((1 + \lambda) P_{\text{data}}(x) - \lambda P_{G^*}(x) \right) L_{\theta}(x) \, dx
\]

\[
+ \lambda \mathbb{E}_{x \sim \text{data}(x)} \mathbb{E}_{z \sim G^*(x)} \Delta(x, z_G)
\]

\[
= -\alpha \int_x \left((1 + \lambda) P_{\text{data}}(x) - \lambda P_{G^*}(x) \right)^2 \, dx
\]

\[
+ \lambda \mathbb{E}_{x \sim \text{data}(x)} \mathbb{E}_{z \sim G^*(x)} \Delta(x, z_G)
\]

(24)

This results in a contradiction with Eq. (21). Therefore, we must have

\[
P_{\text{data}}(x) \geq \frac{\lambda}{1 + \lambda} P_{G^*}(x)
\]

(25)

for almost everywhere. By Lemma 4, we have

\[
\int_x |P_{\text{data}}(x) - P_{G^*}(x)| \, dx \leq \frac{2}{\lambda}
\]

Let \(\lambda \to +\infty \), this leads to

\[
\int_x |P_{\text{data}}(x) - P_{G^*}(x)| \, dx \to 0
\]

This proves that \(P_{G^*}(x) \) converges to \(P_{\text{data}}(x) \) as \(\lambda \to +\infty \). \(\square \)

APPENDIX B

PROOF OF THEOREM \(\text{[4]} \) AND COROLLARY \(\text{[2]} \)

We prove Theorem 4 as follows.

Proof. First, the existence of a minimizer follows from the fact that the functions in \(\mathcal{F}_c \) form a compact set, and the objective function is convex.

To prove the minimizer has the two forms in (10), for each \(\tilde{L}_{\theta} \in \mathcal{F}_c \), let us consider

\[
\tilde{L}_{\theta}(x) = \max_{1 \leq i \leq n+m} \{ (L_{\theta}(x^{(i)}) - \kappa \Delta(x, x^{(i)})_+) \}_+ \],
\]

\[
\tilde{L}_{\theta}(x) = \min_{1 \leq i \leq n+m} \{ L_{\theta}(x^{(i)}) + \kappa \Delta(x, x^{(i)}) \}
\]
It is not hard to verify that $\tilde{L}_0(x^{(i)}) = L_0(x^{(i)})$ and $\tilde{L}_0(x^{(i)}) = L_0(x^{(i)})$ for $1 \leq i \leq n + m$, by noting that L_0 has its Lipschitz constant bounded by κ.

Actually, by Lipschitz continuity, we have $L_0(x^{(i)}) - L_0(x^{(j)}) \leq \kappa \Delta(x^{(i)}, x^{(j)})$, and thus

$$L_0(x^{(i)}) - \kappa \Delta(x^{(i)}, x^{(j)}) \leq L_0(x^{(i)})$$

Because $L_0(x^{(i)}) \geq 0$ by the assumption (i.e., it is lower bounded by zero), it can be shown that for all j

$$(L_0(x^{(i)}) - \kappa \Delta(x^{(i)}, x^{(j)}))_+ \leq L_0(x^{(i)}).$$

Hence, by the definition of $\tilde{L}_0(x)$ and taking the maximum over j on the left hand side, we have

$$\tilde{L}_0(x^{(i)}) \leq L_0(x^{(i)})$$

On the other hand, we have

$$\tilde{L}_0(x^{(i)}) \geq L_0(x^{(i)})$$

because $\tilde{L}_0(x) \geq (L_0(x^{(i)}) - \kappa \Delta(x, x^{(i)}))_+$ for any x, and it is true in particular for $x = x^{(i)}$. This shows $\tilde{L}_0(x^{(i)}) = L_0(x^{(i)})$. Likewise, we can prove that $\tilde{L}_0(x^{(i)}) = L_0(x^{(i)})$.

Similarly, one can prove $\tilde{L}_0(x^{(i)}) = L_0(x^{(i)})$. To show this, we have

$$L_0(x^{(i)}) + \kappa \Delta(x^{(i)}, x^{(j)}) \geq L_0(x^{(i)})$$

by the Lipschitz continuity of L_0. By taking the minimum over j, we have

$$\tilde{L}_0(x^{(i)}) \geq L_0(x^{(i)}).$$

On the other hand, we have $\tilde{L}_0(x^{(i)}) \leq L_0(x^{(i)})$ by the definition of $\tilde{L}_0(x^{(i)})$. Combining these two inequalities shows that $\tilde{L}_0(x^{(i)}) = L_0(x^{(i)})$.

Now we can prove for any function $L_0 \in \mathcal{F}_\kappa$, there exist \tilde{L}_0 and \tilde{L}_0 both of which attain the same value of $S_{n,m}$ as L_0, since $S_{n,m}$ only depends on the values of L_0 on the data points $\{x^{(i)}\}$. In particular, this shows that any global minimum in \mathcal{F}_κ of $S_{n,m}$ can also be attained by the corresponding functions of the form \tilde{L}_0. By setting $\tilde{L}_0 = \tilde{L}_0(x^{(i)}) = L_0(x^{(i)})$ for $i = 1, \ldots, n + m$, this completes the proof.

Finally, we prove Corollary 2 that bounds L_0 with $\tilde{L}_0(x)$ and $\tilde{L}_0(x)$ constructed above.

Proof. By the Lipschitz continuity, we have

$$L_0(x^{(i)}) - \kappa \Delta(x, x^{(i)}) \leq L_0(x)$$

Since $L_0(x) \geq 0$, it follows that

$$(L_0(x^{(i)}) - \kappa \Delta(x, x^{(i)}))_+ \leq L_0(x)$$

Taking the maximum over i on the left hand side, we obtain

$$\tilde{L}_0(x) \leq L_0(x)$$

This proves the lower bound.

Similarly, we have by Lipschitz continuity

$$L_0(x) \leq \kappa \Delta(x, x^{(i)}) + L_0(x^{(i)})$$

which, by taking the minimum over i on the left hand side, leads to

$$\tilde{L}_0(x) \leq L_0(x)$$

This shows the upper bound.

APPENDIX C

PROOF OF LEMMA 3

Proof. Suppose a pair of (f^*, g^*_{ϕ}) jointly solve the WGAN problem.

Then, on one hand, we have

$$U(f^*, g^*_{\phi}) = \int_x f^*(x)P_{data}(x)dx - \int_x f^*(x)P_{g^*_{\phi}}(x)dx \leq 0$$

(26)

where the inequality follows from $V(f^*, g^*) \geq V(f^*, g^*_{\phi})$ by replacing P_{g^*} with $P_{data}(x)$.

Consider a particular $f_w(x) \equiv \alpha(P_{data}(x) - P_{g^*_\phi}(x))_+$. Since $P_{data}(x)$ and $P_{g^*_\phi}$ are Lipschitz by assumption, when α is sufficiently small, it can be shown that $f_w(x) \in L_1$.

Substituting this f_w into $U(f_w, g^*_{\phi})$, we get

$$U(f_w, g^*_{\phi}) = \alpha \int_x (P_{data}(x) - P_{g^*_\phi}(x))^2 dx$$

Let us assume $P_{data}(x) > P_{g^*_\phi}(x)$ on a set of nonzero measure, we would have

$$U(f_w, g^*_{\phi}) \geq U(f_w, g^*_\phi) > 0$$

This leads to a contradiction with (25), so we must have

$$P_{data}(x) \leq P_{g^*_\phi}(x)$$

almost everywhere.

Hence, by Lemma 4, we prove the conclusion that

$$\int_x |P_{data}(x) - P_{g^*_\phi}(x)| dx = 0.$$

APPENDIX D

GLS-GAN: GENERALIZED LS-GAN

In proving Lemma 1 it is noted that we only have used two properties of $(a)_+$ in the objective function $S_0(\theta, \phi^*)$ training the loss function L_0: 1) $(a)_+ \geq a$ for any a; 2) $(a)_+ = a$ for $a \geq 0$. This inspires us to generalize the LS-GAN with any alternative cost function $C(\alpha)$ satisfying these two properties, and this will yield the Generalized LS-GAN (GLS-GAN).

We will show that both LS-GAN and WGAN can be seen as two extreme cases of this GLS-GAN with two properly defined cost functions.

Formally, if a cost function $C(\alpha)$ satisfies

(I) $C(a) \geq a$ for any $a \in \mathbb{R}$ and

(II) $C(a) = a$ for any $a \in \mathbb{R}_+$,

given a fixed generator G_{ϕ^\ast}, we use the following objective

$$S_C(\theta, \phi^\ast) = \frac{1}{2} \mathbb{E}_{x \sim P\text{data}(x), z \sim P_{\zeta}(x)} C(\Delta(x, G_{\phi^\ast}(z)) + L_0(x) - L_0(G_{\phi^\ast}(z)))$$

(27)

to learn $L_0(x)$, with S_C highlighting its dependency on a chosen cost function C.

For simplicity, we only involve the second term in (6) to define the generalized objective S_C. But it does not affect the conclusion as the role of the first term in (6) would vanish.
with λ being set to $+\infty$. Following the proof of Lemma 4, we can prove the following lemma.

Lemma 5. Under Assumption 1, given a Nash equilibrium (θ^*, ϕ^*) jointly minimizing $SC(\theta, \phi^*)$ and $T(\theta^*, \phi)$ with a cost function C satisfying the above conditions (i) and (ii), we have

$$\int_x |P_{data}(x) - P_G(x)| dx = 0.$$

In particular, we can choose a leaky rectified linear function for this cost function, i.e., $C_\nu(a) = \max(a, \nu a)$ with a slope ν. As long as $\nu \in (-\infty, 1]$, it is easy to verify $C_\nu(a)$ satisfies these two conditions.

Now the LS-GAN is a special case of this Generalized LS-GAN (GLS-GAN) when $\nu = 0$, as $C_0(a) = (a)_+$. We denote this equivalence as

$$\text{LS-GAN} = \text{GLS-GAN}(C_0)$$

What is more interesting is the WGAN, an independently developed GAN model with stable training performance, also becomes a special case of this GLS-GAN with $\nu = 1$. Indeed, when $\nu = 1$, $C_1(a) = a$, and

$$S_{C_1}(\theta, \phi^*) = \mathbb{E}_{x \sim P_{data}(x)} \left(\mathbb{E}_{z \sim P_G(z)} \left(\Delta(x, G_\phi^*(z)) + L_\theta(x) - L_\theta(G_\phi^*(z)) \right) \right)$$

$$= \mathbb{E}_{x \sim P_{data}(x)} L_\theta(x) - \mathbb{E}_{z \sim P_G(z)} L_\theta(G_\phi^*(z))$$

Since the last term $\mathbb{E}_{x \sim P_{data}(x), z \sim P_G(z)} \Delta(x, G_\phi^*(z))$ is a constant, irrespective of L_θ, it can be discarded without affecting optimization over L_θ. Thus, we have

$$S_{C_1}(\theta, \phi^*) = \mathbb{E}_{x \sim P_{data}(x)} L_\theta(x)$$

By comparing this S_{C_1} with U in (12), it is not hard to see that the WGAN is equivalent to the GLS-GAN with C_1, with the critic function \hat{f}_w being equivalent to $-L_\theta$. Thus we have

$$\text{WGAN} = \text{GLS-GAN}(C_1)$$

Therefore, by varying the slope ν in $(-\infty, 1]$, we will be able to obtain a family of the GLS-GANs with varied C_ν beyond the LS-GAN and the WGAN. In the future work, we will study their theoretical properties as well as conduct empirical experiments to test the performances of the GLS-GAN versus different ν.

Of course, it is unnecessary to limit $C(a)$ to a leaky rectified linear function, and we will explore more cost functions in future.

APPENDIX E

PROOF OF THEOREM 3

For simplicity, throughout this section, we disregard the first loss minimization term in $S(\theta, \phi^*)$ and $S_m(\theta, \phi^*)$, since the role of the first term would vanish as λ goes to $+\infty$. However, even if it is involved, the following proof still holds with only some minor changes.

To prove Theorem 3, we need the following lemma.

Lemma 6. For all loss functions L_θ, with the probability of $1 - \eta$, we have

$$|S_m(\theta, \phi^*) - S(\theta, \phi^*)| \leq \varepsilon$$

when the number of samples

$$m \geq \frac{\text{CNP}^2(\kappa + 1)^2 \log(\kappa L/\eta \varepsilon)}{\varepsilon^2}$$

with a sufficiently large constant C.

The proof of this lemma needs to apply the McDiarmid’s inequality and the fact that $(\cdot)_+$ is an 1-Lipschitz to bound the difference $|S_m(\theta, \phi^*) - S(\theta, \phi^*)|$ for a loss function. Then, to get the union bound over all loss functions, a standard ε-net will be constructed to yield finite points that are dense enough to cover the parameter space of the loss functions. The proof details are given below.

Proof. For a loss function L_θ, we compute $S_m(\theta, \phi^*)$ over a set of m samples $\{(x_i, z_{G_1})| 1 \leq i \leq m\}$ drawn from P_{data} and P_G, respectively.

To apply the McDiarmid’s inequality, we need to bound the change of this function when a sample is changed. Denote by $S_m^{ij}(\theta, \phi^*)$ when the jth sample is replaced with x_i' and z_{G_1}'. Then we have

$$|S_m(\theta, \phi^*) - S_m^{ij}(\theta, \phi^*)|$$

$$= \frac{1}{m} \left| \Delta(x_i, z_{G_1}) + \Delta(x_i, z_{G_1}' \theta) - \Delta(x_i', z_{G_1}' \theta) \right|$$

$$\leq \frac{1}{m} \left(|\Delta(x_i, z_{G_1})| - |\Delta(x_i', z_{G_1}')| \right) + \frac{1}{m} |\Delta(x_i, z_{G_1})| - \Delta(x_i', z_{G_1}')|$$

$$\leq \frac{1}{m} \left(|\Delta(x_i, z_{G_1})| - |\Delta(x_i', z_{G_1}')| \right)$$

$$\leq \frac{1}{m} \left(\kappa \Delta(x_i, z_{G_1}) - \Delta(x_i', z_{G_1}') \right)$$

$$\leq \frac{1}{m} \left(2B_\Delta + \kappa \Delta(x_i, z_{G_1}) - \Delta(x_i', z_{G_1}') \right)$$

$$\leq \frac{1}{m} \left((1 + \kappa)B_\Delta \right)$$

where the first inequality uses the fact that $(\cdot)_+$ is 1-Lipschitz, the second inequality follows from that $\Delta(x, z_G)$ is bounded by B_Δ and $L_\theta(x)$ is κ-Lipschitz in x.

Now we can apply the McDiarmid’s inequality. Noting that

$$S(\theta, \phi^*) = \mathbb{E}_{x_i \sim P_{data}} S_m(\theta, \phi^*)$$

we have

$$P(|S_m(\theta, \phi^*) - S(\theta, \phi^*)| \geq \varepsilon/2) \leq 2 \exp\left(-\frac{\varepsilon^2 m}{8(1 + \kappa)^2 B_\Delta^2}\right)$$

The above bound applies to a single loss function L_θ. To get the union bound, we consider a $\varepsilon/8\kappa L$.-net \mathcal{N}, i.e., for any L_θ, there is a $\theta' \in \mathcal{N}$ in this net so that $\|\theta - \theta'\| \leq \varepsilon/8\kappa L$. This standard net can be constructed to contain finite loss functions such that $|\mathcal{N}| \leq O(N \log(\kappa L N/\varepsilon))$, where N is the number of parameters in a loss function.
Therefore, we have the following union bound for all \(\theta \in \mathcal{N} \) that, with probability \(1 - \eta \),
\[
|S_m(\theta, \phi^*) - S(\theta, \phi^*)| \leq \frac{\varepsilon}{2}
\]
when \(m \geq \frac{CNB^2 \kappa \log(\kappa LN/\eta \varepsilon)}{\varepsilon^2} \).

The last step is to obtain the union bound for all loss functions beyond \(\mathcal{N} \). To show that, we consider the following inequality
\[
|S(\theta, \phi^*) - S'(\theta', \phi^*)| = \left| \mathbb{E}_{x \sim \text{data}} \left(\Delta(x, z_G) + L_{\theta}(x) - L_{\theta'}(z_G) \right) \right| + \left| \mathbb{E}_{z \sim \mathcal{P}_G} \left(\Delta(x, z_G) + L_{\theta}(x) - L_{\theta'}(z_G) \right) \right|
\]
\[
\leq \mathbb{E}_{x \sim \text{data}} |L_{\theta}(x) - L_{\theta'}(x)| + \mathbb{E}_{z \sim \mathcal{P}_G} |L_{\theta}(z_G) - L_{\theta'}(z_G)|
\]
\[
\leq 2\kappa L \|\theta - \theta'\|
\]
where the first inequality uses that fact that \(\cdot \) is 1-Lipschitz again, and the second inequality follows from that \(L_{\theta} \) is \(\kappa L \)-Lipschitz in \(\theta \). Similarly, we can also show that
\[
|S_m(\theta, \phi^*) - S_m'(\theta', \phi^*)| \leq 2\kappa L \|\theta - \theta'\|
\]
Now we can derive the union bound over all loss functions. For any \(\theta \), by construction we can find a \(\theta' \in \mathcal{N} \) such that \(\|\theta - \theta'\| \leq \varepsilon/8\kappa L \). Then, with probability \(1 - \eta \), we have
\[
|S_m(\theta, \phi^*) - S(\theta, \phi^*)| \leq |S_m(\theta, \phi^*) - S_m(\theta', \phi^*)|
\]
\[
+ |S_m(\theta', \phi^*) - S(\theta', \phi^*)| + |S(\theta', \phi^*) - S(\theta, \phi^*)|
\]
\[
\leq 2\kappa L \|\theta - \theta'\| + \frac{\varepsilon}{2} + 2\kappa L \|\theta - \theta'\|
\]
\[
\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} = \varepsilon
\]
This proves the lemma.

Now we can prove Theorem 3.

Proof. First let us bound \(S_m - S \). Consider \(L_{\theta'} \) that minimizes \(S(\theta, \phi^*) \). Then with probability \(1 - \eta \), when \(m \geq \frac{CNB^2 \kappa \log(\kappa LN/\eta \varepsilon)}{\varepsilon^2} \), we have
\[
S_m - S \leq S_m(\theta^*, \phi^*) - S(\theta^*, \phi^*) \leq \varepsilon
\]
where the first inequality follows from the inequality \(S_m \leq S_m(\theta^*, \phi^*) \) as \(\theta^* \) may not minimize \(S_m \), and the second inequality is a direct application of the above lemma. Similarly, we can prove the other direction. With probability \(1 - \eta \), we have
\[
S - S_m \geq S(\theta^*, \phi^*) - S_m(\theta^*, \phi^*) \geq \varepsilon
\]

