Review Article

Kampo medicines for supportive care of patients with cancer: A brief review

Yoshiharu Motoo a,∗, Silke Cameron b

a Department of Medical Oncology and Kampo Medicine, Komatsu Sophia Hospital, Komatsu, Ishikawa, Japan
b Clinic for Gastroenterology and Gastrointestinal Oncology, University of Göttingen Medical School, Göttingen, Germany

A R T I C L E I N F O
Article history:
Received 6 October 2021
Revised 14 January 2022
Accepted 20 February 2022
Available online 23 February 2022

Keywords:
Cachexia
Cancer
Kampo
Chemotherapy
Anorexia
Supportive care

A B S T R A C T

Background: Kampo medicines, which are standardized traditional Japanese herbal medicines, have been tried to support patients with cancer.

Methods: Randomized controlled trials on the use of Kampo medicines for cancer supportive care and the descriptions of Kampo medicines in clinical practice guidelines were reviewed.

Results: Kampo medicines potentially ameliorate refractory symptoms in cancer patients. For example, hochuekkito, juzentaihoto, and ninjin’yoito seem to be efficacious for fatigue/general malaise. Potential use of rikkunshito for anorexia/cancer cachexia and goshajinkigan for peripheral neuropathy is proposed from small numbers of randomized controlled trials in addition to basic research. The number of clinical practice guidelines which contain descriptions of Kampo medicines is increasing in general, but only a few in the area of cancer supportive care.

Conclusion: Kampo medicines potentially play some roles in preventing or ameliorating side effects of anticancer agents. Supportive care with Kampo medicines for patients with cancer might lead to physical, mental, and nutritional improvement.

© 2022 Korea Institute of Oriental Medicine. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Patients with cancer often experience anorexia and general malaise. Advanced cancer causes cachexia, which is accompanied by inflammatory reactions and microcirculation disorders. Recent advances in cancer drug therapy include cytotoxic agents, molecular targeting agents, anti-angiogenic agents, and immune checkpoint inhibitors. These anti-cancer drugs have high levels of clinical evidence for both efficacy and safety. To maintain a sufficient relative dose intensity of each anti-cancer agent, supportive care is of critical importance.

Kampo is a traditional Japanese medicine derived from ancient Chinese medicine, and developed during the 16th and 19th centuries in Japan.1 Kampo medicines can act as multitarget multicomponent therapy, thus each Kampo formula can address multiple symptoms. Evidence of the efficacy and safety of Kampo medicines for refractory symptoms in patients with cancer, such as anorexia,2–10 fatigue,11 and peripheral neuropathy,12–18 has been accumulated. Adverse reactions to Kampo medicines are well documented, such as hepatic dysfunction, interstitial pneumonia, and pseudoadosteronism.19–22 but the incidence of these adverse reactions is extremely low. The long-term history of well-described Kampo combinations over hundreds of years, controlled quality of Kampo medicines, education of the doctors, and the small quantity of the individual herbal drug allow a safe-use of Kampo medicines alongside chemotherapy. Whilst chemotherapy interacts with DNA replication and proliferation of tumor cells, Kampo acts on the tumor microenvironment,23 i.e. the targets of action differ. As for herb-drug interactions, basic research indicates that Kampo products would not exhibit any pharmacokinetic interactions with anticancer agents in clinical practice.24

In modern times, Kampo education has been propagated in all medical schools in Japan since 2001, when Kampo was incorporated into the model core curriculum of medical education.25 Therefore, young doctors are more familiar with Kampo medicines than their solely Western-trained colleagues. This is a different from medical systems in China and Korea, where both medical systems are separate.
In this review, we discuss the significance of Kampo medicines as supportive measures for patients with cancer.

2. Current status of cancer medicine in Japan

Cancer is the most common disease and the most common cause of death in Japan since 1981. One in two individuals in the total population experiences cancer of some kind in life, and one-third die of cancer. Chemotherapy, especially for neoadjuvant and adjuvant treatment has to be done in close coordination with surgery. In Japan, medical oncologists and internists in gastroenterology or pulmonology have gradually become involved in drug therapy for cancer since 2004 since the Japan Society of Medical Oncology (JSMO) was established. As of April 1, 2021, there were 1,530 board-certified medical oncologists in Japan.

3. Significance of supportive care in cancer

Supportive care in cancer has been officially incorporated into treatment regimens since the Japanese Association of Supportive Care in Cancer (JASCC) was established in March 2015. Supportive care prevents or ameliorates the side effects of drug therapy and decreases complications in surgery or radiation therapy. It is now clear that supportive care should be introduced as early as possible. Various side effects of chemotherapy can be foreseen from the viewpoint of oncologists. Supportive care is of great importance to complete the standard treatment and prevent a decrease in the relative dose intensity of chemotherapeutic agents. Supportive care handles various symptoms, such as anorexia, fatigue, anxiety, and emotional distress; therefore, it requires multidisciplinary collaboration.

4. Significance of Kampo in cancer supportive care

The Study Group of Kampo was launched in JASCC in September 2016. Kampo can be used to treat or prevent various symptoms, such as systemic (general malaise, fatigue), gastrointestinal (GI) symptoms (anorexia, nausea, vomiting, diarrhea, constipation), peripheral neuropathy, and psychiatric symptoms. Especially, the anorexia-cachexia syndrome is a mixed pathophysiology, and could be treated with Kampo medicines. Information of Kampo products is available in English on the website of STORK. JASCC has further published clinical guidelines for various chemotherapy side-effects such as peripheral neuropathy.

In 2020, the Kampo Study Group of JASCC published a practical guide for the use of Kampo medicines in cancer supportive care. In Japan, Kampo medical practice is well integrated into modern medicine for patients with cancer. The International Society for Japanese Kampo Medicine (ISJKM) is its extended arm to the West.

The following prescriptions have been studied extensively for supportive care in cancer patients. As for upper GI symptoms, rikkunshito showed a significant decrease in anorexia in patients with advanced gastric cancer who received cisplatin plus S-1 therapy in a crossover randomized controlled trial (RCT). Hocheukkito significantly ameliorated cancer-related fatigue. Hemotoxicity, such as neutropenia, is usually treated with a granulocyte colony-stimulating factor (G-CSF). Juzentaihoto may prevent or even help in recovering from myelosuppression. Anemia and thrombocytopenia are usually treated with blood transfusion. Recently, kamikihito, a Kampo medicine, was reported to accelerate the recovery of thrombocytopenia. Ninjin'yoeito was effective in ameliorating ribavirin-induced anemia in an RCT, presumably owing to its stabilizing action on the red blood cell membrane. It has been reported that ninjin'yoeito has multifunctional actions, especially in hematological and neurological disease status.

As regards peripheral neuropathy, goshajinkigan was effective for taxane-induced peripheral neuropathy, i.e. axonopathy, and was also effective against oxaliplatin-induced peripheral neuropathy in a phase 2 study. However, goshajinkigan did not work for oxaliplatin in a phase 3 study. Hence, meta-analyses denied its efficacy. Recently, ninjin'yoeito was reported to reduce the grades of chronic, accumulative peripheral neuropathy induced by oxaliplatin in an adjuvant setting in patients with colorectal cancer. It is known that one of the contents: citrus unshiu pericarpium, protects demyelination by inducing differentiation of oligodendrocytes.

Table 1
Contents of Kampo medicines in clinical practice guidelines (CPGs) for supportive care in cancer.

The name of CPG	Year	Formula	Descriptions
Guide for chemotherapy-induced peripheral neuropathy Ref.	2017	goshajinkigan	Goshajinkigan is not recommended for oxaliplatin-induced peripheral neuropathy. Goshajinkigan significantly prevents taxane-induced peripheral neuropathy, compared with mecobalamin. However, evidence is lacked for any recommendation.
Guidelines for palliative care of gastrointestinal symptoms in cancer patients Ref.	2017	rikkunshito	Rikkunshito improves anorexia in patients with cancer, but evidence is lacked for any recommendation.
Clinical practice guidelines for breast cancer Ref.	2018	Kamlo medicines in general	It is uncertain that complementary and alternative medicines including Kampo medicines are effective for hot flashes and arthralgia due to hormonal therapy. Kamlo medicines are effective for overactive bladder.
Guidelines for palliative care of genitourinary symptoms in cancer patients Ref.	2016	Kamlo medicines in general	Some herbal therapies including Kamlo medicines are reported to improve cancer cachexia via ghrelin signals, but evidence is limited and there is no recommendation.
Guidelines for infusional therapies in terminally-ill patients with cancer ref.	2013	Kamlo medicines in general	There is no evidence for recommendations of complementary and alternative medicines including Kamlo medicines for breast cancer treatments.
Guidelines for proper use of anticancer agents Ref.	2005	Kamlo medicines in general	

Y. Motoo and S. Cameron

Integrative Medicine Research 11 (2022) 100839
Cachexia was imported to Japan in 18th century, the late Edo era

Fig. 1. Historical aspects of cachexia in Japan.

The pathogenesis of cancer cachexia includes physical inactivity, inflammation, and the cancer microenvironment. Historically, UDAGAWA Genzui translated the book of Johannes de Gorter "Guideline on a variety of internal disorders" into Japanese as "Ushi Hikyu" in 1793. It included the word "cachexia", which originates from the Greek words "kakos" (bad) and "hexis" (condition).

Cachexia is characterized by involuntary weight loss, due to appetite loss, inflammatory processes and a disequilibrium of adaptogenic redox-systems. The beginning of cachexia development is reflected in the typical triad of B-symptoms including weight loss, fatigue, night-sweat and fever which comes with deficiency symptoms. Kampo medicines have been traditionally used to enhance appetite, attenuate chronic inflammatory processes and enhance microcirculation, as well as for the treatment of a disequilibrium
within the body constitution. Kampo medicines have been utilized for disease control and supportive care for patients with refractory cancer such as pancreatic cancer.50

Especially “hozai,” tonic formulæ, have been reported to show beneficial effects on the nutritional status of patients with cancer. They include three major hozais, i.e., hochuekkito, juzentaihoto, ninjin'yeoito, and further rikkunshito (Fig. 2).

Nutritional status (anorexia) can be improved with tonic (qi-supplementing) formulæ such as rikkunshito and hochuekkito, and frailty may be prevented with juzentaihoto and ninjin'yeoito.51

The efficacy of Kampo medicines for chemotherapy-induced nausea and vomiting as well as anorexia are summarized in Table 2. Only RCTs are selected as high levels of evidence.

The action mechanisms have been vastly elucidated. For instance, the effect of each herb in rikkunshito has been clarified5: Atractylodin in Atractylodis lanceae rhizoma stimulates ghrelin signals, pachyic acid in Poria, \textit{[10]-gigerol in Zingiberis rhizoma}, and glyccoumarin in Glycyrrhize radix inhibit ghrelin deacetylase. Flavonoids in \textit{Citri uniu pericarpium} and Pinelliae tuber suppress appetite-inhibiting neurons. Compounds of ginger are further mucoprotective,52 and ginseng enhances the motility of the gastrointestinal tract through stimulation of 5-hydroxytryptophane (5HT) receptors.53 For chemotherapy-induced anorexia, the same central and peripheral ghrelin-dependent mechanisms can be re-installed by rikkunshito54,55 (Fig. 3). RCTs have confirmed the clinical efficacy of rikkunshito in chemotherapy-induced anorexia.2,5

The mechanisms of action of ninjin'yeoito in chemotherapy-induced anorexia include the activation of neuropeptide Y neurons56 and orexin-1 receptor.57 A clinical study is now underway to validate the efficacy of ninjin'yeoito in preventing the progress of malnutrition and cachexia in patients with advanced or recurrent colorectal cancer.58

The anti-inflammatory/regenerative properties of Kampo medicines59 have also been explored in view of the anti-fibrotic, anti-oxidant and anti-apoptotic activity of saikokeishito60,61 Ginseng supplementation could reduce the serum levels of C-reactive protein in clinical trials.62

Furthermore, Ginseng oligopeptides were shown to exert radio-protective activity on the gastrointestinal tract via suppression of inflammatory cytokines and oxidative stress.63

When cachexia sets in, the occurrence of disability may be used to determine the survival time and quality of life. Even if no chemotherapy can be applied, various Kampo prescriptions are still possible (Fig. 4). As the nutritional status improves, patients and their family members are motivated to increase their daily ac-

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|l|}
\hline
First author & Formula & Study design & cancer site & outcome & Number of participants: \\
(Reference no.) & & & & & \\
\hline
Ohno et al. & rikkunshito & Crossover RCT & stomach & Anorexia grade was significantly improved in intervention group (1.2 vs. 2.2). & I: n = 10; C: n = 10 \\
& & (open label) & & Food intake in intervention group was significantly higher than control group in carboplatin-containing regimen, but not in cisplatin and non-platinum regimens. & I: n = 74; C: n = 38 \\
& & RCT (open label) & lung & The complete control rate was significantly higher in the rikkunshito group than in the control group (57.9% vs. 35.3%). & I: n = 19; C: n = 17 \\
& & RCT (open label) & uterine & The complete response rates in the overall phase were similar between the control and intervention groups for the highly (67.9% vs. 62.1%) and moderately (83.3% vs. 84.4%) emetogenic chemotherapy, respectively. & I: n = 61; C: n = 58 \\
& & Crossover RCT & esophagus & The median rate of food intake decrease between days 4 and 6 was significantly lower in the intervention than the control course (23 vs. 30%). & I: n = 18; C: n = 18 \\
& & (open label) & lung & Reduction rate of caloric intake was significantly lower in intervention course than in control courses (18% vs. 25%). Plasma acyl ghrelin levels significantly increased by day 5 in intervention course but not in control course. & I: n = 20; C: n = 20 \\
& & Crossover RCT & stomach & There was no significant decrease in adverse events including anorexia between the intervention (5-1-hochuekkito) and control (5-1 only) groups. & I: n = 56; C: n = 57 \\
& & (open label) & & & \\
\hline
Okabe et al. & hochuekkito & RCT (open label) & & & \\
& & & & & \\
\hline
Cheon et al. & juzentaihoto & Double-blind RCT & various & The change in the anorexia/cachexia subscale between baseline and the end of study in the intervention group was not significantly different from that in the placebo group (−4.63 vs. −2.75). & I: n = 16; C: n = 16 \\
& & & & & \\
\hline
\end{tabular}
\caption{Comparative table of randomized controlled trial (RCT) on the efficacy of Kampo medicines for chemotherapy-induced nausea & vomiting (CINV) and anorexia.}
\end{table}

* Korean formulation
activities with better concentration skills, which also prevents i.e., the danger of falling. They regain some self-confidence and mental strength, which supports not only physical functions, but also life expectancy, and thus, may restore a sense of value in life.

6. Conclusions

Kampo medicines can play an important role in maintaining or improving the nutritional status of cancer patients. Recent evidence has indicated the potential application of Kampo medicines for the prevention or amelioration of cachexia in patients with cancer. The literature on action mechanisms of multicomponent, multitarget drugs such as herbal combinations has been described in cancer cachexia. These approaches would enable patients to recover their social status and find life worth living.

Acknowledgments

We would like to thank Dr. Tateaki Naito for providing historical information.

Author contributions

Writing - original draft: YM. Writing - review & editing: YM and SC. Supervision: SC.

Conflict of interest

YM received honoraria from Tsumura & Co. The authors declare that this review was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. YM is an editorial board member of the journal but the editorial board membership had no bearing on the editorial process or decision.

Funding

There is no funding source.

Ethical statement

Not applicable.

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

1. Motoo Y, Seki T, Tsutani K. Traditional Japanese medicine, Kampo: its history and current status. Chin J Integr Med. 2011;17(2):85–87. doi: 10.1007/s11655-011-0653-9.
2. Ohno T, Yonai M, Ando H, et al. Rikkunshito, a traditional Japanese medicine, suppresses cisplatin-induced anorexia in humans. Clin Exp Gastroenterol. 2011;4:291–296. doi: 10.2147/CEG.S26297.
3. Ooka T, Ishikawa A, Saiyai Y, et al. Effect of rikkunshito-treatment on chemotherapy-induced appetite loss in patients with lung cancer: a prospective study. Exp Ther Med. 2016;11(1):243–246.
4. Ohiishi S, Wataru H, Kanno M, et al. Additive effect of rikkunshito, an herbal medicine, on chemotherapy-induced nausea, vomiting, and anorexia in urinary cervical or corpus cancer patients treated with cisplatin and paclitaxel: results of a randomized phase II study (JORTC-KMP-02). J Gynecol Oncol. 2017;28(5):e44. doi: 10.3802/jgo.2017.28.e44.
5. Harada T, Amano T, Ikari T, et al. Rikkunshito for preventing chemotherapy-induced nausea and vomiting in lung cancer patients: results from 2 prospective, randomized phase 2 trials. Front Pharmacol. 2018;9:792. doi: 10.3389/fphar.2017.00972.
6. Hamai Y, Yoshiya T, Hihara J, et al. Traditional Japanese herbal medicine rikkunshito increases food intake and plasma acylated ghrelin levels in patients with esophageal cancer treated by cisplatin-based chemotherapy. J Thorac Dis. 2019;11(6):2470–2478. doi: 10.21037/jtd.2019.05.67.
7. Yoshiya T, Minna T, Ito M, et al. Prospective, randomized, cross-over pilot study of the effects of Rikkunshito, a Japanese traditional herbal medicine, on anorexia and plasma-acylated ghrelin levels in lung cancer patients undergoing cisplatin-based chemotherapy. Invest New Drugs. 2020;38(2):485–492.
8. Uezono Y, Miyano K, Sudo Y, et al. A review of traditional Japanese medicines and their potential mechanism of action. Curr Pharm Des. 2012;18(31):4839–4853. doi: 10.2174/138161212803216924.
9. Okabe H, Kinjo Y, Obama K, et al. A randomized phase II study of S-1 adjuvant chemotherapy with or without hochu-ekki-to, a Japanese herbal medicine, for stage II/III castric cancer: the KUGO07 (SHOT). Front Oncol. 2019;9:294. doi: 10.3389/fonc.2019.00294.
10. Cheon C, Yoo JE, Yoo HS, et al. Efficacy and safety of sipprodaebot-tang for anorexia in patients with cancer: a pilot, randomized, double-blind, placebo-controlled trial. Evid Based Complement Alternat Med. 2017;2017:8780325. 2017. doi: 10.1155/2017/8780325.
11. Jeong JS, Ryu BH, Kim JS, et al. Bojungikki-tang for cancer-related fatigue: a pilot randomized clinical trial. Int J Cancer Ther. 2010;9(4):331–338. doi: 10.1077/1534-7350.10833170.
12. Kakuh H, Kumagai S, Onoue H, et al. Objective evaluation of the alleviating effects of Goshajinkigan on peripheral neuropathy induced by paclitaxel/carboplatin therapy: a multicenter collaborative study. Exp Ther Med. 2012;3(1):60–65. doi: 10.3892/etm.2011.375.
13. Abe H, Kawai Y, Mori T, et al. The Kampo medicine goshajinkigan prevents neuropathy in breast cancer patients treated with docetaxel. Asian Pac J Cancer Prev. 2013;14(11):6351–6356. doi: 10.7314/AJP2.2013.14.11.6351.
14. Kono T, Hata T, Morita S, et al. Goshajinkigan oxaloplatin neurotoxicity evaluation (GONE): a phase 2, multicenter, randomized, double-blind, placebo-controlled trial of goshajinkigan to prevent oxaloplatin-induced neuropathy. Cancer Chemother Pharmacol. 2013;72(Suppl 5):1283–1290. doi: 10.1007/s00058-013-2306-7.
15. Oki E, Emi Y, Kojima H, et al. Preventive effect of Goshajinkigan on peripheral neurotoxicity of POLFOX therapy (GENUS trial): a placebo-controlled, double-blind, randomized phase III study. Int J Clin Oncol. 2015;20(4):767–775. doi: 10.1007/s10147-015-0784-9.
16. Kuriyama A, Endo K. Goshajinkigan for prevention of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Support Care Cancer. 2016;24(6):1051–1059. doi: 10.1007/s00520-016-4026-6.
17. Hoshino N, Hida K, Ganebo R, Sakai Y. Goshajinkigan for reducing chemotherapy-induced peripheral neuropathy: protocol for a systematic review and meta-analysis. Int J Colorectal Dis. 2017;32(5):737–740. doi: 10.1007/s00384-016-2727-y.
