Structural features of antiviral APOBEC3 proteins are linked to their functional activities

Shingo Kitamura1,2, Hirotaka Ode1 and Yasumasa Iwatani1,3*

1 Laboratory of Infectious Diseases, Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
2 Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
3 Department of AIDS Research, Graduate School of Medicine, Nagoya University, Nagoya, Japan

*Correspondence: Yasumasa Iwatani, Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, 4-1-1 San-no-Maru, Naka-ku, Nagoya, Japan. e-mail: iwataniy@nnh.hosp.go.jp

INTRODUCTION

During coevolution of mammalian organisms and retroelements, the hosts have developed defense systems to restrict replication of these elements. The restriction factors include the A3 family of DNA cytidine deaminases, which is characterized by the presence of one or two Zn clusters consisting of (H/C)XE(X)23–28CXXC motifs (reviewed in Wedekind et al., 2003). In humans, there are seven members of the A3 family (A3A, B, C, DE, F, G, and H), each encoded in a tandem array on human chromosome 22. A3F and A3G are the most potent inhibitors of HIV-1, but only in the absence of the virus-encoded protein, Vif. HIV-1 utilizes Vif to abrogate A3 functions in the producer cells. More specifically, Vif, serving as a substrate receptor, facilitates ubiquitination of A3 proteins by forming a Cul5 (Cu5)-based E3 ubiquitin ligase complex, which targets A3 proteins for rapid proteasomal degradation. The specificity of A3 degradation is determined by the ability of Vif to bind to the target. Several lines of evidence have suggested that three distinct regions of A3 proteins are involved in the interaction with Vif. Here, we review the biological functions of A3 family members with special focus on A3G and base our analysis on the available structural information.

Keywords: APOBEC3, Vif, APOBEC3G, HIV, retrovirus, ubiquitin, cytidine deaminase, structure

Human APOBEC3 (A3) proteins are cellular cytidine deaminases that potently restrict the replication of retroviruses by hypermutating viral cDNA and/or inhibiting reverse transcription. There are seven members of this family including A3A, B, C, DE, F, G, and H, all encoded in a tandem array on human chromosome 22. A3F and A3G are the most potent inhibitors of HIV-1, but only in the absence of the virus-encoded protein, Vif. HIV-1 utilizes Vif to abrogate A3 functions in the producer cells. More specifically, Vif, serving as a substrate receptor, facilitates ubiquitination of A3 proteins by forming a Cul5 (Cu5)-based E3 ubiquitin ligase complex, which targets A3 proteins for rapid proteasomal degradation. The specificity of A3 degradation is determined by the ability of Vif to bind to the target. Several lines of evidence have suggested that three distinct regions of A3 proteins are involved in the interaction with Vif. Here, we review the biological functions of A3 family members with special focus on A3G and base our analysis on the available structural information.

THE HUMAN A3 FAMILY OF CYTIDINE DEAMINASES

The seven members of the human A3 family have a defining feature: each protein has one or two conserved zinc (Z)-coordinating deaminase domains. Zinc coordination is mediated by a histidine and two cysteines, which form a catalytic center for a cytidine deaminase activity. Based on the phylogenetic analysis, the Z domains fall into three types: Z1 [A3A and the C-terminal half domains (CTD) of A3B and A3G], Z2 [A3C, both halves of A3DE and A3F, and the N-terminal domains (NTD) of A3B and A3G], and Z3 (A3H; LaRue et al., 2009; Figure 1A). Within the Z2 types, the domain can be further subdivided into three subgroups based on the identity of the amino acid sequence: (1) the A3F NTD; (2) the A3G NTD; (3) the A3F CTD (Figure 1B). Each subgroup has highly conserved amino acid sequences. For example, A3F CTD is 77 and 88% identical to A3C and A3DE CTD, respectively, whereas it is 42% identical to A3G NTD. As described in more detail below, only the Z3 type (A3H) and the Z2 type (more specifically, the A3G NTD and the A3F CTD subgroups) contain a critical interface for binding HIV-1 Vif (Figure 1B). It is thought that there is a common structural feature for the organization of cytidine deaminases: all Z domains are believed to have a conserved core structure composed of five β-strands (β1–5) and six α-helices (α1–α6; Figure 2A). Although, to date, only the three-dimensional structure of the A3G CTD has been determined by NMR (Chen et al., 2008; Furukawa et al., 2009) or by X-ray crystallography.
A single amino acid difference in hA3G, domain having an HIV-1 Vif interface has been solved yet. Aspartic acid at position 128 (D128) versus lysine in the A3G of African green monkeys, determines species specificity by influencing Vif–A3G binding (Bogerd et al., 2004; Mangeat et al., 2004; Schrofelbauer et al., 2004; Xu et al., 2004). In addition, extensive site-directed mutagenesis revealed that the 128DPD130 motif of A3G, located at the loop between β4 and α4 shown in red (Figures 2B,C), is crucial for direct binding to HIV-1 Vif (Huthoff and Malim, 2007). Furthermore, there is a report that residue T32, which may be potentially phosphorylated by protein kinase A, is also involved in the Vif–A3G interaction by collaborating with R24 (Shirakawa et al., 2008). All of these critical residues are mapped on the variable loop structure in proximity to the nucleic acid binding surface (Figure 2B).

In contrast, two independent studies have shown that two C-terminal A3F residues, E289 and E324, located in helices α3 and α4, respectively, are critical for the interaction with HIV-1 Vif (Albin et al., 2010; Smith and Pathak, 2010). Interestingly, in the structural model of the A3F CTD, these two residues are close to some negatively charged surface residues although the location of these residues is separate from 128DPD130. In accord with phylogenetic similarities, A3F E289 and E324 are highly conserved in hA3C (E106 and E141) and hA3DE CTD (E302 and E337). These findings suggest that structural features of the Vif-binding interfaces might be conserved among the A3F CTD, A3C, and A3DE CTD, but different from the A3G NTD. In the case of A3H, the interface for Vif is likely to have a surface area close to that of 128DPD130 in the A3G NTD. The A3H gene is polymorphic, with four major haplotypes in humans. The four proteins have different levels of antiviral activity and sensitivity to HIV-1 Vif, in which haplotype II has the highest antiviral activity (Dang et al., 2008a; OhAinle et al., 2008; Harari et al., 2009; Tan et al., 2009; Li et al., 2010). By comparing the A3H variants, Zhen et al. (2010) identified a critical residue, E121, in A3H haplotype II for binding to HIV-1 (Figures 2B,C). Because the identity of amino acid sequences between Z2 and Z3 types, particularly the β4–α4 loop and the α4, is quite low, it is assumed that the putative Vif interface structure of A3H might be different from those of the A3G NTD or A3F CTD.

RESIDUES OF HIV-1 VIF THAT ARE CRITICAL FOR BINDING A3 PROTEINS

Extensive mutational analysis of HIV-1 Vif has led to the characterization of several distinct motifs in HIV-1 Vif that are required for formation of the Cul5-based E3 Ub ligase complex and recruitment of human A3 proteins (reviewed in Albin and Harris, 2010; Figure 3). The C-terminal half of Vif contains three conserved motifs: (1) the HCCH domain, which chelates zinc mediates the interaction with Cul5; (2) the SLQ motif, which binds elongin C (EloC); and (3) the PPLP motif, which is important for Vif dimerization and recruitment of A3G, albeit by an unknown mechanism. Meanwhile, the N-terminal half of Vif is involved in the interaction with A3 proteins. Figure 3 shows the compiled map of the critical residues that have been identified by several groups (Schrofelbauer et al., 2006; Tian et al., 2006; Russell and Pathak, 2007; He et al., 2008; Zhang et al., 2008; Chen et al., 2009; Pery et al., 2009; Zhen et al., 2010; Binka et al., 2011). Overall, it appears that the critical residues for binding to each Z domain type are discontinuous. This suggests that the interfaces in Vif might be determined by conformational constraints.
Vif-mediated ubiquitination occurs at the N-terminus in addition to certain lysine residues within 20 lysine residues of A3G. In contrast, another group could detect no N-terminal ubiquitination (Dang et al., 2008b). Although these apparent contradictions might be due to differences in the detection level of ubiquitination, it is important to consider the possibility that different tags attached at the C-terminal end of an A3G protein could create potential ubiquitination sites and/or mask the area where the four lysine residues are located (Iwatani et al., 2009). Moreover, while ubiquitination is associated primarily with the lysines in the CTD, the observation that there is also N-terminal ubiquitination could be of interest. The evidences of two distal ubiquitination sites in A3G may provide important structural insight, which implies two distinct types of structural configuration for Vif–A3G interaction. Further studies are needed to clarify Vif-mediated ubiquitination in the context of the E3 Ub ligase complex and to allow us to answer the following two questions: (1) How can we rationalize the relationship between the configuration of the N-terminal end and the proximal Vif-binding interface? (2) In particular, how can the Ub molecules be conjugated at the N-terminus, which is predicted to be a structurally flexible end?

CONCLUSION

Phylogenetic analyses and genetic studies of A3 and Vif have provided important evidence for three distinct types of interactions between human A3 and HIV-1 Vif proteins, which are determined by the characteristic Z domain types of A3G, A3F/C/DE, and A3H. Further understanding of Vif–A3 interactions could advance efforts to develop novel anti-HIV drugs, which would function as anti-Vif inhibitors. Although presenting a tremendous challenge, complementary studies focusing on the structure of the Vif-interactive A3 domain and Vif are also critical to accelerate future progress in this field.

ACKNOWLEDGMENTS

We thank Dr. Judith G. Levin (NIH, NICHD) for helpful discussions. This work was supported in part by a grant-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by a grant for HIV/AIDS research from the Ministry of Health, Labor, and Welfare of Japan.
REFERENCES

Albin, J. S., and Harris, R. S. (2010). Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert Rev. Mol. Med. 12, e4.

Albin, J. S., LaRue, R. S., Weaver, J. A., Brown, W. L., Shindo, K., Harjes, E., Matsuo, H., and Harris, R. S. (2010). A single amino acid in human APOBECF alters susceptibility to HIV-1 Vif. J. Biol. Chem. 285, 40785–40792.

Binka, M., Ooms, M., Steward, M., and Simon, V. (2011). The activity spectrum of Vif from multiple HIV-1 subtypes against APOBEC3G, APOBEC3F and APOBEC3H. J. Virol. (in press).

Bogerd, H. P., Doak, B. P., Wiegand, H. L., and Cullen, B. R. (2004). A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc. Natl. Acad. Sci. U.S.A. 101, 3770–3774.

Chen, G., He, Z., Wang, T., Xu, R., and Yu, X. F. (2009). A patch of positively charged amino acids surrounding the human immunodeficiency virus type 1 Vif and Virion encapsidation. J. Virol. 83, 3870–3882.

Chen, K. M., Harjes, E., Gross, P. J., Fahmy, A., Lu, Y., Shindo, K., Harris, R. S., and Matsuo, H. (2008). Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature 452, 116–119.

Dang, Y., Siew, L. M., Wang, T., Han, Y., Lampen, R., and Zheng, Y. H. (2008a). Human cytidine deaminase APOBEC3H restricts HIV-1 replication. J. Biol. Chem. 283, 1056–1064.

Dang, Y., Siew, L. M., and Zheng, Y. H. (2008b). APOBEC3G is degraded by the proteasomal pathway in a Vif-dependent manner without being polyubiquitylated. J. Biol. Chem. 283, 13124–13131.

Furukawa, A., Nagata, T., Matsumi, A., Habu, Y., Sugiyama, R., Hayashi, E., Kohyashi, N., Yokoyama, S., Takaku, H., and Katahira, M. (2009). Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G. EMBO J. 28, 440–451.

Goila-Gaur, R., and Strebel, K. (2008). HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology 5, 51.

Harari, A., Ooms, M., Mulder, L. C., and Simon, V. (2009). Polymorphisms and splice variants influence the antiretroviral activity of human APOBEC3H. J. Virol. 83, 295–303.

He, Z., Zhang, W., Chen, G., Xu, R., and Yu, X. F. (2008). Characterization of conserved motifs in HIV-1 Vif required for APOBEC3G and APOBEC3H interaction. J. Mol. Biol. 381, 1000–1011.

Holden, L. G., Prochnow, C., Chang, Y. P., Brandtsteiner, R., Chelico, L., Sen, U., Stevens, R. C., Goodman, M. F., and Chen, X. S. (2008). Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 456, 121–124.

Huthoff, H., and Malim, M. H. (2007). Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation. J. Virol. 81, 3807–3815.

Iwata, Y., Chua, D. S., Atoui, L., Xioshi, H., Shibata, J., Yamamoto, N., Levin, J. G., Groenbon, A. M., and Sugura, W. (2009). HIV-1 Vif-mediated ubiquitination/degradation of APOBEC3G involves four critical lysine residues in its C-terminal domain. Proc. Natl. Acad. Sci. U.S.A. 106, 19359–19364.

Irazuzta, A., Chester, A., Bayliss, J., Gisbourne, J., Dunham, L., Scott, J., and Navaratnam, N. (2002). An anthropoid-specific locus of the DNA deaminase domain of APOBEC3H. Genomics 79, 285–296.

LaRue, R. S., Andresdottir, V., Blanchard, Y., Conticello, S. G., Derve, D., Emerman, M., Greene, W. C., Jonsson, S. R., Landau, N. R., Loecht, M., Malik, H. S., Malim, M. H., M., Rozer, W. E., Harjes, E., Kono, T., Matsuo, H., Harris, R. S., Somasundaran, M., and Schif, C. A. (2010). Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces. Structure 18, 28–38.

Sheehy, A. M., Gaddis, N. C., Choi, J. D., and Malim, M. H. (2002). Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650.

Shirakawa, K., Takaori-Kondo, A., Yokoyama, M., Izumi, T., Matsui, M., Ito, K., Sato, T., Sato, H., and Uchiyama, T. (2008). Phosphorylation of APOBEC3G by protein kinase A regulates its interaction with HIV-1 Vif. Nat. Struct. Mol. Biol. 15, 1184–1191.

Simon, V., Zennou, V., Murray, D., Huang, Y., Ho, D. D., and Bienias, P. D. (2005). Natural variation in HIV-1 Vif affects interaction with the APOBEC3F domain of APOBEC3F and a potential role in HIV-1 diversification. PLoS Pathog. 1, e6. doi:10.1371/journal.ppat.0010006

Smith, J. L., and Pathak, V. K. (2010). Identification of specific determinants of human APOBEC3F, APOBEC3G, and APOBEC3D and African green monkey APOBEC3F that interact with HIV-1 Vif. J. Virol. 84, 12599–12608.

Tian, C., Xue, Y., Liu, B., Luo, K., Kong, W., Hildreth, J. E., and Liu, B. (2011). N-terminal hemagglutinin tag renders lysine-deficient APOBEC3G resistant to HIV-1 Vif-induced degradation by reduced polyubiquitylation. J. Virol. 85, 4510–4519.

Weekend, I., Dance, G. S., Sowerby, M. P., and Smith, M. (2003). Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet. 19, 207–216.

Wiegand, H. L., Doehle, B. P., Bogerd, H. P., and Cullen, B. R. (2004). A second human antiretroviral factor, APOBEC, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J. 23, 2451–2458.

Xu, H., Svarovskaia, E. S., Barr, R., Zhang, Y., Khan, M. A., Strebel, K., and Pathak, V. K. (2004). A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc. Natl. Acad. Sci. U.S.A. 101, 5652–5657.

Yu, X., Yu, Y., Liu, B., Luo, K., Kong, W., Mao, P., and Yu, X. F. (2003). Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1061.

Yu, X. F. (2006). Innate cellular defenses of APOBEC3 cytidine deaminases and viral counter-defenses. Curr. Opin. HIV AIDS 1, 187–193.

Zhang, W., Chen, G., Niewiadomska, A. M., Xu, R., and Yu, X. F. (2008). Distinct determinants in HIV-1 Vif and human APOBEC3 proteins are required for the suppression of diverse host anti-viral proteins. PLoS ONE 3, e936. doi:10.1371/journal.pone.0003963

Zhen, A., Wang, T., Zhao, K., Xiong, Y., and Yu, X. F. (2010). A single amino acid difference in human APOBEC3H variants determines HIV-1 Vif sensitivity. J. Virol. 84, 1902–1911.

Zheng, Y. H., Irwin, D., Kuros, T., Tokunaga, K., Sata, T., and Peterlin, B. M. (2004). Human APOBEC3F is another host
factor that blocks human immunodeficiency virus type 1 replication. J. Virol. 78, 6073–6076.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 14 November 2011; accepted: 02 December 2011; published online: 21 December 2011.

Citation: Kitamura S, Ode H and Iwatani Y (2011) Structural features of antiviral APOBEC3 proteins are linked to their functional activities. Front. Microbio. 2:258. doi: 10.3389/fmicb.2011.00258

This article was submitted to Frontiers in Virology, a specialty of Frontiers in Microbiology.

Copyright © 2011 Kitamura, Ode and Iwatani. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.