Spectral properties of general hypergraphs

Changjiang Bua, Jiang Zhoua, Lizhu Sunb

aCollege of Science, Harbin Engineering University, Harbin 150001, PR China
bSchool of Science, Harbin Institute of Technology, Harbin 150001, PR China

Abstract

In this paper, we investigate spectral properties of the adjacency tensor, Laplacian tensor and signless Laplacian tensor of general hypergraphs (including uniform and non-uniform hypergraphs). We obtain some bounds for the spectral radius of general hypergraphs in terms of vertex degrees, and give spectral characterizations of odd-bipartite hypergraphs.

Keywords: Adjacency tensor, Laplacian tensor, hypergraph, Spectrum

AMS classification: 05C65, 05C50, 15A69, 15A18

1. Introduction

Let $V(H)$ and $E(H)$ denote the vertex set and the edge set of a hypergraph H, respectively. A hypergraph G satisfying $V(G) \subseteq V(H), E(G) \subseteq E(H)$ is called a sub-hypergraph of H. If G is a sub-hypergraph of H and $G \neq H$, then G is said to be a proper sub-hypergraph of H. The degree of a vertex i of H is defined as $d_i = |E_i|$, where E_i denotes the set of edges containing i. The rank and co-rank of H is the maximum and minimum cardinality of an edge in H, respectively \cite{1}. Let $r(H)$ and $cr(H)$ denote the rank and co-rank of H, respectively. If $r(H) = cr(H) = k$, then H is called k-uniform. 2-uniform hypergraphs are ordinary graphs. A path of length l in a hypergraph H is defined to be an alternating sequence $u_1e_1u_2 \cdots u_le_1u_{l+1}$, where u_1, \ldots, u_{l+1} are distinct vertices of H, e_1, \ldots, e_l are distinct edges of H and $u_i, u_{i+1} \in e_i$ for $i = 1, \ldots, l$. If there exists a path between any two vertices of G, then G is called connected.

Hypergraphs and tensors are generalizations of graphs and matrices, and there is a natural one-to-one correspondence between uniform hypergraphs

Email address: buchangjiang@hrbeu.edu.cn (Changjiang Bu)
and tensors. In 2005, the concept of eigenvalues of tensors was posed by Qi [11] and Lim [8], independently. Due to the developments of spectral theory of tensors, there have been many attempts to extend spectral graph theory to hypergraphs via tensors. We first introduce some concepts and notations on tensor eigenvalues.

An order m dimension n tensor $A = (a_{i_1i_2...i_m})$ is a multidimensional array with n^m entries ($i_j \in \{1, \ldots, n\}, j = 1, \ldots, m$). A is called symmetric if $a_{i_1i_2...i_k} = a_{i_{\sigma(1)}i_{\sigma(2)}...i_{\sigma(k)}}$ for any permutation σ on $\{1, \ldots, k\}$. For $A = (a_{i_1i_2...i_m}) \in \mathbb{C}^{n \times n \times \cdots \times n}$ and $x = (x_1, \ldots, x_n)^T \in \mathbb{C}^n$, Ax^{m-1} is a vector in \mathbb{C}^n whose i-th component is

$$ (Ax^{m-1})_i = \sum_{i_2,...,i_m=1}^n a_{i_1i_2...i_m}x_{i_2} \cdots x_{i_m}. $$

A number $\lambda \in \mathbb{C}$ is called an eigenvalue of A, if there exists a nonzero vector $x \in \mathbb{C}^n$ such that $Ax^{m-1} = \lambda x^{m-1}$, where $x^{m-1} = (x_1^{m-1}, \ldots, x_n^{m-1})^T$. In this case, x is an eigenvector of A associated with λ. If λ is a real eigenvalue with a real eigenvector, then λ is called an H-eigenvalue of A. An H-eigenvalue with positive eigenvector is called an H^{++}-eigenvalue. Let $\lambda(A)$ denote the largest H-eigenvalue of A. The spectral radius of A is defined as $\rho(A) = \max\{|\lambda| : \lambda \in \sigma(A)\}$, where $\sigma(A)$ is the set of all eigenvalues of A.

In 2012, Cooper and Dutle [3] investigated spectral properties of uniform hypergraphs via adjacency tensor. The adjacency tensor of a k-uniform hypergraph H with n vertices, denoted by A_H, is an order k dimension n symmetric tensor with entries

$$ a_{i_1i_2...i_k} = \begin{cases} \frac{1}{(k-1)!}, & \{i_1, \ldots, i_k\} \in E(G), \\ 0, & \text{otherwise.} \end{cases} $$

In 2014, Qi [12] defined the Laplacian tensor and signless Laplacian tensor of H as $L_H = D_H - A_H$ and $Q_H = D_H - A_H$, respectively, where D_H is the diagonal tensor of vertex degrees of H. Recently, the research on spectral properties of A_H, L_H and Q_H has attracted extensive attention [3,4,6,9,12-16].

In many literatures on spectral hypergraph theory, only uniform hypergraphs are considered. There are few work on spectral properties of non-uniform hypergraphs. In order to investigate spectra of non-uniform hypergraphs, we first extend the concept of the adjacency tensor, Laplacian
tensor and signless Laplacian tensor from uniform hypergraphs to general hypergraphs as follows.

Definition 1.1. The adjacency tensor of a hypergraph \(H \) with \(r(\mathcal{H}) = k \), denoted by \(\mathcal{A}_H \), is an order \(k \) dimension \(|V(\mathcal{H})| \) symmetric tensor with entries

\[
a_{i_1i_2\ldots i_k} = \begin{cases} \frac{1}{(k-1)!} & \{i_1, \ldots, i_k\} \in E(\mathcal{H}), \\ \frac{1}{(k-s+1)!} & \{i_1, \ldots, i_k\} = \{j_1^{(k-s+1)}, j_2, \ldots, j_s\}, \{j_1, \ldots, j_s\} \in E(\mathcal{H}), \\ 0 & \text{otherwise}, \end{cases}
\]

where \(s < k \) and \(j_1^{(k-s+1)} \) means that the multiplicity of \(j_1 \) is \(k-s+1 \). Let \(\mathcal{D}_H \) denote the order \(k \) dimension \(|V(\mathcal{H})| \) diagonal tensor whose diagonal entries are vertex degrees of \(\mathcal{H} \). The tensors \(\mathcal{L}_H = \mathcal{D}_H - \mathcal{A}_H \) and \(\mathcal{Q}_H = \mathcal{D}_H + \mathcal{A}_H \) are the Laplacian tensor and the signless Laplacian tensor of \(\mathcal{H} \), respectively.

The following is an example for the tensor representations of a non-uniform hypergraph.

Example. Let \(H \) be a hypergraph whose vertex set and edge set are \(V(\mathcal{H}) = \{1, 2, 3, 4, 5\} \) and \(E(\mathcal{H}) = \{1234, 45\} \), respectively. Then \(r(\mathcal{H}) = 4 \) and \(\text{cr}(\mathcal{H}) = 2 \). By Definition 1.1, \(\mathcal{A}_H = (a_{i_1i_2i_3i_4}) \) is a symmetric tensor of dimension 5, where \(a_{i_1i_2i_3i_4} = \frac{1}{3!} = \frac{1}{6} \) if \(\{i_1, i_2, i_3, i_4\} = \{1, 2, 3, 4\} \), \(a_{i_1i_2i_3i_4} = \frac{3!}{4!} = \frac{3}{4} \) if \(\{i_1, i_2, i_3, i_4\} \in \{\{4, 4, 4, 5\}, \{4, 5, 5, 5\}\} \), and \(a_{i_1i_2i_3i_4} = 0 \) otherwise.

In this paper, we investigate spectral properties of the adjacency tensor, Laplacian tensor and signless Laplacian tensor of general hypergraphs. We obtain some bounds for the spectral radius of general hypergraphs in terms of vertex degrees, and give spectral characterizations of odd-bipartite hypergraphs.

2. Preliminaries

For a tensor \(\mathcal{A} = (a_{i_1\ldots i_m}) \in \mathbb{C}^{n\times \ldots \times n} \), we associate with \(\mathcal{A} \) a digraph \(\Gamma_\mathcal{A} \) as follows. The vertex set of \(\Gamma_\mathcal{A} \) is \(V(\mathcal{A}) = \{1, \ldots, n\} \), the arc set of \(\Gamma_\mathcal{A} \) is \(E(\mathcal{A}) = \{(i, j)|a_{i_1\ldots i_m} \neq 0, j \in \{i_2, \ldots, i_m\} \neq \{i, \ldots, i\}\} \). \(\mathcal{A} \) is said to be weakly irreducible if \(\Gamma_\mathcal{A} \) is strongly connected \([2, 10]\). We can get the following lemma from Definition 1.1.

Lemma 2.1. For any hypergraph \(\mathcal{H} \), the following are equivalent:

1. \(\mathcal{H} \) is connected.
(2) A_H is weakly irreducible.
(3) L_H is weakly irreducible.
(4) Q_H is weakly irreducible.

A tensor A is said to be nonnegative if all entries of A are nonnegative.

Lemma 2.2. [12] Let A be a weakly irreducible nonnegative tensors of dimension n. Then $\rho(A) = \lambda(A) > 0$ is the unique H^+-eigenvalue of A.

Lemma 2.3. [7] Let A be a symmetric nonnegative tensors of order k and dimension n. Then $\rho(A) = \lambda(A) = \max \left\{ x^T (A x^{k-1}) | x \in \mathbb{R}^n_+, \sum_{i=1}^n x_i^k = 1 \right\}$.

Furthermore, $x \in \mathbb{R}^n_+$ with $\sum_{i=1}^n x_i^k = 1$ is an eigenvector of A corresponding to $\rho(A) = \lambda(A)$ if and only if $\rho(A) = \lambda(A) = x^T (A x^{k-1})$.

For two nonnegative tensors $A = (a_{i_1i_2...i_m})$ and $B = (b_{i_1i_2...i_m})$ of dimension n, $B \leq A$ means that $b_{i_1i_2...i_m} \leq a_{i_1i_2...i_m}$ for all $i_1, i_2, \ldots, i_m \in \{1, \ldots, n\}$.

Lemma 2.4. [5] Let A and B be two nonnegative tensors of order m and dimension n, and A is weakly irreducible. If $B \leq A$ and $B \neq A$, then $\rho(B) < \rho(A)$.

For $A = (a_{i_1...i_m}) \in \mathbb{C}^{n^m}$, the principal subtensor of A with respect to $\alpha \subseteq \{1, \ldots, n\}$ is defined as $A[\alpha] = (a_{i_1...i_m}) \in \mathbb{C}^{(|\alpha|^n \times |\alpha|^n)}$, where $i_1, \ldots, i_m \in \alpha$. If $|\alpha| < n$, then $A[\alpha]$ is called the proper principal subtensor of A.

Lemma 2.5. [5] Let A be a weakly irreducible nonnegative tensors of dimension n. If $A[\alpha]$ is a proper principal subtensor of A, then $\rho(A[\alpha]) < \rho(A)$.

In [13], Shao defined the following product of tensors, which is a generalization of the matrix multiplication.

Definition 2.6. [13] Let A and B be order $m \geq 2$ and order $k \geq 1$, dimension n tensors, respectively. The product AB is the following tensor C of order $(m-1)(k-1) + 1$ and dimension n with entries

$$c_{i\alpha_1...\alpha_m-1} = \sum_{i, i_2,..., i_m \in [n]} a_{i_1i_2...i_m} b_{i_2\alpha_1...i_m\alpha_{m-1}},$$

where $i \in \{1, \ldots, n\}, \alpha_1, \ldots, \alpha_{m-1} \in \{1, \ldots, n\}$.
Lemma 2.7. \[\text{Let } A = (a_{i_1 \cdots i_k}) \text{ be an order } k \geq 2 \text{ dimension } n \text{ tensor, and let } P = (p_{ij}), Q = (q_{ij}) \text{ be } n \times n \text{ matrices. Then} \\
(PAQ)_{i_1 \cdots i_k} = \sum_{j_1, \ldots, j_k \in [n]} a_{j_1 \cdots j_k} p_{i_1 j_1} q_{j_2 i_2} \cdots q_{j_k i_k}. \]

By Theorems 2.3 and 2.5 in [13], we have the following lemma.

Lemma 2.8. \text{Let } A \text{ and } B \text{ be two order } m \text{ dimension } n \text{ tensors. If there exists nonsingular diagonal real matrix } D \text{ such that } B = D^{-(m-1)} AD, \text{ then } A \text{ and } B \text{ have the same spectrum and } H\text{-spectrum.} \]

3. Main results

Let \(H \) be a hypergraph with \(n \) vertices and \(r(H) = k \). For \(x \in \mathbb{C}^n \) and a vertex subset \(\alpha \) of \(H \), let \(x^\alpha = \prod_{i \in \alpha} x_i \). By Definition 1.1, we have

\[
(A_H x^{k-1})_i = \sum_{i_2, \ldots, i_k=1}^n a_{i_1 i_2 \cdots i_k} x_{i_2} \cdots x_{i_k} = \frac{1}{k} \sum_{e \in E_i} [(k - |e|) x_{e \setminus \{i\}} x_i^{k-|e|} + x^e \sum_{j \in e} x_j^{k-|e|}], \quad i = 1, \ldots, n,
\]

\[
x_i (A_H x^{k-1})_i = \frac{1}{k} \sum_{e \in E_i} [(k - |e|) x_{e} x_i^{k-|e|} + x^e \sum_{j \in e} x_j^{k-|e|}], \quad i = 1, \ldots, n,
\]

\[
A_H x^k = x^T (A x^{k-1}) = \sum_{i_1, \ldots, i_k=1}^n a_{i_1 i_2 \cdots i_k} x_{i_1} \cdots x_{i_k} = \sum_{e \in E(H)} x^e \sum_{j \in e} x_j^{k-|e|}.
\]

Moreover, if \(H \) is \(k \)-uniform, then

\[
x^T (A x^{k-1}) = k \sum_{e \in E(H)} x^e, \quad (A_H x^{k-1})_i = \sum_{e \in E\setminus\{i\}} x^e, \quad x_i (A_H x^{k-1})_i = \sum_{e \in E_i} x^e
\]

for \(i = 1, \ldots, n. \)

From the above equalities, we obtain the following result.
Proposition 3.1. Let H be a hypergraph with n vertices and $r(H) = k$. If λ is an eigenvalue of H with an eigenvector x, then

$$\lambda x_i^{k-1} = \frac{1}{k} \sum_{e \in E_i} [(k - |e|)x^{e \setminus \{i\}}_i x^{k-|e|}_j + x^{e \setminus \{i\}}_j \sum_{j \in e} x^{k-|e|}_j], \ i = 1, \ldots, n,$$

$$\lambda x_i^k = \frac{1}{k} \sum_{e \in E_i} [(k - |e|)x^e x^{k-|e|}_i + x^e \sum_{j \in e} x^{k-|e|}_j], \ i = 1, \ldots, n,$$

$$\lambda \sum_{i=1}^{n} x_i^k = \sum_{e \in E(H)} x^e \sum_{j \in e} x^{k-|e|}_j.$$

Moreover, if H is k-uniform, then

$$\lambda \sum_{i=1}^{n} x_i^k = k \sum_{e \in E(H)} x^e, \ \lambda x_i^{k-1} = \sum_{e \in E_i} x^{e \setminus \{i\}}, \ \lambda x_i^k = \sum_{e \in E_i} x^e, \ i = 1, \ldots, n.$$

Theorem 3.2. Let H be a connected hypergraph. Then the following hold:
(1) $\rho(A_H) = \lambda(A_H) > 0$ is the unique H^{++}-eigenvalue of A_H.
(2) $\rho(Q_H) = \lambda(Q_H) > 0$ is the unique H^{++}-eigenvalue of Q_H.
(3) If G is a proper sub-hypergraph of H with $r(G) = r(H)$, then

$$\rho(A_G) < \rho(A_H), \ \rho(Q_G) < \rho(Q_H).$$

Proof. Since H is connected, by Lemma 2.1, A_H and Q_H are weakly irreducible. By Lemma 2.2, we know that (1) and (2) hold.

Since G is a proper sub-hypergraph of H with $r(G) = r(H)$, one of the following cases holds:

(a) $A_G \leq A_H, Q_G \leq Q_H$ and $A_G \neq A_H, Q_G \neq Q_H$.

(b) A_G and Q_G are proper principal subdents of A_H and Q_H, respectively.

Since A_H is weakly irreducible, by Lemmas 2.4 and 2.5, we know that (3) holds.

Theorem 3.3. Let H be a hypergraph with average degree \bar{d}. Then $\rho(A_H) \geq \bar{d}$, with equality if and only if H is regular.

Proof. Let $x = (\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}})^T$, where $k = r(H), n = |V(H)|$. By Lemma 2.3, we have

$$\rho(A_H) \geq x^T (A_H x^{k-1}) = \sum_{e \in E(H)} x^e \sum_{j \in e} x^{k-|e|}_j = \frac{1}{n} \sum_{e \in E(H)} |e| = \bar{d},$$
with equality if and only if $A_H x^{k-1} = \rho(A_H) x^{k-1}$, i.e., H is regular. \hfill \Box

Theorem 3.4. Let H be a connected hypergraph with maximum degree Δ. Then $\rho(A_H) \leq \Delta$, with equality if and only if H is regular.

Proof. Let $x = (x_1, \ldots, x_n)^T$ be the positive eigenvector corresponding to $\rho(H)$, and let $x_i = \max_{1 \leq j \leq n} x_j$. By Proposition 3.1 we have

$$\rho(A_H) x_i^k = \frac{1}{k} \sum_{e \in E_i} [(k - |e|) x_i^e x_i^{k-|e|} + x_i^e \sum_{j \in e} x_i^{k-|e|}] \leq d_i x_i^k,$$

with equality if and only if $x_j = x_i$ for any $j \in e \in E_i$. Since H is connected, we have $\rho(A_H) \leq \Delta$, with equality if and only if H is regular. \hfill \Box

Theorem 3.5. Let H be a connected hypergraph with $r(H) = k$. Then

$$\rho(A_H) \leq \max \left\{ \sqrt[k]{d_{i_1}^{k-s+1} d_{i_2} \cdots d_{i_s}} \mid \{i_1, \ldots, i_s\} \in E(H), d_{i_1} \geq \cdots \geq d_{i_s} \right\}.$$

Proof. Let x be the positive eigenvector corresponding to $\rho(A_H)$. Suppose that $x_{i_1} \cdots x_{i_k} = \max_{(A_H)_{j_1 \cdots j_k} \neq 0} x_{j_1} \cdots x_{j_k}$. By Proposition 3.1 we have

$$\rho(A_H) x_{i_j}^k = \frac{1}{k} \sum_{e \in E_{i_j}} [(k - |e|) x_{i_j}^e x_{i_j}^{k-|e|} + x_{i_j}^e \sum_{l \in e} x_{i_j}^{k-|e|}] \leq d_{i_j} x_{i_1} \cdots x_{i_k}$$

for all $j = 1, \ldots, k$. Then

$$\rho(A_H)^k \prod_{j=1}^k x_{i_j}^k \leq d_{i_1} \cdots d_{i_k} (x_{i_1} \cdots x_{i_k})^k,$$

$$\rho(A_H) \leq \sqrt[k]{d_{i_1} \cdots d_{i_k}}.$$

By Definition 1.1 we have

$$\rho(A_H) \leq \max \left\{ \sqrt[k]{d_{i_1}^{k-s+1} d_{i_2} \cdots d_{i_s}} \mid \{i_1, \ldots, i_s\} \in E(H), d_{i_1} \geq \cdots \geq d_{i_s} \right\}.$$

We can obtain the following result from the above Theorem.
Corollary 3.6. Let H be a connected k-uniform hypergraph. Then
\[
\rho(A_H) \leq \max_{\{i_1, \ldots, i_k\} \in E(H)} \sqrt{d_{i_1}d_{i_2} \cdots d_{i_k}}.
\]

Remark. In [15], Yuan et al. proved that
\[
\rho(A_H) \leq \max_{e \in E(H)} \max_{\{i, j\} \subseteq e} \sqrt{d_i d_j}.
\]
Corollary 3.6 is a refinement of this upper bound.

A hypergraph H is called odd-bipartite, if its vertex set has a partition $V(H) = V_1 \cup V_2$ such that each edge of H contains odd number of vertices in V_1 and odd number of vertices in V_2. Spectral characterizations of odd-bipartite uniform hypergraphs are given in [4, 14]. We extend these work to general odd-bipartite hypergraphs as follows.

Theorem 3.7. Let G be a connected hypergraph. Then the following are equivalent:

1. G is odd-bipartite.
2. A_G and $-A_G$ have the same spectrum and H-spectrum.
3. $-\rho(A_G)$ is an H-eigenvalue of A_G.

Proof. (1)\Rightarrow(2). If G is odd-bipartite, then by Lemma 2.7, there exists a diagonal matrix P with diagonal entries ± 1 such that $A_G = -P^{-(k-1)}A_GP$, where $k = r(G)$. By Lemma 2.8, we know that A_G and $-A_G$ have the same spectrum and H-spectrum.

(2)\Rightarrow(3). If A_G and $-A_G$ have the same H-spectrum, then $-\rho(A_G)$ is an H-eigenvalue of A_G.

(3)\Rightarrow(1). By Lemma 1.2 in [14], there exits real diagonal matrix $P = \text{diag}(x_1, \ldots, x_n)$ such that $A_G = -P^{-(k-1)}A_GP$ and $|x_1| = \cdots |x_n| = 1$. By Lemma 2.7, we have
\[
(A_G)_{i_1i_2\cdots i_k} = -(A_G)_{i_1i_2\cdots i_k}x_{i_1}^{-(k-1)}x_{i_2}x_{i_3} \cdots x_{i_k}.
\]
For any $(A_G)_{i_1i_2\cdots i_k} \neq 0$, we have
\[
x_{i_1}x_{i_2} \cdots x_{i_k} = x_{i_1}^k = \cdots = x_{i_k}^k.
\]
If k is odd, then $x_{i_1} = \cdots = x_{i_k}$, a contradiction to $x_{i_1}x_{i_2} \cdots x_{i_k} = -x_{i_1}^k$. So k is even and $x_{i_1}x_{i_2} \cdots x_{i_k} = -1$ for any $(A_G)_{i_1i_2\cdots i_k} \neq 0$. Let $V_1 = \{u | u \in V(G), x_u = -1\}$. By Definition 1.1, we know that each edge e of G contains odd number of vertices in V_1 and $|e|$ is even. Hence G is odd-bipartite. \qed
Theorem 3.8. Let G be a connected hypergraph. Then the following are equivalent:

(1) G is odd-bipartite.

(2) L_G and Q_G have the same spectrum and H-spectrum.

(3) 0 is an H-eigenvalue of Q_G.

Proof. (1)\Rightarrow(2). If G is odd-bipartite, then by Lemma 2.7, there exists a diagonal matrix P with diagonal entries ± 1 such that $L_G = P^{-(k-1)}Q_GP$, where $k = r(G)$. By Lemma 2.8, we know that L_G and Q_G have the same spectrum and H-spectrum.

(2)\Rightarrow(3). Let $x = (1, \ldots, 1)^T$. Since $L_G x^{k-1} = 0$, 0 is always an H-eigenvalue of L_G. If L_G and Q_G have the same H-spectrum, then 0 is an H-eigenvalue of Q_G.

(3)\Rightarrow(1). Let $x = (x_1, \ldots, x_n)^T$ be a real eigenvector of Q_G corresponding to the H-eigenvalue 0. Then

$$\frac{1}{k} \sum_{e \in E} [(k - |e|)x^{k-|e|}_e + x^{e\{i\}} \sum_{j \in e} x^{k-|e|}_j] = -d_i x^{k-1}_i, \quad i = 1, \ldots, n.$$

Let $|x_j| = \max_{1 \leq i \leq n} |x_i|$. Then

$$-d_i x^k_j = \frac{1}{k} \sum_{e \in E_j} [(k - |e|)x^{k-|e|}_e + x^{e\{i\}} \sum_{i \in e} x^{k-|e|}_i],$$

$$d_i |x^k_j| \leq \frac{1}{k} \sum_{e \in E_j} [(k - |e|)|x^k_j| + |e||x^k_j|] = d_i |x^k_j|.$$

Hence $x^e x^{k-|e|}_i = -x^k_i$ for any $i \in e$ and any $e \in E(G)$. If k is odd, then $x_1 = \cdots = x_n$, a contradiction to $x^e x^{k-|e|}_i = -x^k_i$. So k is even and $x^e x^{k-|e|}_i = -|x^e_j|$ for any $i \in e$ and any $e \in E(G)$. Let $V_1 = \{u \mid u \in V(G), x_u = -|x_j|\}$, then each edge e of G contains odd number of vertices in V_1 and $|e|$ is even. Hence G is odd-bipartite.

Acknowledgements.

This work is supported by the National Natural Science Foundation of China (No. 11371109), the Natural Science Foundation of the Heilongjiang Province (No. QC2014C001) and the Fundamental Research Funds for the Central Universities.

References
References

[1] A. Bretto, Hypergraph Theory: An Introduction, Springer, Berlin, 2013.

[2] C. Bu, Y.P. Wei, L. Sun, J. Zhou, Brualdi-type eigenvalue inclusion sets of tensors, Linear Algebra Appl. 480 (2015) 168-175.

[3] J. Cooper, A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl. 436 (2012) 3268-3292.

[4] S. Hu, L. Qi, The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph, Discrete Appl. Math. 169 (2014) 140-151.

[5] M. Kannan, N. Shaked-Monderer, A. Berman, On weakly irreducible nonnegative tensors and interval hull of some classes of tensors, Linear and Multilinear Algebra 64 (2016) 667-679.

[6] M. Khan, Y.Z. Fan, Y.Y. Tan, The H-spectra of a class of generalized power hypergraphs, Discrete Math. 339 (2016) 1682-1689.

[7] H. Li, J.Y. Shao, L. Qi, The extremal spectral radii of k-uniform supertrees, J. Comb. Optim., DOI:10.1007/s10878-015-9896-4.

[8] L.H. Lim, Singular values and eigenvalues of tensors: a variational approach, in: Proceedings of the IEEE International Workshop on Computational Advances in Multisensor Adaptive Processing (2005), 129-132.

[9] H. Lin, B. Mo, B. Zhou, W. Weng, Sharp bounds for ordinary and signless Laplacian spectral radii of uniform hypergraphs, Appl. Math. Comput. 285 (2016) 217-227.

[10] K. Pearson, T. Zhang, On spectral hypergraph theory of the adjacency tensor, Graphs Combin. 30 (2014) 1233-1248.

[11] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005) 1302-1324.

[12] L. Qi, H^+-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sci. 12 (2014) 1045-1064.
[13] J.Y. Shao, A general product of tensors with applications, Linear Algebra Appl. 439 (2013) 2350-2366.

[14] J.Y. Shao, H.Y. Shan, B. Wu, Some spectral properties and characterizations of connected odd-bipartite uniform hypergraphs, Linear and Multilinear Algebra 63 (2015) 2359-2372.

[15] X. Yuan, M. Zhang, M. Lu, Some upper bounds on the eigenvalues of uniform hypergraphs, Linear Algebra Appl. 484 (2015) 540-549.

[16] J. Zhou, L. Sun, W. Wang, C. Bu, Some spectral properties of uniform hypergraphs, Electron. J. Combin. 21 (2014) P4.24.