DATA NOTE

The genome sequence of the broad-bordered yellow underwing, *Noctua fimbriata* (Schreber, 1759) [version 1; peer review: awaiting peer review]

Peter W.H. Holland¹,
University of Oxford and Wytham Woods Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

¹Department of Zoology, University of Oxford, Oxford, UK

Abstract
We present a genome assembly from an individual female *Noctua fimbriata* (the broad-bordered yellow underwing; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 574 megabases in span. The complete assembly is scaffolded into 32 chromosomal pseudomolecules, with the W and Z sex chromosomes assembled.

Keywords
Noctua fimbriata, broad-bordered yellow underwing, genome sequence, chromosomal, Lepidoptera

This article is included in the Tree of Life gateway.
Species taxonomy
Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Lepidoptera; Glossata; Ditrysia; Noctuoidea; Noctuidae; Noctuinae; Noctuini; Noctua; Noctua fimbriata (Schreber, 1759) (NCBI:txid753202).

Background
Noctua fimbriata (broad-bordered yellow underwing) is a common noctuid moth with marked sexual dimorphism in its wing colouration: females are orange/buff coloured, whereas males are darker brown. There is also variation between individuals in wing colour and pattern, but only on the upper surface of the forewing; (Owen & Whiteley, 1989) have pointed out that restriction to the visual surface is consistent with polymorphism maintained by frequency-dependent selection by predators. The species is found across Europe and western parts of Asia; it occurs throughout the UK, but is less common in the north of England and in Scotland. Larvae of Noctua fimbriata are polyphagous, feeding on many species of herbaceous plant as well as low-growing trees and shrubs; the species is common in woodlands and also often recorded in gardens. N. fimbriata has an unusual flight period in the UK with adults emerging in July, then undergoing a summer aestivation period before a second flight period in late August and September (Randle et al., 2019); the adaptive significance of the aestivation period is unclear.

The genome of N. fimbriata was sequenced as part of the Darwin Tree of Life Project, a collaborative effort to sequence all of the named eukaryotic species in the Atlantic Archipelago of Britain and Ireland. Here we present a chromosomally complete genome sequence for N. fimbriata, based on one female specimen from Wytham Woods, Oxfordshire, UK.

Genome sequence report
The genome was sequenced from a single female N. fimbriata (Figure 1) collected from Wytham Woods, Oxfordshire, UK (latitude 51.772, longitude -1.338). A total of 20-fold coverage in Pacific Biosciences single-molecule long reads (N50 16 kb) and 73-fold coverage in 10X Genomics read clouds were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 222 missing/misjoins and removed 9 haplotypic duplications, reducing the assembly length by 0.37% and the scaffold number by 69.09%, and increasing the scaffold N50 by 41.75%.

Figure 1. Image of the iINocFimb1 specimen taken during preservation and processing.
The final assembly has a total length of 574 Mb in 51 sequence scaffolds with a scaffold N50 of 19.0 Mb (Table 1). Of the assembly sequence, 100% was assigned to 32 chromosomal-level scaffolds, representing 30 autosomes (numbered by sequence length), and the W and Z sex chromosome (Figure 2–Figure 5; Table 2). The assembly has a BUSCO (Manni et al., 2021) completeness of 99.0% using the lepidoptera_odb10 reference set. While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.

Methods
Sample acquisition, DNA extraction and sequencing
A single female *N. fimbriata* (ilNocFimb1) was collected from Wytham Woods, Oxfordshire, UK (latitude 51.772, longitude -1.338) by Peter Holland, University of Oxford, and identified by the same individual. The specimen was found alive in a rain puddle in daytime and preserved on dry ice prior to transfer to the Wellcome Sanger Institute.

DNA was extracted from thorax/abdomen tissue at the Wellcome Sanger Institute (WSI) Scientific Operations core from the whole organism using the Qiagen MagAttract HMW DNA kit, according to the manufacturer’s instructions. Pacific Biosciences HiFi circular consensus and 10X Genomics read cloud sequencing libraries were constructed according to the manufacturers’ instructions. Sequencing was performed by the Scientific Operations core at the Wellcome Sanger Institute on Pacific Biosciences SEQUEL II and Illumina HiSeq X instruments. Hi-C data were generated from remaining thorax/abdomen tissue using the Arima Hi-C+ kit in the Sanger Tree of Life core laboratory and sequenced on HiSeq X.

Table 1. Genome data for *Noctua fimbriata*, ilNocFimb1.1.

Project accession data
Assembly identifier
Species
Specimen
NCBI taxonomy ID
BioProject
BioSample ID
Isolate information

Raw data accessions
PacificBiosciences SEQUEL II
10X Genomics Illumina
Hi-C Illumina

Genome assembly
Assembly accession
Accession of alternate haplotype
Span (Mb)
Number of contigs
Contig N50 length (Mb)
Number of scaffolds
Scaffold N50 length (Mb)
Longest scaffold (Mb)
BUSCO* genome score

*BUSCO scores based on the lepidoptera_odb10 BUSCO set using v5.1.2. C= complete (S= single copy, D= duplicated), F= fragmented, M= missing, n= number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/ilNocFimb1.1/dataset/CAJHZP01/busco.
Figure 2. Genome assembly of *Noctua fimbriata*, ilNocFimb1.1: metrics. The BlobToolKit Snailplot shows N50 metrics and BUSCO gene completeness. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% of the 573,955,380 bp assembly. The distribution of chromosome lengths is shown in dark grey with the plot radius scaled to the longest chromosome present in the assembly (30,735,469 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 chromosome lengths (18,977,511 and 13,094,214 bp), respectively. The pale grey spiral shows the cumulative chromosome count on a log scale with white scale lines showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the lepidoptera_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilNocFimb1.1/dataset/CAJHZP01/snail.

Genome assembly

Assembly was carried out with Hifiasm (Cheng et al., 2021); haplotypic duplication was identified and removed with purge_dups (Guan et al., 2020). One round of polishing was performed by aligning 10X Genomics read data to the assembly with longranger align, calling variants with freebayes (Garrison & Marth, 2012). The assembly was then scaffolded with Hi-C data (Rao et al., 2014) using SALSA2 (Ghurye et al., 2019). The assembly was checked for contamination and corrected using the gEVAL system (Chow et al., 2016).
Figure 3. Genome assembly of *Noctua fimbriata*, ilNocFimb1.1: GC coverage. BlobToolKit GC-coverage plot. Scaffolds are coloured by phylum. Circles are sized in proportion to scaffold length. Histograms show the distribution of scaffold length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilNocFimb1.1/dataset/CAJHZP01/blob.

as described previously (Howe et al., 2021). Manual curation (Howe et al., 2021) was performed using gEVAL, HiGlass (Kerpedjiev et al., 2018) and Pretex. The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva et al., 2021), which performed annotation using MitoFinder (Allio et al., 2020). The genome was analysed and BUSCO scores
Figure 4. Genome assembly of Noctua fimbriata, ilNocFimb1.1: cumulative sequence. BlobToolKit cumulative sequence plot. The grey line shows cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilNocFimb1.1/dataset/CAJHZP01/cumulative.

Table 3 contains a list of all software tool versions used, where appropriate.

Ethics/compliance issues
The materials that have contributed to this genome note have been supplied by a Darwin Tree of Life Partner. The submission
Figure 5. Genome assembly of *Noctua fimbriata*, iINocFimb1.1: Hi-C contact map. Hi-C contact map of the iINocFimb1.1 assembly, visualised in HiGlass. Chromosomes are shown in order of size from left to right and top to bottom.

Table 2. Chromosomal pseudomolecules in the genome assembly of *Noctua fimbriata*, iINocFimb1.1.

INSDC accession	Chromosome	Size (Mb)	GC%
LR990922.1	1	21.73	38.5
LR990923.1	2	21.62	38.4
LR990924.1	3	21.23	37.9
LR990925.1	4	20.31	38.1
LR990926.1	5	20.23	38.5
LR990927.1	6	20.11	38.1
LR990928.1	7	19.97	38.6
LR990935.1	8	18.94	38.7
LR990929.1	9	19.70	38.5
LR990930.1	10	19.66	38.4
LR990931.1	11	19.52	38.1
LR990932.1	12	19.05	38.1
LR990933.1	13	18.98	38.3
LR990934.1	14	18.98	38.9
LR990936.1	15	18.69	38.6
LR990937.1	16	18.49	38.1
LR990938.1	17	18.34	38.1
LR990939.1	18	18.31	38.6
LR990940.1	19	17.69	38.4
LR990941.1	20	17.69	38.4
LR990942.1	21	17.67	38.2
LR990943.1	22	17.25	38.6
LR990944.1	23	16.26	38.3
LR990945.1	24	15.93	38.8
LR990946.1	25	13.23	38.8
LR990947.1	26	13.18	38.5
LR990948.1	27	13.09	38.9
LR990949.1	28	11.91	40.3
LR990950.1	29	11.80	39.2
LR990951.1	30	10.79	39.2
LR990952.1	W	2.94	40.7
LR990921.1	Z	30.74	38.2
LR990953.1	MT	0.02	19.3
-	Unplaced	9.94	40.7
Table 3. Software tools used.

Software tool	Version	Source
Hifiasm	0.12	Cheng et al., 2021
purge_dups	1.2.3	Guan et al., 2020
SALSA2	2.2	Ghurye et al., 2019
longranger align	2.2.2	https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-pipelines
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
MitoHiFi	1	https://github.com/marcelauliano/MitoHiFi
gEVAL	N/A	Chow et al., 2016
PretextView	0.1.x	https://github.com/wtsi-hpag/PretextView
HiGlass	1.11.6	Kerpedjiev et al., 2018
BlobToolKit	2.6.2	Challis et al., 2020

of materials by a Darwin Tree of Life Partner is subject to the Darwin Tree of Life Project Sampling Code of Practice. By agreeing with and signing up to the Sampling Code of Practice, the Darwin Tree of Life Partner agrees they will meet the legal and ethical requirements and standards set out within this document in respect of all samples acquired for, and supplied to, the Darwin Tree of Life Project. Each transfer of samples is further undertaken according to a Research Collaboration Agreement or Material Transfer Agreement entered into by the Darwin Tree of Life Partner, Genome Research Limited (operating as the Wellcome Sanger Institute), and in some circumstances other Darwin Tree of Life collaborators.

Data availability
European Nucleotide Archive: Noctua fimbriata (broad-bordered yellow underwing). Accession number PRJEB42136: https://www.ebi.ac.uk/ena/browser/view/PRJEB42136.

The genome sequence is released openly for reuse. The N. fimbriata genome sequencing initiative is part of the Darwin Tree of Life (DToL) project. All raw sequence data and the assembly have been deposited in INSDC databases. The genome will be annotated and presented through the Ensembl pipeline at the European Bioinformatics Institute. Raw data and assembly accession identifiers are reported in Table 1.

Author information
Members of the University of Oxford and Wytham Woods Genome Acquisition Lab are listed here: https://doi.org/10.5281/zenodo.5746938.

Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.5744972.

Members of the Wellcome Sanger Institute Tree of Life programme are listed here: https://doi.org/10.5281/zenodo.5744840.

Members of Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.5746904.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.5743293.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.5638618.

References
Allio R, Schomaker-Bastos A, Romiguier J, et al.: MitoFinder: Efficient Automated Large-Scale Extraction of Mitogenomic Data in Target Enrichment Phylogenomics. Mol Ecol Resour. 2020; 20(4): 892–905. PubMed Abstract | Publisher Full Text | Free Full Text

Challis R, Richards E, Rajan J, et al.: BlobToolKit - Interactive Quality Assessment of Genome Assemblies. G3 (Bethesda). 2020; 10(4): 1361–74. PubMed Abstract | Publisher Full Text | Free Full Text
