On the Chromatic Number of \mathbb{R}^n for Small Values of n

Geoffrey Exoo
Department of Mathematics and Computer Science
Indiana State University
Terre Haute, IN 47809
ge@cs.indstate.edu

Dan Ismailescu
Mathematics Department
Hofstra University
Hempstead, NY 11549
dan.p.ismailescu@hofstra.edu

August 12, 2014

Abstract

The lower bound for the chromatic number of \mathbb{R}^n is improved for $n = 6, 7, 10, 11, 12, 13$ and 14.

1 Introduction.

The chromatic number of n-dimensional Euclidean space, denoted $\chi(\mathbb{R}^n)$, is the minimum number of colors that can be assigned to the points of \mathbb{R}^n so that no two points at distance one receive the same color. In this note, we establish new lower bounds for $\chi(\mathbb{R}^n)$ for several small values of n.

In [10], a table of lower bounds for the $\chi(\mathbb{R}^n)$ was given. Besides the new bounds given in that paper, we are aware of only one other improvement [6]. Based on this improvements, we give a modified table below. The table also indicates the new bounds given here.

2 $\chi(\mathbb{R}^6)$

We construct a graph G_{175} of order 175 with chromatic number 12. The vertices of the graph are a set of points in \mathbb{R}^6 generated by 11 special points. The coordinates of each of these special points is permuted in all $6! = 720$ possible ways to obtain the full set of 175 vertices. The graph will be constructed as an...
Table 1: Lower bounds on $\chi(\mathbb{R}^n)$ for small n.

r-distance graph for $r = \sqrt{8}$. The coordinates for each point can be divided by r to obtain a unit distance graph.

The following table lists the aforementioned 11 special points along with the number of distinct points generated by permuting their coordinates. For each of these 11 points, v_i, let V_i denote the set of points obtained by permuting the coordinates, and let $n_i = |V_i|$, as shown in the table.

Point	Coordinates	n_i
v_1	0 0 0 0 0 0 0 0 0	1
v_2	2 2 0 0 0 0	15
v_3	2 2 2 2 2 0 0	15
v_4	$\sqrt{3}$ 1 1 1 1 1 1	6
v_5	$\sqrt{3}$ 1 1 1 1 1	-1 30
v_6	$-\sqrt{3}$ 1 1 1 1 1	6
v_7	$-\sqrt{3}$ 1 1 1 1 1	-1 30
v_8	$2 + \sqrt{3}$ 1 1 1 1 1 1	6
v_9	$2 + \sqrt{3}$ 1 1 1 1	-1 30
v_{10}	$2 - \sqrt{3}$ 1 1 1 1 1	6
v_{11}	$2 - \sqrt{3}$ 1 1 1 1	-1 30

Table 2: The 11 points that generate the vertices of G_{175}.

Observe that the subgraphs induced by V_2 and by V_3 are each isomorphic to the line graph of K_6. In the case of V_2 this is because two points in V_2
are adjacent if their dot product is 4. This occurs when there is exactly one coordinate position where both points have a 2. In the case of V_3, two points are adjacent if there is exactly one coordinate position where both points have a zero. Next define an isomorphism $\phi : V_2 \rightarrow V_3$ by letting

$$\phi(u_1, u_2, u_3, u_4, u_5, u_6) = (2 - u_1, 2 - u_2, 2 - u_3, 2 - u_4, 2 - u_5, 2 - u_6).$$

Then the edges joining V_2 and V_3 are given as follows. A vertex $x \in V_2$ is adjacent to a vertex $y \in V_3$ whenever y is not adjacent to (or equal to) $\phi(x)$. This gives the subgraph H of the $\sqrt{8}$-distance graph induced by $V_2 \cup V_3$.

Note that the independence number $\alpha(L(K_6)) = 3$. However, in H an independent set of size three consisting of vertices from V_2 dominates every vertex in V_3. So $\alpha(H) = 4$. In fact, it can be seen that every maximum independent set can be obtained from the following independent set by an appropriate permutation of coordinates

$$
\begin{align*}
(2, & 2, 0, 0, 0) \\
(0, & 0, 2, 2, 0, 0) \\
(2, & 0, 2, 0, 2, 2) \\
(2, & 0, 0, 2, 2, 2)
\end{align*}
$$

Thus we have the following lemma.

Lemma 2.1. The graph H has chromatic number 8.

The proof of the following theorem can be completed by a short computer search that makes strong use of this lemma.

Theorem 2.1. The graph G has chromatic number 12 and can be represented as a unit distance graph in \mathbb{R}^6.

3 $\chi(\mathbb{R}^7)$

Theorem 3.1. $\chi(\mathbb{Q}^7) \geq 16$.

Proof. Consider the following fourteen sets in \mathbb{Q}^7:

$$
\begin{align*}
S_{123} &= [\pm 2, \pm 2, \pm 2, 0, 0, 0, 0], & T_{123} &= [0, 0, 0, \pm 1, \pm 1, \pm 1, \pm 1], \\
S_{145} &= [\pm 2, 0, 0, \pm 2, \pm 2, 0, 0], & T_{145} &= [0, \pm 1, \pm 1, 0, \pm 1, \pm 1, \pm 1], \\
S_{167} &= [\pm 2, 0, 0, 0, \pm 2, \pm 2], & T_{167} &= [0, \pm 1, \pm 1, \pm 1, 0, 0], \\
S_{247} &= [0, \pm 2, 0, \pm 2, 0, 0, 0], & T_{247} &= [\pm 1, 0, \pm 1, \pm 1, 0, \pm 1, \pm 1], \\
S_{256} &= [0, \pm 2, 0, 0, \pm 2, \pm 2], & T_{256} &= [\pm 1, 0, \pm 1, \pm 1, 0, \pm 1], \\
S_{346} &= [0, 0, \pm 2, \pm 2, 0, \pm 2, 0], & T_{346} &= [\pm 1, \pm 1, 0, 0, \pm 1, \pm 1, \pm 1], \\
S_{357} &= [0, 0, \pm 2, \pm 2, 0, \pm 2], & T_{357} &= [\pm 1, \pm 1, 0, \pm 1, 0, \pm 1, 0].
\end{align*}
$$
Denote
\[
S = S_{123} \cup S_{145} \cup S_{167} \cup S_{247} \cup S_{256} \cup S_{346} \cup S_{357},
\]
\[
T = T_{123} \cup T_{145} \cup T_{167} \cup T_{247} \cup T_{256} \cup T_{346} \cup T_{357}.
\]

Let \(G\) be the graph whose vertices are the points in \(S \cup T\). Two vertices are adjacent if and only if their distance is 4. It can be checked that \(G\) has 168 vertices and 4396 edges. We are going to prove that \(\chi(G) = 16\).

Let \(H\) be the subgraph of \(G\) induced by the points in \(S\). One can verify that \(H\) is a graph of order \(|V(H)| = 56\), size \(|E(H)| = 756\), independence number \(\alpha(H) = 4\) and chromatic number \(\chi(H) = |V(H)|/\alpha(H) = 14\).

Similarly, let \(K\) be the subgraph of \(G\) induced by the points in \(T\). One can verify that \(K\) is a matching of order \(|V(K)| = 112\), size \(|E(K)| = 56\), independence number \(\alpha(K) = 56\) and chromatic number \(\chi(K) = |V(K)|/\alpha(K) = 2\). It follows that \(\chi(G) \leq \chi(H) + \chi(K) = 14 + 2 = 16\).

Let \(M\) be an independent set of \(G\). From the observation above \(|M \cap V(H)| \leq 4\). We say that \(M\) is an independent set of type \(k\) if \(|M \cap V(K)| = k\) for some \(0 \leq k \leq 4\). The following claim can be easily checked

Claim 3.1. Let \(M\) be an independent set of type \(k\) in \(G\). Then, the following hold:

\[
\begin{align*}
\text{If } k &= 0, \quad \text{then} \quad |M \cap V(K)| \leq 56. \\
\text{If } k &= 1, \quad \text{then} \quad |M \cap V(K)| \leq 24. \\
\text{If } k &= 2, \quad \text{then} \quad |M \cap V(K)| \leq 24. \\
\text{If } k &= 3, \quad \text{then} \quad |M \cap V(K)| \leq 3. \\
\text{If } k &= 4, \quad \text{then} \quad |M \cap V(K)| \leq 3.
\end{align*}
\]

Suppose that \(\chi(G) \leq 15\). Then the set of vertices of \(G\) can be partitioned into 15 independent sets. Denote by \(m_k\) the number of independent sets of type \(k\) in this partition, \(0 \leq k \leq 4\). Then from Claim 3.1 the following relations hold true:

\[
15 = m_0 + m_1 + m_2 + m_3 + m_4. \\
56 = m_1 + 2m_2 + 3m_3 + 4m_4. \\
112 \leq 56m_0 + 24m_1 + 24m_2 + 3m_3 + 3m_4.
\]

But it is easy to check (either by hand or a short program) that this system has no solutions in nonnegative integers. Thus \(\chi(G) \geq 16\). \(\square\)
4 \(\chi(\mathbb{R}^{10}) \)

The construction for \(\chi(\mathbb{R}^{10}) \) is related to the well-known Frankl-Wilson construction [7] which established an exponential lower bound for \(\chi(\mathbb{R}^{10}) \), and also gives the best constructive lower bound for classical diagonal Ramsey numbers.

The vertices of this graph are identified with the points \((x_1, x_2, \ldots, x_{11})\) in \(\mathbb{R}^{11} \) such that each \(x_i = 0 \) or 1, and

\[
\sum_{i=1}^{11} x_i = 5
\]

There are \(\binom{11}{5} = 462 \) such points. Two points are adjacent if their distance is 2 (and so their Hamming distance is 4). This graph is regular of degree \(\binom{5}{2} \binom{6}{2} = 150 \).

A computation reveals that the independence number of \(G \), denoted as usual by \(\alpha(G) \), is 18. We did this computation two ways. First, our own special program written for graph of this type was used. Second, the result was verified by the mcqd program of Konc and Janežič [9]. Using the fact that \(\chi(G) \geq \frac{n}{\alpha(G)} \), for any graph \(G \) of order \(n \), we find that \(\chi(G) \geq \lceil \frac{462}{18} \rceil = 26 \).

Finally, for each point, the sum of the coordinates is 5, so the points are located on a 10-dimensional hyperplane, so we have the following.

Theorem 4.1. \(\chi(\mathbb{R}^{n}) \geq 26 \), for \(n = 10, 11 \).

5 \(\chi(\mathbb{R}^{12}) \)

The construction for \(\mathbb{R}^{12} \) parallels that of \(\mathbb{R}^{10} \). In this case the vertex set consists of all \(0 - 1 \)-vectors in \(\mathbb{R}^{13} \) with Hamming weight 6. Again two vertices are adjacent if their distance is 2 (Hamming distance 4). So the the graph has order \(\binom{13}{6} = 1716 \) and degree \(\binom{13}{6} \binom{13}{6} \).

For this case, computing the independence number is a much harder computation. But again, both mcqd and our specialized program were able to determine that the independence number is 46. Hence the chromatic number is at least \(\lceil \frac{1716}{46} \rceil = 36 \)

Theorem 5.1. \(\chi(\mathbb{R}^{n}) \geq 36 \), for \(n = 12, 13, 14 \).

References

[1] D. Breláž, New methods to color the vertices of a graph, *Communications of the ACM*, 4 (1979) 251–256.

[2] K. Cantwell, Finite Euclidean Ramsey theory, *Journal of Combinatorial Theory, Series A*, 73 (1996) 273–285.

[3] J. Cibulka, On the chromatic number of real and rational spaces, *Geombinatorics*, 18 (2008) 53–65.
[4] D. Coulson, An 18-colouring of 3-space omitting distance one, *Discrete Mathematics*, 170 (1997) 241-247.

[5] D. Coulson, A 15-colouring of 3-space omitting distance one, *Discrete Mathematics*, 256 (2002) 83-90.

[6] G. Exoo, D. Ismailescu and M. Lim, On the chromatic number of \mathbb{R}^4, Discrete Comput. Geom. (to appear)

[7] P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, *Combinatorica*, 1 (1984) 357-368.

[8] L. L. Ivanov, An estimate for the chromatic number of the space \mathbb{R}^4 (Russian), *Uspekhi Matematicheskikh Nauk*, 5(371), 181–182; translation in *Russian Mathematical Surveys*, 61 (2006) 984-986.

[9] J. Konc and D. Janežič, An improved branch and bound algorithm for the maximum clique problem, MATCH Commun. Math. Comput. Chem., 58 (2007) 569-590.

[10] A. B. Kupavskii and A. M. Raigorodskii, On the chromatic number of \mathbb{R}^9, Journal of Mathematical Sciences, 163 (2009) 720–731.

[11] D. G. Larman and A. C. Rogers, The realization of distances within sets in Euclidean space, *Mathematika*, 19 (1972) 1-24.

[12] L. Moser and W. Moser, Solution to problem 10, *Canadian Mathematical Bulletin*, 4 (1961) 187–189.

[13] O. Nechushtan, On the space chromatic number, *Discrete Mathematics*, 256 (2002) 499–507.

[14] R. Radoičić and G. Tóth, Note on the chromatic number of the space. In *Discrete and computational geometry*, Volume 25 Algorithms and Combinatorics, pages 695–698. Springer, Berlin, 2003.

[15] A. M. Raigorodskii, On the chromatic number of a space (Russian), *Uspekhi Matematicheskikh Nauk*, 55 (2000), 147–148; translation in *Russian Mathematical Surveys* 55 (2000), no. 2, 351-352.

[16] A. M. Raigorodskii, The Borsuk problem and the chromatic numbers of some metric spaces, *Russ. Math. Surv.* 56 (2001) 103–139.

[17] A. Soifer, Chromatic number of the plane and its relatives, *Geombinatorics*, 12 (2003), no. 3, 131-148.

[18] A. Soifer, *The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of its Creators*, Springer, New York, 2009.

[19] L. A. Székely, Erdős on unit distances and the Szameredi-Trotter theorems, in: G. Haláaz, ed., *Paul Erdős and His Mathematics II*, Bolyai Soc. Math. Stud, Vol. 11, Springer, Berlin (2002) 649–666.
[20] On the chromatic number of \mathbb{R}^4, http://cs.indstate.edu/ge/Colorings
2013.