Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting

Fengmei Wang,†a,b Tofik Ahmed Shifa,†a,b Xueying Zhan,†a Yun Huang,a,b Kaili Liu,a,b Zhongzhou Cheng,a Chao Jiangc and Jun He*†

The desire for sustainable and clean energy future continues to be the concern of the scientific community. Researchers are incessantly targeting the development of scalable and abundant electro- or photo-catalysts for water splitting. Owing to their suitable band-gap and excellent stability, an enormous amount of transition-metal dichalcogenides (TMDs) with hierarchical nanostructures have been extensively explored. Herein, we present an overview of the recent research progresses in the design, characterization and applications of the TMD-based electro- or photo-catalysts for hydrogen and oxygen evolution. Emphasis is given to the layered and pyrite-phase structured TMDs encompassing semiconducting and metallic nanomaterials. Illustrative results and the future prospects are pointed out. This review will provide the readers with insight into the state-of-the-art research progresses in TMD based nanomaterials for water splitting.

1. Introduction

The development of viable and renewable energy is an inevitable issue for the scientific community due to the deleterious impact of fossil fuels on the environment and human health.

The combustion of fossil fuels produces large quantities of pollutant gases, such as nitrogen oxides, carbon oxides and sulfur oxides and so on. For quite a long time, researchers have been trying to find renewable, clean and carbon-neutral energy sources in order to stave off catastrophic climate change. Hydrogen, having largest energy density, can be combusted to liberate energy without any harmful side products. A mol of hydrogen can produce 286 kJ energy through reaction with oxygen \((2H_2(g) + O_2(g) \rightarrow 2H_2O(l) \ (\Delta H = -286 \text{ kJ mol}^{-1}))\). More importantly, hydrogen can be utilized as an energy carrier\(^1\) to store solar and electric energy via forming the chemical bond between two hydrogen atoms. Thus, the ever
greenest approach to generate hydrogen can conspicuously solve the problem of the energy crisis. In industry, hydrogen is produced by steam reforming of natural gas (\(\text{CH}_4(g) + \text{H}_2\text{O}(g) \rightarrow \text{CO}(g) + 3\text{H}_2(g) \)).\(^4\) Nevertheless, this process usually consumes fossil fuels and releases \(\text{CO}_2 \) gas. As a matter of fact, water is a well acknowledged resource for being the most plentiful supply of hydrogen that can be used to produce hydrogen via electrocatalytic\(^5,6\) or photocatalytic\(^7–11\) water splitting. The water splitting reaction, however, is an uphill process through which 237 kJ mol\(^{-1}\) of energy is required. In an electrochemical system, the external circuit usually provides the energy to realize splitting water including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER).\(^12,13\) In this regard, the electrocatalysis can accelerate the rate of a chemical reaction through providing an alternative mechanism involving a different transition state and lower activation energy to reduce the electrochemical overpotentials.\(^4,14–17\)

Precious noble metals or alloys, such as platinum (Pt), palladium (Pd), ruthenium (Ru) and iridium (Ir), have traditionally been the most efficient catalysts for water splitting in acid or alkaline electrolyte,\(^18,19\) but the low abundance and consequently high cost of such metals hinder their long-term viability. Therefore, efficient electrocatalysts comprised of earth-abundant materials for HER and OER are crucial for the development of water-splitting devices.

To date, earth-abundant transition-metal dichalcogenides (TMDs) with general formula \(\text{MX}_2 \) (\(\text{M} = \) transition metal; \(\text{X} = \) chalcogen) including two-dimensional (2D) layered materials, such as \(\text{MoS}_2, \text{WSe}_2, \text{MoSe}_2, \text{WS}_2, \text{TaS}_2 \) and \(\text{TiS}_2 \) etc., and pyrite phase structured TMDs (\(\text{CoSe}_2, \text{CoS}_2, \text{NiS}_2, \text{NiSe}_2, \text{FeS}_2 \) and so on) are being developed at rapid pace for water splitting.\(^20–27\) In particular, featuring toward the 2D morphology and atomic thickness, these 2D layered \(\text{MX}_2 \) nanosheets present some unusual physical, chemical or electronic properties compared to their bulk counterparts.\(^6,24,28–32\)

Typically, each layer of them comprises three atomic layers with covalently bonded \(\text{X}–\text{M}–\text{X} \) and adjacent \(\text{MX}_2 \) layers are coupled by weak van der Waals forces to form bulk crystals.\(^33,34\) In 2005, Jens Nørskov’s group explored the HER mechanism on different catalysts through density functional theory (DFT) calculations.\(^35\) They found that the Gibbs free energy (\(\Delta \text{G} \)) of \(\text{MoS}_2 \) nanoparticles for HER is comparable to Pt, suggesting the potential HER property of \(\text{MoS}_2 \). Subsequently, the edge of \(\text{MoS}_2 \) nanosheet was experimentally confirmed to be electrochemically active.\(^36\) As such, experimental and computational studies demonstrate other 2D TMDs (\(\text{WS}_2, \text{MoSe}_2, \text{WSe}_2, \text{TaS}_2 \) and \(\text{TiS}_2 \)) are electrocatalytically active for \(\text{H}_2 \) production. Unlike \(\text{X}–\text{M}–\text{X} \) layers in 2D layered TMDs, the family of cubic pyrite-type or orthorhombic macarosite-type structured TMDs shows the metal atoms are octahedrally bonded to adjacent chalcogen atoms. These TMD materials have been previously used as catalysts for ORR.\(^37–39\) HER\(^40,41\) and OER.\(^42–45\) The partial filling of the \(\text{e}_g \) band was proved to contribute to their superior electrocatalytic activity.

From the perspective of photocatalysis, theoreticians\(^46–48\) put forward the promising photocatalytic ability of segmental semiconducting TMDs for solar water splitting. As it is obvious, the band gap of \(\text{MoS}_2 \), typical TMD, increases dramatically when the thickness reduces from a few layers to an ideal monolayer. The single-layer \(\text{MoS}_2 \) has the potential to split water under visible light. However, scalable synthesis of monolayer \(\text{MoS}_2 \) nanosheets remains challenging. In line with this, these materials usually serve as cocatalysts in the photocatalytic system.\(^49–53\) Engineering advanced nanocomposites by designing hybrids with other materials is the most fascinating approach to overcome the shortcoming of individual counterparts as well as optimize their performance in photocatalytic water splitting. Moreover, the recent success in the synthesis of these TMD materials \(\text{via} \) various solution/vapor-process and scalable techniques offers great opportunities to construct functional nanostructures for hydrogen and oxygen evolution.

In this review, we briefly trace the strategies in TMD based nanomaterials applied in electrocatalytic and photocatalytic water splitting and give an overview of a clear understanding of basic knowledge, challenges and opportunities to point out the state-of-the-art in this field. We summarize major fabrication methods, describe some of the progresses and resulting achievements. Finally, we discuss the future prospects and afford some insights into the research directions in this area.

2. Synthesis of TMD based nanomaterials

The synthesis of TMDs with layer controllability and large-area uniformity is an indispensable requirement for practical application in water splitting. Meanwhile, exposing catalytically active sites of the TMDs should be considered by engineering the preparation process. Thus, great efforts have been devoted
to generate high-quality TMD layers with a unique size, controllable thickness and excellent electronic structures. Nowadays, chemical exfoliation (top-down approach), solvothermal and chemical vapour deposition (both of which are bottom-up approaches) are frequently reported methods. Of these, individually or as a combination can be used to grow best performing TMDs. The following sections focus on the details of chemical exfoliation method, solvothermal method and chemical vapor deposition method.

2.1. Chemical exfoliation method

Tracing back to the discovery of graphene, the emergence of new physical properties are evident when a bulk crystal of macroscopic dimensions is thinned down to monolayer. This renders the opportunity to engineer the electronic structure. The bulk, unexfoliated, state of TMDs such as MoS2, WS2 exist in Semiconducting 2H phases (trigonal prismatic) where most of the active sites are not exposed. This hinders their application in various fields. The M–X–M layers in TMD which are bound to each other by weak van der Waals forces can be exfoliated to further exploit the potential advantages.

Liquid-phase exfoliation is advantageous over simple mechanical exfoliation owing to the formation of novel hybrid and composite materials; yet it is time consuming, environmentally unfriendly, and it is difficult to find appropriate solvents apart from resulting in structural deformation. Sonication assisted liquid-phase exfoliation appears to be a plausible route in so far the problem with solvent compatibility is addressed by using mixtures of solvents.

The product, however, is small in yield. The selection of solvents is very critical, and it is usually made based on Hansen solubility parameters (HSP) theory that would ultimately result in the minimum energy of exfoliation. The HSP theory predicts how well a material will dissolve in a given solvent or mixture of solvents and form a solution. Such prediction is made by taking three energy forms, namely the energy from dispersion forces (δ_d), the energy from dipolar intermolecular forces (δ_p) and the energy from hydrogen bonds (δ_h) as governing parameters into consideration. Assuming these three parameters as co-ordinates in a three dimensional space called Hansen space, the interaction radius (R_a) is calculated as an indicator to the distance between two molecules (eqn (1)). Accordingly, the nearer the two molecules are in this three-dimensional space; the more likely they are to dissolve in each other.

$$R_a = \left[4(\delta_d\text{solv} - \delta_d\text{sola})^2 + (\delta_p\text{solv} - \delta_p\text{sola})^2 + (\delta_h\text{solv} - \delta_h\text{sola})^2 \right]^{0.5}$$

Thus, the smaller R_a is the higher the expected solubility. It has been suggested that nanomaterials are most effectively dispersed in solvents with matching surface energy. Most often, a mixed solvent leads to a better result. In this case, each of the three HSP parameters can be obtained as a linear sum of the entities according to the following eqn (2).

$$\delta_{\text{mix}} = \sum \phi_{n,\text{component}} \delta_{n,\text{component}}$$

where ϕ is the volume fraction for each composition. For instance, Zhou et al. demonstrated that a mixture of ethanol and water can be designed to give high solubility for efficient exfoliation of MoS2 and WS2. Optimum ethanol-water ratio was set to achieve a stable suspension that does not precipitate under ambient conditions. Different alcohol–water mixtures have different R_a value which in turn is related to the dispersion concentration. It is obvious from Fig. 1a that 45 vol% ethanol–water is optimum condition for the MoS2 case and therefore the smallest calculated R_a is resulted in the highest dispersion concentration (Fig. 1b). As such, the exfoliated nanomaterials in Fig. 1c exist as thin sheets with sizes varying from 100 nm to several micrometers and more importantly the hexagonal lattices of the obtained MoS2 nanosheets were not damaged during the mixed-solvent exfoliation process as evidenced from Fig. 1d. In a similar fashion, the case of WS2 also follows the same trend at 35 vol% ethanol–water (Fig. 1e–h). In so far the application in HER is concerned, Li ion intercalation method is the most frequently reported technique that leads to high yield of the catalyst. This mostly involves the reduction of butyllithium reagent which results in expansion of the lattice at the van der Waals gap thereby destabilizing the thermodynamically favored 2H phase and eventually transforming to octahedral 1T phase. Fig. 1i depicts the role of lithium intercalation chemistry deriving the phase transition from 2H to 1T of WS2 nanosheet as reported by Lukowski and coworkers. The high crystallinity of the multi-layered structure was confirmed from the lattice-resolved high-resolution transmission electron microscopy (Fig. 1j and k) and the 2H-WS2 feature was indexed from the selected area electron diffraction (SAED) pattern (inset of Fig. 1k). After intercalation, layered material was chemically exfoliated with excess water, resulting in individual 1T-WS2 nanosheets. The high density of exposed edge sites was evidenced from the inset of Fig. 1l revealing the more disordered and open structures. Though there are still untransformed 2H-WS2 nanosheets, the presence of 1T-WS2 nanosheet is confirmed from the superlattice structure observed in the SAED pattern (red circles inset of Fig. 1m). This was corroborated by Voiry et al. for the strained and chemically exfoliated WS2 nanosheet. Such strain and zigzag-like local lattice distortion as shown in Fig. 1n for the 1T phase of WS2 is brought about by the Li intercalation and ultimately facilitated the HER process. Upon annealing, the 1T phase relaxed back to the thermodynamically favored 2H phase (Fig. 1o). High yield (~80%) of metallic 1T phase MoS2 nanosheets can be obtained using a solvent-free intercalation method. For example, Voiry and coworkers used lithium borohydride (LiBH4) to exfoliate bulk MoS2 powder into single layered nanosheets from the solid-state intercalation reaction at 300 °C under argon environment. The yield in their case is significantly higher than the n-butyllithium exfoliated MoS2 (~50%) prepared at room temperature. Moreover, electrochemical lithiation is also another method reported to be advantageous over simple chemical intercalation by virtue of its relatively facile, room-temperature operation and provides high yield of products of.
single layer. In this particular method, the bulk TMD is set as cathode and lithium foil as anode in a Li-ion battery setup. The galvanostatic discharge process with optimized conditions induces the lithium intercalation. Zhang’s group effectively optimized the cutoff voltage to prepare few-layered NbSe₂ and WSe₂ nanosheets. In their related report, single layers of high-yield MoS₂, WS₂, TiS₂, TaS₂ and ZrS₂ were successfully achieved. This method eases the control of optimum amount of Li ion to be inserted as too low or too much Li insertion brings about serious deterioration in the final product. Upon lithium intercalation, charge impurities are vulnerable as a result of Li ions in TMDs. In fact, this kind of impurity is detrimental in electronics and especially in 2D materials. It is therefore important to remove the excess charge from the surface by a simple method such as treating them with iodine dissolved in acetonitrile.

2.2. Hydro(solvo) thermal method

Hydrothermal method refers to purely heterogeneous reactions using water as media in a sealed steel pressure container with Teflon liners. It is capable of synthesizing advanced inorganic materials in high yield. Typically, the temperature of the hydrothermal process is in the range of 100–200 °C and the pressure is generated autogenously. The moderate temperatures together with the advantage of fast reaction kinetics and short processing time render it as a promising route to prepare homogeneous products in large scale effectively and economically. Based on those merits, as one type of advanced inorganic materials, TMD based nanomaterials with different shapes are widely fabricated by hydrothermal method recently. For example, it has been possible to successfully synthesize MoS₂ nanoflowers, MoS₂ microspheres, CoS₂ nanowires, and CoS₂ nanoparticles, which all display great potential for application of water splitting. To further improve their catalytic activity, composites that hybrid TMDs with other conductive or porous materials have been synthesized. MoS₂ nanosheets have successfully been grown on carbon fiber (CF), graphene oxide (GO), and Mo meshes. As conductive materials, CF and GO can facilitate electron transportation. Furthermore, the MoS₂ nanostructure grown on these three-dimensional (3D) CF, GO and Mo meshes can expose more active sites. These design principles can also be applied to other members of TMDs. For instance, CoSe₂ nanowires array on carbon cloth (CoSe₂ NW/CC) and nitrogen-doped graphene supported CoSe₂ nanobelt composite (NG–CoSe₂ composite) were prepared. Fig. 2a is a schematic illustration.
of the hydrothermal process to fabricate NG-CoSe2 hybrid composites. Typically, the mixture of Co(AC)2·H2O and GO was sonicated for about 10 min followed by the addition of diethylenetriamine (DETA) and Na2SeO3. This new mixture was homogenized, heated to 180 °C and kept for 12 h to yield CoSe2 nanobelts which were anchored to the NG sheets.

Solvents other than water can also be employed accounting for the fact that organic solvents have various specific physico-chemical properties such as polarity, viscosity, softness, which all can affect the solubility and transport behavior of the precursors during the synthetic process.91 The shape, size and phases of the final samples can be controlled in these solvents.91 The most important aspect of solvothermal method is the synergetic chemical coupling effects between the components making up the composites. Yu’s group successfully synthesized the uniform CoSe2 nanobelts through the reaction between Co(AC)2·H2O and Na2SeO3 in DETA at 180 °C with lengths of several tens of micrometers and widths of from 100 to 500 nm.98 Due to the copious amino groups on the CoSe2/DETA surface, some other inorganic precursors can anchor on the CoSe2/DETA to nucleate and grow under solvothermal method. For this reason, they hybridized their CoSe2 nanobelts with Mn3O4 nanoparticles (Mn3O4/CoSe2)42 Ni/NiO nanobelts (Ni/NiO/CoSe2)99 and MoS2 nanosheets (MoS2/CoSe2).87 Fig. 2c displays a schematic illustration of solvothermal synthesis of MoS2/CoSe2 hybrid with CoSe2/DETA nanobelts as substrates. During the synthesis, CoSe2/DETA nanobelts and precursors were mixed and sonicated, followed by heating at 200 °C for 10 h. From the high-resolution transmission electron microscopy (HRTEM) images of MoS2/CoSe2 hybrid (Fig. 2d), it can be seen that the uniform MoS2 nanosheets tightly combined with CoSe2 nanobelts. A similar procedure was employed for the synthesis of Mn3O4/CoSe2 42 and Ni/NiO/CoSe2 99 nanomaterials.

2.3. Vapor-phase deposition method

Vapor-phase deposition methods, including sulfurization (or selenization) reaction with metal or metal oxide,102–113 thermal decomposition of thiosalts,114 and vapor-phase transport recrystallization from powders,115–117 are extensively utilized to controllably synthesize TMDs.118 Generally, this method realizes the growth of TMD nanostructures with large scale and high quality on the different substrates for hydrogen or oxygen evolution. The superior interfaces between nanostructures and substrates are in favor of charge transportation. What’s more, by adjusting the ratio of precursors, the component of products could be easily controlled to improve the physical and chemical properties.119,120 With these merits, researchers have proposed a great many projects to increase the catalytic activity of TMDs for water splitting via vapor deposition routes. One tendency is to design nanostructures with huge numbers of active sites. For example, Cui’s group100 designed a rapid sulfurization/selenization process to convert Mo thin film to a distinctive structure of vertical aligned MoS2 and MoSe2 films on several kinds of substrates. As shown in Fig. 3a–e, vertical structures greatly gain the exposed edges of

Fig. 2 (a) Schematic illustration of the formation of nitrogen-doped graphene supported CoSe2 nanobelt composite (reproduced with permission from ref. 44. Copyright 2014 American Chemical Society). (b) Schematic solvothermal process to synthesize WS2 nanosheets, low-magnification TEM images and HAADF-HRSTEM images of 1T-WS2 nanosheets and 2H-WS2 nanosheets (reproduced with permission from ref. 86. Copyright 2015 American Chemical Society). (c) Schematic illustration of solvothermal synthesis with CoSe2/DETA nanobelts as substrates for preparation of MoS2/CoSe2 hybrid. (d) HRTEM images of MoS2/CoSe2 hybrid showing distinguishable microstructures of MoS2 and CoSe2 (reproduced with permission from ref. 87. Copyright 2015 Macmillan Publishers Limited).
MoS₂ and MoSe₂ nanosheets. During this growth process, the sulfurization or selenization conditions play a crucial role in determining the growth direction.

At a high temperature, the much slower rate of S/Se atoms diffusing into the deposited Mo films than that of chemical conversion renders it as the rate-limiting process. On the other hand, the anisotropic structure of MoS₂/MoSe₂ leads to S/Se atoms diffusion along the layers faster than that across the layers.¹⁰⁰ These two factors jointly result in the formation of such vertical structures, which greatly gain the exposed edges. Analogously, they obtained a similar structure of MoS₂ and MoSe₂ films on curved and rough substrates (Si nanowires and carbon fiber paper), which exhibited significantly improved HER activity than that on the flat ones.¹²³ Benefiting from the higher surface energy of pure Si substrate, Yang and co-workers²¹ realized an edge-abundant MoS₂ nanobelts structure with their basal plane vertical to the substrates. Since the surface was fully covered by edge sites, a high HER efficiency was achieved. Besides the vertical ones, other nanostructures with abundant edges are synthesized via vapor deposition method. For instance, by carefully choosing single-crystal SrTiO₃ as substrates, Liu’s group¹⁰¹ developed a low-pressure chemical vapor deposition (LPCVD) approach to controllably grow dendritic monolayer MoS₂. As depicted in Fig. 3f, those nanoflakes were decorated with plentiful edges, much more than that of the common triangular ones. These dendritic MoS₂ nanostructures could be transferred to Au foil for further application in water splitting. Additionally, the construction of 3D hierarchical TMD structures with large surface area is also popular. Some flexible carbon fibers or porous substrates have been used for this purpose. Recently, we successfully²⁹,¹²⁶ grew 3D WS₂ and WSe₂ nanotubes (NTs) on carbon fibers through in situ sulfurizing/selenizing WO₃ nanowires¹²⁵ as depicted in Fig. 4a and b. On the basis of these results, component-controllable WS₂(1−x)Seₓ nanotubes and PTMs were also synthesized to modify its physical and chemical properties. The large surface area of as-grown NTs, the layer dislocations, defects and local strains existing on the walls of the NTs (Fig. 4c) are the dominant active sites for electrocatalytic water splitting. Similar 3D hierarchical structures of other TMDs like CoSe₂ and MoS₂ have also been reported for being successfully synthesized with this method and applied for highly sensitive HER catalysis.¹²⁶,¹²⁷ Compared with carbon fibers, porous substrates are able to offer greater contact area and load with more TMD nanomaterials. Jaramillo’s group¹²¹ developed a method to synthesize double-gyroid MoS₂ by sulfurization of Mo films, which were electrodeposited on a silica template. After that, the silica templates were dissolved by etching with a 2 wt% hydrofluoric acid solution and eventually the bicontinuous inverse double-gyroid MoS₂ network with a higher surface area was obtained. The schematic procedure is depicted in Fig. 4d. Although it exhibited superior activity for electrocatalysis, the absence of direct contacts between the electrodes and the catalysts may impede its further improvement of properties. Thus, it is important to grow the materials directly onto conductive porous templates. Chang et al.¹²⁸ developed a method to formulate MoSₓ (x ≥ 2) on graphene protected Ni foam through the thermolysis of ammonium thiomolybdates. The
MoS2/graphene/3D Ni foam structure showed excellent HER efficiency. Similarly, Tan et al. utilized 3D nanoporous gold as supports to synthesize monolayer MoS2 films and applied them for HER.129 Some pyrite phase structured TMDs, such as CoSe2, CoS2, and NiS2 nanostructures have been achieved by vapor deposition method. CoSe2 nanoparticles on carbon cloth were prepared through seleniding cobalt oxide nanoparticles by Cui’s group.41 Faber et al.122 reported that CoS2 film, nanowires and microwires were synthesized on graphite or glass substrates via sulfurizing Co films, β-Co(OH)2 microwires and Co(OH) (CO3)0.5·xH2O nanowires in S vapor atmosphere. Fig. 4e–g display the SEM images of as-grown CoS2 films, nanowires and microwires on graphite. All the results verified the CoX2 (X = S, Se) as high performance electrocatalyst and their potential for large-scale application of renewable energy. Besides, other earth-abundant metal pyrites (FeS2, NiS2) and their alloys have also been synthesized and examined as promising alternative electrocatalysts for both HER and ORR.40,130,131 In brief, vapor deposition is an effective method to produce TMDs nanostructures with designed morphology and components, which are promising for application of water splitting.

3. Properties and application in water splitting

3.1. Electrocatalytic water splitting

As an advanced technology for clean energy conversion, water electrolysis is a subject of both extensive fundamental and utilitarian studies. The core of this technology is a series of electrochemical processes. Typically, in the electrocatalysis of water, the HER and OER processes occur at the cathode and anode of an electrolytic cell to produce gaseous molecular hydrogen and oxygen, respectively (eqn (3)).132 These processes are as follows:

\[
\text{Cathode : } 2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2 \\
\text{Anode : } 2\text{H}_2\text{O} \rightarrow \text{O}_2 + 4\text{H}^+ + 4\text{e}^- \tag{3}
\]

The hydrogen evolution reaction (HER) is perhaps the most studied electrochemical reaction and is of prominence for applications such as energy storage via H2 production. It has been well established96,133 that HER proceeds via two successive steps: discharge of proton to give adsorbed H atom (Volmer reaction) followed by either a combination of two H atoms (Tafel reaction) or combination of an adsorbed hydrogen atom with a proton and an electron (Heyrovsky reaction). These different kinds of steps of HER134,135 are involved depending on the nature of the electrode and media of the electrolyte under investigation (Table 1). To be a good HER catalyst, it should have neither too weakly nor too strongly adsorbed H* on to M, having an optimal free energy of H adsorption close to zero.136

Processes	Acidic media	Basic media
Volmer reaction	\(\text{H}^+ + \text{M}^+ + \text{e}^- \rightarrow \text{M} - \text{H}^*\)	\(\text{H}_2\text{O} + \text{M}^+ + \text{e}^- \rightarrow \text{M} - \text{H}^* + \text{OH}^-\)
Heyrovsky reaction	\(\text{M} - \text{H}^* + \text{H}^+ + \text{e}^- \rightarrow \text{M} + \text{H}_2\)	\(\text{M} - \text{H}^* + \text{H}_2\text{O} + \text{e}^- \rightarrow \text{M} + \text{OH}^- + \text{H}_2\)
Tafel reaction	\(2\text{M} - \text{H}^* \rightarrow 2\text{M} + \text{H}_2\)	\(2\text{M} - \text{H}^* \rightarrow 2\text{M} + \text{H}_2\)

\(\text{M}\) denotes the electrode surface.
Unlike HER, anodic OER, as an indispensible half reaction involved in water splitting, includes four proton-coupled electron transfers and oxygen–oxygen bond formation, which is much more kinetically sluggish and challenging. In acidic conditions, two water molecules are oxidized and separated into four protons (H\(^+\)) and one oxygen molecule (O\(_2\)) through losing four electrons (eqn (4)). Likewise, the oxidation of hydroxide ions takes place in alkaline solution producing O\(_2\) and H\(_2\)O with the same number of electrons being evolved (eqn (5)).

\[
2\text{H}_2\text{O} \rightarrow 4\text{H}^+ + \text{O}_2 + 4\text{e}^- \text{ (in acidic electrolyte)} \quad (4)
\]

or

\[
4\text{OH}^- \rightarrow 2\text{H}_2\text{O} + \text{O}_2 + 4\text{e}^- \text{ (in basic electrolyte)} \quad (5)
\]

Eqn (4) and (5) suggest that the generation of an O\(_2\) molecule requires a transfer of four electrons. However, the multiple electron transfer at same time is not kinetically favorable. Some results reveal that the OER involves multiple steps with one electron transfer per step.\(^{137}\) The four possible reaction mechanisms in basic media are listed in Table 2.

Generally, HER and OER obey the Butler–Volmer model even with very high overpotentials. During electrolysis, the potential (\(E\)) where reaction takes place is different from Nernstian potential (\(E_r\)) and the difference between the two potentials corresponds to the extra energy than thermodynamically expected to drive the reaction. This potential is called the overpotential (\(\eta\), eqn (6)).

\[
\eta = E - E_r
\]

In line with this, potential of interest (onset potential, or Tafel slope) are the most frequently reported parameters to evaluate HER catalysts. These parameters can be extracted from the current–potential relationship curve, particularly known as the polarization curve. The potential where the first catalytic current observed is called the onset potential, above which the current increases rapidly. More often, a specific potential corresponding to unambiguous current density is employed as a catalyst performance measurement.

Investigation of the Tafel equation\(^{133}\) represents the commonest range of overpotential and current densities providing information about kinetics of charge transfer process \textit{vis-à-vis} the additional voltage required, with units usually expressed as mV per decade (mV dec\(^{-1}\)) of current. The relationship between current and potential was exploited and given by Butler–Volmer equation (eqn (7))

\[
I = A_f \left\{ \exp \left(\frac{\alpha_n F}{RT} (E + E_{eq}) \right) - \exp \left(- \frac{\alpha_n F}{RT} (E - E_{eq}) \right) \right\}
\]

where \(A\) is the electrode active surface area, \(\alpha\) is the charge transfer coefficient. At considerable overpotential on the electrode surface, the equation simplifies to Tafel equation (eqn (8)):

\[
\eta = a - b \log \ j
\]

where \(b\) is Tafel's slope, gives information on the mechanism of the electrode reaction and \(j\) is the current density given by eqn (9):

\[
\ j = \frac{I}{\text{electrode area}}
\]

The exchange current density can be extracted from the Tafel curve, revealing the flow of charge or electron at equilibrium. It normally assumes a very low value due to the unavailability of net current at equilibrium signifying the extent of oxidation or reduction that may occur. The lower the exchange current density signifies the higher the overvoltage that must be applied to create a significant net current flow. In general, low overpotential, high exchange current density and small Tafel slope are characteristics of good electrocatalysts.

In the past few years, thanks to the remarkable advances in the nanotechnology and computational chemistry, TMDs have gained widespread attention for the design of novel electrocatalysts for HER and OER due to their unique chemical and physical properties. Herein, TMD based electrocatalysts are highlighted for hydrogen and oxygen evolution in an electrolytic cell.

3.1.1. HER catalyzed by TMD based nanomaterials. In the subsequent sections, the HER performances of layered TMDs (focusing on molybdenum and tungsten dichalcogenide based electrocatalysts) and pyrite phase TMDs (focusing on iron, cobalt and nickel dichalcogenide based electrocatalysts) will be surveyed with particular attention vested on the strategies to substantiate a better performance.

3.1.1.1. Molybdenum dichalcogenide based electrocatalysts. Following the discovery of graphene, molybdenum based dichalcogenides\(^{138-140}\) are the most widely investigated materials owing to their exciting prospects in HER catalysis among all TMD based nanomaterials. Inspired by the effective

Table 2 The possible OER mechanisms in basic media\(^a\)

Mechanism I	Mechanism II
1. 2OH\(^+\) → 2OH + 2e\(^-\)	1. 2OH\(^+\) → 2OH + 2e\(^-\)
2. 2OH + 2OH\(^-\) → 2O\(^2-\) + 2H\(_2\)O	2. 2OH + 2OH\(^-\) → 2O\(^2-\) + 2H\(_2\)O
3. 2O\(^2-\) → 2O + 2e\(^-\)	3. 2O\(^2-\) + 2MO\(_2\) → 2MO\(_2\) + 2e\(^-\)
4. 2O → O\(_2\)	4. 2MO\(_2\) + 2e\(^-\) → 2MO\(_2\) + O\(_2\)

Mechanism III

Mechanism IV
1. 4OH\(^-\) + M → 4M + OH + 4e\(^-\)
2. 4M + OH → 2MO + 2M + 2H\(_2\)O
3. 2MO → 2M + O\(_2\)

\(\text{M}\) denotes the electrode surface.
catalysis ability of hydrogenases and nitrogenases for hydrogen evolution reaction, Hinnemann et al. theoretically made the biomimetic speculation of Mo based materials to be active in HER.35 The comparison among the free energies (ΔG_{H}) of atomic hydrogen bonding to the catalyst on different materials with that on the common enzymes in Fig. 5a shows that materials that form strong bonds (Ni and Mo) with atomic H or those that do not bind to atomic hydrogen (Au) should be excluded from the expectation to be good HER catalysts. However, bearing a resemblance to the enzymes, MoS\textsubscript{2} is a promising candidate for replacing Pt owing to the existence of active site on the edges. Experimentally, the electrocatalytic activity36 linearly correlates with the length of edge sides as quantified from the scanning tunneling microscopy (Fig. 5b and c) and found to be independent of the MoS\textsubscript{2} area coverage (Fig. 5d and e). Thus, activities from amorphous to nanocrystal MoS\textsubscript{2} with various shapes have been reported so far and still continues to flourish with impressive advances.138,141 Furthermore, the HER activity of MoS\textsubscript{2} is dependent on the size and number of layers, as reported by Seo et al.142 Nanoscale dimension at monolayer precision level provides increased performance. Generally, exposing much more edges and increasing the conductivity of MoS\textsubscript{2} are the two main strategies pursued for improving its HER performance. The basal planes of 2D MoS\textsubscript{2} usually suffer from the paucity of active sites for HER. There are various strategies developed to expose active sites on such materials.21,121,143 Among them, inducing defects into the crystal structure of MoS\textsubscript{2} can bring about additional active edge sites emanating from the cracks on MoS\textsubscript{2} nanosheets.144 From Fig. 6a, the ultrathin nature of MoS\textsubscript{2} nanosheets was confirmed from the TEM image. The direction of individual (100) planes of hexagonal MoS\textsubscript{2} slightly differs from one another (Fig. 6b and c). This suggests the disordered atomic arrangement leading to cracking of the basal planes, and thereby formation of additional edges, and eventually resulting in the considerably high HER performance. Yang and coworkers21 reported the HER performance of single-crystal MoS\textsubscript{2} nanobelts. The top surface of the nanobelt is composed of vertically positioned basal plane edges. Such extreme exposure of edges make the material optically active, as it quenches all of the indirect band gap excitons, and also electrochemically active from the observed current density of 20 mA cm-2 at overpotential of 170 mV in acid electrolyte (0.5 M H\textsubscript{2}SO\textsubscript{4}). From the report by Rui and coworkers, it is evident that enlarged spaces endowed by modifying the interlayer spacing can alter the electronic structures of the edge-terminated MoS\textsubscript{2} colloid nanostructure, leading to improved performance. After expanding the interlayer spacing of MoS\textsubscript{2} to 9.4 Å (Fig. 6d), a fast kinetics of HER with onset potential of 103 mV and Tafel slope of 49 mV dec-1 was achieved.145 The report by Lewis et al.146 is also exemplary in so far exposing active site is concerned. They directly prepared porous MoSe\textsubscript{2} film on glassy carbon electrode through an operando method. This film features better HER performance than the smooth film. Moreover, improving the conductivity of MoS\textsubscript{2} through hybrids with other conductive materials or in atomic level is also popular to promote the HER performance. Molybdenum dichalcogenides based hybrid structures via enhancing the conductivity can increase the HER performance. For instance, MoO\textsubscript{3}/MoS\textsubscript{2} core–shell nanowires,147 MoS\textsubscript{2}/3D-CFs,148 MoS\textsubscript{2}/CNT-graphene,149 MoS\textsubscript{2}/N-doped carbon nanotube,150 MoS\textsubscript{2}/Au,151 MoS\textsubscript{2}/rGO,96,152 MoSe\textsubscript{2}/graphene,153 MoSe\textsubscript{2}/SnO\textsubscript{2}154 and MoSe\textsubscript{2}/rGO155 exhibited superior electrocatalytic activity in the HER relative to the single-component catalysts.

Fig. 5 (a) Calculated free energy diagram for hydrogen evolution (reproduced with permission from ref. 35. Copyright 2005 American Chemical Society). (b) STM image of high coverage MoS\textsubscript{2} nanoparticles on Au(111) (c) STM image of high coverage atomically resolved MoS\textsubscript{2} particle. (d) Exchange current density versus MoS\textsubscript{2} area coverage. (e) Exchange current density versus MoS\textsubscript{2} edge length (reproduced with permission from ref. 36. Copyright 2007 American Association for the Advancement of Science).
The synergisms are more pronounced from a well matched vertical orientation, availing much more surface area, and ease of electron transport. This feature is typically substantiated from the report by Wang et al. who synthesized vertically oriented MoS2 on curved and 3D substrate. As compared to the flat substrate, the curved substrate (Fig. 6e) could increase the surface area, maximize the exposed edge sites and induce strain through expanding or squeezing the molecular layers, thereby changing the electronic structures of the films. More importantly, simultaneously enhancing the intrinsic conductivity and the active site exposure is crucial to boost the HER performance. Such dual advantage brought by structural and electronic modification was reported by Xie’s group. They controllably incorporated oxygen in ultrathin MoS2 nanosheets and obtained a disordered structure whose unsaturated sulfur atoms flourished abundantly. Oxygen incorporation enlarged the interlayer spacing (Fig. 6f) and hence improved the conductivity. The HER performance with a current density of 126.5 mA cm\(^{-2}\) at overpotential of 300 mV (in 0.5 M H\(_2\)SO\(_4\)) exhibited by oxygen incorporated MoS2 is reported to be 60 times larger that of the bulk MoS2. Such significant enhancement is due to the more active sites, disordering, and conductivity, expanded interlayer spacing. The comparison of different MoS2 based materials is depicted in Fig. 6g.

The design of ternary structures, such as incorporating another chalcogen element such as MoS\(_2\)Se\(_{2(1-x)}\), inaugurates the possibility of tuning the composition. Interestingly, these ternary TMDs demonstrate better HER performance than the binary counterparts. From theoretical perspectives, the free energy of H adsorption is weaker (80 meV) on sulfided Mo edges as compared to selenided Mo edges (140 meV). Thus, controllably adjusting the S/Se ratio to thermoneutral (\(\Delta G_H \approx 0\)) leads to more feasible edges for HER. In this respect, Gong et al. followed a solution method to synthesize MoS\(_2\)Se\(_{2x}\) nanoflakes at low temperature and in high yields demonstrating better activity than either MoS2 or MoSe2. Similarly, doping of Co into MoS2 is proved to enhance the catalytic activity of MoS2 via decreasing the \(\Delta G_H\) from the S-edge side. The shape of MoS2 crystal changes from truncated triangle to hexagonal upon incorporation of Co thereby giving rise to Co-binding S-edges, which is more catalytically active. It is noteworthy that the development of Mo dichalcogenides based electrocatalysts has reached a fascinating stage by phase transformation of the electrocatalyst. Owing to its metallic nature (mentioned above), 1T-MoS2 nanosheet endows a facile electron kinetics, excellent electrical transport and proliferation of catalytic active sites. Consequently, as can be seen from Fig. 7a and b, the HER performance of 1T MoS2 is better than that of the 2H phase. It has been suggested that the edge sites are not the main active sites for 1T phase unlike the thermodynamically favored 2H-phase. As proof of concept, partial oxidation of the edges was conducted to bear out the fact that the HER catalytic activity of 1T-MoS2 relies on the basal plane unlike that of 2H-MoS2. As is evident from the schematic and the TEM images (Fig. 7c–e), the edges are highly disordered after oxidation, while the basal plane of the nanosheets remains unaffected. Accordingly, the
Electrochemical oxidation of the edges led to a dramatic reduction in catalytic activity for 2H nanosheets, but the catalytic performance was unaffected by oxidation for 1T phase nanosheets. The overall performance of the oxidized 2H-MoS$_2$, however, improved after volumetric cycling in Fig. 7f, indicating that its catalytic activity from the edges was partially re-established. These facts brought the conclusion that the basal plane is catalytically active for 1T-MoS$_2$.

In general, the strategies employed so far for enhancing HER performance of molybdenum dichalcogenides based electrocatalysts include engineering of active edge sites or interlayer distances, hybridization with other conducting materials, addition of secondary metals or chalcogens, and the formation of 1T phase.

3.1.1.2. Tungsten dichalcogenide based electrocatalysts. Owing to the structural resemblance between WS$_2$ and MoS$_2$, those factors claimed to be detrimental for HER of molybdenum dichalcogenides also apply for tungsten dichalcogenides and so the strategies set for achieving better performance. Thus, the development of tungsten dichalcogenide electrocatalysts is growing at comparable pace being a rival to that of molybdenum dichalcogenides. WS$_2$, as an electrocatalyst for HER, was reported more than 25 years ago by Sobczynski et al. Different kinds of morphologies of WS$_2$ including nanoflakes, nanoribbons, and nanosheets etc. have been introduced recently. Morphologies, such as nanotube (NT) and nanowire (NW), where the basal plane positioned parallel to the main axis are not required for HER purpose as this hides most of the active edges.

Lin et al. unzipped WS$_2$ NTs to fabricate a nanoribbon (NR) morphology that insures more exposed edge sites confirmed by significantly enhanced performance for NRs with smaller overpotential of 225 mV vs. RHE at 10 mA cm$^{-2}$ as compared to that of NTs (420 mV vs. RHE). From the report by Cheng et al., ultrathin nanoflakes of WS$_2$ resulted in abundant accessible edges which ultimately contributed to HER performance of approximately 100 mV of overpotential and 48 mV dec$^{-1}$ of Tafel slope. Tungsten dichalcogenide based hybrid nanomaterials have also been reported to be HER active due to synergism. Yang et al. prepared WS$_2$/rGO nanosheets in which the rapid electron transport gave rise to the record of overpotential ranging from 150 to 200 mV with Tafel slope of 58 mV dec$^{-1}$. The compatible match of WS$_2$ and rGO is very critical for establishing a pronounced synergism. Inspired by this, we recently reported self-supported and vertically aligned WS$_2$ nanosheet on W foil sensitized by rGO for HER catalysis. The ultrathin rGO nanosheets on WS$_2$ nanosheets contribute to the improvement of electron mobility. Significantly, the catalytic active edges of the vertical WS$_2$ nanosheets have a direct contact with the electrolyte. These two factors efficiently improve the utilization rate of electrons, resulting in a decrease of the overpotential for HER. Meanwhile, the design of ternary dichalcogenides can realize the versatile change in their electronic structure and band gap. The recently reported results indicate the great potential for industry scale catalysts applications of the ternary tungsten dichalcogenides. In this respect, our group have controllably synthesized ternary WS$_2$(1-x)Se$_2$x NTs from WO$_3$ nanowire precursors on carbon fiber substrate (Fig. 4a–c and 8a). The sulfurization and selenization process led to dislocations and defects which is apparent from Fig. 8b, acting as active sites, on the nanotubes’ walls. There, we clearly demonstrated how ternary TMDs are superior as HER catalysts as compared to the binary ones. Fig. 8c and d shows the result of HER measurement where it is evident that neither WS$_2$ nor WSe$_2$ NTs are as efficient as the ternary WS$_2$(1-x)Se$_2$x NTs. The low Tafel slopes recorded considerably evidence the fast HER rate at moderately increased overpotential. However, the confined number of the
exposed edge sites on the NTs hinder the electrocatalytic activity of WS$_{2(1-x)}$Se$_{2x}$. Following this result, we unzipped these NTs into nanoribbons (NRs) with 2H phase to increase the number of active sites. Likewise, the ternary system made through incorporation of another metal atom was also found to lead to substantial improvement in the catalytic activity. Catalytic dehydrogenation and hydrodesulfurization of organic compounds by TMDs were improved upon incorporation of VIII metal atoms (Ni or Co). Inspired by this, Sobczynski et al. studied the catalytic hydrogen evolution reaction of Ni-doped WS$_2$. Nickel doping, forming mixed compounds (nickel and tungsten sulfide) on the catalyst surface, improved the catalytic hydrogen evolution properties of WS$_2$. Also, the introduction of Ni, Co or Mo into the WS$_2$ alters the chemical bonding states, thereby increasing the density of active sites on the surface. Even more impressively, the WS$_2$ nanosheets with 1T phase also facilitate hydrogen evolution with very low overpotentials. The high concentration of the strained metallic 1T phase is associated with enhanced electrocatalytic activity. The DFT calculations show that the tensile strain on the basal plane can significantly influence the free energy of atomic hydrogen adsorption. After introducing a strain value of 2.7% on the surface, a free energy equal to zero can be extrapolated. Lukowski and coworkers reported that the 1T-WS$_2$ nanosheets exfoliated after lithium intercalation showed dramatically improved HER with an overpotential of 142 mV (vs. RHE) at 10 mA cm$^{-2}$. Recently, our group realized the phase conversion from 2H to 1T phase of ultrathin ternary WS$_{2(1-x)}$Se$_{2x}$ NTs by lithium intercalation reaction (Fig. 8e and f). As shown in Fig. 8g, the emergence of new Raman shifts at \approx124, \approx155 and \approx200 cm$^{-1}$ at low frequency are associated with the phonon modes of WS$_{2(1-x)}$Se$_{2x}$ contained in the 1T phase, which achieves the lowest overpotential of \approx0.17 V at 10 mA cm$^{-2}$ and a Tafel slope of \approx68 mV dec$^{-1}$.

3.1.1.3. Pyrite phase structured transition-metal dichalcogenide based electrocatalysts. The family of pyrite phase metal dichalcogenides (MX$_2$, where M = Fe, Co, or Ni and X = S or Se) has been widely identified as potential electrocatalysts for HER in both acidic and alkaline conditions. They usually appear in cubic pyrite-type or orthorhombic macarosite-type structures in which the metal atoms are octahedrally bonded to adjacent chalcogen atoms (S and Se). The biomimetic speculation discussed above (Fig. 5a) also applies for this family due to the involvement of the metals in the metalloenzymes such as hydrogenase and nitrogenase. Theoreticians put forward that the free energy barrier for H adsorption on Co atom is low. Particularly, CoS$_2$ and CoSe$_2$ are intrinsically conductive and stable materials possessing an advantage over the commonly known MoS$_2$, WS$_2$ and MoS$_2$ as they exhibit remarkable HER activity without phase transformation requirement. Guided by this, various cobalt dichalcogenides materials including CoS$_2$ nanostructures and CoSe$_2$ nanostructures have been reported. The smallest ever reported Tafel slope (\sim30 mV dec$^{-1}$) exhibited by CoSe$_2$ mixed orthorhombic and cubic phases represents the best record, which is close to Pt, arising from the available surface that made the chemisorption of H-atoms easier. Cobalt dichalcogenides based composites, such as MoS$_2$/CoSe$_2$ and nickel/nickel(II) oxide nanoparticles/CoSe$_2$ in which the electrocatalytic synergism effects are clearly demonstrated, have also been reported. For instance, Gao et al. grew MoS$_2$ nanosheets on CoSe$_2$ nanobelts to boost the HER performance in 0.5 M H$_2$SO$_4$ solution by utilization of synergetic chemical coupling effects (Fig. 9a–c). Fig. 9d reveals the fact that...
chemical interaction between CoSe$_2$ and MoS$_2$ results in the formation of S–Co bonds, as observed from the generation of more terminal S$_2^{2−}$ and S$_2^{−}$ ions which are HER active. Thus, the CoSe$_2$ nanobelts, assisted being a support for the growth of MoS$_2$ with S$_2^{2−}$ and S$_2^{−}$ edges ultimately improve the HER performance. Their remarkable catalyst activity and fast HER kinetics were demonstrated as evidenced from the small onset potential and Tafel slope of 11 mV (vs. RHE) and 36 mV dec$^{-1}$, respectively (Fig. 9e and f). Comprehensively, D. Kong and co-workers40 identified the promising HER performances of first-row transition-metal disulfides and diselenides (FeS$_2$, FeSe$_2$, FeCoS$_2$, CoS$_2$, CoSe$_2$, CoNiSe$_2$, CoNiS$_2$, NiS$_2$ and NiSe$_2$) prepared through sulfurization/selenization of e-beam-evaporated corresponding metal films. Collectively, their excellent HER catalysis performance from their thin films on glassy carbon in 0.5 M H$_2$SO$_4$ solution (Fig. 10) is revealed from a current density record of 4 mA cm$^{-2}$ at potentials ranging from 190 to 270 mV. As evidenced from the summery of their Tafel slopes (40–70 mV dec$^{-1}$), this family is characterized by relatively fast kinetics to drive HER and CoS$_2$, CoSe$_2$ and NiS$_2$, possessed the smallest Tafel slope close to 40 mV dec$^{-1}$ relative to the others. Comparable Tafel slope is also reported for NiS$_2$ nanosheets.131 Among all the investigated materials, excellent HER performance was observed for CoSe$_2$ and FeCoS$_2$ due to their unique electronic structure. Notably, DFT calculation proved185 that the kinetic energy barrier of H atom adsorption on FeS$_2$ nanosheets was reduced upon doping of Co, which ultimately resulted in higher HER activity. Following this observation, CoSe$_2$ nanoparticles were prepared by templating commercial carbon black nanoparticles to expose more catalytic sites.41 The resulting C/CoSe$_2$ core shell significantly improved (4 mA cm$^{-2}$ at 90 mV) the catalytic activity compared with CoSe$_2$ film. This work was further extended by the same group in the report with an update of a more facile synthesis on 3D featured carbon fiber. Notably, substituting non-metal elements in these pyrite TMDs is an effective method to tune the hydrogen adsorption free energy. Recently, Jin’s group186 found that the electrocatalytic property of pyrite CoS$_2$ could be greatly improved by changing atomic components using phosphorus ions.

3.1.2. OER catalyzed by TMD based nanomaterials. As a half reaction involved in water splitting and containing complex electron transfer steps, an accumulation of the energy barrier in each step leads to the sluggish kinetics of OER with large overpotential (η) to realize the oxygen evolution.
Theoretically, the enthalpy of a lower to higher oxide transition, the 3d electron number of bulk transition-metal ions, the surface oxygen binding energy and Yang Shao-Horn’s principle, namely e_g occupancy of the surface transition-metal cations is close to unity, are the OER activity descriptors. Among them, the Yang Shao-Horn’s principle is a recently developed criterion to evaluate the OER activity deeply. Recently, an enormous number of cobalt based compounds, including simple metals, metal oxides, hydro(oxy) oxides, phosphates, chalcogenides and perovskites have been designed and utilized as electrocatalysts for oxygen evolution. Herein, we briefly review some recent results and the state-of-the-art in cobalt diachalcogenide based OER electrocatalysts, including one-component and hybrid ones, designed in the context of performance enhancement strategies.

According to the Yang Shao-Horn’s principle, cubic cobalt dichalcogenide (CoSe$_2$) with a t_{2g} electronic configuration near the optimal e_g filling (Fig. 11a and b) would be a terrific candidate for electrochemical water oxidation. Its large density of state (DOS) across the Fermi level by theoretical calculation demonstrates the metallic behavior (Fig. 11c). These intrinsic chemical and physical properties suggest and ensure efficient electron migration between the electrode and the surface of the catalyst for highly electrocatalytic OER performance. In order to further enhance the active site exposure, Liu et al. prepared atomically thick two-dimensional CoSe$_2$ nanosheets, shown in Fig. 11d, through exfoliating the CoSe$_2$-based inorganic–organic lamellar nanohybrids for electrocatalytic oxygen evolution. During the exfoliation process, a large number of Co vacancies (Fig. 11d and 12a), acting as active sites to catalyze the oxygen evolution reaction, formed. Compared with the bulk CoSe$_2$ and the nanohybrids, the ultrathin CoSe$_2$ nanosheets exhibit the best OER performance (Fig. 12b) with small overpotential (0.32 V at 10 mA cm$^{-2}$) and Tafel slope (44 mV dec$^{-1}$) in basic solution (0.1 M KOH). Of particular note is that DFT calculated adsorption energy of H$_2$O molecules on the atomically thick CoSe$_2$ is much more favorable for adsorbing H$_2$O molecules and facilitating the mass transport (Fig. 12c). This sample lost no activity after 1000 CV cycles in 0.1 M KOH, indicating the excellent stability of the ultrathin CoSe$_2$ nanosheets.

To date, abundant studies demonstrate that the OER performance of Co-based electrocatalysts can be greatly improved through incorporation of other functional materials. In this regard, the synergistic chemical coupling effects between Co-based catalysts and foreign materials presumably lead to the substantial enhancement. Thus, additional modification of the CoSe$_2$ with other materials, such as Mn$_3$O$_4$ nanoparticles, nitrogen-doped reduced graphene and CeO$_2$ nanoparticles, were developed for boosting its OER performance by Yu’s group. They successfully prepared ultrathin lamellar mesostructured CoSe$_2$/DETA nanobelts by solvothermal reaction. This mesostructure represents abundant and accessible material for large-scale utilization, large surface area and copious surface amino groups for anchoring the highly dispersed heteromaterials. As is shown in Fig. 13a–c, TEM images exhibit Mn$_3$O$_4$ nanoparticles with an average size of ~15.7 nm uniformly distributed on the surface of the CoSe$_2$ nanobelts. Bell et al. reported that Co cations in high oxidation states, namely CoIV, have been proposed as active
centers. The CoIV species existed in CoSe2 nanobelts were believed to enhance the electrophilicity of the adsorbed O and accelerate the formation of intermediate products, such as O–OH and OOH species, to eventually generate O2 molecules.42 Fig. 13d demonstrates the electron binding energy of Co 2p decreased after decorating the CoSe2 by Mn3O4 nanoparticles. This phenomenon is induced by the electron transfer from Mn3O4 to CoSe2, which makes the Mn3O4 more acidic (Lewis acid). Thus, the Mn3O4 nanoparticles anchored on the CoSe2 facilitates the activation of H2O (Lewis base) molecules through Lewis acid–base interaction. As a result, the Mn3O4/CoSe2 exhibited more improved OER electrocatalytic activity than others (Fig. 13e). Analogously, the CeO2 nanoparticles, creating much more oxygen vacancies, can sensitize the CoSe2 nanobelts to form hydroperoxy species (OOHads) and further promote the OER catalytic activity. The CeO2/CoSe2 shows a small overpotential of ∼0.288 V at the current density of 10 mA cm−2, small Tafel slope of 44 mV dec−1, large anodic currents and good durability in alkaline solution.45 The chemical synergistic effect between Mo3O4 or CeO2 and CoSe2 guarantees increased OER activity relative to pure CoSe2.

Additionally, graphene sheets are becoming an inexpensively outstanding matrix to support electrocatalysts and facilitate catalytic performance through strong chemical coupling and optimized electronic structure.203,204 Fig. 14a and b shows that the long belt-like CoSe2 with size of ∼2–3 μm and almost transparent features were immobilized on the N-doped reduced graphene (NG) sheet (>6 μm).44 The thickness of the CoSe2 nanobelt and NG sheet is close to ∼19.6 and ∼2.6 nm, respectively (Fig. 14c). After the electrochemical measurement
in the 0.1 M KOH electrolyte, the polarization curve of NG-CoSe\(_2\) composite shows a much earlier onset potential.

Moreover, the corresponding Tafel plots displayed in Fig. 14d exhibits the smallest Tafel slope (40 mV dec\(^{-1}\)) for the hybrid sample, reveals that the composite outperforms other catalysts, including commercial RuO\(_2\), pure CoSe\(_2\) nanobelts, and commercial Pt/C. Importantly, the comparison of the original polarization curve and that of after 2000 cycles of NG-CoSe\(_2\) and RuO\(_2\) demonstrates the superiority and stability of the material for OER property in basic media (Fig. 14e). In this system, the largely exposed CoSe\(_2\) surfaces, tightly bound by the NG sheet, were utilized as active substance. The introduction of the NG sheets can afford high electrical conductivity and prevent undesired aggregation. From the d-band theory,\(^{197,205}\) the interaction between oxygen and metal d states, including the bond strength of oxygen-related intermediate species, can be optimized via modulating the d-electron filling in \(e_g\) bands. Therefore, the electron donation from NG sheets to CoSe\(_2\) afford more \(e_g\)-filling in CoSe\(_2\) (Fig. 14f), which could optimize the surface–oxygen interaction to moderate the bond strength, thereby greatly enhancing the OER kinetics. Meanwhile, nitrogen and sulfur co-doped graphene oxide also used to anchor the CoSe\(_2\) nanoparticles for considerable OER performance.\(^{206}\) The electrocatalytic performance of different TMD-based electrocatalysts is summarized in Fig. 15, demonstrating the practically potential application although the real understanding of the contribution of cobalt dichalcogenide framework for the observed catalytic activity needs further investigation and confirmation. It is noteworthy that due to the likely chemical instability of common metal dichalcogenides in the oxidative and basic conditions, the stability of these MX\(_2\)-based electrocatalysts for OER needs to be carefully studied and verified.

3.2. Photochemical water splitting

Photocatalytic water splitting, using solar energy to produce H\(_2\), is considered as a promising technology to address environmental crises and energy shortages.\(^{207–212}\) Solar water splitting based on inorganic semiconductors as a means of converting solar energy to chemical energy in the form of fuels has been drawn much attention since the 1970s.\(^{208,213}\) Typically, the photocatalytic ability of a semiconductor depends on the absolute positions of the valence band (\(E_{\text{VB}}\)) and conduction band (\(E_{\text{CB}}\)) edges. If its \(E_{\text{CB}}\) is located more negative than that of hydrogen (\(E_{\text{H}}/\text{H}_2\)) and the \(E_{\text{VB}}\) is more positive than that of oxygen (\(E_{\text{O}}/\text{H}_2\)), it is possible to split the water molecule into H\(_2\) and O\(_2\) under light. A proper band gap is therefore of primary importance for photocatalytic reactions.\(^{208}\) Furthermore, the composite photocatalysts, including hybrids with other semiconductors, carbon materials and noble metals, are extensively studied due to improved carrier diffusion and efficient absorption of the solar spectrum.\(^{8,214}\) TMDs, especially Mo and W based ones, have been used as photoelectrodes for water splitting due to the following advantages:\(^{215,216}\) (i) their band gaps ranges from 1.0 to 1.6 eV, which are well matched with the solar spectrum. (ii) These semiconductors should be quite stable towards to photodissolution because of d–d optical transitions and involving nonbonding electrons. For example, the stability of the MoS\(_2\) photoelectrode has been associated with the fact that the electronic excitation does not involve a transition having S\(_2\)\(^2–\) → Mo(IV) charge-transfer character. (iii) They are earth-abundant and composed of non-precious materials. However, TMD nanostructures are usually utilized as cocatalysts for photocatalytic H\(_2\) generation, presently, because their conduction band position is inadequate to reduce H\(^+\) to H\(_2\) under light illumination. In this section, we summarize the photocatalytic properties of both single component and composite TMD based on very commonly used MoS\(_2\) and WS\(_2\) materials. In particular, monolayer MoS\(_2\) and the heterostructures, in which MoS\(_2\) and WS\(_2\) act as cocatalysts, are highlighted.

3.2.1. Monolayer MoS\(_2\) and its photocatalytic properties

The optical absorption spectrum of MoS\(_2\) nanomaterials has been calculated and thoroughly studied experimentally.\(^{32,218,219}\) DFT calculations and experimental results show that the band gap of MoS\(_2\) would be increased dramatically when the sample thickness is reduced from a few layers to an ideal monolayer.\(^{32,220,221}\) The direct gap of monolayer MoS\(_2\) is about 1.9 eV, which is larger than that of bulk MoS\(_2\) (1.29 eV).\(^{32,222,223}\) Notably, the increased band gap of the MoS\(_2\) leads to a change in the redox potential and improves the photocatalytic property. Fig. 16 presents the energy diagrams of the VB and CB edge potentials in bulk and monolayer MoS\(_2\).\(^{217}\) It is found that the bulk MoS\(_2\) can oxidize H\(_2\)O to produce O\(_2\) but can not reduce H\(^+\) to H\(_2\). In contrast, the monolayer MoS\(_2\) can oxidize H\(_2\)O more efficiently than bulk MoS\(_2\). The CB edge position of the monolayer MoS\(_2\) is more negative than that of H\(^+\)/H\(_2\), suggesting its photocatalytic potential to reduce H\(^+\) for H\(_2\). However, the research on the direct use of MoS\(_2\) as photocatalyst is rarely reported due to the low-yield production of monolayer MoS\(_2\) nanosheets.\(^{224}\)

3.2.2. TMDs as cocatalysts for photocatalytic water splitting

As a thermodynamically uphill reaction, water splitting is a non-spontaneous process. Thus, some cocatalysts usually are...
loaded on the semiconductors that act as photo-harvesters to reduce the energy barrier (Scheme 1). At the same time, the cocatalyst is capable of assisting in photo-generated electron–hole separation and suppressing the photo-corrosion to increase the stability of semiconductor photocatalysts.49 To date, many TMDs, i.e. MoS2,50–52,225–227 WS253,214 and NiS2228 have been reported as excellent candidates for cost-effective cocatalysts.

Due to its high mobility for charge transport, MoS2 nanostructure as a cocatalyst can enhance the separation of photo-excited electrons and holes as well as decrease the activation potentials for H2 evolution, which is paramount for developing photocatalytic water splitting activity of photocatalysts. For instance, TiO2, as a typical UV light driven photocatalyst, has been reported to show enhanced photocatalytic H2 production activity by loading MoS2 nanostructures.225,230–233 In order to improve interfacial charge transfer, Xiang’s group226 reported a TiO2/MoS2/graphene composite demonstrating a 7-times H2 production rate improvement than that obtained from TiO2 alone under UV irradiation. Besides, as is known to us, single component visible light driven photocatalysts face the limitation of photoelectric conversion efficiency and low photocatalytic activity.49 Nowadays, therefore various visible light driven photocatalysts, such as CdS,237 Zn0.3Cd0.7S,238 CdSe,227 have been studied in combination with TMDs to obtain higher photocatalytic efficiency. Zong et al.237 reported enhancement of the photocatalytic H2 production activity of an MoS2–CdS compound. Subsequently, Zhang’s group229 employed a facile one-pot wet-chemical method to fabricate MoS2–CdS and WS2–CdS nanohybrids. They found that the single-layered MoS2/WS2 selectively grew on the Cd-rich (0001) surface of wurtzite CdS nanocrystals, wherein the strong interaction with S layer of MoS2/WS2 occurred. This kind of nanohybrids reduces charge carrier recombination and photo-corrosion of CdS, leading to excellent photocatalytic activity with good stability. As shown in Fig. 17, they achieved a hydrogen evolution rate of 1472 μmol h−1 g−1 with MoS2–CdS nanohybrids, which is 12 times higher than that of pure CdS nanocrystals, and this photocatalyst still remained catalytically active in 16 h irradiation under visible light. To get better photocatalytic H2 production activity, Yang et al.51 introduced metal nanoparticles (Cr, Ag) to the surface of MoS2 nanosheets by a simple solution method and then loaded onto a CdS catalyst. With this metal-MoS2 heterostructure, the recombination of photogenerated carriers in MoS2 nanosheets was reduced, leading to a great enhancement of photoelectric conversion efficiency. As a result, they attained an average rate of 38 000 μmol h−1 g−1 H2 evolution under visible light.
irradiation with Cr-MoS2 hybrid as the cocatalyst.51 Furthermore, Chang and coworkers composited MoS2 nanosheets with graphene to anchor on CdS nanocrystals and achieved a 1.8 mmol h\(^{-1}\) \(\mathrm{H}_2\) evolution rate, which is much higher than that of CdS combined with noble metal Pt, in lactic acid solution under visible light.50 As environmental friendly and noble metal free photocatalysts, some carbon based materials have also been used for water splitting with MoS2 as cocatalyst.52,529 For example, Hou et al.52 fabricated graphitic carbon nitride and MoS2 layered nanojunctions to catalyze water for hydrogen evolution under visible light. They found that the 0.5 wt% MoS2/mpg-CN (mesoporous g-CN) performs better than 0.5 wt% Pt/mpg-CN with visible light irradiation. These results obviously suggest that MoS2 can be utilized to improve the poor hydrogen evolution kinetics of mpg-CN nanomaterial. Similar to MoS2, other TMDs such as WS2 and NiS2 also display a crucial role as cocatalyst in photocatalytic water splitting. Zong et al.53 reported that the H2 generation rate of CdS is increased by up to 28 times with WS2 as a good cocatalyst under visible light and also exhibits a persistently high \(\mathrm{H}_2\)-production capability in lactic acid solution. As such, ternary CdLa\(_2\)S\(_4\) with 2 wt% NiS2 loading was also reported by Xue’s group228 as exhibiting a \(\mathrm{H}_2\) production rate of 2.5 mmol h\(^{-1}\) g\(^{-1}\), which was 3 times higher than that of the pristine CdLa\(_2\)S\(_4\) photocatalyst. This was attributed to the enhanced separation of photogenerated electrons and holes as well as the activation effect of NiS2. The performance comparison of different photocatalysts with TMDs as cocatalyst for water splitting reported hitherto is demonstrated in Table 3. Moreover, owing to the feature of excellent electrocatalytic activity of layered TMDs, they are also utilized in the photoelectrochemical system for hydrogen generation. For example, MoS2 was employed as an electrocatalyst in the photocathode coupled by silicon nanowires.240,241 The dramatically enhanced current density along with significant anodic shift of onset potential suggested the highly active photoelectrochemical property for HER after preparation of the hybrid. Further, metallic MoS2 was integrated with p-Si to act as photocathode electrode, revealing high photocurrent density of 17.6 mA cm\(^{-2}\) at 0 V vs. RHE.242

3.3. Surface plasmon resonance (SPR) enhanced water splitting

Surface plasmon resonance (SPR) results from the collective oscillation of the conduction electrons of plasmonic-metal, i.e. Au, Ag and Cu, nanoparticles. These surface plasmons predominantly relax non-radiatively via Landau damping, yielding highly energetic "hot" electrons emerging on the surface.243,244 When plasmonic-metal nanoparticles are proximal to a semiconductor, a plasmon-mediated electron transfer process will happen and boost the photocatalytic performance.244–246 Fang’s group247 has reported that the plasmon-excited “hot” electrons can be injected into the MoS2 layer due to the low Schottky barrier between MoS2 and Au metal. In this situation, the MoS2 monolayers become acceptors of the “hot” electrons. Very recently, Shi et al.248 confirmed that these hot electrons

Table 3: Comparison of different photocatalysts with TMDs as cocatalyst for water splitting

Cocatalyst	Photocatalyst	Loading method	Light source	Reaction solution	Activity (μmol h\(^{-1}\) g\(^{-1}\))	Quantum efficiency (%)	Stability	Ref.
MoS2	TiO2	Hydrothermal	UV-Vis	Methanol	2000-MoS2(1T)	9.7 (655 nm)	>12 h	111
	TiO2/RGO	Hydrothermal	UV-Vis	Ethanol	250-MoS2(2H)	2.1 (420 nm)	>16 h	226
	g-C3N4	Impregnation	UV-Vis	Lactic acid	18 000	237	>25 h	52
	CdS	Impregnation	UV-Vis	Lactic acid	5400	237	>25 h	50
	Cr/CdS	Hydrothermal	UV-Vis	Lactic acid	38 000	237	>25 h	51
	Zn0.2Cd0.8S	Dispersion	UV-Vis	Lactic acid	18 000	237	>25 h	50
	Zn0.2Cd0.8S	In situ photo-assisted deposition	UV-Vis	Lactic acid	890	>25 h	53	
	WS2	CdLa\(_2\)S\(_4\)	Hydrothermal method	Lactic acid	241 (420 nm)	240 (420 nm)	>25 h	238
NiS2	CdLa\(_2\)S\(_4\)	Hydrothermal method	UV-Vis	Lactic acid	420 (420 nm)	240 (420 nm)	>25 h	53
transferred from Au nanorod are suitable to facilitate the HER performance in the acid solution of MoS2 nanosheets (Fig. 18a and d). The overpotential and Tafel slope shown in Fig. 18b are reduced with 808 nm laser irradiation. The $i-t$ curves (Fig. 18c) indicate the good reversibility of this process. It is worth pointing out that the phase conversion from 2H to 1T induced by SPR also plays a crucial role in promoting the electrocatalytic property. Yin et al. found that the generated local electric field around Au nanoparticles promotes the photogenerated electron–hole separation in the MoS2 nanosheets. This phenomenon was suggested to enhance the photocatalytic water splitting in the photoelectrochemical cell using Au–MoS2 composite.

4. Conclusion and perspectives

Capturing energy from the sun and/or water provides a greener approach to emerge from the damaging fossil fuel era. Being emerging candidates for water splitting, TMD based nanomaterials are extensively studied as electrocatalysts and photocatalysts for hydrogen and oxygen production. This review provides a survey of literatures for the preparation and applications of various TMD materials in electrocatalytic and photocatalytic water splitting. Methods such as chemical exfoliation, solvothermal and chemical vapor deposition have been utilized, with modifications thereof, encompassing top-down and bottom-up approaches to synthesize high quality TMDs intended for water splitting. The morphology through which maximum active sites are exposed, synergism from the individual components in the hybrid structure and a 1T phase of MoS2 and WS2 were directives reported so far for enhanced electrocatalytic HER or OER. More importantly, it is imperative to further consider Co-based dichalcogenides as potential materials in both HER and OER. Due to their unique electronic configuration near the optimal e_g filling, electrodes built on the basis of Co dichalcogenides demonstrate excellent performance without the need of phase transfer. As one of the prospects, successful incorporation of heteroatoms into the lattice of other TMDs is speculated to greatly improve the electrocatalytic water splitting performance via modulating the electronic structure. Of particular note is that the monolayered TMDs are potential candidates for photocatalytic water splitting under visible light (Fig. 19), rendering the opportunity to harvest solar light for photocatalytic hydrogen or oxygen evolution (except for some metallic ones: labeled in red). Additionally, the SPR effect is also effectively employed to boost electro- or photo-catalytic water splitting performance. Some other hybrid nanostructures composited with carbon materials, semiconductors and metals have also exhibited great promise for overcoming some of the limitations of TMDs.

A future direction, therefore, also lies in the design of novel TMD based nanomaterials aimed to exploit their new functionalities for efficient water splitting.

![Fig. 18](image1.png)

(a) Schematic Au–MoS2 and energy level diagram illuminating hot electrons injection and change of MoS2 Fermi level. (b) HER polarization curves obtained on several catalysts as indicated. (c) $i-t$ curves with and without 808 nm laser excitation. (d) The Tafel plots of Au rod (green), ce-MoS2 (blue), Au–MoS2 (black) and Au–MoS2 (808) (red) derived from the early stages of HER polarization curves (reproduced with permission from ref. 248. Copyright 2015 American Chemical Society).

![Fig. 19](image2.png)

Fig. 19 Band edge positions of monolayer (a) sulfide and (b) selenide TMDs relative to the vacuum level, including the redox potentials for H^+/H_2 and O_2/H_2O at pH = 0. The band edge data are compiled from ref. 48 and 251–254.
Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21373065 and 61474033), Program of the Ministry of Science and Technology of China (No. 2012CB944103), Beijing Natural Science Foundation (No. 2144059) and CAS Key Laboratory of Nanosystem and Hierarchical Fabrication. The authors gratefully acknowledge the support of K. C. Wong Education Foundation.

Notes and references

1. T. Hisatomi, J. Kubota and K. Domen, *Chem. Soc. Rev.*, 2014, 43, 7520–7535.
2. M. R. Gholipour, C. T. Dinh, F. Béland and T. O. Do, *Nanoscale*, 2015, 7, 8187–8208.
3. J. M. Bockris, *Int. J. Hydrogen Energy*, 2002, 27, 731–740.
4. J. R. Rostrup-Nielsen, *Catal. Rev. Sci. Eng.*, 2004, 46, 247–270.
5. J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff and J. K. Norskov, *Nat. Mater.*, 2006, 5, 909–913.
6. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh and H. Zhang, *Nat. Chem.*, 2013, 5, 263–275.
7. C. Wang, Q. Hu, J. Huang, C. Zhu, Z. Deng, H. Shi, L. Wu, Z. Liu and Y. Cao, *Appl. Surf. Sci.*, 2014, 292, 161–164.
8. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar and J. He, *Nanoscale*, 2013, 5, 8326–8339.
9. T. Sun, E. Liu, X. Liang, X. Hu and J. Fan, *Appl. Surf. Sci.*, 2015, 347, 696–705.
10. X. Fan, J. Wan, E. Liu, L. Sun, Y. Hu, H. Li, X. Hu and J. Fan, *Ceram. Int.*, 2015, 41, 5107–5116.
11. M.-S. Park and M. Kang, *Mater. Lett.*, 2008, 62, 183–187.
12. C. G. Morales-Guio, L.-A. Stern and X. Hu, *Chem. Soc. Rev.*, 2014, 43, 6555–6569.
13. M. Grätzel, *Nature*, 2001, 414, 338–344.
14. Y. Sun, S. Gao, F. Lei and Y. Xie, *Chem. Soc. Rev.*, 2015, 44, 623–636.
15. Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, J. Piao, T. Yao, C. Wu, S. Hu and S. Wei, *Nat. Commun.*, 2012, 3, 1057.
16. F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan and Y. Xie, *J. Am. Chem. Soc.*, 2014, 136, 6826–6829.
17. R. De Levie, *J. Electroanal. Chem.*, 1999, 476, 92–93.
18. S. Cobo, J. Heidkamp, P.-A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousset, V. Ivanova, H. Dau and S. Palacin, *Nat. Mater.*, 2012, 11, 802–807.
19. C. C. McCrory, S. Jung, L. M. Ferrer, S. M. Chatman, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2015, 137, 4347–4357.
20. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano and J. N. Coleman, *Science*, 2013, 340, 1226419.
21. L. Yang, H. Hong, Q. Fu, Y. Huang, J. Zhang, X. Cui, Z. Fan, K. Liu and B. Xiang, *ACS Nano*, 2015, 9, 6478–6483.
22. M. R. Gao, M. K. Chan and Y. Sun, *Nat. Commun.*, 2015, 6, 7493.
23. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy and G. Eda, *Nat. Mater.*, 2013, 12, 850–855.
24. X. Huang, Z. Zeng and H. Zhang, *Chem. Soc. Rev.*, 2013, 42, 1934–1946.
25. M. S. Faber and S. Jin, *Energy Environ. Sci.*, 2014, 7, 3519–3542.
26. M. Zeng and Y. Li, *J. Mater. Chem. A*, 2015, 3, 14942–14962.
27. P. C. Vesborg, B. Seger and I. Chorkendorff, *J. Phys. Chem. Lett.*, 2015, 6, 951–957.
28. R. Kappera, D. Voiry, S. E. Yalci, B. Branch, G. Gupta, A. D. Mohite and M. Chhowalla, *Nat. Mater.*, 2014, 13, 1128–1134.
29. K. Xu, F. Wang, Z. Wang, X. Zhan, Q. Wang, Z. Cheng, M. Safdar and J. He, *ACS Nano*, 2014, 8, 8468–8476.
30. K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang and J. He, *Nanotechnology*, 2013, 24, 465705.
31. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, *NanoLetters*, 2012, 7, 699–712.
32. K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, *Phys. Rev. Lett.*, 2010, 105, 136805.
33. F. Wang, Z. Wang, Q. Wang, F. M. Wang, L. Yin, K. Xu, Y. Huang and J. He, *Nanotechnology*, 2015, 26, 292001.
34. B. Peng, P. K. Ang and K. P. Loh, *Nano Today*, 2015, 10, 128–137.
35. B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff and J. K. Norskov, *J. Am. Chem. Soc.*, 2005, 127, 5308–5309.
36. T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch and I. Chorkendorff, *Science*, 2007, 317, 100–102.
37. Y. Feng, T. He and N. Alonso-Vante, *Electrochim. Acta*, 2009, 54, 5252–5256.
38. D. Susac, L. Zhu, M. Teo, A. Sode, K. Wong, P. Wong, R. Parsons, D. Bizzotto, K. Mitchell and S. Campbell, *J. Phys. Chem. C*, 2007, 111, 18715–18723.
39. L. Zhu, M. Teo, P. Wong, K. Wong, I. Narita, F. Ernst, K. Mitchell and S. Campbell, *Appl. Catal., A*, 2010, 386, 157–165.
40. D. Kong, J. J. Cha, H. Wang, H. R. Lee and Y. Cui, *Energy Environ. Sci.*, 2013, 6, 3553–3558.
41. D. Kong, H. Wang, Z. Lu and Y. Cui, *J. Am. Chem. Soc.*, 2014, 136, 4897–4900.
42. M.-R. Gao, Y.-F. Xu, J. Jiang, Y.-R. Zheng and S.-H. Yu, *J. Am. Chem. Soc.*, 2012, 134, 2930–2933.
43. Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye and Y. Xie, *J. Am. Chem. Soc.*, 2014, 136, 15670–15675.
44. M. R. Gao, X. Cao, Q. Gao, Y. F. Xu, Y.-R. Zheng, J. Jiang and S. H. Yu, *ACS Nano*, 2014, 8, 3970–3978.
45. Y. R. Zheng, M. R. Gao, Q. Gao, H. H. Li, J. Xu, Z. Y. Wu and S. H. Yu, *Small*, 2015, 11, 182–188.
46. F. A. Rasmussen and K. S. Thygesen, *J. Phys. Chem. C*, 2015, 119, 13169–13183.
212 J. Yang, H. Yan, X. Zong, H. Zhang, L. Sun and C. Li, *Chem. Commun.*, 2009, 4536–4538.

213 N. Singh, G. Jabbour and U. Schwingenschlögl, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2011, 84, 153402.

214 X. Zong, Y. Na, F. Wen, G. Ma, J. Yang, D. Wang, Y. Ma, M. Wang, L. Sun and C. Li, *Chem. Commun.*, 2009, 4536–4538.

215 Y. Li, Y.-L. Li, C. M. Araujo, W. Luo and R. Ahuja, *Catal. Sci. Technol.*, 2013, 3, 2214–2220.

216 D. Merki and X. Hu, *Energy Environ. Sci.*, 2011, 4, 3878–3888.

217 S. Bai, L. Wang, X. Chen, J. Du and Y. Xiong, *Nano Res.*, 2015, 8, 175–183.

218 Q. Xiang, J. Yu and M. Jaroniec, *J. Am. Chem. Soc.*, 2012, 134, 6575–6578.

219 F. A. Frame and F. E. Osterloh, *J. Phys. Chem. C*, 2010, 114, 10628–10633.

220 Y. P. Yuan, S.-W. Cao, L.-S. Yin, L. Xu and C. Xue, *Int. J. Hydrogen Energy*, 2013, 38, 7218–7223.

221 J. Chen, X. J. Wu, L. Yin, B. Li, X. Hong, Z. Fan, B. Chen, C. Xue and H. Zhang, *Angew. Chem., Int. Ed.*, 2015, 54, 1210–1214.

222 B. Pourrabas and B. Jamshidi, *Chem. Eng. J.*, 2008, 138, 55–62.

223 K. H. Hu, X. G. Hu, Y. F. Xu and J. D. Sun, *J. Mater. Sci.*, 2010, 45, 2640–2648.

224 I. Tacchini, E. Terrado, A. Anson and M. Martinez, *Micro Nano Lett.*, 2011, 6, 932–936.

225 W. Li, Y. Y. Sara and E. Iglesia, *J. Catal.*, 2002, 207, 31–36.

226 S. J. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo and J. Tang, *Energy Environ. Sci.*, 2015, 8, 731–759.

227 N. Bao, L. Shen, T. Takata and K. Domen, *Chem. Mater.*, 2008, 20, 110–117.

228 X. Wang, K. Maeda, A. Thomas, K. Takenabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, *Nat. Mater.*, 2009, 8, 76–80.

229 Z. Zhu, Y. Cheng and U. Schwingenschlögl, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2011, 84, 153402.
245 Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka and T. Majima, *J. Am. Chem. Soc.*, 2014, 136, 458–465.

246 R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells and R. Bechstein, *ACS Nano*, 2014, 8, 3490–3497.

247 Y. Kang, S. Najmaei, Z. Liu, Y. Bao, Y. Wang, X. Zhu, N. J. Halas, P. Nordlander, P. M. Ajayan, J. Lou and Z. Fang, *Adv. Mater.*, 2014, 26, 6467–6471.

248 Y. Shi, J. Wang, C. Wang, T.-T. Zhai, W.-J. Bao, J.-J. Xu, X.-h. Xia and H.-Y. Chen, *J. Am. Chem. Soc.*, 2015, 137, 7365–7370.

249 Y. Kang, Y. Gong, Z. Hu, Z. Li, Z. Qiu, X. Zhu, P. M. Ajayan and Z. Fang, *Nanoscale*, 2015, 7, 4482–4488.

250 Z. Yin, B. Chen, M. Bosman, X. Cao, J. Chen, B. Zheng and H. Zhang, *Small*, 2014, 10, 3537–3543.

251 F. A. Rasmussen and K. S. Thygesen, *J. Phys. Chem. C*, 2015, 119, 13169–13183.

252 H. Jiang, *J. Phys. Chem. C*, 2012, 116, 7664–7671.

253 B. Mahler, V. Hoepfner, K. Liao and G. A. Ozin, *J. Am. Chem. Soc.*, 2014, 136, 14121–14127.

254 G. Gao, Y. Jiao, F. Ma, Y. Jiao, E. Waclawik and A. Du, *J. Phys. Chem. C*, 2015, 119, 13124–13128.