More than climate: Hydrogen isotope ratios in tree rings as novel plant physiological indicator for stress conditions

Marco M. Lehmann a,*, Valentina Vitali a, Philipp Schuler a, Markus Leuenberger b, Matthias Saurer a

a Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
b Climate and Environmental Physics Division and Oeschger Centre for Climate Change Research, University of Bern, Switzerland, Sidlerstrasse 5, 3012 Bern, Switzerland

A R T I C L E I N F O

Keywords:
Tree growth
Sugars
Starch
Abiotic and biotic stressors
Deuterium
Hydrogen isotopes

A B S T R A C T

The analysis of stable carbon and oxygen isotopes in tree-rings is a widely applied tool which allows to retrieve information about past climatic conditions, as well as tree physiological responses to environmental changes. This is based on well-established mechanistic models and firm statistical relationships with climate variables. In contrast, the hydrogen isotopic signature (δ2H) of tree-rings has been reported to be poorly correlated to climate or difficult to explain, and as a consequence, hydrogen isotopes are far less utilized. However, recent plant-physiological experiments have highlighted the role of autotrophic versus heterotrophic processes affecting δ2H values, i.e. use of fresh assimilates versus stored carbohydrates, and have much improved our understanding of the role of post-photosynthetic δ2H-fractionation. Using unpublished and literature δ2H data of tree-ring cellulose (δ2Hc) of 5 study sites in Europe and Asia, we systematically investigated the relationships between δ2Hc and tree-ring width (TRW), which, in contrast to previous research, could now be explained through post-photosynthetic δ2H-fractionation. In most cases, these relationships were found to be negative (r² = 0.23 to 0.51, all P < 0.05) when the main growth limiting factors are precipitation and light, while in temperature-limited sites we observed a positive trend (r² = 0.14, P < 0.05). Our results suggest that, under stress conditions, trees use a surplus of carbon from reserves for wood formation. Therefore, in combination with TRW chronologies, δ2Hc may allow to infer about physiological information on stressful time periods independently of biotic and abiotic origin. Here, we discuss implications of these findings for tree-ring research, summarize them in a conceptual framework and suggest future research directions.

1. Introduction

Stable isotopes in tree rings are successfully used in climate and environmental research for the reconstruction of past climatic conditions, as well as to deepen our understanding of physiological responses of trees to environmental changes (McCarroll and Loader, 2004). Carbon and oxygen isotope ratios can be retrieved from cellulose stored in tree rings at annual and intra-annual resolution, which allows the creation of large-scale networks with high temporal resolution (Treydte et al., 2007; Saurer et al., 2014). Oxygen isotope ratios are often used to retrieve information about past changes of precipitation or atmospheric circulation patterns (Young et al., 2015), while carbon isotopes are used for reconstruction of drought, sunshine duration or estimation of intrinsic water-use efficiency (Leavitt and Long, 1988; Saurer et al., 2004). In contrast, analysis of hydrogen isotopes, also available in tree-ring cellulose molecules (δ2Hc) were rarely applied in recent dendroecological research (Voelker et al., 2014; Nakatsuka et al., 2020).

The lack of interest in δ2Hc is partially caused by analytical issues with OH-groups in cellulose, where part of the hydrogen atoms continue to exchange with surrounding moisture sources (DeNiro, 1981). This bias needs to be removed before inferring on the information about climatic conditions or physiological responses that remains in the so-called carbon-bound (non-exchangeable) H of the cellulose molecules. This can be done by nitration of the cellulose molecule (Green, 1963; Boettger et al., 2007). Alternatively, the cellulose OH-groups can be equilibrated with water vapour of a known isotopic composition, allowing for correction of δ2Hc results (Filot et al., 2006; Sauer et al., 2009; Wassenaar et al., 2015). On the other hand, although temperature conditions are reflected in δ2Hc on a global scale (Gray and Song, 1984), rather poor climate information has been observed in annual δ2Hc.

* Corresponding author.
E-mail address: marco.lehmann@alumni.ethz.ch (M.M. Lehmann).

https://doi.org/10.1016/j.dendro.2020.125788
Received 17 July 2020; Received in revised form 9 October 2020; Accepted 10 November 2020
Available online 22 November 2020

Published by Elsevier GmbH. This is an open access article under the CC BY license
chronologies (Pendall, 2006; Waterhouse et al., 2002; Loader et al., 2008; Boettger et al., 2014) and this is most likely why hydrogen isotopes in tree rings are not commonly applied. This lack of a clear δ²H-climate correlations is surprising. In water pools, isotopes of oxygen (δ¹⁸O) and hydrogen (δ²H) are commonly linked by isotope fractionations in the hydrological cycle in response to environmental conditions (Dansgaard, 1964; Brooks et al., 2010). Therefore, assuming a constant biochemical isotope fractionation, one could expect that the isotopic relationship between both elements and thereby the climatic and physiological information to be preserved in the cellulose. This concept generally holds true for δ¹⁸O, where, after an initial biochemical isotope fractionation of ca. 27‰ and a set of post-photosynthetic isotope fractionations, the soil water and the leaf evaporation water signals are imprinted on tree-ring cellulose (Sternberg, 2009). On the contrary, this concept does not hold for δ²H, as isotope fractionations between water and sugars before and during cellulose synthesis are more variable and less constant (Yakir and DeNiro, 1990).

Recent research indeed indicates that δ²H values in plant carbohydrates such as photosynthetic assimilates and cellulose are influenced by strong isotope fractionations during multiple enzymatic reactions (Cormier et al., 2018; Sanchez-Bragado et al., 2019). Light leads to typically more ²H-depleted cellulose in autotrophic than in heterotrophic plant tissues (Yakir and DeNiro, 1990b; Sanchez-Bragado et al., 2019). This effect is primarily based on the light-dependent reduction of NADP to NADPH during water photolysis (Cormier et al., 2018), causing a ²H-depletion in sugar molecules compared to leaf water during reactions shortly after CO₂ fixation. Cormier et al. (2018) showed that the initial biochemical ²H-fractionations are relatively constant, but are sensitive to very low-light or low-CO₂ conditions. During translocation from source to sink tissues, the δ²H values of leaf assimilates is altered by post-photosynthetic isotope fractionations. In heterotrophic tissues, carbon-bound sugars-H can exchange with water-H in various enzymatic reactions or with H derived from the hypothetically ²H-enriched NADPH of the oxidative pentose-phosphate pathway. The partial loss of the leaf water signal and thus of the initial assimilates ²H-depletion before tree-ring cellulose synthesis have been previously observed and explained by isotope fractionation models (Rodenn et al., 2000). However, a growing body of evidence suggests that the utilization of carbon reserves causes an additional ²H-enrichment in leaf and tree-ring cellulose. For instance, Kimak et al. (2015) showed that leaf cellulose of deciduous tree species is ²H-enriched in the early growing season, when supply of fresh assimilates via photosynthetic activity is still low. Also intra-annual variations in tree-rings have often been observed, with early wood being more ²H-enriched compared to late wood of the same year (Epstein and Yapp, 1976; Kimak, 2015; Nabeshima et al., 2018). This suggests that early wood cellulose is composed of ²H-enriched carbohydrates derived from storage pools or that post-photosynthetic isotope fractionation change during the growing season. The idea of heterotrophic ²H-enriched carbon storage pools is also supported by seasonal δ²H variations in lipids (Newberry et al., 2015) and by the ²H-enrichment in starch-accumulating grain compared to other plant organs in wheat (Sanchez-Bragado et al., 2019). While these findings certainly question the use of δ²H in tree rings as a straightforward proxy for climate, here, we propose that this opens new avenues for its uses as a plant physiological indicator.

2. Material and methods

For our analysis, we used δ²Hc and tree-ring width (TRW) chronologies from 5 sites in Europe and Asia. The sites differed strongly in their conditions in terms of time period, tree species, average growth, region and climate (Table 1). Three out of five sites are sourced from a literature review: China (Liu et al., 2015), Germany (Lipp et al., 1993) and India (Ramesh et al., 1985). For all literature study sites, δ²Hc values are derived from the analysis of cellulose nitrate. The δ²Hc and TRW data from the other two sites, i.e. Switzerland and Norway, are part of a tree-ring isotope network (Isonet). Please see Treydte et al. (2007) for further details on the correlations of carbon and oxygen isotopes with climate shown by the Isonet network. TRW of both Isonet sites has been determined by standard dendrochronological methods. For hydrogen isotope analysis, cellulose was extracted from pooled annual rings (Norway) or from late wood (Switzerland) of four trees per site (Loader et al., 1997; Boettger et al., 2007). For the Norwegian site, the cellulose was nitrated (Green, 1963; Boettger et al., 2007), packed in silver capsules, and δ²Hc measured with a Thermal Combustion / Elemental analyser (TC/EA) coupled to a Delta PlusXL IRMS (both Thermo-Finnigan, Bremen, Germany) in the Dating laboratory, University of Helsinki, Finland (Hilasvuori and Berninger, 2010). For the Swiss site, the extracted cellulose was measured with an on-line equilibration technique (Filot et al., 2006). In brief, cellulose in silver capsules was equilibrated at 110 °C with water vapour of known isotopic composition for 600 s and δ²Hc measured with a TC/EA coupled to a Delta PlusXL IRMS (both Thermo-Finnigan, Bremen, Germany) in the laboratory of Climate and Environmental Physics, University of Bern, Switzerland. δ²Hc values of all five sites are referenced to the international standard Vienna Standard Mean Ocean Water (VSMOW). All statistical analyses were performed in R version 4.0.0 (R Core Team, 2020).

3. Results and discussion

The chronologies from the Swiss oak trees (Quercus petraea) are a striking example of the strong relationship between δ²Hc and TRW and of the non-climatic information in the hydrogen isotopic composition (Fig.1, Table 1). Although available for more than 15 years, the δ²Hc

records of the Isonet project were not published due to lack of significant correlations to climate and problems with their interpretation. However, with the new findings on 2H-fractionation in mind, the influence of growth conditions on 2H$_C$ is giving a new prospective for interpretation. As an example, the extremely low 2H$_C$ value in 1961 was synchronised with extremely high tree-ring growth in the same year (Fig. 1A, B) and this opposite pattern was also confirmed for the full chronologies, as 2H$_C$ and TRW chronologies overall showed a significant negative relationship ($r^2 = 0.33$, $P < 0.05$; Fig. 1C, Table 1). In this specific case, where we are considering a high mountain protected forest, a possible cause of this sudden growth increase could be a release effect connected to a reduction in competition due to tree-fall, stand damages by stone-fall or snow avalanche, which are common in the area. Therefore, in this cool and wet site, we expect light competition or stand density to be the growth limiting factor. It might therefore be possible to better understand and identify past disturbance events based on such combined analysis.

To our knowledge, 2H$_C$ and TRW chronologies have never been systematically compared. Nonetheless, we found three additional studies (Ramesh et al., 1985; Lipp et al., 1993; Liu et al., 2015), reporting both 2H$_C$ and TRW data for conifer tree species in temperate sites where growth was limited by precipitation (380–700 mm yr$^{-1}$; China, Germany, India). Even though varying widely in site-specific conditions and species, the re-analysis showed a consistent negative 2H$_C$-TRW correlation (Fig. 1C, Table 1, $r^2 = 0.23–0.51$, $P < 0.05$). These results indicate that environmental drivers of growth and 2H-fractionations are likely connected to a certain degree. However, a universal 2H$_C$-TRW relationship is certainly not expected. In fact, for the pine trees in Norway we found a weak positive 2H$_C$-TRW relationship ($r^2 = 0.14$, $P < 0.05$). Here, in contrast to the other sites, the consistently narrow TRW and the stand climatic conditions (Table 1) indicate that temperature was the growth-limiting factor.

We propose the following conceptual framework to disentangle the impact of climatic conditions and storage use on 2H and TRW (Fig. 2), as a tool for retrospective assessment of changes in physiological processes. We can follow how the variation of 2H$_C$ values (black dashed arrow) are influenced by climatic and hydrological processes, as warm and dry conditions result in a 2H-enrichment in hydrological components (blue arrow) such as the source water (precipitation and thus soil water) and of the leaf water used for biosynthesis of carbohydrates. However, the 2H signal in water is not unilaterally transferred to the tree-ring cellulose. Where a “1:1 signal transfer” would reflect a constant biochemical shift (green solid arrow), a deviation from the diagonal indicates further 2H modification by plant physiological mechanisms (grey arrows). Here, environmental conditions such as drought stress or light availability may drive the proportional use of 2H-enriched sugars derived from heterotrophic carbon storage versus 2H-depleted photosynthetic assimilates for growth, varying the 2H-fractionation between water and cellulose (green dashed arrows). Further, a direct relationship to small tree rings is expected as a higher proportion of storage resources is likely used under stressful conditions. Thus, if climatic-hydrological effects are low or can be excluded (e.g. weak 2H-18O relationships have been observed for tree-ring cellulose in Switzerland and Norway; both $r^2 \leq 0.09$, data not shown), 2H$_C$ could indicate the carbon source (storage vs. assimilates) that has been preferentially used for growth.

In conclusion, the new knowledge on 2H-isotope fractionations and our proposed conceptual framework described above and summarized in Fig. 2 should be helpful to decipher the information on physiological-
Though, we acknowledge the large remaining gaps in the understanding an integrated use of growth patterns and other tree-ring variables. The authors declare no conflict of interest.

Acknowledgments

We acknowledge the EU project "ISONET" (No. EVK2-CT-2002-00147) and Hogne Jungner for providing data of the Norwegian site. Our work was supported by the SNF project "IsoDrought" (No. 182092, granted to MS), by the SNF Ambizione project "TreeCarbo" (No. 179978, granted to MML), by the SNF project “Alpine Holocene tree ring isotope records” (No. 144255, granted to ML), and by the SNF Sinergia project "tTREE" (No. 136295).

References

Boettger, T., Haupt, M., Kooler, K., Weise, S.M., Waterhouse, J.S., Rinne, K.T., Loader, N.J., Sonninen, E., Jungner, H., Masson-Delmotte, V., Stevenard, M., Guillen, M.T., Pierre, M., Pazdur, A., Leuenberger, M., Filot, M., Saurer, M., Reynolds, C.E., Helle, G., Schleser, G.H., 2007. Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: an interlaboratory comparison. Anal. Chem. 79, 4603–4612.

Boettger, T., Haupt, M., Friedrich, M., Waterhouse, J.S., 2014. Reduced climate sensitivity of carbon, oxygen and hydrogen stable isotope ratios in tree-ring cellulose of silver fir (Abies alba Mill.) influenced by background SO4 in Franconia (Germany, Central Europe). Environ. Pollut. 185, 281–294.

Brooks, J.R., Barnard, H.R., Coulombe, R., McDonnell, J.J., 2010. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat. Geosci. 3, 100–104.

Cormier, M.A., Werner, R.A., Sauer, P.E., Grocke, D.R., Leuenberger, M.C., Wieloch, T., Schleucher, J., Kahnem, A., 2018. H-fractionations during the biosynthesis of carbohydrates and lipids imprint a metabolic signal on the δ2H values of plant organic compounds. New Phytol. 218, 479–491.

Dansgaard, W., 1964. Stable isotope in precipitation. Tellus 16, 436–468.

DeNiro, M., 1981. The effects of different methods of preparing cellulose nitrare on the determination of the D/H ratios of non-exchangeable hydrogen of cellulose. Earth Planet. Sci. Lett. 54, 177–185.

Epstein, S., Yapp, C.J., 1976. Climatic implications of the D/H ratio of hydrogen in C-H groups in tree cellulose. Earth Planet. Sci. Lett. 30, 252–261.

Filot, M., Leuenberger, M., Pazdur, A., Boettger, T., 2006. Rapid online equilibration method to determine the D/H ratios of non-exchangeable hydrogen in cellulose. Rapid Commun. Mass Spectrom. 20, 3337–3344.

Gray, J., Song, S.J., 1984. Climatic implications of the natural variations of D/H ratios in tree ring cellulose. Earth Planet. Sci. Lett. 70, 129–138.

Green, J.W., 1963. Wood cellulose. In: Whistler, R.L. (Ed.), Methods in Carbohydrate Chemistry. Academic Press, New York, pp. 9–21.

Hillasuori, E., Berninger, F., 2010. Dependence of tree ring stable isotope abundances and ring width on climate in Finnish oak. Tree Physiol. 30, 636–647.

Kimak, A., 2015. Dissertation: tracing physiological processes of long living tree species and their response on climate change using triple isotope analyses. Climate and Environmental Physics, University of Bern.

Kimak, A., Kern, Z., Leuenberger, M., 2015. Qualitative distinction of autotrophic and heterotrophic processes at the leaf level by means of triple stable isotope (C-O-H) patterns. Front. Plant Sci. 6, 1008.

Leavitt, S.W., Long, A., 1988. Stable carbon isotope chronologies from trees in the Southwestern United States. Global Biogeochem. Cycles 2, 189–198.

Lipp, J., Trimborn, P., Graf, W., Becker, B., 1993. Climatic significance of D/H ratios in the cellulose of late wood in tree rings from spruce (Picea abies L.). Isotope Techniques in the Study of Past and Current Environmental Change in the Hydrosphere and Atmosphere. IAEA, Vienna, pp. 395–405.

Liu, X.H., An, W.L., Tremeyde, K., Wang, W.Z., Xu, G.B., Zeng, X.M., Wu, G.J., Wang, B., Zhang, X.W., 2015. Pooled versus separate tree-ring δD measurements, and implications for reconstruction of the Arctic Oscillation in northwestern China. Sci. Total Environment. 511, 584–594.

Loader, N.J., Robertson, I., Barker, A.C., Switsur, V.R., Waterhouse, J.S., 1997. An improved technique for the batch processing of small wholewood samples to cellulose. Chem. Geol. 136, 313–317.

Loader, N.J., Santillo, P.M., Woodman-Ralph, J.P., Waterhouse, J.S., Robertson, I., Barker, A.C., Switsur, V.R., Waterhouse, J.S., 2005. Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions. Chem. Geol. 225, 62–71.

McCarroll, D., Loader, N.J., 2004. Stable isotopes in tree rings. Quat. Sci. Rev. 23, 771–801.

Nabeshima, E., Nakatsuka, T., Kawagawa, A., Hiura, T., Funada, R., 2018. Seasonal changes of δ6D and δ18O in tree-ring cellulose of Quercus crispula suggest a change in post-photosynthetic processes during earlywood growth. Tree Physiol. 38, 1829–1840.

Nakatsuka, T., Sano, M., Li, Z., Xu, C., Tushima, A., Shigeoka, Y., Shi, K., Umehshi, K., Sakamoto, M., Otaki, H., Higami, N., Nakao, N., Yokoyama, M., Mitutani, T., 2020. Reconstruction of multi-millennial summer climate variations in central Japan by integrating tree-ring cellulose oxygen and hydrogen isotope ratios. Clim. Past Discuss. 2020, 1–42.

Newberry, S.L., Kahmen, A., Dennis, P., Grant, A., 2015. n-Alkane biosynthetic hydrogen isotope fractionation is not constant throughout the growing season in the riparian tree Salix viminalis. Geochim. Cosmochim. Acta 165, 75–85.
Pendall, E., 2000. Influence of precipitation seasonality on pinon pine cellulose δ values. Glob. Chang. Biol. 6, 287–301.

R Core Team, 2020. R: a Language and Environment for Statistical Computing. R foundation for statistical computing, Vienna, Austria. https://www.r-project.org/.

Ramesh, R., Bhattacharya, S.K., Gopalan, K., 1985. Dendroclimatological implications of isotope coherence in trees from Kashmir Valley, India. Nature 317, 802–804.

Roden, J.S., Lin, G.G., Ehleringer, J.R., 2000. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim. Cosmochim. Acta 64, 21–35.

Sanchez-Bragado, R., Serret, M.D., Marimon, R.M., Bort, J., Araus, J.L., 2019. The hydrogen isotope composition δD reflects plant performance. Plant Physiol. 180, 793–812.

Sauer, P.E., Schimmelmann, A., Sessions, A.L., Topalov, K., 2009. Simplified batch equilibration for D/H determination of non-exchangeable hydrogen in solid organic material. Rapid Commun. Mass Spectrom. 23, 949–956.

Sauer, M., Siegwolf, R.T.W., Schweingruber, F.H., 2004. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Glob. Chang. Biol. 10, 2109–2120.

Sauer, M., Sponai, R., Frank, D.C., Jooi, F., Leuenberger, M., Loader, N.J., McCarroll, D., Gagen, M., Poultier, B., Siegwolf, R.T.W., Andreu-Hayles, L., Boettger, T., Linan, I.D., Fairchild, I.J., Friedrich, M., Gutierrez, E., Haupt, M., Hilsavouci, E., Heinrich, I., Helle, G., Grudg, H., Jalkanen, R., Leuenberger, M., Loader, N.J., Masson-Delmotte, V., Pournel, A., Pawelczyk, S., Pierre, M., Planells, O., Pukhie, R., Reynolds-Henne, C.E., Rinne, K.T., Saracino, A., Saurer, M., Sonninen, E., Stievenard, M., Waterhouse, J.S., Weigl, M., Schleser, G.H., 2014. Spatial variability and temporal trends in water-use efficiency of European forests. Glob. Chang. Biol. 20, 3700–3712.

Sternberg, L.D.S.L., 2009. Oxygen stable isotope ratios of tree-ring cellulose: the next phase of understanding. New Phytol. 181, 553–562.

Treydte, K., Frank, D., Esper, J., Andreu, L., Bednarz, Z., Berninger, F., Boettger, T., D’Alessandro, C.M., Eiten, N., Filot, M., Grabner, M., Guillemin, M.T., Gutierrez, E., Haupt, M., Helle, G., Hilsavouci, E., Jungner, H., Kalela-Brundin, M., Krapiec, M., Leuenberger, M., Loader, N.J., Masson-Delmotte, V., Pournel, A., Pawelczyk, S., Pierre, M., Planells, O., Pukhie, R., Reynolds-Henne, C.E., Rinne, K.T., Saracino, A., Saurer, M., Sonnin, E., Stievenard, M., Switsur, V.R., Szczepanek, M., Szybowska-Krapiec, E., Todaro, I., Waterhouse, J.S., Weigl, M., Schleser, G.H., 2007. Signal strength and climate calibration of a European tree-ring isotope network. Geophys. Res. Lett. 34.

Voelker, S.L., Brooks, R., Meinzer, F.C., Roden, J., Parnell, A., Pawelczyk, S., Harnsough, P., Snyder, K., Plavcova, L., Santrucek, J., 2014. Reconstructing relative humidity from plant δ18O and 8D as deuterium deviations from the global meteoric water line. Ecol. Appl. 24, 960–975.

Wassenaar, L.I., Hobson, K.A., Sitch, L., 2015. An online temperature-controlled vacuum-equilibration preparation system for the measurement of δ2H values of non-exchangeable-H and of δ18O values in organic materials by isotope-ratio mass spectrometry. Rapid Commun. Mass Spectrom. 29, 397–407.

Waterhouse, J.S., Switsur, V.R., Barker, A.C., Carter, A., Robertson, I., 2002. Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values? Earth Planet. Sci. Lett. 201, 421–430.

Yakir, D., DeNiro, M.J., 1990. Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba L. Plant Physiol. 93, 325–332.

Young, G.H.F., Loader, N.J., McCarroll, D., Bale, R.J., Demmler, J.C., Miles, D., Nayling, N.T., Rinne, K.T., Robertson, I., Watts, C., Whitney, M., 2015. Oxygen stable isotope ratios from British oak tree-rings provide a strong and consistent record of past changes in summer rainfall. Clim. Dyn. 45, 3609–3622.