Homologue Scanning Mutagenesis Reveals CD66 Receptor Residues Required for Neisserial Opa Protein Binding

By Martine P. Bos, Daniel Hogan, and Robert J. Belland

From the Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840-2999

Summary

The immunoglobulin-like family of CD66 antigens, present on human neutrophils and epithelial cells, are used as receptors for adhesins expressed by the pathogenic Neisseriae. N. gonorrhoeae strain MS11 can express 11 isoforms of these adhesins, called opacity-related (Opa) proteins. Each MS11 Opa protein recognizes a distinct spectrum of CD66 receptors. CD66–Opa binding is mediated by the NH2-terminal domain of the receptor and occurs through protein–protein interactions. In this report, we have investigated the molecular basis for the binding between the CD66 and Opa protein families by mapping amino acids in CD66 receptors that determine Opa protein binding. We performed homologue scanning mutagenesis between CD66e, which binds multiple Opa variants, and CD66b, which binds none, and tested both loss-of-function by CD66e and gain-of-function by CD66b in solution assays and in assays involving full-length receptors expressed by epithelial cells. We found that three residues in the CD66e N-domain are required for maximal Opa protein receptor activity. Opa proteins that recognize the same spectrum of native CD66 molecules showed differential binding of receptors with submaximal activity, indicating that the binding characteristics of these Opa proteins are actually slightly different. These data provide a first step toward resolving the structural requirements for Opa–CD66 interaction.

Key words: Neisseria gonorrhoeae • carcinoembryonic antigen • bacterial adhesion • opacity protein • mutagenesis

The causative agent of gonorrhea, Neisseria gonorrhoeae (N go), is an obligate human bacterial pathogen. The bacteria are thought to colonize the urogenital mucosa using different adhesins in a sequential manner. Initial attachment is mediated by gonococcal pili. Subsequently, tighter adherence to the mucosal epithelial cells is provided by bacterial adhesins called opacity-related (Opa) proteins (1, 2). Both pathogenic N. meningitidis (N me), contain multiple Opa genes. The expression of each Opa gene can be turned on or off independently (phase variation) through a process of slipped-strand mispairing (3). Members of the Opa protein family are highly homologous, except for variable sequence domains present in three of the four surface exposed loops (4). Opa proteins were shown to account for the cell tropisms displayed by N go for human neutrophils and epithelial cells (5). Two types of Opa protein receptors have been identified. One is the heparan-sulfate proteoglycan receptor (HSPG), present on epithelial cells, which mediates binding and internalization of one particular Opa variant of N go strain M S11 (OpaA [6, 7]). The other receptor type include members of the carcinoembryonic antigen (CEA) or CD66 family, present on neutrophils and epithelial cells; they are recognized by multiple Opa variants of N go and N me (8–11). The C D66 glycoprotein receptors belong to the Ig superfamily (IgSF): the molecules consist of one NH2-terminal Ig variable-like domain (N-domain) plus a varying number of Ig constant-like domains linked to the plasma membrane through a transmembrane domain or a glycosyl phosphatidylinositol moiety (12, 13). The proteins were discovered decades ago when certain family members (CD66e [CEA] and CD66c) were found to be highly overexpressed in a large number of tumors; CEA has since become the prototype tumor marker. The function of C D66 glycoproteins in normal tissue or in tumorigenesis is still unclear, although the demonstration that these molecules function in vitro as cell adhesion molecules (CAMs) may indicate that they contribute to tissue architecture or to other cell–cell interactions (14). Interestingly, certain C D66 glycoproteins are subverted as receptors for bacterial (Escherichia coli or Salmonella expressing type I pili [15]) or viral (murine coronavirus [16]) pathogens; recently, the pathogenic N. meningitidis have been added.
to this list. To date, five members of the CD66 family (CD66a-e) have been studied for their interaction with gonococcal Opa proteins. We and others have found that this interaction is highly differential, i.e., some CD66 family members are recognized by four Opa variants while other CD66 receptors are recognized by none (CD66b), six (CD66a), or nine (CD66e) different Opa variants of N. gonorrhoeae strain M511 (10, 11, 17). We recently showed that the differential interaction observed with native receptors expressed on epithelial cells is mimicked by the binding pattern of recombinant CD66 N-domains produced in E. coli (18), indicating that the Opa-CD66 interaction is mediated by protein sequences in CD66 N-domains. It is remarkable that, despite extensive sequence similarity among the CD66a-e N-domains (71-90% amino acid sequence identity; see Fig. 1 A), the N-domains are recognized by different groups of Opa proteins. In our effort to understand the differential Opa-CD66 interactions, we investigated the molecular basis for the binding between the Opa and CD66 protein families. Homologue scanning mutagenesis, a strategy chosen to preserve structural integrity of mutant molecules (19), was used to map key residues in CD66 required for Opa protein binding. Residues within the N-domain of CD66e (which binds most Opa variants) were switched to homologous amino acids of the N-domain of CD66b (which does not bind any Opa variant). The key residues identified through loss-of-function mutations were confirmed by gain-of-function experiments, whereby the CD66b protein was converted into a functional receptor for Opa variants.

Materials and Methods

Bacterial Strains. N. gonorrhoeae M511 variants were propagated on gonococcal clear typing agar (20). Wild-type variants M511mk expressing chromosomally encoded Opa proteins were provided by J. Swanson and are designated according to Swanson et al. (21) by capitals, e.g., OpaA–OpaK. Recombinant M511 Opa variants (5) were a gift of T. F. Meyer (Max-Planck Institut für Biologie, Tübingen, Germany). Opa protein expression was verified by SDS-PAGE and immunoblotting of bacterial lysates followed by detection with anti-Opa antibody 4B12 (21). Only nonpiliated bacteria were used. For experiments, bacteria were grown for 3 h in 10 ml Hepes medium (10 mM Hepes, 145 mM NaCl, 5 mM KCl, 0.5 mM MgCl2, 1 mM CaCl2, 5 mM glucose, and 1.5% proteose peptone no. 3 [Difco]), pH 7.4, in a gyrotary shaker at 37°C. Bacterial suspensions were pelleted and resuspended in 1 ml Hepes buffer (Hepes medium without proteose peptone).

Construction of mutant CD66 N-domains. The construction of 6xHis tagged N-domains of CD66a and CD66b in the pRSET-A vector was described previously (18). Mutations were introduced in CD66 N-domains by a modification of the procedure of Picard et al. (22). In brief, a mutagenic primer was designed containing the desired base changes flanked by at least 12 perfectly matched bases both upstream and downstream of the mutation (a list of primers is available on request). A megaprimer was generated by PCR using the mutagenic primer and a common vector-based 3′ primer (pRSET-rev) with the CD66 N-domain construct as template. The pRSET-rev primer was removed by passing the reaction mixture through a 100-kD Centricon device (5 min at 3,000 g). A second PCR was performed with the same template plus 17 μl of the 50 μl of 100-kD Centricon retentate as 3′ primer and a common vector-based 5′ primer (pRSET-for). The resultant PCR product was cut with EcoRI and HindIII and ligated into pRSET-A. Constructs were electroporated into E. coli strain BL21 (DE3; Novagen). Mutations were verified by DNA sequencing through the entire N-domain insert. Primers were purchased from Genosys and restriction enzymes from New England Biolabs.

Binding of CD66 N-domains by G. gonococci. Clear lysates of E. coli cells expressing the appropriate CD66 N-domain were prepared as described (18). Gonococci (109 in 200 μl Hepes buffer were incubated with 5–10 μl of cleared lysate for 20 min at 37°C. Bacteria were collected by centrifugation (5 min at 2,000 g), washed twice with 1 ml Hepes buffer, and then solubilized in 30 μl SDS-PAGE sample buffer of which 2.5 μl was electrophoresed in 13.5% SDS-PAGE and transferred onto nitrocellulose. Bound CD66 N-domains were detected by anti-His antibody (1:15,000; Amersham Pharmacia Biotech) followed by peroxidase-conjugated protein A (1:2,000; Sigma Chemical Co.). Blots were developed using the enhanced chemiluminescence (ECL) protocol (Amersham Pharmacia Biotech). Documentation and quantification of bands were performed with an AlphaImager® 2000 Imaging system (Alpha Innotech).

Construction of CD66b cDNA Mutants. CD66b cDNA in pUC118 was a gift from Motomu Kuroki (Fukuoka University, Fukuoka, Japan). The CD66b insert was subcloned into the eukaryotic expression vector pTracer-CMV2 (Invitrogen). All mutations were made first in the CD66b N-domain construct in pRSET-A as outlined above. To introduce mutated N-domains into the full-length CD66b cDNA, the BlpI site present at the start of the N-domain in CD66b cDNA was introduced in the CD66b N-domain construct in the pRSET-A vector by PCR. For introduction of the chimeric CD66e/b N-domain into CD66b, the BlpI site present in CD66b (GCTCAGC) was mutated to the BlpI site found in CD66e (GCTTAAGC) by megaprimer PCR, in order to have the N-domain start with the CD66e-derived lysine. The resultant PCR product was cleaved with BlpI and NsiI (NsiI cuts at residue 71 in CD66 N-domains) and substituted with the fragment present in the full-length CD66b cDNA in pTracer-CMV2. To substitute the entire CD66b N-domain with the CD66e N-domain, a silent mutation containing a ClaI site was introduced at residue 113 just downstream of the N-domain in CD66b. The CD66e N-domain in pRSET-A was amplified with primers containing a BlpI and a ClaI site, respectively, cut and ligated into BlpI/ClaI-cut CD66b. The constructs were electroporated into E. coli DH5α. All mutations in the pTracer-CMV2-CD66b constructs were verified by DNA sequencing.

Transfection Procedure. Chinese hamster ovary (CHO) cells (Pro5) were obtained from the American Type Culture Collection and were grown in RPMI 1640/5% FCS in 25-cm2 flasks to 50% confluency. Plasmid preparations of pTracer-CMV2-CD66b mutants were made by the Wizard miniprep procedure (Promega Corp.). Pro5 cells were incubated in 2 ml DM EM 10% Nu-serum (Collaborative Biomedical Products) containing 4 μg/ml plasmid DNA and 0.2 mg/ml DEAE-dextran (M, 5 × 106; Amersham Pharmacia Biotech) for 4 h at 37°C. Cells were then shocked with 2.5 ml 10% DM SO in PBS for 1 min at room temperature, washed once with HBSS, and subsequently cultured overnight in RPMI 1640/5% FCS (23). The next day, the transfectants were trypsinized and seeded onto 12-mm-diameter circular glass coverslips in 24-well plates (103 cells per coverslip). Cells were cultured for 2–3 d before infection assays were carried out.
Infection Assay. Gonococci (1.5 × 10^7) were added to 24-well plates containing the transfected cell cultures on coverslips in 1 ml DMEM (without serum) for 45 min at 37°C and 5% CO_2. Non-adherent bacteria were removed by three washes with HBSS. Infected cultures were fixed with 2% formaldehyde in PBS for at least 30 min.

Staining Procedures. Fixed infected cells were incubated with 0.5% Triton X-100 in PBS for 20 min and then blocked with 5% FCS in PBS for 1 h. Antibodies were diluted in PBS/0.05% Tween/0.5% FCS. To detect receptor expression, cells were stained with rabbit anti-CD66 antisera (1:200; Dako) followed by Alexa 594–conjugated goat anti-rabbit (GAR) IgG (1:400; Molecular Probes, Inc.). To subsequently stain gonococci, coverslips were incubated with a mouse mAb against gonococcal LPS, provided by H. Turley (John Radcliffe Hospital, Oxford, UK). To distinguish extra- and intracellular bacteria, infected cell cultures on coverslips were subjected to a differential staining procedure as described previously (10, 24). In brief, fixed cells were incubated successively with an anti-LPS mAb and a protein A–gold conjugate. The gold was enhanced by silver-staining to visualize extracellular bacteria, after which cells and intracellular bacteria were stained with 0.005% crystalviolet in H_2O for 10 min.

Results

Identification of CD66e N-domain Residues Critical for Binding of Opa-expressing Gonococci. The differential recognition of CD66 receptor N-domains by gonococcal Opa variants is shown in Table I. CD66e is recognized by the majority of CD66 receptor N-domains by gonococcal Opa variants, whereas CD66b does not bind any Opa variant. CD66e and CD66b are expressed on all Opa variants, whereas CD66c, CD66d, and CD66f bind to OpaA, OpaB, OpaC, and OpaD, and Opa-expressing gonococci in order to identify CD66 residues required for Opa protein binding. Since OpaA is nearly identical to OpaB (25), we did not include this Opa variant in our assays.

As is shown in Table II and Fig. 2 A, mutations in the first 11 residues of the CD66e N-domain did not influence binding of any tested Opa variant. Mutation of the region comprising residues 27–29 (mut3) resulted in a complete loss of recognition by all variants. Evaluation of the individual residues in this region revealed that the loss of binding was caused by the single F29R mutation (mut6). The single mutation S32N (mut7) also abrogated all Opa binding. The double mutation G41A + Q44R (mut9) clearly diminished Opa binding, but when these mutations were tested individually, a difference between Opa variants was noted. For OpaA interaction, both the G41A and the Q44R mutations were deleterious. This was also the case for interaction with OpaC, although to a lesser extent. The OpaA and OpaC mutation had a moderate effect on OpaB binding, whereas the G41A change had no effect at all. Mutations in the region between residues 51 and 55 caused only a moderate decrease in Opa binding. Thus, the two residues F29 and S32 in CD66e are critical for binding of all Opa variants, whereas residues G41 and Q44 are important to different extents for the various Opa proteins.

Gain-of-function by the non-Opa Binding CD66 Family Member CD66b. If the four residues indicated above were indeed responsible for the receptor function of CD66e, it should be possible to impart Opa binding properties to CD66b by introducing those four residues into CD66b. To test this concept, we changed the residues in question in the CD66b N-domain to the corresponding ones of CD66e in different combinations. As can be seen in Table III, the presence of F29+S32 (mut13) did not result in detectable binding of any Opa variant. Residue F29 in mut13 is preceded by two CD66b-specific residues, D27 and P28, which may influence the correct conformation of F29. To address whether the F29 residue in a more “CD66e-like” environment would mediate Opa binding, we added residues H27 and L28 to mut13. This molecule (mut14) also failed to bind significantly to any Opa variant. The A41G + R44Q mutant (mut15) did not bind any Opa variant either. We then added the G41 and Q44 residues individually to mut14, resulting in mut16 and mut17, and found that each addition slightly enhanced binding of all Opa variants compared with mut14. Only when both G41 and Q44 were present (mut18) was full binding activity by all Opa variants...
CD66 Receptor Residues Required for Opa Protein Binding

We then readdressed the question whether the origin of residues 27 and 28 played any role in Opa binding by construction of mut19–21. The presence of F29S32G41Q44 was sufficient for binding of OpaB and OpaI variants; however, for OpaC binding an additional CD66e-derived residue (L28) was necessary, indicating a difference in binding characteristics among Opa variants (Fig. 2 B, and Table III). These data confirm the key role of four residues in the CD66e N-domain for receptor function of CD66e and again show a difference in binding characteristics within the OpaB, OpaC, and OpaI group of variants.

Expression and Recognition of Full-length CD66b Mutants on the Surface of Epithelial Cells.

To confirm that these results obtained with soluble recombinant His-tagged N-domains reflect interactions taking place at the cell surface, we introduced the identified key residues into full-length CD66b cDNA, transfected CHO cells with these constructs, and performed infection assays to determine Opa receptor activity. All transfectants stained positive with mAb Kat4C, which recognizes an epitope in internal CD66 domains (26; data not shown), as well as with a polyclonal anti-CD66 serum (Fig. 3), indicating that the receptors were expressed at the surface of the cells.

Infection of the various transfectants with MS11 Opa variants was evaluated by double immunofluorescence staining. Bacteria were found only on receptor-positive cells, which comprised 50–75% of the total cell population. The results of these experiments are shown in Table IV, with Fig. 3 illustrating the designations used in Table IV. Surprisingly, a single mutation in CD66b (N32S) resulted in significant binding of OpaB (Fig. 3 c) and OpaC variants, evident (Fig. 2 B). We then readdressed the question whether the origin of residues 27 and 28 played any role in Opa binding by construction of mut19–21. The presence of F29S32G41Q44 was sufficient for binding of OpaB and OpaC variants; however, for OpaC binding an additional CD66e-derived residue (L28) was necessary, indicating a difference in binding characteristics among Opa variants (Fig. 2 B, and Table III). These data confirm the key role of four residues in the CD66e N-domain for receptor function of CD66e and again show a difference in binding characteristics within the OpaB, OpaC, and OpaC group of variants.

Expression and Recognition of Full-length CD66b Mutants on the Surface of Epithelial Cells. To confirm that these results obtained with soluble recombinant His-tagged N-domains reflect interactions taking place at the cell surface, we introduced the identified key residues into full-length CD66b cDNA, transfected CHO cells with these constructs, and performed infection assays to determine Opa receptor activity. All transfectants stained positive with mAb Kat4C, which recognizes an epitope in internal CD66 domains (26; data not shown), as well as with a polyclonal anti-CD66 serum (Fig. 3), indicating that the receptors were expressed at the surface of the cells.

Infection of the various transfectants with MS11 Opa variants was evaluated by double immunofluorescence staining. Bacteria were found only on receptor-positive cells, which comprised 50–75% of the total cell population. The results of these experiments are shown in Table IV, with Fig. 3 illustrating the designations used in Table IV. Surprisingly, a single mutation in CD66b (N32S) resulted in significant binding of OpaB (Fig. 3 c) and OpaC variants.

Table II. Binding of CD66e N-domain Mutants to MS11 Opa Variants

Mutations introduced in the CD66e N-domain	Binding by Opa variants		
	OpaB	OpaC	OpaC
None	++	++	++
1 K1Q	++	++	++
2 S6A + T7V + F9S + V11A	++	++	++
3 H27D + L28P + F29R	--	--	--
4 H27D	++	++	++
5 L28P	++	++	++
6 F29R	--	--	--
7 S32N	--	--	--
8 R38T	++	++	++
9 G41A + Q 44R	+/-	+/-	+/-
10 G41A	++	++	++
11 Q 44R	++	+/-	+/-
12 G51S + T 52N + A55I	++	++	++

MS11 Opa variants were incubated with E. coli lysates containing the indicated mutant (mut) CD66e N-domain and processed for immunoblotting. Binding was calculated by determining the signal generated by the amount of His-tagged N-domain for each variant, compared with the signal generated in a lane where an amount of His-tagged N-domain was loaded representing 100% binding. OpaC variants did not bind any N-domain construct (data not shown). Results represent the mean of two to four independent experiments. ++, >50% binding; +, 20–50% binding; +/-, 5–20% binding; --, <5% binding.

Figure 1. Protein sequence comparisons of CD66 N-domains. (A) Amino acid alignment of CD66 N-domains, deduced from DNA sequencing of N-domain clones as used in this and our previous study (reference 18). Dots indicate residues identical to CD66e. (B) Diagrammatic figure of the fold of the CD66e domain as predicted by Bates et al. (reference 32) and the PredictProtein computer program (reference 33). Strand designation is indicated by capitals below the diagram. Residues determining Opa protein binding as identified in this study are indicated by circles.
but not of OpaC variants. The single mutations A41G and R29F resulted in low level binding of OpaB (Fig. 3 b) and OpaI variants, but not of OpaC variants. The single mutation R44Q conferred no detectable Opa binding properties upon CD66b. In addition, the double mutant R44Q + N32S was indistinguishable from the N32S mutant, indicating that the R44Q mutation did not contribute to Opa binding. The double mutations R29F+N32S and N32S+A41G resulted in binding of large numbers of OpaB, OpaC, and OpaI variants (Table IV, and Fig. 3 d). Addition of mutation P28L to N32S, to R29F+N32S, or to N32S+A41G did not affect interaction with any Opa variant (data not shown). The triple mutant R29F+N32S+A41G showed strong binding of Opa variants; infections with OpaB and OpaI variants resulted in distinct redistribution of the receptors towards the sites of bacterial adhesion, resulting in footprint-like appearances in the microscope (Fig. 3 e). This phenomenon was not seen with OpaC variants. The triple mutant was indistinguishable from a CD66b receptor containing the chimeric CD66e/b or the native CD66e N-domain, indicating that maximal binding was achieved with the triple mutant (Table IV). OpaA variants did not interact with any transfectant (data not shown). To determine whether the transfectants that bound Opa variants were also able to ingest them, we applied a differential staining procedure after infection of the cells. We found that in all transfectants that bound Opa variants, intracellular gonococci could readily be found (Fig. 3 f). This demonstrates that CD66b molecules, containing the appropriate Opa binding domain, can act as complete functional receptors for gonococcal Opa variants. In summary, our findings show that, when introduced in full-length receptors in CHO cells, the mutations R29F, N32S, and G41A each conferred significant receptor activity upon CD66b, with N32S being the most effective single mutation. Replacement of all three residues provided maximal adherence of Opa variants. These gain-of-function experiments largely confirm the results obtained with soluble receptor N-domains, although the requirements for binding appear to be less stringent. Furthermore, again using full-length

Table III. Binding of CD66b N-domain mutants by MS11 Opa variants

Mutations introduced in the N-domain of CD66b	Binding by Opa variants			
Mut	OpaB	OpaC	OpaI	
-----	------	------	------	
None	-	-	-	
13	R29F+N32S	-	-	-
14	D27H+P28L+R29F+N32S	-	-	-
15	A41G+R44Q	-	-	-
16	D27H+P28L+R29F+N32S+A41G	+/-	+/-	+/-
17	D27H+P28L+R29F+N32S+R44Q	+/-	+/-	+/-
18	D27H+P28L+R29F+N32S+A41G+R44Q	++	++	++
19	R29F+N32S+A41G+R44Q	++	-	+
20	P28L+R29F+N32S+A41G+R44Q	++	++	++
21	D27H+R29F+N32S+A41G+R44Q	++	-	+

MS11 Opa variants were incubated with E. coli lysates containing the indicated mutant (mut) CD66b N-domain and processed for immunoblotting. Binding was calculated by determining the signal generated by the amount of His-tagged N-domain present for each variant, compared with the signal generated in a lane where an amount of His-tagged N-domain was loaded representing 100% binding. Opa variants did not bind any N-domain construct (data not shown). Results represent the mean of two to four independent experiments. ++, >50% binding; +, 20-50% binding; +/-, 5-20% binding; -, <5% binding.
In this study, we have mapped residues on CD66 receptors that determine Opa protein binding. We have identified three key amino acid residues in CD66e required for maximal binding using homologue scanning mutagenesis and subsequent analysis of both loss-of-function and gain-of-function of CD66 mutants in binding and infection assays. Furthermore, Opa proteins B, C, and I, which bind to an identical spectrum of native CD66 receptors, were found to differ in their recognition of mutant CD66 N-domains and mutant receptors on cells, indicating that their binding characteristics may actually not be identical.

Neisserial Opa proteins are thought to span the bacterial outer membrane in an eight-stranded β-barrel conformation resulting in four extracellular loops. Three of the exposed loops consist of variable sequence domains while a fourth loop near the COOH terminus of the protein is highly conserved. The differential binding of Opa proteins to CD66 receptors is likely a reflection of the ability of these variable domains to interact with the receptors. As we pointed out previously (10), it is remarkable that Opa proteins, such as OpaB, OpaC, and OpaI, that contain heterogeneous variable domains recognize the same subgroup of CD66 family members. However, our present data showing differences in binding of mutant molecules by these Opa proteins may indicate that they actually bind with slightly different characteristics, which would be expected from proteins with such divergent binding domain sequences.

The Opa gene family is thought to have arisen from recent gene duplication events and genetic reassortment of variable sequence domains between members of the gene family (25, 27–29). Interestingly, the CD66 family also appears to have arisen recently by duplication of at least one ancestral gene. Sequence comparisons between the rodent and primate CD66 gene families show higher interspecies than intraspecies variation, suggesting that the duplication occurred after mammalian radiation took place (30, 31). In addition, the mutation rate in the CD66 N-domain exons is twice as high as that of the adjacent intron, suggesting...
that the CD66 family is still undergoing rapid evolution (30).

It is tempting to speculate that the extensive evolution of the
opa gene family in the strictly human pathogen N. gonorrheae has
taken place in response to the rapidly evolving family of primat-
specific CD66 molecules. The observed differential Opa-
CD66 binding patterns may be a reflection of this process.

According to the predicted structure of the CD66e
N-domain (32), the residues we have identified as important
for Opa protein binding, F29, S32, and G41, are located in
exposed loops and strands of the GFCC’C’’ face of the
CD66e N-domain (Fig. 1 B). This face of the molecule is
not covered by carbohydrate, in contrast to the ABED
face, as predicted by a low resolution model for CD66e
(34), and would therefore be accessible for protein–protein
interactions. The key role of S32 and G41 in binding of
Opa proteins is supported by the fact that these residues
are conserved among Opa-binding CD66 molecules (Fig. 1 A). A
residue F29 is conserved in three out of four of the Opa-
binding CD66 molecules (CD66a, d, and e), whereas CD66c
contains an I at residue 29. Possibly hydrophobic residues
such as F or I at that position support Opa protein binding,
while a charged residue, such as R present in CD66d, does
not. The role of residues L28 and Q44 is probably minor,
since they are not required for Opa recognition of the na-
tive molecule, although their presence enhances binding of
the soluble N-domain. Several ligand and viral binding sites
on IgSF members have been found on the GFCC face of the
ligand-binding domain (35, 36), indicating that this domain
face is positioned favorably to serve as a ligand-binding
platform for IgSF members.

Homologue scanning mutagenesis does not address
the role of conserved residues among the two homologous
proteins in ligand binding. The finding that single, relatively
conservative mutations in CD66b, such as N32S and A41G,
were sufficient to induce receptor function in CD66b may
suggest that CD66b contains conserved residues partipating
in Opa protein binding. To test whether the actual binding
site is comprised in the first 59 residues of CD66e, we
constructed a truncated, His-tagged CD66e molecule
(residues 1–59) and tested it for binding to Opa variants.
This molecule was well expressed by E. coli but failed to bind
significantly to any Opa variant (data not shown), indicating
that other sites within the N-domain may be required for
binding or that the peptide did not adopt the correct confor-
mation for binding activity. The finding that single muta-
tions in CD66b result in functional receptor activity could
suggest that in vivo isoforms of CD66b exist that will be rec-
ognized by Opa variants. Evidence to support this concept
comes from analysis of CD66b cDNAs cloned from normal
white blood cells and leukemic cells. These cDNAs differed
in two base pairs in the coding region, resulting in two
amino acid differences, one in the N-domain (R80K) and
one in the COOH-terminal M-domain (V288L) (37, 38).
Cloning of another CD66 family member, CD66d, by two
different groups resulted in proteins differing in two resi-
dues (39, 40). These phenomena fit with the notion that
CD66 molecules are subject to sequence variation associ-
ated with rapid evolution.

CD66 family members are capable of mediating homo-
philic and heterophilic intercellular adhesion, like many
other IgSF proteins (41). Binding between CAMs is usu-
ally of very low affinity, but due to the highly multimeric
nature of cell–cell adhesion, sufficient avidity can be achieved
to allow detection of the interaction between cells. The
weakness of CAM interactions is illustrated by the difficul-
ties in detecting binding of purified, monomeric forms of
CAMs. This difficulty arises because binding assays require
separation and washing steps, during which time weakly in-
teracting molecules dissociate (42). This phenomenon may
explain our observation that binding of Opa variants to sol-
uble CD66b N-domain mutants required more CD66e-
derived residues than binding to cell surface CD66 recep-
tors. If each mutation introduced into CD66b enhances
binding affinity between Opa and CD66b, as suggested by
our infection assay data, then the threshold level of affinity
necessary for detection will be reached sooner for the in-
fec tion assay than for binding in solution. Alternatively, the
level of multimerization may be important for Opa–CD66
binding, as has been shown for the binding of IgSF member
intercellular adhesion molecule 1 (ICAM-1) to its receptor
LFA-1. R ecombinant ICAM-1 exists as monomers in so-

Table IV. Recognition by Opa variants of mutant full-length
CD66b receptors expressed by CHO cells

Transfectant	OpaB	OpaC	OpaD
CD66b	-	-	-
R 29F	+/+	-	-
N 32S	+	-	+
A 41G	+/+	-	+
R 44Q	-	-	+
N 32S+R 29F	+	+	+
N 32S+A 41G	+	+	+
N 32S+R 44Q	-	+	-
R 29F+N 32S+A 41G	+/-fp	+/fp	+/-fp
CD66b/e	+/-fp	+/-fp	+/-fp
CD66e	+/-fp	+/-fp	+/-fp

Interaction with Opa variants was determined by evaluating the per-
arcentage of receptor-positive cells that had significant amounts of associ-
ted gonococci (=5 bacteria per cell). Presence of receptor and bacteria
was determined by immunofluorescence microscopy. The first column
indicates the mutations made in CD66b; CD66e/b and CD66e indicate
that the entire CD66b N-domain was replaced with either the chi-
meric N-domain mentioned in Table I or the entire native CD66e
N-domain. The results were tabulated as follows: +/+, all receptor-
positive cells were infected plus numerous footprints were present;
+/-, 60–90% of receptor-positive cells were infected; +, 30–60% of
receptor-positive cells were infected; +/-, 10–30% of receptor-posi-
tive cells were infected; --, no infected cells present. Infection experi-
ments with recombinant M S11 Opa variants (reference 5) resulted in
identical recognition patterns as those shown here for wild-type M S11
Opa variants. Results represent the mean of two to four independent
experiments.

summary:
- Homologue scanning mutagenesis does not address
 the role of conserved residues among the two homologous
 proteins in ligand binding.
- Single, relatively conservative mutations in CD66b
 were sufficient to induce receptor function in CD66b.
- CD66b contains conserved residues partipating
 in Opa protein binding.
- Cloning of CD66b cDNAs cloned from normal
 white blood cells and leukemic cells.
- CD66 family members are capable of mediating homo-
 philic and heterophilic intercellular adhesion.

discussion:
- The key role of S32 and G41 in binding of
 Opa proteins is supported by the fact that these residues
 are conserved among Opa-binding CD66 molecules.
- Residue F29 is conserved in three out of four of the Opa-
 binding CD66 molecules, whereas CD66c
 contains an I at residue 29.
- The role of residues L28 and Q44 is probably minor,
since they are not required for Opa recognition of the na-
tive molecule.
- CD66 family members are subject to sequence variation
 associated with rapid evolution.
olution, and direct binding to LFA-1 has been impossible to detect. Only when ICAM-1 was modified to induce dimerization could LFA-1 binding be detected (43, 44). CD66 family members can exist as dimers in the plasma membrane of eukaryotic cells (45), and recombinant CD66e N-domains have been shown to form oligomers in solution (46). Receptor dimers will more likely be found on the surface of cells, where the receptor concentration is higher than in solution. Thus, if Opa binding requires a receptor dimer, one would expect Opa variants to bind more readily to receptor-expressing cells than to soluble receptors. Another possible explanation for the discrepancy between the two binding detection methods is that in the solution assay the receptor binding domain exists as an unglycosylated, single domain, while in the infection assay the binding domain is presented in the context of a complete, glycosylated molecule. Although Opa binding does not require carbohydrate (18), the presence of sugar moieties may influence the strength of adhesion, as has been observed for the interaction between CD2 and CD58. Human CD2 has a single carbohydrate addition site in its Ig variable-like N-domain that is absolutely required for binding to its normal ligand, CD58. Evidence from solution structure of this carbohydrate chain in relation to the GFC binding face indicates that the glycan is not itself situated in the binding face but is required to balance an unfavorable negative charge in order to maintain an active binding configuration (47). In fact, CD66 N-domains contain a potential glycosylation site at residue 70 (Fig. 1), which corresponds exactly to the structural position of the glycosylation site affecting ligand binding ability of human CD2 (41). Mutation of this site in CD66e influences CD66e homophilic interactions, which are based on protein–protein interactions, indicating that in CD66e also the degree of glycosylation can influence binding events mediated through CD66e protein sequences (41). Our data stress the importance of evaluating binding events in different assays, since differences between assays can reveal further details of the molecular interaction between ligands. Regardless of the molecular basis for the observed discrepancy, both assays show clearly that OpaC binding requires more CD66e-derived residues than OpaB or Opa, which may indicate that OpaC binding of the receptor is of lower affinity than binding of OpaB or Opa.

In conclusion, mapping of key residues in CD66 required for recognition by the various gonococcal Opa adhesins indicates that single amino acid residues in CD66 receptors determine Opa protein binding. These results may provide a first step towards resolving the structural requirements for the Opa–CD66 receptor interaction and thereby help the development of infection inhibitory strategies, and may provide insights into the function of CD66 molecules in normal tissue and in carcinogenesis.

We thank Drs. Jos van Putten, Byron Cauugh, and Jim Fox for helpful comments on the manuscript; Jim Fox for help with the PredictProtein program; and Gary Hettrick for assistance in preparation of the figures.

Address correspondence to Martine P. Bos, Rocky Mountain Laboratories, NIH, NIAID, 903 South 4th St., Hamilton, MT 59840. Phone: 406-363-9301; Fax: 406-363-9204; E-mail: Martine_Bos@nih.gov

Submitted: 25 February 1999 Revised: 20 May 1999 Accepted: 8 June 1999

References

1. Van Putten, J.P.M., and T.D. Duensing. 1997. Infection of mucosal epithelial cells by Neisseria gonorrhoeae. Rev. Med. Microbiol. 8:51–59.
2. Meyer, T.F. 1998. Pathogenic Neisseria-interplay between pro- and eukaryotic worlds. Folia Microbiol. (Praga). 43:311–319.
3. Murphy, G.L., T.D. Connell, D.S. Barritt, M. Koomey, and J.G. Cannon. 1989. Phase variation of gonococcal protein II: regulation of gene expression by slipped-strand mispairing of a repetitive DNA sequence. Cell. 56:539–547.
4. Malorny, B., G. Morelli, B. Kusecek, J. Kolberg, and M. Achtmann. 1998. Sequence diversity, predicted two-dimensional protein structure, and epitope mapping of Neisseria Opa proteins. J. Bacteriol. 180:1233–1330.
5. Kupsch, E.-M., B. Nepper, T. Kuroki, I. Heuer, and T.F. Meyer. 1993. Variable opacity (Op) outer membrane proteins account for the cell topisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells. EMBO (Eur. Mol. Biol. Organ.) J. 12:641–650.
6. Van Putten, J.P.M., and S.M. Paul. 1995. Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO (Eur. Mol. Biol. Organ.) J. 14:2144–2154.
7. Chen, T., R.J. Belland, J. Wilson, and J. Swanson. 1995. Adherence of Opa−Neisseria gonococci to epithelial cells in vitro involves heparan sulphate. J. Exp. Med. 182:511–517.
8. Chen, T., and E.C. Gotschlich. 1996. C1M1a antigen of neutrophils, a receptor of gonococcal opacity proteins. Proc. Natl. Acad. Sci. USA. 93:14851–14856.
9. Virji, M., K. Mlakepece, D.J.P. Ferguson, and S.M. Watt. 1996. Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae. Mol. Mol. Biol. 22:941–950.
10. Bos, M.P., F. Grunert, and R.J. Belland. 1997. Differential recognition of members of the carcinoembryonic antigen family by Opa variants of Neisseria gonorrhoeae. Infect. Immun. 65:2353–2361.
11. Gray-Owen, S.D., D.R. Lorenzen, A. Hauide, T.F. Meyer, and C. Dehio. 1997. Differential Opa specificities for CD66 receptors influence tissue interactions and cellular response to Neisseria gonorrhoeae. Mol. Mol. Biol. 26:971–980.
12. Thompson, J.A., F. Grunert, and W. Zimmermann. 1991. Carcinoembryonic antigen family: molecular biology and
Bos et al. 339

clinical perspectives. J. Clin. Lab. Anal. 5:344–366.
13. Obrink, B. 1997. CEA adhesion molecules: multifunctional proteins with signal-regulatory properties. Curr. Opin. Cell Biol. 9:616–626.
14. Benchimol, S., A. Fuku, S. Jothi, N. Beachemian, K. Shiroti, and C.P. Stanners. 1989. Carcinomembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 57:327–334.
15. Leusch, H.G., S.A. Hefta, Z. Drzeniek, K. Hummel, Z. Morkos-Pussetal, and C. Wagner. 1990. Binding of Escherichia coli and Salmonella strains to members of the carcinoembryonic antigen family: differential binding inhibited by aromatic α-glycosides of mannan. Infect. Immun. 59:2051–2057.
16. Dveksler, G.S., C.W. Dieffenbach, C.B. Cardellichio, K. Dempsey, K. Kverneland, Jr., A. Stephenson, B.S. Schepart, G.L. Murphy, and J.G. Cannon. 1988. Recombination among protein II genes of Neisseria gonorrhoeae generates new coding sequences and increases structural variability in the protein II family. Mol. Microbiol. 2:227–236.
17. H. Nakazato, and Y. Matsuoka. 1991. Molecular cloning of N. gonorrhoeae strain MS11 are encoded by a family of 11 complete genes. J. Mol. Microbiol. 2:227–236.
18. Rost, B., R. Casadio, P. Fariselli, and C. Sander. 1995. Transmembrane helices predicted at 95% accuracy. Protein Sci. 4:521–533.
19. Kuroki, M., F. Arakawa, Y. Misumi, S. Oikawa, Y. Matsuoka. 1991. Molecular cloning of N. gonorrhoeae strain MS11 are encoded by a family of 11 complete genes. J. Mol. Microbiol. 2:227–236.
20. Swanson, J. 1978. Studies on gonococcus infection. XII. Colony color and opacity variants of gonococci. J. Infect. Med. 3:193–198.
21. Picard, V., E. Ersdal-Badju, A. Lu, and S.C. Bock. 1994. A 16.13.1–16.13.7.
22. Van Putten, J.P.M., J.F.L. Weel, and H.U.C. Grassme. 1994. A model for the human CEA family. J. Mol. Biol. 2587–2591.
23. Rost, B., R. Casadio, P. Fariselli, and C. Sander. 1995. Transmembrane helices predicted at 95% accuracy. Protein Sci. 4:521–533.
24. Rost, B., R. Casadio, P. Fariselli, and C. Sander. 1995. Transmembrane helices predicted at 95% accuracy. Protein Sci. 4:521–533.
25. Rost, B., R. Casadio, P. Fariselli, and C. Sander. 1995. Transmembrane helices predicted at 95% accuracy. Protein Sci. 4:521–533.
26. Rost, B., R. Casadio, P. Fariselli, and C. Sander. 1995. Transmembrane helices predicted at 95% accuracy. Protein Sci. 4:521–533.
27. Wang, J., and T.A. Springer. 1998. Structural specializations of immunoglobulin superfamly members for adhesion to integrins and viruses. Immunol. Rev. 163:197–215.
28. Swanson, J. 1978. Studies on gonococcus infection. XII. Colony color and opacity variants of gonococci. J. Infect. Med. 3:193–198.
29. Swanson, J. 1978. Studies on gonococcus infection. XII. Colony color and opacity variants of gonococci. J. Infect. Med. 3:193–198.
30. Stanners, C.P., and A. Fuks. 1998. Properties of adhesion mediated by the human CEA family. In Cell Adhesion and Communication Mediated by the CEA Family. C.P. Stanners, editor. Harwood Academic Publishers, Amsterdam. 31–55.
dimerization and its consequences for adhesion mediated by lymphocyte function associated-1. J. Exp. Med. 182:1231–1241.

44. Reilly, P.L., J.R. Woska, Jr., D.D. Jeanfavre, E. McNally, R. Rothlein, and B. Bormann. 1995. The native structure of intercellular adhesion molecule-1 (ICAM-1) is a dimer. J. Immunol. 155:529–532.

45. Hunter, I., H. Sawa, M. Edlund, and B. Obrink. 1996. Evidence for regulated dimerization of cell-cell adhesion molecule (C-CAM) in epithelial cells. Biochem. J. 320:847–853.

46. Krop-Watorek, A., S. Oikawa, Y. Oyama, and H. Nakazato. 1998. Oligomerization of N-terminal domain of carcinoembryonic antigen (CEA) expressed in Escherichia coli. Biochem. Biophys. Res. Commun. 242:79–83.

47. Wyss, D.F., J.S. Choi, J. Li, M.H. Knoppers, K.J. Willis, A.R.N. Arulanan, A. Smolyar, E. Reinherz, and G. Wagner. 1995. Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science. 269:1273–1278.