Infection as a risk factor in the pathogenesis of primary biliary cirrhosis: Pros and cons

Teru Kumagi*, Masanori Abe, Yoshiou Ikeda and Yoichi Hiasa

Gastroenterology and Metabolism, Ehime University, Graduate School of Medicine, Ehime, Japan

Abstract. Primary biliary cirrhosis (PBC) is a chronic and slowly progressive cholestatic liver disease of autoimmune etiology, characterized by injury of the intrahepatic bile ducts that may eventually lead to cirrhosis and liver failure. Evidence suggests cardinal roles for both environmental factors and genetic susceptibility. Nevertheless, the absolute etiology of PBC is unclear, despite recent well-designed case-control studies that reported environmental risk factors, including infectious agents, for PBC. Of the reported infectious agents, some of them are not reproducible and remain controversial. However, infection is no doubt one of the major risks among the environmental factors. This is supported by the fact that infectious agents in autoimmune diseases express antigens resulting in molecular mimicry and xenobiotics that play a role in breaking tolerance. Taken together, recent findings from genome wide assays as well as novel animal models may enable us to better understand the mechanism of pathogenesis responsible for this disease.

Keywords: Primary biliary cirrhosis, risk factors, infectious agents, xenobiotics

1. Introduction

Primary biliary cirrhosis (PBC) is an autoimmune liver disease that often affects middle-aged women. Anti-mitochondrial antibody (AMA), which is a hallmark of this disease, is present in approximately 90% of patients [1]. High association with other autoimmune diseases supports the concept of autoimmunity in PBC. Previous extensive evidence suggests a significant role for genetic susceptibility: family history [2–5], high concordance in monozygotic twins [6,7], HLA typing [8,9], SNP analysis [10–13] and, most strikingly, the results from recent genome wide assay [14–16]. Case-control studies support the idea that environmental factors may trigger the onset of the disease [17–25]. However, the environmental factors are less defined than genetic factors and the etiology of PBC is poorly understood.

In this review, we will overview the risk factors for PBC. Furthermore, we will summarize the current knowledge of infectious agents, one of the major etiologies among environmental factors, and xenobiotics in the pathogenesis of PBC, and discuss the directions for future research.

2. Overview of the risk factors in PBC

Until 2000, there were few published case-control studies of PBC that described some of the risk factors for the disease [17–20]. The first study, enrolling 38 patients with PBC by Baur G et al. in 1982, examined the high prevalence of miscarriage (n = 11, 29%) in hospital in-patients as compared to their counterpart controls (with no liver disease, chronic-aggressive hepatitis and other forms of liver disease) [17]. Two studies investigated the association of urinary tract infection (UTI) with other liver disease by using controls: one by Burroughs A et al. (n = 89) [18] and the other by Floreani A et al. (n = 160) [19]. However, these studies did not take an age-match control into consideration during their analysis. Moreover, all of these studies recruited...
less than 160 patients with PBC in their cohort, which is far less than a recent case-control study that included over 2,500 patients [21]. Nevertheless, an observation of significant bacteriuria, for instance, found in patients with PBC [report by Burroughs A et al. showing higher prevalence in PBC (19%) compared to other types of chronic liver disease (7%) and rheumatoid arthritis (8%)] contributed and led to designing a study in order to further investigate the association of UTI. The only study using healthy age-matched controls and PBC patients ($n = 87$) compared the frequency of hysterectomy, dilatation and curettage: the indications in both instances being menorrhagia mainly caused by high estrogen states such as endometriosis [20]. Again, this finding encouraged the researchers to further examine involvement of reproductive factors in female patients with PBC.

Since 2000, there have been five large case-control studies [21–25], all from Western countries, which looked into risk factors for PBC [Tables 1, 2]. The Newcastle group conducted an exploratory, population-based case-control study asking 123 patients to complete a questionnaire; 100 cases (81%) responded [22]. Although they did not use multivariate analysis in their study, they found an unexpected association with past smoking history (ever smoked: OR 2.4, 95% CI 1.4–4.1; smoked more than 20 years: OR 3.5, 95% CI 1.9–6.3) and psoriasis (OR 4.6, 95% CI 1.2–17.3) as risk factors, whereas eczema (OR 0.13, 95% CI 0.02–1.0) was found to be a “protective role”. However, they failed to show an association to PBC in surgical procedures such as appendectomy and tonsillectomy, events in pregnancy, past infections including UTI, vaccinations, drinking alcohol or taking medications. The family history of PBC and other autoimmune diseases showed an associative tendency but this was found to be less than had been previously reported.

A decade later, the same group has recently expanded the study, recruiting patients from a geographically defined epidemiology study (epidemiological cases, $n = 318$) and a survey of the National Patient Support Group (foundation cases, $n = 2,258$) within Northeast England [21]. In the univariate analysis, they showed a significant association with smoking, hair dye use, previous history of UTI, psoriasis, shingles and previous autoimmune diseases as risk factors for PBC in both epidemiological cases and foundation cases as compared to the controls. For the first time, they have also shown previous obstetric cholestasis as a risk factor. Finally, they have strictly analyzed the aforementioned risk factors by using multivariate analysis and found a significant association to smoking, hair dye use and previous history of UTI in both epidemiological cases and foundation cases in comparison to controls, suggesting the strength of these three risk factors. Previous history of psoriasis, shingles, previous autoimmune diseases and previous obstetric cholestasis were significantly associated only in epidemiological cases or foundation cases but not in both. Additionally, they could not show the protective role of eczema in this study.

On the other hand, the first report from the United States in 2001 comparing PBC patients ($n = 199$) to their friends without PBC identified an association with other autoimmune diseases (OR 4.9, 95% CI 2.4–10.2), smoking (OR 2.0, 95% CI 1.1–3.8), tonsillectomies (OR 1.9, 95% CI 1.0–3.4) and UTI in females only (OR 2.1, 95% CI 1.1–4.1) [23]. These results of elevated ORs held true when compared between PBC patients and their siblings.

A nationwide controlled interview-based study from 23 tertiary referral centers for liver disease in the United States included 1032 patients [24]. Their data indicated that a first-degree relative with PBC (OR 10.8, 95% CI 4.2–27.3), systemic lupus erythematosus (OR 2.2, 95% CI 1.3–4.0), Sjögren syndrome (OR 5.8, 95% CI 1.3–26.4), history of UTI (OR 1.5, 95% CI 1.2–1.9), history of smoking (OR 1.6, 95% CI 1.3–1.9), and use of hormonal replacement (OR 1.5, 95% CI 1.3–1.9) were significantly associated with an increased risk of PBC. Interestingly, frequent use of nail polish was weakly associated with the risk of having PBC, indicating the involvement of cosmetics in the pathogenesis of PBC.

Another and most recent report from Europe but the first one from France confirmed some of the previously identified risk factors for PBC, family history of PBC (OR 6.8, 95% CI 2.8–16.4), history of smoking (OR 3.1, 95% CI 2.0–5.0) and UTI (OR 2.7, 95% CI 2.0–3.7) [25].

Taken together with the results from the previous case-control studies, it is likely that environmental factors that include infectious agents through UTI (Escherichia coli as a representative bacterium), chemicals contained in cigarette smoke, cosmetics (nail polish and hair dye) and exogenous estrogens in female may induce PBC in genetically susceptible subjects.

3. Infectious agents as an environmental factor in primary biliary cirrhosis

Infectious agents such as Streptococcus and Campylobacter jejuni can induce disorders such as rheumat-
Risk factors for PBC derived from univariate analysis in major case-control studies since 2000
Lifestyle factors
Smoking history Yes 2.4 (1.4-4.1) Yes < 0.01
Hair dye Yes < 0.05
Nail polish use Yes < 0.0001
AIDs in study participants
Rheumatoid arthritis Yes 2.1 (1.0-4.2)
Systemic lupus erythematosus Yes < 0.0005
Autoimmune thyroiditis No
Celiac disease Yes < 0.0001
Raynaud syndrome Yes < 0.005
Scleroderma No
Sjogren's syndrome Yes < 0.0001
Autoimmune hepatitis Yes 4.6 (1.2-17.3)
Psoriasis Yes 0.13 (0.02-1.0) No
Family history of AIDs
Primary biliary cirrhosis No
Rheumatoid arthritis Yes < 0.0001
Systemic lupus erythematosus Yes < 0.005
Autoimmune thyroiditis No
Raynaud syndrome Yes < 0.0001
Sjogren's syndrome Yes < 0.0005
Polymyositis Yes < 0.005 No
Other past history
Urinary tract infection No Yes*** < 0.01
Eczema Yes 0.13 (0.02-1.0) No
Shingles No
Tonsillectomy Yes < 0.01
Appendectomy No
Cholecystectomy Yes < 0.001
Colon polyp removal Yes < 0.005
Hysterectomy No No* 1.0 (0.8-1.4)*
Reproductive history
Hormone replacement No
Birth control pill Yes < 0.005
Abortion and/or miscarriage No
Pruritus during pregnancy Yes* 2.1 (1.3-3.6)*

*epidemiological cases vs. controls; **foundation cases vs. controls; ***female patients only; AIDs: autoimmune diseases; OR: odds ratio; CI: confidential interval.
| Risk factors for PBC derived from multivariate analysis in major case-control studies since 2000 |
Parikh-Patel A [23]	Gershwin ME [24]	Prince MI [21]*	Prince MI [21]**	Corpechot C [25]
OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Life style factors				
Smoking history	2.0 (1.1–3.8)	1.6 (1.3–1.9)	1.6 (1.2–2.3)*	1.5 (1.3–1.7)**
Nail polish	1.002 (1.000–1.003)	1.8 (1.2–2.7)*	1.3 (1.0–1.5)**	3.1 (2.0–5.0)
Hair dye				
Other AIDs in Study Participants				
Other AIDs	4.9 (2.4–10.2)	2.0 (1.4–2.9)*	1.6 (1.3–1.9)**	7.7 (4.8–12.3)
AIDs in Study Participants				
Autoimmune thyroiditis	2.0 (1.4–2.9)*	1.6 (1.3–1.9)**	2.3 (1.3–3.8)**	7.7 (4.8–12.3)
Celiac disease				
Raynaud syndrome				
Sjogren’s syndrome				
Family History of AIDs				
Primary biliary cirrhosis	10.7 (4.3–27.3)	1.7 (1.5–2.1)	7.1 (3.5–14.5)	6.8 (2.8–16.4)
Systemic lupus erythematosus	2.2 (1.3–4.0)			6.8 (2.8–16.4)
Autoimmune thyroiditis				6.8 (2.8–16.4)
Sjogren syndrome	5.8 (1.3–26.4)			6.8 (2.8–16.4)
Other past history				
Urinary tract infection	2.1 (1.1–4.1)	1.5 (1.2–1.9)	2.4 (1.7–3.4)*	1.7 (1.5–2.1)**
Shingles	2.5 (1.7–3.5)*			
Tonsillectomy	1.9 (1.0–3.4)			
Appendectomy	1.4 (1.2–1.7)**			
Reproductive history				
Hormone replacement	1.5 (1.3–1.9)			
Birth control pill				
Never pregnant	0.6 (0.5–0.8)			
Age at first pregnancy	0.95 (0.93–0.98)			
Abortion				
Pruritus during pregnancy	2.1 (1.6–2.7)**			

*epidemiological cases vs. controls; **foundation cases vs. controls; AIDs: autoimmune diseases; OR: odds ratio; CI: confidential interval.
ic fever [26] and Guillain-Barré syndrome [27], respectively, in patients with autoimmune diseases. A pathogen under such circumstances might express antigens with epitopes that are structurally related to those of autoantigens, resulting in molecular mimicry, which might also play a causative role in the pathogenesis of PBC through human mitochondrial epitopes [28]. The ratio of seropositive AMA is >90% in patients with PBC and the pyruvate dehydrogenase complex-E2 (PDC-E2) is a major human anti-mitochondrial autoantigen that is highly conserved among various species and has a high degree of similarity to the PDC sequences of Escherichia coli, Helicobacter pylori, cytomegalovirus and other microbes [28–30]. Some reports indicate that Novosphingobium aromaticivorans is also a potential initiator of PBC [31–33]. Although infectious agents can be associated with PBC, and the degree of similarity between PDC-E2 and the PDC of infectious agents is high, AMA is not considered as a direct cause of biliary damage. Cross-reactivity alone is not necessarily sufficient to evoke PBC. However, it could be a trigger by inducing the initial immune response to PDC-E2.

3.1. Escherichia coli

E. coli is a causative agent of PBC and a frequent cause of UTI, particularly among women, and predominantly new infection with recurrent UTI is a feature of PBC [18]. Studies of molecular mimicry and cross-reactivity have shown that the affinity between human and *E. coli* PDC-E2 in patients with PBC is 100-fold higher than in controls [35]. The presence of bacterial products in mononuclear cells damages surrounding bile ducts [36]. AMA from patients with reactive T cells and prokaryotic antigens for several microbes, including *E. coli* and T cell clones derived from human PDC-E2, cross-reacted with peptides of *E. coli* PDC-E2 and *E. coli* OGDC-E2 [37]. These reactions would be caused by the sequences of PDC being highly conserved throughout their phylogeny [38].

3.2. Novosphingobium aromaticivorans

N. aromaticivorans is a Gram-negative bacterium of the Sphingomonomaceae family within the class of Alphaproteobacteria that is ubiquitous in the environment and closely associated with the pathogenesis of PBC [39]. Sera from patients with anti-PDC-E2-positive PBC react at 100- to 1,000-fold higher titers against *E. coli* than *N. aromaticivorans* proteins [31], and such reactivity is evident during the early stages of PBC. The association between PBC and *N. aromaticivorans* infection has been confirmed in a mouse model [40], and it is capable of inducing autoreactive AMA and chronic T-cell-mediated autoimmunity against small bile ducts. Moreover, the specificity of serological findings has been confirmed in an independent cohort of patients and controls [34]. *N. aromaticivorans* could be a candidate for the induction of PBC.

3.3. Helicobacter pylori

Helicobacter pylori DNA has been detected in 33% of patients with PBC [41]. Another report has described a positive correlation between the titers of anti-PDC and anti-*H. pylori* antibodies [42]. Molecular mimicry from *H. pylori* infection arising in patients with PBC [28] might induce an autoimmune response due to cross-reactivity with bile ductular antigens. However, a later report did not identify an association between the seroprevalence of *H. pylori* infection and PBC [43]. Two other studies did not identify an increased prevalence of *H. pylori* DNA in liver tissues from patients with PBC [44,45].

3.4. Chlamydia pneumoniae

Chlamydia pneumoniae is a cause of community-acquired pneumonia that might play a role in triggering PBC [46]. All of 39 patients with PBC had *C. pneumoniae*, but not *C. trachomatis* antigens. The RNA of *C. pneumoniae* has also been detected in liver tissues from patients with PBC. However, two other reports do not support the notion of an association between *C. pneumoniae* and PBC [47,48]. A Chinese study found that the seroprevalence of *C. pneumoniae* IgG does not differ between patients with PBC and those with post-hepatitis cirrhosis. However, *C. pneumoniae* IgM might contribute to the abnormally high concentrations of total IgM in patients with PBC.

3.5. Other bacteria

Studies of Spanish patients with PBC have revealed extensive, disease-specific cross-reactivity between the 65-kDa heat shock protein of *Mycobacterium gordonae* and PDC-E2 [49]. However, others have failed to confirm serum reactivity of *Mycobacterium*, or detect *Mycobacterium* DNA in patients with PBC [50,51]. *Mycoplasma* antigens have recently been proposed as a trigger of AMA in patients with PBC. Other
cross-reactive responses involving mitochondrial and prokaryotic antigens have been reported, including *Klebsiella pneumoniae*, *Proteus mirabilis*, *Staphylococcus aureus* and *Salmonella minnesota* [38].

Long-term exposure of mouse models to bacteria triggers non-suppurative, destructive cholangitis associated with multifocal epithelial inflammation, suggesting that persistent and continuous bacterial infection is a trigger in the pathogenesis of PBC [52].

3.6. Viruses

Several viral infections might be associated with the pathogenesis of PBC. A retrovirus resembling the mouse mammary–tumor virus (MMTV) has been identified [53], and although pilot studies of single and combination antiretroviral therapy have indicated an association between MMTV and PBC [54], the findings were not reproducible [55]. The Epstein-Barr (EB) virus, which belongs to the herpes virus family, is a cause of infectious mononucleosis. Increased titers of EB virus antigen in the sera of patients with early PBC suggest that it could trigger PBC [56]. Similar peptide sequences between cytomegalovirus and human PDC indicate that this virus might also trigger PBC [28,56].

4. Xenobiotics and PBC

The ability of infectious agents to induce autoimmune responses has been reported in experimental settings, and molecular mimicry is the most widely studied mechanism explaining these observations. However, titers of bacterial PDC-E2 were lower and appeared later in the disease than self (human) PDC [57]. These observations indicate that another etiological factor is necessary to break tolerance. In this regard, several lines of evidence support a role of xenobiotics in the development of PBC [58].

Xenobiotics are foreign chemicals that may either alter or combine with defined self proteins, inducing a change in the molecular structure of the naïve protein sufficient to induce an immune response in the host. Such an immune response may then result in the recognition of not only the modified or altered protein, but also the unmodified naïve antigen [59]. Chronic presence of both modified or naïve serves to perpetuate the immune response initiated by the xenobiotic-induced adducts and leads to autoimmunity [60]. Many xenobiotics can cause organ-specific autoimmune diseases.

It is well established that AMA and cellular responses in PBC are mainly directed to the lipoyl domain of PDC-E2. Lipoic acid is crucial to PDC-E2 recognition and lies exposed to the exterior part of the complex, thus constituting the ideal target for xenobiotic modification [61,62]. Xenobiotics may modify the lipoyl domain of PDC-E2 by creating neoantigens, possibly in concert with xenobiotic-modifying bacteria such as *Novosphingobium aromaticivorans* [31,32]. This hypothesis was supported by the observation that AMA from patients with PBC recognized a class of xenobiotic-modified PDC-E2 peptides, often with a higher affinity than with their naïve autoantigens [63]. In addition, immunization of animals with xenobiotics conjugated to bovine serum albumin caused serological and histopathological reaction similar to PBC [64–67]. The lipoylated bacterial proteins were further shown to have homology to human 2-oxo acid dehydrogenase enzymes [33]. These findings indicate that bacteria mimics containing lipoic acid residues might be modified by xenobiotics to form immunoreactive products. This modification might trigger a break in tolerance to autoantigens and the development of PBC.

5. Conclusions and directions of future perspectives in the pathogenesis of PBC

Most of the epidemiological, experimental and clinical data concur to indicate the role of environmental factors, such as microorganisms and/or xenobiotics, in the induction of autoimmunity in PBC. Although a cause and effect relationship between infection and PBC has yet to be proven, there is evidence to suggest a role for bacterial agents, especially *E. coli*, in the development of PBC.

However, more data from epidemiological and clinical studies are necessary to directly link microbial infections with PBC. For example, most of the epidemiological studies of PBC have been conducted in the Europe and United States, and few data are available in many parts of the world. In addition, the role of infectious agents in the initiation of PBC has to be further probed, particularly by making a great effort to develop an experimental setting or animal model to ascertain exposure to specific environmental factors [68–70]. Finally, PBC is a multifactor disease in that not only environmental factors are required but also genetic contributions. The informative genome studies, including a genome-wide association study, will help us to understand the pathogenesis of PBC.
References

[1] T. Kamagi and E.J. Heathcote, Primary biliary cirrhosis, *Orphanet J Rare Dis* 3 (2008), 1.

[2] N. Bach and F. Schaffner, Familial primary biliary cirrhosis, *J Hepatology* 20(6) (Jun 1994), 698–701.

[3] A.M. Brind and G.P. Bray, B.C. Portmann and R. Williams, Prevalence and pattern of familial disease in primary biliary cirrhosis, *Gut* 36(4) (Apr 1995), 615–617.

[4] D.E. Jones, F.E. Watt, J.V. Metcalf, M.F. Bassendine and A.M. Brind and G.P. Bray, B.C. Portmann and R. Williams, Familial primary biliary cirrhosis reassessed: a geographically-based population study, *J Hepatology* 30(3) (Mar 1999), 402–407.

[5] L. Arbour, R. Rupps, L. Field, P. Ross, A. Erikson, H. Henderson, W. Hill and E. Yoshida, Characteristics of primary biliary cirrhosis in British Columbia’s First Nations population, *Can J Gastroenterology* 19(5) (May 2005), 305–310.

[6] M.M. Kaplan, A.R. Rabson, Y.M. Lee, D.L. Williams and L. Arbour, R. Rupps, L. Field, P. Ross, A. Erikson, H. Henderson, D.E. Jones, F.E. Watt, J.V. Metcalf, M.F. Bassendine and A.M. Brind and G.P. Bray, B.C. Portmann and R. Williams, Familial primary biliary cirrhosis, *J Hepatology* 30(3) (Mar 1999), 402–407.

[7] C. Selmi, M.J. Mayo, N. Bach, H. Ishibashi, P. Invernizzi, R.G. Gish, S.C. Gordon, H.I. Wright, B. Zweiban, M. Podda and M.E. Gershwin, Primary biliary cirrhosis in monozygotic twins, *N Engl J Med* 331(14) (Oct 1994), 951.

[8] S. Onishi, T. Sakamaki, T. Maeda, S. Iwamura, A. Tomita, T. Saibara and Y. Yamamoto, DNA typing of HLA class II genes; DRB1*0803 increases the susceptibility of Japanese to primary biliary cirrhosis, *J Hepatology* 21(6) (Dec 1994), 1053–1060.

[9] P. Invernizzi, C. Selmi, F. Poli, S. Frison, A. Floreani, D. Alvaro, P. Almasio, F. Rosina, M. Marzoni, L. Fabris, L. Muraitori, L. Qi, M.F. Seldin, M.E. Gershwin and M. Podda, Italian PBC Genetic Study Group, Human leukocyte antigen polymorphisms in Italian primary biliary cirrhosis: a multicenter study of 664 patients and 1992 healthy controls, *Hepatology* 48(6) (Dec 2008), 1906–1912.

[10] K. Kikuchi, A. Tanaka, H. Miyakawa, Y. Kawashima, N. Kagawuchi, M. Matsushita and M.E. Gershwin, Eta-1 osteopontin genetic polymorphism and primary biliary cirrhosis, *Hepatol Res* 26(2) (Jun 2003), 87–90.

[11] K. Kikuchi, A. Tanaka, M. Matsushita, E. Kitazawa, N. Hosoya, Y. Kawashima, C. Selmi, M.E. Gershwin and H. Miyakawa, Genetic polymorphisms of transforming growth factor beta-1 promoter and primary biliary cirrhosis in Japanese patients, *Ann NY Acad Sci* 1110 (Sep 2007), 15–22.

[12] B.D. Juran, E.J. Atkinson, E.M. Schlicht, B.L. Fridley, G.M. K. Kikuchi, A. Tanaka, H. Miyakawa, C. Colli, G. Spinzi, R. Montanari, P.K. Gregersen, E.J. Heathcote, K.N. Lazaridis, C.I. Amos and K.A. Siminovitch, Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis, *Nat Genet* 42(8) (Aug 2010), 655–657 [Epub 2010 Jul 18].

[13] X. Liu, P. Invernizzi, Y. Lu, R. Kosoy, Y. Lu, I. Bianchi, M. Podda, C. Xu, G. Xie, F. Macciardi, C. Selmi, S. Lupoli, R. Shigeta, M. Ransom, A. Lleo, A.T. Lee, A.L. Mason, R.P. Myers, K.M. Peltekian, C.N. Ghent, F. Bernuzzi, M. Zuan, F. Rosina, E. Borghesio, A. Floreani, R. Lazzari, G. Niro, A. Andruelli, L. Muratori, P. Muratori, P.L. Almasio, P. Andreone, M. Margotti, M. Brunetto, B. Coco, D. Alvaro, M.C. Bragazzi, F. Marra, A. Pisano, C. Rigamonti, M. Colombo, M. Marzoni, A. Benedetti, L. Fabris, M. Strazzabosco, P. Portincasa, V.O. Palmieri, C. Tiribelli, L. Croce, S. Bruno, S. Rossi, M. Vinc, C. Prisco, A. Mattalina, P. Tonutti, A. Piccotto, A. Galli, C. Ferrari, S. Colombo, G. Casella, L. Morini, N. Caporaso, A. Colli, G. Spinzi, R. Montanari, P.K. Gregersen, E.J. Heathcote, G.M. Hirschfeld, K.A. Siminovitch, C.I. Amos, M.E. Gershwin and M.F. Seldin, Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis, *Nat Genet* 42(8) (Aug 2010), 655–660 [Epub 2010 Jul 18].

[14] G. Baur, G. Schwablach and W. Titter, New aspects of the pathogenesis of primary biliary cirrhosis, a study of 42 patients, *Dtsch Med Wochenschr* 107(10) (Mar 1982), 378–382.

[15] A.K. Burroughs, I.J. Rosenstein, O. Epstein, J.M. Hamilton-Miller, W. Brunfett and S. Sherlock, Bacteriuria and primary biliary cirrhosis, *Gut* 25(2) (Feb 1984), 133–137.

[16] A. Floreani, M.F. Bassendine, H. Mitchison, R. Freeman and O.F. James, No specific association between primary biliary cirrhosis and bacteriuria? *J Hepatology* 8(2) (Mar 1989), 201–207.

[17] A.J. Stellar and R. Williams, Increased incidence of menstrual abnormalities and hysterectomy preceding primary biliary cirrhosis, *BMJ* 293(6542) (Aug 1986), 297–298.

[18] M.I. Prince, S.J. Ducker and O.F. James, Case-control studies of risk factors for primary biliary cirrhosis in two United Kingdom populations, *Gut* 59(4) (Apr 2010), 508–512.

[19] D. Howel, C.M. Fischbacher, R.S. Bhopal, J. Gray, J.V. Metcalf and O.F. James, An exploratory population-based case-control study of primary biliary cirrhosis, *Hepatology* 31(5) (May 2000), 1055–1060.

[20] A. Parikh-Patel, E.B. Gold, H. Wong, K.E. Krivy and M.E. Gershwin, Risk factors for primary biliary cirrhosis in a cohort of patients from the united states, *Hepatology* 33 (2001), 16–21.

[21] G.M. Hirschfield, X. Liu, Y. Han, I.P. Gorlov, Y. Lu, C. Xu, Y. Lu, W. Chen, B.D. Juran, C. Coltescu, A.L. Mason, P. Milkiewicz, R.P. Myers, J.A. Odin, V.A. Luketic, D. Speciennec, C. Vincent, C. Levy, P.K. Gregersen, J. Zhang, E.J. Heathcote, K.N. Lazaridis, C.I. Amos and K.A. Siminovitch, Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis, *Nat Genet* 42(8) (Aug 2010), 655–657 [Epub 2010 Jul 18].

[22] J.H. Rees, S.E. Soudain, N.A. Gregson and R.A. Hughes, Campylobacter jejuni infection and Guillain-Barré syndrome,
M.M. Kaplan, Novosphingobium aromaticivorans: a potential trigger of autoimmune disease triggered by infection with alphaproteobacteria, J. Hepatol 40 (2004), 31–39.

J. Van de Water, H. Ishibashi, R.L. Coppel and M.E. Gershwin, J. Mattner, P.B. Savage, P. Leung, S.S. Oertelt, V. Wang, O. P. Mohammed and J. Mattner, Autoimmune disease triggered by infection with alphaproteobacteria, Expert Rev Clin Immunol 5 (2009), 369–379.

J. Mattner, P.B. Savage, P. Leung, S.S. Oertelt, V. Wang, O. Trivedi, S.T. Scalon, K. Pendem, L. Lyon, J. Hart, W.M. Ridgway, L.S. Wicker, M.E. Gershwin and A. Bendelac, Liver autoimmunity triggered by microbial activation of natural killer T cells, Cell Host Microbe 3 (2008), 304–315.

H.O. Nilsson, J. Tanera, M. Castedal, E. Glatz, R. Olsson and T. Wadström, Identification of Helicobacter pylori and other Helicobacter species by PCR, hybridization, and partial DNA sequencing in human liver samples from patients with primary sclerosing cholangitis or primary biliary cirrhosis, J Clin Microbiol 38 (2000), 1072–1076.

K. Dohmen, H. Shigematsu, Y. Miyamoto, F. Yamasaki, K. Irie and H. Ishibashi, Atrophic corpus gastritis and Helicobacter pylori infection in primary biliary cirrhosis, Dig Dis Sci 47 (2002), 162–169.

M. Durazzo, F. Rosina, A. Premoli, E. Morello, S. Fagonee, R. Innarella, E. Solerio, R. Pellicano and M. Rizzetto, Lack of association between seroprevalence of Helicobacter pylori infection and primary biliary cirrhosis, World J Gastroenterol 10 (2004), 3179–3181.

A. Tanaka, T.P. Prindiville, R. Gish, J.V. Solnick, R.L. Coppel, E.B. Keefe, A. Ansari and M.E. Gershwin, Are infectious agents involved in primary biliary cirrhosis? A PCR approach, J Hepatol 31 (1999), 664–671.

S.Y. Boomkens, S. de Rave, R.G. Pot, H.F. Egberink, L.C. Penning, J. Rothuizen, P.E. Zondervan and J.G. Kusters, The role of Helicobacter spp. in the pathogenesis of primary biliary cirrhosis and primary sclerosing cholangitis, FEMS Immunol Med Microbiol 44 (2005), 221–225.

A.S. Abdulkarim, L.M. Petrovic, W.R. Kim, P. Angelou, R.V. Lloyd and K.D. Lindor, Primary biliary cirrhosis: an infectious disease caused by Chlamydia pneumoniae? J Hepatol 40 (2004), 380–384.

D. Taylor-Robinson, A.W. Sharif, N.S. Dhanjal and S.D. Taylor-Robinson, Chlamydia pneumoniae infection is an unlikely cause of primary biliary cirrhosis, J Hepatol 42 (2005), 779–780.

H.Y. Liu, A.M. Deng, J. Zhang, Y. Zhou, D.K. Yao, X.Q. Tu, L.Y. Fan and R.Q. Zhong, Correlation of Chlamydia pneumoniae infection with primary biliary cirrhosis, World J Gastroenterol 41 (2005), 4108–4110.

L. Vilagut, A. Parés, O. Viñas, J. Vila, M.T. Jiménez de Anta and J. Rodés, Antibodies to mycobacterial 65-kD heat shock protein cross-react with the main mitochondrial antigens in patients with primary biliary cirrhosis, Eur J Clin Invest 27 (1997), 667–672.

D.P. Bogdanos, A. Pares, H. Baum, L. Caballeria, E.I. Rigopoulou, Y. Ma, A.K. Burroughs, J. Rodes and D. Vergani, Disease-specific cross-reactivity between mimicking peptides of heat shock protein of Mycobacterium gordonae and dominant epitope of E2 subunit of pyruvate dehydrogenase is common in Spanish but not British patients with primary biliary cirrhosis, J Autoimmun 22 (2004), 353–362.

J. O’Donohue, B. McFarlane, A. Bomford, M. Yates and R. Williams, Antibodies to atypical mycobacteria in primary biliary cirrhosis, J Hepatol 21 (1994), 887–889.

I. Haruta, K. Kikuchi, E. Hashimoto, M. Nakamura, H. Miyakawa, K. Hirota, N. Shibata, H. Kato, Y. Arima, Y. Kato, T. Uchiyama, H. Nagamune, M. Kobayashi, Y. Miyake, K. Shiratori and J. Yagi, Long-term bacterial exposure can trigger nonsuppurative destructive cholangitis associated with multifocal epithelial inflammation, Lab Invest 90 (2010), 577–588.

L. Xu, M. Sakalian, Z. Shen, G. Loss, J. Neuberger and A. Mason, Cloning the human betaretrovirus proviral genome from patients with primary biliary cirrhosis, Hepatology 39 (2004), 151–156.

A.L. Mason, G.H. Farr, L. Xu, S.G. Hubsher and J.M. Neuberger, Pilot studies of single and combination antiretroviral therapy in patients with primary biliary cirrhosis, Am J Gastroenterol 99 (2012), 2348–2355.

C. Selmi, S.R. Ross, A.A. Ansari, P. Invernizzi, M. Podda, R.L. Coppel and M.E. Gershwin, Lack of immunological or molecular evidence for a role of mouse mammary tumor retrovirus in primary biliary cirrhosis, Gastroenterology 127 (2004), 493–501.

O. Barzilai, Y. Sherer, M. Ram, D. Izhaky, J.M. Anaya and Y. Shoenfeld, Epstein-Barr virus and cytomegalovirus in au-
to immune diseases: are they truly notorious? A preliminary report, *Ann N Y Acad Sci* **1108** (2007), 567–577.

[57] S.P. Fussey, J.G. Lindsay, C. Fuller, R.N. Perham, S. Dale, O.F. James, M.F. Bassendine and S.J. Yeaman, Autoantibodies in primary biliary cirrhosis: analysis of reactivity against eukaryotic and prokaryotic 2-oxo acid dehydrogenase complexes, *Hepatology* **13**(3) (1991), 467–474.

[58] C. Selmi and M.E. Gershwin, The role of environmental factors in primary biliary cirrhosis, *Trends Immunol* **30**(8) (2009), 415–420.

[59] N.R. Rose, Viral damage or 'molecular mimicry'—placing the blame in myocarditis, *Nat Med* **6**(6) (2000), 631–632.

[60] C. Selmi, C.A. Cocchi, M. Zuin and M.E. Gershwin, The chemical pathway to primary biliary cirrhosis, *Clin Rev Allergy Immunol* **36**(1) (2009), 23–29.

[61] S.F. Bruggraber, P.S. Leung, K. Amano, C. Quan, M.J. Kurth, M.H. Nantz, G.D. Benson, J. Van de Water, V. Luketic, T.E. Roche, A.A. Ansari, R.L. Coppell and M.E. Gershwin, Autoimmunity to lipoate and a conjugated form of lipoate in primary biliary cirrhosis, *Gastroenterology* **125**(6) (2003), 1705–1713.

[62] H.R. Walden, J.A. Kirby, S.J. Yeaman, J. Gray, D.E. Jones and J.M. Palmer, Xenobiotic incorporation into pyruvate dehydrogenase complex can occur via the exogenous lipoylation pathway, *Hepatology* **48**(6) (2008), 1874–1884.

[63] S.A. Long, C. Quan, J. Van de Water, M.H. Nantz, M.J. Kurth, D. Barsky, M.E. Colvin, K.S. Lam, R.L. Coppell, A. Ansari and M.E. Gershwin, Immunoreactivity of organic xenobiotics to the *E2* component of pyruvate dehydrogenase: connecting xenobiotoxins with primary biliary cirrhosis, *J Immunol* **167**(5) (2001), 2956–2963.

[64] P.S. Leung, C. Quan, O. Park, J. Van de Water, M.J. Kurth, M.H. Nantz, A.A. Ansari, R.L. Coppell, K.S. Lam and M.E. Gershwin, Immunization with a xenobiotic 6-bromohexanoate bovine serum albumin conjugate induces anti-mitochondrial antibodies, *J Immunol* **170**(10) (2003), 5326–5332.

[65] K. Amano, P.S. Leung, R. Rieger, C. Quan, X. Wang, J. Marik, Y.F. Suen, M.J. Kurth, M.H. Nantz, A.A. Ansari, K.S. Lam, M. Zeni, E. Matsuura, R.L. Coppell and M.E. Gershwin, Chemical xenobiotoxins and mitochondrial autoantigens in primary biliary cirrhosis: identification of antibodies against a common environmental, cosmetic, and food additive, 2-oxoacids, *J Immunol* **174**(9) (2005), 5874–5883.

[66] P.S. Leung, O. Park, K. Tsuneyama, M.J. Kurth, K.S. Lam, A.A. Ansari, R.L. Coppell and M.E. Gershwin, Induction of primary biliary cirrhosis in guinea pigs following chemical xenobiotoxin immunization, *J Immunol* **179**(4) (2007), 2651–2657.

[67] K. Wakabayashi, Z.X. Lian, P.S. Leung, Y. Moritoki, K. Tsuneyama, M.J. Kurth, K.S. Lam, K. Yoshida, G.X. Yang, T. Hibi, A.A. Ansari, W.M. Ridgway, R.L. Coppell, I.R. Mackay and M.E. Gershwin, Loss of tolerance in C57BL/6 mice to the autoantigen *E2* subunit of pyruvate dehydrogenase by a xenobiotoxin with ensuing biliary ductular disease, *Hepatology* **48**(2) (2008), 531–540.

[68] J. Irie, Y. Wu, L.S. Wicker, D. Rainbow, M.A. Nalesnik, R. Hirsch, L.B. Peterson, P.S. Leung, C. Cheng, I.R. Mackay, M.E. Gershwin and W.M. Ridgway, NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis, *J Exp Med* **203**(5) (2006), 1209–1219.

[69] K. Wakabayashi, Z.X. Lian, Y. Moritoki, R.Y. Lan, K. Tsuneyama, Y.H. Chuang, G.X. Yang, W. Ridgway, Y. Ueno, A.A. Ansari, R.L. Coppell, I.R. Mackay and M.E. Gershwin, Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotoxin with ensuing biliary ductular disease, *Hepatology* **48**(2) (2008), 531–540.

[70] S. Oertelt, Z.X. Lian, C.M. Cheng, Y.H. Chuang, K.A. Padgett, X.S. He, W.M. Ridgway, A.A. Ansari, R.L. Coppell, M.O. Li, R.A. Flavell, M. Kronenberg, I.R. Mackay and M.E. Gershwin, Anti-mitochondrial antibodies and primary biliary cirrhosis in TGFβ receptor II dominant-negative mice, *J Immunol* **177**(3) (Aug 2006), 1655–1660.