Research article

An integrated analysis of genes and pathways exhibiting metabolic differences between estrogen receptor positive breast cancer cells

Soma Mandal and James R Davie*

Address: Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Avenue, Winnipeg Manitoba, R3E 0V9, Canada

Email: Soma Mandal - mandals0@cc.umanitoba.ca; James R Davie* - davie@ms.umanitoba.ca

* Corresponding author

Abstract

Background: The sex hormone estrogen (E2) is pivotal to normal mammary gland growth and differentiation and in breast carcinogenesis. In this in silico study, we examined metabolic differences between ER(+)ve breast cancer cells during E2 deprivation.

Methods: Public repositories of SAGE and MA gene expression data generated from E2 deprived ER(+)ve breast cancer cell lines, MCF-7 and ZR75-1 were compared with normal breast tissue. We analyzed gene ontology (GO), enrichment, clustering, chromosome localization, and pathway profiles and performed multiple comparisons with cell lines and tumors with different ER status.

Results: In all GO terms, biological process (BP), molecular function (MF), and cellular component (CC), MCF-7 had higher gene utilization than ZR75-1. Various analyses showed a down-regulated immune function, an up-regulated protein (ZR75-1) and glucose metabolism (MCF-7). A greater percentage of 77 common genes localized to the q arm of all chromosomes, but in ZR75-1 chromosomes 11, 16, and 19 harbored more overexpressed genes. Despite differences in gene utilization (electron transport, proteasome, glycolysis/gluconeogenesis) and expression (ribosome) in both cells, there was an overall similarity of ZR75-1 with ER(-)ve cell lines and ER(+)ve/ER(-)ve breast tumors.

Conclusion: This study demonstrates integral metabolic differences may exist within the same cell subtype (luminal A) in representative ER(+)ve cell line models. Selectivity of gene and pathway usage for strategies such as energy requirement minimization, sugar utilization by ZR75-1 contrasted with MCF-7 cells, expressing genes whose protein products require ATP utilization. Such characteristics may impart aggressiveness to ZR75-1 and may be prognostic determinants of ER(+)ve breast tumors.

Background

Breast cancer among other diseases, is a major cause of mortality in women, worldwide. Phenotypic changes during breast cancer progression reflect aberrant gene expression and pathways supporting deregulated growth. Thus, it is crucial to understand the events of initiation, transfor-
ment/survival, and drug development. Parallel to gene
technology, the recently developed biocomputational
tools help to understand the biology of a condition by the
orderly arrangement of gene expression data.

The sex hormone E2 is pivotal to normal mammary gland
growth and differentiation and its effects are directly
related to the initiation and progression of breast cancer
[1]. Targets of E2 associated signaling pathways comprise
of several growth factors, growth factor receptors, extracel-
lular proteins, immediate-early genes, and cell cycle regu-
lators [2,3]. While many of these signaling molecules may
contribute to E2 mediated mammary carcinogenesis, induc-
tion of their genes alone cannot fully explain the
mitogenic effects of E2. Despite the identification of E2
targets by global gene expression studies, metabolic differ-
ences resulting from E2 deprivation of ER(+)ve breast can-
cer cells remain largely unexplored [4-6]. Pathways
operating in ER(+)ve breast cancer cells in their un-
induced state may be crucial determinants of downstream
E2 effects and hence needs to be addressed. In this in silico
study we used global gene expression data to perform bio-
computational analysis to examine genes and pathways
operating in E2 deprived luminal A type ER(+)ve breast
cancer cell lines, MCF-7 and ZR75-1 [7].

Methods
Data processing and statistical analysis of SAGE libraries
Public repositories of gene expression data obtained from
SAGE and MA were used in this study [8,9]. SAGE libraries
were generated from MCF-7 and ZR75-1 cells cultured in
phenol red free medium with charcoal stripped FBS; these
cells represented the 0 h time point (un-induced) of a E2
exposure time course experiment [4,10]. Breast cancer
cells were compared with the NBr library generated from
normal mammary cells purified from reduction mammo-
plasty tissue [11]. Raw sequences from SAGE libraries
were analyzed by the SAGE software 2000 (V4.5) and
extracted tags were compared between NBr and MCF-7
(NBr/MCF-7) and ZR75-1 (NBr/ZR75-1) (Table 1 lists the
SAGE libraries used) [12]. Due to the non-availability of
raw sequences of ZR75-1, data for this library were down-
loaded from NCBI [8]. We used Audic-Claverie, Fisher
and Chi square statistical tests (IDEG6 software) to com-
pare libraries [13]. Data files were annotated with the ref-
ERENCE library (MS Access), further verified with SAGEMap
 tool for library annotation, and also compared with Absolu-
tate Level Lister (SAGEMap). Using MS Access, we created
five files from two parent files (NBr/MCF-7 and NBr/
ZR75-1). These files were NBr/MCF-7 (366 genes), NBr/
ZR75-1 (367 genes), 77 common genes (MCF-7 and
ZR75-1), 289 genes specific to NBr/MCF-7, and 290 genes
specific to NBr/ZR75-1 respectively (Figure 1a). Regres-
sion analysis was performed to show the relationship
between common genes; chromosomal localization of
common genes was done using MAPviewer [8]. In addi-
tion, 263 differentially expressed genes identified within
the SAGE libraries (advanced query function, MS Access)
were arranged in a cluster by Tree View [14]. Genes whose
expression satisfied the significance (p ≤0.05) and fold
change criteria (≥5/≤-5, MCF-7/NBr or NBr/MCF-7 and
ZR75-1/NBr or NBr/ZR75-1) were used. To normalize for
interlibrary count differences, tag counts were converted
to tags per million (TPM) for fold change calculations.

To substantiate our findings in the cell lines, we did mul-
tiple comparisons using the 263 gene dataset. Compari-
sion with a basal-like ER(-)ve cell line MDA-MB-435
yielded 215 consensus genes, which were used for cluster
analysis. Comparison between MCF-7 (SAGE) and cycling
MCF-7 cells (MCF-7 NCI, cell isolate from NCI60 cell line
set; MA) yielded 115 consensus genes, which were com-
pared by regression analysis. Due to unavailability of
expression data in SAGE/MA databases for cycling ZR75-1
cells, we could not do such comparison. Finally, we also
compared cell lines and breast tumors (subtypes, ER(+)ve
luminal A and B, ER(-)ve basal tumors, MA database)
using gene set enrichment analysis (GSEA, V2.0) tool. Of
the 228 genes selected by this tool, 163 genes were con-
sensus. In all analyses, the MS Access advanced query
function and manual inspection were used to remove
duplicate genes. These files were used to create new files
with specific file format for each bioinformatics tool.

Table 1: A tabular summary of the publicly available SAGE libraries used for comparative analysis in this study

SAGE Libraries Used	No. of Total tags	No. of Unique tags
SAGE Breast normal epithelium AP NBr	50512	19190
SAGE Breast carcinoma CL ZR75-1 untreated	32303	3983
SAGE Breast carcinoma CL MCF-7 control 0 h	59877	15401
SAGE_Breast_carcinoma_CL_MDA435C	47270	20080

Total tags 189962 58654

MCF-7 and ZR75-1 cells were compared with NBr. A second comparison was made between MCF-7, ZR75-1, and MDA-MB-435 cells.
GO annotation, Pathway analysis and Gene Set Enrichment Analysis (GSEA)

Gene classification based on GO terms identifies gene families regulating a particular biological process (BP), molecular function (MF), and cellular component (CC). DAVID (V2.1), a multifunctional tool, annotates genes by functional classification and biochemical pathways [15]. Genes were annotated individually, for the common genes, and also for distinct clusters of differentially expressed genes. The pathway visualization tool, GenMAPP (V2.0) was used to visualize genes within pathways [16,17]. Up/down-regulated genes expressed in MCF-7/ZR75-1 were excluded from GenMAPP analysis unless they were above or below the fold change cutoff (with respect to NBr). To correlate the findings in cell lines with breast tumors, we used the gene enrichment tool, GSEA for five independently derived gene datasets (cell lines, tissues) [18].

Results

Gene utilization in the Gene Ontology (GO) terms and pathways and chromosomal gene localization in MCF-7 and ZR75-1 cells

ER(+)ve MCF-7 and ZR75-1 cells grown under E2 depleted conditions represent the un-induced state [4,10]. SAGE libraries from breast cancer cells were compared to
the NBr library (normal breast) and statistically significant genes were chosen by fold change and significance criteria [11]. GO analysis was performed at three levels. Genes expressed in MCF-7 and ZR75-1 cells, common genes (77 genes), and genes forming distinct cluster signatures (CS) were annotated to delineate individual, common, and collective similarities and differences with NBr.

Individual annotation of 355 genes (of 366, MCF-7) and 355 genes (of 367, ZR75-1) by DAVID showed that the percent of classified gene utilization within the GO terms, BP, MF, and CC was higher in MCF-7 relative to ZR75-1 cells, although there was a similarity in gene distribution pattern (Figure 1b, Table 2). For the known pathways, KEGG’s and BIOCARTEA, DAVID annotated 109 (30%) of 366 (MCF-7) and 88 (24%) of 367 genes (ZR75-1), which were distributed in various pathways (Figure 1c). Common utilized pathways included the ribosome, proteasome, insulin signaling, oxidative phosphorylation/electron transport, and glycolysis/gluconeogenesis, while specific pathways utilized by MCF-7 included MAPK, tight junction, Toll-like receptor signaling, and steroid biosynthesis respectively. ZR75-1 cells also used the pentose phosphate (HMS) and MTA-3 pathways (Tables 1a,1b, see additional file 1). The individual highest gene distribution was seen in the oxidative phosphorylation/electron transport but not in glycolysis/gluconeogenesis pathways (Figure 1c). Within the common genes however, there was decreased similarity in GO terms related to metabolism (for BP, glucose carbohydrate, glucose/hexose metabolism) and energy (oxidative phosphorylation, BP, NADH dehydrogenase and reductase activity, for MF, and mitochondrial electron transport chain, CC) (Figure 1d; see additional file 1, Table 1c).

Common genes had good correlation. More genes were up-regulated (66) compared to the down-regulated (9) ones and 2 genes had opposite expression (Figures 1, 2, see additional file 4). For the GO term BP, the highest gene distribution was seen in physiological, cellular and cellular physiological processes (~45–62%), followed by macromolecule metabolism and biosynthetic processes (~10–50%), while only 5–6% genes were used for sugar metabolism and protein folding. For MF, genes regulating catalytic and transporter activities were highest (19–32%) and 5–18% genes were in other categories. About 38–57% common genes constituted of the intracellular, organelle, membrane-bound organelle and cytoplasmic components (CC), 5–18% genes were distributed in other categories, including the mitochondrial electron transport chain (Figure 1d). Similarities being evident in physiological processes (BP), catalytic activity (MF), or the intracellular and organelle components (CC), there were differences in gene distribution within metabolic processes or protein folding (BP), in transporter activities and electron transport functions (MF), and in specific cellular compartmental components (CC). This indicated difference in common gene distribution within the GO terms (Figure 1d). For the up-regulated common genes, most genes (≥ 5) were localized to chromosomes 7, 11, 16, 17, 19, and 20. Chromosomes 11, 16 and 19 harbored genes with highest expression (mostly in ZR75-1). Chromosomes 1, 4, 5, 6, 8, 12, 14, and 17 harbored 9 down-regulated genes and chromosomes 7 and 19 harbored the 2 oppositely expressed genes (Figure 2; see additional file 2, Table 2).

Gene expression and GO show distinct cluster signatures (CS) in MCF-7 and ZR75-1

Based on differential expression patterns, genes forming distinct CSs were annotated for GO terms using Cluster and DAVID tools for 263 significant genes. We identified six distinct CSs (CS1-CS6), which correlated with genes distributed in pathways in both cell lines (Figure 3; also see Figure 1A a,b,c, additional file 3). Among other GO

Table 2: Gene distribution in the individual GO terms

	MCF-7	ZR75-1			
	No. of Genes	%	No. of Genes	%	
Process (BP)					
Physiological Process	238	65.0	Cellular Process	214	58.5
Cellular Process	232	63.4	Physiological Process	210	57.4
Cellular Physiological Process	217	59.3	Cellular Physiological Process	202	55.2
Metabolism	179	48.9	Metabolism	156	42.6
Function (MF)					
Catalytic Activity	109	29.8	Catalytic Activity	93	25.4
Protein Binding	55	15.0	Protein Binding	47	12.8
Hydrolase Activity	48	13.1	Transporter Activity	40	10.9
Transporter Activity	39	10.7	Hydrolase Activity	29	7.9
Component (CC)					
Cell	229	62.6	Cell	212	57.9
Intracellular	199	54.4	Intracellular	173	47.3
Organelle	174	47.5	Organelle	155	42.3
Membrane-bound Organelle	143	39.1	Membrane-bound Organelle	131	35.8

The distribution of genes within the individual GO terms was higher in MCF-7 cells compared to ZR75-1, though the pattern of gene distribution was similar. % denotes percentage of coverage.
Figure 2
Chromosomal localization of 77 common genes in MCF-7 and ZR75-1 cells. (a) Localization of 66 up-regulated genes, (b) localization of 9 down-regulated genes, and (c) localization of two oppositely expressed genes (also see Table 2, additional file 2). The number of hits (in red) represents the number of genes expressed in each chromosome (denoted in blue).
terms, the striking feature of CS1 was a marked down-regulation of genes controlling immune response, protein biosynthesis and macromolecule biosynthesis in MCF-7 and ZR75-1 as reflected in the process (BP) and function (MF) gene utilization. ZR75-1 cells mainly had elevated gene expression in CS2 for protein import (BP) and cytokine activity (MF); in addition, ZR75-1 cells also had elevated expression of genes involved in transport proc-

Figure 3
A cluster of 263 differentially expressed genes depicting distinct expression profiles of MCF-7, ZR75-1, and NBr. (a) These genes formed six distinct cluster signatures (CS) between the three SAGE libraries. Each row in the cluster corresponds to a SAGE library. Percent coverage of genes within the GO terms in each CS is shown lower to the cluster. In the cluster, intense red color correlates with high expression, black indicates low expression, green is negative expression, and grey is missing expression (genes and their corresponding Unigene IDs are shown in Figure 1A a, b, additional file 3). (b) Graphs highlighting the salient distribution of genes within each of the GO terms, biological process (BP), molecular function (MF), and cellular component (CC) in the six distinct CSs (a detailed distribution of genes within the GO terms in each CS is shown in Figure 1A c: CS1-CS6, additional file 3). DAVID did not classify any genes for CC in CS2.
expression data. ZR75-1 cells due to the unavailability of SAGE/MA gene
tional file 3) and were unable to compare with cycling
deprived and cycling MCF-7 cells (Figure 1C, see addi-
tional in the 115 consensus genes between the E2
7 (Figure 1Biii, see additional file 3). We found no corre-
down-regulation of luminal keratin 18 and NME1 in
MDA cells (Figure 1Bi, ii, see additional file 3). Also, the
regulation of some genes of the glycolytic pathway in the
electron transport chain (complex I, IV, V) and protein
genes, we found a down-regulated expression of genes of
[19]. Despite the heterogeneity among the consensus
1 with a highly aggressive ER(-)ve cell line MDA-MB-435
did a cluster of the 263 gene dataset of MCF-7 and ZR75-
to compare breast cancer cells with different ER status, we
To compare breast cancer cells with different ER status, we
did a cluster of the 263 gene dataset of MCF-7 and ZR75-
with a highly aggressive ER(-)ve cell line MDA-MB-435
[19]. Despite the heterogeneity among the consensus
genes, we found a down-regulated expression of genes of
the electron transport chain (complex I, IV, V) and protein
synthesis (genes expressing ribosomal proteins), and up-
regulation of some genes of the glycolytic pathway in the
MDA cells (Figure 1Bi, ii, see additional file 3). Also, the
down-regulation of luminal keratin 18 and NME1 in
MDA cells was similar to ZR75-1, but different from MCF-
7 (Figure 1Biii, see additional file 3). We found no corre-
lation in the 115 consensus genes between the E2
deprived and cycling MCF-7 cells (Figure 1C, see addi-
tional file 3) and were unable to compare with cycling
ZR75-1 cells due to the unavailability of SAGE/MA gene
expression data.

**Correlation of gene sets in MCF-7/ZR75-1 with breast
tumor tissues**

To correlate the results in MCF-7 and ZR75-1 cells to ER(+)ve (luminal A and B) and ER(-)ve basal breast tumor
issues, we compared eleven gene sets from pathways with
 distint differential gene expression by GSEA analysis.
Despite the differences in cell growth conditions (E2 depre-
dition), global gene expression techniques (SAGE, MA),
and tissue types (luminal and basal), as shown in the indi-
vidual heat maps, the compared pathways had almost
identical gene enrichment (given by the normalized
enrichment score, NES) and distribution, but different
gene expression between groups (Figure 4a,b; Figure 1D,
see additional file 3). Scores were highest for electron
transport chain, oxidative phosphorylation, and ATP syn-
thesis pathways in all groups; ZR75-1 cells resembled
breast tumors exhibiting low enrichment scores for glu-
cose/gluconeogenesis pathway. In contrast, MCF-7 cells
had higher gene enrichment for sugar metabolism, in
agreement with cluster analysis (CS6, Figure 3). The non-
enriched pathways mainly included breast cancer estrogen
gnaling, electron transporter activity, and proteo-
somal degradation in all groups; cell lines had a down-
regulated immune function and cell adhesion in contrast
to the tumor cells. Enrichment for Wnt signaling and
MTA-3 pathways was relatively identical in all groups.
Individual inspection showed that genes of the electron
transport chain were down-regulated in all groups, but to
a higher degree in tumors compared to cell lines, espe-
cially in basal-like tumor. Genes of the breast cancer estrogen
gnaling pathway were progressively down-regulated
from ZR75-1 to luminal B tumors and in basal tumors
there was a total absence of expression. This trend of gene
expression was also seen for immune function, Wnt sign-
aling, MTA-3, and cell adhesion pathways. A progressively
down-regulated gene expression from cell lines to tumors,
though heterogeneous, was seen in proteosome degrada-
tion and glucose/gluconeogenesis pathways (Figure 4).
While NES and gene expression were similar in luminal and basal tumors, there were differences in the genes expressed for pathways such as breast cancer estrogen sig-
naling, immune function, and electron transporter activ-
ity. This could be attributed to the heterogeneity of breast
tumors and to the limited number of consensus genes
chosen by the GSEA tool. Overall, ZR75-1 shared a trend
of similarity with tumors.

Energy production and sugar metabolism

Given the individual similarity of gene distribution for the
electron transport/oxidative phosphorylation pathways,
the percent utilization and the number of up-regulated
genomes (19 versus 17 genomes) was more in ZR75-1 than MCF-
7 (Figures 1c, 5). In complexes I and III, ZR75-1 up-regu-
lated more genes, and in complex IV, both cells up-regu-
lated 5 genes; among the 3 common genes, MCF-7 cells
had a higher expression of ATP5D. Gene utilization doubled in MCF-7 cells in complex V compared to ZR75-1 (4 and 2 genes). MCF-7 cells used ATP5A1, ATP5J (10.3 fold) and SLC25A5/ANT2 (adenine nucleotide translocator 2; 26.2 fold) in complex V. Glucose metabolism was higher in MCF-7 exhibiting a high glycolysis rate (CS6, Figures 3b, 6a) while ZR75-1 showed conservation (4 versus 7 genes). GAPDH, PGK1 and PGAM1 were common (Figure 6b); un-induced ZR75-1 highly expressed ALDOA and GAPDH, whereas E2 induces lower expression [8]. ZR75-1 cells preferably used the HMS pathway for glucose metabolism (Figure 6c). Besides MCF-7, ZR75-1 and all tumors had negative gene enrichment for sugar metabolism (Figure 4).

Ribosome pathway and the proteosomal degradation pathway
Though GO terms related to protein biosynthesis and metabolism was decreased in both cells relative to NBr (CS1), ZR75-1 had increased gene utilization relative to

Figure 4

Enriched Gene Sets for compared pathways operating in MCF-7 and ZR75-1 cells correlated to ER(+)ve and ER(-)ve breast tumor tissues. (a) Unclustered heat map of leading edge subsets in all five groups as analyzed by the GSEA. Rows represent gene sets and columns are genes. This matrix is not clustered, but shows the distribution of genes in each of the gene sets in MCF-7 and ZR75-1 cells in correlation to the ER(+)ve luminal (A and B) and ER(-)ve basal tumors. (b) Enriched gene sets as identified by the GSEA tool. The primary statistic denoting gene enrichment is given by the normalized enrichment score (NES), size is the number of genes in the gene set (in a few cases, the actual number of genes analyzed by the GSEA tool was different), NOM p-value is the nominal P value. For individual gene expression, refer to the cluster heat map (Figure 1D, additional file 3).
Figure 5
A GenMAPP view of energy production pathway in MCF-7 and ZR75-1 cells. Common genes are denoted by an* and significant genes with a fold change of ≥5 and ≤-5 were taken. Genes in the GO list were rearranged with GenMAPP to depict electron transport in (a) ZR75-1 and (b) MCF-7 cells.
MCF-7 cells (CS3, Figure 3). Comparison with other pathways showed that the ribosome pathway was distinct because all 9 genes were up-regulated in ZR75-1, versus all 12 down-regulated genes in MCF-7 (Figure 7). More genes, including the oppositely expressed common gene RPS16, were in the 60S, but not in the 40S subunit. In the proteosome pathway, besides more gene utilization, there was a difference in genes expressed by MCF-7 from ZR75-1 (Figures 1c, 8). MCF-7 cells selectively up-regulated 3 of 6 genes encoding for ATPase subunits (PSMC1, 5, 6) and a single non-ATPase subunit coding gene, PSMD2 in the 19S regulatory subunit versus none in ZR75-1 cells. A single gene (19S regulator, a part of the 26S complex) encoding the non-ATPase subunits were up-regulated in MCF-7 (p44S10/PSMD6) and ZR75-1 (PSMB8). In the alpha subunit (20S catalytic core), MCF-7 up-regulated 3 versus 2 genes by ZR75-1, and PSMA7 was common. In the beta subunit (20S catalytic core), ZR75-1 had a higher expres-
sion of PSMB6 (Figure 1Aa, see additional file 3) than MCF-7. MCF-7 also up-regulated PSMC5, which encodes for another ATPase subunit and down-regulated HLA-C (-8.7 fold, presentation by MHC class I) and lid associated RPN (-11.9 fold). ZR75-1 cells up-regulated H2FZ, which encodes for a histone family member protein. Comparison of the proteosome degradation pathway by GSEA analysis showed a low gene enrichment score for both cell lines and breast tumors (Figure 4). Of the 5 consensus genes, PSMD4 and PSMA7 were highly expressed in cell lines, but absent in tumors. High PSMB6 expression was ubiquitous, UBA52 was low to absent, and RPS27A expression was heterogeneous among the groups (Figure 1D, see additional file 3). In both cells, the fold change was <5 for PSMD4 and PSMB6 (compared to NBr).

Other individual and common pathways in MCF-7 and ZR75-1 cells

Some pathways operating in MCF-7 were MAPK, tight junction, TGF beta signaling, Wnt signaling, Toll like receptor, steroid biosynthesis and others (Figure 1c; see additional file 4, Table 1a and Figures 3, 4, 5). The Wnt signaling pathway showed a relatively high enrichment by GSEA analysis in MCF-7 cells similar to luminal and basal tumors, but not ZR75-1 cells (Figure 4). ZR75-1 cells highly expressed 4 genes (GAPD, ALDOA, HSPB1, MTA1) in the MTA-3 (BIOCARTA) pathway (Figure 1c; Table 1b, see additional file 1; Figure 6, see additional file 4) cells. However, GSEA analysis selected the HSPB1 gene only in the MTA-3 pathway for tumors and cell lines; the gene was down-regulated in luminal and basal tumors (Figure 1D, see additional data file 3). In the tight junction pathway claudin4 was significantly down-regulated in ZR75-1 while MCF-7 down-regulated TNIP1 (-7.5). Immune function was negatively enriched in both cell lines (GSEA). Both cells had the insulin signaling, focal adhesion and ATP synthesis pathways (Figure 1d; see additional file 1, Table 1).

Figure 7

The ribosome pathway in MCF-7 and ZR75-1 cells. (a) All 12 genes in this pathway were down-regulated (GenMAPP) in MCF-7. (b) In contrast, all the 9 genes were up-regulated in ZR75-1 cells. The only common gene (*) in the small subunit (40S) is RPS16, which was down-regulated (-23.7 fold) in MCF-7 and up-regulated (7.5 fold) in ZR75-1 cells. The up-regulated ribosomal genes in ZR75-1 indicate increased protein synthesis in these cells in contrast to MCF-7 cells (also refer to CS3, Figure 3b).
Discussion

In this in silico study, gene expression and enrichment analyses, pathways, and chromosomal localization of genes reflect integral metabolic differences between the two ER(+)ve luminal A type human breast cancer cell lines, MCF-7 and ZR73-1 cultured under E2 deprivation [4,10]. As this study is centered around two well-characterized cell lines, which share substantial global similarities in their transcriptomes with ER(+)ve breast tumors, we did multiple comparisons to demonstrate similarities and differences with cell lines and tumors with different ER status [20].

Comparison of gene expression of MCF-7 and ZR75-1 cells with basal-like ER(-)ve MDA-MB-435 cells or cycling MCF-7 cells indicates that differences may be a result of ER status, presence/absence of E2, or global gene expression techniques (SAGE, MA). Comparison with cycling MCF-7 cells showed opposite expression of certain genes (not shown), which indicates that gene expression is more likely a result of the presence/absence of E2 in the growth environment rather than the use of different gene expression techniques. When compared to the MDA-MB-435 cells, ZR75-1, but not MCF-7 cells, were found to share similarity in the selectivity of genes of electron transport for energy minimization. For genes related to breast cancer estrogen signaling, GSEA analysis showed a progressive down-regulation of keratin 18 and NME1 from luminal A to basal tumors, which also correlated with ER(+)ve MDA-MB-435 cells; low expression of these genes correlates to poor prognosis and metastasis [21,22]. ZR75-1 cells also have a low expression of these genes, indicating a similarity towards the ER(-)ve phenotype. The MDA cells differed from ZR75-1 cells in having a down-regulated expression of protein synthesis genes and an up-regulation of glycolytic genes; however, down-regulation of glycolysis has been observed in a highly aggressive S100A7 transfected MDA-MB-231 cells [23]. While these differences may be attributed to a different ER status, it is evident that ZR75-1 cells exhibit some characteristics of the ER(-)ve phenotype. Comparison by GSEA showed that all the compared pathways were present in both cell lines, however, ZR75-1 had a greater overall similarity with luminal and basal tumors among the consensus genes.

![Figure 8](http://www.biomedcentral.com/1471-2407/7/181)

Figure 8: The proteosomal degradation pathway. The pathway in (a) MCF-7 and (b) ZR75-1 cells. MCF-7 cells had a higher gene usage and selected genes which encode for the ATPase subunit proteins in the 19S regulator (PSMC1, PSMC5, PSMC6), versus no change in ZR75-1 cells. PSMA7 (alpha subunit, 20S catalytic core) was the only common gene with an identical fold change. The histone family member protein encoding gene, H2FZ was up-regulated in ZR75-1 cells.
An interesting facet in these cell lines was the disproportionate contribution of some chromosomes, such as 11, 16, and 19, harboring some of the highly up-regulated common genes. Some of these genes are involved in metal ion binding (PPP1CA), electron carrier and transport activity (CYBA), ATP binding and nucleotide synthesis (NME3), oxidative phosphorylation (NDUFA3), and electron transport (COX6B1) as annotated by DAVID. Interestingly, except for COX6B1, all 3 genes (CYBA, NME3, NDUFA3) were highly up-regulated in ZR75-1 indicative of efficient energy utilization. We found that 67–68% of the common genes were localized to the long arm q in all chromosomes, among which chromosomes 11, 16, and 19 expressed most genes. The amplification and co-amplification with other chromosomes of 11q13 region of chromosome 11 is relatively frequent in breast tumors and overexpression of CCND1 (cyclin D1) and PPP1CA is also seen [24,25]. In the q arm in chromosome 11, CCND1, PPP1CA and 5 other genes contributed to 71% of genes expressed in this chromosome (Table 2, see additional file 2). Chromosome 16q suffers frequent loss of heterozygosity (LOH) in sporadic breast cancer; it expresses a significant list of genes which negatively relate to recurrence-free breast cancer survival [26,27]. Chromosome 19, on the other hand, suffers frequent LOH in its short arm p, which may cause de-regulated expression of more genes in the p arm (this study) [28]. In ZR75-1, some up/down-regulated genes in other chromosomes regulating critical functions such as lipid utilization and binding (FASN, StarD10; chromosomes 17 and 11), ion transport (ATOX1, chromosome 5), and cell survival (HSPB1, NF-kB; chromosomes 7, 14) may also impart aggressiveness to these cells [5,29-32]. Interestingly, FASN, StarD10, HSPB1, NF-kB were down-regulated in MDA-MB-435 cells, constituting a major difference with these ER(+)ve cells. HSPB1, a component of multiple pathways, was also down-regulated in all breast tumors.

Individual GO and CS GO (CS6) showed prominence for glucose metabolism in MCF-7 cells. ZR75-1 cells used the HMS pathway to generate NADPH, which maintains glutathione in a reduced state. Reduced glutathione protects the intracellular sulfhydryl groups to preserve cellular integrity from oxidative stress in cancer and may be protective to the ZR75-1 cells [33]. MCF-7 cells, unlike ZR75-1 and breast tumors, had a high glycolytic rate, which correlated with a high expression of SLC25A5/ANT2 (Complex V, electron transport chain). SLC25A5 imports glycolytic ATP into mitochondria and the overexpressed gene promotes aggressiveness, cell survival, and arrests cell proliferation when inhibited [34]. Increased expression of ANT2 may be a feature of ER(+)ve breast tumors with a high glycolytic rate (as MCF-7), and absence of ANT2 expression in ZR75-1 supports this notion. In the cell lines, gene utilization in the electron transport chain was similar in the common genes (Complex I-IV) although the usage of COXc subunits (Complex IV) and a higher F1 gene utilization (Complex V) was different in MCF-7 cells. F1 genes encode for mitochondrial ATP synthase subunits, which was consistent with the moderately increased expression of ATP5D in ZR75-1 cells. In cell lines and tumors, the electron transport chain/oxidative phosphorylation pathway had the highest individual gene utilization and enrichment, although there was decreased gene similarity in the energy associated GO terms. Given the dissimilarity of the growth conditions of study for cell lines (E2 deprivation) with tumors, we found differences in the individual gene expression of complexes I, IV, and V respectively. Negative gene enrichment and a progressive down-regulation (total absence of expression in basal tumors) of genes of the electron transporter pathway from MCF-7 to tumors (lower in ZR75-1 than MCF-7, CS4) indicate a common energy conservation strategy.

In contrast to energy conservation, ZR75-1 cells demonstrated elaborate protein synthesis mechanisms (ribosome pathways, CS3). These cells have an increased ribosomal gene expression, constituting a major difference with the MCF-7 cells. Notably, the only common up-regulated gene, RPS16 in ZR75-1 (down-regulated in MCF-7) correlates with its overexpression in breast, colon, prostate, liver, and pancreatic tumors [35,36]. The increased ribosomal gene expression (and protein synthesis) as seen in ZR75-1 cells, is a feature of invasive and metastatic breast cancers but not in situ cancers [6]. In the proteosome pathway, MCF-7 selectively up-regulated more genes encoding for ATPase subunits (PSMC1, 5, 6) than the non-ATPase subunit coding genes (PSMD2) in contrast to none by the ZR75-1 cells. The up-regulation of only p44S10/PSMD6 (19S non-ATPase subunit) by MCF-7 is of significance as the encoded protein subunit possesses ATPase activity and ATP-dependent proteolytic function and has been shown to have increased copy number in cutaneous cancers and MCF-7 cells [37]. In contrast, ZR75-1 up-regulated PSMD8, whose protein has a non-ATP-dependent proteolytic activity [38]. PSMA7, the gene expressed in common in MCF-7 and ZR75-1, encodes for the core alpha subunit regulating the transcription factor hypoxia-inducible factor-1α, which produces hypoxic responses in breast tumors [39]; however, the absence of PSMA7 expression in luminal and basal tumors may be indicative of either a heterogeneity of expression in breast tumors or its specific expression in E2 deprivation. This is also true of PSMD4 whose expression was absent in tumors, but high in cell lines. Interestingly, the expression of the ubiquitin (Ub) gene UBA52, whose protein is a part of the proteosome/Ub complex, was low to undetectable in all groups. This indicates down-regulated ATP-dependent degradation of Ub-conjugated proteins in breast tumors; this was in contrast with an
increased ATP/Ub-dependent protein degradation in renal cancer [40]. However, cell lines and tumors had an up-regulated expression of PSMB6, whose protein is also involved in ubiquitin-dependent protein catabolism. The reason for choice of PSMB6 is unclear in breast cell/tumor, but high expression is also found in thyroid cancer although not much is known about its role in carcinogenesis [41]. The highly up-regulated gene PSMA4 in MCF-7, encoding for an immunoproteasome, is involved in the processing of class I MHC peptides (HLA-C was down-regulated in MCF-7) and possesses threonine endopeptidase activity. RPN1 (lid subunit) mediates ubiquitin-like domain binding to this proteasome for protein amino acid glycosylation [42]. Down-regulated RPN1 agrees with decreased protein synthesis (and hence post-translational modification) in MCF-7 (ribosome pathway). Interestingly, ZR75-1 cells highly up-regulated H2AFZ (proteasome pathway), a member of the histone H2A family and a replication-independent gene [43]. Lack of H2AFZ is lethal in mouse embryos, hence this gene may be protective in E2 deprivation for the ZR75-1 cells [44].

MCF-7 cells also mobilized other pathways such as MAPK, tight junction, TGFβ signaling, Wnt, and shared common pathways as insulin and focal adhesion signaling pathways with ZR75-1. The MAPK pathway is active in breast and other cancers, and it also activates other pathways such as the insulin receptors/insulin-like growth factor receptors (IGFR) pathway [45]. The insulin signaling pathway influences breast tumor growth, proliferation, transformation and survival [46]. Moreover, IGF can activate the ER through the Ras-MAPK pathway and enhance its transcriptional potential without E2 binding [47]. α-Catenin/CTNNB1 belongs to the E-cadherin-catenin family of adhesion molecules, and it is a key regulator of the Wnt signaling pathway (and TGFβ signaling pathway). CTNNB1 links the β/γ-catenin-cadherin complex to the cytoskeleton to make a functional E-cadherin complex. Abnormal E-cadherin and CTNNB1 positively correlates with high grade ductal carcinomas, lymph node metastasis and poor survival [48]. The down-regulated expression of the transcription factors STAT3 and JUN in the TGFβ signaling/Wnt pathway indicates a repression of gene expression of the un-induced MCF-7 cells. P120 catenin or CTNND1 also belongs to the E-cadherin complex. Immunodetectable diffuse cytoplasmic localization of CTNND1 is found in lobular carcinoma, whereas ductal breast carcinoma retains the dominant membrane immunostaining pattern [49]. In our GSEA analysis, we found that CTNND1 was ubiquitously expressed in all breast tumors and MCF-7 and ZR75-1 cells, which made it hard to discriminate the relation of this gene in the cell lines in the light of breast tumors we examined. Immunostaining experiments may discriminate this relationship with precision. Other low expressing genes included ZYX and RAC1 (cell lines) and DSCAM expression was absent in tumors. The expression of claudin4, a tight junction protein, is highly down-regulated in MCF-7 (-92.5 fold), which correlates with weak or absence of expression in grade 1 invasive carcinomas compared to benign breast epithelia and normal breast [8,50]. Claudin4 protein potently inhibits invasion and metastasis in pancreatic cancer cells and therefore a weak/absence of expression in these invasive cell lines is likely [51]. As seen in invasive and metastatic tumors, MCF-7 cells highly expressed Rab13 [6].

Compared to MCF-7 and tumors, GSEA gave a higher enrichment score for ZR75-1 cells for the ER regulated MTA-3 pathway, although GSEA predicted the expression of only one consensus gene, HSPB1 (Hsp27). In this pathway, as annotated by DAVID, ZR75-1 also had an up-regulated expression of MTA1, ALDOA, and GAPDH. Besides the MTA-3 pathway (ZR75-1), HSPB1, an ATP-independent chaperone with the hsp20-like chaperonedomain, operates in multiple pathways like the breast cancer estrogen signaling pathway (MCF-7, ZR75-1). Functionally, HSPB1 inhibits heat shock-induced cellular protein synthesis, increases cell survival, and is a crucial component of oncopogenic pathways and it may thus be preferred by ZR75-1 [31]. The MTA proteins, MTA1-3 are components of chromatin remodeling pathways [52]. These proteins form a repressive chromatin complex shutting down the expression of target genes; expression of MTA proteins also increases the risk of cancer susceptibility and may render aggressiveness to the ZR75-1 cells [53]. In the retroviral genome replication pathway (not shown), MCF-7 suppressed TNIP1 (-7.5), but ZR75-1 cells exhibit a greater immune suppression by significantly down-regulating IL8 (-43.5). This agreed with a lesser enrichment score for immune function in ZR75-1 cells compared to MCF-7, a characteristic seen in the aggressive ER(-)ve breast cancer cells and in basal tumors (this study) [23]. On the other hand, MCF-7 cells may gain survival advantage by greater mobilization of the focal adhesion pathway [54].

Relating gene expression to clinical outcome is crucial in understanding the diversity of breast tumors. Clinically, patients with ER(+)-ve tumors have a favorable prognosis, even though E2 is a powerful mitogen in receptor-positive cells. However, even patients within the ER(+)-ve subtype have a different outcome; patients with luminal A subtype ER(+)-ve tumors have a better prognosis and relapse-free survival compared to those with luminal B or C type [55]. This in silico study is of significance and is translatable to human biology as the evidence presented here shows that differences exist between breast cancer cells with similar ER status (luminal A type) and also for the recent finding that MCF-7 or ZR75-1 cell lines are good models to identify important molecular events of ER(+)-ve breast tumors.
Multidirectional computational analyses in cell line models may thus reflect tumor characteristics which are of importance in predicting patient outcomes even within a narrow subset of tumors (example luminal A subtype).

Conclusion

This study shows that ZR75-1 cells selectively use genes for energy, protein synthesis and sugar metabolism and other pathways differently from the MCF-7 cells. ZR75-1 cells share characteristics of ER(−)-ve breast tumors and cells in certain respects, such as energy minimization and sugar requirements. The specific use of pathways (HMS, ribosome, MTA-3), their down-regulation (immune function), and gene utilization (FASN, STARD10, HSPB1, H2FZ, keratin 18, NME1), probably impart more aggressiveness to the ZR75-1 than MCF-7. Salient differences in these ER(−)-ve breast cancer cells require further testing, nevertheless, they may be decisive determinants of treatment outcome and prognosis of ER(−)-ve breast tumors.

Abbreviations

SAGE = serial analysis of gene expression, Microarray = Affymetrix GeneChip MA; GenMAPP = Gene MA Pathway Profiler, DAVID = Database for Annotation, visualization, and integrated Discovery, GSEA = gene set enrichment analysis.

Competing interests

The author(s) declare that they have no competing interests.

Authors’ contributions

JRD and SM conceived the study. SM conceived the study design, performed biocomputational analysis, data interpretation, and wrote the manuscript. JRD critically reviewed the manuscript, supervised the study and provided funding. Both authors read and approved the final manuscript.

Additional material

Additional file 1* The data represents the distribution of individual genes and genes common to both breast cancer cell lines, MCF-7 and ZR75-1 in the major pathways. Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2407-7-181-S1.xls]

Additional file 2* The localization of common genes in the chromosomes for the breast cancer cell lines, MCF-7 and ZR75-1. Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2407-7-181-S2.xls]

Additional file 3* Illustration of the expression profiles showing the relatedness of gene signatures between mutual cell lines, MCF-7 and ZR75-1, between MCF-7, ZR75-1, and MDA-MB-435, and between MCF-7, ZR75-1, and breast tumors (Figures 1A–1D). Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2407-7-181-S3.pdf]

Additional file 4* A representation of the relationship between common genes in both breast cancer cell lines, MCF-7 and ZR75-1. Depiction of some pathways operating in individual cell lines (Figures 1, 2, 3, 4, 5, 6). Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2407-7-181-S4.pdf]

Acknowledgements

This work was supported by a grant from the Canadian Breast Cancer Foundation to JRD. CancerCare Manitoba Foundation is acknowledged for a postdoctoral fellowship to SM.

References

1. Gruber CJ, Tschugguel W, Schneeberger C, Huber JC: Production and actions of estrogens. N Engl J Med 2002, 346:340-352.
2. De CA, Favoni RE: Oestrogen/growth factor cross-talk in breast carcinoma: a specific target for novel antiestrogens. Trends Pharmacol Sci 1997, 18:245-251.
3. Kazzenellenbogen BS, Montano MM, Ekanu K, Herman ME, McNerney EM: William L. McGuire Memorial Lecture. Antiestrogens: mechanisms of action and resistance in breast cancer. Breast Cancer Res Treat 1997, 44:23-38.
4. Seth P, Krop I, Porter D, Polyak K: Novel estrogen and tamoxifen induced genes identified by SAGE (Serial Analysis of Gene Expression). Oncogene 2002, 21:836-843.
5. Porter D, Lahti-Domenici J, Keshaviah A, Bae YK, Argani P, Marks J, Richardson A, Cooper A, Strausberg R, Riggins GJ, Schnitl S, Gabrielson E, Gelman R, Polyak K: Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res 2003, 1:362-375.
6. Abba MC, Hu Y, Sun H, Drake JA, Gaddis S, Baggery K, Sahin A, Aldaz CM: Gene expression signature of estrogen receptor alpha status in breast cancer. BMC Genomics 2005, 6:37.
7. Jonsson G, Staal J, Olsson E, Heidenblad M, Vallon-Christersson J, Osogawa K, de JP, Oredsson S, Ringner M, Hoglund M, Borg A: High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization. Genes Chromosomes Cancer 2007, 46:543-558.
8. [2007] [http://cgap.nih.gov].
9. 2007 [http://omd.stanford.edu].
10. Charpentier AH, Bednarek AK, Daniel RL, Hawkins KA, Laffin KJ, Gaddis S, MacLeod MC, Aldaz CM: Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res 2000, 60:5977-5983.
11. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K: Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004, 6:17-32.
12. Velscelucau VE, Zhang L, Vogelstein B, Kinzler KW: Serial analysis of gene expression. Science 1995, 270:484-487.
13. Romualdi C, Bartoluzzi S, D’Alessi F, Danieli GA: IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics 2003, 12:159-162.
14. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998, 95:14863-14868.
31. Cuesta R, Laroia G, Schneider RJ: GenoMAPP: a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 2002, 31:19-20.

32. Donger SW, Salomonis N, Vranizan K, Lawlor SC, Conklin BR: GenMAPPfinder: using Gene Ontology and GenoMAPP to create a global gene-expression profile from microarray data. Genome Biol 2003, 4:R7.

33. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005, 102(4):15545-15550.

34. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integration Discovery. Genome Biol 2003, 4:R51.

35. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Galb Donger SW, Salomonis N, Vranizan K, Lawlor SC, Conklin BR: GenMAPPfinder: using Gene Ontology and GenoMAPP to create a global gene-expression profile from microarray data. Genome Biol 2003, 4:R7.

36. Phillips KK, Welch DR, Miele ME, Lee JH, Wei L, Weissman BE: Suppression of MDA-MB-435 breast carcinoma cell metastasis following the introduction of human chromosome 11. Cancer Res 1996, 56:1222-1227.

37. Zhu Y, Wang A, Liu MC, Zwart A, Lee RY, Gallagher A, Wang Y, Miller WR, Dixon JM, Clarke R: Gene regulation during heat shock by binding eIF4G and facilitation of scanning ribosomal protein phosphatase 1alpha in human breast tumors and breast cancer cell lines share similarities in their transcriptome data structures. Int J Oncol 2006, 29:1581-1589.

38. Leiterseder A, Sircoulomb F, Ginestier C, Cervera N, Monville F, Gelsi-Boyer V, Esterni B, Geneix J, Finetti P, Zemmour C, Viois P, Charafe-Jauffret E, Jacquemier J, Birimbaum D, Chaffanet M: Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. Genes Chromosomes Cancer 2004, 39:46-57.

39. Komorowski LA, Gakiopoulou-Givalou H, Karayiannakis AJ, Giannopoulou I, Keramopoulos P, Dafaris P, Pignattelli M: Abnormal alpha-catenin expression in invasive breast cancer correlates with poor patient survival. Histopathology 2002, 40:536-546.

40. Cobban RL, Espino PS, Druzin B, He S, Davie JR: The Ras-MAPK signal transduction pathway, cancer and chromatin remodelling. Biochim Cell Biol 2005, 83:11-14.

41. Sandoval KL, Espino PS, Druzin B, He S, Davie JR: The Ras-MAPK signal transduction pathway, cancer and chromatin remodelling. Biochim Cell Biol 2005, 83:11-14.

42. Periaswamy AL, Hoffman P, Pomorski T, Armes J, Simpson RJ, Kemp BE, Lindeman GJ, Visvader JE: The phosphoprotein Star1D0 is overexpressed in breast cancer and cooperates with ErbB receptors in cellular transformation. Cancer Res 2004, 64:3538-3544.

43. Lass SC, Koeller DM, Kaler SG: Genomic organization of ATOX1, a human copper chaperone. BMC Genet 2003, 4:14.

44. Cuesta R, Laroia G, Schneider RJ: Chaperone hsp27 inhibits translation during heat shock by blocking elf1-4G and facilitating dissociation of cap-initiation complexes. Genes Dev 2000, 14:1463-1470.

45. Zhao R, Jiang J, Wang H, Qu C, Li Y, He S, Zou H, Zeng Y, Liu Y, Shi C, Li Y, Pan J, Ren AE: Interactions of the BRCA1 C-terminal domain with DNA-binding proteins. Mol Cell Biol 2005, 25:1943-1952.

46. Hsieh TC, Wijeratne EK, Liang YT, Gunatilaka AL, Wu JM: Differential control of growth, cell cycle progression, and expression of NF-kappB in human breast cancer cells MCF-7, MCF-10A, and MDA-MB-231 by poncicidin and oridonin, diterpenoids from the Chinese herb Rabdosia rubescens. Biochem Biophys Res Commun 2005, 337:224-231.

47. Krone CA, Ely JT: Controlling hyperglycemia as an adjunct to cancer therapy. Integr Cancer Ther 2005, 4:25-31.
Tumor-necrosis factor: defective IL6 expression in mammary carcinoma. Int J Cancer 1993, 55:926-930.

55. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de RM, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein LP, Borresen-Dale AL: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001, 98:10869-10874.

Pre-publication history
The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-2407/7/181/prepub