Novelty and Coverage in context-based information filtering

Alexandra Dumitrescu and Simone Santini

Escuela Politécnica Superior
Universidad Autónoma de Madrid

Abstract

We present a collection of algorithms to filter a stream of documents in such a way that the filtered documents will cover as well as possible the interest of a person, keeping in mind that, at any given time, the offered documents should not only be relevant, but should also be diversified, in the sense not only of avoiding nearly identical documents, but also of covering as well as possible all the interests of the person. We use a modification of the WEBSOM algorithm, with limited architectural adaptation, to create a user model (which we call the user context or simply the context) based on a network of units laid out in the word space and trained using a collection of documents representative of the context.

We introduce the concepts of novelty and coverage. Novelty is related to, but not identical to, the homonymous information retrieval concept: a document is novel if it belongs to a semantic area of interest to a person for which no documents have been seen in the recent past. A group of documents has coverage to the extent to which it is a good representation of all the interests of a person.

In order to increase coverage, we introduce an interest (or urgency) factor for each unit of the user model, modulated by the scores of the incoming documents: the interest of a unit is decreased drastically when a document arrives that belongs to its semantic area and slowly recovers its initial value if no documents from that semantic area are displayed.

Our tests show that these algorithms can effectively increase the coverage of the documents that are shown to the user without overly affecting precision.

1 Introduction

The ready availability of data made possible by modern digital communication systems and the sheer amount of data that these system make accessible have created a curious inversion in the relation between people and the information they seek. For centuries, the basic information problem was to find enough of it. The press, the public library, the newspapers are devices designed to solve or alleviate this problem, reaching an uneasy and unstable balance between the amount of data we were exposed to and the useful information that we were capable of getting out of them. Digital storage and digital communication have thrown this balance awry: the problem that we (and, very likely, the future generations) face is no longer to get to the data, but to avoid being overwhelmed by them; no longer searching for the precious stuff, but keeping most of them out of our (digital) door.

For centuries, the relation between data, information, and knowledge was considered—and with good reason—a direct one: one could get better knowledge from more information, and one could get more information by having access to more data. Techniques like statistics or data visualization [38], which distilled, so to speak, information from data, do not impinge on this basic tenet: data are a scarce and valuable resource, and one should look at and analyze all the data that she can put her hands on. Consequently, for centuries, laying one’s hand on enough relevant documents has been a central problem for whoever pursued an intellectual interest. Around the end of the X century Gerbert (later Pope Sylvester II) wrote

I am working on the creation of my library. For a long time in Rome and in all Italy, in Germany and in Belgium I spent great amounts of money to pay copyists and buy books, helped by the solicitude and benevolence of my friends. Allow me then to pray you to render me the same service. According
to what you say, I will send the copyist, the parchment, and the necessary money, and I will be grateful for your help [8].

Casting this situation in the language of information retrieval, we could say that the emphasis of data acquisition was preponderantly on recall: in a situation of scarcity of data, the paramount preoccupation is to avoid missing any potentially useful document, and the risk of having to analyze some irrelevant ones is a small price to pay for this guarantee.

Things have changed. The amount of data available on the internet is such that not only is recall no longer a primary concern: it has become virtually unmeasurable, if not meaningless. Any set of retrieved documents small enough to provide useful information (viz., to be manageable by one person) will contain only an insignificant fraction of what is available on-line, and its recall will therefore be practically zero. Conversely, any set of documents with a significant recall will, due to the sheer amount of data available, be too large to provide any useful information. At the same time, despite the amount of data available, we don’t seem to be better informed than we used to: drowning in a plethora of trivia, it is easy to overlook the things that we truly would have cared about.

So, the emphasis has shifted to trying to achieve high precision, that is, to retrieve only (or mainly: nobody’s perfect) relevant documents.

Precision, however, is only part of the story due to another frustrating characteristic of ultra-large collections such as the internet: the presence of many documents that say pretty much the same thing. Much like in Borges’s Babel Library, to which the internet is the best approximation so far, for any given document on the internet there are likely to be hundreds more that, without being quite the same, say more or less the same things.

Data are not information, and the relation between them is non-linear and highly contextual. A document may be highly informative if it is the first document one receives on a given topic, but its information content (which, unlike its data content, is subjective and relative to the reader) is virtually nil if we see it after seeing another document that contains more or less the same data. In other words: the information content of a document is not simply a function of its data content, but depends on the data content of the other documents that a person is examining. Observations such as these have caused a shift of emphasis, in Information Retrieval, from systems based purely on relevance to systems that take into account further dimensions such as novelty and diversity. The classical Robertsonian model of Information Retrieval [26, 27] assumed that the relevance of a document for a query is a function of the query and the contents of the document. Beginning around the turn of the century, this assumption has been criticized based on considerations similar to those we just made. A result set of highly relevant documents (in the Robertsonian set) that contains very similar document, each one relating more or less the same information, would not be very informative [5, 6]. Novelty and diversity are measures that attempt to avoid this kind of situation. A document is novel with respect to a set of documents, if it contains information not present in any other document of the set; a set of results is diverse if it covers all different aspects of a query.

In all these cases, novelty and diversity are measures relative to one result set. This is because in the typical model of Information Retrieval, each query is an independent interaction, so the current result set is the only possible context with respect to which the novelty of a document can be measured.

In this paper, we consider a different scenario: that of filtering [22] continuous streams of documents (more specifically, news items) so that incoming documents of potential interest are shown to the user, while documents of scarce interest are filtered out. The considerations that led researchers to develop the concepts of novelty and diversity are valid here as well: if an important event takes place, various sources will talk about it, often repeating more or less verbatim the same press release. Presenting over and over again similar documents on the same topic will soon result in data overflow and poor information. This common root notwithstanding, two characteristics of our scenario suggests that we should take a somewhat different approach to the diversification of results:

1. In Information Retrieval, novelty and diversity are defined for finite result sets, but in our case we are in the presence of a continuous flow of results that change as new items arrive.

2. A filtering system doesn’t deal with a specific information need clearly defined by a query, the way an Information Retrieval system does. Consequently, when we consider novelty and diversity, we must refer
these terms not to a result set but to the general interests of a person and, at the same time, we can’t ignore the temporality of the results: a document is novel if it covers a topic of interest that hasn’t recently been covered by other documents.

The solution of our filtering problem requires two elements: on the one hand, we must build a suitable model of a person’s general interests; on the other hand, we must be able to use this model to extract, from the stream of documents, those that cover topics of interest for the person that haven’t been covered for some time. The time component is essential here: a document may not be considered novel if the topic it covers has been covered recently by another documents. However, the user interest that has been satisfied by a previous document will arise again if the topic hasn’t been covered for some time, so the same document may be considered novel if it is presented again some time later, when its topic hasn’t been covered in the recent past.

We present and evaluate the algorithmic foundations of a news filtering system based on two components.

i) A dynamic model of a person interest. We use the documents with which a person interacts to train a self-organizing network that will act as a latent semantic manifold. Incoming documents are represented using a vector space representation, and their distance from the latent semantic manifold is used as a measure of relevance for the user interest.

ii) A mechanism for taking into account the novelty of items. Whenever an item is shown that is close to a region of the latent semantic manifold, the urgency, or interest of that region is reduced during a certain amount of time so that further documents too similar to the one already shown will have their relevance reduced.

We present our user model in Section 2, in which we also introduce the basic filtering algorithm, that is, the algorithm that selects documents of potential interest to the user without taking into account novelty and diversity.

Our new scenario—continuous flow of items and context represented by the user model—forces us to analyze afresh the concepts of novelty and diversity, an analysis that we carry out in Section 3. As a result, we maintain the notion of novelty, albeit in a somewhat different form that the usual one, but we replace diversity (a property of a result set) with coverage: a measure of how much do the results cover all the interests of a person. In Section 4, we extend the algorithm to take into account novelty and to increase coverage. In Section 5, we present our testing methodology and in Section 6 we present our results. Related work is discussed in Section 7, and some conclusions are drawn in Section 8.

Before we conclude this introduction, we should like to make two observations. Firstly, our user model is based on the analysis of documents of interest to the user, but we are agnostic with respect to the origin and nature of these documents: files in the computer, emails, texts, queries to databases, search history, etc. The selection of suitable sources is a system design issue that we do not consider here.

Secondly, we filter by analyzing only the text of the news, that is we ignore the possible presence of meta-data in the stream. Meta-data are a valuable source of information, and they obviously play an important role in the creation of an information system. They are, however, often determined a priori, not relative to the interests of the user, and not discriminating enough, so that they often need to be supplemented with algorithms that work on the actual contents of the documents. Such algorithms form the subject of this paper.

2 The User Model

Our user model, which we introduce in this section, is an adaptation of our previous work [11] which in turn is based on self-organizing maps (SOM, [10]) and their application to information retrieval (WEBSOM, [15]).

The base of our model is the standard vector space of information retrieval [28], in which each axis represents a word (more precisely: a stem–see the following). A point in this space is a vector \(p = (p_1, \ldots, p_W) \) (where \(W \) is the number of words) and can be loosely considered to represent a concept, \(p_i \) being the degree to which the word \(i \) is part of the concept \(p \). For technical reasons, we shall work with normalized vectors (\(\sum_i p_i^2 = 1 \)), so that we shall not work on the whole word space but on the unit sphere in this space.
Our context representation is a modification of the standard SOM algorithm as it is normally used in information retrieval. Before introducing our modified version, we consolidate the terminology by introducing briefly the standard algorithm.

2.1 The standard SOM algorithm

A Self-Organizing Map constituting a context, thus as it was used, for example, in [10] consists of a two-dimensional grid of units\(^1\), arranged in a rectangular \(N \times N\) grid, where each unit, \(u^{i,j}\), is a point in the word space:

\[
u^{i,j} = [u_1^{i,j}, u_2^{i,j}, \ldots, u_W^{i,j}]\] \(\text{(1)}\)

The units are related to each other as points in the word space (using some distance \(d\) in this space) and as elements of the grid, using a distance induced by the topological relation between them. We assume a 4-neighborhood in our grid, so that the grid neighbors of unit \(u^{i,j}\) are the four units \(u^{i-1,j}, u^{i+1,j}, u^{i,j-1}, u^{i,j+1}\).

The grid distance between units induced by this choice is the so-called chemical distance

\[
\delta(u^{i,j}, u'^{i',j'}) = |i - i'| + |j - j'| \]

\(\text{(2)}\)

The units also have, between themselves, a distance qua points in the word space. Because of normalization, the units are placed on the unit sphere of the word space, a topology that is well captured if we use, rather than the restriction of a distance defined in the whole space, the cosine similarity:

\[
s(u^{i,j}, u'^{i',j'}) = \frac{\sum_{i=1}^{W} u_i^{i,j} u'_i^{i',j'}}{\sqrt{\sum_{i=1}^{W} u_i^{i,j}^2 \sum_{i=1}^{W} u_i^{i',j'}^2}} \]

\(\text{(3)}\)

All weights are positive (viz. all units are in the first octant of the unit sphere), therefore \(s(u^{i,j}, u'^{i',j'}) \in [0,1]\), and we can define the word space distance between two units as

\[
d(u^{i,j}, u'^{i',j'}) = 1 - s(u^{i,j}, u'^{i',j'}) \]

\(\text{(4)}\)

The grid of units is placed in the word space following a learning procedure based on documents that the user has considered interesting in the past and which constitute our initial training set. Let \(D = \{D_1, \ldots, D_n\}\) be such a set of documents. Each document is processed by stop-word removal and stemming using standard information retrieval techniques [28]. Using these techniques, document \(D_i\) is modeled as a bag (multi-set) of stems \(D_i = \{t_{i,1}, \ldots, t_{i,n}\}\). For each stem \(t\) we determine its document frequency, defined simply as the number of times that stem appears in the document (viz., in the bag) \(D_i\). We know from the information retrieval literature [28] that the stem frequency is a poor indicator of the relevance of a stem for the characterization of a document. Common words will appear many times in any document, and will consequently be of little help for discriminating between documents.

A good word for characterizing a document is a word that appears many times in the document but is relatively rare in the English language. We therefore consider a standard corpus of the English language [7] and determine for each word its inverse frequency: if the corpus contains \(C\) words, and the stem \(t\) appears \(C_t\) times, then we define its raw frequency as

\[
r_t = \frac{C_t}{C} \]

\(\text{(5)}\)

and its (logarithmic) inverse corpus frequency as

\[
icf_t = \log \frac{1}{r_t} = -\log C - \log C_t \]

\(\text{(6)}\)

(the presence of the logarithm is standard in information retrieval and is based on empirical considerations). If the stem \(t_j\) appears \(n_{ij}\) times in document \(D_i\), and the document contains \(|D_i|\) words, then the weight of the stem is given by

\[
q_{ij} = \frac{n_{ij}}{|D_i|} \text{icf}_{ij} = -\frac{n_{ij}}{|D_i|} \log r_{ij} \]

\(\text{(7)}\)

\(^1\)These units receive different names in the literature: given their grid arrangements they are sometimes called nodes, and in the neural network literature they are in general called neurons. Here we shall use the neutral term units.
These weights depend on the word frequency of the whole document but, in order to obtain a finer representation, we break the document into sentences (a sentence is defined simply as a sequence of words terminated by a period, a comma, a colon or a semicolon) and represent each one as a separate point using the words that appear in it and the weights q_{ij}, computed on the whole document D_i. If the sentence is composed of the stems $\{w_{k_1}, \ldots, w_{k_s}\}$, then it is represented as the point of coordinates

$$q = (0, \ldots, 0, q_{k_1}, 0, \ldots, q_{k_1}, \ldots, 0, q_{k_s}, \ldots, 0)$$ \hspace{1cm} (8)

Note again that a point is a representation of a sentence, but the coordinates of the point are weights determined on the basis of the document of which the sentence is part. It is therefore possible for the same sentence that appears in different documents to have different representations.

Finally, the coordinates of the sentence are normalized in order to place the point on the unit sphere. The final representation of the sentence is therefore the point

$$p = \frac{1}{\sqrt{\sum_{i=1}^{s} q_{k_i}^2}} (0, \ldots, 0, q_{k_1}, 0, \ldots, q_{k_1}, \ldots, 0, q_{k_s}, \ldots, 0)$$ \hspace{1cm} (9)

Document D_i is represented as a bag of points in the word space, one for each sentence that appear in it $S_i = \{p_{i,1}, \ldots, p_{i,k_i}\}$. The collection \mathcal{D} will be represented by the bag-union of its documents:

$$\mathcal{S} = \bigcup S_i$$ \hspace{1cm} (10)

During learning, the elements of the training set \mathcal{S} are presented one at a time (viz., one sentence presentation at a time). Each presentation of an element (and the consequent learning procedure, detailed below) is an event; a presentation of all the points in the set \mathcal{S} is an epoch. Learning consists of a suitable number of epochs.

Upon presentation of a point p, the similarity with all units of the grid is computed. The best matching unit (BMU, indicated as u^*) is the unit $u_{i,j}$ with the maximum similarity.

$$u^* = \arg \max_{i,j} s(p, u_{i,j}) = \arg \max_{i,j} \sum_{i=1}^{W} p_i u_{i,j}^{i,j}$$ \hspace{1cm} (11)

The idea behind the self-organizing map is that the BMU u^* will be moved by a certain amount towards the point p, and that the units in a suitable neighborhood of u^* (where the neighborhood is intended in the grid topology) will be moved as well, by an extent decreasing as the grid distance from the BMU increases. Define the functions:

$\zeta(t)$: learning factor at time t; the function ζ, with $0 \leq \zeta \leq 1$ is monotonically non-increasing with t, and

$$\lim_{t \to \infty} \zeta(t) = 0$$

thus guaranteeing the stability of the learning process. The decrease rate $\dot{\zeta}(t) < 0$ must be small enough to guarantee a good quality of learning.

$h(t, \delta)$: the neighborhood function, which controls how much the units at distance δ from the winning unit will move. This function is such that:

$$\frac{\partial h}{\partial t} \leq 0$$

$$h(t, \delta) \in [0, 1] \text{ (for all } t, \delta)$$

$$h(t, \delta + 1) \leq h(t, \delta) \text{ (for all } t)$$

$$h(t, 0) = 1 \text{ (for all } t)$$

with these definitions, upon the presentation of a point p, each unit $u_{i,j}$ will be updated according to the rule:

$$u_{i,j}^{i,j} \leftarrow u_{i,j}^{i,j} + \zeta(t) h(t, \delta(u^*, u_{i,j})) [p - u_{i,j}^{i,j}]$$ \hspace{1cm} (13)
In our test we used for ζ the function

$$\zeta(t) = \frac{1}{\phi_u + \gamma_u(t) + 1}$$

(14)

where ϕ_u is a confidence value for unit u, set to 1 in our test, and $\gamma_u(t)$ is the number of times unit u has been the BMU up to time t. For $h(t, \delta)$ we use a mexican hat function $h(t, \delta) = F_1(\delta)/\sqrt{\delta}$, with

$$F_\sigma(d) = \frac{2}{\sqrt{3\sigma\pi}}(1 - \frac{d^2}{\sigma^2})e^{-\frac{d^2}{2\sigma^2}}$$

(15)

Compared with the Gaussian neighboring function used in previous work [11], this neighborhood function produces a bigger change in the units close to the BMU and will decrease till pushing away units that are not close enough to the BMU. This repulsive action at intermediate distances counters the tendency of the network to concentrate too much in the dense areas of the input space, resulting sometimes in a large number of nearly identical (and therefore not very informative) units. During the learning process, the radius of the neighborhood is decremented over time (by reducing σ) so that the units that are far away will be less influenced.

When learning is done, the map is laid in the word space in a way that approximates the probability distribution of the input points (viz. the representation of the sentences) subject to the two constraints of two-dimensionality and continuity. If the number of units is sufficiently large, the map exhibit certain optimality properties [29]. This map constitutes what we call the latent semantic manifold, akin to the semantic subspace of latent semantics [9], but not constrained by the requirement of being a linear sub-space of the word space.

2.2 Information Filtering with the standard model

Once the network has been trained, it constitutes the context that we use for filtering. Whenever a document arrives, it is assigned a score using the following procedure:

i) the document is processed using the standard techniques used for the documents in the training set, but without breaking it into sentences: weights are assigned using (7) then normalized. The result is a representation of the document as a single point in the word space;

ii) the similarity with all units is computed, and the BMU is determined as in (11);

iii) the BMU determines the semantic area of the document (viz. the part of the context for which it is relevant), and the similarity

$$s_p = \sum_{k=1}^{W} p_k u_k$$

(16)

determines the absolute relevance of the document for the context.

As in the Robertsonian model, the most relevant items are selected for display.

2.3 Display of the Result

Documents arrive in a stream, so we have to consider the presence of a potentially infinite number of them, creating the issue of how to display potentially infinite results in a finite display. There are several methods that one can use to display at any given time a significant set of documents. The details and the nature of such methods depend on many variables, among which are the nature of the application or the layout of the display [30, 31]. A detailed study of such methods is beyond the scope of this paper but, for the sake of concreteness, we shall assume that the documents to be displayed are chosen as follows.

Assume that, at a given time t, the interface is showing the documents $[d_1, \ldots, d_q]$, having relevances $[s_1, \ldots, s_q]$. Assume also that, regardless of the order in which the documents are actually shown in the interface, the list is ordered in decreasing score values. At this time, document d_p arrives, and the algorithm gives it a score s_p. Then:
i) if $s_p < s_q$, the document d_p is not shown;

ii) if $s_{k-1} \leq s_p \leq s_k$ the document d_p is inserted in the kth position of the list, which now becomes

$$[s_1, \ldots, s_{k-1}, s_p, s_k, \ldots, s_{q-1}]$$

document d_q is no longer shown;

iii) the relevance of all document in the list is decreased by a factor $\beta < 1$:

$$s_k \leftarrow \beta s_k \quad k = 1, \ldots, q$$

(17)

Step iii) implements a "loss of relevance" of document that have been already displayed for some time, and avoids the undesirable situation in which very relevant documents stay forever in the list, preventing new documents from being displayed.

3 Novelty and Coverage

The concept of novelty has become important in information retrieval research as it may help to overcome some of the drawbacks of the standard Robertsonian model \cite{27}, in which each document is evaluated independently for relevance to a query or a situation, and the most relevant documents are presented to the user. The Robertsonian model is based on a number of specific (and often unspoken) assumptions about relevance \cite{37}, of which the one we are especially interested in is independence: the relevance of a document does not depend on the other documents of the result set. Starting towards the end of the 1990s, these assumptions have been questioned \cite{6, 3} and different, non-Robertsonian models of information retrieval have been proposed.

In the case of the independence assumption, this questioning has materialized in the realization that the relevance of a document is relative to the presence of other documents in the result set: retrieving a document that, taken in isolation, would have been relevant, might not be so relevant if the data set already contains documents similar to it.\footnote{This realization is, in an embryonic way, present in the Robertsonian model: if we stand by the purely formal statement of the model, the optimal result set is obtained by repeating the most relevant document as many times as necessary to fill the result list. So, even in the Robertsonian model, the hypothesis of independence must be suspended at least to the point of removing duplicates.}

In a "good" list of documents, each document should be, to a certain degree, novel, in the sense that each should provide information that the other documents of the list do not provide. We are interested, let us say, in Marcel Proust. One of aspects of the subject is the writer’s biography. If, however, the first document in the set is "the" ultimate biography of Marcel Proust, further bibliographies will not add much information to the set. For the second document in the set we will probably prefer something different, for instance, something on Proust’s novels. If the second document is, say, a complete critical analysis of *A la recherche du temps perdu*, we might want, as a third document, something on *Pastiches et mélanges*, or some study on the reception of Proust’s work, or even a reference to Alain de Botton’s book *How Proust can change your life*. It is not enough that all documents of the list be about Proust: to attain a high novelty each one must be in some respect unique.

Suppose that we have executed a query in an Information Retrieval system and we have received as result the set of documents $R = \{d_1, \ldots, d_n\}$. The novelty of document d_i with respect to the set R is the extent to which d_i contains information that the set $R \setminus \{d_i\}$ does not. Novelty is therefore a property of a document with respect to other documents in a set; we can measure the overall novelty of a set by considering a suitable average of the novelty of its elements. Standard measures of novelty and of the related concept of diversity have been proposed and evaluated in information retrieval and recommendation systems \cite{39}.

In this paper, we shall change somewhat this concept of novelty due to the specific circumstances in which we work. Two characteristics of the situation that we are studying require this change.

i) In the standard concept, novelty is defined within the confines of a specific query: a person is interested in something rather specific (the subject of a query) and documents should be novel within the narrow straitjacket imposed by the query: in the case of the Marcel Proust query, a document about the mating
habits of the woodpecker would certainly be very novel but, alas, it would also be completely irrelevant. Our straitjacket is looser: we develop a model of a person’s general interests (what we call the context of that person) and we filter information based on all these interests: any piece of information on a subject the person is interested in will be valuable, and novelty has to be defined within these new, wider, limits.

ii) Standard novelty is defined for a result set, which is a one-shot affair: somebody makes a query (or asks for a recommendation) and receives a result. We are, on the other hand, concerned with a stream of information coming continuously to us and coming to a person whose interests also evolve with time. The concept of novelty must take into account this time-dependence: a document that is not novel today might very well be novel tomorrow: if I am interested in world affairs and I just received a very good article on the result of the Presidential elections in Ecuador, new results about the same presidential elections might not be very novel today. But if in a week a new article on the presidential elections appears, that probably means that there is something new about the topic, and I might be very interested in the article. That is, a piece of data that now is not novel due to the previous reception of similar data might be novel if we allow enough time to pass.

The standard concept of novelty describes simply the relation between a document and a set of documents, since no other source is available to determine whether a document is novel or not. In our case, however, we do have additional information in the context model that we use to determine the person’s interests (viz., the context), so it seems natural to define an external notion of novelty, no longer intrinsic to the result data themselves, but relative to the context. At the same time, we want our novelty model to be dynamic, so that a document that is not novel at a certain time, may become novel at a later time. A conceptual definition of novelty, from our point of view, could be the following

A document is novel if it belongs to a semantic area of interest to a person for which no documents have been seen in the recent past.

We can make this concept more grounded by making reference to our user model. We have seen that each unit in the model represents a "semantic area" of interest to the user. We associate to each semantic area (viz., to each unit) a value, called urgency or interest: \(\lambda^k(t) \in [0, 1] \) is the urgency of semantic area \(k \) at time \(t \). We shall analyze the evolution of \(\lambda^k(t) \) in the next section but, broadly speaking, we have \(\lambda^k(t) \sim 0 \) if we just received an item about semantic area \(k \), we have \(\lambda^k(t) \sim 1 \) if semantic area \(k \) hasn’t been covered by items in a long time. With these concepts in mind, we can give our qualitative definition of novelty of a data item:

An item is novel if it cover a semantic area with high urgency.

Note again that our definition is external to the result set: the novelty of an item at time \(t \) is not determined by reference to the other items in the result set that are being displayed at time \(t \), but by the fact that the portion of the context which the item refers to is, at the time of arrival of the item, considered interesting.

We have defined (qualitatively, so far), the external novelty of an item. Extending it to a cumulative measure for a set of items is not straightforward, as the cumulative value will depend, in general, on the order in which the items arrive and the arrival times. To see why this is the case, consider a situation in which the same item is seen in input twice with no intervening items. In this case, the joint novelty will be basically that of the first occurrence since, after the arrival of the first item, the interest of the semantic area to which both belong will be virtually zero. However, if the second item arrives a long time after the first, the urgency of that semantic area will have recovered, so that both items will be considered to be novel.

So, in order to have a cumulative definition of novelty, we need to know not only what elements have we received but also their order and the times of their arrival:

A list of items \([w_1, \ldots, w_n] \) arriving at times \([t_1, \ldots, t_n] \) with no intervening items have high novelty if each one is close to a unit that, at the time of arrival, has high urgency.

This measure is very specific and ill-suited for considerations and experiments of a general nature. In order to get a more manageable measure, we define coverage, a measure that abstracts from order and arrival times, and simply counts the number os semantic areas that are activated:
Figure 1: A non-uniform network with units concentrated in certain areas of the word space, resulting from a skewed collection of context items. The result is areas of low density of units (the center, in this case) together with areas of high density. For the meaning of the labels "A,B,C,D,E" in this figure, see the text.

A set of items \(\{w_1, \ldots, w_n\} \) has high coverage if each one of the item is close to a different semantic unit.

We shall make these measures specific, and give quantitative definitions in the next section.

4 Coverage-enforcing algorithm

Our goal in this section is to devise algorithms to increase coverage, that is, to favor, among the items that arrive in a given time span, those that cover parts of the user’s semantic field that had not been covered in the recent past. We want to strike a balance in doing this: we don’t want to display a marginally relevant document at the expense of a highly relevant one only because the former is weakly related to an area in the semantic field that hasn’t been seen in a while.

In order to strike this balance, we introduce, for each unit of the network, a time-varying parameter, which we have previously called the urgency or interest, \(\lambda^{ij} \in [0, 1] \). The value of \(\lambda^{ij} \) defines how much, at time \(t \), the user is interested in receiving items in the semantic area of unit \(u^{ij} \). Initially, the value of \(\lambda^{ij} \) is set to 1 for all units. If at time \(t \) unit \(u^{ij} \) is the BMU and the item that just arrived is displayed, then we assume that the user is no longer interested in the semantic area of \(u^{ij} \), and \(\lambda^{ij} \) is reduced accordingly. Each time \(u^{ij} \) is not the BMU or whenever, \(u^{ij} \) being the BMU, the item is not displayed, we assume that the user “forgets” having seen an item in that semantic area, and that his interest in it increases until, after a certain time, it is restored to its initial value. The specific form of this variation doesn’t seem to be important, so we choose the simplest: a fractional drop in interest when the unit is the BMU, followed by a linear recovery. Let \(\Theta \) be the drop constant (viz., the factor by which \(\lambda^{ij} \) is reduced when \(u^{ij} \) is the BMU), and \(K \) the recovery constant (the time it takes for \(\lambda^{ij} \) to get back to its original value). Then

\[
\lambda^{ij}(t + 1) = \begin{cases}
\lambda^{ij}(t) - \Theta & \text{if } u^{ij} \text{ is the BMU and the item is displayed} \\
\min\{1, \lambda^{ij}(t) + \frac{\Theta - 1}{K} \} & \text{otherwise}
\end{cases}
\]

We call this solution the drastic interest update: the interest of the BMU is decreased, while that of all other units is increased or kept constant at 1.

The algorithm that we use to create the context guarantees that nearby units on the grid are also relatively close in the word space, that is, that there is a certain degree of semantic overlap between them. Because of this,
it is not unreasonable to assume that when the interest in the BMU drops, the interest in nearby units should also drop, albeit to a lesser degree. In order to implement this observation, we define an action radius $\Delta \geq 0$ and a grading function
\[
\rho(\delta) = 1 - \frac{\delta}{\Delta}
\] (19)

The interest factor is then updated for all units according to
\[
\lambda_{ij}(t + 1) = \begin{cases}
1 + \left(1 - 1 \Theta \right) \rho(\delta(u^{ij}, u^*)) \right] \lambda_{ij}(t) & \text{if } \delta(u^{ij}, u^*) \leq \Delta \\
\min\left\{1, \lambda_{ij}(t) + \frac{\Theta - 1}{K \Theta} \right\} & \text{otherwise}
\end{cases}
\] (20)

Units whose distance from the BMU is less than Δ will have their interest reduced by an amount that will be smaller the farther away the unit is from the BMU. Unit at a distance Δ from the BMU will have their interest unchanged, while units at a distance greater than Δ will have their interest increased or kept constant to 1. We call this solution the *graded* interest update.

The values λ_{ij} are used to modify the equation that determines the BMU, penalizing units with lower interest. Equation (11) is replaced by
\[
u = \text{argmax}_{i,j} \lambda_{ij} s(p, u_{ij}) = \text{argmax}_{i,j} \lambda_{ij} \sum_{k=1}^{W} p_k u_{i,j}^k
\] (21)

We call the term $\lambda_{ij} \sum_{k=1}^{W} p_k u_{i,j}^k$ the *modulated relevance*, distinguishing it from the absolute relevance defined in (16). This equation penalizes units with lower interest so that if an item in the semantic area of unit u^{ij} has been displayed recently, new items in the same semantic areas will have a lower modulated relevance, and will need a higher absolute relevance in order to be selected, making items in other semantic areas more likely to be displayed.

Figure 2
The same network after inserting and removing units. New units have been created in the mid-point of the segments $B-C$, $C-D$, and $B-E$, while unit A, placed in a zone of high density, has been removed. If necessary, the point marked F, mid-point of the line that joins two of the newly created units, will also be created.

4.1 Dynamic network topology

In the standard WEBSOM algorithm, the topology of the network is fixed: its shape (a regular rectangular grid) and the number of units are set a priori. The analysis of early tests convinced us that we needed a more flexible architecture. It is common for people to have certain dominating interests, and their context will contain many
documents related to these interests. Consequently, when the network is deployed in the word space, some areas will show a high concentration of units. A schematic example, with a two-dimensional word space is shown in Figure 1. In this case, the areas near the corners of the square are the most represented in the documents that formed the context and are, consequently, the areas with the greatest concentration of units [16]. This is what the network is supposed to do and, were it not for the issue of novelty, it would be the optimal configuration for the network to be in: it can be shown that, in the limit of a continuum of units, this is the optimal two-dimensional representation of the probability distribution from which the data are drawn [29].

If we are interested in novelty, the situation of Figure 1 might not be optimal: novelty imposes a more thorough exploration of the semantic space, even at the cost of overemphasizing areas that are not so interesting but that haven’t been seen in a while. This requires a compromise between faithful representation of the probability distribution of the training set and coverage of the whole semantic space: while we still want the more interesting areas to be more densely populated, we want to mitigate this effect somewhat, so that no area is too dense or too sparse. We have modified the algorithm to allow a limited dynamic configuration of the network, to make it more uniform than the raw algorithm would do. Consider again the network in Figure 1. Here we have a sparse center and a very dense upper-right corner. The sparsity of the center can be identified from the fact that units C and D or C and B are very far away from each other in the word space, despite being neighbor in the network topology. The opposite happens around unit A. In order to mitigate this skew, our algorithm will create three new units in the midpoints of the segments C-D, C-B, and B-E (units E and D are close enough that no new unit is necessary). Note that in this way the network distance between the pairs (C, D), (C, D) and (B, E) has increased from one to two. Additionally, we create the unit F halfway between the new units. In the upper-right corner, on the other hand, we reduce the density by eliminating unit A. The resulting network topology is that of Figure 2. This process is subject to a compromise: if we carried out creation and deletion of unit to its extreme point, we would obtain a network laid out uniformly in the word space, that is, the context would no longer reflect the probability distribution of the training test. This will give us maximum novelty, but will negatively impact the precision. Based on these considerations, we limit the number of new units that can be created: each group of four units in the original map will allow the creation of five new units, as in Figure 3. At the same time, no unit can be eliminated if one of its original neighbors has already been eliminated.

![Figure 3](image-url)

Figure 3: The creation of new units must be limited in order to avoid that the map become too uniform, thereby losing the information provided by the distribution of documents in the context. We only allow five new units to be created for each group of four original units. Here, the circles represent the original units of the maps, and the crosses represent the places where new units can be created.

In order to implement this modification, we consider the following quantities:

The context diameter. The context diameter is the maximum distance between two units in the context, where the distance is defined in terms of the similarity computed as in (3):

$$d_\phi = \max\{1 - s(u, v) | u, v \in M\}$$ \hspace{1cm} (22)

Note that, in the actual implementation, we estimate this distance by using a subset of the context documents, for the sake of efficiency.

The maximum activation distance is the maximum distance allowed between two nearby units before a new
\[
M = \{u^{i,j} | 1 \leq i, j \leq N_s\} \quad \text{the network to be trained.}
\]
\[
S = \{p_1, \ldots, p_K\} \quad \text{the points that represent the sentences in the documents of the context.}
\]
\[
\zeta(t) \quad \text{the instantaneous learning rate}
\]
\[
h(t, \delta) \quad \text{the instantaneous neighborhood function}
\]
\[
d_+ \quad \text{the activation distance}
\]
\[
d_- \quad \text{the deactivation distance}
\]
\[
nE \quad \text{the maximum number of epochs}
\]
\[
\text{stop} \quad \text{the stop criterion function}
\]
\[
\text{active}[u] \quad \text{attribute of each unit determining whether the unit is active.}
\]

Table 1: Input elements for the training algorithm.

A unit is created between them:

\[
d_+ = \frac{d_\phi}{\mu} \quad (23)
\]

where \(\mu\) is a scaling constant. If two nearby units, say \(u^{i,j}\) and \(u^{i+1,j}\) (where “nearby” is to be interpreted in the 4-neighborhood topology), are, after a learning step, at a distance \(d > d_+\), and and both them are from the initial grid, then a new unit \(u^{i+1/2,j}\) is created between the two, in the mid-point of the line joining the two units:

\[
u_{k}^{i+1/2,j} = \frac{u_{k}^{i,j} + u_{k}^{i+1,j}}{2}, k = 1, \ldots, W \quad (24)
\]

The minimum deactivation distance is the minimum distance at which two unit can be before one of them is removed:

\[
d_- = \frac{d_-}{\nu} \quad (25)
\]

where \(\nu > \mu\) is a scaling constant. If a unit has all neighbors within a distance \(d_-\), that unit is deactivated.

![Figure 4: Two different organizations of the initial grid to allow a limited adaptation of the topology. The filled circles represent initially active units, the hollow squares initially inactive ones. The pictures represent the situation before learning is started. The interwoven network (a) has a lower ratio of active vs/inactive units, which entails a higher capacity for growth, while the checkerboard initialization (b) has an (approximately) equal number of active and inactive units. Which solution gives better results depend in part on the characteristics of the context: in general, the checkerboard tends to perform better, as the low active/inactive ratio of the intertwined network often leads to relatively uniform networks in the word space, with consequent loss of precision. The network distance function is modified accordingly, so that only active units are counted. For example, units A and B in (a), which are separated only by one inactive unit, have \(\delta(A, B) = 1\).](image)

Figure 4: Two different organizations of the initial grid to allow a limited adaptation of the topology. The filled circles represent initially active units, the hollow squares initially inactive ones. The pictures represent the situation before learning is started. The interwoven network (a) has a lower ratio of active vs/inactive units, which entails a higher capacity for growth, while the checkerboard initialization (b) has an (approximately) equal number of active and inactive units. Which solution gives better results depend in part on the characteristics of the context: in general, the checkerboard tends to perform better, as the low active/inactive ratio of the intertwined network often leads to relatively uniform networks in the word space, with consequent loss of precision. The network distance function is modified accordingly, so that only active units are counted. For example, units A and B in (a), which are separated only by one inactive unit, have \(\delta(A, B) = 1\).

This limitation on the number of units that can be inserted allows us an easy implementation. We set up a map on a grid of higher resolution than actually needed and, at the beginning, leave some of the units deactivated.
If two neighboring units get too far away from each other (viz., at a distance greater than \(d_+\)) and there is a deactivated unit between them, we switch it to activated and set its weights as in (24). If two units get too close to one another (viz., at a distance less than \(d_-\)), we mark one of them as inactive. The network distance function is modified accordingly so that only active units are counted. For example, units \(A\) and \(B\) in Figure 4.a, which are separated only by one inactive unit, will have \(\delta(A, B) = 1\).

This solution allowed us to experiment with several initial configurations of the network. Two such configurations are shown in Figure 4B: we refer to them as the interwoven (on the left) and the checkerboard (on the right) configurations. The interwoven network has a lower ratio of active vs inactive units (there are approximately three inactive units for each active one), which entails a higher capacity for growth, while the checkerboard initialization has an (approximately) equal number of active and inactive units.

4.2 Algorithm summary

In the previous sections we have presented the basic WEBSOM algorithm and then we have defined a series of modifications. This has resulted in a somewhat piecemeal presentation. To make the description clearer, in this section we provide a brief summary of the final algorithms as they result from the modifications of the previous section, as well as the values of the parameters that we have used in the tests of the following section.

The training algorithm, shown in Figure 5, works on the data of Table 1. For training, each unit \(u\) has an attribute called active\([u]\) which determines whether the unit is active or not. These attributes are initialized to form one of the topologies if Figure 4 (such initialization is not shown). When a document \(D\) arrives, it is

```
Figure 5: The training algorithm with limited dynamic adaptation of the architecture. The thick bars indicate a portion of the code inside a loop that is executed in parallel.
```

```
represented as a point \( p \) in the word space using the techniques considered in the previous section. The algorithm that decides whether the document should be displayed is shown in Figure 6, while Table 2 shows the quantities used by the algorithm.

5 Testing Method

5.1 Data set

The method presented here is evaluated on a data set derived from the Reuters Corpus Volume 1 (RCV1-v1) \[17\], a collection of 806,791 news stories in NewsML format \[13\] created by Reuters journalists over a period of a year. For each document, category codes for topic, region, and industry sector are identified and assigned as corresponding meta data.

The RCV1-v1 test collection contains a total of 126 topics, distributed in a hierarchy with, at the top level, four general areas: **CCAT** (Corporate/Industrial), **ECAT** (Economics), **GCAT** (Government/Social), and **MCAT** (Markets). Each general area is the root of a topic sub-tree of depth at most 2. Of the 126 topics that compose the hierarchy, 23 had no news assigned to them. These topics were removed from the hierarchy, and all the results presented here refer to the remaining 103 topics. The experiments were carried out using three different contexts, that is, three different maps trained on one of the sub-topics of the general areas **MCAT**, **GCAT**, and **CCAT**. The area **ECAT** was not used as it represents a very small portion of the collection and has a strong overlap with **CCAT** and **MCAT**, resulting in very noisy data, not suited for measuring performance. The data about the general areas and the data that were used to build the context are reported in Table 3. For each area, we selected two sub-topics, and 5% of the news in each sub-topic was randomly selected to train the context. The

| \( M = \{ u^j | 1 \leq i, j \leq N_s \} \) | the trained network containing the context; |
| \( D \) | the document that just arrived |
| \( p \) | the representation of \( D \) in the word space |
| \( L = [(D_1, s_1), \ldots, (D_L, s_L)] \) | the documents currently displayed with the respective scores, ordered such that \( s_i > s_{i+1} \); |
| \( \rho(d) \) | the urgency relaxation function; |

Table 2: Input elements for the result display algorithm.

\[
u^* \leftarrow \text{argmax}\{\lambda^{ij} s(p, u^j) | u^j \in M\}
\]

\[
\text{foreach } m^{ij} \text{ in } M \text{ do}
\]

\[
\text{if } \delta(u^j, u^*) \leq \Delta \text{ then}
\]

\[
\lambda^{ij} \leftarrow \left[ 1 + \left( \frac{1}{\Theta} - 1 \right) \rho(\delta(u^j, u^*)) \right] \lambda^{ij}(t)
\]

\[
\text{else}
\]

\[
\lambda^{ij} \leftarrow \min\{1, \lambda^{ij}(t) + \frac{\Theta - 1}{K\Theta} \}
\]

\[
\text{end}
\]

\[
\text{if } s(p, u^*) > s_L \text{ then}
\]

\[
k \leftarrow \text{index s.t. } s_k > s(p, u^*) \geq s_{k+1}
\]

\[
L \leftarrow [(D_1, s_1), \ldots, (D_k, s_k), (D, s(p, u^*)), (D_{k+1}, s_{k+1}), \ldots, (D_{L-1}, s_{L-1})]
\]

\[
\text{fi}
\]

Figure 6: The algorithm that filters and displays the incoming documents.
Table 3: The top categories of the Reuters collection and their use for the creation of context. For each category, we show the percentage of the total corpus represented by that category. For each category, we have chosen two sub-topics and from each one we have drawn 5% of the news as a training set for the network (the three training set have been used to train three separate networks). For instance, MCAT represents a total of about 22% of the news stories corpus. To create the context MCAT we used 5% of the news documents of each of its sub-topics M11 and M13, for a total of about 5100 documents.

| General Area | % of total | Topics | % in context | news # |
|--------------|------------|--------|--------------|--------|
| MCAT         | 22         | M11 (EQUITY MARKETS) | 5          | 5100   |
|              |            | M13 (MONEY MARKETS)  | 5          |        |
| GCAT         | 25         | GDIP (International relations) | 5 | 4415   |
|              |            | GPOL (Domestic Politics) | 5 |        |
| CCAT         | 41         | C17 (Funding/Capital) | 5          | 4100   |
|              |            | C31 (Markets/Marketing) | 5 |        |

The choice of two sub-topics represents a compromise: on the one hand, drawing news from a variety of sub-topics creates a more general context, one that better represents the general characteristics of the area; on the other hand, using too many will not give us a good idea of the capacity of the method to detect news related to, but not too similar to, the news that are part of the context. The decision of using two sub-topics was validated during preliminary tests.

The three general areas are not independent of each other: some articles belong to several topics in more than one area. Since we shall use the general areas to measure precision (an item will be a hit if it comes from the same area as the context), this overlap imposes a limit on the performance that we can hope to obtain. Figure 7 shows the confusion matrices between the three general areas. Figure 7(a) shows the percentage of stems that appear in more than one category (e.g. 57.6% of the word stems that appear in MCAT also appear in CCAT); Figure 7(b) shows the percentage of the news items that appear in more than one category (e.g. 4% of the items that are classified as belonging to MCAT are classified as belonging to CCAT as well). Note that while the overlapping in terms of items is relatively small, reaching 10% of an area only in one case (CCAT vs. MCAT), the overlapping in words is considerable, being almost always greater than 40%.

This entails that, on the one hand, the judged similarity between these areas is quite small: most articles are judged by the Reuters journalist to belong to one and only one area but, on the other hand, the statistical properties of the language used are much more confusing: all these areas, especially CCAT and MCAT use a similar vocabulary so that classification based on word distribution only is extremely difficult.

Figure 7: Confusion matrices for the three general areas that are used in our experiments; (a): percentage of stems that appear in more than one area (e.g. 57.6% of the word stems that appear in MCAT also appear in CCAT); (b): percentage of the news items that appear in more than one area (e.g. 4% of the items that are classified as belonging to MCAT are classified as belonging to CCAT as well).
architecture

| SOM | Drastic | Graded |
|-----|---------|--------|
| SF  | DF      | GF     |
| SAC | DAC     | GAC    |
| SAA | DAA     | GAA    |

Table 4: Codes used in the following for the various combinations of urgency factor and network architecture that we shall use in the tests. These symbols will be prefixed with the area used to train the context, so GCAT/SF refers to a standard (fixed) architecture without interest update (λ ≡ 1) trained on GCAT, MCAT/GAC refers to a checkerboard dynamic architecture with graded interest update (∆ = 2) trained on MCAT, and so on.

Table 5: (a): The values of the context diameter $d_\phi$ for the three contexts used in the tests and the resulting values of the maximum activation distance $d_+$ and the minimum deactivation distance $d_-$; these values correspond to setting $\mu = 2$ and $\nu = 10$ in (24) and (25). (b): The learning parameters used in the tests. With these values, the initial value of the training parameter $\zeta$ is about 0.9, and the distance from the BMU at which learning practically doesn’t take place is 5.

5.2 Training

For each of the three general areas, a context was created using a similar procedure. The new items taken at random from two sub-topics are processed using the general method outlined in Section 2. As mentioned in the comments to (8), the unit that we use to create points in the word space is the sentence: each sentence in the document is mapped to a point in the input space. This decision was the result of some preliminary tests that used bi-grams [20], sentences and paragraphs as units.

Each of these contexts (MCAT, CCAT, and GCAT) has been used in nine different tests with nine different network models resulting from three options for updating the interest factor (constant interest with $\lambda^ij \equiv 1$, drastic, and graded with $\Delta = 2$) and the three options for the network architecture (fixed architecture, interwoven, and checkerboard). In the figures, The resulting possibilities will be indicated with the codes of Table 4. In addition to these, we shall use the codes MCAT, CCAT, and GCAT to indicate the category that had been used to build the context. So the results relative to the network for the MCAT context, with fixed architecture and drastic interest reduction will be indicated as MCAT/DFMCAT/DFMCAT/DF, and so on.

The active network uses two parameters, the maximum activation distance $d_+$, and the minimum deactivation distance $d_-$, which depend on the context diameter $d_\phi$ (see eq. (23–25)). The value $d_\phi$ was measured for the three contexts that we were used, and the values $d_+$ and $d_-$ computed accordingly. The results are shown in Table 5a. They correspond to selecting $\mu = 2$ and $\nu = 10$ in (24) and (25). The other learning parameters are shown in Table 5b.

5.3 Measurements

We base all our measurement on a testing list consisting, at any time, of the 500 best scoring items. The size of the list is kept fixed (when a new item arrives which is to be inserted into the list, the last item of the list is eliminated). At the beginning of each run of the system there is a transient during which the list fills up; all the measurements that we report are averages obtained once the system reaches a steady state.

The basic non-novelt performance evaluation that we use is the precision, defined as the fraction of elements in a list that belong to the same topic as the one used for the creation of the context. We don’t measure recall.
as the fixed size of the testing list, and its relatively small size with respect to the size of each category prevents the system from obtaining a significant recall.

A second element that we consider is the coverage. Coverage is a form of diversity measure: it measures how much of the context has been covered by a group of news. It is defined as

\[
cov(n) = \frac{\text{NBMU}(n)}{n}
\]  

(26)

where NBMU(n) is the number of different units that have been selected as BMUs by the last n items that have arrived. We always compute this value with a number n smaller than the number of units in the map, so that cov = 1 is theoretically possible.

6 Results

All our tests are conducted using the Reuters Corpus Volume 1 collection [23]. Based on these data, we measure the precision achieved in the nine cases of Table 4 together with their coverage. The two are reported side-by-side because, in general, an increase in coverage comes at the expense in precision, as it has normally observed in the novelty literature. What we have to verify in order to assess the quality of a method is that the increase in coverage doesn’t come at the expense of a large drop in precision. That is, we expect that the tests labeled --/D-- and --/G-- (those that use the interest factor) will have considerably higher coverage than the tests labeled --/S-- and that they will have the same or just slightly lower precision. Figures 8 to 10 show the mean precision and the mean coverage score at a depth of up to 500 items in the result list for contexts with fixed architecture under the three modes of urgency updates. Figures 11 to 13 show the same measures as obtained when the context is implemented as an adaptive network, initialized using the checkerboard scheme on the left of Figure 4.

Finally, Figures 14 to 16 show the same measures as obtained when the context is implemented as an adaptive network and the adaptive network was initialized using the alternating lines scheme on the right of Figure 4.

The general trend that emerges from all the results is that the increase in coverage comes virtually at no expense in precision. All the graphs on the left of Figures 8 to 10 show no statistically significant difference between the --/S-- (WEBSOM without interest factor) and the --/D-- or --/G-- treatments. The non-significance of the differences is confirmed by ANOVA (p < 0.01). In the MCAT and GCAT contexts, precision follows a similar
Figure 9: Precision and coverage for GCAT/SF, GCAT/DF, GCAT/GF

Figure 10: Precision and coverage for CCAT/SF, CCAT/DF, CCAT/GF
Figure 11: Precision and coverage for MCAT/SAC, MCAT/DAC, and MCAT/GAC; the active network used the checkerboard initialization scheme (left of Figure 4).

Figure 12: Precision and coverage for MCAT/SAC, MCAT/DAC, and MCAT/GAC; the active network used the checkerboard initialization scheme (left of Figure 4).
Figure 13: Precision and coverage for CCAT/SAC, CCAT/DAC, CCAT/GAC; the active network used the checkerboard initialization scheme (left of Figure 4).

Figure 14: Precision and coverage for MCAT/SAAM, MCAT/DAAM, MCAT/GAAM; the active network used the alternating lines initialization scheme (right of Figure 4).
Figure 15: Precision and coverage for \texttt{GCAT/SAAGCAT/SAAGCAT/SAA}, \texttt{GCAT/DAAGCAT/DAAGCAT/DAA}, \texttt{GCAT/GAAGCAT/GAAGCAT/GAA}; the active network used the \textit{alternating lines} initialization scheme (right of Figure 9).

Figure 16: Precision and coverage for \texttt{CCAT/SAACCAT/SAACCAT/SAA}, \texttt{CCAT/DAACCAT/DAACCAT/DAA}, \texttt{CCAT/GAACCAT/GAACCAT/GAA}; the active network used the \textit{alternating lines} initialization scheme (right of Figure 9).
pattern: after a transition characterized by a significant instability, precision reaches a peak and then begins a slow descent.

The origin of this behavior is, admittedly, not entirely clear. It is possible that the characteristics of the data set have something to do with the reduction in precision in large result lists. Such decline may be due to the fact that, as we move down the list, we are displaying items progressively farther away from the map, creating more opportunities for elements from other categories to be taken in.

The -/D- and -/G- treatments do have, as expected, quite an impact on coverage. All the -/DF and -/GF treatments show a steady increase in coverage, reaching, for the -/DF treatment, values close to one. The -/SF treatments, without the urgency factor, shows significantly lower coverage. This behavior is consistent for the three contexts, MCAT, GCAT, CCAT.

The adaptive treatments, -/-AC and -/-AA, show a coverage significantly lower than the fixed architecture (treatments -/-F). Our experiments did not allow us to give a definite explanation of this phenomenon, but some judicious conjecture is possible. The adaptive networks are dense in the areas from which most of the items of the training set are drawn. Given that the collection is quite homogeneous, this is also the area that most items of the test set will activate. Some of these units will have been deactivated by a low coverage but, at the same time, some of the units in the area will have recovered so we enter in a dynamic in which items belonging to this area will often find at least some active unit that they will be close to. That is, the areas with high density will be active most of the time, reducing the number of times in which less dense areas are activated and therefore reducing coverage.

From these results—partial as they may be—it appears that forms of adaptive architecture could be used to compromise between a high coverage and a high representation of topics of interest.

7 Related work

The techniques used in this paper represent a development with many roots in different areas of computing. The basic document representation is a variation from standard techniques in information retrieval, from stemming to the vector space representation [28]. We should note, however, that our technique can be applied to any representation of documents in a vector space. In particular, representations such as Word2Vec [18] are ideal candidates for our method.

The context representation is quite clearly related to WEBSOM [15], which is itself an application of Kohonen’s self-organizing map [14, 10]. Our interpretation of it as a latent semantic manifold, which we have developed elsewhere [35, 11] is based on an analogy with the well-known technique of latent semantic analysis [9], which can be seen as a linear version of our non-linear map. The analogy is justified by the probabilistic interpretation of the map carried out, for the limit case in which the units form a continuum, in [29].

The concepts of novelty and diversity entered the information retrieval literature towards the end of the 1990s. There is a general consensus that the ball started rolling in 1998, with a two-page position paper by Carbonell and Goldstein [3].

Diversity and novelty are often treated together, but they address different concerns: diversity is offered as a solution for query ambiguity, due to the inherent ambiguity of language (a query like “Manhattan” may refer to a borough of New York, a movie, an indian tribe, or a drink), while novelty addresses query underspecification (if the query is, say, about the movie, there are several aspects of it that a person may be interested in) [6].

Xu and Yin [44] operate a quadripartite division of possible systems along two axes. The first axis is presentation, and the systems are divided as having compensatory or step presentations. In a compensatory system, diversity and novelty are considered together in order to provide a composite relevance score. In a step system, relevance is considered first, as a gauge: only documents that score above a certain threshold are retained. Diversity is considered next, and is used to reorder the set of documents that has passed the first gauge. The second axis deals with interaction, and distinguishes between undirected and directed systems. Undirected systems are "one-shot": they receive a query and return a list of result, returning at each position a document that minimizes the redundancy with those already returned. Directed systems receive an input from the user, indicating in which area(s) she wants the search to continue. The paper presented here doesn’t fit exactly in any of these categories, as the problem that we are solving is not within the parameters of Xu and Yin. In a general
sense, however, it can be considered as a compensatory, directed system, in which direction comes from the user model.

A great variety of diversification methods have been developed for information retrieval and recommendation systems. Some of them are based on unstructured relevance, that is, they consider relevance as a single numerical score that measures the fitness of a document as a whole. Among these, [40] uses a model based on the financial theory of portfolio diversification developed in [19], while [25] specializes in web pages. Several methods consider a document as expressing a number of topics, and diversity is sought by increasing the number of relevant topics expressed in the result set; [1] is one of the best known examples of this class of systems, but work along similar lines can be found in [24, 36, 42].

In recommendation systems, the focus shifts to more user-centered systems, in which diversity is obtained by presenting items that cover the various interests of the user. Topic models (also called, in this milieu, aspect models) are often used for user and item models [2]. The techniques used in this case vary from Latent Semantic Analysis [45] to Latent Dirichlet Analysis (LDA) [4], Facet-Model LDA [12] or matrix factorization [39].

All these methods are based on a probabilistic interpretation of relevance: the relevance of a document, \( r \in [0, 1] \) is interpreted as the probability that a user will find the document relevant. It has been argued that in some cases a fuzzy interpretation might be more correct [10], in which case \( r \) would be interpreted as the degree to which a document is considered relevant. Some algorithms for diversification based on this idea have been studied in [33]. In addition to text documents, diversification has been applied to image retrieval [32].

Users have several criteria in mind when they talk about quality of results, among which the most prominent seem to be topicality, novelty, ease of understanding, reliability, and scope [43], although topicality seems to be the most relevant criterion [21]. These findings form the foundations of the methodological division operated by the [13], but if a document is off-topic, all other factors are irrelevant for judgment [41]. This property justifies the study of step systems, in which documents are ranked only if they are beyond a certain threshold of topicality. On the other hand, computing practitioners don’t like arbitrary thresholds, especially when the sensitivity of the system with respect to their value is not easily evaluated, a circumstance that makes it sensible to evaluate compensatory system as more practical and robust solution. This practicality comes with a price: undirected system use less information about the user and the problems they involve are computationally harder.

Diversification is an inherently hard problem. Unlike the work presented in this paper, with its emphasis on “soft” computing, many diversification methods define objective functions that they try to maximize. Unfortunately, the resulting problem is virtually always NP-complete [34] and approximate solutions—often in the form of heavily sub-optimal greedy algorithms—have to be found.

8 Conclusions

We have presented a collection of algorithms for filtering incoming streams of documents to make them more relevant and interesting. We recognize that the success of a system of this kind requires an equilibrium between two contrasting needs. On the one hand, we want to give preference to the documents that the user will find the most interesting. On the other hand, we don’t want a few topic to monopolize the offering, making the system of limited interest and usefulness.

We propose a reinterpretation of the standard concept of ”novelty”, a concept that has proved very useful for diversifying results in information retrieval and recommendation systems. In our conceptual schema, adapted to the presence of a user model and to data that arrive as a stream, a document is novel if it serves a user need (as represented by the user model) that hasn’t been adequately served recently. A set of recently displayed items has good coverage if it represents a good fraction of the general user interests. Coverage replaces, in our conceptual framework, the traditional concept of diversity.

We model the user interests using a modification of WEBSOM. Our algorithm uses sentences as the fundamental unit of signification, a solution that gives us better results than traditional word count or of fixed length n-grams. We also introduced a limited form of dynamic adaptation to compensate in part the concentration of units around the topics of high interest that is typical of self-organizing maps. It has been shown that self-organizing maps lay their units in the input space in a way that approximates the probability distribution of the training set [29]. The dynamic adaptation can be seen as a smoothing of this approximation, and our tests have
shown its effects on the dynamic behavior of the system, especially on the recovery of interest for the parts of the user model that have received interesting documents in the past.

In the standard definition of information retrieval, diversity is obtained at the expense of relevance and, therefore, of precision. Maximal theoretical precision in the Robertsonian model would be achieved by repeating the most relevant document as many times as it is necessary to fill the whole result list, and diversity can only be obtained by reducing this theoretical maximum. This is not the case in our conceptual framework. Our concept of precision is relative to the whole gamut of a person’s interests, and our notion of coverage entails that such gamut of interests is well represented in the documents that the person sees. That is, unlike diversity, it is possible to achieve high coverage from within the set of relevant documents, viz. without reducing precision. Our measurements confirm that our method increases coverage without any statistically significant drop in precision.

References

[1] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Leong. Diversifying search results. In Proceedings of WDSM ’09. ACM, 2009.

[2] David Alfaya Sánchez. Automatic aspect extraction for information retrieval diversity. Master’s thesis, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 2015.

[3] J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proceedings of the 21th International ACM SIGIR Conference in Research and Developments in Information Retrieval. ACM, 1998.

[4] B. Carterette and P. Chandar. Probabilistic models of ranking novel documents for faceted subtopic retrieval. In Proceedings of the 18th ACM Conference on Information and Knowledge Management, pages 1287–96. New York, NY:ACM, 2009.

[5] Charles Clarke, Maheedhar Kolla, Gordon Cormack, Olga Vechtomova, Azon Ashkan, Stefan Büttcher, and Ian MacKinnon. Novelty and diversity in information retrieval evaluation. In Proceedings of the International ACM SIGIR Conference in Research and Developments in Information Retrieval. ACM, 2008.

[6] Charles Clarke, Maheedhar Kolla, and Olga Vechtomova. An effectiveness measure for ambiguous and underspecified queries. In Proceedings of ICTIR 2009, Lecture Notes in Computer Science. SPringer-Verlag, 2009.

[7] Jeremy H. Clear. The british national corpus. In George P. Landow and Paul Delany, editors, The Digital Word, pages 163–87. Cambridge, MA:MIT Press, 1993.

[8] E. de Barthélemy. Gerbert, étude sur sa vie et ses ouvres, suivie de la traduction de ses lettres. Paris, 1868.

[9] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman. Indexing by latent semantic analysis. Journal of the American society for information science, 41(6):391–407, 1990.

[10] Didier Dubois and Henri Prade. Possibility theory, probability theory and multiple-valued logics: A clarification. Annals of Mathematics and Artificial Intelligence, 32(1-4):35–66, 2001.

[11] Alexandra Dumitrescu and Simone Santini. Think locally, act globally; context based information retrieval. In Proceedings of the 3rd IEEE International Conference on Semantic Computing, pages 396–401, 2009.

[12] J. He, E. Meij, and M. Rijke. Result diversification based on query-specific cluster ranking. Journal of the American Society for Information Science and Technology, 62(3):550–71, 2012.

[13] International Press Telecommunications Council. Newsml version 1.2 — functional specification, October 2003.

[14] J. A. Kangas, Teuvo K. Kohonen, and J. T. Laaksonen. Variants of self-organizing maps. IEEE Transactions on Neural Networks, 1(1):93–99, 1990.
[15] S. Kaski. Computationally efficient approximation of a probabilistic model for document representation in the WEBSOM full-text analysis method. Neural Processing letters, 5(2), 1997.

[16] Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–80, 1990.

[17] David D. Lewis, Yiming Yang, Tony G. Rose, Fan Li, G. Dietterich, and Fan Li. RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5:361–97, 2004.

[18] Joseph Lilleberg, Yun Zhu, and Yanqing Zhang. Support vector machines and word2vec for text classification with semantic features. In Cognitive Informatics & Cognitive Computing (ICCI* CC), 2015 IEEE 14th International Conference on, pages 136–40. IEEE, 2015.

[19] H. Markowitz. Portfolio selection. Journal of Finance, 1952.

[20] James Mayfield and Paul McNamee. Indexing using both n-grams and words. In TREC, pages 361–5, 1998.

[21] S. Mizzaro. Relevance: the whole history. Journal of the American Society for Information Science and Technology, 48(9):810–32, 1997.

[22] Douglas W. Oard. The state of the art in text filtering. User Modeling and User-Adapted Interaction, 7(3):141–78, mar 1997.

[23] I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and C. Lioma. Terrier: A High Performance and Scalable Information Retrieval Platform. In Proceedings of ACM SIGIR’06 Workshop on Open Source Information Retrieval (OSIR 2006), 2006.

[24] F. Radlinski and S. Dumais. Improving personalized web search using result diversification. In Proceedings of the 29th Annual International ACM-SIGIR Conference on research and development in information retrieval, pages 691–2. New York, NY:ACM, 2006.

[25] Davood Rafiei, Krishna Bharat, and Anand Shukla. Diversifying web search results. In Proceedings of WWW 2010, the International Conference on the World Wide Web. ACM, 2010.

[26] S. Robertson. The probability ranking principle in IR. Journal of documentation, 33:294–304, 1977.

[27] S. E. Robertson and K. Spark-Jones. Relevance weighting of search terms. Journal of the American Society for Information Science, 27:129–46, 1976.

[28] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval. Inf. Process. Manage., 24(5):513–23, 1988.

[29] Simone Santini. The self-organizing field. IEEE Transactions on Neural Networks, 7(6):1415–23, 1996.

[30] Simone Santini. Because not all displays are lists. In Proceedings of the ACM International Conference on Multimedia Retrieval. Hong Kong:ACM Press, 2012.

[31] Simone Santini. Assigning rated items to locations in non-list display layouts. IEEE Transactions on Visualization and Computer Graphics, 2018. (in press).

[32] Simone Santini. Novelty and diversity in image retrieval. In Proceedings of SIGMAP18, 14th International Conference on Signal Processing and Multimedia Applications, 2018.

[33] Simone Santini and Pablo Castells. An evaluation of novelty and diversity based on fuzzy logic. In International Workshop on Novelty and Diversity in recommender systems (part of RecSys 2011), 2011.

[34] Simone Santini and Pablo Castells. Intractable problems in novelty and diversity. In Actas de las XVI Jornadas de Ingeniería del Software y bases de datos, 2011.
[35] Simone Santini and Alexandra Dumitrescu. Context-based retrieval as an alternative to document annotation. In *6th International Conference on Language Resources and Evaluation, Workshop OntoImage 2008*, Marrakech, Morocco, 2008.

[36] R.L.T. Santos, C. Macdonald, and I. Ounis. Exploiting query reformulation for web search result diversification. In *Proceedings of the 19th International Conference on the World Wide Web*, pages 881–90. Raleigh, NC:ACM, 2010.

[37] T. Saracevic. Relevance: a review of the literature and a framework for thinking on the notion of information science. *Journal of the American Society of Information Science and Technology*, 58(13):2126–44, 2007.

[38] Edward R. Tufte. *The Visual Display of Quantitative Information*. Cheshire, CT:Graphics Press, 1986.

[39] S. Vargas, P. Castells, and D. Vallet. On the suitability of intent spaces for IR diversification. In *International workshop on Diversity in Document Retrieval at the 5th International Conference on Web search and data mining*, Seattle, WA, 2012.

[40] G. Wang, D. Hoiem, and D. Forsyth. Learning image similarity from flickr groups using stochastic intersection kernel machines. In *Computer Vision, 2009 IEEE 12th International Conference on*, pages 428–435, 2009.

[41] S. Wang, J. M. Hellerstein, and I. Lipkind. Near-neighbor query performance in search trees. Technical Report CSD-98-1012, UC Berkeley, September 1998.

[42] M. J. Welch, J. Cho, and C. Olston. Search results diversiy for informational queries. In *Proceedings of the 20th International Conference on the World Wide Web*, pages 237–46. New York, NY:ACM, 2011.

[43] Y. Xu and Z. Chen. Relevance judgment–what do information users consider beyond topicality? *Journal of the American Society for Information Science and Technology*, 57(7):961–73, 2006.

[44] Yunjie Xu and Hainan Yin. Novelty and topicality in interactive information retrieval. *Journal of the American Society for Information Science and Technology*, 59(2):201–15, 2008.

[45] C. X. Zhai, W. W. Cohen, and J. Lafferty. Beyond independent relevance: methods and evaluation metric for subtopic retrieval. In *Proceedings of the 26th International ACM SIGIR Conference in Research and Developments in Information Retrieval*, pages 10–7. ACM, 2003.