Patients with end-stage renal disease (ESRD) have inferior outcomes after hip and knee total joint arthroplasty (TJA), with higher risk for surgical site complications (SSC) and periprosthetic joint infection (PJI).

We conducted a systematic review and meta-analysis regarding outcomes after hip and knee TJA in ESRD patients who have received dialysis or a kidney transplant (KT) using PubMed, MEDLINE, Cochrane Reviews, and Embase in order to: (1) determine the mortality and infection rate of TJA in patients receiving dialysis or KT and (2) to identify risk factors associated with the outcome.

We included 22 studies and 9384 patients (dialysis, \(n = 8921 \), KT, \(n = 463 \)). The overall mortality rate was 14.9% and was slightly higher in KT patients (dialysis vs. KT, 13.8% vs. 15.8%). The overall SSC rate was 3.4%, while dialysis and KT patients each had an incidence of 3.3% and 3.6%, respectively. For PJI, the overall rate was 3.9%, while the incidence for dialysis patients was 4.0% and for KT patients was 3.7%.

Using multi-regression analysis, age, sex, the type of arthroplasty (knee or hip) performed, and the form of renal replacement therapy (dialysis or KT) were not significant risk factors.

In patients on dialysis or who had received a KT, TJA is associated with a slight increase in mortality, SSC, and PJI rates.

Keywords: complication; dialysis; kidney transplant; mortality; periprosthetic joint infection; renal transplant; total hip arthroplasty; total knee arthroplasty

Introduction

End-stage renal disease (ESRD) continues to be a major health problem around the world. Currently, dialysis and kidney transplant (KT) are two ways to manage ESRD. Patients with ESRD have an increased demand for arthroplasty surgery due to several risk factors such as morbid obesity, alcohol abuse, and poorly controlled diabetes. In addition, these patients have been shown to have a higher mortality and morbidity rate following arthroplasty surgeries. The higher risk is most likely multi-factorial, including complex comorbidities, renal osteodystrophy leading to increased bone turnover, and beta 2-microglobulin deposition around the prosthesis. For patients under dialysis, there may be a higher risk of haematogenous spread of bacteria, ultimately leading to prosthetic joint infections (PJI). For patients who received a kidney transplant, there is an increased risk of infection and implant loosening. This increased risk can be attributed to the relative immunocompromised status of KT patients. On the other hand, postoperative complications are also a serious concern for orthopaedic surgeons. In current literature, there are several reports assessing the outcomes of total joint arthroplasty (TJA) in dialysis and KT. However, most of the studies have a relatively small sample size or were conducted prior to 2000. With recent advancements in medical treatment of dialysis patients, most of the studies do not reflect current practice. The most recent meta-analysis was performed by Popat et al, but this study only included patients who underwent THA. In this study, we performed a comprehensive review assessing the outcome of total knee arthroplasty (TKA) and total hip arthroplasty (THA) in patients who are...
currently receiving dialysis or have had a KT. Specifically, we reviewed literature published after the year 2000 to answer the following questions: (1) What is the mortality rate after TJA? (2) What is the rate of surgical site complications (SSC) and PJI? (3) What are the risk factors that predispose to mortality, SSC and PJI?

Methods

Three authors (TFC, SWT, HHM) performed a comprehensive search on databases including PubMed, MEDLINE, Cochrane Reviews, and Embase. All articles were independently screened by three authors (TFC, SWT, HHM) for titles, abstracts, and full texts. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement was used in order to conduct the search. We searched for articles evaluating the postoperative outcomes of THA and TKA in dialysis or KT patients. The following terms were used in variable combination: total hip arthroplasty/replacement, total knee arthroplasty/replacement, dialysis, and renal/kidney transplant. The search strategy is presented in Fig. 1. If there was disagreement amongst the authors, a fourth reviewer (WMC) was consulted. If there was uncertainty regarding a study, the original authors were contacted for additional information.

Methodological quality

The included studies were assessed using the Newcastle–Ottawa quality assessment scale for cohort studies. Two senior orthopaedic surgeons (TFC, SWT) independently reviewed and critiqued each article. The scale was graded from 0 to 9, with 9 being the highest possible score. A study was defined as ‘good’ if the total score was 7–9, as ‘fair’ if the score was 4–6, and a score of 4 or less was considered to be ‘poor’ (Table 2). If there were disagreements, a third author (HHM) was consulted.

Data extraction

Three authors (TFC, SWT, HHM) examined all the identified studies and extracted data using a predetermined form. The main objective was to determine the overall mortality, SSC and PJI rate in patients under dialysis or KT recipients after THA or TKA. We recorded the first author, year of publication, study design, type of renal replacement therapy (dialysis or KT), type of arthroplasty (TKA or THA), case number, age and follow-up duration as shown in Table 1. Patients who received either haemodialysis or
peritoneal dialysis were both categorized under ‘dialysis’. We also recorded the pooled mortality rate, SSC rate and PJI rate as shown in Table 3. SSC is defined as any wound complications such as haematoma, seroma, delayed wound healing, or superficial wound infection which required management such as intravenous antibiotic wound repair or surgical debridement.\(^7\) PJI is generally defined based on the criteria developed by the Musculoskeletal Infection Society (MSIS) workgroup in the different study period.\(^8,9\) Moreover, patients with PJI had a more severe type of infection that involved the bone and joint surface which required extensive debridement and/or resection of the prosthesis. The overall mortality rate includes the 30-day mortality rate, 90-day mortality rate or crude mortality rate as recorded by each study.

Statistical analysis

A meta-analysis of proportions was conducted using the Freeman–Tukey analysis under random-effects model to calculate pooled estimates with a 95% confidence interval. A random-effects model was used for differences among studies such as patient characteristics, type of arthroplasty surgery performed, type of renal replacement therapy, and study methodology. For potential factors that may affect mortality, SSC, and PJI, a standard multi-variable linear regression analysis (\(\beta\)) was performed. All statistical analyses were completed with the Comprehensive Meta-Analysis (CMA) software, version 3 (Biostat, Englewood, NJ, USA). Statistical significance was defined as a \(p\)-value \(< 0.05\).

Results

Articles

After removing duplicate articles, there were 419 articles identified for review. After reviewing the remaining articles, 389 were excluded since they did not meet our inclusion criteria. After exclusion, a total of 22 articles and 9384 patients were included for this meta-analysis (Fig. 1).\(^2–5,10–27\) If possible, the articles were then divided based on the site of arthroplasty surgery (TKA or THA) and the type of renal replacement therapy (dialysis vs. kidney transplant).

Baseline characteristics

A total of 22 articles (\(n = 9384\)) were reviewed for this study. The mean age of patients was 63.4 years and the

Table 1. Characteristics of included studies

Author, year	Study design	Dialysis or KT	TKA/THA	Mean age (years)	Follow-up duration (months)	Outcome measurements
Wang, 2019\(^{10}\)	Retrospective case series	Dialysis	286/232	63.3	3.0	V
Malkani, 2020\(^{21}\)	Retrospective case series	Dialysis	0/301	N/A	60.0	V
Lo, 2019\(^{2}\)	Retrospective case series	Dialysis	39/31	65.9	55.9	V
Labaran, 2019\(^{15}\)	Retrospective case series	Dialysis	930/849	N/A	12.0	V
Browne, 2019\(^{4}\)	Retrospective case series	Dialysis	1062/1144	N/A	12.0	V
Inoue, 2020\(^{31}\)	Retrospective case series	Dialysis	50 TJA	60.9	72.5	V
Yen, 2018\(^{27}\)	Retrospective case series	Dialysis	26/0	66.0	66.0	V
Patterson, 2018\(^{24}\)	Retrospective case series	Dialysis	339/306	N/A	1.0	V
Ottesen, 2018\(^{23}\)	Retrospective case series	Dialysis	250/0	68.0	1.0	V
Erkocak, 2016\(^{15}\)	Retrospective case series	Dialysis	50 TJA	N/A	1.0	V
Ledford, 2014\(^{18}\)	Retrospective case series	KT	12/25	52.4	36.5	V
Chen, 2014\(^{14}\)	Retrospective case series	Dialysis	18/0	75.8	25.0	V
Chang, 2013\(^{13}\)	Retrospective case series	KT	0/74	42.1	122.4	V
Li, 2010\(^{19}\)	Retrospective case series	KT	0/45	44.0	86.4	V
Fukunishi, 2009\(^{16}\)	Retrospective case series	Dialysis	0/23	66.0	7.0	V
Garcia-Ramiro, 2008\(^{17}\)	Retrospective case series	Dialysis	0/12	62.7	46.5	V
Boquet, 2008\(^{12}\)	Retrospective case series	KT	0/11 (including hemiarthroplasty)	51.2	73.9	V
Shrader, 2006\(^{26}\)	Retrospective case series	Dialysis	0/9	67.0	72.0	V
Goffin, 2006\(^{11}\)	Retrospective case series	KT	0/36	46.0	132.0	V
Nagoya, 2005\(^{22}\)	Retrospective case series	Dialysis	0/11	41.8	99.0	V

Notes. Outcome measures: A, description of mortality rate; B, description of surgical site complication; C, description of periprosthetic joint infection. Dialysis, contains patients under hemodialysis and peritoneal dialysis; KT, kidney transplant patient; N/A, not available; THA, total hip arthroplasty; TKA, total knee arthroplasty; TJA, total joint arthroplasty.
Table 2. Study assessment based on quality assessment tool for case series studies

Criteria	Wang et al, 2019¹⁰	Malkani et al, 2020²¹	Lo et al, 2019²	Labaran et al, 2019⁹	Browne et al, 2019⁴	Inoue et al, 2020³	Yen et al, 2018²⁷	Patterson et al, 2018²⁴	Ottesen et al, 2018²³	Erkocak et al, 2016¹⁵
1. Was the study question or objective clearly stated?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
2. Was the study population clearly and fully described, including a case definition?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
3. Were the cases consecutive?	N	N	N	N	N	N	N	N	N	N
4. Were the subjects comparable?	Y	Y	Y	Y	Y	Y	Y	Y	Y	N
5. Was the intervention clearly described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
6. Were the outcome measures clearly defined, valid, reliable and implemented consistently across all study participants?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
7. Was the length of follow-up adequate?	Y	Y	Y	Y	Y	Y	Y	N	N	N
8. Were the statistical methods well-described?	N	Y	Y	Y	Y	Y	Y	Y	Y	Y
9. Were the results well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

Quality of the cohort study (score) 7 8 8 8 8 8 8 7 7 6

Notes. Y, yes; N, no. The maximum possible score on this scale is 9. ‘Good’ was defined as a total score of 7–9; ‘fair’ as a score of 4–6, and ‘poor’ as a score of less than 4.

Criteria

Criteria	Ponnusamy et al. 2015	Ledford et al. 2014	Chen et al. 2014	Chang et al. 2013	Lim et al. 2012	Li et al. 2010	Fukunishi et al. 2009	Garcia-Ramiro et al. 2008	Boquet et al. 2008	Shrader et al. 2006
1. Was the study question or objective clearly stated?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
2. Was the study population clearly and fully described, including a case definition?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
3. Were the cases consecutive?	N	N	N	N	Y	Y	N	N	N	N
4. Were the subjects comparable?	Y	Y	N	Y	Y	Y	Y	Y	Y	Y
5. Was the intervention clearly described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
6. Were the outcome measures clearly defined, valid, reliable and implemented consistently across all study participants?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Table 2. (continued)

Criteria	Ponnusamy et al. 2015	Ledford et al. 2014	Chen et al. 2014	Chang et al. 2013	Lim et al. 2010	Li et al. 2009	Fukunishi et al. 2008	Garcia-Ramiro et al. 2008	Boquet et al. 2008	Shrader et al. 2006
7. Was the length of follow-up adequate?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
8. Were the statistical methods well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
9. Were the results well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Quality of the cohort study (score)	7	8	7	8	9	8	8	8	8	8

Y= Yes, N= No; The maximum possible score on this scale is 9. “Good” was defined as a total score of 7-9; “fair” as a score 4-6, and “poor” as a score of less than 4.

Table 2. (continued)

Criteria	Goffin et al. 2006	Nagoya et al. 2005
1. Was the study question or objective clearly stated?	Y	Y
2. Was the study population clearly and fully described, including a case definition?	Y	Y
3. Were the cases consecutive?	Y	Y
4. Were the subjects comparable?	Y	Y
5. Was the intervention clearly described?	Y	Y
6. Were the outcome measures clearly defined, valid, reliable and implemented consistently across all study participants?	Y	Y
7. Was the length of follow-up adequate?	Y	Y
8. Were the statistical methods well-described?	Y	Y
9. Were the results well-described?	Y	Y
Quality of the cohort study (score)	9	9

Y= Yes, N= No; The maximum possible score on this scale is 9. “Good” was defined as a total score of 7-9; “fair” as a score 4-6, and “poor” as a score of less than 4.

Mean follow-up duration was 20.4 months (range: 1 to 216 months). Of the 9384 patients, 8921 patients were under dialysis, while 463 patients had received a KT.

Overall mortality rate

There were 16 studies \((N = 5353)\) that recorded the mortality rate after TJA. The overall pooled mortality rate in dialysis-dependent and KT patients who received TJA was 14.9% (95% CI: 0.092–0.231). For patients who are under dialysis, the pooled mortality rate was 13.8% (95% CI: 0.067–0.264). On the other hand, patients who had received a KT had a mortality rate of 15.8% (95% CI: 0.083 – 0.281) (Fig. 2).

Surgical site complication rate (SSC)

There were 17 studies \((N = 4381)\) that recorded the SSC rate after TJA. The overall pooled SSC rate in dialysis-dependent and KT patients who received TJA was 3.4% (95% CI: 0.023–0.050). For patients who are under dialysis, the pooled SSC rate was 3.3% (95% CI: 0.021–0.052).
Meanwhile, patients who had received a KT had an SSC rate of 3.6% (95% CI: 0.017–0.074) (Fig. 3).

Periprosthetic joint infection rate (PJI)
There were 20 studies (N = 8825) that recorded the PJI rate after TJA. The overall pooled PJI rate in dialysis-dependent and KT patients who received TJA was 3.9% (CI: 0.019–0.080). For patients who are under dialysis, the pooled PJI rate was 4.0% (CI: 0.016–0.098). For patients who had received a KT, the pooled PJI rate was 3.7% (CI: 0.010–0.122) (Fig. 4).

Risk factors that predispose to mortality, SSC and PJI
The regression analysis revealed age, gender and the type of arthroplasty received did not significantly increase the risk for mortality, SSC and PJI. Notably, type of renal replacement therapy (dialysis or KT) was not a risk factor for mortality, SSC and PJI (Table 4).

Discussion
In this study, we present a comprehensive review of total joint arthroplasty (TJA) in patients with ESRD who are currently under dialysis treatment or have received a KT. Several risk factors affect the outcome of TJA, and ESRD has been associated with increased complications following TJA. In comparison with patients who have normal renal function, ESRD has been shown to increase the risk of mortality, readmission, surgical site infection, and perioperative transfusion. In patients under dialysis or who have received a KT, other complications such as haematogenous spreading of bacteria, catheter-related infections and opportunistic infections may occur.

Table 3. Pooled mortality, periprosthetic joint infection and surgical site complication rate

	Rate	95% Confidence interval
Mortality	0.149	0.092–0.231
Dialysis	0.138	0.067–0.264
Kidney transplant	0.158	0.083–0.281
Surgical site complication	0.034	0.023–0.050
Dialysis	0.033	0.021–0.052
TKA	0.020	0.015–0.027
THA	0.035	0.027–0.045
Kidney transplant	0.036	0.017–0.074
TKA	0.063	0.009–0.335
THA	0.037	0.016–0.083
Periprosthetic joint infection	0.039	0.019–0.080
Dialysis	0.040	0.016–0.098
TKA	0.034	0.009–0.124
THA	0.041	0.017–0.094
Kidney transplant	0.037	0.010–0.122
TKA	0.083	0.012–0.413
THA	0.031	0.005–0.160

Notes. THA, total hip arthroplasty; TKA, total knee arthroplasty.

Periprosthetic joint infection rate (PJI)
There were 20 studies (N = 8825) that recorded the PJI rate after TJA. The overall pooled PJI rate in dialysis-dependent and KT patients who received TJA was 3.9% (CI: 0.019–0.080). For patients who are under dialysis, the pooled PJI rate was 4.0% (CI: 0.016–0.098). For patients who had received a KT, the pooled PJI rate was 3.7% (CI: 0.010–0.122) (Fig. 4).

Risk factors that predispose to mortality, SSC and PJI
The regression analysis revealed age, gender and the type of arthroplasty received did not significantly increase the risk for mortality, SSC and PJI. Notably, type of renal replacement therapy (dialysis or KT) was not a risk factor for mortality, SSC and PJI (Table 4).

Discussion
In this study, we present a comprehensive review of total joint arthroplasty (TJA) in patients with ESRD who are currently under dialysis treatment or have received a KT. Several risk factors affect the outcome of TJA, and ESRD has been associated with increased complications following TJA. In comparison with patients who have normal renal function, ESRD has been shown to increase the risk of mortality, readmission, surgical site infection, and perioperative transfusion. In patients under dialysis or who have received a KT, other complications such as haematogenous spreading of bacteria, catheter-related infections and opportunistic infections may occur.

Table 3. Pooled mortality, periprosthetic joint infection and surgical site complication rate

	Rate	95% Confidence interval
Mortality	0.149	0.092–0.231
Dialysis	0.138	0.067–0.264
Kidney transplant	0.158	0.083–0.281
Surgical site complication	0.034	0.023–0.050
Dialysis	0.033	0.021–0.052
TKA	0.020	0.015–0.027
THA	0.035	0.027–0.045
Kidney transplant	0.036	0.017–0.074
TKA	0.063	0.009–0.335
THA	0.037	0.016–0.083
Periprosthetic joint infection	0.039	0.019–0.080
Dialysis	0.040	0.016–0.098
TKA	0.034	0.009–0.124
THA	0.041	0.017–0.094
Kidney transplant	0.037	0.010–0.122
TKA	0.083	0.012–0.413
THA	0.031	0.005–0.160

Notes. THA, total hip arthroplasty; TKA, total knee arthroplasty.

Fig. 2 Forest plot of the pooled mortality rate among included studies.
Note. KT, kidney transplant.
Event rate and 95% CI

Group by	Study name	Event rate	Lower limit	Upper limit	Relative weight
Dialysis/KT					
Dialysis	2019 Lo	0.007	0.000	0.103	2.57
Dialysis	2020 Inoue	0.060	0.019	0.170	9.77
Dialysis	2018 Yen	0.038	0.005	0.228	4.53
Dialysis	2018 Patterson	0.014	0.007	0.027	16.52
Dialysis	2018 Ottesen	0.020	0.008	0.047	13.10
Dialysis	2016 Erkocak	0.120	0.055	0.242	13.55
Dialysis	2015 Ponnusamy	0.028	0.022	0.034	23.11
Dialysis	2014 Chen	0.026	0.002	0.310	2.53
Dialysis	2010 Li	0.021	0.001	0.259	2.54
Dialysis	2009 Fukunishi	0.025	0.002	0.298	2.53
Dialysis	2008 Garcia-Ramiro	0.038	0.002	0.403	2.50
Dialysis	2006 Shrader	0.111	0.015	0.500	4.25
Dialysis	2005 Nagoya	0.042	0.003	0.425	2.49
Dialysis	20020	0.033	0.021	0.052	
KT	2020 Inoue	0.009	0.001	0.123	7.40
KT	2014 Ledford	0.019	0.001	0.244	7.32
KT	2013 Chang	0.007	0.000	0.098	7.41
KT	2012 Lim	0.044	0.011	0.161	28.53
KT	2008 Garcia-Ramiro	0.042	0.003	0.425	7.15
KT	2006 Shrader	0.111	0.014	0.197	28.19
KT	2006 Goffin	0.036	0.017	0.074	
Overall		0.034	0.023	0.050	

Fig. 3 Forest plot of the pooled surgical site complication rate among included studies.

Note. KT, kidney transplant.

Event rate and 95% CI

Group by	Study name	Event rate	Lower limit	Upper limit	Relative weight
Dialysis/KT					
Dialysis	2020 Malkani	0.070	0.046	0.105	7.67
Dialysis	2019 Lo	0.043	0.014	0.125	6.99
Dialysis	2019 Labaran	0.292	0.271	0.313	7.79
Dialysis	2020 Inoue	0.180	0.096	0.311	7.47
Dialysis	2019 Browne	0.038	0.030	0.046	7.77
Dialysis	2018 Yen	0.019	0.001	0.236	4.65
Dialysis	2018 Patterson	0.002	0.000	0.011	5.85
Dialysis	2018 Ottesen	0.004	0.001	0.028	5.85
Dialysis	2016 Erkocak	0.080	0.030	0.195	7.16
Dialysis	2015 Ponnusamy	0.011	0.007	0.015	7.72
Dialysis	2014 Chen	0.026	0.002	0.310	4.64
Dialysis	2010 Li	0.021	0.001	0.259	4.65
Dialysis	2009 Fukunishi	0.053	0.007	0.294	5.78
Dialysis	2008 Garcia-Ramiro	0.083	0.012	0.413	5.73
Dialysis	2006 Shrader	0.111	0.015	0.500	5.68
Dialysis	2005 Nagoya	0.042	0.003	0.425	4.61
Dialysis	20020	0.040	0.016	0.098	
KT	2020 Malkani	0.011	0.001	0.072	12.37
KT	2020 Inoue	0.035	0.009	0.130	14.40
KT	2014 Ledford	0.083	0.012	0.413	12.10
KT	2013 Chang	0.007	0.000	0.098	9.62
KT	2012 Lim	0.011	0.001	0.151	9.60
KT	2008 Garcia-Ramiro	0.455	0.203	0.732	15.17
KT	2006 Shrader	0.028	0.004	0.173	12.31
KT	2006 Goffin	0.022	0.005	0.082	14.44
KT	2006 Goffin	0.037	0.010	0.122	
Overall		0.039	0.019	0.080	

Fig. 4 Forest plot of the pooled periprosthetic joint infection rate among included studies.

Note. KT, kidney transplant.
In a comprehensive review performed by Browne et al., the authors noted that dialysis-dependent patients have an increased risk for infection and bacteremia following THA and TKA. In another review, KT patients were more likely to have postoperative infections due to their relatively immune-deficient status. However, other studies had less promising results and the appropriate management is still inconclusive. In recent years, some authors have recommended that patients with ESRD who are currently under haemodialysis (HD) should wait for kidney transplantation before receiving arthroplasty surgery. However, studies had less promising results and the appropriate management is still inconclusive. Moreover, not all patients are candidates for renal transplant and the risks and benefits should be evaluated. The most recent meta-analysis comparing the outcome of TJA in these two renal replacement modalities was performed by Lieu et al. However, most of the included studies were performed prior to 2003 and focused only on total hip arthroplasty. With recent advancements in medical management of post-transplant patients, an updated analysis of the risks and benefits should be evaluated. The patient based on type of renal replacement therapy, surgery. KT, kidney transplant; THA, total hip arthroplasty; TKA, total knee arthroplasty.

Table 4. Multi-variate linear regression analysis

Independent variable	β coefficient	95% confidence interval	P-value
Mortality			
Age	0.00	-0.12 – 0.11	0.949
Female sex	-1.25	-4.20 – 1.70	0.406
Surgery (THA ref to TKA)	0.82	-1.15 – 2.80	0.415
Dialysis (ref to KT)	-0.64	-2.78 – 1.50	0.560
Surgical site complications			
Age	-0.01	-0.11 – 0.10	0.864
Female sex	-0.55	-2.89 – 1.79	0.646
Surgery (THA ref to TKA)	-0.41	-2.17 – 1.35	0.650
Dialysis (ref to KT)	-0.29	-1.86 – 1.27	0.713
Periprosthetic joint infection			
Age	0.05	-0.08 – 0.18	0.439
Female sex	0.01	-3.26 – 3.28	0.996
Surgery (THA ref to TKA)	0.34	-1.94 – 2.63	0.769
Dialysis (ref to KT)	0.28	-2.00 – 2.56	0.810

Notes: KT, kidney transplant; THA, total hip arthroplasty; TKA, total knee arthroplasty.

In our study for KT patients, ESRD patients who are on dialysis or have received a KT both carry an increased risk for mortality after TJA compared with the general population. In particular, the chronic usage of immunosuppressants and steroids puts these patients at risk for cardiovascular diseases, infection and steroid-related complications. Interestingly, in several comprehensive studies comparing mortality rates for patients with dialysis or KT, there was a significant reduction in mortality rate for patients who had received a KT. Malkani et al also noted lower mortality rates in KT patients who underwent THA, with an adjusted mortality of 29 per 1000 patients in comparison with 164 per 1000 patients for dialysis patients. The higher mortality noted in our study for KT patients can be explained by several factors. First, Inoue et al identified that TKA was an independent risk factor for complications when compared with THA. Our study included both TKA and THA surgeries which may have affected the outcome. Moreover, most of the studies included in our review for KT patients were conducted between 2003 and 2013. Over the past decade, there has been significant improvement in post-transplant care, as multiple immunosuppressants such as antiproliferative drugs have been used widely, which may have reduced the overall mortality rate. In addition, identifying and managing cardiovascular events have also contributed to a significant decrease in mortality rates amongst KT patients. Nonetheless, ESRD patients who are on dialysis or have received a KT both carry an increased risk for mortality after TJA. Therefore, the surgeon should carefully evaluate the proper patient who can tolerate a TJA surgery.

Patients with ESRD are at risk for wound healing complications. In our study, the pooled SSC rate was 3.4% (CI: 0.023–0.050). The higher incidence in these patients can be attributed to several factors. For instance, ESRD patients are at risk for bleeding due to platelet dysfunction and chronic use of anticoagulants. In a comprehensive study by Ponnusamy et al, dialysis patients were more likely to experience wound haematoma, seroma.
and infection.25 Despite recent advancements in postoperative management for transplant patients, wound healing continues to be a major challenge for physicians.35,39,41 In this study, the SSC rates in both dialysis (3.3\%) and KT (3.6\%) patients were high. Several studies have evaluated the mechanisms that affect wound healing in KT patients. First, several chronic immunosuppressants (e.g. steroids, sirolimus, everolimus) have antiproliferative properties that directly impair the wound healing pathway.35 In addition, post-transplant blood disorders (e.g. platelet dysfunction, acute myeloid leukaemia etc.) and higher infection rates all predispose these patients to wound complications.40 Currently, there are very few reports discussing the management of wound complications after TJA in this patient population. Reine et al evaluated the risk factors that may predispose surgical wound complications after kidney transplant.33 In particular, the authors recommended placement of subcutaneous sutures and insertion of a drain to prevent persistent wound leakage.35 Future studies should target the management of postoperative wound complications, specifically orthopaedic procedures such as TJA, for this cohort.

Periprosthetic joint infection is one of the most devastating complications after TJA. The incidence of infection after TJA is around 0.5\%–2\% for the general population.41,42 Since infection is the second leading cause of death in patients on dialysis or who have received a KT, it is essential for orthopaedic surgeons to identify all modifiable risks in this population.43,44 In this study, we defined a PJI as an infection with involvement of the bone–joint interface. Upon review of 22 articles, the pooled incidence rate for PJI was 3.9\% (CI: 0.019–0.080). When we divided the patients based on the type of renal replacement therapy, we found higher incidence of PJI in both dialysis (4.0\%) and KT (3.7\%) patients (Table 3). Several factors predispose dialysis patients to infections. HD patients have a 25–50-fold increased risk for bacteremia, with Gram-positive bacteria causing a majority of the infections.45 Many studies have related this higher incidence to catheter-related infections, as dialysis requires a chronic intravenous access either through a central catheter or a dialysis shunt.44 Moreover, the risk for methicillin-resistant \textit{Staphylococcus aureus} (MRSA) infections is significantly higher for dialysis patients.44 MRSA is a well-recognized pathogen for PJI and is notorious for having significantly higher treatment failure rates.46 The combination of immunodeficient status, and predisposition for MRSA infection have led several experts to advise against arthroplasty surgery for dialysis patients.25 To avoid these catastrophic events, all modifiable risks such as creating a permanent arteriovenous fistula prior to surgery, empirical antibiotics with vancomycin or waiting for renal transplant have all been proposed by authors.3,44 Interestingly, Browne et al assessed the outcome after TJA for patients on peritoneal dialysis (PD) and concluded that PD patients did not carry the same risk for bacteremia and that PD was associated with less systemic inflammation.4 In our multi-regression analysis, we did not find type of renal replacement therapy (dialysis or KT) to be a risk factor for PJI, although the PJI rate was slightly higher in dialysis patients (dialysis vs. KT, 4.0\% vs. 3.7\%). Current literature also supports this trend, but there could be potential bias in these results. First, the baseline patient status for HD patients is often complicated with multiple comorbidities, making these patients less suitable for transplant surgery.3 Their complicated patient status could potentially affect the outcome of dialysis patients after TJA. Future studies should include matched cohorts to remove potential confounding factors and to better delineate the differences between these two cohorts.

The final aim of this study was to identify potential risk factors that may lead to failure (Table 4). Specifically, we assessed the effects of age, sex, type of arthroplasty surgery (THA vs. TKA) and the type of renal replacement therapy (dialysis vs. KT). Interestingly, none of these factors appeared to have a significant effect on the rate of mortality, SSC and PJI. In the current literature, the effects of advanced age and gender on the outcome of TJA are well documented.47,48 Fang et al reviewed 871 THAs and 921 TKAs and concluded increased age is associated with higher in-hospital complication rates and ICU utilization.47 In a national database study performed by Robinson et al, the authors identified that female gender was a protective factor for sepsis, cardiovascular complications, and renal complications after TJA.48 With regard to the type of arthroplasty surgery, George et al reviewed 248,150 primary THA/TKA procedures using the National Surgical Quality Improvement Project database. The 30-day rates of re-admission (P < .001) and re-operation (P < .001) were higher in THA.49 The results from this study did not display similar trends to those described by other authors46–48 and could be due to different patient characteristics (ESRD vs. all patients who had undergone TJA), and the heterogeneity of the included studies for this review. A recent highly debated topic is whether KT patients had better outcomes following TJA in comparison with dialysis patients. Our regression analysis did not show a significant trend favouring KT with regards to mortality, SSC or PJI rate. Therefore, the data presented in this study can be used as a reference for physicians to discuss with patients regarding the benefits and outcomes in this patient population. Moreover, the increased SSC and PJI rate in this patient population raises concerns such as whether certain drugs (immunosuppressants/antiproliferative drugs), should be withheld temporarily during the perioperative period. As with management of other types of systemic, complicated diseases, it is essential for orthopaedic surgeons to perform comprehensive preoperative studies and to thoroughly explain the higher rates of complications in this patient population.
This study is not without limitations. First, this study only included studies that were written in English, and most of the larger studies were conducted in the US and European countries. Therefore, the data should be interpreted with caution in regions of the world that may have different medical environments. In addition, some studies did not analyse THA and TKA as well as HD and PD as separate entities. In the current literature, there is growing evidence that the type of surgery and form of renal replacement therapy can affect the outcome.4,49 Lastly, all included studies were retrospective cohort studies, which is considered to be a moderate level of evidence for systematic reviews. Additional, prospective studies that limit the confounders associated with different baseline patient characteristics (dialysis vs. KT patients) are required to draw conclusions about the effects of dialysis and KT on TJA.

Conclusions

The outcome of TJA remains inferior in patients on dialysis and patients who have received a KT. Interestingly, this study noted similar mortality, SSC and PJI rates between dialysis and KT patients. Our regression analysis of the type of renal replacement therapy further suggested that dialysis is not a risk factor for mortality, SSC, and PJI when compared with KT patients. These results can be used by the physician when discussing options with patients on renal replacement therapy who are considering a TJA procedure.

REFERENCES

1. Wang V, Vilme H, Maciejewski ML, Bouwland LE. The economic burden of chronic kidney disease and end-stage renal disease. Semin Nephrol 2016;36:319–330.

2. Lo IN, Tsai SW, Wu PK, Chen CF, Chang MC, Chen WM. The mid-term outcome of dialysis-dependent patients undergoing primary total knee arthroplasty and total hip arthroplasty: a retrospective study. J Chin Med Assoc 2019;82:143–147.

3. Inoue D, Yazdi H, Goswami K, Tan TL, Parvizi J. Comparison of postoperative complications and survivorship of total hip and knee arthroplasty in dialysis and renal transplantation patients. J Arthroplasty 2020;35:971–975.

4. Browne JA, Casp AJ, Cancienne JM, Werner BC. Peritoneal dialysis does not carry the same risk as hemodialysis in patients undergoing hip or knee arthroplasty. J Bone Joint Surg Am 2019;101:1271–1277.

5. Labaran LA, Sequeira S, Bolarinwa SA, et al. Outcomes following revision joint arthroplasty among hemodialysis-dependent patients. J Arthroplasty 2019. doi:10.1016/j.arth.2019.10.041 [Epub ahead of print].

6. Popat R, Ali AM, Holloway IP, Sarrawi KM, Hanna SA. Outcomes of total hip arthroplasty in haemodialysis and renal transplant patients: systematic review. Hip Int 2021;31:207–214.

7. Osei DA, Rebehn KA, Boyer ML. Soft-tissue defects after total knee arthroplasty: management and reconstruction. J Am Acad Orthop Surg 2016;24:769–779.

8. Parvizi J, Tan TL, Goswami K, et al. The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty 2018;33:1309–1314.e2.

9. Parvizi J, Zmistowski B, Berbari EF, et al. New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop Relat Res 2017;469:2992–2994.

10. Wang YC, Cheng YJ, Yang JY, Chao CD, Huang JW, Hung KY. Is dialysis vintage a perioperative risk for end-stage renal disease patients receiving total knee and hip arthroplasty. J Orthop Surg (Hong Kong) 2019;27:2309499019853887.

11. Goffin E, Baertz G, Rombouts JJ. Long-term survivorship analysis of cemented total hip replacement (THR) after avascular necrosis of the femoral head in renal transplant recipients. Nephrol Dial Transplant 2006;21:784–788.

12. Boquet J, Goffin E, Poilvache P. Outcome of total knee arthroplasties after renal transplantation. Arch Orthop Trauma Surg 2008;128:1345–1348.

13. Chang JS, Han DJ, Park SK, Sung JH, Ha YC. Cementless total hip arthroplasty in patients with osteonecrosis after kidney transplantation. J Arthroplasty 2013;28:824–827.

14. Chen JH, Kuo FC, Wang JW. Total knee arthroplasty in patients with dialysis: early complications and mortality. Biomed J 2014;37:84–89.

15. Erkocak OF, Yoo JY, Restrepo C, Maltenfort MG, Parvizi J. Incidence of infection and inhospital mortality in patients with chronic renal failure after total joint arthroplasty. J Arthroplasty 2016;31:2437–2441.

16. Fukunishi S, Fukui T, Nishio S, Ishamura F, Yoh K, Yoshiya S. Results of total hip arthroplasty for dialysis arthropathy in long-term hemodialysis patients. J Orthop Sci 2009;14:285–291.

17. Garcia-Ramiro S, Cofan F, Esteban PL, Riba J, Gallart X, Oppenheimer F, et al. Total hip arthroplasty in hemodialysis and renal transplant patients. Hip Int 2008;18:51–57.

18. Ledford CK, Watters TS, Wellman SS, Attarian DE, Bolognesi MP. Risk versus reward: total joint arthroplasty outcomes after various solid organ transplantsations. J Arthroplasty 2014;29:1548–1552.

ICMJE CONFLICT OF INTEREST STATEMENT

The author declares no conflict of interest relevant to this work.

FUNDING STATEMENT

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

OPEN ACCESS
© 2021 The author(s)

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) licence (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed.
19. Li WC, Shih CH, Ueng SW, Shih KN, Lee MS, Hsieh PH. Uncemented total hip arthroplasty in chronic hemodialysis patients. *Acta Orthop* 2008;79:178–182.
20. Lim BH, Lim SJ, Moon VW, Park YS. Cementless total hip arthroplasty in renal transplant patients. *Hippokratia* 2012;22:516–520.
21. Malkani JA, Heimroth JC, Ong KL, et al. Complications and readmission incidence following total hip arthroplasty in patients who have end-stage renal failure. *J Arthroplasty* 2020;35:794–800.
22. Nagoya S, Nagao M, Takada J, Kuwabara H, Kaya M, Yamashita T. Efficacy of cementless total hip arthroplasty in patients on long-term hemodialysis. *J Arthroplasty* 2005;20:66–71.
23. Ottesen TD, Zogg CK, Haynes MS, Malpani R, Bellamkonda KS, Grauer JN. Dialysis patients undergoing total knee arthroplasty have significantly increased odds of perioperative adverse events independent of demographic and comorbidity factors. *J Arthroplasty* 2018;33:2827–2834.
24. Patterson JT, Tillinghast K, Ward D. Dialysis dependence predicts complications, intensive care unit care, length of stay, and skilled nursing needs in elective primary total knee and hip arthroplasty. *J Arthroplasty* 2018;33:2263–2267.
25. Ponnusamy KE, Jain A, Thakkar SC, Sterling RS, Skolasky RL, Khanuja HS. Inpatient mortality and morbidity for dialysis-dependent patients undergoing primary total hip or knee arthroplasty. *J Bone Joint Surg [Am]* 2015;97:1326–1332.
26. Shrader MW, Schall D, Parvizi J, McCarthy JT, Lewallen DG. Total hip arthroplasty in patients with renal failure: a comparison between transplant and dialysis patients. *J Arthroplasty* 2006;21:324–339.
27. Yen SH, Chen JH, Lu YD, Wang JW. Perioperative complications of total knee arthroplasty in dialysis patients. *J Arthroplasty* 2018;33:872–877.
28. Chen J, Zhang F, Liu CY, et al. Impact of chronic kidney disease on outcomes after total joint arthroplasty: a meta-analysis and systematic review. *Int Orthop* 2020;44:215–229.
29. Lieu D, Harris IA, Naylor JM, Mittal R. Review article: total hip replacement in haemodialysis or renal transplant patients. *J Orthop Surg (Hong Kong)* 2014;22:393–398.
30. Abramowicz D, Oberbauer R, Heemann U, et al. Recent advances in kidney transplantation: a viewpoint from the Descartes Advisory Board. *Nephrol Dial Transplant* 2018;33:1699–1707.
31. Memtsoudis SG, Pumberger M, Ma Y, et al. Epidemiology and risk factors for perioperative mortality after total hip and knee arthroplasty. *J Orthop Res* 2012;30:1811–1821.
32. do Sameiro-Faria M, Ribeiro S, Costa E, et al. Risk factors for mortality in hemodialysis patients: two-year follow-up study. *Dis Markers* 2013;35:791–798.
33. Belmont PJ Jr, Goodman GP, Kusnezov NA, et al. Postoperative myocardial infarction and cardiac arrest following primary total knee and hip arthroplasty: rates, risk factors, and time of occurrence. *J Bone Joint Surg Am* 2014;96:2025–2031.
34. Thongprayoon C, Hansrivijit P, Leeaphorn N, et al. Recent advances and clinical outcomes of kidney transplantation. *J Clin Med* 2020;9:1693.
35. Reine E, Bjork IT, Oyen O. Targeting risk factors for impaired wound healing and wound complications after kidney transplantation. *Transplant Proc* 2010;42:2542–2546.
36. Maroz N. Impact of renal failure on wounds healing. *J Am Coll Clin Wound Spec* 2018;4:12–13.
37. van Bladel ER, de Jager RL, Walter D, et al. Platelets of patients with chronic kidney disease demonstrate deficient platelet reactivity in vitro. *BMC Nephrol* 2012;13:77.
38. Kessler M, Moureau F, Nguyen P. Anticoagulation in chronic hemodialysis: progress toward an optimal approach. *Semin Dial* 2019;32:474–489.
39. Mehrabi A, Fonouni H, Wente M, et al. Wound complications following kidney and liver transplantation. *Clin Transplant* 2006;20:97–110.
40. Yang Y, Yu B, Chen Y. Blood disorders typically associated with renal transplantation. *Front Cell Dev Biol* 2015;3:18.
41. Chun KC, Kim KM, Chun CH. Infection following total knee arthroplasty. *Knee Surg Relat Res* 2013;25:93–99.
42. Sukeik M, Haddad FS. Periprosthetic joint infections after total hip replacement: an algorithmic approach. *SCOT J* 2019;5:5.
43. Kato S, Chmielewski M, Honda H, et al. Aspects of immune dysfunction in end-stage renal disease. *Clin J Am Soc Nephrol* 2008;3:1526–1533.
44. Eleftheriadis T, Liakopoulos V, Leivaditis K, Antoniadi G, Stefanidis I. Infections in hemodialysis: a concise review — Part 1: bacteremia and respiratory infections. *Hippokratia* 2011;15:12–17.
45. Suzuki M, Satoh N, Nakamura M, Horita S, Seki G, Moriya K. Bacteremia in hemodialysis patients. *World J Nephrol* 2016;5:489–496.
46. Siddiqui MM, Lo NN, Ab Rahman S, Chin PL, Chia SL, Yeo SJ. Two-year outcome of early deep MRSA infections after primary total knee arthroplasty: a joint registry review. *J Arthroplasty* 2013;28:44–48.
47. Fang M, Noisieux N, Linson E, Cram P. The effect of advancing age on total joint replacement outcomes. *Geriatr Orthop Surg Rehabil* 2015;6:173–179.
48. Robinson J, Shin JI, Dowdell JE, Moucha CS, Chen DD. Impact of gender on 30-day complications after primary total joint arthroplasty. *J Arthroplasty* 2017;32:2370–2374.
49. George J, Chughtai M, Khlopas A, et al. Readmission, reoperation, and complications: total hip vs total knee arthroplasty. *J Arthroplasty* 2018;33:655–660.