Development of a Potent Antimicrobial Peptide With Photodynamic Activity

Di Zhang1†, Jingyi Chen1†, Qian Jing1†, Zheng Chen1, Azeem Ullah1, Longguang Jiang1, Ke Zheng1, Cai Yuan2* and Mingdong Huang1*

1College of Chemistry, Fuzhou University, Fuzhou, China, 2College of Biological Science and Engineering, Fuzhou University, Fuzhou, China

The emergence of antibiotic-resistant bacteria poses a serious challenge to medical practice worldwide. A small peptide with sequence RWRWRW was previously identified as a core antimicrobial peptide with limited antimicrobial spectrum to bacteria, especially Gram-positive bacteria. By conjugating this peptide and its analogs with lipophilic phthalocyanine (Pc), we identified a new antibiotic peptide [PcG3K5(RW)3]. The peptide demonstrates increased antimicrobial effect to both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. In addition, Pc also provides added and potent antimicrobial effect upon red light illumination. The inhibitory efficacy of PcG3K5(RW)3 was increased by ~140-fold to nanomolar range upon illumination. Moreover, PcG3K5(RW)3 was safe for mammalian cell and promoted wound healing in the mouse infection model. Our work provides a new direction to optimize antimicrobial peptides to enhance antimicrobial efficacy.

Keywords: antimicrobial peptide, Gram-negative bacteria, phthalocyanine, hydrophobicity, antibiotic resistance

INTRODUCTION

During the past few decades, antimicrobial resistance (AMR) of bacteria has become a worldwide threat to public health. The WHO has recently issued a priority list of pathogen strains that have acquired resistance to most, and in some cases to all, antibiotics at a global level and advocates urgent needs to develop treatment for these AMR strains for human health (Tacconelli et al., 2018). The list includes both Gram-negative and Gram-positive bacterial strains. Gram-negative bacteria, with an outer membrane to protect themselves from unwanted compounds, are difficult to inhibit by traditional antibiotics (Payne et al., 2007; Lewis, 2013). Daptomycin is a lipopeptide antibiotic approved by the US Food and Drug Administration (FDA) in 2003 to treat infection induced by Gram-positive bacteria (Sauermann et al., 2008). Daptomycin contains amphiphilic 13mer peptide and a decanoyl fatty acid tail. Darobactin is a recently reported peptide antibiotic (Imai et al., 2019) with low toxicity and strong potency against AMR Gram-negative pathogens. Broad-spectrum antibiotics with inhibitory activities to both Gram-positive and Gram-negative strains have strong advantages and are much needed.

Antimicrobial peptides (AMPs) have multiple targets on pathogenic microbes, including the cytoplasmic membrane and cell division and synthesis of essential proteins (Okorochenkov et al., 2012). One drawback of AMPs is their limited antimicrobial spectrum, susceptibility toward proteolytic degradation, and moderate antimicrobial activity (Habets and Brockhurst, 2012;
Niu et al., 2013). In addition, the strategy for AMP optimization is generally not well defined, except the development of various formulation methods (Mahlapuu et al., 2016), including nanocarriers. Arginine- and tryptophan-rich peptides are a class of promising lead structures with inhibitory effect against Gram-positive bacterial strains but less activity against Gram-negative bacteria (Strom et al., 2002, 2003; Choi and Moon, 2009; Dennison et al., 2009; Albada et al., 2012; Arias et al., 2014; Wenzel et al., 2014, 2016a,b). The presence of lipophilic groups in AMPs appears to be important for high potency, as demonstrated by two successful examples. Daptomycin is a 13mer lipopeptide antibiotic containing decanoyl fatty acid tail and was approved by the US FDA in 2003 to treat infections caused by Gram-positive bacteria (Sauermann et al., 2008). Darobactin is a recently reported peptide antibiotic (Imai et al., 2019) with low toxicity and strong potency and contains three aromatic rings.

A hexapeptide RWRWRW was shown to be the shortest unit possessing effective antimicrobial efficacy (Strom et al., 2003; Liu et al., 2007; Albada et al., 2012; Wenzel et al., 2016a). The peptide showed a limited antimicrobial spectrum of only medium antimicrobial activity against Gram-positive bacteria but less activity against Gram-negative bacteria. The structure and functional studies on these arginine- and tryptophan-rich peptides clearly demonstrated the importance of strong lipophobicity (Liu et al., 2007; Albada et al., 2012; Wenzel et al., 2016a) for antimicrobial activity. For example, tyrosine was found to be less effective in providing bulk and lipophilicity than tryptophan (Strom et al., 2003). In this work, we incorporate a new lipophilic group, phthalocyanine (Pc), into the RWRWRW unit to synthesize a series of peptides and identify a potent AMP (Scheme 1). Pc not only provides hydrophobicity for bacterial membrane attachment but also becomes photocytotoxic to microbes when illuminated by red light at a specific wavelength [680 nm; Morley and Charlton, 1995; Gardberg et al., 2001; named antimicrobial photodynamic therapy (aPDT)]. No known bacterial resistance to aPDT has been reported (Chen et al., 2017; Wainwright et al., 2017). The peptide is shown to be safe to mammalian cells and has antimicrobial activity in a wound infection mouse model. Importantly, the peptide is active not only against Gram-positive *Staphylococcus aureus* but also against Gram-negative bacteria and even to multiresistant bacterial strains [methicillin-resistant *S. aureus* (MRSA)]. In addition, with the illumination of red light, the antimicrobial efficacy increased by ~140-fold against either Gram-positive or -negative bacterial strains (IC_{50}s of 85 nM against *S. aureus* and 163 nM against *Escherichia coli*). We also demonstrated the antibacterial efficacy of the peptide in a mouse skin infection model. The strategy used here can be used to empower and expand the antimicrobial spectrum of other AMPs.

MATERIALS AND METHODS

Materials

The side chain-protected peptides G \(_{3}(RW)\)_\(_{3}\), G \(_{3}(RW)K_{5}\), and G \(_{3}K_{5}(RW)\)_\(_{3}\) on Wang resin were obtained commercially (GL

SCHEME 1 | A new antibiotic peptide [PcG\(_{3}K_{5}(RW)\)_\(_{3}\)] was identified by conjugating a small peptide of sequence RWRWRW or its analogues with lipophilic phthalocyanine (Pc). The peptide demonstrates enhanced antimicrobial effect to both Gram-positive *S. aureus* and Gram-negative *E. coli*. In addition, the inhibitory efficacy of the peptide was increased by ~140-fold to nanomolar range upon LED illumination. Moreover, the peptide was safe to mammalian cell, and promoted wound healing in mice infection model.
Beta-carboxy phthalocyanine zinc was developed by us by a method previously reported (Chen et al., 2006). Beta-carboxy phthalocyanine (β-PcCOOH) was purified on a silica column with N,N-dimethylformamide (DMF):acetone (3:1) as the second band. All the chemical reagents were analytical grade and used without further purification. Distilled water was used throughout the experiments. E. coli (ATCC 8739), S. aureus (ATCC 6538), and MRSA (ATCC 33591) were acquired from ATCC. Bioluminescent strains of E. coli DH5α were constructed by transformation of plasmid pAKlux2.1, which contained a complete bacterial luciferase operon as described (Ullah et al., 2018; Chen et al., 2019), and S. aureus Xen29 (NCTC8532) containing a stable copy of the modified Photonhabdus luminescens luxABCDE operon was purchased from Shanghai Biofeng Company.

Synthesis and Characterization

β-PcCOOH was conjugated with side chain-protected G₃(RW)₃, G₅(RW)₅K₉, or G₅K₅(RW)₅ on Wang resin. In a typical conjugation reaction, β-carboxy phthalocyanine zinc (49.76 mg, 0.08 mmol) was dissolved in 2 ml DMF. Hexafluorophosphate benzotriazoloe tetramethyl uronium (HTBU; 61 mg, 0.16 mmol) and diisopropylethylamine (DIEA; 0.1 ml) were added to the solution and stirred for 30 min. The Wang resin with peptide G₃(RW)₃, G₅(RW)₅K₉, or G₅K₅(RW)₅ (200 mg, 0.08 mmol) was added into the solution, and the mixture was stirred for 24 h. After the reaction was completed, the filtered solid was washed three times by DMF and methanol until the filtrate became colorless. The residue was then treated with 95% trifluoroacetic acid (TFA) for 4 h at room temperature to remove the protecting groups and the Wang resin. The TFA-treated solution was filtered on a Buchner funnel, and the filtrate was concentrated with rotary evaporation, followed by the addition of cool anhydrous ethyl ether to obtain precipitate. The new synthetic compounds were further purified on a preparative high-performance liquid chromatography (HPLC; Dalian Elite Analytical Instruments Co. Ltd., Dalian, China) using a reverse phase column (Sino Chrom ODS-BP, 10 mm), eluted with a linear gradient of 50–100% in dimethyl sulfoxide (DMSO) in 0.01% TFA in a period of 30 min at a flow rate of 5 ml/min. UV-Vis spectra and photodegraded curve was measured by BioTek Synergy 4 multi-mode microplate reader in a 96-well phase column (Sino Chrom ODS-BB, 10 mm), eluted with a linear gradient of 50–100% in dimethyl sulfoxide (DMSO) in 0.01% TFA in a period of 30 min at a flow rate of 5 ml/min. UV-Vis spectra and photodegraded curve was measured by BioTek Synergy 4 multi-mode microplate reader in a 96-well phase column (Sino Chrom ODS-BP, 10 mm), eluted with a linear gradient of 50–100% in dimethyl sulfoxide (DMSO) in 0.01% TFA in a period of 30 min at a flow rate of 5 ml/min.

Antimicrobial Activity Assays Using ATCC Standard Strains

E. coli (ATCC 8739), S. aureus (ATCC 6538), or MRSA (ATCC 33591) were grown in LB culture medium at 37°C under aerobic conditions overnight (8–12 h) before use. Minimum inhibitory concentrations (MICs) were measured by the double dilution method. Inocula of bacteria were prepared by adjusting overnight cultures in LB medium. Aliquots of 100 μl of the inocula were mixed with 900 μl of serial double dilutions in centrifuge tubes and then incubated with shaking at 37°C for 20 h without light. MICs were defined as the lowest concentrations of the peptides that completely inhibit the growth of bacteria (final concentration of 10⁶ CFU/ml). Bactericidal kinetics assay was also determined. Different final concentrations (0, 1/8-, 1/4-, 1/2-, 1-MIC) of the peptides were added to the bioluminescent S. aureus suspension (10⁶ CFU/ml). The bacteria were incubated at 37°C and 150 rpm. An aliquot of 100 μl of the suspension was taken out to measure the absorption at 600 nm on microplate reader once an hour for up to 12 h.

Photo-assisted antimicrobial activity assays of the compound peptides against ATCC standard strains were carried out by colony counting method. The agar plates with only bacterial suspension were used as negative control. The peptide and bacterial suspension were incubated together in 96-well microplates first. Under the same conditions, for comparison, the other groups were set without light. After incubation for 40 min at room temperature, aliquots of 100 μl were taken out of the solutions and placed on agar plates at serial dilutions, then incubated at 37°C for 18–24 h. Numbers of colonies were counted, and the antimicrobial rate (R) was calculated:

\[R = \frac{(B-A)}{B} \times 100\% \]

Here, A is the bacterial colony number on the agar plates containing various concentrations of the peptides, and B is the colony number for negative control. A similar procedure was carried out to study the effect of low dose of light on the activity of PeG₅K₉(RW)₅ against S. aureus (ATCC 6538) and E. coli (ATCC 8739), except the changing irradiate light doses (0, 0.15, 0.3, 0.45, and 0.6 J/cm²).

Reactive Oxygen Species Measurement

The reactive oxygen species (ROS) generated by Pe mainly includes singlet oxygen and may also contain hydroxyl radical...
in some cases. In this study, the ROS generation of PcG,K₅(RW)₃ was measured with a probe [2,7-dichlorofluorescein diacetate (DCFH-DA)]. In the presence of ROS, 2',7'-dichlorofluorescin diacetate (DCFH-DA) can be converted to 2,7-dichlorofluorescein (DCF, ex 400 nm, em 528 nm). 1,3-Dimethyl-2-thiourea (DMT) is a quencher of hydroxyl radical, while NaN₃ is a quencher for singlet oxygen. In a 96-well white plate, peptide PcG,K₅(RW)₃ or G₅K₅(RW)₃ (for control) was added into the solution of DCFH-DA (100 mM) with or without DMT (1 M) and/or NaN₃ (30 mM) to the final concentration of peptide at 10 μM and the total volume of 200 μl (using PBS as buffer). The solutions were illuminated using a planar LED light source for 5 min at intervals, and the emission intensity of DCF at 528 nm was measured every 30 s after illumination. The no-light radiation group was used as control.

Scanning Electron Microscope

The morphology changes of bacteria treated with PcG,K₅(RW)₃ were observed using SEM. Untreated bacteria acted as the control. E. coli strains (ATCC 8739) were harvested by centrifuging at 6,000 rpm for 10 min and washed with sterile PBS twice. For the fixation, the bacteria were fixed with precooling 2.5% (v/v) glutaraldehyde in PBS overnight at 4°C. For dehydration, the bacteria were dehydrated by a graded series of ethanol (30, 50, 70, 90, and 100%) for about 10 min. The dehydrated E. coli solution was dropwise onto silicon wafer and dried at 37°C overnight. Then, prepared specimens were sprayed with gold before observation using SEM.

Bacterial Membrane Permeability Assay

Membrane permeability of bacteria was determined by the 8-aniline-1-naphthalene sulfonic acid (ANS) uptake assay. The bacteria (10⁸ CFU/ml) were washed with PBS and suspended (3,000–4,000 rpm) to OD₆₀₀ = 0.1–0.3. PcG,K₅(RW)₃ (final concentration of 10 μM) was added to bacterial suspension (E. coli ATCC 8739) before illumination (light dose of 12 J/cm², 33.33 mW/cm²) was conducted. A group without light illumination was set up as control. The fluorescent hydrophobic probe ANS with a final concentration of 5.65 μM was added into the solution of samples, the negative controls, and the positive controls. Then, red blood cells were pelleted down by centrifuging the samples at 1,500 rpm for 10 min. The culture medium was used as control. The cells were washed with PBS, then were divided into two groups, and the light group was exposed to 12 J/cm² of 680 nm light illumination. After another 12-h incubation, the culture medium was refreshed and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was added. After 4-h incubation at 37°C, the absorbance at 490 nm was measured on a multi-mode microplate reader (BioTek Synergy 4). The inhibition rate of cell growth was calculated by the following equation:

\[
\text{Cell viability (\%)} = \left(\frac{\text{Mean absorbance value of treatment group}}{\text{Mean absorbance value of control}} \right) \times 100\%
\]

Meanwhile, an in vitro hemolysis assay was performed to evaluate hemoglobin (Hb) release in the plasma (as an indicator of red blood cell lysis) following peptide PcG,K₅(RW)₃ exposure. Typically, 450 μl 0.9% NaCl, 450 μl 2% red blood cells, and 100 μl PcG,K₅(RW)₃ (at final concentrations of 0.5, 5, 50, and 500 μM) were mixed together and incubated in a 37°C for 30 min. Positive control (containing 450 μl 2% red blood cell only) and negative control (containing 550 μl 0.9% NaCl and 450 μl 2% red blood cell) were designed as quality controls. Then, red blood cells were pelleted down by centrifuging the supernatant at 1,500 rpm for 10 min. The supernatant was aspirated, and the extent of hemolysis was quantified by determining the amounts of released Hb in the supernatant at 545 nm against Hb standard. Hemolysis rate Z can be calculated by the following equation:

\[
Z (\%) = \left(\frac{D_{t} - D_{nc}}{D_{pc} - D_{nc}} \right) \times 100\%
\]

Here, Dt, Dnc, and Dpc represent the absorption values at 545 nm of samples, the negative controls, and the positive controls. In order to test the stability of PcG,K₅(RW)₃, when exposed to some proteases in human, we incubated the saline solution of PcG,K₅(RW)₃ (final concentration of 100 μM) with high concentration (200 nM) of trypsin and equal volume of saline
solution for the control group. Then, all groups were incubated at 37°C for 30 min. Supernatant of centrifugation was measured in HPLC, and the procedure was the same as we mentioned above.

In vivo Biodistribution and Clearance Measurement

In order to find out metabolic characteristics of PcG₃K₃(RW)₃ in vivo, we evaluated the biodistribution and clearance of PcG₃K₃(RW)₃ in organs and blood of mice. Kunming mice were divided into eight groups (five mice per group), and the PcG₃K₃(RW)₃ (50 μM), RWRWRW (0.4 mg/kg of mouse body weight), or saline was injected through the tail vein. The mice were sacrificed at 2, 4, 8, 12, 24, 36, 48, and 72 h post-injection, and their primary organs (liver, kidneys, heart, spleen, lung, stomach, intestines) or muscles were collected postmortem. Meanwhile, their blood was collected through enucleation of eyeballs. These samples were then washed with saline and imaged on the three-dimension FMT 2500TM LX (PerkinElmer, Waltham, MA, United States) using the same acquisition settings as the in vivo imaging to quantitate the peptide average concentrations in the samples.

The blood of mice was diluted 10 times with DMF, immediately after collection, and then centrifuged to get supernatant for further determination. The supernatant was measured by fluorescence spectrophotometer F-4600 (HITACH, Tokyo, Japan). The fluorescence intensity was recorded. The excitation and emission wavelengths were set at 610 and 680 nm. Then, the plasma concentrations of the PcG₃K₃(RW)₃ were determined using a concentration-fluorescence standard curve we made. The plasma half-life (t½) can be calculated by the following formula:

\[
\text{t½} = \frac{0.693}{-2.303k}
\]

Here, k represents the slope of fluorescence intensity-log (concentration) regression equation.

Statistical Analysis

Each test was repeated at least three times. The data were presented as the means ± SD. Statistical analysis was performed using one-way analysis of variance. Multiple comparisons of the means were done by the least significant difference test. All computations were made by employing statistical software.

RESULTS AND DISCUSSION

New Antimicrobial Peptides: Design, Synthesis, and Characterization

Introduction of hydrophobic moieties, like acyl or aliphatic chains, is an optimization strategy for stronger antimicrobial efficacy and broader antimicrobial spectrum (Radzishesky et al., 2005, 2007; Smith et al., 2018). Pc is a synthetic hydrophobic compound with aromatic ring size equivalent to four indole side chains of tryptophan. The use of Pc has an added feature: upon absorption of light at 680 nm (maximal absorption of the Pc), Pc will undergo inter-system crossing and react with molecular oxygen, generating ROS that eliminates pathogens nearby (Zhang et al., 2018; Chen et al., 2019).

Here, we design a series of AMPs with Pc linked to RWRWRW hexapeptidyl unit separated by a triglycerine spacer (Figure 1). The carboxyl terminal of peptides was not amidated to promote aqueous solubility after conjugating hydrophobic Pc group. Pentalyse moiety (K₃) was also integrated into the peptide chain for two purposes: (1) enhance aqueous solubility and (2) increase antimicrobial efficacy to Gram-positive strains. Polylysine is an FDA-approved food preservative used in sushi, with a dose up to 50 mg/kg, and has a wide antimicrobial spectrum with good activity inhibiting Gram-negative bacteria. Here, the pentalyse was incorporated at two different orientations: either before or after RWRWRW unit. As controls, the peptides without the Pc group or pentalyse moiety (K₃) were also generated for comparison.

To synthesize these peptides, the side chain-protected peptides were commercially acquired, followed by their covalent conjugation at amino terminal to a mono-carboxy Pc (Chen et al., 2006, 2011; Supplementary Figure S1). The compounds were purified to highly homogeneous based on C18 reverse phase column on HPLC. The order of retention times of the compounds was consistent with the hydrophilicity and polarity predicted based on their molecular structures (Figure 2A). Compounds 4 and 5 are well soluble in DMSO and aqueous solution. By comparison, compound 3 shows poor solubility in water (Figure 2B). The soluble antimicrobial Pc-peptide (APP) compounds 4 and 5 were characterized by electrospray ionization (ESI)-mass spectrometry (MS; Supplementary Figure S2). All the synthetic antimicrobial Pc-peptides (APPs) showed strong absorptions at 680 nm in DMSO (Figure 2C), the typical feature of Pc (Chen et al., 2006).

Antimicrobial Activities of the Antimicrobial Pc-Peptides in vitro

To evaluate the antimicrobial activity of APPs, we used bioluminescent Gram-positive *S. aureus* and Gram-negative *E. coli*, where the bioluminescent intensity [relative luminescence units (RLUs)] was proportional to the number of live bacteria. The peptides at various concentrations were incubated with the strains, and the luminescence was monitored on a microplate reader to obtain the IC₅₀ of new peptides against these bacteria (Table 1). Compound 4 or 5 was shown to possess 2–4 times higher efficacy on both bacterial strains than compound 1 or 2 (Table 1), especially against Gram-negative *E. coli*, which was likely due to the extra hydrophobicity provided by the Pc group. Compound 3 [PcG₃(RW)₃] exhibited moderate efficacy to bacteria compared to compound 4 or 5 but with poor aqueous solubility. Compound 4 [PcG₃K₃(RW)₃] turned out to be the most effective compound against either Gram-positive *S. aureus* or Gram-negative *E. coli* with IC₅₀ of 12.4 and 23.9 μM, respectively. It is likely that both Pc moiety and tryptophan residue of compound 4 anchor directly into the phospholipid bilayer of bacterial membrane and further lead to cell death.
To further validate the antimicrobial efficacy, we measured MIC on two bacterial strains (\textit{E. coli} ATCC 8739, \textit{S. aureus} ATCC 6538) and the MRSA strain (Table 2). The results verified the conclusion obtained using bioluminescent bacteria. Compounds with Pc group (compounds 3, 4, and 5) exhibited much stronger inhibitory efficacies against either \textit{E. coli} or \textit{S. aureus} than the compounds of peptides. Furthermore, MRSA strain showed similar sensitivity to the peptides as the wild-type \textit{S. aureus} strain. It should be mentioned that the antimicrobial efficacy data here are in the same range but slightly lower than those previously reported for RWRWRW-NH$_2$ (Strom et al., 2002, 2003; Liu et al., 2007; Albada et al., 2012).

This is likely due to the lack of C-terminal amidation of our peptides, which appears to be a key parameter for the efficacy.

In addition, the bactericidal kinetic curves (Figure 3) were recorded to test the continuous antimicrobial effect on \textit{S. aureus} and \textit{E. coli} bacterial strains in 12 h with varied concentrations (0-, 1/8-, 1/4-, 1/2-, 1-MIC) of compound 4, which exhibited the strongest activity among all the APPs. The bacteria grew the fastest in the absence of compound 4 and reached the highest plateau among this series. The bacterial growth rate decreased in proportion to the increased concentrations of compound 4. At the concentration of MIC, the bacterial proliferation completely stopped (Figure 3).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Designed structures of antimicrobial Pc-peptides based on core peptide RWRWRW$_2$.}
\end{figure}
The large aromatic ring Pc also serves as a photosensitizer, generating singlet oxygen when illuminated with a 680-nm light, leading to an additional level of toxicity to bacteria (Ali-Adib et al., 1998; Wrobel and Dudkowiak, 2006; Bian and Jiang, 2016). We used a LED light source that provides a stable and uniform light with the maximal intensity around 680 nm without heating the sample (Figure 4A). We measured the IC50 of compounds 4 and 5 on bioluminescent bacteria at a light dose of 12 J/cm² (Figure 4B). The photo-assisted antimicrobial toxicity of this series of compounds had an overall trend similar to the toxicity without light illumination (Tables 1 and 3). Compound 4 was found to have a strong antimicrobial efficacy, with IC50s of 85 and 163 nM toward S. aureus and E. coli, respectively. We also measured the photo-assisted antimicrobial efficacy by colony counting method using ATCC standard strains at a starting concentration of 10^6 CFU/ml (Figure 4C). The results showed that compound 4 induced up to 5-log (i.e., 99.999%) reduction of S. aureus (including antibiotic-resistant strain MRSA) and 3-log (i.e., 99.9%) reduction of E. coli at a low concentration (2 μM) with 6 min illumination (light dose of 12 J/cm², 33.33 mW/cm²; Figure 4D). We also

Table 1 | Half-maximal inhibitory concentrations (IC50s) of antimicrobial peptides against bacteria.

Compd #, peptide sequence	IC50 (μM) against	
	S. aureus	E. coli
1, G3K5(RW)3	45.6 ± 2.9	61.8 ± 4.3
2, G3(K5(RW)3	68.0 ± 3.2	135 ± 25.3
3, PcG3(RW)3	34.0 ± 4.0	73.8 ± 1.7
4, PcG3K5(RW)3	12.4 ± 0.9	23.9 ± 1.0
5, PcG3(RW)3K5	34.7 ± 3.1	51.2 ± 5.5

Half-maximal inhibitory concentrations (IC50s) of antimicrobial peptides against Gram-positive strain S. aureus or Gram-negative strain E. coli. Each experiment was performed in triplicate.

Table 2 | Minimum inhibitory concentrations (MICs) of antimicrobial peptides against different types of bacterial strains.

Compd #, peptide sequence	Molecular mass (Da)	MIC (μM) against		
	S. aureus	MRSA	E. coli	
1, G3K5(RW)3	1,855.1	107.8	107.8	>215.6
2, G3(K5(RW)3	1,855.1	107.8	107.8	>215.6
3, PcG3(RW)3	1,676.7	12.0	24.0	48.0
4, PcG3K5(RW)3	2,488.2	8.0	16.1	16.1
5, PcG3K5(RW)3	2,488.2	16.1	16.1	16.1

Each experiment was performed in triplicate.

Photo-Assisted Toxicity of the Antimicrobial Pc-Peptides in vitro

The large aromatic ring Pc also serves as a photosensitizer, generating singlet oxygen when illuminated with a 680-nm light, leading to an additional level of toxicity to bacteria (Ali-Adib et al., 1998; Wrobel and Dudkowiak, 2006; Bian and Jiang, 2016). We used a LED light source that provides a stable and uniform light with the maximal intensity around 680 nm without heating the sample (Figure 4A). We measured the IC50 of compounds 4 and 5 on bioluminescent bacteria at a light dose of 12 J/cm² (Figure 4B). The photo-assisted antimicrobial toxicity of this series of compounds had an overall trend similar to the toxicity without light illumination (Tables 1 and 3). Compound 4 was found to have a strong antimicrobial efficacy, with IC50s of 85 and 163 nM toward S. aureus and E. coli, respectively. We also measured the photo-assisted antimicrobial efficacy by colony counting method using ATCC standard strains at a starting concentration of 10^6 CFU/ml (Figure 4C). The results showed that compound 4 induced up to 5-log (i.e., 99.999%) reduction of S. aureus (including antibiotic-resistant strain MRSA) and 3-log (i.e., 99.9%) reduction of E. coli at a low concentration (2 μM) with 6 min illumination (light dose of 12 J/cm², 33.33 mW/cm²; Figure 4D). We also
studied the effect of light dose for PcG₃K₅(RW)₃ and found even a low dose of light (36-s exposure or 0.60 J/cm², 33.33 mW/cm²) led to the elimination of about 80% of E. coli or 95% of S. aureus at the concentration of 2 μM (Figure 4E).
Action Mechanisms of PcG₃K₅(RW)₃

The classic antimicrobial mechanism of AMPs is through disruption of the membrane. We studied the changes of bacterial membrane permeability after treatments by ANS, a probe for membrane permeability (Joshi et al., 1988; Liu et al., 2018). Once the probe enters the bacterial phospholipid bilayer membrane, its fluorescence intensity will increase (Misra et al., 2015). This reflects the accumulation of the probe in the lipid bilayer presumably due to the damage of cell wall, allowing more probe penetrating through cell wall and entering bacterial membrane. We observed that our peptide greatly enhanced the ANS fluorescence intensity (Supplementary Figure S3), demonstrating the increased membrane permeability. We also used SEM to study the surface morphology of E. coli after incubation with PcG₃K₅(RW)₃ with or without illumination of 680 nm. The results showed that E. coli, a bacterium in a rod-like shape with a smooth surface (Figure 5A), presents little changes upon illumination (Figure 5B), while PcG₃K₅(RW)₃ induced morphological damage to E. coli (Figure 5C), a bacterium that was typically in a rod-like shape with a smooth surface but became wrinkled and twisted in the presence of PcG₃K₅(RW)₃. The damage was further exacerbated with light illumination (Figure 5D), leading to the outflow of cellular contents and complete fragmentation of the bacterial envelop.

Antimicrobial Activity of PcG₃K₅(RW)₃ in vivo

S. aureus is one of the leading causes of wound infection in hospitals and in the community and causes skin or soft tissue infections, which retard wound healing and may further lead to serious complications. A localized anti-infection model was established to evaluate the antibacterial activity of PcG₃K₅(RW)₃ against S. aureus in vivo (Figure 6A). The wounds without

Compd #, peptide sequence	IC₅₀ (μM) against S. aureus	IC₅₀ (μM) against E. coli
1, G₃K₅(RW)₃	44.640 ± 4.720	59.240 ± 1.970
2, G₃(RW)₃K₅	71.560 ± 2.820	129.230 ± 30.340
3, PcG₃(RW)₃	0.108 ± 0.029	0.252 ± 0.014
4, PcG₃K₅(RW)₃	0.085 ± 0.020	0.163 ± 0.018
5, PcG₃(RW)₃K₅	0.225 ± 0.056	0.303 ± 0.036

Half-maximal inhibitory concentrations (IC₅₀s) of antimicrobial peptides against Gram-positive strain S. aureus or Gram-negative strain E. coli when exposed to LED light (25 mW) for 6 min. Antimicrobial activity of Pc-peptides was further enhanced. Each experiment was performed in triplicate.
antimicrobial compounds showed infection and ulceration at the 3rd day after surgery (Figure 6B). The infection recovered 1–2 days later, and an identifiable scab formed in the infected area. However, the infection did not appear in the groups treated with the local administration of \(\text{PcG}_3 \text{K}_5 (\text{RW})_3 \). This treatment group showed clear healing on the next day after surgery, indicating rapid anti-infection effects of the compound \(\text{PcG}_3 \text{K}_5 (\text{RW})_3 \) on traumatic wound (Figure 6C). The results showed that \(\text{PcG}_3 \text{K}_5 (\text{RW})_3 \) promoted wound healing and prevented or alleviated the infection.

In another group, mice were treated with one-time 680-nm illumination (12.0 J/cm\(^2\), 33.33 mW/cm\(^2\)) after addition of \(\text{PcG}_3 \text{K}_5 (\text{RW})_3 \) (Supplementary Figure S5). This group showed better wound recovery than the ones without illumination at the first 3 days after surgery. This verified enhanced of illumination on inhibitory efficacy in vitro. Although the light was not essential for \(\text{PcG}_3 \text{K}_5 (\text{RW})_3 \) to promote wound healing in the mammalian infection model, illumination of low-dosage light (below 12 J/cm\(^2\), 33.33 mW/cm\(^2\)) is still an additional method to enhance the efficacy in clinical treatment. Besides, treatment with \(\text{PcG}_3 \text{K}_5 (\text{RW})_3 \) to traumatic wound did not significantly alter the weight gain of mice during the observation (Figure 6D), indicating a good biological compatibility of \(\text{PcG}_3 \text{K}_5 (\text{RW})_3 \).

Biosafety and Stability of \(\text{PcG}_3 \text{K}_5 (\text{RW})_3 \) in vivo

There are two active components of \(\text{PcG}_3 \text{K}_5 (\text{RW})_3 \): Pc and synthetic peptide \(\text{G}_3 \text{K}_5 (\text{RW})_3 \) moiety, Pc-type compounds appear to be safe, as they have been used in close association with human. Pc has been used as a color dye for outfits and underwear in fabric industry for decades. A Pc derivative (Photosense®) has been used as an antitumor drug for cancer treatment in Ukraine since 1990s. In China, a Pc-based compound (Photocyanine®) is currently in Phase II clinical trial for patients with esophagus cancer with a dose of...
Shao et al. (2012) demonstrated no major adverse effect in human at a dose of 2 mg/kg. Pc green (CAS Reg. No. 1328-53-6) has been approved by the FDA to use in contact lens, surgical suture, and latex condom as a color additive.

Despite these apparent safety records of Pc, we still evaluated the biosafety of PcG₃K₅(RW)₃ experimentally. We first used the human embryonic lung fibroblast (HELF) cells and red blood cells of mice to evaluate biosafety in vitro. The cells were incubated with PcG₃K₅(RW)₃ for 24 h, and the viability was measured by MTT assay. The result showed that over 90% of cells survived after incubation with the medium concentration (IC₅₀ concentration against S. aureus in the absence of light illumination) of PcG₃K₅(RW)₃. Under illumination of 12 J/cm², the peptide killed only 5% of HELF cells at the concentration of 0.8 μM while inhibiting more than 99.9% of S. aureus or 99% of E. coli, demonstrating low cytotoxicity to normal mammalian cells. In addition, PcG₃K₅(RW)₃ exhibited no cytotoxicity to red blood cells at concentrations of 50 μM (Figure 7B), while IC₅₀ of peptide against bacterial strains are below 25 μM.

Biodistribution and clearance of PcG₃K₅(RW)₃ in organs/tissues were also studied in mice. As shown in Figure 8A, PcG₃K₅(RW)₃ accumulated mainly in livers and kidneys but much less in other organs/tissues. The average concentrations of PcG₃K₅(RW)₃ in the livers and kidneys reached ~35 nM and ~12 nM at 2–4 h (Figure 8B) and reduced gradually with time. At 72 h post-injection, the peptide average concentrations in primary organs/tissues were reduced to low levels (2–3 nM in livers and kidneys and lower than 1 nM in other organs/tissues). The results showed that PcG₃K₅(RW)₃ are mainly accumulated in liver and lung and cleared out in 72 h. Monitoring the Pc fluorescence intensity of compound 4 in mouse blood circulation at different time points after intravenous injection showed the plasma half-life of compound 4 was 11.09 h (Figure 8C).

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The animal study was reviewed and approved by Institutional Animal Care and Use Committee.

AUTHOR CONTRIBUTIONS

MH designed the project. CY and MH led the project and finalized the manuscript. DZ and QJ carried out the experiments, analyzed the results, and wrote the draft. JC, ZC, AU, LJ, and KZ assisted in the experiments and result analysis. All authors contributed to the article and approved the submitted version.

FUNDING

Our research work is financially supported by grants from the National Key R&D Program of China (2017YFE0103200) and the National Natural Science Foundation of China (22077016, 31670739, and 82070142).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2021.624465/full#supplementary-material
REFERENCES

Albada, H. B., Chiriac, A. L., Wenzel, M., Penkova, M., Bandon, J. E., Sahil, H. G., et al. (2012). Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metalloencyl groups. *Beilstein J. Org. Chem.* 8, 1753–1764. doi:10.3762/bjoc.8.200

Ali-Adib, Z., Clarkson, G. J., McKeown, N. B., Treacher, K. E., Gleeson, H. E., and Stennett, A. S. (1998). Molecular assemblies of novel amphiphilic phthalocyanines: an investigation into the self-ordering properties of complex functional materials. *J. Mater. Chem.* 8, 2371–2378. doi:10.1039/a805557b

Arias, M., Nguyen, L. T., Kuczynski, A. M., Lejon, T., and Vogel, H. J. (2014). Position-dependent influence of the three TRP residues on the membrane activity of the antimicrobial peptide, tritrpticin. *Antibiotics* 3, 595–616. doi:10.3390/antibiotics3040595

Bian, Y. Z., and Jiang, J. Z. (2016). Recent advances in phthalocyanine-based functional molecular materials. *Struct. Bond.* 172, 159–199. doi:10.1007/430_2015_194

Chen, J. C., Chen, N. S., Huang, J. F., Wang, J. D., and Huang, M. D. (2006). Derivatizable phthalocyanine with single carboxyl group: synthesis and purification. *Inorg. Chem. Commun.* 9, 313–315. doi:10.1016/j.inoche.2005.12.002

Chen, J. C., Chen, Z., Zheng, Y. Q., Zhou, S. Y., Wang, J. D., Chen, N. S., et al. (2011). Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment. *J. Porphyryis Phthalocyanines* 15, 293–299. doi:10.1142/S1088424611003276

Chen, J. C., Wang, W. J., Hu, P., Wang, D., Lin, F., Xue, J. P., et al. (2017). Dual antimicrobial actions on modified fabric leads to inactivation of drug-resistant bacteria. *Dyes Pigments* 140, 236–243. doi:10.1016/j.dyepig.2017.01.032

Chen, J. Y., Yang, L., Chen, J. C., Liu, W. Z., Zhang, D., Xu, P., et al. (2019). Composite of silver nanoparticles and photosensitizer leads to mutual enhancement of antimicrobial efficacy and promotes wound healing. *Chem. Eng. J.* 374, 1373–1381. doi:10.1016/j.cej.2019.05.184

Choi, J., and Moon, E. (2009). Identification of novel bioactive hexapeptides against phytopathogenic bacteria through rapid screening of a synthetic combinatorial library. *J. Microbiol. Biotechnol.* 19, 792–802. doi:10.4014/jmb.0809.08159

Choi, J., and Moon, E. (2009). The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides. *Mol. Cell. Biochem.* 332, 43–50. doi:10.1007/s11010-009-0172-8

Gardberg, A. S., Doan, P. E., Hoffman, B. M., and Ibers, J. A. (2001). Singly and doubly oxidized phthalocyanine (pc) rings: [cu(pc)(ReO4)] and [cu(pc)(ReO4)2]. *Angew. Chem.* 40, 244–246. doi:10.1002/1521-3773(20010105)40:1<244::AID-ANIE244>3.0.CO;2-G

Habets, M. G. J. L., and Brockhurst, M. A. (2012). Therapeutic antimicrobial peptides may compromise natural immunity. *Biol. Lett.* 8, 416–418. doi:10.1098/rsbl.2011.1203

Imai, Y., Meyer, K. J., Inishi, A., Favre-Godal, Q., Green, R., Manuse, S., et al. (2019). A new antibiotic selectively kills gram-negative pathogens. *Nature* 576, 459–464. doi:10.1038/s41586-019-1791-1
Joshi, U. M., Kodavanti, P. R. S., Coudert, B., Dwyr, T. M., and Mehendale, H. M. (1988). Types of interaction of amphiphilic drugs with phospholipid-vesicles. J. Pharmacol. Exp. Ther. 246, 150–157.

Lewis, K. (2013). Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 12, 371–387. doi: 10.1038/nrd3975

Liu, Z. G., Brady, A., Young, A., Rasmick, B., Chen, K., Zhou, C. H., et al. (2007). Length effects in antimicrobial peptides of the (RW)α series. Antimicrob. Agents Chemother. 51, 597–603. doi: 10.1128/AAC.00828-06

Liu, D. F., Li, S. S., Chen, J. C., Chen, Z., Liang, L. G., Yuan, C., et al. (2018). Dissociation of zinc phthalocyanine aggregation on bacterial surface is key for photodynamic antimicrobial effect. J. Porphyryns Phthalocyanines 22, 923–934. doi: 10.1124/s1088424618500888

Mahlapuu, M., Hakansson, J., Ringstad, L., and Bjorn, C. (2016). Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell. Infect. Microbiol. 6:194. doi: 10.3389/fcimb.2016.00194

Misra, R., Morrison, K. D., Cho, H. J., and Khuu, T. (2015). Importance of real-time assays to distinguish multidrug efflux pump-inhibiting and outer membrane-destabilizing activities in Escherichia coli. J. Bacteriol. 197, 2479–2488. doi: 10.1128/JB.02456-14

Morley, I. O., and Charlton, M. H. (1995). Theoretical investigation of the structure and spectra of zinc phthalocyanines. J. Phys. Chem. 99, 1928–1934. doi: 10.1021/j100007a023

Niu, Y. H., Wu, H. F., Li, Y. Q., Hu, Y. G., Padhee, S., Li, Q., et al. (2013). AA-peptides as a new class of antimicrobial agents. Org. Biomol. Chem. 11, 4283–4290. doi: 10.1039/c3ob40444g

Okorochenko, S. A., Zheltukhina, G. A., and Nebolsin, V. E. (2012). Antimicrobial peptides: mode of action and perspectives of practical application. Biomed. Khim. 58, 131–143. doi: 10.18097/pbmc20125802131

Payne, D. J., Gwynn, M. N., Holmes, D. J., and Pompliano, D. L. (2007). Drugs for bad bugs: confronting the challenges of antibiotic discovery. Nat. Rev. Drug Discov. 6, 29–40. doi: 10.1038/nrd2201

Radziszhevsky, I. S., Rotem, S., Bourdetsky, D., Navon-Venezia, S., Carmeli, Y., and Mor, A. (2007). Improved antimicrobial peptides based on acyl-lysine oligomers. Nat. Biotechnol. 25, 657–659. doi: 10.1038/nbt1309

Radziszhevsky, I. S., Rotem, S., Zaknoon, F., Gaidukov, L., Dagan, A., and Mor, A. (2005). Effects of acyl versus aminocarbonyl conjugation on the properties of antimicrobial peptides. Antimicrob. Agents Chemother. 49, 2412–2420. doi: 10.1128/AAC.49.6.2412-2420.2005

Sauermann, R., Rothenburger, M., Graninger, W., and Joukhadar, C. (2008). Daptomycin: a review 4 years after first approval. Pharmacology 81, 79–91. doi: 10.1159/000109986

Shao, J., Xue, J., Dai, Y., Liu, H., Chen, N., Jia, L., et al. (2012). Inhibition of human hepatocellular carcinoma HepG2 by phthalocyanine photosensitizer PHOTOCYANINE: ROS production, apoptosis, cell cycle arrest. Eur. J. Cancer 48, 2086–2096. doi: 10.1016/j.ejca.2011.10.013

Smith, P. A., Koeleher, M. F. T., Girgis, H. S., Yan, D. H., Chen, Y. S., Chen, Y., et al. (2018). Optimized aryloymycins are a new class of gram-negative antibiotics. Nature 561, 189–194. doi: 10.1038/s41586-018-0483-6

Strom, M. B., Haug, B. E., Skar, M. L., Sven, W., Stiberg, T., and Svendsen, J. S. (2003). The pharmacophore of short cationic antibacterial peptides. J. Med. Chem. 46, 1567–1570. doi: 10.1021/jm0304039

Strom, M. B., Rekdal, O., and Svendsen, J. S. (2002). Antimicrobial activity of short arginine- and tryptophan-rich peptides. J. Pept. Sci. 8, 431–437. doi: 10.1002/psc.398

Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., et al. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327. doi: 10.1016/S1473-3099(17)30753-3

Ullah, A., Zhang, Y. X., Ishbal, Z., Zhang, Y. X., Wang, D., Chen, J. C., et al. (2018). Household light source for potent photodynamic antimicrobial effect and wound healing in an infective animal model. Biomed. Opt. Express 9, 1006–1019. doi: 10.1364/BOE.9.001912

Wainwright, M., Maisch, T., Nonell, S., Plaezter, K., Almeida, A., Tegos, G. P., et al. (2017). Photoantimicrobials—are we afraid of the light? Lancet Infect. Dis. 17, E49–E55. doi: 10.1016/S1473-3099(16)30268-7

Wenzel, M., Chiriac, A. I., Otto, A., Zweyntick, M., May, C., Schumacher, C., et al. (2014). Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proc. Natl. Acad. Sci. U. S. A. 111, E1409–E1418. doi: 10.1073/pnas.1319900111

Wenzel, M., Prochnow, P., Mowbray, C., Vuong, C., Hostermann, S., Step, et al. (2016a). Towards profiles of resistance development and toxicity for the small cationic hexapeptide RWWRW-NH2. Front. Cell Dev. Biol. 4:86. doi: 10.3389/fcell.2016.00086

Wenzel, M., Schrieck, P., Prochnow, P., Allbada, H. B., Metzler-Nolte, N., and Bandow, J. E. (2016b). Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide. Biochim. Biophys. Acta Biomembr. 1858, 1004–1011. doi: 10.1016/j.bbamem.2015.11.009

Wrobel, D., and Dudkowiak, A. (2006). Porphyrins and phthalocyanines—functional molecular materials for optoelectronics and medicine. Mol. Cryst. Liq. Cryst. 448, 15–38. doi: 10.1080/1542400500577354

Zhang, Y. X., Huang, P., Wang, D., Chen, J. C., Liu, W. Z., Hu, P., et al. (2018). Near-infrared-triggered antibacterial and antifungal photodynamic therapy based on lanthanide-doped upconversion nanoparticles. Nanoscale 10, 15485–15495. doi: 10.1039/C8NR01967C

Zhang, Y. X., Zheng, K., Chen, Z., Chen, J. C., Hu, P., Cai, L. R., et al. (2017). Rapid killing of bacteria by a new type of photosensitizer. Appl. Microbiol. Biotechnol. 101, 4691–4700. doi: 10.1007/s00253-017-8133-8

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhang, Chen, Jing, Chen, Ullah, Jiang, Zheng, Yuan and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.