CLASSIFICATION OF SPACES OF CONTINUOUS FUNCTION ON ORDINALS

GENZE L.V., GUL’KO S.P., KHMYLEVA T.E.

Abstract. We conclude the classification of spaces of continuous functions on ordinals carried out by Gorak [5]. This gives a complete topological classification of the spaces \(C_p([0, \alpha]) \) of all continuous real-valued functions on compact segments of ordinals endowed with the topology of pointwise convergence. Moreover, this topological classification of the spaces \(C_p([0, \alpha]) \) completely coincides with their uniform classification.

2010 MSC: 54C35

Keywords: spaces of continuous function, pointwise topology, homeomorphisms, uniform homeomorphisms, ordinal numbers.

1. Introduction

Our terminology basically follows [4]. In particular, we understand cardinals as initial ordinals, compare [4], page 6. A segment of the ordinals \([0, \alpha]\) is endowed with a standard order topology. The symbol \(C_p([0, \alpha]) \) denotes the set of all continuous real-valued functions defined on \([0, \alpha]\) and endowed with the topology of pointwise convergence.

A complete linear topological classification of Banach spaces \(C([0, \alpha]) \) was carried out in [7] and independently in [8] (for the initial part of this classification, see also [3] and [9]). Similar complete linear topological classification for \(C_p([0, \alpha]) \) can be found in [6, 2].

The topological classification of the spaces \(C_p([0, \alpha]) \) is carried out in the Gorak’s paper [5], in which the question whether the spaces \(C_p([0, \alpha]) \) and \(C_p([0, \beta]) \) are homeomorphic is solved for all ordinals \(\alpha \) and \(\beta \) with except for the case \(\alpha = k^+ \cdot k, \beta = k^+ \cdot k^+ \), where \(k \) is
the initial ordinal, and \(k^+ \) is the smallest initial ordinal greater than \(k \). We note that an ordinal of the form \(k^+ \) is always regular ordinal.

In this paper we prove the following theorem.

Theorem 1. Let \(\tau \) be an arbitrary initial regular ordinal, \(\sigma \) and \(\lambda \) be initial ordinals satisfying the inequality \(\omega \leq \sigma < \lambda \leq \tau \). Then the space \(C_p([0, \tau \cdot \sigma]) \) is not homeomorphic to the space \(C_p([0, \tau \cdot \lambda]) \).

If we combine this result with the results of [5], we get a complete topological classification of the spaces \(C_p([0, \alpha]) \) (which coincides with the uniform classification). We can write it in the form of the following theorem.

Theorem 2. Let \(\alpha \) and \(\beta \) be ordinals and \(\alpha \leq \beta \).

(a) If \(|\alpha| \neq |\beta| \), then \(C_p([0, \alpha]) \) and \(C_p([0, \beta]) \) are not homeomorphic.

(b) If \(\tau \) is an initial ordinal, \(|\alpha| = |\beta| = \tau \) and either \(\tau = \omega \) or \(\tau \) is a singular ordinal or \(\beta \geq \alpha \geq \tau^2 \), then the spaces \(C_p([0, \alpha]) \) and \(C_p([0, \beta]) \) are (uniformly) homeomorphic.

(c) if \(\tau \) is a regular uncountable ordinal and \(\alpha, \beta \in [\tau, \tau^2] \), then the space \(C_p([0, \alpha]) \) is (uniformly) homeomorphic to the space \(C_p([0, \beta]) \) if and only if \(\tau \cdot \sigma \leq \alpha \leq \beta < \tau \cdot \sigma^+ \), where \(\sigma \) is the initial ordinal, \(\sigma < \tau \), and \(\sigma^+ \) is the smallest initial ordinal, exceeding \(\sigma \).

2. **Proof of Theorem 1.**

We need some notation and auxiliary statements. For an arbitrary ordinal \(\alpha \) and the initial ordinal \(\lambda \leq \alpha \) we set

\[
A_{\lambda, \alpha} = \{ t \in [0, \alpha] : \chi(t) = |\lambda| \},
\]

where \(\chi(t) \) is the character of the point \(t \in [0, \alpha] \). In particular, \(A_{\omega, \alpha} \) is the set of all limit points of \(t \in [0, \alpha] \), having a countable base of neighborhoods.

Let \(\alpha \) be a limit ordinal. The smallest order type of sets \(A \subset [0, \alpha] \) cofinal in \([0, \alpha]\), is called cofinality of the ordinal \(\alpha \) and denoted by \(\text{cf}(\alpha) \).

It is easy to see that \(|\text{cf}(\alpha)| = \chi(\alpha) \) for the limit ordinal \(\alpha \). The initial ordinal \(\alpha \) is called regular if \(\text{cf}(\alpha) = \alpha \). Otherwise, the initial ordinal is called singular.

The symbol \(D(x) \) denotes the set of points of discontinuity of the function \(x \).

The proof of the following two lemmas is standard (see Example 3.1.27 in [4]).
Lemma 1. Let α be an arbitrary ordinal and let τ be an initial ordinal such that $\omega < \tau \leq \alpha$, $t_0 \in A_{\tau, \alpha}$ and a function $x: [0, \alpha] \to \mathbb{R}$ is continuous at all points of the set $A_{\omega, \alpha}$. Then there is an ordinal $\gamma < t_0$ such that $x|_{[\gamma, t_0)} = \text{const}$. □

Lemma 2. If a function $x: [0, \alpha] \to \mathbb{R}$ is continuous at all points of the set $A_{\omega, \alpha}$, then the set $D(x)$ is at most countable. □

For the function $x \in \mathbb{R}^{[0, \alpha]}$ and the initial ordinal $\lambda \leq \alpha$ the symbol $G_\lambda(x)$ denotes the family

$$G_\lambda(x) = \left\{ \bigcap_{s \in S} V_s : V_s \text{ is standard nbhd of } x \text{ in } \mathbb{R}^{[0, \alpha]} \text{ and } |S| = |\lambda| \right\}.$$

The elements of the family $G_\lambda(x)$ will be called λ-neighborhoods of the function x.

For a regular ordinal $\tau \geq \omega_1$ and a initial ordinal $\sigma \leq \tau$ we put

$$M_{\tau, \sigma} = \left\{ x \in \mathbb{R}^{[0, \tau \cdot \sigma]} : x \text{ is continuous at those points } t \in [0, \tau \cdot \sigma], \right.$$
for which $\text{cf}(t) < \tau \left\}.$$

It is clear, that $C([0, \tau \cdot \sigma]) \subseteq M_{\tau, \sigma}$.

Lemma 3. Let $\tau \geq \omega_1$ be an initial regular ordinal and let σ be an initial ordinal such that $\sigma \leq \tau$. Then

$$M_{\tau, \sigma} = \left\{ x \in \mathbb{R}^{[0, \tau \cdot \sigma]} : V \cap C_p([0, \tau \cdot \sigma]) \neq \emptyset \text{ for every } V \in G_\lambda(x) \right.$$
and each $\lambda < \tau \left\}.$$

Proof. We denote by $L_{\tau, \sigma}$ the right-hand side of the equality and assume that $x \notin M_{\tau, \sigma}$, that is, x is discontinuous at some point t_0 for which $\text{cf}(t_0) < \tau$. Since $|\text{cf}(t_0)| = \chi(t_0)$, there exists a base $\{U_j(t_0)\}_{j \in J}$ of neighborhoods of the point t_0 such that $|J| < \tau$. Since x is discontinuous at t_0, there exists a number $\varepsilon_0 > 0$ such that for each $j \in J$ there is a point $t_j \in U_j(t_0)$ such that $|x(t_j) - x(t_0)| \geq \varepsilon_0$. Let $V = \bigcap \{V(x, t_j, t_0, 1/n) : j \in J, n \in \mathbb{N}\}$, where $V(x, t_j, t_0, 1/n)$ is the standard neighborhood of the function x in the space $\mathbb{R}^{[0, \tau \cdot \sigma]}$. If $y \in V$, then $y(t_j) = x(t_j)$ and $y(t_0) = x(t_0)$. Hence, the function y is discontinuous at the point t_0 and then $y \notin C_p([0, \tau \cdot \sigma])$. Thus, $V \cap C_p([0, \tau \cdot \sigma]) = \emptyset$, that is, $x \notin L_{\tau, \sigma}$.

Now let $x \in M_{\tau, \sigma}$, i.e. the function x can be discontinuous only at the points of the set $A_{\tau, \tau, \sigma}$. It is easy to see that the set $A_{\tau, \tau, \sigma}$ has
the form

\[A_{\tau,\tau} = \{ \tau \cdot (\xi + 1) : 0 \leq \xi < \sigma \}, \]

or

\[A_{\tau,\tau} = \{ \tau \cdot (\xi + 1) : 0 \leq \xi < \tau \} \cup \{ \tau \cdot \tau \}, \]

if \(\sigma = \tau \).

By Lemma 2, the set \(D(x) \) is at most countable and therefore

\[A_{\tau,\tau} \cap D(x) = \{ \tau \cdot (\xi_n + 1) : \xi_n < \sigma, n \in \mathbb{N} \}, \]

\[A_{\tau,\tau} \cap D(x) = \{ \tau \cdot (\xi_n + 1) : \xi_n < \tau, n \in \mathbb{N} \} \cup \{ \tau \cdot \tau \}, \]

if \(\sigma = \tau \).

Let \(\lambda < \tau \) and \(V(x) = \bigcap\{ U(x, \eta, 1/n) : \eta \in S, n \in \mathbb{N} \} \) be a \(\lambda \)-neighbourhood of the point \(x \). Then \(|S| < |\tau| \).

Since the countable set \(A_{\tau,\tau} \cap D(x) \) is not cofinal in the regular ordinal \(\tau \geq \omega_1 \), for each \(n \in \mathbb{N} \) there is an ordinal \(\gamma_n \) such that \(n \geq \gamma_n \cdot (\xi_n + 1) \) and \((\gamma_n, \tau(\xi_n + 1)) \cap S = \emptyset \). In the case \(\sigma = \tau \) there is also an ordinal \(\tau_0 < \tau^2 \), such that \((\gamma_0, \tau_0^2) \cap S = \emptyset \) and \((\gamma_0, \tau_0^2) \cap \{ \tau(\xi_n + 1) \}_n^\infty = \emptyset \).

Consider the function

\[\bar{x}(t) = \begin{cases}
 x(\tau(\xi_n + 1)), & \text{if } t \in (\gamma_n, \tau(\xi_n + 1)); \\
 x(\tau^2), & \text{if } t \in (\gamma_0, \tau^2); \\
 x(t), & \text{otherwise}.
\end{cases} \]

It is not difficult to see that the function \(\bar{x} \) is continuous at all points \(t \in [0, \tau \cdot \sigma] \), and since \(\bar{x}|S = x|S \), \(\bar{x} \in V(x) \), that is, \(V(x) \cap C_p([0, \tau \cdot \sigma]) \neq \emptyset \) and therefore \(x \in L_{\tau \sigma} \).

If \(X \) is a Tikhonoff space, then the symbol \(\nu X \) denotes the Hewitt completion of the space \(X \). The proof of the following lemma can be found in [4], p. 218.

Lemma 4. If \(\varphi : X \to Y \) is a homeomorphism of Tikhonoff spaces, then there exists a homeomorphism \(\tilde{\varphi} : \nu X \to \nu Y \) such that \(\tilde{\varphi}(x) = \varphi(x) \) for each \(x \in X \).

Lemma 5. Let \(\alpha \) be an arbitrary ordinal. Then

\[\nu(C_p([0, \alpha])) = \{ x \in \mathbb{R}^{[0, \alpha]} : x \text{ is continuous at all points of the set } A_{\omega,\alpha} \}. \]

Proof. It is known ([10], p. 382) that for an arbitrary Tikhonov space \(X \) the space \(\nu(C_p(X)) \) coincides with the set of all strictly \(\aleph_0 \)-continuous functions from \(X \) to \(\mathbb{R} \). In this case, the function \(f \in \mathbb{R}^X \) is called strictly \(\aleph_0 \)-continuous ([11]), if for any countable set \(A \subset X \) there is a continuous function \(g \in \mathbb{R}^X \) such that \(f|_A = g|_A \).

Since for each countable set \(A \subset [0, \omega] \), its closure \(\bar{A} \) is also countable, by the Tietze-Uryson theorem we obtain that the set of all
strictly \aleph_0-continuous functions in $[0, \alpha]$ in \mathbb{R} coincides with the set of all those functions that are continuous on each countable subset $A \subset [0, \alpha]$. It is easy to see that these are precisely all those functions that are continuous at all points of the set $A_{\omega, \alpha}$.

Corollary 6. If $\tau \geq \omega_1$ is the initial regular ordinal and $\sigma \leq \tau$ is the initial ordinal, then $M_{\tau\sigma} \subset \nu(C_p([0, \tau \cdot \sigma]))$.

For the initial ordinal σ we denote by Γ_σ the discrete space of cardinality $|\sigma|$ and consider the space

$$c_0(\Gamma_\sigma) = \{ x \in \mathbb{R}^{\Gamma_\sigma} : \{ t \in \Gamma_\sigma : |x(t)| \geq \varepsilon \} \text{ is finite for any } \varepsilon > 0 \}.$$

Lemma 7. Let $\tau \geq \omega_1$ be an initial regular ordinal, $\sigma \leq \tau$ be an initial ordinal. Then there exists a homeomorphic embedding $f : c_0(\Gamma_\sigma) \to M_{\tau\sigma}$ such that $f(0) = 0$ and $f(x) \in M_{\tau\sigma} \setminus C_p([0, \tau \cdot \sigma])$, if $x \neq 0$.

Proof. We enumerate the points of the set Γ_σ by the ordinals $t \in [0, \sigma)$. Then $\Gamma_\sigma = \{ t_\xi \}_{\xi \in [0, \sigma)}$. For each characteristic function $\chi_{\{t_\xi\}} \in c_0(\Gamma_\sigma)$ we put $f(\chi_{\{t_\xi\}}) = \chi_{\{\tau(\xi+1)\}}$. It is obvious that $\chi_{\{\tau(\xi+1)\}} \in M_{\tau\sigma} \setminus C_p([0, \tau \cdot \sigma])$. It remains to extend the map f in the standard way to the space $c_0(\Gamma_\sigma)$.

Lemma 8. Let $\tau \geq \omega_1$ be an initial regular ordinal, σ, λ be an initial ordinals and $\omega \leq \lambda < \sigma \leq \tau$. If $f : c_0(\Gamma_\sigma) \to M_{\tau\lambda}$ is an injective mapping such that $f(0) = 0$ and $f(x) \in M_{\tau\lambda} \setminus C_p([0, \tau \cdot \lambda])$ for $x \neq 0$, then the map f is not continuous.

Proof. Suppose that there exists a continuous map $f : c_0(\Gamma_\sigma) \to M_{\tau\lambda}$ with the above-mentioned properties. As in Lemma 7, let $\Gamma_\sigma = \{ t_\xi \}_{\xi \in [1, \sigma)}$. Since the space $c_0(\Gamma_\sigma)$ is considered in the topology of pointwise convergence, any sequence of the form $\chi_{\{t_{\xi_n}\}}$ converges to zero in this space. Consequently, at each point $\gamma \in [0, \tau \cdot \lambda]$ only a countable number of functions $f(\chi_{\{t_\xi\}})$ is nonzero. Since by the condition $f(\chi_{\{t_\xi\}}) \in M_{\tau\lambda} \setminus C_p([0, \tau \cdot \lambda])$, each function $f(\chi_{\{t_\xi\}})$ is discontinuous at some point of the set $A_{\tau, \tau\lambda} \subset [0, \tau \cdot \lambda]$.

Let

$$B_\gamma = \{ f(\chi_{\{t_\xi\}}) : \gamma \leq \lambda \} \text{ is discontinuous at a point } \tau(\gamma + 1) \in A_{\tau, \tau\lambda}.$$

Since $\bigcup_{\gamma<\lambda} B_\gamma = f(\{ \chi_{\{t_\xi\}} : \xi < \sigma \})$ and $|\lambda| = |A_{\tau, \tau\lambda}| < |\sigma|$, there is a point $\gamma_0 < \lambda$, such that $|B_{\gamma_0}| = |\sigma|$. Since at the point $\tau(\gamma_0 + 1)$
only a countable number of functions from B_{γ_0} are nonzero, without loss of generality we can assume that all functions from B_{γ_0} at the point $\tau(\gamma_0 + 1)$ are equal to zero. By Lemma 1, for each function $f(\chi(t_n)) \in B_{\gamma_0}$ there exists an ordinal $\gamma_x < \tau(\gamma_0 + 1)$ such that $f(\chi(t_n))|_{[\gamma_x, \tau(\gamma_0 + 1))] = \text{const} = C_\xi$. Since $|B_{\gamma_0}| = |\sigma| > \omega$, in B_{γ_0} there is an uncountable family of functions for which $|C_\xi| \geq \varepsilon_0$. Consider the sequence $\{f(\chi(t_n))\}_{n=1}^\infty$ of such functions and put $\gamma_0 = \sup\{\gamma_x : n = 1, 2, \ldots\}$. Since $\text{cf}(\tau(\gamma_0 + 1)) > \omega$, $\gamma_0 < \tau(\gamma_0 + 1)$ and therefore $|f(\chi(t_n))(t)| \geq \varepsilon_0$ for each $t \in (\gamma_0, \tau(\gamma_0 + 1))$. But this contradicts the fact that the sequence $\{f(\chi(t_n))\}_{n=1}^\infty$ converges pointwise to zero. □

Proof of Theorem 1. Suppose that there exists a homeomorphism $\varphi : C_p([0, \tau \cdot \sigma]) \rightarrow C_p([0, \tau \cdot \lambda])$. We can assume that $\varphi(0) = 0$. By Lemma 4, there exists a homeomorphism $\tilde{\varphi} : \nu(C_p([0, \tau \cdot \sigma])) \rightarrow \nu(C_p([0, \tau \cdot \lambda]))$ such that $\tilde{\varphi}(C_p([0, \tau \cdot \sigma])) = C_p([0, \tau \cdot \lambda])$. By Corollary 6 $M_{\tau \sigma} \subset \nu(C_p([0, \tau \cdot \sigma]))$, and by Lemma 3 $\tilde{\varphi}(M_{\tau \sigma}) = M_{\tau \lambda}$. By Lemma 7 the mapping $\tilde{\varphi} \cdot f : c_0(\Gamma_\sigma) \rightarrow M_{\tau \lambda}$ is continuous, $(\tilde{\varphi} \cdot f)(0) = 0$ and $(\tilde{\varphi} \cdot f)(M_{\tau \sigma}) \subset M_{\tau \lambda} \setminus C_p([0, \tau \cdot \lambda])$ for $x \neq 0$. In this case, the map $\tilde{\varphi}|_{c_0(\Gamma_\sigma)} : c_0(\Gamma_\sigma) \subset M_{\tau \sigma}$ onto the subspace $M_{\tau \lambda}$ such that $\tilde{\varphi}(0) = 0$ and $\tilde{\varphi}(x) \subset M_{\tau \lambda} \setminus C_p([0, \tau \cdot \lambda])$ for $x \neq 0$. But this is impossible by Lemma 8. □

The authors are grateful to the anonymous referee for helpful comments and suggestions to improve the manuscript.

References

[1] Arhangel'skij A.V. On linear homeomorphisms of function spaces. Sov. Math., Dokl. Vol.25(1982), 852-855.
[2] Baars J., de Groot J. On topological and linear equivalence of certain function spaces, CWI Tract 86, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1992.
[3] Bessaga C., Pelczynski A. Spaces of continuous functions (IV) (On isomorphic classification of spaces $C(S)$), Studia Math. 19 (1960), 53-62.
[4] Engelking R., General topology, Heldermann Verlag, Berlin, second ed., 1989.
[5] Gorak R. Function spaces on ordinals // Comment.Math.Univ.Carolin. Vol. 46 (2005), No. 1, 93–103.
[6] Gul'ko S.P. Free topological groops and a spaces of continuous functions on ordinals. Vestnik of Tomsk State University. 2003. no. 280. p.34-38. (in Russian) Гулько С. П. Свободные топологические группы и пространства непрерывных функций на ординалах // Вестник Томского государственного университета. 2003. № 280. С.34-38.
CLASSIFICATION OF SPACES OF CONTINUOUS FUNCTION ON ORDINALS

[7] Gul’ko S. P., Os’kin A. V. Isomorphic classification of spaces of continuous functions on totally ordered compact sets, Funct. Anal. and its Appl. 1975. V. 9. № 1. 56-57.

[8] Kislyakov S. V. Classification of spaces of continuous functions of ordinals, Siberian Math. J. 16 (1975), 226-231.

[9] Semadeni Z. Banach spaces non-isomorphic to their Cartesian squares, Bull. Acad. Polon. Sci. 8 (1960), 81-84.

[10] Tkachuk V.V. A C_p–Theory Problem Book. Topological and Function Spaces. Springer. 2011. 486pp.

CONTACT INFORMATION

L.V. Genze:
Faculty of Mathematics and Mekhaniks
Tomsk State University
Pr. Lenina 36
634050 Tomsk, Russia
genze@math.tsu.ru

S.P.Gul’ko:
Faculty of Mathematics and Mekhaniks
Tomsk State University
Pr. Lenina 36
634050 Tomsk, Russia
gulko@math.tsu.ru

T.E.Khmyleva:
Faculty of Mathematics and Mekhaniks
Tomsk State University
Pr. Lenina 36
634050 Tomsk, Russia
tex2150@yandex.ru