我々の社会生活の多くの場面を支えているエラストマーを、よりしなやかに、しかもタフにするという研究が進展しつつある。エラストマーは、弾性がある(elastic)、とポリマー(polymer)、の組み合わせで作られた造語で、力が加わると伸び、力が解放されると元の状態に戻る高分子材料である。ゴム、ゲルなどが含まれ、自動車、飛行機、スポーツ用品、精密機械や高層ビルの除震、防振材料などに広く使われている。エラストマーは高分子材料で、構成する巨大分子間を適度な数の架橋結合で結びつけ、柔軟な材料にしている。エラストマーの靭性を高めるには架橋結合の数を増やす、またはフィラーを入れるなどがあるが、いずれも柔軟性を失わせることになる。エラストマーの柔軟性と靭性とは一般に二律背反関係にあるので、柔軟性を失うことなく靭性を高めるのは容易でない。今、架橋結合に新たな化学結合を取り入れることで、この二律背反関係を克服し、柔軟で強靭なエラストマーを開発する研究が進展している。

Science and Technology of Advanced Materialsに発表された、日本、名古屋大学の竹岡敬和等によるレビュー論文Improvement of mechanical properties of elastic materials by chemical methodsは、内閣府総合科学技術・イノベーション会議が主導する革新的研究開発推進プログラム(ImPACT)の一つである「超薄膜化・強靭化「しなやかタフポリマー」の実現」の一環として行われた。
れた柔軟で強靭なエラストマーを開発するという研究の成果を中心に、最近のエラストマー研究の進展状況を紹介している。

エラストマーは、長い鎖状の高分子の集合体であり、構成する個々の高分子は直径が約0.1 nm、分子量が100,000程度、伸ばした長さが1000 nm程度である。エラストマー中で、高分子はランダムなコイル状になっていて、所々で隣り合う高分子が架橋結合により結びついている。このランダムなコイル状の高分子は負荷に応じて変形できることから、エラストマーは引っ張ると容易に伸び、また負荷を外すと元の形に戻ることができる。エラストマーの弾性と靭性は構成する高分子間の相互作用に依存する。したがって、エラストマーの機械的性質を制御するためには高分子同士の結びつきを制御することが重要である。

エラストマーの靭性を向上させるために高分子間に可逆的な化学結合、すなわち、強い水素結合、イオン結合、配位子結合などを取り入れることが有効であることが紹介されている。これらの結合力はエラストマーが変形する時、結合したり、結合が切れるように可逆的に作用することができ、エラストマーの柔軟性を失うことなく、よりタフになることができる。示された例として、水素結合を取り入れ、強度を高めたヒドロゲルでは最大600%まで変形可能で、しかも負荷が取り除かれるとき、37°Cでは数分以内に、また50°Cでは数秒で元の形状に戻ることができる。

また、高い靭性を持つエラストマーを作るために、架橋点が自由に動くことのできる架橋様式をエラストマー構造に導入する試みが行われている。これに用いられている分子はポリロタキサンと呼ばれ、環状の分子を直鎖状の分子が貫いた構造を持つ。最適な組み合わせとして、直鎖状の分子にポリエチレングリコール、環状分子にα-シクロデキストリンが用いられ、両者を水中で反応させ、靭性を飛躍的に向上させたエラストマーの合成に成功している。

著者達は、エラストマーに可逆的な結合と、可動環状分子を組み合わせることで、より高い伸張性を持ち、しかも今まで以上にタフなエラストマーが得られるであろうと示唆している。さらに、ポリマー材料の設計には分子の振る舞いを精密に調べることが重要である、と指摘している。
図の説明：異なる結合様式を選択、組み合わせてエラストマーに取り入れることで、その特性を制御する。

論文情報
タイトル：Improvement of mechanical properties of elastic materials by chemical methods
著者：Yukikazu Takeoka*, Fumio Asai & Size Liu
* Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan (E-mail: ytakeoka@chembio.nagoya-u.ac.jp)
引用：Science and Technology of Advanced Materials Vol. 21 (2020) p. 817

最終版公開日：2021年2月1日
本誌リンク https://doi.org/10.1080/14686996.2020.1849931（オープンアクセス）
Science and Technology of Advanced Materials 誌は、国立研究開発法人 物質・材料研究機構（NIMS）と Empa が支援するオープンアクセスジャーナルです。

企画に関する問い合わせ: stam-info@ml.nims.go.jp
