A dense disk of dust around the born-again Sakurai's object

O. Chesneau
Laboratoire Joseph-Louis Lagrange

G. C. Clayton
Louisiana State University

F. Lykou
The University of Manchester

O. De Marco
American Museum of Natural History

C. A. Hummel
European Southern Observatory

See next page for additional authors

Follow this and additional works at: https://digitalcommons.lsu.edu/physics_astronomy_pubs

Recommended Citation

Chesneau, O., Clayton, G., Lykou, F., De Marco, O., Hummel, C., Kerber, F., Lagadec, E., Nordhaus, J., Zijlstra, A., & Evans, A. (2009). A dense disk of dust around the born-again Sakurai's object. *Astronomy and Astrophysics, 493* (2) https://doi.org/10.1051/0004-6361:200811173

This Article is brought to you for free and open access by the Department of Physics & Astronomy at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact ir@lsu.edu.
A dense disk of dust around the born-again Sakurai’s object*, **

O. Chesneau1, G. C. Clayton2, F. Lykou3, O. De Marco4, C. A. Hummel5, F. Kerber5, E. Lagadec3, J. Nordhaus6, A. A. Zijlstra3, and A. Evans7

1 UMR 6525 H. Fizeau, Univ. Nice Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, Av. Copernic, 06130 Grasse, France
e-mail: olivier.chesneau@ob-azur.fr
2 Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
3 Jodrell Bank Centre for Astrophysics, The A. Turing Building, The Univ. of Manchester, Oxford Rd, Manchester M13 9PL, UK
4 Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
5 European Southern Observatory, Karl-Schwarzschild-Strasse 2 85748 Garching bei München, Germany
6 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
7 Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG, UK

Received 17 October 2008 / Accepted 18 November 2008

ABSTRACT

Context. In 1996, Sakurai’s object (V4334 Sgr) suddenly brightened in the center of a faint Planetary Nebula (PN). This very rare event was interpreted as being the reignition of a hot white dwarf that caused a rapid evolution back to the cool giant phase. From 1998 on, a copious amount of dust has formed continuously, screening out the star that remained embedded in this expanding high optical-depth envelope.

Aims. We present observations that we use to study the morphology of the circumstellar dust to investigate the hypothesis that Sakurai’s Object is surrounded by a thick spherical envelope of dust.

Methods. We acquired unprecedented, high angular-resolution, spectro-interferometric observations, with the mid-IR interferometer MIDI/VLTI, which resolved the dust envelope of Sakurai’s object.

Results. We report the discovery of an unexpectedly compact (30×140 milliarcsec, 105×140 AU assuming a distance of 3.5 kpc), highly inclined, dust disk. We used Monte Carlo radiative-transfer simulations of a stratified disk to constrain its geometric and physical parameters, although such a model is only a rough approximation of the rapidly evolving dust structure. Even though the fits are not fully satisfactory, some useful and robust constraints can be inferred. The disk inclination is estimated to be 75°±3° with a large scale height of 47±7 AU. The dust mass of the disk is estimated to be 6×10−5 M⊙. The major axis of the disk (132°±3°) is aligned with an asymmetry seen in the old PN which was re-investigated as part of this study. This implies that the mechanism responsible for shaping the dust envelope surrounding Sakurai’s object was already at work when the old PN formed.

Key words. ISM: planetary nebulae: individual: Sakurai’s object – stars: AGB and post-AGB – stars: circumstellar matter – stars: mass-loss – techniques: high angular resolution – techniques: interferometric

1. Introduction

Sakurai’s Object (V4334 Sgr), first detected in 1996, is the central star of a planetary nebula (CSPN), that experienced a Very Late Thermal Pulse (VLTP), which is a helium-shell flash while on the white-dwarf cooling track that can influence the late evolution of low-mass stars (Herwig 2001; Lawlor & MacDonald 2003; Hajduk et al. 2005). The extended very faint planetary nebula (PN) bears witness to the previous evolution of this star, confirming that the latest large mass ejection occurred several thousands years ago (Herwig 2001; Lawlor & MacDonald 2003; Hajduk et al. 2005). This new “final flash”, which began 12 years ago, returned the star very briefly to the Asymptotic Giant Branch (AGB) stage, explaining why these sources are often called “Born-again” objects. As such, a final flash is astronomically very brief (only a few tens of years), so that the observation of such an event is rare. Only the event experienced by V605 Aql can be considered as directly comparable (Clayton et al. 2006; Clayton & De Marco 1997). V605 Aql underwent a final flash in 1917 and appears today to be still embedded in a disk-like dust structure (Clayton et al. 2006; Hinkle et al. 2008).

The analysis of the very rapid evolution of the spectral energy distribution (SED) of Sakurai’s Object (Eyres et al. 1999; Kerber et al. 1999; Tyne et al. 2002; Käufel et al. 2003; Eyres et al. 2004; Evans et al. 2006; Worters et al. 2008) has suggested that the average dust grain size has been increasing and probably the rate of dust formation has been increasing as well. The results were based mainly on modeling of radiative transfer in a spherical dust shell. Tyne et al. (2002) suggested that the source was expanding and might be resolvable by 8–10 m class telescopes in the mid-IR. Kerber et al. (2002) discovered a fast outflow emerging from the source and suggested a bipolar morphology for the fast moving gas seen in optical spectra. Recently, it has been suspected that there is a strong asymmetry in the circumstellar shell around Sakurai’s Object, but the dust shell itself had yet to be resolved in the optical or near-IR (Evans et al. 2006; van Hoof et al. 2007).

Observations using the Very Large Telescope Interferometer are presented in Sect. 2. In Sect. 3 we derive some physical parameters, although such a model is only a rough approximation of the rapidly evolving dust structure. Even though the fits are not fully satisfactory, some useful and robust constraints can be inferred. The disk inclination is estimated to be 75°±3° with a large scale height of 47±7 AU. The dust mass of the disk is estimated to be 6×10−5 M⊙. The major axis of the disk (132°±3°) is aligned with an asymmetry seen in the old PN which was re-investigated as part of this study. This implies that the mechanism responsible for shaping the dust envelope surrounding Sakurai’s object was already at work when the old PN formed.
parameters of the dust shell using 2D radiative-transfer models, and discuss our results in Sect. 4.

2. Observations

The source was observed in June 2007 with MIDI (Leinert et al. 2003; Ratzka et al. 2007) the mid-IR recombining of the Very Large Telescope (VLT). The MIDI/VLT Interferometer operates like a classical Michelson interferometer combining the mid-IR light (ν, 7.5–13.5 μm) from two VLT Unit Telescopes (8.2 m, UTs). A typical MIDI observing sequence was followed, as described in Ratzka et al. (2007). MIDI provided single-dish acquisition images with a spatial resolution of about 250 mas at 8.7 μm, a flux-calibrated spectrum at low spectral resolution (R = 30), and 6 visibility spectra from the source. The observations were performed in High Sens mode, implying that the photometry of the source was recorded subsequently to the fringes. The visibility errors range between 8% and 15%. The accuracy of the absolute flux calibration is better than 10%. The log of the observations is given in Table 1. We used two different MIDI data reduction packages: MIA, developed at the Max-Planck-Institut für Astronomie, and EWS, developed at the Leiden Observatory (MIA + EWS1, ver.1.5.1).

The MIDI images show that the core is unresolved at 8.7 μm, implying that its angular diameter must be less than 150–200 mas. The mean level of the visibility spectra is low, indicating that the source is well resolved by MIDI/VLTI (typical scale 30 × 40 mas), but the spectral modulation implies that it is a complex source (see Fig. 2). Significant differential phases (±10–20° peak-to-peak) were observed for all baselines except Sak.4 and Sak.5 (Table 1), which exhibit phases close to zero (±5°).

The data were complemented by two Spitzer/IRS spectra obtained in April 2005 and May 2007 (Evans et al. 2006; Evans et al. 2009, in preparation), and a continuum-subtracted [O III] image of the surrounding PN acquired in October 2002 with the instrument VLT/FORS1 (Hajduk et al. 2005). Figure 1 shows the Spitzer and MIDI spectra which are characterized by a steeply rising flux toward long wavelengths. The [O III] image of the PN is shown in Fig. 3. The appearance of the nebula is almost circular, with weak but significant spatial structure.

3. Physical parameters of the disk

The large, spectrally-dependent variations of the MIDI visibilities could be interpreted as being double-point or ring structures.

Table 1. Observing log.

OB	Time	Base	Projected baseline Length [metre]	PA [degrees]
Sak-1	2007-06-29T01	U2-U3	41.9	14.6
Sak-2	2007-06-29T02	U2-U3	45.9	37.1
Sak-3	2007-06-29T06	U2-U3	44.4	48.4
Sak-4	2007-06-30T01	U3-U4	51.3	101.0
Sak-5	2007-06-30T06	U3-U4	54.7	124.3
Calibrators: HD 152 334 K4III 3.99 ± 0.07 mas, HD 163 376 M0II 3.79 ± 0.12 mas, HD 169 916 K1III 3.75 ± 0.04 mas, HD 177 716 K1III 3.72 ± 0.07 mas.				

Table 2. Model parameters.

Parameter	Range
T_{eff} (K)	12 000 – 15 000
Luminosity (L_{\odot})	10 000 – 15 000
Distance (kpc)	3.5 – 5.5
Inclination (°)	75 – 105
PA angle (°)	132 – 180
Inner radius (AU)	65 – 100
Outer radius (AU)	500 – 700
$h_{100 \text{AU}}$ (AU)	47 – 70
Dust mass (M_{\odot})	6×10^{-3} – 3×10^{-5}

Simple models fail to account for the complex visibilities observed, although the difference between the mean level of the visibilities from the baseline UT2-UT3, and those obtained with UT3-UT4 suggest a flattened structure with a major axis orientation of approximately 110–140°. The differential phases point to a significant asymmetry in the direction of the minor axis, i.e. ∼45°.

We applied the continuum Monte Carlo radiative transfer code MC3D (Wolf 2003; Wolf et al. 1999), that solves the radiative transfer problem self-consistently. We use a classical model of a stratified disk of dust (Chesneau et al. 2006, 2007). The dust density follows a 2D law (both radial and vertical) given by:

$$\rho(r, z) = \rho_0 \left(\frac{R_s}{r} \right)^\alpha \exp \left[-\frac{1}{2} \left(\frac{z}{h(r)} \right)^2 \right]$$

where r is the radial distance in the midplane of the disk, α is the density parameter in the midplane, R_s is the stellar radius, and the disk scale height, $h(r)$, is given by $h(r) = h_0 (r/R_s)^\beta$, where h_0 is the scale height of reference, and β is the vertical density parameter.

The absence of spectral features in the IR indicates that the dust is dominated by amorphous carbon grains. We assume the standard interstellar grain size distribution Mathis et al. (1977) with spherical grain radii extending from 0.005 to 1 μm. We estimate the outer radius of the disk to be 500 AU consistent with an expansion since 1997 at a maximum velocity of 100 km s⁻¹. The initial parameters (T_{eff} of the source and dust mass) were chosen following van Hoof et al. (2007). The outputs from the code are described in Chesneau et al. (2006, 2007). The distance, luminosity, and temperature of the central star are uncertain by a large factor (Jacoby et al. 1998). We first fixed the distance to be 1.5 kpc, but no satisfactory models could be found.

1 Available at http://www.strw.leidenuniv.nl/~nevec/MIDI/index.html
By increasing the distance, the fit of the visibility curves and the SED steadily improved and we achieved the best fit model for a distance of 3.5 kpc, a value close to the distance favored by van Hoof et al. (2007). However, we note that we did not explore the parameter space for larger distances and that the distance chosen is by no means a strong constraint. Our priority in this study was to derive the most consistent geometry of the source, by fitting the visibility curves. We were unable to find a model with a good match to both the visibility curves and the SED. The best model, presented here, is that which exhibits the highest flux although it is still too low. With slight modifications of the parameters, some models provided better fits to the visibilities (best $\chi^2 \sim 6$), but a worse SED. Given the very short timescale to form the disk, and the large scale height inferred, a stratified disk might not be the best model to account for the density profile of the dust. A slowly expanding torus (Peretto et al. 2007) should be investigated in the future.

4. Results and discussion

The MIDI observations provide direct evidence for a thick, highly-inclined disk or torus (which therefore efficiently screens the central source), whose parameters are described in Table 2. The major axis orientation of the disk ($134 \pm 5^\circ$) is in agreement with the asymmetry detected in the old PN ($130 \pm 8^\circ$). A similar orientation is also mentioned in Kerber et al. (2002). Such an alignment between the disk and PN may not be fortuitous. In the case of V605 Aql, the disk and the planetary nebula A58 share the same major axis (Hinkle et al. 2008). Of importance too is the low level of asymmetry detected in the old PN compared to that observed in the disk. Is the new mass loss more asymmetric or is the smaller asymmetry of the PN remnant due to evolution and old age? Another related object worth mentioning is A30, a PN that underwent its own VLTP a few thousand years ago (Borkowski et al. 1995). The inner nebula exhibits a thin equatorial disk, which is currently being eroded by the fast wind of the central star, in contrast to its old, perfectly round.

The disk is very optically thick and, at 8 μm, most of the light emerges from a small region above the North pole (see Fig. 4). The scale-height of the disk/torus is large, limiting the opening angle of the polar regions, which is reminiscent of the long-lived “wall” structure seen in the binary post-AGB HR 4049 (Dominik et al. 2003). Spherical models of the dust shell explain the shift of the peak of the SED toward longer wavelengths by suggesting that the inner boundary has receded from the star (Käufl et al. 2003; Evans et al. 2006). If this was related to a cessation of mass loss and dust formation, then the optical depth of dust would decline rapidly, assuming that the dust is moving radially away from the star. The estimated size of Sakurai’s Object disk from our observations in 2007 is small compared with previous estimates, and implies that the high velocities inferred from spectral lines may be inconsistent with the dust expansion. If the expansion velocity were consistent with the rapid motions observed for CO and optical lines, the disk should already be resolvable by 8-m class telescope in the infrared (Eyres et al. 2004; Kerber et al. 2002; Worters et al. 2008).
The disk-like geometry and also the fast wind features (such as PN which implies that the same asymmetry has been acting should also account for the asymmetry seen in the surrounding ejection, and those involving a binary companion. The models classes of models: those involving an intrinsic asymmetry of the Sakurai’s Object dust envelope will also apply to its twin, V605 Aql (Clayton et al. 2006). In both cases, there is a polar interaction with the companion and is focused toward the equatorial plane. Initially, the asymmetry is strong. However, after 10^4 years, the asymmetry slowly disappears as the nebula expands into the ISM. When the VLTP occurs, the resulting mass-loss also interacts with the companion and is once again focused towards the equatorial plane. Given the mass ejected, the companion might also migrate inward and may provide sufficient angular momentum to stabilise the ejecta in the form of a torus (Nordhaus & Blackman 2006; Peretto et al. 2007; Edgar et al. 2008). Given the disk inclination and high optical depth, the detection of such a companion will be a difficult challenge for the foreseeable future.

References
Berger, L., Koester, D., Napiwotzki, R., et al. 2005, A&A, 444, 565
Borkowski, K. J., Harrington, J. P., & Tsvetanov, Z. I. 1995, ApJ, 449, L143
Chesneau, O., Collioud, A., De Marco, O., et al. 2006, A&A, 455, 1009
Chesneau, O., Lykou, F., Balick, B., et al. 2007, A&A, 473, L29
Clayton, G. C., & De Marco, O. 1997, AJ, 114, 2679
Clayton, G. C., Kerber, F., Pirzkal, N., et al. 2006, ApJ, 646, L69
Dominik, C., Dullemond, C. P., Cami, J., et al. 2003, A&A, 397, 595
Edgar, R. G., Nordhaus, J., Blackman, E. G., & Frank, A. 2008, ApJ, 675, L101
Evans, A., Tyne, V. H., van Loon, J. T., et al. 2006, MNRAS, 373, L75
Eyres, S. P. S., Smalliey, B., Geballe, T. R., et al. 1999, MNRAS, 307, L11
Eyres, S. P. S., Geballe, T. R., Tyne, V. H., et al. 2004, MNRAS, 350, L9
Hajduk, M., Zijlstra, A. A., Herwig, F., et al. 2005, Science, 308, 231
Herwig, F. 2001, ApJ, 554, L71
Hinkle, K. H., Lebzelter, T., Joyce, R. R., et al. 2008, A&A, 479, 817
Jacoby, G. H., De Marco, O., & Sawyer, D. G. 1998, AJ, 116, 1367
Käufl, H. U., Koller, J., & Kerber, F. 2003, A&A, 397, 595
Kerber, F., Köppen, J., Roth, M., & Trager, S. C. 1999, A&A, 344, L79
Kerber, F., Pirzkal, N., De Marco, O., et al. 2002, ApJ, 581, L39
Lawlor, T. M., & MacDonald, J. 2003, ApJ, 583, 913
Leinert, C., Graser, U., Przygodda, F., et al. 2003, Ap&SS, 286, 73
Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425
Mullally, F., Kilic, M., Reach, W. T., et al. 2007, ApJS, 171, 206
Nordhaus, J., & Blackman, E. G. 2006, MNRAS, 370, 2004
Peretto, N., Fuller, G., Zijlstra, A., & Patel, N. 2007, A&A, 473, 207
Ratzka, T., Leinert, C., Henning, T., et al. 2007, A&A, 471, 173
Tyne, V. H., Evans, A., Geballe, T. R., et al. 2002, MNRAS, 334, 875
van Hoof, P. A. M., Hajduk, M., Zijlstra, A. A., et al. 2007, A&A, 471, L9
Wolf, S., Henning, Th., & Stecklum, B. 1999, A&A, 349, 839
Wolf, S., Padgett, D. L., & Stapelfeldt, K. R. 2003, ApJ, 588, 373
Worters, H., Rush, M. T., et al. 2008 [arXiv:0810.4556]