The correlation between serum fibroblast growth factor-23 with urinary fractional excretion of phosphate in predialysis chronic kidney disease

Yenny Kandarini1*, Vika Wirdhani2, Anak Agung Wira Dewi Lestari3

ABSTRACT

Purpose: To investigate the correlation of serum fibroblast growth factor-23 (FGF-23) with urinary fractional excretion of phosphate (FEPi) in predialysis chronic kidney disease (CKD).

Methods: This cross-sectional study involved 75 patients with CKD stage 2-4. Blood and 24-hour urine samples were taken from eligible participants to measure key variables using standard commercial assays. FGF-23 concentration was measured using enzyme-linked immunosorbent assay (ELISA). The correlation between FGF-23 serum level and urinary FEPi was analyzed using the Spearman correlation test.

Results: Of 75 eligible subjects, the majority had the characteristics of male gender, CKD stage 3, with mean age and body mass index of 50±10.8 and 23.5±3.3, respectively. The median FGF-23 level was 108.7 (13.6-1226.2) RU/ml, while the median urinary FEPi was 24.3% (4.04%-65.9%). There was a moderate positive correlation between FGF-23 and FEPi \((r = 0.44, p<0.001) \).

Conclusion: The result confirmed the correlation between serum FGF-23 level with urinary FEPi in predialysis CKD.

Keywords: FGF-23, fractional excretion of phosphate, chronic kidney diseases, predialysis

Cite this Article: Kandarini, Y., Wirdhani, V., Lestari, A.A.W.D. 2020. The correlation between serum fibroblast growth factor-23 with urinary fractional excretion of phosphate in predialysis chronic kidney disease. *Bali Medical Journal* 9(3): 884-887. DOI: 10.15562/bmj.v9i3.1874

INTRODUCTION

Mineral and metabolism disorder as one of the chronic kidney disease (CKD) complications consisted of disorder of calcium, phosphate, and parathyroid homeostases.1 Disorder of phosphate metabolism has been detected earlier in CKD.2 Renal phosphate handling, or the excretion of phosphate filtered by kidney, is expressed as fractional excretion of phosphate (FEPi). Recent clinical studies demonstrated a high FEPi value despite the presence of normophosphatemia in early CKD.3

Fibroblast growth factor-23 (FGF-23) is known to stimulate phosphaturia as a response to phosphate overload. It exerts its action at renal tubules by increasing urinary phosphate excretion and decreasing serum calcitriol level, thus maintaining the normal level of phosphate in serum.4,5 FGF-23 serum level rises progressively as estimated glomerular filtration rate (eGFR) declines in the beginning in CKD stage 2, and significantly elevated level of FGF-23 can be detected in most stage 3 and 4 of CKD.1,6

Early detection and intervention play an important role in decreasing mortality in CKD.3 Currently, there is no evidence of the correlation between FGF-23 serum level and FEPi urine in the Indonesian population. This study aimed to investigate the correlation between FGF-23 serum level and urinary FEPi in predialysis CKD.

METHODS

The analytical cross-sectional study recruited out and inpatient in Sanglah General Hospital from October 2014 through March 2015. Participants were deemed eligible if they aged 18-65 years old with eGFR of 15-89 ml/minute or clinically stable patients with CKD stage 2-4. The exclusion was done with any evidence of the following: current treatment with calcimimetic, and history or laboratory evidence of malabsorption syndrome and malignancy.

Baseline data were retrieved from the medical record registry. Blood and 24-hour urine samples were taken from eligible participants to measure baseline characteristics. The samples were immediately sent to an independent out-of-hospital laboratory and processed using standard commercial assays. FGF-23 concentration was measured using ImmunoTops enzyme-linked immunosorbent assay (ELISA). The value of FEPi
was derived from the formula: FEPi = (urinary phosphate x serum creatinine)/(serum phosphate x urinary creatinine) x 100%. The eGFR was calculated from Cockcroft-Gault formula. This study was approved by the Ethical Committee of Medical Faculty of Udayana University/Sanglah General Hospital, and all subjects provided written and informed consent.

Statistical analyses were performed using Statistics Program for Social Science version 15.0 (SPSS Inc, USA). The results were expressed in suitable central tendency and dispersion based on the normality test. Spearman’s correlation test was used to analyze the correlation between FGF-23 and FEPi. A P-value of less than 0.05 was considered statistically significant.

RESULTS

The subject characteristics were listed in Table 1. Study subjects were mostly male (72%) with CKD stage 3 (57.3%). The mean age and body mass index were 50±10.8 and 23.51±3.3, respectively. Hypertension (49.3%) and diabetes (40%) comorbidities were found in less than half of the subjects. The result in Figure 1 showed moderate positive correlation between FGF-23 and FEPi urine ($r = 0.44; p<0.001$).

DISCUSSION

Fibroblast growth factor-23 is released by multiple organs including bone, spleen, and brain, and additionally from kidney under pathophysiological circumstance. Pathophysiological circumstances closely related to CKD are well-known as FGF-23 production determinants. Together with its coreceptor, Klotho, FGF-23 plays an important role in regulating calcium and phosphate metabolism.8 Predialysis CKD cases may exhibit normal level of serum phosphate, while the increase in FGF-23 and urinary FEPi have occurred. The secondary excess of serum FGF-23 has been proposed as a compensatory mechanism for phosphate retention due to impaired renal excretion or reduced renal expression of Klotho that induces FGF-23 resistance. FGF-23 promotes renal phosphate wasting by internalizing the sodium phosphate cotransporter Ila and IIC at the proximal tubular apical membrane.9-12

FEPi levels below 20% are considered normal in subjects with preserved renal function. In this study, the median FEPi value (24.3%) exceeded the upper limit, with the maximum value reaching 65.9%. Although the normal range and clinical significance of FEPi are not well-established, an incremental risk of progression into end-stage renal disease (ESRD) with increasing FEPi value was observed. FEPi level greater than 55% corresponded with 12.3 fold increase in the risk of dialysis initiation.13

The upper limit of serum FGF-23 level normal value in previous studies was determined either by median or adverse outcomes risk. FGF-23 level

Table 1. Subject characteristics

Variable	Mean ± SD or median (min-max)
Gender	
Male	54 (72%)
Female	21 (28%)
Age (year)	50±10.8
BMI (kg/m²)	23.51±3.3
Hypertension	37 (49.3%)
Diabetes	30 (40%)
Serum phosphate (mg/dL)	3.48±0.86
Urinary phosphate (mg/dL)	500 (100-1300)
Serum creatinine (mg/dL)	1.52 (0.58-4.13)
Urinary creatinine (mg/dL)	922.7±410.2
eGFR (ml/minute)	50.1±20
FGF-23 (RU/ml)	108.7 (13.6-1226.2)
FEPi (%)	24.3 (4.04-65.9)
Serum calcium (mg/dL)	9.23±0.7
CKD stage	
Stage 2	19 (25.3%)
Stage 3	43 (57.3%)
Stage 4	13 (17.3%)

BMI, body mass index; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; FEPi, fractional excretion of phosphate; FGF-23, fibroblast growth factor-23.
equals to or greater than 100 pg/ml was chosen in one study based on the finding of increased risk of mortality and ESRD in another study. The median value in a study by Tsai et al. was double the value (200 pg/ml) despite similarity in subject's stage of CKD. The wide range of FGF-23 level in this study was supported by Chathoth et al. who reported mean levels of 61.20±14.10, 118.50±63.20, and 1,526.40±1,456.00 in CKD stage 3 through 5 consecutively. Of note, a multinational study by Yuen et al. involving non-CKD subjects reported different median values for United States (57.41 RU/mL), Seychelles (42.49 RU/mL), and Ghana (33.32 RU/mL). It was noteworthy that the greatest median value in non-CKD subjects of the latter was within the mean level of CKD stage 3 in the study by Chathoth et al.

Serum FGF-23 and urinary FEPi levels are elevated early in most CKD stage 2-4 and both parameters are inversely correlated with decreasing GFR. Our study showed that serum level of FGF-23 had positive correlation with urinary FEPi urine in predialysis CKD (r=0.44, p=0.000), which was consistent with study by Sakan et al. (r=0.401, p<0.0001), Bech et al. (r=0.36, p<0.001), Isakova et al. (r=0.25, p<0.0001), and Dominguez et al. (r=0.21, p<0.05).

There were some limitations in the current study. Current study design did not allow for causality assessment as no analysis on CKD progression was intended. Despite multiorgan clinical effects the FGF-23 inflicted, we only focus on one particular function of the kidney. Other biochemical parameters not addressed here may also represent potential confounders.

CONCLUSION

FGF-23 serum level had a positive correlation with urinary FEPi in predialysis CKD. Future efforts are required to validate their role in predialysis CKD management.

ACKNOWLEDGMENTS

We would like to thank the Head of Nephrology and Hypertension Division Internal Medicine Department Faculty of Medicine Udayana University/Sanglah General Hospital and dr. Gede Wira Mahadita, M.Biomed., Sp.PD for their invaluable supports.

AUTHOR CONTRIBUTIONS

Research design, Y.K., V.W., and W.D.L.; clinical data and material collection, Y.K., V.W., and W.D.L.; data analysis, Y.K.; writing—review and editing, Y.K. and V.W.

CONFLICT OF INTEREST

The authors declare no conflict of interest for this issue.

FUNDING

Nil.

ETHICAL CONSIDERATIONS

Written ethical clearance was obtained from the Ethical Committee of Medical Faculty of Udayana University/Sanglah General Hospital.

REFERENCES

1. Kuro-o M. A phosphate-centric paradigm for pathophysiology and therapy of chronic kidney disease. Kidney International Supplements. 2013;3:420-426.
2. Wahl P. Wolf M. FGF23 in Chronic Kidney Disease. In: Makoto Kuro-o, editor. Endocrine FGFs and Klothos. Landes Bioscience and Springer Science:2012. p.102-125.
3. Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 2012;82(7):737-747.
4. Bagnis CI, Karie S, Deray G, Essig M. Hypophosphatemia: an easy strategy for diagnosis and treatment in HIV patients. International Medical Press. 2009:14-481-488.
5. Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency. Clin J Am Soc Nephrol. 2005;7:581-587.
6. Isakova T. Fibroblast Growth Factor 23 and Adverse Clinical Outcomes in Chronic Kidney Disease. Curr Opin Nephrol Hypertens. 2012;21(3):334-340.
7. Kestenbaum B, Druke TB. Disorders of Calcium, phosphate, and magnesium metabolism. In : Foege J, Johnson RJ, Feehally J, editors. Comprehensive Clinical Nephrology 4th ed. Missouri: Saunders; 2010. p.969-983.
8. Lang F, Leibrock C, Pandyra AA, Stournaras C, Wagner CA, Föller M. Phosphate Homeostasis, Inflammation and the Regulation of FGF-23. Kidney Blood Press Res. 2018;43(6):1742-1748.
9. Isakova T, Wahl P, Vargas G, Gutierrez OM, Scialla J, Huilang X. FGF23, PTH and phosphorus metabolism in the chronic renal insufficiency cohort. Kidney Int. 2011;79(12):1370-1378.
10. Heine GH, Seiler S, Fliser D. FGF-23: the rise of a novel cardiovascular risk in CKD. Nephrol Dial Transplant. 2012; 27:3072-3081.
11. Bech AP, Kriiger AB, Zuilien AD, Bots ML, Jan AIG, Blankesteijn PJ, et al. Impact of fractional phosphate excretion on the relation of FGF23 with outcome in CKD patients. J Nephrol. 2015; 28:477-484.
12. Sakan H, Nakatani K, Asai O, Imura A, Tanaka T, Yoshimoto S. Reduced Renal α-Klotho Expression in CKD Patients and its Effect on Renal Phosphate Handling and Vitamin D Metabolism, PLOS ONE. 2014;9(1):1-9.
13. Bellasi A, Di Micco L, Russo D, et al. Fractional Excretion of Phosphate (FeP) Is Associated with End-Stage Renal Disease Patients with CKD 3b and 5. J Clin Med. 2019;8(7):1026.
14. Sánchez Fructuoso AI, Maestro ML, Pérez-Flores I, Valero R, Rafael S, Vezzanzones S, Calvo N, De la Orden V , De Rafael S, Veganzones S, Calvo N, De la Orden V , De Rafael S, Veganzones S, Calvo N, De la Orden V . Serum level of fibroblast growth factor 23 in 23 patients with chronic renal transplant disease. Nephrol Dial Transplant. 2012 Nov;27(11):4227-35.
15. Isakova T, Xie H, Yang W, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. *JAMA*. 2011;305(23):2432-2439.

16. Tsai MH, Leu JG, Fang YW, Liou HH. High Fibroblast Growth Factor 23 Levels Associated With Low Hemoglobin Levels in Patients With Chronic Kidney Disease Stages 3 and 4. *Medicine* (Baltimore). 2016;95(11):e3049.

17. Chathoth S, Al-Mueilo S, Cyrus C, et al. Elevated Fibroblast Growth Factor 23 Concentration: Prediction of Mortality among Chronic Kidney Disease Patients. *Cardiorenal Med*. 2015;6(1):73-82.

18. Yuen SN, Kramer H, Luke A, et al. Fibroblast Growth Factor-23 (FGF-23) Levels Differ Across Populations by Degree of Industrialization. *J Clin Endocrinol Metab*. 2016;101(5):2246-2253.

19. Czaver L, Dusso A, Martinez-Alonso M, Sarro F, Valdivielso JM, Fernandez E. A Low Fractional Excretion of Phosphate/FGF23 ratio is associated with Severe Abdominal Aortic Calcification Stage 3 and 4 Chronic Kidney Disease Patients. *BMC Nephrology*. 2013;221(14):1-12.

20. Houston J, Smith K, Isakova T, Sowden N, Wolf M, Gutierrez OM. Associations of dietary phosphorus intake, urinary phosphate excretion and fibroblast growth factor 23 with vascular stiffness in chronic kidney disease. *J Ren Nutr*. 2013;23(1):12-20.

21. Evenopoel P, Meijers B, Viane L, Bammens B, Claes K, Knypers D, et al. Fibroblast growth factor-23 in early chronic kidney disease: additional support in favor of a phosphate-centric paradigm for the pathogenesis of secondary hyperparathyroidism. *Clin J Am Soc Nephrol*. 2010;5:1268-1276.

22. Dominguez JR, Shlipak MG, Whooley MA, Joachim H. Fractional excretion of phosphorus Modifies the association between fibroblast growth factor-23 and outcomes. *J Am Soc Nephrol*. 2013; 24(4):647-654.