1. Introduction

Clostridium perfringens is a gram-positive, anaerobic bacterium that grows in the gastrointestinal tract of humans and animals and is found in the soil (1). Spontaneous C. perfringens sepsis is not caused by injury, which sets it apart from the classical gas gangrene that typically follows trauma. Spontaneous C. perfringens sepsis often presents with rapidly progressive intravascular hemolysis and metabolic acidosis, with high mortality rates of over 70% with standard intensive care. In such cases, alpha toxin secreted by C. perfringens is considered the main toxin responsible for intravascular hemolysis, disseminated intravascular coagulopathy, and multiple organ failure. Theta-toxin causes a cytokine cascade, which results in peripheral vasodilation similar to that seen in septic shock. For C. perfringens infections, antibiotics, such as high-dose penicillin, and surgical drainage as early as possible are the principal treatments of choice. However, considering the current mortality rate of sepsis, outcomes have not improved with the current standard treatment for C. perfringens infections. Monoclonal antibody against theta toxin in combination with gas gangrene antitoxin presents a promising therapeutic option.
synergistically, is necessary for the development of serious *C. perfringens* infection (31,32). Thus, alpha-toxin and theta-toxin are considered the principal virulence factors of *C. perfringens* infection.

3. Diagnosis

Hemolysis is the first alarming sign of *C. perfringens* infection. The presence of a liver abscess with gas formation, accompanied by signs of hemolysis, such as increased levels of indirect bilirubin and lactate dehydrogenase, and anemia are typical manifestations; however, progression to gross hemolysis usually leads to death (Fig. 1) (33,34). Therefore, rapid diagnosis is essential and definitive diagnosis before the patient progresses to gross hemolysis is crucial. Considering the pathophysiology of *C. perfringens* infection, early detection of alpha-toxin and theta-toxin in the serum might be the key to diagnosis. Monoclonal antibodies against these toxins, which have already been used in research settings, might be utilized for the development of diagnostic assays. Clinicians should always suspect *C. perfringens* sepsis in the absence of overt signs of hemolysis in patients with liver abscesses accompanied by gas formation.

In addition to the analysis for the presence of toxins, the diagnosis of DIC is also important for deciding whether adjunctive therapy should be initiated. The diagnosis of DIC is based on the criteria established by the Japanese Association for Acute Medicine (35,36), with a total score ≥ 4 indicating DIC.

4. General treatment strategies and adjunctive therapies

For bacterial infection, antibiotics, such as high-dose penicillin, and surgical drainage as early as possible are the 2 main treatments of choice (30). However, considering the high mortality rate of sepsis (37), the currently utilized standard treatments for *C. perfringens* infection have not led to better outcomes. To further improve patient outcomes, focusing on specific treatments is a reasonable first step in establishing therapeutic strategies with acceptable clinical outcomes.

Recombinant human soluble thrombomodulin (rTM) has been shown to be effective for sepsis-induced DIC in a meta-analysis (38). We previously examined the effects of rTM on hemolysis, coagulation status, inflammation, and mortality in alpha-toxin-treated rats (39) and found that rTM improved coagulation response induced by alpha-toxin with a significant difference in FDP level and platelet count in the rTM-treated group compared with the alpha-toxin-only group (39). These results suggest rTM as a candidate for the treatment of *C. perfringens*-induced DIC because it serves as a negative feedback regulator of blood coagulation (40).

Recently, Kubo et al. reported 2 patients with liver abscesses caused by *C. perfringens* who were initiated on intensive plasma exchange and survived (41). The application of plasma exchange to remove excess toxins produced by *C. perfringens* is reasonable. In fact, patients with Yamakagashi snake bites survived with aggressive plasma exchange therapy (42). However, in real-world clinical settings, especially for patients in septic shock, dialysis may cause severe hypotension,
which may necessitate therapy suspension. Thus, alternative therapies should be considered in patients with septic shock due to *C. perfringens*.

5. Antitoxin therapy

The gas gangrene antitoxin, which was developed against the toxins produced by *C. perfringens* type A, *C. septicum*, and *C. oedematiens*, has been used as a treatment option for classical gas gangrene following trauma. However, this product is no longer available in the United States due to its poor efficacy and severe allergic reactions against it. The gas gangrene antitoxin can neutralize alpha-toxin secreted by *C. perfringens*. Therefore, we have introduced and strongly recommended the use of the gas gangrene antitoxin as the optimal therapy in *C. perfringens* sepsis based on its pathophysiological mechanism (34,43,44). In a study investigating the effects of gas gangrene antitoxin on hemolysis, coagulation status, inflammation, and mortality in alpha-toxin-treated rats, we demonstrated that the gas gangrene antitoxin could stop hemolysis via the neutralization of alpha-toxin (39).

In a clinical setting, Yoshida et al. was the first to report a patient with *C. perfringens* sepsis who was treated with gas gangrene antitoxin (45). However, the efficacy of the gas gangrene antitoxin remains unclear because it was administered after the patient developed cardiopulmonary arrest and the patient died 8 h after gas gangrene antitoxin administration.

The gas gangrene antitoxin is owned by the government under the name of Kokuyu vaccine (34), and stored in 9 institutions spread across Japan. Therefore, rapid administration of the gas gangrene antitoxin is not practical due to supply limitations. In future, the gas gangrene antitoxin stocks at major hospitals, such as university hospitals and national hospital organizations, should be considered to treat patients with spontaneous *C. perfringens* sepsis.

The clinical use of the monoclonal antibody against theta-toxin, developed and defined first by Yamakawa et al. (46), in combination with the gas gangrene antitoxin is a promising therapeutic approach for spontaneous *C. perfringens* sepsis.

6. Prevention

Considering the high mortality rate with the currently used standard therapy, prevention strategies may be more practical than the development of promising monoclonal antibodies. As the first step in prevention, vaccination is considered the principal component. Four doses of the diphtheria/tetanus/pertussis vaccine are administered during infancy, and a vaccine against diphtheria and tetanus is administered at the age of 11–12 years under the Preventive Vaccination Law enacted in 1968 in Japan; this led to the disappearance of the diphtheria infection from clinical practice (47,48). Currently, there are no licensed vaccines that are suitable for protecting against *C. perfringens* sepsis in humans (49). However, vaccines that are currently in development for use in animals can potentially be developed further for use in humans (49,50). Therefore, vaccination might be considered an effective strategy for protection from serious *C. perfringens* sepsis in humans.

7. Future considerations

There is no nationwide registration for *C. perfringens* sepsis in Japan. Therefore, the exact number of patients with *C. perfringens* sepsis remains unknown. We recently launched a research group supported by the Research Program on Emerging and Re-emerging Infectious Disease of the Japan Agency for Medical Research and Development, with the aim of examining spontaneous *C. perfringens* sepsis in 2019. The creation of a nationwide registry for *C. perfringens* sepsis is the first step in the establishment of effective treatment strategies and further urgent work will be required.

Acknowledgments This research was supported by the Research Program on Emerging and Re-emerging Infectious Disease from the Japan Agency for Medical Research and Development (AMED).

Conflict of interest None to declare.

REFERENCES

1. Fraser AG, Collee JG. The production of neuraminidase by food poisoning strains of *Clostridium welchii* (*C. perfringens*). J Med Microbiol. 1975;8:251-63.
2. Ng H, Lam SM, Shum HP, et al. *Clostridium perfringens* liver abscess with massive haemolysis. Hong Kong Med J. 2010;16:310-2.
3. Rogstad B, Rithard S, Lunde S, et al. *Clostridium perfringens* septicemia with massive hemolysis. Infection. 1993;21:54-6.
4. Simon TG, Bradley J, Jones A, et al. Massive intravascular hemolysis from *Clostridium perfringens* septicemia: a review. J Intensive Care Med. 2014;29:327-33.
5. Vaiopoulos G, Calipadaki C, Sinifakoulis H, et al. Massive intravascular hemolysis: a fatal complication of *clostridium perfringens* septicemia in a patient with acute myeloid leukemia. Leuk Lymphoma. 2004;45:2157-9.
6. Landi G, Gualtieri G, Bello BS, et al. A case of fatal *Clostridium perfringens* bacteremia and sepsis following CT-guided liver biopsy of a rare neuroendocrine hepatic tumor. Forensic Sci Med Pathol. 2017;13:78-81.
7. Kwon O, Kim HY, Uh Y, et al. A case of *Clostridium perfringens* septicemia with fatal hemolytic complication. Korean J Lab Med. 2006;26:358-61.
8. Kirchhoff P, Muller V, Petrowsky H, et al. Fatal emphysematous cholecystitis caused by *Clostridium perfringens*. Surgery. 2007;141:411-2.
9. Takekura K, Sekoguchi S, Yamanaka S, et al. A case of a gas-forming liver abscess caused by *Clostridium perfringens* after transcatheter arterial chemoembolization. Nihon Shokakibyo Gakkai Zasshi. 2018;115:554-62. Japanese.
10. Tabarelli W, Bonatti H, Cejna M, et al. *Clostridium perfringens* liver abscess after pancreatic resection. Surg Infect (Larchmt). 2009;10:159-62.
11. Vuoilo S, Vahakari M, Laurila J, et al. Liver abscess and sepsis caused by *Clostridium perfringens*. Duodecim. 2016;132:1904-7.
18. Meinders AJ, Dijkstra I. Massive hemolysis and erythrophagocytosis

17. Shindo Y, Dobashi Y, Sakai T, et al. Epidemiological and

16. Yamaguchi R, Makino Y, Chiba F, et al. Fatal Clostridium perfringens infections in a patient with severe hemolytic anemia. Am J Case Rep. 2016;17:219-23.

15. Sarvari KP, Vasas B, Kiss I, et al. Fatal Clostridium perfringens sepsis due to emphysematous gastritis and literature review. Anaerobe. 2016;40:31-4.

14. Hashiba M, Tomino A, Takenaka N, et al. Massive haemolysis, gas-forming liver abscess and sepsis due to Clostridium perfringens in severe sepsis. Jpn J Surg. 2011;41:112-7.

13. Kusumoto K, Hamada A, Kusaka T, et al. A patient with gas-forming pyogenic liver abscess (GPLA) in a patient with past gastrectomy. Int J Surg Case Rep. 2016;27:32-5.

12. Ito M, Takahashi N, Saitoh H, et al. Successful treatment of Clostridium perfringens infection complicated by sepsis due to Clostridium perfringens – pathobiological profiles of the infection. J Infect Chemother. 2015;21:100-4.

11. Eltawansy SA, Merchant C, Atluri P, et al. Multi-organ failure following a self-limited episode of acute gastroenteritis. Am J Gastroenterol. 2015;110(Suppl 1):UCTN:E457.

10. Oshima S, Takaishi K, Tani N, et al. Two cases of liver abscess caused by Clostridium perfringens. Surg Today. 2016;46:57-64.

9. Qandeel H, Abudeeb H, Hammad A, et al. Liver abscess of Clostridium perfringens caused by Clostridium perfringens alpha-toxin. J Coll Physicians Surg Pak. 2016;26:222-3.

8. Shoko T, Urushibata N, Murata K. A case of small bowel necrosis due to Clostridium perfringens infection rapidly followed a fatal course. Nihon Rinsho Gakkai Zasshi (J Jpn Surg Assoc). 2016;77:1098-104. Japanese.

7. Hifumi T, Yamamoto A, Ato M, et al. Clinical serum therapy: benefits, cautions, and potential applications. Keio J Med. 2017;66:57-64.

6. Gando S, Saitoh D, Ogura H, et al. Disseminated intravascular coagulation (DIC) diagnosed based on the Japanese Association for Acute Medicine criteria is a dependent continuum to overt DIC in patients with sepsis. Thromb Res. 2009;123:715-8.

5. Singh RK, Baronia AK, Sahoo J et al. Prospective comparison of new Japanese Association for Acute Medicine (JAAM) DIC and International Society of Thrombosis and Hemostasis (ISTH) DIC score in critically ill septic patients. Thromb Res. 2012;129:e119-25.

4. Raith EP, Udy AA, Bailey M, et al. Prognostic accuracy of the SOFA score, SIRS criteria, and qSOFA score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit. JAMA. 2017;317:290-300.

3. Yamakawa K, Aihara M, Ogura H, et al. Recombinant human soluble thrombomodulin in severe sepsis: a systematic review and meta-analysis. J Thromb Haemost. 2015;13:508-19.

2. Hifumi T, Nakano D, Chiba J, et al. Combined therapy with gas gangrene antitoxin and recombinant human soluble thrombomodulin for Clostridium perfringens sepsis in a rat model. Toxicon. 2015;96:112-7.

1. Mohri M, Sugimoto E, Sata M, et al. The inhibitory effect of recombinant human soluble thrombomodulin on initiation and extension of coagulation—a comparison with other anticoagulants. J Thromb Haemost. 1999;82:1687-93.

1. Kubo T, Kawano Y, Miyaniishi K, et al. Two cases of liver abscess caused by Clostridium perfringens that potentially cured by combined modality therapy. Kanjo. 2017;58:105-14. Japanese.

1. Hifumi T, Sakai A, Kondo Y, et al. Venomous snake bites: clinical diagnosis and treatment. J Intensive Care. 2015;3:16.

1. Hifumi T, Koido Y, Takahashi M, et al. Antitoxin treatment for liver abscess caused by Clostridium perfringens. Clin Mol Hepatol. 2013;19:97-8.

1. Hifumi T, Takahashi M, Morokuma K, et al. Do you know the Clostridium perfringens antitoxin? J Jpn Soc intensive Care Med. 2010;17:287-9. Japanese.

1. Yoshida J, Nakamura H, Yamada S, et al. A case of freeze-dried gas gangrene antitoxin for the treatment of Clostridium perfringens sepsis. Nihon Shokakibyo Gakkai Zasshi. 2014;111:1416-23. Japanese.

1. Yamakawa Y, Ito A, Sato H. Theta-toxin of Clostridium perfringens purified and some properties. Biochim Biophys Acta. 1977;494:501-13.

1. Okada K, Ueda K, Morokuma K, et al. Seroepidemiologic study on pertussis, diphtheria, and tetanus in the Fukuoka area of southern Japan: seroprevalence among persons 0–80 years old and vaccination program. Jpn J Infect Dis. 2004;57:67-71.

1. Takahashi M, Komiyama T, Fukuda T, et al. A comparison of young and aged populations for the diphtheria and tetanus antitoxin titers in Japan. Jpn J Med Sci Biol. 1997;50:87-95.

1. Tiftball RW. Clostridium perfringens vaccines. Vaccine. 2009;27 Suppl 4:D44-7.

1. Nagahama M. Vaccines against Clostridium perfringens alpha-toxin. Curr Pharm Biotechnol. 2013;14:913-7.