Data Article

Chemical and structural data of (1,2,3-triazol-4-yl)pyridine-containing coordination compounds

J. Conradie a,*, M.M. Conradie a, K.M. Tawfiq b, c, M.J. Al-Jeboori c, C. D'Silva d, S.J. Coles e, C. Wilson f, J.H. Potgieter b,g

a Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
b Division of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester M1 5GD, UK
c Department of Chemistry, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq
d Manipal University Jaipur, Department of Chemistry, VPO Dehmi Kalan, Jaipur 303007, Rajasthan, India
e EPSRC National Crystallography Service, School of Chemistry, University of Southampton, Southampton S017 1BJ, England, UK
f School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, Scotland, UK
g School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa

A R T I C L E I N F O

Article history:
Received 31 March 2018
Accepted 24 August 2018
Available online 30 August 2018

A B S T R A C T

The data presented in this paper are related to the research article entitled “Novel dichloro(bis{2-[1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) coordination compounds of seven transition metals (Mn, Fe, Co, Ni, Cu, Zn and Cd)” (Conradie et al., 2018) [1]. This paper presents characterization and structural data of the 2-{1-(4-methyl-phenyl)-1H-1,2,3-triazol-1-yl}pyridine ligand (L2) (Tawfiq et al., 2014) [2] as well as seven dichloro(bis{2-[1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal (II) coordination compounds, [M(L2)2Cl2], all containing the same ligand but coordinated to different metal ions. The data illustrate the shift in IR, UV/VIS, and NMR (for diamagnetic complexes) peaks when L is coordinated to the metals, as well as the influence of the different metals on the peak positions. Solid state structural data is presented for M = Ni and Zn, while density functional theory calculated energies, structures and optimized coordinates

DOI of original article: https://doi.org/10.1016/j.poly.2018.03.026
* Corresponding author.
E-mail address: conradj@ufs.ac.za (J. Conradie).

https://doi.org/10.1016/j.dib.2018.08.125
2352–2409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
are provided for the lowest energy cis and trans conformations for L² as well as [M(L²)₂Cl₂] with M = Mn, Fe, Co, Ni, Cu, Zn and Cd.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	Chemistry
More specific subject area	Coordination compounds
Type of data	Table, text file, graph, figure
How data was acquired	IR on Thermo-Nicolet FT-IR Spectrometer (AVATAR 320). Mass spectra on WATERS LCT premier mass spectrometer. Magnetic susceptibility with a Gouy magnetic susceptibility balance. X-ray structure on Rigaku SPIDER RAXIS image plate detector and Rigaku AFC12 goniometer equipped with an enhanced sensitivity (HG) Saturn724+ detector mounted at the window of an FR-E+ SuperBright molybdenum rotating anode generator with HF Varimax optics (100 μm focus). NMR on an ECS-400 MHz, JEOL multi nuclear FT spectrometer. UV–vis spectra on a PerkinElmer Lambda 40 UV/Vis spectrometer. Electronic structure calculations using the Gaussian 09 package [3].
Data format	Raw, calculated, analyzed.
Experimental factors	–
Experimental features	–
Data source location	Division of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester, M1 5GD, UK. Department of Chemistry, University of the Free State, Nelson Mandela Street, Bloemfontein, South Africa (DFT). Crystallographic data is held at the NCS University of Southampton. University of Sheffield (MS).
Data accessibility	Data is with article.
Related research article	J. Conradie, M.M. Conradie, K.M. Tawfqi, M.J. Al-Jeboori, S.J. Coles C. Wilson, J.H. Potgieter, Novel dichloro(bis[2-{1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) coordination compounds of seven transition metals (Mn, Fe, Co, Ni, Cu, Zn and Cd), Polyhedron, 2018, 151 (2018) 243-254. http://dx.doi.org/10.1016/j.poly.2018.03.026.

Value of the data

- This data would be valuable for the further characterization and structural studies of (1,2,3-triazol-4-yl)pyridine-containing coordination compounds.
- This data provide NMR, IR, UV/VIS and magnetic moment data for (1,2,3-triazol-4-yl)pyridine-containing coordination compounds.
- MS fragmentation data for 2-{1-(4-methyl-phenyl)-1H-1,2,3-triazol-1-yl}pyridine ligand and seven dichloro(bis[2-{1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) coordination compounds.
- This data provide solid state structures for two (1,2,3-triazol-4-yl)pyridine-containing coordination compounds.
- This data provide DFT optimized structures and coordinates for the lowest energy cis and trans isomers of the 2-{1-(4-methyl-phenyl)-1H-1,2,3-triazol-1-yl}pyridine ligand and seven (1,2,3-triazol-4-yl)pyridine-containing coordination compounds.
1. Data

1.1. Structural data

The \([\text{M}(L^2)\text{Cl}_2]\) compounds with \(L^2 = 2-(1-(4\text{-methyl-phenyl})-1\text{H}-1,2,3\text{-triazol-1-yl})\text{pyridine}\), all have the same chemical formula \(\text{C}_{28}\text{H}_{24}\text{Cl}_2\text{N}_8\text{M}\) with \(\text{M} = \text{Mn, Fe, Co, Ni, Cu, Zn and Cd}\). The X-ray solid state crystal structure of \([\text{Ni}(L^2)\text{Cl}_2]\) in Fig. 1 shows the coordination environment of the nickel metal ion with two \(2-(1-(4\text{-methyl-phenyl})-1\text{H}-1,2,3\text{-triazol-1-yl})\text{pyridine}\) ligands \(L\) and two chlorides. A list of bond lengths and angles for the ligand \(L^2\) (that crystallized together with \([\text{Zn}(L^2)\text{Cl}_2]\), \([\text{Zn}(L^2)\text{Cl}_2]\) and \([\text{Ni}(L^2)\text{Cl}_2]\) are listed in Table 1. The obtained geometrical parameters are in the

![Fig. 1. View of \([\text{Ni}(L^2)\text{Cl}_2]\) showing the coordination environment Ni with two \(2-(1-(4\text{-methyl-phenyl})-1\text{H}-1,2,3\text{-triazol-1-yl})\text{pyridine}\) pyridine ligands \(L^2\) and two chlorides, as well as the atom labelling scheme used in Table 1.](image)

\(\text{Ni}(L^2)\text{Cl}_2\)	\(\text{Zn}(L^2)\text{Cl}_2\)	\(L^2\) (co-crystallize with \([\text{Zn}(L^2)\text{Cl}_2]\))	
\(\text{Ni}1\)–\(\text{N}1\)	2.1015(19)	\(\text{Zn}1\)–\(\text{N}1\)	2.144(3)
\(\text{Ni}1\)–\(\text{N}8\)	2.0739(19)	\(\text{Zn}1\)–\(\text{N}8\)	2.191(4)
\(\text{Ni}1\)–\(\text{Cl}1\)	2.4123(6)	\(\text{Zn}1\)–\(\text{Cl}1\)	2.4615(14)
\(\text{N}1\)–\(\text{C}2\)	1.341(3)	\(\text{N}1\)–\(\text{C}2\)	1.341(5)
\(\text{N}1\)–\(\text{C}6\)	1.352(3)	\(\text{N}1\)–\(\text{C}6\)	1.346(5)
\(\text{N}8\)–\(\text{N}9\)	1.316(3)	\(\text{N}8\)–\(\text{N}9\)	1.316(5)
\(\text{N}9\)–\(\text{N}10\)	1.352(3)	\(\text{N}9\)–\(\text{N}10\)	1.364(5)
\(\text{N}10\)–\(\text{C}11\)	1.353(3)	\(\text{N}10\)–\(\text{C}11\)	1.352(5)
\(\text{N}10\)–\(\text{C}12\)	1.428(3)	\(\text{N}10\)–\(\text{C}12\)	1.434(5)
\(\text{C}2\)–\(\text{C}3\)	1.383(3)	\(\text{C}2\)–\(\text{C}3\)	1.385(6)
\(\text{C}2\)–\(\text{H}2\)	0.9300	\(\text{C}2\)–\(\text{H}2\)	0.930
\(\text{C}3\)–\(\text{C}4\)	1.385(3)	\(\text{C}3\)–\(\text{C}4\)	1.381(6)
\(\text{C}3\)–\(\text{H}3\)	0.9300	\(\text{C}3\)–\(\text{H}3\)	0.930
\(\text{C}4\)–\(\text{C}5\)	1.381(3)	\(\text{C}4\)–\(\text{C}5\)	1.378(6)
\(\text{C}4\)–\(\text{H}4\)	0.9300	\(\text{C}4\)–\(\text{H}4\)	0.930
\(\text{C}5\)–\(\text{C}6\)	1.388(3)	\(\text{C}5\)–\(\text{C}6\)	1.403(6)
[Ni(L²)₂Cl₂]	[Zn(L²)₂Cl₂]	L² (co-crystallize with [Zn(L²)₂Cl₂])	
--------------------	--------------------	--------------------------------------	
C5–H5	0.9300	C5–H5	
C6–C7	1.460(3)	C6–C7	
C7–C11	1.363(3)	C7–C11	
C11–H11	0.9300	C11–H11	
C12–C13	1.383(3)	C12–C13	
C12–C17	1.384(3)	C12–C17	
C13–C14	1.386(3)	C13–C14	
C13–H13	0.9300	C13–H13	
C14–C15	1.385(4)	C14–C15	
C14–H14	0.9300	C14–H14	
C15–C16	1.389(4)	C15–C16	
C15–C18	1.508(3)	C15–C18	
C16–C17	1.379(4)	C16–C17	
C16–H16	0.9300	C16–H16	
C17–H17	0.9300	C17–H17	
C18–H18A	0.9600	C18–H18A	
C18–H18B	0.9600	C18–H18B	
C18–H18C	0.9600	C18–H18C	
N8i–N11–N8i–N11	180.0	N1–Zn1–N1i	
N8–N11–N1i–N1i	100.4(8)	N1–Zn1–N8i	
N8–N11–N1i–N1i–N1i	79.59(8)	N1i–Zn1–N8i–N8	
N1–N11–N1–N1	180.0	N8–Zn1–N8	
N8i–N11–C1i–C1i	90.20(6)	N1–Zn1–C1i	
N8–Ni–C1i–C1i	89.80(6)	N1i–Zn1–C1i	
N1–N11–C1i–C1i	89.38(6)	N8i–Zn1–C1i	
N1–N11–C1i–C1i	90.62(6)	N8–Zn1–C1i	
N8i–N11–C1i–C1i	89.80(6)	N1–Zn1–C1i	
N8–N11–C1i–C1i	90.20(6)	N1–Zn1–C1i	
N1–N11–C1i–C1i	90.62(6)	N8–Zn1–C1i	
N1–N11–C1i–C1i	89.38(6)	N8–Zn1–C1i	
C11–N11–C1i–C1i	180.00(2)	C11–Zn1–C1i	
C2–N1–N1–C1i	127.46(16)	C2–N1–Zn1	
C6–N1–N1–C1i	114.55(15)	C6–N1–Zn1	
N8–N11–N1i–N1i–N1i	137.61(16)	N9–N8–Zn1	
C7–N8–N11–C1i–C1i	112.60(15)	C7–N8–Zn1	
C2–C3–C4	119.2(2)	C4–C3–C2	
C2–C3–H3	120.4	C4–C3–H3	
C2–N1–C6	117.9(2)	C2–N1–C6	
C3–C2–H2	118.8	C3–C2–H2	
C3–C4–H4	120.4	C3–C4–H4	
C4–C3–H3	120.4	C4–C3–H3	
C5–C5–C6	118.4(2)	C5–C5–C6	
C5–C4–C3	120.8	C5–C4–C3	
C5–C4–H4	120.4	C5–C4–H4	
C6–C6–C7	123.0(2)	C5–C6–C7	
C6–C5–H5	120.8	C6–C5–H5	
C7–C11–H11	127.7	C7–C11–H11	
C11–C7–C6	132.6(2)	C11–C7–C6	
C11–N10–C12	127.9(2)	C11–N10–C12	
C12–C13–C14	118.7(2)	C12–C13–C14	
C12–C13–H13	120.6	C12–C13–H13	
C12–C17–H17	120.3	C12–C17–H17	
C13–C12–C17	120.6(2)	C13–C12–C17	
C13–C12–N10	119.2(2)	C13–C12–N10	
C13–C14–H14	119	C13–C14–H14	
C14–C13–C13	120.6	C14–C13–C13	
C14–C15–C16	117.8(2)	C14–C15–C16	
C14–C15–C18	121.4(2)	C14–C15–C18	
C15–C14–C13	121.9(2)	C15–C14–C13	

Table 1 (continued)
same range as reported for related complexes \([M(L_1)_2Cl_2]\) with \(L_1 = 2-(1-(4\text{-methoxyphenyl})-1H-1,2,3\text{-triazol-1-yl})\text{pyridine}\) and \(M = \text{Co and Ni}\) [4] and \([\text{Ni}(L)_2\text{Br}_2]\) with \(L = 1-(\text{cyclohexyl})-4-(2\text{-pyridyl})-1,2,3\text{-triazole}\) [5] (Fig. 2). The obtained geometrical parameters for ligand \(L_2\), that crystallized together with \([\text{Zn}(L_2)_2\text{Cl}_2]\), are in the same range as reported for ligand \(L_2\), isolated alone [2].

1.2. Spectroscopic data

The UV/vis spectra of \(L_2^\text{2}\) and the \([M(L_2)_2\text{Cl}_2]\) compounds are shown in Fig. 3 and characteristic data is summarized in Table 2. The IR spectra of \(L_2^\text{2}\) and the \([M(L_2)_2\text{Cl}_2]\) compounds are shown in
Fig. 3. UV–vis spectra of L² and [M(L²)₂Cl₂] in DMSO solutions.
Table 2
UV–vis spectral data and assignments of \(L^2\) and [M(\(L^2\))\(_2\)Cl\(_2\)] in DMSO solutions.

Compound	Band Position	\(\lambda_{\text{max}}\) nm	Wave number (cm\(^{-1}\))	Extinction coefficient \(\varepsilon_{\text{max}}\) (dm\(^3\)/mol\(^{-1}\) cm\(^{-1}\))	Assignment
\(L^2\)	258, 287	38759, 34843	19740, 17200 (4 \times 10^{-5} M)	Intra-ligand \(\pi \rightarrow \pi^*\), \(n \rightarrow \pi^*\)	
[Mn(\(L^2\))\(_2\)Cl\(_2\)]	280, 284	35714, 35211	3165, 3124 (1 \times 10^{-4} M)	\(^5\)A\(_{1g}\) \(\rightarrow^4\)T\(_{1g}\) (4G)	
[Fe(\(L^2\))\(_2\)Cl\(_2\)]	682	14662	13	Intra-ligand \(\pi \rightarrow \pi^*\), \(n \rightarrow \pi^*\)	
[Co(\(L^2\))\(_2\)Cl\(_2\)]	284	35211	29513 (1.2 \times 10^{-4} M)	Intra-ligand \(\pi \rightarrow \pi^*\), \(n \rightarrow \pi^*\) CT	
[Ni(\(L^2\))\(_2\)Cl\(_2\)]	280, 286, 298	35714, 34965, 33557	3672, 3347, 3240 (1 \times 10^{-3} M)	\(^4\)T\(_{1g}\) \(\rightarrow^4\)T\(_{1g}\) \(^{(4G)}\) \(\rightarrow^4\)A\(_{2g}\) (F)	
[Cu(\(L^2\))\(_2\)Cl\(_2\)]	615	1620	56	Intra-ligand \(\pi \rightarrow \pi^*\), \(n \rightarrow \pi^*\)	
[Zn(\(L^2\))\(_2\)Cl\(_2\)]	677	14970	89	\(^4\)T\(_{1g}\) \(\rightarrow^4\)T\(_{1g}\) (F) \(\rightarrow^4\)A\(_{2g}\) (F)	
[Cd(\(L^2\))\(_2\)Cl\(_2\)]	278, 282, 300	35971, 35460, 33333	3602, 3653, 3656 (1 \times 10^{-3} M)	Intra-ligand \(\pi \rightarrow \pi^*\), \(n \rightarrow \pi^*\)	
\(\[\text{Zn}(L^2)\text{Cl}_2]\)	408	24509	20	\(^3\)A\(_{2g}\) \(\rightarrow^3\)T\(_{1g}\) \(^{(p)}\) \(\rightarrow^3\)A\(_{2g}\) (F)	
\(\[\text{Cd}(L^2)\text{Cl}_2]\)	668	14970	8	Intra-ligand \(\pi \rightarrow \pi^*\), \(n \rightarrow \pi^*\)	
\(\[\text{Zn}(L^2)\text{Cl}_2]\)	279, 284	35842,35211	3507, 3603 (1 \times 10^{-3} M)	Intra-ligand \(\pi \rightarrow \pi^*\), \(n \rightarrow \pi^*\)	
\(\[\text{Zn}(L^2)\text{Cl}_2]\)	310	32258	3696	\(^2\)B\(_{1g}\) \(\rightarrow^2\)B\(_{2g}\) g	
\(\[\text{Cd}(L^2)\text{Cl}_2]\)	259, 287	38461, 35843	3220, 3067 (4 \times 10^{-5} M)	Intra-ligand \(\pi \rightarrow \pi^*\), \(n \rightarrow \pi^*\)	
\(\[\text{Ni}(L^2)\text{Cl}_2]\)	260, 287	38759, 34843	28005, 25695 (4 \times 10^{-5} M)	Intra-ligand \(\pi \rightarrow \pi^*\), \(n \rightarrow \pi^*\)	

Fig. 4. Selected characteristic IR bands of \(L^2\) and the [M(\(L^2\))\(_2\)Cl\(_2\)] compounds are listed and compared in reference [1]. The ionization data of the TOFMS-ES (+) mass spectra of \(L^2\) and the [M \((\text{L}^2)\text{Cl}_2\)] compounds given are summarized in Table 3. The TOFMS-ES (+) mass spectra are provided in the Supplementary material. The \(^1\)H and \(^{13}\)C NMR spectra of \(L^2\) and the diamagnetic [M(\(L^2\))\(_2\)Cl\(_2\)] compounds (M = Zn or Cd) are shown in Fig. 5, while data to determine the spin state (amount of unpaired d-electrons) for the paramagnetic [M(\(L^2\))\(_2\)Cl\(_2\)] compounds (M = Mn, Fe, Co, Ni and Cu) are summarized in Table 4. More NMR spectra are provided in the Supplementary material.

1.3. DFT data

Both \(L^2\) and the [M(\(L^2\))\(_2\)Cl\(_2\)] complexes may have different stereoisomers. The density functional theory calculated lowest energy \(\text{cis}\) and \(\text{trans}\) isomers, as well as the relative energies of the isomers, are shown in Fig. 6. The data associated with the geometry of the optimized geometries (Cartesian coordinates) of the compounds shown are provided in the Supplementary material.
Fig. 4. FT-IR absorption spectra of L² and [M(L²)₂Cl₂] compounds.
2. Experimental design, materials, and methods

Density functional theory (DFT) calculations were performed in the gas phase on the neutral compounds, using the B3LYP functional and the triple-ζ basis set 6–311 G(d,p) on all atoms except for Cd where the Stuttgart/Dresden (SDD) pseudopotential was used to describe the metal electronic core, while the metal valence electrons were described using the def2-TZVPP basis set [7]. The Gaussian 09 package [3] were used to optimize the compounds. The multiplicity used for L² and the [M(L²)₂Cl₂] compounds is singlet ([L²] and [Zn(L²)₂Cl₂] and [Cd(L²)₂Cl₂]), doublet ([Cu(L²)₂Cl₂]), triplet ([Ni(L²)₂Cl₂]), quartet ([Co(L²)₂Cl₂]), quintet ([Fe(L²)₂Cl₂]) and sextet ([Mn(L²)₂Cl₂]).

L² or coordination compound	Formula	MW	Fragmentation, m/z (%)
L²	C₁₄H₁₂N₄	236.3	209 [M-Ν₂]⁺ 22%, 237 [M+H]⁺ 100%, 259 [M+Na]⁺ 7%, 495 [M+Na]⁺ 18% (consistent with literature [6])
[Mn(L²)₂Cl₂]	C₂₈H₂₄Cl₂MnN₈	598.4	562.1 [M-Cl]⁺ 90%, calculated for ([C₂₈H₂₄N₈MnCl])⁺, 237.1 [L²]⁺ 70%, calculated for ([C₁₄H₁₂N₂])⁺, 209.1 [L²-N₂]⁺ calculated for ([C₁₄H₁₂N₂])⁺ 100%
[Fe(L²)₂Cl₂]	C₂₈H₂₄Cl₂FeN₈	599.3	563.1 [M-Cl]⁺ 90%, calculated for ([C₂₈H₂₄N₈FeCl])⁺, 237.1 [L²]⁺ 70%, calculated for ([C₁₄H₁₂N₂])⁺, 209.1 [L²-N₂]⁺ calculated for ([C₁₄H₁₂N₂])⁺ 100%
[Co(L²)₂Cl₂]	C₂₈H₂₄Cl₂CoN₈	602.4	566.1 [M-Cl]⁺ 40%, calculated for ([C₂₈H₂₄N₈CoCl])⁺, 531 [M-Cl]⁺ 5%, calculated for ([C₂₈H₂₄CoN₈])⁺
[Ni(L²)₂Cl₂]	C₂₈H₂₄Cl₂NiN₈	602.1	565.1 [M-Cl]⁺ 40%, calculated for ([C₂₈H₂₄N₈NiCl])⁺, 265 [M-Cl-L²+N₂]⁺ 50%, calculated for ([C₁₄H₁₀N₂Ni])⁺, 209.1 [L²-N₂]⁺ (10%), calculated for ([C₁₄H₁₂N₂])⁺
[Cu(L²)₂Cl₂]	C₂₈H₂₄Cl₂CuN₈	607.0	594.1 [M-Cl]⁺ 45%, calculated for ([C₂₈H₂₄N₈CuCl])⁺, 535.1 [Cu (L²)]⁺ 30%, calculated for ([C₂₈H₂₄CuN₈])⁺ 30%, 358 [CuL²]⁺, calculated for ([C₁₄H₁₂N₄CuCH₃COO⁻])⁺ 100%, 237 [L²]⁺ calculated for ([C₁₄H₁₂N₄])⁺ 40%, 209 [L²-N₂]⁺ 15%, calculated for ([C₁₄H₁₂N₂])⁺
[Zn(L²)₂Cl₂]	C₂₈H₂₄Cl₂ZnN₈	608.8	571.2 [M-Cl]⁺ (80%), calculated for ([C₂₈H₂₄N₈ZnCl])⁺, 33 [M-Cl-L²]⁺ 5%, 237.1 [L²]⁺, calculated for ([C₁₄H₁₂N₂Zn])⁺ 30%, 209.1 [L²-N₂]⁺ calculated for ([C₁₄H₁₂N₂])⁺ 90%
[Cd(L²)₂Cl₂]	C₂₈H₂₄Cl₂CdN₈	655.9	621.2 [M-Cl]⁺ (100%), calculated for ([C₂₈H₂₄N₈CdCl])⁺, 237.1 [L²]⁺ (20%), calculated for ([C₁₄H₁₂N₂CdCl⁺), 209.1 [L²-N₂]⁺ calculated for ([C₁₄H₁₂N₂])⁺ 50%
Fig. 5. 1H and 13C NMR spectrum of L2 in CD$_2$Cl$_2$, [Zn(L2)$_2$Cl$_2$] and [Cd(L2)$_2$Cl$_2$] in DMSO-d$_6$.

Table 4
Data for determination of the spin state of paramagnetic [M(L2)$_2$Cl$_2$] complexes, μ_{eff} = effective magnetic moment.

Compound	amount of d electrons	μ_{eff} measured (B.M)	μ_{eff} calculated (B.M)	S
[Mn(L2)$_2$Cl$_2$]	5	5.62	5.92	5/2
[Fe(L2)$_2$Cl$_2$]	6	5.26	4.90	2
[Co(L2)$_2$Cl$_2$]	7	3.98	3.87	3/2
[Ni(L2)$_2$Cl$_2$]	8	3.00	2.83	1
[Cu L2)$_2$Cl$_2$]	9	1.70	1.73	1/2
Fig. 6. Density functional theory calculated optimized geometries of the lowest energy cis and trans isomers of L2 and the [M(L2)2Cl2]. The relative energies of the isomers, ΔE in eV, is also shown; the energy of the lowest energy isomer is indicated as 0 eV.

Acknowledgements

The National Mass Spectroscopy Centre at the University of Wales, Swansea is thanked for supplying the mass spectrometry data. XRD data and structures were supplied by the National Crystallography Service at the University of Southampton. KT expresses his gratitude to the Iraqi Government for financial support to conduct the research reported in the UK. This work has received support from the South African National Research Foundation (Grant numbers 113327 and 96111) and the Central Research Fund of the University of the Free State, Bloemfontein, South Africa. The High Performance Computing facility of the University of the Free State and the Centre for High Performance Computing CHPC of South Africa are gratefully acknowledged for computer time.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.08.125.
Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at https://dx.doi.org/10.1016/j.dib.2018.08.125. CCDC 1813109 and 1813110 contains the supplementary crystallographic data for the crystals of this study. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

References

[1] J. Conradie, M.M. Conradie, K.M. Tawfiq, M.J. Al-Jeboori, S.J. Coles, C. Wilson, J.H. Potgieter, Novel Dichloro(bis[2-{1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3]{pyridine-κN})metal(II) coordination compounds of seven transition metals (Mn, Fe, Co, Ni, Cu, Zn and Cd), Polyhedron 151 (2018) 243–254. https://doi.org/10.1016/j.poly.2018.03.026.

[2] K.M. Tawfiq, G.J. Miller, M.J. Al-Jeboori, P.S. Fennell, S.J. Coles, G.J. Tizzard, C. Wilson, J.H. Potgieter, Comparison of the structural motifs and packing arrangements of six novel derivatives and one polymorph of 2-{1-phenyl-1H-1,2,3-triazol-4-yl}pyridine, Acta Cryst. B 70 (2014) 379–389. https://doi.org/10.1107/S2052520614001152.

[3] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, K. N. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, E.J. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R. L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Forkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.

[4] J. Conradie, M.M. Conradie, K.M. Tawfiq, M.J. Al-Jeboori, S.J. Coles, C. Wilson, J.H. Potgieter, Synthesis, characterisation, experimental and electronic structure of novel Dichloro(bis[2-{1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]{pyridine-κN})metal(II) compounds, metal = Mn, Co and Ni, Journal of Molecular Structure, 1161C: 89–99, DOI: 10.1016/j.molstruc.2018.02.036.

[5] D. Schweinfurth, C.Y. Su, S.C. Wei, P. Braunstein, B. Sarkar, Nickel complexes with “click”-derived pyridyl-triazole ligands: weak intermolecular interactions and catalytic ethylene oligomerisation, Dalton Trans. 41 (2012) 12984–12990. https://doi.org/10.1039/C2DT31805A.

[6] F. Alonso, Y. Moglie, G. Radivoj, M. Yus, Click chemistry from organic halides, diazonium salts and anilines in water catalysed by copper nanoparticles on activated carbon, Org. Biomol. Chem. 9 (2011) 6385. https://doi.org/10.1039/C1OB05735A.

[7] F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy, Phys. Chem. Chem. Phys. 7 (2005) 3297–3305. https://doi.org/10.1039/B508541A.