Feasibility of Hydrogen Production from Cellulose and Prediction of the Product Distribution: Thermodynamics Analysis

(Kebolehlaksanaan Pengeluaran Hidrogen daripada Selulosa dan Ramalan Pengedaran Produk: Analisis Termodinamik)

DIDI DWI ANGGORO1,*, WIRDA UDAIBAH1,2, AHI PRASETYANINGRUM1 & ZAKI YAMANI ZAKARIA3

1Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, 50275, Semarang, Central Java, Indonesia
2Department of Chemistry, Faculty of Science and Technology, UIN Walisongo, 50185, Semarang, Central Java, Indonesia
3School of Chemical Engineering, Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Received: 10 March 2021/Accepted: 13 August 2021

ABSTRACT

High carbon emissions, depleting fossil energy reserves have become a global problem. It is necessary to develop renewable energy sources that are environmentally friendly. Hydrogen (H\textsubscript{2}) is one of the energy sources and carriers that can be developed. This gas can be produced from renewable, sustainable, and economical resource such as biomass that contains cellulose as the main ingredient. This thermodynamic analysis of H\textsubscript{2} production from cellulose is necessary as a theoretical study to determine the feasibility of the reaction. The computational thermodynamic was analyzed using Microsoft Excel 2019 and Matlab Program R2013a. Prediction of the equilibrium composition of the substances involved in the reaction was attempted by minimization Gibbs free energy change with Lagrange undetermined multipliers methods. As a result, the value of ΔH\textsubscript{r}°, ΔS\textsubscript{r}° and ΔG\textsubscript{r}° are +624,7500 kJ/mol; +2,1491 kJ/mol.K and; -26,1540 kJ/mol, respectively. Analysis of equilibrium constant of this conversion has a large ln K value (> 1). A negative ΔG\textsubscript{r}° value and large ln K indicates that the formation of H\textsubscript{2} from (C\textsubscript{6}H\textsubscript{10}O\textsubscript{5})\textsubscript{n} is plausible and feasible and reaction product formation is strongly favored at equilibrium. The composition of the substances involved at 298 K from the largest to the smallest is CH\textsubscript{4} (4.5 mol), H\textsubscript{2}O (3 mol), CO\textsubscript{2} (1.5 mol), H\textsubscript{2} (1.28×10-5 mol), HCOOH (5.85×10-10 mol), C\textsubscript{6}H\textsubscript{12}O\textsubscript{6} (3.72×10-10 mol) and C\textsubscript{6}H\textsubscript{12}O\textsubscript{5} (1.35×10-10 mol). Interestingly, H\textsubscript{2} yield will rise significantly with the increase of reaction temperature. This preliminary study provides an overview of reaction conditions so that H\textsubscript{2} production from biomass can be produced maximally.

Keywords: Biomass; hydrogen; Lagrange multiplier; thermodynamic

ABSTRAK

Pelepasan karbon yang tinggi dan penurunan simpanan tenaga fosil telah menjadi masalah global. Oleh kerana itu, sumber tenaga boleh diperbaharui yang mesra alam perlu dibangunkan. Hidrogen (H\textsubscript{2}) adalah salah satu sumber tenaga dan pembawa tenaga yang dapat dikembangkan. Gas diatomik ini dapat dihasilkan daripada sumber yang boleh diperbaharui, lestari dan murah seperti biojisim yang mengandung selulosa sebagai bahan utama. Analisis termodinamik bagi penghasilan H\textsubscript{2} daripada selulosa diperlukan sebagai kajian teori untuk menentukan kebarangkalian tindak balas yang menggunakan kaedah perkiraan. Termodinamik komputasi dianalisis menggunakan Microsoft Excel 2016 dan Matlab Program R2013a. Ramalan komposisi keseimbangan bahan yang terlibat dalam reaksi tindak balas dengan menerima kemasukan perubahan tenaga bebas Gibbs dengan kaedah pengganda tidak ditentukan Lagrange. Hasilnya, nilai ΔH\textsubscript{r}°, ΔS\textsubscript{r}° dan ΔG\textsubscript{r}° masing-masing adalah +624,7500 kJ/mol; +2,1491 kJ/mol.K dan -26,1540 kJ/mol. Analisis pemalar keseimbangan penakaran ini mempunyai nilai ln K yang besar (> 1). Nilai ΔG\textsubscript{r}° negatif dan ln K besar menunjukkan bahawa pembentukan H\textsubscript{2} daripada (C\textsubscript{6}H\textsubscript{10}O\textsubscript{5})\textsubscript{n} munasabah dan boleh dilaksanakan dan pembentukan produk reaksi cenderung terhasil pada titik keseimbangan. Komposisi produk yang terlibat pada suhu 298 K dari yang terbesar hingga yang terkecil adalah CH\textsubscript{4} (4.5 mol), H\textsubscript{2}O (3 mol), CO\textsubscript{2} (1.5 mol), H\textsubscript{2} (1.28×10-5 mol), HCOOH (5.85×10-10 mol), C\textsubscript{6}H\textsubscript{12}O\textsubscript{6} (3.72×10-10 mol) dan C\textsubscript{6}H\textsubscript{12}O\textsubscript{5} (1.35×10-10 mol). Interesting, H\textsubscript{2} yield will rise significantly with the increase of reaction temperature. This preliminary study provides an overview of reaction conditions so that H\textsubscript{2} production from biomass can be produced maximally.

Keywords: Biomass; hydrogen; Lagrange multiplier; thermodynamic
The decline in environmental quality due to carbon emission has become a global problem. Based on the Statistical Review of Energy released by BP in 2020, the trend of carbon emission is showed where the average annual growth in carbon emissions during 2018 and 2019 is greater than the 10-year average. The industrial and transportation sectors are the largest energy consumers and contribute to the increase in greenhouse gases. This is because the primary energy source currently used is fossil energy (petroleum, natural gas, and coal) (BP 2020). The use of renewable energy sources that are environmentally friendly is absolutely necessary not only because of high carbon emissions but also depleting fossil energy reserves. Hydrogen (H\textsubscript{2}) is one of the energy sources and carriers that can be developed. H\textsubscript{2} has high chemical energy per mass (122 kJ/g) (Dincer 2018) and is one of the most promising options for effective H\textsubscript{2} production.

Some researchers doubt this process can be used for effective H\textsubscript{2} production. This is maybe because of the rigid intra and inter-molecular hydrogen bonds in cellulose, it is difficult to hydrolyze cellulose to platform organic molecules and then converting it to H\textsubscript{2}. Hence, thermodynamic analysis of H\textsubscript{2} production from cellulose is necessary to determine the feasibility of the reaction. Some of the existing thermodynamic studies generally use platform organic compounds (Huang et al. 2020) such as methanol, ethanol, glycerol, and monosaccharides such as glucose. Thermodynamic studies of polysaccharides have not been carried out and existing studies use the glucose molecule as a model because it is a major derivative of cellulose.

This paper discusses the thermodynamic analysis of cellulose reforming to H\textsubscript{2} in the absence of a photocatalyst. This analysis will be a preliminary study to assess the feasibility of this reaction. Using the computational method, this theoretical study can be used to predict the conditions of the cellulose reforming reaction and the distribution of the products obtained.

INTRODUCTION

MATERIALS AND METHODS

COMPUTATIONAL THERMODYNAMIC ANALYSIS

This thermodynamic study was attempted by means of a computational procedure using Microsoft Excel 2019 and Matlab Program R2013a. The analysis consists of several steps, namely: (1) calculating changes in reaction for both standard enthalpy (ΔH°_r) and entropy (ΔS°_r),
and then the change in free energy of reaction Gibbs (Δ\(G^0\)); (2) determine the reaction equilibrium constant (K) at various temperatures (3) determine the change in total Gibbs free energy (ΔG); (4) minimization of Gibbs energy and prediction of the equilibrium composition of the substances involved in the reaction at the specified temperature and pressure. This minimization introduces Lagrange undetermined multipliers methods and computed using MatLab R2013a program.

For the first step, we calculate \(\Delta H^0\), \(\Delta S^0\) and \(\Delta G^0\), according to (5), (6) and (7):

\[
\Delta H^0 = \Delta H^0_{\text{product}} - \Delta H^0_{\text{reactant}} \quad (5)
\]

\[
\Delta S^0 = \Delta S^0_{\text{product}} - \Delta S^0_{\text{reactant}} \quad (6)
\]

\[
\Delta G^0 = \Delta G^0_{\text{product}} - \Delta G^0_{\text{reactant}} \quad (7)
\]

The equilibrium constant (K) determined based on (8):

\[
K' = \exp(-\Delta G^0/RT) \quad (8)
\]

Or by Van’t Hoff equation:

\[
\ln \frac{K}{K_0} = -\frac{\Delta H^0}{R} \left(\frac{1}{T} - \frac{1}{T_0}\right) \quad (9)
\]

that can be rewrite as

\[
\ln K = -\frac{\Delta H^0}{R} \left(\frac{1}{T} - \frac{1}{T_0}\right) + \ln K' \quad (10)
\]

\[
y = -ax + b
\]

with \(\Delta H^0\) is standard enthalpy; \(T\) is reference temperature of reaction (298 K); and \(T'\) is determined temperature of the reaction (This thermodynamic analysis take place at \(T'=303-353\) K). \(K'\) is reference of equilibrium constant. The value of ln K can be plotted to \(T\).

Further thermodynamic analysis step aims to calculate the equilibrium composition by minimizing the free energy of Gibbs. The Gibbs energy minimization is limited or constrained by the number of moles of the substance (atoms) involved in the reaction (atomic balance constraints) (Khonde et al. 2021; Tsanas et al. 2017).

The total Gibbs free energy change can be calculated by (11).

\[
G_t = \sum_{i=1}^{N} n_i \mu_i \quad (11)
\]

where \(\mu_i = G^0_i + RT \ln \frac{f_i}{f_{i0}}\)

and for gases compounds

\[
f_i = y_i \Phi_i P
\]

Hence, the total Gibbs free energy change from the mixture can be written as

\[
G^t = \sum_{i=1}^{N} n_i G^0_i + RT \sum_{i=1}^{N} n_i \ln \frac{y_i \Phi_i P}{\rho_0} \quad (14)
\]

Subsequently, (14) is the objective function that will be minimized.

In a closed system, the number of moles of each atom is fixed during a chemical reaction. The total number of moles of a particular atom present in all chemical species in each chemical reaction must equal the initial mole number of that atom.

\[
\sum_{i=1}^{N} n_i a_{i,k} = A_k \quad \text{which} \ k = 1,2,3,\ldots \quad (15)
\]

Or

\[
\sum_{i=1}^{N} n_i a_{i,k} - A_k = 0 \quad \text{which} \ k = 1,2,3,\ldots \quad (16)
\]

Minimization was done by substituting boundary conditions in the objective function. The boundary condition is the number of atoms involved in the reaction based on the proposed mechanism, namely three atoms including C, H, and O. The number of moles of the three atoms is entered in the objective function using the Lagrange Multiplier; \(\lambda_i\), \(\lambda_\mu\), and \(\lambda_y\).

Therefore (14) will be:

\[
\sum_{i=1}^{N} n_i \left(\Delta G^0_i + RT \ln \frac{y_i \Phi_i P}{\rho_0} + \sum \lambda_i a_{i,k}\right) = 0 \quad (17)
\]

which \(i = 1,2,\ldots,N\)

where \(G_i\) is the total Gibbs free energy; \(G^0_i\) is standard Gibbs free energy of species (i); \(R\) is the molar gas constant; \(T\) is the temperature of the system; \(f'_i\) is fugacity of species (i) in the system; \(f^0_i\) is standard state fugacity of species (i) and \(n_i\) is the number of moles of species (i).

RESULTS AND DISCUSSION

STANDARD ENTHALPY (\(\Delta H^0\)), ENTROPY (\(\Delta S^0\)) AND GIBBS FREE ENERGY CHANGE (\(\Delta G^0\)) OF REACTION

Conversion of cellulose to hydrogen involves the
formation, destruction and rearrangement of chemical bonds of compound involve in the reaction, so there will be a change in energy of the system. The change of energy can be observed from ΔH^o; ΔS^o; and ΔG^o. Standard enthalpy change can be useful for determining the temperature effect on the equilibrium constant of H_2 production and thus on H_2 yield. In addition, Gibbs free energy changes can be useful for determining the existence of chemical equilibrium in the system and the influence of process variables on the H_2 yield (Hill & Root 2014). One of the important things in thermodynamics analysis is the availability of thermodynamics data sources. In this analysis, the data is tabulated in Table 1 and obtained from Smith et al. (2018) and Voitkevich et al. (2012).

No	Component	ΔH^o (kJ/mol)	ΔS^o (J/mol.K)	ΔG^o (kJ/mol)
1	$(C_6H_{10}O_5)_n^*$	-985	212.1	-681
2	H_2O^{**}	-285.83	70	-237
3	CO_2^{**}	-393.51	213.8	-394.359
4	H_2^{**}	0	130.7	0

*Based on (Voitkevich et al. 2012), **Based on (Smith et al. 2018)

From (5), (6) and (7), the value of ΔH^o, ΔS^o and ΔG^o are +624,7500 kJ/mol; +2,1491 kJ/mol.K and -26, 1540 kJ/mol, respectively. Even though the value of ΔH^o is positive, the value is too small compared to the positive value of ΔS^o. This resulted in the negative value of ΔG^o. With a negative ΔG^o value, the reaction to form H_2 from $(C_6H_{10}O_5)_n$ can take place spontaneously under standard conditions (298 K, 1 atm). The reaction takes place exothermically (Hua et al. 2020; Smith et al. 2018). This negative value of ΔG^o also indicate that the conversion of cellulose can be accelerated using a catalyst.

DETERMINE THE REACTION EQUILIBRIUM CONSTANT (K) AT VARIOUS TEMPERATURES

Equilibrium constants are very sensitive to temperature. The equilibrium constants of reactions are exhibited as a function of temperature in Table 2 and Figure 1.

TABLE 1. Thermodynamic value of component involves in reaction

No	Component	ΔH^o (kJ/mol)	ΔS^o (J/mol.K)	ΔG^o (kJ/mol)
1	$(C_6H_{10}O_5)_n^*$	-985	212.1	-681
2	H_2O^{**}	-285.83	70	-237
3	CO_2^{**}	-393.51	213.8	-394.359
4	H_2^{**}	0	130.7	0

*Based on (Voitkevich et al. 2012), **Based on (Smith et al. 2018)

TABLE 2. Equilibrium constant K and K’ value

T (x)	K’	Ln K’	K	(y)
303	32276.87	10.38	2.00x10²	14.54
308	27270.63	10.21	1.00x10²	18.40
313	23165.27	10.05	4.00x10²	22.13
318	19779.16	9.89	1.53x10³	25.75
323	16970.83	9.74	5.08x10³	29.26
328	14629.38	9.59	1.52x10⁴	32.65
333	12667.32	9.45	4.10x10⁴	35.95
338	11015.25	9.31	1.00x10⁵	39.15
343	9617.74	9.17	2.24x10⁵	42.25
348	8430.34	9.04	4.57x10⁶	45.27
353	7417.17	8.91	8.57x10⁷	48.20
A large $\ln K$ value (>1) indicates that the reaction, the formation of H_2 from $(\text{C}_6\text{H}_{10}\text{O}_5)_n$ can be plausible and feasible. With a negative ΔG_f° value and large $\ln K$, the product formation at equilibrium is strongly favored at equilibrium (Cheng et al. 2019; Muhammad et al. 2017). The higher the temperature, the greater the value of $\ln K$, which indicates an infinite equilibrium.

PRODUCT DISTRIBUTION ANALYSIS

Based on the possible reaction mechanisms as stated by Hao et al. (2018) and Zou et al. (2018), the substances involved in the reaction is served in Table 3 that consists of cellulose $(\text{C}_6\text{H}_{10}\text{O}_5)_n$, water ($\text{H}_2\text{O}$), glucose $(\text{C}_6\text{H}_{12}\text{O}_6)$, formic acid ($\text{HCOOH}$), carbon dioxide ($\text{CO}_2$), hydrogen ($\text{H}_2$) and methane ($\text{CH}_4$).

TABLE 3. Reaction components and several quantities for analysis product

No	Component	ΔG_f° (kJ/mol)	Mol (initial feed)	Initial guess (mol)**
1	$(\text{C}_6\text{H}_{10}\text{O}_5)_n$	-681.0	1	0.23×10^{-3}
2	H_2O	-237.0	7	1.00×10^{-3}
3	$\text{C}_6\text{H}_{12}\text{O}_6$	-910.4	0	0.70×10^{-3}
4	HCOOH	-278.8	0	1.10×10^{-3}
5	CO_2	-394.4	0	85.3×10^{-3}
6	H_2	0	0	195.2×10^{-3}
7	CH_4	-50.5	0	0.11×10^{-3}

*based on Zhang et al. (2016), **assumption: total pressure 1 atm, temperature 298 K
The value of number of atomic mass \(k \) in the system \((A_k)\) that is required can be determined from the initial mole numbers, and the number of atom \(k \) per molecule \(i(a_i) \) values that comes directly from the chemical formulas of each species in the reaction (as shown in Table 4).

TABLE 4. The number of atom C, O and H that entered in the objective function using the Lagrange Multiplier

Component \(i \)	\(a_c \) = number of atom C per molecule \(i \)	\(a_o \) = number of atom O per molecule \(i \)	\(a_h \) = number of atom H per molecule \(i \)
\(\text{C}_6\text{H}_{10}\text{O}_5 \)	\(a_{\text{C6H10O5}.C} = 6 \)	\(a_{\text{C6H10O5}.O} = 5 \)	\(a_{\text{C6H10O5}.H} = 10 \)
\(\text{H}_2\text{O} \)	\(a_{\text{H2O}.C} = 0 \)	\(a_{\text{H2O}.O} = 1 \)	\(a_{\text{H2O}.H} = 2 \)
\(\text{C}_6\text{H}_{12}\text{O}_6 \)	\(a_{\text{C6H12O6}.C} = 6 \)	\(a_{\text{C6H12O6}.O} = 6 \)	\(a_{\text{C6H12O6}.H} = 12 \)
\(\text{HCOOH} \)	\(a_{\text{HCOOH}.C} = 1 \)	\(a_{\text{HCOOH}.O} = 2 \)	\(a_{\text{HCOOH}.H} = 2 \)
\(\text{CO}_2 \)	\(a_{\text{CO}_2}.C = 1 \)	\(a_{\text{CO}_2}.O = 2 \)	\(a_{\text{CO}_2}.H = 0 \)
\(\text{H}_2 \)	\(a_{\text{H}_2}.C = 0 \)	\(a_{\text{H}_2}.O = 0 \)	\(a_{\text{H}_2}.H = 2 \)
\(\text{CH}_4 \)	\(a_{\text{CH}_4}.C = 1 \)	\(a_{\text{CH}_4}.O = 0 \)	\(a_{\text{CH}_4}.H = 4 \)

Based on computational analysis, the composition of the substances involved in (reaction temperature 298 K from the largest to the smallest are \(\text{CH}_4 \) (4.5 mol), \(\text{H}_2\text{O} \) (3 mol), \(\text{CO}_2 \) (1.5 mol), \(\text{H}_2 \) (1.28 \(\times 10^{-5} \) mol), HCOOH (5.85 \(\times 10^{-10} \) mol), \(\text{C}_6\text{H}_{12}\text{O}_6 \) (3.72 \(\times 10^{-10} \) mol) and \(\text{C}_6\text{H}_5\text{O}_5 \) (1.35 \(\times 10^{-10} \) mol). The corresponding product distributions at temperatures between 298-398 K are illustrated in Figures 2 and 3. Figure 2 shows the cellulose, glucose, formic acid and hydrogen distribution as a function of temperature whereas Figure 3 shows methane, water and carbon dioxide as a function of temperature.

The most significant finding from Figure 2 is that hydrogen increased exponentially as temperature increase within the stipulated temperature boundary. At temperature 298 K, 1.28 \(\times 10^{-5} \) moles of \(\text{H}_2 \) is produced and when the temperature reached 398 K, \(\text{H}_2 \) of 3.50 \(\times 10^{-4} \) mol is produced that is an increase of 27 times. In the other hand, the composition of cellulose, glucose and formic acid decreased insignificantly with increasing temperature. At 298 K, the composition of cellulose, glucose and formic acid are 1.35 \(\times 10^{-10} \) mol; 3.72 \(\times 10^{-10} \) mol and 5.85 \(\times 10^{-10} \) mol, respectively. Meanwhile, at T 398 K the amount was reduced to 1.98 \(\times 10^{-22} \) mol; 6.37 \(\times 10^{-22} \) mol and 2.2 \(\times 10^{-22} \) mol. It is assumed that decrease in cellulose, glucose, and formic acid take place because that substance was converted to \(\text{H}_2 \). According to the insight on the reaction mechanism, hydrogen can be produced from cellulose by forming intermediate products including glucose, formic acid or other oxygenate products (Hao et al. 2018; Lan et al. 2020; Zhang et al. 2016). The more cellulose converted into organic compounds, the easier it is to form \(\text{H}_2 \) to be produced and this is the reason \(\text{H}_2 \) formation increased rapidly (Syaahidah et al. 2020). The conversion of cellulose into organic products begins with the dissociation of \(\beta-(1,4) \)- the glycosidic bonds in these polysaccharides into saccharides as their monomers. Such process of attaining hydrogen from biomass is complicated (Ahorsu et al. 2018). This dissociation stage is the rate limiting step for the formation of \(\text{H}_2 \) from cellulose. Furthermore, these saccharides can be transformed into other intermediate products such as
FIGURE 2. Product distribution (cellulose, glucose, formic acid and hydrogen) as a function of temperature.

FIGURE 3. Product distribution (methane, water and carbon dioxide) as a function of temperature.
alcohol or carboxylic acid or furfural and finally into hydrogen and other products within a complex reaction network (Lan et al. 2020; Puga 2016; Speltini et al. 2014; Syaahidah et al. 2020; Zou et al. 2018).

Other chemical compounds involved in the conversion of cellulose to hydrogen are methane, water, and carbon dioxide. From Figure 3, it is predicted that there is no change in their compositions. Methane is obtained as one of the main products in cellulose conversion to hydrogen. This gas may be produced from intermediate product that have alkyl group in their structure. Alkyl (CH$_3$-) will react with proton (H$^+$) resulted CH$_4$ (Bahruji et al. 2011; Bowker et al. 2014; Hao et al. 2018) following reaction route:

$$RR'CHOH + H_2O \rightarrow RH + R'H- CO_2 + H_2 \quad (18)$$

From the thermodynamic equilibrium point of view, H$_2$ was dominantly resulted at high temperature, while CH$_4$ was produced at low temperature. It is a challenge to eliminate this low hydrocarbon from this reaction. Researchers suggested to carry out methane steam reforming and successive water-gas shift reaction to obtain maximum yield of H$_2$ (Shimura & Yoshida 2011). The reformation of cellulose to hydrogen also produces large amount of CO$_2$. CO$_2$ is produced by the oxidation of the alkyl groups of the intermediate products. However, CO$_2$ from biomass is considered more environmentally friendly than CO$_2$ produced from fossil fuels (Danish & Ulucak 2020; Koruba et al. 2017; Sher et al. 2020). Through photosynthesis, this CO$_2$ will be reversed reacted into cellulose (biomass) (Chen et al. 2019). In addition, CO$_2$ and CH$_4$ tend to produce if the intermediate product contains either glycerol or methanol (Tasleem et al. 2020). Furthermore, the produced CO$_2$ subsequently transformed to CH$_4$ and this is the plausible explanation of why CH$_4$ is largely produced. The proposed reaction mechanism of cellulose to hydrogen is illustrated in Figure 4.

FIGURE 4. Proposed reaction mechanism of hydrogen evolution from cellulose

Prediction of product distribution in this study can be taken into consideration to increase the amount of hydrogen produced from the conversion of cellulose. Ideally, the reaction equilibriums can be adjusted by manipulating temperature for some objectives: (1) maximize H$_2$ production, (2) reduce greenhouse gases (CH$_4$ and CO$_2$) production, and (3) minimize carbon release (Cheng et al. 2019). The manipulating reaction
also can be attempt by applied an appropriate catalyst to adjust H₂ production. The catalyst is expected to direct the reaction product so that the main product has a relatively high yield.

CONCLUSIONS

Hydrogen is feasible to be produced from biomass that contains cellulose. The value of ΔH°, ΔS° and ΔG° are +624,7500 kJ/mol; +2,1491 kJ/mol.K and -26,1540 kJ/mol, respectively. With a negative ΔG° value, the forward reaction to produce H₂ from (C₆H₁₀O₅)n will proceed spontaneously and exothermic under standard conditions. Analysis of equilibrium constant of this conversion has a large ln K value (> 1). It indicates that the formation of H₂ from (C₆H₁₀O₅)n can be plausible and feasible. With a negative ΔG° value and large ln K, the product formation at equilibrium is strongly favored at equilibrium. The composition of the substances involved in (at 298K) from the largest to the smallest are CH₄ (4.5 mol), H₂O (3 mol), CO₂ (1.5 mol), H₂ (1.28×10⁻⁵ mol), HCOOH (5.85×10⁻¹⁰ mol), C₆H₁₀O₅ (3.72×10⁻¹⁰ mol), and C₆H₁₀O₅ (1.35×10⁻¹⁰ mol). Interestingly, H₂ yield will increase significantly at elevated temperatures.

ACKNOWLEDGEMENTS

The authors would like to extend the deepest appreciation to the Ministry of Research, Technology/ National Research and Innovation Agency (RISTEK- BRIN) of the Republic of Indonesia for the financial support of this research project under the Fundamental Research Grant Scheme in 2021.

REFERENCES

Ahorsu, R., Medina, F. & Constantini, M. 2018. Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: A review. *Energies* 11(12): 3366. https://doi.org/10.3390/en11123366.

Bowker, M., Morton, C., Kennedy, J., Bahruji, H., Greves, J., Jones, W., Davies, P.R., Brookes, C., Wells, P.P. & Dimitratos, N. 2014. Hydrogen production by photocatalysis of biofuels using Au, Pd and Au-Pd/TiO₂ photocatalysts. *Journal of Catalysis* 310: 10-15. https://doi.org/10.1016/j.jcat.2013.04.005.

BP. 2020. *Statistical Review of World Energy* 2020. 69th ed. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf.

Chen, X., Guan, W., Tsang, C.W., Hu, H. & Liang, C. 2019. Lignin valorizations with Ni catalysts for renewable. *Catalysts* 9: 488. https://doi.org/10.3390/catal9060488.

Cheng, Y.W., Lee, Z.S., Chong, C.C., Khan, M.R., Cheng, C.K., Ng, K.H. & Hossain, Sk.S. 2019. Hydrogen-rich syngas production via steam reforming of palm oil mill effluent (POME) - A thermodynamics analysis. *International Journal of Hydrogen Energy* 44(37): 20711-20724. https://doi.org/10.1016/j.ijhydene.2018.05.119.

Danish & Ulucak, R. 2020. Linking biomass energy and CO₂ emissions in China using dynamic autoregressive-distributed lag simulations. *Journal of Cleaner Production* 250: 119533. https://doi.org/10.1016/j.jclepro.2019.119533.

Dincer, I. & Zamfirescu, C. 2016. *Sustainable Hydrogen Production*. https://doi.org/10.1016/b978-0-444-64203-5.00001-0.

Hao, H., Zhang, L., Wang, W. & Zeng, S. 2018. Facile modification of Titania with nickel sulfide and sulfate species for the photoreformation of cellulose into hydrogen. *ChemSusChem* 11(16): 2810-2817. https://doi.org/10.1002/cssc.201800743.

Hasliza Bahruji, Bowker, M., Davies, P.R. & Pedrono, F. 2011. New insights into the mechanism of photocatalytic reforming on Pd/TiO₂. *Applied Catalysis B: Environmental* 107(1-2): 205-209. https://doi.org/10.1016/j.apcatb.2011.07.015.

Hill Jr., C.G. & Root, T.W. 2014. *Introduction to Chemical Engineering Kinetics & Reactor Design*. 2nd ed. New Jersey: John Wiley & Sons, Inc.

Hua, J., Wang, K., Wang, Q. & Peng, R. 2020. Feasibility of Fe-based nitrogen carrier for chemical looping ammonia synthesis: Thermodynamics. *Journal of Thermal Analysis and Calorimetry* 146: 673-680. https://doi.org/10.1007/s10973-020-10029-x.

Huang, C.W., Nguyen, B.S., Wu, J.C.S. & Nguyen, V.H. 2020. A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water. *International Journal of Hydrogen Energy* 45(36): 18144-18159. https://doi.org/10.1016/j.ijhydene.2019.08.121.

Khonde, R., Hedaoa, S. & Deshmukh, S. 2021. Prediction of product gas composition from biomass gasification by the method of Gibb's free energy minimization. *Energy Sources, Part A: Recovery, Utilization and Environmental Effects* 43(3): 371-380. https://doi.org/10.1080/15567036.2019.1624890.

Koruba, D., Piotrowski, J.Z. & Latosinska, J. 2017. Biomass - Alternative renewable energy source to the fossil fuels. *E3S Web of Conferences* 14(March 2016): 1-10. https://doi.org/10.1051/e3sconf/20171402015.

Kuehnel, M.F. & Reisner, E. 2018. Solar hydrogen generation from lignocellulose Angewandte. pp. 3290-3296. https://doi.org/10.1002/anie.201710133.

Lan, L., Shao, Y., Jiao, X., Zhang, R., Hardacre, C. & Fan, X. 2020. Systematic study of H₂ production from catalytic photoreforming of cellulose over Pt catalysts supported on TiO₂. *Chinese Journal of Chemical Engineering* 28(8): 2084-2091. https://doi.org/10.1016/j.cjche.2020.03.030.
Megashah, L.N., Ariffin, H., Zakaria, M.R. & Hassan, M.A. 2018. Properties of cellulose extract from different types of oil palm biomass. *IOP Conference Series: Materials Science and Engineering* 368: 012049. https://doi.org/10.1088/1757-899X/368/1/012049.

Muhammad Tahir, William Mulewa, Nor Aishah Saidina Amin & Zaki Yamani Zakaria. 2017. Thermodynamic and experimental analysis on ethanola steam reforming for hydrogen production over Ni-Modified TiO$_2$/MMT nanoclay catalyst. *Energy Conversion and Management* 154(May): 25-37. https://doi.org/10.1016/j.enconman.2017.10.042.

Nikolaidis, P. & Poullikkas, A. 2017. A comparative overview of hydrogen production processes. *Renewable and Sustainable Energy Reviews* 67: 597-611. https://doi.org/10.1016/j.rser.2016.09.044.

Puga, A.V. 2016. Photocatalytic production of hydrogen from biomass-derived feedstocks. *Coordination Chemistry Reviews* 315: 1-66. https://doi.org/http://dx.doi.org/10.1016/j.ccr.2015.12.009.

Sher, F., Iqabal, S.Z., Liu, H., Muhammad Imran & Snape, C.E. 2020. Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources. *Energy Conversion and Management* 203(September 2019): 112266. https://doi.org/10.1016/j.enconman.2019.112266.

Shimura, K. & Yoshida, H. 2011. Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. *Energy and Environmental Science* 4(7): 2467-2481. https://doi.org/10.1039/c1ee01120k.

Singh, R. & Dutta, S. 2018. A review on H$_2$ production through photocatalytic reactions using TiO$_2$/TiO$_2$-assisted catalysts. *Fuel* 220(February): 607-620. https://doi.org/10.1016/j.fuel.2018.02.068.

Smith, J.M., Van Ness, H.C., Abbott, M.M. & Swihart, M.T. 2018. *Introduction to Chemical Engineering Thermodynamics*. 8th ed. New York: McGraw Hill Education. https://doi.org/10.1021/c4pp00128a.

Tsanas, C., Stenby, E.H. & Yan, W. 2017. Calculation of simultaneous chemical and phase equilibrium by the method of Lagrange multipliers. *Chemical Engineering Science* 174: 112-126. https://doi.org/10.1016/j.ces.2017.08.033.

Zhang, G., Ni, C., Huang, X., Welgamage, A., Lawton, L.A., Robertson, P.K.J. & Irvine, J.T.S. 2016. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-Light photocatalysis. *Chemical Communications* 52(8): 1673-1676. https://doi.org/10.1039/c5cc09075j.