The Construction of the BESIII Experiment

Yi-Fang Wang

Institute of high energy physics, Beijing, 100049, P.R. China
gfwang@mail.ihep.ac.cn

1. Introduction

The BESIII detector is designed for the high luminosity e^+e^- collider, BEPCII, running at the tau-charm energy region. Its design and current status of construction is presented.

Keywords: BESIII, charm, tau, detector.

PACS numbers: 11.25.Hf, 123.1K

In order to achieve its physics goal and fully utilize the potential of the accelerator, the BESIII detector is designed to consist of a drift chamber in a small cell structure filled with a helium-based gas, an electromagnetic calorimeter made of CsI(Tl) crystals, time-of flight counters for particle...
identification made of plastic scintillators, a muon system made of Resistive Plate Chambers (RPC), and a super-conducting magnet providing a field of 1T. In the following, all the sub-detectors will be described together with results of their performance tests.

Table 1. \(\tau \)-Charm productions at BEPC-II in one year’s running \((10^7 s)\).

Data Sample	Central-of-Mass energy (MeV)	Luminosity \((10^{33} \text{cm}^{-2}\text{s}^{-1})\)	#Events per year
\(J/\psi \)	3097	0.6	\(10 \times 10^9 \)
\(\tau^+ \tau^- \)	3670	1.0	\(12 \times 10^6 \)
\(\psi(2S) \)	3686	1.0	\(3.0 \times 10^9 \)
\(D^+ T^- \)	3770	1.0	\(18 \times 10^6 \)
\(D^+ D^- \)	3770	1.0	\(14 \times 10^6 \)
\(D_S^+ D_S^- \)	4030	0.6	\(1.0 \times 10^6 \)
\(D_S^+ S \)	4170	0.6	\(2.0 \times 10^6 \)

2. Drift Chamber

The drift chamber has a cylindrical shape with two chambers jointed at the end flange: an inner chamber without outer wall and an outer chamber without inner wall. There are a total of 6 stepped end flanges made of 18 mm Al plates, as shown in left plot of Fig. 2 in order to give space for the focusing magnets. The inner radius of the chamber is 63 mm and the outer radius is 810 mm, with a length of 2400 mm. Both the inner and outer cylinder of the chamber are made of carbon fiber with a thickness of 1 mm and 10 mm respectively. A total of 7000 gold-plated tungsten wires (3% Rhenium) with a diameter of 25 \(\mu \text{m} \) are arranged in 43 layers,
together with a total of 22000 gold-plated Al wires for field shaping. The small drift cell structure of the inner chamber has a dimension of $6 \times 6\text{mm}^2$ and the outer chamber of $8 \times 8\text{mm}^2$, filled with a gas mixture of 60% helium and 40% propane. The designed single wire spatial resolution and dE/dX resolution are 130 μm and 6%, respectively.

The mechanical structure of the drift chamber, including the ultra-high precision (20 μm) drilling of a total of 30000 holes, and the high precision (50 μm) assembly of 6 cylinders have been completed successfully. The right plot in Fig. 2 shows the mechanical structure during the assembly. The mass production of the feedthrough are completed and carefully tested one by one. A total of 30000 wiring are completed with a very high quality, the wire tension and the leakage current are well controlled. At this moment, the inner and outer chamber have been assembled together and the leak test for the helium gas is going on. The cosmic-ray test of the chamber in the laboratory will start soon.

Several prototypes of the chamber have been tested at the beam in KEK and IHEP. Good results have been obtained in all the cases. Fig. 3 shows a full length chamber prototype tested in the IHEP E3 beam line using the actual setup of 160 channels of readout electronics, including amplifiers, readout modules, cables, connectors, and the grounding setup. A prototype of readout electronics with 512 channels including the data acquisition system has been also tested in the laboratory for its long-term stability. The mass production of all electronics boards is almost finished, quality testing is underway.

3. CsI(Tl) Crystal Calorimeter

The CsI(Tl) crystal electromagnetic calorimeter consists of 6240 crystals, 5280 in the barrel, and 960 in two endcaps. Each crystal is 28 cm long, with a front face of about $5.2 \times 5.2\text{cm}^2$, and a rear face of about $6.4 \times 6.4\text{cm}^2$. All crystals are tiled by 1.5 $^\circ$ in the azimuth angle and 1-3 $^\circ$ in the polar angle, respectively, and point to a
Fig. 3. Left plot: the averaged single wire resolution. Right plot: the dE/dX resolution obtained from 80% truncated mean.

Fig. 4. Schematic view of the CsI(Tl) crystal calorimeter.

position off from the interaction point by a few centimeters as shown in Fig. 4. They are hanged from the back by 4 screws without partition walls in order to reduce dead materials. The designed energy and position resolution are 2.5% and 6 mm at 1 GeV, respectively. At this moment all the barrel and half of the endcap crystals have arrived, been tested, and assembled. The light yield of arrived crystals is about 56% with respect to the reference crystal, as shown in left plot of Fig. 5, much more than the specification of more than 35%. The average uniformity is better than 5%, as shown in the right plot of Fig. 5, while the specification is less than 7%. All the photodiodes (PD) have been delivered, and their performance before and after the accelerated aging, such as dark current, noise, photon-electron conversion efficiency and capacitance etc., have been tested. All delivered crystals have been assembled and tested using cosmic rays. The mechanical structure of the barrel is completed and the assembly of crystals into the mechanical structure will start soon.

The readout electronics of crystals, including the preamplifier, the main amplifier
and charge measurement modules are tested at the IHEP E3 beam line together with a crystal array and photodiodes. Results from the beam test shows that the energy resolution of the crystal array reached the design goal of 2.5% at 1 GeV and the equivalent noise achieved the level of less than 1000 electrons, corresponding to an energy of 220 keV. A prototype with 384 channels has been tested for long term stability. The mass production of preamplifiers is finished, and other modules are almost finished.

4. Time-Of-Flight system

The particle identification at BESIII is based on the momentum and dE/dx measurements by the drift chamber, and the Time-of-Flight (TOF) measurement by plastic scintillators. The barrel scintillator bar is 2.4 m long, 5 cm thick and 6 cm wide. A total of 176 such scintillator bars constitute two cylinders, to have a good efficiency and time resolution. For the endcap, a total of 48 fan-shaped scintillators form a single layer. A 2 inch fine mesh phototube is directly attached to each scintillator to collect the light. The intrinsic time resolution is designed to be 90 ps including contributions from electronics and the common time corresponding to the beam crossing. Such a time resolution, together with contributions from the beam size, momentum uncertainty, etc. can distinguish charged π from K mesons for a momentum up to 0.9 GeV at the 2σ level.

Beam tests of TOF prototypes have been performed at IHEP E3 beam line using pions, electrons and protons \[5, 6\]. Different scintillator types such as BC404, BC408 and EJ200, with different thickness are tested, together with different wrapping materials. The results, as shown in Fig. 6 show that the time resolution using a prototype of readout electronics including actual cables are better than 90 ps and 75 ps for the barrel and the endcap, respectively. Currently, most of the PMTs have been tested, and some of the scintillators have been delivered. The mass production of preamplifiers has been almost completed and other readout modules are about to start.
5. Muon counter

The BESIII muon chamber is made of Resistive Plate Chambers (RPC) interleaved in the magnet yoke. There are a total of 9 layers in the barrel and 8 layers in the endcap, with a total area of about 2000 m2. The readout strip is 4 cm wide, alternated between layers in x and y directions. The RPC is made of bakelite with a special surface treatment without linseed oil. Such a simple technique for the RPC production shows a good quality and stability at a low cost. All RPCs have been manufactured, tested, assembled and installed with satisfaction. The left plot in Fig. 7 shows the counting rate of all RPCs from the mass production after one week training. Most of them has a noise rate of about 0.1 Hz/cm2, which will be reduced to typically 0.04 Hz/cm2 after one month training. The right plot in Fig. 7 shows the measured efficiency of installed RPCs, which is more than 95% in all the region, using cosmic-rays. The magnet yoke together with all RPC has been installed as shown in Fig. 8.

6. Superconducting magnet

The BESIII super-conducting magnet has a radius of 1.48 m and a length of 3.52 m. It use the Al stabilized NbTi/Cu conductor with a total of 920 turns, making a 1.0T magnetic field at a current of 3400 amp. The total cold mass is 3.6 t with a material thickness of about 1.92 X0. In collaboration with WANG NMR of California, the magnet is designed and manufactured at IHEP. The left plot in Fig. 9 shows the coil winding at IHEP by technicians. The magnet was successfully installed into the iron yoke of the BESIII, as shown in the right plot of Fig. 9 together with the valve box. The magnet has been successfully cool down to the super-conducting temperature with a heat load within the specification. A stable magnetic field of
7. Trigger and DAQ System

The BESIII trigger rate is estimated to be about 4000 Hz and the trigger system is designed largely based on the latest technology such as fiber optics, pipelines and FPGA chips. Fig. 10 shows the schematics of the trigger systems and their interconnections. Information from sub-detector electronics is feed into sub-detector trigger system via fiber optical cables in order to avoid grounding loops. The VME based main trigger and all the sub-trigger boards communicate with each other via copper cables. All trigger logic stored in FPGA chips are programmable and can
be downloaded via VME bus. The trigger latency is designed to be 6.4 µs and the pipeline technique is used for all the readout electronics. The radiation hardness of fiber cables and their connectors are tested at BEPC beam test facility. Some of the sub-trigger systems share the same hardware design of the board using different firmware in order to reduce number of board types and save the cost. Latest large FPGA chips with RocketIO technology are adopted in such a board design. All the modules have been designed, prototyped, tested and some have completed the mass production.

The total data volume at BESIII is about 50 Mbytes/s for a trigger rate of about 4000 Hz. The DAQ system shall read out the event fragments from the front-end electronics distributed over more than 40 VME crates, and build them into a complete event to be transmitted for recording on the persistent media. A simplified structure of the BESIII DAQ system is shown in Fig.11. The DAQ software, based on the ATLAS TDAQ, includes database configuration, data readout, event building
and filtering, run control, monitoring, status reporting and data storage, etc. Every component has been tested successfully at an average event rate of 8000 Hz and 4500 Hz with an event size of 12KB and 25KB, respectively. The software has been used for cosmic-rays and beam test for a Drift Chamber prototype and an EMC crystal array. Different working modes such as normal data taking, baseline, calibration, debugging of the readout electronics and waveform sampling have been tested. As a distributed system, the entire DAQ system must keep synchronized, so a state machine is implemented in the PowerPC readout subsystem to keep the absolute synchronization with the DAQ software, which guarantees the coherency of the whole system.

8. Offline computing and software

The BESIII offline computing system is designed to have a PC farm of about 2000 nodes for both data and Monte Carlo production, as well as data analysis. A com-
puting center at IHEP and several local centers at collaborating universities are anticipated. A 1/10 system will be built at IHEP by the end of the year and the full system will be built next year.

The offline software consists of a framework based on Gaudi, a Monte Carlo simulation based on GEANT4, an event reconstruction package, a calibration and a database package using MySQL. Currently all codes are working as a complete system, and tests against cosmic-ray and beam test data are underway. Analysis tools such as particle identification, secondary vertex finding, kinematic fitting, event generator and partial wave analysis are partially completed, although continuous progress are expected. Figure 12 shows a reconstructed K_S and π^0 invariant mass with a resolution as expected.

9. Summary

The BEPCII and BESIII construction went on smoothly. Currently all the R&D programs have been completed successfully, mass production of detector components is underway, and some already assembled and installed. The detector installation is expected to be completed by next year and the physics data taking will start at the end of 2007.

Acknowledgments

The author thanks all the BEPCII staff for their excellent work towards the construction of the accelerator, and all the BESIII staff for completing the detector R&D and construction on time and in good quality.

References

1. BESIII design report, http://bes.ihep.ac.cn
2. BEPCII design report (in Chinese).
3. J. B. Liu, et al., Nucl. Instrum. And Meth. A 557 (2006) 436.
4. Z. H. Qing et al., submitted to Nucl. Instrum. And Meth. A.
5. C. Wu, et al., Nucl. Instrum. And Meth. A 555 (2005) 142.
6. S. H. An et al., Meas. Sci. Technol. 17 (2006) 2650.
7. J. W. Zhang, et al., Nucl. Instrum. Meth. A540 (2005) 102.