13C NMR spectroscopy applications to brain energy metabolism

Tiago B. Rodrigues 1 *, Julien Valette 2 and Anne-Karine Bouzier-Sore 3

1 Cancer Research UK Cambridge Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
2 Commissariat à l’Énergie Atomique, Institut d’Imagerie Biomédicale, Molecular Imaging Research Center, Fontenay-Aux-Roses, France
3 Centre de Résistance Maghnétique des Systèmes Biologiques, CNRS UMR 6036, Université Bordeaux Segalen - Centre National de la Recherche Scientifique, Bordeaux, France

ABSTRACT

INTRODUCTION

The brain is metabolically the most energy-consuming organ. Adequate brain physiology depends on the unceasing supply of proper amounts of oxygen and plasma glucose (Glc). Consequently, limitations in the delivery of these two cerebral substrates cause most physiopathological states (Nicholls, 2007; Okada and Lipton, 2003). Classical approaches to study cerebral metabolism, both in physiological and in pathophysiological conditions, required the use of optical methods or radioactive isotope and the isolation and purification of the enzymes or transport systems involved.

13C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp the full implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of 13C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the 13C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of 13C NMR data. Finally, new perspectives and applications offered by 13C hyperpolarization are described.

Keywords: 13C NMR spectroscopy, brain metabolism, neuron, astrocyte, neuronal coupling, metabolic modeling, hyperpolarized NMR

13C metabolic NMR applications to brain energy metabolism

Tiago B. Rodrigues 1 *, Julien Valette 2 and Anne-Karine Bouzier-Sore 3

1 Cancer Research UK Cambridge Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
2 Commissariat à l’Énergie Atomique, Institut d’Imagerie Biomédicale, Molecular Imaging Research Center, Fontenay-Aux-Roses, France
3 Centre de Résistance Maghnétique des Systèmes Biologiques, CNRS UMR 6036, Université Bordeaux Segalen - Centre National de la Recherche Scientifique, Bordeaux, France

REVIEW ARTICLE

https://doi.org/10.3389/fnene.2013.00009

published: 09 December 2013

“fnene-05-00009” — 2013/12/5 — 16:50 — page 1 — #1
the determination of cerebral metabolic rates for Glc transport and phosphorylation (CMR\textsubscript{Glc}) in different cerebral regions after appropriate modeling of the underlying tracer kinetics (Price, 2003). However, these radioactive approaches are limited in resolution and chemical specificity, making it not possible to investigate the downstream metabolism of Glc after the first glycolytic enzymatic step. Similarly, functional magnetic resonance imaging (fMRI) indirectly allowed the investigation of the hemodynamic and blood oxygenation changes associated with sensory or motor stimulation (Heeger and Ress, 2002). Despite their importance, FDG uptake or fMRI provided no information on the pathways and metabolic interactions underlying the cerebral activation process. This implies that further advances in this area would involve necessarily the use of additional methodologies. From this perspective, genome cloning and sequencing techniques, as well as the important development of novel nuclear magnetic resonance (NMR) approaches have overcome many of the limitations of the traditional strategies, as explained below. In particular, sequencing of the human and mouse genomes has provided a broad understanding of the different isoforms of enzymes and transporters present in the brain, without the need to isolate and purify the corresponding proteins (International Human Genome Sequencing Consortium, 2001; Mouse Genome Sequencing Consortium, 2002). These genomic methods, however, do not allow the investigation of the function and \textit{in vivo} performance of the genes sequenced or cloned. It is in this respect that NMR technologies have become more helpful, providing the quantitative assessment of transport steps, metabolic fluxes and cellular compartmentalization of glycolysis, pyruvate (Pyr) oxidation, and tricarboxylic acid (TCA) cycle, among other pathways, in a plethora of neural systems ranging from primary cell cultures to the intact rodent or human brain (Giruet et al., 2003; Shulman et al., 2004; Rodrigues and Cerdán, 2005).

Pioneering NMR approaches to cerebral energetics began with the application of \textsuperscript{31}P NMR (Moore et al., 1999). These \textsuperscript{31}P NMR spectra from rodent, cat, dog, or human brain—depicted resonances from adenosine triphosphate (ATP), phosphocreatine (PCr), inorganic phosphate (Pi), phosphomonoesters (PME, mainly phosphorylethanolamine), and phosphodiesters (PDE, glycerophosphorylcholine; Hilberman et al., 1984; Komatsu et al., 1987; Nioka et al., 1991). With this technique it was possible to follow non-invasively the rates of PiCr breakdown and recovery after hypoxic and ischemic episodes.

Nowadays, the most extended NMR approach to explore brain in the clinic is \textsuperscript{1}H NMR spectroscopy (Burtcher and Holtas, 2001). \textsuperscript{1}H NMR spectra from human or rodent brain show resonances from the methyl group of N-acyl-sarcosine acid (NAA), the methyl groups of creatine (Cr) and PCr, the trimethylammonium groups of choline (Cho) containing compounds and the \textit{myo}-inositol (Ins), glutamate (Glu), glutamine (Gln), and \textit{γ}-aminobutyric acid (GABA) resonances, among others. Ins and NAA are thought to represent the glial and neuronal contributions to the observed voxel, respectively. Remarkably, lactate (Lac) becomes evidently observable under hypoxic or ischemic conditions, providing a proof of augmented net glycolytic flux under these conditions. However, \textsuperscript{1}H NMR spectroscopy has the limitation of poor signal dispersion, compared to other commonly used spin nuclei, with the consequent severe overlap problems.

\textsuperscript{13}C NMR approaches constitute probably the most elaborated, chemically specific, tool to follow the metabolic fate of \textsuperscript{13}C-labeled substrates in the brain, both \textit{in vivo} and \textit{in vitro} (de Graaf et al., 2003b; Giruet et al., 2003; García-Expósito et al., 2004; Rodrigues et al., 2009). Since the first \textsuperscript{13}C NMR spectroscopy study of a living organism, describing the metabolism of [\textit{1-\textsuperscript{13}C}]Glc by an eukaryotic cell system (Salin et al., 1972), this approach developed into a powerful method for metabolic research with cells, perfused organs, \textit{in vivo} animals and humans (Morris and Bachelard, 2003). It enabled measuring metabolic processes as they occur in their intracellular environment. Furthermore, it continues to provide unique information, not accessible from previously used approaches.

\textsuperscript{13}C NMR spectroscopy allows detecting resonances from \textsuperscript{13}C, the only stable isotope of carbon having a magnetic moment. The natural abundance (NA) for \textsuperscript{13}C is approximately 1.1% of the total carbon and its magnetogenic ratio is approximately one-fourth of that of the proton. These two circumstances make \textsuperscript{13}C NMR spectroscopy a relatively insensitive technique (Fritzel, 1991). The sensitivity can be improved noticeably by using \textsuperscript{13}C-enriched substrates. The combination of \textsuperscript{13}C NMR spectroscopy detection and substrates selectively enriched in \textsuperscript{13}C in specific carbon positions has made it possible to follow \textit{in vitro} and \textit{in vivo} the activity of a large variety of metabolic pathways. These include glycolysis and the pentose phosphate pathway, glycogen synthesis and degradation, gluconeogenesis, the TCA cycle, ketogenesis, ureogenesis, and the Glu–Gln/GABA cycle in brain, among others (Cerdán and Seelig, 1990; Künnecke, 1995; Morris and Bachelard, 2003; Rodrigues et al., 2007). The \textsuperscript{13}C NMR approach also enables to investigate the activities of the neuronal and glial TCA cycles \textit{in vitro} and \textit{in vivo}, providing direct insight into cerebral metabolic compartmentalization (Cerdán et al., 2009).

The design of \textsuperscript{13}C NMR experiments with selectively \textsuperscript{13}C-enriched substrates is similar to the classical radiolabeling experiments using \textsuperscript{14}C. An important difference is that \textsuperscript{13}C precursors are administered in substrate amounts, while \textsuperscript{14}C substrates are used in tracer amounts. Despite this, \textsuperscript{13}C NMR presents important advantages over methodologies using \textsuperscript{14}C: (i) the metabolism of the \textsuperscript{13}C-labeled substrate can be followed in real-time, \textit{in situ} and non-invasively (Szymerski, 1998; Morris and Bachelard, 2003); (ii) even if tissue extracts are prepared, the detection of \textsuperscript{13}C in the different carbon resonances of a specific metabolite does not require separation and carbon by carbon degradation, a prerequisite in the experiments with radioactive \textsuperscript{14}C (Dobbins and Malloy, 2000); and (iii) when two or more \textsuperscript{14}C atoms occupy contiguous positions in the same metabolite molecule it will give rise to isotope effects, called homonuclear spin-coupling, that lead to the appearance of multiplets (instead of single resonances). The analysis by \textsuperscript{13}C NMR of these homonuclear spin-coupling patterns represents an enormous gain in the information obtained as compared to the classical radioactive \textsuperscript{14}C experiments (Dobbins and Malloy, 2003). As a counterpart to these advantages, \textsuperscript{13}C NMR is significantly less sensitive than...
other conventional metabolic techniques like radioactive counting, mass spectrometry, and fluorimetric or spectrophotometric methods.

Investigation of metabolic pathways using 13C NMR spectroscopy is comprised of three main tasks: (i) the infusion of a 13C-labeled substrate; (ii) the detection of 13C-labeled metabolites following substrate consumption; and (iii) the metabolic modeling of measured 13C enrichments to quantitatively derive metabolic fluxes. In general, these three tasks are closely interconnected. Each of them imposes constraints on the two others, and all three must be designed depending on metabolic pathways that are to be investigated. The choice of the substrate (such as Glc, acetate, Pyr, among others) will allow more or less specific feeding of a specific cell type (such as neurons and astrocytes). This will, in-turn, impose the choice of modeling for these cells, and may drive the NMR methodological choices to measure 13C labeling for cell-specific metabolites (such as Glu, Gln, GABA, among others). Alternatively, the ability of 13C spectroscopy methods to resolve certain peaks on NMR spectra may lead to the refinement of metabolic models, while the inability to resolve peaks may impose the choice of a labeled substrate whose consumption does not lead to the formation of species with spectral overlap.

Due to the connection between biological questions and methodological issues, a good understanding of the practical implementation of 13C experiments, with associated caveats and pitfalls, is a prerequisite to any investigation and discussion of metabolism based on 13C studies. In this review, we will initially provide a simple picture of brain energy metabolism, with a level of details commensurable with NMR accessible information, and explain how 13C nuclei from different substrates flow through metabolic pathways. Then, spectroscopic acquisition techniques will be reviewed, with associated advantages, drawbacks, and technical difficulties. The basis of metabolic modeling to derive quantitative flux values will be then explained. Finally, we will address two different models of neuroglial coupling: the astrocyte–neuron lactate shuttle (ANLS) model (Pellerin and Magistretti, 1994; Pellerin et al., 2007) and the redox switch/redox coupling hypothesis (Cerdan et al., 2006; Ramirez et al., 2007).

THE JOURNEY OF CARBON: METABOLIC FATES OF LABELED SUBSTRATES

FUELS FOR THE BRAIN

The quasi-universal energy molecule of living systems is ATP, which is predominantly synthesized during aerobic cellular respiration (Gjedde, 2007). A central mechanism of aerobic cellular respiration is the TCA cycle, where fuel molecules undergo complete oxidation, ultimately leading to ATP synthesis through oxidative phosphorylation in mitochondrial cristae. When these fuel molecules are labeled with 13C and continuously infused, their degradation in the TCA cycle will lead to the progressive incorporation of 13C into metabolic intermediates and by-products (Rodrigues and Cerdán, 2007). The journey of 13C nuclei is summarized in Figure 1.

Under physiological conditions, the main cerebral substrate is Glc. After crossing the blood–brain barrier (BBB), a Glc molecule originates two Pyr molecules through glycolysis (Figure 1A). Pyr...
can be reduced to Lac by the lactate dehydrogenase (LDH, fast exchange) with the following reversible reaction:

\[
\text{Pyruvate} + \text{NAD}^+ + \text{H}^+ \leftrightarrow \text{lactate} + \text{NADH}^+ \tag{1}
\]

Lactate dehydrogenase is a tetramer composed of different combinations of two subunits, H (isolated from heart) and M (from muscle). H4 (LDH1), H3M (LDH2), H2M2 (LDH3), HM3 (LDH4), and M4 (LDH5). LDH is mostly neuronal and its kinetic properties promote the formation of Pyr (Bittar et al., 1996). Conversely, LDH5 is primarily astrocytic and its kinetic characteristics favor mainly Lac formation. Pyr is also transported into mitochondria and decarboxylated to acetyl-CoA (AcCoA) via the oxidative pathway (pyruvate dehydrogenase, PDH), as shown in Figure 1B. AcCoA enters TCA cycle by irreversibly condensing with oxaloacetate (OAA) to form citrate, which is subsequently converted to α-ketoglutarate (αKG) via isocitrate. αKG is then degraded into succinate (Suc) via succinyl-CoA, where scrambling occurs between C1 and C4 positions, and between C2 and C3 positions, due to the symmetry of the Suc molecule. Suc is then oxidized to fumarate, with flavin adenine dinucleotide (FADH2) used as the hydrogen acceptor. The next step is the hydration of fumarate to form malate, and the cycle becoming complete with the oxidation of malate to OAA (Figure 1B). Pyr, or even Lac, can be directly supplied to the brain as fuels for TCA cycle. An alternative fuel is acetate, which can be directly converted to AcCoA. This was primarily suggested to happen in astrocytes (Waniewski et al., 2010), and various Glu transporters have been found in astrocytes (Erecinska and Silver, 1990), including in vivo using 13C NMR spectroscopy (for review, see Rothman et al., 2011), and various Glu transporters have been found on astrocytes (Erecinska and Silver, 1990; Flott and Seifert, 1991; Danbolt, 2001; Huang and Bergles, 2004).

The metabolic relationship between neurons and astrocytes appears, however, to be much more complex than the existence of a simple Glu–Gln cycle. Indeed, it is possible to show that the uptake of Glu by neurons does not offset the continuous loss of Glu
is present only in astrocytes (Y u et al., 1983; Shank et al., 1985), and Voet, 1990). However, it turns out that this enzymatic activity

...fraction is also recaptured by astrocytes and incorporated into the glial TCA cycle. Most GABA molecules are recaptured by neurons, but a small fraction is also recaptured by astrocytes and incorporated into the glial TCA cycle. Additional pathways exist that may impact the $^{13}$C labeling of NMR-visible metabolites such as Pyr recycling, the transfer of Lac from astrocytes to neurons and the alanine–lactate shuttle between neurons and astrocytes (Waagepetersen et al., 2003; Zwingmann and Leibfritz, 2003).

**$^{13}$C NMR SPECTROSCOPY ACQUISITION TECHNIQUES**

The ability to detect $^{13}$C enrichment in brain amino acids is governed by two parameters: sensitivity and spectral resolution. High signal-to-noise ratio (SNR) means that metabolites can potentially be quantified with lower concentrations or enrichments, in smaller volumes, or in shorter periods. Good spectral resolution means that more resonances (corresponding to more metabolites or more specific positions) can be individually quantified, resulting in a higher chemical specificity. SNR and spectral resolution increase linearly with the magnetic field, although technical challenges become significant in vivo (shorter $T_2$ relaxation times, increased energy deposition in tissues, higher demand on radiofrequency (RF) pulse bandwidth, and poor homogeneity of the RF field). Essentially, two main approaches can be distinguished for $^{13}$C detection, each trading one of these parameters against the others: direct $^{13}$C detection and indirect $^{13}$C detection.

**DIRECT $^{13}$C DETECTION: CHEMICAL SPECIFICITY**

$^{13}$C NMR resonances of brain metabolites span a very broad chemical shift range (~250 ppm), in which convays the ability to resolve virtually all carbon positions in the detectable metabolites. In particular, direct $^{13}$C spectroscopy allows simultaneously resolving Glu and Gln at C2, C3, and C4 positions, as well as Asp and GABA at positions C2 and C3, even in vivo (Gruetter et al., 2003; Henry et al., 2003a). The carboxylic carbons are, in all cases, more difficult to observe because of their long $T_1$ and significant saturation effects.

Beyond the information about positional enrichment, direct $^{13}$C spectroscopy allows quantifying isotopomers (i.e., individual molecules labeled at different atomic positions), since it is sensitive to a constant value – called scalar $J$ coupling – that is different for each $^{13}$C neighborhood type. Indeed, the scalar $J$ coupling will result in the splitting of singlet resonances, corresponding to a given enriched position, into multiplets for $^{13}$C nuclei coupled with neighboring $^{13}$C. This additional information about isotopomers allows one to resolve the activity of different metabolic pathways, as discussed below.

One-bond heteronuclear coupling between $^{13}$C and $^1$H may compromise spectral resolution and SNR, since it results in the splitting of $^{13}$C resonances in doublets or multiplets ($J \sim 130$ Hz), with reduced peak heights. Therefore, it is generally desirable to perform heteronuclear decoupling during $^{13}$C acquisition. This is achieved by the application of a RF train at $^1$H frequency, resulting in the effective suppression of the effects of $^1$H–$^{13}$C coupling on $^{13}$C spectra. Besides technical difficulties associated with the necessity to control two RF chains and to prevent noise injection from the $^1$H transmission chain into the $^{13}$C acquisition chain, decoupling may become problematic for in vivo application at high field due to the large power deposition in tissues (de Graaf, 2005). It has, however, been shown that detection without decoupling could be achieved in the human brain at 9.4 T with acceptable accuracy (concentration uncertainty was 35–90% higher; Deelchand et al., 2006).
As an alternative to detecting $^{13}$C signal directly, an efficient way to increase the measurements sensitivity is to detect $^{1}$H bound to $^{13}$C. SNR gains result mostly from the increased signal voltage, which is proportional to the higher $^{1}$H thermal equilibrium magnetization. Nuclear Overhauser effect relies on direct (through-space) dipolar coupling between spins, and refers to the transfer of polarization from $^{1}$H to $^{13}$C, both in liquids and in vivo. This implies an increase in the $^{13}$C polarization, ultimately resulting in higher SNR. Like heteronuclear decoupling, strategies require two transmission channels at $^{1}$H and $^{13}$C frequencies.

Nuclear Overhauser effect relies on direct (through-space) dipolar coupling between spins, and refers to the transfer of polarization from $^{1}$H to $^{13}$C, both in liquids and in vivo. This implies an increase in the $^{13}$C polarization, ultimately resulting in higher SNR. Like heteronuclear decoupling, strategies require two transmission channels at $^{1}$H and $^{13}$C frequencies.

Cross-polarization and PPT rely on indirect (through-bond) scalar coupling between spins (J-coupling), the excitation being initially performed for $^{1}$H. Then, under the combined effect of J-coupling and RF perturbation, polarization is driven to an observable $^{13}$C state with amplitude corresponding to $\gamma_S$ instead of $\gamma_I$, as would result from direct $^{13}$C excitation. Ideal CPT and PPT therefore yield up to a $\gamma_I/\gamma_S = 4$ fold gain in SNR. For CPT, this is optimally achieved after RF irradiation of $^{1}$H and $^{13}$C frequencies during a $1/J$ delay, when the Hartmann–Hahn condition is met ($\gamma_I B_1 = \gamma_S B_2$; Hartmann and Hahn, 1962) and high $B_1$ amplitudes are used. On the other hand, PPT only requires short RF perturbations (simultaneous 90° pulse at both frequencies at time $1/2J$ after initial excitation). It is therefore particularly interesting for in vivo applications due to the limited power deposition, while CPT can yield slightly larger SNR gains. An important feature for the in vivo application is that the localization can be fully achieved at the $^{1}$H frequency before transferring polarization, resulting in better localization accuracy compared to the direct $^{13}$C localization, due to the narrower $^{1}$H chemical shift range.

In practice, gains in SNR are significantly smaller than predicted under ideal conditions and vary between different resonances, complicating the quantification process. SNR gains up to 3.5 have been reported in the human brain at 3 T, combining nOe and CPT (Klomp et al., 2006).

**INDIRECT $^{13}$C DETECTION: HIGH SENSITIVITY**

As an alternative to detecting $^{13}$C signal directly, an efficient way to increase these measurements sensitivity is to detect $^{1}$H bound to $^{13}$C. SNR gains result mostly from the increased signal voltage, which is proportional to the higher $^{1}$H thermal equilibrium magnetization. Nuclear Overhauser effect relies on direct (through-space) dipolar coupling between spins, and refers to the transfer of polarization from $^{1}$H to $^{13}$C, both in liquids and in vivo. This implies an increase in the $^{13}$C polarization, ultimately resulting in higher SNR. Like heteronuclear decoupling, strategies require two transmission channels at $^{1}$H and $^{13}$C frequencies.

Indirect detection is usually based on a proton-edited (POCE) strategy, requiring two transmission channels at $^{1}$H and $^{13}$C frequencies. The strategy is based on a standard $^{1}$H spectroscopy sequence with an additional 180° pulse at $^{13}$C frequency, being ON or OFF every other scan (Rothman et al., 1985). When the $^{13}$C pulse is ON, satellite resonances due to coupling between $^{1}$H and $^{13}$C nuclei are of opposite sign when compared with the OFF case, while resonances corresponding to $^{1}$H bound to $^{12}$C nuclei are unaffected. Therefore, subtracting odd from even scans will result in the cancellation of signal from $^{1}$H bound to $^{12}$C, while signal from $^{1}$H bound to $^{13}$C will build up.

Heteronuclear decoupling is generally performed by the application of a RF train at $^{13}$C frequency during the $^{1}$H acquisition. This is complicated by the large chemical shift range of $^{13}$C, which imposes a requirement for ultra-bandwidth decoupling (resulting in high-power deposition) if all resonances on the $^{1}$H spectra have to be decoupled. Decoupling is performed to increase SNR but also to improve spectral resolution, which is critical when observing $^{3}$H resonances. Indeed, the $^{1}$H chemical shift range only spans $\pm 3$ ppm for the aliphatic portion which covers the metabolites’ resonances of interest. It is generally accepted that resolution of Glu and Gln C4 becomes possible only for $B_0$ $>$ 3 T, while resolving Glu and Gln C3 remains problematic even at much higher field (Pfeuffer et al., 1999). Indirect detection of GABA and Asp labeling remains problematic and has only been reported at $B_0$ $>$ 7 T or above in the rodent brain (Pfeuffer et al., 1999; de Graaf et al., 2003a; Jiang et al., 2005; van Eijden et al., 2010). Therefore, the loss of chemical specificity associated with indirect detection is acceptable mostly for in vivo applications where sensitivity is critical, especially when performing a dynamic measurement: collecting multiple spectra during $^{13}$C-labeled substrate infusion. Indirect $^{13}$C spectroscopy in vivo was extensively reviewed by de Graaf et al. (2003b).

An alternative method has been recently proposed for in vivo applications, which presents the unique characteristic of requiring no $^{13}$C RF pulse-chain. The method is based on the subtraction of $^{1}$H spectra collected during the $^{13}$C infusion from a baseline spectra acquired prior to infusion (Boumeester et al. 2004). Using this approach, C4 and C3 positions could be resolved for the total “Glu + Gln” pool at 3 T. Note that the technique demands extremely stable acquisition (including shimming and coil sensitivity) over the entire experiment.

**NOTE ON SPECTRAL QUANTIFICATION**

Analysis of $^{13}$C spectra has long been performed by simple peak integration, which is possible due to the limited spectral overlap on direct $^{13}$C spectra. More recently, spectral quantification based on prior knowledge has been introduced, using for example the LCMModel software (Provencher, 1993). In this approach, individual spectra of labeled molecules (obtained by experimental measurement or numerical simulation) are linearly combined to fit experimental data. This allows accurate quantification despite partial overlap, which becomes particularly interesting to discriminate different isotopomers around a given resonance, being possible to perform it even in vivo, where lines are broader (Henry et al., 2003a). Although still uncommon in direct $^{13}$C spectroscopy, prior knowledge spectral fitting is now routinely implemented.
in indirect $^{13}$C spectroscopy, due to unavoidable overlap on $^{1}$H spectra.

Absolute quantification, i.e., the determination of metabolite concentration and enrichment (in mM and $^{13}$C), as required for dynamic metabolic modeling (see below), is generally easier using indirect spectroscopy, due to the presence of internal references of known concentration, such as unlabeled Cr or water. With direct spectroscopy, absolute quantification can be complicated by the different polarization transfer efficiency for the different resonances, and for in vivo experiments by the absence of a suitable internal $^{13}$C reference of known concentration.

**METABOLIC MODELING**

Examination of $^{13}$C enrichment can yield qualitative information about metabolite compartmentalization and the relative importance of metabolic pathways. When seeking quantitative information, one must turn to metabolic modeling, whose basic principle is to mathematically express $^{13}$C labeling of detected metabolites as a function of the metabolic fluxes underlying the labeling process.

**WRITING EQUATIONS: MASS CONSERVATION AND LABEL INCORPORATION**

As an exercise, we should consider two metabolite pools, A and B, yielding a third pool, C, at rates $V_{1}$ and $V_{2}$ (in $\mu$mol/g/min), respectively, and C being then consumed at rate $V_{3}$ (Figure 2A).

A usual assumption is that the size of pool C remains constant:

$$\frac{d[C]}{dt} = V_{1} + V_{2} - V_{3} = 0$$

This imposes that the total influx in the pool is equal to the total efflux from the pool, $V_{3} = V_{1} + V_{2}$. We should also assume that $^{13}$C nuclei, at position i in A and j in B, both enter the C pool at position k. We use $A_{i}^{*}$, $B_{i}^{*}$, and $C_{k}^{*}$ to denote molecules labeled at these positions. $^{13}$C mass conservation imposes that the increase in the $C_{k}^{*}$ pool size is equal to the amount of $^{13}$C entering the pool minus what exits the pool at each instant:

$$\frac{d[C_{k}^{*}]}{dt} = V_{1}[A_{i}^{*}] / [A] + V_{2}[B_{j}^{*}] / [B] - (V_{1} + V_{2})[C_{k}^{*}] / [C]$$

A metabolic model typically consists in several equations of the previous type, describing label transfer from infused substrates to metabolic intermediates and, ultimately, to detected metabolites. To favor an efficient solution, the number of differential equations describing the model should be minimized. Equations describing low-concentration intermediates can generally be omitted since their enrichment mimics that of the immediately preceding high-concentration metabolite. Except at steady-state, these systems of differential equations can generally not be solved analytically and require numerical computing to determine what flux values yield the best fit to experimental data.

**TEMPORAL RESOLUTION: STEADY-STATE VERSUS DYNAMIC MODELING**

To illustrate the impact of temporal resolution on a model, we can assume constant, but different, fractional enrichments for A and B ([A$^{*}$]/[A] = FEC$_{A}$, [B$^{*}$]/[B] = FEC$_{B}$). A common procedure in acquiring these data is to wait a period of time after the start of the $^{13}$C infusion, ensuring that isotopic steady-state has been reached for [C$^{*}$]. In this case, Eq. 2 immediately yields, with FEC$_{C}$ = [C$^{*}$](t = $\infty$)/[C]:

$$\frac{V_{1}}{V_{3}} = \frac{FEC_{C} - FEC_{B}}{FEC_{A} - FEC_{B}}$$

The ratio $V_{1}$ to $V_{2}$ can therefore be determined from known values of FEC$_{A}$, FEC$_{B}$, and FEC$_{C}$. In general, metabolic models at steady-state only yield flux ratios, not absolute values.

In contrast, we can also explore how dynamic modeling (i.e., using data collected at different time points) carries richer information. We solve Eq. 2 assuming fractional enrichment (also called specific enrichment) for A and B going instantaneously from $^{13}$C

$NA = 1.1%$ to FEC$_{A}$ and FEC$_{B}$ at $t > 0$:

$$[C_{k}^{*}] / [C] = \frac{V_{1}FEC_{A} + V_{2}FEC_{B}}{V_{1} + V_{2}} + \left( \frac{V_{1}FEC_{A} - V_{1}FEC_{B}}{V_{1} + V_{2}} e^{-k_{2}t} - \frac{V_{2}FEC_{B}}{V_{1} + V_{2}} e^{-k_{1}t} \right)$$

It appears that the enrichment curve will again carry information about the ratio $V_{1}$/$V_{2}$ from long-time enrichment, and independently $V_{1}$ and $V_{2}$ from the exponential rise (provided [C] is known). This means that the absolute values of $V_{1}$ and $V_{2}$ (in $\mu$mol/g/min) can now be determined. The ability to assess absolute flux values and, potentially, for a number of fluxes greater than the number of equations is a unique feature of dynamic modeling. However, absolute quantification of concentrations is required.

**FEEDING DYNAMIC MODELS: SUBSTRATE ENTRY INTO THE BRAIN**

Dynamic metabolic modeling is complicated by the need to estimate the temporal evolution of substrate’s intracellular concentration and the enrichment as an entry function. Since, in general, these parameters cannot be directly measured, they are calculated from plasma concentrations and enrichments by modeling transport through the BBB. Transport of Glc and monocarboxylic acids through the BBB is a bidirectional process and is best modeled by reversible Michaelis–Menten transport equations (Simpson et al., 2007). Kinetic parameters have been estimated in the mammalian brain for Glc (Güster et al., 1998), acetate (Drechsel et al., 2009), and Lac (Boumezbeur et al., 2010). Blood sampling throughout the infusion is required to determine plasmatic concentration and enrichment of the investigated substrate. However, it has been shown for Glc that, provided the infusion protocol yields “reasonably” stable plasmatic fractional enrichment, blood sampling, as well as Michaelis–Menten kinetics, can be omitted. Cerebral Pyr/Lac fractional enrichment can be directly fitted as an additional unknown parameter (Valette et al., 2009).

**TOWARD DYNAMIC MODELING OF ISOTOPOMERS**

For a given set of metabolic pathways, dynamic modeling of isotopomer time courses should, in theory, allow the derivation of metabolic fluxes with the highest achievable reliability, due to the higher information content (provided SNR is high enough). In practice, this has been performed in a very limited number of studies (e.g., Hoberg et al., 1998; Serres et al., 2007), and never in vivo. Isotopomer modeling is regularly performed in vitro and...
A detailed description of models found in the literature is beyond the scope of this review. We will briefly present the main metabolic pathways and assumptions in two popular models. The first one is the single-compartment model, which allows the measurement of TCA cycle fluxes ($V_{\text{TCA}}$) following infusion of $[1,2^{-13}\text{C}]\text{Glc}$ or $[1,6^{-13}\text{C}_2]\text{Glc}$. The $V_{\text{TCA}}$ estimation from Glu C4 only has been shown to be well determined (i.e., estimated flux values should be close to the real values), and standard deviation on fluxes, as well as covariance between fluxes should be low. A method of choice to explore model’s reliability is Monte Carlo simulations.

### SINGLE- OR TWO-COMPARTMENT MODEL

A detailed description of models found in the literature is beyond the scope of this review. We will briefly present the main metabolic pathways and assumptions in two popular models. The first one is the single-compartment model, which allows the measurement of TCA cycle fluxes ($V_{\text{TCA}}$) following infusion of $[1,2^{-13}\text{C}]\text{Glc}$ or $[1,6^{-13}\text{C}_2]\text{Glc}$. The $V_{\text{TCA}}$ estimation from Glu C4 only has been shown to be well determined (i.e., estimated flux values should be close to the real values), and standard deviation on fluxes, as well as covariance between fluxes should be low. A method of choice to explore model’s reliability is Monte Carlo simulations.

### ASSESSING A MODEL’S RELIABILITY

When performing modeling, the quality and amount of measured $^{13}\text{C}$ enrichments should be high enough for the problem to be well determined (i.e., estimated flux values should be close to the real values), and standard deviation on fluxes, as well as covariance between fluxes should be low. A method of choice to explore model’s reliability is Monte Carlo simulations.

Enrichments are simulated for to-be-infused substrates and to-be-measured metabolites, using the metabolic model and given flux values. Noise is then added to yield SNR comparable to experimental SNR, and noised enrichments are fitted using the model. This procedure is repeated hundreds of times to derive mean and standard deviation for the estimated fluxes. The degree of confidence one can have in flux values can therefore be assessed for a given metabolic model and given experimental conditions. It allowed showing that estimation of $V_{\text{TCA}}$ and $V_X$ from the Glu C4 time-course only is very uncertain (Henry et al., 2006), and that the glutamatergic neurotransmission $V_X$ may not be reliable when only $[1,2^{-13}\text{C}]\text{Glc}$ or $[1,6^{-13}\text{C}_2]\text{Glc}$ infusion is performed (Shestov et al., 2007).

### METABOLIC COOPERATION BETWEEN NEURONS AND ASTROCYTES STUDIED BY NMR SPECTROSCOPY

**ASTROCYTE–NEURON LACTATE SHUTTLE HYPOTHESIS:** FOLLOWING LACTATE PRODUCTION AND CONSUMPTION BY THE BRAIN

Since the astrocytes are located between blood vessels and neurons, the question arises whether the astrocytes play the role of intermediary in the flow of substrates from blood to neurons. Indeed, Glc can reach neurons (i) directly, by diffusing from the capillaries through the intercellular space using the Glc transporters present in each of these cells (GLUT-1 and GLUT-3; Vannucci et al., 1997); or (ii) through the astrocytes, since astrocytic end-feet continuously cover blood vessel walls (Mathiisen et al., 2010). In this latter option, Glc that enters the astrocytic end-feet can be metabolized and the product can be subsequently transferred to the neurons and used as a substrate. A growing body of evidence supports this latter hypothesis and indicates that the astrocytic metabolic supply for neurons could be Lac (Divigen et al., 1995; Pellerin and Magistretti, 1994; Larrabee, 1995; Poitry-Yamate et al., 1995; Waagepetersen et al., 1998). Indeed, it has been shown that the presence of Lac in a Glc-free medium maintains synaptic activity in brain slices (Schurr et al., 1998). In addition, Lac has a protective effect and allows better recovery of neurons after hypoxia (Schurr et al., 1997). Although Lac has relatively low permeability at the BBB, different isoforms of monocarboxylate transporters have been located on endothelial cells (MCT1; Lessin et al., 1999), astrocytes (MCT2), and neurons (MCT2; Brié et al., 1997, 1999). Moreover, the isozymes of LDH1, LDH1H and LDH3, have been found in different cellular locations (Bittar et al., 1996), supporting the hypothesis of astrocytic Lac utilization by neurons.

The traditional metabolic coupling theory (ANLSH for the astrocyte–neuron lactate shuttle hypothesis), firstly proposed by Pellerin and Magistretti in the mid-1990s (Pellerin and Magistretti, 1994), describes that neurotransmitter Gln released to the synaptic...
FIGURE 3 | The traditional metabolic coupling hypothesis between neurons and astrocytes during glutamatergic neurotransmission.

Glutamate released to the synaptic cleft during glutamatergic neurotransmission is co-transported with Na\(^+\) to the astrocyte. Astrocytic Na\(^+\) is exchanged by extracellular K\(^+\) through the Na\(^+\)/K\(^+\) ATPase, consuming one ATP molecule. Astrocytic glutamate produces glutamine through glutamine synthetase, consuming one additional ATP molecule. Lactate produced exclusively in astrocytic glycolysis to support these energy demands, is extruded to the extracellular medium, taken up by the surrounding neurons and oxidized as their main metabolic fuel. Note the apparent stoichiometric coupling between glutamate–glutamine cycling and glucose uptake as well as the exclusive glycolytic or oxidative metabolisms in astrocytes and neurons, respectively. Gln, glutamine; Glu, glutamate; GLUT 1 and GLUT 3, glucose transporters 1 and 3; Lac, lactate; MCT1 and MCT2, monocarboxylate transporters 1 and 2; PGK, phosphoglycerate kinase; Pyr, pyruvate. Adapted with permission from Tsacopoulos and Magistretti (1996).

Importantly, a thorough examination of the earlier evidences led several authors to challenge the traditional approach proposed by the ANLSH (Chih et al., 2001; Dienel and Hertz, 2001; Chih and Roberts, 2003; Dienel and Cruz, 2003). In response to these criticisms, Pellerin and Magistretti (2003) presented a revised version of their proposal. The main differences are that this newer proposal does not exclude the activation of glycolysis and production of Lac in active neurons. Additionally, it does not require a direct coupling between astrocytic Lac release and neuronal Lac oxidation, proposing that Lac from both active astrocytes and neurons is released into the extracellular space. This Lac is eventually used by neurons (at rest or during activity). The current version of the ANLSH has been also critically reviewed (Hertz, 2004).

In the context of this review, it is important to remark that both \(^1\)H (Prichard, 1991; Prichard et al., 1991; Merboldt et al., 1992; Sappey-Marinier et al., 1992) and \(^13\)C NMR spectroscopy studies have been used to explore the ANLSH/metabolic coupling theory by monitoring and comparing the fate of \(^13\)C-glucose and \(^13\)C-lactate metabolism in neurons (Sonnewald et al., 1991; Schousboe et al., 1997; Bouzier-Sore et al., 2003), astrocytes (Alves et al., 1995), rat brain (Bouzier et al., 2000; Hassel and Brathe, 2000; Serres et al., 2004; Sampol et al., 2013) and human brain (Boumezbeur et al., 2010).

THE REDOX SWITCH/REDOX COUPLING HYPOTHESIS

Several other convincing evidences have accumulated since the above explained interpretations of metabolic neuronal...
FIGURE 4 | The subcellular compartmentation of pyruvate and glutamate and the redox switch/redox coupling hypothesis. Two pools of pyruvate exist in neurons and astrocytes derived from extracellular monocarboxylates (Pp) or glucose (Pg). A lactate/pyruvate redox shuttle is able to transfer continuously lactate from astrocytes to neurons, taking advantage of the kinetics of plasma membrane transporters and lactate dehydrogenase isoenzymes. High cytosolic lactate concentration inhibits neuronal glycolysis at the glyceraldehyde-3-phosphate dehydrogenase step by competition with cytosolic NAD$^+$, favoring the oxidation of extracellular Lac. Neuronal pyruvate is transferred back to the astrocyte to close the transcellular exchange of reducing equivalents. Two α-ketoglutarate/glutamate pools exist in neurons and astrocytes, associated probably to cytosolic and mitochondrial compartments. Exchange of α-ketoglutarate/glutamate between mitochondria and cytosol appears to be slow in the H3 glutamate hydrogen exchange timescale and dependent of the cytosolic and mitochondrial NADP$^+/NADPH$ ratios, as determined by the malate-aspartate shuttle. Both glycolysis and oxidative astrocytic metabolism contribute the energy for glutamine production in the astrocytes, indicating that this coupling involves both transcellular and intracellular redox coupling mechanisms that allow the simultaneous operation of glycolysis and oxidation in astrocytes. Asp, aspartate; Glc, glucose; Gln, glutamine; Glu, glutamate; GLUT1 and GLUT3, glutamate transporters 1 and 3; α-KG, α-ketoglutarate; Lac, lactate; LDH1 and LDH5, lactate dehydrogenases 1 and 5; Mal, malate. Reproduced with permission from Rodrigues et al. (2012).
As explained before, one of the most limiting features of NMR is its lack of sensitivity. Therefore, magnetic resonance imaging (MRI) has relied primarily on imaging of water protons. This results from the fact that the SNR ratio of the NMR signal is proportional to the polarization difference between the two proton spin states under thermal equilibrium conditions in an external magnetic field ($B_0$), as well as the proton concentration. Clinical imaging applications have until now been restricted to $^1$H MRI because of the existence of a high concentration of protons in biological tissue is able to counterbalance the inherent low sensitivity. Unfortunately, MRI sensitivity of $^1$H is too low to allow conventional $^1$H MRI due to the vestigial in vivo abundance of this nucleus and its lower magnetogric ratio. Although it is possible to improve the sensitivity using MRI systems at high $B_0$ and extremely low temperatures, a maximum polarization (and corresponding SNR) increase ($\sim 10^5$), obtained by cooling down the sample to liquid He temperature at a field strength of 20 T, would not be sufficient for clinical $^{13}$C MRI applications. Alternatively, it is possible to improve the sensitivity by transferring polarization from an electron or nuclear spin that has a higher polarization, creating a non-equilibrium distribution of nuclear spins called the hyperpolarized state (Månsson et al., 2006). In this state, the polarization of spins can be increased by a factor of $\sim 10^5$ compared with that in the thermal equilibrium state and independently of the $B_0$ value, leading to a corresponding gain in signal strength for MRI. This allows imaging of nuclei other than protons, namely $^{13}$C, and their molecular distribution in vivo can be visualized in a clinically relevant time window (Ardenkjær-Larsen et al., 2003). The hyperpolarized state is created by an external device followed by rapid administration of the agent to the subject to be imaged. However, the lifetime of the hyperpolarized state is limited by the $T_1$ relaxation time which depends on the chemical structure and environment of the hyperpolarized compound. In the case of $^{13}$C, it can range from a few seconds to several minutes, depending on the functional groups where the $^{13}$C nucleus is present.

Both parahydrogen-induced polarization (PHIP) and dynamic nuclear polarization (DNP) techniques have been able to hyperpolarize a wide range of organic $^{13}$C-labeled substances. As the polarization of electrons is much higher than the $^{13}$C nuclear polarization, due to the much larger gyromagnetic ratio of the electron, the DNP approach implies transferring polarization from hyperpolarized electron spins in a solid to the coupled $^{13}$C nuclear spins in a doping substance ($\sim 3$ T and $\sim 1$ K; Månsson et al., 2006). Microwave irradiation near the electron resonance frequency transfers the polarization from the unpolarized electrons to the $^{13}$C nuclei. After reaching an appropriate polarization, the solid is rapidly dissolved and injected with small polarization losses (Ardenkjær-Larsen et al., 2003). An interesting use of $^{13}$C-labeled endogenous compounds is metabolic imaging. Chemical shift imaging (CSI) has traditionally been used to image the cerebral distribution of metabolites from $^{13}$C-labeled substances, such as Glc (van der Zijden et al., 2005). However, without using hyperpolarization techniques, such images can only be obtained using long scan times (minutes). Using the previously described hyperpolarization approaches, images of the metabolic processes can be generated in a significant faster time scale (seconds). Endogenous compounds selectively labeled with $^{13}$C have been hyperpolarized by the DNP technique, extending substantially the applications of cerebral metabolic imaging. Basically, enzymatic processes can be non-invasively quantified and imaged in vivo using these hyperpolarized $^{13}$C-labeled metabolites. The metabolic fate of $[1-{^{13}}\text{C}]$Pyr in images of tumor-bearing animals injected with hyperpolarized labeled Pyr has been followed using the DNP approach, and allowed mapping the metabolic pattern of labeled Pyr, as well as of Lac and alanine. It was confirmed that gliomas abundantly transform Pyr into Lac through anaerobic glycolysis. Using this strategy, it was shown that exchange of hyperpolarized $^{13}$C...
label between Pyr and Lac could be imaged in tumors (Day et al., 2011). This flux was decreased in tumors receiving treatment undergoing drug-induced cell death. Using the same substrate, fast dynamic spiral CSI and transport modeling were combined to better characterize the bolus, transport, and metabolic effects, separating the metabolites in the cerebral blood volume from the metabolites in the brain tissue. This allowed developing a repeatable non-invasive imaging of regional BBB transport kinetics and regional cerebral Lac levels (Hurd et al., 2019). A novel non-invasive method for imaging tissue pH in vivo was also demonstrated (Gallagher et al., 2008). It was shown that interstitial tumor pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H13CO3−) and 13CO2 after the intravenous injection of hyperpolarized H13CO3−. Additionally, other biochemical pathways have been exploited using this approach. Conversion of 13C-labeled acetate to 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity, was recently shown using the DNP approach, reporting a direct in vivo observation of a TCA cycle intermediate in intact brain (Mishkovsky et al., 2019). A novel non-invasive method for imaging tissue pH in vivo was also demonstrated (Gallagher et al., 2008). It was shown that interstitial tumor pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H13CO3−) and 13CO2 after the intravenous injection of hyperpolarized H13CO3−. Additionally, other biochemical pathways have been exploited using this approach. Conversion of 13C-labeled acetate to 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity, was recently shown using the DNP approach, reporting a direct in vivo observation of a TCA cycle intermediate in intact brain (Mishkovsky et al., 2019). A novel non-invasive method for imaging tissue pH in vivo was also demonstrated (Gallagher et al., 2008). It was shown that interstitial tumor pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H13CO3−) and 13CO2 after the intravenous injection of hyperpolarized H13CO3−. Additionally, other biochemical pathways have been exploited using this approach. Conversion of 13C-labeled acetate to 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity, was recently shown using the DNP approach, reporting a direct in vivo observation of a TCA cycle intermediate in intact brain (Mishkovsky et al., 2019). A novel non-invasive method for imaging tissue pH in vivo was also demonstrated (Gallagher et al., 2008). It was shown that interstitial tumor pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H13CO3−) and 13CO2 after the intravenous injection of hyperpolarized H13CO3−. Additionally, other biochemical pathways have been exploited using this approach. Conversion of 13C-labeled acetate to 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity, was recently shown using the DNP approach, reporting a direct in vivo observation of a TCA cycle intermediate in intact brain (Mishkovsky et al., 2019). A novel non-invasive method for imaging tissue pH in vivo was also demonstrated (Gallagher et al., 2008). It was shown that interstitial tumor pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H13CO3−) and 13CO2 after the intravenous injection of hyperpolarized H13CO3−. Additionally, other biochemical pathways have been exploited using this approach. Conversion of 13C-labeled acetate to 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity, was recently shown using the DNP approach, reporting a direct in vivo observation of a TCA cycle intermediate in intact brain (Mishkovsky et al., 2019). A novel non-invasive method for imaging tissue pH in vivo was also demonstrated (Gallagher et al., 2008). It was shown that interstitial tumor pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H13CO3−) and 13CO2 after the intravenous injection of hyperpolarized H13CO3−. Additionally, other biochemical pathways have been exploited using this approach. Conversion of 13C-labeled acetate to 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity, was recently shown using the DNP approach, reporting a direct in vivo observation of a TCA cycle intermediate in intact brain (Mishkovsky et al., 2019). A novel non-invasive method for imaging tissue pH in vivo was also demonstrated (Gallagher et al., 2008). It was shown that interstitial tumor pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H13CO3−) and 13CO2 after the intravenous injection of hyperpolarized H13CO3−. Additionally, other biochemical pathways have been exploited using this approach. Conversion of 13C-labeled acetate to 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity, was recently shown using the DNP approach, reporting a direct in vivo observation of a TCA cycle intermediate in intact brain (Mishkovsky et al., 2019). A novel non-invasive method for imaging tissue pH in vivo was also demonstrated (Gallagher et al., 2008). It was shown that interstitial tumor pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H13CO3−) and 13CO2 after the intravenous injection of hyperpolarized H13CO3−. Additionally, other biochemical pathways have been exploited using this approach. Conversion of 13C-labeled acetate to 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity, was recently shown using the DNP approach, reporting a direct in vivo observation of a TCA cycle intermediate in intact brain (Mishkovsky et al., 2019). A novel non-invasive method for imaging tissue pH in vivo was also demonstrated (Gallagher et al., 2008). It was shown that interstitial tumor pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H13CO3−) and 13CO2 after the intravenous injection of hyperpolarized H13CO3−. Additionally, other biochemical pathways have been exploited using this approach. Conversion of 13C-labeled acetate to 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity, was recently shown using the DNP approach, reporting a direct in vivo observation of a TCA cycle intermediate in intact brain (Mishkovsky et al., 2019). A novel non-invasive method for imaging tissue pH in vivo was also demonstrated (Gallagher et al., 2008). It was shown that interstitial tumor pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H13CO3−) and 13CO2 after the intravenous injection of hyperpolarized H13CO3−.
McKenna, M. C. (2007). The glutamate–glutamine cycle is not stoichiometric:
Mason, G. F., Rothman, D. L., Behar, K. L., and Shulman, R. G. (1992). NMR
Mouse Genome Sequencing Consortium. (2002). Initial sequencing and
electron microscopic 3D reconstruction.
Komatsumoto, S., Nioka, S., Greenberg, J. H., Yoshizaki, K., Subramanian,
Leino, R. L., Gerhart, D. Z., and Drewes, L. R. (1999). Monocarboxylate transporter
Hurd, R. E., Yen, Y. F., Tropp, J., Pfefferbaum, A., Spielman, D. M., and Mayer, D.
Rodrigues et al. Brain metabolism by13C NMR spectroscopy
International Human Genome Sequencing Consortium. (2001). Initial sequenc-
10.1073/pnas.88.13.5829
Muller glial cells is metabolized by photoreceptors from mammalian retina.
Pellerin, L., Magnier, C., and Lipton, P. (2007). “Glucose, oxidative energy metabolism, and neural
Hurd, R. E., Yen, Y. F., Tropp, J., Pfefferbaum, A., Spielman, D. M., and Mayer, D.
Rodrigues, T. B., Gray, H. L., Benito, M., Garrido, S., Sierra, A., Geraldes, C.
Rae, C., Fokke, A., Kaxiras, M., Nara, F., and Bress, S. (2012). Metabolism,
Neuroimage. 106, 643–656. doi: 10.1016/j.neuroimage.2001.07.003
Muller glial cells is metabolized by photoreceptors from mammalian retina.
Pellerin, L., Magnier, C., and Lipton, P. (2007). “Glucose, oxidative energy metabolism, and neural
International Human Genome Sequencing Consortium. (2001). Initial sequenc-
Mason, G. F., Rothman, D. L., Behar, K. L., and Shulman, R. G. (1992). NMR
Mouse Genome Sequencing Consortium. (2002). Initial sequencing and
Komatsumoto, S., Nioka, S., Greenberg, J. H., Yoshizaki, K., Subramanian,
Leino, R. L., Gerhart, D. Z., and Drewes, L. R. (1999). Monocarboxylate transporter
Hurd, R. E., Yen, Y. F., Tropp, J., Pfefferbaum, A., Spielman, D. M., and Mayer, D.
Shank, R. P., Leo, G. C., and Zielke, H. R. (1993). Cerebral metabolic compartmentation of \(^{13}\)C-pyruvate in the brain of decerebrate rats bearing implanted \(^{13}\)C-glucose. J. Neurochem. 59, 1–7. doi: 10.1111/j.1471-4159.1992.tb23590.x

Rodrigues, T. B., Sueiras, E. M., Kennedy, B. W. C., Hu, D. E., Kettman, M. I., and Bendill, R. M. (in press). Magnetic resonance imaging of tumor gliosarcoma using hyperpolarized \(^{13}\)C-labeled glucose. Neuro. Med. doi: 10.1109/TMME.2013.2251954

Rodrigues, T. B., Sierra, A., Ballesteros, P., and Cerdán, S. (2012). “Pyruvate transport and metabolism in the central nervous system,” in NeuroMetabolism In Vivo, eds I. Chos and R. Guarini (Berlin: Springer), 715–755.

Rothman, D. L., Behar, K. L., Hetherington, H. P., Dea Hollander, A. J., Bendall, M. B., Pettoli, O. A., et al. (1985). “\(^{13}\)C”-observed, deoxygescopic measurements of lactate and glutamate in the rat brain in vivo. Proc. Nat. Acad. Sci. USA 82, 1565–1567. doi: 10.1073/pnas.82.6.1563

Rothman, D. L., Behar, K. L., Hydle, F., and Shulman, R. G. (2003). In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics implications for brain function. Annu. Rev. Physiol. 65, 401–427. doi: 10.1146/annurev.physiol.65.121502.103133

Rothman, D. L., De Feuyer, H. M., De Graaf, R. A., Mason, G. F., and Behar, K. L. (2011). "13C NMR studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed. 24, 943–957. doi: 10.1002/nbm.1772

Sampels, D., Otsrotu, E., Joijn, M. L., Raffeld, G., Sanchez, S., Bouscaud, V., et al. (2013). Glucose and lactate metabolism in the awake and stimulated rat: a \(^{13}\)C-NMR-study. Front. Neuroenergetics 5:5. doi: 10.3389/fnene.2013.00005

Saper, M. A., D. Calebras, G., Don, G., Hagg, J. W., Higgins, C., and Winer, M. W. (1992). Effect of photoic stimulation on visual cortex lactate and phosphorus using \(^{1}H\) and \(^{13}\)C magnetic resonance spectroscopy. J. Cereb. Blood Flow Metab. 12, 584–592. doi: 10.1111/j.1471-4159.1992.x

Shulman, R. G. (1998). Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc. Natl. Acad. Sci. U.S.A. 95, 316–321. doi: 10.1073/pnas.95.1.316

Simpson, J. A., Carruthers, A., and Vamuci, S. J. (2007). Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J. Cereb. Blood Flow Metab. 27, 1796–1791. doi: 10.1038/jcbfm.2006.448

Sokoloff, L. (1981). Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J. Cereb. Blood Flow Metab. 1, 7–56. doi: 10.1038/jcbfm.1981.4

Sokoloff, L. (1999). “Circulation and metabolism of the brain,” in Basic Neurochemistry, eds G. Siegel, B. Agranoff, R. W. Albers, and P. Molinoff (New York: Raven Press), 559–590.

Sonnewald, U., and Kar, C. (2010). Pyruvate carbolination in different model systems studied by \(^{13}\)C-NMR studies of neuronal metabolism and astrocytes. Neuro. Lett. 12, 235–239. doi: 10.1016/j.neulet.2004.09.010

Sperk, G. (1992). "13C-NMR, MRI and metabolic flux balancing in biotechnology research. Q. Rev. Biophys. 35, 461–66. doi: 10.1017/S0033583501000412

Stecopoulos, M., and Magistretti, P. J. (1996). Metabolic coupling between glia and neurons. J. Neurosci. 16, 877–885.

Valette, J., Boumendil, F., Hantraye, P., and Lebon, V. (2008). Simplified \(^{13}\)C metabolic modeling for simplified measurements of cerebral TCA cycle rate in vivo. Magn. Reson. Med. 62, 1641–1645. doi: 10.1002/mrm.22360

van der Zijden, J. P., Van Eldik, E., De Graaf, R. A., and Jokhiann, R. M. (2008). \(^{13}\)C-MR spectroscopic imaging of regional-specific metabolic alterations after experimental stroke. Brain 131, 2219–2219. doi: 10.1093/brain/awn139

van Eldik, E., Behar, K. L., Mason, G. F., Braun, K. P., and De Graaf, R. A. (2010). In vivo neurochemical profiling of the rat brain by \(^{13}\)C-NMR spectroscopy: cerebral energetics and glutamate-GABAergic neurotransmission. J. Neurochem. 112, 24–53. doi: 10.1111/j.1471-4159.2009.06099.x

Vamucci, S. J., Maher, E., and Simpson, I. A. (1997). Glucose transporter protein in brain: delivery of glucose to neurons and glia. Glia 21, 2–21. doi: 10.1002/(SICI)1098-1106(199701)21:1<2::AID-Glia2>3.0.CO;2-E

Vest, D., and Vest, J. G. (1990). “Regulation of the citric acid cycle,” in Biochemistry of the Brain. (Boston: Martinus Nijhoff Publishers), 467–474.

Waniewski, R. A., and Martin, D. L. (2010). In vivo neurochemical profiling of rat brain by \(^{13}\)C-NMR spectroscopy: divalent and monovalent cations. J. Neurochem. 112, 303–310. doi: 10.1111/j.1471-4159.2009.06730.x

Wang, A., and Schousboe, A. (1999). A possible role of alanine for ammonia transfer between astrocytes and glutaminergic neurons. J. Neurochem. 75, 471–479. doi: 10.1046/j.1471-4159.2000.700407.x

Weinberg, R. (2002). Measurement of glucose consumption using \(^{13}\)C magnetic resonance spectroscopy. Methods 27, 218–225. doi: 10.1006/meth.2002.0577

Yang, J., Li, Q. G., and Shen, J. (2003). In vivo detection of cortical GABA turnover from intracereally infused \(^{13}\)C-glutamate. Magn. Reson. Med. 53, 1259–1267. doi: 10.1002/mrm.20475

Yu, A. C., Ouyang, J., Herte, L., and Schousboe, A. (1985). Pyruvate carbolination in primary cultures of astrocytes and neurons. J. Neurochem. 41, 1464–1470. doi: 10.1111/j.1471-4159.1985.tb01545.x

Zwingmann, C., and Leducie, D. (2003). Regulation of glial metabolism studied by \(^{13}\)C-NMR. NMR Biomed. 16, 370–399. doi: 10.1002/nbm.459

"fnene-05-00009" — 2013/12/5 — 16:50 — page 15 — #15
Zwingmann, C., Richter-Landsberg, C., and Leibfritz, D. (2001). $^{13}$C isotopomer analysis of glucose and alanine metabolism reveals cytosolic pyruvate compartmentation as part of energy metabolism in astrocytes. Glia 34, 200-212. doi:10.1002/glia.10104

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 31 July 2013; accepted: 15 November 2013; published online: 09 December 2013.

Citation: Rodrigues TB, Valette J and Bouzier-Sore A-K (2013) $^{13}$C NMR spectroscopy applications to brain energy metabolism. Front. Neuroenergetics 5:9. doi: 10.3389/fnene.2013.00009

This article was submitted to the journal Frontiers in Neuroenergetics. Copyright © 2013 Rodrigues, Valette and Bouzier-Sore. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.