Ginkgo biloba extract reverses CCl₄-induced liver fibrosis in rats

Yan-Jun Luo, Jie-Ping Yu, Zhao-Hong Shi, Li Wang

Yan-Jun Luo. Jie-Ping Yu. Department of Gastroenterology, Hubei Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
Zhao-Hong Shi. Department of Gastroenterology, Wuhan First Hospital, Wuhan 430036, Hubei Province, China
Li Wang. Department of Geriatrics, Wuhan General Hospital, Guangzhou Command of PLA, Wuhan 430070, Hubei Province, China
Correspondence to: Yan-Jun Luo, Department of Gastroenterology, Hubei Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
lyj0019@sohu.com

INTRODUCTION

Hepatic fibrosis represents the response of the liver to diverse chronic insults such as parasitic disease, chronic viral infection (hepatitis B and C), immunologic attack (autoimmune hepatitis), hereditary metal overload, toxic damage, etc. Because of the worldwide prevalence of these insults, liver fibrosis is common and is associated with significant morbidity and mortality[1-3].

Ginkgo biloba extract (GbE) is an extract from green leaves of the Ginkgo biloba tree. GbE has been shown to have an SOD-like activity and a hydroxyl radical scavenging activity[4-10]. We have demonstrated that GbE concomitant administration to rats subjected to CCl₄-induced liver fibrosis resulted in a reliable

hepatoprotection against liver damage, as well as a curtailing process in the progression to liver fibrosis[11]. Therefore, the aim of this study was to further evaluate the beneficial action of GbE in reversing a well-established liver fibrosis after 8 wk of administration.

MATERIALS AND METHODS

Animals and treatment

Twenty-four 2-month-old male inbred Wistar rats were purchased from the Experimental Animal Center of Wuhan University of Medical Science. Six normal rats were treated with neither CCl₄ nor GbE (group N). GbE was provided by Wuhan Wushi Pharmaceutical Company, China. (No 21003). GbE contains two groups of major components: flavonoid (>24%) and terpenoids (>6%). The GbE and double-distilled water were mixed to 0.1 mg/mL suspension and subjected to full vibration. Carbon tetrachloride (CCl₄) and liquid paraffin were purchased from Sigma Corporation, USA. CCl₄ was injected intraperitoneally at 0.15 mL per rat (diluted 1:1 in liquid paraffin) twice weekly for 8 wk to produce liver fibrosis. After completing the CCl₄ treatment, 3 d after withdrawal of the hepatotoxin, six rats were anesthetized with ether (group C). One blood sample was taken and the plasma stored until analysis. After this, the animals were exsanguinated and the liver was quickly washed in situ with ice-cold isotonic saline, removed, weighed, and divided into two portions, one for histological study (immunohistochemical staining, HE, Gordon-Sweet and Masson staining), the other immediately frozen in liquid nitrogen.

Following establishment of CCl₄-induced liver fibrosis, GbE (200 mg/kg per day given orally daily with gavage) or saline was administrated for 4 wk (group E and group Z, respectively). Three days after the last GbE administration, animals (groups N, E and Z) were anaesthetized with ether and kept at a constant temperature of 37.0±0.5°C. One blood sample was taken, centrifuged (3 000 rpm for 10 min), and the plasma stored until analysis. After this, the animals were exsanguinated and the liver was quickly washed in situ with ice-cold isotonic saline, removed, weighed, and divided into two portions, one for histological study, the other immediately frozen in liquid nitrogen. Serum levels of TBIL, albumin and the activities of ALT and AST were determined by routine laboratory methods.

Animals were kept on standard rat chow with free access to tap water and received humane care in accordance with the animal care provisions, maintained in temperature- and humidity-controlled animal quarters under a 12 h light-dark cycle. The rats were weighed daily.

Histopathological examination

Liver tissue sections were fixed in 4 g/L formaldehyde saline and processed in paraffin wax. Sections from blocks were stained with hematoxylin-eosin (HE), reticulum (Gorden-Sweet staining) and Massaon’s Trichrome. Qualitative and quantitative histological analyses were performed blindly under a light microscope and computer image analysis system. The image intensity level was kept the same throughout the study. To quantify hepatic fibrosis, we used the Knodell index, scoring as the following: 0, absence of fibrosis; 1, portal fibrosis; 2, fibrous portal expansion; 3, bridging fibrosis (portal-portal or portal-central linkage); 4, cirrhosis. For each sample the
collagenous deposits at centrilobular field of the hepatic acinus, and at surrounding terminal hepatic veins were deserved at 100× magnification. In order to avoid possible bias due to the sampling of the individual fields, for every specimen, we analyzed at least 5 fields each containing a centrilobular vein. The microscopic examinations were performed in a blind fashion. Actin, smooth muscle Ab-1 was from NeoMarkers and immunohistochemical streptavidin/peroxidase (SP) kit from Zhongshan Corporation. Immunohistochemistry of αSMA was performed using an indirect SP technique. At least 5 fields each containing a centrilobular vein were observed and the areas of positive hepatocytes were quantitated at 400×.

RT-PCR

Total RNA was extracted using Trizol (Biostar Biologic Technology Co. Ltd. USA.) according to the manufacturer’s directions. Then total RNA was reverse by transcribed into cDNA. PCR was performed using the following primer pairs: β-actin: sense 5’-ATC ATG TTT GAG ACC TTC AAC ACC-3’, antisense 5’-CAT GGT GGT GCC GCC AGA CAG-3’; TIMP-1[12]; sense 5’-ACA GCT TTC TGC AAC TCG-3’, antisense 5’-CTA TAG GTC TTT ACG AAG GCC-3’. MMP-1[12]: sense 5’-AGC TTG GCC ACT CGC TCG GTC TG-3’, antisense 5’-GTC TCG GGA TGC ATG CTC GTA TGC-3’. The amplified products were electrophoresed on a 12 g/L agarose gel containing 0.5 µg/mL ethidium bromide, and visualised under UV light.

RESULTS

Body, liver and spleen weight

Irritability, aggression, and weight loss were present predominantly in group C rats. Liver and body weight (LW and BW) of rats are presented in Table 1. No changes in body weight were observed in the rats of group Z and group E regardless of the treatment. Animals in group C showed an evident hepatop- and splenomegaly. GbE (group E) blocked the hepatosplenomegaly more significantly than saline (group Z).

	BW (g)	LW (g)	LW/ BW (%)	SW (g)	SW/ BW (%)
C	297.0±39.6	14.6±3.0	4.9±0.7	1.5±0.2	0.5±0.06
E	343.3±25.7	9.6±4.2	3.7±0.4	1.4±0.1	0.4±0.04
Z	351.1±21.6	13.2±3.3	3.7±0.4	1.4±0.1	0.4±0.04
N	358.3±72.2	11.4±0.5	3.2±0.1	0.7±0.1	0.2±0.02

aP <0.05, bP <0.01 vs C group; cP <0.05, dP <0.01 vs Z group.

Histopathology

The morphology of the rat livers was assessed by light microscopy and is presented in Table 2 and Figure 1. αSMA positive staining of immunohistochemistry was localized in the cytoplasm and membrane. Chronic administration of CCl4 for 8 weeks induced liver fibrosis. The liver exhibited a marked increase in ECM content and displayed bundles of collagen surrounding the lobules, which resulted in large fibrous septa and distorted tissue architecture. These septa were populated by αSMA-positive cells. The liver damage varied from one area to another, and ranged from moderate fibrosis to cirrhosis. The degree of liver fibrosis was classified according to five stages in the development of fibrosis and the difference between group Z and E, group E and C was statistically significant (group Z vs group E, q=6.00, P<0.01; group E vs group C, q=9.46, P<0.01; group Z vs group N, q=6.74, P<0.01; group N vs group C, q=50.19, P<0.01; but group Z vs group C, q=2.29, P>0.05). In group Z, liver collagenous and reticulum proteins as well as expression of αSMA decreased. Microscopic studies revealed that the livers of rats receiving GbE showed decreases in fibrosis and the expression of αSMA was only surrounding blood vessels.
Figure 1 Histology of liver of normal rats (N) and rats treated with CCl₄ for 8 weeks (C) and then treated with saline (Z) or GbE (E) for 4 weeks. The samples were stained with HE (1), Masson (2), Reticulum staining (3) and immunohistochemistry of αSMA (4). (1)-(3) 100× (4) 200×
Hepatic fibrosis, regardless of the cause, is characterized by an increase in extracellular matrix (ECM) constituents. There is now overwhelming evidence suggesting that the hepatic stellate cells (HSC), lying in the space of Disse beneath the endothelial cell layer, are the principal cells involved in hepatic fibrogenesis. Thus, to prevent or reverse liver fibrosis depends greatly on controlling of HSC\(^{[21-29]}\). These cells are usually quiescent, with a low proliferation rate. On activation, probably because of hepatocyte injury, they differentiate into myofibroblast-like cells, with a high proliferative capacity. It has been shown that activated HSCs constitute the source of various collagenases that are necessary for the ECM remodeling. In group C, large fibrous septa were populated by \(\alpha\)SMA-positive cells. GbE given orally promoted the apoptosis of HSC, which blocks intra- and interchain crosslinking in the newly formed collagen molecules, was found to be ineffective on preventing the progression of hepatic fibrosis and was associated with a high incidence of serious side effects. Medicinally useful plants have made a significant contribution to current medical practice and traditional Chinese herbs are well known for their cheap prices and negligible side effects\(^{[21-41]}\). GbE is a well-known and inexpensive herb that has been used to improve blood circulation without ill effects for centuries in traditional Chinese medicine. GbE contains two groups of major components: flavonoid glycosides and terpenoids. Furthermore, it has been recently reported that GbE has the property of inactivating oxo-ferryl radical species, which are more efficient oxidative agents than classical hydroxyl radicals\(^{[31-33]}\). Li \textit{et al.}\(^{[34]}\) demonstrated that procollagen II peptide, laminin, SOD and MDA were significantly decreased after GbE treatment in patients with chronic hepatitis B. In our previous study, the biochemical and histological protocol demonstrated that GbE\(^{[35]}\), administrated at a safe dosage with minimal side effects, effectively prevented both the biochemical and histological changes associated with liver fibrosis in CCl\(_4\)-injured rats.

The CCl\(_4\)-treated rat is frequently used as an experimental model to study hepatic fibrosis. CCl\(_4\) treatment generates free radicals that trigger a cascade of events resulting in hepatic fibrosis. In this study, when treated with CCl\(_4\), twice weekly for 8 wk, the liver exhibited a marked increase in ECM content and displayed bundles of collagen surrounding the lobules leading to large fibrous septa and distorted tissue architecture. These septa were populated by \(\alpha\)SMA-positive cells. All of these are characteristics of advanced fibrosis. In liver fibrosis rats, there was also evident liver dysfunction, as reflected by significantly decreased serum albumin and increased bilirubin contents. In addition, serum levels of ALT and AST were elevated.

When these animals received GbE, hepatomegaly was absent. A primary consideration in the assessment of the efficacy of a potential therapeutic agent for hepatic fibrosis is its effect on liver histology. Those livers from disease control (group C) had a high degree of fibrosis. Group Z had some improvement in histological scores compared to group C. GbE administration to liver fibrosis rats apparently accelerated the reversion of liver fibrosis and lowered the high levels of serum ALT and AST activity, indicating that GbE was also effective on reversing liver cirrhosis.

DISCUSSION

Incidence of liver fibrosis is growing as a result of the widespread occurrence of chronic hepatitis (predominantly type C). Cameron and Kunaratne first reported the reversibility of hepatic fibrosis after removal of the toxic agent CCl\(_4\) in the CCl\(_4\)-induced liver fibrosis model. Since then, fibrolysis after the removal of the causative agents has been observed in experimental models of fibrosis of various types\(^{[13-20]}\). The reversibility of hepatic fibrosis has also been observed in alcoholic liver disease by clinicians. In this study, GbE administration to liver fibrosis rats apparently accelerated the reversion of liver fibrosis and lowered the high levels of serum ALT and AST activity, indicating that GbE was also effective on reversing liver cirrhosis.

GbE is a well-known and inexpensive herb that has been used to improve blood circulation without ill effects for centuries in traditional Chinese medicine. GbE contains two groups of major components: flavonoid glycosides and terpenoids. Furthermore, it has been recently reported that GbE has the property of inactivating oxo-ferryl radical species, which are more efficient oxidative agents than classical hydroxyl radicals\(^{[31-33]}\). Li \textit{et al.}\(^{[34]}\) demonstrated that procollagen II peptide, laminin, SOD and MDA were significantly decreased after GbE treatment in patients with chronic hepatitis B. In our previous study, the biochemical and histological protocol demonstrated that GbE\(^{[35]}\), administrated at a safe dosage with minimal side effects, effectively prevented both the biochemical and histological changes associated with liver fibrosis in CCl\(_4\)-injured rats.
Matrix degradation occurs predominantly as a consequence of the action of a family of enzymes called matrix metalloproteinases (MMPs), and the expression of these enzymes are in turn inhibited by a family of TIMPs[47-53]. To explore the way in which this herb results in a significant reduction in fibrosis, we investigated the effect of GbE treatment on the expression of genes known to have a role in hepatic fibrosis such as TIMP-1 and MMP-1 by reverse transcription-polymerase chain reaction (RT-PCR).

In group Z, there was a rapid and significant decrease in the expression level of TIMP-1. We also systematically evaluated the mechanism of action of GbE at the molecular level by analyzing TIMP-1 transcript expression. GbE treatment was associated with an increased collagenolytic activity and a prompt normalization of liver levels of TIMP-1 and also caused a more marked reduction in the expression level of TIMP-1 transcript than group Z while increased the level of MMP-1. A lower expression of TIMP-1 indicated decreased hepatic fibrogenesis and might be an effect correlated with enhanced apoptosis in activated myofibroblast-like stellate cells. The expression levels of TIMP-1 in groups Z and E were lower than that in group C.

In summary, our results indicate that treatment with GbE after the establishment of CC14-induced hepatic fibrosis significantly reduces and even reverses the fibrosis in rats. This effect is related to an increased removal of deposited collagen, enhanced collagenolytic activity due to decreased TIMP-1 levels and enhanced apoptosis of HSC.

REFERENCES

1 Shen L, Jiao J, Zhang X, Zeng M, Wang JR, Luo GH, Li QJ, Chen SY. Prevalence of nonalcoholic fatty liver among administrative officers in Shanghai: an epidemiological survey. World J Gastroenterol 2003; 9: 1106-1110
2 Han DW. Intestinal endotoxemia as a pathogenetic mechanism in liver failure. World J Gastroenterol 2002; 8: 961-965
3 Chen WX, Li YM, Yu CH, Cai WM, Zheng M, Chen F. Quantitative analysis of transforming growth factor beta 1 mRNA in patients with alcoholic liver disease. World J Gastroenterol 2002; 8: 379-381
4 Wu Z, Smith JV, Paramasivam V, Butko P, Khan I, Cypser JR, Luo Y. Ginkgo biloba extract EGB 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell Mol Biol 2002; 48: 725-731
5 Gohl K, Packer L. Global gene expression analysis identifies cell and tissue specific actions of Ginkgo biloba extract, EGB 761. Cell Mol Biol 2002; 48: 625-631
6 Tang Y, Lou F, Wang J, Li Y, Zhuang S. Coumaroyl flavonol glycosides from the leaves of Ginkgo biloba. Phytochemistry 2001; 58: 1251-1256
7 Mazzanti G, Mascellino MT, Battinelli L, Coluccia D, Manganaro M, Sasso L. Antimicrobial investigation of semi-purified fractions of Ginkgo biloba leaves. J Ethnopharmacol 2000; 71: 83-88
8 Schindowski K, Leutner S, Kressmann S, Eckert A, Muller WE. Age-related increase of oxidative stress-induced apoptosis in mice prevention by Ginkgo biloba extract (EGb761). J Neural Transm 2001; 108: 969-970
9 Mckenna DJ, Jones K, Hughes K. Efficacy, safety, and use of semipurified fractions of Ginkgo biloba leaves. J Ethnopharmacol 2001; 2001; 71: 9-18
10 Diamond BJ, Shifflett SC, Feiwel N, Mathes RJ, Nskswin O, Richards JA, Schenberger NE. Ginkgo biloba extract: mechanisms and clinical indications. Arch Phys Med Rehabil 2001; 82: 668-678
11 Liu SQ, Yu JP, Ran ZX. Effect of Tanakan on liver fibrosis in rats. Shiyong Yixue Zazhi 2001; 18: 574-576
12 Phillips PA, McCarron JA, Park S, Wu MJ, Pirola R, Korsten M, Wilson JS, Apte MV. Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut 2003; 52: 275-282
13 Wang HL, Cai WM, Liu RH. Animal experiment and clinical study of effect of gamma-interferon on hepatic fibrosis. World J Gastroenterol 2001; 7: 42-48
14 Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur M. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998; 102: 539-549
15 Bruck R, Genina O, Aeed H, Alexiev R, Ayni V, Pines M. Halofuginone to prevent and treat thioacetamide-induced liver fibrosis in rats. Hepatology 2001; 33: 379-386
16 Wei HS, Li DG, Lu HM, Zhan YT, Wang ZR, Huang X, Zhang J, Cheng JL, Xu QF. Effects of AT1 receptor antagonist, losartan, on rat hepatic fibrosis induced by CCl4. World J Gastroenterol 2000; 6: 540-545
17 Wang XZ, Chen ZX, Zhang LJ, Chen YX, Li D, Chen FL, Huang YH. Expression of insulin-like growth factor 1 and insulin-like growth factor 1 receptor and its intervention by interleukin-10 in experimental hepatic fibrosis. World J Gastroenterol 2003; 9: 1287-1291
18 Lin JS, Song YH, Kong XJ, Li B, Liu NZ, Wu XL, Jin XY. Preparation and identification of anti-transforming growth factor beta 1 small nuclear RNA chimera ribozyme in vitro. World J Gastroenterol 2002; 8: 577-582
19 Han HL, Lang ZW. Changes in serum and histology of patients with chronic hepatitis B after interferon alpha-2b treatment. World J Gastroenterol 2003; 9: 117-121
20 Liu XJ, Yang L, Mao QY, Wang Q, Huang MH, Wang YP, Wu HB. Effects of the tyrosine protein kinase inhibitor genistein on the proliferation, activation of cultured rat stellate cells. World J Gastroenterol 2002; 8: 739-745
21 Cheng ML, Wu YY, Huang KF, Luo TY, Ding YS, Lu YY, Liu RC, Wu J. Clinical study on the treatment of liver fibrosis due to hepatitis B by IFN-alpha1(1) and traditional medicine preparation. World J Gastroenterol 1999; 5: 267-269
22 Xiong LJ, Zhu JF, Luo DD, Zen LL, Cai SQ. Effects of pentoxifylline on the hepatic content of TGF-beta1 and collagen in Schistosomiasis japonica mice with liver fibrosis. World J Gastroenterol 2003; 9: 152-154
23 Liu Y, Shimizu I, Omoya I, Ito S, Gu XS, Zuo J. Protective effect of estradiol on hepatocytic oxidative damage. World J Gastroenterol 2002; 8: 363-366
24 Xu JW, Gong J, Chang XM, Luo JY, Dong L, Hao ZM, Jia A, Xu GP. Estrogen reduces CCL4-induced liver fibrosis in rats. World J Gastroenterol 2002; 8: 883-887
25 Ozaras R, Tahan V, Aydin S, Uzun H, Kaya S, Senturk H. N-acetylcysteine attenuates alcohol-induced oxidative stress in rats. World J Gastroenterol 2003; 9: 791-794
26 Wang XZ, Zhang LJ, Li D, Huang YH, Chen ZX, Li B. Effects of transmitters and interleukin-10 on rat hepatic fibrosis induced by CCl4. World J Gastroenterol 2003; 9: 539-543
27 Yao HW, Li J, Jin Y, Zhang YF, Li CY, Xu SY. Effect of leuflunomide on immunological liver injury in mice. World J Gastroenterol 2003; 9: 320-323
28 Wang Y, Zhang QS, Guo JS, Hu MY. Effects of glycyr rhetic acid on collagen metabolism of hepatic stellate cells at different stages of liver fibrosis in rats. World J Gastroenterol 2003; 10: 115-119
29 Dai WJ, Jiang HC. Advances in gene therapy of liver cirrhosis: a review. World J Gastroenterol 2001; 7: 1-8
30 He-mandez-Munoz R, Diaz-Munoz M, Suarez-Cuenca JA, Trejo-Solis C, Lopez V, Sanchez-Sevilla L, Yanez L, De Sanchez VC. A denosine reverses a preestablished CCl4-induced micronodular cirrhosis through enhancing collagenolytic activity and stimulating hepatocyte cell proliferation in rats. Hepatology 2001; 34: 677-687
31 Shi J, Hao JH, Ren WH, Zhu JR. Effects of heparin on liver fibrosis in patients with chronic hepatitis B. World J Gastroenterol 2003; 9: 1611-1614
32 Gao ZL, Gu XH, Cheng FT, Jiang FH. Effect of Sea buckthorn on liver fibrosis: A clinical study. World J Gastroenterol 2003; 9: 1615-1617
33 Wu XL, Zeng WZ, Wang PL, Lei CT, Jiang MD, Chen XB, Zhang Y, Xu H, Wang Z. Effect of compound rhodiola sachalinensis A Bor on CCl4-induced liver fibrosis in rats and
Du WD, Zhang YE, Zhai WR, Zhou XM. Dynamic changes of type I, III and IV collagen synthesis and distribution of collagen-producing cells in carbon tetrachloride-induced rat liver fibrosis. World J Gastroenterol 1999; 5: 397-403

Zhang XL, Liu L, Jiang HQ, Salvia miltiorrhiza monomer IH 764-3 induces hepatic stellate cell apoptosis via caspase-3 activation. World J Gastroenterol 2002; 8: 515-519

Wei HS, Lu HM, Li DG, Zhan YT, Wang ZR, Huang X, Cheng JL, Xu QF. The regulatory role of AT 1 receptor on activated HSCs in hepatic fibrogenesis: effects of RAS inhibitors on hepatic fibrosis induced by CCI(4). World J Gastroenterol 2000; 6: 824-828

Ikeda K, Wakahara T, Wang YQ, Kadoya H, Kawada N, Kaneda K. In vitro migratory potential of rat quiescent hepatic stellate cells and its augmentation by cell activation. Hepatology 1999; 29: 1760-1767

Liu WB, Yang CO, Jiang W, Wang YQ, Guo JS, He BM, Wang JY. Inhibition on the production of collagen type I, III of activated hepatic stellate cells by antisense TIMP-1 recombinant plasmid. World J Gastroenterol 2003; 9: 316-319

Okazaki I, Watanabe T, Hozawa S, Arai M, Maruyama K. Molecular mechanism of the reversibility of hepatic fibrosis: with special reference to the role of matrix metalloproteinases. J Gastroenterol Hepatol 2000; 15(Suppl): D26-D32

Wang JY, Guo JS, Yang CQ. Expression of exogenous rat collagenase in vitro and in a rat model of liver fibrosis. World J Gastroenterol 2002; 8: 901-907

Wang LT, Zhang B, Chen JJ. Effect of anti-fibrosis compound on collagen expression of hepatic cells in experimental liver fibrosis of rats. World J Gastroenterol 2000; 6: 877-880

Nie QH, Cheng YQ, Xie YM, Zhou YX, Bai XG, Cao YZ. Methodologic research on TIMP-1, TIMP-2 detection as a new diagnostic index for hepatic fibrosis and its significance. World J Gastroenterol 2002; 8: 282-287

Nie QH, Cheng YQ, Xie YM, Zhou YX, Cao YZ. Inhibiting effect of antisense oligonucleotides phosphorothioate on gene expression of TIMP-1 in rat liver fibrosis. World J Gastroenterol 2001; 7: 363-369

Liu HL, Li XH, Wang DY, Yang SP. Matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 expression in fibrotic rat liver. World J Gastroenterol 2000; 6: 881-884

Edited by Zhu LH Proofread by Xu FM