Convergence of thin vibrating rods to a linear beam equation

Helmut Abels and Tobias Ameismeier

Abstract. We show that solutions for a specifically scaled nonlinear wave equation of nonlinear elasticity converge to solutions of a linear Euler–Bernoulli beam system. We construct an approximation of the solution, using a suitable asymptotic expansion ansatz based upon solutions to the one-dimensional beam equation. Following this, we derive the existence of appropriately scaled initial data and can bound the difference between the analytical solution and the approximating sequence.

Mathematics Subject Classification. Primary: 74B20; Secondary: 35L20, 35L70, 74K10.

Keywords. Wave equation, Nonlinear elasticity, Thin rods, Dimension reduction.

1. Introduction

The relation between solutions of the equations of nonlinear elasticity and solutions for lower-dimensional models is of great interest since the lower-dimensional models are often easier to analyze and to use for numerical simulations. A general introduction to this topic can be found in [5] or for continuum mechanics see [9]. In dependence of the size of the deformation and the applied forces, different lower-dimensional models can occur. Therefore, a rigorous derivation of the lower-dimensional models is of great interest. In the case of the time-independent case, there are many results, cf. e.g., Friesecke et al. [7,8] for the case of plates and Mora and Müller [11,12] in the case of rods and Scardia [14,15] for curved rods. But there are only few results in the time-independent case so far.

In this contribution we investigate the relation between solutions of an appropriately scaled wave equation of nonlinear elasticity and solutions of a linear Euler–Bernoulli beam system. More precisely, let \(\Omega := [0,L] \times S\) be the reference configuration of a three-dimensional rod, where \(L > 0\) and \(S \subset \mathbb{R}^2\) is the cross section. Then we consider the following nonlinear system

\[
\frac{\partial^2}{\partial t^2} u_h - \frac{1}{h^2} \text{div}_h \left(D\tilde{W}(\nabla_h u_h) \right) = h^2 f_h \quad \text{in } \Omega \times [0,T),
\]

\[
D\tilde{W}(\nabla_h u_h)\nu|_{(0,L) \times \partial S} = 0,
\]

\(u_h\) is \(L\)-periodic w.r.t. \(x_1\),

\[
(u_h, \partial_t u_h)|_{t=0} = (u_{0,h}, u_{1,h}),
\]

where \(T > 0\) and \(\tilde{W}\) is some elastic energy density chosen later. Existence of strong solutions for large times of this system was shown in [1]. More details on how to justify the scaling can be found there as well. The limit system as \(h \to 0\) is given by

\[
\frac{\partial^2}{\partial t^2} v + \begin{pmatrix} I_2 & 0 \\ 0 & I_3 \end{pmatrix} \frac{\partial^4}{\partial x_1^4} v = g \quad \text{in } [0,L] \times [0,\infty)
\]

\(v\) is \(L\)-periodic in \(x_1\)
\(\left(v, \partial_t v \right)_{t=0} = (\tilde{v}_0, \tilde{v}_1) \)

(1.7)

where \(\tilde{v}_0, \tilde{v}_1 \) and \(I_2, I_3 \) are appropriately chosen initial values and weights, respectively. It is the goal of this manuscript to prove convergence of the solutions of the system (1.1)–(1.4) to solutions of the limit system (1.5)–(1.7) with appropriate convergence rates for well-prepared initial data, cf. Theorem 3.3 below.

In an energetic setting the relations between higher-dimensional models and lower-dimensional ones, using the notion of \(\Gamma \)-convergence a fundamental contribution was given in [7]. There the classical geometric rigidity is proven. Using this result it was possible to prove a lot of convergence results in different geometrical situations and scaling regimes in the static setting, see, for instance, [8,11,12]. In the dynamical case for plates, a convergence result can be found in [3] and in [6] in the case of viscoelasticity. The large times existence and a first-order asymptotic for plates were shown in [2].

In the following we want to explain the main novelties and difficulties of this contribution. In a first step we construct an approximation using the solution of the lower-dimensional system. This approximation is constructed such that it solves the linearization around zero of the nonlinear, three-dimensional equation up to an error of order \(h^3 \). This is done explicitly by determining suitable prefactor functions as solutions of systems on \(S \). Thereafter, the main difficulty of this work is to establish existence of suitable initial data in order to ensure large times existence for the solution of the nonlinear problem. This is done in Sect. 3.2. Here we use the nonlinear equations for the initial data from the compatibility conditions. These are solved via a fixed point argument on precisely chosen function spaces. Finally, in Sect. 3.3 the convergence properties are proven. For this we use a general result for solutions of the linearized equation. Moreover, we have to carefully treat the rotational parts of the initial data, as the spaces for the fixed point argument do not cover them. For this we use a decomposition and the fact that the elastic energy density is chosen as \(\tilde{W}(F) = \text{dist}(Id + F; SO(3)) \).

The results are part of the second author’s PhD thesis [4].

2. Preliminaries and auxiliary results

2.1. Notation

We use standard notation; in particular \(\mathbb{N} \) and \(\mathbb{N}_0 := \mathbb{N} \cup \{0\} \) denote the natural numbers without and with zero, respectively. Moreover, the norm on \(\mathbb{R} \) and absolute value in \(\mathbb{R}^n \), \(\mathbb{R}^{n \times n} \) is denoted by \(|.| \) for all \(n \in \mathbb{N} \). For \(p, k \in \mathbb{N} \), we denote the classical Lebesgue and Sobolev spaces for some bounded, open set \(M \subset \mathbb{R}^n \), by \(L^p(M) \), \(W^k_p(M) \) and \(H^k(M) := W^{k,2}_2(M) \). A subscript \((0) \) on a function space will always indicate that elements have zero mean value, e.g., for \(g \in H^1_{(0)}(M) \) we have

\[
\int_M g(x) dx = 0.
\]

(2.1)

The cross section of the rod is always denoted by \(S \subset \mathbb{R}^2 \) and is assumed to be a smooth and bounded domain. Furthermore, let \(\Omega_h := (0, L) \times hS \subset \mathbb{R}^3 \) for \(h \in (0, 1] \) and \(L > 0 \) and for convenience we write \(\Omega := \Omega_1 \). We assume that \(S \) satisfies

\[
\int_S x_2 x_3 dx' = 0 \quad \text{and} \quad \int_S x_2 dx' = \int_S x_3 dx' = 0,
\]

(2.2)

(2.3)
where \(x' := (x_2, x_3) \subset \mathbb{R}^2 \). This is no loss of generality, as it can always be achieved via a translation and rotation. The scaling shell is such that we can assume \(|S| = 1\). Furthermore, we denote with \(\nabla_h \) the scaled gradient defined as

\[
\nabla_h = \left(\frac{1}{h} \partial_{x_2}, \frac{1}{h} \partial_{x_3} \right)^T \quad \text{and} \quad \varepsilon_h(u) = \text{sym}(\nabla_h u).
\]

The respective gradient in only \(x' := (x_2, x_3) \) direction is denoted by

\[
\nabla_{x'} := \left(\partial_{x_2}, \partial_{x_3} \right)^T.
\]

The standard notation \(H^k(\Omega) \) and \(H^k(\Omega; X) \) is used for \(L^2\)-Sobolev spaces of order \(k \in \mathbb{N} \) with values in \(\mathbb{R} \) and some space \(X \), respectively.

The space of all \(n \)-linear mappings \(G: V^n \to \mathbb{R} \) for a vector space \(V \) is denoted, throughout the paper by \(\mathcal{L}^n(V) \), \(n \in \mathbb{N} \). We deploy the standard identification of \(\mathcal{L}^1(\mathbb{R}^{n \times n}) = (\mathbb{R}^{n \times n})' \) with \(\mathbb{R}^{n \times n} \), i.e., \(G \in \mathcal{L}^1(\mathbb{R}^{n \times n}) \) is identified with \(A \in \mathbb{R}^{n \times n} \) such that

\[
G(X) = A : X \quad \text{for all} \quad X \in \mathbb{R}^{n \times n}
\]

where \(A : X = \sum_{i,j=1}^n a_{ij} x_{ij} \) is the usual inner product on \(\mathbb{R}^{n \times n} \). Analogously, for \(G \in \mathcal{L}^2(\mathbb{R}^{n \times n}) \) we use

the identification with \(\tilde{G} : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n} \) defined by

\[
\tilde{G}X : Y = G(X, Y) \quad \text{for all} \quad X, Y \in \mathbb{R}^{n \times n}.
\]

We introduce a scaled inner product on \(\mathbb{R}^{n \times n} \)

\[
A :_h B := \frac{1}{h^2} \text{sym} A \cdot \text{sym} B + \text{skew} A : \text{skew} B
\]

for all \(A, B \in \mathbb{R}^{n \times n} \) and \(h > 0 \) and the corresponding norm is denoted by \(|A|_h := \sqrt{A :_h A}\). With this we can define for \(W \in \mathcal{L}^d(\mathbb{R}^{n \times n}) \) the induced scaled norm by

\[
|W|_h := \sup_{|A_j| \leq 1, j = \{1, \ldots, d\}} \left| W(A_1, \ldots, A_d) \right|
\]

Using \(|A|_h \geq |A|_1 = |A| \) for all \(A \in \mathbb{R}^{n \times n} \), it follows \(|W|_h \leq |W|_1 =: |W| \) for all \(W \in \mathcal{L}^d(\mathbb{R}^{n \times n}) \) and \(0 < h \leq 1 \). The scaled \(L^p \)-spaces are defined as follows

\[
\|W\|_{L^p_h(U; \mathcal{L}^d(\mathbb{R}^{n \times n}))} = \|W\|_{L^p_h(U)} = \left(\int_U |W(x)|^p_h \, dx \right)^{\frac{1}{p}}
\]

if \(p \in [1, \infty) \), where \(U \subset \mathbb{R}^d \) is measurable. Thus \(\|W\|_{L^p_h(U; \mathcal{L}^d(\mathbb{R}^{n \times n}))} \leq \|W\|_{L^p(U; \mathcal{L}^d(\mathbb{R}^{n \times n}))} \). The scaled norm for \(f \in L^p(U, \mathbb{R}^{n \times n}) \) is defined in the same way

\[
\|f\|_{L^p_h(U; \mathbb{R}^{n \times n})} = \|f\|_{L^p_h(U)} = \left(\int_U |f(x)|^p_h \, dx \right)^{\frac{1}{p}}.
\]

Then

\[
\|f\|_{L^p_h(U; \mathbb{R}^{n \times n})} \geq \|f\|_{L^p(U; \mathbb{R}^{n \times n})}.
\]

As we will work with periodic boundary condition in \(x_1 \)-direction, we introduce for \(m \in \mathbb{N} \)

\[
H^m_{\text{per}}(\Omega) := \left\{ f \in H^m(\Omega) : \partial^\alpha_x f \big|_{x_1=0} = \partial^\alpha_x f \big|_{x_1=L}, \text{ for all } |\alpha| \leq m - 1 \right\}.
\]

This space can equivalently defined in the following way, which is in some situations more convenient

\[
\tilde{H}^m_{\text{per}}(\Omega) := \left\{ f \in H^m_{\text{loc}}(\mathbb{R} \times S) : f(x_1, x') = f(x_1 + L, x') \text{ almost everywhere} \right\}
\]
We equipped $H^m_{\text{per}}(\Omega)$ with the standard $H^m(\Omega)$-norm. As the maps $f \mapsto f|_{\Omega}: \tilde{H}^m_{\text{per}}(\Omega) \to H^m_{\text{per}}(\Omega)$ and $f \mapsto f_{\text{per}}: H^m_{\text{per}}(\Omega) \to \tilde{H}^m_{\text{per}}(\Omega)$ are isomorphisms, we identify $\tilde{H}^m_{\text{per}}(\Omega)$ with $H^m_{\text{per}}(\Omega)$. This leads immediately to the density of smooth functions in $H^m_{\text{per}}(\Omega)$, because, as S is smooth, there exists an appropriate extension operator and thus we can use a convolution argument.

In various estimates we will use an anisotropic variant of $H^k(\Omega)$, as we will have more regularity in lateral direction. Therefore, we define

$$H^{m_1,m_2}(\Omega) := \left\{ u \in L^2(\Omega) : \partial_{x_1}^l \nabla_{x}^k u \in L^2(\Omega), \text{ for } k = 0, \ldots, m_1, l = 0, \ldots, m_2 \right\}$$

where $m_1, m_2 \in \mathbb{N}_0$, the inner product is given by

$$(f, g)_{H^{m_1,m_2}(\Omega)} = \sum_{k=0,\ldots,m_1;l=0,\ldots,m_2} \left(\partial_{x_1}^l \nabla_{x}^k f, \partial_{x_1}^l \nabla_{x}^k g \right)_{L^2(\Omega)}.$$

Furthermore, we will use the scaled norms

$$\|A\|_{H^{m_2}(\Omega)} := \left(\sum_{|\alpha| \leq m} \|\partial_{x}^\alpha A\|_{L^2_x(\Omega)}^2 \right)^{\frac{1}{2}},$$

$$\|B\|_{H^{m_1,m_2}(\Omega)} := \left(\sum_{k=0,\ldots,m_1;l=0,\ldots,m_2} \|\partial_{x_1}^l \nabla_{x}^k B\|_{L^2_x(\Omega)}^2 \right)^{\frac{1}{2}}.$$

for $A \in H^m(\Omega; \mathbb{R}^{n \times n})$ and $B \in H^{m_1,m_2}(\Omega; \mathbb{R}^{n \times n})$ and $n \in \mathbb{N}$. As an abbreviation we denote for $u \in H^k(\Omega; \mathbb{R}^3)$ the symmetric scaled gradient by $\varepsilon_h(u) := \text{sym}(\nabla_h u)$ and $\varepsilon(u) = \varepsilon_1(u) = \text{sym}(\nabla u)$.

The following lemma provides the possibility to take traces for $u \in H^{0,1}(\Omega)$:

Lemma 2.1. The operator $\text{tr}_a: H^{0,1}(\Omega) \to L^2(S)$, $u \mapsto u|_{x_1=a}$ is well defined and bounded.

Proof. This is an immediate consequence of the embedding

$$H^{0,1}(\Omega) = H^1(0,L;L^2(S)) \hookrightarrow \text{BUC}([0,L];L^2(S))$$

where $\text{BUC}([0,L];X)$ is the space of all uniformly continuous functions $f: [0,L] \to X$ for some Banach space X. \hfill \square

2.2. The strain energy density W and Korn’s inequality

We investigate the mathematical assumptions and resulting properties of the strain-energy density W we use in this contribution. We assume to have $W: \mathbb{R}^{3 \times 3} \to [0, \infty)$ defined by

$$W(F) := \frac{1}{2} \text{dist}(F, SO(3))$$

where $SO(3)$ denotes the group of special orthogonal matrices. This energy density clearly satisfies the following general assumptions

(i) $W \in C^\infty(B_\delta(Id); [0, \infty))$ for some $\delta > 0$;
(ii) W is frame-invariant, i.e., $W(RF) = W(F)$ for all $F \in \mathbb{R}^{3 \times 3}$ and $R \in SO(3)$;
(iii) there exists $c_0 > 0$ such that $W(F) \geq c_0 \text{dist}(F, SO(3))^2$ for all $F \in \mathbb{R}^{3 \times 3}$ and $W(R) = 0$ for every $R \in SO(3)$.

Remark 2.2. We note that W has a minimum point at the identity, as $W(Id) = 0$ and $W(F) \geq 0$ for all $F \in \mathbb{R}^{3 \times 3}$. Hence, we have for $\bar{W}(F) := W(Id + F)$ for all $F \in \mathbb{R}^{3 \times 3}$, $D\bar{W}(0)|G = 0$ for all $G \in \mathbb{R}^{3 \times 3}$. Moreover, it holds $D^2\bar{W}(0)F = \text{sym} F$ and for $P \in \mathbb{R}^{3 \times 3}_{skew}$, $A, B \in \mathbb{R}^{3 \times 3}$ we obtain

$$D^3\bar{W}(0)|A, B, P = \left((A^T - A)^T \text{sym}(B) + (B^T - B)^T \text{sym}(A)\right) : P.$$ \hfill (2.5)

The following lemma provides an essential decomposition of $D^3\bar{W}$ in the general form.

Lemma 2.3. There is some constant $C > 0$, $\varepsilon > 0$ and $A \in C^{\infty}(\overline{B}_\varepsilon(0); \mathcal{L}^3(\mathbb{R}^{n \times n}))$ such that for all $G \in \mathbb{R}^{n \times n}$ with $|G| \leq \varepsilon$ we have

$$D^3\bar{W}(G) = D^3\bar{W}(0) + A(G)$$

where

$$|D^3\bar{W}(0)|_h \leq C h \quad \text{for all} \quad 0 < h \leq 1,$$

$$|A(G)| \leq C |G| \quad \text{for all} \quad |G| \leq \varepsilon. \quad \hfill (2.6)$$

$$\text{Proof.} \quad \text{For the proof we refer to [2, Lemma 2.6].} \hfill \Box$$

With this we can prove the following bound for $D^3\bar{W}$.

Corollary 2.4. There exist $C, \varepsilon > 0$ such that

$$\|D^3\bar{W}(Z)(Y_1, Y_2, Y_3)\|_{L^1(\Omega)} \leq C h \|Y_1\|_{H^2_h(\Omega)} \|Y_2\|_{L^2_h(\Omega)} \|Y_3\|_{L^2_h(\Omega)}$$

for all $Y_1 \in H^2(\Omega, \mathbb{R}^{n \times n})$, $Y_2, Y_3 \in L^2(\Omega; \mathbb{R}^{n \times n})$, $0 < h \leq 1$ and $\|Z\|_{L^\infty(\Omega)} \leq \min\{\varepsilon, h\}$ and

$$\|D^3\bar{W}(Z)(Y_1, Y_2, Y_3)\|_{L^1(\Omega)} \leq C h \|Y_1\|_{H^2_h(\Omega)} \|Y_2\|_{H^2_h(\Omega)} \|Y_3\|_{L^2_h(\Omega)}$$

for all $Y_1, Y_2 \in H^1(\Omega, \mathbb{R}^{n \times n})$, $Y_3 \in L^2(\Omega; \mathbb{R}^{n \times n})$, $0 < h \leq 1$ and $\|Z\|_{L^\infty(\Omega)} \leq \min\{\varepsilon, h\}$ and

$$\|D^3\bar{W}(Z)(Y_1, Y_2, Y_3)\|_{L^1(\Omega)} \leq C h \left(\|Y_1\|_{H^2_h(\Omega)} \|Y_2\|_{H^2_h(\Omega)} \|Y_3\|_{L^2_h(\Omega)} \right)$$

for all $Y_1 \in L^\infty(\Omega, \mathbb{R}^{n \times n})$, $Y_2, Y_3 \in L^2(\Omega; \mathbb{R}^{n \times n})$, $0 < h \leq 1$ and $\|Z\|_{L^\infty(\Omega)} \leq \min\{\varepsilon, h\}$. \hfill (2.7)

$$\text{Proof.} \quad \text{The inequalities follow directly from Lemma 2.3 and H"{o}lder’s inequality.} \hfill \Box$$

In order to bound the full scaled gradient $\nabla_h g$ of some function $g \in H^1_{\text{per}}(\Omega)$ by the symmetric one, we need a sharp Korn’s inequality for thin rods. As rigid motions $x \mapsto \alpha x^\perp$ for $\alpha \in \mathbb{R}$ arbitrary are admissible functions in $H^1_{\text{per}}(\Omega)$, we cannot expect that the full scaled gradient is bounded by $\varepsilon_h(g)$. Precisely, we consider the following results.

Lemma 2.5. There exists a constant $C = C(\Omega) > 0$ such that for all $0 < h \leq 1$ and $u \in H^1_{\text{per}}(\Omega; \mathbb{R}^3)$ we have

$$\left\|\nabla_h u - \frac{1}{h} B(u)\right\|_{L^2(\Omega)} \leq C \left\|\frac{1}{h} \varepsilon_h(u)\right\|_{L^2(\Omega)},$$

where

$$B(u) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a(u) \\ 0 & -a(u) & 0 \end{pmatrix} \quad \hfill (2.11)$$

with $a(u) = \frac{1}{|\Omega|} \int_\Omega \partial_{x_3} u_2(x) - \partial_{x_2} u_3(x) dx$. \hfill (2.12)

$$\text{Proof.} \quad \text{The proof is similar to [2, Lemma 2.1] and is done in [4, Lemma 2.4.4].} \hfill \Box$$
Lemma 2.6. (Korn inequality in integral form) For all $0 < h \leq 1$ and $u \in H^1_{\text{per}}(\Omega; \mathbb{R}^3)$, there exists a constant $C_K = C_K(\Omega)$, such that

$$\|\nabla_h u\|_{L^2(\Omega)} \leq \frac{C_K}{h} \left(\|\varepsilon_h(u)\|_{L^2(\Omega)} + \left| \int_{\Omega} u \cdot x^\perp \, dx \right| \right)$$

(2.13)

where $x^\perp = (0, -x_3, x_2)^T$.

Proof. A proof can be found in [1]. □

3. First-order expansion in a Linearized regime

We construct an approximation to the unique solution of the nonlinear system

$$\partial_t^2 u_h - \frac{1}{h^2} \text{div}_h \left(D\tilde{W}(\nabla_h u_h) \right) = h^2 f_h \quad \text{in } \Omega \times [0, T),$$

$$D\tilde{W}(\nabla_h u_h)\nu|_{(0,L)\times \partial S} = 0,$$

$$u_h \text{ is } L\text{-periodic w.r.t. } x_1,$$

$$(u_h, \partial_t u_h)|_{t=0} = (u_{0,h}, u_{1,h}),$$

where $\tilde{W}(F) = W(Id + F)$ for all $F \in \mathbb{R}^{3 \times 3}$, $T > 0$. We assume that

$$f_h(x, t) = \begin{pmatrix} 0 \\ g(x_1, t) \end{pmatrix}$$

for some $g \in \bigcap_{k=0}^3 W^{10-2k}_{\text{per}}(0, T; H^1_0(\mathbb{R}^2))$, which implies

$$\int_S f_h(x, t) x_k \, dx' = 0$$

for $k = 2, 3$. Moreover, we assume that

$$\max_{\sigma=0,1,2} \|\partial_t^\sigma g|_{t=0}\|_{H^{2-2\sigma}_0(0,L)} \leq M,$$

(3.5)

where $M > 0$ is chosen later. Without loss of generality we can assume $\int_0^L g \, dx_1 = 0$. Otherwise, we subtract

$$a(t) := \frac{1}{|\Omega|} \left(\int_{\Omega} u_{0,h} \, dx - t \int_{\Omega} u_{1,h} \, dx - \int_0^t \left(t - s \right) \int_{\Omega} f_h(s) \, dx \, ds \right)$$

from u_h analogously as in the proof of [1, Theorem 3.1].

3.1. Construction of the ansatz function

For the ansatz function we consider the following system of one-dimensional beam equations

$$\partial_t^2 v + \begin{pmatrix} I_2 & 0 \\ 0 & I_3 \end{pmatrix} \partial_{x_1}^4 v = g,$$

v is L-periodic in x_1,

$$(v, \partial_t v)|_{t=0} = (\tilde{v}_0, \tilde{v}_1),$$
where \(\tilde{v}_0 \in H^{12}_{\text{per}}(0, L; \mathbb{R}^2) \), \(\tilde{v}_1 \in H^{10}_{\text{per}}(0, L; \mathbb{R}^2) \) such that
\[
\|\tilde{v}_0\|_{H^8(0, L)} \leq M \quad \text{and} \quad \|\tilde{v}_1\|_{H^5(0, L)} \leq M
\]
and
\[
I_k := \int_S x_k^2 dx' \quad \text{for} \quad k = 2, 3.
\]
Then we obtain with standard methods, as, e.g., in [13, Theorem 11.8], the existence of a unique solution
\[
v \in \bigcap_{j=0}^4 C^j([0, T]; H^{12-2j}_{\text{per}}(0, L; \mathbb{R}^2)).
\]
Moreover, due to the assumptions for \(g \) and the periodicity of \(v \) it follows
\[
\partial_t^2 \int_0^L v dx_1 = 0.
\]
Now we define
\[
\tilde{u}_h(x, t) = h^2 \begin{pmatrix} 0 \\ v_2 \\ v_3 \end{pmatrix} + h^3 \begin{pmatrix} -x_2 \partial_{x_1} v_2 - x_3 \partial_{x_1} v_3 \\ 0 \\ 0 \end{pmatrix} + h^5 \begin{pmatrix} a_2(x') \partial^3_{x_1} v_2 + a_3(x') \partial^3_{x_1} v_3 \\ 0 \\ 0 \end{pmatrix}
\]
\[
+ h^6 \begin{pmatrix} b_2(x') \partial^4_{x_1} v_3 + c_3(x') \partial^4_{x_1} v_3 \\ b_3(x') \partial^4_{x_1} v_2 + c_2(x') \partial^4_{x_1} v_2 \end{pmatrix},
\]
where \(a, b, c : S \to \mathbb{R}^2 \) are chosen later. Then
\[
\nabla_h \tilde{u}_h(x, t) = h^2 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + h^3 \begin{pmatrix} -\partial_{x_1} v_2 \\ -\partial_{x_1} v_3 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + h^5 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + h^6 \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]
Thus, with \(D^2 W(Id)F = \text{sym} \ F \) we can derive
\[
\frac{1}{h^2} \text{div}_h(D^2 W(Id) \nabla_h \tilde{u}_h) = h \begin{pmatrix} \left(\frac{1}{2} \Delta a - (x_2, x_3)^T \right) \cdot \partial^3_{x_1} v \\ 0 \\ 0 \end{pmatrix} + h^2 \begin{pmatrix} 0 \\ \nabla_{x'} a(x')^T \partial^4_{x_1} v \\ 0 \end{pmatrix} + h^2 \begin{pmatrix} 0 \\ \left(\partial_{x_2}^2 b_2 + \partial_{x_3}^2 b_2 \right) \partial^3_{x_1} v + \left(\partial_{x_2}^2 c_2 + \partial_{x_3}^2 c_2 \right) \partial^4_{x_1} v \\ 0 \end{pmatrix} + r_h(x, t)
\]
for
\[r_h(x, t) = O(h^3). \]

Moreover, for the boundary condition it holds
\[
D^2 W(Id)[\nabla_h \tilde{u}_h]\nu = h^4 \left(\begin{array}{c} \frac{1}{2} (\nabla_{x'} a \nu \partial S) \cdot \partial_{x_1}^2 v \\ 0 \\ 0 \end{array} \right) + h^5 \left(\frac{1}{2} (\partial_{x_2} b_2 \nu_2 + \frac{1}{2} (\partial_{x_2} c_2 + \partial_{x_3} b_2) \nu_2) \partial_{x_1}^4 v_1 + (\partial_{x_2} c_3 \nu_2 + \frac{1}{2} (\partial_{x_2} b_3 + \partial_{x_3} c_3) \partial_{x_1}^4 v_3) \right)
\]
\[
+ \frac{h^6}{2} \left(\nu^T \begin{pmatrix} b_2 & c_2 \\ b_3 & c_3 \end{pmatrix} \partial_{x_1}^5 v \right) = h^4 \left(\begin{array}{c} (\nabla_{x'} a \nu \partial S) \cdot \partial_{x_1}^3 v \\ 0 \\ 0 \end{array} \right) + h^5 \left(\nu^T \begin{pmatrix} \partial_{x_2} b_2 & \frac{1}{2} (\partial_{x_2} c_2 + \partial_{x_3} b_2) \\ \partial_{x_2} c_3 & \frac{1}{2} (\partial_{x_2} b_3 + \partial_{x_3} c_3) \end{pmatrix} \partial_{x_1}^4 v \right)
\]
\[
+ \frac{h^6}{2} \left(\nu^T \begin{pmatrix} b_2 & c_2 \\ b_3 & c_3 \end{pmatrix} \partial_{x_1}^5 v \right).
\]

We choose now \(a : S \to \mathbb{R}^2 \) as the solution of the following system
\[
\begin{cases}
-\Delta a = -2 (x_2) & \text{in } S \\
\nabla_{x'} a \nu = 0 & \text{on } \partial S
\end{cases}
\]
with
\[
\int_S a(x') dx' = 0.
\]

Such a solution exists, because we can apply the Lax–Milgram Lemma for the weak Laplacian on \(H^1(S; \mathbb{R}^2) \). Thereby, the coercivity follows from Poincaré’s inequality. With well-known regularity result, e.g., Theorem 4.18 in [10], we obtain \(a \in C^\infty(S, \mathbb{R}^2) \). The systems for \(b \) and \(c \) decouple to
\[
\begin{cases}
\partial_{x_2}^2 b_2 + \frac{1}{2} \partial_{x_3}^2 b_2 + \frac{1}{2} \partial_{x_2} \partial_{x_3} c_2 = I_1 - \partial_{x_2} a_2 & \text{in } S \\
\frac{1}{2} \partial_{x_2}^2 c_2 + \partial_{x_2}^2 c_2 + \frac{1}{2} \partial_{x_2} \partial_{x_3} b_2 = -\partial_{x_3} a_2 & \text{in } S
\end{cases}
\]
(3.8)
and
\[
\begin{cases}
\partial_{x_2}^2 c_3 + \frac{1}{2} \partial_{x_3}^2 c_3 + \frac{1}{2} \partial_{x_2} \partial_{x_3} b_3 = -\partial_{x_2} a_3 & \text{in } S \\
\frac{1}{2} \partial_{x_2}^2 b_3 + \partial_{x_3}^2 b_3 + \frac{1}{2} \partial_{x_2} \partial_{x_3} c_3 = I_2 - \partial_{x_3} a_3 & \text{in } S
\end{cases}
\]
(3.9)
Defining the matrix of coefficients \((p_{ij}^{\alpha \beta})_{i,j=1,2}\) in the following way
\[
\begin{align*}
p_{11}^{22} &= 1 & p_{12}^{33} &= \frac{1}{2} & p_{12}^{32} &= \frac{1}{4} & p_{12}^{23} &= \frac{1}{4} \\
p_{22}^{22} &= \frac{1}{2} & p_{22}^{32} &= 1 & p_{21}^{33} &= \frac{1}{4} & p_{21}^{32} &= \frac{1}{4} \\
p_{i,j}^{\alpha \beta} &= 0 & \text{otherwise.}
\end{align*}
\]

With \(w = (b_2, c_2)^T\) and \(f = (-I_1 - \partial_{x_2} a_2, -\partial_{x_3} a_2)^T\), (3.8) is equivalent to
\[
\sum_{\alpha, \beta = 2}^3 \sum_{i,j=1}^2 -\partial_\beta (p_{ij}^{\alpha \beta} \partial_\alpha w_j) = f_i
\]
for \(i = 1, 2\). Let now \(\xi := \begin{pmatrix} \xi_{12} & \xi_{13} \\ \xi_{22} & \xi_{23} \end{pmatrix} \in \mathbb{R}^{2 \times 2}\).

be arbitrary. Then it holds
\[
\sum_{\alpha, \beta = 2}^3 \sum_{i,j=1}^2 p_{ij}^{\alpha \beta} \xi_{i\alpha} \xi_{j\beta} = \frac{3}{4} (\xi_{12}^2 + \xi_{23}^2) + \frac{1}{4} (\xi_{12} + \xi_{23})^2 + \frac{1}{4} (\xi_{13} + \xi_{22})^2 + \frac{1}{4} (\xi_{13} + \xi_{22})^2
\]
\[
\geq \frac{1}{4} (\xi_{12}^2 + \xi_{13}^2 + \xi_{22}^2 + \xi_{23}^2) = \frac{1}{4} |\xi|^2
\]
and thus \(p_{ij}^{\alpha \beta}\) satisfies the Legendre condition for \(\lambda = \frac{1}{4}\). Thus, we can solve (3.8) and (3.9) with homogeneous Dirichlet boundary condition
\[
\begin{pmatrix} b_2 \\ c_2 \end{pmatrix} = 0 \quad \text{and} \quad \begin{pmatrix} b_3 \\ c_3 \end{pmatrix} = 0 \quad \text{on} \quad \partial S
\]
as the system (3.9) can be treated in the same manner. The regularity of \(a\) implies now that \(b = (b_2, b_3)\) and \(c = (c_2, c_3)\) are \(C^\infty(\mathcal{S}; \mathbb{R}^2)\).

The approximating solution \(\tilde{u}_h\) solves then the following system
\[
\begin{align*}
\partial_t^2 \tilde{u}_h - \frac{1}{h^2} \text{div}_h \left(D^2 \tilde{W}(0) \nabla \tilde{u}_h \right) &= h^2 f_h - r_h \quad \text{in} \quad \Omega \times (0, T), \\
D^2 \tilde{W}(0)[\nabla \tilde{u}_h]\nu \bigg|_{(0, L) \times \partial \Omega} &= \text{tr}_{\partial \Omega}(r_{N,h})\nu \quad \text{on} \quad \partial \Omega \times (0, T),
\end{align*}
\]
\(\tilde{u}_h\) is \(L\)-periodic in \(x_1\)-direction,
\[
(\tilde{u}_h, \partial_{x_1} \tilde{u}_h)|_{t=0} = (\tilde{u}_{0,h}, \tilde{u}_{1,h}),
\]
where \(r_h\) is chosen as above,
\[
r_{N,h} := h^5 \begin{pmatrix} \nu^T \left(\partial_{x_2} b_2 \frac{1}{2} (\partial_{x_2} c_2 + \partial_{x_3} b_2) \right) \\ \partial_{x_2} c_3 \frac{1}{2} (\partial_{x_2} b_3 + \partial_{x_3} c_3) \end{pmatrix} \frac{\partial_2^4 v}{\partial x_1^4} + \frac{1}{2} (\partial_{x_2} c_2 + \partial_{x_3} b_2) \partial_{x_3} c_2 \frac{\partial_2^4 v}{\partial x_1^4} + \frac{1}{2} (\partial_{x_2} b_3 + \partial_{x_3} c_3) \partial_{x_3} b_3 \frac{\partial_2^4 v}{\partial x_1^4}
\]
and the initial data is given by
\[
\tilde{u}_{j,h}(x, t) = h^2 \begin{pmatrix} 0 \\ v_2^j \\ v_3^j \end{pmatrix} + h^3 \begin{pmatrix} -x_2 \partial_{x_1} v_2^j - x_3 \partial_{x_1} v_3^j \\ 0 \\ 0 \end{pmatrix} + h^5 \begin{pmatrix} a_2(x') \partial_1^3 v_2^j + a_3(x') \partial_1^3 v_3^j \\ 0 \end{pmatrix}
\]
Moreover equipped with the norm $\| \cdot \|_{L^2(\Omega)}$ and $j = 0, \ldots, 4$. For the remainder it holds
\[
\| r_h \|_{C^0([0,T];L^2)} \leq C h^3 \quad \text{and} \quad \| r_{N,h} \|_{C^2([0,T];H^1)} \leq C h^5.
\]

3.2. Existence of and bounds on initial values

Define now
\[
B := H^1_{per}(\Omega; \mathbb{R}^3) \cap \left\{ u \in L^2(\Omega; \mathbb{R}^3) : \int_{\Omega} u dx = \int_{\Omega} u \cdot x^1 dx = 0 \right\}
\]
equipped with the norm
\[
\| u \|_{B_h} := \left\| \frac{1}{h} \epsilon_h(u) \right\|_{L^2(\Omega)}.
\]

Lemma 3.1. There exist constants $C_0 > 0$ and $M_0 \in (0,1]$ such that for $0 < h \leq 1$ and $f \in H^1_{per}(\Omega; \mathbb{R}^3)$ with $\| f \|_{H^1(\Omega)} \leq M_0 h$ and $\int_{\Omega} f dx = 0$ there exists a unique solution $w \in H^3_{per}(\Omega; \mathbb{R}^3) \cap B$ with $\partial x_1 w \in H^3_{per}(\Omega; \mathbb{R}^3)$ of
\[
\frac{1}{h^2} \left(D\hat{W}(\nabla_h w), \nabla_h \varphi \right)_{L^2(\Omega)} = (f, \varphi)_{L^2(\Omega)} \quad \text{for all} \quad \varphi \in B.
\]

Moreover
\[
\left\| \left(\frac{1}{h} \epsilon_h(w), \nabla_h \frac{1}{h} \epsilon(w), \nabla^2_h w \right) \right\|_{H^1(\Omega)} \leq C_0 \| f \|_{H^1(\Omega)}
\]
holds. If $w' \in H^3_{per}(\Omega; \mathbb{R}^3) \cap B$ with $\partial x_1 w \in H^3_{per}(\Omega; \mathbb{R}^3)$ is the solution to $f' \in H^1_{per}(\Omega; \mathbb{R}^3)$ with $\| f' \|_{H^1(\Omega)} \leq M_0 h$ and $\int_{\Omega} f' dx = 0$, then it holds
\[
\left\| \left(\frac{1}{h} \epsilon_h(w - w'), \nabla_h \frac{1}{h} \epsilon(w - w'), \nabla^2_h(w - w') \right) \right\|_{H^1(\Omega)} \leq C_0 \| f - f' \|_{H^1(\Omega)}.
\]

Proof. Using a Taylor series expansion for $D\hat{W}(\nabla_h w)$, we obtain
\[
D\hat{W}(\nabla_h w) = D\hat{W}(0) + D^2\tilde{W}(0)[\nabla_h w] + \int_0^1 (1 - \tau) D^3\tilde{W}(\tau \nabla_h w)[\nabla_h w, \nabla_h w] d\tau
\]
\[
=: D^2\tilde{W}(0)[\nabla_h w] + G(\nabla_h w).
\]
Thus, (3.11) is equivalent to
\[
\langle L_h w, \varphi \rangle_{B', B} := \frac{1}{h^2} \left(D^2\tilde{W}(0)[\nabla_h w, \nabla_h \varphi] \right)_{L^2(\Omega)} = (f, \varphi)_{L^2(\Omega)} - \frac{1}{h^2} \left(G(\nabla_h w), \nabla_h \varphi \right)_{L^2(\Omega)}.
\]
The idea is now to use the contraction mapping principle in order to prove the existence of a solution for (3.11), i.e., with the later equivalence
\[
w = G_h f(w) := L_h^{-1} \left(f, G_h(w) \right)
\]
holds with $G_h(w) := \frac{1}{h^2} G(\nabla_h w)$. Consequently, we investigate the mapping properties of L_h and G_h.
For $f \in L^2(\Omega; \mathbb{R}^3)$ and $F \in L^2(\Omega; \mathbb{R}^{3 \times 3})$, we obtain with the Lemma of Lax–Milgram the existence of a unique solution $w \in \mathcal{B}$ for

$$
\langle L_h w, \varphi \rangle_{\mathcal{B}^*, \mathcal{B}} = (f, \varphi)_{L^2(\Omega)} - (F, \nabla_h \varphi)_{L^2(\Omega)} \tag{3.15}
$$

for all $\varphi \in \mathcal{B}$. The solution satisfies

$$
\|w\|_{\mathcal{B}} = \left\| \frac{1}{h^2} \varepsilon_h(w) \right\|_{L^2(\Omega)} \leq C(\|f\|_{L^2(\Omega)} + \|F\|_{(L^2_h)'}).
$$

If now $f \in H^{0,k}(\Omega; \mathbb{R}^3)$ and $F \in H^{0,k}(\Omega; \mathbb{R}^{3 \times 3})$ for $k = 1, 2$, it follows by a different quotient argument that $w \in H^{0,k}(\Omega; \mathbb{R}^3)$ holds and

$$
\left\| \frac{1}{h} \varepsilon_h(w) \right\|_{H^{0,k}(\Omega)} \leq C(\|f\|_{H^{0,k-1}(\Omega)} + \max_{j=0,\ldots,k} \|\partial_{x_1}^j F\|_{(L^2_h)'}) \tag{3.16}
$$

Using the decomposition $\mathcal{B} \ominus \text{span}\{x \mapsto x^\perp\} = H^{1}_{(0), \text{per}}(\Omega; \mathbb{R}^3)$, it follows that for

$$
\alpha := (F, \nabla_h x^\perp)_{L^2(\Omega)} - (f, x^\perp)_{L^2(\Omega)}
$$

we have

$$
\frac{1}{h^2} \left(D^2 \hat{W}(0) \nabla_h w, \nabla_h \varphi \right)_{L^2(\Omega)} = (f + \alpha x^\perp, \varphi)_{L^2(\Omega)} - (F, \nabla_h \varphi)_{L^2(\Omega)}
$$

for all $\varphi \in H^{1}_{(0), \text{per}}(\Omega; \mathbb{R}^3)$. Hence, if $f \in H^{1}_{\text{per}}(\Omega; \mathbb{R}^3)$ and $F \in H^{2}_{\text{per}}(\Omega; \mathbb{R}^{3 \times 3})$, then w solves the system

$$
\begin{cases}
- \frac{1}{h^2} \text{div}_h (D^2 \hat{W}(0) \nabla_h w) = f + \alpha x^\perp - \text{div}_h F & \text{in } \Omega \\
D^2 \hat{W}(0) \nabla_h w|_{\partial\Omega} = h^2 \text{tr}_{\partial\Omega}(F) |_{\partial\Omega} & \text{in } \partial\Omega
\end{cases}
$$

in a weak sense. Thus, with elliptic regularity theory it follows $w \in H^{2}_{\text{per}}(\Omega; \mathbb{R}^3) \cap \mathcal{B}$. By Theorem A.3 in the appendix, we obtain

$$
\left\| \left(\frac{1}{h} \varepsilon_h(w), \nabla_h \frac{1}{h} \varepsilon_h(w), \nabla_h^2 w \right) \right\|_{H^1(\Omega)} \leq C \left(h^2 \|(f, \text{div}_h F)\|_{H^1(\Omega)} + \|f\|_{H^{0,1}(\Omega)} + \max_{j=0,1,2} \|\partial_{x_1}^j F\|_{(L^2_h)'}, \right.
$$

$$
\left. + \left\| h \text{tr}_{\partial\Omega}(F) \right\|_{L^2(0, L; H^2(\partial\Omega)) \cap H^1(0, L; H^1(\partial\Omega))} \right),
$$

where we have exploited

$$
h^2 |\alpha| \leq Ch^2 \|f\|_{L^2(\Omega)} + Ch \|F\|_{(L^2_h)'}.\]

Using that $\text{tr}_{\partial\Omega} : H^2(S) \to H^\frac{1}{2}(\partial S)$ is a bounded operator, we obtain

$$
h \left\| \text{tr}_{\partial\Omega}(F) \right\|_{L^2(0, L; H^\frac{1}{2}(\partial\Omega)) \cap H^1(0, L; H^\frac{1}{2}(\partial\Omega))} \leq Ch \left(\|F\|_{H^{1,1}(\Omega)} + \max_{k=0,1,2} \|\nabla_h^k F\|_{L^2(\Omega)} \right) \leq C \left(\max_{j=0,1,2} \|\partial_{x_1}^j F\|_{(L^2_h)'}, h^2 \|\nabla_h F\|_{H^1(\Omega)} \right)
$$

because of

$$
\|F\|_{H^1(\Omega)} \leq \|F\|_{H^{0,1}(\Omega)} + \|\nabla x^\perp F\|_{L^2(\Omega)} \quad \text{and} \quad \|F\|_{L^2(\Omega)} \leq \frac{1}{h} \|F\|_{(L^2_h)'}.
$$

Thus, we deduce for some $C_L > 0$

$$
\left\| \left(\frac{1}{h} \varepsilon_h(w), \nabla_h \frac{1}{h} \varepsilon_h(w), \nabla_h^2 w \right) \right\|_{H^1(\Omega)} \leq C_L \left(h^2 \|(f, \nabla_h F)\|_{H^1(\Omega)} + \|f\|_{H^{0,1}(\Omega)} + \max_{j=0,1,2} \|\partial_{x_1}^j F\|_{(L^2_h)'}. \right) \tag{3.17}
$$
We define $\mathcal{X}_h := H^3_{\text{per}}(\Omega; \mathbb{R}^3) \cap \mathcal{B}$ and $\mathcal{Y}_h := H^1_{\text{per}}(\Omega; \mathbb{R}^3) \times H^2_{\text{per}}(\Omega; \mathbb{R}^{3 \times 3})$ normed via

$$
\|g\|_{\mathcal{X}_h} := \left\| \left(\frac{1}{h} \varepsilon_h(g), \nabla \frac{1}{h} \varepsilon_h(g), \nabla^2_h g \right) \right\|_{H^1(\Omega)}
$$

$$
\|(f, F)\|_{\mathcal{Y}_h} := h^2 \|\left(f, \nabla_h F \right)\|_{H^1(\Omega)} + \|f\|_{H^{0,1}(\Omega)} + \max_{j=0,1,2} \|\partial_{x_1}^j F\|_{(L^2_h)'},
$$

This $L^1_{\text{per}} : \mathcal{Y}_h \to \mathcal{X}_h$ is a bilinear, bijective and bounded operator, mapping a tuple $(f, F) \in \mathcal{Y}_h$ to the corresponding solution $w \in \mathcal{X}_h$ of (3.15). In order to close the proof, we have to show that G_h is a contraction with respect to the relevant norms.

In a first step we assume that $w_i \in \mathcal{X}_h$ with

$$
\|w_i\|_{\mathcal{X}_h} \leq C_0 M_1 h
$$

for $i = 1, 2$ and $M_1 > 0$ to be chosen later. Then

$$
\|G_h(w_1) - G_h(w_2)\|_{(L^2_h)'} = \left\| \frac{1}{h^2} \int_0^1 (1 - \tau) \left(D^3 \tilde{W}(\tau \nabla_h w_1) [\nabla_h w_1 - \nabla_h w_2, \nabla_h w_1]
\right.
\right.
\left. + D^3 \tilde{W}(\tau \nabla_h w_2) [\nabla_h w_1 - \nabla_h w_2, \nabla_h w_2]
\right.
\left. + \left(D^3 \tilde{W}(\tau \nabla_h w_1) - D^3 \tilde{W}(\tau \nabla_h w_2) \right) [\nabla_h w_1, \nabla_h w_2] \right) d\tau \right\|_{(L^2_h)'}
\leq CM_1 \left\| \nabla_h (w_1 - w_2) \right\|_{H^1(\Omega)}
$$

$$
+ \left\| \frac{1}{h^2} \int_0^1 (1 - \tau) \int_0^1 Q(\tau, t, w_1, w_2) dt [\tau(\nabla_h w_1 - \nabla_h w_2), \nabla_h w_1, \nabla_h w_2] d\tau \right\|_{(L^2_h)'}
\leq CM_1 \left\| \frac{1}{h} \varepsilon_h (w_1 - w_2) \right\|_{\mathcal{X}_h},
$$

where we used Corollary 2.4, $\|\nabla_h w\|_{H^1(\Omega)} \leq C \|w\|_{\mathcal{X}_h}$ and the boundedness of

$$
Q(\tau, t, w_1, w_2) := D^4 \tilde{W}(t \tau \nabla_h w_1 + (1 - t) \tau \nabla_h w_2).
$$

The definition of G implies that for $k = 1, 2, 3$ it holds

$$
\partial_{x_k} G(\nabla_h w) = D^2 \tilde{W}(\nabla_h w) [\nabla_h \partial_{x_k} w] - D^2 \tilde{W}(0) [\nabla_h \partial_{x_k} w]
\leq \int_0^1 D^3 \tilde{W}(\tau \nabla_h w) [\nabla_h w, \nabla_h \partial_{x_k} w] d\tau.
$$

Hence, analogously as above

$$
\|\partial_{x_k} (G_h(w_1) - G_h(w_2))\|_{(L^2_h)'} \leq \left\| \frac{1}{h^2} \int_0^1 D^3 \tilde{W}(\tau \nabla_h w_1) [\nabla_h (w_1 - w_2), \nabla_h \partial_{x_k} w_1] d\tau \right\|_{(L^2_h)'}
$$

$$
+ \left\| \frac{1}{h^2} \int_0^1 D^3 \tilde{W}(\tau \nabla_h w_2) [\nabla_h w_2, \nabla_h \partial_{x_k} (w_1 - w_2)] d\tau \right\|_{(L^2_h)'}
$$

$$
+ \left\| \frac{1}{h^2} \int_0^1 (D^3 \tilde{W}(\tau \nabla_h w_1) - D^3 \tilde{W}(\tau \nabla_h w_2)) [\nabla_h w_2, \nabla_h \partial_{x_k} w_1] d\tau \right\|_{(L^2_h)'}
$$
As

\[\|\nabla_h \partial_x \varphi \|_{L^2(\Omega)} \leq \|\nabla_h \partial_x \varphi\|_{L^2(\Omega)} + \left(\frac{C M_1 \|\varphi\|_{L^2(\Omega)}}{\frac{C h}{L^2(\Omega)}} \right) \leq \|\varphi\|_{\mathcal{X}_h} \]

for \(\varphi = w_1 \) and \(\varphi = w_1 - w_2 \). With the aid of (3.18) it follows for \(j, k = 1, 2, 3 \)

\[\partial_{x_j} \partial_{x_k} G(\nabla_h w) = D^2 \tilde{W}(\nabla_h u_h)[\nabla_h \partial_{x_j} \partial_{x_k} w] - D^2 \tilde{W}(0)[\nabla_h \partial_{x_j} \partial_{x_k} w] \]
\[+ D^3 \tilde{W}(\nabla_h w)[\nabla_h \partial_{x_j} \partial_{x_k} w, \nabla_h \partial_{x_k} w] \]
\[= \int_0^1 D^3 \tilde{W}(\tau \nabla_h w)[\nabla_h w, \nabla_h \partial_{x_j} \partial_{x_k} w]d\tau + D^3 \tilde{W}(\nabla_h w)[\nabla_h \partial_{x_j} \partial_{x_k} w, \nabla_h \partial_{x_k} w]. \]

Thus, we obtain in the same manner as above

\[\|\partial_{x_j} \partial_{x_k} (G_h(w_1) - G_h(w_2))\|_{(L^2(\Omega))^2} \leq CM_1 \|w_1 - w_2\|_{\mathcal{X}_h}. \]

The fact that \(h^2 \|\nabla_h F\|_{H^1(\Omega)} \leq h \|\nabla F\|_{H^1(\Omega)} \) and \(\|F\|_{L^2(\Omega)} \leq \frac{C}{h} \|F\|_{(L^2(\Omega))^2} \) implies with the later estimates that for \(M_1 \in (0, 1) \) small enough

\[\mathcal{G}_{h,f} : \overline{B_{CM_1 h}(0)} \subset \mathcal{X}_h \rightarrow \mathcal{X}_h \]

is a \(\frac{1}{2} \)-contraction. The self-mapping property of \(\mathcal{G}_{h,f} \) follows because of

\[\|\mathcal{G}_{h,f}(0)\|_{\mathcal{X}_h} = \|L^{-1}(f, 0)\|_{\mathcal{X}_h} \leq C_L \|f\|_{L^\infty(\Omega)} \leq C_L \|f\|_{H^1(\Omega)} \leq C_L M_0 h. \]

Thus, we can choose \(M_0 > 0 \) so small that \(C_L M_0 h \leq \frac{CM_1 h}{2} \). Then we obtain with the \(\frac{1}{2} \)-contraction property of \(\mathcal{G}_{h,f} \) for \(w \in \overline{B_{CM_1 h}(0)} \)

\[\|\mathcal{G}_{h,f}(w)\|_{\mathcal{X}_h} \leq \|\mathcal{G}_{h,f}(w) - \mathcal{G}_{h,f}(0)\|_{\mathcal{X}_h} + \|\mathcal{G}_{h,f}(0)\|_{\mathcal{X}_h} \leq \frac{1}{2} \|w\|_{\mathcal{X}_h} + C_L M_0 h \leq CM_1 h. \]

Therefore, (3.12) and (3.13) hold with the \(H^1(\Omega) \)-norm on the left-hand side replaced by the \(\mathcal{X}_h \)-norm.

Using the decomposition \(\mathcal{B} \oplus \text{span}\{x \mapsto x^j\} = H^1_{(0), \text{per}}(\Omega; \mathbb{R}^3) \), it follows that for

\[\rho := \frac{1}{\mu(S) h^2} \left(D \tilde{W}(\nabla_h w), \nabla_h x^j \right)_{L^2(\Omega)} \]

we have

\[\frac{1}{h^2} \left(D^2 \tilde{W}(\nabla_h w), \nabla_h \varphi \right)_{L^2(\Omega)} = (f - \rho x^j, \varphi)_{L^2(\Omega)} \]

for all \(\varphi \in H^1_{(0), \text{per}}(\Omega; \mathbb{R}^3) \). If now \(f \in H^{1,1}_{\text{per}}(\Omega; \mathbb{R}^3) \) we obtain, with a difference quotient argument, that \(w \in H^{1,1}_{\text{per}}(\Omega; \mathbb{R}^3) \cap \mathcal{B} \) satisfies

\[\frac{1}{h^2} \left(D^2 \tilde{W}(\nabla_h w) \nabla_h \partial_{x_j} w, \nabla_h \varphi \right)_{L^2(\Omega)} = (\partial_{x_j} f, \varphi)_{L^2(\Omega)}. \]

for all \(\varphi \in H^1_{(0), \text{per}}(\Omega; \mathbb{R}^3) \). Thus, with Theorem A.3 the claimed inequalities follow. \(\square \)
We define the initial values for the analytical problem as
\[
 u_{2+j,h} := h^2 \begin{pmatrix} 0 \\ v_{2+j}^h \\ v_{3+j}^h \\ 0 \end{pmatrix} + h^3 \begin{pmatrix} -x_2 \partial_{x_1} v_{2+j}^h - x_3 \partial_{x_1} v_{3+j}^h \\ 0 \\ 0 \end{pmatrix}
\]
for \(j = 1, 2 \) and \(v^{2+j} = \partial_t^{2+j} v \mid_{t=0} \) as above.

Lemma 3.2. Let \(\bar{u}_h \) be as in (3.7), \(\bar{u}_{j,h} \) for \(j = 0, 1, 2 \) as in (3.10), \(u_{3,h}, u_{4,h} \) and \(f^h \) be as above. Then for sufficiently small \(h_0 \in (0, 1] \) and \(M > 0 \), there exist solutions \((u_{0,h}, u_{1,h}, u_{2,h})\) of
\[
 \frac{1}{h^2} \left(D\tilde{W}(\nabla_h u_{0,h}), \nabla_h \varphi \right)_{L^2(\Omega)} = \left(h^2 f^h \mid_{t=0}, \varphi \right)_{L^2(\Omega)} - \left(u_{2,h}, \varphi \right)_{L^2(\Omega)} \tag{3.19}
\]
and
\[
 \frac{1}{h^2} \left(D^2\tilde{W}(\nabla_h u_{0,h}) \nabla_h u_{2,h}, \nabla_h \varphi \right)_{L^2(\Omega)} = \left(h^2 \partial_t^2 f^h \mid_{t=0} - u_{4,h} \right)_{L^2(\Omega)}
 - \frac{1}{h^2} \left(D^2\tilde{W}(\nabla_h u_{0,h}) \left[\nabla_h u_{1,h}, \nabla_h u_{1,h}, \nabla_h \varphi \right] \right)_{L^2(\Omega)}
 - \frac{\gamma h}{h^3} \left(D^2\tilde{W}(\nabla_h u_{0,h}) P, \nabla_h \varphi \right)_{L^2(\Omega)} \tag{3.20}
\]
for all \(\varphi \in B \), where
\[
 \gamma_h(u_{0,h}) := \frac{1}{\mu(S) h^3} \left(D\tilde{W}(\nabla_h u_{0,h}), P \right)_{L^2(\Omega)}
\]
and
\[
 P := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}
\]
The solution satisfies
\[
 \left\| \left(\frac{1}{h} \varepsilon_h(u_{0,h}), \nabla \frac{1}{h} \varepsilon_h(u_{0,h}), \nabla^2 \varepsilon_h(u_{0,h}) \right) \right\|_{H^{1.1}(\Omega)} \leq C h^2 \tag{3.22}
\]
\[
 \max_{j=1,2} \left\| \left(\frac{1}{h} \varepsilon_h(u_{j,h}), \nabla \frac{1}{h} \varepsilon_h(u_{j,h}), \nabla^2 \varepsilon_h(u_{j,h}) \right) \right\|_{H^{2-j}(\Omega)} \leq C h^2 \tag{3.23}
\]
and \(u_{k,h} \in B \) for \(k = 0, 1, 2 \). Moreover, we have
\[
 \max_{j=0,1,2} \left\| \left(\frac{1}{h} \varepsilon_h(u_{j,h}) - \frac{1}{h} \varepsilon_h(\bar{u}_{j,h}) \right) \right\|_{L^2(\Omega)} \leq \begin{cases} C h^3 & \text{if } j = 0, 1, \\ C h^2 & \text{if } j = 2 \end{cases} \tag{3.24}
\]
for all \(h \in (0, h_0) \) and \(C > 0 \) independent of \(h \).

Proof. We can equivalently formulate (3.19)–(3.21) via
\[
 \frac{1}{h^2} \left(D^2\tilde{W}(\nabla_h u_{0,h}) \nabla_h u_{1,h}, \nabla_h \varphi \right)_{L^2(\Omega)} = \left(h^2 \partial_t f^h \mid_{t=0}, \varphi \right)_{L^2(\Omega)} - \left(u_{3,h}, \varphi \right)_{L^2(\Omega)} \tag{3.25}
\]
and
\[
 \frac{1}{h^2} \left(D^2\tilde{W}(\nabla_h u_{0,h}) \nabla_h u_{2,h}, \nabla_h \varphi \right)_{L^2(\Omega)} = \left(h^2 \partial_t^2 f^h \mid_{t=0} - u_{4,h}, \varphi \right)_{L^2(\Omega)}
 - \frac{1}{h^2} \left(D^2\tilde{W}(\nabla_h u_{0,h}) \left[\nabla_h u_{1,h}, \nabla_h u_{1,h}, \nabla_h \varphi \right] \right)_{L^2(\Omega)}
 - \frac{\gamma h(u_{0,h})}{h^3} \left(D^2\tilde{W}(\nabla_h u_{0,h}) P, \nabla_h \varphi \right)_{L^2(\Omega)} \tag{3.26}
\]
for all \(\varphi \in \mathcal{B} \), where \(u_{0,h} = \mathcal{G}_{h,f}(u_{0,h}) \) is the solution of (3.19) with \(f = h^2 f^h - u_{2,h} \). Defining
\[
\mathcal{G}_{0,h}(u_{2,h}) := \mathcal{G}_{h,f}(u_{0,h})
\]
and deploying (3.13) we obtain for \(u_{2,h} \), \(u_{2,h}^\prime \in H^{1,1}(\Omega; \mathbb{R}^3) \)
\[
\max_{k=0,1} \left\| \partial_{x_1}^k (\mathcal{G}_{0,h}(u_{2,h}) - \mathcal{G}_{0,h}(u_{2,h}^\prime)) \right\|_{\mathcal{X}_h} \leq C_0 \| u_{2,h} - u_{2,h}^\prime \|_{H^{1,1}(\Omega)} \tag{3.27}
\]
if \(\| u_{2,h} \|_{H^{1,1}(\Omega)} \leq \frac{1}{2} M_0 h \), \(\| u_{2,h}^\prime \|_{H^{1,1}(\Omega)} \leq \frac{1}{2} M_0 h \) and \(h^2 \| f^h \|_{H^{1,1}(\Omega)} \leq \frac{1}{2} M_0 h \). This can always be achieved if \(h_0 \in (0,1] \) is small enough and \(u_{2,h} \), \(u_{2,h}^\prime \) are of order \(h^2 \).

Using the definition of \(L_h \) it follows that (3.25)-(3.26) are equivalent to
\[
(L_h u_{1,h}, \varphi)_{\mathcal{B}^\prime, \mathcal{B}} = (h^2 \partial_t f_h|_{t=0} - u_{3,h}, \varphi)_{L^2(\Omega)} - \frac{1}{h^2} \left(DG(\nabla_h u_{0,h})\nabla_h u_{1,h}, \nabla_h \varphi \right)_{L^2(\Omega)}
\]
and
\[
(L_h u_{2,h}, \varphi)_{\mathcal{B}^\prime, \mathcal{B}} = (h^2 \partial_t^2 f_h|_{t=0} - u_{4,h}, \varphi)_{L^2(\Omega)} - \frac{1}{h^2} \left(DG(\nabla_h u_{0,h})\nabla_h u_{2,h}, \nabla_h \varphi \right)_{L^2(\Omega)}
\]
\[- \frac{1}{h^2} \left(D^3 \tilde{W}(\nabla_h u_{0,h})[\nabla_h u_{1,h}, \nabla_h u_{2,h}], \nabla_h \varphi \right)_{L^2(\Omega)}
\]
\[- \frac{\gamma_h(u_{0,h})}{h^3} \left(D^2 \tilde{W}(\nabla_h u_{0,h}) P, \nabla_h \varphi \right)_{L^2(\Omega)}
\]
for all \(\varphi \in \mathcal{B} \). Defining now the relevant function spaces by
\[
\mathcal{D}_h := H^2_{\text{per}}(\Omega; \mathbb{R}^3) \times H^1_{\text{per}}(\Omega; \mathbb{R}^3), \quad \mathcal{Z}_h := H^1_{\text{per}}(\Omega; \mathbb{R}^3) \times L^2(\Omega; \mathbb{R}^3) \times \mathcal{D}_h,
\]
\[
\mathcal{W}_h := \mathcal{X}_h \times \left(H^2_{\text{per}}(\Omega; \mathbb{R}^3) \cap \mathcal{B} \right)
\]
with the respective norms defined by
\[
\|(F_1, F_2)\|_{\mathcal{D}_h} := \max_{i=1,2} \left(h^2 \| \nabla_h F_i \|_{H^{2-i}(\Omega)} + \max_{\sigma=0, \ldots, 2-i} \| \partial_{x_1}^\sigma F_i \|_{L^2_h}(\Omega) \right),
\]
\[
\|(f_1, f_2, F_1, F_2)\|_{\mathcal{Z}_h} := \max_{i=1,2} \left(h^2 \| (f_i, \nabla_h F_i) \|_{H^{2-i}(\Omega)} + \| f_i \|_{H^{0.2-i}(\Omega)} + \max_{\sigma=0, \ldots, 2-i} \| \partial_{x_1}^\sigma F_i \|_{L^2_h}(\Omega) \right),
\]
\[
\|(g_1, g_2)\|_{\mathcal{W}_h} := \max_{i=1,2} \left(\| \frac{1}{h} \varepsilon_h(g_i), \nabla \varepsilon_h(g_i), \nabla^2 \varepsilon_h(g_i) \|_{H^{2-i}(\Omega)} \right).
\]
With this we define the linear operator \(\mathcal{L}_h^{-1} : \mathcal{Z}_h \to \mathcal{W}_h \) by mapping \((f_1, f_2, F_1, F_2) \) to the solution \((w_1, w_2) \) of
\[
(L_h w_i, \varphi)_{\mathcal{B}^\prime, \mathcal{B}} = (f_i, \varphi)_{L^2(\Omega)} - (F_i, \nabla_h \varphi)_{L^2(\Omega)}
\]
for \(i = 1, 2 \). Then due to (3.17), Theorem A.3 and (3.16) we obtain
\[
\|(w_1, w_2)\|_{\mathcal{W}_h} \leq C \|(f_1, f_2, F_1, F_2)\|_{\mathcal{Z}_h}.
\]
Hence, \(\mathcal{L}_h^{-1} \) is a bijective, linear and bounded operator. For the nonlinearity we define
\[
\mathcal{Q}_h : \mathcal{W}_h \to \mathcal{D}_h
\]
via
\[
\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \mapsto \begin{pmatrix} -\frac{1}{h^2} \mathcal{G}(\nabla_h u_0) \nabla_h u_2 - \frac{1}{h^2} \mathcal{G}(\nabla_h u_0) \nabla_h u_1 \\ \frac{1}{h^2} D^3 \tilde{W}(\nabla_h u_0)[\nabla_h u_1, \nabla_h u_1] - \frac{\gamma_h(u_{0,h})}{h^3} D^2 \tilde{W}(\nabla_h u_0)[P] \end{pmatrix}
\]
\[
= \begin{pmatrix} \mathcal{Q}_{1,h}(u_1, u_2) \\ \mathcal{Q}_{2,h}(u_1, u_2) \end{pmatrix},
\]
where \(u_0 := G_{h,f} - u_2(u_{0,h}) \) for some fixed \(f \in H^1_{per}(\Omega) \) with \(\|f\|_{H^1(\Omega)} \leq Mh^2 \) and \(\int_\Omega f dx = 0 \) and \(G \) is defined as in (3.14).

We deduce the contraction properties of \(Q_h \) similar as in the proof of Lemma 3.1. For this we assume that \(\|(u_1,u_2)\|_{W_h}, \|(u'_1,u'_2)\|_{W_h} \leq CM_2h^2 \). Starting with \(Q_{1,h} \), we obtain

\[
\begin{align*}
\|Q_{1,h}(u_1,u_2) - Q_{1,h}(u'_1,u'_2)\|_{(L^*_h)^\prime} &= \frac{1}{h^2} \left\| D^3W(\tau \nabla_h u_0)[\nabla_h u_{0,2}, \nabla_h u_{2,1}] - D^3W(\tau \nabla_h u'_0)[\nabla_h u'_{0,2}, \nabla_h u'_{2,1}] \right\|_{(L^*_h)^\prime} \\
&\leq \frac{C}{h} \|\nabla_h (u_0 - u'_0)\|_{H^2_h(\Omega)} \|\nabla_h u_1\|_{L^2_h(\Omega)} + \frac{C}{h} \|\nabla_h u'_0\|_{H^2_h(\Omega)} \|\nabla_h (u_1 - u'_1)\|_{L^2_h(\Omega)} \\
&+ CM_2 \left\| \frac{1}{h} \varepsilon_h(u_0 - u'_0) \right\|_{H^1_h(\Omega)} \\
&\leq CM_2 \|u_2 - u'_2\|_{H^1(\Omega)} + CM_2 \left\| \frac{1}{h} \varepsilon_h(u_1 - u'_1) \right\|_{L^2(\Omega)} \leq CM_2 \|(u_1 - u'_1, u_2 - u'_2)\|_{W_h},
\end{align*}
\]

where we used (3.27). Similarly one deduces that

\[
\begin{align*}
\|\partial_j, Q_{1,h}(u_1,u_2) - Q_{1,h}(u'_1,u'_2)\|_{L^2(\Omega)} &\leq CM_2 \|(u_1 - u'_1, u_2 - u'_2)\|_{W_h} \\
\|\partial_j, \partial_j, Q_{1,h}(u_1,u_2) - Q_{1,h}(u'_1,u'_2)\|_{L^2(\Omega)} &\leq CM_2 \|(u_1 - u'_1, u_2 - u'_2)\|_{W_h}
\end{align*}
\]

for \(j, k = 1, 2, 3 \). Analogously we deduce for \(Q_{2,h} \)

\[
\begin{align*}
\|Q_{2,h}(u_1,u_2) - Q_{2,h}(u'_1,u'_2)\|_{(L^*_h)^\prime} &= \frac{1}{h^2} \left\| D^3W(\tau \nabla_h u_0)[\nabla_h u_{0,2}, \nabla_h u_{2,1}] - D^3W(\tau \nabla_h u'_0)[\nabla_h u'_{0,2}, \nabla_h u'_{2,1}] \right\|_{(L^*_h)^\prime} \\
&\leq \frac{1}{h^3} \left\| D^3W(\tau \nabla_h u_0)[\nabla_h u_{0,2}, \nabla_h u_{2,1}] - D^3W(\tau \nabla_h u'_0)[\nabla_h u'_{0,2}, \nabla_h u'_{2,1}] \right\|_{(L^*_h)^\prime} \\
&\leq \frac{1}{h^2} \left\| D^3W(\tau \nabla_h u_0)[\nabla_h u_{1,2}, \nabla_h u_{1,2}] - D^3W(\tau \nabla_h u'_0)[\nabla_h u'_{1,2}, \nabla_h u'_{1,2}] \right\|_{(L^*_h)^\prime} \\
&\leq \frac{C}{h} \|\nabla_h (u_0 - u'_0)\|_{H^2_h(\Omega)} \|\nabla_h u_2\|_{L^2_h(\Omega)} + \frac{C}{h} \|\nabla_h u'_0\|_{H^2_h(\Omega)} \|\nabla_h (u_2 - u'_2)\|_{L^2_h(\Omega)} \\
&+ \frac{C}{h} \|\nabla_h u_1\|_{H^2_h(\Omega)} \|\nabla_h u_1\|_{L^2_h(\Omega)} + \frac{C}{h} \|\nabla_h u'_1\|_{H^2_h(\Omega)} \|\nabla_h (u_1 - u'_1)\|_{L^2_h(\Omega)} \\
&\leq CM_2 \|u_1 - u'_1, u_2 - u'_2\|_{W_h},
\end{align*}
\]
where we used again Corollary 2.4, \(|P|_h = |P|, |\gamma_h(u_{0,h})| \leq Ch^2\) and
\[
|\gamma_h(u_{0,h}) - \gamma_h(u'_{0,h})| \leq \frac{1}{h^3} \left\| \int_0^1 (1 - \tau) \left(D^3W(\nabla_h u_{0,h})[\nabla_h u_{0,h}, \nabla_h u_{0,h}] - D^3W(\nabla_h u'_{0,h})[\nabla_h u'_{0,h}, \nabla_h u'_{0,h}] \right) \right\|_{L^2_h(\gamma)}.
\]

Finally from
\[
\partial_{x_j} Q_{2,h}(u_1, u_2) = \frac{1}{h^2} \int_0^1 D^3W(\tau \nabla_h u_0)[\nabla_h u_0, \nabla_x \partial_{x_j} u_2] d\tau + \frac{1}{h} D^3W(\nabla_h u_0)[\nabla_h \partial_{x_j} u_0, \partial_{x_j} u_2] + \frac{2}{h^2} D^3W(\nabla_h u_0)[\nabla_h \partial_{x_j} u_1, \nabla_h u_1] + \frac{1}{h^2} D^4W(\nabla_h u_0)[\nabla_h \partial_{x_j} u_0, \nabla_h u_1, \nabla_h u_1] - \frac{\gamma_h}{h^3} D^3W(\nabla_h u_0)[\nabla_x \partial_{x_j} u_0, P]
\]

it follows
\[
\|\partial_{x_j} (Q_{2,h}(u_1, u_2) - Q_{2,h}(u'_1, u'_2))\|_{L^2_h(\gamma)} \leq CM_2\|(u_1 - u'_1, u_2 - u'_2)\|_{W_h}.
\]

Choosing now \(M_2 \in (0, 1]\) small enough we obtain that
\[
\mathcal{F}_{h,f_0, f_1, f_2} : B_{CM_2h^2}(0) \subset X_h \times W_h \to X_h \times W_h
\]
defined by
\[
\begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix} \mapsto \begin{pmatrix} \mathcal{G}_{h, f_2 - u_2}(u_0) \\ \mathcal{L}^{-1} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}, \mathcal{Q}_{h}(u_1, u_2) \end{pmatrix}
\]
is a \(1/2\)-contraction, where \(f_0 := h^2f|_{t=0}, f_1 := h^2\partial_{x_j} f|_{t=0} - u_{3,h}\) and \(f_2 := h^2\partial_{x_j}^2 f|_{t=0} - u_{4,h}\). We can use an analogous argument as in Lemma 3.1. First it holds, due to (3.6) and (3.5), for \(M > 0\) sufficiently small
\[
\|\mathcal{F}_{h,f_0, f_1, f_2}(0)\|_{X_h \times W_h} \leq \bar{C}Mh^2 \leq \frac{CM_2h^2}{2}
\]
and with the \(1/2\)-contraction property we obtain the self mapping of \(\mathcal{F}_{h,f_0, f_1, f_2}\). Moreover, due to the norm on \(X_h\) and \(W_h\) we obtain (3.22) and (3.23), respectively.

Finally, the construction of \(\tilde{u}_h\) implies that \(\tilde{u}_{j,h}\) satisfies
\[
\frac{1}{h^2} \left(D^2\tilde{W}(0)\nabla_h \tilde{u}_{j,h}, \nabla_h \varphi \right)_{L^2(\Omega)} = \left(h^2\partial_{x_j} f|_{t=0} - \tilde{u}_{2+j,h}, \varphi \right)_{L^2(\Omega)} + \left(\partial_{r_1} \varphi \right)_{L^2(\Omega)}
\]
for \(j = 0, 1, 2\) and all \(\varphi \in B\). This implies with (3.19)-(3.21)
\[
\begin{align*}
\frac{1}{h^2} \left(\varepsilon_h(u_{1,h} - \tilde{u}_{1,h}), \varepsilon_h(\varphi) \right)_{L^2(\Omega)} &= -\frac{1}{h^2} \left(D^2\tilde{W}(0)\nabla_h u_{1,h}, \nabla_h \varphi \right)_{L^2(\Omega)} \\
+ &\left(\partial_{r_1} \varphi \right)_{L^2(\Omega)} - \frac{1}{h^2} \int_0^L \left(\text{tr}_{\partial S}(\partial_{x_j} r_{N,h}(x_1, \cdot)), \text{tr}_{\partial S}(\varphi(x_1, \cdot)) \right)_{L^2(\partial S)} dx_1
\end{align*}
\]
\[
\frac{1}{h^2}(\varepsilon_h(u_{2,h} - \bar{u}_{2,h}), \varepsilon_h(\varphi))_{L^2(\Omega)} = -\frac{1}{h^2}\left((D^2\bar{W}(\nabla_h u_{0,h}) - D^2\bar{W}(0)) \nabla_h u_{2,h}, \nabla_h \varphi \right)_{L^2(\Omega)} \\
+ (r_{2,h}, \varphi)_{L^2(\Omega)} - \frac{1}{h^2} \int_0^L \left(\left. \langle \partial_t \partial_t^2 r_{N,h}(x_1, \cdot), \partial_t \varphi(x_1, \cdot) \rangle \right|_{L^2(\partial S)} \right) \, dx_1 \\
- \frac{1}{h^2} \left(D^2\bar{W}(\nabla_h u_{0,h})[\nabla_h u_{1,h}, \nabla_h u_{1,h}], \nabla_h \varphi \right)_{L^2(\Omega)} - \frac{\gamma h}{h^3} \left(D^2\bar{W}(\nabla_h u_{0,h}) P, \nabla_h \varphi \right)_{L^2(\Omega)}
\]
for all \(\varphi \in \mathcal{B} \), where we defined
\[
r_{j,h} := u_{2+j,h} - \bar{u}_{2+j,h} - \partial_t^2 r_h.
\]
With this it follows \(\max_{j=1,2} \| r_{j,h} \|_{C^0(0,T;L^2(\Omega))} \leq C h^3 \) because of the definition of \(u_{2+j,h} \) and the bound on \(\partial_t r_h \). Additionally, we have due to Lemma 2.3 and Corollary 2.4, the bounds on \((u_{0,h}, u_{1,h}, u_{2,h}) \) and \(\varphi \in \mathcal{B} \)
\[
\left| \frac{1}{h^2} \left((D^2\bar{W}(\nabla_h u_{0,h}) - D^2\bar{W}(0)) \nabla_h u_{j,h}, \nabla_h \varphi \right)_{L^2(\Omega)} \right| \\
= \left| \frac{1}{h^2} \int_0^1 \left(D^2\bar{W}(\tau \nabla_h u_{0,h})[\nabla_h u_{0,h}, \nabla_h u_{j,h}], \nabla_h \varphi \right)_{L^2(\Omega)} \, d\tau \right| \leq C h^3 \left\| \frac{1}{h} \varepsilon_h(\varphi) \right\|_{L^2(\Omega)}
\]
as well as
\[
\left| \frac{1}{h^2} \left(D^2\bar{W}(\nabla_h u_{0,h})[\nabla_h u_{1,h}, \nabla_h u_{1,h}], \nabla_h \varphi \right)_{L^2(\Omega)} \right| \leq C h^3 \left\| \frac{1}{h} \varepsilon_h(\varphi) \right\|_{L^2(\Omega)}
\]
and
\[
\left| \frac{\gamma h}{h^3} \left(D^2\bar{W}(\nabla_h u_{0,h}) P, \nabla_h \varphi \right)_{L^2(\Omega)} \right| \leq C h^2 \left\| \frac{1}{h} \varepsilon_h(\varphi) \right\|_{L^2(\Omega)}.
\]
Regarding the boundary terms, we use that \(\text{tr}_{\partial S} : H^1(S) \to H^{\frac{1}{2}}(\partial S) \) is linear and bounded. Hence, for \(j = 0, 1, 2 \)
\[
\left| \frac{1}{h^2} \int_0^L \left(\left. \langle \partial_t \partial_t^2 r_{N,h}(x_1, \cdot), \partial_t \varphi(x_1, \cdot) \rangle \right|_{L^2(\partial S)} \right) \, dx_1 \right| \\
\leq \frac{1}{h^2} \left\| \partial_t \partial_t^2 r_{N,h} \right\|_{L^2(0,L;H^1(S))} \left\| \varphi \right\|_{L^2(0,L;H^1(S))} \leq C h^3 \left\| \frac{1}{h} \varepsilon_h(\varphi) \right\|_{L^2(\Omega)},
\]
where we used that \(\| r_{N,h} \|_{C^2([0,T];H^1(S))} \leq C h^5 \) and the Poincaré and Korn inequality for \(\varphi \). Choosing \(\varphi = u_{j,h} - \bar{u}_{j,h} \), it follows with an absorption argument
\[
\max_{j=1,2} \left| \frac{1}{h} \varepsilon_h(u_{j,h}) - \frac{1}{h} \varepsilon_h(\bar{u}_{j,h}) \right|_{L^2(\Omega)} \leq \begin{cases} C h^3, & \text{if } j = 1, \\
C h^2, & \text{if } j = 2. \end{cases}
\]
Now, for \(u_{0,h} - \bar{u}_{0,h} \) it holds
\[
\frac{1}{h^2}(\varepsilon_h(u_{0,h} - \bar{u}_{0,h}), \varepsilon_h(\varphi))_{L^2(\Omega)} = -\frac{1}{h^2}(G(\nabla_h u_{0,h}), \nabla_h \varphi)_{L^2(\Omega)} \\
+ (r_{0,h}, \varphi)_{L^2(\Omega)} - \frac{1}{h^2} \int_0^L \left(\left. \langle \partial_t \partial_t^2 r_{N,h}(x_1, \cdot), \partial_t \varphi(x_1, \cdot) \rangle \right|_{L^2(\partial S)} \right) \, dx_1.
\]
The definition of G implies now

$$\left| \frac{1}{h^2} (G(\nabla_h u_{0,h}), \nabla_h \varphi)_{L^2(\Omega)} \right| = \left| \frac{1}{h^2} \int_0^1 (1-\tau) \left(D^3 \bar{W}(\tau \nabla_h u_{0,h}) [\nabla_h u_{0,h}, \nabla_h \varphi] \right)_{L^2(\Omega)} d\tau \right|$$

$$\leq C h^3 \left\| \frac{1}{h} \varepsilon_h (\varphi) \right\|_{L^2(\Omega)}$$

because of the bounds for $u_{0,h}$ and Corollary 2.4. Using (3.30), it follows

$$\left\| \frac{1}{h} \varepsilon_h (u_{0,h}) - \frac{1}{h} \varepsilon_h (\bar{u}_{0,h}) \right\|_{L^2(\Omega)} \leq C h^3$$

\[\square\]

3.3. Main result

Theorem 3.3. Let $f_h, \bar{v}_0, \bar{v}_1, \bar{u}_{j,h}, j = 0, 1, 2$ and \bar{u}_h be given as above. Then there exists some $h_0 \in (0, 1]$ such that for $h \in (0, h_0]$ there are initial values $(u_{0,h}, u_{1,h})$ satisfying (A.1)–(A.3) and such that

$$\max_{j=0,1} \left\| \frac{1}{h} \varepsilon_h (u_{j,h}) - \frac{1}{h} \varepsilon_h (\bar{u}_{j,h}) \right\|_{L^2(\Omega)} \leq C h^3.$$

Moreover, if u_h solves (3.1)–(3.4), then

$$\left\| \left((u_h - \bar{u}_h), \frac{1}{h} \int_0^t \varepsilon_h (u_h(\tau) - \bar{u}_h(\tau)) d\tau \right) \right\|_{L^\infty (0, 1; L^2(\Omega))} \leq C h^3 \quad \text{for all} \quad 0 < h \leq h_0.$$

Proof. Given $(u_{3,h}, u_{4,h})$ we construct $(u_{0,h}, u_{1,h}, u_{2,h})$ such that (A.1)–(A.3) holds. First we note that $\|u_{4,h}\|_{L^2(\Omega)}$ is of order h^2 as $\partial_{x_1}^4 v^4$ is bounded in $L^2(0, 1)$ for $l = 0, 1$. Moreover, we have

$$\int_\Omega u_{2+j,h} dx = 0$$

for $j = 1, 2$ and

$$\int_\Omega u_{3,h} \cdot x^4 dx = 0.$$

Using the structure of $u_{3,h}$ we obtain

$$\frac{1}{h} \varepsilon_h (u_{3,h}) = h^2 \left(\begin{array}{cccc} -x_2^3 \partial_{x_1}^2 v_2^3 - x_3 \partial_{x_1}^2 v_3^3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right).$$

Altogether we obtain that $u_{3,h}$ and $u_{4,h}$ satisfy (A.1)–(A.3), the necessary conditions for the large times existence result in the appendix. The assumptions on g and the structure of f_h imply that (A.4) and (A.5) are fulfilled. Applying Lemma 3.1 and 3.2, we obtain for h_0 sufficiently small, the existence of $(u_{0,h}, u_{1,h}, \bar{u}_{2,h})$ such that

$$\frac{1}{h^2} \left(D\bar{W}(\nabla_h u_{0,h}), \nabla_h \varphi \right)_{L^2(\Omega)} = (h^2 f_h |_{t=0}, \varphi)_{L^2(\Omega)} - (\bar{u}_{2,h}, \varphi)_{L^2(\Omega)}$$

$$\frac{1}{h^2} \left(D^2 \bar{W}(\nabla_h u_{0,h}) \nabla_h u_{1,h}, \nabla_h \varphi \right)_{L^2(\Omega)} = (h^2 \partial_t f_h |_{t=0}, \varphi)_{L^2(\Omega)} - (u_{3,h}, \varphi)_{L^2(\Omega)}$$
and
\[
\frac{1}{h^2} \left(D^2 \tilde{W}(\nabla_h u_{0,0,h}) \nabla_h \bar{u}_{2,h}, \nabla_h \varphi \right)_{L^2(\Omega)} = \left(h^2 \partial_t^2 f_h \big|_{t=0} - u_{4,h}, \varphi \right)_{L^2(\Omega)}
\]
\[\quad - \frac{1}{h^2} \left(D^3 \tilde{W}(\nabla_h u_{0,0,h}) \nabla_h u_{1,h}, \nabla_h \varphi \right)_{L^2(\Omega)} = \frac{\gamma_h}{h^3} \left(D^2 \tilde{W}(\nabla_h u_{0,0,h}) P, \nabla_h \varphi \right)_{L^2(\Omega)}
\]
for all \(\varphi \in \mathcal{B} \). We use the ansatz \(u_{2,h} = \bar{u}_{2,h} + \gamma_h^2 x^\perp \) and \(\bar{u}_{2+j,h} = u_{2+j,h} + \gamma_h^2 x^\perp \) for \(j = 1, 2 \). Choosing
\[
\gamma_h^2 := -\frac{1}{\mu(S) h^2} \left(D^2 \tilde{W}(\nabla_h u_{0,0,h}), \nabla_h x^\perp \right)_{L^2}.
\]
it follows
\[
\frac{1}{h^2} \left(D^2 \tilde{W}(\nabla_h u_{0,0,h}), \nabla_h \varphi \right)_{L^2(\Omega)} = \left(h^2 f_h \big|_{t=0}, \varphi \right)_{L^2(\Omega)} - (u_{2,h}, \varphi)_{L^2(\Omega)}
\]
for all \(\varphi \in H^1_{per}(\Omega; \mathbb{R}^3) \). Moreover, for
\[
\gamma_h^3 := -\frac{1}{\mu(S) h^2} \left(D^2 \tilde{W}(\nabla_h u_{0,0,h}) \nabla_h u_{1,h}, \nabla_h x^\perp \right)_{L^2}
\]
we deduce
\[
\frac{1}{h^2} \left(D^2 \tilde{W}(\nabla_h u_{0,0,h}) \nabla_h u_{1,h}, \nabla_h \varphi \right)_{L^2(\Omega)} = \left(h^2 \partial_t^2 f_h \big|_{t=0}, \varphi \right)_{L^2(\Omega)} - (\bar{u}_{3,h}, \varphi)_{L^2(\Omega)}
\]
for all \(\varphi \in H^1_{per}(\Omega; \mathbb{R}^3) \). Then it holds \(|\gamma_h^2| \leq C h^2 \) as
\[
D \tilde{W}(\nabla_h u_{0,0,h}) = D^2 \tilde{W}(0)[\nabla_h u_{0,0,h}] + \int_0^1 (1 - \tau) D^3 \tilde{W}(\tau \nabla_h u_{0,0,h}) \nabla_h u_{0,0,h} \cdot \nabla_h u_{0,0,h} d\tau
\]
and \(|\gamma_h^3| \leq C h^2 \) with a similar calculation. Lastly, we need to find \(\gamma_h^4 \) such that
\[
\frac{1}{h^2} \left(D^2 \tilde{W}(\nabla_h u_{0,0,h}) \nabla_h u_{2,h}, \nabla_h \varphi \right)_{L^2(\Omega)} = \left(h^2 \partial_t^2 f_h \big|_{t=0} - \bar{u}_{4,h}, \varphi \right)_{L^2(\Omega)}
\]
\[\quad - \frac{1}{h^2} \left(D^3 \tilde{W}(\nabla_h u_{0,0,h}) \nabla_h u_{1,h}, \nabla_h u_{1,h}, \nabla_h \varphi \right)_{L^2(\Omega)}
\]
for all \(\varphi \in H^1_{per}(\Omega; \mathbb{R}^3) \). Therefore, we choose
\[
\gamma_h^4 := -\frac{1}{h^2} \left(D^2 \tilde{W}(\nabla_h u_{0,0,h}) \nabla_h u_{2,h}, \nabla_h x^\perp \right)_{L^2} - \frac{\gamma_h}{h^2} \left(D^2 \tilde{W}(\nabla_h u_{0,0,h}) \nabla_h x^\perp, \nabla_h x^\perp \right)_{L^2}
\]
\[\quad + \frac{1}{h^2} \left(D^3 \tilde{W}(\nabla_h u_{0,0,h}) \nabla_h u_{1,h}, \nabla_h u_{1,h}, \nabla_h x^\perp \right)_{L^2}.
\]
The first and last term can be bounded easily, using Corollary 2.4
\[
\left| \frac{1}{h^2} \left(D^2 \tilde{W}(\nabla_h u_{0,0,h}) \nabla_h \bar{u}_{0,h}, \nabla_h x^\perp \right)_{L^2} \right| = \frac{1}{h^2} \int_0^1 \left(D^3 \tilde{W}(\nabla_h u_{0,0,h}) \nabla_h u_{0,0,h}, \nabla_h \bar{u}_{2,h}, P \right)_{L^2(\Omega)}
\]
\[\quad \leq C \mu(S) \| \nabla_h u_{0,0,h} \|_{H^1_h} \| \nabla_h \bar{u}_{2,h} \|_{H^1_h} \leq C h^2
\]
and
\[
\left| \frac{1}{h^2} \left(D^3 \tilde{W}(\nabla_h u_{0,0,h}) \nabla_h u_{1,h}, \nabla_h u_{1,h}, \nabla_h x^\perp \right)_{L^2} \right| \leq C h^2.
\]
For the second part of \(\gamma_h^4 \), we use the following equality
\[
\left(D^2 \tilde{W}(\nabla_h u_{0,h}, P), P \right)_{L^2(\Omega)} = \left(D^3 \tilde{W}(0) | \nabla_h u_{0,h}, P \rangle, P \right)_{L^2(\Omega)} \\
+ \int_0^1 (1 - \tau) \left(D^4 \tilde{W}(\tau \nabla_h u_{0,h}) | \nabla_h u_{0,h}, \nabla_h u_{0,h}, P \rangle, P \right)_{L^2(\Omega)} \, d\tau
\]

where
\[
\left| \left(D^4 \tilde{W}(\tau \nabla_h u_{0,h}) | \nabla_h u_{0,h}, \nabla_h u_{0,h}, P \rangle, P \right)_{L^2(\Omega)} \right| \leq C h^4 \quad \text{for all} \quad \tau \in [0, 1] \quad (3.34)
\]

as \(\|u_{0,h}\|_{H^1_h(\Omega)} \leq C h^2 \) and \(|P|_h = |P| \), because \(P \in \mathbb{R}^{3 \times 3}_{skew} \). Furthermore, we obtain with (2.5)
\[
\left(D^3 \tilde{W}(0) | \nabla_h u_{0,h}, P \rangle, P \right)_{L^2(\Omega)} = h \left(D^3 \tilde{W}(0) \left[\frac{1}{h} \varepsilon_h(u_{0,h}) - \frac{1}{h} \varepsilon_h(\bar{u}_{0,h}), P \right], P \right)_{L^2(\Omega)} \\
+ \left(D^3 \tilde{W}(0) | \nabla_h \bar{u}_{0,h}, P \rangle, P \right)_{L^2(\Omega)}.
\]

Utilizing the inequality for the initial values (3.24), we deduce
\[
\left| h \left(D^3 \tilde{W}(0) \left[\frac{1}{h} \varepsilon_h(u_{0,h}) - \frac{1}{h} \varepsilon_h(\bar{u}_{0,h}), P \right], P \right)_{L^2} \right| \leq C h^4.
\]

Lastly due to the symmetry properties of \(D^3 \tilde{W} \), the structure of \(\nabla_h \bar{u}_{0,h} \) and (2.5), it follows
\[
\left| \left(D^3 \tilde{W}(0) | \text{sym}(\nabla_h \bar{u}_{0,h}), P \rangle, P \right)_{L^2} \right| = \left| \left(D^3 \tilde{W}(0) | [h^3 Q, P] \right), P \right)_{L^2} + \left(D^3 \tilde{W}(0) | [R, P] \right), P \right)_{L^2}\]

where
\[
Q = \begin{pmatrix}
-x_2 \partial^2_{x_1} v_2 - x_3 \partial^2_{x_1} v_3 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]
\[
R = h^4 \text{sym} \begin{pmatrix}
0 & \partial_{x_2} a_2 \partial_{x_1} v_2 + \partial_{x_2} a_3 \partial_{x_1} v_3 & \partial_{x_3} a_2 \partial_{x_1} v_2 + \partial_{x_3} a_3 \partial_{x_1} v_3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]
\[
+ h^5 \text{sym} \begin{pmatrix}
0 & \partial_{x_2} b_2 \partial_{x_1} v_2 + \partial_{x_2} c_3 \partial_{x_1} v_3 & 0 \\
0 & 0 & \partial_{x_2} b_3 \partial_{x_1} v_3 + \partial_{x_2} c_2 \partial_{x_1} v_2 \\
0 & 0 & 0
\end{pmatrix}
\]
\[
+ h^6 \text{sym} \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

Due to the structure of \(Q \) and \(P = \nabla x^+ \), it follows
\[
D^3 \tilde{W}(0) | [Q, P] \rangle, P \rangle = \left((Q^T - Q)^T \text{sym}(P) + (P^T - P)^T \text{sym}(Q) \right) : P = 0.
\]

Hence, with \(R = O(h^4) \) we obtain
\[
\left| \left(D^3 \tilde{W}(0) | \text{sym}(\nabla_h \bar{u}_{0,h}), P \rangle, P \right)_{L^2} \right| \leq C h^4.
\]

Thus, altogether, it follows with \(|\gamma^h_2| \leq C h^2 \)
\[
\left| \frac{\gamma^h}{h^2} \left(D^2 \tilde{W}(\nabla_h u_{0,h}) | \nabla h x^+, \nabla h x^+ \right)_{L^2} \right| \leq C h^2.
\]
We obtain for \(h_0 \) sufficiently small, the existence of \((u_{0,h}, u_{1,h}, u_{2,h})\) such that (A.1)–(A.3) are satisfied and

\[
\max_{j=0,1} \left\| \frac{1}{h} \xi_h(u_{j,h}) - \frac{1}{h} \xi_h(\tilde{u}_{j,h}) \right\|_{L^2(\Omega)} \leq Ch^3
\]

holds.

Due to Theorem A.1, there exists a solution \(u_h \in \bigcap_{k=0}^4 C^k([0,T]; H^4_{\text{per}}(\Omega; \mathbb{R}^3)) \) of (3.1)–(3.4). Thus, \(w_h := u_h - \tilde{u}_h \) solves the system

\[
- (\partial_t w_h, \partial_t \varphi)_{L^2(Q_T)} + \frac{1}{h^2} (D^2 \tilde{W}(0) \nabla_h w_h, \nabla_h \varphi)_{L^2(Q_T)} - (w_1, \varphi|_{t=0})_{L^2(\Omega)}
\]

for all \(\varphi \in C^1([0,T]; H^4_{\text{per}}(\Omega; \mathbb{R}^3)) \) with \(\varphi|_{t=T} = 0 \) and with \(w_{j,h} := u_{j,h} - \tilde{u}_{j,h}, j = 0, 1 \). Hence, with (A.16) we obtain an upper bound for \(w \). For this we use that, due to the structure of \(r_h \) and \(r_{N,h} \), it follows

\[
\frac{1}{h^2} \| r_{N,h} \|_{L^1(0,T; H^1)} \leq Ch^3, \quad \| r_h \|_{L^1(0,T; L^2)} \leq Ch^3
\]

as \(a, b, c \) and \(v \) are sufficiently regular. Moreover, using (3.24)

\[
\| w_{k,h} \|_{L^2(\Omega)} \leq \max_{j=0,1} \left\| \frac{1}{h} \xi_h(u_{j,h}) - \frac{1}{h} \xi_h(\tilde{u}_{j,h}) \right\|_{L^2(\Omega)} \leq Ch^3
\]

for \(k = 0, 1 \), where we used Poincaré’s and Korn’s inequality, as well as the fact that \(w_{k,h} \in B \) holds for \(k = 0, 1 \). With the fundamental theorem of calculus and Corollary 2.4, we deduce

\[
\sup_{\varphi \in X_h, \| \varphi \|_{X_h} = 1} \left| \frac{1}{h^2} \int_0^1 \left((D^2 \tilde{W}(\tau \nabla_h u_h) - D^2 \tilde{W}(0)) \nabla_h \partial_t \tilde{u}_h, \nabla_h \varphi \right)_{L^2(\Omega)} d\tau \right|
\]

\[
\leq \sup_{\varphi \in X_h, \| \varphi \|_{X_h} = 1} \left| \frac{1}{h^2} \int_0^1 \int_0^1 \left(D^2 \tilde{W}(s \tau \nabla_h u_h) [\nabla_h u_h, \nabla_h \partial_t \tilde{u}_h], \nabla_h \varphi \right)_{L^2(\Omega)} dsd\tau \right|
\]

\[
\leq \sup_{\varphi \in X_h, \| \varphi \|_{X_h} = 1} \frac{C}{h} \| \nabla_h u_h \|_{H^2(\Omega)} \| \nabla_h \partial_t \tilde{u}_h \|_{L^2(\Omega)} \leq CRh^3.
\]

Lastly, we have to deal with the rotational term. Using the momentum balance law, \(u_{0,h}, u_{1,h} \in B \) and the structure of \(g \), we obtain with \(q^h := h^2 f^h \)

\[
\iint_{0}^{t} u_h \cdot x^+ \, dx \, d\tau = t \int_{\Omega} u_{0,h} \cdot x^+ \, dx + \frac{1}{2} t^2 \int_{\Omega} u_{1,h} \cdot x^+ \, dx + \int_{0}^{t} \int_{\Omega} q^h \cdot x^+ \, dx \, ds
\]

\[
+ \frac{1}{h} \int_{0}^{t} \int_{0}^{\tau} (\tau - s) \int_{\Omega} q^h \cdot u_{\perp}^h - u_{\perp}^h \cdot \partial_\tau u_{\perp} \, dx \, dsd\tau.
\]
\[\frac{1}{h} \int_0^t \int_0^{\tau} (\tau - s) \int_\Omega q^h \cdot u_h^+ - u_h^+ \cdot \partial_t^2 u_h \, dx \, ds \, d\tau. \]

Hence, it follows
\[
\left\| \int_0^t \int_\Omega u_h \cdot x^+ \, dx \, d\tau \right\|_{C^0([0,T])} \leq C \left(\int_\Omega q^h \cdot u_h^+ \, dx \right)_{C^0([0,T])} + \int_\Omega \partial_t^2 u_h \cdot u_h^+ \, dx \right\|_{C^0([0,T])} \leq C h^3
\]
as due to (A.6)
\[
\left\| \frac{1}{h} \varepsilon(\partial_t^\delta u_h) \right\|_{L^\infty(0,T;L^2)} + \left\| \frac{1}{h} \int_\Omega \partial_t^\delta u_h \cdot x^+ \, dx \right\|_{L^\infty(0,T)} \leq C h^2
\]
for \(\delta = 0, 2 \). Thus, with (A.16) it follows
\[
\left\| \left(u_h \right) \frac{1}{h} \varepsilon_h(\tau) - \tilde{u}_h(\tau) \right\|_{C^0([0,T];L^2)} \leq C h^3.
\]

\[\square \]

Acknowledgements

Tobias Ameismeier was supported by the RTG 2339 “Interfaces, Complex Structures, and Singular Limits” of the German Science Foundation (DFG). The support is gratefully acknowledged.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Large times existence for the non-linear problem

The existence of solutions follows from

Theorem A.1. Let \(\theta \geq 1, 0 < T < \infty, f_h \in W^2_h(0,T;L^2(\Omega)) \cap W^1_h(0,T;H^2_{\text{per}}(\Omega)), h \in (0,1] \) and \(u_{0,h} \in H^4_{\text{per}}(\Omega), u_{1,h} \in H^3_{\text{per}}(\Omega) \) such that
\[
D\tilde{W}(\nabla_h u_{0,h})\nu|_{(0,L)\times\partial S} = D^2\tilde{W}(\nabla_h u_{0,h})[\nabla_h u_{1,h}]\nu|_{(0,L)\times\partial S} = 0,
\]
\[
(D^2\tilde{W}(\nabla_h u_{0,h})[\nabla_h u_{2,h}]) + D^3\tilde{W}(\nabla_h u_{0,h})[\nabla_h u_{1,h}, \nabla_h u_{1,h}]\nu|_{(0,L)\times\partial S} = 0,
\]
where
\[u_{2,h} = h^{1+\theta} f_{h,t=0} + \frac{1}{h^2} \text{div}_h(D\tilde{W}(\nabla_h u_{0,h})) \]
Moreover, we assume for the initial data

\[u_{3,h} = h^{1+\theta} \partial_t f_h \big|_{t=0} + \frac{1}{h^2} \text{div}_h(D^2 \tilde{W}(\nabla_h u_{0,h}) \nabla_h u_{1,h}) \]

\[u_{4,h} = h^{1+\theta} \partial_t^2 f_h \big|_{t=0} + \frac{1}{h^2} \text{div}_h(D^2 \tilde{W}(\nabla_h u_{0,h}) \nabla_h u_{2,h}) \]

\[+ \frac{1}{h^2} \text{div}_h(D^3 \tilde{W}(\nabla_h u_{0,h})[\nabla_h u_{1,h}, \nabla_h u_{1,h}]). \]

and for the right hand side

\[\max_{|\alpha| \leq 1} \left(\left\| \partial^\alpha_{(t,x)} f_h \right\|_{W^1_2(L^2)} + \left\| \partial^\alpha_{(t,x)} f_h \right\|_{W^2_\infty(L^2) \cap W^1_1(H^{\alpha+1})} \right) \leq M, \tag{A.4} \]

\[\max_{\sigma=0,1,2} \left(\left\| \partial_{(t,x)} f_h \cdot x^\perp dx \right\|_{C^0([0,T])} \right) \leq M, \tag{A.5} \]

uniformly in \(0 < h \leq 1 \). Then there exists \(h_0 \in (0,1) \) and \(C > 0 \) depending only on \(M \) and \(T \) such that for every \(h \in (0,h_0) \) there is a unique solution \(u_h \in \bigcap_{k=0}^4 C^k([0,T];H^{3-k}(\Omega)) \) of (3.1)–(3.4) satisfying

\[\max_{|\alpha| \leq 1, |\beta| \leq 2, |\gamma| \leq 1} \left(\left\| (\partial^\gamma_{t} \partial^\beta_{x} u_h, \nabla^\gamma_{x} \partial^\beta_{x} f_h) \right\|_{C^0([0,T];L^2)} \right) \]

\[+ \left\| \frac{1}{h} \int_{\Omega} \partial^\alpha_{(t,x)} u_h \cdot x^\perp dx \right\|_{C^0([0,T])} \leq C h^{1+\theta}, \tag{A.6} \]

uniformly in \(0 < h \leq h_0 \).

Proof. A proof can be found in [4, Theorem 5.1.1] or [1]. \(\square \)

The linearized system for (3.1)–(3.4) is given by

\[\partial^2 w - \frac{1}{h^2} \text{div}_h(D^2 \tilde{W}(\nabla_h u_h) \nabla_h w) = f \quad \text{in } \Omega \times [0,T) \tag{A.7} \]

\[D^2 \tilde{W}(\nabla_h u)[\nabla_h w] \nu = 0 \quad \text{on } (0,L) \times \partial \Omega \times [0,T) \tag{A.8} \]

\(w \) is \(L \)-periodic in \(x_1 \) coordinate \(\text{in } 0 < h \leq 1 \)

\((w, \partial_t w) \big|_{t=0} = (w_0, w_1) \).

We want to show \(h \)-independent estimates for solutions of the linearized system. For this we assume that \(u_h \) satisfies for \(0 < h \leq 1 \)

\[\sup_{|\alpha| \leq 1, k=0,1,2} \left(\left\| \left(\frac{1}{h} \nabla^k_{x,t} \partial^\alpha_{(t,x)} u_h, \nabla^k_{x,t} \nabla_h \partial^\alpha_{(t,x)} u_h \right) \right\|_{C^0([0,T];L^2(\Omega))} \right) \]

\[+ \left\| \frac{1}{h} \int_{\Omega} \partial^\alpha_{(t,x)} u_h \cdot x^\perp dx \right\|_{C^0([0,T])} \leq R h, \tag{A.11} \]

where \(R \in (0,R_0] \), with \(R_0 \) chosen later appropriately small.
Lemma A.2. Assume that (A.11) holds, $t \in [0, T]$ and $0 < R \leq R_0$. Then
\[
\left\| \frac{1}{h^2} \left(\partial_x^2 D^2 \tilde{W}(\nabla_h u_h(t)) \nabla_h w, \nabla_h v \right) \right\|_{L^2(\Omega)} \leq CR \|\nabla_h w\|_{H^{[\beta]}_h(\Omega)} \|\nabla_h v\|_{L^2_h(\Omega)} \tag{A.12}
\]
for $1 \leq |\beta| \leq 3$.

Proof. For a proof see [4, Lemma 5.2.2]. \hfill \Box

For the higher regularity estimates, we need the following result.

Theorem A.3. Assume u_h satisfies (A.11). Then there exist $C > 0$ and $R_0 \in (0, 1]$ such that if $\varphi \in H^2_{\text{per}}(\Omega)$ solves for some $g \in H^1_{\text{per}}(\Omega)$ and $g_N \in L^2(0, L; H^{k+\frac{1}{2}}(\partial S)) \cap H^k(0, L; H^{\frac{1}{2}}(\partial S))$
\[
\begin{align*}
- \frac{1}{R^2} \text{div}_h(D^2 \tilde{W}(\nabla_h u_h) \nabla_h \varphi) &= g \quad \text{in} \quad \Omega, \\
D^2 \tilde{W}(\nabla_h u_h)[\nabla_h \varphi] &= g_N \quad \text{on} \quad \partial \Omega,
\end{align*}
\tag{A.13}
\]
then
\[
\left\| \left(\nabla^1_h \varepsilon_h(\varphi), \nabla_h^2 \varphi \right) \right\|_{H^k(\Omega)} \leq C \left(h^2 \|g\|_{L^2(\Omega)} + \frac{1}{h} \|g_N\|_{L^2(0, L; H^{k+\frac{1}{2}}(\partial S)) \cap H^k(0, L; H^{\frac{1}{2}}(\partial S))} \right.
\]
\[
+ \frac{1}{h} \|\varepsilon_h(\varphi)\|_{H_0^{k+1}(\Omega)} + R \left(\frac{1}{h} \int_{\Omega} \varphi \cdot x^+ dx \right) \tag{A.14}
\]

Proof. See [1, Theorem 3.5]. \hfill \Box

In order to bound differences between the approximation \tilde{u}_h and the analytic solution u_h we consider the following weak form of the linearized system (A.7)–(A.10):
\[
\begin{align*}
- (\partial_t w, \partial_t \varphi)_{L^2(Q_T)} + \frac{1}{h^2} \left(D^2 \tilde{W}(\nabla_h u_h) \nabla_h w, \nabla_h \varphi \right)_{L^2(Q_T)} &= (f_1, \nabla_h \varphi)_{L^2(Q_T)} + (f_2, \varphi)_{L^2(Q_T)} \\
+ \langle w_1, \varphi \rangle_{X_h} + \frac{1}{h^2} \langle \text{tr}\partial \Omega(a_N), \text{tr}\partial \Omega(\varphi) \rangle_{L^2(0, T; L^2(\partial \Omega))} &
\end{align*}
\tag{A.15}
\]
for all $\varphi \in C^1([0, T]; H^1_{\text{per},(0)}(\Omega; \mathbb{R}^3))$ with $\varphi|_{t=T} = 0$. Here we denote $Q_T := \Omega \times (0, T)$ and
\[
X_h := H^1_{\text{per},(0)}(\Omega; \mathbb{R}^3) := H^1_{\text{per}}(\Omega; \mathbb{R}^3) \cap \left\{ u \in L^1(\Omega; \mathbb{R}^3) : \int_{\Omega} u(x) dx = 0 \right\}
\]
equipped with the h-dependent norm
\[
\|u\|_{X_h} := \|\nabla_h u\|_{L^2_h(\Omega)}.
\]

Lemma A.4. Assume that u_h satisfies (A.11) with $R \in (0, R_0)$ and $h \in (0, 1]$. Let R_0 be sufficiently small and $w \in C^0([0, T]; X_h) \cap C^1([0, T]; L^2(\Omega; \mathbb{R}^3))$ be a solution of (A.15) for $f_1 \in L^1(0, T; L^2(\Omega, \mathbb{R}^3))$, $f_2 \in L^1(0, T; L^2(\Omega, \mathbb{R}^3))$, $a_N \in L^1(0, T; H^1(\Omega; \mathbb{R}^3))$, $w_0 \in L^2(\Omega; \mathbb{R}^3)$ and $w_1 \in X_h$. Then there are C_0, $C > 0$ independent of w and T such that
\[
\left\| \left(w, \frac{1}{h} \varepsilon_h(u) \right) \right\|_{C^0([0, T]; L^2)} \leq C_0 e^{CRT} \left(\|f_1\|_{L^1(0, T; L^2_h)} + \|f_2\|_{L^1(0, T; L^2)} + \|w_0\|_{L^2(\Omega)} + \|w_1\|_{X_h} \right.
\]
\[
+ \frac{1}{h^2} \|a_N\|_{L^1(0, T; H^1)} + (1 + T) \left(\frac{1}{h} \int_{\Omega} u \cdot x^+ dx \right) \tag{A.16}
\]

where \(u(t) := \int_0^t w(\tau) d\tau \) and \((L^2_{\mathbb{K}})'\) is an abbreviation for \((L^2_{\mathbb{K}}(\Omega; \mathbb{R}^{3 \times 3}))'\).

Proof. Let \(0 \leq T' \leq T \) and define \(\tilde{u}_{T'}(t) = -\int_t^{T'} w(\tau) d\tau \). We use, after smooth approximation, \(\varphi = \tilde{u}_{T'} \chi_{[0,T']} \). Then it follows
\[
\frac{1}{2} \left\| w(T') \right\|_{L^2}^2 + \frac{1}{2h^2} \left(D^2 \tilde{W}(\nabla_h u_h|_{t=0}) \nabla_h \tilde{u}_{T'}(0), \nabla_h \tilde{u}_{T'}(0) \right)_{L^2(\Omega)} = -\frac{1}{2h^2} \left(\partial_t D^2 \tilde{W}(\nabla_h u_h) \nabla_h \tilde{u}_{T'}(0), \nabla_h \tilde{u}_{T'}(0) \right)_{L^2(\Omega)} - (f_1, \nabla_h \tilde{u}_{T'})_{L^2(\Omega)} - \frac{1}{h^2} (a_N, \text{tr}_\Omega(\tilde{u}_{T'}))_{L^2(0,T';L^2(\Omega))} + \frac{1}{2} \left\| w(0) \right\|_{L^2}^2.
\]
Using
\[
\frac{1}{2h^2} \left(D^2 \tilde{W}(\nabla_h u_h|_{t=0}) \nabla_h \tilde{u}_{T'}(0), \nabla_h \tilde{u}_{T'}(0) \right)_{L^2(\Omega)} \geq \frac{c_0}{2} \left\| \frac{1}{h} \varepsilon_h(\tilde{u}_{T'}(0)) \right\|_{L^2(\Omega)}^2 - CR \frac{1}{h} \left\| \tilde{u}_{T'}(0) \cdot x^+ dx \right\|_{L^2(\Omega)}^2
\]
it follows with \(\tilde{u}_{T'}(0) = -u(T') \)
\[
\left\| w(T') \right\|_{L^2}^2 + \left\| \frac{1}{h} \varepsilon_h(u(T')) \right\|_{L^2}^2 \leq CR \int_0^{T'} \left\| \frac{1}{h} \varepsilon_h(\tilde{u}_{T'}) \right\|_{L^2}^2 + \left\| \tilde{u}_{T'} \cdot x^+ dx \right\|_{L^2(\Omega)}^2 dt
+ C \left(\left\| f_1 \right\|_{L^1(0,T';L^2(\Omega))} + \left\| f_2 \right\|_{L^1(0,T';L^2(\Omega))} + \left\| w_1 \right\|_{X^h_k} + \frac{1}{h^2} \left\| a_N \right\|_{L^1(0,T';H^1)} \right) \left\| \nabla_h \tilde{u}_{T'} \right\|_{C^0([0,T];L^2_{\mathbb{K}})}
+ C \left\| w_0 \right\|_{L^2}^2 + CR \frac{1}{h} \left\| \tilde{u}_{T'}(0) \cdot x^+ dx \right\|_{L^2(\Omega)}^2
\]
where we used Lemma A.2 and Korn’s inequality, as well as the subsequent inequalities
\[
\left\| \langle w_1, \tilde{u}_{T'}(0) \rangle_{X^h_k \times X^h_k} \right\| \leq \left\| w_1 \right\|_{X^h_k} \left\| \tilde{u}_{T'}(0) \right\|_{X^h_k} \leq \left\| w_1 \right\|_{X^h_k} \left\| \nabla_h \tilde{u}_{T'} \right\|_{C^0([0,T];L^2_{\mathbb{K}})}
\]
\[
\left\| (f_1, \nabla_h \tilde{u}_{T'})_{L^2(\Omega)} \right\| \leq \int_0^{T'} \left\| f_1(t) \right\|_{L^2_{\mathbb{K}}} \left\| \nabla_h \tilde{u}_{T'} \right\|_{L^2(\Omega)} dt \leq \left\| f_1(t) \right\|_{L^1(0,T';L^2(\Omega))} \left\| \nabla_h \tilde{u}_{T'} \right\|_{C^0([0,T];L^2_{\mathbb{K}})}.
\]
Now we can use \(\tilde{u}_{T'}(0) = -u(T') \) and \(\tilde{u}_{T'}(t) = -u(T') + u(t) \) to deduce
\[
\int_0^{T'} \left\| \frac{1}{h} \varepsilon_h(\tilde{u}_{T'}(t)) \right\|_{L^2(\Omega)}^2 dt \leq \left\| \frac{1}{h} \varepsilon_h(u(T')) \right\|_{L^2(\Omega)}^2 + T' \left\| \frac{1}{h} \varepsilon_h(u(T')) \right\|_{L^2(\Omega)}^2 + C \left\| \frac{1}{h} \int_0^{T'} u \cdot x^+ dx \right\|_{C^0([0,T'])}^2.
\]
\[
\left\| \nabla_h \tilde{u}_{T'} \right\|_{C^0([0,T];L^2_{\mathbb{K}}(\Omega))} \leq C \left\| \frac{1}{h} \varepsilon_h(u) \right\|_{C^0([0,T];L^2(\Omega))} + C \left\| \frac{1}{h} \int_\Omega \left\| u \cdot x^+ dx \right\|_{C^0([0,T'])}.
\]
Using the later inequalities and applying the supremum over \(T' \in [0,\bar{T}] \) such that \(R\bar{T} \leq \kappa, \kappa \in (0,1) \), it follows
arguments as above, because of \(R \). Finally, due to \(\frac{1}{2} \kappa \leq R(T_{j+1} - T_j) \), we obtain \(N \leq 2\kappa^{-1}RT \) and thus
\[
(C_0)^N = \exp(N \ln C_0) \leq \exp(2\kappa^{-1}RT \ln C_0) \leq \exp(C_0'RT).
\]
Hence, (A.16) holds for some \(C_0, C > 0 \) independent of \(R \in (0, R_0], h \in (0, 1] \) and \(0 < T < \infty \). \(\square \)

References

[1] Abels, H., Ameismeier, T.: Large Times Existence for Thin Vibrating Rods. arXiv:2109.11618 (2021)

[2] Abels, H., Mora, M.G., Müller, S.: Large time existence for thin vibrating plates. Commun. Partial Differ. Equ. 36(12), 2062–2102 (2011)

[3] Abels, H., Mora, M.G., Müller, S.: The time-dependent von Kármán plate equation as a limit of 3d nonlinear elasticity. Calc. Var. Partial Differ. Equ. 41(1–2), 241–259 (2011)
[4] Ameismeier, T.: Thin Vibrating Rods: Γ-Convergence, Large Time Existence and First Order Asymptotics. Ph.D. Thesis, University Regensburg (2021). https://doi.org/10.5283/epub.46123
[5] Antman, S.S.: Nonlinear Problems of Elasticity, vol. 107, 2nd edn. Springer, Berlin (2005)
[6] Friedrich, M., Kružík, M.: Derivation of von Kármán plate theory in the framework of three-dimensional viscoelasticity. Arch. Ration. Mech. Anal. 238(1), 489–540 (2020)
[7] Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002)
[8] Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)
[9] Gurtin, M.E.: An introduction to continuum mechanics. In: Mathematics in Science and Engineering, vol. 158. Academic Press, New York, London (1981)
[10] McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)
[11] Mora, M.G., Müller, S.: Derivation of the nonlinear bending-torsion theory for inextensible rods by Γ-convergence. Calc. Var. Partial Differ. Equ. 18(3), 287–305 (2003)
[12] Mora, M.G., Müller, S.: A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(3), 271–293 (2004)
[13] Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations, Volume 13 of Texts in Applied Mathematics, 2nd edn. Springer, New York (2004)
[14] Scardia, L.: The nonlinear bending-torsion theory for curved rods as Γ-limit of three-dimensional elasticity. Asymptot. Anal. 47(3–4), 317–343 (2006)
[15] Scardia, L.: Asymptotic models for curved rods derived from nonlinear elasticity by Γ-convergence. Proc. R. Soc. Edinb. Sect. A 139(5), 1037–1070 (2009)

Helmut Abels and Tobias Ameismeier
Fakultät für Mathematik
Universität Regensburg
93040 Regensburg
Germany
e-mail: helmut.abels@mathematik.uni-regensburg.de

Tobias Ameismeier
e-mail: tobias.ameismeier@mathematik.uni-regensburg.de

(Received: January 9, 2022; accepted: June 15, 2022)