The inverse problem for representation functions of additive bases

Melvyn B. Nathanson†
Department of Mathematics
Lehman College (CUNY)
Bronx, New York 10468
Email: nathansn@alpha.lehman.cuny.edu

March 29, 2022

Abstract

Let A be a set of integers. For every integer n, let $r_{A,2}(n)$ denote the number of representations of n in the form $n = a_1 + a_2$, where $a_1, a_2 \in A$ and $a_1 \leq a_2$. The function $r_{A,2} : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ is the representation function of order 2 for A. The set A is called an asymptotic basis of order 2 if $r_{A,2}^{-1}(0)$ is finite, that is, if every integer with at most a finite number of exceptions can be represented as the sum of two not necessarily distinct elements of A. It is proved that every function is a representation function, that is, if $f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ is any function such that $f^{-1}(0)$ is finite, then there exists a set A of integers such that $f(n) = r_{A,2}(n)$ for all $n \in \mathbb{Z}$. Moreover, the set A can be constructed so that $\text{card}\{a \in A : |a| \leq x\} \gg x^{1/3}$.

1 Representation functions

Let \mathbb{N}, \mathbb{N}_0, and \mathbb{Z} denote the positive integers, nonnegative integers, and integers, respectively. Let A and B be sets of integers. We define the sumset

$$A + B = \{a + b : a \in A \text{ and } b \in B\},$$

and, in particular,

$$2A = A + A = \{a_1 + a_2 : a_1, a_2 \in A\}$$
and
\[A + b = A + \{b\} = \{a + b : a \in A\}. \]

The restricted sumsets are
\[A \hat{+} B = \{a + b : a \in A, b \in B, \text{ and } a \neq b\} \]
and
\[2 \& A = A \hat{+} A = \{a_1 + a_2 : a_1, a_2 \in A \text{ and } a_1 \neq a_2\}. \]

Similarly, we define the difference set
\[A - B = \{a - b : a \in A \text{ and } b \in B\} \]
and
\[-A = \{0\} - A = \{-a : -a \in A\}. \]

We introduce the counting function
\[A(y, x) = \sum_{a \in A, y \leq a \leq x} 1. \]

Thus, \(A(-x, x)\) counts the number of elements \(a \in A\) such that \(|a| \leq x\).

For functions \(f\) and \(g\), we write \(f \gg g\) if there exist numbers \(c_0\) and \(x_0\) such that \(|f(x)| \geq c_0|g(x)|\) for all \(x \geq x_0\), and \(f \ll g\) if \(|f(x)| \leq c_0|g(x)|\) for all \(x \geq x_0\).

In this paper we study representation functions of sets of integers. For any set \(A \subseteq \mathbb{Z}\), the representation function \(r_{A,2}(n)\) counts the number of ways to write \(n\) in the form \(n = a_1 + a_2\), where \(a_1, a_2 \in A\) and \(a_1 \leq a_2\). The set \(A\) is called an asymptotic basis of order 2 if all but finitely many integers can be represented as the sum of two not necessarily distinct elements of \(A\), or, equivalently, if the function
\[r_{A,2} : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\} \]
satisfies
\[\text{card}(r_{A,2}^{-1}(0)) < \infty. \]

Similarly, the restricted representation function \(r_{A,2}(n)\) counts the number of ways to write \(n\) in the form \(n = a_1 + a_2\), where \(a_1, a_2 \in A\) and \(a_1 < a_2\). The set \(A\) is called a restricted asymptotic basis of order 2 if all but finitely many integers can be represented as the sum of two distinct elements of \(A\).

Let
\[f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\} \]
be any function such that
\[\text{card}(f^{-1}(0)) < \infty. \]

The inverse problem for representation functions of order 2 is to find sets \(A\) such that \(r_{A,2}(n) = f(n)\) for all \(n \in \mathbb{Z}\). Nathanson [4] proved that every function \(f\)
satisfying (1) and (2) is the representation function of an asymptotic basis of order 2, and that such bases A can be arbitrarily thin in the sense that the counting functions $A(-x, x)$ tend arbitrarily slowly to infinity. It remained an open problem to construct thick asymptotic bases of order 2 for the integers with a prescribed representation function.

In the special case of the function $f(n) = 1$ for all integers n, Nathanson \[6\] constructed a unique representation basis, that is, a set A of integers with $r_{A,2}(n) = 1$ for all $n \in \mathbb{Z}$, with the additional property that $A(-x, x) \gg \log x$. He posed the problem of constructing a unique representation basis A such that $A(-x, x) \gg x^\alpha$ for some $\alpha > 0$.

In this paper we prove that for every function f satisfying (1) and (2) there exist uncountably many asymptotic bases A of order 2 such that $r_{A,2}(n) = f(n)$ for all $n \in \mathbb{Z}$, and $A(-x, x) \gg x^{1/3}$. It is not known if there exists a real number $\delta > 0$ such that one can solve the inverse problem for arbitrary functions f satisfying (1) and (2) with $A(-x, x) \gg x^{1/3+\delta}$.

2 The Erdős-Turán conjecture

The set A of nonnegative integers is an asymptotic basis of order 2 for \mathbb{N}_0 if the sumset $2A$ contains all sufficiently large integers. If A is a set of nonnegative integers, then

$$0 \leq r_{A,2}(n) < \infty$$

for every $n \in \mathbb{N}_0$. It is not true, however, that if

$$f : \mathbb{N}_0 \to \mathbb{N}_0$$

is a function with

$$\text{card} \ (f^{-1}(0)) < \infty,$$

then there must exist a set A of nonnegative integers such that $r_{A,2}(n) = f(n)$ for all $n \in \mathbb{N}_0$. For example, Dirac \[1\] proved that the representation function of an asymptotic basis of order 2 cannot be eventually constant, and Erdős and Fuchs \[3\] proved that the mean value $\sum_{n \leq x} r_{A,2}(n)$ of an asymptotic basis of order 2 cannot converge too rapidly to cx for any $c > 0$. A famous conjecture of Erdős and Turán \[2\] states that the representation function of an asymptotic basis of order 2 must be unbounded. This problem is only a special case of the general inverse problem for representation functions for bases for the nonnegative integers: Find necessary and sufficient conditions for a function $f : \mathbb{N}_0 \to \mathbb{N}_0$ satisfying $\text{card} \ (f^{-1}(0)) < \infty$ to be the representation function of an asymptotic basis of order 2 for \mathbb{N}_0.

It is a remarkable recent discovery that the inverse problem for representation functions for the integers, and, more generally, for arbitrary countably infinite abelian groups and countably infinite abelian semigroups with a group component, is significantly easier than the inverse problem for representation functions for the nonnegative integers and for other countably infinite abelian semigroups (Nathanson \[5\]).
3 Construction of thick bases for the integers

Let \([x]\) denote the integer part of the real number \(x\).

Lemma 1 Let \(f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}\) be a function such that \(f^{-1}(0)\) is finite. Let \(\Delta\) denote the cardinality of the set \(f^{-1}(0)\). Then there exists a sequence \(U = \{u_k\}_{k=1}^{\infty}\) of integers such that, for every \(n \in \mathbb{Z}\) and \(k \in \mathbb{N}\),
\[
f(n) = \text{card}\{k \geq 1 : u_k = n\}
\]
and
\[
|u_k| \leq \left\lfloor \frac{k + \Delta}{2} \right\rfloor.
\]

Proof. Every positive integer \(m\) can be written uniquely in the form
\[
m = s^2 + s + 1 + r,
\]
where \(s\) is a nonnegative integer and \(|r| \leq s\). We construct the sequence
\[
V = \{0, -1, 0, 1, -2, -1, 0, 1, 2, -3, -2, -1, 0, 1, 2, 3, \ldots\}
\]
\[
= \{v_m\}_{m=1}^{\infty},
\]
where
\[
v_{s^2+s+1+r} = r \quad \text{for } |r| \leq s.
\]

For every nonnegative integer \(k\), the first occurrence of \(-k\) in this sequence is \(v_{k^2+1} = -k\), and the first occurrence of \(k\) in this sequence is \(v_{(k+1)^2} = k\).

The sequence \(U\) will be the unique subsequence of \(V\) constructed as follows. Let \(n \in \mathbb{Z}\). If \(f(n) = \infty\), then \(U\) will contain the terms \(v_{s^2+s+1+n}\) for every \(s \geq |n|\). If \(f(n) = \ell < \infty\), then \(U\) will contain the \(\ell\) terms \(v_{s^2+s+1+n}\) for \(s = |n|, |n|+1, \ldots, |n|+\ell-1\) in the subsequence \(U\), but not the terms \(v_{s^2+s+1+n}\) for \(s \geq |n|+\ell\). Let \(m_1 < m_2 < m_3 < \cdots\) be the strictly increasing sequence of positive integers such that \(\{v_{m_k}\}_{k=1}^{\infty}\) is the resulting subsequence of \(V\). Let \(U = \{u_k\}_{k=1}^{\infty}\), where \(u_k = v_{m_k}\). Then
\[
f(n) = \text{card}\{k \geq 1 : u_k = n\}.
\]

Let \(\text{card}\,(f^{-1}(0)) = \Delta\). The sequence \(U\) also has the following property: If \(|u_k| = n\), then for every integer \(m \notin f^{-1}(0)\) with \(|m| < n\) there is a positive integer \(j < k\) with \(u_j = m\). It follows that
\[
\{0, 1, -1, 2, -2, \ldots, n-1, -(n-1)\} \setminus f^{-1}(0) \subseteq \{u_1, u_2, \ldots, u_{k-1}\},
\]
and so
\[
k - 1 \geq 2(n-1) + 1 - \Delta.
\]

This implies that
\[
|u_k| = n \leq \frac{k + \Delta}{2}.
\]
Since u_k is an integer, we have

$$|u_k| \leq \left\lfloor \frac{k + \Delta}{2} \right\rfloor.$$

This completes the proof. □

Lemma 1 is best possible in the sense that for every nonnegative integer Δ there is a function $f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ with $\text{card} \left(f^{-1}(0) \right) = \Delta$ and a sequence $U = \{u_k\}_{k=1}^\infty$ of integers such that

$$|u_k| = \left\lfloor \frac{k + \Delta}{2} \right\rfloor \quad \text{for all } k \geq 1. \quad (3)$$

For example, if $\Delta = 2\delta + 1$ is odd, define the function f by

$$f(n) = \begin{cases}
0 & \text{if } |n| \leq \delta \\
1 & \text{if } |n| \geq \delta + 1
\end{cases}$$

and the sequence U by

$$u_{2i-1} = \delta + i,$$

$$u_{2i} = -(\delta + i)$$

for all $i \geq 1$.

If $\Delta = 2\delta$ is even, define f by

$$f(n) = \begin{cases}
0 & \text{if } -\delta \leq n \leq \delta - 1 \\
1 & \text{if } n \geq \delta \text{ or } n \leq -\delta - 1
\end{cases}$$

and the sequence U by $u_1 = \delta$ and

$$u_{2i} = \delta + i,$$

$$u_{2i+1} = -(\delta + i)$$

for all $i \geq 1$. In both cases the sequence U satisfies (3).

Theorem 1 Let $f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ be any function such that

$$\Delta = \text{card} (f^{-1}(0)) < \infty.$$

Let

$$c = 8 + \left\lfloor \frac{\Delta + 1}{2} \right\rfloor.$$

There exist uncountably many sets A of integers such that

$$r_{A,2}(n) = f(n) \quad \text{for all } n \in \mathbb{Z}$$

and

$$A(-x, x) \geq \left(\frac{x}{c} \right)^{1/3}.$$

5
Proof. Let
\[\Delta = \text{card}(f^{-1}(0)). \]
By Lemma 1, there exists a sequence \(U = \{u_k\}_{k=1}^{\infty} \) of integers such that
\[f(n) = \text{card}(\{ i \in \mathbb{N} : u_i = n \}) \quad \text{for all integers } n \]
and
\[|u_k| \leq \frac{k + \Delta}{2} \quad \text{for all } k \geq 1. \]
We shall construct a strictly increasing sequence \(\{i_k\}_{k=1}^{\infty} \) of positive integers and an increasing sequence \(\{A_k\}_{k=1}^{\infty} \) of finite sets of integers such that, for all positive integers \(k \),

(i) \[|A_k| = 2k, \]
(ii) There exists a positive number \(c \) such that
\[A_k \subseteq [-ck^3, ck^3] \]
(iii) \[r_{A_k, 2}(n) \leq f(n) \quad \text{for all } n \in \mathbb{Z}, \]
(iv) For \(j = 1, \ldots, k \),
\[r_{A_k, 2}(u_j) \geq \text{card}(\{ i \leq i_k : u_i = u_j \}). \]
Let \(\{A_k\}_{k=1}^{\infty} \) be a sequence of finite sets satisfying (i)-(iv). We form the infinite set
\[A = \bigcup_{k=1}^{\infty} A_k. \]
Let \(x \geq 8c \), and let \(k \) be the unique positive integer such that
\[ck^3 \leq x < c(k+1)^3. \]
Conditions (i) and (ii) imply that
\[A(-x, x) \geq |A_k| = 2k > 2 \left(\frac{x}{c} \right)^{1/3} - 2 \geq \left(\frac{x}{c} \right)^{1/3}. \]
Since
\[f(n) = \lim_{k \to \infty} \text{card}(\{ i \leq i_k : u_i = n \}), \]
conditions (iii) and (iv) imply that
\[r_{A, 2}(n) = \lim_{k \to \infty} r_{A_k, 2}(n) = f(n) \]
for all \(n \in \mathbb{Z} \).
We construct the sequence \(\{A_k\}_{k=1}^{\infty} \) as follows. Let \(i_1 = 1 \). The set \(A_1 \) will be of the form \(A_1 = \{a_1 + u_{i_1}, -a_1\} \), where the integer \(a_1 \) is chosen so that
\[
2A_1 \cap f^{-1}(0) = \emptyset \text{ and } a_1 + u_{i_1} \neq -a_1.
\]
This is equivalent to requiring that
\[
2a_1 \not\in (f^{-1}(0) - 2u_{i_1}) \cup (-f^{-1}(0)) \cup \{-u_{i_1}\}. \tag{6}
\]
This condition excludes at most \(1 + 2\Delta \) integers, and so we have at least two choices for the number \(a_1 \) such that
\[
|a_1 + u_{i_1}| \leq 1 + \Delta \text{ and } a_1 \text{ satisfies (6).}
\]
Since \(|u_{i_1}| = |u_1| \leq (1 + \Delta)/2 \) and
\[
|a_1 + u_{i_1}| \leq |a_1| + |u_{i_1}| \leq \frac{3(1 + \Delta)}{2},
\]
it follows that \(A_1 \subseteq [-c, c] \) for any \(c \geq 3(1 + \Delta)/2 \), and the set \(A_1 \) satisfies conditions (i)–(iv).

Let \(k \geq 2 \) and suppose that we have constructed sets \(A_1, \ldots, A_{k-1} \) and integers \(i_1 < \cdots < i_{k-1} \) that satisfy conditions (i)–(iv). Let \(i_k > i_{k-1} \) be the least integer such that
\[
r_{A_{k-1,2}}(u_{i_k}) < f(u_{i_k}).
\]
Since
\[
i_k - 1 \leq \sum_{n \in \{u_{i_1}, u_{i_2}, \ldots, u_{i_{k-1}}\}} r_{A_{k-1,2}}(n)
\]
\[
\leq \sum_{n \in \mathbb{Z}} r_{A_{k-1,2}}(n)
\]
\[
= \binom{2k - 1}{2}
\]
\[
< 2k^2,
\]
it follows that
\[
i_k \leq 2k^2.
\]
Also, (5) implies that
\[
|u_{i_k}| \leq \frac{i_k + \Delta}{2} \leq k^2 + \frac{\Delta}{2}. \tag{7}
\]
We want to choose an integer \(a_k \) such that the set
\[
A_k = A_{k-1} \cup \{a_k + u_{i_k}, -a_k\}
\]
satisfies (i)–(iv). We have \(|A_k| = 2k \) if
\[
a_k + u_{i_k} \neq -a_k
\]
and
\[
A_{k-1} \cap \{a_k + u_{i_k}, -a_k\} = \emptyset,
\]
or, equivalently, if
\[a_k \not\in (-A_{k-1} \cup (A_{k-1} - u_{i_k}) \cup \{-u_{i_k}/2\}). \tag{8} \]
Thus, in order for \(A_{k-1} \cup \{a_k + u_{i_k}, -a_k\} \) to satisfy condition (i), we exclude at most \(2|A_{k-1}| + 1 = 4k - 3 \) integers as possible choices for \(a_k \).

The set \(A_k \) will satisfy conditions (iii) and (iv) if
\[2A_k \cap f^{-1}(0) = \emptyset \]
and
\[r_{A_k,2}(n) = \begin{cases} r_{A_{k-1},2}(n) & \text{for all } n \in 2A_{k-1} \setminus \{u_{i_k}\} \\ r_{A_{k-1},2}(n) + 1 & \text{for } n = u_{i_k} \\ 1 & \text{for all } n \in 2A \setminus (2A_{k-1} \cup \{u_{i_k}\}). \end{cases} \]
Since the sumset \(2A_k \) decomposes into
\[2A_k = 2(\{A_{k-1} \cup \{a_k + u_{i_k}, -a_k\}\}) = 2A_{k-1} \cup (A_{k-1} + \{a_k + u_{i_k}, -a_k\}) \cup \{u_{i_k}, 2a_k + 2u_{i_k}, -2a_k\}, \]
it suffices that
\[(A_{k-1} + \{a_k + u_{i_k}, -a_k\}) \cap 2A_{k-1} = \emptyset, \tag{9} \]
\[(A_{k-1} + \{a_k + u_{i_k}, -a_k\}) \cap f^{-1}(0) = \emptyset, \tag{10} \]
\[(A_{k-1} + a_k + u_{i_k}) \cap (A_{k-1} - a_k) = \emptyset, \tag{11} \]
\[\{2a_k + 2u_{i_k}, -2a_k\} \cap 2A_{k-1} = \emptyset \tag{12} \]
\[\{2a_k + 2u_{i_k}, -2a_k\} \cap f^{-1}(0) = \emptyset \tag{13} \]
\[\{2a_k + 2u_{i_k}, -2a_k\} \cap (A_{k-1} + \{a_k + u_{i_k}, -a_k\}) = \emptyset. \tag{14} \]
Equation (9) implies that the integer \(a_k \) must be chosen so that it cannot be represented either in the form
\[a_k = x_1 + x_2 - x_3 - u_{i_k} \]
or
\[a_k = x_1 - x_2 - x_3, \]
where \(x_1, x_2, x_3 \in A_{k-1} \). Since \(\text{card}(A_{k-1}) = 2(k-1) \), it follows that the number of integers that cannot be chosen as the integer \(a_k \) because of equation (9) is at most \(2(2(k-1))^3 = 16(k-1)^3 \).

Similarly, the numbers of integers excluded as possible choices for \(a_k \) because of equations (10), (11), (12), (13), and (14) are at most \(4\Delta(k-1), 4(k-1)^2, 8(k-1)^2, 2\Delta, \) and \(8(k-1) \), respectively, and so the number of integers that cannot be chosen as \(a_k \) is
\[16(k-1)^3 + 12(k-1)^2 + (4\Delta + 8)(k-1) + 2\Delta \]
\[= 16k^3 - 36k^2 + (32 + 4\Delta)k - 2\Delta - 12 \]
\[\leq (16 + \Delta)k^3 - 4k^2 - 32k(k-1) - 2\Delta - 12. \]
Let
\[c = 8 + \left\lceil \frac{\Delta + 1}{2} \right\rceil. \]
The number of integers \(a \) with
\[|a| \leq ck^3 - k^2 - \left\lceil \frac{\Delta + 1}{2} \right\rceil = \left(8 + \left\lceil \frac{\Delta + 1}{2} \right\rceil\right)k^3 - k^2 - \left\lceil \frac{\Delta + 1}{2} \right\rceil \]
is
\[\left(16 + 2 \left\lceil \frac{\Delta + 1}{2} \right\rceil\right)k^3 - 2k^2 - 2 \left\lceil \frac{\Delta + 1}{2} \right\rceil + 1 \]
\[\geq (16 + \Delta)k^3 - 2k^2 - \Delta. \]
If the integer \(a \) satisfies (15), then (7) implies that
\[|a + u_i| \leq |a| + |u_i| \leq ck^3. \]
It follows that there are at least two acceptable choices of the integer \(a_k \) such that the set \(A_k = A_{k-1} \cup \{a_k + u_{i_k}, -a_k\} \) satisfies conditions (i)–(iv). Since this is true at each step of the induction, there are uncountably many sequences \(\{A_k\}_{k=1}^\infty \) that satisfy conditions (i)–(iv). This completes the proof. \(\square \)

We can modify the proof of Theorem 1 to obtain the analogous result for the restricted representation function \(\hat{r}_{A,2}(n) \).

Theorem 2 Let \(f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\} \) be any function such that
\[\text{card}(f^{-1}(0)) < \infty. \]
Then there exist uncountably many sets \(A \) of integers such that
\[\hat{r}_{A,2}(n) = f(n) \quad \text{for all } n \in \mathbb{Z} \]
and
\[A(-x, x) \gg x^{1/3}. \]

4 Representation functions for bases of order \(h \)

We can also prove similar results for the representation functions of asymptotic bases and restricted asymptotic bases of order \(h \) for all \(h \geq 2 \).

For any set \(A \subseteq \mathbb{Z} \), the **representation function** \(r_{A,h}(n) \) counts the number of ways to write \(n \) in the form \(n = a_1 + a_2 + \cdots + a_h \), where \(a_1, a_2, \ldots, a_h \in A \) and \(a_1 \leq a_2 \leq \cdots \leq a_h \). The set \(A \) is called an **asymptotic basis of order \(h \)** if all but finitely many integers can be represented as the sum of \(h \) not necessarily distinct elements of \(A \), or, equivalently, if the function
\[r_{A,h} : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\} \]
satisfies
\[\text{card}(r^{-1}_{A,h}(0)) < \infty. \]

Similarly, the restricted representation function \(\hat{r}_{A,h}(n) \) counts the number of ways to write \(n \) as a sum of \(h \) pairwise distinct elements of \(A \). The set \(A \) is called a restricted asymptotic basis of order \(h \) if all but finitely many integers can be represented as the sum of \(h \) pairwise distinct elements of \(A \).

Theorem 3 Let \(f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\} \) be any function such that
\[\text{card}(f^{-1}(0)) < \infty. \]

There exist uncountably many sets \(A \) of integers such that
\[r_{A,h}(n) = f(n) \quad \text{for all } n \in \mathbb{Z} \]
and
\[A(-x, x) \gg x^{1/(2h-1)}, \]
and there exist uncountably many sets \(A \) of integers such that
\[\hat{r}_{A,h}(n) = f(n) \quad \text{for all } n \in \mathbb{Z} \]
and
\[A(-x, x) \gg x^{1/(2h-1)}. \]

References

[1] G. A. Dirac, *Note on a problem in additive number theory*, J. London Math. Soc. 26 (1951), 312–313.

[2] P. Erdős and P. Turán, *On a problem of Sidon in additive number theory and some related questions*, J. London Math. Soc. 16 (1941), 212–215.

[3] P. Erdős and W. H. J. Fuchs, *On a problem of additive number theory*, J. London Math. Soc. 31 (1956), 67–73.

[4] M. B. Nathanson, *Every function is the representation function of an additive basis for the integers*, www.arXiv.org, math.NT/0302091.

[5] ______, *Representation functions of additive bases for abelian semigroups*, Ramanujan J., to appear.

[6] ______, *Unique representation bases for the integers*, Acta Arith., to appear.