Identification of QTLs for Seed Yield and Yield-Related Traits in Brassica Napus Grown with Contrasting Nitrogen Supplies

Maoyan Zou (zoumaoyan@126.com)
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University

Taoxiong Shi
Wei Wang
Guangda Ding
Fangsen Xu
Lei Shi
https://orcid.org/0000-0002-5312-8521

Research Article

Keywords: QTL, seed yield, optimal nitrogen, low nitrogen, Brassica napus

DOI: https://doi.org/10.21203/rs.3.rs-674683/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Oilseed rape (*Brassica napus* L.; *B. napus*) is the main oil crop in China as well as in the world. Nitrogen (N) deficiency significantly reduces the seed yield of *B. napus*. However, a very few studies involved in the genetic mechanism of seed yield (SY) and SY-related traits of *B. napus* in response to N deficiency. In this study, plant height (PH), branch number (BN), pod number (PN), seed number (SN), 1000-seed weight (SW) and SY were investigated using a *B. napus* double haploid (*BnaTNDH*) population derived from a cross between cultivars 'Tapidor' and 'Ningyou7' grown at an optimal (ON) and a low N (LN) supplies in three-year field trials. Great variations of SY and related traits were observed in *BnaTNDH* population under contrasting N supplies. A total of 106 and 110 significant quantitative trait loci (QTLs) were detected for six traits at ON and LN in three field trials, respectively. All of these significant QTLs for the same trait were integrated into 191 consensus QTLs. Nine and eleven consensus QTLs at ON and LN were detected in two or three trials, respectively, and the remaining were environment-specific. One hundred and three unique QTLs were integrated from 191 consensus QTLs, including 29 low N specific QTLs, 35 optimal N specific QTLs and 39 constitutive QTLs. *uqA3q* was integrated from four consensus QTLs for PN, PH, SN, SY at LN, *uqC9f* was integrated from consensus QTLs for BN, SY, PN at ON and LN. Both were detected in three trials. This result may help to better understand the genetic mechanism of yield traits in response to low N and promote the breeding of N efficient varieties.

Introduction

Nitrogen (N) is component of nucleic acids, proteins, chlorophyll, alkaloids, vitamins, and hormones, which is essential for plants growth and development (Hawkesford et al., 2012). Oilseed rape (*Brassica napus* L.; *B. napus*) is one of the most important oil crops worldwide, which acquires nitrate and ammonium and recycles organic nitrogen (Masclaux-Daubresse et al., 2010). The application rate of N fertilizer in *B. napus* ranged from 65 to 325 kg / hm² in China, which depend on the field fertility, SY target, varieties and other factors (Zhang et al., 2020). Rational application of N fertilizer can significantly promote the seed yield (SY), oil production, protein content and polysaturated fatty acid content of *B. napus* (Gao et al., 2019). On the contrary, irrational fertilization not only decreases the crop yield and quality, but also causes soil acidification and eutrophication (Liu et al., 2013b; Guo et al., 2010; Hirel et al., 2011). Breeding N-efficient *B. napus* cultivars is an important strategy to improve the SY in a sub-optimal N supply and reduce the application of N fertilizers.

SY is a complex trait, which is mainly related to the potential of *B. napus* for growth and branching after flowering which enable the crop to use one yield component to compensate for limitations in another one (Bouchet et al., 2014). SY of *B. napus* is directly related to pod number per plant, seed number per pod and 1000-seed weight, and also indirectly associated with plant height and branch number (Ding et al., 2012). N deficiency significantly decreased SY components such as plant density, branch number, pod number per plant, seed number per pod, except for 1000-seed weight (Cong et al., 2020).

Quantitative trait loci (QTL) analysis based on high-density genetic linkage map can provide basic information on the genetic architecture of quantitative traits (Agrama 2006). Bouchet et al. (2016) mapped 17 low-N specific QTLs, 18 optimal-N specific QTLs for flowering days, seed protein content, SY, seed number per pod, 1000-seed weight, oil content and oil/protein in a double haploid (DH) population of *B. napus* through three-year field trials, and homologous QTLs for SY were found on A3/C3, A5/C5, A9/C9 chromosomes. Wang et al. (2017) find that all major QTLs and some stable QTLs for N use efficiency were associated with root morphology traits in *B. napus* at ON and/or LN. At present, many QTLs have been mapped for SY or N use efficiency in *B. napus* at ON, but limited QTLs were detected at LN.

In this study, a *B. napus* DH population (*BnaTNDH* population) was employed to conduct field trials at ON and LN for three years. The QTLs for SY and SY-related traits of *B. napus* under contrasting N supplies were identified. Some major QTLs in response to low N were obtained.

Materials And Methods

Plant materials and field trials

A *BnaTNDH* population with 182 lines was used in this study, which was derived from a cross between a European winter type cultivar 'Tapidor' and a Chinese semi-winter type cultivar 'Ningyou7' by microspore culture (Qiu et al., 2006).

Three field trials were conducted in sandy paddy soil in Qichun county, Hubei Province, China (115°45′N latitude, 30°19′E longitude), during *B. napus* growing seasons the 2008–2009 (Tri.1), 2009–2010 (Tri.2) and 2010–2011 (Tri.3). Soil properties were as follows: pH (1:1 H₂O) 4.8, organic matter 34.9 g·kg⁻¹, total N 0.22 g·kg⁻¹, available N 0.074 g·kg⁻¹, Olsen-phosphorus 3.32 mg·kg⁻¹, available potassium 42 mg·kg⁻¹, and available boron 0.09 mg·kg⁻¹. The basal fertilizers included P 38.7 kg·ha⁻¹, K 124.5 kg·ha⁻¹, ZnSO₄·7H₂O 45 kg·ha⁻¹ and Borax (Na₂B₄O₇·10H₂O) 15 kg·ha⁻¹. 60% of 120 and 40 kg·ha⁻¹ N were applied to create ON and LN conditions before transplantation, and rest of the urea was applied before the overwinter stage. Three replications for 182 *BnaTNDH* lines and their parents were planted in a randomized complete-plot design with each plot comprising 18 plants, separated by a distance of 0.20 m between plants and 0.28 m between rows. Seeds were sown in a nursery bed in the field in middle September and seedlings were transplanted 30 d after sowing. Plants were harvested in the following middle May. Standard agricultural practices were followed for field management.

Measurement of phenotypic traits

In each plot, six individuals from the middle row were used to determine plant height (PH) measured from ground level to the tip of the main inflorescence, number of primary branches (BN) measured as the number of primary branches arising from main shoot and seed number per pod (SN) measured as the average number of well filled seeds from 100 well-developed pods sampled from the primary branch in the middle of each plant studied. All representative individuals from each plot were harvested by hand at maturity stage to investigate seed yield per plant (SY) and seed weight of 1,000 seeds (SW). Pod number per plant (PN) was calculated using the following formula: PN = (SY × 1000) / (SW × SN).
Statistical analysis and QTL detection

Data analysis was conducted using SPSS 20.0 (IBM, USA) and Microsoft Excel 2019 (Microsoft, USA). Duncan multiple-range test was used for multiple comparison of different traits between two parents. Three-way ANOVA with F test was used at \(P < 0.05 \) level. Different growth environments (years) and N treatments were treated as fixed factors, and genotypes were treated as random factor. Correlation analysis was conducted to determine the relationship between the tested traits. The broad-sense heritability (\(h^2 \)) for each trait was calculated at both N levels as follows:
\[
h^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma_{ge}^2/n + \sigma_e^2/nr},
\]
where \(\sigma_g^2 \) is the genotypic variance, \(\sigma_{ge}^2 \) is the interaction variance of genotype with environment, \(\sigma_e^2 \) is the error variance, \(n \) is the number of environments and \(r \) is the number of replicates.

The \textit{BnaTNDH} linkage map contained a total of 2041 molecular marker and the average marker density was from 0.39 to 0.97 per cM (Zhang et al., 2016). QTLs were detected by composite interval mapping (CIM) using WinQTL cartographer 2.5 software (http://statgen.ncsu.edu/qtlcar/WQTLCart.htm) (Wang et al., 2006). For each trait, QTL threshold (\(P < 0.05 \)) was estimated from 1,000 permutations (Silva et al., 2012). Biomercator v4.2 was used to integrate consensus QTL and unique QTL (Arcade et al., 2004). The significant QTLs for the same trait identified in the different trials were integrated into consensus QTLs by meta-analysis. Then the consensus QTLs for different traits that overlapped were integrated into unique QTL. The consensus QTLs detected in at least two trials were considered as major consensus QTLs. Each QTL was denominated as "q" (abbreviation of QTL) + trait name + trial number + chromosome name + the serial letter (a,b,c...). For example, \textit{qPHON3-A3b} denoted the second QTL for plant height on chromosome A3 at ON in Tri.3. Each consensus QTL was denominated as "cq" (abbreviation of consensus QTL) + trait name + chromosome name + the serial letter. For example, \textit{cqPHON-A3c} indicated the third consensus QTL for PH at ON located on A3. Each unique QTL was denominated as "uq" (abbreviation of unique QTL) + chromosome name + the serial letter. For example, \textit{uqA2d} indicated the fourth unique QTL on A2.

Results

Differences in the six tested traits between cultivars Tapidor and Ningyou 7, and among \textit{BnaTNDH} population

At ON, SY of Tapidor was significantly lower than that of Ningyou7 in the three trials; BN of Tapidor was lower than that of Ningyou7 in Tri.2 and Tri.3; SN of Tapidor was obviously more than that of Ningyou7 in Tri.1; PN of Tapidor was lower than that of Ningyou7 in Tri.3 (Fig. 1; Table 1). At LN, BN of Tapidor was less than that of Ningyou7 in Tri.1 and Tri.2, and SY of Tapidor was less than that of Ningyou7 in Tri.3 (Fig. 1; Table 1). There was no significant difference in PH between Tapidor and Ningyou7 at two nitrogen supplies in three trials.
Table 1
Means and ranges of the seed yield (SY) and SY-related traits in the parental lines and the BnaTNDH population grown at an optimal (ON) and a low N supply (LN) in three field trials.

Trait	N Treatment	N Treatment	Trial	Tapidor	Ningyou7	Mean	Range	CV (%) \(^{a}\)	\(h^{2b}\)
PH (cm)	ON	ON	Tri.1	129.6 ± 5.6a	127.6 ± 3.9a	140.2a	109.3–169.2	8.5	0.75
	ON	ON	Tri.2	103.1 ± 5.9d	109.6 ± 3.4cd	122.8c	94.1–153.9	10.4	
	ON	ON	Tri.3	124.2 ± 1.8ab	130.6 ± 5.1a	136.5b	84.0–174.5	9.4	
	LN	LN	Tri.1	116.4 ± 9.4bc	123.5 ± 8.1ab	122.4c	97.0–154.3	9.2	0.56
	LN	LN	Tri.2	104.2 ± 3.7d	105.1 ± 1.3d	117.7d	84.4–154.3	10.5	
	LN	LN	Tri.3	105.3 ± 12.1d	113.0 ± 7.3cd	114.5e	87.0–135.9	9.0	
BN (N)	ON	ON	Tri.1	4.5 ± 0.3c	6.9 ± 0.4a	5.9b	4.3–7.6	12.4	0.59
	ON	ON	Tri.2	4.5 ± 0.8c	6.5 ± 0.4a	5.7c	2.8–8.8	18.0	
	ON	ON	Tri.3	6.3 ± 0.3ab	7.1 ± 0.3a	6.7a	2.5–9.5	15.3	
	LN	LN	Tri.1	4.0 ± 0.7c	5.5 ± 0.2b	4.7e	2.0–6.2	15.9	0.51
	LN	LN	Tri.2	4.4 ± 0.2c	5.5 ± 0.5b	5.1d	2.7–7.7	16.9	
	LN	LN	Tri.3	4.4 ± 1.1c	4.4 ± 0.4c	4.4f	1.9–6.7	18.0	
PN (N)	ON	ON	Tri.1	179.7 ± 58.0a	124.8 ± 11.0bc	164.3a	54.4–406.1	27.3	0.59
	ON	ON	Tri.2	100.4 ± 13.8bcd	118.5 ± 17.0bcd	140.5b	10.0–312.9	36.7	
	ON	ON	Tri.3	105.4 ± 19.8bcd	132.2 ± 9.5b	124.0c	18.5–244.4	38.2	
	LN	LN	Tri.1	82.7 ± 34.3cdef	63.0 ± 11.8ef	88.8d	31.7–174.5	26.2	0.55
	LN	LN	Tri.2	86.8 ± 6.0cdef	81.0 ± 3.8def	95.1d	25.5–222.4	33.3	
	LN	LN	Tri.3	56.5 ± 6.7f	57.4 ± 13.1f	46.8e	5.8–106.3	38.6	
SN (N)	ON	ON	Tri.1	15.7 ± 2.0ab	16.3 ± 0.9a	17.7a	11.0–25.0	17.4	0.69
	ON	ON	Tri.2	14.0 ± 1.0abcd	15.4 ± 1.2abc	14.1c	4.5–21.6	20.9	
	ON	ON	Tri.3	12.7 ± 0.8de	15.5 ± 0.8abc	15.0b	2.2–22.2	24.4	
	LN	LN	Tri.1	14.3 ± 0.3abcd	13.9 ± 1.0abcd	14.8b	7.1–22.1	22.9	0.67
	LN	LN	Tri.2	13.1 ± 1.5cde	13.1 ± 1.4cde	13.4d	6.6–23.1	19.5	
	LN	LN	Tri.3	11.0 ± 2.0e	13.2 ± 1.7bcde	12.3e	4.2–22.8	29.0	
SW (g/1000 seeds)	ON	ON	Tri.1	2.3 ± 0.1e	3.8 ± 0.1b	2.9c	2.1–4.1	13.3	0.84
	ON	ON	Tri.2	2.5 ± 0.1d	4.0 ± 0.1ab	3.1b	2.0–4.8	14.2	
	ON	ON	Tri.3	2.1 ± 0.1f	3.6 ± 0.2c	2.7d	1.4–4.0	15.8	
	LN	LN	Tri.1	2.3 ± 0.1e	3.9 ± 0.1b	2.9c	1.9–4.1	15.0	0.80
	LN	LN	Tri.2	2.5 ± 0.1d	4.1 ± 0.2a	3.3a	2.1–5.0	14.7	
	LN	LN	Tri.3	2.1 ± 0.1f	3.5 ± 0.1c	2.7d	1.1–4.7	20.8	
SY (kg/ha)	ON	ON	Tri.1	1194.8 ± 308.5b	1465.7 ± 167.9a	1509.8a	455.7–2297.4	24.7	0.76
	ON	ON	Tri.2	603.1 ± 140.0cd	1355.3 ± 79.6ab	1120.0b	263.1–2210.0	36.9	
	ON	ON	Tri.3	470.1 ± 73.0d	1332.8 ± 168.5ab	974.8c	50.4–2029.6	49.2	
	LN	LN	Tri.1	489.9 ± 183.0d	651.6 ± 167.5cd	703.0d	168.3–1353.7	32.4	0.73
	LN	LN	Tri.2	535.3 ± 79.1cd	807.1 ± 108.8c	747.7d	153.4–1708.6	36.8	
	LN	LN	Tri.3	208 ± 35.9e	501.4 ± 92.1d	303.5e	13.1–979.9	57.1	

\(^{a}\)CV, coefficient of variation. Different letters indicated the significant difference at \(P = 0.05\) level. Data are mean ± SD, \(n = 3\). \(^{b}\)heritability

Compared with at ON, BN and SY of Ningyou7 were significantly decreased at LN. SW of Tapidor was significantly less than that of Ningyou7 at both ON and LN in the three trials (Fig. 1; Table 1). Compared with ON, SY, PH, BN, PN and SN of the BnaTNDH population were significantly decreased at LN. Among them, SY at LN in Tri.1, Tri.2 and Tri.3 decreased by 53.4%, 33.2% and 68.9%, respectively; SN decreased by 45.9%, 32.3% and 62.2%, respectively (Table 1). The \(h^{2}\)
observed in the BnaTNDH population for the six traits, ranged from 0.51 for BN at LN to 0.84 for SY at ON. In general, a higher h^2 was observed at ON than at LN (Table 1).

In the three trials, all traits showed approximately normal distributions and transgressive segregations at two N supplies (Table 1; Fig. 2). The results of ANOVA showed that environment, N treatment, genotype and the interactions between these factors had significant effects on all the tested traits (Table 2). SY was highly positively correlated with PN and SN at both ON and LN across three field trials (Table 3). There was a weak correlation between PH and BN at both ON and LN across three field trials. While no significant correlation and weak correlation was observed between SY and SW at both ON and LN in Tri.1 and Tri.2, and Tri.3, respectively (Table 3).

Table 2

	PH	BN	PN	SN	SW	SY	
Environment	d.f.	2	2	2	2	2	
sig.	***	***	***	***	***	***	
N treatment	d.f.	1	1	1	1	1	
sig.	***	***	***	***	**	***	
Genotype	d.f.	181	181	181	181	181	181
sig.	***	***	***	***	***	***	
Environment × N treatment	d.f.	2	2	2	2	2	
sig.	***	***	***	***	***	***	
Environment × Genotype	d.f.	337	337	344	341	341	344
sig.	***	***	***	***	***	***	
N treatment × Genotype	d.f.	181	181	181	181	181	181
sig.	**	**	***	***	***	***	

*a*d.f., degrees of freedom. *b*sig., significance. ns, no significance. **$P<0.01$, ***$P<0.001$.
Table 3

Correlation coefficients among seed yield (SY) and SY-related traits in the *BnaTNDH* population grown at an optimal (above diagonal) and a low N supply (below diagonal) in three field trials

Environments	PH	BN	PN	SN	SW	SY
Tri.1						
PH	0.19*	0.20**	0.18*	-0.24**	0.26**	
BN	0.13	0.34**	0.17*	-0.02	0.45**	
PN	0.42**	0.15*	-0.15*	-0.43**	0.61**	
SN	0.28**	0.05	0.09	0.07	0.55**	
SW	-0.26**	0.07	-0.47**	0.06	-0.02	
SY	0.39**	0.23**	0.57**	0.77**	0.07	
Tri.2						
PH	0.34**	0.12	0.23**	-0.17*	0.26**	
BN	0.26**	0.57**	0.07	0.02	0.57**	
PN	0.25**	0.36**	-0.08	-0.18*	0.68**	
SN	0.17*	-0.03	0.06	-0.05	0.53**	
SW	-0.19*	-0.06	-0.23**	-0.01	0.06	
SY	0.25**	0.30**	0.80**	0.52**	0.08	
Tri.3						
PH	0.45**	0.31**	0.46**	0.01	0.41**	
BN	0.49**	0.34**	0.29**	0.16*	0.40**	
PN	0.29**	0.32**	0.43**	-0.11	0.83**	
SN	0.29**	0.13	0.34**	0.08	0.73**	
SW	0.10	0.11	0.00	0.16*	0.23**	
SY	0.38**	0.32**	0.77**	0.75**	0.34**	

P<0.01, *P<0.05.

QTL detection and consensus QTL

A total of 216 significant QTLs for SY and SY-related traits were detected at two N supplies in three trials (Fig. 2; Supplementary Table 1). These QTLs were mainly located on chromosomes A2, A3, A9, C6 and C9, and the phenotypic variation (PVE) ranged from 4.0–23.5%. They were subjected to the first round of QTL meta-analysis trait-by-trait, and 191 consensus QTL were obtained. Among them, 20 consensus QTLs could be detected in two or three trials (Table 4)
Table 4
Summary of major consensus QTL and their corresponding identified QTL

Trait	N Treatment	QTL	Chro.	Position (cM)	CI (cM)^b	QTL	LOD	R²	Position (cM)	CI (cM)	AE^c
PH	LN	cqPHLN–C6c	C6	42.6	41.6–43.5	qPHLN2–C6c	4.5	7.5	42.8	41.3–45.3	+
						qPHLN1–C6d	3.3	5.2	42.5	41.3–43.5	+
BN	ON	cqBNON–C9	C9	116.7	108.1–125.3	qBNON2–C9a	3.3	7.4	114.0	106.0–137.6	+
						qBNON3–C9b	3.7	7.4	117.3	107.2–137.2	+
LN		cqBNLN–C9b	C9	114.6	110.6–118.6	qBNLN2–C9b	3.7	7.4	116.5	106.7–125.4	+
						qBNLN1–C9c	4.1	7.9	113.0	106.1–116.5	+
PN	ON	cqPNON–A3d	A3	97.7	96.3–99.0	qPNON1–A3	5.6	11.2	98.7	95.3–104.4	–
						qPNON3–A3a	6.6	12.7	95.7	95.3–98.8	–
										100.9	100–104.7
LN		cqPNLN–A3a	A3	83.5	82.0–84.9	qPNLN1–A3a	4.5	9.1	77.9	74.0–81.0	–
						qPNLN2–A3b	2.8	5.5	84.3	77.1–84.7	–
						qPNLN1–A3c	7.5	14.7	84.7	82.2–85.7	–
				cqPNLN–C9	C9	qPNLN3–C9a	7.1	15.2	124.3	111.8–137.8	+
						qPNLN2–C9b	3.0	5.8	127.4	113.1–140.4	+
SN	ON	cqSNON–A2a	A2	48.1	47.1–49.1	qSNON1–A2a	5.5	10.4	46.2	39.9–48.6	+
						qSNON3–A2a	3.7	7.2	48.2	46.5–48.6	+
				cqSNON–A9b	A9	qSNON1–A9b	3.3	6.4	26.1	23.9–26.7	–
						qSNON2–A9c	3.2	5.4	28.9	25.4–35.1	–
				cqSNON–C1a	C1	qSNON1–C1a	2.8	5.3	3.6	1.1–6.1	+
						qSNON2–C1b	4.3	8.2	1.0	0.0–6.1	+
LN		cqSNLN–A9c	A9	37.4	35.3–39.5	qSNLN2–A9c	3.1	6.1	35.2	31.9–38.0	–
						qSNLN1–A9d	4.5	8.7	39.4	35.2–41.0	–
SW	ON	cqSWON–A2c	A2	82.9	81.0–84.9	qSWON1–A2b	5.9	8.5	80.8	78.3–83.8	+
						qSWON2–A2a	3.7	6.8	84.7	80.8–86.9	+
						qSWON3–A2b	5.1	10.1	84.0	79.9–91.2	+
				cqSWON–A4b	A4	qSWON1–A4b	4.1	5.7	12.7	9.8–14.8	+

^aChrom., chromosome. ^bCi, confidence interval. ^cAe, additive effect.
A total of 49 significant QTLs for SW were detected at both N supplies. The PVE of 24 QTLs at ON ranged from 4.0–23.5%, while that of 25 QTLs at LN ranged from 4.0–13.8%. These significant QTLs were integrated into 40 consensus QTLs. Six consensus QTLs were considered to be major consensus QTL (Table 4). Among of them, three QTLs were identified at ON. cqSWON-A2c was detected in all the trials with PVE of 8.5%. cqSWON-A4d and cqSWON-A4c were identified in Tri.1 and Tri.2 with PVE of 7.4% and 7.5%, respectively. At LN, there were three QTLs, cqSWLN-A2d, cqSWLN-A2e, cqSWLN-A3f. Among of them, cqSWLN-
A2d and cqSWLN/A2e were detected in Tri.1 and Tri.2, with an average PVE of 11.2% and 12.8%, respectively. cqSWLN/A3f was detected simultaneously in Tri.2 and Tri.3, which accounted for an average PVE of 7.6%.

A total of 36 significant QTLs for SY were detected at two N supplies. Among of them, the PVE of 16 QTLs at ON ranged from 4.4–11.0%, and that of 20 QTLs at LN ranged from 4.1–15.3%. A total of 31 consensus QTLs were identified by QTL integration. cqSYON/C8c was detected in Tri.2 and Tri.3, with an average PVE of 6.8%. cqSYLN/A2c, cqSYLN-A3f and cqSYLN-C9 were detected in Tri.2 and Tri.3 and the average PVE were 6.5%, 7.0% and 10.9%, respectively.

Most of the consensus QTLs associated with various traits overlapped on A2, A3, C6 and C9 chromosomes. A total of 103 unique QTLs were obtained from 191 consensus QTLs, including 33 ON-specific QTLs, 27 LN-specific QTLs and 39 constitutive QTLs detected at both ON and LN (Fig. 2; Supplementary Table 2).

Among 33 ON-specific QTLs, uqA2e, uqA3a and uqA9b for two traits were clustered on A2, A3, A9, respectively (Table 5). uqA2e for two traits of PH and SN was located in the interval of 47.1–49.0 cM on A2. uqA3a was integrated from two consensus QTLs, cqPHON/A3a and cqBNON/A3a, and was clustered in the interval of 0.0–8.3 cM on A3. uqA9b was obtained from two consensus QTLs, cqBNON/A9a and cqSNON/A9a, and clustered in the interval of 10.9–20.4 cM on A9.
Table 5
ON and LN-specific unique QTLs associated with at least two traits and constitutive QTLs associated with at least three traits.

Unique QTL	Consensus QTL						
Chro. a	N treatment	Position (cM)	CI (cM)	Position (cM)	CI (cM)		
A2	uqA2c	LN	29.9	28.7-31.0	cqSNLN–A2c	29.4	27.8-30.4
					cqPNLN–A2a	31.6	27.8-32.9
	uqA2d	ON&LN	42.6	40.6-44.6	cqPNLN–A2b	41.0	32.9-44.3
					cqPHLN–A2a	42.0	39.8-45.2
					cqSWLN–A2a	44.4	37.8-45.2
	uqA2e	ON	48	47.1-49.0	cqPHLN–A2b	47.2	45.4-52.8
					cqSNON–A2a	48.1	47.1-49.1
	uqA2i	LN	77.6	76.2-78.8	cqSYLN–A2a	76.0	75.6-79.9
					cqSWLN–A2c	76.5	75.1-80.1
					cqSNLN–A2d	80.1	77.5-82.0
	uqA2j	ON&LN	83	82.3-83.7	cqSWLN–A2c	81.4	80.1-82.7
					cqSWON–A2c	82.9	81.0-84.9
					cqSYON–A2b	83.0	82.0-85.0
					cqSNON–A2c	84.0	82.0-86.0
					cqSYLN–A2c	84.8	83.3-86.4
A3	uqA3a	ON	3.3	0.0-8.3	cqPHON–A3a	20.4	0.6-27.8
					cqBNON–A3a	0.6	0.0-10.8
	uqA3i	ON&LN	59.4	59.1-59.7	cqSWLN–A3f	58.4	57.6-59.3
					cqPHLN–A3b	59.4	58.8-59.5
					cqSYLN–A3b	59.5	58.9-62.7
					cqPHON–A3d	62.7	58.8-66.5
	uqA3j	LN	65.6	65.2-66.0	cqSNLN–A3a	65.5	62.7-66.5
					cqPHLN–A3c	65.6	65.5-66.3
	uqA3m	ON&LN	76.7	76.0-77.4	cqSYLN–A3d	76.7	75.4-76.9
					cqSWON–A3e	76.9	75.4-81.0
					cqSNLN–A3b	76.4	75.4-80.0
					cqSWLN–A3d	76.4	73.8-84.0
	uqA3n	ON&LN	84.9	84.4-85.5	cqSYON–A3a	81.6	81.0-84.3
					cccPNLN–A3a	83.5	82.0-84.9
					cqSWLN–A3e	85.7	84.0-85.7
					cqSNON–A3a	86.3	84.7-87.2
	uqA3o	ON&LN	92	91.2-92.9	cqSYON–A3b	92.0	87.2-92.8
					cqSYLN–A3e	92.0	88.7-92.8
					cqSNON–A3b	91.8	87.2-93.1
					cccPNLN–A3d	92.0	86.6-92.1
					cqBNON–A3b	84.7	84.3-91.5
					cccPNLN–A3e	92.8	92.3-94.6

aChro., chromosome. bCI, confidence interval.
Unique QTL	**Consensus QTL**
uqA3p	ON&LN 97.5
	96.8-98.3
	cqSYON–A3c 95.7
	95.3–97.5
	cqSNLN–A3c 95.7
	96.8-98.3
	cqPNON–A3d 97.7
	96.3–99.0
uqA3q	LN 101.8
	100.6-103.1
	cqPNLN–A3f 100.9
	99.7–102.2
	cqPHEL–A3e 104.7
	100.0–108.8
	cqSNLN–A3d 100.9
	100.0–104.7
	cqSYLN–A3f 102.6
	100.5–104.7
A4	uqA4h ON&LN 31
	30.4-31.7
	cqSWLN–A4d 31.0
	30.4–35.8
	cqPNLN–A4c 31.0
	30.4–31.7
uqA4i	LN 39.3
	37.1-41.6
	cqPHEL–A4e 39.8
	37.4-42.8
A5	uqA5d ON&LN 54.5
	52.9–56.0
	cqSYLN–A5 53.3
	50.6–55.0
	cqPNLN–A5 53.5
	53.3–63.6
	cqPNON–A5 56.0
	54.3–59.0
A8	uqA8b ON&LN 69.9
	68.0–71.8
	cqPHON–A8 76.6
	68.5–79.3
	cqBNLN–A8 68.0
	66.0–70.9
	cqSNLN–A8b 70.9
	68.0–74.9
A9	uqA9b ON 15.6
	10.9-20.4
	cqBNON–A9a 10.8
	6.6–19.8
	cqSNON–A9a 20.8
	8.6–22.3
uqA9e	LN 37.2
	36.0-38.4
	cqSWLN–A9 29.9
	28.9–38.0
	cqSNLN–A9c 37.4
	35.3–39.5
	cqBNLN–A9 38.0
	35.2–38.4
C8	uqC8c ON&LN 18.7
	15.5-22.0
	cqPNLN–C8 9.3
	1.9–26.1
	cqSYON–C8c 15.3
	10.7–19.9
	cqSNLN–C8a 24.2
	15.2–28.5
	cqSYLN–C8c 25.0
	15.2–30.7
C9	uqC9e ON&LN 102.2
	98.5–105.9
	cqBNLN–C9a 102.9
	93.4–105.3
	cqSNON–C9e 101.7
	93.7–103.1
	cqSYON–C9a 107.2
	107.1–109.5
uqC9f	ON&LN 122.42
	117.8-127.0
	cqBNLN–C9b 114.6
	110.6–118.6
	cqBNON–C9 116.7
	108.1–125.3
	cqSYON–C9b 117.3
	113.3–130.5
	cqSNON–C9b 118.3
	113.5–130.8
	cqSYLN–C9 124.6
	117.0–132.1
	cqPNLN–C9 125.8
	116.4–135.2

*Chro., chromosome. CI, confidence interval

Among 27 LN-specific QTLs, six LN-specific QTLs for more than two traits were clustered on A2, A3, A4 and A9 chromosomes (Table 5). uqA3h for four traits of PH, PN, SN and SY was located in the interval of 100.6-103.1 cM on A3. uqA4b for three traits of BN, SN and SW was integrated from three consensus QTLs of cqSWLN–A9, cqSNLN–A9 and cqBNLN–A9, and located in the interval of 36.0-38.4 cM on A9. uqA2a, uqA2d, uqA3c and uqA4b were all associated with two traits at LN.

Among 39 constitutive QTLs, 13 unique QTLs detected for more than three traits were located on A2, A3, A4, A5, A8, A9, C8 and C9, respectively (Table 5). Among them, uqA3f for four traits of BN, PN, SN and SY was integrated from cqSYON–A3, cqSYLN–A3, cqSNON–A3, cqPNLN–A3, cqBNON–A3 and cqPNLN–A3.
A3 and located in the interval of 91.2±92.9 cM on A3.

Candidate genes underlying QTLs associated with SY and two major unique QTLs

cqSYLN-C9, detected from qSYLN2–C9a and qSYLN3–C9b, was considered to be the major QTL among QTLs associated with SY due to the PVE of qSYLN3–

C9b was 15.4% (Table 4, Supplementary Table 1). Two candidate genes, BnaC09g46700D and BnaC09g47860D, were identified in the confidence regions of qcSYLN-C9. The orthologues of them in Arabidopsis have been reported in association with glutamate synthase and affecting N assimilation (Hanke et al., 2005, Fontaine et al. 2012). There were not SNPs and InDels in the coding sequence of two candidate genes between Tapidor and Ningyou7. However, there were two SNPs in the promoter of BnaC09g47860D between the two parents (Table 6).

Table 6

QTL name	Gene name	Promoter (2 Kb upstream of TSS)	Coding sequence	Homologs in A. thaliana							
		Number of SNPs	Number of InDels	Number of SNPs	Number of InDels	Stop-frameshift	Non-frameshift				
cqSYLN-C9 & uqC9f	BnaC09g46700D	0	0	0	0	0	0	AT5G10000	(FD4)		
uqA3q	BnaA03g41350D	22	15	0	0	0	0	0	0	AT3G51520	(DGAT2)

Among unique QTLs, uqA3q and uqC9f were detected in three trials and associated with four traits and three traits, respectively. One candidate gene, BnaA03g41350D, was identified in the genomic region of uqA3q, whose orthologue gene in Arabidopsis affects triacylglycerol (TAG) biosynthesis in response to N deficiency (Yang et al., 2011). There were 22 SNPs and 15 InDels in the promoter but not in the coding sequence between Tapidor and Ningyou7 (Table 6).

Discussion

In the present study, at both N supplies, SW of Ningyou7 were significantly higher than that of Tapidor in three trials; at ON, BN of Ningyou7 was significantly higher than that of Tapidor in three trials, SY of Ningyou7 was considerably higher than that of Tapidor in Tri.1 and Tri.2, SY of Ningyou7 was significantly higher than that of Tapidor in Tri.2 and Tri.3. These were similar to the performance of them in pot culture experiments that SY of Ningyou7 was significantly higher than that of Tapidor at both N supplies (Shi et al., 2010).

Ninety one percent of the 191 consensus QTLs for SY and SY-related traits were detected only in one trial (Supplementary Table 1). A large number of environment-specific QTLs for SY and its related traits are identified, indicating the growth environments have important effects on the function of the genes associated with these traits (Shi et al., 2009). Twenty consensus QTLs (10.47%) were detected simultaneously in at least two trials (Table 4), and the corresponding significant QTLs of which have similar additive phenotypic effects. At ON, Luo et al. (2017) also identified the QTLs for SY and SY related traits, such as cqSYON–C9cqPNON–A3dcqSNON–A2aqcqSNON–A9bcqSNON–C1aqcqSWON–A4bcqSWON–A4cqSYON–C8c, and the intervals of these QTLs overlapped with the QTLs for the same traits at ON in this study. Bouchet et al. (2014) detected 40 QTLs for SY, SN, SW of B. napus DH population derived from a cross between cultivars Aviso and Montego at two contrasting N conditions in three grown environments. The genomic region of cqSWON–A4b and cqSWON–A4c were identified associated with SW under optimal N condition. These robust QTLs identified across different populations and/or environments could be become accessible to ongoing breeding programs.

A total of 106 and 110 QTLs for SY and its related traits were identified at ON and LN supplies, respectively (Supplementary Table 1). The QTLs detected at ON were different from that at LN for each trait (Table 4; Fig. 3; Supplementary Table 1). Luo et al. (2017) results also showed that QTLs for SY and its related traits at ON supply differed from that at LN supply. These could be attributed to that N deficiency limits dry matter production and decreases other nutrient uptake in plant (Wang et al., 2015).

BnaC09g46700D and BnaC09g47860D were predicted to be the candidate genes for cqSYLN-C9. BnaC09g46700D encodes ferredoxin, which is involved in glutamate synthase (GOGAT). BnaC09g47860D encodes glutamate dehydrogenase. There are two isoforms of GOGAT—the NADH-dependent cytosolic isofrom (Iry N assimilation) and ferredoxin-dependent plastidic isofrom (Iry N assimilation) (Pathak et al., 2008). GOGAT serves as a potential target for improving N uptake efficiency and SY (Karunarathne et al., 2017). The relative expression of the homologous genes of BnaC09g46700D in Arabidopsis thaliana such as At1g10960, At1g60950 and At2g27510 were up-regulated under low NO3− treatment (Hanke et al., 2005). Moreover, the mutation of At5g18170, At5g07440 and At3g03910, the homologous genes of BnaC09g47860D in Arabidopsis thaliana, changes the primary C and N metabolic activity (Fontaine et al., 2012).
ON and LN-specific QTL were reported for flowering days and SY (Bouchet et al., 2016), and root dry weight (Liu et al., 2009) in *B. napus*. In this study, there were 103 unique QTLs, including 29 LN-specific QTLs and 39 constitutive QTLs for SY and its related traits (Supplementary Table 2). *uqA2h*, a constitutive QTL, was associated with SY and SW at ON and SY at LN (Table 5, Supplementary Table 2). Its interval was overlapped the interval of *es.A2-30* (Luo et al., 2017), which contained SY and SW at ON.

Among ON-specific QTLs, there were not QTLs co-located with the QTLs for SY. Among LN-specific QTLs, there were five unique QTLs (*uqA2i, uqA3m, uqA3q, uqC8c*) for SY overlapped with QTLs for SN (Table 5). At ON, the overlapped QTLs between for SY and for SN on A5 and C8 have also been reported in *Brassica napus* (Bouchet et al., 2014). Moreover, there was a high positive correlation between SY and SN at LN (Table 3).

Pleiotropic QTLs have also been reported for PH and spike length of wheat (Chai et al., 2019), PH and heading date of rice (Liu et al., 2013a). Xu et al. (2014) identified two genes in wheat, *Rht8* on chromosome 2D and *Rht-B1b* on chromosome 4B, which have pleiotropic effects for PH, spike length, harvest index and N utilization efficiency. QTLs for SY directly accounted for a small proportion of all identified QTLs (Chen et al., 2010; Peng et al., 2011; Luo et al., 2017). The QTLs for some plant architecture related traits, such as BN and PH, are co-located with QTLs for SY (Cai et al., 2016; Miersch et al., 2016). Plant architecture traits strongly affects light interception and photosynthesis, and plays an important role in total yield and harvest index (Sarlikti et al., 2011). Among unique QTLs, *uqA3q*, a LN specific QTL, and *uqC9f*, a constitutive QTL, were associated with the overlapped QTLs for PH, SN and SY at LN, and the overlapped QTLs for BN and SY at LN and ON, respectively (Table 5). *BnaA03g41350D* was predicted to be the candidate gene for *uqA3q*, and its homologous genes DGAT2 in *Arabidopsis thaliana* was associated with the triacylglycerol (TAG) biosynthesis. *BnaC09g46700D* and *BnaC09g47860D* were identified within the interval of *uqC9f*.

In conclusion, considerable variations of SY and SY related traits were observed among the BnaTNDH population. N deficiency reduced SY and SY-related traits except for SW. Only 20% significant QTLs were detected in more than two trials, indicating that different genetic determinants were involved in regulating SY and its related traits at ON and LN. The overlaps of the QTLs for PH and SN with SY were detected in different trials, suggesting that plant architecture had a significant effect on SY. Near-isogenic lines should be developed to fine map the major QTLs identified in this study such as *cqSYLN-C9q* and *uqA3q*. These will be helpful for a better understanding of the molecular mechanism of SY of *B. napus* under N deficiency and promote the molecular breeding of N-efficient cultivars.

Abbreviations

PH, plant height. BN, branch number. PN, pod number per plant. SN, seed number per pod. SW, seed weight of 1000 seeds. SY, seed yield. ON, optimal nitrogen. LN, low nitrogen. Tri.1, field trial conducted during 2008–2009. Tri.2, field trial conducted during 2009–2010. Tri.3, field trial conducted during 2010–2011. DH, double haploid. PVE, phenotypic variation

Declarations

Author Contribution MZ analyzed the data and wrote the main manuscript. TS designed and managed three-year trials. WW analyzed the data. GD and FX taught TS and MZ to complete trials and data analysis and modified the main manuscript. LS taught TS and MZ to complete trials and data analysis, reviewed the manuscript.

Funding This research was supported by National Nature Science Foundation of China (Grant No. 31972498) and Natural and Fundamental Research Funds for the Central Universities of China (Grant No. 2662019PY013).

Data availability The data sets supporting the results of this article are included within the article and its additional files

Code availability Not applicable

Declarations

Ethics approval and consent to participate Not applicable.

Conflict of Interest Statement The authors declare no conflict of interest.

References

Agrama HA (2006) Application of molecular markers in breeding for nitrogen use efficiency. Journal of Crop Improvement 15: 175-211. doi:https://doi.org/10.1300/J411v15n02_06

Anderson JT, Lee CR, Rushworth CA, Colautti RI, Mitchell-Olds T (2013) Genetic trade-offs and conditional neutrality contribute to local adaptation. Molecular Ecology 22: 699-708. doi:10.1111/j.1365-294X.2012.05522.x

Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) Biomercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20: 2324-2326. doi: 10.1093/bioinformatics/bth230
Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Science 48: 1649–1664. doi:10.2135/cropsci2008030131

Bouchet AS, Nesi N, Bissuel C, Bregeon M, Lariepe A, Navier H, Ribiere N, Orsel M, Grezes-Besset B, Renard M, Laperche A (2014) Genetic control of yield and yield components in winter oilseed rape (Brassica napus L) grown under nitrogen limitation. Euphytica 199: 183-205. doi: 10.1007/s10681-014-1130-4

Bouchet AS, Laperche A, Bissuel-Belaygue C, Baron C, Morice J, Rousseau-Gueutin M, Dheu JE, George P Pochet X, Foubert T, Maes O, Dugue D, Guinot F, Nesi N (2016) Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed. BMC Genetics 17: 21. doi: 10.1186/s12863-016-0432-2

Brasier K, Ward B, Smith J, Seago J, Oakes J, Balota M, Davis P, Fountain M, Brown-Guedira G, Sneller C, Thomason W, Griffey C (2020) Identification of quantitative trait loci associated with nitrogen use efficiency in winter wheat. Plos One 15. doi:10.1371/journal.pone0228775

Chai LL, Chen ZY, Bian RL, Zhai HJ, Chang XJ, Peng HR, Yao YY, Hu ZR, Xin MM, Guo WL, Sun QX, Zhao AJ, Ni ZF (2019) Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L). Theoretical Applied Genetics 132: 3223-3223. doi: 10.1007/s00122-019-03420-2

Chen G, Geng JF, Rahman M, Liu XP, Tu JX, Fu TD, Li FY, McVetty PBE, Tahir M (2016) Identification of QTL for oil content seed yield and flowering time in oilseed rape (Brassica napus). Euphytica 175:161-174. doi: 10.1007/s10681-016-0144-9

Chen KE, Chen HY, Tseng CS, Tsay YF (2020) Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Molecular Plant 9: 1126. doi: 10.1038/s41477-020-00758-0

Cai GQ, Yang QY, Chen H, Yang Q, Zhang CY, Fan CC, Zhou YM (2016) Genetic dissection of plant architecture and yield-related traits in Brassica napus. Scientific Reports 6. doi: 10.1038/srep21625

Cong RH, Wang Y, Li XK, Ren T, Lu JW (2020) Differential responses of seed yield and yield components to nutrient deficiency between direct sown and transplanted winter oilseed rape. International Journal of Plant Production 14: 77-92. doi: 10.1007/s42106-019-00069-1

Ding GD, Zhao ZK, Liao Y, Hu YF, Shi L, Long Y, Xu FS (2012) Quantitative trait loci for seed yield and yield-related traits and their responses to reduced phosphorus supply in Brassica napus. Annals of Botany 109: 747-759. doi:10.1093/aob/mcr323

El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MG (2014) Genotype x environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends in Plant Science 19: 390-398. doi:10.1016/j.tplants.2014.01.001

Fontaine JX, Tercel-Laforgue T, Armengaud P, Clement G, Renou JP, Pelletier S, Catterou M, Azzopardi M, Gibon Y, Lea PJ, Hirel B, Dubois F (2012) Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. Plant Cell 10: 4044-4065. doi:10.1105/tpc112103689

Glass A, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants. Journal of Experimental Botany 53: 855-864. doi:10.1093/jexbot/53370855

Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Gouliding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327. doi:10.1126/science1182570

Hou X, Liu Y, Xiao Q, Wei B, Zhang X, Gu Y, Wang YF, Chen J, Hu YF, Liu HM, Zhang JJ, Huang YB (2015) Genetic analysis for canopy architecture in an F-2:3 population derived from two-type foundation parents across multi-environments. Euphytica 205: 421-440. doi: 10.1007/s10681-015-1401-8

Marschner P (2012) Marschner's mineral nutrition of higher plants 3rd ed. London: Academic Press

Hanke GT, Okutani S, Satomi Y, Takao T, Suzuki A, Hase T (2005) Multiple iso-proteins of FNR in Arabidopsis: evidence for different contributions to chloroplast function and nitrogen assimilation. Plant Cell & Environment 9: 1146-1157. doi:10.1111/j.1365-3040.2005.01352.x

Hirel B, Tetu T, Lea RJ, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3: 1452-1485. doi:10.3390/su3091452

Karim MR, Wang RN, Zheng L, Dong XY, Shen RF, Lan P (2020) Physiological and proteomic dissection of the responses of two contrasting wheat genotypes to nitrogen deficiency. International Journal of Molecular Sciences 21. doi: 10.3390/ijms21062119

Karunarathne SD, Han Y, Zhang XQ, Li CD (2020) Advances in understanding the molecular mechanisms and potential genetic improvement for nitrogen use efficiency in barley. Agronomy-Basel 10: 662. doi: 10.3390/agronomy10050662

Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175: 361–374. doi: 10.1534/genetics.106.066811

Li PC, Chen FJ, Cai HG, Liu JC, Pan QC, Liu ZG, Gu RL, Mi GH, Zhang FS, Yuan LX (2015) A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. Journal of Experimental Botany 66: 3175-3188. doi:10.1093/jxb/erv127
Li Q, Ding GD, Yang NM, White PJ, Ye XS, Cai HM, Lu JW, Shi L, Xu FS (2020) Comparative genome and transcriptome analysis unravels key factors of nitrogen use efficiency in *Brassica napus* L. Plant Cell & Environment 43: 712-731. doi:10.1111/pce13689

Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CHM, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS (2003) QTL x environment interactions in rice. I. Heading date and plant height. Theoretical and Applied Genetics 108: 141-153. doi: 10.1007/s00122-003-1401-2

Liu TM, Liu HY, Zhang H, Xing YZ, Xing YZ (2013a) Validation and characterization of GHD71 a major quantitative trait locus with pleiotropic effects on spikelets per panicle plant height and heading date in rice (*Oryza sativa* L). Journal of Integrative Plant Biology 55: 917-927. doi:10.1111/jipb12070

Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013b) Enhanced nitrogen deposition over China. Nature 494: 459-462. doi: 10.1038/nature11917

Louvieaux J, Leclercq A, Haelterman L, Hermans C (2020) In-field observation of root growth and nitrogen uptake efficiency of winter oilseed rape. Agronomy-Basel 10. doi: 10.3390/agronomy10010105

Luo ZL, Wang M, Long Y, Huang YJ, Shi L, Zhang CY, Liu X, Fitt BDL, Xiang JX, Mason AS (2017) Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theoretical Applied Genetics 130: 1-17. doi: 10.1007/s00122-017-3005-2

Malagoli P, Laine P, Rossato L, Ourry A (2005) Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (*Brassica napus*) from stem extension to harvest - I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual N. Annal of Botany 95: 853-861. doi:10.1093/aob/mci091

Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annal of Botany 105: 1141-1157. doi:10.1093/aob/mcq028

Miersch S, Gertz A, Breuer F, Schierholt A, Becker HC (2016) Influence of the semi-dwarf growth type on seed yield and agronomic parameters at low and high nitrogen fertilization in winter oilseed rape. Crop Science 56: 1573-1585. doi: 102135/cropsci2015090554

Pathak RR, Ahmad A, Lochab S, Raghuram N (2008) Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement. Current Science 94: 1394–1403.

Peng B, Li YX, Wang Y, Liu C, Liu ZZ, Tan WW, Zhang Y, Wang D, Shi YS, Sun BC, Song YC, Wang TY, Li Y (2011) QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theoretical Applied Genetics 122: 1305-1320. doi: 101007/s00122-011-1532-9

Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Dietrich E, Weilhmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theoretical Applied Genetics 114: 67-80. doi:10.1007/s00122-006-0411-2

Quarrie SA, Quarrie SP, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. Journal of Experimental Botany 57: 2627-2637. doi: 101093/jxb/erl026

Rathke GW, Christen O, Diepenbrock W, (2005) Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (*Brassica napus L*) grown in different crop rotations. Field Crop Research 94: 103-113. doi:101016/j/fcr200411010

Sarlikioti V, Visser PHB, Buck-Sorlin GH, Marcelis LFM (2011) How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model. Annals of Botany 108: 1065-1073. doi:10.1093/aob/mcq221

Saal B, van Korff M, Leon J, Pillen K (2011) Advanced-backcross QTL analysis in spring barley: IV Localization of QTL x nitrogen interaction effects for yield-related traits. Euphytica 177: 223-239. doi:101007/s10681-010-0252-6

Shen YS, Xiang Y, Xu ES, Ge XH, Li ZK, Yu SB, Latte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CHM, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS (2003) QTL x environment interactions in rice. I. Heading date and plant height. Theoretical and Applied Genetics 108: 141-153. doi: 10.1007/s00122-003-1401-2

Shen YS, Yang Y, Xu ES, Ge XH, Xiang Y, Li ZK (2018a) Major co-localized QTL for plant height branch initiation height stem diameter and flowering time in an alien introgression derived *Brassica napus* DH population. Frontiers in Plant Science 9. doi:103389/fpls201800390

Shen YS, Yang Y, Xu ES, Ge XH, Xiang Y, Li ZK (2018b) Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed (*Brassica napus L*). Theoretical Applied Genetics 131: 67-78. doi: 10.1007/s00122-017-2986-1

Shi JQ, Li RY, Qiu D, Jiang CC, Long Y, Morgan C, Bancroft I, Zhao JY, Meng JL (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in *Brassica napus*. Genetics 182: 851-861. doi:101534/genetics109101642

Shi TX, Li RY, Zhao ZK, Ding GD, Long Y, Meng JL, Xu FS, Shi L (2013) QTL for yield traits and their association with functional genes in response to phosphorus deficiency in *Brassica napus*. Plos One 8: 12. doi:101371/journalpone0054559

Silva L, Wang S, Zeng ZB (2012) Composite interval mapping and multiple interval mapping: procedures and guidelines for using Windows QTL Cartographer. Methods in molecular biology 871: 75-119. doi: 101007/978-1-61779-785-9_6
Tang WJ, Ye J, Yao XM, Zhao PZ, Xuan W, Tian YL, Zhang YY, Xu S, An HZ, Chen GM (2019) Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communication 10: 11. doi: 10.1038/s41467-019-13187-1

Vargas M, van Eeuwijk FA, Crossa J, Ribaut JM (2006) Mapping QTLS and QTL x environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theoretical and Applied Genetics 112: 1009-1023. doi:10.1007/s00122-005-0204-z

Wang SC, Basten J, Zeng ZB (2006) Windows QTL Cartographer 25 Department of Statistics. North Carolina State University, Raleigh, NC, USA

Wang J, Dun XL, Shi JQ, Wang XF, Liu GH, Wang HZ (2017) Genetic dissection of root morphological traits related to nitrogen use efficiency in *Brassica napus* L under two contrasting nitrogen conditions. Frontier in Plant Science 8: 1709. doi:10.3389/fpls.2017.01709

Wang Y, Liu T, Li XK, Ren T, Cong RH, Lu JW (2015) Nutrient deficiency limits population development yield formation and nutrient uptake of direct sown winter oilseed rape. Journal Of Integrative Agriculture 4: 670-680. doi: 10.1016/S2095-3119(14)60798-X

Xu GH, Fan XR, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology 63: 153-182. doi: 10.1146/annurev-arplant-042811-105532

Xu YF, Wang RF, Tong YP, Zhao HT, Xie QG, Liu DC, Zhang AM, Li B, Xu HX, An DG (2014) Mapping QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theoretical and Applied Genetics 127: 59-72. doi:10.1007/s00122-013-2201-y

Yang XL, Nian JQ, Xie QJ, Feng J, Zhang FX, Jing HW, Zhang J, Dong GJ, Liang Y, Peng JL, Wang GD, Qian Q, Zuo JR (2016) Rice ferredoxin-dependent glutamate synthase regulates nitrogen–carbon metabolomes and is genetically differentiated between japonica and indica subspecies. Molecular Plant 9: 1520-1534. doi: 10.1016/j.molp.2016.09.004

Yang Y, Yu XC, Song LF, An CC (2011) ABI4 Activates DGAT1 expression in *Arabidopsis* seedlings during nitrogen deficiency. Plant Physiology 156: 873-883. doi:10.1104/pp111175950

Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136: 1457-1468.

Zhang Y, Thomas CL, Xiang J, Long Y, Wang X, Zou J, Luo ZL, Ding GD, Cai HM, Graham NS, Hammond JP, King GJ, White PJ, Xu FS, Broadley MR, Shi L, Meng JL (2016) QTL meta-analysis of root traits in *Brassica napus* under contrasting phosphorus supply in two growth systems. Scientific Reports 6. doi: 10.1038/srep33

Figures
Figure 1
Phenotyping of Brassica napus cultivars Tapidor (left) and Ningyou7 (right) grown at an optimal N (up) and a low N (down) supply.
Figure 2

Frequency distribution of seed yield (SY) and SY-related traits in the BnaTNDH population grown at an optimal (left) and a low (right) N supplies in three field trials. Tri.1, field trial conducted during 2008-2009; Tri.2, field trial conducted during 2009-2010; Tri.3, field trial conducted during 2010-2011. The dashed and solid arrows indicated the position of phenotypic values of cultivars Tapidor and Ningyou7, respectively. The orange, blue and red arrows indicated trial 1, trial 2 and trial 3, respectively.

Figure 3

Summary of identified QTLs, consensus QTLs and unique QTLs for seed yield (SY) and SY-related trait in the BnaTNDH population grown at an optimal and a low N supply. All identified QTLs of all the traits were integrated into consensus QTLs, and then consensus QTLs were integrated into unique QTLs. The outermost circle and the second circle represented the genetic map and physical map, respectively. All SNP markers on each chromosome were corresponded to the physical position. From the third circle to the 6th circle, each color of circle stands for one trial, except green ones, which showed the positions of consensus QTLs of each trait at an optimal N or a low N supply. The innermost circle showed the positions of unique QTLs on chromosomes.