Multifaceted approach to resveratrol bioactivity
Focus on antioxidant action, cell signaling and safety

Peter Kovacic1,* and Ratnasamy Somanathan2

1Department of Chemistry; San Diego State University; San Diego, CA USA; 2Centro de Graduados e Investigación del Instituto Tecnológico de Tijuana; Tijuana, BC Mexico

Key words: resveratrol, bioactivity, mechanism, antioxidant, metabolism, cell signaling, safety

Abbreviations: RVT, resveratrol; ET, electron transfer; ROS, reactive oxygen species; OS, oxidative stress; AO, antioxidant; CNS, central nervous system; ATP, adenosine triphosphate; GSH, glutathione; NO, nitric oxide; 8-OH-dG, 8-hydroxy-d-guanosine; PCB, polychlorinated biphenyl; AR, androgen receptor; SOD, superoxide dismutase; AA, amino acid

Resveratrol (RVT) is a naturally occurring trihydroxy stilbene that displays a wide spectrum of physiological activity. Its ability to behave therapeutically as a component of red wine has attracted wide attention. The phenol acts as a protective agent involving various body constituents. Most attention has been given to beneficial effects in insults involving cancer, aging, cardiovascular system, inflammation and the central nervous system. One of the principal modes of action appears to be as antioxidant. Other mechanistic pathways entail cell signaling, apoptosis and gene expression. There is an intriguing dichotomy in relation to pro-oxidant property. Also discussed are metabolism, receptor binding, rationale for safety and suggestions for future work. This is the first comprehensive review of RVT based on a broad, unifying mechanism.

Introduction

Resveratrol 1 (Fig. 1) (RVT) is a naturally occurring stilbene derivative that possesses three phenolic groups, two of which are part of a resorcinol structure. Most work involves the naturally occurring trans isomer. It is present in various dietary sources, including grapes, peanuts, plums and many plants. Much recent attention was paid to the “French paradox” (see below) which provides evidence for the beneficial effects of red wine. Investigations pointed to RVT as the principal therapeutic agent. The literature contains voluminous reports on the wide variety of properties by the phenol. Most attention has been devoted to anticancer, anti-aging, anti-inflammatory, cardioprotection and countering of insults to the central nervous system. Articles document a large number of mechanisms involved in the biological activity. One of the most important is the antioxidant (AO) attribute. Considerable literature correlates the presence of reactive oxygen species (ROS) to oxidative stress (OS) leading to large numbers of adverse effects suffered by body constituents. Hence, it is reasonable to assign a widespread protective role to RVT as an AO. Other mechanisms in which the drug is involved include cell signaling, apoptosis and gene expression. The dichotomy of the AO RVT also exhibiting pro-oxidant action is addressed and rationalized. Another important aspect is the finding that RVT has been shown to produce no adverse effects, even when consumed in high concentrations.1 Hence, it exhibits good protection for use in therapy for various diseases.

Reviews demonstrate the widespread involvement of ROS-OS in cancer and toxicity associated with many illnesses. The preponderance of bioactive substances and their metabolites incorporate ET functionalities, which, we believe, play an important role in physiological responses. The main groups include quinones (or phenolic precursors), metal complexes (or complexors), aromatic nitro compounds (or reduced hydroxylamine and nitroso derivatives) and conjugated imines or iminium species. In vivo redox cycling with oxygen can occur giving rise to OS through generation of ROS, such as hydrogen peroxide, hydroperoxides, alkyl peroxides, and diverse radicals (hydroxyl, alkoxyl, hydroperoxyl), and superoxide. In some cases, ET results in interference with normal electrical effects, e.g., in respiration or neurochemistry. Generally, active entities possessing ET groups display reduction potentials in the physiologically responsive range, i.e., more positive than -0.5 V ET. ROS and OS have been increasingly implicated in the mode of action of drugs and toxins (toxicants) e.g., antiinfective agents,2 anticancer drugs,3 carcinogens,4 reproductive toxins,5 nephrotoxins,6 hepatotoxins,7 cardiovascular toxins,8 nerve toxins,9 mitochondrial toxins,10 abused drugs,11 ototoxins,12 pulmonary toxins,13 immune system toxins,14 and various other categories of drugs and toxins, including human illnesses.15

There is a plethora of experimental evidence supporting the OS theoretical framework, including generation of the common ROS, lipid peroxidation, degradation products of oxidation, depletion of AOs, and DNA oxidation and cleavage products, as well as electrochemical data. Of particular relevance in the present case is the prevalent beneficial effect of AOs,16 in connection with RVT. This comprehensive, unifying mechanism is in keeping with the frequent observations that many ET substances display a variety of activities, e.g., multiple drug properties, as well as toxic effects. Knowledge of events at the molecular level can result in practical application in medicine.
The protective effects of RVT are demonstrated for cancer and insults to many body constituents, including the cardiovascular system, central nervous system (CNS), liver, kidney, DNA and others. There is a beneficial effect in connection with aging, arthritis and inflammation. The drug is a versatile agent that also functions through cell signaling and gene expression. Other aspects treated are metabolism, receptor interaction, electrochemistry, safety and pro-oxidant behavior. Suggestions for future work are offered.

This review demonstrates that the ET-ROS-OS-AO unifying theme, which has been successful for many other classes of drugs and toxins, can also be applied to RVT, and this comprises the first comprehensive, mechanistic review devoted to that agent. However, it should be emphasized that physiological activity of endogenous and exogenous substances is often complex and multifaceted. Our objective does not encompass extensive treatment of all other modes of action. The citations are usually representative, rather than exhaustive. A number of original references may be found in the reviews and articles cited.

Metabolism

A common metabolic route for phenols involves oxidation to catechols or hydroquinones with subsequent conversion to o- or p-quinones. An ensuing result is often redox cycling entailing oxygen with production of ROS. It is quite significant that finding comparable literature for phenolic RVT is difficult. A rationale is provided by various metabolic reports. Rapid metabolism leads to about 75% excretion in urine and feces in the form of RVT glucuronides and sulfates. The following conjugates are reported: 3-O- and 4’-O-glucuronides; most abundant, 3-O-glucuronide and 3-sulfate; main metabolites, monoglucuronide, dihydro monosulfate, monosulfate and dihydro RVT; 3-sulfate, 4’-sulfate, 3,5-disulfate, 3,4’-disulfate, 3,4,5-trisulfate, 3-glucuronide and aglycone. In a study with two cell lines, RVT-3-sulfate was identified. The absence of toxic effects apparently results from preferential conjugation, rather than appreciable oxidation to ET quinones.

The AO property is apparently an important aspect of the physiological activity of RVT, particularly in relation to protection from oxidative injury. The literature is extensive and is also cited in other parts of this review.

The AO effect of RVT was manifested in blood mononuclear cells by a significant reduction in malonaldehyde content, an indication of oxidant injury. The cells acquired AO capacity. Grape RVT may be a useful dietary supplement for minimizing oxidative injury in immune-perturbed states and human chronic degenerative diseases. The effect of RVT on oxidative/nitrative stress by peroxynitrite, which is a strong physiological oxidant and inflammatory mediator, was determined in human blood platelets. Protein oxidation was significantly inhibited. Oxidation of thiol groups in protein and GSH was markedly reduced. There was distinct reduction in platelets lipid peroxidation. Various protective effects against peroxynitrite induced oxidative/nitrative damages to human platelet proteins and lipids were observed. RVT reduces OS induced by cisplatin and Se-Pt in human blood platelets, lymphocytes and plasma. The AO decreased lipid peroxidation and reduced activities of anti-oxidative enzymes, such as SOD, catalase and GSH peroxidase. A significant decrease in DNA damage was observed. Another study dealt with the antioxidant and free radical scavenging activities in the protective effects on ischemia-reperfusion induced injuries of rat hearts. Scavenging of the stable free radical DPPH was also observed. Astringinin, a more water soluble catechol-type analog, has a superoxide scavenging ability about 160 times more potent than that of RVT, and, hence could potentially be used as an AO and cardioprotective agent in biological systems. The efficiency of RVT for protecting polyunsaturated fatty acids was higher than that of flavonoids during oxidation. A related study deals with inhibition of human LDL oxidation by RVT. The phenol exhibits potent AO properties related to anti-inflammatory and anti-catabolic effects. The findings suggest possible application of RVT in therapy of human and animal osteoarthritis.
RVT could be a useful drug for the protection of liver cells from OS induced damage. The phenol is of interest for its beneficial properties in a variety of pathologies, including neurodegeneration. Many of the beneficial effects have been attributed to the ability to reduce OS. Bioactive phenols, such as RVT, can quench ROS and thus avoid pro-oxidative damage. This highly effective protection against OS damage suggests that this AO property constitutes the major part of preventing tumor induction. An investigation was made of the mechanism of cardioprotection by RVT in ischemia-reperfusion. The protection of cardiomyocytes from injury occurs partly by suppression of superoxide levels via AO action.

The mechanism of phenolic AO action has been addressed in a recent book. A key step is stoppage of radical propagation by formation of a resonance-stabilized peroxy radical, shown in Figure 2 for RVT. A report deals with mechanism and efficiency of AO action involving RVT and analogs. The comparison of the radical-scavenging effects of RVT and its analogues trans-4-hydroxystilbene and trans-3,5-dihydroxystilbene revealed that the two analogs showed almost the same effect and were more efficient than trans-3,5-dihydroxystilbene. These findings indicate greater radical-scavenging activity of the trans-resveratrol para-hydroxy group vs. the meta-hydroxy group. Other data showed great similarity between RVT and trans-4-hydroxystilbene which seems to confirm that the para-hydroxy group of trans-resveratrol scavenges free radicals more effectively than its meta-hydroxy groups. The results can be rationalized by the greater delocalization possible for the radical from the para hydroxy group vs. the meta analog. Another important aspect entails termination of radical propagation by the phenoxy radical. This favorable aspect involves conversion to non-radical product by C-C coupling. Trapping of the radical occurs by dimerization yielding trans-delta-viniferin which is unable to chain propagate.

Cell Signaling

An investigation was made of the regulatory effect of RVT on signal transduction pathways in leukemia. Data indicate reduction in activation of JAK1/STAT3 tyrosine phosphorylation, as well as downregulation of expression. Evidence indicates activation of the Raf/Ras cascade and reversal of the sustained phosphorylation of JNK/SAPK. The study deals with the effect of RVT on signal transduction pathways involved in paclitaxel-induced apoptosis. The phenol inhibits phorbol ester activation of JNK and PKC. The inhibition may have a therapeutic potential, perhaps providing a novel means of controlling growth and invasiveness of tumors. A report deals with RVT modulation of phorbol ester-induced signal transduction pathways leading to elevated COX-2 expression. Other signals involved are NFkappaB, MAP kinases, AP-1 and protein kinase (ERK). An overview summarizes RVT modulation of signal transduction in apoptosis and cell survival. There is interference with many intracellular signaling pathways which regulate cell survival and apoptosis. Further insight is provided into the signaling network and interaction points. A review discusses the diverse molecular targets with focus on those involved in intracellular transduction. RVT impacts many components of intracellular signaling pathways including regulation of apoptosis and cell survival, tumor switches involved with kinases, transcription factors and their regulators. Evidence indicates that the stilbene derivative targets PTPIB to inhibit PDGFR mitogenic signaling. RVT mediates its effects through modulation of many different pathways by binding to numerous cell-signaling molecules. The compound activates various transcription factors, e.g., NFkxB, STAT3, HIF-1α, β-catenin and PPAR-γ, suppresses the expression of antiapoptotic gene products, inhibits protein kinases, e.g., src, P13K, JNK and AKT, induces AO enzymes, and modulates cell cycle regulatory genes. The polyphenol holds promise against numerous age-associated diseases. An investigation was made of signaling pathways influenced by RVT involved with apoptosis and growth control in leukemia. Apoptosis is induced by modulating three different signaling pathways that regulate cell death and survival. The survival signaling pathway Notch is inhibited. The phenol inhibits P13K/Aket and activates Gsk/3β. Pro-apoptotic proteins p53 are also influenced. RVT reduces paclitaxel-induced apoptosis by modulating cell signaling pathways.

Since the literature on cell signaling involving RVT is voluminous, additional, representative material is provided in abbreviated form. The organ or action is indicated along with the cell signaling involved in Tables 1–5.

In relation to mechanism at the basic level, recent proposals focus on ROS and electrochemistry. Cell signaling is known to be importantly involved in various aspects of biological function, including normal processes, therapeutic drug action and toxicology. More than 10 years ago, ROS attracted attention in relation to cell signaling. Since then several books and a book chapter have addressed this aspect. A recent review has further insight. Evidence has accumulated that ROS, such as hydrogen peroxide, superoxide, and the hydroxyl radical, are important chemical mediators that regulate the transduction of signals by...
Table 1. Apoptosis

Cell signaling agent	Organ or action	Reference
(1) MAP kinases	Human breast cancer cell MCF-11	47
(2) Fas redistribution in the rafts	Colon cancer cells	48
(3) Ceramide	Breast cancer cells	49
(4) STAT3 and nuclear factor-XB-regulation	Human multiple myeloma cells	50
(5) Protein kinases and p38 kinase	Antitumor activity	51
(6) Src and Stat3	Breast cancer	52
(7) TRAIL-induced	Mitochondria	53
(8) Phosphorylated Akt and Caspase-9	MCF7 human breast cancer cells	54
(9) Cdc42 activation of ASK1/JNK	Human leukemia cancer cells	55
(10) Phosphatidylinositol 3'-kinase Akt P13K	Human prostate cancer cells	56
(11) WAF-1/p21-mediated G, phase	Human epidermoid Carcinoma A431 cells	57
(12) AMPK	Colon cancer cells	58
(13) JNK and c-JUN/AP-1	Prevented HNE-induced JNK	59
(14) c-Myc	Downregulation in human medulloblastoma	60
(15) ERK	Initiates p53 dependent apoptosis via α/β3	61
(16) Caspase-3	Human breast cancer cell	62
(17) CD95	Human tumor cells	63
(18) TNBS	Inhibiting Notch pathway	64
(19) p53 and P13K/Akt	Human T-cell acute lymphoblastic leukemia MOLT-4 cells	65

Table 2. Cancer

Cell signaling	Organ or action	Reference
(1) NFκB and Ap-1	Genes	66
(2) p38, MAPK, p53 and p21	Cancer cells	67
(3) NFκ mediated MMP-9 expression	Hepatocellular carcinoma cells	68
(4) TRAIL through gene expression	Human melanomas	69
(5) STAT3	Medulloblastoma cell lines	70
(6) MAPK	Breast cancer cells	71
(7) c-Jun-NH2-terminal-kinase	Waldenström’s macroglobulinemia	72
(8) NFκB	Cardiovascular, neurological and mitochondrial dysfunction	73
(9) ATM/ATR-Chk1/2-Cdc42	Ovarian cancer cells	74
(10) Rac and Cdc42	Breast cancer cells	75
(11) P13K	Cultured muscle cells	76

modulating protein activity via redox chemistry. Authors have proposed that ROS have been conserved throughout evolution as universal second messengers. Nearly every step in signal transfer is sensitive to ROS, which can function as second messengers in the activation of transcription factors. Various types of radiation, which are generators of transcription factors, also influence cell communications. Since the messengers must possess appreciable lifetime in order to migrate, a certain degree of stability is required. For example, the hydroxyl radical would not be a messenger due to its extremely high reactivity with its resultant very short time existence, although it would generate messenger radicals. Likely candidates include superoxide and resonance stabilized peroxyl radicals. Others would be stable ROS arising from AOs, such as vitamin C, vitamin E and flavonoids. Members can be envisioned from the reactive nitrogen species (RNS) category. NO is a well known radical that plays an important role in cell signaling. In relation to theory, a puzzling aspect is its relatively short lifetime. Perhaps more stable complexes are involved. Other nitrogen radicals can play a role. Important candidates comprise small proteins possessing redox groups.

In effect, cell signaling can be regarded as proceeding via a long redox chain in which the standard parameters of initiation, propagation and termination pertain, involving omnipresent conduit species with unshared electrons. A series of relay stations may be operative. Based on the redox chain framework, the second messenger might be superoxide formed by redox process involving oxygen and a second messenger electron from an ET functionality in the receptor site. At the termination of the initial journey, radical character would be transmitted to a site, mobile or stationary, e.g., a redox amino acid (AA) side chain acting as a relay (transfer station), that could then pass on (initiate) radical character to a third messenger. These types of interactions, widespread in AA chemistry, usually involving electron and/or hydrogen abstraction to generate radical species, are treated in a review. The numerous redox moieties in anchored proteins might fall in the relay category. There has been dramatic increase in attention devoted to free radical species in cell signaling, although the bulk of the signal transduction literature pays no attention to this aspect.

Electrochemistry also appears to play a role in cell signaling, including electron transfer and electrostatics. Discussion is present in recent reviews on receptor-ligand activity, phosphates and sulfates and metal cations.

Receptors

The literature on the RVT receptor is very limited. RVT is a phytoestrogen which binds to and activates estrogen receptors that regulate the transcription of estrogen-responsive target genes. The effect on gene expression appears to correlate with chemoprevention. The drug regulates mRNA expression of several genes involved in cell cycle control, apoptosis, metastasis, cell-cell adhesion and receptor signaling pathways. A report shows RVT binds to the sulfonyl urea receptor. Electrophysiological measurements revealed that the bound ligand is a blocker of pancreatic SUR channels and enhances apoptosis. RVT is known to
influence the androgen receptor (AR). AR pathways are involved in the development and progression of prostate cancer. The ability to modulate AR function may contribute to the chemopreventive activity of RVT. Also, the drug regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. RVT represses different classes of AR. AR upregulates genes at the protein or mRNA level, and may be a useful preventive or therapeutic agent for prostate cancer. Aryl hydrocarbon receptor ligands, such as dioxin and polynuclear aromatic hydrocarbons, are environmental contaminants with many adverse effects. RVT, a competitive antagonist of these ligands, promotes receptor translocation to the nucleus and binding to DNA. The phenol inhibits the transactivation of several dioxin-inducible genes. Clinical testing as a prophylactic against the insults is warranted.

Electrochemistry

Glucose-induced depolarization was counteracted by RVT. There is inhibition of electrical activity and insulin release from insulinoma cells by blockade of voltage-gated Ca channels and chloride currents, with inhibition of K (ATP) currents. RVT inhibits the electrical activity of paraventricular nucleus neurons and exerts neuroprotective effects on central neurons. The effects of RVT on neuron discharges in rat subfornical organ were examined. The inhibition of electrical activity may be related to blockade of voltage-gated Ca channels and NO promotion. A study demonstrated RVT-induced depression of electrical activity in the rat heart. The shortened action potential in the left atrium is likely due to activation of K (ATP) channels. The importance of electrochemistry in living systems has been reviewed recently.

Aging

The anti-aging property of RVT has enjoyed much attention. This aspect is also addressed in many other portions of this review. Considerable prior literature identifies ROS with the aging process. An article deals with prevention and treatment of common clinical conditions of aging. Aging is associated with a variety of common conditions, such as cancer, diabetes, cardiovascular disease and Alzheimer’s disease. Properties of the phenol associated with the beneficial aspects include AO, regulation of the cell cycle, activation of intracellular pathways, vascular tone, oncogene suppression and mitochondrial energy production. There is a striking transcriptional overlap of RVT and calorie restriction in the heart, skeletal muscle and brain. Both interventions inhibit gene expression associated with cardiac and skeletal muscle aging, as well as prevention of cardiac dysfunction. RVT fulfills the definition of a dietary compound that mimics some aspect of calorie restriction. A review summarizes the anti-aging properties of RVT, including cardiovascular benefits via increased NO production, downregulation of vasoactive peptides, lowered levels of oxidized low-density lipoprotein, cyclooxygenase inhibition, effects on neural tissues, phytohormonal actions, anticancer properties via modulation of signal transduction (anti-initiation, antipromotion and anti-progression effects), antimicrobial effects, sirtuin activation, possible benefits in Alzheimer’s disease and prevention of photaging. Comparison was made with other AOs used in skin care products. RVT consistently retards aging in organisms as diverse as yeast, worm, fly and fish. It prolonged lifespan and delayed the onset of age-related dysfunctions in fish. A review focuses on the role of OS and inflammation in cardiovascular dysfunction in aging, and on emerging anti-aging therapeutic strategies offered by RVT and other polyphenols. In a study of RVT influence on aging, the drug mitigated the metabolic dysfunction of mice fed high-fat diets. The effects may be mediated partly by activation of a deacetylase enzyme that regulates several transcription factors and enzymes responsive to nutrient availability.

Cancer

Antioxidant. OS arising from ROS appears to be associated with many aspects of carcinogenesis. For example, there is involvement in three major stages of the process. Literature cited indicates that RVT as an AO provides a beneficial effect in alleviation of harmful OS. In some cases, there is evidence for significant modulation of oxidative imbalance and effect on levels of other AOs.

Apoptosis. Apoptosis plays a part in many aspect of biological chemistry. There are many articles which deal with it in connection with cancer. The reports addressed herein do so in connection with presence of RVT.

Cell signaling. This aspect has been addressed in a general approach (see above). Cell signaling has played a role in many aspects of biochemistry. It is not surprising that considerable attention has been devoted to its relationship with cancer. Mechanistic aspects of signaling are summarized in an above section. Representative articles are provided that involve RVT.

Nitric oxide. This fascinating gas possesses a wide variety of bioactivities, both beneficial and deleterious. Many modes of action have been implicated. One review puts focus on electron transfer. Peroxynitrite formed by reaction with superoxide,
plays a role, particularly in toxicity. A sampling of literature is presented for the effects of NO along with RVT.135,160,161

Miscellaneous aspects. There are many other approaches that deal with the cancer problem, along with involvement of RVT.162-174 Examples involve hormones, polyamines, autophagy, cathepsin D, DNA synthesis and mitochondria.

Cardiovascular System

RVT displays many bioactivities, such as protection from or reduction of the incidence of coronary heart disease, including counteraction to ischemia-reperfusion injury.175 It might be that there is inhibition of signaling pathways and gene expression which involve the disruption of the ERK pathway via attenuation of ROS. A review focuses on the role of the phenol on OS and inflammation in cardiovascular disease.176 Intake may contribute to the “French paradox” involving the unexpectedly low cardiovascular morbidity in the Mediterranean population, which may reflect the AO and anti-inflammatory effects. Upregulation of NO production might also be involved.177 The amount of malondialdehyde, indicative of lipid peroxidation, was decreased in the postischemic myocardium indicating a reduction of OS.178 There was prevention of superoxide-dependent inflammation response induced by ischemia-reperfusion and oxidants.179 AO proper-
ties may be involved. RVT exhibits multifaceted properties in preventing various harmful vascular alterations, in addition to aging, including cell signaling, enzymatic pathways, apoptosis, gene expression and AO action.180 The review discusses the rela-
tionship with ROS and regulation of pro-inflammatory genes. Administration of RVT exerts cardioprotection against ROS-mediated menadione toxicity.181 Results indicate that the drug interferes with the release of inflammatory mediators, thus providing biological plausibility to the protective effect of moderate red wine consumption against coronary heart disease.182 In a related study a protective AO effect of RVT in red wine was demonstrated against oxidative injury on red blood cells.183 Authors proposed that the AO and antiapoptotic effects, together with the anti-inflammatory actions, are responsible, at least in part, for the cardioprotective effects.184 Upregulation of endogenous AOs and certain enzymes by red wine RVT in aortic muscle cells leads to protection against oxidative and electrophilic stress.185 Various investigations dealt with the effects on blood platelets, such as, action as AO for reduction of OS,186

Figure 3. Resveratrol quinone. This stilbene quinone would be expected from fac-
tile oxidation of RV. However, we are unable to find any report of its formation. It may be that it is present only in very small amounts making for greater difficulty in isolation. Nevertheless, only minor quantities will suffice for the catalytic genera-
tion of large amounts of ROS. Quinone formation is one rationale for the observed pro-
oxidant effects of RV involving redox cycling with oxygen leading to ROS.

Table 4. Heart

Cell signaling agent	Organ or action	Reference
(1) AMPK	H9c2 cardiac muscle cells	84
(2) NFκB	Endothelial cells of coronary artery	85
(3) p38 and ERK/1/2	Inhibits EMMMPRT THP-1 cells	86
(4) p38 Mitogen-activated protein kinase	Triggers an MAPK path involving ERK ½ and P38 MAPK	87
(5) Bcl-2	Adenosine A1 receptor Activation	88
(6) p38 map kinase and P1-3-kinase	HO-1 mediated mechanism	89
(7) Akt/protein Kinase B	Suppresses angiotensin II-induced protein	90

Table 5. Miscellaneous

Cell signaling agent	Organ or action	Reference
(1) NF-E2	HO-1 gene expression	91
(2) Kinase	Reduces oxidation of human retinal pigment epithelial cells	92
(3) AMPK	Antidiabetic	93
(4) Nrf2	Cigarette smoke-mediated OS	94
(5) SIRT1 and AMP kinase	Human alcoholic liver disease	95
(6) Ras	Stimulates sirtuins and extends life span	96
(7) Caspase-3	Inhibits IL-1β-induced stimulation	97
(8) 3-Kinase/Akt	Inhibition of phospho-inositol-dependent kinase-1 activity	98
(9) NFκB	Stimulates cytokines IL-6-1β and NFκB	99
(10) P13K	Inhibition	100
(11) AMP kinase	Stimulate AMPK in neurons	101
(12) NFκB and AP-1	Activate and regulate gene expression	67
(13) MAPK	Activate through estrogen receptors	102
(14) NFκB, STAT3, HIF-1α	Activate transcription factors	45
inhibition of superoxide generation, ROS production and lipid peroxidation.187 The drug reduces ROS levels, blunts the inflammatory pathways and stimulates NO generation.188 There is inhibition of ROS production, e.g., superoxide, hydrogen peroxide, singlet oxygen and organic radicals,189 and a variety of actions including anti-inflammatory, AO, ROS, scavenger and reduction of lipid peroxidation.190

A prior comprehensive review on prevention of cardiotoxicity is based on the unifying theme of ET-ROS-OS.8

Central Nervous System (CNS)

Much research supports the thesis that ROS play a role in insults to the CNS.9 Since the brain is deficient in defenses by AOs, supplementation should be investigated as a potential clinical approach. There are many reports demonstrating the beneficial effect of RVT in preventing toxic attacks in relation to brain neuronal injury in conditions such as Alzheimer’s disease and Parkinson’s disease.191-199 In many cases, attribution is given to the AO property. In the treatment of traumatic brain injury, the drug provided neuroprotection by reducing OS.200 There is a related report.201 Increased OS has been implicated in the mechanism of neuronal cell death following cerebral ischemic insult.202,203 RVT exerted a protective action, apparently as an AO. The phenol is a potent neuroprotective agent against diabetic oxidative damage.204 There was reduction in lipid oxidation product and NO production, as well as OS and DNA fragmentation.205 A neuroprotective effect via free radical scavenging was observed with induced Parkinsonism.206,207 Intervention by AOs can be a potential beneficial approach in the treatment of epilepsy.208 The protective effect of RVT against kainic acid-induced convulsions and the attenuation of lipid oxidation product suggest the potential use of AOs as adjunct therapy in epilepsy. The neuroprotective ability of RVT against NO-related toxicity in hippocampal neurons is attributed to AO involvement.209 Also, a neuroprotective effect was observed in cerebral ischemia.210 There was decrease in product from lipid oxidation and induction of an important role for NO.

Inflammation

An appreciable amount of research is reported on the anti-inflammatory effects of RVT. Evidence shows that the condition is associated with the presence of ROS.19 Hence, it is not surprising that the powerful phenolic AO exerts a beneficial effect. Literature in the area is also discussed elsewhere in this review, such as in cell signaling.

Some research in this area involves the lungs.211 With human airway epithelial cells, RVT inhibits NFκB-protein dependent transcription and cytokine-stimulated inducible NO synthase cells. The salutary effects of the drug on attenuation of lung injury following trauma hemorrhage are likely due to reduction of pro-inflammatory mediators.212 Plausible mechanisms of anti-inflammatory activity are discussed.213 This property may have relevant clinical implications. The drug could alleviate the
NFκB is a pivotal transcription factor involved in the activation of the TNFα and IL-1β genes. Activation of NFκB is a feature seen in arthritis patients. RVT is a potent and specific inhibitor of TNFα and IL-1β. Injection of the drug may protect cartilage against the development of inflammatory arthritis.

Liver

Pyrogallol causes hepatotoxicity in experimental animals. RVT reduces the increase in lipid peroxidation due to OS by the toxicant. The accompanying decrease in GSH, GSH peroxidase and GSH reductase activities was significantly attenuated by the phenol. In a study of the liver damage with a high-fat diet, RVT reduces oxidized LDL and hepatic OS. RVT-mediated chemoprevention of hepatocarcinogenesis occurred with nitrosamine-initiated carcinogenesis. The favorable effect was attributed to inhibition of cell proliferation and induction of apoptosis. A review documents evidence for the favorable effect entailing destruction of cancer-initiating ROS by AO action (see Introduction). Liver damage caused by chronic alcohol consumption was reduced by RVT. Inhibition of oxidation of polyunsaturated fatty acids is proposed as a basis of the hepatoprotective effect. The involvement of OS in the pathogenesis of alcoholic diseases in the liver has been repeatedly confirmed. Dietary supplementation with RVT during ethanol treatment inhibited hepatic lipid peroxidation and ameliorated the reduction in activity of SOD, catalase and GSH peroxidase.

Kidney

The protective effect of the AO resveratrol and others was investigated in the kidney of rats treated with the carcinogen KBrO₃. The 100% increase in 8-OH-dG from oxidation in the renal genome DNA was completely abolished by treatment with RVT. ROS have been implicated in cell injury that occurs after ischemia. Products of lipid peroxidation are generated on reperfusion. This oxidation can be prevented by AOs. Resveratrol was found to exert a favorable effect in reducing such injury. A related report is available. An hypothesis was advanced concerning the beneficial effects of red wine which contains resveratrol. Evidence suggests a protective role of moderate wine consumption against the onset and progression of renal diseases, based on the concept of kidney injury mediated by OS. A similar study was reported. ROS are observed in gentamicin-induced nephrotoxicity. Renal lipid peroxidation increases with the toxicant alone, which was prevented by the administration of RVT. Addition of the phenol resulted in an increase in the levels of AOs. At least a part of the favorable effects was attributed to the AO activity.

DNA

RVT reduces nuclear DNA fragmentation. Results indicate that the drug can act as an antimutagenic/anticarcinogenic agent severity of pancreatitis through its anti-inflammatory effects, regulation of inflammatory mediators and inhibition of NFκB expression. Also, there is prevention of superoxide-dependent inflammatory response induced by ischemia/reperfusion platelet-activating factor or oxidants. The phenol decreases the degree of inflammation associated with colitis. The effect may result from the countering of OS and proinflammatory cytokines. Attenuation of ischemia/reperfusion injury in rats is due to the anti-inflammatory action of RVT, apparently through a NO-dependent mechanism.

Arthritis

Much evidence supports a role for ROS-OS in arthritis. This includes oxidative damage to DNA, protein and lipids. In accord with involvement of ROS, there is depletion of GSH, ascorbate and α-tocopherol. Hence, it is not surprising that the AO RVT possesses the potential for arthritis treatment. Inflammation, which is commonly associated with arthritis, appears to have a ROS link. Involvement of cell signaling pathways is also treated. The inflammatory process plays a pivotal role during the pathogenesis of osteoarthritis, dominated by catabolic processes initiated by pro-inflammatory cytokines, such as IL-1β. RVT appears to be an effective anti-inflammatory agent that has a chondroprotective capacity through suppression of IL-1β, ROS and tumor suppression protein p53 production.
by preventing DNA damage which plays a pivotal role in the carcinogenic activity of many genotoxic agents. The phenol reduced DNA damage induced by Cr (III) based on reduced 8-OH-dG formation. The protective effect against Cr-induced carcinogenesis may relate to the free radical-scavenging ability. The genoprotective effects of the drug were investigated under conditions of OS induced by hydrogen peroxide in glioma cells. Due to attenuation of oxidative DNA damage, RVT may be important in protecting against DNA fragmentation and oxidation arising from OS. In a study of Alzheimer’s disease, red wine micronutrients were found protective. The phenols reduced ROS production, prevented DNA fragmentation and protected the cellular membrane from oxidative damage.

Genes

RVT significantly blocked the expression of genes related to the NFκB family. The phenol has a significant modulatory effect on the NFκB signaling pathway and an important AO role that may help explain the cardioprotective effects attributed to long-term moderate red wine consumption. Through its phytoestrogenic properties, RVT regulates the expression of hormone-dependent genes in breast cells and provides a protective effect against several types of cancer, notably breast cancer. The drug modulates the expression of genes in a pattern dependent on the state of estrogen receptors. Gene expression is regulated via the estrogen receptor pathway and also an undetermined pathway. The effects of RVT on circadian clocks of Rat-1 cells were analyzed. A dose, which did not exhibit toxicity, regulated the expression of various clock genes. Relevant material is also present elsewhere in this review.

Other Body Constituents

In addition to the extensive studies presented in the above sections, there are many reports of the beneficial effects of RVT on other body constituents under stress. Much of the salutary responses can be attributed to AO action under OS. RVT limited dysfunction of rat brain mitochondria in an anoxia-reoxygenation model. At least three mechanisms were proposed, including AO properties. Data indicate that the drug may have application in the treatment of bronchial asthma, accompanied by inhibition of increases in cytokines. A review provides evidence for AO protection of various pulmonary disorders. The phenol exerted beneficial activity against alcohol injury, e.g., peroxidation of lipids. The adverse effects, countered by AO action involve ROS and OS. Oxidative stress entailing rapid degeneration of endothelial cell function, is deeply involved in systemic sclerosis pathogenesis. There is potential for RVT as an AO for reverting endothelial dysfunction, scavenging lipid peroxides and reducing hypoxia-reperfusion injury. Examination revealed a significant improvement in ovarian morphology in RVT-treated rats, compared with the ischemia-reperfusion group. Drug administration reduced lipid peroxide products and countered the reduction in GSH levels. The phenol exerted a favorable influence against lipid peroxidation in cell membranes, including a decrease in DNA damage. An important AO role was assigned. Also, an inhibitory effect was observed on the NFκB signaling pathway after exposure to metal-induced radicals. Obesity in the US has become a serious problem, leading to a sharp increase in diabetes. In a controlled study, RVT treatment caused the greatest and most consistent loss of fat content in animal subjects. The underlying target protein likely involves sirtuin family members. A study was carried out involving RVT and Cd-induced oxidative damage in mice. The phenol and other AOs effectively protect against lipid peroxidation generated by the metal, and were able to counter the inhibition of catalase activity. Metals are well-known generators of ROS and OS.

Skin cancer is a common illness among humans, due to solar radiation. A way to reduce the occurrence is by use of photochemopreventive agent, often in the AO category. Results suggest that RVT may afford substantial protection against damage caused by UVB exposure, which may be mediated via its AO properties. RVT reduces colitis, alleviates oxidative events and stimulates apoptosis. Much attention has recently been paid to nanoparticles. RVT-loaded nanoparticles protected cells from β-amyloid peptide toxicity by attenuating intracellular OS and caspase-3-activity. A review addresses various approaches to immunomodulation. Disruption of the accompanying proinflammatory cascade is by various therapies, including RVT, involving various mechanisms, including AO effects and alterations in cell signaling.

Pro-Oxidant

The literature contains extensive documentation for AO action by RVT as presented above. However, there is an apparent dichotomy based on an appreciable number of reports providing evidence for pro-oxidant action. The following material addresses these references, followed by rationale for the dichotomy. Compounds, such as RVT, acting as AOs to lipids often have a pro-oxidant effect on DNA or protein. Free radicals derived from the phenol appear to mediate between anti- and pro-oxidative actions. Dietary polyphenols with phenol rings are metabolized by peroxidase to form pro-oxidant phenoxy radicals which are sufficiently reactive to co-oxidize GSH or NADH accompanied by extensive oxygen uptake and ROS formation. The experimental conditions are important for the pro-oxidant activity, causing oxidative DNA damage that may lead to cell cycle arrest or apoptosis. At certain concentrations, RVT elicits pro-oxidant properties as evidenced by an increase in intracellular superoxide. The pro-oxidant effect is further supported by other observations. An unusual study reveals opposite effects on rat tissue lipid peroxidation. With a dark-light cycle, RVT behaved as an AO during the dark span, and as a pro-oxidant during the light span, comprising further support for the importance of conditions.

Discussion of the AO-pro-oxidant aspect is available for other well-known AOs, such as vitamins E and C, flavonoids and thios. For the phenols, a pro-oxidant appears to involve conversion to a quinone capable of ET-ROS-OS. A similar route would apply to RVT in relation to oxidation to the stilbene quinone “3” (Fig. 3). However, we have not found such a report (see Metabolism...
section). It may be that the quinone has not yet been isolated due to formation in small quantities with much being tied to protein by nucleophilic attack (see Future Work).

A superficial approach might lead to assignment of quinone “3” (Fig. 3) as the product from oxidation of “1.” However, application of basic principles of organic chemistry could lead to different conclusion. Compound “3” (Fig. 3) is a conjugated diene incorporating two enol groups. Generally, at equilibrium, the keto state is energetically favored over the enol tautomer. An exception is cyclohexane-1,2-dione for which enol “4” (Fig. 4) makes a substantial contribution due to enol stabilization by hydrogen bonding with the carbonyl.253 It is reasonable to apply this reasoning to “3” (Fig. 3) as shown in structure “5” (Fig. 5). On the other hand, such interaction makes similar H-bonding by the other enol less likely. As a result, the keto form shown in “6” (Fig. 6) could prevail. Therefore, the quinoid structure capable of redox cycling with generation of toxic ROS would not pertain. This scenario is in line with the very low toxicity exhibited by RVT.2 Another possibility is H-bonding involving both enol groups, as illustrated in “7” (Fig. 7), or conversion to an ET o-quinone via oxidation of adjacent hydroxyl groups in the tetrahydroxy precursor of “3” (Fig. 3).

It should be recognized that “6” (Fig. 6) could also be capable of electron uptake, but less efficiently than the related quinone. Compound “6” (Fig. 6) is a conjugated analog of diacetyl which is electron affinic, but exhibits negligible ability to generate significant OS via ROS.253

The placement of the hydroxyl groups apparently is beneficial due to phenolic AO action, but largely avoids the damaging redox cycling that often results from quinone generation via oxidation. This represents another example of a clever strategy employed in the biochemical domain.

Analogy can be made to metabolism of PCBs, in which oxidation proceeds via mono- and di-hydroxyl derivatives to the quinone “8” (Fig. 8) stage. Compound “8” (Fig. 8) is known to redox cycle with formation of ROS which appear responsible for some of the toxicity.254

An alternate interpretation exists for the pro-oxidant behavior. Phenols, including RVT, form complexes with metals. In the case of heavier metals, the favorable reduction potential can lead in vivo to redox cycling involving oxygen with formation of ROS leading to OS.2-15 In the presence of Cu ions, DNA damage by RVT occurs which is attributed to oxidative intermediates formed by redox cycles involving the metal complex.255 Similar studies were made.256-261

Future Work

A principal aspect of metabolism (see above) involves formation of conjugates. It would be helpful to ascertain whether or not the mono- and di-derivatives with at least one free phenolic group possess AO properties. A careful analysis of metabolic products from oxidation should be performed with the aim of detecting the proposed quinone. Authentic material would be synthesized for comparison. Also, it could be illuminating to oxidize I at the carbon between the resorcinol hydroxyl groups and determine the structure in relation to the hypothetical quinone. Computational studies should cast light on the structure of “3” (Fig. 3).

Other Aspects

Related articles are available, including ones dealing with antioxidants.262-271

Acknowledgements

Editorial assistance by Thelma Chavez is acknowledged.

References

1. Udenuge CC, Ramprath VR, Aluko RE, Jones PJ. Potential of resveratrol in anti-inflammation therapy. Nutr Rev 2008; 66:445-54.
2. Kovacic P, Becvar LE. Mode of action of anti-infective agents: emphasis on oxidative stress and electron transfer. Curr Pharm Des 2000; 6:143-67.
3. Kovacic P, Osuna JA. Mechanisms of anticancer agents: emphasis on oxidative stress and electron transfer. Curr Pharm Des 2000; 6:277-309.
4. Kovacic P, Jacintho JD. Mechanism of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem 2001; 8:773-96.
5. Kovacic P, Jacintho JD. Reproductive toxicity: pervasive theme of oxidative stress and electron transfer. Curr Med Chem 2001; 8:863-92.
6. Kovacic P, Sacman A, Wiu-Weis M. Nephrotoxins: oxidative stress and protection by antioxidants. J Recept Signal Transfer 2008; 28:323-46.
7. Hallwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford University Press, New York 1999; 1-936.
8. Kovacic P, Somanathan R. Oxidation of resveratrol catalystized by soybean lipoxygenase. J Agric Food Chem 2003; 51:1653-7.
25. Losa GA. Resveratrol modulates apoptosis and oxidation in human blood mononuclear cells. Eur J Clin Invest 2003; 33:818-23.
26. Olas B, Wachowicz B, Nowak P, Stochmal A, Oleksz W, Glowacki R, et al. Comparative studies of the anti-oxidant effects of naturally occurring resveratrol analogue trans-3'-3',5'-tetradecahydro-4'-methoxyisobenzene and resveratrol against oxidation and nitrification of biomolecules in blood platelets. Cell Biol Toxicol 2007; 24:331-40.
27. Olas B, Wachowicz B, Majertek I, Blasiak J. Resveratrol may reduce oxidative stress induced by platinum compounds in human plasma, blood platelets and lymphocytes. Anticancer Drugs 2005; 16:659-65.
28. Hung L-M, Su M-J, Chu W-K, Chiao RC-W, Chan RW-F, Chen RJ-K. The effective protector of resveratrol on ischemia-reperfusion injuries of rat heart in correlate with antioxidant efficacy. Brit J Pharmacol 2002; 135:1627-33.
29. Frémont L, Belguendouz L, Delpal S. Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids. Life Sci 1999; 64:2531-41.
30. Frankel EN, Waterhouse AL, Kinless JE. Inhibition of human LDL by resveratrol. Cancer 1993; 34:1103-8.
31. Dakibaki M, John T, Seifarth C, Mobasher A. Resveratrol inhibited IL-1 beta-induced stimulation of VCAM-1 expression in human arterial intima. Ann NY Acad Sci 2007; 1109:554-63.
32. Rubiolo JA, Minihoeve G, Vega FV. Resveratrol protects primarily rat hepatocytes against oxidative stress damage: activation of the NQO2 transcription factor and augmented activities of antioxidant enzymes. Eur J Pharmacol 2008; 591:66-72.
33. Robb EL, Winkelmolen L, Visanji N, Brodtjie C, Stuart JA. Dietary resveratrol administration increases MnSOD expression and activity in mouse brain. Brain Res Biochem 2006; 8:372-254a.
34. Kaind U, Eyberg I, Rohr-Udilov N, Heinze C, Marian B. The dietary antioxidants resveratrol and quercetin protect cells from exogenous pro-oxidative damage. Food Chem Toxicol 2008; 46:1320-6.
35. Goh SSC, Woodman OL, Pepe S, Cao AH, Qin C, Ritchie RH. The red wine antioxidant resveratrol prevents cardiomyocyte injury following ischemia-reperfusion via multiple sites and mechanisms. Antioxid Redox Signal 2007; 9:1011-13.
36. Stojaard S, Spintz H, Biree O. Efficiency and mechan-ism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Arch Biochem Biophys 2001; 391:79-89.
37. Sreweck LM, Lee SH, Blair IA, Penning TM. Vnufinnorm formation by COX-1; evidence for radical intermediates during co-oxidation of resveratrol. J Nat Biochem Biophys 2001; 391:79-89.
38. Kundu JK, Sury YJ. Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett 2006; 269:243-61.
39. Venkatase B, Ghosh-Chaudhury N, Das F, Mahamudarituna L, Kamar A, Kasinath BS, et al. Resveratrol inhibits TNF-alpha-induced apoptosis in human colon carcinoma HCT116 cells. Carcinogenesis 2007; 28:2349-62.
40. Harikumar KB, Aggarwal BB. Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell Cycle 2008; 7:1020-35.
41. Cecchinato V, Chiaramonte R, Nizzardo M, Cristofaro B, Basile A, Sherber GV, et al. Resveratrol-induced apoptosis in human T-cell acute lymphoblastic leukaemia MOLT-4 cells. Biochem Pharmacol 2007; 74:1658-74.
42. Filomeni G, Graziani L, Rottoli G. Trans-Resveratrol induces apoptosis in human breast cancer cells MCF-7 by the activation of MAP kinases pathways. Genes Nutr 2007; 2:295-305.
43. Delmas D, Rebé C, Lacour S, Filomeno R, Athias A, Gambert P, et al. Resveratrol-induced apoptosis is associated with Fas redistribution in the Rab5 and the formation of a death-inducing signal complex in colon cancer cells. J Biol Chem 2003; 278:41482-90.
44. Scarlotti F, Sála G, Somenzini G, Signorelli P, Sacchi N, Gliudoni R. Resveratrol induces growth inhibition and apoptosis in A549 human non small cell lung cancer cells. Neoplasma 2007; 23:12399-41.
45. Bhardwaj A, Sethi G, Vardhan-raj S, Bueso-Ramos C, Furlan J, Waxman D, et al. Resveratrol inhibits Src and Atat3 kinases and p38 kinase. Cancer Res 2001; 61:1604-10.
46. Zhou H, Hei TK. Resveratrol sensitizes melanomas containing activated Stat3 protein. Mol Cancer Ther 2006; 5:621-9.
47. Sudha D, Debsit K-M. Resveratrol-mediated sensitiza-tion to TRAIL-induced apoptosis depends on death receptor and mitochondrial signaling. Eur J Cancer 2005; 41:786-98.
48. Li Y, Liu J, Liu X, Xing K, Wang Y, Li F, et al. Resveratrol-induced cell inhibition of growth and apoptosis in MCF7 human breast cancer cells is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res 2001; 61:1604-10.
49. Kotha A, Sekhram M, Citelini L, Siddique K, Khaled A, Zervos AS, et al. Resveratrol inhibits Src and Atat3 kinases and p38 kinase. Cancer Res 2001; 61:1604-10.
50. Bhardhaw A, Sethi G, Vardhan-raj S, Bueso-Ramos C, Furlan J, Waxman D, et al. Resveratrol inhibits Src and Atat3 kinases and p38 kinase. Cancer Res 2001; 61:1604-10.
51. Lin H-Y, Tang H-Y, Keating T, Wu Y-H, Shih A, Watkins M, et al. Downregulation of c-Myc expression and signal-ling in resveratrol-differentiated medulloblastoma cells. J Neurooncol 2003; 67:111-115.
52. Cecchinato V, Chiaramonte R, Nizzardo M, Cristofaro B, Basile A, Sherber GV, et al. Resveratrol-induced apoptosis in human T-cell acute lymphoblastic leukaemia MOLT-4 cells. Biochem Pharmacol 2007; 74:1658-74.
53. Kundu JK, Sury YJ. Molecular basis of chemopreven-tion by resveratrol. NKB and AP-1 as potential targets. Mutat Res 2004; 555:65-80.
54. Hei EH, Silder YDC, Dirsch VM. Chronic treat-ment with resveratrol induces redox stress and arista telangectasia-mutated (ATM)-dependent senescence in p53-positive cancer cells. J Biol Chem 2007; 282:2675-86.
55. Yu Y-H, Pan C, Zhao S, Wang Z, Zhang H, Wu W. Resveratrol inhibits tumor necrosis factor-α-induced apoptosis in human leukemia MOLT-4 cells. Biochem Pharmacol 2007; 73:1339-41.
56. Roccaro LM, Leno X, Saccio A, Moruori A-S, Harjithassi E, Jia X, et al. Resveratrol exerts antiproliferative activity and induces apoptosis in Waldenstrom’s macroglobul-linemia. Clin Cancer Res 2008; 14:1849-58.
57. Saiko P, Szakmany A, Jaeger W, Szekeles T. Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res 2008; 658:68-94.
58. Tyagi A, Singh RP, Agarwal C, Sirowardane S, Selafani RA, Agarwal R. Resveratrol causes CD2-151/135 phospho-rylation via ATM/ATR-Chk1/2-Cdc25C carcin-oma ovar-3 cells. Carcinogenesis 2005; 26:1798-87.
59. Aziz NG, Krishnamoorthy L, Harris M, Cubano LA, Cammer M, Dharwardare SF. Estrogen and resveratrol regulate Rac and Cdc42 signaling to the actin cytoskeleton of metastatic breast cancer cells. Neoplasia 2008; 10:736-44.
60. Frojdö S, Cozzone D, Vidal P, Hoila L. Resveratrol is a class IIA phosphoinositol 3-kinase inhibitor. Biochem J 2007; 406:511-8.
61. Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenole-s. Biochem Pharmacol 2006; 72:1349-52.
83. Csiszar A, Smith K, Labinskyy N, Orosz Z, Rivera II-induced Akt/protein kinase B and p70S6 kinase signaling, but does not involve NF-E2-related factor 2 in PC12 cells. Biochem Pharmacol 2002; 65:339-46.

98. Hwang J-T, Kwon DY, Park OJ, Kim MS. Resveratrol activates heme oxygenase-1 expression via activation of coronary arterial endothelial cells. Mol Pharmacol 2006; 70:112-9.

59. Kode A, Rajendrasozhan S, Caito S, Yang S-R, Megson A. Resveratrol attenuates TNF-a-induced fractalkine expression in endothelial cells. J Cellular Physiol 2008; 214:478-88.

60. Kovacic P, Pozos RS. Cell signaling (mechanism and implications). Birth Defects Res 2007; 81:51-64.

22. Kovacic P. Unifying electrostatic mechanism for metalloestrogens with estrogen receptors: role of CREB-dependent Bcl-2 signaling via adenosine A1 receptor activation. Am J Physiol Heart Circ Physiol 2005; 288:328-35.

18. Kovacic P. Protein electron transfer (mechanism and implications). Cell Signaling, Chapman and Hall, New York 1997; 1-475.

20. Kovacic P. Oxidative stress and signal transduction. In: Handbook of Cell Signaling. Bradshaw RA, Dennis EA, eds., Academic Press, Boston 2004; 78:293-307.

19. Kovacic P. Potent activators of SIRT1: effects on aging and age-related diseases. Curr Med Chem 2006; 13:989-96.

28. Kozuki Y, Miura Y, Yagasaki K. Resveratrol suppresses 12-O-tetradecanoylphorbol-13-acetate-induced oxidative stress in human articular chondrocytes. Ann NY Acad Sci 2007; 1095:554-63.

21. Kozuki Y, Leong M, Cho E, Farrell J, Chen HC, Tian J, Zhang D. Repressive effects of resveratrol on androgen receptor transcriptional activity. PLOS One 2009; 4:7998.

26. Kovacic P, Hall ME. Bioelectrochemistry, reactive oxygen species, receptor and cell signaling: How interrelated? J Recept Signal Transduct 2010; 30:1-9.

27. Kovacic P, Mosrri BJ. Resveratrol in prevention and treatment of common conditions of aging. Clin Interv Aging 2008; 3:331-9.

24. Kovacic P, Pozos RS, Draskovich CD, Pozos VS. Unifying electrostatic mechanism for phosphates and sulfates in cell signaling. J Recept Signal Transduct 2007; 27:411-32.

25. Kovacic P. Unifying electrostatic mechanism for metal cations in receptors and cell signaling. J Recept Signal Transduct 2008; 28:153-62.

23. Kovacic P, Pozos RS, Draskovich CD, Pozos VS. Unifying electrostatic mechanism for potassium and sulfates in cell signaling. J Recept Signal Transduct 2007; 27:433-43.

29. Kozuki Y, Leong M, Cho E, Farrell J, Chen HC, Tian J, Zhang D. Repressive effects of resveratrol on androgen receptor transcriptional activity. PLOS One 2009; 4:7998.

24. Kovacic P. Unifying electrostatic mechanism for metal cations in receptors and cell signaling. J Recept Signal Transduct 2008; 28:153-62.

30. Kozuki Y, Leong M, Cho E, Farrell J, Chen HC, Tian J, Zhang D. Repressive effects of resveratrol on androgen receptor transcriptional activity. PLOS One 2009; 4:7998.
Stewart JR, O'Brian CA. Resveratrol antagonized inhibition. Invest New Drugs 2006; 24:2783-840.

Lin HY, Sun M, Tang HY, Simone TM, Wu YH, Grandis JR, et al. Resveratrol causes COX-2-and p38dependent apoptosis in head and neck squamous cell cancers. J Cell Biochem 2008; 104:231-42.

Hope C, Planutis K, Planutiene M, Moyer MP, Johal B, Faustino N, et al. Resveratrol inhibits human prostate cancer cells in vitro and in vivo. Carcinogenesis 2002; 7:229-305.

Tang HY, Shih A, Cao J, Davis FB, Lin HY. Resveratrol-induced cytochrome-c-2-facilitates p38-dependent apoptosis in human breast cancer cells. Mol Cancer Ther 2006; 5:2034-42.

Mohan J, Gandhi AA, Bhavya AV, Rashmi R, Thomas PR, Cusano J-P, et al. Imatinib mesylate-resistant human prostate cancer cells treated with resveratrol. J Biol Chem 2006; 282:809-16.

Kuwajewala N, Cifuentes E, Gautham S, Menon M, Barakat EF, Reddy GP. Resveratrol induces prostate cancer cell entry into S phase and inhibits DNA synthesis. Cancer Res 2002; 62:4688-92.

van Ginkel PR, Darjatmoko SR, Sareen D, Subramanian L, Bhattarcharya S, Lindstrom MJ, et al. Resveratrol inhibits renal melanoma tumor growth via early mitochrondial dysfunction. Invest Ophthalmol Vis Sci 2008; 49:1299-306.

Woltz F, Alovu B, Claussnitzer A, Stein J. Downregulation of the cyclin D1/Cdk4 complex occurs during resveratrol-induced cellular cycle arrest in colon cancer cell lines. J Nutr 2001; 131:2197-203.

Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nature Rev Drug Discov 2006; 5:493-506.

Chao H-H, Juan S-H, Liu J-C, Yang HY, Yang E, Cheng T-H, et al. Resveratrol inhibits angiotensin II-induced endothelin-1 gene expression and subse-quent proliferation in rat aortic smooth muscle cells. Eur J Pharmacol 2005; 515:1-9.

Labinsky N, Cézar A, Veres G, Stef G, Pacher P, Oroszi G, et al. Vascular dysfunction in aging: potential effects of resveratrol, an anti-inflammatory polypheno-l. Curr Med Chem 2006; 13:986-99.

Hunig L-M, Chen J-K, Huang S-S, Lee R-S, Su M-J. Cardioprotective effect of resveratrol, a natural anti-oxidant derived from grapes. Cardiovascular Res 2000; 47:59-59.

Sano M, Ray PS, Maulik G, Maulik N, Engelmann RM, Berraii AE, et al. Myocardial protection with red wine extract. J Cardiovascular Pharmacol 2000; 35:263-8.

Shigematsu S, Ishida S, Hara M, Takahashi N, Yoshimatsu H, Sakata T, et al. Resveratrol, a red wine constituent polyphenol, prevents supersoxide-depen-dent inflammatory response induced by ischemia/reperfusion, platelet-activating factor, or oxidants. Free Radic Biol Med 2003; 34:810-7.

Dolens D, Jannin L, Lartraff N. Resveratrol: preventing properties against vascular alterations and aging. Mol Nutr Food Res 2005; 49:377-95.

Fiorenzi M, Napoli E, Quinlini L, Palatini P. Oral administration of trans-resveratrol to guinea pigs increases cardiac DT-diaphorase and catalase activities, and protects isolated areas from mitochrondial toxicity. Life Sci 2003; 72:7274-51.

Rottonato S, Rajat G, Manarin S, Celardo A, Rotilio D, de Gaetano G, et al. Effect of trans-resveratrol, a natural polyphenolic compound, on human polymor-phonuclear leukocyte function. Brit J Pharmacol 1998; 123:1691-9.

Tedesco I, Russo M, Russo P, Iacomin G, Russo GL, Carturato A, et al. Antioxidant effect of red wine polyphenols on red blood cells. J Nutr Biochem 2000; 11:114-9.

Ungvari Z, Orosz Z, Rivera A, Labinskyy N, Xiangmin Z, Olson S, et al. Resveratrol increases vascular oxida-tive stress resistance. Am J Physiol Heart Circ Physiol 2007; 292:2417-24.

Li Y, Cao Z, Zhu H. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine poly-phenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress. Pharmacol Res 2006; 53:6-15.

Olas B, Wachowicz B, Resveratrol and vitamin C as antioxidants in blood plates. Thrombosis Res 2002; 106:143-4.

Olas B, Wachowicz B, Sahuk-justaczek Z, Zielinski T, Kac W, Buczynska A. Antioxidant activity of resvera-trol in endotoxin-stimulated blood plates. Cell Bio-logic Toxicol 2001; 17:117-25.
205. Kumar A, Kaundal RK, Iyer S, Sharma SS. Effects of resveratrol on antioxidant enzyme activities in the brain of healthy rat. Neurochem Res 2007; 32:991-7.

204. Ates O, Cayli SR, Yucel N, Altinoz E, Kocak A, Durak B, Wachowicz B. Resveratrol, a phenolic antioxidant with effects on blood platelet function. Platelets 2015; 16:251-60.

203. Zhong H, Kim Y-S, Koehler RC, Doi S. Potential mechanism by which resveratrol, a red wine constituent, protects neurons. Ann NY Acad Sci 2003; 993:276-86.

202. Bastianetto S, Quirion R. Natural extracts as possible protective agents of brain aging. Neurobiol Aging 2002; 23:891-7.

201. Mokni M, Elkhouli S, Limam F, Amri M, Assouani E. Effect of resveratrol on antioxidant enzyme activities in the brain of healthy rat. Neurochem Res 2007; 32:981-7.

200. Anekonda TS. Resveratrol—a boon for treating neurodegenerative diseases. Cell Mol Life Sci 2009; 6:70-81.

199. Rocha-González HI, Ambriz-Tututi M, Granados-Soto V. Resveratrol: a natural compound with pharmacological potential in neurodegenerative diseases. CNS Therapeutici 2008; 14:234-47.

198. Sun AY, Simonyi A, Sun GY. The “French paradox” and beyond: neuroprotective effects of polyphenols. Free Radic Biol Med 2002; 32:314-18.

197. Jang J-H, Surh Y-J. Protective effect of resveratrol on β-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med 2003; 34:1100-10.

196. Rossi L, Mazzitelli S, Arcello M, Capo CR, Rotillo G. Protective effect of resveratrol on free radical generation in blood platelets. Acta Biochem Pol 1999; 46:961-6.

195. Fulda S, Debatin KM. Resveratrol modulation of signal transduction in apoptosis and cell survival: a comparative study in mice. Phytother Res 2009; 23:493-400.

194. Pelegri C, Vilaplana J, et al. Resveratrol and neurodegenerative disorders: mechanisms underlying the neuroprotective effects of polyphenols: comparative studies in human and rodent kidney. A review. Comp Biochem Physiol Part C 2006; 34:810-7.

193. Donnelly LE, Newton R, Kennedy GE, Fenwick PS, AC, Novelli EL. Resveratrol toxicity: effects on risk factor and platelet function. J Clin Pathol 2007; 60:1236-44.

192. Wu CT, Yu HP, Chung CY, Lau YT, Liao SK. Regulation of inflammation signaling by resveratrol in lung epithelial cells: molecular mechanisms and clinical implications. Mol Nutr Food Res 2009; 4:495-30.

191. Zhuang H, Kim Y-S, Koehler RC, Doré S. Potential antioxidant effects of resveratrol in inflammatory arthritis. Inflammation 2007; 30:1-6.

190. Olas B, Wachowicz B. Resveratrol, a natural compound, inhibits cell proliferation and prevents oxidative DNA damage. Mutat Res 2001; 496:171-80.

189. Fulda S, Debatin KM. Resveratrol modulation of signal transduction in apoptosis and cell survival: a mini-review. Cancer Lett 2006; 30:217-23.

188. Olas B, Zbiolkowska HM, Wachowicz B, Krajewski T, Buczyńska A, Magnuszewski A. Inhibitory effect of resveratrol on platelet aggregation in blood platelets. Acta Biochem Pol 1999; 46:961-6.
243. Eybl V, Kutyavin D, Koutensky J. Comparative study of natural antioxidants-curcumin, resveratrol and melatonin in cadmium-induced oxidative damage in mice. Toxicology 2006; 225:150-6.

244. Afzal F, Adhami VM, Ahmad N. Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice. Toxicol Appl Pharmacol 2003; 186:28-37.

245. Martín AR, Villegas I, de la Casa C, de la Lastra CA. Resveratrol, a polyphenol found in grapes, supresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats. Biochem Pharmacol 2004; 67:1399-410.

246. Lu X, Ji C, Xu H, Li X, Ding H, Ye M, et al. Resveratrol-loaded polymeric micelles protect cells from Aβ-induced oxidative stress. Int J Pharmaceut 2009; 375:85-96.

247. Clarke JO, Mullin GE. A review of complemetary and alternative approaches to immunomodulation. Nutr Clin Pract 2008; 23:49-62.

248. Miura T, Muraoka S, Fujimoto Y. Inactivation of cre-ative kinase induced by stilbene derivatives. Pharmacol Toxicol 2002; 90:66-72.

249. Galai G, Sabzevari O, Wilton JX, O’Brien PJ. Prooxidant activity and cellular effects of the phenoxy radicals of dietary flavonoids and other polyphenolics. Toxicology 2002; 177:91-104.

250. Arthar M, Back JH, Kopelovich L, Bickers DR, Kim AL. Multiple molecular targets of resveratrol: anti-carcinogenic mechanism. Arch Biochem Biophys 2009; 486:95-1002.

251. Ahmad KA, Clement MV, Pervaz S. Pro-oxidant activity of low doses of resveratrol inhibits hydrogen peroxide-induced apoptosis. Ann NY Acad Sci 2003; 1010:365-73.

252. Gadacha W, ben-Attia M, Bonfoint-Rousselet D, Aouani E, Ghanem-Boughanim N, Toutou Y. Resveratrol opposite effects on rat tissue lipid peroxidation: pro-oxidant during daytime and antioxidant at night. Free Radic Res 2009; 14:154-8.

253. Niufar NN, Haycock FL, Wesemann JL, MacStry JA, Heakey VL, Kovacic P. Reduction potentials of conjugated aliphatic ketones, oximes and imines. Rev Soc Quim Mex (J Mex Chem Soc) 2002; 46:307-12.

254. Ames JR, Kovacic P. A mechanism for the toxicity of polychlorinated biphenyls (PCBs), dioxins (TCDD) and dibenzoarfurans. J Biopharmaceut Sci 1991; 2:329-38.

255. Zheng LF, Wei QY, Cai YJ, Fang JG, Zhou B, Yang L, et al. DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu(II) ions: mechanism and structure-activity relationship. Free Radic Biol Med 2006; 41:1807-16.

256. Azami AS, Bhat SH, Hanif S, Hadi SM. Plant poly-phenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. FEBS Lett 2006; 580:533-8.

257. Ahmed A, Syed FA, Singh S, Hadi SM. Prooxidant activity of resveratrol in the presence of copper ions: mutagenicity in plasmid DNA. Toxicol Lett 2005; 159:1-12.

258. Azami AS, Bhat SH, Hanif S, Hadi SM. Resveratrol- Cu(II) induced DNA breakage in human peripheral lymphocytes; implications for anticancer properties. FEBS Lett 2005; 579:3131-5.

259. Hadi SM, Aasad SF, Singh S, Ahmed A. Putative mecha- nism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life 2000; 50:167-71.

260. de la Lastra CA, Villegas I. Resveratrol as an antioxidant agent: mechanisms and clinical implications. Biochem Soc Trans 2007; 35:1156-60.

261. Rüweler M, Gülden M, Maser E, Murias M, Seibert N, Spasojevic I, Mikovic Z, Mandic, Cerovic C. DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu(II) ions: mechanism and structure-activity relationship. Free Radic Biol Med 2006; 41:1807-16.

262. Pristov JB, Spasojevic I, Mikovic Z, Mandic, Cerovic C. DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu(II) ions: mechanism and structure-activity relationship. Free Radic Biol Med 2006; 41:1807-16.

263. Pristov JB, Spasojevic I, Mikovic Z, Mandic, Cerovic C. DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu(II) ions: mechanism and structure-activity relationship. Free Radic Biol Med 2006; 41:1807-16.

264. Fischer-Wellman K, Bell HK, Bloomer RJ. Oxidative stress and antioxidant defense mechanisms linked to exercise during cardiopulmonary and metabolic disor- ders. Oxid Med Cell Longev 2009; 2:43-51.

265. Gupta A, Bhatt MLB, Mural MK. Lipid peroxidation and antioxidant status in head and neck squamous cell carcinoma patients. Oxid Med Cell Longev 2009; 2:66-72.

266. Bharti VK, Srivastava RS. Pinelline proteins upregulate specific antioxidant defense systems in the brain. Oxid Med Cell Longev 2009; 2:8-89.

267. Ossel NY, Cansdelen A, Alken N. Implications for degenerative disorders: antioxidant activity, total phenols, flavonoids, ascorbic acid, β-carotene, α-tocopherol in Planta. Oxid Med Cell Longev 2009; 2:98-9.

268. Gomes P, Simião S, Silva E, Pinho V, Amaral JS, Alfonso J, et al. Aging increases oxidative stress and renal expression of antioxidant enzymes that are associ- ated with an increased trend in systolic blood pressure. Oxid Med Cell Longev 2009; 2:130-7.

269. Kovacic P, Samanathan R, Novel, unifying mechanism for mesocline in the central nervous system: electro-chemistry, catechol redox metabolite, receptor, cell signaling and structure activity relationships. Oxid Med Cell Longev 2009; 2:181-90.

270. Santos IMS, Tomé ADR, Saldanha GB, Ferreira PM, Militão GCC, de Freitas M. Oxidative stress in the hippocampus during experimental seizures can be ameliorated with the antioxidant ascorbic acid. Oxid Med Cell Longev 2009; 2:214-21.

271. Kovacic P, Samanathan R, Zolpidem a clinical hypnotic that affects electronic transfer, alters synaptic activity through potential GABA receptors in the nervous sys- tem without significant free radical generation. Oxid Med Cell Longev 2009; 2:52-7.