The Discrete Logarithm Problem

Let \(p \) be a prime, and \(g \in \mathbb{Z}_p^* \) of large order.

In particular \(g \) is primitive if \(\text{ord}_p g = p - 1 \).

The function \(x \mapsto g^x \mod p \) seems to be one-way. In other words,

\[\text{given } b, g \in \mathbb{Z}_p^*, \text{ it is difficult to find an integer } x \text{ such that } b \equiv g^x \pmod{p}. \]
\[b \equiv g^x \pmod{p} \]

Note that, given \(b \), \(x \) is unique modulo \(\text{ord}_p g \).
Write \(x = \log_g b \),

the *discrete log* of \(b \) to the base \(g \).
The El Gamal Cryptosystem

Choose a prime p, an element $g \in \mathbb{Z}_p^*$ of large order, and an integer a. Let $b = g^a \mod p$.

Public Key: (p, g, b)

Private Key: (p, a).

Encryption: Choose a (secret) random integer k.
$E(m) = (g^k \mod p, mb^k \mod p)$.
$(m \in \mathbb{Z}_p^*)$

Decryption: $D(y, z) = z(y^a)^{-1} \mod p$.

© 2011 Clifford Bergman
Does it work? I.e., does $D(E(m)) = m$?

$E(m) = (g^k \mod p, mb^k \mod p)$

$D(g^k, mb^k) \equiv_p mb^k \cdot (g^{ak})^{-1} \equiv_p m \cdot g^{ak} \cdot g^{-ak} \equiv_p m$.
Notes

- \(E(m) = (g^k \mod p, mb^k \mod p) \)
 Thus \(E(m) \) is twice as long as \(m \).
- Because of \(k \), every message has multiple encryptions
- We may as well choose \(a \leq \text{ord}_p g \)
 Thus \(\text{ord}_p g \) should be very large to preclude exhaustive search
- \(\text{ord}_p g \) is a divisor of \(p - 1 \) (Lagrange)
- Unlike in RSA, \(p \) and \(g \) can be shared by everybody
Two schools of thought on the choice of g

- g a primitive element mod p (i.e. make $\text{ord} \ g$ as large as possible)
- Choose g with $\text{ord}_p(g) = q$ a large prime [necessarily, $q \mid (p - 1)$]
Security of ElGamal

Obviously, if the discrete log problem for \(p \) can be solved, then ElGamal would be compromised.

Converse is open.

Note that it is important for the sender to keep \(k \) secret.
ElGamal Signatures

p a prime, $g \in \mathbb{Z}_p^*$ of large order n, $a < n$ $b = g^a \mod p$.

Public Key: (p, g, b)
Private Key: (p, a)

For message $m < n$

Signature: pick a random $k < n$. Let

$$y = g^k \mod p$$

$$S(m) = (y, (m - ay)k^{-1} \mod n)$$

Verification: $V(y, z) : b^y y^z \mod p = g^m \mod p$.

© 2011 Clifford Bergman
As before, p and g can be shared

In practice: given a (long) message M, hash function H. Let $m = H(M)$. Sign m.
Send M together with $S(m)$ [and H].

Every message has multiple valid signatures
Forging a signature

Wish to forge Bob’s signature on message m. Need to construct (y, z) such that

$$b^y y^z \equiv g^m \pmod{p}$$

Pick y, solve for z: $z = \log_y (g^m b^{-y})$

Pick z, solve for y: $b^y y^z \equiv g^m$
Security problems

- If $S(m) = (y, z)$ is a valid signature, and the value of k becomes known, then a is compromised.

$$z \equiv (m - ay)k^{-1} \pmod{n} \implies a = (m - zk)y^{-1} \% n.$$

But what if y is not invertible modulo n?
If messages $m_1 \neq m_2$ are signed using the same k, then k is compromised.