Probiotics and their effects in reduction hyperlipidemia

Negin Farhad¹, Somayeh Shahsavari²

¹Department of Pathology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
²Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran

*Correspondence to: Somayeh Shahsavari somayeh.shahsavari.pbp@gmail.com
Received: 3 June 2020
Accepted: 28 June 2020
ePublished: 20 November 2020

Keywords: Hyperlipidemia, Probiotics, Drug-therapy

Abstract

Hyperlipidemia is a chronic condition but in many cases it may be reversed by a healthy diet and regular exercise. It is also associated to metabolic syndrome, diabetes, and obesity. Hyperlipidemia is known as one of the risk factors for coronary vessels disease, peripheral artery disease, and cardiac arrest. Drug-therapy is a usual method for treating hyperlipidemia. Consumption of probiotics may improve this problem and reduce the course of disease as well as its signs. The purpose of this review is to assess clinical evidences associating to role and effects of probiotics on the hl. Probiotics have greater influence on persons who suffer from high cholesterol. In the intestine, probiotics can bind to cholesterol and prevent its ingestion. Furthermore, they help in production of some biliary acids which play role in lipid and cholesterol metabolism. Some probiotics can produce short chain fatty acids that prevent formation of cholesterol in the liver. Probiotics are effective factors in reduction of hl

Introduction

Cardiovascular diseases are the most important factors in mortality in industrialized countries [1, 2]. Hyperlipidemia is a medical phrase used for expressing rise of lipid levels in the blood. If you have hl, then your cholesterol and triglycerides levels are high, too [3, 4]. Hyperlipidemia is a chronic condition but in many cases it may be reversed by a healthy diet and regular exercise [5]. It is also associated to metabolic syndrome, diabetes, and obesity. Hyperlipidemia is known as one of the risk factors for coronary vessels disease, peripheral artery disease, and cardiac arrest [6]. Hyperlipidemia causes heart disease not only directly but also indirectly through stimulation of oxygen free radicals and making atherosclerosis plaques to form. (7, 8). Medications are usual way for control and treating the condition [9]. Probiotics are alive microorganisms which have useful effects on the health and can control pathogenic microbes. The most common probiotics are lactic acid bacteria including bifidobacter species and lactobacillus [10, 11]. Consuming the probiotics may enhance hl and shorten the disease course and reduce its signs. Moreover, these compounds cause improvement in maximum oxygen intake in athletes. Among the other results of probiotics, are as follows: decreasing the antibiotics side effects; remission of arthritis rheumatoid patients; improving patients of helicobacter jejuni; reduction of cholesterol and hypertension; preventing cancer of colon, liver, bowl, breast; and enhancing lactose intolerance [12, 13]. The purpose of this review is to assess clinical evidences associating to role and effects of probiotics on the hl.

Method for review

In this review, the intended articles were evaluated by searching the keywords including probiotic and blood lipid, probiotic, and clinical trial in the time period of 1999 to 2014.

Results

Among studies and clinical trials articles we got eleven articles linked to the effects of probiotics on hl. The results of clinical trials related to the influences on blood lipid are listed in table 1.
Discussion

The mechanisms including reducing intake from bowl and de-conjugation of bile acids leading to their reduced ingestion of them in bowl, entry of a fraction of received fats from foods into these microorganisms’ cell membrane, and converting some of cholesterol to indigestible coprostanol are routines of mechanisms to reduction effects of probiotic cholesterol. On the other hand, short chain fatty acids produced from probiotics may inhibit hydroxyl methyl glutarate coenzyme A reductase – an important enzyme in the pathway for synthesis of cholesterol in liver and finally decrease the production of cholesterol in liver. Fatty acid metabolism may be undergo alterations by the bowl microflora; lactobacillus and Bifidobacteria may convert the free linoleic acid to conjugated type. The conjugated linoleic acid has properties including antidiabetic, anti-sclerosis, enhancing immune system and anti-obesity. Bacteria residing in bowl ferments indigestible carbohydrates into short chain fatty acids (acetate, propionate and butyrate). These compounds bind to G-protein-coupled receptors and cause secretion of PYY intestinal hormone. This hormone reduces the intestinal movements so, enhances the foods absorption from the intestine. Probiotics have higher influence on people with hypercholesterolemia. In bowl, probiotics may bind to cholesterol and inhibit its ingestion. Furthermore, they help to production of some bile acids that have role in fat and cholesterol metabolism in body. Some probiotics are able to produce short chain fatty acids which may help to inhibit the production of cholesterol in liver. Finally, they are important factors in reduction of blood lipids.

Authors’ contribution

All authors contributed equally to the manuscript.

Conflicts of interest

The authors declared no competing interests.

Ethical considerations

Ethical issues (including plagiarism, data fabrica¬tion, double publication and etc.) have been completely ob-served by au-thor.

Funding/Support

None.
References

1. World Health Organization (WHO). Cardiovascular disease (CVDs), 2009. www.who.int/mediacentre/factsheets/fs317/en/index.html (accessed 30 December 2010).

2. World Health Organization Statistical Information System (WHOSIS) 2009. Statistical Information System. www.who.int/whosis/en/ (accessed 30 December 2010).

3. Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP. Dyslipidaemia of obesity, metabolic syndrome and type 2 diabetes mellitus: the case for residual risk reduction after statin treatment. The Open Cardiovascular Med J. 2011; 5:24–34.

4. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics-2013 update: A Report from the American Heart Association. Circulation. 2013; 127(1):6-245.

5. Kusters DM, Avis HJ, Braamskamp MJ, et al. Inheritance pattern of familial hypercholesterolemia and markers of cardiovascular risk. J Lipid Res. 2013; 54(9):2543–2549.

6. Talmud PJ, Shah S, Whittal R, et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet. 2013; 381(9874):1293–1301.

7. Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motsulsky AG. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973; 52(7):1544-68.

8. Fredrickson DS, Levy RJ, Lees RS. Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. New England J Med. 1967; 276(1):34–42.

9. Toth PP. Drug treatment of hyperlipidemia: a guide to the rational use of lipid-lowering drugs. Drugs. 2010; 70(11):1363–1379.

10. Mortazavian AM, Razavi SH, Ehsani M, Sohrabvarandi S. Principles and methods of microencapsulation of probiotic microorganisms. Iran J Biotechnol. 2007; 5 (1):1-18.

11. Vinderola CG, Reinheimer JA. Enumeration of Lactobacillus casei in the presence of l. acidophilus, bifidobacteria and lactic starter bacteria in fermented dairy products. Int Dairy J. 2000; 10: 271-275.

12. Mortazavian AM, Ehsani MR, Mousavi SM, Reinheimer JA, Sohrabvarandi S, et al. Preliminary investigation of the combined effect of heat treatment and incubation temperature on the viability of the probiotic microorganisms in freshly made yogurt. Int J Dairy Tech. 2006; 59 (1).

13. Mortazavian A, Sohrabvarandi S. A textbook of review of probiotic and probiotic products. 1th ed. Tehran: Ata publisher; 2006; 48.

14. Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Euro J Clin Nutr. 2010; 64(6):636-43.

15. Sharafedtinov KK, Plotnikova OA, Alexeeva RI, Sentsova TB, Songisepp E, Stsepetova J, et al. Hypocaloric diet supplemented with probiotic cheese improves body mass index and blood pressure indices of obese hypertensive patients-A randomized double-blind placebo-controlled pilot study. Nutr J. 2013; 12(1):138-48.

16. Chang B, Park S, Jang Y, Ko S, Joo N, Kim S, et al. Effect of functional yogurt NY-YP901 in improving the trait of metabolic syndrome. Euro J Clin Nutr. 2011; 65(11):1250-5.

17. Jahreis O, Vogelsang H, Kiessling G, Schubert R, Bunte C, Hammes W. Influence of probiotic sausage (Lactobacillus paracasei) on blood lipids and immunological parameters of healthy volunteers. Food Res Intern. 2002; 35(2):133-8.

18. Jung S-P, Lee K-M, Kang J-H, Yun S-I, Park H-O, Moon Y, et al. Effect of Lactobacillus gasseri BNR17 on overweight and obese adults: a randomized, double-blind clinical trial. Korean J Family Med. 2013; 34(2):80-9.

19. Xiao J, Kondo S, Takahashi N, Miyaji K, Oshida K, Hiramatsu A, et al. Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. J Dairy Sci. 2003; 86(7):2452-61.

20. Hlvak P, Odraska J, Ferencik M, Ebringer L, Jahnova E, Mikes Z. One-year application of probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels. Bratisl Lek Listy. 2005; 106(2):67-72.

21. Ejtahed H, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V, et al. Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. J Dairy Sci, 2011; 94(7): 3288-94.

22. Ataie-Jafari A, Larijani B, Alavi Majid H, Tahbaz F. Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Annals of Nutr Metabol. 2009; 54(1):22-7.

23. Asemi Z, Samini M, Tabasi Z, talebian P, Azarbaghazeh Z, Heydarzadeh Z et al. Effect of daily consumption of probiotic yoghurt on lipid profile in pregnant women: a randomized control clinical trial. The J Maternal-Fetal Neonatal Med. 2012; 25(9):1552-9.