Outline

• Fresnel vs. Fraunhofer diffraction
• Talbot effect
• Fresnel zones & plates
• Fraunhofer diffraction
• 2D Fourier Transforms
Fresnel vs. Fraunhofer diffraction

Fresnel: occurs when either S or P are close enough to the aperture that wavefront curvature is not negligible

Fraunhofer: both incident and diffracted waves may be considered to be planar (i.e. both S and P are far from the aperture)
Fresnel vs. Fraunhofer criterion

\[\Delta \approx \frac{h^2}{2r'} \approx \frac{h^2}{2p} \]

view from source:

\[\Delta \approx \frac{h^2}{2r} \approx \frac{h^2}{2q} \]

view from point of interest:

near field ≡

\[\Delta > \lambda \]

\[\frac{1}{2} \left(\frac{1}{p} + \frac{1}{q} \right) h^2 > \lambda \]

where \(d \) represents \(p \) or \(q \) (=distance from source or point to aperture)

\[d < \frac{A}{\lambda} \]

\(A \) is aperture area
Fraunhofer diffraction occurs when:

\[F = \frac{h^2}{d\lambda} \ll 1 \]

Fresnel diffraction occurs when:

\[F = \frac{h^2}{d\lambda} \geq 1 \]

where \(h \) = aperture or slit size
\(\lambda \) = wavelength
\(d \) = distance from the aperture (\(p \) or \(q \))
From Fresnel to Fraunhofer diffraction

Incident plane wave

\[F >> 1 \]

\[F << 1 \]
Fresnel diffraction from infinite array of slits: Talbot effect

- one of the few Fresnel diffraction problems that can be solved analytically
- beam pattern alternates between two different fringe patterns
Talbot “carpet”
Fresnel zones (180° phase difference)

Fresnel’s approach to diffraction from circular apertures

Zone spacing = \(\lambda/2 \):

- \(r_1 = r_0 + \lambda/2 \)
- \(r_2 = r_0 + \lambda \)
- \(r_3 = r_0 + 3\lambda/2 \)
- \(\vdots \)
- \(r_n = r_0 + n\lambda/2 \)

These are called the Fresnel zones

(Note: all zones have equal areas)
Adding up light from the zones

as we draw a phasor diagram where each zone is subdivided into 15 subzones

\[a_1 = A_1 \]

- obliquity factor shortens successive phasors
- circles do not close, but spiral inwards
- amplitude \(a_1 = A_1 \): resultant of subzones in 1st half-period zone
- composite amplitude at \(P \) from \(n \) half-period zones:

\[
A_n = a_1 + a_2 e^{i\pi} + a_3 e^{i2\pi} + a_4 e^{i3\pi} + \ldots + a_n e^{i(n-1)\pi}
\]

\[
A_n = a_1 - a_2 + a_3 - a_4 + \ldots a_n
\]
Some interesting implications of Fresnel zones

A circular aperture is matched in size with the first Fresnel zone:

What is amplitude of the wavefront at P?

\[A_P = a_1 \]

Now open the aperture wider to also admit zone 2:

\[A_P \sim 0! \]

Now remove aperture, allowing all zones to contribute:

\[A_P = \frac{1}{2} a_1 !!! \]

(To find intensity – square the amplitudes, i.e. it’s only \(\frac{1}{4}\) of the 1st zone!)
Some interesting implications of Fresnel zones

A circular disk is matched in size with the first Fresnel zone:

What is amplitude of the wavefront at P?

- all zones except the first contribute
- first contributing zone is the second

$$A_P = \frac{1}{2} a_2$$

Irradiance at center of shadow nearly the same as without the disk present!

How absurd!

Siméon Denis Poisson (1781-1840)
Poisson/Arago spot

Francois Arago (1786-1853)
The Fresnel zone plate

$A_n = a_1 - a_2 + a_3 - a_4 + \ldots a_n$

If the 2nd, 4th, 6th, etc. zones are blocked, then:

$A_{16} = a_1 + a_3 + a_5 + a_7 + a_9 + a_{11} + a_{13} + a_{15}$

Amplitude at P is 16 times the amplitude of $a_1/2$

Irradiance at P is $(16)^2$ times! (a.k.a. focusing)
An alternative to blocking zones

Phases of adjacent Fresnel zones changed by π
Fresnel lighthouse lens

other applications: overhead projectors
 automobile headlights
 solar collectors
 traffic lights
Back to Fraunhofer diffraction

- Typical arrangement (or use laser as a source of plane waves)
- Plane waves in, plane waves out

![Diagram of Fraunhofer diffraction](image)
Fraunhofer diffraction

\[g_{\text{out}}(x', y'; z) = \frac{1}{i\lambda z} \exp \left\{ i2\pi \frac{z}{\lambda} \right\} \iint g_{\text{in}}(x, y) \exp \left\{ i\pi \frac{(x' - x)^2 + (y' - y)^2}{\lambda z} \right\} \, dx \, dy \]

\[g_{\text{out}}(x', y'; z) = \frac{1}{i\lambda z} \exp \left\{ i2\pi \frac{z}{\lambda} \right\} \iint g_{\text{in}}(x, y) \exp \left\{ i\pi \frac{x'^2 + x^2 - 2xx' + y'^2 + y^2 - 2yy'}{\lambda z} \right\} \, dx \, dy \]

\[\approx \exp \left\{ i2\pi \frac{z}{\lambda} + i\pi \frac{x'^2 + y'^2}{\lambda z} \right\} \iint g_{\text{in}}(x, y) \exp \left\{ -i2\pi \frac{xx' + yy'}{\lambda z} \right\} \, dx \, dy \]

\[|...| = 1 \]

\[g_{\text{out}}(x', y'; z) \approx \exp \left\{ i2\pi \frac{z}{\lambda} + i\pi \frac{x'^2 + y'^2}{\lambda z} \right\} \iint g_{\text{in}}(x, y) \exp \left\{ -i2\pi \left(ux' + uy' \right) \right\} \, dx \, dy \]
Fraunhofer diffraction \propto Fourier Transform: Rectangular aperture

\[g_{in}(x, y) = \text{rect} \left(\frac{x}{x_0} \right) \text{rect} \left(\frac{y}{y_0} \right) \]

\[G_{in}(u, v) = x_0 y_0 \text{sinc} \left(x_0 u \right) \text{sinc} \left(y_0 v \right) \]

\[g_{out}(x', y'; z \to \infty) \propto \text{sinc} \left(\frac{x_0 x'}{\lambda z} \right) \text{sinc} \left(\frac{y_0 y'}{\lambda z} \right) \]

Free space propagation by $l \to \infty$
Circular aperture

\[g_{in}(x, y) = \text{circ} \left(\frac{\sqrt{x^2 + y^2}}{r_0} \right) \]

\[G_{in}(u, v) = r_0^2 \text{jinc} \left(r_0 \sqrt{u^2 + v^2} \right) \]

\[\equiv r_0 J_1 \left(\frac{2\pi \sqrt{u^2 + v^2}}{\sqrt{u^2 + v^2}} \right) g_{out}(x', y'; z \to \infty) \propto \text{jinc} \left(\frac{2\pi r_0 \sqrt{x'^2 + y'^2}}{\lambda z} \right) \]

Input field

Far-field

Airy pattern

free space propagation by

\[l \to \infty \]
Fourier transform pair

\[G(\nu) = \int_{-\infty}^{+\infty} g(t) \exp \{ -i2\pi \nu t \} \, dt. \]

1D

\[g(t) = \int_{-\infty}^{+\infty} G(\nu) \exp \{ i2\pi \nu t \} \, d\nu. \]

\[G(u, v) = \iint_{-\infty}^{+\infty} g(x, y) \exp \{ -i2\pi (ux + vy) \} \, dx \, dy. \]

2D

\[g(x, y) = \iint_{-\infty}^{+\infty} G(u, v) \exp \{ i2\pi (ux + vy) \} \, dudv. \]
Spatial domain ↔ (angular) frequency domain

\[\cos \left(2\pi \frac{x}{\Lambda} \right) \]

\[\frac{1}{2} \delta \left(u + \frac{1}{\Lambda} \right) \delta (v) + \frac{1}{2} \delta \left(u - \frac{1}{\Lambda} \right) \delta (v) \]

Space domain

Frequency (Fourier) domain
Tilted grating

\[
\cos \left(2\pi \frac{x \sin \theta - y \cos \theta}{\Lambda} \right)
\]

\[
\frac{1}{2} \delta \left(u + \frac{\sin \theta}{\Lambda} \right) \delta \left(v - \frac{\cos \theta}{\Lambda} \right) + \frac{1}{2} \delta \left(u - \frac{\sin \theta}{\Lambda} \right) \delta \left(v + \frac{\cos \theta}{\Lambda} \right)
\]

Space domain

Frequency (Fourier) domain
Linear superposition

\[a_1 \cos \left(\frac{2\pi x}{\Lambda_1} \right) + a_2 \cos \left(\frac{2\pi x}{\Lambda_2} \right) \]

\[\frac{a_1}{2} \delta \left(u + \frac{1}{\Lambda_1} \right) \delta (v) + \frac{a_2}{2} \delta \left(u + \frac{1}{\Lambda_2} \right) \delta (v) + \]

\[\frac{a_1}{2} \delta \left(u - \frac{1}{\Lambda_1} \right) \delta (v) + \frac{a_2}{2} \delta \left(u - \frac{1}{\Lambda_2} \right) \delta (v) \]
Scaling

\[\mathcal{F} \left\{ g \left(\frac{x}{a}, \frac{y}{b} \right) \right\} = |ab| G(au, bv) \]
Shift theorem

\[\mathcal{F} \{ g(x - a, y - b) \} = \exp \{ i2\pi(au + bv) \} \ G(u, v) \]
The convolution theorem

\[\mathcal{F}\{f \ast g\} = \mathcal{F}\{f\} \cdot \mathcal{F}\{g\} \quad \text{or} \quad \mathcal{F}\{f \cdot g\} = \mathcal{F}\{f\} \ast \mathcal{F}\{g\} \]
Links/references

http://edu.tnw.utwente.nl/inlopt/overhead_sheets/Herek2010/week7/13.Fresnel%20diffraction.ppt

http://ocw.mit.edu/courses/mechanical-engineering/2-71-optics-spring-2009/video-lectures/lecture-17-fraunhofer-diffraction-fourier-transforms-and-theorems/MIT2_71S09_lec17.pdf