Effective state metamorphosis in semi-classical loop quantum cosmology

Parampreet Singh

Institute for Gravitational Physics and Geometry, Pennsylvania State University, University Park, PA 16802, USA

E-mail: singh6@gravity.psu.edu

Received 21 June 2005, in final form 10 August 2005
Published 27 September 2005
Online at stacks.iop.org/CQG/22/4203

Abstract
Modification to the behaviour of geometrical density at short scales is a key result of loop quantum cosmology, responsible for an interesting phenomenology in the very early universe. We demonstrate the way matter with arbitrary scale factor dependence in Hamiltonian incorporates this change in its effective dynamics in the loop-modified phase. For generic matter, the equation of state starts varying near a critical scale factor, becomes negative below it and violates the strong energy condition. This opens a new avenue to generalize various phenomenological applications in loop quantum cosmology. We show that different ways to define energy density may yield radically different results, especially for the case corresponding to classical dust. We also discuss implications for frequency dispersion induced by modification to geometric density at small scales.

PACS numbers: 04.60.Pp, 98.80.Qc

1. Introduction
Quantum gravity is expected to radically modify our classical intuition of spacetime and matter. Progress in loop quantum gravity (LQG), one of the background-independent and non-perturbative candidates for quantization of gravity, suggests that at the quantum level the classical spacetime continuum is replaced by discrete quantum geometry [1, 2]. The continuum spacetime emerges from quantum geometry in a large eigenvalue limit. An important question in this setting is the way behaviour of ordinary matter is modified at small scales. Answering this question in complete generality is difficult since we lack a full theory of non-perturbative quantum gravity including matter. However, valuable insights can be obtained if we work in a simpler symmetry reduced setting like quantum cosmology.

Loop quantum cosmology (LQC) is the quantization of homogeneous and isotropic mini-superspaces based on LQG whose applications include a resolution of the big-bang singularity.
in the homogeneous and isotropic mini-superspace setting \([3–5]\) (for a recent review, see \([6]\), also see \([7, 8]\) for critical discussions). One of its key results is that eigenvalues of the geometrical density operator (or positive powers of the inverse scale factor in general) become proportional to positive powers of the scale factor\(^1\) below a critical value, \(a_* = \sqrt{j\gamma/3}\ell_P\). Here \(j\) is a half-integer greater than unity, \(\ell_P\) is the Planck length and \(\gamma \approx 0.2375\) is the Barbero–Immirzi parameter whose value is set by black hole thermodynamics \([9]\). Also as, \(a \rightarrow 0\) the spectrum of the inverse scale factor operator remains bounded and curvature does not diverge.

At the fundamental level, the evolution in LQC is governed by quantum difference equations. However, above the scale factor \(a_i \approx \sqrt{j\gamma}\ell_P\), dynamics can be approximated by Friedmann equations with non-perturbative modifications \([10]\). The spacetime does not immediately become classical as we go from low to high eigenvalues of the scale factor and the regime \(a_i \lesssim a \lesssim a_*\) is very interesting to explore new physical effects. The dynamics in this semi-classical regime has been studied extensively for a scalar field and various interesting results have been obtained, like dynamical initial conditions for the universe \([11]\), naturalness of inflation \([12–19]\), avoidance of big crunch in closed models \([20–22]\), non-singular brane bounce in cyclic models \([23]\), an emergent universe scenario \([24]\), possibility of signatures in cosmic microwave background (CMB) \([14]\) and discrete corrections to classical trajectories \([25, 26]\). The non-perturbative modifications to Friedmann equations have also been shown to match well with underlying quantum difference equations down to very small scales \([26, 27]\). Investigations of the issues pertaining to perturbations have also been initiated \([28, 29]\). LQC techniques have also been applied to scalar field collapse models and it has been shown that black hole and naked singularities can be avoided \([30, 31]\).

Though LQC has yielded various interesting results in scalar field dynamics, phenomenological applications for arbitrary matter remain an open issue. This problem is not only important by itself to gain insights into the behaviour of matter at scales near and below \(a_*\), but also to have understanding of a more complete model of the universe with loop modifications. It should be noted that even in most of the scalar field applications considered in LQC, various properties of the scalar field are just assumed as in standard cosmology. Therefore, it is highly desirable to look for alternatives to scalar field phenomenology. We shall recall that in classical cosmology a scalar field is a very attractive entity since it can easily violate the strong energy condition in the presence of a potential, which can lead to various interesting consequences. Our interest here is to explore the possibilities for generic matter when the scale factor is smaller than \(a_*\). If the equation of state of matter like dust or radiation behaves in a radically different way below some scale factor, then the results obtained in LQC using the scalar field might be generalized to other matter. In particular, any such result is particularly useful to study the last stages of a contracting universe or gravitational collapse scenarios in LQC. Further profound insights might be obtained for some phenomena in the very early universe, thus making the LQC phenomenology for generic matter very important.

Since we are working in a symmetry reduced framework, incorporating generic matter configurations is a difficult issue. This is for the reason that various forms of matter in classical cosmology, like perfect fluids, are not as fundamental as the scalar field. Further, a consistent analysis of perfect fluids at all scales (including the discrete quantum regime) may require a full non-perturbative treatment of quantum gravity with matter. Since such a theory is still under development, our treatment here would be very phenomenological.

\(^1\) The notion of a scale factor is slightly different from that used in terms of conventional cosmology. In LQC, it is related to the cubic root of the volume of the fiducial cell necessary to define a symplectic structure for quantization and is invariant to conventional rescaling freedom \([5]\).
In classical cosmology matter coupling to gravity is identified via the stress–energy tensor of a perfect fluid or the energy density and pressure. The latter are related via the thermodynamic relation of the equation of state and obey the conservation law derived from the adiabatic expansion of the universe (which is the same as the divergence-free property of the stress–energy tensor). The conservation law provides us with the proportionality of energy density with the scale factor. Matter components with constant but different equation of states are proportional to different powers of the scale factor. Since we cannot include such classical fluids in the current treatment, we would investigate the modifications to the Hamiltonian with suitable scale factor dependence such that the corresponding energy density at classical volumes \((a \gg a_*)\) has the same behaviour in the scale factor as the energy density of a classical matter component like dust, radiation (or relativistic gas of particles) etc. In this way, we can obtain insights into the way energy density for matter shall modify as we approach semi-classical scales. In \([27]\), it was shown that inverse scale factor modification to energy density of matter behaving as classical dust is sufficient to mimic the underlying quantum dynamics to the scales of the order of \(a_i\). Further, at large volumes \((a \gg a_*)\), we recover the classical form of densities and standard dynamics. Thus, dynamical equations with modified energy density make a good effective theory for the fundamental quantum difference equations in the semi-classical domain and we can study the variation from classical behaviour, like for the equation of state, in the effective description without referring to the underlying quantum dynamics. Our analysis is based on this effective phenomenological picture.

We emphasize that we do not include perfect fluids in the current framework of LQC but we investigate matter Hamiltonians whose energy density at classical scales mimics that of fluids like dust, radiation or stiff matter. We further assume as in \([25]\) that time scales of loop-modified cosmological dynamics are large compared to those which establish thermodynamic equilibrium in matter processes such that the notion of equation of state is well defined and the conservation law can be used. It is possible that in the deep quantum regime near \(a_i\), the above assumption may break down. In any case, in the full quantum zone our phenomenological picture would be invalid and thus insights gained from this work can be trusted only for scales not much below \(a_*\) with the latter chosen large enough compared to \(\ell_p\).

Our first result is to show that there are different ways to define energy density given a matter Hamiltonian, depending on whether we construct a corresponding quantum operator or not. This is also related to the way we can obtain the effective Friedmann equation in the semi-classical regime, either as an extension of the classical Friedmann equation or the semi-classical limit of the corresponding quantum construction. We demonstrate that the distinction between energy densities becomes important especially in the case when the matter Hamiltonian is independent of the scale factor. Phenomenologically, this would correspond to the coupling resembling classical dust. This can have important consequences for the perturbations in the semi-classical regime. However, irrespective of the choice of definition of the energy density, we further show that the equation of state shows variation from the behaviour at classical volumes near and below \(a_*\). This would effectively correspond to the existence of a negative pressure by using the conservation law. Thus matter which couples with classical gravity as a pressureless or as a positive pressure component, may transform into a negative pressure form at scales below \(a_*\). Interestingly, this is true even when the equation of state is constant in classical theory, thus giving an indication that the equation of state may vary in the semi-classical regime. As discussed earlier, this can have profound implications for scales \(a \lesssim a_*\) with the possibility that matter like dust and radiation can provide a viable alternative to a scalar field as in gravitational collapse scenarios \([30, 31]\). This result is also important for multi-component models in semi-classical LQC. Our results are also immediately applicable to the models with more than one scalar field where one of the
scalar fields behaves effectively as dust or radiation with a suitable choice of potential. Then
the variation of the equation of state to negative values for such a matter component suggests
that maybe it is possible to successfully generalize the previous results of LQC. We also show
that for matter coupling corresponding to radiation, the frequency experiences dispersion at
scales smaller than \(a_\ast\). Interestingly, dispersion is similar to the results obtained earlier using
trans-Planckian cutoffs \([32, 33]\).

2. Modified dynamics

The root of modification of dynamics in LQC can be traced back to the operator representing
the quantum inverse scale factor. Since the scale factor in LQC has discrete eigenvalues
including zero, one begins with an identity on the Ashtekar–Barbero phase space \([34]\). In
terms of the basic phase space variables, connection \(c\) and the triad \(p,a\)−1 is given by \([35]\)

\[
a^{-1} = \left[\frac{3}{8\pi G \gamma l} \langle c, |p|^l \rangle \right]^{1/(2-2l)}
\]

where \(l\) is a quantum ambiguity parameter with \(0 < l < 1\). The triad \(p\) is related to the
scale factor \(a\) via \(|p| = a^2\) and on classical solutions (of general relativity)
\(c\) is given by
\(c = (k - \gamma \dot{a})/2\), with \(k\) being the curvature index which is taken to be zero in this work. We
can then quantize this identity and obtain the eigenvalues of the inverse scale factor. It turns
out that the eigenvalue spectrum is bounded on the entire Hilbert space and evolution through
\(a = 0\) is non-singular \([3–5]\). The eigenvalues of \(\hat{1}/\hat{a}\) below \(a_\ast\) become proportional to the
positive powers of the scale factor and are not the inverse of those of \(\hat{a}\).

The geometrical density operator \((\hat{1}/a^3)\) can be similarly constructed and its eigenvalues
for large \(j\) are approximated as \([12]\)

\[
d_{j,l}(a) = D_l(q)a^{-3}, \quad q := a^2/a_\ast^2, \quad a_\ast := \sqrt{\gamma / 3\epsilon P}
\]

where

\[
D_l(q) = \left\{ \frac{3}{2l} q^{1-l} \left[\frac{1}{2+l} \right] ((q+1)^{1+2} - |q-1|^{1+2})
\right.

\left. - \frac{q}{1+l} ((q+1)^{1+1} - \text{sgn}(q-1)|q-1|^{1+1}) \right\}^{3/2l}.
\]

Radical modifications to the behaviour of geometrical density become obvious if \(a \ll a_\ast\) when

\[
d_{j,l}(a) \approx \left(\frac{3}{1+1} \right)^{3(2-2l)} \left(\frac{a}{a_\ast} \right)^{3(2-l)/(1-l)} a^{-3}.
\]

At classical scales \(a \gg a_\ast, d_{j,l} \approx a^{-3}\) and we recover the classical description.

For matter specified by Hamiltonian \(\hat{H}_M\), dynamics can be obtained from the total
Hamiltonian constraint which on quantization leads to the following difference equation,
\([5]\)

\[
(V_{\mu+5j\mu_0} - V_{\mu+3j\mu_0}) \psi_{\mu+4j\mu_0} - 2 (V_{\mu+3j\mu_0} - V_{\mu-5j\mu_0}) \psi_{\mu} + (V_{\mu-3j\mu_0} - V_{\mu-5j\mu_0}) \psi_{\mu-4j\mu_0}
\]

\[
= -\frac{8\pi G}{3} \gamma^3 \tilde{A}_P^3 \hat{H}_M(\mu) \psi_{\mu},
\]

where \(V_{\mu}\) are the eigenvalues of the volume operator and are related to the eigenvalues (\(\mu\)) of
the triad as \(V_{\mu} = (|\mu|/6)^{3/2}\epsilon P\). In the semi-classical limit, it can be shown that the above
equation can be approximated by the following differential equation \([10, 12]\)

\[
-3\ddot{a}^2 a + 8\pi G E_M(a, \phi) = 0.
\]
Here $E_M(a, \phi)$ are the eigenvalues of the matter Hamiltonian operator, assumed to correspond to a matter field ϕ. It is important to note that if \mathcal{H}_M depends on the inverse scale factor, then $E_M(a, \phi)$ inherits the modifications to the eigenvalues of $(1/a)$ upon quantization. Thus, dynamics in the semi-classical regime is distinct from its classical counterpart\(^2\). A useful example is the case of a massive scalar field whose classical Hamiltonian

$$\mathcal{H}_M = \frac{1}{a^3} \left(\frac{p_\phi^2}{2} + a^3 V(\phi) \right)$$

on loop quantization yields modified eigenvalues as \([12–14]\)

$$E_M(a, \phi) = d_{j,l}(a) \frac{p_\phi^2}{2} + a^3 V(\phi).$$

Dynamics in this case is then completely determined by further using the modified Klein–Gordon equation \([12–14]\)

$$\ddot{\phi} + \left(\frac{3}{a} - \frac{\dot{D}_l(q)}{D_l(q)} \right) \dot{\phi} + D_l(q) V_\phi(\phi) = 0$$

where we have used Hamilton’s equations $\dot{\phi} = d_{j,l}(a) p_\phi$ and $\ddot{\phi} = -a^3 V_\phi(\phi)$. In the regime $a \lesssim a_\star$, $D_l(q) \ll 1$ and the modified dynamics becomes independent of the potential. Also, the Klein–Gordon equation (9) can be approximated as

$$\ddot{\phi} - 3 \left[\frac{2 - l}{1 - l} - 1 \right] \frac{\dot{a}}{a} \dot{\phi} \approx 0$$

where we have used equation (4). Since $0 < l < 1$ the coefficient of $\dot{\phi}$ in equation (9) changes sign compared to its classical value and the scalar field experiences anti-friction (friction) instead of friction (anti-friction) for an expanding (contracting) universe. Such a peculiar change is responsible for various interesting physical effects, for example, super-inflation \([12–19]\), avoidance of big crunch \([20–22]\) and resolution of black hole and naked singularities with possible observable signatures \([30, 31]\).

Let us now determine the modifications to the energy density. In classical theory once we know $E_{M,cl}(a, \phi)$, it is straightforward to evaluate the classical energy density which is defined as $\rho_{cl} = E_{M,cl}(a, \phi)/a^3$. Since geometric density is modified in the semi-classical regime, the notion of energy density becomes subtle. To obtain the semi-classical density one way is to define a density operator $\hat{\rho}_q = \mathcal{H}_M/a^3$ and then take the semi-classical limit. Another way is to define the semi-classical density as the ratio of modified energy density to the volume, i.e., $\rho_{sc} = E_M(a, \phi)/a^3$ (where $E_M(a, \phi)$ includes the appropriate modifications to the inverse scale factor) \([12]\). Note that since we so far lack understanding of the physical inner product in LQC, these definitions are considered with the caveat that they may not correspond to the expectation values taken with respect to physical semi-classical states. It may turn out that energy density obtained via expectation values is different from ρ_q or ρ_{sc}, which may require further analysis of the results presented here. There are other possible quantization ambiguities in defining energy density, like we can classically write $a^{-3} = a^{-3} a^{3(\beta - 1)}$ for $\beta > 0$, quantize it and obtain the energy density which would now depend on β. Note that all such quantization ambiguities lead to the same classical energy density and in a quantum theory a choice has to be made, either on the ground of the natural value of parameter β (which would be $\beta = 1$) or the connection with full theory of LQG. The origin of such an ambiguity parameter is similar to the parameter l which is present in equation (1) and is discussed in detail in \([15]\) where it

\(^2\) There are various possible quantization ambiguities in obtaining the semi-classical description; however, their effect on phenomenology is rather weak. For their detailed discussion and robustness of phenomenology we refer the reader to \([15]\).
was shown that it is the natural choice of parameter which may arise from LQG. This augurs well for the general expectation that natural values of such quantization ambiguity parameters would be favoured by the full theory of LQG. We focus our discussion on the natural value of the β parameter and discuss the implications for other possible values in the concluding section. It turns out that the physics and conclusions of this work are very robust to arbitrary choices of β.

The eigenvalues for $\hat{\rho}_q$ can be obtained in the way described above for \hat{H}_M and $1/\alpha^3$ and they are

$$\rho_q = d_{j,l}(a) E_M(a, \phi) = D_l(q) a^{-3} E_M(a, \phi) = D_l(q) \rho_{sc}. \quad (11)$$

For $a \lesssim a_*$, $D_l(q) \lesssim 1$ implies $\rho_q \lesssim \rho_{sc}$. It is to be noted that ρ_q incorporates modifications both in energy and geometric density eigenvalues, whereas ρ_{sc} does not receive any contribution from modifications in behaviour of $1/\alpha^3$. Though dynamics does not depend on the choice of the density, there are important distinguishing features which we discuss in the next section.

Modifications to energy and density eigenvalues of matter Hamiltonians with arbitrary scale factor dependence can be determined in a similar way. In the semi-classical regime, at the effective level, we shall first replace the inverse scale factors in the Hamiltonian with the appropriate powers of $d_{j,l}$ and then obtain the energy density ρ_q (or ρ_{sc}). For example, if \hat{H}_M is independent of the scale factor then its energy eigenvalues would not get modified for scales less than a_*. The energy density defined via ρ_q is modified. At classical scales energy density becomes proportional to α^{-3}. Thus, this form of matter coupling would resemble that of dust at large volumes. Similarly, the Hamiltonian whose energy density would classically couple as that of radiation is $\hat{H}_M(a) \propto 1/\alpha$. The energy eigenvalues in this case get modified below a_*, which is equivalent to modification to behaviour of frequency at small volumes (see [29] for a similar discussion).

The semi-classical dynamics can be obtained directly from the Hamiltonian constraint equation (6) and since the latter does not depend on ρ_q or ρ_{sc}, the trajectories like $a(t)$ would be identical for both choices of energy density. However, if instead of using the Hamiltonian constraint we wish to use the effective Friedmann equation to determine dynamics then there are some subtleties. One way to obtain the effective Friedmann equation is as done classically, that is, dividing the Hamiltonian constraint by α^3. This yields the gravitational energy density as a^3/α^3 which is identified with the square of the classical Hubble rate ($H_3 := \dot{a}/a$) and is equal to the classical matter energy density (up to a numerical factor of $8 \pi G/3$). With this algorithm, the division of equation (6) by α^3 yields the modified Friedmann equation with unmodified gravitational energy density, and thus the effective Hubble rate which is the same as the classical one, i.e., $H_{sc}^2 = H_3^2 := \dot{a}^2/\alpha^2$, is proportional to ρ_{sc}.

An alternative method to obtain the semi-classical effective Friedmann equation is to first quantize the classical Friedmann equation and then obtain its semi-classical limit. As explained for the construction of $\hat{\rho}_q$, this method would imply that the modified Friedmann equation in the regime $a \lesssim a_*$ is given by $d_{j,l}$ multiplied with equation (6). This means that the gravitational energy density also gets modified below a_* and is given by $D_l \dot{a}^2/\alpha^2$; that is, the effective Hubble rate in the semi-classical regime is given by $H_q := D_l^{1/2} H_{sc} = D_l^{1/2} \dot{a}/a$, whose square is proportional to the energy density ρ_q. For $a > a_*$, both H_q and ρ_q approach H_{sc} and ρ_{sc} respectively, and the classical dynamics is recovered. Interestingly, the modified Friedmann equation for H_q can be further divided by D_l to obtain a \dot{a}^2/α^2 equation which resembles the modified Friedmann equation obtained from the first method; however, it does

\footnote{A construction of the Hubble operator on similar lines was proposed earlier [36]; however, subtle issues pertaining to dynamics and energy density were not addressed.}
not imply that either $\frac{\dot{a}^2}{a^2}$ or ρ_{sc} can be identified with the actual gravitational and matter energy densities ($D_l \frac{\dot{a}^2}{a^2}$ and ρ_q).

The point to note is that different gravitational and matter densities appear in the modified Friedmann equation depending on the way the latter is obtained, either by extending classical theory to the semi-classical regime which leads to an unmodified Hubble rate or taking the semi-classical limit of the quantum theory which modifies the classical Hubble rate to H_q. As we mentioned above, these differences (or ambiguities to obtain the effective Friedmann equation) do not affect dynamical trajectories and the phenomenological applications like inflation and bounces in LQC which are robust to such ambiguities. However, they do lead to different effective Hubble rates and energy densities in the semi-classical regime $a \lesssim a_\star$.

This can be important, for example, in the investigations of constraints on the value of loop parameters to yield viable initial conditions for conventional inflation [15]. We recall that in [15], $H_{sc}^{-1} > \sqrt{7} \ell_P$ was used to obtain constraint on parameter j. The phenomenological constraint on j is thus expected to change if instead we use H_q. Further, in [26] estimates on the scale below which discrete quantum geometry corrections become significant to the dynamics have been obtained. This scale, which is related to a critical density obtained using ρ_{sc}, may also be affected if we use ρ_q. These issues will be important for future investigations in this direction.

3. Variation of the equation of state

Given classical matter with a constant equation of state (w_{cl}), matter density evolves as

$$\rho_{cl} = \rho_0 a^{-3(1+w_{cl})}$$

(12)

where ρ_0 is a constant. At the effective phenomenological level the modifications to energy density of matter as for ρ_q correspond to replacing inverse powers of a in equation (12) with appropriate powers of $d_{j,l}$. Thus

$$\rho_q = \rho_0 d_{j,l}^{(1+w_{cl})} = D_{l}^{(1+w_{cl})} \rho_{cl}.$$

(13)

Further, on using equation (11) we obtain

$$\rho_{sc} = D_l^{-1} \rho_q = D_l^{w_{cl}} \rho_{cl}.$$

(14)

Hence both prescriptions (ρ_q and ρ_{sc}) to obtain semi-classical density lead to the modifications from classical density. The energy conservation law obeyed by matter immediately ensures that pressure must change to accommodate any modification in energy density. The rate of change of energy density ρ_q with respect to the scale factor is

$$a \frac{d}{da} \rho_q = (1 + w_{cl})\rho_q \left[\frac{d \ln D_l}{d \ln a} - 3 \right].$$

(15)

Using this in the energy conservation equation

$$a \frac{d}{da} \rho = -3(\rho + p)$$

(16)

we easily obtain the expression for modified pressure p_q,

$$p_q = w_{cl}\rho_q - (1 + w_{cl}) \frac{d \ln D_l}{d \ln a} \rho_q$$

(17)

which leads to an effective equation of state (w_q) defined as the ratio p_q/ρ_q,

$$w_q = \left[w_{cl} - \frac{(1 + w_{cl})}{3} \frac{d \ln D_l}{d \ln a} \right].$$

(18)
Figure 1. Behaviour of the effective equation of state for matter whose energy density at classical volumes has behaviour similar to that of stiff matter. The solid curve shows w_q and the dashed curve shows w_{sc}. Parameters are $j = 100$ and $l = 3/4$. The same variation holds for a massive scalar field (for details see the text).

Similar derivation can be done by starting from energy density ρ_{sc} and the resulting effective equation of state $w_{sc} = p_{sc}/\rho_{sc}$ is

$$w_{sc} = w_{cl} \left[1 - \frac{1}{3} \frac{d \ln D_l}{d \ln a} \right].$$

(19)

At classical scales $a \gg a_*$, $D_l(q) = 1$. However, at scales near and below a_*, $D_l(q)$ starts varying and becomes much smaller than unity. This leads to the variation of the equation of state for matter for $a \lesssim a_*$. If our phenomenological picture is allowed to be trusted even for scales $a \sim a_*$, then fixing the parameter l to its natural value of $3/4$ [15], it is straightforward to see from equation (4) that for $a \sim a_* \approx \sqrt{\gamma \ell} P$, $d \ln D_{3/4}/d \ln a \approx 15$ and thus

$$w_q \approx -4w_{cl} - 5$$

(20)

and

$$w_{sc} \approx -4w_{cl}.$$

(21)

As discussed earlier we do not expect this behaviour to be valid at scales so close to Planck length; however, we do expect that for scales close to a_*, the equation of state would start varying even if it is constant for $a \gg a_*$. We illustrate this with examples of matter Hamiltonians of the form C_1/a^3, C_2/a and C_3 where C_i are some constants. Since the energy density of these Hamiltonians resembles that of stiff matter, radiation and dust, respectively, in scale factor dependence at classical volumes, we refer to examples with this correspondence. We also review the case of a massive scalar field and study the effect of using ρ_q instead of ρ_{sc} as done earlier [12, 14–16, 18].

Stiff matter. For a matter Hamiltonian which is of the form C_1/a^3, both ρ_q and ρ_{sc} approach $\rho_{cl} \propto a^{-6}$ as for stiff matter at scales $a \gg a_*$. As expected the equation of state w_q or w_{sc} is equal to unity at large volumes. However, for scales $a \sim a_*$, it starts varying and becomes negative for $a < a_*$. The increase in the equation of state from its classical value for a small domain near a_* is due to the corresponding peak in $D_l(q)$ for $a \sim a_*$. The variation of the effective equation of state is shown in figure 1. As can be seen, the equation of state quickly
Effective state metamorphosis in semi-classical loop quantum cosmology

Figure 2. Evolution of frequency ω (the solid curve) with k. We choose the quantum gravity parameters as $l = 3/4$ and $j = 100$. Behaviour for other choices is similar. The classical curve denoted by III is not modified at any value of the scale factor. Curves I, IV and II are obtained, respectively, in [33] and [32] by cutoffs to the dispersion relation at short scales. Quantum gravity naturally produces a modification to frequency at short scales without the introduction of any cutoff.

becomes less than $-1/3$ after the peak at $a \sim a_s$, that is, it violates the strong energy condition. It also becomes less than -1 for values of the scale factor which are of the order of $0.8 a_s$, thus violating the weak energy condition. This behaviour is independent of the choice of loop quantum parameters and suggests that matter with a constant stiff equation of state at classical volumes may transform effectively into a form with an equation of state which is negative. Though of little validity for our phenomenological picture, we see that for $a \sim a_i$, $w_q \approx -9$ and $w_{sc} \approx -4$.

Radiation. Matter Hamiltonians which are proportional to the inverse scale factor lead to energy density of the form of radiation at classical volumes. The Hamiltonian gets modified by $d^{1/3}$ in the semi-classical regime. Effectively, it implies that frequency corresponding to the classical radiation component gets modified from the standard behaviour below a_s. In this case classically we have $E_M = E_0 a_0 / a$ (with E_0 and a_0 being constants) which gets modified to $E_M = d^{1/3} a_0 E_0 = D^{1/3} a^{-1} a_0 E_0$. Thus for $a \lesssim a_s$, E_M would become proportional to positive powers of the scale factor. Since for radiation E_M is linearly related to frequency via the Planck law, this modification implies a change in the behaviour of frequency at scales below a_s which would be given by $\omega = \omega_0 d^{1/3} = \omega_0 d^{1/3} a^{-1}$. Modifications to the behaviour of frequency at short scales have been expected and desired from quantum gravity models. However, most of the time this is done by introducing a short-scale cutoff [32, 33]. Here we see that such a cutoff is provided by the scale below which behaviour of density changes. We have plotted the behaviour of ω with $k = 2\pi/\lambda$ in figure 2. As can be seen, the modification to frequency is similar to that expected earlier and inspires further investigations to understand modification of the dispersion relation using quantum gravity models as we have done here. These issues will be addressed elsewhere.

The equation of state for matter coupling like radiation via ρ_q construction becomes

$$w_q = \frac{1}{3} = \frac{4}{9} \frac{d \ln D_i}{d \ln a}.$$ (22)
Figure 3. Evolution of w_q (the solid curve) and w_{sc} (the dashed curve) for $\mathcal{H}_M \propto a^{-1}$ with loop parameters as in figure 1. If the phenomenological picture is valid till $a \sim a_*$, matter which couples to gravity at classical volumes as radiation transforms into one with super-negative pressure. The inset shows the variation of $D_l(q)$ with its peak at $a \sim a_*$. At classical scales, $D_l(q) = 1$ and thus $w_q = w_{sc} = 1/3$. However, for scales less than a_*, $D_l(q)$ starts varying which leads to the variation of w_q and w_{sc}. In figure 3, we have shown the evolution of w_q and w_{sc} with a scale factor. The inset shows the evolution of $D_l(q)$ with its peak at $a \sim a_*$. As in the case of stiff matter, the variation in w_q is more rapid than w_{sc}. Though both variations suggest that strong and weak energy conditions are violated for scales near a_*, these violations occur at slightly larger scale factors for w_q than for w_{sc}.

Dust. The Hamiltonian which is independent of the scale factor does not receive any modifications due to $d_{j,l}$ for scales less than a_*. The energy density ρ_{sc} is equal to ρ_{cl} at all scales and thus diverges for small scale factors. However, on using the density operator we obtain $\rho_q = D_l \rho_{cl}$ and

$$w_q = -\frac{1}{3} \frac{\ln D_l}{\ln a}.$$ \hspace{1cm} (23)

We have shown the variation of the effective equation of state in figure 4. As for the case of stiff matter and radiation, w_q varies for $a \sim a_*$ and becomes negative below the critical scale factor. It also violates the weak energy condition for $a \sim 0.9a_*$. On the other hand w_{sc} remains constant (equal to zero) all through the period of evolution. The differences between ρ_q and ρ_{sc} become very evident in this case. As $a \to 0$, ρ_{sc} blows up whereas ρ_q remains finite. It is important to note that in ρ_q effects of geometric density regulate the diverging energy density at small scale factors.

The massive scalar field. The case of the massive scalar field has been studied in detail in LQC [12–25, 28, 29]. The period of super-acceleration in the regime $a \lesssim a_*$ plays a dominant role in most of the interesting effects like setting up the right conditions for inflation or preventing singularities. These phenomena also indicate that the effective equation of state becomes
less than -1 and thus the weak energy condition is violated. The energy density of a massive scalar field ϕ with potential $V(\phi)$ via density operator construction is given by

$$\rho_q = d_{j,l} E_M(a, \phi) = \frac{\dot{\phi}^2}{2} + D_l(q) V(\phi)$$

where we have used equations (11) and (8). The expression for effective pressure can be obtained by using equation (16) and the Klein–Gordon equation (equation (9)). It turns out to be

$$p_q = \left[1 - \frac{2}{3} \frac{\ln D_l}{\ln a} \right] \frac{\dot{\phi}^2}{2} - D_l(q) V(\phi) - \frac{1}{3} \frac{\ln D_l}{\ln a} V(\phi)$$

and thus the effective equation of state can be obtained by using $w_q = p_q/\rho_q$. It is noted that the effective negative pressure obtained from ρ_q is much stronger than that obtained from ρ_{sc} leading to $[12, 16]$

$$w_{sc} = -1 + \frac{2\dot{\phi}^2}{\dot{\phi}^2 + 2D_l(q) V(\phi)} \left[1 - \frac{1}{6} \frac{\ln D_l}{\ln a} \right].$$

Since $D_l(q) \ll 1$ for $a \ll a_s$, the potential terms become negligible compared to the kinetic terms and it is easy to verify that both w_q and w_{sc} behave in the same way as for stiff matter. The variation of the equation of state and the super-negative pressure is thus as shown in figure 1. It is important to note that use of ρ_q leads to stronger violation of energy conditions than ρ_{sc}. As we discussed in the previous section this issue might be linked to the problem of stability of perturbations in the regime $a \lesssim a_s$ [29]. Hence the choice of ρ_q or ρ_{sc} is bound to play an important role in obtaining viable density perturbations in the loop quantum modified regime. We would leave such an investigation for future work.
4. Conclusions

Working in the semi-classical limit of LQC we have studied the behaviour of matter Hamiltonians with arbitrary scale factor dependence, in particular those whose energy density scales as that of dust, radiation and stiff matter at classical volumes. Through our phenomenological effective treatment we are able to gain useful insights into what should be expected as the modified behaviour of matter at scales near and less than a_\ast. Our first result is to show that there are at least two ways to define energy density and thus the equation of state. Both of them lead to the same classical behaviour for $a \gg a_\ast$, but for $a \lesssim a_\ast$, there are significant distinctions between them. For example, in the case of the matter Hamiltonian with no scale factor dependence (classically corresponding to dust), at small scale factors the energy density defined via ρ_{sc} blows up whereas ρ_{q} remains regulated and finite.

The effective equation of state for matter mimics the classical behaviour for $a \gg a_\ast$. However, we have shown that near a_\ast it starts varying even if it is classically constant. It increases initially for $a \sim a_\ast$ and then rapidly decreases leading to the violation of energy conditions. This violation is independent of the choice of w_q or w_{sc}. It suggests that classical matter may effectively metamorphose itself to various forms at short scales and may serve as a viable alternative to scalar field phenomenology. The case of radiation offers a new insight into the trans-Planckian modifications to the frequency dispersion. It is intriguing that inverse scale factor modifications may provide a natural explanation to much sought frequency dispersion at short scales; however, this requires a detailed analysis which is beyond the scope of the present discussion.

As we discussed in section 2, there is a new quantization ambiguity which may arise in the construction of energy density via the quantum operator. It can be checked that if instead of taking $\beta = 1$, we keep it as arbitrary positive then ρ_{q} becomes $\rho_{\text{q}} = D_l^{1+w_{\text{cl}}} \rho_{\text{cl}}$ and the factor $(1 + w_{\text{cl}})$ in equation (18) gets multiplied by β. Since β is positive, its multiplication with $(1 + w_{\text{cl}})$ in equation (18) does not affect the qualitative behaviour of the equation of state at scales smaller than a_\ast would occur. The parameter β only affects the magnitude of the variation of w_{q}. For example, if we fix $l = 3/4$ then for the case of dust all values of $\beta > 1/15$ would imply violation of the strong energy condition for $a \sim a_i$. By taking the same value of l and $\beta > 1/5$, ρ_{q} for dust like matter would scale as a positive power of the scale factor for $a \sim a_i$ and the energy density does not blow up at small scale factors. Similarly for radiation and stiff matter, an arbitrarily chosen β results in a different magnitude of variation of the energy density and equation of state and the qualitative picture does not change. The result of modification to frequency dispersion for radiation is independent of the choice of energy density and is unaffected by this ambiguity parameter. This leads us to the conclusion that phenomenological effects discussed in this work are very robust and the qualitative picture does not depend on different choices of the quantization ambiguity parameter β. We recall that in [15], it was demonstrated that phenomenological results are qualitatively independent of the choice of parameter l. We have earlier discussed that the parameter β originates in a very similar way as l. Now we see that both parameters also have a very similar effect on the phenomenological description and the underlying physical predictions are quite robust to the choices of these parameters.

Future investigations with full LQG techniques would be able to confirm or rule out the expectations of metamorphosis of the equation of state and natural modifications to frequency dispersion. This opens a novel avenue to explore phenomenology at $a \lesssim a_\ast$, with matter like dust and radiation. Since the equation of state for matter coupling as classical dust or radiation to gravity becomes negative for $a < a_\ast$, it implies that multi-component models of the scalar
field interacting with various matter components would also yield similar qualitative results like super-acceleration and bounce in semi-classical LQC. Of course, the results obtained here are directly applicable to loop quantum cosmological models with two or more scalar fields where at least one of them behaves as a classical matter component like dust or radiation with an appropriate choice of potential. In [30, 31] gravitational collapse scenarios with a scalar field were studied and the possibilities of interesting astrophysical signatures have been reported. However, in a more realistic scenario inclusion of matter which behaves as dust, radiation or stiff matter is important to investigate the last stages of astrophysical collapse. Our results would be particularly useful in this arena and may open the possibility of linking LQC phenomenology with astrophysical observations.

Though the choice of energy density does not affect the dynamical trajectories, it may, however, change some of the phenomenological constraints imposed on loop parameters using the Hubble rate (or energy density). This issue should be investigated further which may give us useful insights. However, a more fundamental understanding of matter in LQC and detailed analysis of physical semi-classical states might also guide us towards resolving this ambiguity. Our result of the effective state metamorphosis may also have some interesting implications for the problem of dark energy where some of the scenarios require the effective equation of state to become less than -1. In particular, recently considerable attention has focused on crossing the -1 divide in the equation of state (which separates domains of validity of the weak energy condition) and the role of quantum gravity effects [37]. In semi-classical LQC such a behaviour is observed very naturally for various forms of matter. Investigation into the relation of LQC dynamics with that of standard cosmology using a scale factor duality has been done previously [17]. On speculation, such a duality might provide a valuable link between quantum gravity effects at short scales with dark energy at large scale factors of the universe.

Acknowledgments

We are grateful to A Ashtekar for a careful reading of the manuscript, extensive comments and helpful discussions. We also thank M Bojowald, G Date, R Maartens, E Papantonopoulos, A Toporensky, S Tsujikawa, K Vandersloot and G V Vereshchagin for discussions and comments. The author’s work is supported in part by Eberly research funds of Penn State and by NSF grant no PHY-00-90091.

References

[1] Thiemann T 2003 Lect. Notes Phys. 631 41
 Ashtekar A and Lewandowski J 2004 Class. Quantum Grav. 21 R53
 Rovelli C 2004 Quantum Gravity (Cambridge Monographs on Mathematical Physics) (Cambridge: Cambridge University Press)
[2] Ashtekar A and Lewandowski J 1997 Class. Quantum Grav. 14 A55
 Ashtekar A and Lewandowski J 1997 Adv. Theor. Math. Phys. 1 388
 Rovelli C and Smolin L 1995 Nucl. Phys. B 442 593
 Thiemann T 1998 J. Math. Phys. 39 3347
[3] Bojowald M 2001 Phys. Rev. Lett. 86 5227
[4] Bojowald M 2002 Class. Quantum Grav. 19 2717
 Bojowald M Class. Quantum Grav. 20 2595
 Bojowald M, Date G and Vandersloot K 2004 Class. Quantum Grav. 21 1253
[5] Ashtekar A, Bojowald M and Lewandowski J 2003 Adv. Theor. Math. Phys. 7 233
[6] Bojowald M 2005 Preprint gr-qc/0505057
[7] Green D and Unruh W G 2004 Phys. Rev. D 70 103502
[8] Brunnemann J and Thiemann T 2005 Preprint gr-qc/0505032
[9] Ashtekar A, Baez J, Corichi A and Krasnov K 1998 Phys. Rev. Lett. 80 904
 Domagala M and Lewandowski J 2004 Class. Quantum Grav. 21 5233
 Meissner K A 2004 Class. Quantum Grav. 21 5245
[10] Bojowald M 2001 Class. Quantum Grav. 18 L109
[11] Bojowald M 2001 Phys. Rev. Lett. 87 121301
[12] Bojowald M 2003 Gen. Rel. Grav. 35 1877
[13] Bojowald M and Vandersloot K 2003 Phys. Rev. D 67 124023
[14] Tsujikawa S, Singh P and Maartens R 2004 Class. Quantum Grav. 21 5767
[15] Bojowald M, Lidsey J E, Mulryne D J, Singh P and Tavakol R 2004 Phys. Rev. D 70 043530
[16] Lidsey J E, Mulryne D J, Nunes N J and Tavakol R 2004 Phys. Rev. D 70 063521
[17] Lidsey J E 2004 J. Cosmol. Astropart. Phys. JCAP12(2004)007
[18] Mulryne D J, Nunes N J, Tavakol R and Lidsey J E 2004 Preprint gr-qc/0411125
[19] Date G and Hossain G M 2005 Phys. Rev. Lett. 94 011301
[20] Singh P and Toporensky A 2004 Phys. Rev. D 69 104008
[21] Vereshchagin G V 2004 J. Cosmol. Astropart. Phys. JCAP07(2004)013
[22] Date G and Hossain G M 2005 Phys. Rev. Lett. 94 011302
[23] Bojowald M, Maartens R and Singh P 2004 Phys. Rev. D 70 083517
[24] Mulryne D J, Tavakol R, Lidsey J E and Ellis G F R 2005 Phys. Rev. D 71 123512
[25] Banerjee K and Date G 2005 Class. Quantum Grav. 22 2017
[26] Singh P and Vandersloot K 2005 Preprint gr-qc/0507029
[27] Bojowald M, Singh P and Skirzewski A 2004 Phys. Rev. D 70 124022
[28] Hossain G M 2005 Class. Quantum Grav. 22 22511
[29] Hossain G M 2005 Class. Quantum Grav. 22 2653
[30] Bojowald M, Goswami R, Maartens R and Singh P 2005 Phys. Rev. Lett. 25 091302 (Preprint gr-qc/0503041)
[31] Goswami R, Joshi P S and Singh P 2005 Preprint gr-qc/0506129
[32] Unruh W 1995 Phys. Rev. D 51 2827
[33] Corley S and Jacobson T 1996 Phys. Rev. D 54 1568
 Corley S 1998 Phys. Rev. D 57 6280
[34] Thiemann T 1998 Class. Quantum Grav. 15 1281
[35] Bojowald M 2004 ICCG 2004: Proc. Int. Conf. on Gravitation and Cosmology (Cochin), Pramana 63 765
[36] Hossain G M 2004 Class. Quantum Grav. 21 179
[37] See, e.g., Piazza F and Tsujikawa S 2004 J. Cosmol. Astropart. Phys. JCAP07(2004)004
 McInnes B 2005 Nucl. Phys. B 718 55 (Preprint hep-th/0502209)
 Chimento L P 2005 Preprint gr-qc/0503049
 McInnes B 2005 Preprint hep-th/0504106