Anti-inflammatory cytokines in asthma and allergy: interleukin-10, interleukin-12, interferon-γ

Fan Chung

National Heart & Lung Institute, Imperial College School of Medicine, London SW3 6LY, UK

Key words: Interleukin-10, Interleukin-12, interferon-γ, T-helper 1 and 2 cells, Asthma, Allergy

Introduction

The chronic airway inflammation of asthma is characterised by infiltration of the airway wall by diverse effector cells, including T lymphocytes, eosinophils, monocytes/macrophages, mast cells, and occasionally, neutrophils.1–3 The airway wall undergoes chronic structural changes labelled as remodelling, which include thickening of the airway smooth muscle due to hypertrophy and hyperplasia, myofibroblast activation with increase in subepithelial basement membrane collagen deposition, angiogenesis and increase in submucosal blood vessels and an increase in goblet cell numbers in the airway epithelium.4,5 The mobilisation, activation and trafficking of effector cells to the airway are controlled by a complex cytokine milieu derived from activated CD4+ T Helper (T H2) cells and also from other resident airway cells including airway smooth muscle and epithelial cells. T Helper cells of type 2 variety (T H2) secrete a T H2 profile of cytokines, after cognate stimulation of the naïve T-cell by antigen presenting cells, such as the dendritic cell and the alveolar macrophage. T H2 cytokines include IL-4, IL-5, IL-9, IL-10 and IL-13. These cytokines promote various elements of allergic inflammation including propagation of the T H2 phenotype, isotype-switching from IgG1 to IgE synthesis, eosinophil mobilisation, maturation and activation and mast cell activation.6 Chronic airway structural changes too are variably influenced by T H2 cytokines, and certain growth factors.

T H1 cells form a natural counterbalance to T H2 cells driving protective cell-mediated immunity, and are induced on exposure to foreign agents including protozoa, bacteria and viral particles. T H1 responses are characterised by the induction of cell mediated immune responses and the synthesis of IgG2a, while T H2 responses are of humoral-type, inciting the production of IgE and IgG4. T H1 responses inhibit T H2 responses through the production of cytokines such as IL-12 and IFN-γ. There is evidence for a preferential skewing to the expansion of the CD4+ T H2 lymphocyte subset in allergic processes, while CD4+ T H1 responses may be subdued and this is a likely crucial forerunner to development of allergic asthma. In this context, the T H1 cytokines, IL-12 and IFN-γ, may be considered to be ‘anti-inflammatory’ in that they inhibit certain responses attributable to T H2 cell activation, while the T H2 cytokine, IL-10, under certain circumstances, may inhibit pro-inflammatory activation of certain cells. The manipulation of the immune allergic system to promote T H1 responses
involves the upregulation of IL-12 and IFN-γ, and under certain circumstances, of IL-10, which can prevent the establishment of allergy and of various manifestations of allergic inflammation.

In this review, the important roles of IFN-γ, IL-10 and IL-12 in inducing the therapeutic benefits of various immune therapies for allergy and asthma will be examined first, followed by a systematic review of these anti-inflammatory cytokines.

Immunological imbalance of T_{H1} & T_{H2} cells

The vast majority of asthmatics have an atopic background, in whom the inflammatory process of asthma may be driven following sensitisation and exposure to common aeroallergens to which they become sensitised to. Allergen-derived peptides are usually taken up by specialised cells on mucosal surfaces such as dendritic cells, and subsequently processed and presented to naïve T-cells. The activation of naïve T-cells requires direct signalling by 2 distinct pathways: firstly via the CD4+ T-cell receptor through the antigen-presenting cell (APC)-bound antigen to MHC-II complex and, secondly, via the co-stimulatory pathway linked by the B7 family and T-cell bound CD28. T-cells stimulated via the T-cell receptor (TCR) in the absence of co-stimulatory signalling are incapable of IL-2 secretion and subsequent activation and therefore enter an anergic state. CD28 itself has 2 major ligands, B7.1 which inhibits T_{H1} cell activation and development, and B7.2, which induces T-cell activation, and T_{H2} development. An important third ligand, CTLA4, is expressed on activated T-cells, binds CD28 with enhanced avidity and acts as a negative regulator of T-cell function by inhibiting T_{H2} differentiation. In those who later develop an allergic response, naïve T-cells differentiate into the T_{H2} subtype. This differentiation is induced by cytokines themselves, and may be secreted by antigen-stimulated T-cells themselves, or by other cells that become activated by T-cell cytokines. IFN-γ secreted by T_{H1} cells activate macrophages and dendritic cells, and in turn induces them to produce IL-12, the main T_{H1}-inducing cytokine. T_{H1} and T_{H2} cells produce cytokines that cross-regulate and antagonise each other's activity and development. IL-4 can inhibit IL-12 production, and T_{H2} cytokines (IL-4, -10 and -13) antagonise the macrophage-activating properties of T_{H1} cytokines. IFN-γ is involved in the T_{H1} inhibition of the effects of T_{H2} cells, such as bronchial hyper-responsiveness, eosinophilia and mucus goblet cell hyperplasia. T-cell profiles in the newborn demonstrate a T_{H2} bias suggesting that prenatal influences are involved in T-cell priming. During the course of maturation of the normal infant, however, increased T_{H1} expression occurs and the T_{H2} imbalance is overcome. Delay or failure of this T_{H1} response may result in T_{H2} persistence and atopy or atopic disease, and in infants destined to become atopic, circulating lymphocytes have impaired production of IFN-γ. Recently, a ‘hygiene hypothesis’ has been put forward stating that a diminished induction of T_{H1} responses is a potential explanation for the rising prevalence of atopy and asthma. Cross-sectional surveys have identified inverse relationships between prior microbial exposure and development of atopy. Further, respiratory allergy appears less frequently in those heavily exposed to orofaecal and foodborne microbes. Improved hygiene, early infection and antibiotic use, and a westernised or semi-sterile diet may facilitate atopy by influencing exposure to commensals and pathogens that stimulate immune cell populations such as gut-associated lymphoid tissue. Thus, early environmental exposure may be a determinant of the development of atopy in the adult. The identification of ways to prevent, control or even reverse the process of T_{H2} immunodeviation has become a focus for the development of new strategies to control asthma and allergies.

Therapeutic T_{H1}/T_{H2} modulation: roles of IL-10, IL-12 and IFN-γ

The potential therapeutic roles of IL-10, IL-12 and IFN-γ in allergies and asthma are well illustrated by various potential treatments. Specific immunotherapy (SIT) by administration of allergen extracts is a treatment aimed at the induction of specific unresponsiveness, or anergy, in peripheral T-cells to peptide epitopes. This treatment has been successfully used in asthma and allergic rhinitis and for venom allergy, but is usually most useful in subjects allergic to single allergens such as grass pollens, and in subjects with mild forms of allergic diseases. Peripheral T-cells following SIT are characterised by reduced IL-4 and IL-5, and increased IFN-γ production by CD4+ T-cells and by attenuated proliferative responses to specific allergens. This process is initiated by an autocrine effect of IL-10 produced by antigen-specific T-cells. IL-10 induces anergy by inhibition of CD28-costimulatory molecule signaling, and also by anti-inflammatory effects on basophils, mast cells and eosinophils. There are reduced levels of IL-4 and IL-5 and increased IFN-γ production, indicating a shift of the T cells towards an increased T_{H1} response at the expense of T_{H2} responses. After successful grass pollen immunotherapy, there is also an increase in IL-12 and IFN-γ mRNA expression in tissues.

The potential benefit of the mycobacterial vaccine, Bacille-Calmette-Guerin (BCG) (Mycobacterium bovis) vaccination, in atopic diseases was suggested.
by the association between BCG vaccination and diminished incidence of atopy and allergic disease in Japanese schoolchildren, indicating a role for early mycobacterial exposure in the subsequent development of atopic responsiveness.15 Mice vaccinated with BCG prior to allergen sensitisation had increased IFN-γ and decreased IL-4 and IL-5 expression along with reduced levels of airway T-cells and eosinophilia and bronchial reactivity.36,37 Local production of IFN-γ induced by the BCG vaccine was the major cytokine involved in blocking atopic disease in the lung.36 *Mycobacterium vaccae* is ubiquitously present in the soil as a saprophyte and can evoke a strong production of IFN-γ. Suppression of T\textsubscript{H2} activation has been demonstrated using heat-killed *M. vaccae* in mice.38–40

The cytosine–guanosine dinucleotide repeat, when present in a particular base context, is known as a CpG motif and is an important prokaryotic immunomodulatory effector whose role is probably that of a warning or priming agent against bacterial infection.41 This motif is expressed at very low frequency in vertebrates, in a non-functional methylated form, and hence is without function. Cpg vaccination directly induces antigen-presenting cells and B-lymphocytes to release IL-12, IL-18 and TNFa effectively, suppressing the T\textsubscript{H2} phenotype. These Cpg oligonucleotides (ODN) prevent the development of eosinophilic airway inflammation, allergen-induced elevation of serum IgE and bronchial hyper-responsiveness in murine asthma models,42 and can also reduce established inflammation.42,44 The protective effects of Cpg-ODN appear to be due to an induction of IL-12 and IFN-γ.42,45 Other mechanisms may also be involved.46

Specific cytokine profiles

Interleukin-10

Synthesis and release.

IL-10, previously known as cytokine synthesis inhibitor factor (CSIF), was originally identified as a product of murine T helper (T\textsubscript{H2}) clones that suppressed the production of cytokines by T\textsubscript{H1} clones responding to stimulation of antigen.47 In humans, T\textsubscript{H10}, T\textsubscript{H1}, and T\textsubscript{H2}-like CD4* T cell clones, cytotoxic T-cells, activated monocytes and peripheral blood T cells including CD4* and CD8* T-cells have the capacity to produce IL-10.48,49 An autocrine action of IL-10 with increased production of IL-10 by antigen-specific cells may be responsible for the induction of anergy.31 Mast cells also have the capacity to produce IL-10. Constitutive IL-10 secretion occurs in the healthy lung with the major source being the alveolar macrophage; however, the circulating monocyte elaborates more IL-10 than the alveolar macrophage.50

Receptors and signalling pathways.

IL-10R has been characterised and cloned from a human lymphoma cell line,51 and is expressed in several lymphoid and myeloid cells,52 and also on NK cells.53 The IL-10R is made up of 2 subunits, which belong to the same class of receptor family that also contains receptors for IFN-γ.54 The IL-10 receptor α-chain (110 kDa) mediates high-affinity ligand binding and signal transduction,51,55 while the β subunit (40 kDa) is required for signalling.56 The functional IL-10R complex is a tetramer consisting of 2 IL-10 α-chains and 2 IL-10 β-chains. Activation of IL-10R leads to the activation of JAK-STAT signalling pathway, with activation of JAK-1 by the α chain and TYK2 by the β chain. These kinases then phosphorylate specific tyrosine residues on the intracellular domain of the IL-10R α chain. Once phosphorylated, these tyrosine residues serve as temporary docking sites for the latent transcription factors STAT1, STAT3 and STAT5.57,58 STAT3 is directly recruited to the IL-10R chain and becomes phosphorylated by receptor-associated JAK kinases. STAT1 is also activated in macrophages. Upon phosphorylation, STAT1 and STAT3 homo/heterodimerise and translocate to the nucleus where they bind with high affinity to STAT-binding elements in the promoters of various IL-10-responsive genes. One of these genes, SOCS-3 (suppressor of cytokine signalling-3) is a member of a newly identified family of genes that inhibit JAK/STAT-dependent signalling. The ability of IL-10 to inhibit gene expression in monocytes is associated with its ability to rapidly induce the synthesis of SOCS-3.

Effects.

IL-10 is a pleiotropic cytokine that can exert either immunosuppressive or immunostimulatory effects on a variety of cell types. IL-10 is a potent inhibitor of monocyte/macrophage function, suppressing the production of a number of pro-inflammatory cytokines, including TNF-α, IL-1β, IL-6, MIP-1α and IL-8,59–61 although the release of MCP-1 is increased.51 IL-10 inhibits monocyte MHC Class II, B7.1/B7.2 and CD23 expression and accessory cell function. Accessory signals mediated by B7 molecules through CD28 on the surface of T-cells are essential for T-cell activation. Expression of IL-10 by antigen-presenting cells may be an established pathway for the induction of antigen-specific tolerance, such as that to allergens.62 By contrast, IL-10 up-regulates the monocyte expression of IL-1ra, another anti-inflammatory cytokine.63 IL-10 suppresses the synthesis of superoxide anions and NO by activated monocytes/macrophages.64 An IL-10 antibody enhances the release of cytokines from activated monocytes, suggesting that this cytokine may play an inhibitory role when the cell is stimulated.65 IL-10 inhibits the stimulated release of RANTES and IL-8 from human airway smooth muscle cells in culture.65,66
IL-10 inhibits the production of IFN-γ and IL-2 by \(T_{H1} \) lymphocytes, and IL-4 and IL-5 production by \(T_{H2} \) cells by interfering with B7-CD28-dependent signals.\(^67,68\) IL-10 inhibits the proliferative T cell response in peripheral blood mononuclear cells to various antigens, and the superantigen staphylococcal enterotoxin B. IL-10 selectively inhibits the anti-CD28 stimulated proliferation of purified CD45RO+ T cells. There is a constitutive association of CD28 with the IL-10 receptor, and IL-10 acts directly on the CD28 signalling pathway to inhibit CD28 tyrosine phosphorylation and binding to phosphatidylinositol 3-kinase.\(^{69}\) IL-10 also inhibits eosinophil survival and IgE synthesis induced by IFN-γ. On the other hand, IL-10 acts on B-cells to enhance their viability, cell proliferation, immunoglobulin secretion with the isotype switch and class II MHC expression. IL-10 decreases IL-4-induced IgE switch in peripheral blood mononuclear cells, but potentiates IgE production in B-cells that are already switched to produce IgE.\(^{70}\) IL-10 is also a growth co-stimulator for thymocytes and mast cells,\(^{71}\) as well as an enhancer of cytotoxic T cell development.\(^{72}\) IL-10 increases Bcl-2 expression and survival of primary human CD34+ progenitor cells committed to the myeloid lineage.\(^{73}\) IL-10 also activates the transcription of genes for mast-cell derived proteases. IL-10 enhances the production of the tissue inhibitor of metalloproteinases of monocytes and tissue macrophages while decreasing metalloproteinase biosynthesis.\(^{74}\)

Role in allergy and asthma.

There is significantly less IL-10 mRNA and protein expressed in alveolar macrophages of asthmatic subjects compared to those from non-asthmatic individuals.\(^{75,76}\) Triggering of CD23 molecule by anti-CD23 monoclonal antibodies induces IL-10 production by human monocytes.\(^{77}\) An IL-10 polymorphism on the transcription initiation site could be responsible for reduced IL-10 release.\(^{78}\) Another polymorphism upstream from this site was associated with elevated total serum IgE.\(^{78}\) Inhaled corticosteroid therapy restores the reduced IL-10 release from macrophages of asthmatics\(^6\) and theophylline increases IL-10 secretion.\(^{79}\) On the other hand, other studies indicate that there are increased number of macrophages and T-cells expressing IL-10 mRNA in bronchoalveolar lavage fluid of patients with asthma.\(^{80}\)

Studies regarding the role of IL-10 in allergic mouse models have provided some conflicting results. Co-institution of IL-10 by the intranasal route significantly inhibits the peritoneal and lung eosinophilia induced by ovalbumin in immunised mice,\(^{81–83}\) however, IL-10 augmented airway responsiveness. Concurrent expression of IL-10 and GM-CSF in the airway epithelium led to a suppression of GM-CSF-driven ovalbumin-specific eosinophilic inflammation with decreased IL-4, IL-5 and TNF\(\gamma\) expression. However, in IL-10 gene knock-out mice, allergen-induced eosinophilic inflammation, IL-5 production and airway hyper-responsiveness were inhibited.\(^{84–86}\) These studies in mice indicate that IL-10 may augment or decrease allergic inflammatory responses, but could worsen airway responsiveness.

IL-10 is involved in the induction of specific anergy in peripheral T cells during specific immunotherapy, characterised by suppressed proliferative and cytokine responses. IL-10 administration before antigen exposure induces antigen-specific T cell tolerance.\(^{51}\) IL-10-derived regulatory CD4\(+\) T cells producing IL-10 but not IL-2 and IL-4 suppresses antigen-specific T cell response in vitro and prevented antigen-induced murine colitis.\(^{87}\) Administration of IL-10 to normal volunteers induced a fall in circulating CD2, CD3, CD4 and CD8 lymphocytes with suppression of mitogen-induced T-cell proliferation and reductions in TNF-\(\alpha\) and IL-1\(\beta\) production from whole blood stimulated with endotoxin ex vivo.\(^{88}\)

Interferon-γ

Synthesis and release.

IFN-γ was originally identified as a product of mitogen-stimulated T lymphocytes that inhibited viral replication in fibroblasts. The known sources of IFN-γ are CD4\(\) and CD8\(\) T-cells and NK cells.

Receptors and signalling.

The receptor is expressed on T-cells, B-cells, macrophages, dendritic cells, granulocytes and platelets. Epithelial and endothelial cells also express these receptors. IFN-γ receptor consists of an \(\alpha \)-chain (90 kDa) which is the major ligand binding subunit, and of a \(\beta \)-chain (65 kDa) which increases the affinity of the \(\alpha \)-chain for its ligand, but is obligatory for transducing the IFN-γ signal.\(^{89,90}\) Signalling through the IFN-γ receptor is mediated through JAK1 and JAK2, which are constitutively associated with specific membrane proximal residues on the cytoplasmic domain of the receptor.\(^{91,92}\) Activated JAKs phosphorylate a specific tyrosine residue, to which STAT-1 binds through its SH2 domain.\(^{93}\) STAT-1 binds through its SH2 domain.\(^{93}\) STAT-1 is in turn phosphorylated by receptor-associated JAKs and homodimerisation of 2 STAT-1 proteins form a protein complex, GAF (gamma-activated factor).\(^{94}\) STAT-1 homodimer translocates to the nucleus where it binds to a consensus sequence leading to modulation of the expression of many genes. The recently identified SOCS (suppressors of cytokine signalling) family of proteins inhibits IFN-γ signalling through the prevention of JAK kinase activation.\(^{95}\)

Effects.

IFN-γ has extensive and diverse immunoregulatory effects on various cells. It is produced by \(T_{H1} \)-cells and exerts an inhibitory effect on \(T_{H2} \)-cells.\(^{96}\) IFN-γ
inhibits antigen-induced eosinophil recruitment in the mouse. However, IFN-γ may also have proinflammatory effects and may activate airway epithelial cells to release cytokines and express adhesion molecules. IFN-γ has an amplifying effect on the release of TNF-α from alveolar macrophages induced by IgE triggering or by endotoxin and increases the expression of class I and class II MHC molecules on macrophages and epithelial cells. IFN-γ is a powerful and relatively specific inhibitor of IL-4-induced IgE and IgG4 synthesis by B-cells.

IFN-γ increases the production of IL-1, PAF and H₂O₂ from monocytes, in addition to down-regulating IL-2-induced IL-8 mRNA expression. IFN-γ also synergises the effects of TNF-α in the production of RANTES from airway smooth muscle cells. On the other hand, IFN-γ inhibits IL-10 production from monocytes, which in turn leads to an up-regulation of TNF-α transcription. Thus, IFN-γ promotes cell-mediated cytotoxic responses, while inhibiting allergic inflammation and IgE synthesis. IFN-γ up-regulates class II molecules on monocytes/macrophages and dendritic cells, and induces de novo expression on epithelial, endothelial and other cells, thus making them capable of antigen presentation.

Role in allergy and asthma.

There is reduced production of IFN-γ by T-cells of asthmatic patients and this correlates with disease severity. No polymorphism of the IFN-γ gene has been associated with asthma. Administration of exogenous IFN-γ prevents the airway eosinophilia and hyper-responsiveness following allergen exposure in mice. Liposome-mediated gene transfer of IFN-γ to the pulmonary epithelium in sensitised mice before secondary antigen exposure also inhibited the pulmonary allergic response. IFN-γ receptor knock-out mice develop a prolonged airway eosinophilia in response to allergen. IFN-γ inhibits allergic eosinophilia and airway hyper-responsiveness, probably by inducing the formation of IL-10. These studies indicate that IFN-γ has a potential modulating effect on allergen responses. The inhibition of the effects of allergen-specific TH1 cells, such as eosinophils, mucus goblet cell hyperplasia and bronchial hyper-responsiveness, by allergen-specific TH1 cells is mediated by IFN-γ. Allergen immunotherapy of asthmatic patients results in increased production of IFN-γ by circulating T-cells and in an increase in IFN-γ producing T-cells in nasal biopsies. Corticosteroid treatment also increases IFN-γ expression in asthmatic airways, but in corticosteroid-resistant patients IFN-γ is unexpectedly reduced. In asthmatic patients, nebulised IFN-γ reduces the number of eosinophils in bronchoalveolar lavage, indicating its therapeutic potential in asthma.

Interleukin-12

Synthesis and release.

IL-12 was initially recognised as a cytokine capable of synergising with IL-2 to increase cytotoxic T-lymphocyte responses, and also as an inducer of IFN-γ synthesis by resting human peripheral blood mononuclear cells in vitro. IL-12 is secreted by antigen-presenting cells, including B lymphocytes, monocytes/macrophages and dendritic cells. IL-12 mRNA has been localised to eosinophils in bronchoalveolar lavage fluid and in peripheral blood.

Receptors and signalling.

The IL-12 receptor is composed of two subunits (β1 and β2), which are members of the haemopoietin receptor superfamily with strong homology to the gp130 receptor. The β1 receptor is not able to transduce an IL-12-mediated signal, while the β2 subunit when co-expressed with the β1 subunit forms a high-affinity receptor for IL-12 and results in signalling. IL-12R β2 expression is differentially regulated in TH1 as opposed to TH2 cells, while TH1 cells but not TH2 cells express the β2 subunit. On binding of IL-12 to IL-12R, activation of JAK kinases occurs, leading to phosphorylation of the receptor, which becomes binding sites for STATs that are rapidly recruited to the receptor and tyrosine-phosphorylated by JAK kinases. Tyrosine phosphorylation of STAT proteins induces their dimerisation and translocation to the nucleus where they bind to specific sequences and regulate transcription. IL-12 stimulation causes TYK2 and JAK2 phosphorylation, and interaction of TYK2 with IL-12R β1 subunit and interaction of JAK2 with the IL-12R β1 subunit. In TH1 cells and NK cells, IL-12 induces STAT4 to be tyrosine phosphorylated and activated. STAT1, STAT3 and STAT5 can also be activated by IL-12.

Effects.

IL-12 enhances the growth of activated T-cells and NK cells and enhances cytotoxic T-cell and NK activity. IL-12 stimulates NK cells and T-cells to produce IFN-γ, promotes in vitro differentiation of mouse and human T-cells that secrete IFN-γ and TNF-α, and inhibits the differentiation of T cells into IL-4 secreting cells. IL-12 indirectly inhibits IL-4-induced human IgE responses by IFN-γ-dependent and -independent mechanisms in vitro. Thus, IL-12 can primarily regulate TH1 cell differentiation, while suppressing the expansion of TH2 cell clones by early priming of undifferentiated TH1 cells for IFN-γ secretion. Together with IL-18, IL-12 induces anti-CD40 activated B cells to produce IFN-γ, which inhibits IL-4 dependent IgE production. Thus, IL-12 may direct...
the development of Th1-like T-cell responses against intracellular pathogens, whilst inhibiting the development of Th2-like responses and IgE synthesis. IL-12 may also regulate airway eosinophilia. IL-12 may play an important role in inhibiting inappropriate IgE synthesis and allergic inflammation as a result of allergen exposure.

Role in allergy and asthma.

A decreased number of IL-12 mRNA positive cells in airway mucosal biopsies from patients with asthma has been reported. Corticosteroid treatment led to a reduction in the number of IL-12 mRNA expressing cells in steroid-sensitive asthmatics, but had no effect in steroid-resistant asthmatics. IL-12 production from whole blood cultures from patients with allergic asthma was reduced when compared to those from nonatopic control subjects, together with a reduction in IL-12-dependent IFN-γ production. Similarly, the percentage of peripheral blood eosinophils from asthmatic subjects expressing IL-12 mRNA was lower compared to nonatopic controls.

IL-12 may play an important role in inhibiting inappropriate IgE synthesis and allergic inflammation as a result of allergen exposure. Thus, IL-12 treatment of mice during active sensitisation reduced antigen-induced influx of eosinophils in bronchoalveolar lavage fluid, inhibited IgE synthesis, and abolished antigen-induced bronchial hyperresponsiveness. Once an inflammatory response is established, IL-12 inhibits antigen-induced bronchial hyperresponsiveness and inflammation. These effects of IL-12 are largely mediated by IFN-γ. In mice, IL-12 administered at the time of allergic sensitisation decreased specific IgE, tracheal ring responsiveness to acetylcholine and eosinophilia in bronchoalveolar lavage fluid after allergen challenge, together with IL-5 and IL-10 down-regulation; IL-12 administered after sensitisation did not alter specific IgE levels, had little effect on tracheal ring responsiveness and only a modest effect on the recruitment of eosinophils. Similarly, in a murine model of house dust mite (Der p 1) sensitisation, IL-12 during the sensitisation period increased Der p 1-specific serum IgG2a while decreasing the levels of IgG1 and IgE antibodies following multiple allergen challenges, together with downregulation of IL-5 production, without affecting eosinophilia; IL-12 administration after active sensitisation down-regulated IL-5 production, increased IFN-γ production, and abolished recruitment of eosinophils. Thus, the effect of IL-12 was dependent on the timing of its administration in relation to active sensitisation.

Mucosal gene transfer of IL-12 to the lungs prevented the development of allergic sensitisation and airways hyper-responsiveness dependent on IFN-γ expression and suppressed established allergic disease, and reversed the suppression of local antiviral cell mediated immunity responses to vaccinia virus resulting in rapid resolution of virus infection. Similarly, concurrent expression of IL-12 and GM-CSF in the airway led to inhibition of GM-CSF enhancement of ovalbumin-induced effects in the mouse, namely ovalbumin-specific IgE synthesis and airway eosinophilia, partly due to the expression of IFN-γ.

In another study, the suppressive effect of IL-12 on antigen-specific Th1-like cell development, IgE up-regulation, airway hyperresponsiveness and eosinophilia in bronchoalveolar lavage fluid in an allergen-sensitised mouse model was only observed in combination with IL-18. In mild allergic atopic asthma, IL-12 caused a reduction in allergen-induced blood eosinophilia, but did inhibit allergen-induced late phase responses.

The production of IL-12 and of IL-12-induced IFN-γ release is reduced in whole blood cultures from patients with allergic asthma compared to normal subjects. There is a reduction of IL-12 mRNA expression in airway biopsies of patients with allergic asthma compared to normal subjects, but following oral corticosteroid treatment, the levels of IL-12 mRNA increased in corticosteroid-sensitive asthmatics, while no significant changes were observed in corticosteroid-resistant asthmatics. This contrasts with the inhibitory effects of corticosteroids on IL-12 production in human monocytes in vitro. Allergen immunotherapy results in an increase in IL-12 expression. PGE2, β2-agonists and corticosteroids inhibit IL-12 production from monocytes.

References

1. Djukanovic R, Roche WR, Wilson JW, Beasley RW, Twentyman OP, Howarth PH. Mucosal inflammation in asthma. *Am Rev Respir Dis* 1990; 142: 434–457.
2. Azzawi M, Beadley B, Jeffery PK, Frew AJ, et al. Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. *Am Rev Respir Dis* 1990; 142: 1407–1413.
3. Bouquet J, Chanez P, Lacoste JY, et al. Eosinophilic inflammation in asthma. *N Engl J Med* 1990; 323: 1033–1039.
4. Bouquet J, Jeffery PK, Basse WW, Johnson M, Vignola AM. Asthma. From bronchoconstriction to airways inflammation and remodeling. *Am J Respir Crit Care Med* 2000; 161: 1720–1745.
5. Redding AE, Howarth PH. Airway wall remodelling in asthma [editorial]. *Thorax* 1997; 52: 310–312.
6. Chung KF, Barnes PJ. Cytokines in asthma [see comments]. *Thorax* 1999; 54: 825–857.
7. Green JM. The B7/CD28/CTLA4 T-cell activation pathway: Implications for inflammatory lung disease. *Am J Respir Cell Mol Biol* 2000; 22: 261–264.
8. Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. *Nature* 1992; 356: 607–609.
9. Wahlus TL, Lenochow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. *Immunity* 1994; 1: 405–413.
10. Oosterwolga MEH, Mandeelbrot DA, Boyd SD, et al. The role of CTLA-4 in regulating T_α⁺ differentiation. *J Immunol* 1999; 163: 2634–2639.
11. Huang TJ, MacAry P, Eynott P, et al. Allergen-specific Th1 cells counteract efferent Th2 cell-dependent bronchial hyperresponsiveness and eosinophilic inflammation, partly via IFN-γ. *J Immunol* 2001; 166: 207–217.
12. Cohn L, Homer RJ, Niu N, Bottomly K. T helper 1 cells and interferon gamma regulate allgic airway inflammation and mucus production. *J Exp Med* 1999; 190: 1509–1518.
13. Prescott NL, Macaubas C, Smallcombe T, Holt BJ, Sy PD, Holt PG. Development of allergen-specific T-cell memory in atopic and normal children [see comments]. *J Immunol* 1999; 163: 196–200.
14. Prescott SL, Macaubas C, Holt BJ, et al. Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. J Immunol 1998; 160: 1760–1767.

15. Shirakawa T, Enomoto T, Shimazu S, Hopkin JM. The inverse association between tuberculin responses and atopic disorder [see comments]. J Allergy Clin Immunol 1998; 102: 1356–1365.

16. Domaracki RM, Romano E, Rapacetta M, Gasbarro G, Strofolini T, Attopy, hygiene, and anthropomorphic lifestyle. San Marino Study Group [letter]. Lancet 1999; 354: 340.

17. Gerrard JW, Geddes CA, Reggin PL, Gerrard CD, Horne S. Serum IgE levels in white and metis communities in Saskatchewan. Allergy 1976; 31: 91–100.

18. Gustafsson D, Andersson K, Fagerlund I, Kjellman NI. Significance of indoor environment for the development of allergic symptoms in children followed up to 18 months of age. J Allergy Clin Immunol 1997; 99: 473–476.

19. van HA, van der Cammen MJ, Cooper D, Savelkoul HF, Kezal G, Holt PG. Regulation of allergen-specific IgE, IgG1, and mast cell responses to inhaled allergen by mucosal tolerance induction. J Immunol 1997; 159: 3009–3015.

20. Holt PG. Primary allergic sensitization to environmental antigens: perinatal T cell priming as a determinant of atopic phenotype in adulthood [comment]. J Exp Med 1996; 183: 1297–1301.

21. Muller U, Akdis CA, Fricker M, et al. Successful immunotherapy with Tc1 cell epitope peptides of bee venom phospholipase A2 induces specific Tc1 cells in sensitized patients allergic to bee venom. J Allergy Clin Immunol 1998; 101: 747–754.

22. Boussquet J, Lockey R, Malling HJ. Allergen immunotherapy: therapeutic vaccines for allergic diseases. A WHO position paper. J Allergy Clin Immunol 1995; 102: 558–562.

23. Abramson M, Puy R, Weiner J. Immunotherapy in asthma: an updated systematic review. Allergy 1999; 54: 1022–1041.

24. Durham SR, Walker SM, Varga EM, et al. Long-term clinical efficacy of grass-pollen immunotherapy [see comments]. N Engl J Med 1999; 341: 468–475.

25. Jutel M, Pichler WJ, Skrbic D, Urayewa A, Dahinden C, Muller UR. Bee venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-gamma secretion in specific allergen-stimulated T cells. J Immunol 1999; 162: 1605–1612.

26. Sechrist H, Chelen CJ, Wen Y, Marshall JD, Umetrics ET. Allergen immunotherapy decreases interleukin 4 production in CD4+ T cells from allergic individuals. J Exp Med 1993; 178: 2125–2130.

27. Bellinghausen I, Metz G, Enkh AHI, Christmann S, Knop J, Saloga J. Insect venom immunotherapy induces interleukin 10 production and a Th2 to Th1 shift, and changes surface marker expression in venom-allergic subjects. Eur J Immunol 1997; 27: 1131–1139.

28. Akdis CA, Blaser K. Mechanisms of allergen-specific immunotherapy [In Process Citation]. Allergy 2000; 55: 522–530.

29. Akdis CA, Bleeken T, Akdin M, Wurthrich B, Blaser K. Role of interleukin 10 in specific immunotherapy. J Clin Invest 1998; 102: 98–106.

30. Becker JC, Czerny C, Brocker EB. Maintenance of clonal anergy by endogenous transforming growth factor-β. J Immunol 1992; 149: 1280–1287.

31. Enkh AHI, Saloga J, Becker D, Madzadzeh M, Knop J. Induction of hapten-specific tolerance by interleukin 10 in vivo. J Exp Med 1994; 179: 1597–1402.

32. Del Prete G, DeCarli M, Almerigogna F, Giudizi MG, Biagiotti R, Romagnani S. Human IL-10 is produced by both... (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol 1993; 150: 555–560.

33. Punnonen J, de Waal Malffryt R, van Vlasselaar P, Gouilleux F, et al. Anti-inflammatory cytokines in asthma & allergy. Mediators of Inflammation · Vol 10 · 2001

34. Hamid QA, Schotman E, Jacobson MR, Walker SM, Durham SR. Increases in IL-12 messenger RNA+ cells accompany inhibition of allergen-induced late skin responses after successful grass pollen immunotherapy [see comments]. J Immunol 2000; 164: 2555–2559.

35. Sechrist H, Chelen CJ, Wen Y, Marshall JD, Umetrics ET. Allergen immunotherapy decreases interleukin 4 production in specific allergen-stimulated T cells. J Immunol 1999; 162: 1605–1612.

36. Malefyt RdM, Haanen J, Spits H, et al. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an auto regulatory role of IL-10 produced by monocytes. J Exp Med 1993; 268: 2105–2109.

37. Carson WE, Lindemann MJ, Barbacchi R, et al. The functional characterization of interleukin-10 receptor expression on human natural killer cells. Blood 1995; 85: 1577–1585.

38. Ho AS, Liu Y, Khan TA, Hsu DH, Bazan JE, Moore KW. A receptor for interleukin 10 is related to interferon receptors. Proc Natl Acad Sci USA 1990; 87: 6934–6938.

39. Sechrist H, Chelen CJ, Wen Y, Marshall JD, Umetrics ET. Allergen immunotherapy decreases interleukin 4 production in specific allergen-stimulated T cells. J Immunol 1999; 162: 1605–1612.

40. Malefyt RdM, Haanen J, Spits H, et al. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an auto regulatory role of IL-10 produced by monocytes. J Exp Med 1999; 187: 571–578.

41. Finbloom DS, Winestock KD. IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J Immunol 1995; 155: 1079–1090.

42. Wehinger J, Gouilleux F, Groner B, Finke J, Mertelsmann R, Weber-Nordt RM. IL-10 induces DNA binding activity of three STAT proteins (Stat1, Stat3, and Stat5) and their distinct combinatorial assembly in the promoters of selected genes. J Immunol 2000; 164: 2555–2559.

43. Broide D, Zare R. DNA-Based immunization for asthma. J Allergy Clin Immunol 1999; 104: 1258–1264.

44. Fiorentino DF, Bond MW, Moisman TR. Two types of mouse helper T cells. IV. Th 2 clones secrete a factor that inhibits cytokine production by Th 1 clones. J Immunol 1993; 151: 1280–1287.

45. Kline JN, Waldschmidt TJ, Businga TR, et al. CpG administration inhibits ongoing allergic airway inflammation. J Allergy Clin Immunol 2000; 106: 798–799.

46. Malefyt RdM, Spits H, et al. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an auto regulatory role of IL-10 produced by monocytes. J Exp Med 1993; 90: 11267–11271.

47. Akdis CA, Bleeken T, Akdin M, Wurthrich B, Blaser K. Role of interleukin 10 in specific immunotherapy. J Clin Invest 1998; 102: 98–106.

48. Sechrist H, Chelen CJ, Wen Y, Marshall JD, Umetrics ET. Allergen immunotherapy decreases interleukin 4 production in specific allergen-stimulated T cells. J Immunol 1999; 162: 1605–1612.
Fan Chung

66. John M, Au BT, Jose P, Lim S, Saunders M, Barnes PJ, Mitchell JA, Belvisi MG, Chung KE. Expression and release of interleukin-8 by human airway smooth muscle cells: inhibition by Th-2 cytokines and corticoste-roidoids. Am J Respir Cell Mol Biol 1998; 18: 84–90.

67. Moore KW, O’Garra A, de Waal Malefyt R, Vieira P, Mosmann TR. Interleukin-10. Ann Rev Immunol 1993; II: 165–190.

68. Schandene L, Alonso Vega C, Willems F, et al. B7/CD28-dependent IL-5 production by human peripheral blood T cells is inhibited by IL-10. J Immunol 1994; 152: 4568–4574.

69. Akdis CA, Joss A, Akdis M, Faith A, Blaser K. A molecular basis for T cell suppression by IL-10: CD28-associated IL-10 receptor inhibits CD28 tyrosine phosphorylation and phosphatidylinositol 3-kinase binding [In Press Citation]. FASEB J 2000; 14(12): 1666–1668.

70. Jeannin P, Lecocan S, Delmeste Y, Gauchat JE, Bonnefoy Y. IgE Mediated by IgG4 production can be differentially regulated by IL-10. J Immunol 1998; 160: 2549–2559.

71. Aarons A, Rumbly J, Cvietusa P, Negri J, Wenzel S. Interleukin-10 regulation in normal subjects and patients with asthma. J Allergy Clin Immunol 1996; 97: 1288–1296.

72. John M, Lengfelder E, et al. Inhaled corticosteroids inhibit IL-10 but reduce macrophage inflammatory protein-1α, granu-locyte-macrophage colony-stimulating factor and interferon-γ release from alveolar macrophages in asthma. Am J Respir Crit Care Med 1997; 157: 507–510.

73. Chen W, Zitoonik A, IL-10: A novel cytotkic T cell differentiation factor. J Immunol 1991; 147: 520–534.

74. Weber-Nordt RM, Henschler R, Schott E, et al. A randomized, controlled trial of IL-10 in humans. Inhibition of inflammatory cytokine production and immune responses. J Immunol 1998; 161: 2680–2685.

75. Sakamoto H, Yasukawa H, Masuhara M, et al. The Jak kinases differentially associate with the interferon gamma receptor to form a functional receptor unit capable of activating STAT transcription factors. J Biol Chem 1995; 270: 17528–17534.

76. Heim MH, Kerr IM, Stark GR, Darnell JE. Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Science 1994; 267: 1547–1549.

77. Decker T, Lew DJ, Mirkovich I, Darnell JE. Cytoplasmic activation of GAF, an IFN-gamma-regulated DNA-binding factor EMBO J 1991; 10: 927–932.

78. Solomato H, Yasukawa H, Masuhara M, et al. A Janus kinase inhibitor, JAB, is an interferon-gamma-inducible gene and confers resistance to interferons. Blood 1998; 92: 1668–1676.

79. Romagnani S. Regulation and deregulation of human IgE synthesis. Immunol Today 1990; 11: 510–521.

80. Sakamoto H, Yasukawa H, Masuhara M, et al. A Janus kinase inhibitor, JAB, is an interferon-gamma-inducible gene and confers resistance to interferons. Blood 1998; 92: 1668–1676.

81. Gifford GE, Zhang MH, J Immunol 1993; 151: 2702–2703.

82. Gifford GE, Zhang MH, J Immunol 1993; 151: 2702–2703.

83. Makela MJ, Kanehiro A, Borish L, et al. Interleukin-10 inhibits tumor necrosis factor alpha and IL-8 expression in human monocytes. J Immunol 1995; 155: 520–527.

84. Schandene L, Alonso Vega C, Willems F, et al. Interleukin-10 inhibits tumor necrosis factor alpha and IL-8 expression in human monocytes. J Immunol 1995; 155: 520–527.

85. Lacraz S, Nicod LP, Chicheportiche R, Welgus HG, Dayer JM. IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear cells. J Clin Invest 1996; 100: 354–361.

86. Makela MJ, Kanehiro A, Borish L, et al. Interleukin-10 inhibits tumor necrosis factor alpha and IL-8 expression in human monocytes. J Immunol 1995; 155: 520–527.

87. Marsters SA, Pennica D, Bach E, Schreiber RD, Ashkenazi A. Interferon-gamma signals via a high-affinity multisubunit receptor complex that contains two types of polypeptide chain. J Biol Chem 1998; 273: 377–384.

88. Withiam S, Waisberg M, J Immunol 1995; 155: 520–527.

89. Lack G, Bradley KL, Hamelmann E, et al. Neubulized IFN-gamma inhibits the development of secondary allergic responses in mice. J Immunol 1996; 157: 1432–1439.

90. Leonard C, Tormey V, Burke C, Poulter LW. Allergen-induced cytokine production in atopic disease and its relationship to disease severity. Am J Respir Cell Mol Biol 1997; 17: 568–575.

91. Koning H, Neijens HJ, Baert MR, Oranje AP, Savelkoul HF. T cell subsets and cytokines in allergic and non-allergic children. J Immunol 1996; 155: 1432–1439.

92. Sakatsume M, Igarashi K, Winestock KD, Garotta G, Larner AC, Finbloom DS. The Jak kinases differentially associate with the alpha and beta (accessory factor) chains of the interferon gamma receptor to form a functional receptor unit. Inhibitors incapable of activating STAT transcription factors. J Biol Chem 1995; 270: 17528–17534.

93. Lack G, Nelson HS, Amran D, et al. Mutation screening of interferon-gamma (IFN-gamma) as a candidate gene for asthma. Clin Exp Allergy 1997; 27: 1412–1416.

94. Lincoln K, Neijens HJ, Baert MR, Oranje AP, Savelkoul HF. T cell subsets and cytokines in allergic and non-allergic children. J Immunol 1996; 155: 1432–1439.

95. Gifford GE, Zhang MH, J Immunol 1993; 151: 2702–2703.

96. Li XM, Chopra RK, Zhou Y, Schofield BH, Willk-Karp M, Huang SK. Mucosal IFN-g gene transfer inhibits allergic responses in mice. J Immunol 1996; 157: 3216–3219.

97. Sen GC, Lengfelder E, et al. Mutation screening of interferon-gamma (IFN-gamma) as a candidate gene for asthma. Clin Exp Allergy 1997; 27: 1412–1416.

98. Gifford GE, Zhang MH, J Immunol 1993; 151: 2702–2703.

99. Lack G, Nelson HS, Amran D, et al. Mice lacking the IFN-gamma receptor have impaired ability to resolve a lung eosinophilic inflammatory response associated with a prolonged capacity of T cells to exhibit a Th2 cytokine profile. J Immunol 1996; 157: 573–576.

100. Lack G, Nelson HS, Amran D, et al. Mice lacking the IFN-gamma receptor have impaired ability to resolve a lung eosinophilic inflammatory response associated with a prolonged capacity of T cells to exhibit a Th2 cytokine profile. J Immunol 1996; 157: 573–576.
118. Boguniewicz M, Marin RJ, Martin D, et al. The effects of nebulized recombinant interferon-gamma in asthmatic airways. *J Allergy Clin Immunol* 1995; 95: 133–135.

119. Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. *Review. Annual Review of Immunology* 1995; 13: 251–276.

120. Macdonald EA, Heiken NA, Litton M, et al. dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. *J Immunol* 1995; 154: 5071–5079.

121. Nutka E, Gounni AS, Hamid Q. Evidence for expression of eosinophil-associated IL-12 messenger RNA and immunoreactivity in bronchial asthma. *J Allergy Clin Immunol* 2000; 106: 288–292.

122. Chua AO, Chizzonite R, Desai BB, et al. Expression cloning of a human IL-12 receptor component. A new member of the cytokine receptor superfamily with strong homology to gp130. *J Immunol* 1994; 153: 128–136.

123. Presky DH, Yang H, Minetti LJ, et al. A functional interleukin 12 receptor complex is composed of two beta type cytokine receptor subunits. *Proc Natl Acad Sci USA* 1996; 93: 14002–14007.

124. Szabo SJ, Digne AS, Gubler U, Murphy KM. Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. *J Exp Med* 1997; 185: 817–824.

125. Regge L, Barben-MAINNO L, Biffi M, et al. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. *J Exp Med* 1997; 185: 825–831.

126. Bacon CM, McVicar DW, Ortoldo JR, Recs BC, OShea JJ, Johnston JA. Interleukin 12 (IL-12) induces tyrosine phosphorylation of JAK2 and TYK2: differential use of Janus family tyrosine kinases by IL-2 and IL-12. *Journal of Experimental Medicine* 1995; 181: 399–404.

127. Zou J, Presky DH, Wu CY, Gubler U. Differential associations between the cytoplasmic regions of the interleukin-12 receptor subunits beta1 and beta2 and JAK kinases. *J Biol Chem* 1997; 272: 6073–6077.

128. Jacobson NG, Szabo SJ, Weber-Nordt RM, et al. Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (STAT) and Stat. *J Exp Med* 1995; 181: 1755–1762.

129. Yu CR, Lin JX, Fink DW, Akin S, Bloom ET, Yamasueda A. Differential utilization of Janus kinase-signal transducer activator of transcription signaling pathways in the stimulation of human natural killer cells by IL-2, IL-12, and IFN-alpha. *J Immunol* 1996; 157: 126–137.

130. Robertson MJ, Soulier RJ, Wolf SF, et al. Responses of human natural killer (NK) cells to NK cell stimulatory factor (NKSF): cytokine activity and proliferation of NK cells are differentially regulated by NKSF. *J Exp Med* 1997; 175: 779–785.

131. Gately MK, Desai B, Wolitzky AG, et al. Cloning and expression of murine IL-12. *J Immunol* 1994; 153: 127–130.

132. Chan SH, Perussia B, Gupta JW, et al. Induction of interferon γ production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. *J Exp Med* 1991; 173: 609–604.

133. Wolf SF, Temple PA, Koboyashi M, et al. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. *J Immunol* 1994; 160: 1507–1512.

134. Schoenhaut DS, Chua AO, Wolitzky AG, et al. Cloning and expression of murine IL-12. *J Immunol* 1992; 148: 3433–3437.

135. Manetti R, Parrochi P, Giusi MI, et al. Natural killer cell stimulatory factor (interleukin 12 (IL-12) induces 1 helper type 1 (Th1) specific immune responses and inhibits the development of IL-4-producing Th cells. *J Immunol* 1993; 167: 1199–1204.

136. Hsieh CS, Macatonia SE, Tripp CS, Wolf SE, O’Garra A, Murphy KM. Development of T CD4+ T cells through IL-12 produced by Listeria-induced macrophages. *Science* 1993; 260: 547–549.

137. Kinna M, Gately M, Gubler U, Chizzonite R, Fargeas C, Delespesse G. Recombinant interleukin-12 suppresses the synthesis of IgE by interleukin-4 stimulated human lymphocytes. *J Clin Invest* 1992; 90: 202–206.

138. Nuttall F, Gerosa F, Giudici MG, et al. Interleukin 12 induces stable priming for interferon gamma (IFN-gamma) production during differentiation of human T helper (Th) cells and transient IFN-gamma production in established Th2 cell clones. *J Exp Med* 1994; 179: 1273–1283.

139. Yoshimoto T, Okamura H, Tagawa Y, Iwakura Y, Nakanih K. Interleukin 18 together with interleukin 12 inhibits IgE production by induction of interferon gamma production from activated B cells. *Proc Natl Acad Sci USA* 1997; 94: 5948–5953.

140. Zhao LL, Linden A, Sjostrand M, Cui ZH, Lotvall J, Jordana M. IL-12 regulates bone marrow eosinophilia and airway eosinocyt levels induced by airway allergen exposure. *In Process Citation*. *Allergy* 2000; 55: 749–756.

141. Naseer T, Minshall EM, Leung DY, et al. Expression of IL-12 and IL-13 mRNA in asthma and their modulation in response to steroid therapy. *Am J Respir Crit Care Med* 1997; 155: 845–851.

142. van der Pouw Kraan TC, Borsje LC, De, et al. Reduced production of IL-12 and IL-12-dependent IFN-gamma release in patients with allergic asthma. *J Immunol* 1997; 158: 5560–5565.

143. Kips JC, Brusselle GJ, Joon GE, et al. Interleukin-12 inhibits antigen-driven airway hyper-responsiveness in mice. *Am J Respir Crit Care Med* 1996; 153: 535–545.

144. Gavett SH, O’Hearn DJ, Li X, Huang SK, Finkelman FD, Wills Karp M. Interleukin 12 inhibits antigen-driven airway hyper-responsiveness, inflammation, and Th2 cytokine expression in mice. *J Exp Med* 1995; 182: 1527–1536.

145. Brusselle GG, Kips JC, Peelman RA, et al. Role of IFN-gamma in the inhibition of the allergic airway inflammation caused by IL-12. *Am J Respir Cell Mol Biol* 1997; 17: 767–771.

146. Sur S, Lamp J, Bouchard P, Sougas A, Holsbert D, Metzger WJ. Immunomodulatory effects of IL-12 produced by Listeria-induced macrophages. *J Immunol* 1997; 157: 4173–4180.

147. Lee Y, Fu C, Chiang B. Administration of interleukin-12 exerts a therapeutic instead of a long-term preventive effect on mice Der p I allergen-induced animal model of airway inflammation. *Immunology* 1999; 97: 242–240.

148. Hogan SP, Foster PT, Tan X, Ramsay JA. Mucosal IL-12 gene delivery inhibits allergic airway disease and restores local antiviral immunity. *Eur J Immunol* 1999; 28: 413–423.

149. Stampfli MR, Cwiartka M, Gajewska BU, et al. Interleukin-10 gene transfer to the airway regulates allergic mucosal sensitization in mice (see comments). *Am J Respir Cell Mol Biol* 1999; 21: 586–596.

150. Hofstra CL, van Ark I, Hofman G, et al. Prevention of Th2-like cell responses ... IL-18 is associated with inhibition of antigen-induced airway hyper-responsiveness, eosinophilia, and serum IgE levels. *J Immunol* 1998; 161: 5054–5060.

151. van der Pouw Kraan TC, Borsje LC, de Groot ER, et al. Reduced production of IL-12 and IL-12-dependent IFN-gamma release in patients with allergic asthma. *J Immunol* 1997; 158: 5560–5565.

152. Blotta MH, DeKruijl EH, Umetzu DT. Cytocisternos inhibits IL-4 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4+ lymphocytes. *J Immunol* 1997; 158: 5589–5595.

153. van der Pouw Kraan TC, Borsje LC, Smeenk RJ, Wijdenes J, Aarden LA. Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. *Journal of Experimental Medicine* 1995; 181: 775–779.

154. Panina-Bordignon P, Mazzuero D, Lucia PD, et al. Beta2 agonists prevent Th1 development by selective inhibition of interleukin 12. *J Clin Invest* 1997; 100: 1513–1519.

Received November 2000; accepted January 2001.