Anti-fatigue effect from *Ginseng Radix et Rhizoma*: a suggestive and promising treatment for long COVID

Xiangda Zhou¹, Keying Zhang², Lanbo Liu², Qianru Zhao³,4, Ming Huang⁴, Rui Shao⁴, Yanyan Wang³, Bin Qu¹,5, Yu Wang³,4,∗

Abstract
Two years after the coronavirus disease 2019 (COVID-19) outbreak, an increasing number of patients continue to suffer from long COVID (LC), persistent symptoms, and/or delayed or long-term complications beyond the initial 4 weeks from the onset of symptoms. Constant fatigue is one of the most common LC symptoms, leading to severely reduced quality of life among patients. Ginseng Radix et Rhizoma—known as the King of Herbs in traditional Chinese medicine—has shown clinical anti-fatigue effects. In this review, we summarize the underlying anti-fatigue mechanisms of Ginseng Radix et Rhizoma extracts and their bioactive compounds, with a special focus on anti-viral, immune remodeling, endocrine system regulation, and metabolism, suggesting that Ginseng Radix et Rhizoma is a potentially promising treatment for LC, especially regarding targeting fatigue.

Keywords: Fatigue, Ginseng Radix et Rhizoma, Long COVID, SARS-CoV-2

Graphical abstract: http://links.lww.com/AHM/A21.

Introduction
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally over the past 2 years. As an increasing number of people recover from SARS-CoV-2 infection, long COVID (LC) has become a growing concern¹². Although there are no generally acknowledged case definitions or diagnostic criteria, LC is understood as persistent symptoms and/or delayed or long-term COVID-19 complications beyond 4 weeks from the onset of symptoms³⁵–⁶. Most LC patients tested PCR-negative, indicating viral clearance. LC is the time lag between virus clearance and clinical recovery⁶¹. This time lag may last for weeks, or even months, after the onset of symptoms, when patients present with chronic and repeated fatigue⁷–⁹. In a pandemic which affects hundreds of millions of people worldwide, LC has posed a challenge for the healthcare system and economy for the years to come.

Compared with overtiredness, fatigue is a more profound state which leads to the constant weariness that impairs a person’s vitality, determination, and concentration¹⁰. In LC, serious fatigue is one of the most reported and persistent symptoms, irrespective of the severity of the acute stage of COVID-19 and the levels of inflammatory markers¹¹. Many cohort and cross-sectional studies have confirmed that fatigue is not only the most frequently reported symptom, but also the major manifestation of LC¹². Therefore, studies regarding the mechanisms of fatigue in LC and effective treatment strategies are urgently required.

Known as the King of Herbs, Ginseng Radix et Rhizoma has a long history in traditional medicine. Ginseng Radix et Rhizoma is specifically referred to as the root and rhizome of the plant. Non-dried fresh Ginseng Radix et Rhizoma is rarely used in medical practice. According to traditional Chinese medicine, Ginseng Radix et Rhizoma has various effects, such as strengthening one’s vitality, invigorating the spleen, replenishing one’s qi, promoting fluid, and calming one’s nerves. Modern pharmacology has revealed that Ginseng Radix et Rhizoma promotes virus clearance and is involved in bidirectional regulation of the immune, central nervous, and endocrine systems¹³.

Ginseng Radix et Rhizoma has been used to treat both non-disease-specific and disease-induced fatigue¹⁴, especially chronic fatigue syndrome¹⁵ psychological stress¹⁶, cancer¹⁷–⁹, and menopause¹⁰. Both clinical practice and animal-based experiments have verified the various biological activities of Ginseng Radix et Rhizoma, such as anti-virus, anti-inflammation, the boosting of immune responses, and the reprogramming of one’s metabolism¹¹. All of these aspects can be attributed to LC-related fatigue. Based on CNKI and PubMed, we

¹ Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg, Germany; ² School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; ³ School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; ⁴ State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; ⁵ Leibniz Institute for New Materials, Saarbrücken, Germany

∗ Corresponding author. Yu Wang, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China, E-mail: wangyu@tjutcm.edu.cn.

Copyright © 2022 Tianjin University of Traditional Chinese Medicine. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Acupuncture and Herbal Medicine (2022) 2:2
Received 24 April 2022 / Accepted 05 June 2022
http://dx.doi.org/10.1097/HHM.0000000000000033
searched the literature of the last decade, briefly summarized the underlying anti-fatigue mechanisms of *Ginseng Radix et Rhizoma*, and discussed its possible applications to treat LC-related fatigue in this review.

Underlying mechanisms of anti-fatigue effects of *Ginseng Radix et Rhizoma*

Fatigue is a fundamental component of a diverse array of illnesses which affect a broad range of patients. The Institute of Medicine diagnostic criteria characterize myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) as a spectrum of five core symptoms: fatigue, sleep disturbance, cognitive changes, post-exertional malaise, and orthostatic intolerance\[^{22}\]. In some cases, ME/CFS is thought to be triggered by infection, whereas in many other cases, no specific trigger can be identified. The pathogenesis of fatigue is poorly understood, and no specific diagnostic physical signs or biomarkers have yet been identified\[^{23}\]. Disease-associated fatigue may be directly related to disease mechanisms (primary fatigue) or may be secondary to non-disease-specific factors. Although the pathophysiology and etiology of fatigue remain unclear, LC fatigue is characterized by various key features similar to ME/CFS\[^{24}\]. For example, both types of fatigue have been suggested to be linked to chronic inflammation, over-activation of immune system, autonomic dysfunction, impaired functions in the hypothalamic-pituitary-adrenal axis, and neuroendocrine dysregulation.

Ginseng Radix et Rhizoma extracts have been reported to inhibit viral infections, maintain balanced immune responses, and restore impaired mitochondrial function (Figure 1A). Its anti-viral properties, in particular, is considered a feature of *Ginseng Radix et Rhizoma* and its extracts in viral-induced fatigue, which distinguishes it from other ME/CFS—such as postoperative, cancer, or other pathogen-related fatigue. Several studies have reported that oral administration of *Ginseng Radix et Rhizoma* extracts shows promising anti-viral effects (e.g., lowering viral loads and improving the viability of infected cells) against human immunodeficiency virus-1, influenza virus, rotavirus, and respiratory syncytial virus\[^{25–26}\]. *Ginseng Radix et Rhizoma* can ameliorate chronic inflammation induced by a variety of autoimmune diseases—such as rheumatic diseases and inflammatory bowel disease—presumably by inhibiting the release of inflammatory cytokines, such as IL-6 and TNF-\(\alpha\)\[^{27–28}\]. In addition, a small-sized clinical study shows that administration of *Ginseng Radix et Rhizoma* Rubra extract reduced the production of inflammatory cytokines, such as TNF-\(\alpha\) and IFN-\(\gamma\), after chemotherapy\[^{29}\]. Appropriate activation of adaptive immune cells (T and B cells) and stimulation of innate immune cells play a critical role in fighting infection. *Ginseng Radix et Rhizoma* has beneficial effects on the boosting functions of macrophages for the clearance of pathogens, dendritic cells for antigen presentation, B cells for antibody production, natural killer cells, and T cells for the more efficient removal of infected cells\[^{12}\].

At the molecular level, *Ginseng Radix et Rhizoma* extracts exhibit direct or indirect modulatory effects on effector molecules involved in viral infection, cell viability and apoptosis, vesicular trafficking, and release (Figure 1B). A viral infection can activate PRR signaling, which stimulates IRF-family transcription factors that promote IFN expression with NF-\(\kappa\)B and activates two signaling pathways induced by IFN-I and IFN-III. JAK1 and TYK2 kinases trigger the formation of the ISGF3 complex, which induces an anti-viral state in both signaling pathways\[^{30}\]. Total ginsenosides may play an important role in the pathway of induction and anti-viral signaling of type I and type III IFNs by activating STAT1\[^{31}\]. IL-6 is released in large quantities and binds to receptors to activate JAKs and stimulate STAT3 phosphorylation. STAT3 phosphorylates dimerization, transfers it to the cell nucleus, and regulates transcriptional activity\[^{32}\]. It was found that the activity of JAKs could be suppressed by ginsenoside Rb1\[^{13}\]. TRAF2, as an adapter

![Figure 1](image-url)
protein, activates the JNK and NF-κB signaling pathways to regulate immunocytes [33]. Total ginsenosides might down-regulate c-Jun gene expression resulting in the inhibition of the TNF pathway [31]. NLRP3 activation can stimulate superfluous inflammatory factors, leading to pyroptosis [34]. Ginsenoside CK could inhibit NLRP3-inflammasome activation to suppress IL-1 release to inhibit the overactive immune response [35]. In addition, miR-34a-5p down-regulation inhibits the ERK-mediated signaling pathway to decrease NKCC [36]. Ginsenoside 20 (R)-Rg3 promotes ERK1/2 phosphorylation to enhance NKCC of natural killer cells [37].

Active compounds from Ginseng Radix et Rhizoma with anti-fatigue effects

In *Ginseng Radix et Rhizoma*, various bioactive components have been identified—including ginsenoside, polysaccharides, and volatile oil [13,38–39]. To analyze the potential link between these bioactive components to anti-fatigue effects, we drew a word cloud using Excel to make use of word frequency counting and FineBI for analysis. Both *Ginseng Radix et Rhizoma* and fatigue were chosen as keywords. The word cloud indicates the active compounds of *Ginseng Radix et Rhizoma* and their major functions. A larger font size suggests a higher word frequency. The term “ginsenosides” is among the most frequently mentioned compounds (Figure 2). We focused on *Ginseng Radix et Rhizoma* extracts as well as its bioactive compounds and summarized their anti-viral effects and their ability to remodel immunity, promote anti-inflammation, regulate the endocrine system, and increase energy metabolism, all of which are linked to LC fatigue.

Anti-virus

Rare persistence of SARS-CoV-2 in the body may induce LC fatigue. The persistence of the virus can be due to persistent viremia in people with altered immunity and who have relapsed [40–41]. Clinical and animal studies have revealed the antiviral role of *Ginseng Radix et Rhizoma*. In HIV-infected patients, *Ginseng Radix et Rhizoma* not only induces genetic defects in the nef gene [42], but also shows its anti-HIV effect by preserving CD4+ T cell counts, combined with zidovudine [43–45]. Diets containing *Ginseng Radix et Rhizoma* protect mice and ferrets from lethal infection with the H5N1 influenza virus [46], and ginsenosides even act as mucosal adjuvants against the influenza virus [47]. Ginsenosides Rb1, Rg1, and Rg3 inhibit the replication of the hepatitis A and B viruses *in vitro* [48–49]. Fermented *Ginseng Radix et Rhizoma* (black) suppresses the replication of SARS-CoV-2 and even lowers the number of viral RNA copies present in the extracellular environment [50]. Therefore, the antiviral properties of *Ginseng Radix et Rhizoma* shed light on its potential for clearing virus residue, which partially accounts for LC fatigue.

Figure 2. Ginseng Radix et Rhizoma active compounds and their main functions.
Immunity remodeling and anti-inflammation

The immune system responds to SARS-CoV-2 infection *via* both cellular and humoral responses. These responses are initiated by the innate immune system, which recognizes the virus and induces the production of proinflammatory cytokines and chemokines. It is followed by responses of the adaptive immune system, which consists of T cells that can directly kill virus-infected cells and B cells that produce pathogen-specific antibodies in the serum and mucosal surfaces^{[31]} . In summary, two general anti-viral programs have been launched for patients with LC. The first is the engagement of cellular anti-viral defenses, which are mediated by the transcriptional induction of type I and III interferons (IFN-I and IFN-III) and the subsequent up-regulation of interferon-stimulated genes^{[30]} . The second arm of the anti-viral response involves the recruitment and coordination of specific subsets of leukocytes, which are orchestrated primarily by cytokine and chemokine secretion^{[52]}.

SARS-CoV-2 triggers a several inflammatory mediators, thereby orchestrating an immune response that involves multiple cell types that are critical for viral clearance and the establishment of anti-viral immune memory. Failure to clear these infections can lead to excessive uncontrolled chronic inflammation in LC patients by evoking inflammatory programs. It is worth noting that patients with LC have highly activated innate immune cells, lacking naive T and B cells, and persistent cytokinemia^{[33]} , which indicates that immunity remodeling and anti-inflammation therapy may assist LC patients in overcoming fatigue. The bidirectional regulation of the immune system, coupled with the reduction of exuberant inflammatory cytokine production, paves the way for *Ginseng Radix et Rhizoma* to be a candidate for anti-LC fatigue (Figure 3).

Animal studies have confirmed the anti-fatigue role of *Ginseng Radix et Rhizoma* through regulation of the immune response and reduction of cytokine secretion. In chemotherapy-related fatigue mice model (with HT-29 subcutaneously injected into their right flanks), BST204 (a kind of purified dry extract from *Ginseng Radix et Rhizoma*) improves their performance in running wheel activity and forced swimming after treatment on the 27th day by 50% *via* raising the levels of muscle glycogen and declining the release of peripheral pro-inflammatory cytokines like TNF-α and IL-6^{[54]} . In a weight-loaded swimming fatigue rat model, *Ginseng Radix et Rhizoma* down-regulated the protein expression of the pro-inflammatory cytokine IL-1β^{[55]} . Ginsenosides, ginseng polysaccharides, and volatile oils are the major components for the relief of fatigue-induced symptoms. Based on the immune remodeling and anti-inflammatory mecha-

Figure 3. The active compounds of *Ginseng Radix et Rhizoma* associated with the immune system.
nisms, the anti-fatigue effects of the mixture extract and bioactive compounds in *Ginseng Radix et Rhizoma* are summarized in Table 1.

Regulation of the endocrine system

Fatigue in LC patients is closely related to hormonal dysregulation. Interestingly, compared with adults, LC symptoms are infrequently observed in children; conversely, women are more susceptible to LC-associated fatigue[11]. It has been reviewed in detail elsewhere that congestion of the lymphatic system and the subsequent toxic build-up within the central nervous system—caused by increased resistance to cerebrospinal fluid drainage through the cribriform plate as a result of olfactory neuron damage—may also contribute to LC fatigue[56]. A range of central, peripheral, and psychological hormones likely play a role in the development of LC fatigue.

Clinically, fermented *Ginseng Radix et Rhizoma* powder increases testosterone levels[57]. Ginsenoside Rg1 reverts the hypothalamic pituitary-adrenal axis to its normal function by improving the levels of serum cortisol (CORT) and testosterone[58]. Studies indicate that the water extract of *Ginseng Radix et Rhizoma* could protect cells from CORT-induced injury through...

Table 1

Categories	Natural products	Indicators	References
Saponins	Ginsenoside Rg5	TNF-α ↓, IL-10 ↓, miR-146a ↑	[77]
	Ginsenoside R3	CD3+↑, IL-4 ↓	[78]
		CD8/T ↑, IFN-γ ↑	
	Ginsenoside R1	TGF-β1↑, IL-1β ↓	[79]
	Ginseng total saponin (TGS)	NF-kB↓, COX-2 ↓	[80]
		Agt7↑, Bclin-1↑	
		LC3B↓, LC3B II↑	
	Ginsenoside CK	IL-4↑, IL-6 ↓	[81]
		IFN-α ↑	
	Ginsenoside Rg1 (G-Rg1)	TNF-α ↓, IL-6 ↓, NF-kB ↓	[82]
		NFκB↑, HO-1↑	
		IL-1β↓, IL-18β↓	[83]
	Ginsenoside Rb1	NF-kB↓, MAPK ↓	[84]
		TNF-α↓, IL-1β↓, IL-6↓, IL-10↑	
	Ginsenoside Rb3	IL-1β↑, IL-6↓, IL-8↓	[85]
	Ginsenoside Rb2	IL-1β↓, IL-6↓, IL-1β↓, IL-10↑	[86]
	Ginsenoside Rb3	IL-1β mRNP ↓, IL-6 mRNA down, TNF-α mRNA down	[87]
	Ginsenoside Rd	IL-1β↑, TNF-α↑, PGE2↑, NO↑	[88]
	Ginsenoside Rc	IL-6 mRNA↑, Bax↑	[89]
		SIRT1↑, Bcl-2↑, proaspase-3↑	[90]
	Ginsenoside Rh1	total inflammation cells, eosinophils, neutrophils, lymphocytes	
	Ginsenoside Rf	IL-6↓, IL-1β↓	[91]
	Ginsenoside PPT, PPD, F1	IL-1β↓	[92]
	Ginsenoside Rh2	TLR4↑, NF-kB, P65, IL-6↓	[93]
	Ginsenoside Rh3	TNF-α↑, IL-1β↑, IL-6↑	[94]
	Ginsenoside PK1	TNF-α↑, IL-1β↑	[95]
	Ginsenoside Rg5	IL-1β↑, IL-10↑, NF-kB, Phosphorylation of p38 MAPK down	[96]
		INOS↓, TNF-α↓, IL-1β↑, COX-2↓, MMP-9↓	
	Polysaccharides	Ginseng polysaccharide	
		NO↓, TNF-α↓, IL-6↓	[97]
	Volatile oils	Ginseng volatile oil	
		MyD88↑, TLR4↑, TNF-α↑, IL-6↓, IL-1β↓	[98]

Zhou et al. • Volume 2 • Number 2 • 2022 www.ahmedjournal.com
the interaction of GR-related functional proteins in vitro, such as heat-shock protein 90 and histone deacetylase 6 and the subsequent functional recovery of the endoplasmic reticulum and mitochondrial [59]. It has been reported that ginsenoside Rg1 can protect neural stem cells and promote reproduction and committed differentiation of neural stem cells through anti-oxidation [60-64]. Ginsenoside Rg3 resists neurotoxicity by increasing the expression of nerve growth factor [65]. Ginsenoside Rg1 has a neuroprotective effect, which is associated with decreased expression of aquaporin (AQP4), which decreases the permeability of the blood-brain barrier and the degree of brain edema [66].

Improvement of impaired mitochondrial functions

The SARS-CoV-2 infection hijacks mitochondrial function and alters the host’s metabolic pathways and immune responses to facilitate pathogenesis. Impairment of mitochondrial structure and function induces energy metabolism deficiency. When energy is depleted, fatigue and exhaustion sensations occur in patients with LC [67]. Lactate dehydrogenase (LDH) is a crucial enzyme in energy metabolism that catalyzes the bidirectional conversion of lactate to pyruvate and NAD⁺ to reduce NADH (NADH). Thus, elevated LDH levels in COVID-19 not only indicate the struggle of an individual’s body to generate energy, but also reflect mitochondrial dysfunction [68-69].

Animal studies have demonstrated that *Ginseng Radix et Rhizoma* exerts anti-fatigue effects by improving energy metabolism. In fatigue-related behavioral trials, panaxyclod, an active component of wild *Ginseng Radix et Rhizoma*, enhanced forced swimming performance by changing the subject’s LDH level [70]. Polysaccharides, such as mixed water-soluble polysaccharides, can reduce immobility periods by lowering LDH and creating such side effects as heat-shock protein 90 and histone deacetylase 6 generate energy, but also reflect mitochondrial dysfunction [68-69]

Table 2:

Indication	Formula	Component
Qi deficiency	Qingjin Yiqi granule	*Ginseng Radix et Rhizoma*, *Ophiopogonis Radix*, *Schisandrae Chinensis Fructus*, *Poria*, *Pinelliae Rhizoma*, *Scrophulariae Rhizoma*, *Atractylodis Rhizoma*, *Cirti Reticulatae Pericarpium*, *Glycyrrhizae Radix et Rhizoma*, *Bupleuri Radix*, *Cimicifugae Rhizoma*, *Colicis Semen*, *Scutellariae Radix*, *Verbenae Herba*, *Phragmites Rhizoma*, *Lophatheri Herba*
	Bufei decoction	*Ginseng Radix et Rhizoma*, *Astragali Radix*, *Rehmanniae Radix Preparata*, *Schisandrae Chinensis Fructus*, *Asteris Radix et Rhizoma*, *Cortex*
	Baoyuan decoction	*Ginseng Radix et Rhizoma*, *Astragali Radix*, *Glycyrrhizae Radix et Rhizoma*, *Cinnamomi Cortex*
	Dabuyuan decoction	*Ginseng Radix et Rhizoma*, *Dioscoreae Rhizoma*, *Rehmanniae Radix Preparata*, *Eucommiae Cortex*, *Angelicae Sinensis Radix*, *Corni Fructus*, *Lycii Fructus*, *Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle*
	Renshen Yangrong decoction	*Astragali Radix*, *Angelicae Sinensis Radix*, *Cinnamomi Cortex*, *Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle*, *Cirti Reticulatae Pericarpium*, *Atractylodis Macrocephalae Rhizoma*, *Ginseng Radix et Rhizoma*, *Paonieae Radix Alba*, *Rehmanniae Radix Preparata*, *Schisandrae Chinensis Fructus*, *Poria*, *Polygalae Radix*, *Zingiberis Rhizoma Recens*, *Jujubae Fructus*
Blood stasis	Xiaochaihu decoction	*Bupleuri Radix*, *Pinelliae Rhizoma*, *Ginseng Radix et Rhizoma*, *Glycyrrhizae Radix et Rhizoma*, *Scutellariae Radix*, *Zingiberis Rhizoma Recens*, *Jujubae Fructus*

Ginseng Radix et Rhizoma-based formulas for LC treatment

The variation in SARS-CoV-2 and the complicated progression of LC indicate that single drugs alone may be modest and hampered by resistances or side effects in clinical settings. Therefore, holistic therapies based on compound prescriptions often achieve a better curative efficacy and fewer side effects. Such recipes have not only been practiced in traditional Chinese medicine as formulas for thousands of years, but are also increasingly accepted and becoming popular in modern medicine [74]. Notably, reasonable compatibility plays a significant role in the valuable formula, which is not a simple quantitative addition of herbs, but generates the outcome of synergism and attenuation [73]. As the most common symptom in LC, profound fatigue is a challenge for both patients and healthcare providers. Since sparse clinical practice and various animal-based experiments have already confirmed the safe anti-fatigue effects of *Ginseng Radix et Rhizoma*, as well as its components, *Ginseng Radix et Rhizoma* is currently prescribed in the formula for LC clinical treatment (Table 2). Notably, most of these employ *Ginseng Radix et Rhizoma* as “Monarch”, which is the main efficacy-contributing herb in the formula. Among these formulas, it is noteworthy that Qingjin Yiqi granules significantly alleviate fatigue and have been recommended by the Rehabilitation Guidelines of Integrated Medicine for LC treatment in clinics [75].
Concluding remarks and future perspectives

After SARS-CoV-2 infection, sustained fatigue in LC shares features with ME/CFS, which can be caused by chronic inflammation, over-activation or weakening of the immune system, autonomic dysfunction, malfunctions in the hypothalamic-pituitary-adrenal axis, and neuroendocrine dysregulation. Compelling evidence has shown that *Ginseng Radix et Rhizoma* has anti-viral activity in both clinical and animal studies. In animal models, *Ginseng Radix et Rhizoma* bioactive components—including ginsenosides, polysaccharides, and volatile oils—have been reported to exert immune regulatory functions to reduce the release of pro-inflammatory and inflammatory cytokines. *In vivo* studies, both in animal models and in clinical practice, have reported that bioactive components of *Ginseng Radix et Rhizoma* improve mitochondria-mediated energy production and regulate the endocrine system. These findings suggest that *Ginseng Radix et Rhizoma* is a promising therapeutic agent for treating LC-related fatigue. Some *Ginseng Radix et Rhizoma*-based formulas have been developed to maximize its curative efficacy while minimizing any side effects. Medical herbs, such as *Ginseng Radix et Rhizoma*, usually contain complex compound repertoires with functionally diverse roles that form a sophisticated network. Although positive clinical outcomes of *Ginseng Radix et Rhizoma* against fatigue have been shown, further investigations and quantitative analyses are required to understand the underlying cellular and molecular mechanisms and the responsible bioactive compounds. This outcome will inspire new strategies for personalized medicine formulas according to the condition of individual patients with optimized efficacy.

Conflict of interest statement

The authors declare no conflict of interest.

Funding

This project was funded by the Science & Technology Development Fund of the Tianjin Education Commission for Higher Education (2018KJ010).

Author contributions

Yu Wang and Yanyan Wang conceived and designed the article; and Yu Wang, Yanyan Wang, Bin Qu, Rui Shao, Qianru Zhao, Lanbo Liu, and Ming Huang revised the manuscript. All the authors have read and approved the final manuscript.

Ethical approval of studies and informed consent

Not applicable

Acknowledgements

None.

References

[1] Nabari N. Long covid: how to define it and how to manage it. BMJ 2020;370:m3489.
[2] Marshall M. The lasting misery of coronavirus long-haulers. Nature 2020;585(7825):339–341.
[3] Soriano V, Ganado-Pinilla P, Sánchez-Santos M, et al. Unveiling long COVID-19 disease. AIDS Rev 2020;22(4):227–228.
[4] Ravendran AV. Long COVID-19: challenges in the diagnosis and proposed diagnostic criteria. Diabetes Metab Syndr 2021;15(1):145–146.
[5] Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med 2021;27(4):601–615.
[6] Garg P, Arora U, Kumar A, et al. The “post-acute COVID” syndrome: how deep is the damage? J Med Virol 2021;93(2):673–674.
[7] Maltae E. Covid-19: what do we know about “long covid”? BMJ 2020;370:m2815.
[8] Greenhalgh T, Knight M, A’Court C, et al. Management of post-acute covid-19 in primary care. BMJ 2020;370:m3026.
[9] Callard F, Perego E. How and why patients made long covid. Soc Sci Med 2021;268:113426.
[10] Crock H, Raza S, Nowell J, et al. Long covid-mechanisms, risk factors, and management. BMJ 2021;374:n1648.
[11] Townsend L, Dyer AH, Jones K, et al. Persistent fatigue following acute covid-19 in primary care. BMJ 2020;370:m3026.
[12] Kang S, Min H. Ginseng, the ‘immunity booster’: the effects of *Panax ginseng* on immune system. *J Ginseng Res* 2012;36(4):354–368.
[13] Lu Y, Ma YM. Pharmacology of Chinese Materia Medica. 2nd ed. Beijing: People’s Health Publishing House; 2016:277–310.
[14] Arring NM, Millstone D, Marks LA, et al. Ginseng as a treatment for fatigue: a systematic review. *J Altern Complement Med* 2018;24(7):624–633.
[15] Yang J, Shin KM, Abu Dabrh AM, et al. Ginseng for the treatment of chronic fatigue syndrome: a systematic review of clinical studies. *Glob Adv Health Med* 2022;11.2164957X221079790.
[16] Choi JY, Woo TS, Yoon SY, et al. Red ginseng supplementation more effectively alleviates psychological than physical fatigue. *J Ginseng Res* 2011;35(3):331–338.
[17] Sadeghian M, Rahmani S, Zendehdel M, et al. Ginseng and cancer-related fatigue: a systematic review of clinical trials. *Nutr Cancer* 2021;73(8):1270–1281.
[18] Bartho DL, Liu H, Dakhdh SR, et al. Wisconsin Ginseng (*Panax quinquefolius*) to improve cancer-related fatigue: a randomized, double-blind trial, N07C2. *J Natl Cancer Inst* 2013;105(16):1230–1238.
[19] Yennurajalingam S, Reddy A, Tannir NM, et al. High-dose Asian Ginseng (*Panax ginseng*) for cancer-related fatigue: a preliminary report. *Integr Cancer Ther* 2015;14(5):419–427.
[20] Lee HW, Choi J, Lee Y, et al. Ginseng for managing menopausal woman’s health: a systematic review of double-blind, randomized, placebo-controlled trials. *Medicine (Baltimore)* 2016;95(38):e4914.
[21] Jason LA, Gaglio CL, Furst J, et al. Cytokine network analysis in a community-based pediatric sample of patients with myalgic encephalomyelitis/chronic fatigue syndrome. *Chronic Illn* 2022;17:43953221101606.
[22] Clayton EW. Beyond myalgic encephalomyelitis/chronic fatigue syndrome: an IOM report on redefining an illness. *JAMA* 2015;313(11):1101–1102.
[23] Poenaru S, Abdallah SJ, Corrales-Medina V, et al. COVID-19 and inflammatory bowel disease. *Ther Adv Infect Dis* 2021:8:20499361211009385.
[24] Ratan ZA, Rabbi Mashrur F, Runa NJ, et al. Ginseng, a systemic review and comparison of clinical presentation and symptomatology. *Medicina (Kaunas)* 2021;57(4):418.
[25] Katan ZA, Rabbi Mashrur F, Runa NJ, et al. Ginseng, a promising choice for SARS-COV-2 a mini review. *J Ginseng Res* 2022;46(2):183–187.
[26] Lee JS, Ko EJ, Hwang HS, et al. Antiviral activity of ginseng extract against respiratory syncytial virus infection. *Int J Mol Med* 2014;34(1):183–190.
[27] Yi YS. Ameliorative effects of ginseng and ginsenosides on acute covid-19 in primary care. *AIDS Res Ther* 2021;18(7):1102.
[28] Kang Z, Zhonga Y, Wu T, et al. Ginsenoside from ginseng: a promising treatment for inflammatory bowel disease. *Pharmacol Rep* 2021;73(3):700–711.
[29] Lee JM, Hah JO, Kim HS. The effect of red ginseng extract on inflammatory cytokines after chemotherapy in children. *J Ginseng Res* 2012;36(4):383–390.
Zhou et al. Volume 2 Number 2 2022

[30] Lazear HM, Schoggins JW, Diamond MS. Shared and distinct functions of type I and type III interferons. Immunity 2019;50(4):907–923.

[31] Liu FX, Lin ZX, Zhang HL, et al. Study of the mechanism of action and potential targets of ginseng anti-fatigue. Chin J Clin Mater Med 2019;44(24):5479–5487.

[32] Li C, Li TG, Wang HM, et al. [Effect of moxibustion on IL-6/STAT3 signaling in frontal cortex of fatigue rats]. Zhen Ci Yan Jiu 2020;45(6):468–472.

[33] Zhan ZH, Chen WX, Song N, et al. Based on molecular interaction network, the mechanism of Danpu tablets in the prevention and treatment of non-alcoholic fatty liver disease in the PI3K/AKT/IKK-β/TNF pathway was discussed. Chin J Immunol 2021;1:20.

[34] Pan XB, Li XY, Wang ZX, et al. Research progress on the NLRP3-(Caspase-1)-1/16 signaling pathway. China Med Herald 2019;16(1):41–44.

[35] Li XT, Meng Y, Wei L, et al. Effect of ginsenoside CK on cognitive dysfunction and hippocampal NLRP3 inflammasome in mice with Alzheimer’s disease induced by Abβ. Chinese Herbal Med 2021;3(8):1952–1955.

[36] Yuan HJ. Effect of acupuncture on the killing activity of NK cells in rats with chronic fatigue syndrome and its regulatory mechanism of miR-34a-5p/ERK/PERK. Chengdu: Chengdu University of Traditional Chinese Medicine; 2018.

[37] Yumbe L, Arum P, Youngdon P, et al. Ginsenoside 20R(8)-R3 enhances natural killer cell activity by increasing activating receptor expression through the MAPK/ERK signaling pathway. Int J Immunopharmacol 2022;107.

[38] Fan QS, Cui RJ, Zhao LH, et al. Mechanisms of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy. Neurological Res 2015;10(5):753–759.

[39] Lee J, Yao JP, Wang X, et al. Neuroprotective effects of ginsenosides on neural progenitor cells against oxidative injury. Mol Med Rep 2016;13(4):3083–3091.

[40] Xiang Y, Wang SH, Wang L, et al. Effects of ginsenoside Rg1 regulating Wnt/beta-catenin signaling on neural stem cells to enhance neuroregeneration. Stem Cells Int 2019;2019:5010184.

[41] Gao J, Wan F, Tian M, et al. Effects of ginsenoside Rg1 on the proliferation and glial-like directed differentiation of embryonic rat cortical neural stem cells in vitro. Mol Med Rep 2017;16(6):6857–6881.

[42] Wu J, Pan Z, Cheng M, et al. Ginsenoside Rg1 facilitates neural differentiation of mouse embryonic stem cells via GR-dependent signaling pathways. Neurochem Int 2013;62(1):92–102.

[43] Chen QW, Shu QJ, Liu QJ, et al. Protective Effect of Ginsenoside Rg3 on Rats with Oxaliplatin Induced Neurotoxicity. Chongqing: The 1st Youth Integrative Medicine Oncology Academic Forum; 2015.

[44] Zheng GQ, Zhou Y. A Study on the Protective Mechanism of Ginsenoside Rg1 on Cerebral Edema After Cerebral Ischemia and Reperfusion in Rats. Nanjing: 2013 National Academic Conference on Alzheimer’s and Related Diseases; 2013.

[45] Paul BD, Lemle MD, Kamaroff AL, et al. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc Natl Acad Sci 2021;118(34):e2024358118.

[46] Godo AC, Davanzo GG, Monteiro L, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1 alpha/glycogen-deprived axis. Cell Metabolism 2020;32(3):498–499.

[47] Santos CS, Morales CM, Alvarez ED, et al. Determinants of COVID-19 disease severity in patients with underlying rheumatic disease. Clin Rheumatol 2020;39(9):2789–2796.

[48] Shin IS, Kim DH, Jang EY, et al. Anti-fatigue properties of ginsenoside Rb1-induced neural stem cell transplantation on postoperative fatigue syndrome induced by major small operation. J Pharmacopuncture 2019;22(2):68–74.

[49] Yu F, Lu S, Yu F, et al. Protective effects of polysaccharide from Euphorbia kansui on postoperative fatigue syndrome induced by major small operation. J Pharmacopuncture 2006;84(10):1071–1079.

[50] Oh HA, Kim DE, Choi HJ, et al. Anti-fatigue effects of 20S-protopanaxadiol and 20(S)-protopanaxatriol in mice. Biol Pharm Bull 2015;38(9):1415–1419.

[51] Tan S, Zhou F, Li N, et al. Anti-fatigue effect of ginsenoside Rb1 on postoperative fatigue syndrome induced by major small intestinal resection in rat. Biol Pharm Bull 2013;36(10):1634–1639.

[52] Zhou M, Hong Y, Lin X, et al. Recent pharmaceutical evidence on the compatibility rationality of traditional Chinese medicine. J Ethnopharmacol 2017;206:363–375.

[53] Jia W, Gao WY, Yan YQ, et al. The rediscovery of ancient Chinese herbal formulas. Phytother Res 2004;18(8):681–686.

[54] Pang W, Yang F, Zhao Y, et al. Qinqing Yiju granules for post-COVID-19 condition: a randomized clinical trial. J Evid Based Med 2022;15(1):30–38.

[55] Paik S, Choe JH, Choi GE, et al. Rg6, a rare ginsenoside, inhibits systemic inflammation through the induction of interleukin-10 and microRNA-146a. Sci Rep 2019;9(1):4342.

[56] Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological dysfunction pursuits for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol 2022;23(2):210–216.

[57] Li G, Liu Z, Wang X, et al. Recent advances in Panax ginseng C. A. Meyer as a herb for anti-fatigue: an effects and mechanisms review. Foods 2021;10(5):1030.

[58] Zhou SS, Zhou J, Xu JD, et al. Ginseng ameliorates exercise-induced fatigue potentially by regulating the gut microbiota. Food Funct 2021;12(9):3954–3964.

[59] Wostyn P. COVID-19 and chronic fatigue syndrome: is the worst yet to come? Med Hypotheses 2021;146:110469.

[60] Jung SJ, Hwang JH, Park SH, et al. A 12-week, randomized, double-blind study to evaluate the efficacy and safety of liver function after using fermented ginseng powder (GBCK25). Food Nutr Res 2020;64.
[78] Zhang W, Zhang Y, Ma X, et al. Effects of acupuncturing Pishu combined with Ginsenoside Rg3 on the immune function of rats with chronic fatigue. Int J Clin Exp Med 2015;8(10):19022–19029.

[79] Lin K, Liu T. Effects of moderate-load treadmill exercise and ginsenoside Rg3 on immune function in rats with chronic fatigue syndrome. Shaanxi Tradit Chin Med 2014;35(9):1259–1260.

[80] Ren LM, Yang S, Lu SY, et al. Total ginsenosides reduce lipopolysaccharide-induced inflammation and oxidative stress in macrophage RAW264.7 cells. Chin J Hosp Pharm 2022;42(9):896–901.

[81] Nie ZF, Sun XY, Zhang TP, et al. Effects of ginsenoside Rb2 on oxidative stress and inflammatory factor expression and improves peripheral nerve injury in diabetic rats. Chin J Immunol 2021;37(4):486–491.

[82] Kang XX. Antidepressant Effect of Ginsenoside Rg1-dependent NLRP3 inflammasome. Chengdu: University of Electronic Science and Technology of China; 2021.

[83] Mao JY, Ma X, Zhu J, et al. Ginsenoside Rg1 ameliorates cardioprotective effects of ginsenoside Rg3 in human osteoarthristis chondrocytes and a rat model of anterior cruciate ligament transection. Nutrients 2017;9(3):263.

[84] Song P. Ginsenoside Rb1 Protects Against Staphylococcus aureus-induced lung injury by inhibiting inflammation, apoptosis and oxidative stress. Wuhan: Huazhong Agricultural University, 2020.

[85] Li DW, Zhou FZ, Sun XC, et al. Ginsenoside Rb1 protects dopaminergic neurons from inflammatory injury induced by intranigral lipopolysaccharide injection. Neural Regen Res 2019;14(10):1814–1822.

[86] Wu Y, Yu Y, Szabo A, et al. Central inflammation and leptin resistance are attenuated by ginsenoside Rb1 treatment in obese mice fed a high-fat diet. PLoS One 2014;9(3):e92618.

[87] Sun MM, Ji YT, Li Z, et al. Ginsenoside Rb3 reduces the Inflammatory Response Caused by LPS of Porphyromonas gingivalis by Inhibiting the MAPK/akt/NF-kB Signaling Pathway. Shanghai: 2020, the 10th National Oral Biomedical Academic Annual Meeting of the Oral Biomedical Professional Committee of the Chinese Stomatological Association and the 6th National Oral Outstanding Youth Forum; 2020.

[88] Lin Y, Hu Y, Hu X, et al. Ginsenoside Rb2 improves insulin resistance by inhibiting adipocyte pyroptosis. Adipocyte 2020;9(1):302–312.

[89] Xue Y, Fu W, Liu Y, et al. Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation. J Ethnopharmacol 2020;235(11):4039–4049.

[90] Huang Q, Wang T, Wang HY. Ginsenoside Rb2 enhances the anti-inflammatory effect of omega-3 fatty acid in LPS-stimulated RAW264.7 macrophages by upregulating gpr120 expression. Acta Pharmacol Sin 2017;38(2):192–200.

[91] Wang L, Zhang Y, Wang Z, et al. Inhibitory effect of ginsenoside-Rd on carrageenan-induced inflammation in rats. Can J Physiol Pharmacol 2012;90(2):229–236.

[92] Xue Y, Yu X, Zhang X, et al. Protective effects of ginsenoside Rc against acute cold exposure-induced myocardial injury in rats. J Food Sci 2021;86(7):3252–3264.

[93] Li Q, Zhai CM, Wang GD, et al. Ginsenoside Rb1 attenuates ovalbumin-induced asthma by regulating Th1/Th2 cytokines balance. Biosci Biotechnol Biochem 2021;85(8):1809–1817.

[94] Qin XY. A Preliminary Study of Ginsenoside Rf targeting the BDNF-TrkB-CREB signaling pathway to alleviate pain and inflammatory response in rat models of endometriosis. J Natl: Shandong University; 2019.

[95] Ma R, Tian JH, Jiang J, et al. Inhibitory effect of ginsenosides on NLRP3 inflammatory body activation. J China Pharmaceut Univ 2016;47(3):614–618.

[96] Zhang QC, Li ZY, Lou YJ, et al. Inhibitory Effect of Ginsenoside Rh2 on Inflammatory Signaling Inducing Proliferation of PROST Cancer Cells PC3. Nanchang: The 1st Men’s Health TCM and Western Medicine Collaborative Innovation Forum and the 3rd National Andrology Youth Academic Forum of Integrative TCM and Western Medicine; 2019.

[97] Bao X, Fu R, Duan Z, et al. Ginsenoside Rk3 alleviates gut microbiota dysbiosis and colonic inflammation in antibiotic-treated mice. Food Res Int 2021;146:110465.

[98] Li Z, Zhao L, Chen J, et al. Ginsenoside Rk1 alleviates LPS-induced depression-like behavior in mice by promoting BDNF and suppressing the neuroinflammatory response. Biochem Biophys Res Commun 2020;530(4):658–664.

[99] Zhu Y, Zhu C, Yang H, et al. Protective effect of ginsenoside Rg3 against kidney injury raa inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharm Res 2020;155:104746.

[100] Lee YY, Park JS, Jung JS, et al. Anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide-stimulated BV2 microglial cells. Int J Mol Sci 2013;14(5):9820–9833.

[101] Li W, Yan MH, Liu Y, et al. Ginsenoside Rg3 ameliorates psoriasis-like skin lesions by suppressing proliferation and NLRP3 inflammasomes in keratinocytes. J Food Sci 2022;46(5):e14053.

[102] Cheng WD, Jing JH, Wang Z, et al. Chondroprotective effects of ginsenoside Rg3 in human osteoarthritis chondrocytes and a rat model of anterior cruciate ligament transection. Nutrients 2017;9(3):263.

[103] Tong T, Dong WQ, Liang XY, et al. Experimental study on the immunomodulatory effect of ginseng polysaccharides. Beijing Tradit Chin Med 2016;35(1):41–45.

[104] Wang DD, Shao S, Zhang YQ, et al. Insight into polysaccharides from Panax ginseng C. A. Meyer in improving intestinal microbiota and autophagy. Front Immunol 2021;12:683911.

[105] Shao R, Wang YY, Qu B, Wang Y. Anti-fatigue effect from Ginseng. Changchun: Jilin University, 2021.

How to cite this article: Zhou XD, Zhang KY, Liu LB, Zhao QR, Huang M, Shao R, Wang YY, Qu B, Wang Y. Anti-fatigue effect from Ginseng Radix et Rhizoma: a suggestive and promising treatment for long COVID. Acupunct Herb Med 2022;2(2):69–77. doi: 10.1097/HM9.0000000000000033