Expression of PPARγ and Paraoxonase 2 Correlated with Pseudomonas aeruginosa Infection in Cystic Fibrosis

Phoebe E. Griffin1,2, Louise F. Roddam2, Yvonne C. Belessis3, Roxanne Strachan3, Sean Beggs2,4, Adam Jaffe3, Margaret A. Cooley2*

1 Menzies Research Institute, Hobart, Tasmania, Australia, 2 School of Medicine, University of Tasmania, Hobart, Tasmania, Australia, 3 Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, New South Wales, Australia, 4 Department of Pediatrics, Royal Hobart Hospital, Hobart, Tasmania, Australia

Abstract

The Pseudomonas aeruginosa quorum sensing signal molecule N-3-oxododecanoyl-L-homoserine lactone (3OC12HSL) can inhibit function of the mammalian anti-inflammatory transcription factor peroxisome proliferator activated receptor (PPARγ), and can be degraded by human paraoxonase (PON2). Because 3OC12HSL is detected in lungs of cystic fibrosis (CF) patients infected with P. aeruginosa, we investigated the relationship between P. aeruginosa infection and gene expression of PPARγ and PON2 in bronchoalveolar lavage fluid (BALF) of children with CF. Total RNA was extracted from cell pellets of BALF from 43 children aged 6 months–5 years and analyzed by reverse transcription–quantitative real time PCR for gene expression of PPARγ, PON2, and P. aeruginosa lasI, the 3OC12HSL synthase. Patients with culture-confirmed P. aeruginosa infection had significantly lower gene expression of PPARγ and PON2 than patients without P. aeruginosa infection. All samples that were culture-positive for P. aeruginosa were also positive for lasI expression. There was no significant difference in PPARγ or PON2 expression between patients without culture-detectable infection and those with non-Pseudomonal bacterial infection, so reduced expression was specifically associated with P. aeruginosa infection. Expression of both PPARγ and PON2 was inversely correlated with neutrophil counts in BALF, but showed no correlation with other variables evaluated. Thus, lower PPARγ and PON2 gene expression in the BALF of children with CF is associated specifically with P. aeruginosa infection and neutrophilia. We cannot differentiate whether this is a cause or the effect of P. aeruginosa infection, but propose that the level of expression of these genes may be a marker for susceptibility to early acquisition of P. aeruginosa in children with CF.

Introduction

Individuals with cystic fibrosis (CF) are particularly susceptible to infection with the opportunistic pathogen Pseudomonas aeruginosa, and ultimately over 80% of adults with CF patients are infected with this organism [1]. It is widely accepted that P. aeruginosa present in the lungs of CF patients, particularly during chronic infection, exist in the form of biofilms which protect the bacteria from both antibiotics and the host’s immune defenses. The reasons why CF patients are predisposed to P. aeruginosa infection are not clear, but it is known that infection is associated with more rapid decline in lung function [2,3].

A hallmark of CF is a hyperinflammatory response to infection [4,5], particularly with P. aeruginosa [6,7,8,9]. The mammalian transcription factor, peroxisome proliferator activated receptor (PPARγ) is a master negative regulator of inflammation, modulating signaling through NFκB and MAP kinases. It is expressed in respiratory epithelium [10] and has been reported to be expressed in immune cells such as macrophages and neutrophils [11,12,13,14]. The expression and function of PPARγ have been reported to be low in human CF respiratory epithelial cell lines [10] and in cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice [15,16]. This deficiency may contribute to the hyperinflammatory response in CF. To date this has not been confirmed in ex vivo samples from CF patients. However, PPARγ agonists have been reported to ameliorate intestinal symptoms in Cfd knockout mice, and their potential use as therapy in chronic inflammatory disease has been widely discussed [17].

Biofilm formation and maturation of P. aeruginosa, together with the expression of a range of virulence factors, is regulated by quorum sensing signals that coordinate bacterial gene expression on a population-wide basis [18,19]. These signal molecules have consistently been detected in nanomolar amounts in sputum and lung tissue from CF patients infected with P. aeruginosa [20] but localised concentrations are suggested to be in the micromolar range [21]. It has also been demonstrated that one of the major quorum sensing signal molecules of P. aeruginosa, N-3-oxododecanoyl-L-homoserine lactone (3OC12HSL), can cross the mammalian cell membrane [22] and that it induces hyperinflammatory responses in CF airway epithelial cell lines [6]. We [23] and others [24] have demonstrated that 3OC12HSL can bind to and modulate the function of PPARγ. We hypothesized that inhibition by
3OC_{12}HSL of the function of an already low level of PPARγ expressed in CF could further exacerbate hyperinflammation in cystic fibrosis. To assess the viability of this hypothesis and to evaluate the level of PPARγ expressed in the lungs of children with CF, we examined PPARγ gene expression in cells from bronchoalveolar lavage fluid (BALF), comparing children with CF with and without demonstrated *P. aeruginosa* infection.

Another factor that could affect the efficiency of *P. aeruginosa* biofilm formation and virulence factor expression in the lung is the presence of mammalian lactonases, in particular paraoxonase 2 (PON2). PON2 is an intracellular enzyme that has been demonstrated to efficiently degrade 3OC_{12}HSL [25], a process that can have a quorum quenching effect. Mouse tracheal epithelial cells deficient in PON2 have impaired ability to inactivate 3OC_{12}HSL [26], and PON2 expression has been reported to be inhibited by 3OC_{12}HSL [27]. We therefore also investigated the gene expression of PON2 in the cells from BALF of the children with CF.

We found that the expression of PPARγ and PON2 in BALF cells was significantly lower in patients infected with *P. aeruginosa* and was inversely correlated with total neutrophils in the BALF. Our results suggest that low PPARγ and PON2 expression is specifically associated with *P. aeruginosa* infection and neutrophilia in BALF.

Materials and Methods

Ethics Statement

Children with CF aged up to 5 years undergoing surveillance BAL between January 2009 and April 2011 and whose parents had given informed written consent for participation in a study of early lung disease at The Sydney Children’s Hospital, Randwick, Australia, contributed an aliquot of BALF for the current analyses. This study was approved by the South Eastern Sydney Area Health Service Human Research Ethics Committee (Approval no. 02/098) and registered at the Australian and New Zealand Clinical Trial Register (ACTRN12611000945921).

Patients

Children with CF had been identified through newborn screening or meconium ileus presentation and the diagnosis confirmed by sweat chloride analysis (chloride concentration >60 mmol/mL) and/or *cfr* mutation analysis. Demographic and clinical variables were obtained from the patient’s medical records and are summarized in Table 1.

BAL and Sample Processing

Flexible bronchoscopy with BAL was performed as previously described [28]. In brief, BAL was performed under general anesthesia. Suctioning through the bronchoscope was avoided until the tip had passed beyond the carina to avoid upper airway contamination. BAL was sequentially performed in three lobes, right upper lobe, right middle lobe and lingual, using a single aliquot (1 mL/kg; minimum 10 mL, maximum 20 mL) of sterile saline to each. BAL fluid samples were pooled.

For gene expression analysis, the cells contained in 0.5 mL of BALF were pelleted by centrifugation and stored in 300 μL of RNAlater® (Ambion, Mulgrave VIC, Australia) at −20°C until required. For a small number of patients, two samples taken at different times were available. Only the earliest sample from these patients was included in the main analysis.

Table 1. Characteristics of all participants (43 patients).

Characteristic	Value
Mean age at BAL (range)	2.25 years (6 months–5 years)
Male	19 (44.2%)
Homozygous F508del	21 (48.8%)
Azithromycin therapy at BAL	1 (2.3%)
Mean fasting glucose mmol/L (range)	4.83 (2.7–7.2)
P. aeruginosa infection*ad	7 (16.3%)
S. aureus infection*e	9 (20.9%)
H. influenzae infection*h	13 (30.2%)
Other bacteria infection*	6 (14.0%)
A. fumigatus infection*	9 (20.9%)
No pathogen detected*	13 (30.2%)

*All pathogens detected by culture. Infection defined as >10^5 cfu/mL BALF.
adThree of these samples also had *S. aureus*, one had both *S. aureus* and *H. influenzae*; one also had *A. fumigatus*.
*Four of these samples also had *P. aeruginosa* and four had *H. influenzae*.
*Three of these samples also had *S. aureus*; one had *P. aeruginosa*.
*One of these samples also had *P. aeruginosa*.

Detection of Bacteria in BALF

The presence of bacteria and fungi in BALF were evaluated by standard microbiological culture methods at Sydney Children’s Hospital. Airway infection for all microbes was defined by Sydney Children’s Hospital as pathogen growth >10^5 colony-forming units per mL (cfu/mL) of BALF [29,30].

RNA Extraction and cDNA Synthesis

Total RNA was extracted from BALF cells using TRIzol® reagent (Invitrogen, Mulgrave, VIC, Australia). RNAlater® was removed from samples, and cells resuspended in 750 μL of TRIzol® before being transferred to a 2 ml tube containing 1 ml of 0.1 mm zirconia/silica beads (Daintree Scientific, St Helens, TAS, Australia.). A further 650 μL of TRIzol® was added before cells were homogenized for 2 min on maximum speed using a Mini-Beadbeater (Daintree Scientific.). Beads and cellular debris were pelleted by centrifugation at 10 000 g for 10 min at 4°C. Approximately 1 ml of supernatant was removed to a fresh tube and total RNA extracted as per the TRIzol® protocol with the addition of 5 μg of glycogen (Invitrogen) to the upper phase to aid RNA precipitation. Isolated RNA was resuspended in 25 μL of DEPC-treated water (Ambion) and DNase treated using a TURBO DNA-free kit™ (Ambion) according to the manufacturer’s instructions. The concentration and purity of recovered RNA was quantified using a NanoDrop™ 1000 spectrophotometer (Thermo Scientific, Scoresby, VIC, Australia).

Up to 200 ng of total RNA was included in a cDNA synthesis reaction using a Transcriptor First Strand cDNA Synthesis kit (Roche, Dee Why, NSW Australia) according to the manufacturer’s instructions. The reaction included both anchored oligo d(rT)18 and random hexamer primers to ensure reverse transcription of both mammalian and bacterial transcripts. cDNA was stored at −20°C until required.
Quantitative Polymerase Chain Reaction (qPCR)

Detection of PPARγ, PON2, Pseudomonas 16S rRNA and lasI Gene Expression

qPCR was performed on the LightCycler® 480 II PCR system (Roche). Duplicate 10 µl PCR reactions were performed using the LightCycler® 480 SYBR Green 1 Mastermix (Roche) according to the manufacturer’s instructions. Each reaction contained 0.75 µl cDNA and a final primer concentration of 300 nM. PCR conditions were as follows: 95°C for 5 min, then 45 cycles of 95°C for 15 s, 60°C for 15 s and 72°C for 30 s. All products underwent melt curve analysis. Primer sequences for each gene expression analysis were as follows:

- PPARγ forward 5’-AGCTGAACCCACCTGAGTCC-3’, reverse 5’-TCATGTCTCTGCTCTTCTCTTG-3’.
- PON2 forward 5’-GCCCAACATGGGTCTGTCTTCC-3’, reverse 5’-CACCCCATGTAACACTGAGGC-3’.
- β-actin forward 5’-GCTGGCCGGGACCTGACTGA-3’, reverse 5’-AGCTGAACCACCCTGAGTCC-3’.

PPARγ primers detected transcripts for PPARγ isoforms 1 and 2. Primers used for the detection of P. aeruginosa 16S rRNA [31] and lasI [32] have been published elsewhere. Human gene expression relative to the housekeeping gene β-actin was calculated using 2-ΔΔCt. The presence of P. aeruginosa 16S rRNA in BAL fluid samples was defined as positive by both Cp and melt curve analysis, with level of infection defined as high (Cp < 20), medium (Cp ≥ 20 and < 30) and low (Cp ≥ 30 and ≤ 40). Negative for P. aeruginosa by PCR was defined as the absence of specific PCR product. Detection of lasI expression was defined as the presence of specific PCR product and Cp ≤ 40 cycles.

Statistical Analysis

All statistical analyses were performed using Graphpad Prism v4.03 (Graphpad Software, La Jolla, CA, USA). Microbiological culture results were coded positive or negative. Genotype was coded as F508del homozygous, F508del heterozygous or other. Results of RT-qPCR for P. aeruginosa were coded as negative, low, medium or high and lasI was coded as negative/positive. Age at BALF was expressed in days, and gene expression of PPARγ and PON2 calculated relative to that of the reference gene, β-actin. Because PPARγ and PON2 gene expression levels were not normally distributed, all analysis was performed using nonparametric statistics: Mann–Whitney U test for comparisons between two groups, Kruskal–Wallis analysis with Dunn’s multiple comparison test for comparisons between multiple groups and Spearman correlation for assessing correlations between continuous variables. Fisher’s exact test was used to evaluate associations between categorical variables.

Results

Gene Expression of PPARγ in BALF Cells of Children with CF is Lower in those Who have P. aeruginosa Infection

Cells from BALF samples from all subjects were examined for PPARγ gene expression by RT–qPCR, for the presence of P. aeruginosa by culture and RT–qPCR, and for the presence of any other pathogen by culture only. “Culture positive” and airway infection were defined as detection of >10^5 cfu/mL in BALF [29,30]. Figure 1 shows that PPARγ gene expression was significantly lower (approximately threefold, P = 0.003, Mann–Whitney U test) in BALF from children with P. aeruginosa infection than in those without P. aeruginosa infection.

We also assessed the presence and level of P. aeruginosa and the expression of lasI in BALF by RT–qPCR. Semi-quantitation of P. aeruginosa 16S rRNA was performed based on Cp as described in the Materials and Methods; lasI expression was classified as positive or negative. All samples that were culture-positive for P. aeruginosa were also positive for lasI expression by RT–qPCR. All other samples were negative for lasI, including those that were culture negative but where low or medium levels of P. aeruginosa were detected by RT–qPCR. As shown in Table 2, there was an excellent correlation between detection of high or medium levels of P. aeruginosa 16S rRNA expression in BALF by RT–qPCR and culture detection of >10^5 cfu/mL P. aeruginosa (P≤0.0001, Fisher’s exact test), with RT–qPCR showing a sensitivity of 96% and specificity of 97% relative to culture.

We also evaluated PPARγ gene expression in cells from BALF based on P. aeruginosa RT–qPCR results (Figure 2), which confirmed that detection of medium or high levels of P. aeruginosa was correlated with low gene expression of PPARγ.

Gene Expression of PPARγ is Low in Children with P. aeruginosa Infection but not in Those Infected with Other Pathogens

Most patients had more than one pathogen detected in BALF, so we were unable to meaningfully analyze the effects on PPARγ gene expression of infection with each individual type of microbe because of possible interactions between them. For example, there were three patients with only P. aeruginosa infection.
infection, three patients with both \textit{P. aeruginosa} and \textit{S. aureus}, one with \textit{P. aeruginosa}, \textit{S. aureus} and \textit{H. influenzae}, three with both \textit{S. aureus} and \textit{H. influenzae}, three with only \textit{S. aureus} and eight with only \textit{H. influenzae} infection. There were no patients with a combination of \textit{P. aeruginosa} and \textit{H. influenzae}. Therefore, to determine whether low PPAR\(\gamma\) gene expression was merely the result of infection in general, or was specifically associated with \textit{P. aeruginosa} infection, we used culture results to divide patient samples into four groups: those without detected pathogens (\(n = 13\)), those with \textit{P. aeruginosa} alone or in combination with other pathogens (\(n = 7\)), those with \textit{H. influenzae} and/or with \textit{S. aureus} (non-Pseudomonal bacteria group, \(n = 15\)) and those with \textit{Aspergillus fumigatus} with or without non-Pseudomonal bacteria (\(n = 8\)). The results shown in Figure 3 demonstrate that only the presence of \textit{P. aeruginosa} was associated with significantly lower PPAR\(\gamma\) gene expression.

Gene Expression of PON2 is Low in Patients with \textit{P. aeruginosa} Infection but not with other Bacterial Infections

Because the human lactonase PON2 has been shown to efficiently inactivate and degrade the \textit{P. aeruginosa} signaling molecule 3OC\textsubscript{12}HSL that can modulate PPAR\(\gamma\) activity, we were interested in evaluating whether the gene expression of PON2 was also correlated with \textit{P. aeruginosa} infection. We hypothesized that if PON2 expression was also low in patients with \textit{P. aeruginosa} infection, then this could contribute to their susceptibility to \textit{P. aeruginosa} infection because they would have a reduced ability to degrade and inactivate 3OC\textsubscript{12}HSL. The results shown in Figure 4 confirm that PON2 gene expression is approximately twofold lower in those children with \textit{P. aeruginosa} infection than in those infected with non-Pseudomonal bacteria or without detectable infection. There was one sample in the no infection group for which the BALF was not available for analysis. The results shown in Figure 4 confirm that PON2 gene expression is approximately twofold lower in those children with \textit{P. aeruginosa} infection than in those infected with non-Pseudomonal bacteria or without detectable infection.
which PON2 expression data was unavailable, leaving 12 patients in that group.

Correlation of Other Variables with *P. aeruginosa* Infection and with PPARγ and PON2 Gene Expression

The results described above indicate an association between *P. aeruginosa* infection and low gene expression of PPARγ and PON2. To analyze this further, we evaluated associations of a range of variables with the presence of >10^5 cfu/mL *P. aeruginosa* in BALF (“*Pseudomonas positive*”) (Table 3) or PPARγ and PON2 gene expression (Table 4). To evaluate the association of PPARγ and PON2 gene expression with inflammation, we used the total leukocyte and total neutrophil counts in BALF. As the severity of CF disease has been reported to differ between males and females [33,34] and will also depend on the type of *cftr* mutation present in the patients, we evaluated associations with sex and genotype. The effect of patient age was also evaluated, because the incidence of *P. aeruginosa* in CF increases with age, and in some animal models the effect of patient age was also evaluated, because the incidence of *P. aeruginosa* infection increases with age, and in some animal models the effect of patient age was also evaluated, because the incidence of *P. aeruginosa* infection increases with age.

When evaluating associations between each variable and PPARγ expression, the only correlations observed were an inverse correlation between PPARγ expression and total leukocytes (P = 0.00016), and an extremely strong inverse correlation for PPARγ expression and total neutrophils (P < 0.0001); i.e. low PPARγ gene expression is associated with high total leukocyte and neutrophil counts. For PON2, there was an inverse correlation of PON2 gene expression with total neutrophils (P = 0.018), but no other significant correlations.

Table 3. Comparison of characteristics of patients with and without culture-detected *P. aeruginosa* infection in BALF.

Variable	*P. aeruginosa* positive (n = 7)	*P. aeruginosa* negative (n = 36)	P-value
Age at BAL (days, mean ± SEM)	1072±204.3	760.9±72.5	0.23*
No. male (%)	3 (42.9%)	16 (44.4%)	0.50†
No. F508del homozygous (%)	2 (28.5%)	19 (52.8%)	0.24‡
Total leukocytes in BALF (cells × 10^6/L, mean ± SEM)	1.09±0.19	0.57±0.11	0.009*
Total neutrophils in BALF (cells × 10^6/L, mean ± SEM)	0.84±0.17	0.34±0.10	0.006*
Fasting glucose mean ± SEM	4.94±0.21	4.81±0.14	0.66*

* Mann Whitney U test † Chi square. Significant differences are indicated in bold text. doi:10.1371/journal.pone.0042241.t003

PPARγ and PON2 Gene Expression in Different BALF Samples from Individual Patients

To attempt to evaluate whether *P. aeruginosa* infection was associated with changes in PPARγ and PON2 gene expression in individual patients, we seperately examined two consecutive BALF samples from six patients who either acquired *P. aeruginosa* infection between the first and second sample (n = 3), or cleared *P. aeruginosa* infection between the first and second sample (n = 3).

There was no consistent pattern of change in PPARγ or PON2 gene expression. Results from another group of 16 patients for whom we had at least two BALF samples but who did not change their *P. aeruginosa* infection status (either stayed negative or stayed positive) also showed no significant change in median PPARγ and PON2 gene expression between samples.

Discussion

Previous studies in human cell lines and *cftr* knockout mice have suggested that expression of PPARγ is reduced in CF [10,13,16], although this has not been directly demonstrated in individuals with CF, and no previous study has suggested an association of PPARγ expression with *P. aeruginosa* infection. There is no information in the literature on the expression of PON2 directly in CF. Thus, this study is the first to examine expression of the genes encoding PPARγ and PON2 in cells from BALF of CF children with and without *P. aeruginosa* infection.

The results of this study show that in children with CF, low expression of PPARγ and PON2 genes in BALF cells is associated with *P. aeruginosa* infection but not with the presence of other pathogens. Patients with *P. aeruginosa* infection had significantly higher neutrophil and leukocyte counts compared to those without, which has been previously reported [41]. The findings also demonstrate that PPARγ gene expression, and to a lesser extent PON2 gene expression, shows a strong inverse correlation with neutrophil counts, indicating that low PPARγ and PON2 gene expression is associated with high levels of inflammation. It is possible that the observed correlation is due to sampling from different cell populations and we were unable to determine the source of detected PPARγ transcripts in our study. However PPARγ has been reported to be expressed in bronchial epithelial cells [10,42], alveolar macrophages [14] and neutrophils [11,12,13].

These findings were consistent whether *P. aeruginosa* infection was detected by culture or by RT–qPCR. While microbiological culture remains the gold standard detection method, our results indicate that detection by RT–qPCR shows an excellent
correlation with culture results. Furthermore, detection of low levels of *P. aeruginosa* in patients classified on culture results as uninfected suggests that RT-qPCR may detect lower levels of bacteria than culture, although the clinical relevance of this is uncertain. However, the findings suggest that RT-qPCR could be a useful confirmatory technique for *P. aeruginosa* infections.

Our results also showed that expression of the bacterial 3OC12HSL synthase *lasI* gene was detectable in BALF of all patients with culture-defined *P. aeruginosa* infection, but in none of the other patients. This confirms that at least a subpopulation of the *P. aeruginosa* present in BALF in all patients with culture-defined infection with *P. aeruginosa* were able to produce 3OC12HSL, even in those patients who had been infected for up to three years. This contrasts with reports that isolates of *P. aeruginosa* from chronically-infected CF patients accumulate mutations and lose quorum sensing activity [43,44]. However, these studies reported quorum sensing gene mutations in clinical isolates rather than population-wide gene expression directly in the CF lung. It is likely that mixed populations of *P. aeruginosa* exist in the CF lung, some of which may harbor mutations in genes involved in quorum sensing [45,46]. In addition, it has been reported that quorum sensing activity in isolates is not lost until the late stages of chronic infection [44]. It is important to emphasize that our study reports data on gene expression, not protein activity, of PPARγ and PON2. However, a positive regulatory effect of the 3OC12HSL synthase, in the *P. aeruginosa* deficient mouse tracheal epithelial cells allow increased transcriptional activity and provide some protection against biofilm formation by *P. aeruginosa* by allowing higher levels of functional 3OC12HSL to accumulate in the CF lung. Indeed, PON2-deficient mouse tracheal epithelial cells allow increased *P. aeruginosa* quorum sensing activity [50] and PON2 expression has been shown to be downregulated by 3OC12HSL [27]. Further, PON2 has antioxidant activity and can protect cells against the effects of the *P. aeruginosa* virulence factor pyocyanin [27]. Importantly, PON2 has activity against a range of homoserine lactone signaling molecules, including that produced by *P. aeruginosa* [51]. Thus, reduced PON2 activity could facilitate chronic infection and biofilm inactivation and degrade 3OC12HSL [25,50,51]. Thus, reduced PON2 activity could facilitate chronic infection and biofilm formation by *P. aeruginosa* allowing higher levels of functional 3OC12HSL to accumulate in the CF lung. Indeed, PON2-deficient mouse tracheal epithelial cells allow increased *P. aeruginosa* quorum sensing activity [50] and PON2 expression has been shown to be downregulated by 3OC12HSL [27]. Further, PON2 has antioxidant activity and can protect cells against the effects of the *P. aeruginosa* virulence factor pyocyanin [27]. Importantly, PON2 has activity against a range of homoserine lactone signaling molecules, including that produced by *Burkholderia cepacia* complex, but as none of our patients had detectable infection with this microorganism, we were unable to evaluate any associations.

Overall, our study represents the first demonstration of two host factors that are specifically associated with early childhood infection with *P. aeruginosa* in individuals with CF. While our results do not allow us to determine whether this association is cause or effect, they provide a useful starting point for designing new therapeutic strategies. For example, treating CF patients who have low PPARγ expression with a pharmacological PPARγ agonist such as a glitazone may allow augmentation of PPARγ activity and provide some protection against *P. aeruginosa* infection.

Table 4. Correlation of patient characteristics with PPARγ and PON2 gene expression.

Variable	Correlation with PPARγ gene expression (Spearman ρ, P value)	Correlation with PON2 gene expression (Spearman ρ, P value)
Age at BAL	0.013, P = 0.9326	−0.168, P = 0.2880
Sex	0.220, P = 0.1557	0.000, P = 1.000
Genotype	−0.012, P = 0.9390	−0.060, P = 0.7050
Total leukocytes in BALF	−0.478, P = 0.0016*	−0.297, P = 0.062
Total neutrophils in BALF	−0.635, P < 0.0001*	−0.376, P = 0.018*
Fasting glucose	−0.042, P = 0.7982	0.314, P = 0.0545

*Significant correlations are indicated in bold text.

doi:10.1371/journal.pone.0042241.t004
Acknowledgments

The authors wish to thank Hayley Dwyer, Greta Goldsmith, Steven Leach, Roger Latham and Samuel Briant for technical assistance.

Author Contributions

Conceived and designed the experiments: MAC LFR AJ. Performed the experiments: PG RS YCB. Analyzed the data: PG MAC. Contributed reagents/materials/analysis tools: AJ YCB RS SB. Wrote the paper: MAC PG LFR.

References

1. Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15: 194–222.
2. Jaral NA, Higgs S, Jeffeite T, Giles K (2005) Factors associated with reduced FEV1 in adult patients with cystic fibrosis in a relatively affluent area. Chron Respir Dis 2: 133–137.
3. Schaedel C, de Monestrol I, Hjytre L, Johannessen M, Kornfeld R, et al. (2002) Predators of deterioration of lung function in cystic fibrosis. Pediatr Pulmonol 33: 483–491.
4. Ulrich M, Woltitzsch D, Vigilo S, Siegmann N, Iadarola P, et al. (2010) Alveolar infection in cystic fibrosis. J Cyst Fibros 9: 217–227.
5. Machtou TE. (2000) Innate immune response in CF airway epithelia: hyperinflammatory? Am J Physiol Cell Physiol 291: C218–230.
6. Mayer ML, Sheridan JA, Blohmke CJ, Turvey SE, Hancock RE (2011) The Pseudomonas aeruginosa Autoinducer-3 O-C12 Homoserine Lactone Prookes Hyperinflammatory Responses from Cystic Fibrosis Airway Epithelial Cells. PLoS One 6: e16464.
7. Buchanen PJ, Ernst RK, Elborn JS, Schock B (2009) Role of CFTR, Pseudomonas aeruginosa and Toll-like receptors in cystic fibrosis lung inflammation. Biochem Soc Trans 37: 963–967.
8. Saadane A, Solty S, Berger M (2006) Acute Pseudomonas challenge in cystic fibrosis mice causes prolonged nuclear factor-kappa B activation, cytokine secretion, and persistent lung inflammation. Am J Clin Immunol 117: 1163–1169.
9. Smith RS, Kelly R, Iglewski BH, Phipps RP (2002) The Pseudomonas autoinducer N-(3-oxo-decano-2)-homoserine lactone induces cytochrome c oxidase and prostaglandin E2 production in human lung fibroblasts: implications for inflammation. J Immunol 169: 2836–2842.
10. Perez A, van Heeckeren AM, Nichols D, Gupta S, Eastman JF, et al. (2008) Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr 4: 281–299.
11. Reddy RC, Naara VL, Keshamoni VG, Milam JL, Neuwest MV, et al. (2008) Sepsis-induced inhibition of neutrophil chemotaxis is mediated by activation of peroxisome proliferator-activated receptor-gamma. Blood 112: 4250–4258.
12. Standiford TJ, Keshamoni VG, Reddy RC (2005) Peroxisome proliferator-activated receptor-gamma as a regulator of lung inflammation and repair. Am J Physiol Lung Cell Mol Physiol 290: L303–L313.
13. Andersson C, Zaman MM, Jones AB, Freedman SD (2008) Alterations in immune response and PPARG/LXR regulation in cystic fibrosis macrophages. J Cyst Fibros 7: 60–70.
14. Harmon GS, Dumalo DS, NG DT, Barrett KE, Dennis EA, et al. (2010) Pharmacological correction of a defect in PPAR-gamma signaling ameliorates features of airway remodeling in a mouse asthma model. J Biol Chem 285: 141–148.
15. Hotta K, Bodlin NL, Gustafson TA, Yoshida K, Ortmeyer HK, et al. (1999) Age-related adipose tissue mRNA expression of ADD1/SREBP1, PPARgamma, lipoprotein lipase, and GLUT4 glucose transporter in rhesus monkeys. J Gerontol A Biol Sci Med Sci 54: B183–188.
16. Pascual G, Sullivan AL, Ogawa S, Gamble A, Perissi V, et al. (2007) Anti-inflammatory and antiadipogenic roles of PPARgamma. Novartis Found Sypm 286: 183–196; discussion 196–203.
17. Mackness B, McDell J, Noone M, Mackness MI (2005) The paraoxonase-2–310 polymorphism is associated with the presence of microvascular complications in diabetes mellitus. J Intern Med 258: 363–369.
18. Hameed S, Jaffe A, Verge CF (2011) Cystic fibrosis related diabetes (CFRD): the end stage of progressive insulin deficiency. Pediatr Pulmonol 46: 747–760.
19. Tateda K, Condie P, Pecchere JC, Kohler T, Yamaguchi K, et al. (2001) Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45: 1930–1933.
20. Gaugel SD, Gibson RL, Emerson J, McMamara S, Burns JL, et al. (2009) Impact of Pseudomonas and Staphylococcus infection on inflammation and clinical status in young children with cystic fibrosis. J Pediatr 154: 183–188.
21. Honda K, Marquilles P, Capron M, Dombrowsicz D (2004) Peroxisome proliferator-activated receptor gamma is expressed in airways and inhibits features of airway remodeling in a mouse asthma model. Am J Respir Crit Care Med 173: 1574–1580.
22. Matsuda K, Tsuji H, Asahara T, Kado Y, Nomoto K (2001) Stage-specific effects of a thrombopoietin receptor on proliferation, differentiation and PPARgamma mRNA expression in 3T3-L1 adipocytes. Eur J Pharmacol 422: 23–29.
23. Takamura T, Nohara E, Nagai Y, Kobayashi K (2001) Stage-specific effects of a thrombopoietin receptor on proliferation, differentiation and PPARgamma mRNA expression in 3T3-L1 adipocytes. Eur J Pharmacol 422: 23–29.
24. Carrieri F, Peachey JC, Kocher T, Yamauchi K, et al. (2001) Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45: 1930–1933.
25. Teuber JF, Horie S, Haines DC, Cholodovy PK, Xiao J, et al. (2008) Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N(3)-oxo-decanoic acid-L-homoserine lactone. Infect Immun 76: 2512–2519.
26. Stoltz DA, Ozar EA, Ng CJ, Yu JM, Reddy ST, et al. (2007) Pseudomonas aeruginosa-deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am J Physiol Lung Cell Mol Physiol 292: L525–L532.
27. Horke S, Witte I, Ahrenhofer S, Wilgenbus P, Goldbeck M, et al. (2010) Pseudomonas aeruginosa quorum-sensing signal N(3)-oxo-decanoic acid-L-homoserine lactone and attenuates oxidative stress induced by pyocyanin. Biochem J 426: 73–83.
28. Dakin CJ, Nuna AH, Wang H, Morton JR, Vertyzas GC, et al. (2002) Inflammation, infection, and pulmonary function in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 165: 904–910.
29. Armstrong DS, Grimwood K, Carlin JB, Carzino R, Olimsky A, et al. (1996) Bronchoalveolar lavage or oropharyngeal cultures to identify lower respiratory pathogens in infants with cystic fibrosis. Pediatr Pulmonol 21: 267–275.
30. Hal GI, Logue KM, Parsons F, Schulze SM, Nolan G, et al. (2011) Air trapping on chest CT is associated with worse ventilation distribution in infants with cystic fibrosis diagnosed following newborn screening. PLoS One 6: e27992.
31. Matsuda K, Tsuji H, Asahara T, Kado Y, Nomoto K (2007) Sensitive quantitative detection of commensal bacterial by rRNA-targeted reverse transcription-PCR. Appl Environ Microbiol 73: 32–39.
32. Haroon MJ, Hogas DA (2011) Examination of Pseudomonas aeruginsoa las reguliation and 3-oxo-C12-homoserine lactone production using a heterologous Escherichia coli system. FEMS Microbiol Lett 273: 38–44.
33. Matsuda K, Tsuji H, Asahara T, Kado Y, Nomoto K (2007) Sensitive quantitative detection of commensal bacterial by rRNA-targeted reverse transcription-PCR. Appl Environ Microbiol 73: 32–39.
34. Jackson AD, Daly L, Jackson AL, Kellerer C, Marshall BC, et al. (2011) Validation and use of a parametric model for projecting cystic fibrosis survivorship beyond observed data: a birth cohort analysis. Thorax 66: 674–679.
35. Herzlich AA, Ding X, Shen D, Ross RJ, Tuo J, et al. (2009) Peroxiosome Protiﬁer-Activated Receptor Expression in Murine Models and Humans with Age-related Macular Degeneration. Open Biol J 2: 141–148.
36. Matsuda K, Tsuji H, Asahara T, Kado Y, Nomoto K (2007) Sensitive quantitative detection of commensal bacterial by rRNA-targeted reverse transcription-PCR. Appl Environ Microbiol 73: 32–39.
37. Matsuda K, Tsuji H, Asahara T, Kado Y, Nomoto K (2007) Sensitive quantitative detection of commensal bacterial by rRNA-targeted reverse transcription-PCR. Appl Environ Microbiol 73: 32–39.
48. Pineda Torra I, Jamshidi Y, Flavell DM, Fruchart JC, Staels B (2002) Characterization of the human PPARalpha promoter: identification of a functional nuclear receptor response element. Mol Endocrinol 16: 1013–1028.
49. Shureiqi I, Jiang W, Zuo X, Wu Y, Stimmel JB, et al. (2003) The 15-lipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. Proc Natl Acad Sci U S A 100: 9968–9973.
50. Stoltz DA, Ozer EA, Ng CJ, Yu J, Reddy ST, et al. (2006) Paraoxonase-2 Deficiency Enhances Pseudomonas aeruginosa Quorum Sensing in Murine Tracheal Epithelia. Am J Physiol Lung Cell Mol Physiol.
51. Ozer EA, Pezzulo A, Shih DM, Chun C, Furlong C, et al. (2005) Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol Lett 253: 29–37.