Genetic Variation among and within United States Collard Cultivars and Landraces as Determined by Randomly Amplified Polymorphic DNA Markers

Mark W. Farnham
U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2875 Savannah Highway, Charleston, SC 29414-5334

Abstract. A collection of collard (Brassica oleracea L., Acephala group) germplasm, including 13 cultivars or breeding lines and 5 landraces, was evaluated using randomly amplified polymorphic DNA (RAPD) markers and compared to representatives of kale (Acephala group), cabbage (Capitata group), broccoli (Italica group), Brussels sprouts (Gemmifera group), and cauliflower (Botrytis group). Objectives were to assess genetic variation and relationships among collard and other crop entries, evaluate intrapopulation variation of open-pollinated (OP) collard lines, and determine the potential of collard landraces to provide new B. oleracea genes. Two hundred nine RAPD bands were scored from 18 oligonucleotide decamer primers when collard and other B. oleracea entries were compared. Of these, 147 (70%) were polymorphic and 29 were specific to collard. Similarity indices between collard entries were computed from RAPD data and these ranged from 0.75 to 0.99 with an average of 0.83. Collard entries were most closely related to cabbage (similarity index = 0.83) and Brussels sprouts entries (index = 0.80). Analysis of individuals of an OP cultivar and landrace indicated that intrapopulation genetic variance accounts for as much variation as that observed between populations. RAPD analysis identified collard landraces as unique genotypes and showed them to be sources of unique DNA markers. The systematic collection of collard landraces should enhance diversity of the B. oleracea germplasm pool and provide genes for future crop improvement.

Collard (Brassica oleracea L.) is an important, leafy-green vegetable crop in the southeastern United States. Traditionally, collard is classified in the same botanical group, Acephala, as kale (Hortus Third, 1976). There are about ten cultivars, and five or more breeding lines readily available from commercial or public sources in the United States. Most of these are open-pollinated (OP) lines and the remainder are more recent F1 hybrids. Little is known about the genetic makeup of the collard crop and its relationship to the other B. oleracea groups such as Italian broccoli or cabbage. There is an additional, generally unrecognized, B. oleracea germplasm pool of collard landraces that is being perpetuated by southeastern gardeners and farmers. It is unknown whether these landraces represent unique collard genotypes, and to the author’s knowledge there has never been a systematic collection of collard germplasm undertaken in the southeastern United States.

Recent studies of B. oleracea using DNA-based markers including restriction fragment length polymorphisms (RFLPs) and randomly amplified polymorphic DNA (RAPD) markers have provided information regarding 1) the genetic relationships between B. oleracea and other related Brassica species (Song et al., 1988a; Song et al., 1988b; Demmeke et al., 1992; Ren et al., 1995); 2) the use of DNA-based markers as cultivar or genotype fingerprinting tools (Hu and Quiros, 1991; Kresovich et al., 1992); and 3) the diversity existing within the B. oleracea germplasm pool (Neinhuis et al., 1993; dos Santos et al., 1994; Kresovich et al., 1992), dos Santos et al. (1994) recently showed that the use of RAPD markers provide a level of resolution equivalent to RFLPs for determination of genetic relationships among B. oleracea genotypes. Likewise, Thorman et al. (1994) presented results that indicated RAPD markers give similar information as RFLP data when comparing genetic relationships of individuals within B. oleracea as well as within other Brassica species.

Recent molecular marker evaluations of B. oleracea germplasm have provided little information about the collard crop and its relationship to the other crop groups. Song et al. (1988b) included one collard cultivar, ‘Georgia’, in a study examining genetic relationships between crop groups of B. oleracea. In that study the collard entry was more closely related to cabbage representatives than to a kale. However, because Song et al. examined such a small portion of the B. oleracea germplasm pool, they did not draw broad conclusions about genetic relationships among the diverse groups. The present study was undertaken to 1) examine genetic variation among United States collard cultivars and landraces using RAPD markers and determine genetic relationships between different collard lines and also between collard lines and other B. oleracea crop representatives; 2) evaluate within line variation of an OP cultivar and an OP landrace; and 3) assess the potential of collard landraces in serving as new sources of collard or B. oleracea genes.

Materials and Methods

Eighteen entries of collard were obtained for genetic analysis in this study. These entries include 13 named cultivars or breeding lines of collard available from commercial or public sources and an additional five landraces obtained by the author from southeastern gardeners or farmers (Table 1). Although this a limited number of individual lines it is a thorough representation of the commercial collard crop in the United States. In addition to the collard entries, two broccoli, two cabbage, two kale, one cauliflower (Botrytis
group), and one Brussels sprout (Gemmifera group) entries were used for comparison to collard (Table 1). Fifty seed of each entry were sown one seed per cell in a commercial peat mix (Metromix 360, Grace Sierra, Milpitas, Calif.) in 120-cell seedling trays with individual root cell volume of 40 ml. Seedlings were grown in a greenhouse 4 Sept. through 7 Oct. 1992 at which time leaves were sampled. Composite leaf samples of each entry were made by combining 0.15 g of leaf tissue from the youngest leaves from each of 45 seedlings. The composite sample was frozen in liquid N2, ground and mixed in a mortar and pestle, and stored at –20C until the tissue was used for DNA extraction. In addition to composite sampling of all entries, leaf samples of 20 individual plants from the collard cultivar ‘Morris Heading’ and the landrace ‘J. Hope’ were collected and frozen as described above.

DNA was extracted from 2.0 g frozen leaf tissue using the CTAB protocol described by Doyle and Doyle (1987), and duplicate extractions were made for each entry. Single plant genomic DNA was similarly extracted from frozen leaves of the individual plants of the ‘Morris Heading’ and the landrace ‘J. Hope’ were collected and frozen as described above.

DNA was extracted from 2.0 g frozen leaf tissue using the CTAB protocol described by Doyle and Doyle (1987), and duplicate extractions were made for each entry. Single plant genomic DNA was similarly extracted from frozen leaves of the individual plants of the ‘Morris Heading’ and the landrace ‘J. Hope’ were collected and frozen as described above.

Table 1. Collard and other Brassica oleracea entries compared by RAPD genotyping in this study. Each entry is classified by crop, type of line, and source of seed.

Entry	Abbreviation	Crop	Type of line	Source
Vates	VA	Col	OP cultivar	Commercial
Morris Heading	MH	Col	OP cultivar	Commercial
Green Glaze	GG	Col	OP cultivar	Commercial
Champion	CH	Col	OP cultivar	Commercial
Georgia	GA	Col	OP cultivar	Commercial
Southern	SO	Col	OP cultivar	Commercial
SC Glaze	SG	Col	OP cultivar	Breeder
SC Header	SH	Col	OP cultivar	Breeder
Top Bunch	TB	Col	F1 hybrid	Commercial
Blue Max	BM	Col	F1 hybrid	Commercial
Flash	FL	Col	F1 hybrid	Commercial
Hicrop	HI	Col	F1 hybrid	Commercial
Mezic Zero	MZ	Col	OP landrace	N.C. gardener
J. Killough	JK	Col	OP landrace	Texas gardener
J. Hope	JH	Col	OP landrace	N.C. farmer
G. Simpson	SI	Col	OP landrace	N.C. farmer
G. Summersett	SU	Col	OP landrace	S.C. farmer
Vates kale	VK	Kal	OP cultivar	Commercial
Squire	SK	Kal	OP cultivar	Commercial
Chas. Wakefield	CW	Cab	OP cultivar	Commercial
Market Prize	MP	Cab	F1 hybrid	Commercial
Atlantic	AT	Bro	OP cultivar	Commercial
Packman	PA	Bro	F1 hybrid	Commercial
Valiant	VL	Bsp	F1 hybrid	Commercial
Snow Crown	SC	Cau	OP cultivar	Commercial
Heavicorn	HE	Col	F1 hybrid	Commercial

| Crop groups abbreviated as Col = collard, Kal = kale, Cab = cabbage, Bro = broccoli, BSP = Brussels sprouts, and Cau = cauliflower.
each was treated as a unit character coded as 1 (present) or 0 (absent). Genetic similarities were calculated between all pairs of entries based on the following formula: \(GS(ij) = \frac{SN(i = j)}{SN(i = j) + SN(i \neq j)} \); which is a simple matching coefficient were \(GS(ij) \) is the genetic similarity between entries i and j, \(SN(i = j) \) and \(SN(i \neq j) \) are the total number of concordant and discordant scores between accessions i and j, respectively (Sneath and Sokal, 1973). The complement of \(GS(ij) \), the Genetic Distance \([GD(ij)]\), was computed as \(GD(ij) = 1 - GS(ij) \); between all entries. A dendogram was constructed based on the genetic distance matrix data by applying unweighted pair group method with arithmetic averages (UPGMA) cluster analysis using the SAS Proc Cluster program (SAS Institute, Cary, N.C.). An analysis as described above was also performed separately on each population of 20 individuals from each of the two collard entries Morris Heading' and 'J. Hope'.

Results and Discussion

Twenty-six \(B. oleracea \) entries, including 18 collard composites were analyzed as a group and a total of 209 RAPD bands were scored. These bands ranged in size from 240 to 2300 bp. Between 7 to 16 bands were scored per primer and the average number was 11.5. The number of bands scored per primer for this set of \(B. oleracea \) entries is within the range observed by others evaluating Brassica germplasm. Hu and Quiros (1991) observed 10 bands per primer, Kresovich et al. (1992) about 8 per primer; and Thorman et al., (1994) 10.5 per primer. A relatively high average number of markers per primer for Brassica species was reported by Ren et al. (1995) who observed over 20 markers per primer. Of the total bands scored in this study, 147 or about 70% were polymorphic. This percentage of polymorphic bands is very similar to that observed in all of the above-cited studies.

In comparing the 26 \(B. oleracea \) entries, a total of 29 RAPD bands were specific to collard. Of that total, 21 bands were unique to at least one collard cultivar or breeding line. The remaining eight bands were specific to at least one of the collard landraces. Similarity indices among cultivar cultivars and lines ranged from 0.73 to 0.99 with a mean of 0.83 (Table 2). Two pairs of entries, 'Blue Max' and 'HiCrop', and 'Georgia' and 'Southern', had the highest similarity indices of 0.98 and 0.99, respectively. These two pairs represent identical or nearly identical genotypes, and phenotypic observations confirm this (data not shown). The differences observed between 'Blue Max' and 'HiCrop', both sold as F1 hybrids, may represent the level of error in genotyping lines with RAPD markers in this study since all individuals of the hybrids would be expected to be genetically identical. Although that may be the case with 'Georgia' and 'Southern' as well, it is also possible that the slight variations observed between the two latter, OP populations may be due to variation that exists between different lots or sources of these entries. Similarity indices between collard cultivars and landraces ranged from 0.75 to 0.96, with the mean index was 0.82. Although comparison of collard landraces to cultivars indicates that the two groups are closely related, no landrace was exactly like any cultivar. Thus, each landrace represents a unique collard genotype. When collard entries were compared to \(\geq \) other \(B. oleracea \) entries, collard were found to be most similar to cabbage (mean index = 0.83) and next to a Brussels sprouts (mean index = 0.80). In general, collard entries had fewer bands in common with two broccoli (mean index = 0.72), one cauliflower (mean index = 0.74), and two kale (mean index = 0.73).

Relationships between collard and other crop entries, determined by UPGMA cluster analysis.
Two glossy collard entries, ‘Green Glaze’ and ‘SC Glaze’ had a similarity index of 0.94, indicating a relatively similar genetic background, and they did not cluster with a particular group of collard entries. One landrace, ‘G. Summersett’, also appeared distinct from other collard entries. This line has a very large stature and also tends to form a loose head at maturity. The hybrids, ‘Blue Max’ and ‘HiCrop’, also clustered apart from other collard entries.

One collard landrace, ‘Mesic Zero’ was determined to be more closely related to two kale entries than to any collard. Although the person that saved ‘Mesic Zero’ called it a collard, it is indeed intermediate in appearance between collard and kale. This landrace exhibits significant plant-to-plant variation; however, most plants have kale-like leaves. It is possible that this line could represent a cross of collard by kale.

Genetic variation within the open-pollinating cultivar ‘Morris Heading’ and landrace ‘J. Hope’, as measured by RAPD analysis, was as great as the variation measured among collard composite entries (Table 3). The number of reproducible RAPD markers among ‘Morris Heading’ individuals was 168 and among ‘J. Hope’ individuals was 175. In both populations, about 55% of the bands were polymorphic. Mean similarity index between individuals of ‘Morris Heading’ and landrace ‘J. Hope’, as measured by RAPD analysis, was 0.82, and between ‘J. Hope’ individuals was 0.81. Computation of a similarity index between individuals and the composite sample of each respective population indicated that the magnitude of variation for such comparisons is equal to comparisons between individuals and that no single individual was exactly like the composite. In analyzing individuals for RAPD fingerprints, 13 bands were identified in at least one ‘Morris Heading’ individual that were not observed in the composite sample or any other collard entry. Likewise, 11 bands were found among ‘J. Hope’ individuals that were not previously identified.

Table 2. Similarity index (×100) of 18 collard entries and 8 other *Brassica oleracea* lines. Entries are designated by abbreviations given in Table 1.

Collard cultivars/lines	Collard landraces	Kale	Cabbage	Broccoli	BS	CA
VA	82	71	83	72	73	79
MH	80	71	83	72	73	79
GG	85	83	82	82	82	82
CH	83	82	83	82	82	82
GA	84	83	82	82	82	82
SO	83	82	83	82	82	82
SG	83	82	83	82	82	82
SH	83	82	83	82	82	82
TB	83	82	83	82	82	82
BM	83	82	83	82	82	82
HE	83	82	83	82	82	82
FL	83	82	83	82	82	82
HE	83	82	83	82	82	82
MG	83	82	83	82	82	82
JK	83	82	83	82	82	82
JH	83	82	83	82	82	82
SI	83	82	83	82	82	82
SU	83	82	83	82	82	82
VK	83	82	83	82	82	82
SK	83	82	83	82	82	82
CW	83	82	83	82	82	82
MP	83	82	83	82	82	82
AT	83	82	83	82	82	82
PA	83	82	83	82	82	82
VL	83	82	83	82	82	82
SC	83	82	83	82	82	82
These bands were always polymorphic and they usually occurred at low frequencies in the population, at least partially explaining why they were not visible in composite samples. The intrapopulation genetic diversity observed in this study likely contributes a level of diversity to the collard germplasm pool that is of equal significance as the intercultivar or population variation. The author is unaware of other studies of *B. oleracea* where RAPD markers have been used to measure intrapopulation genetic variation. If equal levels of within line variance are found in open-pollinating lines of other crop groups such as cabbage or broccoli, this would represent a greater level of genetic variation previously unrecognized in studies examining only interpopulation genetic differences.

Although collard is officially classified as *B. oleracea* Acephala group, placing it in the same category as the kale crop, observations from this study indicate that collard is more closely related to cabbage (Capitata group). This conclusion is in agreement with that made by Song et al. (1988b) who found a collard individual to be more closely related to cabbage entries than to those of any other *B. oleracea* crop group. Indeed, this conclusion is more intuitively expected since collard has been commonly grown simultaneously with cabbage in the southeastern United States for two to three centuries. On the contrary, kale is a relative newcomer to the Southeast, as little was grown in this region until more recent times.
Several authors (Song et al., 1988b; Williams, 1985) have used the separate crop group label, “Sabellica”, to describe the collard group. Although this terminology is not officially recognized (Hortus Third, 1976) or used widely, it may be a reasonable approach to designate the collard as a separate group and to distinguish it from kale. Another approach would be to include collard germplasm as part of the Capitata group. However, a greater number of comparisons between collard and cabbage would be required before concluding that collard germplasm should be classed with the much larger Capitata group.

Collard landraces evaluated in this research represent unique genotypes compared to collard cultivars and breeding lines. RAPD markers specific to the landraces were identified when composite samples of collard cultivars and landraces, as well as cultivars of other cole crops, were compared. Additional unique markers were also uncovered when individuals of OP cultivar and landrace populations were examined. Thus, collard landraces are likely a pool of new genes that might be useful specifically in a collard breeding program, and in general for *B. oleracea* crop improvement. A systematic collection of collard landraces from sources in the southeastern United States should prove a worthwhile endeavor and help to increase the store of *B. oleracea* germplasm adapted to this region.

Literature Cited

dos Santos, J.B., J. Neinhuis, P. Skroch, J. Tivang, and M.K. Slocum. 1994. Comparison of RAPD and RFLP genetic markers in determining genetic similarity among *Brassica oleracea* L. genotypes. Theor. Appl. Genet. 87:909–915.

Demeke, T., R.P. Adams, and R. Chibbar. 1992. Potential taxonomic use of random amplified polymorphic DNA (RAPD): A case study in *Brassica*. Theor. Appl. Genet. 84:990–994.

Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bul. 19:11–15.

Hortus Third. 1976. Liberty Hyde Bailey hortorium. Macmillan, New York.

Hu, J. and C.F. Quiros. 1991. Identification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Rpt. 10:505–511.

Kresovich, S., J.G.K. Williams, J.R. McFerson, E.J. Routman, and B.A. Schaal. 1992. Characterization of genetic identities and relationships of *Brassica oleracea* L. via a random amplified polymorphic DNA assay. 1992. Theor. Appl. Genet. 85:190–196.

Neinhuis, J., M.K. Slocum, D.A. DeVos and R. Mureen. 1993. Genetic similarity among *Brassica oleracea* L. genotypes as measured by restriction fragment length polymorphisms. J. Amer. Soc. Hort. Sci. 118:298–303.

Ren, J., J.R. McFerson, R. Li, S. Kresovich, W.F. Lamboy. 1995. Identities and relationships among Chinese vegetable *Brassicas* as determined by random amplified polymorphic DNA markers. J. Amer. Soc. Hort. Sci. 120:548–555.

SAS Institute. 1985. User’s guide: Statistics. 5th ed. SAS Institute, Cary, N.C.

Sneath, P.H.A. and R.R. Sokal. 1973. Numerical taxonomy. Freeman, San Francisco.

Song, K.M., T.C. Osborn, and P.H. Williams. 1988a. *Brassica* taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) I. Genome evolution of diploid and amphidiploid species. Theor. Appl. Genet. 75:784–794.

Song, K.M., T.C. Osborn, and P.H. Williams. 1988b. *Brassica* taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). II. Preliminary analysis of subspecies within *B. rapa* (syn. *campestris*) and *B. oleracea*. Theor. Appl. Genet. 76:593–600.

Thorman, C.E., M.E. Ferreira, L.E.A. Camargo, J.G. Tivang, and T.C. Osborn. 1994. Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theor. Appl. Genet. 88:973–980.

Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski, and S.V. Tingeoy. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:7213–7218.

Williams, P.H. 1985. Crucifer genetics cooperative resource book. Univ. of Wisconsin, Madison, Wis.