Gravitationally induced adiabatic particle production: from big bang to de Sitter

Jaume de Haro1 and Supriya Pan2,3

1 Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, E-08028 Barcelona, Spain
2 Department of Physical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur-741246, West Bengal, India

E-mail: jaime.haro@upc.edu and span@iiserkol.ac.in

Received 30 January 2016, revised 27 June 2016
Accepted for publication 11 July 2016
Published 27 July 2016

Abstract
In the background of a flat homogeneous and isotropic space–time, we consider a scenario of the Universe driven by the gravitationally induced ‘adiabatic’ particle production with constant creation rate. We have shown that this Universe attains a big bang singularity in the past and at late-time it asymptotically becomes de Sitter. To clarify this model Universe, we performed a dynamical analysis and found that the Universe attains a thermodynamic equilibrium in this late de Sitter phase. Finally, for the first time, we have discussed the possible effects of ‘adiabatic’ particle creations in the context of loop quantum cosmology.

Keywords: dark energy, particle creation, non-equilibrium thermodynamics

(Some figures may appear in colour only in the online journal)

1. Introduction
Late-time acceleration of our Universe [1–6] has become one of the fundamental puzzles in modern cosmology. To explain this accelerating phase of the Universe, mainly two known approaches are used. One is the introduction of some component called dark energy having large negative pressure with its equation of state (EoS) $\omega < -1/3$ [7], and the other one is the modifications in the standard General Relativity [8]. As a result, various dark energy models, as well as, modified gravity models have been introduced in order to describe the current accelerating Universe. However, among such various modifications both in matter, as well as, in gravity sectors, ΛCDM cosmology is supported by a large number of observational

3 Author to whom any correspondence should be addressed.
data. Still, we are worried about the two biggest and most famous problems in Λ, the cosmological constant problem [9] and the coincidence problem [10]. Additionally, it has been recently pointed out that our Universe has slight phantom nature [11−15], i.e. the EoS of such a component driving the cosmic acceleration goes beyond ‘−1’ (for a comprehensive discussion on phantom cosmology we refer the reader to [16]). Hence, people have been trying to find some other way(s) so that we can realize an actual description for our Universe in agreement with the latest astronomical data we have.

On the other hand, besides the above two known approaches, namely, the dark energy and the modified gravity theories, recently, considerable attention has been given to the gravitationally induced particle production. The gravitational particle production has a long history in the cosmological domain. Originally, the microscopic description of particle production followed from a seminal paper by Schrödinger [17] in 1939. Later on, Parker and collaborators [18] re-investigated this microscopic particle production by the gravitational field of an expanding Universe based on the Bogoliubov mode-mixing technique in the context of quantum field theory (QFT) in a curved space−time [19]. In spite of being diligent and well motivated, the above microscopic description of particle creation was not fully recognized in the cosmological context due to the absence of a proper methodology in order to connect them with the classical−Einstein’s field equations. However, after some years, Prigogine et al [20] studied the macroscopic description of particle production based on the non-equilibrium thermodynamics of open systems and described how to insert this particle creation mechanism into the Einstein’s field equations in a consistent way. Just after that, Calvão et al [21] re-discussed this macroscopic description of particle production by formulating a covariant approach, where the back reaction term is naturally included in Einstein’s field equations whose negative pressure could provide a self-sustained mechanism for current cosmic acceleration. Yet this description is still incomplete in the sense that the particle creation rate should be calculated from the QFT in curved spacetime [19]. We note that there is a difference between matter creation by the gravitational field of an expanding Universe and the mechanism of bulk viscosity which had been proposed earlier by Zeldovich [22] to account for particle production. This difference has been discussed by Lima and Germano [23] showing that although both the mechanisms can depict the same cosmic evolution, both processes are completely different from the thermodynamical view point. However, in this connection, we mention that although there is an analogy between the present matter creation models and the models developed by Hoyle and Narlikar [24] (known as steady state cosmology) adding extra terms to the Einstein–Hilbert action interpreting the so-called C-field, they are completely different in the sense that, in the latter case, the creation phenomenon is interpreted through a process of interchanging of energy and momentum between matter itself and the C-field.

Recently, accelerating cosmology driven by gravitationally induced ‘adiabatic’ (entropy per particle remains constant during the process) particle production has intensively been examined in the Friedmann–Lemaître–Robertson–Walker (FLRW) Universe [25−35]. Further, it has also been discussed that not only the current accelerating Universe, the particle production can also take into account for the early inflationary Universe [36]. In fact, it has been shown that the matter creation models can provide an alternative cosmology known as CCDM cosmology (CCDM ≡ creation cold dark matter) [25, 26, 30] which is a viable alternative to the ΛCDM model both at background and perturbative levels [32]. Additionally, the effects of adiabatic particle production have been tested in the cosmic microwave background level [33] which shows a behavior close to that of ΛCDM. In fact, it has been argued that adiabatic particle production can provide a possible connection between the early and late accelerating regimes [34]. Further, it has been argued that a complete cosmic scenario with early and late de Sitter eras can also be encountered by such a mechanism [31]. The stability of such models in agreement with the generalized second law of thermodynamics has
been studied [27, 37]. However, the key point in all such models driven by the gravitational particle production is to consider several choices for the rate of particle production, which in general are considered to be the functions of the Hubble rate of the FLRW Universe. Along with several choices for this creation rate, the possibility of constant creation rate was also considered to understand the dynamics of the Universe in the pioneering work of Prigogine et al [20] (see section 3 of the present work) and recently discussed in [38], where the author concludes, in a wrong way, that ‘adiabatic’ particle production with a constant creation rate leads to an emergent Universe. However, the crucial point is that since the Universe evolves from a high energy scale to the present low energy regime then the question remains on how the particle creation could be constant irrespective of the energy scales, rather it should depend on some energy scale. But, as this constant particle creation rate is associated with some critical issues in the literature [20, 38], so keeping this problem in mind as well as clarifying these issues related to this constant rate, in the present work, we consider our Universe modeled by some constant particle production rate in addition to a perfect fluid satisfying the barotropic EoS. We realized some interesting possibilities. First of all, we found the analytic solutions for Hubble parameter and the scale factor which readily show that, initially, the Universe must have realized the big bang singularity, and then asymptotically it reaches to the de Sitter phase. The results from dynamical analysis perspective ensure that the scenario from the big bang to de Sitter is physically viable. We extend, for the first time, the notion of particle production to the loop quantum cosmology (LQC), where holonomy corrections introduce a quadratic term in the Friedmann equation (see [39] for details) which results in a non-singular bouncing cosmology, in which the big bang singularity is replaced by a non-singular bounce [40, 41], that ends in the expanding de Sitter regime in an asymptotic manner. However, we note that, in this formalism the replacement of the big bang singularity by such a nonsingular bounce is only realized if the adiabatic creation rate is considered as a function of some energy scale.

The paper is organized as follows: in section 2, we consider the Universe as an open thermodynamical system, where we obtain the corresponding dynamical equations and show that the particle production acts as an effective dark energy. In section 4, we deal with our model as a dynamical system, in this way, we see that at late times, there is an attractor de Sitter phase which could explain the current acceleration of the Universe. Section 3 is devoted to the study of the big bang singularity in open systems revealing, in contrast to some earlier statements, that it survives in that model. Later, a thermodynamic description of the current model has been discussed in section 5. Further, in section 6, we extend our model to LQC, where the big bang singularity is replaced by a big bounce, obtaining a bouncing Universe that starts in the contracting phase and after bouncing, it ends at late times in a de Sitter regime in the expanding phase. The model is also able to depict the so-called matter bounce scenario (see for a recent review [42]); in fact we have calculated the spectral index and its running of cosmological perturbations obtaining theoretical values that fit well with observational data [43]. Finally, in the last section 7, we have summarized our results.

The units used throughout the paper are: \(c = \hbar = 8\pi G = 1 \).

2. Effective dark energy

We know that at large scales our Universe is well described by the flat FLRW line element given by
\[\text{where } a(t) \text{ is the scale factor of the Universe. Let us consider a closed physical volume } V \text{ containing } N \text{ number of particles. Hence, the first law of thermodynamics for closed systems, i.e., when there is no particle creation (or, equivalently, the conservation of the internal energy } E \text{) states} \]

\[dE = dQ - p dV, \]

\[\text{where } dQ \text{ is the amount of heat received by the system in time } dt \text{ and } p \text{ is the thermodynamic pressure. Now, unlike a closed thermodynamical system, an open thermodynamical system is much more reasonable where the particle numbers are not fixed as considered in [20]. Thus, when } N \text{ is variable, that means while dealing with an open system, where the number of particles is not conserved, the equation (2) must be replaced by [20]} \]

\[dE = dQ - p dV + \left(\frac{p + \rho}{n} \right) dN, \]
equation as follows (recall in our units $8\pi G = 1$):

$$H^2 = \frac{\rho}{3}, \quad \text{(Friedmann’s equation)} \quad (8)$$

and

$$\dot{H} = -\frac{1}{2}\left(1 - \frac{\Gamma}{3H}\right)(p + \rho). \quad \text{(Raychaudhuri’s equation)} \quad (9)$$

It should be noted that any two of the three equations (7)–(9) are independent. Therefore, in order to understand the evolution of the Universe, a relation between p, and ρ, as well as, Γ should be prescribed. In principle, the functional form of particle creation rate Γ should be decided from the QFT in curved space times where the particle creation process happens in an irreversible thermodynamic way, which awaits for a proper development of the QFT in curved spacetime. However, one may notice that, the late de Sitter expansion ($\equiv H = 0$, that means H becomes constant) is realized for $\Gamma = \text{constant}$. We consider that the above cosmic substratum be a perfect fluid with barotropic EoS: $p = (\gamma - 1)\rho$, where γ is a constant satisfying $\gamma > 0$. Also, we consider Γ to be constant for our whole analysis. Now, due to the adiabatic particle creations, the effective EoS w_{eff} of the system takes the form

$$w_{\text{eff}} \equiv -1 - \frac{\dot{\rho}}{3H\rho} = -1 - \frac{2H}{3H^2} = -1 + \gamma\left(1 - \frac{\Gamma}{3H}\right), \quad (10)$$

which leads us the following observations:

- For $H \gg \Gamma$, one has $w_{\text{eff}}(H) \approx -1 + \gamma$, non-phantom domination.
- For $3H \lesssim \Gamma$, one has $w_{\text{eff}}(H) \gtrsim -1$, accelerated expansion.
- For $3H < \Gamma$, one has $w_{\text{eff}}(H) < -1$, phantom domination.

For constant Γ, the differentiation of (10) with respect to the cosmic time t, and using Raychaudhuri’s equation (9), we find

$$\dot{w}_{\text{eff}}(H) = -\frac{\gamma^2}{2}\left(1 - \frac{\Gamma}{3H}\right), \quad (11)$$

from which we have the following observations:

(I) $\dot{w}_{\text{eff}} < 0$, for $\Gamma < 3H$. Hence, this implies that, w_{eff} decreases as t increases.

(II) $\dot{w}_{\text{eff}} > 0$, for $\Gamma > 3H$. Hence, this implies that, w_{eff} increases as t increases.

Finally, as we will show in section 4, this result means that, open systems could be understood as an effective kind of dark energy because, at late times, the Universe will go asymptotically to a de Sitter phase ($\dot{w}_{\text{eff}} \to -1$), which is a plausible explanation of the current acceleration of the Universe.

3. Appearance of the big bang singularity

Combining the Friedmann and Raychaudhuri equations (8) and (9), for the EoS $p = (\gamma - 1)\rho$ one obtains

$$\dot{H} = -\frac{3\gamma}{2}\left(1 - \frac{\Gamma}{3H}\right)H^2. \quad (12)$$
Now, equation (12) can be integrated as
\[H(t) = \frac{\Gamma}{3} \left[\frac{H_0}{H_0 - \frac{\gamma}{2}} \exp \left(\frac{\Gamma_\gamma}{2} (t - t_0) \right) - 1 \right], \quad \text{(13)} \]
where \(t_0, H_0 \) are respectively the present day values of cosmic time, and the Hubble parameter. Now, we find in (13) that, \(H(t) \) becomes singular at some finite time \(t_s \), i.e. when we have
\[\frac{H_0}{H_0 - \frac{\gamma}{2}} \exp \left(\frac{\Gamma_\gamma}{2} (t - t_0) \right) - 1 = 0. \quad \text{(14)} \]
Hence, the solution for \(H(t) \) becomes
\[H(t) = \frac{\Gamma}{3} \left[\frac{\exp \left(\frac{\Gamma_\gamma}{2} (t - t_s) \right)}{\exp \left(\frac{\Gamma_\gamma}{2} (t - t_s) \right) - 1} \right], \quad \text{(15)} \]
and consequently, we find that
\[\lim_{t \to t_s^-} H(t) = \infty \quad \text{(big bang singularity).} \quad \text{(16)} \]

Note also that from formula (15) we can calculate the age of the Universe in this model, giving as a result
\[t_0 - t_s = \frac{2}{\Gamma_\gamma} \ln \left(\frac{H_0}{H_0 - \frac{\gamma}{2}} \right). \quad \text{(17)} \]

In general, for isentropic systems, the conservation equation (3) could be written as [20]
\[\dot{\rho} = \left(-3H + \frac{\dot{N}}{N} \right) (p + \rho), \quad \text{(18)} \]
where for the time being we consider that the cosmic substratum is a pressureless perfect fluid \((p = 0, \text{i.e. } \gamma = 1) \) as considered in [20]. Also, we assume the simple relation \(\rho = MN/V \) \((V = a^3 \text{ is the volume of the FLRW Universe}), \) and further, we restrict ourselves to the simple choice [20]
\[\dot{N} = \alpha VH^2 = \frac{\alpha MN}{3}, \quad \text{where } \alpha > 0. \quad \text{(19)} \]
Which, taking that \(\Gamma = \frac{\alpha M}{3}, \) coincides with equation (5). Hence, replacing \(\Gamma \) by \(\frac{\alpha M}{3} \) in equation (15), one gets
\[H(t) = \frac{M\alpha}{9} \left[\frac{\exp \left(\frac{M\alpha}{6} (t - t_s) \right)}{\exp \left(\frac{M\alpha}{6} (t - t_s) \right) - 1} \right] \Rightarrow a(t) = a_0 \left[\frac{\exp \left(\frac{M\alpha}{6} (t - t_s) \right) - 1}{\exp \left(\frac{M\alpha}{6} (t_0 - t_s) \right) - 1} \right]^\frac{3}{2}, \quad \text{(20)} \]
and consequently, we find that
\[\lim_{t \to t_s^-} H(t) = \infty \quad \text{and} \quad \lim_{t \to t_s^-} a(t) = 0, \quad \text{(21)} \]
which shows that there is a big bang singularity at \(t = t_s \), and it falsifies the conclusion in [20], where the authors claimed that there is no big bang singularity in this formalism. On the
other hand, we also find that
\[\lim_{t \to \infty} H(t) = \frac{M \Omega}{9} \quad \text{(asymptotically de Sitter)}. \] \tag{22}

4. Dynamical analysis

To understand this system better, we need to calculate the critical points or the fixed points of the system (8) and (9). Note that the Friedmann equation (8) is nothing but a constraint in General Relativity, which tells us that the Universe should follow a parabolic path in the plane \((H, \rho)\). However, solving for \(\ddot{H} = 0\), we find that the above system (8) and (9) has two critical points \((0, 0)\), \(\left(\frac{\Gamma}{\sqrt{3}}, \frac{\Gamma^3}{3}\right)\).

Now, depending on the possible movements of the Universe towards the non-zero critical point along the parabolic path described by the constraint (8), we have the following two scenarios. Either the Universe moves towards the critical point \(\left(\frac{\Gamma}{\sqrt{3}}, \frac{\Gamma^3}{3}\right)\) in the upward direction of the parabola as shown in figure 1, or, it reverses its direction of movement, i.e. from \((0, 0)\) to \(\left(\frac{\Gamma}{\sqrt{3}}, \frac{\Gamma^3}{3}\right)\). For such a scenario presented in figure 1, there must be some phantom fluid which drives the Universe. In fact, at \((0, 0)\) the Universe starts to climb up the parabola, which is clearly un-physical due to the nonexistence of no radiation and matter dominated eras.

Now, when the Universe moves downward to the parabola as in figure 1, the scenario predicts a Universe with an initial big bang singularity (for \(H \gg \Gamma\), one may have \(H = -\frac{3\gamma}{2} H^2\), which is well-known to lead to a big bang), and at late time, asymptotically it

\[
\lim_{t \to \infty} H(t) = \frac{M \Omega}{9} \quad \text{(asymptotically de Sitter)}. \]
goes to the de Sitter phase, i.e. $H = \Gamma / 3$, where to depict the current cosmic acceleration one has to choose $\Gamma \sim H_0$, where H_0 is the current value of the Hubble parameter. In this case, the Universe pegged at $w_{\text{eff}} > -1$, for all time, and at late time, as the Universe is almost de Sitter in nature, we have $w_{\text{eff}}(H) \gtrsim -1$.

In fact, if one chooses $\gamma = \frac{4}{3}$, that is, we consider a radiation dominated Universe ($p = \frac{1}{3} \rho$), then since $w_{\text{eff}} = \frac{1}{3} - \frac{4\Gamma}{3H}$, at early times ($H \gg \Gamma$) the Universe is radiation dominated, later when the Hubble parameter is close to $\frac{4\Gamma}{3}$, the Universe enters in a matter dominated era, and finally at very late time ($H \gtrsim \frac{\Gamma}{3}$), the Universe goes asymptotically to the de Sitter regime.

4.1. Bulk viscous cosmology

In cosmology, the simplest effective way to incorporate the bulk viscosity, is to use Eckart theory [44] (see also [45, 46]), where basically the pressure p is replaced by $p - 3H \xi$, in which ξ is the coefficient of bulk viscosity. Hence, the Friedmann equation and the Raychaudhuri’s equations are modified as

$$\rho = 3H^2, \quad (23)$$

$$\dot{H} = -\frac{1}{2}(p + \rho) + \frac{3}{2}H\xi. \quad (24)$$

Now, using the barotropic EoS: $p = (\gamma - 1)\rho$, Raychaudhuri’s equation can be written as

$$\dot{H} = -\frac{3}{2}H^2\gamma + \frac{3\xi}{2}H, \quad (25)$$

which coincides with (12) if one takes $\xi = \frac{\xi}{\gamma}$. Therefore, our previous analysis holds in the case of a bulk viscous cosmology. In particular, the solution that starts at $(0, 0)$ and ends at the critical point $\left(\frac{\xi}{\gamma}, \frac{3\xi^2}{3\gamma}\right)$ is unphysical as we have already explained, and contrary to the statement of [38], it cannot describe a scenario of emergent Universe. In connection with that, we note that the evolution of the universe driven by some bulk viscous pressure leads to some interesting consequences in the presence of curvature, or anisotropy or an another fluid in the Friedmann equation [47–49].

5. Thermodynamic arguments

In this section, we shall extract the thermodynamical information of the present model. In principle, the macroscopic systems tend toward a thermodynamical equilibrium, which forms the basis of the second law of thermodynamics where the entropy, S of an isolated system never decreases, which means, $S \geq 0$, and should be concave ($\dot{S} < 0$) in the last stage of approaching thermodynamic equilibrium [37, 50] (note that the derivative could be with respect to any relevant variable, but here to simplify, we have chosen the cosmic time). In the FLRW Universe, one may formulate this as follows: the entropy of the apparent horizon plus the matter or any fields enclosed by the horizon should satisfy $\dot{S}_h + \dot{S}_\gamma \geq 0$, where S_h stands for the entropy of the apparent horizon and S_γ for the matter fields. On the other hand, $\dot{S}_h + \dot{S}_\gamma < 0$ at very late time, and positive at early times (see the discussion performed in section 2 of [37]). The entropy of the apparent horizon is defined as $S_h = k_B A / 4l_p^2$, where k_B
is the Boltzmann’s constant, \(A = 4\pi r_h^2 \), is the horizon area with \(r_h = \frac{1}{H} \) being the Hubble radius \([51]\), and \(l_{pl} = \sqrt{\frac{\hbar}{8\pi G}} \) the Planck’s length in the units used in the present work.

Now, taking the differentiation of \(S_h \) with respect to the cosmic time, one gets

\[
\dot{S}_h = -\frac{2\pi k_B H}{l_{pl}^3} = \frac{24\pi^2 k_B\gamma}{H^3} \left(1 - \frac{\Gamma}{3H} \right),
\]

which shows that \(\dot{S}_h > 0 \) for \(H > \frac{\Gamma}{3} \). In the same way one obtains

\[
\ddot{S}_h = -24\pi^2 k_B\gamma^2 \frac{H}{H^3} \left(1 - \frac{2\Gamma}{3H} \right).
\]

Now, since \(\dot{H} < 0 \) for \(H > \frac{\Gamma}{3} \), hence \(S_h \) is convex for \(H > \frac{2\Gamma}{3} \) and concave for \(\frac{2\Gamma}{3} > H > \frac{\Gamma}{3} \).

Now, considering the fluid, we recall Gibb’s equation

\[
\rho = \rho_v (\gamma + 1) \rho,
\]

which from the EoS \(p = (\gamma - 1)\rho \) and using equation (12) could be written as follows

\[
\frac{T}{T} = \frac{2(\gamma - 1)H}{H} \Rightarrow T = T_0 \left(\frac{H}{H_0} \right)^{\frac{2(\gamma - 1)}{\gamma}}.
\]

Then, a simple calculation shows that the second derivative of \(S_\gamma \) is of the order

\[
\ddot{S}_\gamma \sim \frac{H}{H^3} \left(1 - \frac{3\gamma - 2}{6(\gamma - 1)H} \right) \Gamma.
\]

meaning that \(S_\gamma \) is convex for \(H > \frac{3\gamma - 2}{6(\gamma - 1)} \Gamma \), and concave for \(\frac{3\gamma - 2}{6(\gamma - 1)} \Gamma > H > \frac{\Gamma}{3} \).

From that results one can conclude that

\[
\dot{S}_h + \ddot{S}_h > 0,
\]

from the big bang singularity to the de Sitter regime given by the fixed point \(H = \frac{\Gamma}{3} \).

Moreover, since for \(1 < \gamma \leq 2 \) one has \(\frac{3\gamma - 2}{6(\gamma - 1)} \geq \frac{2}{3} \), then \((S_h + S_\gamma) \) is convex for \(H > \frac{3\gamma - 2}{6(\gamma - 1)} \Gamma \) (if it was concave, the Universe could have reached thermodynamical equilibrium before entering the stable de Sitter regime), and concave for \(\frac{2\Gamma}{3} > H > \frac{\Gamma}{3} \); that is, the Universe eventually goes to the thermodynamical equilibrium stage characterized by a stable, and thus, never-ending, de Sitter regime with \(H_\infty = \frac{\Gamma}{3} \). One may note that for \(\gamma = 1 \), \(T = T_0 = \) constant, thus it is readily seen that \(\dot{S}_\gamma < 0 \) since \(\dot{H} < 0 \), that means for \(H > \Gamma/3 \).

Finally, when quantum corrections to Bekenstein–Hawking entropy law are encountered, the entropy of black hole horizons is generalized into \([37]\).
in addition to that we have some higher order corrections given in [53, 54]. However, assuming this definition applies to the cosmic apparent horizon [37], one may find the modifications due to the correction term. It is easy to find that

$$\dot{S}_h = - \frac{3\gamma k_B}{2\Gamma^2_{pl}} \left(H - \frac{\Gamma}{3} \right) \left(-2\pi + \frac{1}{\Gamma} \right).$$ \hspace{1cm} (33)$$

which is positive for \(\frac{1}{\Gamma} > \frac{l_{pl}}{\sqrt{2}\pi} \), that is, it is an increasing function for all the values of the Hubble radius greater than the Planck length, i.e. when the classical picture of our Universe is allowed, one has \(\dot{S}_h > 0 \). In the same way one has

$$\dot{S}_h = - \frac{3\gamma H}{2\Gamma^2_{pl}} \left[l_{pl}^2 + \frac{2\pi}{\Gamma^2} \left(1 - \frac{2\Gamma}{3H} \right) \right].$$ \hspace{1cm} (34)$$

Since \(H \) is negative, one can see that for large values of \(H \) the function \(S_h \) is convex, and for values near the fixed point \(\frac{\Gamma}{3} \), it is concave, because one has

$$\dot{S}_h \left(\frac{\Gamma}{3} \right) = - \frac{3\gamma H}{2\Gamma^2_{pl}} l_{pl}^2 - \frac{18\pi}{\Gamma^2}.$$

which is negative due to the fact that \(\Gamma \) is of the same order than the current value of the Hubble parameter.

6. Extension to LQC

For open systems with particle creation governed by the equation \(\dot{N} = \Gamma N \), the Friedmann, conservation and the Raychauduri equations in LQC respectively take the forms (see [55] for a review)

$$H^2 = \frac{\rho}{3} \left(1 - \frac{\rho}{\rho_c} \right),$$ \hspace{1cm} (36)$$

$$\dot{\rho} = -3H \left(1 - \frac{\Gamma}{3H} \right) (p + \rho),$$ \hspace{1cm} (37)$$

$$\dot{H} = -\frac{1}{2} \left(1 - \frac{\Gamma}{3H} \right) (p + \rho) \left(1 - \frac{2\rho}{\rho_c} \right).$$ \hspace{1cm} (38)$$

where \(\rho_c \) is the 'critical density' (the energy density at which the Universe starts bouncing). Note that the holonomy corrected Friedmann equation depicts an ellipse in the phase space \((H, \rho)\), and when \(\Gamma \) is constant, the dynamical system becomes singular at the bouncing point \((0, \rho_c)\) because the Raychauduri equation diverges at \((0, \rho_c)\), then to have a non-singular bounce, which is one of the advantages of LQC, one has to assume that \(\Gamma \) changes at different scales vanishing at the bouncing point. Since near the bounce, \(H \) decays as \(\sqrt{1 - \frac{\rho}{\rho_c}} \), in order to have a non-singular bounce, it seems natural to choose \(\Gamma \) as follows
and then, in that case, assuming that $\Gamma_0^2 \ll \rho_c$ (recall that, Γ_0 is of the order of the current value of the Hubble parameter and $\rho_c \cong 0.4\rho_{pl}$ [56] with ρ_{pl} the Planck’s energy density), for a fluid with EoS $p = (\gamma - 1)\rho$, with $\gamma > 0$, the dynamics that goes from $(0, 0)$ to $(0, 0)$, depicts, in a clockwise direction, a bouncing Universe that starts in the contracting phase, bounces at $(0, \rho_c)$, and ends in the de Sitter phase $(0, 0)$ (see figure 2). Also, note that the dynamics from $(0, 0)$ to $(0, 0)$ in the anticlockwise direction is un-physical as discussed in the previous section.

On the other hand, using (10), in LQC the effective EoS parameter is given by

$$w_{\text{eff}} = -1 + \gamma \left(1 - \frac{\Gamma_0}{3H} \left(1 - \frac{\rho}{\rho_c} \right)^{\alpha + \frac{1}{2}} \right),$$

which shows that initially $w_{\text{eff}} = \infty$, and when $\rho \gg \Gamma_0^2$, one has $w_{\text{eff}} \cong -1 + \gamma$ (which includes the bounce), and finally, at late times ($\rho \sim \Gamma_0^2$), $w_{\text{eff}} \gtrsim -1$, which depicts the current accelerated expansion of the Universe.

Moreover, if one chooses $\gamma = 1 - \epsilon$ with $0 < \epsilon \ll 1$, i.e. one considers a nearly pressureless fluid, at early times one obtains...
\[w_{\text{eff}} = -\epsilon - (1 - \epsilon) \frac{\Gamma_0}{\sqrt{3} \rho} \approx -\epsilon - \frac{\Gamma_0}{\sqrt{3} \rho} \approx -\epsilon - \frac{\Gamma_0}{3H} \] (41)

Then, for a single scalar field, which mimics the fluid with EoS \(p = -\epsilon \rho \), and thus, drives the background of the matter bounce scenario in LQC [57]. It has been recently shown that the spectral index of scalar cosmological perturbations is given by [58, 59]

\[n_s - 1 = 12w_{\text{eff}} = -12\epsilon - \frac{4\Gamma_0}{H}, \] (42)

which means that for modes that leave in the contracting phase, the Hubble radius satisfies \(\frac{\Gamma_0}{\epsilon} \ll |H| \ll \sqrt{\rho_0} \) and for \(\rho \ll \rho_0 \) (at this stage holonomy corrections could be disregarded) one has

\[n_s - 1 = 12w_{\text{eff}} \approx -12\epsilon, \] (43)

which fits well with recent observational data \(n_s - 1 = -0.0397 \pm 0.0073 \) [43], if one chooses \(\epsilon \approx 0.0033 \). Now, once one has obtained the spectral index one can calculate its running, which is given by

\[\alpha_s \equiv \frac{\dot{n}_s}{3(\alpha_1)_{\text{eff}} H} = 12w_{\text{eff}} \left(\frac{H}{H^2 + \dot{H}} \right). \] (44)

During the matter domination \(\frac{\Gamma_0}{\epsilon} \ll |H| \ll \sqrt{\rho_0} \), one has \(H^2 + \dot{H} \approx -\frac{H^2}{2} \) and \(w_{\text{eff}} \approx -\frac{1}{2} \Gamma_0 \), then one gets

\[\alpha_s \approx -\frac{12\Gamma_0}{H}. \] (45)

This running is negative, and it belongs to the marginalized 95\% confidence level (recent Planck’s data states that \(\alpha_s = -0.0134 \pm 0.0090 \) [43]) for modes that leave in the contracting phase, when the Hubble radius belongs to the interval \(10^3 \Gamma_0 \lesssim |H| \ll \sqrt{\rho_0} \).

7. Summary and discussion

Cosmological models powered by the gravitationally induced ‘adiabatic’ particle creation have intensively been investigated in the FLRW Universe as a possible source for late cosmic acceleration [25–35]. In connection with different particle creation rates, the possibility of constant particle creation rate has also been investigated in [20, 38] where both works claimed that the big bang singularity disappears, but in general this is not true. Thus, in order to clarify this issue, in the present work, we have considered a cosmological model in the flat FLRW Universe driven by some constant particle creation rate, \(\Gamma \). We found that the present model can be analytically solved predicting that, at very early time, there was a big bang singularity in contrast to the results in [20, 38], and additionally, at late time, our Universe asymptotically approaches the de Sitter phase. We then consider the dynamical system consisting of the Friedmann equation and the Raychaudhuri equation, which predicts that the system has only two critical points \((0, 0)\), \(\left(\frac{\Gamma}{3}, \frac{\Gamma^2}{3} \right) \). The dynamics of the Universe along the parabolic path described by the Friedmann equation (8) has been studied, and shows that the movement of the Universe from \((0, 0)\) to \(\left(\frac{\Gamma}{3}, \frac{\Gamma^2}{3} \right) \) in the clockwise direction (see figure 1) is governed by the phantom fluid which is totally unphysical due to absence of radiation and the matter dominated eras as predicted by the standard cosmology in agreement with the observations. On the other hand, we found that, the movement of the Universe towards the point \(\left(\frac{\Gamma}{3}, \frac{\Gamma^2}{3} \right) \)
(see figure 1) starts from a big bang singularity and ends in the de Sitter phase asymptotically. Furthermore, we perform the same dynamical analysis for the Universe if it is dominated by some bulk viscous pressure. This analysis contradicts the existence of an emergent Universe scenario driven by some constant bulk viscous pressure, as discussed in [38]. Moreover, we have shown that the present cosmological model driven by such constant creation rate approaches a thermodynamic equilibrium state in the late de Sitter phase. Finally, for the first time, we extend this adiabatic creation mechanism in the LQC, which is a promising candidate to understand the early physics of our Universe since as with inflation it also provides a nearly flat power spectrum for cosmological perturbations. We found that in order to have a nonsingular bounce the creation rate should not be constant, rather it must depend on the energy scale (see equation (39)). The dynamics of the Universe has been graphically shown in figure 2 where the dynamics from $(0, 0)$ to $\left(\frac{\rho_0}{3T^4}, \frac{\rho_0}{T^7} \left(1 - \sqrt{1 - \frac{4T^4}{3\rho_c}} \right) \right)$ (see section 6) in an anticlockwise direction is unphysical since it is governed by the phantom fluid and there are no such radiation and matter dominated eras. On the other hand, the dynamics from $(0, 0)$ to $\left(\frac{\rho_0}{3T^4}, \frac{\rho_0}{T^7} \left(1 - \sqrt{1 - \frac{4T^4}{3\rho_c}} \right) \right)$ in the clockwise direction represents a bouncing Universe that starts in the contracting phase, bounces at $(0, \rho_c)$-the critical point staying between the initial and the final points, and finally ends in the de Sitter regime executing the current accelerating Universe. So, in the LQC frame the scale dependent matter creation rate could replace the big bang singularity by the big bounce one. Moreover, one obtains the inflationary parameters such as the spectral index, its running, which are in good agreement with the latest observational data [43].

Acknowledgments

We would like to thank Professor Jaume Amorós for his help in setting the figures. This investigation of J Haro has been supported in part by MINECO (Spain), project MTM2014-52402-C3-1-P. SP acknowledges Science and Engineering Research Board (SERB), Govt. of India, for awarding National Post-Doctoral Fellowship (File No: PDF/2015/000640). We also thank Rafael C Nunes for fruitful discussions. Finally, the authors are very grateful to the anonymous reviewers for their constructive suggestions which results in an improved version of the manuscript both in quality as well as in presentation.

References

[1] Perlmutter S et al 1999 Astrophys. J. 517 565
[2] Riess A G et al 1998 Astron. J. 116 1009
[3] Spergel D N et al 2003 Astrophys. J. Suppl. 148 175
[4] Tegmark M et al 2004 Phys. Rev. D 69 103501
[5] Eisenstein D J et al 2005 Astrophys. J. 633 560
[6] Komatsu E et al 2011 Astrophys. J. Suppl 192 18
[7] Copeland E J, Sami M and Tsujikawa S 2006 Int. J. Mod. Phys. D 15 1753
[8] Nojiri S and Odintsov S D 2007 Int. J. Geom. Meth. Mod. Phys. 4 115
[9] Nojiri S and Odintsov S D 2003 Phys. Rev. D 68 123512
[10] Weinberg S 1989 Rev. Mod. Phys. 61 1
[11] Steinhardt P J 2003 Phil. Trans. R. Soc. A 361 2497
[12] Planck collaboration 2014 Astron. Astrophys. 571 A16
[12] Rest A et al 2014 Astrophys. J. 795 44
[13] Xia J-Q, Li H and Zhang X 2013 Phys. Rev. D 88 063501
[14] Cheng C and Huang Q-G 2014 Phys. Rev. D 89 043003
[15] Shafer D L and Huterer D 2014 Phys. Rev. D 89 063510
[16] Gibbons G W arXiv:hep-th/0302199
[17] Schrödinger E 1939 Physica 6 899
[18] Parker L 1968 Phys. Rev. Lett. 21 562
 Parker L 1969 Phys. Rev. 183 1057
 Parker L 1970 Phys. Rev. D 3 346
 Ford L H and Parker L 1977 Phys. Rev. D 16 245
[19] Birrell N D and Davies C P W 1982 Quantum Fields in Curved Space (Cambridge: Cambridge University Press)
[20] Prigogine I, Geheniau J, Gunzig E and Nardone P 1998 Proc. Natl Acad. Sci. 85 7428
[21] Calvão M O, Lima J A S and Waga I 1992 Phys. Lett. A 162 223
[22] Zeldovich Ya B 1970 JETP Lett. 12 307
[23] Lima J A S and Germano A S M 1992 Phys. Lett. A 170 373
 For a more general macroscopic approach see also Silva R, Lima J A S and Calvão M O 2002 Gen. Relativ. Gravit. 34 865
[24] Hoyle F and Narlikar J V 1964 Proc. R. Soc. A 282 191
 Hoyle F and Narlikar J V 1966 Proc. R. Soc. A 290 143
 See also Hoyle F and Narlikar J V 1974 Action at a Distance in Physics and Cosmology (New York: Freeman)
[25] Steigman G, Santos R C and Lima J A S 2009 J. Cosmol. Astropart. Phys. JCAP06(2009)033
[26] Lima J A S, Jesus J F and Oliveira F A 2010 J. Cosmol. Astropart. Phys. JCAP11(2010)027
[27] Lima J A S, Graef L L, Pavón D and Basilakos S 2014 J. Cosmol. Astropart. Phys. JCAP10(2014)042
[28] Chakraborty S, Pan S and Saha S 2014 Phys. Lett. B 738 424
[29] Nunes R C and Pavón D 2015 Phys. Rev. D 91 063526
[30] Lima J A S and Basilakos S 2010 Phys. Rev. D 82 023504
[31] Lima J A S, Basilakos S and Costa F E M 2012 Phys. Rev. D 86 103534
[32] Jesus J F, Oliveira F A, Basilakos S and Lima J A S 2011 Phys. Rev. D 84 063511
[33] Nunes R C and Pan S 2016 Mon. Not. R. Astron. Soc. 459 673
[34] Nunes R C 2016 Int. J. Mod. Phys. D 25 1650067
[35] Fabris J C, Pacheco J A F and Piattella O F 2014 J. Cosmol. Astropart. Phys. JCAP06(2014)038
[36] Abramo L R W and Lima J A S 1996 Class. Quantum Grav. 13 2953
[37] Gunzig E, Maartens R and Nesteruk A V 1998 Class. Quantum Grav. 15 923
[38] Mimoso J P and Pavón D 2013 Phys. Rev. D 87 047302
[39] Chakraborty S 2014 Phys. Lett. B. 732 81
[40] Singh P 2006 Phys. Rev. D 73 063508
 Singh P, Vandersloot K and Vereshchagin G V 2006 Phys. Rev. D 74 043510
[41] Singh P 2009 Class. Quantum Grav. 26 125005
[42] Bamba K, de Haro J and Odintsov S D 2013 J. Cosmology Astropart. Phys. JCAP02(2013)008
[43] de Haro J and Cai Y- F 2015 Gen. Relative. Gravit. 47 8
[44] Ade P A R et al (Planck Collaboration) 2014 Astron. Astrophys. 571 A22
[45] Eckert C 1940 Phys. Rev. 58 919
[46] Zimdahl W 1996 Phys. Rev. D 53 5483
[47] Zimdahl W 2000 Phys. Rev. D 61 083511
[48] Barrow J D 1986 Phys. Lett. B 180 335
[49] Barrow J D 1988 Nucl. Phys. B 310 743
[50] Barrow J D 1990 Formation and Evolution of Cosmic Strings ed G Gibbons, S W Hawking and T Vachaspati (Cambridge: Cambridge University Press)
[51] Radicella N and Pavon D 2012 Gen. Relative. Gravit. 44 685
[52] Bak D and Rey S J 2000 Class. Quantum Grav. 17 L83
[53] Lima J A S and Buranov I 2014 Phys. Rev. D 90 043515
[53] Meissner K A 2004 \textit{Class. Quantum Grav.} \textbf{21} 5245
[54] Ghosh A and Mitra P 2005 \textit{Phys. Rev.} D \textbf{71} 027502
[55] Ashtekar A and Singh P 2011 \textit{Class. Quantum Grav.} \textbf{28} 213001
[56] Meissner K A 2004 \textit{Class. Quantum Grav.} \textbf{21} 5245
[57] Wilson-Ewing E 2013 \textit{J. Cosmol. Astropart. Phys.} JCAP03(2013)026
[58] Lehners J- L and Wilson-Ewing E 2015 \textit{J. Cosmol. Astropart. Phys.} JCAP10(2015)038
[59] Elizalde E, Haro J and Odintsov S D 2015 \textit{Phys. Rev.} D \textbf{91} 063522