Single-Trace Side-Channel Attacks on the Toom-Cook

The Case Study of Saber

Yanbin Li1, Jiajie Zhu1, Yuxin Huang1, Zhe Liu2,3, and Ming Tang4

1Nanjing Agricultural University, 2Zhejiang Lab, 3Nanjing University of Aeronautics and Astronautics, 4Wuhan University

CHES 2022, September 2022
Overview

1. Toom-Cook Overview
2. Vulnerabilities Analysis
3. Single-trace Attack
4. Evaluation
5. Conclusion
Toom-Cook

- Toom-Cook algorithm
 - A divide-and-conquer approach to implementing polynomial multiplication
- Toom-Cook-\(k\)
 - \(k\) segments to form a \(k-1\) degree polynomial containing \(k\) coefficients
 - Karatsuba algorithm, a special form of Toom-Cook-2 algorithm
- NTRU-Prime and Saber
Toom-Cook-4

- \(A(x) \) and \(B(x) \): \(n \)-degree polynomials
 - \(A(x) = a_{n-1} \cdot x^{n-1} + a_{n-2} \cdot x^{n-2} + \cdots + a_0 \)
 - \(B(x) = b_{n-1} \cdot x^{n-1} + b_{n-2} \cdot x^{n-2} + \cdots + b_0 \)

- The parameter \(n = 256 \) and \(k = 4 \)
 - \(A(x) = A3 \cdot x^{64 \cdot 3} + A2 \cdot x^{64 \cdot 2} + A1 \cdot x^{64} + A0 \)
 - \(B(x) = B3 \cdot x^{64 \cdot 3} + B2 \cdot x^{64 \cdot 2} + B1 \cdot x^{64} + B0 \)
 - \(A3 = a_{255} \cdot x^{63} + \cdots + a_{192}, \ A2 = a_{191} \cdot x^{63} + \cdots + a_{128} \)
 - \(A1 = a_{127} \cdot x^{63} + \cdots + a_{64}, \ A0 = a_{63} \cdot x^{63} + \cdots + a_0 \)

- Define \(x^{64} = y \)
 - \(A(y) = A3 \cdot y^3 + A2 \cdot y^2 + A1 \cdot y + A0 \)
 - \(B(y) = B3 \cdot y^3 + B2 \cdot y^2 + B1 \cdot y + B0 \)
Toom-Cook-4

- $C(p_i) = A(p_i) \cdot B(p_i)$
 - $p_0 = 0, p_1 = 1/2, p_2 = -1/2, p_3 = 1, p_4 = -1, p_5 = 2, p_6 = \infty$

\[
\begin{bmatrix}
C_0 \\
C_1 \\
\vdots \\
C_6 \\
\end{bmatrix}
= \begin{bmatrix}
(p_0)^0 & (p_0)^1 & \cdots & (p_0)^6 \\
(p_1)^0 & (p_1)^1 & \cdots & (p_1)^6 \\
\vdots & \vdots & \ddots & \vdots \\
(p_6)^0 & (p_6)^1 & \cdots & (p_6)^6 \\
\end{bmatrix}^{-1}
\begin{bmatrix}
C(p_0) \\
C(p_1) \\
\vdots \\
C(p_6) \\
\end{bmatrix}
\]

- $C(y) = C_6 \cdot y^6 + C_5 \cdot y^5 + \cdots + C_0$
Toom-Cook in Saber

```c
void indcpa_kem_dec(const uint8_t sk[], const uint8_t ciphertext[], uint8_t m[]) {
    1. BS2POLVECq(sk, s); BS2POLVECp(ciphertext, b);
    2. InnerProd(b, s, v);
    3. /*processing results*/
}
```

```c
void InnerProd(const uint16_t b[][], const uint16_t s[][], uint16_t res[])
    1. for (j = 0; j < SABER_L; j++) poly_mul_acc(b[j], s[j], res);
```

```c
void poly_mul_acc(const uint16_t a[], const uint16_t b[], uint16_t res[])
    1. toom_cook_4way(a, b, c);
```

```c
static void toom_cook_4way(const uint16_t *a1, const uint16_t *b1, uint16_t *result)
    1. Split a1 to A0, A1, A2, A3; Split b1 to B0, B1, B2, B3;
    2. Calculate 7 points //Evaluation
        aw1=A3;                                                   bw1=B3;
        aw2=8A3+4A2+2A1+A0;                       bw2=8B3+4B2+2B1+B0;
        aw3=A0+A2+A1+A3;                              bw3=B0+B2+B1+B3;
        aw4=A0+A2-(A1+A3);                             bw4=B0+B2-(B1+B3);
        aw5=8A0+2A2+4A1+A3;                        bw5=8B0+2B2+4B1+B3;
        aw6=8A0+2A2-(4A1+A3);                      bw6=8B0+2B2-(4B1+B3);
        aw7=A0;                                                    bw7=B0;
    3. karatsuba_simple(aw7, bw7, w7);    //MULTIPLICATION
    4. /*INTERPOLATION*/
```

```c
static void karatsuba_simple(const uint16_t *a_1, const uint16_t *b_1, uint16_t *result_final)
    1. for (i = 0; i < 16; i++)
        2.     acc1=a_1[i]; acc2=a_1[i+16]; acc3=a_1[i+32]; acc4=a_1[i+48];
    3. for (j = 0; j< 16; j++)
        4.              acc5=b_1[j]; acc6=b_1[j+16];
        5. result_final[i+j]=result_final[i+j]+OVERFLOWING_MUL(acc1, acc5);
    6. /*The same method to calculate the 9 multiplications in 2-level Karatsuba*/
    7. /*processing the results*/
```
Vulnerabilities Analysis

- Incomplete key recovery
 - Its intermediate values depend on the known ciphertext and unknown secret key.
 - Reveal the first and last $\frac{1}{k}$ of private-key coefficients

- Indistinguishable guessing keys

Figure: The dataflow of Toom-Cook multiplication in Saber.

Figure: The Pearson's correlation coefficient among different guessing keys.
Soft-analytical side-channel attack (SASCA)

- **Factor graphs**
 - Variables nodes by circles
 - Factor nodes by squares (two groups)
 - Corresponds to the probabilities of the variables by observable side-channel leakages
 - Modeling the relationships between the variables nodes

- **Belief propagation**
 - \(u_{x_n \rightarrow f_m} (v_n) = \prod_{m' \in \mathcal{M}(x_n) \setminus m} u_{f_m', \rightarrow x_n} (v_n) \)
 - \(u_{f_m \rightarrow x_n} (v_n) = \sum_{x_m \setminus n} \left(f_m(x_m \setminus n, v_n) \prod_{n' \in \mathcal{N}(f_m) \setminus n} u_{x_n', \rightarrow f_m} (v_{n'}) \right) \)
SASCA on Toom-Cook

- Schoolbook multiplication with factor graph representation (SFG)
 - \(f_{\text{mul}}(aw_{1i}[0], bw_{1i}, r_{1i}) = \begin{cases} 1 & \text{if } r_{1i}[0] = \text{OVERFLOWING}_\text{MUL}(aw_{1i}[0], bw_{1i}) \\ 0 & \text{otherwise} \end{cases} \)
 - \(f_{L.0} = Pr(r_{1i}[0]|L.0) \)

(a) aw and bw.

(b) SFG.
SASCA on Toom-Cook

- Factor graph corresponding to Karatsuba (KFG)

 \[f_{\text{add}}^1(bw_{11}, bw_{12}, bw_{13}) = \begin{cases}
 1 & \text{if } bw_{13} = bw_{11} + bw_{12} \mod q \\
 0 & \text{otherwise}
\end{cases} \]

Figure: KFG.

Figure: The 9 polynomials of degree 16.

- \(bw_{11} = bw_{1.3} \)
- \(bw_{12} = bw_{1.2} \)
- \(bw_{13} = bw_{1.3} + bw_{1.2} \)
- \(bw_{14} = bw_{1.1} \)
- \(bw_{15} = bw_{1.0} \)
- \(bw_{16} = bw_{1.1} + bw_{1.0} \)
- \(bw_{17} = bw_{1.3} + bw_{1.1} \)
- \(bw_{18} = bw_{1.2} + bw_{1.0} \)
- \(bw_{19} = bw_{1.3} + bw_{1.2} + bw_{1.1} + bw_{1.0} \)
SASCA on Toom-Cook

- Factor graph corresponding to Toom-Cook evaluation (TFG)
- The construction of the full algorithm

(a) TFG.

(b) Relationships.
Decreasing the Number of Templates

- Original templates: $2^{16} \cdot 144, f_{L,0} = Pr(r_1[0] = v|l)$
- Hamming weight templates: $7 \cdot 144 \cdot 17 = 17136, f_{L,0} = Pr(HW(r_1[0]) = HW(v)|l)$
- Deep Learning: MLP
Factor Graph Optimization

- Cost: influenced by the number of nodes and edges of factor graph
- \(p(bw1_i) = p(bw1_i|t_0) \cdot p(bw1_i|t_1) \ldots p(bw1_i|t_{15}) = p(bw1_i|t_0, \ldots t_{15}) \cdot C \)

\[
C = \frac{\sum_l((\prod_j p(t_j|bw1_i^j))p(bw1_i^j)) \prod_j p(bw1_i)}{\prod_j((\sum_l p(t_j|bw1_i^j))p(bw1_i^j))}
\]

(c) Original SFG

(d) Bayes-based SFG
Improving Belief Propagation

- In LDPC, short cycles especially, cycles of length 4, influence the performance using the BP algorithm [Chung et al, 2006]
- Parity-check matrix

\[
H = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

Kyuhyuk Chung and Jun Heo (2006)
Improved Belief Propagation (BP) Decoding for LDPC Codes with a large number of short cycles
2006 IEEE 63rd Vehicular Technology Conference 3, 1464 – 1466.
Improving Belief Propagation

- Avoid those shortest cycles of length 4
- Two steps of BP

(e) First step of BP on the subgraph
(f) Second step of BP on the subgraph
Evaluation

- Evaluate the success rates under different noise levels
- Success rates of attacking bw_{11}, \ldots, bw_{19}
Evaluation

- Evaluate the Bayes-based SFG

metric	method	bw1	bw2	bw3	bw4	bw5	bw6	bw7	sum
success rate	Original SFG	0.86	0.88	0.83	0.88	0.87	0.87	0.86	0.86
	Bayes-based SFG	0.86	0.88	0.83	0.88	0.87	0.87	0.86	0.86
time(s)	Original SFG	1.88	4.12	1.86	2.30	3.71	3.79	2.43	20.08
	Bayes-based SFG	0.10	2.68	0.47	0.49	2.66	2.81	0.09	9.30

- Evaluate the improved BP algorithm

metric	success rate					
	noise					
	2	5	10			
method	Original	Improved BP	Original	Improved BP	Original	Improved BP
bw1.3	0.84	0.94	0.81	0.95	0.71	0.81
bw1.2	0.92	0.94	0.80	0.94	0.71	0.80
bw1.1	0.86	0.97	0.68	0.97	0.73	0.87
bw1.0	0.87	0.94	0.67	0.95	0.72	0.78

metric	time in seconds					
	noise					
	2	5	10			
method	Original	Improved BP	Original	Improved BP	Original	Improved BP
time	0.12	0.07	0.18	0.07	0.13	0.06
Evaluation

- The measured EM trace of implementation

(g) Measurement setup.
(h) EM trace.
Evaluation

- Evaluate the practical attacks with MLP

![Success rate graph for SASCA-DP and SASCA-TA](image_url)
Conclusion

- Investigate the security of the Toom-Cook
- Single-trace attacks
- Optimized SASCA
THANK YOU!