Large-Maximal submodules

Amira A. Abduljaleel, Sahira M. Yaseen

College of Science, Baghdad University, Department of Mathematics.

Emails: amiraaaa142@gmail.com, sahira.mahmood@gmail.com

Abstract. The goal of this research is to introduce the concept of Large-maximal submodule, also we will consider some properties of it, such that a proper submodule \(N \) of an \(R \)-module \(M \) is said to be Large-maximal (L-maximal) submodule of \(M \) if there exists a submodule \(K \) of \(M \) such that \(N < K \leq M \), then \(K \) is essential submodule of \(M \) \((K \leq_e M)\).

Keywords: maximal submodules, L-maximal submodules.

1. Introduction

Throughout this paper \(R \) represents a commutative ring with identity. It is well known that a proper submodule \(N \) of an \(R \)-module \(M \) is called maximal, if whenever \(K \) is a submodule of \(M \) with \(N < K \leq M \) implies that \(K = M \). Inaam and Riyadh in [2] introduced the concept of almost maximal submodules, where a proper submodule \(N \) of an \(R \)-module \(M \) is called almost maximal, if whenever \(K \) is an essential submodule of \(M \) with \(N < K \leq M \) implies that \(K = M \), where a submodule \(K \) of \(M \) is said to be essential \((K \leq_e M)\) if for every submodule \(N \) of \(M \) with \(K \cap N = (0) \) implies that \(N = (0) \). Muna and Shiren in [5] introduced the concept of S-maximal submodules, where a proper submodule \(N \) of an \(R \)-module \(M \) is called S-maximal, if whenever \(K \) is a semi essential submodule of \(M \) with \(N < K \leq M \) implies that \(K = M \), where a submodule \(K \) of \(M \) is called semi essential if \(K \cap N \neq (0) \), for every nonzero prime submodule \(N \) of \(M \) [9]. In this paper, we introduce the concept of Large-maximal submodule as a generalization of maximal submodule, where a proper submodule \(N \) of an \(R \)-module \(M \) is said to be Large-maximal (L-maximal) submodule of \(M \) if there exists a submodule \(K \) of \(M \) such that \(N < K \leq M \), then \(K \) is essential submodule of \(M \) \((K \leq_e M)\).

2. Large-maximal submodule

In this section we introduce the concept of Large-maximal submodule and many of its properties, also we give the concept of Large-Local module.

Definition (2.1): Let \(M \) be an \(R \)-module, a proper submodule \(N \) of \(M \), is called Large-maximal (L-maximal) submodule of \(M \) if there exists a submodule \(K \) of \(M \) such that \(N < K \leq M \), then \(K \) is essential submodule of \(M \) \((K \leq_e M)\). An ideal \(I \) is called L-maximal ideal if there exists an ideal \(J \) of \(R \) such that \(I < J \leq R \), then \(J \) is essential ideal of \(R \) \((J \leq_e R)\).

Remarks and Examples (2.2):
1- Every maximal submodule is L-maximal submodule. Thus in Z_4 as Z-module, $\{0, 2\}$ is maximal and L-maximal submodule since $\{0, 2\} < Z_4 \leq Z_4$ and $Z_4 \leq e \leq Z_4$.

2- The converse of (1) is not true, as the following example: In Z as Z-module, $4Z$ is L-maximal submodule since $4Z < 2Z \leq Z$ and $2Z \leq e \leq Z$ but $4Z$ is not maximal submodule since $2Z \neq Z$.

3- A submodule of L-maximal submodule need not be L-maximal submodule, as the following example: In Z_{36} as Z-module, $42Z_{36}$ is L-maximal since $4Z_{36} < 2Z_{36} \leq Z_{36}$ and $2Z_{36} \leq e \leq Z_{36}$ but $12Z_{36}$ not L-maximal since $12Z_{36} < 4Z_{36} \leq Z_{36}$ and $4Z_{36}$ is not essential in Z_{36}.

4- If M is a uniform module, then every submodule of M is L-maximal. For examples: the Z-modules Q^∞ and Z^{∞}.

5- The converse of (4) is not true, as the following example: In Z_6 as Z-module, $2Z_6$ and $3Z_6$ are maximal hence L-maximal submodule by (1), but Z_6 is not uniform module.

6- Every essential submodule of M is L-maximal submodule of M.

Proof: Let N be a proper submodule of M such that $N \leq e \leq M$ and let $N < K \leq M$, then we have $N \leq e \leq K \leq e \leq M$ by [1], so $K \leq e \leq M$ hence N is L-maximal submodule of M.

7- If $\frac{M}{N}$ is uniform module, then any submodule of M is L-maximal.

Proof: Let N be a proper submodule of M such that $N < K \leq M$, thus $\frac{K}{N} \leq \frac{M}{N}$ and since $\frac{M}{N}$ is uniform then $\frac{K}{N} \leq e \leq \frac{M}{N}$ and hence $K \leq e \leq M$, so N is L-maximal submodule of M.

8- If $\frac{M}{N}$ is simple, then N is maximal submodule by [6] and hence N is L-maximal submodule by (1).

9- Every non zero F-regular module has a maximal submodule [3], and hence L-maximal submodule by (1), where an R-module M is called F-regular if every submodule of M is pure [3].

10- Let N and K are proper submodules of M such that $N < K$, if N is L-maximal submodule in K and K is L-maximal submodule in M then N is not necessary L-maximal submodule in M, as the following example: Let $M = Z_{42}$, $K = 2Z_{42}$ and $N = 6Z_{42}$, N is L-maximal in K since $6Z_{42} < 2Z_{42} \leq 2Z_{42}$ and $2Z_{42} \leq e \leq 2Z_{42}$, also K is L-maximal in M since $2Z_{42} < Z_{42} \leq Z_{42}$ and $Z_{42} \leq e \leq Z_{42}$ but N is not L-maximal in M since $6Z_{42} < 3Z_{42} \leq 2Z_{42}$ and $3Z_{42} \leq e \leq Z_{42}$.

11- Let M be a semisimple module and N be a proper submodule of M then N is maximal submodule of M if and only if, N is L-maximal submodule of M.

12- Every chained module is uniform module, and then every submodule is L-maximal submodule by (4), where an R-module M is called chained if for each submodules U and V of M, then either $U \leq V$ or $V \leq U$ [7].

13- Every integral domain is uniform module, and then every submodule is L-maximal submodule by (4).

14- Every simple module is uniform module, and then every submodule is L-maximal submodule by (4).

Proposition (2.3): Let N and K are proper submodules of M such that $N \leq K$, if N is L-maximal submodule of M then K is L-maximal submodule of M.

2
Proof: Let $K < W \leq M$. Since $N \leq K$ and N is L-maximal submodule of M then $N < W \leq M$ and $W \leq M$, so K is L-maximal submodule of M.

Proposition (2.4): Let N and K are proper submodules of M, if $N \cap K$ is L-maximal submodule of M then both N and K are L-maximal submodules of M.

Proof: Since $N \cap K \leq N$ and $N \cap K$ is L-maximal submodule of M then by proposition (2.3), we have N is L-maximal submodule of M, similarity K is L-maximal submodule of M.

Remark (2.5): The converse of proposition (2.4) is not true, by (2.2).

Proposition (2.6): Let N and K are proper submodules of M, if N and K are L-maximal submodules of M then $N + K$ is L-maximal submodule of M.

Proof: Since $N \leq N + K$ and N is L-maximal submodule of M then by proposition (2.3), we have $N + K$ is L-maximal submodule of M.

Remark (2.7): The converse of proposition (2.6) is not true, by (2.2).

Proposition (2.8): Let $f: M_1 \rightarrow M_2$ be an epimorphism where M_1 and M_2 be an R-modules such that, if N is L-maximal submodule of M_2 then $f^{-1}(N)$ is L-maximal submodule of M_1.

Proof: Let $f^{-1}(N) < K \leq M_1$, so $f(f^{-1}(N)) < f(K) \leq M_2$ and hence $N < f(K) \leq M_2$, since N is L-maximal submodule of M_2 then $f(K) \leq M_2$ and hence $f^{-1}(f(K)) = K \leq M_1$ [1], so $f^{-1}(N)$ is L-maximal submodule of M_1.

Proposition (2.9): Let N is L-maximal submodule of M and I be an ideal of R, if $(N:_M I)$ is a proper submodule of M, then $(N:_M I)$ is L-maximal submodule of M.

Proof: Since $N < (N:_M I)$ and N is L-maximal submodule of M, then by proposition (2.3), we have $(N:_M I)$ is L-maximal submodule of M.

Sometimes $(N:_M I) = M$, for example: If M is multiplication module, then any submodule N of M can be written as $N = IM$ and hence $(N:_M I) = M$.

Remark (2.10): The converse of proposition (2.9) is not true, as the following example: In $M = Z_{12}$ as Z-module and the ideal $I = 2Z$ of Z, so $(N:_M I) = \{0, 2, 4, 6, 8, 10\}$ is L-maximal submodule of M since $(N:_M I) = \{0, 2, 4, 6, 8, 10\} < Z_{12} \leq Z_{12}$ and $Z_{12} \leq Z_{12}$ but $N = \{0, 6\}$ is not L-maximal submodule of M since $N = \{0, 6\} < \{0, 3, 6, 9\} \leq Z_{12}$ and $\{0, 3, 6, 9\}$ is not essential submodule in Z_{12}.

Remark (2.11): Every multiplication module contains an L-maximal submodule.

Proof: Since every multiplication module has a maximal submodule, hence it has L-maximal submodule by (2.2).

Corollary (2.12): Every cyclic R-module has L-maximal submodule.

Proof: Since every cyclic module is multiplication module, so we get the result by Remark (2.11).

Theorem (2.13): Let M be a faithful, finitely generated and Multiplication R-module and N be a submodule of M, then the following are equivalent:

1- N is L-maximal submodule of M

2- $(N:_R M)$ is L-maximal ideal of R
$N = IM$ for some L-maximal ideal I of R

Proof: (1) \Rightarrow (2) Let $(N; R) < J \leq R$ where J be an ideal of R, since M is Multiplication, then $N = (N;R)M \leq JM \leq RM = M$ by [4], so $N \leq JM \leq M$ and since N is L-maximal submodule of M by (1), then $JM \leq eM = RM$ so $JM \leq eRM$ and hence $J \leq eR$ and $(N; R)$ is L-maximal ideal of R.

(2) \Rightarrow (3) Since M is Multiplication, then $N = (N;R)M$ by [4] and by (2), $(N; R)$ is L-maximal ideal of R, hence $N = IM$ for some L-maximal ideal I of R.

(3) \Rightarrow (1) Let $N < K \leq M$ so by (3), $N = IM$ for some L-maximal ideal I of R and $K = JM$ for some L-maximal ideal J of R, since M is Multiplication, then $N = IM < JM \leq RM = M$ and since M is faithful, finitely generated and Multiplication then, $I < J \leq R$ by [8], and by (3) I is L-maximal ideal of R, hence $J \leq eR$ then $JM \leq eM$ by [4], so $K \leq eM$ hence N is L-maximal submodule of M.

Remark (2.14): For R-module M, if N_1 and N_2 are L-maximal submodules of M, then not necessary that $N_1 \oplus N_2$ is L-maximal submodule of M, as the following example: In Z_6 as Z-module it is clear that $N_1 = 2Z_6$ and $N_2 = 3Z_6$ are L-maximal submodules, but $2Z_6 \oplus 3Z_6 = Z_6$ is not L-maximal since Z_6 is not proper submodule of Z_6.

Now, we give the following definition.

Definition (2.15): A nonzero R-module M is called Large-Local (L-Local) Module, if M has only one L-maximal submodule which contains all proper submodule of M. A ring R is called Large-Local (L-Local) Ring, if R is an L-Local R-module.

Example (2.16): In Z_6 as Z-module, the Z-module $(\bar{2})$ is an L-Local Module since it has only one L-maximal submodule which is $(\bar{4})$.

Proposition (2.17): Let M be a nonzero Multiplication and L-Local R-Module and let N is an L-maximal submodule of M, if $N \neq (0)$ then N is an essential submodule of M.

Proof: Let K be a submodule of M such that $N \cap K = (0)$, since M is a nonzero Multiplication then by Remark(2.11), M has L-maximal submodule N, also since M is L-Local Module then M has only one L-maximal submodule which is N and contain all proper submodule K, so $K \leq N$ and hence $K = (0)$ and N is an essential submodule of M.

Corollary (2.18): Let R be an L-Local and let I is an L-maximal ideal of R, if $I \neq (0)$ then I is an essential ideal of R.

Theorem (2.19): Let M be an R-module and N be a proper submodule of M, consider the following:

1- N is maximal submodule
2- N is almost maximal submodule
3- N is L-maximal submodule

If M is chained module then (1) \iff (2) and if M is semisimple module then (2) \iff (3) \iff (1).

Proof: (1) \iff (2) by [2].

(2) \Rightarrow (3) Let $N < K \leq M$ since N is almost maximal submodule then $K = M$, where K be essential submodule of M, hence N is L-maximal submodule.

(3) \Rightarrow (2) Since N is L-maximal submodule then $K \leq eM$, but M is semisimple then $K = M$, hence N is almost maximal submodule.
(3) \Leftrightarrow (1) \text{ Clear by (2.2).}

3. References

[1] Kasch F. (1982). Modules and Rings, London: Acad Press.
[2] Hadi I. M. A. and Ali R. K. (2008). On Almost Maximal Submodules, Ibn Al-Hathim J. for Pure & Appl. Sci. 1, 190-197.
[3] Yaseen S. M. (1993). F-Regular Modules, M.Sc Thesis, University of Baghdad, Iraq.
[4] Elbast Z.A. and Smith, P.F. (1988). Multiplication Modules, Communciation in Algebra, 10,4.
[5] Ahmed M.A and Dakheel Sh. O. (2015). S-maximal submodules, Baghdad science journal, 12,1.
[6] Anderson F.W and Fuller K.R. (1974). Ring and categories of modules, Springer -Veralg, New York.
[7] Osofsky B.L. (1991). A Construction of Nonstandared Unieserial Modules over Valuation Domain, Bulletin Amer.Math.Soc. 25:89-97.
[8] Naoum A.G. (1996). 1/2 Cancellation Modules. Kyungpook Mathematical Journal, Vol. 36, No.1,P. 97-106.
[9] Mijbass A. S. and Abdullah N. K. (2009). Semi Essential Submodule and Semi Uniform Modules, J. of Kirkuk University-Scientific Studies. 4(1): 48-58.