CONSTRUCTION OF INFINITELY MANY SOLUTIONS FOR A CRITICAL CHOQUARD EQUATION VIA LOCAL POHOŽAEV IDENTITIES

FASHUN GAO, VITALY MOROZ, MINBO YANG*, AND SHUNNENG ZHAO

Abstract. In this paper, we study a class of the critical Choquard equations with axisymmetric potentials,

\[-\Delta u + V(|x'|, x'')u = \left(|x|^{-4}*|u|^2 \right)u \quad \text{in } \mathbb{R}^6,
\]

where \((x', x'') \in \mathbb{R}^2 \times \mathbb{R}^4\), \(V(|x'|, x'')\) is a bounded nonnegative function in \(\mathbb{R}^+ \times \mathbb{R}^4\), and \(\ast\) stands for the standard convolution. The equation is critical in the sense of the Hardy-Littlewood-Sobolev inequality. By applying a finite dimensional reduction argument and developing novel local Pohožaev identities, we prove that if the function \(r^2V(r, x'')\) has a topologically nontrivial critical point then the problem admits infinitely many solutions with arbitrary large energies.

Contents

1. Introduction and main results 1
2. Preliminary results 5
3. Finite-dimensional reduction 11
4. Local Pohožaev identities methods 20
References 36

1. INTRODUCTION AND MAIN RESULTS

The nonlinear Choquard equation

\[- \Delta u + V(x)u = \left(|x|^{-\mu} * |u|^q \right)|u|^{q-2}u, \quad \text{in } \mathbb{R}^N \tag{1.1}
\]

arises in various fields of mathematical physics, such as the description of the quantum theory of a polaron at rest [36] and the Hartree-Fock theory of one-component plasma which models of the electron trapped in its own hole [26]. First mathematical results on equation (1.1) are due to Lieb [26], who proved the existence and uniqueness, up to translations, of the ground state for (1.1) with \(N = 3, \mu = 1, q = 2\) and \(V\) a positive constant. Lieb’s results were improved and extended by Lions [28, 29] established, in particular, the existence of a sequence of radically symmetric solutions. In the case when \(V\) is a constant, Moroz and Van Schaftingen [33] proved regularity, positivity and radial symmetry of the ground states for an optimal range of \(q\), and described asymptotic decay of solutions at infinity. Ackermann [1] proposed a new approach to prove the existence of infinitely many geometrically distinct weak solutions in the case of a periodic potential \(V\). If the potential \(V\) has the form of a deep potential well \(\lambda a(x) + 1\) where \(a(x)\) is a nonnegative continuous function such that \(\Omega = \text{int} \ (a^{-1}(0))\) is a non-empty bounded open set with smooth boundary, in [4] the authors studied the existence and multiplicity of multi-bump shaped solution. The existence of nodal solutions for the nonlocal Choquard equation has also attracted a lot of interest, see for example [22, 38], the sign-changing solutions is hard to obtain due to the nonlocal interaction. The existence and concentration behavior of semiclassical solutions for the singularly perturbed...
subcritical Choquard equation have been considered in \cite{2,3,15,34,41}. Among them, Wei and Winter \cite{41} constructed families of solutions by a using a Lyapunov-Schmidt type reduction. Chen \cite{7} constructed multiple semiclassical solutions to the Choquard equation with an external potential by Lyapunov-Schmidt reduction argument. Luo et al. \cite{32} established the uniqueness of positive solutions that concentrating at the nondegenerate critical points of the potential by combining a local type of Pohožaev’s identities and blow-up techniques.

To state the main results, we first recall the Hardy-Littlewood-Sobolev inequality (see \cite[Theorem 4.3]{27}) to clarify the meaning of “critical” for the Choquard equation.

Proposition 1.1. Let \(t, r \geq 1 \) and \(0 < \mu < N \) be such that \(\frac{1}{r} + \frac{\mu}{N} + \frac{1}{t} = 2 \). Then there is a sharp constant \(C(N, \mu, t) \) such that, for \(f \in L^t(\mathbb{R}^N) \) and \(h \in L^r(\mathbb{R}^N) \),

\[
\left| \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{f(x)h(y)}{|x-y|^\mu} \, dx \, dy \right| \leq C(N, \mu, t) |f|_{L^t(\mathbb{R}^N)} |h|_{L^r(\mathbb{R}^N)}.
\]

If \(t = r = 2N/(2N - \mu) \), then

\[
C(t, N, \mu, r) = C(N, \mu) = \pi^{N/2} \frac{\Gamma\left(\frac{N}{2} - \frac{\mu}{2}\right)}{\Gamma\left(\frac{N}{2}\right)} \left\{ \frac{\Gamma\left(\frac{N}{2}\right)}{\Gamma(N)} \right\}^{-1 + \frac{\mu}{N}}.
\]

In this case there is equality achieved if and only if \(f \equiv Ch \) and

\[
h(x) = A(\gamma^2 + |x - a|^2)^{(2 - \mu)/2}
\]

for some \(A \in \mathbb{C}, 0 \neq \gamma \in \mathbb{R} \) and \(a \in \mathbb{R}^N \).

According to Proposition 1.1, the functional

\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u(x)|^p|v(y)|^p}{|x-y|^\mu} \, dx \, dy
\]

is well defined in \(H^1(\mathbb{R}^N) \times H^1(\mathbb{R}^N) \) if \(\frac{2N-\mu}{N} \leq p \leq \frac{2N-\mu}{N-2} \). Here, it is quite natural to call \(\frac{2N-\mu}{N} \) the lower Hardy-Littlewood-Sobolev critical exponent and \(2\mu = \frac{2N-\mu}{N-2} \) the upper Hardy-Littlewood-Sobolev critical exponent.

For the upper critical case, by using the moving plane methods in integral developed in \cite{8,9}, Lei \cite{25}, Du and Yang \cite{17}, Guo et al. \cite{23} classified independently the positive solutions of the critical Hartree equation

\[- \Delta u = \left(|x|^{-\mu} * |u|^{2^*_\mu} \right) |u|^{2^*_\mu - 2} u \quad \text{in } \mathbb{R}^N, \quad (1.2)\]

and proved that every positive solution of (1.2) must assume the form

\[
U_{z,\lambda}(x) = S^{(N-\mu)(2-N)/4(N-\mu+2)} C(N, \mu)^{2-N/(N-\mu+2)} [N(N-2)]^{N-2/4} \left(\frac{\lambda}{1 + \lambda^{2}|x-z|^2} \right)^{N-2}.
\]

In \cite{19} the authors considered the Brézis-Nirenberg type problem and established the existence, multiplicity and nonexistence of solutions for the nonlinear Choquard equation in bounded domain. Ghimenti and Pagliardini in \cite{21} studied the existence of multiple solutions for the Choquard equation with slightly subcritical exponent. In \cite{3}, by investigating the ground states of the critical Choquard equation with constant coefficients, the authors studied the semiclassical limit problem for the singularly perturbed Choquard equation in \(\mathbb{R}^3 \) and characterized the concentration behavior by variational methods. The planar case was considered in \cite{2}, where the authors established the existence of a ground state for the limit problem with critical exponential growth and then they also studied the concentration around the global minimum set. Gao and Yang in \cite{20} investigated the existence result for the strongly indefinite Choquard equation with upper critical exponent in the whole space. In \cite{18}, Gao et al. studied the critical
Choquard equations with subcritical perturbation and potential functions that might change sign and proved the existence of Mountain-Pass solution via a nonlocal version of the concentration-compactness principle. In [15], Ding et al. established a global compactness lemma and proved the multiplicity of high energy semiclassical states for a class of critical Choquard equations without lower perturbation using the Ljusternik-Schnirelman theory methods. In [45], the authors studied the existence of saddle type solutions. For recent progress on the study of the Choquard equation we may refer the readers to [4,11,16,19,35] for details.

The aim of this paper is to establish the existence of infinitely many solutions for the critical Choquard equation with an axisymmetric potential $V(x)$ of a special form,

$$-\Delta u + V(|x'|, x'')u = \left(|x'|^{-4} \ast |u|^2\right)u \quad \text{in} \quad \mathbb{R}^6,$$

where $(x', x'') \in \mathbb{R}^2 \times \mathbb{R}^4$, the potential $V \geq 0$ is bounded, belongs to C^1 and $V \not\equiv 0$. The exponent $p = 2$ is critical since $N = 6$ and $\mu = 4$. We assume that the function $r^2 V(r, x'')$ has a stable topologically nontrivial critical point in the following sense, which was introduced in [37]:

(V) The function $r^2 V(r, x'')$ has a critical point (r_0, x''_0) such that $r_0 > 0$, $V(r_0, x''_0) > 0$, and $\text{deg}(\nabla (r^2 V(r, x'')))(r_0, x''_0) \neq 0$.

The main result of this paper is the following theorem.

Theorem 1.2. If $V(|x'|, x'')$ satisfies assumption (V), then problem (1.4) has infinitely many solutions in $H^1(\mathbb{R}^6)$ and the energy of the solutions diverges to $+\infty$.

As far as we are aware, this is the first result of its kind for nonlocal Choquard equations with axisymmetric potentials. We will construct solutions of (1.4) with large number of bubbles in Theorem 1.2 by using a reduction argument together with the novel local Pohozaev’s identities. The idea is inspired by recent works [10,14,24,42] for non-singularly perturbed elliptic problems. It is well understood that the proofs of the existence of solutions with large number of bubbles for critical elliptic equations by reduction arguments depends heavily on the nondegeneracy of the solutions of the critical Lane-Emden equation. It is well known that the following equation

$$-\Delta u = u^{\frac{N+2}{N-2}}, \quad x \in \mathbb{R}^N,$$

has a unique family of positive two-parameter solutions of the form

$$U_{\xi, \lambda}(x) := [N(N-2)]^{\frac{N-2}{2}} \left(\frac{\lambda}{1 + \lambda^2 |x - \xi|^2}\right)^{\frac{N-2}{2}}.$$

Furthermore, equation (1.5) has an $(N+1)$-dimensional manifold of solutions given by

$$Z = \left\{ z_{\lambda, \xi} = [N(N-2)]^{\frac{N-2}{2}} \left(\frac{\lambda}{1 + \lambda^2 |x - \xi|^2}\right)^{\frac{N-2}{2}}, \xi \in \mathbb{R}^N, t \in \mathbb{R}^+ \right\}.$$

For every $Z \in Z$, it is said to be nondegenerate in the sense that the linearized equation

$$-\Delta v = Z^{\frac{4}{N-2}}v$$

in $D^{1,2}(\mathbb{R}^N)$ only admits solutions of the form

$$\eta = a D_t Z + b \cdot \nabla Z,$$

where $a \in \mathbb{R}, b \in \mathbb{R}^N$. In [42], Wei and Yan developed the technique that allowed to study the prescribed scalar curvature problem on S^N

$$-\Delta_{S^N} u + \frac{N(N-2)}{2} u = K(x) u^{\frac{N+2}{N-2}} \quad \text{on} \quad S^N.$$
Assuming that $K(x)$ is positive and rotationally symmetric and has a local maximum point between the poles, by using the stero-graphic projection, the prescribed scalar curvature problem can be reduced into

$$-\Delta u = K(x)u^{\frac{n+2}{n-2}} \quad \text{in } \mathbb{R}^N.$$

The authors took the number of the bubbles of the solutions as parameter and proved the existence of infinitely many non-radial positive solutions whose energy can be made arbitrarily large. We may also turn to the works by Deng, Lin, Yan [14], Guo, Peng, Yan [24] and Li, Wei, Xu [30] for the existence and local uniqueness of multi-bump solutions. For the critical Schrödinger equation

$$-\Delta u + V(|x|)u = u^{\frac{n+2}{n-2}} \quad \text{in } \mathbb{R}^N,$$

Chen, Wei and Yan [10] applied the reduction argument to study the existence of infinitely many positive solutions in the case of a radially symmetric potentials V. In [37], Peng, Wang and Yan developed a new idea that allowed also to construct bubbling solutions concentrating at saddle points of some functions. They used the Pohožaev identities to find algebraic equations which determine the location of the bubbles. Results on the existence of infinitely many solutions for other elliptic problems can also be found in [5, 6, 39, 40, 43, 44] and the references therein.

Define

$$H_s = \{u \in D^{1,2}(\mathbb{R}^N), u(x_1, -x_2, x''') = u(x_1, x_2, x'''), \quad u(r \cos \theta, r \sin \theta, x''') = u(r \cos(\theta + \frac{2j\pi}{m}), r \sin(\theta + \frac{2j\pi}{m}), x''')\}$$

and let

$$Z_j(x) = \delta_j \Phi_j(x), \quad Z_j(x) = \sum_{j=1}^{m} Z_j, \lambda(x), \quad Z_j(x) = \sum_{j=1}^{m} U_j, \lambda(x),$$

where x'' is a vector in \mathbb{R}^d. By the weak symmetry of $V(x)$, we have $V(z_j) = V(\tau, x''), j = 1, \cdots, m$. We will use U_j, λ (see (1.3)) as an approximate solution. Let $\delta > 0$ be a small constant, such that $r^2V(r, x'') > 0$ if $|(r, x'') - (r_0, x_0'')| \leq 10\delta$. Let $\xi(x) = \xi(|x'|, x'')$ be a smooth function satisfying $\xi = 1$ if $|(r, x'') - (r_0, x_0'')| \leq \delta$, $\xi = 0$ if $|(r, x'') - (r_0, x_0'')| > 2\delta$, and $0 \leq \xi \leq 1$. Denote

$$Z_j, \lambda(x) = \xi U_j, \lambda(x), \quad Z_j, \tau, x'', \lambda(x) = \sum_{j=1}^{m} Z_j, \lambda(x), \quad Z_j, \tau, x'', \lambda(x) = \sum_{j=1}^{m} U_j, \lambda(x),$$

and

$$Z_j, 1 = \frac{\partial Z_j, \lambda}{\partial \lambda}, \quad Z_j, 2 = \frac{\partial Z_j, \lambda}{\partial \tau}, \quad Z_j, k = \frac{\partial Z_j, \lambda}{\partial x''}, \quad \text{for } k = 3, \cdots, N, \quad j = 1, \cdots, m.$$

In this paper, we always assume that $m > 0$ is a large integer, $\lambda \in [L_0m^2, L_1m^2]$ for some constants $L_1 > L_0 > 0$ and

$$|(\tau, x'') - (r_0, x_0'')| \leq \vartheta < \delta,$$

where $\vartheta > 0$ is a small constant.

In order to prove Theorem 1.2, we will prove the following result.

Theorem 1.3. Under the assumptions of Theorem 1.2, there exists a positive integer $m_0 > 0$, such that for any integer $m \geq m_0$, (1.4) has a solution u_m of the form

$$u_m = Z_m, \tau, x', \lambda_m + \phi_{\tau, x}, \tau, x', \lambda_m = \sum_{j=1}^{m} \xi U_j, \lambda_m + \phi_{\tau, x}, \tau, x', \lambda_m,$$

where $\phi_{\tau, x}, \tau, x', \lambda_m \in H_s$ and $\lambda_m \in [L_0m^2, L_1m^2]$. Moreover, as $m \to \infty$, $(\tau_m, x_m') \to (r_0, x_0''),$ and $\lambda_m^2 \phi_{\tau, x}, \tau, x', \lambda_m \|_{L^\infty} \to 0.$
Before we finish this section, we would like to point out the main difficulties in the study of nonlocal Choquard equations. First of all, the uniqueness and nondegeneracy of the ground–states is largely open. The subcritical case for (1.1) was partially solved in [31,41,46]. In [31,41] the authors proved the uniqueness and nondegeneracy for the case \(N = 3, \mu = 1 \) and \(q = 2 \). Chen [7] generalized the nondegeneracy result to higher dimensions and Xiang [46] generalized the results further by showing the nondegeneracy when \(q > 2 \) is close 2. For the critical case (1.2), the nondegeneracy property is mostly open. As far as we know, the only result is [17], there the authors established the nondegeneracy result when \(\mu \) is close to \(N \). Recently, the last two authors of the present paper obtained the nondegeneracy result for \(N = 6, \mu = 4 \). In addition, the nonlocal convolution part in (1.1) makes it much more difficult to establish the local Pohožaev identities and to obtain the error estimates.

The paper is organized as follows: In Section 2, we give some preliminary results including a nondegeneracy result for the critical Hartree equation (2.4). In Section 3, we carry out the reduction procedure for the critical Choquard equation (1.4). In Section 4, we prove our main results by establishing local Pohožaev identities.

2. Preliminary results

In this section, we will introduce some estimates involving the convolution term and introduce a nondegeneracy result for the limit critical Hartree equation (2.4).

Lemma 2.1. (Lemma B.1, [42]) For each fixed \(k \) and \(j, k \neq j \), let

\[
g_{k,j}(x) = \frac{1}{(1 + |x - z_j|)^\alpha} \frac{1}{(1 + |x - z_k|)^\beta},
\]

where \(\alpha \geq 1 \) and \(\beta \geq 1 \) are two constants. Then, for any constants \(0 < \delta \leq \min\{\alpha, \beta\} \), there is a constant \(C > 0 \), such that

\[
g_{k,j}(x) \leq \frac{C}{|z_k - z_j|^\delta} \left(\frac{1}{(1 + |x - z_j|)^{\alpha + \beta - \delta}} + \frac{1}{(1 + |x - z_k|)^{\alpha + \beta - \delta}} \right).
\]

Lemma 2.2. (Lemma B.2, [42]) For any constant \(0 < \delta < N - 2, N \geq 5 \), there is a constant \(C > 0 \), such that

\[
\int_{\mathbb{R}^N} \frac{1}{|x - y|^{N-\delta}} \frac{1}{(1 + |y|)^{2+\delta}} dy \leq \frac{C}{(1 + |x|)^\delta}.
\]

Using the methods to prove Lemma B.2 in [42], we can also establish the following lemma.

Lemma 2.3. For \(N = 6 \) and \(1 \leq i \leq m \), there is a constant \(C > 0 \), such that

\[
|x|^{-4} \frac{\lambda^2}{(1 + \lambda|x - z_i|)^{6+\eta}} \leq \frac{C}{(1 + \lambda|x - z_i|)^3},
\]

where \(\eta > 0 \).

Proof. First, we notice that

\[
|x|^{-4} \frac{\lambda^2}{(1 + \lambda|x - z_i|)^{6+\eta}} = \int_{\mathbb{R}^6} \frac{1}{|y|^4 (1 + \lambda|x - z_i - y|)^{6+\eta}} dy \leq \int_{\mathbb{R}^6} \frac{1}{|y|^4 (1 + \lambda|x - z_i - y|)^{6+\eta}} dy.
\]

Let \(d = \frac{\lambda}{2} |x - z_i| > 1 \). Then, we have

\[
\int_{B_d(0)} \frac{1}{|y|^4 (1 + |\lambda x - \lambda z_i - y|)^{6+\eta}} dy \leq \frac{C}{(1 + d)^{6+\eta}} \int_{B_d(0)} \frac{1}{|y|^4} dy \leq \frac{Cd^2}{(1 + d)^{6+\eta}} \leq \frac{C}{(1 + d)^4}.
\]

and

\[
\int_{B_d(\lambda x - \lambda z_i)} \frac{1}{|y|^4 (1 + |\lambda x - \lambda z_i - y|)^{6+\eta}} dy \leq \frac{1}{d} \int_{B_d(0)} \frac{1}{|y|^4} dy \leq \frac{C}{(1 + d)^{4+\eta}}.
\]
Suppose that \(y \in \mathbb{R}^6 \setminus (B_d(0) \cup B_d(\lambda x - \lambda z_i)) \). Then
\[
|\lambda x - \lambda z_i - y| \geq \frac{1}{2}|\lambda x - \lambda z_i|, |y| \geq \frac{1}{2}|\lambda x - \lambda z_i|
\]
and, we have
\[
\frac{1}{|y|^4} \leq \frac{1}{(1 + d)^4} \quad \frac{1}{|y|^{2+\eta}} \leq C_1
\]
If \(|y| \leq 2|\lambda x - \lambda z_i|\), we have
\[
\frac{1}{|y|^4} \leq \frac{1}{(1 + d)^4} \quad \frac{1}{|y|^{2+\eta}} \leq \frac{C}{|y|^{2+\eta}}
\]
If \(|y| \geq 2|\lambda x - \lambda z_i|\), we have
\[
\frac{1}{|y|^4} \leq \frac{1}{(1 + d)^4} \quad \frac{1}{|y|^{2+\eta}} \leq \frac{C}{|y|^{2+\eta}}
\]
Thus, we have
\[
\int_{\mathbb{R}^6 \setminus (B_d(0) \cup B_d(\lambda x - \lambda z_i))} \frac{1}{|y|^4} \leq \frac{C}{(1 + d)^4} \int_{\mathbb{R}^6} \frac{1}{|y|^{2+\eta}} \leq \frac{C}{(1 + d)^4}.
\]

Using (1.3) and the identity (see (37) in [12] for example)
\[
\int_{\mathbb{R}^6} \frac{1}{|x-y|^{2s}} \left(\frac{1}{1+|y|^2} \right)^{N-s} dy = I(s) \left(\frac{1}{1+|x|^2} \right)^s, \quad 0 < s < \frac{N}{2},
\]
where
\[
I(s) = \frac{\pi \frac{N}{2} \Gamma(\frac{N-2s}{2})}{\Gamma(N-s)}, \quad \text{and} \quad \Gamma(s) = \int_0^{+\infty} x^{s-1} e^{-x} dx, s > 0,
\]
we have
\[
|x|^{-4} * |U_{z\lambda}(x)|^2 = \int_{\mathbb{R}^6} \frac{U_{z\lambda}^2(y)}{|x-y|^4} dy = CU_{z\lambda}(x),
\]
where \(N \geq 5 \) and \(C = I(2)S^{(N-\mu)(2-N)} \frac{\Gamma^{\frac{2-N}{2}}}{\Gamma^2} [N(N-2)]^{\frac{N-2}{2}} \). So, we have the following lemma.

Lemma 2.4. For \(N = 6 \) and \(1 \leq i \leq m \), there is a constant \(C > 0 \), such that
\[
|x|^{-4} * |U_{z\lambda}(x)|^2 = CU_{z\lambda}(x).
\]

Lemma 2.5. For every \(i \neq 1, \alpha > 3 \), there is a constant \(C > 0 \), such that
\[
\int_{\mathbb{R}^6} \frac{1}{(1 + \lambda x - \lambda z_i)^\alpha} \left(1 + |y - \lambda z_i|^2 \right)^2 dy = \frac{C}{(\lambda|z_1 - z_i|)^4}.
\]

Proof. First, by Lemma 2.1, we have
\[
\int_{\mathbb{R}^6} \frac{1}{(1 + \lambda x - \lambda z_i)^\alpha} \left(1 + |y - \lambda z_i|^2 \right)^2 dy
\]
\[
\leq \frac{C}{(\lambda|z_1 - z_i|)^4} \int_{\mathbb{R}^6} \left(\frac{1}{1 + |y - \lambda z_i|^2} + \frac{1}{(1 + |y - \lambda z_i|^2)^2} \right) dy = \frac{C}{(\lambda|z_1 - z_i|)^4}.
\]
Next, we notice that
\[
\int_{\mathbb{R}^6} \frac{1}{(1 + \lambda x - \lambda z_i)^\alpha} \left(1 + |y - \lambda z_i|^2 \right)^2 dy
\]
\[
= \int_{\mathbb{R}^6} \frac{1}{(1 + |y|^2)^\alpha} \left(1 + |y + \lambda z_1 - \lambda z_i|^2 \right)^2 dy.
\]
Let \(d = \frac{1}{2}|z_1 - z_i| > 1 \). Then, we have
\[
\int_{B_d(0)} \frac{1}{(1 + |y|^2)^\alpha} \frac{1}{(1 + |y + \lambda z_1 - \lambda z_2|^2) \, dy} \geq \frac{1}{(1 + (3d)^2)^\alpha} \int_{B_4(0)} \frac{1}{(1 + |y|^2)^\alpha} \, dy \geq \frac{C}{d^4},
\]
and
\[
\int_{B_d(\lambda z_1 - \lambda z_2)} \frac{1}{(1 + |y|^2)^\alpha} \frac{1}{(1 + |y + \lambda x_1 - \lambda z_2|^2) \, dy} \geq \frac{1}{(1 + (3d)^2)^\alpha} \int_{B_4(\lambda z_1 - \lambda z_2)} \frac{1}{(1 + |y + \lambda z_1 - \lambda z_2|^2) \, dy} \geq \frac{C}{d^2 \alpha}.
\]

Let \(z \in \mathbb{R}^6 \setminus (B_d(0) \cup B_d(\lambda z_1 - \lambda z_2)) \) with \(|z| = 2d \) and \(|z + \lambda z_1 - \lambda z_2| = 2d \). Then, we have
\[
\int_{\mathbb{R}^6 \setminus (B_d(0) \cup B_d(\lambda z_1 - \lambda z_2))} \frac{1}{(1 + |y|^2)^\alpha} \frac{1}{(1 + |y + \lambda z_1 - \lambda z_2|^2) \, dy} \geq \int_{B_d(z)} \frac{1}{(1 + |y|^2)^\alpha} \frac{1}{(1 + |y + \lambda z_1 - \lambda z_2|^2) \, dy} \geq \frac{C}{(1 + (3d)^2)^\alpha} \int_{B_4(z)} \frac{1}{(1 + |y|^2)^\alpha} \, dy = \frac{C}{d^4}.
\]
Thus, we can obtain
\[
\int_{\mathbb{R}^6} \frac{1}{(1 + |y - \lambda z_1|^2)^\alpha} \frac{1}{(1 + |y - \lambda z_2|^2) \, dy} \geq \frac{C}{(\lambda |z_1 - z_2|)^4}.
\]
\(\square \)

To prove Theorem 1.2, we will use a nondegeneracy result. From [17, 25], we know
\[
U_{0,1}(x) := \sqrt{2} S^{-\frac{1}{2}} C(6, 4)^{-\frac{1}{2}} \frac{1}{1 + |x|^2},
\]
(2.3)
where \(C(6, 4) = \frac{1}{4\pi} \frac{\Gamma(2)}{\Gamma(4)} \left\{ \frac{\Gamma(6)}{\Gamma(3)} \right\}^{\frac{1}{4}}, \) is the unique family positive solutions of the critical Hartree equations:
\[
- \Delta u = \frac{1}{2} (I_2 * u^2) u, \quad \text{in} \quad \mathbb{R}^6,
\]
(2.4)
where \(I_2 : \mathbb{R}^6 \to \mathbb{R} \) is the Riesz potential defined at each point \(x \in \mathbb{R}^N \setminus \{0\} \) by
\[
I_2(x) = \frac{A_2}{|x|^4}, \quad \text{where} \quad A_2 = \frac{\Gamma(2)}{\Gamma(1) \pi \frac{N}{2} 2^2}.
\]
Here the coefficient \(\frac{1}{2} \) is taken to simplify the computations. In [47], Yang and Zhao proved a nondegeneracy result, i.e.

Lemma 2.6. \((\text{see [47, Theorem 2.1]})\) The linearization of equation (2.4) around the solution \(U_{0,1}, \)
\[
- \Delta \varphi = \frac{1}{2} (I_2 * U_{0,1}^2) \varphi + (I_2 * U_{0,1} \varphi) U_{0,1}
\]
(2.5)
only admits solutions in \(D^{1,2}(\mathbb{R}^6) \) of the form
\[
\varphi = \overline{a} D_\lambda U_{0,1} + b \cdot \nabla U_{0,1}, \quad \overline{a} \in \mathbb{R}, \quad b \in \mathbb{R}^6.
\]
\[\text{Proof.} \] We sketch the proof for the convenience of the readers. Equation (2.4) is equivalent to the following system
\[
\begin{cases}
- \Delta u = uw & \text{in} \quad \mathbb{R}^6, \\
- \Delta w = \frac{1}{2} u^2 & \text{in} \quad \mathbb{R}^6.
\end{cases}
\]
(2.6)
We define the Talenti bubbles functions
\[U_{0,1}(x) := \sqrt{2}S^{-\frac{1}{2}}C(6,4)^{-\frac{1}{2}}24 \left(\frac{1}{1+|x|^2} \right)^2 \] and \[W := \frac{1}{8\omega_6} \int_{\mathbb{R}^6} |x-y|^4 dy. \] (2.7)

Then \((U_{0,1},W)\) solves system (2.6). The linearized equation of system (2.6) around the solution \((U_{0,1},W)\) is given by
\[
\begin{cases}
-\Delta \varphi = \varphi W + \psi U_{0,1} & \text{in } \mathbb{R}^6, \\
-\Delta \psi = \varphi U_{0,1} & \text{in } \mathbb{R}^6.
\end{cases}
\] (2.8)

We aim to prove that equation (2.8) only admits solutions of the form
\[
(\varphi, \psi) = \bar{a}(2U_{0,1} + rU_{0,1}', 2W + rW') + \sum_{j=1}^{6} b_j \frac{\partial(U_{0,1},W)}{\partial x_j},
\]
where \(\bar{a}, b_j \in \mathbb{R}\).

For general \(N\), let \(r = |x|\) and \(\theta = \frac{x}{|x|} \in S^{N-1}\), we denote \(\Delta_r\) respectively \(\Delta_{S^{N-1}}\) to be the Laplace operator in radial coordinates and the Laplace-Beltrami operator:
\[
\Delta_r = \frac{\partial^2}{\partial r^2} + \frac{N-1}{r} \frac{\partial}{\partial r}, \\
\Delta_{S^{N-1}} = \frac{1}{\sqrt{g}} \sum \frac{\partial}{\partial y_j} (\sqrt{g} g^{ij} \frac{\partial}{\partial y_j}),
\]
where \(g = \det g^{ij}\) and \([g^{ij}] = [g_{ij}]^{-1}\). Clearly
\[
\Delta = \Delta_r + \frac{1}{r^2} \Delta_{S^{N-1}}. \tag{2.9}
\]

Let
\[
\varphi_k(x) = \int_{S^5} \varphi(r,\theta) Y_k(\theta) d\theta, \\
\psi_k(x) = \int_{S^5} \psi(r,\theta) Y_k(\theta) d\theta.
\]

Then, we can find
\[
\Delta \varphi_k = \int_{S^5} \Delta_r \varphi(r,\theta) Y_k(\theta) d\theta \\
= \int_{S^5} \Delta_r \varphi_k d\theta - \frac{1}{r^2} \int_{S^5} \Delta_{S^{N-1}} \varphi_k d\theta \\
= - (\varphi_k W + \psi_k U_{0,1}) + \frac{\lambda_k}{r^2} \varphi_k, \tag{2.10}
\]
and
\[
\Delta \psi_k = - \varphi_k U_{0,1} + \frac{\lambda_k}{r^2} \psi_k. \tag{2.11}
\]

For any radial function \(f(r)\), it is easy to check that
\[
(\Delta f)' = (f''(r) + \frac{N-1}{r} f'(r))' = f'''(r) + \frac{N-1}{r} f''(r) - \frac{N-1}{r^2} f'(r).
\]

Since \((U_{0,1},W)\) satisfies system (2.6) and is radially symmetric, then we have
\[
- \Delta U_{0,1} = -(U_{0,1}'' + \frac{5}{r} U_{0,1}') = U_{0,1} W.
\]

thus
\[
U_{0,1}'' + \frac{5}{r} U_{0,1}' + U_{0,1} W = 0.
\]
Differentiating both sides with respect to r, we can find
\[
U''_{0,1} + \frac{5}{r} U''_{0,1} - \frac{5}{r^2} U'_{0,1} + U'_{0,1} W + U_{0,1} W' = 0,
\]
equivalently
\[
\Delta U'_{0,1} - \frac{5}{r^2} U'_{0,1} + U'_{0,1} W + U_{0,1} W' = 0, \tag{2.12}
\]
and
\[
\Delta W' - \frac{5}{r^2} W' + U_{0,1} W' = 0. \tag{2.13}
\]

If $k \geq 8$, then we claim that $\varphi_k \equiv \psi_k \equiv 0$. Suppose that the claim is false. Multiplying (2.10) and (2.11) by U' and W', respectively, and integrating over B_r centered at the origin with radius r, we obtain
\[
0 = \int_{B_r} \Delta \varphi_k U'_{0,1} + \int_{B_r} \varphi_k W U'_{0,1} + \int_{B_r} \psi_k U_{0,1} U'_{0,1} - \int_{B_r} \frac{\lambda_k}{r^2} \varphi_k U'_{0,1}. \tag{2.14}
\]
We can calculate the first term of the above equation as follows
\[
\int_{B_r} \Delta \varphi_k U'_{0,1} = \int_{B_r} \text{div}(\nabla \varphi_k) U'_{0,1} = \int_{\partial B_r} U'_{0,1} \frac{\partial \varphi_k}{\partial \nu} - \int_{\partial B_r} \varphi_k \frac{\partial U'_{0,1}}{\partial \nu} + \int_{B_r} \Delta U'_{0,1} \varphi_k. \tag{2.15}
\]
Substituting (2.12) and (2.15) into (2.14), we have
\[
0 = \int_{B_r} \Delta \varphi_k U'_{0,1} + \int_{B_r} \varphi_k W U'_{0,1} + \int_{B_r} \psi_k U_{0,1} U'_{0,1} - \int_{B_r} \frac{\lambda_k}{r^2} \varphi_k U'_{0,1}
\]
\[
\quad = \int_{\partial B_r} \left(U'_{0,1} \frac{\partial \varphi_k}{\partial \nu} - \varphi_k \frac{\partial U'_{0,1}}{\partial \nu} \right) - \int_{B_r} U'_{0,1} W' \varphi_k + \int_{B_r} \psi_k U_{0,1} U'_{0,1} + \int_{B_r} \frac{5 - \lambda_k}{r^2} \varphi_k U'_{0,1}. \tag{2.16}
\]
With similar arguments applied to (2.11), we can see that
\[
0 = \int_{B_r} \Delta \psi_k W' + \int_{B_r} \varphi_k U_{0,1} W' - \int_{B_r} \frac{\lambda_k}{r^2} \psi_k U'_{0,1}
\]
\[
\quad = \int_{\partial B_r} \left(W' \frac{\partial \psi_k}{\partial \nu} - \psi_k \frac{\partial W'}{\partial \nu} \right) + \int_{B_r} U_{0,1} U'_{0,1} \varphi_k - \int_{B_r} \psi_k U_{0,1} U'_{0,1} + \int_{B_r} \frac{5 - \lambda_k}{r^2} \psi_k W'. \tag{2.17}
\]
Adding (2.16) and (2.17), we can deduce
\[
0 = \int_{\partial B_r} \left(U'_{0,1} \frac{\partial \varphi_k}{\partial \nu} - \varphi_k \frac{\partial U'_{0,1}}{\partial \nu} \right) + \int_{\partial B_r} \left(W' \frac{\partial \psi_k}{\partial \nu} - \psi_k \frac{\partial W'}{\partial \nu} \right) + \int_{B_r} \frac{5 - \lambda_k}{r^2} (\varphi_k U'_{0,1} + \psi_k U'_{0,1}). \tag{2.18}
\]
By choosing suitable r and we will estimate $J_1(r)$, $J_2(r)$ and $J_3(r)$, respectively. Since $\varphi_k \not\equiv 0$, without loss of generality, we may assume that there exists some $r_1 > 0$ such that $\varphi_k(r) < 0$ in $(0, r_1)$, $\varphi_k(r_1) = 0$. Then we can deduce that $\varphi_k'(r_1) > 0$.

Next, we are going to prove that $\psi_k(r) < 0$ for r small enough. Assuming the contrary, we deduce from (2.11) that $\psi_k(r)$ can not have a positive local maximum in $(0, r_1)$, hence $\psi_k(r) > \psi_k(0) \geq 0$ for $r \in (0, r_1)$. Combining (2.10) with (2.6), we obtain
\[
0 > \int_{B_{r_1}} \left(\frac{\lambda_k}{r^2} \varphi_k - \psi_k U_{0,1} \right) U_{0,1} = \int_{B_{r_1}} (\Delta \varphi_k + \varphi_k W) U_{0,1}
\]
\[
\quad = \int_{\partial B_{r_1}} U_{0,1} \frac{\partial \varphi_k}{\partial \nu} > 0,
\]
which leads to a contradiction. It is sufficient to show that there exists some \(r_2 > 0 \) such that \(\psi_k(r) < 0 \) in \((0, r_2), \psi_k(r_2) = 0 \) and \(\psi_k'(r_2) > 0 \). We divide our argument into three cases:

(1). If \(r_1 = r_2 \), we take \(r = r_1 = r_2 \). It is easy to check that \(J_1(r) < 0, J_2(r) < 0, J_3(r) < 0 \), that contradicts to (2.18).

(2). If \(r_1 > r_2 \), obviously \(J_2(r_2) < 0, J_3(r_2) < 0 \). The difficulty here is to evaluate \(J_1(r_2) \). Define

\[
F(r) = r^5 \varphi' \varphi_k - r^5 \varphi'' \varphi_k.
\]

For any \(r \in (r_2, r_1) \), from (2.10) and (2.12) we have

\[
F'(r) = r^5(\varphi'' + \frac{5}{r} \varphi') \varphi'_{0,1} - r^5(\varphi''_{0,1} + \frac{5}{r} \varphi'_{0,1}) \varphi_k
= (\lambda_k - 5)r^3 \varphi' \varphi_k + r^5 \varphi'_{0,1}(W' \varphi_k - \varphi_{0,1}).
\]

To obtain a contradiction, assume that \(\psi_k > 0 \) does not hold for all \(r \in (r_2, r_1) \). Then \(\psi_k \) must have a zero for some \(r_0 \in (r_2, r_1) \), such that \(\psi_k(r) > 0, r_2 < r < r_0 \) and \(\psi_k'(r_0) < 0 \). For any \(r_2 < r < r_0, \psi_k(r) \) must have a local maximum. From the fact that

\[
\Delta \psi_k = -\varphi_k U_{0,1} + \frac{\lambda_k}{r^2} \psi_k > 0, \quad r_2 < r < r_0,
\]

we know \(\psi_k > 0 \) for all \(r_2 < r < r_1 \). Since \(F'(r) > 0, r_2 < r < r_1 \), then \(F(r_2) < F(r_1) < 0 \). Then we can deduce that

\[
J_1(r_2) = \int_{\partial B_{r_2}} r^{-5} F(r) < 0,
\]

which contradicts with (2.18).

(3). If \(r_2 > r_1 \). Similar to the argument of (2), we need to evaluate \(J_2(r_1) \). Define

\[
G(r) = r^5 W' \psi_k - r^5 W'' \psi_k.
\]

We know that, for any \(r_1 < r < r_2 \),

\[
G'(r) = (\lambda_k - 5)r^3 W' \psi_k - r^5 U_{0,1}(W' \varphi_k - \varphi_{0,1}).
\]

In order to prove \(G'(r) > 0 \) for \(r_1 < r < r_2 \), we proceed to show that \(\varphi_k > 0, r \in (r_1, r_2) \). On the contrary, suppose that \(\varphi_k > 0 \) does not hold for all \(r_1 < r < r_2 \). Then \(\varphi_k \) must have a zero for some \(r_3 \in (r_1, r_2) \), such that \(\varphi_k(r) > 0, r_1 < r < r_3 \) and \(\varphi_k'(r_3) < 0 \). Therefore

\[
0 < \int_{B_{r_3} \setminus B_{r_1}} (\frac{\lambda_k}{r^2} \varphi_k - \psi_k U_{0,1}) U_{0,1} = \int_{B_{r_3} \setminus B_{r_1}} (\Delta \varphi_k + \varphi_k W) U_{0,1}
= \int_{\partial B_{r_3}} U_{0,1} \frac{\partial \varphi_k}{\partial \nu} - \int_{\partial B_{r_1}} U_{0,1} \frac{\partial \varphi_k}{\partial \nu} < 0,
\]

Then we can deduce that \(J_2(r_1) < 0 \) and (2.18) gives a contradiction.

From above arguments, we can find \((\varphi_k, \psi_k) \equiv 0 \) for \(k \geq 8 \). Therefore, the linearization of system (2.6) around the solution \((U_{0,1}, W)\) has a kernel with at most 7 dimensions. On the other hand, when \(k = 1 \) we check at once that \((\varphi_1, \psi_1) = (2U_{0,1} + rU_{0,1}' + 2W + rW')\) is a solution, when \(k = 2, \cdots, 7 \), \(\frac{\partial (U_{0,1}, W)}{\partial x_j} (1 \leq j \leq 6) \) are solutions. Since \((2U_{0,1} + rU_{0,1}' + 2W + rW')\) and \(\frac{\partial (U_{0,1}, W)}{\partial x_j} (1 \leq j \leq 6) \) are linearly independent, the family of solutions of (2.8) is given by \((\varphi, \psi) = a(2U_{0,1} + rU_{0,1}' + 2W + rW') + \sum_{j=1}^6 b_j \frac{\partial (U_{0,1}, W)}{\partial x_j} \) for some \(a, b_j \in \mathbb{R} \).

□
3. Finite-dimensional reduction

In this section, we carry out the finite-dimensional reduction argument in a weighted space introduced in [42]. In this way, we can obtain a good estimate for the error term. Let

\[\|u\|_* = \sup_{x \in \mathbb{R}^6} \left(\sum_{j=1}^{m} \frac{1}{(1 + \lambda |x - z_j|)^{2+\tau}} \right)^{-1} \lambda^{-2} |u(x)|, \]

and

\[\|h\|_{**} = \sup_{x \in \mathbb{R}^6} \left(\sum_{j=1}^{m} \frac{1}{(1 + \lambda |x - z_j|)^{4+\tau}} \right)^{-1} \lambda^{-4} |h(x)|, \]

where \(\tau = \frac{1}{2} \).

Consider

\[
\begin{align*}
-\Delta \phi + V(r, x''') \phi - \left(|x|^{-4} * |Z_{\tau, \tau'}(\lambda)|^2 \right) \phi - 2 \left(|x|^{-4} * (Z_{\tau, \tau'}(\lambda) \phi) \right) Z_{\tau, \tau'}(\lambda) \\
= h + \sum_{l=1}^{6} c_l \sum_{j=1}^{m} \left(|x|^{-4} * |Z_{\tau_j, \lambda_j}|^2 \right) Z_{\tau_j, \lambda_j} \lambda_j \quad \text{in } \mathbb{R}^6, \\
\phi \in H_s, \quad \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left(|x|^{-4} * |Z_{\tau_j, \lambda_j}|^2 \right) Z_{\tau_j, \lambda_j} \phi \ dx = 0, \quad l = 1, 2, \ldots, 6,
\end{align*}
\]

for some real numbers \(c_l \).

Lemma 3.1. Suppose that \(\phi_m \) solves (3.1) for \(h = h_m \). If \(\|h_m\|_{**} \to 0 \) as \(m \to \infty \), then \(\|\phi_m\|_* \to 0 \).

Proof. We argue by contradiction. Suppose that there exist \(m \to +\infty, \tau_m \to r_0, y_m^0, y_{m0}, \lambda_m \in [L_0 m^2, L_1 m^2] \) and \(\phi_m \) solving (3.1) for \(h = h_m, \lambda = \lambda_m, \tau = \tau_m, y'' = y''_m \), with \(\|h_m\|_{**} \to 0 \) and \(\|\phi_m\|_* \geq c > 0 \). We may assume that \(\|\phi_m\|_* = 1 \).

By (3.1), we have

\[
|\phi_m(x)| \leq C \int_{\mathbb{R}^6} \frac{1}{|y - x|^4} \left(|y|^{-4} * (Z_{\tau, \tau'}(\lambda) \phi_m) \right) Z_{\tau, \tau'}(\lambda) \ dy + C \int_{\mathbb{R}^6} \frac{1}{|y - x|^4} \left(|y|^{-4} * |Z_{\tau, \tau'}(\lambda)|^2 \right) |\phi_m(y)| \ dy \\
+ C \sum_{l=1}^{N} |c_l| \left[\sum_{j=1}^{m} \int_{\mathbb{R}^6} \frac{1}{|y - x|^4} \left(|y|^{-4} * (Z_{\tau_j, \lambda_j} \phi_m) \right) Z_{\tau_j, \lambda_j} \ dy \right] + \left[\sum_{j=1}^{m} \int_{\mathbb{R}^6} \frac{1}{|y - x|^4} \left(|y|^{-4} * |Z_{\tau_j, \lambda_j}|^2 \right) Z_{\tau_j, \lambda_j} \ dy \right] \\
+ C \int_{\mathbb{R}^6} \frac{1}{|y - x|^4} |h_m(y)| \ dy.
\]

To estimate the first term in the right side of (3.2), from the fact that

\[
Z_{\tau, \tau'}(\lambda) \leq C \sum_{j=1}^{m} \frac{\lambda^2}{(1 + \lambda |x - z_j|)^4},
\]
applying Lemma 2.3, we have
\[
\int_{\mathbb{R}^6} \frac{1}{|y - x|^4} \left(|y|^{-4} \ast (Z_{\tau, x''}, \lambda \phi_m) \right) Z_{\tau, x''}(y) dy \\
\leq C \|\phi_m\|_\ast \|Z_{\tau, x''}, \lambda\|_\ast \int_{\mathbb{R}^6} \frac{1}{|y - x|^4} \sum_{j=1}^{m} \frac{\lambda^2}{(1 + |y - z_j|)^4} \sum_{j=1}^{m} \frac{\lambda^2}{(1 + |y - z_j|)^{2+\tau}} dy \\
= C \|\phi_m\|_\ast \lambda^2 \int_{\mathbb{R}^6} \frac{1}{|y - \lambda x|^4} \sum_{j=1}^{m} \frac{1}{(1 + |y - \lambda z_j|)^4} \sum_{j=1}^{m} \frac{1}{(1 + |y - \lambda z_j|)^{2+\tau}} dy.
\] (3.3)

Now, we may define
\[
\Omega_j = \left\{ x = (x', x'') \in \mathbb{R}^2 \times \mathbb{R}^4 : \left< x', \frac{z_j'}{|z_j'|} \right> \geq \cos \frac{\pi}{m} \right\}, \; j = 1, \ldots, m.
\]

Then for \(y \in \Omega_1 \), we have \(|y - \lambda z_j| \geq |y - \lambda z_1| \). Using Lemma 2.1, we obtain
\[
\sum_{j=2}^{m} \frac{1}{(1 + |y - \lambda z_j|)^4} \leq \frac{1}{(1 + |y - \lambda z_1|)^2} \sum_{j=2}^{m} \frac{1}{(1 + |y - \lambda z_j|)^2} \leq \frac{C}{(1 + |y - \lambda z_1|)^{4-\tau}} \sum_{j=2}^{m} \frac{1}{(\lambda |z_1 - z_j|)^\tau}.
\] (3.4)

Similarly, we have
\[
\sum_{j=2}^{m} \frac{1}{(1 + |y - \lambda z_j|)^{2+\tau}} \leq \frac{C}{(1 + |y - \lambda z_1|)^2}.
\] (3.5)

From (3.4) and (3.5), for \(y \in \Omega_1 \), using Lemma 2.1 again, we know
\[
\sum_{j=1}^{m} \frac{1}{(1 + |y - \lambda z_j|)^4} \sum_{j=1}^{m} \frac{1}{(1 + |y - \lambda z_j|)^{2+\tau}} \leq \frac{C}{(1 + |y - \lambda z_1|)^{6-\tau}}.
\] (3.6)

Therefore, by Lemma 2.2, we have
\[
\int_{\Omega_1} \frac{1}{|y - \lambda x|^4} \sum_{j=1}^{m} \frac{1}{(1 + |y - \lambda z_j|)^4} \sum_{j=1}^{m} \frac{1}{(1 + |y - \lambda z_j|)^{2+\tau}} dy \leq \frac{C}{(1 + \lambda |x - z_1|)^{4-\tau}}.
\]

In the following, we denote \(\theta = 2 - 2\tau \). Thus
\[
\int_{\mathbb{R}^6} \frac{1}{|y - \lambda x|^4} \sum_{j=1}^{m} \frac{1}{(1 + |y - \lambda z_j|)^4} \sum_{j=1}^{m} \frac{1}{(1 + |y - \lambda z_j|)^{2+\tau}} dy \leq \sum_{j=1}^{m} \frac{C}{(1 + \lambda |x - z_j|)^{2+\tau+\theta}}.
\]

Combining this with (3.3), we have
\[
\int_{\mathbb{R}^6} \frac{1}{|y - x|^4} \left(|y|^{-4} \ast (Z_{\tau, x''}, \lambda \phi_m) \right) Z_{\tau, x''}(y) dy \leq C \|\phi_m\|_\ast \lambda^2 \sum_{j=1}^{m} \frac{1}{(1 + \lambda |x - z_j|)^{2+\tau+\theta}}.
\] (3.7)
Similarly, we can obtain the estimate for the second term in the right side of (3.2) as

$$\int_{\mathbb{R}^6} \frac{1}{|y - x|^4} \left(|y|^{-4} \ast |Z_{\lambda, \lambda, \lambda}|^2\right) |\phi_m(y)| dy \leq C\|\phi_m\|_{\ast} \lambda^2 \sum_{j=1}^{m} \frac{1}{(1 + \lambda|x - z_j|)^{2+\tau+\theta}}. \quad (3.8)$$

For the third term in the right side of (3.2), if \(l = 1\), we can get

$$||y||^{-4} * (Z_{\lambda, \lambda} Z_{l, 1}) \leq C||y||^{-4} * \frac{\lambda^3}{(1 + \lambda^2|y - z_j|^2)^6} + C||y||^{-4} * \frac{\lambda^3}{(1 + \lambda^2|y - z_j|^4)^6} \leq C||y||^{-4} * \frac{\lambda^3}{(1 + \lambda|y - z_j|)^{15}}$$

Thus, by Lemmas 2.3 and 2.2, we have

$$\left| \int_{\mathbb{R}^6} \frac{1}{|y - x|^4} \left(|y|^{-4} \ast (Z_{\lambda, \lambda} Z_{l, 1})\right) Z_{\lambda, \lambda}(y) dy \right| \leq C\lambda \frac{1}{(1 + \lambda|x - z_j|)^{2+\tau}}.$$

While for \(l \neq 1\), we can obtain

$$\left| \int_{\mathbb{R}^6} \frac{1}{|y - x|^4} \left(|y|^{-4} \ast (Z_{\lambda, \lambda} Z_{l, l})\right) Z_{\lambda, \lambda}(y) dy \right| \leq C\lambda^3 \frac{1}{(1 + \lambda|x - z_j|)^{2+\tau}}$$

and so,

$$\left| \sum_{j=1}^{m} \int_{\mathbb{R}^6} \frac{1}{|y - x|^4} \left(|y|^{-4} \ast (Z_{\lambda, \lambda} Z_{l, l})\right) Z_{\lambda, \lambda}(y) dy \right| \leq C\lambda^{2+n_l} \sum_{j=1}^{m} \frac{1}{(1 + \lambda|x - z_j|)^{2+\tau}}, \quad (3.9)$$

where \(n_1 = -1, n_t = 1, l = 2, \cdots, 6\). Similarly, we have

$$\left| \sum_{j=1}^{m} \int_{\mathbb{R}^6} \frac{1}{|y - x|^4} \left(|y|^{-4} \ast |Z_{\lambda, \lambda}|^2\right) Z_{l, l}(y) dy \right| \leq C\lambda^{2+n_t} \sum_{j=1}^{m} \frac{1}{(1 + \lambda|x - z_j|)^{2+\tau}}. \quad (3.10)$$

For the last term, by Lemma 2.2, we know

$$\int_{\mathbb{R}^6} \frac{1}{|y - x|^4} |h_m(y)| dy \leq C\|h_m\|_{**} \lambda^2 \sum_{j=1}^{m} \frac{1}{(1 + \lambda|x - z_j|)^{2+\tau}}, \quad (3.11)$$

In the following, we are going to estimate \(c_l, l = 1, 2, \cdots, 6\). Multiplying (3.1) by \(Z_{1,t}\) (\(t = 1, 2, \cdots, 6\)) and integrating, we see that \(c_l\) satisfies

$$\sum_{l=1}^{6} \sum_{j=1}^{m} \left(|x|^{-4} \ast |Z_{\lambda, \lambda}|^2 \right) Z_{l, l} + 2 \left(|x|^{-4} \ast (Z_{\lambda, \lambda} Z_{j, l}) \right) Z_{j, l, \lambda, Z_{1,t}} c_l$$

$$= \left\langle -\Delta \phi_m + V(r, x'') \phi_m - \left(|x|^{-4} \ast |Z_{\lambda, \lambda}|^2 \right) \phi_m - 2 \left(|x|^{-4} \ast (Z_{\lambda, \lambda} \phi_m) \right) Z_{\lambda, \lambda, Z_{1,t}} \right\rangle - \langle h_m, Z_{1,t} \rangle. \quad (3.12)$$

From Lemma 2.1 in [37], we know that

$$\langle h_m, Z_{1,t} \rangle \leq C\lambda^{n_t} \|h_m\|_{**}, \quad (3.13)$$

and

$$\langle V(r, x'') \phi_m, Z_{1,t} \rangle \leq O\left(\frac{\lambda^{n_t} \|\phi_m\|_{**}}{\lambda^{1+\varepsilon}} \right), \quad (3.14)$$
where $\varepsilon > 0$ is a small constant. Since

$$|x|^{-4} \ast \frac{\xi(x)\lambda^2}{(1 + \lambda|x - z_i|)^{6+\tau}} = \int_{\mathbb{R}^6} \frac{1}{|y|^4} \frac{\xi(x - y)\lambda^2}{(1 + \lambda|x - z_i - y|)^{6+\tau}} dy \leq \int_{B_{2\varepsilon}(x - (r_0, z_0^\varepsilon))} \frac{\lambda^2}{(\lambda'|x - z_i - y|^4)^{6+\tau}} dy = O\left(\frac{1}{\lambda^3}\right),$$

and

$$|x|^{-4} \ast \left(\frac{\xi(x)\lambda^2}{(1 + \lambda|x - z_i|)^4 (1 + \lambda|x - z_j|)^{2+\tau}}\right) \leq \frac{C}{(\lambda|z_i - z_j|)^2} \int_{\mathbb{R}^6} \frac{1}{|y|^4} \frac{\xi(x - y)\lambda^2}{(1 + \lambda|x - z_i - y|)^{6+\tau}} dy = O\left(\frac{1}{\lambda^3}\right), \quad j \neq i,$$

thanks to Lemma 2.1, we have

$$||x|^{-4} \ast (Z_{T, x'}, \lambda \phi_m)| \leq C\|\phi_m\| \ast \int_{\mathbb{R}^6} \frac{1}{|y|^4} \sum_{j=1}^m \frac{\xi(x - y)\lambda^2}{(1 + \lambda|x - y - z_j|)^4 (1 + \lambda|x - z_j|)^{2+\tau}} dy = O\left(\frac{m^2\|\phi_m\|}{\lambda}\right).$$

So,

$$\int_{\mathbb{R}^6} \left(|x|^{-4} \ast (Z_{T, x'}, \lambda \phi_m)\right) Z_{T, x', \lambda} Z_{1,t} dx \leq C\|\phi_m\| \ast \|Z_{T, x', \lambda}\| \ast \int_{\mathbb{R}^6} \frac{m^2\lambda^2}{\lambda} \int_{\mathbb{R}^6} \sum_{j=1}^m \frac{\xi(x - y)\lambda^2}{(1 + \lambda|x - z_j|)^{2+\tau}} \frac{\lambda^2}{(1 + \lambda|x - z_i|)^{2+\tau}} dx \leq C\|\phi_m\| \ast \frac{m^2\lambda^{n_t}}{\lambda^2} \int_{\mathbb{R}^6} \frac{1}{(1 + |x - \lambda z_i|)^{6+\tau}} dx = O\left(\frac{\lambda^{n_t}||\phi_m||}{\lambda^{1+\varepsilon}}\right),$$

for some small constant $\varepsilon > 0$. Similarly, we also have

$$\left\langle \left(|x|^{-4} \ast (Z_{T, x', \lambda}^2)\right) \phi_m, Z_{1,t} \right\rangle = O\left(\frac{\lambda^{n_t}||\phi_m||}{\lambda^{1+\varepsilon}}\right).$$

Notice that

$$\int_{\mathbb{R}^6} \Delta Z_{1,t} \phi_m dx = \int_{\mathbb{R}^6} (\xi \Delta (U_{z_1, \lambda})_t + (U_{z_1, \lambda})_t \Delta \xi + 2\nabla \xi \nabla (U_{z_1, \lambda})_t) \phi_m dx,$$

where

$$(U_{z_1, \lambda})_1 = \frac{\partial U_{z_1, \lambda}}{\partial \xi}, (U_{z_1, \lambda})_2 = \frac{\partial U_{z_1, \lambda}}{\partial \tau}, (U_{z_1, \lambda})_k = \frac{\partial U_{z_1, \lambda}}{\partial x_k^\tau}, \text{ for } k = 3, \ldots, N.$$

By applying the argument as above, we have

$$\int_{\mathbb{R}^6} \xi \Delta (U_{z_1, \lambda})_t \phi_m dx \leq C\|\phi_m\| \sum_{j=1}^m \int_{\mathbb{R}^6} \frac{\xi \lambda^4}{(1 + \lambda|x - z_i|)^{8}} \frac{1}{|x - y|^4 (1 + \lambda|y - z_1|)^4 (1 + \lambda|y - z_j|)^{2+\tau}} \lambda^2 dx dy \leq C\frac{\lambda^{n_t}}{\lambda^2} \int_{\mathbb{R}^6} \frac{\lambda^2}{(1 + \lambda|y - z_i|)^4 (1 + \lambda|y - z_j|)^{2+\tau}} dy = O\left(\frac{\lambda^{n_t}||\phi_m||}{\lambda^3}\right).$$
On the other hand, direct calculation gives
\[
\int_{\mathbb{R}^6} (U_{z_1, \lambda}) t \Delta \xi \phi_m dx \leq C \|\phi_m\| \sum_{j=1}^{m} \int_{\mathbb{R}^6} \frac{\lambda^2}{(1 + |x - z_j|)^{2+\tau}} |\Delta \xi \lambda^{2+n_t}|^{2+\tau/|x - z_1|} dx = O(\frac{\lambda^{n_t} \|\phi_m\|}{\lambda^2}),
\]
and
\[
\int_{\mathbb{R}^6} \nabla \xi \nabla (U_{z_1, \lambda}) t \phi_m dx \leq C \|\phi_m\| \sum_{j=1}^{m} \int_{\mathbb{R}^6} \frac{\lambda^3+n_t}{(1 + |x - z_j|)^{2+\tau}} \frac{\lambda^{2+n_t}}{(1 + |x - z_1|)^{2+\tau}} dx = O(\frac{\lambda^{n_t} \|\phi_m\|}{\lambda^2}).
\]
So,
\[
\langle -\Delta \phi_m, Z_{1,t} \rangle = O(\frac{\lambda^{n_t} \|\phi_m\|}{\lambda^2}).
\]
Consequently,
\[
\langle -\Delta \phi_m - \left(|x|^{-4} \ast |Z_{\tau, \lambda}|^2 \right) \phi_m - 2 \left(|x|^{-4} \ast (Z_{\tau, \lambda} \phi) \right) Z_{\tau, \lambda}, Z_{1,t} \rangle = O(\frac{\lambda^{n_t} \|\phi_m\|}{\lambda^2+\varepsilon}). \tag{3.15}
\]
Combining (3.13)-(3.15), we have
\[
\langle -\Delta \phi_m + V(r, y'') \phi_m - \left(|x|^{-4} \ast |Z_{\tau, \lambda}|^2 \right) \phi_m - 2 \left(|x|^{-4} \ast (Z_{\tau, \lambda} \phi) \right) Z_{\tau, \lambda}, Z_{1,t} \rangle - \langle h_m, Z_{1,t} \rangle = O(\frac{\lambda^{n_t} \|\phi_m\|}{\lambda^2+\varepsilon} + \lambda^{n_t} \|h_m\|_{**}). \tag{3.16}
\]
On the other hand, it is easy to check that
\[
\sum_{j=1}^{m} \left\langle \left(|x|^{-4} \ast \xi \right) Z_j, Z_{1,t} \right\rangle = (\bar{c} + o(1)) \delta_{tt} \lambda^{n_t} \lambda^{n_t}, \tag{3.17}
\]
and
\[
\sum_{j=1}^{m} \left\langle \left(|x|^{-4} \ast (Z_j \xi Z_j) \right) Z_j, Z_{1,t} \right\rangle = (\bar{c'} + o(1)) \lambda^{n_t} \lambda^{n_t}, \tag{3.18}
\]
for some constant \(\bar{c} > 0\) and \(\bar{c'} > 0\). And so, from (3.16), (3.17) and (3.18) into (3.12), we know
\[
c_1 = \frac{1}{\lambda^{n_t}} \left(c(\|\phi_m\|_{*}) + O(\|h_m\|_{**})\right). \tag{3.19}
\]
Thus,
\[
\|\phi_m\|_{*} \leq O(1) + \|h_m\|_{**} + \frac{1}{\sum_{j=1}^{6} (1 + |x - z_j|)^{2+\tau}} \frac{1}{\sum_{j=1}^{6} (1 + |x - z_j|)^{2+\tau}}. \tag{3.20}
\]
Since \(\|\phi_m\|_{*} = 1\), we obtain from (3.20) that there is \(R > 0\) such that
\[
\|\lambda^{-2} \phi_m\|_{L^\infty(B_{R}(z_j))} \geq a > 0, \tag{3.21}
\]
for some \(j\). However, let \(\bar{\phi}_m(x) = \lambda^{-2} \phi_m(\lambda(x - z_j))\), then
\[
\int_{\mathbb{R}^N} (|\nabla \bar{\phi}_m|^2 + V(r, x'')|\bar{\phi}_m|^2) dx \leq C.
\]
Thus there is a \(v \in D^{1,2}(\mathbb{R}^6)\), such that
\[
\bar{\phi}_m \rightarrow v, \ \text{weakly in} \ D^{1,2}(\mathbb{R}^6)
\]
and
\[
\bar{\phi}_m \rightarrow v, \ \text{strongly in} \ L^2_{loc}(\mathbb{R}^6),
\]
as } m \to +\infty \). Therefore it follows that } \(v \in D^{1,2}(\mathbb{R}^6) \) \) satisfies
\[
- \Delta v = \left(\int_{\mathbb{R}^6} \frac{|U_{0, \Lambda}(y)|^2}{|x - y|^4} dy \right) v + 2 \left(\int_{\mathbb{R}^6} \frac{U_{0, \Lambda}(y)v(y)}{|x - y|^4} dy \right) U_{0, \Lambda} \quad \text{in } \mathbb{R}^6, \tag{3.22}
\]
for some } \(\Lambda \in [\Lambda_1, \Lambda_1] \). Since } \(v \) \) is perpendicular to the kernel of } \((3.22) \), by the non-degeneracy of } \(U_{0,1} \) \) in Theorem 2.6, we can conclude that } \(v = 0 \), this contradicts with } \((3.21) \).

Let
\[
E = \left\{ \phi \in H_s : \sum_{j=1}^m \int_{\mathbb{R}^6} \left(\left(|x|^{-4} \ast |Z_{j, \lambda}|^2 \right) Z_{j,l} \phi + 2 \left(|x|^{-4} \ast |Z_{j, \lambda}Z_{j,l}| \right) Z_{j,l} \phi \right) dx = 0, \ l = 1, 2, \ldots, 6 \right\}.
\]
endowed with the usual inner product } \(\langle \phi, \psi \rangle = \int_{\mathbb{R}^6} \nabla \phi \nabla \psi dx \). Problem (3.1) is equivalent to that of finding a } \(\phi \in E \) \) such that
\[
\langle \phi, \psi \rangle = \langle -V(r, x'') \phi + \left(|x|^{-4} \ast |Z_{r, \tau'} \lambda|^2 \right) \phi + 2 \left(|x|^{-4} \ast (Z_{r, \tau'} \lambda \phi) \right) Z_{r, \tau'} \lambda + h, \psi \rangle, \ \forall \psi \in E.
\]
Similar to the proof of Proposition 4.1 in [13], Riesz’s representation theorem and Fredholm’s alternative Theorem guarantee the existence of unique solution for any } \(h \) \) provided the following equation
\[
\begin{cases}
-\Delta \phi + V(r, x'') \phi - \left(|x|^{-4} \ast |Z_{r, \tau'} \lambda|^2 \right) \phi - 2 \left(|x|^{-4} \ast (Z_{r, \tau'} \lambda \phi) \right) Z_{r, \tau'} \lambda \\
= \sum_{l=1}^6 c_l \sum_{j=1}^m \left[\left(|x|^{-4} \ast |Z_{j, \lambda}|^2 \right) Z_{j,l} \phi + 2 \left(|x|^{-4} \ast |Z_{j, \lambda}Z_{j,l}| \right) Z_{j,l} \phi \right] & \text{in } \mathbb{R}^6,
\end{cases}
\]
for certain constants } \(c_l \), has only trivial solution in } \(E \). This is true due to Lemma 3.1. We can also conclude then that for each } \(h \), problem (3.1) admits a unique solution } \(\phi \) with
\[
\| \phi \| \leq C \| h \|_{**}.
\]
In conclusion, we have the following Lemma:

Lemma 3.2. There exists } \(m_0 > 0 \) \) and a constant } \(C > 0 \), independent of } \(m \), such that for all } \(m \geq m_0 \) \) and all } \(h \in L^\infty(\mathbb{R}^6) \), problem (3.1) has a unique solution } \(\phi \equiv L_m(h) \). Besides,
\[
\| L_m(h) \| \leq C \| h \|_{**}, \ |c_l| \leq \frac{C}{\lambda_{m_0}} \| h \|_{**}. \tag{3.24}
\]

Next we consider the following equation
\[
\begin{cases}
-\Delta (Z_{r, \tau'} \lambda \phi + \phi) + V(|x'|, x'') (Z_{r, \tau'} \lambda \phi + \phi) - \left(|x|^{-4} \ast \left(|Z_{r, \tau'} \lambda \phi + \phi \right) \right) (Z_{r, \tau'} \lambda \phi + \phi) \\
= \sum_{l=1}^6 c_l \sum_{j=1}^m \left[\left(|x|^{-4} \ast |Z_{j, \lambda}|^2 \right) Z_{j,l} \phi + 2 \left(|x|^{-4} \ast |Z_{j, \lambda}Z_{j,l}| \right) Z_{j,l} \phi \right] & \text{in } \mathbb{R}^6,
\end{cases}
\]
for } \(\phi \in H_s, \sum_{j=1}^m \int_{\mathbb{R}^6} \left[\left(|x|^{-4} \ast |Z_{j, \lambda}|^2 \right) Z_{j,l} \phi + 2 \left(|x|^{-4} \ast |Z_{j, \lambda}Z_{j,l}| \right) Z_{j,l} \phi \right] dx = 0, \ l = 1, 2, \ldots, 6.
\]
We can rewrite (3.25) as
\[
-\Delta \phi + V(|x'|, x'') \phi - \left(|x|^{-4} * |Z_{r}' \phi| \right) \phi - 2 \left(|x|^{-4} * Z_{r} \phi \right) Z_{r}' \phi = N(\phi) + l_m + \sum_{l=1}^{6} c_l \sum_{j=1}^{m} \left[\left(|x|^{-4} * |Z_{s_j} \lambda| \right)^2 Z_{s_j} \lambda + 2 \left(|x|^{-4} * (Z_{s_j} \lambda Z_{s_j}) \right) \right] \text{ in } \mathbb{R}^6,
\]
where
\[
N(\phi) = 2 \left(|x|^{-4} * (Z_{r}' \phi) \right) \phi + \left(|x|^{-4} * |\phi|^2 \right) Z_{r}' \phi + \left(|x|^{-4} * |\phi|^2 \right) \phi
\]
and
\[
l_m = \left(|x|^{-4} * |Z_{r}' \phi| \right) Z_{r}' \phi - \sum_{j=1}^{m} \left(|x|^{-4} * |Z_{s_j} \lambda| \right)^2 Z_{s_j} \lambda - V(|x'|, x'') Z_{r}' \phi \lambda + Z_{r}' \phi \lambda \Delta \xi + 2 \nabla \xi \nabla Z_{r}' \phi \lambda.
\]

In order to use the contraction mapping theorem to prove that (3.26) is uniquely solvable in the set that \(\|\phi\|_s \) is small, we need to estimate \(N(\phi) \) and \(l_m \).

Lemma 3.3. There is a constant \(C > 0 \), such that
\[
\|N(\phi)\|_s \leq C\|\phi\|_s^2.
\]

Proof. Notice that
\[
\left(|x|^{-4} * (Z_{r}' \phi) \right) \phi \leq C\|Z_{r}' \phi\|_s \|\phi\|_s^2 \lambda^6 \left(|x|^{-4} \left(\sum_{j=1}^{m} \frac{1}{(1 + \lambda |x - z_j|)^2} \right)^2 \right) \sum_{j=1}^{m} \frac{1}{(1 + \lambda |x - z_j|)^{2+\tau}}
\]
\[
\leq C\|\phi\|_s^2 \lambda^4 \sum_{j=1}^{m} \frac{1}{(1 + \lambda |x - z_j|)^2} \sum_{j=1}^{m} \frac{1}{(1 + \lambda |x - z_j|)^{2+\tau}}
\]
\[
\leq C\|\phi\|_s^2 \lambda^4 \sum_{j=1}^{m} \frac{1}{(1 + \lambda |x - z_j|)^{4+\tau}},
\]
where we applied the fact that, for any \(1 \leq j \leq m \), there is a constant \(C > 0 \), such that
\[
|z_j|^{-4} \frac{\lambda^2}{(1 + \lambda |x - z_j|)^{4+2\tau}} \leq C \frac{1}{(1 + \lambda |x - z_j|)^2},
\]
whose proof is similar to Lemma 2.3. Similarly, we also have
\[
\left(|x|^{-4} * |\phi|^2 \right) \phi \leq C\|\phi\|_s^2 \lambda^4 \sum_{j=1}^{m} \frac{1}{(1 + \lambda |x - z_j|)^{4+\tau}}
\]
and
\[
\left(|x|^{-4} * |\phi|^2 \right) \phi \leq C\|\phi\|_s^2 \lambda^4 \sum_{j=1}^{m} \frac{1}{(1 + \lambda |x - z_j|)^{4+\tau}}.
\]
From the above, we have
\[
\|N(\phi)\|_s \leq C\|\phi\|_s^2.
\]
\[
\square
\]

Lemma 3.4. There is a constant \(\varepsilon > 0 \), such that
\[
\|l_m\|_s \leq C\left(\frac{1}{\lambda} \right)^{1+\varepsilon}.
\]
Proof. Observe that

\[l_m = \sum_{i=1}^{m} \left(\left| x \right|^{-4} \right| Z_{z_i,\lambda} \right)^2 \sum_{j \neq i} Z_{z_j,\lambda} \right) + 2 \sum_{j=1}^{m} \sum_{i \neq j} \left(\left| x \right|^{-4} \right| Z_{z_j,\lambda} Z_{z_i,\lambda} \right) Z_{r,x',\lambda} - V(|x'|, x'')Z_{r,x'',\lambda} \]

+ \left(Z_{r,x',\lambda}^* \Delta z + 2 \nabla z \nabla Z_{r,x',\lambda}^* \right)

= \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4.

First, we estimate the term \(\Phi_1 \). Recall that \(|x - z_j| \geq |x - z_1|, \forall x \in \Omega_1 \), where

\[\Omega_j = \left\{ x = (x', x'') \in \mathbb{R}^2 \times \mathbb{R}^4 : \left\langle \frac{x'}{|x'|}, \frac{z_j'}{|z_j'|} \right\rangle \geq \cos \frac{\pi}{m} \right\}, \quad j = 1, \cdots, m. \]

By Lemma 2.4, we have

\[|x|^{-4} \right| Z_{z_i,\lambda} \right|^2 \leq C|\lambda|^2 \left(1 + \frac{|x|^2}{|x - z_i|^2} \right)^2 \leq C \frac{\lambda^2}{(1 + \lambda|z - z_i|)^4}. \]

Taking \(0 < \alpha \leq 4 \), by Lemma 2.1, we obtain that for any \(x \in \Omega_i, i = 1, \cdots, m \) and \(j \neq i \)

\[\frac{1}{(1 + \lambda|x - z_j|)^4} \leq C \frac{1}{(1 + \lambda|x - z_i|)^8 - \alpha |z_j - z_i| |z_i|^\alpha}. \]

We can choose \(\alpha > 3 \) satisfying \(4 - \alpha \geq \tau \). Combining this with the fact

\[\sum_{j \neq i} Z_{z_j,\lambda} \leq \sum_{j=1 \neq i} \frac{\lambda^2}{(1 + \lambda|z - z_j|)^4}, \]

we have

\[\left(|x|^{-4} \right| Z_{z_i,\lambda} \right)^2 \sum_{j \neq i} Z_{z_j,\lambda} \leq \frac{C \lambda^4}{(1 + \lambda|z - z_j|)^{8 - \alpha}(\frac{m}{\lambda})^\alpha} \leq \frac{C \lambda^4}{(1 + \lambda|z - z_i|)^{4 + \tau}(\frac{1}{\lambda})^{1+\varepsilon}}. \]

And so,

\[|\Phi_1| \leq C \left(\frac{1}{\lambda} \right)^{1+\varepsilon} \lambda^4 \sum_{i=1}^{m} \frac{1}{(1 + \lambda|z - z_i|)^{4 + \tau}}. \]

To estimate \(\Phi_2 \), by taking \(0 < \alpha \leq 4 \) and applying Lemma 2.1 again, we obtain that for any \(x \in \Omega_j \) and \(i \neq j \)

\[|Z_{z_j,\lambda} Z_{z_i,\lambda}| \leq C \frac{\lambda^4}{(1 + \lambda|z - z_j|)^{8 - \alpha} |z_j - z_i| |z_i|^\alpha}. \]

We can choose \(\alpha > 3 \) satisfying \(6 - \alpha \geq \tau \). Then

\[\frac{\lambda^2}{(1 + \lambda|z - z_j|)^4} \sum_{i=1 \neq j} \frac{\lambda^2}{(1 + \lambda|z - z_i|)^4} \leq \frac{C \lambda^4}{(1 + \lambda|z - z_j|)^{8 - \alpha}(\frac{m}{\lambda})^\alpha}. \]

By Lemma 2.2, we have

\[|\Phi_2| \leq C \sum_{j=1}^{m} \left(|x|^{-4} \right| (1 + \lambda|z - z_j|)^{8 - \alpha} \right) |Z_{r,x',\lambda}| \]

\[\leq C \left(\frac{m}{\lambda} \right)^\alpha \sum_{j=1}^{m} \frac{\lambda^2}{(1 + \lambda|z - z_j|)^{6 - \alpha}} \sum_{i=1}^{m} \frac{\lambda^2}{(1 + \lambda|z - z_i|)^4} \]

\[\leq C \left(\frac{1}{\lambda} \right)^{1+\varepsilon} \lambda^4 \sum_{j=1}^{m} \frac{1}{(1 + \lambda|z - z_j|)^{4 + \tau}}. \]
For the remaining terms, it follows from Lemma 2.5 in [37] that
\[|\Phi_3| \leq C \left(\frac{1}{\lambda} \right)^{1+\varepsilon} \lambda^4 \sum_{j=1}^{m} \frac{1}{(1 + \lambda|x - z_j|)^{4+\tau}}, \quad |\Phi_4| \leq C \left(\frac{1}{\lambda} \right)^{1+\varepsilon} \lambda^4 \sum_{j=1}^{m} \frac{1}{(1 + \lambda|x - z_j|)^{4+\tau}}. \]
So, \[\|l_m\|_{**} \leq C \left(\frac{1}{\lambda} \right)^{1+\varepsilon}. \]

We are ready to conclude the following estimates for the solution and the constants \(c_l \).

Lemma 3.5. There is an integer \(m_0 > 0 \), such that for each \(m \geq m_0 \), \(\lambda \in [L_0 m^2, L_1 m^2] \), \(\tau \in [r_0 - \theta, r_0 + \theta] \), \(\bar{x}'' \in B_{\theta}(x''_0) \), where \(\theta > 0 \) is a fixed small constant, (3.25) has a unique solution \(\phi = \phi_{\theta, r''} \), \(\lambda \in H_s \), satisfying
\[\|\phi\| \leq C \left(\frac{1}{\lambda} \right)^{1+\varepsilon}, \quad |c_l| \leq C \left(\frac{1}{\lambda} \right)^{1+\mu_1+\varepsilon}, \quad (3.29) \]
where \(\varepsilon > 0 \) is a small constant.

Proof. First, we recall that \(\lambda \in [L_0 m^2, L_1 m^2] \). Set
\[N = \{ w : w \in C(\mathbb{R}^6) \cap H_s, \|w\| \leq \frac{1}{\lambda} \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[\left(|x|^{-4} \ast |Z_{j_1}|^2 \right) Z_{j_1} |w| + 2 \left(|x|^{-4} \ast |Z_{j_1} Z_{j_2}| \right) Z_{j_2} \right] dx = 0 \}, \]
where \(l = 1, 2, \cdots, 6 \). Then (3.26) is equivalent to
\[\phi = A(\phi) =: L_m(N(\phi)) + l_m(l_m), \quad (3.30) \]
where \(L_m \) is defined in Lemma 3.2. We will prove that \(A \) is a contraction map from \(N \) to \(N \).

First, we have
\[\|A\|_s \leq C(\|N(\phi)\|_{**} + \|l_m\|_{**}) \leq C(\|\phi\|^2_* + (\frac{1}{\lambda})^{1+\varepsilon}) \leq \frac{1}{\lambda}. \]
Hence, \(A \) maps \(N \) to \(N \).

Taking now \(\phi_1 \) and \(\phi_2 \) in \(N \), we see that
\[\|A(\phi_1) - A(\phi_2)\|_s = \|L_m(N(\phi_1)) - L_m(N(\phi_2))\|_s \leq C\|N(\phi_1) - N(\phi_2)\|_{**}. \]
It is also easy to see that
\[N(\phi_1) - N(\phi_2) = 2 \left(|x|^{-4} \ast (Z_{\theta, r''} \lambda \phi_1) \right) (\phi_1 - \phi_2) + \left(|x|^{-4} \ast (\phi_1 + \phi_2) (\phi_1 - \phi_2) \right) Z_{\theta, r''} \lambda \]
\[+ \left(|x|^{-4} \ast |\phi_1|^2 \right) (\phi_1 - \phi_2) + 2 \left(|x|^{-4} \ast (Z_{\theta, r''} \lambda (\phi_1 - \phi_2)) \right) \phi_2 \]
\[+ \left(|x|^{-4} \ast (\phi_1 + \phi_2) (\phi_1 - \phi_2) \right) \phi_2. \]

Similar to the estimates in Lemma 3.3, we have
\[\|N(\phi_1) - N(\phi_2)\|_{**} \leq C\|\phi_1\|_* (\|\phi_1 - \phi_2\|_s) + C(\|\phi_1\|_* + \|\phi_2\|_s) (\|\phi_1 - \phi_2\|_s) + C\|\phi_1\|^2_* (\|\phi_1 - \phi_2\|_s) \]
\[+ C\|\phi_2\|_* (\|\phi_1 - \phi_2\|_s) + C(\|\phi_1\|_* + \|\phi_2\|_s) (\|\phi_1 - \phi_2\|_s) (\|\phi_1 - \phi_2\|_s). \]
Therefore
\[\|A(\phi_1) - A(\phi_2)\|_s \leq C\|N(\phi_1) - N(\phi_2)\|_{**} \leq \frac{1}{2} \|\phi_1 - \phi_2\|_s, \]
which means that \(A \) is a contraction mapping from \(N \) into itself. Thus we know that there exists a unique \(\phi \in N \) such that (3.30) holds. Moreover, by Lemmas 3.2, 3.3 and 3.4, we know
\[\|\phi\|_* \leq C \left(\frac{1}{\lambda} \right)^{1+\varepsilon} \]
and the estimate of \(c_l \) from (3.24). \(\square \)
4. Local Pohožaev identities methods

In this section, we will look for suitable \((\tau, \tau'', \lambda)\) such that the function \(Z_{\tau, \tau'', \lambda} + \phi_{\tau, \tau'', \lambda}\) obtained by reduction arguments is a solution of (1.4). For this purpose, we need to establish new local Pohožaev identities for equation (1.4).

Lemma 4.1. Suppose that \((\tau, \tau'', \lambda)\) satisfies

\[
\begin{align*}
\int_{D_p} \left(- \Delta u_m + V(|x'|, x'') u_m - \left(|x|^{-4} \ast |u_m|^2 \right) u_m \right) \langle x, \nabla u_m \rangle dx &= 0, \tag{4.1} \\
\int_{D_p} \left(- \Delta u_m + V(|x'|, x'') u_m - \left(|x|^{-4} \ast |u_m|^2 \right) u_m \right) \frac{\partial u_m}{\partial x_i} dx &= 0, \quad i = 3, \cdots, 6, \tag{4.2} \\
\int_{\mathbb{R}^6} \left(- \Delta u_m + V(|x'|, x'') u_m - \left(|x|^{-4} \ast |u_m|^2 \right) u_m \right) \frac{\partial Z_{\tau, \tau'', \lambda}}{\partial \lambda} dx &= 0, \tag{4.3}
\end{align*}
\]

and

where \(u_m = Z_{\tau, \tau'', \lambda} + \phi_{\tau, \tau'', \lambda}\) and \(D_p = \{(r, x'') : |(r, x'') - (r_o, x_o'')| \leq \rho\}\) with \(\rho \in (2\delta, 5\delta)\). Then \(c_i = 0, i = 1, \cdots, 6\).

Proof. Since \(Z_{\tau, \tau'', \lambda} = 0\) in \(\mathbb{R}^6 \setminus D_p\), we see that if (4.1)-(4.3) hold, then

\[
\sum_{i=1}^6 c_i \int_{\mathbb{R}^6} \left(|x|^{-4} \ast |Z_{j,i}\lambda|^2 \right) Z_{j,i} \frac{\partial Z_{j,i}\lambda}{\partial x_i} dx = 0, \tag{4.4}
\]

for \(v = \langle x, \nabla u_m \rangle, \frac{\partial u_m}{\partial x_i}, i = 3, \cdots, 6\) and \(\frac{\partial Z_{\tau, \tau'', \lambda}}{\partial \lambda}\).

By direct calculations, we can prove

\[
\left| \int_{\mathbb{R}^6} \left(|x|^{-4} \ast |Z_{j,i}\lambda|^2 \right) Z_{j,i} \frac{\partial Z_{j,i}\lambda}{\partial x_i} dx \right| \leq C\lambda^2 \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{1}{(1 + |x - \lambda z_j|^2)^{\frac{5}{2}}} \frac{1}{(1 + |y|)^{\frac{4}{2}}} \frac{1}{(1 + |y - \lambda z_i|^2)^{\frac{5}{2}}} dx dy,
\]

where \(i = 3, \cdots, 6\) and \((x_3, x_4, \cdots, x_6) = \tau\). If \(l = j\), we have

\[
\left| \int_{\mathbb{R}^6} \left(|x|^{-4} \ast |Z_{j,i}\lambda|^2 \right) Z_{j,i} \frac{\partial Z_{j,i}\lambda}{\partial x_i} dx \right| = O(\lambda^2).
\]

If \(l \neq j\), similar to the arguments in the proof of Lemma 3.4, we can prove the following result:

\[
\left| \int_{\mathbb{R}^6} \left(|x|^{-4} \ast |Z_{j,i}\lambda|^2 \right) Z_{j,i} \left(\sum_{l=1, l \neq j}^m \frac{\partial Z_{j,i}\lambda}{\partial x_i} \right) dx \right| = O(\lambda^{2-\varepsilon}),
\]

for some \(\varepsilon > 0\). So, we can get

\[
\sum_{j=1}^m \int_{\mathbb{R}^6} \left(|x|^{-4} \ast |Z_{j,i}|^2 \right) Z_{j,i} + 2 \left(|x|^{-4} \ast (Z_{j,i} Z_{j,i}) \right) Z_{j,i} \frac{\partial Z_{\tau, \tau'', \lambda}}{\partial \lambda} dx = m(a_1 + o(1))\lambda^2, \quad i = 3, \cdots, 6, \tag{4.5}
\]

for some constants \(a_1 \neq 0\). Similarly, we have

\[
\sum_{j=1}^m \int_{\mathbb{R}^6} \left(|x|^{-4} \ast |Z_{j,i}|^2 \right) Z_{j,2} + 2 \left(|x|^{-4} \ast (Z_{j,i} Z_{j,2}) \right) Z_{j,i} \langle x, \nabla_x Z_{\tau, \tau'', \lambda} \rangle dx = m(a_2 + o(1))\lambda^2, \tag{4.6}
\]

and

\[
\sum_{j=1}^m \int_{\mathbb{R}^6} \left(|x|^{-4} \ast |Z_{j,i}|^2 \right) Z_{j,1} + 2 \left(|x|^{-4} \ast (Z_{j,i} Z_{j,1}) \right) Z_{j,i} \frac{\partial Z_{\tau, \tau'', \lambda}}{\partial \lambda} dx = m \frac{a_3 + o(1)}{\lambda^2}, \tag{4.7}
\]
for some constants $a_2 \neq 0$ and $a_3 > 0$.

It is easy to check that

$$\int_{\mathbb{R}^6} \left(|x|^{-4} \ast |Z_{j,\lambda}|^2 \right) Z_{j,1} \frac{\partial \phi_{\tau,\tau',\lambda}}{\partial x_i} dx$$

$$= \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{|Z_{j,\lambda}(x)|^2 \frac{\partial Z_{j,\lambda}(y)}{\partial y_j}(y) \phi_{\tau,\tau',\lambda}(y)}{|x-y|^4} dxdy + \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{|Z_{j,\lambda}(x)|^2 (x_i - y_i) Z_{j,1}(y) \phi_{\tau,\tau',\lambda}(y)}{|x-y|^6} dxdy,$$

where $j = 1, 2, \ldots, m$ and $i = 3, \ldots, 6$. By direct calculations, by (3.6) and (3.29), we can obtain

$$\left| \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{|Z_{j,\lambda}(x)|^2 \frac{\partial Z_{j,\lambda}(y)}{\partial y_j}(y) \phi_{\tau,\tau',\lambda}(y)}{|x-y|^4} dxdy \right|$$

$$\leq C\|\phi\|_6 \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{\lambda^4}{(1 + \lambda^2|x-z|^2)^4} \frac{1}{|x-y|^4} \sum_{k=1}^{m} \frac{\lambda^2}{(1 + \lambda|y-z_k|)^{2+\tau}} \frac{\lambda^3|y-z_j|}{(1 + \lambda^2|y-z_j|^2)^{3}} dxdy$$

$$+ C\|\phi\|_6 \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{\lambda^4}{(1 + |x-z|^2)^4} \frac{1}{|x-y|^4} \sum_{k=1}^{m} \frac{\lambda^2}{(1 + |y-z_k|)^{2+\tau}} \frac{\lambda^3|y-z_j|}{(1 + |y-z_j|^2)^{3}} dxdy$$

$$\leq C\lambda \|\phi\|_6 \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{1}{(1 + |x-z|^2)^4} \frac{1}{|x-y|^4} \frac{1}{(1 + |y-z|^2)^6} dxdy$$

$$+ C\lambda \|\phi\|_6 \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{1}{(1 + |x-z|^2)^4} \frac{1}{|x-y|^4} \frac{1}{(1 + |y-z|^2)^6} dxdy$$

$$= C\lambda \|\phi\|_6 = O(\frac{1}{\lambda^6}).$$

Similarly, we have

$$\int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{|Z_{j,\lambda}(x)|^2 (x_i - y_i) Z_{j,1}(y) \phi_{\tau,\tau',\lambda}(y)}{|x-y|^6} dxdy = O(\frac{1}{\lambda^6}).$$

And so,

$$\int_{\mathbb{R}^6} (|x|^{-4} \ast |Z_{j,\lambda}|^2) Z_{j,1} \frac{\partial \phi_{\tau,\tau',\lambda}}{\partial x_i} dx = O(\frac{1}{\lambda^6}).$$

Similarly, we can also conclude that

$$\int_{\mathbb{R}^6} (|x|^{-4} \ast (Z_{j,\lambda} Z_{j,1})) Z_{j,\lambda} \frac{\partial \phi_{\tau,\tau',\lambda}}{\partial x_i} dx = O(\frac{1}{\lambda^6}).$$

Therefore

$$c_1 \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[(|x|^{-4} \ast |Z_{j,\lambda}|^2) Z_{j,1} + 2(|x|^{-4} \ast (Z_{j,\lambda} Z_{j,1})) Z_{j,\lambda} \right] \frac{\partial \phi_{\tau,\tau',\lambda}}{\partial x_i} dx = o(m|c_1|).$$

Analogously, we can prove that

$$\sum_{l=2}^{6} c_1 \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[(|x|^{-4} \ast |Z_{j,\lambda}|^2) Z_{j,l} + 2(|x|^{-4} \ast (Z_{j,\lambda} Z_{j,l})) Z_{j,\lambda} \right] \frac{\partial \phi_{\tau,\tau',\lambda}}{\partial x_i} dx = o(m \lambda^2) \sum_{l=2}^{6} |c_1|,$$

and so

$$\sum_{l=1}^{6} c_1 \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[(|x|^{-4} \ast |Z_{j,\lambda}|^2) Z_{j,l} + 2(|x|^{-4} \ast (Z_{j,\lambda} Z_{j,l})) Z_{j,\lambda} \right] \frac{\partial \phi_{\tau,\tau',\lambda}}{\partial x_i} dx = o(m \lambda^2) \sum_{l=2}^{6} |c_1| + o(m|c_1|),$$
where \(i = 3, \cdots, 6 \). Repeating the same arguments, we can also obtain
\[
\sum_{l=1}^{6} c_l \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[\left(|x|^{-4} |Z_{j,l}|^2 \right) Z_{j,l} + 2 \left(|x|^{-4} (Z_{j,l}Z_{j,l}) \right) Z_{j,l} \right] \langle x, \nabla \phi_{l,\varphi',\lambda} \rangle dx = o(m\lambda^2) \sum_{l=2}^{6} |c_l| + o(m|c_1|).
\]

Therefore, from (4.4), we deduce that
\[
\sum_{l=1}^{6} c_l \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[\left(|x|^{-4} |Z_{j,l}|^2 \right) Z_{j,l} + 2 \left(|x|^{-4} (Z_{j,l}Z_{j,l}) \right) Z_{j,l} \right] vdx = o(m\lambda^2) \sum_{l=2}^{6} |c_l| + o(m|c_1|), \quad (4.8)
\]
holds for \(v = \langle x, \nabla Z_{l,\varphi',\lambda} \rangle, \ \frac{\partial Z_{l,\varphi',\lambda}}{\partial x_i}, \ i = 3, \cdots, 6. \)

From
\[
\langle x, \nabla Z_{l,\varphi',\lambda} \rangle = \langle x', \nabla x' Z_{l,\varphi',\lambda} \rangle + \langle x'', \nabla x'' Z_{l,\varphi',\lambda} \rangle,
\]
we find
\[
\sum_{l=1}^{6} c_l \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[\left(|x|^{-4} |Z_{j,l}|^2 \right) Z_{j,l} + 2 \left(|x|^{-4} (Z_{j,l}Z_{j,l}) \right) Z_{j,l} \right] \langle x, \nabla Z_{l,\varphi',\lambda} \rangle dx = c_2 \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[\left(|x|^{-4} |Z_{j,l}|^2 \right) Z_{j,2} + 2 \left(|x|^{-4} (Z_{j,l}Z_{j,2}) \right) Z_{j,l} \right] \langle x', \nabla x' Z_{l,\varphi',\lambda} \rangle dx \quad (4.9)
\]

\[
+ o(m\lambda^2) \sum_{l=3}^{6} |c_l| + o(m|c_1|),
\]
and
\[
\sum_{l=1}^{6} c_l \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[\left(|x|^{-4} |Z_{j,l}|^2 \right) Z_{j,l} + 2 \left(|x|^{-4} (Z_{j,l}Z_{j,l}) \right) Z_{j,l} \right] \frac{\partial Z_{l,\varphi',\lambda}}{\partial x_i} dx = c_i \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[\left(|x|^{-4} |Z_{j,l}|^2 \right) Z_{j,i} + 2 \left(|x|^{-4} (Z_{j,l}Z_{j,i}) \right) Z_{j,l} \right] \frac{\partial Z_{l,\varphi',\lambda}}{\partial x_i} dx \quad (4.10)
\]

\[
+ o(m\lambda^2) \sum_{l\neq i, j}^{6} |c_l| + o(m|c_1|), \ i = 3, \cdots, 6.
\]

Combining (4.8)-(4.10), we are led to
\[
c_2 \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[\left(|x|^{-4} |Z_{j,l}|^2 \right) Z_{j,l} + 2 \left(|x|^{-4} (Z_{j,l}Z_{j,l}) \right) Z_{j,l} \right] \langle x', \nabla x' Z_{l,\varphi',\lambda} \rangle dx = o(m\lambda^2) \sum_{l=3}^{6} |c_l| + o(m|c_1|),
\]
and
\[
c_i \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[\left(|x|^{-4} |Z_{j,l}|^2 \right) Z_{j,i} + 2 \left(|x|^{-4} (Z_{j,l}Z_{j,i}) \right) Z_{j,l} \right] \frac{\partial Z_{l,\varphi',\lambda}}{\partial x_i} dx = o(m\lambda^2) \sum_{l\neq i, j}^{6} |c_l| + o(m|c_1|), \ i = 3, \cdots, 6,
\]
which, together with (4.6) and (4.5), imply
\[
c_i = o\left(\frac{1}{\lambda^2} \right) c_1, \ i = 2, \cdots, 6. \quad (4.11)
\]
Analogously, it is easy to check that
\[
0 = \sum_{l=1}^{6} c_l \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[\left(|x|^{-4} * |Z_{j,l}|^2 \right) Z_{j,l} + 2 \left(|x|^{-4} * (Z_{j,l} Z_{j,l}) \right) Z_{j,l} \right] \frac{\partial Z_{\tau,\varphi',\lambda}}{\partial \lambda} \, dx
\]

where \(j \) and \(l \) are indexes.

Proof. We have

\[
\lim_{x \to z_j} \frac{U_{z_j,\lambda}(x)}{|x - y|^4} = \begin{cases}
\frac{\lambda^2}{x - y} & \text{if } x \neq y, \\
\infty & \text{if } x = y.
\end{cases}
\]

So \(c_1 = 0 \).

Lemma 4.2. We have

\[
\int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{|Z_{\tau,\varphi',\lambda}(x)|^2 Z_{\tau,\varphi',\lambda}(y) \frac{\partial Z_{\tau,\varphi',\lambda}}{\partial \varphi}(y)}{|x - y|^4} \, dx \, dy - \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{|Z_{\tau,\varphi',\lambda}(x)|^2 Z_{\tau,\varphi',\lambda}(y) \frac{\partial Z_{\tau,\varphi',\lambda}}{\partial \varphi}(y)}{|x - y|^4} \, dx \, dy = O\left(\frac{1}{\lambda^2} \right).
\]

Proof. It is easy to check that

\[
\int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{|U_{z_j,\lambda}(x)|^2 U_{z_j,\lambda}(y) \frac{\partial U_{z_j,\lambda}}{\partial \varphi}(y)}{|x - y|^4} \, dx \, dy - \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{|Z_{z_j,\lambda}(x)|^2 Z_{z_j,\lambda}(y) \frac{\partial Z_{z_j,\lambda}}{\partial \varphi}(y)}{|x - y|^4} \, dx \, dy
\]

where \(j = 1, 2, \ldots, m \). On the other hand, by the Hardy-Littlewood-Sobolev inequality and direct calculation, we have

\[
\int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{(1 - \xi^2(x))|U_{z_j,\lambda}(x)|^2 U_{z_j,\lambda}(y) \frac{\partial U_{z_j,\lambda}}{\partial \varphi}(y)}{|x - y|^4} \, dx \, dy
\]

where

\[
\int_{\mathbb{R}^6} \left[\frac{(1 - \xi^2(x)) \lambda^4}{(1 + \lambda^2 |x|^2)^4} \right] \, dx = O\left(\frac{1}{\lambda^6} \right) \text{ and } \int_{\mathbb{R}^6} \left[\frac{\lambda^6 |y|^2}{(1 + \lambda^2 |y|^2)^5} \right] \, dy = O(1).
\]

So,

\[
\int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{(1 - \xi^2(x))|U_{z_j,\lambda}(x)|^2 U_{z_j,\lambda}(y) \frac{\partial U_{z_j,\lambda}}{\partial \varphi}(y)}{|x - y|^4} \, dx \, dy = O\left(\frac{1}{\lambda^4} \right).
\]

Analogously, it is easy to check that

\[
\int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{|\xi U_{z_j,\lambda}(x)|^2 (1 - \xi^2) U_{z_j,\lambda}(y) \frac{\partial U_{z_j,\lambda}}{\partial \varphi}(y)}{|x - y|^4} \, dx \, dy = O\left(\frac{1}{\lambda^4} \right).
\]

Thus, we have

\[
\int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{|U_{z_j,\lambda}(x)|^2 U_{z_j,\lambda}(y) \frac{\partial U_{z_j,\lambda}}{\partial \varphi}(y)}{|x - y|^4} \, dx \, dy - \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{|Z_{z_j,\lambda}(x)|^2 Z_{z_j,\lambda}(y) \frac{\partial Z_{z_j,\lambda}}{\partial \varphi}(y)}{|x - y|^4} \, dx \, dy = O\left(\frac{1}{\lambda^4} \right),
\]
where \(j = 1, 2, \ldots, m \). For other cases, we can obtain
\[
\int_{\mathbb{R}^6} \int_{\mathbb{R}^6} U_{z_j, \lambda}(x) U_{z_i, \lambda}(x) \frac{\partial U_{z_j, \lambda}}{\partial \tau}(y) \frac{\partial U_{z_i, \lambda}}{\partial \tau}(y) \, dx \, dy = \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} Z_{z_j, \lambda}(x) Z_{z_i, \lambda}(x) \frac{\partial Z_{z_j, \lambda}}{\partial \tau}(y) \frac{\partial Z_{z_i, \lambda}}{\partial \tau}(y) \, dx \, dy = O\left(\frac{1}{\lambda^4} \right),
\]
where \(j, i, k = 1, 2, \ldots, m \). Thus,
\[
\int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \left| Z_{\tau, \pi', \lambda}(x) \right|^2 Z_{\tau, \pi', \lambda}(y) \frac{\partial Z_{\tau, \pi', \lambda}}{\partial \tau}(y) \frac{\partial Z_{\tau, \pi', \lambda}}{\partial \tau}(y) \, dx \, dy = \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \left| Z_{\tau, \pi', \lambda}(x) \right|^2 Z_{\tau, \pi', \lambda}(y) \frac{\partial Z_{\tau, \pi', \lambda}}{\partial \tau}(y) \frac{\partial Z_{\tau, \pi', \lambda}}{\partial \tau}(y) \, dx \, dy = O\left(m^4 \right) = O\left(\frac{1}{\lambda^2} \right).
\]

Lemma 4.3. We have
\[
\frac{\partial J(Z_{\tau, \pi', \lambda})}{\partial \tau} = \frac{\partial J(Z_{\tau, \pi', \lambda})}{\partial \tau} + O\left(\frac{1}{\lambda^2} \right),
\]
where
\[
J(u) = \frac{1}{2} \int_{\mathbb{R}^6} |\nabla u|^2 \, dx + \frac{1}{2} \int_{\mathbb{R}^6} V u^2 \, dx - \frac{1}{4} \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{|u(x)|^2 |u(y)|^2}{|x - y|^4} \, dx \, dy.
\]
Proof. It is easy to check that
\[
\int_{\mathbb{R}^6} V U_{z_j, \lambda}(y) \frac{\partial U_{z_j, \lambda}}{\partial \tau}(y) \, dy - \int_{\mathbb{R}^6} V Z_{z_j, \lambda}(y) \frac{\partial Z_{z_j, \lambda}}{\partial \tau}(y) \, dy = \int_{\mathbb{R}^6} V (1 - \xi^2(y)) U_{z_j, \lambda}(y) \frac{\partial U_{z_j, \lambda}}{\partial \tau}(y) \, dy
\]
\[
\leq C \int_{\mathbb{R}^6} (1 - \xi^2(y)) U_{z_j, \lambda}(y) \frac{\partial U_{z_j, \lambda}}{\partial \tau}(y) \, dy,
\]
where \(j = 1, 2, \ldots, m \). On the other hand, direct calculation gives
\[
\left| \int_{\mathbb{R}^6} (1 - \xi^2(y)) U_{z_j, \lambda}(y) \frac{\partial U_{z_j, \lambda}}{\partial \tau}(y) \, dy \right| \leq C \int_{\mathbb{R}^6} \frac{(1 - \xi^2(y)) \lambda^2}{(1 + \lambda^2 |y - z_j|^2) (1 + \lambda^2 |y - z_j|^2)} \lambda^4 |y - z_j| \, dy
\]
\[
\leq C \int_{\mathbb{R}^6} \frac{(1 - \xi^2(y + z_j)) \lambda^2}{(1 + \lambda^2 |y|^2) (1 + \lambda^2 |y|^2)} \lambda^4 |y| \, dy
\]
\[
\leq C \int_{\mathbb{R}^6 \setminus B_{\lambda}(0)} \frac{(1 + \lambda^2 |y|^2) (1 + \lambda^2 |y|^2)}{(1 + \lambda^2 |y|^2) (1 + \lambda^2 |y|^2)} \lambda^4 |y| \, dy
\]
\[
= O\left(\frac{1}{\lambda^4} \right).
\]
Analogously, for other cases, we can obtain
\[
\int_{\mathbb{R}^6} V U_{z_i, \lambda}(y) \frac{\partial U_{z_i, \lambda}}{\partial \tau}(y) \, dy - \int_{\mathbb{R}^6} V Z_{z_i, \lambda}(y) \frac{\partial Z_{z_i, \lambda}}{\partial \tau}(y) \, dy = O\left(\frac{1}{\lambda^4} \right),
\]
where \(j, i = 1, 2, \ldots, m \). Thus, we have
\[
\int_{\mathbb{R}^6} V \left(Z_{\tau, \pi', \lambda} \right)^2 \frac{\partial Z_{\tau, \pi', \lambda}}{\partial \tau} - Z_{\tau, \pi', \lambda} \frac{\partial Z_{\tau, \pi', \lambda}}{\partial \tau} \, dx = O\left(\frac{m^2}{\lambda^2} \right).
\]
We observe that
\[
\int_{\mathbb{R}^6} \Delta Z_{\tau, \pi', \lambda} \frac{\partial Z_{\tau, \pi', \lambda}}{\partial \tau} \, dx - \int_{\mathbb{R}^6} \Delta Z_{\tau, \pi', \lambda} \frac{\partial Z_{\tau, \pi', \lambda}}{\partial \tau} \, dx
\]
\[
= \int_{\mathbb{R}^6} \Delta Z_{\tau, \pi', \lambda} \frac{\partial Z_{\tau, \pi', \lambda}}{\partial \tau} \, dx - \int_{\mathbb{R}^6} \xi (\xi \Delta Z_{\tau, \pi', \lambda} + Z_{\tau, \pi', \lambda} \Delta \xi + 2 \nabla \xi \nabla Z_{\tau, \pi', \lambda}) \frac{\partial Z_{\tau, \pi', \lambda}}{\partial \tau} \, dx.
\]
By Lemma 4.2, we know
\[
\int_{\mathbb{R}^6} (1 - \xi^2) \Delta Z_{\tau, \pi', \lambda} \frac{\partial Z_{\tau, \pi', \lambda}}{\partial \tau} \, dx = \sum_{j=1}^{m} \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{(1 - \xi^2(x)) U_{z_j, \lambda}(x) U_{z_j, \lambda}(y) \frac{\partial Z_{\tau, \pi', \lambda}}{\partial \tau}(y) \, dx \, dy = O\left(\frac{m^2}{\lambda^2} \right),
\]
\[
= \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{(1 - \xi^2(x)) U_{z_j, \lambda}(x) U_{z_j, \lambda}(y) \frac{\partial Z_{\tau, \pi', \lambda}}{\partial \tau}(y) \, dx \, dy = O\left(\frac{m^2}{\lambda^2} \right).
\]
Similar to the estimates of (4.12), we have
\[
\int_{\mathbb{R}^6} \xi Z_{\tau,\xi''}^* \Delta \xi \frac{\partial Z_{\tau,\xi''}^*}{\partial \tau} dx = O\left(\frac{m^2}{\lambda^4}\right),
\]
and
\[
\int_{\mathbb{R}^6} \xi \nabla \xi \nabla Z_{\tau,\xi''}^* \frac{\partial Z_{\tau,\xi''}^*}{\partial \tau} dx \leq C \sum_{j=1}^{m} \int_{\mathbb{R}^6} \frac{\xi |\nabla \xi| \lambda^4 |y - z_j|}{(1 + \lambda^2 |y - z_j|^2)^3} \frac{\partial Z_{\tau,\xi''}^*}{\partial \tau} dy = O\left(\frac{m^2}{\lambda^4}\right).
\]
So, we have proved
\[
\int_{\mathbb{R}^6} \Delta Z_{\tau,\xi''}^* \frac{\partial Z_{\tau,\xi''}^*}{\partial \tau} dx - \int_{\mathbb{R}^6} \Delta Z_{\tau,\xi''}^* \frac{\partial Z_{\tau,\xi''}^*}{\partial \tau} dx = O\left(\frac{m^2}{\lambda^4}\right) = O\left(\frac{1}{\lambda^3}\right).
\]
Combining this with (4.12), (4.13) and Lemma 4.2, we can obtain the result.
\[
\square
\]
Lemma 4.4. We have
\[
\frac{\partial J(Z_{\tau,\xi''}^*, \lambda)}{\partial \tau} = m \left(\frac{B_1}{\lambda^2} \frac{\partial V(\tau, \xi'')}{\partial \tau} + \sum_{j=2}^{m} \frac{B_2}{\tau \lambda^4 |z_1 - z_j|^4} + O\left(\frac{1}{\lambda^{1+\varepsilon}}\right) \right),
\]
where \(B_j, j = 1, 2\) are some positive constants.

Proof. We know
\begin{equation}
\frac{\partial J(Z_{\tau,\xi''}^*, \lambda)}{\partial \tau} = \int_{\mathbb{R}^6} V(x) Z_{\tau,\xi''}^* \frac{\partial Z_{\tau,\xi''}^*}{\partial \tau} dx - \int_{\mathbb{R}^6} \left(|x|^{-4} * |Z_{\tau,\xi''}^*|^2 \right) Z_{\tau,\xi''}^* \frac{\partial Z_{\tau,\xi''}^*}{\partial \tau} dx
+ \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left(|x|^{-4} * |U_{z_j,\lambda}|^2 \right) U_{z_j,\lambda} \frac{\partial Z_{\tau,\xi''}^*}{\partial \tau} dx
\end{equation}
\[= P_1 + P_2.\]

To estimate the first part \(P_1\) in (4.14), integrating by parts, we notice that it is easy to show
\[
\int_{\mathbb{R}^6} V(x) U_{z_j,\lambda}(x) \frac{\partial U_{z_j,\lambda}}{\partial \tau}(x) dx = - \int_{\mathbb{R}^6} |U_{0,\lambda}(x)|^2 \frac{\partial V(x + z_j)}{\partial \tau} dx - \int_{\mathbb{R}^6} V(x) U_{z_j,\lambda}(x) \frac{\partial U_{z_j,\lambda}}{\partial \tau}(x) dx,
\]
and so,
\[
\int_{\mathbb{R}^6} V(x) U_{z_j,\lambda}(x) \frac{\partial U_{z_j,\lambda}}{\partial \tau}(x) dx = C \int_{\mathbb{R}^6} |U_{0,\lambda}(x)|^2 \frac{\partial V(z_j)}{\partial \tau} dx + C \int_{\mathbb{R}^6} |U_{0,\lambda}(x)|^2 \frac{\partial (V(x + z_j) - V(z_j))}{\partial \tau} dx
\]
\[= C \frac{\partial V(\tau, \xi'')}{\partial \tau} \int_{\mathbb{R}^6} |U_{0,1}(x)|^2 dx + O\left(\frac{1}{\lambda^2}\right).
\]
Combining this and the fact
\[
\int_{\mathbb{R}^6} V(x) U_{z_1,\lambda}(x) \sum_{j=2}^{m} \frac{\partial U_{z_j,\lambda}}{\partial \tau}(x) dx \leq \sum_{j=2}^{m} C \frac{1}{\lambda} \int_{\mathbb{R}^6} \frac{1}{(1 + |x - \lambda z_1|)^{4 \frac{1}{3}}} \frac{1}{(1 + |x - \lambda z_j|)^{2 \frac{1}{3}}} dx
\]
\[\leq C \sum_{j=2}^{m} \frac{1}{\lambda^2 |z_1 - z_j|^2} = O\left(\frac{m^2}{\lambda^3}\right) = O\left(\frac{1}{\lambda^2}\right),
\]
we have
\[
P_1 = \int_{\mathbb{R}^6} V(x) Z_{\tau,\xi''}^* \frac{\partial Z_{\tau,\xi''}^*}{\partial \tau} dx = \frac{C m \partial V(\tau, \xi'')}{\lambda^2} \int_{\mathbb{R}^6} |U_{0,1}(x)|^2 dx + O\left(\frac{m}{\lambda^2}\right)
\]
\[= \frac{C m \partial V(\tau, \xi'')}{\lambda^2} \int_{\mathbb{R}^6} |U_{0,1}(x)|^2 dx + O\left(\frac{1}{\lambda^{1+\varepsilon}}\right).\]
To estimate the second part \mathcal{P}_2 in (4.14), we observe that
\[
\int_{\mathbb{R}^6} \left[\frac{\partial Z_{\tau, \pi', \lambda}^*}{\partial \tau} - \sum_{j=1}^{m} \left(|x|^{-4} * |U_{z_j, \lambda}|^2 \right) \frac{\partial Z_{\tau, \pi', \lambda}^*}{\partial \tau} \right] dx \\
= 2m \int_{\mathbb{R}^6} \left(|x|^{-4} * |U_{z_1, \lambda}| \sum_{i=2}^{m} U_{z_i, \lambda} \right) \frac{\partial Z_{\tau, \pi', \lambda}^*}{\partial \tau} dx + m \int_{\mathbb{R}^6} \left(|x|^{-4} * |U_{z_1, \lambda}|^2 \right) \sum_{i=2}^{m} U_{z_i, \lambda} \frac{\partial Z_{\tau, \pi', \lambda}^*}{\partial \tau} dx
\]
\[= 2m \mathcal{Q}_1 + m \mathcal{Q}_2. \tag{4.16}\]

First, for the integral part \mathcal{Q}_2, if $i = 2, \ldots, m$, applying Lemmas 2.4 and 2.5, we have
\[
\left| \int_{\mathbb{R}^6} \left(|x|^{-4} * |U_{z_i, \lambda}|^2 \right) U_{z_i, \lambda} \frac{\partial U_{z_i, \lambda}}{\partial \tau} dx \right| \leq C \int_{\mathbb{R}^6} \frac{\lambda^2}{(1 + \lambda^2|x-z_1|^2)^2 (1 + \lambda^2|x-z_1|^2)^2 (1 + \lambda^2|x-z_1|^2)^3} dx
\]
\[\leq C \int_{\mathbb{R}^6} \frac{1}{(1 + |x-z|)^4 (1 + |x-z|)^5} dx \leq \frac{C}{\lambda^4|z_1 - z_i|^5}. \tag{4.17}\]

Consequently,
\[
\left| \sum_{i=2}^{m} \int_{\mathbb{R}^6} \left(|x|^{-4} * |U_{z_i, \lambda}|^2 \right) U_{z_i, \lambda} \frac{\partial U_{z_i, \lambda}}{\partial \tau} dx \right| \leq \sum_{i=2}^{m} \frac{C}{\lambda^4|z_1 - z_i|^5} = \frac{Cm^5}{\lambda^4} = O\left(\frac{1}{\lambda^{1-\delta}} \right).\]

Second, by Lemma 2.4, we have
\[
\int_{\mathbb{R}^6} \left(|x|^{-4} * |U_{z_1, \lambda}|^2 \right) U_{z_1, \lambda} \frac{\partial U_{z_1, \lambda}}{\partial \tau} dx
\]
\[= \frac{C}{\pi} \int_{\mathbb{R}^6} \frac{\lambda^2}{(1 + \lambda^2|x-z_1|^2)^2 (1 + \lambda^2|x-z_1|^2)^2 (1 + \lambda^2|x-z_1|^2)^3} \left((x_1 - \pi \cos \frac{2(i-1)\pi}{m})x_1 + (x_2 - \pi \sin \frac{2(i-1)\pi}{m})x_2 \right) dx
\]
\[+ \frac{C}{\pi} \int_{\mathbb{R}^6} \frac{\lambda^2}{(1 + \lambda^2|x-z_1|^2)^2 (1 + \lambda^2|x-z_1|^2)^2 (1 + \lambda^2|x-z_1|^2)^3} \lambda^4|x-z|^2 dx
\]
\[+ \frac{C}{\pi} \int_{\mathbb{R}^6} \frac{\lambda^2}{(1 + \lambda^2|x-z_1|^2)^2 (1 + \lambda^2|x-z_1|^2)^2 (1 + \lambda^2|x-z_1|^2)^3} \lambda^4(x - \pi')^2 dx
\]
\[= \frac{C}{\pi} \Psi_1 - \frac{C}{\pi} \Psi_2 + \frac{C}{\pi} \Psi_3, \]
where $i = 2, \ldots, m$. In fact,
\[
\Psi_1 \leq \frac{\lambda^4}{C} \int_{\mathbb{R}^6} \frac{\lambda^4(x_1 - \pi) x_1}{(1 + \lambda^2|x-z|^2)^4 (1 + \lambda^2|x-z|^2)^3} dx + \frac{\lambda^2}{C} \int_{\mathbb{R}^6} \frac{\lambda^4}{(1 + \lambda^2|x-z|^2)^2 (1 + \lambda^2|x-z|^2)^4} dx
\]
\[\leq \frac{\lambda^4}{C} \frac{\lambda^4}{\lambda^4|z_1 - z_i|^5} + \frac{\lambda^4}{\lambda^4|z_1 - z_i|^4}.
\]

By (2.2), we also have
\[
\Psi_2 = \int_{\mathbb{R}^6} \frac{\lambda^4}{(1 + \lambda^2|x-z_1|^2)^2 (1 + \lambda^2|x-z_1|^2)^4} dx - \int_{\mathbb{R}^6} \frac{\lambda^4}{(1 + \lambda^2|x-z_1|^2)^2 (1 + \lambda^2|x-z_1|^2)^5} dx = \frac{C}{\lambda^4|z_1 - z_i|^4},
\]
and
\[
\Psi_3 \leq \frac{C}{\lambda^4|z_1 - z_i|^4}.
\]
Therefore, we obtain
\[
\sum_{i=2}^m \int_{\mathbb{R}^6} \left[\left(|x|^{-4} * |U_{z_1,\lambda}|^2 \right) U_{z_1,\lambda} \right] \frac{\partial U_{z_1,\lambda}}{\partial \tau} \, dx \leq \sum_{i=2}^m \frac{C}{\lambda^4 |z_1 - z_i|^4} + \sum_{i=2}^m \frac{C}{\lambda^4 |z_1 - z_i|^4} - \sum_{i=2}^m \frac{C}{\rho \lambda^4 |z_1 - z_i|^4} + \frac{1}{\lambda^{1+\varepsilon}} - \sum_{i=2}^m \frac{C}{\rho \lambda^4 |z_1 - z_i|^4}.
\]
\[= O\left(\frac{1}{\lambda^{1+\varepsilon}} \right) - \sum_{i=2}^m \frac{C}{\rho \lambda^4 |z_1 - z_i|^4}. \tag{4.18} \]

Third, for \(j \neq 1, i \), by Lemma 2.1, we have
\[
\int_{\mathbb{R}^6} \left[\left(|x|^{-4} * |U_{z_1,\lambda}|^2 \right) U_{z_1,\lambda} \right] \frac{\partial U_{z_1,\lambda}}{\partial \tau} \, dx \leq C \int_{\mathbb{R}^6} \frac{\lambda^2}{(1 + \lambda^2 |x - z_1|^2)^2} \left(\frac{1}{1 + \lambda^2 |x - z_j|^2} \right) \frac{\lambda^2 |x - z_j|}{C \lambda} \int_{\mathbb{R}^6} \left(\frac{1}{1 + \lambda^2 |x - z_1|^2} \right) \left(\frac{1}{1 + |x - \lambda z_1|^2} \right) \left(\frac{1}{1 + |x - \lambda z_j|^2} \right) \, dx
\]
\[
\leq \frac{\lambda^4 |z_1 - z_i|^4}{\lambda^4 |z_1 - z_j|^4 \lambda |z_1 - z_j|^2} \int_{\mathbb{R}^6} \left(\frac{1}{1 + |x - \lambda z_1|^2} \right) \left(\frac{1}{1 + |x - \lambda z_j|^2} \right) \, dx
\]
\[
\leq \frac{\lambda^4 |z_1 - z_i|^4 \lambda |z_1 - z_j|^2}{\lambda^4 |z_1 - z_j|^4 \lambda |z_1 - z_j|^2} + \frac{\lambda^4 |z_1 - z_i|^4 \lambda |z_1 - z_j|^2}{\lambda^4 |z_1 - z_j|^4 \lambda |z_1 - z_j|^2}.
\]

Thus, we can get
\[
\sum_{i=2}^m \sum_{j=2, \neq i}^m \int_{\mathbb{R}^6} \left[\left(|x|^{-4} * |U_{z_1,\lambda}|^2 \right) U_{z_1,\lambda} \right] \frac{\partial U_{z_1,\lambda}}{\partial \tau} \, dx
\]
\[
\leq \sum_{i=2}^m \sum_{j=2, \neq i}^m \frac{C}{\lambda^4 |z_1 - z_i|^4 \lambda |z_1 - z_j|^2} + \sum_{i=2}^m \sum_{j=2, \neq i}^m \frac{C}{\lambda^4 |z_1 - z_i|^4 \lambda |z_1 - z_j|^2} - \frac{C m^6}{\lambda^5} = O\left(\frac{1}{\lambda^{1+\varepsilon}} \right).
\]

Combining this and (4.17), (4.18), we have
\[
\int_{\mathbb{R}^6} \left[\left(|x|^{-4} * |U_{z_1,\lambda}|^2 \right) \sum_{i=2}^m U_{z_1,\lambda} \right] \frac{\partial U_{z_1,\lambda}}{\partial \tau} \, dx = - \sum_{j=2}^m \frac{B_2}{\tau \lambda^4 |z_1 - z_j|^4} + O\left(\frac{1}{\lambda^{1+\varepsilon}} \right), \tag{4.19} \]
for some constant \(B_2 > 0 \).

Next, we are going to estimate \(Q_1 \). Observe that
\[
\int_{\mathbb{R}^6} \left(|x|^{-4} * |U_{z_1,\lambda} \sum_{i=2}^m U_{z_i,\lambda}| \right) Z_{r,\tau} \frac{\partial Z_{r,\tau}}{\partial \tau} \, dx
\]
\[
= \sum_{j=1}^m \int_{\mathbb{R}^6} \left(|x|^{-4} * |U_{z_1,\lambda} \sum_{i=2}^m U_{z_i,\lambda}| \right) U_{z_j,\lambda} \frac{\partial U_{z_j,\lambda}}{\partial \tau} \, dx + \int_{\mathbb{R}^6} \left(|x|^{-4} * |U_{z_1,\lambda} \sum_{i=2}^m U_{z_i,\lambda}| \right) U_{z_1,\lambda} \sum_{j=2}^m \frac{\partial U_{z_j,\lambda}}{\partial \tau} \, dx
\]
\[
+ (m - 1) \sum_{j=1, \neq 2}^m \int_{\mathbb{R}^6} \left(|x|^{-4} * |U_{z_1,\lambda} \sum_{i=2}^m U_{z_i,\lambda}| \right) U_{z_2,\lambda} \frac{\partial U_{z_2,\lambda}}{\partial \tau} \, dx. \tag{4.20} \]
Integrate by parts, we have

\[
\left| \int_{\mathbb{R}^6} \left(|x|^{-4} * |U_{z_1, \lambda} U_{z_1, \lambda}| \right) U_{z_2, \lambda} \frac{\partial U_{z_2, \lambda}}{\partial x} \, dx \right| \\
\leq C \left| \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} U_{z_1, \lambda}(x) U_{z_1, \lambda}(x) \left((x_1 - y_1) \cos \frac{2(j-1)\pi}{m} + (x_2 - y_2) \sin \frac{2(j-1)\pi}{m} \right) |U_{z_2, \lambda}(y)|^2 \, dx \, dy \right| \\
\leq \int_{\mathbb{R}^6} \left(|y|^{-4} * |U_{z_j, \lambda}|^2 \right) U_{z_1, \lambda} \lambda^4 |(y_1 - \tau) \cos \frac{2(i-1)\pi}{m} + (y_2 - \tau) \sin \frac{2(i-1)\pi}{m} \sin \frac{2(j-1)\pi}{m} \frac{(1 + \lambda^2 |y - z_i|^2)^3}{dy} \right| \\
+ \int_{\mathbb{R}^6} \left(|y|^{-4} * |U_{z_j, \lambda}|^2 \right) U_{z_2, \lambda} \lambda^4 |(y_1 - \tau) \cos \frac{2(j-1)\pi}{m} + y_2 \sin \frac{2(j-1)\pi}{m} \frac{(1 + \lambda^2 |y - z_i|^2)^3}{dy} \right|,
\]

where \(i = 2, \ldots, m \) and \(j = 1, \ldots, m \). If \(j = 1 \), we have

\[
\left| \int_{\mathbb{R}^6} \left(|x|^{-4} * |U_{z_1, \lambda} U_{z_1, \lambda}| \right) U_{z_2, \lambda} \frac{\partial U_{z_2, \lambda}}{\partial x} \, dx \right| \\
\leq \int_{\mathbb{R}^6} \frac{\lambda^2}{(1 + \lambda |x - z_1|)^4} \frac{\lambda^2}{(1 + \lambda^2 |x - z_1|^2)^2} \frac{\lambda^3}{(1 + \lambda |x - z_1|)^5} \, dx \]
\[
\leq \int_{\mathbb{R}^6} \frac{1}{(1 + |x - \lambda z_1|)^8} \frac{1}{(1 + |x - \lambda z_i|)^5} \, dx \]
\[
\leq C \frac{\lambda^4 |z_1 - z_i|^5}{}.
\]

Similarly, if \(j = i \), we have

\[
\left| \int_{\mathbb{R}^6} \left(|x|^{-4} * |U_{z_1, \lambda} U_{z_1, \lambda}| \right) U_{z_2, \lambda} \frac{\partial U_{z_2, \lambda}}{\partial x} \, dx \right| \leq \frac{C}{\lambda^4 |z_1 - z_i|^5}.
\]

When \(j \neq 1 \) and \(j \neq i \), we have

\[
\left| \int_{\mathbb{R}^6} \left(|x|^{-4} * |U_{z_1, \lambda} U_{z_1, \lambda}| \right) U_{z_2, \lambda} \frac{\partial U_{z_2, \lambda}}{\partial x} \, dx \right| \\
\leq \frac{C}{\lambda^4 |z_1 - z_i|^4} \int_{\mathbb{R}^6} \frac{1}{(1 + |x - \lambda z_1|)^4} \frac{1}{(1 + |x - \lambda z_i|)^4} \, dx \]
\[
\leq \frac{C}{\lambda^4 |z_1 - z_i|^4} \frac{1}{\lambda |z_1 - z_j|} \int_{\mathbb{R}^6} (1 + |x - \lambda z_1|)^7 + (1 + |x - \lambda z_j|)^7 \, dx \]
\[
+ \frac{C}{\lambda^4 |z_1 - z_i|^4} \frac{1}{\lambda |z_1 - z_j|} \int_{\mathbb{R}^6} (1 + |x - \lambda z_i|)^7 + (1 + |x - \lambda z_j|)^7 \, dx \]
\[
= \frac{C}{\lambda^4 |z_1 - z_i|^4} \frac{1}{\lambda |z_1 - z_j|} + \lambda^4 |z_1 - z_i|^4 \frac{|z_i - z_j|}{\lambda |z_i - z_j|}.
\]
Combining this and (4.19), we can obtain

\[\sum_{j=1}^{m} \int_{\mathbb{R}^6} \left(|x|^{-4} \ast |U_{z_1, \lambda} \sum_{i=2}^{m} U_{z_i, \lambda}| \right) U_{z_j, \lambda} \frac{\partial U_{z_j, \lambda}}{\partial \bar{\tau}} \, dx \]

\[\leq \sum_{i=2}^{m} \sum_{j=2, j \neq i}^{m} \frac{C}{\lambda^4 |z_1 - z_i|^5} + \sum_{i=2}^{m} \sum_{j=2, j \neq i}^{m} \frac{C}{\lambda^4 |z_1 - z_i|^4 \lambda |z_1 - z_j|} + \sum_{i=2}^{m} \sum_{j=2, j \neq i}^{m} \frac{C}{\lambda^4 |z_1 - z_i|^4 \lambda |z_i - z_j|} \]

\[= C m^5 \frac{\lambda^4}{\lambda^2} + \sum_{i=2}^{m} \frac{C}{\lambda^4 |z_1 - z_i|^4} \frac{m}{\lambda} \]

\[= \frac{C}{\lambda^3} + \frac{C m^4}{\lambda^4} = O \left(\frac{1}{\lambda^{1+\varepsilon}} \right). \]

Similarly, we have

\[\int_{\mathbb{R}^6} \left(|x|^{-4} \ast |U_{z_1, \lambda} \sum_{i=2}^{m} U_{z_i, \lambda}| \right) U_{z_1, \lambda} \sum_{j=2}^{m} \frac{\partial U_{z_j, \lambda}}{\partial \bar{\tau}} \, dx = O \left(\frac{1}{\lambda^{1+\varepsilon}} \right) \]

and

\[(m - 1) \sum_{j=1, j \neq 2}^{m} \int_{\mathbb{R}^6} \left(|x|^{-4} \ast |U_{z_1, \lambda} \sum_{i=2}^{m} U_{z_i, \lambda}| \right) U_{z_2, \lambda} \frac{\partial U_{z_j, \lambda}}{\partial \bar{\tau}} \, dx = O \left(\frac{1}{\lambda^{1+\varepsilon}} \right). \]

Now, recall that (4.20), (4.21), (4.22) and (4.23), we have

\[\int_{\mathbb{R}^6} \left(|x|^{-4} \ast |U_{z_1, \lambda} \sum_{i=2}^{m} U_{z_i, \lambda}| \right) Z_{\tau, \pi'}^* \frac{\partial Z_{\tau, \pi'}^*}{\partial \bar{\tau}} \, dx = O \left(\frac{1}{\lambda^{1+\varepsilon}} \right). \]

Combining this and (4.19), we can obtain

\[\int_{\mathbb{R}^6} \left(|x|^{-4} \ast |Z_{\tau, \pi'}^*|^2 \right) Z_{\tau, \pi'}^* \frac{\partial Z_{\tau, \pi'}^*}{\partial \bar{\tau}} \, dx - \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left(|x|^{-4} \ast |U_{z_j, \lambda}|^2 \right) U_{z_j, \lambda} \frac{\partial Z_{\tau, \pi'}^*}{\partial \bar{\tau}} \, dx \]

\[= m \left(- \sum_{j=2}^{m} \frac{B_2}{\tau^4 |\pi_1 - z_2|^4} + O \left(\frac{1}{\lambda^{1+\varepsilon}} \right) \right). \]

So, by Lemma 4.3, we obtain

\[\frac{\partial J(Z_{\tau, \pi'}, \lambda)}{\partial \bar{\tau}} = m \left(\frac{B_1}{\lambda^2} \frac{\partial V(\bar{\tau}, \pi'')}{\partial \bar{\tau}} + \sum_{j=2}^{m} \frac{B_2}{\tau^4 |\pi_1 - z_j|^4} + O \left(\frac{1}{\lambda^{1+\varepsilon}} \right) \right). \]

where \(B_j, j = 1, 2 \) are some positive constants.

Lemma 4.5. We have

\[\int_{\mathbb{R}^6} \left(-\Delta u_m + V(|x'|, x'') u_m - (|x|^{-4} \ast |u_m|^2) u_m \right) \frac{\partial Z_{\tau, \pi'}^*}{\partial \bar{\tau}} \, dx \]

\[= m \left(- \frac{B_1}{\lambda^5} V(\bar{\tau}, \pi'') + \frac{m^4 B_2}{\lambda^5} + O \left(\frac{1}{\lambda^{1+\varepsilon}} \right) \right). \]
Proof. Direct calculations show

\[
\int_{\mathbb{R}^6} (-\Delta u_m + V(|x'|, x'')u_m - \left(|x|^{-4} \ast |u_m|^2 \right) u_m) \frac{\partial Z_{\mathbf{r}, \mathbf{r}'}, \lambda}{\partial \mathbf{r}} \, dx
\]

\[
= \langle J'(Z_{\mathbf{r}, \mathbf{r}'}, \lambda), \frac{\partial Z_{\mathbf{r}, \mathbf{r}'}, \lambda}{\partial \mathbf{r}} \rangle + m \left(- \Delta \phi + V(r, x'') \phi - \left(|x|^{-4} \ast |Z_{\mathbf{r}, \mathbf{r}'}, \lambda|^2 \right) \phi \
- 2 \left(|x|^{-4} \ast Z_{\mathbf{r}, \mathbf{r}'}, \lambda \phi \right) Z_{\mathbf{r}, \mathbf{r}'}, \lambda, \frac{\partial Z_{z_1}, \lambda}{\partial \mathbf{r}} \right) - \int_{\mathbb{R}^6} \left(|x|^{-4} \ast |Z_{\mathbf{r}, \mathbf{r}'}, \lambda|^2 \right) \phi \frac{\partial Z_{z_1}, \lambda}{\partial \mathbf{r}} \, dx
\]

\[
+ \int_{\mathbb{R}^6} \left(|x|^{-4} \ast |Z_{\mathbf{r}, \mathbf{r}'}, \lambda|^2 \right) \phi \frac{\partial Z_{\mathbf{r}, \mathbf{r}'}, \lambda}{\partial \mathbf{r}} \, dx + \int_{\mathbb{R}^6} 2 \left(|x|^{-4} \ast Z_{\mathbf{r}, \mathbf{r}'}, \lambda \phi \right) Z_{\mathbf{r}, \mathbf{r}'}, \lambda \frac{\partial Z_{\mathbf{r}, \mathbf{r}'}, \lambda}{\partial \mathbf{r}} \, dx
\]

\[
:= \langle J'(Z_{\mathbf{r}, \mathbf{r}'}, \lambda), \frac{\partial Z_{\mathbf{r}, \mathbf{r}'}, \lambda}{\partial \mathbf{r}} \rangle + mI_1 - I_2.
\]

Using (3.14) and (3.15), we obtain

\[
I_1 = O\left(\frac{\|\phi\|_s}{\lambda^\varepsilon} \right) = O\left(\frac{1}{\lambda^{1+\varepsilon}} \right).
\]

By (3.3), we have

\[
||x|^{-4} \ast (Z_{\mathbf{r}, \mathbf{r}'}, \lambda \phi) || \leq C\|\phi\|_s \sum_{j=1}^m \frac{\lambda^2}{(1 + \lambda|x - z_j|)^4}.
\]

So,

\[
\left| \int_{\mathbb{R}^6} \left(|x|^{-4} \ast (Z_{\mathbf{r}, \mathbf{r}'}, \lambda \phi) \right) Z_{\mathbf{r}, \mathbf{r}'}, \lambda \frac{\partial Z_{z_1}, \lambda}{\partial \mathbf{r}} \, dx \right|
\]

\[
\leq C\|\phi\|_s \|Z_{\mathbf{r}, \mathbf{r}'}, \lambda\|_s \left| \int_{\mathbb{R}^6} \sum_{j=1}^m \frac{\lambda^2}{(1 + \lambda|x - z_j|)^4} \sum_{j=1}^m \frac{\lambda^2}{(1 + \lambda|x - z_j|)^2+\varepsilon} \xi \frac{\partial U_{z_1}, \lambda}{\partial \mathbf{r}} \, dx \right|
\]

\[
\leq C\|\phi\|_s \left| \int_{\mathbb{R}^6} \sum_{j=1}^m \frac{\lambda^4}{(1 + \lambda|x - z_j|)^6+\varepsilon} \xi \frac{\partial U_{z_1}, \lambda}{\partial \mathbf{r}} \, dx \right|.
\]

Using the same arguments Lemma 4.4, it is easy to show

\[
\left\langle \left(|x|^{-4} \ast (Z_{\mathbf{r}, \mathbf{r}'}, \lambda \phi) \right) Z_{\mathbf{r}, \mathbf{r}'}, \lambda, \frac{\partial Z_{z_1}, \lambda}{\partial \mathbf{r}} \right\rangle = O\left(\frac{1}{\lambda^{1+\varepsilon}} \right),
\]

and

\[
\left\langle \left(|x|^{-4} \ast (Z_{\mathbf{r}, \mathbf{r}'}, \lambda \phi) \right)^2 \phi, \frac{\partial Z_{z_1}, \lambda}{\partial \mathbf{r}} \right\rangle = O\left(\frac{1}{\lambda^{1+\varepsilon}} \right).
\]
By direct calculations, we can prove

\[I_2 \leq C \int_{\mathbb{R}^6} (|x|^{-4} * |\phi|^2) |\phi| \frac{\partial Z_{r,x',\lambda}}{\partial r} |dx + \int_{\mathbb{R}^6} (|x|^{-4} * |\phi|^2) |Z_{r,x',\lambda}| \frac{\partial Z_{r,x',\lambda}}{\partial r} |dx \]

\[+ 2 \int_{\mathbb{R}^6} (|x|^{-4} * |Z_{r,x',\lambda}| \phi) |\phi| \frac{\partial Z_{r,x',\lambda}}{\partial r} |dx \]

\[\leq C \int_{\mathbb{R}^6} (|x|^{-4} * |\phi|^2) |\phi| \xi \sum_{j=1}^{m} \frac{\partial U_{z_j,\lambda}}{\partial r} |dx + C \int_{\mathbb{R}^6} (|x|^{-4} * |\phi|^2) |Z_{r,x',\lambda}| \xi \sum_{j=1}^{m} \frac{\partial U_{z_j,\lambda}}{\partial r} |dx \]

\[+ C \int_{\mathbb{R}^6} (|x|^{-4} * |Z_{r,x',\lambda}| \phi) |\phi| \xi \sum_{j=1}^{m} \frac{\partial U_{z_j,\lambda}}{\partial r} |dx \]

\[\leq C \frac{\|\phi\|^3}{\lambda} \int_{\mathbb{R}^6} (|x|^{-4} * \left(\sum_{j=1}^{m} (1 + \lambda|x - z_j|)^{2+\tau} \right)^2 \sum_{j=1}^{m} \frac{\lambda^2}{(1 + \lambda|x - z_j|)^{2+\tau}} \sum_{j=1}^{m} U_{z_j,\lambda} |dx \]

\[+ C \frac{\|\phi\|^2}{\lambda \|Z_{r,x',\lambda}\|} \int_{\mathbb{R}^6} (|x|^{-4} * \left(\sum_{j=1}^{m} (1 + \lambda|x - z_j|)^{2+\tau} \right)^2 \sum_{j=1}^{m} \frac{\lambda^2}{(1 + \lambda|x - z_j|)^{2+\tau}} \sum_{j=1}^{m} U_{z_j,\lambda} |dx \]

\[+ C \frac{\|\phi\|^2}{\lambda \|Z_{r,x',\lambda}\|} \int_{\mathbb{R}^6} (|x|^{-4} * \left(\sum_{j=1}^{m} (1 + \lambda|x - z_j|)^{2+\tau} \right)^2 \sum_{j=1}^{m} \frac{\lambda^2}{(1 + \lambda|x - z_j|)^{2+\tau}} \sum_{j=1}^{m} U_{z_j,\lambda} |dx. \]

Using the same arguments Lemma 4.4 and (3.29), it is easy to show

\[I_2 = O\left(\frac{m}{\lambda^{1+\epsilon}} \right). \]

So, we have proved

\[\langle J'(Z_{r,x',\lambda} + \phi), \frac{\partial Z_{r,x',\lambda}}{\partial r} \rangle = \langle J'(Z_{r,x',\lambda}), \frac{\partial Z_{r,x',\lambda}}{\partial r} \rangle + O\left(\frac{m}{\lambda^{1+\epsilon}} \right). \]

From Lemma 4.4, we obtain the result. \(\square \)

Using the same arguments in Lemma 4.4 and Lemma 4.5, we can also prove

Lemma 4.6. We have

\[\langle J'(Z_{r,x',\lambda} + \phi), \frac{\partial Z_{r,x',\lambda}}{\partial \lambda} \rangle = m \left(- \frac{B_1}{\lambda^3} V(\tau, x'') + \sum_{j=2}^{m} \frac{B_2}{\lambda^3 |z_1 - z_j|^4} + O\left(\frac{1}{\lambda^{3+\epsilon}} \right) \right) \]

\[= m \left(- \frac{B_1}{\lambda^3} V(\tau, x'') + \frac{B_2 m^4}{\lambda^5} + O\left(\frac{1}{\lambda^{3+\epsilon}} \right) \right), \]

and

\[\langle J'(Z_{r,x',\lambda} + \phi), \frac{\partial Z_{r,x',\lambda}}{\partial x''} \rangle = m \left(\frac{B_1}{\lambda^2} \frac{\partial V(\tau, x'')}{\partial x''} + O\left(\frac{1}{\lambda^{1+\epsilon}} \right) \right), \quad j = 3, \ldots, 6, \]

where \(B_i, i = 1, 2, 3 \) are some positive constants.

Lemma 4.7. It holds

\[\int_{\mathbb{R}^6} |\nabla \phi|^2 dx + \int_{\mathbb{R}^6} V(r, x'') \phi^2 dx = O\left(\frac{m}{\lambda^{2+\epsilon}} \right). \]
Proof. It follows from (3.25) that
\[
\int_{\mathbb{R}^6} |\nabla \phi|^2 dx + \int_{\mathbb{R}^6} V(r, x') \phi^2 dx \\
= \int_{\mathbb{R}^6} (\Delta Z_{r, x'}, \lambda - V(r, x'') Z_{r, x'}, \lambda + (|x|^{-4} * |Z_{r, x'}, \lambda + \phi|^2) (Z_{r, x'}, \lambda + \phi)) \phi dx \\
= \int_{\mathbb{R}^6} (\Delta Z_{r, x'}, \lambda + (|x|^{-4} * |Z_{r, x'}, \lambda|^2) Z_{r, x'}, \lambda) \phi dx - \int_{\mathbb{R}^6} V(r, x'') Z_{r, x'}, \lambda \phi dx \\
+ \int_{\mathbb{R}^6} \left((|x|^{-4} * |Z_{r, x'}, \lambda + \phi|^2) (Z_{r, x'}, \lambda + \phi) - (|x|^{-4} * |Z_{r, x'}, \lambda|^2) Z_{r, x'}, \lambda \right) \phi dx \\
:= I_1 - I_2 + I_3.
\]

By the estimates of \(\Phi_3 \) and \(\Phi_4 \) in Lemma 3.4, we obtain
\[
\left| \int_{\mathbb{R}^6} \Delta Z_{r, x'}, \lambda \phi dx \right| \leq C \frac{\|\phi\|^4}{\lambda^{1+\varepsilon}} \int_{\mathbb{R}^6} \sum_{j=1}^{m} \frac{\lambda^4}{(1 + \lambda |x - z_j|)^{4+\tau}} \sum_{j=1}^{m} \frac{\lambda^2}{(1 + \lambda |x - z_j|)^{2+\tau}} dx \leq \frac{Cm}{\lambda^{2+2\varepsilon}}.
\]

Moreover, from the estimates of \(\Phi_1 \) in Lemma 3.4, we obtain
\[
\left| \int_{\mathbb{R}^6} (|x|^{-4} |Z_{r, x'}, \lambda|^2) Z_{r, x'}, \lambda \phi dx \right| \\
\leq C \frac{\|\phi\|^4}{\lambda^{1+\varepsilon}} \int_{\mathbb{R}^6} \sum_{j=1}^{m} \left(\frac{\lambda^4}{(1 + \lambda |x - z_j|)^{4+\tau}} + \frac{\lambda^4}{(1 + \lambda |x - z_j|)^8} \right) \sum_{j=1}^{m} \frac{\lambda^2}{(1 + \lambda |x - z_j|)^{2+\tau}} dx \leq \frac{Cm}{\lambda^{2+2\varepsilon}}.
\]

So, we can prove
\[
|I_1| \leq \frac{Cm}{\lambda^{2+2\varepsilon}},
\]

By (3.37) in [37], we have
\[
|I_2| \leq \frac{Cm}{\lambda^{2+2\varepsilon}}.
\]

By direct calculations, we can prove
\[
|I_3| \leq C(\|\phi\|^4 + \|\phi\|^2) \int_{\mathbb{R}^6} (|x|^{-4} \sum_{j=1}^{m} \frac{\lambda^2}{(1 + \lambda |x - z_j|)^{2+\tau}})^2 \sum_{j=1}^{m} \frac{\lambda^2}{(1 + \lambda |x - z_j|)^{2+\tau}} dx \leq \frac{Cm}{\lambda^{2+2\varepsilon}}.
\]

So, we deduce
\[
\int_{\mathbb{R}^6} |\nabla \phi|^2 dx + \int_{\mathbb{R}^6} V(r, x'') \phi^2 dx = O\left(\frac{m}{\lambda^{2+\varepsilon}} \right).
\]

\[\square\]

Proof of Theorem 1.3. It is easy to see that (4.1) is equivalent to
\[
-2 \int_{D\rho} |\nabla u_m|^2 dx - \frac{1}{2} \int_{D\rho} (6V(x) + \langle x, \nabla V(x) \rangle) u_m^2 dx + 3 \int_{D\rho} \int_{\mathbb{R}^6} \frac{|u_m(y)|^2 |u_m(x)|^2}{|x - y|^4} dxdy \\
- 2 \int_{D\rho} \int_{\mathbb{R}^6} \frac{|u_m(y)|^2 |u_m(x)|^2}{|x - y|^6} dxdy \\
= O\left(\int_{\partial D\rho} (|\nabla \phi|^2 + \phi^2) ds + \int_{\partial D\rho} \left(\int_{\mathbb{R}^6} \frac{\phi(y)^2}{|x - y|^4} dy \right) |\phi|^2 ds \right).
\]

(4.27)
Since \(\sum_{j=1}^{m} \int_{\mathbb{R}^6} \left(|x|^{-4} * |Z_{j,\lambda}|^2 \right) Z_{j,l} \phi + 2 \left(|x|^{-4} * |Z_{j,\lambda}Z_{j,l}\right) Z_{j,\lambda} \phi |dx = 0 \), we obtain from (3.25) that

\[
\int_{D_\rho} |\nabla u_m|^2 |dx| + \int_{D_\rho} V(x) u_m^2 |dx| = \int_{D_\rho} \left(|x|^{-4} * |u_m|^2 \right) |u_m|^2 |dx| + \sum_{l=1}^{6} c_l \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[\left(|x|^{-4} * |Z_{j,\lambda}|^2 \right) Z_{j,l} \right.

\]

\[+ 2 \left(|x|^{-4} * (Z_{j,\lambda}Z_{j,l}) \right) Z_{j,\lambda} Z_{l,\lambda} + O \left(\int_{\partial D_\rho} (|\nabla \phi|^2 + \phi^2) |dx| \right). \tag{4.28} \]

Inserting (4.28) into (4.27), we obtain

\[
\int_{D_\rho} (V(x) + \frac{1}{2} \langle x, \nabla V(x) \rangle) u_m^2 |dx| = -2 \sum_{l=1}^{6} c_l \sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[\left(|x|^{-4} * |Z_{j,\lambda}|^2 \right) Z_{j,l} \right.

\]

\[+ 2 \left(|x|^{-4} * (Z_{j,\lambda}Z_{j,l}) \right) Z_{j,\lambda} \phi \left(|\nabla \phi|^2 + \phi^2 \right) |dx| + O \left(\int_{\partial D_\rho} (|\nabla \phi|^2 + \phi^2) |dx| \right) + O \left(\frac{1}{\lambda^{2+\varepsilon}} \right), \quad i = 3, \ldots, 6. \tag{4.29} \]

On the other hand, by direct calculations, we can prove

\[
\sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[\left(|x|^{-4} * |Z_{j,\lambda}|^2 \right) Z_{j,l} + 2 \left(|x|^{-4} * (Z_{j,\lambda}Z_{j,l}) \right) Z_{j,\lambda} \right] \frac{\partial Z_{l,\lambda \phi}}{\partial r} |dx| \leq O(m \lambda^2), \quad l = 2, \ldots, 6, \]

and

\[
\sum_{j=1}^{m} \int_{\mathbb{R}^6} \left[\left(|x|^{-4} * |Z_{j,\lambda}|^2 \right) Z_{j,l} + 2 \left(|x|^{-4} * (Z_{j,\lambda}Z_{j,l}) \right) Z_{j,\lambda} \right] \frac{\partial Z_{l,\lambda \phi}}{\partial r} |dx| = O(m). \]

Combining these and Lemma 4.5, (4.11), (4.24), (4.25) and (3.26), we can get the following estimate for \(c_i \):

\[
c_i = O \left(\frac{1}{\lambda^{3+\varepsilon}} \right), \quad i = 2, \ldots, 6, \tag{4.30} \]

and

\[
c_1 = O \left(\frac{1}{\lambda^{1+\varepsilon}} \right). \tag{4.31} \]

It is easy to see that

\[
\int_{\mathbb{R}^6} \left[\left(|x|^{-4} * |Z_{j,\lambda}|^2 \right) Z_{j,2} Z_{j,\lambda} \right] |dx| \leq C \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{\lambda^4}{(1 + \lambda^2 |x - z_j|^2)^4} \frac{1}{|x - y|^4 (1 + \lambda^2 |y - z_j|^2)^5} |dx| dy = O(\lambda),
\]

where \(j = 1, \ldots, m \), and if \(i \neq j \),

\[
\int_{\mathbb{R}^6} \left[\left(|x|^{-4} * |Z_{j,\lambda}|^2 \right) Z_{j,2} Z_{i,\lambda} \right] |dx| \leq C \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{\lambda^4}{(1 + \lambda^2 |x - z_j|^2)^4} \frac{1}{|x - y|^4 (1 + \lambda^2 |y - z_i|^2)^2 (1 + \lambda^2 |y - z_j|^2)^3} |dx| dy \]

\[
\leq C \int_{\mathbb{R}^6} \frac{1}{(1 + |y - \lambda z_i|)^4 (1 + |y - \lambda z_j|)^9} |dy| \]

\[
\leq \lambda^3 |z_i - z_j|^4. \]
Similarly, we have,

\[
\sum_{j=1}^{m} \int_{\mathbb{R}^6} \left(|x|^{-4} * |Z_{z,j,2}|^2 \right) Z_{z,j,2} Z_{\tau, \nu', \lambda} \, dx = O(m\lambda) + m \sum_{j=2}^{m} \frac{C}{\lambda^3 |z_j - z_j'|} = O(m\lambda).
\]

Consequently,

\[
\sum_{j=1}^{m} \int_{\mathbb{R}^6} \left(|x|^{-4} * |Z_{z,j,2}|^2 \right) Z_{z,j,2} Z_{\tau, \nu', \lambda} \, dx = O(m\lambda) \quad \text{if} \quad l = 3, 4, 5, 6. \tag{4.33}
\]

By (4.32)-(4.34), we find from (4.30) and (4.31) that (4.29) is equivalent to

\[
\int_{D_p} (V(x) + \frac{1}{2} (x, \nabla V(x))) u_m^2 \, dx = O\left(\frac{m}{\lambda^{2+\varepsilon}} \right) + O\left(\int_{\partial D_p} \left(|\nabla \phi|^2 + \phi^2 \right) \, ds + \int_{\partial D_p} \left(\int_{\mathbb{R}^6} \frac{|\phi(y)|^2}{|x-y|^4} \, dy \right) |\phi|^2 \, ds \right)
+ O\left(\int_{D_p} \int_{\mathbb{R}^6 \setminus D_p} (x_i - y_i) \frac{|\phi(x)|^2 |\phi(y)|^2}{|x-y|^6} \, dx \, dy \right) + O\left(\frac{1}{\lambda^{2+\varepsilon}} \right), \quad i = 3, \ldots, 6.
\]

for some small $\varepsilon > 0$.

We integrate by parts to find that (4.2) is equivalent to

\[
\int_{D_p} u_m^2 \frac{\partial V(|x'|, x') \, dx}{\partial x_i} = O\left(\int_{\partial D_p} \left(|\nabla \phi|^2 + \phi^2 \right) \, ds + \int_{\partial D_p} \left(\int_{\mathbb{R}^6} \frac{|\phi(y)|^2}{|x-y|^4} \, dy \right) |\phi|^2 \, ds \right)
+ O\left(\int_{D_p} \int_{\mathbb{R}^6 \setminus D_p} (x_i - y_i) \frac{|\phi(x)|^2 |\phi(y)|^2}{|x-y|^6} \, dx \, dy \right) + O\left(\frac{1}{\lambda^{2+\varepsilon}} \right), \quad i = 3, \ldots, 6.
\]

From (4.36), we can rewrite (4.35) as

\[
\int_{D_p} (V(x) + \frac{r}{2} \frac{\partial V(r, x''')}{\partial r}) u_m^2 \, dx = o\left(\frac{m}{\lambda^2} \right) + O\left(\int_{\partial D_p} \left(|\nabla \phi|^2 + \phi^2 \right) \, ds + \int_{\partial D_p} \left(\int_{D_p} \frac{|\phi(y)|^2}{|x-y|^4} \, dy \right) |\phi|^2 \, ds \right)
+ O\left(\int_{D_p} \int_{\mathbb{R}^6 \setminus D_p} (x_i - y_i) \frac{|\phi(x)|^2 |\phi(y)|^2}{|x-y|^6} \, dx \, dy \right), \quad i = 3, \ldots, 6,
\]

that is,

\[
\int_{D_p} \frac{1}{2r} \frac{\partial r^2 V(r, x''')}{\partial r} u_m^2 \, dx = o\left(\frac{m}{\lambda^2} \right) + O\left(\int_{\partial D_p} \left(|\nabla \phi|^2 + \phi^2 \right) \, ds + \int_{\partial D_p} \left(\int_{D_p} \frac{|\phi(y)|^2}{|x-y|^4} \, dy \right) |\phi|^2 \, ds \right)
+ O\left(\int_{D_p} \int_{\mathbb{R}^6 \setminus D_p} (x_i - y_i) \frac{|\phi(x)|^2 |\phi(y)|^2}{|x-y|^6} \, dx \, dy \right), \quad i = 3, \ldots, 6.
\]
From Lemma 3.5 in [37], we know
\[\int_{D_{4\delta} \setminus D_{3\delta}} |\nabla \phi|^2 \, dx = O\left(\frac{m}{\lambda^{2+\varepsilon}} \right). \]

Which together with Lemma 4.7 implies that
\[\int_{D_{4\delta} \setminus D_{3\delta}} (|\nabla \phi|^2 + \phi^2) \, dx + \int_{D_{4\delta} \setminus D_{3\delta}} \left(\int_{D_\rho} \frac{|\phi(y)|^2}{|x-y|^4} \, dy \right) |\phi|^2 \, dx + \int_{D_{4\delta} \setminus D_{3\delta}} \int_{\mathbb{R}^6 \setminus D_\rho} (x_i - y_i) |\phi(x)|^2 |\phi(y)|^2 \, dxdy = O\left(\frac{m}{\lambda^{2+\varepsilon}} \right), \]

where \(i = 3, \ldots, 6 \). As a result, we can find a \(\rho \in (3\delta, 4\delta) \), such that
\[\int_{\partial D_\rho} (|\nabla \phi|^2 + \phi^2) \, ds + \int_{\partial D_\rho} \left(\int_{D_\rho} \frac{|\phi(y)|^2}{|x-y|^4} \, dy \right) |\phi|^2 \, ds + \int_{D_\rho} \int_{\mathbb{R}^6 \setminus D_\rho} (x_i - y_i) |\phi(x)|^2 |\phi(y)|^2 \, dxdy = O\left(\frac{m}{\lambda^{2+\varepsilon}} \right), \]

where \(i = 3, \ldots, 6 \). By Lemma 3.4 in [37], for any \(C^1 \) function \(g(r, x'') \), it holds
\[\int_{D_\rho} g(r, x'') \, u_m \, dx = m\left(\frac{1}{\lambda^2} g(r, x'') \right) \int_{\mathbb{R}^6} u_m^2 \, dx + o\left(\frac{1}{\lambda^2} \right). \]

We can obtain from (4.36) and (4.38) that
\[m\left(\frac{1}{\lambda^2} \frac{\partial V(\tau, x'')}{\partial \tau_i} \right) \int_{\mathbb{R}^6} U_{0,1}^2 \, dx + o\left(\frac{1}{\lambda^2} \right) = o\left(\frac{m}{\lambda^2} \right), \]

and
\[m\left(\frac{1}{\lambda^2} \frac{\partial (\tau^2 V(\tau, x''))}{\partial \tau} \right) \int_{\mathbb{R}^6} U_{0,1}^2 \, dx + o\left(\frac{1}{\lambda^2} \right) = o\left(\frac{m}{\lambda^2} \right). \]

Therefore, the equations to determine \((\tau, x'') \) are
\[\frac{\partial V(\tau, x'')}{\partial \tau_i} = o(1), \quad i = 3, \ldots, 6, \quad (4.39) \]

and
\[\frac{\partial (\tau^2 V(\tau, x''))}{\partial \tau} = o(1). \quad (4.40) \]

We have proved that (4.1), (4.2) and (4.3) are equivalent to (4.39), (4.40) and
\[-\frac{B_1}{\lambda^3} V(\tau, x'') + \frac{m^4 B_3}{\lambda^5} = O\left(\frac{1}{\lambda^{3+\varepsilon}} \right). \]

Let \(\lambda = tm^2 \), then \(t \in [L_0, L_1] \) since \(\lambda \in [L_0 m^2, L_1 m^2] \). Then, we can get
\[-\frac{B_1}{t^3} V(\tau, x'') + \frac{B_3}{t^5} = o(1), \quad t \in [L_0, L_1]. \quad (4.41) \]

Let
\[F(t, \tau, x'') = (\nabla_{\tau, x''}(\tau^2 V(\tau, x'')) - \frac{2B_1}{t^3} V(\tau, x'') + \frac{B_3}{t^5}). \]

Then
\[\text{deg}(F(t, \tau, x''), [L_0, L_1] \times B_0((r_0, x''_0))) = -\text{deg}(\nabla_{\tau, x''}(\tau^2 V(\tau, x''_0)), B_0((r_0, x''_0))) = 0. \]

So, (4.39), (4.40) and (4.41) have a solution \(t_m \in [L_0, L_1] \), \((\tau_m, x''_m) \in B_0((r_0, x''_0)) \). \(\square \)
References

1. N. Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z., 248 (2004), 423–443.
2. C. O. Alves, D. Cassani, C. Tarsi & M. Yang, Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \mathbb{R}^2, J. Differential Equations., 261 (2016), 1933–1972.
3. C.O. Alves, F. Gao, M. Squassina, & M. Yang, Singularly perturbed critical Choquard equations, J. Differential Equations, 263 (2017), 3943–3988.
4. C.O. Alves, A. B. Nóbrega & M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations, 55 (2016), 28 pp., 1, 3
5. W. Ao & J. Wei, Infinitely many positive solutions for nonlinear equations with non-symmetric potentials, Calc. Var. Partial Differential Equations, 51 (2014), 761–798.
6. W. Ao, J. Wei & J. Zeng, An optimal bound on the number of interior spike solutions for the Lin-Ni-Takagi problem, J. Funct. Anal., 265 (2013), 1324–1356.
7. G. Chen, Nondegeneracy of ground states and multiple semiclassical solutions of the Hartree equation for general dimensions, Results Math, 76 (2021), Paper No. 34, 31 pp., 2, 5
8. W. Chen, C. Li & B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), 330–343.
9. W. Chen, C. Li & B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations. 30 (2005), 59–65.
10. W. Chen, J. Wei & S. Yan, Infinitely many positive solutions for the Schrödinger equations in \mathbb{R}^N with critical growth, J. Differential Equations, 252 (2012), 2425–2447.
11. S. Cingolani & K. Tanaka, Semi-classical states for the nonlinear Choquard equations: existence, multiplicity and concentration at a potential well, Rev. Mat. Iberoam., 35 (2019), 1885–1924.
12. W. Dai, J. Huang, Y. Qin, B. Wang & Y. Fang, Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, Discrete Contin. Dyn. Syst., 39 (2019), 1389–1403.
13. M. del Pino, P. Felmer & M. Musso, Two-bubble solutions in the super-critical Bahri-Coron’s problem, Calc. Var. Partial Differential Equations, 16 (2003), 113–145.
14. Y. Deng, C.-S. Lin & S. Yan, On the prescribed scalar curvature problem in \mathbb{R}^N, local uniqueness and periodicity, J. Math. Pures Appl., 104 (2015), 1013–1044.
15. Y. Ding, F. Gao & M. Yang, Semiclassical states for Choquard type equations with critical growth: critical frequency case, Nonlinearity, 33 (2020), 6695–6728.
16. L. Du, F. Gao & M. Yang, On elliptic equations with Stein-Weiss type convolution parts, Math. Z., 301 (2022), 2185–2225.
17. L. Du & M. Yang, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete Contin. Dyn. Syst., 39 (2019), 5847–5866.
18. F. Gao, E. Silva, M. Yang & J. Zhou, Existence of solutions for critical Choquard equations via the concentration compactness method, Proc. Roy. Soc. Edinb. A, 150 (2020), 921–954.
19. F. Gao & M. Yang, On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci China Math, 61 (2018), 1219–1242.
20. F. Gao & M. Yang, A strongly indefinite Choquard equation with critical exponent due to Hardy–Littlewood–Sobolev inequality, Commun. Contemp. Math., 20 (2018), 1750037, 22 pp.
21. M. Ghimenti, D. Pagliardini, Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains, Calc. Var. Partial Differential Equations 58 (2019), no. 5, Paper No. 167, 21 pp.
22. M. Ghimenti, J. Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal. 271 (2016), 107–135.
23. L. Guo, T. Hu, S. Peng and W. Shuai, Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent Calc. Var. partial Diff. Equ., 58 (2019), 128, 34 pp.
24. Y. Guo, S. Peng & S. Yan, Local uniqueness and periodicity induced by concentration, Proc. Lond. Math. Soc. (3), 114 (2017), 1005–1043.
25. Y. Lei, Liouville theorems and classification results for a nonlocal Schrödinger equation, Discrete Contin. Dyn. Syst., 38 (2018), 5351–5377.
26. E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93–105.
27. E. H. Lieb & M. Loss, ”Analysis,” Graduate Studies in Mathematics, AMS, Providence, Rhode island, 2001.
28. P.-L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063–1072.
29. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109–145.
30. Y. Li, J. Wei & H. Xu, Multi-bump solutions of $-\Delta u = K(x)u^{\frac{n+2}{n-2}}$ on lattices in \mathbb{R}^n, J. Reine Angew. Math. 743 (2018), 163–211.
31. E. Lenzmann, Uniqueness of ground states for pseudorelativistic Hartree equations, Anal. PDE 2 (2009), 1–27.
Fashun Gao,
Department of Mathematics and Physics, Henan University of Urban Construction,
Pingdingshan, Henan, 467044, People's Republic of China
Email address: fsgao@zjnu.edu.cn

Vitaly Moroz,
Mathematics Department, Swansea University,
Bay Campus, Fabian Way, Swansea SA1 8EN, Wales, United Kingdom
Email address: v.moroz@swansea.ac.uk

Minbo Yang,
Department of Mathematics, Zhejiang Normal University,
Jinhua 321004, People's Republic of China
Email address: mbyang@zjnu.edu.cn

Shunneng Zhao,
Department of Mathematics, Zhejiang Normal University,
Jinhua 321004, People's Republic of China
Email address: snzhao@zjnu.edu.cn