Renormalizing Recitation Grades
Joel Shapiro
Department of Physics and Astronomy
Rutgers University, Piscataway, NJ 08855-0849
May 20, 1997

Abstract

I discuss issue of how to adjust recitation grades given by different instructors in a large course, taking into account and correcting for differences in standards among the instructors, while preserving the effects of differences in average student performance among the recitation sections.

Introductory physics in large universities is dominantly taught in large courses which combine lectures with recitation sections. The course content and policy is set by one person who is the course leader, but there are a number of people responsible for the recitation sections. The students receive grades based primarily but not entirely on examinations. These are graded in a manner so that variations in standards among the recitation instructors do not unfairly affect some students in comparison to others.\footnote{Many of our examinations in these courses are computer-graded multiple choice, but even when the questions are graded in a more subjective fashion, a high level of even-handedness can be assured by having each instructor grade all the exams for a given question.}

That component of the grade which is based on recitation work, however, cannot easily be assigned in a way that is fair to all students. Quizzes are of necessity different, and graded by people with widely differing standards. Even if the recitation grade is only a small part of the total, so that the effect of these differences on a student’s total grade is not very significant, nonetheless the effect on the morale of students is quite significant. They are acutely aware of discrepancies in standards. This paper addresses the issue of how to deal with this problem so that both the students and instructors...
are confident that grades are being fairly assigned. I call this the problem of renormalizing recitation grades.

Before embarking on a convoluted mechanism for renormalizing the grades, we need to be convinced that the perception of unfairness is the result of a real problem. Instructors have very differing grading standards, even after they have been asked to grade to a certain standard. For example, in the course I have recently administered, Prof. A had two sections with an average exam grade of 49, while Prof. B had four sections with an average exam grade of 48. Nonetheless the average recitation for Prof. A was 65, while that of Prof. B was 79. The students were very aware of this non-negligible difference and were quite upset, until I told them that we knew how to correct for these differences, and those with the tougher instructor would not be unfairly graded in the end. Unfortunately, I was stretching the truth — at the time, we did not really have such a scheme in place. This is my attempt at developing one.

The problem is also non-trivial. We could just add 14 points to each of Prof. A’s students, but no doubt this would push some of his students over 100, which would be noticeable and unfair to the best students in Prof. B’s classes, as they would have no chance to get over 100. This simple approach also ignores any inherent differences in the average ability of students among different sections. Most of us who have been involved in such courses realize there are significant variations in the average ability among the sections. For example, Prof. C in my course had one section with an exam average of 44% and another with an average of 51%, a very significant difference, especially considering that these were multiple choice exams where random guessing alone provided 20%.

Since the beginning of the use of recitation sections and computerized exams in our Department nearly twenty years ago, the necessity of dealing with this problem has been recognized. But I believe the issues have not been well understood, much less solved, before now.

First, I would like to make clear that there are two essentially independent issues here, once we agree to do some renormalization. Having decided to set a goal for the average renormalized recitation grades for each section, the first issue is how to determine that goal. The other problem is what function f to apply to the raw recitation grades x_i to get the new recitation grades

\[^2\text{Some might be more demanding and require not only a goal average but some other constraint on the distribution, such as a given standard deviation. I am not convinced that this is an important issue, however, and I will ignore it.}\]
Determining the Goal

As stated above, recitation sections are far from random samplings from the total class ensemble. The real reasons are not known to me, but plenty of possible causes abound, in particular conflict with other courses. For example, a recitation section that meets at the same time as an honors calculus course might well have students of lower average ability than the class as a whole.

In our Department, some course leaders have chosen to ignore such differences in the sections and to normalize recitation grades by bringing each section to the same predetermined average. Those who have tried to make individual renormalization goals for each section have, to my knowledge, all used the assumption that the recitation grade average should be proportional to the exam averages. Thus the goal g_r is given by $g_r = \langle e_i \rangle_r G / \langle e_i \rangle_c$, where the averages of exam scores for the recitation section $\langle e_i \rangle_r$ and for the whole class $\langle e_i \rangle_c$ are used to scale the overall class goal G.

The assumption that recitation grades are, in some average sense, proportional to exam grades does not stand up to inspection. In general exam distributions are roughly gaussian with a fairly low mean, while recitation grades are distributed quite differently, with a large fraction of the distribution narrowly clustered near a perfect grade, and a smaller wide tail. In my course of over 400 students, a scatter plot of raw recitation grade versus exam grade shows a very wide dispersion, but if one imposes a linear fit, roughly half of the average recitation grade is due to the intercept. Thus by assuming proportionality one would be overcorrecting by roughly a factor of two. One way to see how inappropriate this goal calculation is is with the following fictional but still reasonable scatter plot of recitation grade versus total exam grade in Spring, 1997. The best least squares linear fit is shown. Note that about half of the recitation grade is given by the intercept and half by the linear term.

3I am using throughout the notation $\langle v_i \rangle_S$ for the average of the data v_i over some set S.
situation: Suppose a good section has an exam average of 70% in a course where the overall average is 55%. Suppose the overall recitation grade goal is 80%. This gives a goal for the average recitation grade in this section of 102%. Clearly wrong!

The renormalization function

The other issue, also not trivial, is this: Given a set of raw recitation scores \{x_i\} for a section and a goal \(g\) that we wish the average of the renormalized scores to be, how do we find a suitable function \(f\) for which \(\langle f(x_i) \rangle = g\). Unfortunately, \(f\) needs to have some other suitable properties:

1: \(f(0) = 0\).
2: \(f(100) = 100\).

One should not be too quick to think he has a solution to this problem. Clearly a simple scaling of the grades to adjust the average to the goal, \(f(x) = gx/\langle x_i \rangle\), does not meet requirement 2. A piecewise linear fit, say with one segment from \((0,0)\) to some intermediate point and another from that point to \((100,100)\), can be made to have the right average, but one must remember that the average of the function is not the function applied to the average, and the intermediate point is not determined by only \(g\) and \(\langle x_i \rangle\). A quadratic fit is easily calculable; \(f(x) = (1-100a)x + ax^2\) satisfies (1) and (2) automatically. Getting the right average is simple:

\[
a = \frac{g - \langle x_i \rangle}{\langle x_i^2 \rangle - 100 \langle x_i \rangle}.
\]

However, it violates a rather serious requirement:

3: \(f\) must increase monotonically on the interval \([0, 100]\),

in some quite ordinary situations, including the first recitation section I taught in which this method was being employed.

The method which has been in use in our Department for many years is this: The average score \(\langle x_i \rangle\) is mapped to \(g\), and this point is connected

\[\text{Possible Renormalization Functions.}\]
by straight lines to (0,0) and (100,100). Clearly, as long as \(g \) is sensible,
\(g \in (0,100) \), this function satisfies (1–3), but unfortunately it doesn’t satisfy
the original criterion:

0: \(\langle f(x_i) \rangle = g \).

Every semester, in the brief interval between the final exam being given
and the due date for the receipt of grades by the registrar, a panic ensues
when some new recitation instructor discovers that the computer does not
do what she expects it to do. There then ensues a discussion of whether the
fact that this method undercorrects the section grades compensates the fact
that the goal is overly dependent on the section exam average. The answer
is “not in general”, and in fact the two faults can work in the same direction
rather than cancel.

One of our faculty came up with a mathematically elegant renormalization
function which satisfies requirements (1–3) and sets and achieves a goal
for the average of the logarithm of the grades, which at first blush seems as
sensible a criterion as a goal for the average grade. Considering the grades
on the domain \([0,1]\) instead of \([0,100]\), he noted that scaling the logarithms
automatically kept the endpoints fixed, and therefore

\[
f(x) = e^{b \ln(x)}, \quad \text{where } b = \ln(g)/\langle \ln(x_i) \rangle
\]

provides a renormalization function, easily calculable and simple to imple-
ment.

While this solution is mathematically elegant, I think it would be a very
poor choice to use. The trouble with this method is that it gives the greatest
weight in adjusting the class average to the worst students — in its pure
form this method would give almost everyone in a class a perfect score if one
student got a zero. We could avoid this by putting in cutoffs on who got
included in the average, but still the weakest students included are deter-
mining the renormalization of everyone. And the elegance is lost if we apply
it only to students in some subdomain. I don’t believe this is what we want.

So what can we do?

This paper makes suggestions for how each of these problems can be
solved. Neither is very simple, but each can be readily implemented by
computer. I believe my method for determining the goal for each section has
a “rightness” about it, although I can’t give a set of assumptions under which
it is “correct”. The method of determining the renormalization function is
somewhat arbitrary, but it should (well, under reasonable conditions, at least) satisfy (0–3), and also weigh students fairly evenly, emphasizing those in the middle.

Determining the goal

If each student deserved a recitation grade which was a monotone function of her exam grade, and if we knew the appropriate distribution of recitation grades for the full class, the recitation grade would be simply given by

\[x_i = r(E^{-1}(e_i)), \]

(1)

where \(r(n) \) is the \(n \)'th recitation grade in ascending order, and \(E(n) \) the \(n \)'th exam grade in ascending order.

Of course, recitation grades, even from the same instructor, are far from well defined functions of the exam grades. Other factors affect recitation performance differently than exam performance, and are a legitimate component of a student’s final grade. Nonetheless, (1) could be used to estimate what the expected recitation average would be, averaging over other factors, were it not for the differences in instructors. The function \(r(n) \), the “correct” distribution of recitation grades, is undetermined, but I think its exact form is not terribly important — the crucial issue here is fairness, and as long as the distribution has a reasonable spread, it doesn’t much matter where its mean is, because that will just affect where grade dividing lines are set. I think we should use the actual raw distribution of the full class as our function \(r(n) \).

The above discussion applies best if we restrict our attention to students

5Some may be disturbed by my refusal to discuss cosmetic issues, violating such rules as “it’s okay to raise students’ grades but not to lower them”. Such instructors could use my method, find the maximum amount any student’s grade was lowered, and simply add that grade to every student. Presumably the grade cutoffs will also be raised by that amount, so not a single grade will be affected, but everyone might feel better.
who have taken all exams and who have attended some reasonable minimal number of recitation sections. Only those students are used to determine the functions \(r(n) \) and \(E(n) \), and the section average goals, and thus the renormalization functions for each section.

Thus I suggest taking as the goal for section \(S \) the average

\[
g = \frac{1}{n_S} \sum_{i \in S} r \left(E^{-1}(e_i) \right),
\]

where \(n_S \) is the number of qualified students in section \(S \), with the sum only over the qualified students. The minimum number of recitation grades required for qualification can be specified by the course leader. Of course all students will have their grades calculated using the renormalization function for their section, whether or not they were included in determining the function.

The Renormalization Function

The renormalization function needs to be a monotone function such as the possibilities shown above. It ought to keep close grades close and large differences large, so the slope ought to stay as close to 1 as possible, and nonetheless distribute the required modification to the sum of the grades reasonably uniformly. I see no justification for requiring continuity of the derivative \(f' \), and therefore no objection to using a piecewise linear function.

It would be straightforward to use two straight line segments, perhaps joining at the average raw grade for the section. The student at the break point would be moved further than \(g \), because other students will be moved less, and thus the average will be moved by less than the student who had the average raw grade. If we use three line segments, which I recommend, this will still be true but the maximum movement required is less.

If \(f(x) \) is given by three continuous line segments, the parameters are the positions, \(x \) and \(f(x) \), of each of the two breaks. Four parameters are a lot to fit, and to make things easier I fix the break points in the domain \(d_1 \) and \(d_2 \) to subdivide the section into three approximately equal numbers of students. This leaves two parameters, \(f(d_1) \) and \(f(d_2) \), constrained by the requirement that the average come out right. This is one linear condition on the two parameters, with coefficients given in terms of the goal \(g \), the numbers \(n_L, n_M, n_R \) in the left, middle and right thirds of the class, and the sums \(s_L = \sum_{i \in L} x_i, s_M \) and \(s_R \) of the raw grades in each of these subsets. These are all easy to accumulate.
We still require one further condition to specify the parameters, which is set by minimizing some measure of how badly the renormalization is distorting the recitation grades. I have considered and implemented two different measures. The simpler, ("minimax") minimizes the maximum change, in absolute value, in a student’s grade. This requires the slope of the middle line segment to be 1, and is straightforward to implement. I also considered minimizing the deviation of the slopes from 1, because two students who got nearly the same raw grade should not get very different renormalized grades, or vice-versa. I measured the "badness" by the sum, over the three segments, of the square of the sum of the slope and its reciprocal. This treats f and f^{-1} on the same footing, declaring either a zero or infinite slope to be infinitely bad. Both methods work well and fairly easily, though the second requires a numerical root finder to find the minimum. I call this the "slope" method. Each method will lower the grades of some students, the difference perhaps best illustrated by the effect in one section with inflated grades in my course. The minimax method kept the maximum change to 7 points, but lowered a 92 to an 85, nearly doubling the points lost. The slope method lowered one student by more, 10 points, but his grade was a 76 lowered to a 66, perhaps less dramatic, while the student with a 92 was lowered only to an 87. An even more extreme example is provided by a test run halfway through the current term (see below), in which the minimax method lowered grades by 16%, including dropping a 98% to a 82%, while the slope method dropped the 98% to 96% but dropped a 90% to 68%. I find the slope method results less troublesome, but others might disagree.

Results
Both methods were used in a third term Engineering class with 440 students and 15 sections taught by five recitation instructors, in the fall of 1996, with the final grades utilizing the minimax method. In the spring of 1997, in the fourth term of that sequence, with 405 students in 13 recitation sections, the slope method was used to determine the final grades. None of the instructors in either semester complained of the results, which looked as reasonable as could be expected given the widely divergent grading of my recitation instructors. Examples from last fall are shown in Figure 4.
Both methods were used at the halfway point of the semester this spring, primarily to point out to one instructor what will happen to his students. He was giving highly inflated grades; one third of the class had 98% and above, and two-thirds had 90% and above, while the goal for this section was 80.4%. My intention was to have the instructor change his ways so that the final scores would need only moderate renormalization. But this exercise also provided a strenuous test of the method.

Although in principle either method can fail if asked to change an average excessively, at no point did that happen, even in the extreme case of the section at midterm described above. For safety, the program graphs the renormalization function for each section so that sick solutions will be spotted. By sick solutions, I include non-monotonic ones. Such a solution can in principle arise in the minimax algebra, and also if the minimization routine used by the slope method jumps over the infinite badness point when a slope goes to zero. I believe such problems are not likely to arise in practice, and this did not happen in any of sections in my course.

Summary

Thus we now have available methods for ensuring that the recitation grades assigned to students can be assigned fairly, taking account of different average abilities among the sections while eliminating the effects of different grading standards among the instructors. Details of the method can be obtained from the author.

6 It was partially successful in doing so.
7 shapiro@physics.rutgers.edu, or http://www.physics.rutgers.edu/~shapiro/grades.html
Acknowledgements

I wish to thank Frank Zimmermann for several interesting discussions, which reemphasized for me the need to think out a solution to this problem. These conversations also made clear that the problem was nontrivial, not only to solve but, even more so, to state. I also thank Juliet Shaffer for reading this document and making several helpful suggestions for clarifying the presentation.