LOCALLY SASAKIAN MANIFOLDS

Michał Godliński, Wojciech Kopczyński†, Paweł Nurowski‡
Instytut Fizyki Teoretycznej
Uniwersytet Warszawski, ul. Hoża 69, Warszawa, Poland

February 28, 2022

Abstract

We show that every Sasakian manifold in dimension $2k + 1$ is locally generated by a free real function of $2k$ variables. This function is a Sasakian analogue of the Kähler potential for Kähler geometry. It is also shown that every locally Sasakian-Einstein manifold in $2k + 1$ dimensions is generated by a locally Kähler-Einstein manifold in dimension $2k$.

*Research supported by Komitet Badań Naukowych (Grant nr 2 P03B 017 12)
†e-mail: kopcz@fuw.edu.pl
‡e-mail: nurowski@fuw.edu.pl
1 Introduction

The Sasakian structure, which is defined on an odd dimensional manifold is, in a sense, the closest possible analog of the Kähler geometry of even dimension. It was introduced by S. Sasaki [12] in 1960, who considered it as a special kind of contact geometries. Sasakian structure consists, in particular, of the contact 1-form η and the Riemannian metric g. The differential of η defines a 2-form, which constitutes an analog of the fundamental form of Kähler geometry.

Sasakian geometry was primarily studied as a substructure within the category of contact structures. A review of this approach can be found in [1, 14]. In this letter we exploit the analogy between Sasakian and Kähler geometry. We show that a well known fact that a Kähler geometry can be locally generated by a Kähler potential has its Sasakian counterpart. This result may be of some use in constructing a vast family of examples of Sasakian and Sasakian-Einstein structures.

The Sasakian and Sasakian-Einstein structures appear in physics in the context of string theory. It turns out that a metric cone $(C=S^+\times S, \tilde{g}=dr^2+r^2g)$ over a Sasakian-Einstein manifold (S, g) is Kähler and Ricci flat, i.e. it constitutes a Calabi-Yau manifold. Moreover, the Sasaki-Einstein manifolds in dimensions $2k+1$ and Sasakian manifolds with three Sasakian structures in dimension $4k+3$ are related to the Maldacena conjecture [3, 4, 6, 13]. It turns out that they are one of very few structures which can serve as a compact factor in (anti-de-Sitter) background for classical field theories which, via the Maldacena conjecture, correspond to the large N limit of certain quantum conformal field theories.

A formal definition of a Sasaki manifold is as follows.

Definition 1

Let S be a $(2k+1)$-dimensional manifold equipped with a structure (ϕ, ξ, η, g) such that:

(i) ϕ is a $(1,1)$ tensor field,
(ii) ξ is a vector field,
(iii) η is a field of an 1-form,
(iv) g is a Riemannian metric.

Assume, in addition, that for any vector fields X and Y on S, (ϕ, ξ, η, g) satisfy the following algebraic conditions:

1. $\phi^2X = -X + \eta(X)\xi$,
2. $\eta(\xi) = 1$,
3. $g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$,
4. $g(\xi, X) = \eta(X)$,

and the following differential conditions:

5. $N_\phi + d\eta \otimes \xi = 0$,

where $N_\phi(X, Y) = [\phi X, \phi Y] + \phi^2[X, Y] - \phi[\phi X, Y] - \phi[X, \phi Y]$ is the Nijenhuis tensor for ϕ,

6. $d\eta(X, Y) = g(\phi X, Y)$.

Then S is called a Sasakian manifold.

Example 1

A standard example of a Sasaki manifold is an odd dimensional sphere

$$S^{2k+1} = \{ C^{k+1} \ni (z^1, ..., z^{k+1}) : |z^1|^2 + ... + |z^{k+1}|^2 = 1 \} \subset C^{k+1},$$

viewed as a submanifold of C^{k+1}. Let J be the standard complex structure on C^{k+1}, \tilde{g} the standard flat metric on $C^{k+1} \equiv R^{2k+2}$, and n be the unit normal to the sphere. The vector field ξ on S^{2k+1} is defined by $\xi = -Jn$. If X is tangent vector to the sphere then JX uniquely decomposes onto the part parallel to n and the part tangent to the sphere. Denote this decomposition by $JX = \eta(X)n + \phi X$. This defines 1-form η and tensor field ϕ on S^{2k+1}. Denoting the restriction of \tilde{g} to S^{2k+1} by g we obtain (ϕ, ξ, η, g) structure on S^{2k+1}. It is a matter of checking that this structure equips S^{2k+1} with a structure of a Sasakian-Einstein manifold. This construction is, in a certain sense, a Sasakian counterpart of the Fubini-Study Kähler structure on CP^k.

2
Notation
We adapt the following notation:
\(K, l \) denotes the partial derivative of a function \(K \) with respect to the coordinate \(z^l \).
Complex conjugate of an indexed quantity, e.g. \(a^i_j \), is usually denoted by a bar over it, i.e. \(\overline{a^{i_j}} \). Our notation is: \(\overline{a^{i_j}} = \overline{a}^{\overline{i_j}} \).
Symmetrized tensor products of 1-forms \(\eta \) and \(\lambda \) is denoted by \(\eta \lambda = \frac{1}{2}(\eta \otimes \lambda + \lambda \otimes \eta) \).

The main result
The purpose of this letter is to prove the following theorem, which locally characterizes all Sasakian and Sasakian-Einstein manifolds.

Theorem.
Let \(U \) be an open set of \(C^k \times \mathbb{R} \) and let \((z^1, z^2, ..., z^k, x)\) be Cartesian coordinates in \(U \). Consider:
- a vector field \(\xi = \partial_x \)
- a real-valued function \(K \) on \(U \) such that \(\xi(K) = 0 \)
- an 1-form \(\eta = dx + i \sum_{m=1}^{k} (K_m dz^m) - i \sum_{\overline{m}=1}^{k} (\overline{K}_{\overline{m}} d\overline{z}^{\overline{m}}) \)
- a bilinear form \(g = \eta^2 + 2 \sum_{m,k=1}^{k} K_{m\overline{k}} dz^m d\overline{z}^{\overline{k}} \)
- a tensor field \(\phi = -i \sum_{m=1}^{k} [(\partial_m - iK_m \partial_x) \otimes dz^m] + i \sum_{\overline{m}=1}^{k} (\partial_{\overline{m}} + i\overline{K}_{\overline{m}} \partial_x) \otimes d\overline{z}^{\overline{m}} \).

I) If the function \(K \) is chosen in such a way that the bilinear form \(g \) has positive definite signature then \(U \) equipped with the structure \((\phi, \xi, \eta, g)\) is a Sasakian manifold. Moreover, every Sasakian manifold can locally be generated by such a function \(K \).

II) The above Sasakian structure satisfies Einstein equation \(\text{Ric}(g) = \lambda g \) if and only if \(\lambda = 2k \) and the function \(K \) satisfies \(-[\log \det(K_{ij})]_{m\overline{n}} = 2(k+1)K_{m\overline{n}} \).

2 Almost contact versus Sasakian manifolds

Definition 2
Consider \((2k+1)\)-dimensional manifold \(S \) equipped with a structure consisting of a \((1,1)\) tensor field \(\phi \), a vector field \(\xi \) and a field of an 1-form \(\eta \). Assume, in addition, that for every vector field \(X \) on \(S \) \((\xi, \eta, \phi) \) satisfy the following algebraic conditions:

1. \(\phi^2 X = -X + \eta(X)\xi \),
2. \(\eta(\xi) = 1 \).

Then \(S \) is called almost contact manifold. If, in addition, an almost contact manifold \((S, (\xi, \eta, \phi))\) is equipped with Riemannian metric \(g \) such that for every vector fields \(X \) and \(Y \) on \(S \) we have

3. \(g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \),
4. \(g(\xi, X) = \eta(X) \),

then the almost contact manifold is called almost contact metric manifold.

Note that every Sasakian manifold is an almost contact metric manifold.
Let $T^C S$ be the complexification of the tangent bundle of an almost contact manifold S. The almost contact structure (ξ, η, ϕ) on S defines the decomposition

$$T^C S = C \otimes \xi \oplus N \oplus \bar{N},$$

where $C \otimes \xi$, N and \bar{N} are eigenspaces of ϕ with eigenvalues 0, $-i$ and i, respectively.

We say that a vector subbundle Z of $T^C S$ is involutive if and only if $[\Gamma(Z), \Gamma(Z)] \subset \Gamma(Z)$, where $\Gamma(Z)$ denotes the set of all sections of Z.

Lemma

For an almost contact structure the condition $N \phi + d\eta \otimes \xi = 0$ is satisfied if and only if the bundle N is involutive, $[\Gamma(N), \Gamma(N)] \subset \Gamma(N)$, and $[\xi, \Gamma(N)] \subset \Gamma(N)$.

Proof.

Let $X, Y \in \Gamma(N)$. Making use of the eigenvalue property of ϕ and of property (1) of Definition 2, we get the following expressions for the Nijenhuis tensor of ϕ:

$$N_\phi(X, Y) = -2[X, Y] + 2i\phi([X, Y]) + \eta([X, Y])\xi,$$

$$N_\phi(X, \bar{Y}) = \eta([X, \bar{Y}])\xi,$$

$$N_\phi(X, \xi) = -[X, \xi] + i\phi([X, \xi]) + \eta([X, \xi])\xi.$$

Observe that the last component of the above formulae is the action of $-d\eta \otimes \xi$ on (X, Y), (X, \bar{Y}) and (X, ξ), respectively. Therefore $N_\phi + d\eta \otimes \xi = 0$ if and only if

$$\phi([X, Y]) = -i[X, Y]$$

and

$$\phi([X, \xi]) = -i[X, \xi].$$

This finishes the proof.

Corollary

For an almost contact structure satisfying $N_\phi + d\eta \otimes \xi = 0$ (in particular for a Sasaki structure) the bundle $C \otimes \xi \oplus N$ is involutive.

3 Sasakian geometry in a null frame

Let $(S, (\xi, \eta, \phi, g))$ be a Sasakian manifold of dimension $2k + 1$. The algebraic conditions (1)-(4) of Definition 1 imply an existence of a local basis (ξ, m_i, \bar{m}_i), $i, \bar{i} = 1, 2, ..., k$, of complex-valued vector fields on S, with a cobasis $(\eta, \mu_i, \bar{\mu}_i)$, such that

$$g = \eta^2 + 2 \sum_{i=1, \bar{i}=1}^{k} \mu_i \bar{\mu}_{\bar{i}},$$

$$\phi = i \sum_{j=1}^{k} (\bar{m}_j \otimes \bar{\mu}_j) - i \sum_{j=1}^{k} (m_j \otimes \mu_j).$$

Since $(S, (\xi, \eta, \phi, g))$ is Sasakian then its bundle $C \otimes \xi \oplus N$ is involutive. This is equivalent to the condition that the forms $\mu^1, \mu^2, ..., \mu^k$ generate a closed differential ideal i.e.

$$d\mu^i \wedge \mu^1 \wedge \mu^2 \wedge ... \wedge \mu^k = 0 \quad \forall i = 1, 2, ..., k.$$
Condition (6) of Definition 1 of a Sasakian manifold in this basis reads

\[d\eta = -2i \sum_{l=1}^{k} \mu^l \wedge \bar{\mu}^l. \quad (4) \]

Thus, the fact that the manifold is Sasakian necessarily implies the existence of a local basis \((\xi, m_i, \bar{m}_i)\) with a dual basis \((\eta, \mu^i, \bar{\mu}^i)\) such that \((\xi, m_i, \bar{m}_i)\) and \((\eta, \mu^i, \bar{\mu}^i)\) form a mutually dual basis for \(T^C S\) and \(T^* CS\), respectively, satisfying (3)-(4), then the structure \((\xi, \eta, \phi, g)\) defined by \(\xi, \eta\) and \(\phi\) of (3) is a Sasakian manifold. This fact can be seen by noting that condition (3) is equivalent to the existence of complex-valued functions \(a_{ijk}\), \(b_{ij\bar{k}}\) and \(c_{ij}\) such that

\[d\mu^i = \sum_{j,n=1}^{k} a_{ijn} \mu^j \wedge \mu^k + \sum_{j,n=1}^{k} b_{ijn} \bar{\mu}^j \wedge \mu^k + \sum_{j}^{k} c_{ij} \wedge \eta. \quad (5) \]

The dual conditions to conditions (4)-(5) imply that \(N\) is involutive and that \([\xi, \Gamma(N)] \subset \Gamma(N)\).

These, when compared with Lemma of Corollary 1, imply condition (7), which is the only condition from Definition 1 which, a'priori, was not assumed for \((\xi, \eta, \phi, g)\). This proves the following Proposition.

Proposition 1

(I) (Local version)

Let \((\xi, \eta, \phi, g)\) be a Sasakian structure on a manifold \(S\) of dimension \(2k + 1\). Then there exists a local basis \((\xi, m_i, \bar{m}_i), i, \bar{i} = 1, 2, ... k\) of \(T^C S\) with dual basis \((\eta, \mu^i, \bar{\mu}^i)\) such that

\[g = \eta^2 + 2 \sum_{l=1}^{k} \mu^l \bar{\mu}^l \]

\[\phi = i \sum_{j=1}^{k} (\bar{m}_j \otimes \bar{\mu}^j) - i \sum_{j=1}^{k} (m_j \otimes \mu^j), \]

\[d\mu^i \wedge \mu^1 \wedge \mu^2 \wedge ... \wedge \mu^k = 0 \quad \forall i = 1, 2, ..., k, \]

\[d\eta = -2i \sum_{l=1}^{k} \mu^l \wedge \bar{\mu}^l. \]

(II) (Global version)

Every almost contact metric structure which satisfies condition (6) of Definition 1 is Sasakian if and only if its canonical decomposition \(T^C S = C \otimes \xi \oplus N \oplus \bar{N}\), consists of involutive \(C \otimes \xi \oplus N\) part.

We close this section with a quick application of part (I) of Proposition 1. It is well known that a vector field \(\xi\) on a Sasakian manifold \((S, (\xi, \eta, \phi, g))\) is a Killing vector field. This in particular means that the Lie derivatives \(L_\xi\) of \(g\) and \(\eta\) vanish. The second of these facts is an immediate consequence of (4). To calculate \(L_\xi g\) one uses (4) and (5). After some work one shows that vanishing of \(L_\xi g\) is equivalent to \(c_{ij} + c_{ij} = 0\) where \(c_{ij}\) are functions appearing in (5). On the other hand, these equations are automatically implied by application of \(d\) on both sides of equation (4).
4 Analogue of the Kähler potential

We pass to a construction of local coordinates on a Sasakian manifold \((S, (\xi, \eta, \phi, g))\). We assume that all the fields defining the Sasakian structure are smooth on \(S\).

In a considered region of \(S\), we chose a local frame \((\xi, m, \bar{m})\) of Proposition 1. Now, the fact that \(\xi\) is a Killing vector field on \(S\) together with the complex version of the Fröbenius theorem, assures that condition (3) is equivalent to an existence of complex-valued functions \(f^i\) and \(z^i\), \(i, j = 1, 2, \ldots k\) such that

\[
\mu^i = f^i_j dz^j. \tag{6}
\]

Since the forms \((\mu^i, \bar{\mu}^i)\) form a part of the basis on the considered region of \(S\) then we also have

\[
dz^1 \wedge dz^2 \wedge \ldots dz^k \wedge d\bar{z}^1 \wedge d\bar{z}^2 \wedge \ldots \wedge d\bar{z}^k \neq 0. \tag{7}
\]

For the basis \((\xi, \partial z^1, \ldots, \partial z^k, \partial \bar{z}^1, \ldots, \partial \bar{z}^k)\) and its dual \((\eta, dz^1, \ldots, dz^k, d\bar{z}^1, \ldots, d\bar{z}^k)\) the Maurer-Cartan relations for \(d(dz^i) = 0 = d(d\bar{z}^i)\) readilly show that \([\xi, \partial/\partial z^i] = 0 = [\xi, \partial/\partial \bar{z}^i]\). Therefore, there exists a real coordinate \(x\) complementary to \(z^1, \ldots, z^k, \bar{z}^1, \ldots, \bar{z}^k\) such that

\[
\xi = \partial_x \tag{8}
\]

and the form \(\eta\) reads

\[
\eta = dx + p^i dz^i + \bar{p}^i d\bar{z}^i. \tag{9}
\]

Comparing this with the fact that \(\xi\) preserves \(\eta\) leads to the conclusion that the functions \(p_i\) are independent of coordinate \(x\), \(\partial p_i/\partial x = 0\).

Condition (4) is now equivalent to the following two conditions for the differentials of functions \(p_i\):

\[
p_{i,j} - p_{j,i} = 0 \tag{10}
\]

and

\[
p_{j,i} - \bar{p}_{i,j} = 2i \sum_{l=l,l=1}^k f^l_j f^{i}_{\bar{l}}, \tag{11}
\]

In a simply connected region of \(S\) equation (10) guarantees an existence of a complex-valued function \(V\) such that

\[
p_i = \partial V/\partial z^i. \tag{12}
\]

Since \(p_i\) is independent of \(x\) it is enough to consider functions \(V\) such that \(\partial V/\partial x = 0\). Inserting so determined \(p_i\) to equation (11) we show that now (11) is equivalent to

\[
K_{j\bar{i}} = \sum_{l=l,l=1}^k f^l_j f^{\bar{l}}_{\bar{i}}, \tag{13}
\]

where we have introduce \(\text{Im} V = K\) and \(\text{Re} V = L\). Finally we note that now

\[
\eta = d(x + L) + i \sum_{j=1}^k K_{j} dz^j - i \sum_{j=1}^k K_{j} d\bar{z}^j,
\]

so redefining the \(x\) coordinate by \(x \rightarrow x + L\) we simplify \(\eta\) to the form \(\eta = dx + i \sum_{j=1}^k K_{j} dz^j - i \sum_{j=1}^k K_{j} d\bar{z}^j\). Using (13) we can eliminate functions \(f^i_j\) from formulae defining our Sasakian structure. Indeed,

\[
g = \eta^2 + 2 \sum_{l=l,l=1}^k \mu^l \bar{\mu}^l =
\]
In this way we obtain the following theorem.

Theorem 1.

Let \mathcal{U} be an open set of $\mathbb{C}^k \times \mathbb{R}$ and let $(z^1, z^2, \ldots, z^k, x)$ be Cartesian coordinates in \mathcal{U}. Consider:

(i) a vector field $\xi = \partial_x$

(ii) a real-valued function K on \mathcal{U} such that $\xi(K) = 0$

(iii) an 1-form $\eta = dx + i \sum_{m=1}^{k} (K_m dz^m) - i \sum_{\overline{m}=1}^{k} (K_{\overline{m}} d\overline{z}^{\overline{m}})$

(iv) a bilinear form $g = \eta^2 + 2 \sum_{m,k=1}^{k} K_{m,k} dz^m d\overline{z}^{\overline{k}}$

(v) a tensor field

$$\phi = -i \sum_{m=1}^{k} [(\partial_m - iK_m \partial_x) \otimes dz^m] + i \sum_{m=1}^{k} (\partial_{\overline{m}} + iK_{\overline{m}} \partial_x) \otimes d\overline{z}^{\overline{m}}.$$

If the function K is chosen in such a way that the bilinear form g has positive definite signature then \mathcal{U} equipped with the structure (ϕ, ξ, η, g) is a Sasakian manifold. Moreover, every Sasakian manifold can locally be generated by such a function K.

The function K appearing in the above theorem is a Sasakian analogue of the Kähler potential generating Kähler geometries. We call it a Sasakian potential.

We close this section with a remark that several Sasakian potentials may generate the same Sasakian structure. This is evident if one notes that the following transformations

$$K \rightarrow K + f(z^j) + \overline{f}^{\overline{j}} \quad \text{and} \quad x \rightarrow x + i\overline{f}^{\overline{j}} - if(z^j), \quad (14)$$

with f being a holomorphic function of z^js, do not change the Sasakian structure of Theorem 1. Thus, transformations (14) are the gauge transformations for the Sasakian potential.

5 Locally Sasakian-Einstein structures

In this section we calculate the Ricci tensor for the Sasakian metric g generated in a region \mathcal{U} by the Sasakian potential K of Theorem 1. We also derive the equation which the Sasakian potential has to obey for Sasakian metric to satisfy Einstein equations $Ric(g) = \lambda g$. In this section we use the Einstein summation convention.

Let \mathcal{U} be a simply connected region of $\mathbb{C}^k \times \mathbb{R}$ as in Theorem 1. Consider a Sasakian structure defined in this Theorem by the Sasakian potential K. In the holonomic cobasis

$$(dy^\nu) = (dx, dz^i, d\overline{z}^{\overline{i}})$$
the covariant components of the Sasakian metric read

\[g_{\mu\nu} = \begin{pmatrix} 1 & iK_j & -iK_j & 0 \\ iK_i & -K_iK_j & K_{ij} + K_iK_j & K_{ij} \\ -iK_i & K_{ij} + K_iK_j & -K_jK_i & 0 \\ 0 & K_{ij} & K_{ji} & 1 + 2K_iK_jK_{ij} \end{pmatrix}. \] (15)

The contravariant components of the metric read

\[g^{\mu\nu} = \begin{pmatrix} 1 + 2K_iK_jK_{ij} & iK_jK_{ij} & -iK_jK_{ij} & K_{ij} \\ iK_jK_{ij} & 0 & K_{ij} & 0 \\ -iK_jK_{ij} & K_{ij} & 0 & K_{ij} \\ K_{ij} & K_{ij} & K_{ij} & 1 \end{pmatrix}, \] (16)

where

\[K_{ij} = \delta^i_j \quad K_{ji} = \delta^i_j \quad K^{ij} = K^{ji}. \] (17)

The connection 1-forms \(\Gamma_{\mu\nu} = \frac{1}{2}(g_{\mu\nu,\rho} + g_{\mu\rho,\nu} - g_{\nu\rho,\mu})dy^\rho \) read

\[\Gamma_{xx} = 0 \quad \Gamma_{xi} = iK_{ij}dz^j \quad \Gamma_{xj} = -K_iK_{ij}d\bar{z}^j \quad \Gamma_{ix} = iK_{ij}d\bar{z}^j \quad \Gamma_{ij} = \Gamma_{ji} \] (18)

It is convenient to introduce the following functions:

\[C_{jm}^i = K_{ij} \quad B_{jm}^i = C_{jm}^i + \delta^i_mK_j + \delta^i_jK_m \quad A_{jm} = C_{jm}^iK_i + 2K_jK_{jm} - K_{jm} \]

Then the connection 1-forms \(\Gamma_{\nu}^{\mu} \) read

\[\Gamma^x_{x} = -dK \quad \Gamma^x_{i} = -K_i dx - iA_{jm}dz^m \quad \Gamma^i_{x} = -idz^i \quad \Gamma^x_{j} = \Gamma^x_{j} \quad \Gamma^j_{x} = \Gamma^j_{x} \]

\[\Gamma^i_{j} = -i\delta^i_j dx - \delta^i_j K_j dz^i + B_{ji} dz^i \quad \Gamma^i_{j} = -K_j dz^i \quad \Gamma^j_{i} = \Gamma^j_{i} \]

The curvature 2-forms \(\Omega_{\nu}^{\mu} = \frac{1}{2}R_{\nu\rho\sigma}dy^\rho \wedge dy^\sigma = d\Gamma_{\nu}^{\mu} + \Gamma_{\nu}^{\rho} \wedge \Gamma_{\rho}^{\mu} \) read

\[\Omega^x_{x} = iK_{i} dx \wedge dz^i \quad \Omega^x_{j} = -K_j dz^i \] \(\wedge dz^i \)

\[\Omega^i_{x} = -\delta^i_j dx \wedge dz^j + i\delta^i_j K_j dz^j \wedge dz^i \] \(+ iK_j dz^i \wedge dz^i \)

\[\Omega^i_{j} = -i\delta^i_j K_j dx \wedge dz^i + (K_{ji} + K_{ij} K_{li}) dx \wedge dz^i + iA_{jm} dz^i \wedge dz^m \]

\[\Omega^i_{j} = i\delta^i_j K_j dx \wedge dz^i + (K_{ji} + K_{ij} K_{li}) \delta^i_{n} dz^n \wedge dz^i \] \(+ \delta^i_{n} K_j dz^i \wedge dz^i \)

\[\Omega^j_{i} = \Omega^i_{j} \quad \Omega^i_{j} = \Omega^j_{i} \quad \Omega^i_{j} = \Omega^i_{j} \]

The Ricci tensor \(R_{\nu\sigma} = R_{\nu\rho\sigma} \) components read

\[R_{xx} = 2k \quad R_{xj} = 2ikK_j \quad R_{ij} = -2kK_jK_i \quad R_{ij} = 2kK_jK_i - 2K_{ij} - C_{mi}^{m} \]

\[R_{xj} = R_{xj} \quad R_{ij} = R_{ij}. \]
Now, the Einstein equations $\text{Ric}(g) = \lambda g$, which are nontrivial only for the components R_{xx} and R_{ij} become

$$\lambda = 2k - (\kappa^{\bar{m}l} K_{,\bar{m}l j}), j = 2(k + 1)K_{,ij}.$$

Since the matrix $(\kappa^{\bar{m}l})$ is the inverse of $(K_{,ij})$ then the left hand side of the second equations above is

$$-(\kappa^{\bar{m}l} K_{,\bar{m}l i}), j = -\log(\det(K_{,mn}))_{,ij},$$

see e.g. [7].

Thus we arrive to the following theorem.

Theorem 2

Any Sasakian manifold of dimension $(2k + 1)$ can be locally represented by the Sasakian potential K of Theorem 1. In the region where the potential is well defined the manifold satisfies Einstein equations $\text{Ric}(g) = \lambda g$ if and only if the cosmological constant

$$\lambda = 2k$$

and the potential satisfies

$$-\log(\det(K_{,mn}))_{,ij} = 2(k + 1)K_{,ij}.$$ (19)

Surprisingly equation (19) is the same as the Einstein condition $\text{Ric}(h) = 2k + 1)h$ for the Kähler metric $h = 2K_{,ij} d\bar{z}^i dz^j$ in dimension $2k$. Thus we have the following Corollary.

Corollary

Every Sasakian-Einstein manifold in dimension $(2k + 1)$ is locally in one to one correspondence with a Kähler-Einstein manifold in dimension $2k$ whose cosmological constant $\lambda = 2k + 1$. The correspondence is obtained by identifying the Kähler potential for the Kähler-Einstein manifold with the Sasaki potential for the Sasaki-Einstein manifold.

Examples

1). Sasakian potential for the sphere S^{2k+1}.

Consider a function

$$K = \frac{1}{2} \log(z^1 \bar{z}^1 + ... + z^{k+1} \bar{z}^{k+1})$$

defined on $\mathbb{C}^{k+1} - \{0\}$. Let

$$N = i(K_{,j} dz^j - K_{,j} d\bar{z}^j),$$

$$H = 2K_{,ij} dz^i d\bar{z}^j$$

and

$$G = N^2 + H.$$

The tensor fields N and G restrict to a sphere

$$S^{2k+1} = \{(z^1, ..., z^{k+1}) \in \mathbb{C}^{k+1} - \{0\} \mid z^1 \bar{z}^1 + ... + z^{k+1} \bar{z}^{k+1} = 1\}.$$

Denote these restrictions by η and g, respectively. Then the 1-form η and the Riemannian metric g define a Sasakian-Einstein structure on S^{2k+1}. This structure coincides with the one defined in Example 1 of Section 1.

To see this, recall the Hopf fibration $U(1) \to S^{2k+1} \to \mathbb{C}P^k$ with the action of $e^{i\phi} \in U(1)$ on $(z^1, ..., z^{k+1}) \in S^{2k+1}$ defined by $e^{i\phi}(z^1, ..., z^{k+1}) = (e^{i\phi} z^1, ..., e^{i\phi} z^{k+1})$. The canonical projection is given by $S^{2k+1} \ni (z^1, ..., z^{k+1}) \to \text{dir}(z^1, ..., z^{k+1}) \in \mathbb{C}P^k$. The sphere is covered by $k + 1$ charts

$$U_j = V_j \times U(1),$$

where V_j is the annular subset $\{|z^1| < 1\} \times U(1)$.
where
\[V_j = \{ \text{dir}(z^1, ..., z^{k+1}) \mid (z^1, ..., z^{k+1}) \in S^{2k+1} \text{ and } z^j \neq 0 \}. \]

The local coordinates on each \(U_j \) are
\[(\xi^i = \frac{z^i}{z^j}, \phi_j = \frac{i}{2} \log \frac{z^j}{z^j}), \quad i = 1, ..., k + 1, \ i \neq j. \]

Then on each chart \(U_j \) the form \(\eta_j = \eta|_{U_j} \) reads
\[\eta_j = d\phi_j + \frac{i}{2} \sum_{i=1, i \neq j}^{k+1} (\xi^i d\xi^j - \xi^j d\xi^i). \]

The metric \(g \) restricted to \(U_j \) is
\[g_j = (\eta_j)^2 + \frac{(1 + \sum_{i=1, i \neq j}^{k+1} |\xi^i|^2)(\sum_{i=1, i \neq j}^{k+1} |d\xi^i|^2) - |\sum_{i=1, i \neq j}^{k+1} (\xi^i d\xi^j)|^2}{1 + \sum_{i=1, i \neq j}^{k+1} |\xi^i|^2}. \]

Now, observe that on each \(U_j \) the structure \((g_j, \eta_j)\) may be obtained by means of Theorems 1 and 2 choosing a Sasakian potential
\[K^j = \frac{1}{2} \log(1 + \sum_{i=1, i \neq j}^{k+1} |\xi^i|^2) \]

on the corresponding \(V_j \). It is easy to check that \(K^j \) satisfies equation \([13] \) on \(V_j \). Thus, Theorem 2 assures that the Sasakian structure generated by \((g_j, \eta_j)\) is Sasakian-Einstein. Easy, but lengthy, calculation shows that the Weyl tensor of \(g_j \) vanishes identically on \(U_j \). This proves that \((U_j, g_j)\) is locally isometric to a standard Riemannian structure on \(S^{2k+1} \). Since \((g_j, \eta_j)\) originate from the global structure \((g, \eta)\) then this global Sasakian structure must coincide with the standard Sasakian structure of Example 1. Note also that \(h_j = g_j - (\eta_j)^2 \) projects to \(V_j \) and patched together defines the Fubini-Study metric on \(CP^k \). In this sense the standard Sasakian structure on \(S^{2k+1} \) described in Example 1 is the analogue of the Fubini-Study Kähler structure on \(CP^k \).

2.) Sasakian-Einstein structure on \(C^q \times C^n \times R \).

Consider a function
\[K = \frac{1}{q + n + 1} \left(\sum_{i=1}^{q} \log(1 + |v^i|^2) \right) + \frac{n + 1}{2(q + n + 1)} \log(1 + \sum_{i=1}^{n} |w^i|^2) \]
defined on \(C^q \times C^n \), with coordinates \((z^\mu) = (v^i, w^i)\). It is easy to check that
\[\log \det(K_{\mu\nu})|_{\mu\rho} = -2(q + n + 1)K_{\rho\sigma}. \]

Thus, via Theorems 1 and 2, such \(K \) generates a Sasakian-Einstein structure on \(C^q \times C^n \times R \).

3) Locally Sasakian-Einstein structures in dimension 5.

If \(k = 2 \) then, modulo the gauge \([14]\), equation \([13]\) may be integrated to the form
\[K_{i1i2}K_{j2i1} - K_{i1j2}K_{j2i1} = e^{-6K}. \]

This is a well known equation describing the gravitational instantons in four dimensions \([2, 3, 4, 11]\). Examples of the Kähler-Einstein metrics generated by its solutions can be found e.g. in \([2, 3, 11]\). Via Theorems 1 and 2, each of these Kähler-Einstein structures defines a nontrivial Sasakian-Einstein manifold in dimension 5.
References

[1] Blair D E 1976 “Contact manifolds in Riemannian geometry” Lecture Notes in Mathematics 509, (New York: Springer)

[2] Boyer C P, Finley J D III and Plebański J F 1980 “Complex general relativity, H and HH spaces - a survey of one approach” in General relativity and gravitation (Einstein’s memorial volume) vol 2, ed. A Held, (New York: Plenum) pp. 241-81

[3] Boyer C P, Galicki K 1998 “On Sasakian-Einstein geometry”, preprint, math.DG/9811098

[4] Figueroa-O’Farrill J M 1998, “Near-horizon geometries of supersymmetric branes”, preprint, hep-th/9807149

[5] Gibbons G W, Pope C N 1979 “The positive action conjecture and asymptotically Euclidean metrics in quantum gravity” Comm. Math. Phys. 66, 267-90

[6] Maldacena J 1998 “The large N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2 231-252; preprint: hep-th/9711200

[7] Landau L D, Lifshitz 1959 “The classical theory of fields” (London, Paris: Pergamon) p. 266

[8] Pedersen H, Poon Y S 1991 “Hamiltonian constructions of Kaehler-Einstein metrics and Kaehler metrics of constant scalar curvature” Commun. Math. Phys. 136 309-326

[9] Przanowski M, Broda B 1983, “Locally Kähler gravitational instantons” Acta Phys. Polon. B 14 637-61

[10] Przanowski M, Baka B 1984, “One-sided type D gravitational instantons” Gen. Rel. Grav. 16 797-803

[11] Plebański J F, Przanowski M 1998 “Hermite-Einstein four-dimensional manifolds with symmetry” Class. Quantum Grav. 15 1721-35

[12] Sasaki S 1960 “On differentiable manifolds with certain structures which are closely related to almost contact structure” Tohoku Math. J. 12 459-76

[13] Witten E 1998 “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys. 2 253-291; preprint: hep-th/9802150

[14] Yano K, Kon M “Structures on manifolds” (World Scientific)