Natural remedies for hyperlipidemia: A review

Debankini Dasgupta, Shwetlana Bandyopadhyay, Nilanjan Sarkar and Mainak Chakraborty

DOI: https://doi.org/10.22271/phyto.2021.v10.i5c.14194

Abstract
Hyperlipidemia is a popular disorder and a state of body where there is elevated level of triglyceride above 200mg/dl, LDL above 160mg/dl, Total cholesterol above 200mg/dl and HDL below 40mg/dl. Now it can be found on every other person, when LDL increases it travels through our blood vessels and tends to accumulate in the vessels the accumulation is not for lipids only it consists of calcium and fibrous plaque, and this scenario leads to atherosclerosis. Atherosclerosis causes narrowing of blood vessels, leads to lesser blood flow to the heart results in angina pectoris and gradually heart attack. There are many marketed medicines fighting against this, but they have adverse effects like muscle toxicity. Here, are some natural remedies which we come across everyday are fighting these situations which are very easily available in nature, and we can take it in our regular diet.

Keywords: Hyperlipidemia, LDL, cholesterol, natural products, atherosclerosis, metabolism

Introduction
On an average about 20% of adult are suffering from hyperlipidemia like diseases. Men are more prone to this disease than women, reason can be assumed due to the presence of estrogen in menstruating women. Secondary form of hyperlipidemia occurs more prone to this disease than women, reason can be assumed due to the presence of estrogen in menstruating women. Secondary form of hyperlipidemia occurs more prone to this disease than women, reason can be assumed due to the presence of estrogen in menstruating women. The pathway to a vascular event is a chain of connected events. The ultimate formation of a plaque depends on where it has started forming (some vessels are more prone to obstruct as compared to others) on the basis of what it is made of (amount of lipid, oxidation of low-density lipoprotein [LDL], etc). Hyperlipidemias highlights the development of atherosclerotic plaque by the enhancement of the transport of lipoproteins into the intima of coronary vessels where the macrophages are also migrating forming a fatty streak. Narrows blood vessels. Damage to the endothelial cells overlying a fatty streak helps to transform it to a fibrous plaque. A quick myocardial infarction (MI) starts with a fissured atheromatous plaque that progresses and forms a rapid thrombosis of a coronary artery. Fissuring occurs in a fragile plaque that contains large deposits of lipid and thinned fibrous cap as a result of macrophages in it [2].

There are some marketed drugs which are fighting against hyperlipidemia the classification

- Antihyperlipidemic Drugs are the drugs which lowers the lipid
 1. Statins (e.g. lovastatin, fluvastatin, pravastatin, simvastatin, atorvastatin, & rosuvastatin), which are HMG-CoA reductase inhibitors decrease cholesterol synthesis.
 2. Ezetimibe, which is cholesterol absorption inhibitor.
 3. Niacin "nicotinic acid", that decreases secretion of lipoproteins.
 4. Fibrates (e.g. clofibrate, fenofibrate, & gemfibrozil), that causes peripheral clearance of lipoproteins.
 5. Resins (e.g. cholestyramine, colestipol, & colesevelam), these are bile acid sequestrants that decreases bile acid absorption

These are quite effective but they have got some severe side effects such as muscle toxicity of statin, but natural drugs or remedies can be used which will have same effects with lesser adverse effects or we can take some dietary approach for hyperlipidemia. More than 50% of garlic, more than 80% of guggul, and 100% of Arjuna in randomized clinical trials have shown effectiveness towards hyperlipidemia [3].

E-ISSN: 2278-4136
P-ISSN: 2349-8234
www.phytojournal.com
JPP 2021; 10(5): 181-189

Accepted: 12-06-2021
Received: 02-08-2021

Debankini Dasgupta
Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, 60, Basanta Lal Saha Rd, Tara Park, Behala, Kolkata, West Bengal, India

Shwetlana Bandyopadhyay
Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, 60, Basanta Lal Saha Rd, Tara Park, Behala, Kolkata, West Bengal, India

Nilanjan Sarkar
Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, 60, Basanta Lal Saha Rd, Tara Park, Behala, Kolkata, West Bengal, India

Mainak Chakraborty
Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, 60, Basanta Lal Saha Rd, Tara Park, Behala, Kolkata, West Bengal, India

Corresponding Author:
Mainak Chakraborty
Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, 60, Basanta Lal Saha Rd, Tara Park, Behala, Kolkata, West Bengal, India
Table 1: Natural Products as potential Therapeutic agents to treat Hyperlipidemia.

Sl. No.	Common Name	Biological Source	Probable Chemical constituent	Probable site or mechanism of action	Clinical Trials	
1.	Apple	Scientific name: *Malus domestica* Family: Rosaceae	Quercetin,	Involve in glycerol phospholipid metabolism. Act through AMPK regulated fatty acid degeneration and cholesterol metabolism	Phase 1 [8]	
2.	Rice Water	Water	Allantoin	Allantoin blocks the 3-hydroxy-3-methylglutaryl-coA reductase (HMGR), mevalonate kinase (MVK) and lanosterol demethylase (LDM) [7]		
3.	Candy Leaves	Scientific Name: *Stevia rebaudiana* Family: Asteraceae	Aqueous extract of stevia leaves, stevioside	Enhancement of the bile acid excretion by reducing reabsorption from small intestine. The increase in excretion of bile acid and cholesterol activates cholesterol 7α-hydroxylase that enhances the conversion of liver cholesterol to bile acid thus regulates [9]		
4.	Peas	Scientific name: *Pisum sativum* Family: Fabaceae	Leutin	Reduction of NF-κB, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), TNF-α, and IL-1β. Peroxisome proliferator X receptor (PPAR) and retinoic acid X receptor [9, 10].		
5.	Garlic	Scientific name: *Allium sativum* Family: Amaryllidaceae Part Used: stem	Allicin	decreasing activity HMG-CoA reductase and it is the rate-limiting enzyme of cholesterol biosynthesis so decrease in cholesterol level [11]	Phase 2 [12]	
6.	Eggplant/Brinjal	Scientific name: *Solanum melongena* Family: Solanaceae Part Used: Peels	Anthocyanin	inhibits lipid peroxidation [13]	Phase 3 [14]	
7.	Guava	Scientific name: *Psidium guajava* Family: Myrtaceae Part Used: Leaves	Guava leaf extract	a decrease in HbA1c% [15].		
8.	Mango	Scientific name: *Mangifera indica* Family: Anacardiaceae Part Used: leaves	Mango leaf extract	Enhancement of the expression of hepatic LDL receptors and protection can enhancement of the removal of LDL-C from the blood and its increases the degradation and catabolism of cholesterol from the body LDL receptors [16].		
9.	Papaya	Scientific name: *Carica papaya* Family: Caricaceae Part Used: Fruit	Rutin	• HMG-CoA reductase activity. • absorption of dietary cholesterol [17].		
10.	Pumpkin	Scientific name: *Cucurbita pepo* Family: Cucurbitaceae Part Used: Seeds	Fiber, PUFA	increasing LDL receptor activity and reduced LDL-C by lowering cholesterol and bile acid absorption [18].		
11.	Pineapple	Scientific name: *Ananas comosus* Family: Bromeliaceae Part Used: Peels	Bromelain, Saponin, Tannin	Peels reduced oxidative stress [19]		
12.	Cinnamon	Scientific name: *Cinnamomi Cassiae* Family: Lauraceae Part Used: Bark	Cinnamon extract	The PPARγ and mRNA expression was regulated in adipose tissue [20]		
13.	Cardamom	Scientific name: *Elettaria cardamomum* Family: Zingiberaceae Part Used: Seeds	Kaempferol	partial agonist of PPARγ increasing insulin sensitivity and they are involved in the lipid metabolism. In hepatocytes [21].		
14.	Arjuna	Scientific name: *Terminalia arjuna* Family: Combretaceae	Ethanolic fraction of T. arjuna	Ethanolic fraction of T. arjuna- serum/plasma lecithin cholesterol acyl transferase (LCAT) and accumulation of receptor mediated catabolism of LDL40.		
15.	Turmeric	Scientific name: Curcuma longa	Curcumin	Hypolipidemic activity is probably due to its anion exchange property [22]. Randomized Controlled Trial [24]		
16.	Ginger	Scientific name: Zingiber officinale	gingerols and shogaols	Lowering of cholesterol biosynthesis is associated with increased activity of the LDL receptor, which in turn leads to enhanced removal of LDL from plasma, resulting in reduction plasma cholesterol concentration [25]. Double-blinded, placebo-controlled clinical trial [26]		
17.	Green Coffee	Scientific name: Zingiber officinale	Chlorogenic acids (CGA)	Increase in the OX-LDL by decreasing homocysteine, because homocysteine induces oxidation by promoting the production of reactive oxygen species. It has been noticed that CGA has prominent antioxidant, hypolipidemic effects, and is one of the most abundant polyphenol in unroasted green coffee [27]. Randomized, placebo-controlled, clinical trial [27]		
18.	Chili	Scientific name: Capsicum frutescens	Capsaicinoids, Capsaicin	stimulates the conversion of cholesterol to bile acids by regulation of cholesterol 7α-hydroxylase expression and enhancing the excretions of bile acids in feces [28]. A randomized, double-blind, controlled clinical trial [28]		
19.	Neem	Scientific name: Azadirachta indica	ethanolic extract of AZI	decreases ROS production and enzymes involve in it include superoxide dismutase (SOD), catalase (CAT) and glutathione Peroxidase (GPX). A randomized, double-blind, placebo-controlled trial [27].		
20.	Hibiscus	Scientific name: Hibiscus rosa-sinensis	ethanolic extract of flower or the lecithin	Cholesterol acetyltransferase, which combines free cholesterol, free LDL into HDL and transferred back to VLDL and intermediate density lipoprotein. Reduction in triglyceride level was may be due to the effect of inhibition of lipolysis and fatty acid does not get converted to triglyceride [31, 32]. A randomized, placebo-controlled, clinical trial [27]		
21.	Aloevera	Scientific name: Aloe barbadensis	Aloe-emodin	could mostprobably reduce the production of ROS induced by PA and increase the expression of SOD. Aloe Emolin treatment might has the capability to decreases cardiomycyte apoptosis [33]. A randomized, placebo-controlled, clinical trial [27]		
22.	Strawberry	Scientific name: Fragaria ananassa	Ellagic acid, fisetin	Ellagic acid can possibly improve vascular reactivity postprandially, fisetin may normalize lipoproteins through the enhancement of lipoprotein lipase activity and can cause a decrease in glycation of lipoproteins [34, 35]. A randomized, placebo-controlled, clinical trial [27]		
23.	Coconut	Scientific name: Cocos nucifera	water	mature coconut water can reduce hyperlipidemia may be due to the fact that rate of degradation of cholesterol is greater than the synthesis [36]. A randomized, placebo-controlled, clinical trial [27]		
24.	Ephedra	Scientific name: Ephedra sinica	ephedractae	scavenging of free radicals, includes hydroxyl and superoxide anions, and inhibiting lipid peroxidation and improve lipid profiles [37]. Phase 3. A randomized controlled trial and an updated meta-analysis [39]. Crossover, Randomized Controlled Trial [40]		
25.	Black pepper	Scientific name: Piper nigrum	piperine	stimulates cholesterol 7a-hydroxylase activity [38]. A randomized, placebo-controlled, clinical trial [27]		
		Scientific name:	Part Used	Extract/Component	Result/Effect	Randomized Controlled Trial
---	---	-----------------	-----------	------------------	---------------	-----------------------------
26.	okra	Abelmoschus esculentus Family: Malvaceae. Part Used: fruit and seeds	Extract of okra	The result is due to the rapid catabolism of LDL-C through its hepatic receptors HDL aids the translocation of cholesterol. And it can be assumed that it is a HMG-CoA reductase inhibitor.	Randomized Controlled Trial	
27.	Kalmegh	Andrographis paniculata (Burm. f) Family: Acanthaceae Part Used: leaves	Andrographolide and Neoandrographolide	It was seen that And inhibits the LPS/IFNγ-induced iNOS and MMP-9 expressions in vascular smooth muscle cell and reduces the neointimal formation in a carotid injury. And increases NF-κb subunit P65 Ser536 dephosphorylation through an activation of protein phosphatase 2A in vascular smooth muscle cell.	A double blind, randomized controlled trial	
28.	Red yeast Rice	Monascus purpureus, Family: Monascaceae Monascus	monacolin	It can inhibit HMG-COA enzyme.	A double blind, randomized controlled trial	
29.	Tulsi	Ocimum tenuiflorum Family: Lamiaceae Part used: whole plant	Rosmarinic acid	It was found to have free radical scavenger activity and lipid peroxidase inhibitor properties.	A double blind, randomized controlled trial	
30.	Curry leaves	Murraya koenigii Family: Rutaceae Part Used: leaves	Leaves extract	The antioxidants present in the leaves might be involved in the increase of HDL-C and thus could decrease the LDL-C and TC. The antioxidant might prevent the oxidation of LDL which was considered as the early event in the atheroma.	A double blind, randomized controlled trial	
31.	Sea Cucumber	Apostichopus japonica Family: Stichopodidae	Aqueous extract of the leaves	May combine with lipids and act as a carrier to participate in the metabolism of cholesterol, speeding up the transport and excretion of serum lipid.	A double blind, randomized controlled trial	
32.	Mint	Mentha piperita Family: Lamiaceae Part Used: leaves	Aqueous extract of the leaves	Decreases lipid peroxidation and increased SOD in liver tissue homogenates. It showed significant decrease in catalase and glutathione levels in liver tissue homogenate.	A double blind, randomized controlled trial	
33.	Sankhpushpi	Convolvulus pluricaulis Family: Convolvulaceae Part Used: whole plant	Methanol extract	Catabolism of LDL-C through its hepatic receptors and effect on HMGCoA reductase action.	A double blind, randomized controlled trial	
34.	Guggal	Commiphora mukul Family: Part used: Leaves	E- and Z-guggulsterone Isomers of the guggal	This lipid-lowering activity may be due to the inhibition of hepatic cholesterogenesis and catabolic conversion of cholesterol to bile acids in the liver.	A double blind, randomized controlled trial	
35.	Sparrow grass/ Satavari	Asparagus racemosus Family: Asparagaceae Part Used: root	digitonin and tomatine	bind to the cholesterol and increase its precipitation in vitro and inhibit the cholesterol absorption without bile acid absorption in vivo.	A double blind, randomized controlled trial	
36.	Kantakari	Solanum surattense Family: Solanaceae Part Used: leaves	Leaves extract	decreased in the cholesterogenesis and reduced fatty acid synthesis, and this may be also due to the enhancement of the glucose utilization.	A double blind, randomized controlled trial	
37.	Tamarind	Terminalia chebula Family: Part Used: fruit pulp	limonene	Assuming through an increase in Apo A1, ABCG5, and LDL receptor gene expression in liver and decrease in HMG CoA reductase and stop MTP gene expression.	A double blind, randomized controlled trial	
38.	Drumstick	Moringa oleifera Lam Family: Moringaceae Part Used: fruit	Plant sterols	Partial inhibition of cholesterol synthesis by the de novo or by inhibiting the cholesterol absorption.	A double blind, randomized controlled trial	
39.	Amla	Emblica Officinalis	Fruit extract	Found to have action on the lipid metabolism.	A double blind, randomized controlled trial	
40	Haritaki	Scientific name: *Terminalia chebula Retz.*, Family: Combretaceae	Bark extract	de novo lipogenesis leading to fatty liver was most probably reduced [60]	A Randomized Double-Blind, Placebo Controlled Clinical Trial [61]	
41	Apamarga	Scientific name: *Achyranthes aspera* Family: Amaranthaceae	Aqueous extract	Low absorption of cholesterol because of rapid excretion of bile acids causing [62]		
42	Barberry	Scientific name: *Berberis orthobotrys* Family: Berberidaceae	Extract of root	Extract might change the activity of diacylglycerol acyltransferase (DGAT), which is a key enzyme in HDL, its flux from the cell membrane into HDL, or might have effect on HMG-CoA reductase [63]		
43	Orchids	Scientific name: *Bauhinia purpurea* Family: Fabaceae	Proanthocyanidines	The cholesterol reducing effect of the extracts most probably due to inhibition of dietary cholesterol esterification [64]		
44	Matura Tree	Scientific name: *Cassia auriculata L.* Family: Fabaceae	Ascorbic acid	It might reduce the endogenous cholesterol biosynthesis by decreasing/stoping the hepatic uptake of cholesterol by the liver [65]		
45	Liquorice	Scientific name: *Glycyrrhiza glabra Linn.* Family: Fabaceae	glycyrrhizin, glycyrrhizinic acid, glabrin A&B, glycyrrhetin, glabrolide, isoglabrolide,	Free radical scavenging activity [67]		
46	Tomato	Scientific name: *Solanum lycopersicum* Family: Solanaceae	Lycopene	It might act on LDL receptor and prevent the binding of cholesterol [68]		
47	Methi	Scientific name: *Trigonella foenum-graecum* Family: Fabaceae	Diosgenin	Diosgenin have a protective effect on blood vessels against oxidative stress via reducing the mRNA expression of MPO [69], [70]		
48	Berry	Scientific name: *Dioscorea nipponica* Family: Dioscoreaceae.	Protodioscin	Most probably it is known to act as a HMG-CoA reductase inhibitor [71]		
49	Vinca	Scientific name: *Catharanthus roseus* Family: Apocynaceae	Vincamine	Reduced the oxidative stress and reactive oxygen species [72], [73]		
50	Yerba Mate tea	Scientific name: *Ilex paraguariensis* Family: Aquifoliaceae	Mate tea aqueous extract	Activation of PPARa stops the formation of macrophage foam cells formation of reactive oxygen species (ROS), and associated lipoprotein oxidative modification, [73]		

Discussion

It is found that in USA almost 8% cases occurs due to some drug’s adverse reaction, almost 100,000 die each year because of some toxicities shown by some drugs into their body [74], it means a large number of people are dying due to adverse drug reaction. But on the other hand death due to plant product is very rare. National Poison Control Centre of the United States do not have a category in their database for side or adverse reactions to herbs, they do believe that plant remedies are believed to have lesser side effects [75-77].

In hyperlipidemia there is increase in number of lipoproteins, hyperlipidemia, diabetes mellitus, and hypertension. Hypercholesterolemia and hypertriglyceridemia, as vulnerable factors to atherosclerosis, have received the most recent attention [78]. It is seen that some people are intolerant to statin because of myalgia or muscle toxicity, and a randomized, double-blinded, placebo-controlled trial was performed to evaluate red yeast rice in patients with a history of SAM (statin-associated myalgias). Red yeast rice significantly reduced the LDL and total cholesterol levels compared with placebo and did not
increase the incidence of myalgias within a 24-week of period. The process of red yeast rice and therapeutic herbal lifestyle change may offer a lipid lowering option for patients those who are intolerant to statin. Still the occurrence of myalgias after the starting of statin is poorly defined, SAMs are a serious note major clinical concern. So, as of now the phytochemicals identified from plants are introducing an inspiring opportunity for the development of new types of therapeutics. Thus there is a serious need to identify the native natural sources to study in detail their ability on different latest targets in order to develop them as new medicinal agents.

In Ayurvedic science the lipids are known as Medodhatu the drug which helps in control medodhatu called as Medooghna which are equally capable of lowering lipids like synthetic drugs, some of them has similar probable mechanism of action of synthetic drugs but benefit is they have lesser or No side effects and they are available abundantly in nature.

Conclusion

I hereby conclude that all the natural sources which are mentioned above can act as remedies or drug for hyperlipidemia which are easily available and abundantly present in nature with least adverse reaction can be used to treat hyperlipidemia which would be potent like marketed drugs and will be lowered in price

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

The authors acknowledge to the Department of Pharmaceutical Technology, NSHM KNOWLEDGE CAMPUS, KOLKATA-GROUP OF INSTITUTIONS, Kolkata, India for providing necessary infrastructure and help. The author also thankful to Dr. Sandipan Dasgupta and DR, Subhasis maiti for Necessary Support.

Reference

1. Rouhi-Boroujeni H, Rouhi-Boroujeni H, Heidarian E, Mohammadizadeh F, Rafieian-Kopaei M. “Herbs with anti-lipid effects and their interactions with statins as a chemical antihyperlipidemia group drugs: A systematic review,” ARYA Atheroscler 2015;11(4):244-251.
2. Stewart J, McCallin T, Martinez J, Chacko S, Yusuf S. “Hyperlipidemia,” Pediatr. Rev 2020;41(8):393-402, doi: 10.1542/pir.2020-00553.
3. Hasani-Ranjbar S, Nayebi N, Larijani B, Abdollahi M. “A systematic review of the efficacy and safety of herbal medicines used in the treatment of obesity,” World J. Gastroenterol 2009;15(25):3073-3085. doi: 10.3748/wjg.v15.i25.3073.
4. Wang M. et al., “Quercetin Improving Lipid Metabolism by Regulating Lipid Metabolism Pathway of Ileum Mucosa in Broilers,” Oxid. Med. Cell. Longev 2020, doi: 10.1155/2020/8686248.
5. Abdel-Raouf N, Ibraheem IBM, Abdel-Tawab S, Naser YAG. “Antimicrobial and antihyperlipidemic activities of isolated quercetin from anabaena aequalis,” J. Physcol., 2011;47(4):955-962 doi: 10.1111/j.1529-8817.2011.01020.x.
6. Investigator P, Cardarelli F. “Part b study description,” no. Cci, 2018, 1-5
7. Yap PG, Chang SB, Liong MT. “Allantoin, a Potential Metabolite That Promotes AMPK Phosphorylation and Suppresses Cholesterol Biosynthesis Via the Mevalonate Pathway and Bloch Pathway,” Appl. Biochem. Biotechnol., 2020;191(1):226-244 doi: 10.1007/s12010-020-03265-2.
8. Ahmad U, Ahmad RS, Arshad MS, Mushtaq Z, Hussain SM, Hameed A. “Antihyperlipidemic efficacy of aqueous extract of Stevia rebaudiana Bertoni in albino rats,” Lipids Health Dis., 2018;17(1):1-8, doi: 10.1186/s12944-018-0810-9.
9. Kim JE, Clark RM, Park Y, Lee J, Fernandez ML. “Lutein decreases oxidative stress and inflammation in liver and eyes of guinea pigs fed a hypercholesterolemic diet,” Nutr. Res. Pract., 2012;6(5):113-119 doi: 10.4162/nrp.2012.6.2.1133.
10. Narayananurthy U, AM, MK. “Effect of lutein on lipid profile in hypercholesterolemic rats,” Int. J. Basic Clin. Pharmacol 2018;7(5):859, doi: 10.18203/2319-2003.ijbcp20181625.
11. Alder R, Lookinland S, Berry JA, Williams M. “A systematic review of the effectivness of garlic as an anti-hyperlipidemic agent.,” J. Am. Acad. Nurse Pract 2003;15(3):120-129 doi: 10.1111/j.1745-7590.2003.tb00268.x.
12. Sharma N, Behl T, Singh S, Bansal A, Singh SK, Zahoor I. “Expediting the therapeutic profile of garlic (Allium sativum): A bench to bedside approach,” Biointerface Res. Appl. Chem 2021;11(6):14225-14239, doi: 10.33263/BRIAC11.1422514239.
13. Basuny AMM, Arafat SM, El-marzaqq SA. “Antioxidant and Antihyperlipidemic activities of anthocyanins from eggplant peels.,” J. Pharma Res. Rev 2012;2(3):50-57.
14. Zhao Y et al., “Dose-dependent reductions in plasma ceramides after antoxygen supplementation are associated with improvements in plasma lipids and cholesterol efflux capacity in dyslipidemia: A randomized controlled trial,” Clin. Nutr. 2021;40(4):1871-1878, doi: 10.1016/j.clnu.2020.10.014.
15. Deguchi Y, Miyazaki K. “Effects of Guava Leaf Extract,” Nutr. Metab 2010;7(9):1-10.
16. Shah KA, Patel MB, Shah SS, Chauhan KN, Parmar PK, Patel NM. “Antihyperlipidemic activity of Mangifera indica l. leaf extract on rats fed with high cholesterol diet,” Der Pharm. Sin., 2010;1(2):156-161.
17. Ziae A, Zamansoltani F, Nassiri-Asl M, Abbasi E. “Effects of rutin on lipid profile in hypercholesterolaemic rats,” Basic Clin. Pharmacol. Toxicol. 2009;104(3):253-258, doi: 10.1111/j.1742-7843.2008.00368.x.
18. Makni M et al., “Hypolipidemic and hepatoprotective effects of flax and pumpkin seed mixture rich in ω-3 and ω-6 fatty acids in hypercholesterolemic rats,” Food Chem. Toxicol., 2008;46(12):3714-3720 doi: 10.1016/j.fct.2008.09.057.
19. Ejiofor E, State A, Ebohon S, Obike C, Ndukau OY. “In vivo, in vitro antioxidant and hypolipidemic activity of methanol extract of Pineapple peels in Wistar Rats,” Int. J. Biosci. 2016;8(6):64-72, doi: 10.12692/jribj/8.6.64-72.
20. Kim SH, Choung SY. “Antihyperglycemic and antihyperlipidemic action of Cinnamomi Cassiae (Cinnamon bark) extract in C57BL/Ks db/db mice,” Arch. Pharm. Res 2010;33(2):325-333, doi: 10.1007/s12272-010-0219-0.
21. Chang CJ, Tzeng TF, Liou SS, Chang YS, Liu IM. “Kaempferol regulates the lipid-profile in high-fat diet-fed rats through an increase in hepatic PPAR levels,” Planta Med 2011;77(17):1876-1882, doi: 10.1055/s-0031-1279992.
22. Subramaniam S, Ramachandran S, Uthrapathi S, Gnanimickam VR, Dubey GP. “Anti-hyperlipidemic and antioxidant potential of different fractions of Terminalia

~ 186 ~
arjuna Roxb. bark against PX-407 induced hyperlipidemia,” Indian J. Exp. Biol. 2011;49(4):282-288.
23. [23] L. Pari and P. Murugan, “Antihyperlipidemic effect of curcumin and tetrahydrocurcumin in experimental type 2 diabetic rats,” Ren. Fail 2007;29(7):881-889 doi: 10.1080/08860207010540326.
24. Qin S et al., “Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: A meta-analysis of randomized controlled trials,” Nutr. J 2017;16(1):1-10 doi: 10.1186/s12937-017-0293-y.
25. Fuhrman B, Rosenblat M, Hayek T, Coleman R, Aviram M. “Ginger extract consumption reduces plasma cholesterol, inhibits LDL oxidation and attenuates development of atherosclerosis in atherosclerotic, apolipoprotein E-deficient mice,” J. Nutr. 2000;130(5):1124-1131 doi: 10.1093/ijn/130.5.1124.
26. Arabblou T, Aryaeian N, Valizadeh M, Sharifi F, Hosseini A, Djalali M. “The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus,” Int. J. Food Sci. Nutr 2014;65(4):515-520 doi: 10.3109/09637484.2014.880671.
27. Salamat S, Sharif SS, Nazary-Vanani A, Kord-Varkanef H, Clark CCT, Mohammadshahi M. “The effect of green coffee extract supplementation on serum oxidized LDL cholesterol and total antioxidant capacity in patients with dyslipidemia: A randomized, double-blind, placebo-controlled trial,” Eur. J. Integr. Med. 2019;28:109-113, doi: 10.1016/j.eujim.2019.05.001.
28. Thomas L, Kamath JV. “Evaluation of Anti-hyperlipidemic Activity of Capsicum Frutescens Extract,” Int. J. Curr. Pharm. Res. 2017;9(4):165 doi: 10.22159/ijphr.2017v9i4.21289.
29. Qin Y. et al., “Capsaicin supplementation improved risk factors of coronary heart disease in individuals with low HDL-C levels,” Nutrients 2017;9(9) doi: 10.3390/nu90901037.
30. Adekunle A, Adelusi T, Jean-Paul K, Ishmael A, Akintade B. “Insulinimmete, Antihyperlipidemic and Antioxidative Properties of Azadirachta indica. Possible Mechanism of Action,” Br. J. Med. Med. Res 2016;17(5):1-11, doi: 10.9734/bjmmr/2016/26897.
31. Sikarwar M, Patil M. “Anti-hyperlipidemic activity of Crateva nurvula Buch-Hum ethanolic extract fractions,” Int. Med. J. Sifa Univ., 2015;2(2):31, doi: 10.4103/2148-7731.152114.
32. “Ingredients: hibiscus flowers, bulgarian rose flowers, sugar, water, soy lecithin.”
33. Chen Y et al., “Aloe Emodin Reduces Cardiac Inflammation Induced by a High-Fat Diet through the TLR4 Signaling Pathway,” Mediators Inflamm. 2020, 2020, doi: 10.1155/2020/6318520.
34. Jenkins DJA et al., “The effect of strawberries in a cholesterol-lowering dietary portfolio,” Metabolism., vol. 2008;57(12):1636-1644 doi: 10.1016/j.metabol.2008.07.018.
35. Prasath GS, Subramanian SP. “Antihyperlipidemic Effect of Fisetin, a Bioflavonoid of Strawberries, Studied in Streptozotocin-Induced Diabetic Rats;” J. Biochem. Mol. Toxicol. 2014;28(10):442-449, doi: 10.1002/jbt.21583.
36. Sandhya VG, Rajamohan T. “Comparative evaluation of the hypolipidemic effects of coconut water and lovastatin in rats fed fat-cholesterol enriched diet,” Food Chem. Toxicol. 2008;46(12):3586-3592, doi: 10.1016/j.fct.2008.08.030.
37. Fan Y et al., “Effect of extractions from Ephedra sinica Stapf on hyperlipidemia in mice,” Exp. Ther. Med., 2015;9(2):619-625, doi: 10.3892/etm.2014.2117.
38. Vijayakumar RS, Surya D, Senthilkumar R, Nalini N. “Hypolipidemic effect of black pepper (Piper nigrum Linn.) in Rats fed high fat diet,” J. Clin. Biochem. Nutr., 2002;32:31-42 doi: 10.3164/jcn.32.31.
39. Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M, Sahebkar A. “Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis,” Clin. Nutr., 2015;34(6):1101-1108, doi: 10.1016/j.clnu.2014.12.019.
40. Oh ES, Petersen KS, Kris-Etherton PM, Rogers CJ. “Spices in a High-Saturated-Fat, High-Carbohydrate Meal Reduce Postprandial Proinflammatory Cytokine Secretion in Men with Overweight or Obesity: A 3-Period, Crossover, Randomized Controlled Trial,” J. Nutr. 2020;150(6):1600-1609 doi: 10.1093/jn/nnaa063.
41. Esan AM, Olaïya CO, Sameer V, Elango K, Dhanabal SP. “Antihyperlipidemic And Glucose Lowering Effect Of Extract By Bioregulator Treated Okra (Abelmoschus Esculentus L.) Fruits in Triton-Induced Hyperlipidemia Rats,” IOSR J. Pharm. Biol. Sci. 2017;12(04):39-50, doi: 10.9790/3008-1204023950.
42. Yang T, ShiHX, WangZT, Wang CH. “Hypolipidemic effects of androgrographolide and neoandrographolide in mice and rats,” Phyther. Res. 2013;27(4):618-623, doi: 10.1002/pr.4771.
43. Phunikhom K, Khampitak K, Aromdee C, Arkaravichien T, Sattayasi J. “Effect of Androgrographis paniculata extract on triglyceride levels of the patients with hypertriglycerideremia: A randomized controlled trial,” J. Med. Assoc. Thai 2015;98:S41-S47.
44. Lin JS. “An alternative treatment of hyperlipidemia with red yeast rice: A case report,” J. Med. Case Rep 2010;4;2-4, doi: 10.1186/1752-1947-4-4.
45. Wang TJ, Lien ASY, Chen JL, Lin CH, Yang YS, Yang SH. “A Randomized Clinical Efficacy Trial of Red Yeast Rice (Monascus pilosus) Against Hyperlipidemia,” Am. J. Chin. Med. 2019;47(2):323-335 doi: 10.1124/S0192415X19005105.
46. Parasarmanan S et al., “Evaluation of antiadipetic and antihyperlipidemic effects of hydroalcoholic extract of leaves of Ocimum tenuiflorum (Lamiaeaceae) and prediction of biological activity of its phytoconstituents,” Pharmacognosy Res., 2015;7(2):156-165 doi: 10.4103/0974-8490.151457.
47. Molly J, Edison S, Vijayaraghavan R, Ajith TA. “Effect of curry leaves and cucumber fruit on lipid profile in menopausal women with hyperlipidemia: a randomized controlled pilot study,” Int. J. Clin. Trials 2017;4(1):7 doi: 10.18203/2349-3259.ijct20164059.
48. Liu X et al., “Antioxidant and antihyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicus,” Carbohydr. Polym. 2012;90(4):1664-1670 doi: 10.1016/j.carbpol.2012.07.047.
49. Badal RM, Badal D, Badal P, Khare A, Shrivastava J, Kumar V. “Pharmacological action of Mentha piperita on lipid profile in fructose-fed rats,” Iran. J. Pharm. Res., vol. 2011;10(4):843-848, doi: 10.22037/ijpr.2011.1049.
50. Garg G et al., “Pharmacological evaluation of Convolvulus pluricaulis as hypolipidemic agent in Triton WR-1339-induced hyperlipemia in rats,” J. Pharm. Pharmacol 2018;70(11):1572-1580 doi: 10.1111/jphp.13004.
51. Shaik J, Khan Z. “Antihyperlipidemic activity of Commiphora mukul against atherogenic diet-induced hyperlipidemia in experimental rats,” Asian J. Pharm. Clin. Res. 2018;11(6):386-389, doi: 10.22159/ajpcr.2018.v11.i6.24800.

52. Nohr LA, Rasmussen LB, Straand J. “Resin from the mukul myrhh tree, guggul, can it be used for treating hypercholesterolemia? A randomized, controlled study,” Complement. Ther. Med. 2009;17(1):16-22 doi: 10.1016/j.ctim.2008.07.001.

53. Visavadiya NP, Narasimhacharya AVRL. “Asparagus root regulates cholesterol metabolism and improves antioxidant status in hypercholesteremic rats,” Evidence-Based Complement. Altern. Med. 2009;6(2):219-226 doi: 10.1093/ecam/nem091.

54. Srivide M, Kalairasi P, Pugalendhi KV. “Antihyperlipidemic activity of alcoholic leaf extract of Solanum surattense in streptozotocin-diabetic rats,” Asian Pac. J. Trop. Biomed. 2011;1(2):S276-S280, doi: https://doi.org/10.1016/S2221-1691(11)60171-8.

55. Sutriska EM, Udsiana D, Taqwin RM, Rosyidi AR. “Hypolipidemic effect of TAMandins indica L fruit on Triton X-100-induced hyperlipidemia in Wistar rats,” Natl. J. Physiol. Pharm. Pharmacol. 2015;5(4):285-290 doi: 10.5455/njppp.2015.5.0903201537.

56. Mehta LB, Balaraman R, Amin AH, Bafna PA, Gulati OD. “Effect of fruits of Moringa oleifera on the lipid profile of normal and hypercholesterolaemic rabbits,” J. Ethnopharmacol. 2003;86(2): 191-195, doi: 10.1016/S0378-8741(03)00075-8.

57. Chen JT, Wesley R, Shamburek RD, Pucino F, Csako G. “Meta-analysis of natural therapies for hyperlipidemia: Plant sterols and stanols versus policosanol,” Pharmacotherapy 2005;25(2):171-183, doi: 10.1592/phco.25.2.171.56942.

58. Jeevangi Santoshkumar MSSP. “A study of anti-hyperlipidemic, hypolipidemic and anti-atherogenic activity of fruit of emblica officinalis (amla) in high fat fed albino rats,” Int. J. Med. Res. Heal. Sci. 2013;2(1):70-77.

59. Upadhya H, Prabh S, Prasad A, Subramanian D, Gupta S, Goel A. “A randomized, double blind, placebo controlled, multicenter clinical trial to assess the efficacy and safety of Emblica officinalis extract in patients with dyslipidemia 11 Medical and Health Sciences 1103 Clinical Sciences,” BMC Complement. Altern. Med. 2019;19(1):1-14, doi: 10.1186/s12906-019-2430-y.

60. Reddy MM, Dhas Devavaram J, Dhas J, Adeghate E, Starling Emerald B. “Anti-hyperlipidemic effect of methanol bark extract of Terminalia chebula in male albino Wistar rats,” Pharm. Biol. 2015;53(8):1133-1140. doi: 10.3109/13880209.2014.962058.

61. Shokooohi R et al., “Effects of an Herbal Combination on Glycemic Control and Lipid Profile in Diabetic Women: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial,” J. Evidence-Based Complement. Altern. Med., 2017;22(4):798-804 doi: 10.1177/2156587217737683.

62. Bhoomika R Goyal, Ramesh K Goyal, Anita A Mehta. “Phyto-pharmacology of Achyranthes aspera: A review,” Pharmcogon Rev. 2007;1(1):143-150.

63. Alamgeer A, Ghullar MN, Mushtaq, Ahmad T. “Antihyperlipidemic effect of Berberis orthobotrys in hyperlipidemic animal models,” Bangladesh J. Pharmacol. 2014;9(3):377-382 doi: 10.3329/bjp.v9i3.19922.

64. Lakshmi BVS, Neelima N, Kasthuri N, Umarani V, Sudhakar M. “Antihyperlipidemic activity of bauhinia purpurea extracts in hypercholesterolemic albino rats,” Int. J. Pharm Tech. Res. 2011;3(3):1265-1269.

65. Vijayaraj P, Muthukumar K, Sabarirajan J, Nachiappan V. “Antihyperlipidemic activity of Cassia auriculata flowers in triton WR 1339 induced hyperlipidemic rats,” Exp. Toxicol. Pathol. 2013;65(1-2):135-141 doi: 10.1016/j.etp.2011.07.001.

66. Jacques PF, Sulsky SI, Perrone GE, Jenner J, Schaefer EJ. “Effect of vitamin C supplementation on lipoprotein cholesterol, apolipoprotein, and triglyceride concentrations,” Ann. Epidemiol. 1995;5(1):52-59 doi: 10.1016/1047-2797(94)00041-Q.

67. Lim G. “Journal of Drug Delivery and Therapeutics Evaluation of antihyperlipidemic activity of ethanolic root extract of,” 2017;2018: 8:120-124.

68. Palozza P, Catalano A, Simone RE, Mele MC, Cittadini A. “Effect of lycopene and tomato products on cholesterol metabolism,” Ann. Nutr. Metab. 2012;61(2):126-134, doi: 10.1159/000342077.

69. Son IS, Kim JH, Sohn HY, Son KH, Kim JS, Kwon CS. “Antioxidative and hypolipidemic effects of diosgenin, a steroidal saponin of yam (Dioscorea spp.), on high-cholesterol fed rats,” Biosci. Biotechnol. Biochem. 2007;71(12):3063-3071 doi: 10.1271/bbb.70472.

70. Wu FC, Jiang JG. “Effects of diosgenin and its derivatives on atherosclerosis,” Food Funct 2019;10(11):7022-7036, doi: 10.1039/c9fo00749k.

71. Wang T et al., “Antihyperlipidemic effect of protodioscin, an active ingredient isolated from the rhizomes of Dioscorea nipponica,” Planta Med. 2010;76(15):1642-1646, doi: 10.1055/s-0030-1249960.

72. Aboelnaga SMH. “Evaluation of the Antihyperlipidemic and Antioxidant Effects of Catharanthus roseus Extracted from Vinca minor in Diabetic Rats,” J Pharm. Res. Int., 2021;33(2):1-13, doi: 10.9734/jpri/2021/v33i2351142.

73. Gao H, Liu Z, Wan W, Qu X, Chen M. “Aqueous extract of yerba mate tea lowers atherosclerotic risk factors in a rat hyperlipidemia model,” Phyther. Res. 2013;27(8):1225-1231. doi: 10.1002/ptr.4856.

74. Karimi A, Majlesi M, Rafieian-Kopaei M. “Herbal Versus,” J. Nephropharmacology, 2015;4(1):27-30.

75. Nasri H. “Renoprotective effects of garlic,” J. Ren. Inj. Prev. 2013;2(1):27-28, doi: 10.12861/jrip.2013.09.

76. George P. “Concerns regarding the safety and toxicity of medicinal plants An overview,” J Appl. Pharm. Sci., 2011;1(6):40-44.

77. Haq I. “Special Supplement on The Importance of Herbs,” Pak J Med Res 2004;43(4):203-10.

78. Goldstein JL, Hazzard WR, Schrott HG, Bierman EL, Motulsky AG. “Hyperlipidemia in coronary heart disease. I. Lipid levels in 500 survivors of myocardial infarction,” J Clin. Invest 1973;52(7):1533-1543, doi: 10.1172/JCI107331.

79. Becker DJ, Gordon RY, Halbert SC, French B, Morris PB, Rader DJ. “Annals of Internal Medicine Red Yeast Rice for Dyslipidemia in Statin-Intolerant Patients,” Ann. Intern. Med. 2009;150:830-839 [Online]. Available: www.annals.org.

80. Bhutani KK, Birari R, Kapat K. “Potential anti-obesity and lipid lowering natural products: A review,” Nat. Prod. Commun. 2007;2(3):331-348, doi: 10.1177/1934578x0700200316.

81. Phadke AS. “A review on lipid lowering activities of Ayurvedic and other herbs,” Nat. Prod. Radiance, 2007;6(1):81-89.