Small animal disease surveillance 2019: respiratory disease, antibiotic prescription and canine infectious respiratory disease complex

Syndromic surveillance of respiratory disease

This report represents the third occasion the Small Animal Veterinary Surveillance Network (SAVSNET) has summarised respiratory disease in companion animals.1,2 The present report considers electronic health records (EHRs) captured by the SAVSNET project from 227 voluntary veterinary practices (484 sites) over a 14-month period from 1 January 2018 to 28 February 2019. A detailed description of the methodology used by SAVSNET to capture EHRs has been previously provided.1,4

A total of 1,710,078 consultations were analysed, of which 70.2 per cent were from dogs, 26.6 per cent were from cats, 1.7 per cent were from rabbits, and the remaining 1.5 per cent were from other species, or where species was not recorded. Animals mainly presenting for investigation and/or treatment of respiratory disease according to the attending veterinary surgeon or nurse comprised 0.9 per cent, 1.2 per cent and 1.2 per cent of total dog, cat and rabbit consultations, respectively.

RESPIRATORY DISEASE, ANTIBIOTIC PRESCRIPTION AND CANINE INFECTIOUS RESPIRATORY DISEASE COMPLEX: REPORT SUMMARY

• Presentation for investigation and/or treatment of respiratory disease comprised 0.9 per cent, 1.2 per cent and 1.2 per cent of total dog, cat and rabbit consultations, respectively, between 1 January 2018 and 28 February 2019.
• Coughing was the most frequently recorded respiratory disease clinical sign in dogs (68.0 per cent of cases), whereas sneezing was most common in cats (45.6 per cent of cases).
• The proportion of respiratory disease consultations in which antibiotics authorised for systemic administration (including oral and injectable formulations) were prescribed decreased by approximately 25 per cent between April 2014 and February 2019.
• Between January 2016 and February 2019, 14.5 per cent of 1602 canine and 4.9 per cent of 801 feline respiratory samples submitted to UK-based diagnostic laboratories were tested positive for the presence of Bordetella bronchiseptica.

Short questionnaires² were completed by the attending practitioner after 3937 random respiratory disease consultations (2404 canine, 1177 feline, 356 other species; 3707 unique animals). Of the dogs, 52.2 per cent were being presented for the first time, most commonly after a history of illness of up to one week (47.2 per cent). Although cats also tended to present most commonly following illness of up to one week (41.6 per cent), most were for revisits/check-ups (52.3 per cent).

For both dogs and cats, the second most common duration of respiratory clinical signs was one month or longer (20.5 per cent of dogs, 32.3 per cent of cats).

While by far the most common presenting clinical sign in dogs was coughing, sneezing was most commonly observed in cats (Table 1). A minority of dogs (6.3 per cent) and cats (3.6 per cent) were reported as having stayed in a kennel or cattery within the preceding 10 days.

Consulting veterinary surgeons considered cases likely to be respiratory in origin in over 71.2 per cent of canine and 78.4 per cent of feline cases, with a cardiac origin being considered likely in 15.3 and 7.8 per cent of canine and feline cases, respectively.

Diagnostic testing was planned in 23.5 per cent of canine and 22.9 per cent of feline cases, with radiography being the most common modality in both dogs (6.8 per cent) and cats (7.2 per cent). Biochemistry and/or haematology were also relatively commonly planned. These findings were broadly consistent with SAVSNET’s previous reports.1,3

Spatial distribution of respiratory disease

The spatial distribution of the relative risk for respiratory disease was evaluated in dogs and cats in England, Scotland and Wales for each season of the surveillance period.

ABOUT THIS REPORT

This report is the eighth in a series provided to Vet Record by the Small Animal Veterinary Surveillance Network (SAVSNET). The other reports in the series are available from http://veterinaryrecord.bmj.com

As data are collected for longer periods, the estimates of changes in disease burden will become more refined, allowing more targeted local and perhaps national interventions.

Anonymised data can be accessed for research by contacting the authors. SAVSNET also welcomes feedback on this report.

More information about SAVSNET is available at www.liverpool.ac.uk/savsnet

David A. Singleton, Steven Smyth, Bethaney Brant, Gina L. Pinchbeck, Alan D. Radford, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK

Jenny Stavisky, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington Campus, Loughborough LE12 5RD, UK

Christopher Jewell, Lancaster Medical School, Lancaster University, Furness Building, Lancaster LA1 4YG, UK

Fernando Sánchez-Vizcaíno, Bristol Veterinary School, University of Bristol, Langford Campus, Bristol BS40 5DU, UK

Correspondence to Dr Singleton, email D.A.Singleton@liverpool.ac.uk

640
TABLE 1: Percentage of recorded clinical signs in 2404 and 1177 cat consultations presented with respiratory disease to UK veterinary practices between 1 January 2018 and 28 February 2019*

Clinical sign	Number (%) of dogs	Number (%) of cats
Coughing	1631 (68.0)	333 (28.3)
Dyspnoea	328 (13.6)	246 (20.9)
Sneezing	301 (12.6)	536 (45.5)
Nasal discharge	212 (8.8)	347 (29.5)
Conjunctivitis and/or ocular discharge	42 (1.7)	170 (14.4)
Drooling	61 (2.5)	40 (3.4)
Mouth ulcers	4 (0.2)	11 (0.9)
Pyrexia	79 (3.3)	54 (4.6)
Generalised depression/lethargy	143 (5.9)	94 (8.0)
Other clinical signs	330 (13.7)	159 (13.5)

*The same animal could present with more than one clinical sign per consultation

were then aggregated into 20 km gridded cells encompassing England, Scotland and Wales, calculating the proportion of total consultations mainly presenting with respiratory disease. Standard error for each cell was calculated to provide a measure of relative confidence in the findings due to variable geographical consultation coverage. These values were used to formulate septile bivariate maps (Fig 1), where the darkest red colours indicate highest proportions of respiratory disease (greater than 1.8 per cent and 2.7 per cent for dogs and cats, respectively) and lowest standard errors.

As previously observed, transient regions of increased respiratory disease incidence were distributed seemingly randomly throughout the country and in most seasons. In future, SAVSNET will need to work with others to develop robust statistical and practical methods to determine whether these transient increases in respiratory disease prevalence represent actual infectious disease outbreaks.

Respiratory disease pharmacosurveillance

For the first time in this report we also analysed pharmaceutical product prescriptions given during all respiratory consultations recorded between 1 April 2014 and 28 February 2019 in dogs (n=46,200 respiratory consultations), cats (n=23,113) and rabbits (n=14,48).

A semi-automated text mining methodology was utilised to identify the active substance(s) dispensed in each consultation using the ‘product dispensed’ field of the EHR; these active substances were summarised into a hierarchical pharmaceutical classification system as previously described. For the purposes of this report, five pharmaceutical families of particular
relevance to respiratory disease were analysed, including antibiotics authorised for systemic (oral or injectable) use; anti-inflammatoryatories authorised for systemic use; respiratory-active (R-A) products (eg, bronchodilators); cardiovascular-active (CV-A) products (eg, diuretics); and euthanasia products or consultations.

For dogs, systemic antibiotics were prescribed in 37.4 per cent of respiratory consultations, systemic anti-inflammatoryatories in 34.6 per cent, R-A products in 5.0 per cent and CV-A products in 12.7 per cent.

For cats, systemic antibiotics were prescribed in 68.5 per cent of respiratory consultations, systemic anti-inflammatoryatories in 21.7 per cent, R-A products in 8.4 per cent and CV-A products in 7.3 per cent.

For rabbits, systemic antibiotics were prescribed in 64.7 per cent of respiratory consultations, systemic anti-inflammatoryatories in 21.7 per cent, R-A products in 4.0 per cent and CV-A products in 0.7 per cent.

Dogs were euthanased in 1.2 per cent of respiratory consultations compared to 2.4 per cent of cat and 4.2 per cent of rabbit respiratory consultations.

Temporal trends in prescription frequency were also examined in dogs and cats (Fig 2). Over the five years analysed, an approximately 25 per cent decrease in the frequency with which systemic antibiotics were prescribed was noted in this population, with other pharmaceutical families remaining broadly static over the same time period.

Systemic antibiotic and anti-inflammatoryatory prescription frequency tended to peak in the third or fourth quarter of each year for dogs, suggesting a seasonality to the occurrence of perceived antibiotic-responsive disease; such a trend was less discernible for cats.

Laboratory-based investigations of *Bordetella bronchiseptica*

SAVSNET collated data from four participating UK-based veterinary diagnostic laboratories (VDL) between 1 January 2016 and 28 February 2019, with data being used to identify temporal and spatial trends in the proportion of respiratory sample submissions that tested positive (as interpreted by the VDL) for the presence of *Bordetella bronchiseptica* by quantitative PCR assay.

In total, there were 1602 recorded canine and 801 recorded feline tests completed, with 14.5 per cent (n=233) and 4.9 per cent (n=39) testing positive, respectively.

Over the three years, the proportion of positive results was relatively static (Fig 3). For both dogs and cats, a greater proportion of tests completed in winter were positive (dogs 17.3 per cent; cats 7.6 per cent), followed by summer (dogs 14.1 per cent; cats 4.7 per cent), autumn (dogs 13.6 per cent; cats 3.8 per cent) and spring (dogs 12.9 per cent; cats 2.8 per cent).

Due to a low number of feline positive results, spatial trends were examined for dogs alone. Although varied coverage should be considered, collating all tests from 2016 to 2019 revealed areas of both relatively high and low positive test proportions in postcode areas for which relatively high volumes of data (low standard error) are held; this suggests variable *B bronchiseptica* infection risk in different regions of the country (Fig 4).

To our knowledge it has been many years since *B bronchiseptica* infection has been surveyed in companion animals in the UK, although a 2005 European-wide survey of cats in catteries found a comparative (5 per cent) *B bronchiseptica* prevalence in cats suffering from upper respiratory tract disease.7

Update on main presenting complaint temporal trends*

An observed prevalence time series for three key main presenting complaints (pruritus, gastroenteric and respiratory) from February 2017 to February 2019 is shown in Fig 5, together with a seasonal trend line (dark grey line). The trend line was calculated using a Bayesian binomial generalised linear model trained on weekly prevalence between 2014 and 2019, as fully described previously.8 Extreme prevalence observations describing weekly
prevalence exceeding 99 per cent credible intervals, and moderate prevalence observations describing weekly prevalence exceeding 95 per cent credible intervals are displayed in red and orange, respectively.

These results show continued seasonal prevalence fluctuations in both species, particularly apparent for pruritus in both dogs and cats, and respiratory disease in dogs. In dogs and cats, this seasonal pattern for pruritus appeared generally stable, although both species reported a few extreme case increase weeks in January 2019.

Respiratory disease was less stable, suggesting an extreme increase above expected levels in respiratory cases in dogs and cats at the beginning of 2019. It is currently unknown whether these findings represent a true increase in disease prevalence, or reflect the changing nature of participation in the SAVSNET project.

Global perspective

Aujeszky’s disease in a dog
An 18-month-old Munsterlander dog was killed by Aujeszky’s disease virus after a hunt in Moselle in France in February. The disease,
SURVEILLANCE

UPDATE ON CANINE INFECTIOUS RESPIRATORY DISEASE COMPLEX AND BORDETELLA BRONCHISEPTICA INFECTION IN DOGS

Bordetella bronchiseptica is a Gram negative, aerobic coccobacillus. It forms part of the ‘kennel cough’ or canine infectious respiratory disease complex (CIRDC), the names given to commonly seen signs of upper respiratory tract infections in dogs. Despite its name, the syndrome is not confined to kennels and may be transmitted anywhere where dogs mix, including shows, training classes, parks and veterinary surgeries.

The pathogenesis of CIRDC is thought to frequently involve initial infection with an upper respiratory tract pathogen such as canine respiratory coronavirus or canine parainfluenza virus (CPiV). This then facilitates secondary infection, often with opportunistic organisms already present in the respiratory tract, such as Mycoplasma cynos. B bronchiseptica may play the role of either primary pathogen or secondary invader.

In some parts of the world, canine influenza viruses also contribute; these are not yet thought to be regularly circulating in the UK.1

Clinical signs

A hacking cough is clinically typical of CIRDC, although not pathognomonic of any one pathogen. Differentials include retching, regurgitation and oropharyngeal foreign body. In addition to the cough, dogs may have submandibular lymph node enlargement and mild pyrexia. While affected animals typically remain bright and well, in severe cases or particularly susceptible individuals, bronchopneumonia can occur, with associated increased respiratory effort, pyrexia and lethargy. Deaths are relatively uncommon.

Where outbreaks of severe disease occur, aspects of husbandry such as ventilation, stress and biosecurity should be assessed and alternative pathogens such as Streptococcus equi zooepidemicus considered.

Diagnosis

Diagnosis of CIRDC is usually made in the presence of characteristic clinical signs. Diagnostic testing is indicated in the presence of an outbreak, where the results could inform a change in policy (such as therapy or vaccination), or in individual cases where signs are severe or fail to resolve.

For upper respiratory tract disease, a deep oropharyngeal swab should be taken. A number of PCR panel tests are available, and can be helpful in checking for the presence of several organisms simultaneously. Diagnostic results need to be interpreted with care since some of the components of CIRDC can be part of normal respiratory tract flora. Additionally, CIRDC may involve different pathogens at different stages of infection. Therefore, in an outbreak, sampling several dogs at different stages of infection may be helpful.

Treatment

For most dogs with CIRDC, specific antibiotic therapy is not necessary, with symptomatic treatment (avoiding pulling on collars, rest and NSAIDs if needed) being sufficient. The use of antitussives is contentious.

International Society for Companion Animal Infectious Diseases guidelines suggest empirical use of antibiotics where there is a mucopurulent discharge alongside signs of lethargy, pyrexia or anorexia.15

BSAVA PROTECT ME suggests that antibiotics are only indicated if clinical signs persist for more than 10 days and/or the dog is systemically unwell.11

Where necessary, both guidelines suggest doxycycline or potentiated amoxicillin as the first choice antibiotics. Where cases fail to resolve, or if the lower respiratory tract is involved, culture and sensitivity testing and further investigations such as bronchoalveolar lavage may be indicated.

Control

Several pathogens involved in CIRDC are part of canine core vaccines. In the UK, Bordetella vaccination is given intranasally, often combined with CPiV; elsewhere, subcutaneous and oral vaccines exist. Mucosal immunity commences within three days. As the vaccine is live, some dogs may have a transient cough for several days afterwards.

It is essential to note that vaccination will not fully prevent clinical CIRDC due to the range of pathogens that contribute to this syndrome.

Following natural infection, dogs may shed Bordetella at diminishing levels for up to 12 weeks, with transmission mainly via aerosol. Restricting social mixing of dogs recovering from CIRDC is therefore important in limiting spread.

Zoonotic potential and cross-species transmission

B bronchiseptica is a rare but potentially serious zoonosis.12 Case reports of infections in cystic fibrosis and transplant patients have documented serious sequelae and even death.13,14 Zoonotic transmission following vaccination (including the administrator, handler and owner) is thought to be possible but extremely rare.13 Postvaccination shedding may occur for several weeks.16

Where immunocompromised humans are in contact with dogs, the low but predictable risk of vaccination must be carefully weighed against the less predictable risk of clinical infection. Appropriate advice, including recommending at-risk owners contact their medical practitioner, should be offered. Transmission between dogs and cats has been suggested to occur.10 Additionally, cats have also been implicated in zoonotic infections.18

caused by an alphaherpesvirus, can be transmitted from wild boars to domestic carnivores. The UK was declared disease free in 2012, but the virus persists in some wild populations of pigs in parts of mainland Europe.

In dogs and cats, clinical signs include frantic and traumatic scratching, followed by paralysis and death; their similarity to those of rabies leads to the disease’s other name – pseudorabies. In dogs, disease is rare and most likely in hunting dogs. However, Aujeszky’s disease is notifiable, and although unlikely, this case serves as a reminder of the potential of this disease in dogs (and cats) returning from places where it is endemic.

Carbapenemase-producing Enterobacteriaceae in dogs

Carbapenems are considered a highest priority critical antibiotic used to treat already multidrug resistant infections in people. However, their use has led to the emergence of carbapenemase-producing Enterobacteriaceae which represent a serious public health problem.

Carbapenems are not authorised for veterinary patients in the UK. As a result, there is limited carbapenem susceptibility testing conducted on companion animal-derived clinical isolates in veterinary diagnostic labs, nor any formal national surveillance of carbapenemase production in isolates from companion animals in the UK.

Researchers have now isolated
a carbenemase-producing *Escherichia coli* from a UK practice-derived veterinary culture collection. From one isolate, originally from a skin wound in a springer spaniel, researchers identified a known carbenemase resistance gene (*blaNDM-5*). The gene was located on the same plasmid as other genes conferring resistance to other antimicrobial classes, potentially demonstrating co-selection and maintenance of carbenemase resistance with use of other antimicrobials in companion animals.

This finding highlights the perhaps growing potential of antibiotic use in pet animals to impact on human health.

Acknowledgements

SAVSNET is based at the University of Liverpool and is currently funded by the Biotechnology and Biological Sciences Research Council. The team is indebted to the British Small Animal Veterinary Association for its support.

The SAVSNET team is also grateful to the veterinary practices and diagnostic laboratories that provide health data and without whose support these reports would not be possible. It wishes to thank Batt Laboratories, BioBest, CAPL, CTDS, CVS, Idexx, Lab Services, Langford Veterinary Services, NationWide Laboratory Services, PTDS, SRUC, TDDS, Telesos, Test A Pet and Microbiology Diagnostics Laboratory at University of Liverpool, and VetSolutions (the suppliers of RoboVet and PremVet).

The team would also like to thank Susan Bolan, SAVSNET project administrator, for her help and support.

References

1. Arsenyeva E, Priestnall SL, Singleton DA, et al. Small animal disease surveillance: respiratory disease 2017. Vet Rec 2018;182:639–73
2. Sánchez-Vizcaíno F, Daly JM, Jones PH, et al. Small animal disease surveillance: respiratory disease. Vet Rec 2016;178:361–4
3. Sánchez-Vizcaíno F, Jones PH, Menacere T, et al. Small animal disease surveillance. Vet Rec 2015;177:591–4
4. Sánchez-Vizcaíno F, Nobel PM, Jones PH, et al. Demographics of dogs, cats, and rabbits attending veterinary practices in Great Britain as recorded in their electronic health records. BMC Vet Res 2017;13:218
5. Singleton DA, Sánchez-Vizcaíno F, Dawson S, et al. Patterns of antimicrobial agent prescription in a sentinel population of canine and feline veterinary practices in the United Kingdom. Vet Rec 2017;224:18–24
6. Singleton DA, Sánchez-Vizcaíno F, Arsenyeva E, et al. New approaches to pharmacosurveillance for monitoring prescription frequency, diversity, and co-prescription in a large sentinel network of companion animal veterinary practices in the United Kingdom, 2014–2016. Prev Vet Med 2018;159:153–61
7. Helps CR, Lai J, Damhus A, et al. Factors associated with upper respiratory tract disease caused by feline herpesvirus, feline calicivirus, *Chlamydia felis* and *Bordetella bronchiseptica* in cats: experience from 218 European catteries. Vet Rec 2003;153:669–73
8. Arsenyeva E, Singleton DA, Jewell C, et al. Small animal disease surveillance: pruritus and *Pseudomonas* skin infections. Vet Rec 2018;183:182–7
9. Reynolds ME, Phan HTT, George S, et al. Occurrence and characterization of *Escherichia coli* ST41 co-harboring *blaNDM-5*, *blaCMY-42* and *blaTEM-190* in a dog from the UK. J Antimicrob Chemother 2019; doi: 10.1093/jac/dky207 [Epub ahead of print]
10. Lappin MR, Blouin J, Booth D, et al. Antimicrobial use guidelines for treatment of respiratory tract disease in dogs and cats. Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases. J Vet Intern Med 2017;31:79–94
11. BSAVA/SAM Soc. PROTECT ME. In: BSAVA/SAM Soc. Guide to Responsible Use of Antibacterials. PROTECT ME. Gloucester: British Small Animal Veterinary Association, 2018
12. Garcia-de-la-Fuente C, Guzman L, Cano M, et al. Microbiological and clinical aspects of respiratory infections associated with *Bordetella bronchiseptica*. Sogn Microbiol Infect Dis 2015;8:20–5
13. Brady C, Ackerman P, Johnson M, McMamara J. *Bordetella bronchiseptica* infection in a pediatric cystic fibrosis center. J Cyst Fibros 2014;13:43–8
14. Net Z, Ross LA, Horn MV, et al. *Bordetella bronchiseptica* pneumonia in a kidney-pancreas transplant patient after exposure to recently-vaccinated dogs. Transplant Infect Dis 2010;12:73–6
15. Giet J, Blumle MM, Johnson MM. *Bordetella bronchiseptica* pneumonia in a kidney-pancreas transplant patient after exposure to recently-vaccinated dogs. Transplant Infect Dis 2010;12:73–6
16. Iemura R, Tsukatani R, Micallef MJ, Tanero A. Simultaneous analysis of the nasal flora of recently vaccinated dogs. Transpl Infect Dis 2009;11:413–7
17. Briers DL, Dawson S, Speakman AJ, et al. Prevalence and risk factors for feline *Bordetella bronchiseptica* infection. Vet Rec 1999;144:575–80
18. Register KB, Sukumar N, Palavecino EI, et al. *Bordetella bronchiseptica* in a paediatric cystic fibrosis patient: possible transmission from a household cat. J Paediatr Child Health 2012;58:246–50

SURVEILLANCE

BVA guide to handling veterinary waste

Download the **BVA guide to handling veterinary waste** from www.bva.co.uk-guides

Make sure you’re complying with waste regulations