Eliciting Transferability in Multi-task Learning with Task-level Mixture-of-Experts

Qinyuan Ye Juan Zha Xiang Ren
University of Southern California
\{qinyuany, juanzha, xiangren\}@usc.edu

Abstract

Recent work suggests that transformer models are capable of multi-task learning on diverse NLP tasks. However, the potential of these models may be limited as they use the same set of parameters for all tasks. In contrast, humans tackle tasks in a more flexible way, by making proper presumptions on what skills and knowledge are relevant and executing only the necessary computations. Inspired by this, we propose to use task-level mixture-of-expert models, which has a collection of transformer layers (i.e., experts) and a router component to choose among these experts dynamically and flexibly. We show that the learned routing decisions and experts partially rediscover human categorization of NLP tasks – certain experts are strongly associated with extractive tasks, some with classification tasks, and some with tasks requiring world knowledge.

1 Introduction

Pre-trained transformer models (Devlin et al., 2019; Liu et al., 2019b) have demonstrated remarkable capabilities in natural language processing (NLP) in recent years. Moreover, generative transformers can be viewed as a universal model that can be optimized for any language task primed into text-to-text format (Raffel et al., 2020). Recently, researchers found that training these transformer models to multi-task on a diverse collection of NLP tasks is beneficial – not only are they better at handling seen tasks (Aghajanyan et al., 2021; Aribandi et al., 2022), but also at generalizing and adapting to unseen tasks (Wei et al., 2021; Sanh et al., 2022).

However, little is known about how multi-tasking capabilities and cross-task generalization is achieved, especially that the exact same set of weights is applied, and the same computation is executed, for very different tasks. Humans, on the other hand, do not exhaust their brain capacity for every task at hand. Humans develop skill sets and accumulate knowledge during learning, and can readily reuse and recompose them when facing a task. Inspired by this, we explore whether we can enable this process more explicitly with a new model that can emulate this behavior.

A natural fit for this goal would be task-level mixture-of-expert models (Jacobs et al., 1991; Kudugunta et al., 2021), where the model computation is conditioned on the task at hand. More specifically, the model contains a collection of experts and a router that chooses from the experts and composes the final model (Fig. 1). We empirically compare several key design choices (§5) and analyze the learned routes by aligning them with manually-labeled task features (§6).

Figure 1: In this work, we train a dynamic task-level mixture-of-expert model (§4) on diverse NLP tasks in a multi-task learning setting, aiming to elicit knowledge and skill sharing more explicitly. We empirically compare several key design choices (§5) and analyze the learned routes by aligning them with manually-labeled task features (§6).
acteristics, such as the task being a classification task, the task being extractive, or the task requiring world knowledge. However, despite different model variants we tried (selection function, router architecture, task representation initialization), the routing models struggle to outperform simple multi-tasking baselines, which calls for further investigation and development of algorithms that can stably optimize the dynamic model.

2 Related Work

Massive Multi-task Learning. Multi-task learning (Caruana, 1997) has been continuously explored in NLP and is shown to be beneficial (McCann et al., 2018; Liu et al., 2019a). Recently, multi-task learning is brought to a new scale by using a significantly larger collection of tasks and examples (Aghajanyan et al., 2021; Aribandi et al., 2022; Khashabi et al., 2020). These work demonstrate that multi-task learning improves the learning of text representation and thus boost the performance of seen tasks. Moreover, it is shown that models trained in this way exhibit strong adaptability to unseen tasks, in both few-shot (Ye et al., 2021) and zero-shot settings (Wei et al., 2021; Sanh et al., 2022; Mishra et al., 2021). Despite their effectiveness on performance, how a multi-task model learns and develop language skills from these tasks is a relatively under-explored topic. In our work, we try to address these questions and aim at better understanding multi-task models. Very recent works (Ponti et al., 2022; Gupta et al., 2022) share a similar motivation with our work.

Mixture-of-Experts in NLP. Mixture-of-experts models (Jacobs et al., 1991) divide the problem space into several sub-spaces and allow experts to be specialized in each subspace. Recently this concept is successfully applied to NLP (Shazeer et al., 2017), enabling models of billion or even trillion parameter scale (Fedus et al., 2021; Du et al., 2021; Artetxe et al., 2021). However these applications mainly focus on the scaling aspects. Besides, most of them select experts on a per-example basis. In this work we are interested in multi-task learning with per-task gating decisions (Rosenbaum et al., 2018; Kudugunta et al., 2021), and mainly focus on understanding and interpreting task disentanglement and transferability in multi-task learning by investigating the learned gating decisions.

Task Transferability. Phang et al. (2018) explored supplementary training on intermediate tasks (STILT), i.e., training on a data-rich intermediate task before fine-tuning on the target task. STILT improves performance on the target task and stabilizes the fine-tuning process. Pruksachatkun et al. (2020) further investigated when and why intermediate task transfer works, and Vu et al. (2020a) proposed to select the best transfer task based on text embeddings and task embeddings (computed with fisher information). These studies mainly focus on transferability between specific source-target pairs, while we consider a more realistic yet sophisticated setting of transferring between and beyond a collection of diverse tasks. Padmakumar et al. (2022) find that selecting an appropriate set of intermediate tasks helps achieve performance comparable with massive multi-task models, but with reduced computation costs.

3 Problem Setting

Our goal is to better understand multi-task learning with an explicit routing mechanism. With the hypothesis that each part (expert) of the model should play different role during the learning stage, we examine whether models can learn by summarizing and combining basic skills during multi-task learning, and explore the potential benefits of such dynamic models. In the following, we introduce the problem setting, including data usage (§3.1), training procedure (§3.2), and evaluation protocol (§3.3).

3.1 Data Usage

Assume that we have a collection of diverse NLP tasks \(T \), partitioned into three non-overlapping sets (\(T_{\text{train}}, T_{\text{dev}}, T_{\text{test}} \)). \(T_{\text{train}} \) is mainly used for multi-task learning, while \(T_{\text{dev}} \) and \(T_{\text{test}} \) are used to quantify the model’s adaptability to new tasks. Each task \(T \in T \) has three subsets, i.e., \(T = \{D_{\text{train}}, D_{\text{dev}}, D_{\text{test}}\} \). Additionally, we assume that all tasks are cast to a unified text-to-text format, i.e., \(D = \{(x, y)\} \), where \(x \) is the input text sequence, and \(y \) is the output text sequence.

3.2 Training Procedure

The training procedure has two stages: (1) an upstream learning stage for multi-task learning, to study the underlying skills that needed to solve different tasks; and (2) a downstream fine-tuning stage for evaluating the model’s ability to adapt to
new tasks. During the upstream learning stage, the model is expected to be trained for multi-task learning with the D_{train} from tasks in T_{train}. D_{dev} for tasks in T_{train} will be used for hyperparameter tuning and model selection. During the downstream fine-tuning stage, the model will be fine-tuned on each task in T_{test} respectively. D_{train} will be used for fine-tuning, D_{dev} for model validation.

3.3 Evaluation Protocol

Each task in T has a pre-defined evaluation metric. During the upstream learning stage, for simplicity, the model is validated on the average dev performance on all tasks in T_{train}, and we report average dev performance and test performance. During the downstream fine-tuning stage, we compare the model’s performance to fine-tuning a vanilla transformer baseline, and compute the average performance gain (ARG) as our evaluation metric of model effectiveness. More details about the baselines and ARG are deferred in §7.

4 Task-level MoE Transformers

Recall that our goal is to better understand how transformer models develop language skills during multi-task learning, and how those skills contribute to the model performance. We focus on experimenting with a mixture-of-experts variant of transformer models, which we also denote as routing transformer. The model contains two major components: (1) a router that selects and decides which experts to use for each task in each layer, based on their task representation; (2) a collection of experts that are dynamically composed into a final model based on the router selection. See Fig. 2 for an illustration of the model architecture.

In this work, we make some additional assumptions to narrow down the scope of the study: (1) We consider each transformer layer as an expert, so that the whole model is “route-able”; (2) The model has n layers. In each layer, there are m experts to choose from. The collection of experts in the i-th layer and the collection in the j-th layer are independent from each other.

In the following, we introduce the router and the transformer layers with more details. Note that we adopt a general formulation in this section, and leave more specific design choices in §5.1 for empirical comparison.

Collection of Experts. In an original implementation of transformer models, there are n transformer layers stacked and executed sequentially. For encoder-decoder models, the first half consists of encoder layers and the second half consists of decoder layers. In our variant of transformer models, we forked the layer for m times at each layer, resulting in $m \times n$ experts in total. We refer to the j-th expert in the i-th layer as $E^{(i,j)}$.

Router. For a given task $T_k \in T$, with k as its task index, the router first takes the task embedding (T_k) from a look-up embedding table (T). The router network outputs a matrix $L \in \mathbb{R}^{m \times n}$, where $L_{i,j}$ represents the logits of using Expert $E^{(i,j)}$ in layer i. Then L goes through a selection function f to normalize or discretize the routing decisions, resulting in a final decision matrix $D \in \mathbb{R}^{m \times n}$.

Task-level MoE Transformers. We use the decision matrix D from the router to control the computation conducted by the experts. More specifically, in layer i, given input hidden states $h^{(i)}_m$, the output $h^{(i)}_{\text{out}}$ would be the weighted sum of all experts in the layer, and the weights are specified in $D_{i,:}$, i.e.,

$$h^{(i)}_{\text{out}} = \sum_{j=1}^{m} D_{i,j} E^{(i,j)}(h^{(i)}_m)$$ \hspace{1cm} (1)

5 Multi-task Learning Experiments

5.1 Investigation on Design Choices

Baselines. We first apply standard multi-task learning to vanilla BART-Base and BART-Large model, and consider them as baselines. To separate out the influence brought by the MoE architecture, we use an additional baseline of
Expert Selection. The selection function is responsible for normalizing and discretizing (if necessary) the logit output of router network into final decisions. We consider three variants: (a) Softmax, the default design in most MoE models. (b) Gumbel-Softmax (Jang et al., 2016), which add gumbel-distributed noise to the logits and promote discrete decisions. (c) Gumbel-Softmax ST, where ST stands for straight-through estimator. This rounds up the top-1 selection score to 1, and still allows back-propagation. For (c) and (d), we additionally apply the temperature annealing mechanism to encourage exploration in the beginning of training stage.

Router Architecture. Router is a key component for our MoE model which computes the logits of selecting experts based on input task representations (see §4). We consider three router architecture with different complexities: (e) MLP, which contains two dense layers separated by a GELU activation. (f) Bi-LSTM, which takes the sum of the task representation and the positional embedding as input at each time step. (g) Transformer (Vaswani et al., 2017), which takes the same input as Bi-LSTM and applies one single transformer encoder layer (i.e., self-attention and two dense layers).

Task Representations. Vu et al. (2020b) suggest that pre-computed task representations contain rich information for predicting task transferability. Here we consider incorporating these task representations as the initialization for the look-up embedding table T in our model (§4). In particular, we consider: (h) Random, which initialized every task representation with a randomly initialized 768d vector. (i) TextEmb, which is produced by encoding the input text with a pre-trained BART-Base model and taking the hidden representations of the last encoder layer. We tried both the average pooling of all tokens embedding (AVG) in the sequence and the special token embedding for the begin of sequence (BOS). (j) FT-TextEmb, which is mostly identical to (i), despite that the BART-Base model is first fine-tuned on the D_{train} of the current task. (k) Fisher, which is the diagonal of fisher information of the trainable parameters in a model. We use adapter-based (Houlsby et al., 2019) fine-tuning on D_{train} and compute the fisher information on these adapter parameters to avoid expensive computations over the full model.

Freezing Task Representations. Since adaptability to unseen task is considered in this study, we further consider between (l) not freezing and (m) freezing the task representations during multi-task learning. We conjecture that the structure of seen task representations may be changed after multi-task learning, while the unseen task representations may not reflect the change; hence the freezing variant.

5.2 Experiment Details

Data. We previously discussed that a collection of diverse NLP tasks is required for the purpose of our analysis (§3.1). In our experiments, we use the task collection in Ye et al. (2021), which contains 160 different NLP tasks, covering a wide range of task formats (classification, multiple choice, generation, etc.), goals (question answering, fact checking, etc.) and domains (biomedical, social media, etc.). This setting is ideal for us to explore how transformers learn skills from diverse tasks and reuse skills and knowledge for new ones. Additionally, we adopt the Random partition in Ye et al. (2021), which randomly separate the 160 tasks into 120/20/20 for $T_{train}/T_{dev}/T_{test}$. All tasks are converted to a unified text-to-text format.

Model and Its Initialization. All of our routing transformer experiments are based on the pre-trained BART-Base model (Lewis et al., 2020), a 12-layer encoder-decoder transformer model ($n = 12$). All experts in layer i are initialized from the i-th layer of the pre-trained BART-Base model. Additionally we add a Gaussian noise with variance of $1e-8$ to the weights of each expert to avoid symmetry. We manually set the number of experts per layer $m = 3$ to allow sufficient flexibility while maintain a manageable model size.

Training Details. We concatenate the D_{train} of the 120 tasks in T_{train} into a large dataset and use it for multi-task learning. We adopt heterogeneous batching (Aghajanyan et al., 2021), i.e., each batch contains examples from different tasks. For the vanilla BART-Base baseline, we train the model for 30,000 steps, with the batch size equals to 32 and the learning rate equals to $3e-5$. For BART-Large we use the same setting, except that the learning
rate is set to 1e-5. For the routing transformer variants, models are trained with a basic learning rate of 1e-5, while we set the router with bigger learning rate of 1e-3 based on our pilot experiments. For the task embedding, we use 1e-2 as learning rate for random initialization, and 1e-3 for pre-computed initializations. We train the model for 60000 steps because it needs more exploration time before routes getting stable. Both the vanilla model and routing model are optimized by the Adam algorithm (Kingma and Ba, 2014).

5.3 Results

We visualized the learned routing decisions in Fig. 3. We present the performance of variants mentioned above in Table 1. For selected models, we run three times with different random seeds to reduce variance in performance (Table 2).

We have the following observations. Firstly, according to test performance in Table 2, we found that the average routing baseline is slightly better than vanilla bart-base. This suggest that the routing transformer architecture is in general helpful for multi-task learning. Secondly, by comparing different design choices in Table 1, we found that the routing model is very sensitive to the selection of selection function – gumbel-softmax with straight-through achieves the best performance among the three choices. Thirdly, we did not observe significant difference with choices in router architecture or task representation initialization. Supposedly, LSTMs and transformers are able to capturing relations more complicated than MLPs, and pre-computed task representations carry richer information about the task than random initialization. This unexpected observation suggests that the router still struggle to leverage task-level information with the current supervision signals. Lastly, the best routing-models we trained still cannot beat the multi-task baseline. This motivates our analysis on learned routes in §6 and also calls for more investigation and research on improving the learning algorithm.

6 Interpreting the Routes and Experts

6.1 Correlation with Hand Features

To better understand the routing decisions learned by the router, we investigate the relation between the routing decisions and a series of manually defined features. In the following, we first describe the methodology of computing correlation, then describe the hand features used, and finally the findings.
Method. For each task in $\mathcal{T}_{\text{train}}$, we first compute the routing decisions $\mathbf{D} \in \mathbb{R}^{m \times n}$ using the learned model. For each expert $E^{(i,j)}$, we consider the routing decision $D_{i,j}$ of all tasks as a learned feature. Altogether, we have $m \times n$ features of dimension $|\mathcal{T}_{\text{train}}|$ (the number of tasks). Additionally, we have t hand features on all train tasks, giving t features of dimension $|\mathcal{T}_{\text{train}}|$. We then compute Pearson correlation coefficient between each pair of learned feature and hand feature, resulting in a $(m + n) \times t$ matrix quantifying the correlation between learned routing decisions and hand features.

Hand Features. We consider the following hand features and quantify their correlation with the learned routes. We admit that several categorization criteria are subjective and such categorization is by no means exhaustive for fully describing a language task. We use these features mainly to quantify the relation between human perception of tasks and the learned routes.

- **Task Ontology.** We use the task ontology provided in Ye et al. (2021). The top-level labels include Classification, Question Answering, Conditional Generation, and Others. Tasks in each category are divided into sub-categories. For example, QA tasks are further categorized into machine reading comprehension (MRC), multiple-choice QA, closed-book QA, etc.

- **Input/Output Length.** For input length, we first rank average input length of each task; then we label the shortest 25% tasks with `hasShortInput`, the longest 25% with `hasLongInput`, and the remaining as `hasMediumInput`. For output length, the distribution is more skewed. We define tasks with average output shorter than 3 tokens as `hasShortOutput`, longer than 10 tokens as `hasLongOutput`, and the remaining as `hasMediumOutput`.

Model	Dev	Test
Vanilla Transformers		
BART-Base	54.47%±0.05%	48.93%±0.23%
BART-Large	58.10%±0.20%	54.06%±0.22%

Mixture-of-Experts	(a) 54.61%±0.11%	50.02%±0.19%
	(d) + (e) + (k) + (l) 53.07%±0.45%	48.16%±0.34%
	(d) + (e) + (k) + (m) 53.06%±0.19%	47.64%±0.79%

Table 2: Three-run Performance on Selected Models.

Figure 4: Pearson Correlation Between Learned Routes and Selected Hand Features. Correlation with $p<0.01$ are visualized. “LOE1” stands for expert 1 in layer 0. The correlation is based on a $(d) + (e) + (h) + (l)$ model, where (h) means the task embedding table T is randomly initialized. This suggests that without prior knowledge of the tasks, the router can partially rediscover human categorization of tasks during multi-task learning. Results on more features are deferred in Fig. 6.

- **Text Domain.** Domain knowledge can largely influence downstream performance; and the routing model may be able to disentangle domain-specific signals during multi-task learning. We categorize tasks with into domains such as Science & Technology, Social Network, News, Web, Bio-Medical, Review, Dialog, and Books.

- **Granularity.** We categorize tasks into Span-
level (e.g., acronym identification); Sentence-level (e.g., tweet classification); Paragraph-level (e.g., news summarization) based on the main focus of the task. Note that this is different from input length.

- **Task Format and High-level Skills.** We additionally describe several characteristics that tasks can share in common in Table 4. These include whether a task is Extractive, requires Sentence Completion, or requires high-level skills such as Commonsense, Co-reference, etc.

Findings. Results on selected hand features are visualized in Fig. 4. We have the following observations: (1) There exists strong correlation between several pairs of routing decisions and hand features. For example, L1E2, L3E1, L6E1 are positively correlated with the feature of Classification, suggesting that these experts are likely to be selected for classification tasks. (2) The correlations are strongest with the top-level ontology features (i.e., Classification, QA, Conditional Generation), suggesting that the router may understand and categorize tasks in a way similar to ours. (3) However, correlation does not imply causation. The correlation patterns of Classification and hasShortOutput are similar, the same applies to Conditional Generation and hasLongOutput. It is still unclear to conclude whether the router is making router decisions on output length, task format, or other hidden aspects.

6.2 Expert Disabling Experiments

We further verify the observed correlations by disabling these experts during evaluation. We select three hand features: Classification, Conditional Generation, Closed-book QA, and select three tasks per feature. We find the top 3 experts that positively correlate with these features, and disable them during evaluation. By “disabling”, we simply set the pre-softmax logit to be -inf, so that the second-best expert in that layer will be selected instead. Results are listed in Table 3. As expected, these correlated experts are indispensable for the task performance. Performance gradually drops as more experts are disabled (All \rightarrow Top1 \rightarrow Top3).

7 Few-shot Adaptation to Novel Tasks

In this section we further study whether the routing-based multi-task learning induces better few-shot learning performance on unseen tasks.

Hand Feature	Top3 Exp	Task	All	Top1	Top3
Classification	L1E2	IMDB	92.49	91.87	88.70
	L6E1	SMS Spam	63.54	63.54	62.88
	L3E1	Emo	82.06	65.46	16.22
Conditional Generation	L9E2	gigaword	30.00	26.51	17.91
	L5E3	aestc	14.52	15.31	14.76
	L7E2	kilt_wow	6.39	6.01	4.73
Closed-book QA	L3E2	kilt_trex	31.85	25.63	28.13
	L4E2	kilt_zsre	13.13	11.25	9.38
	L6E3	numer_sense	34.38	33.75	20.00

Table 3: Expert Disabling Experiments. Top1 means the top 1 expert is disabled. By gradually disabling the positively correlated experts, performance drops, suggesting that the correlated experts contribute to the performance of a specific types of tasks.

7.1 Compared Methods

Vanilla BART. For each unseen task, we fine-tune the off-the-shelf BART-Base model with its D_{train}.

Multi-task BART. We take the multi-task BART-Base baseline from §5 as initialization and fine-tune the model on D_{train}.

Routing BART. We first take the $(d) + (e) + (k) + (m)$ model and the $(d) + (f) + (k) + (m)$ model from §5. Both models uses fisher information as the task representation and the representations for seen tasks are frozen during multi-task learning. For the unseen task, we first compute its fisher information and feed it to the learned router to select experts. Then fine-tune the selected experts on D_{train}.

7.2 Experiment Details

For few-shot fine-tuning we mainly follow the experiment setting in Ye et al. (2021). Each task has five different few-shot samples of (D_{train}, D_{dev}). We train on D_{train} for 1000 steps, and validate on D_{dev} every 100 steps. We run a grid search for learning rate (1e-5, 2e-5, 5e-5) and batch size (2,4,8) for each few-shot sample. Finally, the model with best D_{dev} performance is evaluated on D_{test}.

We compute and report the average performance gain (ARG) over vanilla BART for the multi-task BART and routing BART methods. For example, if fine-tuning vanilla BART achieves 50% accuracy on task A and 80% F1 on task B, and fine-tuning multi-task BART achieves 80% accuracy on task A and 60% F1 on task B, the ARG would be the average of $(80\% - 50\%)/50\%$ and $(60\% - 80\%)/80\%$, which equals to 17.5%.
Feature Name	Example	Description
Task Format	Extractive: SQuAD, Race	
Sentence Completion: HellaSwag, LAMA-Probes | Output is always a substring of the input
Requires the model to fill in a blank in the input or continue to generate based on the input |

Required Skills and Knowledge	Linguistic: Blimp, GLUE-CoLA	Tasks focusing on grammatical correctness, semantic equivalence and linguistic phenomenon
Commonsense: CommonsenseQA	Tasks testing commonsense knowledge and reasoning capabilities	
Co-reference	Tasks requiring co-reference resolution	
Implicit Knowledge: Closed-book TriviaQA	Tasks requiring world knowledge (acquired during pre-training)	
Synthesize: Break, XSum	Combining ideas and allowing an evolving understanding of text	

Table 4: High-level Hand Features Used in the Correlation Study.

Figure 5: Few-shot Performance on Unseen Tasks. Bar heights represent relative performance gain over fine-tuning a pre-trained BART-Base model. The right-most green bars are the average performance gain for each model.

7.3 Results

Results are presented in Fig. 5. Multi-task BART remains a strong baseline. The multi-task model achieves an ARG of 12.95%, and the two routing BART models achieves 10.03% and 10.15% respectively. The gap is mainly brought by the task yelp_polarity, whose performance is extremely unstable in few-shot settings. All four methods achieve similar validation performance (96% accuracy), while direct fine-tuning and fine-tuning the routing models have more degenerated runs among the five few-shot samples. In these degenerated runs, models achieves accuracy below 70% on D_{test}, despite high accuracy on D_{dev}. Multi-task BART is more stable for this task. We hypothesize that the routing architecture introduces more risks and instability to the model, and will develop methods to mitigate this issue in future work.

8 Conclusions

In this paper, based on the observation that transformer models trained by massive tasks have better ability to generalize to unseen tasks, we hope to provide a new sight on exploring how this cross-task generalization ability is achieved and reused. Inspired by the way that humans sparsely recall learned skills to solve new tasks, we explicitly model this process by resorting to a task-level mixture-of-expert model, where each expert represents different skills and tasks are routed by a router network based on the task property. We empirically investigate several importance design choices, i.e., routing models, expert selection strategies, task representations to exploring their influence on final model. Secondly, by conducting a detailed analysis on the final routing decisions, we find it has a strongly correlation with human-defined task ontology (e.g., classification) and task characteristics (e.g., extractive, linguistic) even without any prior knowledge. We believe the result is valuable and promising in understanding the skills learned behind the black-box transformer models.

References

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless C. Fowlkes, Stefano Soatto, and Pietro Perona. 2019. Task2vec: Task embedding for meta-learning. In
Armen Aghajanyan, Anchit Gupta, Akshat Srivastava, Xilun Chen, Luke Zettlemoyer, and Sonal Gupta. 2021. Muppet: Massive multi-task representations with pre-finetuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 5799–5811, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Tiago A. Almeida, José María G. Hidalgo, and Akebo Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao, Victor Zhong an. 2017. Seq2sql: Generating structured Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Franceschi Barbieri, Jose Camacho-Collados, Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. 2009. The fifth pascal recognizing textual entailment challenge. In TAC.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on Freebase from question-answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1533–1544, Seattle, Washington, USA. Association for Computational Linguistics.

Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari Holtzman, Hannah Rashkin, Doug Downey, Wen tau Yih, and Yejin Choi. 2020. Abductive commonsense reasoning. In International Conference on Learning Representations.

Yonatan Bisk, Rowan Zellers, Ronan LeBras, Jianfeng Gao, and Yejin Choi. 2020. PIQA: reasoning about physical commonsense in natural language. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7432–7439. AAAI Press.

Michael Boratto, Xiang Li, Tim O’Gorman, Rajarshi Das, Dan Le, and Andrew McCallum. 2020. ProToQA: A question answering dataset for prototypical common-sense reasoning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1122–1136, Online. Association for Computational Linguistics.

Jan A. Botha, Manaal Faruqui, John Alex, Jason Baldridge, and Dipanjan Das. 2018. Learning to split and rephrase from Wikipedia edit history. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 732–737, Brussels, Belgium. Association for Computational Linguistics.

Rich Caruana. 1997. Multitask learning. Machine learning, 28(1):41–75.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana Joshi, and Puneet Agrawal. 2019. SemEval-2019 task 3: EmoContext contextual emotion detection in text. In Proceedings of the 13th International Workshop on Semantic Evaluation, pages 39–48, Minneapolis, Minnesota, USA. Association for Computational Linguistics.
Anthony Chen, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. 2020a. MOCHA: A dataset for training and evaluating generative reading comprehension metrics. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6521–6532, Online. Association for Computational Linguistics.

Michael Chen, Mike D’Arcy, Alisa Liu, Jared Fernandez, and Doug Downey. 2019. CODAH: An adversarially-authored question answering dataset for common sense. In Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP, pages 63–69, Minneapolis, USA. Association for Computational Linguistics.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyan Li, Xiyou Zhou, and William Yang Wang. 2020b. Tabfact: A large-scale dataset for table-based fact verification. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. 2019. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2924–2936, Minneapolis, Minnesota. Association for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. 2018. Think you have solved question answering? try arc, the ai2 reasoning challenge. ArXiv preprint, abs/1803.05457.

Arman Cohan, Waleed Ammar, Madeleine van Zuylen, and Field Cady. 2019. Structural scaffolds for citation intent classification in scientific publications. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3586–3596, Minneapolis, Minnesota. Association for Computational Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini. 2005. The pascal recognising textual entailment challenge. In Machine Learning Challenges Workshop, pages 177–190. Springer.

Pradeep Dasigi, Nelson F. Liu, Ana Marasović, Noah A. Smith, and Matt Gardner. 2019. Quoref: A reading comprehension dataset with questions requiring coreferential reasoning. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5925–5932, Hong Kong, China. Association for Computational Linguistics.

Thomas Davidson, Dana Warmley, Michael Macy, and Ingrid Weber. 2017. Automated hate speech detection and the problem of offensive language. In Proceedings of the 11th International AAAI Conference on Web and Social Media, ICWSM ’17, pages 512–515.

Ona de Gibert, Naiara Perez, Aitor Garcia-Pablos, and Montse Cuadros. 2018. Hate speech dataset from a white supremacy forum. In Proceedings of the 2nd Workshop on Abusive Language Online (ALW2), pages 11–20, Brussels, Belgium. Association for Computational Linguistics.

Marie-Catherine de Marneffe, Mandy Simons, and Judith Tonhauser. 2019. The commitmentbank: Investigating projection in naturally occurring discourse. Proceedings of Sinn und Bedeutung, 23(2):107–124.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

T. Diggelmann, Jordan L. Boyd-Graber, Janais Bui- lian, Massimiliano Ciaramita, and Markus Leippold. 2020. Climate-fever: A dataset for verification of real-world climate claims. ArXiv preprint, abs/2012.00614.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason Weston. 2019. Wizard of wikipedia: Knowledge-powered conversational agents. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

William B. Dolan and Chris Brockett. 2005. Automatically constructing a corpus of sentential paraphrases. In Proceedings of the Third International Workshop on Paraphrasing (IWP2005).

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanni Zhou, Adams Wei Yu, Orhan Firat, Barrett Zoph, Lian Fedus, Maarten Bosma, Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen S. Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc V. Le, Yonghui Wu, Z. Chen, and Claire Cui. 2021. Glam: Efficient scaling of language models with mixture-of-experts. ArXiv, abs/2112.06905.

Matthew Dunn, Levent Sagun, Mike Higgins, V. U. Güney, Volkmar Cirik, and Kyunghyun Cho. 2017. Searchqa: A new q&a dataset augmented with context from a search engine. ArXiv preprint, abs/1704.05179.
R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. 1991. Adaptive mixtures of local experts. *Neural Computation*, 3:79–87.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization with gumbel-softmax. *arXiv preprint arXiv:1611.01144*.

Chao Jiang, Mounica Maddela, Wuwei Lan, Yang Zhong, and Wei Xu. 2020. Neural CRF model for sentence alignment in text simplification. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 7943–7960, Online. Association for Computational Linguistics.

Kelvin Jiang, Dekun Wu, and Hui Jiang. 2019. FreebaseQA: A new factoid QA data set matching trivia-style question-answer pairs with Freebase. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 318–323, Minneapolis, Minnesota. Association for Computational Linguistics.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. 2018. *Looking beyond the surface*: A challenge set for reading comprehension over multiple sentences. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pages 252–262, New Orleans, Louisiana. Association for Computational Linguistics.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and Hananeh Hajishirzi. 2020. UNIFIEDQA: Crossing format boundaries with a single QA system. In *Findings of the Association for Computational Linguistics: EMNLP 2020*, pages 1896–1907, Online. Association for Computational Linguistics.

Tushar Khot, Peter Clark, Michal Guerquin, Peter Jansen, and Ashish Sabharwal. 2020. Qasc: A dataset for question answering via sentence composition. *Proceedings of the AAAI Conference on Artificial Intelligence*, 34(05):8082–8090.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018. Scitail: A textual entailment dataset from science question answering. In *Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18)*, the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 5189–5197. AAAI Press.

Byeongchang Kim, Hyunwoo Kim, and Gunhee Kim. 2019. Abstractive summarization of Reddit posts with multi-level memory networks. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 2519–2531, Minneapolis, Minnesota. Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*.

Neema Kotonya and Francesca Toni. 2020. Explainable automated fact-checking for public health claims. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 7740–7754, Online. Association for Computational Linguistics.

Sneha Kudugunta, Yanping Huang, Ankur Bapna, Maxim Krikun, Dmitry Lepikhin, Minh-Thang Luong, and Orhan Firat. 2021. Beyond distillation: Task-level mixture-of-experts for efficient inference. In *Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021*, pages 3577–3599. Association for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural questions: A benchmark for question answering research. *Transactions of the Association for Computational Linguistics*, 7:452–466.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. 2017. *RACE: Large-scale ReAding comprehension dataset from examinations*. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pages 785–794, Copenhagen, Denmark. Association for Computational Linguistics.

Rémi Lebret, David Grangier, and Michael Auli. 2016. Neural text generation from structured data with application to the biography domain. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pages 1203–1213, Austin, Texas. Association for Computational Linguistics.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, D. Kontokostas, Pablo N. Mendes, Sebastian Hellmann, M. Morsey, Patrick van Kleef, S. Auer, and C. Bizer. 2015. Dbpedia - a large-scale, multilingual knowledge base extracted from wikipedia. *Semantic Web*, 6:167–195.

Hector J. Levesque, Ernest Davis, and Leora Morgenstern. 2012. The winograd schema challenge. In *Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning, KR’12*, page 552–561. AAAI Press.
Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. 2017. Zero-shot relation extraction via reading comprehension. In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 333–342. Vancouver, Canada. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online. Association for Computational Linguistics.

Xin Li and Dan Roth. 2002. Learning question classifiers. In COLING 2002: The 19th International Conference on Computational Linguistics.

Bill Yuchen Lin, Seyeon Lee, Rahul Khanna, and Xiang Ren. 2020a. Birds have four legs?! NumerSense: Probing Numerical Commonsense Knowledge of Pre-Trained Language Models. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6862–6868, Online. Association for Computational Linguistics.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang Ren. 2020b. CommonGen: A constrained text generation challenge for generative commonsense reasoning. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1823–1840, Online. Association for Computational Linguistics.

Kevin Lin, Oyvind Tafjord, Peter Clark, and Matt Gardner. 2019. Reasoning over paragraph effects in situations. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pages 58–62. Hong Kong, China. Association for Computational Linguistics.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. 2017. Program induction by rationale generation: Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 158–167, Vancouver, Canada. Association for Computational Linguistics.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019a. Multi-task deep neural networks for natural language understanding. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4487–4496, Florence, Italy. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019b. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Annie Louis, Dan Roth, and Filip Radlinski. 2020. “I’d rather just go to bed”: Understanding indirect answers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7411–7425, Online. Association for Computational Linguistics.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. 2011. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon, USA. Association for Computational Linguistics.

Pekka Malo, Ankur Sinha, Pekka Korhonen, Jyrki Wallenius, and Pyry Takala. 2014. Good debt or bad debt: Detecting semantic orientations in economic texts. J. Assoc. Inf. Sci. Technol., 65(4):782–796.

Irene Manotas, Ngoc Phuoc An Vo, and Vadim Sheinin. 2020. LiMiT: The literal motion in text dataset. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 991–1000, Online. Association for Computational Linguistics.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto Zamparelli. 2014. A SICK cure for the evaluation of compositional distributional semantic models. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), pages 216–223, Reykjavik, Iceland. European Language Resources Association (ELRA).

Binny Mathew, Punyajoy Saha, Seid Muhie Yimam, Chris Biemann, Pawan Goyal, and Animesh Mukherjee. 2020. Hatesplain: A benchmark dataset for explainable hate speech detection. ArXiv preprint, abs/2012.10289.

Julian J. McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics: understanding rating dimensions with review text. In Seventh ACM Conference on Recommender Systems, RecSys ‘13, Hong Kong, China, October 12-16, 2013, pages 165–172. ACM.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. 2018. The natural language de-cathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730.

Clarissa H. McCreery, Namit Katariya, Anitha Kannan, Manish Chablani, and Xavier Amatriain. 2020. Effective transfer learning for identifying similar questions: Matching user questions to COVID-19 faqs. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pages 3458–3465. ACM.
Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018. Can a suit of armor conduct electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2381–2391, Brussels, Belgium. Association for Computational Linguistics.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2021. Cross-task generalization via natural language crowdsourcing instructions. arXiv preprint arXiv:2104.08773.

Ioannis Mollas, Zoe Chrysopoulou, Stamatis Karlos, and Grigorios Tsoumakas. 2020. Ethos: an online hate speech detection dataset. ArXiv preprint, abs/2006.08328.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and Samuel R. Bowman. 2020. CrowS-pairs: A challenge dataset for measuring social biases in masked language models. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1953–1967, Online. Association for Computational Linguistics.

Courtney Napoles, Matthew Gormley, and Benjamin Van Durme. 2012. Annotated Gigaword. In Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction (AKBC-WEKEK), pages 95–100, Montréal, Canada. Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 2018. Don’t give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1797–1807, Brussels, Belgium. Association for Computational Linguistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. 2020. Adversarial NLI: A new benchmark for natural language understanding. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4885–4901, Online. Association for Computational Linguistics.

A. Othman and M. Jenmi. 2012. English-asl gloss parallel corpus 2012: Aslg-pc12. In IEnglish-ASL Gloss Parallel Corpus 2012.

Vishakh Padmakumar, Leonard Lausen, Miguel Balles, Sheng Zha, He He, and George Karypis. 2022. Exploring the role of task transferability in large-scale multi-task learning. In North American Chapter of the Association for Computational Linguistics (NAACL).

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), pages 115–124, Ann Arbor, Michigan. Association for Computational Linguistics.

Dimitris Pappas, Petros Stavropoulos, Ion Androutsopoulos, and Ryan McDonald. 2020. BioMRC: A dataset for biomedical machine reading comprehension. In Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing, pages 140–149, Online. Association for Computational Linguistics.

Fabio Petroni, Patrick Lewis, Aleksandra Pikits, Tim Rocktäschel, Xuyang Wu, Alexander H. Miller, and Sebastian Riedel. 2020. How context affects language models’ factual predictions. In Automated Knowledge Base Construction.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Xuyang Wu, and Alexander Miller. 2019. Language models as knowledge bases? In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2463–2473, Hong Kong, China. Association for Computational Linguistics.

Jason Phang, Thibault Févry, and Samuel R Bowman. 2018. Sentence encoders on stilts: Supplementary training on intermediate labeled-data tasks. arXiv preprint arXiv:1811.01088.

Mohammad Taher Pilehvar and Jose Camacho-Collados. 2019. WiC: the word-in-context dataset for evaluating context-sensitive meaning representations. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1267–1273, Minneapolis, Minnesota. Association for Computational Linguistics.

Edoardo M Ponti, Alessandro Sordoni, and Siva Reddy. 2022. Combining modular skills in multitask learning. arXiv preprint arXiv:2202.13914.

Amir Pouran Ben Veyseh, Franck Dernoncourt, Quan Hung Tran, and Thien Huu Nguyen. 2020. What does this acronym mean? introducing a new dataset for acronym identification and disambiguation. In Proceedings of the 28th International Conference on Computational Linguistics, pages 3285–3301, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Yada Prusakchatkun, Jason Phang, Haokun Liu, Phu Mon Hutt, Xiaoyi Zhang, Richard Yuanzhe Pang, Clara Vania, Katharina Kann, and Samuel R. Bowman. 2020. Intermediate-task transfer learning with pretrained language models: When and why does it work? In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 5231–5247, Online. Association for Computational Linguistics.
Kai Sun, Dian Yu, Ianshu Chen, Dong Yu, Yejin Choi, and Claire Cardie. 2019. DREAM: A challenge data set and models for dialogue-based reading comprehension. Transactions of the Association for Computational Linguistics, 7:217–231.

Oyvind Tafjord, Peter Clark, Matt Gardner, Wen-tau Yih, and Ashish Sabharwal. 2019a. Quarel: A dataset and models for answering questions about qualitative relationships. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):7063–7071.

Oyvind Tafjord, Matt Gardner, Kevin Lin, and Peter Clark. 2019b. QuaRTz: An open-domain dataset of qualitative relationship questions. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5941–5946, Hong Kong, China. Association for Computational Linguistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2019. CommonsenseQA: A question answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4149–4158, Minneapolis, Minnesota. Association for Computational Linguistics.

Niket Tandon, Bhavana Dalvi, Keisuke Sakaguchi, Peter Clark, and Antoine Bosselut. 2019. WIQA: A dataset for “what if...” reasoning over procedural text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6076–6085, Hong Kong, China. Association for Computational Linguistics.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. 2018. FEVER: a large-scale dataset for fact extraction and VERification. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 809–819, New Orleans, Louisiana. Association for Computational Linguistics.

Sowmya Vajjala and Ivana Lučić. 2018. OneStopEnglish corpus: A new corpus for automatic readability assessment and text simplification. In Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 297–304, New Orleans, Louisiana. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems, 30.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessandro Sordoni, Adam Trischler, Andrew Mattarella-Micke, Subhransu Maji, and Mohit Iyyer. 2020a. Exploring and predicting transferability across NLP tasks. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7882–7926, Online. Association for Computational Linguistics.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessandro Sordoni, Adam Trischler, Andrew Mattarella-Micke, Subhransu Maji, and Mohit Iyyer. 2020b. Exploring and predicting transferability across NLP tasks. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online. Association for Computational Linguistics.

Jixuan Wang, Kuan-Chieh Wang, Frank Rudzicz, and Michael Brudno. 2021. Grad2task: Improved few-shot text classification using gradients for task representation. In Advances in Neural Information Processing Systems.

William Yang Wang. 2017. “liar, liar pants on fire”: A new benchmark dataset for fake news detection. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 422–426, Vancouver, Canada. Association for Computational Linguistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohaney, Wei Peng, Sheng-Fu Wang, and Samuel R. Bowman. 2020. BLiMP: The benchmark of linguistic minimal pairs for English. Transactions of the Association for Computational Linguistics, 8:377–392.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. 2019. Neural network acceptability judgments. Transactions of the Association for Computational Linguistics, 7:625–641.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. 2021. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017. Crowdsourcing multiple choice science questions. In Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 94–106, Copenhagen, Denmark. Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sentence understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguistics.

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gardner, Yoav Goldberg, Daniel Deutch, and Jonathan Berant. 2020. Break it down: A question understanding benchmark. Transactions of the Association for Computational Linguistics, 8:183–198.

Wenhan Xiong, Jiawei Wu, Hong Wang, Vivek Kulkarni, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang. 2019. TWEETQA: A social media focused question answering dataset. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5020–5031, Florence, Italy. Association for Computational Linguistics.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015. WikiQA: A challenge dataset for open-domain question answering. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2013–2018, Lisbon, Portugal. Association for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. HellaSwag: Can a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4791–4800, Florence, Italy. Association for Computational Linguistics.

Hao Zhang, Jae Ro, and Richard Sproat. 2020. Semi-supervised URL segmentation with recurrent neural networks pre-trained on knowledge graph entities. In Proceedings of the 28th International Conference on Computational Linguistics, pages 4667–4675, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Rui Zhang and Joel Tetreault. 2019. This email could save your life: Introducing the task of email subject line generation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 446–456, Florence, Italy. Association for Computational Linguistics.

Zhiliang Yang, Peng Qi, Saiyizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christopher D. Manning. 2018. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2369–2380, Brussels, Belgium. Association for Computational Linguistics.

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021. CrossFit: A few-shot learning challenge for cross-task generalization in NLP. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 7163–7189, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingming Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. 2018. Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3911–3921, Brussels, Belgium. Association for Computational Linguistics.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. 2018. SWAG: A large-scale adversarial dataset for grounded commonsense inference. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 93–104, Brussels, Belgium. Association for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. HellaSwag: Can a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4791–4800, Florence, Italy. Association for Computational Linguistics.

William Yang Wang. 2019. TWEETQA: A social media focused question answering dataset. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5020–5031, Florence, Italy. Association for Computational Linguistics.

Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan Roth. 2019. “going on a vacation” takes longer than “going for a walk”: A study of temporal commonsense understanding. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3363–3369, Hong Kong, China. Association for Computational Linguistics.

A Appendix

A.1 Details on Computing Task Representations

TASKEMB Inspired by the methodology of TASK2VEC(Achille et al., 2019), which generate visual classification tasks embedding based on the fisher information matrix(FIM). We take the gradient information defined by the FIM of probe
model’s parameters as the task embedding. the FIM provides a measure of the information a particular parameter learns about the loss corresponding to the probe model, so it is disable to represent task (Wang et al., 2021, Vu et al., 2020b).

Given probe model M_θ, for example bart-base, we first calculate the loglikelihood with respect to the model parameters(θ) as: $P_\theta = \log M_\theta(y \mid x)$, then FIM is calculated as the covariance of gradients of the loglikelihood:

$$F_\theta = \mathbb{E}_{x,y \sim M_\theta(x,y)} \nabla \theta P_\theta \nabla \theta P_\theta^T$$ (2)

Here we compute FIM by using the empirical distribution defined by the training set of task instead of ideal distribution. Besides, we only use the diagonal entries following(Achille et al., 2019), since the full parameter size of probe model is undesirably large(millions of dimensions)) and our limited training data of each task is insufficient to train whole probe model. We resort to use the parameter-efficient adapter network, which add only a few trainable parameters to well pre-trained model while keep original network parameters fixed(Houlsby et al., 2019). Following the architecture of the adapter module in (Houlsby et al., 2019), we integrate adapter after the projection following multiheaded attention and after the two feed-forward layers of each transformer layer, which we indicate as Adapter-Bart with parameters: $\Theta = \{\theta, \alpha\}$. In a word, for each task we finetune a task-specific Adapter-Bart with the entire training dataset, then calculate the loglikelihood using whole parameters as: $P_\Theta = \log M_\Theta(y \mid x)$, while only calculate FIM values corresponding to the adapter parameters(α):

$$F_\alpha = \frac{1}{n} \sum_{i=1}^{n} \left[\nabla \alpha P_\Theta(y^i \mid x^i) \nabla \alpha P_\Theta(y^i \mid x^i)^T \right]$$ (3)

Where n is the number of training pairs, and the diagonal F_α is averaged over the input tokens and over the entire training set. However the resulting FIM is still too large (hundreds of thousands) and too sparse to represent task in data-constrained scenarios. As a result we use PCA to perform dimensionality reduction.

Fine-tuned TEXTEMB For fair comparison with TASKEMB, we also represent each task by their fine-tuned version of TEXTEMB in Vu et al., 2020b. To be specific, we use the averaged Bart token-level representations of the encoder inputs(FT-TextEmb-AVG) and the [BOS] embedding of the encode inputs(FT-TextEmb-AVG). Given a task T, we fine-tune Bart-base with the training set of T, then forward each encoder input sample x_i to the fine-tuned Bart-base model. Then compute the averaged token-level embedding of final encoder layer(h_i,α) or simply retrieve the [BOS] embedding(h_i,b). Finally, the fine-tuned TEXTEMB of T is calculated by the average pooling of entire training set by FT-TextEmb-AVG = $\frac{1}{n} \sum_{i=1}^{n} h_{ia}$ and FT-TextEmb-BOS = $\frac{1}{n} \sum_{i=1}^{n} h_{ib}$.

In this way we encode both the linguistic and label space information into final task embeddings.

B Extended Hand Feature Correlation Results

We show the detailed results of Pearson Correlation between our learned routes (based on a (d) + (e) + (h) + (l) model or (d) + (e) + (k) + (l) model) and selected Hand features in Figure 6 and Figure 7.

1Vu et al., 2020b indicates TaskEmb computed from a fine-tuned task-specific BERT has better results on task transferability in data-constrained scenarios.
Figure 6: **Pearson Correlation Between Learned Routes and Hand Features.** Correlation with $p<0.01$ are visualized. The correlation is based on a (d) + (e) + (h) + (l) model.

Figure 7: **Pearson Correlation Between Learned Routes and Hand Features.** Correlation with $p<0.01$ are visualized. The correlation is based on a (d) + (e) + (k) + (l) model.
C Tasks Used and References

We list all the tasks used in this paper in Table 5.
Table 5: Tasks used in this work.

Task Name	Ontology	Reference
acronym_identification	other	Pouran Ben Veyseh et al. 2020
ade_corpus_v2-classification	cls/other	Gurulingappa et al. 2012
ade_corpus_v2-dosage	other/slot filling	Gurulingappa et al. 2012
ade_corpus_v2-effect	other/slot filling	Gurulingappa et al. 2012
adversarialqa	qa/machine reading comprehension	Bartolo et al. 2020
aesi	cg/summarization	Zhang and Tetreault 2019
ai2_arc	cls/topic	Clark et al. 2018
amazon_polarity	qa/multiple-choice qa	McAuley and Leskovec 2013
anli	cls/sentiment analysis	Nie et al. 2020
app_reviews	other/regression	Missing
aqua_rat	qa/multiple-choice qa	Ling et al. 2017
art (abductive nli)	other	Bhagavatula et al. 2020
biosmr	machine reading comprehension	Pappas et al. 2020
blimp-anaphor_gender_agreement	other/linguistic phenomenon	Warstadt et al. 2020
blimp-anaphor_number_agreement	other/linguistic phenomenon	Warstadt et al. 2020
blimp-determiner_noun_agreement_with_adj_irregular_1	other/linguistic phenomenon	Warstadt et al. 2020
blimp-ellipsis_n_bar_1	other/linguistic phenomenon	Warstadt et al. 2020
blimp-ellipsis_n_bar_2	other/linguistic phenomenon	Warstadt et al. 2020
blimp-existential_there_quantifiers_1	other/linguistic phenomenon	Warstadt et al. 2020
blimp-irregular_past_participle_adjectives	other/linguistic phenomenon	Warstadt et al. 2020
blimp-sentential_negation_npi_licensor_present	other/linguistic phenomenon	Warstadt et al. 2020
blimp-sentential_negation_npi_scope	other/linguistic phenomenon	Warstadt et al. 2020
blimp-wh_questions_object_gap	qa/binary	Clark et al. 2019
boolq	qa/multiple-choice qa	Wolfson et al. 2020
break-QDMR_high-level	qa/multiple-choice qa	Wolfson et al. 2020
circa	cls/sentiment checking	Digglemann et al. 2020
codah	qa/multiple-choice qa	Chen et al. 2019
commonsense_qa	qa/multiple-choice qa	Lin et al. 2020b
commonsense_qa	other/generate explanation	Talmer et al. 2019
cosmos_qa	qa/multiple-choice qa	Rajani et al. 2019
crawl_domain	other/summary	Huang et al. 2019
crowds_pairs	other/summary	Zhang et al. 2020
dbpedia_14	cls/topic	Ng et al. 2020
definite_pronoun_resolution	other/summary	Lehmann et al. 2015
dream	other/summary	Rahman and Ng 2012
emo	other/summary	Sileo et al. 2019
emotion	qa/multiple-choice qa	Sun et al. 2019
empathetic_dialogues	qa/machine reading comprehension	Saha et al. 2018
ethos-directed_vs_generalized	other/summary	Dukel et al. 2020, 2019
ethos-disability	qa/long-form qa	Fan et al. 2019
ethos-gender	qa/long-form qa	Fan et al. 2019
ethos-national_origin	qa/long-form qa	Fan et al. 2019
ethos-race	qa/long-form qa	Fan et al. 2019
ethos-religion	qa/long-form qa	Fan et al. 2019
ethos-sexual_orientation	qa/long-form qa	Fan et al. 2019
financial_phrasebank	qa/long-form qa	Fan et al. 2019
freebase_qa	qa/long-form qa	Fan et al. 2019
gigaword	qa/long-form qa	Fan et al. 2019
glue-colab	qa/long-form qa	Fan et al. 2019
glue-mmli	qa/long-form qa	Fan et al. 2019
glue-mrpc	qa/long-form qa	Fan et al. 2019
glue-squad	qa/long-form qa	Fan et al. 2019
glue-sts2	qa/long-form qa	Fan et al. 2019
glue-wnli	qa/long-form qa	Fan et al. 2019
google_wellformed_query	qa/long-form qa	Fan et al. 2019
hate_speech18	qa/long-form qa	Fan et al. 2019
hate_speech_offensive	qa/long-form qa	Fan et al. 2019
hatexplain	qa/long-form qa	Fan et al. 2019
health_fact	qa/long-form qa	Fan et al. 2019
hellaswag	qa/long-form qa	Fan et al. 2019
hotpot_qa	qa/long-form qa	Fan et al. 2019
imdb	qa/long-form qa	Fan et al. 2019
jeopardy	qa/long-form qa	Fan et al. 2019
kilt_ay2	qa/long-form qa	Fan et al. 2019
kilt_fever	qa/long-form qa	Fan et al. 2019
kilt_hotpotqa	qa/long-form qa	Fan et al. 2019
kilt_nq	qa/long-form qa	Fan et al. 2019
kilt_trex	qa/long-form qa	Fan et al. 2019

Continued on next page
Task Name	Ontology	Reference
kilt_wow	cg/dialogue	Dinan et al. 2019
kilt_zsre	qa/closed-book qa	Levy et al. 2017
lama_conceptnet	qa/closed-book qa	Petroni et al. 2019, 2020
lama_google_re	qa/closed-book qa	Petroni et al. 2019, 2020
lama_squad	qa/closed-book qa	Petroni et al. 2019, 2020
lama-trex	qa/closed-book qa	Petroni et al. 2019, 2020
liar	clo/fact checking	Wang 2017
limit	other	Munião et al. 2020
math_qa	qa/multiple-choice qa	Amini et al. 2019
mc_taco	qa/binary	Zhou et al. 2019
medical_questions_pairs	clo/paraphrase	McCrinky et al. 2020
mocha	other/ regression	Chen et al. 2020a
multi_news	cg/summarization	Fabbri et al. 2019
numerator	qa/closed-book qa	Lin et al. 2020a
onesetop_english	qa/closed-book qa	Vajjala and Lučić 2018
openbookqa	qa/multiple-choice qa	Mihaylov et al. 2018
paws	clo/other	Zhang et al. 2019
psqa	clo/other	Bisk et al. 2020
proto qa	clo/other	Sheng and Uthus 2020
qa_qrl	qa/multiple-choice qa	Khot et al. 2020
quail	qa/multiple-choice qa	Rogers et al. 2020
quarel	qa/multiple-choice qa	Tafjord et al. 2019a
quartz-no_knowledge	qa/multiple-choice qa	Tafjord et al. 2019b
quartz-with_knowledge	qa/machine reading comprehension	Lai et al. 2017
quoref	qa/machine reading comprehension	Lai et al. 2017
race-high	qa/multiple-choice qa	Dusghi et al. 2019
race-middle	qa/multiple-choice qa	Kim et al. 2019
redditi_tifu-title	qa/machine reading comprehension	Lai et al. 2017
redditi_tifu-tridt	qa/machine reading comprehension	Kim et al. 2019
ropes	qa/machine reading comprehension	Lin et al. 2019
rotten_tomatoes	qa/machine reading comprehension	Pang and Lee 2005
samsum	qa/other	Gilwa et al. 2019
sentic	qa/machine reading comprehension	Cohan et al. 2019
scicite	qa/other	Welbl et al. 2017
sciq	qa/other	Khot et al. 2018
scitail	qa/other	Dunn et al. 2017
search_qa	qa/other	Marelli et al. 2014
sick	qa/other	Almeida et al. 2011
smsspam	qa/other	Sup et al. 2019
social_i_qa	qa/other	Yu et al. 2018
spider	qa/other	Rajpurkar et al. 2016
squad-no-context	qa/other	Rajpurkar et al. 2016
squad-with-context	qa/other	de Marneffe et al. 2019
superglue-ch	qa/other	Gordon et al. 2012
superglue-copa	qa/other	Khoshabi et al. 2018
superglue-multirc	qa/other	Dagan et al. 2005; Bar-Haim et al. 2006
superglue-record	qa/other	Giampiccolo et al. 2007; Bentivogli et al. 2009
superglue-re	qa/other	Piłchvar and Camacho-Collados et al. 2019
superglue-wic	qa/other	Levesque et al. 2012
superglue-wisc	qa/other	Zellers et al. 2018
swag	qa/other	Chen et al. 2020b
tab_fact	qa/other	Li and Roth 2002; Hovy et al. 2001
trec	qa/other	Li and Roth 2002; Hovy et al. 2001
trec-finegrained	qa/other	Barbieri et al. 2020
tweet_eval-emoji	qa/other	Barbieri et al. 2020
tweet_eval-emotion	qa/other	Barbieri et al. 2020
tweet_eval-hate	qa/other	Barbieri et al. 2020
tweet_eval-irony	qa/other	Barbieri et al. 2020
tweet_eval-offensive	qa/other	Barbieri et al. 2020
tweet_eval-stance-abortion	qa/other	Barbieri et al. 2020
tweet_eval-stance-atheism	qa/other	Barbieri et al. 2020
tweet_eval-stance_climate	qa/other	Barbieri et al. 2020
tweet_eval-stance_feminist	qa/other	Barbieri et al. 2020
tweet_eval-stance_hillary	qa/other	Barbieri et al. 2020
tweet_qa	qa/other	Xiong et al. 2019
web_questions	qa/other	Berant et al. 2013
wiki_auto	qa/other	Jiung et al. 2020
wiki_bio	qa/other	Lebret et al. 2016
wiki qa	qa/other	Yang et al. 2015
wiki_split	qa/other	Botha et al. 2018
wikisql	qa/other	an 2017
wino_grande	qa/other	Sakaguchi et al. 2020
wiki	qa/other	Tandon et al. 2019
xsum	qa/other	Narayan et al. 2018
yaho_answers_topics	qa/other	(link)
yelp_polarity	qa/other	Zhang et al. 2015; (link)
yelp_review_full	qa/other	Zhang et al. 2015; (link)