Morphological and Phylogenetic Evidences Reveal Four New Species of *Cantharellus* Subgenus *Cantharellus* (Hydnaceae, Cantharellales) From China

Yu-Zhuo Zhang¹², Wen-Fei Lin³, Bart Buyck⁴, Zhi-Qun Liang²*, Ming-Sheng Su⁵, Zuo-Hong Chen⁶, Ping Zhang⁴, Shuai Jiang⁷, Dong-Yu An¹ and Nian-Kai Zeng¹*

¹ Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China, ² College of Science, Hainan University, Haikou, China, ³ Institute of Edible and Medicinal Fungi, College of Life Sciences, Zhejiang University, Hangzhou, China, ⁴ UMR 7205, Institut Systématique, Evolution, Biodiversité, Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS, Paris, France, ⁵ Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China, ⁶ College of Life Science, Hunan Normal University, Changsha, China, ⁷ School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China, ⁸ Yinggeling Substation, Hainan Tropical Rainforest National Park, Baisha, China

Species of *Cantharellus* subgenus *Cantharellus* are interesting and important for their mycorrhizal properties, medicinal values, and edibility. In China, there are many undescribed species of the subgenus. In this study, four new species of subg. *Cantharellus*, viz. *Cantharellus albopileatus*, *Cantharellus chuwei fanii*, *Cantharellus pinetorus*, and *Cantharellus ratus* from Hainan and Hunan Provinces, respectively, were described based on morphological and phylogenetic evidence as a contribution to the knowledge of the species diversity in China. Detailed descriptions, color photographs of fresh basidiomata, and line drawings of microstructures of these four new species are presented as well as comparisons with related species.

Keywords: chanterelle, molecular phylogeny, morphology, new taxa, taxonomy

INTRODUCTION

Species diversity, taxonomy, and phylogeny of macrofungi have been investigated in the recent years, and many new species have been discovered (Zeng et al., 2013; Han et al., 2016; Chai et al., 2019; Cui et al., 2019; Shen et al., 2019; Sun et al., 2020; Liu et al., 2021a,b, 2022; Wu et al., 2021; Ji et al., 2022; Xie et al., 2022). Species of *Cantharellus* Adans. ex Fr. (Hydnaceae, Cantharellales), interesting and important fungi, have also received a lot of attention by mycologists for their mycorrhizal properties, medicinal values, and edibility (Pilz et al., 2003; Yun and Hall, 2004; Shao et al., 2012). Molecular phylogeny has delimited abundant species within the genus and revealed unexpected species diversity (Buyck et al., 2011, 2013, 2014, 2016a,b; Foltz et al., 2013; Leacock et al., 2016). Until now, a large number of *Cantharellus* taxa have been described in Europe, Africa, and North America (Corner, 1966; Buyck et al., 2011, 2013, 2014, 2016a,b; Kumari et al., 2011, 2013; Suhura and Kurogi, 2015; De Kesel et al., 2016; Leacock et al., 2016).
In China, many species of *Cantharellus* have been uncovered (Chiu, 1973; Zang, 1980; Wei et al., 2008; Tian et al., 2009, 2012; Shao et al., 2011, 2012, 2014, 2016a, 2021; Buyck et al., 2018; An et al., 2017; Jian et al., 2020; Cao et al., 2021; Zhang M. et al., 2021). They are well known to the public in the country because most of them have activities of anticancer, antimicrobial, immune regulation, and antioxidant (Dulger et al., 2004; Daniewskia et al., 2012; Nowacka-Jechalkea et al., 2018; Zhao et al., 2018). Interestingly, basidiocarps of *Cantharellus* such as *Cantharellus yunnanensis* W. F. Chiu are sold as edibles in markets in Yunnan Province, southwestern China (Figure 1), which generate good economic value (Watling, 1997; Wu and Lu, 2006).

Recently, the genus *Cantharellus* has been divided into six subgenera including subg. *Afrocantharellus* Eyssart. and Buyck, subg. *Cantharellus* Adans. ex Fr., subg. *Cinnabarinus* Buyck and V. Hofst., subg. *Parvacantharellus* Eyssart. and Buyck, subg. *Pseudocantharellus* Eyssart. and Buyck, and subg. *Rubrinus* Eyssart. and Buyck (Buyck et al., 2014). Among them, subg. *Cantharellus* has received considerable attention, which is characterized by basidiomata that is medium- to large-sized; cap and stipe are usually smooth, sometimes with appressed squama; hymenophore is veined with blunt, mostly strongly forking-anastomosing ridges, rarely smooth or nearly so; hyphal endings are mostly thick-walled; clamp connections are abundant everywhere (Buyck et al., 2014). In China, although several taxa of subg. *Cantharellus* have been described or reported in previous studies (Chiu, 1973; Shao et al., 2011, 2016b, 2021; An et al., 2017; Cao et al., 2021; Zhang Y. Z. et al., 2021), many more undescribed novel species probably exist in the country. Recently, many collections of subg. *Cantharellus* in China have been collected, and they were studied using morphological and molecular phylogenetic analyses, aiming to (i) describe new taxa and (ii) elucidate the species diversity of subg. *Cantharellus* in China.

MATERIALS AND METHODS

Morphological Studies

Field notes and digital photographs were made from fresh specimens. Specimens examined in this study were deposited in the Fungal Herbarium of Hainan Medical University (FHMU), Haikou City, Hainan Province of China. Macroscopic descriptions are based on the detailed notes and photographs taken from fresh basidiomata. Color codes follow Kornerup and Wanscher (1981). Samples were hand-sectioned and mounted in 5% KOH solution and 1% congo red. Sections of the pileipellis were cut radial-perpendicularly and halfway between the center and the margin of the pileus. The following notations [n/m/p] indicate that n basidiospores measured m basidiomata of p collections. Dimensions of basidiospores were presented in the form (a–)b–c–e(d–), where the range b–c contains at least 90% of the measured values, “a” and “d” were the extreme values, and “e” refers to the average length/width of basidiospores. Q refers to the length/width ratio of basidiospores; Qm refers to the average Q of basidiospores and is given with standard deviation. For basidiospore shape, Qm = 1.15–1.3 describes “broadly ellipsoid,” Qm = 1.3–1.6 “ellipsoid,” and Qm = 1.6–2.0 “elongate” (Yang, 2005). The terms referring to the size of basidioma are based on Bas (1969).

Molecular Procedures

Total genomic DNA was obtained with the Plant Genomic DNA Kit (CWBIO, Beijing, China) according to the manufacturer’s instructions from collections dried with silica gel. Primer pairs used for amplification were as follows: nuc 28S rDNA D1-D2 domains (28S) with LROR/LR5 (Vilgalys and Hester, 1990; James et al., 2006) and the translation elongation factor 1-α gene (TEF1) with EF1-α-F/EF1-α-R (Mikheyev et al., 2006). Polymerase chain reaction (PCR) conditions followed the program of Zhang Y. Z. et al. (2021). PCR products were checked in 1% (w/v) agarose gels. Amplified PCR products were sequenced using an ABI 3730 DNA Analyzer (Guangzhou Branch of BGI, China) with the same primers. Forward or reverse sequences were compiled with BioEdit (Hall, 1999). All sequences newly obtained in this study were deposited to GenBank1.

Dataset Assembly

A total of sixty-nine DNA sequences (34 of 28S, and 35 of TEF1) from 36 collections were newly generated. Edited sequences were deposited in GenBank; the GenBank accession numbers are listed in Table 1. For the concatenated dataset, the sequences of 28S and TEF1 from new collections were aligned with selected sequences of subg. *Cantharellus* from previous studies and GenBank (Table 1); *Cantharellus ibityensis* Buyck, Randrianj. and V. Hofst. was chosen as an outgroup inferred from Buyck et al. (2014). To test for phylogenetic conflict among 28S and TEF1, single-gene phylogenetic trees based on each of these two fragments were analyzed. The results of analyses showed that 28S and TEF1 were not in conflict. Thus, two datasets (28S and TEF1) were aligned with MUSCLE v3.6 (Edgar, 2004) and manually optimized on BioEdit v7.0.9 (Hall, 1999); then, the two datasets were concatenated using Phyutility v2.2 for further analyses (Smith and Dunn, 2008).

Phylogenetic Analyses

The combined nuclear dataset (28S + TEF1) was analyzed using maximum likelihood (ML) and Bayesian inference (BI). Maximum likelihood tree generation and bootstrap analyses were performed with the program RAxML7.2.6 (Stamatakis, 2006) running 1,000 replicates combined with an ML search. Bayesian analysis with MrBayes 3.1 (Huelsenbeck and Ronquist, 2005) implementing the Markov chain Monte Carlo (MCMC) technique and parameters predetermined with MrModeltest 2.3 (Nylander, 2004) was performed. The best-fit likelihood model of 28S and TEF1 was GTR + I + G and SYM + I + G, respectively. Bayesian analysis of the combined nuclear dataset (28S + TEF1) was repeated for 20 million generations and sampled every 100 generations. Trees sampled from the first 25% of the generations were discarded as burn-in, and Bayesian posterior probabilities (PP) were then calculated for a majority consensus tree of the

1https://www.ncbi.nlm.nih.gov/genbank
RESULTS

Molecular Data
The combined dataset (28S + TEF1) of subg. Cantharellus consisted of 129 taxa and 1,707 nucleotide sites, and the alignment was submitted to TreeBase (S29413). The phylogram with branch lengths generated from RAxML and support values is shown in Figure 2. The topologies of the phylogenetic trees based on the combined dataset generated from ML and BI analyses were almost identical, but there was a slight variation in statistical support.

The present molecular data indicate that the Chinese species of subg. Cantharellus were grouped into fourteen independent lineages (Figure 2). A total of seven new lineages were identified in this study (Lineages 1–7 of Figure 2). Lineage 1 was comprised of one collection (FHMU6845) from central China; lineage 2 was comprised of one material (FHMU4592) from southern China; lineage 3, with strong statistical support (BS = 100%, PP = 1.0), was comprised of eleven collections (FHMU5335, FHMU6846, FHMU6847, FHMU1703, FHMU5260, FHMU6848, FHMU6849, FHMU2412, FHMU2839, FHM3236, and FHMU5268) from southern China; lineage 4, with high statistical support (BS = 98%, PP = 1.0), was comprised of two specimens (FHMU3749 and FHMU3759) both from central China; lineage 5, with strong statistical support (BS = 100%, PP = 1.0), was comprised of two materials (FHMU1987 and FHMU6850) from southern China and eastern China, respectively; lineage 6 was comprised of one collection (FHMU5266) from southern China; and lineage 7 was comprised of one specimen (FHMU3834) also from southern China (Figure 2).

Taxonomy

Cantharellus albopileatus N.K. Zeng, Y.Z. Zhang, and W.F. Lin, sp. nov.

Figures 3A, B, 4.

MycoBank: MB843063

Diagnosis: It differs from other species of subg. Cantharellus by a cream to off-white basidioma, a well-developed hymenophore, and ellipsoid basidiospores.

Etymology: Latin "albo-" means white, "pileatus" means pileus, referring to the off-white pileus of our new species.

Holotype: China. Hainan Province: Yinggeling of Hainan Tropical Rainforest National Park, elev. 750 m, 28 May 2017, N. K. Zeng3026 (FHMU1987). GenBank accession number: 28S = OM691480, ITS = OM835804, TEF1 = OM811321.

Basidiomata are very small to small-sized. Pileus is 2.5–5 cm in diameter and convex with a depressed center; the margin was strongly incurved, irregular, often wavy, and lobed; the surface is smooth, slightly greasy, and cream (3A1) to off-white (4A1) in color; the context above stipe was 0.3 cm in thickness, whitish (4A1), unchanging in color when injured. Hymenophore is composed of relatively well-developed, decurrent gill folds, branched to furcate, which becomes strongly intervened with age; these folds are about 0.1 cm broad and are yellowish (2A2) to white (4A1) in color.

Stipe is 2–3 × 0.4–0.6 cm, central, subcylindrical, young solid, hollowing with age, and curved at the base; the surface was dry, whitish (4A1) to very pale cream (3A1), and nearly concolorous with hymenophore; the context is fleshy, firm, and whitish (3A1). Taste and odor is not distinctive. Spore print is not obtained.

Basidiospores [40/2/2] 6–7.18–8 × 5–5.46–6(–6.5) μm, Q = (1.09–)1.15–1.50(–1.6), Q_m = 1.32 ± 0.12, are ellipsoid, smooth, slightly thick-walled (0.5 μm), yellowish in KOH. Basidia is 43–65 × 5–10 μm, narrowly clavate, slightly thick-walled (up to 0.5 μm), 4–5-6-spored, and yellowish in KOH; sterigmata is 4–6 μm in length. Cystidia is absent. Pileipellis has a cutis that is 30–70 μm thick, is composed of mostly interwoven, cylindrical hyphae, is 6–12 μm wide, is thick-walled (up to 1 μm), and is faintly pale yellow in KOH; terminal cells are 21–108 × 5–10 μm in length, thin to slightly thick-walled (up to 0.5 μm), subcylindrical to subclavate,
TABLE 1 | Taxa, vouchers, locations, and GenBank accession numbers of DNA sequences used in this study.

Taxon	Voucher	Locality	GenBank accession nos.	References	
			28S	TEF1	
Cantharellus albopileatus	N.K. Zeng3026 (FHMU1987)	Hainan, Southern China	OM691480	OM811321	Present study
Cantharellus albopileatus	W.F. Lin7 (FHMU6850)	Zhejiang, Eastern China	OM691481	OM811322	Present study
Cantharellus albocrescens	Bio-Fungi 11689	Spain	KX828802	KX828832	Otaiga et al. (2017)
Cantharellus altipes	BB 07.019	United States	KF294627	QQ914939	Buyck et al. (2011, 2014)
Cantharellus altipes	BB 07.162	United States	KF294636	QQ914945	Buyck et al. (2011, 2014)
Cantharellus altipes	BB 07.005	United States	QQ914938	Buyck et al. (2011)	
Cantharellus altipes	BB 07.112	United States	QQ914940	Buyck et al. (2011)	
Cantharellus amethysteus	BB 07.284	Slovakia	KF294639	QQ914935	Buyck et al. (2011, 2014)
Cantharellus amethysteus	BB 07.309	Slovakia	KF294642	QQ914964	Buyck et al. (2011, 2014)
Cantharellus anzutake	C-2	Japan	LC085416	LC085470	Ogawa et al. (2017)
Cantharellus anzutake	8-84	Japan	LC085415	LC179800	Ogawa et al. (2017)
Cantharellus californicus	OSC122878	United States	KX828795	KX828820	Otaiga et al. (2017)
Cantharellus camphoratus	12.09.06.av01	United States	KX592734	KX592735	Thorn et al. (2017)
Cantharellus cascadensis	OSC75917	United States	AY041158	—	Dunham et al. (2003)
Cantharellus cibarius	1073/JMO-CANT-1	United States	—	KX850235	Buyck et al. (2016a)
Cantharellus chuiweifanii	N.K. Zeng3474 (FHMU5335)	Hainan, Southern China	OM717946	OM811340	Present study
Cantharellus chuiweifanii	N.K. Zeng4586 (FHMU6484)	Hainan, Southern China	OM717947	OM811341	Present study
Cantharellus chuiweifanii	N.K. Zeng4559 (FHMU6487)	Hainan, Southern China	OM717948	OM811342	Present study
Cantharellus chuiweifanii	N.K. Zeng2656 (FHMU1703)	Hainan, Southern China	OM717949	OM811343	Present study
Cantharellus chuiweifanii	N.K. Zeng3452 (FHMU5260)	Hainan, Southern China	OM717950	OM811344	Present study
Cantharellus chuiweifanii	N.K. Zeng3458 (FHMU6848)	Hainan, Southern China	OM717951	OM811345	Present study
Cantharellus chuiweifanii	N.K. Zeng4897 (FHMU6849)	Hainan, Southern China	OM717952	OM811346	Present study
Cantharellus chuiweifanii	N.K. Zeng1524 (FHMU2412)	Hainan, Southern China	OM717953	OM811347	Present study
Cantharellus chuiweifanii	N.K. Zeng3463 (FHMU2839)	Hainan, Southern China	OM717954	OM811348	Present study
Cantharellus chuiweifanii	N.K. Zeng5322 (FHMU3236)	Hainan, Southern China	OM717955	OM811349	Present study
Cantharellus chuiweifanii	N.K. Zeng3392 (FHMU5268)	Hainan, Southern China	OM717956	OM811350	Present study
Cantharellus cibarius	WXH 2580	Jilin, NE China	—	KM893847	Unpublished
Cantharellus cibarius	BB 07.300	Slovakia	KF294641	QQ914950	Buyck et al. (2011, 2014)
Cantharellus cibarius	GE 07.025	France	KF294658	QQ914949	Buyck et al. (2011, 2014)
Cantharellus cibarius	WXH 2296	Finland	—	KM893842	Unpublished
Cantharellus cibarius	AFTOL-ID 607	Germany	—	DQ905090	Matheny et al. (2007)
Cantharellus deceptivus	1078/JJ NC-CANT-5	United States	—	KX850730	Buyck et al. (2016a)
Cantharellus elongatipes	PUN 3966	India	—	KX85029	Kumari et al. (2013)
Cantharellus ferruginascens	BB 07.283	Slovakia	KF294638	QQ914962	Buyck et al. (2011, 2014)
Cantharellus ferruginascens	BB 07.221	Slovakia	KF294637	QQ914951	Buyck et al. (2011, 2014)
Cantharellus flavolatentinus	1078/JJ NC-CANT-4	United States	—	KX85029	Buyck et al. (2016a)
Cantharellus flavolatentinus	1076/JJ NC-CANT-2	United States	—	KX85027	Buyck et al. (2016a)
Cantharellus flavus	C067	United States	—	JX030416	Foitz et al. (2013)
Cantharellus formosus	OSC 75930	United States	—	AY041164	Dunham et al. (2003)
Cantharellus formosus	OSC 76054	United States	—	AY041165	Dunham et al. (2003)
Cantharellus hainanensis	N.K. Zeng2289 (FHMU1931)	Hainan, Southern China	KY407524	KY407536	An et al. (2017)
Cantharellus ibityensis	BB 08.196	Madagascar	KF294650	QQ914980	Buyck et al. (2011, 2014)
Cantharellus ibityensis	BB 08.203	Madagascar	KF294651	JX192985	Buyck et al. (2013, 2014)
Cantharellus indicus	PUN 3962	India	—	KM850924	Kumari et al. (2013)
Cantharellus juventateviridis	1542/SH13.7.2012	United States	—	KX850763	Herrera et al. (2018)
Cantharellus juventateviridis	1543/SH14.7.2012	United States	—	KX850764	Herrera et al. (2018)
Cantharellus laevihymeninus	Yuan 13900	Yunnan, SW China	MW978520	MW999418	Cao et al. (2021)
Cantharellus laevihymeninus	Yuan 13902	Yunnan, SW China	MW978521	MW999419	Cao et al. (2021)
“Cantharellus latenitus”	PUN 3958	India	—	HM700919	Kumari et al. (2013)
Cantharellus latenitus	BB 06.319	United States	—	QQ914958	Buyck et al. (2011)

(Continued)
Taxon	Voucher	Locality	GenBank accession nos.	References
C. lateritius	BB 07.004	United States	—	GQ914955
C. lateritius	BB 07.025	United States	KF294628	Buyck et al. (2011)
C. lateritius	BB 07.058	United States	KF294633	Buyck et al. (2011, 2014)
C. lewisii	BB 02.197	United States	KF294623	Buyck et al. (2011, 2014)
C. lewisii	BB 07.003	United States	JN940597	Buyck et al. (2011)
C. macrocarpus	N.K. Zeng4036 (FHMU3303)	Hainan, Southern China	MT986060	Unpublished; Buyck et al. (2011)
C. macrocarpus	N.K. Zeng4050 (FHMU3304)	Hainan, Southern China	MT986061	Unpublished; Buyck et al. (2011)
C. macrocarpus	N.K. Zeng5235	Hainan, Southern China	OM717945	Present study
C. macrocarpus	N.K. Zeng5235	Hainan, Southern China	OM811339	Present study
C. natarajanii	PUN 3963	India	—	Kumari et al. (2013)
C. pallens	AH44799	Spain	—	Olariaga et al. (2015, 2017)
C. pallens	AH39124	Morocco	—	Olariaga et al. (2017)
C. pallens	BB 09.441	Italy	—	De Kesel et al. (2016)
C. pallens	BB 09.430	Italy	—	De Kesel et al. (2016)
C. persicinus	1085/JJ MO-CANT	United States	—	Buyck et al. (2016a)
C. persicinus	1685/MH 15.001	United States	—	Buyck et al. (2016a)
C. persicinus	BB 07.097	United States	—	Buyck et al. (2016a)
C. persicinus	BB 07.430	Italy	—	Buyck et al. (2016a)
C. phasmatis	C057	United States	—	Foltz et al. (2013)
C. phasmatis	C074	United States	—	Foltz et al. (2013)
C. pinetorus	N.K. Zeng4180 (FHMU3759)	Hunan, Central China	OM691482	Present study
C. pinetorus	N.K. Zeng4181 (FHMU3749)	Hunan, Central China	OM691483	Present study
C. pseudoformosus	SMR-2009a	India	—	Kumari et al. (2011)
C. quercophilus	BB 07.097	United States	—	Buyck et al. (2013, 2014)
C. raven	N.K. Zeng4176 (FHMU6845)	Hunan, Central China	OM717944	Present study
C. roseocanus	CC29	United States	—	Foltz et al. (2013)
C. roseocanus	DAOM220723	Canada	—	Foltz et al. (2013)
C. roseocanus	DAOM220724	Canada	—	Foltz et al. (2013)
C. roseocanus	MC 245717	—	—	Unpublished
C. roseocanforonum	AH44786	Georgia	—	Olariaga et al. (2017)
C. roseocanforonum	AH44789	Georgia	—	Olariaga et al. (2017)
C. sp.	C-53	Japan	—	Ogawa et al. (2017)
C. sp.	C-141	Japan	—	Ogawa et al. (2017)
C. sp.	N.K. Zeng4113 (FHMU3834)	Guangdong, Southern China	OM691493	Present study
C. sp.	N.K. Zeng4066 (FHMU5266)	Hainan, Southern China	OM691494	Present study
C. sp.	S. Jiang106 (FHMU4592)	Hainan, Southern China	OM691495	Present study
C. sp.	C-106	Japan	—	Ogawa et al. (2017)
C. subalbidus	OSC81782	United States	—	Buyck et al. (2014)
C. subalbidus	OS81782	United States	—	Buyck et al. (2014)
C. subalbidus	OS81782	United States	—	Buyck et al. (2014)
C. subvaginatus	C-062	Malaysia	—	Buyck et al. (2014)
C. tenuthrix	BB 07.035	United States	—	Buyck et al. (2011, 2014)
C. tenuthrix	BB 07.125	United States	—	Buyck et al. (2011, 2014)
C. tenuthrix	BB 14.099	United States	—	Buyck et al. (2011, 2014)
C. umbonatus	PUN 3968	India	—	Kumari et al. (2013)
C. vaginatus	HKAS 55730	Yunnan, SW China	HM594680	Shao et al. (2011)
C. vaginatus	HKAS 55729	Yunnan, SW China	HM594681	Shao et al. (2011)
C. vaginatus	HKAS 55731	Yunnan, SW China	HM594682	Shao et al. (2011)
C. vaginatus	LWF-1-1 (FHMU6851)	Zhejiang, Eastern China	OM691484	Present study
C. vaginatus	LWF-1-2 (FHMU6852)	Zhejiang, Eastern China	OM691485	Present study
C. vaginatus	M.S. Su201 (FHMU6853)	Jiangxi, Eastern China	OM691486	Present study
C. vaginatus	M.S. Su200 (FHMU6855)	Jiangxi, Eastern China	OM691492	Present study
C. vaginatus	N.K. Zeng3000 (FHMU1961)	Hainan, Southern China	OM691487	Present study
C. vaginatus	N.K. Zeng3009 (FHMU1970)	Hainan, Southern China	OM691488	Present study

(Continued)
with obtuse apex. Clamp connections are present in all parts of basidioma.

Habitat: Solitary, scattered, or gregarious on the ground in forests dominated by fagaceous trees such as Castanopsis fissa (Champion ex Bentham) Rehder et E. H. Wilson.

Known distribution: southern and eastern China.

Other specimens were examined: China. Zhejiang Province: Hangzhou City, Tianmushan Nature Reserve, elev. 1100 m, 22 July 2020, W. F. Lin7 (FHMU6850).

Notes: Castanheilus albus S. P. Jian and B. Feng, originally described from Yunnan, southwestern China, has a white basidioma. However, by presenting the features such as a stipe turning yellow when bruised and a lower value of Q_m being associated with trees of Pinaceae (Smith and Morse, 1947) possesses larger basidioma (pileus 5–10 (–14) cm), and it is also distinctly differentiated at the molecular level (Figure 2).

In the phylogenetic analyses, Cantharellus albopileatus forms a well-supported (BS = 100%, PP = 1.0) monophyletic clade, together with the newly described Cantharellus chuiweifani, equally a tropical species, and Cantharellus pinetorus from central China (Figure 2), which is quite different from any of the other northern hemisphere species in subg. Cantharellus. However, Cantharellus pinetorus is associated with trees of Pinaceae (refer to the descriptions under Cantharellus pinetorus); both Cantharellus pinetorus and Cantharellus chuiweifani have a yellow pileus (refer to the descriptions under Cantharellus chuiweifani).

Cantharellus chuiweifani N.K. Zeng, Y.Z. Zhang, and Zhi Q. Liang, sp. nov.

Diagnosis: It differs from other species of subg. Cantharellus by an egg-yolk yellow to bright yellow, shiny pileus, a whitish stipe, a well-developed hymenophore, ellipsoid basidiospores, and a distribution in tropical Asia.

Etymology: Latin “chuiweifani” is named after Chinese mycologist W. F. Chiu; for that, he published the first new species from China, i.e., Cantharellus yunnanensis.

Holotype: China. Hainan Province: Limushan of Hainan Tropical Rainforest National Park, elev. 650 m, 11 May 2014, N. K. Zeng1524 (FHMU2412). GenBank accession number: 28S = OM717953, TEF1 = OM811347.

Basidiomata are very small to medium-sized. Pileus is 2–5 cm in diameter and plano-convex at first but soon depressed in the center; the margin was first very regular and strongly incurved and then became more wavy, the surface is smooth, pale yellow, egg-yolk yellow (1A5) to bright yellow (1A7), sometimes tinged with brownish, and shiny in color; the context above stipe...
FIGURE 2 | Phylogram inferred from a combined dataset (28S and TEF1) of the Cantharellus subg. Cantharellus using RAxML. RAxML likelihood bootstrap (BS ≥ 50%) and Bayesian posterior probabilities (PP ≥ 0.95) are indicated above or below the branches as RAxML BS/PP.
was 0.05–0.15 cm in thickness, yellowish (3A3) to orange yellow (3A8), but unchanging in color when injured. **Hymenophore** is composed of well-developed, decurrent, well-spaced, and unequal gill folds, especially near the extreme cap margin with many very short lamellulae or also often forked; these folds are 0.1–0.2 cm broad and are pale yellow, egg-yolk yellow (1A4) to orange yellow in color (2A7). **Stipe** is 1.2–4 × 0.4–1.0 cm, central, cylindrical; surface dry, whitish (5A1), or yellowish-brown (1A2) in color; the context is fleshy, firm, and yellowish (2A2). **Taste** and **odor** is not distinctive. **Spore print** is not obtained.

Basidiospores [173/18/11] 6–7.05–8 × 4.5–5.03–5.5(–6) µm, Q = (1.18–)1.27–1.60(–1.67), Q_m = 1.41 ± 0.10, are ellipsoid, smooth, slightly thick-walled (0.5–0.7 µm), 4-5-6-spored, yellowish in KOH; sterigmata is 5–7 µm in length. **Cystidia** is absent. **Pileipellis** has a cutis that is 70–180 µm thick, is composed of mostly interwoven, cylindrical hyphae, is 5–8 µm wide, is slightly thick-walled (0.5–0.8 µm), and is faintly pale yellow in KOH; terminal cells are 52–148 × 4–7 µm in length, slightly thick-walled (0.5–0.8 µm), subcylindrical to subclavate, with obtuse apex. **Clamp connections** are present in all parts of basidioma.

Habitat: Solitary, scattered, or gregarious on the ground in forests dominated by fagaceous trees such as *Lithocarpus* spp.

Known distribution: southern China.

Other specimens were examined: China. Hainan Province: Yinggeling of Hainan Tropical Rainforest National Park, elev. 750 m, 5 August 2015, N. K. Zeng2608 (FHMU1703);
FIGURE 4 | Microscopic features of Cantharellus albopileatus (FHMU1987, holotype). (A) Basidiospores. (B) Basidia. (C) Pleuropilis. Scale bars = 10 µm. Drawings by Y. Z. Zhang.

Jianfengling of Hainan Tropical Rainforest National Park, elev. 850 m, 27 June 2018, N. K. Zeng3392 (FHMU5268); same location, 28 June 2018, N. K. Zeng3452, 3463, 3474 (FHMU5260, FHMU2839, FHMU5335); same location, 10 August 2020, N. K. Zeng4558, 4559 (FHMU6848, FHMU6847); same location, 11 August 2020, N. K. Zeng4596 (FHMU6846); same location, 29 July 2021, N. K. Zeng5322 (FHMU3236); Wanning County, Bofangling, elev. 70 m, 29 August 2020, N. K. Zeng4897 (FHMU6849).

Notes: Cantharellus chuiweifanii looks like Cantharellus subcibarius Corner and Cantharellus yunnanensis. However, Cantharellus subcibarius has a yellow stipe, a context turning yellow to orange-brown when bruised, and larger basidiospores [(7.3–)7.5–7.89–8.5(–8.5) × (5.2–)5.6–6.10–6.5(–6.9) µm, Q = (1.12–)1.23–1.30–1.36(–1.40)] (Corner, 1966; Buyck et al., 2021); Cantharellus yunnanensis has a yellow stipe, wider basidiospores measuring (6.5–)7–8(–8.5) × 5–6(–6.5) µm (Shao et al., 2021), and it is also distinctly differentiated at the molecular level (Figure 2). Cantharellus chuiweifanii is phylogenetically associated with Cantharellus albopileatus and Cantharellus pinetorus (Figure 2), and the differences in the three taxa have been discussed under Cantharellus albopileatus.

Cantharellus pinetorus: N.K. Zeng, Y.Z. Zhang and Zhi Q. Liang, sp. nov. Figures 3F,G, 6. MycoBank: MB843064

Diagnosis: It differs from other species of subg. Cantharellus by a bright yellow to orange-yellow pileus, a cream to grayish yellow stipe, a well-developed hymenophore, broadly ellipsoid to ellipsoid basidiospores, and it is associated with pine trees.

Etymology: Latin "pinetorus" refers to the association of the new species with pine forests.

Holotype: China. Hunan Province: Yizhang County, Mangshan National Nature Reserve, elev. 750 m, 30 July 2019, N. K. Zeng4180 (FHMU3759). GenBank accession number: 28S = OM691482, TEF1 = OM811323.

Basidiomata are small to medium-sized. Pileus is 3.5–5 cm in diameter and convex when young and then planate with
depressed center; the surface is smooth, bright yellow (3A5) to orange-yellow in color (3A6); the margin is incurved and irregularly wavy; the context above stipe is 0.35–0.55 cm in thickness, yellow (3A7), but unchanging in color when injured. **Hymenophore** is veined and decurrent; these folds are 0.05–0.2 cm broad and are lemon yellow (1A6) to pale yellow in color (4A2). **Stipe** is 2.5–3 × 0.5–0.6 cm, cylindrical, central, and hollow; the surface is dry and cream (4A1) to grayish yellow (4A2) in color; the context is white (3A2). **Taste and odor** is not distinctive. **Spore print** is not obtained.

Basidiospores [40/2/2] 6–6.98–7.5(–8) × 5–5.36–6 μm, \(Q = (1.09–)1.17–1.5, Q_m = 1.30 ± 0.09 \), are broadly ellipsoid to ellipsoid, smooth, slightly thick-walled (0.5 μm), yellowish in KOH. **Basidia** is 57–68 × 4–10 μm, long, narrow, subcylindric, slightly thick-walled (up to 0.5 μm), 3–4–5-spored, and yellowish in KOH; sterigmata is 2–4 μm in length. **Pileipellis** is absent. **Cystidia** is absent. **Clamp connections** are present in all parts of basidioma.

Habitat: Solitary, scattered, or gregarious on the ground, in forests dominated by *Pinus massoniana* Lamb.

Known distribution: central China.

Other specimens were examined: China. Hunan Province: Yizhang County, Mangshan National Nature Reserve, elev. 750 m, 30 July 2019, N. K. Zeng4181 (FHMU3749).

Notes: Malaysian *Cantharellus ianthinus* Corner and *Cantharellus subcibarius* are morphologically similar to *Cantharellus pinetorus*. However, *Cantharellus ianthinus* has purple fibrils on the surfaces of the pileus and stipe, and larger basidiospores measuring 8–10.5 × 5.5–7 μm (Corner, 1966); *Cantharellus subcibarius* has a context turning yellow to orange-brown when bruised, and it is not associated with trees of Pinaceae (Corner, 1966; Buyck et al., 2021). In the phylogenetic analyses, *Cantharellus pinetorus* is allied with *Cantharellus albopileatus* and *Cantharellus chuweifanii* (Figure 2), the differences in the three taxa have been discussed under *Cantharellus albopileatus*.

Cantharellus ravus N.K. Zeng, Y.Z. Zhang, and Zhi Q. Liang, sp. nov.

Figures 3H, 7.

Diagnosis: It differs from other species of subg. *Cantharellus* by a yellowish to grayish yellow, dull pileus, a well-developed hymenophore, and ellipsoid basidiospores.

Etymology: Latin “ravus” refers to the grayish yellow basidiomata of our new species.

Holotype: China. Hunan Province: Yizhang County, Mangshan National Nature Reserve, elev. 550 m, 29 July 2019.
Basidiomata are small to medium-sized. **Pileus** is 3.5–8 cm in diameter and plano-convex to infundibuliform; the surface is smooth, yellowish (1A2) to grayish yellow (2A4) in color, and dull; the margin is incurved or downward; the context above stipe is about 0.3 cm in thickness, yellowish (3A3), unchanging in color when injured. **Hymenophore** is veined and decurrent; these folds are about 0.1 cm high, forking, creamy yellow (1A4) to yellowish (3A2) in color. **Stipe** is 3–4 × 0.6–0.9 cm, central, cylindrical; surface dry, grayish yellow to fulvous (4A4), but whitish (5A1) at base. **Taste** and **odor** is not distinctive. **Spore print** is not obtained.

Basidiospores [37/2/1] (6–)6.5–7.04–7.5 × 4.5–5.24–5.5 μm, $Q = (1.18–)1.2–1.5(–1.56)$, $Q_m = 1.35 ± 0.08$, are ellipsoid, smooth, slightly thick-walled (0.5 μm), yellowish in KOH. **Basidia** is 45–63 × 8–9 μm, long, narrow, subcylindric, slightly thick-walled (up to 0.5 μm), 4-5-6 spored, yellowish in KOH; sterigmata is 6–8 μm in length. **Cystidia** is absent. **Pilepellis** has a cutis composed of mostly cylindrical, that is 5–12 μm wide, is slightly thick-walled (up to 1 μm) hyphae, and is faintly pale yellow in KOH; terminal cells are 45–82 × 6–10 μm, slightly thick-walled (0.5–0.7 μm), subcylindrical to subclavate, with obtuse apex. **Clamp connections** are present in all parts of basidioma.

Habitat: Gregarious on the ground in forests dominated by fagaceous trees such as *Lithocarpus* spp.

Known distribution: central China.

Notes: *Cantharellus subcibarius* and *Cantharellus yunnanensis* are also morphologically similar to our new species. However, both *Cantharellus subcibarius* and *Cantharellus yunnanensis* have shiny pileal surfaces. Moreover, *Cantharellus subcibarius* has a context turning yellow to orange-brown when bruised, and larger basidiospores [$(7.3–)7.5–7.89–8.3(–8.5)$ × $(5.2–)5.6–6.10–6.5(–6.9)$ μm, $Q = (1.12–)1.23–1.30–1.36(–1.40)$] (Corner, 1966; Buyck et al., 2021); *Cantharellus yunnanensis* also has larger basidiospores measuring $(6.5–)7–8(–8.5)$ × 5–6 (–6.5) μm (Shao et al., 2021), and it is distinctly differentiated at the molecular level (Figure 2). Our molecular data also indicated that *Cantharellus ravus* is closely related to the North American *Cantharellus californicus* D. Arora and Dunham and *Cantharellus velutinus* Buyck and V. Hofst...
FIGURE 7 | Microscopic features of Cantharellus ravus (FHMU6845, holotype). (A) Basidiospores. (B) Basidia. (C) Pileipellis. Scale bars = 10 μm. Drawings by Y. Z. Zhang.

However, *Cantharellus californicus* has much larger basidiospores measuring 7–9.30–12 μm × 5–6.45–8 μm (Arora and Dunham, 2008); *Cantharellus velutinus*, a very variable species with yellow to pink fruiting bodies and pubescent pileus surface, has longer but narrower basidiospores measuring (6.7–)7.3–7.84–8.4(–9.2) × (3.7–)4.2–4.61–5.0(–5.2) μm and hyphal extremities of the pileipellis with conspicuously thickened cell walls (Buyck et al., 2016b).

DISCUSSION

Morphological Features and Hosts of Cantharellus Subgenus Cantharellus

In agreement with the previous hypotheses (Buyck et al., 2014), most species in China have nearly glabrous pileus, with the exception of *Cantharellus vaginatus* S. C. Shao, X. F. Tian, and P. G. Liu and *Cantharellus versicolor* S. C. Shao and P. G. Liu having a squamulose cap (Shao et al., 2011, 2016b). As noted by Buyck et al. (2014), most taxa in subg. *Cantharellus* have yellow pileus. In China, *Cantharellus chuiweifanii*, *Cantharellus cibarius* Fr, *Cantharellus hainanensis* N. K. Zeng, Zhi Q. Liang, and S. Jiang, *Cantharellus laevihymeninus* T. Cao and H. S. Yuan, *Cantharellus macrocarpus* N. K. Zeng, Y. Z. Zhang, and Zhi Q. Liang, *Cantharellus pinetorus*, *Cantharellus ravus*, *Cantharellus vaginatus*, and *Cantharellus yunnanensis* also have pilei colored with yellow; *Cantharellus albopileatus* is characterized with white pileus; squamules on pileal surface of *Cantharellus vaginatus* are fulvous to brown (Shao et al., 2011), and sandy brown to dark brown in *Cantharellus versicolor* was observed (Shao et al., 2016b).

Besides macro-morphology, some micro-morphological features can also be used to discriminate subg. *Cantharellus* species. For example, species of the subgenus usually have abundant clamps, and hyphal endings in pileipellis are mostly thick-walled (Buyck et al., 2014). Our four new species and previous taxa of subg. *Cantharellus* in China also possess clamp connections and thick-walled hyphal endings in pileipellis (Shao et al., 2011, 2016b, 2021; An et al., 2017; Cao et al., 2021; Zhang Y. Z. et al., 2021).

In regard to ecological preference, many species such as *Cantharellus altipes* Buyck and V. Hofst, *Cantharellus macrocarpus*, and *Cantharellus tenuithrix* Buyck and V. Hofst were reported to grow in pine-oak woods (Buyck and Hofstetter, 2011; Shao et al., 2021; Zhang Y. Z. et al., 2021). In China, *Cantharellus cibarius*, *Cantharellus vaginatus*, and *Cantharellus yunnanensis* were also reported to grow in pine-oak forests (Shao et al., 2011, 2021); *Cantharellus albopileatus*, *Cantharellus chuiweifanii*, *Cantharellus hainanensis*, and *Cantharellus*
Cantharellus albopileatus described as new species: previous taxa in the molecular phylogenetic tree (Figure 2), plus the morphological features, Cantharellus cibarius, Cantharellus macrocarpus, Cantharellus rarus, Cantharellus versicolor, and Cantharellus yunnanensis are the members of section Cantharellus, Cantharellus hainanensis, and Cantharellus laevihymeninus, also have ill-developed hymenophore (An et al., 2017; Cao et al., 2021), and belong to the section Sublaeves. Cantharellus vaginatus is a member of section Amethystini, and Cantharellus albopileatus, Cantharellus chiweiwianii, and Cantharellus pinetorus probably represent a new section, which will be further studied in the future.

Species Diversity of Cantharellus Subgenus Cantharellus

High species diversity of subg. Cantharellus in China was revealed in this study, and fourteen lineages were identified (Figure 2). A total of four (lineages 1, 3–5 of Figure 2) were here described as new species: Cantharellus albopileatus, Cantharellus chiweiwianii, Cantharellus pinetorus, and Cantharellus rarus; others represent previously described taxa: Cantharellus cibarius, Cantharellus hainanensis, Cantharellus laevihymeninus, Cantharellus macrocarpus, Cantharellus vaginatus, Cantharellus versicolor, and Cantharellus yunnanensis, whereas three lineages (lineages 2, 6–7 of Figure 2) remain still undescribed.

Up to now, taxa in subg. Cantharellus are all from northern hemisphere (Buyck et al., 2014). Most species of the subgenus included in the present dataset are from temperature areas of northern hemisphere including North America and Europe (Figure 2). In China, with the exception of Cantharellus cibarius and Cantharellus versicolor in temperate areas, most species, viz. Cantharellus albopileatus, Cantharellus chiweiwianii, Cantharellus hainanensis, Cantharellus macrocarpus, Cantharellus pinetorus, Cantharellus rarus, Cantharellus vaginatus, and Cantharellus yunnanensis, occur in subtropical or tropical China. With more field investigations, more taxa of the subgenus will be uncovered in the subtropical and tropical regions.

Phylogenetic Relationships and Geographic Divergence of Chinese Cantharellus Subgenus Cantharellus

Our molecular data based on two-locus DNA sequences (28S + TEF1) with many new specimens from China have contributed to our knowledge of subg. Cantharellus.

It is clear that there are several clades having taxa from both sides of the Pacific, and allied species from East Asia and North America are obviously inferred from this molecular phylogenetic tree (Figure 2). For example, Chinese Cantharellus versicolor is related to North American Cantharellus camphoratus R. H. Petersen and Cantharellus formosus Corner; our new species Cantharellus rarus is affiliated with Cantharellus californicus and Cantharellus velutinus, two species both described from United States; one collection tentatively named C. sp. (FHMU3834) appears closely related to North American-type collection of Cantharellus spectabilis Foltz and T. J. Volk (Figure 2), which is an earlier synonym of Cantharellus persicus Petersen (Buyck et al., 2016c). Our study did not identify disjunct populations of the same purported taxon in the two areas (Figure 2). Similar scenarios have been documented for many other fungi (Zhang et al., 2004; Zeng et al., 2013, 2016).

Biogeographic connections between East Asia and Europe have also been discussed in other fungi such as Amanita Pers., Phylloporus Quéhl. and Rhodotus Maire (Zhang et al., 2004; Zeng et al., 2013; Tang et al., 2014). In this study, we found that Cantharellus cibarius occurs in northeastern China and Europe (Figure 2).

In addition, we also noted that Cantharellus hainanensis is associated with one specimen labeled as Cantharellus lateritius from India (Figure 2). Besides northeastern China and Europe, the geographical distribution range of Cantharellus cibarius also extends to Japan (Figure 2).

DATA AVAILABILITY STATEMENT

The data presented in the study are deposited in the https://www.ncbi.nlm.nih.gov/GenBank and https://www.mycobank.org/page/Home/Mycobank repository, accession number of GenBank (28S: OM319632-OM319637, OM691480-OM691495, OM717944-OM717956; TEF1: OM321043-OM321046, OM811321-OM811350; and ITS: OM835791-OM835808) and MycoBank (MB843062-MB843065).

AUTHOR CONTRIBUTIONS

Z-QL and N-KZ contributed to the conceptualization. Y-ZZ performed the methodology, wrote the original draft preparation, and carried out the formal analysis. Y-ZZ and D-YA performed the experiment. N-KZ, BB, and Z-QL wrote, reviewed, and edited the manuscript. N-KZ and Z-QL supervised the project administration and funding acquisition. All authors contributed to the article and approved the submitted version.

FUNDING

This study was supported by the National Natural Science Foundation of China (No. 32160001), which includes funds for open access publication fees.
Shao, S. C., Liu, P. G., Tian, X. F., Buyck, B., and Geng, Y. H. (2016b). A new Ecology and Management of Pilz, D., Norvell, L., Danell, E., and Molina, R. (2003). Olariaga, I., Buyck, B., Esteve-Raventós, F., Hofstetter, V., Manjón, J. L., Moreno, G., et al. (2015). Assessing the taxonomic identity of white and orange specimens of Cantharellus: occasional colour variants or independent species? Cryptogym. Mycol. 36, 287–300. doi: 10.7872/cryptym.v36.iis.2015.287 Olariaga, I., Moreno, G., Manjón, J. L., Salcedo, I., Hofstetter, V., Rodríguez, D., et al. (2017). Cantharellus (Cantharellales, Basidiomycota) revisited in Europe through a multigene phylogeny. Fungal Divers. 83, 263–292. doi: 10.1007/s12235-016-0376-7 Pilz, D., Norvell, L., Danell, E., and Molina, R. (2003). Ecology and Management of Commerically Harvested Chanterelle Mushrooms. Washington: US Department of Agriculture Pacific Northwest Research Station. Shao, S. C., Buyck, B., Hofstetter, V., Tian, X. F., Geng, Y. H., Yu, F. Q., et al. (2014). Cantharellus hygrophorus, a new species in subgenus Afrocantharellus from tropical southwestern China. Cryptogym. Mycol. 35, 283–291. doi: 10.7872/cryptym.v35.iis.2014.283 Shao, S. C., Buyck, B., Tian, X. F., Liu, P. G., and Geng, Y. H. (2016a). Cantharellus phloginus, a new pink-colored species from southwestern China. Mycoscience 57, 144–149. doi: 10.1006/jmyc.2015.12.004 Shao, S. C., Liu, P. G., Tian, X. F., Buyck, B., and Geng, Y. H. (2016b). A new species of Cantharellus (Cantharellales, Basidiomycota, Fungi) from subalpine forest in Yunnan, China. Phytotaxa 252, 273–279. doi: 10.11646/phytotaxa.252.4.3 Shao, S. C., Liu, P. G., Wei, T. Z., and Herrera, M. (2021). New insights into the taxonomy of the genus Cantharellus in China: epityphication of C. yunnanensis W.F. Chiu and the first record of C. cibarius Fr. Cryptogym. Mycol. 42, 25–37. doi: 10.5252/cryptogamie-mycologie2021v42a3 Shao, S. C., Tian, X. F., and Liu, P. G. (2011). Cantharellus in southwestern China: a new species and a new record. Mycotaxon 116, 437–446. doi: 10.5284/116.437 Shao, S. C., Tian, X. F., and Liu, P. G. (2012). Two species with intercontinental disjunct distribution of the genus Cantharellus. J. Yunnan Agri. Univ. 27, 150–155. Shen, L. L., Wang, M., Zhou, J. L., Xing, J. H., Cui, B. K., and Dai, Y. C. (2019). Taxonomy and phylogeny of Postia. Multi-genye phylogeny and taxonomy of the brown-rot fungi: Postia (Polyporales, Basidiomycota) and related genera. Persoonia 42, 101–126. doi: 10.3767/persoonia.2019.42.05 Smith, A. H., and Morse, E. E. (1947). The genus Cantharellus in the western United States. Mycologia 39, 497–534. doi: 10.1080/00275514.1947.12017631 Smith, S. A., and Dunn, C. W. (2008). Phyutility: a phyloinformatics tool for analyses with thousands of taxa and mixed models. Bioinformation 24, 715–716. doi: 10.1093/bioinformatics/btm619 Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. doi: 10.1093/bioinformatics/btl446 Suhara, H., and Kurogi, S. (2015). Cantharellus cyphelloides (Cantharellales, Basidiomycota), a new and unusual species from a Japanese evergreen broadleaved forest. Mycol. Prog. 14:55. doi: 10.1007/s11557-015-0179-2 Sun, Y. F., Costa-Rezende, D. H., Xing, J. H., Zhou, J. L., Zhang, B., Gibertoni, T. B., et al. (2020). Multi-genye phylogeny and taxonomy of Amauroderma s. lat. (Ganodermataceae). Persoonia 44, 206–239. doi: 10.3767/persoonia.2020.44.04 Tang, L. P., Hao, Y. J., Cai, Q., Tolgor, B., and Yang, Z. L. (2014). Morphological and molecular evidence for a new species of Rhodotus from tropical and subtropical Yunnan, China. Mycol. Prog. 13, 45–53. doi: 10.1007/s11557-013-0890-x Thorn, R. G., Kim, J. L., Lebeuf, R., and Voitk, A. (2017). The golden chanterelles of Newfoundland and Labrador: a new species, a new record for North America, and a lost species rediscovered. Botany 95, 547–560. doi: 10.1139/bch-2016-0213 Tian, R., Liang, Z. Q., Wang, Y., and Zeng, N. K. (2022). Analysis of aromatic components of two edible mushrooms, Phlebopus portentosus and Cantharellus yunnanensis using HS-SPME/GC-MS. Results Chem. 41:100282. doi: 10.1016/j.rechem.2022.100282 Tian, X. F., Buyck, B., Shao, S. C., Liu, P. G., and Fang, Y. (2012). Cantharellus zangii, a new subalpine basidiomycete from southwestern China. Mycotaxon 120, 99–103. doi: 10.5248/120.99