A scientific and applied issue arose regarding the need to reduce the volume of video information provided if it is confidential and reliable. For the cryptocompression coding of images on a differentiated basis while ensuring their confidentiality and key elements as a service component. On the third cascade of processing, it is proposed without loss of information quality. It involves a three-stage technology steps. This paper reports the development of a conceptual method for the source video data in a reduced dynamic range. The generation of a dimension of 16 × 16 elements. The method ensures a decrease in the amount of data for encryption by up to 40 times compared to TIFF and PNG technologies. The devised method does not introduce errors into the data in the coding process and refers to methods without loss of information quality.

Keywords: cryptocompression, coding, information protection, floating scheme, differentiated basis, service component.

References

1. Barannik, V., Sidchenko, S., Barannik, N., Barannik, V. (2021). Development of the method for encoding service data in cryptocompression image representation systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 103–115. doi: https://doi.org/10.15587/1729-4061.2021.235521

2. Sharma, R., Bollavarapu, S. (2015). Data Security using Compression and Cryptography Techniques. International Journal of Computer Applications, 117 (14), 15–18. doi: https://doi.org/10.5120/20621-3342

3. Jasuja, B., Pandya, A. (2015). Crypto-Compression System: An Integrated Approach using Stream Cipher Cryptography and Entropy Encoding. International Journal of Computer Applications, 116 (21), 34–41. doi: https://doi.org/10.5120/20463-2831

4. Gonzalez, R., Woods, R. (2018). Digital Image Processing. Pearson, 1168.

5. Announcing the Advanced Encryption Standard (AES). Federal Information Processing Standards Publication 197 (2001). NIST, 51. Available at: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

6. Rivest, R. L., Shamir, A., Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21 (2), 120–126. doi: https://doi.org/10.1145/359340.359342

7. Wallace, G. K. (1991). The JPEG still picture compression standard. Communications of the ACM, 34 (4), 30–44. doi: https://doi.org/10.1145/103085.103089

8. ISO/IEC 15444-1:2019. Information technology – JPEG 2000 image coding system – Part 1: Core coding system. Available at: https://www.iso.org/standard/78321.html

9. Ramakrishnan, M. (Ed.) (2019). Cryptographic and Information Security. Approaches for Images and Videos. CRC Press, 986. doi: https://doi.org/10.1201/9780429435461

10. Kurihara, K., Shiota, S., Kiya, H. (2015). An encryption-then-compression system for JPEG standard. 2015 Picture Coding Symposium (PCS). doi: https://doi.org/10.1109/pcs.2015.7170059

11. Naor, M., Shamir, A. (1995). Visual cryptography. Lecture Notes in Computer Science, 1–12. doi: https://doi.org/10.1007/bfb0053419

12. Chen, C.-C., Wu, W.-J. (2014). A secure Boolean-based multi-secret image sharing scheme. Journal of Systems and Software, 92, 107–114. doi: https://doi.org/10.1016/j.jss.2014.01.001

13. Dufaux, F., Ebrahimi, T. (2006). Toward a secure JPEG. Applications of Digital Image Processing XXIX. doi: 10.1109/12.686963

14. Yuan, L., Korshunov, P., Ebrahimi, T. (2015). Secure JPEG scrambling enabling privacy in photo sharing. 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). doi: https://doi.org/10.1109/fg.2015.7285022

15. ISO/IEC 15444-8:2007. Information technology – JPEG 2000 image coding system: Secure JPEG 2000 – Part 8. Available at: https://www.iso.org/standard/37382.html

16. Alimpiev, A. N., Barannik, V. V., Sidchenko, S. A. (2017). The method of cryptocompression presentation of video information resources in a generalized structurally positioned space. Telecommunications and Radio Engineering, 76 (6), 321–334. doi: https://doi.org/10.1615/telecomradeng.v76.i6.60

17. Barannik, V., Sidchenko, S., Barannik, D. (2020). Technology for Protecting Video Information Resources in the Info-Communication Space. 2020 IEEE 2nd International Conference on Advanced
Trends in Information Theory (ATIT). Kyiv, 29–33. Available at: https://einspekre.eeie.org/document/9349324

18. DSTU 7624:2014. Informatysniy tekhnolohiyi. Kryptohrafichnyi zakhyst informaty. Allohormy symetychnohoo blokovo blohet (2014). Kyiv, 39.

19. DSTU HOST 28147:2009. Systema obrobky informaty. Zakhyst kryptohrafichnyi. Allohormy symetychnohoo peretvorennyi (HOST 28147-89) (2008). Kyiv, 20.

20. Barannik, V., Sidchenko, S., Barannik, N., Khimenko, A. (2021). The method of masking overhead compaction in video compression systems. Radioelectronic and computer systems, 2, 51–63. doi: https://doi.org/10.32620/reks.2021.2.05

DOI: 10.15587/1729-4061.2021.239084

DEVISING AN IMAGE PROCESSING METHOD FOR TRANSPORT INFRASTRUCTURE MONITORING SYSTEMS (p. 18–25)

Oleksandr Volkov
International Research and Training Center for Information Technologies and Systems of the National Academy of Sciences (NAS) of Ukraine and Ministry of Education and Science (MES) of Ukraine. Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-5418-6723

Mykola Komar
International Research and Training Center for Information Technologies and Systems of the National Academy of Sciences (NAS) of Ukraine and Ministry of Education and Science (MES) of Ukraine. Kyiv, Ukraine
ORCID: https://orcid.org/0000-0001-9194-2850

Dmytro Volosheniuk
International Research and Training Center for Information Technologies and Systems of the National Academy of Sciences (NAS) of Ukraine and Ministry of Education and Science (MES) of Ukraine. Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-3793-7801

Identifying and categorizing contours in images is important in many areas of computer vision. Examples include such operational tasks solved by using unmanned aerial vehicles as dynamic monitoring of the condition of transport infrastructure, in particular road markings.

This study has established that current methods of image contour analysis do not produce clear and reliable results when solving the task of monitoring the state of road markings. Therefore, it is a relevant scientific and applied task to improve the methods and models of filtration, processing of binary images, and qualitative and meaningful separation of the boundaries of objects of interest.

To solve the task of highlighting road marking contours on images acquired from an unmanned aerial vehicle, a method has been devised that includes an operational tool for image preprocessing – a relevant scientific and applied task to improve the methods and procedures reported here it make possible to successfully solve problems that are largely similar to those that an expert person can face when solving intelligent tasks of processing and filtering information.

The proposed method was verified at an enterprise producing the Ukrainian unmanned aerial vehicle “Spectator” during tests of information technology of dynamic monitoring of the state of transport infrastructure.

The results could be implemented in promising intelligent control systems in the field of modeling human conscious behavior when sorting data required for the perception of environmental features.

Keywords: computer vision, contour detection, filtration, Sobel operator, Hough transform, Laplace operator.

References

1. Kozub, A. N., Suvorova, N. A., Chernavskiy, V. N. (2011). Analysis of the means of gathering information for geographic information systems. Sistemy ozbroenochnii i viyskova tekhnika, 3 (27), 42–47. Available at: http://www.hups.mil.gov.ua/periodic-app/article/1876/sovt_2011_3_12.pdf

2. Berezina, S. I., Blinichkin, K. V. (2014). Automation of data reception process from unmanned aerial vehicles (UAVs). Nauka i tekhnika Povitriannyh Syl Zbroinykh Syl Ukrainy, 1 (14), 82–89. Available at: http://irbus-nhub.gov.ua/cgi-bin/irbus_nhub/cgiirbis_64.exe?C21COM=2&121DBN=UJR&N&P21DBN=UJR&IMAGE_FILE_DOWNLOAD=1&Image_file_name=PDF/Netpe_2014_1_20.pdf

3. Weiss, M., Baret, F. (2017). Using 3D Point Clouds Derived from UAV RGB Imagery to Describe Vineyard 3D Macro-Structure. Remote Sensing, 9 (2), 111. doi: https://doi.org/10.3390/rs9020111

4. Li, C., Miller, J., Wang, J., Koley, S. S., Katz, J. (2017). Size Distribution and Dispersion of Droplets Generated by Impingement of Breaking Waves on Oil Slicks. Journal of Geophysical Research: Oceans, 122 (10), 7938–7957. doi: https://doi.org/10.1002/2017jc013193

5. Griitseko, V., Volkov, O., Bogachuk, Y., Gospodarchuk, O., Komar, M., Shepetukha, Y., Volosheninuk, D. (2020). Intellectual Control, Localization and Mapping in Geographic Information Systems Based on Analysis of Visual Data. Cybernetics and Computer Engineering, 2020 (2 (2009)), 41–58. doi: https://doi.org/10.15407/kce2020.02.041

6. Volkov, O., Bogachuk, Yu., Komar, M., Voloshenyuk, D. (2020). Two-level technology of intelligent application of on-board video camera of unmanned aerial vehicle for monitoring of geospatial data. Science-Based Technologies, 47 (3), 329–341. doi: https://doi.org/10.18372/2310-5461.47.14873

7. Barille, V., Meduri, G. M., Critelli, M., Bilotta, G. (2017) MMS and GIS for Self-driving Car and Road Management. Lecture Notes in Computer Science, 68–80. doi: https://doi.org/10.1007/978-3-319-62401-3_6

8. Liu, W., Zhang, Z., Li, S., Tao, D. (2017). Road Detection by Using a Generalized Hough Transform. Remote Sensing, 9 (6), 590. doi: https://doi.org/10.3390/rs9060590

9. Mukhopadhyay, P., Chaudhuri, B. B. (2015). A survey of Hough Transform. Pattern Recognition, 48 (3), 993–1010. doi: https://doi.org/10.1016/j.patcog.2014.08.027

10. Marzougui, M., Alasiry, A., Kortli, Y., Baili, J. (2020). A Lane Tracking Method Based on Progressive Probabilistic Hough Transform. IEEE Access, 8, 84893–84905. doi: https://doi.org/10.1109/access.2020.2991930

11. Manmeri, A., Boukereche, A., Tang, Z. (2016). A real-time lane marking localization, tracking and communication system. Computer Communications, 73, 132–143. doi: https://doi.org/10.1016/j.comcom.2015.08.010

12. Yan, X., Li, Y. (2017). A method of lane edge detection based on Canny algorithm. 2017 Chinese Automation Congress (CAC). doi: https://doi.org/10.1109/cac.2017.8243122

13. Lee, C., Moon, J.-H. (2018). Robust Lane Detection and Tracking for Real-Time Applications. IEEE Transactions on Intelligent Transpor-
With the advent of the data age, the continuous improvement and widespread application of medical information systems have led to an exponential growth of biomedical data, such as medical imaging, electronic medical records, biometric tags, and clinical records that have potential and essential research value. However, medical research based on statistical methods is limited by the class and size of the research community, so it cannot effectively perform data mining for large-scale medical information. At the same time, supervised machine learning techniques can effectively solve this problem. Heart attack is one of the most common diseases and one of the leading causes of death, so finding a system that can accurately and reliably predict early diagnosis is an essential and influential step in treating such diseases. Researchers have used various data mining and machine learning techniques to analyze medical data, helping professionals predict heart disease. This paper presents various features related to heart disease, and the model is based on ensemble learning. The proposed system involves preprocessing data, selecting attributes, and then using logistic regression algorithms as meta-classifiers to build the ensemble learning model. Furthermore, using machine learning algorithms (Support Vector Machines, Decision Tree, Random Forest, Extreme Gradient Boosting) for prediction on the Framingham Heart Study dataset and compared with the proposed methodology. The results show that the feasibility and effectiveness of the proposed prediction method based on group learning provide accuracy for medical recommendations and better accuracy than the single traditional machine learning algorithm.

Keywords: heart attack prediction, machine learning, ensemble learning, stacking ensemble technique.

References

1. Waqar, M., Dawood, H., Dawood, H., Majed, N., Banjar, A., Alharbey, R. (2021). An Efficient SMOTE-Based Deep Learning Model for Heart Attack Prediction. Scientific Programming, 2021, 1–12. doi: https://doi.org/10.1155/2021/6621622

2. Muhammad, Y., Tahir, M., Hayat, M., Chong, K. T. (2020). Early and accurate detection and diagnosis of heart disease using intelligent computational model. Scientific Reports, 10 (1). doi: https://doi.org/10.1038/s41598-020-76635-9

3. Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M. et al. (2020). Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. Journal of the American College of Cardiology, 76 (25), 2982–3021. doi: https://doi.org/10.1016/j.jacc.2020.11.010

4. Ramdurai, B. (2020). How AI (Artificial Intelligence) can improve Patient Experience in OPD (Out-Patient Dept.). doi: https://doi.org/10.13140/RG.2.2.23267.17440

5. Keya, M. S., Shamsoujaman, M., Hossain, F., Akter, F., Islam, F., Emon, M. U. (2021). Measuring the Heart Attack Possibility using Different Types of Machine Learning Algorithms. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), doi: https://doi.org/10.1109/icais50930.2021.93935846

6. Rincy, T. N., Gupta, R. (2020). Ensemble Learning Techniques and its Efficiency in Machine Learning: A Survey. 2nd International Conference on Data, Engineering and Applications (IDEA). doi: https://doi.org/10.1109/ideav6.2021.9760767

7. Virani, S. S., Alonso, A., Aparicio, H. J., Benjamin, E. J., Bittencourt, M. S. et al. (2021). Heart Disease and Stroke Statistics – 2021 Update. Circulation, 143 (8). doi: https://doi.org/10.1161/circ.0000000000009590

8. Nurramadovna, I. N. (2021). Coronary Heart Disease: The American Journal of Medical Sciences and Pharmaceutical Research,
9. Dash, S., Shakayawar, S. K., Sharma, M., Kaushik, S. (2019). Big data in healthcare: management, analysis and future prospects. Journal of Big Data, 6 (1). doi: https://doi.org/10.1186/s40537-019-0217-0

10. Saw, M., Saxena, T., Kaithwas, S., Yadav, R., Lal, N. (2020). Estimation of Prediction for Getting Heart Disease Using Logistic Regression Model of Machine Learning. 2020 International Conference on Computer Communication and Informatics (ICCCI). doi: https://doi.org/10.1109/icccci48352.2020.9104210

11. Yekkala, I., Dixit, S. (2018). Prediction of Heart Disease Using Random Forest and Rough Set Based Feature Selection. International Journal of Big Data and Analytics in Healthcare, 3 (1), 1–12. doi: https://doi.org/10.4018/jbhdah.201810101

12. Shah, D., Patel, S., Bharti, S. K. (2020). Heart Disease Prediction using Machine Learning Techniques. SN Computer Science, 1 (6). doi: https://doi.org/10.1007/s42979-020-00365-y

13. Kamboj, M. (2019). Heart Disease Prediction with Machine Learning Approaches. International Journal of Science and Research, 9 (7), 1454–1458. Available at: https://www.ijsr.net/get_count.php?paper_id=SR2017411328

14. Banikulika, G. S. S., Meghana, M., Reddy, M. S., Rajalakshmi, S. (2020). Heart Disease Prediction Using Machine Learning Techniques. International Research Journal of Engineering and Technology (IRJET), 07 (04), 5272–5276. Available at: https://www.researchgate.net/publication/341455762_Hart_Disease_Prediction_Using_Machine_Learning_Techniques

15. Kim, J. K., Kang, S. (2017). Neural Network-Based Coronary Heart Disease Risk Prediction Using Feature Correlation Analysis. Journal of Healthcare Engineering, 2017, 1–13. doi: https://doi.org/10.1155/2017/2789051

16. Kashe, T., Pippal, R. S. (2017). Design of heart disease diagnosis system using fuzzy logic. 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICEDCS). doi: https://doi.org/10.1109/iccedcs.2017.8390044

17. Salhi, D. E., Tari, A., Kochadi, M.-T. (2021). Using Machine Learning for Heart Disease Prediction. Lecture Notes in Networks and Systems, 70–81. doi: https://doi.org/10.1007/978-3-030-69418-0_7

18. Kshirsagar, P. (2020). ECG Signal Analysis and Prediction of Heart Attack with the Help of Optimized Neural Network. Alokana Chakra Journal, IX (IV), 497–506. Available at: https://www.researchgate.net/publication/3409598087

19. Malavika, G., Rajathi, N., Vanitha, V., Parameswaran, P. (2020). Heart Disease Prediction Using Machine Learning Algorithms. Bioscience Biotechnology Research Communications, 13 (11), 24–27. doi: https://doi.org/10.21786/bbr.13.11/6

20. Lee, W.-M. (2019). Supervised Learning-Classification Using K-Nearest Neighbors (KNN). Python® Machine Learning, 205–220. doi: https://doi.org/10.1007/9781119557550_ch0

21. Lin, A., Wu, Q., Heidari, A. A., Xu, Y., Chen, H., Geng, W. et al. (2019). Predicting Intentions of Students for Master Programs Using a Chaos-Induced Sine Cosine-Based Fuzzy K-Nearest Neighbor Classifier. IEEE Access, 7, 67235–67248. doi: https://doi.org/10.1109/access.2019.2918026

22. Jiang, L., Cai, Z., Wang, D., Jiang, S. (2007). Survey of Improving K-Nearest-Neighbor for Classification. Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007). doi: https://doi.org/10.1109/fskd.2007.532

23. Garcia, V., Mollineda, R. A., Sanchez, J. S. (2007). On the k-NN performance in a challenging scenario of imbalance and overlapping. Pattern Analysis and Applications, 11 (3-4), 269–280. doi: https://doi.org/10.1007/s10044-007-0067-5

24. Khateeb, N., Usman, M. (2017). Efficient Heart Disease Prediction System using K-Nearest Neighbor Classification Technique. Proceedings of the International Conference on Big Data and Internet of Things-BDIOT2017. doi: https://doi.org/10.1145/3175684.3175703

25. Hasija, Y., Chakraborty, R. (2021). Logistic Regression. Hands-On Data Science for Biologists Using Python, 183–196. doi: https://doi.org/10.1201/9781000090113-9-9

26. Roback, P., Legler, J. (2021). Logistic Regression. Beyond Multiple Linear Regression, 151–192. doi: https://doi.org/10.1201/9780429096665-6

27. Imamovic, D., Babovic, E., Bijedic, N. (2020). Prediction of mortality in patients with cardiovascular disease using data mining methods. 2020 19th International Symposium INFOTEH-JAHORINA (INFOTEH). doi: https://doi.org/10.1109/infothe.2020.9066297

28. Casarini, R., Facchinetti, A., Sorice, D., Tonellato, S. (2021). Decision trees and random forests* The Essentials of Machine Learning in Finance and Accounting, 7–36. doi: https://doi.org/10.1342/9781001037903-2

29. Singh, Y. K., Sinha, N., Singh, S. K. (2017). Heart Disease Prediction System Using Random Forest. Advances in Computing and Data Sciences, 613–623. doi: https://doi.org/10.1007/978-981-10-5427-3_63

30. Santhi, P., Ajay, R., Harshini, D., Janumri S., S. S. (2021). A Survey on Heart Attack Prediction Using Machine Learning. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12 (2). doi: https://doi.org/10.17762/turcomat.v12i2.1953

31. Frery, J. (2019). Ensemble Learning for Extremely Imbalanced Data Flows. HAL. Available at: https://tel.archives-ouvertes.fr/tel-02899943/document

32. Pathak, S., Mishra, I., Swetapadma, A. (2018). An Assessment of Decision Tree based Classification and Regression Algorithms. 2018 3rd International Conference on Inventive Computation Technologies (ICICT). doi: https://doi.org/10.1109/icciot.2018.9034296

33. Kocarik Gacar, B., Deveci Kocako, İ. (2020). Regression Analyses or Decision Trees? Celal Bayar Universitesi Sosyal Bilimler Dergisi, 18 (4), 251–260. doi: https://doi.org/10.18026/chayaros.796172

34. Larose, D. T., Larose, C. D. (2014). Decision Trees. Discovering Knowledge in Data, 165–186. doi: https://doi.org/10.1007/9781118874059.ch8

35. Hasija, Y., Chakraborty, R. (2021). Decision Trees and Random Forests. Hands-On Data Science for Biologists Using Python, 209–217. doi: https://doi.org/10.1201/9781000090113-11-11

36. Thomas, T., Vijayaraghavan, A. P., Emmanuel, S. (2020). Applications of Decision Trees. Machine Learning Approaches in Cyber Security Analytics, 157–184. doi: https://doi.org/10.1007/978-1-107-17068-9_9

37. Larose, C. D., Larose, D. T. (2019). Decision trees. Data Science Using Python and R, 81–96. doi: https://doi.org/10.1007/978-1119526865,ch6

38. Sutharahan, S. (2016). Decision Tree Learning. Integrated Series in Information Systems, 237–269. doi: https://doi.org/10.1007/978-1-4899-7641-3_10

39. Mrva, J., Neupauer, S., Hudec, L., Sevecjch, J., Kacer, P. (2019). Decision Support in Medical Data Using 3D Decision Tree Visualisation. 2019 E-Health and Bioengineering Conference (EHBB). doi: https://doi.org/10.1109/ehbb47216.2019.8969926

40. Alsalam, M. Y. A., Hasoun, S. O. (2020). Comparison of DT& GBDT algorithms for predictive modeling of currency exchange rates. EUReka: Physics and Engineering, 1, 56–61. doi: https://doi.org/10.21303/2461-4262.2020.001132

41. Perros, H. G. (2021). Support Vector Machines. An Introduction to IoT Analytics, 279–302. doi: https://doi.org/10.1201/9781000319041-11

42. Nalepa, J., Kawulok, M. (2018). Selecting training sets for support vector machines: a review. Artificial Intelligence Review, 52 (2), 857–900. doi: https://doi.org/10.1007/s10462-017-9611-1
Abstract and References. Information technology, Industry control systems

43. Vamsi Kumar, S., Rajnikanth, T. V., Viswanadha Raju, S. (2021). Heart Attack Classification Using SVM with LDA and PCA Linear Transformation Techniques. Algorithms for Intelligent Systems, 99–112. doi: https://doi.org/10.1007/978-981-33-4046-6_10

44. Kaestner, C. A. A. (2013). Support Vector Machines and Kernel Functions for Text Processing. Revista de Informática Teórica e Aplicada, 20 (3), 130. doi: https://doi.org/10.22456/2175-2745.39702

45. Powers, D. M. W. (2011). Evaluation: From precision, recall and F-Measure to ROC, informedness, markedness & correlation. Journal of Machine Learning Technologies, 2 (1), 37–63. Available at: https://www.researchgate.net/publication/276412348_Evaluation_From_precision_recall_and_F_measure_to_ROC_informedness_markedness_correlation

46. Abaslem, M., Hasoon, S. (2020). Predicting Bank Loan Risks Using Machine Learning Algorithms. AL-Rafidain Journal of Computer Sciences and Mathematics, 14 (1), 139–168. doi: https://doi.org/10.33899/csmj.2020.164686

47. Gupta, A., Tatbul, N., Marcus, R., Zhou, S., Lee, I., Gottschlich, J. (2020). Class-Weighted Evaluation Metrics for Imbalanced Data Classiﬁcation. arXiv.org. Available at: https://arxiv.org/pdf/2010.05955.pdf

48. Cutler, J., Dickenson, M. (2020). Introduction to Machine Learning with Python. Computational Frameworks for Political and Social Research with Python, 129–142. doi: https://doi.org/10.1007/978-3-030-36826-5_10

49. Gneiting, T., Vogel, P. (2018). Receiver Operating Characteristic (ROC) Curves. arXiv.org. Available at: https://arxiv.org/pdf/1809.04808.pdf

50. Piegorsch, W. W. (2020). Confusion Matrix. Wiley StatsRef: Methods of Statistical Analysis, 2020. doi: 9781118445112.stat08244

51. Kaestner, C. A. A. (2013). Support Vector Machines and Kernel Functions for Text Processing. Revista de Informática Teórica e Aplicada, 20 (3), 130. doi: https://doi.org/10.22456/2175-2745.39702

52. Vamsi Kumar, S., Rajinikanth, T. V., Viswanadha Raju, S. (2021). Heart Attack Classification Using SVM with LDA and PCA Linear Transformation Techniques. Algorithms for Intelligent Systems, 99–112. doi: https://doi.org/10.1007/978-981-33-4046-6_10

53. Latifah, F. A., Slamet, I., Sugiyanto (2020). Comparison of heart disease classification with logistic regression algorithm and random forest algorithm. International Conference on Science and Applied Science (ICASAS2020). doi: https://doi.org/10.5065/d6-5030579

54. Mienye, I. D., Sun, Y., Wang, Z. (2020). Improved sparse autoencoder-based artificial neural network approach for prediction of heart disease. Informatics in Medicine Unlocked, 18, 100307. doi: https://doi.org/10.1016/j.imu.2020.100307

55. Chauhan, Y. J. (2020). Cardiovascular Disease Prediction using Classification Algorithms of Machine Learning. International Journal of Science and Research (IJSR), 9 (5), 194–200. Available at: https://www.researchgate.net/publication/34123598

56. Kuruvilla, A. M., Balaji, N. V. (2021). Heart disease prediction system using Correlation Based Feature Selection with Multilayer Perceptron approach. IOP Conference Series: Materials Science and Engineering, 1085 (1), 012028. doi: https://doi.org/10.1088/1757-899X/1085/1/012028

57. Zaker, N. A., Alsalem, N., Kashmoola, M. A. (2018). Multi-agent Models Solution to Achieve EMC In Wireless Telecommunication Systems. 2018 1st Annual International Conference on Information and Sciences (AiCIS). doi: https://doi.org/10.1109/aiCIS.2018.00061

58. Kashmoola, M. A., Alsalem, M. Y. anad, Alsalem, N. Y. A., Moskalets, M. (2019). Model of dynamics of the grouping states of radio electronic means in the problems of ensuring electromagnetic compatibility. Eastern-European Journal of Enterprise Technologies, 6 (9 (102)), 12–20. doi: https://doi.org/10.15387/1729-4061.2019.188976

59. Ahmed, M. K., Aziz, S. F., Alsalem, N. Y. A., Sielivanov, K., Moskalets, M. (2020). Method for determining the responses from a non-linear system using the Volterra series. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 34–44. doi: https://doi.org/10.15387/1729-4061.2020.210734

DOI: 10.15387/1729-4061.2021.239288

METHODS AND TOOLS OF FORMATION OF GENERAL INDEXES FOR AUTOMATION OF DEVICES IN REHABILITATIVE MEDICINE FOR POST-STROKE PATIENTS (p. 35–46)

Alexandr Trunov
Petro Mohyla Black Sea National University, Mykolaiv, Ukraine
ORCID: https://orcid.org/0000-0002-8524-7840

Volodymyr Beglytsia
Petro Mohyla Black Sea National University, Mykolaiv, Ukraine
ORCID: https://orcid.org/0000-0002-8994-4600

Gennady Gryshechenko
Petro Mohyla Black Sea National University, Mykolaiv, Ukraine
ORCID: https://orcid.org/0000-0002-5557-2191

Viktor Ziuzin
Petro Mohyla Black Sea National University, Mykolaiv, Ukraine
ORCID: https://orcid.org/0000-0002-3722-613X

Vitalii Koshevoy
Petro Mohyla Black Sea National University, Mykolaiv, Ukraine
ORCID: https://orcid.org/0000-0001-9592-7439

The current processes of recovery of post-infarction and post-stroke patients in the context of the establishment of the institution of family doctors and insurance medicine are considered. It was proposed to introduce modules for automation of recovery devices (MARD) to ensure procedures, quality of life and reduce labor costs during the period of long-term recovery. The forms of presentation of the model of the integral indicator are substantiated, which, in accordance with the requirements of the Ministry of Health, assesses the generalized indicator of the patient’s statement (GIPS), the quality of medical services and increases the efficiency of data compression. A consistent application of two Euclidean norms is proposed, which leads indicators of dissimilar physical nature to a limited metric space. The relationship between the lower and upper bounds of the GIPS, the error, the width of the sliding window, and the values of the derivatives was established on the basis of the Taylor series expansion, geometric inequality and limited space. The relationship between the lower and upper bounds of the GIPS, the error, the width of the sliding window, and the values of the derivatives was established on the basis of the Taylor series expansion, geometric inequality and limited space. The model for evaluating the GIPS as a lower bound and the method for generating information about its properties are substantiated.

A three-level comparator is applied and an vector-indicator (VI) is introduced as an informational addition to the time series. Additional capabilities for intelligent analysis are demonstrated. The
model of GIPS through VI is presented. The examples of IV values are used to demonstrate its applicability to the intelligent analysis of the recovery process. Openness, accessibility, transparency of GIPS and VI as tools of KIT is implemented by the princes of public administration (PA) by reducing it to quantitative control and comparison if there are quantitative and qualitative indicators in the list. VI, sliding windows, as PA and KIT tools in software (SW) for a diagnostic conclusion and correction of the course of procedures, are numerically investigated. It is demonstrated on examples of a numerical experiment with software how the combined application of the method for calculating the GIPS and VI effectively affects the compression ratio, increasing it to 60–75 %.

Keywords: automation module, integral indicator, vector-indicator, lossless compression, recovery devices, public administration.

References

1. Pro realisatsiyu u sferi okhoryny zdorovia. Stattia 19. Nadannya realisatsiyoi dopomohy iz zastosuvanniam teelerealeabilitatityi (2021). Verkhovna Rada Ukrainy. Available at: https://zakon.rada.gov.ua/laws/show/1053-20Text

2. U 2020 rotii likuvannia hostroho mozkovoho insultu ye priorytetom v prohrom medychnykh harantiy. Ministerstvo okhoryny zdorovia Ukrainy (2019). Available at: https://www.kmu.gov.ua/news/u-2020-roci-likuvannya-gostrogo-mozkovogo-insultu-ye-priorytetom v-programi-medichnih-garantij

3. Unifikovanyi klinichnyi protokol medychnoi dopomohy. Ishemichnyi insult (ektretna, pervynna, vtorymna (spetsializovana) medychna dopomoha, medychna realisatsiia). Zatvrdzheno. Nakaz Ministerstva okhoryny zdorovia 03.08.2012 No. 602. Available at: https://doc.gov.ua/wp-content/uploads/images/dodatkii/2012_602_2012_602dod4ypml.pdf

4. Pro zatvrdzhennia indykatyoriv yakosti medychnoi dopomohy. Nakaz MOZ Ukrainy vid 02.11.2011r. No. 743. Verkhovna Rada Ukrainy. Available at: https://zakon.rada.gov.ua/laws/show/z1328-11#Text

5. Yakovleva, O. G. (2019). Main ways of formation and development of family medicine in Ukraine as the basis of reorganization of primary medical and sanitary aid for population. Nursing, 2, 16–21. doi: https://doi.org/10.11603/2411-1597.2019.2.10192

6. Steel, A., Sibbritt, D., Schloss, J., Wardle, J., Leach, M., Diezel, H., Adams, J. (2017). An Overview of the Practitioner Research and Collaboration Initiative (PRACI): a practice-based research network for complementary medicine. BMC Complementary and Alternative Medicine, 17 (1). doi: https://doi.org/10.1186/s12906-017-1609-3

7. Pro zatvrdzhennia Konseptsiyi upravlinnia yakistiu medychnoi dopomohy u haluzi okhoryny zdorovia v Ukraini na period do 2020 roku. Nakaz MOZ Ukrainy vid 01.08.2011 No. 454. Verkhovna Rada Ukrainy. Available at: https://zakon.rada.gov.ua/rada/show/v0454282-11#Text

8. Stallberg, B., Teixeira, P., Blom, C., Lisspers, K., Tsiligianni, I., Jordan, R. et. al. (2016). The prevalence of comorbidities in COPD patients and their impact on quality of life and COPD symptoms in primary care patients - AN UNLOCK study from the IPCRG. 1.6 General Practice and Primary Care. doi: https://doi.org/10.1186/13993003. congress-2016.paperspa683

9. Nahorna, A. M. (2003). Sotsialno-ekonomichni determinanty zdorovia naseleliia Ukrainy (ohlad literatury i vlasnykh doslidhien). Zharml AMN Ukrainy, 9 (2), 325–345.

10. Hoida, N. H., Horachuk, V. V. (2011). Medyko-sotsiolohichna infor- matsiya yak instrument upravlinnia yakistiu medychnoi dopomohy. Tezy dopovidi konferentsiyi z mizhnarodnoiu uchastiu «Medychna ta biolohichna informatyka ta kibernetyka: vikhy rozvytku». Kyiv, 27.

11. Melnykova, N. (2014). The features of decision making quality evaluation in medicine. Visnyk Nacionalnoho universtetu «Lvivska politehnika», 805, 170–179. Available at: http://science. lpuu.ua/siss/all-volumes-and-issues-volume-805-2014/osoblivosti ocynyuvannya-yakosti-rezultativ-pryimatytya

12. Shchelkalin, V. (2015). A systematic approach to the synthesis of forecasting mathematical models for interrelated non-stationary time series. Eastern-European Journal of Enterprise Technologies, 2 (4 (74)), 21–35. doi: https://doi.org/10.15587/1729-0691.2015.40065

13. Trunov, A. (2017). Recurrent Approximation in the Tasks of the Neur-al Network Synthesis for the Control of Process of Phototherapy. Computer Systems Healthcare and Medicine. Denmark, 213–248.

14. The Ultimate Comparison of IOT Development Boards (2013). Open Electronics. Available at: https://www.open-electronics.org/ the-ultimate-comparison-of-iot-development-boards/

15. Tymoshchuk, P. V., Shatnyi, S. V. (2012). Systema monitorynyhu ta kерuvannia viddalenymy obiektamy rehuliuvannia. Naukovyi visnyk NLU Ukrainy, 22, 313–318.

16. Shatnyi, S., Shatina, A., Shablovska, A. (2019). Neural Network Hardware Implementation Using Micro- and Softprocessor Technologies for Biomedical Signal Processing. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 8 (6). 400–403. Available at: http://ijarcet.org/wp-content/uploads/ IJARCET-VOL-8-ISSUE-8-400-403.pdf

17. Trunov, A., Beglytsia, V. (2019). Synthesis of a trend’s integral esti-mate based on a totality of indicators for a time series data. Eastern-European Journal of Enterprise Technologies, 2 (4 (98)). 48–56. doi: https://doi.org/10.15587/1729-0691.2019.163922

18. Mishchuk, O. (2019). Development of the method of forecasting the atmospheric air pollution parameters based on error correction by neural-like structures of the model of successive geometric transformations. Technology Audit and Production Reserves, 6 (2 (90)). 26–30. doi: https://doi.org/10.15587/2312-8372.2019.188743

19. Mishchuk, O., Tkachenko, R., Pohrebennyk, V. (2019). The Accelerated Method of Filling Gaps in Data Using a Linear SGTM Neural-Like Structure. International Journal of Science and Engineering Investiga-tions (IJSEI), 8 (91). 154–159. Available at: http://www.ijsei.com/ papers/ijsei-891919-20.pdf

20. Kovalchuk, A. M., Levytvska, V. H. (2002). Rozrozbka adaptivnynoho interferisu korystuvachya prohromnoi systemy chyselnoho analizu matematychnykh zadan. Visnyk ZHTI, 20, 111–119.

21. Biax, R. Nielsen, J., Mack, R. (Eds.) (1994). The Pluralistic Usability Walkthrough: Coordinated Empathies. Usability Inspection Meth-ods. John Wiley.

22. Petrov, K. E., Kryuchkovskiy, V. V. (2009). Komparatormaya strukturno-parametricheskaya identifikatsiya modely skalyarnogo mno-gofaktornogo otsenivaniya. Kherson: Oldi-plexus, 294.

23. Fisun, M., Smith, W., Trunov, A. (2017). The vector rotor as instru-ment of image segmentation for sensors of automated system of techn-ological control. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098828

24. Boichenko, O. V. (2012). Osnovni pytystsy proektuvannya yakismo-lo prohromanho zabezpechenia avtomatyzovanykh system upravlin-nia. Measurement and computation technique in technological pro-cesses, 3, 88–91. Available at: https://journals.khu.kmu.ua/index.php/ MeasComp/article/view/1725/2191

25. Horachuk, V. V. (2012). Upravlinnia yakistiu medychnoi dopomohy v zakladi okhoryny zdorovia. Vinnytsya: PP Baluk I.B., 18–23.

26. Bellman, R. E., Kryuchkovskiy, V. V. (2009). Komparatormaya strukturno-parametricheskaya identifikatsiya modely skalyarnogo mno-gofaktornogo otsenivaniya. Kherson: Oldi-plexus, 294.
DEVELOPMENT OF AUDIT AND DATA PROTECTION PRINCIPLES IN ELECTRONIC VOTING SYSTEMS (p. 47–57)

Yuriy Khaponin
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-9287-0817

Volodymyr Vyshniakov
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-4608-712X

Viktoria Ternavskaya
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-2102-619X

Oleksandr Selyukov
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0001-7979-3434

Oleg Komarnitskyi
Department of Transport Infrastructure of the Kyiv City State Administration, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-4830-919X

It is assumed in standard information protection technologies that there are owners of this information who put forward requirements for protection. In secret voting systems, the information belongs to the community of citizens, and to protect it, vote organizers must create conditions that allow each voter to make sure that the vote secrecy and accuracy of vote counting are preserved. In developed democracies, this issue is resolved through a widely available audit of all procedures that may be mistrusted. Any voter can conduct such an audit. The anxiety of citizens of democratic countries is based on the idea that if electronic voting is introduced, it will be impossible to conduct such an audit. The article proposes principles of auditing, which all those software and hardware tools and processes of the online voting system that can generate voter distrust. This audit is carried out using a dedicated server open to voters and their fiduciaries. This server provides continuous monitoring of actions of the service staff in terms of possible interference in the operation of the voting system. Also, due to this server, auditors receive data on the integrity of the voting system hardware and software including its audit tools and an alarm signal in the event of a threat. It was possible to reduce the average time of processing the voter requests to two seconds. This means that processing a maximum of 2,500 voter requests at a vote station will take no more than two hours. Simultaneous access of 50 voters to the server will not make them wait in the queue for more than 2 minutes. Implementation results were described and links were given for conducting experimental voting on the Internet.

Keywords: audit of online voting system, data protection, exclusion of illegal influence on voters.

References
1. Electronic Vote & Democracy. Available at: http://www.electronicvote.org/
2. Prozori vybory u KNU. Kyivska nationalnii universytet imeni Tarasa Shevchenka. Available at: http://univkiev.ua/news/8096
3. Devid Bismark: Elektronne holosuvannia bez obmanu. Available at: https://www.ted.com/talks/david_bismark_e_voting_without_fraud/transcript?language=uk
4. Ajish, S., Anil Kumar, K. S. (2020). Secure I-Voting System with Modified Voting and Verification Protocol. Advances in Electrical and Computer Technologies, 189–200. doi: https://doi.org/10.1007/978-981-15-5558-9_19
5. Solvak, M. (2020). Does Vote Verification Work: Usage and Impact of Confidence Building Technology in Internet Voting. Lecture Notes in Computer Science, 213–228. doi: https://doi.org/10.1007/978-3-030-60347_2_14
6. Bezyaputchik, Zh. (2019). U Zelenskogo obeschuyat onlayn-golosovanie: chem eto grozi? BBC News Ukraine. Available at: https://www.bbc.com/ukrainian/features-russian-49266210
7. Recommendation CM/Rec(2017)5[1] of the Committee of Ministers to member States on standards for e-voting. Available at: https://search.ie.gov.co/Pages/result_details.aspx?ObjectID=0900001680726f6f
8. Internet-holosuvannia: pytannia do rozghliadu. Zахальний облік для оцінювання результатів. Available at: https://pravosloviie.gov.ua/2019/08/19
9. Alvi, S. T., Uddin, M. N., Islam, L., Ahamed, S. (2018). A Robust and Secure Approach for Internet Voting using Blockchain. Advances in Engineering & Technology Review, 1(1), 280–286. doi: https://doi.org/10.1007/978-3-030-31603-0_19
10. Ibrahim, M., Ravidran, K., Lee, H., Farooqui, O., Mahmoud, Q. H. (2021). ElectionBlock: An Electronic Voting System using Blockchain and Fingerprint Authentication. 2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-C). doi: https://doi.org/10.1109/icsa-c52384.2021.00033
11. Alvi, S. T., Uddin, M. N., Islam, L., Ahamed, S. (2020). From Conventional Voting to Blockchain Voting: Categorization of Different Voting Mechanisms. 2020 2nd International Conference on Sustainable Technologies for Industry 4.0 (STI). doi: https://doi.org/10.1109/sti.50564.2020.9335099
12. Fernandes, A., Garg, K., Agrawal, A., Bhatia, A. (2021). Decentralized Online Voting using Blockchain and Secret Contracts. 2021 International Conference on Information Networking (ICOIN). doi: https://doi.org/10.1109/icoin50884.2021.9333966
13. Golubitsky, S. (2019). Mutaanya teknologiia. Uroki moskovskih vyborov na blokcheyne. Novaya gazeta, 111. Available at: https://novayagazeta.ru/articles/2019/09/30/82175-mutaanya-tehnologii
14. Schneier, B. (2020). Voatz Internet Voting App Is Insecure. Schneier on Security. Available at: https://www.schneier.com/crypto-gram/archives/2020/0315.html?cg1
15. Vyshnyakov, V. M., Komarnitsky, O. A. (2019). Transparentnye sistemy elektronnyy demokratii. Ottawa: Accent Graphics Communications & Publishing, 96. Available at: http://www.asdev.com.ua/ dndiasb/assets/files/Vyshnyakov/e-votingpdf
16. Chupryn, V., Vyshniakov, V., Komarnitsky, O. (2018). Method of counteraction of attacks of mediator in transparent system the internet voting. Ukrainian Information Security Research Journal, 20 (3). 180–187. doi: https://doi.org/10.18372/2410-7840.2013.0379
17. Shannon, C. E. (1949). Communication Theory of Secrecy Systems. Bell System Technical Journal, 28 (4), 666–715. doi: https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
In the course of our research work, the American, Russian and Turkish sign languages were analyzed. The program of recognition of the Kazakh dactylic sign language with the use of machine learning methods is implemented. A dataset of 5000 images was formed for each gesture, gesture recognition algorithms were applied, such as Random Forest, Support Vector Machine, Extreme Gradient Boosting, while two data types were combined into one database, which caused a change in the architecture of the system as a whole. The quality of the algorithms was also evaluated.

The research work was carried out due to the fact that scientific work in the field of developing a system for recognizing the Kazakh language of sign dactyls is currently insufficient for a complete representation of the language. There are specific letters in the Kazakh language, because of the peculiarities of the spelling of the language, problems arise when developing recognition systems for the Kazakh sign language.

The results of the work showed that the Support Vector Machine and Extreme Gradient Boosting algorithms are superior in real-time performance, but the Random Forest algorithm has high recognition accuracy. As a result, the accuracy of the classification algorithms was 98.86% for Random Forest, 98.68% for Support Vector Machine and 98.54% for Extreme Gradient Boosting. Also, the evaluation of the quality of the work of classical algorithms has high indicators.

The practical significance of this work lies in the fact that scientific research in the field of gesture recognition with the updated alphabet of the Kazakh language has not yet been conducted and the results of this work can be used by other researchers to conduct further research related to the recognition of the Kazakh dactyl sign language, as well as by researchers, engaged in the development of the international sign language.

Keywords: Gesture recognition, sign language, feature extraction, hand tracking, algorithm evaluation.

References

1. Ahmed, M. A., Zaidan, B. B., Zaidan, A. A., Salih, M. M., Laku, M. M. bin. (2018). A Review on Systems-Based Sensory Gloves for Sign Language Recognition State of the Art between 2007 and 2017. Sensors, 18 (7), 2208. doi: http://doi.org/10.3390/s18072208

2. Bilgin, M., Mutluoglu, K. (2019). American Sign Language Character Recognition with Capsule Networks. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). Ankara. doi: http://doi.org/10.1109/ismsit.2019.8932829

3. Kudubayeva, S., Zhussupova, B., Aliyeva, G. (2019). Features of the representation of the Kazakh sign language with the use of gestural notation. Proceedings of the 5th International Conference on Engineering and MIS. doi: http://doi.org/10.1145/3330431.3330440

4. Luqman, H., El-Alfy, E.-S. M., BinMakhashen, G. M. (2020). Joint space representation and recognition of sign language fingerspelling using Gabor filter and convolutional neural network. Multimedia Tools and Applications, 80 (7), 10213–10234. doi: http://doi.org/10.1007/s11042-020-09994-0

18. Chupryn, V., Vyshniakov, V., Prygara, M. (2016). Method of generation of casual numbers on the basis of the use of apparatus of the computer plugged in the Internet. Ukrainian Information Security Research Journal, 18 (4), 323–333. doi: https://doi.org/10.18372/2241-7840.18.11085

19. Diffie, W., Hellman, M. (1976). New directions in cryptography. IEEE Transactions on Information Theory, 22 (6), 644–654. doi: https://doi.org/10.1109/tit.1976.1055638

20. Chupryn, V., Vyshniakov, V., Prygara, M. (2017). Method of combating illegal influence on voters in the Internet voting system. Ukrainian Scientific Journal of Information Security; 23 (1), 7–14. doi: https://doi.org/10.18372/2225-5036.23.11547

21. Khlaponin, Y., Khalifa, E. K., Khlaponin, D., Selyukov, A., Tolbatov, A., Tolbatov, V., Odarchenko, R. (2019). Method of Improving the Stability of Network Synchronization in Multiservice Macro Networks. Proceedings of the International Workshop on Cyber Hygiene (CybHyg-2019) co-located with 1st International Conference on Cyber Hygiene and Conflict Management in Global Information Networks (CyberConf 2019). Vol-2654. Kyiv. 786–797. Available at: http://ceur-ws.org/Vol-2654/paper61.pdf

22. Khlaponin, Y. I., Khornoiko, V. O., Khokhlaicheva, Y. E., Gavrilko, E. V. (2017). Parametric monitoring of computing processes in information and computing systems. Selected Papers of the XVII International Scientific and Practical Conference on Information Technologies and Security (ITS 2017). Vol-2067. Kyiv. 125–131. Available at: http://ceur-ws.org/Vol-2067/paper18.pdf

23. Kudubayeva, S., Zhussupova, B., Aliyeva, G. (2019). Features of the representation of the Kazakh sign language with the use of gestural notation. Proceedings of the 5th International Conference on Engineering and MIS. doi: http://doi.org/10.1145/3330431.3330440

24. Schneier, B. (2004). What’s Wrong With Electronic Voting Machines? Schneier on Security. Available at: https://www.schneier.com/essays/archives/2004/11/whats_wrong_with_el.html

25. Vyshniakov, V. M., Przhara, M. P., Voronin, O. V. (2014). Vidkryta systema taemnoho holosuvannia. Upravlinnia rozvytkom skladnykh system, 20, 110–115. Available at: http://urss.knuba.edu.ua/files/zbirnyk-20/22.pdf

26. Cgernyshev, D. O., Khlaponin, Y. I., Vyshniakov, V. M. (2020). Experience of introduction of electronic voting in higher education institutions. Zbirnyk naukovykh prats Visnokho instytutu Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka, 68, 90–99. Available at: http://nbuvgov.ua/UJRN/Znpviknu_2020_68_12

DOI: 10.15587/1729-4061.2021.239253

SIGN LANGUAGE DACTYL RECOGNITION BASED ON MACHINE LEARNING ALGORITHMS (p. 58–72)

Chingiz Keshimov
Institute of Information and Computational Technologies, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-3923-0958

Zhodas Buribayev
Al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-3486-227X

Yedilkhan Amirgaliev
Institute of Information and Computational Technologies, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-6528-0619

Aisulyu Ataniyazova
Al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-1122-6614

Askhat Aitimov
Suleyman Demirel University, Kastelen, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-9849-1391
5. Saykol, E., Türe, H. T., Sirvanci, A. M., Turan, M. (2016). Posture labeling based gesture classification for Turkish sign language using depth values. Kybernetes, 45 (4), 604–621. doi: http://doi.org/10.1108/k-04-2015-0107

6. Van Houdt, G., Mosquera, C., Nápoles, G. (2020). A review on the long short-term memory model. Artificial Intelligence Review, 53 (8), 5929–5955. doi: http://doi.org/10.1007/s10462-020-09838-1

7. Makarov, I., Chertkov, M., Veldyaykin, N., Pokoiev, A. (2019). American and Russian sign language dactyl recognition. ACM International Conference Proceeding Series, 204–210. doi: http://doi.org/10.1109 tsp.2019.8768868

8. Artynkhin, S. G., Mestetskiy, L. M. (2015). Dactyl alphabet gesture recognition in a video sequence using microsoft kinect. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-3/W6, 83–86. doi: http://doi.org/10.5194/isprsarchives-xl-5-w6-83-2015

9. Oktekin, B. (2018). Development of Turkish sign language recognition application. Nicosia.

10. Wadhawan, A., Kumar, P. (2019). Sign Language Recognition Systems: A Decade Systematic Literature Review. Archives of Computational Methods in Engineering, 28 (3), 785–813. doi: http://doi.org/10.1007/s11831-019-09384-2

11. Munib, Q., Habeeb, M., Takruri, B., Al-Malik, H. A. (2007). American sign language (ASL) recognition based on Hough transform and neural networks. Expert Systems with Applications, 32 (1), 24–37. doi: http://doi.org/10.1016/j.eswa.2005.11.018

12. Oz, C., Leu, M. C. (2007). Linguistic properties based on American Sign Language isolated word recognition with artificial neural networks using a sensory glove and motion tracker. Neurocomputing, 70 (16-18), 2891–2901. doi: http://doi.org/10.1016/j.neucom.2006.04.016

13. Oz, C., Leu, M. C. (2011). American Sign Language word recognition with a sensory glove using artificial neural networks. Engineering Applications of Artificial Intelligence, 24 (7), 1204–1213. doi: http://doi.org/10.1016/j.engappai.2011.06.015

14. Sun, C., Zhang, T., Bao, B.-K., Xu, C., Mei, T. (2013). Discriminative Exemplar Coding for Sign Language Recognition With Kinect. IEEE Transactions on Cybernetics, 43 (5), 1418–1428. doi: http://doi.org/10.1109/tcyb.2013.2265337

15. Chuan, C.-H., Regina, E., Guardino, C. (2014). American Sign Language Recognition Using Leap Motion Sensor. 2014 13th International Conference on Machine Learning and Applications, 541–544. doi: http://doi.org/10.1109/icmla.2014.110

16. Tangsukasant, W., Adhan, S., Pintavirooj, C. (2014). American Sign Language recognition by using 3D geometric invariant feature and ANN classification. The 7th 2014 Biomedical Engineering International Conference. doi: http://doi.org/10.1109/bmeicon.2014.7017372

17. Zamani, M., Kanan, H. R. (2014). Saliency based alphabet and numbers of American sign language recognition using linear feature extraction. 2014 4th International Conference on Computer and Knowledge Engineering (ICCKE), 398–403. doi: http://doi.org/10.1109/iccke.2014.6993442

18. Savur, C., Sahin, F. (2016). American Sign Language Recognition system by using surface EMG signal. 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2872–2877. doi: http://doi.org/10.1109/smc.2016.7844675

19. Wadhawan, A., Kumar, P. (2019). Sign Language Recognition Systems: A Decade Systematic Literature Review. Archives of Computational Methods in Engineering, 28 (3), 785–813. doi: http://doi.org/10.1007/s11831-019-09384-2

20. Makarov, I., Chertkov, M., Veldyaykin, N., Pokoiev, A. (2019). American and Russian sign language dactyl recognition. ACM International Conference Proceeding Series, 204–210. doi: http://doi.org/10.1109 tsp.2019.8768868

21. Oktekin, B. (2018). Development of Turkish sign language recognition application. Nicosia.
методи інтелектуального аналізу даних і машинного навчання для аналізу медичних даних, які допомагають фахівцям прогнозувати яка може точно і надійно прогнозувати діагноз, є важливим кроком в лікуванні таких захворювань. Дослідники використовували різні

серцевий напад є одним з найбільш поширених захворювань і однією з основних причин смерті, тому знаходження системи, яка містить оперативний інструмент попередньої обробки зображень – комбінований фільтр. Розроблений метод має ряд переваг та усуває недоліки відомих методів при визначенні меж розташування об’єкта інтересу, шляхом виокремлення контурів кластеру точок із застосуванням гістограм.

Ключові слова: криптокомпресія, кодування, захист інформації, плаваюча схема, диференційований базис, службова складова.

В. В. Бараннік, О. Сідченко, С. О. Сідченко, С. С. Шульгін, В. В. Бараннік, А. І. Дацун Поряд з повсякденною використанням цифрових зображень виникає актуальна науково-прикладна проблема щодо необхідності знижен-
сервісу захворювання. У даній статті представлені різні особливості сервісу захворювань, модель заснована на ансамблевому навчанні. Запропонована система включає попередню обробку даних, вибір атрибутів і використання алгоритмів логістичної регресії як мета-класифікаторів для побудови моделі ансамблевого навчання. Крім того, використання алгоритмів машинного навчання (метод опорних векторів, дерево рішення, шкідливий ліс, екстремальний градієнтний бустинг) для прогнозування на основі набору даних. Фрімінгемського дослідження серед і порівняння із запропонованою методологією. Результати показують, що доцільність і ефективність запропонованого методу прогнозування, заснованого на груповому навчанні, забезпечують точність медичних рекомендацій і більш високу точність в порівнянні з едним традиційним алгоритмом машинного навчання.

Ключові слова: прогнозування сервісу на базі, машине навчання, ансамблеве навчання, метод стекованого узагальнення.

DOI:10.15587/1729-4061.2021.239288
ФОРМУВАННЯ МЕТОДІВ ТА ІНСТРУМЕНТІВ УЗАГАЛЬНЕНИЯ ПОКАЗНИКІВ ДЛЯ АУТОМАТИЗАЦІЇ ПРИЛАДІВ ВІДНОВЛЮВАЛЬНОЇ МЕДИЦИНИ ПОСТІНСУЛЬТНИХ ПАЦІЄНТІВ (с. 36–46)
О. М. Трунов, В. П. Беглиця, Г. В. Грищенко, В. О. Сєлюков, В. В. Кошовий

Розглянуто відновлення постінфарктних і постінсультних пацієнтів, що є актуальним у умовах становлення інституту сімейних лікарів та страхової медицини. Запропоновано для забезпечення процедур, якості життя і зменшення трудоднів у період довготривалого відновлення впровадити модули автоматизації приладів відновлення (МАПВ). Обґрунтовано форми представления моделі інтегрального показника, який відповідає до вимог МОЗ оцінює загальні показники стану (ЗПС) пацієнта і якість медичних послуг та приладдя підвищує ефективність стиснення даних. Запропоновано підсумовувати застосування двох Евклідів діалогів, які приводять єдинорідну за своєю фізичною природою показники до обмеженого метричного простору. Встановлено на підставі рівняння у ряд Тейлора, геометричної нерівності та обмеженості простору зв’язок між низькою та високою границями ЗПС, зв’язки їхною відповідності і значеннями похідних. Обґрунтовано модель оцінки ЗПС як нижньої граничної і метод формування інформації про її властивості.

Застосовано тривіттійній комп’ютер та введення вектор-індикатор (ВІ) як інформаційне доповнення часового ряду. Продемонстровано додаткові можливості для інтелектуального аналізу. Представлено модель ЗПС через ВІ. На прикладах значень ВІ продемонстровано його застосовності до інтелектуального аналізу ходу відновлення. Відкритість, доступність, прозорість ЗПС та ВІ, як інструменти КІТ реалізує принципи публічного адміністрування (ПА) щодо збереження даних та поваги до персоналу, які включно з послугами, які надає або надається, а також роботи з інформацією в середовищі ПА.

Ключові слова: модуль автоматизації, інтегральний показник, вектор-індикатор, безвтратне стиснення, приладди відновлення, публічне адміністрування.

DOI:10.15587/1729-4061.2021.238259
РОЗРОБКА ПРИНЦИПІВ АУДИТУ ТА ЗАХИСТУ ДАННЫХ В СИСТЕМАХ ЕЛЕКТРОННОГО ГОЛОСУВАННЯ (с. 47–57)
Ю. І. Хлапонін, В. М. Вишняков, В. М. Тернавська, О. В. Сєлюков, О. О. Комарницький

У стандартних технологіях захисту інформації передбачається, наявність власника, якому належить ця інформація, і він висуває вимоги для інтелектуального аналізу. Представлено модель ЗПС через ВІ. На прикладах значень ВІ продемонстровано його застосовності до інтелектуального аналізу ходу відновлення. Відкритість, доступність, прозорість ЗПС та ВІ, як інструменти КІТ реалізує принципи публічного адміністрування (ПА) щодо збереження даних та поваги до персоналу, які включно з послугами, які надає або надається, а також роботи з інформацією в середовищі ПА.

Ключові слова: модуль автоматизації, інтегральний показник, вектор-індикатор, безвтратне стиснення, приладди відновлення, публічне адміністрування.

DOI:10.15587/1729-4061.2021.239253
РОЗПІЗНАВАННЯ ДАКТІЛЬНОЇ МОВИ ЖЕСТІВ НА ОСНОВІ АЛГОРИТМІВ МАШИННОГО НАВЧАННЯ (с. 58–72)
Chingiz Kenshimov, Zholdas Buribayev, Yedilkhan Amirgaliyev, Aisulyu Ataniyazova, Askhat Aitimov

У процесі дослідницької роботи були проаналізовані американська, російська і турецька мови жестів. Реалізована програма розпізнавання каяхської дактильної мови жестів із застосуванням методів машинного навчання. Сформовано датасет з 5000 зображень для кожного жесту, застосовані алгоритми з розпізнавання жестів, такі як Random Forest, Support Vector Machine,
Extreme Gradient Boosting, при цьому поєднані два типи даних в одну базу, що викликало зміну архітектури системи в цілому. Також була проведена оцінка якості алгоритмів.

Дослідницька робота проведена в зв’язку тим, що наукові роботи в області розробки системи розпізнавання казахської мови жестових дактилів в даній час є недостатніми для повного розуміння мови. У казахській мові є специфічні літери, через особливості правопису виникають проблеми при розробці систем розпізнавання казахської мови жестів.

Результати роботи показали, що алгоритми Support Vector Machine і Extreme Gradient Boosting лідують за продуктивністю в реальному режимі часу, але алгоритм Random Forest має високу точність розпізнавання. В результаті точність алгоритмів класифікації склала 98,86 % для Random Forest, 98,68 % для Support Vector Machine і 98,54 % для Extreme Gradient Boosting. Так само оцінки якості роботи класичних алгоритмів мають високі показники.

Практична значимість полягає в тому, що наукові дослідження в області розпізнавання жестів з оновленим алфавітом казахської мови доці не проводилися і результати цієї роботи можуть бути використані іншими дослідниками для проведення подальших досліджень, пов’язаних з розпізнаванням казахської дактильної мови жестів, а також дослідниками, які займаються розвитком міжнародної мови жестів.

Ключові слова: розпізнавання жестів, мова жестів, витяг ознак, відстеження рук, оцінка алгоритмів.