Review on thermochromic vanadium dioxide based smart coatings: from lab to commercial application

Tian-Ci Chang1,2,3 · Xun Cao1,2 · Shan-Hu Bao1,2 · Shi-Dong Ji1,2 · Hong-Jie Luo4 · Ping Jin1,2,5

Received: 16 December 2017/Accepted: 29 December 2017/Published online: 24 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract With an urgent demand of energy efficient coatings for building fenestrations, vanadium dioxide (VO2)-based thermochromic smart coatings have been widely investigated due to the reversible phase transition of VO2 at a critical transition temperature of 68 °C, which is accompanied by the modulation of solar irradiation, especially in the near-infrared region. As for commercial applications in our daily life, there are still some obstacles for VO2-based smart coatings, such as the high phase transition temperature, optical properties (luminous transmittance and solar modulation ability), environmental stability in a long-time period, as well as mass production. In this review, recent progress of thermochromic smart coatings to solve above obstacles has been surveyed. Meanwhile, future development trends have also been given to promote the goal of commercial production of VO2 smart coatings.

Keywords Vanadium dioxide (VO2) · Thermochromic · Multilayer films · Nanoparticles · Commercial production

1 Introduction

Due to environmental deterioration and energy shortage in human society, people pay more attention to finding effective energy efficient materials to reduce the energy consumption and greenhouse gas emission. According to the survey, buildings are responsible for about 40% of the energy consumption and almost 30% of the anthropogenic greenhouse gas emissions, which are owing to the use of lighting, air-conditioning, and heating [1–5]. This has driven an urgent demand and research for energy efficient applications to reduce the building energy consumption. The heat exchange between the interior of the building and the outdoor environment through fenestrations leads to the largest energy consumption of buildings. Therefore, managing heat exchange through fenestrations is a feasible approach to reduce the building energy consumptions. In summers, solar radiation entering buildings should be controlled to reduce the air-conditioning energy consumption. On the contrary, thermal radiations from the buildings must be limited to consume lesser energy for heating in winters.

An effective way to achieve this goal would be using smart coatings on building fenestrations to control the solar radiation and thermal radiation. Therefore, smart coatings based on electrochromism [6–10], thermochromism [11–19], gasochromism [20–22] and photochromism [23–26] have been widely studied for energy efficient coatings. Thermochromic smart coatings can modulate near-infrared radiation from transmissive to opaque in response to the environmental temperature from low to
Vanadium dioxide (VO₂) is a typical thermochromic material that has been widely studied. VO₂ exhibits an automatic reversible semiconductor-metal phase transition (SMT) at a critical transition temperature \(T_c \) of 68 °C [27], which has been widely investigated as smart coatings for buildings fenestrations [28–32]. As shown in Fig. 1, for temperatures below the \(T_c \), VO₂ is monoclinic (P2₁/c, M1) phase with the transmittance of infrared (IR) radiation. On the contrary, the material is a tetragonal structure (P4₂/mnm, R), which is reflective for IR radiation [33, 34]. This feature makes VO₂ an amazing material for thermochromic smart coatings [34–42].

VO₂ smart coatings are usually used in two forms including flexible foils based on VO₂ nanoparticles [31, 43–49] and VO₂ based multilayer films [11, 12, 30, 50–52]. However, for commercial application as smart coatings on energy efficient fenestrations, there are still several obstacles severely limiting the relative applicability of VO₂ smart coatings. (i) The phase transition temperature \(T_c \) for pure bulk VO₂ (68 °C) is too high to be applied on building fenestrations, while \(T_c \) around 40 °C is acceptable. (ii) For conventional VO₂ coatings, relative modulation abilities are not efficient enough for energy saving. That can be explained by the fact that the modulation of VO₂ for solar radiation is most attributed to the transmittance switch in the near-infrared region, which only accounts for 43% of solar energy in the solar spectrum [23]. (iii) The luminous transmittance \(T_{\text{lum}} \) for single layer VO₂ with desirable \(\Delta T_{\text{sol}} \) is usually less than 40% (even 30%) due to the absorption in the short-wavelength range in both the semiconducting and metallic states of VO₂, which should be larger than 50% at least for daily applications. (iv) For practical applications as smart coatings, VO₂ must maintain excellent thermochromic performances during a long-time period—at least ten years. However, VO₂ will finally transform into the V₂O₅ phase in the real environment, which is the most thermodynamically stable phase of vanadium oxide but does not possess the

Fig. 1 a The crystallographic structure of VO₂ (rutile) and VO₂ (monoclinic) [53] and b schematic of thermochromic behavior before and after the phase transition [33]
thermochromic property [54]. Therefore, environmental stability of VO₂ is a great challenge for practical applications as smart coatings.

These obstacles must be overcome for practical applications and many efforts have been made to achieve this goal. Doping of proper ions can effectively reduce the phase transition temperature of VO₂; cations larger than V⁴⁺, such as W⁶⁺[55], Mo⁶⁺[56] and Nb⁵⁺[57], and anions smaller than O²⁻, such as F⁻ [58], have been utilized to reduce the Tₜₐₘ. However, obstacles in (ii)–(iv) have not been solved. Although several reviews about VO₂ coatings have been reported [32, 33, 59, 60], most of them are still in lab scale and few prospects of commercial applications are available.

In this review, we are going to view strategies of thermochromic VO₂ smart coatings for improved thermochromic performance, environmental stability and large-scale production for commercial applications on building fenestrations. Firstly, strategies to enhance thermochromic performance (Tₜₐₘ and ΔTₜₐₘ) of VO₂ coatings have been introduced as well as the balance between Tₜₐₘ and ΔTₜₐₘ (Section 2). Then, methods to improve the durability of VO₂ coatings, including protective layers for multilayer films and core-shell structures for nanoparticles, will be summarized in Section 3. Meanwhile, multifunctional design of VO₂ smart coatings such as photocatalysis and self-cleaning function has been discussed in Section 4. Recent progress for large-scale production of VO₂ smart coatings has been surveyed in Section 5. Finally, future development trends of VO₂ coatings have prospected for large-scale production as practical and commercial applications.

2 Improvements of optical properties

Tₜₐₘ and ΔTₜₐₘ are the most important indexes of thermochromic properties for VO₂ smart coatings. The integral Tₜₐₘ and Tₜₐₘ of the samples can be obtained by the following equations

\[
T_{\text{tum, sol}} = \frac{\int \Phi_{\text{tum, sol}}(\lambda) T(\lambda) d\lambda}{\int \Phi_{\text{tum, sol}}(\lambda) d\lambda},
\]

where \(T(\lambda) \) represents the transmittance at wavelength \(\lambda \); \(\Phi_{\text{tum}} \) is the standard efficiency function for photopic vision; and \(\Phi_{\text{sol}} \) is the solar irradiance spectrum for an air mass of 1.5, which corresponds to the sun standing 37° above the horizon. While the ΔTₜₐₘ of the films was calculated by \(\Delta T_{\text{tum, sol}} = T_{\text{tum, sol}, \lambda} - T_{\text{tum, sol}, \lambda} \), where \(T_{\text{tum, sol}, \lambda} \) and \(T_{\text{tum, sol}, \lambda} \) represent low temperature and high temperature, respectively.

VO₂ smart coatings always suffer from the problem of low luminous transmittance due to the absorption in the short-wavelength range in both the semiconducting and the metallic states [61]. The luminous transmittance of VO₂ coatings is largely dependent on relative thicknesses. Based on optical calculation, a single layer VO₂ film (80 nm), for example, exhibits an integrated Tₜₐₘ of 30.2% and 25.1% for semiconducting and metallic VO₂ (see Fig. 2a). As for solar modulation ability, the majority of reported modulation abilities are less than 10%, which are not efficient enough for energy saving function [62–65]. For VO₂ coatings before and after the phase transition, the contrast of relative optical transmittance is mainly in the near-infrared region (780–2 500 nm), which only accounts for 43% of solar energy in the solar spectrum (see Fig. 2b).

2.1 Strategies for enhanced luminous transmittance and solar modulation ability

Many efforts have been made to improve the luminous transmittance and solar modulation ability of VO₂ based smart coatings. For VO₂ films fabricated by deposition, the design of multilayer structures is an effective way to improve the optical properties [11, 52, 66]. As for VO₂ nanoparticles prepared by solution methods, the formation of composite films is the most commonly used strategy [67, 68].

2.1.1 Multilayer design for VO₂ thin films

Thermochromic smart coatings incorporating VO₂ films with additional layers have been fabricated for improved thermochromic performances including desirable luminous transmittance and effective solar modulation ability. Schematic illustration of additional layers such as antireflection layers and buffer layers have been shown in Fig. 3 with three typical structures for VO₂ thin films and relative SEM images.

An effective way to improve the luminous transmittance of VO₂ coatings is to introduce an antireflection (AR) layer, such as SiO₂ [69–72], TiO₂ [73], ZrO₂ [74], etc. Lee and Cho [70, 71] reported that SiO₂ antireflection layer successfully increased the luminous transmittance of the VO₂ films. However, the luminous transmittance is still not sufficient. TiO₂ was selected as AR layer for VO₂ films [73] because TiO₂ has a higher refractive index and is a more effective antireflection material for VO₂ than the reported SiO₂. The optimized VO₂/TiO₂ structure has been fabricated and demonstrated the highest Tₜₐₘ improvement among the reported at that time. The optical calculation was performed upon a basic structure of a VO₂ layer with an AR layer of refractive index n and thickness d [74]. Optimization was carried out on n and d for a maximum integrated Tₜₐₘ. The calculation demonstrates that the optimal n value changes with the thickness of VO₂, and at n ≈ 2.2 it gives the highest Tₜₐₘ enhancement from 32%
(without AR coating) to 55% for 50 nm VO₂. They deposited an optimized structure of VO₂/ZrO₂ and an improvement from 32.3% to 50.5% in T_{lum} was confirmed for the semiconductor phase of VO₂, which was in good agreement with the calculations.

Besides the antireflection layers on the top of VO₂ films, buffer layers between the substrates and VO₂ films also play important roles in the optical performances of integrated coatings. Some buffer layers as SiO₂, TiO₂, SnO₂, ZnO, CeO₂, and SiNₓ have been investigated in reported works [75–78]. Nevertheless, thermochromic performances of VO₂ coatings obtained based on above buffer layers are fair, which still can not match the requirements for practical applications.

In our recent work, Cr₂O₃ has been selected to act as a structural template for the growth of VO₂ films as well as the AR layer for improving the luminous transmittance [12]. The suitable refractive index (2.2–2.3) is predicted to be beneficial for the optical performance of VO₂ thin films. Refractive index of Cr₂O₃ is between the glass and the VO₂, which is considered to enhance the luminous transmittance. Meanwhile, Cr₂O₃ has similar lattice parameters with VO₂(R), which can act as the structural template layer to lower the lattice mismatch between VO₂ thin films and glass substrates and to reduce the deposition temperature of VO₂ thin films (see Figs. 4a, b). Different crystallization of VO₂ films can be obtained by introducing Cr₂O₃ layers with various thicknesses at a competitive temperature.
range from 250 °C to 350 °C, where different thermochromic performance can be obtained (see Fig. 4c). The Cr2O3/VO2 bilayer film deposited at 350 °C with optimal thickness shows an excellent ΔTsol = 12.2% with an enhanced Tlum,lt = 46.0% (see Fig. 4d), while the value of ΔTsol and Tlum,lt for the single layer VO2 film deposited high temperature at 450 °C is 7.8% and 36.4%, respectively. The Cr2O3 insertion layer dramatically increased the visible light transmission, as well as improved the solar modulation of the original films, which arisen from the structural template effect and antireflection function of Cr2O3 to VO2.

For better thermochromic performance, sandwich structures based on VO2 films have been fabricated. Double-layer antirefection incorporating TiO2 and VO2 (TiO2/VO2/TiO2) has been proposed [61] and a maximum increase in Tlum by 86% (from 30.9% to 57.6%) has been obtained, which is better than the sample with single-layer antireflection (49.1%) [73]. The same structure of TiO2/VO2/TiO2 has also been investigated by Zheng et al. [11] and Sun et al. [35] for improved thermochromic performance and skin comfort design. A novel sandwich structure of VO2/SiO2/TiO2 has been described by Powell et al. [66], where the SiO2 layers acts as ion-barrier interlayers to prevent diffusion of Ti ions into the VO2 lattice. The best performing multilayer film obtained in this work showed an excellent solar modulation ability (15.29%), which was very close to the maximum possible solar modulation for VO2 thin films. Unfortunately, the corresponding luminous transmittance is weak of around 18% for both semiconducting and metallic states.

A novel Cr2O3/VO2/SiO2 (CVS) sandwich structures have been proposed and fabricated based on optical design and calculations [30]. The bottom Cr2O3 layer provides a structural template for improving the crystallinity of VO2 and increasing the luminous transmittance of the structure. Then, the VO2 layer with a monoclinic (M) phase at low temperature undergoes a reversible phase-transition to
rutile (R) phase at high temperature for solar modulation. The top SiO$_2$ layer not only acts as an antireflection layer but also greatly enhances the environmental stability of the multilayer structures as well as providing a self-cleaning layer for the versatility of smart coatings. Optical simulation of luminous transmittances (semiconducting state) for the CVS structure has been shown in Fig. 5a (3-dimensional image). The thickness of the VO$_2$ layer was fixed at 80 nm to demonstrate significant thermo-chromic performance while varying thicknesses of Cr$_2$O$_3$ and SiO$_2$ were investigated for optimized optical properties. Four clear peaks are observed in the luminous transmittance simulations, which can be attributed to the interference effect of the multilayer structure. The highest value of $T_{\text{lum,lt}}$ is about 44.0\% at approximately 40 nm and 90 nm of Cr$_2$O$_3$ and SiO$_2$, respectively. In this work, the proposed CVS multilayer thermochromic film shows an ultrahigh $\Delta T_{\text{sol}} = 16.1\%$ with an excellent $T_{\text{lum,lt}} = 54.0\%$, which gives a commendable balance between ΔT_{sol} and $T_{\text{lum,lt}}$ (see Figs. 5b, c). The demonstrated structure shows the best optical performance in the reported structures grown by magnetron sputtering and even better than most of the structures fabricated by solution methods. To date, the proposed CVS structure exhibits the most commendable balance between the solar modulation ability and the luminous transmittance to reported VO$_2$ multilayer films (see Fig. 5d).

There is some work focus on multilayer films with more layers for enhanced thermo-chromic performances. A five-layer thermo-chromic coating based on TiO$_2$/VO$_2$/TiO$_2$/VO$_2$/TiO$_2$ has been studied [52]. A featured wave-like optical transmittance curve has been measured by the five-layer coating companying an improved luminous transmittance (45.0\% at semiconducting state) and a competitive solar modulation ability (12.1\%). Multilayer structure like Si$_N$/NiCrO$_x$/Si$_N$/VO$_x$/Si$_N$/NiCrO$_x$/Si$_N$ exhibits

![Figure 5](image.png)

Fig. 5 a 3D surface image of the luminous transmittance ($T_{\text{lum,lt}}$) calculation of the Cr$_2$O$_3$/VO$_2$ (80 nm)/SiO$_2$ multilayer structure on the thickness design of Cr$_2$O$_3$ (bottom layer) and SiO$_2$ (top layer), b transmittance spectra (350–2 600 nm) at 25 °C (solid lines) and 90 °C (dashed lines) for the CVS structures with various thicknesses of SiO$_2$ layers, c corresponding variation curves of $T_{\text{lum,lt}}$, $T_{\text{lum,ht}}$, and ΔT_{sol} for b, d comparison of this work with recently reported VO$_2$-based thermo-chromic films [30]
superior solar modulation ability of 18.0%, but the luminous transmittance (32.7%) and the complicated structure pose an enormous obstacle for practical application of this structure.

2.1.2 Composite films based on VO₂ nanoparticles

Composite films incorporating VO₂ nanoparticles with inorganic or/and organic materials have many advantages. On the one hand, the structure of composite films may induce strains, which may have positive effects on the Tₘ and hysteresis-loop width of VO₂ films [79]. On the other hand, according to the optical calculations performed by Li et al. [80], VO₂ nanoparticles dispersed in suitable dielectric hosts show much higher luminous transmittance and solar energy transmittance modulation than pure VO₂ films [80].

VO₂-ZrV₂O₇ composite films have been successfully prepared by polymer-assisted deposition using V-Zr-O solution [79]. With similar thickness, the composite films exhibited significantly enhanced luminous transmittances with increasing Zr/V ratios (from 32.3% at Zr/V = 0 to 53.4% at Zr/V = 0.12), which can be attributed to the absorption-edge changes in the composite films. Nevertheless, the solar modulation ability of the samples showed slightly weakened increasing Zr/V ratios (from 6.0% at Zr/V = 0 to 4.8% at Zr/V = 0.12). Crystallized TiO₂-VO₂ composite films were prepared by dispersing VO₂ nanoparticles in TiO₂ sol and annealing by an optimized two-step annealing process [81]. The optical performance of these composite films could be improved by increasing their porosity by controlling annealing rate or by introducing mesopores.

Inorganic host BaSO₄ has also been investigated due to its numerous advantages, such as stronger chemical inertness, acid and alkali resistance, relatively high density and whiteness, especially the high dispersion, good refractive index and transparency [82]. VO₂-BaSO₄ composite powders were prepared by a one-step hydrothermal process, and the existence of the BaSO₄ could improve the optical properties of the VO₂ by 43.0% in Tₘ (from 30.4% to 43.5%) and 10.7% in ΔTₘ (from 11.2% to 12.4%).

Besides the inorganic hosts as ZrV₂O₇, TiO₂, and BaSO₄, organic hosts also show great potentials in smart coatings. A temperature-responsive hydrogel based on poly(N-iso-propylacrylamide) (PNIPAm) has been reported [83]. The PNIPAm can undergo a hydrophilic to hydrophobic transition at the lower critical solution temperature (LCST). By tuning the thickness of the hydrogel and designing a suitable glass panel set-up, the PNIPAm exhibited an unprecedented good combination of the near-doubled average Tₘ (70.7%), higher ΔTₘ (25.5%) and lower transition temperature (32 °C). Further investigations have been carried out by dispersing VO₂ nanoparticles into a PNIPAm hydrogel to form a hybrid thermochromic material [67]. The VO₂/hydrogel hybrid nanothermochromic material makes a dramatically higher ΔTₘ up to 35%, while still maintaining higher average Tₘ (63%) (see Fig. 6).

Some transition metal complexes (TMCs) that exhibit thermochromism with little Tₘ loss at high temperature are chosen to be hybridized with VO₂ nanoparticles [45, 68, 84]. The used TMCs can partly absorb visible light and change color as a response to temperature change upon interaction with an appropriate donor solvent and effectively avoid severe damage to Tₘ at high temperature because the absorption peaks are staggered with the extremum of the light-adapted eye sensitivity function. The thermochromic ionic liquid (IL) has been used by Zhu et al. [68]. Briefly, when heating from room temperature, the ionic liquid-nickel-chlorine (IL-Ni-Cl) complexes absorb increasing visible light around 656 nm and 705 nm, and gradually change color from colorless to blue. Compared with a pure VO₂ film, the composite film of VO₂ nanoparticles and IL-Ni-Cl complexes not only expresses more excellent optical performance (ΔTₘ = 26.45% and Tₘ = 66.44%, Tₘ = 43.93%) but also adds a function of an obvious color change from brown to green as temperature rises, facilitating application and function exhibiting of smart windows (see Fig. 7). TMCs like IL-Ni-Br and IL-Co-Br have also been studied with robust improvements of thermochromic performances of VO₂ nanoparticles [45, 84].

2.2 Balance between luminous transmittances and solar modulation ability

Regarding practical application of VO₂ based thermochromic smart coatings, high solar modulation ability accompanied by high luminous transmittance is required. Nevertheless, we can find that it is tough to make a good balance between luminous transmittance and solar modulation ability. A unilateral pursuit of distinguished solar modulation ability or ultrahigh luminous transmittances is meaningless.

Most work on VO₂ based smart coatings pursue large contrast of optical transmittance in the near infrared region (780–2 500 nm), while inconspicuous contrast in the visible light region (380–780 nm) is desirable for both semiconducting and metallic states. In the solar spectrum, ultraviolet light, visible light and infrared light is responsible for about 7%, 50%, 43% of solar energy, respectively [23]. Therefore, if there is an increased contrast in the visible light region for VO₂ based smart coatings between the semiconducting and the metallic state, relative solar
modulation ability can be robustly enhanced due to the contribution from the visible light region. That means that the transmittance in the visible light region for VO₂ smart coating of metallic state should be maintained at least 50%, while the coating shows higher luminous transmittance of semiconducting state. Some works have been reported to increase DTsol of VO₂ by mixing with specific materials shows a robust contrast in the visible light region in different temperatures [45, 68]. However, more investigations are required for a facile and cheap method to achieve the balance between luminous transmittances and solar modulation ability of VO₂ based smart coatings.

3 Methods to improve the stability of VO₂ for long-time use

In previous work, researchers usually focus on the thermochromic properties of VO₂ to improve the luminous transmittances and solar modulation ability. However, environmental stability is another great challenge for VO₂ coatings from lab to industrial production. Vanadium is a multivalent element and there are several kinds of vanadium oxide, such as VO, V₂O₃, VO₂, V₆O₁₃, V₄O₉, V₃O₇, and V₂O₅. Among them, V₂O₅ is the most thermodynamically stable phase and VO₂ will gradually transform into the intermediate phases of V₆O₁₃ and V₃O₇ and finally into V₂O₅ [54]. However, unlike VO₂, V₂O₅ does not possess thermochromic optical change properties near the room temperature. Therefore, how to maintain the
thermochromic performance of VO2 coatings during a long-time period is an inevitable problem that must be overcome.

3.1 Protective layers for VO2 films

To prevent VO2 films from degradation, introducing of protective layers above VO2 is an effective way that has been widely used. Chemically stable oxide films such as Al2O3 [54, 85], CeO2 [86, 87], WO3 [64], etc., have been studied to keep VO2 away from oxidant like water and O2 in air. It should be noted that the selected materials to be used as protective layers might affect the optical properties of VO2, where dual enhancement in the optical properties and the stability is preferred.

Al oxide is a typical material that has been investigated as a protection layer for VO2 coatings. In work reported by Ji et al. [54], different thicknesses of Al oxide protective layers have been deposited for VO2 by DC magnetron sputtering. The durability of the samples was evaluated at a high temperature around 300 °C in dry air and highly humid environment. They found that the Al oxide protective layers provided good protection and delayed the degradation process of VO2 in dry air at 300 °C and humid environment. The similar structure was also investigated [85], while the Al2O3 protective layers were fabricated by atomic layer deposition (ALD). The Al2O3 films can protect the VO2 from oxidation in the heating test but not sufficient in the damp environment, which can be attributed to the corrosion of water to Al2O3. It is worthy to mention that in above cases, the test period of the samples is less than one week (168 h), which is far from the request for practical applications.

Long et al. [64] proposed a novel sandwich structure of WO3/VO2/VOx, where WO3 not only functions as an AR layer to enhance the Tsum of VO2 but also performs as a good protective layer for thermochromic VO2. The stability of samples was investigated in a constant-temperature humid environment with 90% relative humidity at 60 °C. For the single layer VO2, the thermochromism nearly vanishes after 20 day treatment in the tough environment. On the contrary, there shows almost no change in the optical transmittance of WO3/VO2/VOx multilayer films with the same treatment. However, though the protection provided by the WO3, the solar modulation ability of the sample is weakly reduced due to the diffusion of W6+ to VO2.

In works above, the protective layers are usually single layer films. To enhance the durability of thermochromic VO2 films, bilayer coatings as VO2/VOx/TiO2, VO2/VOx/ZnO, VO2/VOx/TiO2/ZnO, and VO2/VOx/TiO2/ZnO have been studied [88]. In this study, VO2 films with TiO2/ZnO protective coatings have been demonstrated higher antioxidant activity under aging tests, which can be attributed to the different oxygen permeability through different inorganic films [89]. Zhan et al. [90] fabricated a complicated multilayer structure of SiNx/NiCrOx/SiN/VO2/SiN/NiCrOx/SiN, which exhibits enhanced thermal stability up to 375 °C. However, aging test in a humid environment is not applied to the samples.

The Cr2O3/VO2/SiO2 structure proposed by our lab shows robust environmental stability for long-time use [30]. The top SiO2 layer is chemically stable and makes the static water contact angle of the films change abruptly from 24.1° (hydrophilicity) to 115.0° (hydrophobicity) (see Figs. 8a, b). Hydrophilicity of the single layer VO2 indicates well contact with water, which will accelerate the degradation process of relative thermochromic performance. On the contrary, the hydrophobicity that exhibited by the CVS structure is helpful to keep the VO2 isolated from the water, which can protect the coatings against oxidation. Wettability is dependent on the chemical composition and structure of the surface. The surface of silicon is normally hydrophilic without additional treatments, but previous studies have demonstrated that the wettability of the silicon surface can be significantly changed by structuring the surfaces. So, fabrication of SiO2 top coatings in this work has been deliberately optimized with enhanced roughness for hydrophobic surfaces (see Fig. 8b). The double-protection from Cr2O3 and SiO2 makes an excellent promotion for the environmental stability of the CVS coatings, which is desirable for long-time use. The proposed CVS structure shows remarkable environmental stability due to the dual-protection from the Cr2O3 and the SiO2 layer, which shows negligible deterioration even after accelerated aging (60 °C and 90% relative humidity) of 109 h and 4 × 103 fatigue cycles, while VO2 single layer samples almost become invalid (see Figs. 8c, d).

3.2 Core-shell structures

Unlike VO2 films prepared PVD methods, thermochromic coatings based on VO2 nanoparticles have different surface morphologies and larger specific area. Therefore, protective layers may not be suitable for VO2 nanoparticles. Core-shell structures for VO2 nanoparticles have been demonstrated to be an effective way to improve performances of the VO2 core by using selected materials as shells [29, 55, 91–93].

Silica (SiO2) is the most studied material utilized as shell to improve the durability of VO2 nanoparticles [29, 55, 94, 95]. Firstly, the SiO2 layer is optically transparent and chemically stable. Secondly, the utilization of SiO2 layer can prevent nanoparticles from agglomeration [95]. Thirdly, the SiO2 layer is helpful to improve the chemical stability and mechanical stability of VO2 nanoparticles. Gao et al. [29] synthesized VO2@SiO2 core-
shell structure via solution method with PVP pretreatment. The proposed VO₂@SiO₂ structures can effectively enhance the anti-oxidation and acid-resisting properties of VO₂. After annealing at 300 °C in air for 2 h, most VO₂ nanoparticles without SiO₂ shell have transformed into V₂O₅, while no trace of V₂O₅ can be observed in the VO₂@SiO₂ sample. The acid-corrosion experiment of the samples in a hydrochloric acid solution (pH = 1) also confirmed the chemical stability of VO₂@SiO₂. Al oxide is a promoted material as the shell to protect nanoparticles from corrosion, which has been demonstrated to protect perovskite solar cells from corrosion [96]. VO₂/Al-O core-shell structures have been fabricated, where different duration tests have been carried out [97]. For the uncoated sample, the VO₂ nanoparticles were oxidized into V₂O₅ when heated at 300 °C, while the coated VO₂/Al-O remains stable even heated up to 350 °C. While treated in the damp heating environment, the uncoated sample loses thermochromic properties only after 48 h, while the VO₂ nanoparticles coated with Al-O shell remains stable even after 20 days.

In the study by Chen et al. [43], ZnO was selected as the shell to prevent VO₂ nanoparticles from being oxidized. From the TEM images of VO₂@ZnO shown in Figs. 9a, b, it can be observed that VO₂ nanoparticles were closely surrounded by ZnO shells. Compared with uncoated VO₂ film, ZnO coating VO₂ films show greater effects on the properties (see Fig. 9c). The \(\Delta T_{sol} \) and \(T_{lum} \) are improved from 38.9% and 17.2% to 51.0% and 19.1% (see Fig. 9d). An extreme environment for a constant temperature of 60 °C and humidity of 90% which will accelerate samples losing the thermochromic performance in this condition of the environment and evaluated relative durability. For the uncoated VO₂ film, the thermochromism vanishes...
completely after 30 h treatment. Compared with the uncoated VO$_2$, the VO$_2$@ZnO shows striking durability. The transmittance curve at different temperatures of VO$_2$@ZnO film remains almost intact after 10^3 h testing, which means that it still has good thermochromic performance (see Fig. 9e).

4 Multifunctional design and construction

Nowadays, multifunctional fenestrations of the buildings are favored by customers. As is known to all, the fenestrations of the buildings and vehicles always need to be cleaned, which would lead to additional pollutants from the use of detergents and wasting a mass of labors. Semiconductor photocatalysts like TiO$_2$ are widely and frequently employed to decompose pollutants. There are three different polymorphs of crystalline TiO$_2$: rutile(tetragonal), anatase (tetragonal) and brookite (orthorhombic). Rutile TiO$_2$ (TiO$_2$ (R)) is a thermodynamically stable phase at all temperatures and the most common natural form of TiO$_2$. Due to similar lattice parameters, TiO$_2$ (R) films are acted as buffer layer and growth template of VO$_2$ (M) films. Nevertheless, TiO$_2$ (R) films are less efficient photocatalysts than anatase TiO$_2$ (TiO$_2$ (A)) films, which occupy an important position in the studies of photocatalytic active. Zheng et al. [11] constructed a TiO$_2$(R)/VO$_2$(M)/TiO$_2$ (A) multilayer film, while the photocatalytic and photoinduced hydrophilic properties from the top TiO$_2$(A) layer for self-cleaning effects (see Fig. 10a).

Self-cleaning property of the TiO$_2$(R)/VO$_2$(M)/TiO$_2$ (A) multilayer film was evaluated by the decomposition of stearic acid under UV radiation. The degradation of stearic acid was related to the decrease in IR absorption of the C—H stretches, which has been summarized in Fig. 10b. Before UV light irradiation, the characteristic alkyl C—H bond stretching vibrations of CH$_2$ and CH$_3$ groups (3 000–2 800 cm$^{-1}$) can be distinctly detected. After UV light irradiation of 20 min, the absorbance of C—H bond stretching vibrations decreased drastically, which meant that a considerable proportion of stearic acid was decomposed. The IR absorbance slowly became weak with the increase of irradiation time, and finally almost faded away after 180 min irradiation time. In addition, the degradation of stearic acid also can be confirmed by the changes of the contact angle of the multilayer film. The contact angles of the surface transform from 99.5$^\circ$ (hydrophobic) to 11.5$^\circ$ (hydrophilic) (see Fig. 10c), which can be ascribed to the degradation of stearic acid and the photoinduced hydrophilicity of multilayer film. The photocatalytic activity of TiO$_2$(R)/VO$_2$(M)/
TiO$_2$(A) multilayer film also has been demonstrated by the decomposition rate of RhB under UV light irradiation. Figure 10d shows that the absorption spectra of RhB aqueous solution degraded by the multilayer film under UV light irradiation. Thermochromic smart coatings with self-cleaning function have also been achieved by the VO$_2$/SiO$_2$/TiO$_2$ structure where the SiO$_2$ layer acts as the ion-barrier interlayer [66]. The proposed VST structure shows a significant degradation rate of stearic acid and is comparable to that of a standard Pilkington Activ glass, which is a commercially available self-cleaning glass that contains a thin TiO$_2$ layer (15 nm) deposited by CVD methods.

For self-cleaning function and improved stability, VO$_2$ thermochromic smart coatings with hydrophobic surface have been favored and studied by researchers. VO$_2$ films with moth-eye nanostructures have been fabricated to enhance the thermochromic properties and the hydrophobic surface (contact angle 120$^\circ$) can be achieved with additional overcoat [98]. Fused silica substrates with AR patterns of different periods (0, 210, 440, 580 and 1 000 nm) were prepared by reactive ion etching using 2D polystyrene colloidal crystals as a mask. A nipple arrays based on VO$_2$/SiO$_2$ have been realized and the additional fluoroctyltriethoxysilane (FOS) overcoat provides hydrophobicity of the surface (see Fig. 11).

The biosafety of VO$_2$ is also under consideration, while the ZnO layer has been used to provide the antibacterial property [99]. ZnO coated VO$_2$ thin films exhibited excellent antibacterial property proved by SEM observation results that ZnO coated samples cause the membrane disruption and cytoplasm leakage of E. coli cells and fluorescence staining results that the amounts of viable bacteria are evidently lower on the surface of ZnO coated films than that of uncoated films (see Fig. 12). The sterilization mechanism of ZnO films is believed to be attributed to the synergistic effect of released zinc ions and ZnO.

Fig. 10 a FESEM image of a fractured cross-section of the multilayer film (the insets are surface morphology of VO$_2$(M) (left) and TiO$_2$(A) layers (right), respectively), b IR absorbance spectra of TiO$_2$(R)/VO$_2$(M)/TiO$_2$(A) multilayer film with stearic acid overlayer at various irradiation time under UV light, c CAs of the multilayer film with stearic acid overlayer dependence on irradiation time (the insets are corresponding water droplet shapes on the surface), d variation of absorption spectra of RhB aqueous solution degraded by the multilayer film [11].
nanoparticles by elaborately designing a verification experiment. More importantly, the ZnO layer with an appropriate thickness can significantly reduce the cytotoxicity of VO$_2$ and thus promote the VO$_2$ biosafety.

5 Large-scale production of VO$_2$ smart coatings

For commercial applications on building fenestrations in our daily life, large-scale production of VO$_2$ based smart coatings is a great challenge that must be developed. For VO$_2$ based films, magnetron sputtering is the most...
commonly used method and several works about large-scale production of VO$_2$ based films by magnetron sputtering have been reported. A large-scale TiO$_2$(R)/VO$_2$ (M)/TiO$_2$ (A) multilayer film was prepared on a glass with the area of $400 \text{ mm} \times 400 \text{ mm}$ using magnetron sputtering method by Zheng et al. [11], where a combination of energy-saving, antifogging and self-cleaning functions has been achieved (see Fig. 13a). TiO$_2$(R)/VO$_2$ (M)/TiO$_2$ (A) multilayer film was deposited using medium frequency reactive magnetron sputtering (MFRMS, see Fig. 13b) system to sputter planar rectangular metal targets in a suitable atmosphere. The proposed structure shows excellent ability to block out infrared irradiation, which causes a temperature reduction of 12°C compared with the blank glass (see Fig. 13c).

The magnetron sputtering coating system could be applied in architecture commercial glasses and the designed large area sputtering cathode can make the coating on large area glass substrates. The optimized design and precise manufacturing can guarantee to get a higher vacuum and a shorter cycle time by using a smaller pumping system. Sputtering is a vacuum process used to deposit thin films on substrates. It is performed by applying a high voltage across a low-pressure gas (usually argon) to create a “plasma”, which consists of electrons and gas ions in a high-energy state. During sputtering, energized plasma ions strike the target, which is composed of the desired coating material, and caused atoms from that target to be ejected with enough energy to travel to and bond with the substrate (see Fig. 13d).

In terms of VO$_2$ nanoparticles, which are usually synthesized by solution methods, the first requirement for commercial application is the preparation of VO$_2$ nanoparticles with uniform particle sizes. Then, VO$_2$ nanoparticles would be dissolved in suitable resins and coated on substrates such as glasses and PET. Calculations based on effective medium theory made by Li et al. [80] shows that dilute composites with VO$_2$ nanoparticles embedded in hosts with properties mimicking glass or polymer can yield significantly decreased luminous absorption jointly with much enhanced transmittance modulation of solar energy. These results demonstrate that VO$_2$-based nanothermochromics open new avenues toward energy-efficient fenestration. Polymer hosts such as

Fig. 13 a Photograph of large-scale ($400 \text{ mm} \times 400 \text{ mm}$) multilayer film at room temperature (the inset is corresponding structure diagram of the multilayer film), b photograph of the magnetron sputtering system, c photographic illustration of the testing system, 1: temperature monitor, 2: temperature probe, 3: infrared lamps, 4: glass with TiO$_2$(R)/VO$_2$(M)/TiO$_2$(A) multilayer film, d schematic diagram illustrating the basic components of a magnetron sputtering system [11, 100]
polyurethane (PU), poly(vinylpyrrolidone) (PVP) and polyamide (PA) have been used. Surface modulation of VO$_2$ nanoparticles will be carried out and the treated nanoparticles will be dispersed in the polymer hosts to form the suspension. The VO$_2$ based coatings are prepared by casting the suspension on the substrates. Preparation procedure for VO$_2$@SiO$_2$ nanoparticles and flexible composite films has been shown in Fig. 14a [29]. Thermal stable PET film covered with VO$_2$ has been stuck on the glass on which has a size of 1.65 m \times 1.65 m of a model house (see Fig. 14b) [101–104]. The demonstration of the VO$_2$ glazing’s application indicated that compared with the use of the ordinary glazing, the use of VO$_2$ glazing could save 10.2%–19.9% cumulative cooling load (see Fig. 14c).

6 Conclusions and prospects

As the most attractive thermochromic technology, VO$_2$-based smart coatings have gained great attention by researchers and many efforts have been made to promote the real commercialization. Methods such as multilayer stacks, composite films, core-shell structures have been carried out to improve thermochromic performance with enhanced luminous transmittance, solar modulation ability and environmental stability. However, more efforts are still needed to make this technology into our daily lives.

(i) Optical performances of VO$_2$ thermochromic smart coatings can be improved by methods, such as element doping, fabricating multilayer

![Preparation procedure for VO$_2$@SiO$_2$ nanoparticles and flexible composite films, photograph of a model room with VO$_2$ glazing (1.65 m \times 1.65 m), cooling load comparison during the demonstration of VO$_2$ glazing [29, 101]](image)
structures, and designing nanostructures. For practical applications, VO₂ smart coatings should have 50% luminous transmittance and 15% solar modulation ability for sufficient energy-saving effect. Optical properties of VO₂ smart coatings can be further improved by computational calculations and simulations for better luminous transmittance and solar modulation ability.

(ii) Environmental stability of VO₂ coatings is a great challenge for long-time use. Protective layers for VO₂ films as well as core-shell structures for VO₂ nanoparticles can effectively improve the environmental stability of VO₂ coatings. Future work can be carried out by choosing materials with versatility for protective, antireflection and self-cleaning functions.

(iii) Large-scale production of VO₂ smart coatings is necessary to turn this technology from the lab into the industrial and commercial application. Traditional methods, such as hydrothermal synthesis, spray pyrolysis and sol-gel, etc., are limited due to their low production and complicated process. An effective way to solve this problem is fabricating VO₂ based smart coatings during the production of glasses, just like the deposition of low-emissivity (low-E) coatings on the glass production lines.

Acknowledgements This study was financially supported by the National Natural Science Foundation of China (Grant No. 51572284) and the “Youth Innovation Promotion Association, Chinese Academy of Sciences”.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Omer AM (2008) Energy, environment and sustainable development. Renew Sustain Energy Rev 12:2265–2300
2. Granqvist CG, Lansåker PC, Miyuka NR et al (2009) Progress in chromogenics: new results for electrochromic and thermochromic materials and devices. Solar Energy Mater Solar Cells 93(12):2032–2039
3. Granqvist CG (2016) Electrochromics and thermochromics: towards a new paradigm for energy efficient buildings. Mater Today Proc 3:S2–S11
4. Granqvist CG (2016) Recent progress in thermochromics and electrochromics: a brief survey. Thin Solid Films 614:90–96
5. Granqvist CG, Green S, Niklasson GA et al (2010) Advances in chromogenic materials and devices. Thin Solid Films 518(11):3046–3053
6. Granqvist CG, Pehlivan IB, Ji YX et al (2014) Electrochromics and thermochromics for energy efficient fenestration: functionalities based on nanoparticles of In₂O₃:Sn and VO₂. Thin Solid Films 559:2–8
7. Deb SK (2008) Opportunities and challenges in science and technology of WO₃ for electrochromic and related applications. Solar Energy Mater Solar Cells 92(2):245–258
8. Granqvist CG (2014) Oxide-based chromogenic coatings and devices for energy efficient fenestration: brief survey and update on thermochromics and electrochromics. J Vac Sci Technol B 32(6):060801
9. Wang J, Zhang L, Yu L et al (2014) A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat Commun 5(4921):1–7
10. Granqvist CG (2012) Oxide electrochromics: an introduction to devices and materials. Solar Energy Mater Solar Cells 99:1–13
11. Zheng J, Bao S, Jin P (2015) TiO₂(R)/VO₂(M)/TiO₂(A) multilayer film as smart window: combination of energy-saving, antifogging and self-cleaning functions. Nano Energy 11:136–145
12. Chang T, Cao X, Li N et al (2017) Facile and low-temperature fabrication of thermochromic Cr₂O₃/VO₂ smart coatings: enhanced solar modulation ability, high luminous transmittance and UV-shielding function. ACS Appl Mater Interfaces 9(31):26029–26037
13. Babulamam SM, Eriksson TS, Niklasson GA et al (1987) Thermochromic VO₂ films for energy-efficient windows. Solar Energy Mater 16(5):347–363
14. Sobhan MA, Kivaisi RT, Stjerna B et al (1996) Thermochromism of sputter deposited W₆V₃₋₅O₁₀ films. Solar Energy Mater Solar Cells 44(4):451–455
15. Shen N, Li Y, Yi XJ (2006) Preparation of VO₂ films with nanostructure and improvement on its visible transmittance. J Infrared Millim Waves 25(3):199–202
16. Soltani M, Chaker M, Haddad E et al (2006) Thermochromic vanadium dioxide smart coatings grown on Kapton substrates by reactive pulsed laser deposition. J Vac Sci Technol A Vac Surf Films 24(3):612–617
17. Binions R, Hyett G, Piccirillo C et al (2007) Doped and undoped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystalllographic orientation on thermochromic properties. J Mater Chem 17(44):4652–4660
18. Evans P, Pemble ME, Sheel DW et al (2007) Multi-functional self-cleaning thermochromic films by atmospheric pressure chemical vapour deposition. J Photochem Photobiol A Chem 189(2–3):387–397
19. Shi JQ, Zhou SX, You B et al (2007) Preparation and thermochromic property of tungsten-doped vanadium dioxide particles. Solar Energy Mater Solar Cells 91(19):1856–1862
20. La M, Zhou H, Li N et al (2017) Improved performance of Mg-Y alloy thin film switchable mirrors after coating with a superhydrophobic surface. Appl Surf Sci 403:23–28
21. Jang WL, Lu YM, Chen CL et al (2014) Local geometric and electronic structures of gasochromic VO₂ films. Phys Chem Chem Phys 16(10):4699–4708
22. Wittwer V, Datz M, Ell J et al (2004) Gasochromic windows. Solar Energy Mater Solar Cells 84(1–4):305–314
23. Li N, Li Y, Sun G et al (2017) Selective and tunable near-infrared and visible light transmittance of MoO₃-x nanocomposites with different crystallinity. Chem Asian J 12(14):1709–1714

Springer
24. Li N, Li Y, Li W et al (2016) One-step hydrothermal synthesis of TiO₂@MoO₃ core-shell nanomaterial: microstructure, growth mechanism, and improved photochromic property. J Phys Chem C 120(6):3341–3349
25. Li N, Li Y, Zhou Y et al (2017) Interfacial-charge-transfer-induced photochromism of MoO₃@TiO₂ crystalline-core amorphous-shell nanorods. Solar Energy Mater Solar Cells 160:116–125
26. Li N, Li Y, Sun G et al (2017) Enhanced photochromic modulation efficiency: a novel plasmonic molybdenum oxide hybrid. Nanoscale 9(24):8298–8304
27. Morin PJ (1959) Oxides which show a metal-to-insulator transition at the Neel temperature. Phys Rev Lett 3(1):34–36
28. Zhang Z, Gao Y, Luo H et al (2011) Solution-based fabrication of vanadium dioxide on F:SnO₂ substrates with largely enhanced thermostimulon and low-emissivity for energy-saving applications. Energy Environ Sci 4(10):4290–4297
29. Gao Y, Wang S, Luo H et al (2012) Enhanced chemical stability of VO₂ nanoparticles by the formation of SiO₂/VO₂ core/shell structures and the application to transparent and flexible VO₂-based composite foils with excellent thermostimulon properties for solar heat control. Energy Environ Sci 5(3):6104–6110
30. Chang T, Cao X, Dedon LR et al (2018) Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermostimulon coatings. Nano Energy 44:256–264
31. Gao Y, Wang S, Kang L et al (2012) VO₂-Shell:SnO₂ composite thermostimulon glass foil. Energy Environ Sci 5(8):8234–8237
32. Gao Y, Luo H, Zhang Z et al (2012) Nanoceramic VO₂ thermostimulon smart glass: a review on progress in solution processing. Nano Energy 1(2):221–246
33. Warwick MEA, Binions R (2014) Advances in thermostimulon vanadium dioxide films. J Mater Chem A 2(10):3275–3292
34. Li Y, Ji S, Gao Y et al (2013) Core-shell VO₂@TiO₂ nanorods that combine thermostimulon and photocatalytic properties for application as energy-saving smart coatings. Sci Rep 3:1370
35. Sun G, Cao X, Zhou H et al (2017) A novel multifunctional thermostimulon structure with skin comfort design for smart window application. Sol Energy Mater Sol Cells 159:553–559
36. Sun G, Cao X, Li X et al (2017) Low-temperature deposition of VO₂ films with high crystalline degree by embedding multilayered strontium titanate. Solar Energy Mater Solar Cells 161:70–76
37. Sun G, Zhou H, Cao X et al (2016) Self-assembled multilayer structure and enhanced thermostimulon performance of spinodally decomposed TiO₂·VO₂ thin film. ACS Appl Mater Interfaces 8(11):7054–7059
38. Li S, Li Y, Qian K et al (2014) Functional fiber mats with tunable diffuse reflectance composed of electrospun VO₂/PVP composite fibers. ACS Appl Mater Interfaces 6(1):9–13
39. Li Y, Ji S, Gao Y et al (2013) Core-regenerated vapor-solid growth of hierarchical stem-like VO₂ nanocrystals on VO₂@-TiO₂ core-shell nanorods: microstructure and mechanism. Cryst Eng Commun 15(41):8330–8336
40. Li S, Li Y, Jiang M et al (2013) Preparation and characterization of self-supporting thermostimulon films composed of VO₂(M)@SiO₂ nanofibers. ACS Appl Mater Interfaces 5(14):6453–6457
41. Li Y, Ji S, Gao Y et al (2013) Modification of Mott phase transition characteristics in VO₃@TiO₂ core/shell nanostructures by misfit-strained heteroepitaxy. ACS Appl Mater Interfaces 5(14):6603–6614
42. Li R, Ji S, Li Y et al (2013) Synthesis and characterization of plate-like VO₂(M)@SiO₂ nanoparticles and their application to smart window. Mater Lett 110:241–244
43. Chen Y, Zeng X, Zhu J et al (2017) High performance and enhanced durability of thermostimulon films using VO₂@ZnO core-shell nanoparticles. ACS Appl Mater Interfaces 9(33):27784–27791
44. Ke Y, Wen X, Zhao D et al (2017) Controllable fabrication of two-dimensional patterned VO₂ nanoparticles, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance. ACS Nano 11(7):7542–7551
45. Zhu J, Huang A, Ma H et al (2017) Hybrid films of VO₂ nanoparticles and a nickel(II)-based ligand exchange thermostimulon system: excellent optical performance with a temperature responsive colour change. New J Chem 41(2):830–835
46. Li Y, Jiang P, Xiang W et al (2016) A novel inorganic precipitation-peptization method for VO₂ sol and VO₂ nanoparticles preparation: synthesis, characterization and mechanism. J Colloid Interface Sci 462:42–47
47. Wan J, Ren Q, Wu N et al (2016) Density functional theory study of M-doped (M = B, C, N, Mg, Al) VO₂ nanoparticles for thermostimulon energy-saving foils. J Alloys Compd 662:621–627
48. Li M, Wu H, Zhong L et al (2016) Active and dynamic infrared switching of VO₂ (M) nanoparticle film on ITO glass. J Mater Chem C 4(8):1579–1583
49. Lan S, Cheng C, Huang C et al (2015) Synthesis of sub-10 nm VO₂ nanoparticles films with plasma-treated glass slides by aqueous sol-gel method. Appl Surf Sci 357:2069–2076
50. Liu H, Wan D, Ishaq A et al (2016) Sputtering deposition of sandwich-structured V₂O₅/Metal (V, W)/V₂O₅ multilayers for the preparation of high-performance thermally sensitive VO₂ thin films with selectivity of VO₂ (B) and VO₂ (M) polymorph. ACS Appl Mater Interfaces 8(12):7784–7789
51. Mlyuka NR, Niklasson GA, Granqvist CG (2009) Thermostimulon VO₂-based multilayer films with enhanced luminous transmittance and solar modulation. Phys Status Solidi A 206(9):2155–2160
52. Mlyuka NR, Niklasson GA, Granqvist CG (2009) Thermostimulon multilayer films of VO₂ and TiO₂ with enhanced transmittance. Solar Energy Mater Solar Cells 93(9):1685–1687
53. Morrison VR, Chatelain RP, Tiwari KL et al (2014) Photoinduced metal-like phase of monoclinic VO₂ revealed by ultrafast electron diffraction. Science 346(6208):445–448
54. Ji Y, Li S, Niklasson GA et al (2014) Durability of thermostimulon VO₂ thin films under heating and humidity: effect of VO₂ B, C, N, Mg, Al oxide top coatings. Thin Solid Films 562:568–573
55. Zhu J, Zhou Y, Wang B et al (2015) Vanadium dioxide nanoparticle-based thermostimulon smart coating: high luminous transmittance, excellent solar regulation efficiency, and near room temperature phase transition. ACS Appl Mater Interfaces 7(50):27796–27803
56. Lv W, Huang D, Chen Y et al (2014) Synthesis and characterization of Mo-W Co-doped VO₂(R) nano-powders by the microwave-assisted hydrothermal method. Ceram Int 40(8):12661–12668
57. Piccirillo C, Binions R, Parkin IP (2007) Nb-doped VO₂ thin films prepared by aerosol-assisted chemical vapour deposition. Eur J Inorg Chem 2007(25):4050–4055
58. Burkhardt W, Christmann T, Meyer BK et al (1999) W- and Mo-W Co-doped VO₂ nano-powders by the microwave-assisted hydrothermal method. Ceram Int 25(50):27796–27803
59. Li S, Li Y, Qian K et al (2014) Functional fiber mats with tunable diffuse reflectance composed of electrospun VO₂/PVP composite fibers. ACS Appl Mater Interfaces 6(1):9–13
61. Jin P, Xu G, Tazawa M et al (2003) Design, formation and characterization of a novel multifunctional window with VO₂ and TiO₂ coatings. Appl Phys A Mater Sci Process 77(3–4):455–459
62. Zhu BQ, Tao HZ, Zhao XJ (2016) Effect of buffer layer on thermochromic performances of VO₂ films fabricated by magnetron sputtering. Infrared Phys Technol 75:22–25
63. Panagopoulos M, Gagatsoudis E, Boukos N et al (2016) Thermochromic performance of Mg-doped VO₂ thin films on functional substrates for glazing applications. Sol Energy Mater Sol Cells 157:1004–1010
64. Long S, Zhou H, Bao S et al (2016) Thermochromic multilayer films of VO₂/VO₂/WO₃ sandwich structure with enhanced luminous transmittance and durability. RSC Adv 6(108):106435–106442
65. Sun GY, Cao X, Gao X et al (2016) Structure and enhanced thermochromic performance of low-temperature fabricated VO₂ thin film. Appl Phys Lett 109(14):143903:1–5
66. Powell MJ, Quesada-Cabrera R, Taylor A et al (2016) Intelligent multifunctional VO₂/SiO₂/TiO₂ coatings for self-cleaning, energy-saving window panels. Chem Mater 28(5):1369–1376
67. Zhou Y, Cai Y, Hu X et al (2015) VO₂/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission. J Mater Chem A 3(3):1121–1126
68. Zhang J, Wang J, Yang C et al (2017) Mesoporous SiO₂/VO₂ composite film on SiN buffered glass substrate. Appl Surf Sci 363:532–542
69. Li SY, Niklasson GA, Granqvist CG (2010) Nanothermochromics: calculations for VO₂ nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation. J Appl Phys 108(6):063525
70. Chen Z, Cao C, Chen S et al (2014) Crystallised mesoporous TiO₂(A)-VO₂(M/R) nanocomposite films with self-cleaning and excellent thermochromic properties. J Mater Chem A 2(33):13550–13555
71. Lee M (2002) Thermochromic glazing of windows with better luminous solar transmittance and durability. RSC Adv 6(108):106435–106442
72. Zhang J, Wang J, Yang C et al (2016) Vanadium dioxide film protected with an atomic-layer-deposited Al₂O₃ thin film. J Vac Sci Technol A Vac Surf Films 34(1):01A106
73. Saitzek S, Guirleo G, Guinneton F et al (2004) New thermochromic bilayers for optical or electronic switching systems. Thin Solid Films 517(10):3075–3080
74. Zhan Y, Xiao X, Lu Y et al (2018) Enhanced thermal stability and thermochromic properties of VO₂-based thin films by room-temperature magnetron sputtering. Solar Energy Mater Solar Cells 174:102–111
75. Lee M, Cho J (2000) Better thermochromic glazing of windows with anti-reflection coating. Thin Solid Films 365(1):5–6
76. Jin P, Xu G, Tazawa M et al (2002) A VO₂-based multifunctional window with highly improved luminous transmittance. Jpn J Appl Phys 41(2 Part 2, No. 3A):L278–L280
77. Wang X, Cao Y, Yang C et al (2016) Vanadium dioxide film with anti-reflection coating. Thin Solid Films 365(1):5–6
78. Koo H, You H, Ko KE et al (2013) Preparation and characterization of SiO₂ coated VO₂ films with enhanced transmittance and high thermochromic performance. Appl Surf Sci 317:160–166
79. Jin P, Xu G, Tazawa M et al (2004) Optimization of antireflection coating for VO₂-based energy efficient window. Solar Energy Mater Solar Cells 83(1):29–37
80. Zhu B, Tao H, Zhao X (2016) Effect of buffer layer on thermochromic performances of VO₂ films fabricated by magnetron sputtering. Infrared Phys Technol 75:22–25
81. Panagopoulos M, Gagatsoudis E, Boukos N et al (2015) The effect of buffer layer on the thermochromic properties of undoped radio frequency sputtered VO₂ thin films. Thin Solid Films 594:310–315
82. Jeong H, Lee S, Song J et al (2017) Optimum design and temperature control for thermochromic bilayer with TiO₂ and ZnO. Sol Energy Mater Solar Cells 157:1004–1010
83. Zhou Y, Cai Y, Hu X et al (2015) Temperature-responsive VO₂/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and high luminous transmittance. J Mater Chem A 3(3):1121–1126
84. Yu H, Liu H, Song J et al (2016) Preparation of VO₂ nanoparticles and ionic liquid-nickel-chlorine composite and its phase transition properties. Mater Lett 71:127–130
85. Saitzek S, Guirleo G, Guinneton F et al (2004) New thermochromic bilayers for optical or electronic switching systems. Thin Solid Films 517(10):3075–3080
86. Zhu J, Huang A, Ma H et al (2016) Solar-thermochromism of a hybrid film of VO₂ nanoparticles and Co⁺⁻Br⁻-TMP complexes. RSC Adv 6(71):67396–67399
87. Saitzek S, Guirleo G, Guinneton F et al (2004) New thermochromic bilayers for optical or electronic switching systems. Thin Solid Films 449(1–2):166–172
88. Pan GT, Yang YL, Chong SH et al (2017) The durability study of thermochromic vanadium dioxide films with the addition of barrier coatings. Vacuum 145:158–168
89. Zhan Y, Xiao X, Lu Y et al (2018) Enhanced thermal stability and thermochromic properties of VO₂-based thin films by room-temperature magnetron sputtering. Solar Energy Mater Solar Cells 174:102–111
90. Li SY, Niklasson GA, Granqvist CG (2010) Nanothermochromics: calculations for VO₂ nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation. J Appl Phys 108(6):063525
100. Maurya D, Sardarinejad A, Alameh K (2014) Recent developments in R.F. Magnetron sputtered thin films for pH sensing applications—an overview. Coatings 4(4):756–771
101. Ye H, Long LS, Zhang HT et al (2013) The demonstration and simulation of the application performance of the vanadium dioxide single glazing. Sol Energy Mater Sol Cells 117:168–173
102. Long LS, Ye H, Zhang HT et al (2015) Performance demonstration and simulation of thermochromic double glazing in building applications. Sol Energy 120:55–64
103. Long LS, Ye H, Gao YF et al (2014) Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings. Appl Energy 136:89–97
104. Ye H, Long LS, Zhang HT et al (2014) The energy saving index and the performance evaluation of thermochromic windows in passive buildings. Renew Energy 66:215–221