Exchange rate pass-through in the Caucasus and Central Asia

Tigran Poghosyan

Middle East and Central Asia Department, International Monetary Fund, Washington, DC, USA

ABSTRACT
This article estimates the extent and speed of exchange rate pass-through (ERPT) in seven Caucasus and Central Asia (CCA) countries using monthly data over the January 1995–May 2020 period. The estimations are performed using the local projections method. We find that the average pass-through in the CCA is about 10% on impact and about 25% after 12 months. There is no evidence of asymmetric ERPT with respect to the size and the sign of exchange rate changes. The pass-through is broadly unchanged in fixed versus floating exchange rate regimes. There has been a downward shift in the speed of ERPT in the aftermath of the global financial crisis as CCA countries have entered a relatively low inflation environment. The pass-through estimates could be used by the CCA monetary authorities for inflation projections. The absence of nonlinearities in the pass-through with respect to the exchange rate regime suggests that transition from fixed to floating exchange rate regimes in the region is not likely to impose additional inflationary costs.

1. Introduction
The degree to which exchange rate changes are transmitted to inflation has been at the center of policy discussions in many countries, including in the Caucasus and Central Asia (CCA). High speed of exchange rate pass-through (ERPT) is one of the key reasons behind the ‘fear of floating’ that many emerging and low-income countries experience (Calvo and Reinhart 2002). In addition, the pass-through helps better understand the extent of expenditure switching (substitution between foreign and domestic goods) in response to exchange rate changes (Burstein and Gopinath 2014). Therefore, measuring the speed of ERPT for different projection horizons has important implications for monetary policy.

This article assesses the speed of ERPT in seven CCA countries.¹ The estimations are performed using monthly data for the period January 1995–May 2020. Following an established literature on the topic, we use the local projections method to measure the pass-through. In addition to the linear pass-through, we also assess whether there are any nonlinearities or asymmetric effects associated with the size of exchange rate changes.
changes, the sign of exchange rate changes, the exchange rate regime, structural differences between energy-exporting and energy-importing countries, and whether the pass-through has changed in the aftermath of the global financial crisis.

We find that the average speed of the pass-through in the CCA is about 10% on impact and about 25% after 12 months. The average pass-through in the CCA countries is somewhat higher than the pass-through in the CIS countries (Comunale and Simola 2018) and 28 emerging economies (Caselli and Roitman 2016), but it is lower compared to the pass-through in Sub-Saharan Africa countries (Razafimahefa 2012). The pass-through is somewhat higher in CCA energy-importing countries compared to CCA energy-exporting countries, which could be explained by structural differences across these countries (economic diversification, reliance on remittances, proportion of imported goods in CPI baskets).

We find no evidence of asymmetric pass-through with respect to the size and the sign of exchange rate changes. Also, the pass-through is broadly unchanged in fixed versus floating exchange rate regimes. The pass-through has been higher before the global financial crisis (13% on impact and 35% after 12 months) compared to the post-crisis period (8% on impact and 20% after 12 months) and this difference is statistically significant. The latter finding is consistent with the evidence that the pass-through tends to be lower in a low inflation environment.

The remainder of the article is structured as follows. Section 2 provides an overview of the literature. Section 3 discusses the data and stylized facts. Section 4 presents the empirical specification, estimation results and robustness checks. The last section concludes.

2. Literature review

There is a burgeoning empirical literature on ERPT in emerging and low-income countries (Aron, Macdonald, and Muellbauer 2014; Burstein and Gopinath 2014 provide exhaustive surveys). Early research on pass-through focused on transmission of exchange rate changes to local currency prices of imported goods. Most recently, the focus shifted to the transmission of exchange rate changes to the general price level in the economy, such as consumer prices. Changes in import prices triggered by exchange rate movements can transmit to consumer prices directly (through imported goods in the consumption basket) and indirectly (through imported inputs to domestically produced goods). In terms of the exchange rate variable, some studies have used the local currency exchange rate vis-à-vis the US dollar, while others have used the nominal effective exchange rate.

The speed of ERPT depends on the pricing strategy of importers. One extreme is the local currency pricing strategy, according to which the local currency prices of imported goods remain broadly unchanged irrespective of exchange rate movements. Under this strategy, ERPT = 0 as importers take on the exchange rate risk and adjust their margins in response to exchange rate fluctuations. Another extreme is the producer currency pricing strategy, according to which the foreign currency prices of imported goods remain broadly unchanged in response to exchange rate movements. Under this strategy, ERPT = 1 as importers fully pass-through exchange rate changes.
to consumers, who ultimately bear the exchange rate risk. In practice, the pass-through is often *incomplete* and is estimated somewhere in between 0 and 1. Various explanations were provided in the literature in support of the incomplete pass-through, including expenditure switching, market segmentation, imperfect competition, nominal price rigidities and menu costs (Aron, Macdonald, and Muellbauer 2014).

Several hypotheses have been tested and stylized facts established in the literature (Table 1). There is a consensus in the literature that the speed of pass-through tends to be larger in emerging and low-income countries compared to advanced economies (Jasova, Moessner, and Takats 2019; Taylor 2000). This is in part explained by the fact that the level of inflation in advanced economies has been generally lower than that of emerging and low-income countries and, as shown empirically by Choudhri and Hakura (2006), there is a causal link between a low inflation environment and lower pass-through. Other explanations are related to: (i) the larger share of imported goods in the consumption baskets of emerging and low-income countries, (ii) the higher exposure of emerging and low-income countries to terms of trade shocks and (iii) the lack of exchange rate hedging instruments in emerging and low-income countries.

Some studies have analyzed possible nonlinearities and asymmetries in the pass-through. The pass-through may vary with the *size of exchange rate movements*, with smaller exchange rate changes producing a different proportionate response of consumer prices compared to larger changes. Size asymmetries may result from menu costs associated with changing prices: importers may absorb small exchange rate changes in their margins but pass through larger changes exceeding a certain threshold to consumers. The evidence on size asymmetries is mixed. For instance, Ben Cheikh (2012) for 12 euro area countries, Caselli and Roitman (2016) for 28 emerging markets, Kilic (2016) for six OECD countries, Comunale and Simola (2018) for seven CIS countries and Jasova, Moessner, and Takats (2019) for 22 emerging markets and 11 advanced economies find that the pass-through is higher for larger exchange rate movements, while Bussiere (2013) for G7 countries finds that the pass-through is lower for larger exchange rate movements.

The pass-through may also vary with the *sign of exchange rate movements*, with exchange rate depreciations producing a different proportionate response of consumer prices compared to exchange rate appreciations. In relatively more competitive markets, the pass-through may be higher for appreciations compared to depreciations: importers may reduce margins when local currency depreciates to stabilize the local price but keep margins unchanged when local currency appreciates. This is because reducing prices is more feasible than raising them in the presence of competition. By contrast, in relatively less competitive/segmented markets the pass-through may be higher for depreciations compared to appreciations: importers may fully pass through higher costs to consumers when the local currency depreciates but increase their margins and keep local prices unchanged when the local currency appreciates. The evidence on sign asymmetries is mixed. While Bussiere (2013) for G7 countries and Colavecchio and Rubene (2020) for 19 euro area countries find that the pass-through is higher for exchange rate appreciations, Delatte and Lopez-Villavicencio (2012) for four major developed countries and Caselli and Roitman (2016) for 28 emerging
Table 1. Summary of selected exchange rate pass-through studies.

Study	Sample	Methodology	Exchange rate pass-through	Nonlinearity/Asymmetric pass-through
Barhoumi (2006)	24 developing countries, 1980–2003(A).	Pooled Mean Group (PMG) estimator.	ERPT = 0.77–0.82 on average in the long-run.	Lower ERPT for flexible regimes.
Beirne and Bijsterbosch (2011)	Nine Central and Eastern European countries, 1995–2008(Q).	Contegated Vector Autoregression (CVAR).	ERPT = 0.5–0.6 on average in the long-run.	Lower ERPT for flexible regimes.
Ben Cheikh (2012)	12 euro area countries, 1975–2010(Q).	Logistic Smooth Transition Model.	ERPT = 0.04–0.19 (depending on a country) in the short-run.	Higher ERPT for larger ER changes (threshold is estimated). Mixed evidence: for some countries higher ERPT for larger ER appreciations, the opposite holds for others.
Bussiere (2013)	G7 countries, 1980–2006(Q).	Panel OLS.	ERPT = 0.27 for export prices and 0.35 for import prices in the long-run.	Lower ERPT for larger ER depreciations (import prices). Higher ERPT for appreciations (export and import prices).
Caselli and Roitman (2016)	28 emerging markets, 1991–2014(M).	Local projections.	ERPT = 0.2 after 2 years.	Higher ERPT for larger ER depreciations (10 or 20%). Lower ERPT for appreciations. Lower ERPT for flexible regimes (under IT).
Colavecchio and Rubene (2020)	19 euro area countries, 1997–2019(Q).	Local projections.	ERPT = 0.04 after 2 years.	Higher ERPT for larger ER depreciations (2.3%). Higher ERPT for appreciations. No evidence for asymmetric sign effects.
Comunale and Simola (2018)	Seven Commonwealth of Independent States countries, 1999–2014(Q).	Mean group estimator corrected for cross-sectional dependence.	ERPT = 0.09–0.13 after 1 year.	Higher ERPT for larger ER depreciations (2%).
Delatte and Lopez-Villavicencio (2012)	Four major developed countries, 1980–2009(Q).	Autoregressive Distributed Lag Model (ARDL).	ERPT = 0.07–0.46 (depending on a country) in the long-run.	Higher ERPT for larger ER depreciations.
Ito and Saito (2008)	Five East Asian countries, 1994–2006(M).	Vector Autoregression (VAR).	ERPT = 0.03–0.41 (depending on a country) after 2 years. Higher ERPT for larger ER depreciations.	
Jasova, Moessner, and Takats (2019)	22 EMs and 11 AEs, 1994–2017(Q).	Panel OLS with fixed effects.	ERPT is lower in AEs compared to EMs, ERPT has been declining in EMs over time. Higher ERPT for larger ER depreciations.	
Kilic (2016)	Six OECD countries, 1975–2010(Q).	Logistic Smooth Transition Model.	ERPT = 0.42–0.91 for import prices (depending on a country) in the long-run.	Higher ERPT for larger ER depreciations (threshold is estimated). Higher ERPT for flexible regimes.
Kohlscheen (2010)	Eight emerging economies, 1995–2008(M).	Vector Autoregression (VAR).	ERPT = 0.09–0.59 (depending on a country) after 1 year.	Higher ERPT for flexible regimes.
Razafimahafa (2012)	Sub-Saharan Africa region, 1985–2008(Q).	Dynamic panel OLS.	ERPT = 0.4 (on average) after 1 year.	Lower ERPT for flexible regimes.

Note: M: monthly; Q: quarterly; A: annual; ERPT: exchange rate pass-through; ER: exchange rate; IT: inflation targeting; EM: emerging markets; AE: advanced economies.
markets find that the pass-through is lower for exchange rate appreciations. Comunale and Simola (2018) for seven CIS countries find no evidence of sign asymmetries in the pass-through, while Ben Cheikh (2012) for 12 euro area countries finds that the pass-through is higher for exchange rate depreciations in some countries and lower in others.

The exchange rate regime adopted by the monetary authorities could also have implications for the pass-through. On the one hand, a less volatile exchange rate regime is more likely to encourage invoicing in the local currency (local currency pricing), and hence, lead to lower pass-through. On the other hand, a shift in the exchange rate peg is likely to be perceived as a permanent shock by businesses and population, resulting in a higher pass-through. Given mixed theoretical predictions, it is not surprising that the empirical evidence is also mixed. Barhoumi (2006) for 24 developing countries, Beirne and Bijsterbosch (2011) for nine Central and Eastern European countries, Caselli and Roitman (2016) for 28 emerging markets and Razafimahefa (2012) for Sub-Saharan Africa countries find that the pass-through is higher for flexible exchange rate regimes, while Kohlscheen (2010) for eight emerging economies finds that the pass-through is lower for flexible exchange rate regimes.

Finally, the pass-through may vary around crisis periods. It is expected that inflation rates would decelerate in the aftermath of the crisis, leading to a lower pass-through in a low inflation environment (Choudhri and Hakura 2006; Taylor 2000). The empirical evidence supports this hypothesis. Jasova, Moessner, and Takats (2019) for a sample of 22 emerging economies find that the pass-through has declined following the global financial crisis (after the third quarter of 2009). Similarly, Ito and Saito (2008) found lower pass-through in East Asian countries following the Asian crisis (except for Indonesia).

To sum up, ERPT has been a subject of numerous empirical studies, but to our best knowledge none of them has focused on the CCA countries. The speed of the pass-through tends to be larger in emerging and low-income countries compared to advanced economies. The speed of the pass-through differs widely across country samples and time periods and there is mixed evidence on nonlinearities and asymmetries. In what follows, we quantify the pass-through in the CCA countries, test for possible nonlinearities and asymmetries and compare our results with findings in the literature.

3. Data and stylized facts

In this section, we present the data used in our analysis and some stylized facts. Table 2 presents the variables used in our analysis. We use monthly data for seven CCA countries over the period January 1995–May 2020. The average local currency exchange rate vis-à-vis the US dollar and the CPI index are taken from the IMF’s International Financial Statistics. The de-facto exchange rate classification is taken from the IMF’s Annual Report of Exchange Rate Arrangements and Exchange Restrictions (AREAER) database. We calculate annual growth rates of exchange rate and CPI index variables by taking year-on-year log differences over the 12-months period.

Figures 1 and 2 present the dynamics of annual CPI inflation and exchange rate changes for the CCA countries over the sample under consideration. They suggest
that the panel is not balanced and for some countries the data is not available from the beginning of the sample period. Inflation rates have been very high reaching 40–70% in late 1990s, when the CCA countries were in the process of transition from centrally planned to market economies. Over time, inflation rates have decelerated, but some spikes were observed around the global financial crisis (2008–2009). The CCA countries have entered a relatively low inflation environment not exceeding 10% per annum in most countries after the global financial crisis. Like inflation, exchange rate depreciations were particularly high in late 1990s. Over time, exchange rate movements have stabilized, but some depreciation spikes were observed around the global financial crisis (2008–2009) and the recent oil price shock (2015).

Figure 3 presents the association between annual exchange rate changes and CPI inflation rates for the sample under consideration. There is a positive relationship between the two, suggesting a positive pass-through on impact.

Table 2. Variables and their sources.

Variable	Definition	Source
ER	Exchange rate of the local currency vis-à-vis the US dollar (daily average)	International Financial Statistics, IMF
CPI	Consumer price index (seasonally adjusted, base month is January 2010)	International Financial Statistics, IMF
DEFACTO	DE-facto exchange rate classification	Annual Report of Exchange Arrangements and Exchange Restrictions, IMF

Note: The sample includes seven CCA countries (Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyz Republic, Tajikistan and Uzbekistan) over the period January 1995–May 2020.
While the relationship between annual exchange rate changes and CPI inflation rates is positive, it is not clear in which direction the causality runs. To shed light on this question, we have run a Granger-causality test for the CCA panel using 12 lags of variables and controlling for common shocks (such as commodity price changes) via time fixed effects. The results suggest that exchange rate changes Granger-cause CPI inflation (p value = .00), but CPI inflation does not Granger-cause exchange rate changes (p value = .10). Therefore, a univariate econometric model with inflation as a dependent variable and exchange rate changes as an independent variable could be used to estimate the pass-through. Nevertheless, as a robustness check, we also present results from a bi-variate panel VAR model.

4. Empirical specification and estimation results

In this section, we estimate the speed of ERPT in the CCA countries using the local projections method. We start by presenting results from the linear model, followed by checks for possible nonlinearities and asymmetric pass-through.

4.1. The linear model

We use the linear projections method of Jorda (2005) to assess the speed of ERPT in the CCA countries. The empirical specification takes the following form:
\[
\Delta \text{lcpi}_{i,t+h} - \Delta \text{lcpi}_{i,t-1} = \alpha_i^h + \eta_i^h + \beta^h \Delta \text{ler}_{i,t} + \sum_{k=1}^{12} \rho_k^h \Delta \text{lcpi}_{i,t-k} + \sum_{k=1}^{12} \gamma_k^h \Delta \text{ler}_{i,t-k} + \varepsilon_{i,t+h}
\]

where \(i \) denote countries, \(t \) denotes time, \(h = \{0, 1, \ldots, 12\} \) denotes the projection horizon, \(\Delta \text{lcpi} \) is the annual (year-on-year) logarithmic difference in the CPI index, \(\Delta \text{ler} \) is the annual (year-on-year) logarithmic difference in the exchange rate of the national currency vis-à-vis the US dollar and \(\varepsilon \) is the i.i.d. error term. Regressions include country fixed effects (\(\alpha_i \)) to control for country-specific unobserved heterogeneity and time fixed effects (\(\eta_i \)) to control for common shocks (like changes in oil prices) affecting all CCA countries simultaneously. Twelve lags of dependent and independent variables are included to control for omitted variables and overlapping annual growth rates in the monthly data. We use Driscoll–Kraay standard errors to account for possible serial correlation and cross-sectional dependence in the error terms.

The coefficient of interest is \(\beta \), which represents the pass-through for the projection horizon \(h \). It is expected to be positive, consistent with the hypothesis that the exchange rate depreciation is associated with an increase in inflation rates.

Figure 4 presents the pass-through over the 12-month projection horizon for the linear model. The inflation rate raises by 0.1% in response to a 1 percentage point change in exchange rate depreciation on impact (ERPT = 10%). After 12 months, the pass-through reaches about 25%. The pass-through in the CCA countries is
somewhat higher than the pass-through in CIS countries (Comunale and Simola 2018) and 28 emerging economies (Caselli and Roitman 2016), but it is lower compared to the pass-through in Sub-Saharan Africa countries (Razafimahefa 2012).

As a robustness check, we run a bilateral panel VAR model with country and time fixed effects for CPI inflation and exchange rate changes. The structural shock identification is based on the Choleski factorization, where consistent with the Granger-causality test results exchange rate changes are ordered first. Figure 5 presents the impulse-response function, which suggests that the ERPT from this model is qualitatively similar to the one from the local projections model, supporting the robustness of results. After 12 months, the ERPT reaches 18%, which is somewhat lower than the estimate from the local projections model. However, the confidence interval around this estimate overlaps substantially with that from the local projections model, suggesting that the difference between the two estimates is statistically imprecise.

4.2. Does ERPT vary with the size of exchange rate changes?

In this section, we assess whether the response of inflation to exchange rate changes varies with the size of exchange rate changes. We distinguish between periods of large exchange rate movements when annual exchange rate change exceed 15% in absolute...
terms (high appreciation or depreciation), and small movements when annual exchange rate change do not exceed 15% in absolute terms. For that purpose, we create a dummy variable $d1$:

$$d1 = \begin{cases}
1, & \text{if } dler > \text{abs}(15) \\
0, & \text{otherwise (small movements)}
\end{cases}$$

The empirical specification takes the following form:

$$\Delta \text{lcpi}_{i,t+h} - \Delta \text{lcpi}_{i,t-1} = \alpha_i^h + \eta_i^h + \beta_1^h \Delta \text{ler}_{i,t} + \lambda_i^h d1 + \beta_2^h d1 \Delta \text{ler}_{i,t-k} + \sum_{k=1}^{12} \rho_i^h \Delta \text{lcpi}_{i,t-k}$$

$$+ \sum_{k=1}^{12} \gamma_i^h \Delta \text{ler}_{i,t-k} + \epsilon_{i,t+h}$$

where β_1 represents the pass-through in response to small movements in the exchange rate and $(\beta_1 + \beta_2)$ represents the pass-through in response to large movements in the exchange rate.
Figure 6 presents the pass-through in response to large and small movements in the exchange rate over the 12-month projection horizon. We do not find evidence of nonlinearities or asymmetric response to large and small exchange rate fluctuations. In both cases, the pass-through is about 10% on impact and about 30% after 12 months. However, the confidence interval around ERPT for large exchange rate fluctuations is somewhat wider compared to that for small exchange rate fluctuations, suggesting that response to large exchange rate fluctuations is more heterogeneous in the CCA sample. This result is in contrast with some studies that report size asymmetries for 28 emerging economies (Caselli and Roitman 2016), seven CIS countries (Comunale and Simola 2018) and 19 euro area countries (Colavecchio and Rubene 2020).

4.3. Does ERPT vary with the sign of exchange rate changes?

In this section, we assess whether the response of inflation to exchange rate changes is different for exchange rate appreciations versus depreciations. For that purpose, we create a dummy variable $d2$:

$$d2 = \begin{cases}
1, & \text{if } \text{dler}>0 \\
0, & \text{otherwise}
\end{cases}$$

The empirical specification takes the following form:

$$
\Delta \text{cpi}_{i,t+h} - \Delta \text{cpi}_{i,t-1} = \alpha_i^h + \eta_i^h + \gamma_i^h \Delta \text{ler}_{i,t} + \lambda_i^h d2 + \gamma_2^h d2 \Delta \text{ler}_{i,t-k} + \sum_{k=1}^{12} \rho_k^h \Delta \text{cpi}_{i,t-k} \\
+ \sum_{k=1}^{12} \gamma_k^h \Delta \text{ler}_{i,t-k} + e_{i,t+h}
$$

Figure 6. ERPT: Nonlinearities for the size of exchange rate depreciation. Source: International Financial Statistics and IMF Staff estimations. Note: Reported is the percentage response of annual CPI inflation to a 1% depreciation of national currency vis-à-vis the US dollar in period 0% and the 90% confidence interval. Large depreciations (appreciations) are defined as those in excess of 15% per annum. Estimations are performed for Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyz Republic, Tajikistan and Uzbekistan over the period January 1995–May 2020.
where c_1 represents the pass-through in response to exchange rate appreciations and $(c_1 + c_2)$ represents the pass-through in response to exchange rate depreciations.

Figure 7 presents the pass-through in response to exchange rate appreciations and depreciations over the 12-month projection horizon. We do not find significant evidence of asymmetric response to the sign of exchange rate fluctuations. In both cases, the pass-through is about 10% on impact. While the pass-through for appreciations is about 10% higher than that for depreciations after 12 months, this difference is not statistically significant given the wide confidence intervals. This result is consistent with the evidence for seven CIS countries in Comunale and Simola (2018).

4.4. Does ERPT vary with exchange rate regimes?

In this section, we assess whether the response of inflation to exchange rate changes varies for different exchange rate regimes. Using the IMF’s de-facto classification of exchange rate regimes, we create a dummy variable d_3 as follows:

$$d_3 = \begin{cases}
1, & \text{if free floating or managed floating with no pre-determined path} \\
0, & \text{otherwise (pegs, crawling bands, stabilized arrangements)}
\end{cases}$$

The empirical specification takes the following form:

$$\Delta\text{lcpi}_{i,t+h} - \Delta\text{lcpi}_{i,t-1} = \alpha_i^h + \eta_i^h + \lambda_i^h \Delta\text{ler}_{i,t} + \lambda_i^h d_3 + \gamma_i^h d_3 \Delta\text{ler}_{i,t-k} + \sum_{k=1}^{12} \rho_k^h \Delta\text{lcpi}_{i,t-k} + \sum_{k=1}^{12} \gamma_k^h \Delta\text{ler}_{i,t-k} + \epsilon_{i,t+h}$$
where λ_1 represents the pass-through in periods of fixed exchange rate regimes and $(\lambda_1 + \lambda_2)$ represents the pass-through in response to floating exchange rate regimes. Figure 8 presents the pass-through in different exchange rate regime periods over the 12-month projection horizon. We do not find significant evidence of asymmetric ERPT in fixed versus floating exchange rate regimes. In both cases, the pass-through is about 10% on impact and about 25% after 12 months. This result is in contrast with evidence from other emerging and low-income countries, where the pass-through was found to be lower in flexible exchange rate regimes (Barhoumi 2006; Beirne and Bijsterbosch 2011; Caselli and Roitman 2016; Razafimahefa 2012).

4.5. Does the ERPT differ across energy-exporters and energy-importers?

In this section, we assess whether the response of inflation to exchange rate changes differs across energy-exporting and energy-importing countries. For that purpose, we create a dummy variable $d4$ as follows:

$$d4 = \begin{cases}
1, & \text{for energy—importing CCA countries (ARM, GEO, KGZ, TJK)} \\
0, & \text{for energy—exporting CCA countries (AZE, KAZ, UZB)}
\end{cases}$$

The empirical specification takes the following form:

$$\Delta lcp_i, t+h - \Delta lcp_i, t-1 = \alpha_i^h + \eta_i^h + \xi_1^h \Delta ler_i, t + \lambda^h d4 + \xi_2^h d4 \Delta ler_i, t-k + \sum_{k=1}^{12} \rho_k^h \Delta lcp_i, t-k + \sum_{k=1}^{12} \gamma_k^h \Delta ler_i, t-k + \epsilon_i, t+h$$
where ζ_1 represents the pass-through in energy-exporting CCA countries and $(\zeta_1 + \zeta_2)$ represents the pass-through in energy-importing CCA countries.

Figure 9 presents the pass-through for energy exporters and energy importers over the 12-month projection horizon. We find that the pass-through is lower in energy-exporting countries by about 2 percentage points on impact and about 5 percentage points after 12 months, and this difference is significant at the 90% confidence level for the first four months of the projection horizon. This result could be explained by structural differences across these groups of countries (economic diversification, reliance on remittances, proportion of imported goods in CPI baskets).

4.6. Has ERPT changed in the post-global financial crisis period?

In this section, we assess whether the response of inflation to exchange rate changes has changed after the global financial crisis. For that purpose, we create a dummy variable $d5$ as follows:

$$d5 = \begin{cases}
1, & \text{for September 2008–May 2020} \\
0, & \text{otherwise}
\end{cases}$$

The empirical specification takes the following form:

$$
\Delta\text{lcpi}_{i,t+h} - \Delta\text{lcpi}_{i,t-1} = \alpha_i^h + \eta_i^h + \rho_i^h \Delta\text{ler}_{i,t} + \lambda_i^h d5 + \rho_i^h d5 \Delta\text{ler}_{i,t-k} + \sum_{k=1}^{12} \rho_k^h \Delta\text{lcpi}_{i,t-k} + \\
\sum_{k=1}^{12} \gamma_k^h \Delta\text{ler}_{i,t-k} + \epsilon_{i,t+h}
$$
where ρ_1 represents the pass-through in the pre-crisis period and $(\rho_1 + \rho_2)$ represents the pass-through in the post-crisis period.

Figure 10 presents the pass-through in pre- and post-crisis periods over the 12-month projection horizon. We find evidence of asymmetric ERPT in these periods. The pass-through is lower in the post-crisis period relative to the pre-crisis period by about 5 percentage points on impact and about 15 percentage points after 12 months, and this difference is significant at the 90% confidence level. This result is consistent with Ito and Saito (2008) and Jasova, Moessner, and Takats (2019), who also find lower pass-through in emerging economies in the aftermath of the Asian crisis and the global financial crisis, respectively. The decline in inflation in the post-crisis period was driven by both external (global slowdown in inflation) and domestic (improved monetary policy frameworks and transition to inflation targeting) structural factors, supporting lower ERPT.

5. Conclusions

The extent and speed of ERPT has been at the center of policy discussions in many countries. A large empirical literature has estimated the pass-through for different country groups and sample periods, but none of the studies has focused on the CCA region.

This study fills this gap and estimates the pass-through for the CCA countries using monthly data for the January 2015–May 2020 period. The estimations are performed using the univariate local projections method, since the Grange-causality tests suggest that causality runs from exchange rate changes to inflation, and not vice versa. As a robustness check, we also run a panel VAR model.

The results could be summarized as follows (Table 3). The average ERPT in the CCA countries is estimated at about 10% on impact and about 25% after 12 months. The pass-through in the CCA countries is somewhat higher than the pass-through in

![Figure 10. ERPT: Nonlinearities for pre-crisis and post-crisis periods. Source: International Financial Statistics and IMF Staff estimations. Note: Reported is the percentage response of annual CPI inflation to a 1% depreciation of national currency vis-à-vis the US dollar in period 0% and the 90% confidence interval. Estimations are performed for Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyz Republic, Tajikistan and Uzbekistan over the period January 1995–May 2020. The post-crisis period starts from September 2008.](image-url)
CIS countries (Comunale and Simola 2018) and 28 emerging economies (Caselli and Roitman 2016), but it is lower compared to the pass-through in Sub-Saharan Africa countries (Razafimahefa 2012).

We find no evidence of asymmetric ERPT with respect to the size and the sign of exchange rate changes. Also, the pass-through is broadly unchanged in fixed versus floating exchange rate regimes. The pass-through has been 5–15 percentage points lower in the post-crisis period and this lower ERPT is more relevant for the current period characterized by a relatively low inflation environment observed in many CCA countries recently.

These results have important policy implications. The speed of the pass-through and the absence of nonlinearities with respect to the size and sign of exchange rate changes could be used by the monetary authorities for inflation projections. The absence of nonlinearities in the pass-through with respect to the exchange rate regime suggests that transition from fixed to floating exchange rate regimes (including inflation targeting) would not impose additional inflationary costs. Finally, the decline in the pass-through following the global financial crisis provides yet additional indication on the benefits of maintaining a low inflation environment.

Notes
1. The sample does not include Turkmenistan due to lack of sufficiently long time series.
2. Goldberg and Knetter (1997) define ERPT as ‘the percentage change in local currency import prices resulting from a one percent change in the exchange rate between the exporting and importing countries’.
3. The results are not affected by the COVID shock, as restricting the sample to the pre-COVID period provides qualitatively similar ERPT estimates.

4. We chose the 15% threshold for the definition of large exchange rate changes since it corresponds to one standard deviation of the annual exchange rate growth in the total sample. We have also tried 10%, 20% and 30% thresholds and the results remain qualitatively unchanged.

5. It is important to note that the coefficient λ^h does not affect the ERPT. It measures the shift in the intercept for all CCA countries between the two exchange rate regimes (high and low depreciation), while the ERPT measures the response of inflation to a 1% depreciation in each of these regimes.

Acknowledgements

The author thanks Marwa Alnassa, Yevgeniya Korniyenko, Subir Lall, Nathan Porter, Sergejs Saksonovs, and Hamid Reza Tabarraei for helpful comments and suggestions. Liliya Nigmatullina provided excellent production assistance.

Disclosure statement

No potential conflict of interest was reported by the author.

Notes on contributor

Tigran Poghosyan has been with the IMF from 2009. Prior to the IMF, he worked at the Central Bank of Armenia and was a visiting researcher at the Deutsche Bundesbank. His research has featured in IMF research and policy publications, books and peer-reviewed journals. He holds two PhDs in Economics; from CERGE-EI and the University of Groningen.

References

Aron, J., R. Macdonald, and J. Muellbauer. 2014. “Exchange Rate Pass-Through in Developing and Emerging Markets: A Survey of Conceptual, Methodological and Policy Issues, and Selected Empirical Findings.” The Journal of Development Studies 50 (1): 101–143. doi:10.1080/00220388.2013.847180.

Barhoumi, K. 2006. “Differences in Long Run Exchange Rate Pass-Through into Import Prices in Developing Countries: An Empirical Investigation.” Economic Modelling 23 (6): 926–951. doi:10.1016/j.econmod.2006.04.006.

Beirne, J., and M. Bijsterbosch. 2011. “Exchange Rate Pass-Through in Central and Eastern European EU Member States.” Journal of Policy Modeling 33 (2): 241–254. doi:10.1016/j.jpolmod.2010.11.001.

Ben Cheikh, N. 2012. “Asymmetric Exchange Rate Pass-Through in the Euro Area: New Evidence from Smooth Transition Models. Economics - The Open-Access, Open-Assessment E-Journal 6 (2012–39): 1–28. doi:10.5018/economics-ejournal.ja.2012-39.

Burstein, A., and G. Gopinath. 2014. “International Prices and Exchange Rates.” In Handbook of International Economics, edited by G. Gopinath, E. Helpman, and K. Rogoff, 391–451. 4th ed. Vol. 4. Amsterdam, The Netherlands: North-Holland.

Bussiere, M. 2013. “Exchange Rate Pass-Through to Trade Prices: The Role of Nonlinearities and Asymmetries.” Oxford Bulletin of Economics and Statistics 75 (5): 731–758. doi:10.1111/j.1468-0084.2012.00711.x.

Calvo, G., and C. Reinhart. 2002. “Fear of Floating.” The Quarterly Journal of Economics 117 (2): 379–408. doi:10.1162/003355302753650274.
Caselli, F., and A. Roitman. 2016. “Non-Linear Exchange Rate Pass-Through in Emerging Markets.” IMF Working Papers 16 (1): 1.

Choudhri, E., and D. Hakura. 2006. “Exchange Rate Pass-Through to Domestic Prices: Does the Inflationary Environment Matter?” Journal of International Money and Finance 25 (4): 614–639. doi:10.1016/j.jimonfin.2005.11.009.

Colavecchio, R., and I. Rubene. 2020. “Non-Linear Exchange Rate Pass-Through to Euro Area Inflation: A Local Projection Approach.” ECB Working Paper No. 2362. Frankfurt, Germany.

Comunale, M., and H. Simola. 2018. “The Pass-Through to Consumer Prices in CIS Economies: The Role of Exchange Rates, Commodities and Other Common Factors.” Research in International Business and Finance 44: 186–217. doi:10.1016/j.ribaf.2017.07.076.

Delatte, A.-L., and A. Lopez-Villavicencio. 2012. “Asymmetric Exchange Rate Pass-Through: Evidence from Major Countries.” Journal of Macroeconomics 34 (3): 833–844. doi:10.1016/j.jmacro.2012.03.003.

Goldberg, P., and M. Knetter. 1997. “Goods Prices and Exchange Rates: What Have We Learned?” Journal of Economic Literature 35 (3): 1243–1272.

Ito, T., and K. Saito. 2008. “Exchange Rate Changes and Inflation in Post-Crisis Asian Economies: Vector Autoregression Analysis of the Exchange Rate Pass-Through.” Journal of Money, Credit and Banking 40 (7): 1407–1438. doi:10.1111/j.1538-4616.2008.00165.x.

Jasova, M., R. Moessner, and E. Takats. 2019. “Exchange Rate Pass-Through: What Has Changed since the Crisis?” International Journal of Central Banking 15 (3): 27–58.

Jorda, O. 2005. “Estimation and Inference of Impulse Responses by Local Projections.” American Economic Review 95 (1): 161–182.

Kilic, R. 2016. “Regime-Dependent Exchange-Rate Pass-Through to Import Prices.” International Review of Economics and Finance 41: 295–308.

Kohlscheen, E. 2010. “Emerging Floaters: Pass-Throughs and (Some) New Commodity Currencies.” Journal of International Money and Finance 29 (8): 1580–1595. doi:10.1016/j.jimonfin.2010.05.013.

Razafimahefa, I. 2012. “Exchange Rate Pass-Through in Sub-Saharan African Economies and its Determinants.” IMF Working Paper WP/12/141. Washington, DC: IMF.

Taylor, J. 2000. “Low Inflation, Pass-Through, and the Pricing Power of Firms.” European Economic Review 44 (7): 1389–1408. doi:10.1016/S0014-2921(00)00037-4.