LA Sprouts Randomized Controlled Nutrition and Gardening Program Reduces Obesity and Metabolic Risk in Latino Youth

Nicole M. Gatto1, Lauren C. Martinez2, Donna Spruijt-Metz2,3,4, and Jaimie N. Davis5

Objective: To assess the effects of a 12-week gardening, nutrition, and cooking intervention (“LA Sprouts”) on dietary intake, obesity parameters, and metabolic disease risk among low-income, primarily Hispanic/Latino youth in Los Angeles.

Methods: The randomized controlled trial involved four elementary schools [two schools randomized to intervention (172 third–through fifth-grade students); two schools randomized to control (147 third–through fifth-grade students)]. Classes were taught in 90-minute sessions once a week to each grade level for 12 weeks. Data collected at pre- and postintervention included dietary intake via food frequency questionnaire (FFQ), anthropometric measures [BMI, waist circumference (WC)], body fat, and fasting blood samples.

Results: LA Sprouts participants had significantly greater reductions in BMI z-scores (0.1-vs. 0.04-point decrease, respectively; \(P = 0.01 \)) and WC (−1.2 cm vs. no change; \(P < 0.001 \)). Fewer LA Sprouts participants had the metabolic syndrome (MetSyn) after the intervention than before, while the number of controls with MetSyn increased. LA Sprouts participants had improvements in dietary fiber intake (+3.5% vs. −15.5%; \(P = 0.04 \)) and less decreases in vegetable intake (−23.6% vs. −26.4%; \(P = 0.04 \)). Change in fruit intake before and after the intervention did not significantly differ between LA Sprouts and control subjects.

Conclusions: LA Sprouts was effective in reducing obesity and metabolic risk.

Introduction

The increased prevalence of childhood obesity in the US is concerning and has led to projections that one in three male and two in five female children born in the year 2000 will develop diabetes in their lifetime (1). Nearly one-third (31.8%) of US children and adolescents aged 2–19 years were either overweight or obese in 2011–2012, including 16.9% who were obese (2). Pediatric obesity is associated with an increase in cardiovascular disease (CVD) risk factors, asthma, and psychological problems during childhood (3,4).

Significant disparities in obesity prevalence exist by racial/ethnic group, with adolescents and Hispanics/Latinos having higher rates of obesity than their Caucasian counterparts (2). Socioeconomic status (SES) is an important determinant of access to healthy and affordable, high-quality fresh fruits, vegetables, and other foods (5). Low-income residents of “food desert” neighborhoods in urban areas are less likely to have access to fresh and healthy foods than residents of higher income neighborhoods (6).

Low intakes of dietary fiber, specifically from fruits and vegetables, coupled with high consumption of refined grains and added sugar are linked to obesity and related disorders in Hispanic/Latino youth aged 8–18 years in Los Angeles (LA) (7,8). Interventions that target these dietary habits could be effective in reducing obesity risk in Hispanic/Latino youth (8).

It is known that food preferences are shaped when children are young (9), and children’s preferences for vegetables are strong predictors of vegetable consumption (10). Studies suggest that having a direct experience with growing food enhances children’s understanding of foods and their relationship to health (11). While many...
programs for children that involve both gardening and nutrition components exist, none have included experimental designs that would allow more rigorous evaluation of their impact on obesity and metabolic risk factors (11-22).

In 2010, we developed and pilot-tested a nonrandomized 12-week gardening, and nutrition/cooking intervention called "LA Sprouts" in predominantly low-income Hispanic/Latino elementary school children in LA. The LA Sprouts intervention was demonstrated to be effective in reducing body mass index (BMI) and systolic blood pressure (SBP) (13). LA Sprouts also increased dietary fiber intake and preferences for target fruits and vegetables and changed carbohydrate composition (13,24). Preliminary findings from our pilot program led us to conduct a larger randomized controlled experimental study of LA Sprouts in this population. This is the first experimental, randomized controlled study to date to examine the effects of an after-school gardening, nutrition, and cooking program on dietary intake, obesity parameters, and associated metabolic disease risk in Hispanic/Latino youth. We hypothesize that students participating in the LA Sprouts program compared to controls would experience a reduction in adiposity and metabolic risk factors and an increase in intake of dietary fiber, fruit, and vegetables.

Methods
Participants
A full description of our LA Sprouts randomized controlled trial (RCT) study design and sample is provided elsewhere (23). Briefly, during 2011–2013 elementary schools within LA Unified School District (LAUSD) were eligible if they: (1) offered the LA’s BEST after-school care program, (2) had a student body ≥75% Hispanic/Latino, (3) had ≥75% of students in the free/reduced-cost school meal program, (4) were located within 10 miles of University of Southern California (USC) Health Science Campus, (5) had expressed interest by school personnel in having a garden/hosting our program, and (6) could make an administrative commitment (including assisting with securing LAUSD approval and building parent support). Four elementary schools were identified, and all third- through fifth-grade students at the schools who were enrolled in LA’s BEST (n = 409) were invited to participate; 375 (92%) agreed. Two schools (n = 204 students) were randomized to receive the LA Sprouts intervention and two other schools were randomized to controls (n = 171 students) receiving a delayed intervention. At least partial obesity/metabolic measures and questionnaire data were collected on 364 participants (n = 198 intervention, n = 164 controls) at baseline (preintervention). Follow-up (postintervention) data was missing on 44 participants who changed schools, left the parent LA’s BEST program, or were absent on data collection days. Main analyses herein are based on 319 (92%) of those with baseline data; n = 172 intervention, n = 147 controls; n = 130 third-grade, n = 103 fourth-grade, n = 86 fifth-grade students) children for whom both baseline and follow-up data were available on our primary outcome, BMI (Figure 1). One hundred and sixty-nine children (46% of the total sample) participated in blood draws at baseline; 113 of these (77%; n = 67 intervention, n = 46 controls) returned for follow-up draws are included in analyses of blood measures. Six percent more children who provided a sample reported...
having internet access at home than those who did not provide a sample, otherwise that subset did not differ from the total sample in demographic or socioeconomic characteristics or BMI parameters.

Institutional Review Boards of USC, the University of Texas at Austin, Loma Linda University, and LAUSD approved the study. Informed written consent from parents and assent from children were obtained. ClinicalTrials.gov identifier NCT02291146.

Description of the intervention
The LA Sprouts intervention was taught on campus at school gardens specifically constructed for the program. Each school garden design took into consideration the specific needs and challenges of the individual schools, and the design and planning process involved key stakeholders including school principals and teachers, after-school staff, and LAUSD personnel. All gardens utilized raised bed garden planter boxes placed either on unpaved, grassy areas of the school yard or on areas where asphalt was removed. An area near the garden was designated as teaching space. Each school garden was outfitted with a minimum number of tools needed for gardening and cooking supplies for an outdoor kitchen. Intervention classes were taught in 90-minute sessions once a week to each grade level for 12 weeks during either a fall or winter/spring school semester. Sessions consisted of a 45-minute interactive cooking/nutrition lesson and a 45-minute gardening lesson taught by an educator with a nutrition or gardening background who was employed specifically for this intervention. Our program’s curriculum and theoretical framework is described in greater detail (13,23,24). Students worked in small teams led by an educator to cook/prepare a recipe each week, which emphasized fruit and/or vegetable ingredients. The snack was eaten in a “family-style” manner, i.e., together at a table, with a tablecloth, nondisposable plates, and silverware. The gardening activities also used a “hands-on” approach, where children participated in planting, growing and harvesting organic fruit and vegetables. A teacher to student ratio of 1:3–6 was maintained.

Description of control group
Third-, fourth-, and fifth-grade students at the two control schools did not receive any nutritional/cooking or gardening information from investigators between pre- and post-testing, and schools were asked to refrain from augmenting their curriculum with similar lessons during the study period. After post-testing was completed, students at the control schools received the full LA Sprouts program (“delayed intervention”), including a school garden being built.

Data collection
LA Sprouts and control participants completed questionnaires and had obesity and metabolic data collected at baseline and postintervention. Data collection occurred during the week prior to instruction being initiated (for baseline measures) or 7–14 days after the final day of instruction (for postintervention measures), and took place during after-school sessions, in the morning before school or on weekends. Study personnel who were not blinded to group assignment were trained to perform data collection using standardized protocols. All staff were directed to review the protocols; participated in demonstrations of procedures by the principal investigator (PI) and or project manager (PM); and were observed to ensure a proper technique. A PI or PM was present to supervise data collection. We strove, whenever feasible, to schedule a given staff member to collect the same measurement at baseline and postintervention.

Anthropometric and metabolic disease risk data
Height was measured with a free-standing stadiometer (Seca, Birmingham, UK); weight and percent body fat were measured via bioelectrical impedance (Tanita TBF 300A, Arlington Hills, IL). BMI z-scores and percentiles were determined using CDC cut-points for age and sex (25). Blood pressure (BP) was measured with an automated monitor with appropriate child cuffs (Omron, Schaumburg, IL), and waist circumference (WC) measures followed NHANES protocol (26).

Child questionnaires
The child questionnaire included items on demographics and socioeconomic status. Dietary intake was measured using the Block Kids Food Screener (“last week” version). This 84-item screener was developed and adapted from the Block, Kids, 2004 Food Frequency Questionnaire (27), and has been validated in youth living in a metropolitan area (28). The screener was designed to assess intake by food group, and includes sections used to estimate intake of fruit and vegetable servings, grains, dairy/fish, dairy, and added sugars. National dietary surveys such as NHANES were used to inform the selection of foods to query, and to apply appropriate portion sizes and nutrient composition.

Fasting blood sample
Optional fasting blood draws were collected during nonacademic hours and off-campus from participants by bilingual, licensed phlebotomists with experience drawing blood in overweight children. Samples were processed and stored at USC until they were shipped for assays.

Glucose was assayed using a Yellow Springs Instruments analyzer (Yellow Springs, OH). Total cholesterol, high-density lipoprotein cholesterol (HDL-C), and triglyceride levels were measured using the enzymatic methods (29) on a Stabion Sirius analyzer (Stabion Laboratory, Boerne, TX); low-density lipoprotein (LDL-C) was calculated using the Friedwald equation. Insulin was quantified using an ELISA kit (EMD Millipore, St. Charles, MO). Homeostatic model assessment (HOMA-IR) was calculated as a measure of insulin resistance (30).

Metabolic syndrome
Participants were identified as having the metabolic syndrome (MetSyn) following the work of Cook et al. (31), which provides recommendations for reference values to define cut-offs for component MetSyn factors.

Statistical analysis
Anthropometric and metabolic data were screened for plausibility by conducting residual analyses examining how the baseline value of a given variable predicted the value of that variable at follow-up. Original data was checked to resolve possible measurement errors for participants with standardized residuals >3 SD, otherwise, that observation was removed from analyses. For Block data, we selected for analysis variables for individual food questions as well as estimates of
TABLE 1 Demographic characteristics of LA Sprouts and control participants at baseline

Characteristic, n (%) or mean ± SD	LA Sprouts (n = 172), pre	Controls (n = 147), pre	P-valuea
Male	82 (47.7)	71 (48.3)	0.91
Hispanic/Latino	153 (89.0)	127 (88.8)	0.97
Age (years)	9.3 ± 0.9	9.3 ± 0.9	0.90
Height (cm)	135.0 ± 8.5	135.0 ± 8.5	0.96
Weight (kg)	36.9 ± 10.6	38.1 ± 12.6	0.30
BMI (kg/m²)	19.8 ± 4.1	20.6 ± 4.6	0.13
Overweight (≥85th percentile)	82 (51.3)	73 (53.3)	0.73
Obese (≥95th percentile)	54 (33.8)	54 (39.4)	0.31

Socioeconomic factors

No English spoken at home	48 (28.7)	27 (19.6)	0.06
No computer at home	42 (26.1)	32 (23.2)	0.56
No internet at home	39 (23.2)	32 (23.2)	0.99
Mother does not have own car	57 (34.3)	36 (27.1)	0.17
Eligible for free lunch at school	152 (90.5)	125 (89.3)	0.73

*P-value for difference between groups from chi-square tests (categorical variables) or independent t-tests (continuous variables).

Results

By design, the study population was ~89% Hispanic/Latino and ~90% eligible for free lunch at school (Table 1). The majority (>50%) were overweight (BMI ≥85th percentile), and more than one-third were obese (BMI ≥95th percentile). There were no differences at baseline between LA Sprouts participants and controls in age, sex, ethnicity, BMI, and most sociodemographic factors examined. LA Sprouts participants were less likely to speak English at home than controls (P = 0.06).

After the 12-week program, LA Sprouts participants had significantly greater reductions in BMI than controls (0.1 vs. 0.04 decrease in BMI z-score, respectively; P = 0.01). LA Sprouts participants had a greater (1.3 cm) reduction in WC, while controls had no change after intervention (P < 0.001) (Table 2). The number of students eligible for lunch at school (Table 1). The majority (~89% Hispanic/Latino and ~90% eligible for free lunch at school (Table 1). The majority (>50%) were overweight (BMI ≥85th percentile), and more than one-third were obese (BMI ≥95th percentile). There were no differences at baseline between LA Sprouts participants and controls in age, sex, ethnicity, BMI, and most sociodemographic factors examined. LA Sprouts participants were less likely to speak English at home than controls (P = 0.06).

LA Sprouts participants had increases in consumption of whole grains and green beans and peas, while controls decreased their intake of these foods (P ≤ 0.10). Change in fruit intake overall and intake of apples, bananas, and oranges before and after the intervention did not significantly differ between LA Sprouts and control subjects.

Discussion

LA Sprouts is the first randomized school gardening, nutrition, and cooking intervention to demonstrate effectiveness in reducing obesity (measured by BMI and WC) in predominantly Hispanic/Latino students.
TABLE 2 Adjusted\(^a\) anthropometric and clinical characteristics of LA Sprouts participants and controls before and after intervention and adjusted mean (percent) change between pre- and postintervention

Characteristic, mean ± SE or n (%)	LA Sprouts (n = 172)	Controls (n = 147)	P-value\(^b\)						
	Pre	Post	Absolute change	Percent change	Pre	Post	Absolute change	Percent change	
Anthropometrics									
BMI percentile									
	75.6 ± 2.3	73.7 ± 2.3	-1.9	-2.5	74.8 ± 2.6	73.8 ± 2.6	-1.0	-1.3	0.13
BMI z-score	0.95 ± 0.09	0.85 ± 0.09	-0.1	-10.5	1.01 ± 0.10	0.97 ± 0.10	-0.04	-4.0	<0.01
Waist circumference (WC) (cm)	70.3 ± 0.5	69.1 ± 0.5	-1.2	-1.7	71.6 ± 0.6	71.6 ± 0.6	0.0	0.0	<0.001
Body fat (%)	24.7 ± 0.4	24.2 ± 0.4	-0.5	-2.0	25.2 ± 0.4	24.6 ± 0.4	-0.6	-2.4	0.82
Clinical characteristics									
Systolic blood pressure (mmHg)									
	109.4 ± 1.0	108.9 ± 1.0	-0.5	-0.5	112.0 ± 1.1	111.7 ± 1.1	-0.3	-0.3	0.87
Diastolic blood pressure (mmHg)									
	64.7 ± 0.9	64.0 ± 0.9	3.6	1.9	66.2 ± 1.0	63.6 ± 1.0	-2.6	-3.9	0.28
Total cholesterol									
	156.8 ± 3.3	162.5 ± 3.5	3.6	1.9	160.4 ± 4.6	1.2	0.3	0.6	0.32
LDL-C	84.6 ± 2.7	85.9 ± 2.9	1.3	6.6	86.9 ± 3.5	86.6 ± 3.8	-0.3	-0.3	0.62
HDL-C	58.0 ± 1.3	60.0 ± 1.4	2.0	3.4	57.3 ± 1.7	58.6 ± 1.8	1.3	2.3	0.42
Triglycerides	69.5 ± 3.5	73.8 ± 3.8	4.3	6.2	70.6 ± 4.5	72.6 ± 4.9	2.0	2.8	0.63
Insulin (\(\mu U/ml\))	10.7 ± 0.8	11.3 ± 0.9	0.6	5.6	10.9 ± 1.1	11.4 ± 1.2	0.5	4.6	0.90
HOMA-IR	2.4 ± 0.2	2.6 ± 0.2	0.2	8.3	2.6 ± 0.3	2.6 ± 0.3	0.1	4.0	0.85
Glucose (mg/dl)	91.5 ± 0.8	93.6 ± 0.8	2.1	2.3	91.4 ± 0.9	92.8 ± 1.1	1.4	1.5	0.56
Metabolic syndrome									
WC ≥90th percentile, age- and sex-specific	7 (4.2)	1 (0.6)	-6	-6.0	47 (27.4)	49 (34.0)	2.3	4.2	100
Fasting glucose ≥110 mg/dl	0	0	-	-	1 (2.3)	1 (2.3)	1	100	
Triglycerides ≥110 mg/dl, age-specific	9 (10.5)	8 (12.9)	-1	-11.1	12 (19.6)	13 (18.2)	-4	-33.3	
HDL-C ≤40 mg/dl	3 (3.5)	2 (3.2)	-1	-33.3	6 (9.7)	7 (11.4)	-1	-16.7	
BP ≥90th percentile, age-, sex-, and height-specific	66 (39.8)	56 (32.9)	-10	-15.2	72 (22.2)	68 (42.1)	-4	-5.6	

\(^a\)Means are adjusted for age (continuous), sex, ethnicity (Hispanic/Latino vs. not), English spoken at home (yes, no), school (Monte Vista, Loreto, Sierra Park, Euclid Elementary).

\(^b\)P-value for multiplicative interaction term indicating change from pre to post for each measure between groups from mixed effects regression models.
elementary school-aged children. While the reductions were relatively small in magnitude (decreases of 0.1 in BMI z-score and 1.2 cm in WC), it is nonetheless notable that the study was able to show changes over a 12-week period. By extension, our findings suggest that similar interventions implemented over a longer term may expect greater changes in these obesity parameters. Additional studies would be needed to evaluate this. For comparison, other meta-analyses of RCTs such as those that included dietary modification, rigorous nutrition education, intense and monitored physical activity sessions, or a clinic-based component with or without healthcare professionals have demonstrated inconsistent success in achieving reductions in BMI (32,33). A 12-week behavioral modification program for Hispanic/Latino children aged 7–15 years and their families that provided alternative foods to substitute for those with high glycemic index, dietary prescription plans, and physical activity sessions found a 0.156 point reduction in BMI z-score after 3 months (34). The modest reduction in BMI associated with our educational program may be interpreted relative to the magnitude of those observed under more intense dietary and/or physical activity conditions. Furthermore, as the prevalence of overweight and obesity in our study population was higher than national averages for Hispanic youth (2) (which are higher than those for non-Hispanic Whites nationally), we believe this underscores the need to address disparities in obesity risk, and even small risk reductions in this high-risk population represent progress in tackling the problem. LA Sprouts was also effective in changing dietary intake, with an observed increase in dietary fiber intake among participants, which was an intention of the intervention design. LA Sprouts participants increased intake of whole grains and green beans/peas while controls decreased intake of these foods. Some (13,15,16,18-20,22), but not all (12,14,17,19,21) previous nonrandomized studies of school garden-based educational programs have demonstrated an effect on increasing fruit or vegetable intake in children. It should be noted that with over 90% of students in the study eligible for free or reduced cost breakfast and lunch served at school, this likely implies that 2/3 of their daily dietary intake was determined by school availability, which was the same between LA Sprouts participants and controls. This further suggests that children had little control over food options for two of their three meals, which further contextualizes an interpretation of the magnitude of change in dietary intakes associated with the intervention.

While the number of students overall who fit the definition of the MetSyn was small, we did observe a decrease in MetSyn among LA Sprouts participants and an increase in controls from pre- to postintervention. While this finding should be interpreted with caution, it may suggest that LA Sprouts had an effect on the biochemical processes associated with this clustering of metabolic risk factors. While mean differences between pre- and postintervention in the

Table 3

Nutrient or food, mean ± SE	LA Sprouts	Controls	P-value						
Energy (kcal/d)	1265.1 ± 95.6	1261.3 ± 95.6	-3.8	-0.3	1389.0 ± 109.5	1239.3 ± 109.5	-149.7	-10.8	0.25
Protein (g/d)	55.2 ± 2.2	54.1 ± 2.2	-1.1	-2.0	56.3 ± 2.5	47.1 ± 2.5	-9.2	-16.3	0.19
Fat (g/d)	54.1 ± 2.1	52.1 ± 2.1	-2.0	-3.7	55.1 ± 2.4	47.3 ± 2.4	-7.8	-14.2	0.33
Carbohydrates (g/d)	149.9 ± 5.2	154.3 ± 5.2	4.4	2.9	165.3 ± 5.9	153.9 ± 5.9	-11.4	-6.9	0.27
Added sugar (tsp/d)	7.2 ± 0.5	8.0 ± 0.5	0.8	11.1	8.5 ± 0.5	7.8 ± 0.5	-0.7	-8.2	0.11
Dietary fiber (g/d)	11.5 ± 0.5	11.9 ± 0.5	0.4	3.5	12.9 ± 0.6	10.9 ± 0.6	2.0	-15.5	0.04

Food or food group

Nutrient or food, mean ± SE	LA Sprouts	Controls	Percent change	P-value					
Meats, OE	2.8 ± 0.2	2.7 ± 0.2	-0.1	-3.6	2.8 ± 0.2	2.2 ± 0.2	-0.6	-21.4	0.18
Dairy, CE	1.4 ± 0.1	1.3 ± 0.1	-0.1	-7.1	1.5 ± 0.1	1.3 ± 0.1	-0.2	-13.3	0.56
Whole grains, OE	0.49 ± 0.03	0.53 ± 0.03	0.04	8.2	0.56 ± 0.04	0.54 ± 0.04	0.1	-14.3	0.10
Vegetables, CE	0.83 ± 0.05	0.80 ± 0.05	-0.03	-3.6	0.91 ± 0.06	0.8 ± 0.06	1	-26.4	0.04
Fruits, fruit juice, CE	1.3 ± 0.9	1.3 ± 0.9	0.0	0.0	1.5 ± 0.1	1.3 ± 0.1	-0.1	-6.7	0.56
Tomatoes, CE	0.05 ± 0.01	0.04 ± 0.01	-0.01	-20.0	0.05 ± 0.01	0.03 ± 0.01	-0.2	-4.0	0.21

*Mean adjusted for age (continuous), sex, ethnicity (Hispanic/Latino vs. not), English spoken at home (yes, no), school (Monte Vista, Loreto, Sierra Park, Euclid Elementary), energy (kcal). |

*OE: ounce equivalent. |

*Not adjusted for energy (kcal). |

*P-value for multiplicative interaction term indicating change from pre to post for each measure between groups from mixed effects regression models. |
Our intervention was designed to be culturally tailored, for example, by including recipes that targeted foods familiar to our study population such as salsas and vegetable quesadillas. We did not observe an effect of the intervention on fruit consumption, which is not in line with our study hypothesis but is concordant with some other non-randomized school garden-based-educational interventions targeting fruit intake (14,16,17,19). The food screener used did not provide a broad assessment of vegetables and fruits and particular fruits and vegetables which may be more commonly consumed by cultures reflected in our study population (i.e., papayas, nopales). Thus it is possible that our null findings for fruits may reflect inadequate sensitivity of our selected data collection instrument. Furthermore, FFQs are not able to precisely quantify intake of nutrient consumption or differences among varieties of foods that may be captured in a single food item question (36). Funding, time, and sample size limitations prevented collection of 24-hour dietary recalls, which would have provided a more accurate assessment of dietary intake (37). Nevertheless, the Block screener demonstrated good validity against three 24-hour dietary recalls in 99 youth in a metropolitan area, with deattenuated correlations between the two dietary assessment instruments ranging from 0.526 for vegetables to 0.878 for potatoes (28). Furthermore, given that our analysis focused on comparisons between groups of participants and not individual assessments, we feel that the associated efficiency and cost savings afforded by automated data entry and analysis made the FFQ instrument an appropriate choice. Our intervention was developed to take place during the after-school hours because this time is ideal for implementing such research programs. Students who remain on campus after school dismissal and prior to parent pickup are captive audiences for 2-4 hours. Local and national data suggest that 50% of schoolchildren in kindergarten through eighth grade aged 6-13 years are regularly in nonparental care before and after school (35,36) and that this likely differs by geographic region and socioeconomic factors. The after-school hours are an opportunity to enhance student academic achievement as an extension of instruction while engaging students in topics or activities otherwise not part of the academic school day such as gardening or nutrition. Many after-school care providers include scheduled time for enrichment in their programming and seek activities that fulfill their needs. It is possible to incorporate “fun” “hands-on” activities such as cooking or gardening that may not be feasible in a classroom setting. After-school programs do not compete with required school day instruction and are not restricted by a requirement that they meet school standards. Nevertheless, our curriculum has mapped on school standards (i.e., math, science, language arts, and health) and could be utilized during the academic school day. Garden-based programs are multi-faceted, can be utilized during both school and after-school hours, and integrate academic subjects and other subjects such as health.

There were several limitations of our study. We do not have data on long-term sustainability of the program or maintenance of our results beyond the 12-week study period. Additional longer-term studies are needed to understand these issues and long-term health benefits of a garden-based intervention. We provided trained educators to teach our program, and it is uncertain whether similar results can be expected when the program is taught by after school staff. However, after the intervention we held several train-the-trainer workshops and provided all educational resources and supplies associated with our lessons to the schools to help sustain the program. We had a smaller sample size for blood measures, as these were optional, which could explain our lack of findings for these variables. While we recognized the importance of involving parents and offered parallel classes to them on mornings, evenings and weekends, these classes were poorly attended. Future efforts should be directed to increasing parental support for such programs, and should obtain evaluation measures on parents, as it is recognized that the home food environment reinforces material taught to children. While gardening is a source of physical activity for children, and the imbalance between energy intake and expenditure, the root of obesity, future garden-based studies may want to supplement the exercise component of their programs to include more high-intensity gardening activities such as digging and weeding, which were not as emphasized in our intervention.

In conclusion, LA Sprouts is a first school garden-based, nutrition, cooking and gardening experimental intervention developed, and which resulted in a decreased risk of obesity and metabolic disease and improvements in dietary intake in high-risk Hispanic/Latino youth. Our findings suggest that teaching children to grow, prepare, eat fruits and vegetables is an efficacious approach to reducing disease risk. However, longer RCTs are warranted to understand the long-term effects of garden-based programs. In addition, more studies are needed to examine how to sustain such garden-based programs in school settings. Programs with a school garden component can provide children access to healthy foods in otherwise food desert neighborhoods.

© 2015 The Obesity Society

References

1. Narayan KMV, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF. Lifetime risk for diabetes mellitus in the United States. J Am Med Assoc 2003;290:1994-1999.
2. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. J Am Med Assoc 2014;310:806-814.
3. Daniels SR, Arnett DK, Eckel RH, et al. Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment. Circulation 2005;111:1999-2012.
4. Reily JJ, Methven E, McDowell ZC, et al. Health consequences of obesity. Arch Dis Child 2003;88:748-752.
5. Sobal J, Stunkard A. Influence of the home environment on the development of obesity in children. Pediatrics, 101, In Wadden TA, Stunkard AJ (Eds.). Handbook of Obesity Treatment. New York: Guilford Press, 1999, pp. 515-531.
6. Wardle J, Robb K, Johnson F. Assessing socioeconomic status in adolescents: the validity of a home affluence scale. J Epidemiol Community Health 2002;56:595-599.
7. Davis JN, Alexander KE, Ventura EE, et al. Associations of dietary sugar and glycemic index with adiposity and insulin dynamics in overweight Latino youth. Am J Clin Nutr 2006;86:1331-1338.
8. Ventura E, Davis J, Byrd-Williams C, et al. Reduction in risk factors for type 2 diabetes mellitus in response to a low-sugar, high-fiber dietary intervention in overweight Latino adolescents. Arch Pediatr Adolescent Med 2009;163:320-327.
9. Kirby SD, Baranowski T, Reynolds K, Taylor G. Children’s fruit and vegetable intake: regional, adult-child, socioeconomic, and urban-rural influences. J Nutr Educ 1995;27:261-271.
10. Dornel SB, Baranowski T, Davis HC, Thompson WD, Leonard SB, Baranowski J. A measure of stages of change in fruit and vegetable consumption among fourth-
and fifth-grade school children: reliability and validity. *J Am Coll Nutr* 1996;15:56-64.

11. Morris JL, Zidenberg-Cherr S. Garden-enhanced nutrition curriculum improves fourth-grade school children’s knowledge of nutrition and preferences for some fruits and vegetables. *J Am Diet Assoc* 2002;102:91-93.

12. Christian MS, Evans CE, Nykjer C, Hancock N, Cade JE. Evaluation of the impact of a school gardening intervention on children’s fruit and vegetable intake: a randomised controlled trial. *Int J Behav Nutr Phys Act* 2014;11:99.

13. Davis JN, Ventura EE, Cook LT, Gyllenhammer LE, Gatto JM. LA sprouts: a gardening, nutrition, and cooking intervention for Latino youth improves diet and reduces obesity. *J Am Diet Assoc* 2011;111:1224-1230.

14. Gibbs L, Staiger PK, Johnson B, et al. Expanding children’s food experiences: the impact of a school-based kitchen garden program. *J Nutr Educ Behav* 2013;45:137-146.

15. Heim S, Stang J, Ireland M. A garden pilot project enhances fruit and vegetable consumption among children. *J Am Diet Assoc* 2009;109:1220-1226.

16. Hermann JK, Parker SP, Brown BJ, Siewe YJ, Denney BA, Walker SJ. After-school gardening improves children’s reported vegetable intake and physical activity. *J Nutr Educ Behav* 2006;38:201-202.

17. Lineberger S, Zajicek J. School gardens: can a hands-on teaching tool affect students’ attitudes and behaviors regarding fruit and vegetables? *Hort Technol* 2000;10:593-597.

18. McAleese JD, Rankin LL. Garden-based nutrition education affects fruit and vegetable consumption in sixth-grade adolescents. *J Am Diet Assoc* 2007;107:662-665.

19. Morgan PJ, Warren JM, Lubans DR, Saunders KL, Quick GI, Collins CE. The impact of nutrition education with and without a school garden on knowledge, vegetable intake and preferences and quality of school life among primary-school students. *Public Health Nutr* 2010;13:1931-1940.

20. Parmer SM, Salisbury-Glennon J, Shannon D, Struempler B. School gardens: an experiential learning approach for a nutrition education program to increase fruit and vegetable knowledge, preference, and consumption among second-grade students. *J Nutr Educ Behav* 2009;41:212-217.

21. Ratcliffe MM, Merrigan KA, Rogers BL, Goldberg JP. The effects of school garden experiences on middle school-aged students’ knowledge, attitudes, and behaviors associated with vegetable consumption. *Health Promot Pract* 2011;12:36-43.

22. Wang M, Razoum S, Studer N, et al. Exposure to a comprehensive school intervention increases vegetable consumption. *J Adolesc Health* 2010;46:1-9.

23. Martinez LC, Gatto NM, Spruijt-Metz D, Davis JN. Design and methodology for the LA Sprouts nutrition, cooking and gardening program for Latino youth in a randomized controlled intervention. *Contemporary Clinical Trials* (in press).

24. Gatto NM, Ventura EE, Cook LT, Gyllenhammer LE, Davis JN. LA sprouts: a garden-based nutrition intervention pilot program influences motivation and preferences for fruits and vegetables in Latino youth. *J Acad Nutr Diet* 2012;112:913-920.

25. Kuczmarski RJ, Ogden CL, Guo SS, et al. 2000 CDC growth charts for the United States: methods and development. *Vital Health Stat* 2002;11:1-190.

26. Control CPID. National Health and Nutrition Examination Survey (NHANES): Anthropometry Procedures Manual. 2007, Centers for Disease Control.

27. Cullen KW, Watson K, Zakeri I. Relative reliability and validity of the block kids questionnaire among youth aged 10 to 17 years. *J Am Diet Assoc* 2008;108:862-866.

28. Hunsberger B, O’Malley J, Block T, Norris JC. Relative validation of block kids food screener for dietary assessment in children and adolescents. *Matern Child Nutr* 2012.

29. Gower BA, Chandler-Laney PC, Ovalle F, et al. Favourable metabolic effects of a eucaloric lower-carbohydrate diet in women with PCOS. *Clin Endocrinol (Oxf)* 2013;79:550-557.

30. Mathews D, Hosker J, Rudenski A, Naylor B, Treacher D, Tumer R. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentration in man. *Diabetologia* 1985;28:412-419.

31. Cook S, Weitzman M, Ansgar P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and Nutrition Examination Survey, 1988–1994. *Arch Pediatr Adolesc Med* 2003;157:821-827.

32. Kamath CC, Vickers KS, Ehrlich AE, et al. Clinical reviews: behavioral interventions to prevent childhood obesity: a systematic review and meta-analyses of randomized trials. *J Clin Endocrinol Metab* 2008;93:4609-4615.

33. Waters E, de Silva-Sanigorski A, Hall BJ, et al. Interventions for preventing obesity in children. *Cochrane Database Syst Rev* 2011;11:Cd001871.

34. Mirza NM, Paley JL, Silva KR, et al. Effects of a low glycemic load or a low-fat dietary intervention on body weight in obese Hispanic American children and adolescents: a randomized controlled trial. *Am J Clin Nutr* 2013;97:278-285.

35. International Diabetes Foundation. The IDF consensus definition of the metabolic syndrome phenotype in adolescents: findings from the third National Health and Nutrition Examination Survey, as cited in Federal Interagency Forum on Child and Family Statistics. U.S. Children: Key National Indicators of Well-Being National Household Education and Training Survey, 1988-2000. *Arch Pediatr Adolesc Med* 2003;157:821-827.

36. Zidenberg-Cherr S, Taylor NH, Moore RD, et al. The effect of a low glycemic-load diet on cholesterol concentrations in children. *Arch Pediatr Adolesc Med* 2004;158:567-572.

37. Thompson FE, Byers T. Dietary assessment resource manual. *Semin Dial* 2004;17:323-331.

38. U.S. Department of Education National Center for Education Statistics, America’s Children: Key National Indicators of Well-Being National Household Education and Training Survey, as cited in Federal Interagency Forum on Child and Family Statistics. U.S. Government Printing Office: Washington, DC; 2002.