Loss or duplication of key regulatory genes coincides with environmental adaptation of the stomatal complex in *Nymphaea colorata* and *Kalanchoe laxiflora*

Meizhi Xu¹, Fei Chen², Shilian Qi¹, Liangsheng Zhang¹,² and Shuang Wu¹

Abstract

The stomatal complex is critical for gas and water exchange between plants and the atmosphere. Originating over 400 million years ago, the structure of the stomata has evolved to facilitate the adaptation of plants to various environments. Although the molecular mechanism of stomatal development in *Arabidopsis* has been widely studied, the evolution of stomatal structure and its molecular regulators in different species remains to be answered. In this study, we examined stomatal development and the orthologues of *Arabidopsis* stomatal genes in a basal angiosperm plant, *Nymphaea colorata*, and a member of the eudicot CAM family, *Kalanchoe laxiflora*, which represent the adaptation to aquatic and drought environments, respectively. Our results showed that despite the conservation of core stomatal regulators, a number of critical genes were lost in the *N. colorata* genome, including EPF2, MPK6, and AP2C3 and the polarity regulators BASL and POLAR. Interestingly, this is coincident with the loss of asymmetric divisions during the stomatal development of *N. colorata*. In addition, we found that the guard cell in *K. laxiflora* is surrounded by three or four small subsidiary cells in adaxial leaf surfaces. This type of stomatal complex is formed via repeated asymmetric cell divisions and cell state transitions. This may result from the doubled or quadrupled key genes controlling stomatal development in *K. laxiflora*. Our results show that loss or duplication of key regulatory genes is associated with environmental adaptation of the stomatal complex.

Introduction

Stomata are a pore-like structure in multiple organs, including leaves and stems, which facilitates gas and water exchange. When environmental conditions are unfavourable, plants can regulate water evapotranspiration and reduce CO₂ uptake by opening and closing the stomata. For instance, Crassulacean acid metabolism (CAM) plants are adapted to arid conditions. The stomata in CAM plants remain closed during the day to reduce evapotranspiration while staying open at night to absorb CO₂. These physiological traits make CAM plants resistant to diverse stresses, including strong irradiance and drought.

Stomatal structure is highly conserved across land plants. The basic core structure with two guard cells surrounding the stomatal pore has remained unchanged during evolution. However, the patterning of the mature stomatal structure differs among plant groups and can be generally summarized by three classes: anomocytic, stephanocytic, and paracytic. The widely used model plant *Arabidopsis thaliana* exhibits anomocytic stomata. However, there are a few species (for example, CAM families) among the eudicots with paracytic stomata.
Most grass species have paracytic mature stomata. Amborella trichopoda in ANITA possesses stephanocytic stomata. The diverse architecture of mature stomatal structures may suggest the evolution of their different developmental regulations and their adaption to different environments.

In A. thaliana, meristem mother cells (MMCs) undergo up to three asymmetrical divisions to form guard mother cells (GMCs). In grasses, meristemoids divide asymmetrically to form GMCs, and the lateral neighbouring axial cell lineage surrounding the GMC undergoes asymmetric division to give rise to lateral subsidiary cells (LSCs). In A. trichopoda, however, protodermal cells can directly become GMCs or divide asymmetrically to produce a GMC. Hence, the regulation of stomatal development is highly diverse in different groups of land plants.

In the past, A. thaliana and Oryza sativa were often used as model systems to study stomatal patterning and development. Based on those studies, we now have a good understanding of the basic molecular network behind stomatal development. In A. thaliana, a complex signalling cascade of several genes has been identified to promote stomatal development. The secreted peptides of the EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE mote stomatal development. The secreted peptides of the stomatal bHLH transcription factors positively regulate the speci
cquentially to promote the cellular transition in a stage-
example, SPEECHLESS (SPCH), MUTE, and FAMA act
MMC and MUTE involved in GMC differentiation. In grasses, meristemoids divide asymmetrically to form GMC9. Hence, the regulation of stomatal development is highly diverse in different groups of land plants.

In the past, A. thaliana and Oryza sativa were often used as model systems to study stomatal patterning and development. Based on those studies, we now have a good understanding of the basic molecular network behind stomatal development. In A. thaliana, a complex signalling cascade of several genes has been identified to promote stomatal development. The secreted peptides of the EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE (EPFL) family act with a mitogen-activated protein kinase (MAPK) cascade to regulate the activity of basic-helix-loop-helix (bHLH) transcription factors. EPF1 and EPF2 specifically bind to leucine-rich repeat receptor (LRR) kinase complexes that include members of TOO MANY MOUTHS receptor-like protein (TMM) and the ERECTA family (ER). EPF1 is expressed in late-stage meristemoids, GMCs and young guard cells, whereas EPF2 is expressed in early-stage protodermal cells. In the downstream pathway, a number of mitogen-activated protein (MAP) kinases, including MAPKKK YODA, MPKK4/5, MPKK7/9, and MAPK MPK3/6, were found to transduce the signalling for stomatal development. Five bHLH transcription factors positively regulate the stomatal—lineage transition and differentiation. For example, SPEECHLESS (SPCH), MUTE, and FAMA act sequentially to promote the cellular transition in a stage-specific manner. SPCH regulates asymmetric divisions in MMC and MUTE involved in GMC differentiation. FAMA promotes the last step to form GCs. Two additional bHLH proteins, SCREAM/ICE1 and SCREAM2, act redundantly to heterodimerize SPCH, MUTE, and FAMA to coordinate the regulation.

Polarity information is critical in stomatal development and directs asymmetric cell division and possibly cell fate determination. In A. thaliana, two unique polarity proteins, POLAR LOCALIZATION DURING ASYMMETRIC DIVISION AND REDISTRIBUTION (POLAR) and BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL), show mostly overlapping localization during asymmetric stomatal divisions. In the grass, the asymmetric division taking place in the lateral neighbouring cell to produce the subsidiary cell relies on two LRR receptor-like kinases, PANGLASS1 (PAN1) and PAN2. PAN proteins are located at the poles in SMCs at the site of contact with GMCs, which precedes the polar accumulation of small GTPases (ROPs) and F-actin. Interestingly, recent observations in Brachypodium distachyon found that BdMUTE regulates subsidiary cells through cell-to-cell movement. In contrast, the MUTE homologue in A. thaliana is immobile.

Although stomata morphologies across land plants have been widely examined, questions on the early evolution of angiosperms and the adaptation of stomata to diverse environments remain to be answered. It is not clear how molecular regulation of stomatal development evolved and how that relates to the diverse stomata morphologies among the land plants. Immediately above the root node of angiosperm evolution is the ANITA grade (basal angiosperms), which includes Amborella, Nymphaea, Illiciaceae, Trimeniaceae and Austrobaileyaceae. In this study, we took advantage of the newly sequenced genome of Nymphaea colorata (not released yet), a typical base angiosperm, to examine stomata regulation in early angiosperm evolution.

The structure and function of stomata are important for environmental adaptation. In some species, stomata underwent radical modifications to facilitate habituation to a particular environment. A recent study indicated that Z. marina lost all the genes involved in stomatal differentiation, which is coincident with its marine habituation. Nymphaea colorata is also an aquatic plant, so it is interesting to know if its stomata-related genes also changed during evolution. By contrast, Kalanchoe laxiflora, a CAM species, has adapted to drought conditions and has evolved specialized stomata functions. To understand how the evolution of the molecular regulation of stomatal development is associated with environmental adaptation, we analysed stomatal morphologies and related regulatory cascades in both Nymphaea colorata and K. laxiflora. Our analysis showed that although generally conserved, loss or duplication of key genes could be associated with structural and physiological renovations required for individual adaptation of plants to local environments.

Materials and methods

Plant materials and growth condition

A. thaliana Columbia seeds were germinated and grown on 1/2 MS medium with 1% agar, 1% sucrose and 0.05% (wt/vol) morpholinoethane sulfonic acid monohydrate (pH 5.7) under a 16/8-h light/dark cycle at 23 °C. Plants were imaged 3–4 days after planting. O. sativa and K. laxiflora
were grown at 28 °C with a 16/8-h light/dark photoperiod. *N. colorata* were cultivated in water at 23 °C in the greenhouse. Leaves of *Spirodea polyrhiza* were collected in winter 2017 at the Fujian Agriculture and Forestry University.

Methods

Microscopy and image processing

For Differential Interference Contrast (DIC) imaging, the protocol was modified slightly according to Raissig et al.\(^\text{23,25}\). Samples from the mid-regions of leaves were cut into small squares and cleared using a solution (ethanol: acetic acid glacial, in proportions 4:1 by volume) to remove chlorophyll; then, samples were subjected to a basic solution (a mixture of 7% NaOH in 60% ethanol). Finally, samples were washed briefly with 40% ethanol and mounted in water for visualization and microscopy analysis. Samples were examined using a Nikon ECLIPSE Ni-U microscope fitted with a Nikon DS-Ri 2 digital camera. Images were processed using ImageJ.

Phylogenetic analysis

We surveyed a number of genomes, such as *A. thaliana*, *K. laxiflora*, *Sorghum bicolor*, *O. sativa*, *Zea mays*, *Ananas comosus*, *S. polyrhiza*, and *A. trichopoda*, from Phytozome v12. *Nelumbo nucifera* and *Phalaenopsis equestris* were retrieved from ftp://ftp.ncbi.nih.gov/genomes/. *Ginkgo biloba* was found from GigaDB (http://gigadb.org/). *N. colorata* was recently sequenced by Liangsheng Zhang’s Lab in Fujian Agriculture and Forestry University, and sequences were available in the water lily genome database (eplant.org). To obtain probable orthologous genes, we performed BLASTp (protein query–proteins database) and tBLASTn (protein query–nucleic acid database) alignment. Samples were examined using a Nikon ECLIPSE Ni-U microscope fitted with a Nikon DS-Ri 2 digital camera. Images were processed using ImageJ.

Methods

Microscopy and image processing

For Differential Interference Contrast (DIC) imaging, the protocol was modified slightly according to Raissig et al.\(^\text{23,25}\). Samples from the mid-regions of leaves were cut into small squares and cleared using a solution (ethanol: acetic acid glacial, in proportions 4:1 by volume) to remove chlorophyll; then, samples were subjected to a basic solution (a mixture of 7% NaOH in 60% ethanol). Finally, samples were washed briefly with 40% ethanol and mounted in water for visualization and microscopy analysis. Samples were examined using a Nikon ECLIPSE Ni-U microscope fitted with a Nikon DS-Ri 2 digital camera. Images were processed using ImageJ.

Phylogenetic analysis

We surveyed a number of genomes, such as *A. thaliana*, *K. laxiflora*, *Sorghum bicolor*, *O. sativa*, *Zea mays*, *Ananas comosus*, *S. polyrhiza*, and *A. trichopoda*, from Phytozome v12. *Nelumbo nucifera* and *Phalaenopsis equestris* were retrieved from ftp://ftp.ncbi.nih.gov/genomes/. *Ginkgo biloba* was found from GigaDB (http://gigadb.org/). *N. colorata* was recently sequenced by Liangsheng Zhang’s Lab in Fujian Agriculture and Forestry University, and sequences were available in the water lily genome database (eplant.org). To obtain probable orthologous genes, we performed BLASTp (protein query–proteins database) and tBLASTn (protein query–nucleic acid database) alignment. Samples were examined using a Nikon ECLIPSE Ni-U microscope fitted with a Nikon DS-Ri 2 digital camera. Images were processed using ImageJ.

Methods

Microscopy and image processing

For Differential Interference Contrast (DIC) imaging, the protocol was modified slightly according to Raissig et al.\(^\text{23,25}\). Samples from the mid-regions of leaves were cut into small squares and cleared using a solution (ethanol: acetic acid glacial, in proportions 4:1 by volume) to remove chlorophyll; then, samples were subjected to a basic solution (a mixture of 7% NaOH in 60% ethanol). Finally, samples were washed briefly with 40% ethanol and mounted in water for visualization and microscopy analysis. Samples were examined using a Nikon ECLIPSE Ni-U microscope fitted with a Nikon DS-Ri 2 digital camera. Images were processed using ImageJ.

Phylogenetic analysis

We surveyed a number of genomes, such as *A. thaliana*, *K. laxiflora*, *Sorghum bicolor*, *O. sativa*, *Zea mays*, *Ananas comosus*, *S. polyrhiza*, and *A. trichopoda*, from Phytozome v12. *Nelumbo nucifera* and *Phalaenopsis equestris* were retrieved from ftp://ftp.ncbi.nih.gov/genomes/. *Ginkgo biloba* was found from GigaDB (http://gigadb.org/). *N. colorata* was recently sequenced by Liangsheng Zhang’s Lab in Fujian Agriculture and Forestry University, and sequences were available in the water lily genome database (eplant.org). To obtain probable orthologous genes, we performed BLASTp (protein query–proteins database) and tBLASTn (protein query–nucleic acid database) alignment. Samples were examined using a Nikon ECLIPSE Ni-U microscope fitted with a Nikon DS-Ri 2 digital camera. Images were processed using ImageJ.

Methods

Microscopy and image processing

For Differential Interference Contrast (DIC) imaging, the protocol was modified slightly according to Raissig et al.\(^\text{23,25}\). Samples from the mid-regions of leaves were cut into small squares and cleared using a solution (ethanol: acetic acid glacial, in proportions 4:1 by volume) to remove chlorophyll; then, samples were subjected to a basic solution (a mixture of 7% NaOH in 60% ethanol). Finally, samples were washed briefly with 40% ethanol and mounted in water for visualization and microscopy analysis. Samples were examined using a Nikon ECLIPSE Ni-U microscope fitted with a Nikon DS-Ri 2 digital camera. Images were processed using ImageJ.

Phylogenetic analysis

We surveyed a number of genomes, such as *A. thaliana*, *K. laxiflora*, *Sorghum bicolor*, *O. sativa*, *Zea mays*, *Ananas comosus*, *S. polyrhiza*, and *A. trichopoda*, from Phytozome v12. *Nelumbo nucifera* and *Phalaenopsis equestris* were retrieved from ftp://ftp.ncbi.nih.gov/genomes/. *Ginkgo biloba* was found from GigaDB (http://gigadb.org/). *N. colorata* was recently sequenced by Liangsheng Zhang’s Lab in Fujian Agriculture and Forestry University, and sequences were available in the water lily genome database (eplant.org). To obtain probable orthologous genes, we performed BLASTp (protein query–proteins database) and tBLASTn (protein query–nucleic acid database) alignment. Samples were examined using a Nikon ECLIPSE Ni-U microscope fitted with a Nikon DS-Ri 2 digital camera. Images were processed using ImageJ.

Methods

Microscopy and image processing

For Differential Interference Contrast (DIC) imaging, the protocol was modified slightly according to Raissig et al.\(^\text{23,25}\). Samples from the mid-regions of leaves were cut into small squares and cleared using a solution (ethanol: acetic acid glacial, in proportions 4:1 by volume) to remove chlorophyll; then, samples were subjected to a basic solution (a mixture of 7% NaOH in 60% ethanol). Finally, samples were washed briefly with 40% ethanol and mounted in water for visualization and microscopy analysis. Samples were examined using a Nikon ECLIPSE Ni-U microscope fitted with a Nikon DS-Ri 2 digital camera. Images were processed using ImageJ.

Phylogenetic analysis

We surveyed a number of genomes, such as *A. thaliana*, *K. laxiflora*, *Sorghum bicolor*, *O. sativa*, *Zea mays*, *Ananas comosus*, *S. polyrhiza*, and *A. trichopoda*, from Phytozome v12. *Nelumbo nucifera* and *Phalaenopsis equestris* were retrieved from ftp://ftp.ncbi.nih.gov/genomes/. *Ginkgo biloba* was found from GigaDB (http://gigadb.org/). *N. colorata* was recently sequenced by Liangsheng Zhang’s Lab in Fujian Agriculture and Forestry University, and sequences were available in the water lily genome database (eplant.org). To obtain probable orthologous genes, we performed BLASTp (protein query–proteins database) and tBLASTn (protein query–nucleic acid database) alignment. Samples were examined using a Nikon ECLIPSE Ni-U microscope fitted with a Nikon DS-Ri 2 digital camera. Images were processed using ImageJ.

Methods

Microscopy and image processing

For Differential Interference Contrast (DIC) imaging, the protocol was modified slightly according to Raissig et al.\(^\text{23,25}\). Samples from the mid-regions of leaves were cut into small squares and cleared using a solution (ethanol: acetic acid glacial, in proportions 4:1 by volume) to remove chlorophyll; then, samples were subjected to a basic solution (a mixture of 7% NaOH in 60% ethanol). Finally, samples were washed briefly with 40% ethanol and mounted in water for visualization and microscopy analysis. Samples were examined using a Nikon ECLIPSE Ni-U microscope fitted with a Nikon DS-Ri 2 digital camera. Images were processed using ImageJ.

Phylogenetic analysis

We surveyed a number of genomes, such as *A. thaliana*, *K. laxiflora*, *Sorghum bicolor*, *O. sativa*, *Zea mays*, *Ananas comosus*, *S. polyrhiza*, and *A. trichopoda*, from Phytozome v12. *Nelumbo nucifera* and *Phalaenopsis equestris* were retrieved from ftp://ftp.ncbi.nih.gov/genomes/. *Ginkgo biloba* was found from GigaDB (http://gigadb.org/). *N. colorata* was recently sequenced by Liangsheng Zhang’s Lab in Fujian Agriculture and Forestry University, and sequences were available in the water lily genome database (eplant.org). To obtain probable orthologous genes, we performed BLASTp (protein query–proteins database) and tBLASTn (protein query–nucleic acid database) alignment. Samples were examined using a Nikon ECLIPSE Ni-U microscope fitted with a Nikon DS-Ri 2 digital camera. Images were processed using ImageJ.

Methods

Microscopy and image processing

For Differential Interference Contrast (DIC) imaging, the protocol was modified slightly according to Raissig et al.\(^\text{23,25}\). Samples from the mid-regions of leaves were cut into small squares and cleared using a solution (ethanol: acetic acid glacial, in proportions 4:1 by volume) to remove chlorophyll; then, samples were subjected to a basic solution (a mixture of 7% NaOH in 60% ethanol). Finally, samples were washed briefly with 40% ethanol and mounted in water for visualization and microscopy analysis. Samples were examined using a Nikon ECLIPSE Ni-U microscope fitted with a Nikon DS-Ri 2 digital camera. Images were processed using ImageJ.
searches to selectively look for similar protein sequences from these genomes. A MAFFT (Multiple Sequence Alignment program) was chosen to produce an alignment of all amino-acid sequences with a BLAST score of at least 60 against *A. thaliana*. The phylogenetic tree was reconstructed using the maximum likelihood (ML) method in FastTree.

Protein domains were identified using the National Center for Biotechnology Information conserved domain search tool. PEST domains were identified using emboss.bioinformatics.nl/cgi-bin/emboss/epestfind.

Results

Loss of stomatal development genes in *N. colorata*

It was reported that different stomatal development patterns occur in plants of the ANITA grade. *A. trichopoda* possesses mostly perigenous and mesoperigenous stomata. In this species, protodermal cells can directly become GMCs or divide asymmetrically to produce GMCs and stomatal lineage ground cells. However, in *Nymphaea*, protodermal cells seemed to skip asymmetric divisions and directly gave rise to GMCs. It is still to be determined whether asymmetric division is an ancestral stomata-forming step during evolution.

To gain a deeper understanding of the ancestral development of stomatal structure, we performed anatomic observation of the stomatal structure in *N. colorata*. We found that *N. colorata* stomata are only present on the adaxial surface of the floating leaf, with each stoma surrounded by 4–8 neighbouring cells (Fig. 1a). On the abaxial surface of *N. colorata*, we only found hydropote complexes with lens-shaped cells and bowl-shaped cells, which appeared to be surrounded by specialized rosettes of epidermal cells (Fig. 1b). It was hypothesized that the hydropote in *Nymphaea colorata* is homologous to stomatal complexes, and its functions and morphologies are highly associated with aquatic habitats. Similarly, another floating plant, *S. polyrhiza*, has lost stomata on...
Fig. 3 Schematics of the domain architecture of SPCH, MUTE, FAMA, and ICE-like sequences from *N. colorata* (Nc) and *A. thaliana* (At). NcSPCH shares the bHLH domain (orange) and C-terminal SMF domain (light blue) with AtSPCH but has no protein degradation-associated PEST domain (grey) and has a shorter MAPK target domain (yellow). Both NcMUTE and AtMUTE genes have a unique conserved region (MUTE unique, dark blue) and lack some residues preceding the bHLH domain that are present in all the other bHLH Ia members with various lengths. Both NcFAMA and AtFAMA genes have high AA sequence similarity and harbour three unique domains (FAMA unique 1, red; FAMA unique 2, blue; la extension, brown). Both NcICE-like and AtICE1/2 have highly conserved bHLH domains, potential PEST domains and ACT domains (green).

Fig. 4 Phylogenetic analysis of genes lost in *N. colorata*. Phylogenetic trees constructed using amino-acid sequences of selected *A. thaliana* EPF2 (a), MPK3/MPK6 (b), AP2C3 (c), BASL (d) and POLAR (e) gene family members. Amino-acid sequences from *G. biloba* (Gb), *A. trichopoda* (Atr, grey shade), *N. colorata* (Nc, blue shade), *S. polyrhiza* (Spipo), *P. equestris* (Peq), *Z. mays* (Zm), *O. sativa* (Os, green circle), *N. nucifera* (NNU), *K. laxiflora* (Kalax, peachy shade) and *A. thaliana* (AT, peachy circle) were used to generate trees.
the abaxial surface (Figure S1). These results reveal that floating plants tend to lose stomata or create special stomata-like structures to adapt to the aquatic environment. It can also be exemplified by seagrass, Zostera marina, in which no stomata are present on leaves, and coincidently, entire stomatal genes are lost to adapt to the marine lifestyle. Although anatomical descriptions of stomatal development have been reported for many taxa, little is known about the evolution of the molecular machine of stomatal formation across land plants.

One way to understand the evolution of these essential regulators of stomatal development is to analyse their phylogenies. This is currently feasible based on the genome sequences for many species, including the eudicots A. thaliana and K. laxiflora; the monocots O. sativa and Z. mays. To facilitate our understanding of the early evolution of these regulators, we included basal angiosperms A. trichopoda, and we recently sequenced the genome of an early-divergent angiosperm N. colorata (see Materials and methods for information on genome data) (Fig. 2a). To understand some special features of stomata formation in N. colorata, we analysed the potential orthologues of A. thaliana genes involved in stomatal formation using the unique unpublished genome data of water lily. In line with A. thaliana, we found high conservation of the core genes required for stomatal formation in N. colorata, including an orthologue of an SPCH-like gene, NcSPCH (Fig. 2b); orthologue of a MUTE-like gene, NcMUTE (Fig. 2c); orthologue of a FAMA-like gene, NcFAMA (Fig. 2d), and two orthologues of an ICE/SCRM-like gene, NcICE1 and NcSCRM2 (Fig. 2e). We further analysed the conservation of the homologous domain of these proteins and found a high degree of domain conservation (Fig. 3). However, we also found a number of genes missing from the N. colorata genome, including the peptide ligands EPF2, MPK6, and AP2C3 and the polarity controllers BASL and POLAR (Fig. 4). Interestingly, the function of lost genes seems to be highly specific to the asymmetric stomatal development stages.

Stomatal development gene duplications in K. laxiflora

Whole-genome duplications (WGDs) are a common phenomenon during evolution, and the resulting gene duplications (GDs) provide redundant functions or specified novel functions. WGDs are the source of functional diversity or novelty in the genome for adaption to environmental changes. It has been suggested that two distinct WGDs occur in the K. laxiflora lineage and generate four gene copies across the genome.

To understand the evolution of CAM stomata-related genes, we performed genome phylogenetic analysis in K.
Table 1 Gene involved in stomata development in *N. colorata* compared with other representative plant

Gene name	Symbol	*A. thaliana*	*K. laxiflora*	*N. nucifera*	*O. sativa*	*S. polyrhiza*	*N. colorata*	*A. trichopoda*	*G. biloba*	
Differentiation genes										
SPEECHLESS	SPCH	AT5G53210	Kalax.0066s0097	NNU 010414	LOC	Spipo6G0039800	NC1G0180400	Atr	scaffold0001595	Gb 32351
			Kalax.0943s0016	NNU 013503	LOC					
			Kalax.0277s0021		LOC					
MUTE	MUTE	AT3G06120	Kalax.0004s0103	NNU 007035	LOC	NC2G0006530		Atr	scaffold0002564	
			Kalax.0418s0025		LOC					
			Kalax.0268s0032		LOC					
FAMA	FAMA	AT3G24140	Kalax.0693s0014	NNU 012009	LOC	NF	NC3G0207550	Atr	scaffold0008912	
			Kalax.1863s0001		LOC					
			Kalax.0693s0015		LOC					
			Kalax.0693s0014		LOC					
Scream/ICE1	SCRM	AT3G26744	Kalax.0847s0049	NNU 003962	LOC	Spipo4G0062100	NC2G0294460	Atr	scaffold00016130	Gb 18877Gb
	SCRM2	AT1G12860	Kalax.0029s0087	NNU 003217	LOC	Spipo0G0128000	NC7G0236530			
			Kalax.0801s0007		LOC					
			Kalax.0234s0011		LOC					
FOUR LIPS	FLP	AT1G14350	Kalax.0757s0004	NNU 022886	LOC	Spipo0G1579000	NC2G0034590	Atr	scaffold00010370	Gb 06045
	MYB88	AT2G02820	Kalax.0556s0006	NNU 000781	LOC					
			Kalax.0031s0030		LOC					
			Kalax.0089s0020		LOC					
HOMEODOMAIN GLABROUS2	HDG2	AT1G05230	Kalax.0393s0043	NNU 019425	LOC	Spipo7G0015400	NC1G0306950	Atr	scaffold0004265	Gb 18862Gb
			Kalax.0069s0102		LOC					
			Kalax.1016s0007		LOC					
			Kalax.1527s0001		LOC					
Spacing and patterning genes										
EPIDERMAL PATTERNING FACTOR1	EPFI	AT2G20875	Kalax.0168s0064	NNU 024753	LOC	Spipo14G0058800	NC1G0135060	Atr	scaffold0003277	Gb 37555Gb
			Kalax.1136s0002		LOC					
			Kalax.0140s0018		LOC					
			Kalax.0421s0001		LOC					
Gene name	Symbol	A. thaliana	K. laxiflora	N. nucifera	O. sativa	S. polyrhiza	N. colorata	A. trichopoda	G. biloba	
---------------------------------------	--------	----------------------------------	-----------------------------------	------------------------------	-----------------------------	-------------------------------	-------------------------------	-------------------------------	-----------------------------	
EPIDERMAL PATTERNING FACTOR2	EPF2	AT1G34245	Kalax.0001s0052	Kalax.0002s0022	NNU 010187	Spipo15G0006400	NF	Atr	scaffold00010.278	
			Kalax.0149s0034	Kalax.0314s0026						
			STOMAGEN/EPF-LIKE9							
			EPFL9	AT4G12970						
Spipo7G0057500	NC3G0208820	Atr	scaffold00020							
CHALLAH/EPF-LIKE6	EPFL6	AT2G30370	Kalax.0093s0085		NF	LOC	LOC	LOC		
			Kalax.0322s0055			Oxo1g60000	Oxo5g33880			
ERECTA	ER	AT2G26330	Kalax.0387s0036		NNU 018228	LOC	LOC	LOC		
			Kalax.0284s0052		NNU 010627	Oxo6g10230	Oxo2g53720			
ERECTA-LIKE1	ERL1	AT5G62230	Kalax.0858s0013		NNU 001410	LOC	LOC	LOC		
			Kalax.1180s0007			Oxo6g03970	Oxo6g03970			
ERECTA-LIKE2	ERL2	AT5G07180	Kalax.0093s0024		NNU 003757	LOC	LOC	LOC		
			Kalax.0058s0095			Oxo1g43440				
TOO MANY MOUTHS	TMM	AT1G00800	Kalax.0090s0020		NNU 002701	LOC	LOC	LOC		
			Kalax.0058s0095			Oxo3g04950				
STOMATAL DENSITY AND DISTRIBUTION1	SDD1	AT1G04110	Kalax.0525s0015		NNU 010999	LOC	LOC	LOC		
			Kalax.0155s0004			Oxo3g04950				
CO2 RESPONSE SECRETED PROTEASE	CRSP	AT1G20160	NF		NNU 013210	LOC	LOC	LOC		
						Oxo9g30458				
YODA	YDA	AT1G63700	Kalax.0027s0088		NNU 019513	LOC	LOC	LOC		
			Kalax.0305s0041			Oxo2g44442				
			Kalax.0021s0011			Oxo4g47240				
MPK3	MPK3	AT3G45640	Kalax.0014s0191		NNU 009572	LOC	LOC	LOC		
			Kalax.0055s0143		NNU 005597	Oxo3g17700				
Gene name	Symbol	A. thaliana	K. laxiflora	N. nucifera	O. sativa	S. polyrhiza	N. colorata	A. trichopoda	G. biloba	
-----------------------	---------	-------------	--------------	-------------	-----------	--------------	-------------	---------------	----------	
MPK6	MPK6	AT2G43790	Kalax.001900087	NF	LOC	Spipo1G00031100	NF	Atr	scaffold00058238	26499Gb
			Kalax.002200025			Os06g06090		Atr	scaffold00011127	15256
			Kalax.008200002					Atr	scaffold00011128	
			Kalax.013300041							
M KK4	M KK4	AT1G51660	Kalax.051000006	NNU 012790	LOC	Spipo1G00033200	NC3G0229970	Atr	scaffold00011127	36141
			Kalax.044500039			Os02g54600		Atr	scaffold00011128	
			Kalax.028300053							
			Kalax.010400058							
M KK5	M KK5	AT3G21220	Kalax.054300017	NNU 016426	LOC	Spipo1G00037300	NC8G0217780	Atr	scaffold0001762	41213Gb
			Kalax.021600025			Os03g12390		Atr	scaffold0007121	
			Kalax.003900095							
			Kalax.143300007							
M KK7	M KK7	AT1G18350	Kalax.054300017	NNU 016426	LOC	Spipo1G00037300	NC8G0217780	Atr	scaffold0001762	41213Gb
			Kalax.021600025			Os03g12390		Atr	scaffold0007121	
			Kalax.003900095							
			Kalax.143300007							
ARABIDOPSIS PROTEIN PHOPHATASE 2C	AP2C3	AT2G40180	Kalax.010700048	NNU 012318	LOC	Spipo2G00031600	NF	Atr	scaffold0006564	40834Gb
			Kalax.017000065			Os03g18150		Atr	scaffold00078152	22266
			Kalax.044100077							
			Kalax.052700028							
Polarity and division asymmetry genes										
PANGLOSS1	P AN1	AT2G42290, AT3G57830	Kalax.022200039	NNU 012890	LOC	Spipo1G00035200	NC1G0088630	Atr	scaffold00022305	28844
			Kalax.063700020			Os08g38590		Atr	scaffold00022305	
PANGLOSS2	P AN2	AT4G20940	Kalax.001600247	NNU 026348	LOC	Spipo3G0009300	NC1G0281210	Atr	scaffold0017533	30406Gb
			Kalax.011400005			Os07g05190		Atr	scaffold0017533	18587
RHO-RELATED PROTEIN FROM PLANTS 9	R O P 9	AT4G28950	Kalax.019200051	NNU 005916	LOC	Spipo2G0008200	NC6G0252910	Atr	scaffold0002129	09833
			Kalax.001500042			Os05g43820		Atr	scaffold0002129	
			Kalax.12140006							
BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGAE										
BASL	BASL	AT5g60880	Kalax.023600002	NNU 008250	LOC	Spipo1G00035200	NC1G0088630	Atr	scaffold00022305	28844
			Kalax.100000001			Os04g39240		Atr	scaffold00022305	
POLAR LOCALIZATION DURING ASYMMETRIC DIVISION AND REDISTRIBUTION										
POLAR	POLAR	AT4G31805	Kalax.02000126	NNU 0193966NNU 013094	LOC	Spipo1G0014700	NF	Atr	scaffold00066195	00304
			Kalax.010700095			Os06g08520		Atr	scaffold00066195	
			Kalax.025000038			Os02g55190		Atr	scaffold00066195	
			Kalax.053000021							
Mitosis and cytokinesis genes										
STOMATAL CYTOKINESIS DEFECTIVE 1	SCD1	AT1G49040	Kalax.006100068	NNU 012674	LOC	Spipo2G00025200	NC3G0202830	Atr	scaffold0010416	36258
			Kalax.019000062			Os01g39880		Atr	scaffold0010416	

Table 1 (continued)
Gene name	Symbol	A. thaliana	K. laxiflora	N. nucifera	O. sativa	S. polyrhiza	N. colorata	A. trichopoda	G. biloba
Hormone and environmental signalling genes									
CRYPTOCHROME	CRY1	AT4G08920	Kalax.0428s0010	NNU 001876	LOC	Spipo15G00011900	NC8G0218290	Atr	scaffold00038.124
			Kalax.1365s0004	NNU 015266	LOC	Spipo1G0003600	NC12G0249420	Atr	scaffold00148.99
			Kalax.0290s0014	NNU 001834	LOC	Spipo6G0014200	NC10G0166490	Atr	scaffold00045.165
PHYTOCHROME	PHYA	AT1G09570	Kalax.0106s0002	NNU 026354	LOC	Spipo6G0031800	NC5G0160900	Atr	scaffold00034.43
			Kalax.0005s0079	NNU 001834	LOC	Spipo13G0004800	NC10G0166270	Atr	scaffold00039.99
			Kalax.0038s0184	NNU 001834	LOC	Spipo13G0004800	NC10G0166270	Atr	scaffold00039.99
PHYB	AT2G18790	Kalax.0613s0014	NNU 014452	LOC	Spipo6G0031800	NC5G0160900	Atr	scaffold00034.43	Gb 17897
			Kalax.0391s0019	NNU 014452	LOC	Spipo6G0031800	NC5G0160900	Atr	scaffold00034.43
			Kalax.0996s0003	NNU 014452	LOC	Spipo6G0031800	NC5G0160900	Atr	scaffold00034.43
PYTOCHROME-INTERACTING FACTOR 4	PIF4	AT2G43010	Kalax.0495s0020	NNU 026428	LOC	Spipo31G0000500	NC1G01783350	Atr	scaffold00074.24
			Kalax.0759s0011	NNU 026428	LOC	Spipo31G0000500	NC1G01783350	Atr	scaffold00074.24
CONSTITUTIVE PHOTOMORPHOGENIC 1	COP1	AT2G32950	Kalax.0049s0041	NNU 005078	LOC	Spipo2G0063200	NC1G0193740	Atr	scaffold00061.43
	COP10	AT3G13550	Kalax.0340s0003	NNU 019762	LOC	Spipo14G0001700	NC6G0254440	Atr	scaffold00052.41
HIGH CARBON DIOXIDE	HIC1	AT2G46720	Kalax.0018s0006	NNU 006085	LOC	Spipo21G0006400	NC1G0129310	Atr	scaffold00042.04
			Kalax.0090s0007	NNU 006085	LOC	Spipo21G0006400	NC1G0129310	Atr	scaffold00042.04
			Kalax.1015s0012	NNU 003630	LOC	Spipo21G0006400	NC1G0129310	Atr	scaffold00042.04
			Kalax.0013s0142	NNU 003630	LOC	Spipo21G0006400	NC1G0129310	Atr	scaffold00042.04
BRI SUPPRESSOR1	BSUI	AT1G03445	Kalax.0084s0077	NNU 001649	LOC	Spipo6G0007500	NC1G0193170	Atr	scaffold00042.04
			Kalax.1286s0001	NNU 001649	LOC	Spipo6G0007500	NC1G0193170	Atr	scaffold00042.04
Intercellular signalling networks, such as peptide ligands, transmembrane receptors TMM/ER, MAPK modules, and bHLH transcription factors, are important for stomatal patterning11–17. In the EPF/TMM/ER module, our phylogenetic analysis shows that EPF2, EPFL6, TMM and ER/ERL have two copies, whereas EPF1 and EPFL9 have six and four orthologous genes, respectively, in *K. laxiflora* (Figs. 4a, 5). Furthermore we found each YODA, MKK4/MKK5, MKK7/MKK9, MAPKs MPK3/MPK6, and AP2C3 gene has only one copy in *A. thaliana* while expanded to four homologous genes in *K. laxiflora* (Figs. 4b, c, 5). Similarly, the group of bHLH transcription factors in *K. laxiflora* has also expanded to four orthologous (Fig. 2). In addition, the copy of the cell fate determining regulators, HDG2 and FLP/MYB88 also became quadrupled in *K. laxiflora* (Figures S2A, B). To understand if the asymmetric division is also associated with polarity in *K. laxiflora*, we analysed polar genes in *K. laxiflora*. Our analysis indicates that *K. laxiflora* genome contains homologous genes for PAN1, PAN2, POLAR, BASL, and ROP (Figures S2C, S2D, S2E; Fig. 4d, e). Together, these findings suggest that four copies of stomatal orthologous genes in *K. laxiflora* possibly derived from maximally two rounds of genome duplication (Table 1).

Novel formation of subsidiary cells in *K. laxiflora*

CAM increases water-use efficiency and drought resistance in plants, which is characterized by nocturnal opening and diurnal closing of the stomata36. Therefore, stomatal control in the leaves is particularly important for this type of plant to reduce evapotranspiration in the daytime and increase carbon dioxide (CO2) collection at night36. The physiological traits probably improve the resistance of CAM plants to diverse environmental stresses, including drought1,2.

To gain a better understanding of the stomatal complex in CAM plants, we performed anatomical observation of *K. laxiflora*, a member of the eudicot CAM family. In *K. laxiflora*, stomata are surrounded by three to four small subsidiary cells in adaxial leaf surfaces (Fig. 6a). Similarly, we found that the stomata of *Phalaenopsis equestris*, another CAM monocot species, is also surrounded by approximately four subsidiary cells (Figure S3). This innovation of stomatal architecture could derive from differential regulation of stomatal formation. We found that in *K. laxiflora*, stomata formed via a series of asymmetric cell divisions and cell state transitions: protodermal cells entered the stomatal lineage and took on a MMC identity; the MMC underwent three or four asymmetrical divisions to form GMC and Stomatal lineage ground cell (SLGC) (Fig. 6d-g). The GMC underwent a symmetric division to form a pair of guard cells, and SLGCs eventually became subsidiary cells surrounding the guard cell (Fig. 6b, c).
It is widely accepted that different stomatal patternings reflect the asymmetric division of precursor cells and lateral divisions of neighbouring cells. For example, in anomocytic stomata occurring in the eudicot *A. thaliana* (Fig. 7a, b), the MMC underwent three asymmetric divisions to give rise to a GMC and SLGCs, which was followed by a transition from SLGCs to pavement cells (Fig. 7c). Although both *A. thaliana* and *K. laxiflora* are eudicots, *K. laxiflora* possesses stephanocytic stomata (Fig. 7d, e). Developmentally, there is a similarity between these two types of stomata: meristemoids undergo a series of asymmetric divisions to produce SLGCs surrounding guard cells (Fig. 7f), and different cell fate choices of SLGCs finally give rise to different stomatal complexes (Figure S4). In monocot species such as *O. sativa*, the type of mature stomata is named the paracytic type, in which the guard cell is surrounded by two subsidiary cells (Fig. 7g, h). In this type, the stomatal meristemoid divides asymmetrically to form a larger SLGC and a smaller meristemoid that directly forms the GMC. Before the GMC divides, it induces neighbouring cell files to adopt an SMC identity, which subsequently forms SCs via asymmetric divisions. The GMC then undergoes symmetric mitosis to eventually form guard cells (Fig. 7i). Therefore, subsidiary cells can develop through different ways: one is through asymmetric division in *O. sativa*, and the other is through SLGC differentiation in *K. laxiflora*. In *K. laxiflora*, subsidiary cells are noticeably visible, but little is known about the factors defining subsidiary cell identity. In *Brachypodium distachyon*, subsidiary cells are formed through asymmetric divisions. BdMUTE is an orthologue of *A. thaliana* MUTE that has been identified as sufficient for SC formation based on its acquisition of cell-to-cell mobility. In *A. thaliana*, AtMUTE, which is associated with GMC identity, is nonmobile. The question is whether the KalaxMUTE could also specify SC identity by being mobile. To address this, we compared MUTE orthologues of the representative species with *B. distachyon*, *A. thaliana* and *K. laxiflora* to test potential mobility motifs in *K. laxiflora* (Fig. 8). Our results show high conservation in the bHLH functional domain. The differences in potential mobility residues of KalaxMUTE...
from its homologue in *B. distachyon* are similar to those in *A. thaliana*. Thus, the subsidiary cells in *K. laxiflora* may not be specified by KalaxMUTE mobility.

Discussion

Stomatal patterning is diverse among different land plants. In *Physcomitrella patens*, stomata exhibit partial or complete division to form a single GC or paired GCs, respectively. Moss does not have genes encoding MUTE or SPCH and uses genes encoding two bHLH proteins, PpSMF1 and PpSCRM1, to promote stomatal formation. In *A. thaliana*, the stomata are surrounded by two kidney-shaped guard cells, and polar localization of BASL is required for a series of asymmetric divisions to form the stomatal structure. In *O. sativa*, polar localization of PAN protein is responsible for subsidiary cell asymmetry in the stomatal complex. In *B. distachyon*, BdMUTE is necessary and sufficient for SC formation. However, AtMUTE in *A. thaliana* defines GC precursor fate.

Overall, it appears that the function of most genes is conserved during stomatal formation across plant evolution, but there are novel genes recruited to regulate unique aspects of stomatal patterning in some species. The regulatory machine of stomata development appeared to be flexible and adaptable during evolution. The adaptation pressure could quickly change the division and differentiation pattern during stomata formation. For example, all the genes involved in stomatal differentiation are lost in seagrass *Zostera* to enhance its adaptation to marine lifestyle. Plants of the ANITA grade form specialized structures in the epidermal cells to adapt to its habitat. Similarly, *N. colorata* has lost genes, which could be associated with its unique stomatal development. However, further molecular and genetic manipulations are needed for functional verification.

Compared with our understanding of stomatal development in model systems, little is known about the molecular evolution of stomatal morphology, particularly...
in basal angiosperms. Alongside the completion of the genome, we are beginning to find the comparative molecular basis of the evolution of stomatal development and identify orthologues of stomatal regulator genes in a selected range of phylogenetic taxa. However, it is still technically difficult to analyse the function of orthologues. In the *N. colorata* genome, we found that a number of the genes that are highly specific to the stomatal asymmetric division were missing. Taken together, these results suggest that most core regulators of stomata formation remain conserved during evolution, whereas some gene loss events can occur to modify stomata formation processes, such as asymmetric division. These changes at the genetic and morphological levels of individual species may result from adaptation to inhabitant environments rather than evolutionary changes.

Recent studies have indicated that WGD events are ubiquitous in the evolution of angiosperms, and WGDs tend to retain multiple family duplications to increase the frequency of multiplication and the function of genes\(^4\). Thus, WGDs are widely thought to provide genomic novelties and complexities to promote plant adaptation to environments\(^8\). Large-scale GDs involved in stomata development through WGDs in *K. laxiflora* have been identified\(^36\).

Analysis of the genes involved in stomata formation showed that the protein sequences of the core genes...
required to instigate and pattern stomata are conserved in *K. laxiflora* (Table 1). It is unclear whether the expression or protein modification of these regulators is different in *K. laxiflora* compared with that in *A. thaliana*. Indeed, the duplication of stomata regulator genes appears to be a common theme in *K. laxiflora*, but the extent to which this represents a divergence in gene function requires further studies.

It seemed that genes encoding critical developmental regulators were more likely to be retained during evolution. For stomatal development, subsidiary cells can occur from an adjacent cell file or the same cell as the guard cells. Based on sequence conservation, the mobility of KalaxMUTE could be similar to its homologue in *Arabidopsis*. Thus, it is less likely that the modification of KalaxMUTE leads to featured stomatal subsidiary cells in *K. laxiflora*. Further work is needed to investigate whether the gene gains in *K. laxiflora* are associated with subsidiary cell establishment.

References

1. Luttge, U. Ability of cassulacea acid metabolism plants to overcome inter-acting stresses in tropical environments. *AoB Plants* 2010, plq005 (2010).
2. Borland, A. M. et al. Engineering cassulacea acid metabolism to improve water-use efficiency. *Trends Plant. Sci.* 19, 327–338 (2014).
3. Vatén, A. & Bergmann, D. C. Mechanisms of stomatal development: an evolution-ary view. *EvoDevo* 3, 11 (2012).
4. Peterson, K. M., Rychel, A. L. & Torii, K. U. Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development. *Plant Cell* 22, 296–306 (2010).
5. Males, J. & Griffiths, H. Stomatal biology of CAM plants. *Plant Physiol.* 174, 550–560 (2017).
6. Chen, Z. et al. Molecular evolution of grass stomata. *Trends Plant. Sci.* 22, 124–139 (2017).
7. Carpenter, K. J. Stomatal architecture and evolution in basil angiosperms. *Am. J. Bot.* 92, 1595–1615 (2005).
8. Gallagher, K. & Smith, L. G. Roles for polarity and nuclear determinants in specifying daughter cell fates after an asymmetric cell division in the maize leaf. *Curr. Biol.* 10, 1229–1232 (2000).
9. Rudall, P. J. & Knowles, E. V. W. Ultrastructure of stomatal development in early-divergent angiosperms reveals contrasting patterning and pre-patterning. *Ann. Bot.* 112, 1031–1043 (2013).
10. Pillitteri, L. J. & Torii, K. U. Mechanisms of stomatal development. *Annu. Rev. Plant. Biol.* 63, 591–614 (2012).
11. Hara, K., Kajita, R., Torii, K. U., Bergmann, D. C. & Kakimoto, T. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. *Genes Dev.* 21, 1720–1725 (2007).
12. Hunt, L. & Gray, J. E. The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. *Curr. Biol.* 19, 864–869 (2009).
13. Wang, H., Ngwenyama, N., Liu, Y., Walker, J. C. & Zhang, S. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in *Arabidopsis*. *Plant Cell* 19, 63–73 (2007).
14. Pillitteri, L. J., Sloan, D. B., Bogenschutz, N. L. & Torii, K. U. Termination of asymmetric cell division and differentiation of stomata. *Nature* 445, 501–505 (2007).
15. Pillitteri, L. J., Bogenschutz, N. L. & Torii, K. U. The bHLH protein MUTE, controls differentiation of stomata and the hydathode pore in *Arabidopsis*. *Plant Cell Physiol.* 49, 934–943 (2008).
16. Ohashi-Ito, K. & Bergmann, D. C. *Arabidopsis* FAMA controls the final pro-liferation/differentiation switch during stomatal development. *Plant Cell* 18, 2493–2505 (2006).
17. Kanoka, M. M. et al. SCREAM1 and SCREAM2 specify three cell-state transitional steps leading to *Arabidopsis* stomatal differentiation. *Plant Cell* 20, 1775–1785 (2008).
18. Dong, J., MacAulister, C. A. & Bergmann, D. C. BASL controls asymmetric cell division in *Arabidopsis*. *Cell* 137, 1320–1330 (2009).
19. Pillitteri, L. J., Peterson, K. M., Horst, R. J. & Torii, K. U. Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in *Arabidopsis*. *Plant Cell* 23, 3260–3275 (2011).
20. Cartwright, H. N., Humphries, J. A. & Smith, L. G. PAN1: a receptor-like protein that promotes polarization of an asymmetric cell division in maize. *Science* 323, 649–651 (2009).
21. Zhang, X. et al. Identification of PAN2 by quantitative proteomics as a leucine-rich repeat-receptor-like kinase acting upstream of PAN1 to polarize cell division in maize. *Plant Cell* 24, 4577–4589 (2012).
22. Humphries, J. A. et al. ROP GTPases act with the receptor-like protein PAN1 to polarize asymmetric cell division in maize. *Plant Cell* 23, 2273–2284 (2012).
23. Raissig, M. T. et al. Mobile MUTE specifies subsidiary cells to build physiologi-cally improved grass stomata. *Science* 355, 1215–1218 (2017).
24. Cai, S., Papanatsiou, M., Blatt, M. R. & Chen, Z. H. Speedy stomata: emerging molecular and evolutionary features. *Mol. Plant* 10, 912–914 (2017).
25. Raissig, M. T., Abrahi, E., Bettadapura, A., Vogel, J. P. & Bergmann, D. C. Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity. *Proc. Natl. Acad. Sci. USA.* 113, 8326–8331 (2016).
26. Atschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J. Mol. Biol.* 215, 403–410 (1990).
27. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol. Biol. Evol.* 30, 772–780 (2013).
28. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. *Mol. Biol. Evol.* 26, 1641–1650 (2009).
29. Carpenter, K. J. Specialized structures in the leaf epidermis of basil angios-perms: morphology, distribution, and homology. *Am. J. Bot.* 93, 665–681 (2006).
30. Olsen, J. L. et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. *Nature* 530, 331–335 (2016).
31. Pontes, O. et al. Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid *Arabidopsis* suecica genome. *Proc. Natl. Acad. Sci. USA.* 101, 18340–18345 (2004).
32. Mitchell-Olks, T. & Schmitt, J. Genetic mechanisms and evolutionary sig-nificance of natural variation in *Arabidopsis*. *Nature* 441, 947–952 (2006).
33. Madlung, A. et al. Genetic changes in synthetic *Arabidopsis* polyploids. *Plant J.* 41, 221–230 (2005).
34. Long, M., Betrán, E., Thornton, K. & Wang, W. The origin of new genes: glimpses from the young and old. *Nat. Rev. Genet.* 4, 866–875 (2003).
35. Jiao, Y. et al. Arocoypp polyploidy in seed plants and angiosperms. *Nature* 473, 97–100 (2011).
36. Yang, X. et al. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nat. Commun. 8, 1899 (2017).

37. Abrash, E. B. & Bergmann, D. C. Asymmetric cell divisions: a view from plant development. Dev. Cell 16, 783–796 (2009).

38. Mercéd, A. & Renzaglia, K. S. Patterning of stomata in the moss Funaria: a simple way to space guard cells. Ann. Bot. 117, 985–994 (2016).

39. Chater, C. C. et al. Origin and function of stomata in the moss Physcomitrella patens. Nat. Plants 2, 16179 (2016).

40. Shao, W. & Dong, J. Polarity in plant asymmetric cell division: division orientation and cell fate differentiation. Dev. Biol. 419, 121–131 (2016).

41. Ren, R. et al. Wide-spread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol. Plant 18, 30022–30024 (2018).

42. Hegarty, M. J. & Hiscock, S. J. Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 18, R435–R444 (2008).

43. McGrath, C. L., Gout, J., Johri, P., Doak, T. G. & Lynch, M. Differential retention and divergent resolution of duplicate genes following whole-genome duplication. Genome Res. 24, 1665–1675 (2014).

44. Aury, J. M. et al. Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444, 171–178 (2006).