Supporting information

A pilot study on extractable organofluorine and per- and polyfluoroalkyl substances (PFAS) in water from drinking water treatment plants around Taihu Lake, China: what is missed by target PFAS analysis?

Enmiao Jiaoa, Zhiliang Zhua, Daqiang Yina, Yanling Qiua, Anna Kärrmanb, Leo W.Y. Yeungb

*Corresponding authors:
ylqiu@tongji.edu.cn;
Leo.Yeung@oru.se.

a Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

b Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden.

Table S1 Chemicals and MRM transition
Table S2 Parameters for QTOF analysis
Table S3 Spike recovery test results
Table S4 Internal standard recovery in raw and treated water samples
Table S5 MDL and MQL of the target PFAS (ng/L)
Table S6 Changes of EOF and different classes of PFAS after treatment processes
Table S7 Concentrations of PFAS in raw and treated water from 8 DWTPs in China (ng/L)
Table S8 PFASs identified in samples by suspect screening on a confidence level of 2 or 3 (target PFAS not included)

Figure S1 Suspect PFAS composition (based on intensity)
Class	Abbreviation	Name	Quantification ion (m/z)	Qualification ion (m/z)	Internal standard
	TFA	Trifluoroacetic acid	112.9/68.96		13C$_2$-PFBA
	PFPrA	Perfluoropropanoic acid	162.97/118.9		13C$_2$-PFBA
	PFBA	Perfluorobutanoic acid	212.97/169		13C$_2$-PFBA
	PFPeA	Perfluoropentanoic acid	262.97/219		13C$_2$-PFPeA
	PFHxA	Perfluorohexanoic acid	312.97/269	312.97/118.95	13C$_2$-PFHxA
	PFHpA	Perfluoroheptanoic acid	362.97/319	362.97/168.97	13C$_2$-PFHpA
	PFOA	Perfluorooctanoic acid	412.97/369	412.97/168.97	13C$_2$-PFOA
PFCAs	PFNA	Perfluorononanoic acid	462.99/419	462.99/219	13C$_2$-PFNA
	PFDA	Perfluorodecanoic acid	512.97/469	512.97/219	13C$_2$-PFDA
	PFUnDA	Perfluoroundecanoic acid	562.97/519	562.97/268.99	13C$_2$-PFUnDA
	PFDoDA	Perfluorododecanoic acid	612.97/569	612.97/168.96	13C$_2$-PFDoDA
	PFTrDA	Perfluorotridecanoic acid	662.9/619	662.9/168.96	13C$_2$-PFTrDA
	PFTDA	Perfluorotetradecanoic acid	712.9/669	712.9/168.97	13C$_2$-PFTDA
	PFHxDA	Perfluorohexadecanoic acid	812.9/769	812.9/168.96	13C$_2$-PFHxDA
	PFOcDA	Perfluoroocadecanoic acid	912.9/869	912.9/168.96	13C$_2$-PFOcDA
	TFMS	Trifluoromethane sulfonic acid	149.12/79.91	149.12/98.95	13C$_2$-PFBS
	PFEtS	Perfluoroethane sulfonic acid	198.8/79.8	198.8/98.9	13C$_2$-PFBS
	PFPs	Perfluoropropene sulfonic acid	248.9/79.9	248.9/98.9	13C$_2$-PFBS
PFSAs	PFBS	Perfluorobutane sulfonic acid	298.9/98.9	298.9/79.96	13C$_2$-PFBS
	PFPs	Perfluoropentane sulfonic acid	348.9/98.96	348.9/79.96	18O$_2$-PFHxDA
	PFHxS	Perfluoroheptane sulfonic acid	398.9/98.9	398.9/79.96	18O$_2$-PFHxDA
	PFHpS	Perfluorooctadecanoic acid	448.97/98.9	448.97/79.96	13C$_2$-PFOS
PFOS	Perfluorooctane sulfonic acid	498.97/98.9	498.97/79.96	13C$_2$-PFOS	
-------	-------------------------------	-------------	-------------	------------------	
PFNS	Perfluorononane sulfonic acid	548.9/98.96	548.9/79.96	13C$_4$-PFOS	
PFDS	Perfluorodecane sulfonic acid	598.97/98.9	598.97/79.96	13C$_4$-PFOS	
PFDoDS	Perfluorododecane sulfonic acid	698.9/98.9	698.9/79.96	13C$_4$-PFOS	
4:2 FTSA	4:2 fluorotelomer sulfonic acid	327/307	327/81	13C$_2$-6:2 FTSA	
6:2 FTSA	6:2 fluorotelomer sulfonic acid	427/407	427/81	13C$_2$-6:2 FTSA	
8:2 FTSA	8:2 fluorotelomer sulfonic acid	527/507	527/81	13C$_2$-8:2 FTSA	
5:3 FTCA	5:3 fluorotelomer carboxylic acid	340.9/236.97	340.9/216.93	13C$_2$-6:2 FTUCA	
7:3 FTCA	7:3 fluorotelomer carboxylic acid	440.9/316.93	440.9/336.89	13C$_2$-8:2 FTUCA	
ADONA	3H-perfluoro-3-[(3-methoxy-propoxy)propanoic acid]	376.97/316.93	376.97/336.89	13C$_2$-8:2 FTUCA	
HFPO-DA	hexafluoropropylene oxide dimer acid	284.92/168.72	328.95/284.86	13C$_2$-HFPO-DA	
Novel PFAS	8:2 Cl-PFESA	630.904/450.98	630.904/83.027	13C$_4$-PFOS	
6:2 Cl-PFESA	6:2 chlorinated polyfluorinated ether sulfonate	530.904/350.98	530.904/83.027	13C$_4$-PFOS	
PFCHS	Perfluoro-4-ethylcyclohexane sulfonate	460.84/380.9	460.84/98.88	13C$_4$-PFOA	
Table S2 Parameters for QTOF analysis

The following parameters were set for initial filtering: (1) S/N > 3; (2) LC peak width less than 30 s; and (3) intensity > 5 times the intensity in the procedural blank. Suspect screening was conducted with the PFAS suspect list followed previous studies1, 2, and the screening processes were performed by R scripts (R v3.6.2, R Foundation for Statistical Computing, Vienna, Austria).

UPLC conditions	ESI- parameters		
Analytical column: Acquity UPLC-BEH C18 (100 mm x 2.1 mm x 1.7 µm)	Ionization: ESI-		
Mobile phase: (A) 2 mM NH\textsubscript{4}Ac + H\textsubscript{2}O / MeOH (70/30); (B) 2 mM NH\textsubscript{4}Ac + MeOH	Acquisition time: 0.5 to 15 min		
Column temperature: 50 °C	Acquisition function: MS6		
Injection volume: 10 µL	Mass range: m/z 50-1200		
Rinse solvent: H\textsubscript{2}O:MeOH:ACN:IPA 1:1:1:1	Analyzer mode: Sensitivity		
Sample temperature: 10 °C	Capillary voltage: 0.5 kV		
Flow rate: 0.3 mL/min	Sample cone: 10 V		
Source temperature: 100 °C	Cone gas flow: 100 L/h		
Mobile phase gradient:	Desolvation gas flow: 1000 L/h		
Time	Composition A	Composition B	Desolvation temperature: 350°C
0 min	99%	1%	Scan rate: 5 Hz
0.5 min	99%	1%	Low energy: 4 eV
13 min	0%	100%	High energy ramp: 20-70
14 min	0%	100%	Lockspray: Leucine Enkephalin m/z 554.2620
14.2 min	99%	1%	Scan time 0.25 s
16 min	99%	1%	Interval: 10s

Table S3 Spike recovery test results using Milli-Q water (n=3, 2 ng)

Compounds	Mean recovery (%)	RSD	Compounds	Mean recovery (%)	RSD
PFBA	101	9%	PFTrDA	74	5%
PFPeA	96	5%	PFBS	86	4%
PFHxA	96	5%	PFHxS	96	4%
PFHpA	96	3%	PFOS	89	8%
PFOA	96	5%	6:2 FTSA	102	6%
PFNA	90	14%	HFPO-DA	76	17%
PFDA	96	6%	ADONA	83	18%
PFUnDA	96	6%	F-53B	80	3%
PFDaDA	95	6%			
Compounds	Mean recovery (%)	RSD	Compounds	Mean recovery (%)	RSD
--------------	-------------------	------	--------------	-------------------	------
13C$_3$-PFBA	56	24%	13C$_2$-PFTDA	48	34%
13C$_3$-PFPeA	82	6%	13C$_2$-PFHxDA	32	50%
13C$_2$-PFHxA	82	6%	13C$_3$-PFBS	90	12%
13C$_4$-PFHpA	90	10%	18O$_2$-PFHxDA	92	6%
13C$_3$-PFBS	74	28%	13C$_2$-6:2 FTSA	181	35%
13C$_2$-PFDoDA	81	9%	13C$_2$-8:2 FTSA	59	33%
13C$_2$-PFUnDA	75	10%	13C$_2$-8:2 FTSA	63	16%
13C$_2$-PFeDA	67	16%			

Table S4 Internal standard recovery in raw and treated water samples (n=16, 2 ng)

Individual compounds	Batch1	Batch2	Batch3	Batch4				
	MDL	MQL	MDL	MQL	MDL	MQL	MDL	MQL
PFBA	0.0660	0.0720	0.0770	0.142	0.102	0.148	0.167	0.389
PFPeA	/	0.0200	/	0.0200	/	0.0200	/	0.0200
PFHxXa	0.0190	0.0250	0.0300	0.063	0.0350	0.0590	0.0350	0.0460
PFHxA	/	0.0200	/	0.0200	0.0160	0.0250	0.111	0.293
PFHPa	0.0470	0.0810	0.0540	0.103	0.0380	0.0380	0.0450	0.0560
PFNA	/	0.0200	/	0.0200	0.0360	0.0810	0.0260	0.0350
PFBA	0.0270	0.0560	0.0280	0.0400	0.0230	0.0400	0.0210	0.0220
PFUnDA	0.0120	0.0130	0.0160	0.0220	0.0340	0.0750	0.0170	0.0170
PFDoDA	/	0.0200	/	0.0200	0.00900	0.0160	/	0.0200
PFTrDA	/	0.0200	/	0.0200	0.00900	0.0180	/	0.0200
PFBS	0.0200	0.0230	0.0310	0.0530	0.0420	0.0860	0.0320	0.0430
PFPeS	/	0.0200	/	0.0200	/	0.0200	/	0.0200
PFHxDA	0.0260	0.0570	0.0180	0.0330	0.0200	0.0280	0.0210	0.0270
PFOS	0.0410	0.100	0.0690	0.181	0.0280	0.0540	0.0340	0.0560
6:2 FTSA	/	0.0200	/	0.0200	0.0670	0.119	0.0460	0.0480
HFPO-DA	/	0.0500	/	0.0500	/	0.0500	/	0.0500
ADONA	/	0.0500	/	0.0500	/	0.0500	/	0.0500
F-53B	/	0.0500	/	0.0500	/	0.0500	/	0.0500
TFA	/	0.0200	0.0270	0.0280	0.224	0.448	0.449	1.05
PFPrA	/	0.0200	7.35	12.6	1.48	2.85	1.76	4.08
TFMS	/	0.0200	0.0170	0.0370	0.100	0.266	0.0810	0.208
PFETs	/	0.0200	/	0.0200	0.00700	0.0190	/	0.0200
PFPrS	/	0.0200	/	0.0200	/	0.020	/	0.0200

Table S5 MDL and MQL of the target PFAS (ng/L)
Table S6 Changes of EOF and different classes of PFAS after treatment processes

	D3	D4	D5	D8
EOF	2.1%	-9.9%	-33.3%	59.4%
Short-chain PFCAs	-7.1%	2.0%	-15.2%	10.1%
Short-chain PFSAs	-2.8%	9.2%	25.8%	91.9%
Long-chain PFCAs	-1.1%	12.8%	-10.3%	-47.6%
Long-chain PFSAs	-2.3%	7.4%	17.6%	-31.6%
Novel PFAS	25.8%	8.4%	-0.7%	8.8%
Ultra-short PFAS	-53.7%	35.2%	36.8%	99.4%

Table S7 Concentrations of PFAS in raw and treated water from 8 DWTPs in China (ng/L)

PFAS	Raw water	Treated water																
PFBA	8.34	8.35	10.4	10.4	10.8	9.83	12.7	11.0	10.1	8.39	1.90	1.82	0.457	0.678	4.44	4.80		
	0.162	61.3	13.5	0.345	0.0290	0.381	0.0410	1.66	0.175	3.20	1.61	2.46	3.87	2.64	8.72	1.09	0.345	0.162
---------	-------	------	------	-------	--------	-------	--------	------	-------	------	------	------	------	------	------	------	-------	-------
PFPeA	3.04	3.10	3.98	3.73	3.97	3.55	4.41	4.56	3.81	3.31	0.640	0.632	0.138	0.153	0.444	0.561		
PFHxA	8.42	9.37	8.83	9.11	9.44	8.86	11.6	13.2	5.96	5.12	1.63	1.69	0.188	0.212	0.606	0.770		
PFHpA	3.61	4.24	4.45	4.50	4.45	5.08	5.67	4.49	3.88	0.768	0.941	<MQL	<MQL	0.650	0.636			
PFOA	24.6	29.4	30.1	29.5	32.9	32.6	42.5	49.0	34.5	31.5	5.41	6.47	1.37	1.36	7.85	4.12		
PFNA	3.87	4.22	4.12	3.00	3.49	3.56	3.57	3.52	3.52	3.11	0.672	0.748	0.225	0.197	0.348	0.173		
PFDA	1.66	1.58	1.59	1.85	2.87	1.92	1.92	1.57	2.54	1.86	0.474	0.277	0.121	0.0680	0.0970	0.0520		
PFUnDA	0.472	0.205	0.416	0.602	0.757	0.475	0.523	0.396	1.85	0.509	0.293	0.0460	0.105	0.0250	<MQL			
PFDoDA	0.0650	<MQL	0.0690	0.103	0.112	0.0340	0.0840	0.0220	0.395	0.0290	0.0620	<MQL						
PFTrDA	0.0410	<MQL	0.0440	0.0780	0.0930	<MQL	0.0590	<MQL	0.113	<MQL	0.0560	<MQL						
PFBS	3.01	3.37	4.92	4.96	5.19	5.11	6.90	7.51	1.61	1.99	0.631	0.737	0.100	0.141	1.35	2.66		
PFPeS	0.381	0.391	0.401	0.380	0.479	0.401	0.515	0.592	0.0240	0.0610	0.0570	<MQL	<MQL	0.0660	0.0570			
PFHxs	44.0	48.7	50.1	45.9	57.4	57.2	54.2	61.4	2.57	3.47	7.43	13.4	0.0340	0.187	1.55	1.23		
PFOS	5.13	6.234	11.0	12.3	15.4	13.9	13.2	11.0	2.97	3.05	1.50	1.34	0.194	0.193	0.674	0.292		
6:2 FTSA	0.0290	<MQL	<MQL	0.249	0.0360	0.0830	0.108	0.195	<MQL	<MQL	0.240	0.280	0.0490	0.0530	0.0480	0.0970		
HFPO-DA	0.345	0.393	0.615	0.490	0.785	0.799	1.06	1.12	1.32	1.54	0.165	0.182	<MQL	<MQL	<MQL	0.101		
F-53B	1.58	2.46	4.4	4.37	4.68	5.37	4.27	4.57	3.19	2.95	0.453	0.541	0.0890	0.0770	0.133	<MQL		
TFA	3.61	1.61	2.31	2.44	3.03	<MQL	<MQL	<MQL	0.567	4.14	8.96	7.94	<MQL	<MQL	<MQL			
PFPrA	13.5	3.20	19.7	12.45	11.8	<MQL	4.87	8.33	7.19	8.62	14.2	36.1	17.9	14.3	<MQL	4.18		
TFMS	61.3	5.07	9.01	11.1	4.31	8.72	4.59	4.544	8.49	12.3	1.08	0.580	<MQL	<MQL	<MQL	7.48		
PFEnS	0.0830	0.0480	0.0580	0.0650	0.0540	0.0490	0.0440	0.0400	0.0390	0.0320	0.0320	<MQL	<MQL	0.0220	0.0330	0.0590		
PFPrS	0.162	0.0610	0.0600	0.0580	0.0650	0.147	0.126	0.108	<MQL	<MQL	0.0680	0.0690	0.0280	0.0200	0.0770			
Table S8 PFASs identified in samples by suspect screening with a confidence level of 2 or 3 (target PFAS not included)

Class	Name	Theoretical m/z	Observed m/z	Mass error (ppm)	Molecular formula	RT (min)	Product ions formula	Confidence level	Semi-quantification reference PFAS	Concentrations (ng/L)
H-PFPeA		244.9854	244.9851	-1.34	C5H2F8O2	3.38	C4F7-	2	PFPeA	0.161-0.975
H-PFOA		394.9759	394.9752	-1.65	C8H2F14O2	7.32	C3F7-C7F13-	3	PFOA	0.0120-0.0180
H-PFNA		444.9727	444.9712	-3.26	C9H2F16O2	8.28	C8F15-	3	PFNA	0.0190
H-PFBS		280.9524	280.9523	-0.43	C4H2F8O3S	3.57	FSO3-C3F5-C7F13-C5F9-	3	PFBS	0.00500-0.0150
H-PFOS		480.9396	480.9396	-0.08	C8H2F16O3S	8.21	SO3-	3	PFOS	0.00100-0.00200
Cl-PFESA	5:2 Cl-	480.8988	480.8985	-0.58	C7HF14O4SCl	9.5	C5OF10Cl-	2	PFOS	0.00100-0.00300
Cl-PFESA	2:2 Cl-	296.9473	296.9473	-0.10	C4H2F8O4S	4.39	FSO2-C2OF3-C2HOF4-C3F5-	2	PFBS	0.00700-0.0320
Cl-PFESA	4:2 Cl-	396.9409	396.9404	-1.36	C6H2F12O4S	7.43	C4OF7-C4HOF8-FSO3-FSO2-C5F9-	2	PFHxS	0.00200-0.0130
Cl-PFESA	6:2 Cl-	496.9346	496.9346	0.08	C8H2F16O4S	8.83	C5F9-C6OF11-C6HOF12-	2	PFOS	0.00800-0.439
OBS	OBS	602.9564	602.9560	-0.71	C15H5F17O4S	10.75	C6H4O2-	2	PFOS	0.00100-0.0372
-----	-----	----------	----------	-------	-------------	-------	----------	---	------	----------------
					C6H4O4S-		C11H4O3F7S-			
					C13H4O4F11S-					
Figure S1 Composition of identified PFAS suspects based on intensity

References:

1. X. Wang, N. Yu, Y. Qian, W. Shi, X. Zhang, J. Geng, H. Yu and S. Wei, Non-target and suspect screening of per- and polyfluoroalkyl substances in Chinese municipal wastewater treatment plants, *Water Res.*, 2020, **183**, 115989.

2. Q. Wang, Y. Ruan, L. Jin, X. Zhang, J. Li, Y. He, S. Wei, J. C. W. Lam and P. K. S. Lam, Target, Nontarget, and Suspect Screening and Temporal Trends of Per- and Polyfluoroalkyl Substances in Marine Mammals from the South China Sea, *Environ. Sci. Technol.*, 2021, **55**, 1045-1056.