Organization of the fuel heating reserve system on the basis of associated petroleum gas

D S Balzamov, E Yu Balzamova, V V Bronskaya and O S Kharitonova

1Department of Power Supply of Enterprises and Energy Resource Saving Technologies, Kazan State Power Engineering University, 51 Krasnoselskaya St., Kazan 420066, Russia
2Department of Chemical Process Engineering, Kazan National Research Technological University, 68 Karl Marx Street, Kazan 420015, Russia
3Department of Chemical Technology of Petroleum and Gas Processing, Kazan National Research Technological University, 68 Karl Marx St., Kazan 420015, Russia
4E-mail: olga.220499@mail.ru

Abstract. The use of associated petroleum gas as the main and reserve fuel is a promising direction because of its cheap compared to natural gas. There is the possibility of using associated petroleum gas as a reserve fuel for the regional heating station at the article. Projects on joining associated petroleum gas pipeline to the existing gas pipeline are presented.

1. Introduction
The possibility of the organization of the fuel heating station reserve system is considered. The associated petroleum gas is intended to be used as a reserve fuel for the preparation of which the construction of a gas separator and gas metering unit site is planned. The drainage tank with a volume of 8 m³ is provided for the condensate removal after the separator.

An analysis of the relief was carried out for the construction of the site. The result was that the relief is calm with a total gradient of 0.02 in the southeast direction. The absolute mark is within 206 - 205 m.

The main factors that have the greatest impact on the site placement [1-6] are determined:

• the conformity of the location of the main and additional units with the technological production flow diagram;
• accounting the location of existing units;
• performing design standards.

The following initial data have been adopted for the development of the technical solution:

• Required gas consumption — 8000 m³/hour;
• gas pipeline of associated petroleum gas (APG) — above-ground diameter is 159/219 mm, pressure is 0.2 – 0.4 MPa;

An analysis of the APG composition has been carried out, the results of which are presented in table 1.
Table 1. Fractional analysis of APG.

Composition (volumetric concentration,%)	APG
Hydrogen sulfide	0.01
Carbon dioxide	0.41
Oxygen	0.07
Nitrogen	9.06
Methane	35.86
Ethan	17.47
Propane	22.98
i-butane	3.02
n-butane	7.01
i-pentane	1.31
n-pentane	1.34
Hexane and higher hydrocarbons	1.46
Gas density ($t=20^\circ C$, $p=101.3 \text{ kPa}$), kg/m3	1.61

The proposed technical solution for the organization of the fuel heating station reserve system of the heating networks enterprise (HNE) implies the construction of a gas pipeline-jumper between the above-ground APG pipeline and an underground natural gas pipeline [7-11].

Construction of the gas pipeline-jumper is provided in case of emergency disconnection of the natural gas supply to the heating station of the HNE from the gas distribution point. The technical solution provides for the construction of the following units:
- net-shaped vertical gas separator with a volume of 4 m3 and a capacity 19500 m3/hour. The liquid content of the gas separator shall not be more than 200 cm3/m3. The gas separator fluid jetting is not more than 20 cm3/1000;
- underground tank;
- commercial APG metering unit;
- disabling valves on existing gas pipelines.

2. Materials and methods

The proposed scheme for connection of the APG gas pipeline to the HNE heating station is presented on Figure 1.

![Figure 1. Diagram of connection of the APG gas pipeline to the heating station.](image)

According to the scheme presented in Figure 1, the associated petroleum gas is sent from the gas pipeline from the intake point to the vertical gas separator for cleaning. Block valves 1, 6 are installed...
on the gas pipeline for the possibility of supplying gas to the vertical gas separator. The scheme also provides for the installation of two stop valves to verify the trim impermeability of the ZKL 150-15 valve. A manometer is established between the valves. According to its indications the reliability of the valve trim impermeability is determined. When block valves 1 and 6 are closed and valves 2 and 3 are open, the gas is supplied to the vertical gas separator. After cleaning from condensate, the gas enters the commercial gas metering unit. The flowmeter IRVIS-RC4-PP-PPS-150 with a diameter of 150 mm is installed as a commercial gas metering unit. A gas filter FG-50F, which is designed to purify gas from mechanical impurities, is installed in front of the gas meter. After cleaning and measurement, gas is supplied to the natural gas pipeline with diameters 377x8 mm. Three valves are installed to supply gas to the natural gas pipeline: stop valves 5 and 7 are installed on gas pipelines with a diameter of 219 mm and 377 mm, valve 4 is installed on the pipeline-jumper with a diameter of 219 mm. When supplying associated petroleum gas to the heating station of the HNE, the valves 5 and 7 must be closed and the valve 4 must be opened [12-16].

A hand-operated valve is installed at the outlet of the condensate from the vertical gas separator. The condensate released in the vertical gas separator enters the drainage tank. Condensate is drained manually by the signal of the upper limit of condensate sensor in the gas separator. The lower limit of condensate in the gas separator is determined visually by the signal lamp. Condensate from the drainage tank is removed by road.

3. Results

The designed gas pipeline is related to the second category. The thickness of the gas pipeline wall is determined by the formula:

$$\delta = \frac{nPD_o}{2(R_1+nP)}$$ \hspace{1cm} (1)

where $n = 1.4$ is the load effect factor for the above-ground gas pipeline;
$P = 0.4$ MPa is working pressure in the gas pipeline;
D_o is the outer diameter of the gas pipeline, cm;
R_1 is calculated tensile strength, MPa, which is determined by the formula (2)

$$R_1 = \frac{R_1^n m}{K_s K_p}$$ \hspace{1cm} (2)

where $R_1^n = 333$ MPa is the normative tensile strength of pipeline metal and welded joints that is equal to the value of the time resistance σ_{time}.

m is the pipeline working condition coefficient. For the 2nd category gas pipeline $m = 0.75$;
$K_s = 1.55$ is the material resistance factor;
$K_p = 1.0$ is the pipeline purpose effect factor;
Calculations were performed in accordance with the dependencies given in table 2.

Table 2. Calculation results.
Initial data for calculation
Pipeline material brand
Working (normative) pressure, MPa
Outer pipe diameter, mm
Load effect factor
Working condition coefficient
Load effect factor
Pipeline purpose effect factor;
Normative tensile strength of pipeline metal, MPa
Calculated wall thickness, mm
Corrosion allowance, mm

Accepted pipeline wall thickness, mm

For pipelines whose steel has a ratio of specified minimum yield strength to time resistance less than 0.75, the pipeline wall thickness is further calculated by expression (3) [17-20]:

$$\delta = \frac{n_i P d_o}{2(C_b a R_{2n} + n_i P)}$$

where $n_i = 1.25$ is for the 2nd category gas pipeline;

$C_b = \frac{b_{\text{min}}}{b}$ is the ratio of the minimum permissible pipeline wall thickness to the nominal pipeline wall thickness;

$a = 0.95$;

$R_{2n} = 206$ MPa is the normative resistance to the tension of pipeline metal and welded joints that is equal to the yield limit. The yield limit for steel of the strength class K34 is 206 MPa, the time break resistance is 333 MPa [21-24].

Equivalent strain in pipeline walls is calculated by the formula [7-9]:

$$\epsilon = \frac{P_t d_o}{d_i - d_o}$$

$P_t = 0.5$ MPa is the pipeline test pressure;

d_0 is the outer diameter of the pipe, mm;

d_i is the inner diameter of the pipeline, mm.

4. Conclusion

Organization of the fuel reserve system based on associated petroleum gas allows to improve the reliability of functioning the heating station and, as a result, ensure uninterrupted heat supply to the consumers of the settlement.

References

[1] Balzamov D S, Balzamova E Yu, Bronskaya VV and Valitov N V 2020 Possibility of using associated petroleum gas as a fuel for a production boiler house IOP Conf. Ser.: Mater. Sci. Eng. 791 012006

[2] Knizhnikov A Yu and Il'in A M 2017 Problems and prospects of associated petroleum gas use in Russia pp. 34 (WWF Rossii, M.) (In Russ.)

[3] Ozdoyeva A KH Selection of technologies for the useful use of associated petroleum gas on the basic of economic estimates: Dis.... kand. ekonom. nauk/A. KH Ozdoyeva M., 2016. 170 p. (In Russ.).

[4] Balzamov D S, Balzamova E Yu, Bronskaya V V, Ignashina T V and Kharitonova O S 2020 Analysis of the possibility of modernization of the state district power station by building the combined cycle plant J. Phys.: Conf. Ser. 1515 042100

[5] New gas flaring data//The World Bank. — July 10, 2017. — [Electronic resource]. Available at: http://www.worldbank.org/en/news/feature/2017/07/10/new-gas-flaring-data-shows-mixed-results.

[6] Galikeev R M, Leontiev S A and Umrenkov M V 2011 Application of passing gas for domestic use on Khokhryakovskoye field Science and Fuel and energy complex 3 37-43

[7] Barkan M S and Kornev A V 2017 Prospects for the Use of Associated Gas of Oil Development as Energy Product International Journal of Energy Economics and Policy 7 374-83

[8] Balzamov D S, Akhmetova I G, Balzamova E Y, Oykina G I and Gelu COMAN 2019 An analysis of the viability of implementing steam screen machines at the facilities generation enterprises to reduce the energy costs for their own need E3S Web of Conferences 124 01016

[9] Manuilova N N, Khairullina L E, Khabibullina G Z, Minnegalieva Ch B, Makletsov S V,
Bronskaya V and Kharitonova O S 2020 Wavelet method of hiding text information in audio signals J. Phys.: Conf. Ser. 1515 032056

[10] Aminova G A, Manuiko G V, Bronskaya V V, Ignashina T V, D’yakonov G S, Bashkirov D V and Demidova É V 2008 Influence of chain-transfer reactions on the molecular-weight-distribution function of diene rubber on a neodymium-containing catalyst System Journal of Engineering Physics and Thermophysics 81 1247–51

[11] Manuiko G V, Salakhov I I, Aminova G A, Akhmetov I G, Dyakonov G S, Bronskaya V V and Demidova E V 2010 Mathematical modeling of 1,3-butadiene polymerization over a neodymium-based catalyst in a batch reactor with account taken of the multisite nature of the catalyst and chain transfer to the polymer Theoretical Foundations of Chemical Engineering 44 139–49

[12] Manuiko G V, Ignashina T V, Davydova V V, Antonova O V, Dyakonov G S, Reshetova I G and Kharitonova N E 2002 Method of solution of a set of equations describing the continuous process of polymerization under conditions of a polyaddition Inzhenerno-Fizicheski Zhurnal 75 165-9

[13] Honig A J, Cloor P E, MacCredon J F and Hamieles A E 1987 J. Appl. Polym. Sci. 34 829–36

[14] Aminova G A, Manuiko G V, Ignashina T V, Bronskaya V V, Kharitonova N E, D’yakonov G S and Arkhireev V P 2006 Optimal parameters of butadiene polymerization in the synthesis of rubber on a neodymium-containing catalytic system Theoretical Foundations of Chemical Engineering 40 59–67

[15] Vazim A, Romanyuk V, Ahmadeev K and Matveenko I 2015 Associated petroleum gas utilization in Tomsk Oblast: energy efficiency and tax advantages IOP Conf. Series: Earth and Env. Sci. 27 012078

[16] Galikeev R M, Leontiev S A and Umrenkov M V 2011 Primenenie poputnogo neftyanogo gaza dlya sobstvenny`x nuzhd na Xokhryakovskom mestorozhdenii [Application of passing gas for domestic use on Khokhryakovskoye field] Nauka i TE`K 3 37-43

[17] Barkan M S and Kornev A V 2017 Prospects for the Use of Associated Gas of Oil Development as Energy Product Int. J. of Energy Economics and Policy 7 374-83

[18] Balzamov D S, Sabitov L S, Timershin B F and Balzamova E Yu 2018 Increase of efficiency of heat sources work due to application of condensation economizers on an example of a boiler PTVM-180 IOP Conf. Ser.: Mater. Sci. Eng. 412 012007

[19] Kozodoev L V, Kuzin N A, Amosov Y I, Kirillov V, Sobyanin V A and Kirenekov V 2011 Novaya tekhnologiya pererabotki poputnogo neftyanogo gaza mestnyx voz`mov v mestax ix doby`chi [New technology of associated petroleum gas processing in oil production fields] Promy`shlennosti i E`kologiya Severa 11 40-3 [In Russian]

[20] Tarasova M Yu, Klevtsov E A and Fakhretdinov I Z 2018 O povy`shenii e`fektivnosti ispol`zovaniya neftyanogo gaza koncevy`x stupenej separacii [On the raising efficiency of associated petroleum gas utilization at the final separation stages] Transport i podgotovka nefti 3 74-6 [In Russian]

[21] Balzamov D S, Balzamova E Yu, Ibatullin S R and Sabitov L S 2019 Efficiency increase of gas turbine work in the summer period. IOP Conf. Ser.: Mater. Sci. Eng. 570 012008

[22] Sikirica S, Kurek H, Kozlov A and Khinkis M 2007 Thermo-Chemical Recovery improves furnace thermal efficiency Heat Treating Progress 7 28-31

[23] Zatsarinnaya Yu N, Staroverova N A, Volkova M M, Galymullina S I and Khakimzyanov R K 2019 Heat supply system computer laboratory stand development IOP Conf. Ser.: Earth Environ. Sci. 288 012131

[24] Zhigurs A, Golunovs Y, Tourlayss D and Pliskachev S 2010 Flue gas heat recovery in Riga heat sources Heat Supply News 5 19-24