Stability of the Phase Transition of Critical-Field Ising Model on Cayley trees under Inhomogeneous External Fields

Rodrigo Bissacot∗
rodrigo.bissacot@gmail.com
Institute of Mathematics and Statistics - IME USP - University of São Paulo

Eric Ossami Endo†
eric@ime.usp.br
Institute of Mathematics and Statistics - IME USP - University of São Paulo
Johann Bernoulli Institute for Mathematics and Computer Science - University of Groningen

Aernout C. D. van Enter
a.c.d.van.enter@rug.nl
Department of Mathematics
Johann Bernoulli Institute for Mathematics and Computer Science - University of Groningen

June 13, 2018

Abstract

We consider the ferromagnetic Ising model with spatially dependent external fields on a Cayley tree, and we investigate the conditions for the existence of the phase transition for a class of external fields, asymptotically approaching a homogeneous critical external field. Our results extend earlier results by Rozikov and Ganikhodjaev.

Keywords: Ising Model, Cayley Tree, Inhomogeneous External Fields, Critical Field, Phase Transition Stability

Mathematics Subject Classification (2000): 82B20, 05C05, 82B26

1 Introduction

The ferromagnetic Ising model on a Cayley tree has been extensively studied. Some early treatments which were mathematically rigorous can be found in papers by Katsura and Takizawa [12] and by Preston [17]. As opposed to the situation on \mathbb{Z}^d, the phase transition on Cayley trees can appear even when the model has a non-zero homogeneous external field, because these trees are non-amenable, see [11].

∗Partially supported by the Dutch stochastics cluster STAR (Stochastics - Theoretical and Applied Research), also supported by FAPESP Grants 11/16265-8, 2016/08518-7 and CNPq Grants 486819/2013-2, 312112/2015-7.

†Supported by FAPESP Grants 14/10637-9 and 15/14434-8.
Preston analysed the phase transition using Markov chains. More precisely, he proved that a large class of Gibbs measures can be written as Markov chains, and the set of translational invariant Gibbs measures contains one, two or three completely homogeneous Markov chains. For more details, see [10] and [18].

The main approach to show the phase transition of the Ising model on a Cayley tree uses the fact that we can restrict ourselves to this well-behaved class of Gibbs measures, to which (among others) each extremal Gibbs measure belongs; this is the class of probability measures named “splitting Gibbs measures” or “Markov chains” (see [10, 18] and [13]). The advantage to work with this class of probability measures is the fact that, on Cayley trees, we have a notion of compatibility (see the definition in the next section), which implies that such a probability measure is a Markov chain. By this approach Preston showed that there exists a positive critical value for homogeneous external fields depending on the temperature and the order of the Cayley tree Γ^d, indicated by $h_c(\beta,d)$, and a critical temperature, indicated by $\beta_c(d)$, such that, if $\beta \leq \beta_c(d)$ or $|h| > h_c(\beta,d)$, there is no phase transition, and for $\beta > \beta_c(d)$ and $|h| \leq h_c(\beta,d)$, the model undergoes a phase transition. Moreover, when $|h| = h_c(\beta,d)$, there exist exactly two homogeneous splitting Gibbs measures, while for $|h| < h_c(\beta,d)$ there exist exactly three homogeneous splitting Gibbs measures.

Technically, the advantage is that the study of Gibbs measures reduces to the study of a set of recurrence equations on “boundary laws” (which we sometimes also call “boundary fields”). This reduction actually does not need any translation invariance; for some earlier work where non-translation-invariant versions play a role, see e.g. [19], and [6] and in particular the discussion in its Appendix.

When we assume inhomogeneous external fields, we want to consider perturbations of this critical field, with the perturbations decaying to zero when the distance to the root approaches infinity.

We consider this regime, as it is the most sensitive, and presents the closest equivalent of the question considered in [2, 1]. We want to look how fast the external fields can decay to the critical value in order to still be able to see a phase transition.

Moreover, we remark that spin systems in decaying fields have been studied to model systems in traps, see e.g. [4].

On the lattice \mathbb{Z}^d, we know by the Peierls argument that in zero field there is a transition for $d \geq 2$. On the other hand, Lee and Yang [14, 20] showed that the Ising model with non-zero homogeneous external fields has uniqueness for any temperature. Thus, the critical value in this case is $h_c = 0$.

When the external fields are depending on the site h_i with $i \in \mathbb{Z}^d$ and they are decaying to zero, we have the following results. Bissacot and Cioletti [2] showed that the ferromagnetic Ising model on the lattice \mathbb{Z}^d with external fields $(h_i)_{i \in \mathbb{Z}^d}$ undergoes a phase transition if the external fields h_i are summable, i.e., $\sum_{i \in \mathbb{Z}^d} h_i < +\infty$. Moreover, Bissacot, Cassandro, Cioletti and Presutti [1] showed that, if the external fields are of the form $h_i = \|i\|^{-\alpha}$, then the ferromagnetic Ising model on the lattice \mathbb{Z}^d with external fields $(h_i)_{i \in \mathbb{Z}^d}$ undergoes a phase transition when $\alpha > 1$, and there is uniqueness at $0 < \alpha < 1$ for a small temperature. Afterwards, Cioletti and Vila [5] extended the uniqueness for all temperatures when $0 < \alpha < 1$. For $\alpha = 1$ there are partial results, see [1].

The purpose of this paper is to look at the ferromagnetic Ising model on the Cayley tree Γ^d with spatially dependent external fields. As in [1], the external fields are decaying to the critical value, which here is non-zero, $h_c = h_c(\beta,d)$. We will show that, if the
external fields are of the form $h_n = -h_c - \epsilon_n$, with ϵ_n positive, decreasing, decaying to zero and satisfying the following condition,

$$\lim_{n \to \infty} \sum_{j=1}^{n} \left(\sum_{i=j}^{n} \epsilon_i \right)^2 < \infty,$$ \hspace{1cm} (1)

then the model undergoes a phase transition at low temperature. On the other hand, when the condition is violated, and the sum diverges, we will obtain uniqueness of the Gibbs measure for the perturbed model.

Note that the above condition is substantially weaker than the one from \cite{2}. In fact, the condition that we would get from the arguments of \cite{2} is

$$\sum_{n \geq 1} d^n \epsilon_n < +\infty.$$ \hspace{1cm} (2)

It is easy to see that every sequence $(\epsilon_n)_{n \geq 1}$ satisfying (2) also satisfies (1). We will say that the phase transition persists if the maximal measure μ^+ is different from the minimal measure μ^-. We will consider in particular the persistence of the plus state (that is the positively magnetised state) in a negative critical field. We notice that this state is unstable (disappears) if we add a homogeneous negative external field; we ask the question what happens once we add a negative field decaying to zero. If the decay is fast the transition persists, if the decay is slow enough it may disappear. The condition mentioned above indicates the threshold between those two behaviours.

Some other aspects of the Ising model in a critical field have been studied by Bleher et al \cite{3}. The stability for decaying interactions of the Ising model in non-critical fields, and also for summable inhomogeneous fields as in \cite{2}, has been considered by Ganikhodjaev \cite{9}.

2 Definitions and notation

Let $\Gamma^d = (V, L)$ be the Cayley tree of order d, i.e., a $d + 1$-regular infinite tree. For a fixed $x_0 \in V$, called the root, define generation n by $W_n = \{x \in V : d(x, x_0) = n\}$ and $V_n = \bigcup_{k=1}^{n} W_k$. For each $x \in W_n$, denote $S(x) = \{y \in W_{n+1} : d(x, y) = 1\}$ for the set of children of x. Define also L_n to be the edges of the subtree of Γ^d restricted to the vertices V_n. For each $x \in V$, we denote the distance of x from the root x_0 by $\|x\| = d(x, x_0)$.

Consider the set $\Omega = \{-1, 1\}^V$ of configurations on V. For each $\Lambda \subset V$, we define $\Omega_\Lambda = \{-1, 1\}^\Lambda$ to be the set of configurations on Λ. We denote by $\sigma \in \Omega$ the configurations in Ω, and by $\sigma_\Lambda \in \Omega_\Lambda$ the configurations in Ω_Λ (if the set is well-known and there is no chance of confusion, we will sometimes write σ instead of σ_Λ).

Let $\sigma \in \Omega$ and $J > 0$. The Hamiltonian of the ferromagnetic Ising model on the volume V_n is the following,

$$H_n^0(\sigma) = -J \sum_{\langle x, y \rangle \in L_n} \sigma_x \sigma_y,$$ \hspace{1cm} (3)

where $\langle x, y \rangle$ is summed over a set of pairs of nearest-neighbor vertices. The Hamiltonian of the ferromagnetic Ising model with boundary condition η on the volume V_n is the
following,
\[H_n^β(σ) = -J \sum_{⟨x,y⟩∈L_n} σ_xσ_y - J \sum_{x∈W_{n+1}} \sum_{y∈W_{n+1}} σ_xη_y. \] (4)

When \(η_x = 1 \) for all \(x ∈ V \), we say that \(η \) is the plus boundary condition, while \(η_x = -1 \) for all \(x ∈ V \) is the minus boundary condition, and \(η_x = 0 \) for all \(x ∈ V \) is the free boundary condition.

Let \(\bar{h} = (h_n)_{n≥1} \) be a real-valued sequence. We define the Hamiltonian of the ferromagnetic Ising model on the volume \(V_n \) with boundary condition \(η \) and with spatially dependent external fields \(\bar{h} \) by
\[H_{n,\bar{h}}^η(σ) = H_n^η(σ) - \sum_{k=1}^n \sum_{x∈W_k} h_kσ_x. \] (5)

Given the inverse temperature \(β > 0 \), we define the Gibbs measure on the volume \(V_n \) with boundary condition \(η \) and with spatially dependent external fields \(\bar{h} \) by
\[µ_{n,β,\bar{h}}^η(σ) = \frac{\exp\{-βH_{n,\bar{h}}^η(σ)\}}{Z_{n,β,\bar{h}}^η}, \] (6)
where \(Z_{n,β,\bar{h}}^η \) is the partition function given by
\[Z_{n,β,\bar{h}}^η = \sum_{σ∈Ω^β_{V_n}} \exp\{-βH_{n,\bar{h}}^η(σ)\}. \] (7)
We will write \(µ_{n,β,\bar{h}}^+ \) when the boundary condition is plus, and \(µ_{n,β,\bar{h}}^- \) when it is minus. Define the set of Gibbs measures as the convex hull of the set of all weak limits of the Gibbs measures on the volumes \(V_n \) with boundary conditions \(η_n \) and with spatially dependent fields \(\bar{h} \),
\[G_β = \text{conv} \left\{ µ : \lim_{n→+∞} µ_{n,β,\bar{h}}^{η_m} = µ; \text{ for all increasing } (m_n)_{n≥1}, \text{ and } (η_n)_{n≥1} \right\} \] (8)
We say that the model undergoes a phase transition if there exists \(β \) such that \(|G_β| > 1 \). This definition is equivalent to prove that, for the same \(β \), we have \(µ_{β,\bar{h}}^+ ≠ µ_{β,\bar{h}}^- \), where \(µ_{β,\bar{h}}^± = \lim_{n→+∞} µ_{n,β,\bar{h}}^± \) (One can find the proof of this result in [10]). We say that the model has uniqueness at inverse temperature \(β \) if \(|G_β| = 1 \).

We say that a Gibbs measure \(µ \) is extremal if \(µ \) cannot be decomposed as a convex combination of other Gibbs measures. We know that \(µ_{β,\bar{h}}^+ \) and \(µ_{β,\bar{h}}^- \) are extremal Gibbs measures (see [10]).

2.1 Splitting Gibbs Measures

Let \(h_n ∈ ℝ \) for \(n ≥ 1 \) and \(b_x ∈ ℝ \) for each \(x ∈ V \). The \(b_x \) will be the boundary fields, and often we will write \(b_n \), in the situation where the boundary fields only depend on the generation \(n \). We define the probability measure \(µ_n \) on the volume \(V_n \) as
\[µ_n(σ) = \frac{1}{Z_n} \exp \left\{ -βH_n^0(σ) + \sum_{k=1}^{n-1} \sum_{x∈W_k} h_kσ_x + \sum_{x∈W_n} b_xσ_x \right\}, \] (9)
where β is the inverse temperature, and Z_n is the partition function given by

$$Z_n = \sum_{\sigma_{V_n} \in \Omega_{V_n}} \exp \left\{ -\beta H_n^0(\sigma) + \sum_{k=1}^{n-1} \sum_{x \in W_k} h_k \sigma_x + \sum_{x \in W_n} b_x \sigma_x \right\}. \quad (10)$$

We say that the probability measures μ_n are compatible if for all $n \geq 1$ and $\sigma \in \Omega_{V_{n-1}}$:

$$\sum_{\omega \in \Omega_{V_n}} \mu_n(\sigma \vee \omega) = \mu_{n-1}(\sigma). \quad (11)$$

Here $\sigma \vee \omega$ is the concatenation of the configurations. By Kolmogorov's Theorem, there exists a unique measure μ on Ω such that, for all n and $\sigma_{V_n} \in \Omega_{V_n}$,

$$\mu(\sigma|V_n) = \sigma_{V_n} = \mu_n(\sigma_{V_n}). \quad (12)$$

This measure is called a splitting Gibbs measure (For Kolmogorov’s Theorem, see [21]).

By [10], we know that the Gibbs measures with boundary condition plus and minus are extremal, and all extremal Gibbs measures are splitting Gibbs measures. The free-boundary Gibbs measure μ^b at sufficiently low temperatures is not extremal, but still a splitting Gibbs measure. Taking an arbitrary convex mixture of those three states in general will give a non-splitting measure, however. [1]

3 Compatibility

From now on, we will assume that b_x for all $x \in V$ is such that $b_x = b(||x||)$, i.e., b_x depends only on the distance of x from the root. Writing $b_n = b_x$ when $||x|| = n$, we will usually also assume that b_n is decreasing. The following result is adapted from Rozikov ([18], Theorem 2.1), who treated general inhomogeneous fields.

Theorem. The probability measures $(\mu_n)_{n \geq 1}$ are compatible if and only if for every $n \geq 2$ the following equation holds,

$$b_{n-1} = h_{n-1} + dF(b_n, \theta), \quad (13)$$

where $\theta = \tanh(\beta J)$ and $F(x, \theta) = \arctanh(\theta \tanh x)$.

Proof. Suppose that (11) holds. Substituting in the probability measure (9), we have

$$\frac{Z_{n-1}}{Z_n} \sum_{\omega \in \Omega_{W_n}} \exp \left\{ -\beta H_{n-1}^0(\sigma) + \beta J \sum_{x \in W_{n-1}} \sum_{y \in S(x)} \sigma_x \omega_y + \sum_{k=1}^{n-1} \sum_{x \in W_k} h_k \sigma_x + b_n \sum_{x \in W_n} \omega_x \right\}$$

$$= \exp \left\{ -\beta H_{n-1}^0(\sigma) + \sum_{k=1}^{n-2} \sum_{x \in W_k} h_k \sigma_x + b_{n-1} \sum_{x \in W_{n-1}} \sigma_x \right\}. \quad (13)$$

This implies the following equation,

$$\frac{Z_{n-1}}{Z_n} \sum_{\omega \in \Omega_{W_n}} \exp \left\{ \sum_{x \in W_{n-1}} \sum_{y \in S(x)} (\beta J \sigma_x \omega_y + b_n \omega_y) \right\} = \exp \left\{ (b_{n-1} - h_{n-1}) \sum_{x \in W_{n-1}} \sigma_x \right\}. \quad (13)$$

[1] There is an active interest under which conditions the free-boundary measure, and its analogues in external fields, for Potts models etc. are extremal. This is also known as the “reconstruction problem”. See e.g. [15, 7, 8]. However, for the present work this question plays no role.
Thus,
\[
\frac{Z_{n-1}}{Z_n} \sum_{\omega \in \Omega_{W_n}} \prod_{x \in W_{n-1}} \prod_{y \in S(x)} \exp\{\beta J \sigma_x \omega_y + b_n \omega_y\} = \prod_{x \in W_{n-1}} \exp\{(b_{n-1} - h_{n-1})\sigma_x\},
\]
and therefore,
\[
\frac{Z_{n-1}}{Z_n} \prod_{x \in W_{n-1}} \left(\sum_{u \in \{-1,1\}} \exp\{\beta J \sigma_x u + b_n u\}\right)^d = \prod_{x \in W_{n-1}} \exp\{(b_{n-1} - h_{n-1})\sigma_x\}.
\]

Substituting in the last equality \(\sigma_x = 1\) and \(\sigma_x = -1\) for all \(x \in V\), and dividing the first expression by the second one, we obtain
\[
\left(\frac{\sum_{u \in \{-1,1\}} \exp\{\beta J u + b_n u\}}{\sum_{u \in \{-1,1\}} \exp\{-\beta J u + b_n u\}} \right)^d = \exp\{2(b_{n-1} - h_{n-1})\}.
\]
Taking logarithms, we get the desired formula. Note that
\[
F(x, \theta) = \text{arctanh}(\theta \tanh x) = \frac{1}{2} \log \frac{(1 + \theta)e^{2x} + (1 - \theta)}{(1 - \theta)e^{2x} + (1 + \theta)}.
\]

For the converse, note that
\[
\sum_{\omega \in \Omega_{W_n}} \mu_n(\sigma \vee \omega)
\]
\[
= \frac{1}{Z_n} \exp \left\{ -\beta H_{n-1}^0(\sigma) + \sum_{k=1}^{n-1} \sum_{x \in W_k} h_k \sigma_x \right\} \prod_{x \in W_{n-1}} \left(\sum_{u \in \{-1,1\}} \exp\{\beta J \sigma_x u + b_n u\}\right)^d.
\]

For any \(t \in \{-1,1\}\), we have the following identity,
\[
\left(\sum_{u \in \{-1,1\}} \exp\{\beta Jtu + b_n u\}\right)^d = a_n \exp\{t(b_{n-1} - h_{n-1})\},
\]
for some \(a_n > 0\). Consider the function \(A_n = a_n^s\) where \(s = |W_{n-1}|\). We have
\[
\sum_{\omega \in \Omega_{W_n}} \mu_n(\sigma \vee \omega)
\]
\[
= \frac{A_n}{Z_n} \exp \left\{ -\beta H_{n-1}^0(\sigma) + \sum_{k=1}^{n-1} \sum_{x \in W_k} h_k \sigma_x \right\} \prod_{x \in W_{n-1}} \exp\{\sigma_x(b_{n-1} - h_{n-1})\}.
\]
Using the fact that \(\sum_{\sigma \in \Omega_{V_{n-1}}} \sum_{\omega \in \Omega_{W_n}} \mu_n(\sigma \vee \omega) = 1\), we have \(A_n = Z_n/Z_{n-1}\) \(\square\).

By Theorem 3 there is a bijection between sets \(b = \{b_n, n \geq 1\}\) satisfying equation (13) and splitting Gibbs measures \(\mu\). Thus, in particular, the extremal Gibbs measures \(\mu_{\beta, h}^\pm\) are associated to the boundary fields \(\tilde{b}^\pm = \{\tilde{b}_n^\pm, n \geq 1\}\).

The homogeneous splitting Gibbs measures for the Ising model in homogeneous fields, i.e., \(h_n = h\) for all \(n \geq 1\), are very well known, see e.g. [10] and [13]. The
translation-invariant solutions \((b_n)_{n \geq 1}\) to the recurrence equation \([13]\) when \(h_n = h\) for all \(n \geq 1\) are constant, i.e., \(b_n = b^*\) for all \(n \geq 1\). Thus, we have the equation
\[
b^* = h + dF(b^*, \theta) := \psi(b^*),
\]
(14)
where \(\psi(x) = h + dF(x, \theta)\).

By \([10], [18]\) we know that there exists \(\beta_c(d) > 0\) and \(h_c(\beta, d) > 0\) such that:

1. If \(\beta \leq \beta_c(d)\) or \(|h| > h_c(\beta, d)\), the function \(\psi\) has exactly one fixed point. We define the solution as the sequence \(b^\circ = \{b^\circ_n\}_{n \geq 1}\) such that \(b^\circ_n = b^\circ\) is constant.

2. If \(\beta > \beta_c(d)\) and \(|h| < h_c(\beta, d)\), the function \(\psi\) has exactly three fixed points. The solutions are the sequences \(b^\circ\), \(b^+ = \{b^+_n\}_{n \geq 1}\) and \(b^- = \{b^-_n\}_{n \geq 1}\) in which are constant \(b^+_n = b^+\) and \(b^-_n = b^-\) for all \(n \geq 1\).

3. If \(\beta > \beta_c(d)\) and \(|h| = h_c(\beta, d)\), the function \(\psi\) has exactly two fixed points. For \(h = h_c\) the sequences \(b^\circ\) and \(b^+\) coincide, and for \(h = -h_c\) the sequences \(b^\circ\) and \(b^-\) coincide.

The sequences \(b^+\) and \(b^-\) are extremal in the sense that, if \(b = (b_n)_{n \geq 1}\) is a solution to \([11]\), then \(b^- \leq b_n \leq b^+\) for all \(n \geq 1\).

Note that \(b^+\) is a saddle node of \(\psi\) for \(h = -h_c\), i.e., \(\psi'(b^+) = 1\); this means that \(b^+\) is (marginally) stable in a minus field. It attracts higher values, but repels lower ones. The “stable” \(b^-\) is an attractor of all initial \(b\) below \(b^+\). In fact it attracts exponentially fast, due to the map \(\psi(b) - b\) near \(b^-\) being contracting.

Also, we note that similarly, in a positive critical field, \(b^-\) is the saddle node of \(\psi\) for \(h = h_c\), and thus \(b^-\) is marginally stable and \(b^+\) is the stable attractor in a plus field.

Let \(\psi(\infty) := \lim_{x \to \infty} \psi(x) < \infty\). It is easy to see that the iteration \(\psi^n(\infty)\) converges to \(b^+\) as \(n\) goes to infinity (see \([10], [18]\)). Moreover, \(\psi^n(\infty) \geq b^+\) for all \(n \geq 1\).

Figure 1: The graph of \(\psi\) for \(h = -h_c\) and the fixed points \(b^+\) and \(b^-\), and the sequence \(\psi^n(\infty)\) converging to \(b^+\).
4 Results and proofs

Our analysis is based on the behavior of the sum $\sum_{j=1}^{n} \left(\sum_{i=j}^{n} \epsilon_i \right)^2$ for the perturbation of the field $(\epsilon_k)_{k \geq 1}$. Firstly, the following inequality in the next proposition is inspired by the rearrangement inequality and somehow helps to see the behavior of the sum.

Proposition 1. For any positive decreasing sequence $(\epsilon_n)_{n \geq 1}$,

$$\sum_{i=1}^{n} (i\epsilon_i)^2 \leq \sum_{j=1}^{n} \left(\sum_{i=j}^{n} \epsilon_i \right)^2 \leq \sum_{i=1}^{n} ((n - i + 1)\epsilon_i)^2.\quad (15)$$

Proof. For the upper bound, using that $\epsilon_i \leq \epsilon_j$ for any $i \geq j$, we have

$$\sum_{j=1}^{n} \left(\sum_{i=j}^{n} \epsilon_i \right)^2 \leq \sum_{j=1}^{n} \left(\sum_{i=j}^{n} \epsilon_j \right)^2 = \sum_{i=1}^{n} ((n - i + 1)\epsilon_i)^2.\quad (16)$$

For the lower bound, we use the following expression,

$$\sum_{j=1}^{n} \left(\sum_{i=j}^{n} \epsilon_i \right)^2 = \sum_{i=1}^{n} i\epsilon_i^2 + 2 \sum_{i=2}^{n} \epsilon_i \left(\sum_{j=1}^{i-1} j\epsilon_j \right).\quad (17)$$

Thus,

$$\sum_{j=1}^{n} \left(\sum_{i=j}^{n} \epsilon_i \right)^2 \geq \sum_{i=1}^{n} i\epsilon_i^2 + 2 \sum_{i=2}^{n} \epsilon_i \left(\sum_{j=1}^{i-1} j\epsilon_j \right) = \sum_{i=1}^{n} (i\epsilon_i)^2,$$ as we wanted. \qed

The results will be based on estimate of the influence from infinity on boundary fields near the origin. If the influence due to the inhomogeneous fields is small enough, the non-uniqueness of Gibbs measures will not change, if the influence of the inhomogeneous terms gets too big, then we will have a unique Gibbs measure.

The external fields that we are working with are of the form $h_n = -\hat{h}_c - \epsilon_n$. Consider the function $\hat{\psi}_n(x) := h_n + dF(x, \theta) = \psi(x) - \epsilon_n$. For each $n \geq 1$, define $\psi_{n,n}(x) = \hat{\psi}_n(x)$ and $\hat{\psi}_{k,n}(x) = \hat{\psi}_k(\hat{\psi}_{k+1,n}(x))$ for $k < n$. Note that, for any $k \geq 1$,

$$\hat{b}_k^+ = \lim_{n \to \infty} \hat{\psi}_{k,n}(\hat{b}_{k+1}^+) \geq \lim_{n \to \infty} \hat{\psi}_{k,n}(b^+),\quad (18)$$

since the sequence $c_k = \lim_{n \to \infty} \hat{\psi}_{k,n}(b^+)$ is well defined, and satisfies the compatibility recurrence (13). Thus, by the extremality of \hat{b}^+, the inequality (18) holds. By the same argument, for any $k \geq 1$,

$$\hat{b}_k^- = \lim_{n \to \infty} \hat{\psi}_{k,n}(\hat{b}_{k+1}^-) \leq \lim_{n \to \infty} \hat{\psi}_{k,n}(b^-).\quad (19)$$

Theorem 1. Consider the ferromagnetic Ising model on a Cayley tree Γ^d with external fields $(-h_c - \epsilon_n)_{n \geq 1}$. Suppose that the sequence of positive $(\epsilon_n)_{n \geq 1}$ decreases to zero and satisfies the following condition,

$$\lim_{n \to \infty} \sum_{j=1}^{n} \left(\sum_{i=j}^{n} \epsilon_i \right)^2 < \infty.\quad (20)$$

Then the perturbed model undergoes a phase transition.
Proof. Suppose that $\theta > 1/d$, which implies that we have phase transition and let $b^- < b^+$ be the solutions of the equation (13). Remind that b^+ is a saddle node, i.e., $\psi'(b^+) = 1$.

By Taylor expansion on ψ, we have

$$\psi(b^+ - \epsilon_n) = \psi(b^+) - \psi'(b^+ \epsilon_n + \frac{1}{2} \psi''(b^+) \epsilon_n^2 + O(\epsilon_n)^3. \quad (21)$$

Using the fact that ψ is a concave function around b^+, we get

$$\psi(b^+ - \epsilon_n) = b^+ - \epsilon_n - \frac{1}{2} |\psi''(b^+)|\epsilon_n^2 + O(\epsilon_n)^3.$$

Now, if we apply ψ on $\psi(b^+ - \epsilon_n) - \epsilon_n - 1$, we have

$$\psi(\psi(b^+ - \epsilon_n) - \epsilon_n - 1) = \psi(b^+ - \epsilon_n - \epsilon_n - 1 - \frac{1}{2} |\psi''(b^+)|\epsilon_n^2 + O(\epsilon_n)^3) = b^+ - \epsilon_n - \frac{1}{2} |\psi''(b^+)|\epsilon_n^2 + O(\epsilon_n)^3.$$

Thus, by (18), $\tilde{\epsilon}_k,\tilde{\epsilon}_n$ for all $n \geq k$, let's take $\tilde{\epsilon}_k,\tilde{\epsilon}_n$ such that, for all $n \geq k$, the sequence $\{\epsilon_n\}_{n \geq 1}$ satisfies (20), for any $\varepsilon > 0$, there exists $k_1 \geq 1$ such that, for all $k \geq k_1$,

$$\sum_{i=k}^{n} \epsilon_i - \frac{1}{2} |\psi''(b^+)| \sum_{i=k+1}^{n} \left(\sum_{i=j}^{n} \epsilon_j \right)^2 + O(\epsilon_{k+1})^3. \quad (22)$$

Since the sequence $\{\epsilon_n\}_{n \geq 1}$ satisfies (20), for any $\varepsilon > 0$, there exists $k_1 \geq 1$ such that, for all $k \geq k_1$,

$$\sum_{i=k}^{n} \epsilon_i - \frac{1}{2} |\psi''(b^+)| \sum_{i=k+1}^{n} \left(\sum_{i=j}^{n} \epsilon_j \right)^2 < \frac{\varepsilon}{|\psi''(b^+)|}. \quad (23)$$

for every $n \geq k$. Moreover, $\{\epsilon_n\}_{n \geq 1}$ is summable. Thus, there exists $k_2 \geq 1$ such that, for all $k \geq k_2$,

$$\sum_{i=k}^{n} \epsilon_i < \frac{\varepsilon}{2}. \quad (24)$$

for every $n \geq k$. Thus, for all $k \geq \max\{k_1, k_2\}$,

$$\tilde{\psi}_{k,n}(b^+) > b^+ - \varepsilon + O(\epsilon_{k+1})^3. \quad (25)$$

for every $n \geq k$. Let's take $\varepsilon > 0$ sufficiently small such that $b^+ - \varepsilon > b^-$. From (22), there exists $k_0 \geq \max\{k_1, k_2\}$ and $\delta = \delta(k) > 0$ such that, for all $k \geq k_0$,

$$\tilde{\psi}_{k,n}(b^+) > b^+ - \delta. \quad (26)$$

for every $n > k$. Thus, by (18), $\tilde{\psi}_{k,n}(b^+) > b^+ - \delta > b^-$ for all $k \geq k_0$. Note also that $b^- \geq \tilde{\psi}_{k,n}(b^+)$, as b^- is even stable for perturbation under homogeneous fields, so much the more it is for $\tilde{\psi}_{k,n}(b^+)$. Therefore $\tilde{\psi}_{k,n}(b^+) > \tilde{\psi}_{k,n}(b^-)$ for all $k \geq k_0$. Since $\tilde{\psi}_{k,n}(b^+)$ and $\tilde{\psi}_{k,n}(b^-)$ are associated to extremal Gibbs measures, namely the Gibbs measures with plus and minus-boundary condition, these measures are distinct.
It is easy to see that the above result also works when we will consider the stability of the minus state in a plus field, under addition of a positive spatially dependent perturbation \((\epsilon_n)_{n \geq 1}\). In that case, we consider the ferromagnetic Ising model on a Cayley tree \(\Gamma^d\) with external fields \((h_c + \epsilon_n)_{n \geq 1}\).

Our second result says that if the inhomogeneous field is negative and such that it does not satisfy the above condition, it is strong enough to remove the phase transition, and indeed there will be one single Gibbs measure.

Theorem 2. Consider the ferromagnetic Ising model on a Cayley tree \(\Gamma^d\) with external fields \((-h_c - \epsilon_n)_{n \geq 1}\). Suppose that the sequence of positive \((\epsilon_n)_{n \geq 1}\) decreases to zero and satisfies the following condition,

\[
\lim_{n \to \infty} \sum_{j=1}^{n} \left(\sum_{i=j}^{n} \epsilon_i \right)^2 = \infty. \tag{27}
\]

Then the perturbed model has uniqueness for any temperature.

Proof. For \(1 \leq k < n < N\), let us consider the auxiliary boundary fields \((b^{+,k,n,N}_m)_{1 \leq m \leq N}\) in which \(b^{+,k,n,N}_N = +\infty\), and \(b^{+,k,n,N}_m = \psi(b^{+,k,n,N}_{m-1})\) for \(n < m \leq N\), and \(b^{+,k,n,N}_m = \tilde{\psi}_{m-1}(b^{+,k,n,N}_m)\) for \(k < m \leq n\), and \(b^{+,k,n,N}_m\) satisfies the compatibility equation (11) for \(m \leq k\). This sequence means that we are taking plus boundary condition at distance \(N\) from the origin, between \(n\) and \(N\) the sequence is in the homogeneous case, and between \(k\) and \(n\) the sequence is in the inhomogeneous case. Note that this provides us with an upper bound for \(\tilde{b}^+\).

![Figure 2: The Cayley tree with root O, and the auxiliary boundary fields. The circle means the depth of the tree.](image)

In order for all Taylor expansions in (22) to hold, for a fixed \(\varepsilon > 0\), there exist \(N \geq 1\) sufficiently large and \(n \leq N\) such that \(b^+ < b^{+,k,n,N}_n < b^+ + \varepsilon\), since \(\psi^p(\infty)\) converges to \(b^+\) as \(p \to \infty\). Note that, for a larger \(N\), we can increase \(n\) as well. Thus, taking the limit in \(N\), we have \(\lim_{N \to \infty} b^{+,k,n,N}_n = b^+\). So, we can consider the sequence \((b^{+,k,n}_m)_{m \geq 1}\).
defined on the whole Cayley tree by \(b_{m,k,n}^+ = b^+ \) for \(m \geq n \), and \(b_{m-1}^{+} = \tilde{\psi}_{m-1}(b_{m}^{+},k,n) \) for \(1 < m \leq n \). For a fixed \(0 < \delta < b^+ \), there exists \(k \leq n \) such that

\[
\sum_{j=k+1}^{n} \left(\sum_{i=j}^{n} \epsilon_i \right)^2 > \frac{2\delta}{|\psi'(b^+)|} \tag{28}
\]

By (22),

\[
\tilde{\psi}_{k,n}(b^+) = b^+ - \sum_{i=k}^{n} \epsilon_i - \frac{1}{2} |\psi''(b^+)| \sum_{j=k+1}^{n} \left(\sum_{i=j}^{n} \epsilon_i \right)^2 + O(\epsilon_{k+1})^3, \tag{29}
\]

we thus have \(\tilde{\psi}_{k,n}(b^+) < b^+ - \delta + O(\epsilon_{k+1})^3 + O(\epsilon) \). Let us choose \(k \) very large (and so \(n \)) such that \(\epsilon_k > 0 \) is small enough, in which case there exists \(0 < \delta' < b^+ \) satisfying

\[
b_k^{+} < b^+ - \delta'. \tag{30}
\]

Note that \(\delta' \) does not depend on \(k \) in the sense that \(\delta' \) does not change when \(k \) increases, once \(n \) is large enough, satisfying (28). The bound (30) means that the perturbation of the external fields \(\epsilon_k \) for \(k \geq 1 \) is strong enough in the sense of condition (27) for the boundary field \(b_{m,k,n}^+ \) be strictly below \(b^+ \) for every \(m \leq k \). Moreover, we take \(k \) sufficiently large so that there exists \(\delta'' < 1 \) such that \(0 < \psi'(b_{m,k,n}^+) < 1 - \delta'' \) for \(m \leq k \). Thus, for every \(k_0 \geq 1 \), there exist \(k > k_0 \) and \(n_k > k \) such that (30) holds. Note that \(b_k^+ = \lim_{k \to \infty} b_{k_0}^{+},k,n_k \).

Now, define the boundary fields \((b_{m,n}^-)_{1 \leq m \leq N} \) in which \(b_N^- = -\infty, b_{m-1}^- = \tilde{\psi}_{m-1}(b_{m}^-) \) for \(n < m \leq N \) and \(b_{m-1}^- = \tilde{\psi}_{m-1}(b_{m-1}^-) \) for \(1 \leq m \leq n \). For a fixed \(n < N \), taking \(N \) to infinity, we have \(\lim_{N \to \infty} b_{m,n}^- = b^- \). Thus, we can consider the sequence \((b_{m,n}^-)_{m \geq 1} \) defined in the whole Cayley tree so that \(b_{m,n}^- = b^- \) for all \(m \geq n \), and \(b_{m-1}^- = \tilde{\psi}_{m-1}(b_{m}^-) \) for \(1 \leq m \leq n \). Note that \(b_{k_0}^- = \lim_{n \to \infty} b_{k_0}^- = \lim_{n \to \infty} \tilde{\psi}_{k_0,n-1}(b^-) \) for all \(k_0 \geq 1 \). The Taylor expansion below shows that these boundary fields decay exponentially by contraction, since \(0 < \psi'(b^-) < 1 \). In fact,

\[
\tilde{\psi}_{k,n-1}(b^-) = b^- - \sum_{i=k}^{n-1} \psi'(b^-)^{i-k} \epsilon_i + O(\epsilon_{k+1})^2. \tag{31}
\]

Since the map \(\psi \), and similarly \(\tilde{\psi}_m \), act as contractions on the interval \((-\infty,b^+ - \delta') \), with a uniform contraction bound \(1 - \delta'' \), we have that in the limit \(k \) to infinity the difference in influence on the boundary field at sites \(k_0 \) between negative boundary fields and positive boundary fields less than \(b^+ - \delta' \) at sites at distance \(k_0 \) disappears. In fact, we know that the sequence \(b_{k,n}^- \) converges to \(b^- \) as \(k \) is going to infinity (and so \(n \) goes to infinity), since \(b_{k,n}^- \leq b_{k+n,k}^- \leq b^+ - \delta' \), we have that \(|b_{k,n}^- - b_{k,n}^-| < C \) for
some $C > 0$. Note that C does not depend on k. Thus, by the Mean Value Theorem,

$$
\tilde{b}^+_k - \tilde{b}^-_k = \lim_{k \to \infty} \tilde{b}^+_k - \lim_{n \to \infty} \tilde{b}^-_k = \lim_{k \to \infty} \tilde{\psi}_{k_0, k-1}(b^+_k, n_k) - \lim_{k \to \infty} \tilde{\psi}_{k_0, k-1}(b^-_k, n_k) \\
= \lim_{k \to \infty} \left(\sup_{c \in [b^-_k, b^+_k]} \tilde{\psi}_{k_0, k-1}^{\gamma}(c) |b^+_k - b^-_k| \right) \\
\leq C \lim_{k \to \infty} (1 - \delta'' k^{-\gamma}) = 0.
$$

(32)

Thus, the sequences \tilde{b}^+ and \tilde{b}^- are equal. Therefore the extremal Gibbs measures associated to these sequences, $\mu^+_{\beta, h}$ and $\mu^-_{\beta, h}$ respectively, are equal for any $\beta > 0$.

Example. As in [1, 5], let us consider the sequence $\epsilon_k = 1/k^\gamma$, where $\gamma > 0$. Note that

$$
\sum_{j=1}^{n} \left(\sum_{i=j}^{n} i^{\gamma} \right)^2 = \sum_{j=1}^{n} O(j^{2-2\gamma}).
$$

(33)

Thus, the sum (33) converges when $2-2\gamma < -1$ and diverges when $2-2\gamma \geq -1$, and we conclude that the critical power is $\gamma_c = 3/2$. Note also that the model has uniqueness at the critical power, since the sum diverges.

Acknowledgments

A.C.D. van Enter thanks Henk Broer for a helpful conversation. We thank Bruno Kimura and Wioletta Ruszel for discussions and for the support and hospitality in Delft, making this collaboration possible. R. Bissacot thanks Wioletta especially for organising the invitation, support and all the effort for his first visit in the Netherlands. We thanks NWO-STAR and FAPESP for support.

References

[1] R. Bissacot, M. Cassandro, L. Cioletti and E. Presutti. *Phase Transitions in Ferromagnetic Ising Models with Spatially Dependent Magnetic Fields. Communications in Mathematical Physics*, 336, No. 1, 41–53 (2015).

[2] R. Bissacot and L. Cioletti. *Phase Transition in Ferromagnetic Ising Models with Non-uniform External Magnetic Fields. Journal of Statistical Physics*, 139, Issue 5, 769–778, (2010).

[3] P.M. Bleher, J. Ruiz, R.H. Schonmann, S.B. Shlosman and V.A. Zagerebnov. *Rigidity of Critical Phases on a Cayley tree, Moscow Mathematical Journal*, 1, Issue 3, 345–363, (2001)
13

[4] M. Campostrini and E. Vicari. Critical behavior and Scaling in Trapped Systems Phys. Rev. Lett. 102(24), 240601 (2009).

[5] L. Cioletti and R. Vila. Graphical Representations for Ising and Potts Models in General External Fields. Journal of Statistical Physics, 162, No. 1, 81–122 (2016).

[6] A.C.D. van Enter, V.N. Ermolaev, G. Iacobelli and C. Külske. Gibbs-non-Gibbs properties for evolving Ising models on trees. Ann. Inst. H. Poincaré, Prob. Stat., 48, No 3, 774–791 (2012).

[7] W. Evans, C. Kenyon, Y. Peres and L.J. Schulman. Broadcasting on Trees and the Ising Model. Ann. Appl. Prob. 10 no 2, 410–433 (2000).

[8] M. Formentin and C. Külske. On the purity of the free boundary condition Potts measure on random trees Stoch. Proc. Appl., 119 no 9, 2992–3005 (2009).

[9] N. Ganikhodjaev. Phase Transition in Ferromagnetic Lattice Models on a Cayley Tree with Non-uniform External Magnetic Fields. International Conference on Operations Research and Statistics Proceedings, 106–110 Singapore Global Science and Technology Forum (2011).

[10] H.-O. Georgii. Gibbs Measures and Phase Transitions. de Gruyter, Berlin, (1988).

[11] J. Jonasson and J. E. Steif. Amenability and Phase Transition in the Ising Model. Journal of Theoretical Probability, 12, 549–559, (1999).

[12] S. Katsura and M. Takizawa. Bethe lattice and the Bethe approximation. Prog. Theor. Phys., 51, 82–98 (1974).

[13] C. Külske and P. Schriever. Gradient Gibbs measures and fuzzy transformations on trees. preprint. [arXiv:1609.00159]

[14] T.D. Lee and C.N. Yang. Statistical Theory of Equations of State and Phase Transitions II. Lattice Gas and Ising Model. Phys. Rev. 87, 404-409 (1952).

[15] E. Mossel. Reconstruction on trees: Beating the second eigenvalue. Ann. Appl. Prob. 11, 285–300 (2001).

[16] R. Peierls. On Ising’s model of ferromagnetism. Proceedings of the Cambridge Philosophical Society. 32, 477-481, (1936).

[17] C. Preston. Gibbs States on Countable Sets. Cambridge University Press, London (1974).

[18] U.A. Rozikov. Gibbs Measures on Cayley Trees. World Scientific, (2013).

[19] U.A. Rozikov. Construction of an uncountable number of limiting Gibbs measures in the inhomogeneous Ising model. Theor. Math. Phys. 118, No 1 (1999).

[20] D. Ruelle. On the use of “small external fields” in the problem of symmetry breakdown in statistical mechanics. Annals of Physics 69, No 2, 364-374 (1972).

[21] A.N Shiryaev. Probability (2Nd Ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA (1995).