MAEDAY: MAE for few- and zero-shot AnomalY-Detection

Eli Schwartza,b, Assaf Arbela, Leonid Karlinskyc, Sivan Hararya, Florian Scheideggera, Sivan Doveha, Raja Giryesb

aIBM Research
bTel-Aviv University, Israel
cMIT-IBM Watson AI Lab

Abstract

We propose using Masked Auto-Encoder (MAE), a transformer model self-supervisedly trained on image inpainting, for anomaly detection (AD). Assuming anomalous regions are harder to reconstruct compared with normal regions. MAEDAY is the first image-reconstruction-based anomaly detection method that utilizes a pre-trained model, enabling its use for Few-Shot Anomaly Detection (FSAD). We also show the same method works surprisingly well for the novel tasks of Zero-Shot AD (ZSAD) and Zero-Shot Foreign Object Detection (ZSFOD), where no normal samples are available.

1. Introduction

The challenge of Anomaly-Detection (AD) stems from the fact that good cases are similar and easy to model, while anomalies rarely happen, and when they do, they can take an unpredictable form. For this reason, classic supervised training is sometimes not feasible for AD. In AD only good images are provided during training, the goal is to model the distribution of the good images and thus detect outliers at inference time when they occur. Our method is based on image reconstruction, where a model is trained to reconstruct normal images from a corrupted observation, e.g. noisy image or partially masked-out. Assuming that at inference the model will fail to reconstruct anomalous images.

Recently, there has been a great interest in Few-shot AD (FSAD) (Roth et al., 2022; Sheynin et al., 2021; Rudolph et al., 2021; Huang et al., 2022). The promise of FSAD is that a single model can be used for different objects and adapted based on only few good samples. Previous image-reconstruction-based methods are not applicable to the FSAD task since they train the reconstruction model from scratch and therefore require larger training sets.

We suggest, for the first time, image-reconstruction-based method that can be used for FSAD. We do that by pre-training the model for general natural-image reconstruction (pre-training on ImageNet). Our suggested method, MAEDAY, addresses FSAD by using Masked AutoEncoder (MAE) (He et al., 2022), a model trained for general image completion based on partial observations, see Fig. 1. MAE was introduced for a different purpose, trained on a self-supervised task (image inpainting) with the end goal of learning image representation. We re-purpose MAE for FSAD, unlike MAE where the decoder is discarded at inference time, we use both the encoder and the decoder to get a recovered image and not just an intermediate representation. We use the available few good images to further fine-tune the MAE. The idea is that normal regions will be easier to recover based on patterns observed in the few good examples and based on recurring patterns in the query image itself. As in the many-shot case, image reconstruction is underperforming com-
Figure 1: MAE/DAY: We repurposed MAE for Zero and Few-Shot Anomaly-Detection. In the zero-shot setup, with no special training and no good images as a reference, ImageNet pre-trained MAE is used to reconstruct a mostly masked-out query image. Anomalous regions are detected in areas where the reconstruction fails, as these regions cannot be accurately inferred from neighboring regions. The anomaly scores are averaged across multiple reconstructions with different random masks. In the few-shot case, the pre-trained model is further fine-tuned on the reconstruction of the available normal images. Figure adapted from He et al. (2022).

We also explore a new task of Zero-Shot Foreign Object Detection (ZSFOD). Most Foreign Object Detection works are using annotated images with bounding boxes or segmentation masks to train an object-detector (Munyer et al., 2022; Noroozi and Shah, 2023; Jing et al., 2022). A common use case is detecting foreign objects or debris on the pavement in airports’ runways (Munyer et al., 2021). We focus on the zero-shot case, having a single model that can generalize to new use cases, with no prior reference to either a free-of-objects surface or the objects to be detected. We treated this problem similarly to ZSAD where the objects are anomalies in the surface texture. We release a new FOD dataset of wooden floors (indoor) and pavement (outdoor) with or without foreign objects. We show that MAE/DAY, without any training images, outperforms the SOTA one-shot results on this dataset.

To summarise, our contributions are (1) Suggesting MAE/DAY, MAE-based model pre-trained for image reconstruction on an arbitrary set of images and used for Few-Shot Anomaly-Detection (FSAD); (2) Suggesting the new task of Zero-Shot AD (ZSAD) and demonstrating strong results, particularly for textures (3) Suggesting the new task of Zero-Shot Foreign Object Detection (ZSFOD) and showing strong results; (4) Releasing a new FOD dataset.
Table 1: Image-level ROC-AUC results for 0-shot and 1-shot on the MVTec datasets. MAEDAY performs surprisingly well even on objects and textures the model was not trained on (ZSAD). In the 1-shot case, the embedding-based method, PC [Roth et al., 2022], has higher performance when evaluating a single model. However, MAEDAY adds a new kind of information and hence a MAEDAY + PC ensemble outperforms an ensemble of 2 PC models. Our 1-shot results are presented with mean ± std over 3 different shot selections.

	0-Shot Single-Model	1-Shot Single-Model	Ensemble 2*PC	Ensemble MAEDAY+PC			
Objects	MAEDAY	SPADE	PaDiM	PC	MAEDAY	MAEDAY+PC	
bottle	74.3	96.1 ± 3.5	74.8 ± 0.1	**98.3 ± 1.8**	93.7 ± 1.8		
cable	53.0	82.6 ± 0.8	50.1 ± 5.0	**83.6 ± 2.3**	69.0 ± 4.6		
capsule	64.0	63.0 ± 1.8	59.9 ± 9.5	**63.7 ± 1.8**	**64.9 ± 1.9**		
hazelnut	97.1	84.9 ± 5.6	**97.0 ± 0.2**	85.4 ± 5.1	94.1 ± 0.2		
metal-nut	43.6	75.4 ± 3.4	53.1 ± 1.5	**77.0 ± 2.8**	**73.4 ± 1.8**		
pill	63.4	77.5 ± 1.4	63.5 ± 0.5	79.1 ± 1.9	**81.7 ± 2.1**		
screw	69.9	46.0 ± 2.6	**78.1 ± 2.5**	45.8 ± 2.6	**61.4 ± 2.2**		
toothbrush	77.5	84.4 ± 1.6	81.7 ± 2.9	83.8 ± 1.4	**92.5 ± 1.0**		
transistor	48.3	82.1 ± 3.8	56.3 ± 4.1	**80.1 ± 5.0**	75.3 ± 2.7		
zipper	82.0	**96.6 ± 1.4**	79.0 ± 0.2	**96.9 ± 0.4**	94.3 ± 1.1		
Mean (Objects)	67.3	**78.9**	69.3	79.3	**80.1**		
Textures							
carpet	74.6	**99.1 ± 0.1**	72.3 ± 1.1	**99.2 ± 0.0**	97.9 ± 0.2		
grid	97.9	43.4 ± 6.1	**97.1 ± 0.3**	43.2 ± 5.5	**83.9 ± 6.5**		
leather	92.9	**100. ± 0.0**	93.4 ± 0.1	**100. ± 0.0**	99.9 ± 0.0		
tile	84.3	**98.5 ± 0.2**	87.2 ± 1.5	**98.7 ± 0.2**	**98.4 ± 0.2**		
wood	94.8	**98.5 ± 0.5**	96.7 ± 0.5	98.5 ± 0.5	**99.5 ± 0.0**		
Mean (Textures)	88.9	87.9	**89.3**	87.9	**95.9**		
Mean (All)	74.5	71.6	76.1	**81.9**	76.0	**82.2**	**85.3**

2. Related Work

AD methods divide into two categories: embedding-similarity-based and image-reconstruction-based.

Embedding-similarity-based methods compare image or patch embedding with a distribution of normal image or patch embeddings (modeled by the training set), e.g. [Roth et al., 2022; Defard et al., 2021; Cohen and Hoshen, 2020; Huang et al., 2022]. Some methods perform registration of the images, i.e. spatial mapping of the image to some canonical form [Huang et al., 2022; Chen et al., 1999]. Other approaches learn the negative distribution, too. That requires some assumptions on the anomaly distribution and is achieved by artificially producing anomalies [Zou et al., 2022; Li et al., 2021]. Following the great interest in Few-Shot object-recognition [Vinyals et al., 2016; Snell et al., 2017; Doveh et al., 2021], recently Few-Shot AD (FSAD) also gained popularity. Similarity-based methods demonstrated success in this low data regime (FSDA) thanks to their use of pre-trained models [Roth et al., 2022; Sheynin et al., 2021; Rudolph et al., 2021]. We suggest using pre-trained models for image-reconstruction-based methods as well.

Image-reconstruction-based methods usually train a generative model on a set of normal images, e.g. an AutoEncoder [Hinton, 1990; Japkowicz et al., 1995; Sａｋｕｒａｄａ and Yairi, 2014] or GAN [Goodfellow et al., 2014; Schlegl et al., 2017; Zenati et al., 2018; Xia et al., 2022].
Table 2: Pixel-level AUC-ROC on MVTec datasets. See Table 1 for details.

Objects	0-Shot	1-Shot	1-Shot	1-Shot			
	MAEDAY	SPADE	PaDiM	PC	MAEDAY	2*PC	MAEDAY + PC
bottle	50.7	97.9 ± 0.1	50.8 ± 0.5	98.1 ± 0.1	95.9 ± 0.3		
cable	65.5	90.3 ± 1.2	73.1 ± 3.1	91.3 ± 1.0	84.2 ± 0.7		
capsule	48.1	97.1 ± 0.1	48.4 ± 3.6	97.2 ± 0.1	95.3 ± 1.3		
hazelnut	94.1	88.5 ± 1.5	94.0 ± 0.2	88.8 ± 1.5	98.3 ± 0.1		
metal-nut	39.6	89.6 ± 0.8	47.0 ± 0.7	90.1 ± 0.6	68.4 ± 1.2		
pill	61.5	94.7 ± 0.4	62.0 ± 1.1	95.1 ± 0.3	91.3 ± 1.2		
screw	96.9	88.6 ± 0.5	96.4 ± 0.4	88.8 ± 0.5	97.4 ± 0.0		
toothbrush	72.3	95.0 ± 0.2	77.6 ± 3.0	95.2 ± 0.2	92.2 ± 0.5		
transistor	59.7	92.3 ± 1.0	61.9 ± 0.2	92.3 ± 0.8	86.0 ± 1.9		
zipper	76.2	96.9 ± 0.4	73.9 ± 0.6	97.1 ± 0.3	96.2 ± 0.4		
Mean (Objects)	66.5	93.0	69.9	93.3	90.5		
Textures							
carpet	76.2	98.9 ± 0.0	78.4 ± 1.7	99.0 ± 0.0	98.2 ± 0.2		
grid	95.4	55.7 ± 0.3	96.7 ± 0.3	55.9 ± 0.3	96.6 ± 0.2		
leather	94.6	99.1 ± 0.0	96.4 ± 0.5	99.1 ± 0.0	99.4 ± 0.0		
tile	30.9	94.8 ± 0.5	37.4 ± 2.1	94.9 ± 0.5	90.1 ± 1.1		
wood	78.8	92.0 ± 0.2	80.0 ± 0.4	92.1 ± 0.2	92.9 ± 0.4		
Mean (Textures)	75.2	88.1	79.7	88.2	95.4		
Mean	69.4	91.9	88.2	91.4	71.6	91.7	92.2

The underlying assumption is that only good images can be generated by the trained model. Another kind of generative-model is Normalizing Flows (Rezende and Mohamed, 2015), by using an invertible mapping from a latent space with controlled distribution to images we also obtain the inverse mapping that allows verifying the likelihood of a query image (Yu et al., 2021; Gudovskiy et al., 2022; Zhang et al., 2021). Other methods apply some form of image degradation and again train a model to reconstruct the images, assuming only good images will be well-reconstructed (Yan et al., 2021; Fei et al., 2020; Zavrtanik et al., 2021; Wyatt et al., 2022). The closest approach to ours is RIAD (Zavrtanik et al., 2021), which masks parts of the image and performs image inpainting. However, RIAD and other image-reconstruction methods rely on training a model from scratch on normal images and are not intended for the low-data or no-data regime.

Finally, concurrently with our work, new works have started to explore zero-shot anomaly detection. These works are based on pretrained vision-language models and utilize textual prompts to detect anomalies in a class-invariant manner (Jeong et al., 2023; Cao et al., 2023).

3. Method

We begin by describing our approach (MAEDAY) for ZSAD which is based on image reconstruction from partial observations. MAE (He et al., 2022) is trained on the self-supervised task of predicting an image from a partial observation. This makes MAE a great tool for our purpose. We use an ImageNet pretrained MAE as our backbone.
As commonly done in transformer-based architectures, the input image I is split into non-overlapping patches, and each patch is flattened into a single token. The tokens go through a linear projection with the addition of a positional encoding and are then processed by a sequence of transformer blocks. For MAE most of the input tokens are masked out and discarded, therefore the encoder operates on a small number of tokens. The decoder receives the output tokens of the encoder and in addition ‘empty’ tokens with just the positional encoding replacing the masked-out tokens. Through a sequence of transformer blocks, the decoder ‘fills’ these empty tokens based on information from the encoder output tokens. The output of the decoder is the recovered image.

Usually, at inference time only the MAE encoder is used (for features extraction), while the decoder is discarded. In our case, we use both the encoder and decoder. Given a query image, a random small subset of its patches (25%) are fed to the MAE. The recovered image is then compared against the query image and mismatched pixels indicate an anomalous region. We repeat this process multiple times for each image, each time a different random mask is retained. With enough repetitions (we used $N = 32$) each token is likely to be masked out at least once, such that we can measure how well it is reconstructed. Multiple reconstruction attempts (with different random masks) has also an advantage in cases of ambiguity, with multiple plausible image completions. In those cases, the model will likely choose the correct completion at least in some of the reconstruction attempts. We found in our experiments that the reconstruction for retained tokens (not masked-out) is also somewhat indicative of them being normal vs. anomalous. Our intuition for that is that since the transformer mixes the information from all tokens, even when a token is visible it will be better reconstructed when it is in agreement with its surrounding tokens. Given this observation, we can simply run a query image N times with different random masks and compare the N reconstructed images (full images) against the query image. The method is illustrated in Figure [Figure 1].

Formally, given a query image $I \in \mathbb{R}^{H \times W \times 3}$ and a set of N random masks $\{M_1, ..., M_N\}$, we use MAE to get N reconstructed images $\{R_1, ..., R_N\}$, where $R_i = MAE(I \cdot M_i)$. Image resolution and patch size are the same as those used for pretraining MAE (224 and 16). Then, $\{R_i\}$ are used to compute N squared error maps. The squared error maps are channel-wise filtered with a Gaussian kernel g (kernel size 7, $\sigma = 1.4$) to remove noise and summed over the 3 color channels,

$$E_i = \sum_{c \in \{R,G,B\}} (I_c^i - R_c^i)^2 * g,$$ \hspace{1cm} (1)

The N error maps are averaged to get a single error map, $E = \frac{1}{N} \sum_{i=1}^{N} E_i$. E is the pixel-level anomaly score. Finally, the image anomaly score is set by the max error $S = max(E)$.

For FSAD we first finetune the MAE model with the available normal images. Unlike MAE, where the loss is applied only on the recovered masked-out patches, we apply the loss to all patches. We do that because we use all predicted patches (both masked and unmasked) for detecting anomalies. We use LoRA (Hu et al., 2021), a method originally introduced for finetuning large language models (transformers) without overfitting a small dataset. In LoRA additional low-rank weight matrix is introduced for each weight matrix in the original pre-trained model. The low rank is enforced by having a low-rank decomposition. During fine-tuning, only the low-rank weights are updated and the output of each multiplication is the sum of performing the multiplication with the original weights and the new low-rank weights. After finetuning is finished, the weights are updated to be the sum of the original weights and the new ones (to avoid additional compute and memory consumption at inference time).

We set the rank of the additional LoRA weights to 32 for all tensors in the model. The model is trained for 50 iterations using an SGD optimizer with a learning rate of $1e-2$ (LoRA requires a relatively high learning rate), a momentum of 0.9, and a weight decay of 0.05. We train with random crop and random rotation augmentations. The batch size is set to 32, so the few available shots are used multiple times to fill the batch (but with different random masks each time).

4. Results

We evaluated our method on all of the 15 datasets in MVTec-AD (Bergmann et al., 2021), the most popular and the main AD benchmark. It is focused on an industrial inspection use case and consists of 10 unique objects and 5 unique textures. For each object or texture, a training set of defect-free images and a test set of both normal
and anomalous instances are available. The anomalous images are provided with pixel-level annotation marking the anomaly location.

For the few-shot test, in each run, we selected a few random training samples from the relevant dataset training set and tested on the full associated test set. Since the performance can be dependent on the selected samples we averaged all results over 3 different shots selection. When comparing to other methods we made sure the same exact shots are used by all methods. When an ensemble of models is used, the same shots are used for all models, and the models’ output images and pixel-level scores are summed. For the zero-shot test, per the task definition, the training set is not used.

Table 1 summarizes the results for image-level zero and one-shot anomaly detection performance. Even though for the zero-shot case MAEDAY uses no normal training data, we observe relatively strong results. For the textures datasets, it even outperforms the SOTA 1-shot results. In the 1-shot case, we observe 1.5% improvement of MAEDAY thanks to the finetuning on the normal sample. Notably, PatchCore is better than MAEDAY on the objects subset while MAEDAY is better on the textures subset. Suggesting our image-reconstruction-based method can better utilize the repetitive patterns as a self-reference compared to embedding-based methods. Next, we test the performance of an ensemble of two models. While the ensemble of two PatchCore models outperforms a single one thanks to the stochastic nature of the method, the gain is limited by the fact they use the same embeddings and similar information. The ensemble of MAEDAY with PatchCore outperforms the two PatchCore ensemble by 3.1%.

Table 2 summarizes the results for pixel-level zero and one-shot anomaly detection (segmentation) performance. While the gap between MAEDAY and PatchCore is higher for pixel-level detection, we observe similar trends to image-level performance. For a single model, PatchCore outperforms MAEDAY, but an ensemble of MAEDAY and PatchCore is better than an ensemble of two PatchCore models. We attribute the lower pixel-level performance to the fact that, even though MAEDAY is
mostly able to detect the anomalies, often the detected anomaly only partially covers the full anomaly region. Examples of segmentation maps produced by MAEDAY are presented in Figure 4. Examples of the recovered images from masked inputs are presented in Figure 5, while the recovered images tend to be blurry they usually provide enough signal for detecting anomalies.

We explored finetuning MAEDAY on more shots in Figure 2. The improvement in the performance of MAEDAY saturates at about 4 shots, making it a best fit for the low shot scenario. For more shots, we observed similar results to 1-shot, where an ensemble of MAEDAY and PatchCore sets a new SOTA.

Table 3: Training and inference time. Tested for 0/1 shot. MAEDAY performs inference on a single image at a time to allow 32 repeats of the same image in the batch dimension (with different random masks). For PatchCore we used a batch size of 32. Despite that, the inference time is not dramatically higher for MAEDAY compared to PatchCore. Tested on an A100 GPU.

	PatchCore	MAEDAY 1-shot	MAEDAY 0-shot
Training	4s	0	100s
Infer. [per image]	0.07s	0.15s	0.15s

LoRA. In Table 5 we compare the performance of finetuning the original model parameters vs. training a low-rank version of them using LoRA. For finetuning without LoRA we used a learning rate of $1e^{-4}$ with all other conditions.

Table 5: Foreign Object Detection ROC-AUC performance for zero-shot Foreign Object Detection (ZSFOD). MAEDAY, which is a 0-shot method, outperforms the 1-shot AD baseline.

Method	Shots	Indoor	Outdoor	Mean
PatchCore	1	98.2	73.2	85.7
MAEDAY	0	95.6	**85.6**	**90.6**

Num. of repetitions per image. We tested the effect of averaging the anomaly score from multiple inferences of the same image with different random masks. We used a varying number of repetitions per image, from as little as a single run to 64 runs. In Figure 3 we summarized the results. The performance seems to saturate at ~ 32 repetitions.
Figure 5: Examples of reconstruction for both normal and anomalous images from the MVTech dataset. The model is usually able to recover (a blurry version of) the normal images. In many cases this is enough for detecting anomalous regions.
Figure 6: **ZSFOD MAEDAY Foreign Object Detection results** with neither clean surface reference nor object references. “Total Score” is the average of “Diff” produced with 32 different random masks applied to the same image.

Training and inference time. We compare training and inference time in Table 3. We tested the running time for the 0-shot and 1-shot cases. Time was measured on an A100 GPU. For PatchCore training includes extracting features using a pretrained model and performing Core-Set clustering and amounts for 4 seconds. The reported training time for MAEDAY was measured when training for 50 iterations and took around 100 seconds. There is a trade-off between finetuning MAEDAY which takes time and using MAEDAY in its 0-shot form which does not require training but with an accuracy drop of 1.5%. The inference was performed in batches for PatchCore (batch-size=32). For MAEDAY, each query image is processed individually since we use the batch dimension to run multiple instances of the same image with different random masks. Despite the parallelization in PatchCore (and the
lack of it in MAEDAY) the inference time is in the same order of magnitude with 0.07 seconds for PatchCore and 0.15 for MAEDAY. This is partially thanks to the fact the MAE’s encoder inputs are only 25% of the tokens. The 75% of the tokens that need to be reconstructed are only introduced later as inputs to the decoder which is a much smaller network.

4.1. Foreign Object Detection

We also tested a proof-of-concept of using MAEDAY for Zero-Shot Foreign Object Detection (ZSFOD). FOD is a very important task in several real-world scenarios, e.g. in airport runways, where even very small objects on the ground can be dangerous for the planes. Unlike classic FOD where models are trained for detecting specific types of objects, here no training data of either an empty surface or the objects to be detected are provided. We treat FOD as detecting anomalies in the background surface texture. We captured videos of the ground in two environments, indoors (wooden floor) and outdoors (asphalt pavement). Some of the frames contain foreign objects. Objects include larger tools, e.g. a wrench, and smaller objects, e.g. a bolt. We extracted and labeled 20-50 frames with foreign objects and a similar number without any object for each of the environments. This dataset will be released.

Since we are the first to perform the task of ZSFOD, we chose to compare MAEDAY against the SOTA 1-shot AD method, PatchCore [Roth et al., 2022]. This is a very strong baseline since it uses an object-free reference. Table 5 summarizes the results. We observed strong results by MAEDAY for ZSFOD, MAEDAY performs close to (Indoors) or better (Outdoors) compared to 1-shot PatchCore, with an average improvement of +4.9%. Examples of images from the dataset along with their recovered outputs by MAEDAY and the final segmentation results are presented in Figure 6.

5. Conclusions and Future Work

We have suggested MAEDAY, using an ImageNet pre-trained MAE for the task of few-shot anomaly detection (FSAD). This is the first image-reconstruction-based method used in the low-shot regime. While image-reconstruction-based methods are not the strongest methods for AD, we showed they provide additional valuable information. An ensemble of an embedding-based method and MAEDAY sets a new SOTA for FSAD.

We have also suggested the new Zero-Shot Anomaly-Detection task (ZSAD), performing anomaly detection with no reference images. We have shown MAEDAY can be used for this task and performs surprisingly well despite working with novel objects and textures. Specifically for textures, MAEDAY outperforms the reference-based FSAD SOTA baseline.

We explored a new task of Foreign Object Detection (FOD) on the ground, with no prior reference to either a free-of-objects surface or to the objects to be detected. We treated this problem as ZSAD where the objects are an anomaly in the surface texture. We showed better results for this task compared with SOTA FSAD where an image of the surface is provided for reference. The dataset is also made available to the community.

In future work MAEDAY can be extended to better use the few available shots in FSAD. We can feed the model tokens (patches) from both the query image and the reference image(s). The model can be trained to use the transformer’s attention mechanism to share information between the reference tokens and query tokens. This way the recovered patches are not just guessed according to their surrounding and are more likely to fit the normal patch distribution.

Acknowledgments

This work was supported by the European Research Council (ERC-StG 757497 PI Giryes).
References

Bergmann, P., Batzner, K., Fauser, M., Sattlegger, D., Steger, C., 2021. The mvtec anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection. International Journal of Computer Vision 129, 1038–1059.

Cao, Y., Xu, X., Sun, C., Cheng, Y., Du, Z., Gao, L., Shen, W., 2023. Segment any anomaly without training via hybrid prompt regularization. arXiv preprint.

Chen, M., Kanade, T., Pomerleau, D., Rowley, H.A., 1999. Anomaly detection through registration. Pattern Recognition 32, 113–128.

Cohen, N., Hoshen, Y., 2020. Sub-image anomaly detection with deep pyramid correspondences. arXiv preprint arXiv:2005.02357.

Defard, T., Setkov, A., Loesch, A., Audigier, R., 2021. Padim: a patch distribution modeling framework for anomaly detection and localization, in: International Conference on Pattern Recognition, Springer. pp. 475–489.

Doveh, S., Schwartz, E., Xue, C., Feris, R., Bronstein, A., Giryes, R., Karlinsky, L., 2021. Metadapt: Meta-learned task-adaptive architecture for few-shot classification. Pattern Recognition Letters 149, 130–136.

Fei, Y., Huang, C., Jinkun, C., Li, M., Zhang, Y., Lu, C., 2020. Attribute restoration framework for anomaly detection. IEEE Transactions on Multimedia.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative adversarial nets. Advances in neural information processing systems 27.

Gudovskiy, D., Ishizaka, S., Kozuka, K., 2022. Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 98–107.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R., 2022. Masked autoencoders are scalable vision learners, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009.

Hinton, G.E., 1990. Connectionist learning procedures, in: Machine learning. Elsevier, pp. 555–610.

Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W., 2021. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.

Huang, C., Guan, H., Jiang, A., Zhang, Y., Spratling, M., Wang, Y.F., 2022. Registration based few-shot anomaly detection, in: European Conference on Computer Vision, Springer. pp. 303–319.

Japkowicz, N., Myers, C., Gluck, M., et al., 1995. A novelty detection approach to classification, in: IJCAI, Citeseer. pp. 518–523.

Jeong, J., Zou, Y., Kim, T., Zhang, D., Ravichandran, A., Dabeer, O., 2023. Winclip: Zero-few-shot anomaly classification and segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19606–19616.

Jing, Y., Zheng, H., Zheng, W., Dong, K., 2022. A pixel-wise foreign object debris detection method based on multi-scale feature inpainting. Aerospace 9, 480.

Li, C.L., Sohn, K., Yoon, J., Pfister, T., 2021. Cutpaste: Self-supervised learning for anomaly detection and localization, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9664–9674.

Munyer, T., Brinkman, D., Zhong, X., Huang, C., Kostantzos, I., 2022. Foreign object debris detection for airport pavement images based on self-supervised localization and vision transformer. arXiv preprint arXiv:2210.16901.

Munyer, T., Huang, P.C., Huang, C., Zhong, X., 2021. Fod-a: A dataset for foreign object debris in airports. arXiv preprint arXiv:2110.03072.

Noroozi, M., Shah, A., 2023. Towards optimal foreign object debris detection in an airport environment. Expert Systems with Applications 213, 118829.
Rezende, D., Mohamed, S., 2015. Variational inference with normalizing flows, in: International conference on machine learning, PMLR. pp. 1530–1538.

Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., Gehler, P., 2022. Towards total recall in industrial anomaly detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14318–14328.

Rudolph, M., Wandt, B., Rosenhahn, B., 2021. Same same but different: Semi-supervised defect detection with normalizing flows, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1907–1916.

Sakurada, M., Yairi, T., 2014. Anomaly detection using autoencoders with nonlinear dimensionality reduction, in: Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, pp. 4–11.

Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G., 2017. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery, in: International conference on information processing in medical imaging, Springer. pp. 146–157.

Sheynin, S., Benaim, S., Wolf, L., 2021. A hierarchical transformation-discriminating generative model for few shot anomaly detection, in: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8495–8504.

Snell, J., Swersky, K., Zemel, R., 2017. Prototypical networks for few-shot learning. Advances in neural information processing systems 30.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al., 2016. Matching networks for one shot learning. Advances in neural information processing systems 29.

Wyatt, J., Leach, A., Schmon, S.M., Willcocks, C.G., 2022. Anoddpm: Anomaly detection with denoising diffusion probabilistic models using simplex noise, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 650–656.

Xia, X., Pan, X., Li, N., He, X., Ma, L., Zhang, X., Ding, N., 2022. Gan-based anomaly detection: A review. Neurocomputing.

Yan, X., Zhang, H., Xu, X., Hu, X., Heng, P.A., 2021. Learning semantic context from normal samples for unsupervised anomaly detection, in: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3110–3118.

Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L., 2021. Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677.

Zavrtanik, V., Kristan, M., Skočaj, D., 2021. Reconstruction by inpainting for visual anomaly detection. Pattern Recognition 112, 107706.

Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R., 2018. Efficient gan-based anomaly detection. arXiv preprint arXiv:1802.06222.

Zhang, J., Saleeb, K., Feldhausen, T., Bi, S., Plotkowski, A., Womble, D., 2021. Self-supervised anomaly detection via neural autoregressive flows with active learning, in: NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications.

Zou, Y., Jeong, J., Pemula, L., Zhang, D., Dabeer, O., 2022. Spot-the-difference self-supervised pre-training for anomaly detection and segmentation, in: European Conference on Computer Vision, Springer. pp. 392–408.