Test of the Standard Model in Neutron Beta Decay with Polarized Electron and Unpolarized Neutron and Proton

A. N. Ivanov,1 R. Höllwieser,1,2 N. I. Troitskaya,1 M. Wellenzohn,1,3 and Ya. A. Berdnikov4

1Atominstitut, Technische Universität Wien, Stadionallee 2, A-1020 Wien, Austria
2Department of Physics, Bergische Universität Wuppertal, Gaussstr. 20, D-42119 Wuppertal, Germany
3FH Campus Wien, University of Applied Sciences, Favoritenstraße 226, 1100 Wien, Austria
4Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251, Russian Federation

(Dated: November 13, 2018)

We calculate the correlation coefficients of the electron–energy and electron–antineutrino angular distribution of the neutron β^-–decay with polarized electron and unpolarised neutron and proton. The calculation is carried out within the Standard Model (SM) with the contributions, caused by the weak magnetism, proton recoil and radiative corrections of order of 10^{-3}, Wilkinson's corrections of order 10^{-5} (Wilkinson, Nucl. Phys. A 377, 474 (1982) and Ivanov et al., Phys. Rev. C 95, 055502 (2017)) and the contributions of interactions beyond the SM. The obtained results can be used for the analysis of experimental data on searches of interactions beyond the SM at the level of 10^{-4} (Abele, Hyperfine Interact. 237, 155 (2016)). The contributions of G–odd correlations are calculated and found at the level of 10^{-5} in agreement with the results obtained by Gardner and Plaster (Phys. Rev. C 87, 065504 (2013)) and Ivanov et al. (Phys. Rev. C 98, 035503 (2018)).

PACS: 12.15.Ff, 13.15.+g, 23.40.Bw, 26.65.+t

I. INTRODUCTION

In Refs. [1–3] we have calculated the neutron lifetime and correlation coefficients of the electron–energy and angular distributions of the neutron β^-–decay with polarized neutron and unpolarized electron and proton, and polarized neutron and electron and unpolarized proton, respectively. The neutron lifetime and correlation coefficients are calculated at the level of 10^{-3} of contributions of the weak magnetism and proton recoil of order $O(E_e/M)$, where E_e is the electron energy and M is an averaged nucleon mass, and radiative corrections of order $O(\alpha/\pi)$, where α is the fine–structure constant [4]. The radiative corrections of order $O(\alpha/\pi)$ to the neutron lifetime and correlation coefficients of the neutron β^-–decay with polarized neutron and unpolarized electron and proton have been calculated by Sirlin [5] and Shann [6] (for details of these calculations we relegate a reader to [7] and [1]). In turn, the radiative corrections of order $O(\alpha/\pi)$ to the correlation coefficients of the neutron β^-–decay with polarized neutron and electron, and unpolarized proton have been calculated in [2]. Then, in [1] and [3] we have taken into account the contributions of interactions beyond the Standard Model (SM) to the neutron β^-–decay with polarized neutron and unpolarized electron and proton, and polarized neutron and electron, and unpolarized proton, respectively.

This paper is addressed to the calculation of the correlation coefficients of the electron–energy and electron–antineutrino angular distribution of the neutron β^-–decay with polarized electron and unpolarized neutron and proton. We calculate a complete set of corrections of order 10^{-3} defined by the corrections of order $O(E_e/M)$, caused by the weak magnetism and proton recoil and calculated to next–to–leading order in the large nucleon mass expansion, and radiative corrections of order $O(\alpha/\pi)$, calculated to leading order in the large nucleon mass expansion. We discuss also Wilkinson’s corrections of order 10^{-5} [8], which have been adapted to the neutron β^-–decay with polarized neutron and electron and unpolarized proton in Ref. [2]. In addition we take into account the contributions of interactions beyond the SM [9–20] (see also [1, 3]) including the contributions of the second class currents (or the G–odd correlations) [19, 20] (see also [3]).
The paper is organized as follows. In section II we write down the general expression for the electron–energy and electron–antineutrino angular distribution of the neutron β^-–decay with polarized electron and unpolarized neutron and proton. In section III we discuss the renormalization procedure of the amplitude of the neutron β^-–decay, caused by the effective $V - A$ weak interaction and radiative corrections, calculated to order $O(\alpha/\pi)$ in the one–photon exchange approximation. In section IV we calculate the renormalized electron–energy and electron–antineutrino angular distribution to order $O(E_\nu/M)$ and $O(\alpha/\pi)$, caused by the weak magnetism, proton recoil and radiative corrections, dependent on the infrared cut–off μ and obtained within the finite–photon mass regularization.[1][3]. In section V using the Dirac wave function of the decay electron, distorted in the Coulomb field of the decay proton, we calculate the coefficient $L(E_\nu)$, responsible for time reversal violation. In section VI we calculate the electron–energy and electron–antineutrino angular distribution of the neutron radiative β^-–decay with polarized electron and unpolarized neutron and proton. We use these results for a cancellation of the infrared divergences in the observable electron–energy and electron–antineutrino angular distribution of the neutron β^-–decay with polarized electron and unpolarized neutron and proton. The results, obtained in this section can be also used for the experimental analysis of the neutron radiative β^-–decay with polarized electron and unpolarized neutron and proton. In section VII we write down the observable electron–energy and electron–antineutrino angular distribution, calculated in the SM to order 10^{-3}, caused by the weak magnetism and proton recoil of order $O(E_\nu/M)$ and radiative corrections of order $O(\alpha/\pi)$. We show that the radiative corrections to the correlation coefficients $H(E_\nu)$ and $K(E_\nu)$ are defined by the functions $(\alpha/\pi)h^{(1)}(E_\nu)$ and $(\alpha/\pi)h^{(2)}(E_\nu)$, calculated for the first time in the present paper. The radiative corrections $(\alpha/\pi)h^{(1)}(E_\nu)$ and $(\alpha/\pi)h^{(2)}(E_\nu)$ are plotted in Fig. 3. In section VIII we adduce the analytical expressions for the correlation coefficients $a(E_\nu)$, $G(E_\nu)$, $H(E_\nu)$, $K(E_\nu)$ and $L(E_\nu)$, calculated in the SM to order 10^{-3}, caused by the weak magnetism, proton recoil and radiative corrections. The obtained results can be used for the analysis of the experimental data on the neutron β^-–decay with polarized electron and unpolarized neutron and proton. In section IX we discuss Wilkinson’s corrections of order 10^{-5}, which have not been taken into account for the calculation of the correlation coefficients in section VIII. They are caused by i) the proton recoil in the Coulomb electron–proton final–state interaction, ii) the finite proton radius, iii) the proton–lepton convolution and iv) the higher–order outer radiative corrections.[3]. We calculate the contributions to the correlation coefficients, induced by the change of the Fermi function caused by the proton recoil in the electron–proton final–state Coulomb interaction. We plot these corrections in the electron–energy region $0.761\text{MeV} \leq E_\nu \leq 0.966\text{MeV}$ in Fig. 4. We point out that Wilkinson’s corrections of order 10^{-5}, caused by ii) the finite proton radius, iii) the proton–lepton convolution and iv) the higher–order outer radiative corrections and calculated in [2], retain fully their shapes and values for the correlation coefficients analysed in this paper. In sections X and XI we calculate the contributions to the correlation coefficients, caused by interactions beyond the SM [3][21] (see also [1][3]), and give the correlation coefficients in the form suitable for the analysis of experimental data on searches of contributions of interactions beyond the SM [21] (see also [1][3]). In section XII we discuss the obtained results and perspectives of the theoretical background to order 10^{-5}, which goes beyond the scope of Wilkinson’s corrections of order 10^{-5} [2][22].

II. ELECTRON–ENERGY AND ELECTRON–ANTINEUTRINO ANGULAR DISTRIBUTION

The electron–energy and electron–antineutrino angular distribution of the neutron β^-–decay with polarized electron and unpolarized neutron and proton can be written in the following form [11][14]

$$\frac{d^3\lambda_{\beta}(E_\nu, \vec{k}_e, \vec{E}_e, \vec{E}_\nu)}{dE_\nu d\Omega_e d\Omega_\nu} = (1 + 3\lambda^2) \frac{G_F^2 |V_{ud}|^2}{32\pi^5} (E_0 - E_e)^2 \sqrt{E_e^2 - m_e^2} E_e F(E_\nu, Z = 1) \zeta(E_\nu) \left\{ 1 + a(E_\nu) \frac{\vec{k}_e \cdot \vec{k}_\nu}{E_e E_\nu} \right\} + G_e \frac{\vec{E}_e \cdot \vec{E}_\nu}{E_e} + H(E_e) \frac{\vec{E}_e \cdot \vec{E}_\nu}{E_e} + K_e(\vec{E}_e) \frac{(\vec{E}_e \cdot \vec{k}_\nu)(\vec{k}_e \cdot \vec{k}_\nu)}{(E_e + m_e)E_e E_\nu} + L(E_e) \frac{\vec{E}_e \cdot (\vec{k}_e \times \vec{k}_\nu)}{E_e E_\nu} + \ldots \right\}. \quad (1)$$

d where $d\Omega_e$ and $d\Omega_\nu$ are infinitesimal solid angles of the electron and antineutrino 3-momenta, $\lambda = -1.2750(9)$ is the axial coupling.[24] (see also [27][28] and [1][3]), $G_F = 1.1664 \times 10^{-11}\text{MeV}^{-2}$ is the Fermi weak coupling constant, $V_{ud} = 0.97417(21)$ is the CKM matrix element [4], extracted from the $0^+ \rightarrow 0^+$ transitions, $E_0 = (m_e^2 + m_e^2 + m_\nu^2)/2m_e$ = 1.2926 MeV is the end–point energy of the electron spectrum, calculated for the neutron $m_n = 939.5654$ MeV, proton $m_p = 938.2721$ MeV and electron $m_e = 0.5110\text{MeV}$ masses [4]. Ξ_e is a unit polarization vector of the electron, and $F(E_e, Z = 1)$ is the relativistic Fermi function used in [1][3] and equal to [22][22].

$$F(E_e, Z = 1) = \left(1 + \frac{1}{2} \right)^4 \frac{4(2r_p m_e \beta)^2 \gamma}{\Gamma^2(3 + 2\gamma)} \frac{e^{\pi \alpha/\beta}}{(1 - \beta^2)^2} \left| \Gamma \left(1 + \gamma + \frac{\alpha}{\beta} \right) \right|^2. \quad (2)$$

where $\beta = k_e/E_e = \sqrt{E_e^2 - m_e^2}/E_e$ is the electron velocity, $\gamma = \sqrt{1 - \alpha^2} - 1$, r_p is the electric radius of the proton. In the numerical calculations we will use $r_p = 0.841 \text{ fm}$ [29].
The function $\zeta(E_c)$ and the correlation coefficients $a(E_c)$ and $G(E_c)$ have been calculated in [13]. They are defined by the contributions of order 10^{-3} of the SM interactions, Wilkinson’s corrections of order 10^{-5} and interactions beyond the SM (see [13] and [33]). In this paper we calculate the correlation coefficients $H(E_c)$, $K_e(E_c)$ and $L(E_c)$, where the correlation coefficient $L(E_c)$ is responsible for violation of invariance under transformation of time reversal. We calculate i) a complete set of corrections of order 10^{-3}, caused by the weak magnetism and proton recoil of order $O(E_c/M)$ and radiative corrections of order $O(\alpha/\pi)$, ii) Wilkinson’s corrections of order 10^{-5} [8] (see also [12]), iii) contributions of interactions beyond the SM [11]–[14] (see also [1, 3]) and iv) second class contributions or G–odd correlations [13, 20]) (see also [3]).

III. EFFECTIVE LOW–ENERGY INTERACTIONS, DEFINING AMPLITUDE OF NEUTRON $\beta^–$–DECAY TO ORDER 10^{-3} IN THE SM

In the SM of electroweak interactions the neutron $\beta^–$–decays, defined in the one–loop approximation with one–virtual–photon exchanges, are described by the following interactions

$$L_{int}(x) = L_W(x) + L_{em}(x).$$

Here $L_W(x)$ is the effective Lagrangian of low–energy $V – A$ interactions with a real axial coupling constant $\lambda = -1.275(9)$ [24] (see also [1, 2]):

$$L_W(x) = -\frac{G_F}{\sqrt{2}} V_{ud} \left\{ \left[\bar{\psi}_e(x) \gamma_\mu (1 + \gamma^5) \psi_e(x) \right] + \frac{K}{2M} \partial^\nu \left[\bar{\psi}_e(x) \sigma_{\mu\nu} \psi_e(x) \right] \right\} \left[\bar{\psi}_e(x) \gamma^\mu (1 - \gamma^5) \psi_e(x) \right],$$

where $\psi_{be}(x)$, $\psi_{ne}(x)$ and $\psi_{pe}(x)$ are bare field operators of the proton, neutron, electron and antineutrino, respectively, G_F is a bare Fermi weak coupling constant, and $\gamma^\mu = (\gamma^0, \vec{\gamma})$ and γ^5 are the Dirac matrices [31]. $\kappa = \kappa_p - \kappa_n = 3.7058$ is the isovector anomalous magnetic moment of the nucleon, defined by the anomalous magnetic moments of the proton $\kappa_p = 1.7928$ and the neutron $\kappa_n = -1.9130$ and measured in nuclear magneton [4], and $M = (m_n + m_p)/2$ is the average nucleon mass.

For the calculation of the radiative corrections to order $O(\alpha/\pi)$ the Lagrangian of the electromagnetic interaction $L_{em}(x)$ we take in the following form [22]

$$L_{em}(x) = -\frac{1}{4} F^{(0)}_{\mu\nu}(x) F^{(0)\mu\nu}(x) - \frac{1}{2\xi} \left(\partial_\mu A^{(0)\mu}(x) \right)^2 + \bar{\psi}_e(x)(i\gamma^\mu \partial_\mu - m_e)\psi_e(x) - (-e_0) \bar{\psi}_e(x) \gamma^\mu \psi_e(x) A^{(0)}_\mu(x) + \bar{\psi}_p(x)(i\gamma^\nu \partial_\nu - m_p)\psi_p(x) - (+e_0) \bar{\psi}_p(x) \gamma^\mu \psi_p(x) A^{(0)}_\mu(x),$$

where $F^{(0)}_{\mu\nu}(x) = \partial_\mu A^{(0)}_\nu(x) - \partial_\nu A^{(0)}_\mu(x)$ is the electromagnetic field strength tensor of the bare (unrenormalized) electromagnetic field operator $A^{(0)}_\mu(x)$; $\psi_e(x)$ and $\psi_p(x)$ are bare operators of the electron and proton fields with bare masses m_{be} and m_{bp}, respectively; $-e_0$ and $+e_0$ are bare electric charges of the electron and proton, respectively. Then, ξ_0 is a bare gauge parameter. After the calculation of the one–loop corrections of order $O(\alpha/\pi)$ a transition to the renormalized field operators, masses and electric charges is defined by the Lagrangian

$$L_{em}(x) = -\frac{1}{4} F^{\mu\nu}(x) F^{\mu\nu}(x) - \frac{1}{2\xi} \left(\partial_\mu A^\mu(x) \right)^2 + \bar{\psi}_e(x)(i\gamma^\mu \partial_\mu - m_e)\psi_e(x) - (-e) \bar{\psi}_e(x) \gamma^\mu \psi_e(x) A^\mu(x) + \bar{\psi}_p(x)(i\gamma^\nu \partial_\nu - m_p)\psi_p(x) - (+e) \bar{\psi}_p(x) \gamma^\mu \psi_p(x) A^\mu(x) + \delta L_{em}(x),$$

where $A^\mu(x)$, $\psi_e(x)$ and $\psi_p(x)$ are the renormalized operators of the electromagnetic, electron and proton fields, respectively; m_e and m_p are the renormalized masses of the electron and proton; e is the renormalized electric charge; and ξ is the renormalized gauge parameter. The Lagrangian $\delta L_{em}(x)$ contains a complete set of the counterterms [32]

$$\delta L_{em}(x) = -\frac{1}{4} (Z_3 - 1) F^{\mu\nu}(x) F^{\mu\nu}(x) - \frac{Z_3 - 1}{2\xi} \left(\partial_\mu A^\mu(x) \right)^2 + \bar{\psi}_e(x)(i\gamma^\mu \partial_\mu - m_e)\psi_e(x) - \left(Z_{\psi_e}^{(e)} - 1 \right) (-e) \bar{\psi}_e(x) \gamma^\mu \psi_e(x) A^\mu(x) - Z_{\psi_e,ps} \delta m_e \bar{\psi}_e(x) \psi_e(x) + \bar{\psi}_p(x)(i\gamma^\nu \partial_\nu - m_p)\psi_p(x) - \left(Z_{\psi_p}^{(p)} - 1 \right) (+e) \bar{\psi}_p(x) \gamma^\mu \psi_p(x) A^\mu(x) - Z_{\psi_p,ps} \delta m_p \bar{\psi}_p(x) \psi_p(x),$$

where

$$Z_3 = \frac{\alpha}{\pi},$$

and

$$Z_{\psi_e}^{(e)}, Z_{\psi_e,ps}, Z_{\psi_e,ps}^{(p)} = \frac{\alpha}{\pi}.$$
where Z_3, Z_2^e, Z_1^e, Z_2^p, Z_1^p, δm_e and δm_p are the counterterms. Here Z_3 is the renormalization constant of the electromagnetic field operator A_μ, Z_2^e and Z_1^e are the renormalization constants of the electron field operator ψ_e and the electron–electron–photon $(e^-e^-\gamma)$ vertex, respectively; Z_2^p and Z_1^p are the renormalization constants of the proton field operator ψ_p and the proton–proton–photon $(p\bar{p}\gamma)$ vertex, respectively. Then, $(-e)$ and $(+e)$, m_e and m_p and δm_e and δm_p are the renormalized electric charges and masses and the mass–counterterms of the electron and proton, respectively. Rescaling the field operators \[32, 33\]

$$\sqrt{Z_3} A_\mu(x) = A_\mu^0(x), \quad \sqrt{Z_2^e} \psi_e(x) = \psi_{e0}(x), \quad \sqrt{Z_2^p} \psi_p(x) = \psi_{p0}(x)$$

and denoting $m_e + \delta m_e = m_{e0}$, $m_p + \delta m_p = m_{p0}$ and $Z_3 \xi = \xi_0$ we arrive at the Lagrangian

$$\mathcal{L}_{em}(x) = \frac{1}{4} F^{\mu\nu}(x) F^{(0)\mu\nu}(x) - \frac{1}{2\xi_0} \left(\partial_\mu A^{(0)\mu}(x) \right)^2$$

$$+ \bar{\psi}_{e0}(x) \left(i\gamma^\mu \partial_\mu - m_{e0} \right) \psi_{e0}(x) - (-e) Z_1^e (Z_2^e)^{-1} Z_3^{-1/2} \bar{\psi}_{e0}(x) \gamma^\mu \psi_{e0}(x) A^{(0)}_\mu(x)$$

$$+ \bar{\psi}_{p0}(x) \left(i\gamma^\mu \partial_\mu - m_{p0} \right) \psi_{p0}(x) - (+e) Z_1^p (Z_2^p)^{-1} Z_3^{-1/2} \bar{\psi}_{p0}(x) \gamma^\mu \psi_{p0}(x) A^{(0)}_\mu(x).$$

(9)

Because of the Ward identities $Z_1^e = Z_2^e$ and $Z_1^p = Z_2^p$ \[31, 33\], we may replace $(-e) Z_3^{-1/2} = -e_0$ and $(+e) Z_3^{-1/2} = +e_0$. This brings Eq.(9) to the form of Eq.(4). We would like to emphasize that to order $O(\alpha/\pi)$ the renormalization constant Z_3 is equal to unity because of the absent of closed fermion loops \[31, 33\], i.e., $Z_3 = 1$. This means that in such an approximation the bare electric charge e_0 coincides with the renormalized electric charge e, i.e. $e_0 = e$. After the rescaling of the proton and electron field operators Eq.(8) the Lagrangian of $V - A$ weak interactions Eq.(4) takes the form

$$\mathcal{L}_W(x) = -\frac{G_F}{\sqrt{2}} V_{ud} \left\{ \bar{\psi}_p(x) \gamma_\mu (1 + \lambda \gamma^5) \psi_n(x) + \frac{\kappa}{2M} \partial^\mu \left[\bar{\psi}_p(x) \sigma_{\mu\nu} \psi_n(x) \right] \right\} \left[\bar{\psi}_e(x) \gamma^\mu (1 - \gamma^5) \psi_p(x) \right],$$

(10)

where $G_F = \sqrt{Z_2^p Z_2^e} G_{0F}$ is the Fermi weak coupling constant renormalized by electromagnetic interactions to order $O(\alpha/\pi)$. The bare neutron $\psi_n(x)$ and antineutrino $\bar{\psi}_\nu(x)$ field operators are not renormalized by electromagnetic interactions and coincide with the field operators $\psi_n(x)$ and $\bar{\psi}_\nu(x)$, respectively, i.e. $\psi_n(x) = \psi_n(x)$ and $\bar{\psi}_\nu(x) = \bar{\psi}_\nu(x)$.
IV. ELECTRON–ENERGY AND ELECTRON–ANTINEUTRINO ANGULAR DISTRIBUTION WITH RADIATIVE CORRECTIONS CAUSED BY ONE–VIRTUAL PHOTON EXCHANGES

Using the results, obtained in [1], the renormalized amplitude of the neutron β^-–decay with contributions, caused by the weak magnetism and proton recoil, calculated to next–to–leading order $O(E_c/M)$ in the large nucleon mass expansion, and radiative corrections to order $O(\alpha/\pi)$, defined by the Feynman diagrams in Fig. [1] and calculated to leading order in the large nucleon mass expansion, takes the form (see Eq.(D-52) of Ref. [1])

$$M(n \to p e^- \nu_e) = -2m_n \frac{G_F}{\sqrt{2}} v_{ud} \left\{ \left(1 + \alpha \frac{f_{\beta^-}}{2\pi} (E_c, \mu) \right) [\varphi^\dagger_p \varphi_n] [\bar{u}_e \gamma^0 (1 - \gamma^5) v_\nu] \\
- \lambda \left(1 + \alpha \frac{f_{\beta^-}}{2\pi} (E_c, \mu) \right) [\varphi^\dagger_p \sigma \varphi_n] [\bar{u}_e \gamma^5 (1 - \gamma^5) v_\nu] - \frac{\alpha}{2\pi} g_F (E_c) [\varphi^\dagger_p \varphi_n] [\bar{u}_e (1 - \gamma^5) v_\nu] \\
+ \frac{\alpha}{2\pi} \lambda g_F (E_c) [\varphi^\dagger_p \sigma \varphi_n] [\bar{u}_e \gamma^0 (1 - \gamma^5) v_\nu] - \frac{m_e}{2M} [\varphi^\dagger_p \varphi_n] [\bar{u}_e (1 - \gamma^5) v_\nu] \\
+ \frac{\lambda}{2M} [\varphi^\dagger_p (\sigma \cdot \vec{k}_p) \varphi_n] [\bar{u}_e \gamma^0 (1 - \gamma^5) v_\nu] - i \frac{\kappa + 1}{2M} [\varphi^\dagger_p (\sigma \times \vec{k}_p) \varphi_n] [\bar{u}_e \gamma^0 (1 - \gamma^5) v_\nu] \right\}, \tag{11}$$

where φ_p and φ_n are Pauli spinorial wave functions of the proton and neutron, u_e and v_ν are Dirac wave functions of the electron and electron antineutrino, σ are the Pauli 2 × 2 matrices, and $\lambda = \lambda (1 - E_0/2M)$ and $\vec{k}_p = -\vec{k}_e - \vec{k}_\nu$ is the proton 3–momentum in the rest frame of the neutron. The functions $f_{\beta^-} (E_c, \mu)$ and $g_F (E_c)$ are equal to (see Eq.(D-51))

$$f_{\beta^-} (E_c, \mu) = \frac{3}{2} \ln \left(\frac{m_\mu^2}{m_e^2} \right) - \frac{11}{8} + 2 \ln \left(\frac{\mu}{m_e} \right) \left[\frac{1}{2\beta} \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 1 \right] - \frac{1}{2\beta} \text{Li}_2 \left(\frac{2\beta}{1 + \beta} \right) - \frac{1}{4\beta} \ln^2 \left(\frac{1 + \beta}{1 - \beta} \right), \tag{12}$$

where μ is a photon mass, which should be taken in the limit $\mu \to 0$, and $\text{Li}_2(x)$ is the Polylogarithmic function. A photon mass μ is used for Lorentz invariant regularization of infrared divergences of radiative corrections [2]. The constant C_{WZ}, defined by the contributions of the W–boson and Z–boson exchanges and the QCD corrections [34] (see also discussion below Eq.(D-58) of Ref. [1]), is equal to $C_{WZ} = 10.249$ (see also discussion below Eq.(D-58) of Ref. [1]).

The squared absolute value of the matrix element Eq.(12), summed over polarizations of massive fermions, we calculate for polarized electron and unpolarized neutron and proton [2]. We get (see also Eq.(A-16) in Appendix A of Ref.[1])

$$\sum_{\text{pol}} \frac{|M(n \to p e^- \nu_e)|^2}{8m_n^2 G_F^2 |V_{ud}|^2} = \left(1 + \alpha \frac{f_{\beta^-}}{2\pi} (E_c, \mu) \right) \text{tr} \{ (\hat{k}_e + m_e)(1 + \gamma^5 \hat{\zeta}_e) \gamma^0 \hat{k}_\nu \gamma^0 (1 - \gamma^5) \} \\
- \frac{\alpha}{2\pi} g_F (E_c) \text{tr} \{ (\hat{k}_e + m_e)(1 + \gamma^5 \hat{\zeta}_e) \gamma^5 \hat{k}_\nu \gamma^0 (1 - \gamma^5) \} \\
+ \frac{3\alpha}{2\pi} g_F (E_c) \delta^{ij} \text{tr} \{ (\hat{k}_e + m_e)(1 + \gamma^5 \hat{\zeta}_e) \gamma^0 \gamma^5 \hat{k}_\nu \gamma^i (1 - \gamma^5) \} \\
- \frac{3\alpha}{2\pi} g_F (E_c) \delta^{ij} \text{tr} \{ (\hat{k}_e + m_e)(1 + \gamma^5 \hat{\zeta}_e) \gamma^i \hat{k}_\nu \gamma^0 (1 + \gamma^5) \} \\
+ \frac{3\alpha}{2\pi} g_F (E_c) \delta^{ij} \text{tr} \{ (\hat{k}_e + m_e)(1 + \gamma^5 \hat{\zeta}_e) \gamma^0 \gamma^i \hat{k}_\nu \gamma^0 (1 + \gamma^5) \} \\
- \frac{m_e}{2M} \text{tr} \{ (\hat{k}_e + m_e)(1 + \gamma^5 \hat{\zeta}_e) \gamma^0 \hat{k}_\nu \gamma^0 (1 - \gamma^5) \} \\
+ \frac{1}{2M} \hat{k}_p \cdot \text{tr} \{ (\hat{k}_e + m_e)(1 + \gamma^5 \hat{\zeta}_e) \gamma^0 \hat{k}_\nu \gamma^0 (1 - \gamma^5) \} \\
- \frac{1}{2M} \hat{k}_p \cdot \text{tr} \{ (\hat{k}_e + m_e)(1 + \gamma^5 \hat{\zeta}_e) \gamma^i \hat{k}_\nu \gamma^i (1 - \gamma^5) \} \\
+ \frac{x}{2M} \delta^{ij} \text{tr} \{ (\hat{k}_e + m_e)(1 + \gamma^5 \hat{\zeta}_e) \gamma^0 \hat{k}_\nu \gamma^i (1 - \gamma^5) \} \\
- \frac{x}{2M} \delta^{ij} \text{tr} \{ (\hat{k}_e + m_e)(1 + \gamma^5 \hat{\zeta}_e) \gamma^0 \hat{k}_\nu \gamma^i (1 - \gamma^5) \}, \tag{13}$$
where \(\zeta^\mu = (\zeta^0, \vec{\zeta}) \) is the 4-vector of an electron polarization defined by \(\mathbb{E} \)

\[
\zeta^\mu = \left(\frac{\vec{k}_e \cdot \vec{\zeta}}{m_e}, \vec{\zeta} + \frac{\vec{k}_e (\vec{k}_e \cdot \vec{\zeta})}{m_e (E_e + m_e)} \right).
\] (14)

It obeys the constraints \(\zeta^2 = -1 \) and \(k_e \cdot \zeta = 0 \), where \(\vec{\zeta} \) is a unit vector of the electron polarization \(\mathbb{E} \). We would like to emphasize that in Eq. (13) following Sirlin \(\mathbb{E} \) we have neglected the contributions of order \(O(\alpha E_e / \pi M) \). Having calculated the traces over Dirac matrices we obtain

\[
\sum_{\text{pol}} \frac{|M(n \to e^- \nu_e)^2|}{32m^4_e G_F |V_{ud}|^2 E_e E_\nu} = \left(1 + \frac{\alpha}{\pi} \frac{f_{\beta^-}(E_e, \mu)}{E_e E_\nu} \right) \left(1 + \frac{\vec{k}_e \cdot \vec{k}_e}{E_e E_\nu} - \frac{\vec{\zeta} \cdot \vec{\zeta}}{E_e E_\nu} - \frac{m_e}{E_e + m_e} \frac{\vec{\zeta} \cdot \vec{k}_e}{E_e E_\nu} - \frac{(\vec{\zeta} \cdot \vec{k}_e)(\vec{k}_e \cdot \vec{k}_e)}{(E_e + m_e)E_e E_\nu} \right) \\
- \frac{\alpha}{\pi} g_F(E_e) \left(\frac{m_e}{E_e + m_e} \frac{\vec{F} \cdot \vec{\zeta}}{E_e E_\nu} - \frac{m_e}{E_e + m_e} \frac{\vec{F} \cdot \vec{k}_e}{E_e E_\nu} \right) \\
+ \lambda^2 \left(1 + \frac{\alpha}{\pi} \frac{f_{\beta^-}(E_e, \mu)}{E_e E_\nu} \right) \left(3 - \frac{\vec{k}_e \cdot \vec{k}_e}{E_e E_\nu} - \frac{3 \vec{\zeta} \cdot \vec{\zeta}}{E_e E_\nu} + \frac{m_e \vec{\zeta} \cdot \vec{k}_e}{E_e E_\nu} + \frac{(\vec{\zeta} \cdot \vec{k}_e)(\vec{k}_e \cdot \vec{k}_e)}{(E_e + m_e)E_e E_\nu} \right) \\
- \lambda^2 \frac{\alpha}{\pi} g_F(E_e) \left(3 \frac{m_e}{E_e + m_e} \frac{\vec{F} \cdot \vec{\zeta}}{E_e E_\nu} + \frac{m_e \vec{F} \cdot \vec{k}_e}{E_e E_\nu} - \frac{m_e}{M} \frac{\vec{F} \cdot \vec{k}_e}{E_e E_\nu} - \frac{(\vec{\zeta} \cdot \vec{k}_e)(\vec{k}_e \cdot \vec{k}_e)}{(E_e + m_e)E_e E_\nu} \right) \\
+ \frac{\lambda^2}{M} \left(\left(E_0 - \frac{m^2_e}{E_e} \right) + \frac{\vec{k}_e \cdot \vec{k}_e}{E_e E_\nu} - E_0 \frac{\vec{\zeta} \cdot \vec{k}_e}{E_e E_\nu} - \frac{m_e \vec{\zeta} \cdot \vec{k}_e}{E_e E_\nu} - (E_0 + m_e) \frac{(\vec{\zeta} \cdot \vec{k}_e)(\vec{k}_e \cdot \vec{k}_e)}{(E_e + m_e)E_e E_\nu} \right) \\
+ \lambda \frac{2(n + 1)}{M} \left(\left(E_0 - 2E_e + \frac{m^2_e}{E_e} \right) + \frac{2E_e - E_0}{E_e} \frac{\vec{k}_e \cdot \vec{k}_e}{E_e E_\nu} + \frac{(2E_e - E_0) \vec{\zeta} \cdot \vec{k}_e}{E_e E_\nu} + (E_0 - E_e) \frac{m_e \vec{\zeta} \cdot \vec{k}_e}{E_e E_\nu} \right)
\] (15)

where we have used a relation \(E_e + E_\nu = E_0 \). Now we have to take into account the contribution of the phase–volume \(\mathbb{H} \) and multiply Eq. (15) by the function

\[
\Phi_{\beta^-}(\vec{k}_e, \vec{k}_e) = 1 + \frac{3}{M} \left(\frac{E_e - \vec{k}_e \cdot \vec{k}_e}{E_\nu} \right).
\] (16)

This gives

\[
\Phi_{\beta^-}(\vec{k}_e, \vec{k}_e) \sum_{\text{pol}} \frac{|M(n \to e^- \nu_e)^2|}{32m^4_e G_F |V_{ud}|^2 E_e E_\nu} = \left(1 + 3\lambda^2 \right) \tilde{\zeta}(E_e) \left\{ 1 + \vec{a}(E_e) \frac{\vec{k}_e \cdot \vec{k}_e}{E_e E_\nu} + \vec{G}(E_e) \frac{\vec{\zeta} \cdot \vec{k}_e}{E_e E_\nu} + \vec{H}(E_e) \frac{\vec{\zeta} \cdot \vec{k}_e}{E_e E_\nu} \right\} \\
+ \vec{K}_e(E_e) \left(\frac{\vec{k}_e \cdot \vec{\zeta}}{E_e E_\nu} - \frac{3a_0 E_e}{M} \left(\frac{\vec{k}_e \cdot \vec{k}_e}{E_e^2 E_\nu^2} - \frac{1}{3} \frac{k^2_e}{E_e^2} \right) + \frac{3a_0 m_e}{M} \left(\frac{\vec{\zeta} \cdot \vec{k}_e}{E_e E_\nu^2} - \frac{1}{3} \frac{\vec{\zeta} \cdot \vec{k}_e}{E_e} \right) \right\} \\
+ 3a_0 \frac{1}{M} \left(\frac{\vec{k}_e \cdot \vec{\zeta}}{E_e E_\nu^2} - \frac{1}{3} \frac{E_e - m_e}{E_e} \frac{\vec{\zeta} \cdot \vec{k}_e}{E_e} \right),
\] (17)

where we have denoted \(a_0 = (1 - \lambda^2)/(1 + 3\lambda^2) \) and

\[
\tilde{\zeta}(E_e) = \left(1 + \frac{\alpha}{\pi} \frac{f_{\beta^-}(E_e, \mu)}{E_e E_\nu} - \frac{\alpha}{\pi} g_F(E_e) \frac{m_e}{E_e} \right) + \frac{1}{M} \frac{1}{1 + 3\lambda^2} \left[- 2\lambda \left(\lambda - \lambda \right) E_0 \right.
\]

\[
\left. + \frac{10\lambda^2 - 4(n + 1) \lambda + 2}{E_e - 2\lambda \left(\lambda - \lambda \right) m^2_e} \right],
\]

\[
\tilde{\zeta}(E_e) \vec{a}(E_e) = \left. a_0 \left(1 + \frac{\alpha}{\pi} \frac{f_{\beta^-}(E_e, \mu)}{E_e E_\nu} \right) + \frac{1}{M} \frac{1}{1 + 3\lambda^2} \left[2\lambda \left(\lambda - \lambda \right) E_0 - 4\lambda \left(\lambda - \lambda \right) E_0 \right. \right]
\]

\[
\left. + \lambda \frac{2(n + 1)}{M} \left(\lambda - \lambda \right) E_0 \right],
\]

\[
\tilde{\zeta}(E_e) \vec{G}(E_e) = \left. - \left(1 + \frac{\alpha}{\pi} \frac{f_{\beta^-}(E_e, \mu)}{E_e E_\nu} \right) + \frac{1}{M} \frac{1}{1 + 3\lambda^2} \left(2\lambda \left(\lambda - \lambda \right) E_0 - 10\lambda^2 - 4(n + 1) \lambda + 2 \right) \right]
\]

\[
\tilde{\zeta}(E_e) \vec{H}(E_e) = \left. \frac{m_e}{E_e} \left\{ - a_0 \left(1 + \frac{\alpha}{\pi} \frac{f_{\beta^-}(E_e, \mu)}{E_e E_\nu} - \frac{\alpha}{\pi} g_F(E_e) \frac{E_e}{m_e} \right) + \frac{1}{M} \frac{1}{1 + 3\lambda^2} \left[- 2\lambda \left(\lambda - \lambda \right) E_0 \right. \right.
\]

\[
\left. + \lambda \frac{2(n + 1)}{M} \left(\lambda - \lambda \right) E_0 \right],
\]
\[
\zeta(E_e)\tilde{\mathcal{K}}(E_e) = -a_0 \left(1 + \frac{\alpha}{\pi} f_{\beta^c}(E_e, \mu) - \frac{\alpha}{\pi} g_F(E_e) \frac{E_e}{m_e} \right) + \frac{1}{M} \frac{1}{1 + 3\lambda^2} \left[-2\lambda \left(\lambda - (\kappa + 1) \right) E_0 \right. \\
+ 4\lambda \left(3\lambda - (\kappa + 1) \right) E_e \left. + \left(8\lambda^2 - 2(\kappa + 1)\lambda + 2 \right) m_e \right].
\] (18)

The use of the Dirac wave function of a free decay electron leads to a vanishing correlation coefficient \(\tilde{L}(E_e) = 0 \). In order to get a non-vanishing correlation coefficient \(\tilde{L}(E_e) \) we have to use the Dirac wave function of a decay electron, distorted in the Coulomb field of the decay proton \([24, 25, 37] \).

V. CORRELATION COEFFICIENT \(L(E_e) \)

For the calculation of the correlation coefficient we use the Dirac wave function of the electron, distorted by the Coulomb proton-electron final state interaction. It is equal to \([24, 25, 37] \)

\[
u_e(k_e, \sigma_e) = \sqrt{E_e + m_e(1 - \gamma)} \frac{1}{1 - \gamma} \left(1 + \frac{\alpha Z m_e}{k_e} \right) \sigma \cdot \vec{k}_e \otimes \varphi_{\sigma_e},
\] (19)

where \(\gamma = 1 - \sqrt{1 - \alpha^2 Z^2} \). The electron wave function Eq. (19) satisfies the Dirac equation \([37] \)

\[
\left(\hat{P}_c - m_e(1 - \gamma) + \frac{\alpha Z m_e}{k_e} \gamma_0 \not{\sigma} \cdot \vec{k}_e \right) \nu_e(k_e, \sigma_e) = 0.
\] (20)

We normalize the wave function Eq. (19) in a standard way \(\hat{a}_e(\vec{k}_e, \sigma_e) \nu_e(\vec{k}_e, \sigma_e) = 2m_e \delta_{\sigma_e, \sigma} \). Since \(\gamma = O(\alpha^2) \), keeping the contributions of order \(O(\alpha) \) we have to set \(\gamma = 0 \). The contribution of the Coulomb distortion to the right–hand–side (r.h.s) of Eq. (15), multiplied by the contribution of the phase–volume Eq. (16) is defined by the trace

\[
\Phi_{\beta^c}(\vec{k}_e, \vec{k}_\nu) \sum_{\text{pol}} \left| M(n \rightarrow pe^-\nu_e) \right|^2 \frac{32 m_n^4 G_F^2 |V_{ud}|^2 E_e E_\nu}{32 m_n^2 G_F^2 |V_{ud}|^2 E_e E_\nu} = 1 - \lambda^2 \frac{1}{1 + 3\lambda^2} \frac{\alpha Z m_e}{k_e} \text{tr} \left[\left(\not{\sigma} \cdot \vec{k}_e \right) \left(\not{\sigma} \cdot \vec{\tilde{k}}_e \right) \left(\not{\sigma} \cdot \vec{k}_\nu \right) \right] \text{tr} \left[\left(\not{\sigma} \cdot \vec{\tilde{k}}_\nu \right) \right] = \frac{1}{1 + 3\lambda^2} \frac{\alpha Z m_e}{k_e} \xi_e \xi_\nu \xi_\nu_E \text{tr} \left[\left(\not{\sigma} \cdot \vec{k}_e \right) \left(\not{\sigma} \cdot \vec{\tilde{k}}_\nu \right) \right] \xi_\nu_E \text{tr} \left[\left(\not{\sigma} \cdot \vec{k}_\nu \right) \right].
\] (21)

We would like to emphasize that the contribution of the Coulomb distortion of the Dirac wave function of a decay electron to the correlation coefficient comes from the traces of \(V \times V \) and \(A \times A \) products only, i.e. \(\text{tr} \left[V \times V + A \times A \right] \sim (1 - \lambda^2) \). Thus, we get

\[
\Phi_{\beta^c}(\vec{k}_e, \vec{k}_\nu) \sum_{\text{pol}} \left| M(n \rightarrow pe^-\nu_e) \right|^2 = (1 + 3\lambda^2) \zeta(E_e) \left\{ 1 + \tilde{\alpha}(E_e) \frac{\vec{k}_e \cdot \vec{\tilde{k}}_e}{E_e E_\nu} + \tilde{G}(E_e) \frac{\vec{\xi}_e \cdot \vec{\tilde{k}}_e}{E_e E_\nu} + \tilde{H}(E_e) \frac{\vec{\xi}_\nu \cdot \vec{\tilde{k}}_\nu}{E_e E_\nu} \right\}
\] (22)

The correlation coefficient \(\zeta(E_e)\hat{L}(E_e) \) is equal to

\[
\zeta(E_e)\hat{L}(E_e) = \alpha \frac{m_e}{k_e} a_0,
\] (23)

where we have set \(Z = 1 \). Thus, the electron–energy and electron–antineutrino angular distribution of the neutron \(\beta^- \)–decay with polarized electron and unpolarized neutron and proton is

\[
\frac{d^3 \lambda_{\beta^-} (E_e, \vec{k}_e, \vec{k}_\nu, E_\nu)}{dE_e d\Omega_e d\Omega_\nu} = \left(1 + 3\lambda^2 \right) G_F^2 |V_{ud}|^2 (E_0 - E_e)^2 \left(E_e - E_\nu \right)^2 m_e^2 E_e F(E_e, Z = 1) \zeta(E_e) \left\{ 1 + \tilde{\alpha}(E_e) \frac{\vec{k}_e \cdot \vec{\tilde{k}}_e}{E_e E_\nu} \right\}
\] (24)

\[
+ \tilde{G}(E_e) \frac{\vec{k}_e \cdot \vec{\tilde{k}}_e}{E_e E_\nu} + \tilde{H}(E_e) \frac{\vec{\xi}_e \cdot \vec{\tilde{k}}_e}{E_e E_\nu} + \tilde{K}_e(E_e) \left(\frac{\vec{k}_e \cdot \vec{\tilde{k}}_e}{E_e E_\nu} \right) \tilde{K}_e(E_\nu) - 3 a_0 \frac{E_e}{M} \left(\frac{\vec{\xi}_e \cdot \vec{\tilde{k}}_e}{E_e E_\nu} \right) \left(\frac{\vec{k}_e \cdot \vec{\tilde{k}}_e}{E_e E_\nu} - \frac{3}{2} \frac{k^2}{E^2_e} \right)
\] (24)

\[
+ 3 a_0 \frac{m_e}{M} \left(\frac{\vec{k}_e \cdot \vec{\tilde{k}}_e}{E_e E_\nu} \right) - 3 a_0 \frac{1}{M} \left(\frac{\vec{\xi}_e \cdot \vec{\tilde{k}}_e}{E_e E_\nu} \right) \left(\frac{\vec{k}_e \cdot \vec{\tilde{k}}_e}{E_e E_\nu} \right) \left(\frac{\vec{k}_e \cdot \vec{\tilde{k}}_e}{E_e E_\nu} - \frac{3}{2} \frac{k^2}{E^2_e} \right)
\]
The radiative corrections to the correlation coefficients, defined by the function \(f_{\beta^{-}}(E_{c}, \mu) \), depend on the infrared cut-off \(\mu \). In order to remove such a dependence we have to add the contribution of the neutron radiative \(\beta^{-} \)-decay (see also \[1\,2\]).

VI. NEUTRON RADIATIVE \(\beta^{-} \)-DECAY WITH POLARIZED ELECTRON AND UNPOLARIZED NEUTRON AND PROTON

Following \[1\,2\] (see also \[22\,30\]) the energy and angular distribution of the neutron radiative \(\beta^{-} \)-decay with polarized electron and unpolarized neutron and proton is

\[
\frac{d^{8} \lambda_{\beta^{-}\gamma}(E_{e}, \vec{k}_{e}, \vec{E}_{e}, \vec{k}_{\nu}, \vec{q})}{d\omega dE_{e} d\Omega_{e} d\Omega_{\nu} d\Omega_{\gamma}} = \frac{\alpha}{2\pi} \left(1 + 3\lambda^{2} \right) \frac{G_{F}^{2}|V_{ud}|^{2}}{(2\pi)^{6}} \sqrt{E_{e}^{2} - m_{e}^{2}} F(E_{e}, Z = 1) \frac{(E_{0} - E_{e} - \omega)}{(E_{e} - \vec{q} \cdot \vec{k}_{e})^{2}} \frac{1}{\omega} \times \frac{1}{16} \left\{ \text{tr} \{ (\vec{k}_{e} + m_{e} \gamma_{5} \vec{c}_{e}) Q_{\lambda}^{0} \bar{Q}_{\lambda} (1 - \gamma^{5}) \} + a_{0} \frac{k_{\nu}}{E_{\nu}} \cdot \text{tr} \{ (\vec{k}_{e} + m_{e} \gamma_{5} \vec{c}_{e}) \bar{Q}_{\lambda} \gamma Q_{\lambda} (1 - \gamma^{5}) \} \right\},
\]

(25)

where \(d\Omega_{e}, d\Omega_{\nu} \), and \(d\Omega_{\gamma} \) are elements of the solid angles of the electron, antineutrino and photon, respectively. Then, \(Q_{\lambda} = 2e_{\lambda}^{\ast}(q) \cdot k_{e} + \vec{e}_{\lambda}^{\ast}(q) \cdot \vec{q} \) and \(\bar{Q}_{\lambda} = \gamma^{0} Q_{\lambda} \gamma^{0} = 2e_{\lambda}^{\ast}(q) \cdot k_{e} + \vec{e}_{\lambda}^{\ast}(q) \cdot \vec{q} \), where \(e_{\lambda}^{\ast}(q) \) or \(e_{\lambda}(q) \) and \(q = (\vec{q}, \omega) = (\omega, \vec{q}) \) are the polarization vectors and 4-momentum of the photon obeying the constraints \(e_{\lambda}^{\ast}(q) \cdot q = 0 \) or \(e_{\lambda}(q) \cdot q = 0 \) and \(q^{2} = 0, \vec{n} \equiv \vec{q}/\omega \) is a unit vector and \(\lambda(X) = 1, 2 \) defines physical polarization states of the photon. In Eq. (25) the traces over Dirac matrices in the covariant form are defined by

\[
\frac{1}{16} \text{tr} \{ \bar{\alpha} Q_{\lambda} \gamma^{\mu} \bar{Q}_{\lambda} (1 - \gamma^{5}) \} = (e_{\lambda}^{\ast} \cdot k_{e})(e_{\lambda} \cdot k_{e}) a_{\mu} + \frac{1}{2} \left((e_{\lambda}^{\ast} \cdot k_{e})(e_{\lambda} \cdot a) + (e_{\lambda} \cdot k_{e})(e_{\lambda}^{\ast} \cdot a) \right) q^{\mu}
\]

\[
- \frac{1}{2} \left((e_{\lambda}^{\ast} \cdot k_{e}) e_{\lambda}^{\ast} \mu + e_{\lambda}^{\ast} \mu (e_{\lambda} \cdot k_{e}) \right)(a \cdot q) - \frac{1}{2} i \varepsilon^{\mu \nu \rho \sigma} (e_{\lambda}^{\ast} \cdot k_{e}) e_{\lambda} \nu (e_{\lambda} \cdot k_{e}) a_{\nu} q_{\rho} a_{\sigma} \beta - \frac{1}{2} i q^{\mu} \varepsilon^{\rho \sigma \alpha \beta} e_{\lambda}^{\ast} \mu e_{\lambda} \nu a_{\alpha} q_{\beta},
\]

(26)

where \(a = k_{e} \) and \(a = m_{e} \vec{c}_{e} \) is the Levi–Civita tensor defined by \(\varepsilon_{0123} = 1 \) and \(\varepsilon_{\alpha \beta \mu \nu} = -\varepsilon_{\alpha \mu \beta \nu} \).

Plugging Eq. (20) into Eq. (25), using the Coulomb gauge \[1\,2\] (see also \[22\,30\]) and summing over photon polarizations we obtain the following expression for the energy and angular distribution of the neutron radiative \(\beta^{-} \)-decay

\[
\frac{d^{8} \lambda_{\beta^{-}\gamma}(E_{e}, \vec{k}_{e}, \vec{E}_{e}, \vec{k}_{\nu}, \vec{q})}{d\omega dE_{e} d\Omega_{e} d\Omega_{\nu} d\Omega_{\gamma}} = \frac{\alpha}{2\pi} \left(1 + 3\lambda^{2} \right) \frac{G_{F}^{2}|V_{ud}|^{2}}{(2\pi)^{6}} \sqrt{E_{e}^{2} - m_{e}^{2}} F(E_{e}, Z = 1) \frac{(E_{0} - E_{e} - \omega)}{(E_{e} - \vec{q} \cdot \vec{k}_{e})^{2}} \frac{1}{\omega} \times \frac{1}{16} \left\{ \right.
\]

\[
\left. \frac{1}{(1 - \vec{n} \cdot \vec{k}_{e})^{2} E_{e}} \left[(1 + \frac{\omega}{E_{e}}) + \frac{1}{1 - \vec{n} \cdot \vec{k}_{e}} \frac{\omega^{2}}{E_{e}} \right] + a_{0} \frac{k_{\nu}}{E_{\nu}} \cdot \left[\frac{1}{(1 - \vec{n} \cdot \vec{k}_{e})^{2} E_{e}} \left(\frac{\vec{n} \cdot \vec{k}_{e}}{1 + \frac{\omega}{E_{e}}} \right) + \frac{\vec{n} \cdot \vec{k}_{e}}{1 - \vec{n} \cdot \vec{k}_{e}} \right] \right\},
\]

(27)

The integration over directions of the photon momentum we carry out using the results obtain in the Appendix of Ref. \[2\]. As result the energy and angular distribution Eq. (27) takes the form
\[
\times \frac{\omega}{E_e} + \frac{1}{2\beta^2} \left[\frac{1}{\beta} \beta \ln \left(\frac{1 + \beta}{1 - \beta} \right) - \frac{2}{1 - \beta^2} \right] \frac{\omega}{E_e} \left(1 - \frac{\omega}{E_e} \right) + \frac{1}{4\beta^4} \left[\frac{3}{\beta} \beta \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 4 - \frac{2}{1 - \beta^2} \right] \frac{\omega^2}{E_e^2} \right) \right). \tag{28}
\]

The first three correlation coefficients agree well with the results, obtained in \([1]\) (see Eq.(B-11) of Ref.\([1]\)) and \([2]\) (see Eq.(A-5) of Ref.\([2]\)). Having integrated over the photon energy in the region \(0 \leq \omega \leq E_0 - E_e\), where \(\omega_{\text{min}}\) is an infrared cut–off \([1]\), we arrive at the expression

\[
d^2 \lambda_{\beta-\gamma}(E_e, \vec{k}_e, \vec{k}_\gamma, \vec{k}_\nu) = \frac{\alpha}{\pi} \frac{G_F^2|V_{ud}|^2}{(2\pi)^3} \sqrt{E_e^2 - m_e^2} E_e F(E_e, Z = 1) (E_0 - E_e)^2 \left\{ g_{\beta-\gamma}^{(1)}(E_e, \omega_{\text{min}}) \right. \\
+ \frac{\vec{k}_e \cdot \vec{k}_\nu}{E_e E_\nu} a_0 g_{\beta-\gamma}^{(2)}(E_e, \omega_{\text{min}}) - \frac{\vec{k}_e \cdot \vec{k}_\nu}{E_e E_\nu} \left. \right\}
\]

\[
\times g_{\beta-\gamma}^{(6)}(E_e, \omega_{\text{min}}) \right\}. \tag{29}
\]

The functions \(g_{\beta-\gamma}^{(1)}(E_e, \omega_{\text{min}})\) and \(g_{\beta-\gamma}^{(2)}(E_e, \omega_{\text{min}})\) have been calculated in \([1, 2]\), whereas the functions \(g_{\beta-\gamma}^{(5)}(E_e, \omega_{\text{min}})\) and \(g_{\beta-\gamma}^{(6)}(E_e, \omega_{\text{min}})\) are defined by the integrals

\[
g_{\beta-\gamma}^{(5)}(E_e, \omega_{\text{min}}) = \int_{\omega_{\text{min}}}^{E_0 - E_e} \frac{d\omega}{\omega} \left(\frac{E_0 - E_e - \omega}{E_0 - E_e} \right)^2 \left[\beta \beta \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 2 \right] \left(1 - \frac{\omega^2}{2\beta^2 E_e^2} \right),
\]

\[
g_{\beta-\gamma}^{(6)}(E_e, \omega_{\text{min}}) = \int_{\omega_{\text{min}}}^{E_0 - E_e} \frac{d\omega}{\omega} \left(\frac{E_0 - E_e - \omega}{E_0 - E_e} \right)^2 \left\{ \left[\frac{1}{\beta} \beta \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 2 \right] \left(1 - \frac{\omega^2}{2\beta^2 E_e^2} \right) \\
+ \left(1 + \sqrt{1 - \beta^2} \right) \left\{ \left[\frac{1}{\beta} \beta \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 2 \right] \omega \left(E_0 - E_e \right) \\
+ \frac{1}{2\beta^2} \left[\frac{1}{\beta} \beta \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 2 \right] \left(1 + \frac{\omega^2}{2\beta^2 E_e^2} \right) \right\} \right. \\
+ \frac{1}{2\beta^2} \left[\frac{1}{\beta} \beta \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 2 \right] \left(1 + \frac{\omega^2}{2\beta^2 E_e^2} \right) \right\} \right. \\
+ \frac{1}{2\beta^2} \left[\frac{1}{\beta} \beta \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 2 \right] \left(1 + \frac{\omega^2}{2\beta^2 E_e^2} \right) \right\} \right) \right). \tag{30}
\]

The results of the integration are equal to

\[
g_{\beta-\gamma}^{(5)}(E_e, \omega_{\text{min}}) = \left[\beta \beta \ln \left(\frac{E_0 - E_e}{\omega_{\text{min}}} \right) - 3 \frac{1}{24\beta^2} \left(E_0 - E_e \right)^2 \right] \left[\beta \beta \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 2 \right] \\
+ \frac{1}{2\beta^2} \left[\frac{1}{\beta} \beta \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 2 \right] \left(1 + \sqrt{1 - \beta^2} \right) \left(\frac{E_0 - E_e}{E_e} \right) \left[\frac{1}{1 - \beta^2} \left[\frac{1}{\beta} \beta \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 2 \right] \\
+ \frac{1}{2\beta^2} \left[\frac{1}{\beta} \beta \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 2 \right] \left(1 + \frac{\omega^2}{2\beta^2 E_e^2} \right) \right\} \right. \\
+ \frac{1}{16\beta^4} \left[\frac{1}{\beta} \beta \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 2 \right] \left(1 + \frac{\omega^2}{2\beta^2 E_e^2} \right) \right\}. \tag{31}
\]

Now we are able to define the electron–energy and electron–antineutrino angular distribution for the neutron \(\beta^-\) decay with polarized electron and unpolarized neutron and proton, where the correlation coefficients are calculated to order \(10^{-3}\), caused by the weak magnetism and proton recoil of order \(O(E_e/M)\) and radiative corrections of order \(O(\alpha/\pi)\).

VII. ELECTRON–ENERGY AND ELECTRON–ANTINEUTRINO ANGULAR DISTRIBUTION OF NEUTRON \(\beta^-\)–DECAY WITH POLARIZED ELECTRON AND UNPOLARIZED NEUTRON AND PROTON TO ORDER \(10^{-3}\)

Summing the electron–energy and electron–antineutrino angular distributions Eq.(24) and Eq.(25) we obtain the electron–energy and electron–antineutrino angular distribution of \(\lambda_n = \lambda_{\beta-} + \lambda_{\beta-\gamma} \) equal to

\[
d^5 \lambda_n(E_e, \vec{k}_e, \vec{k}_\gamma, \vec{k}_\nu) = (1 + 3\lambda^2) \frac{G_F^2|V_{ud}|^2}{32\pi^5} (E_0 - E_e)^2 \sqrt{E_e^2 - m_e^2} E_e F(E_e, Z = 1) \zeta(E_e) \left(1 + a(E_e) \frac{\vec{k}_e \cdot \vec{k}_\nu}{E_e E_\nu} \right).
\]
\[G(E_e) \frac{\vec{C}_e \cdot \vec{k}_e}{E_e} + H(E_e) \frac{\vec{C}_e \cdot \vec{k}_e}{E_e} + K(E_e) \left(\frac{\vec{C}_e \cdot \vec{k}_e}{(E_e + m_e)E_e} \right) + L(E_e) \left(\frac{\vec{C}_e \times \vec{k}_e}{E_e} \right) \]
\[= 3 a_0 \frac{m_e}{M} \left(\frac{\vec{C}_e \cdot \vec{k}_e}{E_e} \right) \left(\frac{\vec{C}_e \cdot \vec{k}_e}{E_e} \right) - 3 a_0 \left(\frac{\vec{C}_e \cdot \vec{k}_e}{E_e} \right) \left(\frac{\vec{C}_e \cdot \vec{k}_e}{E_e} \right) - \frac{1}{3} \left(\frac{E_e - m_e}{E_e} \right) \frac{\vec{C}_e \cdot \vec{k}_e}{E_e} \right). \] (32)

The correlation coefficients are equal to

\[\zeta(E_e) = \left(1 + \frac{\alpha}{\pi} g_n(E_e) \right) \frac{1}{M} \left[-2 \lambda \left(\lambda - (\kappa + 1) \right) E_0 + \left(10 \lambda^2 - 4(\kappa + 1) \lambda + 2 \right) E_e \right] \]
\[-2\lambda \left(\lambda - (\kappa + 1) \right) \frac{m_e^2}{E_e}, \]
\[\zeta(E_e) a(E_e) = a_0 \left(1 + \frac{\alpha}{\pi} g_n(E_e) + \frac{\alpha}{\pi} f_n(E_e) \right) + \frac{1}{M} \left[\frac{1}{1 + 3\lambda^2} \left[2\lambda \left(\lambda - (\kappa + 1) \right) E_0 - 4\lambda \left(3\lambda - (\kappa + 1) \right) E_e \right] \right], \]
\[\zeta(E_e) G(E_e) = \left(1 + \frac{\alpha}{\pi} g_n(E_e) + \frac{\alpha}{\pi} f_n(E_e) \right) + \frac{1}{M} \left[\frac{1}{1 + 3\lambda^2} \left[2\lambda \left(\lambda - (\kappa + 1) \right) E_0 - \left(10\lambda^2 - 4(\kappa + 1) \lambda + 2 \right) E_e \right] \right], \]
\[\zeta(E_e) H(E_e) = \frac{m_e}{E_e} \left\{ - a_0 \left(1 + \frac{\alpha}{\pi} g_n(E_e) + \frac{\alpha}{\pi} h_n^{(3)}(E_e) \right) + \frac{1}{M} \left[-2 \lambda \left(\lambda - (\kappa + 1) \right) E_0 \right] \right. \]
\left. + \left(4\lambda^2 - 2(\kappa + 1) \lambda + 2 \right) m_e \right\}, \]
\[\zeta(E_e) L(E_e) = a_0 \frac{m_e}{k_e} \frac{m_e}{E_e} \] (33)

The radiative corrections of order \(O(\alpha/\pi) \) to the correlation coefficients are defined by the function \(g_n(E_e) \) and the functions

\[f_n(E_e) = \lim_{\omega_{\text{min}} \to 0} \left[g^{(2)}_{\beta_{\gamma} \gamma}(E_e, \omega_{\text{min}}) - g^{(1)}_{\beta_{\gamma} \gamma}(E_e, \omega_{\text{min}}) \right] + g_f(E_e) \frac{m_e}{E_e} = \frac{1}{3} \left(1 - \frac{\beta \ell n(1 + \beta)}{\beta - 1} \right) \]
\[e^{2} \left(E_0 - E_e \right) \frac{1}{\beta^2} - \frac{1}{12} \beta \ell n \left(\frac{1 + \beta}{1 - \beta} \right) \]
\[h_n^{(3)}(E_e) = \lim_{\omega_{\text{min}} \to 0} \left[g^{(3)}_{\beta_{\gamma} \gamma}(E_e, \omega_{\text{min}}) - g^{(1)}_{\beta_{\gamma} \gamma}(E_e, \omega_{\text{min}}) \right] + g_f(E_e) \frac{m_e}{E_e} - g_f(E_e) \frac{E_e}{m_e} \]
\[= \left(-3 + \frac{1}{3} E_0 - E_e \right) \frac{1}{24\beta^2} \left(E_0 - E_e \right) \frac{1}{\beta^2} \left(1 + \beta \right) \ell n \left(\frac{1 + \beta}{1 - \beta} \right) \]
\[h_n^{(4)}(E_e) = \lim_{\omega_{\text{min}} \to 0} \left[g^{(4)}_{\beta_{\gamma} \gamma}(E_e, \omega_{\text{min}}) - g^{(1)}_{\beta_{\gamma} \gamma}(E_e, \omega_{\text{min}}) \right] + g_f(E_e) \frac{m_e}{E_e} - g_f(E_e) \frac{E_e}{m_e} \]
\[= \left(-3 + \frac{1}{3} E_0 - E_e \right) \frac{1}{24\beta^2} \left(E_0 - E_e \right) \frac{1}{\beta^2} \left(1 + \beta \right) \ell n \left(\frac{1 + \beta}{1 - \beta} \right) - \frac{\beta}{2} \ell n \left(\frac{1 + \beta}{1 - \beta} \right) \]
\[+ \frac{1}{2\beta^2} \left(1 + \beta \right) \ell n \left(\frac{1 + \beta}{1 - \beta} \right) - 4 \frac{E_0 - E_e}{E_e} \]
\[+ \frac{3}{2\beta^2} \ell n \left(\frac{1 + \beta}{1 - \beta} \right) - \frac{2}{1 - \beta} \ell n \left(\frac{1 + \beta}{1 - \beta} \right) \]
\[= \left\{ \left(1 + \frac{\alpha}{\pi} g_n(E_e) + \frac{\alpha}{\pi} h_n^{(4)}(E_e) \right) + \frac{1}{M} \left[-2 \lambda \left(\lambda - (\kappa + 1) \right) E_0 + \left(10\lambda^2 - 4(\kappa + 1) \lambda + 2 \right) E_e \right] \right\}. \] (34)

The functions \(g_n(E_e) \) and \(f_n(E_e) \) have been calculated by Sirilin [9] and Shann [10] (see also [9] and Appendices B, C, D, E and F in Ref. [3]), respectively. The contributions of the electroweak–boson exchanges and QCD corrections to the function \(g_n(E_e) \) have been calculated in [3]. The radiative corrections \((\alpha/\pi) f_n(E_e) \), \((\alpha/\pi) h_n^{(3)}(E_e) \) and \((\alpha/\pi) h_n^{(4)}(E_e) \) are plotted in Fig. 5 in the electron–energy region \(m_e \leq E_e \leq E_0 \). As has been pointed out in [1], the result of the calculation of the integral

\[J(\beta, \kappa_{IR}) = \int \frac{d\omega}{\omega} \int \frac{d\Omega}{4\pi} \frac{\beta^2 - \left(\vec{n}_\beta \cdot \vec{\beta} \right)^2}{(1 - \vec{n}_\beta \cdot \vec{\beta})^2} \] (35)
logarithmically divergent in the infrared region of photon energy depends on the regularization procedure, where κ_{IR} is an infrared parameter. Using the infrared cut–off regularization $\kappa_{\text{IR}} = \omega_{\text{min}} \leq \omega \leq (E_0 - E_e)$, where ω_{min} may be also treated as a photon–energy threshold of the detector, we get

$$J(\beta, \omega_{\text{min}}) = \frac{\Gamma}{\beta} \ln \left(\frac{E_0 - E_e}{\omega_{\text{min}}} \right) \left[\frac{1}{\beta} \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 2 \right].$$

(36)

In turn, the use of the finite photon–mass (FPM) regularization

$$J(\beta, \mu) = \int \frac{d^3 q}{4 \pi q_0^3} \frac{\beta^2 - (\vec{v} \cdot \vec{\beta})^2}{(1 - \vec{v} \cdot \vec{\beta})^2},$$

(37)

where $q_0 = \sqrt{\omega^2 + \mu^2}$ and $\vec{v} = \vec{q}/q_0$ are energy and velocity of a photon with mass μ, gives one (see Eq.(B-26) of Ref.[1])

$$J(\beta, \mu) = \frac{1}{\beta} \ln \left(\frac{2(E_0 - E_e)}{\mu} \right) \left[\frac{1}{\beta} \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 2 \right] + \frac{1}{\beta} \ln \left(\frac{1 + \beta}{1 - \beta} \right) - \frac{1}{\beta} \frac{1}{2} \ln^2 \left(\frac{1 + \beta}{1 - \beta} \right) - \frac{1}{2} \ln \left(\frac{2\beta}{1 + \beta} \right),$$

(38)

where $\text{Li}_2(x)$ is a Polylogarithmic function [38]. The use of the FPM regularization, which is a Lorentz invariant regularization, is important for the calculation of the function $g_n(E_e)$, defining the radiative corrections to the neutron lifetime [3]. It is required by gauge invariance of radiative corrections and by the Kinoshita–Lee–Nauenberg theorem [3] (see also [1]). In turn, for the calculation of the functions $f_n(E_e)$ and $h_n^{(\ell)}(E_e)$, where $\ell = 1, 2$ [2] and $\ell = 3, 4$ (see Eq.(31)), the contributions of the integral $J(\beta, \kappa_{\text{IR}})$ cancel themselves in the differences $\lim_{\kappa_{\text{IR}} \to 0} [g_n^{(\ell)}(E_e, \kappa_{\text{IR}}) - g_{n, \gamma}^{(\ell)}(E_e, \kappa_{\text{IR}})]$, where $i = 2, 3, 4, 5, 6$, and the results do not depend on the regularization procedure.

VIII. CORRELATION COEFFICIENTS $a(E_e)$, $G(E_e)$, $H(E_e)$ AND $K_e(E_e)$ TO ORDER 10^{-3}

The correlation coefficients $a(E_e)$ and $G(E_e)$ have been calculated in [1] and [2], respectively. They are equal to
\[a(E_e) = \left(1 + \frac{\alpha}{\pi} f_n(E_e) \right) \left\{ a_0 + \frac{1}{M} \frac{1}{1 + 3\lambda^2} \left[2\lambda \left(\lambda - (\kappa + 1) \right) E_0 - 4\lambda \left(3\lambda - (\kappa + 1) \right) E_e \right] \right\} \]

\[
+ \frac{1}{M} \frac{a_0}{1 + 3\lambda^2} \left[- \left(10\lambda^2 - 4(\kappa + 1) \lambda + 2 \right) E_e + \left(2\lambda^2 - 2(\kappa + 1) \lambda \right) \left(E_0 + \frac{m_e^2}{E_e} \right) \right],
\]

\[G(E_e) = - \left(1 + \frac{\alpha}{\pi} f_n(E_e) \right) \left(1 + \frac{1}{M} \frac{1}{1 + 3\lambda^2} \left(2\lambda^2 - 2(\kappa + 1) \lambda \right) \frac{m_e^2}{E_e} \right). \quad (39) \]

For the correlation coefficients \(H(E_e) \) and \(K_e(E_e) \) we obtain the following expressions

\[H(E_e) = \left(1 + \frac{\alpha}{\pi} h_n^{(3)}(E_e) \right) \frac{m_e}{E_e} \left\{ - a_0 + \frac{1}{M} \frac{1}{1 + 3\lambda^2} \left[- 2\lambda \left(\lambda - (\kappa + 1) \right) E_0 + 4\lambda \left(3\lambda - (\kappa + 1) \right) E_e \right] \right\} \]

\[
- \frac{1}{M} \frac{a_0}{1 + 3\lambda^2} \left[- \left(10\lambda^2 - 4(\kappa + 1) \lambda + 2 \right) E_e + \left(2\lambda^2 - 2(\kappa + 1) \lambda \right) \left(E_0 + \frac{m_e^2}{E_e} \right) \right], \quad (40) \]

and

\[K_e(E_e) = \left(1 + \frac{\alpha}{\pi} h_n^{(3)}(E_e) \right) \left\{ - a_0 + \frac{1}{M} \frac{1}{1 + 3\lambda^2} \left[- 2\lambda \left(\lambda - (\kappa + 1) \right) E_0 + 4\lambda \left(3\lambda - (\kappa + 1) \right) E_e \right] \right\}

\[
+ \left(8\lambda^2 - 2(\kappa + 1) \lambda + 2 \right) m_e \left[- \frac{1}{M} \frac{a_0}{1 + 3\lambda^2} \left[- \left(10\lambda^2 - 4(\kappa + 1) \lambda + 2 \right) E_e \right] \right]

\[
+ \left(2\lambda^2 - 2(\kappa + 1) \lambda \right) \left(E_0 + \frac{m_e^2}{E_e} \right) \right\}. \quad (41) \]

The obtained correlation coefficients are calculated to order \(10^{-3} \), taking into account the complete set of corrections of order \(O(E_e/M) \) and \(O(\alpha/\pi) \), caused by the weak magnetism, proton recoil and one-photon exchanges, respectively.

IX. WILKINSON’S CORRECTIONS

According to Wilkinson [8], the higher order corrections with respect to those calculated in section VIII should be caused by i) the proton recoil in the Coulomb electron–proton final–state interaction, ii) the finite proton radius, iii) the proton–lepton convolution and iv) the higher–order outer radiative corrections.

The relative corrections to the correlation coefficients \(\zeta(E_e), \ a(E_e), \ G(E_e), \ H(E_e) \) and \(K_e(E_e) \), caused by the proton recoil in the final state electron–proton Coulomb interactions, are equal to

\[
\frac{\delta \zeta(E_e)}{\zeta(E_e)} = - \frac{\pi \alpha}{\beta M} \frac{E_e}{\lambda^2 + \frac{3}{1 + 3\lambda^2}} \frac{\pi \alpha}{\lambda^2} \frac{E_0 - E_e}{\beta M},
\]

\[
\frac{\delta a(E_e)}{a(E_e)} = \frac{1}{3 + 3\lambda^2} \frac{\lambda^2}{\beta M} \frac{\pi \alpha}{\lambda^2} \frac{E_0 - E_e}{\beta^3 M},
\]

\[
\frac{\delta G(E_e)}{G(E_e)} = - \frac{1}{3 + 3\lambda^2} \frac{\lambda^2}{\beta M} \frac{\pi \alpha}{\lambda^2} \frac{E_0 - E_e}{\beta^3 M},
\]

\[
\frac{\delta H(E_e)}{H(E_e)} = \frac{1}{3 + 3\lambda^2} \frac{\lambda^2}{\beta M} \frac{\pi \alpha}{\lambda^2} \frac{E_0 - E_e}{\beta^3 M},
\]

\[
\frac{\delta K_e(E_e)}{K_e(E_e)} = \frac{1}{3 + 3\lambda^2} \frac{\lambda^2}{\beta M} \frac{\pi \alpha}{\lambda^2} \frac{E_0 - E_e}{\beta^3 M} \left(1 + \sqrt{1 - \beta^2} \right). \quad (42) \]

In the experimental electron energy region \(0.761 \text{ MeV} \leq E_e \leq 0.966 \text{ MeV} \) the corrections Eq. (42) are plotted in Fig. 4 and take the values added in Table I. The proton recoil corrections to the correlation coefficient \(a(E_e) \), caused by the electron–proton final–state Coulomb interactions, are of order \(10^{-4} \) and should be taken into account for the analysis of the experimental data on searches of contributions of interactions beyond the SM at the level of \(10^{-4} \) [21].

In turn, Wilkinson’s corrections, caused by ii) the finite proton radius, iii) the proton–lepton convolution and iv) the higher–order outer radiative corrections, retain their expression for calculated in [2] and the order \(|\delta \zeta(E_e)/\zeta(E_e)| \sim 10^{-5}, |\delta a(E_e)/a(E_e)| \sim |\delta K_e(E_e)/K_e(E_e)| \sim 10^{-4}, \) and \(|\delta G(E_e)/G(E_e)| \sim |\delta H(E_e)/H(E_e)| \sim 10^{-7} \), respectively.
\[E_e = 0.761 \text{ MeV} \quad \delta X(E_e)/X(E_e) \quad E_e = 0.966 \text{ MeV} \]

\[
\begin{array}{ccc}
-2.5 \times 10^{-7} & \geq & \delta \zeta(E_e)/\zeta(E_e) \geq -2.8 \times 10^{-5} \\
+3.0 \times 10^{-4} & \geq & \delta a(E_e)/a(E_e) \geq +1.1 \times 10^{-4} \\
+5.1 \times 10^{-4} & \geq & \delta G(E_e)/G(E_e) \geq +1.3 \times 10^{-4} \\
-6.2 \times 10^{-7} & \leq & \delta H(E_e)/H(E_e) \leq -3.3 \times 10^{-7} \\
+5.0 \times 10^{-4} & \geq & \delta K_e(E_e)/K_e(E_e) \geq +1.9 \times 10^{-4}
\end{array}
\]

TABLE I: Wilkinson’s corrections, induced by the change of the Fermi function caused by the electron–proton final–state Coulomb interaction, in the energy region 0.761 MeV ≤ \(E_e \) ≤ 0.966 MeV.

FIG. 4: Relative corrections to the correlation coefficients \(\zeta(E_e) \), \(a(E_e) \), \(G(E_e) \), \(H(E_e) \) and \(K_e(E_e) \) induced by the proton recoil to the Fermi function, caused by the Coulomb electron–proton final–state interaction and calculated for the experimentally observable electron energy region 0.761 MeV ≤ \(E_e \) ≤ 0.966 MeV [1].

X. ELECTRON–ENERGY AND ELECTRON–ANTINEUTRINO ANGULAR DISTRIBUTION BEYOND THE SM

For the calculation of contributions of interactions beyond the SM we use the effective low–energy Hamiltonian of weak nucleon–lepton four–fermion local interactions, taking into account all phenomenological couplings beyond the
The hermitian conjugate amplitude is

\[H_W(x) = \frac{G_F}{\sqrt{2}} V_{ud} \{ [\bar{\psi}_p(x)\gamma_\mu\psi_n(x)][\bar{\psi}_e(x)\gamma^\mu(C_V + C_V\gamma^5)\psi_{\nu_e}(x)] + [\bar{\psi}_p(x)\gamma_\mu\gamma_5\psi_n(x)][\bar{\psi}_e(x)\gamma^\mu(C_A + C_A\gamma^5)\psi_{\nu_e}(x)] \\
+ [\bar{\psi}_p(x)\gamma_\mu\gamma_5\psi_n(x)][\bar{\psi}_e(x)(C_G + C_S\gamma^5)\psi_{\nu_e}(x)] + [\bar{\psi}_p(x)\gamma_\mu\psi_n(x)][\bar{\psi}_e(x)(C_P + C_P\gamma^5)\psi_{\nu_e}(x)] \\
+ \frac{1}{2}[\bar{\psi}_p(x)\sigma^{\mu\nu}\psi_n(x)][\bar{\psi}_e(x)\sigma_{\mu\nu}(C_T + C_T\gamma^5)\psi_{\nu_e}(x)] \} \].

(43)

This is the most general form of the effective low–energy weak interactions, where the phenomenological coupling constants \(C_i \) and \(\tilde{C}_i \) for \(i = V, A, S, P \) and \(T \) can be induced by the left–handed and right–handed hadronic and leptonic currents \([\bar{a}][\bar{a}][\bar{a}][\bar{a}][\bar{a}]\). They are related to the phenomenological coupling constants, analogous to those which were introduced by Herczeg \([13]\), as follows

\[
C_V = 1 + a_{LL}^b + a_{LR}^b + a_{RR}^b + a_{RL}^b, \quad C_V = -1 - a_{LL}^b - a_{LR}^b + a_{RR}^b + a_{RL}^b, \\
C_A = -\lambda + a_{LL}^b - a_{LR}^b + a_{RR}^b - a_{RL}^b, \quad C_A = \lambda - a_{LL}^b + a_{LR}^b + a_{RR}^b - a_{RL}^b, \\
C_S = a_{LL}^b + a_{LR}^b + a_{RR}^b + a_{RL}^b, \quad C_S = -a_{LL}^b - a_{LR}^b + a_{RR}^b + a_{RL}^b, \\
C_P = -a_{LL}^b + a_{LR}^b - a_{RR}^b + a_{RL}^b, \quad C_P = a_{LL}^b - a_{LR}^b - a_{RR}^b + a_{RL}^b, \\
C_T = 2(a_{LL}^b + a_{RR}^b), \quad C_T = 2(-a_{LL}^b + a_{RR}^b),
\]

(44)

where the index \(h \) means that the phenomenological coupling constants are introduced at the hadronic level but not at the quark level as it has been done by Herczeg \([13]\). In the SM the phenomenological coupling constants \(C_i \) and \(\tilde{C}_i \) for \(i = V, A, S, P \) and \(T \) are equal to \(C_S = C_P = C_P = C_T = C_T = 0 \), \(C_V = -C_V = 1 \) and \(C_A = -C_A = -\lambda \). The phenomenological coupling constants \(a_{LL}^b, a_{LR}^b \) and \(a_{RR}^b \) for \(i(j) = L \) or \(R \) are induced by interactions beyond the SM.

The contribution of interactions beyond the SM, given by the Hamiltonian of weak interactions Eq. 8, to the amplitude of the neutron \(\beta^- \)–decay, calculated leading order in the large nucleon mass expansion, takes the form

\[
M(n \rightarrow pe^-\bar{\nu}_e) = -2m_n \frac{G_F}{\sqrt{2}} V_{ud} \{ [\bar{\psi}_p\gamma_\mu\gamma_5\psi_n][\bar{\psi}_e\gamma^\mu(C_V + C_V\gamma^5)\nu_e] - [\bar{\psi}_p\gamma_\mu\gamma_5\psi_n][\bar{\psi}_e\gamma^\mu(C_A + C_A\gamma^5)\nu_e] \\
+ [\bar{\psi}_p\gamma_\mu\gamma_5\psi_n][\bar{\psi}_e(C_S + C_S\gamma^5)\nu_e] + [\bar{\psi}_p\gamma_\mu\gamma_5\psi_n][\bar{\psi}_e(C_P + C_P\gamma^5)\nu_e] \}.
\]

(45)

The hermitian conjugate amplitude is

\[
M^\dagger(n \rightarrow pe^-\bar{\nu}_e) = -2m_n \frac{G_F}{\sqrt{2}} V_{ud}^* \{ [\bar{\psi}_p\gamma_\mu\gamma_5\phi_p][\bar{\psi}_e\gamma^\mu(C_V^* + C_V^*\gamma^5)\nu_e] - [\bar{\psi}_p\gamma_\mu\gamma_5\phi_p][\bar{\psi}_e\gamma^\mu(C_A^* + C_A^*\gamma^5)\nu_e] \\
+ [\bar{\psi}_p\gamma_\mu\gamma_5\phi_p][\bar{\psi}_e(C_S^* - C_S^*\gamma^5)\nu_e] - [\bar{\psi}_p\gamma_\mu\gamma_5\phi_p][\bar{\psi}_e(C_P^* - C_P^*\gamma^5)\nu_e] \}.
\]

(46)

The contributions of interactions with the strength, defined by the phenomenological coupling constants \(C_P \) and \(\tilde{C}_P \), may appear only of order \(O(C_P E_n/M) \) and \(O(C_P E_n/M) \) and can be neglected to leading order in the large nucleon mass expansion. We have also neglected the contributions of the neutron–proton mass difference. The squared absolute value of the amplitude Eq. 5, summed over polarizations of massive fermions, is equal to

\[
\sum_{\text{pol}} \left| \frac{[M(n \rightarrow pe^-\bar{\nu}_e)]}{8m_n^2 G_F^2 |V_{ud}|^2 E_V E_\nu} \right|^2 = \left\{ \frac{1}{2} (|C_V|^2 + |C_V|^2 + 3|C_A|^2 + 3|C_A|^2 + |C_S|^2 + |C_S|^2 + 3|C_T|^2 + 3|C_T|^2) \right\} \\
+ \frac{|m_n|}{E_\nu} \text{Re}(C_V C_S^* + C_V C_S^* - 3C_A C_T^* - 3C_A C_T^*) + \frac{\tilde{E}_V}{E_\nu} \frac{1}{2} (|C_V|^2 + |C_V|^2 - |C_A|^2 - |C_A|^2 - |C_S|^2) \\
- |C_S|^2 + |C_T|^2 + |C_T|^2 \right\} + \frac{\tilde{E}_V}{E_\nu} \text{Re}(C_V C_V^* + C_A C_A^* - 3C_A C_S^* - 3C_S C_T^*) + \frac{\tilde{E}_V}{E_\nu} \text{Re}(C_V C_S^* + C_V C_S^*) \\
+ C_A C_T^* + C_A C_T^* + \frac{m_n}{E_\nu} (C_V C_V^* - C_A C_A^* + C_S C_S^* - C_T C_T^*) + \frac{(\tilde{E}_V \cdot \tilde{E}_\nu) (\tilde{E}_V \cdot \tilde{E}_\nu) E_\nu E_\nu}{(\tilde{E}_V + m_n) E_\nu E_\nu} \text{Re}(C_V C_V^* - C_A C_A^* \right. \\
+ C_S C_S^* - C_T C_T^* - C_T C_T^* - C_T C_T^* - C_A C_A^* - C_A C_A^* + C_T C_A^*) + \frac{E_\nu}{E_\nu} \text{Im}(C_S C_V^* + C_S C_V^* + C_T C_A^* \\
+ C_T C_A^* \right) \}.
\]

(47)
The structure of the correlation coefficients in Eq. (17) agrees well with the structure of the corresponding expressions obtained in [11]. In the linear approximation for coupling constants of vector and axial–vector interactions beyond the SM [1], we get

\[
\sum_{\text{pol}} \frac{|M(n \rightarrow p e^- \bar{e}_c)|^2}{8 m_n^2 G_F |V_{ud}|^2 E_e E_e (1 + 3 x^2)} = \left\{ 1 + \frac{1}{2} \frac{1}{1 + 3 x^2} \right\} \left[|C_S|^2 + |C_S|^2 + 3 |C_T|^2 + 3 |C_T|^2 \right]
\]

+ \frac{m_e}{E_e} \frac{1}{1 + 3 x^2} \text{Re} \left((C_S - C_S) + 3 \lambda (C_T - C_T) \right) + \frac{1}{2} \frac{1}{1 + 3 x^2} \left[|C_S|^2 + |C_S|^2 - |C_T|^2 - |C_T|^2 \right]

+ \frac{1}{1 + 3 x^2} \text{Re} \left(C_S C_S + 3 C_T C_T \right) + \frac{\xi_e \cdot \xi_e}{E_e} a_0 \left[- \frac{m_e}{E_e} a_0 \frac{1}{1 + 3 x^2} \text{Re} \left((C_S - C_S) - \lambda (C_T - C_T) \right) \right]

+ \frac{m_e}{E_e} \frac{1}{1 + 3 x^2} \left(C_S C_S^* - C_T C_T^* \right) + \frac{1}{1 + 3 x^2} \text{Re} \left(C_S C_S + 3 C_T C_T \right) + \frac{\xi_e \cdot (\xi_e \times \xi_e)}{E_e} a_0 \left[- \frac{m_e}{E_e} a_0 \frac{1}{1 + 3 x^2} \text{Re} \left((C_S - C_S) - \lambda (C_T - C_T) \right) \right],
\]

where we have replaced \(C_j \) and \(C_T \) with \(j = V, A \) by \(C_V = 1 + \delta C_V, C_T = -1 + \delta C_T, C_A = -\lambda + \delta C_A \) and neglected also the contributions of the products \(\delta C_j C_V, \delta C_V C_T, \) and so on for \(j = V, A \) and \(k = S, T \). Following [12] [13] (see also [11]) we have absorbed the contributions the vector and axial vector interactions beyond the SM by the axial coupling constant \(\lambda \) and the CKM matrix element \(V_{ud} \).

Thus, the electron–energy and electron–antineutrino angular distribution Eq. (11), taking into account the contributions of interactions beyond the SM, can be transcribed into the form

\[
\frac{d^2 \lambda_e}{d E_e d \Omega_e} = (1 + 3 x^2) \frac{G_F^2 |V_{ud}|^2}{8 \pi^4} (E_0 - E_e)^2 \sqrt{E_e^2 - m_e^2} E_e F(E_e, Z = 1) \left(C_{SM}(E_e) \right)
\]

\[
\times \left(1 + \zeta_{BSM}(E_e) \right) \left\{ 1 + \frac{m_e}{E_e} + \text{a}_{SM}(E_e) \frac{\xi_e \cdot \xi_e}{E_e} + H_{SM}(E_e) \right\} \left(\frac{\xi_e \cdot \xi_e}{E_e} \right) + \frac{1}{M} \left(\frac{\xi_e \cdot \xi_e}{E_e} \right) \left(\frac{\xi_e \cdot \xi_e}{E_e} \right)
\]

\[
+ 3 a_0 \left(\frac{\xi_e \cdot \xi_e}{E_e} \right) \left(\frac{\xi_e \cdot \xi_e}{E_e} \right) + 3 a_0 \left(\frac{\xi_e \cdot \xi_e}{E_e} \right) \left(\frac{\xi_e \cdot \xi_e}{E_e} \right),
\]

where the indices “SM” and “BSM” mean “Standard Model” and “Beyond Standard Model”, respectively. The correlation coefficient \(\zeta_{BSM}(E_e) \) is given in Eq. (22). The Fierz interference term \(b \) and the correlation coefficients \(\text{X}_{SM}(E_e) \) are defined by

\[
b = \frac{b_F}{1 + \zeta_{BSM}(E_e)} , \quad \text{X}_{SM}(E_e) = \frac{a_{SM}(E_e) + a_{BSM}(E_e)}{1 + \zeta_{BSM}(E_e)} ,
\]

\[
G_{SM}(E_e) = \frac{G_{SM}(E_e) + G_{BSM}(E_e)}{1 + \zeta_{BSM}(E_e)} , \quad H_{SM}(E_e) = \frac{H_{SM}(E_e) + H_{BSM}(E_e)}{1 + \zeta_{BSM}(E_e)} ,
\]

\[
K_{SM}(E_e) = \frac{K_{SM}(E_e) + K_{BSM}(E_e)}{1 + \zeta_{BSM}(E_e)} , \quad L_{SM}(E_e) = \frac{L_{SM}(E_e) + L_{BSM}(E_e)}{1 + \zeta_{BSM}(E_e)} ,
\]

where the correlation coefficients with index “SM” are added up in Eqs. (20) - (21). They should be also supplemented by Wilkinson’s corrections Eq. (22) and those obtained in [2] (see Chapter III of Ref. [2]). The correlation coefficients \(b_F \) and the correlation coefficients with index “BSM” are given by

\[
b_F = \frac{1}{1 + 3 x^2} \text{Re} \left((C_S - C_S) + 3 \lambda (C_T - C_T) \right),
\]

\[
\zeta_{BSM}(E_e) = \frac{1}{2} \frac{1}{1 + 3 x^2} \left[|C_S|^2 + |C_S|^2 + 3 |C_T|^2 + 3 |C_T|^2 \right].
\]
The correlation coefficient $\rho(E_c) \equiv \rho^\text{SM}(E_c) (1 + \zeta^{\text{BSM}}(E_c)) = \rho^\text{SM}(E_c) \left(1 + \frac{1}{2 \cdot 1 + 3 \lambda^2} \left(|C_S|^2 + |\bar{C}_S|^2 + 3 |C_T|^2 + 3 |\bar{C}_T|^2 \right) \right)$, (52)

where the electron–energy density $\rho^\text{SM}(E_c)$ is defined by Eq.(D-59) of Ref.\[1].

XII. G–odd Correlations

The G–parity transformation, i.e. $G = C e^{i \pi I_3}$, where C and I_3 are the charge conjugation and isospin operators, was introduced by Lee and Yang \[40\] as a symmetry of strong interactions. According to the G–transformation properties of hadronic currents, Weinberg divided hadronic currents into two classes, which are G–even first class and G–odd second class currents \[11\], respectively. Following Weinberg \[11\], Gardner and Zhang \[19\], and Gardner and Plaster \[21\] the G–odd contribution to the matrix element of the hadronic $n \to p$ transition in the $V – A$ theory of weak interactions can be taken in the following form

\[
\langle p(\vec{k}_p, \sigma_p)| J_i^{(+)}(0)| n(\vec{k}_n, \sigma_n) \rangle_{G-odd} = \bar{u}_p(\vec{k}_p, \sigma_p) \left(\frac{m_e}{M} f_3(0) + \frac{1}{M} \sigma_{\mu \nu} \gamma_5 \phi_2(0) \right) u_n(\vec{k}_n, \sigma_n),
\]

where $J_i^{(+)}(0) = V_i^{(+)}(0) - A_i^{(+)}(0)$, $\bar{u}_p(\vec{k}_p, \sigma_p)$ and $u_n(\vec{k}_n, \sigma_n)$ are the Dirac wave functions of the proton and neutron \[45\]: $f_3(0)$ and $g_2(0)$ are the phenomenological coupling constants defining the strength of the second class currents in the weak decays. The contributions of the second class currents Eq.\[53\] to the amplitude of the neutron $\beta^–$–decay in the non–relativistic baryon approximation is defined by \[3\]

\[
M(n \to p e^- \bar{\nu}_e)_{G-odd} = -2m_n \frac{G_F}{\sqrt{2}} V_{ud} \left\{ f_3(0) \frac{m_e}{M} [\phi_{1p}^\dagger \phi_p] [\bar{u}_e(1 + \gamma_5) \nu_e] + g_2(0) \frac{1}{M} [\phi_{1n}^\dagger (\sigma \cdot \vec{k}_p) \phi_n] [\bar{u}_e \gamma^0(1 - \gamma_5) \nu_e] \right\},
\]

where we have kept only the leading $1/M$ terms in the large baryon mass expansion. The hermitian conjugate contribution is

\[
M^\dagger(n \to p e^- \bar{\nu}_e)_{G-odd} = -2m_n \frac{G_F}{\sqrt{2}} V_{ud} \left\{ f_3^\dagger(0) \frac{m_e}{M} [\phi_{1p}^\dagger \phi_p] [\bar{u}_e(1 + \gamma_5) u_e] + g_2^\dagger(0) \frac{1}{M} [\phi_{1n}(\sigma \cdot \vec{k}_p) \phi_p] [\bar{u}_e \gamma^0(1 - \gamma_5) u_e] \right\},
\]

The contributions of the G–odd correlations to the squared absolute value of the amplitude of the neutron $\beta^–$–decay of polarized electron and unpolarized neutron and proton, summed over polarizations of massive fermions, are equal to

\[
\sum_{\text{pol.}} (M(n \to p e^- \bar{\nu}_e) M(n \to p e^- \bar{\nu}_e)_{G-odd} + M^\dagger(n \to p e^- \bar{\nu}_e)_{G-odd} M(n \to p e^- \bar{\nu}_e)) = 8m_n^2 G_F^2 |V_{ud}|^2 \times \left\{ 2 \text{Re} f_3(0) \frac{m_e}{M} \frac{\vec{k}_e \cdot \vec{k}_p}{E_e E_p} - \frac{\vec{e}_e \cdot \vec{e}_p}{E_e E_p} \right\} + 2 \text{Im} f_3(0) \frac{m_e}{M} \frac{\vec{k}_e \times \vec{k}_p}{E_e E_p} + 2 \lambda \text{Re} g_2(0) \left[1 \right] \left(E_\nu + \frac{E_e^2}{E_\nu} \right)
\]
The correlation coefficients are also supplemented by Wilkinson’s higher order corrections Eq.(42) (see also Chapter...)

\[\delta \zeta (E_c)_{G-odd}^{(SM)} (E_c) = \frac{2}{1 + 3 \lambda^2} \frac{1}{M} \left\{ \text{Re} \phi_3(0) \frac{m_e^2}{E_c} + \lambda \text{Reg}_2(0) \left(4E_0 - \frac{m_e^2}{E_c} \right) \right\}, \]

For the relative G–odd contributions to the correlation coefficients we obtain the following expressions

\[\frac{\delta \zeta (E_c)_{G-odd}^{(SM)} (E_c)}{G^{(SM)} (E_c)} = \frac{2}{1 + 3 \lambda^2} \frac{m_e}{E_c} \] and as well as with those by Gardner and Plaster \[20\]. For \(\lambda = -1.2750 \) \[20\] we get

\[\frac{\delta \zeta (E_c)_{G-odd}^{(SM)} (E_c)}{G^{(SM)} (E_c)} = 1.85 \times 10^{-4} \frac{m_e}{E_c} \left(-2.39 \times 10^{-3} + 2.36 \times 10^{-4} \frac{m_e}{E_c} \right) \text{Reg}_2(0), \]

\[\frac{\delta K_e (E_c)_{G-odd}^{(SM)} (E_c)}{K_e^{(SM)} (E_c)} = \left(-1.85 \times 10^{-4} \frac{m_e}{E_c} - 2.36 \times 10^{-4} \text{Reg}_2(0) \frac{m_e}{E_c} \right), \]

\[\frac{\delta H (E_c)_{G-odd}^{(SM)} (E_c)}{H^{(SM)} (E_c)} = \left(-4.40 \times 10^{-3} \frac{E_0}{E_c} - 1.85 \times 10^{-4} \frac{m_e}{E_c} \right) \text{Re} \phi_3(0), \]

\[\frac{\delta L (E_c)_{G-odd}^{(SM)} (E_c)}{L^{(SM)} (E_c)} = \frac{m_e}{E_0} \left(-0.603 \text{Im} \phi_3(0) + 0.769 \text{Im} \phi_2(0) \right). \]

Following Gardner and Plaster \[20\] and setting \(\phi_3(0) = 0 \) and \(|\text{Reg}_2(0)| < 0.01 \) we obtain the contributions of the G–odd correlations at the level of \(10^{-5} \). Of course, the same order of magnitude of the G–odd correlations one may get also for \(|\text{Re} \phi_3(0)| < 0.01 \).

XII. DISCUSSION

We have analysed the electron–energy and electron–antineutrino angular distribution of the neutron \(\beta^- \)-decay with polarized electron and unpolarized neutron and proton. The correlation coefficients are calculated in the SM to order \(10^{-3} \), caused by the weak magnetism and proton recoil of order \(O(E_r/M) \) and radiative corrections of order \(O(\alpha/\pi) \) Eqs. \[39\] - \[111\]. The radiative corrections to the correlation coefficients \(H(E_c) \) and \(K_e(E_c) \) are defined by the functions \((\alpha/\pi) h_3(E_c) \) and \((\alpha/\pi) h_4(E_c) \) (see Eq. \[53\]), respectively, which have been never calculated in literature. The correlation coefficients are also supplemented by Wilkinson’s higher order corrections Eq. \[42\] (see also Chapter...
III of Ref. [2]), which have not been taken in Eqs. (89) - (11) and are induced by i) the proton recoil in the Coulomb electron–proton final–state interaction, ii) the finite proton radius, iii) the proton–lepton convolution and iv) the higher–order outer radiative corrections [5]. Taking into account the contribution of interactions beyond the SM we have arrived at the set of correlation coefficients $X_{\text{eff}}(E_e)$ with $X = a, G, H$ and K, given in Eq. (49) and Eq. (51). The structure of these contributions agrees well with the results obtained in [11] - [13]. These correlation coefficients are presented in the form suitable for the analysis of experimental data on searches of interactions beyond the SM at the level of 10^{-4} [21] (see also [11] - [13]). The analysis of the superallowed $0^+ \rightarrow 0^+$ transitions, carried out by Hardy and Towner [12] and González–Alonso et al. [13], has shown that in the approximation of real scalar coupling constants such as $C_S = -C_S$, i.e. the neutron and proton couple to right–handed electron and antineutrino, the scalar coupling constants are constrained by $|C_S| = 0.0014(13)$ and $|C_S| = 0.0014(12)$. Such a small value of the scalar coupling constants commensurable with zero can be justified by the property of the scalar density $\bar{\psi}_p\psi_n$ with respect to the G–transformation [10] [11] (see also [44] [45]). Indeed, the scalar density $\bar{\psi}_p\psi_n = \psi_N^{(+)\dagger}\psi_N$, where ψ_N is the field operator of the nucleon isospin doublet with components $(\bar{\psi}_p, \psi_n)$ and $\tau^{(+)\dagger} = (\tau^1 + i\tau^2)/2$ is the isospin 2×2 Pauli matrix such as $\tau = (\tau^1, \tau^2, \tau^3)$ [31], is G–odd [44] [45]. According to Weinberg [41], the contributions of G–odd hadronic currents or second class hadronic currents to the weak decays are suppressed with respect to the contributions of G–even or first class hadronic currents. As a result one may expect that in the neutron $\beta^–$–decays the contributions of the tensor density $\bar{\psi}_p\sigma_{\mu\nu}\psi_n = \psi_N^{(+)\dagger}\tau_3\psi_N$, which is G–even [11] [44] [45], should be larger than the contribution of the scalar density $\bar{\psi}_p\psi_n = \psi_N^{(+)\dagger}\psi_N$, which is G–odd [44] [45]. These estimates agree well with the contributions of order 10^{-5} of G–odd terms in the matrix element of the hadronic $n \rightarrow p$ transition to the correlation coefficients, which we have calculated in section XIII in agreement with the results obtained by Gardner and Plaster [20] and Ivanov et al. [3].

It is obvious that the analysis of experimental data of experiments on the searches of contributions of interactions beyond the SM at the level of 10^{-4} or even better [21] demands a robust SM theoretical background with corrections at the level of 10^{-5}. These are i) Wilkinson’s corrections [2] and ii) corrections of order $O(E_e^2/M^2)$ defined by the weak magnetism and proton recoil, calculated to next–to–next–to–leading order in the large nucleon mass expansion, the radiative corrections of order $O(\alpha E_e/M)$, calculated to next–to–leading order in the large nucleon mass expansion, and the radiative corrections of order $O(\alpha^2/\pi^2)$, calculated to leading order in the large nucleon mass expansion [22]. These theoretical corrections should provide for the analysis of experimental data of "discovery" experiments the required 5σ level of experimental uncertainties of a few parts in 10^{-5} [2]. An important role of strong low–energy interactions for a correct gauge invariant calculation of radiative corrections of order $O(\alpha E_e/M)$ and $O(\alpha^2/\pi^2)$ as functions of the electron energy E_e has been pointed out in [22]. This agrees with Weinberg’s assertion about important role of strong low–energy interactions in decay processes [46]. A procedure for the calculation of these radiative corrections to the neutron $\beta^–$–decays with a consistent account for contributions of strong low–energy interactions, leading to gauge invariant observable expressions dependent on the electron energy E_e determined at the confidence level of Sirlin’s radiative corrections [5], has been proposed in [22]. As we have shown that the contributions of the G–odd correlations are at the level of 10^{-5}. Hence, the SM corrections of order 10^{-5} should be important also as a theoretical background for the analysis of experimental data on the search of the contributions of the G–odd correlations in the neutron $\beta^–$–decays.

XIII. ACKNOWLEDGEMENTS

We thank Hartmut Abele for stimulating discussions. The work of A. N. Ivanov was supported by the Austrian “Fonds zur Förderung der Wissenschaftlichen Forschung” (FWF) under contracts P31702-N27, P26781-N20 and P26636-N20 and “Deutsche Forschungsgemeinschaft” (DFG) AB 128/5-2. The work of R. Hölliwerer was supported by the Deutsche Forschungsgemeinschaft in the SFB/TR 55. The work of M. Wellenzohn was supported by the MA 23 (FH-Call 16) under the project “Photonik - Stiftungsprofessor für Lehre”.

[1] A. N. Ivanov, M. Pitschmann, and N. I. Troitskaya, Neutron beta decay as a laboratory for testing the Standard Model, Phys. Rev. D 88, 073002 (2013); arXiv:1212.0352 [hep-ph].
[2] A. N. Ivanov, R. Hölliwerer, N. I. Troitskaya, M. Wellenzohn, and Ya. A. Berdnikov, Precision analysis of electron energy spectrum and angular distribution of neutron beta decay with polarized neutron and electron, Phys. Rev. C 95, 055502 (2017); arXiv:1705.07330 [hep-ph].
[41] S. Weinberg, *Charge symmetry of weak interactions*, Phys. Rev. **112**, 1375 (1958).
[42] J. C. Hardy and I. S. Towner, *Superallowed $0^+ \rightarrow 0^+$ nuclear beta decays: 2014 critical survey, with precise results for V_{ud} and CKM unitarity*, Phys. Rev. C **91**, 025501 (2015).
[43] M. González–Alonso, O. Naviliat–Cuncic, and N. Severijns, *New physics searches in nuclear and neutron beta decay*, arXiv: 1803.08732 [hep-ph].
[44] A. N. Ivanov, *Comment on "On the implementation of CVC in weak charged-current proton-neutron transitions" by C. Giunti*, arXiv: 1602.00215 [hep-ph], arXiv:1705.09573 [hep-ph].
[45] A. N. Ivanov, *Lorentz structure of vector part of matrix elements of transitions $n \leftrightarrow p$, caused by strong low–energy interactions and hypothesis of conservation of charged vector current*, J. of Phys. G: Nucl. Part. Phys. **45**, 025004 (2018).
[46] S. Weinberg, *Role of strong interactions in decay processes*, Phys. Rev. **106**, 1301 (1957).