INTRODUCTION
The RF-amide peptides that harbor the Arg-Phe-amide sequence in their carboxyl (C)-termini were first discovered in a species of mollusk, *Macrocallista nimbosa* (1). Following this discovery, various RF-amide peptides have been identified in other invertebrate species (2, 3). In vertebrates, neuropeptide FF (NPFF) along with its receptor GPR74 (NPFFR2) was the first to be identified in the central nervous system of mammals (4). Fifteen years later, paralogous peptides, gonadotropin-inhibitory hormone (GnIH) in quail brain (5), and neuropeptide VF (NPVF) in mammals (6, 7) were identified. Currently, GnIH and NPVF are found to be orthologous to each other and activate the receptor GPR147 (NPFFR1) (6–10). Another paralogous peptide, pyroglutamylated RF-amide peptide (QRFP or 43RF-amide peptide), and its receptor GPR103 (QRFP-R) have been identified in the hypothalamus and spinal cord of mammals (11–13). The receptors for these three vertebrate RF-amide peptides, NPFFR1, NPFFR2, and QRFP-R, are phylogenetically very close to each other (Figure 1), indicating an evolutionarily common origin for these receptors. The other RF-amide-related peptides in vertebrates are prolactin-releasing hormone (PRLH or PrRP) and kisspeptin (KISS). Interestingly, the receptors for PRLH (PRLHR) and KISS (KISSR) are phylogenetically distant from NPFFR1, NPFFR2, and QRFP-R. They are more closely related to neuropeptide Y (NPY) receptors (14, 15) and galanin (GAL) receptors (16), respectively (Figure 1).

Kisspeptin (KISS) plays a key role in regulating reproduction by binding to its receptor, GPR54. Because of the Arg-Phe (RF) sequence at its carboxyl terminus, KISS has been proposed to be a member of the RF-amide peptide family consisting of neuropeptide FF (NPFF), neuropeptide VF (NPVF), pyroglutamylated RF-amide peptide (QRFP), and prolactin-releasing hormone (PRLH). Evolutionary relationships of protein families can be determined through phylogenetic analysis. However, phylogenetic analysis among related peptide families often fails to provide sufficient information because only short mature peptide sequences from full preprohormone sequences are conserved. Considering the concept of the coevolution of peptide ligands and their cognate receptors, evolutionary relationships among related receptor families provide clues to explore relationships between their peptides. Although receptors for NPFF, NPVF, and QRFP are phylogenetically clustered together, receptors for PRLH and KISS are on different branches of the phylogenetic tree. In particular, KISS has been proposed to be a member of the KISS/galanin/spexin family based on synteny analysis and the phylogenetic relationship between their receptors. This article discusses the evolutionary history of the receptors for the proposed RF-amide peptide family and proposes that, from an evolutionary aspect, KISS has emerged from an ancestor, which is distinct from those of the other RF-amide peptides, and so should be classed separately.

The RF-amide peptides do not exhibit any sequence similarity to each other, other than the presence of the common RF-amide at their C-termini (17). As most neuropeptides have coevolved with their cognate receptors (18, 19), phylogenetic analysis of the related receptor families may mirror the evolutionary history of the peptide families (20, 21). Phylogeny of the RF-amide peptide receptor family, however, revealed distant relationships between PRLHR, KISSR, and the other RF-amide receptors (15, 16). This suggests that PRLH and KISS, at least, are likely to have originated from ancestors different from that of NPFF, NPVF, and QRFP. Therefore, it is timely to redefine the RF-amide family group members according to the evolutionary histories of individual RF-amide peptides. This article reviews the evolutionary relationships between KISS and the other RF-amide peptides along with their paired receptors, and proposes that KISS is independent from the RF-amide peptide family.

GENERAL MECHANISM FOR THE EVOLUTION OF NEUROPEPTIDES AND THEIR RECEPTORS
Neuropeptide and receptor families have expanded through whole-genome duplications (WGD) and local tandem gene duplications before and after WGD during vertebrate evolution (14, 16, 20, 22–26). To date, synteny analyses of vertebrate genome fragments and comparison of entire chromosomes of evolutionarily distinct taxa support two rounds (2R) of WGD during early vertebrate evolution. These events produced four paralogous
FIGURE 1 | Maximum likelihood phylogenetic tree for human rhodopsin-like neuropeptide GPCRs. The amino acid sequences of the receptors were aligned using MUSCLE, and the tree was constructed by MEGA 5.1. The RF-amide peptide receptor groups are indicated with colored boxes and corresponding peptides are connected by dashed lines. Bootstrap values represent 100 replicates. MLNR, motilin receptor; GHSR, ghrelin receptor; NTSR, neotensin receptor; NMUR, neuromedin U receptor; TRHR, thyrotropin-releasing hormone receptor; NMBR, neuromedin B receptor; GRPR, gastrin-releasing peptide receptor; BRS, bombesin receptor; EDNR, endothelin receptor; PRLHR, prolactin-releasing hormone receptor; NPYR, neuropeptide Y receptor; PROKR, prokineticin receptor; TACR, tachykinin receptor; CCKR, cholecystokinin receptor; HCRTR, hypocretin (orexin) receptor; QRFP, pyroglutamylated RFamide peptide receptor; NPFFR, neuropeptide FF receptor; AVPR, arginine vasopressin receptor; OXTR, oxytocin receptor; NPSR, neuropeptide S receptor; GnRHR, gonadotropin-releasing hormone receptor; UTSR, urotensin receptor; GALR, galanin receptor; KISSR, kisspeptin receptor; MCHR, melanin-concentrating hormone receptor; SSTR, somatostatin receptor; NPBWR, neuropeptides B/W receptor; OPR, opioid receptor.

chromosomal regions (paralogons) sharing similar sets of genes (27–29). A third round (3R) of WGD during an early phase of bony fish emergence resulted in octupled paralogons in teleosts (30).

The evolutionary history of a gene family can be traced by phylogenetic analysis. However, in the case of peptide gene families, phylogenetic analysis often does not provide sufficient information to conclude the evolutionary relationship among related peptide gene families (20, 31). In general, signal peptide sequences are not conserved and propeptide sequences, other than the mature peptide, are highly variable because they are free from evolutionary selective pressure (32). Sequence comparison of only a short, conserved mature peptide is not enough to extrapolate correct relational information. Furthermore, paralogous peptide genes that arose by local gene duplication before 2R exhibit considerable variation even in the mature peptide sequences (20, 31). For instance, the mature peptide sequences of the ligand genes for class B (secretin-like) G-protein-coupled receptors (GPCR) are highly variable (20, 31) while maintaining conserved three-dimensional structure to a general extent (33). Thus, alternative methods need to be applied to explore the evolutionary relationships among peptide gene families.

In contrast to peptide genes, evolutionary relationships among related receptor families can be readily assessed by phylogenetic analysis since the transmembrane domains of the receptors are relatively conserved across vertebrate species and the amino acid sequences of receptors are long enough to generate a convincing phylogenetic tree. Thus, tracing relationships among related receptor families can provide clues to understand the evolutionary history of their corresponding peptide genes. For instance, the evolutionary histories of receptors for secretin family peptides, including corticotropin-releasing hormone, calcitonin, parathyroid hormone, glucagon, and secretin subfamilies may allow us to speculate about possible evolutionary histories for the cognate peptide genes, for which the sequence similarities are not well preserved (20, 25, 31). In addition, locating related peptide genes on the reconstructed pre-2R ancestral chromosomes (or linkage group) is an alternative tool to explore the relationships among related gene families (20, 34). Paralogous genes that emerged through local duplications before 2R reside in the same vicinity on the pre-2R linkage group. For instance, many secretin family peptide genes are located on the same pre-2R linkage group, indicating close evolutionary relationships among the peptide genes (20). The gene families of the neuropeptides, KISS, GAL, and spexin (SPX), are in the vicinity of the same pre-2R linkage group (16). This possibility is further supported by phylogenetic relationships among the receptors of these peptides (Figure 1) (16). The neuropeptide Y (NPY) gene and its paralogous genes, including peptide YY (PYY) and pancreatic polypeptide (PPY), reside on the same chromosome or on paralogons (35, 36). Likewise, the NPY receptor (NPYR) family seems to have been generated by local gene duplications followed by 2R WGD (14, 15, 37).

EVOLUTIONARY HISTORY OF NPFF/NPVF, QRFP, AND PRLH
Neuropeptide NPFF was the first RFamide peptide characterized in the central nervous system of mammals (4, 8, 38, 39). NPFF is known to be involved in morphine tolerance, adipogenesis, and anorectic activity (40–45). In 2000, Tsutsui et al. found a new RF-amide peptide, GnIH, in quail brain (5, 46). This turned out to be an ortholog of NPVF in humans (9, 47). Albeit with some
cross-reactivity, NPFF has a high affinity to NPFFR2 (4) while NPVF more selectively activates NPFFR1 (6, 48, 49).

The neuropeptides NPFF and NPVF seem to be 2R-generated paralogs (ohnologs) as their genes are located on two 2R-generated paralogs of human chromosomes. NPFF is located in the vicinity of the neuropeptide tachykinin 3 (TAC3) gene on human chromosome 12 while NPVF is on human chromosome 7, which also contains the TAC1 gene. Likewise, the receptors NPFFR1 and NPFFR2 are ohnologous to each other since NPFFR1/TACR2 and NPFFR2/TACR3 pairs are on paralogs of human chromosomes 10 and 4, respectively (6, 15, 50). It is of interest to note that human chromosome 10 also harbors PRLHR and PYYR (a receptor for NPY family peptides) and that human chromosome 4 has QRFPR and three NPYRs, NPY1R, NPY2R, and NPY5R (14, 15, 51). The phylogenetic tree in Figure 1 also shows that these receptors are clustered together. These observations suggest that NPFFRs, QRFPs, TACRs, NPYRs, and PRLHR may have emerged through local duplications from a common ancestor before 2R and expanded their members via 2R. Although the hypocretin (orexin) receptor (HCRTR) is shown in that branch, the HCRTR gene is not shown in the paralogs. This may be due to translocation of the gene to other chromosomal regions during evolution (20).

Similarly, many peptide genes for these receptors are clustered on 2R-generated paralogs. For instance, the HCRTR, PYYR, PPYR, and TAC4 genes are closely located on a region of human chromosome 17, which is likely another paralog of NPFF/TAC-containing regions of human chromosomes 7 and 12 (15). Thus, it seems likely that these peptide genes arose during vertebrate evolution in a manner similar to that of receptor genes. It is noteworthy that the chicken C-RF-amide peptide (PRLH2), an ohnolog of PRLH resides near NPY, TAC1, and NPVF on the chromosomes of chickens, medaka, and tetraodon (52, 53). These findings suggest the presence of evolutionary relationships between the NPFF family and the other RF-amide peptides QRFP and PRLH, along with non-RF-amide peptides such as NPY, TAC, and HCRTR.

Pyroglutamylated RF-amide peptide (43RF-amide), a long form of 26RF-amide, has been discovered in the hypothalamus and spinal cord of humans (11–13, 54). Intravenous or intracerebroventricular administration of QRFP increased plasma adenosine levels and food intake in rats (11, 12, 55). While humans have only one QRFP receptor (12, 13), rodents have two receptors, QRFP1 and QRFP2 (56, 57). QRFP2 appears to be an ohnolog of QRFP1. A region of mouse chromosome 6 has QRFP2 and TACR1, indicating that this region is another paralog for the QRFP/PNFFR/TACR-containing chromosomal regions as described previously. As the phylogenetic tree reveals a close relationship between QRFP and NPFFRs, an evolutionarily close relationship between QRFR and NPFF/NPVF can be postulated.

Prolactin-releasing hormone was first identified by a reverse pharmacological approach in 1998 (58). Physiological roles of PRLH include regulation of stress response (59–61), reduced appetite (62–64), and stimulation of luteinizing hormone and follicle stimulating hormone (65). The orphan receptor GPR10 was identified as the receptor for PRLH (58, 66, 67). PRLHR exhibits a close relationship in its sequence identity with the NPYR family (14, 15). NPY4R, a member of the NPYR family is positioned together with PRLHR1 on the same chromosome of humans and chickens (15). There are also some structural similarities between PRLH and NPY family peptides. Both PRLH and NPY family genes have two coding exons. The first coding exon contains a signal peptide sequence followed by the N-terminal region of the mature peptide sequence. The second coding exon contains the C-terminal region of the mature peptide with conserved Arg-Phe-Gly (RFG) or Arg-Tyr-Gly (RYG) residues followed by a dibasic cleavage site. Like PRLH, some NPY peptide family members such as bovine PYY and PPY have RF-amide sequences, while NPY, PYY, and PPY from most vertebrates contain the Arg-Tyr-amide (RY-amide) sequence (15, 68, 69). It is also interesting to note that the NPY peptide is able to activate PRLHR1 at micromolar levels (15). These observations together with phylogenetic analysis of neuropeptide receptors suggest that the PRLH/NPY family genes and their receptor genes emerged by local gene duplications during early vertebrate evolution (14, 15). These local duplication events are likely to have occurred after the genes split from their common ancestors into the PRLH/NPY and NPFF/QRFP systems.

COEVOlUTION OF THE SPEXIN/GALANIN/KISSPEPTIN FAMILY

The KISS gene was first identified as a tumor suppressor gene expressed in human melanoma and breast cancer cells (70, 71). Later, the KISS gene was found to produce a functional peptide with an RF-amide sequence (designated as kisspeptin or metastin) that activates an orphan GPCR, GPR54 (KISSR) (72–74). KISS and KISSR are involved in the onset of puberty and the control of reproduction and food consumption (75–80). After the discoveries of mammalian KISS and KISSR, two paralogs of the KISS gene (KISS2 and KISS3) and three paralogs of the KISSR gene (KISSR2, KISSR3, and KISSR4) have been identified in a variety of vertebrate species (32, 81–83). All these paralogs seem to be ohnologs as each of them is located on 2R-generated paralogs (32, 82, 83).

Although KISS has been acknowledged as a member of the RF-amide peptide family, no supporting evidence, other than the presence of the RF-amide sequence in its C-terminus, has been provided. KISSR was originally reported to have considerably high degree of sequence similarity with galanin receptors (GALR) (84). This result raises the possibility that KISS/KISSR and GAL/GALR pairs have diverged from a common ancestor and not from the RF-amide peptide/receptor ancestors. Recently, it was shown that the novel neuropeptides spexin1 (SPX1) and spexin2 (SPX2) are functional ligands for GALR2 and GALR3 but not GALR1 (16, 85). In particular, SPXs are more potent than GAL in activation of GALR3, while they show potencies to GALR2 similar to that of GAL (16). Synteny analysis and relocation of the gene families on the reconstructed vertebrate ancestral linkage groups show that SPX, GAL, and KISS family genes are distributed among 2R-generated 4 paralogs (4 linkage groups). Three linkage groups contain SPX1 and KISS2, SPX2 and GAL, and KISS3 and galanin-like peptide (GALP), respectively. The fourth linkage group has KISS1 alone (16, 86). This study proposed that ancestral forms of KISS, GAL, and SPX arose by tandem local duplications before 2R and expanded their family members through 2R (16). Likewise, KISSRs and GALRs are likely to have emerged through local duplications before 2R, producing three subgroups in vertebrates.
KISSRs (4 KISSRs), GALR1 (GALR1a and GALR1b), and GALR2/3 (GALR2a, GALR2b, and GALR3) (Figure 2). Altogether, these results suggest that the evolutionary origin of the KISS/GAL/SPX family is far distant from those of the NPFF/QRF and PRL/PNY families.

CONCLUSION

Rapid accumulation of genomic sequence information from various invertebrate and vertebrate species and the development of bioinformatic tools, including phylogenetic analysis, small scale genome comparison to identify orthologous and paralogous relationships of genes, and reconstruction of ancient chromosones, have facilitated exploration of the relationships and origins of peptide and receptor gene families (20, 28, 32, 34, 87, 88). Based on the phylogenetic analysis of neuropeptide receptors and the syntenic relationships of neuropeptide genes, we suggest that the proposed RF-amide peptide family arose from three different ancestors. NPFF and NPVF are likely 2R-generated paralogs and have a close evolutionary relationship with QRFP. PRLH is evolutionarily closer to the NPY family than the NPFF/NPVF/QRF group. KISS is likely a member of the KISS/GAL/SPX peptide family and their evolutionary origin is far distant from those of the other RF-amide peptides. This study may provide an insight into the mechanism for coevolution of neuropeptides and their receptors.

ACKNOWLEDGMENTS

This work was supported by a grant (2013R1A2A2A01068295) from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning.

REFERENCES

1. Price DA, Greenberg MJ. Structure of a molluscan cardioexcitatory neuropeptide. Science (1977) 197:670–1. doi:10.1126/science.877582
2. Walker RJ. Neuroactive peptides with an RFamide or Famide carboxyl terminal. Comp Biochem Physiol C (1992) 102:213–22. doi:10.1016/0742-8413(92)90104-F
3. Walker RJ, Papaioannou S, Holden-Dyke L. A review of FMRFamide- and RFamide-like peptides in metaea. Invert Neurosci (2009) 9:111–53. doi:10.1007/s10910-010-0097-7
4. Yang HY, Fratta W, Majane EA, Costa E. Isolation, sequencing, synthesis, and pharmacological characterization of two brain neuropeptides that modulate the action of morphine. Proc Natl Acad Sci U S A (1985) 82:7757–61. doi:10.1073/pnas.82.22.7757
5. Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, et al. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun (2000) 275:661–7. doi:10.1006/bbrc.2000.3350
6. Bonini JA, Jones KA, Adham N, Forray C, Artymyshyn R, Durkin MM, et al. Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J Biol Chem (2000) 275:39324–31. doi:10.1074/jbc.M004385200
7. Elshourbagy NA, Ames RS, Fitzgerald LR, Foley JI, Chambers JK, Zekerres PG, et al. Receptor for the pain modulatory neuropeptides FF and AF is an orphan G protein-coupled receptor. J Biol Chem (2000) 275:29565–71. doi:10.1074/jbc.M004351200
8. Perry SJ, Yi-Kung Huang E, Crompt D, Bagust J, Sharma R, Walker RJ, et al. A human gene encoding morphine modulating peptides related to NPFF and FMRFamides. FEBS Lett (1997) 409:426–30. doi:10.1016/S0014-5793(97)00557-7
9. Himuma S, Shintani Y, Fukusumi S, Iijima N, Matsumoto Y, Hosoya M, et al. New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat Cell Biol (2000) 2:703–8. doi:10.1038/35036326
10. Ubuka T, Morgan K, Pawson AI, Osugi T, Chowdhury VS, Minakata H, et al. Identification of human GHH homologs, RFRP-1 and RFRP-3, and the cognate receptor, GPR147 in the human hypothalamic pituitary axis. PlaSo (2009) 4:e8400. doi:10.1371/journal.pone.0008400
11. Chartrel N, Dujardin C, Anouar Y, Leprince J, Clerens S, et al. Identification and characterization of 26RFalpha, a hypothalamic neuropeptide of the RFamide peptide family with orexigenic activity. Proc Natl Acad Sci U S A (2003) 100:15247–52. doi:10.1073/pnas.243467610
12. Fukusumi S, Yoshida H, Fujii R, Maruyama M, Komatsu H, Habata Y, et al. A new peptidic ligand and its receptor regulating adrenal function in rats. J Biol Chem (2003) 278:46387–95. doi:10.1074/jbc.M302702200
13. Jiang X, Luo L, Gustafson EL, Yudav D, Laverty M, Murgolo N, et al. Identification and characterization of a novel RF-amide peptide ligand for orphan G-protein-coupled receptor SP9155. J Biol Chem (2003) 278:27652–72. doi:10.1074/jbc.M302945200
14. Larhammar D, Salanek E. Molecular evolution of NPY receptor subtypes. Neuropeptides (2004) 38:141–51. doi:10.1016/j.npep.2004.08.002
15. Lagerstrom MC, Fredriksson R, Bjarnadottir TK, Fridmanis D, Holmquist T, Andersson J, et al. Origin of the prolactin-releasing hormone (PRLH) receptor during vertebrate evolution. J Mol Endocrinol (2014) 155:1864–73. doi:10.1677/jme.13.2013–2106
16. Tsutsui K, Bentley GE, Kriegsfeld LJ, Osugi T, Seong JY, Vaudry H. Discovery and evolutionary history of GnlH and kispeptin: new key neuropeptides controlling reproduction. J Neuroendocrinol (2010) 22:716–27. doi:10.1111/j.1365-2826.2010.02018.x
17. Acharjee S, Do-Bejo JL, Oh DY, Moon JS, Ahn RS, Lee K, et al. Molecular cloning, pharmacological characterization, and histochemical distribution of frog vasotocin and mesotocin receptors. J Mol Endocrinol (2004) 33:293–313. doi:10.1677/jme.0.030293
18. Cho HJ, Acharjee S, Moon MJ, Oh DY, Vaudry H, Kwon HB, et al. Molecular evolution of neuropeptide receptors with regard to maintaining high affinity to their authentic ligands. Gen Comp Endocrinol (2007) 153:98–107. doi:10.1016/j.ygcen.2006.12.013
19. Hwang JI, Moon MJ, Park S, Kim DK, Cho EB, Ha N, et al. Expansion of secretin-like G protein-coupled receptors and their peptide ligands via local duplications before and after two rounds of whole-genome duplication. Mol Biol Evol (2013) 30:1119–30. doi:10.1093/molbev/ms3031

Frontiers in Endocrinology | Neuroendocrine Science August 2014 | Volume 5 | Article 134 | 4
Kisspeptin belongs to the kisspeptin/galanin/apexin family

Yun et al.

21. Mirabeau O, Joly JS. Molecular evolution of peptide signaling systems in bilaterians. Proc Natl Acad Sci U S A (2013) 110:E2028–37. doi:10.1073/pnas. 1219956110

22. Ohno S. Evolution by Gene Duplication. Berlin: Springer-Verlag (1970).

23. Lundin LG. Evolution of the vertebrate genome as reflected in paralogous chro- mosomal regions in man and the house mouse. Genomics (1993) 16:1–19. doi:10.1006/geno.1993.1133

24. Holland PW, Garcia-Fernandez J, Williams NA, Sidow A. Gene duplications and the origins of vertebrate development. Dev Suppl (1994):125–33.

25. Hwang JJ, Yun S, Moon MJ, Park CR, Seong JY. Molecular evolution of GPCRs: GLP1/GLP1 receptors. J Mol Endocrinol (2014) 52:T15–27. doi:10.1530/JME-13-0137

26. Sefideh FA, Moon MJ, Yun S, Hong SI, Hwang JI, Seong JY. Local duplication of gonadotropin-releasing hormone (GnRH) receptor before two rounds of whole genome duplication and origin of the mammalian GnRH receptor. PLoS One (2014) 9:e87901. doi:10.1371/journal.pone.0087901

27. Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol (2005) 3:e314. doi:10.1371/journal.pbio.0030314

28. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate GLP1/GLP1 receptors. Bioessays (2005) 27:135. doi:10.1002/bies.20293

29. Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, et al. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays (2005) 27:353–4. doi:10.1002/0196-9781(95)02137-X

30. Meyer A, Van de Peer Y. The ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res (2007) 17:1254–65. doi:10.1101/gr.631607

31. Cardoso JC, Vieira FA, Gomes AS, Power DM. The serendipitous origin of chordate secretin peptide family members. BMC Evol Biol (2010) 10:135. doi:10.1186/1471-2148-10-135

32. Lee YR, Tsunekawa K, Moon MJ, Um HN, Hwang JJ, Otsu T, et al. Molecular evolution of multiple forms of kisspeptins and GPR54 receptors in vertebrates. Endocrinology (2009) 150:2387–46. doi:10.1210/endo.2008-1675

33. Neumann JM, Courrèges A, Murail S, Lacapère JJ, Jamin N, Laburthe M, Class-B GPCR activation: is ligand helix-capping the key? Trends Biochem Sci (2008) 33:314–9. doi:10.1016/j.tibs.2008.05.001

34. Yegorov S, Good S. Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors. PLoS One (2012) 7:e32923. doi:10.1371/journal.pone.0032923

35. Courrèges A, Murail S, Lacapère JJ, Jamin N, Laburthe M. Class-B GPCR activation is ligand helix-capping the key? Trends Biochem Sci (2008) 33:314–9. doi:10.1016/j.tibs.2008.05.001

36. Larhammar D, Fredriksson R, Larson ET, Salaneck E. Phylogeny of NPY-family tachykinin/tachykinin receptor (TAC/TACR) in vertebrates and molecular iden-
tification of the TAC3/TACR3 system in zebrafish (Danio rerio). Mol Cell Endocrinol (2012) 361:202–12. doi:10.1016/j.mce.2012.04.007

37. Ukena K, Otsu T, Leprince J, Vaudry H, Tsutsui K. Molecular evolution of GPCRs: 26Raf/GPR103. J Mol Endocrinol (2014) 52:T119–31. doi:10.1530/JME-13-0207

38. Lugerstrom MC, Fredriksson R, Bjornadottir TK, Schioth HB. The ancestry of the prolactin-releasing hormone precursor. Ann N Y Acad Sci (2005) 1040:368–70. doi:10.1196/annals.1327.264

39. Wang Y, Wang CY, Wu Y, Huang G, Li I, Leung FC. Identification of the receptors for prolactin-releasing peptide (PrRP) and Carassius RFamide peptide (C-RFAs) in chickens. Endocrinology (2012) 153:1861–74. doi:10.1210/endo.2011-1719

40. Brazzone F, Lectez B, Tollener H, Leprince J, Dujardin C, Rachadi W, et al. Anatomical distribution and biochemical characterization of the novel RFamide peptide 26Raf in the human hypothalamus and spinal cord. J Neurochem (2009) 106:616–27. doi:10.1111/j.1471-4159.2009.06490.x

41. Do Rego IC, Leprince J, Chartrel N, Vaudry H, Costentin J. Behavioral effects of 26Raf and related peptides. Peptides (2006) 27:2715–21. doi:10.1016/j.peptides.2006.04.017

42. Kampe J, Wiedmer P, Pfluger PT, Castaneda TR, Burget L, Mondala H, et al. Prolactin-releasing peptide in the brain. Nature (1998) 393:272–6. doi:10.1038/3015

43. Maruyama M, Matsumoto H, Fuijwara K, Noguchi J, Kitada C, Fujino M, et al. Prolactin-releasing peptide as a novel stress mediator in the central nervous system. Endocrinology (2001) 142:2032–8. doi:10.1210/endo.142.5.2032

44. Lin SH, Leslie FM, Civelli O. Neurochemical properties of the prolactin releasing peptide (PrRP) receptor expressing neurons: evidence for a role of PrRP as a regulator of stress and nociception. Brain Res (2002) 952:15–30. doi:10.1016/s0006-8993(02)01318-9

45. Dodd GT, Luckman SM. Physiological roles of GPR10 and PrRP signaling. Front Endocrinol (Lausanne) (2013) 4:20. doi:10.3389/fendo.2013.00020

46. Lawrence CB, Celsi F, Brennaid J, Luckman SM. Alternative role for probasin-releasing peptide in the regulation of food intake. Nat Neurosci (2000) 3:645–6. doi:10.1038/76597

47. Seil JJ, Small CJ, Dhillon WS, Stanley SA, Abbott CR, Ghatie MA, et al. PRL-releasing peptide inhibits food intake in male rats via the dorsomedial hypothalamic nucleus and not the paraventricular hypothalamic nucleus. Endocrinology (2001) 142:4236–43. doi:10.1210/endo.142.10.8419

48. Takayanagi Y, Matsumoto H, Nakata M, Mera T, Fukusumi S, Hinuma S, et al. Endogenous prolactin-releasing peptide regulates food intake in rodents. J Clin Invest (2008) 118:4014–24. doi:10.1172/JCI34682
Yun et al. Kisspeptin belongs to the kisspeptin/galanin/apexin family

65. Seal LJ, Small CJ, Kim MS, Stanley SA, Taheri S, Ghatei MA, et al. Prolactin releasing peptide (PrRP) stimulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) via a hypophalamic mechanism in male rats. Endocrinology (2000) 141:1909–12. doi:10.1210/endo.141.5.7528
66. Fuji R, Fukusumi S, Hosoya M, Kawamata Y, Habata Y, Hinuma S, et al. Tissue distribution of prolactin-releasing peptide (PrRP) and its receptor. Regul Pept (1999) 83:1–10. doi:10.1016/S0167-0115(99)00028-2
67. Langmead CJ, Szekeres PG, Chambers JK, Ratcliffe SJ, Jones DN, Hirst WD, et al. Characterization of the binding of [125I]-human prolactin releasing peptide (PrRP) to GPR10, a novel G protein coupled receptor. Br J Pharmacol (2000) 131:683–8. doi:10.1038/sj.bjp.0703617
68. Conlon JM. The origin and evolution of peptide YY (PYY) and pancreatic polypeptide (PP). Peptides (2002) 23:269–78. doi:10.1016/S0191-9958(01)00608-8
69. Sundstrom G, Larsson TA, Brenner S, Venkatesh B, Larhammar D. Evolution of the neuropeptide Y family: new genes by chromosome duplications in early vertebrates and in teleost fishes. Gen Comp Endocrinol (2008) 155:705–16. doi:10.1016/j.ygcen.2007.08.016
70. Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, et al. KiSS-1, natural ligands of the orphan G protein-coupled receptor.
71. Lee JH, Welch DR. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res (1997) 57:2384–7.
72. Kotani M, Derhug M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Foul E, et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem (2001) 276:34631–6. doi:10.1074/jbc.M104847200
73. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem (2001) 276:28969–75. doi:10.1074/jbc.M107243200
74. de Roux N, Genon E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A (2003) 100:10972–6. doi:10.1073/pnas.1834399100
75. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, et al. The GPR54 gene as a regulator of puberty. N Engl J Med (2003) 349:1614–27. doi:10.1056/NEJMoa033522
76. Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A (2005) 102:1761–6. doi:10.1073/pnas.0409330102
77. Roa J, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M. New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function. Front Neuroendocrinol (2008) 29:48–69. doi:10.1016/j.yfrne.2007.07.002
78. Oakley AE, Clifton DK, Steiner RA. Kisspeptin signaling in the brain. Endocr Rev (2009) 30:713–45. doi:10.1210/er.2009-0005
79. Choe HK, Kim HD, Park SH, Lee HW, Park JY, Seong JY, et al. Synchronous activation of gonadotropin-releasing hormone gene transcription and secretion by pulsatile kisspeptin stimulation. Proc Natl Acad Sci U S A (2013) 110:5677–82. doi:10.1073/pnas.1213594110
80. Kitahashi T, Ogawa S, Parhar IS. Cloning and expression of kiss1 in the zebrafish and medaka. Endocrinology (2009) 150:821–31. doi:10.1210/en.2008-0940
81. Um HN, Han JM, Hwang JJ, Hong SI, Vaudry H, Seong JY. Molecular coevolution of kisspeptins and their receptors from fish to mammals. Ann N Y Acad Sci (2010) 1200:67–74. doi:10.1111/j.1749-6632.2010.05508.x
82. Pasquier J, Lafont AG, Tostivint H, Vaudry H, Rousseau K, Dufour S. Comparative evolutionary histories of kisspeptins and kisspeptin receptors in vertebrates reveal both parallel and divergent features. Front Endocrinol (Lausanne) (2012) 3:173. doi:10.3389/fendo.2012.00173
83. Lee DK, Nguyen T, O’Neill GP, Cheng R, Lin Y, Howard AD, et al. Discovery of a receptor related to the galanin receptors. FEBS Lett (1999) 446:103–7. doi:10.1016/S0014-5793(99)00009-5
84. Leroy, X. Neuropeptide q as Modulator of GPCR gahr2 and Uses of Thereof. WO2012042455 A1 (2012). Available from: http://www.google.com/patents/WO2012042455A1?cl=en
85. Liu Y, Li S, Qi X, Zhou W, Liu X, Lin H, et al. A novel neuropeptide in suppressing luteinizing hormone release in goldfish, Carassius auratus. Mol Cell Endocrinol (2013) 374:65–72. doi:10.1016/j.mce.2013.04.008
86. Kim DK, Cho EB, Moon MJ, Park S, Hwang HJ, Koh O, et al. Revisiting the evolution of gonadotropin-releasing hormones and their receptors in vertebrates: secrets hidden in genomes. Gen Comp Endocrinol (2011) 170:68–78. doi:10.1016/j.ygcen.2010.10.018
87. Kim DK, Cho EB, Moon MJ, Park S, Hwang HJ, Do Rego JI, et al. Molecular coevolution of neuropeptides gonadotropin-releasing hormone and kisspeptin with their cognate G protein-coupled receptors. Front Neurosci (2012) 6:3. doi:10.3389/fnins.2012.00003

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 23 May 2014; paper pending published: 03 July 2014; accepted: 30 July 2014; published online: 13 August 2014. Citation: Yun S, Kim D-K, Furong L, Hwang J-I, Vaudry H, Seong JY (2014) Does kisspeptin belong to the proposed RF-amide peptide family? Front. Endocrinol. 5:134. doi: 10.3389/fendo.2014.00134
This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology. Copyright © 2014 Yun, Kim, Furong, Hwang, Vaudry and Seong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.