Quantification of *Mycobacterium avium* subspecies in pig tissues by real-time quantitative PCR

Taneli Tirkkonen¹,²*, Timo Nieminen¹, Terhi Ali-Vehmas¹, Olli AT Peltoniemi¹, Gerard J Wellenberg³ and Jaakko Pakarinen⁴

Abstract

Background: Mycobacterioses in animals cause economical losses and certain *Mycobacterium avium* subspecies are regarded as potential zoonotic agents. The evaluation of the zoonotic risk caused by *M. avium* subspecies requires information about the quantities of *Mycobacterium* strains in infected animals. Because *M. avium* subspecies in pig tissues are difficult or even impossible to quantify by culturing, we tested the suitability of a culture-independent real-time quantitative PCR (qPCR) assay for this purpose.

Methods: Mycobacterial DNA was extracted from porcine tissues by a novel method and quantified by *Mycobacterium* genus specific qPCR assay targeting the 16S rRNA gene.

Results: The response of the qPCR assay to the amount of *M. avium* subspecies *avium* mixed with porcine liver was linear in the range of approximately log10⁵ to log10⁷ *Mycobacterium* cells per 1 g of liver. The assay was validated with three other *M. avium* subspecies strains. When the assay was applied to porcine lymph nodes with or without visible lesions related to *Mycobacterium avium* subspecies infections, around 10⁴–10⁷ mycobacterial genomes per gram of lymph nodes were detected.

Conclusions: The qPCR assay was found to be suitable for the quantification of *Mycobacterium avium* subspecies in porcine lymph nodes and liver.

Keywords: *Mycobacterium*, Pig, Porcine, Real-time qPCR, Quantification

Background

Mycobacterium avium complex (MAC) is the most infectious group of environmental *Mycobacterium* strains being responsible for over 20% of human cases reported of having mycobacterial infections [1]. In total, 26,000 environmental *Mycobacterium* related infections were reported in 14 countries worldwide between 1991 and 1996 [1]. In Finland there were 12.2 infections per 100 000 inhabitants in 2012 [2]. Official international prevalence statistics are unavailable because these infections are not registered in most countries [3].

In addition to humans, environmental *Mycobacterium* strains infect poultry, pigs and ruminants in the food productions chains which may be a source of food borne illnesses in humans. Porcine mycobacteriosis is the most common animal mycobacterial disease in Finland, with long-term average prevalence of 0.34% and temporary peaks as high as 0.85% [4]. Mycobacteriosis has been diagnosed in pigs worldwide. *M. avium* subsp. *hominissuis* is a potential zoonotic pathogen that also infects pigs [5–7]. Infections of swine with *Mycobacterium avium* subspecies are typically associated to the lymph nodes in the neck and the gastrointestinal system [8]. The liver may be infected and sometimes also the spleen and lungs. Due to human mycobacterial infections, the European Union Legislation [9] regulates meat control practices in slaughterhouses. *Mycobacterium avium* subspecies infections in pigs are diagnosed presumptively in slaughterhouses by...
veterinary meat inspection officers. The lymph nodes and livers are examined visually at post-mortem inspection for granulomatous lesions. Meat and organs of infected animals may be graded as conditionally consumable after heat treatment depending on the country and the distribution of the lesions. These regulations cause economic losses to pig farmers and processing plants [3,8,10]. The visual examination is neither a specific nor sensitive method to detect mycobacteriosis in pigs. Specific methods for the typing of \textit{M. avium} strains from Finland were earlier developed [6,7]. Alternative tests, potentially suitable for slaughterhouse use, have been developed, such as e.g. the detection of \textit{Mycobacterium avium} subspecies antibodies in porcine blood samples [11]. However, verification of the diagnostic value of the serological tests requires quantification of \textit{Mycobacterium avium} subspecies in porcine tissues. To assess the real human zoonotic risk it is essential to know the relation between porcine serological responses and the actual amount of \textit{Mycobacterium avium} subspecies \textit{avium} and \textit{hominissuis} in the tissues. As far as we know no such research results exist from naturally infected pigs. Cultivation of \textit{Mycobacterium} strains from animal samples and the final characterisation and determination of its phenotype has the disadvantage of taking a long time. Slowly growing \textit{Mycobacterium} strains require between 3–6 weeks to form visible colonies on Lowenstein-Jensen media. Selective treatment required to kill background microbes inactivates also \textit{Mycobacterium} strains [12]. Furthermore, the culture method may not reveal the exact concentration of \textit{Mycobacterium} strains in a given sample [13,14].

In this study, we present a simple, rapid and accurate DNA extraction method that, in combination with a real-time qPCR method [15], can be used to quantify \textit{Mycobacterium} strains in porcine tissue samples.

\textbf{Methods}

\textbf{Bacterial strains}

The following \textit{M. avium} subspecies strains were used to validate the qPCR technique: \textit{M. avium} subspecies \textit{avium} ATCC 25291, \textit{M. avium} subspecies \textit{hominissuis} 9646/4 from Austria, \textit{M. avium} subspecies \textit{hominissuis} 9972/6 from Austria and \textit{M. avium} subspecies \textit{hominissuis} strain 2 from the Netherlands kindly provided by Gerard Wellenberg. These strains were identified as \textit{M. avium} subspecies \textit{hominissuis} as described by Wellenberg et al. [16]. The strains were cultivated on Middlebrook 7H11 agar with OADC enrichment.

\textbf{Quantification of \textit{M. avium} subspecies by microscopy}

For validation studies, \textit{Mycobacterium} cells were collected from actively growing broth culture by centrifugation at 16,100 g. The cells were suspended in sterile water containing 1% peptone and 0.05% Tween-80. The cell density of the suspension was counted with a Bürker haemocytometer.

\textbf{Pig tissues}

Eight lymph node samples (Table 1) were collected from slaughtered pigs infected with \textit{M. avium} \textit{subspecies hominissuis}. The sample collection and initial processing of samples was performed as described previously [16].

\textbf{DNA extraction}

Mycobacterial DNA was isolated from tissue specimens (100 mg) or bacteria using the MagNA Pure LC DNA Isolation Kit III Bacteria & Fungi (Roche Diagnostics, Penzberg, Germany). The specimen was collected in a screw-capped 2 ml microcentrifuge tube mixed with 395 μl of Bacterial Lysis buffer and 35 μl of Proteinase K solution. However, the amount of isolated mycobacterial DNA was poor when the standard protocol was used. To increase the mycobacterial cell wall lysis the tissue was digested at 65°C under agitation at 160 rpm for 16 h. The tissue lysate was centrifuged at 16,100 g for 10 min to pellet \textit{Mycobacterium} cells, and the supernatant was removed. The glass and silica granules in a BIO101 lysing matrix E tubes (Q Biogene, Irvine, CA, USA) were poured over the pellet and the pellet was homogenized two times in the FastPrep™ FP120 instrument (Bio101 Savant Instruments Inc., Holbrook, NY, USA) at 5.0 m s⁻¹ for 40 s. The homogenate was centrifuged at 16,100 g for 10 min. DNA was isolated from the supernatant using the above mentioned kit and the KingFisher mL instrument (ThermoElectron, Helsinki, Finland).

\textbf{Real-time qPCR assay}

A real-time qPCR method for the quantification of mycobacterial 16S rRNA genes was developed in former studies [15,17]. The 16S rRNA genes of mycobacteria were amplified using the genus-specific primers (MycoARB210 TTT GCC GTG TGG GAT GGG C, MycoAR8585 CGA ACA ACG CGA CAA ACC A) and the products detected by the probes MycoFlu (CTC AGT CCC AGT GTG GCC GG, 3’ fluorescein-labelled) and MycoRed (CAC CCT AGG CCG GCT AC, 5’ Red705-labelled, 3’ phosphorylated). Primers and probe specificity was confirmed with various target and non-target strains [10]. Each run included control/experimental samples, a reagent control (reagents used to extract DNA to rule out experimental contamination during DNA extraction), a negative reagent control (DNA free water) and a positive control (standard curve with known amounts of \textit{Mycobacterium lentiflavum}).

\textbf{Spiking of \textit{Mycobacterium} cells to pig liver}

To validate the qPCR method for the quantification of \textit{M. avium} subspecies we extracted DNA from pure
cultures of four *M. avium* subspecies strains and from porcine tissue samples that were healthy or spiked with *M. avium* subspecies. Healthy pig liver (0.1 g) was spiked with five parallel 10-fold dilutions of *M. avium* subspecies *avium* ATCC 25291 cells (1 × 10⁴ to 1 × 10⁷ cells per g), quantified by microscopic counting.

Results

Quantification of *M. avium* subspecies by microscopy and qPCR

We tested the response of the *Mycobacterium* genus specific qPCR assay on four *M. avium* subspecies strains. The results obtained by the qPCR assay correlated closely with the microscopic counts of the four *M. avium* subspecies strains tested (Table 2). The maximum difference between the qPCR and microscopy counts was less than one 10⁰ log unit.

We were also able to quantify *M. avium* subspecies *avium* ATCC 25291 DNA when bacteria were mixed with porcine liver tissue (Table 2).

Response of qPCR assay to *M. avium* subspecies spiked in liver

To test the detection limit of the qPCR in porcine tissue, we analyzed specimens (0.1 g) of healthy pig liver spiked with five 10-fold decimal dilutions of *M. avium* subspecies *avium* ATCC 25291 cells (1 × 10⁴ to 1 × 10⁷ bacteria per gram). Each dilution was extracted and measured as five parallels. Figure 1 shows the results of the qPCR analysis of the liver spiked with *M. avium* subspecies *avium*.

The response of the qPCR assay to the logarithmic amount of *M. avium* subspecies *avium* added to pig liver was linear approximately in the range of log10⁵ to log10⁷ bacteria per gram. Three out of the five parallel specimens spiked with 10⁴ *M. avium* subspecies *avium* per gram were also detected but were out of the linear range.

Quantification of *Mycobacterium* cells from infected lymph nodes by the qPCR assay

Mycobacterium cells were quantified in the lymph node tissues from four infected pigs. Cell equivalents of mycobacterial DNA between 2 × 10⁴ to 2 × 10⁷ were detected per gram of tissue using the qPCR assay (Table 1). Each affected tissue was sampled, both within the lesions and adjacent to the lesions, to study the distribution of *Mycobacterium* cells in the affected organs. In three out of the four cases studied, the concentration of *Mycobacterium* cells was at least 1000 times higher in the lesion part than in the adjacent part of the affected tissue.

Sample	Description	qPCR cell equivalents* of mycobacterial DNA g⁻¹ tissue
Pig 4, sample 1.	Lesion	3 × 10⁶
Pig 4, sample 2.	outside the lesion part	below detection limit
Pig 9–5577, sample 1.	Lesion	2 × 10⁶
Pig 9–5577, sample 2.	outside the lesion part	below detection limit
Pig Austria 3, sample 1.	Lesion	2 × 10⁶
Pig Austria 3, sample 2.	outside the lesion part	2 × 10⁴
Pig 187, sample 1.	Lesion	below detection limit
Pig 187, sample 2.	outside the lesion part	below detection limit

*Cell equivalent calculated based on the copy assumed number of one 16S rRNA gene per mycobacterial cell.

Table 2 Quantification of *Mycobacterium* cells by microscopy and by qPCR

Strain/sample	Microscopy cells ml⁻¹	qPCR cell equivalents* of mycobacterial DNA ml⁻¹
M. avium ATCC 25291	1 × 10⁵	2 × 10⁶ (n = 2)
M. avium ATCC 25291	1 × 10⁸	6 × 10⁹ (n = 2)
M. avium Austria 9646/4	5 × 10⁸	2 × 10⁸
M. avium Austria 9972/6	7 × 10⁹	3 × 10⁹
M. avium Netherlands 2	2 × 10⁹	9 × 10⁸
M. avium ATCC 25291 + 0.1 g of liver	1 × 10⁴	7 × 10³
M. avium ATCC 25291 + 0.1 g of liver	1 × 10⁶	7 × 10⁵

*Cell equivalent calculated based on the assumed single copy number of 16S rRNA as information regarding the exact number of 16S rRNA in *M. avium* subspecies *hominissuis* is not available so far.
Discussion

Mycobacterium strains may cause serious infections in animals and humans. Large economic losses are caused by many mycobacterial species. A high risk of transmission of infection from animal to human exists. The knowledge of the exact pathogen concentration in mycobacterial contaminated pork might be an important parameter to give information on the infection risk for humans. A low mycobacterial porcine tissue content may enable the detection of total mycobacterial cells also from samples without visible lesions.

The problems connected to cultivation have increased the interest in culture-independent methods. Different microscopical methods have been applied to detect mycobacterial cells in animal and environmental originating samples [21]. The tendency of mycobacterial cells to clump may hinder accurate microscopic as well as cultivation based quantification of *Mycobacterium* cells. The specificity and sensitivity of these cultivation/microscopy methods need to be significantly improved before they can be applied to the analysis and quantification of *Mycobacterium* cells from animal samples.

Therefore, new methods, such as quantitative PCR methods in combination with reliable DNA extraction methods, are required. In general, a variety of methods can be used for DNA isolation from animal samples, from boiling the sample in distilled water, autoclaving, disruption by glass beads or sonication, to the use of different enzymes and surfactants. However, isolation of nucleic acids from *Mycobacterium* cells is more difficult than from other microorganisms because of the thick peptidoglycan layer characteristic to the mycobacterial cell wall, which makes it resistant to a number of lysis buffers. Moreover, certain samples of animal origin may contain various inhibitors of PCR amplification [22].

A number of published protocols and commercial kits are available for the extraction of DNA from mycobacterial isolates. However, most of these cannot be used to the determination of mycobacterial DNA from porcine tissues. Commercial kits show an excellent correlation with 16S rDNA sequencing results representing rapid, specific and versatile species identification of the most prevalent NTM-species from cultures [23]. Recently several novel qPCR methods have been developed for the detection of *Mycobacterium* strains from human, animal and environmental originating samples [10,18]. However, less laborious and complex methods are needed.

Our DNA extraction and real-time quantitative PCR protocol is a simple and effective method for the detection and quantification of *Mycobacterium* strains in porcine tissues. The DNA extraction method was found to be efficient in extracting different amounts of *M. avium* subspecies spiked into healthy pig liver and is also suitable to detect *M. avium* subspecies in porcine tissue samples. The qPCR method was shown to provide reliable quantitative results when *M. avium* concentrations ranged from log10^5 to log10^7 (Figure 1). These tissue concentrations can be regarded as relatively high, but to the best of our knowledge no exact information regarding the smallest zoonotic infection dose for *M. avium* subspecies is available. The total mycobacterial count using the developed extraction method for tissue lesions was as high as 10^7 cells per gram, indicating an infection.

Conclusions

Our protocol provides a novel, efficient and simple strategy to improve the performance of qPCR with excess of animal DNA in the background. The improved protocol may enable the detection of total mycobacterial cells also from samples without visible lesions.

![Figure 1 Response of the Mycobacterium-specific qPCR assay to M. avium subspecies avium ATCC 25291 cells in pig liver.](image-url)

Mycobacterial DNA was quantified in five parallel extracts of pig liver spiked with *M. avium* subspecies *avium* (1 × 10^6 to 1 × 10^7 bacteria per gram). Open symbols denote qPCR results below the detection limit (4 × 10^4 mycobacteria per gram).
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TT, TA-V, JP and GW participated in the discussion on the study design, collection of the samples and carried out the analysis. TT, TA-V, JP, TN and OP participated interpretation of the data. TA-V, TN, JP, GW and OP helped to draft the manuscript. TT wrote the final manuscript. All authors read and approved the final manuscript.

Acknowledgements
Funding: Academy of Finland (53305, 119769), Finnish Meat Industry Association, Mercedes Zachariassen’s and Finnish veterinary foundations.

Author details
Faculty of Veterinary Medicine, Department of Production Animal Medicine, University of Helsinki, POB 66 Fin 00014, Helsinki, Finland. 1Present address of T. Tirkkonen: A-Farmers Ltd, POB 173 Fin 65101, Vaasaa, Finland. 2Animal Health Service (GD-Deventer), Arnsbergerstraat 7, PO Box 97400 AA, Deventer, The Netherlands. 3Faculty of Agriculture and Forestry, Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland.

Received: 5 October 2012 Accepted: 25 February 2013
Published: 22 March 2013

References
1. Martin-Casabona N, Rahmard AR, Bennedsen J, Thomsen VO, Curcio M, Faavin-Dufaux M, Feldman K, Havelkova M, Catla ML, Koksalan K, Pereira MF, Rodrigues F, Pfyffer GE, Portaels F, Falcao D, Gerner-Rochette E, Schirmer U, Tolk T, Trent C, Vincent V, Witt B, Spanish Group for Non-Tuberculosis Mycobacteriosis: Non-tuberculous mycobacteria: patterns of isolation, A multi-country retrospective survey. Int J Tuberc Lung Dis 2004, 10:1188–1193.
2. National Institute for Health and Welfare, Finland, Statistical Database of the Infectious Diseases Register 2012. Reported Cases by Healthcare District 2012 http://www.3thil.fi/stat.
3. Nieminen T: Detection of harmful microbes and their metabolites with novel methods in the agrid official production chain. PhD thesis. University Of Oulu, Faculty of technology department of process and environmental engineering, 2009.
4. Ali-Vehmas T, Moisander A-M, Soini H: Detection of harmful microbes and their metabolites with novel methods in the agrid official production chain. PhD thesis. University Of Oulu, Faculty of technology department of process and environmental engineering, 2009.
5. Komijn RE, De Haas PE, Schneider MME, Eger T, Nieuwenhuijs JHM, Van Den Hoek J, Bakker D, Van Zijd Erveld FG, Van Soolingen D: Prevalence of Mycobacterium avium in slaughter pigs in the Netherlands and comparison of IS2458 restriction fragment length polymorphism patterns of porcine and human isolates. J Clin Microbiol 1999, 37:1254–1259.
6. Tirkkonen T, Pakarinen J, Moisander A-M, Mäkinen J, Soini H, Ali-Vehmas T: High genetic relatedness among Mycobacterium avium strains isolated from pigs and humans revealed by comparative IS2458 RFLP analysis. Vet Microbiol 2007, 125:175–181.
7. Tirkkonen T, Pakarinen J, Rintala E, Ali-Vehmas T, Marttila H, Peltoniemi OAT, Mäkinen J: Comparison of Variable-Number Tandem-Repeat markers typing and IS1245 Restriction Fragment Length Polymorphism fingerprinting of Mycobacterium avium subsp. hominissuis from human and porcine origins. Acta Vet Scand 2010, 52:1.
8. Matlova L, Dverdova L, Aylee WY, Bartos M, Amemori T, Pavlik I: Distribution of Mycobacterium avium complex isolates in tissue samples of pigs fed naturally contaminated with mycobacteria as a supplement. J Clin Microbiol 2005, 43:1261–1268.
9. European Union Legislation, European Union Regulation 2004/854/EC.
10. Pakarinen J: Impact of the human bacterial environment on mycobacteriosis and allergy. PhD thesis. University Of Helsinki, Faculty of Agriculture and Forestry, Department of Applied Chemistry and Microbiology and Faculty of Medicine, Department of Allergy, 2008. 11. Stepanova H, Pavlova B, Stromerova N, Ondrackova P, Strejiska K, Slana I, Zdrahal Z, Pavlik I, Faldyna M: Different immune response of pigs to Mycobacterium avium subsp. avium and Mycobacterium avium subsp. hominissuis infection. Vet Microbiol 2012, 159:243–250.
12. Dundee L, Grant IR, Ball HJ, Rowe MT: Comparative evaluation of four decontamination protocols for the isolation of M. avium subsp. paratuberculosis from milk. Lett Appl Microbiol 2001, 33:173–177.
13. Cayer M-P, Veillette M, Pageau P, Hamelin R, Bergeron M-J, Meriaux A, Cormier Y, Duchaine C: Identification of mycobacteria in peat moss processing plants: application of molecular biology approaches. Can J Microbiol 2007, 53:92–99.
14. Moore JS, Christensen M, Wilson RW, Wallace RJ, Zhang Y, Nash DR, Shelton B: Mycobacterial contamination of metalworking fluids: involvement of a possible new taxon of rapidly growing mycobacteria. Am Ind Hyg Assoc J 2001, 61:205–213.
15. Pakarinen J, Nieminen T, Tirkkonen T, Tiskiio I, Ali-Vehmas T, Neubauer P, Salkinoja-Salonen M: Proliferation of mycobacteria in a piggy environment revealed by mycobacterium-specific real-time quantitative PCR and 16S rRNA sandwich hybridization. Vet Microbiol 2007, 120:105–112.
16. Wellenberg GJ, De Haas PE, van Ingen J, van Sooeling D, Visser JJ: Multiple strains of Mycobacterium avium subsp. hominissuis infections associated with aborted fetuses and wasting in pigs. Vet Rec 2010, 167:451–454.
17. Nieminen T, Pakarinen J, Tiskiio I, Salkinoja-Salonen M, Breitenstein A, Ali-Vehmas T, Neubauer P: 16S rRNA targeted sandwich hybridization method for direct quantification of mycobacteria in soil. J Microbiol Methods 2006, 67:44–55.
18. Slana I, Kaevka M, Kalipik H, Horvatova A, Pavlik I: Distribution of Mycobacterium avium subsp. avium and M. a. hominissuis in artificially infected pigs studied by culture and IS901 and IS1245 quantitative real time PCR. Vet Microbiol 2010, 144:437–443.
19. Miranda C, Matos M, Pires I, Ribeiro P, Alves S, Vieira-Pinto M, Coelho AC: Mycobacterium avium subsp. paratuberculosis infection in slaughtered domestic pigs for consumption detected by molecular methods. Food Res Int 2011, 44:3276–3277.
20. Kanivcova B, Slana I, Vondruskova H, Kaevka M, Pavlik I: Real-time quantitative PCR detection of Mycobacterium avium subspecies in meat products. J Food Prot 2011, 74:658–640.
21. Lehtola MJ, Torvinen E, Miettinen JT, Kellvi CW: Fluorescence in situ hybridization using peptide nucleic acid probes for rapid detection of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis in potable-water biofilms. Appl Environ Microbiol 2006, 72:848–853.
22. Housek J, Svastova P, Moravkova M, Pavlik I, Bartos M: Methods of mycobacterial DNA isolation from different biological material: a review. Vet Med-Czech 2006, 51:188–192.
23. Petrin B: Non-tuberculous mycobacterial infection. Review. Scand J Infect Dis 2006, 38:246–255.

doi:10.1186/1751-0147-55-26

Cite this article as: Tirkkonen et al.: Quantification of Mycobacterium avium subsp. hominissuis in pig tissues by real-time quantitative PCR. Acta Veterinaria Scandinavica 2013 55:26.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit