AN ARCHITECTURE FOR OPPORTUNISTIC TEXT GENERATION

Chris Mellish, Mick O'Donnell, Jon Oberlander and Alistair Knott
Department of Artificial Intelligence and Human Communication Research Centre, University of Edinburgh

Abstract

We describe the architecture of the ILEX system, which supports opportunistic text generation. In web-based text generation, the system cannot plan the entire multi-page discourse because the user's browsing path is unpredictable. For this reason, the system must be ready opportunistically to take advantage of whatever path the user chooses. We describe both the nature of opportunism in ILEX's museum domain, and then show how ILEX has been designed to function in this environment. The architecture presented addresses opportunism in both content determination and sentence planning.

1 Exploiting opportunities in text generation

Many models of text generation make use of standard patterns (whether expressed as schemas (e.g. [McKeown 85]) or plan operators (e.g. [Moore and Paris 93])) to break down communicative goals in such a way as to produce extended texts. Such models are making two basic assumptions:

1. Text generation is goal directed, in the sense that spans and subspans of text are designed to achieve unitary communicative goals [Grosz and Sidner 86].

2. Although the details of the structure of a text may have to be tuned to particulars of the communicative situation, generally the structure is determined by the goals and their decomposition. That is, a generator needs strategies for decomposing the achievement of complex goals into sequences of utterances, rather than ways of combining sequences of utterances into more complex structures. Generation is "top-down", rather than "bottom-up" [Marcu 97].

Our belief is that there is an important class of NLG problems for which these basic assumptions are not helpful. These problems all involve situations where semi-fixed explanation strategies are less useful than the ability to exploit opportunities. WordNet gives the following definition of "opportunity":

Opportunity: "A possibility due to a favorable combination of circumstances"

Because opportunities involve combinations of circumstances, they are often unexpected and hard to predict. It may be too expensive or impossible to have complete knowledge about them. Top-down generation strategies may not be able to exploit opportunities (except at the cost of looking for all opportunities at all points) because it is difficult to associate classes of opportunities with fixed stages in the explanation process.

We are investigating opportunistic text generation in the Intelligent Labelling Explorer (ILEX) project, which seeks automatically to generate a sequence of commentaries for items in an electronic...
catalogue (or museum gallery) in such a way as to reflect the interest of the user and also to further
certain educational (or other) aims. The current domain of the system is the 20th Century Jewellery
Exhibit in the Royal Museum of Scotland but ILEX is designed to work with any domain where
object descriptions are required. In ILEX, the system has an agenda of communicative goals to
achieve, which reflect the goals of the curators. The user has the freedom to look at any object in
the gallery at any time. The system produces a description of each object asked for by the user,
such that each description contributes as best it can to the system’s goals and the sequence of
descriptions fits together into a coherent whole. The result is a variety of mixed-initiative dialogue,
in which the user is in control of the high-level communicative goal (what gets described) but the
system is in control of how the goal is realised (how the chosen object is described).

In such a dynamically unfolding environment, it is not possible to predict all possible paths
through the interaction. The system must thus be ready to exploit opportunities in order to
achieve its goals. In ILEX, the user’s arbitrary choice represents a horizon beyond which is it not
practical to predict. Each generated page may be the last one to be generated and therefore has to
be planned to achieve as much as possible on its own. Moreover, almost any part of the generated
text can be optimised to exploit the arbitrary situation that the user has got themself into.

2 Opportunities: evidence and models

2.1 Evidence: the goals of a museum curator

A museum curator seeks to achieve general educational goals through the description of a set
of carefully selected objects. In general, the goals are to convey important generalisations (e.g.
“Organic jewellery tends to have natural themes”) and to dispel important misconceptions (e.g.
“Jewellery tends to be made of expensive materials”). These important points have to be brought
in appropriately during the description of the exhibits which are selected by the visitor.

In order to see how a human being tackles such complex goals, we performed a “Curator of
Oz” experiment, in which we chose an arbitrary sequence of exhibits in the 20th Century Jewellery
gallery of the National Museum of Scotland and asked the curator to give us a commentary. The
curator introduced general points/themes suggested by the objects, moving from the objects
to the general issues surrounding them, using the objects merely as an excuse to introduce these
topics, for instance as in the following (“V” indicates the visitor and “C” the curator):

V: “There’s a set of three objects here.”
C: “What these symbolise for me are the preoccupations of the 1980’s with...”

She reinforced points from the past, exploiting an excuse to come back to an important point
that has already been made and show its relevance in a new situation:

V: “This one here...”
C: “Yes, you’ve made a link with the first piece that we looked at, which is the idea of
a jewel which is also a work of art and a sculpture...”

She also made links to previous items, thereby improving the continuity of the discourse:

C: “…and it was work like this which directly inspired work like the Roger Morris
brooch on the stand which we looked at earlier.”
All of these can be regarded as ways of exploiting opportunities offered by the situation.

There is nothing like a conventional schema structure to the descriptions produced. The approach looks a lot more like putting together arbitrary pieces of interesting material subject to only very loose restrictions. This may not be the best way to produce a carefully-argued written text, and clearly the result is not always fluent according to stringent criteria. In some—but not all—respects, it resembles the unplanned discourses discussed by [Ochs 79]. Furthermore, in the interactive and relatively informal setting of a museum tour, it works.

We thus decided that ILEX should have a whole set of goals about things to say. These are linked into a single metalevel goal, which is something like "to achieve as many of the individual goals as possible, within the space available, in the context of a globally coherent discourse which maintains the reader's interest".

2.2 Models: planning for opportunities

We discussed above why top-down planning seems an unnatural basis for formulating an NLG model that can exploit opportunities. In contrast, ILEX is inspired loosely by ideas from opportunistic planning [Hayes-Roth and Hayes-Roth 79, Pryor 96]. Key elements of this are:

- Interleaving of planning and execution.
- Expanding "sketchy plans" as needed, taking into account the current state of the world.
- Flexible choice of tasks from an agenda.
- Recognition of opportunities through detection of reference features, followed by more thorough analysis.

Pryor's work is implemented in PARETO, a planner for a simulated robot delivery vehicle. The vehicle is given orders to deliver various objects to various building sites, and needs to locate these objects at other sites. The system is opportunistic in that while the truck is working on one goal, it is always ready to switch to another if an object on its find-and-deliver list turns up. For example, if the truck stops at one place to pick up a hammer, it may notice a saw, which is also on its list, and thus pick it up and proceed to its delivery point.

Pryor's planning occurs within a limited horizon—the robot only has certain knowledge in regards to the immediate location, and outside of that, the world is uncertain (objects are sometimes randomly moved between sites in the world). ILEX inhabits a world analogous in certain respects to PARETO's: each page is a site on the map, and it is up to us to find opportunities for realising our goals at each site. However, while in the truck world the system is in control of motion to the next site, in the museum, it is the user who chooses the next page. Conversely, while objects outside the truck's immediate vicinity may move autonomously, for ILEX, facts and their values do not change.

Opportunistic planning has similarities with a number of other approaches to planning. It shares with incremental planning (used in NLG by [Cawsey 92]) the idea of starting to execute a plan before the plan is complete, and being prepared to repair the partial plan in the light of feedback. It shares with reactive planning the idea of being directed as much by the characteristics of the state of the world at execution time as by the pursuit of preconceived goals. However, unlike pure reactive planning it does acknowledge the need for explicit plans to be manipulated and it
differs from many models of incremental planning in the extent to which the original plan can be diverted to exploit the characteristics of the world at execution time.

3 The ILEX architecture

To show how ILEX supports opportunistic text generation, we will here outline the parts of the system and the operation of its text planning. Basically the ILEX task agenda at each point consists of the facts that the system knows which have not yet been conveyed to the user. Each of these 'tasks' has an opportunity value (its educational value, assumed interest to the reader and contribution to coherence). At each point of the discourse, we 'perform tasks' (include facts) which provide the highest opportunity gain.

3.1 The Content Potential

The facts of our knowledge base are interconnected in various ways, and to facilitate content selection and structuring, we organise the facts into a content potential - a graph of facts interconnected in terms of thematic and rhetorical relations. The content potential is an intermediary stage between the knowledge base and text, motivated in a similar way to DRSs [Kamp 81] by the desire explicitly to represent the selection of possible knowledge structures that can be reflected linguistically. As Figure 1 shows, the content potential forms a three-tiered structure of entities, facts and relations. There are links between items in adjoining tiers, but no links within a tier or between entities and relations. We now discuss the three tiers in turn.

3.1.1 Entities

Entities are the participants in facts (things and qualities in terms of Penman's Upper Model). Entities may be of two kinds: specific entities - such as an individual jewel or person; and generic entities - an entity representing some class of entities, such as Scottish jewellers, or art-deco brooches. Generic entities are treated essentially in the same way as specific entities in the content potential, for purposes such as the tracking of focus, anaphor generation, and so on.

3.1.2 Facts

Facts represent the relations between entities, in both events (e.g., X made Y), and states (e.g., X owns Y). In ILEX, we have assumed that all facts are binary (simple relations between two entities), e.g., made-by(J-9999, King01) represents the fact that the designer King made item
J-999. The binary assumption simplifies our architecture, allowing quicker text generation. At a later stage, we may allow more complex fact-representation. Complex sentences can be formed through aggregating together these binary facts. Each fact has the following fields: 2

Pred : The name of the predicate connecting the two entities.

Arg1 : The entity in the relationship which the fact is primarily about. For instance, “J-999 was designed by Jessie King” is primarily about J-999, not about King.

Arg2 : The other entity in the relationship. This is sometimes another thing (such as “Jessie King”) and sometimes a quality.

Various other fields exist which detail the polarity, defeasibility, interest, importance and assimilation of the fact. Facts representing general principles or negations of general misconceptions are expressed using generic entities and can be included in a text just like any other facts.

3.1.3 Relations

Relation nodes represent relations between facts. Although based on conceptual relations, they qualify as rhetorical in that only the subset of relations that could explicitly be conveyed is included in the content potential. Relations include Example, Concession, Amplification, Similarity, Contrast, “In that”, “In other words”, Specification, Whereas and While. Each relation has a nucleus and satellite (as in RST) as well as a set of precondition facts, which must be assimilated before the relation can be. There are no relations between relation-nodes in the content potential at present. Relation-nodes only link fact-nodes.

Relations in the content potential present a uniform interface as nodes connected to facts in the graph but we do not have a uniform theory of all the relations. Figure 2 shows a small subgraph of the content-potential, showing two Concession relations between facts.

Most of the content potential is precompiled, though relevant negations and comparisons depend on the set of entities already encountered and have to be computed on demand, causing the addition of various consequent facts and relations.

2Another type of fact node is used to contain canned text. The canned text is usually associated with the focal object of the text, and no Arg2 field is provided.
3.2 Content Determination

ILEX plans a single page of text, describing a single entity, at a time. The content potential represents the information we can express, and the interconnectivity of information. When we receive the request for an entity description, the planner sets that entity as the global focus of the current page. Opportunistic planning then commences: The facts directly connected to that entity represent opportunities: the system can coherently include these facts in the text. If any of these facts are actually selected, then new opportunities are created in two ways:

- **Entity-based moves**: From the fact, we go to the argument which we didn't enter the fact from. We then select a new fact reachable from this node. See Figure 3. If we followed the Arg2 role of a fact, then we are in a sense selecting a new focus (local focus). The facts we generate about this entity should have the new entity as the focus. Thus in the example, King becomes the Theme of the second sentence. Sentences introduced using entity-based moves can be realised using an *Elaboration* relation to the starting fact.

 An entity-based move from an individual entity to its generic class entity can be made once the appropriate "isa" fact has been selected:

 This item is an organic jewel.
 Organic jewels tend to be ...

- **Relation-based moves**: from the initial fact, we follow a relation-node to some new fact. The new fact will be realised textually as a satellite to the original fact's nucleus. The type of the relation-node will determine the rhetorical relation of the link. See Figure 4.

 Once we select a new fact in either of the ways described above, the new fact may act as the starting point for new opportunistic expansion. Alternatively, we may decide to backtrack to some earlier point, effecting a focus pop in Grosz and Sidner's [Grosz and Sidner 86] terms.

 The selection of which opportunity to explore is determined by a number of heuristic factors. Firstly, facts are weighted according to the chain of relations back to the focus of the page [O'Donnell 97]. This is a way of preventing lengthly digressions from the supposed topic of the text. Secondly, each fact is associated with numbers which represent the opportunity 'value' of the fact. The opportunities are of two kinds:

 Interest: the estimated value of the fact to the user, e.g. being made of plastic or paper are more interesting (to the user), because they are unusual in jewellery. Canned anecdotes about a piece of jewellery may also have high interest values.
Importance. The value of the fact as regards the system's educational agenda, e.g., the system considers it important to educate on stylistic development, so facts about styles are rated highly.

These values are moderated by a third fact annotation:

Assimilation. The degree to which the fact is assumed known to the user, either from general knowledge, or through prior mentions in the web interaction (these values change dynamically).

The three values interest, importance and \((1 - \text{assimilation})\) are multiplied together to calculate the local score of each fact. The overall opportunity value of a fact is the product of the local score of the fact, the overall opportunity value of the parent (the node through which it was reached) and a weight for the relation between them. It is the overall opportunity values that are used to select which textual opportunities to follow. We have no special theory about where interest and importance come from, though the above examples suggest that there may be domain- and user-type-specific rules that can be used to derive some of them.

In summary, content-determination in ILEX is seen as the task of optimising the selection of opportunities that are offered by the topic of the text, subject to not moving too far from that topic. The result of content-determination is a connected subgraph of the content potential (Figure 5). The use of interest and importance in ILEX is analogous to the use of "salience" in [McDonald and Conklin 82]. Because the process is seen as a graph traversal problem, there are also similarities with work on generating text from semantic networks [Simmons and Slocum 72, Sibun 92]. In a sense, our work aims to combine the best of both.

3.3 Text Planning

Although the process of content determination has worked through a number of moves that may be made in the generated text, the result is not the kind of tree structure that one needs for realisation and also has been influenced only by local considerations of coherence. Text planning therefore requires the following two steps:

1. Extend the subgraph to a complete subgraph that includes all the relations linking the selected fact nodes.
2. Produce from this an “optimal” selection of relations, so as to give rise to an RST tree including all the selected facts.

The idea of combining a set of facts together into an “optimal” text is compatible with [Hovy 90] and the earlier work of [Mann and Moore 81]. Again this involves exploiting opportunities. For instance, in order to avoid an awkward focus shift at some point, one might attempt to include a selected fact about a new entity immediately after another one that mentions the same entity. Other text planning operations that are opportunistic in nature include aggregation [Dalianis and Hovy 96] and redundancy suppression [McDonald 92], though we will not consider these here.

The second step described above is exactly that described by [Marcu 97]. That is, one is given a set of facts all of which should be included in a text and a set of relations between facts, some of which can be included in the text. The task is to produce a legal RS tree using the facts and some relations (or the “best” such tree). Marcu’s approach first of all attempts to find the best ordering of the facts. For every relation that could be indicated, constraints are generated saying what the order of the two facts involved should be and that the facts should be adjacent. The constraints are weighted according to attributes of rhetorical relations that have been determined empirically. A standard constraint satisfaction algorithm is used to find the linear sequence such that the total weight of the satisfied constraints is maximal. Once the sequence of facts is known, a general algorithm is used to construct all possible RS trees based on those facts.

We could use Marcu's methods directly, but are exploring more widely because we would like to take into account a wider range of preference criteria, develop algorithms that treat entity-based elaborations rather differently from other rhetorical relations [Oberlander et al 98] and investigate heuristic approaches that will scale up better. We are currently experimenting with three different algorithms for building an RST tree. These are all opportunistic in nature, rather than being strongly goal-directed or schema-based:

1. The RS tree (realised depth-first) is built to directly reflect the tree of nodes explored (breadth-first) in the content potential.

2. The best trees up to a fixed depth using relational moves are constructed; these are “glued” together using entity based moves [Oberlander et al 98].

3. A genetic algorithm is used to search for a legal tree that is of as high quality as possible [Mellish et al 98].

The current version of ILEX, which is being prepared for evaluation, uses the second of these algorithms and generates context-dependent descriptions for 32 different items of modern jewellery
This jewel is a bracelet and is in the Organic style. It draws on natural themes for inspiration, in that it is a remarkably fluid piece. Indeed Organic style jewels usually draw on natural themes for inspiration; for instance this jewel is inspired by forms found in natural wood, in that it has a bracelet with a twig-like appearance. It resembles the Arts and Crafts style necklace, in that like the necklace it is made from silver metal. However this jewel differs from the necklace, in that it was made by Gerda Flockinger, whereas the necklace was made by Arthur and Georgie Gaskin. ... Organic style jewels differ from Art Deco style jewels, in that they are usually made up of asymmetrical shapes, whereas Art Deco style jewels usually use geometric forms.

Other jewels in the Organic style include...

Figure 6: Example output text

(the non-demo version deals with 120). Descriptions of different lengths can be obtained (for the evaluation, the system generates on demand 4 or more pages of about 10 clauses each for each item). Figure 6 shows part of a relatively long description generated.

3.4 ILEX and Opportunistic Planning

With this description of ILEX in mind, we can explore the analogy with PARETO in more detail. Where PARETO embarks on the execution of a sketchy plan to start moving around the truck world, ILEX embarks on a graph traversal, starting out from the topic entity and guided by the desire not to digress excessively. The content potential offers options to ILEX in a similar way to PARETO's world. In PARETO, reference features indicate possible opportunities; in ILEX this role is played by the interest and importance annotations. Deeper analysis is required by PARETO before seizing an opportunity; this is probably analogous to the way that ILEX attempts to find the globally best way of incorporating material into the RST tree.

4 Conclusions

An opportunistic planning algorithm seems to be required for the ILEX domain (and some other domains too). ILEX certainly does have goals – to educate the user and keep them interested. But these are essentially compiled away into the content of the content potential (e.g. the entities and general facts that are included) and the interest and importance annotations on facts. At runtime, ILEX just has the task of selecting the best opportunities, given the situation that the user has reached. These opportunities arise not just in how content is selected but also in how it is structured. We conclude that there a strong analogy between the way that ILEX operates and the techniques used in opportunistic approaches to planning in other domains, and this connection is worthy of further exploration.

5 Acknowledgements

The ILEX project is supported by EPSRC grant GR/K53321, and the third author is supported by an EPSRC Advanced Fellowship. This work is in collaboration with the National Museums of Scotland, Interactive Information and VIS Interactive Media.
References

[Cawsey 92] Cawsey, A., Explanation and Interaction, MIT Press, 1992.

[Dalianis and Hovy 96] Dalianis, H. and Hovy, E., “Aggregation in Natural Language Generation”, in Adorni, G. and Zock, M., Eds., Trends in Natural Language Generation, pp88–105, Springer Verlag, 1996.

[Grosz and Sidner 86] Grosz, B. and Sidner, C., “Attention, intentions and the structure of discourse”, Computational Linguistics, 12, 175-204, 1986.

[Hayes-Roth and Hayes-Roth 79] Hayes-Roth, B. and Hayes-Roth, F., “A cognitive model of planning”, Cognitive Science, 3, pp275–310, 1979.

[Hovy 90] Hovy, E., “Unresolved issues in paragraph planning”, in Dale, R., Mellish, C. and Zock, M., (eds.) Current Research in Natural Language Generation, pp17–45. Academic Press, 1990.

[Kamp 81] Kamp, H., “A theory of truth and semantic representation”, in Groenendijk, J. A. G., Janssen, T. M. V. and Stokhof, M. B. J. (eds.) Formal Methods in the Study of Language 136, pp.277–322. Amsterdam: Mathematical Centre. Tracts.

[Marcu 97] Marcu, D., “From local to global coherence: a bottom-up approach to text planning”, in Proceedings of AAAI-97, pp629–635, American Association for Artificial Intelligence, 1997.

[Mann and Moore 81] Mann, W. and Moore, J., “Computer generation of multiparagraph english text”, Computational Linguistics, 7, 17–29, 1981.

[McDonald 92] McDonald, D., “Type-Driven Suppression of Redundancy in the Generation of Inference Rich Reports”, in Dale, R., Hovy, E., Rosner, D. and Stock, O., Eds., Aspects of Automated Natural Language Generation, pp73–88, Springer Verlag, 1992.

[McDonald and Conklin 82] McDonald, D. and Conklin, E. J., “Salience as a simplifying metaphor for natural language generation”, in Proceedings of AAAI-82, American Association for Artificial Intelligence, 1982.

[McKeown 85] McKeown, K., Text Generation: Using Discourse Strategies and Focus Constraints to Generate Natural Language Text, Cambridge University Press, 1985.

[Mellish et al 98] Mellish, C., Knott, A., Oberlander, J., and O’Donnell, M., “Experiments using stochastic search for text planning, Procs of INLGW-98, 1998.

[Moore and Paris 93] Moore, J. and Paris, C., “Planning texts for advisory dialogues: capturing intentional and rhetorical information”, Computational Linguistics, 19, pp651–694, 1993.

[Oberlander et al 98] Oberlander, J., Knott, A., O’Donnell, M. and Mellish, C., “Information structure and non-canonical syntax in descriptive texts”. To appear in Sanders, T., Schilperoord, J. and Spooren, W., Eds., Text Representation: Linguistic and Psycholinguistic Aspects, Amsterdam: Benjamins, 1998.

[Ochs 79] Ochs, E., “Planned and unplanned discourse”, in Givón, T. (ed.) Syntax and Semantics 12: Discourse and Syntax, pp.51–80. New York: Academic Press.

[O’Donnell 97] O’Donnell, M., “Variable-length on-line document generation”, in Proceedings of the 6th European Workshop on Natural Language Generation Gerhard-Mercator University, Duisburg, Germany, 1997.

[Pryor 96] Pryor, L., “Opportunity recognition in complex environments”, in Proceedings of AAAI-96, American Association for Artificial Intelligence, 1996.

[Sibun 92] Sibun, P., “Generating texts without trees”, Computational Intelligence, 8, 102–122, 1992.

[Simmons and Slocum 72] Simmons, R. and Slocum, J., “Generating English discourse from semantic networks”, Communications of the ACM 15, 891–905, 1972.