Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signalling networks

Kristof Van Kolen · Herman Slegers

Received: 19 July 2005 / Accepted: 17 March 2006 / Published online: 7 June 2006
© Springer Science + Business Media B.V. 2006

Abstract The role of nucleotides in intracellular energy provision and nucleic acid synthesis has been known for a long time. In the past decade, evidence has been presented that, in addition to these functions, nucleotides are also autocrine and paracrine messenger molecules that initiate and regulate a large number of biological processes. The actions of extracellular nucleotides are mediated by ionotropic P2X and metabotropic P2Y receptors, while hydrolysis by ecto-enzymes modulates the initial signal. An increasing number of studies have been performed to obtain information on the signal transduction pathways activated by nucleotide receptors. The development of specific and stable purinergic receptor agonists and antagonists with therapeutical potential largely contributed to the identification of receptors responsible for nucleotide-activated pathways. This article reviews the signal transduction pathways activated by P2Y receptors, the involved second messenger systems, GTPases and protein kinases, as well as recent findings concerning P2Y receptor signalling in C6 glioma cells. Besides vertical signal transduction, lateral cross-talks with pathways activated by other G protein-coupled receptors and growth factor receptors are discussed.

Key words C6 glioma · ERK · P2Y receptors · PKB · transactivation · tyrosine kinases

Abbreviations
AC adenylate cyclase
AP₃A P¹,²-di(adenosine-5')triphosphate
AP₄A P¹,³-di(adenosine-5')tetraphosphate
AR adrenergic receptor
COX cyclooxygenase
DAG diacylglycerol
ERK extracellular signal-regulated kinase
GFAP glial fibrillary acidic protein
GPCR G protein-coupled receptor
HT hydroxytryptamine
IP₃ inositol (1,4,5)-triphosphate
PAP adenosine-3',5'-biphosphate
PI phosphatidylinositol
PL phospholipase
PI 3-K phosphatidylinositol 3-kinase
PPADS pyridoxalphosphate-6-azophenyl-2', 4'-disulphonate
Pyk2 proline-rich tyrosine kinase 2
RKIP Raf kinase inhibitory protein
RTK receptor tyrosine kinase

Introduction

Pharmacological properties of P2Y receptors

Extracellular actions of adenine nucleotides were initially characterised in the cardiovascular system by Drury and Szent-Gyorgyi [1]. It took more than four decades before the concept of purinergic signalling was accepted, but now it is well established that nucleotides initiate and regulate a variety of biological processes, including neurotransmission, inflammation, regulation of blood pressure, platelet aggregation, cell growth and differentiation (Abbracchio et al. [2]; Burnstock and Williams [3]; Burnstock [4]; Ralevic and Burnstock [5]).
Nucleotides are released in the extracellular fluid by cell lysis, exocytosis, secretion of granules, efflux and upon cellular stress such as changes in osmolality and mechanical perturbations. Once released, they mediate their effect by stimulation of nucleotide receptors.

Based on pharmacological properties, the first suggestion for the existence of ionotropic P2X receptors and metabotropic P2Y receptors was made by Burnstock and Kennedy [6]. After cloning, multiple subtypes of P2X and P2Y receptors were characterized unambiguously (Abbracchio and Burnstock [7]; Burnstock and Williams [3]; Fredholm et al. [8]).

Up to now, the P2Y receptor family comprises at least eight subtypes, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13 and the recently identified P2Y14 receptor (Ralevic and Burnstock, [5]; Abbracchio et al. [9]; Communi et al. [10]; Hollopeter et al. [11]; Zhang et al. [12]). According to the agonist profile, P2Y receptors can be subdivided into receptors responding to adenine mono- and dinucleotides (P2Y1, P2Y11, P2Y12, P2Y13), and to uridine nucleotides (P2Y4, P2Y6), and receptors for adenine and uridine nucleotides (P2Y2). The pharmacological profile of the recently cloned P2Y14 receptor is distinct from the other P2Y receptors since UDP-glucose, UDP-galactose, UDP-glucuronic acid and UDP-N-acetylglucosamine are specific ligands of this receptor (Chambers et al. [13]). Natural P2Y receptor ligands do not exclusively bind to one receptor subtype. ADP is an agonist of P2Y1, P2Y12 and P2Y13 receptors, whereas ATP is a full agonist of P2Y2 and P2Y11, but a partial agonist or antagonist of P2Y1, P2Y12 and P2Y13 receptors. Although the pharmacological properties of P2Y receptors (Table 1) are well conserved between species, some remarkable differences have been observed. While UTP acts as an agonist of both human and rat P2Y4 receptors, ATP is a potent agonist of the rat P2Y4, but an antagonist of the human orthologue. Mutational analysis revealed that the second extracellular loop of the P2Y4 receptor is responsible for the opposing effect of ATP in both species (Herold et al. [14]). A similar phenomenon is observed when human and canine P2Y11 receptors were stably expressed in CHO-K1 and 1321N1 astrocytoma cells. Whereas the

Table 1: Pharmacological profile of P2Y receptors and second messenger systems.

P2Y	Agonists	Antagonists	Effector	G protein
P2Y1	2MeSADP, ADP, ADPβS, Ap3A, MRS2365	Suramin, PPADS, PAP, MRS2179, MRS2216, MRS2279, MRS2500, MRS 2603	PLC, I_K, Ca	G_i/G_{11/12}
P2Y2	UTP, ATP, INS37217, Ap4A	Suramin	PLC, I_K, Ca	G_i/G_q
P2Y4	UTP, ATP, ADP, ATP^a	ATP⁺, PPADS	PLC, I_K, Ca	G_i/G_{11/12}
P2Y6	UDPβS, UDP, ATP, INS48823	PPADS, suramin, MRS2567	AC, PLC	G_i/Q
P2Y11	ATPS, ATP, INS35967	Suramin	AC, I_{Ka}, Ca	G_q
P2Y12	2MeSADP, ADP, ATP, Ap3A	AR-C69931MX, AR-C67085, AR-C78511KF, clopidogrel, 2MeSAMP, DIDS, suramin, MRS2395	AC, PLC, I_{Ca}	G_i/Q
P2Y13	2MeSADP, ADP, Ap3A, ATP	AR-C69931MX, AP4A, PPADS, suramin, MRS2211, MRS2603	AC, I_{Ca}	G_i

^a ATP acts as an agonist of the rat P2Y4 receptor when the human P2Y4 receptor (Herold et al. [14]). Reactive blue 2 is not included in the list since it displays lack of specificity towards the different P2Y subtypes. References: Abbracchio et al. [9]; Communi et al. [10, 191]; Chambers et al. [13]; Claes and Slegers [17]; Kim et al. [26]; Xu et al. [27]; Boyer et al. [38, 189, 190]; Grobben et al. [40]; Marteau et al. [47]; Filipović et al. [57–60, 63]; Simon et al. [61]; Wirkner et al. [62]; Korcok et al. [192]; Muller [193]; Skelton et al. [194]; Yerxa et al. [195]; Jacobson et al. [196]; von Kügelgen [197]. Abbreviations: Ap3A, P₂β,3β-(adenosine-5')triphosphate; Ap4A, P₂β,3β,5β-(adenosine-5')tetraphosphate; AR-C69931MX, N⁰-2-(methylthioethoxy)-2-(3,3,3-trifluoropropyl)imidazo[1,2-<i>β</i>]-1,2,3,4-tetrahydrobenzimidazole 5'-triphosphate; AR-C78511KF, (E)-N-[1-(7-oxo-7H-[1,2,3]triazolo[4,5-d]-pyrimidin-3-yl)-1,5,6-triido-β-D-ribo-hept-5-enofuranononyl]L-aspartic acid monomonomium salt; DIDS, 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid; INS37217 [1-(uridine 5')-P (4)⁻(2-deoxyctydine 5')tetraphosphate tetratosodium salt; INS48823 P³-(2-benzyl-1,3-dioxol-4-yl)-uridine 5'P⁴-uridine 5' triphosphate; MRS2179, N⁶-methyl-2'-deoxyadenosine-3',5'-bisphosphate; MRS2211, pyridoxal-5'-phosphate-6-azo-(2-chloro-5-nitrophenyl)-2,4-disulphonate; MRS2216, 2-deoxy-2-chloro-N⁶-methyladenosine-3',5'-bisphosphate; MRS2279, 2-chloro-N⁶-methyl-(N-methanocarb-2'-deoxyadenosine 3',5'-bisphosphate; MRS2365, [(1'S,2'R,3'S,4'R,5'S)-4-(6-amin-2-methylthio-hydroxy-porphyrin-9-yl)-1-diporphorylloxymethyl]bicyclo[3.1.0]hexane-2, 3-diol; MRS2395, 2-dimethyl-propionic acid-3-(2-chloro-6-methylaminopurin-9-yl)-2,2-dimethylpropionoxyl-methyl)propylester; MRS2500, 2-iodo-N⁶-methyl-(N-methanocarb-2'-deoxyadenosine 3',5'-bisphosphate; MRS2617, 1,2-di(4-isothiocyanatophenyl)ethane; MRS2603, pyridoxal-5'-phosphate-6-azo-(4-chloro-3-nitrophenyl)-2,4-disulphonate; PPADS, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid.

© Springer
human P2Y₁₁ is potently activated by adenosine triphosphate nucleotides, the canine orthologue displayed more selectivity towards the corresponding diphosphates. In this case, the nucleotide selectivity is due to differences in the amino acid sequence at the juxtaposition of TM6 and the third extracellular loop also reported to play an important role in agonist selectivity and signalling of other G protein-coupled receptors (GPCR) (Qi et al. [15]; Lawson and Wheatley [16]).

Despite their chemical stability, extracellular nucleotides are metabolised by several ecto-enzymes (Claes and Slegers [17]; Czajkowski and Baranska [18]; Goding et al. [19]; Zimmerman [20]). Extracellular hydrolysis complicates the evaluation of nucleotide-mediated effects on different cell types and can be overcome by the use of specific non-hydrolysable receptor agonists or ecto-enzyme inhibitors. Some P2Y receptor antagonists, such as pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), suramin, reactive blue 2 and 4,4'-disothiocyanatothiobene-2,2'-disulphonic acid (DIDS), are inhibitors of nucleotide hydrolyzing enzymes and are often used in studies of nucleotide-mediated signalling (Grobben et al. [21]). Nevertheless, care must be taken for the interpretation of experimental data since it is also shown that cells can internalise some of these molecules (Claes et al., [22]). Therefore specific P2Y receptor antagonists, developed for therapeutic purposes, have to be used to overcome the lack of specificity (Boeynaems et al. [23]; Lambrecht et al. [24]; Kam and Nethery [25]; Kim et al. [26]; Xu et al. [27]).

P2Y receptor expression on rat C6 glioma cells

Rat C6 glioma is a tumoral cell line of glial origin with oligodendrocytic, astrocytic and neuronal progenitor properties. Due to a point mutation in phosphatidylinositol 3-kinase (PI 3-K)/PKB signalling pathway is constitutively active and contributes to the proliferative and invasive properties of these cells (Kubiatowski et al. [28]; Roymans and Slegers [29]; Grobben et al. [30]). In addition, cell proliferation is sustained by secreted growth factors that stimulate growth factor receptors present on these cells. Such autocrine mechanisms are reported for IGFR, bFGFR and PDGFR (Okumura et al. [31]; Resnicoff et al. [32]; Strawn et al. [33]).

In C6 cells, an increase in cAMP by stimulation of the β-adrenergic receptor (β-AR) or by addition of membrane permeable cAMP analogues, e.g., dibutylryl cAMP (dBCAMP) or 8-chloro-cAMP, induces differentiation into an astrocyte type II (Roymans et al. [34]). During this process, cessation of cell growth is accompanied by a shift in intermediate filament synthesis from vimentin to glial fibrillary acidic protein (GFAP) (Backhovens et al. [35]). The latter protein is an astrocytic differentiation marker whose expression is regulated by cAMP at the transcriptional and translational level (Messens and Slegers [36]).

In our laboratory, the signalling pathways activated by extracellular nucleotides, and in particular those affecting cell proliferation and differentiation of C6 cells, were studied in detail. The presence of a P2Y receptor on these cells that negatively affects adenylate cyclase (AC) was postulated for more than a decade (Planet et al. [37]; Boyer et al. [38]). This receptor is coupled to a G₁ protein and has been denominated P2Y_{AC}- (Claes et al. [39]; Grobben et al. [40]) before its identification as the P2Y₁₂ receptor initially cloned from blood platelets (Czajkowski et al. [41]; Hollopeteter et al. [11]; Jin et al. [42]). C6 cells also express the phospholipase (PL)β-coupled P2Y₁, P2Y₂, P2Y₄ and P2Y₆ receptors (Czajkowski et al. [41]; Nicholas et al. [43]; Tu et al. [44]; Claes and Slegers [17]). Recently, we also demonstrated the presence of P2Y₁₃ mRNA (Van Kolen and Slegers [45]) implicating the expression of three ADP-activated receptors in these cells, i.e., P2Y₁, P2Y₁₂ and P2Y₁₃. Although 2MeSADP is reported as a potent P2Y₁, P2Y₁₂ and P2Y₁₃ agonist, stimulation with this compound inhibits AC, but induces no significant activation of PLC, indicating that the P2Y₁ receptor is not activated by ADP in cells grown in chemically defined medium (Grobben et al. [40]). This is confirmed by Czajkowski et al. [46], who showed that, in cells cultivated in the presence of fetal calf serum, ADP signalling is predominantly determined by the P2Y₁ receptor. However, upon serum deprivation, expression of the P2Y₁ receptor is decreased and the P2Y₁₂ receptor becomes the main activated receptor. Characterization of P2Y₁₃ receptor function is complicated by the fact that P2Y₁₂ and P2Y₁₃ receptors have almost the same agonist profile (Table 1). The receptor antagonist N⁶-(2-methylthioethy)-2-(3,3,3-trifluoropropylthio)-β,γ-dichloromethylylene ATP (AR-C69931MX), often used as a specific P2Y₁₂ antagonist, also blocks the P2Y₁₃ receptor (Marteau et al. [47]). While the human and mouse P2Y₁₃ receptor, like the P2Y₁₂, is more potently activated by 2MeSADP than ADP, the rat P2Y₁₃ receptor shows a higher selectivity for ADP (Fumagalli et al. [48]). In C6 cells, further distinction between the signalling of P2Y₁₂ and P2Y₁₃ receptors can be made by the use of PPADS, a P2Y₁₃ antagonist without effect on P2Y₁₂, and P₁, P₄, di(adenosine-5') tetraphosphate (Ap4A), a P2Y₁₃ antagonist that stimulates the P2Y₁₂ receptor (Claes et al. [39];
Grobben et al. [40]; Marteau et al. [47]). In addition, recently synthesised PPADS derivatives pyridoxal-5’-phosphate-6-azo-(2-chloro-5-nitrophenyl)-2,4-disulphonate (MRS2211) and pyridoxal-5’-phosphate-6-azo-(4-chloro-3-nitrophenyl)-2,4-disulphonate (MRS2603) have no effect on the P2Y12 receptor but antagonise the P2Y13 receptor (Kim et al. [26]).

Although P2Y receptor expression in C6 cells depends on the cultivation conditions (Czajkowski et al. [46]), unpublished data of our laboratory revealed that induction of differentiation into astrocytes type II by dbcAMP (1 mM) or (-)-isoproterenol (5 μM) does not significantly alter the expression of P2Y receptors. These observations are in accordance with previous studies on the expression of P2Y1, P2Y2, P2Y4, P2Y6, P2Y12, P2Y13 and P2Y14 receptors in glial cells and primary astrocytes (Bianco et al. [49]; Fumagalli et al. [48, 50]; Sasaki et al. [51]). The function of P2Y receptor expression in glial cells is still under investigation, but a number of studies point to an important role in the intercellular communication between astrocytes and neurons (Bezzi and Volterra, [52]). Another well documented effect of extracellular ATP is induction of reactive astrogliosis upon activation of ERK and cyclooxygenase (COX)-2 (Brambilla et al. [53]).

Similar to the observations made in C6 cells, functional responses of P2Y receptor subtypes in microglial cells depend on cultivation conditions. In N9 mouse brain microglia stimulation of expressed P2Y receptors induces Ca2+ mobilization but only P2Y6 and P2Y14 receptor-mediated responses are increased upon activation of microglia with lipopolysaccharide. The enhanced P2Y6 response is correlated with mRNA increase which was not the case for the P2Y14 receptor-mediated Ca2+ mobilization (Bianco et al. [49]). Furthermore, stimulation of microglial P2Y12/13 receptors induces membrane ruffling and chemotaxis towards injured neurons through Gi/o protein-mediated activation of Rac (Honda et al. [54]). The observations made in astrocytes and microglial cells emphasise the importance of P2Y receptors in brain signalling and identify these receptors as putative targets in defective neurotransmission, neuroimmune functioning, cell survival and cell proliferation in response to oxidative stress and brain injury.

P2Y receptor-activated signalling cascades

Second messengers

P2Y receptors are generally linked to PLC activation that catalyses the rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate into the intracellular messenger inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). Activation of PLC occurs by Gα- and/or Gqα-dependent mechanisms (Communi et al. [55]). Besides signalling through Gα subunits, intracellular Ca2+ concentration is also affected by Gβγ subunit-dependent interaction with voltage-gated Ca2+ channels. Several reports indicated modulation of K+ currents and PLCβ activation induced by distinct domains of Gβγ (Mirshahi et al. [56]). Co-expression studies performed in rat sympathetic neurons demonstrated that P2Y1, P2Y2 and P2Y6 receptors trigger the closing of N-type Ca2+ and M-type K+ channels, whereas P2Y4 receptor stimulation also displayed coupling to M-type K+ channels producing a less efficient inhibition of Ca2+ currents. In rat brain capillary endothelial cells, it was shown that the P2Y12 receptor inhibits I_{Ca(N)} and activates a G protein-coupled inward rectifier K+ (GIRK) channel. Interestingly, stimulation of the P2Y4 receptor also induces a K+ current that is rapidly followed by inactivation. Inhibition of I_{Ca(N)} by P2Y12 receptor stimulation is also reported in PC12 cells while in HEK 293 this inhibition is mediated by the P2Y13 receptor (Filippov et al. [57–60]; Simon et al. [61]; Wirkner et al. [62]). From co-expression studies of P2Y receptors with GIRK1 or GIRK2 in rat sympathetic neurons, it was concluded that P2Y receptors activate GIRK channels by the βγ subunits of Gi/o and inhibit these channels by the α subunits of Gq (Filippov et al. [63]).

P2Y-induced calcium release is followed by opening of voltage-independent Ca2+ channels. Although this response is observed in a variety of cell types, the physiological implications are miscellaneous. In this context, it has been reported that extracellular ATP induces a Ca2+ wave that propagates through neighbouring astrocytes by GAP junctions (Suadicani et al. [64]). In situations of increased neuronal activity or cell damage, ATP stimulates a Ca2+-dependent proton efflux from astrocytes. Acidification of the extracellular environment serves as a negative feedback mechanism for neurotransmitter release, but also increases blood flow by vasodilatation in cerebral arterioles (Dienel and Hertz [65]; Dixon et al. [66]). Although Ca2+ signalling is observed in a variety of cell types, the time dependence of the response is cell type specific. This is especially the case for the P2Y1 receptor which triggers persistent or transient Ca2+ responses when it is expressed in human 1321N1 astrocytoma or C6 glioma cells, respectively (Czajkowski et al. [41]; Sellers et al. [67]). A recent study also revealed that, in glial cells, prolongation of the P2Y1 receptor-induced Ca2+ response is regulated by interaction with the Na+/H+...
exchanger regulatory factor type-2 which determines the signalling pathways that are ultimately activated in different cell types (Fam et al. [68]). Indeed, while transient P2Y1 receptor signalling increases proliferation in C6 cells, sustained signalling triggers apoptotic cascades in 1321N1 astrocytoma cells (Czajkowski et al. [46]; Sellers et al. [67]).

A well-known response to PLC-generated DAG and IP3/Ca2þ is the activation of classical PKCs that are involved in rapid internalisation and desensitisation of GPCRs through phosphorylation of residues localised in their cytoplasmic tail. In this regard, PKCβ1 is reported to attenuate phosphatidylinositol (PI)-hydrolysis induced by P2Y1 and P2Y2 receptors in endothelial cells (Chen and Lin [69]). In astrocytes, high frequency stimulation of the P2Y1 receptor by repeated addition of ATP causes rapid suppression of the P2Y1 receptor-induced Ca2þ response. This phenomenon, observed as Ca2þ oscillations, is mediated by protein kinase C-dependent phosphorylation of Thr339 in the carboxy-terminus of the P2Y1 receptor (Fam et al. [70]). Besides modulation of receptor responsiveness, PKC signalling also affects long term effects. In the human osteoblastic HOBIT cell line, ATP increases expression of the early growth response protein-1 by a mechanism that requires a Ca2þ-independent PKC isoform (Pines et al. [71]). In vascular smooth muscle cells, UDP stimulates cell cycle progression by a PLC- and PKCδ-dependent cascade (Hou et al. [72]). The same isoform is involved in ATP-mediated mitogenic signalling in astrocytes, but in these cells PKCδ activation does not involve PLC but requires PLD-dependent choline formation (Neary et al. [73]).

In addition to PLC-coupled receptors, a growing number of P2Y receptors have been shown to affect the activity of AC. Besides the existence of indirect mechanisms linked to an increase in cAMP (discussed in Communi et al. [55]), only the P2Y11 receptor is directly coupled to activation of AC and PLC while P2Y12, P2Y13 and P2Y14 receptors negatively affect cAMP synthesis (Chambers et al. [13]; Communi et al. [10]; Hollopeter et al. [11]; Zhang et al. [12]). Adenylate cyclase-dependent signalling is often mediated by the cAMP-regulated kinase PKA. Stimulation of the P2Y11 receptor with ATP is shown to activate human monocyte-derived dendritic cells by increased cAMP/PKA signalling (Wilkin et al. [74]). In bovine adrenocortical fasciculate cells, ADP and ATP increase cortisol production through PKA activation by an as yet unidentified G protein-coupled P2Y receptor (Nishi et al. [75]). Although in unstimulated cells the cytosolic cAMP concentration is already low, its further decrease by G1 protein-coupled receptors is sometimes sufficient to exert a significant inhibitory action towards PKA. Such a response is reported in microglial cells where ATP and ADP binding to P2Y12/13 receptors mediate chemotaxis by PKA-dependent translocation of β1 integrins to ruffling regions of the cell (Nasu-Tada et al. [76]).

Despite the fact that cells express a myriad of different GPCRs and downstream acting regulators, receptor stimulation promotes rapid and specific responses. In addition, multiple GPCRs, sharing the same second messenger cascade, can induce different cellular events in one cell type indicating that GPCR signal propagation requires physical interactions in a defined cellular compartment. An example of spatial organised signalling is the β-arrestin dependent targeting of an activated receptor into clathrin-dependent vesicles or enrichment in membrane microdomains (lipid rafts) formed by cholesterol and sphingolipids (Anderson [77]; DeFea et al. [78]). Modulation of receptor function by rafts is confirmed for an increasing number of GPCRs including P2Y receptors (Anderson [77]; Ostrom and Insel [79]). In endothelial cells, it is reported that P2Y2 receptor-induced vasodilatation is abolished by disruption of caveolae with methyl-β-cyclodextrin (Kaiser et al. [80]). In C6 glioma cells, signalling by P2Y2 and 5-hydroxytryptamine (HT)2A receptors is attenuated after knock-down of caveolin-1 by si-RNA. Moreover, interaction between the 5-HT2A receptor and caveolin-1 facilitates its interaction with Goq. Since P2Y2 receptor mRNA is downregulated by caveolin-1 knock-down, further studies are required to demonstrate localisation of P2Y2 receptors in caveolae of C6 cells (Bhatnagar et al. [81]).

Small GTPases as molecular switches

The processing of extracellular stimuli by GPCRs often involves signalling by second messengers (cAMP, DAG, Ca2þ) towards small GTPases and/or cross-talk with tyrosine kinases. Goq protein-coupled receptor signalling via PLCβ induces formation of DAG and IP3, Ca2þ mobilisation and activation of PKC ultimately leading to activation of proline-rich tyrosine kinase 2 (Pyk2). Pyk2 cooperates with Src to recruit Grb2 and SOS, a guanine nucleotide exchange factor (GEF) that activates Ras (Lev et al. [82]). Such a mechanism is reported for Ras-dependent ERK activation induced by the protease-activated receptor-1 in astrocytes (Wang and Reiser [83]). In PC12 cells, stimulation of the P2Y2 receptor also triggers tyrosine phosphorylation of Pyk2, but further signalling to Ras involves EGFR transactivation by Src (Solt et al. [84]).
Tyrosine kinase-dependent Ras signalling is also reported for G_i protein-coupled receptors, but this proceeds through G\beta\gamma subunit-mediated activation of PI 3-K\gamma and Shc (Ellis et al. [85]; Lopez-Ilasaca et al. [86]).

GEFs can also be regulated in a tyrosine kinase-independent manner that proceeds through direct activation by cAMP, DAG and Ca^{2+} or by interaction with G\alpha subunits as observed for the G_{q/11} protein-mediated activation of RhoA (Bhattacharya et al. [87]; Bos [88]; Lutz et al. [89]; Walker et al. [90]).

P2Y receptor signalling towards GTPases is involved in short term responses, such as stress fibre formation or modulation of cell adhesion, but also in long term responses like cell proliferation. Mitogenic Ras-dependent P2Y responses are reported for C6 and HEK293 cells where Ras is implicated in P2Y_2 receptor-dependent signalling to the ERK pathway (Gao et al. [91]; Tu et al. [44]). On the other hand, increased proliferation of C6 cells by the P2Y_{12} receptor proceeds independently of Ras, but requires RhoA-dependent activation of ERK and Rho-associated coiled-coil-containing protein kinase (ROCK) (Grobben et al. [40]; Van Kolen and Slegers, unpublished data). Interestingly, when the P2Y_{12} receptor is expressed in CHO cells it activates ERK and RhoA/ROCK by independent mechanisms (Soulet et al. [92]).

Another example of cross-talk between P2Y receptors and GTPases is observed in blood platelets. As mentioned above, release of ADP and subsequent P2Y_1 and P2Y_{12} receptor binding is essential for collagen-induced platelet aggregation. A crucial step for immediate and sustained aggregation of platelets is the activation of Rap1 that increases the affinity between integrin \alpha_{IIb}\beta_3 and fibrinogen. Knock-out studies revealed that ADP-induced GTP loading of Rap1 proceeds through both G_i and G_\alpha signalling by P2Y_{12} and P2Y_1 receptors, respectively. The mechanism initiated by the P2Y_{12} receptor is shown to be PI 3-K-dependent while P2Y_1-mediated activation of Rap1 requires Ca^{2+} mobilisation (Woulfe et al. [93]; Greco et al. [94]; Larson et al. [95]; Lova et al. [96, 97]).

Stimulation of the P2Y_1 receptor also contributes to platelet shape changes by a Ca^{2+}-independent pathway. RhoA and its effector ROCK are activated by ADP through G_{12/13} protein-dependent signalling of the P2Y_1 receptor and contribute to rapid actin polymerization and shape changes (Paul et al. [98]). Signalling towards Rho GTPases is also important in other systems. In brain, ATP and ADP induce membrane ruffling and chemotaxis of microglial cells through G_i protein-dependent activation of Rac upon stimulation of P2Y_{12/13} receptors (Sasaki et al. [51]; Honda et al. [54]). Stress fibre formation in vascular smooth muscle cells is reported to be mediated by RhoA/ROCK signalling that becomes activated upon stimulation of P2Y_1, P2Y_2, P2Y_4 and P2Y_6 receptors (Sauzeau et al. [99]). In the latter study, information concerning the signalling towards RhoA is lacking. In a more recent study on endothelial cells, transactivation of VEGFR upon P2Y_2 receptor stimulation and recruitment of the RhoGEF Vav is shown to be a possible mechanism to initiate RhoA-mediated cell adhesion (Seye et al. [100]).

Although several P2Y receptors activate RhoA, downstream signalling and physiological consequences are determined by celltype specific mechanisms leading to diverse responses.

ERK signalling

Several GPCRs are coupled to enhanced proliferation by multiple signal transduction pathways that phosphorylate ERK. Activation of this kinase requires Ras or GTPases of the RhoA family and is often modulated by second messenger-activated pathways, although cross-talk with growth factor receptors also triggers ERK signalling.

In neurons G_s protein-mediated activation of AC increases ERK phosphorylation by a PKA/Rap1/B-Raf cascade. In contrast, induction of cAMP synthesis decreases ERK phosphorylation in C6 cells and astrocytes by a negative action of PKA on the Ras/c-Raf interaction, or by Rap1-mediated inhibition of c-Raf1. These observations led to the hypothesis that an increase in cAMP stimulates MEK/ERK signalling in B-Raf expressing cells but inhibits this cascade in B-Raf negative cells (Dugan et al. [101]). In both cases, PKA activation has a central role and mediates its effects through Src and Rap1 activation (Stork and Schmitt [102]). Although the majority of cAMP-dependent effects can be explained by this hypothesis, a few exceptions are reported. In some B-Raf positive cells, an increase in cAMP is shown to inhibit B-Raf, suggesting that regulation of this kinase by cAMP also depends on other cell type specific factors. One model suggests the involvement of 14-3-3 proteins acting as scaffolding proteins to shield B-Raf and Raf1 from PKA phosphorylation (Qiu et al. [103]). Other studies indicated that regulation of ERK by cAMP involves multiple cell type specific mechanisms. In COS cells overexpressing \beta-AR1 or \beta-AR2, stimulation of these receptors activate AC through a G_s protein-dependent mechanism as expected. However, PKA also phosphorylates these receptors and induces a switch from G_s to G_{i/o} protein binding to \beta-AR resulting in
activation of ERK upon receptor stimulation (Martin et al. [104]). Modulation of the ERK cascade by cAMP can also occur independently of PKA. In this context, cAMP binds Epac1 or Epac2, “exchange protein directly activated by cAMP,” GEFs that activate Rap1 and Rap2 (de Rooij et al. [105, 106]; Kawasaki et al. [107]). Several examples of Gs protein-mediated activation of ERK through Epac are reported (Laroche-Joubert et al. [108]; Lin et al. [109]). Another PKA-independent mechanism of ERK phosphorylation is the Gβγ/Src-mediated activation of Ras (Schmitt and Stork [110]).

Gs and some G12o protein-coupled receptors activate PLCβ and trigger formation of IP3 and DAG, resulting in Ca2+ release and PKC activation, respectively. Ca2+ increase can activate ERK through Pyk2 that activates Ras as mentioned above. Otherwise, Ca2+-dependent modulation of Ras activity is also mediated by Ras guanine nucleotide-releasing factor (RasGRF), a GEF that contains Ca2+- and DAG-binding domains, (Ebinu et al. [111]) or by Ca2+/calmodulin-dependent kinases CaMK-II and CaMK-IV (reviewed in Agell et al. [112] and Walker et al. [90]). Increase of intracellular calcium and DAG formation also results in activation of cPKCs while DAG formation alone is sufficient to activate nPKCs. Increase in PKC activity inactivation of the Raf1/RKIP complex (Corbit et al. [123]). In addition, co-immunoprecipitation experiments in COS cells showed that modulation of c-Raf1 by PKCζ is also regulated by 14-3-3 scaffolding proteins (Van Der Hoeven et al. [124]).

Initial studies concerning P2Y receptor-mediated activation of ERK were made in astrocytes where this cascade was shown to be involved in cell proliferation and process elongation (Neary and Zhu [125]; King et al. [126]).

Although ATP triggers pertussis toxin insensitive IP3 and Ca2+ responses in astrocytes, these are not required for the signalling towards ERK which depends on rapid membrane translocation of PKCζ upon phosphatidylcholine hydrolysis by PLD (Neary et al. [73]). In PC12 cells, stimulation of the P2Y2 receptor also induces PKCζ-dependent ERK phosphorylation, although this mechanism requires Ca2+ and Pyk2 for the association of She and Grb2 to the receptor and for subsequent activation of SOS/Ras/ Raf/MEK/ERK (Soltoff et al. [84]). Many reports showed that P2Y receptor-mediated ERK signalling requires PKC activation (Graham et al. [127]; Huwiler and Pfeilschifter [128]; Erlinge [129]), but a PKC-independent mechanism is reported in thyroid FRTL-5 cells (Tornquist et al. [130]). In 1321N1 astrocytoma cells, stimulation of the P2Y6 receptor with UDP activates PKCa, ε and ζ which are correlated with ERK phosphorylation (Kim et al. [131]). Although the use of general PKC inhibitors 3-[1-(dimethylaminopropyl)
indol-3-yl]-4-(indol-3-yl)maleimide hydrochloride (GF109203X) and 12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-carbazole (Gö 6976) diminished ERK signalling, the lack of specificity of these compounds makes it difficult to determine the contribution of each of these PKC isoforms in the mechanism of ERK activation (Way et al. [132]).

Enhanced proliferation by a P2Y receptor-mediated stimulation of the ERK pathway has been reported in a large number of cell types such as human mesangial cells, vascular smooth muscle cells and primary astrocytes (Huwiler and Pfeilschifter [128]; Harper et al. [133]). Transient ERK activation by P2Y1, P2Y2 or P2Y12 receptor stimulation also increases cell proliferation in C6 cells indicating that activation of several P2Y receptor subtypes can converge into the same physiological response (Table 2) (Tu et al. [44]; Claes et al. [39]; Czajkowski et al. [46]).

In addition to mitogenesis, P2Y receptor signalling towards ERK elicits other physiological processes including cell survival, inflammation and reactive gliosis. In human lung microvascular endothelial cells, hyperoxia-induced release of ATP results in cell survival through ERK and PI 3-K signalling cascades activated by P2Y2 and/or P2Y6 receptors, while stimulation of the ERK cascade by the P2Y6 receptor protects 1321N1 astrocytoma cells from TNFα-induced apoptosis (Ahmad et al. [134]; Kim et al. [131]). Rapid ERK1/2 and p38 MAPK activation plays an important role in P2Y2 receptor-dependent primary granule release from human neutrophils (Meshki et al. [135]). A similar phenomenon is observed in articular chondrocytes where ATP acts as a pro-inflammatory mediator by increasing arachidonic acid production and release of prostaglandin E2 through a P2Y2 receptor-dependent activation of p38 and ERK1/2 (Berenbaum et al. [136]). In primary astrocytes, P2Y receptor-mediated ERK activation by ATP is shown to induce reactive astrogliosis, a phenomenon that occurs upon brain injury and is characterised by astroglial proliferation, cellular hypertrophy and up regulation of GFAP. This effect is mediated by an ERK-dependent increase in the expression of COX-2 (Brambilla et al. [53]). In C6 cells, P2Y12 and P2Y2 receptor-induced activation of ERK is coupled to an enhanced cell proliferation, while a negative modulation of GFAP synthesis by the P2Y12 receptor is reported (Claes et al. [39]; Tu et al. [44]; Van Kolen and Slegers [45]). These differences are probably due to the fact that in C6 cells induction of GFAP expression is not correlated with an enhanced proliferation but requires growth arrest.

In summary, most P2Y receptors are coupled to ERK phosphorylation, but the signalling mechanism and the physiological effect of this pathway are cell type specific and are determined by the cellular context.

PI 3-K/PKB signalling

PKB/Akt is involved in a large variety of cellular processes including glucose metabolism, mitogenesis, differentiation, survival and motility (Brazil et al. [137]). This member of the AGC protein kinase superfamily is recruited to the plasmamembrane upon PI 3-K-mediated PIP3 formation, but is also controlled in a PI 3-K-independent, but calmodulin-dependent, fashion upon intracellular Ca2+ mobilisation by stimulation of neuronal NMDA receptors (Cantley [138]; Leevers et al. [139]; Woodgett [140]; Yano et al. [141]).

Modulation of PKB activity is reported for a variety of GPCR ligands including adrenergics, cannabinoids,

Table 2 G protein-dependent modulation of ERK and PKB signalling cascades in C6 cells.

G protein	ERK	PI 3-K/PKB	Effect	
P2Y1	Gq	↑ PLC-PKC-Ca2+-Ras.	↓ Attenuation of PI 3-K activated by growth factors	Proliferation
P2Y2	Gq	↑ PLC-PKC-Ca2+-Ras.	–	Proliferation
P2Y12	Gi	↑ RhoA-PKC-Raf-MEK	↑ PI 3-K/PKB	Proliferation/inhibition of astrocytic differentiation
µOR	Gi	↑ FGF transactivation	–	Proliferation
β-AR	Gs	↓ Transient inhibition dependent on cAMP	↓ Transient inhibition by cAMP	Growth arrest/astrocytic differentiation
CB	Gs	↓ Sustained inhibition	↓ Sustained inhibition	Growth arrest/apoptosis

Transient ERK activation by P2Y1 (Czajkowski et al. [46]), P2Y2 (Tu et al. [44]), P2Y12 (Grobben et al. [40]) and µ opioid receptors (µOR) (Belcheva et al. [198]) enhances cell proliferation while stimulation of the β-adrenergic receptor (β-AR) transiently inhibits ERK and PKB concomitant with induction of differentiation (Wang et al. [149]; Van Kolen and Slegers [45]). Inhibition of these pathways by cannabinoids (CB) is sustained and induces apoptosis (Ellert-Miklaszewska et al. [184]).

© Springer
carbachol, glutamate, histamine, nucleotides and thrombin (Dickenson [142]; Franke et al. [143], Iacovelli et al. [144] Murga et al. [145]; Sanchez et al. [146]). Due to the existence of multiple phosphoinositide-dependent cascades, regulation of PKB signalling by GPCRs varies among the studied systems.

In HEK293 cells, stimulation of β-AR with (-)-isoproterenol activates PKB via Gβγ, Src, Ras and PI 3-K (Schmitt and Stork [110]; Bommakanti et al. [147]) while activation of AC by Gaα exerts differential effects on PKB activity. In cells expressing Epac, cAMP activates PI 3-K/PKB via Rap1 while, in other cells, cAMP activates PKA that exerts a negative action on PI 3-K and PKB (Mei et al. [148]; Wang et al. [149]).

G protein-mediated activation of PKB can occur through the coupling of the Gβγ subunit to the catalytic subunit of PI 3-K or via growth factor receptor transactivation. Although only p110α was initially reported to be activated by Gβγ subunits, this feature is also observed for the p110β isoform (Kurosu et al. [150]; Stoyanov et al. [151]). This mechanism is observed in Vero cells where stimulation with LPA activates Ras upon increase in p110β lipid kinase activity (Yart et al. [152]). G protein-mediated transactivation of growth factor receptors is reported in HaCaT, A-431, and HEK293 cells where stimulation of the angiotensin type I receptor by mechanical stress induces transactivation of EGFR leading to activation of the PI 3-K/PKB cascade and protection of these cells from apoptosis (Kippenberger et al. [153]).

In 1321N1 astrocytoma cells, PLCβ activation by the Gq protein-coupled muscarinic M3 receptor also triggers PI 3-K activation through ErbB3 transactivation, but this mechanism requires Ca2+ mobilisation (Tang et al. [154]). In contrast, some reports showed an inhibitory pathway from Gq protein-coupled receptors towards PI 3-K by direct interaction between Gα-q subunits released from heterotrimeric G proteins and p110α, as reported for the α1A-AR in rat-1 fibroblasts (Ballou et al. [155, 156]), or by inhibition of insulin receptor substrate-1-associated PI 3-K activity in 1321N1 astrocytoma cells by carbachol, histamine or thrombin. These observations reveal opposing effects of muscarinic receptor stimulation on PI 3-K activity mediated by insulin and ErbB3 receptors in these cells (Batty et al. [157]).

Modulation of PI 3-K/PKB signalling is also reported for a few P2Y receptors. In bovine adventitial fibroblasts, ATP is shown to induce proliferation through parallel but independent ERK and PI 3-K signalling cascades that contribute to mTOR and p70S6K phosphorylation (Gerasimovskaya et al. [158]). In rat mesangial cells, stimulation of the P2Y1 receptor with ATP or UTP activates PKB by a PDK-1-dependent mechanism while, in C6 cells, ADP activates PI 3-K/PKB by the Gi protein-coupled P2Y12 receptor but inhibits PI 3-K by stimulation of the Gq/G11/12 protein-coupled P2Y1 receptor (Table 2) (Van Kolen and Slegers [45]; Czajkowski et al. [46]; Huwiler et al. [159]). Although most effects of P2Y-mediated activation of PI 3-K signalling are known to be related to cell proliferation, differentiation and survival, this signalling cascade is also involved in other processes. In this regard, it can be mentioned that P2Y12 receptor-mediated PI 3-K/PKB activation modulates proliferation and differentiation of C6 cells, but also plays an important role in ADP-induced platelet aggregation (Van Kolen and Slegers [45]; Czajkowski et al. [46]; Chen et al. [160]; Kim et al. [161]).

P2Y receptor-integrated G protein-coupled receptor and receptor tyrosine kinase signalling cascades

G protein-coupled receptor cross-talk

Complementary to vertical downstream signalling upon GPCR stimulation, these receptors also mediate lateral signalling by cross-talk with other receptors (reviewed in Cordeaux and Hill [162]). In human platelets, it was reported that P2Y12 receptor activation potentiates P2Y1 receptor-mediated Ca2+ signalling, while the P2Y1 receptor negatively regulates this action (Hardy et al. [163]). In renal mesangial cells, P2Y receptors activated by ATP and UTP induce a rapid desensitisation of the sphingosine-1-phosphate (SIP) receptor by PKC-dependent phosphorylation (Xin et al. [164]). A more complex interplay is observed between P2Y receptors and 5-HT receptor subtypes. Studies performed in CHO cells stably expressing 5-HT1A receptor revealed that the responsiveness of this receptor is reduced by a PLD/PKC-dependent phosphorylation under short (<5 min) pre-treatment with ATP, while the agonist efficacy of the overexpressed 5-HT1B receptor is not altered. Alternatively, longer treatment with ATP alone attenuates 5-HT1B signalling by a mechanism that requires activation of phospholipase A2 (PLA2) (Berg et al. [165]). Furthermore, stimulation of P2Y receptors can also modulate the release of transmitter molecules, including dopamine, glutamate and serotonin (Bezzi and Volterra [52]; Krugel et al. [166]; Nedergaard et al. [167]). A recently discovered mechanism of GPCR cross-talk is the assembly of a heteromeric receptor complex displaying the pharmacological profile of one receptor and the signalling properties of the other. Such an interaction is reported in
HEK293 cells overexpressing A$_1$ and P2Y$_1$ receptors. The heteromeric A$_1$-P2Y$_1$ receptor complex inhibits AC through G$_{i/o}$ protein, but displays P2Y$_1$ receptor-like pharmacological properties (Yoshioka et al. [168]).

P2Y receptor-mediated transactivation

Many studies reveal that GPCRs and growth factor receptors share a number of signalling modules (e.g., Raf/MEK/ERK, PI 3-K/PDK/PKB) to transduce their effects. In the past decade, it has become clear that the signalling pathways of both receptor systems are interconnected. Stimulation of a GPCR can induce a rapid tyrosine phosphorylation of RTKs. This trans-activation mechanism is reported for many GPCRs and proceeds through the G$_{b/d}$ subunit-dependent activation of Src. Src in turn activates RTKs by phosphorylation of specific tyrosines located in their intracellular domains or induction of matrix metalloproteases-dependent release of growth factor receptor ligands, e.g., release of heparin-bound EGF (Luttrell and Luttrell [169]).

Another target for signal integration of GPCRs and RTKs are docking proteins. Although these proteins contain phospho-tyrosine binding domains that interact with phosphorylated tyrosine residues of RTKs, stimulation of GPCRs can induce growth factor receptor-independent phosphorylation of docking proteins by Src (Bisotto and Fixman [170]).

In addition to GPCR-dependent phosphorylation of RTKs, the opposite activation mechanism is also reported. Binding of PDGF to its cognate receptor induces association of PDGFR with the G$_i$ protein-coupled SIP receptor. Subsequently, Src is recruited to this complex by G$_{b/d}$ subunits and phosphorylates Grb-2 associated binder-1 resulting in dynamin II-induced “pinching off” of vesicles involved in endocytosis of PDGF-SIP signalling complexes and subsequent activation of ERK1/2 (Waters et al. [171]).

Cross-talk between RTKs and P2Y receptors is reported in Müller glial cells where ATP exerts its mitogenic effect through transactivation of EGF and PDGF receptors resulting in ERK-dependent enhanced proliferation. In these cells, ATP-induced activation of ERK was abolished by treatment with the RTK autophosphorylation inhibitor tyrphostin (AG1478) (Milenkovic et al. [172]). In rat striatal astrocytes, ATP and bFGF activate ERK and induce astrogliosis by a mechanism that is insensitive to RTK inhibition (Abbracchio et al. [173]; Bolego et al. [174]; Neary et al. [175]). More recently, mechanistic studies performed in 1321N1 astrocytoma cells reveal that the human P2Y$_2$ receptor interacts with Src and Pyk2, probably by its proline-rich putative SH3 binding sites (PXXP). This interaction is implicated in P2Y$_2$ receptor-induced transactivation of EGF, PDGF and VEGF receptors (Liu et al. [176]; Seye et al. [100]). Src inhibition abolishes growth factor receptor transactivation and ERK phosphorylation. Although the rat P2Y$_2$ receptor lacks PXXP motives, tyrosine kinase-dependent activation of ERK upon P2Y$_2$ receptor stimulation is reported in a few rat cell lines, including C6 and PC12 cells (Soltoff et al. [84]; Tu et al. [44]). In the latter cases, P2Y$_2$ receptor-dependent activation of Pyk2 is mediated by PKC and Ca$^{2+}$ suggesting that the PXXP sequence is dispensable for P2Y$_2$ receptor-induced tyrosine phosphorylation of Pyk2 and downstream signalling towards ERK. Moreover, P2Y$_2$ mutants lacking PXXP-motives are still able to activate ERK demonstrating the existence of other pathways towards phosphorylation of ERK (Liu et al. [176]). Observations made in human endothelial cells, where UTP-induced signalling to ERK was shown to depend on Ca$^{2+}$, PKC and integrin-mediated cell anchorage, already pointed to a pathway distinct from the classical Ras/Raf/MEK/ERK cascade (Short et al. [177]). Human and mouse P2Y$_2$ receptors contain a RGD sequence which allows activation of ERK by interaction with $\alpha_v\beta_3/\beta_5$ integrins followed by G_o protein coupling. Since these proteins also mediate cell adhesion and chemotaxis, the observed P2Y$_2$/$\alpha_v\beta_3/\beta_5$-interaction also points to a possible function of P2Y$_2$ receptors in inflammatory responses (Erb et al. [178]).

It is clear that, in analogy with other GPCRs, cross-talk between P2Y and growth factor receptors may occur at different levels of the signal transduction pathway depending on receptor subtypes and on the studied system. For the P2Y$_2$ receptor, additional transactivation mechanisms are facilitated by the presence of signalling motives (e.g., PXXP or RGD) that allow direct interaction with other signalling components (Src, integrins).

P2Y receptor-activated signal transduction pathways in C6 glioma cells

As mentioned above, the final outcome of nucleotide-mediated signalling is influenced by ecto-enzymes (Claes and Slegers [17]; Czajkowski and Baranska [18]; Grobben et al. [21, 179]). ATP and ADP hydrolysis to adenosine results in growth inhibition by a mechanism that is not yet fully understood. When nucleotide hydrolysis is prevented, ATP, ADP and Ap$_3$A (in particular Ap$_3$A and Ap$_4$A) increase cell
proliferation more than two-fold. Stimulation with 2MeSADP, a P2Y agonist not hydrolysed by the ecto-enzymes present on the plasma membrane of C6 cells, also results in growth enhancement and inhibition of β-AR-induced differentiation into astrocyte type II (Claes et al. [39]; Van Kolen and Slegers [45]). The pathways involved in the P2Y receptor-dependent effects on growth and differentiation of these cells are presented in Figure 1.

Nucleotides stimulate several purinergic receptors that activate the ERK cascade by at least two distinct mechanisms. The P2Y2 receptor, stimulated by UTP and ATP, enhances ERK phosphorylation through a PLCβ/PKC/Ras/Raf/MEK cascade that is attenuated by inhibition of tyrosine kinases and Ca2+ chelation by BAPTA-AM (Tu et al. [44]). The Ca2+-dependence of the P2Y2 receptor-mediated activation of ERK suggests the involvement of a cPKC (α, βI, βII or γ). It is also shown that ADP stimulates the P2Y1 receptor and activates ERK through a Ca2+-dependent mechanism (Czajkowski et al. [46]), likely by a similar mechanism as reported for the P2Y2 receptor (Tu et al. [44]). In addition, it has been shown that ADP can activate ERK by stimulation of the P2Y12 receptor through a RhoA- and PKC-dependent pathway that does not require Ca2+, Ras or tyrosine kinase activation (Grobben et al. [40]). The fact that Ca2+ removal does not affect P2Y12 receptor-mediated ERK activation excludes the involvement of cPKCs. Stimulation of the P2Y12 receptor does not induce PI-turnover, but nPKCs might be involved since alternative activation mechanisms, based on Ser/Thr and Tyr phosphorylation, have been reported (Steinberg [180]; Parekh et al. [181]). Data from our laboratory suggest an important role for PKCζ in P2Y12 receptor-dependent activation of ERK. The fact that no cross-talk between ERK and PI 3-K is observed in C6 cells indicates that PKCζ exerts its actions independently of PI 3-K via a RhoA-

Figure 1 Overview of P2Y receptor-mediated signalling cascades in C6 cells. Green and red lines represent stimulatory (green arrows) and inhibitory (red squares) actions respectively. Dashed lines are incomplete characterised pathways. P2Y2 receptor stimulation enhances ERK-dependent proliferation through a PLC-dependent pathway while P2Y12 receptor stimulation enhances cell proliferation by RhoA- and PKCζ-dependent activation of ERK (Claes et al. [39]; Grobben et al. [40]; Tu et al. [44]; Van Kolen and Slegers, [199]). P2Y12 receptor stimulation also inhibits cAMP-dependent induction of differentiation by reactivation of PKB which requires Src/Pyk2 complex formation and Rap1 activation. Formation of the Src/Pyk2 complex requires Ca2+ and PLD2 which is constitutively active (Claes et al. [22]; Van Kolen and Slegers [45]; Van Kolen et al. [185]). Cyclic AMP-dependent inhibition of PKB and ERK is suggested to depend on inhibition of Rap1 (Wang et al. [149]). The negative modulation of PI 3-K by the P2Y1 receptor is only displayed in the presence of serum (Czajkowski et al. [46]).
dependent mechanism (Grobben et al. [40]; Van Kolen and Slegers, [199]). Although P2Y receptors use different mechanisms to activate ERK, they all converge to increased cell proliferation by enhanced synthesis of c-Myc, c-Jun and c-Fos (Zhang et al. [184]). The exact mechanism of P2Y 12 receptor-mediated PI 3-K/PKB activation is not only due to its inhibitory effect on AC (Van Kolen and Slegers [45]; Czajkowski et al. [46]; Baranska et al. [183]). In addition to their opposing effects on PI 3-K/PKB signalling, the constitutive PI 3-K activity in C6 cells is modulated by P2Y 1 and P2Y 12 receptor expression. Another cross-talk at the level of PI 3-K/PKB is observed for P2Y 12 and β-AR. Increase in cAMP upon stimulation of the latter receptor transiently inhibits PKB phosphorylation. Stimulation of the P2Y 12 receptor, which negatively affects AC, does not only counteract this inhibition but even enhances PKB activity in comparison to unstimulated cells, suggesting that P2Y 12 receptor-mediated PI 3-K/PKB activation is not only due to its inhibitory effect on AC (Van Kolen and Slegers [45]; Czajkowski et al. [46]; Baranska et al. [183]). In addition to their opposing effects on PI 3-K/PKB signalling, unpublished data of our laboratory revealed similar modulation of ERK signalling by P2Y 12 and β-AR. Whether the P2Y 12 receptor-mediated reversal of ERK inhibition is involved in the inhibition of β-AR-induced GFAP synthesis remains to be determined. The observation that stimulation of the cells with UTP activates ERK, but fails to inhibit the β-AR-induced growth arrest and GFAP synthesis, suggests that ERK activation alone is not sufficient to counteract differentiation (Claes et al. [39]; Tu et al. [44]). Conversely, transfection of C6 cells with constutively active PKB prevented (-)-isoproterenol-induced differentiation indicating that inhibition of PKB signalling is required for cAMP-dependent induction of differentiation. Apparently this observation is in contrast with data showing that cAMP-dependent induction of differentiation requires PI 3-K activity which is not inhibited upon a 48-h treatment with dbcAMP (Rojmans et al. [34]). This might be explained by the fact that induction of differentiation by stimulation of β-AR proceeds through transient inhibition of PKB while recovery of this activity is required to prohibit cell death. This hypothesis is confirmed by a recent study where sustained inhibition of PI 3-K/PKB by cannabinoids is shown to induce apoptosis in C6 cells (Table 2) (Ellert-Miklaszewka et al. [184]). Taken together, P2Y 12 receptor stimulation inhibits cAMP-dependent induction of differentiation by a transient increase in PI 3-K/PKB activity. Ca 2+ chelation inhibits the basal PKB activity and P2Y 12 receptor-mediated increase in PKB phosphorylation. Although C6 cells also express the P2Y 2 receptor, stimulation with UTP does not enhance the activity of PI 3-K/PKB, which may be explained by a differential coupling to G protein subtypes. P2Y 2 receptor-mediated signalling proceeds through G q proteins while the activation of PDK is G i protein-dependent (Table 2) (Tu et al. [44]; Huwiler et al. [159]). The lack of G i protein coupling of the P2Y 2 receptor in C6 cells might be a consequence of compartmentalisation into cavelae as reported for some G q protein-coupled receptors (Bhatnagar et al. [81]).

Although experiments in CHO cells reveal that P2Y 12 receptor-induced ERK activation requires PI 3-K 7 (Soulet et al. [92]), experiments performed with LY294002 or Wortmannin excluded cross-talk between both cascades in C6 cells (Grobben et al. [40]). These differences in signalling mechanisms can be explained by the fact that the latter PI 3-K isoform is only moderately expressed in C6 cells (Van Kolen and Slegers [45]). The exact mechanism of P2Y 12 receptor-induced PI 3-K/PKB activation is not fully understood, but recent data revealed that Src and Pyk2 are involved in P2Y 12 receptor signalling to PI 3-K (Van Kolen et al., [185]). A similar pathway is observed in PC12 cells where Src, in complex with Pyk2 and PLD2, activates PI 3-K in response to H 2O 2 (Banno et al., [186]). Since PLD2 is constitutively active in C6 cells (Bobeszko et al. [187]), a significant role for this enzyme in PI 3-K/Akt signalling is suggested. Although Soulet et al. [92] reported that transactivation of PDGFR is involved in PI 3-K activation by the P2Y 12 receptor in CHO cells, the use of receptor kinase inhibitors indicated that PDGFR and EGFR are not transactivated by the P2Y 12 receptor in C6 cells. Alternatively, a Rap1-mediated activation of PI 3-K by the P2Y 12 receptor cannot be excluded. Indeed, PI 3-K is postulated as a downstream effector of Rap1 that is inhibited by an increase in cAMP concentration (Wang et al. [149]). Data from our laboratory indicated a rapid P2Y 12 receptor-induced activation of Rap1 that was abolished by Ca 2+ chelation and inhibition of Src/Pyk2 complex formation but not by PI 3-K inhibition (Van Kolen et al. [185]). These results positioned Rap1 downstream of Src/Pyk2 but...
upstream of PI 3-K. In addition, this mechanism involves Gβγ protein subunits and Ca2+-dependent activation of Pyk2 that requires association to IGF-IR and PLD2 to interact with Src. Although Src and Pyk2 are shown to activate Ras/Raf/MEK/ERK in primary astrocytes (Wang and Reiser [83]), this mechanism did not contribute to P2Y12 receptor-mediated ERK activation in C6 cells pointing to a physical separation of both cascades (Grobben et al. [40]; Van Kolen and Slegers, [199]). Indeed, the formation of a Pyk2/Src/PLD2/IGF-I-R complex may contribute to compartmentalisation of this signalling pathway that requires intact lipid rafts to be active (Van Kolen et al. [185]). In contrast, in blood platelets Rap1, but also Pyk2 activation by the P2Y12 receptor, depends on PI 3-K activity but is insensitive to Ca2+ chelation (Lova et al. [96, 97]; Koziak et al. [188]). These findings indicate that different cell specific pathways are involved in P2Y12 receptor-mediated activation of PI 3-K/PKB and additional research is required to allow full characterisation of these signalling cascades.

Conclusions

At present, nucleotides are known to regulate a variety of biological processes related to vascular-, immunological- and intestinal functioning. In vitro studies on glial and neuronal cells implicated the P2Y receptor-activated signalling pathways in regulation of cell motility, proliferation, chemotaxis and protection against oxidative stress. Furthermore, investigations on tumoral cells demonstrated that stimulation of P2Y receptors contribute to tumorigenesis by increasing cell proliferation through ERK and PKB signalling pathways activated by independent mechanisms. From these observations, a role of these receptors as potential targets in clinical applications emerges.

P2Y receptors modulate these physiological functions by activation of GTPases and direct or indirect activation of protein kinases. Characterisation of the involved receptor(s) and elucidation of P2Y receptor-induced activation of defined pathways needs to be improved by synthesis of specific P2Y agonists and antagonists.

Studies on P2Y receptor-mediated signalling, discussed in this review, demonstrate that besides vertical signal transduction, lateral cross-talk between growth factor receptors and GPCRs extends the signalling properties of a defined receptor subset. It also becomes clear that signal transduction pathways activated by P2Y receptors largely depend on the cell type and their environment. On the one hand, cellular specificity is determined by differential expression of signalling proteins, but on the other hand also depends on the assembly of signalling modules. Besides specific protein-protein interactions, intracellular compartmentalisation (e.g., lipid rafts, clathrin-coated vesicles) also contributes to the specificity of receptor signalling. Identification of the signalling modules and cellular compartmentalisation will provide more insight into the P2Y receptor-activated signalling cascades.

Acknowledgment

This work was supported by grants from the Fund for Scientific Research Flanders (HS) and BOF-NOI (HS). K.V.K. is a fellow of the Institute of Scientific Technology (IWT).

References

1. Drury AN, Szent-Gyorgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68:213–237
2. Abbracchio MP, Saffrey MJ, Höpker V, Burnstock G (1994) Modulation of astroglial cell proliferation by analogues of adenosine and ATP in primary cultures of rat striatum. Neuroscience 59:67–76
3. Burnstock G, Williams M (2000) P2 purinergic receptors: modulation of cell function and therapeutic potential. J Pharmacol Exp Ther 295:862–869
4. Burnstock G (1993) Physiological and pathological roles of purines: an update. Drug Dev Res 28:195–206
5. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492
6. Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptors? Gen Pharmacol 16:433–440
7. Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Rev 64:445–475
8. Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden TK, Jacobson KA, Leff P, Williams M (1994) Nomenclature and classification of purinoceptors. Pharmacol Rev 46:143–156
9. Abbracchio MP, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT, King BF, Gachet C, Jacobson KA, Weisman GA, Burnstock G (2003) Characterization of the UDP-glucose receptor (renamed here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci 24:52–55
10. Communi D, Gonzalez NS, Detheux M, Brézillon S, Lannoy V, Parmentier M, Boeynaems JM (2001) Identification of a novel human ADP receptor coupled to G. J Biol Chem 276:41479–41485
11. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207
12. Zhang FL, Luo L, Gustafson E, Palmer K, Qiao X, Fan X, Yang S, Laz TM, Bayne M, Monsma F Jr (2002) P2Y13: identification and characterization of a novel Gαi-coupled ADP receptor from human and mouse. J Pharmacol Exp Ther 301:705–713
13. Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, Zhu Y, McLaughlin MM, Murdock
14. Herold CL, Qi AD, Harden TK, Nicholas RA (2004) Agonist versus antagonist action of ATP at the P2Y4 receptor is determined by the second extracellular loop. J Biol Chem 279:11456–11464

15. Qi A-D, Zambon AC, Insel PA, Nicholas RA (2001) An arginine/glutamine difference at the juxtaposition of transmembrane domain 6 and the third extracellular loop contributes to the markedly different nucleotide selectivities of human and canine P2Y11 receptors. Mol Pharmacol 60:1375–1382

16. Lawson Z, Wheatley M (2004) The third extracellular loop of G-protein-coupled receptors: more than just a linker between two important transmembrane helices. Biochem Soc Trans 32:1048–1050

17. Claes P, Slegers H (2004) P2Y receptor affects the proliferation and differentiation of glial and neuronal cells: a focus on rat C6 glioma cells. Curr Neuropharmacol 2:207–220

18. Czajkowski R, Baranska J (2002) Cross-talk between the ATP and ADP nucleotide receptor signalling pathways in glioma C6 cells. Acta Biochim Pol 49:877–889

19. Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta 1638:1–19

20. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn-Schmiedeberg's Arch Pharmacol 362:299–309

21. Grobben B, Claes P, Roymans D, Esmans EL, Van Onckelen H, Slegers H (2000) Ecto-nucleotide pyrophosphatase modulates the purinoceptor-mediated signal transduction and is inhibited by purinoceptor antagonists. Br J Pharmacol 130:139–145

22. Claes P, Van Kolen K, Roymans D, Blero D, Vissenberg K, Erneux C, Verbelen JP, Esmans EL, Slegers H (2004) Reactive blue 2 inhibition of cyclic AMP-dependent differentiation of rat C6 glioma cells by purinergic receptor-independent inactivation of phosphatidylinositol 3-kinase. Biochem Pharmacol 67:1489–1498

23. Boeynaems JM, van Giezend H, Savi P, Herbert JM (2005) Participation of two distinct phosphatidylinositol 3-kinase signalling selectivities of cloned P2Y receptors. J Biochem Pharmacol 69:348–354

24. Grobben B, Claes P, Van Kolen K, Roymans D, Esmans EL, Slegers H (2004) P2Y4 receptor antagonists enhance the proliferation and differentiation of rat C6 glioma cells. J Neurochem 76:610–618

25. Backhovens H, Gheuens J, Slegers H (1987) Expression of glial fibrillary acidic protein in rat C6 glioma relates to vimentin and is independent of cell-cell contact. J Neurochem 49:348–354

26. Mesens J, Slegers H (1992) Synthesis of glial fibrillary acidic protein in rat C6 glioma in chemically defined medium: cyclic AMP-dependent transcrip- tional and translational regulation. J Neurochem 58:2071–2080

27. Pianet I, Merle M, Labouesse J (1989) ADP and, indirectly, ATP are potent inhibitors of cAMP production in intact isoproterenol-stimulated C6 glioma cells. Biochem Biophys Res Commun 163:1150–1157

28. Boyer JL, Lazarowski ER, Chen XK, Harden TK (1993) Identification of a P2Y-purinergic receptor that inhibits adenyl cyclase. J Pharmacol Exp Ther 267:1140–1146

29. Claes P, Grobben B, Van Kolen K, Roymans D, Slegers H (2001) P2Y1AC-receptor agonists enhance the proliferation of rat C6 glioma cells through activation of the p42/44 mitogen-activated protein kinase. Br J Pharmacol 134:402–408

30. Grobben B, Claes P, Van Kolen K, Roymans D, Fransen P, Sys SU, Slegers H (2001) Agonists of the P2Y1AC-receptor activate MAP kinase by a ras-independent pathway in rat C6 glioma. J Neurochem 78:1325–1338

31. Czajkowski R, Lei L, Sabala P, Baranska J (2002) ADP-evoked phospholipase C stimulation and adenyl cyclase inhibition in glioma C6 cells occurs through two distinct nucleotide receptors, P2Y1 and P2Y12. FEBS Lett 513:179–183

32. Jin J, Tomlinson W, Kirk IP, Kim YB, Humphries RG, Kunapuli SP (2001) The C6-2B glioma cell P2Y12 receptor. J Biol Pharmacol 133:521–528

33. Nicholas RA, Lazarowski ER, Watt WC, Li Q, Boyer J, Harden TK (1996) Pharmacological and second messenger signalling selectivities of cloned P2Y1 receptors. J Auton Pharmacol 16:319–323
54. Tu MT, Luo SF, Wang CC, Chien CS, Chiu CT, Lin CC, Yang CM (2000) P2Y2 receptor-mediated proliferation of C6 glioma cells via activation of Ras/Raf/MEK/MAPK pathway. Br J Pharmacol 129:1481–1489
55. Van Kolen K, Slegers H (2004) P2Y12 receptor stimulation inhibits β-adrenergic receptor-induced differentiation by reversing the cyclic AMP-dependent inhibition of protein kinase B. J Neurochem 89:442–453
56. Czajkowsk R, Banachewicz W, Ilntyska O, Drobot LB, Baranska J (2004) Differential effects of P2Y1 and P2Y12 nucleotide receptors on ERK1/ERK2 and phosphatidylinositol 3-kinase signalling and cell proliferation in serum-deprived and nonstarved glioma C6 cells. Br J Pharmacol 141:497–507
57. Marteau F, Le Poul E, Communi D, Communi D, Labouret C, Savi P, Boeynaems JM, Gonzalez NS (2003) Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64:104–112
58. Fumagalli M, Trincavelli L, Lecca D, Martini C, Ciana P, Brambilla R, D’Ambrosi N, Volerde C (2005) Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Res Rev 48:144–156
59. Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:203–218
60. Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, Inoue K, Koohsaka S (2003) Selective expression of Gβγ-coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44:242–250
61. Bezzi P, Voltera A (2001) A neuron-glial signalling network in the active brain. Curr Opin Neurobiol 11:387–394
62. Brambilla R, Neary JT, Cattabeni F, Cottini L, D’Ippolito G, Schiller PC, Abbracchio MP (2002) Induction of COX-2 and reactive gliosis by P2Y2 receptors in rat cortical astrocytes is dependent on ERK1/2 but independent of calcium signaling. J Neurochem 83:1285–1296
63. Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Koohsaka S (2001) Extracellular ATP and ADP induce chemotaxis of cultured microglia through Gβγ-coupled P2Y receptors. J Neurosci 21:1975–1982
64. Communi D, Janssens R, Suarez-Huerta N, Robaye B, Boeynaems JM (2000) Advances in signalling by extracellular nucleotides: the role and transduction mechanisms of P2Y receptors. Cell Signal 12:351–360
65. Mirshahi T, Mittal V, Zhang H, Linder ME, Logothetis DE (2002) Distinct sites on G protein βγ subunits regulate different effector functions. J Biol Chem 277:36345–36350
66. Filippov AK, Webb TE, Barnard EA, Brown DA (1998) P2Y2 nucleotide receptors expressed heterologously in sympathetic neurons inhibit both N-type Ca2+ and M-type K+ currents. J Neurosci 18:5170–5179
67. Filippov AK, Webb TE, Barnard EA, Brown DA (1999) Dual coupling of heterologously-expressed rat P2Y2 nucleotide receptors to N-type Ca2+ and M-type K+ currents in rat sympathetic neurons. Br J Pharmacol 126:1009–1017
68. Filippov AK, Brown DA, Barnard EA (2000) The P2Y1 receptor closes the N-type Ca2+ channel in neurons, with both adenosine triphosphates and diphosphates as potent agonists. Br J Pharmacol 129:1063–1066
69. Filippov AK, Simon J, Barnard EA, Brown DA (2003) Coupling of the nucleotide P2Y1 receptor to neuronal ion channels. Br J Pharmacol 138:400–406
70. Simon J, Filippov AK, Géranson S, Wong YH, Frelin C, Michel AD, Brown DA, Barnard EA (2002) Characterization and channel coupling of the P2Y12 nucleotide receptor of brain capillary endothelial cells. J Biol Chem 277:31390–31400
71. Winkler K, Schweigel J, Gerecz V, Franke H, Allgaier C, Barsoumian EL, Drahaim H, Illes P (2004) Adenine nucleotides inhibit recombiant N-type calcium channels via G protein-coupled mechanisms in HEK 293 cells; involvement of the P2Y13 receptor-type. Br J Pharmacol 141:141–151
72. Filippov AK, Fernandez-Fernandez JM, Marsh SJ, Simon J, Barnard EA, Brown DA (2004) Activation and inhibition of neuronal G protein-gated inwardly rectifying K+ channels by P2Y nucleotide receptors. Mol Pharmacol 66:468–477
73. Suadicani SO, Flores CE, Urban-Maldonado M, Beelitz M, Scemes E (2004) Gap junction channels coordinate the propagation of intercellular Ca2+ signals generated by P2Y receptor activation. Glia 48:217–229
74. Dienel GA, Hertz L (2005) Astrocytic contributions to bioenergetics of cerebral ischemia. Glia 50:362–388
75. Dixon SJ, Yu R, Panupinthu N, Wilson JX (2004) Activation of P2 nucleotide receptors stimulates acid efflux from astrocytes. Glia 47:367–376
76. Sellers LA, Simon J, Lundahl TS, Cousens DJ, Humphrey PP, Barnard EA (2001) Adenosine nucleotides acting at the human P2Y1 receptor stimulate mitogen-activated protein kinases and induce apoptosis. J Biol Chem 276:16379–16390
77. Fam SR, Paquet M, Castleberry AM, Oller H, Lee CJ, Traynelis SF, Smith Y, Yun CC, Hall RA (2005) P2Y1 receptor signaling is controlled by interaction with the PDZ scaffold NHERF-2. Proc Natl Acad Sci USA 102:8042–8047
78. Chen BC, Lin WW (1999) PKCβ1 mediates the inhibition of P2Y receptor-induced inositol phosphate formation in endothelial cells. Br J Pharmacol 127:1908–1914
79. Fam SR, Gallagher CJ, Kalia LV, Salter MW (2003) Differential frequency dependence of P2Y1- and P2Y12-mediated Ca2+ signaling in astrocytes. J Neurosci 23:4437–4444
80. Pines A, Romanello M, Cesaratto L, Damante G, Moro L, D’Andrea P, Tell G (2003) Extracellular ATP stimulates the early growth response protein 1 (Egr-1) via a protein kinase C-dependent pathway in the human osteoblastic HOBIT cell line. Biochim J 373:815–824
81. Hou M, Harden TK, Kuhn CM, Baldetorp B, Lazarowski E, Pendergast W, Moller S, Edvinsson L, Erlinge D (2004) UDP acts as a growth factor for vascular smooth muscle cells by activation of P2Y6 receptors. Am J Physiol Heart Circ Physiol 288:H784–H792
82. Neary JT, Kang Y, Bu Y, Yu E, Akong K, Peters CM (1999) Mitogenic signaling by ATP/P2Y purinergic receptors in astrocytes: involvement of a calcium-independent protein kinase C, extracellular signal-regulated protein kinase pathway distinct from the phosphatidylinositol-specific phospholipase C/Calcium pathway. J Neurosci 19:4211–4220
83. Wilkin F, Duhant X, Bruyns C, Suarez-Huerta N, Boeynaems JM, Robaye B (2003) The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dendritic cells. J Immunol 166:7172–7177
Gao Z, Chen T, Weber MJ, Linden J (1999) A 2B adenosine receptor

Lev S, Moreno H, Martinez R, Canoll P, Peles E, Roth BL (2004) Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Gαq-coupled protein receptors. J Biol Chem 279:34614–34623

Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J (1995) Protein tyrosine kinase Pyk2 involved in Cα2+-induced regulation of ion channel and MAP kinase functions. Nature 376:737–745

Wang H, Reiser G (2003) The role of the Cα2+-sensitive tyrosine kinase Pyk2 and Src in thrombin signaling in rat astrocytes. J Neurochem 84:1349–1357

Soltosf SP, Avraham H, Avraham S, Cantley LC (1998) Activation of P2Y1 receptors by UTP and ATP stimulates mitogen-activated kinase activity through a pathway that involves related adhesion focal tyrosine kinase and protein kinase C. J Biol Chem 273:2653–2660

Ellis CA, Malik AB, Gilchrist A, Hamm H, Sandoval R, Vojno-Yasenetska T, Tiruppathi C (1999) Thrombin induces proteinase-activated receptor-1 gene expression in endothelial cells via activation of G1-linked Ras/mitogen-activated protein kinase pathway. J Biol Chem 274:13718–13727

Lopez-Ilasaca M, Crespo P, Pellici PG, Gutkind JS, Wetzker R (1997) Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase γ. Science 275:394–397

Bhattacharya M, Babwah AV, Ferguson SS (2004) Small GTP-binding protein-coupled receptors. Biochem Soc Trans 32:1040–1044

Dugan LL, Kim JS, Zhang Y, Bart RD, Sun Y, Holtzman DM, Gutmann DH (1999) Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J Biol Chem 274:25842–25848

Stork PJ, Schmitt JM (2002) Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 12:258–266

Qiu W, Zhuang S, von Lintig FC, Boss GR, Pilz RB (2000) Cell type-specific regulation of B-Raf kinase by cAMP and 14-3-3 proteins. J Biol Chem 275:31921–31929

Martin NP, Whalen EJ, Zamah MA, Pierce KL, Lefkowitz RJ (2004) PKA-mediated phosphorylation of the β3-adrenergic receptor promotes Gβγ switching. Cell Signal 16:1397–1403
of ERK and H-K-ATPase by cAMP in native kidney cells: role of Epac. J. Biol. Chem. 277:18598–18604

109. Lin SL, Johnson-Farley NN, Lubinsky DR, Cowen DS (2003) Coupling of neuronal 5-HT2 receptors toactivation of extracellular-regulated kinase through a protein kinase A-independent pathway that can utilize Epac. J Neurochem 87:1076–1085

110. Schmitt JM, Stork PJ (2002) Ga and Gβγ require distinct Src-dependent pathways to activate Rap1 and Ras. J Biol Chem 277:43024–43032

111. Ebinu JO, Bottorff DA, Chan EY, Stang SL, Dunn RJ, Stone JC (1998) RasGRP, a Ras guanyl nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science 280:1082–1086

112. Agell N, Bachs O, Rocamora N, Villalonga P (2002) Modulation of the Ras/Raf/MEK/ERK pathway by Ca2+ and calmodulin. Cell Signal 14:649–654

113. Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Takeda H, Matozaki T, Takada T, Noguchi T, Yamao T, Nadal-Wollbold F, Pawlowski M, Levy-Toledano S, Berrou, Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K, Ohno S, Lin SL, Johnson-Farley NN, Lubinsky DR, Cowen DS, Tsuda M, Ochi F, Fukunaga K, Inagaki K, Kasuga M (1999) Protein kinase Cε activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. J Biol Chem 274:3512–3519

114. Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K, Ohno S (1996) Protein kinase Cε activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. J Biol Chem 271:23512–23519

115. Nadal-Wollbold F, Pawlowski M, Levy-Toledano S, Berrou E, Rosa JP, Bryckaert M (2002) Platelet ERK2 activation by thrombin is dependent on calcium and conventional protein kinases C but not Raf-1 or B-Raf. FEBS Lett 531:475–482

116. Takeda H, Matozaki T, Takada T, Noguchi T, Yamao T, Berenbaum F, Humbert L, Bereziat G, Thirion S (2003) Protein kinase Cε activates the MEK-ERK pathway by enhancing activation of the Raf kinase. Oncogene 13:2517–2526

117. Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K, Ohno S, Tsuda M, Ochi F, Fukunaga K, Inagaki K, Kasuga M (1999) PI3Kγ and protein kinase Cε-ζ mediate RAS-independent activation of MAP kinase by a G protein-coupled receptor. EMBO J 18:386–395

118. Zhao Y, Liu J, Li L, Liu L, Wu L (2005) Role of Ras/PKCζ/MEK/ERK1/2 signaling pathway in angiogenesis II-induced vascular smooth muscle cell proliferation. Regul Pept 128:43–50

119. Schönwasser DC, Marais RM, Marshall CJ, Parker PJ (1998) Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel and atypical protein kinase C isoforms. Mol. Cell. Biol. 18:790–798

120. Corbit KC, Trakul N, Eves EM, Diaz B, Marshall M, Rosner MR (2003) Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J. Biol. Chem. 278:13061–13068

121. Van Der Hoeven PC, Van Der Wal JC, Ruurs P, Van Blitterswijk WJ (2000) Protein kinase C activation by acidic proteins including 14-3-3. Biochem. J 347:781–785

122. Neary JT, Zhu Q (1994) Signalling by ATP receptors in astrocytes. Neuroreport 5:1617–1620

123. King BF, Neary JT, Zhu Q, Wang S, Norenberg MD, Burnstock G (1996) P2 purinoceptors in rat cortical astrocytes: expression, calcium-imaging and signalling studies. Neuroscience 74:1187–1196

124. Graham A, McLees A, Kennedy C, Gould GW, Plevin R (1996) Stimulation by the nucleotides, ATP and UTP of mitogen-activated protein kinase in EAhy 926 endothelial cells. Br J Pharmacol 117:1341–1347

125. Huwiler A, Pleischlifter J (1994) Stimulation by extracellular ATP and UTP of the mitogen-activated protein kinase cascade and proliferation of rat mesangial cells. Br J Pharmacol 113:1453–1463

126. Erlinge D (1998) Extracellular ATP: a growth factor for vascular smooth muscle cells. Gen Pharmacol 31:1–8

127. Tornquist K, Ekokoski E, Dugue B (1996) Purinergic agonist ATP is a comitogen in thyroid FRTL-5 cells. J Cell Physiol 166:241–248

128. Kim SG, Gao ZG, Soltysski KA, Chang TS, Brodie C, Jacobson KA (2003) P2Y6 nucleotide receptor activates PKC to protect 1321N1 astrocytoma cells against tumor necrosis factor-induced apoptosis. Cell Mol Neurobiol 23:401–418

129. Way KJ, Chou E, King GL (2000) Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci 21:181–187

130. Harper S, Webb TE, Charlton SJ, Ng LL, Boarder MR (1998) Evidence that P2Y1 receptors are involved in the regulation of rat aortic smooth muscle cells by UTP and ATP. Br J Pharmacol 124:703–710

131. Ahmad S, Ahmad A, Ghosh M, Leslie CC, White CW (2004) Extracellular ATP-mediated signaling for survival in hyperoxia-induced oxidative stress. J. Biol. Chem. 279:16317–16325

132. Meshki J, Tuluc F, Bredetean O, Ding Z, Kunapoli SP (2004) Molecular mechanism of nucleotide-induced primary granule release in human neutrophils: role of the P2Y2 receptor. Am J Physiol Cell Physiol 286:264–271

133. Berenbaum F, Humbert L, Bereziat G, Thirion S (2003) Concomitant recruitment of ERK1/2 and p38 MAPK signalling pathway is required for activation of cytoplasmic phospholipase A2 via ATP in articular chondrocytes. J. Biol. Chem. 278:13680–13687

134. Brazil DP, Park J, Hemmings BA (2002) PKB binding proteins: getting in on the Akt. Cell 111:293–303

135. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

136. Leevers SJ, Vanhaesebroeck B, Waterfield MD (1999) Signaling through phosphoinositide 3-kinases: the lipid take centre stage. Curr Opin Cell Biol 11:219–225

137. Woodgett JR (2005) Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol 17:150–157

138. Yano S, Tokumitsu H, Soderling TR (1998) Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 396:584–587

139. Dickenson JM (2002) Stimulation of protein kinase B and p70 S6 kinase by the histamine H1 receptor in DDT1MF-2 smooth muscle cells. Br J Pharmacol 135:1967–1976

140. Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN (1995) The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81:727–736

141. Iacovelli L, Bruno V, Salvatore L, Melchiorri D, Gradini R, Caricasole A, Barletta E, De Blasi A, Nicoletti F (2002) Native group-III metabotropic glutamate receptors are
coupled to the mitogen-activated protein kinase/phosphatidylinositol-3-kinase pathways. J Neurochem 82:216–223

145. Murga C, Laguigne L, Wetzer R, Cuadrado A, Gutkind JS (1998) Activation of Akt/protein kinase B by G protein-coupled receptors. A role for α and βγ subunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinase γ. J Biol Chem 273:19080–19085

146. Sanchez MG, Ruiz-Llorente L, Sanchez AM, Díaz-Laviada I (2003) Activation of phosphoinositide 3-kinase/PKB pathway by CB1 and CB2 cannabinoid receptors in prostate PC-3 cells. Involvement in Raf-1 stimulation and NGF induction. Cell Signal 15:851–859

147. Bommakanti RK, Vinayak S, Simonds WF (2000) Dual regulation of Akt/Protein Kinase B by heterotrimeric G protein subunits. J Biol Chem 275:38870–38876

148. Mei FC, Qiao J, Tsygankova OM, Minchoth JL, Quilliam MA, Cross ME, Huang S, McReynolds EM, Zhang LA, Cheng X (2002) Differential signaling of cyclic AMP: opposing effects of exchange protein directly activated by cyclic AMP and cAMP-dependent protein kinase on protein kinase B activation. J Biol Chem 277:11497–11504

149. Wang L, Liu F, Adamo ML (2001) Cyclic AMP inhibits extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways by inhibiting Rap1. J Biol Chem 276:37242–37249

150. Kurosu H, Maehama T, Okada T, Yamamoto T, Hoshino S, Fukui Y, Ui M, Hazeki O, Katada T (1997) Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110β is synergistically activated by the βγ subunits of G proteins and phosphotyrosyl peptide. J Biol Chem 272:24252–24256

151. Stoyanov B, Volinia S, Hanck T, Rubio I, Laffargue M, Wetzker R, Vanhaesebroeck B, Dhand R, Nürnberg B, Gierschik P, Seedorf K, Hsuan JJ, Waterfield MD, Wetzer R (1995) Cloning and characterization of a G protein-activated human phosphoinositide-3-kinase. Science 269:690–693

152. Yart A, Roche S, Wetzer R, Laffargue M, Tonks N, Mayeux P, Chap H, Raynal P (2002) A function for phosphoinositide 3-kinase β lipid products in coupling βγ to Ras activation in response to lysophosphatidic acid. J Biol Chem 277:21167–21178

153. Kippenberger S, Loitsch S, Guschel M, Müller J, Knies Y, Kaufmann R, Bernd A (2005) Mechanical stretch stimulates protein kinase B/Akt phosphorylation in epidermal cells via angiotensin II type 1 receptor and epidermal growth factor receptor. J Biol Chem 280:3060–3067

154. Tang X, Batty IH, Downes CP (2002) Muscarinic receptors mediate phospholipase C-dependent activation of protein kinase B via Ca2+. ErbB3, and phosphoinositide 3-kinase in 1321N1 astrocytoma cells. J Biol Chem 277:338–344

155. Ballou LM, Cross ME, Huang S, McReynolds EM, Zhang BX, Lin RZ (2000) Differential regulation of the phosphatidylinositol 3-kinase/Akt and p70 S6 kinase pathways by the α1A-adrenergic receptor in rat-1 fibroblasts. J Biol Chem 275:4803–4809

156. Ballou LM, Lin H-Y, Fan G, Jiang Y-P, Lin RZ (2003) Activated Goq inhibits p110α phosphatidylinositol 3-kinase and Akt. J Biol Chem 278:23472–23479

157. Batty IH, Fleming IN, Downes CP (2004) Muscarninic-receptor-mediated inhibition of insulin-like growth factor-1 receptor-stimulated phosphoinositide 3-kinase signalling in 1321N1 astrocytoma cells. Biochem J 379:641–651

158. Gerasimovskaya EV, Tucker DA, Weiser-Evans M, Wenzlau JM, Klemm DJ, Banks M, Stenmark KR (2005) Extracellular ATP-induced proliferation of adventitial fibroblasts requires phosphoinositide 3-kinase, Akt, mammalian target of rapamycin, and p70 S6 kinase signaling pathways. J Biol Chem 280:1838–1848

159. Huwiler A, Rolz W, Dorsch S, Ren S, Pfeflschifer J (2002) Extracellular ATP and UTP activate the protein kinase B/Akt cascade via the P2Y2 purinoceptor in renal mesangial cells. Br J Pharmacol 136:520–529

160. Chen J, De S, Damron DS, Chen WS, Hay N, Byzova TV (2004) Impaired platelet responses to thrombin and collagen in AKT-1-deficient mice. Blood 104:1703–1710

161. Kim S, Jin J, Kunapuli SP (2004) Akt activation in platelets depends on Gi signaling pathways. J Biol Chem 279:4186–4195

162. Cordeaux Y, Hill SJ (2002) Mechanisms of cross-talk between G-protein-coupled receptors. Neurosignals 11:45–57

163. Hardy AR, Jones ML, Mundell SJ, Poole AW (2004) Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets. Blood 104:1745–1752

164. Xin C, Ren S, Pfeflschifer J, Huwiler A (2004) Heterologous desensitization of the sphingosine-1-phosphate receptor by purinoceptor activation in renal mesangial cells. Br J Pharmacol 143:S81–S89

165. Berg KA, Evans KL, Critter JD, Clarke WP (2003) Temporal regulation of agonist efficacy at 5-hydroxytryptamine 5-HT1A and 5-HT1B receptors. J Pharmacol Exp Ther 304:200–205

166. Krugel U, Kittner H, Illes P (2001) Mechanisms of adenosine 5′-triphosphate-induced dopamine release in the rat nucleus accumbens in vivo. Synapse 39:222–232

167. Nedergaard M, Takeo N, Hansen AJ (2002) Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 3:748–755

168. Yoshioka K, Saitoh O, Nakata H (2001) Heteromeric association creates a P2Y-like adenosine receptor. Proc Natl Acad Sci USA 98:7617–7622

169. Luttrel D, Lutrell LM (2004) Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene 23:7969–7978

170. Bisotto S, Fixman ED (2001) Src-family tyrosine kinases, phosphoinositide 3-kinase and Gab1 regulate extracellular signal-regulated kinase 1 activation induced by the type A endothelin-1 G-protein-coupled receptor. Biochem J 360:77–85

171. Waters CM, Connell MC, Pyne S, Pyne NJ (2005) c-Src is involved in regulating signal transmission from PDGFβ receptor-GPCR(s) complexes in mammalian cells. Cell Signal 17:263–277

172. Milenkovic I, Weiick M, Wiedemann P, Reichenbach A, Bringmann A (2003) P2Y receptor-mediated stimulation of Muller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci 44:1211–1220

173. Abbracchio MP, Brambilla R, Cattabeni F (1999) Signalling mechanisms involved in P2Y receptor-mediated reactive astrogliosis. Prog Brain Res 120:377–387

174. Bolgo C, Cattabeni F, Puglisi L, Cattabeni F, Burnstock G, Abbracchio MP (1997) Characterization of the signalling pathways involved in ATP and basic fibroblast growth factor-induced astrogliosis. Br J Pharmacol 121:1692–1699

175. Neary JT, Kang Y, Shi YF (2004) Signalling from nucleotide receptors to protein kinase cascades in astrocytes. Neurochem Res 29:2037–2042

176. Liu J, Liou Z, Camden J, Griffin KD, Garrad RC, Santiago-Perez LI, Gonzalez FA, Seye CI, Weisman GA, Erb L (2004) Src homology 3 binding sites in the P2Y2 nucleotide...
177. Short SM, Boyer JL, Juliano RL (2000) Integrins regulate the linkage between upstream and downstream events in G protein-coupled receptor signaling to mitogen-activated protein kinase. J Biol Chem 275:12970–12977
178. Erb L, Liu J, Ockerhausen J, Kong Q, Garrad RC, Griffin K, Neal C, Krugh B, Santiago-Perez LI, Gonzalez FA, Gresham HD, Turner JT, Weisman GA (2001) An RGD sequence in the P2Y$_2$ receptor interacts with $\alpha_v\beta_3$ integrins and is required for G$_\alpha$-mediated signal transduction. J Cell Biol 153:491–501
179. Grobben B, Anciaux K, Roymans D, Stefan C, Bollen M, Esmans EL, Slegers H (1999) An ecto-nucleotide pyrophosphatase is one of the main enzymes involved in the extracellular metabolism of ATP in rat C6 glioma. J Neurochem 72:826–834
180. Steinberg SF (2004) Distinctive activation mechanisms and functions for protein kinase C$.\%$. Biochem J 384: 449–459
181. Parekh DB, Ziegler W, Parker PJ (2000) Multiple pathways control protein kinase C phosphorylation. EMBO J 19:496–503
182. Zhang W, Turner DJ, Segura BJ, Cowles R, Mulholland MW (2000) ATP induces c-fos expression in C6 glioma cells by activation of P$_2$Y$_1$ receptors. J Surg Res 94:49–55
183. Baranska J, Czajkowski R, Sabala P (2004) Cross-talks between nucleotide receptor-induced signaling pathways in serum-deprived and non-starved glioma C6 cells. Adv Enzyme Regul 44:219–232
184. Ellert-Miklaszewska A, Kaminska B, Konarska L (2005) Cannabinoids down-regulate PK3/ Akt and Erk signaling pathways and activate proapoptotic function of Bad protein. Cell Signal 17:25–37
185. Van Kolen K, Gilany K, Moens L, Esmans EL, Slegers H (2006) P2Y$_{12}$ receptor signalling towards PKB proceeds through IGF-I receptor cross-talk and requires activation of Src, Pyk2 and Rap1. Cell Signal 18:1169–1181
186. Jacobson KA, Costanzi S, Ohno M, Joshi BV, Besada P, Xu B, Tchibon S (2004) Molecular recognition at purine and pyrimidine nucleotide (P2) receptors. Curr Top Med Chem 4:805–819
187. von Kügelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol. Ther. (in press doi: 10.1016/j.pharmathera.2005.08.014)
188. Van Kolen K, Slegers H (2006) Atypical PKC ζ is involved in RhoA-dependent mitogenic signaling by the P2Y$_{12}$ receptor in C6 cells. FEBS J 273:1843–1854