Cardiovascular risk comorbidities in rheumatoid arthritis patients and the use of anti-rheumatic drugs: a cross-sectional real-life study

Gustavo Nogueira Schincariol Vicente1*, Ivânio Alves Pereira1, Gláucio Ricardo Werner de Castro1, Licia Maria Henrique da Mota2, Ana Paula Carneieletto1, Dhara Giovanna Santin de Souza1, Fabiana Oenning da Gama1, Ana Beatriz Vargas Santos3, Cleandro Pires de Albuquerque2, Manoel Barros Bértolo4, Paulo Louzada Júnior5, Rina Dalva Neubarth Giorgi6, Sebastião Cezar Radominski7, Maria Fernanda Brandão Resende Guimarães8, Karina Rossi Bonfiglioli9, Maria de Fátima Lobato da Cunha Sauma10, Claiton Viegas Brenol11 and Geraldo da Rocha Castelar Pinheiro3

Abstract

Background: Rheumatoid arthritis (RA) is a common autoimmune systemic inflammatory disease. In addition to joint involvement, RA patients frequently have other comorbidities, such as cardiovascular diseases. Drugs used for RA treatment may increase or decrease the risk of a cardiovascular event. This study aims to analyze cardiovascular risk comorbidities in patients with RA and the correlation with the use of anti-rheumatic drugs.

Methods: Cross-sectional study conducted based on the real-life rheumatoid arthritis study database – REAL, a prospective observational cohort study. Associations between the use of anti-rheumatic drugs and the presence of comorbidities were represented by their prevalence ratio and evaluated using the Chi-square or Fisher’s Exact tests.

Results: We assessed 1116 patients, 89.4% women, mean age of 55.15 years and predominance of seropositive disease. 63.3% had some cardiovascular comorbidity, predominantly hypertension (49.9%). The use of glucocorticoids was observed in 47.4% of patients and there was a significant tendency of lower use of these drugs in the presence of dyslipidemia (PR: 0.790; p = 0.007). We observed that the presence of cardiovascular comorbidities was associated with higher use of bDMARDs (PR:1.147; p = 0.003).

Conclusions: The presence of cardiovascular risk comorbidities was confirmed to be higher in RA patients. Different treatment strategies using less glucocorticoids in the presence of dyslipidemia and more common use of bDMARDs in patients with cardiovascular comorbidities suggest that rheumatologists are aware of the potential influence of the DMARDs in the risk of cardiovascular event. Reinforcing these results, we highlight the need for a better baseline assessment to guide the choice of anti-rheumatic drugs in RA patients who have comorbidities.

Keywords: Rheumatoid arthritis, Cardiovascular diseases, Treatment

© The Author(s). 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Background
Rheumatoid arthritis (RA) is a chronic, systemic and immune-mediated inflammatory disease that affects joints, connective and fibrous tissue, muscles, and tendons with preferential involvement in the third to fifth decade of life [1, 2]. Additionally, it causes lower life expectancy in 3 to 10 years and higher mortality rate in affected population compared to the general population [1, 3].

RA also involves the occurrence of extra-articular manifestations and comorbidities, with a higher prevalence of cardiovascular and pulmonary diseases, neoplasms, osteoporosis, changes in body composition and neuropsychiatric diseases [1, 4]. The most common and serious comorbidities are cardiovascular diseases (CVD) [5–7], being the main cause of increased premature mortality in this group [1, 8]. This fact is attributed to: the higher prevalence of traditional cardiovascular risk factors in these individuals, such as systemic arterial hypertension (SAH), diabetes mellitus (DM), dyslipidemia and obesity; the side effects of drugs used for treatment; and, mainly, the systemic inflammatory activity of RA, which determines endothelial injury and accelerated atherogenesis [5, 6, 8, 9]. Thus, it is possible to infer that the RA behaves as an independent risk factor for CVD [10].

The objective of RA treatment is its complete clinical remission, or, at least, to lower its activity [1, 11–13], thereby controlling systemic inflammation and reducing the risk of cardiovascular mortality [7, 14]. Drugs may positively or negatively influence cardiovascular risk comorbidities [15–18].

This study aims to analyze cardiovascular risk comorbidities in patients with RA and the correlation with the use of anti-rheumatic drugs.

Methods
The Rheumatoid Arthritis in Real Life (REAL) [19] is a prospective multi-center observational cohort study with 12 months of follow-up. The objectives were to describe the demographic, clinical, and therapeutic characteristics of Brazilian patients with RA and evaluate their treatment adherence, safety of pharmacological treatment and impact on the quality of life, physical function, and work ability.

Eleven tertiary care public health centers specialized in caring for RA patients were selected to represent the five geographic regions in Brazil. The recruitment period began on August 12, 2015 and ended on April 15, 2016. Patients were followed-up for approximately 12 months with systematic data collection at the initial visit (baseline), intermediate visit (6 months ±1 month), and final visit (12 months ±1 month) with an additional descriptive report of any other unscheduled visit. The present study is a cross-sectional evaluation of the data collected during the initial visit.

Patients included in the database were of both sexes, with RA according to the ACR 1987 [20] or ACR/EULAR 2010 [21] classification criteria, over 18 years of age, and with records of at least 6 months of medical clinical monitoring before the study. Patients with associated diseases that compromised the evaluation of the variables used in the study were excluded, namely: major depression, malignant neoplasia, use of dialysis and equivalent.

A sample of 1116 patients was calculated as statistically significant to detect the Prevalence Ratio of the outcomes of interest (use of non-steroidal anti-inflammatory drugs (NSAIDs), corticoids and disease modifying drugs (DMARDs) of at least double (PR: 2.0) when comparing patients with (exposed) and without (unexposed) comorbidities, with expected prevalence of 5% within significance level ($p<0.05$) and statistical power of 80%.

The dependent variables included the drugs used for RA treatment: NSAIDs, glucocorticoids, synthetic and biological DMARDs. The sDMARDs included were methotrexate, leflunomide, antimalarial–chloroquine/hydroxychloroquine-, sulfasalazine and the JAK-kinase inhibitors (tofacitinib), a specific target synthetic DMARD. All grouped biologicals were analyzed and subsequently separated into anti-TNFs (adalimumab, infliximab, etanercept, certolizumab, golimumab), anti-IL6r (tocilizumab), abatacept and rituximab. For glucocorticoids (prednisone), associations with use and dose were analyzed, with cut-off point at 10 mg (<10 mg and ≥10 mg).

The independent variables analyzed were sociodemographic profile, laboratory parameters and comorbidities of cardiovascular risk. Sociodemographic factors used were gender, age, and education. The clinical laboratory parameters studied were the duration of the disease, presence or absence of erosive disease, the autoantibodies Rheumatoid Factor (RF) and anti–citrullinated protein antibody (ACPA), and disease activity, the latter by means of the Disease Activity Score using 28 Joint Counts (DAS28). Cardiovascular comorbidities were initially grouped in a single variable and later discriminated in the traditional risk factors - SAH, DM and dyslipidemia - and in the specific cardiovascular events - cerebrovascular disease, peripheral vascular disease, acute myocardial infarction (AMI) and congestive heart failure (CHF). Finally, Charlson comorbidity index (CCI) and age-adjusted Charlson comorbidity index (ACCI) were analyzed.

The Kolmogorov-Smirnov test was used to assess the normality of the Charlson Comorbidity Index variable. Due to the non-normal distribution, the data were presented in median (interquartile range).
The transversal data collected were tabulated on an electronic medium (Excel) and analyzed on SPSS 24.0 software (Statistical Package for the Social Sciences SPSS Version 24.0). Chicago: SPSS Inc.; 2016. The categorical variables were expressed as their absolute (n) and relative (%) frequencies. The means and standard deviations were calculated for the quantitative variables. The measure of association, represented by the Prevalence Ratio (PR), was evaluated by means of Chi-square Test or Fisher’s Exact Test, at 5% significance level and 95% confidence interval (CI).

The present study was approved by the research ethics committee of the University of Southern Santa Catarina, under CAAE 45781015.8.2005.5369.

Results
A cohort of 1116 patients, 89.4% female and mean age of 55.15 years, participated in the study. As for the other sociodemographic characteristics of the participants, a more detailed analysis has already been published [19], reproduced in Table 1. When evaluating clinical and laboratory data, we found that 39.5% of them were smokers or former smokers; the mean disease duration was 14.5 years. There were predominance of erosive (54.9%) and seropositive diseases, with positive RF in 78.6% and anti-CCP in 76.8%.

Table 2 describes the comorbidities of cardiovascular risk in the study population. We observed that 63.6% of the patients had at least one of these comorbidities, more frequently SAH (49.9%), dyslipidemia (32.5%) and DM (14.9%).

Regarding the drugs used for RA treatment, we found that 47.4% of patients used glucocorticoids, of this percentage, 15.6% took doses higher than or equal to 10 mg. NSAIDs were used on demand by 66.6% of the participants. Methotrexate was the most used sDMARD (66.5%), followed by leflunomide (33.9%). Regarding bDMARDs, 35.7% of patients used some of them, most frequently anti-TNFs (19.9%). Other drugs and their frequencies of use can be found in Table 3.

Table 4 shows the association between the use of glucocorticoids and cardiovascular comorbidities. There was a significant association (PR:0.790; p = 0.007) between the presence of dyslipidemia and non-use of glucocorticoids.

We found no significant association between the use of NSAIDs and the presence of cardiovascular comorbidities.

The use of tofacitinib and sDMARDs (methotrexate, leflunomide, anti-malarial drugs and sulfasalazine) had no significant association with the presence of cardiovascular comorbidities. Table 5 shows the results obtained for methotrexate and leflunomide, the two main sDMARDs used by the population under study.

Table 1 Sociodemographic, clinical and laboratory characteristics of Rheumatoid Arthritis patients of the REAL study [19]

Variables	n (%)
Gender (n = 1116)	
Female	998 (89.4)
Age – Mean (standard deviation) (n = 1116)	55.15 (21–88)
Education time (years) (n = 1076)	
0–4 years	301 (28)
5–11 years	629 (58.4)
≥ 12 years	146 (13.6)
Disease duration (years) – mean (standard deviation) (n = 1116)	14.58 (1–57)
Erosive disease (n = 1096)	
Yes	602 (54.9)
DAS 28 VSH Scorea – mean (standard deviation)	3.62 (0–8)
Smoking (n = 1116)	
Smoker	121 (10.8)
Former Smoker	320 (28.7)
Never Smoked	675 (60.5)
Rheumatoid Factor (n = 1098)	
Positive	863 (78.6)
ACPAb (n = 479)	368 (76.8)
a Disease Activity Score Index-28 Joints (DAS28); b Anti-citrullinated peptide antibody	

Table 2 Cardiovascular comorbidities of rheumatoid arthritis patients of the REAL study [19]

Variables (n = 1116)	n (%)
Cardiovascular Comorbidities	710 (63.6)
Systemic Arterial Hypertension -SAH	557 (49.9)
Dyslipidemia	363 (32.5)
Diabetes Mellitus	166 (14.9)
Congestive Heart Failure	24 (2.2)
Cerebrovascular Disease	24 (2.2)
Acute Myocardial Infarction – AMI	17 (1.5)
Peripheral Vascular Disease	8 (0.7)
Charlson Comorbidity Index- CCI – median (interquartile range)	0 (1.0)
Age-adjusted Charlson comorbidity index - CCI - median (interquartile range)	2 (2.0)
Table 3 Drugs used for rheumatoid arthritis treatment in the population of the REAL study [19]

Variables	n (%)
Glucocorticoids	529 (47.4)
Dose ≥10 mg (n = 527)	82/527 (15.6)
Non-steroidal anti-inflammatory	743 (66.6)
Methotrexate	742 (66.5)
Leflunomide	378 (33.9)
Antimalarials (chloroquine/hydroxychloroquine)	146 (13.1)
Sulfasalazine	55 (4.9)
Tofacitinib	9 (0.8)
Biologicals	398 (35.7)
Anti-TNF (adalimumab, infliximab, etanercept, certolizumab, golimumab)	222 (19.9)
Anti-IL6r (tocilizumab)	55 (4.9)
Abatacept	72 (6.5)
Rituximab	49 (4.4)

Table 6 shows the association between the presence of comorbidities and the use of bDMARDs. The use of these drugs was higher in patients with some cardiovascular comorbidity (PR:1.147; p = 0.003) when compared to those without comorbidities. We found a similar association for SAH (PR:1.169; p = 0.011) and AMI (PR: 4.330; p = 0.002). The presence of dyslipidemia also followed an equivalent pattern (PR:1.186; p = 0.052). The main bDMARDs used by the population were anti-TNFs (19.9%), but no significant association was found between their use and the presence of comorbidities.

Regarding tocilizumab, no significant association was found between its use and the presence of cardiovascular comorbidities.

We observed that patients with cardiovascular comorbidities showed a significantly higher use of abatacept comparing to those without comorbidities (PR:1.194; p = 0.038). The use of rituximab was more frequent in patients with SAH (PR:1.327; p = 0.028), DM (PR:2.006; p = 0.006) and AMI (PR:9.073; p < 0.001) than in patients without these diseases.

Discussion

The present study analyzed whether the presence of cardiovascular comorbidities was associated with the use of different anti-rheumatic drugs in this large Brazilian cohort of RA patients.

RA patients show a higher prevalence of cardiovascular risk comorbidities compared to the general population [6, 16], which was confirmed in our study [22] by high rates of SAH (49.9%) and DM (14.9%), higher than those described in other cohorts [6, 23–25]. There was found in this cohort a higher prevalence of SAH when comparing to the prevalence of this comorbidity in the Brazilian population, this fact may be explained by the fact that RA patients experience a higher cardiovascular risk explained by the systemic inflammation experienced by these patients, that contributes for a higher prevalence of cardiovascular comorbidities. However, we found lower rates of dyslipidemia than those reported by other authors [7, 26]. There was a high prevalence of AMI, peripheral vascular disease, cerebrovascular disease and CHF, the most common causes of premature death in RA patients [1, 9].

Excessive cardiovascular risk in this population is multifactorial [8, 9]. It can be partially explained by the higher prevalence of traditional cardiovascular risk factors, such as SAH, type 2 DM, dyslipidemia, sedentary lifestyle and obesity [5, 6, 16], which was confirmed in our study [22]. However, the main factor associated with this increased risk is systemic inflammation due to RA [1, 8, 9]. A recent study demonstrated that these combined elements explain 69.6% of the increase in cardiovascular risk [27].

Pro-inflammatory state caused by RA [1, 9, 10], with elevated C-reactive protein (CRP) and pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-a), IL-6 and IL-1, are associated with accelerated atherosclerosis, changes in lipid patterns (quantitative and qualitative), insulin resistance and endothelial dysfunction [9, 10]. Other factors of the disease, such as presence of autoantibodies, extra-joint manifestations, disease activity and X-ray erosions, contribute to increasing cardiovascular risk [1, 10, 28, 29]. Therefore, we conclude that RA itself can be considered an independent risk factor for the development of CVD [9, 10].

A factor that can be associated with cardiovascular risk in RA patients is the drugs used for the management of the disease, which can influence cardiovascular risk positively or negatively [10, 15, 17]. Current recommendations state that the most important aspect in reducing the risk of cardiovascular events in RA patients is the reduction of disease activity using DMARDs, whether synthetic or biological, thus reducing chronic inflammation and its deleterious effects [11–13, 18, 30]. They are also proven to reduce atherosclerosis progression and, consequently, cardiovascular risk [18, 30, 31].

In addition, the use of different DMARDs should be individualized and take into account the presence of comorbidities that can be positively or negatively affected by these drugs [11, 18]. Indeed, there are specific agreements that guide the choice of drugs for RA treatment based on the presence of these comorbidities [13, 15].

The use of glucocorticoids is related to a large spectrum of adverse events, such as uncontrolled SAH, dyslipidemia and especially DM [24], and their use is associated with a 47% increase in relative risk of all...
cardiovascular events and general mortality in RA patients, and this increase in risk is dependent on dose and time of use [17, 24, 32]. In the study population, the use of corticoids (47.2%) was lower than that reported by another Latin American study [33], but similar to that found in the cohort of Wilson et al [24].

Like corticosteroids, all NSAIDs [34], selective COX-2 in particular, are associated with a 20% increase in the relative risk of all cardiovascular events and lead to uncontrolled SAH [17, 35]. Therefore, it is recommended that NSAIDs be used as symptomatic medication for as little time as possible, and their use should be avoided in

Table 4 Association of cardiovascular comorbidities with the use of glucocorticoids

Cardiovascular Comorbidities	Glucocorticoids			
	Yes n*(%)	No n*(%)	PR (IC95%)	p†
Cardiovascular Comorbidities	Yes 322 (66.9)	388 (66.1)	0.921 (0.842–1.007)	0.070
	No 207 (39.1)	199 (33.9)	1.154 (0.988–1.348)	
Systemic Arterial Hypertension	Yes 257 (48.6)	300 (51.1)	0.951 (0.845–1.070)	0.400
	No 272 (51.4)	287 (48.9)	1.052 (0.935–1.182)	
Dyslipidemia	Yes 151 (28.5)	212 (36.1)	0.790 (0.665–0.939)	0.007
	No 378 (71.5)	375 (63.9)	1.119 (1.031–1.213)	
Diabetes Mellitus	Yes 74 (14)	92 (15.7)	0.893 (0.673–1.184)	0.430
	No 455 (86)	495 (84.3)	1.020 (0.971–1.071)	
Congestive Heart Failure	Yes 11 (2.1)	13 (2.2)	0.939 (0.424–2.078)	0.876
	No 518 (97.9)	574 (97.8)	1.001 (0.984–1.019)	
Cerebrovascular Disease	Yes 12 (2.3)	12 (2)	1.110 (0.503–2.449)	0.797
	No 517 (97.7)	575 (98)	0.998 (0.980–1.015)	
Acute Myocardial Infarction	Yes 8 (1.5)	9 (1.5)	0.986 (0.383–2.538)	0.977
	No 521 (98.5)	578 (98.5)	1.000 (0.986–1.015)	
Peripheral Vascular Disease	Yes 4 (0.8)	4 (0.7)	1.110 (0.279–4.415)	1.000
	No 525 (99.2)	583 (99.3)	0.999 (0.989–1.009)	

*Absolute frequencies; † Prevalence Ratio

Table 5 Association between cardiovascular comorbidities and the use of Methotrexate and Leflunomide

Cardiovascular Comorbidities	Methotrexate		
	Yes n*(%)	PR (IC95%)	p†
Cardiovascular Comorbidities	Yes 463 (62.4)	0.945 (0.862–1.036)	0.232
	No 279 (37.6)	1.107 (0.935–1.311)	
Systemic Arterial Hypertension	Yes 365 (49.2)	0.958 (0.847–1.083)	0.499
	No 377 (50.8)	1.044 (0.921–1.184)	
Dyslipidemia	Yes 236 (31.8)	0.937 (0.785–1.117)	0.469
	No 506 (68.2)	1.033 (0.946–1.127)	
Diabetes Mellitus	Yes 111 (15)	1.017 (0.755–1.371)	0.910
	No 631 (85)	0.997 (0.947–1.050)	
Congestive Heart Failure	Yes 18 (2.4)	1.512 (0.605–3.777)	0.372
	No 724 (97.6)	0.992 (0.975–1.009)	
Cerebrovascular Disease	Yes 14 (1.9)	0.706 (0.316–1.574)	0.392
	No 728 (98.1)	1.008 (0.899–1.028)	
Acute Myocardial Infarction	Yes 12 (1.6)	1.210 (0.429–3.408)	0.718
	No 730 (98.4)	0.997 (0.982–1.012)	
Peripheral Vascular Disease	Yes 5 (0.7)	0.840 (0.202–3.496)	1.000
	No 737 (99.3)	1.001 (0.990–1.012)	

Cardiovascular Comorbidities	Leflunomide		
	Yes n*(%)	PR (IC95%)	p†
Cardiovascular Comorbidities	Yes 251 (66.4)	1.068 (0.975–1.170)	0.167
	No 127 (33.6)	0.889 (0.750–1.053)	
Systemic Arterial Hypertension	Yes 195 (51.6)	1.052 (0.931–1.188)	0.423
	No 183 (48.4)	0.950 (0.838–1.078)	
Dyslipidemia	Yes 129 (34.1)	1.076 (0.903–1.283)	0.414
	No 249 (65.9)	0.965 (0.884–1.053)	
Diabetes Mellitus	Yes 52 (13.8)	0.891 (0.657–1.207)	0.453
	No 326 (86.2)	1.020 (0.970–1.073)	
Congestive Heart Failure	Yes 7 (1.9)	0.804 (0.336–1.922)	0.623
	No 371 (98.1)	1.005 (0.987–1.023)	
Cerebrovascular Disease	Yes 9 (2.4)	1.171 (0.517–2.652)	0.704
	No 369 (97.6)	0.996 (0.978–1.015)	
Acute Myocardial Infarction	Yes 3 (0.8)	0.418 (0.121–1.447)	0.200
	No 375 (99.2)	1.011 (0.998–1.025)	
Peripheral Vascular Disease	Yes 5 (1.3)	3.254 (0.782–13.543)	0.129
	No 373 (98.7)	0.991 (0.970–1.003)	

*Absolute frequencies; † Prevalence Ratio

Like corticosteroids, all NSAIDs [34], selective COX-2 in particular, are associated with a 20% increase in the relative risk of all cardiovascular events and lead to uncontrolled SAH [17, 35]. Therefore, it is recommended that NSAIDs be used as symptomatic medication for as little time as possible, and their use should be avoided in
those with some previous cardiovascular event (AMI, CCI) or with high risk based on traditional risk factors [11, 12, 15, 36]. In the present study, the use of NSAIDs was lower when compared to another cohort [7].

Since systemic inflammation caused by RA is the main determinant of increased cardiovascular risk, algorithms of RA treatment recommend the use of sDMARDs as the first line of treatment, methotrexate being the drug of choice [11–13, 18]. This finding was reproduced in our study, given that this was the most used DMARD by the population (66.5%). As it is the most used drug, evidence of cardiovascular risk is more robust for methotrexate. Recent meta-analysis in RA patients has shown that the risk of all cardiovascular events is reduced by 28% with the use of methotrexate, with a special reduction in risk and recurrence of AMI [17]. In our study, the presence of some comorbidity or cardiovascular event was not associated with the higher or lower use of this drug, which can be explained by the fact that, being the drug of choice, its use should be preferable in all patients, regardless of the presence of comorbidities or previous events.

In our population, frequent use of leflunomide was evidenced to the detriment of other sDMARDs in RA treatment. The available data regarding this drug are scarce. It is known that leflunomide is associated with the occurrence and bad control of SAH [13, 18]. Therefore, although it is not contraindicated, it should be avoided in hypertensive patients [13, 15, 18, 37]. In our population, we observed that this recommendation was not adopted, since the presence of hypertension was not associated with a lower use of this drug.

Biologicals are associated with reduced cardiovascular risk compared to patients who do not use them or those using sDMARDs [17, 25, 30]. Lee et al and Radner et al verified in their populations that the use of biological agents is less frequent in patients with comorbidities, especially cardiovascular ones [25, 38], which, according to recent protocols and recommendations, should in fact happen in the opposite way because of the cardiovascular benefit of these drugs [11–13, 18]. In the present study, we found that bDMARDs tended to be more frequently used (p = 0.003) in patients with some comorbidity or cardiovascular event, whereas individually this tendency was similar only for SAH (p = 0.011) and AMI (p = 0.002). This is an important finding, considering that the use of bDMARDs is associated to lower chance of future cardiovascular event. Besides that, bDMARDs use allows more easily the reduction or suspension of corticosteroids, which is well established associated with a pro-inflammatory state. However, this finding could be related to a selection bias, in which more severe patients and those with more inflammatory activity tend to receive bDMARDs.

The risk of all cardiovascular events, especially AMI (RR 0.85), is reduced with the use of anti-TNF drugs, more than that observed with the use of sDMARDs, specially in patients who respond well to the medication [17, 18, 30, 39]. Such protective effect was not identified for heart failure [17]. We found that the presence of

Table 6	Association between cardiovascular comorbidities and use of biologicals, in particular those of the anti-TNF class		
Biologics	**Anti-TNF**	**Prevalence Ratio (IC95%)**	**p**
Yes n(%)	**PR (IC95%)**	**p**	
Yes n(%)	**PR (IC95%)**	**p**	
Cardiovascular Comorbidities	**Yes 276 (69.3) 1.147 (1.050–1.253) 0.003**	**No 122 (30.7) 0.775 (0.652–0.922) 0.292**	
Systemic Arterial Hypertension	**Yes 219 (55) 1.169 (1.039–1.315) 0.011**	**No 179 (45) 0.850 (0.747–0.967) 0.436**	
Dyslipidemia	**Yes 144 (36.2) 1.186 (1.000–1.407) 0.052**	**No 254 (63.8) 0.918 (0.841–1.003) 0.670**	
Diabetes Mellitus	**Yes 65 (16.3) 1.161 (0.872–1.546) 0.308**	**No 333 (83.7) 0.974 (0.924–1.020) 0.568**	
Congestive Heart Failure	**Yes 10 (2.5) 1.289 (0.578–2.874) 0.535**	**No 388 (97.5) 0.994 (0.976–1.013) 0.448**	
Cerebrovascular Disease	**Yes 4 (1) 0.361 (0.124–1.048) 0.054**	**No 394 (99) 1.018 (1.002–1.035) 0.660**	
Acute Myocardial Infarction	**Yes 12 (3) 4.330 (1.536–12.201) 0.002**	**No 386 (97) 0.977 (0.959–0.995) 1.000**	
Peripheral Vascular Disease	**Yes 3 (0.8) 1.082 (0.260–4.505) 1.000**	**No 395 (99.2) 0.999 (0.989–1.010) 1.000**	

*Absolute frequencies; ‡ Prevalence Ratio ‡ Significance level
comorbidities and cardiovascular events was not associated with use of anti-TNFs, contrasting with the guidelines [11–13, 18]. This absence of association is particularly important when evaluating heart failure, given the recommendations to avoid the use of anti-TNFs in patients with CHF, especially in more advanced stages [14, 18, 30].

Abatacept and rituximab were the least frequently used drugs in our sample. The literature states that the risk reduction of cardiovascular events, such as AMI and stroke, with the use of abatacept is modestly higher comparing to anti-TNFs [40, 41], especially in patients with DM. For rituximab, data on cardiovascular outcomes are scarce, but their benefits seem to be comparable to those obtained with the use of anti-TNF [42]. In our study we observed that abatacept and rituximab tended to be used in patients with some cardiovascular risk factor like SAH, DM and AMI.

One limitation of this work is the impossibility to determine a causal relationship between the variables analyzed. Special caution should also be taken in extrapolating these findings to the general population. Moreover, for some of the medications and comorbidities, the number of patients analyzed was small, which may have affected some of the associations found. One other limitation that should be mentioned is that the cardiovascular risk in these patients were not established by known formulas, which can influence at the analyses. In spite of the above, we underline that this work was a first attempt at evaluating the association between the presence of cardiovascular risk comorbidities and the use of anti-rheumatic drugs in the first large Brazilian RA cohort and may serve as a basis for further studies.

Conclusion
The findings of this study confirmed that the presence of comorbidities of cardiovascular risk is high in the RA population. Additionally, we observed that, for the patients of the REAL study, some of the recommendations by different algorithms, which advise taking into account the presence of cardiovascular comorbidities in the choice of some anti-rheumatic drugs, were adopted but could have been better implemented.

Given that RA is an independent risk factor for cardiovascular events itself, we highlight the need to better assess the cardiovascular risk of patients in order to guide the choice of different DMARDs, aiming at better cardiovascular outcomes.

Abbreviations
RA: Rheumatoid arthritis (RA); CVd: Cardiovascular diseases; SAH: Systemic arterial hypertension; DM: Diabetes mellitus; NSAId: Non-steroidal anti-inflammatory drugs; DMARDs: Disease-modifying anti-rheumatic drugs; sDMARDs: Synthetic disease-modifying antirheumatic drugs; JAK-quinase: Tyrosina quinase; bDMARDs: Biological disease-modifying antirheumatic drugs; anti-TNF: Tumor necrosis factor inhibitor; anti-IL6r: Interleukin 6 inhibitor; BSR: Brazilian Society of Rheumatology; ACR: American College of Radiology; EULAR: European League Against Rheumatism; PR: Prevalence Ratio; P: Significance level; RF: Rheumatoid Factor; ACPA: Anti-citrullinated protein antibody; DAS 28 SCORE: Disease Activity Score Index 28 Joints; AMI: Acute myocardial infarction; CHF: Congestive heart failure; CCI: Charlson comorbidity index; ACCI: Age-adjusted Charlson comorbidity index; SPSS: Statistical Package for the Social Sciences; CI: Confidence interval; CRP: C-reactive protein; TNFa: Tumor necrosis factor-alpha; IL1: Interleukin 1; IL6: Interleukin 6; COX-2: Cyclooxygenase-2; RR: Relative risk; LDL: Low density lipoprotein; TC: Total cholesterol; TG: Triglycerides; HDL: High density lipoprotein

Acknowledgments
We thank the Brazilian Society of Rheumatology and the team of the University of Southern Santa Catarina for the statistical analysis of the data.

Authors’ contributions
GNSV: medical student responsible for the study, participated in all planning, execution and preparation of the manuscript. IAP: advisor and supervisor, responsible for outlining the study, participated in the analysis, data interpretation and critical review of the content. APC, DGSS: participated in the process of execution and content review. FO: participated in the content execution and review process. GRCP, ABVS, CPA, MBB, PLJR, DNG, SCR, MFBGR, JRB, MFILCS, CVB, LMHH, GRWC: responsible for the ‘Rheumatoid Arthritis in Real Life’ database. The author(s) read and approved the final manuscript.

Funding
This work was supported by the Brazilian Society of Rheumatology (BSR). For this project, BSR received specific grant support from the following companies: Bristol-Myers Squibb Farmacêutica Ltda; Eli Lilly do Brasil Ltda; Janssen-Cilag Farmacêuticos Ltda; Laboratórios Pfizer Ltda; Produtos Roche Químicos e Farmacêuticos S.A. and UCB Biopharma Ltda. The funding body or the companies had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
All data generated or analyzed during this study are included in this article and its supplementary information files.

The data sets generated and analyzed during the current study are not public available, due to the institutions’ ethical policy, and for this reason they are under the care of the authors but may be made available upon express request and provided that it is done within a reasonable time.

Declarations
Ethics approval and consent to participate
This study was approved by the National Commission of Ethics in Research (CONEP - Comissão Nacional de Ética em Pesquisa) – Ministry of Health. The coordinating center was the University of the State of Rio de Janeiro, and the approval number was 45781015.8.1001.5259. Each of the centers also obtained approval from the respective Institutional Review Boards. All patients signed the informed consent form.

Consent for publication
Not applicable.

Competing interests
GNSV: No financial disclosures; APC: No financial disclosures; DGSS: No financial disclosures; FO: No financial disclosures; IAP: Has received consulting fees, speaking fees and supporting for internationals congresses from Roche, Pfizer, UCB Pharma, Eli Lilly, Abbvie and Janssen; GRWC: No financial disclosures; GRCP: Has received consulting fees from AbbVie, Bristol-Myers Squibb, Eli Lily, Glaxosmithkline, Janssen, Pfizer, Sanofi Genzyme and Roche; ABVS: Has received supporting for international medical events from Abbvie and Janssen; CPA: Has received personal fees and/or non-financial support from Pfizer, AbbVie, AstraZeneca, Janssen, Bristol-Myers Squibb, Roche, Novartis and UCB, outside the submitted work; MBB: Has participated in clinical and/or experimental studies related to this work and sponsored by Roche; has delivered speeches at events related to this work and sponsored by AbbVie and Pfizer; PLJR: Has received supporting for internationals
arthritus and evaluation of their monitoring in clinical practice: the spanish cohort of the COMORA study. Reumatol Clin. 2019;15(2):102–8. https://doi.org/10.1016/j.reuma.2017.06.002.
27. Croswon CS, Rollestad S, Ildahl E, Kitas GD, Van Reil PLO, Gabriel SE, et al. Impact of risk factors associated with cardiovascular outcomes in patients with rheumatoid arthritis. Ann Rheum Dis. 2018;77(1):48–54. https://doi.org/10.1136/annrheumdis-2017-211735.
28. Myasoedova E, Chandran A, Ilhan B, Major BT, Michel CJ, Matteson EL, et al. The role of rheumatoid arthritis (RA) flare and cumulative burden of RA severity in the risk of cardiovascular disease. Ann Rheum Dis. 2016;75(3):560–5. https://doi.org/10.1136/annrheumdis-2014-206411.
29. Humphreys JT, Warner A, Chipping J, Marshall T, Lunt M, Symmons DP, et al. Mortality trends in patients with early rheumatoid arthritis over 20 years: results from the Norfolk arthritis register. Arthritis Care Res. 2014;66(9):1296–301. https://doi.org/10.1002/acr.22296.
30. Singh S, Fumery M, Singh AG, Singh N, Prokop LJ, Dulai PS, et al. Comparative risk of cardiovascular events with biologic and synthetic disease-modifying anti-rheumatic drugs in patients with rheumatoid arthritis: a systematic review and meta-analysis. Arthritis Care Res. 2020;72:561–76.
31. Burggraaf B, Van Breukelen-Van Der Stoep DF, De Vries MA, Klop B, Lien AH, Van De Geijn GM, et al. Effect of a treat-to-target intervention of cardiovascular risk factors on subclinical and clinical atherosclerosis in rheumatoid arthritis: a randomised clinical trial. Ann Rheum Dis. 2018;335–41.
32. del Rincon I, Battafarano DF, Restrepo JF, et al. Glucocorticoid dose thresholds associated with all-cause and cardiovascular mortality in rheumatoid arthritis. Arthritis Rheum. 2014;66(2):264–72. https://doi.org/10.1002/art.38210.
33. Cardiel MH, Pons-estel BA, Sacnun MP, Wojdyla D, Saurit V, Marcos JC, et al. Treatment of early rheumatoid arthritis in a multinational inception cohort of Latin American patients: the GLADAR experience. J Clin Rheumatol. 2012;18(7):327–35. https://doi.org/10.1097/RHU.0b013e31826b6e10.
34. Nissen SE, Yeomans ND, Solomon DH, Lüscher TF, Libby P, Husni ME, et al. PRECISION trial investigators. Cardiovascular safety of Celecoxib, naproxen, or ibuprofen for arthritis. N Engl J Med. 2016;375(26):2519–29. https://doi.org/10.1056/NEJMoa1611593.
35. Lindhardsen J, Gislason GH, Jacobsen S, Ahlehoff O, Olsen AMS, Ole Rintek Madsen, et al. Non-steroidal anti-inflammatory drugs and risk of cardiovascular disease in patients with rheumatoid arthritis: a nationwide cohort study. Ann Rheum Dis. 2014;73(8):1515–21. https://doi.org/10.1136/annrheumdis-2012-203137.
36. Johnson TM, Mikuls TR, England BR. Assessment of cardiovascular disease risk in rheumatoid arthritis. J Clin Outcomes Manag. 2019;26(1):41–7.
37. Giollo A, Bissell LA, Buch MH. Cardiovascular outcomes of patients with rheumatoid arthritis prescribed disease modifying anti-rheumatic drugs: a review. Expert Opin Drug Saf [Internet]. 2018;17(7):697–708 [acesso em 2020 set 07]. Disponível em: https://doi.org/10.1080/14740338.2018.1483331.
38. Radner H, Yoshida K, Hmamouchi I, Dougados M, Smolen JS, Solomon DH. Treatment patterns of multimorbid patients with rheumatoid arthritis: results from an international cross-sectional study. J Rheumatol. 2015;42(7):1099–104. https://doi.org/10.3899/jrheum.141534.
39. Low ASL, Symmons DPM, Lunt M, Mercer LK, Gale CP, Watson KD, et al. Relationship between exposure to tumour necrosis factor inhibitor therapy and incidence and severity of myocardial infarction in patients with rheumatoid arthritis. Ann Rheum Dis. 2017;76(4):654–60. https://doi.org/10.1136/annrheumdis-2016-209784.
40. Kang EH, Jin Y, Brill G, Lewey J, Patorno E, Desai RJ, et al. Comparative cardiovascular risk of Abatacept and tumor necrosis factor inhibitors in patients with rheumatoid arthritis with and without diabetes mellitus: a multidatabase cohort study. J Am Heart Assoc. 2018;7:e007393.
41. Jin Y, Kang EH, Brill G, Desai RJ, Kim SC. Cardiovascular (CV) risk after initiation of Abatacept versus TNF inhibitors in rheumatoid arthritis patients with and without baseline CV disease. J Rheumatol. 2018;45(9):1240–8. https://doi.org/10.3899/jrheum.170936. Epub 2018 May 15. PMID: 29764964.
42. Nurmohamed M, Choy E, Iula S, Kola B, DeMasi R, Accossato P. The impact of biologics and tofacitinib on cardiovascular risk factors and outcomes in patients with rheumatoid disease: a systematic literature review. Drug Saf. 2018;41(5):473–88. https://doi.org/10.1007/s40264-017-0628-9.