SIGN PATTERNS OF RATIONAL MATRICES WITH LARGE RANK

YAROSLAV SHITOV

Abstract. Let A be a real matrix. The term rank of A is the smallest number t of lines (that is, rows or columns) needed to cover all the nonzero entries of A. We prove a conjecture of Li et al. stating that, if the rank of A exceeds $t - 3$, there is a rational matrix with the same sign pattern and rank as those of A. We point out a connection of the problem discussed with the Kapranov rank function of tropical matrices, and we show that the statement fails to hold in general if the rank of A does not exceed $t - 3$.

1. Introduction

The problem of constructing a matrix over a given ordered field with specified sign pattern and rank deserved a significant amount of attention in recent publications, see [3] and references therein. The present paper establishes a connection of this problem with that of computing certain rank functions arisen from tropical geometry. We prove the conjecture on sign patterns of rational matrices formulated in [3], and we present the examples showing the optimality of our result.

2. Preliminaries

The following notation is used throughout our paper. By $U^{m \times n}$ we denote the set of all m-by-n matrices with entries from a set U, by $A_{ij} \in U$ we denote an entry of a matrix $A \in U^{m \times n}$. By $U_{(i)}$ we denote the ith row of U, and we call a line of a matrix any of its columns or rows.

A field R is called ordered if, for some subset $P \subset R$ closed under addition and multiplication, the sets P, $-P$, and $\{0\}$ form a partition of R. The elements of P are then called positive, and those from $-P$ negative. The sign pattern of a matrix $A \in R^{m \times n}$ is the matrix $S = S(A) \in \{+, -, 0\}^{m \times n}$ defined as $S_{ij} = +$ if A_{ij} is positive, $S_{ij} = -$ if A_{ij} is negative, and $S_{ij} = 0$ if $A_{ij} = 0$. The minimum rank of a sign pattern S with respect to R is the minimum of the ranks of matrices B over R satisfying $S(B) = S$.

There are a significant number of recent publications devoted to the study of the minimal ranks of sign patterns (see [3] and references therein), and our paper aims to prove a conjecture formulated in [3]. This conjecture relates the minimal rank of a pattern with a concept of the term rank of a matrix, which is defined as the smallest number of lines needed to include all the nonzero elements of that matrix. The classical König’s theorem states the the term rank of a matrix A equals the maximum number of nonzero entries of A no two of which belong to the same line, so the term rank of a sign pattern S can be thought of as the maximum of...
the ranks of matrices C over R satisfying $S(C) = S$. Now we can formulate the conjecture by Li et al. relating the concepts of minimum and term ranks for sign pattern matrices.

Conjecture 2.1. [3, Conjecture 4.2] Assume S is a sign pattern matrix with term rank equal to t, and let r be the minimum rank of S over the reals. If $r \geq t - 2$, then the minimum rank of S over the rationals is r as well.

In Section 3 we develop a combinatorial technique which allows to prove Conjecture 2.1. In Section 4 we establish the connection of the problem discussed with the Kapranov rank function of Boolean matrices introduced in [1]. We also make the use of matroid theory to prove the optimality of the bound in Conjecture 2.1 by showing that its statement fails to hold in general if r is less than $t - 2$.

3. Proof of the result

We start with two easy observations helpful for further considerations.

Observation 3.1. Multiplying a row of a real matrix A by a nonzero number will not change the minimal ranks of its sign pattern.

Proof. Trivial. □

Observation 3.2. Let r and t be, respectively, the minimum and maximum ranks of a sign pattern S with respect to an ordered field R. Then, for any integer $h \in [r, t]$, there is a matrix over R which has rank h and sign pattern S.

Proof. Changing a single entry produces a matrix whose rank differs by at most 1 from that of the initial matrix. □

The following lemma gives a useful description of the rank of a block matrix. We say that a linear subspace $S \subset \mathbb{R}^d$ is *rational* if S has a basis consisting of vectors that have rational coordinates only.

Lemma 3.3. Let $V_1 \in \mathbb{Q}^{p \times (p-1)}$ and $V_2 \in \mathbb{Q}^{(q-1) \times q}$ be rational matrices that have ranks $p - 1$ and $q - 1$, respectively. Then the set W of all $W \in \mathbb{R}^{p \times q}$ for which the matrix $U = \begin{pmatrix} W & V_1 \\ V_2 & 0 \end{pmatrix}$ has rank $p + q - 2$ is a rational subspace.

Proof. Note that rational elementary transformations on the first p rows or first q columns of U can not break the property of W to be a rational subspace. So we can assume that V_1 and V_2 differ from the identity matrices by adding the zero column and row, which case is easy. □

Now we are ready to prove Conjecture 2.1 in a special case.

Lemma 3.4. For any real m-by-n matrix A of rank $n - 2$, there is a rational m-by-n matrix which has rank $n - 2$ and sign pattern equal to that of A.

Proof. By the assumptions, there is a rank-two matrix $B \in \mathbb{R}^{n \times 2}$ for which the matrix AB is zero. Observation 3.1 allows one to assume that the first column of B consists of zeros and ones. Let X be a matrix whose (i, j)th entry is a variable if $A_{ij} \neq 0$ and $X_{ij} = 0$ otherwise.

For a sufficiently large integer $N > 0$, we set $C_{jk} = [NB_{jk}]/N$. Note that, for every row index i, the matrix formed by the rows of B with indexes j satisfying $A_{ij} \neq 0$ has the same rank as the matrix formed by the rows of C with the same
indexes. For every i, we assign to every free variable X_{ig} of the linear system $X_{(i)}C = (00)$ the value $[NA_{ig}]/N$. Solving those systems, we get as a solution a rational matrix $X = X(N)$ which satisfies $XC = 0$. Since $X(N) → A$ as $N → ∞$, the matrices $X(N)$ and A have the same sign pattern for sufficiently large N. □

Now let us prove the key result of the section.

Theorem 3.5. Let A be a real matrix with term rank equal to t. If the rank of A equals $t−2$, then there is a rational matrix which has rank $t−2$ and the same sign pattern as A.

Proof. 1. Up to row and column permutations, A is an n-by-m matrix of the form $(B C D O)$, where the matrix $B ∈ ℝ^{p×q}$ satisfies $p + q = t$, and O is the zero matrix. If the rank of D is less than $q − 1$, then by Lemma 3.4 we can construct a rational matrix D' of rank $q−2$ with the same sign pattern as D. Choosing B' and C' as arbitrary matrices with sign patterns equal to those of B and C, we get that the rank of $(B' C' D' O)$ is at most $t−2$, and we are done. We can assume in what follows that D has rank at least $q−1$ and, similarly, that C has rank at least $p−1$. Since the rank of A is $t−2 = p + q − 2$, we conclude that the rank of D exactly equals $q−1$ and the rank of C is $p−1$. 2. By Step 1, the rows of C are linearly dependent, and we can assume by Observation 3.1 that the coefficients of this linear dependence are rational. In other words, the columns of C generate a rational subspace in $ℝ^p$. Since rational points are dense in rational subspaces, we can assume that the matrix C (and the matrix D, similarly) consists of rational numbers, in which case the result follows from Lemma 3.3. □

Now we are ready to prove Conjecture 2.1.

Theorem 3.6. Let A be a real matrix with term rank equal to t. If the rank of A is at least $t−2$, then there is a rational matrix which has the same sign pattern and rank as those of A.

Proof. Note that adding a repeating row does not affect the rank of a matrix, and the term rank of the matrix obtained is either equal to or greater by one than that of the initial matrix. Therefore, adding a sufficient number of repeating rows to A, we get a matrix A' satisfying the assumptions of Theorem 3.5. So we can find a rational matrix B which has the same sign pattern as that of A and rank not exceeding the rank of A. Now the result follows from Observation 3.2. □

4. Optimality of the result

To construct sign patterns of term rank t realizable by real matrices of rank $t−3$ but not by rational matrices of that rank, we need to recall the definition of another rank concept. For $𝔽$ a field, define the Kapranov rank of a matrix $B ∈ {0,1}^{m×n}$ with respect to $𝔽$ as the smallest possible rank of a matrix $C ∈ ℝ^{m×n}$ satisfying $C_{ij} = 0$ if and only if $B_{ij} = 0$. The following lemma points out a connection between the quantity introduced (which we denote by $K_{𝔽}(B)$ in what follows) and the problem of pattern realisability.

Lemma 4.1. Assume R_1 is an ordered field, and a matrix $B ∈ {0,1}^{m×n}$ satisfies $r = K_{R_1}(B) < K_{R_2}(B)$ for any field R_2 strictly contained in R_1. Then there is a
sign pattern $S \in \{0, +, -\}^{m \times n}$ realizable by a matrix over R_1 of rank r but not by a matrix over R_2 of that rank.

Proof. By definition of Kapranov rank, there is a matrix $A \in R_1^{m \times n}$ which has rank r and satisfies $A_{ij} = 0$ if and only if $B_{ij} = 0$. Denoting the sign pattern of A by S, one can see that S is not realizable by a matrix over R_2 of rank r. \square

Now we see that a sign pattern realizable over R_1 but not over R_2 always exists if we have a zero-one matrix whose Kapranov rank over R_2 is greater than that over R_1. It turns out that producing zero-one matrices with this property can be performed by the use of matroid theory, and let us recall the basic definitions of this theory [2]. A matroid M on a finite set E is defined by the set $B \subset 2^E$ of its bases, which are supposed to satisfy the following conditions: (1) $B \neq \emptyset$; (2) if $A, B \in B$ and $a \in A \setminus B$, then there is a $b \in B \setminus A$ such that $A \setminus \{a\} \cup \{b\} \in I$. All the bases can easily be shown to have the same cardinality, and this cardinality is called the rank of a matroid M. A circuit in M is a minimal set which is a subset of no $B \in B$. A dual matroid M^* has as its bases the complements of the bases of M, and a circuit in M^* is called a cocircuit for M. The matroid M is representable over a field F if we can assign vectors from F^n to the elements of E in such a way that a set B is a basis of the linear span of E if and only if $B \in B$. Finally, define a cocircuit matrix $C = C_M$ of M as a matrix with rows indexed by elements of E and columns indexed by cocircuits such that $C_{ij} = 1$ if i belongs to the jth cocircuit and $C_{ij} = 0$ otherwise. The following theorem allows one to construct matrices whose Kapranov rank depends on a ground field.

Theorem 4.2. [1, Proposition 7.2 and Theorem 7.3] If M is a matroid of rank r and C its cocircuit matrix, then $K_F(C) \geq r$ for any field F. For F infinite, the condition $K_F(C) = r$ holds if and only if M is representable over F.

The following well-known fact connects the notions of matroid duality and representability.

Theorem 4.3. [2] If a matroid M is representable over a field F, then so is its dual M^*.

Note that the matroid duality is an involution, that is, the condition $(M^*)^* = M$ holds. This shows that Theorem [1,3] holds as well in the opposite direction. We also need the classical example of a non-representable matroid, which appeared in a foundational paper by Saunders MacLane [4].

Theorem 4.4. [4, Theorem 3] Let K be a finite algebraic field over the field of rational numbers. Then there exists a matroid M of rank 3 which is representable over K but over no field strictly contained in K.

Now we are ready to prove the theorem stating that the bound of $t - 2$ is optimal in Theorem 3.6.

Theorem 4.5. Let K be an ordered finite algebraic field over the field of rational numbers. Then there exists a matrix $A \in K^{n \times m}$ of rank $n - 3$ with the following property: the entries of any matrix $A' \in K^{n \times m}$ which has the same rank and sign pattern as those of A generate the whole field K.

Proof. Using Theorem 4.4 we get a rank-three matroid M representable over K but not over any field strictly contained in K. Denoting the number of its vertices by n,
we see that by definitions the dual M^* has rank $n - 3$. Then we use Theorem 4.3 to conclude that M^* is representable over K but not over any field strictly contained in K. From Theorem 4.2 it follows that the cocircuit matrix of M^*, which has n rows, has also Kapranov rank $n - 3$ with respect to K and greater Kapranov rank with respect to any field strictly contained in K. Application of Lemma 4.1 now completes the proof.

□

References

[1] M. Develin, F. Santos, B. Sturmfels, On the rank of a tropical matrix, in: Discrete and Computational Geometry (E. Goodman, J. Pach and E. Welzl, eds.), MSRI Publications, Cambridge Univ., Press, 2005.

[2] J. G. Oxley. Matroid theory (vol. 3). Oxford University press, 1992.

[3] Z. Li, Y. Gao, M. Arav, F. Gong, W. Gao, F. J. Hall, H. van der Holst, Sign patterns with minimum rank 2 and upper bounds on minimum ranks, Lin. Mult. Alg. 61(7) (2013) 895–908.

[4] S. MacLane, Some interpretations of abstract linear dependence in terms of projective geometry, Amer. J. Math. 58(1) (1936) 236–240.

National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000, Russia
E-mail address: yaroslav-shitov@yandex.ru