Avaliação do consumo alimentar em pacientes com doença renal crônica após aconselhamento nutricional

Assessment of food consumption in patients with chronic kidney disease after nutritional counseling

Resumo

Introdução: O aconselhamento nutricional é um componente-chave no tratamento da doença renal crônica (DRC). A ingestão alimentar adequada às recomendações auxilia no controle de sódio, proteínas, líquidos e eletrólitos na dieta e previne complicações adicionais da doença. Dessa forma, o objetivo deste estudo foi avaliar o efeito da orientação nutricional nos pacientes em tratamento conservador da DRC.

Métodos: Estudo quase-experimental controlado e em dois momentos, incluindo indivíduos nos estádios 3 e 4 da doença, divididos em dois grupos: controle e aconselhamento, sendo este composto por indivíduos que receberam a orientação nutricional e foram acompanhados por 90 dias. Os dados de antropometria e avaliação clínica e nutricional foram coletados por meio da aplicação do recordatório de 24 horas (R24h). A avaliação do consumo alimentar foi obtida por meio do programa Nutrition Data System for Research (NDSR). A análise de dados foi realizada por meio do modelo de medidas repetidas ao avaliar a interação entre grupos versus momentos. O nível de significância de 95% foi fixado para todos os testes.

Resultados: 51 pacientes foram incluídos, sendo 24 controles e 27 aconselhamentos. A análise inicial mostrou que os grupos eram homogêneos. A avaliação do consumo alimentar após aconselhamento resultou em resposta favorável ao controle proteico e restrição de minerais: fósforo, sódio e potássio. Não houve menor ingestão de cálcio e vitamina D, fatores que poderiam agravar alterações no metabolismo ósseo e mineral, e não houve efeitos adversos na antropometria.

Conclusão: O aconselhamento nutricional é eficaz e proporciona consumo alimentar adequado às recomendações propostas na DRC.

Palavras-chave: Dieta, Alimentação e Nutrição. Dietoterapia. Insuficiência Renal Crônica.

Abstract

Introduction. Nutritional counseling is a key component in treating chronic kidney disease (CKD). Adequate caloric intake helps in reducing sodium, protein, fluid, and electrolytes in the diet and prevents further complications of the disease. Thus, this study aimed to evaluate the effect of nutritional counseling on patients with non-dialysis CKD.

Methods: A quasi-experimental, controlled study with individuals in stages 3 and 4 of the disease, divided into two groups: control and counseling composed of individuals without nutritional counseling followed for 90 days. Anthropometry and clinical and nutritional assessment data were collected through the application of a 24-hour recall (R24h). Food consumption assessment was obtained using the Nutrition Data System for Research (NDSR) program. Data analysis was performed using a repeated measures model evaluating the interaction between groups versus
moments. The 95% significant level was fixed for all tests. **Results:** 51 patients were included, 24 controls, and 27 counselings. Initial analysis showed that the groups were homogeneous. The assessment of food consumption after the counseling, with guidelines for healthy eating, resulted in a favorable response to protein control, and mineral restrictions: phosphorus, sodium, and potassium. Lower intake of calcium and vitamin D was not observed, factor that could worsen changes in bone and mineral metabolism, and there were no adverse effects on anthropometry. **Conclusion:** Nutritional counseling is effective and provides adequate food consumption to the recommendations proposed in CKD.

Keywords: Diet, Food and Nutrition. Diet Therapy. Chronic Kidney Failure.
INTRODUÇÃO

A doença renal crônica (DRC) é definida como a presença de dano renal estrutural ou funcional persistente por mais de 90 dias.¹² A DRC é classificada em cinco estádios de acordo com a taxa de filtração glomerular estimada (TFGe) e albuminúria. A TFGe inferior a 15 mL/min/1,73 m² é classificada como estádio 5 ou DRC terminal, sob risco de breve início da terapia renal substitutiva (TRS).

Os principais fatores de risco para o desenvolvimento da doença incluem hipertensão, diabetes mellitus tipo 2, obesidade, dislipidemia, envelhecimento, raça negra e hereditariedade.¹³ No entanto, vários estudos demonstraram a existência de outra associação que contribui para a doença, desenvolvimento, progressão e aumento da mortalidade por DRC, que é através da análise da proteinúria, cuja detecção é considerada um indicativo de lesão renal patológica,⁵,⁶ resultando em dano glomerular e progressão da DRC.⁷,⁸

A fim de evitar esses danos glomerulares, manobras clínicas para o manejo da DRC têm sido instituídas como estratégias para prevenir a evolução da doença. As estratégias incluem controle da pressão arterial, manejo da proteinúria por meio do uso de bloqueadores do sistema renina-angiotensina, correção da hiperglicemia e dislipidemia, prevenção de drogas nefrotóxicas e mudanças no estilo de vida, destacando-se a intervenção nutricional.⁶,¹⁰,¹¹,¹²

O aconselhamento nutricional é um componente crucial no tratamento da DRC.¹³,¹⁶ A adequação calórica e as restrições de sódio, proteínas, líquidos e eletrólitos, como potássio e fosfato (quando indicados), podem melhorar a qualidade de vida do paciente, manter o estado nutricional, prevenir ou atenuar sinais, sintomas e complicações relacionadas à doença, como a presença de sintomas urêmicos, distúrbios eletrolíticos, desequilíbrios ácido-base, retenção hídrica e distúrbios minerais e ósseos, permitindo aumentar a longevidade e retardar a progressão da doença e o início de diálise.⁶,¹⁴ Neste sentido, as diretrizes para prevenção, diagnóstico, tratamento e avaliação da DRC focam na restrição proteica e de sódio na dieta.¹⁰

Desta maneira, considerando a importância das orientações nutricionais no tratamento dos pacientes, este estudo teve como objetivo avaliar o efeito da orientação nutricional em pacientes no tratamento conservador da DRC.

MATERIAIS E MÉTODOS

Delineamento

Trata-se de um estudo quase experimental de intervenção controlado, cuja coleta de dados foi realizada no Ambulatório de Doença Renal Crônica da Faculdade de Medicina de Botucatu, com pacientes em seguimento com nefrologistas do serviço.

O Comitê de Ética em Pesquisa da Faculdade de Medicina de Botucatu, sob o número 2.806.865, aprovou todos os procedimentos realizados.

Pacientes

Foram incluídos pacientes nos estádios 3 e 4 da DRC, que foram divididos em dois grupos, o controle, representado pelos indivíduos que nunca receberam orientação nutricional, e o aconselhamento, representado pelos indivíduos que realizaram acompanhamento com nutricionista, e receberam orientação nutricional com enfoque aos pacientes com DRC, com base nas diretrizes mais recentes.²

Ambos os grupos foram acompanhados em dois momentos: inicial (momento 1) e após 90 dias (momento 2).

O tamanho da amostra foi calculado considerando que a prevalência de adesão ao aconselhamento nutricional em pacientes com DRC é desconhecida (50%), com margem de erro de 10% e confiabilidade de 95%, resultando em um
total de 96 observações. Para tanto, foram selecionados 24 pacientes por grupo (48 pacientes no total) para serem observados em dois momentos completando 96 observações.

O aconselhamento nutricional é individualizado de acordo com o estado nutricional de cada paciente e das alterações eletrolíticas presentes. As recomendações fornecidas na orientação nutricional incluíam uma dieta restrita em proteínas, baixo teor de sódio e restrições de potássio e fósforo (quando necessárias).

Ao final da pesquisa, os indivíduos que nunca haviam realizado o aconselhamento nutricional também receberam orientação nutricional individualizada.

Os critérios de exclusão foram: idade inferior a 18 anos, glomerulopatia em atividade, já ter recebido orientação nutricional prévia com enfoque em nefrologia e ter proteinúria menor que meio grama.

Figura 1. Fluxograma dos pacientes com doença renal crônica incluídos/excluídos no estudo. 2019.

Dados clínicos, bioquímicos e demográficos

Foram coletados os dados dos pacientes referentes às variáveis sexo, idade, TFGe, proteinúria, microalbuminúria, estado civil e escolaridade, via informações do prontuário eletrônico do paciente.

Antropometria

Para mensuração, o peso foi aferido em balança eletrônica digital Welmy w200, com precisão de 0,1 kg, com o indivíduo descalço e o mínimo de vestimenta; e para estatura, utilizou-se o estadiômetro vertical acoplado à própria balança, com o paciente em pé, descalço com os calcanhares alinhados e braços estendidos ao lado do corpo. Em seguida, foi calculado o IMC (Índice de Massa Corporal) a partir das variáveis peso (em quilogramas) dividido pela estatura (em metros) elevada ao quadrado (peso/altura²).
Pressão arterial

A pressão arterial (PA) foi aferida por meio de um esfigmomanômetro de precisão Omron, com o paciente na posição sentada, com os dois pés apoiados no chão e com as costas retas, apoiadas no encosto da cadeira, respeitando um período de repouso de 5 minutos. Uma equipe médica que desconhecia os diferentes grupos do estudo realizou essas aferições (observador cego).

Consumo alimentar

Foi aplicado aos pacientes um recordatório de 24 horas, que consiste na obtenção de informações sobre o consumo alimentar nas últimas 24 horas, que ocorreu em dois momentos e em dias de semana.

O método foi aplicado aos pacientes utilizando utensílios de cozinha e modelo de alimentos em borracha como estímulo visual para que o entrevistado pudesse fornecer informações mais acuradas sobre seus hábitos alimentares. Em seguida, o mesmo foi calculado com o auxílio do programa de análise de alimentos Nutrition Data System for Research (NDSR) (versão 2010, Universidade de Minnesota).

Os dados foram transformados em consumo alimentar, obtendo-se a ingestão de proteínas (g/kg e%), vitaminas D (ug), E (mg), K (ug), ácido fólico (ug), B12 (ug) e minerais como cálcio (mg), fósforo (mg), ferro (mg), sódio (mg) e potássio (mg).

Análise estatística

Os dados obtidos foram digitados em planilha Excel e submetidos à análise estatística.

Inicialmente, realizou-se análise descritiva das características sociodemográficas dos pacientes com o cálculo de média e desvio padrão para as variáveis quantitativas, e frequências e percentuais para as variáveis qualitativas, estratificadas por grupos.

Um delineamento em medidas repetidas foi utilizado para avaliar a interação entre grupos e momentos por meio de ANOVA seguido do teste de comparação múltipla de Tukey em caso de simetria dos dados. No caso de assimetria, foi utilizado o mesmo delineamento considerando uma distribuição gama, seguido do teste de comparação múltipla de Wald.

O nível de significância de 95% foi fixado para todos os testes. Todas as análises foram realizadas no programa SAS for Windows, v.9.4.

RESULTADOS

A amostra estudada foi composta por 51 pacientes em tratamento conservador da DRC, dos quais 24 faziam parte do grupo controle e 27 do grupo aconselhamento.

As características sociodemográficas e clínicas de todos os participantes estão resumidas na Tabela 1, provando a homogeneidade entre os grupos. E a Tabela 2 mostra uma comparação entre a idade e as variáveis antropométricas, bem como TFGe, proteinúria e albuminúria. Ao avaliar os grupos de interação versus momentos, nenhuma diferença estatística foi encontrada. A média de TFGe no momento inicial entre os grupos controle e aconselhamento foi, respectivamente, 27,63±9,92 e 33,57±16,47 mL/min/ 1,72m², sem diferenças no segundo momento.
Tabela 1. Associação entre dados demográficos e clínicos entre os grupos. Botucatu, SP, 2019.

Variáveis	Total (n=51)	Controle (n=24)	Aconselhamento (n=27)	p-valor
Sexo				
F (%)	27 (53)	14 (27)	13 (25)	0,4670
M (%)	24 (47)	10 (19)	14 (27)	
Escolaridade				
Analfabeto (%)	1 (2)	0 (0)	1 (2)	0,1128
Fundamental Incompleto (%)	32 (62)	17 (33)	15 (30)	
Fundamental Completo (%)	8 (16)	4 (8)	4 (8)	
Segundo Grau Completo (%)	8 (16)	1 (2)	7 (13)	
Superior Completo (%)	2 (4)	2 (4)	0 (0)	
Estado Civil				
Solteiro (%)	4 (8)	0 (0)	4 (8)	0,1650
Casado (%)	36 (70)	19 (37)	17 (33)	
Divorciado (%)	7 (14)	4 (8)	3 (6)	
Viúvo (%)	4 (8)	1 (2)	3 (6)	
Hipertensão				
Sim (%)	50 (98)	23 (45)	27 (54)	0,2841
Não (%)	1 (2)	1 (2)	0 (0)	
Diabetes Mellitus tipo 2				
Sim (%)	35 (69)	18 (35)	17 (33)	0,3551
Não (%)	16 (31)	6 (12)	10 (20)	

F: Feminino; M: Masculino; Teste Chi-Quadrado, p <5%.

Tabela 2. Comparação de médias avaliando a interação entre grupo versus momentos para idade, TFGe, proteinúria, microalbuminúria, dados antropométricos e pressão arterial sistêmica nos grupos controle e aconselhamento no início e após o aconselhamento nutricional. Botucatu, SP, 2019.

Variáveis	Momentos	1	2	p-valor
	Grupo	Média ± DP	Média ± DP	
Idade (anos)	Controle	63,08±7,63		0,7955
	Aconselhamento	63,73±14,82		
TFGe (mL/min/1,73m²)	Controle	27,63±9,92	25,01±11,54	0,8669
	Aconselhamento	33,57±16,47	31,79±16,74	
Proteinúria (g/24H)	Controle	2,89±3,56	2,92±3,73	0,8271
	Aconselhamento	2,72±3,83	3,07±4,78	

Demetra. 2022;17:e62874
Tabela 2. Comparação de médias avaliando a interação entre grupo versus momentos para idade, TFGe, proteinúria, microalbuminúria, dados antropométricos e pressão arterial sistêmica nos grupos controle e aconselhamento no início e após o aconselhamento nutricional. Botucatu, SP, 2019. (Cont).

Variáveis	Momentos	1	2	p-valor
	Grupo	Média ± DP	Média ± DP	
Microalbuminúria (g/24h)	Controle	805,15±881,27	1169,56±1283,33	0,1429
	Aconselhamento	801,17±704,15	642,87±771,21	
Peso (kg)	Controle	75,10±15,27	71,22±12,22	0,6880
	Aconselhamento	76,86±15,00	76,53±13,60	
Estatura (m)	Controle	1,59±0,09	1,59±0,09	0,5663
	Aconselhamento	1,63±0,09	1,63±0,09	
IMC (kg/m²)	Controle	29,70±5,62	28,48±5,31	0,9208
	Aconselhamento	29,05±5,00	28,79±5,17	
PAS (mmHg)	Controle	140,08±20,26A	130,53±10,71A	0,3336
	Aconselhamento	140,02±10,48A	120,81±10,38A	
PAD (mmHg)	Controle	80,42±10,77A	90,20±20,30A	0,4334
	Aconselhamento	80,21±10,03A	70,69±9,50A	

TFGe: Taxa de Filtração Glomerular estimada; DP: Desvio Padrão; IMC: Índice de Massa Corporal; PAS: Pressão Arterial Sistólica; PAD: Pressão Arterial Diastólica; 1- ANOVA para desenho de medidas repetidas seguido de teste de Tukey; 2- Ajuste em modelo linear generalizado com distribuição gama seguido de teste de Wald. As médias seguidas pelas mesmas letras minúsculas (grupos de fixação) não diferem significativamente ao nível de 5%. As médias seguidas pelas mesmas letras maiúsculas (momentos de fixação) não diferem significativamente ao nível de 5%. As médias sem a presença de letras não diferem significativamente ao nível de 5%.

A Tabela 3 apresenta a ingestão média de macronutrientes (proteínas, carboidratos e lipídeos) e micronutrientes (vitaminas e minerais) nos diferentes grupos e momentos. Foi observada redução na ingestão média de proteína total, animal e vegetal, dos minerais: sódio, fósforo, potássio e da vitamina B12 após orientação nutricional.
Tabela 3. Comparação das médias avaliando interação grupo versus momento para dados de consumo alimentar de proteínas, vitaminas e minerais dos pacientes com DRC. Botucatu, SP, 2019.

Variáveis	Momentos	Grupos	Média ± DP	Média ± DP	p-valor
	1	2			
Proteína Total (g)	Controle	69,56±28,04^{aA}	76,44±29,81^{aA}	0,0190	
	Aconselhamento	66,83±39,74^{aA}	48,40±12,74^{aA}		
	Controle	0,93±0,36^{aA}	1,05±0,46^{aA}	0,1017	
	Aconselhamento	0,92±0,67^{aA}	0,68±0,26^{aB}		
	Controle	38,31±22,75^{aA}	45,03±23,13^{aA}	0,0489	
	Aconselhamento	43,09±40,43^{aA}	29,66±13,69^{aA}		
	Controle	31,25±11,58^{aA}	31,40±14,80^{aA}	0,2090	
	Aconselhamento	23,74±12,55^{aB}	18,74±6,24^{aB}		
Carboidrato Total (g)	Controle	58,28±27,13^{aA}	56,78±25,54^{aA}	0,0767	
	Aconselhamento	54,56±30,13^{aA}	37,51±16,81^{aB}		
Lipídeo Total (g)	Controle	224,53±83,95^{aA}	215,05±84,37^{aA}	0,1770	
	Aconselhamento	187,33±59,91^{aA}	143,67±35,16^{aA}		
Vitamina D (µg)	Controle	2,53±2,00	3,2±±2,50	0,2206	
	Aconselhamento	3,03±1,86	2,84±2,56		
Vitamina E (mg)	Controle	6,33±2,26^{aA}	6,0±±2,88^{aA}	0,2686	
	Aconselhamento	4,66±3,17^{aA}	3,15±1,38^{aB}		
Vitamina K (µg)	Controle	48,08±23,51	40,27±21,70	0,3782	
	Aconselhamento	61,51±78,87	35,28±17,95		
Vitamina C (mg)	Controle	40,15±42,14	54,09±157,43	0,5076	
	Aconselhamento	44,91±35,16	37,36±53,05		
Ácido Fólico (µg)	Controle	408,82±251,63^{aA}	403,88±275,22^{aA}	0,3962	
	Aconselhamento	293,43±135,48^{aA}	250,90±91,97^{aB}		
Vitamina B12 (µg)	Controle	26,6±2,58^{aA}	4,09±3,63^{aA}	0,0373	
	Aconselhamento	2,72±2,37^{aB}	2,14±1,51^{aB}		
Cálculo (mg)	Controle	437,48±208,77	463,28±237,93	0,1744	
	Aconselhamento	493,42±278,10	405,2±178,53		
Fósforo (mg)	Controle	845,77±355,02^{aA}	910,6±355,06^{aA}	0,0147	
	Aconselhamento	814,06±347,07^{aA}	645,3±156,12^{aB}		
Ferro (mg)	Controle	15,67±8,95^{aA}	16,09±10,17^{aA}	0,0899	
	Aconselhamento	11,47±4,89^{aA}	11,47±4,89^{aA}		
Sódio (mg)	Controle	268,15±1495,25^{aA}	271,94±1566,27^{aA}	0,1676	
	Aconselhamento	219,02±1180,33^{aA}	1678,90±532,13^{aB}		
Potássio (mg)	Controle	2082,89±695,82^{aA}	2060,57±817,32^{aA}	0,0923	
	Aconselhamento	1935,19±689,29^{aA}	1935,19±689,29^{aA}		
DRC: Doença renal crónica; DP: Desvio Padrão. ANOVA, no desenho de medidas repetidas seguido pelo teste de Tukey. As médias seguidas pelas mesmas letras minúsculas (grupos de fixação) não diferem significativamente ao nível de 5%. As médias seguidas pelas mesmas letras maiúsculas (momentos de fixação) não diferem significativamente ao nível de 5%. As médias sem a presença de quaisquer letras não diferem significativamente ao nível de 5%.

DISCUSSÃO

Diversos estudos têm documentado os malefícios da monotonia alimentar em pacientes com DRC. Este estudo foi relevante por demonstrar que o aconselhamento nutricional pautado em recomendações de diretrizes dietéticas, conforme nossa pesquisa, é essencial, por garantir aos pacientes uma dieta segura e adequada em macronutrientes e micronutrientes.

No presente estudo, a média de idade dos participantes compreendeu indivíduos idosos, em sua maioria portadores de hipertensão e diabetes mellitus tipo 2, conforme já havia sido observado em estudos anteriores.14,16-19

Observou-se que a média do IMC dos participantes de ambos os grupos e momentos classificou-se na faixa de referência de excesso de peso,20,21 sem diminuição da variável após orientação nutricional, ressaltando que mesmo após o aconselhamento não houve excesso de restrições, o que impactaria na perda de peso dos pacientes. A literatura mostra que a prevalência de sobrepeso e obesidade vem aumentando em pacientes com DRC em tratamento conservador.22 Já na população geral, o sobrepeso e a obesidade se traduzem em maior risco de morbimortalidade; e na população com doença renal indica um fator protetor na sobrevida dos pacientes em pré-diálise e diálise, devido aos eventos catabólicos que comumente acometem esses pacientes, o que pode resultar em maiores taxas de hospitalização e mortalidade, principalmente em idosos.23-25 Esse fenômeno, denominado epidemiologia reversa, é favorável ao excesso de peso, já que o tecido adiposo sequestra toxinas urêmicas e, portanto, há menor risco de sarcopenia e inflamação sistêmica.26,27 No entanto, a variável IMC nem sempre é uma estimativa precisa de adiposidade, já que não captam a distribuição de gordura corporal entre os depósitos de gordura subcutânea e central, sendo este último um tecido adiposo metabolicamente ativo e mais associado à inflamação, estresse oxidativo e resistência à insulina.28, 29

Níveis mais elevados de pressão arterial estão associados à progressão da DRC e mortalidade cardiovascular; por isso, recomenda-se uma dieta restrita em sódio, segundo no presente estudo.30 O sódio é um mineral presente em elevada quantidade no sal de adição e em alimentos industrializados em geral,31 e a literatura demonstra que o aumento no consumo de frutas e hortaliças também pode estar associado à sua redução ou controle em níveis adequados.2 Apesar disso, não houve alterações na pressão arterial dos pacientes após orientação nutricional, possivelmente devido às interações tempo/grupo.

A adesão aos padrões alimentares DASH (Dietary Approaches To Stop Hypertension) pode ter efeitos protetores na prevenção do desenvolvimento e progressão da DRC,14 embora ainda não tenha sido observada redução da função renal dos pacientes, provavelmente devido ao curto tempo de observação.

O aconselhamento nutricional nessa população deve levar em consideração as diretrizes proteicas adequadas, a fim de minimizar alterações do estado nutricional.8 No presente estudo, observou-se redução na ingestão de proteínas após orientação nutricional. Além disso, a ingestão média diária de proteína seguiu as recomendações propostas na literatura, de 0,55 a 0,8 g de proteína/kg de peso/dia.2,8,32-34 Sabe-se que a adequação do consumo de proteínas é fundamental, sendo considerado fator protetor, visto que sua
elevada ingestão está relacionada ao aumento da taxa de filtração glomerular e essa hiperfiltração prejudica os glomérulos remanescentes. Seu efeito protetor baseia-se na redução da pressão intraglomerular, levando à menor proteínuria, embora ainda não tenham sido observadas diferenças significativas entre os pacientes.

Além disso, a adesão a essa abordagem pode levar à redução das toxinas do metabolismo proteico e melhor controle da acidose metabólica. Uma meta-análise mostra o efeito benéfico das dietas restritas em proteína no número de pacientes que evoluem para o estádio final da DRC.

A redução do consumo de carnes vermelhas e processadas pode promover efeito protetor na função renal dos indivíduos com DRC, conforme observado no presente estudo, havendo redução no consumo de proteína animal e de vitamina B12.

A literatura mostra que padrões alimentares saudáveis estão associados a menor mortalidade na DRC, ressaltando assim a importância da orientação nutricional.

Foi observada menor ingestão do fósforo no grupo aconselhamento após as orientações nutricionais pautadas na redução do consumo de alimentos industrializados, visto que os mesmos são ricos em aditivos de fósforo, que contêm o mineral na sua forma inorgânica, com quase 100% de absorção intestinal. O menor consumo destes é considerado um fator benéfico, visto que sua retenção é considerada fator de risco para a calcificação vascular e contribui para o desenvolvimento do hiperparatireoidismo secundário.40

Quanto às ingestões de cálcio e vitamina D, não foram observadas diferenças entre os grupos e momentos, desequilíbrio que poderia contribuir para o agravamento das alterações do metabolismo mineral e ósseo a que esses indivíduos estão mais suscetíveis, contribuindo para o aumento do risco de doenças cardiovasculares e mortalidade.

O menor consumo de potássio após o aconselhamento nutricional no grupo intervenção e em comparação ao grupo controle. A restrição desse mineral ocorreu apenas na hipercalemia, com valores séricos acima de 5,5mEq/L, visto que frutas e vegetais são alcalinos e possuem fibras dietéticas, que podem ter efeito benéfico na acidose metabólica, regulando o equilíbrio interno do potássio, e na constipação, aumentando a excreção fecal de potássio, ambos contribuindo para seu controle.43

A literatura traz que padrões alimentares ricos em frutas e vegetais podem reduzir o risco de progressão para DRC, diminuir a albuminúria, a pressão arterial, levar à melhora da sobrevida na doença renal nos estágios 3 e 4, e está associada a menor mortalidade por todas as causas. Destaca-se, desta maneira, a importância de não priorizar o aconselhamento dietético apenas na restrição de nutrientes ou alimentos, mas fornecer escolhas alimentares saudáveis, com o objetivo de melhorar a qualidade geral da dieta dos pacientes.

Dos pontos fortes do estudo, destaca-se que o aconselhamento nutricional promoveu orientações dietéticas individualizadas, utilizou estratégias para facilitar a adesão e proporcionou escolhas alimentares adequadas aos pacientes para prevenir maiores complicações da doença.

As limitações do estudo incluíram o número de participantes, o curto tempo para a realização do estudo, avaliação um único momento após o aconselhamento nutricional, a perda de seguimento de alguns pacientes na segunda etapa do estudo e ausência de dados sobre os medicamentos dos pacientes que pudessem afetar a progressão da DRC.
CONCLUSÃO

O aconselhamento nutricional é eficaz e proporciona aos pacientes um consumo alimentar adequado às recomendações propostas na DRC, possibilitando melhor controle no consumo proteico dos minerais fósforo, sódio e potássio, além de não alterar a ingestão de cálcio e vitamina D, nem induzir efeitos desfavoráveis na antropometria em curto prazo.

AGRADECIMENTOS

À Unidade de Diálise, em especial aos funcionários e pacientes do Ambulatório de Insuficiência Renal Crônica da Faculdade de Medicina de Botucatu.

REFERÊNCIAS

1. Webster A, Nagler E, Morton R, Marsson P. Chronic kidney disease. Lancet 2017;389:1238-52, DOI: https://doi.org/10.1016/S0140-6736(16)32064-5.

2. National Kidney Foundation. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am J Kidney Dis. 2020;76(3) (suppl 1):S1-107, DOI: https://doi.org/10.1053/j.ajkd.2020.05.006.

3. Levey A, Eckardt K, Dorman N, Christiansen S, Hoorn E, Ingelfinger J, et al. Nomenclature for kidney function and disease: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2020;95(6):1117-29, DOI: https://doi.org/10.1016/j.kint.2020.02.010.

4. Raji Y, Mabayoje M, Bello B, Amira C. Albuminuria and Reduced Estimated Glomerular Filtration Rate among First-degree Relatives of Patients with Chronic Kidney Disease in Lagos, Southwest Nigeria. Indian J. Nephrol. 2018;28(3):21-7, DOI: https://doi.org/10.4103/ijn.IJN_225_16.

5. Flahault A, Chassé J, Thervet E, Karras A, Pallet N. Relevance of urinary specific protein assay in the diagnosis of kidney diseases. Ann. Biol. Clin. (Paris) 2018;76(3):259-69, DOI: https://doi.org/10.1684/abc.2018.1343.

6. Iseki K, Konta T, Asahi K, Yamagata K, Fujimoto S. Dipstick proteinuria and all-cause mortality among the general population. Clin. Exp. Nephrol. 2018;22(6):1331-40, DOI: https://doi.org/10.1007/s10157-018-1587-x.

7. Koppe L. & Fouque D. The role for protein restriction in addition to renin-angiotensin-aldosterone system inhibitors in the management of CKD. A.J.K.D. 2019;73(2):248-57, DOI: https://doi.org/10.1053/j.ajkd.2018.06.016.

8. Kalantar-Zadeh K. & Fouque D. Nutritional Management of Chronic Kidney Disease. N. Engl. J. Med. 2017;377:1765-76, DOI: https://doi.org/10.1056/NEJMr1700312.

9. Chewcharat A, Takkavatakarn K, Wongtrattanagorn S, Panrong K, Kittiskulnam P, Eiam-Ong S, et al. The Effects of Restricted Protein Diet Supplemented With Ketoanalogue on Renal Function, Blood Pressure, Nutritional Status, and
10. Mozaffari H, Ajabshir S, Alizadeh S. Dietary Approaches to Stop Hypertension and risk of chronic kidney disease: A systematic review and meta-analysis of observational studies. Clin. Nutr. 2020;39(7):2035-44, DOI: https://doi.org/10.1016/j.clnu.2019.10.004.

11. Ahn S, Kim D, Han S, Park J, Shin S, Lee S, et al. Weight loss has an additive effect on the proteinuria reduction of angiotensin II receptor blockers in hypertensive patients with chronic kidney disease. Kidney Res. Clin. Pract. 2018;37:49-58, DOI: https://doi.org/10.23876/j.krcp.2018.37.1.49.

12. Jain N & Reilly R. Effects of dietary interventions on incidence and progression of CKD. Nat. Rev. Nephrol. 2014;10:712-24, DOI: https://doi.org/10.1038/nrneph.2014.192.

13. Kalantar-Zadeh K. & Li P. Strategies to prevent kidney disease and its progression. Nature Reviews Nephrol. 2020;16:129-30, DOI: https://doi.org/10.1038/s41581-020-0253-1.

14. Notaras S, Galea L, Lee P, Mak M, Lambert K, et al. The association between dietetic consultation and time to dialysis for patients attending a pre-dialysis clinic: A retrospective cohort study. Nephrol. 2020;25(5):390-97, DOI: https://doi.org/10.1111/nep.13639.

15. Anderson C & Nguyen H. Nutrition education in the care of patients with chronic kidney disease and end-stage renal disease. Semin. Dial. 2018;31(2):114-21 DOI: https://doi.org/10.1111/sdi.12681.

16. Fernandes A, Ramos C, Nerbass F, Cuppari L. Diet Quality of Chronic Kidney Disease Patients and the Impact of Nutritional Counseling. J. Ren. Nutr. 2018;28(6):403-410, DOI: https://doi.org/10.1053/j.jrn.2017.10.005.

17. Fisberg R. Avaliação do consumo alimentar e da ingestão de nutrientes na prática clínica. Arq. Bras. Endocrinol. Metab. 2009;53-55, DOI: https://doi.org/10.1590/S0004-27302009000500014.

18. Bellizzi V, Calella P, Hernández J, González V, Lira S. Safety and effectiveness of low-protein diet supplemented with ketoacids in diabetic patients with chronic kidney disease. B.M.C. Nephrol. 2018;19(1):110, DOI: https://doi.org/10.1186/s12882-018-0914-5.

19. Machado A, Anjos F, Domingos M, Molina M, Marchioni D, Bensenor I, et al. Dietary intake of non-dialysis chronic kidney disease patients: the PROGREDIR study. A cross-sectional study. São Paulo Med. J. 2018;136(3):208-15, DOI: https://doi.org/10.1590/1516-3180.2017.0177141217.

20. Organización Panamericana De La Salud. División De Promoción Y Protección De La Salud (Hpp-). Encuesta Multicentrica salud beinestar y envejecimiento (SABE) em América Latina el Caribe: Informe Preliminar [Internet]. In:
21. World Health Organization. Encuesta multicéntrica: salud, bien estar y envejecimiento (SABE) em America Latina y el Caribe. In: Reunión Del Comité Asesor De Investigaciones Em Salud. Washington. Anales da 36ª Reunión Del Comité Asesor de Investigaciones en salud. Washington, 2001, available at: <https://www.opas.org/program/sabe.htm >. Accessed on February 4, 2020.

22. Cuppari L. Nutrição clínica no adulto. Barueri: Manole; 2019.

23. Windahl K, Irving G, Almquist T, Lidén M, Luijtgaarden M, Chesnaye C, et al. Prevalence and risk of protein-energy wasting assessed by subjective global assessment in older adults with advanced chronic kidney disease: results from the EQUAL study. J. Renal Nut. 2018;28(3):165-74, DOI: https://doi.org/10.1053/j.jrn.2017.11.002.

24. Rhee C. The dual roles of obesity in chronic kidney disease: a review of the current literature. Curr. Opin. Nephrol. Hypertens. 2016;25(3):208-16, DOI: https://doi.org/10.1097/MNH.0000000000000212.

25. Kalantar-Zadeh K, Rhee C, Amin A. To legitimize the contentious obesity paradox. Mayo Clin. Proc. 2014;89:1033-35, DOI: https://doi.org/10.1016/j.mayocp.2014.06.015.

26. Ziolkowski S, Long J, Baker J, Chertow G, Leonard M. Chronic Kidney Disease and the adiposity paradox: valid or confounded? J. Ren. Nut. 2019;29(6):521-28, DOI: https://doi.org/10.1053/j.jrn.2018.11.011.

27. Kovesdy C, Anderson J, Kalantar-Zadeh K. Paradoxical association between body mass index and mortality in men with CKD not yet on dialysis. Am. J. Kidney Dis. 2007;49(5):581-91, DOI: https://doi.org/10.1053/j.ajkd.2007.02.277.

28. Kittiskulnam P, Johansen KL. The obesity paradox: A further consideration in dialysis patients. Semin Dial. 2019;32(6):485-489. DOI: 10.1111/sdi.12834.

29. Miyamoto T, Rashid Qureshi A, Heimbürger O, Bárány P, Carrero K, et al. Inverse relationship between the inflammatory marker pentraxin-3, fat body mass, and abdominal obesity in end-stage renal disease. Clin J Am Soc Nephrol. 2011;6(2):2785-91.DOI: 10.2215/CJN.02320311.

30. Walther C, Chandra A, Navaneethan S. Blood pressure parameters and morbid and mortal outcomes in nondialysis-dependent chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2018;27(1):16-22, DOI: https://doi.org/10.1097/MNH.0000000000000375.

31. Saran R, Padilla R, Gillespie B, Heung M, Hummel S, Derebail V, et al. A Randomized Crossover Trial of Dietary Sodium Restriction in Stage 3-4 CKD. Clin. J. Am. Soc. Nephrol. 2017;12(3):399-407, DOI: https://doi.org/10.2215/CJN.01120216.
32. Zha Y. & Qian Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients. 2017;9(3):208, DOI: https://doi.org/10.3390/nu9030208.

33. Garibotto G, Picciotto D, Saio M, Esposito P, Verzola D. Muscle protein turnover and low-protein diets in patients with chronic kidney disease. Nephrol. Dial. Transplant. 2020;35:741-51, DOI: https://doi.org/10.1093/ndt/gfaa072.

34. Kalantar-Zadeh K, Moore L, Tortorici A, Chou J, St-Jules D, et al. North American experience with Low protein diet for Non-dialysis-dependent chronic kidney disease. B.M.C. Nephrol. 2016;17(1):90, DOI: https://doi.org/10.1186/s12882-016-0304-9.

35. Hahn D, Hodson E, Fouque D. Low protein for non-diabetic adults with chronic kidney disease. Cochrane Database Syst. Rev. 2018;10(10):CD001892, DOI: https://doi.org/10.1002/14651858.CD001892.pub4.

36. Chauveau P, Koppe P, Combe C, Lasseur C, Trolonge S, Aparicio M. Vegetarian diets and chronic kidney disease. Nephrol. Dial. Transplant. 2019;34: 199-207, DOI: https://doi.org/10.1093/ndt/gfy164.

37. Mirmiran P, Yuzbashian E, Aghayan M, Mahdavi M, Asghari G, Azizi F. A Prospective Study of Dietary Meat Intake and Risk of Incident Chronic Kidney Disease. J. Ren. Nutr. 2019;30(2):111-18, DOI: https://doi.org/10.1053/j.jrn.2019.06.008.

38. Kelly J, Palmer S, Wai S, Ruospo M, Carrero J, Campbell K, et al. Healthy dietary patterns and risk of mortality and ESRD in CKD: a meta-analysis of cohort studies. Clin. J. Am. Soc. Nephrol. 2017;12: 272-79, DOI: https://doi.org/10.2215/CJN.06190616.

39. Rebholz C, Crews D, Grams M, Steffen L, Levey A, Miller E, et al. DASH (Dietary Approaches to Stop Hypertension) Diet and Risk of Subsequent Kidney Disease. Am. J. Kidney Dis. 2016;68(6):853-61, DOI: https://doi.org/10.1053/j.ajkd.2016.05.019.

40. Cupisti A, Brunori G, Iorio B, D’Alessandro C, Pasticci F, Cosola C, et al. Nutritional treatment of advanced CKD: twenty consensus statements. J. Nephrol. 2018;31(4):457-73, DOI: https://doi.org/10.1007/s40620-018-0497-z.

41. Sociedade Brasileira De Nefrologia. II Diretrizes Brasileiras de Prática Clínica para o Distúrbio Mineral e Ósseo na DRC. J. Bras. Nefrol. 2016, available at <https://www.bjnephrology.org/en/article/diretrizes-brasileiras-de-pratica-clinica-para-o-disturbio-mineral-e-osseo-na-doencia-renal-cronica/>. Accessed on August 20, 2021.

42. Uribarri J & Oh M. The key to halting progression of CKD might be in the produce market, not in the pharmacy. Kidney Int. 2012;81(1):7-9, DOI: https://doi.org/10.1038/ki.2011.331.

43. Ramos C, Gonzalwz-Ortiz A, Espinosa-Cuevas A, Avesani C, Carrero J, Cupari L. Does dietary potassium intake associate with hyperkalemia in patients with chronic kidney disease? Nephrol. Dial. Transplant. 2020;1-9, DOI: https://doi.org/10.1093/ndt/gfaa232.
44. Wai S, Kelly J, Johnson D, Campbell K. Dietary patterns and clinical outcomes in chronic kidney disease: the CKD.QLD Nutrition Study. J. Ren. Nutr. 2017;27:175-82, DOI: https://doi.org/10.1053/j.jrn.2016.10.005.

45. Chan M, Kelly J, Tapsell L. Dietary Modeling of Foods for Advanced CKD Based on General Healthy Eating Guidelines: What Should Be on the Plate? Am. J. Kidney Dis. 2017;69(3):436-50, DOI: https://doi.org/10.1053/j.ajkd.2016.09.025.

Colaboradoras
Presti PT, Martin LC e Corrente JE participaram de todas as etapas, desde a concepção do estudo até a revisão da versão final do artigo.

Conflito de Interesses: Os autores declaram não haver conflito de interesses.

Recebido: 07 de outubro de 2021
Aceito: 16 de agosto de 2022