Ca$^{2+}$ is a Regulator of the WNK/OSR1/NKCC Pathway in a Human Salivary Gland Cell Line

Soonhong Park1,*, Sang Kyun Ku2,*, Hye Won Ji1, Jong-Hoon Choi2,* and Dong Min Shin1,*

1Department of Oral Biology, BK21 PLUS Project and 2Department of Oral Medicine, Yonsei University College of Dentistry, Seoul 120-752, Korea

INTRODUCTION

Wnk, with no lysine, means that there is a lack of a conserved lysine residue in subcatalytic domain II, which is required for ATP binding [1]. Wnk kinases (WKs) are serine/threonine protein kinases and are well conserved in many species from fungi to mammals [1]. Previous work by another group revealed that four types of WNKs are expressed in many species from fungi to mammals [1]. Previous work as a model and showed that Ca$^{2+}$ may have a role in regulating Wnk kinase in the HSG cell line. Through this study, we found that the HSG cell line expressed molecules participating in the WNK-OSR1-NKCC pathway, such as Wnk1, Wnk4, OSR1, SPAK, and NKCC1. The HSG cell line showed an intracellular Ca$^{2+}$ concentration ([Ca$^{2+}$]$_i$) increase in response to hypotonic stimulation, and the response was synchronized with the phosphorylation of OSR1. Interestingly, when we inhibited the hypotonically induced [Ca$^{2+}$]$_i$ increase with nonspecific Ca$^{2+}$ channel blockers such as 2-aminoethoxydiphenyl borate, gadolinium, and lanthanum, the phosphorylated OSR1 level was also diminished. Moreover, a cyclopiazonic acid-induced passive [Ca$^{2+}$]$_i$ elevation was evoked by the phosphorylation of OSR1, and the amount of phosphorylated OSR1 decreased when the cells were treated with BAPTA, a Ca$^{2+}$ chelator. Finally, through that process, NKCC1 activity also decreased to maintain the cell volume in the HSG cell line. These results indicate that Ca$^{2+}$ may regulate the WNK-OSR1 pathway and NKCC1 activity in the HSG cell line. This is the first demonstration that indicates upstream Ca$^{2+}$ regulation of the WNK-OSR1 pathway in intact cells.

Key Words: Ca$^{2+}$ signaling, NKCC, OSR1, Salivary gland, WNK

Received December 23, 2014, Revised January 26, 2015, Accepted February 25, 2015

Corresponding to: Dong Min Shin, Department of Oral Biology, Yonsei University College of Dentistry, 50, Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea. (Tel) 82-2-2228-3051, (Fax) 82-2-364-1085, (E-mail) dmshin@yuhs.ac, Jong-Hoon Choi, Department of Oral Medicine, Yonsei University College of Dentistry, 50, Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea. (Tel) 82-2-2228-3113, (Fax) 82-2-393-5673, (E-mail) jhchoij@yuhs.ac

*These authors contributed equally to this work.

*These authors regard as co-correspondence.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © Korean J Physiol Pharmacol & MEdrang Inc.

ABBREVIATIONS: CUL3, cullin3; KLHL, kelch-like family member; ER, endoplasmic reticulum; OMIM, online mendelian inheritance in man; BAPTA, 1,2-bis(o-aminophenoxy)ethane-N,N',N'-tetraacetic acid.
Although the presence of autophosphorylation/autoinhibition was discovered early, the regulating mechanism of WNKs is still poorly understood [13-15]. Several mechanisms regulating WNKs have been revealed [13]. One is ubiquitination through scaffolding proteins such as CUL3, KLHL2, and KLHL3 [16-22]. Another regulating system is phosphorylation modulated by phosphatidylinositol 5-kinase/Akt (PI5K/Akt) [23] and apoptosis signal-regulating kinase 3 (ASK3) [24,25]. The activation of WNKs in low Cl- conditions is the most direct regulation of WNKs [13]. Although the presence of SPAR/OSR1 phosphorylation induced by low Cl- was revealed early [26], it remains a mystery how WNKs sense the low Cl-, and the possibility of there being another Cl- sensor that regulates WNKs still exists. Recently, the direct binding of Cl- to a catalytic domain of Wnk1 was revealed by crystallography [27]. Nonetheless, an upstream regulator of WNKs is still not enough to explain all of the regulatory machinery.

Ca2+ is a well-known second messenger that mediates various cell functions [28]. It is well known that hypotonicity induces the elevation of intracellular Ca2+ levels through the Ca2+-activated Cl- channels located in the plasma membrane. In addition, Ca2+-activated Cl- channels are well defined in the salivary glands. Therefore, we hypothesized that Ca2+ might regulate the WNK-OSR1 pathway, and we found that alterations of the intracellular Ca2+ level determined the phosphorylation of OSR1 and the activity of NKCC1 in a human salivary gland (HSG) cell line.

METHODS

Materials and antibodies

HSG cell line was a gift from Dr. Kyungpyo Park in Seoul National University. Rabbit polyclonal p-OSR1 antibody was purchased from Millipore (Cat#07-2273). Rabbit polyclonal OSR1 antibody was purchased from Cell signaling (St. Louis, MO, USA). Collagenase P was from Roche (Indianapolis, IN, USA). Ruthenium red was from Sigma-Aldrich (St. Louis, MO, USA). 2-Aminoethyl diphenyl borate was purchased from Cell signaling (St. Louis, MO, USA). Mouse monoclonal OSR1 antibody was purchased from Cell signaling (St. Louis, MO, USA). Rabbit polyclonal p-OSR1 antibody was purchased from Cell signaling (St. Louis, MO, USA). HSG cell line was a gift from Dr. Kyungpyo Park in Seoul National University.

Isolation of salivary gland cell

ICR mice were purchased from KOATEC, Korea. All experiments were performed on adult male ICR mice (6-8 weeks of age) that were maintained on a 12h daytime cycle with normal mouse chow and water provided ad libitum. The animal studies were performed after receiving approval of the Institutional Animal Care and Use Committee (IACUC) in Yonsei University (IACUC approval no. 2014-0067). Mice were sacrificed by cervical dislocation under CO2 anesthesia. All other chemicals include MgCl2, CaCl2, KCl, EGTA, Glucose, and HEPES was from Amresco (Solon, OH, USA). Cultured on 24×24 mm coverglass, with density of 1×10^6 cells/ml with 48 h were loaded with 4 μM Fura-2/AM and 0.05% Pluronic acid F-127 for 30 min in PSS at room temperature. Fura-2/AM fluorescence was measured at an excitation wavelengths of 340/380 nm, and emission was measured at 510 nm (ratio=F340/F380) using an imaging system (Molecular Devices, CA, USA). The emitted fluorescence was monitored using a CCD camera (CoolSNAP HQ, AZ, USA) attached to an inverted microscope. The emitted fluorescence was monitored using a CCD camera (CoolSNAP HQ, AZ, USA) attached to an inverted microscope.
Ca2+ Signaling Modulates a WNK/OSR1/NKCC Pathway

Immunoblotting

Protein extracts were prepared from HSG cell-line and ICR salivary glands as follows. Cells were lysed in a buffer containing (in mm): 150 NaCl, 10 Tris (pH 7.8 with HCl), 1 EDTA, 1% NP-40, 0.1% SDS, and a protease inhibitor mixture (2 NaVO₄, 10 NaF, 10 μg/ml leupeptin, and 10 μg/ml phenylmethylsulfonyl fluoride). The samples were probed overnight with 1:2,000 dilutions of antibodies against p-OSR1, OSR1 at 4°C and then separated by SDS-PAGE.

Measurement of intracellular pH (pH_i) and NKCC activity

pH_i was measured using pH sensitive fluorescent dye, BCECF-AM. Cells were loaded with 2.5 μM BCECF-AM in PSS for 30 min at room temperature. The fluorescence at excitation wavelength of 490 nm and 440 nm was recorded using a CCD camera (CoolSNAP HQ, AZ, USA). Fluorescence images were obtained at 2 sec intervals. All data were analyzed using the MetaFluor software (Molecular Devices, Downington, PA, USA).

Na-K-2Cl cotransporter (NKCC) activity was measured from the pHi decrease induced by the intracellular uptake of NH₄⁺ using the methods of Evans and Turner [30] with modifications. Adding NH₄Cl 20 mM in the extracellular solution induce robust increase of pHi due to diffusion of NH₃. Therefore, pHi is getting decreased by influx of NH₄⁺, because NH₄⁺ acts as a surrogate of K⁺ in the NKCC. To discriminate only the NKCC activity, 100 μM bumetanide applied. Slope inclination was measured from 1 min to 3 min after solution change.

Data analysis and statistics

Results are expressed as the mean±SEM. The statistical significance of differences between groups was determined using the Student’s t-test. In statistical tests, p-values less than 0.05 were considered significant.

RESULTS

Expression and activation of Wnk kinase in the human salivary gland cell line

The expression of WNKs in the HSG cell line was previously unknown. Therefore, we first investigated WNK and its substrates, OSR1 and SPAK. Reverse-transcription PCR was performed, and we confirmed the mRNA expression of Wnk1, Wnk4, OSR1, SPAK, and NKCC1 in an HSG cell line (Fig. 1A). The Wnk4 expression level was lower than the Wnk1 expression level (Fig. 1A). The next step was the measurement of OSR1 phosphorylation at serine 325 by immunoblotting. The phosphorylation of OSR1 at serine 325 to form p-OSR1, the activated form of OSR1, is mediated by WNK. Hence, the elevation of p-OSR1 levels is considered indirect evidence showing the activation of WNK, because OSR1 is a main substrate of WNK. We observed an increase in the p-OSR1 level after 15 min of hypotonic (215 mOsm) stimulation at 37°C (Fig. 1B, upper panel). The hypotonic stimulation was induced using a hypotonic solution (HS) that reduced only the NaCl content of a physiologic salt solution (PSS). We observed a p-OSR1 increase in isolated parotid gland acini and also in submandibular gland acini from an ICR mouse (Fig. 1B, lower panel). These data suggest that the HSG cell line can imitate hypotonicity induced OSR1 activation.

Ca2+ signaling by hypotonic stress in the HSG cell line

Extracellular HS treatment induced an increase in the

![Fig. 1. Phosphorylated OSR1 induced by hypotonicity and mRNA expression in a HSG cell line and phosphorylation of OSR1 in an isolated salivary gland acinar cell.](image)

![Fig. 2. Hypotonic stress-induced intracellular Ca2+ increases. The intracellular Ca2+ concentration ([Ca2+]) was shown as the Fura2 intensity ratio of A340/A380.](image)
intracellular Ca2+ concentration ([Ca2+]i), and was abolished with the depletion of Ca2+ ions in the extracellular solution (Fig. 2A), suggesting that the increased Ca2+ signal originated from the outside of the cell. To define how the Ca2+ influx was mediated by extracellular Ca2+ ions, we used 10 \(\mu \text{M} \) ruthenium red (RR), 100 \(\mu \text{M} \) 2-aminoethoxydiphenyl borate (2APB), 10 \(\mu \text{M} \) gadolinium (Gd3+), and 10 \(\mu \text{M} \) lanthanum (La3+) as blockers. After 5 min of pre-incubation with 2APB, Gd3+, and La3+, hypotonic stimulation did not evoke an elevation in the [Ca2+]i. However, RR could not inhibit the [Ca2+]i increase (Fig. 2B). When we added 10 \(\mu \text{M} \) 4\(\alpha \)-phorbol 12, 13-didecanoate (4\(\alpha \)-PDD) to the isotonic PSS (310 mOsm), we observed similar patterns of [Ca2+]i increase (Fig. 2C).

Ca2+ signaling is related to OSR1 phosphorylation

BAPTA is a high-affinity Ca2+ chelator that acts rapidly. When we loaded 25 \(\mu \text{M} \) BAPTA-AM, which is an acetoxymethoxy ester conjugate of BAPTA, 20 min prior to the hypotonic stimulation, the p-OSR1 level was reduced compared with that in a control after 10 min of hypo-osmotic stress (Fig. 3A, left panel). The fold change of the p-OSR1/total OSR1 intensity was 2.88±0.15 in 215 mOsm, 1.51±0.02 in 215 mOsm+BAPTA, and 1.06±0.01 in 310 mOsm+BAPTA (Fig. 3A, right panel). This result indicates that p-OSR1 may be regulated by upstream Ca2+ ions. The 4\(\alpha \)-PDD-induced p-OSR1 level was also increased 10 min after treatment and diminished less than that in the control after 1 h (Fig. 3C).

In agreement with the Ca2+ signaling pattern, the p-OSR1 level was reduced following a 20 min pre-incubation with the blockers 2APB, Gd3+, and La3+ (Fig. 3B). RR could not inhibit the hypotonic-induced [Ca2+]i increase in the HSG cell line (Fig. 2B, second panel from the top), and the p-OSR1 level was increased in the RR pre-incubation only (Fig. 3B). The Ca2+ release from the endoplasmic reticulum (ER) induced by 25 \(\mu \text{M} \) cyclopiazonic acid (CPA) could also elevate the p-OSR1 level (Fig. 3D).

NKCC1 activity is reduced under hypotonic stress

The activation of OSR1 could affect the various transporters in the plasma membrane, such as the NCC, the K+-Cl− cotransporter (KCC), and the NKCC. In the present study, we measured NKCC activity using pH changes in
the HSG cells. The traces in Fig. 4A-C show the BCECF ratio of emitting wave intensity in the excitation wavelengths 490 nm and 440 nm. Thus, the value of the BCECF ratio indicates the intracellular pH (pH). Fig. 4E shows the scheme of the NH₄Cl treatment. When 20 mM NH₄Cl was added to the extracellular solution, with the substitution of NaCl to maintain the osmolarity, the influx of NH₄⁺ carried NH₃ as a surrogate of K⁺, the pH in the solution acidified. Bumetanide (100 μM) can inhibit NKCC activity. Therefore, the difference in the slope inclination between the NH₄Cl treatment and the bumetanide treatment was assessed to measure the NKCC1 activity by quantifying the acidification rate. The greatest slope change was with 100 μM bumetanide in the isotonic solution (310 mOsm; Fig. 4A). After pre-incubation in HS (215 mOsm) for 5 min, the fold change in the slope was 0.67±0.05 (Fig. 4B), which was statistically significant (Fig. 4D). After pre-incubation with 25 μM BAPTA-AM in HS, the decreased fold change in the slope was restored (Fig. 4C, D).

DISCUSSION

In the present study, we found that the phosphorylation of OSR1 is regulated by the [Ca²⁺], This was a unique finding of our study. In other articles, it was shown by using a kinase assay that Wnk4 kinase activity increased depending on the Ca²⁺ concentration in vitro, and that effect was diminished by the substitution of acidic amino acid residues such as E562 and D564 in Wnk4 [31]. Tacrolimus, which is a calcineurin inhibitor, induced Wnk3, Wnk4, and SPAK expression in mouse kidney [32]. Those previous studies support our findings that p-OSR1 is regulated by the [Ca²⁺].

The other issue in this study is that a source of increased Ca²⁺ triggered the phosphorylation of OSR1. When we removed the external Ca²⁺ from the hypotonic solution (Fig. 2A), the [Ca²⁺] was reduced to the baseline. That result shows that the increased [Ca²⁺] in the HSG cell line originated from the influx of external calcium. 2APB, an inhibitor of Ca²⁺ channels [33,34], was used to block the influx of Ca²⁺. 2APB also inhibits the IP₃ induced Ca²⁺ increase. However, even though 2APB acts as an inhibitor of either IP₃ induced Ca²⁺ increase or nonselective cation channel, the outcome of 2APB treatment is an inhibition of [Ca²⁺] increase. In the results pretreatment with 2APB inhibited the elevation of the [Ca²⁺], and reduced the level of p-OSR1 induced by hypotonic stress in the HSG cell line (Fig. 2B, 3B). Furthermore, nonselective cation channel blockers, like Gd³⁺ and La³⁺, also inhibited the [Ca²⁺], and the p-OSR1 level under hypotonic stress in the HSG cell line (Fig. 2B, 3B). Those results indicate external Ca²⁺ influx mediated by Ca²⁺ channels sensitive to 2APB, Gd³⁺, and La³⁺ in the HSG cell line. Interestingly, treatment with 4α-PDD, which is a selective activator of TRPV4, displayed Ca²⁺ signaling patterns similar to those displayed by hypotonic stimulation [35,36]. TRPV4 is a well-known Ca²⁺ permeable channel activated by hypotonic stress [37]. Thus, a TRPV4-induced [Ca²⁺] appears to be one potent channel that mediates the OSR1 pathway in the HSG cell line, but that hypothesis requires more experiments to be confirmed. Likewise, another TRP channels, such as TRPC3 and TRPM4 also involved hypotonic stimulated Ca²⁺ influx in the HSG cell line, but we have not included in this paper. It was unexpected that RR could not inhibit the [Ca²⁺], and the p-OSR1 level. That result suggests that RR-resistant Ca²⁺ channels play a role in the HSG cell line. However, to solve that remaining question about RR, another investigation is required.

The next question is whether the Ca²⁺ performed as an upstream regulator or as a downstream messenger of OSR1 phosphorylation. Because BAPTA is a rapid and high-affinity chelator of Ca²⁺, it is regarded as a highly efficient chelator that blocks the action of Ca²⁺ in the cell [38]. When the [Ca²⁺], was chelated by BAPTA during the hypotonic stimulation of the HSG cell line, the p-OSR1 level was decreased (Fig. 3A). That suggests that Ca²⁺ is an upstream regulator of p-OSR1. Ca²⁺ is more important than the mechanical membrane stretching induced by the HS. It is inferred from the facts that the [Ca²⁺] increases with 4α-PDD (Fig. 3D), and CPA (Fig. 3C) also resulted in increased p-OSR1 levels. However, the CPA induced less p-OSR1 than did the hypotonic stimulation. That could be explained by the localization of the WNKs near the plasma membrane [1].

Although, Ca²⁺ regulates OSR1 through phosphorylation, it is still unclear whether OSR1 is directly or indirectly regulated by the WNKs. Ca²⁺ was required to show the kinase activity of Wnk4. In the intact cell, however, remaining kinase activity appeared at very low Ca²⁺ concentrations, below 1 nM [31]. Moreover, it is well known that WNKs exhibit autoinhibition and autophosphorylation [11,12], and role of low Cl⁻ in the activation of WNKs was revealed by crystallography [27]. Furthermore, it is well known that Ca²⁺-activated Cl⁻ channels, like TMEM16A, are expressed in the apical membranes of salivary gland acinar cells [39]. Therefore, we assumed that TMEM16A activated by an elevated [Ca²⁺], contributes to the local depletion of Cl⁻ at the microdomain level, and that the depletion of Cl⁻ leads to the activation of the WNK-OSR1 pathway. However, more investigations will be required to test that model.

The popular effectors of activated OSR1 are the NCC, the KCC, and the NKCC [13-15]. Furthermore, the NKCC is the essential molecule that maintains Cl⁻ homeostasis in salivary gland acinar cells [39]. For that reason, we investigated the alteration of NKCC activity in the HSG cell line (Fig. 4). After hypotonic stimulation, NKCC activity was decreased in the HSG cell line and was recapitulated by chelating Ca²⁺ through BAPTA pretreatment (Fig. 4D). It is still controversial whether activated OSR1 contributes to the activation or to the inactivation of NKCC, depending on the cell type [24,40]. In terms of volume homeostasis, we think that the inhibition of NKCC requires cells to decrease the intracellular ion osmolarity to maintain the cell volume.

In conclusion, we found that Ca²⁺ regulates the WNK-OSR1-NKCC pathway. This is the first study to demonstrate the Ca²⁺-mediated WNK-OSR1-NKCC pathway in an intact HSG cell line. We hope that these results will help to clarify the regulatory mechanism of the WNK-OSR1 pathway and further our understanding of the mechanism of salivary secretion.

ACKNOWLEDGMENT

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2006269).
REFERENCES

1. Xu B, English JM, Wilshacker JL, Stippec S, Goldsmith ED, Cobb MH. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain Ii. J Biol Chem. 2000;275:16795-16801.

2. Verissimo F, Jordan P. WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene. 2001;20:5562-5569.

3. Wilson FH, Disse-Nicodème S, Choute KA, Ishikawa K, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong SHR, Kakabekis P, Tsiamis E, Madaule P, Martin-Pereyra L, van der Grinten PC, Zou L, Gamba G. Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension. Am J Physiol Renal Physiol. 2005;288:F245-252.

4. Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong K, Rapsin AR, MacGregor GT, Giebisch G, Hebert SC, Lifton RP. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet. 2003;35:372-376.

5. Vitari AC, Deak M, Morrice NA, Alessi DR. The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J. 2005;391:17-24.

6. Rinehart J, Kahle KT, de Los Heros P, Vazquez N, Meade P, Wilson FH, Hebert SC, Gimenez J, Gamba G, Lifton RP. WNK3 kinase is a positive regulator of NaKCC2 and NCC, renal cation-Cl-cotransporters required for normal blood pressure homeostasis. Proc Natl Acad Sci U S A. 2005;102:16777-16782.

7. Moriguchi T, Urushiyama S, Hisamoto N, Iemura S, Uchida S, Morita M, Matsumoto K, Shibuya H. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J Biol Chem. 2005;280:42865-42873.

8. Kahle KT, MacGregor GG, Wilson FH, Van Heek AN, Brown D, Ardlito T, Kashgarian M, Giebisch G, Hebert SC, Boupa EL, Lifton RP. Paracellular Cl- permeability is regulated by WNK4 kinase: insight into normal physiological and hypertension. Proc Natl Acad Sci U S A. 2004;101:14877-14882.

9. Tamao K, Yamauchi Y, Kobayashi S, Sohara E, Suzuki S, Itoh T, Suda S, Hayama A, Sasaki S, Uchida S. Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proc Natl Acad Sci U S A. 2004;101:4690-4694.

10. Xu BE, Min X, Stippec S, Lee BH, Goldsmith ED, Cobb MH. Regulation of WNK1 by an autophosphorylation motif of WNK4 impair the sensitivity of WNK4 kinase to inhibitor of InsP3-induced Ca2+ release. J Biol Chem. 2002;277:48456-48462.

11. Lenert NZ, Lee BH, Min X, Xu BE, Wedin K, Earnest S, Goldsmith ED, Cobb MH. Properties of WNK1 and implications for other family members. J Biol Chem. 2005;280:26653-26658.

12. Alessi DR, Zhang J, Khanna A, Hochdörfer T, Shang Y, Kahle KT. The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters. Sci Signal. 2014;7:re3.

13. Arroyo JP, Kahle KT, Gamba G. The SLC12 family of electro-neutral cation-coupled chloride cotransporters. Mol Aspects Med. 2013;34:298-308.

14. Kahle KT, Rinehart J, Lifton RP. Phosphoregulation of the Na-K-Cl and K-Cl cotransporters by the WNK kinases. Biochim Biophys Acta. 2010;1802:1150-1158.

15. Schumacher PF, Sorrell FD, Alessi DR, Bullock AN, Kurz T. Structural and biochemical characterization of the KLHL3-WNK interaction important in blood pressure regulation. Biochem J. 2014;460:237-246.

16. McCormick JF, Yang CL, Zhang C, Davidge B, Blankenstein KJ, Teerker AS, Yarbrough B, Meemriep NP, Park HJ, McCully B, West M, Boscowsky A, Himmerkus N, Bleich M, Bachmann S, Metzig K, Argazki ER, Gamba G, Singer JD, Ellison DH. Hyperkalemic hypertension-associated claudin 3 promotes WNK signaling by downregulating KLHL3. J Clin Invest. 2014;124:4723-4736.

17. Wakabayashi M, Mori T, Isobe K, Sohara E, Sasa K, Araki Y, Chiga M, Kikuchi E, Nomura N, Mori Y, Matsuho H, Murata T, Nomura S, Asano T, Kawauchi H, Nonoyama S, Rai T, Sasaki S, Uchida S. Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep. 2013;3:888-898.

18. Wakabayashi M, Mori T, Kakabekis P, Tsiamis E, Madaule P, Martin-Pereyra L, van der Grinten PC, Zou L, Gamba G. Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension. Am J Physiol Renal Physiol. 2005;288:F245-252.

19. Hossain Khan MZ, Sasaki S, Ohta A, Chiga M, Inoue Y, Isobe K, Wakabayashi M, Oh T, Rai T, Sasaki S, Uchida S. Phosphorylation of Na-CI cotransporter by OSR1 and SPAK kinases regulates its ubiquitination. Biochem Biophys Res Commun. 2012;425:456-461.

20. Sasaki S, Kobayashi S, Nomura N, Chiga M, Alessi DR, Rai T, Sasaki S, Uchida S. Phosphorylation of Na-CI cotransporter by the WNK kinases. Nat Genet. 2003;35:372-376.

21. Park S, Lee SI, Shin DM. Role of regulators of g-protein signaling 4 in ca signaling in mouse pancreatic acinar cells. Korean J Physiol Pharmacol. 2011;15:383-388.

22. Evans RL, Turner RJ. Upregulation of Na(+)-K(+)-2Cl(-) cotransporter activity in rat parotid acinar cells by muscarinic stimulation. J Physiol. 1997;499:351-359.

23. Hoorn ED, Walch SB, McCormick JF, Forbush B, Bachmann S, Unwin RJ, Ellison DH. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat Med. 2011;17:1294-1309.

24. Mayer B, Schumacher PF, Sorrell FD, Alessi DR, Bullock AN, Kurz T. Structural and biochemical characterization of the KLHL3-WNK interaction important in blood pressure regulation. Biochem J. 2014;460:237-246.
Ca$^{2+}$ Signaling Modulates a WNK/OSR1/NKCC Pathway

36. Kim KS, Shin DH, Nam JH, Park KS, Zhang YH, Kim WK, Kim SJ. Functional expression of trpv4 cation channels in human mast cell line (HMC-1). *Korean J Physiol Pharmacol*. 2010;14:419-425.

37. Nilius B, Vriens J, Prenen J, Droogmans G, Voets T. TRPV4 calcium entry channel: a paradigm for gating diversity. *Am J Physiol Cell Physiol*. 2004;286:C195-205.

38. Kline D, Kline JT. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. *Dev Biol*. 1992;149:80-89.

39. Melvin JE, Yule D, Shuttleworth T, Begenisich T. Regulation of fluid and electrolyte secretion in salivary gland acinar cells. *Annu Rev Physiol*. 2005;67:445-469.

40. Wu Y, Schellinger JN, Huang CL, Rodan AR. Hypotonicity stimulates potassium flux through the WNK-SPAK/OSR1 kinase cascade and the Ncc69 sodium-potassium-2-chloride cotransporter in the Drosophila renal tubule. *J Biol Chem*. 2014;289:26131-26142.

TRPV4 activated by 4alpha-phorbol 12,13-didecanoate. *Life Sci*. 2009;85:808-814.