Effect of microfluidization on casein micelle size of bovine milk

H Sinaga\(^1\), H Deeth\(^2\), B Bhandari\(^2\)

\(^1\)Food Science and Technology, Universitas Sumatera Utara, Medan, Indonesia
\(^2\)School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
E-mail: hotnida.sinaga@uq.net.au

Abstract. The properties of milk are likely to be dependent on the casein micelle size, and various processing technologies produce particular change in the average size of casein micelles. The main objective of this study was to manipulate casein micelle size by subjecting milk to microfluidizer. The experiment was performed as a complete block randomised design with three replications. The sample was passed through the microfluidizer at the set pressure of 83, 97, 112 and 126 MPa for one, two, three, four, five and six cycles, except for the 112 MPa. The results showed that microfluidized milk has smaller size by 3% with pressure up to 126 MPa. However, at each pressure, no further reduction was observed after increasing the passed up to 6 cycles. Although the average casein micelle size was similar, elevating pressure resulted in narrower size distribution. In contrast, increasing the number of cycles had little effect on casein micelle distribution. The finding from this study can be applied for future work to characterize the fundamental and functional properties of the treated milk.

1. Introduction
Milk has so many benefits in human life as it contains the most nutrition food in nature. Different types of milk will have wide variation in nutrient proportions, however, generally milk containing high amount of proteins, lipids and minerals, along with carbohydrates and vitamins. Whole milk is composed of 87.42% water and 12.58% total solids, which compromised 3.86% lipid components and 8.73% of solids non fat. Lactose, nitrogenous matter, salts and other solids account for 4.67%, 3.28%, 0.66% and 0.17%, respectively, of the solids non fat [1].

Caseins as a dominant protein are a family of phosphorylated proteins. Caseins are about 80% of the protein in bovine milk, represents 4 gene products: \(\alpha_s1\)-, \(\alpha_s2\)-, \(\beta\)- and \(\kappa\)- caseins in the molar ratio 4:1:4:1 [2] and a trace amount of gamma casein [3]. Caseins also contain a large proportion of minerals (calcium and phosphate), which are required for bone growth for the newborns [4]. Most of caseins exist as casein micelles; they tend to associate because of their high hydrophobic bonding. The smallest aggregates can contain 10-20 moles casein [5].

Various processing technologies produce particular change in the average micelles sizes (CMs) [6, 7, 8]. As the properties of milk are likely to be dependent on the micelle size, the micelle size modification might affect the behaviour of protein during processing [9, 10]. In the past, most of the works are focused on the casein micelles model and the composition. Only little is known about the main effect of casein micelle size and on how the manipulation in their micelle structural properties contribute to the functionality of protein in general.

Homogenization in milk processing is generally applied to produce more consistent raw milk. Naturally fat milk will separate and form the top layer of cream, as the fat has a less dense than the...
milk serum. Initially homogenisation refers to break down the fat globules, and allow the smaller particles distribute consistently in milk [11]. Other research suggested that high pressure homogenisation can also be used to produce particular change in the molecular structure of protein, that can alter the milk constituent and properties [11, 12]. Along with homogenisation, microfluidisation is the most common method used in high shear processing. The samples are processed in an inline homogeniser and micro channels of a Microfluidizer, for homogenisation [13, 14], dispersion [15], emulsification [16, 17, 18] and particle size reduction [19, 20].

The equipments were originally used only for pharmaceutical emulsions, however nowadays there are widely used in dairy production [20]. When compared to conventional homogenised milk, microfluidized milk have smaller particle size and narrow size distribution [19], but resulting in larger particles in yoghurt [21]. Although Olson et al [21] observed that the particles size only decreased at the pressure < 100 MPa, others found that the decrease still continued at 150 MPa [21]. Other study had analysed functions to predict average diameter and size distribution of the microfluidized fat globules in dairy model emulsions [20].

Fat globules and emulsions prepared by microfluidization have been repeatedly documented in literatures. The structure of protein differed from those produced by valve-homogeniser. The change in particle size distribution was best measured by dynamic light scattering (DLS), as the instrument can measure the size smaller than 100 nm [22]. The results provided good overviews of using the device for the reduction of casein micelles size.

In this study, we will attempt to develop methods to manipulate the casein micelle size. Although various study reported the casein micelle size of by applying pH [23], partial renneting [24, 25], limited research has been performed which relates to the application of a Microfluidizer. The research findings are expected to solve many unknown size-property relationship, thus can provide enormous opportunities to develop new generation dairy products with variable functionality.

2. Materials and methods
In attempt to manipulate the size of casein micelles, a Microfluidizer was employed, with operating pressure ranged from 0 - 126 MPa. Further treatments were conducted by recirculating the sample through the homogeniser for up to six cycles. Then, the average size and size distribution of the casein micelles were determined.

2.1. Microfluidizer
Pasteurised skim milk was homogenised using a Microfluidizer (Model B12-04DJCM3, Watts Fluidair Inc, Kittery, Maine) operating in continuously or recycles. The sample was passed through the microfluidizer at the set 12, 14, 16 and 18 KPsi (83, 97, 112 and 126 MPa, respectively) pressure for one cycle. The portion of the microfluidized sample was taken for size analysis, and the remaining was passed through a Microfluidizer again for second pass, the third and the fourth pass at 83, 97 and 126 MPa.

2.2. Experimental Design and Statistics
All experiments were performed as a complete block randomised design with three replications. Statistical analyses to determine any treatment effects were done using Minitab 16.0. The corresponding data were determined by analysis of variance (ANOVA) using the General Linear Model. Tukey simultaneous test at the level of P = 0.05 was carried out to assess whether different treatments resulted in statistically significant differences.

3. Results and discussion
Microfluidized treatment significantly reduced the particles size of milk from 246 ± 0.1 nm to 239 ± 1.5 nm (Figure 1). However, elevated pressure from 83 to 126 MPa for one pass had no significant effect on the average size. This meant that casein micelle size did not change if the milk was subjected
to a Microfluidizer with pressure less than 130 MPa. The average size for all treated milk was around 240 nm, only < 10 nm different with the untreated sample.

![Figure 1](image1.png)

Figure 1. The particle size of microfluidized milk at pressure of 0 - 126 MPa

Although the average size of casein after treatment 83 - 126 MPa was similar, the size distribution in intensity (%) at lower and higher pressure treatment (112 and 126 MPa), was different (Figure 2). The micelle size distribution in milk treated at higher pressure became narrower than that of the untreated milk. The distribution was shifted towards smaller size.

![Figure 2](image2.png)

Figure 2. The size distribution of microfluidised milk at pressure of 0 - 126 MPa

In the multi-passes treatment, the results revealed that more cycle have no greater impact on the reduction of casein micelles size of microfluidized milk (Figure 3). The size decreased only up to 15
nm at 126 MPa at single pass. Further increasing the number of passes did not significantly change the size.

Figure 3. The particle size of microfluidized milk at pressure of 83 - 126 MPa as a factor of number of passes

Treatment of skim milk at 83 - 126 MPa reduced casein micelles in all 6 passes, however, only little differences was observed between micelle size distribution of treated and untreated milk (Figure 4). At all milk samples the size of micelles being present is < 800 nm.

These data suggest that elevating the pressure could lessen the size, however, no further reduction was observed after increasing up to 6 passes. Treatment up to 150 MPa had little effect on casein micelles size [8, 26, 27]. Other study found that only large micelles (300 - 600 nm) might dissociate at this pressure treatment [28]. As the maximum pressure of the Microfluidizer is 126 MPa, other method such as high pressure homogenisation (HPH) application can be used for higher pressure treatment.
Figure 4. The size distribution of microfluidized milk at pressure of 83 - 126 MPa as a factor of number of passes

4. Conclusions
It is concluded that casein micelle size can be manipulated by the application of Microfluidizer. The CM size decreased at pressure of 83 MPa. However, there was no significant different amongst the size, even though the pressure was increased up to 126 MPa. Similarly, the number of passes up to 3 cycles did not affect the CM size. The findings suggested that applying Microfluidizer at 83 MPa for one cycle was enough to manipulate the CM size.

References
[1] Modler HW, Ed. 2000 Milk processing. Food proteins: Processing Applications. New York, Wiley-VCH, Inc.
[2] Chowdhury PB and Luckham PF 1995 Interaction forces between kappa-casein adsorbed on mica', Colloids and Surfaces B-Biointerfaces Vol. 4(6): 327-334.
[3] Swaisgood, HE, Ed. 2003 Chemistry of the caseins. Advanced dairy chemistry - I: Proteins. Part A. New York, Kluwer Academic/ Plenum Publishers.
Erkkola M, Kronberg-Kippila CK, et al. 2005 Maternal consumption of dairy products during pregnancy and lactation, and the development of cow’s milk antibodies in the offspring. *Acta Paediatrica* Vol. 94 (6): 696-704.

Fox PF and Brodkorb A 2008 The casein micelle: Historical aspects, current concepts and significance. *International Dairy Journal* Vol. 18 (7): 677-684.

Ono T, Murayama T, Kaketa S and Satoshi 1990, ‘Changes in the protein composition and size distribution of bovine casein micelles induced by boiling. *Agricultural and Biological Chemistry*, Vol. 54 (6): 1385-92.

Needs EC, Stenning RA, Gill AL, Ferragut V & Rich GT 2000 High-pressure treatment of milk: effects on casein micelle structure and on enzymic coagulation. *Journal of Dairy Research* Vol. 67 (1): 31-42.

Orlien V, Boserup L and Olsen K 2010 Casein micelle dissociation in skim milk during high-pressure treatment: Effects of pressure, pH, and temperature. *Journal of Dairy Science* Vol. 93 (1): 12-18.

McMahon DJ and Brown RJ 1984 Composition, structure, and integrity of casein micelles - A review. *Journal of Dairy Science* Vol. 67 (3): 499-512.

De Kruijf CG, Tuinier R, Holt C, Timmins PA and Rollema HS 2002 Physicochemical study of kappa- and beta-casein dispersions and the effect of cross-linking by transglutaminase. *Langmuir*, Vol. 18 (12): 4885-91.

Lopez-Fandino R 2006 Functional improvement of milk whey proteins induced by high hydrostatic pressure. *Critical Reviews in Food Science and Nutrition* Vol. 46(4): 351-363.

Garcia-Risco MR, Ramos M and Lopez-Fandino 2002 Modifications in milk proteins induced by heat treatment and homogenization and their influence on susceptibility to proteolysis. *International Dairy Journal* Vol. 12(8): 679-688.

Whiteley AJ and Muir DD 1996 Heat stability of homogenised concentrated milk .1. Comparison of microfluidizer with a valve homogeniser *Milchwissenschaft-Milk Science International* Vol. 51 (6): 320-323.

Hardham JF, Imison BW and French HM 2000 Effect of homogenisation and microfluidisation on the extent of fat separation during storage of UHT milk. *Australian Journal of Dairy Technology* Vol. 55 (1): 16-22.

Jafari SM, He Y & Bhandari B 2007 Optimization of nano-emulsions production by microfluidization. *European Food Research and Technology* Vol. 225 (5-6): 733-741.

McCrae CH 1994 Homogenization of milk emulsions - Use of Microfluidizer. *Journal of the Society of Dairy Technolog* Vol. 47 (1): 28-31.

Jafari SM, He YH and Bhandari B 2007 Production of sub-micron emulsions by ultrasound and microfluidization techniques. *Journal of Food Engineering* Vol. 82 (4): 478-488.

Mao LK, Yang J, Xu DX, Yuan F and Gao YX 2010 Effects of homogenization models and emulsifiers on the physicochemical properties of beta-carotene nanoemulsions. *Journal of Dispersion Science and Technology* Vol. 31 (7): 986-993.

Strawbridge KB, Ray E, Hallet FR, Tosh SM and Dalglish DG 1995 Measurement of particle size distributions in milk homogenized by a Microfluidizer: estimation of populations of particles with radii less than 100 nm. *Journal of Colloid and Interface Science* Vol. 171 (2): 392-398.

Robin O, Blanchot V and Paquin P 1992 Microfluidization of dairy model emulsions. 1. Preparation of emulsions and influence of processing and formulation on the size distribution of milk fat globules. *Lait* Vol. 72 (6): 511-531.

Ciron CIE, Gee VL, Kelly AL and Auty MAE 2010 Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. *International Dairy Journal* Vol. 20 (5): 314-320.
[22] West SJ 1996 Characterization of particles in emulsion systems formed by microfluidization. University of Guelph (Canada). Canada, University of Guelph (Canada), 1996; AAT MM14488.

[23] Sinaga H, Bansal N and Bhandari B 2016 Effects of milk pH alteration on casein micelle size and gelation properties of milk. *International Journal of Food Properties*. DOI 10.1080/10942912.2016.1152480

[24] Sinaga H, Bansal N and Bhandari, B 2016. Partial renneting of pasteurized bovine milk: Casein micelle size, heat and storage stability. *Food Research International*. Vol 84: 52-60

[25] Sinaga H, Bansal N and Bhandari B 2017 Gelation properties of partially renneted milk. *International Journal of Food Properties*, Vol 20 (8):1700-14

[26] Huppertz T, Fox PF and Kelly AL 2004 Properties of casein micelles in high pressure-treated bovine milk. *Food Chemistry*. Vol. 87 (1): 103-110.

[27] Anema SG, Lowe EK and Stockmann R 2005 Particle size changes and casein solubilisation in high-pressure-treated skim milk. *Food Hydrocolloids*. Vol. 19 (2): 257-267.

[28] Regnault S, Thiebaud M, Dumay E and Cheftel JC 2004 Pressurisation of raw skim milk and of a dispersion of phosphocaseinate at 9 degrees C or 20 degrees C: effects on casein micelle size distribution. *International Dairy Journal*. Vol. 14 (1): 55-68.

Acknowledgements

The authors would like to thank Dr. John M. Schiller (Honorary Senior Fellow, School of Agriculture and Food Sciences, The University of Queensland), for his assistance in the proofreading of the Abstract of this manuscript.