Supporting Information

for Adv. Sci., DOI 10.1002/advs.202203707

Toward a Deeper Understanding of Gut Microbiome in Depression: The Promise of Clinical Applicability

Lanxiang Liu, Haiyang Wang, Hanping Zhang, Xueyi Chen, Yangdong Zhang, Ji Wu, Libo Zhao, Dongfang Wang, Juncai Pu, Ping Ji and Peng Xie*
Supplementary Tables

Towards a deeper understanding of gut microbiome in depression:
the promise of clinical applicability

Lanxiang Liu1,3,4†, Haiyang Wang2,3†, Hanping Zhang3,4†, Xueyi Chen3, Yangdong Zhang3,4, Ji Wu3,4, Libo Zhao1, Dongfang Wang3, Juncai Pu3,4, Ping Ji2, Peng Xie1,2,3,4*

Table S1. Characteristics of studies investigating gut microbiota composition in patients with depression.

Table S2. Characteristics of studies investigating gut microbiota composition in animal models of depression.

Table S3. Microbiota β-diversity in patients with depression.

Table S4. Microbial β-diversity in animal models of depression.

Table S5. Commensal microbiota alterations at Phylum, Class, Order, and Family levels in patients with depression.

Table S6. Commensal microbiota alterations at Genus level in patients with depression.

Table S7. Commensal microbiota alterations at Species level in patients with depression.

Table S8. Commensal microbiota alterations at Phylum, Class, Order, and Family levels in animal models of depression.

Table S9. Commensal microbiota alterations at Genus level in animal models of depression.

Table S10. Commensal microbiota alterations at Species level in animal models of depression.

Table S11. Characteristics of studies investigating the efficiency of gut microbiotabased therapeutics in patients with depression.

Table S12. Characteristics of studies investigating the efficiency of gut microbiotabased therapeutics in animal models of depression.

Table S13. A summary of probiotics that alleviate depression symptoms.

Table S14. Search strategy for electronic databases.
Table S15. Search strategy for microbiota-based interventions of depression from PubMed.
Table S1. Characteristics of studies investigating gut microbiota composition in patients with depression.

Study	People	Study design	groups	Age (years)	Sex (M/F)	BMI	Patients Control	Microbial biomarkers	Drug treatment in patients	Diagnostic criteria	Severity measures	Sample	Storage	Gut microbiome estimation	Sequencing region	Microbial biomarkers selection
Xu et al. 2010	Chinese	Case-control	MDD (N=85) controls (N=137)	35.63±17.50	18/38	21.96±2.99	NA	NA	Fecal samples	LEfSe: p < 0.05 and LDA > 2.0		V3-V4	MDD and Controls	LEfSe: p < 0.05 and LDA > 2.0		
Bai et al. 2012	Chinese	Case-control	MDD (N=69) controls (N=105)	35.18±17.59	18/30	21.46±2.71	NA	NA	Fecal samples	LEfSe: p < 0.05 and LDA > 2.0		V3-V4	MDD and Controls	LEfSe: p < 0.05 and LDA > 2.0		
Chen et al. 2019	Japanese	Case-control	MDD (N=160)	41.83±12.71	12/5	22.81±2.1	NA	NA	Fecal samples	LEfSe: p < 0.05 and LDA > 2.0		V3-V4	MDD and Controls	LEfSe: p < 0.05 and LDA > 2.0		
			UC with depression and UC													
			One-way analysis of variance (ANOVA) with Tukey-Kramer test: p < 0.05													
Authors	Year(s)	Country	Study Design	Sample Size	Sample Characteristics	Methods	Findings	Other Notes								
---------	---------	---------	---------------	-------------	-----------------------	---------	----------	------------								
Chen Y et al.	2017(10)	Chinese	Case-control	MDD (N=92) Control (N=85)	Demographic	16S rRNA gene sequencing, Illumina MiSeq platform	53.12(17.82) vs 50.91(17.24)	V4	Cross-sectional associations with depression symptom measures; Linear regression model: p < 0.05							
Chen Y et al.	2021(10)	Chinese	Cross-sectional associations	Depression (N=319)	Demographic	16S rRNA gene sequencing, Illumina MiSeq platform	55.96(9.86) vs 52.63(11.46)	V4	Cross-sectional associations with depression symptom measures; Linear regression model: p < 0.05							
Heym N et al.	2020(17)	Italian	Case-control	MDD (N=54) Control (N=100)	Demographic	16S rRNA gene sequencing, Illumina MiSeq platform	58.58(4.57) vs 57.36(8.46)	V4	Cross-sectional associations with depression symptom measures; Linear regression model: p < 0.05							
Hyun N et al.	2019(10)	English	Cross-sectional associations	Depression (N=40)	Demographic	16S rRNA gene sequencing, Illumina MiSeq platform	36.38(14.63) vs 36.76(10.22)	V4	Cross-sectional associations with depression symptom measures; Linear regression model: p < 0.05							
Hoggard M et al.	2019(10)	New Zealand	Cross-sectional associations	Chronic rhinosinusitis (N=45) Control (N=12)	Demographic	16S rRNA gene sequencing, Illumina MiSeq platform	59.52(24.74) vs 41.92(7.31)	V4	Cross-sectional associations with depression symptom measures; Linear regression model: p < 0.05							
Huang Y et al. 2018[20]	Chinese	Case-control	MDD (N=27)	Control (N=27)	48.5(12.3)	42.3(14.1)	57/20	23.6(2.7)	23.6(2.7)	NA	NA	ICD-10	_	_	Pecial samples	<0.01
Huang Y et al. 2021[21]	Chinese	Case-control	Stroke-cerebrovascular disorder (N=20)	Stroke-cerebrovascular accident (N=20)	61.3(13.7)	62.7(12.3)	20/19	21.0(6.8)	37.2(7.2)	NA	NA	_	_	Pecial samples	<0.01	16S rRNA gene sequencing: Illumina-MiSeq platform
Anx W et al. 2019[22]	Spanish	Case-control	Depression: GI (N=15)	Nondepression: GI (N=16)	18.6(3.8)	18.8(3.2)	235/36	18.8(2.3)	18.8(2.3)	56	36 Anxiety, 33 Depression	NA	CDI/22	CDI	<22	Pecial samples
Jackson MA et al. 2018[23]	English	Cross-sectional associations	Depression(N=554) from all individuals(N=2377)	60.12%	40.24%	58	28/75%	38%	38%	51%	51%	51%	_	_	_	_
Xiong H et al. 2019[24]	Chinese	Case-control	MDD-active (N=29)	MDD-responsive (N=17)	55%	55%	30/14	21.6 (3.4)	29.6 (3.6)	_	_	_	_	Pecial samples	<0.01	16S rRNA gene sequencing: Roche 454 sequencing
Xiong HY et al. 2020[25]	Chinese	Case-control	CDE (N=24)	Control (N=18)	37.27 (2.0)	39.88 (2.0)	13/11	22.66 (2.9)	22.66 (2.9)	_	_	_	_	Pecial samples	<0.01	16S rRNA gene sequencing: Illumina-MiSeq platform
Kang Y et al. 2021[26]	Chinese	Case-control	Post-stroke depression (N=67)	Stroke (N=96)	55.9(8.6)	55.9(8.6)	85/78	_	_	Stroke	NA	CCMD-3, HAMD-24, 9, SSRS index ≥ 0.5	_	_	Pecial samples	_
Kelly JR et al. 2016[27]	Irish	Case-control	MDD (N=54)	Control (N=53)	45.8(11.5)	45.8(11.5)	20/13	23.6(2.7)	23.6(2.7)	7 patients: Dysplasia, 3 patients: Hypertension, 5 patients: BPAD II, 4 patients: Anxiety disorder	4 patients: Dysplasia, 3 patients: Hypertension	All patients: SSRS	DSM-IV MINI	HAMD-17	61.3(14.6)	NA

Other abbreviations: 16S rRNA gene sequencing: the 16S rRNA gene was amplified and sequenced using the Illumina and Roche platforms; LEfSe: p < 0.05 and LDA > 2.0; Orthodontic Intelligence with depression and controls: Mann-Whitney test and Kruskal-Wallis test: p<0.017; Cross-sectional associations with depression symptoms measures: Beta coefficients of associations: p < 0.05.
Kleiman SC et al. 2015[28] American Cross-sectional associations
Anorexia Nervosa (N=16) Control (N=12)
28.0 (±11.7) 29.8 (±11.6) 0.16 0.12 16.2 (±5.5) 21.5 (±19) NA NA -
BDI 26.5 (±13.6) NA Fecal samples 45°C 16S rRNA gene sequencing-454 Life Sciences Genome Sequencer FLX machine V1/V3
Cross-sectional associations with depression-symptom measures Wilcoxon matched pairs rank test (< 2); skewness ≤ 2 or the sign test (skewness ≤ -2 or ≥ 2) or p < 0.05

Kurosawa S et al. 2016[29] Japanese Case-control IBS with depression (N=12) IBS without depression (N=5) Donors (N=17)
43.46 (±16.7) 51.46 (±18.1) 0.9 710 - IBS NA HAMD/9 HAMD/7 - Fecal samples 45°C 16S rRNA gene sequencing- Illumina MiSeq platform V1/V2
IBS with depression and donors Parent's test: p < 0.05

Liu WT et al. 2017[30] Chinese Case-control MDD (N=26) Control (N=20)
43.75 (±11.48) 39.40 (±10.06) 0.18 1316 21.17 (±2.77) 21.16 (±2.51) NA
In MDD: 12 SSRIs; 7 SNRIs; 0 Other antidepressants DSM-5
HAMD-17 10.81 (±2.95) NA Fecal samples 45°C 16S rRNA gene sequencing- Illumina MiSeq platform V1/V2
Shengran meteorogenic-Illumina MiSeq250 sequencing NA MDD and Controls LE5G: adjusted p < 0.05 and LDA ≥ 3.0

Liu Pei et al. 2017[31] Chinese Case-control MDD (N=10) Control (N=10)
36.20 (±1.6) 38.12 (±2.9) 0.04 44 23.61 (±3.9) 24.22 (±5.0) -
Longitudinal intervention (all patients received Escitalopram) DSM-IV-TR
HAM-D-17 23 - Fecal samples 70°C 16S rRNA gene sequencing- Illumina MiSeq platform V1/V2
qRT-PCR for Streptococcus, Clostridium XI, Prevotella and Bifidobacteria NS/NS NS/NS
AMI and Controls NS/NS/NS

Ling Y et al. 2019[32] Chinese Case-control PSCCID (N=41) non-PSCCID (N=25)
69.63 (±9.39) 68.82 (±6.69) 0.1724 14112 25.14 (±6.62) 26.62 (±5.56) In PSCCID: 24 Hypertension, 12 Diabetes mellitus; 15 Hyperlipidemia
In non-PSCCID: 18 Hypertension, 6 Diabetes mellitus; 10 Hyperlipidemia Unknown HAMD/6 HAMD 15.63 (±5.90) 5.56 (±2.58) Fecal samples 90°C 16S rRNA gene sequencing- Illumina MiSeq platform V3/V4
PSCCID and non-PSCCID LE5G: p < 0.05 and LDA ≥ 2.0

Lithwicki P et al. 2017[33] Polish Cross-sectional associations MDD(N=16)
44.0 (±34.3) 56.1 0.09 25.0 (±22.6) 26.7 NA Longitudinal intervention (all patients received Escitalopram)
JCD-10 HAMD-24 23.0 (±21.0) 28.5 Fecal samples 45°C 16S rRNA gene sequencing- Illumina NextSeq 500 platform V4
Cross-sectional associations between with symptom severity (baseline) SPEARMAN's rank correlation

Liu Pei et al. 2017[34] Chinese Case-control MDD (N=66) Control (N=43)
24.36 (±8.69) 23.65 (±1.19) 0.25 2539 20231 21.64 (±4.61) 21.83 (±2.15) NA
In MDD: 26 prescribed psychotropic medications In Control 1 prescribed psychotropic medications DSM-IV
HAM-D-17 20.07 (±4.80) 2.31 (±0.64) Fecal samples 45°C 16S rRNA gene sequencing- Illumina MiSeq platform V3/V4
MDD and Controls LE5G: p < 0.05 and LDA ≥ 2.0

Lin RT et al. 2019[35] American Case-control MDD(N=45) Control (N=47)
21.9 (±2.1) 22.1 (±1.8) 0.05 1313 -
In MDD: 26 prescribed psychotropic medications In Control 1 prescribed psychotropic medications PROMIS Depression Score > 21, DSM-5
PROMIS Depres Sc 25.6 (±6.9) 9.3 (±1.4) Fecal samples 45°C 16S rRNA gene sequencing- Illumina MiSeq platform V4
MDD and Controls LE5G: p < 0.05 and LDA ≥ 2.0

Lin Y et al. 2020[36] Chinese Case-control IBS-D (N=48) Control (N=48)
41.76 (±15.13) 38.30 (±15.13) 0.42 4624 25211 25.36 (±3.48) 23.63 (±3.76) IBS-D -
In MDD: 16 prescribed psychotropic medications In Control 1 prescribed psychotropic medications HAMD/DSHS HAMD 15.17 (±15.40/09) (9.93)
Unknown HAMD/DSHS 5.9 (±1.4) Fecal samples 45°C 16S rRNA gene sequencing- Illumina MiSeq platform V3/V4
Cross-sectional associations with depression-symptom measures SPEARMAN's correlation coefficient

Lin Y et al. 2016[37] Chinese Case-control IBS-D (N=48) Control (N=48)
38.5 (±3.6) 39.6 (±3.9) 44.8 (±4.9) 43.83 (±2.2)
28/12 14/11 22 (±8.8) 22.5 (±2.5) 24.6 (±2.2) IBS-D -
DSM-IV MINI DSM Data displayed in histogram Fecal samples 45°C 16S rRNA gene sequencing- Roche 454 sequencing V1/V3
Depression and Controls Wilcoxon rank-sum with p value was used for corrections q < 0.05
Authors	Year	Region	Study Design	Sample Size	Case Controls	Test Anxiety	Depression Medication	Depression Med.	p-Value Test	Statistical Test	Pooled Depression Med.	Depression Med.	p-Value Test	Statistical Test	Notes	
Madan et al.	2020	American	Cross-sectional associations	Depression(N=111)	35.7 (13.8)	52/60	_	_	SCID-IV	Fecal samples	p < 0.05	16S rRNA gene sequencing, Illumina MiSeq platform	V4	Cross-sectional associations with symptom severity	LEAD: p < 0.05 and LDA > 2.0	
Mason et al.	2020	American	Case-control	Control (N=11)	16/18	_	_	52/73	2/8	p < 0.05	Mann Whitney U test	V4	Cross-sectional associations with symptom severity	Kruskal-Wallis one-way ANOVA, p < 0.05	Within these clusters, p-values were adjusted to control the false discovery rate using the Benjamin and Hochberg method	
Molina et al.	2020	American	Cross-sectional associations	Depression(N=111)	35.7 (13.8)	52/73	2/8	_	218 Obsody	Fecal samples	p < 0.05	16S rRNA gene sequencing, Illumina MiSeq platform	V4	Cross-sectional associations with symptom severity	Mann Whitney U test, p < 0.05	
Minshau et al.	2020	British	Cross-sectional associations	Depression(N=137)	49.2 (15.9)	48/47	_	_	22 Antidepressants	Fecal samples	p < 0.05	16S rRNA gene sequencing, Illumina MiSeq platform	V4	Cross-sectional associations with symptom severity	Pearson's correlation analysis and regression model	
Nuaehra et al.	2020	Norwegia	Cross-sectional associations	Depression(N=111)	35.7 (13.8)	52/73	_	_	218 Obsody	Fecal samples	p < 0.05	16S rRNA gene sequencing, Illumina MiSeq platform	V4	Cross-sectional associations with symptom severity	Unspecified Depression and Controls	PLDA
Pérez-Santiago et al.	2019	American	Cross-sectional associations	Depression(N=66)	54.6 (6.6)	54/64	_	_	In MDD: 56 HIV	Fecal samples	p < 0.05	16S rRNA gene sequencing, Illumina MiSeq platform	V4	Cross-sectional associations with symptom severity	Mann-Whitney or t test, p < 0.05	
Qi et al.	2020	Chinese	Cross-sectional associations	Depression(N=60)	53.3 (10.3)	53/60	_	_	Test anxiety	Fecal samples	p < 0.05	16S rRNA gene sequencing, Illumina MiSeq platform	V4	Cross-sectional associations with symptom severity	One-way ANOVA followed by Turkey's multiple comparisons test, p < 0.05	
Ramirez-Castillo et al.	2020	Mexican	Cross-sectional associations	Depression(N=54)	50.2 (7.5)	49/55	_	_	_	Fecal samples	p < 0.05	16S rRNA gene sequencing, Illumina MiSeq platform	V4	Cross-sectional associations with symptom severity	Phylogeny, venn and ggplot2 packages in R	
Naseribafrouei et al.	2020	American	Case-control	Control (N=36)	30.48 (7.79)	30/36	_	_	46.2 (9.7)	Fecal samples	p < 0.05	16S rRNA gene sequencing, Illumina MiSeq platform	V4	Cross-sectional associations with symptom severity	ANCOM	
Rhee SJ et al. 2021[47]	Koreans Cross-sectional associations	Depression (N=69)	39.6(12.0)	29 MDD patients, 40 RD patients	31 Antidepressant; 33 Anticonvulsant or lithium; 45 Antipsychotics	DSM-IV, DSM-5, MINI	HAMD-17	6.13(5.08)	Serum	-80°C	16S rRNA gene sequencing-Illumina MiSeq platform	V3-V4	Cross-sectional associations with depression-symptom measures	Multivariate association with linear models (MAdaL2)		
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
Rhee SJ et al. 2021[47]	Koreans Cross-sectional associations	Depression (N=69)	39.6(12.0)	29 MDD patients, 40 RD patients	31 Antidepressant; 33 Anticonvulsant or lithium; 45 Antipsychotics	DSM-IV, DSM-5, MINI	HAMD-17	6.13(5.08)	Serum	-80°C	16S rRNA gene sequencing-Illumina MiSeq platform	V3-V4	Cross-sectional associations with depression-symptom measures	Multivariate association with linear models (MAdaL2)		
Shen Y et al. 2021[51]	Chinese Case-control	BD (N=50)	38.40(8.33)	41.56(10.40)	NA	In MDD: 13 SRbs; 4 Other antidepressants	V4 MDD and Controls	Kruskal-Wallis test: p < 0.05								
Stevens CA et al. 2020[55]	Australian Case-control	Hypertension (N=118)	59.9(17.4)	63.8(2.5)	NA	In HTN: 4 Diabetes; 7 Chronic kidney disease; 1 Stroke/Transient ischemia attack; 3 Asthma; 1 Heart failure	CEDD	COED	20.14(7.70)	Saliva sample	50°C	16S rRNA gene sequencing + Torrent Personal Genome Machine	V4	High-depression and low-depression measures	Multivariate association with linear model analysis (MAdaL2): p-value < 0.05 and FDR alpha = 0.25	
Stevens BJ et al. 2020[52]	American Case-control	Hypertension (N=118)	59.9(17.4)	63.8(2.5)	NA	In HTN: 4 Diabetes; 7 Chronic kidney disease; 1 Stroke/Transient ischemia attack; 3 Asthma; 1 Heart failure	Unknown	DSM-5	-	-	Fecal samples	-80°C	16S rRNA gene sequencing (WMGS)-Illumina HiSeq8000	NA	Depression-only and reference subjects	Pearson correlation heatmaps were generated based on relative 16S magnitudes
Stevens BJ et al. 2020[52]	American Case-control	MDD (N=20)	mean: 34	10/10	NA	In MDD: 15 Antidepressants	DSM-IV	-	-	Fecal samples	-80°C	16S rRNA gene sequencing-Illumina MiSeq platform	V3-V4	MDD and Controls	ALDEx2 effect sizes for taxa assigned from ASVs. Displayed cutoffs are effect size ≥0.5 (NODEP) or ≥0.3 (DEP)	
Strandin P et al. 2019[53]	American Cross-sectional associations	MDD (N=23)	29.65	4/15	NA	NA	DSM-IV-TR	-	-	Fecal samples	-80°C	16S rRNA gene sequencing-American Gut dataset	V4	Cross-sectional associations with depression-symptom measures	Pearson	
Steenbakkers O et al. 2018[54]	Norwegian Case-control	Depression (N=34)	33.45(7.9)	30(8.6)	NA	NA	DASS-21	5.40(6)	Fecal samples	-80°C	16S rRNA gene sequencing-Illumina MiSeq platform	Unspecified	As described in Naef-Herrmann et al. (2014) Depression and Controls	PLDA		
Taylor AM et al. 2020[56]	American Cross-sectional associations	Depression (N=133)	33.45(7.9)	30(8.6)	NA	NA	DASS-21	5.40(6)	Fecal samples	-80°C	16S rRNA gene sequencing-Illumina MiSeq platform	Unspecified	As described in Naef-Herrmann et al. (2014) Depression and Controls	PLDA		
Taylor BC et al. 2020[56]	American Case-control	MDD (N=54)	53.9(9.1)	42/17	-	HIV and HCV infections	DSM-IV, DSM-5, MINI	HAMD-17	10.9(10.7)	Fecal samples	-80°C	16S rRNA gene sequencing-Illumina MiSeq platform	V3-V4	MDD and Controls (Cominenced)	Kruskal-Wallis test: p < 0.05	
Section 1: Case-control FGFP cohort: Cross-sectional associations between MDD and gut

Table 1: Differences in gut microbiota between depression and controls

Study	Participants	Gut Sample Collection	Sequencing Platform	LEfSe Analysis	GLMs Analysis
Zheng S et al. 2016	MDD (N=24) vs Controls (N=63)	Fecal samples	Roche 454 sequencing	LEfSe: p < 0.05 and LDA > 2.5	GLMs: FDR < 0.1
Zheng P et al. 2016	MDD (N=20) vs Controls (N=28)	Fecal samples	Illumina HiSeq™ platform	LEfSe: p < 0.05 and LDA > 2.5	GLMs: FDR < 0.1
Zhang P et al. 2015	MDD (N=26) vs Controls (N=28)	Fecal samples	Illumina 454 platform	LEfSe: p < 0.05 and LDA > 2.5	GLMs: FDR < 0.1
Zhao H et al. 2014	MDD (N=24) vs Controls (N=38)	Fecal samples	Illumina MiSeq platform	LEfSe: p < 0.05 and LDA > 2.5	GLMs: FDR < 0.1
Zhu Q et al. 2013	MDD (N=20) vs Controls (N=16)	Fecal samples	Illumina MiSeq platform	LEfSe: p < 0.05 and LDA > 2.5	GLMs: FDR < 0.1
Zhu X et al. 2012	MDD (N=20) vs Controls (N=28)	Fecal samples	Illumina MiSeq platform	LEfSe: p < 0.05 and LDA > 2.5	GLMs: FDR < 0.1
Yang Y et al. 2013	MDD (N=18) vs Controls (N=24)	Fecal samples	Illumina MiSeq platform	LEfSe: p < 0.05 and LDA > 2.5	GLMs: FDR < 0.1
Yang F et al. 2012	MDD (N=18) vs Controls (N=28)	Fecal samples	Illumina MiSeq platform	LEfSe: p < 0.05 and LDA > 2.5	GLMs: FDR < 0.1
Zheng S et al. 2020	MDD (N=24) vs Controls (N=30)	Fecal samples	Illumina HiSeq™ platform	LEfSe: p < 0.05 and LDA > 2.5	GLMs: FDR < 0.1
Zhuang Z et al. 2020	MDD (N=24) vs Controls (N=29)	Fecal samples	Illumina MiSeq platform	LEfSe: p < 0.05 and LDA > 2.5	GLMs: FDR < 0.1
Wu et al. 2019	MDD (N=20) vs Controls (N=28)	Fecal samples	Illumina MiSeq platform	LEfSe: p < 0.05 and LDA > 2.5	GLMs: FDR < 0.1
Wanget al. 2021	MDD (N=20) vs Controls (N=29)	Fecal samples	Illumina MiSeq platform	LEfSe: p < 0.05 and LDA > 2.5	GLMs: FDR < 0.1
Wang et al. 2020	MDD (N=20) vs Controls (N=24)	Fecal samples	Illumina MiSeq platform	LEfSe: p < 0.05 and LDA > 2.5	GLMs: FDR < 0.1
Valles-Colomer et al. 2019	MDD (N=20) vs Controls (N=28)	Fecal samples	Illumina MiSeq platform	LEfSe: p < 0.05 and LDA > 2.5	GLMs: FDR < 0.1

Notes:
- LEfSe: Linear discriminant analysis effect size
- GLMs: Generalized linear models
- FDR: False discovery rate
- MDD: Major depressive disorder
- Controls: Healthy controls
- Differences in gut microbiota were analyzed using LEfSe (LDA score > 2.0) and GLMs (FDR < 0.1).
Illumina MiSeq/Illumina HiSeq2000/Illumina HiSeq microbiota using published GWAS data

Note:

a Data from 56 OI patients with or without depression (Ref.22)

b Data from all 2737 individuals (Ref.23)

c Data from all 17 patients with irritable bowel syndrome (Ref.29)

d Data from 38 patients with depression and 18 controls (Ref.54)

e Data from total 48 patients (Ref.56)

f Data from 39 patients with postpartum depressive disorder and 18 controls (Ref.68)

References

1. E. Aizawa, H. Tsuji, T. Asahara, T. Takahashi, T. Teraishi, S. Yoshida, M. Ota, N. Koga, K. Hattori and H. Kunugi, *J Affect Disord* 2016, 202, 254-257.

2. S. Bai, J. Xie, H. Bai, T. Tian, T. Zou and J.-J. Chen, *J Inflamm Res* 2021, 14, 3755-3766.

3. S. Bai, H. Bai, D. Li, Q. Zhong, J. Xie and J.-J. Chen, *Front Cell Infect Microbiol* 2022, 12, 831186.

4. J. R. Caso, K. S. MacDowell, A. González-Pinto, S. García, J. de Diego-Adelíno, M. Carceller-Sindreu, F. Sarramea, J. Caballero-Villarraso, P. Gracia-García, C. De la Cámara, L. Agüera, M. L. Gómez-Lus, C. Alba, J. M. Rodriguez and J. C. Leza, *Transl Psychiatry* 2021, 11, 645.

5. B. Chahwan, S. Kwan, A. Isik, S. van Hemert, C. Burke and L. Roberts, *J Affect Disord* 2019, 253, 317-326.

6. D.-L. Chen, Y.-C. Dai, L. Zheng, Y.-L. Chen, Y.-L. Zhang and Z.-P. Tang, *Medicine (Baltimore)* 2021, 100, e24845.

7. J.-J. Chen, P. Zheng, Y.-Y. Liu, X.-G. Zhong, H.-Y. Wang, Y.-J. Guo and P. Xie, *Neuropsychiatr Dis Treat* 2018, 14, 647-655.
8. J.-J. Chen, S. He, L. Fang, B. Wang, S.-J. Bai, J. Xie, C.-J. Zhou, W. Wang and P. Xie, *Aging (Albany NY)* 2020, 12, 2764-2776.

9. T. Chen, R. Wang, Z. Duan, X. Yuan, Y. Ding, Z. Feng, F. Bu, L. Liu, Q. Wang, J. Zhou, L. Zhu, Q. Ni, G. Shi and Y. Chen, *Front Cell Infect Microbiol* 2021, 11, 723856.

10. Y. Chen, P. Meng, S. Cheng, Y. Jia, Y. Wen, X. Yang, Y. Yao, C. Pan, C. e. Li, H. Zhang, J. Zhang, Z. Zhang and F. Zhang, *Mol Brain* 2021, 14, 133.

11. Y.-H. Chen, F. Xue, S.-F. Yu, X.-S. Li, L. Liu, Y.-Y. Jia, W.-J. Yan, Q.-R. Tan, H.-N. Wang and Z.-W. Peng, *J Affect Disord* 2021, 282, 391-400.

12. Z. Chen, J. Li, S. Gui, C. Zhou, J. Chen, C. Yang, Z. Hu, H. Wang, X. Zhong, L. Zeng, K. Chen, P. Li and P. Xie, *NeuroReport* 2018, 29, 417-425.

13. S. Cheng, B. Han, M. Ding, Y. Wen, M. Ma, L. Zhang, X. Qi, B. Cheng, P. Li, O. P. Kafle, X. Liang, L. Liu, Y. Du, Y. Zhao and F. Zhang, *Brief Bioinform* 2020, 21, 1016-1022.

14. Y.-C. E. Chung, H.-C. Chen, H.-C. L. Chou, I. M. Chen, M.-S. Lee, L.-C. Chuang, Y.-W. Liu, M.-L. Lu, C.-H. Chen, C.-S. Wu, M.-C. Huang, S.-C. Liao, Y.-H. Ni, M.-S. Lai, W.-L. Shih and P.-H. Kuo, *J Psychiatr Res* 2019, 111, 74-82.

15. D. Ciocan, A.-M. Cassard, L. Becquemont, C. Verstuyft, C. S. Voican, K. El Asmar, R. Colle, D. David, S. Trabado, B. Feve, P. Chanson, G. Perlemuter and E. Corruble, *J Psychiatry Neurosci* 2021, 46, E358-E368.

16. Z. Dong, X. Shen, Y. Hao, J. Li, H. Li, H. Xu, L. Yin and W. Kuang, *Front Psychiatry* 2021, 12, 651536.

17. A. Fontana, M. Manchia, C. Panebianco, P. Paribello, C. Arzedi, E. Cossu, M. Garzilli, M. A. Montis, A. Mura, C. Pisanu, D. Congiu, M. Copetti, F. Pinna, B. Carpiniello, A. Squassina and V. Pazienza, *Biomedicines* 2020, 8.

18. N. Heym, B. C. Heasman, K. Hunter, S. R. Blanco, G. Y. Wang, R. Siegert, A. Cleare, G. R. Gibson, V. Kumari and A. L. Sumich, *Psychopharmacology (Berl)* 2019, 236, 1459-1470.

19. M. Hoggard, A. Nocera, K. Biswas, M. W. Taylor, R. G. Douglas and B. S. Bleier, *Int Forum Allergy Rhinol* 2018, 8, 394-405.

20. Y. Huang, X. Shi, Z. Li, Y. Shen, X. Shi, L. Wang, G. Li, Y. Yuan, J. Wang, Y. Zhang, L. Zhao, M. Zhang, Y. Kang and Y. Liang, *Neuropsychiatr Dis Treat* 2018, 14, 3329-3337.

21. Y. Huang, Z. Shen and W. He, *Front Aging Neurosci* 2021, 13, 706765.

22. W. Ishii, S. Komine-Aizawa, C. Takano, Y. Fujita, I. Morioka and S. Hayakawa, *Prim Care Companion CNS Disord* 2019, 21, 8.

23. M. A. Jackson, S. Verdi, M.-E. Maxan, C. M. Shin, J. Zierer, R. C. E. Bowyer, T. Martin, F. M. K. Williams, C. Menni, J. T. Bell, T. D. Spector and C. J. Steves, *Nat Commun* 2018, 9, 2655.
24. H. Jiang, Z. Ling, Y. Zhang, H. Mao, Z. Ma, Y. Yin, W. Wang, W. Tang, Z. Tan, J. Shi, L. Li and B. Ruan, *Brain Behav Immun* 2015, 48, 186-194.

25. H.-Y. Jiang, L.-Y. Pan, X. Zhang, Z. Zhang, Y.-Y. Zhou and B. Ruan, *Brain Behav* 2020, 10, e01677.

26. Y. Kang, Y. Yang, J. Wang, Y. Ma, H. Cheng and D. Wan, *J Coll Physicians Surg Pak* 2021, 31, 1224-1227.

27. J. R. Kelly, Y. Borre, C. O' Brien, E. Patterson, S. El Aidy, P. J. Kennedy, S. Beers, K. Scott, G. Moloney, A. E. Hoban, L. Scott, P. Fitzgerald, P. Ross, C. Stanton, G. Clarke, J. F. Cryan and T. G. Dinan, *J Psychiatr Res* 2016, 82, 109-118.

28. C. Kleiman, H. J. Watson, E. C. Bulik-Sullivan, E. Y. Huh, L. M. Tarantino, C. M. Bulik and I. M. Carroll, *Psychosom Med* 2015, 77, 969-981.

29. S. Kurokawa, T. Kishimoto, S. Mizuno, T. Masaoka, M. Naganuma, K.-C. Liang, M. Kitazawa, M. Nakashima, C. Shiindo, W. Suda, M. Hattori, T. Kanai and M. Mimura, *J Affect Disord* 2018, 235, 506-512.

30. W.-T. Lai, W.-F. Deng, S.-X. Xu, J. Zhao, D. Xu, Y.-H. Liu, Y.-Y. Guo, M.-B. Wang, F.-S. He, S.-W. Ye, Q.-F. Yang, T.-B. Liu, Y.-L. Zhang, S. Wang, M.-Z. Li, Y.-J. Yang, X.-H. Xie and H. Rong, *Psychol Med* 2021, 51, 91.

31. P. Lin, B. Ding, C. Feng, S. Yin, T. Zhang, X. Qi, H. Lv, X. Guo, K. Dong, Y. Zhu and Q. Li, *J Affect Disord* 2017, 207, 300-304.

32. Y. Ling, Q. Gu, J. Zhang, T. Gong, X. Weng, J. Liu and J. Sun, *J Alzheimers Dis* 2020, 77, 1595-1608.

33. P. Liśkiewicz, M. Kaczmarczyk, B. Misiaś, M. Wroński, A. Bąba-Kubiś, K. Skonieczna-Zydecka, W. Marlicz, P. Bieńkowski, A. Misera, J. Pelka-Wysiecka, J. Kucharska-Mazur, A. Konopka, I. Łoniewski and J. Samochowiec, *Prog Neuropsychopharmacol Biol Psychiatry* 2021, 106, 110076.

34. P. Liu, M. Gao, Z. Liu, Y. Zhang, H. Tu, L. Lei, P. Wu, A. Zhang, C. Yang, G. Li, N. Sun and K. Zhang, *Front Neurosci* 2021, 15, 800764.

35. R. T. Liu, A. D. Rowan-Nash, A. E. Sheehan, R. F. L. Walsh, C. M. Sanzari, B. J. Korry and P. Belenky, *Brain Behav Immun* 2020, 88, 308-324.

36. T. Liu, X. Gu, L.-X. Li, M. Li, B. Li, X. Cui and X.-L. Zuo, *BMC Microbiol* 2020, 20, 168.

37. Y. Liu, L. Zhang, X. Wang, Z. Wang, J. Zhang, R. Jiang, X. Wang, K. Wang, Z. Liu, Z. Xia, Z. Xu, Y. Nie, X. Lv, X. Wu, H. Zhu and L. Duan, *Clin Gastroenterol Hepatol* 2016, 14.

38. A. Madan, D. Thompson, J. C. Fowler, N. J. Ajami, R. Salas, B. C. Frueh, M. R. Bradshaw, B. L. Weinstein, J. M. Oldham and J. F. Petrosino, *J Affect Disord* 2020, 264,
39. B. L. Mason, Q. Li, A. Minhajuddin, A. H. Czysz, L. A. Coughlin, S. K. Hussain, A. Y. Koh and M. H. Trivedi, *J Affect Disord* 2020, 266, 394-401.

40. E. M. Medina-Rodriguez, D. Madorma, G. O'Connor, B. L. Mason, D. Han, S. K. Deo, M. Oppenheimer, C. B. Nemeroff, M. H. Trivedi, S. Daunert and E. Beurel, *Am J Psychiatry* 2020, 177, 974-990.

41. A. Minichino, M. A. Jackson, M. Francesconi, C. J. Steves, C. Menni, P. W. J. Burnet and B. R. Lennox, *Mol Psychiatry* 2021, 26, 6269-6276.

42. A. Naseribafrouei, K. Hestad, E. Avershina, M. Sekelja, A. Linløkken, R. Wilson and K. Rudi, *Neurogastroenterol Motil* 2014, 26, 1155-1162.

43. J. Pérez-Santiago, M. J. Marquine, D. Cookson, R. Giraud-Colón, R. K. Heaton, I. Grant, R. J. Ellis, S. L. Letendre and S. N. Peterson, *J Neurovirol* 2021, 27, 228-238.

44. Y. Qin, H. Liu, Y. Wang, X. Xia, P. Tian, J. Wei, S. Li and T. Chen, *Dis Markers* 2021, 2021, 5597401.

45. E. Ramírez-Carrillo, O. Gaona, J. Nieto, A. Sánchez-Quinto, D. Cerqueda-Garcia, L. I. Falcón, O. A. Rojas-Ramos and I. González-Santoyo, *Sci Rep* 2020, 10, 3680.

46. S. J. Rhee, H. Kim, Y. Lee, H. J. Lee, C. H. K. Park, J. Yang, Y.-K. Kim, S. Kym and Y. M. Ahn, *J Psychiatr Res* 2020, 123, 31-38.

47. S. J. Rhee, H. Kim, Y. Lee, H. J. Lee, C. H. K. Park, J. Yang, Y.-K. Kim and Y. M. Ahn, *Sci Rep* 2021, 11, 13987.

48. H. Rong, X.-H. Xie, J. Zhao, W.-T. Lai, M.-B. Wang, D. Xu, Y.-H. Liu, Y.-Y. Guo, S.-X. Xu, W.-F. Deng, Q.-F. Yang, L. Xiao, Y.-L. Zhang, F.-S. He, S. Wang and T.-B. Liu, *J Psychiatr Res* 2019, 113, 90-99.

49. Y. Shen, X. Yang, G. Li, J. Gao and Y. Liang, *Sci Rep* 2021, 11, 14918.

50. C. A. Simpson, C. Adler, M. R. du Plessis, E. R. Landau, S. G. Dashper, E. C. Reynolds, O. S. Schwartz and J. G. Simmons, *Physiol Behav* 2020, 226, 113126.

51. B. R. Stevens, C. J. Pepine, E. M. Richards, S. Kim and M. K. Raizada, *Am Heart J* 2021, 239, 27-37.

52. B. R. Stevens, L. Roesch, P. Thiago, J. T. Russell, C. J. Pepine, R. C. Holbert, M. K. Raizada and E. W. Triplett, *Mol Psychiatry* 2020, 26, 4277-4287.

53. P. Strandwitz, K. H. Kim, D. Terekhova, J. K. Liu, A. Sharma, J. Levering, D. McDonald, D. Dietrich, T. R. Ramadhari, A. Lekbua, N. Mroue, C. Liston, E. J. Stewart, M. J. Dubin, K. Zengler, R. Knight, J. A. Gilbert, J. Clardy and K. Lewis, *Nat Microbiol* 2019, 4, 396-403.

54. O. Szczesniak, K. A. Hestad, J. F. Hanssen and K. Rudi, *Nutr Neurosci* 2016, 19, 279-283.

55. A. M. Taylor, S. V. Thompson, C. G. Edwards, S. M. A. Musaad, N. A. Khan and H. D. Holscher, *Nutr Neurosci* 2020, 23, 983-992.
56. B. C. Taylor, K. C. Weldon, R. J. Ellis, D. Franklin, T. Groth, E. C. Gentry, A. Tripathi, D. McDonald, G. Humphrey, M. Bryant, J. Toronczak, T. Schwartz, M. F. Oliveira, R. Heaton, I. Grant, S. Gianella, S. Letendre, A. Swafford, P. C. Dorrestein and R. Knight, mSystems 2020, 5.

57. M. Valles-Colomer, G. Falony, Y. Darzi, E. F. Tigchelaar, J. Wang, R. Y. Tito, C. Schiweck, A. Kurilshikov, M. Joossens, C. Wijmenga, S. Claes, L. Van Oudenhove, A. Zhernakova, S. Vieira-Silva and J. Raes, Nat Microbiol 2019, 4, 623-632.

58. B. Wingfield, C. Lapsley, A. McDowell, G. Miliotis, M. McLafferty, S. M. O’Neill, S. Coleman, T. M. McGinnity and E. K. Murray, Sci Rep 2021, 11, 15009.

59. C. Xu, Q. Jia, L. Zhang, Z. Wang, S. Zhu, X. Wang, Y. Liu, M. Li, J. Zhang, X. Wang, J. Zhang, Q. Sun, K. Wang, H. Zhu and L. Duan, Front Cell Infect Microbiol 2020, 10, 580980.

60. J. Yang, P. Zheng, Y. Li, J. Wu, X. Tan, J. Zhou, Z. Sun, X. Chen, G. Zhang, H. Zhang, Y. Huang, T. Chai, J. Duan, W. Liang, B. Yin, J. Lai, T. Huang, Y. Du, P. Zhang, J. Jiang, C. Xi, L. Wu, J. Lu, T. Mou, Y. Xu, S. W. Perry, M.-L. Wong, J. Licinio, S. Hu, G. Wang and P. Xie, Sci Adv 2020, 6.

61. Y. Yang, X. Yu, X. Liu, G. Liu, K. Zeng and G. Wang, Sci Rep 2021, 11, 18178.

62. X. Ye, D. Wang, H. Zhu, D. Wang, J. Li, Y. Tang and J. Wu, Front Psychiatry 2021, 12, 641491.

63. Q. Zhang, Y. Yun, H. An, W. Zhao, T. Ma, Z. Wang and F. Yang, Front Psychiatry 2021, 12, 645045.

64. H. Zhao, K. Jin, C. Jiang, F. Pan, J. Wu, H. Luan, Z. Zhao, J. Chen, T. Mou, Z. Wang, J. Lu, S. Lu, S. Hu, Y. Xu and M. Huang, Transl Psychiatry 2022, 12, 8.

65. P. Zheng, B. Zeng, C. Zhou, M. Liu, Z. Fang, X. Xu, L. Zeng, Y. Zhang, S. Fan, X. Du, X. Zhang, D. Yang, Y. Yang, H. Meng, W. Li, N. D. Melgiri, J. Licinio, H. Wei and P. Xie, Mol Psychiatry 2016, 21, 786-796.

66. P. Zheng, J. Yang, Y. Li, J. Wu, W. Liang, B. Yin, X. Tan, Y. Huang, T. Chai, H. Zhang, J. Duan, J. Zhou, Z. Sun, X. Chen, S. Marwari, J. Lai, T. Huang, Y. Du, P. Zhang, S. W. Perry, M.-L. Wong, J. Licinio, S. Hu, P. Xie and G. Wang, Adv Sci (Weinh) 2020, 7, 1902862.

67. S. Zheng, Y. Zhu, W. Wu, Q. Zhang, Y. Wang and F. Yang, Brain Behav 2021, 11, e02036.

68. Y. Zhou, C. Chen, H. Yu and Z. Yang, Front Cell Infect Microbiol 2020, 10, 567268.

69. J. Zhu, M. Li, D. Shao, S. Ma and W. Wei, Front Psychiatry 2021, 12, 757139.
70. Z. Zhuang, R. Yang, W. Wang, L. Qi and T. Huang, *J Neuroinflammation* 2020, 17, 288.
Table S2. Characteristics of studies investigating gut microbiota composition in animal models of depression.

Study	Object	Country	Study design	Sample size	Depression model	Age	Sex	Definition of depression-like behaviors	Time-point of sample collection	Sample storage	Gut microbiome estimation	Sequencing region	Microbial biomarkers from comparisons	Microbiome biomarkers selection			
Åhlgren et al. 2021(2)	Flanders sensitive line rats	Denmark	case-control	80	FSL-depression	5-week-old	male	FST: No data (immobility)	Fresh fecal samples were collected at study initiation and study end	Fecal samples	80 °C	MS: RNA gene sequencing - Illumina MiSeq platform	V4	FSL-depression and PRL-control	Two-way ANOVA followed by Bonferroni correction p < 0.05		
Arshad Y et al. 2018(3)	Swiss mice	Morocco	case-control	-	GBDH-depression	1-month-old	male	OPT: center time; EMT: anxiety index; FST: immobility time; Splash test: grooming time	After subchronic and chronic groups were treated daily for 6 and 12 weeks	Intestinal samples	-	GBDH-depression and control	Two-way ANOVA followed by Holm-Sidak post-hoc test p < 0.05				
Amini Khosravi et al. 2019(4)	NMRI mice	Iran	case-control	4 mice/cage	MS-depression	5-50-52	male	FST: immobility time; Splash test: grooming activity time; OPT: horizontal activity and rearing; EPM (open-arm time and entries)	Fresh feces were collected from male mice at PND52 after having carried out valid behavioral tests	Colon contents	80 °C	Real-time RT-PCR	-	MS-depression and control	Two-way ANOVA followed by Bonferroni post-hoc test p < 0.05		
Ai Q et al. 2020(5)	C57BL/6J mice	China	case-control	5 mice/cage	CUMS-depression	MS (N=9-12)	Adrenalectomized MS (N=9-12) Control (N=9-12) Adrenalectomized control (N=9-12)	0-5-week-old	male	Body weight; SPT: novelty preference; FST: immobility time	After 1 week of acclimatization and 8 weeks of CUMS (the last 4 weeks received drugs treatment)	Fecal samples	80 °C	MS: RNA gene sequencing - Illumina MiSeq platform	V3-V4	CUMS-depression and control	Mann-Whitney test followed by multiple comparisons using Benjamini & Hochberg's false discovery rate: FDR < 0.05
Archipova et al. 2012(6)	mice	Russia	case-control	4-5 mice/cage	Anibiotic- depression	Aminobis (N=25) Aminobis-lactobacilli (N=25) Control (N=25)	25-days-old	male	Mortality rate; Body weight; OPT: crossing number, defecation, grooming; rearing number, head dips, latency to exit from central zone; Rotorod test: Latency to falls; PawSE: time to open the grip; Time mice: alternation; Novel Object Recognition: time index	Caccuzum-content samples were collected on the 15th day of the experiment	Caccuzum contents	80 °C	MS: RNA gene sequencing - Illumina MiSeq platform	V3-V4	Anibiotic-depression and control	Neoparametric ANOVA Kreissel-Wallis test p < 0.05	
Bhattacharya et al. 2017(7)	C57BL/6 mice	Canada	case-control	Single	CSDS-depression	CSDS (N=16) CSDS+L. rhamnosus JB (N=17) Control (N=18) Control+L. rhamnosus JB (N=13)	0-5-week-old	male	MIT: social interaction ratios; OPT: rearing number; LDT: light zone entries	Fecal pellets were collected before the first defeat session (at 18th day of L. rhamnosus JB treatment), the final defeat session (at the final day of JB-1)	Fecal samples	80 °C	MS: RNA gene sequencing - Illumina MiSeq platform	V3	CSDS-depression and control	Kreissel-Wallis one-way ANOVA or the Mann-Whitney U test, followed by the Benjamini-Hochberg correction	
Study	Animals	Country	Gender	Age	Treatment	Time Points	Sample Collection	Data Analysis	Findings								
-------------------	---------	---------	--------	-----	-----------	-------------	-------------------	---------------	--								
Besharse A et al. 2021	C57BL/6 mice	Ireland	male	4 weeks	CUMS-depression	6-week-old	male/female	SPT: immobility time↑; TST: immobility time↑	16S rRNA gene sequencing	Random Forest models (False Discovery Rate < 0.05)							
Chen et al. 2020	C57BL/6 mice	China	male	20-25 g	CUMS-depression	4 weeks-old	male	SPT: active preference↑; FST: immobility time↑	16S rRNA gene sequencing	16S rRNA gene sequencing	Null						
Chakraborti A et al. 2020	C57BL/6 mice	USA	male	30 days	HPSC-MFD-depression	4 weeks-old	male	OFF: center time↑; EPM: open arms time↑	16S rRNA gene sequencing	Null							
Chen L et al. 2021	C57BL/6 mice	China	male	12-week-old	LPS-depression	12-week-old	Unspecified	Survival rate↑; NOR: test preference index↑	LPS-depression and control	Null							
Chen P et al. 2019	BALB/c mice	China	male	3-4 weeks	UCMS-depression	3-4 weeks-old	male	Body weight↑; GT: immobility time↑; total distance↑	16S rRNA gene sequencing	16S rRNA gene sequencing	Null						
Chen T et al. 2021[13] C57BL/6N mice China case-control s-4 mice/cage CRS-depression Experiment 1: CRS (N=8) DSS (N=8) DSS+CRS (N=8) Control (N=8) Experiment 2: donor Control (N=10) donor CRS (N=20) recipient Control (N=6) recipient CRS (N=6) recipient CRS+L. reuteri (N=6) recipient Controls+DSS (N=8) recipient CRS+DSS (N=8) recipient CRS+DSS+L. reuteri (N=8) Control (N=8) 18–20 g male OGT: total distance; TST: immobility time; FST: immobility time. After 7 days of acclimatization and 30 days of CRS, followed by 7 days of DSS treatment Cecal contents _ 16S rRNA gene sequencing: Illumina HiSeq platform V3-V4 FMT CRS-depression and control Two-way ANOVA with Bonferroni’s post-hoc test for multiple comparisons: p < 0.05.

Chen X et al. 2021[14] Sprague-Dawley rats China case-control Adult 200 ± 10 g male SPT: sucrose preference; FST: immobility time; TST: immobility time After 1 week of acclimatization and 24 weeks of lead exposure Fecal samples _ 16S rRNA gene sequencing: Illumina MiSeq platform V4 Lead exposure-depression and control Anosim: p < 0.05 LEfSe: p < 0.05 and LDA > 3.0

Chen Y et al. 2021b[17] Sprague-Dawley rats China case-control Adult 180–220 g male SPT: sugar preference; FST: immobility time; LDT: dark time After 15 days of acclimatization, 3 weeks of CUMS and 4 weeks of Semen Sojae Praeparatum treatment Cecum contents _ 16S rRNA gene sequencing: Illumina MiSeq platform V3-V4 CUMS-depression and control LEfSe: p < 0.05 and LDA > 3.0 one-way ANOVA and Welch’s t-test: p < 0.05
Cheng D et al. 2018[18] Sprague-Dawley rat China case-control single Hydrocortisone-depression Hydrocortisone (N=10) Hydrocortisone+Tianshi (N=10) Control (N=10) 230-280 g male GPT: total-dose[1] SPT: sucrose preference[1] After 1 week of acclimatization and 21 days of drugs Faces from the color samples and small immobility success - 90 °C 16S RNA gene sequencing- MiSeq (Illumina) platform Y3-V4 Hydrocortisone-depression and control A Kruskal-Wallis test: p < 0.05; Mann-Whitney test: p < 0.05

Chung R et al. 2022[20] C57BL/6 mice China case-control - CUMS-depression CUMS (N=7-8) CUMS+Fluoxetine (N=7-8) Control (N=7-8) 5-6 weeks old male LTD: light time[2] After 6 weeks of CUMS and treatment Fetal samples _ 16S RNA gene sequencing and control Two-way ANOVA followed by Fisher’s LSD test or Dunn’s correction: p < 0.05

Chevalier G et al. 2021[21] C57BL/6J mice France case-control - UCMS-depression UCMs (N=4) UCMs+Flaxseeds (N=4) Control (N=4) PMS: Control (N=6) 8-10 week-old male NSPT: latency to eat [2] Splashes test: grooming latency[2], self-grooming behavior[2]. FST: immobility time[2] TST: immobility time[2] After 1 week of acclimatization and 8 weeks of UCMS 8 weeks post PMS Fetal samples _ 16S RNA metabonomic- Illumina MiSeq instrument Y3-V4 UCMs-depression and control Mann-Whitney test: p < 0.05

Chi L et al. 2021[22] Sprague-Dawley rats China case-control 4-6 rats/cage (for control), 8 rats/cage for CUMS mice CUMS-depression CUMS (N=12) CUMS+Flaxseeds (N=12) CUMS+DPP (N=10) Control (N=8) Control+FGS (N=8) 6-week-old male Body weight[1] SPT: sucrose preference[1] GPT: total-dose[1], immobility time[1], stress refuses[1] After 1 week of acclimatization and 7 weeks of CUMS, the last 3 weeks received drugs treatment, fetal samples were collected at day 6, 15, and 22 during the drug treatment period - 90 °C 16S RNA gene sequencing- Illumina MiSeq system Y3-V4 CUMS-depression and control LEH UC 1.0 p < 0.05 and LDA > 1.0

Choi J et al. 2021[23] C57BL/6J mice Korea case-control - CRS-depression CRS (N=12) CRS+Lac-IV (N=8) CRS+Flaxseeds (N=12) CRS+Ack-IV (N=11) Control (N=12) Control+Lac-IV (N=8) Control+Flaxseeds (N=12) Control+Ack-IV (N=12) 7-week-old male FST: immobility time[2] FST: immobility time[2] After 5 days of acclimatation, stress was collected at day 1 (before stress), day 14 (after stress), and post-stress day 14 - 90 °C 16S RNA gene sequencing- Roche 454 sequencing Y1-V2 CRS-depression and control (post-stress day 14) Two-way ANOVA: p < 0.05

Dang V et al. 2020[24] Long Evans Rats China case-control - MD-depression Experiment for Picher rats- Prebiotics (N=12) Control (N=12) Experiment for Long Evans rats MD (N=12) MD+Prebiotics (N=12) Control (N=12) Control+Prebiotics (N=12) 6-week-old male GPT: corner visits number[2], mazes number[2] After receiving 0.5 ml of the prebiotics for 5 weeks for Picher rats and 9 weeks for Long Evans rats (until euthanasia) Cecal content - 90 °C 16S RNA sequencing analysis- Illumina MiSeq platform Y3-V4 MD-depression and control MD-depression ANOVA: p < 0.05

Dong Y et al. 2018[25] C57BL/6J mice China case-control 8 mice/age CRS-depression CRS+PBS (N=8) CRS+CITA (N=8) Control+PBS (N=8) Control+CITA (N=8) 6-week-old male FST: immobility time[2] SPT: sucrose preference[2] PPT: corner time[2] EPM: open arm time[2] After 2 week of acclimatation and 5 weeks of CRS (the last 3 weeks received drugs) Fetal samples - 90 °C 16S RNA gene sequencing- Illumina MiSeq platform Y3-V4 CRS-depression and control (PBS) Two-way ANOVA followed by Fisher’s LSD test or Dunnet’s correction: p < 0.05

EPM: open arms time ↓ OFT: center visits number ↓ TST: immobility time ↑ OFT: total distance ↑ SPT: sucrose preference ↓ FST: immobility time ↓ self-grooming behavior ↓ NSFT: latency to eat ↓ LDT: light time ↓ SP: sucrose preference ↑ self-grooming behavior ↑ Stress test: grooming latency ↑ LDT: light time ↓ SP: sucrose preference ↑ self-grooming behavior ↑ Stress test: grooming latency ↑
Study	Species	Country	Group Size	Group Details	Sample Collection	Method	Analysis	Sample Size	Results						
Dhaliwal et al. 2018[25]	Swiss albino LACA mice	India	case-control	CUMS-depression	CUMS (N=8)	25–30 g male	Locomotor activity, EMG, mirror chamber test, STT, immobility time	16S rRNA gene sequencing	After 4 weeks of CUMS (and L. plantarum MTCC 9510)	qPCR	CUMS-depression and control	One-way ANOVA followed by Tukey’s multiple comparisons test: p < 0.05			
Ding Y et al. 2021[30]	C57BL/6 mice	China	case-control	CRS-depression	CRS (N=8)	6–8-week-old male	OPT: total distance; FST: immobility time; STT: immobility time	16S rRNA gene sequencing	After 1 week of acclimatization and 3 weeks of CRS and Abacavir-macrophages treatment	Fecal samples	16S rRNA gene sequencing–Illumina platform	V5-V4	CRS-depression and control	Welch’s t-test: p < 0.05	
Diviccaro et al. 2018[29]	Sprague-Dawley rats	Italy	case-control	16S rRNA gene sequencing	Fecal samples	80 °C	V3–V4	MS-depression and control	Student’s t-test: p < 0.05						
Duan J et al. 2018[25]	SD+L. plantarum MTCC 9510	India	case-control	CUMS-depression	CUMS-L. plantarum MTCC 9510 (N=8)	Control (N=8)	Control-L. plantarum MTCC 9510 (N=6)	16S rRNA gene sequencing	After 21 days of L. plantarum MTCC 9510 (day 7–10 received deep depression)	Fecal samples	16S rRNA gene sequencing–Illumina platform	V5-V4	CUMS-depression and control	One-way ANOVA followed by Tukey’s multiple comparisons test: p < 0.05	
Egerton S et al. 2020[31]	C57BL/6 mice	Ireland	case-control	4–4 rats/cage	MS-depression	MS (N=12)	ABX FMT (N=12)	16-week-old male	EAP treatment (N=8)	Fecal samples	16S rRNA gene sequencing–Illumina platform	V5-V4	EAP-depression and control	Purvalim implementation of the aldex test (function followed by Benjamin-Hochberg correction: p < 0.1)	
Do EK et al. 2020[32]	NODShLij mice	China	case-control	EAP-depression	EAP treatment (N=8)	MS (N=12)	4-week-old male	OPT: total distance, swimming time; FST: immobility time; STT: center time and entries	16S rRNA gene sequencing–Illumina platform	V5-V4	EAP-depression and control	Independent sample t-test: p < 0.05	One-way ANOVA followed by post hoc Tukey test: p < 0.05		
Duan L et al. 2021[30]	C57BL/6 mice	China	case-control	Singla	CUMS-depression	CUMS (N=7)	4–6 weeks of age	Body weight; SP: sucrose preference; FST: immobility time	16S rRNA gene sequencing	After 4 weeks of CUMS, then fecal samples were collected prior to sedation of animals	Fecal samples	16S rRNA gene sequencing–Illumina platform	V5-V4	CUMS-depression and control	Welch’s rank-sum test: p < 0.05
Egerton S et al. 2020[31]	Sprague-Dawley rats	Ireland	case-control	4–4 mice/cage	MS-depression	MS (N=12)	4-week-old male	OPT: total distance, swimming time; FST: immobility time	16S rRNA gene sequencing–Illumina platform	V5-V4	MS-depression and control	Student’s t-test: p < 0.05			
El Aidy S et al. 2017[32] mice Netherla
nds case- control − MS MS-5-HTT−/− (N=8) Control-5-HTT−/− (N=8) Control-5-HTT−/− (N=8) MS-5-HTT−/− (N=8) Control-5-HTT−/− (N=8) p<0.01 male/ female NA Facial samples were collected at PND 21. Facial samples −80 °C 16S rRNA gene sequencing Illumina MiSeq platform Unspecified MS and control The rank non-Kruskal–Wallis test: p < 0.05

Fan L et al. 2017[32] Sprague-Dawley rats China case- control − CUMS-depression CUMS (N=8) CUMS+PD (N=6) PD (N=6) CUMS (N=8) CUMS+PD (N=6) PD (N=6) PND25 male SPL: sucrose preference; OPT: total distance traveled; resting number; FST: total immobility time After 1 week of acclimatization and 4 weeks of CUMS Cereb cortex samples −80 °C 16S rRNA gene sequencing Illumina MiSeq PE300 system V3-V4 CUMS-depression and control LeSe: p < 0.05 and LDA > 2.5 Non-parametric Mann–Whitney test: p < 0.05

Ferdmine P et al. 2020[34] Sprague-Dawley rats UK case- control − Non-weaned-depression W-Weaned (N=6) L-Non-weaned (N=6) NS-Weaned (N=6) NS-Non-weaned (N=6) PND25 male FST: immobility time; limbing time; swimming time Facial samples were collected at PND25 Contents of deoxynucleotides, pyrimidines, pyrimidines and cytosine − Fluorescence in situ hybridization (FISH) analysis for Lactobacillus— Enterococcus, Bifidobacterium spp. and Clostridium histolyticum group − Non-weaned-depression and weaned Two-way ANOVA followed by Bonferroni-adjusted: p < 0.05

Feng Z et al. 2020[32] Sprague-Dawley rats China case- control − CUMS-depression CUMS (N=8) CUMS+Fluoxetine (N=8) CUMS+Venlafaxine (N=8) CUMS+CTE (N=8) CUMS+TG (N=9) CUMS+Fluoxetine (N=9) CUMS+CTE (N=9) CUMS+TG (N=9) CUMS (N=9) Control (N=9) Body weight; SPL: sucrose preference; OPT: crossing and resting number After 1 week of acclimatization and 4 weeks of CSDS Cereb cortex contents −80 °C 16S rRNA gene sequencing analysis Illumina MiSeq platform V3-V4 CUMS-depression and control Unspecified One-way ANOVA followed by Dunnet’s test: p < 0.05 LDA: p < 0.05 and LDA > 2.0

Feng Y et al. 2020[35] Sprague-Dawley rats China case- control − CUMS-depression CUMS (N=8) CUMS+Fluoxetine (N=8) CUMS+Venlafaxine (N=8) CUMS+CTE (N=8) CUMS+TG (N=9) CUMS+Fluoxetine (N=9) CUMS+CTE (N=9) CUMS+TG (N=9) CUMS (N=9) Control (N=9) 200 ± 20 g weight; SPL: sucrose preference; OPT: crossing and resting number After 1 week of acclimatization and 4 weeks of CMS Cereb cortex contents −80 °C 16S rRNA gene sequencing analysis Illumina MiSeq platform V3-V4 CUMS-depression and control Unspecified One-way ANOVA followed by Dunnet’s test: p < 0.05 LDA: p < 0.05 and LDA > 2.0

Forzaman S et al. 2020[37] Sprague-Dawley rats USA case- control − MEETH-depression MEETH (N=8) Control (N=8) 60-90 days old male OPT: total distance; FST: immobility time Facial samples were collected at the following time points: 0, 5, 7, and 12 week of MEETH administration, and at 24, 48, and 96 h, and days 7, 14, and 30 of withdrawal or cessation. Facial samples −80 °C 16S rRNA gene sequencing Illumina MiSeq platform V4 MEETH-depression and control Non-parametric Mann–Whitney test or the Kruskal–Wallis test: p < 0.05

Gao K et al. 2020[38] BALB/c mice China case- control − CUMS-depression CUMS (N=10) CUMS+5-Chloro-5,6-Dihydroxy-2,3-dihydrobenzofuran (N=10) CUMS+5-Chloro-5,6-Dihydroxy-2,3-dihydrobenzofuran (N=10) CUMS (N=10) 6-8 weeks old male SPL: sucrose preference; FST: immobility time; OPT: total distance; resting number After 1 week of adaptation and 3 weeks of WHES/0 or thioctic acid treatment (4 weeks of CUMS after adaptation) Facial samples −80 °C 16S rRNA gene sequencing Illumina MiSeq platform V3-V4 CUMS-depression and control One-way ANOVA (or Kruskal–Wallis test): p < 0.05 LDA: p < 0.05 and LDA > 2.0
Study	Species	Gender	Age	Cauda epidural staining	Timepoints	Cause	Control	CUMS+Paroxetine (N=6)	CUMS+L. casei (N=6)	CUMS (N=6)	Data Collection and Analysis
Gao X et al. 2020^[39]	Sprague-Dawley rats	Male	5 mice/cage		After 1 week of acclimatization and 4 weeks of CUMS	Body weight	SPT: escape preference, OPT: crossing number, rearing number				Illumina MiSeq platform
											16S rRNA sequencing analysis: Illumina MiSeq platform/NovaSeq platform
											16S rRNA sequencing and control
Guo Y et al. 2020^[40]	Cryptosporidium rats	Male	5 mice/cage		After 1 week of acclimatization and 10 days of CSDS	Body weight	SPT: escape consumption, OPT: immobility time				Illumina MiSeq platform
											16S rRNA sequencing analysis: Illumina MiSeq platform/NovaSeq platform
											16S rRNA sequencing and control
Han SK et al. 2019^[41]	Cryptosporidium rats	Male	5 mice/cage		After 2 days of IS	Body weight and 21 days of CRS				Illumina MiSeq platform	
											16S rRNA sequencing analysis: Illumina MiSeq platform/NovaSeq platform
											16S rRNA sequencing and control
Gu X et al. 2021^[42]	Cryptosporidium rats	Male	5 mice/cage		After 1 week of acclimatization and 7 days of CSDS	Body weight	SPT: escape consumption, OPT: immobility time				Illumina MiSeq platform
											16S rRNA sequencing analysis: Illumina MiSeq platform/NovaSeq platform
											16S rRNA sequencing and control
Gu X et al. 2021^[43]	Cryptosporidium rats	Male	5 mice/cage		After 1 week of acclimatization, 14 days of antibiotics treatment, and 7 days of probiotics treatment	Body weight	TST: immobility time, FST: immobility time				Illumina MiSeq platform
											16S rRNA sequencing analysis: Illumina MiSeq platform/NovaSeq platform
											16S rRNA sequencing and control
Guo F et al. 2020^[44]	Cryptosporidium rats	Male	5 mice/cage		After 1 week of acclimatization and 7 days of paradoxical sleep depression	Body weight	TST: immobility time, FST: immobility time				Illumina MiSeq platform
											16S rRNA sequencing analysis: Illumina MiSeq platform/NovaSeq platform
											16S rRNA sequencing and control
Gu X et al. 2022^[45]	Cryptosporidium rats	Male	5 mice/cage		After 1 week of acclimatization and 4 weeks of CUMS	Body weight	TST: immobility time, FST: immobility time				Illumina MiSeq platform
											16S rRNA sequencing analysis: Illumina MiSeq platform/NovaSeq platform
											16S rRNA sequencing and control
Guo J et al. 2018^[46]	Cryptosporidium mice	Male	6 mice		After 1 week of acclimatization, and 10 days of CSDS	Body weight and 7 days of paradoxical sleep depression				Illumina MiSeq platform	
											16S rRNA sequencing analysis: Illumina MiSeq platform/NovaSeq platform
											16S rRNA sequencing and control
Guo X et al. 2018^[47]	Cryptosporidium mice	Male	6 mice		After 1 week of acclimatization and 4 weeks of CUMS	Body weight	TST: immobility time, FST: immobility time				Illumina MiSeq platform
											16S rRNA sequencing analysis: Illumina MiSeq platform/NovaSeq platform
											16S rRNA sequencing and control
Guo Y et al. 2019^[48]	Cryptosporidium mice	Male	6 mice		After 1 week of acclimatization and 21 days of CRS	Body weight	TST: immobility time, FST: immobility time				Illumina MiSeq platform
											16S rRNA sequencing analysis: Illumina MiSeq platform/NovaSeq platform
											16S rRNA sequencing and control
Guo Y et al. 2019^[49]	Cryptosporidium mice	Male	6 mice		After 1 week of acclimatization and 21 days of CRS	Body weight	TST: immobility time, FST: immobility time				Illumina MiSeq platform
											16S rRNA sequencing analysis: Illumina MiSeq platform/NovaSeq platform
											16S rRNA sequencing and control
Han SK et al. 2019^[50]	Cryptosporidium mice	Male	6 mice		After 2 days of IS	Body weight	TST: immobility time				Illumina MiSeq platform
											16S rRNA sequencing analysis: Illumina MiSeq platform/NovaSeq platform
											16S rRNA sequencing and control

Note: The above table includes a summary of the studies and their respective methods, including the species, gender, age, cause, and control conditions, along with the methods used for data collection and analysis. The table also indicates the statistical tests used, such as Wilcoxon tests, Student's t-tests, Newman-Keuls test, Dunnett's test, and one-way ANOVA.
Han SK et al. 2020a	C57BL/6 mice	Korea	case-control	6-week-old male	IS-depression	8-9 weeks	male	EPM: open arena time and entries	TST: immobility time	FST: immobility time	LDT: light box time	After 1 week of acclimatization, 5 days of Escherichia coli exposed and 5 days of drug treatment	Color contents	16S-C	16S rRNA gene sequencing - Illumina iSeq 100 platform	V4	IS-depression and control	One-way ANOVA followed by Tukey’s multiple range test: p < 0.05	LEfSe: p < 0.05 and LDA > 3.5
Experiment 1:	IS (N=6)	IS+Rad ginseng low-dose (N=6)	IS+Rad ginseng middle-dose (N=6)	IS+Rad ginseng high-dose (N=6)	IS+Fermented red ginseng low-dose (N=6)	IS+Fermented red ginseng middle-dose (N=6)	IS+Fermented red ginseng high-dose (N=6)	Control (N=6)											
Experiment 2:	IS (N=6)	IS+Flavonoids (N=6)	IS+Rad ginseng low-dose (N=6)	IS+Rad ginseng middle-dose (N=6)	IS+Fermented red ginseng low-dose (N=6)	IS+Fermented red ginseng middle-dose (N=6)	IS+Fermented red ginseng high-dose (N=6)	Control (N=6)											
Experiment 3:	EC (N=6)	EC+Lactobacillus rhamnosus (N=6)	EC+Lactobacillus rhamnosus (N=6)	EC+Red ginseng middle-dose (N=6)	EC+Fermented red ginseng low-dose (N=6)	EC+Fermented red ginseng middle-dose (N=6)	Control (N=6)												
Experiment 4:	EC (N=6)	EC+Probiotics (N=6)	EC+Probiotics (N=6)	EC+Red ginseng middle-dose (N=6)	EC+Fermented red ginseng low-dose (N=6)	EC+Fermented red ginseng middle-dose (N=6)	Control (N=6)												

Han SK et al. 2020b C57BL/6 mice	Korea	case-control	5-week-old male	EC-depression	5 weeks	male	TST: immobility time	FST: immobility time	After 1 week of acclimatization, 5 days of Escherichia coli	Fecal samples	16S-C	16S rRNA gene sequencing - Illumina iSeq 100 platform	V4	EC-depression and control	One-way ANOVA followed by Tukey’s multiple range test: p < 0.05	LEfSe: p < 0.05 and LDA > 3.5
EC (N=5)	EC+Lactobacillus rhamnosus (N=5)	EC+Red ginseng middle-dose (N=5)	EC+Fermented red ginseng middle-dose (N=5)	Control (N=5)												
Study	Model	Country	Age & Sex	Treatment	Methodology	Outcome	Control Group									
---	---	---	---	---	---	---	---	---	---	---						
Han SK et al. 2021⁽¹³⁾	C57BL/6 mice	Korea	3 mice/cage RS-depression	FMT-RS (N=6)	Fecal samples (16S rRNA gene sequencing - Illumina iSeq platform)	Mood tests: EPM, TST, FST, LDT	RS+CSS middle-dose (N=6)									
Hao W et al. 2021⁽¹⁰⁾	C57BL/6 mice	China	8-week-old male	Antibiotic-depression	Body weight, TST, immobility time, Body weight, TST, immobility time	Mood tests: EPM, TST, FST, LDT	Ampicillin+Xiaoyaosan (N=10)									
Hao W et al. 2021⁽¹¹⁾	C57BL/6 mice	China	8-week-old male	CUMS-depression	Body weight, SPT, sugar preference, EPM open-arm time and entries	Mood tests: EPM, TST, FST, LDT	CUMS (N=10)									
Hassan AM et al. 2019⁽¹⁸⁾	C57BL/6 mice	Austria	8-week-old male	HFD-depression	Body weight, Hair coat index, SPT, sucrose preference, Hair coat index	Mood tests: EPM, TST, FST, LDT	HFD (N=12)									
Study	Model	Country	Treatment	Age/Sex	Outcome Measures	Statistical Tests	Environment/Condition	Sequencing Platform	Notes							
------------------	----------------	---------	---	---------	---	---	------------------------	-----------------------------	--------------------------------							
Huang P et al.	C57BL/6 mice	China	CRS+low dose L. plantarum (N=15)	10-12	female	14 weeks after ovariectomy	80 °C	16S rRNA sequencing analysis	LabMaster system: horizontal and vertical locomotor activity; MPT: morphine preference; saccharin solution intake	Unspecified						
Huang N et al.	C57BL/6 mice	China	IS+NK33+NK98 (N=7)	2-month	male	After 1 week of acclimatization, focal samples were collected after LPS and ketamine treatment	Focal samples	16S rRNA sequencing analysis	Fisher's exact test: p < 0.05							
Huang Y et al.	C57BL/6 mice	China	IS+NK33 (N=7)	9-week	male	After 1 week of acclimatization and 10 days of cCSDS	Focal samples	16S rRNA sequencing analysis								
Huang Y et al.	C57BL/6N mice	China	DSS-depression	4-5	male	After 7 days of adoption and 7 days of DSM treatment	Focal samples	16S rRNA sequencing analysis								
Inserra A et al.	C57BL/6J mice	Australia	IS+DSS+low dose L. plantarum (N=15); DSS+high-dose L. plantarum (N=8); DSS+Fluorescein (N=8); Control (N=15)	60 days	male	After 1 week of acclimatization and 4 weeks of CUS	Focal samples	16S rRNA sequencing analysis								
Jung HM et al.	C57BL/6 mice	Korea	IS-depression	5-week	male	After 1 week of acclimatization, 2 days of immobilization stress and 3 days of drugs treatment	Focal samples	qPCR for Bacteroidetes, Bacteroidales, Actinobacteria and Erysipelotrichiaceae								
S S et al.	C57BL/6 mice	China	CRS-depression	9-week	male	After 1 week of acclimatization, the focal samples were collected after 8 weeks of CRS	Focal samples	Hi-throughput 16S rRNA sequencing analysis								

Notes:
- LEfSe: p < 0.05 and LDA > 4.0
- Metastats: p < 0.05 or FDR < 0.05
- 57BL/6 mice
- 57BL/6N mice
- 57BL/6J mice
- male
- female
- male
- female
- China
- Korea
- Australia
- New Zealand
- Wallis H test: p < 0.01
- Duncan multiple range test: p < 0.05
- One-way ANOVA: p < 0.05
- One-way ANOVA followed by a Duncan multiple range test: p < 0.05
- LEfSe: p < 0.05 and LDA > 2.0
- One-way ANOVA: p < 0.05
- LEfSe: p < 0.05 and LDA > 3.0
- LEfSe: p < 0.05 and LDA > 4.0
- Metastats: p < 0.05 or FDR < 0.05
| Study | Species/Country | Control | MS | Probiotics | FMT | Data Collection | Data Analysis | Notes | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Jiang W et al. 2017 | C57BL/6J mice | China | case-control | single | CUMS-depression | CUMS (N=6) | Control (N=6) | V3-V4 | 8-week-old | 90 °C | 16S rRNA gene sequencing: Illumina MiSeq platform | LEfSe: p < 0.05 and LDA ≥ 2.0 |
| Jiang Y et al. 2020 | C57BL/6J mice | Japan | case-control | single | CSDS-depression | CSDS (N=5) | Control (N=6) | V3-V4 | 6-week-old | 80 °C | 16S rRNA gene sequencing: Illumina MiSeq platform | LEfSe: p < 0.05 and LDA ≥ 2.0 |
| Kammerer Y et al. 2020 | C57BL/6J mice | China | case-control | single | MS-depression | Experiment 1: MS (N=6) | M-0% (N=6) | Student’s t-test: p < 0.05 |
| Karan C et al. 2021 | C57BL/6J mice | India | case-control | single | CSDS-depression | Modified CSDS (N=5) | Control (N=6) | V3-V4 | 6-week-old | 80 °C | 16S rRNA gene sequencing: Illumina MiSeq platform | LEfSe: p < 0.05 and LDA ≥ 2.0 |
| Kelly JR et al. 2019 | C57BL/6J mice | Ireland | case-control | single | MS | ABX FMT | ABX FMT-MRD (N=13) | FMT-MRD (N=15) | V3-V4 | Adult 350 g | 90 °C | 16S rRNA gene sequencing: Illumina MiSeq platform | Mann-Whitney U test and Bonferroni correction: PDR-adjusted p-value ≤ 0.1 |
| Kemp KM et al. 2021 | C57BL/6J mice | USA | case-control | single | MS | MS-early weaning (N=37) | Control (N=33) | V3-V4 | Adult 211 g | 90 °C | 16S rRNA gene sequencing: Illumina MiSeq platform | Analysis of composition of microbiomes (ANCOM) |
| Study Authors | Animal Model | Species | Control | Treatment | Diet | Age | Gender | Procedure | Sample | Platform | Comparison | Data Analysis |
|--------------|--------------|---------|---------|-----------|------|-----|--------|-----------|--------|----------|------------|--------------|
| Kim JK et al. 2020[67] | C57BL/6J mice | South Korea | case-control | 3-4 mice/cage | EC-depression | Escherichia coli K1 (N=7) EC K1L-4, L. mucosae NK41 (N=7) | Control (N=7) | 5-week-old | male | EPM: open-arm time; FST: immobility time | After 3 weeks of acclimatization and 5 days of Escherichia coli K1 treatment and 5 days of Lactobacillus mucosae NK41 treatment | Fecal samples | 80°C | 16S rRNA gene sequencing-Illumina MiSeq platform | V4 | EC-depression and control | LEfSe: p < 0.05 and LDA > 2.0 one-wayANOVA followed by a Duncan multiple range test: p < 0.05 |
| Lai WD et al. 2022[71] | C57BL/6J mice | South Korea | case-control | 3-4 mice/cage | SD-depression | SD (N=8) SD oil-reduced diet (N=8) | Control (N=8) | 6-week-old | male | Body weight; OPT: total distance, center time and entries | After a 6-week dietary intervention and followed by 4-week chronic sleep deprivation | Colon contents | 78°C | 16S rRNA sequencing analysis-Illumina MiSeq platform | V4-V5 | SD-depression and control | LEfSe: p < 0.05 and LDA > 2.0 |
| Knudsen JK et al. 2021[69] | C57BL/6J mice | South Korea | case-control | 3-4 mice/cage | SD-depression | Escherichia coli (N=6) Escherichia coli K1 (N=6) | Control (N=6) | 6-week-old | male | EPM: open-arm time and entries; FST: light time and entries; FST: immobility time | After 2 days of immobilization stress (Escherichia coli K1) and 5 days of buspirone treatment | Fecal samples | 70°C | 16S rRNA gene sequencing-Illumina MiSeq platform | V4 | MS+CVS-depression and control | LEfSe: p < 0.05 and LDA > 2.0 |
| Kuti D et al. 2021[70] | Flinders sensitive line rats | Flinders sensitive line rats | case-control | pair-fed | FMT-MDD-depression | FSL FMT-MDD (N=12) FSL FMT-MDD-Healthy (N=10) FSL CD-1 (N=10) FSL CD-1-Healthy (N=10) | Control (N=10) | 6-8-week-old | male | FST: struggling, immobility | After 1 week of acclimatization, fecal samples were collected before transplantation (post-FMT) and after transplantation (post-FMT) | Fecal samples | 80°C | 16S rRNA gene sequencing analysis-Illumina MiSeq platform | V4 | FRL FMT-MDD and FMT-Healthy | Knudsen-Wellin test followed by Dunn’s post hoc test: p < 0.05 |
| Kuroda A et al. 2021[68] | C57BL/6J mice | Japan | case-control | - | CSDS-depression | Control (N=12) | Control (N=12) | 7-week-old | male | OPT: interaction zone time (center area) | The fecal samples were collected 1 day before exposure of CSDS and after 5 days of CSDS | Fecal samples | 80°C | 16S rRNA gene sequencing analysis-Illumina MiSeq platform | V3-V4 | CSDS-depression and control | LEfSe: p < 0.05 and LDA > 2.0 |
| Knudsen JK et al. 2021[68] | C57BL/6J mice | Hungary | case-control | 2-3 mice/age | MS+CVS-depression | MS+CVS-Resistant (N=14) MS+CVS-Resistant-Healthy (N=12) | Control-Resistant (N=10) | Control-Resistant-Healthy (N=12) | Control (N=12) | PND80 | male | OPT: velocity and total distance, center time; food intake; EPM: Open arm preference; SPT: Sugar consumption | Colon contents were collected after 12 days of MS (PND12-13) and 4 weeks of CVS (PND80-84) | Colon contents | 78°C | RT-qPCR | MS+CVS-depression and control | Two-wayANOVA followed by Sidák’s multiple comparison test: p < 0.05 |
| Liu WD et al. 2022[72] | Wistar rats | China | case-control | - | SD-depression | SD (N=8) SD oil-reduced diet (N=8) | Control (N=8) | 6-week-old | male | Body weight; OPT: total distance, center time and entries | After a 6-week dietary intervention and followed by 4-week chronic sleep deprivation | Colon contents | 80°C | 16S rRNA gene sequencing-Illumina MiSeq platform | V3-V4 | SD-depression and control | LEfSe: p < 0.05 and LDA > 2.0 |
Leclercq S et al. 2020[73] C57BL/6J mice Belgium case-control ... coli, CUMS-depression and control. One-way ANOVA followed by the least significant difference test: p <0.05.

Li N et al. 2018[79] rats Dawley China case-control 3-week-old male Three-chamber sociability test: chamber time; sociability index; PST: latency to immobility. After 10 days of antibiotic treatment, feces were collected at three time points (25, 35 and 45 days after FMT) and causal content obtained at necropsy. Fecal samples Causal contents -80°C 16S rRNA gene sequencing– Illumina MiSeq platform qPCR for Faecalibacterium prausnitzii.

Li H et al. 2019[77] BALB/c mice China case-control 8-6 mice/age Land diet-depression Normal diet-placebo (N=6) Fish oil-based diet (N=10) Land-based diet (N=10) Normal diet control (N=6) 6-week-old male Food intake zone visit number; PST: immobility time After 4 weeks of acclimatization and 12 weeks of dietary intervention. Fecal samples - 16S rRNA gene sequencing– Illumina HiSeq 2500 platform V1-V3 V1-V4 FMT-AD-depression and FMT-control.

Li H et al. 2019[77] Sprague-Dawley rats China case-control 3-week-old male Body weight[gg]; PST: immobility time; SPE: sucrose ingestion After 7 days of acclimatization and 4 weeks of CUMS. Cecal contents -80°C 16S rRNA gene sequencing– Illumina HiSeq2500 platform V4 CUMS-depression and control.

Li H et al. 2019[77] C57BL/6J mice China case-control 3-week-old male Body weight[gg]; OPP: crossing number; PST: immobility time. After 1 week of acclimatization and 24 days of CUMS and rifaximin treatment. Fecal samples - 16S rRNA gene sequencing– Shanghai Majorbio Bio-Pharma Technology (Shanghai, China) V3-V4 CUMS-depression and control.

Li N et al. 2018[77] C57BL/6J mice China case-control 8-week-old male Body weight[gg]; OPP: sucrose preference; SPE: sucrose preference; EPM: open arms test; PST: immobility time. After 2 weeks of acclimatization and 4 weeks of CMS. Cecal contents -80°C 16S rDNA gene sequencing– Illumina HiSeq PE250 platform V3-V4 CUMS-depression and control.

Li N et al. 2019[79] C57BL/6J mice China case-control 7-week-old male Body weight[gg]; OPP: sucrose preference; PST: immobility time. After 1 week of acclimatization and 4 weeks of CMS. Cecal contents -80°C 16S rDNA gene sequencing– Illumina HiSeq platform V3-V4 CUMS-depression and control.

Li P et al. 2017[77] Sprague-Dawley rats China case-control 5-week-old male Body weight[gg]; OPP: sucrose preference; PST: immobility time. After 1 week of acclimatization and 6 weeks of CMS. Fecal samples - 16S rDNA gene sequencing– Illumina MiSeq platform V3-V4 CUMS-depression and control.

Li Q et al. 2019[79] Sprague-Dawley rats China case-control 6-week-old male Body weight[gg]; PST: immobility time. After 1 week of acclimatization and 4 weeks of CMS. Cecal contents - RT-PCR for Lactobacillus, Bifidobacteria, Enterococcus faecalis and Escherichia coli CUMS-depression and control.
Li Y et al. 2018(87) Sprague-Dawley rats China case-control vs groups CUS-depression CUS+Probiotic (N=6) Control (N=6) 200 ± 20 g male SPT: sucrose preference↓ GPT: total distance↓, escape time↓ After 1 week of acclimatization and 4 weeks of CUS Focal samples -80 °C 16S rRNA gene sequencing-Illumina MiSeq platform V3-V4 CUS-depression and control Metastats: p < 0.05

Lin ET al. 2017(81) Sprague-Dawley rats Korea case-control vs groups Ovariectomy-depression Experiment 1: Ovariectomy (N=11) Control (N=11) 10-week-old female Body weight↓ FST: immobility time↑ After 28 days of CUS (before the behavioral tests) Focal samples -80 °C 16S rRNA gene sequencing-Illumina MiSeq platform V1-V2 Ovariectomy-depression and control Wilcoxon rank-based test: p < 0.05 LEfSe: p < 0.05 and LDA > 3.0

Lin S et al. 2021(82) ICB mice China case-control vs groups CUS-depression CRS (N=10) CUS-depression 6-week-old male Body weight↓ TST: latency time↑, immobility time↑ GPT: crossing number↑, focal number↑ After 28 days of CUS (before the behavioral tests) Focal samples -80 °C 16S rRNA gene sequencing-Illumina MiSeq 16S Metagenomic Sequencing Library Preparation protocol V3-V4 CRS-depression and control Student’s t-test: p < 0.05

Lin Q et al. 2020(83) ICB mice Korea case-control vs groups IS-depression IS (N=10) IS-depression 6-week-old male Body weight↓ TST: latency time↑, immobility time↑ GPT: crossing number↑, focal number↑ After 1 week of acclimatization, fecal samples were collected on days 10, 14, and 18 after ovariectomy Focal samples -80 °C 16S rRNA gene sequencing-Illumina MiSeq platform V4-V5 IS-depression and control Student’s t-test: p < 0.05

Lin Z et al. 2017(84) C57BL/6 mice China case-control vs groups CUMS-depression CUMS+Inosine (N=10) Control (N=16) 200 ± 20 g male Body weight↓ SPT: sucrose preference↑ GPT: total distance↑, escape time↑, open arms↑ After 28 days of CUS and 4 weeks of isoniazid or probiotic treatment Focal samples -80 °C 16S rRNA gene sequencing-Illumina MiSeq platform V3-V4 CUMS-depression and control LEfSe: p < 0.05 and LDA > 2.0

Lin SJ et al. 2018(85) C57BL/6 mice China case-control vs groups CUMS-depression CUMS (N=10) Control (N=10) 200 ± 20 g male Body weight↓ SPT: sucrose preference↑ GPT: total distance↑, escape time↑, open arms↑ After 7 weeks of acclimatization and 4 weeks of CUMS and mice treatment Focal samples -80 °C 16S rRNA gene sequencing-Illumina MiSeq platform V3-V4 CUMS-depression and control One-way ANOVA followed by Tukey’s post hoc test: p < 0.05 LEfSe: p < 0.05 and LDA > 2.0

Liu Z et al. 2020(86) C57BL/6 mice China case-control vs groups HD-depression HD (N=15) Control (N=15) 200 ± 20 g female MWM: escape time↑, target quadrant distance↑ Once the 21-day lactation was over Focal samples -80 °C 16S rRNA gene sequencing-Illumina MiSeq platform V3-V4 HD-depression and control LEfSe: p < 0.05 and LDA > 2.0

OFT: total distance↓, center time↓ SPT: sucrose preference↓ NSF: latency to eat↑ After 1 week of acclimatization and 4 weeks of CUS
Study	Species	Treatment	Experimental Design	Mouse Strain	Sex	Fecal Material	Processing	Analysis	Result	p-value		
Luo X et al. 2021^[88]	C57BL/6J mice	Control (N=12), Control+Inulin (N=12)	Electromagnetic field exposure (EMF), Heat acclimation (N=10)	5-week-old male	FST: immobility time ↑, TST: crossing number ↓	After 28 days of ambient temperature, the fecal samples were collected after 3 weeks of EMF	Two-way ANOVA followed by Sidak’s multiple comparisons test: p < 0.05	Fecal samples	80 °C	16S rRNA sequencing analysis, Illumina MiSeq platform	V4	EMF-depression and control
Le M et al. 2021^[89]	Sprague-Dawley rats	China case-control study	CUMS-depression (N=12), ABX FMT (N=12)	Male	Body weight, SPT: sucrose preference, FST: immobility time	After 1 week of acclimatization and 4 weeks of CUMS	Sidak’s multiple comparisons test: p < 0.05	Fecal samples	80 °C	16S rRNA gene sequencing- Illumina MiSeq platform	V3-V4	CUMS-depression and control
Le W et al. 2019^[90]	Sprague-Dawley rats	Male	Single	CUMS-depression (N=6)	8-week-old male	Body weight, SPT: sucrose preference, TST: immobility time	After 1 week of acclimatization and 4 weeks of CUMS	Fecal samples	80 °C	16S rRNA gene sequencing- Unspecified	V3-V4	CUMS-depression and control
Wu W et al. 2019^[91]	Wistar rats	China case-control study	Single	DSS-depression (N=6)	6-week-old male	SPT: sucrose preference, TST: immobility time	The fecal samples were collected after 7 weeks of DSS and 2 weeks of recovery	Fecal samples	80 °C	16S rRNA gene sequencing-	V4-V5	DSS-depression and control
Meng SA et al. 2017^[92]	C57BL/6 mice	USA case-control study	Single	UCMS-depression (N=12)	8-week-old male	FST: escape behavior	After 1 week of acclimatization and 5 days of UCMS	Fecal samples	80 °C	16S rRNA gene sequencing- Illumina MiSeq platform	V3-V4	UCMS-depression and control
Martin-Hernandez D et al. 2018^[93]	Wistar rats	Spain case-control study	Single	CMS-depression (N=10)	200-225g male	Weight gain, FST: immobility time, SPT: sucrose consumption, EPM: open arms time percentage	After 2 weeks of acclimatization and 3 weeks of CMS and antibiotics treatment	Blood, mesenteric lymph nodes (MLNs), liver, spleen	Refined ecosystem analysis, LEfSe: p < 0.05 and LDA > 3.0	CMS-depression and control		
Marumoto Y et al. 2020^[94]	Sprague-Dawley rats	Single	Single	CMS-depression (N=6)	8-week-old male	FST: social target	Fresh fecal samples were collected before the first SDS application (before), 1 day (stress 1d), 3 days (stress 3d), 7 days (stress 7d), and 4 weeks after the last SDS	Fecal samples	80 °C	16S rRNA gene sequencing- Illumina MiSeq platform	V3-V4	CMS-depression and control (after stress)
Stellar EMF exposure (EMF)	57BL/6 mice	Control (N=12), Control+Inulin (N=12)	Electromagnetic field exposure (EMF), Heat acclimation (N=10)	8-week-old male	FST: immobility time, TST: crossing number	After 28 days of ambient temperature, the fecal samples were collected after 3 weeks of EMF	Two-way ANOVA followed by Sidak’s multiple comparisons test: p < 0.05	Fecal samples	80 °C	16S rRNA sequencing analysis- Illumina MiSeq platform	V4	EMF-depression and control

^{LEfSe: p < 0.05 and LDA > 3.0}
McGaughey KD et al. 2019

C57BL/6J mice USA case-control Single CSDS-depression CSDS (N=20) Control (N=19) 6-week-old male OPT: total distance to center time to corner time SPT: escape preference FST: immobility time 24h before the start of the social defeat trial and 24h after the social interaction testing (after 7 days of acclimation and 7 days of CSDS) Focal samples – 80 °C 16S rRNA gene sequencing Illumina MiSeq platform Y3-V4 CSDS-depression and control Wisconsin Rank Sum and Kruskal-Wallis tests followed by a Dunn’s post-test: p < 0.05

Molina-Rodriguez EM et al. 2020

C57BL/6J mice USA case-control Single LPS-depression LPS (N=5) Non-LPS (N=5) Control (N=5) 6-12-week-old male Escape failures Learned helplessness Steel immediately after exposure to escapable foot shocks Focal samples – 80 °C 16S rRNA gene sequencing Illumina MiSeq platform Y4 LPS-depression and control Kruskal-Wallis rank sum test with Bonferroni correction: p < 0.05

Morg C et al. 2020

Sprague-Dawley rats China case-control Single CUMS-depression CUMS (N=20) CUMS+antibiotics (N=20) Control (N=20) 6-week-old male PST: immobility time, swimming time After 1 week of acclimatization and 4 weeks of CUMS, fecal samples were collected at end of short-term antibiotics exposure period (at week 5) and long-term antibiotics exposure period (at week 9) Focal samples – 80 °C 16S rRNA gene sequencing Illumina MiSeq platform Y3-V4 CUMS-depression and control (short-term antibiotics exposure) One-way ANOVA with a Duncan’s test: p < 0.05

Moya-Ponce A et al. 2017

C57BL/6J mice Spain case-control Single MS-depression MS (N=18) MS+Bifidobacterium (N=18) Control (N=18) Control+Prebiotic (N=18) 5-7 days old female EPM: open arms time After maternal separation (PND21–23), stool samples were collected at PND35 and PND40 Focal samples – 80 °C 16S rRNA gene sequencing Illumina MiSeq platform Y4-V3 MS-depression and control (PND36) Wilcoxon Rank Sum test with post hoc Bonferroni correction: p < 0.05

Murphy E et al. 2019

CD-1 mice Canada case-control 2 mice/cage LPS-depression Acute effect for both male and female: LPS (N=10) LPS+Prebiotic (N=10) Control (N=10) Control+Prebiotic (N=10) Long-term effect for both male and female: LPS (N=10) LPS+Prebiotic (N=10) Control (N=10) Control+Prebiotic (N=10) 5-week-old male/female PST: immobility time OPT: corner time EPM: open arms time Focal samples were collected at five time points; 5 weeks of age (before probiotic treatment), 6 weeks of age (after 1 week of probiotics and just before LPS injection), 24 h after LPS injection, 7 weeks of age (at the end of two-week course of probiotic treatment), 10 weeks of age (at adulthood) Focal samples – 80 °C 16S rRNA gene sequencing Illumina MiSeq platform Y6-V9 LPS-depression and control Three-way mixed ANOVA: p < 0.05

O’Mahony SM et al. 2020

Sprague-Dawley rats Ireland case-control 3 rats/cage MS-depression MS (N=12) MS+Prebiotic (N=12) MS+Prebiotic+Probiotic (N=12) Control (N=12) Control+Prebiotic (N=12) Control+Prebiotic (N=12) Control+Prebiotic+Probiotic (N=12) 14-week-old male NOR: discrimination ability After maternal separation (PND21–23), stool samples were collected at the end of the study (weeks 14) Focal samples – 80 °C 16S rRNA gene sequencing Illumina MiSeq platform Y3-V4 MS-depression and control Rank Kruskal-Wallis test followed by Dunn’s test with false discovery rate adjustment: q < 0.05
Study	Species	Country	Age	Treatment	Outcome Measure	Treatment Details	Statistical Analysis	Notes
Osman A et al. 2021^[102]	Wistar albino rats	USA	10 week-old	Controls: Casein				
- Casein-rich milk (N=8)
- Lactobacilli/Enterococci spp.
- Bifidobacterium adolescentis
- Enterococcus faecalis
- Clostridium histolyticum group
- Lactobacillus fermentum
- Lactobacillus casei
- Lactobacillus rhamnosus
- Clostridium perfringens
- Escherichia coli
- Staphylococcus epidermidis

- 5-month-old | FST: immobility time | Fecal samples were collected at PND25 | - Phosphorence-in-site Hybridization (ISH) analysis for Bifidobacterium spp.
- Clone
- LEfSe: p < 0.05 and LDA > 8
- Wilcoxon test followed by Benjamini-Hochberg: p < 0.05 |
| Patrick KA et al. 2021^[103] | Syrian hamsters (Mesocricetus auratus) | USA | 4 week-old | Controls: MS and control
- MS+EPA/DHA low-dose (N=10)
- MS+EPA/DHA high-dose (N=10)
- Control (N=10) | FST: immobility time | Prior to the initial defeat (baseline samples), 24 h after the acute defeat (acute defeat samples), and 24 h after the final defeat (repeated defeat sample) | - Wilcoxon rank sum test: adjust p < 0.05 |
| Patterson S et al. 2016^[104] | C57BL/6 mice | Ireland | 4-8 week-old | Controls: LFD
- HFD+ L. brevis DSM13066 (N=14)
- LFD (N=14) | Body weight | After 5 week of acclimatization, 24 weeks of high fat feeding (the last 12 weeks received L. brevis intervention) | - 16S rRNA gene sequencing and MiSeq platform |
| Perez-Leory J et al. 2020^[105] | Sprague-Dawley rats | USA | 175 g | Controls: MS+EPA/DHA low-dose (N=10)
- MS+EPA/DHA high-dose (N=10)
- Control (N=10) | FST: immobility time | After 5 week of acclimatization, 24 weeks of high fat feeding (the last 12 weeks received L. brevis intervention) | - 16S rRNA gene sequencing and MiSeq platform |
| Do Y et al. 2021^[106] | C57BL/6 mice | Japan | 4-Week-old | Controls: Chrna7 KO
- Chrna7 KO (N=10)
- Wild-type (N=10) | FST: immobility time | As at 10:00 for KO mice | - Morgan istogenesis sequencing-
- Hidrome Hidreq 2000 |
| Poonah MM et al. 2015^[107] | Sprague-Dawley rats | Ireland | 8-10 week-old | Controls: MS
- MS+Placebo (N=10) | TST: immobility time | After maternal separation stress (PND12-1) and EPA/DHA treatment (weeks 5-17), in vivo analysis for Bifidobacterium spp. | - 16S rRNA gene sequencing-
- Mis and control
- LeFSe: p < 0.05 and LDA > 2.0 |

Note: PND stands for Post Natal Day, FST for Forced Swim Test, SPT for Sucrose Preference Test, TST for Tail Suspension Test, FMT for Faecal Microbiota Transfer, and HFD for High Fat Diet.
Qiao Y et al. 2020[108] Kunming mice China case-control Control+EPA/DHA low-dose (N=10) Control+EPA/DHA high-dose (N=10) 8-week-old male Body weight[2] Food consumption[3] SPT: sucrose preference[4] TST: immobility time[6] TST: immobility time[6] OPT: test time[4] move time[4], corner time and distance[4] After 1 week of acclimatization and 3 weeks of stress Rectal contents 80 °C 16S rRNA gene sequencing- Illumina MiSeq platform V3-V4 CRS-depression and control CUMS-depressions and control CRS+CUMS-depressions and control ANOVA: p < 0.05

Qiao X et al. 2021[109] C57BL/6J mice China case-control Single LPS-depression LPS (N=8) LPS-Lactobacillus (N=8) Control (N=8) Control+Lactobacillus (N=8) 8-week-old male SPT: sucrose preference[4] TST: immobility time[6] After 7 days of acclimatization, followed by LPS and 7 days of Lactobacillus treatment Fecal samples - qPCR - LPS-depression and control Two-way ANOVA followed by least significant difference (LSD) post-hoc test: p < 0.05

Ray P et al. 2020[110] Kunming mice China case-control Control (N=10) Vancomycin (N=10) Control (N=10) 6-8-week-old male EPM: closed arms time[6] OPT: test time[4], move time[4], corner time and distance[4] Focal contents - 16S rRNA gene sequencing- Illumina MiSeq platform ANOVA: p < 0.05"
Robertson RC et al. 2017[116] C57BL/6J mice Ireland case-control 5 mice/cage n-3 PUFA deficiency-depression n-3 PUFA supplement (N=10) n-3 PUFA deficiency (N=10) Control (N=10) 13-week-old male TST: immobility time, After 6 weeks of dietary treatment Fecal samples were collected after 13 weeks of dietary treatment Fecal samples 29°C 16S rRNA gene sequencing Illumina MiSeq platform V3-V4 n-3 PUFA deficiency-depression and control (adult only) Kruskal-Wallis tests followed by Mann-Whitney tests: p < 0.05 LEADs: p < 0.05 and LDA > 2.0

Ross IM et al. 2020[122] Swiss mice Brazil case-control 40 mice/cage ADJ-40 (N=8) ADJ-40+Exercise (N=8) Control (N=8) Control+Exercise (N=8) 30-40 g, 45-55 days male CST: immobility time, After 1 week of acclimatization and 24 days of treadmill exercise (ADJ-40 injection at day 10) Colon contents 98°C RT-qPCR for Pimriocin and Bacteroidetes – n-3 PUFA deficiency-depression and control Two-way ANOVA followed by Duncan’s multiple range post-hoc test: p < 0.05

Schmidt AK et al. 2019[117] NAB/HAB rats Germany case-control 4 rats/cage HAB-depression HAB (N= no data) HAB=Minocycline (N= no data) HAB=Echolaert (N= no data) NAB (N= no data) NAB=Minocycline (N= no data) NAB=Echolaert (N= no data) 11-12-week-old male/ female CST: struggling score, After 14 days of drug injection Colon contents 98°C 16S rRNA gene sequencing 454 pyrosequencing V3-V4 Bacteroidetes depression and NAB control ANOVA with a subsequent Tukey’s test: p < 0.05

Shao B et al. 2021[105] Sprague-Dawley rats China case-control - CUS-depression Experiment 1: CUS (N=15) Control (N=10) Experiment 2: ABX (N=8-10) ABX+CUS (N=8-10) ABX+Control (N=8-10) Di-lactic acid (N=8-10) L-lactic acid (N=8-10) Control (N=8-10) 100-220 g male OPT: escape time, After 1 week of acclimatization and 5 weeks of CUS Fecal samples 98°C 16S rRNA gene sequencing Illumina MiSeq platform V3-V4 CUS-depression and control Wilcoxon rank-sum test: p < 0.05 LEADs: p < 0.05 and LDA > 2.0

Shao S et al. 2021[105] C57BL/6 J mice China case-control Single CRS-depression CRS+CRC samples (N=5) CRS=Phenol-extracted CRC samples (N=5) CRS=AAB-HS CRC samples (N=5) CRS=AAB-LS CRC samples (N=5) CRS=AAB-Mid CRC samples (N=5) Control=CRC samples (N=5) 6-7-week-old male SPF: sucrose preference, After 7 days of acclimatization, 14 days of CRS, 25 days of behavioral tests, tumor cell injection, and fluoxetine or XCHT treatment Fecal samples 98°C 16S rRNA gene sequencing Illumina MiSeq platform V3-V4 CRS-depression and control ANOVA test: p < 0.05

Sheng L et al. 2021[105] Sprague-Dawley rats China case-control - CUMS-depression CUMS (N=10) CUMS+Flucloxacine (N=10) CUMS+Control (N=10) Control (N=10) 180 g female CST: swimming time, After 7 days of acclimatization, 14 days of CRS, 25 days of behavioral tests, tumor cell injection, and fluoxetine or XCHT treatment Fecal samples 70°C 16S rRNA gene sequencing Illumina MiSeq platform V6-V3 CUMS-depression and control Mann-Whitney nonparametric test: p < 0.05

Soppi E et al. 2020[105] C57BL/6J mice France case-control 9 mice/cage UCMS-depression Experiment 1: UCMS (N=10) Control (N=10) ABX PT-UCMS (N=10) 8-week-old male CST: immobility time, After 9 weeks of UCMS (the last week were received behavioral testing) Fecal samples 98°C 16S rRNA gene sequencing Illumina MiSeq platform V3-V4 UCMS-depression and control ANOVA test: p < 0.05
Study	Species	Treatment	Age (weeks)	Gender	Behavior/Assay	Sample Type	Temperature (°C)	Platform	Additional Notes
Song et al. 2019[28]	57BL/6 mice	CUMS	8	Male	PFT: immobility time; OFT: center time and entries	Fecal samples	80	Illumina MiSeq platform	After 1 week of ABX treatment, 4 days of microbiota transplantation, and 8 weeks of colonization (the last week were received behavioral testing)
Song et al. 2019[28]	57BL/6 mice	CUMS	8	Female	OPT: open arms time; EPM: open arms time	Fecal samples	80	Illumina MiSeq platform	After 2 weeks of recovery from orchectomy (at 8-week-old of age) and 2 weeks of progesterone treatment
Sun et al. 2019[29]	57BL/6 mice	Pro-RD	8	Male	Body weight2; SPT: sucrose preference; TST: immobility time; EPM: open arms time	Unspecified	80	Unspecified	Unspecified
Sun et al. 2019[28]	57BL/6 mice	Pro-RD	8	Female	EPM: open arms time; OPT: open arms time	Unspecified	80	Illumina MiSeq platform	Unspecified

Abbreviations:
- ABX: Antibiotics
- PFT: Passively floating time
- OFT: Open field time
- TST: Tail suspension test
- SPT: Sucrose preference test
- EPM: Elevated plus maze
- CUMS: Chronic unpredictable mild stress
- ACTH: Adrenocorticotropic hormone
- Fluoxetine: A selective serotonin reuptake inhibitor
- HTP: Hypothalamic-pituitary
- FMT: Faecal microbiota transplantation
- LEfSe: Linear discriminant analysis effect size
- FMT-KO: Faecal microbiota transplantation-knockout

Notes:
- Sun L et al. 2019[28] - All animals were male, with the exception of the orchectomized group, which included both males and females.
- Sun L et al. 2019[29] - Pro-RD mice were used, with Pro-RD female mice being used in the behavioral tests.
- All experiments used the Illumina MiSeq platform for 16S rRNA gene sequencing.
- Wilcoxon rank sum test was used for statistical analysis, with Bonferroni correction for multiple comparisons.
- LEfSe was used to identify significantly differentially abundant taxa, with a cutoff of p < 0.05 and LDA > 2.0.

References:
- Sun L et al. 2019[28]
- Sun L et al. 2019[29]
- Sovijit WN et al. 2021
- Song J et al. 2020[28]
- Song L et al. 2019[28]
- Sun L et al. 2019[29]
- Song X et al. 2017[28]
Sun X et al. 2012[130] C57BL/6 mice China case-control 3-4 mice/cage CRS-depression CRS (N=10); CRS-WP-LPS (N=10); Control (N=10) 4-week-old male OPT: center time; EPM: open arm time and entries; PST: immobility time; After 4 weeks of CRS Focal samples _ 16S rRNA gene sequencing-Illumina HiSeq2500 Microbiome Profiling setup V3-V4 CRS-depression and control One-way ANOVA: p < 0.05

Sun Y et al. 2019[131] Kunming mice China case-control _ CUMS-depression CUMS (N=8) CUMS-Fluoxetine (N=8) Control (N=8) 14-20 g male SPT: sucrose preference; PST: immobility time; OPT: vertical movements; crossing number; After 1 week of acclimatization and 6 weeks of CUMS (the last 2 weeks received drug treatment) Focal samples _ 16S rRNA gene sequencing-Illumina HiSeq platform V4 CUMS-depression and control LEfSe: p < 0.05 and LDA > 2.0

Sun Y et al. 2020[132] C57BL/6 mice China case-control 4 mice/cage LPS-depression LPS (N=12) LPS-Schisanthrin (N=12) Control (N=12) 20 ± 2 g male PST: immobility time; PST: immobility time; After 1 week of acclimatization and 2 weeks of vehicle or SCH treatment Focal samples _ 38 °C 16S rRNA gene sequencing-Illumina HiSeq platform V3-V4 LPS-depression and control Tukey multiple comparison test: p < 0.05

 Suzuki K et al. 2020[133] C57BL/6 J (B6) mice Japan case-control _ CSDS-depression CSDS (N=6) CSDS+Carb (N=6) Control (N=6) 7-week-old male SIT: social interaction time; distance traveled; We sampled at three time points on day 1, 9, and 14 in the first experiment and at two time points on day 9 and 21 in the second experiment Focal samples _ 38°C 16S rRNA gene sequencing-Illumina HiSeq platform V3-V4 Adex CSDS-depression and pre-CSDS control Pair student’s t-test: p < 0.05

Sadowskiowa JK et al. 2017[134] C57BL/6 mice Canada case-control Single CSDS-depression CSDS-unexposed (N=10) CSDS-exposed (N=10) Control (N=6) 7-9-week-old male SIT: social interaction time; contact time; Corner zone time; After 1 week of acclimatization and 3 weeks of CSDS Cereb contents _ 38°C 16S rRNA gene sequencing-Illumina MiSeq Sequencing V3-V4 CSDS-depression and control One-way ANOVA followed by Bonferroni correction: p < 0.05

Takahashi E et al. 2012[135] C57BL/6J (B6) mice Japan case-control group AIN-93G depression AIN-93G young (N=10) AIN-93G old (N=10) Control (N=10) 5-week-old male PST: immobility time; PST: immobility time; After 5 weeks of AIN-93G diet for young and 85 weeks of AIN-93G diet for old mice Small intestinal contents _ AIN-93G-depression and CRF-1 control (in old mice) ANOVA followed by the Bonferroni correction post hoc test: p < 0.05

Takahashi E et al. 2012[136] C57BL/6J (B6) mice Japan case-control group Cohort 1 CRS-AIN-93G diet (N=10) CRS-CRF-1 diet (N=10) Control-AIN-93G diet (N=10) Control-CRF-1 diet (N=10) Cohort 2 CRS-AIN-93G long (N=10) CRS-CRF-1 long (N=10) Control-AIN-93G long (N=10) Control-CRF-1 long (N=10) 5-week-old male Body weight; PST: struggling time; immobility time/SPT: sucrose preference; After 3 weeks of CRS and 1 week of AIN-93G diet for cohort 1 or 5 weeks of AIN-93G diet for cohort 2 Cereb contents _ Termal restriction fragment length polymorphism (T-RFLP) method ANOVA followed by the Bonferroni correction post hoc test: p < 0.05

Takahashi E et al. 2012[137] C57BL/6J (B6) mice Japan case-control group Cohort 1 CRS-AIN-93G diet (N=10) CRS-CRF-1 diet (N=10) Control-AIN-93G diet (N=10) Control-CRF-1 diet (N=10) Cohort 2 CRS-AIN-93G long (N=10) CRS-CRF-1 long (N=10) Control-AIN-93G long (N=10) Control-CRF-1 long (N=10) 5-week-old male Body weight; PST: struggling time; immobility time/SPT: sucrose preference; After 3 weeks of CRS and 1 week of AIN-93G diet for cohort 1 or 5 weeks of AIN-93G diet for cohort 2 Cereb contents _ Termal restriction fragment length polymorphism (T-RFLP) method ANOVA followed by the Bonferroni correction: p < 0.05

Sun X et al. 2012[130] C57BL/6 mice China case-control 3-4 mice/cage CRS-depression CRS (N=10); CRS-WP-LPS (N=10); Control (N=10) 4-week-old male OPT: center time; EPM: open arm time and entries; PST: immobility time; After 4 weeks of CRS Focal samples _ 16S rRNA gene sequencing-Illumina HiSeq2500 Microbiome Profiling setup V3-V4 CRS-depression and control One-way ANOVA: p < 0.05

Sun Y et al. 2019[131] Kunming mice China case-control _ CUMS-depression CUMS (N=8) CUMS-Fluoxetine (N=8) Control (N=8) 14-20 g male SPT: sucrose preference; PST: immobility time; OPT: vertical movements; crossing number; After 1 week of acclimatization and 6 weeks of CUMS (the last 2 weeks received drug treatment) Focal samples _ 16S rRNA gene sequencing-Illumina HiSeq platform V4 CUMS-depression and control LEfSe: p < 0.05 and LDA > 2.0

Sun Y et al. 2020[132] C57BL/6 mice China case-control 4 mice/cage LPS-depression LPS (N=12) LPS-Schisanthrin (N=12) Control (N=12) 20 ± 2 g male PST: immobility time; PST: immobility time; After 1 week of acclimatization and 2 weeks of vehicle or SCH treatment Focal samples _ 38 °C 16S rRNA gene sequencing-Illumina HiSeq platform V3-V4 LPS-depression and control Tukey multiple comparison test: p < 0.05

 Suzuki K et al. 2020[133] C57BL/6 J (B6) mice Japan case-control _ CSDS-depression CSDS (N=6) CSDS+Carb (N=6) Control (N=6) 7-week-old male SIT: social interaction time; distance traveled; We sampled at three time points on day 1, 9, and 14 in the first experiment and at two time points on day 9 and 21 in the second experiment Focal samples _ 38°C 16S rRNA gene sequencing-Illumina HiSeq platform V3-V4 Adex CSDS-depression and pre-CSDS control Pair student’s t-test: p < 0.05

Sadowskiowa JK et al. 2017[134] C57BL/6 mice Canada case-control Single CSDS-depression CSDS-unexposed (N=10) CSDS-exposed (N=10) Control (N=6) 7-9-week-old male SIT: social interaction time; contact time; Corner zone time; After 1 week of acclimatization and 3 weeks of CSDS Cereb contents _ 38°C 16S rRNA gene sequencing-Illumina MiSeq Sequencing V3-V4 CSDS-depression and control One-way ANOVA followed by Bonferroni correction: p < 0.05

Takahashi E et al. 2012[135] C57BL/6J (B6) mice Japan case-control group AIN-93G depression AIN-93G young (N=10) AIN-93G old (N=10) Control (N=10) 5-week-old male PST: immobility time; PST: immobility time; After 5 weeks of AIN-93G diet for young and 85 weeks of AIN-93G diet for old mice Small intestinal contents _ AIN-93G-depression and CRF-1 control (in old mice) ANOVA followed by the Bonferroni correction post hoc test: p < 0.05

Takahashi E et al. 2012[136] C57BL/6J (B6) mice Japan case-control group Cohort 1 CRS-AIN-93G diet (N=10) CRS-CRF-1 diet (N=10) Control-AIN-93G diet (N=10) Control-CRF-1 diet (N=10) Cohort 2 CRS-AIN-93G long (N=10) CRS-CRF-1 long (N=10) Control-AIN-93G long (N=10) Control-CRF-1 long (N=10) 5-week-old male Body weight; PST: struggling time; immobility time/SPT: sucrose preference; After 3 weeks of CRS and 1 week of AIN-93G diet for cohort 1 or 5 weeks of AIN-93G diet for cohort 2 Cereb contents _ Termal restriction fragment length polymorphism (T-RFLP) method ANOVA followed by the Bonferroni correction: p < 0.05

Takahashi E et al. 2012[137] C57BL/6J (B6) mice Japan case-control group Cohort 1 CRS-AIN-93G diet (N=10) CRS-CRF-1 diet (N=10) Control-AIN-93G diet (N=10) Control-CRF-1 diet (N=10) Cohort 2 CRS-AIN-93G long (N=10) CRS-CRF-1 long (N=10) Control-AIN-93G long (N=10) Control-CRF-1 long (N=10) 5-week-old male Body weight; PST: struggling time; immobility time/SPT: sucrose preference; After 3 weeks of CRS and 1 week of AIN-93G diet for cohort 1 or 5 weeks of AIN-93G diet for cohort 2 Cereb contents _ Termal restriction fragment length polymorphism (T-RFLP) method ANOVA followed by the Bonferroni correction: p < 0.05
Study	Species	Age	Group	Condition	Method	Result									
Teng T et al. 2021	Macaca fascicularis monkeys	1-4 years old	CUMS-depression	CUMS-depression (N=5) Control (N=5)	Illumina MiSeq platform V4 FSL-depression and FRL-control	DESeq2: adjusted p (Benjamini-Hochberg) < 0.05									
Tian P et al. 2019	C57BL/6J mice	6-week-old	CUMS-depression	CUMS (N=6) CUMS+Fluoxetine (N=6)	LEfSe: p < 0.05 and LDA > 3.0										
Tian P et al. 2020	C57BL/6J mice	6-week-old	CUMS-depression	CUMS (N=6) CUMS+Fluoxetine (N=6)	LEfSe: p < 0.05 and LDA > 2.0										
Tian P et al. 2021	C57BL/6J mice	6-week-old	CUMS-depression	CUMS (N=10) CUMS+Probiotics (N=6)	LEfSe: p < 0.05 and LDA > 5.0										
Tian P et al. 2021	C57BL/6J mice	6-week-old	CRS-depression	CRS (N=6) CRS+Acetylated starch (N=6)	LEfSe: p < 0.05 and LDA > 2.0										
Tian SO et al. 2021	BALB/c mice	7-week-old	15-postpartum depression	15-PPD (N=10) 15-PPD+PND9 syrup (N=10)	LEfSe: p < 0.05 and LDA > 3.0										
Tian XY et al. 2022	Flinders sensitive line rats	10-14 days	Postpartum depression	Postnatal 5 (N=10)	One-way ANOVA followed by Fisher’s LSD multiple comparison test: p < 0.05										
Titman E et al. 2018	Flinders sensitive line rats	10-14 days	Postpartum depression	Postnatal 5 (N=10)	Fisher’ LSD multiple comparison test: p < 0.05										
Study	Animal	Country	Methodology	Procedure	Sample Size	Measurements	Findings								
-------	--------	---------	-------------	-----------	-------------	--------------	----------								
Tung TH et al. 2019[143]	Sprague-Dawley rats	China	case-control	CMS-depression	CMS (N=5) CMS-depression (N=5) CMS-FB06 (N=5) CMS-606 (N=5) Control (N=5)	6-week-old male	Body weight, OPT total distance, SPT: sucrose preference, FST: immobile time	After 2 weeks of acclimatization and 12 weeks of CMS, Focal samples, -80 °C, 16S rRNA gene sequencing- Illumina MiSeq platform	V3-V4, CMS-depression and control, LEfSe: p < 0.05 and LDA > 2.0						
Wang L et al. 2020[144]	Sprague-Dawley rats	China	case-control	CUMS-depression	CUMS (N=8) CUMS-low-dose TIV (N=8) CUMS-middle-dose TIV (N=8) CUMS-high-dose TIV (N=8) CUMS-Plus-strain (N=8) Control (N=8)	6-week-old male	Body weight, OPT: total distance, SPT: sucrose preference, FST: immobile time	After 1 week of acclimatization and 4 weeks CUMS, Focal samples, -80 °C, 16S rRNA gene sequencing- Illumina HiSeq platform	V4, CUMS-depression and control, One-way ANOVA followed by LSD test: p < 0.05						
Wang P et al. 2021[145]	C57BL6J mice	China	case-control	Antibiotic-depression	Antibiotic (N=9) Antibiotic+Saline (N=9) Antibiotic+Probiotics (N=9) Antibiotic+Saline (N=9) Control (N=9)	3-month-old male	EMG total crosstalk, open arm time, velocity, OPT: total distance, center time and distance, FST: immobile time, LDT: light zone duration	After 1 week of acclimatization, 10 weeks of CUMS and 8 weeks of probiotics treatment, Focal samples, -qPCR, Antibiotic-depression and control, One-way ANOVA followed by Tukey's multiple comparisons test: p < 0.05							
Wang Q et al. 2019[146]	CD-1 mice	China	single	CSDS-depression	CSDS (N=10) CSDS-TF (N=10) CSDS-TF low-dose (N=10) CSDS-TF high-dose (N=10) Control (N=10)	3-month-old male	SPT: sucrose preference, FST: immobile time, MBT: number of beads buried, LDT: light zone duration	After 2 weeks of acclimatization and 10 weeks of CMS, Focal samples, -16S rRNA gene sequencing- Illumina HiSeq platform	V3-V4, CMS-depression and control, LEfSe: p < 0.05 and LDA > 7.0						
Wang R et al. 2021[147]	C57BL6J mice	China	case-control	CRS-depression	CRS (N=8) CRS-TFA low-dosage (N=8) CRS-TFA high-dosage (N=8) Control (N=8)	6-week-old male	OPT: total distance, SPT: sucrose preference, FST: immobile time	After 7 days of acclimatization and 30 days of CRS, Cocom contents, -16S rRNA gene sequencing- Illumina HiSeq platform	V3-V4, CRS-depression and control, One-way ANOVA: p < 0.05						
Wang S et al. 2020[148]	C57BL6J mice	Japan	case-control	FMT CSDS-depression	FMT-FCS-high-dosage (N=7) FMT-FCS-middle-dosage (N=7) FMT-FCS-low-dosage (N=7) Control (N=7)	8-week-old male	SPT: sucrose preference, FST: immobile time, LDT: light zone duration	After 14 days of antibiotic cocktail treatment and 14 days of FMT from CSDS-resistant mice or control, Focal samples, -16S rRNA gene sequencing- Illumina HiSeq platform	V1-V2, FMT CSDS-depression and FMT control, Two-way ANOVA followed by post hoc Fisher’s LSD test: p < 0.05						
Wang S et al. 2020[149]	C57BL6 mice	Japan	case-control	CSDD-depression	CSDD (N=7) CSDD=Antibiotics (N=8)	8-week-old male	SPT: sucrose preference	Fresh fecal samples were collected on day 15 before CSDD, Focal samples, -16S rRNA gene sequencing- Illumina HiSeq platform	V1-V2, CSDD-depression and control, Two-way ANOVA followed by post hoc Tukey test: p < 0.05						
Study Authors	Country	Species	Intervention	Time Points	Sample Size	Grouping	Location	Analysis	Results						
--------------	----------	----------	--------------	-------------	-------------	----------	----------	----------	---------						
Wang S et al. 2021[151]	China	C57BL/6 mice	Control (N=10)	8-week-old	10	Male	Shanghai	One-way ANOVA: p < 0.05	After 14 days for antibiotic cocktail treatment and 14 days for FMT procedure	Fecal samples	16S rRNA gene sequencing	V1-V2	FMT CSDS-depression and control (in both Ephe2 KO mice and WT mice)	Krohmal-Wallis test: p < 0.05	
Wang Y et al. 2021[152]	China	C57BL/6 mice	Control+Antibiotics (N=10)	2-month-old	10	Male	Shanghai	One-way ANOVA and Tukey’s multiple comparison test: p < 0.05	After 1 week of acclimatization and a single injection of LPS	Fecal samples	16S rRNA gene sequencing	V3-V5	LPS-depression and control	Krohmal-Wallis test: p < 0.05	
Ward AK et al. 2019[153]	Ireland	C57BL/6 mice	Control (N=12)	6-8-week-old	12	Male	Ireland	One-way ANOVA: p < 0.05	After 1 week of acclimatization, fecal samples were collected weekly during the 8 weeks of designated diet	Fecal samples	16S rRNA gene sequencing	V3-V4	AIDR-CDS-depression and control	SHSeq2 with Wald test: p < 0.05	
Wu C et al. 2019[154]	China	C57BL/6J mice	Control (N=10)	57BL/6 mice	10	Male	China	-	-	Fecal contents	16S rRNA gene sequencing	V4	CUMS-depression and control	-	-
Wu-SN et al. 2019[155]	Taiwan	Water rats	Control (N=9)	8 weeks	80 °C	-	Taiwan	-	-	Body weight	16S rRNA gene sequencing	V4	CUMS-depression and control	LESeq p < 0.05 and LDA > 4.0	-
Westall SJ et al. 2020[156]	USA	C57BL/6J mice	Stress+US (N=10)	60-90 days	10	Male	USA	-	-	Body weight	16S rRNA gene sequencing	V4	CUMS-depression and control	One-way ANOVA and Turkey’s post hoc analysis: p < 0.05	
Wong ML et al. 2019[157]	Australia	C57BL/6J mice	CRS (N=15)	60-90 days	15	Male	Australia	-	-	Body weight	16S rRNA gene sequencing	V4	CRS-depression and control	Mann-Whitney U-test: p = 0.05	
Wu P et al. 2020[158]	China	C57BL/6 mice	HFD (N=10)	8-week-old	10	Male	China	-	-	Body weight	16S rRNA gene sequencing	V4	HFD-depression and control	One-way ANOVA: p < 0.05	
Wu J et al. 2021[159] C57/BL6 mice China case-control Single CUMS-depression Depression (N=15) Control (N=15) 4 to 6-week-old female GPT: total distance, speed, crossing and nesting number; EFM: open-arm time; PST: immobility time; SST: immobility time; SPT: sucrose preference															
After 1-week of acclimatization, the fecal samples were collected after 35 days of CUMS or dexamethasone treatment Fecal samples 90 °C 16S rRNA sequencing analysis Illumina MiSeq platform V3-V4 CUMS-depression control and control LEfSe: p < 0.05 and LDA > 3.0 Keuls-Wallis tests with multiple comparison correction, p < 0.05															
Wu J et al. 2022[162] Mucaca (squirrel monkeys) China case-control group Naturally-occurring depression Depression (N=6) Control (N=6) Adult female Duration of huddle and sit-alone behavior; Duration of immobile and locomotion activities															
After behavioral tests Cecum contents 90 °C Microbiota Illumina HiSeq N platform LEfSe: p < 0.05 and LDA ≥ 2.0 Naturally-occurring depression and control															
Wu J et al. 2022[161] C57BL/6 mice China case-control Single CUMS-depression Depression (N=16) Control (N=16) 5-10-week-old male GPT: center time, center distance; PST: immobility time; SPT: sucrose preference; Body weight															
After 4 weeks of CUMS Fecal samples 90 °C 16S rRNA gene sequencing Illumina MiSeq platform V3-V5 CUMS-depression and control LEfSe: p < 0.05 and LDA > 3.0															
Xie J et al. 2021[159] C57BL/6 mice China case-control Single CRS-depression CRS (N=20) Control (N=20) 6-week-old male GPT: sucrose preference; PST: nesting and crossing number; SPT: immobility time; SST: immobility time															
After 4 months of CAP treatment during the last 5 days, mice in LPS and LPS+CAP groups received [14C]iodoacetamide Fecal samples 90 °C 16S rRNA gene sequencing Illumina MiSeq platform V3-V4 CRS-depression and control LEfSe: p < 0.05 and LDA > 3.0															
Xie R et al. 2020[163] C57BL/6 mice China case-control Single CRS-depression CRS (N=10) Control (N=10) 6-week-old male SPT: sucrose preference; PST: immobility time; SST: immobility time															
After 1 week of acclimatization and 10 weeks of CRS (the last 6 weeks received crocetin and dexamethasone) Cecum contents 90 °C 16S rRNA gene sequencing Illumina MiSeq platform V3-V4 CRS-depression and control LEfSe: p < 0.05 and LDA > 2.0															
Xie R et al. 2020[164] C57BL/6 mice China case-control Single CSDS-depression CSDS-susceptible (N=7) CSDS-resistant (N=7) 7-week-old male SPT: interaction time; PST: sucrose preference; GPT: total distance, center time; Center entries															
After 1-week of acclimatization and 10 days of CSDS Poo’s patch-anova associated multiple comparison time Cocal contents 90 °C 16S rRNA gene sequencing Illumina MiSeq platform V3-V4 CSDS-depression susceptible and control One-way ANOVA: p < 0.05															
Xie R et al. 2020[165] C57BL/6 mice China case-control 5 mice/cage CSDS-depression CSDS-susceptible (N=10) CSDS-resistant (N=10) Control (N=10) Control (N=5) 8-week-old male SPT: interaction time; PST: sucrose preference; GPT: total distance, center time, center entries; Body weight															
After 1-week of acclimatization, 10 days of CSDS and 4 weeks of microbial treatment Cecum contents 90 °C 16S rRNA gene sequencing Illumina MiSeq platform V3-V4 CSDS-depression and control One-way ANOVA test followed by Tukey’s test: p < 0.05															
Xie R et al. 2021[166] C57BL/6 mice China case-control Single SMIT-auto-depression Small intestinal microbe transplantation (N=6); Large intestinal microbe transplantation (N=6) PMDN5 male SPT: sucrose preference; PST: immobility time; SST: immobility time															
Before microbe transplantation (PN977) and after 14 days of microbe transplantation (PN985) Fecal samples 90 °C 16S rRNA gene sequencing Illumina MiSeq platform V3-V4 SMIT-auto-depression and control Keuls-Wallis test followed by the Bonferroni post hoc test: p < 0.05															
Xu J et al. 2022[167] C57BL/6 mice China case-control Single CUMS-depression CUMS-high-dose L. rhamnusae-zr-1 (N=12) Control (N=12) CUMS-middle-dose L. rhamnusae-zr-1 4-week-old male Body weight; SPT: sucrose preference; PST: immobility time; GPT: total distance, center time															
After 1 week of acclimatization and 5 weeks of CUMS Cecum contents 90 °C 16S rDNA gene sequencing Illumina MiSeq platform V3-V4 CUMS-depression and control One-way analysis of variance (ANOVA) test followed by Tukey’s post hoc test: p < 0.05 LEfSe															
Study	Mice	Country	Treatment	Mice Model	Number	Gender	Age	Strain	Duration	Outcome	Analysis	Controls	Notes		
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
Xu M et al. 2022	C57BL/6 mice	China	CUMS+low-dose L. rhamnosus zz-1 (N=12) Control (N=12)	CUS (N=8) LPS+Lactobacillus for each strain (N=7) Control (N=9)	6 weeks	male	18-22 g	C57BL/6J mice China	After 1 week of acclimatization and 6 weeks of CUS	Colon contents	16S rRNA gene sequencing: Illumina MiSeq platform	V3-V4			
Xu Z et al. 2019	C57BL/6 mice	China	case-control	CAD-depression	C57BL/6 mice China	4 mice/cage	6-week-old	4 mice/cage	C57BL/6 mice China	After 1 week of acclimatization and 6 weeks of CAD	Fecal samples	80 °C	16S rRNA gene sequencing: Illumina MiSeq platform	V3-V5	
Yang C et al. 2017	C57BL/6 mice	China	case-control	Single	C57BL/6 mice China	4 mice/cage	6-week-old	4 mice/cage	C57BL/6 mice China	After 3 weeks of acclimatization and 10 weeks of alcohol exposure (and fecal samples were collected at the research day of the drinking session)	Colon contents	16S rRNA gene sequencing: Illumina MiSeq platform	V3-V4		
Yan T et al. 2020	C57BL/6 mice	China	case-control	Single	C57BL/6 mice China	4 mice/cage	18-22 g	4 mice/cage	C57BL/6 mice China	After 1 week of acclimatization and 4 weeks of CUMS	Cecrum contents	80 °C	16S rRNA gene sequencing: Illumina MiSeq platform	V3-V4	
Yan T et al. 2021	C57BL/6 mice	China	case-control	Single	C57BL/6 mice China	4 mice/cage	18-22 g	4 mice/cage	C57BL/6 mice China	After 7 days of drugs	Fecal samples	-	16S rRNA gene sequencing: Illumina MiSeq platform	V3-V4	
Yang C et al. 2017	C57BL/6 mice	China	case-control	Single	C57BL/6 mice China	4 mice/cage	8-week-old	4 mice/cage	C57BL/6 mice China	After 10 days of CSDS	Fecal samples	80 °C	16S rRNA analysis: Terminal restriction fragment length polymorphism (T-RFLP) analysis	_	

Notes:
- **CSDS:** Chronic stress depression syndrome
- **CADS:** Chronic alcohol depression syndrome
- **LPS:** Lipopolysaccharide
- **CUMS:** Chronic constriction injury model
- **CAE:** Chronic alcohol exposure
- **SIT:** Social interaction test
- **EPM:** Elevated plus maze test
- **FST:** Forced swimming test
- **TST:** Immobility test
- **OFT:** Open field test
- **LDT:** Latency to drink test
- **MBT:** Modified behavioral test
- **FMT:** Fecal microbial transplantation

Analysis Methods:
- **16S rRNA analysis**
- **16S rRNA gene sequencing**
- **Illumina MiSeq platform**
- **Illumina HiSeq platform**
- **16S rRNA metagenomic sequencing**
- **pyrosequencing**

Statistical Tests:
- **Fisher’s exact test:** p < 0.05
- **One-way ANOVA** followed by Tukey’s multiple comparison test: p < 0.05
- **Unpaired Student’s t-test:** p < 0.05
- **Kruskal-Wallis** test followed by Bonferroni test: p < 0.05
Yang C et al. 2017b
C57BL/6 mice Japan case-control Single CSDS-depression
CSDS (N=6)
CSDS+(R)-ketamine (N=6)
Control (N=6)
9-week-old male
FST: immobility(ς)
TST: immobility(ς)
SPT: sucrose preference(ς)
The fecal samples were collected 10 days of CSDS and 4 days (day 18) after a single dose of drugs
Fecal samples
~80 °C
16S rRNA sequencing analysis
Illumina MiSeq platform
V4
CSDS-depression and control
One-way ANOVA: p < 0.05

Yang C et al. 2019b
Sprague-Dawley rats China case-control Single SNI-depression
SNI anehdous susceptible (N=8)
SNI anehdous resistant (N=8)
Control (N=8)
2-month-old male
Body weight(ς)
MWT: withdrawal threshold(ς)
SPT: sucrose preference(ς)
TPT: tail flick latency(ς)
FST: immobile time(ς)
TST: immobile time(ς)
After 7 days of acclimation, than 21 days after spinal nerve injury (day 6)
After 7 days of acclimation, 14 days of antidepressants treatment and 14 days of focus transplantation
Fecal samples
~80 °C
16S rRNA gene sequencing
Illumina HiSeq platform
V3-V4
SNI-depression susceptible and control
One-way ANOVA followed by post-hoc Tukey’s test: p < 0.05

Yang J et al. 2021
C57BL/6 mice China case-control Single CVS-depression
CVS (N=8)
CVS+Antibiotic+CSGS (N=8)
CVS+CSGS (N=8)
CVS+Antibiotic (N=8)
Control (N=8)
7-week-old male
SPT: sucrose preference(ς)
FST: immobile time(ς)
OFT: center time(ς)
EPM: closed arms time(ς)
After 1 week of acclimation and 6 weeks of CVS along with diurethame
Fecal samples
~80 °C
16S rRNA gene sequencing
Illumina MiSeq platform
V3-V4
CRS-depression and control
One-way ANOVA followed by Dunnet’s multiple comparison test: p < 0.05

Yang Q et al. 2020
C57BL/6 mice China case-control Single MS-postpartum depression
MS (N=8)
MS-Lactobacillus casei (N=8)
MS-Parvovirus (N=8)
Control (N=8)
6~8 week-old male
OFT: total distance(ς), center time(ς)
TST: immobile time(ς)
FST: immobile time(ς)
After 1 week of acclimation and 6 weeks of CUMS (the last 4 weeks received drugs treatment)
Fecal samples
~80 °C
16S rRNA gene sequencing
Illumina MiSeq platform
V4-V5
CUMS-depression and control
LEfSe: p < 0.05 and LDA > 5.0

Yang R et al. 2020
Sprague-Dawley rats China case-control Single MPT SNL depression
MPT SNI anhedonic(resistant) (N=6)
MPT SNI anhedonic(susceptible) (N=6)
Control (N=6)
P2P rats
P2P peptide (N=6)
Female
EPM: open arm time and entries(ς)
FPT: immobile time(ς)
TST: immobile time(ς)
After 1 week of acclimatization, then 30 consecutive days of UCS
Fecal samples
~80 °C
16S rRNA gene sequencing
Sanger sequencing
Coral contents...
qPCR for Enzyme (Acetylcholinesterase, Butyrylcholinesterase, Lactobacillus, Escherichia coli...)
MS-postpartum depression and control
ANOVA: p<0.05

Yu B et al. 2019
Sprague-Dawley rats China case-control Single CUMS-depression
CUMS (N=8)
CUMS+Fluoxetine (N=8)
CUMS+Imipramine (N=8)
Control (N=8)
180~200g male
SPT: sucrose preference(ς)
FST: immobile time(ς)
After 2 weeks of CUMS (the last 2 weeks received drugs treatment)
Fecal samples
~80 °C
16S rRNA gene sequencing
Illumina MiSeq platform
V3-V4
CUMS-depression and control
Student’s t test: p < 0.05

Yu M et al. 2017
Wistar rats China case-control Single CVS-depression
CVS (N=8)
CVS+Antidepressant (N=8)
CVS+CSDS (N=8)
CVS+Anxiety-CGD (N=8)
CVS+Anxiety-CGES (N=8)
Control (N=8)
9-week-old male
Body weight(ς)
OFT: rearing and crossing numbers(ς)
SPT: sucrose preference(ς)
After 4 weeks of CVS
Fecal samples
~80 °C
16S rRNA gene sequencing
Illumina MiSeq platform
V4
CVS-depression and control
Student’s t test: p < 0.05

Yu M et al. 2020
Wistar rats China case-control Single CVS-depression
CVS (N=8)
CVS+(R)-ketamine (N=8)
CVS+Antidepressant (N=8)
CVS+CSDS (N=8)
CVS+Anxiety-CGD (N=8)
CVS+Anxiety-CGES (N=8)
Control (N=8)
200 ± 10g male
Body weight(ς)
OFT: rearing and crossing numbers(ς)
SPT: sucrose preference(ς)
After 28 days of CVS experiment
Fecal samples
~80 °C
16S rRNA gene sequencing
Illumina MiSeq platform
V3-V4
CVS-depression and control
One-way ANOVA: p < 0.05

Year	Authors	Species	Sex	Age	Treatment 1	Treatment 2	Treatment 3	Treatment 4	Treatment 5	Lethality	Post mortem	Organs	Pathological Observations	Comments
2021	Yu et al.	57BL/6 mice	Male	8-12 weeks	CUMS	Imipramine	Control	Control	Control	20%	2 weeks	Brain, liver, kidney	Depressed behaviors, increased d-fosB mRNA in the prefrontal cortex	LEfSe: p < 0.05 and LDA > 2.0
2021	Yun et al.	CR mice	Male	8-12 weeks	CUMS	Fluoxetine	Control	Control	Control	20%	2 weeks	Brain, liver, kidney	Depressed behaviors, increased d-fosB mRNA in the prefrontal cortex	LEfSe: p < 0.05 and LDA > 2.0
2021	Zhang J et al.	57BL/6 mice	Male	8-12 weeks	CUMS	Corticosterone	Control	Control	Control	20%	2 weeks	Brain, liver, kidney	Depressed behaviors, increased d-fosB mRNA in the prefrontal cortex	LEfSe: p < 0.05 and LDA > 2.0
2021	Zhang Z et al.	57BL/6 mice	Male	8-12 weeks	CUMS	Fluoxetine	Control	Control	Control	20%	2 weeks	Brain, liver, kidney	Depressed behaviors, increased d-fosB mRNA in the prefrontal cortex	LEfSe: p < 0.05 and LDA > 2.0
2021	Zhang X et al.	57BL/6 mice	Male	8-12 weeks	CUMS	Fluoxetine	Control	Control	Control	20%	2 weeks	Brain, liver, kidney	Depressed behaviors, increased d-fosB mRNA in the prefrontal cortex	LEfSe: p < 0.05 and LDA > 2.0

Reference: The table includes various studies on the effects of stress and its treatments on depressive-like behaviors and gut microbiota in mice. The studies used different models of stress (e.g., CUMS, LPS, and ECS) and treatments (e.g., antidepressants, corticosteroids, and probiotics). The data show that these interventions can alter gut microbiota, with significant changes observed using LEfSe and LDA analysis.

Key Points:
- Stress models: CUMS, LPS, and ECS
- Treatments: Antidepressants (imipramine, fluoxetine), Corticosteroids, Probiotics
- Gut microbiota analysis using LEfSe and LDA
- Depressed behaviors and d-fosB mRNA changes
- One-way ANOVA or Kruskal-Wallis H test with post-hoc Tukey's multiple comparison test or LSD test.
At weeks 15:
CUMS (N=6)
CUMS+Amitriptyline (N=6)
CUMS+Fluoxetine (N=7)
Control (N=12)

At weeks 15:
Shotgun metagenomic
Illumina HiSeq 4000 platform
NA

Zhong Y et al. 2021(198)
Sprague-Dawley rats China case-control CUMS-depression CUMS (N=9)
CUMS+Fluoxetine (N=9)
CUMS-low-dose jasmin tea (N=9)
CUMS-multiple-dose jasmin tea (N=9)
CUMS-high-dose jasmin tea (N=9)
Control (N=9)

4 weeks male Body weight,
SPT: sugar preference,
FST: immobility time,
GPT: time/space/maze running.

After 1 week of acclimatization, feces of rats in each group at day 29 were collected.
Fecal samples 80°C 16S rRNA gene sequencing-
Illumina MiSeq platform
V3-V4 CUMS-depression and control

Zhong Y et al. 2019(199)
C57BL/6 mice China case-control NLRP-3 KO anti-depression NLRP-3 KO (N=14)
Wild-type (N=14)
AXB FMT-NLRP-3 KO CUS (N=16)
AXB FMT-NLRP-3 KO Control (N=15)
AXB FMT-WT CUS (N=14)
AXB FMT-WT Control (N=15)

6-8 week-old male NLRP-3 KO,
FST: immobility time,
TST: immobility time,
GPT: total distance, center time, center
distance,
CUM,
SPT: sucrose preference,
FST: immobility time,
TST: immobility time.

Unspecified
Fecal samples _ 16S rRNA gene sequencing-
Illumina MiSeq platform
V6-V5 NLRP-3 KO anti-depression and wild-type
FMT-WT CUS and FMT-WT Control

Zhong Z et al. 2021(200)
C57BL/6 mice China case-control Offspring of prenatal IS depression Offspring of
Prenatal IS (N=12)
Control (N=12)

6-8 week-old female EPM: open arm time, closed arm time,
LEP: dark avoidance,
SPT: sucrose preference,
FST: immobility time.

Fecal samples were collected from F1 adult female mice at 6-8 weeks old.
Fecal samples 80°C 16S rRNA gene sequencing-
Illumina MiSeq platform
V3-V4 Prenatal IS depression and control

Zhong Z et al. 2020(201)
athymic nude mice (ND)-na China case-control Offspring of prenatal IS- depression Offspring of
Prenatal IS (N=12)
Control (N=12)

5 mice/cage CRS-depression CRS+BCG-CRC tumors (N=15)
CRS+Placebo-CRC tumors (N=15)
CRS+Xyloxaero-lesion CRC tumors (N=15)
CRS+Xyloxaero-high CRC tumors (N=15)
Treatment CRC tumors (N=15)
Control-CRC tumors (N=15)

6-7 week-old male APP: sucrose preference,
TST: immobility time.

After 7 days of acclimatization, 14 days of CRS.. 42 days of behavioral tests, tumour cell injection, and fluorescence imaging.
Fecal samples _ 16S rRNA gene sequencing-
Illumina MiSeq platform
V3-V4 CRS-depression and control

Zhong Z et al. 2017(202)
C57BL/6 mice China case-control Single CRS-depression CRS (N=7)
CRS+Dipteria (N=7)
Control (N=7)

7-9 weeks male SPT: sucrose preference.

After 1 week of acclimatization and 10 days of CRS and
hypertension treatment
Fecal samples Dry ice Full-length 16S rRNA gene sequencing-
Illumina HiSeq platform
V3-V4 CUMS-depression and control

Zhao B et al. 2020(203)
C57BL/6 mice China case-control DSS-depression DSS (N=12)
DSS+Lecithin (N=12)
Control (N=12)

8-week-old male GPT: path length, dwell time,
EPM: open arm entries,
FST: immobility time,
TST: immobility time.

After 15 days of corresponding drug and 7 days of DSS treatment.
Fecal samples 80°C 16S rRNA gene sequencing-
Illumina MiSeq platform
V3-V4 DSS-depression and control

Zhao F et al. 2017(204)
Sprague-Dawley rats China case-control single CUMS-depression Pregnant rat
CUMS (N=8)
CUMS+LBP (N=8)

200 ± 20 g female Pregnant rat
SPT: sucrose preference,
GPT: horizontal and vertical movements.

Fresh lice were collected from female rats at 31 days after
CUMS procedure, faces of
Fecal samples 80°C 16S rRNA gene sequencing-
Illumina MiSeq platform
V3-V4 Pregnant rat-CUMS-depressions and control

One-way ANOVA followed by Bonferroni’s multiple
comparison test: p < 0.05

LEfSe: p < 0.05 and LDA ≥ 2.0

LEfSe: p < 0.05 and LDA ≥ 2.0
4 rats/cage

Offspring of prenatal/CUMS-depression

Control (N=8)

Offspring of Prenatal/CUMS (N=16)

Prenatal/CUMS+LBP (N=16)

Control (N=16)

PDN 20 female

male (1:1)

Offspring

Body weight

SPT: sucrose preference

GTP: horizontal and vertical movements

TST: immobility time↑

After 21 days of antibiotics administration and 13 days of FMT

Fecal samples

80°C

16S rRNA gene sequencing: ReSeq-454 sequencing

Morgan metagenomic-illumina HiSeq2500

V3-V4

Antibiotic-depression and control

One-way ANOVA or Wilcoxon rank sum test: p < 0.05

Zhu W et al. 2019[14]

C57BL/6J mice

China

case-control

AXB-OVA/Aic-depression

AXB-OVA-Aic (N=14)

AXB-OVA-Aic (N=14)

Control (N=16)

6-week-old

male

GTP: center time↓; center distance↓

SPT: open arms time and entries↓

TST: immobility time↑

After 1 week of acclimatization

11 weeks of clofazimine; sodium salicylate systemically

Fecal samples

80°C

16S rRNA gene sequencing: Illumina MiSeq platform

V3-V4

Anti-bacteria-depression and control

One-way ANOVA or Wilcoxon rank sum test: p < 0.05

Zhu Z et al. 2020[15]

BALB/c mice

China

case-control

10 mice/cage

Antibiotic-depression

Ceftazidime (N=20)

Control (N=20)

6-8-week-old

male

Body weight↓

GTP: center time↓; center distance↓

SPT: open arms time↑; peripheral distance↓

TST: activity phase↓; spinescence phase↑

After 1 week of acclimatization

11 weeks of clofazimine; sodium salicylate systemically

Fecal samples

80°C

16S rRNA gene sequencing: Illumina MiSeq platform

V3-V4

Anti-bacteria-depression and control

One-way ANOVA or Wilcoxon rank sum test: p < 0.05

Zhong P et al. 2016[16]

Kuming mice

China

case-control

5 mice/cage

GF FMT-depression

GF FMT-MED (N=8)

GF FMT-BIC (N=8)

GTP: proportion of center motion distance↑

SPT: duration of immobility↑

TST: duration of immobility↑

2 weeks post FMT

Fecal samples

80°C

16S rRNA gene sequencing: ReSeq-454 sequencing

Morgan metagenomic-illumina Hisseq2500

V3-V4

FMT-MED and FMT-BIC

Random Forests

Zhang P et al. 2020[17]

Macaca fascicularis monkeys

China

case-control

group

Naturally occurring depression

Depression (N=6)

Control (N=6)

Adult

female

Duration of huddles and shoal-alone behaviors

Duration of immobile and locomotion activities

After behavioral tests

Cecum samples

80°C

16S rRNA gene sequencing: Illumina MiSeq platform

Microbiome-illumina Hisseq X platform

V3-V4

Naturally occurring depression and control

LDA > 2.0, p < 0.05

Zhao H et al. 2022[18]

C57BL/6J mice

China

case-control

- Bcl-II KO-depression

Ddx12KO (N=5)

Ddx12KO×B. longum (N=5)

Ddx12KO×lactobacillus (N=5)

Ddx12KO×bacteroides (N=5)

MPT (N=5)

WT (N=5)

WT×fetal of Ddx1 KO mice (N=5)

Adult

20-25 g

male

SPT: sucrose preference↑

TST: immobility time↑

Fecal samples

80°C

16S rRNA gene sequencing

Unspecified

Ddx-KO-depression and wild-type

Zhu H et al. 2019[19]

Sprague-Dawley rats

China

case-control

- CRS-depression

CRS (N=5)

CRS×Salmonella (N=15)

CRS×Pseudomonas (N=15)

Control (N=15)

200 ± 20 g

male

Body weight↓

SPT: sugar preference↑

SPT: residence time↑; total distance↑

number of entries↑

After 7 days of acclimatization

21 days of CRS

Fecal samples

80°C

16S rRNA gene sequencing: Illumina MiSeq high-throughput sequencing platform

V3-V4

CRS-depression and control

Miniature: p < 0.05

LDA > 2.0

Zhu JY et al. 2017[20]

Sprague-Dawley rats

China

case-control

CUMS-depression

CUMS (N=12)

CUMS×Phasmeus (N=12)

CUMS-lower-dose BHT (N=12)

CUMS-middle-dose BHT (N=12)

CUMS-high-dose BHT (N=12)

Control (N=12)

250-250 g

male

SPT: sucrose preference↓

GTP: horizontal crossing↓; vertical stereotypy↓

After 5 days of acclimatization

10 consecutive days of CUMS

Rectum contents

Liquid nitrogen

16S rRNA sequencing: Shanghai Biotech Biotechnology Co., Ltd

Unspecified

CUMS-depression and control

One-way ANOVA or Kruskal-Wallis H test: p < 0.05

References

[205] 2021 Zhu JP et al.

[204] 2019 Zhu HZ et al.

[203] 2020 Zheng P et al.

[202] 2019 Zhao W et al.

[201] 2016 Zhu HZ et al.

[200] 2019 Zhu JP et al.

[199] 2021 Zhu W et al.

[198] 2020 Zhu Z et al.

[197] 2016 Zhong P et al.

[196] 2019 Zhang P et al.

[195] 2016 Zhong P et al.

[194] 2022 Zhao H et al.

[193] 2019 Zhu H et al.

[192] 2017 Zhu JY et al.
1. A. Abildgaard, T. Kern, O. Pedersen, T. Hansen, S. Lund and G. Wegener, *Eur Neuropsychopharmacol* 2021, 43, 10-21.

2. Y. Aitbali, S. Ba-M'hamed, N. Elhidar, A. Nafis, N. Soraa and M. Bennis, *Neurotoxicol Teratol* 2018, 67, 44-49.

3. H. Amini-Khoei, E. Haghani-Samani, M. Beigi, A. Soltani, G. R. Mobini, S. Balali-Dehkordi, A. Haj-Mirzaian, M. Rafieian-Kopaei, A. Alizadeh, M. R. Hojjati and M. Validi, *Int Immunopharmacol* 2019, 66, 242-250.

4. Q. An, C. Li, Y. Chen, Y. Yang, R. Song, L. Zhou, J. Li, A. Tong and Y. Luo, *Pharmacol Biochem Behav* 2020, 192, 172910.

5. A. Arslanova, A. Tarasova, A. Alexandrova, V. Novoselova, I. Shaidullov, D. Khusnutdinova, T. Grigoryeva, D. Yarullina, O. Yakovleva and G. Sitdikova, *Life (Basel)* 2021, 11,

6. A. Bharwani, M. F. Mian, M. G. Surette, J. Bienenstock and P. Forsythe, *BMC Med* 2017, 15, 7.

7. L. C. Bridgewater, C. Zhang, Y. Wu, W. Hu, Q. Zhang, J. Wang, S. Li and L. Zhao, *Sci Rep* 2017, 7, 10776.

8. A. Burokas, S. Arboleya, R. D. Moloney, V. L. Peterson, K. Murphy, G. Clarke, C. Stanton, T. G. Dinan and J. F. Cryan, *Biol Psychiatry* 2017, 82, 472-487.

9. C. Cao, M. Liu, S. Qu, R. Huang, M. Qi, Z. Zhu, J. Zheng, Z. Chen, Z. Wang, Z. Han, Y. Zhu, F. Huang and J.-A. Duan, *J Ethnopharmacol* 2020, 261, 113055.

10. A. Chakraborti, C. Graham, S. Chehade, B. Vashi, A. Umfress, P. Kurup, B. Vickers, H. A. Chen, R. Telange, T. Berryhill, W. Van Der Pol, M. Powell, S. Barnes, C. Morrow, D. L. Smith, M. S. Mukhtar, S. Watts, G. Kennedy and J. Bibb, *Front Neurosci* 2021, 15, 669410.

11. L. Chen, W. Qing, Z. Yi, G. Lin, Q. Peng and F. Zhou, *Front Nutr* 2021, 8, 701760.

12. P. Chen, M. Hei, L. Kong, Y. Liu, Y. Yang, H. Mu, X. Zhang, S. Zhao and J. Duan, *Food Funct* 2019, 10, 8161-8171.

13. T. Chen, R. Wang, Z. Duan, X. Yuan, Y. Ding, Z. Feng, F. Bu, L. Liu, Q. Wang, J. Zhou, L. Zhu, Q. Ni, G. Shi and Y. Chen, *Front Cell Infect Microbiol* 2021, 11, 723856.

14. X. Chen, S. Meng, S. Li, L. Zhang, L. Wu, H. Zhu and Y. Zhang, *Biomed Res Int* 2021, 2021, 5516604.

15. X. Chen, S. Meng, Y. Yu, S. Li, L. Wu and Y. Zhang, *Int J Occup Med Environ Health* 2022, 35,

16. Y. Chen, M. Wan, Y. Zhong, T. Gao, Y. Zhang, F. Yan, D. Huang, Y. Wu and Z. Weng, *Mol Nutr Food Res* 2021a, 65, e2100146.
17. Y. Chen, N. Xiao, Y. Chen, X. Chen, C. Zhong, Y. Cheng, B. Du and P. Li, *Food Res Int* **2021b**, 150, 110808.

18. D. Cheng, H. Chang, S. Ma, J. Guo, G. She, F. Zhang, L. Li, X. Li and Y. Lu, *Molecules* **2018**, 23.

19. R. Cheng, W. Xu, J. Wang, Z. Tang and M. Zhang, *Biochem Biophys Res Commun* **2021**, 566, 170-176.

20. G. Chevalier, E. Siopi, L. Guenin-Macé, M. Pascal, T. Laval, A. Rifflet, I. G. Boneca, C. Demangel, B.Colsch, A. Pruvost, E. Chu-Van, A. Messager, F. Leulier, G. Lepousez, G. Eberl and P.-M. Lledo, Nat Commun **2020**, 11, 6363.

21. L. Chi, I. Khan, Z. Lin, J. Zhang, M. Y. S. Lee, W. Leong, W. L. W. Hsiao and Y. Zheng, *Phytochemistry* **2020**, 67, 153157.

22. J. Choi, H. Kwon, Y.-K. Kim and P.-L. Han, *Mol Neurobiol* **2022**, 59, 2715-2728.

23. V. Daugé, C. Philippe, M. Mariadassou, O. Rué, J.-C. Martin, M.-N. Rossignol, N. Dournmap, L. Svilar, F. Tourniaire, M. Monnoye, D. Jardet, M. Bangratz, S. Holowacz, S. Rabot and L. Naudon, *Front Behav Neurosci* **2020**, 14, 581296.

24. Y. Deng, M. Zhou, J. Wang, J. Yao, J. Yu, W. Liu, L. Wu, J. Wang and R. Gao, *Gut Microbes* **2021**, 13.

25. J. Dhaliwal, D. P. Singh, S. Singh, A. K. Pinnaka, R. K. Boparai, M. Bishnoi, K. K. Kondepudi and K. Chopra, *J Appl Microbiol* **2018**, 125, 257-269.

26. Y. Ding, F. Bu, T. Chen, G. Shi, X. Yuan, Z. Feng, Z. Duan, R. Wang, S. Zhang, Q. Wang, J. Zhou and Y. Chen, *Appl Microbiol Biotechnol* **2021**, 105, 8411-8426.

27. S. Diviccaro, S. Giatti, F. Borgo, M. Barcella, E. Borghi, J. L. Trejo, L. M. Garcia-Segura and R. C. Melcangi, Psychoneuroendocrinology **2019**, 99, 206-215.

28. F. Donoso, S. Egerton, T. F. S. Bastiaanssen, P. Fitzgerald, S. Gite, F. Fouhy, R. P. Ross, C. Stanton, T. G. Dinan and J. F. Cryan, Psychoneuroendocrinology **2020**, 116, 104673.

29. H.-X. Du, Y. Liu, L.-G. Zhang, C.-S. Zhan, J. Chen, M. Zhang, X.-G. Chen, L. Zhang and C.-Z. Liang, *Prostate* **2020**, 80, 663-673.

30. J. Duan, Y. Huang, X. Tan, T. Chai, J. Wu, H. Zhang, Y. Li, X. Hu, P. Zheng, P. Ji, L. Zhao, D. Yang, L. Fang, J. Song and P. Xie, *Transl Psychiatry* **2021**, 11, 303.

31. S. Egerton, F. Donoso, P. Fitzgerald, S. Gite, F. Fouhy, J. Wholey, T. G. Dinan, J. F. Cryan, S. C. Culloty, R. P. Ross and C. Stanton, *Nat Neurosci* **2020**, 23, 356-378.

32. S. El Aidy, A. S. Ramsteijn, F. Dini-Andreote, R. van Eijk, D. J. Houwing, J. F. Salles and J. D. A. Olivier, *Front Cell Neurosci* **2017**, 11, 222.
33. L. Fan, Y. Peng, J. Wang, P. Ma, L. Zhao and X. Li, *Phytomedicine* 2021, 83, 153471.

34. P. Farshim, G. Walton, B. Chakrabarti, I. Givens, D. Saddy, I. Kitchen, J. R. Swann and A. Bailey, *Sci Rep* 2016, 6, 21958.

35. Y. Feng, X. Gao, M. Meng, H. Xue and X. Qin, *J Ethnopharmacol* 2020, 256, 112806.

36. Z. Feng, X. Ma, S. Meng, H. Wang, X. Zhou, M. Shi and J. Zhao, *Evid Based Complement Alternat Med* 2020, 2020, 3290450.

37. S. Forouzan, K. L. Hoffman and T. A. Kosten, *Psychopharmacology (Berl)* 2021, 238, 281-292.

38. K. Gao, A. Farzi, X. Ke, Y. Yu, C. Chen, S. Chen, T. Yu, H. Wang and Y. Li, *Food Funct* 2022, 13, 957-969.

39. X. Gao, Y. Feng, H. Xue, M. Meng and X. Qin, *Journal of Liquid Chromatography & Related Technologies* 2020, 43, 494-507.

40. X. Gong, C. Huang, X. Yang, J. Chen, J. Pu, Y. He and P. Xie, *Front Neurosci* 2021, 15, 701355.

41. F. Gu, Y. Wu, Y. Liu, M. Dou, Y. Jiang and H. Liang, *Food Funct* 2020, 11, 6148-6157.

42. X. Gu, S. Zhang, W. Ma, Q. Wang, Y. Li, C. Xia, Y. Xu, T. Zhang, L. Yang and M. Zhou, *Front Microbiol* 2022, 13, 778512.

43. F. Guida, F. Turco, M. Iannotta, D. De Gregorio, I. Palumbo, G. Sarnelli, A. Furiano, F. Napolitano, S. Boccella, L. Luongo, M. Mazzitelli, A. Usiello, F. De Filippis, F. A. Iannotti, F. Piscitelli, D. Ercolini, V. de Novellis, V. Di Marzo, R. Cuomo and S. Maione, *Brain Behav Immun* 2018, 67, 230-245.

44. Y. Guo, J. Xie, X. Li, Y. Yuan, L. Zhang, W. Hu, H. Luo, H. Yu and R. Zhang, *Front Pharmacol* 2018, 9, 1126.

45. Y. Guo, J.-P. Xie, K. Deng, X. Li, Y. Yuan, Q. Xuan, J. Xie, X.-M. He, Q. Wang, J.-J. Li and H.-R. Luo, *Front Behav Neurosci* 2019, 13, 126.

46. S.-K. Han and D. H. Kim, *J Microbiol Biotechnol* 2019, 29, 1369-1374.

47. S.-K. Han, M.-K. Joo, J.-K. Kim, W. Jeung, H. Kang and D.-H. Kim, *Nutrients* 2020a, 12.

48. S.-K. Han, J.-K. Kim, M.-K. Joo, K.-E. Lee, S.-W. Han and D. H. Kim, *J Microbiol Biotechnol* 2020b, 30, 1222-1226.

49. S.-K. Han, J.-K. Kim, H.-S. Park, Y.-J. Shin and D.-H. Kim, *Chin Med* 2021, 16, 77.
50. W. Hao, J. Wu, N. Yuan, L. Gong, J. Huang, Q. Ma, H. Zhu, H. Gan, X. Da, L. Deng, X. Li and J. Chen, *Front Pharmacol* 2021, 12, 619103.

51. W.-Z. Hao, Q.-Y. Ma, G. Tao, J.-Q. Huang and J.-X. Chen, *Food Funct* 2021, 12, 12550-12564.

52. A. M. Hassan, G. Mancano, K. Kashofer, E. E. Fröhlich, A. Matak, R. Mayerhofer, F. Reichmann, M. Olivares, A. M. Neyrinck, N. M. Delzenne, S. P. Claus and P. Holzer, *Nutr Neurosci* 2019, 22, 877-893.

53. F. Huang, X. Liu, S. Xu, S. Hu, S. Wang, D. Shi, K. Wang, Z. Wang, Q. Lin, S. Li, S. Zhao, K. Jin, C. Wang, L. Chen and F. Wang, *Front Nutr* 2021, 8, 805465.

54. N. Huang, D. Hua, G. Zhan, S. Li, B. Zhu, R. Jiang, L. Yang, J. Bi, H. Xu, K. Hashimoto, A. Luo and C. Yang, *Pharmacol Biochem Behav* 2019, 176.

55. Y.-J. Huang, L.-X. C. Choong, S. Panyod, Y.-E. Lin, H.-S. Huang, K.-H. Lu, W.-K. Wu and L.-Y. Sheen, *Phytother Res* 2021, 35, 5133-5142.

56. Y.-Y. Huang, Y.-P. Wu, X.-Z. Jia, J. Lin, L.-F. Xiao, D.-M. Liu and M.-H. Liang, *Food Funct* 2022, 13, 411-424.

57. A. Inserra, J. M. Choo, M. D. Lewis, G. B. Rogers, M.-L. Wong and J. Licinio, *Sci Rep* 2019, 9, 6456.

58. H.-M. Jang, K.-E. Lee and D.-H. Kim, *Nutrients* 2019, 11,

59. S. Ji, S. Han, L. Yu, L. Du, Y. You, J. Chen, M. Wang, S. Wu, S. Li, X. Sun, R. Luo and X. Zhao, *Phytomedicine* 2022, 98, 153940.

60. W. Jiang, L. Gong, F. Liu, Y. Ren and J. Mu, *Front Cell Infect Microbiol* 2021, 11, 663967.

61. Y. Jiang, Y. Liu, M. Gao, M. Xue, Z. Wang and H. Liang, *Food Funct* 2020, 11, 378-391.

62. L. Jianguo, J. Xueyang, W. Cui, W. Changxin and Q. Xuemei, *Transl Psychiatry* 2019, 9, 40.

63. Y. Kamimura, E. Kuwagaki, S. Hamano, M. Kobayashi, Y. Yamada, Y. Takahata, W. Yoshimoto, H. Morimoto, T. Yasukawa, Y. Uozumi and K. Nagasawa, *Life Sci* 2021, 282, 119821.

64. C. Karen, D. J. H. Shyu and K. E. Rajan, *Front Neurosci* 2021, 15, 719933.

65. J. R. Kelly, Y. Borre, C. O'Brien, E. Patterson, S. El Aidy, J. Deane, P. J. Kennedy, S. Beers, K. Scott, G. Moloney, A. E. Hoban, L. Scott, P. Fitzgerald, P. Ross, C. Stanton, G. Clarke, J. F. Cryan and T. G. Dinan, *J Psychiatr Res* 2016, 82, 109-118.

66. K. M. Kemp, J. Colson, R. G. Lorenz, C. L. Maynard and J. S. Pollock, *Am J Physiol Regul Integr Comp Physiol* 2021, 320, R663-R674.
67. J.-K. Kim, K.-E. Lee, S.-A. Lee, H.-M. Jang and D.-H. Kim, *Front Immunol* 2020, 11, 273.

68. J.-K. Kim, S.-K. Han, M.-K. Joo and D.-H. Kim, *Sci Rep* 2021, 11, 6094.

69. J. K. Knudsen, T. Y. Michaelsen, C. Bundgaard-Nielsen, R. E. Nielsen, S. Hjerrild, P. Leutscher, G. Wegener and S. Sørensen, *Sci Rep* 2021, 11, 21869.

70. A. Kosuge, K. Kunisawa, S. Arai, Y. Sugawara, K. Shinohara, T. Iida, B. Wulaer, T. Kawai, H. Fujigaki, Y. Yamamoto, K. Saito, T. Nabeshima and A. Mouri, *Brain Behav Immun* 2021, 96, 200-211.

71. D. Kati, Z. Winkler, K. Horváth, B. Juhasz, M. Paholcsek, A. Stágel, G. Gulyás, L. Czeglédi, S. Ferenczi and K. J. Kovács, *Brain Behav Immun* 2020, 84, 218-228.

72. W.-D. Lai, T.-H. Tung, C.-Y. Teng, C.-H. Chang, Y.-C. Chen, H.-Y. Huang, H.-C. Lee and S.-Y. Huang, *Food Funct* 2022, 13, 2662-2680.

73. S. Leclercq, T. Le Roy, S. Furgiuele, V. Coste, L. B. Bindels, Q. Leyrolle, A. M. Neyrinck, C. Quoilin, C. Amadieu, G. Petit, L. Dricot, V. Tagliatti, P. D. Cani, K. Verbeke, J.-M. Colet, P. Stärkel, P. de Timary and N. M. Delzenne, *Cell Rep* 2020, 33, 108238.

74. H.-C. Lee, Y.-C. Lo, S.-C. Yu, T.-H. Tung, I. H. Lin and S.-Y. Huang, *Int J Food Sci Nutr* 2020, 71, 440-452.

75. H. Li, P. Wang, L. Huang, P. Li and D. Zhang, *Neurogastroenterol Motil* 2019, 31, e13677.

76. H. Li, Y. Xiang, Z. Zhu, W. Wang, Z. Jiang, M. Zhao, S. Cheng, F. Pan, D. Liu, R. C. M. Ho and C. S. H. Ho, *J Neuroinflammation* 2021, 18, 254.

77. N. Li, Q. Wang, Y. Wang, A. Sun, Y. Lin, Y. Jin and X. Li, *Front Behav Neurosci* 2018, 12, 266.

78. N. Li, Q. Wang, Y. Wang, A. Sun, Y. Lin, Y. Jin and X. Li, *Stress* 2019, 22, 592-602.

79. P. Li, W. Huang, Y.-N. Yan, W. Cheng, S. Liu, Y. Huang, W. Chen, Y.-P. Chen, Y. Gao, W. Lu, Y. Xu and X. Meng, *Med Sci Monit* 2021, 27, e929027.

80. Q. Li, L. Li, X. Niu, C. Tang, H. Wang, J. Gao and J. Hu, *Neuroreport* 2021, 32, 686-693.

81. Y. Li, Y. Peng, P. Ma, H. Yang, H. Xiong, M. Wang, C. Peng, P. Tu and X. Li, *Front Pharmacol* 2018, 9, 967.

82. E. Y. Lim, E. J. Song, J. G. Kim, S. Y. Jung, S. Y. Lee, H. S. Shin, Y. D. Nam and Y. T. Kim, *Benef Microbes* 2021, 12, 503-516.

83. S. Lin, Q. Li, S. Jiang, Z. Xu, Y. Jiang, L. Liu, J. Jiang, Y. Tong and P. Wang, *J Ethnopharmacol* 2021, 268, 113608.
101. S. M. O'Mahony, K.-A. McVey Neufeld, R. V. Waworuntu, M. M. Pusceddu, S. Manurung, K. Murphy, C. Strain, M. C. Laguna, V. L. Peterson, C. Stanton, B. M. Berg, T. G. Dinan and J. F. Cryan, *Eur J Neurosci* 2020, 51, 1042-1058.

102. A. Osman, S. Zuffa, G. Walton, E. Fagbodun, P. Zanos, P. Georgiou, I. Kitchen, J. Swann and A. Bailey, *iScience* 2021, 24, 103048.

103. K. A. Partrick, A. M. Rosenhauer, J. Auger, A. R. Arnold, N. M. Ronczkowski, L. M. Jackson, M. N. Lord, S. M. Abdulla, B. Chassaing and K. L. Huhman, *Sci Rep* 2021, 11, 3763.

104. E. Patterson, P. M. Ryan, N. Wiley, I. Carafa, E. Sherwin, G. Moloney, E. Franciosi, R. Mandal, D. S. Wishart, K. Tuohy, R. P. Ross, J. F. Cryan, T. G. Dinan and C. Stanton, *Sci Rep* 2019, 9, 16323.

105. J. Pearson-Leary, C. Zhao, K. Bittinger, D. Eacret, S. Lu, A. S. Vgiderman, G. Dayanin and S. Bhatnagar, *Mol Psychiatry* 2020, 25, 1068-1079.

106. Y. Pu, Y. Tan, Y. Qu, L. Chang, S. Wang, Y. Wei, X. Wang and K. Hashimoto, *Brain Behav Immun* 2021, 94, 318-326.

107. M. M. Pusceddu, S. El Aidy, F. Crispie, O. O'Sullivan, P. Cotter, C. Stanton, P. Kelly, J. F. Cryan and T. G. Dinan, *PLoS One* 2015, 10, e0139721.

108. Y. Qiao, J. Zhao, C. Li, M. Zhang, L. Wei, X. Zhang, O. Kurskaya, H. Bi and T. Gao, *Ann Transl Med* 2020, 8, 942.

109. X. Qiu, G. Wu, L. Wang, Y. Tan and Z. Song, *Ann Transl Med* 2021, 9, 366.

110. W. Qu, S. Liu, W. Zhang, H. Zhu, Q. Tao, H. Wang and H. Yan, *Food Funct* 2019, 10, 5886-5897.

111. Y. Qu, C. Yang, Q. Ren, M. Ma, C. Dong and K. Hashimoto, *Sci Rep* 2017, 7, 15725.

112. Y. Qu, K. Zhang, Y. Pu, L. Chang, S. Wang, Y. Tan, X. Wang, J. Zhang, T. Ohnishit, T. Yoshikawa and K. Hashimoto, *J Affect Disord* 2020, 272, 66-76.

113. Y. Qu, C. Su, Q. Zhao, A. Shi, F. Zhao, L. Tang, D. Xu, Z. Xiang, Y. Wang, Y. Wang, J. Pan and Y. Yu, *Front Pharmacol* 2022, 13, 837543.

114. J. Rao, R. Xie, L. Lin, J. Jiang, L. Du, X. Zeng, G. Li, C. Wang and Y. Qiao, *Eur J Neurosci* 2021, 53, 3598-3611.

115. P. Ray, U. Pandey, D. Das and P. Aich, *Dig Dis Sci* 2021, 66, 3776-3791.

116. R. C. Robertson, C. Seira Oriach, K. Murphy, G. M. Moloney, J. F. Cryan, T. G. Dinan, R. Paul Ross and C. Stanton, *Brain Behav Immun* 2017, 59, 21-37.

117. J. M. Rosa, F. L. Pazini, A. Camargo, I. A. V. Wolin, G. Olescowicz, L. B. Eslabão, O. B. Romero, E. C. Winkelmann-Duarte and A. L. S Rodrigues, *Behav Brain Res* 2020, 393, 112791.
118. A. K. Schmidtner, D. A. Slattery, J. Gläsner, A. Hiergeist, K. Gryksa, V. A. Malik, J. Hellmann-Regen, I. Heuser, T. C. Baghai, A. Gessner, R. Rupprecht, B. Di Benedetto and I. D. Neumann, *Transl Psychiatry* 2019, 9, 223.

119. B. Shan, Z. Ai, S. Zeng, Y. Song, J. Song, Q. Zeng, Z. Liao, T. Wang, C. Huang and D. Su, *Psychoneuroendocrinology* 2020, 117, 104699.

120. S. Shao, R. Jia, L. Zhao, Y. Zhang, Y. Guan, H. Wen, J. Liu, Y. Zhao, Y. Feng, Z. Zhang, Q. Ji, Q. Li and Y. Wang, *Phytomedicine* 2021, 88, 153606.

121. L. Sheng, Y. Wang, A. Jiang, Y. Zhou, H. Zhou and F. M. El-Demerdash, *Journal of Food Quality* 2021, 2021, 1-8.

122. E. Siopi, G. Chevalier, L. Katsimpari, S. Saha, M. Bigot, C. Moigneu, G. Eberl and P.-M. Lledo, *Cell Rep* 2020, 30.

123. J. Song, W. Ma, X. Gu, L. Zhao, J. Jiang, Y. Xu, L. Zhang, M. Zhou and L. Yang, *J Transl Med* 2019a, 17, 224.

124. J. Song, N. Zhou, W. Ma, X. Gu, B. Chen, Y. Zeng, L. Yang and M. Zhou, *Food Funct* 2019b, 10, 2947-2957.

125. X. Song, W. Wang, S. Ding, X. Liu, Y. Wang and H. Ma, *J Affect Disord* 2021, 290, 353-363.

126. W. N. Sovijit, W. E. Sovijit, S. Pu, K. Usuda, R. Inoue, G. Watanabe, H. Yamaguchi and K. Nagaoka, *Neurosci Res* 2019, 168, 76-82.

127. L. Sun, H. Zhang, Y. Cao, C. Wang, C. Zhao, H. Wang, G. Cui, M. Wang, Y. Pan, Y. Shi and Y. Nie, *Int J Med Sci* 2019a, 16, 1260-1270.

128. L. Sun, L. Ma, H. Zhang, Y. Cao, C. Wang, N. Hou, N. Huang, K. M. von Deneen, C. Zhao, Y. Shi, Y. Pan, M. Wang, G. Ji and Y. Nie, *Theranostics* 2019b, 9, 721-733.

129. X. Sun, H.-F. Zhang, C.-L. Ma, H. Wei, B.-M. Li and J. Luo, *Can J Infect Dis Med Microbiol* 2021, 2021, 6613903.

130. Y. Sun, W. Geng, Y. Pan, J. Wang, P. Xiao and Y. Wang, *Food Funct* 2019, 10, 925-937.

131. Y. Sun, T. Yan, G. Gong, Y. Li, J. Zhang, B. Wu, K. Bi and Y. Jia, *Int Immunopharmacol* 2020, 89, 107029.

132. K. Suzuki, K. Nakamura, Y. Shimizu, Y. Yokoi, S. Ohira, M. Hagijwara, Y. Wang, Y. Song, T. Aizawa and T. Ayabe, *Sci Rep* 2021, 11, 9915.

133. J. K. Szyszkowicz, A. Wong, H. Anisman, Z. Merali and M.-C. Audet, *Brain Behav Immun* 2017, 66, 45-55.

134. E. Takahashi and E. Ono, *Biochem Biophys Rep* 2021a, 28, 101152.
135. E. Takahashi and E. Ono, *Physiol Behav* 2021b, 243, 113623.
136. T. Teng, G. Clarke, M. Maes, Y. Jiang, J. Wang, X. Li, B. Yin, Y. Xiang, L. Fan, X. Liu, J. Wang, S. Liu, Y. Huang, J. Licinio, X. Zhou and P. Xie, *Mol Psychiatry* 2021.
137. P. Tian, R. Zou, L. Song, X. Zhang, B. Jiang, G. Wang, Y.-K. Lee, J. Zhao, H. Zhang and W. Chen, *Food Funct* 2019a, 10, 7588-7598.
138. P. Tian, G. Wang, J. Zhao, H. Zhang and W. Chen, *J Nutr Biochem* 2019b, 66, 43-51.
139. P. Tian, K. J. O'Riordan, Y.-K. Lee, G. Wang, J. Zhao, H. Zhang, J. F. Cryan and W. Chen, *Neurobiol Stress* 2020, 12, 100216.
140. P. Tian, H. Zhu, X. Qian, Y. Chen, Z. Wang, J. Zhao, H. Zhang, G. Wang and W. Chen, *Front Immunol* 2021, 12, 755481.
141. X.-Y. Tian, J.-W. Xing, Q.-Q. Zheng and P.-F. Gao, *Front Cell Infect Microbiol* 2021, 11, 694443.
142. S. Tillmann, A. Abildgaard, G. Winther and G. Wegener, *Psychopharmacology (Berl)* 2019, 236, 1445-1457.
143. T.-H. Tung, Y.-T. Tung, I. H. Lin, C.-K. Shih, N. T. K. Nguyen, A. Shabrina and S.-Y. Huang, *Biomolecules* 2019, 9,
144. L. Wang, Y. Sun, T. Zhao, Y. Li, X. Zhao, L. Zhang, L. Wu, L. Zhang, T. Zhang, G. Wei, A. Altamirano, Y. Tong and Z. Yan, *Planta Med* 2020, 86, 172-179.
145. L. Wang, X. Wu, Y. Ma, X. Li, J. Zhang and L. Zhao, *Food Funct* 2021, 12, 4995-5006.
146. P. Wang, K. Tu, P. Cao, Y. Yang, H. Zhang, X.-T. Qiu, M.-M. Zhang, X.-J. Wu, H. Yang and T. Chen, *Mol Brain* 2021, 14, 49.
147. Q. Wang, M. Jia, Y. Zhao, Y. Hui, J. Pan, H. Yu, S. Yan, X. Dai, X. Liu and Z. Liu, *J Agric Food Chem* 2019, 67, 12441-12451.
148. R. Wang, T. Chen, Q. Wang, X.-M. Yuan, Z.-L. Duan, Z.-Y. Feng, Y. Ding, F. Bu, G.-P. Shi and Y.-G. Chen, *Drug Des Devel Ther* 2021, 15, 2999-3016.
149. S. Wang, T. Ishima, J. Zhang, Y. Qu, L. Chang, Y. Pu, Y. Fujita, Y. Tan, X. Wang and K. Hashimoto, *J Neuroinflammation* 2020a, 17, 241.
150. S. Wang, Y. Qu, L. Chang, Y. Pu, K. Zhang and K. Hashimoto, *J Affect Disord* 2020b, 269, 448-457.
151. S. Wang, T. Ishima, Y. Qu, J. Shan, L. Chang, Y. Wei, J. Zhang, Y. Pu, Y. Fujita, Y. Tan, X. Wang, L. Ma, X. Wan, B. D. Hammock and K. Hashimoto, *J Affect Disord* 2021, 292, 565-573.
152. Y. Wang, R. Jiang, Z. Wu, L. Zhou, J. Xu, C. Huang, L. Yang, B. Zhu, E. Yan, C. Liu and C. Yang, *Pharmacol Biochem Behav* 2021, 207, 173226.
153. A. K. Warda, K. Rea, P. Fitzgerald, C. Hueston, E. Gonzalez-Tortuero, T. G. Dinan and C. Hill, *Behav Brain Res* 2019, 362, 213-223.

154. C.-L. Wei, S. Wang, J.-T. Yen, Y.-F. Cheng, C.-L. Liao, C.-C. Hsu, C.-C. Wu and Y.-C. Tsai, *Brain Res* 2019, 1711, 202-213.

155. L. Wei, Y. Li, W. Tang, Q. Sun, L. Chen, X. Wang, Q. Liu, S. Yu, S. Yu, C. Liu and X. Ma, *Front Physiol* 2019, 10, 1228.

156. S. Westfall, F. Caracci, M. Estill, T. Frolinger, L. Shen and G. M. Pasinetti, *Front Immunol* 2021, 12, 670500.

157. M. L. Wong, A. Inserra, M. D. Lewis, C. A. Mastronardi, L. Leong, J. Choo, S. Kentish, M. Morrison, S. L. Wesselingh, G. B. Rogers and L. Licinio, *Mol Psychiatry* 2016, 21, 797-805.

158. F. Wu, X. Guo, M. Zhang, Z. Ou, D. Wu, L. Deng, Z. Lu, J. Zhang, G. Deng, S. Chen, S. Li, J. Yi and Y. Peng, *Anaerobe* 2020, 61, 102138.

159. J. Wu, J. Li, C. Gaurav, U. Muhammad, Y. Chen, X. Li, J. Chen and Z. Wang, *Gen Psychiatry* 2021, 34, e100529.

160. J. Wu, T. Chai, H. Zhang, Y. Huang, S. W. Perry, Y. Li, J. Duan, X. Tan, X. Hu, Y. Liu, J. Pu, H. Wang, J. Song, X. Jin, P. Ji, P. Zheng and P. Xie, *Transl Psychiatry* 2022, 12, 74.

161. M. Wu, T. Tian, Q. Mao, T. Zou, C.-J. Zhou, J. Xie and J.-J. Chen, *Transl Psychiatry* 2020, 10, 350.

162. J. Xia, L. Gu, Y. Guo, H. Feng, S. Chen, J. Jurat, W. Fu and D. Zhang, *Front Cell Infect Microbiol* 2021, 11, 627608.

163. Q. Xiao, R. Shu, C. Wu, Y. Tong, Z. Xiong, J. Zhou, C. Yu, X. Xie and Z. Fu, *J Affect Disord* 2020, 276, 476-486.

164. R. Xie, P. Jiang, L. Lin, B. Yu, C. Wang, Y. Pan, J. Rao, W. Wei and Y. Qiao, *FASEB J* 2020a, 34, 8310-8325.

165. R. Xie, P. Jiang, L. Lin, J. Jiang, B. Yu, J. Rao, H. Liu, W. Wei and Y. Qiao, *J Psychiatr Res* 2020b, 122, 70-78.

166. Y. Xie, L. Song, J. Yang, T. Tao, J. Yu, J. Shi and X. Jin, *Life Sci Alliance* 2021, 4.

167. J. Xu, M. Tang, X. Wu, X. Kong, Y. Liu and X. Xu, *Food Funct* 2022, 13, 4331-4343.

168. M. Xu, P. Tian, H. Zhu, R. Zou, J. Zhao, H. Zhang, G. Wang and W. Chen, *Nutrients* 2022, 14.

169. Z. Xu, C. Wang, X. Dong, T. Hu, L. Wang, W. Zhao, S. Zhu, G. Li, Y. Hu, Q. Gao, J. Wan, Z. Liu and J. Sun, *Biofactors* 2019, 45, 187-199.

170. M. Xue, X. Teng, H. Liang, J. Zhao, Y. Jiang, X. Qiu, Z. Zhang, Z. Pei, N. Zhang and Y. Qin, *Journal of Functional Foods* 2021, 86.
171. T. Yan, T. Nian, Z. Liao, F. Xiao, B. Wu, K. Bi, B. He and Y. Jia, *Int J Biol Macromol* 2020, 144, 427-440.

172. T. Yan, N. Wang, B. Liu, B. Wu, F. Xiao, B. He and Y. Jia, *Phytother Res* 2021, 35, 289-296.

173. C. Yang, Y. Fujita, Q. Ren, M. Ma, C. Dong and K. Hashimoto, *Sci Rep* 2017a, 7, 45942.

174. C. Yang, Y. Qu, Y. Fujita, Q. Ren, M. Ma, C. Dong and K. Hashimoto, *Transl Psychiatry* 2017, 7, 1294.

175. C. Yang, X. Fang, G. Zhan, N. Huang, S. Li, J. Bi, R. Jiang, L. Yang, L. Miao, B. Zhu, A. Luo and K. Hashimoto, *Transl Psychiatry* 2019, 9, 57.

176. H.-L. Yang, M.-M. Li, M.-F. Zhou, H.-S. Xu, F. Huan, N. Liu, R. Gao, J. Wang, N. Zhang and L. Jiang, *Inflammation* 2021, 44, 2448-2462.

177. J. Yang, G. Zhou, Z. Ou, N. Jia and D. Wang, *Comput Math Methods Med* 2021, 2021, 3567447.

178. Q. Yang, L. Luo, T. Sun, L. Yang, L.-F. Cheng, Y. Wang, Q.-Q. Liu, A. Liu, H.-Y. Liu, M.-G. Zhao, S.-X. Wu and B. Feng, *Psychopharmacology (Berl)* 2020, 237, 3201-3213.

179. Y. Yang, S. Zhao, X. Yang, W. Li, J. Si and X. Yang, *Neurosci Lett* 2022, 774, 136474.

180. J.-B. Yu, Z.-X. Zhao, R. Peng, L.-B. Pan, J. Fu, S.-R. Ma, P. Han, L. Cong, Z.-W. Zhang, L.-X. Sun, J.-D. Jiang and Y. Wang, *Front Pharmacol* 2019, 10, 268.

181. M. Yu, H. Jia, C. Zhou, Y. Yang, Y. Zhao, M. Yang and Z. Zou, *J Pharm Biomed Anal* 2017, 138, 231-239.

182. M. Yu, H.-M. Jia, T. Zhang, H. Shang, H.-W. Zhang, L.-Y. Ma and Z.-M. Zou, *Metabolites* 2020, 10,

183. M. Yu, H.-M. Jia, L.-L. Qin and Z.-M. Zou, *J Affect Disord* 2021, 297,

184. S.-W. Yun, J.-K. Kim, K.-E. Lee, Y. J. Oh, H.-J. Choi, M. J. Han and D.-H. Kim, *Nutrients* 2020, 12,

185. S. W. Yun, J. K. Kim, M. J. Han and D. H. Kim, *Benef Microbes* 2021, 12, 541-551.

186. F. Zhang, H. Chen, R. Zhang, Y. Liu, N. Kong, Y. Guo and M. Xu, *Biochim Biophys Acta Mol Basis Dis* 2020, 1866, 165884.

187. J. Zhang, L. Ma, L. Chang, Y. Pu, Y. Qu and K. Hashimoto, *Transl Psychiatry* 2020, 10, 186.

188. J. C. Zhang, W. Yao, C. Dong, C. Yang, Q. Ren, M. Ma and K. Hashimoto, *Transl Psychiatry* 2017, 7, e1138.
189. K. Zhang, Y. Fujita, L. Chang, Y. Qu, Y. Pu, S. Wang, Y. Shirayama and K. Hashimoto, *Transl Psychiatry* **2019**, *9*, 231.

190. L. Zhang, L. Wang, L. Huang, Y. Zhao, H. Ding, B. Li, L. Wen, W. Xiong, Y. Liu, T. Zhang, L. Zhang, L. Wu, Q. Xu, Y. Fan, G. Wei, Q. Yin, Y. Chen, T. Zhang and Z. Yan, *Pharm Biol* **2021**, *59*, 912-921.

191. M. Zhang, A. Li, Q. Yang, J. Li, L. Wang, X. Liu, Y. Huang and L. Liu, *Front Cell Infect Microbiol* **2021**, *11*, 665159.

192. W. Zhang, W. Qu, H. Wang and H. Yan, *Transl Psychiatry* **2021**, *11*, 131.

193. Y. Zhang, J. Huang, Y. Xiong, X. Zhang, Y. Lin and Z. Liu, *Nutrients* **2021**, *14*, 116.

194. Y. Zhang, R. Huang, M. Cheng, L. Wang, J. Chao, J. Li, P. Zheng, P. Xie, Z. Zhang and H. Yao, *Microbiome* **2019**, *7*, 116.

195. Z. Zhang, N. Li, R. Chen, T. Lee, Y. Gao, Z. Yuan, Y. Nie and T. Sun, *Neurobiol Stress* **2021**, *15*, 100333.

196. Z. Zhang, S. Shao, Y. Zhang, R. Jia, X. Hu, H. Liu, M. Sun, B. Zhang, Q. Li and Y. Wang, *Biomed Pharmacother* **2020**, *132*, 110916.

197. Z. Zhang, C. Yao, M. Li, L.-C. Wang, W. Huang and Q.-J. Chen, *Lett Appl Microbiol* **2022**.

198. B. Zhao, J. Wu, J. Li, Y. Bai, Y. Luo, B. Ji, B. Xia, Z. Liu, X. Tan, J. Lv and X. Liu, *J Agric Food Chem* **2020**, *68*, 3963-3975.

199. F. Zhao, S. Guan, Y. Fu, K. Wang, Z. Liu and T. B. Ng, *Biomed Pharmacother* **2021**, *143*, 112087.

200. W. Zhao, Y. Hu, C. Li, N. Li, S. Zhu, X. Tan, M. Li, Y. Zhang, Z. Xu, Z. Ding, L. Hu, Z. Liu and J. Sun, *Biofactors* **2019**, *46*, 38-54.

201. Z. Zhao, B. Wang, L. Mu, H. Wang, J. Luo, Y. Yang, H. Yang, M. Li, L. Zhou and C. Tao, *Front Cell Infect Microbiol* **2020**, *10*, 258.

202. P. Zheng, B. Zeng, C. Zhou, M. Liu, Z. Fang, X. Xu, L. Zeng, J. Chen, S. Fan, X. Du, X. Zhang, D. Yang, Y. Yang, H. Meng, W. Li, N. D. Melgiri, J. Licinio, H. Wei and P. Xie, *Mol Psychiatry* **2016**, *21*, 786-796.

203. P. Zheng, J. Wu, H. Zhang, S. W. Perry, B. Yin, X. Tan, T. Chai, W. Liang, Y. Huang, Y. Li, J. Duan, M.-L. Wong, J. Licinio and P. Xie, *Mol Psychiatry* **2020**, *26*, 2380-2392.

204. H. Zhou, S. Zhang, X. Zhang, H. Zhou, T. Wen and J. Wang, *Biochem Biophys Res Commun* **2022**, *593*, 137-143.

205. H.-Z. Zhu, Y.-D. Liang, Q.-Y. Ma, W.-Z. Hao, X.-J. Li, M.-S. Wu, L.-J. Deng, Y.-M. Li and J.-X. Chen, *Biomed Pharmacother* **2019**, *112*, 108621.

206. J.-P. Zhu, H.-Y. Wu, Y. Zi, X.-B. Xia, M.-Z. Xie and Z.-Y. Yuan, *Evid Based Complement Alternat Med* **2021**, *2021*, 5554363.
| Study | Metric | Analysis | Significance | |
|---|---|---|---|---|
| Bai S et al. 2021 | _ | PCoA | Sig. difference |
| Bai S et al. 2022 | _ | OPLS-DA | Sig. difference |
| Caso JR et al. 2021 | Bray–Curtis Jaccard | PCoA, PERMANOVA | No sig. difference |
| | Unweighted UniFrac | | |
| Chahwan B et al. 2019 | Weighted UniFrac | PCoA, PERMANOVA | No sig. difference |
| Chen JJ et al. 2018 | UniFrac | PCoA, OPLS-DA | Sig. difference |
| Chen JJ et al. 2020 | _ | OPLS-DA | Sig. difference |
| Chen T et al. 2021 | Unweighted UniFrac | PCoA, ANOSIM | Sig. difference |
| Chen YH et al. 2019 | Weighted UniFrac | | |
| | Unweighted UniFrac | | |
| Chung YE et al. 2019 | Weighted UniFrac | PERMANOVA | Sig. difference |
| | Unweighted UniFrac | | Sig. difference |
| Ciocan D et al. 2021 | Weighted UniFrac | ANOSIM | No sig. difference |
| | Unweighted UniFrac | | Sig. difference |
| Dong Z et al. 2021 | Bray–Curtis | PCA | No sig. difference |
| Huang Y et al. 2018 | Weighted UniFrac | PCoA | Sig. difference |
| | Unweighted UniFrac | | No sig. difference |
| Huang Y et al. 2021 | Bray-Curtis | PLS-DA, PCA, PCoA, NMDS | Sig. difference |
| Jiang H et al. 2015 | Unweighted UniFrac | PCoA | No sig. difference |
| Jiang HY et al. 2020 | Bray-Curtis | PCoA | Sig. difference |
| | Weighted UniFrac | | No sig. difference |
| | Unweighted UniFrac | | No sig. difference |
| Kelly JR et al. 2016 | Bray-Curtis | PCoA, Adonis PERMANOVA | Sig. difference |
| | Weighted UniFrac | | Sig. difference |
| | Unweighted UniFrac | | Sig. difference |
| Kleiman SC et al. 2015 | Weighted UniFrac | _ | No sig. difference |
| | Unweighted UniFrac | | Sig. difference |
| Kurokawa S et al. 2018 | Weighted UniFrac | PCoA | No sig. difference |
| | Unweighted UniFrac | | Sig. difference |
| Lai WT et al. 2021 | Bray-Curtis | PCoA, PERMANOVA | Sig. difference |
| Lin P et al. 2017 | Weighted UniFrac | PCoA | Sig. difference |
| Ling Y et al. 2020 | Bray-Curtis | PCoA, ANOSIM | No sig. difference |
| Liśkiewicz P et al. 2021| Bray-Curtis | PCoA, PERMANOVA | _ |
| | Unweighted UniFrac | | No sig. difference |
| Liu P et al. 2021 | Jaccard | PCoA | Sig. difference |
| Liu RT et al. 2020 | Bray-Curtis | PCoA, Adonis PERMANOVA | Sig. difference |
| | Weighted UniFrac | | Sig. difference |
| | Unweighted UniFrac | | Sig. difference |
| Liu T et al. 2020 | Bray-Curtis | PCoA, ANOSIM | No sig. difference |
| Liu Y et al. 2016 | _ | PCA | Sig. difference |
| Madan A et al. 2020 | Jaccard similarity index| _ | Sig. difference |
| Mason BL et al. 2020 | Weighted UniFrac | PERMANOVA | No sig. difference |
| Minichino A et al. 2021 | Weighted UniFrac | PCoA | Sig. difference |
| | Unweighted UniFrac | | Sig. difference |
| Naseribafrouei A et al. 2014 | _ | PLS-DA | Sig. difference |
| Pérez-Santiago J et al. 2021 | Weighted UniFrac | PCoA, PERMANOVA | Sig. difference |
| | Unweighted UniFrac | | Sig. difference |
| Qin Q et al. 2021 | _ | PCA, NMDS | No sig. difference |
| Study | Methodology | Analysis | Significance |
|----------------------------|-------------|----------|--------------|
| Rhee SJ et al. 2020 | Bray-Curtis | Weighted Unifrac | PCoA, PERMANOVA | Sig. difference |
| | | Unweighted UniFrac | | No sig. difference |
| | | PCoA, PERMANOVA | | Sig. difference |
| Rhee SJ et al. 2021 | Bray-Curtis | Weighted Unifrac | PERMANOVA | No sig. difference |
| | | Unweighted UniFrac | | Sig. difference |
| | | PCoA, PERMANOVA | | No sig. difference |
| Shen Y et al. 2021 | Binary jaccard algorithm | PCoA | Sig. difference |
| Simpson CA et al. 2020 | Weighted Unifrac | PCoA, PERMANOVA | | No sig. difference |
| | Unweighted UniFrac | | | No sig. difference |
| Stevens BR et al. 2020 | Bray-Curtis (unfiltered data) | PERMANOVA | No sig. difference |
| | Bray-Curtis (filtered data) | | | Sig. difference |
| Stevens BR et al. 2021 | Bray-Curtis | PCoA | Sig. difference |
| Taylor AM et al. 2020 | Weighted UniFrac | _ | _ |
| Taylor BC et al. 2020 | Unweighted UniFrac | PCoA, PERMANOVA | | Sig. difference |
| Wingfield B et al. 2021 | Bray-Curtis | _ | Sig. difference |
| Yang J et al. 2020 | Bray-Curtis | PCoA, PERMANOVA | | Sig. difference |
| Yang Y et al. 2021 | Bray-Curtis | Weighted Unifrac | PCoA, NMDS, ADONIS | Sig. difference |
| | | Unweighted UniFrac | | Sig. difference |
| | | PCoA, ANOSIM | | Sig. difference |
| Ye X et al. 2021 | Unweighted UniFrac | PCoA | Sig. difference |
| Zhang Q et al. 2021 | Bray-Curtis | Jaccard | PCoA, ANOSIM | Sig. difference |
| | Weighted Unifrac | | | Sig. difference |
| | Unweighted UniFrac | | | Sig. difference |
| Zhao H et al. 2021 | _ | PCoA | Sig. difference |
| Zheng P et al. 2016 | Bray-Curtis | Unweighted UniFrac | PCoA | Sig. difference |
| Zheng P et al. 2020 | _ | PLS-DA, PERMANOVA | Sig. difference |
| Zhou Y et al. 2020 | Weighted UniFrac | PCoA, Wilcoxon rank-sum test | Sig. difference |
| Zhu J et al. 2021 | Bary-Curtis | Jaccard | PCoA, PERMANOVA | No sig. difference |
| | Weighted Unifrac | | | Sig. difference |
| | Unweighted UniFrac | | | No sig. difference |
| | | | | No sig. difference |
Table S4. Microbial β-diversity in animal models of depression.

Study	Metric	Analysis	Significance
Abildgaard A et al. 2021	Bray-Curtis, Jaccard	PCoA, PERMANOVA	Sig. difference
An Q et al. 2020	Unweighted UniFrac	PCA, ANOSIM	Sig. difference
Arslanova A et al. 2021	Weighted Unifrac, Unweighted UniFrac	PCoA	
Bharwani A et al. 2017	Bray-Curtis	PCoA	Sig. difference
Bridgewater LC et al. 2017	Bray-Curtis	PCoA	Sig. difference
Burokas A et al. 2017	Unweighted UniFrac	PCoA	Sig. difference
Chakraborti A et al. 2021	Weighted Unifrac, Unweighted UniFrac, Bray-Curtis	PCoA, PERMANOVA	Sig. difference
Chen L et al. 2021		PCA	Sig. difference
Chen P et al. 2019	Bray-Curtis, Jaccard	PCoA, NMDS	Sig. difference
Chen T et al. 2021	Unweighted UniFrac	PCoA, ANOSIM	Sig. difference
Chen X et al. 2021	Weighted UniFrac	PCA	Sig. difference
Chen X et al. 2022	Weighted UniFrac	PCoA	Sig. difference
Chen Y et al. 2021b	Weighted Unifrac, Bray-Curtis	PCoA, PERMANOVA	Sig. difference
Cheng D et al. 2018	Morisita-Horn dissimilarity	PCA	Sig. difference
Cheng R et al. 2021	UniFrac	PCoA	Sig. difference
Chevalier G et al. 2020	Bray-Curtis	PCoA	
Chi L et al. 2020		PLS-DA	Sig. difference
Daugé V et al. 2020	Bray-Curtis	MDS	Sig. difference
Deng Y et al. 2021		PCoA	Sig. difference
Ding Y et al. 2021		PCA, ANOSIM	Sig. difference
Diviccaro S et al. 2019	Weighted Unifrac, Unweighted UniFrac, Bray-Curtis	PCoA, PEAMONVA	Sig. difference
Donoso F et al. 2020	Aitchison	PCA, PERMANOVA	Sig. difference
Du HX et al. 2020	Bray-Curtis	NMDS	Sig. difference
Duan J et al. 2021	Unweighted UniFrac	PCoA, PLS-DA, ANOSIM	Sig. difference
Egerton S et al. 2020	Bray-Curtis	PCoA, Adonis PERMANOVA	Sig. difference
El Aidy S et al. 2017	Weighted UniFrac	PCoA, PEAMONVA	Sig. difference
Fan L et al. 2021		PCoA	Sig. difference
Feng Y et al. 2020		PLS-DA	Sig. difference
Feng Z et al. 2020	UniFrac	PCA, NMDS	Sig. difference
Forouzan S et al. 2021	Weighted UniFrac	PCoA	Sig. difference
Gao K et al. 2022	Bray–Curtis	PCoA, PERMANOVA	Sig. difference
Gao X et al. 2020		PLS-DA	Sig. difference
Gong X et al. 2021	Weighted UniFrac	PCoA	Sig. difference
Gu F et al. 2020	Weighted UniFrac	PCoA	Sig. difference
Gu X et al. 2022	Weighted UniFrac	PLS-DA, ANOSIM	Sig. difference
Guida F et al. 2018	Bray-Curtis, Jaccard	PEAMONVA	Sig. difference
Guo Y et al. 2018		NMDS	Sig. difference
Guo Y et al. 2019		PCA, Adonis	No sig. difference
Han SK et al. 2020a	Jensen-Shannon	PCoA	Sig. difference
Authors	Methodology	Statistical Test	Result
--------------------	------------------------------------	------------------	--------
Han SK et al. 2020b	Jensen-Shannon PCoA	Sig. difference	
Han SK et al. 2021	Weighted UniFrac PCoA	Sig. difference	
Hao W et al. 2021	_	PCA	Sig. difference
Hao WZ et al. 2021	Weighted UniFrac Unweighted UniFrac Bray-Curtis PCoA	Sig. difference	
Hassan AM et al. 2019	Weighted UniFrac	PCoA, Adonis	Sig. difference
Huang F et al. 2021	UniFrac PCA	Sig. difference	
Huang N et al. 2019	Euclidean Bray-Curtis	PCoA	Sig. difference
Huang YJ et al. 2021	Bray-Curtis	PCoA	Sig. difference
Huang YY et al. 2022	Bray–Curtis	PcoA	Sig. difference
Inserra A et al. 2019	Weighted UniFrac PERMANOVA	Sig. difference	
Ji S et al. 2022	Weighted UniFrac Unweighted UniFrac Bray-Curtis PCoA, PERMANOVA	No sig. difference	
Jiang W et al. 2021	_	PCoA, Adonis	Sig. difference
Jiang Y et al. 2020	Unweighted UniFrac PCoA, ANOSIM	Sig. difference	
Jianguo L et al. 2019	Bray-Curtis	PERMANOVA	Sig. difference
Kamimura Y et al. 2021	Weighted UniFrac	PCoA	Sig. difference
Kemp KM et al. 2021	Aitchison PCA, Adonis PERMANOVA	Sig. difference	
Kim JK et al. 2020	Weighted UniFrac PcoA	Sig. difference	
Kim JK et al. 2021	Generalized UniFrac PcoA	Sig. difference	
Knudsen JK et al. 2021	_	PCA	Sig. difference
Kosuge A et al. 2021	Bray-Curtis	PCoA, Adonis PERMANOVA	Sig. difference
Lai WD et al. 2022	_	PCA, PcoA, NMDS	Sig. difference
Leclercq S et al. 2020	Bray-Curtis	PCoA	Sig. difference
Lee HC et al. 2020	Weighted UniFrac Unweighted UniFrac Bray-Curtis PCoA	Sig. difference	
Li H et al. 2021	Bray–Curtis	PCoA	Sig. difference
Li N et al. 2018	Weighted UniFrac Unweighted UniFrac Bray-Curtis PCoA, ANOSIM	Sig. difference	
Li N et al. 2019	Weighted UniFrac Unweighted UniFrac Bray-Curtis PCoA	Sig. difference	
Li P et al. 2021	Unweighted UniFrac PcoA	Sig. difference	
Li Y et al. 2018	Weighted UniFrac PcoA	Sig. difference	
Lim EY et al. 2021	Weighted UniFrac PcoA	Sig. difference	
Lin S et al. 2021	_	PCA, NMDS	Sig. difference
Liu QF et al. 2020	Unweighted UniFrac PcoA	Sig. difference	
Liu X et al. 2021a	Bray-Curtis	PCoA, PLS-DA	Sig. difference
Liu X et al. 2021b	Bray-Curtis	PCoA, NMDS, Adonis, Permdisp	Sig. difference
Liu Z et al. 2020	Unweighted UniFrac PcoA	Sig. difference	
Luo X et al. 2021	Bray-Curtis	NMDS, ANOSIM	Sig. difference
Lv M et al. 2021	Weighted UniFrac PcoA	NMDS	Sig. difference
Lv WJ et al. 2019	Weighted UniFrac PCA, PcoA, PLS-DA	Sig. difference	
Lv WJ et al. 2020	Unweighted UniFrac PCA, PcoA, NMDS, PERMANOVA, ANOSIM	Sig. difference	
Ma W et al. 2019	Bray-Curtis	PCA	Sig. difference
Authors	Methodology	Techniques	Significance
-------------------------	----------------------------------	---------------------	--------------------
Matsuda Y et al. 2020	Bray-Curtis	PcoA	Sig. difference
McGaughey KD et al. 2019	Unweighted UniFrac	PCoA, ANOSIM	Sig. difference
Meng C et al. 2022		CPCoA, PcoA	Sig. difference
Moya-Pérez A et al. 2017	Bray-Curtis	PCoA, Permanova	Sig. difference
O'Mahony SM et al. 2020	Bray-Curtis	PCoA, Adonis	Sig. difference
Partrick KA et al. 2021	Unweighted UniFrac	PCoA, PERMANOVA	Sig. difference
Patterson E et al. 2019	Bray-Curtis	PCoA	Sig. difference
Pearson-Leary J et al. 2020	Bray-Curtis	Weighted UniFrac	Sig. difference
Pu Y et al. 2021		PCA, ANOSIM	No sig. difference
Pusceddu MM et al. 2015		RDA	Sig. difference
Qiao Y et al. 2020	Bray-Curtis	PcoA	Sig. difference
Qu W et al. 2019	Bray-Curtis	PcoA	Sig. difference
Qu Y et al. 2017	Bray-Curtis	PcoA	Sig. difference
Qu Y et al. 2020	Weighted UniFrac	PcoA	Sig. difference
Rao J et al. 2021	Bray-Curtis	PcoA	Sig. difference
Robertson RC et al. 2017	Unweighted UniFrac	PcoA	Sig. difference
Schmidtner AK et al. 2019	Bray-Curtis	PcoA	Sig. difference
Shan B et al. 2021	Bray-Curtis	PcoA	Sig. difference
Shao S et al. 2021		PcoA	No sig. difference
Sheng L et al. 2021	Unweighted UniFrac	PcoA	Sig. difference
Siopi E et al. 2020	Bray-Curtis	PcoA	Sig. difference
Song J et al. 2019a		PLS-DA	Sig. difference
Song J et al. 2019b		PLS-DA	Sig. difference
Song X et al. 2021	Bray-Curtis	PLS-DA, ANOSIM	Sig. difference
Sovijit WN et al. 2019	Bray-Curtis	PCoA, PERMANOVA	Sig. difference
Sun L et al. 2019a	Bray-Curtis	PcoA	Sig. difference
Sun L et al. 2019b	Unweighted UniFrac	PcoA	Sig. difference
Sun Y et al. 2019	Unweighted UniFrac	PCA, PCoA	Sig. difference
Sun Y et al. 2020	Weighted UniFrac	PcoA	Sig. difference
Suzuki K et al. 2021	Unweighted UniFrac	PcoA, PERMANOVA	Sig. difference
Szyszkiowicz JK et al. 2017		PCA	Sig. difference
Teng T et al. 2021	Bray-Curtis	PcoA, PLS-DA, sparse PLS-DA	Sig. difference
Tian P et al. 2019a		PcoA	Sig. difference
Tian P et al. 2019b		PCA	Sig. difference
Tian P et al. 2020	Unweighted UniFrac	PCA, PCoA, PERMANOVA	Sig. difference
Tian P et al. 2021	Aitchison	PCA, PERMANOVA	Sig. difference
Tian XY et al. 2021		PCA, PCoA, ANOSIM, Adonis	Sig. difference
Tillmann S et al. 2019		PCA, PLS-DA	Sig. difference
Tung TH et al. 2019	Bray-Curtis	NMDS	Sig. difference
Wang L et al. 2020	Unweighted UniFrac	PcoA	Sig. difference
Wang L et al. 2021		PcoA	Sig. difference
Wang Q et al. 2019	Unweighted UniFrac	PcoA, PERMANOVA	Sig. difference
Wang R et al. 2021	Bray-Curtis	PcoA	Sig. difference
Authors (Year)	Distance/Method	Analysis	Significance
---------------	-----------------	----------	--------------
Wang S et al. 2020a	Unweighted UniFrac	PCoA	Sig. difference
Wang S et al. 2020b	Unweighted UniFrac	PCoA	Sig. difference
Wang S et al. 2021	-	PCA, ANOSIM	Sig. difference
Wang Y et al. 2021	Weighted UniFrac, Jaccard	PCoA	Sig. difference
Warda AK et al. 2019	Bray-Curtis	PCoA, PERMANOVA	Sig. difference
Wei LN et al. 2019	Bray-Curtis	PCoA, NMDS	Sig. difference
Westfall S et al. 2021	Weighted UniFrac	PCoA, PERMANOVA	Sig. difference
Wong ML et al. 2016	Bray-Curtis	PERMANOVA	Sig. difference
Wu F et al. 2020	Unweighted UniFrac	PCoA	Sig. difference
Wu J et al. 2021	Unweighted UniFrac	PCoA	Sig. difference
Wu M et al. 2020	-	PCoA	Sig. difference
Xia J et al. 2021	Weighted UniFrac, Unweighted UniFrac	PCoA, OPLS-DA	Sig. difference
Xiao Q et al. 2020	Unweighted UniFrac	PCoA, NMDS	Sig. difference
Xie R et al. 2020a	Weighted UniFrac, Unweighted UniFrac	PCoA	Sig. difference
Xie R et al. 2020b	-	PCA	Sig. difference
Xie Y et al. 2021	Bray-Curtis	PCoA	Sig. difference
Xu M et al. 2022	-	PCoA	Sig. difference
Xu Z et al. 2019	Bray-Curtis, Euclidean	PCoA	Sig. difference
Xue M et al. 2021	Unweighted UniFrac	PCoA, Adonis	Sig. difference
Yang C et al. 2017b	Bray-Curtis, Euclidean	PCoA	Not mention
Yang C et al. 2019	-	PCoA	Sig. difference
Yang HL et al. 2021	Unweighted UniFrac	PCoA	No sig. difference
Yang Q et al. 2020	Bray-Curtis, Weighted UniFrac, Unweighted UniFrac	PCoA	Not mention
Yu M et al. 2017	Bray-Curtis	PCoA	Sig. difference
Yu M et al. 2020	-	PCoA	Sig. difference
Yu M et al. 2021	Bray-Curtis	PCoA	Sig. difference
Yun SW et al. 2020	Jansen-Shannon	PCoA	Sig. difference
Yun SW et al. 2021	Bray-Curtis	PCoA	Sig. difference
Zhang F et al. 2020	-	PCoA	Sig. difference
Zhang J et al. 2020	Bray-Curtis	PCoA	Sig. difference
Zhang K et al. 2019	-	PCoA	Sig. difference
Zhang L et al. 2021	Bray-Curtis	PCoA, NMDS	Sig. difference
Zhang M et al. 2021	Bray-Curtis	PCoA, PERMANOVA, ANOSIM	Sig. difference
Zhang W et al. 2021	Weighted UniFrac, Unweighted UniFrac	PCoA	Sig. difference
Zhang Y et al. 2019	Unweighted UniFrac	PCoA	Sig. difference
Zhang Y et al. 2021	Bray-Curtis	PLS-DA	Sig. difference
Zhang Z et al. 2020	-	PLS-DA	No sig. difference
Zhang Z et al. 2021	Unweighted UniFrac	PCoA, NMDS, ANOSIM	Sig. difference
Zhang Z et al. 2022	Unweighted UniFrac	PCoA, PERMANOVA, ANOSIM	No sig. difference
Zhao B et al. 2020	Weighted UniFrac, Unweighted UniFrac	PCoA	Sig. difference
Authors	Methodology	Analysis Tools	Results
------------------	-------------------------	------------------	-------------
Zhao F et al. 2021	Bray-Curtis	PCoA	Not mention
Zhao Z et al. 2020	Weighted Unifrac	PCA, PCoA, MDS	Sig. difference
Zheng P et al. 2016	Weighted Unifrac	PCoA	Sig. difference
Zheng P et al. 2020	Weighted Unifrac	PCoA	Sig. difference
Zhou H et al. 2022	Weighted Unifrac	PCoA	Sig. difference
Zhu HZ et al. 2019	Weighted Unifrac	PCA, PCoA, NMDS	Sig. difference
Table S5. Commensal microbiota alterations at Phylum, Class, Order, and Family levels in patients with depression.

Microorganisms	Commensal microbiota	Gut microbiota												
		Total	American	Chinese	MDD	Depression								
		Total no. of frequency	No. of increased	No. of decreased	Total no. of frequency	No. of increased	No. of decreased	Total no. of frequency	No. of increased	No. of decreased	Total no. of frequency	No. of increased	No. of decreased	
Phylum														
Actinobacteria	11	8	3	11	8	3	10	7	3	9	7	2	1	1
Bacteroidetes	13	7	6	13	7	6	12	6	6	13	7	6		
Firmicutes	13	5	8	12	4	8	10	4	6	10	4	6		
Fusobacteria	3	2	1	2	2	0	2	2	0	2	2	0		
Proteobacteria	9	7	2	8	6	2	8	6	2	6	4	2	2	0
Saccharibacteria	2	1	1											
Phylum														
Class														
Actinobacteria														
Bacteroidia	4	2	2	4	2	2	3	1	2	4	2	2		
Bacilli	2	2	0	2	2	0	2	0	2	2	0	2		
Class														
Firmicutes														
Bacteroidia	2	2	0	2	2	0	2	2	0	2	2	0		
Order														
Actinobacteria														
Bacilli	2	2	0	2	2	0	2	0	2	2	0	2		
Bacteroidia	3	1	2	3	1	2	2	0	2	3	1	2		
Order														
Firmicutes														
Bacteroidia	3	3	0	3	3	0	2	2	0	2	2	0		
Family														
Actinomyctales	2	2	0	2	2	0	2	0	2	2	0	2		
Bifidobacteriales	2	2	0	2	2	0	2	0	2	2	0	2		
Family														
Phylum														
Class														
Bacteroidia	3	1	2	3	1	2	2	0	2	3	1	2		
Bacilli	2	2	0	2	2	0	2	0	2	2	0	2		
Bacteroidia	3	3	0	3	3	0	2	2	0	2	2	0		
Family														
Actinobacteria														
Bacilli	2	2	0	2	2	0	2	0	2	2	0	2		
Bacteroidia	3	3	0	3	3	0	3	1	4	3	0	3		
Family														
Bacteroidia	2	2	0	2	2	0	2	0	2	2	0	2		
Phylum														
Class														
Order														
Family														

Phylum **Class** **Order** **Family**
Kingdom	Phylum	Class	Order	Family	Genus	Actinobacteria	Bifidobacteriales	Corynebacteriales	Micrococcaceae	Coriobacteriales											
Actinobacteria	Actinomycetales	Actinomycetales	7 6 1 5 5 0	4 4 0 4 4 0	4 4 0 4 0 0																
	Bifidobacteriales	Bifidobacteriales	8 6 2 8 6 2	7 6 1 7 6 1	7 6 1 7 6 1 1																
	Corynebacteriales	Corynebacteriales	2 1 1 2 1 1	2 1 1 2 1 1	2 1 1 2 1 1 1																
	Micrococcaceae	Micrococcaceae	3 1 2 2 1 1	2 1 1 2 1 1	2 1 1 2 1 1 1																
Coriobacteriales	Coriobacteriales	Coriobacteriales	9 5 4 9 5 4	2 1 1 6 4 2	7 4 3 2 1 1																
Bacteroidetes	Bacteroidales	Bacteroidales	10 4 6 9 4 5	9 4 5 9 4 5	9 4 5 9 4 5 5																
	Bacteroidales	Bacteroidales	5 5 0 5 5 0	5 5 0 5 5 0	5 5 0 5 5 0 5																
	Prevotellales	Prevotellales	9 0 9 9 0 9	8 0 8 8 0 8	8 0 8 8 0 8 8																
	Rikenellales	Rikenellales	10 6 4 10 6 4 3 0 3 0 3 7 6 1 7 5 2 3 1 2	3 3 0 3 3 0																	
	Marinilabiales	Marinilabiales	2 1 1 2 1 1	2 1 1 2 1 1	2 1 1 2 1 1 1																
	Chitinophagales	Chitinophagales	2 0 2 2 0 2	2 0 2 2 0 2	2 0 2 2 0 2 2																
	Flavobacteriales	Flavobacteriales	3 1 2 2 1 1	2 1 1 2 1 1	2 1 1 2 1 1 1																
	Fusobacteriales	Fusobacteriales	3 2 1 2 2 0 2	2 2 0 2 2 0	2 2 0 2 2 0 2																
Bacilli	Lactobacillales	Lactobacillales	2 1 1 2 1 1	2 1 1 2 1 1	2 1 1 2 1 1 1																
Clostridia	Clostridales	Clostridales	9 3 6 9 3 6	9 3 6 9 3 6	9 3 6 9 3 6 9																
			5 4 1 5 4 1	4 4 0 4 3 1	4 4 0 4 3 1 4																
			20 8 12 19 7 12 3 0 3 14 5 9 13 6 7 6 1 5	6 1 5 6																	
			4 3 1 4 3 1	4 3 1 4 3 1	4 3 1 4 3 1 4																
			6 1 5 6 1 5	5 1 4 5 1 4	5 1 4 5 1 4 5																
			15 6 9 15 6 9 4 1 3 10 5 5 11 4 7 4 2 2	2 1 2 2 1 2																	
			2 0 2 2 0 2	2 0 2 2 0 2	2 0 2 2 0 2 2																
			8 5 3 8 5 3	7 4 3 6 3 3 2 2 0 2	2 2 0 2 2 0 2																
			6 4 2 5 3 2	5 3 2 5 3 2	5 3 2 5 3 2 5																
			2 2 0 2 2 0	2 2 0 2 2 0	2 2 0 2 2 0 2																
Patescibacteria	Saccharimonadaceae	Saccharimonadaceae	2 2 0 2 2 0	2 2 0 2 2 0	2 2 0 2 2 0 2																
Proteobacteria	Betaproteobacteria	Betaproteobacteria	3 2 1 3 2 1	3 2 1 3 2 1	3 2 1 3 2 1 3																
			2 0 2 2 0 2	2 0 2 2 0 2	2 0 2 2 0 2 2																
			2 0 2 2 0 2	2 0 2 2 0 2	2 0 2 2 0 2 2																
			2 0 2 2 0 2	2 0 2 2 0 2	2 0 2 2 0 2 2																
Gammaproteobacteria	Entrobacterales	Entrobacteriaceae	13	10	3	12	9	3	2	2	0	9	6	3	8	5	3	4	4	0	
---------------------	----------------	------------------	----	----	---	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
Pasteurellales	Pasteurellaceae		3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	4	4	0	
Table S6. Commensal microbiota alterations at Genus level in patients with depression.

Phylum	Order	Family	Genus	Bacteroides	Total	American	Chinese	MDD	Depression													
Actinobacteria	Actinomycetales	Actinomycetaeae	Actinomycetes	6 5 1	4 4 0	4 4 0	4 4 0	3 0 3														
	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	11 4 7	11 4 7	9 4 5	8 4 4	2 1 1														
	Coriobacteriales	Coriobacteriaceae	Collinella	4 3 1	4 3 1	3 2 1	2 2 0	2 2 0														
		Atopobiaceae	Atopobium	2 2 0	2 2 0	2 0 2	2 0 2	2 0 2														
		Oluella	Oluella	4 3 1	4 3 1	4 3 1	3 3 0	3 3 0														
	Eggerthellales	Eggerthellaceae	Adlercreutzia	2 2 0	2 2 0	2 2 0	2 2 0	2 2 0														
		Eggerthella	Eggerthella	7 7 0	7 7 0	6 6 0	7 7 0	2 2 0														
		Granulicatella	Granulicatella	2 2 0	2 2 0	2 2 0	2 2 0	2 2 0														
Bacteroidetes	Bacteroides	Bacteroidaceae	Bacteroides	18 10	17 8 9	2 1 1	11 5 6	12 7 5	5 1 4													
		Barnesiella	Barnesiella	6 1 5	6 1 5	3 1 2	2 1 1	4 0 4														
		Butyricimonas	Butyricimonas	2 1 1	2 1 1	2 1 1	2 1 1	2 1 1														
		Odoribacter	Odoribacter	3 1 2	3 1 2	3 1 2	3 1 2	3 1 2														
		Alloprevotella	Alloprevotella	2 1 1	2 1 1	2 1 1	2 1 1	2 1 1														
		Paraprevotella	Paraprevotella	6 6 0	6 6 0	3 3 0	3 3 0	3 3 0														
		Prevotella	Prevotella	10 5 5	9 4 5	3 3 0	3 3 0	3 3 0														
		Prevotella-2	Prevotella-2	3 1 2	2 0 2	7 3 4	7 3 4	3 2 1														
		Prevotella-9	Prevotella-9	3 2 1	2 1 1	2 0 2	3 2 1	3 2 1														
		Alistipes	Alistipes	12 7 5	11 6 5	8 4 4	7 5 2	4 1 3														
Firmicutes	Bacilli	Bacillales	Bacillales	9 8 1	9 8 1	8 7 1	7 7 0	2 1 1														
		Bacillales,incertae,seidis	Gemella	2 2 0	2 2 0	2 2 0	2 2 0	2 2 0														
		Enterococcaceae	Enterococcus	5 4 1	4 4 0	3 3 0	3 3 0	3 3 0														
		Lactobacillaceae	Lactobacillus	9 5 4	9 5 4	5 4 1	6 4 2	3 1 2														
		Weissella	Weissella	2 0 2	2 0 2	2 0 2	2 0 2	2 0 2														
		Streptococcaceae	Streptococcus	11 9 2	9 7 2	8 7 1	7 5 2	2 2 0														
Family	Genus	Taxonomic Group	5	0	5	0	5	2	0	2	3	0	3	4	0	4						
----------------------	----------------------------	-----------------	---	---	---	---	---	---	---	---	---	---	---	---	---	---						
Clostridales	Christensenellaceae	Christensenellaceae R-7 group	5	0	5	0	5	2	0	2	3	0	3	4	0	4						
Clostridales	Butyricicoccus		3	0	3	0	3	2	0	2	2	0	2									
Clostridales	Clostridium innocuum group		2	1	1	2	1	1	2	1	1											
Clostridales	Hungatella		2	2	0	2	2	0	2	2	0	2										
Clostridales	Eubacteriaceae	Eubacterium	6	3	3	6	3	3	5	3	2	4	3	1	2	0	2					
Clostridales	Eubacteriales Family XIII. Incertae Sedis	Anaerovorax	3	0	3	0	3	3	0	3	2	0	2									
Clostridales	Agathobacter		2	0	2	2	0	2														
Clostridales	Anaerostipes		6	4	4	8	4	4	6	4	2	6	4	2	2	0	2					
Lachnospiraceae	Blautia		12	7	5	12	7	5	2	1	1	9	5	4	8	6	2	4	1	3		
Lachnospiraceae	CAG-56		3	0	3	3	0	3	2	0	2	2	0	2								
Lachnospiraceae	Clostridium XIVa		2	1	1	2	1	1														
Lachnospiraceae	Coprococcus		9	0	9	9	0	9	6	0	6	5	0	5	4	0	4					
Lachnospiraceae	Dorea		5	2	3	5	2	3	3	1	2	3	1	2	2	1	1					
Lachnospiraceae	Eisenbergiella		2	2	0	2	2	0	2	2	0	2	2	0								
Lachnospiraceae	Fusicatenbacter		6	0	6	6	0	6	4	0	4	3	0	3	3	0	3					
Lachnospiraceae	Lachnoclostridum		4	3	1	4	3	1	3	2	1	3	2	1								
Lachnospiraceae	Lachnospira		6	1	5	6	1	5	3	0	3	3	1	2	3	1	2	3	0	3		
Lachnospiraceae	Lachnospiraceac incertae sedis		3	1	2	3	1	2	3	1	2	2	1	1								
Lachnospiraceae	Lachnospiraceae ND3007 group		4	0	4	0	4	0	4	2	0	2	2	0	2							
Lachnospiraceae	Lachnospiraceae_NK4A136_ group		3	1	2	3	1	2	2	1	1	2	1	1								
Lachnospiraceae	Lachnospiraceae_UCG-001		2	0	2	2	0	2														
Lachnospiraceae	Roseburia		13	5	8	13	5	8	3	1	2	9	3	6	8	3	5	5	2	3		
Lachnospiraceae	Shuttleworthia		2	2	0	2	2	0	2	2	0											
Oscillospiraceae	Tyzzerella		3	1	2	3	1	2	2	1	1	3	1	2								
Oscillospiraceae	Oscillibacter		9	4	5	9	4	5	6	3	3	5	3	2	4	1	3					
Peptostreptococcaceae	Clostridium XI		4	2	2	4	2	2	4	2	2	3	2	1								
Peptostreptococcaceae	Romboutsia		3	0	3	3	0	3	2	0	2				2	0	2					
Ruminococcaceae	Anaerofilum		2	1	1	2	1	1														
Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae																				
-----------------	-------------------	--------------------																				
Anaerotruncus	2 2 0	2 2 0																				
Clostridium IV	2 1 1	2 1 1																				
Faecalibacterium	19 3 16	18 2 16																				
Flavonifractor	5 5 0	5 5 0																				
Oscillospira	2 2 0	2 2 0																				
Ruminococcaceae UCG-002	2 1 1																					
Ruminococcaceae UCG-014	2 2 0																					
Ruminococcus	9 1 8	9 1 8																				
Ruminococcus-1	3 1 2	3 1 2																				
Ruminococcus-2	2 0 2	2 0 2																				
Subdoligranum	1 0 3	1 0 3																				
Clostridium XVIII	3 1 2	1 2 1																				
Faecalibacterium	3 2 1	3 2 1																				
Holdemanella	2 0 2	2 0 2																				
Holdemania	5 5 0	5 5 0																				
Turicibacter	4 2 2	4 2 2																				

Negativicutes	Acidaminococcales	Acidaminococcaceae
Acidaminococcus	3 3 0	3 3 0
Phascolarctobacterium	7 2 5	7 2 5
Selenomonadales	Selenomadaceae	
Megamonas	6 1 5	6 1 5
Moritella	3 1 2	3 1 2
Veillonellales	Veillonellaceae	
Dialister	12 5 7	11 4 7
Megaflaemnna	4 1 3	4 1 3
Veillonella	8 7 1	7 6 1
Tissierella	Tissierellaceae	
Parvimonas	4 3 1	3 2 1
Fusobacteria	Fusobacteria	
Fusobacterium	5 2 3	3 1 2
Rhizobiales	Hypomicrobiaceae	
Gemmiger	3 0 3	3 0 3
Betaproteobacteria	Burkholderiales	
Sutterellaceae	2 1 1	2 1 1
Sutterellae	8 1 7	8 1 7
Desulfovibrio	Desulfovibrionales	
Desulfovibrio	5 4 1	5 4 1
Epsilonproteobacteria	Campylobacteriae	
Campylobacter	2 1 1	2 1 1
Enterobacteria	2 2 0	2 2 0
Escherichia	7 5 2	6 4 2
Klebsiella	2 1 1	2 1 1

Gammaproteobacteria	Enterobacteriales																								
Enterobacter	2 1 1	2 1 1																							
Escherichia-Shigella	7 5 2	6 4 2																							
Klebsiella	2 1 1	2 1 1																							
Domain	Phylum	Class	Order	Family	Genus	#1	#2	#3	#4	#5	#6														
-------------------------	-----------------------	---------------------	-------------------	-------------------	---------------	----	----	----	----	----	----														
Pasteurellales	Pasteurellaceae	Haemophilus	4	1	3	4	1	3	4	1	3														
Pseudomonadales	Pseudomonadaceae	Pseudomonas	2	1	1	4	1	3	3	0	3														
Streptophyta	Magnoliopsida	Fabales	3	2	1	3	2	1	3	2	1														
Verrucomicrobia	Verrucomicrobiae	Verrucomicrobiales	3	2	1	3	2	1	2	2	0														
		Akkermansiaceae	3	2	1	2	2	0	2	1	1														
Phylum	Class	Order	Family	Genus	Species	Commensal microbiota	Gut microbiota																		
-----------------	----------------	------------------	---------------	------------------------	--	----------------------	---------------																		
Actinobacteria	Actinomycetia	Bifidobacteriales	Bifidobacteriae	Bifidobacterium	Bifidobacterium_adolescentis	3 0 3 0	2 2 0 2 2 0 2 2 0																		
Actinobacteria	Actinomycetia	Bifidobacteriales	Bifidobacteriae	Bifidobacterium	Bifidobacterium_bifidum	2 2 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Actinobacteria	Actinomycetia	Bifidobacteriales	Bifidobacteriae	Bifidobacterium	Bifidobacterium_breve	2 2 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Actinobacteria	Actinomycetia	Bifidobacteriales	Bifidobacteriae	Bifidobacterium	Bifidobacterium_dentium	2 2 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Actinobacteria	Actinomycetia	Bifidobacteriales	Bifidobacteriae	Bifidobacterium	Bifidobacterium_longum	6 4 2 6 4 2	4 3 1 4 3 1 2 1 1																		
Actinobacteria	Actinomycetia	Micrococcales	Micrococcaceae	Rothia	Rothia_mucilaginosa	2 2 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Actinobacteria	Actinomycetia	Micrococcales	Micrococcaceae	Atopobiales	Atopobium_parvulum	2 2 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Actinobacteria	Actinomycetia	Micrococcales	Micrococcaceae	Olsenella	Olsenella_uli	2 2 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Actinobacteria	Actinomycetia	Coriobacteriales	Coriobacteriales	Coriobacteriales	Coriobacterium_gloramers	2 2 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Actinobacteria	Actinomycetia	Eggerthellaceae	Eggerthellaceae	Adlerecreutzia	Adlerecreutzia_equolifaciens	3 2 1 3 2 1	2 1 1 2 1 1 2 1 1																		
Actinobacteria	Actinomycetia	Eggerthellaceae	Eggerthellaceae	Eggerthellaceae	Eggerthellaceae_lenta	3 3 0 3 3 0	3 3 0 3 3 0 3 3 0																		
Bacteroidetes	Bacteroides	Bacteroidaceae	Bacteroidaceae	Bacteroides	Bacteroides_arabae	3 2 1 3 2 1 2 1 1	2 2 0 2 2 0 2 2 0																		
Bacteroidetes	Bacteroides	Bacteroidaceae	Bacteroidaceae	Bacteroides	Bacteroides_dorei	2 2 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Bacteroidetes	Bacteroides	Bacteroidaceae	Bacteroidaceae	Bacteroides	Bacteroides_fragilis	3 3 0 3 3 0	2 2 0 2 2 0 2 2 0																		
Bacteroidetes	Bacteroides	Bacteroidaceae	Bacteroidaceae	Bacteroides	Bacteroides_massiliensis	3 2 1 3 2 1	2 1 1 2 1 1 2 1 1																		
Bacteroidetes	Bacteroides	Bacteroidaceae	Bacteroidaceae	Bacteroides	Bacteroides_nordi	2 2 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Bacteroidetes	Bacteroides	Bacteroidaceae	Bacteroidaceae	Bacteroides	Bacteroides_plebeus	2 1 1 2 1 1	2 1 1 2 1 1 2 1 1																		
Bacteroidetes	Bacteroides	Bacteroidaceae	Bacteroidaceae	Bacteroides	Bacteroides_stercoris	3 2 1 3 2 1 2 1 1	2 2 0 2 2 0 2 2 0																		
Bacteroidetes	Bacteroides	Bacteroidaceae	Bacteroidaceae	Bacteroides	Bacteroides_thetaoaomicron	4 4 0 4 4 0	3 3 0 2 2 0 2 2 0																		
Bacteroidetes	Bacteroides	Bacteroidaceae	Bacteroidaceae	Bacteroides	Bacteroides_uniformis	2 2 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Bacteroidetes	Bacteroides	Bacteroidaceae	Bacteroidaceae	Bacteroides	Bacteroides_vulgatus	2 1 1 2 1 1	2 2 0 2 2 0 2 2 0																		
Bacteroidetes	Bacteroides	Parvovellaceae	Parvovellaceae	Parvovellaceae	Parvovellaceae_xylaniphila	2 2 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Bacteroidetes	Bacteroides	Parvovellaceae	Parvovellaceae	Parvovellaceae	Parvovellaceae_copri	2 2 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Bacteroidetes	Bacteroides	Prevotellaceae	Prevotellaceae	Prevotellaceae	Prevotellaceae_copri	2 2 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Bacteroidetes	Bacteroides	Rikenellaceae	Rikenellaceae	Alistipes	Alistipes_finegoldii	2 2 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Bacteroidetes	Bacteroides	Rikenellaceae	Rikenellaceae	Alistipes	Alistipes_onederonkii	3 3 0 3 3 0 2 2 0	2 2 0 2 2 0 2 2 0																		
Firmicutes	Bacilli	Lactobacillales	Clostridia	Chlorobiales																					
------------	---------	----------------	-------------	--------------																					
	Alistipes_senegalensis	2 2 0	2 2 0	2 2 0	2 2 0																				
Tannerellaceae	Parabacteroides	3 3 0	3 3 0	3 3 0	3 3 0																				
Parabacteroides_distasonis	3 3 0	3 3 0	3 3 0	3 3 0																					
Parabacteroides_mertae	2 2 0	2 2 0	2 2 0	2 2 0																					
Enterococcus	Enterococcus	3 2 1	3 2 1	3 2 1	3 2 1																				
Lactobacillales	Lactobacillus	2 2 0	2 2 0	2 2 0	2 2 0																				
Streptococcaceae	Streptococcus	3 3 0	3 3 0	3 3 0	3 3 0																				
Streptococcus_parasanguinis	3 3 0	3 3 0	3 3 0	3 3 0																					
Streptococcus_pyogenes	3 3 0	3 3 0	3 3 0	3 3 0																					
Streptococcus_salivaruis	3 1 2	3 1 2	2 0 2	2 0 2																					
Clostridiales	Clostridium	3 3 0	3 3 0	3 3 0	3 3 0																				
Clostridium_asparagiforme	2 2 0	2 2 0	2 2 0	2 2 0																					
Clostridium_boteae	2 2 0	2 2 0	2 2 0	2 2 0																					
Clostridium_citromiae	3 3 0	3 3 0	3 3 0	3 3 0																					
Clostridium_hathewayi	2 2 0	2 2 0	2 2 0	2 2 0																					
Clostridium_sacccharolyticum	2 2 0	2 2 0	2 2 0	2 2 0																					
Clostridium_symbiosum	3 3 0	3 3 0	3 3 0	3 3 0																					
Lachnospiraceae	Coprocoscus	3 2 1	3 2 1	3 2 1	3 2 1																				
Coprocoscus_catus	3 2 1	3 2 1	3 2 1	3 2 1																					
Coprocoscus_eutactus	2 0 2	2 0 2	2 0 2	2 0 2																					
Ruminococcaceae	Clostridium IV	2 0 2	2 0 2	2 0 2	2 0 2																				
Clostridium_lectum	2 0 2	2 0 2	2 0 2	2 0 2																					
Eubacteiriaceae	Eubacterium	4 1 3	4 1 3	4 1 3	4 1 3																				
Eubacterium_rectae	4 1 3	4 1 3	4 1 3	4 1 3																					
Helobacteriaceae	Helobacterium	2 0 2	2 0 2	2 0 2	2 0 2																				
Helobacterium_modisticladium	2 0 2	2 0 2	2 0 2	2 0 2																					
Lachnospiraceae	Anaerostipes	2 0 2	2 0 2	2 0 2	2 0 2																				
Anaerostipes_hasud	2 0 2	2 0 2	2 0 2	2 0 2																					
Dorea	2 0 2	2 0 2	2 0 2	2 0 2																					
Dorea_longicatena	2 0 2	2 0 2	2 0 2	2 0 2																					
Roseburia	2 0 2	2 0 2	2 0 2	2 0 2																					
Roseburia_inulinivorans	2 0 2	2 0 2	2 0 2	2 0 2																					
Oscillospiraceae	Oscillobacter	2 0 2	2 0 2	2 0 2	2 0 2																				
Oscillobacter_valericigenes	2 0 2	2 0 2	2 0 2	2 0 2																					
Ruminococcaceae	Faecalibacterium	4 0 4	4 0 4	4 0 4	4 0 4																				
Faecalibacterium_prausnitzii	4 0 4	4 0 4	4 0 4	4 0 4																					
Flavonifractor	4 0 4	4 0 4	4 0 4	4 0 4																					
Flavonifractor_plautii	4 0 4	4 0 4	4 0 4	4 0 4																					
Ruminococcaceae	2 0 2	2 0 2	2 0 2	2 0 2																					
Ruminococcus_bromii	2 0 2	2 0 2	2 0 2	2 0 2																					
Ruminococcus_gnavus	4 0 4	4 0 4	4 0 4	4 0 4																					
Ruminococcus_mattan	2 0 2	2 0 2	2 0 2	2 0 2																					
Ruminococcus_torques	2 0 2	2 0 2	2 0 2	2 0 2																					
unclassified_Clostridiales	Clostridiales_bacterium_1_7_47F AA	2 0 2	2 0 2	2 0 2	2 0 2																				
Erysipelotrichia	Erysipelotrichales	2 0 2	2 0 2	2 0 2	2 0 2																				
Erysipelotrichales	Holdemania	2 0 2	2 0 2	2 0 2	2 0 2																				
Kingdom	Division	Class	Order	Family	Genus	Species	Enterobacteriaceae	Pasteurellales	Verrucomicrobiae																
-------------	-------------------	------------------	-----------------	---------------	--------------------	-------------------	-------------------	-----------------	-----------------																
Negativicutes	Acidaminococcales	Acidaminococcaceae	Acidaminococcus	Acidaminococcus fermentans	2	2	0	2	2	0	2	2	0	2	2	0									
Veillonellales	Veillonellaceae				Megasphaera	Megasphaera_elsdenii	2	2	0	2	2	0	2	2	0										
Proteobacteria	Deltaproteobacteria	Desulfovibrionales	Desulfovibrionaceae	Desulfovibrio	Bilophila	Bilophila_wadsworthia	2	2	0	2	2	0	2	2	0	2	2	0							
					Desulfovibrio	Desulfovibrio_desulfuricans	2	2	0	2	2	0	2	2	0	2	2	0							
					Desulfovibrio	Desulfovibrio_vulgaris	2	2	0	2	2	0	2	2	0	2	2	0							
				Enterobacteriaceae	Enterobacter	Enterobacter_cloaceae	2	2	0	2	2	0	2	2	0	2	2	0							
					Enterobacteriaceae	Enterobacter_cloacis	2	1	1	2	1	1	2	1	1	2	1	1							
					Escherichia	Escherichia_coli	4	4	0	4	4	0	3	3	0	3	3	0							
					Klebsiella	Klebsiella_pneumoniae	2	1	1	2	1	1	2	1	1	2	1	1							
					Haemophilus	Haemophilus_parainfluenzae	5	0	5	4	0	4	3	0	3	4	0	4							
					Akkermansiaceae	Akkermansia	Akkermansia_muciniphila	5	3	2	5	3	2	2	1	1	3	2	1	3	2	1	2	1	1
Table S8. Commensal microbiota alterations at Phylum, Class, Order, and Family levels in animal models of depression.

Microorganisms	Commensal microbiota	Total	Mice	Rat	Fecal samples	Cecum contents	Colon contents												
	Total no. of frequ ency	No. of incre ased	No. of decre ased	Total no. of frequ ency	No. of incre ased	No. of decre ased	Total no. of frequ ency	No. of incre ased	No. of decre ased	Total no. of frequ ency	No. of incre ased	No. of decre ased	Total no. of frequ ency	No. of incre ased	No. of decre ased				
Phylum																			
Actinobacteria	35	14	21	35	14	21	27	9	18	8	5	3	30	11	19	5	3	2	
Bacteroidetes	73	40	33	73	40	33	49	25	24	22	15	7	51	29	22	17	9	5	
Cyanobacteria	11	3	8	11	3	8	8	3	5	3	0	3	9	2	7	2	1	1	
Deferribacteres	12	7	5	12	7	5	11	7	4	11	7	4	11	7	4	11	7	4	
Firmicutes	78	28	50	78	28	50	55	18	37	23	10	13	58	20	38	15	6	9	
Proteobacteria	48	37	11	48	37	11	41	31	10	7	6	1	34	26	8	10	6	4	
Tenericutes	15	5	10	15	5	10	13	4	9	2	1	1	14	5	9				
TM7	5	2	3	5	2	3	4	2	2	4	1	3							
Verrucomicrobia	30	14	16	30	14	16	23	11	12	7	3	4	18	7	11	8	5	3	4
Class																			
Actinobacteria	9	7	2	9	7	2	3	2	1	5	4	1	4	2	2	3	3	0	
Coriobacteria	4	1	3	4	1	3	3	1	2	4	1	3							
Bacteroidetes	15	7	8	15	7	8	12	6	6	3	1	2	11	6	5	3	1	2	
Cyanobacteria	3	2	1	3	2	1	3	2	1	2	1	1							
Deferribacteres	5	4	1	5	4	1	4	3	1	5	4	1							
Bacilli	15	7	8	15	7	8	9	4	5	6	3	3	8	3	5	3	3	2	
Clostridia	17	11	6	17	11	6	12	7	5	5	4	1	11	7	4	3	1	2	
Erysipelotrichia	10	3	7	10	3	7	9	3	6	8	2	6							
Negativicutes	2	1	1	2	1	1	2	1	1	2	1	1							
Proteobacteria																			
Alphaproteobacteria	6	0	6	6	0	6	5	0	5	4	0	4	2	0	2				
Betaproteobacteria	7	5	2	7	5	2	2	1	1	5	4	1	3	2	1	3	3	0	
Deltaproteobacteria	9	7	2	9	7	2	4	4	0	5	3	2	6	6	0				
Epsilonproteobacteria	7	7	0	7	7	0	6	6	0	4	0	2	2	0					
Gammaproteobacteria	8	8	0	8	8	0	7	7	0	8	6	6	0						
Spirochaetes	3	2	1	3	2	1	3	2	1	3	2	1							
Tenericutes	7	4	3	7	4	3	6	4	2	6	4	2							
Phylum	Class	Order	Family	Count															
--------------	------------------------	------------------------	-------------------------	-------															
Verrucomicrobiota	Verrucomicrobiae			8 5 3 8 5 3 7 4 3	4 2 2 2 1 1 2 2 0														
Actinobacteria	Actinomycetales			4 2 2 4 2 2 2 1 1	2 1 1 3 1 2														
	Bifidobacteriales			10 6 4 10 6 4 6 2 4	4 4 0 3 2 1 6 3 3														
	Micrococcales			2 0 2 2 0 2															
	Coriobacteriia			4 2 2 4 2 2 3 2 1	4 2 2														
Bacteroidetes	Bacteroidales			24 14 10 24 14 10	19 11 8 5 3 2 19 12 7 4 2 2														
Cyanobacteria	4C0d-2			3 2 1 3 2 1 3 2 1 3	2 1 1														
	Melainabacteria			3 0 3 3 0 3															
	Deferribacteres			6 4 2 6 4 2 5 4 1	5 4 1														
Firmicutes	Bacillales			13 7 6 13 7 6 8 5 3	4 2 2 9 5 4 2 1 1														
	Lactobacillales			19 8 11 19 8 11 13 4 9	6 4 2 9 4 5 6 3 3														
	Clostridia			26 14 12 26 14 12	18 9 9 8 5 3 17 8 9 5 2 3 2 2 0														
	Erysipelotrichia			10 3 7 10 3 7 9 3 6	8 2 6														
	Negativicutes			2 1 1 2 1 1															
Proteobacteria	Alphaproteobacteria			2 1 1 2 1 1	2 1 1														
	Rickettsiales			3 0 3 3 0 3	3 0 3 2 0 2														
	Sphingomonadales			2 1 1 2 1 1	2 1 1														
	Betaproteobacteria			8 5 3 8 5 3 2 2 0	6 3 3 4 1 3 4 4 0														
	Deltaproteobacteria			11 9 2 11 9 2 6 6 0	5 3 2 6 6 0 3 2 1														
	Epsilonproteobacteria			9 8 1 9 8 1 8 7 1	6 5 1 2 2 0														
	Gammaproteobacteria			4 4 0 4 4 0 4 4 0	3 3 0														
	Enterobacterales			3 2 1 3 2 1	2 2 0 2 1 1														
Spirochaetes	Spirochaetales			3 2 1 3 2 1 3 2 1	3 2 1														
Tenericutes	Mollicutes			5 1 4 5 1 4 4 0 4	3 1 2 2 0 2														
	Anaeplastomatales			3 1 2 3 1 2 3 1 2															
	Mycoplastomatales			3 1 2 3 1 2 3 1 2															
	Mollicutes_RF39			6 3 3 6 3 3 6 3 3	6 3 3 6 3 3														
Verrucomicrobiota	Verrucomicrobiae			8 4 4 8 4 4 7 3 4	4 2 2 2 0														

Phylum	Class	Order	Family	Count	
Actinobacteria	Bifidobacteriales			15 8 7 15 8 7 9 3 6	6 5 1 7 4 3 7 3 4
	Micrococcales			4 1 3 4 1 3 2 1 1 2	0 2 3 0 3 0 3
	Corynebacteriales			3 2 1 3 2 1	2 1 1
Actinomycetales	Corynebacteriales			3 2 1 3 2 1	2 1 1
Coriobacteriia	Coriobacteriales			15 5 10 15 5 10 12 5 7	3 0 3 12 5 8
	Atopobacteriaceae			2 1 1 2 1 1	
Domain	Class	Order	Family	Genus	
-----------	----------------	----------------------	------------------	----------------	
Bacteroidetes	Bacteroides	Bacteroidales	Bacteroidaceae	Eggerthellaes	
			Eggerthellaceae	6 2 4	
			Bacteroidaceae	6 2 4 5 2 3	
			Bacteroidales_RF16_group	3 2 1 3 2 1	
			Bacteroidales_S24-7_group	21 10 11 21 10 11 13 5 8	
			Multiaculaceae	20 5 15 20 5 15 13 2 11	
			Odoribacterae	6 2 4 6 2 4 6	
			Paraprevotellaceae	4 2 2 4 2 2	
			Porphyromonadaceae	14 9 5 14 9 5	
			Prevotellaceae	31 13 18 31 13 18	
			Rikenellaceae	28 11 17 28 11 17	
			Tannerellaceae	6 2 4 6 2 4 6	
			Marinilabales	2 2 0 2 2 0 2	
			Cytophagia	2 2 0 2 2 0 2	
			Clostridiales_vadinBB60_group	7 4 3	
			Bacillales	9 4 5 9	
			Planococcaceae	2 2 0 2 2 0 2	
			Staphylococcaceae	9 5 4 9 5 4 7	
			Aerococcaceae	5 4 1 5 4 1 3	
			Carnobacteriaceae	5 2 3 5 2 3 3	
			Entococcaceae	7 4 3 7 4 3 6	
			Lactobacillaceae	36 12 24	
			Streptococcaceae	2	
			Turicibacteriales	3 1 2	
			Clostridiales_vadinBB60_group	7 4 3	
			Clostridaceae	20 15 5 20 15 5 14 11 3	
			Defluvialataceae	2 0 2 2 0 2 2	
			Exhattachaeae	4 1 3 4 1 3 4	
			Mogibacteriaceae	6 2 4 6 2 4 6	
			Oscillospiraceae	3 2 1 3 2 1 2	
			Peptococcaceae	10 4 6 10 4 6 7	

Firmicutes
Domain	Phylum	Class
Bacteria	Peptostreptococcaceae	Ruminococcaceae
	Erysipelotrichiales	Erysipelotrichiales
	Erysipelotrichiales	Acidaminococcaceae
	Acidaminococcaceae	Acidaminococcaceae
	Veillonellales	Veillonellales
	Veillonellales	Anaerovoracaceae
	Monoglobaceae	
Patescibacteria	Saccharimonadaceae	
	Saccharimonadaceae	
Proteobacteria	Alphaproteobacteria	
	Hyphomicrobiales	
	Rhizobiales	
	Rhodospirillales	
	Rhodospirillales	
	Sphingomonadaceae	
	Betaproteobacteria	Burkholderiales
	Burkholderiales	
	Burkholderiales	Comamonadaceae
	Comamonadaceae	
	Oxalobacteriales	
	Sutterellaceae	
	Desulfo bacteriabacteriabacterina	
	Desulfo bacteriabacteriabacterina	
	Epsilonproteobacteria	
	Campylobacteriales	
	Helicobacteriales	
	Enterobacteriales	
	Enterobacteriales	
	Pasteurellace	
	Pseudomonadace	
	Moraxellace	
	Pseudomonadace	
Spirochaetes	Spirochaetales	
	Spirochaetales	
	Brachyspirochales	
Tenericutes	Mollicutes	
	Anaeroplasmatales	
	Anaeroplasmatales	
	Mycoplasmatales	
	Mycoplasmatales	
Verrucomicrobia	Verrucomicrobiales	
	Verrucomicrobiales	
	AK160630	
Table S9. Commensal microbiota alterations at Genus level in animal models of depression.

Microorganisms	Class	Order	Family	Genus	Total	Mice	Rats	Fecal samples	Cecum contents	Colon contents
Phylum										
Actinobacteria	Actinomycales	Micrococcales	Rothia	9 4 5	9 4 5	9 4 5	5 3 2	2 0 2		
Bifidobacteriales	Nocardia	Nocardia	Rhodococcus	3 1 2	3 1 2	3 1 2	2 1 1			
Corynbacteriales	Corynbacteriales	Corynbacteriales	Bifidobacterium	11 6 5	11 6 5	4 3 1	7 3 4	2 2 0		
Micrococcales	Brevibacteriales	Brevibacteriales	Brevibacterium	3 2 1	3 2 1	2 2 0	2 2 0			
	Dermabacteriales	Dermabacteriales	Brachybacterium	3 2 1	3 2 1	2 2 0	2 2 0			
	Coriobacteriales	Coriobacteriales	Coriobacteriaceae_UCG-002	11 3 8	11 3 8	9 3 6	2 0 2	3 0 3		
Eggerthellales	Eggerthellales	Eggerthellales	Adlercreutzia	10 7 3	10 7 3	9 7 1	8 5 3			
Bacteroidetes	Bacteroides	Bacteroides	Bacteroides	59 36 23	59 36 23	42 27 15	17 9 8	41 25 16	11 7 4	6 3 3
	Barnesiellaceae	Barnesiellaceae	Barnesiella	11 4 7	11 4 7	11 4 7	6 3 3	3 1 2	2 0 2	
	Muribaculaceae	Muribaculaceae	Muribaculum	9 2 7	9 2 7	8 2 6	7 1 6			
	Odoribacteraceae	Odoribacteraceae	Butyricimonas	13 5 8	13 5 8	10 4 6	3 1 2	10 4 6	2 1 1	
Porphyromonadaceae	Odoribacter	Odoribacter	Odoribacter	18 10 8	18 10 8	17 9 8	10 5 5	7 4 3		
Prevotellaceae	Alloprevotella	Alloprevotella	Alloprevotella	25 15 10	25 15 10	17 11 6	8 4 4	17 12 5	2 1 1	5 1 4
	Paraprevotella	Paraprevotella	Paraprevotella	10 4 6	10 4 6	9 4 5	9 3 6			
	Prevotella	Prevotella	Prevotella	27 14 13	27 14 13	20 7 13	7 7 0	10 10 9	3 2 1	5 2 3
	Prevotella-1	Prevotella-1	Prevotella-1	2 1 1	2 1 1	2 1 1				
	Prevotella-9	Prevotella-9	Prevotella-9	5 3 2	5 3 2	5 3 2				
Phylum	Taxonomy	Relative Abundance								
------------------------	--------------------------------	--------------------								
Firmicutes	Bacilli	10%								
	Planococccae	3%								
	Staphylococccae	2%								
	Gemellae	1%								
	Lactobacillae	1%								
	Turicibacteres	0%								
Clostridia	Caldicoprobacterae	0%								
	Christensenellaceae	0%								
	Clostridales	0%								

Table

Taxonomy	Relative Abundance																								
Bacilli	10%																								
Planococccae	3%																								
Staphylococccae	2%																								
Gemellae	1%																								
Lactobacillae	1%																								
Turicibacteres	0%																								
Caldicoprobacterae	0%																								
Christensenellaceae	0%																								
Clostridales	0%																								
Family / Genus	Relative Abundance																								
--------------------------------------	--------------------																								
Clostridium	19 10 9 19 10 9 11 7 4 8 3 5 15 8 7 4 2 2																								
Clostridium_sensu_stricto	9 8 1 9 8 1 5 5 0 3 2 1 4 4 0 3 2 1																								
SMB53	3 1 2 3 1 2 2 1 1 2 0 2																								
Clostridiales_Family_XIII_Incertae_Sedis	**Anaerovorax**	4 2 2 4 2 2 2 2 0 2 0 2 4 2 2																							
Dehalobacteriaceae	**Dehalobacterium**	7 3 4 7 3 4 4 2 2 3 1 2 7 3 4																							
Eubacteriaceae	**[Eubacterium]_coprostanoligenes_group**	2 0 2 2 0 2 2 0 2 0 2																							
Anaeorofutis	7 4 3 7 4 3 6 3 3 6 4 2																								
Family_XIII	**Family_XIII_AD3011_group**	3 3 0 3 3 0 3 3 0 2 2 0																							
Butyrivibrio	**Family_XIII_UCG_001**	2 0 2 2 0 2 2 0 2																							
Acetatifactor	**Acetatifactor**	4 0 4 4 0 4 2 0 2 2 0 2 3 0 3																							
Anaerostipes	**Anaerostipes**	4 1 3 4 1 3 4 1 3 2 0 2																							
Blastia	**Blastia**	18 13 5 18 13 5 7 4 3 10 8 2 13 10 3 3 2 1																							
Butyrivibrio	**Butyrivibrio**	3 2 1 3 2 1 2 1 1 2 2 0																							
Coproccocus	**Coproccocus**	19 9 10 19 9 10 9 6 3 10 3 7 6 6 10 3 3 0																							
Dorea	**Dorea**	13 7 6 13 7 6 9 5 4 4 2 2 10 4 6 2 2 0																							
Fusiceutibacter	**Fusiceutibacter**	2 1 1 2 1 1 2 1 1 2 1 1																							
Lachnobacterium	**Lachnobacterium**	6 2 4 6 2 4 3 2 1 3 0 3 4 2 2 2 0 2																							
Lachnoclostridium	**Lachnoclostridium**	8 7 1 8 7 1 4 3 1 4 4 0 3 2 1 4 4 0																							
Lachnospira	**Lachnospira**	8 4 4 8 4 4 4 2 2 3 1 2 7 3 4 2 0 2																							
Lachnospiraceae_NC2004_group	**Lachnospiraceae_NC2004_group**	2 0 2 2 0 2																							
Lachnospiraceae_ND3007_group	**Lachnospiraceae_ND3007_group**	2 1 1 2 1 1 2 1 1 2 1 1																							
Lachnospiraceae_NK4A136_group	**Lachnospiraceae_NK4A136_group**	16 6 10 16 6 10 9 4 5 7 2 5 9 4 5 3 1 2 2 0 2																							
Lachnospiraceae_UCG-001	**Lachnospiraceae_UCG-001**	6 2 4 6 2 4 2 0 2 4 2 2 5 2 3																							
Lachnospiraceae_UCG-004	**Lachnospiraceae_UCG-004**	2 1 1 2 1 1 2 1 1 2 1 1																							
Lachnospiraceae_UCG-006	**Lachnospiraceae_UCG-006**	3 2 1 3 2 1 2 2 0 3 2 1																							
Marvinbryantia	**Marvinbryantia**	10 4 6 10 4 6 3 1 2 7 3 4 9 4 5																							
Robinsonella	**Robinsonella**	2 2 0 2 2 0 2 2 0																							
Roseburia	**Roseburia**	14 2 12 14 2 12 6 2 4 8 0 8 11 2 9 2 0 2																							
Family	Genus	2	1	1	2	1	1	2	1	1	2	1	1	2	1	1	4	2	2						
---------------------	-------------------	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----						
Oscillospiraceae	Tyzzerella	2	1	1	2	1	1	2	1																
	Tyzzerella-3	2	0	2	2	0	2																		
	Intestimonomas	6	2	4	6	2	4	4	1	3	2	1	1	4	2	2									
	Oscillibacter	20	15	5	20	15	5	10	8	2	10	7	3	16	13	3	2	1	1						
Peptococcaceae	Peptococcus	3	2	1	3	2	1	2	1	1	2	1	1												
	rc4_4	3	2	1	3	2	1	2	2	0				2	1	1									
Peptostreptococcaceae	Peptostreptococcaceae_incertae_sedis	2	0	2										2	0	2									
	Romboutsia	9	3	6	9	3	6	2	2	0	7	1	6	6	3	3									
	Terrisporobacter	2	0	2	2	0	2	2	0	2															
Ruminococcaceae	Anaerotruncus	12	7	5	12	7	5	9	6	3	3	1	2	6	4	2	6	3	3						
	Clostridium_JV	5	2	3	5	2	3	5	2						4	1									
	Eubacterium	12	3	9	12	3	9	7	2	5	4	1	3	9	1	8									
	Faecalibacterium	4	1	3	4	1	3	2	0	2	2	1	1	4	1	3									
	Flavonifractor	3	2	1	3	2	1	3	2	1															
	Gemmiger	2	0	2	2	0	2	2	0	2															
	Harryflintia	3	1	2	3	1	2	2	1	1															
	Oscillospira	24	13	11	24	13	11	15	8	7	8	4	4	20	10	10	3	2	1						
	Pseudoflavonifractor	5	4	1	5	4	1	5	4	1															
	Ruminoclostridium	6	1	5	6	1	5	3	1	2	3	0	3	4	1	3	2	0	2						
	Ruminoclostridium-5	7	4	3	7	4	3	7	4	3	5	3	2												
	Ruminoclostridium-6	8	4	4	8	4	4	2	1	1	6	3	3	7	4	3									
	Ruminoclostridium-9	7	4	3	7	4	3				6	3	3	5	4	1									
	Ruminococcaceae_NK4A21_4_group	5	2	3	5	2	3	4	2	2	3	1	2	2	1	1									
	Ruminococcaceae_UCG-004	3	0	3	3	0	3																		
	Ruminococcaceae_UCG-005	7	3	4	7	3	4				5	1	4	5	1	4									
	Ruminococcaceae_UCG-010	4	2	2	4	2	2	2	2	0															
	Ruminococcaceae_UCG-013	9	4	5	9	4	5	3	2	1	6	2	4	5	2	3	2	1	1						
	Ruminococcaceae_UCG-014	17	6	11	17	6	11	8	3	5	9	3	6	10	5	8	2	0	2	1					
	Ruminococcus	32	16	16	32	16	16	20	8	12	12	8	4	24	12	12	6	3	3						
	Ruminococcus-1	7	4	3	7	4	3	2	1	1	5	2	2	6	3	3									
	Ruminococcus-2	3	2	1	3	2	1							2	1	3	2	1							
Veillonellaceae	Phascolarctobacterium	6	3	3	6	3	3	2	1	1	4	2	2	6	3	3									
Class	Order	Genus	Count																						
-----------------------------	---------------------------------	-----------------------------	-------																						
Proteobacteria																									
Erysipelotrichia		Veillonella	5 3 2																						
		Dialister	4 0 4																						
		A2	2 0 2																						
		Coprobacillaceae	4 3 1																						
		Coprobacillus	3 2 1																						
		Dubosiella	7 4 3																						
		Allobaculum	35 16																						
		Erysipelatoclostridium	5 2 3																						
		Faecalibaculum	5 2 3																						
		Faecalitalea	2 1 1																						
		Anaerovibrio	3 3 0																						
		Veillonellaceae	5 3 2																						
		Devosia	2 0 2																						
		Sphingomonadaceae	4 2 2																						
		Brucellaceae	3 3 0																						
		Rhizobiales	2 0 2																						
		Brucellaceae	3 1 2																						
		Captavidis	3 3 0																						
		Ralstonia	2 1 1																						
		Oxaibacteriaceae	5 2 0																						
		Parasutterella	10 5 5																						
		Sutterella	6 4 2																						
		Neisseria	2 0 2																						
		Neisseriae	3 1 2																						
		Desulfovibrionales	8 6 2																						
		Desulfovibrioaceae	25 14																						
		Flexispira	2 0 2																						
		Helicobacter	21 16																						
		Enterobacteriaceae	8 7 1																						
		Enterobacteriaceae	7 8 1																						
		Enterobacteriaceae	7 8 1																						
		Enterobacteriaceae	7 8 1																						
		Morganellaceae	5 4 1																						
		Proteus	2 1 1																						
		Pasteurellaceae	3 3 0																						
		Pasteurellaceae	3 3 0																						
		Haemophilus	2 0 2																						
Negativicutes																									
		Selenomonadales	3 3 0																						
		nonrank_Firmicutes	3 3 0																						
		sensu stricto incertae sedis	3 3 0																						
		Veillonellaceae	2 0 2																						
		Anaerovibrio	2 0 2																						
		Veillonellaceae	5 3 2																						
		Negativibacillus	5 3 2																						
Alphaproteobacteria																									
Betaproteobacteria																									
		Burkholderiaceae	3 1 2																						
		Burkholderia	3 1 2																						
		Captavidis	3 3 0																						
		Ralstonia	2 1 1																						
		Oxaibacteriaceae	5 2 0																						
		Parasutterella	10 5 5																						
		Sutterella	6 4 2																						
		Neisseria	2 0 2																						
		Neisseriae	3 1 2																						
		Bilophila	8 6 2																						
		Desulfovibrionales	25 14																						
		Flexispira	2 0 2																						
		Helicobacter	21 16																						
		Enterobacteriaceae	8 7 1																						
		Enterobacteriaceae	7 8 1																						
		Enterobacteriaceae	7 8 1																						
		Enterobacteriaceae	7 8 1																						
		Morganellaceae	5 4 1																						
		Proteus	2 1 1																						
		Pasteurellaceae	3 3 0																						
		Pasteurellaceae	3 3 0																						
		Haemophilus	2 0 2																						
Kingdom	Phylum	Class	Order	Family	Genus	Abbreviation	Male	Female	Male	Female	Male	Female													
---------	--------	-------	-------	--------	-------	--------------	------	--------	------	--------	------	--------													
Bacteria	Pseudomonadales	Moraxellaceae	Acinetobacter	4	2	2	3	1	2	2	1	1	2	0	2										
			Psychrobacter	4	2	2	4	2	2	3	2	1	2	0	2	2	0								
			Pseudomonadales	Pseudomonas	2	1	1	2	1	1	2	1	1	2	1	1									
			Xanthomonadales	Xanthomonadaceae	Lyso bacter	2	1	1	2	1	1	2	1	1											
		Spirochaetales	Spirochaetes	Spirochaetaceae	Treponema	2	0	2	0	2	0	2	0	2	0	2	0								
			Tenericutes	Mollicutes	Anaeroplasmatales	Anaeroplasmataceae	Anaeroplasma	11	3	8	11	3	8	8	1	7	3	2	1	9	3	6	2	0	2
			Mycoplasmatales	Mycoplasmataceae	Mycoplasma	4	2	2	4	2	2	2	2	2	2	2	0								
		Verrucomicrobia	Verrucomicrobiae	Verrucomicrobiales	Akkermansia	30	16	14	30	16	14	23	13	10	7	3	4	18	9	9	8	5	3	2	1
						ASF356	3	2	1	3	2	1	3	2	1										
						LARJ	2	1	1	2	1	1	2	1	1										
						LLKB	2	2	0	2	2	0	2	2	0	2	2	0	2	2	0	2	2	0	
Microorganisms	Total	Mice	Rat	Monkey	Fecal samples	Cecum contents	Colon contents																		
----------------	-------	------	-----	---------	---------------	----------------	----------------																		
Phylum																									
Firmicutes																									
Bacilli																									
Lactobacillales																									
Lactobacillus																									
Lactobacillus_anaerobius																									
Lactobacillus_animalis																									
Lactobacillus_intestinalis																									
Lactobacillus_johnsonii																									
Lactobacillus_murinus																									
Lactobacillus_ruber																									
Streptococcaceae																									
Streptococcus																									
Clostridiales																									
Clostridiaceae																									
Candidatus_Atharomitus																									
Clostridium																									
Class																									
Bacteroidia																									
Bacteroidiales																									
Bacteroides																									
Deferribacteres																									
Deferribacteraceae																									
Deferribacter																									
Butyricimonas																									
Butyricimonas_visibunda																									
Prevotellaeae																									
Prevotella																									
Rikenellaeae																									
Alstipes																									
Family																									
Bacteroidaceae																									
Order																									
Species																									
Actinobacteria																									
Actinomyces																									
Actinomyces_venadinus																									
Bacteroidetes																									
Bacteroids																									
Firmicutes																									
Bacilli																									
Lactobacillales																									
Lactobacillus																									
Lactobacillus_animalis																									
Lactobacillus_intestinalis																									
Lactobacillus_johnsonii																									
Lactobacillus_murinus																									
Lactobacillus_ruber																									
Streptococcaceae																									
Streptococcus																									
Clostridiales																									
Clostridiaceae																									
Candidatus_Atharomitus																									
Clostridium																									
Clostridium_faecis																									
Clostridium_faecorum																									
Table S10. Commensal microbiota alterations at Species level in animal models of depression.																									

Table S10. Commensal microbiota alterations at Species level in animal models of depression.	Total	Mice	Rat	Monkey	Fecal samples	Cecum contents	Colon contents
Phylum							
Firmicutes							
Bacilli							
Lactobacillales							
Lactobacillus							
Lactobacillus_animalis							
Lactobacillus_intestinalis							
Lactobacillus_johnsonii							
Lactobacillus_murinus							
Lactobacillus_ruber							
Streptococcaceae							
Streptococcus							
Clostridales							
Clostridiaceae							
Candidatus_Atharomitus							
Clostridium							
Clostridium_faecis							
Clostridium_faecorum							
Table S10. Commensal microbiota alterations at Species level in animal models of depression.							

Table S10. Commensal microbiota alterations at Species level in animal models of depression.	Total	Mice	Rat	Monkey	Fecal samples	Cecum contents	Colon contents		
Phylum									
Firmicutes									
Bacilli									
Lactobacillales									
Lactobacillus									
Lactobacillus_animalis									
Lactobacillus_intestinalis									
Lactobacillus_johnsonii									
Lactobacillus_murinus									
Lactobacillus_ruber									
Streptococcaceae									
Streptococcus									
Clostridiales									
Clostridiaceae									
Candidatus_Atharomitus									
Clostridium									
Proteobacteria	Epsilonproteobacteria	Campylobacteriaceae	Helicobacteriaceae	Helicobacter	Verrucomicrobiae	Verrucomicrobiae	Akkermansiacae	Akkermansia	FJ880724
---------------	----------------------	---------------------	---------------------	-------------	-----------------	-----------------	--------------	------------	---------
Eubacteriaceae	Eubacterium	Eubacterium_plexicaudatum	2 1 1	2 1 1	2 1 1	2 1 1	2 1 1		
		Eubacterium_ruminantium	2 1 1	2 1 1	2 1 1	2 1 1	2 1 1		
Lachnospiraceae	Blautia	Blautia_glucerasea	2 0 2	2 0 2	2 0 2	2 0 2	2 0 2		
		Blautia_hydrogenotrophica	2 2 0	2 2 0	2 2 0	2 2 0	2 2 0		
Oscillospiraceae	Oscillibacter	Oscillibacter_valericigenes	2 1 1	2 1 1	2 1 1	2 1 1	2 1 1		
Ruminococcaceae	ClostridiumIV	Clostridium_leptum	2 2 0	2 2 0	2 2 0	2 2 0	2 2 0		
		Fusobacterium	2 1 1	2 1 1	2 1 1	2 1 1	2 1 1		
		Flavonifractor	3 2 1	3 2 1	3 2 1	3 2 1	3 2 1		
		Ruminococcus	2 2 0	2 2 0	2 2 0	2 2 0	2 2 0		
		Ruminococcus_brontii	2 2 0	2 2 0	2 2 0	2 2 0	2 2 0		
		Ruminococcus_lactaris	2 0 2	2 0 2	2 0 2	2 0 2	2 0 2		
		Helicobacter_gammani	2 2 0	2 2 0	2 2 0	2 2 0	2 2 0		
		Helicobacter_japonicus	2 2 0	2 2 0	2 2 0	2 2 0	2 2 0		
		Helicobacter_macacae	2 0 2	2 0 2	2 0 2	2 0 2	2 0 2		
		Helicobacter_rheintotium	4 4 0	4 4 0	4 4 0	4 4 0	4 4 0		
		Esherichia coli	7 4 3	7 4 3	7 4 3	7 4 3	7 4 3		
Gammaproteobacteria	Enterobacteriaceae	Enterobacteriaceae	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1		
		Escherichia	7 4 3	7 4 3	7 4 3	7 4 3	7 4 3		
		Acinetobacter	2 1 1	2 1 1	2 1 1	2 1 1	2 1 1		
Vernamicrobiae	Vernamicrobiaceae	Vernamicrobiaceae	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1		
		Akkermansia	3 3 0	3 3 0	3 3 0	3 3 0	3 3 0		
		Akkermansia_muciniphila	2 2 0	2 2 0	2 2 0	2 2 0	2 2 0		
		FJ880724	2 1 1	2 1 1	2 1 1	2 1 1	2 1 1		

Note: The numbers represent the number of bacteria species present in each category.
Table S11. Characteristics of studies investigating the efficiency of gut microbiota-based therapeutics in patients with depression.

Study	Depression model	Microbiota-based therapies	Genus	Species	Intervention method	Depression alleviation	Gut-brain axis mechanism	OCEBM evidence level	
Kilincarslan S et al. 2020[1]	IBD patients with depression symptoms	Fecal microbiota transplantation	_	_	The fresh stool from healthy donors was diluted with saline before transplantation, and the suspension was prepared by mixing with a spatula. The stool suspension was infused into the patient through colonoscopy.	The severity of anxiety, depression and obsession in IBD patients decreased after FMT	_	3	
Kurokawa S et al. 2018[2]	IBS patients with depression symptoms	Fecal microbiota transplantation	_	_	Approximately 100 g of feces were collected from the pack, dissolved in 200 mL of saline	Depression and anxiety symptoms were improved by FMT regardless of gastrointestinal symptom change in patients with IBS	FMT altered disordered fecal microbiota	3	
Lin H et al. 2021[3]	IBS patients with depression symptoms	Fecal microbiota transplantation	_	_	The donor is a healthy 36-year-old male. Patients received FMT treatment (oral administration) from May 2019 to December 2019. The patients took the intestinal flora capsules 3 times in total, once every other day, 30 capsules each time	FMT treatment can effectively alleviate the anxiety and depression behaviors of IBS-D patients	FMT treatment regulated the gut microbiota	2	
Guo Q et al. 2021[4]	IBS patients with depression symptoms	Fecal microbiota transplantation with enterobacteria capsules	_	_	The FMT treatment was intervened by oral enteric capsules for 3 times (every 2 days one time and 30 capsules each time)	FMT therapy alleviated anxiety/depression symptom in IBS patients	FMT therapy restored the intestinal micro-ecology	2	
Chinna Meyyappan A et al. 2022[5]	Patients with MDD and GAD	Multispecies probiotics	_	_	Microbial Ecosystem Therapeutic-2 (MET-2), which contained 40 strains of bacteria	During the 8 weeks of treatment, all participants consumed three MET-2 capsules per day orally; each 0.5-g MET-2 capsule contains 3.2 × 10^5 to 3.2 × 10^11 CFU	Over the course of 10 weeks, MET-2 significantly decreased mean MADRS and GAD-7 scores	_	3
Dao VH et al. 2021[6]	Chronic gastrointestinal disorders patients with depression symptoms	Multi-strain probiotics	Lactobacillus, Bifidobacterium, Lactococcus	B. bifidum W23, B. lactis W52, L. acidophilus W37, L. brevis W65, L. casei W66, L. salivarius W24, Lc. lactis W19, Lc. lactis W58	The product consists of over 2.5 × 10^9 CFU per gram, patients would mix one sachet (2g of product) in 100mL of water for 8 weeks	Supplementation of multi-strain probiotic (Bacillus coagulans Unique IS2, L. rhamnosus UBRL58, B. lactis UBBLa70, L. plantarum UBLP40, B. breve UBBr01, B. infantis UBBB01) significantly reduced the depressive symptoms in students facing examination stress	_	3	
Venkataraman R et al. 2021[7]	Students facing examination stress	Multi-strain probiotics	Bacillus, Lactobacillus, Bifidobacterium	Bacillus coagulans Unique IS2, L. rhamnosus UBRL58, B. lactis UBBLa70, L. plantarum UBLP40, B. breve UBBr01, B. infantis UBBB01	Receiving the multi-strain probiotic (Bacillus coagulans Unique IS2, L. rhamnosus UBRL58, B. lactis UBBLa70, L. plantarum UBLP40 (each of 2 billion CFU); B. breve UBBr01, B. infantis UBBB01) significantly reduced the depressive symptoms in students facing examination stress	_	2		
Akkasheh G et al. 2016[8]
Patients with MDD
Probiotics
Lactobacillus, Bifidobacterium
L. acidophilus, L. casei, B. bifidum
Capsule with glutamine (250 mg) 2 times a day for 28 days
Patients in the probiotic group received daily one probiotic capsule containing L. acidophilus (2 × 10^9 CFU/g), L. casei (2 × 10^9 CFU/g), and B. bifidum (2 × 10^9 CFU/g) for 8 weeks
After 8 wk of intervention, patients who received probiotic supplements had significantly decreased Beck Depression Inventory total scores
Probiotic administration in patients with MDD for 8 wk had beneficial effects insulin, homeostasis model assessment of insulin resistance, hs-CRP concentrations, and glutathione concentrations

Baião R et al. 2022[9]
Patients with moderate depression
Probiotics
Bacillus, Bifidobacterium, Lactobacillus, Streptococcus
14 species: B. subtilis PXN® 21, B. bifidum PXN® 23, B. breve PXN® 25, B. infantis PXN® 27, B. longum PXN® 30, L. acidophilus PXN® 35, L. delbrueckii ssp. bulgaricus PXN® 39, L. casei PXN® 37, L. plantarum PXN® 47, L. rhamnous PXN® 54, L. helveticus PXN® 45, L. salivarius PXN® 57, L. lactis ssp. lactis PXN® 63, S. thermophilus PXN® 66
Participants were asked to take four capsules (2 × 10^9 CFU) in the morning each day with food within 4 weeks
Probiotic intake significantly reduced depression scores on the Patient Health Questionnaire 9

Bambling M et al. 2017[10]
Patients with SSRI treatment resistant depression
Probiotics
Lactobacillus, Bifidobacterium, Streptococcus
L. acidophilus, B. bifidum, S. thermophiles
Capsules administered pre meals as a combination of lyophilized probiotics (L. acidophilus, B. bifidum, S. thermophiles total CFU of 2 × 10^10) and magnesium orotate 1600 mg divided in two daily doses for 8 weeks
At the end of an 8-week intervention mean changes for depression scores and quality of life in the group was clinically significantly improved

Chen HM et al. 2021[11]
Patients with MDD
Probiotics
Lactobacillus
L. plantarum PS128 (PS128)
One PS128 capsule twice a day was gaven to recruited patients, each PS128 capsule contains 300 mg of probiotics, equivalent to 3 × 10^10 CFU of Lactobacillus plantarum PS128
After 8-week PS128 intervention, scores of Hamilton Depression Rating Scale-17 and Depression and Somatic symptoms Scale significantly decreased

Jamilian M et al. 2018[12]
Women with polycystic ovary syndrome
Probiotics
Lactobacillus, Bifidobacterium
L. acidophilus, L. reuteri, L. fermentum, B. bifidum
Intaking 8 × 10^9 CFU/day probiotic containing L. acidophilus, L. reuteri, L. fermentum, B. bifidum (2 × 10^9 CFU/g each) plus 200 μg/day selenium for 12 weeks
Probiotic and selenium co-supplementation resulted in a significant improvement in beck depression inventory and depression anxiety and stress scale scores compared with the placebo
Co-administration of probiotic and selenium for 12 weeks to women with PCOS had beneficial effects on mental health parameters, serum total testosterone, hirsutism, hs-CRP, TAC, GSH and MDA levels

Kazem YI et al. 2021[13]
Healthy female volunteers
Probiotics
Bifidobacterium
Yogurt enriched with Bifidobacterium spp.
All volunteers were given seven cups of yogurt every week (as one cup daily) fortified with the strain specific probiotic which was Bifidobacterium spp. for 8 weeks provided that each cup of yogurt was weighing 100 g
Bifidobacterium spp. supplementation combined with improvement in dietary intake resulted in improvement of depressive mood and well-being
Bifidobacterium spp. supplementation reduced kynurenine blood level
Study Authors & Year	Study Population	Probiotics	Description	Comparator	Key Findings
Kim CS et al. 2019[14]	Nationwide individuals	Probiotics	The types of probiotic food included fermented vegetables (kimchi) and fermented milk products	Compared with the lowest tertile of probiotic food consumption, the highest tertile had significantly lower odds in PHQ-9 depression severity and self-reported clinical depression, particularly in men	–
Lee HJ et al. 2021[15]	Healthy adults	Probiotics	Lactobacillus, Bifidobacterium	NVP-1704 group had a more significant reduction in depressive symptoms at four and eight weeks of treatment, and anxiety symptoms at four weeks compared to the placebo group	NVP-1704 treatment decreased serum interleukin-6 levels, and regulated the gut microbiota composition
Majeed M et al. 2018[16]	MDD patients with IBS	Probiotics	Bacillus coagulans MTCC 5856	B. coagulans MTCC 5856 reduced the depression symptoms in MDD patients with IBS (HAM-D, MADRS)	B. coagulans MTCC 5856 reduced the level of serum myeloperoxidase
Messaoudi M et al. 2011[17]	Healthy human volunteers	Probiotics	Lactobacillus, Bifidobacterium	Administration of probiotics significantly alleviated depression and anxiety in volunteers, as measured by the HSCL-90 scale	–
Mi GL et al. 2015[18]	Infantile colic and colicky induced maternal depression	Probiotics	Lactobacillus	Participants received L. reuteri at a dose 10^9 CFU for 28 days and they were followed for 4 weeks	L. reuteri (DSM 17938) reduces daily crying time and maternal depression during infantile colic
Miyaoka T et al. 2018[19]	Patients with treatment-resistant MDD	Probiotics	Clostridium	CBM588 in combination with antidepressants is effective and well tolerated in the treatment of treatment-resistant MDD	–
Mohammadi AA et al. 2016[20]	Petrochemical workers	Probiotics	Lactobacillus, Bifidobacterium	After 6 weeks of intervention, a significant improvement of DASS scores was observed in the probiotic yogurt and in the probiotic capsule group	–
Moladi J et al. 2019[21]	Myocardial infarction patients with depression symptoms	Probiotics	Lactobacillus	The total BDI-II score decreased significantly in patients who received probiotic supplements compared with the placebo group	Markers of inflammatory and oxidative stress were influenced favorably by probiotic supplements
Study	Participants	Probiotics	Description		
---	--------------	---	--		
Okubo R et al. 2019[22]	Schizophrenia patients with depression symptoms	Bifidobacterium B. breve A-1	All participants received B. breve strain A-1 (10⁹ CFU/day) for 4 weeks followed by 4 weeks of observation		
Ohaka M et al. 2021[23]	Patients with MDD or BD	Lactobacillus L. casei strain Shirota (LcS)	Daily intake of 8.0 × 10⁹ CFU for 12 weeks		
Pinto-Sanchez MI et al. 2017[24]	IBS patients with depression symptoms	Bifidobacterium B. longum NCC3001	Receiving 42 sachets of spray dried B. longum NCC3001 (1.0 × 10⁹ CFU/1gram powder with maltodextrin)		
Qiu Q et al. 2021[24]	Patients with test anxiety	Lactobacillus, Bifidobacterium, Streptococcus	Taking probiotic supplement preparation for 15 consecutive days (twice per day, and approximately 12-hour set time between two intakes)		
Raygan F et al. 2018[24]	Type 2 diabetic patients with depression symptoms	Lactobacillus, Bifidobacterium	Intaking 50,000 IU vitamin D3 every 2 weeks plus 8 × 10⁹ CFU/g probiotic, containing L. acidophilus, B. bifidum, L. reuteri, and L. fermentum (each 2 × 10⁹) for 12 weeks		
Raygan F et al. 2019[23]	Type 2 diabetic patients with depression symptoms	Lactobacillus, Bifidobacterium	Receiving 200 mg/day selenium as selenium yeast plus 8 × 10⁹ CFU/day probiotic containing L. acidophilus, L. reuteri, L. fermentum and B. bifidum (2 × 10⁹ CFU/g each) for 12 weeks		
Sanchez M et al. 2019[24]	Obese individuals	Lactobacillus L. rhamnosus CGMCC1.3724	Participants received two capsules per day, corresponding to an average of 3.24 × 10⁹ CFU/day for 24 weeks		
Slykerman RF et al. 2019[24]	Postpartum depression	Lactobacillus L. rhamnosus HN001	Women were randomised to receive either HN001 at a dose of 6x 10⁹ CFU/to be taken daily from enrolment until birth and, from birth up till six months post-birth whilst breastfeeding.		

3. LeS was beneficial to alleviate depressive symptoms, partly through its association with abundance of Actinobacteria in the gut microbiota.

2. The probiotic reduced limbic reactivity.

1. Vitamin D and probiotic co-supplementation regulates serum hs-CRP, plasma NO, TAC, glycemic control and HDL-cholesterol levels.

2. Probiotic and selenium co-supplementation improved metabolic profiles.
Tian P et al. 2022[30] Patients with MDD Probiotics B. breve CCFM1025 The freeze-dried CCFM1025 in a dose of viable bacteria of 10^{10} CFU was given to MDD patients daily for four weeks B. breve CCFM1025 showed a better antidepressant-like effect than placebo, based on the HDRS-24 and MADRS evaluation B. breve CCFM1025 changed in the gut microbiome and tryptophan metabolism 2

Wallace CJK et al. 2021[31] Patients with MDD Probiotics Lactobacillus, Bifidobacterium L. helveticus R0052 and B. longum R0175 (CEREBIOME®) Participants consumed a probiotic supplement containing Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 (CEREBIOME®) at a dose of 3×10^9 CFU once per day for 8 weeks Significant improvements in depressive symptoms were observed at week 4 and were sustained at week 8

Wu SI et al. 2021[32] Information technology specialists Probiotics Lactobacillus Lactobacillus plantarum PS128TM (PS128TM) Participants were asked to take two capsules containing PS128TM powder, equivalent to 20 billion CFU, daily for 8 weeks After 8-week-intervention, participants showed significant decreasers in the levels of depression (PHQ-9)

Yamamura R et al. 2021[33] Schizophrenic patients with depression symptoms Probiotics B. breve A-1 (synonym B. breve MCC1274) For the first 4 weeks, the participants consumed two 2-g sachets of freeze-dried Bifidobacterium breve A-1 (synonym B. breve MCC1274) per day, each containing 5.0×10^9 CFU Probiotic treatment with B. breve A-1 alleviated anxiety and depressive symptoms in patients with schizophrenia

Zhang X et al. 2021[34] Patients with depression and constipation Probiotics Lactobacillus Fermented Milk Containing L. paracasei Strain Shirota (LcS) The subjects consumed 100 mL of a LcS beverage (10^9 CFU/mL) every day for 9 weeks. Daily consumption of LcS for 9 weeks appeared to relieve constipation and improve the potentially depressive symptoms in patients LcS supplementation significantly decreased the IL-6 levels, and appeared to regulate the intestinal microbiota related to mental illness

Kaviani M et al. 2021[35] NAFLD patients with depression symptoms Prebiotics _ Resistant dextrin The intervention group received 15% of the total daily intake of fat (~20 g) as Camelina sativa oil with 10 g/day of resistant dextrin, 5 g at breakfast and 5 g at dinner for 12 weeks Supplementation of Camelina sativa oil + resistant dextrin for 12 weeks improved depression symptoms (DASS scores) in patients with NAFLD Prebiotic and CSO co-supplementation improved glycemic status, metabolic endotoxemia, inflammation, oxidant/antioxidant biomarkers

Miki T et al. 2016[36] Japanese employees Prebiotics _ Dietary fiber Dietary intake for 58 food and beverage items, energy, and selected nutrients were estimated using an ad hoc computer algorithm for the BDHQ Dietary fiber intake from vegetables and fruits was significantly inversely associated with depressive symptoms

Park M et al. 2020[37] Patients with depression Prebiotics _ Flavonoids Participants consumed flavonoid-rich orange juice (serving a daily 380 mL, 600 ± 5.4 mg flavonoids) for 8 weeks Flavonoid-rich orange juice treatment significantly decreased the depression symptoms (CES-D) Flavonoid-rich orange juice treatment regulated the gut microbiome

Heidarzadeh-Rad N et al. 2020[38] Patients with MDD Prebiotics, probiotics Lactobacillus, Bifidobacterium L. helveticus R0052, B. longum R0175, and galactooligosaccharide (GOS) The probiotic sachet containing 10 billion ($\geq 10 \times 10^9$) CFU of freeze-dried L. helveticus R0052 and B. longum R0175, the probiotic sachets contained 80% GOS powder per sachet. Participants were instructed to consume 1 sachet at the same time daily for 8 weeks Eight-week supplementation with B. longum and L. helveticus in depressive patients improved depression symptoms Probiotics supplementation resulted in significantly higher serum BDNF levels
Reference	Study Description	Intervention	Results
Hadi A et al. 2019⁴¹	Obese or overweight adults	Synbiotics containing L. acidophilus, L. casei, and B. bifidum (2 × 10⁹ CFU per 5 g sachet)	A significant between-group decrease in depression was found in the synbiotic group compared to the placebo.
Haghighat N et al. 2021^{a,b}	Hemodialysis patients	Synthetic supplements in form of a 500 mg capsule containing L. acidophilus, L. casei, and B. bifidum (2 × 10⁹ CFU/g) plus 0.8 g inulin for 8 weeks	Synbiotic supplementation decreased the TG, TC, LDL-C levels
Kazemi A et al. 2019^{a,b}	Patients with MDD	L. helveticus R0052, B. longum R0175, and galactooligosaccharide	The probiotic product contains freeze-dried L. helveticus R0052 and B. longum R0175 bacteria at a dosage 10 × 10⁹ CFU/ per 5 g sachet for 8 weeks, and the probiotic product was composed of galactooligosaccharide and 0.2% Plum flavor
Perez-Cornago A et al. 2016^{a,b}	Spanish university graduates	Yogurt (total, wholefat, and low-fat) and prebiotic (fructans and galactooligosaccharide)	Participants were allocated into 4 categories according to servings (1 serving = 125 g) of yogurt (total, wholefat (3% fat), and low-fat (0.1% fat)) consumed per week: <0.5 servings (<63 g), ≥0.5 to <3 servings (≥63 to <250 g), ≥3 to <7 servings (≥250 to <875 g), and ≥7 servings (<875 g)
Mohadi J et al. 2021^{a,b}	Coronary artery disease (CAD) patients with depression symptoms	L. rhamnous G	Receiving one capsule contained 1.9 × 10⁶ CFU of L. rhamnous per day, or one sachet containing 15 g inulin per day, or both for 8 weeks
Moludi J et al. 2021	2021b	Synbiotic (15 g of prebiotics, 5 g of probiotic containing L. acidophilus T16, B. bifidum BIA-6, B. lactis BIA-7, B. longum BIA-8 (2.7 × 10⁷ CFU/g each)) prebiotics (5 g fructo-oligosaccharides (FOS), 5 g galacto-oligosaccharides (GOS), 5 g of inulin)	Synthetic supplementation in hemodialysis patients resulted in greater improvement in depression symptoms
			Synthetic supplementation increased the serum BDNF level
			Synbiotic and probiotic supplementation increased the serum Hb level
Haghighat N et al. 2021^b	Hemodialysis patients	Synthetic (15 g of prebiotics, 5 g of probiotic containing L. acidophilus T16, B. bifidum BIA-6, B. lactis BIA-7, B. longum BIA-8 (2.7 × 10⁷ CFU/g each)) prebiotics (5 g fructo-oligosaccharides (FOS), 5 g galacto-oligosaccharides (GOS), 5 g of inulin)	Receiving the synthetic (15 g of prebiotics, 5 g of probiotic containing L. acidophilus T16, B. bifidum BIA-6, B. lactis BIA-7, B. longum BIA-8 (2.7 × 10⁷ CFU/g each)) or probiotics (5 g probiotics as in synthetic group) for 12 weeks
Kazemi A et al. 2019^{a,b}	Patients with MDD	Lactobacillus, Bifidobacterium	The probiotic may exert at least part of its effects on depression through the kynurenine to tryptophan ratio
Karbowik MS et al. 2022^{^a}	Psychiatically healthy medical students	Probiotics, prebiotics	An electronic open-ended form of the Food Record was constructed to gather information regarding consumption of 34 selected food items categorized in five classes
			High intake of fermented food was associated with more severe depressive and anxiety symptoms under stress; however, no such link was observed for food-derived probiotics
Karbowik MS et al. 2022^{^a}	Psychiatically healthy medical students	Fermented food and food-derived prebiotics	Synbiotic and probiotic supplementation increased the serum BDNF level
			From baseline to 12 weeks, synthetic and probiotic supplementation resulted in a significant decrease in BDI and BAI score in comparison to the placebo

Note:^a Data from the original source;^b Data from the study's hypothesis.
References

1. S. Kilinçarslan and A. Evrensel, *Actas Esp Psiquiatr* 2020, 48, 1-7.

2. S. Kurokawa, T. Kishimoto, S. Mizuno, T. Masaoka, M. Naganuma, K. C. Liang, M. Kitazawa, M. Nakashima, C. Shindo, W. Suda, M. Hattori, T. Kanai and M. Mimura, *J Affect Disord* 2018, 235, 506-512.

3. H. Lin, Q. Guo, Z. Wen, S. Tan, J. Chen, L. Lin, P. Chen, J. He, J. Wen and Y. Chen, *Microb Cell Fact* 2021, 20, 233.

4. Q. Guo, H. Lin, P. Chen, S. Tan, Z. Wen, L. Lin, J. He, J. Wen and S. Lu, *Bioengineered* 2021, 12, 11885-11897.

5. A. Chinna Meyyappan, E. Forth and R. Milev, *Interact J Med Res* 2022, 11, e32234.

6. V. H. Dao, L. B. Hoang, T. O. Trinh, T. T. T. Tran and V. L. Dao, *J Multidiscip Healthc* 2021, 14, 1395-1402.

7. R. Venkataraman, R. S. Madempudi, J. Neelamraju, J. J. Ahire, H. R. Vinay, A. Lal, G. Thomas and S. Stephen, *Probiotics Antimicrob Proteins* 2021, 13, 12-18.

8. G. Akkasheh, Z. Kashani-Poor, M. Tajabadi-Ebrahimi, P. Jafari, H. Akbari, M. Taghizadeh, M. R. Memarzadeh, Z. Asemi and A. Esmaillzadeh, *Nutrition* 2016, 32, 315-20.

9. R. Baião, L. P. Capitão, C. Higgins, M. Browning, C. J. Harmer and P. W. J. Burnet, *Psychol Med* 2022, 1-11.

10. M. Bambling, S. C. Edwards, S. Hall and L. Vitetta, *Inflammopharmacology* 2017, 25, 271-274.

11. H. M. Chen, P. H. Kuo, C. Y. Hsu, Y. H. Chiu, Y. W. Liu, M. L. Lu and C. H. Chen, *Nutrients* 2021, 13.

12. M. Jamilian, S. Mansury, F. Bahmani, Z. Heidar, A. Miramiri and Z. Asemi, *J Ovarian Res* 2018, 11, 80.

13. Y. I. Kazem, M. H. Mahmoud, H. A. Essa, O. Azmy, W. A. Kandeel, M. Al-Moghazy, I. El-Attar, A. Hasheesh and N. S. Mehanna, *J Complement Integr Med* 2021.

14. C. S. Kim and D. M. Shin, *Nutrition* 2019, 63-64, 169-174.

15. H. J. Lee, J. K. Hong, J. K. Kim, D. H. Kim, S. W. Jang, S. W. Han and I. Y. Yoon, *Nutrients* 2021, 13.

16. M. Majeed, K. Nagabhushanam, S. Arumugam, S. Majeed and F. Ali, *Food Nutr Res* 2018, 62.

17. M. Messaoudi, R. Lalonde, N. Violle, H. Javelot, D. Desor, A. Nejdi, J. F. Bisson, C. Rougeot, M. Pichelin, M. Cazaubiel and J. M. Cazaubiel, *Br J Nutr* 2011, 105, 755-64.
18. G. L. Mi, L. Zhao, D. D. Qiao, W. Q. Kang, M. Q. Tang and J. K. Xu, *Antonie Van Leeuwenhoek* 2015, 107, 1547-53.

19. T. Miyaoka, M. Kanayama, R. Wake, S. Hashioka, M. Hayashida, M. Nagahama, S. Okazaki, S. Yamashita, S. Miura, H. Miki, H. Matsuda, M. Koike, M. Izuahara, T. Araki, K. Tsuchie, I. A. Azis, R. Arauchi, R. A. Abdullah, A. Oh-Nishi and J. Horiguuchi, *Clin Neuropharmacol* 2018, 41, 151-155.

20. A. A. Mohammadi, S. Jazayeri, K. Khosravi-Darani, Z. Solati, N. Mohammadpour, Z. Asemi, Z. Adab, M. Djalali, M. Tehrani-Doost, M. Hosseini and S. Eghtesadi, *Nutr Neurosci* 2016, 19, 387-395.

21. J. Moludi, M. Alizadeh, M. H. S. Mohammadzad and M. Davari, *Psychosom Med* 2019, 81, 770-777.

22. R. Okubo, M. Koga, N. Katsumata, T. Odamaki, S. Matsuyama, M. Oka, H. Narita, N. Hashimoto, I. Kusumi, J. Xiao and Y. J. Matsuoka, *J Affect Disord* 2019, 245, 377-385.

23. M. Otaka, H. Kikuchi-Hayakawa, J. Ogura, H. Ishikawa, Y. Nomogida, M. Ota, S. Hidese, I. Ishida, M. Aida, K. Matsuda, M. Kawai, S. Yoshida and H. Kunugi, *Microorganisms* 2021, 9, 1.

24. M. I. Pinto-Sanchez, G. B. Hall, K. Ghajar, A. Nardelli, C. Bolino, J. T. Lau, F. P. Martin, O. Cominetti, C. Welsh, A. Rieder, J. Traynor, C. Gregory, G. De Palma, M. Pigrau, A. C. Ford, J. Macri, B. Berger, G. Bergonzelli, M. G. Surette, S. M. Collins, P. Moayyedi and P. Bercik, *Gastroenterology* 2017, 153, 448-459.e8.

25. Q. Qin, H. Liu, Y. Yang, Y. Wang, C. Xia, P. Tian, J. Wei, S. Li and T. Chen, *Dis Markers* 2021, 2021, 5597401.

26. F. Raygan, V. Ostadmohammadi, F. Bahmani and Z. Asemi, *Prog Neuropsychopharmacol Biol Psychiatry* 2018, 84, 50-55.

27. F. Raygan, V. Ostadmohammadi and Z. Asemi, *Clin Nutr* 2019, 38, 1594-1598.

28. M. Sanchez, C. Darimont, S. Panahi, V. Drapeau, A. Mareette, V. H. Taylor, J. Doré and A. Tremblay, *Nutrients* 2017, 9, 1.

29. R. F. Slykerman, F. Hood, K. Wickens, J. M. D. Thompson, C. Barthow, R. Murphy, J. Kang, J. Rowden, P. Stone, J. Crane, T. Stanley, P. Abels, G. Purdie, R. Maude and E. A. Mitchell, *EBioMedicine* 2017, 24, 159-165.

30. P. Tian, Y. Chen, H. Zhu, L. Wang, X. Qian, R. Zou, J. Zhao, H. Zhang, L. Qian, Q. Wang, G. Wang and W. Chen, *Brain Behav Immun* 2022, 100, 233-241.

31. C. J. K. Wallace and R. V. Milev, *Front Psychiatry* 2021, 12, 618279.

32. S. I. Wu, C. C. Wu, P. J. Tsai, L. H. Cheng, C. C. Hsa, I. K. Shan, P. Y. Chan, T. W. Lin, C. J. Ko, W. L. Chen and Y. C. Tsai, *Front Nutr* 2021, 8, 614105.
33. R. Yamamura, R. Okubo, N. Katsumata, T. Odamaki, N. Hashimoto, I. Kusumi, J. Xiao and Y. J. Matsuoka, *J Pers Med* **2021**, *11*, 34. X. Zhang, S. Chen, M. Zhang, F. Ren, Y. Ren, Y. Li, N. Liu, Y. Zhang, Q. Zhang and R. Wang, *Nutrients* **2021**, *13*, 35. M. Kavyani, S. Saleh-Ghadimi, P. Dehghan, M. Abbasalizad Farhangi and M. Khoshbaten, *Food Funct* **2021**, *12*, 8594-8604. 36. T. Miki, M. Eguchi, K. Kurotani, T. Kochi, K. Kuwahara, R. Ito, Y. Kimura, H. Tsuruoka, S. Akter, I. Kashino, I. Kabe, N. Kawakami and T. Mizoue, *Nutrition* **2016**, *32*, 584-9. 37. M. Park, J. Choi and H. J. Lee, *Nutrients* **2020**, *12*, 38. N. Heidarzadeh-Rad, H. Gökmen-Özel, A. Kazemi, N. Almasi and K. Djafarian, *J Neurogastroenterol Motil* **2020**, *26*, 486-495. 39. M. S. Karbownik, Ł. Mokros, M. Dobielska, M. Kowalczyk and E. Kowalczyk, *Front Nutr* **2022**, *9*, 38. N. H. Rajabi and M. Mohammadshahi, *Nutr Neurosci* **2021a**, *24*, 490-499. 40. A. Kazemi, A. A. Noorbala, K. Azam, M. H. Eskandari and K. Djafarian, *Clin Nutr* **2019**, *38*, 522-528. 41. J. Moludi, H. Khedmatgozar, S. M. Nachvak, H. Abdollahzad, M. Moradinazar and A. Sadeghpour Tabaei, *Natr Neurosci* **2021**, 1-10. 42. A. Perez-Cornago, A. Sanchez-Villegas, M. Bes-Rastrollo, A. Gea, P. Molero, F. Lahortiga-Ramos and M. A. Martinez-González, *J Nutr* **2016**, *146*, 1731-9. 43. A. Hadi, M. Sepandi, W. Marx, S. Moradi and K. Parastoueih, *Complement Ther Med* **2019**, *47*, 102216. 44. N. Haghighehart, S. Rajabi and M. Mohammadshahi, *Nutr Neurosci* **2021a**, *24*, 490-499. 45. N. Haghighehart, M. Mohammadshahi, S. Shayanpour, M. H. Haghighezadeh, S. Rahmdel and M. Rajaci, *Indian J Nephrol* **2021b**, *31*, 149-156.
Table S12. Characteristics of studies investigating the efficiency of gut microbiota-based therapeutics in animal models of depression.

Study	Object	Depression model	Microbiota-based therapies	Genus	Species	Intervention method	Depression alleviation	Gut-brain axis mechanism	
Rao J et al. 2021a(1)	Sprague-Dawley rats	CUMS-depression	Fecal microbiota transplantation	_	_	FMT group was administered a gavage of fecal supernatant with 2 × 10^7 fecal microbiota for 14 consecutive days	Fecal microbiota transplantation improved the CUMS-induced depressive-like behavior	Fecal microbiota transplantation altered the gut microbiota imbalance, and alleviated the intestinal tract inflammation, intestinal mucosa disruption, and neuroinflammation	
Rao J et al. 2021b(1)	Sprague-Dawley rats	CUMS-depression	Fecal microbiota transplantation	_	_	For each rat, 1 ml of bacterial suspension (2 × 10^7 CFU/ml) was transplanted to each of the recipient rat by gavage each day for consecutive 14 days	Treatment with fecal microbiota transplantation ameliorated depression-like behaviors	Treatment with fecal microbiota transplantation suppressed activation of glial cells and NLRP3 inflammasome in the brain	
Han SK et al. 2021(11)	C57BL/6 mice	RS-depression	FMT-RS-depression	Fecal microbiota transplantation	_	_	0.2 mL of the fecal microbiota suspension were orally gavaged in (the stomach of) mice once a day for 5 days	Fecal transplantation of vehicle-treated control or RS/CSS-treated mice into RS-exposed mice significantly mitigated RS-induced anxiety- and depressive-like behaviors	Fecal transplantation treatment suppressed the NF-κB activation in the hippocampus and colon, reduced the IL-6 and corticosterone levels in the blood, and regulated gut microbiota composition
Marcondes Avila PR et al. 2020(8)	Wistar rats	CMS-depression	Fecal microbiota transplantation	_	_	An equivalent of 3 × 10^8 cells in a 100-μL solution was given to each rat for five consecutive days by gavage	FMT treatment improved depressive-related (open-field) behavior	Manipulation of the microbiota reversed the behavioral and biochemical changes induced by the CMS protocol, and the vagus nerve influenced the gut-brain axis response	
Xu Z et al. 2018(7)	C57BL/6 mice	Alcohol-induced depression	Fecal microbiota transplantation	_	_	Mice in FMT group received 200 μL suspensions with a minimum dose of approximately 10^9 bacteria at each oral gavage (from 3 male healthy volunteers)	FMT significantly decreased anxiety- and depressive-like behaviors	_	
Zhang Y et al. 2019(9)	C57BL/6 mice	CUS-depression	Fecal microbiota transplantation	_	_	Antibiotic-treated mice were orally challenged with 300 μl fecal transplants (approximately 2 × 10^4 viable probiotic bacteria dissolved in sterile PBS) by gavaging on 3 consecutive days	Transplantation of the NLRP3 KO microbiota alleviated the CUS-induced depressive-like behaviors	FMT significantly ameliorated astrocyte dysfunction in recipient mice treated with CUS via inhibition of circHIPK2 expression	
Zhou H et al. 2022(7)	C57BL/6 mice	Ddx1 KO-depression	Fecal microbiota transplantation and probiotics treatment	Lactobacillus, Bifidobacterium	L. reuteri, L. murinus, B. longum	Microbial transplantation was performed at 9:00 a.m. each day for 14 days. L. murinus, L. reuteri, and B. longum were diluted using 0.9% NaCl to a density of 10^9 CFU/ml, and a low dose of adzuki bean sprout fermented milk (0.1 mL, per day) for 10 days	Depression-like behavior of KO group was relieved following transplantation with L. reuteri, L. murinus, B. longum	Lactobacillus rescued depressive symptoms by restoring GABA levels	
Wu Z et al. 2021(9)	C57/B6	SDS-depression	Fermentate of bacteria	Lactobacillus, Streptococcus	Adzuki bean sprout fermented milk, generated by L. bulgaricus, S. thermophilus, L. plantarum 15953, and L. brevis J1	Administration of full dose of adzuki bean sprout fermented milk (0.4 mL, per day), half dose of adzuki bean sprout fermented milk (medium, 0.2 mL, of per day), and a low dose of adzuki bean sprout fermented milk (low, 0.1 mL, per day) for 10 days	GABA-enriched adzuki bean sprout fermented milk alleviated the depression-like	GABA-enriched adzuki bean sprout fermented milk treatment regulated the GABAB-cAMP-PKA-CREB signaling pathway and increased the monoamine neurotransmitters (5-hydroxytryptamine, norepinephrine, and dopamine) in the hippocampus of mice	
Author(s)	Year	Model	Treatment	Description					
----------	------	-------	-----------	-------------					
Han SK et al.	2020a	C57BL/6 mice	IS-depression	Bifidobacteria Fermented Red Ginseng and Its Constituents Ginsenoside Rd and Protopanaxatriol 10 mg/kg/day of RG; 25 mg/kg/day of RG; 50 mg/kg/day of RG; 10 mg/kg/day of fRG; 25 mg/kg/day of fRG; and 50 mg/kg/day of fRG dissolved in 1% maltose were orally gavaged once a day for 5 days. Treatment with RG and fRG significantly mitigated the stress-induced anxiety/depression-like behaviors.	Bifidobacteria and its constituents Rd and protopanaxatriol mitigated anxiety/depression and colitis by regulating NF-κB-mediated BDNF expression and gut dysbiosis.				
Ko CY et al.	2013	Sprague-Dawley rats	FST-depression	Fermented black soybean milk by L. brevis FPA 3709 Feeding with 48-h fermented black soybean milk at a dosage of 35 mg/kg b.w. including 2.5 mg GABA/kg b.w., and a double-dosage sample group (70 mg/kg b.w. including 5.0 mg GABA/kg b.w.) for 28 days. Oral feeding of 48-h fermented product significantly reduced the duration of immobility in a dose dependent manner.	The underlying mechanism for the antidepressant effect of this fermented product merits further research into the changes in the profile of monoamines, such as serotonin, dopamine, and norepinephrine, in rat brains.				
Abildgaard A et al.	2021	FSL-sensitive line rats	FSL-depression	Lactobacillus Fermented black soybean milk at a dosage of 35 mg/kg b.w. including 2.5 mg GABA/kg b.w., and a double-dosage sample group (70 mg/kg b.w. including 5.0 mg GABA/kg b.w.) for 28 days. Oral feeding of 48-h fermented product significantly reduced the duration of immobility in a dose dependent manner.	Probiotics has effects on the gut microbiota and decreased corticosterone level in serum.				
Xu N et al.	2018	ICR mice	Constipation-depression	Bifidobacteria, Lactobacillus, lactococcus and yeast The probiotic group was given probiotic (10 mg/kg daily by gavage), for 14 consecutive days. Administration of a probiotic ameliorated depressive behaviors.	Probiotics alleviated depression through protecting neuronal health via activation of the AKT signaling pathway.				
Li N et al.	2018	CMS-depression	Multistrain probiotics	L. helveticus R0052, L. plantarum R1012, B. longum R0175 The bacterial solution (200 μL or 2 × 10^9 CFU) was administered by oral gavage daily for 4 weeks during the experimental procedure. Probiotics attenuated CMS-induced anxiety- and depressive-like behaviors.	Probiotics treatment modulated the gut microbiota-inflammation-brain axis, characterized by regulated gut microbiota, decreased hippocampal levels of proinflammatory cytokines (IFN-γ and TNF-α), and direct or inflammatory-mediated inhibition of IDO1 activity.				
Liu QF et al.	2020	ICR mice	IS-depression	Bifidobacterium, Lactobacillus, Pediococcus L. plantarum LP3, L. rhamnosus L95, B. lactis BL3, B. breve BR3, P. pentosaceus PP4 Probiotic formulation (500 μL; 2 × 10^10 CFU/mL) was subsequently administered to mice subjected to stress conditions over a 4-week period. Probiotic administration alleviated depressive-like behaviors.	Ingested probiotics altered the composition of gut microbiota and decreased corticosterone level in serum.				
Author and Year	Model	Diet	Treatments	Outcomes					
-----------------	-------	------	------------	----------					
Ding et al. 2021	C57BL/6 mice	CRS-depression	Next-generation probiotics	A. muciniphila ATCC® BAA-835™, L. plantarum CICC® 23,133	200 µl (5 × 10⁹ CFU/mL) of A. muciniphila was administered via gavage for 3 weeks. 200 µl (5 × 10⁹ CFU/mL or 5 × 10⁸ CFU/mL) of L. plantarum was administered via gavage for 3 weeks.				
Abildgaard et al. 2017	Sprague-Dawley rats	Fed with a control or high-fat diet	Probiotics (Lactobacillus, Bifidobacterium)	8 bacterial strains: B. bifidum W23, B. lactis W52, L. acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, Lc. Lactis W19, Lc. Lactis W58	Each cage received a bottle containing 4.5 g (2.5 × 10⁹ CFU/g) of freeze-dried powder dissolved in 30 mL of tap water; the bottles were administered daily between four and six pm for 5 weeks.				
Abildgaard et al. 2017b	Flinders Sensitive Line rats	HFD-depression	Probiotics (Lactobacillus, Bifidobacterium)	8 bacterial strains: B. bifidum W23, B. lactis W52, L. acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, Lc. Lactis W19, Lc. Lactis W58	Each cage received a bottle containing 4.5 g (2.5 × 10⁹ CFU/g) of freeze-dried powder dissolved in 30 mL of tap water; the bottles were administered daily between four and six pm for 5 weeks.				
Abildgaard et al. 2019	Sprague-Dawley rats	_	Probiotics (Bifidobacterium, Lactococcus, Lactobacillus)	B. bifidum W23, B. lactis W51, B. lactis W52, L. acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, Lc. Lactis W19 and Lc. Lactis W58	Each probiotic cage of two rats was administered a bottle of 4.5 g (2.5 × 10⁹ CFU/g) freeze-dried PRO in a carrier matrix (maize starch, maltodextrins and vegetable protein) dissolved in 30 mL of tap water for 8 weeks.				
Agusti et al. 2018	C57BL/6 mice	HFD-depression	Probiotics (Bifidobacterium)	B. pseudocatenulatum CECT 7765	Receiving a daily dose of 1 × 10⁹ CFU B. pseudocatenulatum CECT 7765 by gavage for 14 weeks.				
Arsenault-Breault et al. 2020	Sprague-Dawley rats	Post-myocardial infarction depression	Probiotics (Lactobacillus, Bifidobacterium)	L. helveticus R0052, B. longum R0175	For 7 d before MI and between the 7th post-MI day and euthanasia, half the MI and sham rats were given one billion live bacterial cells of L. helveticus R0052 and B. longum R0175 per d dissolved in water.				
Arslanova et al. 2021	mice	Antibiotic-depression	Probiotics (Lactobacillus)	Two strains: L. rhamnosus B-8238, L. plantarum 8PA3	Receiving 1 mL drinking water contained 2 × 10⁹ CFU/mL of a lactobacilli mixture (1:1) once a day for 14 days.				

Probiotics had antidepressant-like effect. The cohabiting microbiota and the faecal abundance of probiotics may modulate the antidepressant-like effect of probiotics in rats. Probiotic treatment markedly reduced depressive-like behaviour in the forced swim test. Probiotic treatment regulated abnormal variations in hormone (corticosterone), neurotransmitter (dopamine and serotonin), and BDNF expression levels in CRS-induced mice, and regulated gut microbiota.
Name et al.	Species	Depressive-like behavior	Probiotics	Lactobacillus, Bifidobacterium, Streptococcus	VSL#3 contains 4 strains of Lactobacillus (L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus and L. casei), 3 strains of Bifidobacterium (B. longum, B. breve, B. infantis) and Streptococcus salivarius subsp. Thermophilus	VSL#3 at the doses of 12.86 bn living bacteria/kg/day in 0.5 ml for 30 day by gavage	VSL#3 supplementation exhibited anxiolytic and anti-depressive effect	VSL#3 supplement also increased the NGF immunoreactivity while decreasing IL-6, TNF-a and NO levels in WAG/Rij rat brain
Aygun H et al.	WAG/Rij rats	Depressive-like behavior in WAG/Rij rat	Probiotics	Lactobacillus	Mice were treated daily for 30 days with single doses of 0.1 ml vehicle solution supplemented with Lp 286 (10^7 CFU/mL) or Lp 81 (10^6 CFU/mL)	The L. plantarum 286 strain exerted anti-depressant effects under our experimental conditions		
Barros-Santos T et al. 2020	Swiss mice	LPS-depression	Probiotics	Lactobacillus	Mice were treated with K. pastoris KM71H prevented depression-like behavior induced by stress	K. pastoris KM71H prevented depression-like behavior induced by stress		
Bravo JA et al. 2011	BALB/c mice	Healthy status	Probiotics	Lactobacillus	Animals were orally gavaged with broth with L. rhamnosus (JB-1) reduced stress-induced anxiety- and depression-related behavior	L. rhamnosus (JB-1) reduced stress-induced anxiety- and depression-related behavior		
Chen P et al. 2019	BALB/c mice	UCMS-depression	Probiotics	Lactobacillus	Lactobacillus reuteri has a significant therapeutic effect on depression	Oral administration of Lactobacillus reuteri increased brain serotonin levels and serotonin-positive cells in the dorsal raphe nucleus, and modulated microbiota		
Chen T et al. 2021	C57BL/6N mice	CRS-depression	Probiotics	Akkermansia	A. muciniphila supplementation alleviated depression-like behaviors A. muciniphila supplementation prevented mucosal barrier defects and aggravation of colitis, and modified the gut microbiota			
Chen X et al. 2022	Sprague-Dawley rats	Lead exposure-depression	Probiotics	Lactobacillus, Bifidobacterium	Probiotics (6 billion live bacteria/2 g) were administered to the rats by gavage 5 times a week, at least 1.2 x 10^9 CFU combined strains were given to each rat, and doses as high as 4.8 x 10^10 CFU were administered	Probiotic intervention alleviated the depression-like behavior of lead-exposed rats		
Chen Y et al. 2021b[31] Sprague-Dawley rats CUMS-depression Probiotics Rhizopus, Bacillus Semen Sojae Praeparatum, a fermented food by R. chinensis 12 and Bacillus sp. DU-106 The rats were given a daily dose of 0.97 g/kg Semen Sojae Praeparatum (dissolved in 10 mL of normal saline) for 4 weeks Semen Sojae Praeparatum fermented by R. chinensis 12 and Bacillus sp. DU-106 could ameliorate depressive behaviors. Semen Sojae Praeparatum regulated the metabolite levels in the serum and hippocampus tissue, reversed the cell morphology and mitochondrial function of hippocampal neurons through improving the imbalance in gut microbiota and inhibiting the excessive SCFAs accumulation

Chevalier G et al. 2020[32] C57BL/6J mice UCMS-depression Probiotics Lactobacillus L. plantarum[33] Supplemented with oral feeding 5 days a week with 2 × 10^9 CFU of L. plantarum[34] diluted in 200 μL of PBS Complementation with L. plantarum[35] improved lipid metabolism and the generation of SCFAs, leading to increased signaling in the eCB system and adult neurogenesis in the hippocampus

Choi J et al. 2022[34] C57BL/6J mice CRS-depression Probiotics Extracellular vesicles (EV) from L. plantarum L-EVs at a dose of 0.1 μg/kg were intraperitoneally injected into a mouse at a volume of 100 μL 30 min prior to restraint treatment for 14 days; for the post-stress period, L-EVs were intraperitoneally injected at a volume of 100 μL containing increasingly higher doses; 0.1 μg/kg for the first 5 days, 0.18 μg/kg for the following 2 days, and 0.27 μg/kg for the final 7 days Injection of EV isolated from culture media of L. plantarum, Bacillus subtilis and A. muciniphila are sufficient to ameliorate stress-induced depressive-like behavior Injection of EV from the three selected probiotics restored the expression of MeCP2, Sirt1, and/or neurotrophic factors in the hippocampus

Chevalier G et al. 2020[32] Fischer/Long Evans Rats MD-depression Probiotics L. helveticus LA 102, B. longum LA 101, Lc. lactis LA 103, and S. thermophilus LA 104 Rats received 0.5 mL of the probiotics (1 × 10^9 CFU) by gavage with probes 5 days a week for 5 weeks for Fischer rats and 9 weeks for Long Evans rats (until euthanasia) A probiotic mixture induces anxiolytic and antidepressive-Like effects Probiotic mixture treatment changed the levels of certain metabolites, such as 21-deoxycortisol, and changed brain monoamines

Desbonnet L et al. 2010[34] Sprague-Dawley rats MS-depression Probiotics B. infantis 35624 B. infantis 35624 was administered by dissolving a powered preparation, containing a dose of 1×10^10 live bacterial cells, in 100 mL of the rats drinking water every morning from P50 to the day of sacrifice B. infantis 35624 treatment alleviated depressive-like behaviors Probiotic treatment resulted in normalization of the immune response and restoration of basal NA concentrations in the brainstem

Dhalwal J et al. 2018[33] Swiss albino LACA mice CUMS-depression Probiotics L. plantarum MTCC 9510 L. plantarum MTCC 9510 (2 × 10^8 CFU CFU per mouse) was supplemented to male Swiss albino mice either subjected to chronic unpredictable mild stress (28 days) or sleep deprivation stress (21 days) L. plantarum MTCC 9510 supplementation prevented stress-induced behavioural despair (depression, anxiety, learning and memory, stereotypic behaviour) L. plantarum MTCC 9510 supplementation prevented the oxidative stress and inflammatory response in brain and serum, and prevented intestinal permeability and selected gut microbial aberrations
Study	Model	Condition	Probiotics	Treatment Details	Results
Gao K et al. 2022[38]	BALB/c mice	CUMS-depression	Lactococcus	Orally administrated with 200 µL pre-warmed WHH2078 preparation (1 × 10^9 CFU/mL) for 5 consecutive weeks	Lc. lactis strain WHH2078 alleviated depressive and anxiety-like behaviors
Gu F et al. 2020[39]	Sprague-Dawley rats	CUMS-depression	Lactobacillus	Administration with to L. casei (8× 10^8 CFU/kg/day) for 4 weeks from 4th to 7th week of CUMS	L. casei treatment relieved the depressive-like behaviors of rats induced by CUMS
Guida F et al. 2018[40]	C57bl6 mice	Antibiotic-depression	Lactobacillus	Oral gavage with the probiotic (L. casei DG, 10^9 cells in saline, 100 µl) up to 7 days.	L. casei treatment relieved the depressive-like behaviors induced by antibiotics
Guo Y et al. 2019[41]	ICR mice	CRS-depression	Bifidobacterium	Receiving 0.25 × 10^9 CFU/kg B. adolescentis by gavage for 21 days	B. adolescentis treatment prevented the development of anxiety- and depressive-like behaviors caused by CRS
Han SK et al. 2018[42]	C57BL/6 mice	IS-depression	Lactobacillus, Bifidobacterium	1 × 10^9 CFU of NK41/mouse/day; 1 × 10^9 CFU of NK46/mouse/day; 1 × 10^9 CFU of NK41 and NK46 mixture (1:1) mix/mouse/day	Oral gavage of NK41, NK46, or their mixture synergistically alleviated immobilization stress-induced anxiety- and depressive-like behaviors in mice
Han SK et al. 2020b[43]	C57BL/6 mice	EC-depression	Lactobacillus, Bifidobacterium	1 × 10^9 CFU/mouse/day of NK33; 1 × 10^9 CFU/mouse/day of NK98; 1 × 10^9 CFU/mouse/day of the NK33 and NK98 (1:1) mix/mouse/day	Oral gavage of NK33 and/or NK98 alleviated Escherichia coli K1-induced depression-like behaviors in mice
Hao W et al. 2021[44]	C57BL/6 mice	Antibiotic-depression	Bifidobacterium, Lactococcus, Lactobacillus and Streptococcus	Sixteen strains: B. longum, L. acidophilus, B. bifidum, B. breve, B. lactis, L. brevis, L. bulgaricus, L. casei, L. helveticus, L. plantarum, L. reuteri, L. rhamnosus, L. salivarius, Lc. lactis, S. thermophilus, and B. infantis	Probiotics treatment mitigated antibiotic-induced anxiety- and depressive-like behaviors

Guo Y et al. 2020[39]

Sprague-Dawley rats

CUMS-depression

Probiotics: Lactobacillus

L. casei

Preparation: (8× 10^8 CFU/kg/day) for 4 weeks from 4th to 7th week of CUMS

Results: L. casei treatment relieved the depressive-like behaviors of rats induced by CUMS.

Guida F et al. 2018[40]

C57bl6 mice

Antibiotic-depression

Probiotics: Lactobacillus

L. casei DG

Administration: Oral gavage with the probiotic (L. casei DG, 10^9 cells in saline, 100 µl) up to 7 days.

Results: L. casei treatment relieved the depressive-like behaviors induced by antibiotics.

Han SK et al. 2018[42]

C57BL/6 mice

IS-depression

Probiotics: Lactobacillus, Bifidobacterium

L. mucosae NK41, B. longum NK46

Administration: 1 × 10^9 CFU/kg B. adolescentis by gavage for 21 days

Results: B. adolescentis treatment prevented the development of anxiety- and depressive-like behaviors caused by CRS.

Han SK et al. 2020b[43]

C57BL/6 mice

EC-depression

Probiotics: Lactobacillus, Bifidobacterium

L. reuteri NK33, B. adolescentis NK98

Administration: 1 × 10^9 CFU/mouse/day of NK33; 1 × 10^9 CFU/mouse/day of NK98; 1 × 10^9 CFU/mouse/day of the NK33 and NK98 (1:1) mix/mouse/day

Results: Oral gavage of NK33 and/or NK98 alleviated Escherichia coli K1-induced depression-like behaviors in mice.

Hao W et al. 2021[44]

C57BL/6 mice

Antibiotic-depression

Probiotics: Bifidobacterium, Lactococcus, Lactobacillus and Streptococcus

Sixteen strains: B. longum, L. acidophilus, B. bifidum, B. breve, B. lactis, L. brevis, L. bulgaricus, L. casei, L. helveticus, L. plantarum, L. reuteri, L. rhamnosus, L. salivarius, Lc. lactis, S. thermophilus, and B. infantis

Administration: Probiotics solution (0.15 ml/d) for 14 consecutive days

Results: Probiotics treatment mitigated antibiotic-induced anxiety- and depressive-like behaviors.

Gu F et al. 2020[39]

Sprague-Dawley rats

CUMS-depression

Probiotics: Lactobacillus

L. casei

Administration: (8× 10^8 CFU/kg/day) for 4 weeks from 4th to 7th week of CUMS

Results: L. casei treatment relieved the depressive-like behaviors of rats induced by CUMS.
Hao Z et al. 2019[45] Sprague-Dawley rats CUMS-depression Probiotics Faecalibacterium F. prausnitzii (ATCC 27766) Rats were fed at the same time each day by oral gavage with 200 μL of resuspended F. prausnitzii, 1 × 10^9 CFU (from the eighth week to the eleventh week) daily. Administration of F. prausnitzii had preventive and therapeutic effects on CUMS-induced depression-like and anxiety-like behavior F. prausnitzii administration led to higher levels of SCFAs in the cecum and higher levels of cytokines interleukin-10 (IL-10) in the plasma, prevented the effects on corticosterone, C-reactive protein and cytokines interleukin-6 (IL-6) release induced by CUMS.

Huang F et al. 2021[48] C57BL/6 mice Ovariectomy-depression Probiotics Prevotella P. histicola DSM19854 Receiving P. histicola (10 ml/kg) per second day for 12 weeks. P. histicola alleviated depressive behaviors caused by estrogen deficiency

Huang Y et al. 2020[49] C57BL/6N mice DSS-depression Probiotics Lactobacillus L. plantarium DMDL 9010 (LP9010) Mice administered orally with 0.2 ml/10 g weight per day LP9010 at a dose of 10^7 CFU/mL and 10^8 CFU/mL for 7 days LP9010 intake lightened depression-like behavior

Kambe J et al. 2020[50] C57BL/6 J mice Healthy status Probiotics Enteroceccus Heat-killed E. falcis strain EC-12 (EC-12) The EC-12 group was fed on AIN-93 M diet with heat-killed EC-12 at a concentration of 0.125 % for 4 weeks EC-12 supplementation reduced anxiety- and depressive-like behaviors

Karen C et al. 2021[51] Wistar rats MS-depression Probiotics Lactobacillus L. paracasei HT6 Supplementing with L. paracasei HT6 (per orally, p.o. by oral gavage; from PND-2 to 16) L. paracasei supplementation prevented early life stress-induced anxiety and depressive-Like behavior L. supplementation potentially mediated stress hormones, neurotransmitters, and expression of miRNAs, glutamate receptors, and the microbiota-gut-brain axis

Kim JK et al. 2020[52] C57BL/6J mice Escherichia coli K1-depression Probiotics Lactobacillus L. mucosae NK41 Mice were orally gavaged with the NK41 (1 × 10^9 CFU/mouse/day) once a day for 5 days from 24 h after treatment with K1 suspension NK41 treatment reduced K1-induced cognitive decline and anxiety/depression The superiority of anti-inflammatory bacteria such as L. mucosae can alleviate psychiatric disorders with the attenuation of altered microbiota

Kochalska K et al. 2020[53] Wistar rats CUMS-depression Probiotics Lactobacillus L. rhamnosus JB-1 The JB-1 group was fed a microbial diet with LR-JB1™ daily for 4 weeks Dietary supplement of LR-JB1™ resulted in a reduction of stress-induced behavior in a rat model of depressive-like disorder A microbiotic diet with LR-JB1™ brought improvements in neurochemical balance in the course of depressive-like disorder

Kougou A et al. 2021[54] C57BL/6J mice CSDS-depression Probiotics Bifidobacterium B. breve M-16V M-16V-treated groups were fed the AIN-93G diet which containing 5.0 × 10^9 nonviable cells/0.5 g Heat-sterilized B. breve M-16V supplementation significantly prevented depressive-like behavior (social interaction impairment) Heat-sterilized B. breve M-16V supplementation suppressed CSDS-induced neuroinflammation and modulated the gut microbiota composition
Probiotics alleviated CUMS-induced depressive-like behaviors

Probiotics treatment remodeled intestinal flora, increased the monoamine neurotransmitters (norepinephrine and 5-
hydroxytryptamine), and inhibited hypothalamic–pituitary–adrenal neuroendocrine system (ACTH and corticosterone)

Probiotics alleviated depressive-like behaviors

Probiotics ameliorated sCSDS like behavior

Probiotics alleviated depressive-like effects

Probiotics alleviated depressive-like behavior

Probiotics alleviated depressive-like behavior

Probiotics alleviated depressive-like behaviors

Probiotics alleviated depressive-like behavior

Probiotics alleviated depressive-like behaviors

Probiotics alleviated depressive-like behaviors

Probiotics alleviated depressive-like behaviors

Probiotics alleviated depressive-like behavior

Probiotics alleviated depressive-like behavior

Probiotics alleviated depressive-like behaviors

Probiotics alleviated depressive-like behavior

Probiotics alleviated depressive-like behaviors

Probiotics alleviated depressive-like behavior

Probiotics alleviated depressive-like behavior

Probiotics alleviated depressive-like behaviors

Probiotics alleviated depressive-like behavior
Probiotics consumption during puberty protected against LPS-induced depression- and anxiety-like behaviors in adulthood

Probiotics consumption during puberty mitigated inflammation, and prevented LPS-induced changes to the gut microbiome

Probiotics reduced microglia immunoreactivity in the basolateral amygdala, possibly indicating a neuroprotective effect of PB supplements in this rodent model

Probiotic administration altered gut microbial composition and promoted an anti-inflammatory profile

Probiotics treatment improved metabolic syndrome in mice (reduced the accumulation of mesenteric adipose tissue, increased insulin secretion, improved plasma cholesterol clearance and reduced basal corticosterone)

Probiotics treatment improved intestinal inflammation and subsequent neuroinflammation (through inhibiting toll-like receptor 4 (TLR4) signaling), and microbiota dysbiosis

Probiotics reduced microglia immunoreactivity in the basolateral amygdala, possibly indicating a neuroprotective effect of PB supplements in this rodent model

Probiotics administration altered gut microbial composition and promoted an anti-inflammatory profile
Soltanmoradi H et al. 2021[73]
BALB/c mice
Probiotics
Lactobacillus
L. rhamnosus GG, and kefir, a probiotic supplement
-
Kefir, L. rhamnosus GG, and the investigated probiotic supplement have antidepressant-like properties
-
Sovijit WN et al. 2019[74]
C57BL/6J mice
Ovariectomy-depression
Probiotics
Lactobacillus
L. reuteri
Feeding with food pellets that were pulverized in a blender and kneaded with L. reuteri (2 billion CFU/mouse/day) at 10 weeks of age, and lasting for 2 weeks
L. reuteri supplementation improves depressive behaviors in OVX mice
Supplementation of L. reuteri upregulated hippocampal brain-derived neurotrophic factor (BDNF) gene expression
Stenmana LK et al. 2020[75]
Swiss mice
CRS-depression
Probiotics
Bifidobacterium, Lactobacillus
12 candidate probiotics: B. longum BG0014, B. longum ss. infantis BI1471, B. animalis BL0005, B. animalis ss. lactis 420, L. paracasei Lpc-37, L. salivarus Ls-33, L. plantarum LP12418, L. plantarum LP12151, L. plantarum LP12407, L. acidophilus LA11873, L. rhamnosus LK11881, L. helveticus LH0138
Mice were administered a daily oral gavage containing 1 x 10^9 CFU of selected candidate probiotic solution for one week prior to and for three weeks during daily chronic restraint stress.
Of the twelve candidate probiotics, L. paracasei Lpc-37, L. plantarum LP12407, L. plantarum LP12151 prevented stress-associated anxiety and depression-related behaviours
Each of these strains had a unique profile in terms of mechanistic biomarkers related to the HPA axis and prefrontal cortex GABA receptor expression
Sun J et al. 2018[76]
C57BL/6 mice
CUMS-depression
Probiotics
Clostridium
C. butyricum WZMC1018
The bacterial solution was prepared every day in sterile milk and treated orally at a concentration of 5 x 10^8 CFU/0.5 mL/day/mice for 28 consecutive days.
C. butyricum WZMC1018 treatment effectively improved depressive-like behavior
C. butyricum WZMC1018 treatment stimulated the GLP-1 secretion and increased the 5-HT and BDNF through the gut-brain axis
Sun X et al. 2021[77]
C57BL/6 mice
CRS-depression
Probiotics
Lactobacillus
L. plantarum WLPL04
The final concentration of the L. plantarum WLPL04 in drinking water was 10^9 CFU/mL for 28 days
L. plantarum WLPL04 treatment alleviated CRS-induced anxiety/depressive-like behaviors and cognitive deficits
L. plantarum WLPL04 treatment reversed the abnormal change in intestinal microbiota, and alleviated the reduced levels of 5-HT, BDNF, and TkkB induced by CRS in mice
Sun Y et al. 2019[78]
Kunming mice
CUMS-depression
Probiotics
Lactobacillus
L. kefiranofaciens ZW3
Treated with L. kefiranofaciens ZW3 at different doses (10^7 CFU, 10^8 CFU, 10^9 CFU/mouse/day) for 6 weeks
Supplementation with Lactobacillus kefiranofaciens ZW3 improved depressive-like behavior
L. kefiranofaciens ZW3 regulated disorder of tryptophan metabolism, protected the HPA axis, inhibited inflammation, and reshaped the structure of the gut microbiota caused by CUMS
Takahashi K et al. 2019[79]
dY mice
DSS-depression
Probiotics
Enterococcus
E. faecalis 2001 (EF-2001)
EF-2001 was administered orally (250mg/kg per os [p.o.]) from 14 days before the beginning of DSS
EF-2001 attenuated IBD-like symptoms and depressive-like behavior in DSS-treated mice
EF-2001 decreased rectal and hippocampal inflammatory cytokines and facilitated the NFκB p65/XIAP pathway in the hippocampus
Takahashi K et al. 2022⁸⁰	ddY mice	Olfactory bulbectomy-depression	Probiotics	Enterococcus E. faecalis 2001 (EF-2001)	EF-2001 (250 mg/kg) was dissolved in drinking water and administered orally (per os [p.o.]) once a day in a volume of 0.1 mL/10 g mouse body weight using a 1 mL syringe with an oral probe, from 6 days before the OBX operation for 28 days.	EF-2001 administration prevented depressive-like behaviors
Tian P et al. 2019^a	C57BL/6J mice	CUMS-depression	Probiotics	Bifidobacterium B. longum subspecies infantis strain CCFM687	Lyophilized bacteria powder was re-suspended in 10% skimmed milk solution, and administered at a dose of 10⁹ CFU/mL viable bacteria for 6 weeks	B. longum subspecies infantis strain CCFM687 showed a good anti-depressive effect
Tian P et al. 2019^b	C57BL/6J mice	CUMS-depression	Probiotics	Bifidobacterium B. longum subsp. infantis E41, B. breve M2CF22M7	Lactic acid bacteria treatment group was gavaged at a dose of 10⁹ CFU/mL body weight daily for 5 weeks	Administration of several Lactic acid bacteria strains alleviated depressive behaviors of mice
Tian P et al. 2020^c	C57BL/6J mice	CUMS-depression	Probiotics	Bifidobacterium B. breve CCFM1025	The CCFM1025 treatment group was gavaged at a volume of 0.1 ml/10g (10⁹ CFU/mL) body weight daily for 6 weeks	CCFM1025 treatment significantly alleviated depression and anxiety-like behaviors
Tian P et al. 2021^d	C57BL/6J mice	UCMS-depression	Probiotics	Lactobacillus, Bifidobacterium, Pediococcus 30 strains: B. adolescentis, 3 strains of B. breve, 4 strains of B. bifidum, 2 strains of B. longum subsp. Infantis, 5 strains of B. longum subsp. Longum, 4 strains of B. longum, 3 strains of L. fermentum, 2 strains of L. helveticus, 3 strains of L. plantarum, 2 strains of L. rhamnosus, Pediococcus acidilactici	Giving viable bacteria (10⁹ CFU/day) by oral gavage via 10% skim milk for 6 weeks	16 strains show anti-depression and anti-anxiety-like effect in at least three behavioral tests

^aTian P et al. 2019^a C57BL/6J mice CUMS-depression Probiotics Bifidobacterium B. longum subsp. infantis strain CCFM687 showed a good anti-depressive effect. B. longum subsp. infantis strain CCFM687 increased the 5-hydroxytryptamine, serotonin and BDNF, alleviated the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis response and accordingly reversed the peripheral inflammation status, and reshaped the gut microbiome. Lactic acid bacteria strains alleviated depression possibly via a 5-HTP-dependent mechanism, gut microbiota structure modulation.

^bTian P et al. 2019^b C57BL/6J mice CUMS-depression Probiotics Bifidobacterium B. longum subsp. infantis E41, B. breve M2CF22M7 Lactic acid bacteria treatment group was gavaged at a dose of 10⁹ CFU/mL body weight daily for 5 weeks. Administration of several Lactic acid bacteria strains alleviated depressive behaviors of mice.

^cTian P et al. 2020^c C57BL/6J mice CUMS-depression Probiotics Bifidobacterium B. breve CCFM1025 CCFM1025 treatment significantly alleviated hyperactive hypothalamic-pituitary-adrenal response, as well as inflammation, down-regulated the pCREB-c-Fos pathway, increased BDNF, SCFA and 5-HTP, and restored gut microbial abnormalities.

^dTian P et al. 2021^d C57BL/6J mice UCMS-depression Probiotics Lactobacillus, Bifidobacterium, Pediococcus 30 strains: B. adolescentis, 3 strains of B. breve, 4 strains of B. bifidum, 2 strains of B. longum subsp. Infantis, 5 strains of B. longum subsp. Longum, 4 strains of B. longum, 3 strains of L. fermentum, 2 strains of L. helveticus, 3 strains of L. plantarum, 2 strains of L. rhamnosus, Pediococcus acidilactici Giving viable bacteria (10⁹ CFU/day) by oral gavage via 10% skim milk for 6 weeks. 16 strains show anti-depression and anti-anxiety-like effect in at least three behavioral tests. Intestinal 5-HTP supplementary on the biosynthesis of brain serotonin is the possible mechanism of the candidate probiotics.
Probiotic treatment persisted for 6 weeks by daily oral gavage. Lyophilized bacteria powder were re-suspended in 10% skim cow milk and administered at a dose of 10^10 CFU/mL viable bacteria. CBM588 significantly decreases the chronically stressed mice’s depressive-like behaviors. CBM588 may be involved in the regulation of microglia-mediated immune responses in the brain, and regulated gut microbiota composition.

Rats received a daily dose of 5 x 10^10 CFU/g for Ecologic® Barrier and a daily dose of 5 x 10^9 CFU/g for 4 weeks ad libitum. Probiotics exhibited risk-reducing properties (depressive-related behavior).

Each rat in the probiotic groups received a daily dose of 10^9 CFU for 14 days. B. longum mitigated the depressive-like symptoms. B. longum reduced the Caspase-3 activity and plasma C-reactive protein concentrations in the lateral and medial amygdala.

Probiotics treatment alleviated anxiety behaviors, depressive-like behaviors and cognitive performance. Probiotics treatment improved neuronal activation in different brain regions, characterized by increased expression of Fos protein.

Ingestion of L. intestinalis and L. reuterii caused biochemical abnormalities in antibiotic-treated mice via the subdiaphragmatic vagus nerve.

The effects of chronic PS23 treatment are due to (1) increases in the hippocampal GR, MR, and BDNF proteins; (2) increases in serotonergic and dopaminergic activities in the hippocampus, prefrontal cortex, and striatum; and (3) improvement of the gut microbiota.
Xie R et al. 2020
C57BL/6 mice CSDS-depression Probiotics Lactobacillus L. reuteri 3
Treating for 4 weeks with L. reuteri 3 (10^9 CFU/ml of per mouse in 0.1 ml phosphate-buffered saline (PBS)) after 10 days of CSDS
Treatment with L. reuteri 3 ameliorated depressive-like behaviors
Treatment with L. reuteri 3 regulated the gut microbiota, SCFAs, and serotonin metabolism

Xu J et al. 2022
C57BL/6 mice CUMS-depression Probiotics Lactobacillus L. rhamnosus zz-1
Mice received L. rhamnosus zz-1 at a dose of 2 × 10^8 CFU/kg bw, 2 × 10^9 CFU/kg bw or 2 × 10^10 CFU/kg bw for 6 weeks. The volume of the daily gavage liquid was adjusted to 0.1 mL
L. rhamnosus zz-1 intervention ameliorated CUMS-induced depression-like behaviors
L. rhamnosus zz-1 improved stress-induced physiological problems in model mice, including HPA axis hyperactivity, neurotransmitter deficiency, and impairments in the BDNF-TrkB signaling, and regulated gut microbiota

Xu M et al. 2022
C57BL6J mice CUS-depression Probiotics Lactobacillus L. paracasei 126L6, CCFM1229, 29R1L1L4L3, L. helveticus 132M1L8G3, Q7M66, 10M6L, L. rhamnosus CCFM131, CCFM1330, CCFM1228, L. reuteri CCFM1132, 11M59
The freeze-dried bacterial powder was suspended in sterile skimmed milk. The concentration of surviving bacteria was 5 × 10^9 CFU/mL. The gavage volume of each mouse is 200 µL for 6 weeks
L. paracasei CCFM1229 and L. rhamnosus CCFM1228 significantly reduced anxiety- and depression-related behaviors
The strains CCFM1229 and CCFM1228 regulated the gut microbiota and xanthine oxidase activity in the brain

Yang Y et al. 2022
Sprague-Dawley rats MS-postpartum depression Probiotics Lactobacillus L. casei
From postnatal day 2 to day 28, rats were gavage-fed with Lactobacillus casei (8 × 10^8 CFU/kg/day)
Administration of L. casei improved depressive-like behaviors
Administration of L. casei altered gut microbiota composition, brain monoamines and oxidative stress, which may be associated with the regulation of the BDNF-ERK1/2 pathway

Yun SW et al. 2020
C57BL/6J mice EC-depression Probiotics Lactobacillus L. gasseri NK109
NK109 at a dosage of 1 × 10^9 CFU/mouse/day was orally gavaged once a day for 5 days in the mice with Escherichia coli K1 (1 × 10^9 CFU/mouse/day)-induced depression
NK109 significantly alleviated Escherichia coli K1-induced cognitive impairment- and depression-like behaviors
NK109 regulated the immune response through NF-κB-involved BDNF expression, IL-1β expression, and vagus nerve-mediated gut-brain signaling, and mitigated Escherichia coli-induced colitis and gut dysbiosis

Yun SW et al. 2021
C57BL/6J mice EC-depression Probiotics Lactobacillus L. paracasei NK112
Receiving NK112 (1 × 10^9 CFU/mouse/day) daily for 5 days
Oral gavage of NK112 significantly alleviated K1-induced anxious, depressive, and memory-impaired behaviors
NK112 treatment suppressed IL-6, TNF-α, and BDNF expression through the regulation of gut microbiota and NF-κB activation

Yunes RA et al. 2020
BALB/c mice Healthy status Probiotics Lactobacillus, Bifidobacterium L. plantarum 90k, B. adolescentis 150
One dose (0.5 mL) of the mixture of strains contained 10^9 CFU L. plantarum 90k and 10^6 CFU B. adolescentis 150 for 14 days
Administration of the probiotic composition decreased the duration of immobility of mice
-

Zhao Y et al. 2020
Sprague-Dawley rats Corticosterone-depression Probiotics Lactobacillus Lactobacillus plantarum DP189
Administration of DP189 (1.0 × 10^8 CFU/d) suspension by gavage for 21 days
L. plantarum DP189 treatment prevented and/or alleviated depression-like behaviors
L. plantarum DP189 treatment increased neurotransmitters in brain tissue, reduced serum levels of inflammatory factors, and regulated hippocampal neural apoptosis

Baroakas A et al. 2017
C57BL6J mice Prebiotics-anti-depression CSDS-depression Probiotics Prebiotics
Fructo-oligosaccharides (FOS), Galacto-oligosaccharides (GOS)
Administering the prebiotics FOS, GOS, a combination of FOS and GOS (dissolved in drinking water for 0.3–0.4 g/mouse/day) for 3 weeks
FOS-GOS administration significantly improved the depressive- and anxiety-like behaviors
Prebiotic administration significantly decreased the hypothalamic-pituitary-adrenal axis (corticosterone levels), influenced hippocampal and hypothalamic gene expression,
improved the tryptophan and monoamines metabolism, and normalized the effects of stress on the microbiota.

Chen Y et al. 2021
C57BL/6 mice
CUMS-depression
Prebiotics
Partially hydrolyzed guar gum (PHGG)
After 28 days of CUMS, mice received 600 mg/kg PHGG
PHGG significantly inhibited the loss of body weight, and prevented CUMS-induced depressive-like behavior in mice

PHGG modulated the gut microbiota structure and then increased the levels of short-chain fatty acids in mice feces and the levels of 5-hydroxytryptamine and dopamine in serum, striatum, and hippocampus.

Cheng D et al. 2018
Sprague-Dawley rats
Hydrocortisone-depression
Prebiotics
Tiansi Liquid
The dose of Tiansi Liquid was 0.45 g/kg once a day for 21 days
Tiansi Liquid ameliorated depressive symptoms in rats

Tiansi Liquid modulated the gut microbiota composition and metabolites in the tryptophan-kynurenine pathway.

Chi L et al. 2020
Sprague-Dawley rats
CUMS-depression
Prebiotics
Fructo-oligosaccharides (FOS)
Administration with FOS (50 mg/kg) via oral gavage for 3 weeks from the fifth week onward
FOS administration alleviated depressive-like behaviors

FOS administration regulated intestinal epithelia damages, decreased the hypothalamic-pituitary-adrenal axis (corticosterone levels), and modified the gut microbiota.

Davis DJ et al. 2019
C57BL/6J mice
Social isolation-depression
Prebiotics
N-3 polyunsaturated fatty acid docosahexaenoic acid (DHA)
The mice were then treated with either 0.1% by weight or 1.0% by weight DHA
A DHA diet, regardless of dose, exhibited reduced anxiety and depressive-like behaviors only in male mice

DHA altered the commensal community composition.

Donoso F et al. 2020
Sprague-Dawley rats
MS-depression
Prebiotics
Polyphenols: phlorotannins, xanthohumol, quercetin
Dietary intervention of polyphenols (Phlorotannins 0.03%; Xanthohumol 0.015%; Quercetin 0.03%), delivered ad libitum in food, began once the animals were eight weeks old and continued for eight weeks.
Polyphenols reversed MS-induced depressive- and anxiety-like behaviours

Polyphenols treatment prevented exacerbated production of corticosterone after acute stress in MS animals, reversed MS-induced plasma BDNF depletion and changes in diversity.

Egerton S et al. 2020
Sprague-Dawley rats
MS-depression
Prebiotics
Fish oil (containing polyunsaturated fatty acid)
Fish oil (composition fatty acid profile and vitamins & minerals) was added to the diets in the place of soybean oil in the standard chow. At 7% of total feed from 9 to 16 weeks of age
Fish oil dietary supplementation partly prevented the depressive-like behaviours

Fish oil dietary supplementation altered brain fatty acids, significantly decreased plasma corticosterone levels and reduced brain stem serotonin turnover, and regulated the gut microbial composition.

Fan L et al. 2021
Sprague-Dawley rats
CUMS-depression
Prebiotics
Cistanche tubulosa extract total glycosides, Cistanche tubulosa aqueous extract, phenylethanoid and iridoid glycosides
Recieving different dose of extracts for 4 weeks
Cistanche tubulosa extracts prevented the depressive-like behaviours

Cistanche tubulosa extracts regulated the hyperactivation of the HPA axis, severe peripheral and neural inflammation, and deficiencies in 5-HT and BDNF in the hippocampus.

Gao X et al. 2020
Sprague-Dawley rats
CUMS-depression
Prebiotics
Triterpenoids extracts from Poria cocos (TPC)
Recieving TPC at 15 g herb/kg 30 min before stressing exposure lasting 28 days
TPC significantly ameliorated depression-like behaviors in CUMS rats

TPC treatment restored the level of the neurotrophic factor system and regulated the gut microbiota composition, and regulated metabolic system, including primary bile acid biosynthesis, tauirine and hypoxauetin metabolism, arginine and proline metabolism.

Gong MJ et al. 2016
Sprague-Dawley rats
Corticosterone-depression
Prebiotics
Icarin
The treatment group was treated with icariin (60 mg/kg, suspended in saline) by gastric instillation 1 h prior to CORT injection once a day for 21 days
Icarin produced an antidepressant-like effect in CORT-induced depressive rats

Icarin increased the BDNF expression in the hippocampus, regulated the energy metabolism, lipid metabolism, amino acid metabolism and gut microbes metabolism.
Guo Y et al. 2018[110] ICR mice CRS-depression Prebiotics Rosemary extracts Recieving rosemary extracts (100 mg/kg) for 21 days during CRS stress Pretreatment with rosemary extracts prevented the depressive- and anxiety-like behaviors Rosemary extracts improved antiinflammatory effects in hippocampus, serum and BV-2 microglia as well as rebalanced the gut microbiota

Hao WZ et al. 2021[111] C57BL/6 mice CUMS-depression Prebiotics Coniferyl ferment The mice received coniferyl ferment at a dose of 50 mg/kg once daily via gavage for 4 weeks Oral administration of coniferyl ferment attenuated weight loss and depression-like and anxiety-like behaviors induced by CUMS in mice Coniferyl ferment administration significantly ameliorated colonic inflammation, lowered the levels of IL-6, IL-1β, and TNF-α, and restricted the gut microbiome, and microbial metabolism

Huang YJ et al. 2021[112] C57BL/6J mice sCSDS-depression Prebiotics Water extract of Gastrodia elata (WGE) WGE was administered at an optimal dose of 500 mg/kg bw via gavage once a day for 30 successive days Oral treatment with WGE resulted in reversal of depression-like behavior WGE exerts antidepressant-like effects mediated by the serotonergic and KYN pathways in the prefrontal cortex and colon, and altered the gut microbiota composition

Liu WD et al. 2022[113] Wistar rats SD-depression Prebiotics Fish oil Feeding with a fish oil-rich diet for 10 weeks A fish oil-based diet reduced anxiety- and depressive-like behaviors, and improved cognitive function under chronic SD. A fish oil-based diet increased the probiotics production, increased the SCFA content, improved the intestinal barrier, increased SCFA receptor expression, and decreased blood circulation proinflammatory status

Lax NC et al. 2018[114] C57Bl/6J mice Prebiotics Cyanobacterial extract DUQ0002I For all injections, fraction DUQ0002I and subfractions DUQ0002I-1A-C, DUQ0002I-2-4 were administered at a dose of 40 μg per cannula DUQ0002I induced robust antidepressant and anxiolytic-effects This extract blocked the 5-HT7R

Lee HC et al. 2020[115] BALB/c mice Lard diet-depression Prebiotics Fish oil (containing polyunsaturated fatty acid)-based diet Treatment with fish oil concentrated with 50% EPA and 20% DHA triacylglycerol form for 12 weeks Treatment with fish oil prevented depressive-like behavior Treatment with fish oil regulated gut microbiota composition, and the prefrontal cortex fatty acid profile

Li Y et al. 2018[116] Sprague-Dawley rats CUS-depression Prebiotics Cistanche tubulosa extract (CTE) CTE at high dose (CTEH) (400 mg/kg) and low dose (CTEL) (200 mg/kg) were intragastrically administered 1 h before the CUS procedure (8:00 a.m. to 9:00 a.m.) over the course of 4 weeks CTE significantly improved depression-like behaviors in rats under CUS CTE restored the level of neurotransmitters and neurotrophic factors in CUS rats, regulated the gut microbial composition, and modulated SCFAs concentrations

Lin S et al. 2021[117] ICR mice CRS-depression Prebiotics Crocetin Crocetin at a dose of 40 mg/kg, crocetin-H (80 mg/kg) for 28 days Crocetin ameliorated CRS-induced depression-like behaviors in mice Crocetin regulated MKP-1/ERK1/2/CREB pathway and gut microbiota

Liu Z et al. 2020[118] C57BL/6J mice HD postpartum depression Prebiotics Insulin Taking standard diet with 37 g insulin/1000 kcal for 8–10 weeks Insulin intake significantly attenuated cognitive deficits and depressive-like behaviors Insulin intake upregulated the monoamine neurotransmitters (5-hydroxytryptamine and norepinephrine) and suppressed neuroinflammation

Mika A et al. 2017[119] F344 rats LH-depression Prebiotics Galactooligosaccharide (GOS), polydextrose (PDX) Rats began diets on postnatal day 24 (PND 24) with GOS and PDX (7.0 g/kg each) for 4 weeks Prebiotics differentially attenuated stress-induced learned helplessness Prebiotics diets reduced stress-evoked cfos mRNA in the dorsal raphe nucleus (DRN), attenuated stress-evoked decreases in mRNA for the 5-HT1A autoreceptor in the DRN, GOS and PDX diet increased basal BDNF mRNA within the prefrontal cortex
Reference	Design	Treatment	Intervention	Outcome	
O'Mahony SM et al. 2020 [120]	Sprague-Dawley rats	MS-depression	Prebiotics	Test diets differed from control diet by the inclusion of (a) GOS 20.86 g/kg and PDOX 6.44 g/kg (Prebiotic)	Dietary interventions altered stress-induced spatial learning and memory
Pusceddu MM et al. 2015 [121]	Sprague-Dawley rats	MS	Prebiotics	Oral administration of an eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) (80% EPA, 20% DHA) (0.4 g/kg/day or 1 g/kg/day) n-3 PUFAs mixture was administered by gavage when animals reached 5 weeks of age	No data
Qi Y et al. 2020 [122]	C57BL/6 mice	CSDS-depression	Prebiotics	Betaine was given to mice for 24 days from day 1 to day 24	Betaine supplementation contributed to resilience to anhedonia in mice subjected to CSDS
Robertson RC et al. 2015 [123]	C57BL/6J mice	n-3 PUFA deficiency-depression	Prebiotics	Fed with n-3 PUFA supplemented diet (1 g Eicosapentaenoic acid (EPA) + Docosahexaenoic acid (DHA)/100 g diet) or n-3 PUFA deficient diet from gestational day 0	N-3 PUFA supplementation prevented depressive-like behaviors and memory defect
Song J et al. 2019 [124]	Wistar rats	ACTH-depression	Prebiotics	CGA pretreatment (500 mg/kg) by intragastric administration 1 h prior to ACTH injection once a day for 14 days	CGA pretreatment ameliorated depressive-like behavior
Song X et al. 2021 [125]	ICR mice	CUMS-depression	Prebiotics	Puerarin (100 mg/kg) treatment was found to alleviate the CUMS-induced depression-like behaviors	Puerarin treatment reversed the gut microbial changes induced by CUMS
Sun Y et al. 2020 [126]	C57BL/6 mice	LPS-depression	Prebiotics	Mice were treated with schisandrin (30 mg/kg, i.p.) for 14 days	Schisandrin pre-treatment attenuated LPS-induced depressive-like behaviors in mice
Tian P et al. 2021 [127]	mice	CRS-depression	Prebiotics	SCFA-Acylated Starches Feeding with 15% acylated starch for 2 weeks during chronic restraint stress	Consumption of SCFA-acylated starches alleviated the depressive symptoms of stressed mice
Tung TH et al. 2019 [128]	Sprague-Dawley rats	CMS-depression	Prebiotics	Male rats were fed fish oil-rich (contained 20.5% (w/w) EPA and 11.2% DHA) or olive oil-rich diets for 14 weeks	Fish oil intervention reversed the stress-induced abnormal depressive-like behavior
Valdés-Sustaita B et al. 2021 [129]	Wistar rats	Ovariectomized-depression	Prebiotics	Aqueous extract of pomegranate (AE-PG) was dissolved in saline solution 0.9% and given by intraperitoneal route	SCFA-Acylated Starches significantly reduced the colonic permeability via increasing the tight junction proteins (including ZO-1, Claudin, and Occludin) gene expression and reduced the level of the inflammatory cytokines, and modified gut microbiome

Legend:
- MS: Menopause Syndrome
- CUMS: Chronic restraint stress
- ACTH: Adrenocorticotropic hormone
- CR: Corticosterone
- CSDS: Constrained swimming stress
- CMS: Chronic metabolic stress
- MS: Menopause Syndrome
- LPS: Lipopolysaccharide
- CGA: Chlorogenic acid
- SCFA: Short-chain fatty acids
- EPA: Eicosapentaenoic acid
- DHA: Docosahexaenoic acid
- AE-PG: Aqueous extract of pomegranate
- ERβ: Estrogen receptor β
| Authors | Species | Treatment | Outcome | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| Wang L et al. 2020 | Kumming mice | CUMS-depression | Treated with lowdose, medium-dose, or high-dose TIV (5.7, 11.4, and 22.9 mg/kg/d, respectively) at a volume of 10 mL/kg by the intragastric route once per day for 2 successive weeks Administration of TIV increased body weight, sucrose solution consumption, and ameliorated depression-like behaviors It is concluded that the antidepressant effects of TIV may be related to gut flora structures and regulation of 5-HT, NE, SP, and CRF in the brain and intestine |
| Wang L et al. 2021 | Sprague-Dawley rats | CUMS-depression | Soy isoflavones The SI low dose, SI middle dose, and SI high dose groups were given SI at a dose of 40 mg/kg, 80 mg/kg, and 160 mg/kg per rat per day by oral gavage for 8 weeks Soy isoflavones supplements significantly improved the CUMS-induced depression-like behaviour Soy isoflavones supplements increased monoamine neurotransmitters of CUMS rats by reshaping the structure of the gut microbiota |
| Wang P et al. 2020 | C57BL/6J mice | Alcohol-depression | Polypols group was given 120 mg/kg of polypols by gavage daily for 10 weeks Propolis exerted an improving effect on alcohol-induced depressive symptoms Propolis dietary supplementation prevented the intestinal mucosal barrier and hippocampal injury, and further improved brain gut dysfunction |
| Wang Q et al. 2019 | CD-1 mice | CMS-depression | Orally administrated with sesamin (50 mg/kg/day, dissolved in olive oil) for 10 weeks Oral sesamin administration (50 mg/kg bodyweight/day) significantly attenuated depressive, aversive, repetitive, and anxiety-like behaviors Sesamin inhibited stress-induced gut barrier integrity damage, reduced circulating lipopolysaccharide levels, suppressed neuroinflammatory responses, and restructured the gut microbiome |
| Wang R et al. 2021 | C57BL/6J mice | CRS-depression | TFA treatment improved the depressive-like phenotype TFA treatment improved the disturbed gut microbiota, and the intestinal barrier function |
| Xia J et al. 2017 | C57BL/6J mice | LPS-depression | Dietary capsaicin improved depressive-like behaviour Dietary CAP regulated the structure of gut microbiota, increased the levels of the monoamine neurotransmitter 5-HT, and reduced the levels of inflammatory cytokine TNF-a in LPS-induced mice |
| Xiao Q et al. 2020 | C57BL/6 mice | CRS-depression | Administration of crocin-1 mitigated depression-like behaviors Oral administration of crocin-1 improved the structure of gut microbiota to restore SCFAs levels and intestinal barrier function, thereby decreasing the neuroinflammation and increasing BDNF protein to effectively alleviated depression-like behavior in depressed mice |
| Xue M et al. 2021 | C57BL/6J mice | Alcohol-depression | Receiving 500 mg/kg body weight of fucoidan at 12.00 a.m. during the 10 weeks' experiment Oral administration of fucoidan alleviated alcohol withdrawal-induced depression-like behaviors of mice Oral administration of fucoidan regulated the gut flora of mice and reduce endotoxemia, down-regulated the TLR4/MyD88/NF-κB p65 pathway, inhibited alcohol-induced microglia cell activation and inflammation |
| Yan T et al. 2020 | C57BL/6 mice | CUMS-depression | Mice were treated with polysaccharide (400 mg/kg, i.g.) for 14 days Polysaccharide treatment alleviated depression-like behaviors in CUMS-induced mice Polysaccharide treatment inhibited the inactivation of inflammatory reactions in the colon, serum, hippocampus as well as BV2 cells, down-regulated the TLR4/NF-κB |
| Authors | Year | Treatment Type | Prebiotics | Intestinal Flora or Microbiota | LPS-induced Depression | MAPKs Signaling | Intestinal Flora | Microbiota | Summary |
|------------------|------|----------------|------------|--------------------------------|------------------------|----------------|------------------|------------|---------|
| Yan T et al. 2021 | | C57BL/6 mice | Prebiotics | — | Mice were treated with fractions (SCE, lignans (SCL), polysaccharides (SCPS), and essential oil (SCVO)) | Fractions treatment alleviated depressive-like behaviors in LPS-induced mice | — | — | Fractions treatment regulated the neuroinflammation via the TLR4/NFκB/IKKα signaling pathway, and recovered the gut microbiota |
| Yu JB et al. 2019 | | Sprague-Dawley rats | Prebiotics | — | Mice were treated with paenolfin at a dose of 10 mg/kg or 20 mg/kg for 8 weeks | Paenolfin treatment alleviated depressive-like behaviors in CUS-induced mice | — | — | Paenolfin regulated the composition of the gut microbiota by increasing the abundance of probiotics. And benzoic acid, the gut characteristic metabolite of paenolfin, was absorbed into blood and penetrated the BBB and entered the central nervous system relieving depressive behaviors |
| Zhang L et al. 2021 | | Kuming mice | Prebiotics | — | Treated with low-dose, medium-dose, or high-dose TTV (5.7, 11.4, and 22.9 mg/kg/d, respectively) at a volume of 10 mL/kg by the intragastric route once per day for 2 successive weeks | Administration of TIV increased body weight, sucrose solution consumption, and ameliorated depression-like behaviors | — | — | TIV may modulate the intestinal flora, thereby inducing the expression of ZO-1 and occludin, protecting the blood–brain barrier |
| Zhang M et al. 2021 | | ICR mice | Prebiotics | — | Total iridoids of Valeriana jatamansi (TIV) | Sophora alopecuroides L.-derived alkaloids improved depression-like behaviors in CUS-induced mice | — | — | Alkaloids improved depression in mice through modulating gut microbiota |
| Zhang Z et al. 2022 | | C57BL/6 mice | Prebiotics | — | Hyperforin is dissolved in DMSO and the dosage of hyperforin is 0.38mg/kg. Mice in hyperforin treated group were intraperitoneally injected with hyperforin solution before daily restraint | Hyperforin prevented anhedonia induced by CRS in mice | — | — | Hyperforin prevented altered the richness and evenness of bacteria populations |
| Zhao B et al. 2020 | | C57BL/6 mice | Prebiotics | — | Treating with distilled water and lycopene (50 mg/kg body weight/day) mixed in standard diet (AIN-93M) for 35 days | Lycopene improved depression and anxiety-like behavioral disorders | — | — | Lycopene suppressed neuroinflammation and prevented synaptic ultrastructure damages by upregulating the expressions of neurotrophic factor and postsynaptic-density protein, and reshaped the gut microbiome and improved the gut barrier integrity |
| Zhao F et al. 2021 | | Sprague-Dawley rats | Prebiotics | — | Gavaging with LBP at 14:00 daily, the concentration of gavage is 40 mg/kg, for 14 days | LBP treatment improved the body weight, changed the emotional function | — | — | LBP treatment reduced offspring’s plasma corticosterone level and increased the diversity of gut microbiota |
| Study Authors | Animal Model | Treatment Conditions | Targeted Microbiota | Treatment Outcome | Notes |
|-------------------------------|--------------|---|---------------------|--|--|
| Zhao ZX et al. 2018[146] | Sprague-Dawley rats | CUS-depression Prebiotics | Albiflorin | Treating with benzoic acid (14 mg/kg)albiflorin metabolites) albiflorin (14 mg/kg)for 2 weeks | Benzoic acid, a therapeutic mediator of albiflorin generated by the gut microbiota, after crossing the blood-brain barrier, entered the central nervous system to exert antidepressant effects |
| Li H et al. 2019[147] | Wistar rats | CUMS-depression Probiotics, prebiotics | Bifidobacterium, Lactobacillus | Orally gavaged with with FOS and GOS (8%, 1 mL per 100g weight; FOS/GOS) or with B. longum (1 × 10^9 CFU per 100 g weight) or with L. rhamnosus (1 × 10^10 CFU per 100 g weight) during the CUMS molding for 4 weeks | Prebiotics (FOS/GOS) and probiotics (B. longum and L. rhamnosus) alleviated CUMS-induced depressive-like behaviors |
| Gilbert et al. 2012[148] | Sprague-Dawley rats | Post-myocardial infarction depression Prebiotics, probiotics | Lactobacillus, Bifidobacterium | Each rat in the probiotics group received a daily dose of 10^5 CFU for 2 weeks | Depressive-like behaviour was attenuated with the high-PUFA n-3 diet or/and probiotics |
| Zhu X et al. 2017[149] | Sprague-Dawley rats | CUS-depression Probiotics, prebiotics | Bifidobacterium, Berberine | Prior to modeling with each chronic unpredictable stress method, the rats were treated with either 2 mL of a low concentration of berberine (40 mg/kg/day), a high concentration of berberine (200 mg/kg/day), bifidobacterium (140 mg/kg/day) | Berberine and bifidobacterium treatment alleviated depressive behaviors caused by CUS |
| Westfall S et al. 2021[150] | C57BL/6J mice | CUMS-depression Probiotics, prebiotics, and synbiotics | L. plantarum ATCC 793, B. longum ATCC 15707, Bioactive Dietary Polyphenol Preparation (BDPP) | The bacteria were incorporated into the animals’ drinking water at a final dosage of 1.0×10^9 CFU/day per bacterium; BDPP was comprised of 1% w/v grapeseed polyphenol extract, 1% w/v resveratrol and a 5% w/v concord grape extract made in sterile water during the experiment | The probiotic and synbiotic attenuated depressive-like behavior following CUS, while the synbiotic rescued the phenotype following CUS and CUS+US; only BDPP and the synbiotic improved anxiety-like behavior |
| Westfall S et al. 2021b[151] | C57BL/6J mice | CUS-depression Probiotics, prebiotics, and synbiotics | L. plantarum ATCC 793, B. longum ATCC 15707, Bioactive Dietary Polyphenol Preparation (BDPP) | The bacteria were incorporated into the animals’ drinking water at a final dosage of 1.0×10^9 CFU/day per bacterium; BDPP was comprised of 1% w/v grapeseed polyphenol extract, 1% w/v resveratrol and a 5% w/v concord grape extract made in sterile water during the experiment | The probiotic and synbiotic attenuated stress-induced depressive- and anxiety-like behaviors |
| Mesripour A et al. 2021[152] | Albino mice | Dexamethasone or water avoidance stress induced depression Probiotics | Lactobacillus, Bifidobacterium, Streptococcus | Syn cocktail containing L. casei, L. acidophilus, L. rhamnosus, L. bulgaricus, B. breve, B. infantis, S. | Symbiotic mixture prevented the effects of WAS, acute or sub-acute Dex-induced depression in mice |
| Study | Model | Depression | Intervention | Outcome |
|--|-----------|---------------------|--|--|
| Leo A et al. 2021[153] | C57Bl/6J | CUMS-depression | Prebiotics, Postbiotics, α-lactalbumin (ALAC), Sodium butyrate (NaB), ALAC (125, 250 and 500 mg/kg), NaB (30, 100, 300 mg/kg) and the co-administration of ALAC (125, 250 and 500 mg/kg) with a fixed NaB dose (100 mg/kg) were administered in drinking water for 15 days | ALAC, NaB and their combination reduced depressive- and anxiety-like behaviour in CUMS mice |
| Cheng R et al. 2021[156] | C57BL/6J | CUMS-depression | Posbiotics, Akkermansia, Outer membrane protein Amuc_1100 of A. muciniphila, Mice were gavaged daily with 80 mg of Amuc_1100 in sterile PBS with a volume of 200 ml | Amuc_1100 intervention ameliorated CUMS-induced depression-like behavior, Amuc_1100 intervention improved the gut microbiota, up-regulated the BDNF level, and inhibited the neuroinflammatory response |
| Kochanowska AJ et al. 2008[155] | Swiss Webster mice | Healthy status | Posbiotics, Secondary metabolites from sponges (brominated compounds, sesquiterpene quinones, hydroquinones) | Each group was injected ip with the compound at a dose of 1–20 mg/kg, 5,6-Dibromo-N,N-dimethyltryptamin possessed significant antidepressant-like activity |
| Li J et al. 2018[154] | Sprague-Dawley rats | CUMS-depression | Sodium propionate (NaP, the salt form of propionic acid), 1 mL of NaP (200 mmol/L) was administrated intrarectally every day for 1 week from the beginning of the 5th week | Administration of NaP induced antidepressant-like effects, Administration of NaP rebalanced the plasma metabolome, and rescued the neurotransmitters in the prefrontal cortex, which may be achieved through the reduction of catabolism of noradrenaline, tryptophan and dopamine, rather than serotonin |
| Matsuda Y et al. 2020[157] | Sprague-Dawley rats | CSDS-depression | Posbiotics, Ergothioneine, a metabolite of Lactobacillus reuteri, Oral administration of L-ergothioneine (0.25 mg/ml) aqueous solution was conducted from 1 week prior to SDS initiation (day −7) to the end SDS application (day 14) | Oral administration of ergothioneine prior to and during the SDS paradigm had a preventative effect on SDS-induced depressive behaviors |
| Yu M et al. 2021[158] | Wistar rats | CVS-depression | Antibiotics, Streptomycin, Penicillin G, Giving drinking water ad libitum containing streptomycin sulfate (2 mg/mL) and penicillin G (1500 U/mL) for 21 days | Antibiotic treatment reversed the depression-like behaviors, Antibiotic treatment regulated the purine metabolism and fatty acid metabolism that are impacted by gut bacteria |
| Suzuki K et al. 2021[159] | C57BL/6J (B6) mice | CSDS-depression | Antibacterial active peptides, Recombinant Cryptdin-4 (mouse α-defensin) were dissolved in ultrapure water and administered orally at 250 μg/mouse once daily from day 1 to day 32 | No data, Administration of α-defensin recovered dysbiosis and significant microbial composition changes in the intestinal metabolites |
| Martin-Hernandez D et al. 2016[160] | Wistar rats | CMS-depression | Antibiotics, Streptomycin, Penicillin G, Giving drinking water ad libitum containing streptomycin sulfate (2 mg/mL) and penicillin G (1500 U/mL) for 21 days | Antibiotics treatment reversed the CMS-induced a depressive-like phenotype, Antibiotics treatment inhibited bacteria translocation that only a role in the pathophysiology of depression through the p38 MAPK pathway which could aggravate the neuroinflammation and the oxidative/nitrosative damage |
Meng C et al. 2022
Sprague-Dawley rats CUMS-depression Antibiotics Metronidazole, ciprofloxacin Treating with metronidazole (1 g/L) and ciprofloxacin (0.2 g/L) in drinking water for 5 weeks Antibiotics exposure reduced anxiety-like and depression-like behavior of rats

Schmidliner AK et al. 2019
NAB/HAB rats HAB-depression Antibiotics Minocycline In the first set of experiments, 40 mg/kg/day minocycline, while in the second set, 80 mg/kg/day minocycline alone, all dissolved in tap water, was applied for 22 days Three weeks of minocycline treatment alleviated the depressive-like phenotype

Wang S et al. 2020
C57BL/6 mice CSDS-depression Antibiotics Ampicillin, Neomycin sulfate, Metronidazole Broad-spectrum antibiotics (ampicillin 1 g/L, neomycin sulfate 1 g/L, and metronidazole 1 g/L) dissolved in drinking water were provided ad libitum to male C57BL/6 mice for 14 consecutive days CSDS did not produce an anhedonia-like phenotype in the antibiotic-treated mice

Wong ML et al. 2016
C57BL/6J mice CRS-depression Antibiotics Minocycline Treating with minocycline (LKT Laboratories, St Paul, MN, USA; 5 mg/kg per day in 10 ml/kg saline, intraperitoneally) for 21 days Minocycline treatment decreased depressive- and anxiety-like behaviors

Yang Q et al. 2020
C57BL/6 mice CUMS-depression Antibiotics Minocycline Minocycline (40 mg/kg, Cayman Chemical) was administered intraperitoneally daily for 4 weeks starting 2 weeks after CUMS Minocycline treatment for 4 weeks, not acute treatment, exerted antidepressant effect in mice exposed to CUMS

References
1. J. Rao, R. Xie, L. Lin, J. Jiang, L. Du, X. Zeng, G. Li, C. Wang and Y. Qiao, Eur J Neurosci 2021, 53, 3598-3611.
2. J. Rao, Y. Qiao, R. Xie, L. Lin, J. Jiang, C. Wang and G. Li, J Psychiatr Res 2021b, 137, 147-157.
3. S.-K. Han, J.-K. Kim, H.-S. Park, Y.-J. Shin and D.-H. Kim, Chin Med 2021, 16, 77.
4. P. R. Marcondes Ávila, M. Fiorot, M. Michels, D. Dominguini, M. Abatti, A. Vieira, A. B. de Moura, J. P. Behenck, L. A. Borba, M. E. M. Botelho, G. Z. Réus, F. Dal-Pizzol and C. Ritter, J Affect Disord 2020, 277, 410-416.
5. Z. Xu, Z. Liu, X. Dong, T. Hu, L. Wang, J. Li, X. Liu and J. Sun, Chin J Physiol 2018, 61, 360-371.
6. Y. Zhang, R. Huang, M. Cheng, L. Wang, J. Chao, J. Li, P. Zheng, P. Xie, Z. Zhang and H. Yao, Microbiome 2019, 7, 116.
7. H. Zhou, S. Zhang, X. Zhang, H. Zhou, T. Wen and J. Wang, *Biochem Biophys Res Commun* **2022**, *593*, 137-143.

8. Z. Wu, P. Wang, D. Pan, X. Zeng, Y. Guo and G. Zhao, *J Dairy Sci* **2021**, *104*, 78-91.

9. S.-K. Han, M.-K. Joo, J.-K. Kim, W. Jeung, H. Kang and D.-H. Kim, *Nutrients* **2020a**, *12*.

10. C. Y. Ko, H.-T. V. Lin and G. J. Tsai, *Process Biochemistry* **2013**, *48*, 559-568.

11. A. K. Warda, K. Rea, P. Fitzgerald, C. Hueston, E. Gonzalez-Tortuero, T. G. Dinan and C. Hill, *Behav Brain Res* **2019**, *362*, 213-223.

12. N. Xu, W. Fan, X. Zhou, Y. Liu, P. Ma, S. Qi and B. Gu, *Metab Brain Dis* **2018**, *33*, 1625-1633.

13. A. Abildgaard, T. Kern, O. Pedersen, T. Hansen, S. Lund and G. Wegener, *Eur Neuropsychopharmacol* **2021**, *43*, 10-21.

14. N. Li, Q. Wang, Y. Wang, A. Sun, Y. Lin, Y. Jin and X. Li, *Front Behav Neurosci* **2018**, *12*, 266.

15. Q. F. Liu, H.-M. Kim, S. Lim, M.-J. Chung, C.-Y. Lim, B.-S. Koo and S.-S. Kang, *Daru* **2020**, *28*, 181-189.

16. Y. Ding, F. Bu, T. Chen, G. Shi, X. Yuan, Z. Feng, Z. Duan, R. Wang, S. Zhang, Q. Wang, J. Zhou and Y. Chen, *Appl Microbiol Biotechnol* **2021**, *105*, 8411-8426.

17. A. Abildgaard, B. Elfving, M. Hokland, G. Wegener and S. Lund, *Psychoneuroendocrinology* **2017a**, *79*, 40-48.

18. A. Abildgaard, B. Elfving, M. Hokland, S. Lund and G. Wegener, *Brain Behav Immun* **2017b**, *65*, 33-42.

19. A. Abildgaard, T. Kern, O. Pedersen, T. Hansen, G. Wegener and S. Lund, *Eur Neuropsychopharmacol* **2019**, *29*.

20. A. Agusti, A. Moya-Pérez, I. Campillo, S. Montserrat-de la Paz, V. Cerrudo, A. Perez-Villalba and Y. Sanz, *Mol Neurobiol* **2018**, *55*, 5337-5352.

21. J. Arsenault-Bréard, I. Rondeau, K. Gilbert, S.-A. Girard, T. A. Tompkins, R. Godbout and G. Rousseau, *Br J Nutr* **2012**, *107*, 1793-1799.

22. A. Arslanova, A. Tarasova, A. Alexandrova, V. Novoselova, I. Shaidullov, D. Khusnutdinova, T. Grigoryeva, D. Yarullina, O. Yakovleva and G. Sitdikova, *Life (Basel)* **2021**, *11*.

23. H. Aygun, A. T. Akin, N. Kizilaslan, O. Sumbul and D. Karabulut, *Epilepsy Behav* **2022**, *128*, 108588.

24. T. Barros-Santos, K. S. O. Silva, M. Libarino-Santos, C.-P. Elisangelou Gouveia, H. S. Reis, E. K. Tamura, A. J. de Oliveira-Lima, L. F. Berro, A. P. T. Uetanabaro and E. A. V. Marinho, *PLoS One* **2020**, *15*, e0234037.
25. A. Bharwani, M. F. Mian, M. G. Surette, J.Bienenstock and P. Forsythe, *BMC Med* 2017, 15, 7.
26. P. T. Birmann, A. M. Casaril, A. P. Pesarico, P. S. Caballero, T. Â. Smaniotto, R. R. Rodrigues, Â. N. Moreira, F. R. Conceição, F. S. S. Sousa, T. Collares, F. K. Seixas, R. T. França, C. D. Corcini and L. Savegnago, *Pharmacol Res* 2021, 171, 105740.
27. J. A. Bravo, P. Forsythe, M. V. Chew, E. Escaravage, H. M. Savignac, T. G. Dinan, J. Bienenstock and J. F. Cryan, *Proc Natl Acad Sci U S A* 2011, 108, 16050-16055.
28. P. Chen, M. Hei, L. Kong, Y. Liu, Y. Yang, H. Mu, X. Zhang, S. Zhao and J. Duan, *Food Funct* 2019, 10, 8161-8171.
29. T. Chen, R. Wang, Z. Duan, X. Yuan, Y. Ding, Z. Feng, F. Bu, L. Liu, Q. Wang, J. Zhou, L. Zhu, Q. Ni, G. Shi and Y. Chen, *Front Cell Infect Microbiol* 2021, 11, 723856.
30. X. Chen, S. Meng, Y. Yu, S. Li, L. Wu and Y. Zhang, *Int J Occup Med Environ Health* 2022, 35, 31.
31. Y. Chen, N. Xiao, Y. Chen, X. Chen, C. Zhong, Y. Cheng, B. Du and P. Li, *Food Res Int* 2021b, 150, 110808.
32. G. Chevalier, E. Siopi, L. Guenin-Macé, M. Pascal, T. Laval, A. Rifflet, I. G. Boneca, C. Demangel, B. Colsch, A. Pruvost, E. Chu-Van, A. Messager, F. Leulier, G. Lepousez, G. Eberl and P.-M. Lledo, *Nat Commun* 2020, 11, 6363.
33. J. Choi, Y.-K. Kim and P.-L. Han, *Exp Neurolol* 2019, 28, 158-171.
34. J. Choi, H. Kwon, Y.-K. Kim and P.-L. Han, *Mol Neurobiol* 2022, 59, 2715-2728.
35. V. Daugé, C. Philippe, M. Mariadassou, O. Rué, J.-C. Martin, M.-N. Rossignol, N. Dourmap, L. Svilar, F. Tourniaire, M. Monnoye, D. Jardet, M. Bangratz, S. Holowacz, S. Rabot and L. Naudon, *Front Behav Neurosci* 2020, 14, 581296.
36. L. Desbonnet, L. Garrett, G. Clarke, B. Kiely, J. F. Cryan and T. G. Dinan, *Neuroscience* 2010, 170, 1179-1188.
37. J. Dhalivat, D. P. Singh, S. Singh, A. K. Pinnaka, R. K. Boparai, M. Bishnoi, K. K. Kondepudi and K. Chopra, *J Appl Microbiol* 2018, 125, 257-269.
38. K. Gao, A. Farzi, X. Ke, Y. Yu, C. Chen, S. Chen, T. Yu, H. Wang and Y. Li, *Food Funct* 2022, 13, 957-969.
39. F. Gu, Y. Wu, Y. Liu, M. Dou, Y. Jiang and H. Liang, *Food Funct* 2020, 11, 6148-6157.
40. F. Guida, F. Turco, M. Iannotta, D. De Gregorio, I. Palumbo, G. Sarnelli, A. Furiano, F. Napolitano, S. Boccella, L. Luongo, M. Mazzitelli, A. Usiello, F. De Filippis, F. A. Iannotti, F. Piscitelli, D. Ercolini, V. de Novellis, V. Di Marzo, R. Cuomo and S. Maione, *Brain Behav Immun* 2018, 67, 230-245.

41. Y. Guo, J.-P. Xie, K. Deng, X. Li, Y. Yuan, Q. Xuan, J. Xie, X.-M. He, Q. Wang, J.-J. Li and H.-R. Luo, *Front Behav Neurosci* 2019, 13, 126.

42. S.-K. Han and D. H. Kim, *J Microbiol Biotechnol* 2019, 29, 1369-1374.

43. S.-K. Han, J.-K. Kim, M.-K. Joo, K.-E. Lee, S.-W. Han and D. H. Kim, *J Microbiol Biotechnol* 2020b, 30, 1222-1226.

44. W. Hao, J. Wu, N. Yuan, L. Gong, J. Huang, Q. Ma, H. Zhu, H. Gan, X. Da, L. Deng, X. Li and J. Chen, *Front Pharmacol* 2021, 12, 619103.

45. Z. Hao, W. Wang, R. Guo and H. Liu, *Psychoneuroendocrinology* 2019, 104, 132-142.

46. F. Huang, X. Liu, S. Xu, S. Hu, S. Wang, D. Shi, K. Wang, Z. Wang, Q. Lin, S. Li, S. Zhao, K. Jin, C. Wang, L. Chen and F. Wang, *Front Nutr* 2021, 8, 805465.

47. Y.-Y. Huang, Y.-P. Wu, X.-Z. Jia, J. Lin, L.-F. Xiao, D.-M. Liu and M.-H. Liang, *Food Funct* 2022, 13, 411-424.

48. H.-M. Jang, K.-E. Lee and D.-H. Kim, *Nutrients* 2019, 11,

49. J. Kambe, S. Watcharin, Y. Makioita, R. Inoue, G. Watanabe, H. Yamaguitchi and K. Nagaoka, *Neurosci Lett* 2020, 720, 134753.

50. C. Karen, D. J. H. Shyu and K. E. Rajan, *Front Neurosci* 2021, 15, 719933.

51. J.-K. Kim, K.-E. Lee, S.-A. Lee, H.-M. Jang and D.-H. Kim, *Front Immunol* 2020, 11, 273.

52. K. Kochalska, W. Oakden, T. Slowik, A. Chudzik, A. Pankowska, A. Lazoreczyk, P. Kosiol, M. Andres-Mach, R. Pietura, R. Rola, G. J. Stanisz and A. Orzynska, *Nutr Res* 2020, 82, 44-57.

53. A. Kosuge, K. Kunisawa, S. Arai, Y. Sugawara, K. Shinohara, T. Iida, B. Wulaer, T. Kawai, H. Fujigaki, Y. Yamamoto, K. Saito, T. Nabeshima and A. Mouri, *Brain Behav Immun* 2021, 96, 200-211.

54. Q. Li, L. Li, X. Niu, C. Tang, H. Wang, J. Gao and J. Hu, *Neuroreport* 2021, 32, 686-693.

55. S. Liang, T. Wang, X. Hu, J. Luo, W. Li, X. Wu, Y. Duan and F. Jin, *Neuroscience* 2015, 310, 561-577.

56. J. F. Liao, C. C. Hsu, G. T. Chou, J. S. Hsu, M. T. Liong and Y. C. Tsai, *Benef Microbes* 2019, 10, 425-436.
57. E. Y. Lim, E. J. Song, J. G. Kim, S. Y. Jung, S. Y. Lee, H. S. Shin, Y. D. Nam and Y. T. Kim, *Benef Microbes* 2021, 12, 503-516.

58. Y. Liu, M. F. Mian, K.-A. McVey Neufeld and P. Forsythe, *Brain Behav Immun* 2020, 88, 451-460.

59. Y.-W. Liu, W.-H. Liu, C.-C. Wu, Y.-C. Juan, Y.-C. Wu, H.-P. Tsai, S. Wang and Y.-C. Tsai, *Brain Res* 2016, 1631.

60. H. Maehata, Y. Kobayashi, E. Mitsuyama, T. Kawase, T. Kuhara, J.-Z. Xiao, T. Tsukahara and A. Toyoda, *Biosci Biotechnol Biochem* 2019, 83, 1239-1247.

61. K.-A. McVey Neufeld, S. Kay and J. Bienenstock, *Front Neurosci* 2018, 12, 294.

62. A. Moya-Pérez, A. Perez-Villalba, A. Benítez-Páez, I. Campillo and Y. Sanz, *Brain Behav Immun* 2017, 65, 43-56.

63. E. Murray, R. Sharma, K. B. Smith, K. D. Mar, R. Barve, M. Lukasik, A. F. Pirwani, E. Malette-Guyon, S. Lamba, B. J. Thomas, H. Sadeghi-Emamchaie, J. Liang, J.-F. Mallet, C. Matar and N. Ismail, *Brain Behav Immun* 2019, 81, 198-212.

64. N. R. Natale, M. Kent, N. Fox, D. Vavra and K. Lambert, *IBRO Neurosci Rep* 2021, 11, 207-215.

65. K. A. Partrick, A. M. Rosenhauer, J. Auger, A. R. Arnold, N. M. Ronczkowski, L. M. Jackson, M. N. Lord, S. M. Abdulla, B. Chassaing and K. L. Huhman, *Sci Rep* 2021, 11, 3763.

66. E. Patterson, P. M. Ryan, N. Wiley, I. Carafa, E. Sherwin, G. Moloney, E. Franciosi, R. Mandal, D. S. Wishart, K. Tuohy, R. P. Ross, J. F. Cryan, T. G. Dinan and C. Stanton, *Sci Rep* 2019, 9, 16323.

67. X. Qiu, G. Wu, L. Wang, Y. Tan and Z. Song, *Ann Transl Med* 2021, 9, 366.

68. J. B. Ramalho, M. B. Soares, C. C. Spiazzi, D. F. Bicca, V. M. Soares, J. G. Pereira, W. P. da Silva, C. P. Sehn and F. W. S. Cibin, *Nutrients* 2019, 11, 3763.

69. J. B. Ramalho, C. C. Spiazzi, D. F. Bicca, J. F. Rodrigues, C. P. Sehn, W. P. da Silva and F. W. S. Cibin, *Behav Brain Res* 2022, 426, 113847.

70. S. Sandes, N. Figueiredo, S. Pedroso, F. Sant'Anna, L. Acucirio, M. Abatemarco Junior, P. Barros, F. Oliveira, V. Cardoso, S. Generoso, M. Caliari, J. Nicoli, E. Neumann and Á. Nunes, *Food Res Int* 2020, 137, 109741.

71. H. M. Savignac, B. Kiely, T. G. Dinan and J. F. Cryan, *Neurogastroenterol Motil* 2014, 26, 1615-1627.

72. L. C. Silva, H. de Souza Lago, M. O. T. Rocha, V. S. de Oliveira, R. Laureano-Melo, E. T. G. Stutz, B. P. de Paula, J. F. P. Martins, R. H. Luchese, A. F. Guerra and P. Rodrigues, *Probiotics Antimicrob Proteins*
2021, 13, 698-708.

73. H. Soltanmoradi, M. Maniati, A. Davoodabadi, A. Mosapour, S. Samavarchi Tehrani, M. Pazhoohan, F. Daemi and H. Khaleghzadeh-Ahangar, *Acta Alimentaria* 2021, 50, 393-403.

74. W. N. Sovijit, W. E. Sovijit, S. Pu, K. Usuda, R. Inoue, G. Watanabe, H. Yamaguchi and K. Nagaoka, *Neurosci Res* 2019, 168, 76-82.

75. L. K. Stenman, E. Patterson, J. Meunier, F. J. Roman and M. J. Lehtinen, *Behav Brain Res* 2020, 379, 112376.

76. J. Sun, F. Wang, X. Hu, C. Yang, H. Xu, Y. Yao and J. Liu, *J Agric Food Chem* 2018, 66, 8415-8421.

77. X. Sun, H.-F. Zhang, C.-L. Ma, H. Wei, B.-M. Li and J. Luo, *Can J Infect Dis Med Microbiol* 2021, 2021, 6613903.

78. Y. Sun, W. Geng, Y. Pan, J. Wang, P. Xiao and Y. Wang, *Food Funct* 2019, 10, 925-937.

79. K. Takahashi, O. Nakagawasai, W. Nemoto, T. Odaira, W. Sakuma, H. Onogi, H. Nishijima, R. Furihata, Y. Nemoto, H. Iwasa, K. Tan-No and T. Tadano, *J Neuroinflammation* 2019, 16, 201.

80. K. Takahashi, K. Kurokawa, L. Hong, K. Miyagawa, A. Mochida-Saito, M. Iwasa, H. Iwasa, O. Nakagawasai, T. Tadano, H. Takeda and M. Tsuji, *J Psychiatr Res* 2022, 148, 137-148.

81. P. Tian, R. Zou, L. Song, X. Zhang, B. Jiang, G. Wang, Y.-K. Lee, J. Zhao, H. Zhang and W. Chen, *Food Funct* 2019a, 10, 7588-7598.

82. P. Tian, G. Wang, J. Zhao, H. Zhang and W. Chen, *J Nutr Biochem* 2019b, 66, 43-51.

83. P. Tian, K. J. O'Riordan, Y.-K. Lee, G. Wang, J. Zhao, H. Zhang, J. F. Cryan and W. Chen, *Neurobiol Stress* 2020, 12, 100216.

84. P. Tian, H. Zhu, R. Zou, Q. Kong, M. Xu, J. Zhao, H. Zhang, W. Chen and G. Wang, *Food Funct* 2021a, 12, 646-655.

85. P. Tian, T. F. S. Bastiaanssen, L. Song, B. Jiang, X. Zhang, J. Zhao, H. Zhang, W. Chen, J. F. Cryan and G. Wang, *Mol Nutr Food Res* 2021b, 65, e2000704.

86. T. Tian, B. Xu, Y. Qin, L. Fan, J. Chen, P. Zheng, X. Gong, H. Wang, M. Bai, J. Pu, J. Lu, W. Zhou, L. Zhao, D. Yang and P. Xie, *Biochem Biophys Res Commun* 2019, 516, 430-436.

87. S. Tillmann and G. Wegener, *Behav Brain Res* 2019, 359, 755-762.

88. F. Trudeau, K. Gilbert, A. Tremblay, T. A. Tompkins, R. Godbout and G. Rousseau, *PLoS One* 2019, 14, e0215101.

89. P. Wang, K. Tu, P. Cao, Y. Yang, H. Zhang, X.-T. Qiu, M.-M. Zhang, X.-J. Wu, H. Yang and T. Chen, *Mol Brain* 2021, 14, 49.
90. S. Wang, T. Ishima, J. Zhang, Y. Qu, L. Chang, Y. Pu, Y. Fujita, Y. Tan, X. Wang and K. Hashimoto, *J Neuroinflammation* **2020a**, 17, 241.

91. C.-L. Wei, S. Wang, J.-T. Yen, Y.-F. Cheng, C.-L. Liao, C.-C. Hsu, C.-C. Wu and Y.-C. Tsai, *Brain Res* **2019**, 1711, 202-213.

92. R. Xie, P. Jiang, L. Lin, J. Jiang, B. Yu, J. Rao, H. Liu, W. Wei and Y. Qiao, *J Psychiatr Res* **2020b**, 122, 70-78.

93. J. Xu, M. Tang, X. Wu, X. Kong, Y. Liu and X. Xu, *Food Funct* **2022**, 13, 4331-4343.

94. M. Xu, P. Tian, H. Zhu, R. Zou, J. Zhao, H. Zhang, G. Wang and W. Chen, *Nutrients* **2022**, 14, 70-78.

95. Y. Yang, S. Zhao, X. Yang, W. Li, J. Si and X. Yang, *Neurosci Lett* **2022**, 136474.

96. S.-W. Yun, J.-K. Kim, K.-E. Lee, Y. J. Oh, H.-J. Choi, M. J. Han and D.-H. Kim, *Nutrients* **2020**, 12, 541-551.

97. Y. Zhao, G. Yang, Z. Zhao, C. Wang, C. Duan, L. Gao and S. Li, *Behav Brain Res* **2020**, 395, 112853.

100. A. Burokas, S. Arboleya, R. D. Moloney, V. L. Peterson, K. Murphy, G. Clarke, C. Stanton, T. G. Dinan and J. F. Cryan, *Biol Psychiatry* **2017**, 82, 472-487.

101. Y. Chen, M. Wan, Y. Zhong, T. Gao, Y. Zhang, F. Yan, D. Huang, Y. Wu and Z. Weng, *Mol Nutr Food Res* **2021a**, 65, e2100146.

102. D. Cheng, H. Chang, S. Ma, J. Guo, G. She, F. Zhang, L. Li, X. Li and Y. Lu, *Molecules* **2018**, 23, 1153471.
108. X. Gao, Y. Feng, H. Xue, M. Meng and X. Qin, *Journal of Liquid Chromatography & Related Technologies* 2020, 43, 494-507.

109. M.-j. Gong, B. Han, S.-m. Wang, S.-w. Liang and Z.-j. Zou, *J Pharm Biomed Anal* 2016, 123, 63-73.

110. Y. Guo, J. Xie, X. Li, Y. Yuan, L. Zhang, W. Hu, H. Luo, H. Yu and R. Zhang, *Front Pharmacol* 2018, 9, 1126.

111. W. Z. Hao, Q. Y. Ma, G. Tao, J. Q. Huang and J. X. Chen, *Food Funct* 2021, 12, 12550-12564.

112. Y.-J. Huang, L.-X. C. Choong, S. Panyod, Y.-E. Lin, H.-S. Huang, K.-H. Lu, W.-K. Wu and L.-Y. Sheen, *Phytother Res* 2021, 35, 5133-5142.

113. W. D. Lai, T. H. Tung, C. Y. Teng, C. H. Chang, Y. C. Chen, H. Y. Huang, H. C. Lee and S. Y. Huang, *Food Funct* 2022, 13, 2662-2680.

114. N. C. Lax, S.-A. J. Parker, E. J. Hilton, Y. Seliman, K. J. Tidgewell and B. J. Kolber, *Synapse* 2018, 72, e2059.

115. H.-C. Lee, Y.-C. Lo, S.-C. Yu, T.-H. Tung, I. H. Lin and S.-Y. Huang, *Int J Food Sci Nutr* 2020, 71, 440-452.

116. Y. Li, Y. Peng, P. Ma, H. Yang, H. Xiong, M. Wang, C. Peng, P. Tu and X. Li, *Front Pharmacol* 2018, 9, 967.

117. S. Lin, Q. Li, S. Jiang, Z. Xu, Y. Jiang, L. Liu, J. Jiang, Y. Tong and P. Wang, *J Ethnopharmacol* 2021, 268, 113608.

118. Z. Liu, L. Li, S. Ma, J. Ye, H. Zhang, Y. Li, A. T. Sair, J. Pan, X. Liu, X. Li, S. Yan and X. Liu, *J Agric Food Chem* 2020, 68, 13697-13710.

119. A. Mika, H. E. W. Day, A. Martinez, N. L. Rumian, B. N. Greenwood, M. Chichlowski, B. M. Berg and M. Fleschner, *Eur J Neurosci* 2017, 45, 342-357.

120. S. M. O'Mahony, K.-A. McVey Neufeld, R. V. Wavoruntu, M. M. Pusceddu, S. Manurung, K. Murphy, C. Strain, M. C. Laguna, V. L. Peterson, C. Stanton, B. M. Berg, T. G. Dinan and J. F. Cryan, *Eur J Neurosci* 2020, 51, 1042-1058.

121. M. M. Pusceddu, S. El Aidy, F. Crispie, O. O'Sullivan, P. Cotter, C. Stanton, P. Kelly, J. F. Cryan and T. G. Dinan, *PLoS One* 2015, 10, e0139721.

122. Y. Qu, K. Zhang, Y. Pu, L. Chang, S. Wang, Y. Tan, X. Wang, J. Zhang, T. Ominishi, T. Yoshikawa and K. Hashimoto, *J Affect Disord* 2020, 272, 66-76.

123. R. C. Robertson, C. Seira Oriach, K. Murphy, G. M. Moloney, J. F. Cryan, T. G. Dinan, R. Paul Ross and C. Stanton, *Brain Behav Immun* 2017, 59, 21-37.

124. J. Song, N. Zhou, W. Ma, X. Gu, B. Chen, Y. Zeng, L. Yang and M. Zhou, *Food Funct* 2019b, 10, 2947-2957.
125. X. Song, W. Wang, S. Ding, X. Liu, Y. Wang and H. Ma, *J Affect Disord* 2021, 290, 353-363.
126. Y. Sun, T. Yan, G. Gong, Y. Li, J. Zhang, B. Wu, K. Bi and Y. Jia, *Int Immunopharmacol* 2020, 89, 107029.
127. P. Tian, H. Zhu, X. Qian, Y. Chen, Z. Wang, J. Zhao, H. Zhang, G. Wang and W. Chen, *Front Immunol* 2021, 12, 755481.
128. T.-H. Tung, Y.-T. Tung, I. H. Lin, C.-K. Shih, N. T. K. Nguyen, A. Shabrina and S.-Y. Huang, *Biomolecules* 2019, 9.
129. B. Valdes-Sustaita, E. Estrada-Camarena, M. E. Gonzalez-Trujano and C. Lopez-Rubalcava, *Neurochem Int* 2021, 142, 104904.
130. L. Wang, Y. Sun, T. Zhao, Y. Li, X. Zhao, L. Zhang, L. Wu, L. Zhang, T. Zhang, G. Wei, A. Altamirano, Y. Tong and Z. Yan, *Planta Med* 2020, 86, 172-179.
131. L. Wang, X. Wu, Y. Ma, X. Li, J. Zhang and L. Zhao, *Food Funct* 2021, 12, 4995-5006.
132. P. Wang, P. Guo, Y. Wang, X. Teng, H. Zhang, L. Sun, M. Xue and H. Liang, *Nutrients* 2022, 14,
133. Q. Wang, M. Jia, Y. Zhao, Y. Hui, J. Pan, H. Yu, S. Yan, X. Dai, X. Liu and Z. Liu, *J Agric Food Chem* 2019, 67, 12441-12451.
134. R. Wang, T. Chen, Q. Wang, X.-M. Yuan, Z.-L. Duan, Z.-Y. Feng, Y. Ding, F. Bu, G.-P. Shi and Y.-G. Chen, *Drug Des Devel Ther* 2021, 15, 2999-3016.
135. J. Xia, L. Gu, Y. Guo, H. Feng, S. Chen, J. Jurat, W. Fu and D. Zhang, *Front Cell Infect Microbiol* 2021, 11, 627608.
136. Q. Xiao, R. Shu, C. Wu, Y. Tong, Z. Xiong, J. Zhou, C. Yu, X. Xie and Z. Fu, *J Affect Disord* 2020, 276, 476-486.
137. M. Xue, X. Teng, H. Liang, J. Zhao, Y. Jiang, X. Qiu, Z. Zhang, Z. Pei, N. Zhang and Y. Qin, *Journal of Functional Foods* 2021, 86,
138. T. Yan, T. Nian, Z. Liao, F. Xiao, B. Wu, K. Bi, B. He and Y. Jia, *Int J Biol Macromol* 2020, 144, 427-440.
139. T. Yan, N. Wang, B. Liu, B. Wu, F. Xiao, B. He and Y. Jia, *Phytother Res* 2021, 35, 289-296.
140. J.-B. Yu, Z.-X. Zhao, R. Peng, L.-B. Pan, J. Fu, S.-R. Ma, P. Han, L. Cong, Z.-W. Zhang, L.-X. Sun, J.-D. Jiang and Y. Wang, *Front Pharmacol* 2019, 10, 268.
141. L. Zhang, L. Wang, L. Huang, Y. Zhao, H. Ding, B. Li, L. Wen, W. Xiong, Y. Liu, T. Zhang, L. Zhang, L. Wu, Q. Xu, Y. Fan, G. Wei, Q. Yin, Y. Chen, T. Zhang and Z. Yan, *Pharm Biol* 2021, 59, 912-921.
142. M. Zhang, A. Li, Q. Yang, J. Li, L. Wang, X. Liu, Y. Huang and L. Liu, *Front Cell Infect Microbiol* 2021, 11, 665159.
143. Z. Zhang, C. Yao, M. Li, L. C. Wang, W. Huang and Q. J. Chen, *Lett Appl Microbiol* 2022.

144. B. Zhao, J. Wu, J. Li, Y. Bai, Y. Luo, B. Ji, B. Xia, Z. Liu, X. Tan, J. Lv and X. Liu, *J Agric Food Chem* 2020, 68, 3963-3975.

145. F. Zhao, S. Guan, Y. Fu, K. Wang, Z. Liu and T. B. Ng, *Biomed Pharmacother* 2021, 143, 112087.

146. Z. X. Zhao, J. Fu, S. R. Ma, R. Peng, J. B. Yu, L. Cong, L. B. Pan, Z. G. Zhang, H. Tian, C. T. Che, Y. Wang and J. D. Jiang, *Theranostics* 2018, 8, 5945-5959.

147. H. Li, P. Wang, L. Huang, P. Li and D. Zhang, *Neurogastroenterol Motil* 2019, 31, e13677.

148. K. Gilbert, J. Arseneault-Breard, F. Flores Monaco, A. Beaudoin, T. M. Bah, T. A. Tompkins, R. Godbout and G. Rousseau, *Br J Nutr* 2012, 109, 50-6.

149. X. Zhu, Y. Sun, C. Zhang and H. Liu, *Mol Med Rep* 2017, 15, 3161-3171.

150. S. Westfall, F. Caracci, M. Estill, T. Frolinger, L. Shen and G. M. Pasinetti, *Front Immunol* 2021, 12, 670500.

151. S. Westfall, F. Caracci, D. Zhao, Q.-L. Wu, T. Frolinger, J. Simon and G. M. Pasinetti, *Brain Behav Immun* 2021b, 91, 350-368.

152. A. Mesripour and P. Rakshankhah, *Turk J Pharm Sci* 2021, 18, 21-27.

153. A. Leo, C. De Caro, P. Mainardi, M. Tallarico, V. Nesci, N. Marascio, P. Striano, E. Russo, A. Constanti, G. De Sarro and R. Citraro, *Neuropharmacology* 2021, 198, 108782.

154. R. Cheng, W. Xu, J. Wang, Z. Tang and M. Zhang, *Biochem Biophys Res Commun* 2021, 566, 170-176.

155. A. J. Kochanowska, K. V. Rao, S. Childress, A. El-Alfy, R. R. Matsumoto, M. Kelly, G. S. Stewart, K. J. Sufka and M. T. Hamann, *J Nat Prod* 2008, 71, 186-9.

156. J. Li, L. Hou, C. Wang, X. Jia, X. Qin and C. Wu, *Front Psychiatry* 2018, 9, 454.

157. Y. Matsuda, N. Ozawa, T. Shinozaki, K. I. Wakabayashi, K. Suzuki, Y. Kawano, I. Ohtsu and Y. Tatebayashi, *Transl Psychiatry* 2020, 10, 170.

158. M. Yu, H.-M. Jia, L.-L. Qin and Z.-M. Zou, *J Affect Disord* 2021, 297, 9915.

159. K. Suzuki, K. Nakamura, Y. Shimizu, Y. Yokoi, S. Ohira, M. Hagiwara, Y. Wang, Y. Song, T. Aizawa and T. Ayabe, *Sci Rep* 2021, 11, 103.

160. D. Martín-Hernández, J. R. Caso, Á. G. Bris, S. R. Maus, J. L. M. Madrigal, B. García-Bueno, K. S. MacDowell, L. Alou, M. L. Gómez-Lus and J. C. Leza, *Neuropharmacology* 2016, 103, 122-133.
161. C. Meng, S. Feng, Z. Hao, C. Dong and H. Liu, *Psychoneuroendocrinology* **2022**, *136*, 105620.

162. A. K. Schmidtner, D. A. Slattery, J. Gläsner, A. Hiergeist, K. Gryksa, V. A. Malik, J. Hellmann-Regen, I. Heuser, T. C. Baghai, A. Gessner, R. Rupprecht, B. Di Benedetto and I. D. Neumann, *Transl Psychiatry* **2019**, *9*, 223.

163. S. Wang, Y. Qu, L. Chang, Y. Pu, K. Zhang and K. Hashimoto, *J Affect Disord* **2020b**, *260*, 448-457.

164. M. L. Wong, A. Inseri, M. D. Lewis, C. A. Mastronardi, L. Leong, J. Choo, S. Kentish, P. Xie, M. Morrison, S. L. Wesselingh, G. B. Rogers and J. Licinio, *Mol Psychiatry* **2016**, *21*, 797-805.

165. Q. Yang, L. Luo, T. Sun, L. Yang, L.-F. Cheng, Y. Wang, Q.-Q. Liu, A. Liu, H.-Y. Liu, M.-G. Zhao, S.-X. Wu and B. Feng, *Psychopharmacology (Berl)* **2020**, *237*, 3201-3213.
Table S13. A summary of probiotics that alleviate depression symptoms.

Probiotics	objects	Probiotics	objects	
Akkermansia muciniphila	Animal models	Lactobacillus diacetylactis	Animal models	
Akkermansia muciniphila ATCC® BAA-835™	Animal models	Lactobacillus fermentum	Human beings, Animal models	
Bacillus coagulans MTCC 5856	Human beings	Lactobacillus gasseri NK109	Animal models	
Bacillus coagulans Unique IS2	Human beings	Lactobacillus helveticus	Animal models	
Bacillus sp.DU-106	Animal models	Lactobacillus helveticus 132M1	Animal models	
Bacillus subtilis	Animal models	Lactobacillus helveticus LA 102	Animal models	
Bifidobacteria	Animal models	Lactobacillus helveticus LH0138	Animal models	
Bifidobacterium	Human beings, Animal models	Lactobacillus helveticus MCC1848	Animal models	
Bifidobacterium spp.	Human beings	Lactobacillus helveticus NS8	Animal models	
Bifidobacterium_adolescentis	Human beings, Animal models	Lactobacillus helveticus PXN® 45	Human beings	
Bifidobacterium_adolescentis 150	Animal models	Lactobacillus helveticus R0052	Human beings, Animal models	
Bifidobacterium_adolescentis NK98	Human beings, Animal models	Lactobacillus helveticus W74	Animal models	
Bifidobacterium_animalis BL0005	Animal models	Lactobacillus intestinalis YT2	Animal models	
Bifidobacterium_animalis ssp.lactis 420	Animal models	Lactobacillus intestinalis YT2	Animal models	
Bifidobacterium bifidum	Human beings, Animal models	Lactobacillus johnsonii	Animal models	
Bifidobacterium bifidum BIA-6	Human beings	Lactobacillus kefiranofaciens ZW3	Animal models	
Bifidobacterium bifidum plus inulin	Human beings	Lactobacillus lactis	Human beings, Animal models	
Bifidobacterium bifidum PXN® 23	Human beings	Lactobacillus lactis ssp. lactis PXN® 63	Human beings	
Bifidobacterium bifidum W23	Human beings, Animal models	Lactobacillus mucosae NK41	Animal models	
Bifidobacterium breve	Animal models	Lactobacillus murinus	Animal models	
Bifidobacterium breve 1205	Animal models	Lactobacillus paracasei 126L6	Animal models	
Bifidobacterium breve A-1	(synonym Bifidobacterium breve MCC1274)	Human beings	Lactobacillus paracasei DFA 81	Animal models
Bifidobacterium breve CCFM1025	Human beings, Animal models	Lactobacillus paracasei HT6	Animal models	
Bifidobacterium breve FHLDJQ3M5	Animal models	Lactobacillus paracasei Lpc-37	Animal models	
Bifidobacterium breve M-16V	Animal models	Lactobacillus paracasei NK112	Animal models	
Bifidobacterium breve M2CF22M7	Animal models	Lactobacillus paracasei PS23	Animal models	
Bifidobacterium breve PXN® 25	Human beings	Lactobacillus paracasei PS23 (PS23)	Animal models	
Bifidobacterium breve UBBr01	Animal models	Lactobacillus plantarum	Animal models	
Bifidobacterium breve W25	Animal models	Lactobacillus plantarum 15953 (strain CGMCC15953)	Animal models	
Bifidobacterium_functionis	Animal models	Lactobacillus plantarum 286 (Lp 286)	Animal models	
Bifidobacterium_functionis 35624	Animal models	Lactobacillus plantarum 81 (Lp 81)	Animal models	
Bifidobacterium_functionis PXN® 27	Human beings	Lactobacillus plantarum 8PA3	Animal models	
Bifidobacterium_functionis UBB101	Human beings	Lactobacillus plantarum 90sk	Animal models	
Bifidobacterium_lactis	Animal models	Lactobacillus plantarum ATCC 793	Animal models	
Bifidobacterium_lactis BAMA-B06/Bau-B0111	Human beings	Lactobacillus plantarum DMDL 9010 (LP9010)	Animal models	
Bifidobacterium_lactis BIA-7	Human beings	Lactobacillus plantarum LP12151	Animal models	
Bifidobacterium_lactis UBBLa70	Human beings	Lactobacillus plantarum LP12407	Animal models	
Bifidobacterium_lactis WS1	Animal models	Lactobacillus plantarum LP12418	Animal models	
Bifidobacterium_lactis WS2	Human beings, Animal models	Lactobacillus plantarum LP3	Animal models	
Bifidobacterium_longum	Animal models	Lactobacillus plantarum MTCC 9510	Animal models	
Bifidobacterium_longum NK46	Animal models	Lactobacillus plantarum PS128	Animal models	
Bifidobacterium_longum R0175	Human beings	Lactobacillus plantarum PS128 (PS128)	Human beings	
Bifidobacterium_longum 1714	Animal models	Lactobacillus plantarum PXN® 47	Human beings	
Bifidobacterium_longum ATCC 15707	Animal models	Lactobacillus plantarum R0102	Animal models	
Bifidobacterium_longum BG0014	Animal models	Lactobacillus plantarum UBLP40	Human beings	
Bifidobacterium_longum BIA-8	Human beings	Lactobacillus plantarum WLPL04	Animal models	
Bifidobacterium_longum LA 101	Animal models	Lactobacillus plantarum W/1	Animal models	
Bifidobacterium_longum NCC3001	Human beings	Lactobacillus reuteri	Human beings, Animal models	
Bifidobacterium_longum PXN® 30	Human beings	Lactobacillus reuteri (DSM 17938)	Human beings	
Bifidobacterium_longum R0175	Human beings, Animal models	Lactobacillus reuteri 3	Animal models	
Bifidobacterium_longum ssp.infantis B11471	Animal models	Lactobacillus reuteri CCFM1132	Animal models	
Bifidobacterium_longum subsp. Infantis	Animal models	Lactobacillus reuteri NK33	Human beings, Animal models	
Bifidobacterium_longum subsp. Infantis E41	Animal models	Lactobacillus rhamnosus	Human beings, Animal models	
Bifidobacterium_longum subsp. Longum	Animal models	Lactobacillus rhamnosus (JB-1)	Animal models	
Bifidobacterium_longum subsp. Longum BAMA-B05/BauB1024	Human beings	Lactobacillus_rhamnosus B-8238	Animal models	
Bifidobacterium_longum subsp.infantis CCFM687	Animal models	Lactobacillus_rhamnosus CCFM1131	Animal models	
Bifidobacterium_longum W108	Animal models	Lactobacillus_rhamnosus CGMCC13724	Human beings	
Bifidobacterium_pseudocatenulatum CECT 7765	Animal models	Lactobacillus_rhamnosus G	Human beings	
Clostridium_butyricum MIYAIRI 588 (CBM588)	Human beings,Animal models	Lactobacillus_rhamnosus HN001	Human beings	
Clostridium_butyricum WZMC1018	Animal models	Lactobacillus_rhamnosus JB-1	Animal models	
Enterococcus_faecalis 2001 (EF-2001)	Animal models	Lactobacillus_rhamnosus LR5	Animal models	
Enterococcus_faecalis strain EC-12 (EC-12)	Animal models	Lactobacillus_rhamnosus LX11881	Animal models	
Faecalibacterium prausnitzii (ATCC 27766)	Animal models	Lactobacillus_rhamnosus PXN® 54	Human beings	
Fermented Milk Containing Lactobacillus_paracasei Strain Shirota (LcS)	Human beings	Lactobacillus_rhamnosus R0011	Animal models	
Komagataella_pastoris KM71H	Animal models	Lactobacillus_rhamnosus UBLR58	Human beings	
Lactobacillus_plantarum DP189	Animal models	Lactobacillus_rhamnosus W71	Animal models	
Lactobacillus_plantarum PS128TM	Human beings	Lactobacillus_rhamnosus zz-1	Animal models	
Lactobacillus_acidophilus	Human beings,Animal models	Lactobacillus_salivarius	Animal models	
Lactobacillus_acidophilus LA11873	Animal models	Lactobacillus_salivarius HA-118	Animal models	
Lactobacillus_acidophilus PXN® 35	Human beings	Lactobacillus_salivarius Ls-33	Animal models	
Lactobacillus_acidophilus T16	Human beings	Lactobacillus_salivarius PXN® 57	Human beings	
Lactobacillus_acidophilus W37	Human beings,Animal models	Lactobacillus_salivarius W24	Human beings,Animal models	
Lactobacillus_brevis	Animal models	Lactococcus_lactis	Animal models	
Lactobacillus_brevis DPC6108	Animal models	Lactococcus_lactis LA 103	Animal models	
Lactobacillus_brevis DSM32386	Animal models	Lactococcus_lactis strain WHH2078	Animal models	
Lactobacillus_brevis FPA 3709	Animal models	Lactococcus_lactis subsp. cremoris LL95	Animal models	
Lactobacillus_brevis J1	Animal models	Lactococcus_lactis W19	Human beings,Animal models	
Lactobacillus_brevis W63	Human beings,Animal models	Lactococcus_lactis W58	Human beings,Animal models	
Lactobacillus_bulgarius	Animal models	Pediococcus_acidilactici	Animal models	
Lactobacillus_casei	Human beings,Animal models	Prevotella_histicola DSM19854	Animal models	
Lactobacillus_casei DG	Animal models	Probiotic NVP-1704	Human beings	
Lactobacillus_casei PXN® 37	Human beings	Rhizopus_chinenis 12	Animal models	
Lactobacillus_casei strain Shirota (LcS)	Human beings	Streptococcus_cerevisiae S-04	Animal models	
Lactobacillus_casei W56	Human beings,Animal models	Streptococcus_cerevisiae var boulardii 17	Animal models	
Lactobacillus_cremoris	Animal models	Streptococcus_thermophilus	Human beings,Animal models	
Lactobacillus_delbrueckii	Animal models	Streptococcus_thermophilus LA 104	Animal models	
Lactobacillus_delbrueckii ssp. bulgaricus PXN® 39	Human beings	Streptococcus_thermophilus PXN® 66	Human beings	
Lactobacillus_delbrueckii subsp. Bulgaricus	Human beings,Animal models	Weissella_parasenteroides WpK4	Animal models	
Search strategy for PubMed	Hits			
----------------------------	--------------			
#1 (depress*[Title/Abstract] OR dysthymi*[Title/Abstract] OR mood disorder*[Title/Abstract] OR affective disorder*[Title/Abstract] OR antidepress*[Title/Abstract])	556,593			
#2 (microb*[Title/Abstract] OR bacteria*[Title/Abstract] OR metaproteom*[Title/Abstract] OR metagenom*[Title/Abstract] OR "16S rRNA*[Title/Abstract] OR flora[Title/Abstract])	1,075,172			
#3 #1 AND #2	5,634			

Search strategy for Web of Science	
#1 TS=(depress* OR dysthymi* OR mood disorder* OR affective disorder* OR antidepress*)	502,875
#2 Topic=(microb* OR bacteria* OR metaproteom* OR metagenom* OR "16S rRNA* OR flora)	1,209,922
#3 #1 AND #2	6,594

Search strategy for Cochrane Library	
#1 (depress*):ti OR (dysthymi*):ti OR (mood disorder*):ti OR (affective disorder*):ti OR antidepress*:ti	36,107
#2 (microb*):ti,ab,kw OR (bacteria*):ti,ab,kw OR (metaproteom*):ti,ab,kw OR (metagenom*):ti,ab,kw OR ("16S rRNA* OR flora):ti,ab,kw	56,167
#3 #1 AND #2	129

Search strategy for EMBASE-MEDLINE-PsycINFO	
#1 depress*:ab,ti OR dysthymi*:ab,ti OR “mood disorder*”:ab,ti OR “affective disorder*”:ab,ti OR antidepress*:ab,ti	1,063,823
#2 microb*:ab,ti OR bacteria*:ab,ti OR metaproteom*:ab,ti OR metagenom*:ab,ti OR "16S rRNA*:ab,ti OR flora: ab,ti	1,300,339
#3 #1 AND #2	7,992
Table S15. Search strategy for microbiota-based interventions of depression from PubMed.

Search strategy for PubMed	Hits
#1 (depress*[Title/Abstract] OR dysthymi*[Title/Abstract] OR mood disorder*[Title/Abstract] OR affective disorder*[Title/Abstract] OR antidepress*[Title/Abstract])	474,410
#2 (microb*[Title/Abstract] OR flora*[Title/Abstract] OR probiotic*[Title/Abstract] OR prebiotic*[Title/Abstract] OR synbiotic*[Title/Abstract] OR psychobiotic*[Title/Abstract] OR postbiotic*[Title/Abstract] OR "fecal microbiota transplantation"*[Title/Abstract] OR "fecal transplantation"*[Title/Abstract])	639,026
#3 #1 AND #2	3,633