Appendix A.1: Description of self-report measures

Depression, Anxiety, and Stress Scale (DASS; Lovibond & Lovibond, 1995).

To ensure the high and low IA groups were comparable in terms of baseline state-level negative affect, we included the 41-item DASS (Crawford & Henry, 2003; Lovibond & Lovibond, 1995). Items are responded on a scale of 0 (*did not apply to me at all*) to 3 (*applied to me very much or most of the time*). This instrument has been found to be a valid and reliable measure of the constructs and corresponding to the eponymous subscales in non-clinical samples (Crawford & Henry, 2003). The present sample attained at least good internal consistency on each subscale and the whole instrument (all $\alpha > .80$).

Body Consciousness Questionnaire (BCQ; Miller et al., 1981).

The 15-item BCQ assesses awareness of bodily sensations and appearance to others. The BCQ includes three subscales: *private body consciousness* (awareness of bodily sensations and interoceptive awareness), *public body consciousness* (a focus on external appearance), and *body competence* (confidence in physical abilities). Participants respond on a five-point Likert scale, ranging from 0 (*extremely uncharacteristic of me*) to 4 (*extremely characteristic*). Higher scores indicate greater self-awareness, but not self-criticism (Miller et al., 1981). We included to this measure to verify that the high and average perceivers differed in IA and not interoceptive sensitivity (Garfinkel & Critchley, 2013). At the time of data collection, no self-report measure has been developed that significantly corresponded with IA (cf. Murphy et al., 2020). The present sample attained good internal consistency on the whole scale ($\alpha = .80$), acceptable internal consistency on the public and private subscales ($\alpha \geq .55$), but poor consistency on the body competence scale ($\alpha = .35$). However, the body competence scale was not of interest to the present study. One female high perceiver did not complete the BCQ but was retained in all other analyses.

Difficulties in Emotion Regulation Scale (DERS; Gratz & Roemer, 2004).

The 36-item DERS is a widely used, validated and reliable (e.g., Bardeen et al., 2012; Gratz & Roemer, 2004) assessment of six difficulties common to emotion dysregulation: acceptance of emotional responses; engaging in goal-directed behavior, impulse control, emotional awareness; emotion regulation strategies, emotional clarity. Each item is rated on a five-point Likert-type scale based on frequency participants believe items pertain to them ranging from 1 (*almost never*) to 5 (*almost always*). We wanted to ensure that any group differences in behavioral data were not better explained by baseline differences in emotion regulation since IA can interact with this variable (Kever et al., 2015). The present sample exhibited acceptable to excellent internal consistency on the sum score and each subscale ($\alpha > .76$).
Appendix A.2: Descriptive statistics of the sample and the two groups of demographic information, questionnaire data, and cardiac scores.

Table A.2:

	Average	High	Sample
N (%), women	10 (53%)	11 (58%)	21 (55%)
Cardiac Score^a	0.65 (0.12)	0.90 (0.04)	0.79 (0.16)
Age (years)	19.40 (3.20)	19.63 (0.96)	19.0 (2.32)
DASS – Depression	2.38 (2.56)	2.84 (3.48)	2.63 (3.06)
DASS – Anxiety	3.25 (3.36)	3.11 (3.97)	3.17 (3.65)
DASS – Stress	4.69 (3.89)	5.21 (4.60)	4.97 (4.24)
DASS–Sum Score	**10.31 (8.81)**	**11.16 (11.01)**	**10.77 (9.93)**
BCQ – Private	10.03 (4.78)	11.5 (2.90)	10.81 (3.91)
BCQ – Public^a	12.84 (3.39)	16.17 (2.55)	14.60 (3.38)
BCQ – Body Competence	9.22 (2.61)	10.22 (3.00)	9.75 (2.83)
BCQ – Sum	**32.09 (9.84)**	**37.89 (6.92)**	**35.16 (8.79)**
DERS – Non-Acceptance	11.28 (5.96)	9.84 (4.73)	10.50 (5.30)
DERS – Goals	14.81 (5.33)	12.68 (5.64)	13.66 (5.53)
DERS – Impulsivity	10.44 (4.44)	9.79 (4.44)	10.09 (4.39)
DERS – Awareness	13.13 (3.24)	14.74 (5.48)	14.00 (4.60)
DERS – Strategies	14.91 (6.22)	12.47 (4.80)	13.59 (5.55)
DERS – Clarity	8.97 (3.46)	9.26 (2.56)	9.13 (2.96)
DERS – Sum	**73.53 (25.44)**	**68.79 (19.46)**	**70.96 (22.17)**

Notes: All values are M (SD) except for the count gender; all values are rounded; DASS = 21-item Depression Anxiety and Stress Scale; BCQ = Body Consciousness Questionnaire; DERS = Difficulties in Emotion Regulation Scale;^a Significant difference between the average and high perceivers, ^b Significant difference between groups. $t(35) = 1.45, p = .034, d = .22$. Note that one female high perceiver did not complete the BCQ but was retained in all other analyses.
Appendix A.3. Discussion on the significant differences on the Public Body Scale of the BCQ

On the BCQ, the two groups did not significantly differ on the sum score, private body consciousness, or body confidence scales ($ps > .38$). However, on the public body consciousness subscale, the high perceivers scored significantly higher than did average perceivers with a small effect size, $t(35) = 1.45, p = .034, d = .22$. Similar findings have been reported before using the same instrument (Ainley & Tsakiris, 2013; Duschek et al., 2015). A 2(Gender: Men vs. Women) X 2(Group: High vs. Low perceiver) univariate ANOVA and found no interaction with gender, and the significance of the main effect of group was maintained ($p = .049$). Thus, like previous results (Duschek et al., 2015), this difference was not better accounted for by gender. Ainley and Tsakiris (2013) suggest that the Public Body Consciousness subscale indexes appearance monitoring and, as such, involves taking other people’s perspective, which is a strength for those with high IA. Duschek et al. (2015) suggest that this subscale may index subclinical appearance-related anxiety, or even appearance satisfaction. It may also simply be that those with high IA are simply more concerned about their appearance in an affect-neutral way. It was beyond the scope of the present paper to explore this finding further. Additional research is needed to understand the association between IA is public body consciousness.
Appendix B. Descriptive Statistics for behavioral variables:

Table B.1: Percentage [M, (SD)] of words correctly recalled per cell (Condition x Lag x Target Order) for both groups and whole sample (out of 20).

Condition	Lag	Order	Average Perceivers	High Perceivers	Whole Sample
NN	1	T1	72.0 (4.6)	72.0 (4.6)	66.6 (3.3)
		T2	82.2 (3.9)	82.2 (3.9)	79.5 (2.8)
	2	T1	81.6 (2.8)	81.6 (2.8)	80.3 (2.0)
		T2	76.0 (4.3)	76.0 (4.3)	75.6 (3.1)
	8	T1	80.5 (3.7)	80.5 (3.7)	79.4 (2.6)
		T2	82.5 (4.3)	82.5 (4.3)	80.0 (3.1)
NA	1	T1	71.1 (4.9)	71.1 (4.9)	67.9 (3.5)
		T2	77.8 (3.9)	77.8 (3.9)	76.5 (2.8)
	2	T1	78.6 (3.0)	78.6 (3.0)	80.3 (2.1)
		T2	77.8 (4.4)	77.8 (4.4)	74.8 (3.1)
	8	T1	82.3 (2.8)	82.3 (2.8)	82.5 (2.0)
		T2	84.7 (3.9)	84.7 (3.9)	79.1 (2.7)
AN	1	T1	73.1 (4.7)	73.1 (4.7)	69.1 (3.3)
		T2	77.6 (5.2)	77.6 (5.2)	75.9 (3.7)
	2	T1	78.2 (3.5)	78.2 (3.5)	78.2 (2.5)
		T2	71.4 (5.0)	71.4 (5.0)	72.9 (3.5)
	8	T1	78.5 (4.2)	78.5 (4.2)	77.9 (3.0)
		T2	73.7 (4.9)	73.7 (4.9)	76.3 (3.5)
AA	1	T1	73.9 (4.1)	73.9 (4.1)	64.3 (2.9)
		T2	83.1 (3.4)	83.1 (3.4)	79.4 (2.4)
	2	T1	82.2 (3.1)	82.2 (3.1)	78.8 (2.2)
		T2	80.2 (3.9)	80.2 (3.9)	76.5 (2.8)
	8	T1	80.5 (3.4)	80.5 (3.4)	78.9 (2.4)
		T2	82.3 (3.9)	82.3 (3.9)	78.7 (2.8)
Appendix C: Supplementary Analyses

Appendix C.1 Examination of T2 accuracy as a function of T1 accuracy (T2|T1).

Analysis.

T2 accuracy in conditions when T1 was correctly identified was analyzed using a 2 (Group: high vs. average perceivers) x 2 (T1 valence: neutral vs. affect) x 2 (T2 valence: neutral vs. affective) x 3 (Lags 1, 2, 8) repeated measures ANOVA. Post-hoc t-tests were conducted using Bonferroni correction.

Results.

Descriptive statistics for these analyses are presented in Appendix C.2 below. There was no main effect of Group, F(1,36) = 0.60, p = .574, η² = .02. However, there was a significant main effect of Lag, F(2,72) = 22.04, p < .001, η² = .38, that is qualified by a Lag x Group interaction F(2,72) = 21.59, p = .036, η² = 0.09. Post-hoc tests showed that both groups recalled Lag8 better than Lag1 (ps ≤ .01). However, the average group recalled Lag2 better than Lag1 (p < .001) whereas the high perceiver group did not (p = .26). This pattern reflects that of the main analyses. Whereas both groups exhibited difficulty encoding stimuli at Lag1, putatively as a result of a “backward blink,” the average perceivers exhibited even greater difficulty. Further, since average perceivers encoded T1 with such difficulty at Lag1, then it follows that they would have fewer T2|T1 trials. See figure1 in Appendix C.3 below.

There was also a T2 Valence x Group interaction, F(1,36) = 6.40, p = .016, η² = .15, that is qualified by a T1 Valence x T2 Valence x Group interaction F(1,36) = 65.47, p = .025, η² = .13. Pairwise comparisons showed that high perceivers were better at identifying the T2 in an AN than AA condition (p = .020), which reflects the main analyses of AA being the best-recalled condition for high perceivers. Interestingly, this departs from the main analyses where the AA condition was the best-reported condition for the high perceivers. The average perceivers recalled T2 better at NN than AN conditions, (p = .034), which, again, reflects the main analyses that AN were the worst-recalled condition for the average perceivers.

In contrast to the main analyses, the AN condition resulted in the best recall as a function of T1 for the high perceivers, which trended toward better recall in the same condition for the average perceivers (p = .064). Figure 2 in Appendix C.3 below presents this interaction.

Discussion.

It is not entirely clear why there were as many divergences in these analyses as the main analyses. It is important to consider that these analyses were not a priori as the main interest of this paper is the retroactive proactive interference at Lag1 and Lag2. Indeed, it may be this retroactive interreference at Lag1 that may explain the Lag x Group interaction seen here: since there were comparatively fewer T1 encoded, then mathematically, there were also fewer T2|T1 encoded.

It is unexpected that, for high perceivers, the AA condition went from the best-recalled in the main analyses to the worst-recalled when looking at T2 accuracy as a function of T1. It may be that there were enough instances where the T2 but not T1 were recalled (and vice versa) that the marginal means of the main analyses resulted in an overall “washout” of behavioral accuracy. Instead, when T1 was recalled accurately, it may be that the recall of T2 was impaired because of distraction of T1 (like our exploratory hypothesis 1). It may also be that there was
enough of a mix of accuracy based on target order and lag (e.g., correct recall of T1 but not T2, T2 but not T1, or both) that the high perceivers really were, after all, more sensitive to affective stimuli in general and the impact of Lag and Target Order was a wash. For average perceivers, the AN condition was the worst-recalled, like previous work (Schwabe et al., 2011; Schwabe & Wolf, 2010). Thus, the attentional capture of an affective stimulus reduced the ability to attend to, or encode, T2 regardless of lag.

These divergences from the planned analyses in the main text highlight our broader point that T1 accuracy should not be taken for granted when examining the role of emotional stimuli in the AB. Including T1 accuracy in analyses is an important consideration that may elucidate key influences of top-down and bottom-up processes. In the case of these supplementary analyses, since all T1 were encoded correctly, then the differences in T2 encoding provide important insight into typical blink phenomenon. However, these supplementary results are, as a result, entirely biased toward one type of response and give little insight into how T2 may have impacted T1. They do not explain whether, and how, difficulties in T1 encoding occurred, whether impaired T1 encoded also resulted in impaired T2 encoding (such a trial was removed in these supplemental analyses), and the backward blink phenomenon (as described in the main text) would have been missed entirely. In short, there is purpose and reason to pursue both analyses. Our main interest was in both retroactive and proactive interference and, thus, these analyses were post-hoc. For parsimony, we present them here and not in the main text.
Appendix C.2: Descriptive statistics of T2|T1.

Table C.1: Percentage [M, (SD)] of words correctly recalled per cell ($T1 Valence \times T2 Valence \times Lag$) for both groups and whole sample (out of 20).

Condition	Lag	Average	High	Whole Sample
NN	Lag1	50.79 (5.04)	59.21 (5.04)	55.00 (3.56)
	Lag2	60.00 (4.80)	61.84 (4.80)	60.92 (3.40)
	Lag8	63.16 (5.20)	67.11 (5.20)	65.13 (3.68)
NA	Lag1	51.06 (5.46)	57.11 (5.46)	54.08 (3.86)
	Lag2	59.21 (5.01)	60.00 (5.01)	59.61 (3.54)
	Lag8	61.06 (4.61)	67.63 (4.61)	64.34 (3.26)
AN	Lag1	43.16 (4.90)	62.11 (4.90)	52.63 (3.47)
	Lag2	56.06 (4.65)	65.27 (4.65)	60.66 (3.29)
	Lag8	59.48 (4.94)	68.16 (4.94)	63.82 (3.50)
AA	Lag1	52.11 (5.72)	55.27 (5.72)	53.69 (4.04)
	Lag2	60.00 (5.22)	56.58 (5.22)	58.29 (3.70)
	Lag8	62.63 (5.97)	56.58 (5.97)	59.61 (4.22)
Appendix C.3: Figures depicting the interactions of the T2/T1 analyses

![Diagram](https://doi.org/10.1027/1618-3169/a000539)

Figure 1: Depiction of the significant Group x Lag interaction when both T1 and T2 were reported accurately. Percent accuracy is reported on the Y axis, and Lag (separated by group) is presented on the X axis.

p ≤ .01

p < .001

Figure 2: Depiction of the significant Group x Lag interaction when both T1 and T2 were reported accurately. Percent accuracy is reported on the Y axis, and trial type (separated by group) is presented on the X axis.

† p < .01

* p < .05
References

Ainley, V., & Tsakiris, M. (2013). Body conscious? Interoceptive awareness, measured by heartbeat perception, is negatively correlated with self-objectification. *PLoS One*, 8(2), e55568. https://doi.org/10.1371/journal.pone.0055568

Bardeen, J. R., Fergus, T. A., & Orcutt, H. K. (2012). An Examination of the Latent Structure of the Difficulties in Emotion Regulation Scale. *Journal of Psychopathology and Behavioral Assessment*, 34(3), 382-392. https://doi.org/10.1007/s10862-012-9280-y

Crawford, J. R., & Henry, J. D. (2003). The Depression Anxiety Stress Scales (DASS): Normative data and latent structure in a large non-clinical sample. *British Journal of Clinical Psychology*, 42(2), 111-131.

Duschek, S., Werner, N. S., Reyes del Paso, G. A., & Schandry, R. (2015). The Contributions of Interoceptive Awareness to Cognitive and Affective Facets of Body Experience. *Journal of Individual Differences*, 36(2), 110-118. https://doi.org/10.1027/1614-0001/a000165

Garfinkel, S. N., & Critchley, H. D. (2013). Interoception, emotion and brain: new insights link internal physiology to social behaviour. Commentary on: "Anterior insular cortex mediates bodily sensibility and social anxiety" by Terasawa et al. (2012). *Social Cognitive and Affective Neuroscience, 8*(3), 231-234. https://doi.org/10.1093/scan/nss140

Gratz, K. L., & Roemer, L. (2004). Multidimensional assessment of emotion regulation and dysregulation: Development, factor structure, and initial validation of the difficulties in emotion regulation scale. *Journal of Psychopathology and Behavioral Assessment*, 26(1), 41-54.

Kever, A., Pollatos, O., Vermeulen, N., & Grynberg, D. (2015). Interoceptive sensitivity facilitates both antecedent- and response-focused emotion regulation strategies. *Personality and Individual Differences*, 87, 20-23. https://doi.org/10.1016/j.paid.2015.07.014

Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. *Behavior Research and Therapy*, 33(3), 335-343.

Miller, L. C., Murphy, R., & Buss, A. H. (1981). Consciousness of body: Private and public. *Journal of Personality and Social Psychology*, 2, 397-406.

Murphy, J., Brewer, R., Plans, D., Khalsa, S. S., Catmur, C., & Bird, G. (2020). Testing the independence of self-reported interoceptive accuracy and attention. *Quarterly Journal of Experimental Psychology*, 73(1), 115-133. https://doi.org/10.1177/1747021819879826

Schwabe, L., Merz, C. J., Walter, B., Vaitl, D., Wolf, O. T., & Stark, R. (2011). Emotional modulation of the attentional blink: The neural structures involved in capturing and holding attention. *Neuropsychologia*, 49(3), 416-425. https://doi.org/10.1016/j.neuropsychologia.2010.12.037

Schwabe, L., & Wolf, O. T. (2010). Emotional modulation of the attentional blink: Is there an effect of stress? *Emotion*, 10(2), 283-288. https://doi.org/10.1037/a0017751