Complement inhibition does not impair the clinical antiviral capabilities of virus-specific T-cell therapy

Jeremy D. Rubinstein,1,2 Xiang Zhu,3 Carolyn Lutzko,1,3 Tom Leemhuis,4 Jose A. Cancelas,1,3,4 Sonata Jodele,1,2 Catherine M. Bollard,5,6 Patrick J. Hanley,5,6 Stella M. Davies,1,2 Michael S. Grimley,1,2 and Adam S. Nelson1,2

1Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH; 2Division of Bone Marrow Transplantation and Immune Deficiency and 3Division of Experimental Hematology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; 4Hoxworth Blood Center, University of Cincinnati, Cincinnati, OH; 5Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC; and 6Department of Pediatrics, The George Washington University, Washington, DC

Key Points

- The use of terminal complement blockade is compatible with virus-specific T-cell (VST) expansion and clinical effectiveness.
- VST and complement-blocking agent concurrent therapy may be safely used in patients with thrombotic microangiopathy and viral infections.

Introduction

The immunological response to viral infection is complicated and requires an intricate balance between the innate and adaptive arms of the immune system.1 Patients who are immunosuppressed are at increased risk of morbidity and mortality from ubiquitous viruses, and may not respond to traditional antiviral therapy.2,3 Virus-specific T cells (VSTs) generated in a rapid manufacturing process using pools of overlapping antigenic viral peptides (pepmix) have been used to successfully treat recurrent and/or refractory viral infections in this population.4-6 The complement system is essential for viral immunity and complement proteins are known to direct and modify the cellular immune response to viral infections.7,8 Thrombotic microangiopathy (TMA), a severe complication in susceptible individuals that can lead to organ failure or death, can be often triggered by viruses that can lead to complement-mediated systemic endothelial injury.9-14 The use of complement blockers has been reported to mitigate TMA,15 but the impact of complement blockade on the efficacy of VST activity has not yet been described. We assessed the impact of terminal complement blocker eculizumab on VST activity in patients receiving concurrent therapies for TMA and viral infection.

Methods

Patients with cytomegalovirus (CMV), Epstein-Barr virus (EBV), adenovirus and/or BK viremia, invasive viral disease, or symptomatic hemorrhagic cystitis/nephritis received quadrivalent donor-derived and/or third-party donor VSTs as previously described5 after study approval by the institutional review board. Clinical response to VSTs was determined 4 weeks after each infusion or at time of death. Complete response (CR) was defined as resolution of viremia by blood polymerase chain reaction quantification and/or resolution of associated symptoms. Partial response (PR) was defined as >50% reduction in viremia and associated symptoms.5,6 Interferon-γ enzyme-linked immunosorbent spot (ELISpot) was performed by pulsing patient peripheral blood mononuclear cells with the pertinent viral pepmix.5,6,16 High-risk complement-mediated TMA was diagnosed using published criteria.15 Eculizumab off-label therapy was administered using pharmacokinetic/pharmacodynamic-guided drug dosing with detailed drug level and complement blockade monitoring as previously reported.15,17 We evaluated response to VST infusions that were carried out under full blood complement blockade.

Results and discussion

One hundred seventy-seven patients have received a total of 351 infusions of VSTs during the duration of the study (2016-2020). Eighteen patients had TMA and received eculizumab at some point during VST therapy. Five patients were excluded from analysis. Two patients completed eculizumab therapy and had normalization of blood complement activity prior to infusion of VST. Three patients died, 6 to 10 days after VST infusion, of intracerebral hemorrhage, alveolar hemorrhage, and disseminated candidemia, respectively, which is prior to the expected timeframe of clinical efficacy.

Submitted 5 May 2020; accepted 19 June 2020; published online 22 July 2020. DOI 10.1182/bloodadvances.2020002252. © 2020 by The American Society of Hematology
UPN	Diagnosis	Age at HSCT, y	Conditioning regimen	GVHD prevention	Max sC5b-9, ng/mL	Ecu start to first VST, d	No. of Ecu doses	Source of VST product	Treated virus	Post-HSCT day at first VST	Viral load at first VST	ALC at time of first VST, cells/µL	Total no. of VST infusions while blocked*	Best response: CR, PR, NR	Current status
27	SCID	4.23	RIC	MAC CI	>1890	0	6	DD	ADV	64	ADV: 392 534 700	80	1	ADV-NR	Deceased, adenoviremia
54	DBA	11.67	MAC	T-CD	315	16	DD	ADV, CMV	36	ADV: 478	CMV: < 500	1640	1	ADV-CR	Alive
34	ZAP-70 deficiency	25.91	RIC	MAC CI	1641	8	DD	BKV	224	BKV: 2 074 700	1460	1	BKV-PR	Alive	
63	β-thalasemia	7.65	MAC	CI	195	10	12	DD	CMV: 1 401	40	2	CMV-CR	Alive		
94	ALL	18.96	MAC	CI	469	26	DD	ADV, BKV, EBV	94	ADV: 5 184	BKV: 1 440 951	120	3	ADV-CR	Alive
110	HLH	16.27	RIC	CI	453	9	DD then TP	BKV	30	BKV: 14 686	210	3	BKV-CR	Alive	
107	LRBA deficiency	13.48	RIC	CI	263	29	DD	ADV	86	ADV: 2 681	130	2	ADV-CR	Alive	
137	AML	4.26	MAC	CI	513	13	DD	BKV, EBV	36	BKV: 4 980	EBV: 2 730	380	2	BKV-CR, EBV-CR	Alive
215	CGD	15.19	MAC	CI	667	31	23	DD	CMV: 3 561	EBV: 21 627	300	2	CMV-PR, EBV-PR	Alive	
233	LPD	15.47	RIC	T-CD	331	6	16	DD	ADV, BKV	ADV: 1 431 107	BKV: 28 168	330	1	ADV-CR	Alive
45	CGD	11.55	MAC	T-CD	112	32	TP	BKV	133	BKV: 310 022	130	6	BKV-CR	Alive	
97	Disseminated adenovirus	18.68†	MAC	N/A	>1870	6	4	TP	ADV	N/A	ADV: 51 571 597	140	1	ADV-NR	Deceased, multiorgan failure

ADV, adenovirus; ALC, absolute lymphocyte count; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BKV, BK virus; CGD, chronic granulomatous disease; CI, calcineurin inhibitor–containing regimen; DBA, Diamond-Blackfan anemia; DD, donor derived; Ecu, eculizumab; GVHD, graft-vs-host disease; HLH, hemophagocytic lymphohistiocytosis; HSCT, hematopoietic stem cell transplant; LPD, lymphoproliferative disorder; MAC, myeloablative conditioning; Max, maximum; N/A, not applicable; NR, no response; RIC, reduced-intensity conditioning; SCID, severe combined immunodeficiency; T-CD, T-cell depletion; TP, third party; UPN, unique patient number.

*Number of discrete infusions. Some infusions treated >1 viral infection.

†Patient did not undergo HSCT; age listed is at time of VST infusion.
Thirteen patients included in the analysis received a total of 34 evaluable VST infusions during complement blockade. Demographics and disease characteristics are shown in Table 1. Ten patients received VSTs derived from their respective hematopoietic stem cell donors, 1 patient received both donor-derived VSTs and partially HLA-matched VSTs derived from a third-party donor, and 2 patients received third-party VSTs. The median number of VST infusions was 2 (range, 1-6). Indications for repeated infusion in a single patient included having persistent or new viral disease, receiving partially HLA-matched third-party VSTs (which are likely to have been derived from a third-party donor).
We performed an interferon-γ ELISpot in 5 patients to investigate the number of antiviral T lymphocytes present in the blood of patients following VST infusion during complement blockade. All 5 patients had a CR or PR and showed evidence of T-cell expansion, suggesting that complement inhibition does not interfere with the activity of infused allogeneic T cells in a meaningful way (Figure 1).

Based on these data, we believe the use of terminal complement inhibition is compatible with clinical response to VSTs in patients receiving both eculizumab and VSTs. Although commencing VST therapy after initiation of eculizumab raises the question of whether complement blockade promotes viremia, we previously have shown that there is no increased incidence of viral infection in pediatric HSCT recipients treated with eculizumab.19 Terminal complement blockade in our patients did not impact VST response, as demonstrated through monitoring of viral load and interferon-γ production. Novel evidence shows that the intracellularly active complement system, the complosome, plays a key role in the regulation of cell metabolic pathways that underlie normal human T-cell responses. In such cases, a specific intracellular targeting of complement proteins C5a or C5aR1 would be required to inhibit VSTs.7,20

These data are important for planning future studies. That certain viruses can trigger complement-mediated TMA leading to multiorgan injury and death is well described, and such cases may require concomitant therapy with complement inhibition and VSTs to control both viral illness and complement overactivation.10,21 Animal models demonstrate that complement system overactivation is implicated in acute respiratory distress syndrome22 (one of the immune-driven pathologies observed in severe cases of coronavirus such as severe acute respiratory syndrome coronavirus) and suggests that inhibition of complement signaling might be an effective treatment option.23 A subgroup of patients with severe COVID-19 is shown to have a hyperinflammatory syndrome with multiorgan failure, for which treatment with immune-modulating therapy, including complement-blocking agents, may be of benefit.24,25 In the search for a novel and effective therapy option for COVID-19, there are ongoing efforts to generate T cells directed against severe acute respiratory syndrome coronavirus 2. Such VSTs may need to be used in conjunction with complement blockers in severe cases, so it is imperative for us to know that complement-modulating therapy does not impact T-cell activation and effectiveness. In summary, our data suggest that the use of terminal complement blockade is compatible with VST expansion and clinical effectiveness. Complement-blocking agent therapy may be initiated or continued in patients receiving VST therapy if they have evidence of life-threatening complement overactivation.

Acknowledgments

The authors acknowledge the Cincinnati Children’s Hospital Medical Center (CHC) Bone Marrow Tissue Repository and the Cell Processing Core laboratory for ongoing technical assistance.

This work was supported by divisional funds from the Division of Bone Marrow Transplantation and Immune Deficiency. Part of the research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health (NIH) under award number R01HD093773 (S.J. and S.M.D.).

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Authorship

Contribution: J.D.R., S.J., S.M.D., and A.S.N. collected and analyzed the data and wrote the manuscript; X.Z. performed the ELISpot assays and provided contributions in data analysis and presentation; C.M.B. and P.J.H. created and shared the technology for generation of VSTs; C.L., T.L., and J.A.C. oversaw the preparation and quality control of infused cellular products; M.S.G. performed patient monitoring, collaborated in
Conflict-of-interest disclosure: S.J. and S.M.D. have a US provisional patent application pending, and have research support from Alexion. S.J. has received travel support from Omeros. C.M.B. has equity ownership in Mana Therapeutics, serves on the scientific advisory board and has filed patents that cover generation of virus-specific T cells, has stock ownership in Neximmune and Torque, and serves on the board of directors of Cabaletta Bio. P.J.H. is a cofounder of, and is on the board of directors of, Mana Therapeutics and has intellectual property related to virus-specific T cells. The remaining authors declare no competing financial interests.

ORCID profiles: J.D.R., 0000-0002-1934-2954; M.S.G., 0000-0003-2056-5167.

Correspondence: Jeremy D. Rubinstein, Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 7015, Cincinnati, OH 45229; e-mail: jeremy.rubinstein@cchmc.org.
22. Garcia CC, Weston-Davies W, Russo RC, et al. Complement C5 activation during influenza A infection in mice contributes to neutrophil recruitment and lung injury. *PLoS One*. 2013;8(5):e64443.

23. Gralinski LE, Sheahan TP, Morrison TE, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. *mBio*. 2018;9(5):e01753-18.

24. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. *Lancet*. 2020;395(10229):1033-1034.

25. McCreary EK, Pogue JM. Coronavirus disease 2019 treatment: a review of early and emerging options. *Open Forum Infect Dis*. 2020;7(4):ofaa105.