Solvability in weighted Lebesgue spaces of the divergence equation with measure data

by

LAURENT MOONENS (Orsay and Paris) and EMMANUEL RUSS (Grenoble)

Abstract. Given a bounded, connected open set $\Omega \subseteq \mathbb{R}^n$, $\kappa > 0$, a positive Radon measure μ_0 in Ω and a (signed) Radon measure μ on Ω satisfying $\mu(\Omega) = 0$ and $|\mu| \leq \kappa \mu_0$, we study the possibility of solving the equation $\text{div}\, u = \mu$ by a vector field u satisfying $|u| \lesssim \kappa w$ on Ω (where w is an integrable weight only related to the geometry of Ω and to μ_0), together with a mild boundary condition.

This extends results obtained by the second author et al. in a 2010 paper for the equation $\text{div}\, u = f$, improving them in two aspects: we work here with the divergence equation with measure data, and also construct a weight w that relies in a softer way on the geometry of Ω, improving its behavior (and hence the a priori behavior of the solution we construct) substantially in some instances.

The method used in this paper follows a constructive approach of Bogovskii type.

1. Introduction. Let $\Omega \subset \mathbb{R}^n$ be an arbitrary bounded connected open subset. We are interested in the following question, stated here in a rather vague fashion: given a signed Radon measure μ on Ω with $\mu(\Omega) = 0$, does there exist a vector field u in a weighted L^∞ space on Ω solving the boundary value problem

$$
\begin{cases}
\text{div}\, u = \mu & \text{in } \Omega, \\
u \cdot \nu = 0 & \text{on } \partial \Omega,
\end{cases}
$$

where the boundary condition for u means at least that, for all $\varphi \in C^\infty(\mathbb{R}^n)$ having compact support in \mathbb{R}^n (and hence allowed to be nonzero on and around the boundary of Ω), one has

$$
\int_{\Omega} u(x) \cdot \nabla \varphi(x) \, dx = - \int_{\Omega} \varphi(x) \, d\mu(x) ?
$$

2020 Mathematics Subject Classification: Primary 35F05; Secondary 35F15.

Key words and phrases: divergence equation with measure data, weighted Lebesgue spaces.

Received 13 March 2020; revised 10 September 2020.

Published online 16 January 2021.

DOI: 10.4064/sm200313-16-9 [1] © Instytut Matematyczny PAN, 2021
When \(d\mu(x) = f(x)dx\), where \(f \in L^\infty(\Omega)\) has zero integral, this question, which was widely studied when \(f \in L^p(\Omega)\) with \(1 < p < +\infty\) and \(\Omega\) is smooth (see, for instance, [3] Section 7] for the construction of a solution in \(W^{1,p}_0(\Omega)\)), was previously addressed for arbitrary domains by Durán, Muschietti, Tchamitchian and the second author [4]. They characterized the bounded domains \(\Omega\) with the following property: there exists an integrable weight \(w > 0\) in \(\Omega\) such that, for all \(f \in L^\infty(\Omega)\) with \(\int_\Omega f(x) dx = 0\), one can find a measurable vector field \(u: \Omega \to \mathbb{R}^n\) such that \(|u(x)| \lesssim w(x)\) for almost every \(x \in \Omega\), solving

\[
\begin{align*}
\text{div } u &= f \quad \text{in } \Omega, \\
u \cdot \nu &= 0 \quad \text{on } \partial \Omega,
\end{align*}
\]

in the sense that

\[
\int_\Omega u(x) \cdot \nabla \varphi(x) dx = - \int_\Omega f(x) \varphi(x) dx
\]

for all \(\varphi \in L^1(\Omega)\) weakly differentiable and such that \(w \nabla \varphi \in L^1(\Omega)\). Namely, they proved (see [4] Theorem 2.1) that the bounded domains \(\Omega\) enjoying this property are precisely the ones for which the geodesic distance to a fixed point in \(\Omega\) is integrable in \(\Omega\), and can also be described as the ones supporting a weighted \(L^1\) Poincaré inequality.

We shall exhibit here an example where the weight \(w\) is unbounded in \(\Omega\), but where it is still possible to construct a bounded solution \(u\) of (1.1) where the boundary condition means at least that (1.3) holds for any test function \(\varphi \in C^\infty(\mathbb{R}^n)\) with compact support in \(\mathbb{R}^n\)—hence allowed to be nonzero on, and around, \(\partial \Omega\). In some situations, this can be achieved by working in an open measurable cover of \(\Omega\), e.g. in an open set \(\hat{\Omega} \supset \Omega\) having the same Lebesgue measure as \(\Omega\); see Example 3.3 below.

In the present paper, we improve the results of [4] by replacing, on the right hand side of (1.2), the function \(f\) by a general signed Radon measure \(\mu\) on \(\Omega\) satisfying \(\mu(\Omega) = 0\)—which, for some choices of \(\mu_0\), forces the weight \(w\) to be unbounded in order for some solution to exist in \(L^\infty_{1/w}(\Omega, \mathbb{R}^n)\), even when \(\Omega\) is smooth (see Remark 2.4(ii)). On the other hand, we formulate our results in an arbitrary open cover \(\hat{\Omega}\) of \(\Omega\) satisfying \(|\hat{\Omega}| = |\Omega|\) (which can hence be \(\Omega\) itself, or any open set containing \(\Omega\) and contained in its essential interior for example), which, as we already explained, can in some instances yield a bounded weight (and hence a bounded solution to (1.2)) in \(\Omega\) by choosing a suitable such cover.

Let us start by introducing more precisely the general framework of the paper, as well as stating the main results more accurately.
2. Statements of the results. Throughout this paper, \(n \geq 1 \) is an integer and \(m \) stands for the Lebesgue measure in \(\mathbb{R}^n \). By “domain” we mean an open connected subset of \(\mathbb{R}^n \). If \(A, B \) are two nonempty subsets of \(\mathbb{R}^n \), \(d(A, B) \) denotes the distance between \(A \) and \(B \), that is, \(d(A, B) = \inf_{x \in A, y \in B} |x - y| \), where \(|·|\) is the Euclidean norm. If \(E \) is a nonempty set and \(A(f) \) and \(B(f) \) are two nonnegative quantities for all \(f \in E \), then the notation \(A(f) \lesssim B(f) \) means that there exists \(C > 0 \) such that \(A(f) \leq CB(f) \) for all \(f \in E \). Finally, for all open sets \(U \subset \mathbb{R}^n \), \(\mathcal{D}(U) \) denotes the space of \(C^\infty \) functions in \(\mathbb{R}^n \) with compact support included in \(U \).

Let us now state our results precisely. Let \(\Omega \subset \mathbb{R}^n \) be a bounded domain. We choose, once and for all, a measurable cover \(\tilde{\Omega} \) of \(\Omega \), which in our case means that one has \(\tilde{\Omega} \supset \Omega \) together with \(m(\tilde{\Omega} \setminus \Omega) = 0 \) (see [6, Definition 132D]). For all \(x \in \tilde{\Omega} \), set
\[
\tilde{d}(x) := d(x, \mathbb{R}^n \setminus \tilde{\Omega})
\]
and
\[
(2.1) \quad \hat{\Omega} := \{ x \in \tilde{\Omega} : \tilde{d}(x) > 0 \}.
\]
Note that \(\hat{\Omega} \) is an open subset of \(\mathbb{R}^n \).

Example 2.1. For all \(x \in \mathbb{R}^n \), say that \(x \) is a point of density 1 for \(\Omega \) if
\[
\lim_{r \to 0} \frac{m(B(x, r) \cap \Omega)}{m(B(x, r))} = 1.
\]
The measure-theoretic interior of \(\Omega \) is defined as the set \(\Omega_e \) of points \(x \in \mathbb{R}^n \) which have density 1 for \(\Omega \). Note that \(\Omega \subset \Omega_e \subset \overline{\Omega} \), whereas the Lebesgue differentiation theorem shows that \(m(\Omega_e \setminus \Omega) = 0 \). Hence \(\Omega_e \) is a natural choice one can think of for the measurable cover \(\tilde{\Omega} \), but all our results hold for a general cover of \(\Omega \).

Example 2.2. Let \(\tilde{\Omega} \) be a fixed measurable cover of \(\Omega \), and define \(\hat{\Omega} \) according to (2.1). Since \(\Omega \subset \tilde{\Omega} \subset \hat{\Omega} \), it is clear that \(\hat{\Omega} \) is itself a measurable cover of \(\Omega \). Moreover, \(\hat{\Omega} \) is obviously open, and since it satisfies \(\Omega \subset \hat{\Omega} \subset \overline{\Omega} \), it is straightforward to see that \(\hat{\Omega} \) is also connected. Define
\[
\hat{d}(x) := d(x, \mathbb{R}^n \setminus \hat{\Omega})
\]
and let, for \(\varepsilon > 0 \),
\[
\hat{\Omega}_\varepsilon := \{ x \in \hat{\Omega} : \hat{d}(x) > \varepsilon \}.
\]
From now on, many constructions will be done in the open set \(\hat{\Omega} \).

A curve is a continuous map \(\gamma : [a, b] \to \mathbb{R}^n \), where \(a < b \) are real numbers. We will frequently identify \(\gamma \) and \(\gamma([a, b]) \). Say that \(\gamma \) is rectifiable if there exists \(M > 0 \) such that, for all \(N \geq 1 \) and all \(a = t_0 < \cdots < t_N = b \), one has \(\sum_{i=0}^{N-1} |\gamma(t_{i+1}) - \gamma(t_i)| \leq M \), and define the length of \(\gamma \), \(l(\gamma) \), as
the supremum of $\sum_{i=0}^{N-1} |\gamma(t_{i+1}) - \gamma(t_i)|$ over all possible choices of N and $a = t_0 < \cdots < t_N = b$.

Let $x_0 \in \Omega$ be a fixed point in Ω. For all $x \in \hat{\Omega}$, define $d_{\hat{\Omega}}(x)$ as the infimum of the lengths of all rectifiable curves γ joining x to x_0 in $\hat{\Omega}$ (note that such a curve always exists since $\hat{\Omega}$ is open and rectifiably path-connected), and call $d_{\hat{\Omega}}$ the *geodesic distance* to x_0 in $\hat{\Omega}$.

Let now μ_0 be a fixed nontrivial finite (positive) Radon measure in Ω. We intend to solve $\text{div} \, u = \mu$, where μ belongs to the class of all finite signed Radon measures μ in Ω satisfying $\mu(\Omega) = 0$ and $|\mu| \lesssim \mu_0$. It turns out that a solution of this problem involves the integrability of $d_{\hat{\Omega}}$ with respect to μ_0.

We therefore introduce the following condition, which may be satisfied or not, and does not depend on the choice of x_0:

$$d_{\hat{\Omega}} \in L^1(\mu_0).$$

Let us now state our first result:

Main Theorem 2.3. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. Then there exists $C > 0$ such that, for all nontrivial finite (positive) Radon measures μ_0 in Ω such that (2.2) holds, one can find a measurable weight w_0 in Ω with the following properties:

(A) $w_0 \in L^1(\Omega)$ and $w_0(x) > 0$ for almost every $x \in \Omega$.
(B) For any real number $\kappa > 0$ and any finite, signed Radon measure μ in Ω satisfying $\mu(\Omega) = 0$ and $|\mu| \leq \kappa \mu_0$, there exists a vector-valued function u solving (1.1) and satisfying the following estimate:

$$|u(x)| \leq C\kappa w_0(x)$$

for a.e. $x \in \Omega$, where $C > 0$ is a constant only depending on the geometry of Ω. Here, by saying that u solves (1.1) we mean that

$$\int_{\Omega} u \cdot \nabla \varphi = -\int_{\Omega} \varphi \, d\mu$$

for any $\varphi \in \mathcal{D}(\mathbb{R}^n)$, where $\mathcal{D}(\mathbb{R}^n)$ stands for the set of all functions in $C^\infty(\mathbb{R}^n)$ whose support is a compact set.

Remark 2.4. (i) The reader will notice, at this stage, that (2.4) contains a weak Neumann-type boundary condition in the fact that the test functions in $\mathcal{D}(\mathbb{R}^n)$ are allowed to be nonzero on, and around, the boundary of Ω; equation (2.4) can hence be interpreted as an integration by parts.

(1) Indeed, if $y_0 \in \Omega$ is another point in Ω, and if $d'_{\hat{\Omega}}$ denotes the geodesic distance to y_0 in $\hat{\Omega}$, then $|d_{\hat{\Omega}}(x) - d'_{\hat{\Omega}}(x)| \leq \text{dist}_{\hat{\Omega}}(x_0, y_0)$ for all $x \in \Omega$, where $\text{dist}_{\hat{\Omega}}(x_0, y_0)$ denotes the geodesic distance in $\hat{\Omega}$ between x_0 and y_0. It hence follows that the integrability on Ω of $d_{\hat{\Omega}}$ and that of $d'_{\hat{\Omega}}$ are equivalent.

(2) Here and afterwards, when no explicit measure is specified, “almost every” and L^p spaces are considered with respect to the Lebesgue measure.
Solvability of the divergence equation

5

formula where the boundary term is zero. We shall study, in Section 4, how this condition can be strengthened by enlarging the set of test functions for which (2.4) holds—showing in particular that (2.4) extends to functions \(\varphi \in \operatorname{Lip}(\mathbb{R}^n) \), where the latter notation stands for the space of all Lipschitz functions on \(\mathbb{R}^n \).

(ii) In some cases, the weight \(w_0 \) constructed in the previous theorem must be unbounded, even if \(\Omega \) is a smooth domain, a ball for instance. Assume indeed, for example, that \(\mu_0 \) is a finite Radon measure in \(\Omega \) satisfying (for some \(0 < \varepsilon < n - 1 \)) \(\mu_0(B(a, r)) \geq cr^{n-1-\varepsilon} \) for all \(0 < r < r_0 \) and some fixed \(a \in \Omega \) satisfying \(\mu_0(\{a\}) = 0 \). Without loss of generality, we may assume that \(0 < m_0 := \mu_0(B(a, r_0)) < \frac{1}{2} \mu_0(\Omega) \). Now define a signed measure \(\mu \) on \(\Omega \) by

\[
\mu := \mu_0(B(a, r_0)) - \frac{m_0}{\mu_0(\Omega) - m_0} \mu_0(\Omega \setminus B(a, r_0)).
\]

It is clear that one has \(\mu(\Omega) = 0 \), \(|\mu| \leq \mu_0 \) and \(\mu(B(a, r)) \geq cr^{n-1-\varepsilon} \) for all \(0 < r < r_0 \). Now if one were able to solve (1.1) in the lines of the above theorem by \(u \in L^1_w(\Omega, \mathbb{R}^n) \) with a bounded \(w_0 \), the Gauss–Green formula borrowed from [8, Theorem 2.10] would imply

\[
cr^{n-1-\varepsilon} \leq \mu(B(a, r)) \leq \left\| \frac{u}{w_0} \right\|_\infty \int_{\partial B(a, r)} w_0 d\mathcal{H}^{n-1} \leq Cr^{n-1}
\]

for almost every \(0 < r < r_0 \), which yields a contradiction.

Actually, condition (2.2) is also necessary for the existence of a weight \(w_0 \) meeting the conclusions of Theorem 2.3. These are both equivalent to an \(L^1 \) Poincaré inequality, as stated in the next theorem:

Main Theorem 2.5. Let \(\Omega \subset \mathbb{R}^n \) be a bounded domain and \(\mu_0 \) be a non-trivial finite positive Radon measure, and define \(d_\hat{\Omega} \) as before. The following conditions are equivalent:

(a) \(d_\hat{\Omega} \in L^1(\mu_0) \),
(b) there exists a weight \(w \in L^1(\Omega) \), \(w > 0 \) a.e., satisfying the conclusions of Theorem 2.3.
(c) there exists an integrable weight \(w \in L^1(\Omega) \), \(w > 0 \) a.e., yielding the following Poincaré inequality for all locally Lipschitz functions \(f \) on \(\hat{\Omega} \) belonging to \(L^1(\mu_0) \) whose local Lipschitz constant is bounded on \(\hat{\Omega} \):

\[
(2.5) \quad \int_\Omega |f(x) - f_\Omega| d\mu_0 \lesssim \int_\Omega |\nabla f| w,
\]

where \(f_\Omega := \frac{1}{\mu_0(\Omega)} \int_\Omega f d\mu_0 \).

Before starting, let us present the structure of the present paper by sketching how one can obtain the main theorems.
The proof of Theorem 2.3 goes as follows. Mainly, one first constructs a solution u to the equation $\text{div } u = \mu$ using a Bogovskiĭ-type representation formula inspired by [4] (and relying on a previous work by Bogovskiĭ [2]). The main idea is to represent u as an integral of the form

$$u(x) = \int_{\Omega} G(x, y) \, d\mu(y),$$

where $G(x, y)$ is a Bogovskiĭ-type kernel suitable for our problem, which satisfies growth estimates yielding the boundedness of u with respect to some integrable weight. We shall devote Section 3 to the construction of a solution u by means of such a representation formula, and to the study of the associated Bogovskiĭ-type kernel. Let us just mention for now that the definition of this kernel heavily relies on a system of paths, borrowed from [4], joining any point in Ω to a fixed one, in an almost “geodesic” fashion while remaining inside the given measurable cover of Ω we work in (namely, $\hat{\Omega}$). It is then a combination of routine approximation arguments, and subtle properties of the paths system, that the vector field u constructed using this approach satisfies the boundary conditions implicitly contained in (2.4), and even stronger ones; we devote Section 4 to studying those boundary issues.

Let us mention that equation (1.2), with a measure-valued right hand side, was widely studied in [8] in the whole space \mathbb{R}^n. To our best knowledge, the present work is the first time that a Bogovskiĭ-type approach is proposed to solve (1.2) in a bounded general domain.

As far as Theorem 2.5 is concerned, the equivalence of the three stated properties will follow from duality arguments and, roughly speaking, from applying (some version of) Poincaré’s inequality to the distance function $d_{\hat{\Omega}}$. Proving Theorem 2.5 will be the purpose of Section 5.

3. A Bogovskiĭ-type representation formula. Before we start describing the procedure announced in the introduction, we borrow from [4] the construction of a system of paths in $\hat{\Omega}$ which relies on a decomposition of $\hat{\Omega}$ into Whitney cubes.

Recall that \hat{d} denotes the distance function to the complement of $\hat{\Omega}$. As before, we fix $x_0 \in \Omega$ and denote by $d_{\hat{\Omega}}$ the geodesic distance, in $\hat{\Omega}$, to x_0. Dilating the whole setting by some factor around x_0, we may moreover assume (which will be useful later for computational purposes) that one has

$$(3.1) \quad B(x_0, 1) \subseteq \Omega \quad \text{and} \quad \hat{d}(x_0) \geq 15.$$

Applying the result in [4, p. 800] to the open set $\hat{\Omega}$ and to x_0, we get a family of paths in $\hat{\Omega}$ which enjoys a series of properties. This family will be used in the next section to solve the divergence equation by a Bogovskiĭ-type approach.
Lemma 3.1. For all \(y \in \hat{\Omega} \), there exists a rectifiable curve \(\gamma_y : [0, 1] \to \hat{\Omega} \) such that, writing \(\gamma(t, y) = \gamma_y(t) \), the following properties hold:

(a) for all \(y \in \hat{\Omega} \), \(\gamma(0, y) = y, \gamma(1, y) = x_0 \),
(b) \((t, y) \mapsto \gamma(t, y) \) is measurable,
(c) for all \(x, y \in \Omega \) and all \(r \leq \frac{1}{2} \hat{d}(x) \),

\(l(\gamma_y \cap B(x, r)) \lesssim r \) \hspace{1cm} (3.2)

and

\(l(\gamma_y) \lesssim d_\Omega(y) \), \hspace{1cm} (3.3)

(d) for all \(\varepsilon > 0 \) small enough, there exists \(\delta > 0 \) such that

\(\forall y \in \hat{\Omega}_\varepsilon, \gamma_y \subset \hat{\Omega}_\delta \).

We now introduce once and for all the weight that will be used throughout the paper. Let \(\mu_0 \) be a Radon measure on \(\Omega \). Assume that the geodesic distance to \(x_0 \) in \(\hat{\Omega} \), namely the function \(d_\hat{\Omega} \), satisfies (2.2). Define a function \(\omega \) on \(\Omega \) by

\[\omega(x) = \mu_0\left(\{ y \in \Omega : \text{there exists } t \in [0, 1] \text{ such that } |\gamma(t, y) - x| \leq \frac{1}{2} \hat{d}(x) \} \right) \] \hspace{1cm} (3.4)

We also define a localized \(^3\) version \(I_1 \mu_0 \) of the Riesz potential \(\mu_0 \) by letting, for \(x \in \Omega \),

\[I_1 \mu_0(x) := \int_\Omega |x - y|^{1-n} d\mu_0(y). \]

Define finally, for \(x \in \Omega \),

\[w_0(x) := I_1 \mu_0(x) + \omega(x) \hat{d}(x)^{-n+1}. \] \hspace{1cm} (3.5)

It is shown in [4] that, when \(\mu_0 = \mathcal{L}^n \) is the Lebesgue measure in \(\mathbb{R}^n \), one can actually work with the weight \(w_0(x) := \omega(x) \hat{d}(x)^{1-n} \).

The present section is devoted to proving Theorem 2.3 in the latter context by constructing a solution to the equation \(\text{div} u = \mu \) in \(L^\infty_1/w_0 \) satisfying (2.4) for all \(\varphi \in \mathcal{D}(\mathbb{R}^n) \) (recalling that this includes some mild boundary condition on \(u \)); we shall discuss in the next section how (2.4) can, in some cases, be extended to a larger class of test functions (hence yielding a stronger boundary condition on \(u \)).

Let us restate Theorem 2.3 by making \(w_0 \) explicit.

Proposition 3.2. Assume that \(\mu_0 \) is a nontrivial finite (positive) Radon measure in \(\Omega \) satisfying (2.2) and let \(w_0 \) be the weight defined by (3.5). Then:

(A) \(w_0 \in L^1(\Omega) \) and \(w_0(x) > 0 \) for almost every \(x \in \Omega \).

\(^3\) Note that, in contrast to the usual definition, we integrate over \(\Omega \) in the definition of \(I_1 \mu_0 \).
For all \(\kappa > 0 \), for any finite, signed Radon measure \(\mu \) in \(\Omega \) satisfying \(\mu(\Omega) = 0 \) and \(|\mu| \leq \kappa \mu_0 \), there exists a vector-valued function \(u \) satisfying the following two properties:

(i) for all \(\varphi \in \mathcal{D}(\mathbb{R}^n) \), one has

\[
\int_{\Omega} u \cdot \nabla \varphi = - \int_{\Omega} \varphi \, d\mu,
\]

so that in particular \(u \) solves weakly the equation \(\text{div} \, u = \mu \) in \(\Omega \);

(ii) for a.e. \(x \in \Omega \), one has

\[
|u(x)| \leq C\kappa|w_0(x)|,
\]

where \(C > 0 \) only depends on \(\Omega \) and the choice of the family \(\gamma \).

Before detailing our proof of the above proposition, let us present an example illustrating how working in a suitable measurable cover of \(\Omega \) can change drastically the behavior of the weight \(w_0 \) constructed above.

Example 3.3. Pick up a sequence \((h_k)_{k \in \mathbb{N}} \subseteq (0, 1)\) strictly decreasing to 0, let \(\varepsilon > 0 \) be small, and for \(k \in \mathbb{N} \) let

\[
L_k := \begin{cases}
[0, 1 - \varepsilon] \times \{h_k\} & \text{if } k \text{ is even}, \\
[\varepsilon, 1] \times \{h_k\} & \text{if } k \text{ is odd}.
\end{cases}
\]

Define \(\Omega := (0, 1)^2 \setminus \bigcup_{k \in \mathbb{N}} L_k \). For all \((x, y) \in \Omega\), consider the path \(\gamma_{(x,y)} \) represented in Figure 1 and observe that this family of paths satisfies all conditions stated in Lemma 3.1. For this example, take for \(\mu_0 \) the (two-dimensional) Lebesgue measure. Fix \((x_0, y_0)\) as in Figure 1 (with \(y_0 > h_0 \) and, say, \(0 < x_0 \) small), denote by \(d_\Omega(x, y) \) the geodesic distance from \((x, y)\) to \((x_0, y_0)\) in \(\Omega \), and let \(d(x, y) \) be the distance from \((x, y)\) to the boundary of \(\Omega \).

If \((x, y) \in \Omega\), there exists \(k \in \mathbb{N} \) such that \(h_{k+1} < y \leq h_k \). It is plain to see that

\[
d_\Omega(x, y) \lesssim k(1 - \varepsilon).
\]

Consequently,

\[
\int_{\Omega} d_\Omega(x, y) \, dx \, dy = \sum_{k \in \mathbb{N}} \int_{h_{k+1} < y \leq h_k} d_\Omega(x, y) \, dx \, dy
\]

\[
\lesssim (1 - \varepsilon) \sum_{k \in \mathbb{N}} k(h_k - h_{k+1}),
\]

which entails \(d_\Omega \in L^1(\Omega) \) (for the Lebesgue measure) provided that

\[
\sum_{k \in \mathbb{N}} k(h_k - h_{k+1}) < +\infty.
\]
Solvability of the divergence equation

For all k, denote by Q_k the set of points $(x, y) \in \Omega$ such that $\varepsilon < x < 1 - \varepsilon$ and

$$
\left| y - \frac{h_k + h_{k+1}}{2} \right| \leq \eta(h_k - h_{k+1})
$$

for $\eta > 0$ small enough (and independent of k). Then it is clear that, for all $(x, y) \in Q_k$, one has

$$
d(x, y) \leq h_k - h_{k+1}.
$$

Moreover, for all $(\tilde{x}, \tilde{y}) \in \Omega$ such that $\varepsilon < \tilde{x} < 1 - \varepsilon$ and $\tilde{y} \leq h_k$, the path $\gamma(\tilde{x}, \tilde{y})$ intersects the ball $B((x, y), \frac{1}{2}d(x, y))$. It follows that

$$
\omega(x, y) \geq h_k(1 - 2\varepsilon).
$$

As a consequence,

$$
(3.9) \quad w(x, y) \gtrsim \frac{h_k(1 - 2\varepsilon)}{h_k - h_{k+1}} = \frac{1 - 2\varepsilon}{1 - h_{k+1}/h_k}.
$$

Choosing, for instance, $h_k := 1/(k + 1)^3$ makes it obvious that (3.8) holds, and (3.9) shows that w is unbounded in Ω.

Fig. 1. The set $\Omega := (0, 1)^2 \setminus \bigcup_{k \in \mathbb{N}} L_k$
If, instead of Ω, we now consider $\tilde{\Omega} := (0, 1)^2$, which is obviously a measurable cover of Ω, then the associated weight, denoted \tilde{w}, satisfies $\tilde{d}(x, y) \lesssim \tilde{w}(x, y) \lesssim 1 + \tilde{d}(x, y)$, and is therefore bounded in Ω, where \tilde{d} denotes the distance to the boundary of $\tilde{\Omega}$.

The proof of Proposition 3.2 relies on several lemmata. The first one is an easy observation about w_0.

Lemma 3.4. Let w_0 be defined as before. Then:

1. For every $x \in \Omega$, $I_1 \mu_0(x) > 0$.
2. For all $p \in [1, \frac{n}{n-1})$, $I_1 \mu_0 \in L^p(\Omega)$. In particular, $I_1 \mu_0(x) < +\infty$ for almost every $x \in \Omega$.

Proof. That one has $I_1 \mu_0(x) > 0$ for every $x \in \Omega$ follows at once from the definition and the fact that μ_0 is nontrivial. Let now $p \in [1, \frac{n}{n-1})$, p' be defined by $1/p + 1/p' = 1$ and $g \in L^{p'}(\Omega)$ with $\|g\|_{p'} = 1$. Using Hölder’s inequality and Fubini’s theorem, one obtains

$$\left| \int_{\Omega} I_1 \mu_0(x) g(x) \, dx \right| = \left| \int_{\Omega} \left(\int_{\Omega} |x - y|^{-n} g(x) \, dx \right) \, d\mu_0(y) \right| \lesssim \left(\int_{B(0, 2 \text{ diam } \Omega)} |z|^{p(1-n)} \, dx \right)^{1/p} \mu_0(\Omega).$$

The second preparatory lemma provides the integrability of ω against some power of the distance function to $\mathbb{R}^n \setminus \tilde{\Omega}$.

Lemma 3.5. We have

$$\int_{\Omega} \omega(x) \tilde{d}(x)^{-n+1} \, dx < +\infty. \tag{3.10}$$

Proof. We follow the proof of [1] Lemma 2.3, indicating only the main differences. Let $x \in \Omega$. If $\tilde{d}(x) \geq 60/7$, then one has $\omega(x) \tilde{d}(x)^{-n+1} \leq C < +\infty$. We can therefore assume that $\tilde{d}(x) < 60/7$. In this case, let $y \in \Omega$ be such that there exists t_0 satisfying $|\gamma(t_0, y) - x| \leq \frac{1}{2} \tilde{d}(x)$.

Since we also have $15 - |x - x_0| \leq \tilde{d}(x) - |x - x_0| \leq \tilde{d}(x)$ (keeping in mind that (3.1) holds), we obtain

$$|\gamma(t_0, y) - x_0| \geq |x - x_0| - |x - \gamma(t_0, y)| \geq |x - x_0| - \frac{1}{2} \tilde{d}(x) \geq 15 - \frac{3}{2} \tilde{d}(x) \geq \frac{7}{4} \tilde{d}(x) - \frac{3}{2} \tilde{d}(x) = \frac{1}{4} \tilde{d}(x).$$

This implies that $x_0 \notin B(\gamma(t_0, y), \frac{1}{4} \tilde{d}(x))$ and hence that

$$\frac{1}{4} \tilde{d}(x) \leq l(\gamma_y \cap B(\gamma(t_0, y), \frac{1}{4} \tilde{d}(x)));$$

the rest of the proof is then virtually identical to that of [1] Lemma 2.3. ■
Proof of Proposition 3.2} Observe that (A) is an immediate consequence of Lemmata 3.4 and 3.5.

We give a constructive proof of (B) relying on ideas going back to Bogovski˘ı [2], which were extended to John domains in [11] and were further generalized to arbitrary domains in [4]. We here adapt to our context arguments from the proof of [4, Lemma 2.4], completing them at some specific points.

From now on let $B_0 := B(x_0, 1)$; it is clear by (3.1) that $\overline{B_0} \subseteq \Omega$. We choose a function $\chi \in \mathcal{D}(\Omega)$ supported in $\overline{B_0}$ and such that $\int_{\Omega} \chi(x) \, dx = 1$. For each $y \in \Omega \setminus \{x_0\}$, let $\tau(y)$ be the smallest $t > 0$ with $\gamma(t, y) \in \partial B(y, \frac{1}{2} \hat{d}(y))$ in the case where there exists a $t \in [0, 1]$ for which one has $\gamma(t, y) \in \partial B(y, \frac{1}{2} \hat{d}(y))$—call this “Case 1”—and let $\tau(y) = 1$ otherwise—call this “Case 2”. We define a function $t \mapsto \rho(t, y)$, $t \in [0, 1]$, by letting, in Case 1,

$$
\rho(t, y) = \begin{cases}
\alpha|y - \gamma(t, y)| & \text{if } t \leq \tau(y), \\
\frac{1}{d(x_0)} \hat{d}(\gamma(t, y)) & \text{if } t > \tau(y),
\end{cases}
$$

where α is so chosen that $\rho(\cdot, y)$ is a continuous function—this means that we have to take

$$
\alpha = \frac{2}{\hat{d}(x_0)} \frac{\hat{d}(\gamma(\tau(y), y))}{\hat{d}(y)}.
$$

In Case 2, we let, for $0 \leq t \leq 1$,

$$
\rho(t, y) := t.
$$

Claim 1. For all $t \in [0, 1]$ and all $z \in B_0$, we have

$$
\gamma(t, y) + \rho(t, y)(z - x_0) \in \hat{\Omega}.
$$

To prove this claim, it is enough to check that

(3.11) $$
\rho(t, y) \leq \frac{1}{5} \hat{d}(\gamma(t, y)).
$$

Observe that in Case 1, for $0 \leq t \leq \tau(y)$, we have $|y - \gamma(t, y)| \leq \frac{1}{2} \hat{d}(y)$, which implies $\rho(t, y) \leq \frac{\alpha}{2} \hat{d}(y)$ and, in turn, $\rho(t, y) \leq \alpha \hat{d}(\gamma(t, y))$, for it is clear that

$$
\hat{d}(y) \leq |y - \gamma(t, y)| + \hat{d}(\gamma(t, y)) \leq \frac{1}{2} \hat{d}(y) + \hat{d}(\gamma(t, y)),
$$

and hence also $\hat{d}(y) \leq 2 \hat{d}(\gamma(t, y))$. We then have $\hat{d}(\gamma(\tau(y), y)) \leq \hat{d}(y) + |\gamma(\tau(y), y) - y| = \frac{3}{2} \hat{d}(y)$, and hence also $\alpha \leq 1/5$. By construction this finally yields (3.11), and therefore Claim 1 in Case 1.

In Case 2, it is clear that $x_0 \in B(y, \frac{1}{2} \hat{d}(y))$; in particular this yields $|y - x_0| \leq \frac{1}{2} \hat{d}(y)$ and hence

$$
\hat{d}(y) \geq \hat{d}(x_0) - |y - x_0| \geq 15 - \frac{1}{2} \hat{d}(y),
$$

Solvability of the divergence equation
which implies \(\frac{3}{2} \hat{d}(y) \geq 15 \). But for \(0 \leq t \leq 1 \) also \(\gamma(t, y) \in B(y, \frac{1}{2} \hat{d}(y)) \) so that
\[
\hat{d}(\gamma(t, y)) \geq \hat{d}(y) - |y - \gamma(t, y)| \geq \hat{d}(y) - \frac{1}{2} \hat{d}(y) = \frac{1}{2} \hat{d}(y) \geq 5 \geq 5 \rho(t, y).
\]
This completes the proof of Claim 1.

Fix now \(\varphi \in \mathcal{D}(\mathbb{R}^n) \). Using the fact that \(m(\hat{\Omega} \setminus \Omega) = 0 \) and proceeding exactly as in the proof of [4, Lemma 2.4], we compute
\[
(3.12) \quad \int_{\Omega} \varphi \, d\mu = - \int_{\Omega} \int_{\Omega} G(x, y) \cdot \nabla \varphi(x) \, dx \, d\mu(y),
\]
where \(G(x, y) \) is defined as follows for \(x, y \in \Omega, \ x \neq y \):
\[
(3.13) \quad G(x, y) := \int_{0}^{1} \left[\dot{\gamma}(t, y) + \dot{\rho}(t, y) \frac{x - \gamma(t, y)}{\rho(t, y)} \right] \chi \left(x_0 + \frac{x - \gamma(t, y)}{\rho(t, y)} \right) \frac{dt}{\rho(t, y)^{n}}.
\]

Lemma 3.6. For a.e. \(x \in \Omega \) and \(\mu \)-a.e. \(y \in \Omega \), \(G(x, y) \) is well defined and
\[
\int_{\Omega} |G(x, y)| \, d|\mu|(y) \lesssim \kappa w_0(x).
\]

Proof. Note first that the integrand in \(G(x, y) \) vanishes unless \(|x - \gamma(t, y)| < \rho(t, y) \). We now let \(\Omega' := \{ y \in \Omega : \tau(y) < 1 \} \) and, as in the proof of [4, Lemma 2.5], for \(y \in \Omega' \) we write

\[
G(x, y) = G_1(x, y) + G_2(x, y)
\]

with
\[
G_1(x, y) = \int_{0}^{\tau(y)} \left[\dot{\gamma}(t, y) - \left(\frac{\dot{\gamma}(t, y) \cdot (y - \gamma(t, y))}{|y - \gamma(t, y)|^2} \right) (x - \gamma(t, y)) \right] \chi \left(x_0 + \frac{x - \gamma(t, y)}{\alpha |y - \gamma(t, y)|} \right) \frac{1}{\alpha^n |y - \gamma(t, y)|^n} \, dt
\]
and
\[
(3.14) \quad G_2(x, y) = \int_{\tau(y)}^{1} \left[\dot{\gamma}(t, y) + \dot{\gamma}(t, y) \cdot \nabla \hat{d}(\gamma(t, y)) \right] \frac{x - \gamma(t, y)}{\hat{d}(\gamma(t, y))} \chi \left(x_0 + \frac{x - \gamma(t, y)}{\hat{d}(x_0) \hat{d}(\gamma(t, y))} \right) \frac{[\hat{d}(x_0)]^n}{\hat{d}(\gamma(t, y))^n} \, dt.
\]

Proceeding as in the proof of [4, Lemma 2.5], we get the following estimate for \(x, y \in \Omega \):
\[
|G_1(x, y)| \leq C|x - y|^{-n+1}.
\]
Hence
\[
\int_{\Omega'} |G_1(x, y)| \, d|\mu|(y) \leq C \kappa I_1 \mu_0(x).
\]

Following once more the proof of [4, Lemma 2.5], we also show that
\[
\int_{\Omega'} |G_2(x, y)| \, d|\mu|(y) \leq C \kappa \omega(x) \hat{d}(x)^{-n+1},
\]
and gathering (3.15) and (3.16) yields
\[
\int_{\Omega'} |G(x, y)| \, d|\mu|(y) \leq C \kappa w_0(x)
\]
for a.e. \(x \in \Omega\).

If we now fix \(y \in \Omega \setminus \Omega'\) (meaning that we are in Case 2), we compute
\[
\gamma(t, y) = y + t(x_0 - y), \quad \gamma(t, y) + \rho(t, y)(z - x_0) = y + t(z - y), \quad \dot{\gamma}(t, y) = x_0 - y \quad \text{and} \quad \dot{\rho}(t, y) = 1.
\]
Hence from (3.13) we get
\[
G(x, y) = \frac{1}{0} \int_{\frac{x - y}{t}} x - y t \cdot \chi(y + \frac{x - y}{t}) \, dt \, t^n.
\]
Yet in order for the integrand in the above integral to be nonzero, we should have \(y + \frac{x - y}{t} \in B_0\), implying in particular that
\[
\left| y + \frac{x - y}{t} - x_0 \right| < 1.
\]
We hence compute
\[
\left| \frac{x - y}{t} \right| \leq 1 + |x_0 - y| \leq 1 + \text{diam } \Omega.
\]
Letting \(c := (1 + \text{diam } \Omega)^{-1}\), we get in particular \(t \geq c|x - y|\), hence also
\[
|G(x, y)| \leq \frac{1}{c|x - y|} \int_{\frac{x - y}{t}} t^n \leq \frac{c^{1-n}}{1-n} |x - y|^{-n+1} \leq C |x - y|^{-n+1}.
\]
Integrating over \(\Omega \setminus \Omega'\), we get
\[
\int_{\Omega \setminus \Omega'} |G(x, y)| \, d|\mu|(y) \leq C \kappa I_1 \mu_0(x) \leq C \kappa w_0(x).
\]
According to (3.17) and (3.18), we have shown that
\[
\int_{\Omega} |G(x, y)| \, d|\mu|(y) = \int_{\Omega'} |G(x, y)| \, d|\mu|(y) + \int_{\Omega \setminus \Omega'} |G(x, y)| \, d|\mu|(y) \leq C \kappa w_0(x),
\]
which concludes the proof of Lemma 3.6.
As in [4], we define u by

$$u(x) = \int_{\Omega} G(x, y) \, d\mu(y),$$

which is well defined by Lemma 3.6, and we have, for a.e. $x \in \Omega$,

(3.20) \quad |u(x)| \leq C \kappa w_0(x),

which is exactly (3.7). It then follows from (3.12) and Fubini’s theorem, which we may apply thanks to Lemmata 3.5 and 3.6, that we have, for any $\varphi \in D(\mathbb{R}^n)$,

(3.21) \quad \int_{\Omega} u \cdot \nabla \varphi = - \int_{\Omega} \varphi \, d\mu,

which is (3.6).

Remark 3.7. In the context of the preceding proof, assume moreover that, for some $\varepsilon > 0$, μ_0 satisfies $\mu_0(B(x, r)) \lesssim r^{n-1+\varepsilon}$ for all $x \in \Omega$ and all $0 < r < \hat{d}(x)$. Then one can compute, for $x \in \Omega$ (writing $C > 0$ for a constant such that $G_1(x, y)$ vanishes unless $|x - y| \leq C\hat{d}(x)$, see [4, p. 804]),

$$\int_{|y-x| \leq C\hat{d}(x)} \frac{1}{|x-y|^{n-1}} \, d\mu_0(y) \leq \sum_{k=0}^{\infty} \int_{2^{-k-1}C\hat{d}(x) < |y-x| \leq 2^{-k}C\hat{d}(x)} \frac{1}{|x-y|^{n-1}} \, d\mu_0(y).$$

Yet for $k \in \mathbb{N}$ we have

$$\int_{2^{-k-1}C\hat{d}(x) < |y-x| \leq 2^{-k}C\hat{d}(x)} \frac{1}{|x-y|^{n-1}} \, d\mu_0(y) \leq (2^{-k-1}C\hat{d}(x))^{1-n} \mu_0[B(x, 2^{-k}C\hat{d}(x))] \lesssim 2^{n-1} C^\varepsilon 2^{-ke} [\hat{d}(x)]^\varepsilon.$$

It follows that

$$\int_{\Omega} G_1(x, y) \, d\mu_0(y) \lesssim C_\varepsilon [\hat{d}(x)]^\varepsilon,$$

and that one could hence prove Proposition 3.2 with a weight of the form $w_0(x) = \omega(x)[\hat{d}(x)]^{1-n} + C_\varepsilon [\hat{d}(x)]^\varepsilon$.

We now examine how (3.21) can, in some cases, be extended to a wider class of test functions—hence extending, in some sense, the mild “boundary condition” appearing in (3.6) (see Remark 2.4 above).

4. Extending the boundary condition. Let us start by denoting by \mathcal{G} the space of all locally integrable functions f on $\hat{\Omega}$ having a weak gradient
in \(\tilde{\Omega} \) and such that, for all \(\delta > 0 \), there exists \(r > n \) (depending on \(\delta \)) such that \(|\nabla f| \in L^r(\tilde{\Omega}_\delta) \). Now define a space \(\mathcal{E} \) by
\[
(4.1) \quad \mathcal{E} := \{ f \in \mathcal{G} : f \in L^1(\mu_0) \text{ and } |\nabla f|w_0 \in L^1(\Omega) \}.
\]
It will be shown in this section that, under the assumptions of Theorem 2.3 [2.4], can be extended to test functions in \(\mathcal{G} \).

Remark 4.1. Let us immediately make three straightforward observations:

(i) The integrability condition on \(|\nabla f| \) in each \(\tilde{\Omega}_\delta \) readily implies that any \(f \in \mathcal{G} \) is bounded and continuous on \(\tilde{\Omega}_\delta \) for all \(\delta > 0 \); in particular \(f \) has to be continuous on \(\tilde{\Omega} \). Moreover, it is clear that \(\mathcal{G} \) contains the space of all locally Lipschitz functions in \(\tilde{\Omega} \) with bounded Lipschitz constant on \(\tilde{\Omega} \).

(ii) The space \(\mathcal{E} \) defined above obviously contains the space of all locally Lipschitz functions \(f \) on \(\tilde{\Omega} \) with bounded local Lipschitz constant and satisfying \(f \in L^1(\mu_0) \).

(iii) Finally, observe that both \(\mathcal{E} \) and \(\mathcal{G} \) are vector spaces enjoying the property that for any \(f \in \mathcal{E} \) (resp. \(f \in \mathcal{G} \)) one has \(f_+, f_-, |f| \in \mathcal{E} \) (resp. \(f_+, f_-, |f| \in \mathcal{G} \)) and \(\max(|\nabla f_+|, |\nabla f_-|, |\nabla f||) \leq |\nabla f| \) a.e. in \(\Omega \) (with respect to Lebesgue’s measure).

We now turn to proving the following improvement of Theorem 2.3.

Theorem 4.2. Assume that \(\mu_0 \) is a nontrivial finite (positive) Radon measure in \(\Omega \) satisfying (2.2) and let \(w_0 \) be the weight defined by (3.5) so that it satisfies properties (A) and (B) in Proposition 3.2. Given a (signed) Radon measure \(\mu \) on \(\Omega \) satisfying \(\mu(\Omega) = 0 \) and \(|\mu| \leq \kappa \mu_0 \) for some \(\kappa > 0 \), let also \(u \in L^\infty_{/w_0} \) be the solution of \(\text{div } v = \mu \) constructed in Proposition 3.2, so that \(|u| \leq C\kappa w_0 \) a.e. on \(\Omega \), where \(C > 0 \) is independent of \(\kappa, \mu \) and \(\mu_0 \).

Then, for all \(g \in \mathcal{E} \),
\[
(4.2) \quad \int_{\Omega} u \cdot \nabla g = - \int_{\Omega} g \, d\mu.
\]

Proof. Given \(\varepsilon > 0 \), define a signed Radon measure \(\mu_\varepsilon \) on \(\Omega \) by \(\mu_\varepsilon(A) := \mu(A \cap \tilde{\Omega}_\varepsilon) \) for all \(A \subset \Omega \) (that is, \(\mu_\varepsilon \) is the restriction of \(\mu \) to \(\Omega \cap \tilde{\Omega}_\varepsilon \)). We have in particular \(|\mu_\varepsilon| \leq |\mu| \leq \kappa \mu_0 \), so by Proposition 3.2 if
\[
u_\varepsilon(x) := \int_{\Omega} G(x, y) \chi_{\tilde{\Omega}_\varepsilon \cap \Omega}(y) \, d\mu(y),
\]
then \(|\nu_\varepsilon| \leq C\kappa w_0 \) as well as
\[
\int_{\Omega} \nu_\varepsilon \cdot \nabla \varphi = - \int_{\Omega} \varphi \, d\mu_\varepsilon
\]
for all \(\varphi \in \mathcal{D}(\mathbb{R}^n) \).
We shall show in a moment that for any \(g \in \mathcal{E} \) one has
\[
\int_{\Omega} u_\varepsilon \cdot \nabla g = - \int_{\Omega} g \, d\mu_\varepsilon.
\]

Let us first show how the latter equality will imply \((4.2)\). To this end, fix \(g \in \mathcal{E} \) and observe, on the one hand, that for all \(x \in \Omega \) one has
\[
|u(x) - u_\varepsilon(x)| \leq \int_{\Omega} |G(x, y)||1 - \chi_{\Omega \cap \hat{\Omega}_\varepsilon}(y)| \, d|\mu|(y).
\]
Since \(\lim_{\varepsilon \to 0} \chi_{\Omega \cap \hat{\Omega}_\varepsilon}(y) = 1 \), inequality \((3.19)\) and the Lebesgue dominated convergence theorem ensure that \(u_\varepsilon \) converges a.e. to \(u \) as \(\varepsilon \to 0 \). Writing then, a.e. on \(\Omega \),
\[
|u_\varepsilon \cdot \nabla g| \leq C_\kappa w_0 |\nabla g| \in L^1(\Omega),
\]
and using the Lebesgue dominated convergence theorem again, we see that
\[
\int_{\Omega} u_\varepsilon \cdot \nabla g \to \int_{\Omega} u \cdot \nabla g
\]
as \(\varepsilon \to 0 \). On the other hand, observe using the Lebesgue dominated convergence theorem once more (recall that \(g \in L^1(\mu) \) by definition of \(\mathcal{E} \)) that
\[
\left| \int_{\Omega} g \, d\mu - \int_{\Omega} g \, d\mu_\varepsilon \right| \leq \int_{\Omega} |g| \, |1 - \chi_{\Omega \cap \hat{\Omega}_\varepsilon}| \, d|\mu| \to 0
\]
as \(\varepsilon \to 0 \). Combining the last two facts with \((4.3)\) then yields \((4.2)\).

We now turn to the proof of \((4.3)\). To that purpose, fix \(g \in \mathcal{E} \), let \((\rho_k) \subseteq \mathcal{D}(\mathbb{R}^n) \) be an approximate identity satisfying \(\text{supp} \rho_k \subseteq B(0, 2^{-k}) \) for all \(k \) and define
\[
\varphi_k := \rho_k * (g \chi_k) \in \mathcal{D}(\mathbb{R}^n),
\]
where \(\chi_k := \chi_{\hat{\Omega}_{2^{-k}}} \) and \(g \) is extended by 0 outside \(\Omega \), this convolution being well defined on the whole space, smooth since \(\rho_k \) is smooth, and having compact support since \(\Omega \) is bounded. We hence have for each \(k \), according to Proposition \(3.2\)
\[
\int_{\Omega} u_\varepsilon \cdot \nabla \varphi_k = - \int_{\Omega} \varphi_k \, d\mu_\varepsilon.
\]
Since \(g \) is continuous in \(\hat{\Omega} \), it is clear, moreover, that \(\varphi_k \) converges uniformly to \(g \) on \(\hat{\Omega}_\varepsilon \). Hence
\[
\lim_{k \to \infty} \int_{\Omega} \varphi_k \, d\mu_\varepsilon = \lim_{k \to \infty} \int_{\Omega \cap \hat{\Omega}_\varepsilon} \varphi_k \, d\mu = \int_{\Omega \cap \hat{\Omega}_\varepsilon} g \, d\mu = \int_{\Omega} g \, d\mu_\varepsilon.
\]

On the other hand, let \(\delta > 0 \) be associated to \(\varepsilon \) according to Lemma \(3.1\)(d). We claim that \(u_\varepsilon = 0 \) outside \(\Omega \cap \hat{\Omega}_\delta \). Indeed, if \(u_\varepsilon(x) \neq 0 \) for some \(x \in \Omega \), there exists \(y \in \Omega \cap \hat{\Omega}_\varepsilon \) such that \(G(x, y) \neq 0 \). Therefore, there exists \(t \in [0, 1] \)
such that $|x - \gamma(t, y)| \leq \rho(t, y) \leq \frac{1}{5} \hat{d}(\gamma(t, y))$. This implies that
\[
\hat{d}(x) \geq \hat{d}(\gamma(t, y)) - |x - \gamma(t, y)| \geq \hat{d}(\gamma(t, y)) - \frac{1}{5} \hat{d}(\gamma(t, y)) \geq \frac{4}{5} \delta > \frac{2}{3} \delta.
\]

This means that $x \in \hat{\Omega}_{2\delta/3}$.

Observe now that if $x \in \hat{\Omega}_{2\delta/3}$ and $k \in \mathbb{N}$ satisfying $2^{-k} < \frac{1}{3} \delta$ are given, one gets
\[
\hat{d}(y) \geq \hat{d}(x) - |x - y| \geq \frac{2}{3} \delta - 2^{-k} > \frac{1}{3} \delta > 2^{-k};
\]
it hence follows that $\varphi_k(x) = \rho_k \ast g(x)$ for all such x and k. Since g has a weak gradient in $\hat{\Omega}$, we also have, for the same x and k,
\[
(4.6) \quad \nabla \varphi_k = \rho_k \ast \nabla g.
\]

Using the latter facts, one computes
\[
\left| \int_{\Omega} u_\varepsilon \cdot \nabla \varphi_k - \int_{\Omega} u_\varepsilon \cdot \nabla g \right| \leq C \kappa \int_{\hat{\Omega}_{2\delta/3}} |\nabla \varphi_k - \nabla g| w_0
\]
(recall that for the Lebesgue measure, it does not matter if one integrates over $\hat{\Omega}_{2\delta/3}$ or $\Omega \cap \hat{\Omega}_{2\delta/3}$). Now since $g \in \mathcal{E}$, there exists $r > n$ for which one has $\nabla g \in L^r(\hat{\Omega}_{2\delta/3})$. Using Hölder’s inequality and (4.6), for $1 < r' < \frac{n}{n-1}$ satisfying $1/r + 1/r' = 1$ we have
\[
\int_{\hat{\Omega}_{2\delta/3}} |\nabla \varphi_k - \nabla g| w_0 \leq \|w_0\|_{L^{r'}(\hat{\Omega}_{2\delta/3})} \|\nabla g - \rho_k \ast \nabla g\|_{L^r(\hat{\Omega}_{2\delta/3})}.
\]

Yet using Lemma 3.4 and the fact that for $x \in \hat{\Omega}_{2\delta/3}$ one has
\[
\omega(x) \hat{d}(x)^{1-n} \leq \left(\frac{2}{3} \delta\right)^{1-n} \mu_0(\Omega),
\]
we see that $\|w_0\|_{L^{r'}(\hat{\Omega}_{2\delta/3})} < +\infty$; since the sequence $(\rho_k \ast \nabla g)$ converges in $L^r(\hat{\Omega}_{2\delta/3})$ to ∇g, we hence see that
\[
\lim_{k \to \infty} \int_{\Omega} u_\varepsilon \cdot \nabla \varphi_k = \int_{\Omega} u_\varepsilon \cdot \nabla g,
\]
which, combined with (4.4) and (4.5), finishes the proof of (4.3).

We now come to prove the equivalence of the solvability of (1.1) and some versions of Poincaré inequalities.

5. Equivalence between the solvability of (1.1) and some Poincaré inequalities. This section is devoted to the equivalence between the solvability of (1.1) and some versions of Poincaré inequalities. Let $w \in L^1(\Omega)$ be a positive weight. We define spaces \mathcal{E} and \mathcal{G} as at the beginning of Section 4, using the weight w instead of w_0.

DEFINITION 5.1.

(1) Say that (P₁) holds if there exists \(C > 0 \) such that, for all \(f \in \mathcal{E} \),

\[
(P₁) \quad \int_{\Omega} |f(x) - f_\Omega| \, d\mu_0 \leq C \int_{\Omega} |\nabla f| w,
\]

where \(f_\Omega := \frac{1}{\mu_0(\Omega)} \int_{\Omega} f(x) \, d\mu_0(x) \).

(2) Say that \((P₄)\) holds if there exists \(C > 0 \) such that, for all \(f \in \mathcal{G} \) such that \(E := \{f = 0\} \) satisfies \(\mu_0(E) > 0 \), one has

\[
(P₄) \quad \int_{\Omega} |f(x)| \, d\mu_0 \leq C \left(1 + \frac{\mu_0(\Omega)}{\mu_0(E)}\right) \int_{\Omega} |\nabla f| w,
\]

where it is understood that the finiteness of the right hand side of the inequality implies that \(f \in L^1(\mu_0) \).

We first observe that, given a weight \(w \), \((P₁)\) and \((P₄)\) are equivalent:

PROPOSITION 5.2. Let \(w \in L^1(\Omega) \) be a positive weight in \(\Omega \). Then:

(1) \((P₁)\) and \((P₄)\) are equivalent.

(2) If \((P₁)\) or \((P₄)\) holds, then for all \(f \in \mathcal{G} \) with \(|\nabla f| w \in L^1(\Omega) \), one has \(f \in L^1(\mu_0) \).

Proof. Assume first that \((P₁)\) holds. We start by checking \((P₄)\) for functions \(f \in \mathcal{E} \) such that the set \(E := \{f = 0\} \) satisfies \(\mu_0(E) > 0 \). Note that in this case,

\[
|f_\Omega| = \frac{1}{\mu_0(\Omega)} \int_{E} |f - f_\Omega| \, d\mu_0 \leq \frac{1}{\mu_0(E)} \int_{\Omega} |f - f_\Omega| \, d\mu_0,
\]

which entails

\[
(\text{5.1}) \quad \int_{\Omega} |f| \, d\mu_0 \leq \int_{\Omega} |f - f_\Omega| \, d\mu_0 + |f_\Omega| \mu_0(\Omega) \lesssim \left(1 + \frac{\mu_0(\Omega)}{\mu_0(E)}\right) \int_{\Omega} |\nabla f| w.
\]

Fix now \(f \in \mathcal{G} \) with \(|\nabla f| w \in L^1(\Omega) \), let \(E := \{f = 0\} \) and assume that \(\mu_0(E) > 0 \). For all \(N \geq 1 \), define

\[
f_N = \max(-N, \min(f, N)),
\]

which still belongs to \(\mathcal{G} \) with \(|\nabla f_N| \leq |\nabla f| \) almost everywhere in \(\Omega \) (for the Lebesgue measure); hence we get \(f_N \in \mathcal{E} \). Since \(\mu_0(\{f_N = 0\}) \geq \mu_0(E) > 0 \), \((P₄)\) applied to \(f_N \in \mathcal{E} \) shows that

\[
\int_{\Omega} |f_N(x)| \, d\mu_0 \lesssim \left(1 + \frac{\mu_0(\Omega)}{\mu_0(E)}\right) \int_{\Omega} |\nabla f_N| w \leq \left(1 + \frac{\mu_0(\Omega)}{\mu_0(E)}\right) \int_{\Omega} |\nabla f| w,
\]

and since \(f_N(x) \to f(x) \) for all \(x \in \Omega \), the Fatou lemma proves \(f \in L^1(\mu_0) \), and \((P₄)\) holds.
Assume now that $[P^*_1]$ holds for all $f \in \mathcal{G}$ with $\mu_0(\{f = 0\}) > 0$. That $[P_1]$ holds for all functions $f \in \mathcal{E}$ can be proved as in [4, Section 3.2].

Assume finally that $[P^*_1]$ holds and let $f \in \mathcal{G}$ be nonnegative with $|\nabla f|_w \in L^1(\Omega)$. Since f is continuous in $\hat{\Omega}$, there exists $t_0 \geq 0$ with $\mu_0(\{f \leq t_0\}) > 0$. Define now $\tilde{f} = (f - t_0)_+$. It is plain to see that $f \in L^1(\mu_0)$ if and only if $\tilde{f} \in L^1(\mu_0)$. Since $\tilde{f} \in \mathcal{G}$, and since $|\nabla \tilde{f}| \leq |\nabla f|$ and $\mu_0(\{\tilde{f} = 0\}) > 0$, $[P^*_1]$ applied to \tilde{f} shows that $\tilde{f} \in L^1(\mu_0)$, so that the same is true for f. In the general case, apply this conclusion to f^+ and f^-. ■

Remark 5.3. It follows from the preceding proof that having inequality $[P_1]$ for all locally Lipschitz functions on $\hat{\Omega}$ with bounded Lipschitz constants in Ω and belonging to $L^1(\mu_0)$ is equivalent to $[P^*_1]$ holding for locally Lipschitz functions in $\hat{\Omega}$ whose local Lipschitz constant is bounded in $\hat{\Omega}$.

The following statement somewhat makes precise the statement of Theorem 2.5 given in the introduction. We keep the notations of Section 4.

Theorem 5.4. Let Ω and μ_0 be as in the statement of Theorem 2.3 and define $d_{\hat{\Omega}}$ as before. The following conditions are equivalent:

(a) $d_{\hat{\Omega}} \in L^1(\mu_0)$,
(b) there exists a weight $w \in L^1(\Omega)$, $w > 0$ a.e., satisfying the conclusions of Theorem 2.3,
(c) there exists a weight $w \in L^1(\Omega)$, $w > 0$ a.e., yielding either $[P_1]$ or $[P^*_1]$.

Remark 5.5. As the proof (combined with Remark 5.3) will show, all these statements are also equivalent to the following ones:

(c') there exists a weight $w \in L^1(\Omega)$, $w > 0$ a.e., yielding $[P_1]$ for all bounded locally Lipschitz functions in $\hat{\Omega}$ whose local Lipschitz constant is bounded in $\hat{\Omega}$;
(c'') there exists a weight $w \in L^1(\Omega)$, $w > 0$ a.e., yielding $[P^*_1]$ for all locally Lipschitz functions in $\hat{\Omega}$ whose local Lipschitz constant is bounded in $\hat{\Omega}$.

Proof of Theorem 5.4. That (a) implies (b) was established in Theorem 2.3, since one can take $w = w_0$ where w_0 is defined in (3.5). Assume now that (b) holds and pick $g \in L^\infty(\Omega, \mu_0)$ with $\|g\|_\infty \leq 1$. By (b) and Theorem 4.2, there exists a vector-valued function u in Ω satisfying the following conditions:

(i) $\int_{\Omega} u \cdot \nabla h = -\int_{\Omega} (g - g_{\Omega}) h \, d\mu_0$ for all $h \in \mathcal{E}$,
(ii) $\|u/w\|_\infty \lesssim 1$.

It follows that for any $f \in \mathcal{E}$, we have
\[
\left| \int_{\Omega} (f - f_\Omega) g \, d\mu_0 \right| = \left| \int_{\Omega} (f - f_\Omega)(g - g_\Omega) \, d\mu_0 \right| = \left| \int_{\Omega} u \cdot \nabla f \right| \lesssim \int_{\Omega} |\nabla f| \, w,
\]
which yields (P_1), and hence also (P_1') by Proposition 5.2.

Assume now (c). Since $\mu_0(\Omega) > 0$, there exist $y_0 \in \Omega$ and $r_0 > 0$ such that $B(y_0, r_0) \subset \Omega$ and $\mu_0(B(y_0, r_0)) > 0$. Denoting by $d'_{\hat{\Omega}}$ the geodesic distance to y_0 in $\hat{\Omega}$, we observe that $d'_{\hat{\Omega}}$ is locally Lipschitz on $\hat{\Omega}$ with local Lipschitz constant less than 1, meaning in particular that $d'_{\hat{\Omega}} \in \mathcal{G}$. As a consequence of (P_1') applied to $f := (d'_{\hat{\Omega}} - r_0)_+$, we then get
\[
\int_{\Omega} f \, d\mu_0 \lesssim \int_{\Omega} |\nabla f| \, w \leq \int_{\Omega} w < +\infty,
\]
which yields the integrability of $d'_{\hat{\Omega}}$ with respect to μ_0, hence (a) since condition (2.2) is independent of the choice of x_0. ■

Remark 5.6. Observe that, as indicated in Remark 5.5, the proof of the fact that (c) implies (a) has only used (P_1') for the function $(d'_{\hat{\Omega}} - r_0)_+$, which is locally Lipschitz in $\hat{\Omega}$ and has a local Lipschitz constant bounded by 1 on $\hat{\Omega}$.

Remark 5.7. Assume that the weight $w \in L^1(\Omega)$, $w > 0$ a.e., yields a Poincaré inequality (P_1). It then follows from Theorem 5.4 that $d'_{\hat{\Omega}} \in L^1(\Omega)$, and hence there exists a (perhaps different) weight $\tilde{w} \in L^1(\Omega)$, $\tilde{w} > 0$ a.e. (one can take $\tilde{w} = w_0$ as in (3.5)) yielding the solvability, for any (signed) Radon measure μ in Ω satisfying $\mu(\Omega) = 0$ and $|\mu| \leq \kappa \mu_0$, of problem (1.1) by some vector field u satisfying $\|u/\tilde{w}\|_\infty \leq C\kappa$. As the following abstract reasoning shows, one can in fact take $\tilde{w} = w$.

Suppose indeed that $w \in L^1(\Omega)$, $w > 0$ a.e., yields (P_1). Fix $\kappa > 0$ and let μ be a (signed) Radon measure in Ω satisfying $\mu(\Omega) = 0$ and $|\mu| \leq \kappa \mu_0$.

Introduce the spaces $L^1_w(\Omega, \mathbb{R}^n)$, consisting of all measurable vector fields u satisfying $|u|w \in L^1(\Omega)$ (endowed with $\|u\|_{L^1_w} := \|u w\|_1$), and $L^\infty_w(\Omega, \mathbb{R}^n)$, consisting of all measurable vector fields u satisfying $|u| w \in L^\infty(\Omega)$ (endowed with $\|u\|_{L^\infty_w(\Omega)} := \|u/\tilde{w}\|_\infty$). We also introduce the auxiliary space
\[
\mathcal{F} := \{ v \in L^1_w(\Omega, \mathbb{R}^n) : \text{there exists } g \in \mathcal{E} \text{ with } v = \nabla g \text{ a.e. in } \Omega \},
\]
which is a subspace of $L^1_w(\Omega, \mathbb{R}^n)$. For all $v \in \mathcal{F}$ define
\[
T(v) := - \int_{\Omega} g \, d\mu
\]
if $v = \nabla g$ a.e. on Ω with $g \in \mathcal{E}$, and observe that this is unambiguous due to the fact that if $h \in \mathcal{E}$ satisfies $\nabla h = 0$ a.e., then it is constant on Ω, so that $\int_{\Omega} h \, d\mu = 0$ (recall that $\mu(\Omega) = 0$).
Using \([P_1]\), for \(v \in \mathcal{F}\) and \(g \in \mathcal{E}\) satisfying \(v = \nabla g\) a.e. on \(\Omega\) we compute

\[
|T(v)| = \left| \int_{\Omega} (g - g_\Omega) \, d\mu \right| \leq \kappa \int_{\Omega} |g - g_\Omega| \, d\mu_0 \lesssim \kappa \int_{\Omega} |\nabla g| \, w = \kappa \|v\|_{L^1_w(\Omega)}.
\]

Hence by the Hahn–Banach theorem \(T\) extends to a bounded linear operator on \(L^1_{w}(\Omega, \mathbb{R}^n)\). There thus exists \(u \in L^\infty_{1/w}(\Omega, \mathbb{R}^n)\) satisfying \(\|u\|_{L^\infty_{1/w}(\Omega)} = \|T\| \lesssim \kappa\) such that

\[
T(v) = \int_{\Omega} u \cdot v \quad \text{for all } v \in L^1_{w}(\Omega, \mathbb{R}^n).
\]

This implies, for any \(g \in \mathcal{E}\),

\[
\int_{\Omega} u \cdot \nabla g = T(\nabla g) = -\int_{\Omega} g \, d\mu,
\]

and hence we see that the weight \(w\) allows the existence of a solution \(u \in L^\infty_{1/w}(\Omega)\) to the equation \(\text{div } v = \mu\) satisfying the required estimate.

Acknowledgements. Laurent Moonens and Emmanuel Russ would like to acknowledge the support of the French ANR project “RAGE” (ANR-18-CE40-0012), which partially supported Laurent Moonens’ scientific visits to the Institut Fourier (Grenoble) during the preparation of the current work. Both authors are also grateful to the anonymous referees for their careful reading of the paper, and their remarks.

References

[1] G. Acosta, R. G. Durán and M. A. Muschietti, *Solutions of the divergence operator on John domains*, Adv. Math. 206 (2006), 373–401.

[2] M. E. Bogovski˘ı, *Solution of the first boundary value problem for the equation of continuity of an incompressible medium*, Soviet Math. Dokl. 20 (1979), 1094–1098.

[3] J. Bourgain and H. Brezis, *On the equation div \(Y = f\) and application to control of phases*, J. Amer. Math. Soc. 16 (2003), 393–426.

[4] R. Duran, M.-A. Muschietti, E. Russ and P. Tchamitchian, *Divergence operator and Poincaré inequalities on arbitrary bounded domains*, Complex Var. Elliptic Equations 55 (2010), 795–816.

[5] L. C. Evans and R. F. Gariepy, *Measure Theory and Fine Properties of Functions*, CRC Press, 1992.

[6] D. H. Fremlin, *Measure Theory*, Vol. 1, Torres Fremlin, 2000.

[7] L. Grafakos, *Classical Fourier Analysis*, 2nd ed., Springer, 2008.

[8] N. C. Phuc and M. Torres, *Characterizations of the existence and removable singularities of divergence-measure vector fields*, Indiana Univ. Math. J. 57 (2008), 1573–1597.
Laurent Moonens
Université Paris-Saclay
CNRS UMR 8628
Laboratoire de mathématiques d’Orsay
Bâtiment 307
F-91405 Orsay Cedex, France
and
École Normale Supérieure
PSL University
Département de Mathématiques et Applications
CNRS UMR 8553
45 rue d’Ulm
F-75230 Paris Cedex 05, France
E-mail: Laurent.Moonens@universite-paris-saclay.fr
Laurent.Moonens@ens.fr

Emmanuel Russ
Université Grenoble Alpes
Institut Fourier
CNRS UMR 5582
100 rue des maths
F-38610 Gières, France
E-mail: Emmanuel.Russ@univ-grenoble-alpes.fr