SUPPRESSION OF ENERGETIC ELECTRON TRANSPORT IN FLARES BY DOUBLE LAYERS

T. C. LI, J. F. DRAKE, AND M. SWISDAK
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA

Received 2012 March 6; accepted 2012 July 24; published 2012 August 31

ABSTRACT

During flares and coronal mass ejections, energetic electrons from coronal sources typically have very long lifetimes compared to the transit times across the systems, suggesting confinement in the source region. Particle-in-cell simulations are carried out to explore the mechanisms of energetic electron transport from the corona to the chromosphere and possible confinement. We set up an initial system of pre-accelerated hot electrons in contact with ambient cold electrons along the local magnetic field and let it evolve over time. Suppression of transport by a nonlinear, highly localized electrostatic electric field (in the form of a double layer) is observed after a short phase of free-streaming by hot electrons. The double layer (DL) emerges at the contact of the two electron populations. It is driven by an ion–electron streaming instability due to the drift of the back-streaming return current electrons interacting with the ions. The DL grows over time and supports a significant drop in temperature and hence reduces heat flux between the two regions that is sustained for the duration of the simulation. This study shows that transport suppression begins when the energetic electrons start to propagate away from a coronal acceleration site. It also implies confinement of energetic electrons with kinetic energies less than the electrostatic energy of the DL for the DL lifetime, which is much longer than the electron transit time through the source region.

Key words: Sun: corona – Sun: flares – Sun: particle emission

1. INTRODUCTION

In flares and coronal mass ejections, coronal electrons can be accelerated above 100 keV (Lin et al. 2003; Krucker et al. 2007, 2010), i.e., more than three orders of magnitude higher than the ambient coronal temperature of 100 eV. The energy is ultimately believed to come from magnetic fields through magnetic reconnection, but particles can be accelerated by turbulence and shocks generated from reconnection, or directly by reconnection (Miller et al. 1997). X-rays and microwaves produced by these energetic electrons are observed in both the chromosphere and the corona. How they are transported from a coronal acceleration site to the chromosphere is a key issue in understanding the dynamics of flares. Recent time-of-flight measurements of hard X-ray emission during solar flares (Aschwanden et al. 1996) report relative time delays of arrival at the chromosphere by electrons of different energies propagating from the coronal acceleration site. The energy dependence of these time delays provides evidence that they can propagate along magnetic field lines by free-streaming. However, hard X-ray observations from above-the-looptop (ALT) sources (Masuda et al. 1994; Krucker et al. 2007, 2010) suggest confinement of the energetic electrons above the bright soft X-ray loops for periods several orders of magnitude longer than the (free-streaming) transit time across the source. Increased detection sensitivity indicates that ALT hard X-ray emission is likely a common feature of all flares (Petrosian et al. 2002) although there have been fewer detections of ALT emission than chromospheric emission because the higher density, and hence emission intensity, in the chromosphere overshadows ALT emission. In this case, there must be mechanisms that inhibit the transport of electron heat flux. It is puzzling why some electrons freely propagate to the chromosphere while some are trapped in the corona after being accelerated. The physics of how energetic electrons propagate from the corona to the chromosphere, and the contrary, how confinement of electrons happens, remains poorly understood.

The transport of electron heat flux has previously been modeled as conduction mediated by classical collisions (Spitzer 1962), convection at a subthermal characteristic speed observed in simulations of laser fusion studies (Manheimer & Klein 1975), and turbulent transport limited by anomalous resistivity (Manheimer 1977, Tsytovich 1971), also called anomalous conduction. Recent analytical and numerical studies of the transport of super-hot electron fluxes with energies greater than 10 keV show that the classical conduction model is inapplicable because the mean free path of electrons exceeds the characteristic length scales of the system (Oreshina & Somov 2011).

In the turbulent transport scenario, anomalous resistivity arises from electron scattering by turbulent wave fields excited by instabilities involving the interaction of the energetic electrons, ambient electrons, and/or ions. One commonly considered mode is the ion-acoustic instability (Manheimer 1977; Tsytochvich 1971; Smith & Lilliequist 1979). When accelerated electrons propagate outward, ambient electrons are drawn in as a return current. Their relative drift with ions excites ion-acoustic waves, which scatter the energetic electrons and anomalously enhance resistivity (Manheimer 1977). The heat flux carried by the energetic electrons is limited by the saturation of the instability due to ion trapping.

The formation of an anomalous conduction front due to ion acoustic turbulence was considered as a means to confine hot electrons for the production of hard X-rays (Smith & Lilliequist 1979). The model, based on a one-dimensional (1D) one-fluid code with a grid spacing of 100 km (∼10^4 ion inertial...
lengths), could not capture processes occurring at electron scales. However, it was argued that the front propagates at approximately the ion acoustic speed c_A and, with some heuristic analysis, predicted that the front would become thinner than the grid spacing, although this was artificially disallowed to avoid numerical instability. More recently, the existence of a thermal front, literally defined as a region that links plasmas in thermal nonequilibrium and sustains the temperature difference for long times, was studied in 1D electrostatic Vlasov simulations (Arber & Melnikov 2009). The main goal was to refute the results of an earlier particle-in-cell (PIC) simulation (McKean et al. 1990) in which a conduction front was not seen. The authors observed the formation of a temperature difference propagating at a speed comparable to c_A and identified the behavior as a conduction front. The physics of the responsible mechanism was not identified or investigated. We suspect that front to be an ion acoustic shock and the secondary ionization and described in Section 2. In Section 3, we present the results and summarize in Section 5.

\section{Simulation}

We are exploring the problem of energetic electron transport from the corona to the chromosphere by a 2D electromagnetic PIC simulation using the p3d code (Zeiler et al. 2002). The energetic electrons are pre-heated (i.e., present at the start of the simulation). We consider it to be more natural that the hot population not have a preferred direction of propagation, so the simulated energetic electrons are not beamed in the initial state. Figure 1 is a schematic of the initial simulation setup. Our system represents a symmetric local segment of a flare loop with very hot electrons centered at the loop-top in contact with ambient cold electrons. The computational size is $L_x \times L_y = 655.36 \times 2.56 d_e^2$ with a cell size of $0.02 \times 0.02 d_e^2$. There are 400 particles per cell. x is the direction parallel to the initial background magnetic field B_0. $d_e = c/\omega_{pe}$ is the electron inertial length, where $\omega_{pe} = (4\pi ne^2/m_e)^{1/2}$ is the electron plasma frequency and n_0 the initial density, which is uniform. The boundaries are periodic in both dimensions. The simulation domain is of course far smaller than any realistic flare loop.

The electrons are initially modeled by bi-Maxwellian distributions, and the ions by a Maxwellian distribution. At the simulation’s start, one-third of the electrons, centered at the middle of the domain, have temperatures parallel to the background magnetic field $T_{e,\|}/m_e c_A^2 = 0.5$ (orange in Figure 1), while the remaining two-thirds have $T_{e,\perp}/m_e c_A^2 = 0.1$, corresponding to ratios of parallel plasma pressure to magnetic pressure of $\beta_{e,\|} = 1$ and 0.2, respectively. $c_A = B_0/(4\pi n_0 e^2/m_e)^{1/2}$ is the Alfvén speed based on B_0. The temperature perpendicular to B_0 is $T_{e,\perp} = 0.1 = T_i$ everywhere, so $\beta_{e,\perp} = 0.2 = \beta_i$. Since it is easier to accelerate electrons along the field lines, the hot electrons are taken to be anisotropic. Ambient electrons and ions are taken to be isotropic. Note that the unity β hot electron pressure is consistent with recent over-the-limb flare observations (Krucker et al. 2010).

Other parameters used are mass ratio $m_e/m_i = 1/100$ and speed of light $c/c_A = 100$. Electric fields are normalized to $E_0 = c_A B_0/c$. Thermal speeds are defined as $v_{th} = (2T_e/m_e)^{1/2}$. The Debye length based on the initial hot electron temperature is $\lambda_{De} = v_{th}/\omega_{pe} = 0.1 d_e$. We will use d_e as the unit of length, but it can be conveniently converted to λ_{De}. We will use T_e to represent $T_{e,\|}$ in the following for simplicity, since it is the parallel heat transport that is of most interest. The total duration of the simulation is less than the transit time of the domain by electrons at 1.5 $v_{th,\|}$, so the majority of hot electrons will not encounter a boundary during a run.

\section{Results}

\subsection{A Jump in Electron Temperature}

The primary drive of the system is the contact of hot electrons with cold electrons, so the dynamics starts in the region of
contact. Since this is a symmetric system, it suffices to study either side of the contact. We choose the right side, where hot electrons propagate outward with positive velocities. The figures are averaged in y since there is no significant variation in that direction. Figure 2 shows the time evolution of electron temperature in the region where the hot and cold electrons come into contact. The initial profile (black) represents a high-temperature in the region where the hot and cold electrons are accelerated by a DL enter the hot electron side (see, e.g., longer scale waves on top of the curve at $x = 0$). Beam modes are excited on the hot side and interact with the hot electrons.

3.2. DL Evolution and Strength

The heat flux suppression comes from a DL that arises within the transition region. Figure 3(a) shows the time history of the electric field parallel to the local magnetic field, E_z, and Figure 3(b) shows the time evolution of the electric potential jump across the DL normalized to the instantaneous hot electron temperature measured at the center of the hot region, $e\phi_{DL}/T_{e,h}$. $T_{e,h}$ in $e\phi_{DL}/T_{e,h}$ thus represents the core temperature of the hot electron population. $T_{e,h}$ drops over time as can be seen on the left side of Figure 2 because hot electrons continuously leak out. We normalize the potential jump of the DL to $T_{e,h}$ to more accurately reflect the suppression strength of the DL on the hot electrons that remain in the source region at any particular time. Also shown in Figure 3(b) is the ratio of return current electrons that are reflected at the foot of the DL, normalized to the initial total electron number, N_{ref}/N_0. The reflection mechanism and the reason for its importance are discussed later. E_z is averaged over an electron plasma period to eliminate initial fluctuations in the contact region that decay over time. The DL emerges at $\omega_{pe}t \sim 100$ around $x = 0$. At $\omega_{pe}t \sim 550$, it emits a large-amplitude shock that moves in the positive x direction. The DL is the more structured dark region in Figure 3(a) that slowly drifts in the negative x direction. The DL is constantly evolving over the entire course of the simulation. At $\omega_{pe}t = 1200$, it reaches its maximum amplitude and extends over a scale of $4d_e$, centered at $x \sim −6d_e$. Figure 4 is a cut of Figure 3(a) at this time in a blowup around its location. Shown are E_z (blue), the electric potential normalized to the core hot electron temperature $e\phi/T_{e,h}$ (black), and the electron temperature T_e (green). E_z has a large positive peak at $x \sim −6d_e$ that causes a large potential drop that reflects hot electrons and produces a sharp drop in the electron temperature. We define the strength of the DL by its potential jump $e\phi_{DL}$, which is calculated as follows. To the left of the DL in Figure 4, the potential increases, oscillates, and eventually reaches a fairly constant value (near $x \sim −13d_e$), the high-end value. To the right of the DL, the potential drops and oscillates about a roughly constant value (near $x \sim −5d_e$), the low-end value. $e\phi_{DL}$ is the difference between the high- and low-end values and is shown as a function of time (solid black) in Figure 3(b). $e\phi_{DL}/T_{e,h}$ is a measure of the suppression capability of the DL on the hot electron transport. If the DL is large enough such that $e\phi_{DL}/T_{e,h} \sim 1$, the thermal bulk of the hot electrons will be reflected by the potential barrier of the DL. This will imply a significant reduction of the electron heat flux as well.

Note also in Figure 4 that the DL is not merely a unipolar electric field. It has a small negative leg between $x = −6$ and $−5d_e$, on the low-T_e side. While the bigger positive part suppresses streaming hot electrons coming from the left, the negative leg can reflect cold electrons coming from the right (low-T_e side). The reflection of these electrons is the drive mechanism of the DL, which we now discuss. Figure 5 is a cut of Figure 3(a) at $\omega_{pe}t = 150$, shortly after the DL emergence. Multiple peaks in E_z develop in the T_e transition region. In the linear regime ($\omega_{pe}t < 150$), these waves have small amplitude, comparable to the background fluctuations. They gradually grow into large-amplitude nonlinear structures at later times. The peak that has the largest amplitude dominates the others and becomes the DL. It then starts to hinder hot electron free-streaming and produces an obvious drop in T_e as can be seen at $\omega_{pe}t = 150$. The two smaller peaks on either side of $x = 0$ later turn into fairly symmetric waves, which produce no significant potential jump. The wave turbulence from which the DL emerges is driven by the return current interacting with the background ions. The DL is also driven by this streaming instability, whose origin is now described.

3.3. DL Drive Mechanism: Streaming Instability

Figure 6(a) shows the electron phase space at $\omega_{pe}t = 150$. The hot and cold electron distributions are at the left and right sides, respectively. Note the narrower thermal spread of the cold
Figure 3. Evolution of (a) E_x, the parallel electric field, and (b) $e\phi_{DL}/T_{e,h}$ (solid black), the electric potential jump across the DL normalized to the instantaneous hot electron temperature at the center of the hot region (dotted line is from a second simulation with $T_{e,0,h} = 1$ that will be discussed later), overlaid with N_{ref}/N_0 (solid green), the fraction of return current electrons reflected at the foot of the DL divided by the total initial electron number. (A color version of this figure is available in the online journal.)

Figure 4. $e\phi/T_{e,h}$ (black) and T_e (green), overlaid with E_x (blue) and the zero E_x position (dotted cyan), at $\omega_{pe} t = 1200$. The DL is characterized by a monotonic drop in the potential. The potential barrier suppresses the transport of hot electrons and results in a drop in T_e across the DL. (A color version of this figure is available in the online journal.)

Figure 5. Electric field E_x at $\omega_{pe} t = 150$, overlaid with T_e (green). The large-amplitude wave that forms around $x \lesssim 0$ arises from an ion/return-current-electron streaming instability. (A color version of this figure is available in the online journal.)

electrons at the right, as well as the wider spread of hot electrons at the left. The initial temperature transition is near $x = 0$. A beam of cold electrons is entering the hot region. At $\omega_{pe} t = 0$, both distributions are non-drifting and there is no beam. As the hot electrons free-stream into the cold electron region, ions cannot follow and are left behind as a charge imbalance. The resulting electric field drags a cold electron beam toward the hot electron region as a return current. The relative drift between this return current and the ions excites the instability. Figure 6(b) is a cut of the phase space at the position of the DL ($x \sim -1 d_e$). The return current, with a negative beam speed, sits on top of the streaming hot distribution, which is moving to the right.
and has a wider thermal spread. The drift of the return current electrons with respect to the ions (red) excites the ion/return-current-electron streaming instability. The linear growth rate electrons with respect to the ions (red) excites the ion/return-current-electron streaming instability. The linear growth rate of the ion–electron streaming instability (also known as the Buneman instability (Buneman 1958)) for the most unstable \(\gamma \) current-electron streaming instability. The linear growth rate \(\gamma \) with respect to the ions (red) excites the ion/return-current-electron streaming instability. The linear growth rate \(\gamma \) of the ion–electron streaming instability (also known as the Buneman instability (Buneman 1958)) for the most unstable wave calculated in fluid theory is given by

\[
\gamma = \frac{3}{2} \left(\frac{m_e}{2m_i} \right)^{1/3} \omega_{pe}.
\]

Using the parameters of our simulation, \(\gamma \approx 0.15 \omega_{pe} \). The growth time \(t \) is thus \(t \approx \gamma^{-1} \sim 7 \omega_{pe}^{-1} \). The instability is sufficiently strong to produce the DL at \(\omega_{pe}t \approx 100 \). We also note that the background magnetic field is not significantly perturbed.

The time evolution of the electron phase space reveals that the growth of the DL depends on the number of return current (RC) electrons reflected at the foot of the DL. One can see from Figure 3 that the electric field \(E_i \) of the DL has a negative leg on the low-\(T_e \) side. This shows up as a potential dip on the low potential side. The RC electrons are reflected by the negative leg, which effectively reduces the RC speed and thus converts the kinetic energy of the RC to the electrostatic energy of the DL. By exchanging momentum with the reflected electrons, the DL gets amplified (Lotko 1983). Electron reflection also indicates when the instability enters into a nonlinear regime (\(\omega_{pe}t > 150 \)). The DL growth depends on the number of RC electrons reflected at the foot of the DL. Qualitatively, the dependence of DL growth on the number of reflected electrons can be seen by contrasting the phase space at a time when the DL is growing, e.g., at \(\omega_{pe}t = 550 \), with a time when it is not growing, e.g., at \(\omega_{pe}t = 700 \) (as \(\phi_{DL}/T_{e,h} \) plateaus in Figure 3(b)). At \(\omega_{pe}t = 700 \) (Figure 7(b)) to the right of the DL at \(x > -4 d_e \) (vertical black line), there are many fewer reflected electrons than to the right of the DL at \(\omega_{pe}t = 550 \) (Figure 7(a)), \(x > -2 d_e \). We estimated the number of reflected RC electrons, \(N_{ref} \), by integrating the electron distribution to the right of the DL over a distance of one \(d_e \), which is the typical width of the DL, and for \(v_{ex} \in (0, 0.4 v_{z,h}) \), which is approximately the velocity range covered by the reflected RC electrons as they turn around and acquire positive velocities. \(N_{ref} \) is normalized to \(N_0 \), the initial electron number contained in the same interval. Note that the integration for \(N_{ref} \) also includes a contribution from hot free-streaming population in that velocity range. However, this contribution stays nearly constant and the variation in \(N_{ref} \) mainly comes from the change in the number of reflected cold RC electrons. Therefore, \(N_{ref} \) suffices as an estimate of the reflected RC electrons (plus some constant offset). \(N_{ref}/N_0 \) (green) is plotted on top of the DL strength, \(\phi_{DL}/T_{e,h} \), in Figure 3(b) to show their correlation. As \(N_{ref}/N_0 \) increases during \(\omega_{pe}t \approx 550 \) and \(\geq 950 \), \(\phi_{DL}/T_{e,h} \) has a general increasing tendency as well. As \(N_{ref} \) drops abruptly at \(\omega_{pe}t = 550 \) and stays at a low level until \(\omega_{pe}t = 950 \), \(\phi_{DL}/T_{e,h} \) plateaus. Hence, there is good correlation between the DL growth and the number of the reflected RC electrons.

An examination of the evolution of the electric field in Figure 3(a) reveals that at \(\omega_{pe}t \approx 550 \), the DL sheds an ion-acoustic shock wave, which shows up as an ion hole in ion phase space. Once it leaves the DL, the shock accelerates to the right while the DL continues to slowly move to the left. Therefore, their separation increases. The shock wave is bipolar and reflects most of the RC electrons with its large-amplitude negative leg. One can see in Figure 7(b), at \(\omega_{pe}t = 700 \), that most of the RC electrons are reflected behind the shock at \(x \leq -2 d_e \). \(N_{ref}/N_0 \) shows an abrupt drop at \(\omega_{pe}t = 550 \) because most of the RC electrons are stuck behind the shock and do not reach the DL. The shock dissipates through ion heating. The ion temperature increases by as much as a factor of two along the path traversed by the shock. The shock gradually diminishes in amplitude. Similar dynamics (acceleration and decay) of an ion hole mode at the low potential side of a weak DL created in ion-acoustic turbulence is also observed in current-driven systems (Barnes et al. 1985).

During our simulation, \(\phi_{DL}/T_{e,h} \) reaches 0.8 at \(\omega_{pe}t = 1200 \) (Figure 4). This means that hot electrons with velocities \(v/v_{z,h} \leq 0.8 \) will be reflected. The electron phase space at \(\omega_{pe}t = 1200 \) in Figure 8 shows that the population of hot electrons with \(v/v_{z,h} \leq 0.9 \) wraps around from positive to negative velocities when encountering the DL. They are reflected and hence confined in the source region. The suppression observed here is significant. We calculate the heat flux carried by kinetic hot electrons that is positively directed as
To determine the dependence of the DL potential drop on the hot electron temperature, we performed another run in which the initial hot electron temperature was increased. We observed that the strength of the DL depends on the hot electron temperature. The DL potential drop is normalized to the instantaneous hot electron temperature at the center of this new hot region. The DL is on average stronger than that in the simulation with initial $T_{e,0,h} = 0.5$ (solid line). The basic dynamics of the DLs are the same in both cases. A phase of growth is followed by a period of pause, and the whole cycle repeats. The DL evolves and grows faster in the higher $T_{e,0,h}$ run, probably because the return current electron response, which is the driver of the DL, is faster due to the increased thermal speed of the hot electrons (relative to those of the ambient plasma) in the $T_{e,0,h} = 1$ run than in the $T_{e,0,h} = 0.5$ run. There is also a modest increase in the suppression of heat flux $Q(x, t)$ from $\sim 40\%$ in the $T_{e,0,h} = 0.5$ run to $\sim 50\%$ in the higher $T_{e,0,h}$ run.

Therefore, one might expect that a higher ratio of hot to cold electron temperatures would lead to a stronger DL and associated suppression of transport.

4. DISCUSSION AND APPLICATION

We have studied the suppression of electron thermal transport due to a DL formation in 2D PIC simulations. However, our system is effectively 1D since the transverse direction is only $\approx 20 \lambda_{De}$ wide. The presence of the second dimension enables us to average the data for noise reduction. 2D effects on DLs are not investigated in this study but do not seem to be significant. Extended (planar) weak DLs over $80 \lambda_{De}$ in transverse extent were observed in earlier 2D PIC simulations where subthermal electron current was injected at the boundaries of the parallel direction (Barnes et al. 1985). Such electron injection may correspond to the return current electrons being drawn in at the contact region of the two electron populations in the present simulations. The planar 2D DLs tend to develop substantial substructure across the magnetic field late in time, but the basic dynamics of the DLs are the same as in 1D. We expect the formation of DLs, and therefore transport suppression of hot electrons, to persist in 2D. However, 2D DLs are unlikely to be planar over $\sim 10^5 \lambda_{De}$, the scale of coronal looptops. On the other hand, a variation of the DL over a large transverse distance is not likely to strongly impact the largely 1D dynamics studied here. The injection of a narrow band of hot electrons, however, might behave very differently. This case remains to be studied.

We also note that the computational size of the PIC simulations, which is $655 \ dl \sim 66$ m in the corona, is small compared to the actual size of flaring loops. They, however, reveal important physics down to the kinetic electron scale, the Debye length, where DLs form. We expect the DL to continue strengthening
in a larger domain that allows the system to evolve for a longer period.

The DL suppression mechanism, by reflection, differs from the conventional picture of electron scattering by ion-acoustic turbulence (Manheimer 1977), which was studied in unmagnetized (laser fusion) plasmas. Multi-dimensional computer simulations show that current-driven ion-acoustic turbulent spectrum is flared out within about 45° of the current direction (Biskamp & Chodura 1971; Biskamp et al. 1972; Dum et al. 1974). The presence of a background magnetic field, as in solar flare systems, will likely inhibit scattering perpendicular to the field, making it less effective in suppressing the transport of hot electrons. The inhibition of perpendicular scattering is observed in systems in which two fast electron beams interact and electromagnetic turbulence arises from electron streaming instabilities, but perpendicular deflection by magnetic field turbulence is suppressed by the tension force of the background field (Lee & Buchner 2011). The DL suppression mechanism, which does not involve perpendicular deflection, is, however, not weakened by the presence of a background magnetic field.

Applying our results to the ALT hard X-ray sources (Krucker et al. 2010, 2007) that show an exponential decay on a timescale of more than two orders of magnitude longer than the electron transit time through the source, the formation of a DL provides a plausible mechanism to confine energetic electrons in the source region. Electrons that have kinetic energies less than the potential drop of the DL are reflected back to the source region. Over the entire course of the simulations, the DL tends to amplify through multiple phases of growth. There are no signs of decay. Since it is driven by the return current electrons, which exist for as long as some hot electrons are leaking out, the DL can persist until the eventual depletion of all hot electrons in the source region, which should take much longer than the electron transit time through the source due to the strong transport suppression caused by the DL. The DL lifetime is therefore expected to be much longer than the transit time. This can naturally explain the prolonged lifetimes (>100 s) of the energetic electrons from the ALT hard X-ray observations compared with the electron transit time (~1 s) through the source.

5. CONCLUSION

Results from PIC simulations of a pre-accelerated hot electron source in contact with ambient plasma, which provide a basic model of coronal looptop sources, are presented. The hot electrons free-stream along the magnetic field initially, but transport is suppressed by the formation of a DL that is driven by an ion/return-current-electron streaming instability due to the drift of return current electrons with respect to the ions. The DL subsequently reflects and decelerates hot electrons as they begin to propagate into the surrounding plasma. A significant reduction in electron heat flux through the ambient electron region is observed. Our results are consistent with observations of both free-streaming propagation (Aschwanden et al. 1996) and the suggested confinement at looptop (Masuda et al. 1994; Krucker et al. 2007, 2010) of hard X-ray producing electrons, corresponding to the escaping and reflected hot electrons, respectively.

The computations were performed at the National Energy Research Scientific Computing Center. This work has been supported by NSF grant ATN-0903964 and NASA grant NNX08AV87G.

REFERENCES

Arber, T. D., & Melnikov, V. F. 2009, ApJ, 690, 238
Aschwanden, M. J., Kosugi, T., Hudson, H. S., Wills, M. J., & Schwartz, R. A. 1996, ApJ, 470, 1198
Barnes, C., Hudson, M. K., & Lotko, W. 1985, Phys. Fluids, 28, 1055
Biskamp, D., & Chodura, R. 1971, Phys. Rev. Lett., 27, 1553
Biskamp, D., & Chodura, R. 1971, Phys. Fluids, 20, 2659
Block, L. P. 1978, Ap&SS, 55, 59
Buneman, O. 1958, Phys. Rev. Lett., 1, 8
Bum, C. T., Chodura, R., & Biskamp, D. 1974, Phys. Rev. Lett., 32, 1231
Krall, N. A., & Trivelpiece, A. W. 1973, in Principles of Plasma Physics, ed. J. L. Farnsworth & M. E. Margolies (New York: McGraw-Hill), 83
Krucker, S., Hudson, H. S., Glesener, L., et al. 2010, ApJ, 714, 1108
Krucker, S., White, S. M., & Lin, R. P. 2007, ApJ, 669, L49
Lee, K. W., & Buchner, J. 2011, A&A, 535, A61
Lin, R. P., Krucker, S., Hurford, G. J., et al. 2003, ApJ, 595, L69
Lotko, W. 1983, Phys. Fluids, 26, 1771
Manheimer, W. M. 1977, Phys. Fluids, 20, 265
Manheimer, W. M., & Klein, H. H. 1975, Phys. Fluids, 18, 1299
Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., & Ogawara, Y. 1994, Nature, 371, 495
McKean, M. E., Wingale, R. M., & Dulk, G. A. 1990, ApJ, 364, 295
Miller, J. A., Cargill, P. J., Emslie, A. G., et al. 1997, J. Geophys. Res., 102, 14631
Oreshina, A., & Somov, B. 2011, Mosc. Univ. Phys. Bull., 66, 286
Petrosian, V., Donaghy, T. Q., & McTiernan, J. M. 2002, ApJ, 569, 459
Raadu, M. A., & Rasmussen, J. J. 1996, ApJ, 470, 1198
Singh, N., Thiemann, H., & Schunk, R. W. 1987, Laser Part. Beams, 5, 233
Smith, D. F., & Lillicquist, C. G. 1979, ApJ, 232, 582
Spitzer, L. 1962, Physics of Fully Ionized Gases (2nd ed.; New York: Interscience)
Tsytovich, V. N. 1971, Plasma Phys., 13, 741
Zeiler, A., Biskamp, D., Drake, J. F., et al. 2002, J. Geophys. Res., 107, 1230