Abstract. We introduce Information Bearing Relation Systems (IBRS) as an abstraction of many logical systems. These are networks with arrows recursively leading to other arrows etc. We then define a general semantics for IBRS, and show that a special case of IBRS generalizes in a very natural way preferential semantics and solves open representation problems for weak logical systems. This is possible, as we can “break” the strong coherence properties of preferential structures by higher arrows, that is, arrows which do not go to points, but to arrows themselves.

§1. Introduction.

1.1. Overview. Our aim is twofold here. We want to:

(1) introduce IBRS (information bearing relation systems), an abstraction of many semantical structures in nonclassical logics,
(2) use IBRS as a generalization of preferential structures to give semantics for logics weaker than preferential logics.

Section 1 and Section 2 discuss general IBRS, Section 3 discusses generalized preferential structures. The main technical developments are in Section 3, the main conceptual discussions are in Sections 1 and 2.

At the beginning of Section 3, we shortly argue why we think that the results of this Section are important (they show independence of certain logical rules), and, consequently, why the techniques used to obtain them are important. Section 3 is thus a technical justification of the concept of IBRS. (The results are briefly put into perspective at the end of this overview.)

Section 1 gives a general framework within which we place ourselves, and then gives the formal definition of IBRS. We then show (not exhaustively!) how our definition covers many different formal logics and their semantics. We also stress the main idea of IBRS, reactivity, whose base is to have not only arrows between points, but also “higher” arrows between points and arrows. This is also basic for the concept of generalized preferential structures, discussed in Section 3.

In Section 2, we present the outlines of a semantics for general IBRS, together with a circuit semantics for a special case. The main result of Section 2 is perhaps a warning: one has to be careful about transmission times in real-life scenarios. Depending on those times, a network may or may not oscillate.

Received: April 13, 2009
For the reader’s convenience, we describe now the main technical results from Section 3.

The model choice functions $\mu$ of usual preferential structures satisfy two basic laws, and if they are smooth, they also satisfy a third law:

1. $(\mu \subseteq \mu(X) \subseteq X)$ — this is trivial,
2. $(\mu PR) X \subseteq Y \Rightarrow \mu(Y) \cap X \subseteq \mu(X)$ — anything which is not minimal in $X$, will a fortiori not be minimal in $Y$, if $X \subseteq Y$,
3. $(\mu CUM) \mu(X) \subseteq Y \subseteq X \Rightarrow \mu(X) = \mu(Y)$ — which holds in smooth structures, but not necessarily in nonsmooth structures.

$(\mu PR)$ is closely liked to the logical rule

$$(OR) \alpha \vdash \beta, \alpha' \vdash \beta \Rightarrow \alpha \lor \alpha' \vdash \beta$$

$(\mu CUM)$ to the logical rule

$$(CUM) \alpha \vdash \beta, \alpha \vdash \beta' \Rightarrow \alpha \land \beta \vdash \beta'.$$

Thus, in usual preferential structures $(OR)$ will hold, and if they are smooth, so will $(CUM)$, but we cannot have $(CUM)$ without $(OR)$. The main result of Section 3 is now to fully separate them. We can have $(OR)$ without $(CUM)$, but also $(CUM)$ without $(OR)$. The “trick” is that reactive structures allow us to break the coherence condition of $(\mu PR)$, as a bigger set allows us to “destroy destruction”. For all details, the reader is referred to Section 3.

We now conclude this overview with an informal motivation, showing that IBRS are a very natural generalization of existing structures.

1.1.1. Motivation for IBRS and generalized preferential structures. Many semantical structures for nonclassical logics use sets of models, called possible worlds, together with a relation, for example, accessibility in the case of Kripke models for modal logic, distance in the case of Stalnaker–Lewis semantics for counterfactual conditionals, or comparison of “normality” in the case of preferential structures. IBRS allow not only relations between objects, that is, possible worlds, but also “higher” relations, where for example, an object can be in relation with a pair of objects (which are in a “lower” relation), etc.

It is sometimes natural to see the (basic) relations as attacks: if $a \prec b$, then $a$ is considered more “normal” (or less “abnormal”) than $b$, or, we may say that $a$ attacks $b$’s normality, and we may write this as an arrow from $a$ to $b$. When we have now an attack from $c$ against this arrow, that is, the relation $a \prec b$, it is natural to see now the original attack as destroyed, that is, $a$ does not attack $b$ any more. So $a \prec b$ is still there, but without any effect. This is possible in an IBRS, see Figure 1.

The decisive property of preferential structures is the trivial fact that if $a, b \in X \subseteq Y$, and $a \prec b$ “in $X$”, then this will also hold “in $Y$”. This creates strong coherence properties. IBRS can break them: if $c \in Y – X$, and $c$ attacks $a \prec b$, then $a \prec b$ is still there in $Y$, but not effective any more. Thus, IBRS, or generalized preferential structures, as we will call this special case of IBRS, can give semantics for logics weaker than preferential logics.

Preferential structures themselves were introduced as abstractions of Circumscription independently in Shoham (1987) and Bossu & Siegel (1985). A precise definition of these structures is given below in Definition 3.8.

In an abstract consideration of desirable properties a logic might have, Gabbay (1989) examined rules a nonmonotonic consequence relation $\vdash$ should satisfy:

1. $\Delta, \alpha \vdash \alpha$,
2. $\Delta \vdash \alpha \Rightarrow (\Delta \vdash \beta \Leftrightarrow \Delta, \alpha \vdash \beta)$.
Both the semantic and the syntactic approaches were connected in Kraus et al. (1990), where a representation theorem was proved, showing that the system $P$ (which is stronger than Gabbay’s system) corresponds to “smooth” preferential structures. System $P$ consists of

1. Commonsense reasoning from available data. This involves prediction of what unavailable data is supposed to be (nonmonotonic deduction) but it is a defeasible prediction, geared toward immediate change. This is formally known as nonmonotonic reasoning and is studied by the nonmonotonic community.
(2) Belief revision, studied by a very large community. The agent is unhappy with the totality of his beliefs which he finds internally unacceptable (usually logically inconsistent but not necessarily so) and needs to change/revise it.

(3) Receiving and updating his data, studied by the update community.

(4) Making morally correct decisions, studied by the deontic logic community.

(5) Dealing with hypothetical and counterfactual situations. This is studied by a large community of philosophers and AI (Artificial Intelligence) researchers.

(6) Considering temporal future possibilities; this is covered by modal and temporal logic.

(7) Dealing with properties that persist through time in the near future and with reasoning that is constructive. This is covered by intuitionistic logic.

All the above types of reasoning exist in the human mind and are used continuously and coherently every hour of the day. The formal modeling of these types is done by diverse communities which are largely distinct with no significant communication or cooperation. The formal models they use are very similar and arise from a more general theory, what we might call:

“Reasoning with information bearing binary relations”.

**Definition 1.1.**

(1) An information bearing binary relation frame $\text{IBR}$, has the form $(S, \mathcal{R})$, where $S$ is a nonempty set and $\mathcal{R}$ is a subset of $S^\omega$, where $S^\omega$ is defined by induction as follows:

\begin{align*}
(1.1) & \quad S_0 := S \\
(1.2) & \quad S_{n+1} := S_n \cup (S_n \times S_n) \\
(1.3) & \quad S^\omega = \bigcup\{S_n : n \in \omega\}
\end{align*}

We call elements from $S$ points or nodes, and elements from $\mathcal{R}$ arrows. Given $(S, \mathcal{R})$, we also set $P((S, \mathcal{R})) := S$, and $A((S, \mathcal{R})) := \mathcal{R}$.

If $\alpha$ is an arrow, the origin and destination of $\alpha$ are defined as usual, and we write $\alpha : x \rightarrow y$ when $x$ is the origin, and $y$ the destination of the arrow $\alpha$. We also write $o(\alpha)$ and $d(\alpha)$ for the origin and destination of $\alpha$.

(2) Let $Q$ be a set of atoms, and $L$ be a set of labels (usually $\{0, 1\}$ or $[0, 1]$). An information assignment $h$ on $(S, \mathcal{R})$ is a function $h : Q \times \mathcal{R} \rightarrow L$.

(3) An information bearing system $\text{IBRS}$, has the form $(S, \mathcal{R}, h, Q, L)$, where $S$, $\mathcal{R}$, $h$, $Q$, $L$ are as above.

See Figure 2 for an illustration.

We have here:

- $S = \{a, b, c, d, e\}$
- $\mathcal{R} = S \cup \{(a, b), (a, c), (d, c), (d, e)\} \cup \{((a, b), (d, c)), (d, (a, c))\}$
- $Q = \{p, q\}$

The values of $h$ for $p$ and $q$ are as indicated in the figure. For example, $h(p, (d, (a, c))) = 1$. 
Fig. 2. A simple example of an information bearing system.

**COMMENT 1.2.**

The elements in Figure 2 can be interpreted in many ways, depending on the area of application.

1. The points in $S$ can be interpreted as possible worlds, or as nodes in an argumentation network or nodes in a neural net or states, etc.
2. The direct arrows from nodes to nodes can be interpreted as accessibility relation, attack or support arrows in an argumentation networks, connection in a neural nets, a preferential ordering in a nonmonotonic model, etc.
3. The labels on the nodes and arrows can be interpreted as fuzzy values in the accessibility relation or weights in the neural net or strength of arguments and their attack in argumentation nets, or distances in a counterfactual model, etc.
4. The double arrows can be interpreted as feedback loops to nodes or to connections, or as reactive links changing the system which are activated as we pass between the nodes.

Thus, IBRS can be used as a source of information for various logics based on the atoms in $Q$. We now illustrate by listing several such logics.

**Modal logic.** One can consider the figure as giving rise to two modal logic models. One with actual world $a$ and one with $d$, these being the two minimal points of the relation. Consider a language with $\Box q$. how do we evaluate $a \models \Box q$?

The modal logic will have to give an algorithm for calculating the values.

Say we choose algorithm $A_1$ for $a \models \Box q$, namely: $[A_1(a, \Box q) = 1]$ iff for all $x \in S$ such that $a = x$ or $(a, x) \in R$ we have $h(q, x) = 1$.

According to $A_1$ we get that $\Box q$ is false at $a$. $A_1$ gives rise to a $T$–modal logic. Note that the reflexivity is not anchored at the relation $R$ of the network but in the algorithm $A_1$ in the way we evaluate. We say $(S, R, \ldots) \models \Box q$ iff $\Box q$ holds in all minimal points of $(S, R)$.

For orderings without minimal points we may choose a subset of distinguished points.

**Nonmonotonic deduction.** We can ask whether $p \not\rightarrow q$ according to algorithm $A_2$ defined below. $A_2$ says that $p \not\rightarrow q$ holds iff $q$ holds in all minimal models of $p$. Let us check the value of $A_2$ in this case:

Let $S_p = \{s \in S \mid h(p, s) = 1\}$. Thus $S_p = \{d, e\}$.

The minimal points of $S_p$ are $\{d\}$. Since $h(q, d) = 0$, we have that $p \not\models q$. 


Note that in the cases of modal logic and nonmonotonic logic we ignored the arrows \((d, (a, c))\) (i.e., the double arrow from \(d\) to the arrow \((a, c)\)) and the \(h\) values to arrows. These values do not play a part in the traditional modal or nonmonotonic logic. They do play a part in other logics. The attentive reader may already suspect that we have here an opportunity for generalization of, say, nonmonotonic logic, by giving a role to arrow annotations.

**Argumentation nets.** Here the nodes of \(S\) are interpreted as arguments. The atoms \(\{p, q\}\) can be interpreted as types of arguments and the arrows, for example, \((a, b) \in \mathbb{R}\) as indicating that the argument \(a\) is attacking the argument \(b\).

So, for example, let

- \(a = \) We must win votes.
- \(b = \) Death sentence for murderers.
- \(c = \) We must allow abortion for teenagers.
- \(d = \) Bible forbids taking of life.
- \(q = \) The argument is a social argument.
- \(p = \) The argument is a religious argument.
- \((d, (a, c)) = \) There should be no connection between winning votes and abortion.
- \(( (a, b), (d, c)) = \) If we attack the death sentence in order to win votes then we must stress (attack) that there should be no connection between religion (Bible) and social issues.

Thus we have according to this model that supporting abortion can lose votes. The argument for abortion is a social one and the argument from the Bible against it is a religious one.

We can extract information from this IBRS using two algorithms. The modal logic one can check whether for example every social argument is attacked by a religious argument. The answer is no, since the social argument \(b\) is attacked only by \(a\) which is not a religious argument.

We can also use algorithm \(A_3\) (following Dung) to extract the winning arguments of this system. The arguments \(a\) and \(d\) are winning since they are not attacked. \(d\) attacks the connection between \(a\) and \(c\) (i.e., stops \(a\) attacking \(c\)).

The attack of \(a\) on \(b\) is successful and so \(b\) is out. However the arrow \((a, b)\) attacks the arrow \((d, c)\). So \(c\) is not attacked at all as both arrows leading into it are successfully eliminated. So \(c\) is in. \(e\) is out because it is attacked by \(d\).

So the winning arguments are \(\{a, c, d\}\).

In this model we ignore the annotations on arrows. To be consistent in our mathematics we need to say that \(h\) is a partial function on \(\mathbb{R}\). The best way is to give more specific definition on IBRS to make it suitable for each logic.

See also Gabbay (2008b) and Barringer et al. (2005).

**Counterfactuals.** The traditional semantics for counterfactuals involves closeness of worlds. The clause \(y \models p \leftrightarrow q\), where \(\leftrightarrow\) is a counterfactual implication is that \(q\) holds in all worlds \(y'\) “near enough” to \(y\) in which \(p\) holds. So if we interpret the annotation on arrows as distances then we can define “near” as distance \(\leq 2\), we get: \(a \models p \leftrightarrow q\) iff in all worlds of \(p\)–distance \(\leq 2\) if \(p\) holds so does \(q\). Note that the distance depends on \(p\).

In this case we get that \(a \models p \leftrightarrow q\) holds. The distance function can also use the arrows from arrows to arrows, etc. There are many opportunities for generalization in our IBRS set up.
Intuitionistic persistence. We can get an intuitionistic Kripke model out of this IBRS by letting, for \( t, s \in S \), \( t \rho_0 s \iff t = s \) or \( [t R s \land \forall q \in Q(h(q, t) \leq h(q, s))] \). We get that \( r_0 = \{(y, y) \mid y \in S\} \cup \{(a, b), (a, c), (d, e)\} \). Let \( \rho \) be the transitive closure of \( \rho_0 \). Algorithm \( A_4 \) evaluates \( p \Rightarrow q \) in this model, where \( \Rightarrow \) is intuitionistic implication.

\[ A_4 : p \Rightarrow q \text{ holds at the IBRS iff } p \Rightarrow q \text{ holds intuitionistically at every } \rho \text{-minimal point of } (S, \rho). \]

1.3. Purpose of this paper. In this paper, we will not cover all these applications of the above abstract definition of IBRS, but will

(1) give an abstract and also a very concrete semantics to IBRS

(2) show that a special case of IBRS generalizes in a very natural way preferential semantics and solves open representation problems for weak logical systems. This is possible, as we can “break” the strong coherence properties of preferential structures by higher arrows, that is, arrows, which do not go to points, but to arrows themselves.

The notion of IBRS is within the Reactive approach in applied logic. The reader will find more on the Reactive approach in Section 1.4.

1.4. Concluding discussion—the reactive idea. This section introduces the reactive idea for algorithmic systems. This idea is the intuition behind the general notion of the IBRS. We will explain it by looking at a fairly general example involving possible world semantics.

Consider the situation in Figure 3. Consider this figure with a starting point at state \( a \). The arrows indicate nondeterministic options for moving along the graph. From \( a \) we can reach \( d \) in two ways, one through \( b \) and one through \( c \). If we move to \( d \) through \( c \), passing from \( a \) to \( c \) (through the arc \( a \rightarrow c \)) sends a signal through the double arrow.

![Fig. 3. Nondeterministic movement.](image-url)
that disconnects the arc $a \rightarrow e$. The idea of these double arrows is the reactive idea.

We use an algorithmic system, and depending on the path the algorithm takes, the system changes.

Many systems can be represented in a graph form and therefore allow themselves to become reactive.

Here are some examples.

1. Kripke semantics, see Gabbay (2004, 2008a, 2008b, to appear). The model can change as we traverse the nodes in the evaluation process.
2. Context free grammars, see Barringer et al. (to appear). The set of rules available to us can change depending which rules we use (i.e., rules can be active and nonactive depending on the use of the other rules).
3. Finite automata, see Gabbay & Crochemore (2008). The automaton can change its transition table as it changes state.
4. Reactive tableaux or proof theory. The rules can change as some rules are applied.
5. The system of this paper.

With preferential models, a set $A$ has minimal points. When $A$ is enlarged to $A'$, more points and more preferential connections are added but no existing connections are cancelled. Thus minimal points can only be cancelled by addition. The reactive double arrow idea allows us to cancel connections when we enlarge. Figure 2 illustrates the situation.

Intuitively, it is easy to see that any clear cut algorithmic system can be made reactive. The system has to tell us what it means to make a move and so we can change the system as we make such a move. The following question may be asked: can we gain anything by introducing reactivity? Is there any gain in expressive power in addition to a better intuitive representation? The answer is yes.

1. There are logical systems with one modal operator $\Box$ which can be characterized by a class of reactive Kripke frames but cannot be characterized by any class of ordinary Kripke frames.
2. There is no context-free grammar which can recognize the set of words of the form $a^n b^n c^n$, $n \in \omega$. However, there is a reactive context-free grammar which can do the job.
3. Given an ordinary finite automaton with $k^n$ (respectively $k \ast n$) states, there exists a reactive automaton with $k - n$ (respectively $k + n$) states which recognize the same inputs.

Let us now gain a bit more insight into what is going on in the Kripke model case, especially with regards to tableaux and axiomatizations. This should be of interest to our readers, since this paper deals with (preferential) possible worlds.

Consider again Figure 3. What we see at world $d$ depends on how we got there. So Figure 3 is equivalent to Figure 4. The points here are paths. The rectangle around $abd$ and $acd$ indicates these points should have the same assignment (labels) for atoms. We can indicate this by an equivalence relation $\equiv$, $abd \equiv acd$.

Thus essentially a reactive Kripke model with one level double arrows for one modality $\Box \phi$ is like an ordinary Kripke model with two modalities $\Box \phi$ and $K \phi$ (necessity and knowledge). This is so because of the unfolding of Figure 3 to Figure 4. Knowledge is represented by an equivalence relation $\equiv$, $t \models K \phi$ iff for all $s \equiv t$, we have $s \models \phi$. Thus
in a reactive Kripke model for $\square$ with a starting point $t_0$, we can model knowledge by $K\phi$ holds at $t$ if $\phi$ holds at $t$ no matter how we get to $t$ from $t_0$.

In fact for every $t_0$ we get a different knowledge operator $K(t_0)$.

How about proof theory? Let us in Figure 3 assume that $q_x$ holds at $x$. Thus at $a$ we have

1. $\Diamond\Diamond\Box\bot$ (path through $c$)
2. $\Diamond\Diamond\Diamond q_x$ (path through $b$)
3. $\Diamond\Diamond q \rightarrow \Box\Box q$ for all atomic $q$ (because there is only one point $d$).

These hold in Figure 3 as a frame. They don’t hold in Figure 4 as a frame, only if we restrict the assignment for atoms.

§2. A semantics for IBRS.

2.1. Introduction. We give here a rough outline of a formal semantics for IBRS. It consists more of some hints where difficulties are, than of a finished construction. Still, the authors feel that this is sufficient to complete the work, and, on the other hand, our remarks might be useful to those who intend to finalize the construction.

(1) Nodes and arrows

As we may have counterarguments not only against nodes, but also against arrows, they must be treated basically the same way, that is, in some way there has to be a positive, but also a negative influence on both. So arrows cannot just be concatenation between the contents of nodes.

We will differentiate between nodes and arrows by labeling arrows in addition with a time delay. We see nodes as situations, where the output is computed instantaneously from the input, whereas arrows describe some “force” or “mechanism” which may need some time to “compute” the result from the input.
Consequently, if $\alpha$ is an arrow, and $\beta$ an arrow pointing to $\alpha$, then it should point to the input of $\alpha$, that is, before the time lapse. Conversely, any arrow originating in $\alpha$ should originate after the time lapse.

Apart from this distinction, we will treat nodes and arrows the same way, so the following discussion will apply to both—which we call just “objects”.

(2) Defeasibility

The general idea is to code each object, say $X$, by $I(X) : U(X) \rightarrow C(X)$: If $I(X)$ holds then, unless $U(X)$ holds, consequence $C(X)$ will hold. (We adopted Reiter’s notation for defaults, as IBRS have common points with the former.)

The situation is slightly more complicated, as there can be several counterarguments, so $U(X)$ really is an “or”. Likewise, there can be several supporting arguments, so $I(X)$ also is an “or”.

A counterargument must not always be an argument against a specific supporting argument, but it can be. Thus, we should admit both possibilities. As we can use arrows to arrows, the second case is easy to treat (as is the dual, a supporting argument can be against a specific counterargument). How do we treat the case of unspecific pro- and counterarguments? Probably the easiest way is to adopt Dung’s (1995) idea: an object is in, if it has at least one support, and no counterargument. Of course, other possibilities may be adopted, counting, use of labels, etc., but we just consider the simple case here.

(3) Labels

In the general case, objects stand for some kind of defeasible transmission. We may in some cases see labels as restricting this transmission to certain values. For instance, if the label is $p = 1$ and $q = 0$, then the $p$-part may be transmitted and the $q$-part not.

Thus, a transmission with a label can sometimes be considered as a family of transmissions, which ones are active is indicated by the label.

Example 2.1. In fuzzy Kripke models, labels are elements of $[0, 1]$. $P = .5$ as label for a node $m'$ which stands for a fuzzy model means that the value of $P$ is .5. $P = .5$ as label for an arrow from $m$ to $m'$ means that $p$ is transmitted with value $0.5$. Thus, when we look from $m$ to $m'$, we see $p$ with value $0.5 \times 0.5 = 0.25$. So, we have $\Diamond p$ with value .25 at $m$ - if, for example, $m, m'$ are the only models.

(4) Putting things together

If an arrow leaves an object, the object’s output will be connected to the (only) positive input of the arrow. (An arrow has no negative inputs from objects it leaves.) If a positive arrow enters an object, it is connected to one of the positive inputs of the object, analogously for negative arrows and inputs.

When labels are present, they are transmitted through some operation.

In slightly more formal terms, we have:

**Definition 2.2.** In the most general case, objects of IBRS have the form: $(I_1, L_1), \ldots, (I_n, L_n)) : ((U_1, L'_1), \ldots, (U_n, L'_n))$, where the $L_i, L'_i$ are labels and the $I_i, U_i$ might be just truth values, but can also be more complicated, a (possibly infinite) sequence of some values. Connected objects have, of course, to have corresponding such sequences. In addition, the object $X$ has a criterion for each input, whether it is valid or not (in the simple case, this will just be the truth value “true”). If there is at least one positive valid input $I_i$, and no valid negative input $U_i$, then the output $C(X)$ and its label are calculated on the basis of the valid inputs and their labels. If the object is an arrow, this will take some time, $t$, otherwise, this is instantaneous.
Evaluating a diagram

An evaluation is relative to a fixed input, that is, some objects will be given certain values, and the diagram is left to calculate the others. It may well be that it oscillates, that is, shows a cyclic behavior. This may be true for a subset of the diagram, or the whole diagram. If it is restricted to an unimportant part, we might neglect this. Whether it oscillates or not can also depend on the time delays of the arrows (see Example 2.3).

We therefore define for a diagram $\Delta$

\[ \alpha \sim \Delta \beta \iff \]

(a) $\alpha$ is a (perhaps partial) input—where the other values are set “not valid”

(b) $\beta$ is a (perhaps partial) output

(c) after some time, $\beta$ is stable, that is, all still possible oscillations do not affect $\beta$

(d) the other possible input values do not matter, that is, whatever the input, the result is the same.

In the cases examined here more closely, all input values will be defined.

2.2. A circuit semantics for simple IBRS without labels. It is natural to implement IBRS by (modified) logical circuits. The nodes will be implemented by subcircuits which can store information, and the arcs by connections between them. As connections can connect connections, connections will not just be simple wires. The objective of the present discussion is to warn the reader that care has to be taken about the temporal behavior of such circuits, especially when feedback is allowed.

All details are left to those interested in a realization.

Background: It is standard to implement the usual logical connectives by electronic circuits. These components are called gates. Circuits with feedback sometimes show undesirable behavior when the initial conditions are not specified. (When we switch a circuit on, the outputs of the individual gates can have arbitrary values.) The technical realization of these initial values shows the way to treat defaults. The initial values are set via resistors (in the order of 1 $k\Omega$) between the point in the circuit we want to initialize and the desired tension (say 0 Volt for false, 5 Volt for true). They are called pull-down or pull-up resistors (for default 0 or 5 Volt). When a “real” result comes in, it will override the tension applied via the resistor.

Closer inspection reveals that we have here a three-level default situation: The initial value will be the weakest, which can be overridden by any “real” signal, but a positive argument can be overridden by a negative one. Thus, the biggest resistor will be for the initialization, the smaller one for the supporting arguments, and the negative arguments have full power. Technical details will be left to the experts.

We give now an example which shows that the delays of the arrows can matter. In one situation, a stable state is reached, in another, the circuit begins to oscillate.

**Example 2.3.** (In engineering terms, this is a variant of a JK flip-flop with $R \ast S = 0$, a circuit with feedback.)

We have eight measuring points.

$In_1$, $In_2$ are the overall input, $Out_1$, $Out_2$ the overall output, $A_1$, $A_2$, $A_3$, $A_4$ are auxiliary internal points. All points can be true or false.

The logical structure is as follows:

$A_1 = In_1 \land Out_1$, $A_2 = In_2 \land Out_2$,

$A_3 = A_1 \lor Out_2$, $A_4 = A_2 \lor Out_1$,

$Out_1 = \neg A_3$, $Out_2 = \neg A_4$. 
Thus, the circuit is symmetrical, with In1 corresponding to In2, A1 to A2, A3 to A4, Out1 to Out2.

The input is held constant. See Figure 5.

We suppose that the output of the individual gates is present \( n \) time slices after the input was present. \( n \) will in the first circuit be equal to 1 for all gates, in the second circuit equal to 1 for all but the AND gates, which will take two time slices. Thus, in both cases, for example, Out1 at time \( t \) will be the negation of A3 at time \( t - 1 \). In the first case, A1 at time \( t \) will be the conjunction of In1 and Out1 at time \( t - 1 \), and in the second case the conjunction of In1 and Out1 at time \( t - 2 \).

We initialize In1 as true, all others as false. (The initial value of A3 and A4 does not matter, the behavior is essentially the same for all such values.)

The first circuit will oscillate with a period of 4, the second circuit will go to a stable state.

We have the following transition tables (time slice shown at left):

Circuit 1, \( delay = 1 \) everywhere:

Oscillation

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
\hline
 & In1 & In2 & A1 & A2 & A3 & A4 & Out1 & Out2 \\
\hline
1: & T & F & F & F & F & F & F & F \\
2: & T & F & F & F & F & T & T & T \\
3: & T & F & T & F & T & T & T & T \\
4: & T & F & T & F & T & T & F & F \\
5: & T & F & F & F & T & F & F & F \\
6: & T & F & F & F & F & F & F & T \\
7: & T & F & F & F & T & F & T & T \\
8: & T & F & T & F & T & F & F & T \\
9: & T & F & F & F & T & F & F & F \\
\hline
\end{array}
\]

oscillation starts

back to start of oscillation

Circuit 2, \( delay = 1 \) everywhere, except for AND with \( delay = 2 \):
(Thus, A1 and A2 are held at their initial value up to time 2, then they are calculated using the values of time \( t - 2 \).)
Stability

Table 2. No oscillation

| In1 | In2 | A1 | A2 | A3 | A4 | Out1 | Out2 |
|-----|-----|----|----|----|----|------|------|
| 1:  | T   | F  | F  | F  | F  | F    | F    |
| 2:  | T   | F  | F  | F  | F  | F    | T    |
| 3:  | T   | F  | F  | T  | T  | T    | T    |
| 4:  | T   | F  | T  | F  | F  | T    | T    |
| 5:  | T   | F  | T  | F  | F  | T    | F    |
| 6:  | T   | F  | F  | T  | F  | F    | F    |
| 7:  | T   | F  | F  | T  | F  | F    | T    |
| 8:  | T   | F  | F  | T  | F  | F    | T    |

stable state reached

Note that state 6 of circuit 2 is also stable in circuit 1, but it is never reached in that circuit.

§3. IBRS as generalized preferential structures.

3.1. Introduction.

3.1.1. Overview. The main objective of this Section is to show independence results for certain logical and algebraic rules, which are usually treated together in the system $P$ (see below for $P$ and other concepts mentioned here), and which are all valid in usual preferential structures.

The basic idea is to use generalized preferential structures, that is, special IBRS, to break the strong coherence conditions of usual preferential structures. This allows us to work without the basic condition $(\mu PR)$, and we are left with only $(\mu \subseteq)$, or can add independently $(\mu CUM)$, respectively Cumulativity or Cautious Monotony. Thus we can give, the first time to our knowledge, a structural semantics to certain weak systems of nonmonotonic logics.

We will also modify the usual smoothness condition to “essential smoothness”, sufficient for obtaining Cautious Monotony, and thus contribute to a clarification of the concept of smoothness.

In a certain way, our present work goes the opposite way to our Gabbay & Schlechta (to appear), where we showed strong conceptual connections between rules like $(AND)$, $(OR)$, Cautious Monotony, etc. There, we worked with an abstract algebraic semantics based on manipulation of the concept of size, here we work with the structural semantics of (generalized) preferential structures. Thus, the present paper and Gabbay & Schlechta (to appear) can be seen as complementary.

To summarize, the main result of this paper is to show how to work semantically without $(\mu PR)$, and in particular, how to have $(\mu CUM)$ and related properties without $(\mu PR)$. The corresponding logical properties are then shown easily.

3.1.2. Basic definitions, fundamental results.

Definition 3.1.

1. We use $\mathcal{P}$ to denote the power set operator, $\Pi\{X_i : i \in I\} := \{g : g : I \rightarrow \bigcup\{X_i : i \in I\}, \forall i \in I.g(i) \in X_i\}$ is the general cartesian product, $\text{card}(X)$ shall denote the cardinality of $X$, and $V$ the set-theoretic universe we work in—the class of all sets. Given a set of pairs $\mathcal{X}$, and a set $X$, we denote by $\mathcal{X}[X] := \{(x,i) \in \mathcal{X} : x \in X\}$. When the context is clear, we will sometime simply write $X$ for $\mathcal{X}[X]$. (The intended use is for preferential structures, where $x$ will be a point (intention: a classical propositional model), and $i$ an index, permitting copies of logically identical points.)
(2) $A \subseteq B$ will denote that $A$ is a subset of $B$ or equal to $B$, and $A \subset B$ that $A$ is a proper subset of $B$, likewise for $A \supseteq B$ and $A \supset B$.
Given some fixed set $U$ we work in, and $X \subseteq U$, then $C(X) := U - X$.

(3) If $\mathcal{Y} \subseteq \mathcal{P}(X)$ for some $X$, we say that $\mathcal{Y}$ satisfies
$(\cap)$ iff it is closed under finite intersections,
$(\bigcap)$ iff it is closed under arbitrary intersections,
$(\cup)$ iff it is closed under finite unions,
$(\bigcup)$ iff it is closed under arbitrary unions,
$(\neg)$ iff it is closed under complementation,
$(\sim)$ iff it is closed under set difference.

(4) We will sometimes write $A = B \parallel C$ for: $A = B$, or $A = C$, or $A = B \cup C$.
We make ample and tacit use of the Axiom of Choice.

**Definition 3.2.** $\prec^*$ will denote the transitive closure of the relation $\prec$. If a relation $\prec$, $\prec$, or similar is given, $a \perp b$ will express that $a$ and $b$ are $\prec - (or \prec \neg)$ incomparable-context will tell. Given any relation $\prec$, $\preceq$ will stand for $\prec$ or $=,$ conversely, given $\preceq$, $\prec$ will stand for $\preceq$, but not $=,$ similarly for $\prec$ etc.

**Definition 3.3.**
(1) We work here in a classical propositional language $\mathcal{L}$, a theory $T$ will be an arbitrary set of formulas. Formulas will often be named $\phi$, $\psi$, etc., theories $T$, $S$, etc.
$v(\mathcal{L})$ will be the set of propositional variables of $\mathcal{L}$.
$M_{\mathcal{L}}$ will be the set of (classical) models for $\mathcal{L}$, $M(T)$ or $M_T$ is the set of models of $T$, likewise $M(\phi)$ for a formula $\phi$.

(2) $D_{\mathcal{L}} := \{M(T) : T$ a theory in $\mathcal{L}\}$, the set of definable model sets.
Note that, in classical propositional logic, $\emptyset$, $M_{\mathcal{L}} \in D_{\mathcal{L}}$, $D_{\mathcal{L}}$ contains singletons, is closed under arbitrary intersections and finite unions.
An operation $f : \mathcal{Y} \rightarrow \mathcal{P}(M_{\mathcal{L}})$ for $\mathcal{Y} \subseteq \mathcal{P}(M_{\mathcal{L}})$ is called definability preserving,
$(\mu dp)$ or $(\mu dp)$ in short, iff for all $X \in D_{\mathcal{L}} \cap \mathcal{Y}$ $f(x) \in D_{\mathcal{L}}$.
We will also use $(\mu dp)$ for binary functions $f : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathcal{P}(M_{\mathcal{L}})$ as needed for theory revision—with the obvious meaning.

(3) $\vdash$ will be classical derivability, and
$\overline{T} := \{\phi : T \vdash \phi\}$, the closure of $T$ under $\vdash$.

(4) $\text{Con}(\cdot)$ will stand for classical consistency, so $\text{Con}(\phi)$ will mean that $\phi$ is classical consistent, likewise for $\text{Con}(T)$. $\text{Con}(T, T')$ will stand for $\text{Con}(T \cup T')$, etc.

(5) Given a consequence relation $\vdash$, we define
$\overline{T} := \{\phi : T \vdash \phi\}$.
(There is no fear of confusion with $\overline{T}$, as it just is not useful to close twice under classical logic.)

(6) $T \cup T' := \{\phi \lor \phi' : \phi \in T, \phi' \in T'\}$.

(7) If $X \subseteq M_{\mathcal{L}}$, then $Th(X) := \{\phi : X \vdash \phi\}$, likewise for $Th(m)$, $m \in M_{\mathcal{L}}$. ($\vdash$ will usually be classical validity.)
We recollect and note:

**Fact 3.4.** Let $\mathcal{L}$ be a fixed propositional language, $D_{\mathcal{L}} \subseteq X$, $\mu : X \rightarrow \mathcal{P}(M_{\mathcal{L}})$, for a $\mathcal{L}-$theory $T$. Suppose $\overline{T} = Th(\mu(M_T))$, let $T, T'$ be arbitrary theories, then:

(1) $\mu(M_T) \subseteq M_{\overline{T}}$,

(2) $M_T \cup M_{T'} = M_{T \cup T'}$ and $M_T \cap M_{T'} = M_T \cap M_{T'}$. 

(3) $\mu(M_T) = \emptyset \iff \bot \in \overline{T}$.

If $\mu$ is definability preserving or $\mu(M_T)$ is finite, then the following also hold:

(4) $\mu(M_T) = M_{\overline{T}}$.

(5) $T' \vdash \overline{T} \iff M_{T'} \subseteq \mu(M_T)$,

(6) $\mu(M_T) = M_{T'} \iff T' = T$. $\square$

**Definition 3.5.** We introduce here formally a list of properties of set functions on the algebraic side, and their corresponding logical rules on the other side. Putting them in parallel facilitates orientation, especially when considering representation problems.

We show, wherever adequate, in parallel the formula version in the left column, the theory version in the middle column, and the semantical or algebraic counterpart in the right column. The algebraic counterpart gives conditions for a function $f : \mathcal{Y} \to \mathcal{P}(U)$, where $U$ is some set, and $\mathcal{Y} \subseteq \mathcal{P}(U)$.

The development in two directions, vertically with often increasing strength, horizontally connecting proof theory with semantics motivates the presentation in a table. The table is split in two, as one table would be too big to print. The first table contains the basic rules, the second one those about cumulativity and rationality.

Precise connections between the columns are given in Proposition 3.7.

When the formula version is not commonly used, we omit it, as we normally work only with the theory version.

A and $B$ in the right hand side column stand for $M(\phi)$ for some formula $\phi$, whereas $X$, $Y$ stand for $M(T)$ for some theory $T$.

- $(PR)$ is also called infinite conditionalization. We choose this name for its central role for preferential structures $(PR)$ or $(\mu PR)$.
- The system of rules $(AND) (OR) (LLE) (RW) (SC) (CP) (CM) (CUM)$ is also called system $P$ (for preferential). Adding $(RatM)$ gives the system $R$ (for rationality or rankedness). Roughly: Smooth preferential structures generate logics satisfying system $P$, while ranked structures generate logics satisfying system $R$.
- A logic satisfying $(REF)$, $(ResM)$, and $(CUT)$ is called a consequence relation.
- $(LLE)$ and $(CCL)$ will hold automatically, whenever we work with model sets.
- $(AND)$ is obviously closely related to filters, and corresponds to closure under finite intersections. $(RW)$ corresponds to upward closure of filters.

More precisely, validity of both depend on the definition, and the direction we consider.

Given $f$ and $(\mu \subseteq)$, $f(X) \subseteq X$ generates a principal filter: $\{X' \subseteq X : f(X) \subseteq X'\}$, with the definition: If $X = M(T)$, then $T \vdash \phi$ iff $f(X) \subseteq M(\phi)$. Validity of $(AND)$ and $(RW)$ are then trivial.

Conversely, we can define for $X = M(T)$

$\mathcal{X} := \{X' \subseteq X : f(X) \subseteq X'\}$,

$(AND)$ then makes $\mathcal{X}$ closed under finite intersections, and $(RW)$ makes $\mathcal{X}$ upward closed. This is in the infinite case usually not yet a filter, as not all subsets of $X$ need to be definable this way. In this case, we complete $\mathcal{X}$ by adding all $X''$ such that there is $X' \subseteq X'' \subseteq X$, $X' \in \mathcal{X}$.

Alternatively, we can define

$\mathcal{X} := \{X' \subseteq X : \bigcap \{X \cap M(\phi) : T \vdash \phi\} \subseteq X'\}$. 

Basic Laws

Table 3. Basic logical and semantic laws

| Basics | Conditions | Interpretation |
|--------|------------|----------------|
| $(AND)$ | $\phi \vdash \psi$, $\phi \vdash \psi' \Rightarrow$ $\phi \vdash \psi \land \psi'$ | Closure under finite intersection |
| $(OR)$ | $\phi \vdash \psi$, $\phi' \vdash \psi$ | $T \cap T' \subseteq T \land T'$ |
| $(muOR)$ | $\phi \lor \psi \lor \phi' \lor \psi'$ | $f(X \cup Y) \subseteq f(X) \cup f(Y)$ |
| $(wOR)$ | $\phi \lor \psi \lor \phi' \lor \psi'$ | $f(X \cup Y) \subseteq f(X) \cup f(Y)$ |
| $(disjOR)$ | $\phi \vdash \neg \phi'$, $\phi \vdash \psi$ | $\neg \text{Con}(T \cup T') \Rightarrow$ $\overline{T \cap T'} \subseteq T \lor T'$ |
| $(LLE)$ | $T = T' \Rightarrow \overline{T} = \overline{T'}$ | trivially true |
| $(RW)$ | $\phi \vdash \psi', \phi \vdash \psi$ | $T \vdash \psi' \Rightarrow$ $T \vdash \psi'$ |
| $(CCL)$ | $T$ is classically closed | trivially true |
| $(SC)$ | $\phi \vdash \psi \Rightarrow \phi \vdash \psi$ | $T \subseteq \overline{T}$ |
| $(REF)$ | $T \cup \{\alpha\} \vdash \alpha$ | $(\mu \emptyset)$ |
| $(CP)$ | Consistency Preservation | $f(X) = \emptyset \Rightarrow X = \emptyset$ |
| $(PR)$ | $\phi \land \psi' \subseteq \phi \cup \{\psi\}$ | $(\mu \text{fin})$ |
| $(muPR)$ | $\phi \land \psi' \subseteq \phi \cup \{\psi\}$ | $X \neq \emptyset \Rightarrow f(X) \neq \emptyset$ for finite $X$ |
| $(CUT)$ | $T \vdash \alpha; T \cup \{\alpha\} \vdash \beta \Rightarrow$ $T \vdash \beta$ | $(\mu \text{fin})$ |
| $(muCUT)$ | $f(X) \subseteq Y \subseteq X \Rightarrow$ $f(X) \subseteq f(Y)$ |

- $(SC)$ corresponds to the choice of a subset.
- $(CP)$ is somewhat delicate, as it presupposes that the chosen model set is nonempty. This might fail in the presence of ever better choices, without ideal ones; the problem is addressed by the limit versions.
- $(PR)$ is an infinitary version of one half of the deduction theorem: Let $T$ stand for $\phi$, $T'$ for $\psi$, and $\phi \land \psi \vdash \sigma$, so $\phi \vdash \psi \rightarrow \sigma$, but $(\psi \rightarrow \sigma) \land \psi \vdash \sigma$.
- $(CUM)$ (whose more interesting half in our context is $(CM)$) may best be seen as normal use of lemmas: We have worked hard and found some lemmas. Now we can take a rest, and come back again with our new lemmas. Adding them to the axioms will neither add new theorems, nor prevent old ones to hold. (This is, of course, a meta-level argument concerning an object level rule. But also object level rules should—at least generally—have an intuitive justification, which will then come from a metalevel argument.)
The following results are mentioned here to put our work into perspective. The (somewhat lengthy) proofs can be found in Gabbay & Schlechta (2009).

**FACT 3.6.** The following table is to be read as follows: If the left hand side holds for some function $f : \mathcal{Y} \to \mathcal{P}(U)$, and the auxiliary properties noted in the middle also hold for $f$ or $\mathcal{Y}$, then the right hand side will hold, too—and conversely.

"sing. " will stand for: "$\mathcal{Y}$ contains singletons."

**PROPOSITION 3.7.** The following table is to be read as follows:

Let a logic $\vdash$ satisfy (LLE) and (CCL), and define a function $f : \mathcal{D}_\mathcal{L} \to \mathcal{D}_\mathcal{L}$ by $f(M(T)) := M(\overline{T})$. Then $f$ is well defined, satisfies $(\mu dp)$, and $\overline{T} = Th(f(M(T)))$.

If $\vdash$ satisfies a rule in the left hand side, then—provided the additional properties noted in the middle for $\Rightarrow$ hold, too—$f$ will satisfy the property in the right hand side.

Conversely, if $f : \mathcal{Y} \to \mathcal{P}(M_\mathcal{L})$ is a function, with $\mathcal{D}_\mathcal{L} \subseteq \mathcal{Y}$, and we define a logic $\vdash$ by $\overline{T} := Th(f(M(T)))$, then $\vdash$ satisfies (LLE) and (CCL). If $f$ satisfies $(\mu dp)$, then $f(M(T)) = M(\overline{T})$.

If $f$ satisfies a property in the right hand side, then—provided the additional properties noted in the middle for $\Leftarrow$ hold, too—$\vdash$ will satisfy the property in the left hand side.
Interdependence

Table 5. Interdependencies of algebraic rules

|   | Basics                                                                 |
|---|------------------------------------------------------------------------|
| (1.1) | $(\mu PR)$                                                            | $(\mu PR' )$ |
| (2.1) | $(\mu PR)$                                                            | $(\mu OR)$   |
| (2.2) | $\leq (\mu \subseteq)$                                               | $(\mu wOR)$  |
| (2.3) | $(\mu \subseteq)$                                                   | $(\mu OR)$   |
| (2.4) | $(\mu \subseteq)$                                                   | $(\mu OR)$   |
| (3)  | $(\mu PR)$                                                            | $(\mu CUT)$  |
| (4)  | $(\mu \subseteq) + (\mu \subseteq) + (\mu CM) + (\mu OR)$          | $(\mu PR)$   |

|   | Cumulativity                                                          |
|---|------------------------------------------------------------------------|
| (5.1) | $(\mu CM)$                                                            | $(\mu ResM)$ |
| (5.2) | $(\mu CM)$ + $(\mu CUT)$                                             | $(\mu CM)$   |
| (6)  | $(\mu CM)$ + $(\mu CUT)$                                             | $(\mu CM)$   |
| (7)  | $(\mu \subseteq) + (\mu \subseteq)$                                 | $(\mu \subseteq)$ |
| (8)  | $(\mu \subseteq) + (\mu CM) + (\mu OR)$                             | $(\mu \subseteq)$ |
| (9)  | $(\mu \subseteq) + (\mu CM)$                                        | $(\mu \subseteq)$ |

|   | Rationality                                                            |
|---|------------------------------------------------------------------------|
| (10) | $(\mu RatM) + (\mu PR)$                                              | $(\mu \equiv)$ |
| (11) | $(\mu \equiv)$                                                       | $(\mu \equiv)$ |
| (12) | $(\mu \equiv)$                                                       | $(\mu \equiv)$ |
| (13) | $(\mu \subseteq) + (\mu \equiv)$                                    | $(\mu \equiv)$ |
| (14) | $(\mu \subseteq) + (\mu \equiv)$                                    | $(\mu \equiv)$ |
| (15) | $(\mu \subseteq) + (\mu \equiv)$                                    | $(\mu \equiv)$ |
| (16) | $(\mu \equiv) + (\mu \equiv) + (\mu PR) + (\mu \equiv)$             | $(\mu \equiv)$ |
| (17) | $(\mu \equiv) + (\mu \equiv)$                                        | $(\mu \equiv)$ |
| (18) | $(\mu \equiv) + (\mu \equiv) + (\mu \equiv)$                        | $(\mu \equiv)$ |
| (19) | $(\mu \equiv) + (\mu \equiv) + (\mu \equiv)$                        | $(\mu \equiv)$ |

If “$T = \phi$” is noted in the table, this means that, if one of the theories (the one named the same way in Definition 3.5) is equivalent to a formula, we do not need $(\mu dp)$.

**Definition 3.8.** Fix $U \neq \emptyset$, and consider arbitrary $X$. Note that this $X$ has not necessarily anything to do with $U$, or $U$ below. Thus, the functions $\mu_M$ below are in principle functions from $V$ to $V$—where $V$ is the set theoretical universe we work in.

Note that we work here often with copies of elements (or models). In other areas of logic, most authors work with valuation functions. Both definitions—copies or valuation functions—are equivalent, a copy $\langle x, i \rangle$ can be seen as a state $\langle x, i \rangle$ with valuation $x$. In the beginning of research on preferential structures, the notion of copies was widely used, whereas for example, Kraus et al. (1990) used that of valuation functions. There is perhaps a weak justification of the former terminology. In modal logic, even if two states have the same valid classical formulas, they might still be distinguishable by their valid modal formulas. But this depends on the fact that modality is in the object language. In most work on preferential structures, the consequence relation is outside the object language, so different states with same valuation are in a stronger sense copies of each other.
Logics

Table 6. *Logical and algebraic rules*

| Basics | | |
|---|---|---|
| (1.1) (OR) | $\Rightarrow$ | (μOR) |
| (1.2) | $\Leftarrow$ | |
| (2.1) (disjOR) | $\Rightarrow$ | (μdisjOR) |
| (2.2) | $\Leftarrow$ | |
| (3.1) (wOR) | $\Rightarrow$ | (μwOR) |
| (3.2) | $\Leftarrow$ | |
| (4.1) (SC) | $\Rightarrow$ | (μ ⊆) |
| (4.2) | $\Leftarrow$ | |
| (5.1) (CP) | $\Rightarrow$ | (μ∅) |
| (5.2) | $\Leftarrow$ | |
| (6.1) (PR) | $\Rightarrow$ | (μPR) |
| (6.2) | $\Leftarrow$ | (μ ⊆) |
| | $\Leftarrow$ | -(μdp) |
| (6.4) | $\Leftarrow$ | (μ ⊆) |
| | $\Leftarrow$ | $T' = \phi$ |
| (6.5) (PR) | $\Leftarrow$ | (μPR') |
| (7.1) (CUT) | $\Rightarrow$ | (μCUT) |
| (7.2) | $\Leftarrow$ | |

| Cumulativity | | |
|---|---|---|
| (8.1) (CM) | $\Rightarrow$ | (μCM) |
| (8.2) | $\Leftarrow$ | |
| (9.1) (ResM) | $\Rightarrow$ | (μResM) |
| (9.2) | $\Leftarrow$ | |
| (10.1) (⊆⊆) | $\Rightarrow$ | (μ ⊆⊆) |
| (10.2) | $\Leftarrow$ | |
| (11.1) (CUM) | $\Rightarrow$ | (μCUM) |
| (11.2) | $\Leftarrow$ | |

| Rationality | | |
|---|---|---|
| (12.1) (RatM) | $\Rightarrow$ | (μRatM) |
| (12.2) | $\Leftarrow$ | (μdp) |
| | $\Leftarrow$ | -(μdp) |
| (12.4) | $\Leftarrow$ | |
| (13.1) (RatM =) | $\Rightarrow$ | (μ =) |
| (13.2) | $\Leftarrow$ | (μdp) |
| | $\Leftarrow$ | -(μdp) |
| (13.4) | $\Leftarrow$ | |
| (14.1) (Log =') | $\Rightarrow$ | (μ =') |
| (14.2) | $\Leftarrow$ | (μdp) |
| | $\Leftarrow$ | -(μdp) |
| (14.4) | $\Leftarrow$ | |
| (15.1) (Log \parallel) | $\Rightarrow$ | (μ \parallel) |
| (15.2) | $\Leftarrow$ | |
| (16.1) (Log\cup) | $\Rightarrow$ | (μ ⊆) + (μ =) |
| (16.2) | $\Leftarrow$ | (μdp) |
| | $\Leftarrow$ | -(μdp) |
| (16.3) | $\Leftarrow$ | |
| (17.1) (Log\cup') | $\Rightarrow$ | (μ ⊆) + (μ =) |
| (17.2) | $\Leftarrow$ | (μdp) |
| | $\Leftarrow$ | -(μdp) |
(1) **Preferred models or structures.**

(1.1) The version without copies:
A pair \( M := \langle U, \prec \rangle \) with \( U \) an arbitrary set, and \( \prec \) an arbitrary binary relation on \( U \) is called a preferential model or structure.

(1.2) The version with copies:
A pair \( M := \langle U, \prec \rangle \) with \( U \) an arbitrary set of pairs, and \( \prec \) an arbitrary binary relation on \( U \) is called a preferential model or structure.

If \( (x, i) \in U \), then \( x \) is intended to be an element of \( U \), and \( i \) the index of the copy.

We sometimes also need copies of the relation \( \prec \). We will then replace \( \prec \) by one or several arrows \( a \) attacking nonminimal elements, for example, \( x \prec y \) will be written \( a : x \rightarrow y \), \( (x, i) \prec (y, i) \) will be written \( a : (x, i) \rightarrow (y, i) \), and finally we might have \( (a, k) : x \rightarrow y \) and \( (a, k) : (x, i) \rightarrow (y, i) \), etc.

(2) **Minimal elements**, the functions \( \mu_M \)

(2.1) The version without copies:
Let \( M := \langle U, \prec \rangle \), and define
\[
\mu_M(X) := \{ x \in X : x \in U \land \exists x' \in X \cap U. x' \prec x \}.
\]
\( \mu_M(X) \) is called the set of minimal elements of \( X \) (in \( M \)).

Thus, \( \mu_M(X) \) is the set of elements such that there is no smaller one in \( X \).

(2.2) The version with copies:
Let \( M := \langle U, \prec \rangle \) be as above. Define
\[
\mu_M(X) := \{ x \in X : \exists(x, i) \in U. \exists x', i' \in U(x' \in X \land \langle x', i' \rangle' \prec \langle x, i \rangle) \}.
\]
Thus, \( \mu_M(X) \) is the projection on the first coordinate of the set of elements such that there is no smaller one in \( X \).

Again, by abuse of language, we say that \( \mu_M(X) \) is the set of minimal elements of \( X \) in the structure. If the context is clear, we will also write just \( \mu \).

We sometimes say that \( (x, i) \) “kills” or “minimizes” \( (y, j) \) if \( (x, i) \prec (y, j) \). By abuse of language we also say a set \( X \) kills or minimizes a set \( Y \) if for all \( (y, j) \in U, y \in Y \) there is \( (x, i) \in U, x \in X \) s.t. \( (x, i) \prec (y, j) \).

\( M \) is also called injective or 1-copy, iff there is always at most one copy \( (x, i) \) for each \( x \). Note that the existence of copies corresponds to a noninjective labeling function—as is often used in nonclassical logic, for example, modal logic.

We say that \( M \) is transitive, irreflexive, etc., iff \( \prec \) is.

Note that \( \mu(X) \) might well be empty, even if \( X \) is not.

**Definition 3.9.** We define the consequence relation of a preferential structure for a given propositional language \( \mathcal{L} \).

1. (1.1) If \( m \) is a classical model of a language \( \mathcal{L} \), we say by abuse of language
\[
\langle m, i \rangle \models \phi \text{ iff } m \models \phi,
\]
and if \( X \) is a set of such pairs, that
\[
X \models \phi \text{ iff for all } \langle m, i \rangle \in X \text{ } m \models \phi.
\]
(1.2) If $M$ is a preferential structure, and $X$ is a set of $L$–models for a classical propositional language $L$, or a set of pairs $\langle m, i \rangle$, where the $m$ are such models, we call $M$ a classical preferential structure or model.

(2) Validity in a preferential structure, or the semantical consequence relation defined by such a structure:
Let $M$ be as above.
We define:
$$T \models M \phi \text{ iff } \mu_M(M(T)) \models \phi,$$
that is,
$$\mu_M(M(T)) \subseteq M(\phi).$$

(3) $M$ will be called definitability preserving iff for all $X \in D_L \mu_M(X) \in D_L$.

As $\mu_M$ is defined on $D_L$, but need by no means always result in some new definable set, this is (and reveals itself as a quite strong) additional property.

DEFINITION 3.10. Let $\mathcal{Y} \subseteq \mathcal{P}(U)$. (In applications to logic, $\mathcal{Y}$ will be $D_L$.)
A preferential structure $M$ is called $\mathcal{Y}$–smooth iff for every $X \in \mathcal{Y}$ every element $x \in X$ is either minimal in $X$ or above an element, which is minimal in $X$. More precisely:

1. The version without copies:
If $x \in X \in \mathcal{Y}$, then either $x \in \mu(X)$ or there is $x' \in \mu(X), x' \prec x$.

2. The version with copies:
If $x \in X \in \mathcal{Y}$, and $\langle x, i \rangle \in U$, then either there is no $\langle x', i' \rangle \in U, x' \in X$, $\langle x', i' \rangle \prec \langle x, i \rangle$ or there is $\langle x', i' \rangle \in U, \langle x', i' \rangle \prec \langle x, i \rangle, x' \in X$, s.t. there is no $\langle x'', i'' \rangle \in U, x'' \in X$, with $\langle x'', i'' \rangle \prec \langle x', i' \rangle$.

(Writing down all details here again might make it easier to read applications of the definition later on.)

When considering the models of a language $L$, $M$ will be called smooth iff it is $D_L$–smooth; $D_L$ is the default. Obviously, the richer the set $\mathcal{Y}$ is, the stronger the condition $\mathcal{Y}$–smoothness will be.

The proofs of following results can best be found in Schlechta (2004).
The following table summarizes representation by preferential structures.

"Singletons" means that the domain must contain all singletons, "1 copy" or "$\geq 1$ copy" means that the structure may contain only 1 copy for each point, or several, "$(\mu \emptyset)$" etc. for the preferential structure mean that the $\mu$–function of the structure has to satisfy this property.

Note that the following table is one (the more difficult) half of a full representation result for preferential structures. It shows equivalence between certain abstract conditions for model choice functions and certain preferential structures. The other half—equivalence between certain logical rules and certain abstract conditions for model choice functions—are summarized in Definition 3.5 and shown in Proposition 3.7.

3.2. Generalized preferential structures.
3.2.1. Introduction.

DEFINITION 3.11. An IBR is called a generalized preferential structure iff the origins of all arrows are points. We will usually write $x, y$ etc. for points, $\alpha, \beta$ etc. for arrows.

DEFINITION 3.12. Consider a generalized preferential structure $X$.

(1) Level n arrow:
Definition by upward induction.
Table 7. Representation

| $\mu$-function | $\alpha \in \text{Pref.Structure}$ | Logic |
|-----------------|-----------------|-------|
| $\mu \subseteq + (\mu PR)$ | $\Rightarrow$ | $(LLE) + (RW) + (SC) + (PR)$ |
| $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ |
| $\Rightarrow$ | $\Rightarrow$ | any "normal" characterisation of any size |
| $\Rightarrow$ | $\Rightarrow$ | using "small" exception sets |

**Table 7. Representation**

| $\mu$-function | $\alpha \in \text{Pref.Structure}$ | Logic |
|-----------------|-----------------|-------|
| $\mu \subseteq + (\mu PR)$ | $\Rightarrow$ | $(LLE) + (RW) + (SC) + (PR)$ |
| $\Rightarrow$ | $\Rightarrow$ | $(LLE) + (RW) + (SC) + (PR)$ |
| $\Rightarrow$ | $\Rightarrow$ | using "small" exception sets |
| $\Rightarrow$ | $\Rightarrow$ | using "small" exception sets |
| $\Rightarrow$ | $\Rightarrow$ | using "small" exception sets |
| $\Rightarrow$ | $\Rightarrow$ | using "small" exception sets |

**Table 7. Representation**

| $\mu$-function | $\alpha \in \text{Pref.Structure}$ | Logic |
|-----------------|-----------------|-------|
| $\mu \subseteq + (\mu PR)$ | $\Rightarrow$ | $(LLE) + (RW) + (SC) + (PR)$ |
| $\Rightarrow$ | $\Rightarrow$ | $(LLE) + (RW) + (SC) + (PR)$ |
| $\Rightarrow$ | $\Rightarrow$ | using "small" exception sets |
| $\Rightarrow$ | $\Rightarrow$ | using "small" exception sets |
| $\Rightarrow$ | $\Rightarrow$ | using "small" exception sets |
| $\Rightarrow$ | $\Rightarrow$ | using "small" exception sets |

In preferential structures, an exception set is a nonempty set of elements $\alpha \subseteq \alpha$, where each $\alpha$ is a level $n$ arrow. We consider here only structures of some arbitrary but finite level $n$. If $\alpha \in \text{Pref.Structure}$, then $\alpha$ is a level $n$ structure.

COMMENT 3.18. A counterargument to $\alpha$ is NOT an argument for $\neg \alpha$ (this is asking for too much), but just showing one case where $\neg \alpha$ holds. In preferential structures, an exception set is a nonempty set of elements $\alpha \subseteq \alpha$, where each $\alpha$ is a level $n$ arrow. We consider here only structures of some arbitrary but finite level $n$. If $\alpha \in \text{Pref.Structure}$, then $\alpha$ is a level $n$ structure.

If $\alpha_1 \Rightarrow \alpha_2$, $\alpha_3 \Rightarrow \alpha_4$, then $\alpha_1 \Rightarrow \alpha_4$. Thus, for example, if $\alpha_1 \Rightarrow \alpha_2$, then $\alpha_1 \Rightarrow \alpha_3$. If $\alpha_1 \Rightarrow \alpha_2$, then $\alpha_1 \Rightarrow \alpha_3$.
argument for $\alpha$ is a set of level 1 arrows, eliminating $\neg\alpha$-models. A counterargument is one level 2 arrow, attacking one such level 1 arrow.

Of course, when we have copies, we may need many successful attacks, on all copies, to achieve the goal. As we may have copies of level 1 arrows, we may need many level 2 arrows to destroy them all.

We will not consider here diagrams with arbitrarily high levels. One reason is that diagrams like the following will have an unclear meaning:

**EXAMPLE 3.14.** $\langle \alpha, 1 \rangle : x \to y,$
$\langle \alpha, n + 1 \rangle : x \to \langle \alpha, n \rangle \ (n \in \omega).$

Is $y \in \mu(X)$?

**DEFINITION 3.15.** Let $X$ be a generalized preferential structure of (finite) level $n$.
We define (by downward induction):

(1) **Valid $X \to Y$ arrow**: 
Let $X, Y \subseteq P(\mathcal{X})$.

$\alpha \in \mathcal{A}(\mathcal{X})$ is a valid $X \to Y$ arrow iff

(1.1) $O(\alpha) \subseteq X, D(\alpha) \subseteq Y$,
(1.2) $\forall \beta : x' \to a.(x' \in X \Rightarrow \exists y : x'' \to \beta.(\gamma \text{ is a valid } X \to Y \text{ arrow})).$

We will also say that $\alpha$ is a valid arrow in $X$, or just valid in $X$, iff $\alpha$ is a valid $X \to X$ arrow.

(2) **Valid $Y \Rightarrow X$ arrow**: 
Let $X \subseteq Y \subseteq P(\mathcal{X})$.

$\alpha \in \mathcal{A}(\mathcal{X})$ is a valid $X \Rightarrow Y$ arrow iff

(2.1) $o(\alpha) \subseteq X, O(\alpha) \subseteq Y$, $D(\alpha) \subseteq Y$,
(2.2) $\forall \beta : x' \to a.(x' \in Y \Rightarrow \exists y : x'' \to \beta.(\gamma \text{ is a valid } X \Rightarrow Y \text{ arrow})).$

(Note that in particular $o(\gamma) \in X$, and that $o(\beta)$ need not be in $X$, but can be in the bigger $Y$.)

**EXAMPLE 3.16.** (1) Consider the arrow $\beta := \langle \beta', l' \rangle$ in Figure 6. $D(\beta) = \{(x, i)\}$, $O(\beta) = \{(z', m'), (y, j)\}$, and the only arrow attacking $\beta$ originates outside $X$, so $\beta$ is a valid $X \to Y \mu(X)$ arrow.

(2) Consider the arrows $\langle \alpha', k' \rangle$ and $\langle y', n' \rangle$ in Figure 7. Both are valid $\mu(X) \Rightarrow X$ arrows.

**FACT 3.17.** (1) If $\alpha$ is a valid $X \Rightarrow Y$ arrow, then $\alpha$ is a valid $Y \to Y$ arrow.

(2) If $X \subseteq X' \subseteq Y' \subseteq Y \subseteq P(\mathcal{X})$ and $\alpha \in \mathcal{A}(\mathcal{X})$ is a valid $X \Rightarrow Y$ arrow, and $O(\alpha) \subseteq Y'$, $D(\alpha) \subseteq Y'$, then $\alpha$ is a valid $X' \Rightarrow Y'$ arrow.

Proof. Let $\alpha$ be a valid $X \Rightarrow Y$ arrow. We show (1) and (2) together by downward induction (both are trivial).

By prerequisite $o(\alpha) \subseteq X \subseteq X'$, $O(\alpha) \subseteq Y' \subseteq Y$, $D(\alpha) \subseteq Y' \subseteq Y$.

Case 1: $\lambda(\alpha) = n$. So $\alpha$ is a valid $X' \Rightarrow Y'$ arrow, and a valid $Y \to Y$ arrow.

Case 2: $\lambda(\alpha) = n - 1$. So there is no $\beta : x' \to a, y \in Y$, so $\alpha$ is a valid $Y \to Y$ arrow. By $Y' \subseteq Y \alpha$ is a valid $X' \Rightarrow Y'$ arrow.

Case 3: Let the result be shown down to $m, n > m > 1$, let $\lambda(\alpha) = m - 1$. So $\forall \beta : x' \to a.(x' \in Y \Rightarrow \exists y : x'' \to \beta(x'' \in X$ and $y$ is a valid $X \Rightarrow Y$ arrow)). By induction hypothesis $\gamma$ is a valid $Y \to Y$ arrow, and a valid $X' \Rightarrow Y'$ arrow. So $\alpha$ is a valid $Y \to Y$ arrow, and by $Y' \subseteq Y$, $\alpha$ is a valid $X' \Rightarrow Y'$ arrow. □
DEFINITION 3.18. Let $\mathcal{X}$ be a generalized preferential structure of level $n$, $X \subseteq P(\mathcal{X})$. $\mu(X) := \{x \in X : \exists(i, x) \cdot \neg\exists(i, x)\}$. 

COMMENT 3.19. The purpose of smoothness is to guarantee cumulativity. Smoothness achieves Cumulativity by mirroring all information present in $X$ also in $\mu(X)$. Closer inspection shows that smoothness does more than necessary. This is visible when there are copies (or, equivalently, noninjective labelling functions). Suppose we have two copies of $x \in X$, $(x, i)$ and $(x, i')$, and there is $y \in X$, $\alpha : (y, j) \rightarrow (x, i)$, but there is no $\alpha' : (y', j') \rightarrow (x, i')$, $y' \in X$. Then $\alpha : (y, j) \rightarrow (x, i)$ is irrelevant, as $x \in \mu(X)$ anyhow. So mirroring $\alpha : (y, j) \rightarrow (x, i)$ in $\mu(X)$ is not necessary, that is, it is not necessary to have some $\alpha' : (y', j') \rightarrow (x, i)$, $y' \in \mu(X)$.

On the other hand, Example 3.25 shows that, if we want smooth structures to correspond to the property $(\muCUM)$, we need at least some valid arrows from $\mu(X)$ also for higher level arrows. This “some” is made precise (essentially) in Definition 3.20.
From a more philosophical point of view, when we see the (inverted) arrows of preferential structures as attacks on nonminimal elements, then we should see smooth structures as always having attacks also from valid (minimal) elements. So, in general structures, also attacks from nonvalid elements are valid; in smooth structures we always also have attacks from valid elements.

The analogue to usual smooth structures, on level 2, is then that any successfully attacked level 1 arrow is also attacked from a minimal point.

**Definition 3.20.** Let $\mathcal{X}$ be a generalized preferential structure.

1. $X \subseteq X'$ if
2. $\forall x \in X' - X \forall (x, i) \exists \alpha : x' \rightarrow \langle x, i \rangle (\alpha$ is a valid $X \Rightarrow X'$ arrow),
3. $\forall x \in X \exists (x, i)
   (\forall \alpha : x' \rightarrow \langle x, i \rangle (x' \in X') \Rightarrow \exists \beta : x'' \rightarrow \alpha. (\beta$ is a valid $X \Rightarrow X'$ arrow)).

Note that (3) is not simply the negation of (2):

(2) reads now: $\forall x \in X' - X \forall (x, i) \exists \alpha : x' \rightarrow \langle x, i \rangle . x' \in X$

(3) reads: $\forall x \in X \exists (x, i) \exists \alpha : x' \rightarrow \langle x, i \rangle . x' \in X'$

This is intended: intuitively, $X = \mu(X')$, and minimal elements must not be attacked at all, but non-minimals must be attacked from $X$ - which is a modified version of smoothness.

**Remark 3.21.** We note the special case of Definition 3.20 for level 3 structures, as it will be used later. We also write it immediately for the intended case $\mu(X) \subseteq X$, and explicitly with copies.

$x \in \mu(X)$ iff

1. $\exists (x, i) \forall (\alpha, k) : (y, j) \rightarrow \langle x, i \rangle$

   $\exists (\beta', l') : (z', m') \rightarrow \langle \alpha, k \rangle$

   $(z' \in \mu(X) \land \neg \exists (y', n') : (u', p') \rightarrow \langle \beta', l' \rangle . u' \in X))$

See Figure 6.

$x \in X - \mu(X)$ iff

2. $\forall (x, i) \exists (\alpha', k') : (y', j') \rightarrow \langle x, i \rangle$

   $(y' \in \mu(X) \land$

   $(a) \neg \exists (\beta', l') : (z', m') \rightarrow \langle \alpha', k' \rangle . z' \in X$

   or

   $(b) \forall (\beta', l') : (z', m') \rightarrow \langle \alpha', k' \rangle$

   $(z' \in X \Rightarrow \exists (y', n') : (u', p') \rightarrow \langle \beta', l' \rangle . u' \in \mu(X))$)

See Figure 7.

**Fact 3.22.** (1) If $X \subseteq X'$, then $X = \mu(X')$,

(2) $X \subseteq X', X \subseteq X' \subseteq X' \Rightarrow X \subseteq X''$. (This corresponds to $\mu CUM$.)

(3) $X \subseteq X', X \subseteq Y', Y \subseteq Y', Y \subseteq X' \Rightarrow X = Y$. (This corresponds to $\mu \subseteq \Xi$.)

**Proof.**

(1) Trivial by Fact 3.17 (1).

(2)

We have to show

(a) $\forall x \in X'' - X \forall (x, i) \exists \alpha : x' \rightarrow \langle x, i \rangle (\alpha$ is a valid $X \Rightarrow X''$ arrow), and
(b) $\forall x \in X \exists (x, i) (\forall a : x' \rightarrow (x, i) (x' \in X'' \Rightarrow \exists \beta : x'' \rightarrow a. (\beta \text{ is a valid } X \Rightarrow X'' \text{ arrow})))$.

Both follow from the corresponding condition for $X \Rightarrow X'$, the restriction of the universal quantifier, and Fact 3.17 (2).

(3)

Let $x \in X - Y$.

(a) By $x \in X \subseteq X', \exists (x, i)$ s.t. $(\forall a : x' \rightarrow (x, i) (x' \in X' \Rightarrow \exists \beta : x'' \rightarrow a. (\beta \text{ is a valid } X \Rightarrow X' \text{ arrow})))$.

(b) By $x \not\in Y \subseteq \exists \alpha : x' \rightarrow (x, i) \alpha$ is a valid $Y \Rightarrow Y'$ arrow, in particular $x' \in Y \subseteq X'$.

Moreover, $\lambda(\alpha) = 1$.

So by (a) $\exists \beta : x'' \rightarrow \alpha. (\beta \text{ is a valid } X \Rightarrow X' \text{ arrow})$, in particular $x'' \in X \subseteq Y'$, moreover $\lambda(\beta) = 2$.

It follows by induction from the definition of valid $A \Rightarrow B$ arrows that

1. $\forall n \exists \alpha_{n+1}, \lambda(\alpha_{n+1}) = m + 1, \alpha_{n+1}$ a valid $Y \Rightarrow Y'$ arrow and
2. $\forall n \exists \beta_{n+2}, \lambda(\beta_{n+2}) = m + 2, \beta_{n+2}$ a valid $X \Rightarrow X'$ arrow,

which is impossible, as $X$ is a structure of finite level.

**Definition 3.23.** Let $X$ be a generalized preferential structure, $X \subseteq P(X)$. $X$ is called totally smooth for $X$ iff

1. $\forall \alpha : x \rightarrow y \in A(X) (O(\alpha) \cup D(\alpha) \subseteq X \Rightarrow \exists x' : y, x' \in \mu(X))$
2. If $\alpha$ is valid, then there must also exist such $\alpha'$ which is valid.

(y a point or an arrow).

If $Y \subseteq P(X)$, then $X$ is called $Y$—totally smooth

iff for all $x \in Y X$ is totally smooth for $X$.

**Example 3.24.** $X := \{a : a \rightarrow b, a' : b \rightarrow c, a'' : a \rightarrow c, \beta : b \rightarrow a'\}$ is not totally smooth,

$X := \{a : a \rightarrow b, a' : b \rightarrow c, a'' : a \rightarrow c, \beta : b \rightarrow a', \beta' : a \rightarrow a'\}$ is totally smooth.

**Example 3.25.** Consider $a' : a \rightarrow b, a'' : b \rightarrow c, a : a \rightarrow c, \beta : a \rightarrow a$. Then $\mu(\{a, b, c\}) = \{a\}, \mu(\{a, c\}) = \{a, c\}$. Thus, $(\mu CUM)$ does not hold in this structure. Note that there is no valid arrow from $\mu(\{a, b, c\})$ to $c$.

**Definition 3.26.** Let $X$ be a generalized preferential structure, $X \subseteq P(X)$. $X$ is called essentially smooth for $X$ iff $\mu(X) \subseteq X$.

If $Y \subseteq P(X)$, then $X$ is called $Y$—essentially smooth

iff for all $x \in Y \mu(X) \subseteq X$.

**Example 3.27.** It is easy to see that we can distinguish total and essential smoothness in richer structures, as the following Example shows:

We add an accessibility relation $R$, and consider only those models which are accessible.

Let for example, $a \rightarrow b \rightarrow \{c, 0\}, \{c, 1\}$, without transitivity. Thus, only $c$ has two copies. This structure is essentially smooth, but of course not totally so.

Let now $mRa, mRb, mR(c, 0), mR(c, 1), m'Ra, m'Rb, m'R(c, 0)$.

Thus, seen from $m$, $\mu(\{a, b, c\}) = \{a, c\}$, but seen from $m'$, $\mu(\{a, b, c\}) = \{a\}$, but $\mu(\{a, c\}) = \{a, c\}$, contradicting (CUM).

**3.2.2. Result on not necessarily smooth structures.**

**Example 3.28.** We show here $(\mu \subseteq)+(\mu \subseteq\overline{\mu} CUM)+(\mu Rat M)+((\overline{\cdot}) \Leftrightarrow \mu P R)$.

Let $U := \{a, b, c\}$. Let $Y = P(U)$. So $(\overline{\cdot})$ is trivially satisfied. Set $f(X) := X$ for all $X \subseteq U$ except for $f(\{a, b\}) = \{b\}$. Obviously, this cannot be represented by a preferential
structure and \((\mu PR)\) is false for \(U\) and \([a, b]\). But it satisfies \((\mu \subseteq)\), \((\mu CUM)\), \((\mu \text{RatM})\).

\((\mu \subseteq)\) is trivial. \((\mu CUM)\) : Let \(f(X) \subseteq Y \subseteq X\). If \(f(X) = X\), we are done. Consider \(f([a, b]) = \{b\}\). If \([b] \subseteq Y \subseteq [a, b]\), then \(f(Y) = \{b\}\), so we are done again. It is shown in Fact 3.6, (8) that \((\mu \subseteq)\) follows. \((\mu \text{RatM})\) : Suppose \(X \subseteq Y\), \(X \cap f(Y) \neq \emptyset\), we have to show \(f(X) \subseteq f(Y) \cap X\). If \(f(Y) = Y\), the result holds by \(X \subseteq Y\), so it does if \(X = Y\). The only remaining case is \(Y = [a, b]\), \(X = \{b\}\), and the result holds again. \(\square\)

The idea to solve the representation problem illustrated by Example 3.28 is to use the points \(c\) and \(d\) as bases for counterarguments against \(a : b \rightarrow a\)—as is possible in IBRS. We do this now. We will obtain a representation for logics weaker than \(P\) by generalized preferential structures.

We will now prove a representation theorem, but will make it more general than for preferential structures only. For this purpose, we will introduce some definitions first.

**Definition 3.29.** Let \(\eta, \rho : \mathcal{Y} \rightarrow \mathcal{P}(U)\).

1. If \(X\) is a simple structure: \(X\) is called an attacking structure relative to \(\eta\) representing \(\rho\) iff

   \[
   \rho(X) = \{x \in \eta(X) : \text{there is no valid } X - \to - \eta(X) \text{ arrow } a : x' \to x\} \tag{1}
   \]

   for all \(X \in \mathcal{Y}\).

2. If \(X\) is a structure with copies: \(X\) is called an attacking structure relative to \(\eta\) representing \(\rho\) iff

   \[
   \rho(X) = \{x \in \eta(X) : \text{there is } \langle x, i \rangle \text{ and no valid } X - \to - \eta(X) \text{ arrow } a : \langle x', i' \rangle \rightarrow \langle x, i \rangle\} \tag{2}
   \]

   for all \(X \in \mathcal{Y}\).

   Obviously, in those cases \(\rho(X) \subseteq \eta(X)\) for all \(X \in \mathcal{Y}\).

   Thus, \(X\) is a preferential structure iff \(\eta\) is the identity.

   See Figure 8.

(Nota that it does not seem very useful to generalize the notion of smoothness from preferential structures to general attacking structures, as, in the general case, the minimizing set \(X\) and the result \(\rho(X)\) may be disjoint.)

The following result is the first positive representation result of this paper, and shows that we can obtain (almost) anything with level 2 structures.

**Proposition 3.30.** Let \(\eta, \rho : \mathcal{Y} \rightarrow \mathcal{P}(U)\). Then there is an attacking level 2 structure relative to \(\eta\) representing \(\rho\) iff

1. \(\rho(X) \subseteq \eta(X)\) for all \(X \in \mathcal{Y}\),
2. \(\rho(\emptyset) = \eta(\emptyset)\) if \(\emptyset \in \mathcal{Y}\).

---

---

**Fig. 8.** Attacking structure.
(2) is, of course, void for preferential structures.

Proof. (A) The construction
We make a two stage construction.

(A.1) Stage 1.
In Stage 1, consider (almost as usual)
\[ U := \langle X, \{a_i : i \in I\} \rangle \]
where
\[ X := \{ \langle x, f \rangle : x \in U, f \in \Pi \{ X \in \mathcal{Y} : x \in \eta(X) - \rho(X) \} \} \]
and
\[ a : x' \rightarrow (x, f) : \iff x' \in \text{ran}(f). \]
Attention: \( x' \in X \), not \( x' \in \rho(X) \)!

(A.2) Stage 2.
Let \( \mathcal{X}' \) be the set of all \( \langle x, f, X \rangle \) s.t. \( \langle x, f \rangle \in \mathcal{X} \) and
(a) either \( X \) is some dummy value, say \( \ast \)
or
(b) all of the following \( 1 \) - \( 4 \) hold:
(1) \( X \in \mathcal{Y} \),
(2) \( x \in \rho(X) \),
(3) there is \( X' \subseteq X, x \in \eta(X') - \rho(X'), X' \in \mathcal{Y} \), (thus \( \text{ran}(f) \cap X \neq \emptyset \) by definition),
(4) \( \forall X'' \in \mathcal{Y}, (X \subseteq X'', x \in \eta(X'') - \rho(X'') \Rightarrow (\text{ran}(f) \cap X'') - X \neq \emptyset) \).
(Thus, \( f \) chooses in (4) for \( X'' \) also outside \( X \). If there is no such \( X'' \), (4) is void, and only \( 1 \) - \( 3 \) need to hold, that is, we may take any \( f \) with \( \langle x, f \rangle \in \mathcal{X} \).

See Figure 9.

Note: If \( 1 \) - \( 3 \) are satisfied for \( x \) and \( X \), then we will find \( f \) s.t. \( \langle x, f \rangle \in \mathcal{X} \), and \( \langle x, f, X \rangle \) satisfies \( 1 \) - \( 4 \) : As \( X \subset X'' \) for \( X'' \) as in (4), we find \( f \) which chooses for such \( X'' \) outside of \( X \).

So for any \( \langle x, f \rangle \in \mathcal{X} \), there is \( \langle x, f, \ast \rangle \), and maybe also some \( \langle x, f, X \rangle \) in \( \mathcal{X}' \).
Let again for any \( x', \langle x, f, X \rangle \in \mathcal{X}' \)
\[ a : x' \rightarrow (x, f, X) \iff x' \in \text{ran}(f) \]

(A.3) Adding arrows.
Consider \( x' \) and \( \langle x, f, X \rangle \).
If \( X = \ast \), or \( x' \notin X \), we do nothing, that is, leave a simple arrow \( a : x' \rightarrow (x, f, X) \iff x' \in \text{ran}(f) \).

For simplicity, \( \eta(X) = X \) here.

![Diagram](image.png)

**The Complicated case**

Fig. 9. The complicated case.
If \( X \in \mathcal{Y} \), and \( x' \in X \), and \( x' \in \text{ran}(f) \), we make \( X \) many copies of the attacking arrow and have then: \( \langle a, x'' \rangle: x' \to \langle x, f, X \rangle \) for all \( x'' \in X \).

In addition, we add attacks on the \( \langle a, x'' \rangle: \langle \beta, x'' \rangle: x'' \to \langle a, x'' \rangle \) for all \( x'' \in X \).

The full structure \( Z \) is thus:

\( \mathcal{X}' \) is the set of elements.

If \( x' \in \text{ran}(f) \), and \( X = * \) or \( x' \notin X \) then \( a: x' \to \langle x, f, X \rangle \)

if \( x' \in \text{ran}(f) \), and \( X \neq * \) and \( x' \in X \) then

(a) \( \langle a, x'' \rangle: x' \to \langle x, f, X \rangle \) for all \( x'' \in X \),

(b) \( \langle \beta, x'' \rangle: x'' \to \langle a, x'' \rangle \) for all \( x'' \in X \).

See Figure 10.

(B) Representation

We have to show that this structure represents \( \rho \) relative to \( \eta \).

Let \( y \in \eta(Y) \), \( Y \in \mathcal{Y} \).

Case 1. \( y \in \rho(Y) \).

We have to show that there is \( \langle y, g, Y'' \rangle \) s.t. there is no valid \( a: y' \to \langle y, g, Y''' \rangle \), \( y' \in Y \).

In Case 1.1 below, \( Y'' \) will be \( * \), in Case 1.2, \( Y'' \) will be \( Y, g \) will be chosen suitably.

Case 1.1. There is no \( Y' \subseteq Y, y \in \eta(Y') - \rho(Y') \), \( Y' \in \mathcal{Y} \).

So for all \( Y' \) with \( y \in \eta(Y') - \rho(Y') \), \( Y' \neq \emptyset \). Let \( g \in \Pi \{ Y' - Y : y \in \eta(Y') - \rho(Y') \} \).

Then \( \text{ran}(g) \cap Y = \emptyset \), and \( (y, g, *) \) is not attacked from \( Y \). ((y, g) was already not attacked in \( \mathcal{X} \).)

Case 1.2. There is \( Y' \subseteq Y, y \in \eta(Y') - \rho(Y') \), \( Y' \in \mathcal{Y} \).

Let now \( \langle y, g, Y \rangle \in \mathcal{X}' \), s.t. \( g(Y'') \neq Y \) if \( Y' \subseteq Y'', y \in \eta(Y'') - \rho(Y''), Y'' \in \mathcal{Y} \). As noted above, such \( g \) and thus \( (y, y, Y) \) exist. Fix \( (y, g, Y) \).

Consider any \( y' \in \text{ran}(g) \). If \( y' \notin Y \), \( y' \) does not attack \( \langle y, g, Y \rangle \) in \( Y \). Suppose \( y' \in Y \).

We had made \( Y \) many copies \( \langle a, x'' \rangle, y'' \in Y \) with \( \langle a, x'' \rangle: y' \to \langle y, g, Y \rangle \) and had added the level 2 arrows \( \langle \beta, y'' \rangle: y'' \to \langle a, y'' \rangle \) for \( y'' \in Y \). So all copies \( \langle a, y'' \rangle \) are destroyed in \( Y \). This was done for all \( y' \in Y \), \( y' \in \text{ran}(g) \), so \( (y, g, Y) \) is now not (validly) attacked in \( Y \) any more.

Case 2. \( y \in \eta(Y) - \rho(Y) \).

Let \( \langle y, g, Y' \rangle \) (where \( Y' \) can be \( * \)) be any copy of \( y \), we have to show that there is \( z \in Y, a: z \to \langle y, g, Y' \rangle \), or some \( \langle a, z' \rangle: z \to \langle y, g, Y' \rangle \), \( z' \in Y' \), which is not destroyed by some level 2 arrow \( \langle \beta, z' \rangle: z' \to \langle a, z' \rangle \), \( z' \in Y \).

As \( y \in \eta(Y) - \rho(Y), \text{ran}(g) \cap Y \neq \emptyset \), so there is \( z \in \text{ran}(g) \cap Y \). Fix such \( z \). (We will modify the choice of \( z \) only in Case 2.2.2 below.)

Case 2.1. \( Y' = * \).

\( \alpha \) : \( \rho(X) \)

(\( \beta, x'' \))

(\( a, x'' \))

(\( y(x) \))

\( \mathcal{X} \)

\( \mathcal{Y} \)

\( \eta(X) \)

\( \text{ran}(f) \)

\( \rho(X) \)

\( \text{ran}(g) \)

\( (s, f, X) \)

Fig. 10. Attacking structure.
As \( z \in \text{ran}(g) \), \( \alpha : z \rightarrow (y, g, *) \). (There were no level 2 arrows introduced for this copy.)

Case 2.2. \( Y' \neq * \).

So \( (y, g, Y') \) satisfies the conditions (1) – (4) of (b) at the beginning of the proof.

If \( z \notin Y' \), we are done, as \( \alpha : z \rightarrow (y, g, Y') \), and there were no level 2 arrows introduced in this case. If \( z \in Y' \), we had made \( Y' \) many copies \( \langle a, z' \rangle, \langle a, z' \rangle : z \rightarrow (y, g, Y') \), one for each \( z' \in Y' \). Each \( \langle a, z' \rangle \) was destroyed by \( \langle \beta, z' \rangle : z' \rightarrow \langle a, z' \rangle, z' \in Y' \).

Case 2.2.1. \( Y' \notin Y \).

Let \( z'' \in Y' - Y \), then \( \langle a, z'' \rangle : z \rightarrow (y, g, Y') \) is destroyed only by \( \langle \beta, z'' \rangle : z'' \rightarrow \langle a, z'' \rangle \) in \( Y' \), but not in \( Y \), as \( z'' \notin Y \), so \( (y, g, Y') \) is attacked by \( \langle a, z'' \rangle : z \rightarrow (y, g, Y') \), valid in \( Y \).

Case 2.2.2. \( Y' \subseteq Y \) (\( Y = Y' \) is impossible, as \( y \in \rho(Y') \), \( y \notin \rho(Y) \)).

Then there was by definition (condition (b) (4)) some \( z' \in (\text{ran}(g) \cap Y) - Y' \) and \( \alpha : z' \rightarrow (y, g, Y') \) is valid, as \( z' \notin Y' \). (In this case, there are no copies of \( \alpha \) and no level 2 arrows.)

**Corollary 3.31.** (1) We cannot distinguish general structures of level 2 from those of higher levels by their \( \rho \)-functions relative to \( \eta \).

(2) Let \( U \) be the universe, \( \mathcal{Y} \subseteq \mathcal{P}(U) \), \( \mu : \mathcal{Y} \rightarrow \mathcal{P}(U) \). Then any \( \mu \) satisfying (\( \mu \subseteq \)) can be represented by a level 2 preferential structure. (Choose \( \eta = \text{identity} \).)

Again, we cannot distinguish general structures of level 2 from those of higher levels by their \( \mu \)-functions. \( \square \)

A remark on the function \( \eta \):

We can also obtain the function \( \eta \) via arrows. Of course, then we need positive arrows (not only negative arrows against negative arrows, as we first need to have something positive).

If \( \eta \) is the identity, we can make a positive arrow from each point to itself. Otherwise, we can connect every point to every point by a positive arrow, and then choose those we really want in \( \eta \) by a choice function obtained from arrows just as we obtained \( \rho \) from arrows.

3.2.3. Results on total smoothness.

**Fact 3.32.** Let \( X, Y \in \mathcal{Y}, \mathcal{X} \) a level \( n \) structure. Let \( \langle a, k \rangle : (x, i) \rightarrow (y, j) \), where \( (y, j) \) may itself be (a copy of) an arrow.

(1) Let \( n > 1 \), \( X \subseteq Y, \langle a, k \rangle \in X \) a level \( n - 1 \) arrow in \( \mathcal{X}[X] \). If \( \langle a, k \rangle \) is valid in \( \mathcal{X}[Y] \), then it is valid in \( \mathcal{X}[X] \).

(2) Let \( \mathcal{X} \) be totally smooth, \( \mu(X) \subseteq Y, \mu(Y) \subseteq X, \langle a, k \rangle \in \mathcal{X}[X \cap Y] \), then \( \langle a, k \rangle \) is valid in \( \mathcal{X}[X] \) iff it is valid in \( \mathcal{X}[Y] \).

Note that we will also sometimes write \( X \) for \( \mathcal{X}[X] \), when the context is clear.

**Proof.**

(1) If \( \langle a, k \rangle \) is not valid in \( \mathcal{X}[X] \), then there must be a level \( n \) arrow \( \langle \beta, r \rangle : (z, s) \rightarrow \langle a, k \rangle \) in \( \mathcal{X}[X \subseteq \mathcal{X}[Y] \). \( \langle \beta, r \rangle \) must be valid in \( \mathcal{X}[X] \) and \( \mathcal{X}[Y] \), as there are no level \( n + 1 \) arrows. So \( \langle a, k \rangle \) is not valid in \( \mathcal{X}[Y] \), contradiction.

(2) By downward induction. Case \( n : \langle a, k \rangle \in \mathcal{X}[X \cap Y] \), so it is valid in both as there are no level \( n + 1 \) arrows. Case \( m \rightarrow m - 1 : \) Let \( \langle a, k \rangle \in \mathcal{X}[X \cap Y] \) be a level \( m - 1 \) arrow valid in \( \mathcal{X}[X] \), but not in \( \mathcal{X}[Y] \). So there must be a level
m arrow \langle \beta, r \rangle : \langle z, s \rangle \rightarrow \langle \alpha, k \rangle \text{ valid in } \mathcal{X}[Y]. \text{By total smoothness, we may assume } z \in \mu(Y) \subseteq X, \text{ so } \langle \beta, r \rangle \in \mathcal{X}[X] \text{ is valid by induction hypothesis. So } \langle \alpha, k \rangle \text{ is not valid in } \mathcal{X}[X], \text{ contradiction.} \qedhere

**Corollary 3.33.** Let \( X, Y \in \mathcal{Y}, \mathcal{X} \) a totally smooth level \( n \) structure, \( \mu(X) \subseteq Y, \mu(Y) \subseteq X \). Then \( \mu(X) = \mu(Y) \).

**Proof.** Let \( x \in \mu(X) = \mu(Y) \). Then by \( \mu(X) \subseteq Y, x \in Y \), so there must be for all \( \langle x, i \rangle \in \mathcal{X} \) an arrow \( \langle \alpha, k \rangle : \langle y, j \rangle \rightarrow \langle x, i \rangle \text{ valid in } \mathcal{X}[Y] \), without loss of generality \( y \in \mu(Y) \subseteq X \) by total smoothness. So by Fact 3.32, (2), \( \langle \alpha, k \rangle \) is valid in \( \mathcal{X}[X] \). This holds for all \( \langle x, i \rangle \), so \( x \notin \mu(X) \), contradiction. \( \Box \)

**Fact 3.34.** There are situations satisfying \( (\mu \subseteq \mu C U M) + (\cap) \) which cannot be represented by level 2 totally smooth preferential structures.

The proof is given in the following example.

**Example 3.35.** Let \( Y := \{x, y, y'\}, X := \{x, y\}, X' := \{x, y', y\} \). Let \( \mathcal{Y} := \mathcal{P}(Y) \). Let \( \mu(Y) := \{y, y', y\}, \mu(X) := \mu(X') := \{x\}, \text{ and } \mu(Z) := Z \text{ for all other sets.} \)

Obviously, this satisfies \( (\cap), (\mu \subseteq), \text{ and } (\mu C U M) \).

Suppose \( \mathcal{X} \) is a totally smooth level 2 structure representing \( \mu \).

So \( \mu(X) = \mu(X') \subseteq Y = \mu(Y), \mu(Y) \subseteq Y \cup X' \). Let \( \langle x, i \rangle \) be minimal in \( \mathcal{X}[X] \).

As \( \langle x, i \rangle \) cannot be minimal in \( \mathcal{X}[Y] \), there must be \( \alpha : \langle z, j \rangle \rightarrow \langle x, i \rangle \), valid in \( \mathcal{X}[Y] \).

Case 1: \( z \in X' \).

So \( \alpha \in \mathcal{X}[X'] \). If \( \alpha \) is valid in \( \mathcal{X}[X'] \), there must be \( \alpha' : \langle x', i' \rangle \rightarrow \langle x, i \rangle, x' \in \mu(X') \), valid in \( \mathcal{X}[X'] \), and thus in \( \mathcal{X}[X] \), by \( \mu(X) = \mu(X') \) and Fact 3.32 (2). This is impossible, so there must be \( \beta : \langle x', i' \rangle \rightarrow \alpha, x' \in \mu(X') \), valid in \( \mathcal{X}[X'] \). As \( \beta \) is in \( \mathcal{X}[Y] \) and \( \mathcal{X} \) a level \( \leq 2 \) structure, \( \beta \) is valid in \( \mathcal{X}[Y] \), so \( \alpha \) is not valid in \( \mathcal{X}[Y] \), contradiction.

Case 2: \( z \in X \).

\( \alpha \) cannot be valid in \( \mathcal{X}[X] \), so there must be \( \beta : \langle x', i' \rangle \rightarrow \alpha, x' \in \mu(X) \), valid in \( \mathcal{X}[X] \).

Again, as \( \beta \) is in \( \mathcal{X}[Y] \) and \( \mathcal{X} \) a level \( \leq 2 \) structure, \( \beta \) is valid in \( \mathcal{X}[Y] \), so \( \alpha \) is not valid in \( \mathcal{X}[Y] \), contradiction.

It is unknown to the authors whether an analogue is true for essential smoothness, that is, whether there are examples of such \( \mu \) function which need at least level 3 essentially smooth structures for representation. Proposition 3.41 below shows that such structures suffice, but we do not know whether level 3 is necessary.

**Fact 3.36.** Above Example 3.35 can be solved by a totally smooth level 3 structure:

Let \( \alpha_1 : x \rightarrow y, \alpha_2 : x \rightarrow y', \alpha_3 : y \rightarrow x, \beta_1 : y \rightarrow \alpha_2, \beta_2 : y' \rightarrow \alpha_1, \beta_3 : y \rightarrow \alpha_3, \beta_4 : x \rightarrow \alpha_3, \gamma_1 : y' \rightarrow \beta_3, \gamma_2 : y' \rightarrow \beta_4. \)

See Figure 11

The subfigure generated by \( X \) contains \( \alpha_1, \alpha_3, \beta_3, \beta_4. \alpha_1, \beta_3, \beta_4 \) are valid, so \( \mu(X) = \{x\} \).

The subfigure generated by \( X' \) contains \( \alpha_2, \alpha_2 \) is valid, so \( \mu(X') = \{x\} \).

In the full figure, \( \alpha_3, \beta_1, \beta_2, \gamma_1, \gamma_2 \) are valid, so \( \mu(Y) = \{y, y'\} \).

**Remark 3.37.** Example 3.38 together with Corollary 3.33 show that \( (\mu \subseteq) \) and \( (\mu C U M) \) without \( (\cap) \) do not guarantee representability by a level \( n \) totally smooth structure.
EXAMPLE 3.38. We show here \((\mu \subseteq) + (\mu CUM) \not\Rightarrow (\mu \subseteq \emptyset)\). Consider \(X := \{a, b, c\}\), \(Y := \{a, b, d\}\), \(f(X) := \{a\}\), \(f(Y) := \{a, b\}\), \(\mathcal{Y} := \{X, Y\}\). (If \(f(\{a, b\})\) were defined, we would have \(f(X) = f(\{a, b\}) = f(Y)\), contradiction.)

Obviously, \((\mu \subseteq)\) and \((\mu CUM)\) hold, but not \((\mu \subseteq \emptyset)\).

3.2.4. Results on essential smoothness.

DEFINITION 3.39. Let \(\mu : \mathcal{Y} \rightarrow \mathcal{P}(U)\) and \(\mathcal{X}\) be given, let \(a : \langle y, j \rangle \rightarrow \langle x, i \rangle \in \mathcal{X}\).

Define

\[
O(a) := \{Y \in \mathcal{Y} : x \in Y - \mu(Y), y \in \mu(Y)\},
\]

\[
D(a) := \{X \in \mathcal{Y} : x \in \mu(X), y \in X\},
\]

\[
\Pi(O, a) := \Pi(\mu(Y) : Y \in O(a)),
\]

\[
\Pi(D, a) := \Pi(\mu(X) : X \in D(a)).
\]

LEMMA 3.40. Let \(U\) be the universe, \(\mu : \mathcal{Y} \rightarrow \mathcal{P}(U)\). Let \(\mu\) satisfy \((\mu \subseteq) + (\mu \subseteq \emptyset)\).

Let \(\mathcal{X}\) be a level 1 preferential structure, \(a : \langle y, j \rangle \rightarrow \langle x, i \rangle\), \(O(a) \neq \emptyset\), \(D(a) \neq \emptyset\).

We can modify \(\mathcal{X}\) to a level 3 structure \(\mathcal{X}'\) by introducing level 2 and level 3 arrows s.t. no copy of \(a\) is valid in any \(X \in D(a)\), and in every \(Y \in O(a)\) at least one copy of \(a\) is valid. (More precisely, we should write \(\mathcal{X}'\mid X\) etc.)

Thus, in \(\mathcal{X}'\),

1. \((x, i)\) will not be minimal in any \(Y \in O(a)\),

2. if \(a\) is the only arrow minimizing \((x, i)\) in \(X \in D(a)\), \((x, i)\) will now be minimal in \(X\).

The construction is made independently for all such arrows \(a \in \mathcal{X}\).

(This is probably the main technical result of the paper.)

Proof. (1) The construction

Make \(\Pi(D, a)\) many copies of \(a : \langle a, f \rangle : f \in \Pi(D, a)\), all \(\langle a, f \rangle : \langle y, j \rangle \rightarrow \langle x, i \rangle\).

Note that \(\langle a, f \rangle \in X\) for all \(X \in D(a)\) and \(\langle a, f \rangle \in Y\) for all \(Y \in O(a)\).

Add to the structure \(\langle \beta, f, X_r, g \rangle : \langle f(X_r), i_r \rangle \rightarrow \langle a, f \rangle\), for any \(X_r \in D(a)\), and \(g \in \Pi(O, a)\) (and some or all \(i_r\) - this does not matter).

For all \(Y_s \in O(\alpha)\):

if \(\mu(Y_s) \subseteq X_r\) and \(f(X_r) \in Y_s\), then add to the structure \(\langle \gamma, f, X_r, g, Y_s \rangle : \langle g(Y_s), j_s \rangle \rightarrow \langle \beta, f, X_r, g \rangle\) (again for all or some \(j_s\)).
if $\mu(Y_s) \subseteq X_r$ or $f(X_r) \not\in Y_s$, $\langle \gamma, f, X_r, g, Y_s \rangle$ is not added.

See Figure 12

(2)

Let $X_r \in D(\alpha)$. We have to show that no $\langle a, f \rangle$ is valid in $X_r$. Fix $f$.

$\langle a, f \rangle$ is in $X_r$, so we have to show that for at least one $g \in \Pi(O, a)$ $\langle \beta, f, X_r, g \rangle$ is valid in $X_r$, that is, that for this $g$, no $\langle \gamma, f, X_r, g, Y_s \rangle : (g(Y_s), j_s) \rightarrow \langle \beta, f, X_r, g \rangle$, $Y_s \in O(\alpha)$ attacks $\langle \beta, f, X_r, g \rangle$ in $X_r$.

We define $g$. Take $Y_s \in O(\alpha)$.

Case 1: $\mu(Y_s) \subseteq X_r$ or $f(X_r) \not\in Y_s$: choose arbitrary $g(Y_s) \in \mu(Y_s)$.

Case 2: $\mu(Y_s) \not\subseteq X_r$ and $f(X_r) \in Y_s$: Choose $g(Y_s) \in \mu(Y_s) - X_r$.

In Case 1, $\langle \gamma, f, X_r, g, Y_s \rangle$ does not exist, so it cannot attack $\langle \beta, f, X_r, g \rangle$.

In Case 2, $\langle \gamma, f, X_r, g, Y_s \rangle : (g(Y_s), j_s) \rightarrow \langle \beta, f, X_r, g \rangle$ is not in $X_r$, as $g(Y_s) \not\in X_r$.

Thus, $\langle \gamma, f, X_r, g, Y_s \rangle : (g(Y_s), j_s) \rightarrow \langle \beta, f, X_r, g \rangle$, $Y_s \in O(\alpha)$ attacks $\langle \beta, f, X_r, g \rangle$ in $X_r$.

So $\forall \langle a, f \rangle : \langle y, f \rangle \rightarrow \langle x, i \rangle$

$y \in X_r \Rightarrow \exists \langle \beta, f, X_r, g \rangle : \langle f(X_r), i_r \rangle \rightarrow \langle a, f \rangle$

$\langle f(X_r) \in \mu(X_r) \wedge \exists \langle \gamma, f, X_r, g, Y_s \rangle : (g(Y_s), j_s) \rightarrow \langle \beta, f, X_r, g \rangle, g(Y_s) \in X_r \rangle$.

But $\langle \beta, f, X_r, g \rangle$ was constructed only for $\langle a, f \rangle$, so was $\langle \gamma, f, X_r, g, Y_s \rangle$, and there was no other $\langle \gamma, i \rangle$ attacking $\langle \beta, f, X_r, g \rangle$, so we are done.

(3)

Let $Y_s \in O(\alpha)$. We have to show that at least one $\langle a, f \rangle$ is valid in $Y_s$.

We define $f \in \Pi(D, a)$. Take $X_r$.

If $\mu(X_r) \not\subseteq Y_s$, choose $f(X_r) \in \mu(X_r) - Y_s$. If $\mu(X_r) \subseteq Y_s$, choose arbitrary $f(X_r) \in \mu(X_r)$.

All attacks on $\langle x, f \rangle$ have the form $\langle \beta, f, X_r, g \rangle : \langle f(X_r), i_r \rangle \rightarrow \langle a, f \rangle$, $X_r \in D(\alpha)$, $g \in \Pi(O, a)$. We have to show that they are either not in $Y_s$, or that they are themselves attacked in $Y_s$.

Case 1: $\mu(X_r) \not\subseteq Y_s$. Then $f(X_r) \not\in Y_s$, so $\langle \beta, f, X_r, g \rangle : \langle f(X_r), i_r \rangle \rightarrow \langle a, f \rangle$ is not in $Y_s$ (for no $g$).

![Image](image_url)
Case 2: \( \mu(X_r) \subseteq Y_s \). Then \( \mu(Y_s) \not\subseteq X_r \) by \( (\mu \not\subseteq \Xi) \) and \( f(X_r) \in Y_s \), so \( \langle \beta, f, X_r, g \rangle : \langle f(X_r), i_r \rangle \rightarrow \langle \alpha, f \rangle \) is in \( Y_s \) (for all \( g \)). Take any \( g \in \Pi(O, \alpha) \). As \( \mu(Y_s) \not\subseteq X_r \) and \( f(X_r) \in Y_s \), \( \langle g(Y_s), j_s \rangle \rightarrow \langle \beta, f, X_r, g \rangle \) is defined, and \( g(Y_s) \in \mu(Y_s) \), so it is in \( Y_s \) (for all \( g \)). Thus, \( \langle \beta, f, X_r, g \rangle \) is attacked in \( Y_s \).

Thus, for this \( f \), all \( \langle \beta, f, X_r, g \rangle \) are either not in \( Y_s \), or attacked in \( Y_s \), thus for this \( f \), \( \langle \alpha, f \rangle \) is valid in \( Y_s \).

So for this \( \langle x, i \rangle \)

\[
\exists \langle \alpha, f \rangle : \langle y, j \rangle \rightarrow \langle x, i \rangle, y \in \mu(Y_s) \land \\
(\alpha) \rightarrow \exists \langle \beta, f, X_r, g \rangle : \langle f(X_r), i \rangle \rightarrow \langle \alpha, f \rangle, f(X_r) \in Y_s \\
\text{or} \\
(\beta) \forall \langle \beta, f, X_r, g \rangle : \langle f(X_r), i \rangle \rightarrow \langle \alpha, f \rangle \\
(\beta) f(X_r) \in Y_s \Rightarrow \\
\exists \langle y, f, X_r, g, Y_s \rangle : f(Y_s) = \langle \beta, f, X_r, g \rangle g(Y_s) \in \mu(Y_s)).
\]

As we made copies of \( \alpha \) only, introduced only \( \beta \)'s attacking the \( \alpha \)-copies, and \( \gamma \)'s attacking the \( \beta \)'s, the construction is independent for different \( \alpha \)'s.

**Proposition 3.41.** Let \( U \) be the universe, \( \mu : \mathcal{Y} \rightarrow \mathcal{P}(U) \). Then any \( \mu \) satisfying \((\mu \not\subseteq \), \( (\neg) \), \( (\mu \not\subseteq \Xi) \) (or, alternatively, \( (\mu \subseteq \not\subseteq) \) can be represented by a level 3 essentially smooth structure.

**Proof.** In Stage 1, consider as usual \( \mathcal{U} := \langle \mathcal{X}, \{a_i : i \in I\} \rangle \) where \( \mathcal{X} := \{\langle x, f \rangle : x \in U, f \in \Pi(\mu(X)) \} \) where \( \mathcal{Y} \subset \mathcal{X} \), and set \( \alpha : \langle x', f' \rangle \rightarrow \langle x, f \rangle \iff x' \in ran(f) \).

For Stage 2:

Any level 1 arrow \( \alpha : \langle y, j \rangle \rightarrow \langle x, i \rangle \) was introduced in Stage 1 by some \( Y \in \mathcal{Y} \) s.t. \( y \in \mu(Y) \), \( x \in Y - \mu(Y) \). Do the construction of Lemma 3.40 for all level 1 arrows of \( \mathcal{X} \) in parallel or successively.

We have to show that the resulting structure represents \( \mu \) and is essentially smooth. (Level 3 is obvious.)

(1) Representation

Suppose \( x \in Y - \mu(Y) \). Then there was in stage 1 for all \( \langle x, i \rangle \) some \( \alpha : \langle y, j \rangle \rightarrow \langle x, i \rangle, y \in \mu(Y) \). We examine the \( y \).

If there is no \( X \) s.t. \( x \in \mu(X) \), \( y \in X \), then there were no \( \beta \)'s and \( \gamma \)'s introduced for this \( \alpha : \langle y, j \rangle \rightarrow \langle x, i \rangle \), so \( \alpha \) is valid.

If there is \( X \) s.t. \( x \in \mu(X) \), \( y \in X \), consider \( \alpha : \langle y, j \rangle \rightarrow \langle x, i \rangle \). So \( X \in D(\alpha), Y \in O(\alpha) \), so we did the construction of Lemma 3.40, and by its result, \( \langle x, i \rangle \) is not minimal in \( Y \).

Thus, in both cases, \( \langle x, i \rangle \) is successfully attacked in \( Y \), and no \( \langle x, i \rangle \) is a minimal element in \( Y \).

Suppose \( x \in \mu(X) \) (we change notation to conform to Lemma 3.40). Fix \( \langle x, i \rangle \).

If there is no \( \alpha : \langle y, j \rangle \rightarrow \langle x, i \rangle, y \in X \), then \( \langle x, i \rangle \) is minimal in \( X \), and we are done.

If there is \( \alpha \) or \( \langle \alpha, k \rangle : \langle y, j \rangle \rightarrow \langle x, i \rangle, y \in X \), then \( \alpha \) originated from Stage 1 through some \( Y \) s.t. \( x \in Y - \mu(Y) \), and \( y \in \mu(Y) \). (Note that Stage 2 of the construction did not introduce any new level 1 arrows—only copies of existing level 1 arrows.) So \( X \in D(\alpha), Y \in O(\alpha) \), so we did the construction of Lemma 3.40, and by its result, \( \langle x, i \rangle \) is minimal in \( X \), and we are done again.

In both cases, all \( \langle x, i \rangle \) are minimal elements in \( X \).

(2) Essential smoothness. We have to show the conditions of Definition 3.20. We will, however, work with the reformulation given in Remark 3.21.

Case (1), \( x \in \mu(X) \).
Case (1.1), there is \( \langle x, i \rangle \) with no \( \langle a, f \rangle : \langle y, j \rangle \rightarrow \langle x, i \rangle, y \in X \). There is nothing to show.

Case (1.2), for all \( \langle x, i \rangle \) there is \( \langle a, f \rangle : \langle y, j \rangle \rightarrow \langle x, i \rangle, y \in X \).

\( a \) was introduced in stage 1 by some \( Y \) s.t. \( x \in Y \rightarrow \mu (Y) \), \( y \in X \cap \mu (Y) \), so \( X \in D(a) \), \( Y \in O(a) \). In the proof of Lemma 3.40, at the end of (2), it was shown that

\[
\exists \beta, f, X_r, g : (f(X_r), i_r) \rightarrow \langle a, f \rangle
\]

\[
(f(X_r)) \in \mu(X_r) \land
\neg \exists (y, f, X_r, g, Y_s) : \langle g(Y_s), j_s \rangle \rightarrow (\beta, f, X_r, g).g(Y_s) \in X_r).
\]

By \( f(X_r) \in \mu(X_r) \), condition (1) of Remark 3.21 is true.

Case (2), \( x \not\in \mu(Y) \). Fix \( \langle x, i \rangle \). (We change notation back to \( Y \).)

In Stage 1, we constructed \( \alpha : \langle y, j \rangle \rightarrow \langle x, i \rangle, y \in \mu(Y) \), so \( Y \in O(a) \).

If \( D(a) = \emptyset \), then there is no attack on \( a \), and the condition (2) of Remark 3.21 is trivially true.

If \( D(a) \neq \emptyset \), we did the construction of Lemma 3.40, so

\[
\exists (\alpha, f) : \langle y, j \rangle \rightarrow \langle x, i \rangle, y \in \mu(Y_s) \land
\]

\[
(a) \neg \exists (\beta, f, X_r, g) : \langle f(X_r), i_l \rangle \rightarrow (\alpha, f).f(X_r) \in Y_s
\]

or

\[
(b) \forall (\beta, f, X_r, g) : \langle f(X_r), i_l \rangle \rightarrow (\alpha, f)
\]

\[
(f(X_r)) \in Y_s \Rightarrow
\]

\[
\exists (y, f, X_r, g, Y_s) : \langle g(Y_s), j_s \rangle \rightarrow (\beta, f, X_r, g).g(Y_s) \in \mu(Y_s).
\]

As the only attacks on \( \langle a, f \rangle \) had the form \( \langle \beta, f, X_r, g \rangle \), and \( g(Y_s) \in \mu(Y_s) \), condition (2) of Remark 3.21 is satisfied. \( \square \)

As said after Example 3.35, we do not know if level 3 is necessary for representation. We also do not know whether the same can be achieved with level 3, or higher, totally smooth structures.

3.2.5. Translation to logics. We turn to the translation to logics.

PROPOSITION 3.42. Let \( \vdash \) be a logic for \( L \). Set \( T^M := Th(\mu_M(M(T))) \), where \( M \) is a generalized preferential structure, and \( \mu_M \) its choice function. Then

1. there is a level 2 preferential structure \( M \) s.t. \( \overline{T} = T^M \) iff \( (LLE), (CCL), (SC) \) hold for all \( T, T' \subseteq L \).

2. there is a level 3 essentially smooth preferential structure \( M \) s.t. \( \overline{T} = T^M \) iff \( (LLE), (CCL), (SC), (\subseteq \equiv) \) hold for all \( T, T' \subseteq L \).

Proof. The proof is an immediate consequence of Corollary 3.31 (2), Fact 3.22, Proposition 3.41, and Proposition 3.7 (10) and (11).

(More precisely, for (2): Let \( M \) be an essentially smooth structure, then by Definition 3.26 for all \( X \mu(X) \subseteq X \). Consider \( (\mu CUM) \). So by Fact 3.22 (2) \( \mu(X') \subseteq X'' \subseteq X' \Rightarrow \mu(X') \subseteq X'' \), so by Fact 3.22 (1) \( \mu(X') = \mu(X'') \). (\( \mu \subseteq \equiv \)) is analogous, using Fact 3.22 (3). \( \square \)

We leave aside the generalization of preferential structures to attacking structures relative to \( \eta \), as this can cause problems, without giving real insight: It might well be that \( \rho(X) \not\subseteq \eta(X) \), but, still, \( \rho(X) \) and \( \eta(X) \) might define the same theory—due to definability problems.
§4. Acknowledgments. We thank a referee for his very valuable and careful comments, which helped to make the paper more reader friendly.

BIBLIOGRAPHY

Barringer, H., Gabbay, D. M., & Rydeheard, D. (to appear). Reactive grammars. In Dershowitz, N., editor. Volume in Honour of Yakov Choueka. Lecture Notes in Computer Science. Springer.

Barringer, H., Gabbay, D. M., & Woods, J. (2005). Temporal dynamics of support and attack networks: From argumentation to zoology. In Hutter, D., Stephan, W., editors. Mechanizing Mathematical Reasoning, Volume Dedicated to Joerg Siekmann. Lecture Notes in Computer Science 2605. Berlin: Springer, pp. 59–98.

Bossu, G., & Siegel, P. (1985). Saturation, nonmonotonic reasoning and the closed-world assumption. Artificial Intelligence, 25, 13–63.

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77, 321–357.

Gabbay, D., & Schlechta, K. (2009). Roadmap for preferential logics. Journal of Applied Nonclassical Logic, 19(1), 43–95. See also hal-00311941, arXiv 0808.3073.

Gabbay, D., & Schlechta, K. (to appear). Size and logic. Review of Symbolic Logic. See also arXiv 0903.1367.

Gabbay, D. M. (1989). Theoretical foundations for non-monotonic reasoning in expert systems. In Apt, K. R., editor. Logics and Models of Concurrent Systems. Berlin: Springer, pp. 439–457.

Gabbay, D. M. (2004). Reactive Kripke semantics and arc accessibility. In Carnielli, W., Dionesio, F. M., Mateus, P. editors. Proceedings CombLog04. July 28–30, 2004. Centre of Logic and Computation, University of Lisbon, pp. 7–20.

Gabbay, D. M. (2008a). Reactive Kripke models and contrary to duty obligations. In van der Meyden, R., van der Torre, L., editors. DEON-2008, Deontic Logic in Computer Science. July 15–18, 2008, Luxembourg. Lecture Notes in Artificial Intelligence 5076. Berlin: Springer, pp. 155–173.

Gabbay, D. M. (2008b). Reactive Kripke semantics and arc accessibility. In Avron, A., Dershowitz, N., Rabinovich, A., editors. Pillars of Computer Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday. Lecture Notes in Computer Science, Vol. 4800. Berlin: Springer, pp. 292–341.

Gabbay, D. M. (to appear). Reactive Kripke models and contrary to duty obligations. Journal of Applied Logic, special issue on Deon-2008.

Gabbay, D. M., & Crochemore, M. (2008). Report, paper 304, Logic and Computation Group, King's college, London, UK. July 2008, p. 21.

Kraus, S., Lehmann, D., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44(1–2), 167–207.

Schlechta, K. (2004). Coherent Systems. Amsterdam, The Netherlands: Elsevier.

Shoham, Y. (1987). A semantical approach to nonmonotonic logics. In Proceedings Logics in Computer Science. Ithaca, NY: IEEE Computer Society, pp. 275–279, and In Proceedings IJCAI 87, Milan, Italy, August 87, J. P. McDermott ed., Morgan Kaufman 1987, San Francisco, pp. 388–392.
