Particular aspects concerning acromegaly amid pandemic

Mara CARSOTE1,2, Florica SANDRU2,3, Diana Elena RENTEA1, Stefania ZUGRAVU1, Claudia MEHEDINTU2,4, Anda DUMITRASCU1, Mihai Cristian DUMITRASCU2,5

1 “C.I. Parhon” National Institute of Endocrinology, Bucharest, Romania
2 “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
3 Elias Emergency Hospital, Bucharest, Romania
4 “Nicolae Malaxa” Clinical Hospital, Bucharest, Romania
5 University Emergency Hospital, Bucharest, Romania

ABSTRACT

Acromegaly embraces typical complications of a pituitary tumor as well as GH (growth hormone) and IGF1 (insulin-like growth factor) excess-related cardio-metabolic and oncologic conditions; and associated medical, surgical treatment or even radiotherapy issues. We point out a few particular aspects concerning acromegaly issues amid COVID-19 pandemic. The review includes only full length, English published papers. One of the most important complications of long standing, untreated or un-responsive to therapy acromegaly is related to respiratory and otorhinolaryngology issues like sleep apnea; this becomes an important aspect causing pulmonary complications in patients with active coronavirus infection. In subjects who are not going through a COVID-19 infection, but they had a prior diagnostic of acromegaly, two main aspects of medical and surgical practice were noted: a massive reduction of surgical volume during the first year of pandemic, mostly during peak months of high infection rate in general population and the introduction of tele (digital) health care systems, of different protocols and various platforms mostly depending of medical center, rather than country or even continent related protocols. Associated central adrenal insufficiency requires a particular attention if COVID-19 positive. The data directly targeting the endocrinologists amid pandemic are very limited. ACROCOVID is a 2021 study that was internationally conducted based on a questionnaire that was applied to 84 endocrinologists (67% of them in Europe); 33% of acromegalic individuals had a delay on procedure because of insufficient COVID-19 assays and 54% of them due to inefficient provision for neurosurgery. Secondary diabetes mellitus (with a potential worsening in some patients due to pasireotide LAR) is at high risk for COVID-19 infection; the level of glycated hemoglobin A1c seems a good predictor at onset of infectious disease. Acromegaly might associate osteoporosis; coronavirus infection aggravates bone loss due to oxidative stress, inflammatory status, cytokine release, immobilization, glucocorticoid use. Acromegaly field concerning pandemic changes represents a complex, still ongoing matter involving both patients and multidisciplinary practitioners.

Keywords: acromegaly, pituitary tumor, neurosurgery, COVID-19, coronavirus, pandemic

INTRODUCTION

Acromegaly, a rare endocrine tumor related endocrine condition, embraces typical complications of a pituitary tumor as well as GH (growth hormone) and IGF1 (insulin-like growth factor) excess in terms of cardio-metabolic and even oncologic conditions; but, moreover, of associated medical, surgical treatment or even radiotherapy issues (1-10).
METHOD

We point out a few particular aspects concerning acromegaly issues amid COVID-19 pandemic. The review included only full length, English published papers, the search words are “acromegaly” or “pituitary tumor” or “neurosurgery” and “COVID-19” or “pandemic” or “coronavirus”. We also included collateral aspects amid pandemic in relationship to acromegaly related complications like diabetes mellitus, osteoporosis, sleep apnea etc. Several short sub-sections are included in terms of COVID-19 infection in patients with a prior diagnostic of acromegaly or pandemic regulations on endocrine practice.

SLEEP APNEA

One of the most important complications of long standing, untreated or non-responsive to therapy acromegaly is related to respiratory and otorhinolaryngology issues like sleep apnea; this becomes an important aspect causing pulmonary complications in patients with active coronavirus infection, as also reported in patients with prior respiratory co-morbidities like chronic obstructive bronchitis, lung neoplasia (11-19). We mention a case published in 2021, an adult female patient who was admitted for a severe form of coronavirus infection complicated with lung events who was diagnosed with acromegaly starting from these pulmonary complications; therapy with somatostatin analogue octreotide was immediately started (20).

VOLUME OF MEDICAL CARE

In subjects who are not going through a COVID-19 infection, but they had a prior diagnostic of acromegaly, two main aspects of medical and surgical practice were noted: a massive reduction of surgical volume during the first year of pandemic, mostly during peak months of high infection rate in general population and the introduction of tele (digital) health care systems, of different protocols and various platforms mostly depending of medical center, rather than country or even continent related protocols (21-29). These aspects are not specific for individuals with somatotropinomas (30). However, virtual visits are required to follow-up the medical therapy with somatostatin analogues, dopamine agonists and GH blockers and potential side effects (31-34). A study on telemedicine – associated pitfalls in 78 people (median age of 63 years) with acromegaly (more than half were women) showed: 91% satisfaction over new practice in addition to time – and money – saving aspects versus pre-pandemic visits; the adherence to therapy was sustained for 84% of individuals; 13% of patients were identified as COVID-19 positive at some point; the adherence to digital medicine dropped within the following 6 months suggesting that perhaps the best time frame to use virtual visits in these patients is for maximum 6 months (35). A web-based, single center, cross-sectional study on 217 patients with acromegaly versus 127 subjects with Cushing disease versus healthy control versus patients infected with coronavirus (without pituitary tumors) showed that anxiety elements were statistically significant higher in infected patients versus the others categories; it seems that discontinuity rate of treatment was higher in acromegaly versus Cushing’ disease (36).

COVID-19-RELATED HYPOPITUITARISM

Angiotensin-converting enzyme 2 (ACE2) receptor is found in pituitary gland, thus in infected patients (with or without previous pituitary tumors) it was identified a process of hypophysitis with consecutive hypopituitarism requiring prompt glucocorticoids replacement (37-40). Also, acromegalic people with associated central adrenal insufficiency require a particular attention if they become COVID-19 positive; they need to double the substitution dose from the very beginning even in mild forms or switching to intravenous glucocorticoids (as in cases with primary adrenal insufficiency) or within the days following vaccination against COVID-19 “sick days” rule should be applied (41-46).

EXPERTS’ OPINION

While the level of statistical evidence is still low (as revealed by some authors), some experts’ opinions have been released pointing out the particular pandemic aspects of patients with pituitary tumors, also including (in addition to somatotropinomas) prolactinomas, Cushing disease, non-functioning adenomas, etc.; the key-messages involve multidisciplinary teams, tele-adjustment, and fragile subpopulations facing the infection like those with adrenal insufficiency or diabetes mellitus as complications of pituitary masses (47-51).

ACROCOVID STUDY

The data directly targeting the endocrinologists amid pandemic are very limited. ACROCOVID is a 2021 study that was internationally conducted based on a questionnaire that was applied to 84 endocrinologists (67% of them in Europe) and 58% of them were female practitioners (52). 52% of physicians were from a specialized team on pituitary disorders; 47% of them had more than 50 acromegalic patients to take care (52). Concerning acromegaly: first line therapy was neurosurgery 84% (33% with a delay on procedure because
of insufficient COVID-19 assays and 54% due to inefficient provision for neurosurgery), medical therapy 14% (52).

DIABETES MELLITUS

GH/IGF-1 act as aggravating circumstances for secondary diabetes mellitus (with a potential worsening in some patients due to pasireotide LAR); a multitude of scientific information clearly pointed the condition (of different etiologies) as high risk for COVID-19 infection; the level of glycated hemoglobin A1c seems a good predictor at onset of infectious disease; the switch to insulin therapy is mandatory in severe infections (53-59).

HIGH BLOOD PRESSURE

Arterial hypertension, also of secondary cause, is correlated with severe coronavirus infection and a higher mortality (60,61). Clinical trials from 2021 showed that additional risk factors are early age at onset, nighttime arterial pressure, associated coronary heart disease; medication with blockers of renin-angiotensin system does not seem a high risk factor; older subjects should be treated based on individual management (advanced age is a general high risk factor) (62).

METABOLIC BONE DISEASE

Acromegaly might associate osteoporosis with a particular pattern (high bone mineral density) and prevalent vertebral fractures on one third of subjects; COVID-19 infection aggravates bone loss due to oxidative stress, inflammatory status, cytokine release, immunobilization, glucocorticoid use etc.; while hypovitaminosis D has a high prevalence in general and acromegalic population, especially in menopausal women, with particular interest in immune-modulation concerning coronavirus effects at human body (63-70).

DISCUSSIONS

The topic of acromegaly should be expand to associated tumors of endocrine and non-endocrine patterns, the umbrella phenotype in syndromes like multiple endocrine neoplasia type 1, McCune-Albright syndrome, Carney syndrome, neurofibromatosis type 1 etc. (71-75).

CONCLUSION

Acromegaly field concerning pandemic changes represents a complex, still ongoing matter involving both patients and practitioners.

REFERENCES

1. Khan SA, Ram N, Masood MQ, Islam N. Prevalence of Comorbidities among Patients with Acromegaly. Pak J Med Sci. 2021 Nov-Dec;37(7):1758-1761.
2. Gadehla MR, Wildenber LE, Kasuki L. The future of somatostatin receptor ligands in acromegaly. J Clin Endocrinol Metab. 2021 Oct 7;dgab726.
3. Ioachimescu AG. Acromegaly: achieving timely diagnosis and improving outcomes by personalized care. Curr Opin Endocrinol Diabetes Obes. 2021 Aug 1;12(4):419-426.
4. Gheorghisan-Galateanu AA, Valea A, Carsote M. Acromegaly profile on menopausal women after 36 months of medical therapy with somatostatin analogues. Medicine in evolution. 2016. XXII(3):361-366.
5. de Vries F, Lobatto DJ, Verstegen MJT, Schutte PJ, Notting IC, et al. Outcome Squares Integrating Efficacy and Safety, as Applied to Functioning Pituitary Adenoma Surgery. J Clin Endocrinol Metab. 2021 Aug 18;106(9):e3300-e3311.
6. Carsote M, Ghemigian A, Ghervan C, Valea A. Acromegaly: focus on facial, oral, and dental anomalies. Medicine in evolution. 2016;22(2):241-247.
7. Antunes X, Kasuki L, Gadelha MR. New and emerging pharmacological treatment options for acromegaly. Expert Opin Pharmacother. 2021 Aug;22(12):1615-1623.
8. Sandru F, Popa A, Paduraru DN, Filipescu A, Carsote M, Ghemigian A. Skin anomalies in acromegalic patients (Review of the practical aspects). Exp Ther Med. 2021 Nov;22(5):1330.
9. Crisafulli S, Luxi N, Sultana J, Fontana A, Spagnolo F, Giuffrida G, et al. Global epidemiology of acromegaly: a systematic review and meta-analysis. Eur J Endocrinol. 2021 Jul 1;185(2):251-263.
10. Ionovici N, Carsote M, Terzea DC, Predescu AM, Rauten AM, Popescu M. Somatostatin receptors in normal and acromegalic somatotroph cells: the U-turn of the clinician to immunohistochemistry report – a review. Rom J Morphol Embryol 2020;61(2):353-359.
11. Flieseriu M, Barkan A, Del Pilar Schneider M, Darhi Y, et al. Prevalence of comorbidities and concomitant medication use in acromegaly: analysis of real-world data from the United States. Pituitary. 2021.
12. Berkmann S, Brun J, Schuetz P, Christ E, Mariani L, Mueller B. Prevalence and outcome of comorbidities associated with acromegaly. Acta Neurochir (Wien). 2021 Nov;163(11):3171-3180.
13. Celik D, Duyar SS, Aksu F, Firat S, Ciftci B. Evaluation of Acromegaly patients with sleep disturbance related symptoms. Pak J Med Sci. 2021 Jul-Aug;37(4):1181-1185.
14. Cao W, Wang X, Luo J, Huang R, Xiao Y. Impact of obstructive sleep apnea on cardiovascular risk in patients with acromegaly. Sleep Med. 2021 Apr, 80:193-198.
15. Bruyneel M, Velti F, Sitoris G, Vintila S, Truffaut L, Kleynen P, Poppe KG. Prevalence of acromegaly in moderate-to-severe obstructive sleep apnoea. Clin Endocrinol (Oxf). 2021 Mar 17.
16. Parolin M, Dassie F, Alessio L, Wennberg A, Rossato M, Vetto R, Maffei P, Pagano C. Obstructive Sleep Apnea in Acromegaly and the Effect of Treatment: A Systematic
28. Bokolo AJ. Exploring the adoption of telemedicine and virtual software for care of outpatients during and after COVID-19 pandemic. *Ir J Med Sci*. 2021 Feb; 190(1):1-10.

29. Grahem-Horton DH, Ross HJ, Moayeri Y. Digital Technology Application for Improved Responses to Health Care Challenges: Lessons Learned From COVID-19. *Can J Cardiol*. 2021 Dec 1:S0828-282X(21)00915-6.

30. Gatto F, Khorrami K, Nista F, Corica G, Ferone D. Acromegaly Management in a Tertiary Referral Center After 1 Year of the Coronavirus 2019 Pandemic: A Double Challenge. *Endocr Pract*. 2021 Aug;27(8):855-867.

31. Kureshi N, Hebb ALO, Clarke DB, Imran SA. Virtual Health Care in a Postpandemic World: Implications for Patients With Neuropituitary Disorders. *Endocr Pract*. 2021 Oct 7:S1530-891X(21)01245-3.

32. Valea A, Ghervan C, Carsote M, Morar A, Iacob I, Tomesc F, Pop DD, Georgescu C. Effects of combination therapy: somatostatin analogues and dopamine agonists on GH and IGF1 levels in acromegaly. *Cijnul Medical*. 2015;8(3):310-313.

33. Valea A, Carsote M, Ghervan C, Georgescu C. Glycemic profile in patients with acromegaly treated with somatostatin analogue. *J Med Life*. 2015;8(Sp issue):79-83.

34. Ghemigian A, Cocolos A, Petrova E, Valea A, Dumitruc N, Carsote M. New cross-roads for second line medical therapy in acromegaly. *Arch Balk Med Union*. 2018; 53(1):117-125.

35. Naves LA, Rosa IN, Lima TAS, Santana LB, Frara S, Allora A, Castellino L, di Filippo L, Frara S, Kavla Y, Ozkaya HM, Kadioglu P. Exploring the adoption of telemedicine and virtual software for care of outpatients during and after COVID-19 pandemic. *Ir J Med Sci*. 2021 Feb; 190(1):1-10.

36. Sánchez J, Cohen M, Zapater JL, Eisenberg Y. Primary Adrenal Insufficiency After COVID-19 Infection. *AACE Clin Case Rep*. 2021 Nov 14.

37. Salzano C, Saracino G, Cardillo G. Possible Adrenal Involvement in Long COVID Syndrome. *Medicina* (Kaunas). 2021 Oct 15;57(10):1087.

38. Churilov LP, Kanducz D, Ryabkova VA. COVID-19: adrenal response and molecular mimicry. *Isr Med Assoc J*. 2021 Oct; 23(10):618-619.

39. Chifu I, Detomas M, Dischingher U, Kimpel O, Megerle F, Hahner S, Fassnacht M, Altieri B. Management of Patients With Glucocorticoid-Related Diseases and COVID-19. *Front Endocrinol (Lausanne)*. 2021 Sep 14;12:705214.

40. Vakhsboori M, Heidarpour M, Bondariyan N, Sadeghpour N, Mousavi Z. Adrenal Insufficiency in Coronavirus Disease 2019 (COVID-19)-Infected Patients without Preexisting Adrenal Diseases: A Systematic Literature Review. *Int J Endocrinol*. 2021 Sep 14;2021:2271514.

41. Varona JF, Garcia-Isidro M, Moeinvari Z, Ramos-Lopez M, Fernandez-Dominguez M. Primary adrenal insufficiency associated with Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccine-induced immune thrombocytopenia (VITT). *Eur J Intern Med*. 2021 Sep;91:90-92.

42. Shekhar S, Wurth R, Kamlaris CDC, Eisenhofer G, Barrera FJ, et al. Endocrine Conditions and COVID-19. *Horm Metab Res*. 2020 Jul;52(7):471-484.

43. Wurth R, Hajdenberg M, Barrera FJ, Shekhar S, Copacino CE, et al. Scoping review of COVID-19-related systematic reviews and meta-analyses: can we really have confidence in their results? *Postgraduate Medical Journal*. 2021.

44. Fieseriu M, Buchfelder M, Cetas JS, Fazeli PK, Mallaia-Gil SM, et al. Pituitary society guidance: pituitary disease management and patient care recommendations during the COVID-19 pandemic-an international perspective. *Pituitary*. 2020 Aug; 23(4):327-337.

45. Kasuki L, Gadelia MR. Letter to the Editor: “Our Response to COVID-19 as Endocrinologists and Diabetologists”. *J Clin Endocrinol Metab*. 2020 Jul 1; 105(7):dgaa224.

46. Sánchez J, Cohen M, Zapater JL, Eisenberg Y. Primary Adrenal Insufficiency After COVID-19 Infection. *AACE Clin Case Rep*. 2021 Nov 14.

47. Salzano C, Saracino G, Cardillo G. Possible Adrenal Involvement in Long COVID Syndrome. *Medicina* (Kaunas). 2021 Oct 15;57(10):1087.

48. Churilov LP, Kanducz D, Ryabkova VA. COVID-19: adrenal response and molecular mimicry. *Isr Med Assoc J*. 2021 Oct; 23(10):618-619.

49. Chifu I, Detomas M, Dischingher U, Kimpel O, Megerle F, Hahner S, Fassnacht M, Altieri B. Management of Patients With Glucocorticoid-Related Diseases and COVID-19. *Front Endocrinol (Lausanne)*. 2021 Sep 14;12:705214.

50. Vakhsboori M, Heidarpour M, Bondariyan N, Sadeghpour N, Mousavi Z. Adrenal Insufficiency in Coronavirus Disease 2019 (COVID-19)-Infected Patients without Preexisting Adrenal Diseases: A Systematic Literature Review. *Int J Endocrinol*. 2021 Sep 14;2021:2271514.

51. Varona JF, Garcia-Isidro M, Moeinvari Z, Ramos-Lopez M, Fernandez-Dominguez M. Primary adrenal insufficiency associated with Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccine-induced immune thrombocytopenia (VITT). *Eur J Intern Med*. 2021 Sep;91:90-92.
era of COVID-19. J Am Assoc Nurse Pract. 2021.

55. Metwally AA, Mehta P, Johnson BS, Nagarjuna A, Snyder MP. COVID-19-Induced New-Onset Diabetes: Trends and Technologies. Diabetes. 2021 Dec; 70(12):2733-2744.

56. Singh J, Alam A, Samal J, Maeurer M, Ehtesham NZ, Chakaya J, Hira S, Hasnain SE. Role of multiple factors likely contributing to severity-mortality of COVID-19. Infect Genet Evol. 2021 Dec;96:105101.

57. Memon B, Abdelalim EM. ACE2 function in the pancreatic islet: Implications for relationship between SARS-CoV-2 and diabetes. Acta Physiol (Oxf). 2021 Dec;233(4):e13733.

58. Shirakawa J. Pancreatic beta-cell fate in subjects with COVID-19. J Diabetes Investig. 2021 Dec;12(12):2126-2128.

59. Mohseni M, Ahmadi S, Azami-Aghdash S, Mousavi Isfahani H, Moosavi A, Fardid M, Etemadi M, Ghazanfari F. Challenges of routine diabetes care during COVID-19 era: A systematic search and narrative review. Prim Care Diabetes. 2021 Dec;15(6):918-922.

60. Swamy S, Koch CA, Hannah-Shmouni F, Schiffrin EL, Klubo-Gwiazdinska J, Gubbi S. Hypertension and COVID-19: Updates from the era of vaccines and variants. J Clin Transl Endocrinol. 2022 Mar;12:100265.

61. Senia P, Vella F, Mucci N, Dounias G, Trovato A, Marconi A, Ledda C, Rapisarda V, Vitale E. Survey on COVID-19-related mortality associated with occupational infection during the first phase of the pandemic: A systematic review. Exp Ther Med. 2022 Jan;23(1):10.

62. Al Ghorani H, Götzingier F, Böhm M, Mahlouf F. Arterial hypertension - Clinical trials update 2021. Nutr Metab Cardiovasc Dis. 2022 Jan;32(1):21-31.

63. Carsote M, Ghemigian A, Valea A, Dumitrascu A. Acromegaly-related osteoporosis. Romanian Journal of Clinical Research. 2018;1(1):27-30.

64. Carrone F, Ariano S, Piccini S, Milani D, Mirani M, Balzarini L, Lania AG, Mazzotti G. Update on vertebral fractures in pituitary diseases: from research to clinical practice. Hormones (Athens). 2021 Sep;20(3):423-437.

65. Violi A, Fortunato V, D’Amuri A, Zuliani G, Basili S, Passaro A, Corica B, Raparelli V. Rethinking of osteoporosis through a sex- and gender-informed approach in the COVID-19 era. Minerva Obstet Gynecol. 2021 Dec;73(6):754-769.

66. Cromer SJ, Yu EW. Challenges and Opportunities for Osteoporosis Care During the COVID-19 Pandemic. J Clin Endocrinol Metab. 2021 Nov 19;106(12):e4795-e4808.

67. Hampson G, Stone M, Lindsay JR, Crowley RK, Ralston SH. Diagnosis and Management of Osteoporosis During COVID-19: Systematic Review and Practical Guidance. Calcif Tissue Int. 2021 Oct;109(4):351-362.

68. Salamanna F, Maglio M, Borsari V, Landini MP, Fini M. Blood factors as biomarkers in osteoporosis: points from the COVID-19 era. Trends Endocrinol Metab. 2021 Sep;32(9):672-679.

69. Amrein K, Hoffmann M, Lobmeyr E, Martucci G. Vitamin D in critical care: where are we now and what is next? Curr Opin Crit Care. 2021 Aug 1;27(4):378-384.

70. Raisi-Estabragh Z, Martineau AR, Curtis EM, Moon RJ, Darling A, et al. Vitamin D and coronavirus disease 2019 (COVID-19): rapid evidence review. Aging Clin Exp Res. 2021 Jul;33(7):2031-2041.

71. Sandru F, Carsote M, Valea A, Albu SE, Petca RC, Dumitrascu MC. Somatostatinoma: Beyond neurofibromatosis type 1 (Review). Exp Ther Med. 2020;20(4):3383-3388.

72. Zhai X, Duan L, Yao Y, Xing B, Deng K, Wang L, et al. Clinical Characteristics and Management of Patients With McCune-Albright Syndrome With GH Excess and Precocious Puberty: A Case Series and Literature Review. Front Endocrinol (Lausanne). 2021 Oct 29;12:672394.

73. Carsote M, Paun S, Neamtu MC, Avramescu ET, Iosif C, Terzea D, Constantinou S, Danciulescu Miulescu R, Neamtu OM, Poiana C. The immunohistochemistry aspects in two cases of neurofibromatosis-associated abdominal tumors, Rom Journal Morphol Embryol, 2020;53(2):401-405.

74. Lamback EB, Henriques DG, Vazquez-Borrego MC, de Azeredo Lima CH, Kasuki L, Luque RM, Chimelli L, Gadelha MR. Growth hormone-releasing hormone-secreting pulmonary neuroendocrine tumor associated with pituitary hyperplasia and somatotropinoma. Arch Endocrinol Metab. 2021 Oct 29;65(5):648-663.

75. Sandru F, Dumitrascu MC, Petca A, Carsote M, Petca RC, Paun DL. Dermatological and endocrine elements in Carney complex (Review). Exp Ther Med. 2021 Nov;22(5):1313.