Bayesian modeling of two-species bacterial competition growth and decline rates in milk

E.J. Quintoa*, J.M. Marínb, I. Caroa,c, J. Mateoc, D.W. Schaffnerd

aDepartment of Nutrition and Food Science, College of Medicine, University of Valladolid, 47005, Valladolid, Spain.
bDepartment of Statistics, University Carlos III de Madrid, 28903 Getafe, Madrid, Spain.
cDepartment of Food Hygiene and Food Technology, University of León, Campus de Vegazana s/n, 24071 León, Spain.
dDepartment of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.

*Corresponding author: E. J. Quínto, Department of Nutrition and Food Science, College of Medicine, Avda Ramon y Cajal 7, University of Valladolid, 47005, Valladolid, Spain. Telephone: +34-983-184943. Fax: +34-983-423812. E-mail: equinto@ped.uva.es.

E-mail addresses: equinto@ped.uva.es (E. J. Quínto), jmmarin@est-econ.uc3m.es (J. M. Marín), icarc@unileon.es (I. Caro), jmato@unileon.es (J. Mateo), don.schaffner@rutgers.edu (D. W. Schaffner).
Abstract

Shiga toxin-producing *Escherichia coli* O157:H7 is a food-borne pathogen and the major cause of hemorrhagic colitis. *Pseudomonas* is the genus most frequent psychrotrophic spoilage microorganisms present in milk. Two-species bacterial systems with *E. coli* O157:H7, non-pathogenic *E. coli*, and *P. fluorescens* in skimmed milk at 7, 13, 19, or 25°C was studied. Bacterial interactions were modelled after applying a Bayesian approach. No direct correlation between *P. fluorescens*’s growth rate and its effect on the maximum population densities of *E. coli* species was found. The results show the complexity of the interactions between two species into a food model. The use of natural microbiota members to control foodborne pathogens could be useful to improve food safety during the processing and storage of refrigerated foods.

Keywords: Shiga toxin-producing *Escherichia coli* O157:H7; *Escherichia coli*; *Pseudomonas fluorescens*; co-culture; competition; Bayesian modeling.
1. Introduction

Shiga toxin-producing *Escherichia coli* O157:H7 strains are foodborne pathogens causing hemorrhagic colitis or the hemolytic uremic syndrome (Karmali, 1989). These microorganisms can be transmitted through consumption of undercooked meat, vegetables, contaminated water, unpasteurized dairy products, and raw milk (M. P. Doyle, Zhao, Meng, & Zhao, 1997; Duncan et al., 1986; Griffin & Tauxe, 1991; Louise Martin et al., 1986). The survival capacity of *E. coli* O157:H7 can go as far as several days or weeks in milk and dairy products (Arocha, McVey, Loder, Rupnow, & Bullerman, 1992; Dineen, Takeuchi, Soudah, & Boor, 1998; Hudson, Chen, Hill, & Griffiths, 1997) showing the importance of post processing contamination and the associated health risks.

Soil, water and vegetation are the main sources of psychrotrophic spoilage microorganisms, such as *Pseudomonas*, to milk (Cousin, 1982; De Jonghe et al., 2011; de Oliveira, Favarin, Luchese, & McIntosh, 2015). During the pre-processing period (3-4 days) prior to pasteurization, psychrotrophic bacteria can grow and cause significant chemical changes (De Jonghe et al., 2011; Farrag & Marth, 1989a). *Pseudomonas* also appears in pasteurized dairy products as a post-processing contaminant (Chiesa et al., 2014; Cousin, 1982).

Different bacterial species interact without physical barriers in many natural environments, and foods are one such example where co-culture experiments have shown the prevailing genotypes (Avendaño-Pérez & Pin, 2013; Cornforth & Foster, 2013; Dubey & Ben-Yehuda, 2011; Nadell & Bassler, 2011). Spoilage microorganisms are able to enhance, limit or be neutral on the growth of pathogenic species (Buchanan & Bagi, 1999). *P. fluorescens* produces extracellular materials resulting in a competitive advantage over other species (Nadell & Bassler, 2011) such that the competitor is
physically displaced (Schluter, Nadell, Bassler, & Foster, 2015) or the nutrients access impeded (Kim, Racimo, Schluter, Levy, & Foster, 2014). In early research on the topic, Graves & Frazier (1963) and Seminiano & Frazier (1966) reported the enhancement of Staphylococcus aureus’s growth in the presence of Pseudomonas spp. Marshall & Schmidt (1991; 1988) and (Farrag & Marth (1989a) found similar results when Listeria monocytogenes was co-cultured in the presence of P. fluorescens. Other studies reported conversely that P. fluorescens can inhibit the growth of L. monocytogenes (Al-Zeyara, Jarvis, & Mackey, 2011; Buchanan & Bagi, 1999; Buchanan & Bagi, 1997; Cheng, Doyle, & Luchansky, 1995; Farrag & Marth, 1989b; Fgaier & Eberl, 2010; Freedman, Kondo, & Willrett, 1989; Mellefont, McMeekin, & Ross, 2008). The specific addition of glucose to TSB broth stimulated the inhibition of E. coli O157:H7 by P. fluorescens (Samelis & Sofos, 2002). Liao (2009) and (Liao, Cooke, & Niemira (2010) reported that P. fluorescens and Bacillus spp. were able to act as biocontrol agents of Salmonella Saintpaul on Jalapeno pepper or of E. coli O157:H7 on TSA agar and bell pepper disks. On the surface of spinach leaves, Olanya, Annous, Niemira, Ukuku, & Sommers (2012) reported that P. fluorescens moderately suppressed the growth of E. coli O157:H7. The same research group also showed P. fluorescens inhibition of E. coli O157:H7 in poor environments such as distilled water or buffered peptone water (Olanya, Ukuku, & Niemira, 2014).

The aim of our work is to study the interaction between co-culturing bacterial species using Bayesian inference. The Bayesian approach provides a consistent framework for estimating parameters from a model using prior knowledge about the system to improve the estimations (Rickett et al., 2015), with the advantage of including uncertainties within the model (Chatzilena, van Leeuwen, Ratmann, Baguelin, & Demiris, 2019). Two-species systems were co-cultured with E. coli O157:H7 or non-
pathogenic *E. coli* and *P. fluorescens* in skimmed milk at several temperatures.

2. Material and methods

2.1. Bacterial cultures and inoculation

Three strains of *Escherichia coli*: O157:H7 LCDC 86-51 (EcO1; Shiga toxin-producing strain isolated from hemorrhagic colitis, Canada), O157:H7 ATCC 35150 (EcO2; Shiga toxin-producing strain isolated from hemorrhagic colitis, USA), and the non-pathogenic strain *E. coli* ATCC 8739 (Ec) were used. All strains were cultured overnight in BHI broth (Difco, BD Diagnostics, Franklin Lakes, NJ, USA) at 37 ºC. *Pseudomonas fluorescens* ATCC 13525 (Pf; isolated from pre-filter tanks and town water works, UK) was cultured in BHI at 25 ºC for 24 h.

Bacterial cultures were grown at 37 ºC until a population of 10⁹ CFU/ml was reached as previously described (Quinto, Marín, Caro, Mateo, & Schaffner, 2018). Briefly, serial dilutions were prepared in 0.1% sterile peptone water (Difco) and 1 ml from adequate dilutions were added to 250 ml screw-capped Erlenmeyer flasks containing 100 ml of 10% reconstituted sterile skimmed milk. Populations of ca. 10⁴ CFU/ml were achieved, and evaluated by spreading onto TSA (Difco) plates and incubating at 37ºC for 48 h.

2.2. Co-cultures and enumeration

A first 4-level factor (EcO1, EcO2, Ec, and Pf strains) and a second 4-level factor (7, 13, 19 or 25 ºC) were used for a 4 x 4 full factorial experiment. Starting concentrations of ca. 10⁴ CFU/ml were selected and co-cultures of EcO1, EcO2, Ec, and Pf were prepared and stored at 7, 13, 19 or 25 ºC. Actual co-culture starting populations
of 3.9-4.1, 4.0-4.1, 4.0-4.1, and 3.9-4.1 log CFU/ml were obtained for EcO1, EcO2, Ec, and Pf, respectively. Single cultures of EcO1, EcO2, Ec, and Pf were cultivated with the same initial populations. Control cultures of un-inoculated skimmed milk were prepared and stored under the same conditions.

Cultures were sampled exceeding the shelf life of pasteurized milk at 0, 2, 4, 6, 12, or 24 h, and 2, 4, 8, 12, 16, 20, 28 days. Aliquots (0.1 ml) were surface-plated onto MacConkey Sorbitol Agar (Difco) and Fluorocult VRB-Agar (Merk, Darmstadt, Germany) or onto Pseudomonas Agar F or Flo Agar (Difco). For Escherichia spp. counting, plates were incubated at 37 °C for 18-24 h, and random colonies were serologically confirmed using the E. coli O157 Latex Test Kit (Oxoid, Thermo Fisher Scientific, UK). P. fluorescens colonies were counted after an incubation at 35 °C for 24-48 h.

2.3. Bayesian modeling of microbial interactions

A Bayesian estimation of the parameters was considered. A modified generic primary growth model (M. Cornu, Billoir, Bergis, Beaufort, & Zuliani, 2011) was selected:

\[
\frac{dN_t}{dt} / N_t = \frac{d(\ln(N_t))}{dt} = \mu_{\text{max}} \alpha_t f_t
\]

where \((dN_t/dt)/N_t \) is the relative or instantaneous growth rate of the microorganism, \(N_t \) is the cell concentration in a bacterial culture at time \(t \), and \(\mu_{\text{max}} \) is the maximum growth rate. The term \(\alpha_t \) is an adjustment function, and \(f_t \) is a logistic inhibition function for two-species mixed cultures (M. Cornu, 2001):
\[\alpha_t = \begin{cases} 0, & t < \lambda \\ 1, & t \geq \lambda \end{cases} \]

\[f_t = 1 - \frac{N_{a_t} + N_{b_t}}{N_{\text{max}}} \] (2)

where \(\lambda \) is the lag time, \(N_{a_t} \) and \(N_{b_t} \) are the cell concentration of the microorganisms a or b in co-culture at time \(t \), and \(N_{\text{max}} \) is the total carrying capacity (both species). For EcO1 cultures the model can be re-defined:

\[\frac{dE_{c_1}/dt}{E_{c_1}} = \frac{d(\ln(E_{c_1})_t)}{dt} = \mu_{E_{c_1}} \alpha_t \left(1 - \frac{E_{c_1}_t}{E_{c_1}_{\text{max}}} \right) \] (3a)

\[\frac{dE_{c_1}/dt}{E_{c_1}} = \frac{d(\ln(E_{c_1})_t)}{dt} = \mu_{E_{c_1}(Pf)} \alpha_t \left(1 - \frac{E_{c_1}_t + Pf_t}{N_{\text{max}}} \right) \] (3b)

where \(\mu_{E_{c_1}} \) (3a) and \(\mu_{E_{c_1}(Pf)} \) (3b) are the maximal growth rates of EcO1 cultured alone or in the presence of \(P. \) fluorescens, respectively. Similar approaches to the equations (3a-b) were done for the cultures of EcO2 (\(\mu_{E_{c_2}}, \mu_{E_{c_2}(Pf)} \)), Ec (\(\mu_{Ec}, \mu_{Ec(Pf)} \)), and \(P. \) fluorescens (\(\mu_{Pf}, \mu_{Pf(Ec_1)}, \mu_{Pf(Ec_2)}, \) and \(\mu_{Pf(Ec)} \)). When the cultures reached their maximal values, a decline period was observed. The decline phase was modeled alone with a modification of equations (3a-b), i.e., \(\mu \) was replaced by the negative-sign parameter \(k \) in order to reflect the negative slope of that survival growth section.

The approach above assumes deterministic behavior, but an error term may be introduced to reflect the influence of factors outside the experimental design. Thus, the observed concentration of bacteria at time \(t \) may modelled as \(N_t^* = N_t + \epsilon_t \), where \(N_t \) is the population of EcO1, EcO2, Ec, or Pf cultured alone or in co-culture, and \(\epsilon_t \) is a
normally distributed error term with zero mean and constant variance equal to σ_t: $N_t^* \sim \text{Normal}(N_t, \sigma_t)$.

A Bayesian estimation of the parameters for computing the posterior distribution of parameters of the model was carried out. The estimated parameters are shown in Figure 1 as circles: the growth rates of the microorganisms cultured alone ($\mu_{\text{Ec}O1}$, $\mu_{\text{Ec}O2}$, μ_{Ec}, and μ_{Pf}), the 2-species mixtures ($\mu_{\text{Ec}O1}(\text{Pf})$, $\mu_{\text{Ec}O2}(\text{Pf})$, $\mu_{\text{Pf}}(\text{Ec}O1)$, $\mu_{\text{Pf}}(\text{Ec}O2)$, and $\mu_{\text{Pf}}(\text{Ec})$), and the standard deviation of errors (σ_t); the other terms are constants and are shown as squares. Decline rates and the 95% credible intervals were also estimated based on the posterior distribution of parameters from equations 3a-b.

The Runge-Kutta method was used to discretize the system of differential equations (Dormand & Prince, 1980); then the system was included in a probabilistic model and the Hamiltonian Monte Carlo method (HMCM) was used for parameters estimation (Vinet & Zhedanov, 2010) generating samples from the posterior distributions of parameters μ_t and σ_t (Carpenter et al., 2017). R (R-Project, 2014) via Rstan (Stan Development Team, 2017) was used for algorithmic programming. Codes are available from author JMM. Orange 3.20.1 for macOs freely available at https://orange.biolab.si (Demšar et al., 1967) was used for displaying data in a mosaic plot.

2.4. Estimation of the maximum population density and the time to reach a population

Plate counts of E. coli strains and P. fluorescens were transformed to decimal logarithmic values. The maximum population density (N_{max}) was estimated for each culture using the DMFit Web Edition, ComBase (Baranyi & Roberts, 1994). The estimated growth curves were used to obtain the time to reach (ttr) populations of 6 or 8 log CFU/ml.
3. Results and discussion

3.1. Bayesian modelling of microbial interactions

Representative examples of the Bayesian inference of growth and decline periods for *E. coli* O157:H7 LCDC 86-51 (EcO1), *E. coli* O157:H7 ATCC 35150 (EcO2), and non-pathogenic *E. coli* (Ec) co-cultured with *P. fluorescens* (Pf) at 7 or 25 ºC in skimmed milk are shown in Figures 2, S1, S3, and Figures 3, S2, S4, respectively. Table 1 shows posterior means of the parameters and the limits of the credible intervals (2.5% and 97.5%) of growth rates (µEcO1, µEcO2, µEc, or µPf) and decline rates (kEcO1, kEcO2, kEc, or kPf) of *E. coli* spp. and *P. fluorescens* cultured alone or in co-cultures. The *E. coli* spp. co-cultures show the lowest µ values at 7 and 13 ºC ranging from 0.563 d⁻¹ for the EcO1(Pf) co-cultures at 7 ºC to 0.945 d⁻¹ for the Ec(Pf) co-cultures at 13 ºC. At 19 and 25 ºC the µ values were similar ranging from 1.358 d⁻¹ for the EcO1(Pf) co-cultures to 2.178 d⁻¹ for the Ec(Pf) co-cultures at 25 ºC. Figure 4A shows the µ estimates using colour codes. The highest µ values were detected at 19 and 25 ºC (green and orange colours, respectively). It is interesting to observe the differences on the growth rates between *E. coli* spp. and *P. fluorescens* cultured alone: a psychrotrophic bacteria such as *P. fluorescens* did not show blue colour (the lowest values) at any temperature; however, *E. coli* spp. showed it at 7 and 13 ºC. Co-cultured *P. fluorescens* showed similar code colours as when cultured alone, never showing the blue code. Figure 4B shows the µ estimates of *E. coli* spp. co-cultured with *P. fluorescens*, showing that the effect of *P. fluorescens* on the growth rate of *E. coli* strains appears to be greater at low temperatures (7 and 13 ºC) increasing *E. coli* spp. µ values. At higher temperatures (19 and 25 ºC) *P. fluorescens* does not seems to cause the same effect.
At 7 °C decreasing populations of the three E. coli strains cultured alone were not detected (Table 1). Decreasing populations (k values) were not found for EcO2 and Ec strains single-cultured, and for EcO1(Pf), EcO2(Pf) and Ec(Pf) co-cultures at 13 °C. The positive k values are included within the Highest Posterior Density (HPD) intervals between a negative 2.5% interval value and a positive 97.5% interval value. As the zero value is into the interval, the estimated values are not significantly different from zero, i.e., there is not growth nor decline with a 97.5% of confidence, and the populations are stable. The fastest decline rates were observed in the EcO1(Pf) and Ec(Pf) co-cultures at 19 °C (−1.804 d⁻¹ and −1.709 d⁻¹, respectively). The higher decline rates from single-cultured strains were found in EcO2 cultures at 19 °C (−0.233 d⁻¹) and 25 °C (−0.247 d⁻¹).

Table 2 shows posterior means of the parameters and the limits of the credible intervals (2.5% and 97.5%) of the standard deviations for growth rates (σEcO1, σEcO2, σEc, or σPf) and decline rates (−σEcO1, −σEcO2, −σEc, or −σPf) of E. coli spp. and P. fluorescens cultured alone or in co-cultures. Standard deviation is read as the predicted concentrations’ random error of the microorganisms’ real observations.

3.2. Estimation of the Nmax and the ttr

The maximum population density (Nmax) of E. coli spp. and P. fluorescens in single cultures or co-cultured in milk are shown in Table 3. The lowest E. coli spp. Nmax values were observed at 7°C (4.4–4.8 log CFU/ml in single cultures and 5.2–5.4 log CFU/ml in co-cultures); at 13, 19, or 25 °C, the Nmax values were similar for all co-cultures (8.0–8.5 log CFU/ml in single cultures and 7.9–8.5 log CFU/ml in co-cultures). The P. fluorescens Nmax values were similar for all co-cultures at all temperatures (8–9 log CFU/mL).
The time to reach (ttr) a population of 6 or 8 log CFU/ml is shown in Table 3. These populations were found just before the carrying capacities were reached, and both fall within the linear period of the exponential growth where rates show a Log-Normal distribution regardless of the environmental conditions and the initial population of microorganisms (Akkermans, Logist, & Van Impe, 2018; METRIS, 2003; Pin & Baranyi, 2006). At 7°C E. coli spp. did not reach 6 log CFU/ml whether single-cultured or co-cultured. At 13 °C all E. coli spp. cultures reached 6 log CFU/ml at 1.60–2.24 d; similar results were found at 19 or 25 °C with lower ttr 6 log values showing a faster growth: 0.56–0.64 d or 0.32–0.40 d, respectively. All P. fluorescens cultures reached ca. 6 log CFU/ml after 0.56–0.72 d at 7 °C; the ttr 6 log results at 13 °C were slightly higher (0.64-1.12 d), decreasing at 19 and 25 °C and showing faster growth: 0.56–0.64 d and 0.40–0.48 d, respectively. The ttr 6 log values of P. fluorescens were lower than those from E. coli strains at all temperatures, indicating faster growth. All E. coli spp. and P. fluorescens cultures were able to reach a population of 8 log CFU/ml, except E. coli spp. at 7 °C. At 13 °C all E. coli spp. cultures reached 8 log CFU/ml at 3.36–3.68 d; lower results were found at 19 or 25 °C indicating a faster growth: 1.04–1.12 d or 0.56–0.96 d, respectively. All P. fluorescens cultures reached at 8 log CFU/ml after 0.96–1.04 d at 7 °C; the ttr 8 log results at 13, 19, or 25 °C were lower showing a faster growth: 1.44–1.76 d, 0.96–1.04 d, or 0.56–0.88 d, respectively. The P. fluorescens’s ttr 8 log values were lower than those from E. coli strains at all temperatures, indicating overall faster growth.

3.3. Discussion

The presence of E. coli O157:H7 strains in refrigerated food such as milk depicts a health risk for the consumers. The native microbiota or the presence of protective
cultures could compete with the pathogens and help in controlling *E. coli* O157:H7 strains during the processing and storage of refrigerated food (Park, Worobo, & Durst, 2001; Samelis & Sofos, 2002). *Pseudomonas* spp. could be important competitors in perishable refrigerated food products due to their psychrotrophic profile (able to grow at 0–15 °C) (Samelis & Sofos, 2002; Ternström, Lindberg, & Molin, 1993).

Antagonistic microorganisms (e.g. *Pseudomonas* spp.), may be useful in the control of *E. coli* O157:H7 growth. According to Samelis & Sofos (2002), *E. coli* O157:H7 co-cultured with *Pseudomonas* sp. grew faster as the temperature increased from 10 to 15 or to 25°C in TSB broth. These authors found that the pathogen inhibition was enhanced in co-cultures grown at 10 to 15°C with 1% of added glucose. At 25 °C the inhibition was enhanced even without added glucose. Previously, Janisiewicz, Conway, & Leverenz (1999) reported that *P. syringae* inoculated into apple injuries inhibited the growth of *E. coli* O157:H7. Similar results were found by Vold, Holck, Wasteson, & Nissen (2000) and Nissen, Maugesten, & Lea (2001) when a high level of ground beef native flora inhibited the growth of *E. coli* O157:H7 at 10–12°C. Samelis & Sofos (2002) found that the maximum population density of *E. coli* O157:H7 was suppressed in co-culture with *Pseudomonas* at 10, 15, and 25 °C. These results are in agreement with the Jameson Effect (Jameson, 1962); indeed, the inhibition of a population not in its stationary phase by another population in it is observed (Jameson, 1962; Mellefont et al., 2008). Similar results were found by Buchanan & Bagi (1999) when *P. fluorescens* suppressed *Listeria monocytogenes* growth by inhibiting its maximum population density at low incubation temperatures (4°C); the inhibition was less evident at higher temperatures (12 and 19 °C). McKellar (2007) also reported that a raw milk isolate of *P. fluorescens* suppressed the growth of *E. coli* O157:H7 in nutrient broth at 22 °C only when *P. fluorescens* had reached its maximum population. Similar
results were found in a previous study in co-cultures of *Listeria* spp. with *P. fluorescens* (Quinto et al., 2018) but without differences between low and high temperatures, as Buchanan & Bagi (1999) did. Samelis & Sofos (2002) reported that *E. coli* O157:H7 co-cultured with *Pseudomonas* reached a population of ca. 6 log CFU/ml after ~2.6 d at 10 °C, not achieving a population of 8 log CFU/ml along the study (14 d); the same co-culture reached a maximum of 7 log CFU/ml (~6.1 d) when the TSB broth was supplemented with 1% of glucose. In our study *E. coli* spp. did not reach 6 or 8 log CFU/ml at 7 °C. Samelis & Sofos (2002) found that *E. coli* O157:H7 co-cultured at 15 °C with *Pseudomonas* reached populations of 6 or 8 log CFU/ml after ~0.5 or 2 d, respectively and when the co-cultures were supplemented with 1% of glucose *E. coli* O157:H7 achieved populations of 6 or 8 log CFU/ml after ~1.2 or 7 d, respectively. We found slightly slower growth in our study at 13 °C with a ttr 6 log of 1.6–2.2 d, and a ttr 8 log of 3.5–3.7 d. These authors (Samelis & Sofos, 2002) did not detect changes in pH along the incubation period (14 d) irrespective of the temperature and the type of culture: pH values of 7.3–7.4; in contrast, pH reductions were pronounced when 1% of glucose was added to the medium decreasing to values of 5.0–6.0. The pH values in single cultures or in co-cultures in our study decreased along the study from 6.7–6.8 to about 6.5 after 28 d at 7 or 13 °C (data not shown). At 19 or 25 °C the pH decreased until values of about 4.0–4.5 (data not shown) at the end of the study probably due to *E. coli* use of the lactose from the milk.

Lebert, Robles-Olvera, & Lebert (2000) found that the growth of *L. monocytogenes* and *L. innocua* were not affected by *Pseudomonas* spp. at 6 °C on decontaminated meat but *Pseudomonas* spp. did affect *L. innocua* on native-microbiota contaminated meat – when *Pseudomonas* achieved their stationary phase *Listeria* was able to grow. These results are in contrast with previous (Cornu, Kalmokoff, &
Flandrois, 2002; Besse et al., 2010; Quinto et al., 2018) and current results which found that *P. fluorescens* exerts similar inhibitory effects on the *E. coli* strains studied. Besse et al. (2010) noted interactions at the end of the exponential phase – when a strain reached its carrying capacity the growth of both strains stopped. McKellar (2007) reported that nutrient limitation was the cause of the competition between *Pseudomonas* and *E. coli* O157:H7. But quorum sensing stimuli has also been suggested as a mechanism (Chu et al., 2012; Diggle, Griffin, Campbell, & West, 2007; Dubey & Ben-Yehuda, 2011; Ng & Bassler, 2009; West, Griffin, Gardner, & Diggle, 2006). Once a faster growing microorganism reaches its maximum population, the production of signaling molecules also reaches its maximum, indicating to other species of the mixed culture that the carrying capacity of the culture has been achieved. Chu et al. (2012) also showed how *E. coli* indole production inhibited *P. aeruginosa* factors important for competition.

As *P. fluorescens* constitutes a major component of native bacteria associated with fresh and minimally processed produce, Liao (2009) studied the control of foodborne pathogens by *P. fluorescens* AG3A and *Bacillus* YD1 both isolated from fresh peeled baby carrots. Both strains reduced the growth of *L. monocytogenes*, *Yersinia enterocolitica*, *Salmonella enterica*, and *E. coli* O157:H7 at 20 ºC but not at 10 ºC. Olanya et al. (2012) reported a moderate inhibition of *E. coli* O157:H7 by *P. fluorescens* on spinach leaves surfaces. These strains showed similar behaviors when they were co-cultured with nutrient restrictions at 10-35 ºC for 48 h (Olanya et al., 2014); these authors found an *E. coli* O157:H7 ttr 6 log of 1.5 d at 20 ºC, without reaching a population of 8 log CFU/ml; at 35 ºC the ttr 6 log was about 1.1 d, and the ttr 8 log 1.6 d.
In our experiments *P. fluorescens* grew faster than *E. coli* spp. at 7 and 13 °C cultured alone as well as in co-culture, with higher μ_{Pf} values and lower ttr 6 or 8 log; however, *P. fluorescens* did not affect the μ_{EcO1}, μ_{EcO2}, and μ_{Ec} values. Similar behavior was observed when *L. monocytogenes* were co-cultured with *Lactobacillus sakei* (Quinto, Marín, & Schaffner, 2016) or *P. fluorescens* (Quinto et al., 2018) together with higher N_{max} of both competitors; in contrast the current study did not find higher N_{max} in *P. fluorescens* single cultured or co-cultured with *E. coli* spp. At 19 and 25 °C the ttr 6 or 8 log of *P. fluorescens* were lower than those of *E. coli* spp. and the μ_{Pf} values were similar between single cultures and co-cultures showing also similar N_{max}: slight maximum population increases (< 1 log CFU/ml) of *P. fluorescens* at 25 °C were observed. These results are not consistent with the Jameson Effect (Jameson, 1962; Mellefont et al., 2008; Ross, 2000) with regard to the inhibition of one species by another that has reached the stationary phase; indeed, the Jameson-effect hypothesis states that the competition in food mixed populations is restricted to the limitation of the maximum population, with no effect on the lag time or the growth rate. Our work supports the Jameson-effect hypothesis as neither lag times nor growth rates of *E. coli* species seems to be affected by *P. fluorescens*. However, the maximum population densities we observed do not support the Jameson-effect hypothesis. There is no correlation between the μ_{Pf} and its effect on the maximal population densities of *E. coli* spp. (Pearson’s coefficient correlation of ~0.407). The values of *E. coli* spp. N_{max} were high at all temperatures except at 7 °C (N_{max} of about 5.2–5.4 log CFU/ml), so the increasing μ_{Pf} values did not increased *E. coli* spp. N_{max} together with the increase of the temperatures. It would be possible to consider the fermentation of milk lactose by the *E. coli* spp. as a “high risk, high reward” strategy in the two-species communities studied (Mao, Blanchard, & Lu, 2015; Stubbendieck, Vargas-Bautista, & Straight, 2016). *E.*
coli spp. must engage additional competitive mechanisms to remain viable such as lactose fermentation (Liu et al., 2011) although it was far from the aim of this work to explore it. These interactions could also be related to physical location or resource usage overlapping between both populations (Stubbendieck et al., 2016). Another possible explanation for the absence of the Jameson effect at the higher temperatures studied could be a “counterattack strategy”. Some authors have reported that P. aeruginosa suffering the attack from Vibrio cholerae or Acinetobacter baylyi’s type VI secretion system (T6SS) respond striking back with its own T6SS (Marek Basler, Ho, & Mekalanos, 2013). The T6SS is a multiprotein contractile-weapon complex that participates in interbacterial competition delivering toxins into both prokaryotic and eukaryotic cells. The T6SS complex does occur in Escherichia coli and Salmonella (Journet & Cascales, 2016) including enterohemorrhagic E. coli O157:H7 (Wan et al., 2017). Decoin et al. (2014) described a T6SS involved in P. fluorescens bacterial competition against the potato tuber pathogen Pectobacterium atrosepticum. Although the objective of our study is far from the description of a T6SS P. fluorescens activity against E. coli spp., the results provide evidence for a bacterial “tit-for-tat” (Sachs, Mueller, Wilcox, & Bull, 2004) or “T6SS dueling” (Basler & Mekalanos, 2012) evolutionary strategies that control interactions among different bacterial species.

3.4. Conclusions

The aim of this work was to study and model the dynamics of the competition between Escherichia coli O157:H7 and Pseudomonas fluorescens co-cultured at 7, 13, 19, and 25 °C in milk. A parametric Bayesian approach was used assuming that the parameters μ (growth rate), k (decline rate), σ (standard deviation of the growth rates), and −σ (standard deviation of the decline rates) are random variables with their own
prior distributions. Model results and confidence intervals are based on a probabilistic background. The highest *E. coli* O157:H7 populations were similar at all temperatures, except at 7 °C: *E. coli* spp. strains reached their maximal population of 4 log CFU/ml cultured alone, and 5 log CFU/ml co-cultured with *P. fluorescens*. At 13, 19, and 25 °C *E. coli* spp. reached their maximal population of 8 log CFU/ml single cultured and co-cultured, with times to reach a population of 6 log CFU/ml after ~48 h at 13 °C or ~24 h at 19 and 25 °C. *P. fluorescens* achieved its maximal densities of 8–9 log CFU/ml in all cultures at all temperatures, with similar times to reach a population of 6 or 8 log CFU/ml. The results obtained show that the growth rate of *P. fluorescens* has no direct correlation with its effect on the maximal population of *E. coli* strains. Modeling the behavior of bacterial communities helps in understanding their dynamics. The inhibition of foodborne pathogens with the use of some species from the natural food microbiota as probiotics may be a tool to improve the safety of refrigerated foods such as milk and dairy products.

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Akkermans, S., Logist, F., & Van Impe, J. F. (2018). Parameter estimations in predictive microbiology: Statistically sound modelling of the microbial growth rate. *Food Research International, 106*, 1105–1113.
Al-Zeyara, S. A., Jarvis, B., & Mackey, B. M. (2011). The inhibitory effect of natural microflora of food on growth of *Listeria monocytogenes* in enrichment broths. *International Journal of Food Microbiology, 145*(1), 98–105.

http://doi.org/10.1016/j.ijfoodmicro.2010.11.036

Arocha, M. M., McVey, M., Loder, S. D., Rupnow, J. H., & Bullerman, L. (1992). Behavior of hemorrhagic *Escherichia coli* O157:H7 during the manufacture of Cottage cheese. *Journal of Food Protection, 55*(5), 379–381.

http://doi.org/10.4315/0362-028X-55.5.379

Avendaño-Pérez, G., & Pin, C. (2013). Loss of culturability of *Salmonella enterica* subsp. enterica serovar Typhimurium upon cell-cell contact with human fecal bacteria. *Applied and Environmental Microbiology, 79*(10), 3257–63.

http://doi.org/10.1128/AEM.00092-13

Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. *International Journal of Food Microbiology, 23*(3–4), 277–294.

http://doi.org/10.1016/0168-1605(94)90157-0

Basler, M., Ho, B. T., & Mekalanos, J. J. (2013). Tit-for-Tat: Type VI secretion system counterattack during bacterial cell-cell interactions. *Cell, 152*(4), 884–894.

http://doi.org/10.1016/j.cell.2013.01.042

Basler, M., & Mekalanos, J. J. (2012). Type 6 secretion dynamics within and between bacterial cells. *Science, 337*(6096), 815–815.

http://doi.org/10.1126/science.1222901

Besse, N., Barre, L., Buhariwalla, C., Vignaud, M. L., Khamissi, E., Decourseulles, E., … Kalmokoff, M. (2010). The overgrowth of *Listeria monocytogenes* by other *Listeria* spp. in food samples undergoing enrichment cultivation has a nutritional
basis. *International Journal of Food Microbiology*, 136(3), 345–351.
http://doi.org/10.1016/j.ijfoodmicro.2009.10.025

Buchanan, R., & Bagi, L. (1999). Microbial competition: effect of *Pseudomonas fluorescens* on the growth of *Listeria monocytogenes*. *Food Microbiology*, 16(5), 523–529. http://doi.org/10.1006/fmic.1998.0264

Buchanan, R. L., & Bagi, L. K. (1997). Microbial competition: Effect of culture conditions on the suppression of *Listeria monocytogenes* Scott A by *Carnobacterium piscicola*. *Journal of Food Protection*, 60(3), 254–261. http://doi.org/10.4315/0362-028X-60.3.254

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., … Riddell, A. (2017). Stan: A probabilistic programming language. *Journal of Statistical Software*, 76(1). http://doi.org/10.18637/jss.v076.i01

Chatzilena, A., van Leeuwen, E., Ratmann, O., Baguelin, M., & Demiris, N. (2019). Contemporary statistical inference for infectious disease models using Stan. Retrieved from https://www.mendeley.com/import/?url=https://arxiv.org/abs/1903.00423

Cheng, C.-M., Doyle, M. P., & Luchansky, J. B. (1995). Identification of *Pseudomonas fluorescens* strains isolated from raw pork and chicken that produce siderophores antagonistic towards foodborne pathogens. *Journal of Food Protection*, 58(12), 1340–1344. http://doi.org/10.4315/0362-028X-58.12.1340

Chiesa, F., Lomonaco, S., Nucera, D., Garoglio, D., Dalmasso, A., & Civera, T. (2014). Distribution of *Pseudomonas* species in a dairy plant affected by occasional blue discoloration. *Italian Journal of Food Safety*, 3(4), 245–248. http://doi.org/10.4081/ijfs.2014.1722

Chu, W., Zere, T. R., Weber, M. M., Wood, T. K., Whiteley, M., Hidalgo-Romano, B.,
... McLean, R. J. C. (2012). Indole production promotes \textit{Escherichia coli} mixed-culture growth with \textit{Pseudomonas aeruginosa} by inhibiting quorum signaling. \textit{Applied and Environmental Microbiology}, 78(2), 411–419.

http://doi.org/10.1128/AEM.06396-11

Cornforth, D. M., & Foster, K. R. (2013). Competition sensing: the social side of bacterial stress responses. \textit{Nature Reviews Microbiology}, 11(4), 285–293.

http://doi.org/10.1038/nrmicro2977

Cornu, M. (2001). Modelling the competitive growth of \textit{Listeria monocytogenes} and food flora in situ. \textit{Acta Horticulturae}, (566), 151–157.

http://doi.org/10.17660/ActaHortic.2001.566.17

Cornu, M., Billoir, E., Bergis, H., Beaufort, A., & Zuliani, V. (2011). Modeling microbial competition in food: Application to the behavior of \textit{Listeria monocytogenes} and lactic acid flora in pork meat products. \textit{Food Microbiology}, 28(4), 639–647. http://doi.org/10.1016/j.fm.2010.08.007

Cornu, M., Kalmokoff, M., & Flandrois, J.-P. (2002). Modelling the competitive growth of \textit{Listeria monocytogenes} and \textit{Listeria innocua} in enrichment broths. \textit{International Journal of Food Microbiology}, 73(2–3), 261–274.

http://doi.org/10.1016/S0168-1605(01)00658-4

Cousin, M. A. (1982). Presence and activity of psychrotrophic microorganisms in milk and dairy products: A review. \textit{Journal of Food Protection}, 45(2), 172–207.

http://doi.org/10.4315/0362-028X-45.2.172

De Jonghe, V., Coorevits, A., Van Hoorde, K., Messens, W., Van Landschoot, A., De Vos, P., & Heyndrickx, M. (2011). Influence of storage conditions on the growth of \textit{Pseudomonas} species in refrigerated raw milk. \textit{Applied and Environmental Microbiology}, 77(2), 460–470. http://doi.org/10.1128/AEM.00521-10
Decoin, V., Barbey, C., Bergeau, D., Latour, X., Feuilloley, M. G. J., Orange, N., & Merieau, A. (2014). A Type VI secretion system is involved in *Pseudomonas fluorescens* bacterial competition. *PLoS ONE*, 9(2), e89411.

http://doi.org/10.1371/journal.pone.0089411

Demšar, J., Curk, T., A., Ć., G., T., H., M., … Štajdohar, M. (1967). X-ray analysis confirms showdomycin structure. *Chemical & Engineering News*, 45(27), 32. http://doi.org/10.1021/cen-v045n027.p032

Diggle, S. P., Griffin, A. S., Campbell, G. S., & West, S. A. (2007). Cooperation and conflict in quorum-sensing bacterial populations. *Nature*, 450(7168), 411–414.

http://doi.org/10.1038/nature06279

Dineen, S. S., Takeuchi, K., Soudah, J. E., & Boor, K. J. (1998). Persistence of *Escherichia coli* O157:H7 in dairy fermentation systems. *Journal of Food Protection*, 61(12), 1602–1608. http://doi.org/10.4315/0362-028X-61.12.1602

Dormand, J. R., & Prince, P. J. (1980). A family of embedded Runge-Kutta formulae. *Journal of Computational and Applied Mathematics*, 6(1), 19–26.

http://doi.org/10.1016/0771-050X(80)90013-3

Doyle, M. P., Zhao, T., Meng, J., & Zhao, S. (1997). *Escherichia coli* O157:H7. In M. D. Doyle, L. R. Beuchat, & T. J. Montville (Eds.), *Food Microbiology: Fundamentals and Frontiers* (pp. 171–191). Washington, D.C.: ASM Press.

Dubey, G. P., & Ben-Yehuda, S. (2011). Intercellular nanotubes mediate bacterial communication. *Cell*, 144(4), 590–600. http://doi.org/10.1016/j.cell.2011.01.015

Duncan, L., Mai, V., Carter, A., Carlson, J. A. K., Borczyk, A., & Karmali, M. A. (1986). Outbreak of gastrointestinal disease in Sarnia, Ontario. *Ontario Disease Surveillance Report*, 7, 604–611.

Farrag, S. A., & Marth, E. H. (1989). Variation in initial populations of *Pseudomonas*
fluorescens affects behavior of Listeria monocytogenes in skim milk at 7 or 13 °C. Milchwissenschaft, 46(11), 718–721.

Farrag, S. A., & Marth, E. H. (1989). Growth of Listeria monocytogenes in the presence of Pseudomonas fluorescens at 7 or 13°C in skim milk. Journal of Food Protection, 52(12), 852–855. http://doi.org/10.4315/0362-028X-52.12.852

Fgaier, H., & Eberl, H. J. (2010). A competition model between Pseudomonas fluorescens and pathogens via iron chelation. Journal of Theoretical Biology, 263(4), 566–578. http://doi.org/10.1016/j.jtbi.2009.12.003

Freedman, D. J., Kondo, J. K., & Willrett, D. L. (1989). Antagonism of foodborne bacteria by Pseudomonas spp.: A possible role for iron. Journal of Food Protection, 52(7), 484–489. http://doi.org/10.4315/0362-028X-52.7.484

Graves, R. R., & Frazier, W. C. (1963). Food microorganisms influencing the growth of Staphylococcus aureus. Applied Microbiology, 11, 513–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14075051

Griffin, P. M., & Tauxe, R. V. (1991). The epidemiology of infections caused by Escherichia coli O157: H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiologic Reviews, 13(1), 60–98. http://doi.org/10.1093/oxfordjournals.epirev.a036079

Hudson, L. M., Chen, J., Hill, A. R., & Griffiths, M. W. (1997). Bioluminescence: A rapid indicator of Escherichia coli O157:H7 in selected yogurt and cheese varieties. Journal of Food Protection, 60(8), 891–897. http://doi.org/10.4315/0362-028X-60.8.891

Jameson, J. E. (1962). A discussion of the dynamics of salmonella enrichment. Journal of Hygiene, 60(02), 193–207. http://doi.org/10.1017/S0022172400039462

Janisiewicz, W. J., Conway, W. S., & Leverentz, B. (1999). Biological control of
postharvest decays of apple can prevent growth of *Escherichia coli* O157:H7 in apple wounds. *Journal of Food Protection*, 62(12), 1372–1375.

http://doi.org/10.4315/0362-028X-62.12.1372

Journet, L., & Cascales, E. (2016). The Type VI secretion system in *Escherichia coli* and related species. *EcoSal Plus*, 7(1). http://doi.org/10.1128/ecosalplus.ESP-0009-2015

Karmali, M. A. (1989). Infection by verocytotoxin-producing *Escherichia coli*. *Clinical Microbiology Reviews*, 2(1), 15–38. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/2644022

Kim, W., Racimo, F., Schluter, J., Levy, S. B., & Foster, K. R. (2014). Importance of positioning for microbial evolution. *Proceedings of the National Academy of Sciences*, 111(16), E1639–E1647. http://doi.org/10.1073/pnas.1323632111

Lebert, I., Robles-Olvera, V., & Lebert, A. (2000). Application of polynomial models to predict growth of mixed cultures of *Pseudomonas* spp. and *Listeria* in meat. *International Journal of Food Microbiology*, 61(1), 27–39.

http://doi.org/10.1016/S0168-1605(00)00359-7

Liao, C.-H. (2009). Control of foodborne pathogens and soft-rot bacteria on bell pepper by three strains of bacterial antagonists. *Journal of Food Protection*, 72(1), 85–92.

http://doi.org/10.4315/0362-028X-72.1.85

Liao, C.-H., Cooke, P. H., & Niemira, B. A. (2010). Localization, growth, and inactivation of *Salmonella* Saintpaul on jalapeño peppers. *Journal of Food Science*, 75(6), M377–M382. http://doi.org/10.1111/j.1750-3841.2010.01667.x

Liu, X., Ramsey, M. M., Chen, X., Koley, D., Whiteley, M., & Bard, A. J. (2011). Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. *Proceedings of the*
Mao, J., Blanchard, A. E., & Lu, T. (2015). Slow and steady wins the race: A bacterial
exploitative competition strategy in fluctuating environments. *ACS Synthetic
Biology, 4*(3), 240–248. http://doi.org/10.1021/sb4002008

Marshall, D. L., & Schmidt, R. H. (1991). Physiological evaluation of stimulated
growth of *Listeria monocytogenes* by *Pseudomonas* species in milk. *Canadian
Journal of Microbiology, 37*(8), 594–599. http://doi.org/10.1139/m91-101

Marshall, D. L., & Schmidt, R. H. (1988). Growth of *Listeria monocytogenes* at 10°C in
milk preincubated with selected pseudomonads. *Journal of Food Protection, 51*(4),
277–282. http://doi.org/10.4315/0362-028X-51.4.277

Martin, M., Shipman, L., Potter, M., Kaye Wachsmuth, I., Wells, J., Hedberg, K., …
Tilleli, J. (1986). Isolation of *Escherichia coli* 0157:H7 from dairy cattle associated
with two cases of haemolytic uraemic syndrome. *The Lancet, 328*(8514), 1043.
http://doi.org/10.1016/S0140-6736(86)92656-5

McKellar, R. C. (2007). Role of nutrient limitation in the competition between
Pseudomonas fluorescens and *Escherichia coli* O157:H7. *Journal of Food
Protection, 70*(7), 1739–1743. http://doi.org/10.4315/0362-028X-70.7.1739

Mellefont, L. A., McMeekin, T. A., & Ross, T. (2008). Effect of relative inoculum
concentration on *Listeria monocytogenes* growth in co-culture. *International
Journal of Food Microbiology, 121*(2), 157–168.
http://doi.org/10.1016/j.ijfoodmicro.2007.10.010

Metris, A. (2003). Distribution of turbidity detection times produced by single cell-
generated bacterial populations. *Journal of Microbiological Methods, 55*(3), 821–
827. http://doi.org/10.1016/j.mimet.2003.08.006
Nadell, C. D., & Bassler, B. L. (2011). A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. *Proceedings of the National Academy of Sciences, 108*(34), 14181–14185. http://doi.org/10.1073/pnas.1111147108

Ng, W.-L., & Bassler, B. L. (2009). Bacterial quorum-sensing network architectures. *Annual Review of Genetics, 43*(1), 197–222. http://doi.org/10.1146/annurev-genet-102108-134304

Nissen, H., Maugesten, T., & Lea, P. (2001). Survival and growth of Escherichia coli O157:H7, Yersinia enterocolitica and Salmonella enteritidis on decontaminated and untreated meat. *Meat Science, 57*(3), 291–298. http://doi.org/10.1016/S0309-1740(00)00104-2

Olanya, O. M., Annous, B. A., Niemira, B. A., Ukuku, D. O., & Sommers, C. (2012). Effects of media on recovery of Escherichia coli O157:H7 and Pseudomonas fluorescens from spinach. *Journal of Food Safety, 32*(4), 492–501. http://doi.org/10.1111/jfs.12012

Olanya, O. M., Ukuku, D. O., & Niemira, B. A. (2014). Effects of temperatures and storage time on resting populations of Escherichia coli O157:H7 and Pseudomonas fluorescens in vitro. *Food Control, 39*, 128–134. http://doi.org/10.1016/j.foodcont.2013.11.006

Oliveira, G. B. de, Favarin, L., Luchese, R. H., & McIntosh, D. (2015). Psychrotrophic bacteria in milk: How much do we really know? *Brazilian Journal of Microbiology, 46*(2), 313–321. http://doi.org/10.1590/S1517-838246220130963

Park, S., Worobo, R. W., & Durst, R. A. (2001). Escherichia coli O157:H7 as an emerging foodborne pathogen: A literature review. *Critical Reviews in Biotechnology, 21*(1), 27–48. http://doi.org/10.1080/20013891081674

Pin, C., & Baranyi, J. (2006). Kinetics of single cells: Observation and modeling of a
stochastic process. *Applied and Environmental Microbiology*, 72(3), 2163–2169.
http://doi.org/10.1128/AEM.72.3.2163-2169.2006

Quinto, E. J., Marín, J. M., Caro, I., Mateo, J., & Schaffner, D. W. (2018). Bayesian modeling of two- and three-species bacterial competition in milk. *Food Research International, 105*, 952–961. http://doi.org/10.1016/j.foodres.2017.12.033

Quinto, E. J., Marín, J. M., & Schaffner, D. W. (2016). Effect of the competitive growth of *Lactobacillus sakei* MN on the growth kinetics of *Listeria monocytogenes* Scott A in model meat gravy. *Food Control, 63*, 34–45.
http://doi.org/10.1016/j.foodcont.2015.11.025

R-Project. (2014). The R Project for Statistical Computing.

Rickett, L. M., Pullen, N., Hartley, M., Zipfel, C., Kamoun, S., Baranyi, J., & Morris, R. J. (2015). Incorporating prior knowledge improves detection of differences in bacterial growth rate. *BMC Systems Biology, 9*(1), 60.
http://doi.org/10.1186/s12918-015-0204-9

Ross, T. (2000). Predictive modelling of the growth and survival of *Listeria* in fishery products. *International Journal of Food Microbiology, 62*(3), 231–245.
http://doi.org/10.1016/S0168-1605(00)00340-8

Sachs, J. L., Mueller, U. G., Wilcox, T. P., & Bull, J. J. (2004). The evolution of cooperation. *The Quarterly Review of Biology, 79*(2), 135–160.
http://doi.org/10.1086/383541

Samelis, J., & Sofos, J. N. (2002). Role of glucose in enhancing the temperature-dependent growth inhibition of *Escherichia coli* O157:H7 ATCC 43895 by a *Pseudomonas* sp. *Applied and Environmental Microbiology, 68*(5), 2600–2604.
http://doi.org/10.1128/AEM.68.5.2600-2604.2002

Schluter, J., Nadell, C. D., Bassler, B. L., & Foster, K. R. (2015). Adhesion as a weapon
in microbial competition. *The ISME Journal*, 9(1), 139–149. http://doi.org/10.1038/ismej.2014.174

Seminiano, E. N., & Frazier, W. C. (1966). Effect of *Pseudomonas* and *Achromobacteriaceae* on growth of *Staphylococcus aureus*. *Journal of Milk and Food Technology*, 29(5), 161–164. http://doi.org/10.4315/0022-2747-29.5.161

Stan Development Team. (2017). Stan Modeling Language. *User’s Guide and Reference Manual*.

Stubbendieck, R. M., Vargas-Bautista, C., & Straight, P. D. (2016). Bacterial communities: Interactions to scale. *Frontiers in Microbiology*, 7. http://doi.org/10.3389/fmicb.2016.01234

Ternström, A., Lindberg, A.-M., & Molin, G. (1993). Classification of the spoilage flora of raw and pasteurized bovine milk, with special reference to *Pseudomonas* and *Bacillus*. *Journal of Applied Bacteriology*, 75(1), 25–34. http://doi.org/10.1111/j.1365-2672.1993.tb03403.x

Vinet, L., & Zhedanov, A. (2010). A “missing” family of classical orthogonal polynomials. *Book*, 675. http://doi.org/10.1088/1751-8113/44/8/085201

Vold, L., Holck, A., Wasteson, Y., & Nissen, H. (2000). High levels of background flora inhibits growth of *Escherichia coli* O157:H7 in ground beef. *International Journal of Food Microbiology*, 56(2–3), 219–225. http://doi.org/10.1016/S0168-1605(00)00215-4

Wan, B., Zhang, Q., Ni, J., Li, S., Wen, D., Li, J., … Yao, Y.-F. (2017). Type VI secretion system contributes to enterohemorrhagic *Escherichia coli* virulence by secreting catalase against host reactive oxygen species (ROS). *PLOS Pathogens*, 13(3), e1006246. http://doi.org/10.1371/journal.ppat.1006246

West, S. A., Griffin, A. S., Gardner, A., & Diggle, S. P. (2006). Social evolution theory
for microorganisms. *Nature Reviews Microbiology*, 4(8), 597–607.

http://doi.org/10.1038/nrmicro1461
Table 1. Bayesian estimates of the posterior means and Highest Posterior Density intervals (HPD: 2.5 and 97.5%) of the growth (μ; h$^{-1}$) and decline (k; h$^{-1}$) rates of *E. coli* O157:H7 LCDC 86-51, *E. coli* O157:H7 ATCC 35150, non-pathogenic *E. coli*, and *P. fluorescens* cultured alone (EcO1, EcO2, Ec, Pf), or co-cultured (EcO1 + Pf, EcO2 + Pf, Ec + Pf) at 7, 13, 19 or 25°C.

Cultures	Temp (°C)	Strain	μ mean	HPD intervals	k mean	HPD intervals		
				2.5%	97.5%		2.5%	97.5%
EcO1, EcO2, Ec, Pf	7	EcO1	0.104	0.041	0.261	–	–	–
		EcO2	0.123	0.014	0.789	–	–	–
		Ec	0.120	-0.019	1.382	–	–	–
		Pf	1.690	1.173	2.202	0.485	–0.514	2.160
	13	EcO1	0.535	0.356	0.782	-0.017	-2.003	1.987
		EcO2	0.503	0.348	0.727	0.520	-0.438	2.148
		Ec	0.494	0.345	0.688	0.007	-1.937	1.965
		Pf	0.990	0.633	1.450	0.460	-0.488	2.007
	19	EcO1	1.664	1.264	2.070	0.164	-0.190	-0.142
		EcO2	1.597	1.006	2.214	0.233	-0.268	-0.203
		Ec	1.577	0.919	2.232	0.212	-0.240	-0.187
		Pf	1.539	0.981	2.126	0.056	-0.072	-0.045
	25	EcO1	2.550	1.505	3.336	0.179	-0.209	-0.154
		EcO2	2.781	1.591	3.609	-0.247	-0.285	-0.215
		Ec	2.007	1.714	2.275	0.170	-0.194	-0.150
		Pf	1.775	1.185	2.348	0.128	-0.147	-0.111
EcO1 + Pf	7	EcO1	0.563	0.235	0.918	-0.281	-0.447	0.538
		Pf	2.021	1.357	2.749	-0.036	-0.116	0.361
	13	EcO1	0.692	0.425	1.026	0.242	-1.292	2.028
		Pf	0.944	0.670	1.218	0.256	-1.247	2.005
	19	EcO1	1.596	1.138	2.020	1.804	2.467	-1.264
		Pf	1.579	1.049	2.025	0.064	-0.140	-0.025
	25	EcO1	1.358	0.900	3.259	-0.262	-0.304	-0.225
		Pf	1.167	0.869	2.628	-0.131	-0.157	-0.108
EcO2 + Pf	7	EcO2	0.824	0.357	1.208	-0.017	-1.841	2.009
		Pf	2.006	1.406	2.645	0.202	-1.108	1.952
	13	EcO2	0.664	0.420	0.952	0.130	-1.293	2.017
		Pf	0.936	0.660	1.205	0.163	-1.332	1.989
	19	EcO2	1.624	1.226	2.019	-0.260	-0.300	-0.224
		Pf	1.641	1.239	2.047	-0.046	-0.062	-0.030
	25	EcO2	1.857	0.187	2.791	-1.371	-2.210	-0.304
		Pf	1.782	0.306	2.738	-0.698	-2.129	-0.168
Ec + Pf	7	Ec	0.581	0.357	0.791	-0.222	-1.738	1.835
		Pf	1.679	0.855	2.227	-0.019	-1.174	1.856
	13	Ec	0.945	0.661	1.270	0.266	-1.468	2.104
		Pf	1.204	0.854	1.487	0.319	-1.305	2.078
	19	Ec	1.495	1.114	1.907	-1.709	-2.064	-1.089
		Pf	1.606	1.185	2.030	-0.072	-0.156	-0.038
	25	Ec	2.178	1.667	2.620	-0.143	-0.311	-0.065
		Pf	2.575	1.937	3.149	-0.095	-0.128	-0.066
Table 2. Bayesian estimates of the posterior means and Highest Posterior Density intervals (HPD: 2.5 and 97.5%) of the standard deviations for growth (σ) and decline (−σ) periods of *E. coli* O157:H7 LCDC 86-51, *E. coli* O157:H7 ATCC 35150, non-pathogenic *E. coli*, and *P. fluorescens* cultured alone (EcO1, EcO2, Ec, Pf), or co-cultured (EcO1 + Pf, EcO2 + Pf, Ec + Pf) at 7, 13, 19 or 25°C.

Cultures	Temp (°C)	Strain	σ mean	HPD intervals	−σ mean	HPD intervals
			2.5%	97.5%	2.5%	97.5%
EcO1, EcO2, Ec, Pf	7	EcO1	0.234	0.151	0.376	−
		EcO2	0.292	0.182	0.499	−
		Ec	0.388	0.240	0.666	−
		Pf	0.554	0.291	1.111	0.749
	13	EcO1	0.605	0.350	1.090	0.990
		EcO2	0.552	0.322	1.000	0.891
		Ec	0.528	0.308	0.932	1.107
		Pf	0.662	0.378	1.219	0.275
	19	EcO1	0.398	0.206	0.826	0.664
		EcO2	0.619	0.329	1.228	0.724
		Ec	0.658	0.346	1.302	0.621
		Pf	0.598	0.312	1.199	0.465
	25	EcO1	0.578	0.275	1.302	0.684
		EcO2	0.536	0.241	1.290	0.728
		Ec	0.210	0.104	0.460	0.563
		Pf	0.641	0.333	1.298	0.600
	7	EcO1	0.447	0.247	0.860	0.485
		Pf	0.729	0.409	1.346	0.281
	13	EcO1	0.862	0.483	1.575	0.765
		Pf	0.492	0.260	0.979	0.283
	19	EcO1	0.581	0.291	1.181	1.930
		Pf	0.612	0.308	1.271	0.707
	25	EcO1	1.263	0.401	2.827	0.552
		Pf	0.935	0.354	2.165	0.542
EcO1 + Pf	7	EcO1	0.472	0.247	0.860	0.485
		Pf	0.729	0.409	1.346	0.281
	13	EcO1	0.862	0.483	1.575	0.765
		Pf	0.492	0.260	0.979	0.283
	19	EcO1	0.581	0.291	1.181	1.930
		Pf	0.612	0.308	1.271	0.707
	25	EcO1	1.263	0.401	2.827	0.552
EcO2 + Pf	7	EcO2	0.387	0.188	0.852	1.981
		Pf	0.646	0.340	1.288	1.296
	13	EcO2	0.747	0.415	1.367	0.770
		Pf	0.504	0.270	1.018	0.214
	19	EcO2	0.554	0.312	1.022	0.470
		Pf	0.553	0.311	1.029	0.414
	25	EcO2	0.986	0.378	2.530	1.419
		Pf	1.125	0.445	2.558	1.868
Ec + Pf	7	Ec	0.217	0.091	0.508	1.228
		Pf	0.645	0.297	1.524	1.695
	13	Ec	0.577	0.303	1.086	0.570
		Pf	0.372	0.174	0.825	0.130
	19	Ec	0.588	0.333	1.103	1.764
		Pf	0.562	0.312	1.061	0.449
	25	Ec	0.415	0.213	0.819	1.750
		Pf	0.760	0.443	1.354	0.653
Table 3. Maximal population density (N_max; log CFU/ml) and time to reach (ttr; d) a population density of 6 or 8 log CFU/ml of *E. coli* spp. strains and *P. fluorescens* cultured alone or in co-culture at 7, 13, 19, or 25°C.

Temp (ºC)	Cultures	N_max	Time to reach (ttr) a population of 6 log CFU/ml	Time to reach (ttr) a population of 8 log CFU/ml
7	EcO1	4.41	−	−
	EcO2	4.42	−	−
	Ec	4.80	−	−
	Pf	8.76	0.72	0.96
	EcO1(Pf)	5.30	−	−
	EcO2(Pf)	5.37	−	−
	Ec(Pf)	5.20	−	−
	Pf(EcO1)	8.73	0.56	1.04
	Pf(EcO2)	8.79	0.56	1.04
	Pf(Ec)	9.01	0.56	1.12
13	EcO1	8.46	2.08	3.36
	EcO2	8.33	2.08	3.52
	Ec	8.25	2.24	3.68
	Pf	8.28	1.12	1.76
	EcO1(Pf)	8.29	2.24	3.52
	EcO2(Pf)	8.29	2.08	3.52
	Ec(Pf)	8.20	1.60	3.68
	Pf(EcO1)	8.33	0.96	1.76
	Pf(EcO2)	8.30	0.96	1.76
	Pf(Ec)	8.21	0.64	1.44
19	EcO1	8.37	0.56	1.04
	EcO2	8.17	0.64	1.04
	Ec	8.04	0.64	1.04
	Pf	8.11	0.64	1.04
	EcO1(Pf)	8.26	0.56	1.04
	EcO2(Pf)	8.23	0.56	1.04
	Ec(Pf)	7.89	0.64	1.12
	Pf(EcO1)	8.14	0.56	0.96
	Pf(EcO2)	8.11	0.56	1.04
	Pf(Ec)	8.13	0.56	1.04
25	EcO1	8.22	0.32	0.64
	EcO2	8.33	0.32	0.64
	Ec	8.28	0.40	0.96
	Pf	8.94	0.48	0.88
	EcO1(Pf)	8.43	0.32	0.56
	EcO2(Pf)	8.54	0.40	0.56
	Ec(Pf)	8.10	0.36	0.80
	Pf(EcO1)	8.71	0.48	0.72
	Pf(EcO2)	8.98	0.40	0.64
	Pf(Ec)	9.08	0.40	0.56
Figure 1. Directed acyclic graph associated to the Bayesian model. Circles: random variables; squares: constants (initial parameters of the distributions of the variables); arrows: conditional dependence. Observed data (Obs. j-1) of E. coli spp. (EcO1, EcO2, and Ec), and P. fluorescens (Pf) with their growth rates μ distributed with a Normal distribution of mean m and standard deviation S. The standard deviation of errors (σj) for every microorganism is distributed with a Gamma distribution with parameters α. The combinations of the microorganisms in the single cultures and in the co-cultures give the observed data.
Figure 2. Bayesian inference of growth periods of co-cultures of *E. coli* spp. with *P. fluorescens* at 7 or 25°C in skimmed milk. Highest Posterior Density (HPD) 95% intervals (2.5 and 97.5%) are shown.
Figure 3. Bayesian inference of decline periods of co-cultures of *E. coli* spp. with *P. fluorescens* at 7 or 25°C in skimmed milk. Highest Posterior Density (HPD) 95% intervals (2.5 and 97.5%) are shown.
Figure 4. (A) Mosaic plot of the growth rates (µ mean) of *E. coli* spp and *P. fluorescens* cultured alone or in co-culture at 7, 13, 19 or 25°C; vertical lines in the co-cultures columns (see cultures axis, i.e., Ec+Pf, EcO1+Pf, or EcO2+Pf) represent the strains not included on them; arrows indicate the data columns used for Figure B. (B) Scatter plot of µ values from *E. coli* spp. co-cultured with *P. fluorescens* (EcO1(Pf), EcO2(Pf), and Ec(Pf)) or single-cultured (EcO1, EcO2, and Ec).
Figure S1. Hamiltonian Monte Carlo Method (HMM) diagnosis plots of the growth rates of *E. coli* O157:H7 LCDC 86-51 (EcO1), *E. coli* O157:H7 ATCC 35150 (EcO2) or *E. coli* ATCC 8739 (Ec) co-cultured with *P. fluorescens* (EcO1(Pf), EcO2(Pf), or Ec(Pf)) at 7 °C. Panels show three plots for the growth rate parameter: traces or value estimated in each step of the HMM (left); the parameter posterior distributions (middle); and the autocorrelation functions for the parameter estimates (right). $\mu[1]$ and $\mu[2]$ are the growth rates of *E. coli* spp or *P. fluorescens*, respectively.
Figure S2. Hamiltonian Monte Carlo Method (HMC) diagnosis plots of the growth rates of *E. coli* O157:H7 LCDC 86-51 (EcO1), *E. coli* O157:H7 ATCC 35150 (EcO2) or *E. coli* ATCC 8739 (Ec) co-cultured with *P. fluorescens* at 25 °C. See legends and explanations in Figure S1.
Figure S3. Hamiltonian Monte Carlo Method (HMC) diagnosis plots of the decline rates of *E. coli* O157:H7 LCDC 86-51 (EcO1), *E. coli* O157:H7 ATCC 35150 (EcO2) or *E. coli* ATCC 8739 (Ec) co-cultured with *P. fluorescens* at 7 °C. See legends and explanations in Figure S1. $k[1]$ and $k[2]$ are the decline rates of *E. coli* spp or *P. fluorescens*, respectively.
Figure S4. Hamiltonian Monte Carlo Method (HMCM) diagnosis plots of the decline rates of *E. coli* O157:H7 LCDC 86-51 (EcO1), *E. coli* O157:H7 ATCC 35150 (EcO2) or *E. coli* ATCC 8739 (Ec) co-cultured with *P. fluorescens* at 25 °C. See legends and explanations in Figures S1 and S3.