On algebraic curves with many automorphisms in characteristic p

Maria Montanucci1

Received: 13 December 2021 / Accepted: 21 March 2022 / Published online: 19 May 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Let \mathcal{X} be an irreducible, non-singular, algebraic curve defined over a field of odd characteristic p. Let g and γ be the genus and p-rank of \mathcal{X}, respectively. The influence of g and γ on the automorphism group $\text{Aut}(\mathcal{X})$ of \mathcal{X} is well-known in the literature. If $g \geq 2$ then $\text{Aut}(\mathcal{X})$ is a finite group, and unless \mathcal{X} is the so-called Hermitian curve, its order is upper bounded by a polynomial in g of degree four (Stichtenoth). In 1978 Henn proposed a refinement of Stichtenoth’s bound of degree 3 in g up to few exceptions, all having p-rank zero. In this paper a further refinement of Henn’s result is proposed. First, we prove that if an algebraic curve of genus $g \geq 2$ has more than $336g^2$ automorphisms then its automorphism group has exactly two short orbits, one tame and one non-tame, that is, the action of the group is completely known. Finally when $|\text{Aut}(\mathcal{X})| \geq 900g^2$ sufficient conditions for \mathcal{X} to have p-rank zero are provided.

Keywords Algebraic curve · Automorphism group · p-rank · Genus

Mathematics Subject Classification 11G20 · 20B25

1 Introduction

Let \mathcal{X} be a projective, geometrically irreducible, non-singular algebraic curve defined over an algebraically closed field \mathbb{K} of positive characteristic p. Let $\mathbb{K}(\mathcal{X})$ be the field of rational functions on \mathcal{X} (i.e. the function field of \mathcal{X} over \mathbb{K}). The \mathbb{K}-automorphism group $\text{Aut}(\mathcal{X})$ of \mathcal{X} is defined as the automorphism group of $\mathbb{K}(\mathcal{X})$ fixing \mathbb{K} element-wise. The group $\text{Aut}(\mathcal{X})$ has a faithful action on the set of points of \mathcal{X}.

By a classical result, $\text{Aut}(\mathcal{X})$ is finite whenever the genus g of \mathcal{X} is at least two; see [16] and [7, Chapter 11; 22–24,31,33]. Furthermore it is known that every finite group occurs in
this way, since, for any ground field \(\mathbb{K} \) and any finite group \(G \), there exists an algebraic curve \(X \) defined over \(\mathbb{K} \) such that \(Aut(X) \cong G \); see [12, 13, 22].

This result raised a general problem for groups and curves, namely, that of determining the finite groups that can be realized as the \(\mathbb{K} \)-automorphism group of some curve with a given invariant. The most important such invariant is the *genus* \(g \) of the curve. In positive characteristic, another important invariant is the so-called *p-rank* of the curve, which is the integer \(0 \leq \gamma \leq g \) such that the Jacobian of \(X \) has \(p^\gamma \) points of order \(p \).

Several results on the interaction between the automorphism group, the genus and the \(p \)-rank of a curve can be found in the literature. A remarkable example is the work of Nakajima [14] who showed that the value of the \(p \)-rank deeply influences the order of a \(p \)-group of automorphisms of \(X \). He also showed that curves for which the \(p \)-rank is the largest possible, namely \(\gamma = g \), have at most \(84(g^2 - g) \) automorphisms.

In [8] Hurwitz showed that if \(X \) is defined over \(\mathbb{C} \) then \(|Aut(X)| \leq 84(g - 1) \), which is known as the *Hurwitz bound*. This bound is sharp, i.e., there exist algebraic curves over \(\mathbb{C} \) of arbitrarily high genus whose automorphism group has order exactly \(84(g - 1) \). Well-known examples are the Klein quartic and the Fricke-Macbeath curve, see [11]. Roquette [15] showed that Hurwitz bound also holds in positive characteristic \(p \), if \(p \) does not divide \(|Aut(X)| \).

A general bound in positive characteristic is \(|Aut(X)| \leq 16g^4 \) with one exception: the so-called Hermitian curve. This result is due to Stichtenoth [20, 21].

The quartic bound \(|Aut(X)| \leq 16g^4 \) was improved by Henn in [6]. Henn’s result shows that if \(|Aut(X)| > 8g^3 \) then \(X \) is \(\mathbb{K} \)-isomorphic to one of the following four curves:

\[\begin{align*}
&\text{the non-singular model of the plane curve } Y^2 + Y = X^{2k+1}, \text{ with } k > 1 \text{ and } p = 2; \\
&\text{the non-singular model of } Y^2 = X^n - X, \text{ where } n = p^h, h > 0 \text{ and } p > 2; \\
&\text{the Hermitian curve } \mathcal{H}_q : Y^{q+1} = X^q + X \text{ where } q = p^h \text{ and } h > 0; \\
&\text{the non-singular model of the Suzuki curve } S_q : X^{q_0}(X^q + X) = Y^q + Y, \text{ where } q_0 = 2^r, \\
& r \geq 1 \text{ and } q = 2q_0^2.
\end{align*} \]

All the above exceptions have \(p \)-rank zero. This observation raised the following problem.

Open problem 1.1 *Is it possible to find a (optimal) function \(f(g) \) such that the existence of an automorphism group \(G \) of \(X \) with \(|G| \geq f(g) \) implies \(\gamma = 0 \)?*

Clearly from Henn’s result \(f(g) \leq 8g^3 \). Also \(f(g) \) cannot be asymptotically of order less than \(g^{3/2} \) as algebraic curves of positive \(p \)-rank with approximately \(g^{3/2} \) automorphisms are known; see for example [10].

Open Problem 1.1 was already studied in [3] where a positive answer is given under the additional hypothesis that \(g \) is even or that the automorphism group \(G \) is solvable.

Theorem 1.2 [3, Theorem 1.1 and Theorem 1.2] Let \(\mathbb{K} \) be an algebraically closed field of odd characteristic \(p \) and let \(X \) be an algebraic curve defined over \(\mathbb{K} \). If \(X \) has even genus \(g \geq 2 \) and at least \(900g^2 \) automorphisms then its \(p \)-rank \(\gamma \) is equal to zero. If \(X \) is of arbitrary genus \(g \geq 2 \) and it has a soluble automorphism group of order at least \(84pg^2/(p - 2) \) then the \(p \)-rank of \(X \) is zero.

In this paper we analyze large automorphism groups of curves of arbitrary genus \(g \geq 2 \) giving a partial answer to Open Problem 1.1. The following theorem summarizes our main results.

Theorem 1.3 *Let \(G \) be an automorphism group of an algebraic curve \(X \) defined over a field of odd characteristic \(p \). Denote with \(g \geq 2 \) and \(\gamma \) the genus and the \(p \)-rank of \(X \) respectively.*
On algebraic curves with many automorphisms in characteristic \(p \)

1. If \(|G| > 24g^2 \) then either \(G \) has a unique (non-tame) short orbit or it has exactly two short orbits, one tame and one non-tame.
2. If \(G \) has exactly one non-tame short orbit then \(|G| \leq 336g^2 \).
3. If \(|G| \geq 60g^2 \) and \(G \) has exactly one non-tame short orbit then \(\gamma \) is positive and congruent to zero modulo \(p \).
4. If \(|G| \geq 900g^2 \) then \(G \) has exactly one non-tame short orbit \(O_1 \) and one tame short orbit \(O_2 \). If \(\mathcal{X}/G_{p_1}^{(1)} \) is rational for \(P \in O_1 \) and the stabilizer \(G_{p,R} \) with \(R \in O_1 \setminus \{ P \} \) is either a \(p \)-group or a prime-to-\(p \) group then \(\gamma \) is zero.

Note that this theorem implies that whenever a quadratic bound like \(|Aut(\mathcal{X})| > 336g^2 \) holds, then the action of the group is completely known, having one tame and one non-tame short orbits.

The paper is organized as follows. In Sect. 2 some preliminary results on automorphism groups of algebraic curves in positive characteristic are recalled. In Sect. 3 Parts 1–3 of Theorem 1.3 are proven, while Part 4 is the main object of Sect. 4.

2 Preliminary results

In this paper, \(\mathcal{X} \) stands for a (projective, geometrically irreducible, non-singular) algebraic curve of genus \(g = g(\mathcal{X}) \geq 2 \) defined over an algebraically closed field \(\mathbb{K} \) of odd characteristic \(p \). Let \(Aut(\mathcal{X}) \) be the group of all automorphisms of \(\mathcal{X} \). The assumption \(g(\mathcal{X}) \geq 2 \) ensures that \(Aut(\mathcal{X}) \) is finite. However the classical Hurwitz bound \(|Aut(\mathcal{X})| \leq 84(g(\mathcal{X}) - 1) \) for complex curves fails in positive characteristic, and there exist four families of curves satisfying \(|Aut(\mathcal{X})| \geq 8g(\mathcal{X})^3 \); see [21], Henn [6], and also [7, Section 11.12].

For a subgroup \(G \) of \(Aut(\mathcal{X}) \), let \(\tilde{\mathcal{X}} \) denote a non-singular model of \(\mathbb{K}(\mathcal{X})^G \), that is, a (projective non-singular geometrically irreducible) algebraic curve with function field \(\mathbb{K}(\mathcal{X})^G \), where \(\mathbb{K}(\mathcal{X})^G \) consists of all elements of \(\mathbb{K}(\mathcal{X}) \) fixed by every element in \(G \). Usually, \(\tilde{\mathcal{X}} \) is called the quotient curve of \(\mathcal{X} \) by \(G \) and denoted by \(\mathcal{X}/G \). The field extension \(\mathbb{K}(\mathcal{X})/\mathbb{K}(\mathcal{X})^G \) is Galois of degree \(|G| \).

Let \(\Phi \) be the cover of \(\Phi : \mathcal{X} \to \tilde{\mathcal{X}} \) where \(\tilde{\mathcal{X}} = \mathcal{X}/G \). A point \(P \in \mathcal{X} \) is a ramification point of \(G \) if the stabilizer \(G_P \) of \(P \) in \(G \) is nontrivial; the ramification index \(e_P \) is \(|G_P| \); a point \(\tilde{Q} \in \tilde{\mathcal{X}} \) is a branch point of \(G \) if there is a ramification point \(P \in \mathcal{X} \) such that \(\Phi(P) = \tilde{Q} \); the ramification (branch) locus of \(G \) is the set of all ramification (branch) points. The \(G \)-orbit of \(P \in \mathcal{X} \) is the subset \(o = \{ R \mid R = g(P), \ g \in G \} \) of \(\mathcal{X} \), and it is long if \(|o| = |G| \), otherwise \(o \) is short. For a point \(\tilde{Q} \), the \(G \)-orbit \(o \) lying over \(\tilde{Q} \) consists of all points \(P \in \mathcal{X} \) such that \(\Phi(P) = \tilde{Q} \). If \(P \in o \) then \(|o| = |G|/|G_P| \) and hence \(\tilde{Q} \) is a branch point if and only if \(o \) is a short \(G \)-orbit. It may be that \(G \) has no short orbits. This is the case if and only if every non-trivial element in \(G \) is fixed–point-free on \(\mathcal{X} \), that is, the cover \(\Phi \) is unramified. On the other hand, \(G \) has a finite number of short orbits.

For a non-negative integer \(i \), the \(i \)-th ramification group of \(\mathcal{X} \) at \(P \) is denoted by \(G_{p}^{(i)} \) (or \(G_{i}(P) \) as in [17, Chapter IV]) and defined to be

\[
G_{p}^{(i)} = \{ \alpha \in G_P \mid \text{ord}_P(\alpha(t) - t) \geq i + 1 \},
\]

where \(t \) is a uniformizing element (local parameter) at \(P \). Here \(G_{p}^{(0)} = G_P \).
Let \(\tilde{g} \) be the genus of the quotient curve \(\tilde{X} = X/G \). The Hurwitz genus formula [19, Theorem 3.4.13] gives the following equation

\[
2g - 2 = |G|(2\tilde{g} - 2) + \sum_{P \in \tilde{X}} d_P,
\]

where the different \(d_P \) at \(P \) is given by

\[
d_P = \sum_{i \geq 0} (|G|^{(i)} - 1),
\]

see [7, Theorem 11.70].

Let \(\gamma \) be the \(p \)-rank of \(X \), and let \(\tilde{\gamma} \) be the \(p \)-rank of the quotient curve \(\tilde{X} = X/G \). A formula relating \(\gamma \) and \(\tilde{\gamma} \) is known whenever \(G \) is a \(p \)-group. Indeed if \(G \) is a \(p \)-group, the Deuring-Shafarevich formula states that

\[
\gamma - 1 = |G|(\tilde{\gamma} - 1) + \sum_{i=0}^{k} (|G| - \ell_i),
\]

where \(\ell_1, \ldots, \ell_k \) are the sizes of the short orbits of \(G \); see [23] or [7, Theorem 11.62].

A subgroup of \(\text{Aut}(X) \) is a prime-to-\(p \) group (or a \(p' \)-subgroup) if its order is prime to \(p \). A subgroup \(G \) of \(\text{Aut}(X) \) is tame if the 1-point stabilizer of any point in \(G \) is \(p' \)-group. Otherwise, \(G \) is non-tame (or wild). By [7, Theorem 11.56], if \(|G| > 84(g(X) - 1) \) then \(G \) is non-tame.

An orbit \(o \) of \(G \) is tame if \(G_P \) is a \(p' \)-group for \(P \in o \). The following lemma gives a strong restriction to the action of the Sylow \(p' \)-subgroup of the stabilizer of a point \(P \in X \) when \(\gamma = \gamma(X) = 0 \).

Result 2.1 [7, Lemma 11.129] If \(\gamma(X) = 0 \) then every element of order \(p \) in \(\text{Aut}(X) \) has exactly one fixed point on \(X \).

Bounds for the order of tame automorphism groups fixing a point are known; see [7, Theorem 11.60].

Result 2.2 Let \(X \) be an irreducible curve of genus \(g > 0 \), and let \(G_P \) be a \(\mathbb{K} \)-automorphism group of \(X \) fixing a point \(P \). If the order \(n \) of \(G_P \) is prime to \(p \), then \(n \leq 4g + 2 \).

Strong restrictions for the short orbits structure of automorphism groups of algebraic curves are known when the Hurwitz bound \(84(g(X) - 1) \) fails. In particular, the following theorem ensures that automorphism groups for which the Hurwitz bound is not satisfied have at most three short orbits.

Theorem 2.3 [7, Theorem 11.56] Let \(X \) be an irreducible curve of genus \(g \geq 2 \) defined over a field \(\mathbb{K} \) of characteristic \(p \).

- If \(G \) is a \(\mathbb{K} \)-automorphism group of \(X \), then the Hurwitz’s upper bound \(|G| \leq 84(g-1) \) holds in general with exceptions occurring only if \(p > 0 \).
- If \(p > 0 \) then exceptions can only occur when the fixed field \(\mathbb{K}(X)^G \) is rational and \(G \) has at most three short orbits as follows:
 1. exactly three short orbits, two tame and one non-tame, with \(p \geq 3 \);
 2. exactly two short orbits, both non-tame;
 3. only one short orbit which is non-tame;
4. exactly two short orbits, one tame and one non-tame.

Theorem 2.4 [7, Theorem 11.116 and Theorem 11.125] Let \mathcal{X} be an algebraic curve of genus $g \geq 2$ defined over an algebraically closed field K of positive characteristic p. If G is an automorphism group of \mathcal{X} with $|G| > 84(g - 1)$, then an upper bound for the order of G in Cases 1,2 of Theorem 2.3 is given by:

1. $|G| < 24g^2$,
2. $|G| < 16g^2$,

respectively. If G satisfies Case 3 of Theorem 2.3 then $|G| < 8g^3$. If G satisfies Case 4 in Theorem 2.3 then $|G| < 8g^3$ unless one of the following cases occurs up to isomorphism over K:

- $p = 2$ and \mathcal{X} is the non-singular model of the plane curve $Y^2 + Y = X^{2k+1}$, with $k > 1$;
- $p > 2$ and \mathcal{X} is the non-singular model of $Y^2 = X^n - X$, where $n = ph$ and $h > 0$;
- \mathcal{X} is the Hermitian curve $\mathcal{H}_q : Y^{q+1} = X^q + X$ where $q = ph$ and $h > 0$;
- \mathcal{X} is the non-singular model of the Suzuki curve $\mathcal{S}_q : X^{q_0} (X^q + X) = Y^q + Y$, where $q_0 = 2^r, r \geq 1$ and $q = 2q_0^2$.

Furthermore, all the above algebraic curves have p-rank zero.

Theorem 2.4 shows in particular that a quadratic bound on $|G|$ in Case 4 of Theorem 2.3 is not possible. However nothing is known in Case 3 of Theorem 2.3. One of the first aims of this paper is to show that actually a quadratic bound with respect to the genus can be found also in this case.

Remark 2.5 Examples of algebraic curves of genus g with approximately g^2 automorphisms satisfying Case 4 in Theorem 2.3 are known. Given a prime power q, the GK curve C is given by the affine model,

$$C : \begin{cases} y^{q+1} = x^q + x, \\ z^{q^2-q^2+1} = y^{q^2} - y, \end{cases}$$

see [4]. The curve C has genus $g(C) = (q^3 - 2q^3 + q^2)/2$ and it is F_{q^6}-maximal. The automorphism group of C is defined over F_{q^6} and has order $q^3(q^3+1)(q^2-1)(q^2-q+1) \sim 4g(C)^2$. The set $C(F_{q^6})$ of the F_{q^6}-rational points of C splits into two orbits under the action of $Aut(C)$: $O_1 = C(F_{q^2})$ and $O_2 = C(F_{q^6}) \setminus C(F_{q^2})$. The orbit O_1 is non-tame while O_2 is tame. Case 4 is indeed satisfied, see [4, Theorem 7].

Other two examples are the cyclic extensions of the Suzuki and Ree curves constructed in [18]. Again the order of the automorphism group of these curves is approximately $4g^2$ and it satisfies Case 4 in Theorem 2.3; see [5]. All the examples written in this remark have p-rank zero.

In order to give our partial answer to Open Problem 1.1 the following lemmas from [3] will be used.

Lemma 2.6 [3, Lemma 4.1 and Remark 4.3] Let \mathcal{X} be an algebraic curve of genus $g \geq 2$ defined over an algebraically closed field K of odd characteristic p. Let H be an automorphism group of \mathcal{X} with a normal Sylow d-subgroup Q of odd order. Suppose that a complement U of Q in H is cyclic and that $N_H(U) \cap Q = \{1\}$. If

$$|H| \geq 30(g - 1),$$

then $d = p$ and U is cyclic. Moreover, the quotient curve $\tilde{\mathcal{X}} = \mathcal{X}/Q$ is rational and either
1. \(\mathcal{X} \) has positive \(p \)-rank, \(Q \) has exactly two (non-tame) short orbits, and they are also the only short orbits of \(H \); or

2. \(\mathcal{X} \) has zero \(p \)-rank and \(H \) fixes a points.

If \(d = p \) is assumed then the hypothesis \(N_H(U) \cap Q = \{1\} \) is unnecessary.

Lemma 2.7 [3, Lemma 4.8] Let \(G \) be an automorphism group of an algebraic curve \(\mathcal{X} \) of genus \(g \geq 2 \) defined over a field of odd characteristic \(p \). Suppose that

1. \(|G| \geq 16g^2 \);
2. any two distinct Sylow \(p \)-subgroups of \(G \) have trivial intersection;
3. \(G \) has a Sylow \(d \)-subgroup \(Q \) for which its normalizer \(N_G(Q) \) contains a subgroup \(H \) satisfying the hypotheses of Lemma 2.6;

then \(\mathcal{X} \) has zero \(p \)-rank.

The following result provides a list of known and useful properties of automorphism groups of algebraic curves in positive characteristic.

Result 2.8 Let \(\mathcal{X} \) be an algebraic curve of genus \(g \geq 2 \) defined over a field of characteristic \(p \geq 3 \). Let \(G \) be an automorphism group of \(\mathcal{X} \).

1. \[14, Theorem 1\] If \(G \) is a \(p \)-group and \(\gamma(\mathcal{X}) > 0 \) then \(|G| \leq p(g - 1)/(p - 2) \). If \(\gamma(\mathcal{X}) = 0 \) then \(|G| \leq \max\{g, 4pg^2/(p - 1)^2\} \).
2. \[7, Theorem 11.60 and Theorem 11.79\] If \(G \) is abelian then \(|G| \leq 4g+4 \).
3. \[7, Theorem 11.78\] If \(P \in \mathcal{X} \) is such that the quotient curve \(\mathcal{X}/G_P^{(1)} \) is not rational then \(|G_P^{(1)}| \leq g \).
4. \[7, Lemma 11.44 (e)\] For \(P \in \mathcal{X} \), the stabilizer \(G_P \) of \(P \) in \(G \) is a semidirect product \(G_P = G_P^{(1)} \rtimes U \) where \(U \) is a cyclic \(p' \)-group and \(G_P^{(1)} \) is the Sylow \(p \)-subgroup of \(G_P \). In particular \(G_P \) is solvable.
5. \[7, Theorem 11.14\] If \(\mathcal{X} \) is rational and \(G \) is cyclic and tame then \(G \) has exactly two fixed points and no other short orbits on \(\mathcal{X} \).

An essential ingredient from group theory that we will use in the proof of Theorem 1.3 is the complete list of finite 2-transitive permutation groups, see [2, Tables 7.3 and 7.4].

A well known theorem of Burnside [2, Theorem 4.3] states that every finite 2-transitive group is either almost simple or affine. Finite affine 2-transitive groups are those having an elementary abelian regular normal socle, while almost simple 2-transitive groups are those having a simple socle \(N \).

Tables 1 and 2 list finite 2-transitive groups according to the two aforementioned categories. Recall that the degree of a 2-transitive permutation group is the cardinality of the set on which the group acts 2-transitively.

The list of finite 2-transitive permutation groups can be refined if the stabilizer of two points is cyclic.

Theorem 2.9 [9, Theorem 1.1] Let \(G \) be a finite, 2-transitive permutation group on a set \(\mathcal{X} \). Suppose that the stabilizer \(G_P, Q \) of two distinct points \(P, Q \in \mathcal{X} \) is cyclic, and that \(G \) has no regular normal subgroups. Then \(G \) is one of the following groups in its usual 2-transitive permutation representation: \(PSL(2, q), PGL(2, q), Sz(q), PSU(3, q), PGU(3, q) \) or a group of Ree type.

Theorem 2.10 [1, Theorem 1.7.6] Let \(G \) be a 2-transitive group on a set \(O \). If \(G \) has a regular normal subgroup \(N \), then \(N \) is an elementary abelian \(d \)-group where \(d \) is a prime and \(|O| = d^n \) for some \(n \geq 1 \).
Table 1 Affine 2-transitive groups

Case	Degree	\(G_P \)	Condition
1.	\(q^d \)	\(SL(d, q) \leq G_P \leq \Gamma L(d, q) \)	
2.	\(q^{2d} \)	\(Sp(d, q) \leq G_P \)	\(d \geq 2 \)
3.	\(q^6 \)	\(G_2(q) \leq G_P \)	\(q \) even
4.	\(q \)	\((2^{1+2} \times 3) = SL(2, 3) \leq G_P \)	\(q = 5^2, 7^2, 11^2, 23^2 \)
5.	\(q \)	\(2^{1+4} \leq G_P \)	\(q = 3^4 \)
6.	\(q \)	\(SL(2, 5) \leq G_P \)	\(q = 11^2, 19^2, 29^2, 59^2 \)
7.	\(2^4 \)	\(A_6 \)	
8.	\(2^4 \)	\(A_7 \)	
9.	\(2^6 \)	\(PSU(3, 3) \)	
10.	\(3^6 \)	\(SL(2, 12) \)	

Table 2 Almost Simple 2-transitive groups

| Case | Degree | Condition | \(N \) | \(\max|G/N| \) |
|------|--------|-----------|--------|---------------|
| 1. | \(n \) | \(n \geq 5 \) | \(A_n \) | 2 |
| 2. | \((q^d - 1)/(q - 1) \) | \(d \geq 2, (d, q) \neq (2, 2), (2, 3) \) | \(PSL(d, q) \) | \((d, q - 1) \) |
| 3. | \(2^{2d-1} + 2^{d-1} \) | \(d \geq 3 \) | \(Sp(2d, 2) \) | 1 |
| 4. | \(2^{2d-1} - 2^{d-1} \) | \(d \geq 3 \) | \(Sp(2d, 2) \) | 1 |
| 5. | \(q^3 + 1 \) | \(q \geq 3 \) | \(PSU(3, q) \) | \((3, q + 1) \) |
| 6. | \(q^2 + 1 \) | \(q = 2^{2d+1} > 2 \) | \(Sz(q) \) | \(2d + 1 \) |
| 7. | \(q^3 + 1 \) | \(q = 3^{2d+1} > 3 \) | \(Ree(q) \) | \(2d + 1 \) |
| 8. | 11 | | \(PSL(2, 11) \) | 1 |
| 9. | 11 | | \(M_{11} \) | 1 |
| 10. | 12 | | \(M_{11} \) | 1 |
| 11. | 12 | | \(M_{12} \) | 1 |
| 12. | 15 | | \(A_7 \) | 1 |
| 13. | 22 | | \(M_{22} \) | 2 |
| 14. | 23 | | \(M_{23} \) | 1 |
| 15. | 24 | | \(M_{24} \) | 1 |
| 16. | 28 | | \(PSL(2, 8) \) | 3 |
| 17. | 176 | | \(HS \) | 1 |
| 18. | 276 | | \(C_{o3} \) | 1 |

With all the ingredients introduced in Sect. 2 we can proceed with the proof of Theorem 1.3. Doing so, we can assume that \(G \) is an automorphism group of an algebraic curve \(\mathcal{X} \) of genus \(g = g(\mathcal{X}) \geq 2 \), \(p \)-rank \(\gamma = \gamma(\mathcal{X}) \), and such that \(|G| > 84(g - 1) \). By Theorems 2.3 and 2.4 unless \(|G| \leq 24g^2 \), \(G \) has either exactly one short orbit (Case 3 in Theorem 2.3) or exactly two short orbits, one tame and one non-tame (Case 4 in Theorem 2.4). We analyze these two cases separately in Sects. 3 and 4 respectively.
3 \hspace{1em} \text{\textit{G} satisfies Case 3 of Theorem 2.3}

In this section \(G \) stands for an automorphism group of an algebraic curve \(\mathcal{X} \) of genus \(g \geq 2 \) defined over a field \(\mathbb{K} \) of odd characteristic \(p \) satisfying Case 3 of Theorem 2.3. We denote by \(O \) the only short orbit of \(G \) on \(\mathcal{X} \).

We start with the following direct consequence of the Hurwitz genus formula.

Lemma 3.1 If an automorphism group \(G \) of an algebraic curve \(\mathcal{X} \) of genus \(g \geq 2 \) has exactly one short orbit \(O \) then the size of \(O \) divides \(2g - 2 \). In particular this holds true whenever \(G \) satisfies Case 3 in Theorem 2.3.

Proof Let \(\bar{g} \) be the genus of the quotient curve \(\mathcal{X}/G \). If the stabilizer \(G_P \) of a point \(P \in O \) is tame, then the Hurwitz genus formula (1) reads as follows

\[
2g - 2 = |G|(2\bar{g} - 2) + |G| - |O|.
\]

As from the Orbit stabilizer Theorem \(|G| = |G_P||O| \), the result follows.

In the non-tame case, in Equation (1) we have \(d_P = d_Q \) for \(P, Q \in O \) and \(d_R = 0 \) for \(R \neq O \). Hence \(|O| \) divides \(\sum_{P \in \mathcal{X}} d_P \), and the result follows as in the tame case from Equation (1).

We now move to the proof of Part 2 in Theorem 1.3.

Theorem 3.2 If \(|G| \geq 60g^2 \) then \(\gamma \) is congruent to zero modulo \(p \).

Proof Let \(P \in O \) and let \(G_P \) be the stabilizer of \(P \) in \(G \). From Item 4 of Result 2.8, we can write \(G_P = G^{(1)}_P \times U \) where \(U \) is tame and cyclic. Denote by \(\mathcal{Y}_1 \) the quotient curve \(\mathcal{X}/G^{(1)}_P \).

We distinguish two cases.

- **Case 1:** \(O = \{P\} \). If \(\mathcal{Y}_1 \) is not rational then Item 3 of Result 2.8 and Result 2.2 imply that \(|G| = |G_P| \leq g(4g + 2) < 60g^2 \), a contradiction. Hence \(g(\mathcal{Y}_1) = 0 \). The factor group \(U_1 = G_P/G^{(1)}_P \cong U \) is a prime-to-\(p \) cyclic automorphism group of \(\mathcal{Y}_1 \) fixing the point \(P_1 \) lying below \(P \) in the cover \(\mathcal{X}/\mathcal{Y}_1 \). If \(|U| = 1 \) then a contradiction to \(|G| < 60g^2 \) is obtained from Result 2.8 part 1. Hence we can assume \(U_1 \) non-trivial. From Item 5 of Result 2.8 the group \(U_1 \) has another fixed point, say \(Q_1 \), on \(\mathcal{Y}_1 \). If \(Q \) denotes a point of \(\mathcal{X} \) lying above \(Q_1 \) in \(\mathcal{X}/\mathcal{Y}_1 \) then \(U \) acts on the \(G^{(1)}_P \)-orbit \(\Delta \) containing \(Q \) and since \(|U| \) is prime-to-\(p \) we get that \(U \) has at least another fixed point on \(\mathcal{X} \), say \(R \), which is also contained in \(\Delta \). This implies that the \(G \)-orbit containing \(R \) is short as the stabilizer of \(R \) in \(G \) is non-trivial. This is not possible since by hypothesis \(O = \{P\} \) is the only short orbit of \(G \).

- **Case 2:** \(O \supset \{P\} \). From the Orbit stabilizer Theorem \(|G| = |O||G_P| \). Also from Lemma 3.1 we can write \(2g - 2 = k|O| \) for some \(k \geq 1 \). Then

\[
(2g - 2)^2 = k^2|O|^2 = k^2 \frac{|G|^2}{|G_P|^2},
\]

and hence since \(|G| \geq 60g^2 \),

\[
|G_P| = k^2 \frac{|G|^2}{(2g - 2)^2} = \frac{k^2|G|}{(2g - 2)^2} \cdot \frac{|G|}{|G_P|} > \frac{|G|}{|G_P|}.
\]

From \(|O| \leq 2g - 2 \) we have

\[
2g|G_P| > (2g - 2)|G_P| \geq |O||G_P| = |G| \geq 60g^2
\]

\(\square \) Springer
and hence $|G_P| \geq 30g > 30(g - 1)$. From Lemma 2.6 either $\gamma(\mathcal{X}) = 0$ or $\gamma(\mathcal{X}) > 0$ and in the latter case $G_P^{(1)}$ has exactly two (non-tame) short orbits which are also the only short orbits of G_P. Assume that $\gamma(\mathcal{X}) > 0$ and denote by $O_1 = \{P\}$ and O_2 the two short orbits of $G_P^{(1)}$ and G_P, with $|O_2| = p^i$ and $i \geq 0$.

If $i = 0$ we have that $G_P^{(1)}$ and G_P fix exactly another point $R \in \mathcal{X} \setminus \{P\}$ and have no other short orbits. Since O_1 and O_2 are contained in O, we can write $|O| = 2 + h|G_P|$ for some $h \geq 0$. If $h = 0$ then $|O| = 2$ and hence from Item 1 of Result 2.8 and Result 2.2, $|G| = |G_P||O| = 2|G_P| \leq 2p(g - 1)(4g + 2)/(p - 2) \leq 30g^2$, a contradiction. If $h \geq 1$ then $|G_P| < |O| \leq 2g - 2$. Since $|G_P| \geq 30g$ we get a contradiction. This shows that necessarily $i \geq 1$. From the Deuring-Shafarevic formula (3) applied to $G_P^{(1)}$ one has

$$\gamma - 1 = |G_P^{(1)}|(0 - 1) + |G_P^{(1)}| - 1 + |G_P^{(1)}| - p^i,$$

and hence γ is congruent to zero modulo p.

We now prove that actually the case $\gamma = 0$ in Theorem 3.2 cannot occur.

Theorem 3.3 Let \mathcal{X} be an irreducible curve of genus $g \geq 2$. If G is an automorphism group of \mathcal{X} satisfying Case 3 of Theorem 2.3 then either $|G| < 60g^2$ or $\gamma = \gamma(\mathcal{X})$ is positive and congruent to zero modulo p.

Proof Suppose that G satisfies Case 3 in Theorem 2.3 and $|G| \geq 60g^2$. For $P \in O$ we can write $G_P = G_P^{(1)} \rtimes U$, where U is tame and cyclic from Item 4 of Result 2.8. Then from Theorem 3.2 we have either $\gamma(\mathcal{X}) = 0$ or $\gamma(\mathcal{X})$ positive and congruent to zero modulo p.

Suppose by contradiction that $\gamma(\mathcal{X}) = 0$. Recall that $\mathcal{X}/G^{(1)}_P$ is rational from Lemma 2.6 as $|G_P| \geq 30g$.

Write $|G^{(1)}_P| = p^h$ with $h \geq 1$. By the Hurwitz genus formula applied with respect to $G^{(1)}_P$ one has,

$$2g - 2 = -2|G^{(1)}_P| + d_P = -2|G^{(1)}_P| + 2(|G^{(1)}_P| - 1) + \sum_{i \geq 2}(|G^{(i)}_P| - 1) = \sum_{i \geq 2}(|G^{(i)}_P| - 1) - 2,$$

since $G^{(1)}_P$ has exactly $\{P\}$ as its unique short orbit from Result 2.1. On the other hand, recalling that \mathcal{X}/G is rational, the Hurwitz genus formula applied with respect to G gives

$$2g - 2 = -2|G| + |O|(|G_P| - 1 + |G^{(1)}_P| - 1 + \sum_{i \geq 2}(|G^{(i)}_P| - 1))$$

and hence

$$2g - 2 = -|G| + |O||G^{(1)}_P| + 2g - 2).$$

Therefore,

$$|O||(|G_P| - |G^{(1)}_P|) = |O||G^{(1)}_P|(|U| - 1) = (|O| - 1)(2g - 2) < (2g - 2)|O|.$$ (4)

If $|U| = 1$ then $G_P = G_P^{(1)}$ and $|O||G^{(1)}_P|(|U| - 1) = (|O| - 1)(2g - 2)$ implies that $|O| = 1$ since $g \geq 2$. Hence $|G| = |G^{(1)}_P| \leq 4g^2$ from Item 1 of Result 2.8; a contradiction.
Since $|U| \geq 2$ we get from Equation (4),

$$\frac{|G_P|}{2} \leq |G_P^{(1)}|(|U| - 1) < 2g - 2$$

and $|G| = |O||G_P| < (2g - 2)^2 < 4g^2$; a contradiction. □

This proves Item 2 in Theorem 1.3. Our next goal is to show that up to increasing the value of the constant $c = 60$ one can give a complete answer to Open Problem 1.1 when G satisfies Case 3 in Theorem 2.3. This will prove Item 3 in Theorem 1.3 and show that curves with at least $336g^2$ automorphism have a very precise short orbits structure.

Proposition 3.4 Let \mathcal{X} be an irreducible curve of genus $g \geq 2$. If G is an automorphism group of \mathcal{X} satisfying Case 3 of Theorem 2.3. Then $|G| \leq 336g^2$.

Proof Assume by contradiction that there exists an algebraic curve \mathcal{X} together with an automorphism group G satisfying Case 3 in Theorem 2.3 with $|G| > 336g^2$. We choose \mathcal{X} to be of minimal genus, that is, if $g' < g$ then an algebraic curve together with an automorphism group G' satisfying Case 3 in Theorem 2.3 with $|G'| > 336g^2$ does not exist.

The first part of the proof is similar to the one of Theorem 3.2. Let $P \in O$, where O denotes the only short orbit of G. Let $G_P^{(1)}$ be the Sylow p-subgroup of the stabilizer G_P of P in G and denote by γ_1 the quotient curve $\mathcal{X}/G_P^{(1)}$. From Item 4 of Result 2.8, we can write $G_P = G_P^{(1)} \times U$ where U is tame and cyclic. We distinguish two subcases.

- **Case 1:** $O = \{P\}$. If γ_1 is not rational then Item 3 of Result 2.8 and Result 2.2 imply that $|G| = |G_P| \leq g(4g + 2) < 336g^2$, a contradiction. Hence $g(\gamma_1) = 0$. The factor group $U_1 = G_P/G_P^{(1)} \cong U$ is a prime-to-p cyclic automorphism group of γ_1 fixing the point P_1 lying below P in the cover \mathcal{X}/γ_1. As before we can assume $|U| > 1$. From Item 5 of Result 2.8, the group U_1 has another fixed point, say Q_1, on γ_1. If Q denotes a point of \mathcal{X} lying above Q_1 in \mathcal{X}/γ_1 then U acts on the $G_P^{(1)}$-orbit Δ containing Q and since $|U|$ is prime-to-p we get that U has at least another fixed point, say R, on \mathcal{X} which is contained in Δ. This implies that the G-orbit containing R is short as the stabilizer of R in G is non-trivial. This is not possible since by hypothesis $O = \{P\}$ is the only short orbit of G.

- **Case 2:** $O \supseteq \{P\}$. From the Orbit stabilizer Theorem $|G| = |O||G_P|$ and $|O|$ divides $2g - 2$ from Lemma 3.1. Write $2g - 2 = k|O|$ for some $k \geq 1$. Then

$$2g - 2 = k|O| = k^2 \frac{|G|^2}{|G_P|^2},$$

and hence since $|G| > 336g^2$,

$$|G_P| = k^2 \frac{|G|^2}{|G_P|(2g - 2)^2} = \frac{k^2|G|}{(2g - 2)^2} \cdot \frac{|G|}{|G_P|} = \frac{|G|}{|G_P|}.$$

From $|O| \leq 2g - 2$ we have

$$2g|G_P| > |G_P|(2g - 2) \geq |O||G_P| = |G| > 336g^2$$

and hence $|G_P| > 30(g - 1)$. From Lemma 2.6 either $\gamma(\mathcal{X}) = 0$ or $\gamma(\mathcal{X}) > 0$ and in the latter case $G_P^{(1)}$ has exactly two (non-tame) short orbits, and they are also the only short orbits of G_P. The claim follows by showing that the case $\gamma(\mathcal{X}) > 0$ cannot occur since Theorem 3.3 gives that the case $\gamma(\mathcal{X}) = 0$ cannot occur either.

Springer
Assume by contradiction that \(\gamma(\mathcal{X}) > 0 \) and denote by \(O_1 = \{ P \} \) and \(O_2 \), with \(|O_2| = p^i, i \geq 0 \) the two short orbits of \(G_p^{(1)} \) and \(G_p \). We have the following two possibilities.

- **Subcase 2.I**: \(O \neq O_1 \cup O_2 \). Let \(R \in O \setminus (O_1 \cup O_2) \). Then the orbit \(\Delta \) of \(G_p \) containing \(R \) is long and \(\Delta \subset O \). Hence \(|G_p| = |\Delta| < |O| \leq (2g - 2) \). This implies that \(|G| = |G_p||O| < (2g - 2)^2 < 4g^2 \), a contradiction.

- **Subcase 2.II**: \(O = O_1 \cup O_2 \). Denote by \(K \) the kernel of the permutation representation of \(G \) on \(O \). Since \(O = \{ P \} \cup O_2 \), \(G \) acts 2-transitively on \(O \). Then \(G/K \) is isomorphic to one of the finite 2-transitive permutation groups listed in Tables 1 and 2. The claim will follow with a case-by-case analysis.

- Suppose that \(\tilde{G} = G/K \) is one of the finite affine 2-transitive groups in Table 1. The first three cases cannot occur since \(\tilde{G} \) is solvable. This follows from the fact that \(G_p \) is solvable from Item 4 of Result 2.8 and hence every factor group of \(G_p \) is solvable as well. Cases 4, 5, 6 and 10 can be excluded as \(|O| \) must be even. In the remaining cases either \(|O| = 2^4 \) or \(|O| = 2^6 \). Since \(|O| - 1 \) must be a prime power both the cases can be excluded.

- Suppose that \(\tilde{G} = G/K \) is one of the finite almost simple 2-transitive groups in Table 2.

 Cases 8, 9, 12 and 14 can be excluded as \(|O| \) must be even, while Cases 13, 17 and 18 cannot occur since \(|O| - 1 \) is a prime power.

 Cases 10, 11, 15 and 16 can be excluded as follows. Note that \((|O|, p) = (12, 11), (24, 23), (28, 3)\). If \((|O|, p) = (12, 11)\) then \(|G_p^{(1)}| < (1, 1 \cdot (g - 1)) \) from Item 1 of Result 2.8, so that from Item 2 of Result 2.8, \(|G_p| < (1, 1 \cdot (g - 1)(4g + 4) < 5g^2 \). From the Orbit stabilizer Theorem \(|G| = 12|G_p| < 60g^2 \), a contradiction.

 If \((|O|, p) = (24, 23)\) then \(|G_p^{(1)}| < (1, 1 \cdot (g - 1)) \) from Item 1 of Result 2.8, so that from Item 2 of Result 2.8, \(|G_p| < (1, 1 \cdot (g - 1)(4g + 4) < 5g^2 \). From the Orbit stabilizer Theorem \(|G| = 24|G_p| < 120g^2 \), a contradiction.

 If \((|O|, p) = (28, 3)\) then \(|G_p^{(1)}| \leq 3(g - 1) \) from Item 1 of Result 2.8, so that from Item 2 of Result 2.8, \(|G_p| \leq (g - 1)(4g + 4) < 12g^2 \). From the Orbit stabilizer Theorem \(|G| = 28|G_p| < 336g^2 \), a contradiction.

 Since the stabilizer of a point in \(A_n \) with \(n \geq 5 \) is not solvable we get that Case 1 in Table 2 cannot occur from Item 4 of Result 2.8.

 Suppose that \(G \) satisfies one of the remaining cases in Table 2, that is, Cases 2-7. Let \(\mathcal{Y} \) be the quotient curve \(\mathcal{X}/K \). We claim that either \(K \) is trivial or \(\mathcal{X}/K \) is rational.

 Let \(K \) be trivial. Since \(|G| \geq 900g^2 \), \(|G_p| > 30(g - 1) \) and Sylow \(p \)-subgroups in \(G \) intersect trivially, we can apply Lemma 2.7 to get a contradiction.

 Hence \(K \) is not trivial. Suppose first that \(g(\mathcal{X}/K) \geq 2 \). The Hurwitz genus formula implies that \(2g - 2 \geq |K|(2g(\mathcal{X}/K) - 2) \) so that

\[
\frac{|G|}{|K|} \geq \frac{|G|(2g(\mathcal{X}/K) - 2)}{2g - 2} > \frac{336g^2(g(\mathcal{X}/K) - 1)}{g-1} \geq 336g(\mathcal{X}/K)^2.
\]

We claim that the orbit \(\bar{O} \) of \(G/K \) lying below \(O \) in \(\mathcal{X}|\mathcal{X}/K \) is the only short orbit of \(G/K \) on \(\mathcal{X}/K \). Suppose by contradiction that \(G/K \) has another short orbit \(\bar{O}_n \). Then \(G \) acts on set of points lying above \(\bar{O}_n \), say \(O_n \). Since \(K \) has no other short orbits other than \(O \), we have that \(|O_n| = |K||\bar{O}_n| < |K||G_p||/|K| = |G| \) so that also \(O_n \) is a short orbit of \(G \); a contradiction. This shows that if \(g(\mathcal{X}/K) \geq 2 \) then \(\mathcal{X}/K \) has an automorphism group \(G/K \) or order at least \(336g(\mathcal{X}/K)^2 \) with
exactly one short orbit on \mathcal{X}/K. Since $g(\mathcal{X}/K) < g$ this is not possible for the minimality of g.

Thus, $g(\mathcal{X}/K) \leq 1$. If $g(\mathcal{X}/K) = 1$ then, denoting with \tilde{G}_p the stabilizer of the point \tilde{P} with $P|\tilde{P}$ in $\mathcal{X}|\mathcal{X}/K$, $|\tilde{G}_p| \leq 12$ from [7, Theorem 11.94].

We observe that in Cases 2-7 in Table 2, $|\tilde{G}_p| \geq |O|$ so that also $|O| \leq 12$. We get $|G_p^{(1)}| \leq 3(g - 1)$ from Item 1 of Result 2.8, and from Item 2 of Result 2.8, $|G_p| \leq 3g - 1(4g + 4) \leq 12g^2$. From the Orbit stabilizer Theorem $|G| \leq 12|G_p| \leq 144g^2$, a contradiction. This shows that \mathcal{X}/K is rational. Since Cases 3-7 cannot give rise to automorphism groups of the rational function field from [7, Theorem 11.14], only Case 2 can occur and so $\tilde{G} = G/K \cong PSL(2, q)$, $PGL(2, q)$.

We note that $(q^d - 1)/(q - 1) - 1 = (q^d - q)/(q - 1)$ cannot be a prime power unless $d = 2$ and $q \geq 5$.

Suppose first that $(|K|, p) = 1$. Then Sylow p-subgroups of G correspond to Sylow p-subgroups of either $PSL(2, q)$ or $PGL(2, q)$ and hence in any case they intersect trivially. Since $|G| > 16g^2$ then claim follows from Lemma 2.7.

Hence K contains p-elements. Let Q_K be a Sylow p-subgroup of K. Then Q_K is a normal subgroup of G implying that G has normal p-subgroups. Denote by S the largest normal p-subgroup of G and consider the quotient curve \mathcal{X}/S. From our choice of the subgroup S, the quotient group $G_S = G/S$ has no normal p-subgroups. We claim that \mathcal{X}/S is rational.

Suppose first that $g(\mathcal{X}/S) \geq 2$. As before, the Hurwitz genus formula implies that $2g - 2 \geq |S|(2g(\mathcal{X}/S) - 2)$ so that

$$\frac{|G|}{|S|} \geq \frac{|G|(2g(\mathcal{X}/S) - 2)}{2g - 2} \geq \frac{336g^2(g(\mathcal{X}/S) - 1)}{g - 1} \geq 336g(\mathcal{X}/S)^2.$$

We claim that the orbit \tilde{O} of G/S lying below O in $\mathcal{X}|\mathcal{X}/S$ is the only short orbit of G/S on \mathcal{X}/S. Suppose by contradiction that G/S has another short orbit \tilde{O}_n. Then G acts on set of points lying above \tilde{O}_n, say O_n. Since K has no other short orbits other than O, we have that $|O_n| = |S||\tilde{O}_n| < |S||G|||S| = |G|$ so that also O_n is a short orbit of G; a contradiction. This shows that if $g(\mathcal{X}/S) \geq 2$ then \mathcal{X}/S has an automorphism group G/S of order at least $336g(\mathcal{X}/S)^2$ with exactly one short orbit on \mathcal{X}/S. Since $g(\mathcal{X}/S) < g$ this is not possible for the minimality of g.

If $g(\mathcal{X}/S) = 1$ then the group $G_P S/S$ is a subgroup of $Aut(\mathcal{X}/S)$ fixing at least one point on \mathcal{X}/S (the one lying below P in $\mathcal{X}|\mathcal{X}/S$). Hence $|U| \leq |G_P||S_P|/|S| = |G_P S||S| = |G_P||G_P \cap S| \leq 12$ from [7, Theorem 11.94].

Recalling that $|O| = (2g - 2)$ and that $|G_p^{(1)}| \leq p(g - 1)/(p - 2)$ from Item 1 of Result 2.8, we get $|G| \leq 12(2g - 2)p(g - 1)/(p - 2) < 336g^2$; a contradiction. Hence \mathcal{X}/S is rational and G/S is a subgroup of $PGL(2, \mathbb{K})$ with no normal p-subgroups. From the classification of finite subgroups $PGL(2, \mathbb{K})$, see [24], G/S is a prime to-p-subgroup which is either cyclic, or dihedral, or isomorphic to one of the the groups A_4, S_4. If $G/S \cong A_4$, S_4 then $|G| \leq 24|S||O| \leq 24(2g - 2)p(g - 1)/(p - 2) < 336g^2$ and hence we can discard these cases. Since $\gamma \equiv 0 \pmod{p}$, S has exactly one fixed point (and possibly other non-trivial short orbits) on \mathcal{X} from Equation (3). Using the fact that S is normal in G we get that the entire G has a fixed point on \mathcal{X} which is not possible as $|O| = q + 1$. □
Now Items 1–3 in Theorem 1.3 are proven. The next section will be devoted to the proof of Item 4 of Theorem 1.3.

4 G satisfies Case 4 of Theorem 2.3

In order to prove the main theorem we assume that χ is an algebraic curve defined over an algebraically closed field of odd characteristic p and genus g. Let G be an automorphism group of χ. We assume that $|G| \geq 900g^2$ and that G satisfies Case 4 of Theorem 2.3, so that G has two short orbits, one tame O_2 and one non-tame O_1. Furthermore, choosing a point P in O_1, from Item 4 of Result 2.8, we write $G_P = G^{(1)}_P \rtimes U$ with $|U|$ prime-to-p and cyclic. Let \mathcal{Y}_1 be the quotient curve $\chi/G^{(1)}_P$. To complete the proof of the main theorem we can also assume that $g(\mathcal{Y}_1) = 0$ and that $G_{P,R}$ is a p-group if it has a non-trivial Sylow p-subgroup. The following three cases are treated separately.

(iv.1) There is a point R distinct from P such that the stabilizer of R in G_P has order p^t with $t \geq 1$.

(iv.2) No non-trivial element of $G^{(1)}_P$ fixes a place distinct from P, and there is a place R distinct from P but lying in the orbit of P in G such that the stabilizer of R in G_P is trivial.

(iv.3) No non-trivial element of $G^{(1)}_P$ fixes a place distinct from P, and, for every place R distinct from P but lying in the orbit of P in G, the stabilizer of R in G_P is non-trivial.

4.1 G satisfies Case (iv.1)

In this case, if R is an arbitrary point on χ distinct from P then the stabilizer of R in G_P is either trivial or a p-group of order p^t, $t \geq 1$. Since \mathcal{Y}_1 is rational, $\tilde{U} = G_P/G^{(1)}_P \cong U$ is cyclic it fixes two points on \mathcal{Y}_1 from Item 5 of Result 2.8, say \tilde{P} (lying below P) and \tilde{R}. Denote by $O_{\tilde{R}}$ the orbit of $G^{(1)}_P$ lying above \tilde{R}. Then $|O_{\tilde{R}}| = p^t$ for some t and U acts on $O_{\tilde{R}}$. Since $(|U|, p) = 1$, U has at least one fixed point on $O_{\tilde{R}}$, a contradiction. This shows that $|U| = 1$. Assume by contradiction that $g > 0$. From the Hurwitz genus formula applied to G we have

$$2g - 2 = -2|G| + |O_1|d_P + |O_2|(|G_Q| - 1) = -|G| + \frac{|G|}{|G_P|}d_P - \frac{|G|}{|G_Q|},$$

so that

$$|G| = \frac{(2g - 2)|G^{(1)}_P||G_Q|}{-|G^{(1)}_P||G_Q| + d_P|G_Q| - |G^{(1)}_P|}.$$

If $|G_Q| \leq 3$ then from Item 1 of Result 2.8,

$$|G| \leq 6(g - 1)|G^{(1)}_P| \leq \frac{6p(g - 1)^2}{p - 2} \leq 18g^2,$$

a contradiction. So $|G_Q| > 3$. Since $d_P \geq 2|G^{(1)}_P| - 2$ and $|G^{(1)}_P| \geq 3$ we get

$$-|G^{(1)}_P||G_Q| + d_P|G_Q| - |G^{(1)}_P| \geq -|G^{(1)}_P||G_Q| + (2|G^{(1)}_P| - 2)|G_Q| - |G^{(1)}_P|$$

$$= |G^{(1)}_P||G_Q| - 2|G_Q| - |G^{(1)}_P| \geq |G_Q| - 3.$$
Thus, using again Item 1 of Result 2.8,

\[
|G| \leq \frac{(2g - 2)|G_P^{(1)}||G_Q|}{|G_Q| - 3} < 8g|G_P^{(1)}| \leq \frac{8pg(g - 1)}{p - 2} \leq 24g^2,
\]
a contradiction.

4.2 G satisfies Case (iv.2)

In this case the orbit $\mathcal{o}(R)$ of G_P containing R is long. Let $o'(R)$ be the orbit of R under G. Then from the Orbit Stabilizer Theorem $|o'(R)| \cdot |G_R| = |G|$. Moreover, as R lies in the orbit of P in G, also $o(R) \subseteq o'(R)$. Let Q be a place contained in the unique tame short orbit of G. From Equation (1) applied to G_P,

\[
2(g - 1) = -2|G| + \frac{|G|}{|G_Q|}(|G_Q| - 1) + \frac{|G|}{|G_P|} d_P,
\]

where d_P denotes the ramification at P and $d_Q = e_Q - 1 = |G_Q| - 1$. Hence

\[
|G| = \frac{2(g - 1)}{|G_Q|}\frac{|G_P|}{|G_Q|(|d_P - |G_P||) - |G_P|}.
\] (5)

Combining Equation (5) and $|o(R)| = |G_P| \leq |o'(R)|$ yields $|G| = |G_P| |o'(R)| \geq |G_P|^2$, whence

\[
|G_P| \leq \frac{|G|}{|G_P|} = \frac{2(g - 1)}{|G_Q|(|d_P - |G_P||) - |G_P|} \leq 2(g - 1)|G_Q|.
\]

Thus,

\[
|G_Q|(|d_P - |G_P||) - |G_P| \geq d_P|G_Q| - |G_P||G_Q| - 2(g - 1)|G_Q|,
\]

and

\[
|G_Q|(|d_P - |G_P||) - |G_P| \geq |G_Q|(|d_P - |G_P|| - 2(g - 1)|G_Q|). \quad (6)
\]

From Equation (1) applied to G_P,

\[
2(g - 1) = -2|G_P| + (d_P + |G_P^{(1)}|(|U| - 1)) = d_P - |G_P| - |G_P^{(1)}|,
\]

and hence

\[
d_P - |G_P| - 2(g - 1) = |G_P^{(1)}|.
\]

From Equation (6) and Result 2.2,

\[
|G| \leq 2(g - 1)\frac{|G_P^{(1)}||U||G_Q|}{|G_P^{(1)}||G_Q|} \leq 2(g - 1)(4g + 2) < 8g^2.
\]

Since $|G| > 900g^2$, this case cannot occur.
4.3 G satisfies Case (iv.4)

Let as before $P \in O_1$. If $O_1 = \{P\}$ then $G = G_P$. In particular G is solvable and the claim follows from Theorem 1.2. Hence we can assume that $O \supseteq \{P\}$. We start with an intermediate lemma. We assume that \mathcal{X} is a minimal counterexample with respect to the genus, that is, if Y is an algebraic curve of genus $\tilde{g} < g$ together with an automorphism group \tilde{G} satisfying Case 4 in Theorem 2.3 then $|	ilde{G}| < 900\tilde{g}^2$.

Lemma 4.1 If $O_1 \subset \{P\}$ then O_1 has size $q + 1$ where $q = p^n$, $n \geq 1$ and G acts 2-transitively on O_1. If K denotes the Kernel of the permutation representation of G over O_1, one of the following cases occurs.

- $G/K \cong PGL(2, q)$, $PSL(2, q)$,
- $G/K \cong PGU(3, q)$, $PSU(3, q)$,
- $G/K \cong Ree(q)$, when $p = 3$, $q = 3^{2r+1}$,
- G/K has a regular normal soluble subgroup and the size of O_1 is a prime power.

Unless the last case occur, if $|G_P| \geq 30(g - 1)$ then \mathcal{X} has zero p-rank.

Proof Let $o_0 = \{P\}, o_1, \ldots, o_k$ denote the orbits of $G_1^{(1)}$ contained in O_1, so that $O_1 = \bigcup_{i=0}^{k} o_i$. To prove that G acts 2-transitively on O_1 we show that $k = 1$.

For any $i = 1, \ldots, k$ take $R_i \in o_i$. Since we are dealing with Case (iv.4), R_i is fixed by an element $\alpha_i \in G_P$ of prime order $m \neq p$ dividing $|U|$. By Sylow’s Theorem there exist a subgroup U_i conjugated to U in G_P containing α_i and α_i clearly preserves o_i. As previously noted, since $Y_1 = \mathcal{X}/G_1^{(1)}$ is rational, α_i fixes at most two $G_1^{(1)}$-orbits and hence o_0 and o_i are the only fixed orbits of α_i. Since U^i is abelian and it fixes o_0, the orbits o_0 and o_i are also the only $G_1^{(1)}$-orbits fixed by U^i. Since we can write $G_P = G_1^{(1)} \times U^i$ we get that the whole G_P fixes o_i for all $1 \leq i \leq k$. Thus, either $k = 1$ or G_P fixes at least 3 $G_1^{(1)}$-orbits. The latter case cannot occur from Item 5 of Result 2.8 applied to Y_1 as automorphisms of a curve of genus zero have at most 2 fixed points.

This shows that $k = 1$ so that G acts 2-transitively on O_1. Also $|O_1| = q + 1$ with $q = |G_1^{(1)}| = p^n$, $n \geq 1$ as we are dealing with Case (iv.4). Let K denote the kernel of the action of G on O_1 and let $\tilde{G} = G/K$ be the corresponding permutation group. Since the stabilizer of 2 points in G (and hence \tilde{G}) is cyclic and p is odd we get from Theorem 2.9 that \tilde{G} is isomorphic to one of the groups listed. In the last case O_1 is a prime power and the regular normal subgroup an elementary abelian group from Theorem 2.10.

From $(|K|, p) = 1$, we have that Sylow p-subgroups of G corresponds to Sylow p-subgroups of \tilde{G}. Since in all the cases but the last one Sylow p-subgroups of \tilde{G} intersect trivially the same holds for G. If $|G_P| \geq 30(g - 1)$ the claim follows from Lemma 2.7. □

Assume the one of the first 3 cases listed in Lemma 4.1 occurs with $|G_P| < 30(g - 1)$. First of all we note that K is not trivial. Suppose indeed by contradiction that K is trivial so that $G \cong \tilde{G}$.

- $G \cong PSL(2, q)$, $PGL(2, q)$. Here $|G_P| = q(q - 1)/2$ or $|G_P| = q(q - 1)$ and in any case $|G_P|^2 > |G| = (q + 1)|G_P| \geq 900g^2$. Hence $|G_P| > 30(g - 1)$, a contradiction.
- $G \cong PSU(3, q)$, $PGU(2, q)$. In this case $|G_P| = q^3(q^2 - 1)/3$ or $|G_P| = q^3(q^2 - 1)$ and in any case $|G_P|^2 > |G| = (q^3 + 1)|G_P| \geq 900g^2$. Hence $|G_P| > 30(g - 1)$, a contradiction.
- $G \cong Ree(q)$. Now, $|G_P| = q^3(q - 1)$ and $|G_P|^2 > |G| = (q^3 + 1)|G_P| \geq 900g^2$. Hence $|G_P| > 30(g - 1)$, a contradiction.
Before analyzing the case in which K is not trivial, we prove a trivial intersection condition for the stabilizers of points in distinct G-orbits.

Lemma 4.2 If $Q \in O_2$ then $G_P \cap G_Q$ is trivial.

Proof Let $\alpha \in G_P \cap G_Q$ non-trivial. Then the order of α is not divisible by p. Hence $\alpha \in U$ up to conjugation. Since $|O_1| = q + 1$ from Lemma 4.1, α fixes at least another point $R \in O_1 \setminus \{P\}$. Since P, Q and R are in three distinct $G^{(1)}_P$-orbits the automorphism $\bar{\alpha}$ induced by α on \mathcal{Y}_1 has at least three fixed point on \mathcal{Y}_1. Since the order of α is the same as the order of $\bar{\alpha}$, from Item 5 of Result 2.8 we get that α has order 1, completing the proof. \(\Box\)

This proves that K is not trivial and from Lemma 4.2 the only short orbits of K are exactly the points in O_1.

We claim that $g(\mathcal{X}/K) = 0$. Assume first that $g(\mathcal{X}/K) \geq 2$. Then arguing as for the previous cases using the Hurwitz genus formula, $|G|/|K| \geq 900g(\mathcal{X}/K)^2$. Also the set of points \bar{O}_1 and \bar{O}_2 lying below O_1 and O_2 in $\mathcal{X}/\mathcal{Y}/K$ are respectively a short and a long orbit of G/K. If G/K has not exactly one another tame short orbit on \mathcal{X}/K then $|G|/|K| \leq 336g(\mathcal{X}/K)^2$ from Sect. 3 and Theorem 1.3 Item 1, a contradiction. Since now G/K has exactly two short orbits (one tame and one non-tame) and $g(\mathcal{X}/2) < g$ from the minimality of g we get a contradiction.

Suppose that $g(\mathcal{X}/K) = 1$. Then $|U| \leq 12$ from [7, Theorem 11.94]. Note that if $\gamma > 0$ then from Item 1 of Result 2.8, $|O_1| = 1 + |G^{(1)}_P| < 2|G^{(1)}_P| \leq 2(p(g - 1)/(p - 2) < 4g$. Hence

$$|G| < 4g|G^{(1)}_P||U| \leq 192g^2,$$

a contradiction. Thus \mathcal{X}/K is rational and hence $G/K \cong PSL(2, q)$. $PGL(2, q)$ since the other groups do not occur as subgroups of automorphisms of curves of genus zero. From the Hurwitz genus formula

$$2g - 2 = -2|K| + (|K| - 1)(q + 1),$$

so that $g = (q - 1)(|K| - 1)/2$. In particular $|O||K| = (q + 1)|K| \leq 10g$. Hence

$$900g^2 \leq |G| = |O||G_P| < 10g|G_P|.$$

So, $|G_P| > 30(g - 1)$. The claim now follows from Lemma 2.7.

We are left with the last case in Lemma 4.1, that is, a minimal normal subgroup of G/K is soluble and the size of O_1 is a prime power. Since q is odd, we get $q + 1 = 2t$ for some $t \geq 1$. From Mihăilescu Theorem either $q = p$ is a Marsenne prime or $q = 8$. Since q is odd, $q = p$ is a Marsenne prime and $q = p = |G^{(1)}_P|$. Assume that $\gamma \neq 0$. If $|G_P| < 30(g - 1)$ we get from Item 1 of Result 2.8 that $|G| = |O||G_P| < 30(g - 1)(|G^{(1)}_P| + 1) < 900g^2$, a contradiction. Hence $|G_P| \geq 30(g - 1)$ and Lemma 2.7 gives the desired contradiction. Indeed Sylow p-subgroup of G intersect trivially as they all fix exactly one point on O_1.

This proves Item 4 in Theorem 1.3 so that Theorem 1.3 is completely proven. We conclude this section with the following open problem.

Open problem 4.3 Is the condition $|G| \geq 900g^2$ sufficient to imply $\gamma(\mathcal{X}) = 0$ also when $g(\mathcal{X}/G^{(1)}_P) \geq 1$ for $P \in O_1$, or $|G_{P,R}| = p^ih$ with $R \in O_1 \setminus \{P\}$, $i \geq 1$ and $h > 1$?

Acknowledgements The author would like to thank Prof. Massimo Giulietti and Dr. Pietro Speziali for the helpful discussions and comments on the topic.
On algebraic curves with many automorphisms in characteristic p

References

1. Biggs, N.L., White, A.T.: Permutation Groups and Combinatorial Structures, London Mathematical Society Lecture Note Series 33, p. 140. Cambridge University Press, Cambridge (1979)
2. Cameron, P. J.: Permutation Groups. London Mathematical Society Student Texts, 45. Cambridge University Press, Cambridge, x+220 (1999)
3. Giulietti, M., Korchmáros, G.: Algebraic curves with many automorphisms. Adv. Math. 349, 162–211 (2019)
4. Giulietti, M., Korchmáros, G.: A new family of maximal curves over a finite field. Math. Ann. 343, 229–245 (2009)
5. Giulietti, M., Montanucci, M., Quoos, L., Zini, G.: On some Galois covers of the Suzuki and Ree curves. J. Number Theory 189, 220–254 (2018)
6. Henn, H.W.: Funktionenkörper mit großer Automorphismengruppe. J. Reine Angew. Math. 302, 96–115 (1978)
7. Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic Curves over a Finite Field. Princeton Series in Applied Mathematics, Princeton (2008)
8. Hurwitz, A.: Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41, 403–442 (1893)
9. Kantor, W.M., O’Nan, M.E., Seitz, G.M.: 2-Transitive groups in which the stabilizer of two points is cyclic. J. Algebra 21, 17–50 (1972)
10. Korchmáros, G., Montanucci, M., Speziali, P.: Transcendence degree one function fields over a finite field with many automorphisms. J. Pure Appl. Algebra 222, 1810–1826 (2018)
11. Macbeath, A.M.: On a theorem of Hurwitz. Proc. Glasgow Math. Assoc. 5, 90–96 (1961)
12. Madan, M., Rosen, M.: The automorphism group of a function field. Proc. Am. Math. Soc. 115, 923–929 (1992)
13. Madden, D.J., Valenti, R.C.: The group of automorphisms of algebraic function fields. J. Reine Angew. Math. 343, 162–168 (1983)
14. Nakajima, S.: p-ranks and automorphism groups of algebraic curves. Trans. Am. Math. Soc. 303, 595–607 (1987)
15. Roquette, P.: Abschätzung der Automorphismenanzahl von Funktionenkörpern bei Primzahl charakteristik. Math. Z. 117, 157–163 (1970)
16. Schmid, H.L.: Über die Automorphismen eines algebraischen Funktionenkörpers von Primzahl charakteristik. J. Reine Angew. Math. 179, 5–15 (1938)
17. Serre, J.P.: Local Fields, Graduate Texts in Mathematics 67, Springer, New York, viii+241 pp (1979)
18. Skabelund, D.: New maximal curves as ray class fields over Deligne-Lusztig curves. Proc. Am. Math. Soc. 146, 525–540 (2017)
19. Stichtenoth, H.: Algebraic Function Fields and Codes. Graduate Texts in Mathematics, vol. 254. Springer, Berlin (2009)
20. Stichtenoth, H.: Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. I. Eine Abschätzung der Ordnung der Automorphismengruppe. Arch. Math. 24, 527–544 (1973)
21. Stichtenoth, H.: Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. II. Ein spezieller Typ von Funktionenkörpern. Arch. Math. 24, 615–631 (1973)
22. Stichtenoth, H.: Zur Realisierbarkeit endlicher Gruppen als Automorphismengruppen algebraischen Funktionenkörpers. Math. Z. 187, 221–225 (1984)
23. Sullivan, F.: p-torsion in the class group of curves with many automorphisms. Arch. Math. 26, 253–261 (1975)
24. Valenti, R.C., Madan, M.L.: A Hauptsatz of L.E. Dickson and Artin-Schreier extensions. J. Reine Angew. Math. 318, 156–177 (1980)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.