Remarks on Jurdziński and Loryś’ proof that palindromes are not a Church-Rosser language

Colm Ó Dúnlaing
Natalie Schluter*

Mathematics, Trinity College, Dublin 2, Ireland

December 10, 2009

Abstract

In 2002 Jurdziński and Loryś settled a long-standing conjecture that palindromes are not a Church-Rosser language. Their proof required a sophisticated theory about computation graphs of 2-stack automata. We present their proof in terms of 1-tape Turing machines.

We also provide an alternative proof of Buntrock and Otto’s result that the set of bitstrings \(\{ x : (\forall y)x \neq y^2 \} \), which is context-free, is not Church-Rosser.

1 Introduction

In the 1970s, Nivat [13] began the study of languages defined by Thue systems: see also [51]. Book [2] continued the study of Church-Rosser Thue systems, and the theory has been much extended since then [39].

We follow the definitions of length-reducing Thue systems, etcetera, in [3]. A Thue system \(S \) is Church-Rosser if whenever

\[u^* \leftrightarrow_S v, \]

there exists a string \(w \) such that \(u \rightarrow w \) and \(v \rightarrow w \). Equivalently, every congruence class contains exactly one irreducible string. The redexes, reducts, and irreducible strings, with respect to \(S \), are denoted \(\text{Redexes}(S) \), \(\text{Reducts}(S) \), and \(\text{Irred}(S) \).

\(\text{PAL} \) denotes the set of (bitstring) palindromes: those bitstrings which read the same backwards as forwards, namely,

\[\text{PAL} = \{ x \in \{0,1\}^* : x^R = x \} \]

where \(x^R \) is the reversal of \(x \).

Church-Rosser languages will be described below. They are a surprisingly powerful generalisation of congruential languages, which are finite unions of congruence classes of a finite Church-Rosser Thue system.

*e-mail: odunlain@maths.tcd.ie, natschluter@maths.tcd.ie. Mathematics dept website: http://www.maths.tcd.ie.
In [1] it is shown that PAL is not a congruential language. This is proved by contradiction. Otherwise, by definition, PAL is a finite union of congruence classes of a Thue system \(T \).

However, the linguistic congruence \(\equiv_{\text{PAL}} \) is the identity relation. It is defined by \(x \equiv_{\text{PAL}} y \iff (\forall u, v) (uxv \in \text{PAL} \iff uyv \in \text{PAL}) \).

If \(x \) and \(y \) are different bitstrings, suppose without loss of generality that \(|x| \leq |y|\) and \(y \) ends in 1. Then \(\lambda x0|y|y^R \) is not a palindrome but \(\lambda y0|y|y^R \) is. Thus \(x \equiv_{\text{PAL}} y \iff x = y \). But \(\leftrightarrow_T \) would be a refinement of \(\equiv_{\text{PAL}} \), so \(\leftrightarrow_T \) would be the identity relation, and PAL, being infinite, would not be a finite union of congruence classes modulo \(T \).

(1.1) Definition A language \(L \) is Church-Rosser [10] if there exists a Church-Rosser Thue system \(S \) and strings \(t_1, t_2, \) and \(t_3 \), such that
\[
\{t_1\} \cdot L \cdot \{t_2\} = [t_3]_S.
\]
We assume without loss of generality that \(t_3 \) is irreducible, so \(x \in L \) if and only if \(t_1xt_2 \leftrightarrow_TS t_3 \).
We only consider languages \(L \subseteq \{0, 1\}^* \). The alphabet of \(S \) may include \(\{0, 1\} \) properly.

Church-Rosser languages were introduced in 1984 by Narendran [11], and studied in [10] by McNaughton, Narendran, and Otto.

Book [2] had shown that if \(S \) is a Church-Rosser Thue system then reduction (modulo \(S \)) could be executed in linear time on a 2-stack automaton. Therefore Church-Rosser languages can be recognised on a “shrinking” deterministic 2-stack automaton. Two papers by Buntrock and Otto [4] and Niemann and Otto [12] together showed that such automata characterise the Church-Rosser languages.

An early conjecture by McNaughton, Narendran, and Otto [10] was that the language of bitstring palindromes is not Church-Rosser. This conjecture remained open until it was proved by Jurdziński and Loryś in 2002 [7].

Jurdziński and Loryś’s proof (see [8]) is difficult, requiring a complex theory of computation graphs for two-stack automata. In this note we propose a simplified proof based on 1-tape Turing machines.

2 1-tape reduction machine

Given a Church-Rosser Thue system \(S \), we exhibit a 1-tape Turing machine \(\text{TM} \) implementing reduction modulo \(S \) in a systematic way. While Book’s 2-stack machine is more efficient [3,6], the advantage of studying reductions on a 1-tape Turing machine is that blanks are steadily accumulated, allowing us to see where information has been lost.

‘Turing machine’ will mean a deterministic machine with quintuple instructions and 2-way infinite tape, although the worktape used will be only slightly longer than the input string. An instruction (quintuple) has the form

\[(\text{state}, \text{symbol}, \text{move}, \text{new state}, \text{new symbol}) \]
current state, current symbol, new symbol, head movement, new state
where the head movement is 1 square left or right (the read/write head moves at every step).

Given a language L such that
\[t_1 \cdot L \cdot t_2 = [t_3], \]
on input x the machine TM converts the tape contents to t_1xt_2, reduces it, and compares the result to t_3. Let Σ be the smallest alphabet such that
\[\Sigma^* \text{ contains Redxes}(S), \text{Reducts}(S), \{t_1, t_2, t_3\}, \text{and } L. \]

The machine TM executes reductions systematically. If a string z is reducible, then it has a leftmost redex, i.e., it can be written as wut where u is a redex and no proper prefix of wu is reducible.

The set of such strings wu is regular and one can easily describe a DFA D which recognises this set, and has the property that when it accepts wu, one such redex u, and hence a rule $u \rightarrow v$, is determined uniquely by its accepting state. Ties are broken arbitrarily.

Let K be the set of states of D.

The worktape alphabet of TM consists of

- Σ, a new blank symbol B, and left and right sentinel characters \exists and \dollar.
- Compound symbols $[a, k]$ where $a \in \Sigma \cup \{B\}$ and $k \in K$ (the states of D).

The blank symbols are B and $\{[B, k] : k \in K\}$.

(2.1) Write h for the following homomorphism.

\[h(z) = \begin{cases}
 z & \text{if } z \in \Sigma, \\
 a & \text{if } z = [a, k], a \in \Sigma, k \in K, \\
 \lambda & \text{otherwise}
\end{cases} \]

Let k_0 be the initial state of D and δ the transition function for D. We extend δ to $K \times (\Sigma \cup \{B\})$:

\[\delta(k, B) = k, \quad k \in K. \]

A string $[a_1, k_1][a_2, k_2] \ldots [a_n, k_n]$ of compound symbols is historical if for all $j \leq n$,

\[k_j = \delta^*(k_0, a_1a_2 \ldots a_j). \]

Obviously,

\[k_{j+1} = \delta(k_j, a_{j+1}), \quad 0 \leq j \leq n - 1. \]

(2.2) Definition The string $\exists t_1xt_2$ (including endmarkers) is called the initial redex on input x.

The machine TM creates the initial redex, then reduces as often as needed.

- Its configurations are represented in the form $\alpha q \beta$ where $\alpha \beta$ are the tape contents, including \exists on the left and \dollar on the right, $\beta \neq \lambda$ (so \dollar is the rightmost symbol in β), q is the current state, and the machine is scanning the first symbol of β.
• Except for the sentinel characters, all symbols in β are in $\Sigma \cup \{B\}$ and all symbols in α are compound symbols, and α is historical.

• After φt_1 and $t_2\$ have been added to the input, $h(\alpha)$ is always irreducible and $h(\alpha\beta)$ is always a reduct of t_1xt_2 (except temporarily during REDUCE phases).

• First, TM moves to the right, appending $t_2\$ to x. Then it moves to the left, prefixing φt_1 to $xt_2\$: the tape contents are now the initial redex $\varphi t_1xt_2\$, and the current symbol is φ. It enters a SHIFT phase.

For the rest of this description $\alpha q\beta$ denotes the current configuration, and a is the current symbol.

• In a SHIFT phase, if $\beta = \$, then TM enters its final phase, described below.

Let $k' = k_0$ if $\alpha = \lambda$ or $\alpha = \varphi$, otherwise let k' be the state of D occurring in the rightmost symbol $[a', k']$ in α. TM can remember k'.

If $a = \varphi$ then TM moves right.

If $a = B$ then TM overwrites the current square with $[B, k']$ and moves right.

Otherwise $a \in \Sigma$: let $k = \delta(k', a)$. If k is not an accepting state of D then TM overwrites the current square with $[a, k]$ and moves right.

Otherwise, k is an accepting state of D, and the string $h(\alpha)a$ ends in a redex u, so there exists a rule $u \rightarrow v$ associated with k. TM enters a REDUCE phase.

• In a REDUCE phase, $h(\alpha)a$ ends with a redex u, and TM can select a unique rule $u \rightarrow v$ to be applied. TM moves left, overwriting the rightmost $|v|$ symbols of αa with v, extending leftwards with blank symbols B, until the square holding the leftmost symbol ℓ of u (or rather, a compound symbol $[\ell, k]$) is overwritten, moves one square further left, scanning either $[\ell', k']$ or φ (in which case let $k' = k_0$), moves right, writes $[B, k']$, and enters a SHIFT phase.

• In the final phase, $\beta = \$ and the tape contents are $\varphi a\$, and $h(\alpha)$ is irreducible. TM scans leftwards to determine whether or not $h(\alpha) = t_3$, and halts.

• Let L be the maximum length of all redexes. In a REDUCE phase at most $L + 1$ nonblank symbols are scanned, and the number of blank symbols increases by at least 1.

• There is one left-sweep at the beginning when TM writes φt_1. Thereafter every left-sweep is a reduction and increases the number of blank symbols.

(2.3) Blank symbols do not affect the outcome. It is very important that the blank symbol B carries no information, and once a square becomes blank it remains blank (compound symbols $[B, k]$ are also considered blank). If one were to insert extra blank squares at any time, provided that B is inserted right of the current square and the appropriate symbols $[B, k]$ are inserted left of the current square, the same reductions would be performed.
3 Kolmogorov complexity

We use the following definition of the Kolmogorov complexity $K(w)$ of a bitstring w.

Let the entire family of 1-tape Turing machines (transducers, converting bitstring inputs to bitstring outputs) be encoded as bitstrings and a Universal Turing machine UTM be given. The encoding of Turing machines should have the property that if y encodes a Turing machine then no proper prefix of y does. In that case, for any bitstring x there exists at most one possible factorisation yz of x such that y encodes a Turing machine, call it T_y.

On input x, UTM tests whether x has a prefix y encoding a Turing machine. If not, it loops. Otherwise it simulates T_y on input z where $x = yz$, either looping or computing $T_y(z)$.

The Kolmogorov complexity $K(w)$ is the length of this shortest string.

Given bitstrings w, y, z such that $w = T_y(z)$ we say that yz encodes w, or, by abuse of language, say that z encodes w, and call z the code and y the decoder.

If $K(w) \geq |w|$ then we call w hard. The lemma below is a fundamental result but very easily proved.

(3.1) Lemma For any $m \in \mathbb{N}$, there exists a hard string w of length m.

Proof. There are $2^m - 1$ strings of length $< m$, so there are at most $2^m - 1$ (decoder,code) pairs yz such that $|yz| < m$. Hence there exists at least one string w of length m not encoded by any of them. Q.E.D.

4 Crossing sequences and information loss on a 1-tape reduction machine

On input x, the reduction machine TM first creates the initial redex

$$\texttt{t_1x t_2}.$$

Suppose that the initial redex has length n and that the tape squares are labelled 1 to n, beginning with the \texttt{t}. The square initially scanned has index $|\texttt{t_1}| + 1$.

In discussing crossing sequences, it helps to consider the ‘points separating’ adjacent squares. There are crossing points between squares i and $i + 1$ for $0 \leq i \leq n$. During its computation, TM occasionally moves from square i to $i + 1$, or vice-versa; it is said to cross the i-th crossing point. This is possible only if $1 \leq i \leq n - 1$.

(4.1) Definition Given a factorisation $\texttt{t_1x t_2} = uv$ of the initial redex, the u, v-crossing point is the crossing point indexed $|u|$. Or given a factorisation $x = uv$ of the input string, the u, v-crossing point is the crossing point indexed $|\texttt{t_1u}|$.

During a computation of TM, for $1 \leq i \leq n - 1$ a crossing sequence develops at the i-th crossing point, as follows.

If $i > |\texttt{t_1}|$ then the first crossing is from left to right, when TM attaches $\texttt{t_2}$ to the input string, and the second is from right to left before TM attaches $\texttt{t_1}$ to the input string. If $1 \leq i \leq |\texttt{t_1}|$ then
the first crossing is from right to left. The next square scanned is the $i + 1$-st if crossing from left to right, otherwise it is the i-th.

Let p_1 be the state immediately after the first crossing: the next square scanned is scanned in state p_1. After that, the crossing point is crossed in the opposite direction, or possibly never. Let p_2 be the state immediately after the second crossing, if any. Then let p_3 be the state immediately after the third crossing, and so on.

The initial direction of movement across the crossing-point is leftwards (resp., rightwards) if the crossing point is left (resp., right) of the initial square. Accordingly crossing sequences begin with a single bit s indicating whether the point is left (0) or right (1) of the initial square.

The sequence s, p_1, p_2, \ldots, p_k is called the crossing sequence at the i-th crossing point, where s is 0 if the i-th crossing point is left of the initial square, otherwise 1.

The bit s is called the leading bit in the crossing sequence. The number k is the height of the crossing sequence. It ignores s: a crossing sequence of height 0 is a single bit.

Because of the repeated introduction of blanks, we can establish a notion of when significant information has been lost. We call a string y depleted when the number of nonblank symbols falls below a certain threshold. (The threshold $1/7$ will be good enough.)

(4.2) Definition Suppose that the alphabet of the Thue system realised by TM contains A symbols. Suppose α is fixed, $0 < \alpha < 1$. Let

$$\beta = \frac{\alpha}{\log_2 A}.$$

Let $j_1 < j_2$ be two crossing points. The tape contents between j_1 and j_2 are depleted (at time t) if the string y' between these crossing points satisfies

$$|h(y')| \leq \beta(j_2 - j_1).$$

If y is a distinguished substring of an input string then we say that y is depleted at time t if the initial redex $ct_1 xt_2 \delta = uyv$ and the tape contents become depleted as described, where $j_1 = |u|$ and $j_2 = |uy|$. In this case,

$$|h(y')| \leq \beta|y|.$$

The constant β is introduced because it is the bit-length of $h(y')$ which matters, that is, the length of a bit-string encoding $h(y')$. The depletion lemma guarantees that $h(y')$ has bit-length $\leq \alpha|y|$.

(4.3) Lemma (Depletion Lemma). There exist constants H and d such that during any computation of TM, if two crossing points are at least d squares apart and the height of all crossing sequences at and between them is at least H, then the string between these points is depleted.

Proof. Let L be the maximum length of all redexes. Suppose that at crossing point j, and at time t, the crossing sequence has height H or greater. This includes $\lfloor H/2 \rfloor$ right-to-left movements. The first may be when the string ct_1 is attached to the input, and another may be the last move in a reduce phase, when TM scans the j-th square, which contains $[a, k']$, say, to ascertain the state k'.
of \(D \). However, at that time the \(j + 1 \)-st square goes from nonblank to blank, so it happens at most once. Apart from these two exceptions, every right-to-left movement across the \(j \)-th crossing point is during a REDUCE phase and produces more blanks to the left of that point. This happens at least \(\lceil H/2 - 2 \rceil \) times up to time \(t \).

Consider a section of at most \(K = \lceil H/2 - 2 \rceil + L - 1 \) squares ending at the \(j \)-th square. So long as the section includes \(L \) or more nonblank squares, all of these REDUCE phases increase the number of blanks in the section. By time \(t \) the section contains at most \(L - 1 \) nonblank squares.

Now suppose that the stated threshold holds at all crossing points from the \((j - \ell)\)-th to the \(j \)-th inclusive, where \(\ell \geq d \). Subdivide the tape between these points into sections of length \(K \) plus one leftmost section of length between 0 and \(K - 1 \). This subdivision produces \(\lceil \ell/K \rceil \) sections. By time \(t \), the number of nonblank squares between these crossing points is at most

\[
\frac{(L - 1)(\ell + 1)}{K}.
\]

\(K \) depends directly on \(H \). Choose \(H \) large enough so that

\[
\frac{L - 1}{K} < \beta : \quad K > \frac{L - 1}{\beta}.
\]

Choose

\[
d = \left\lceil \frac{1}{\beta K} \right\rceil.
\]

Then for all \(\ell \geq d \),

\[
\frac{(L - 1)(\ell + 1)}{K} \leq \beta \ell,
\]

as required. Q.E.D.

5 Cut-and-paste methods

In a 'cut and paste' method, given an input string \(x \), one replaces a substring \(v \) of \(x \) with another string \(v' \), so \(x = uvw \) is changed to a string \(x' = uv'w \). Given that the crossing sequences around \(v \) and \(v' \) are compatible, the computations on \(x \) and \(x' \) should be similar.

We consider partial computations of \(M \), where \(M \) is a 1-tape Turing machine. By 'partial' is meant that they begin at initial configurations but do not necessarily end in halting computations. Associated with every partial computation is the list of crossing sequences generated by the computation.

Recall that a crossing sequence is a sequence of the form

\[
s, p_1, \ldots, p_k
\]

where \(s \) is a single bit and \(p_1, \ldots, p_k \) are states of \(M \). The leading bit is always given, but if \(k = 0 \) then the sequence is considered empty.

In this section we assume that the squares are indexed so the first square scanned has index 1.
Given an input string x, there is a unique computation (possibly infinite) on input x. Suppose the initial tape contents are presented as $a_K \ldots a_N$, where $K \leq 1$ and $N \geq |x|$ and $x = a_1 \ldots a_{|x|}$; the other a_i are blank. Assume that in any partial computation under consideration, only squares indexed between K and N are scanned, perhaps not all of them.

Now suppose that we are given an alternating list of crossing sequences c_i and symbols a_i,

$$c_{K-1}, a_K, c_K, \ldots, a_N, c_N,$$

where the leading bit in c_i is 0 if $i < 1$ and 1 if $i \geq 1$, and the input string x is $a_1 \ldots a_{|x|}$.

Also, those i such that c_i is nonempty form a contiguous (possibly empty) interval, and c_K and c_N are empty, with leading bits 0 and 1 respectively.

Full verification. Given this data, it is easy to trace the computation on input x and produce a sequence of sextuples

$$i_{r-1} p_{r-1} a_{r-1} a_r \mu_r p_r, \quad r = 1, 2, \ldots$$

giving the square scanned and the quintuple applied at the first, second, ... steps. At the same time the procedure can check the state p_r against the relevant crossing sequence ($p_0 = q_0$ is not checked).

This can be done by maintaining the index of the current square, the current state, and arrays A_i, $K \leq i \leq N$ and I_i, $K - 1 \leq i \leq N$. The array A_i gives the current tape contents, and I_i gives the number of states currently cancelled from c_i. The procedure is simple and we omit the details.

The procedure should continue until either

- it reaches a halting configuration,
- it attempts to check p_r against a state in some c_i where I_i has reached the height of c_i, meaning that all states in c_i have been ‘cancelled,’ or
- it checks p_r against a state in some c_i and discovers a mismatch.

In the first two cases, if all states in all the c_i have been cancelled, it reports ‘consistent,’ else it reports ‘inconsistent.’ In the third case, it reports ‘inconsistent.’

Local verification. Next let us fix some k, $K \leq k \leq N$, and consider how this procedure affects the k-th square: the relevant data and variables are

$$k, c_{k-1}, I_{k-1}, q, A_k, c_k, I_k.$$

Let us suppose, omitting some simple variants, that $k \geq 2$, so the square is first entered from the left. When the square is first entered, q has just been cancelled from c_{k-1} and $A_k = a_k$, and a quintuple $qa_k a' \mu q'$ applies, say. $A_k := a'$, $q := q'$, and the next square scanned is $k \pm 1$ depending on μ: q' is cancelled from c_k or c_{k-1} as appropriate, and the next time the square is entered, q is taken from c_k or c_{k-1}. The procedure continues until there is a mismatch or it attempts to check q' against c_{k-1} or c_k when all of it has already been cancelled. At this point, if there is a mismatch, or not both these crossing sequences have been fully cancelled, it reports ‘inconsistent,’ else it reports ‘consistent.’ Let us call this procedure a local verification at the k-th square.
(5.5) **Definition** Given the data (5.1), i.e., \(c_{K-1}, a_K, c_k, \ldots, a_N, c_N \), a consecutive triple is a triple \(c_{k-1}, a_k, c_k \) where \(K \leq k \leq N \). The consecutive triple \(c_{k-1}, a_k, c_k \) is compatible if the local verification at the \(k \)-th square reports ‘consistent.’

(5.6) **Theorem** The data (5.1) is consistent with a partial computation on input \(x \) if and only if for each \(k \) between \(K \) and \(N \) the consecutive triple

\[
(5.2)
\]

\(c_{k-1}, a_k, c_k \)
is compatible. In this case the local verification at \(k \) also computes the contents of the \(k \)-th square at the end of the partial computation, and identifies the unique square at which the partial computation ends.

Proof. If the data in (5.1) is consistent with a partial computation on input \(x \), the local verification at every square will have the same effect as the full verification and report ‘consistent,’ so \(c_{k-1}, a_k, c_k \) are compatible and the final value of \(A_k \) will be the same as in the full verification.

Granted that the data is consistent, the unique \(k \)-th square at which the partial computation ends is easily determined from \(k, c_{k-1}, a_k, c_k \) by checking the final head-movement across the \(k-1 \)st and \(k \)th crossing points.

Otherwise, the full verification would report inconsistency. Suppose it terminates at the \(k \)-th square. Up to this point, its actions at the \(k \)-th square are the same as the local verification procedure on that square, so the local verification at \(k \) will terminate and report inconsistency for the same reason, and \(c_{k-1}, a_k, c_k \) are incompatible. **Q.E.D.**

The Jurdziński-Loryś proof uses a kind of pumping lemma and a kind of splicing lemma. The pumping lemma is

(5.7) **Corollary (Pumping Lemma).** Suppose that \(x \) is an input string and \(x = uvw \) where \(v \neq \lambda \) and in some partial computation on input \(x \), the \(u, vw \)-crossing sequence equals the \(uv, w \)-crossing sequence. Explicitly, suppose the data

\[
(5.2)
\]
describes a partial computation on input \(x \). Write \(x = a_1 \ldots a_n \) and \(v = a_{i+1} \ldots a_j \). Let \(x' = uv = a_1 \ldots a_i a_{j+1} \ldots a_n \). Then \(i < j \), \(c_i \) and \(c_j \) are the \(u, vw \) and \(uv, w \)-crossing sequences respectively, and

\[
(5.3)
\]
is produced by a partial computation on input \(x' \).

Furthermore, if \(a'_K \ldots a'_N \) are the tape contents at the end of the first partial computation, then

\[
a'_K \ldots a'_i a'_{j+1} \ldots a'_N
\]
are the contents at the end of the second.
Proof. From Theorem 5.6 all triples c_{k-1}, a_k, c_k from the list in Equation (5.2) are compatible. Since $c_i = c_j$, the same goes for the list in Equation (5.3), so they are produced by a partial computation on input x'. The remark about the final tape contents also holds because they can be calculated by the local verification. Q.E.D.

The other cut-and-paste result is restricted to our reduction machine TM. Recall (Paragraph 2.1) that h is a homomorphism which erases blank symbols, and a blank symbol may differ from the specific blank B.

(5.8) Definition Let TM be a reduction machine with initial redex $c t_1 x t_2 S = w w$ and suppose that a computation is executed up to a time T. Let c_1 be the u, w-crossing sequence at that point, and c_2 the $u v$, w-crossing sequence, and suppose that z is the tape contents between these crossing points at time T (i.e., z is the string occupying squares $|u| + 1$ to $|v| w$ at time T).

If at time T, the square being scanned is one of these squares, write $v = \alpha \beta$ where this square is the first in β and let $\ell = |h(\alpha)| + 1$; otherwise let $\ell = 0$.

Let q be the state at time T.

Then the data

$$|v|, c_1, h(z), c_2, \ell, q$$

is called a residue or (u, v, w)-residue (at time T).

The residue is associated with a distinguished substring v of the initial redex. It includes $|v|$, q, and ℓ, to simplify the ‘splicing lemma’ (5.10) below.

(5.9) Lemma Suppose x_1 and x_2 are input strings, and there exist times T_1 and T_2 such that the $\lambda, c t_1 x t_2 S, \lambda$-residue at time T_1 and the $\lambda, c t_1 x t_2 S, \lambda$-residue at time T_2 are the same. Then x_1 and x_2 possess the same irreducible reduct, so TM accepts x_1 iff it accepts x_2.

Proof. The respective initial redexes lead to configurations at times T_1 and T_2 which are the same except for occurrences of blank symbols, which don’t affect the outcome of the computations (Paragraph 2.3). Q.E.D.

(5.10) Lemma (splicing lemma). Let TM be a reduction machine. Given two computations, with inputs factorised as $w w$ and $w' w'$, suppose that at some time t in the first computation, and another time t' in the second, the residue of v in the first coincides with the residue of v' in the second. Then $w w$ and $w' w'$ possess the same irreducible reduct, so TM either accepts or rejects both strings.

Proof. Suppose the common residue is $|v|, c_1, h(z), c_2, \ell, q$. Associated with the first computation suppose we have the data

$$c_{K-1}, a_K, \ldots, a_N, c_N, \quad (5.4)$$

$$x = a_1 \ldots a_n,$$

and $v = a_i \ldots a_j$. Similarly, for the second, we have the data

$$c'_{K'-1}, b_{K'}, \ldots, b_{N'}, c'_{N'}, \quad (5.5)$$

$$x' = b_1 \ldots b_{n'},$$

and $v' = b_i' \ldots b_{j'}$. We are given that $c_i = c_i'$ and $c_j = c_j'$. By Theorem 5.6 each consecutive triple in both lists of data is compatible. Corresponding to the input $x' = w v' w$ we have the list

$$c_{K-1}, a_K, \ldots, a_i, c_i, b_{i+1}, c_{i+1}, \ldots, b_{j'}, c_{j'}, a_{j+1}, \ldots, a_N, c_N, \quad (5.6)$$
and each consecutive triple in this list is compatible. Therefore by Theorem 5.6 there is a partial computation on input x' which produces the crossing sequences (5.6).

The residues include the lengths of v and v', so v and v' have the same length.

The tape squares where these partial computations end are determined by the local verifications (Theorem 5.6). If $\ell = 0$ then the first computation ends outside the range of v, so the third computation ends outside the range of v', at the same square according to the local verifications. Therefore at the end of the third computation, the $(\lambda, \xi t_1 u w' w t_2 \$, $\lambda)$-residue is the same as the $(\lambda, \xi t_1 u w t_2 \$, $\lambda)$-residue at the end of the first computation.

From Lemma 5.9 uvw and $uv'w$ have the same irreducible reduct.

Let z and z' be the string in the squares originally occupied by v and v' in the first two computations.

If $\ell > 0$ then the first and second computations end at positions k and k', say, within the ranges of v and v' respectively. Factorise z as $\alpha \beta$ where $|\alpha| = k$, and z as $\alpha' \beta'$ where $|\alpha'| = k'$. Then from the residue, $h(\alpha) = h(\alpha')$ and $h(\beta) = h(\beta')$. Again we reach the conclusion (*), so uvw and $uv'w$ have the same irreducible reduct. Q.E.D.

6 Jurdziński and Loryś' proof

Given a 1-tape reduction machine accepting all bitstring palindromes, in particular it accepts all palindromes of the form $(ww^R)^{2i+1}$ where ww^R is hard. Jurdziński and Loryś [7,8] showed that no deterministic 2-stack automaton can recognise this set, and their arguments can be applied unchanged to the 1-tape reduction machine TM.

The string

$\xi t_1 w w^R \ldots w w^R t_2 \$

can be viewed as $2i + 3$ blocks indexed from 0 to $2i + 2$. The middle block is indexed $i + 1$. Block 0 is ξt_1 and block $2i + 2$ is $t_2 \$, and for $1 \leq j \leq 2i + 1$, the j-th block is the j-th occurrence of ww^R. Blocks 0 and $2i + 2$ are the outer blocks, and the others are inner blocks. We suppose that the machine TM recognises the set of palindromes and derive a contradiction.

The crucial lemma is the Middle Block Lemma, 6.4, below. A parameter H will be fixed according to the Depletion Lemma above; in fact the depletion threshold $\alpha = 1/7$ will be good enough. We first establish a pumping result, because it effects the choice of constants in the Middle Block Lemma.

Define Q as the smallest integer such that TM has fewer than 2^Q states. All states can be represented as Q-bit patterns, and there is an extra pattern to represent ‘no state,’ used for padding. Then every crossing sequence of height $\leq H$ can be encoded as a string of $QH + 1$ bits.

(6.1) Lemma (pumping effect). Let H be fixed and Q defined as above, and let w be a hard string of length m. Given input $x = (ww^R)^{2i+1}$ where $i > 8m \times 2^{QH+1}$, suppose at a certain time t in the computation, within each inner block to the left of the middle block there is at least one crossing sequence of height $\leq H$.

Then x can be factorised as $u_1u_2u_3$, so that the shorter string $x' = u_1u_3$ is also of the form $(ww^R)^{2^i+1}$, and has the property described in Corollary 5.7; i.e., at some time t' in the computation on input x', the crossing sequences are the same as corresponding crossing sequences in the computation on x at time t, and the tape contents agree outside the region originally occupied by u_2.

Sketch proof. For each j, $1 \leq j \leq i$, choose a crossing point k_j in the j-th block where the crossing sequence has height $\leq H$. A crossing point belongs to a block if it is between the crossing points bounding the block, or coincides with one of them. Perhaps some crossing points are counted twice, but no crossing point is counted more than twice, and therefore there are more than $4m \times 2^{QH+1}$ crossing points chosen. The residues $k_j \mod 4m$ fall into $4m$ classes and therefore there exists an $r, 0 \leq r < 4m$, such that the set

$$\{j : k_j \equiv r \mod 4m\}$$

contains more than 2^{QH+1} indices. This gives more than 2^{QH+1} crossing points where the crossing sequences at time t have height $\leq H$. There are at most 2^{QH+1} such sequences, so the same sequence must occur at two crossing points, call them k_1 and k_2, where $4m$ divides $k_2 - k_1$. These crossing points are in the region of tape originally occupied by the input string.

Factorise x as $u_1u_2u_3$ where $|\varphi t_1u_1| = k_1$ and $|u_2| = k_2 - k_1$. Since the u_1, u_2u_3- and u_1u_2, u_3-crossing sequences match, this factorisation has the properties described in Corollary 5.7. Because x is an odd power of ww^R and $|u_2|$ is a multiple of $4m = 2|ww^R|$, u_1u_3 is also an odd power of ww^R, so $u_1u_3 = (ww^R)^{2^i+1}$ as asserted. **Q.E.D.**

(6.2) **Note.** The above lemma will be combined with Lemma 6.4 to derive a contradiction. According to the Middle Block Lemma, if m is sufficiently large then the middle block is the first to be depleted on input $x = (ww^R)^{2i+1}$. That is, the middle block has reached depletion level and no other block has. Consider the string $x' = (ww^R)^{2^{i'}+1}$. It was formed as follows: in the original computation, the tape was divided into regions A, B, C, and the region B was deleted. Also, the middle block is entirely in the region C. In the second computation, the tape has regions A' and C' corresponding to A and C. The block corresponding to the middle block is entirely in the region C'. All blocks in A' and C' correspond to blocks in A and C. There may be one other block in x' to consider, namely, a block straddling A' and C', which does not correspond to a block in the first computation. This will be considered again in the proof of the main result.

(6.3) **Prefix encoding of numbers.** We need to encode numbers such as i as bitstrings so that no encoding is a proper prefix of another encoding. This is easily done. Given a positive integer r, first represent it as a binary number s with leading bit 1. Let q be the homomorphism $0 \mapsto 00, 1 \mapsto 01$. Then r is represented as

$$q(s)11.$$

Also, 0 can be represented as 11. This encoding has the prefix property, and uses fewer than $4 + 2 \log_2(r + 1)$ bits.

In applying the Depletion Lemma, we take the depletion level α to be 1/7. Recall that $\beta = \alpha / \lceil \log_2 A \rceil$ where A is the size of the Thue system alphabet.

(6.4) **Lemma (Middle block lemma.)** Given input $x = (ww^R)^{2i+1}$, where $i \leq 9m \times 2^{QH+1}$, let the computation continue until some inner block is depleted, but only one, at time t, say. Then if $m = |w|$ is large enough, and the depletion level is 1/7, the block must be the middle block.

\[\text{With this bound on } i, \text{ Lemma 6.1 can be used later.}\]
Proof. Suppose the \(j \)-th block is the first inner block to become depleted, and \(j \neq i + 1 \). For clarity we suppose \(j < i + 1 \). We consider the three blocks \(j-1, j, j+1 \) together.

The case \(j = 1 \) should be treated separately. Assume \(j > 1 \) so we have three consecutive inner blocks. By the depletion lemma \((4.3) \), there exists a crossing point in the \((j-1)\)st block where the crossing sequence has height \(\leq H \). Choose the rightmost such crossing point within the \((j-1)\)st block, and let its index be \(j_1 \). Here \(|\varphi t_1| + (j-2) \times 2m \leq j_1 \leq |\varphi t_1| + (j-1) \times (2m) \). Similarly let \(j_2 \) index the leftmost crossing sequence, in the \((j+1)\)st block, whose height is \(\leq H \).

Consider the following data.

\[
m, i, j, j_1, c_1, j_2, c_2, h(y'), \ell, q
\]

(6.1)

where \(y' \) is the string between crossing points indexed \(j_1 \) and \(j_2 \) at time \(t \), and \(c_1 \) and \(c_2 \) are the crossing sequences at that time at those points. Also, \(\ell \) indicates the relative position of the and \(q \) is the state reached, as given in a residue (Definition \(5.8 \)).

Note that \(j_2 - j_1 \leq 6m \), so by the depletion lemma \((4.3) \), \(h(y') \) can be encoded as a bitstring of length \(\leq 6m/7 \). The crossing sequences can be encoded as bitstrings of length \(QH + 1 \), and numbers \(m, i, \) et cetera, are \(O(m) \). The numbers can be encoded as discussed in Paragraph \(6.3 \) above, allowing all the data to be encoded uniquely in a bitstring \(z \) of length

\[
|z| \leq \frac{6m}{7} + O(\log m).
\]

It is straightforward to consider in turn every string \(w' \) of length \(m \), and determine whether, on input \((w'w'^R)^{2i+1} \), the \(j \)-th block is the first to become depleted, and if so, whether the residue matches the given information. If there is only one such string \(w' \), then \(w' = w \), so we have a way to generate \(w \) from the given information. Suppose that \(T_w \) is a Turing machine constructing \(w \) from \(z \). Then \(yz \) encodes \(w \). If \(m \) is sufficiently large, then \(|yz| < m \), contradicting the fact that \(w \) is hard.

Therefore there exists another string \(w' \) of length \(m \) which is consistent with the information stored in \(z \). Then there exist factorisations

\[
\varphi t_1(ww^R)^{2i+1}t_2S = tvu
\]

and

\[
\varphi t_1(w'w'^R)^{2i+1}t_2S = t'v'u'
\]

where \(|t| = |t'|, |v| = |v'|, \) and \(|u| = |u'|, \) and at corresponding points in the computations the \(t, u, v \)-residue matches the \(t', u', v' \)-residue. Then TM accepts \(tv'u \) (Lemma \(5.10 \)). However, in the string \(tv'u \), the \(j \)-th block \(w'w'^R \) in \(v' \) has its mirror image in \(u \), which is of the form \(w w^R \), so \(tv'u \) is not a palindrome, a contradiction.

The analysis is much the same if the depleted block is indexed \(1 \), since block indexed zero is the same for all input strings. We conclude that the middle block is the first to be depleted. Q.E.D.

(6.5) Theorem (Jurdziński-Loryś.) \(\text{PAL} \) is not a Church-Rosser language.

Proof. Otherwise there is a reduction machine TM as described, and an input string

\[
x = (ww^R)^{2i+1}, \quad i = 9m \times 2^{QH+1}.
\]
By Lemma 6.4 at some time during the computation on input x, the middle block becomes depleted, but no other block is depleted. By Lemma 6.1, the tape can be divided into regions A, B, C, where C contains the middle block, and there exists a shorter string $x' = (ww^R)^{2^i+1}$ obtained by deleting B. Correspondingly, the tape with input x' is divided into regions A' and C'. According to the lemma, there exists a time t' in the computation on input x' where the crossing sequences and tape contents in A and C at time t correspond exactly to those in A' and C' at time t'. In the original computation (at time t), only the middle block is depleted. Since all blocks in the second computation at time t', except perhaps one block straddling A' and C', are the same as in the first at time t, in the latter computation at least one block is depleted and at most two. One corresponds to the original middle block and is in region C', to the left of centre. The other straddles A' and C' and is also to the left of centre. One of these blocks is the first to be depleted in the second computation, contradicting Lemma 6.4 for x'. Q.E.D.

7 Application to non-squares

It is relatively easy to prove a result of Buntrock and Otto’s [4] that the set

$$L = \{ x \in \{0, 1\}^* : (\forall y) x \neq y^2 \}$$

is not a CRL. Here is a sketch proof.

Consider bitstrings of the form

$$w^4$$

where w is hard. The string φw^4 reduces to some string α which causes w^4 to be rejected, since $w^4 \notin L$. Consider the first block (occurrence of w) to be depleted in the computation. Repeating the arguments of this paper, whatever is the first block to be depleted, the data

$$m, i, j, j_1, c_1, j_2, c_2, h(y'), \ell, q$$

does not determine w uniquely if w is hard. There is another string w' of the same length which can replace one occurrence of w, where by Lemma 5.10 the altered string reduces to α and is rejected, whereas it belongs to L.

8 Acknowledgements

The authors are grateful to Friedrich Otto for helpful comments.

9 References

1. Jean Berstel (1977). Congruences plus que parfaites et langages algébriques. *Séminaire d’Informatique Théorique*, Institut de Programmation, 123–147.

2. Ronald V. Book (1982). Confluent and other types of Thue systems. *J. ACM* 29, 171–182.
3. Ronald V. Book and Friedrich Otto (1993). *String-Rewriting Systems*. Springer-Verlag Texts and Monographs on Computer Science.

4. Gerhard Buntrock and Friedrich Otto (1998). Growing context-sensitive languages and Church-Rosser languages. *Inform. and Comput.* 141, 1–36.

5. Yves Cochet and Maurice Nivat (1971). Une généralization des ensembles de Dyck. *Israel Journal of Mathematics* 9, 389–395.

6. Juris Hartmanis (1968). On the complexity of one tape Turing machine computations. *JACM* 15, 325–339.

7. Tomasz Jurdziński and Krzysztof Loryś (2002). Church-Rosser Languages vs. UCFL. *Proc. 29th ICALP Symposium*, Springer LNCS 2380, 147–158.

8. Tomasz Jurdziński and Krzysztof Loryś (2007). Lower bound technique for length-reducing automata. *Information and Computation* 205, 1387–1412.

9. Robert McNaughton (1999). An insertion into the Chomsky Hierarchy? *Jewels are forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa*, 204–212.

10. Robert McNaughton, Paliath Narendran, and Friedrich Otto (1988). Church-Rosser Thue systems and formal languages. *J. Association of Computing Machinery* 35, 124–144.

11. P. Narendran (1984). *Church-Rosser and related Thue systems*. Doctoral dissertation, Rensselaer Polytechnic Institute.

12. Gundula Niemann and Friedrich Otto (2005). The Church-Rosser languages are the deterministic variants of the growing context-sensitive languages. *Information and Computation* 197, 1–21.

13. Maurice Nivat (1970). On some families of languages related to the Dyck Languages. *Proc. 2nd ACM STOC*, 221–225.

14. Sheng Yu (1989). A pumping lemma for deterministic context-free languages. *Information Processing Letters* 31, 45–51.