Acute Physical Stress Preconditions the Heart Against Ischemia/Reperfusion Injury Through Activation of Sympathetic Nervous System

Ali Reza Imani,¹,² Hoda Parsa,¹ Leila Cholami Chookalaei,¹ Kamran Rakhshan,³ Masoomeh Colnazar,⁴ Mahdieh Faghihi¹

Departamento de Fisiologia - Faculdade de Medicina - Tehran University of Medical Sciences,¹ Tehran – Irã
Centro de Pesquisa do Sono Ocupacional - Tehran University of Medical Sciences,² Tehran – Irã
Departamento de Fisiologia - Faculdade de Medicina - Tehran University of Medical Sciences,³ Tehran – Irã
Departamento de Biologia - Faculdade de Ciências Básicas - Hamedan Branch of Islamic Azad University,⁴ Hamedan – Irã

* Contribuíram igualmente para este trabalho

Artigo recebido em 26/08/2018, revisado em 18/11/2018, aceito em 16/10/2018
E-mail: aimani@tums.ac.ir

Correspondência: Alireza Imani •

Keywords: Stress, Mechanical; Sympathetic Nervous System; Hypothalamo-Hypophyseal System; Ischemia; Sympathectomy

Abstract

Background: Stress is defined as a complicated state that related to homeostasis disturbances, over-activity of the sympathetic nervous system and hypothalamus-pituitary-adrenal axis responses. Cardiac preconditioning reduces myocardial damages.

Objective: This study was designed to assess the cardioprotective effects of acute physical stress against ischemia/reperfusion (I/R) injury through the activation of the sympathetic nervous system.

Methods: Thirty-two male Wistar rats were divided into four groups; (1) IR (n = 8): rats underwent I/R, (2) Acute stress (St+IR) (n = 8): physical stress induced 1-hour before I/R, (3) Sympathectomy (Symp+IR) (n = 8): chemical sympathectomy was done 24-hours before I/R and (4) Sympathectomy-physical stress (Symp+St+IR) (n = 8): chemical sympathectomy induced before physical stress and I/R. Chemical sympathectomy was performed using 6-hydroxydopamine (100 mg/kg, sc). Then, the hearts isolated and located in the Langendorff apparatus to induce 30 minutes ischemia followed by 120 minutes reperfusion. The coronary flows, hemodynamic parameters, infarct size, corticosterone level in serum were investigated. Values of p < 0.05 were considered significant.

Results: Physical stress prior to I/R could improve left ventricular developed pressure (LVDP) and rate product pressure (RPP) of the heart respectively, (63 ± 2 versus 42 ± 1.2, p < 0.05, 70 ± 0.2 versus 43 ± 2.6, p < 0.05) and reduce the infarct size (22.16 ± 1.3 versus 32±1,4, p < 0.05) when compared with the I/R alone. Chemical sympathectomy before physical stress eliminated the protective effect of physical stress on I/R-induced cardiac damages (RPP: 21 ± 6.6 versus 63 ± 2, p < 0.01) (LVDP: 38 ± 4.5 versus 43 ± 2.6, p < 0.01) (infarct size: 35 ± 3.1 versus 22.16 ± 1.3, p < 0.01).

Conclusion: Findings indicate that acute physical stress can act as a preconditioning stimulator and probably, the presence of sympathetic nervous system is necessary. (Arq Bras Cardiol. 2019; 113(3):401-408)

Keywords: Stress, Mechanical; Sympathetic Nervous System; Hypothalamo-Hypophyseal System; Ischemia; Sympathectomy.
Introdução

A doença isquêmica do coração é o principal problema de saúde no mundo. Embora a reperfusão, que se refere ao rápido reestabelecimento do fluxo sanguíneo, seja um dos métodos mais eficazes contra as lesões letais, ela está associada com danos adicionais ao miocárdio. Foram propostos muitos métodos para minimizar os efeitos deletérios das lesões por isquemia/reperfusão (IR) e aumentar a resistência cardíaca. Com base nesses avanços, a indução de episódios de curto prazo de IR ou o uso precoce de agentes farmacológicos, ao invés de períodos prolongados de IR, induz o pré-condicionamento de IR ou o uso precoce de agentes farmacológicos, ao invés de períodos prolongados de IR, induz o pré-condicionamento de IR.

O sistema nervoso simpático e o eixo hipotálamo-hipófise-adrenal (HH-A) são dois sistemas de defesa coordenados. Eles podem mediar a comunicação bidirecional entre cérebro e corpo durante situações de estresse. A ativação do sistema autonômico contribui para as respostas comportamentais em animais e promove a regulação da homeostase e a melhora da resistência. O estresse é caracterizado por uma resposta geral do eixo HH-A contra estímulos potenciais e deletérios.

De fato, o estresse, através do aumento da atividade do eixo HH-A e da liberação de corticosterona, desempenha um papel fundamental na coordenação das funções neuroendócrina, autonômica e comportamental e resulta em respostas adaptativas. A ocorrência de estresse aumenta a atividade do sistema nervoso simpático bem como altera a secreção de neurotransmissores. Vários sistemas corporais, tais como os sistemas nervoso, cardiovascular e imunológico, são influenciados pelo estresse. Além disso, são observadas alterações significativas nos parâmetros hemodinâmicos, tais como frequência cardíaca (FC) e pressão arterial, durante o estresse, que podem causar doenças do coração.

Métodos

No total, 32 ratos machos Wistar (200-250 g) foram mantidos em ambiente com ar condicionado, com ciclo de 12h de luz e 12h de escuridão, a uma temperatura de 22 ± 2°C, com livre acesso à água e comida. Os protocolos experimentais seguidos nesse estudo estão em conformidade com as Diretrizes para o Cuidado e Uso de Animais de Laboratório publicadas pelo National Institutes of Health (NHI publicação no. 85-23, revista em 1996) e foram posteriormente aprovados pelo comitê de ética institucional da Universidade de Ciências Médicas de Tehran (Tehran, Irã).

Uma caixa com dispositivo estressor foi usada para exposição ao estresse físico. Ela continha barras de aço inoxidável na parte inferior, ligadas a um dispositivo de electrochoque através de um cabo de conexão. O estresse físico foi induzido através de choque elétrico nas patas (1mA) por 10 segundos com 50 segundos de intervalos durante 1 hora. Depois disso, os animais foram anestesiados com tiopental sódico (60 mg/kg, i.p) e colocados na prancha cirúrgica. O tórax foi aberto e a sutura de seda 6-0 foi colocada sob a raiz da artéria coronária descendente anterior esquerda (DAE). Finalmente, o coração foi perfundido de forma retrôgrada com tampão de bicarbonato de Krebs-Henseleit (em mmol/l): bicarbonato de sódio = 25, cloreto de sódio = 118,5, cloreto de potássio = 4,7, sulfato de magnésio = 1,2, glicose = 11, borbuzhada com uma combinação de 95% O2 e 5% CO2 (pH = 7,3-7,4, a 37°C). Depois disso, as extremidades da sutura foram passadas por uma pipeta de plástico para formar um laço para indução da isquemia. A reperfusão foi realizada através da liberação do laço. Um balão de látex foi inserido no ventrículo esquerdo e conectado a um transdutor de pressão (Harvard, March-Hugstetten, Alemanha), o aparelho da Biolab foi usado para o registro das pressões ventriculares. Durante o procedimento cirúrgico, o registro foi feito ao longo de três períodos determinados: 20-30 minutos nos momentos basais (período sem qualquer manipulação), 30 minutos da isquemia local e 120 minutos da reperfusão.

Os animais foram alocados em 4 grupos:

1. Grupo IR (n = 8): Os ratos foram mantidos em caixas com dispositivo estressor (sem exposição ao estresse) durante 1 hora e, em seguida, os corações foram removidos do tórax e submetidos a isquemia e reperfusão.

2. Grupo Estresse agudo (St+IR) (n = 8): Os ratos foram expostos a choques elétricos nas patas na caixa estressora durante 1 hora e, em seguida, os corações foram removidos do tórax e submetidos a isquemia e reperfusão.

3. Grupo Simpatectomia (Symp+IR) (n = 8): A simpatectomia química foi realizada através de injeção de 6 hidroxidopamina (6-OHDA, 100 mg/kg, SC) 24 horas antes do estresse físico e da indução da isquemia.

4. Grupo Simpatectomia-estresse físico (Symp+St+IR) (n = 8): A simpatectomia química foi realizada através de injeção de 6 hidroxidopamina (6-OHDA, 100 mg/kg, SC) 24 horas antes da indução da I/R.

Os níveis séricos de corticosterona foram medidas usando o método de ELISA. Além disso, a pressão arterial sistólica foi medida usando uma técnica não-invasiva (Tail Cuff e power lab) para confirmar a simpatectomia química (n = 4).

Análise estatística

O tamanho da amostra e as divisões dos grupos foram definidos com base em estudos anteriores. Todos os dados foram relatados como média ± DP. A normalidade foi checada por meio do teste de Kolmogorov-Smirnov, software SPSS versão 20. Para comparação dos parâmetros entre os grupos, os níveis de estresse foram mensurados através do teste de Kolmogorov-Smirnov, software SPSS versão 20.
diferentes grupos foi utilizado o teste One-way ANOVA e teste Post-Hoc de Tukey. A análise das alterações nos valores médios por mais de três vezes foi feita utilizando ANOVA de medição repetida dentro de cada grupo. O teste t da amostra foi usado para comparar a pressão arterial sistólica antes e depois da simpatectomia. Foram consideradas alterações significativas quando p < 0,05.

Resultados

Efeito do estresse físico agudo sobre o fluxo coronariano e a frequência cardíaca

A Figura 1 mostra o fluxo coronariano (FCo) no final dos períodos de baseline, isquemia e reperfusão. Não foram encontradas diferenças significativas para o FCo no final da isquemia e reperfusão quando comparado com o final do período de baseline entre os grupos (p < 0,01). A FC diminuiu significativamente no final tanto da isquemia quanto da reperfusão em relação ao final do período de baseline entre os grupos (p < 0,01), mas nenhuma mudança significativa foi observada entre grupos diferentes (Figura 2).

Efeito do estresse físico agudo sobre os parâmetros hemodinâmicos cardíacos

A pressão desenvolvida do ventrículo esquerdo (PDVE, a diferença entre as pressões intraventriculares sistólica e diastólica), duplo produto (DP, PDVE multiplicada pela FC) diminuíram no final da reperfusão em relação ao final do período de baseline entre os grupos.

As quantidades de DP e PDVE no grupo de estresse agudo aumentaram significativamente em comparação com o grupo IR (p < 0,05). Na indução da simpatectomia química anterior ao estresse físico, o DP e a PDVE diminuíram consideravelmente em comparação com o grupo estresse físico (p < 0,05), mas não foram encontradas diferenças acentuadas entre o grupo simpatectomia em comparação com o grupo IR (Figura 3).

Efeito do estresse físico agudo no tamanho do infarto (TI/ASR %)

A Figura 4 mostra o tamanho do infarto (TI/ASR %) nos diferentes grupos.

O tamanho do infarto foi muito menor no grupo estresse agudo se comparado com o grupo IR (p < 0,05), mas não
Figura 2 – Frequência cardíaca (FC) no final do período basal, períodos de isquemia e reperfusão. IR: Isquemia/reperfusão; St: estresse físico; Symp: Simpatectomia.
p < 0,01 vs. fase de linha de base dentro do mesmo grupo.

Figura 3 – Pressão desenvolvida do ventrículo esquerdo (PDVE) e taxa de duplo produto (DP) no final da reperfusão. IR: Isquemia/reperfusão; St: estresse físico; Symp: Simpatectomia. * p < 0,05 comparado ao IR; && p < 0,01 comparado a St + IR.
houve alteração considerável no grupo simpatectomia química quando comparado com o grupo controle. A simpatectomia química anterior ao estresse físico agudo não representou nenhuma alteração extrema se comparado com o grupo IR, ao passo que foi demonstrada diminuição significativa no tamanho do infarto quando comparado com o estresse físico agudo isoladamente (p < 0,01).

Efeito do estresse físico agudo nos níveis séricos de corticosterona

A Figura 5 mostra o nível sérico de corticosterona nos diferentes grupos. A indução do estresse físico agudo, com ou sem simpatectomia química nos grupos St e St+Symp+IR, aumentou a quantidade de corticosterona sérica quando comparado com o grupo IR (p < 0,01).

Efeito da simpatectomia química na pressão arterial sistólica

A Figura 6 representa a redução significativa da pressão arterial sistólica após a indução da simpatectomia química (p < 0,05).

Discussão

Atualmente a vida cotidiana está associada com o estresse, que é dividido em estresse agudo e estresse crônico, dependendo da duração da exposição.18 O estresse agudo medeia várias vias neurogênicas.19 Registros eletrofisiológicos revelaram que o estresse agudo pode ter efeitos positivos, tais como favorecer maior estimulação e aumentar a flexibilidade cognitiva em tarefas de mudança de configuração atencional.20 Sob outro ponto de vista, o estresse é dividido em físico e psicológico. Um estressor físico, como uma cirurgia, um trauma e atividade física pesada podem desencadear muitos eventos cardíacos.21 O estresse psicológico pode afetar o sistema cardiovascular através de fatores metabólicos, inflamatórios e hormonais.22,23 Nesse estudo, foram avaliados os efeitos do estresse físico agudo anteriores à simpatectomia sobre as lesões por isquemia-reperfusão no coração isolado de ratos.

Os efeitos do estresse

Os resultados mostraram que a indução do estresse agudo antes do período isquemia-reperfusão levou a uma diminuição no tamanho do infarto, melhorou os parâmetros hemodinâmicos e aumentou os níveis séricos de corticosterona quando comparado com os grupos IR e Symp+IR. Duas teorias paradoxais foram propostas para explicar tanto os efeitos vantajosos e desvantajosos do estresse para o coração. A FC extremamente elevada, a contratilidade cardíaca e a resistência periódica decorrentes da exposição ao estresse podem aumentar a carga cardíaca e o consumo de oxigênio. Em contrapartida, existem indícios crescentes do efeito oposto, por exemplo; o estresse de contenção no frio induz a proteção das células do coração24 e pode diminuir o tamanho do infarto como parâmetro principal do dano cardíaco.25

A este respeito, Abe et al. demonstraram que o estresse agudo atenua a lesão por isquemia-reperfusão no rim através da ativação da via simpática e antiinflamatória.26 Além disso, a exposição para intermediar o estresse envolve a proteção celular contra uma isquemia letal posterior, como um conceito, e fenômeno pré-condicionante.27,28 Parece que a exposição ao estresse físico como um agente pré-condicionante protege o coração contra a I/R. Foi observado um aumento das quantidades de DP e PDVE em decorrência da indução do estresse agudo no grupo St+IR em comparação com o grupo IR, indicando que o estresse agudo desencadeou mecanismos para preparar o corpo para respostas adequadas aos estímulos, uma vez que a melhora da função cardíaca é importante. Consequentemente, parece que a eficácia da indução do estresse está associada com: 1. natureza do estressor, 2. duração do episódio de estresse, 3. intensidade do estímulo e 4. previsibilidade ou imprevisibilidade do estresse. De fato,
cada um dos fatores acima tem efeitos sobre as respostas neurais e hormonais ao estresse. Nossos resultados mostraram que a corticosterona aumenta após a indução de estresse, e no grupo Symp+St+IR ela é mais elevada do que no grupo IR. É um fato que o estresse melhora a atividade do eixo HPA que resulta no aumento da secreção da corticosterona que pode ter um efeito protetor uma vez que prepara o organismo para lidar com desafios. Com base nos nossos resultados, a simpatectomia não teve efeito na corticosterona elevada por indução de estresse possivelmente porque o estresse afeta o eixo HPA por meio de diferentes mecanismos, tais como alterações nos fatores metabólicos e inflamatórios além do aumento do sistema nervoso simpático. Ademais, esse hormônio induz mudanças na redistribuição das células imunes que melhoram a função imunológica. Foram demonstradas uma diminuição no tamanho do infarto no grupo St+IR em relação ao grupo IR e uma melhora dos parâmetros hemodinâmicos no grupo St+IR em comparação com o grupo IR. A diminuição no tamanho do infarto levou à redução de ocorrência de arritmia cardíaca e também melhorou a contratilidade cardíaca. Parece que os efeitos benéficos da indução do estresse agudo podem estar relacionados com a melhora da função do sistema imunológico como consequência do encontro do nível elevado de corticosterona com fatores inflamatórios, desencadeando as lesões por I/R.

Os efeitos da simpatectomia

Já foi estabelecido que a exposição a condições estressantes aumenta a atividade do sistema nervoso autônomo. A cardioproteção da atividade simpática foi estudada e nós utilizamos a simpatectomia química após a indução do estresse agudo para confirmar os efeitos protetivos do sistema nervoso simpático. Os animais no grupo Symp+IR foram submetidos à simpatectomia química antes da indução da I/R e não houve mudança significativa no tamanho do infarto em relação ao
De acordo com estudos prévios, o pré-tratamento de arritmia através do aumento da liberação da norepinefrina (como antagonista dos receptores alfa-2) reduziu a incidência isolada. A ativação da proteína quinase-C (PKC) via de proteger os cardiomiócitos contra os danos da I/R na FC quando comparado com o grupo Symp+IR, indicando o papel primordial da atividade fisiológica do sistema simpático na regulação da FC, da pressão e do fluxo.37 Hara e Abiko38 declarou que a norepinefrina tem dois efeitos positivos sobre os danos conforme a duração da isquemia, o que significa que a isquemia curta pode reduzir a carga mitocondrial de cálcio e causar envolvidas na abertura de canais KATP mitocondriais, que por sua vez podem reduzir a carga mitocondrial de cálcio e causar a atenuação dos efeitos benéficos da norepinefrina. Também foi demonstrado que a pressão arterial sistólica diminuiu após a simpatectomia química, corroborando o fato de que a descarga simpática muscular é responsável pela regulação da pressão arterial.43 As limitações desse estudo foram o método de indução de estresse físico que não ocorreu normalmente na vida cotidiana. Infelizmente, nós não tínhamos os dados do nível de corticosterona no grupo Symp+IR, de modo que não foi possível discutir o efeito da simpatectomia química no nível de corticosterona e a comparação entre o grupo St+IR e o grupo Symp+St+IR não foi significativa. Em consonância com nossos resultados, Lowrance et al. mostraram que o nível de corticosterona induzido por estresse não sofreu alteração após a simpatectomia farmacológica.44

Conclusão
O presente estudo mostrou que a indução de estresse físico agudo anterior à I/R teve como consequência a cardioproteção e a simpatectomia química removeu esse efeito benéfico do estresse agudo físico.

Agradecimentos
Esse estudo foi financiado pela Universidade de Ciências Médicas de Teheran.

Contribuição dos autores
Concepção e desenho da pesquisa: Imani A, Faghihi M; Obtenção de dados: Rakhshan K, Golnazari M; Análise e interpretação dos dados: Imani A, Parsa H, Chookalaei LG, Faghihi M; Análise estatística e Redação do manuscrito: Imani A, Parsa H, Chookalaei LG; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Imani A.

Potencial conflito de interesses
Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento
O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica
Este artigo é parte de dissertação de Mestrado de Alireza Imani pela Tehran University of Medical Sciences.

Aprovação ética e consentimento informado
Este estudo foi aprovado pelo Comitê de Ética da Tehran University of Medical Sciences sob o número de protocolo 30486. Todos os procedimentos envolvidos nesse estudo estão de acordo com a Declaração de Helsinki de 1975, atualizada em 2013.

Referências
1. Rochette L, Moreau D, Opie LH. Effect of repeated regional myocardial ischemia in the rat heart on reperfusion arrhythmias and release of norepinephrine. J Cardiovasc Pharmacol. 2001; 38(1):78-89.

2. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994;94(4):1621-8.

3. Lucchesi BR. Modulation of leukocyte-mediated myocardial reperfusion injury. Annu Rev Physiol. 1990;52:561-76.

4. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124-36.

5. Anvari MA, Imani A, Faghihi M, Karimian SM, Moghimian M, Khansari M. The administration of oxytocin during early reperfusion, dose-dependently protects the isolated male rat heart against ischemia/reperfusion injury. Eur J Pharmacol. 2012;682(1-3):137-41.

6. Engelmann M, Landgraf R, Wotjak CT. The hypothalamic–neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Front Neuroendocrinol. 2004;25(3-4):132-49.

7. Parker VJ, Douglas AJ. Stress in early pregnancy: maternal neuro-endocrine-immune responses and effects. J Reprod Immunol. 2010;85(1):86-92.

8. Adam TC, Epel ES. Stress, eating and the reward system. Physiol Behav. 2007;91(4):449-58.
9. Angelucci L. The glucocorticoid hormone: from pedestal to dust and back. Eur J Pharmacol. 2000;405(1-3):139-47.

10. Korte SM. Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci Biobehav Rev. 2001;25(2):117-42.

11. McEwen BS. Protective and damaging effects of stress mediators. N Engl J Med. 1998;338(3):171-9.

12. Lampert R, Jain D, Burg MM, Batsford WP, McPherson CA. Destabilizing effects of mental stress on ventricular arrhythmias in patients with implantable cardioverter-defibrillators. Circulation. 2000;101(2):158-64.

13. Todd MM, Chadwick H, Shapiro HM, Dunlop BJ, Marshall IF, Duc Eck R. The neurologic effects of thiopental therapy following experimental cardiac arrest in cats. Anesthesiology. 1982;57(2):76-86.

14. Mullane KM, Read N, Salmon JA, Moncada S. Role of leukocytes in acute myocardial infarction in anesthetized dogs: relationship to myocardial salvage by anti-inflammatory drugs. J Pharmacol Exp Ther. 1984;228(2):510-22.

15. Mello MT, Silva NPM. The use of triphenyltetrazolium chloride in the study of dehydrogenase activity of Brucella. Mem Inst Oswaldo Cruz. 1955;53(1):45-58.

16. Headrick JP. Ischemic preconditioning: bioenergetic and metabolic changes and the role of endogenous adenosine. J Mol Cell Cardiol. 1996;28(6):1227-40.

17. Choopani S, Imani A, Faghihi M, Askari S, Edalatyzadeh Z. chronic sleep deprivation and ventricular arrhythmias: effect of sympathetic nervous system. J Mol Cell Mol Anesthesia. 2016;1(2):56-61.

18. Wu S, Wong MC, Chen M, Cho CH, Wong TM. Role of opioid receptors in cardioprotection of cold-restraint stress and morphine. J Biomed Sci. 2004;11(6):726-31.

19. Kario K, McEwen BS, Pickering TG. Disasters and the heart: a review of the effects of earthquake-induced stress on cardiovascular disease. Hypertens Res. 2003;26(5):355-67.

20. Abdul-Ghani S, Fleishman AN, Khalilin I, Meloni M, Angelini GD, Saleim M. Remote ischemic preconditioning triggers changes in autonomic nervous system activity: implications for cardioprotection. Physiol Rep. 2017;5(3):pii10385.

21. Tolbuddin E, Costantino G, Solliati M, Cogliati C, Kara T, Nobili L, et al. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav Rev. 2017;74(Pt B):321-9.

22. Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009;5(7):374-81.

23. Heyndrickx GR, Vilaine JP, Moerman EJ, Leusen I. Role of prejunctional alpha 2-adrenergic receptors in the regulation of myocardial performance during exercise in conscious dogs. Circ Res. 1984;54(6):683-93.

24. Végh Â, Parratt JR. Noradrenaline, infused locally, reduces arrhythmia severity during coronary artery occlusion in anesthetised dogs. Cardiovasc Res. 2002;53(1):53-63.

25. Naderi R, Imani A, Faghihi M, Moghimian M. Phenylephrine induces early and late cardioprotection through mitochondrial permeability transition pore in the isolated rat heart. J Surg Res. 2010;164(1):e37-42.

26. Tsuchida A, Liu Y, Liu GS, Cohen MV, Downey JM. alpha 1-adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C. Circ Res. 1994;75(3):576-85.

27. Imani A, Faghihi M, Sadri SS, Niarkari SS. Noradrenaline protects in vivo rat heart against infarction and ventricular arrhythmias via nitric oxide and reactive oxygen species. J Surg Res. 2011;169(1):9-15.

28. Imani A, Faghihi M, Sadri SS, Keshavarz M and Niarkari SS. Noradrenaline reduces ischemia-induced arrhythmia in anesthetized rats: involvement of alpha1-adrenoceptors and mitochondrial K ATP channels. J Cardiovasc Electrophysiology. 2008;19(3):309-15.

29. Floras JS, Ponikowski P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur Heart J. 2015;36(30):1974-82b.

30. Lorencow SA, Ionadi A, McKay E, Douglas X and Johnson JD. Sympathetic nervous system contributes to enhanced corticosterone levels following chronic stress. Psychoneuroendocrinology. 2016 Jun;68:163-70.