A novel thyroid hormone receptor isoform, TRβ2-46, promotes SKP2 expression and retinoblastoma cell proliferation

Received for publication, September 27, 2018, and in revised form, January 7, 2019 Published, Papers in Press, January 14, 2019, DOI 10.1074/jbc.AC118.006041
Zhengke Li1§, Dong-Lai Qi1, Hardeep P. Singh†, Yue Zou‡, Binghui Shen§, and David Cobrinik¶
From 1The Vision Center and The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California 90027, 4Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, 5Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, and 1Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, and USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033

Retinoblastoma is a childhood retinal tumor that develops from cone photoreceptor precursors in response to inactivating RB1 mutations and loss of functional RB protein. The cone precursor’s response to RB loss involves cell type–specific signaling circuitry that helps to drive tumorogenesis. One component of the cone precursor circuitry, the thyroid hormone receptor β2 (TRβ2), enables the aberrant proliferation of diverse RB-deficient cells in part by opposing the down-regulation of S-phase kinase-associated protein 2 (SKP2) by the more widely expressed and tumor-suppressive TRβ1. However, it is unclear how TRβ2 opposes TRβ1 to enable SKP2 expression and cell proliferation. Here, we show that in human retinoblastoma cells TRβ2 mRNA encodes two TRβ2 protein isoforms: a predominantly cytoplasmic 54-kDa protein (TRβ2-54) corresponding to the well-characterized full-length murine Trβ2 and an N-terminally truncated and exclusively cytoplasmic 46-kDa protein (TRβ2-46) that starts at Met-79. Whereas TRβ2 knockdown decreased SKP2 expression and impaired retinoblastoma cell cycle progression, re-expression of TRβ2-46 but not TRβ2-54 stabilized SKP2 and restored proliferation to an extent similar to that of ectopic SKP2 restoration. We conclude that TRβ2-46 is an oncogenic thyroid hormone receptor isoform that promotes SKP2 expression and SKP2-dependent retinoblastoma cell proliferation.

Cancers are caused by abnormalities in oncogenes or tumor-suppressor genes that initiate and advance tumorigenesis. At the initiation step, cell type–specific circuitry may sensitize cells to the initial oncogenic insult. Understanding how cell type–specific circuitry sensitizes to oncogenic changes may enable rational cancer prevention and treatment approaches.

Retinoblastoma is a childhood retinal tumor that has provided insights into the role of cell type–specific circuitry in tumor initiation (1). Most retinoblastomas are thought to arise from cone photoreceptor precursors in response to biallelic inactivation of the RB1 gene and loss of functional RB protein (2, 3). Human cone precursor circuitry may sensitize to RB1 mutation via intrinsic high expression of oncoproteins, such as MYCN and MDM2, and cone lineage transcription factors, such as retinoid X receptor-γ (RXRγ) (4) and thyroid hormone receptor β2 (TRβ2) (2, 4). RXRγ and TRβ2 normally mediate cone photoreceptor differentiation (5, 6) but promote cone precursor proliferation and retinoblastoma genesis after RB loss (2, 4). RXRγ enables retinoblastoma cell survival in part by inducing MDM2 expression via a human-specific MDM2 promoter element (4). However, the oncogenic role of TRβ2 is enigmatic.

TRβ2 is highly expressed in a limited number of cell types, including cone photoreceptor precursors, pituicytes, and cochlear hair cells (7–9), each of which aberrantly proliferates in response to RB loss (2, 10, 11). Indeed, TRβ2 is required for proliferation of retinoblastoma cells and enhances growth of Rb1-null mouse pituitary tumors, whereas ectopic TRβ2 enabled proliferation of RB-depleted neuroblastoma cells (12). TRβ2 appears to promote RB-deficient human retinoblastoma as well as Rb-deficient mouse pituitary tumors by antagonizing the highly related, more widely expressed, and tumor-suppressive thyroid hormone receptor TRβ1 (12, 13). TRβ2 and TRβ1 are produced from the same THRβ gene but use alternative transcriptional promoters and N-terminal coding exons (8, 14). They both have canonical nuclear hormone receptor structure with an N-terminal “A/B” corepressor and coactivator–

1 The abbreviations used are: RXRγ, retinoid X receptor-γ; TRβ2, thyroid hormone receptor β2; SKP2, S-phase kinase-associated protein 2; Tn, triiodothyronine; PI, phosphatidylinositol; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; uORF, upstream open reading frame; BN, bidirectional EF1α-Neo.

This work was supported by the Larry and Celia Moh Foundation, the Neonatal Blindness Research Fund, an unrestricted grant from Research to Prevent Blindness (to the University of Southern California Department of Ophthalmology), a Saban Research Institute research career development fellowship (to D.-L.Q.), and National Institutes of Health Grants R01CA085344 (to B. H. S.), P30CA14089, R01EY026661, and R01CA137124 (to D. C.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

1 To whom correspondence may be addressed: Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614. Tel: 423-439-2011; Fax: 423-439-2030; E-mail: LIZ01@mail.etsu.edu.

2 To whom correspondence may be addressed: Children’s Hospital Los Angeles, 4650 Sunset Blvd., MS 163, Los Angeles, CA 90027. Tel: 323-361-2275; Fax: 323-361-8977; E-mail: dcobrinik@chla.usc.edu.

© 2019 Li et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.
binding domain, a central DNA-binding domain, and a C-terminal T3-binding domain (Fig. 1A). However, their distinct A/B domains mediate distinct interactions and effects (15–17), including enhanced TRβ2-mediated transactivation (18). Additionally, TRβ1 can inhibit PI 3-kinase signaling (19, 20) and was found to suppress liver and mammary tumors via induction of the NCoR transcriptional corepressor (21). Meanwhile, TRβ2 was found to oppose a TRβ1-dependent down-regulation of the F-box protein SKP2 (12), which is required for production of RB-deficient tumors (22, 23). However, it is unclear how TRβ2 opposes TRβ1 to enhance SKP2 expression and cell proliferation. Here, we report that these functions are mediated by a novel N-terminally truncated and cytoplasmic localized TRβ2 isoform.

Results

A novel TRβ2 isoform in retinoblastoma and fetal retina

We initially examined TRβ2 expression in retinoblastoma cell lines Y79, WERI-1, RB176, RB177, and CHLAVC-RB43. Western blotting with a TRβ2 antibody (Fig. 1A) revealed two major species, here referred to as TRβ2-54 and TRβ2-46, with apparent molecular masses of 65 and 56 kDa (Fig. 1B). TRβ2-54 predominated in Y79, whereas both TRβ2-54 and TRβ2-46 were prominent in the other lines. The TRβ2 antibody also detected several minor species, including one referred to as “*,” migrating slightly behind TRβ2-46 (Fig. 1B). TRβ2-54 and TRβ2-46 were confirmed to be TRβ2 isoforms based on their down-regulation in four retinoblastoma cell lines after transduction with TRβ2 shRNAs (Fig. 1C). In contrast, * was unaffected by TRβ2 shRNAs and deemed to represent a cross-reacting protein or a TRβ2 species that resists knockdown.

Because retinoblastomas are derived from cone precursors (2, 3) and TRβ2 is solely detected in cone precursors in the developing human retina (4, 24), we examined whether TRβ2-54 and TRβ2-46 are expressed in the cone precursor cell of origin. In Western blots, the main TRβ2 species in developing retina comigrated with retinoblastoma cell TRβ2-46, whereas a less abundant species comigrated with TRβ2-54 (Fig. 1B). Because of unavoidable sample limitations, a lower amount of fetal retina protein was loaded, and all bands, including the GAPDH loading control, migrated more slowly than their counterparts in retinoblastoma samples. A similar ratio of TRβ2-46 and TRβ2-54 comigrating species was detected in three retinas (Fig. 1B and data not shown). The high TRβ2-46 and low TRβ2-54 in human retina differ from what was seen in mouse retina where only one specifically recognized species was reported (25). As cones comprise ~2–3% of human retinal cells, TRβ2-46 and TRβ2-54 are more highly expressed in cone precursors than appears from analyses of whole-retina lysates.
Exclusive cytoplasmic localization of TRβ2-46

TRβ1 is mainly detected in the nucleus but can shuttle between cytoplasmic and nuclear compartments (26, 27) and undergo T3-induced cytoplasm-to-nucleus translocation (20). TRβ2 is also thought to be mainly nuclear (26); however, by immunostaining, TRβ2 was perinuclear or cytoplasmic in later stages of mouse cone differentiation (25) and was mainly cytoplasmic in human cone precursors and retinoblastoma cells (2, 4, 24). To define the subcellular localization of the different TRβ2 isoforms, retinoblastoma cells were subjected to cytoplasmic and nuclear fractionation and TRβ2 immunoblotting. Separation of nuclear and cytoplasmic components was confirmed by detection of GAPDH solely in cytoplasmic fractions and Lamin B in nuclear fractions (Fig. 1D). As in past immunostaining analyses, the vast majority of TRβ2-46 and TRβ2-54 were in the cytosol in three retinoblastoma cell lines (Fig. 1D). However, after long exposures, TRβ2-54 and the nonspecific *α* species were also detected in nuclear fractions, whereas the more rapidly migrating TRβ2-46 was detected solely in cytoplasmic fractions (Fig. 1D).

TRβ2-46 translation initiates at methionine 79

The full-length human TRβ2 transcript corresponding to the well-characterized murine *Trβ2* is represented by GENCODE transcript ENST00000280696.9. This RNA is predicted to encode a polypeptide of 54.4 kDa (Uniprot P10828, isoform β2). We previously found that transduction of Rb177 cells with TRβ2 cDNA containing the same open reading frame mainly increased expression of TRβ2-54, based on its comigration with the major endogenous TRβ2 species (12). Thus, we sought to define the origin of the smaller TRβ2-46.

We first assessed whether TRβ2-46 resulted from differential splicing. To do so, we amplified cDNA from two retinoblastoma cell lines with forward primer F1 positioned at the 5′ end of the predicted TRβ2 coding sequence and reverse primers R1–R6 in each downstream exon (Fig. 2A). In both lines, each primer pair amplified a single PCR product of the predicted sizes (Fig. 2B), suggesting that there were no novel splice sites between the known TRβ2 exons. We next evaluated whether alternative 5′ exons are spliced to the TRβ2 exon by amplifying RB176 cDNA using reverse primer R1 and forward primers F2–F6 (Fig. 2A). This generated PCR products of the predicted sizes using the F2 and F4 primers with 5′ ends at nucleotides −102 and −301, respectively (Fig. 2, B and C). The 825-nucleotide PCR product made with the F4–R1 primer pair indicated that *THRB* RNA that encodes TRβ2 had a 5′-UTR of ~301 nucleotides. This is 68 nucleotides longer than the murine ortholog (RefSeq NM_009380.3) (Fig. 2C) but within a previously deduced 377-nucleotide 5′-UTR in the mouse pituitary *Trβ2* transcript (14). The 825-nucleotide PCR product obtained using the F4–R1 primer pair was sequenced and confirmed to contain the predicted 301-nucleotide 5′-UTR (Fig. 2C). Thus, we confirmed that human retina expresses a *THRB* RNA encoding TRβ2 but did not detect novel splicing events that might produce TRβ2-46.

We then examined whether TRβ2-46 used an alternative translation initiation codon in the TRβ2 exon. We focused on the in-frame ATG^{Met} codons 69 and 79 (Fig. 2C), which were predicted to encode proteins of 47 and 46 kDa, respectively. We tested whether such proteins were produced by cotransducing Y79 cells with TRβ2 shRNA, to deplete endogenous TRβ2, and with cDNAs encoding either TRβ2 wildtype (WT) or mutants lacking codons 1–69 (TRβ2-Δ1–69) or with Met-69 and/or Met-79 ATG^{Met} codons changed to GCC^{Ala} (TRβ2-M69A, TRβ2-M79A, and TRβ2-M69A/M79A; Fig. 2D). We then compared the migration of the ectopic TRβ2s with that of endogenous TRβ2-46 and TRβ2-54. Transduction of TRβ2-WT and TRβ2-M69A produced proteins comigrating with TRβ2-54 and TRβ2-46 (Fig. 2D), indicating that both species can be produced in the absence of ATG^{Met} codon 69. In contrast, TRβ2-M79A and TRβ2-M69A/M79A produced a protein comigrating with TRβ2-54, and TRβ2-Δ1–69 produced a protein comigrating with TRβ2-46 (Fig. 2D). These data indicate that TRβ2-54 initiates translation at methionine 1 and TRβ2-46 initiates at methionine 79.

TRβ2-46 but not TRβ2-54 promotes SKP2-mediated cell cycle progression

Having identified the two TRβ2 isoforms, we examined their roles in retinoblastoma cell proliferation. In past analyses, TRβ2 knockdown with each of six shRNAs impaired proliferation and survival of four retinoblastoma cell lines (Refs. 4 and 12 and data not shown). Impaired proliferation was associated with diminished SKP2 expression and impaired S-phase entry and was partially rescued by ectopic SKP2, indicating that SKP2 is an important TRβ2 target (12).

Here, we examined the abilities of the different TRβ2 isoforms to complement endogenous TRβ2 loss. We first confirmed the prior observations in the context of a TRβ2 knockdown and complementation assay. TRβ2 knockdown and cotransduction of the BN vector caused an ~80% decrease in SKP2 protein but no change in SKP2 RNA (Fig. 3, A–C), confirming that TRβ2 sustains SKP2 expression at the post-transcriptional level (12). TRβ2 knockdown followed by nocodazole treatment at days 4.0–4.5 decreased the proportion of S/G₂-M-phase cells from 50 to 16% (Fig. 3D), confirming that TRβ2 is needed for G₁-to-S progression. Concordantly, TRβ2 knockdown impaired Y79 cell proliferation and survival (Fig. 3E).

In cells with endogenous TRβ2 knockdown, ectopic TRβ2-WT and TRβ2-46 partially restored SKP2 levels, G₁-S progression, S-phase entry, and proliferation, whereas TRβ2-54 failed to do so (Fig. 3, A, B, D, and E). TRβ2-WT and TRβ2-46 did not fully restore SKP2 to endogenous levels, possibly due to the inability to precisely replicate the endogenous TRβ2 levels or cell cycle–dependent expression (28). Ectopic SKP2 more fully restored SKP2 protein (Fig. 3, A and B, lane 6) but did not further restore cell cycle progression or proliferation, implying that TRβ2-46 restored sufficient SKP2 to elicit SKP2-mediated cell cycle changes. Thus, TRβ2-46 but not TRβ2-54 promoted SKP2 expression and cell cycle progression.

TRβ2-46 increases cytoplasmic SKP2 stability

Having determined that TRβ2-46 enhances expression of SKP2 protein but not SKP2 RNA, we investigated whether it does so by regulating SKP2 stability. We also examined whether
ACCELERATED COMMUNICATION: TRβ2-46 promotes cell proliferation

TRβ2-46 regulates SKP2 in the nucleus or in the cytoplasm as both compartments have been implicated in SKP2 function (29–33). Through cell fractionation we found that ~80–90% of SKP2 was located in the cytoplasm of vector-transduced Y79 retinoblastoma cells (Fig. 4A). After TRβ2 depletion, SKP2 declined and was seen solely in the cytoplasm. Ectopic TRβ2-46 partially restored cytoplasmic but not nuclear SKP2 (Fig. 4A) despite that, in this experiment, ectopic TRβ2-46 partially localized to the nucleus, likely due to its higher-level expression.

To assess whether TRβ2 enhanced SKP2 stability, Y79 cells were cotransduced with TRβ2 shRNAs and either the BN vector or BN-TRβ2-46. On day 4, cells were treated with cycloheximide to suppress protein synthesis, and the rate of SKP2 decay was examined. In this setting, TRβ2 knockdown and SKP2 down-regulation were intentionally modest as needed to retain sufficient SKP2 to observe its half-life. As such, we observed little effect of TRβ2 knockdown on SKP2 stability, whereas ectopic TRβ2-46 stabilized and increased SKP2 expression (Fig. 4B).

The high TRβ2-46 expression and SKP2 regulation in retinoblastoma cells raised the possibility that TRβ2-46 might promote SKP2 expression in the developing retina. Indeed, immunostaining revealed high-level SKP2 and TRβ2 in the cytoplasm.
of maturing cone precursors relative to all other cell types (Fig. 4, C and D), consistent with SKP2 regulation by the cone-specific TRβ2-46 isoform.

Discussion

We report that retinoblastoma cells express two functionally distinct TRβ isoforms, here designated TRβ2-46 and TRβ2-54 according to their predicted molecular masses. Both isoforms were encoded by a TRB3 transcript orthologous to the well-characterized mouse TRB3 RefSeq isoform 2 via alternative translation initiation, with the canonical TRβ2 initiation codon used to produce TRβ2-54 and methionine 79 used to produce TRβ2-46. Methionine 79 is conserved in mice, and a TRB2 protein of similar electrophoretic mobility appeared to be present in pituitary extracts from WT but not Trβ2+/− mice (25), suggesting that TRβ2-46 might be expressed in mouse pituitary. However, no faster-migrating TRβ2 was evident in human cone precursors and cone precursor–derived retinoblastoma cells.

The mechanism that regulates the translation initiation of TRβ2-54 and TRβ2-46 is currently unclear. As one possibility, 5′-UTR sequences and upstream open reading frames (uORFs) can influence translation initiation (35–37). Retinoblastoma cell TRB3 cDNA had a 5′-UTR of at least 301 nucleotides, including multiple uORFs that are conserved in mice (Fig. 2C), suggestive of a conserved regulatory role. If the 5′-UTR and uORFs do indeed regulate alternative initiation then species differences in cis-acting sequences or trans-acting factors must underlie the predominant TRβ2-46 in human and TRβ2-54 in mouse retinae.
Figure 4. TRβ2-46 increases cytoplasmic levels of SKP2. Y79 cells were subjected to TRβ2 knockdown and rescue with BN-TRβ2-Δ1–69 encoding TRβ2-46. A, effect of TRβ2-46 on SKP2 subcellular localization. Cell lysates were harvested on day 5 and fractionated for Western blot analysis of TRβ2, SKP2, Lamin B, and GAPDH. Bottom, quantification of nuclear and cytoplasmic SKP2 normalized to vector-transduced controls. B, effect of TRβ2-46 on SKP2 stability. At 4 day after infection, cells were treated with 20 μg/ml cycloheximide (CHX) for 0, 3, or 6 h to inhibit protein synthesis, and lysates were harvested for SKP2 and TRβ2 Western blot analysis. Bottom, quantification of SKP2 normalized to Lamin B. C and D, presumptive fovea of 18-week developing human retina, showing high cytoplasmic SKP2 (red) costained with nuclear RB (green) (C) and in the same region as high cytoplasmic TRβ2 in serial sections (D) in maturing cone precursors (marked by RXRγ; green). ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer. Scale bars, 40 μm.

Translation of TRβ2-46 from methionine 79 eliminates N-terminal structures that are implicated in the enhanced transcriptional activity of TRβ2 relative to TRβ1 (16, 18, 38). As this enhanced transcriptional activity is implicated in regulation of the hypothalamic–pituitary–thyroid axis (39) and in long and medium wavelength cone gene expression and differentiation (6, 40), TRβ2-46 seems unlikely to drive these transcriptional programs. Furthermore, the lack of TRβ2-46 in developing mouse retina (25, 34) suggests that TRβ2-46 is not needed for cone development processes that are shared between mice and humans. Instead, TRβ2-46 may participate in human-specific processes such as foveagenesis or expression of a cone precursor proliferation–related program (2, 3).

Our cell fractionation analyses revealed that the vast majority of TRβ2-54 and virtually all TRβ2-46 are cytoplasmically located in human retinoblastoma cell lines. This is in accord with the prior immunodetection of cytoplasmic TRβ2 in retinoblastomas and human cone precursors (2, 4, 24) and suggests that the cytoplasmic TRβ2 immunostaining was authentic. The high levels of cytoplasmic TRβ2-46 also suggest that TRβ2-46 has a cytoplasmic role. In retinoblastoma cells, TRβ2-46 but not TRβ2-54 partially sustained SKP2 expression, S-phase entry, and proliferation (Figs. 3 and 4). Although the underlying mechanism is not yet defined, it may be relevant that cytoplasmic SKP2 can be induced by AKT signaling (32, 41–43) and that cytoplasmic TRβ1 can suppress AKT signaling via inhibition of PI 3-kinase (19, 20). Because TRβ2 increased SKP2 expression by antagonizing TRβ1 (12), we speculate that TRβ2-46 sustains SKP2 by opposing TRβ1-mediated inhibition of PI 3-kinase activity. The high SKP2 expression in human cone precursor cytoplasm (Fig. 4C) is consistent with the possibility that TRβ2-46 also promotes cytoplasmic SKP2 expression in the developing retina.

The TRβ2-46–mediated up-regulation of SKP2 seems likely to contribute to retinoblastoma initiation and propagation. Indeed, SKP2 is required for the cone precursor proliferative...
response to RB loss (2) as well as for retinoblastoma cell proliferation (23). Moreover, down-regulation of SKP2 in RB-depleted cells may provide an important barrier to development of RB-deficient tumors, whereas intrinsic TRB2 expression enables SKP2 expression and RB-deficient malignancies (12). In retinoblastoma cells, TRB2-46 increased cytoplasmic SKP2 expression along with cell proliferation. This was unexpected because SKP2 is thought to promote proliferation in part by inhibiting FOXO1/3 and the tumor-suppressive E-cadherin (32, 33).

In summary, we identified a novel TRB2-46 isoform that is highly expressed in human but not mouse cone precursors. We demonstrate that TRB2-46 is highly expressed in cone precursor–derived retinoblastoma cells and is critical to retinoblastoma cell SKP2 expression and proliferation. Thus, TRB2-46 is a cell type–specific factor that is intrinsically expressed in the retinoblastoma cell of origin and collaborates with the cancer-initiating RB loss to enable tumorigenesis.

Experimental procedures

Cell lines and retinal tissues

Y79 and Weri-RB1 cells were from the ATCC. RB176, RB177 (4), and CHLAVC-RB43 (44) were as described. Following informed consent, fetal eyes were obtained from authorized sources with approval of the Children’s Hospital Los Angeles Institutional Review Board.

Cell culture

Retinoblastoma cells were cultured in RB culture medium as described (4). Cells were synchronized at metaphase by addition of nocodazole (Sigma-Aldrich, M1404) to 100 ng/ml. Protein synthesis was blocked by addition of cycloheximide (US Biological, C8500) to 20 μg/ml.

Subcellular fractionation and Western blotting

Subcellular fractionation was as described (45). For Western blotting, RB cells or fractionated retina was incubated with lysis buffer (10 mM Tris, pH 8.0, 140 mM NaCl, 1% Nonidet P-40, 0.1 mM EDTA with protease and phosphatase inhibitors (Roche Applied Science)) on ice for 10 min and centrifuged at 20,000 × g for 10 min at 4 °C, and supernatant was collected. 30 μg of retinoblastoma cell protein, 10 μg of retina lystate, and 5 μl of molecular weight markers (Bio-Rad, 161-0317) were separated by SDS-PAGE. Antibodies to human TRB2 amino acids 1–110 (sc-67123), SKP2 (sc-7164), GAPDH (sc-32233), and Lamin B (sc-6216) were from Santa Cruz Biotechnology, and α-tubulin antibody was from Sigma-Aldrich (T5168). Secondary antibodies with chemiluminescence or fluorescent signals were quantified by Imagine Studio Lite and normalized to loading controls.

TRB2 cloning and mutagenesis

BE-Neo-TRB2-WT was produced from RB176 cDNA by PCR amplification of a 825-bp THRBB cDNA fragment with primers F4 and R1 (Fig. 2A) and replacement of the corresponding coding sequence and the 14-nucleotide 5′-UTR of BE-Neo-TRB2 (12) using In-Fusion (Clontech). BE-Neo-TRB2-D1–69 was made with In-Fusion using primers TRB2-D1–69 F (5′-CAATGTTTTAAAAACGGAGCTTACGTTTG) and TRB2-D1–69 R (5′-CTAGAAGCTGATCTTACGTTG; mutated bases underlined) and TRB2-M69A F (5′-TTTTAAAAACGGCAGTTACACGTAACGTA) and TRB2-M69A/M79A R (5′-AGGGCCGGTCCAGTGCAGTGCCTTAC) pLKO-shTRB2-228 and pLKO-shTRB2-164 were described previously (12) and designated according to the first target nucleotide after the canonical initiation ATG (4).

TRB2 RNA analysis

RB176 RNA was isolated, and cDNA was produced and PCR-amplified as described (44) using the following primers: F6, 5′-TTTCTAGTTAACGCTGTAACC; F5, 5′-AAATGCACTTTAGCAGCTTACG; F4, 5′-TGACATGCAGCAGCTTACGGAGCCTAAGCCT; F3, 5′-ACAGAATATTATGGAATGCT; R5, 5′-TTTTCATGCTTAAGCTGTCAACC; R4, 5′-GCTCTCCTCCTGGTGTTTTCGGTAA. PCR products were separated by agarose gel and visualized by ethidium bromide staining.

Lentivirus production and infection

Lentiviruses were produced by transfection of 2 × 107 293T cells similar to that described previously (4). Virus was harvested at 60 h, concentrated 50-fold by centrifugation at 25,000 rpm for 90 min, and suspended in RB medium. 500 μl of concentrated virus was used to infect 5 × 105 Y79, Weri-1, or RB177 cells in 500 μl of filtered conditioned RB medium with 4 μg/ml Polybrene (Sigma-Aldrich) followed by gentle pipetting 20 times. At 18 h after infection, cells were diluted in an equal volume of conditioned RB medium. Infected cells were selected starting 48 h after infection with 2 μg/ml puromycin for 48–72 h or with 200 μg/ml G418 for 4–7 days and fed every 2–3 days by replacing two-thirds of the media.

Cell cycle and cell proliferation analyses

Cells were fixed in 70% ice-cold ethanol for 1–16 h at 4 °C, pelleted by centrifugation at 10,000 × g for 10 s, resuspended in propidium iodide (10 μg/ml in PBS and 100 μg/ml RNase (Invitrogen), incubated for 30 min at 37 °C, and analyzed using a BD Canto flow cytometer with >20,000 gated events per sample. Cell cycle distributions were defined using FACSDiva version 6.1.3. Proliferation was evaluated by cell counting using a hemocytometer.

Statistical analysis

All data were from at least three independent biological repeats. One-way analysis of variance was used to determine
whether there were differences among the means of three or more groups, and then an unpaired two-tailed t test was performed to identify where the differences occurred between groups (Fig. 3, B, D, and E). A p value <0.05 was considered significant.

Acknowledgment—We thank Kevin Stachelek for expert technical assistance.

References

1. Dimaras, H., Conson, T. W., Cobrinik, D., White, A., Zhao, J., Munier, F. L., Abramson, D. H., Shields, C. L., Chantada, G. L., Njuguna, F., and Gallie, B. L. (2015) Retinoblastoma. Nat. Rev. Dis. Primers 1, 15021 CrossRef Medline

2. Xu, X. L., Singh, H. P., Wang, L., Qi, D. L., Poulos, B. K., Abramson, D. H., Jhanwar, S. C., and Cobrinik, D. (2014) RB suppresses human cone-precur-

dor-related retinoblastoma tumours. Nature 514, 385–388 CrossRef Medline

3. Singh, H. P., Wang, S., Stachelek, K., Lee, S., Reid, M. W., Thornton, M. E., Craft, C. M., Grubbs, B. H., and Cobrinik, D. (2018) Developmental-stage-

pecific proliferation and retinoblastoma genesis in RB-deficient human but not mouse cone precursors. Proc. Natl. Acad. Sci. U.S.A. 115, E9391–E9400 CrossRef Medline

4. Xu, X. L., Fang, Y., Lee, T. C., Forrest, D., Gregory-Evans, C., Almeida, D., Liu, A., Jhanwar, S. C., Abramson, D. H., and Cobrinik, D. (2009) Retino-

blastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling. Cell 137, 1018–1031 CrossRef Medline

5. Ng, L., Hurley, I. B., Diersk, B., Srinivas, M., Saltó, C., Vennström, B., Reh, T. A., and Forrest, D. (2001) A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat. Genet. 27, 94–98 CrossRef Medline

6. Roberts, M. R., Srinivas, M., Forrest, D., Morreale de Escobar, G., and Reh, T. A. (2006) Making the gradient: thyroid hormone regulates cone opsin expression in the developing mouse retina. Proc. Natl. Acad. Sci. U.S.A. 103, 6218–6223 CrossRef Medline

7. Bradley, D. J., Towle, H. C., and Young, W. S. 3rd (1994) α and β thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isosform-specific transcriptional regulation in vivo. Proc. Natl. Acad. Sci. U.S.A. 91, 439–443 CrossRef Medline

8. Hodin, R. A., Lazar, M. A., Wintman, B. I., Darling, D. S., Koenig, R. J., Larsen, P. R., Moore, D. D., and Chin, W. W. (1989) Identification of a thyroid hormone receptor that is pituitary-specific. Science 244, 76–79 CrossRef Medline

9. Sjöberg, M., Vennström, B., and Forrest, D. (1992) Thyroid hormone rece-

ptors in chick retinal development: differential expression of mRNAs for α and N-terminal variant β receptors. Development 114, 39–47 Medline

10. Jacks, T., Fazeli, A., Schmitt, E. M., Bronson, R. T., Goodell, M. A., and Weinberg, R. A. (1992) Effects of an Rb mutation in the mouse. Nature 359, 295–300 CrossRef Medline

11. Sage, C., Huang, M., Karimi, K., Gutierrez, G., Vollrath, M. A., Zhang, D. S., García-Arroyos, J., Hinds, P. W., Corwin, J. T., Corey, D. P., and Chen, Z. Y. (2005) Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science 307, 1114–1118 CrossRef Medline

12. Xu, X. L., Li, Z., Liu, A., Fan, X., Hu, D. N., Qi, D. L., Chitty, D. W., Jia, R., Qui, J., Wang, J. Q., Sharaf, J., Zou, I., Weiss, R., Huang, H., Joseph, W. J., et al. (2017) SKP2 activation by thyroid hormone receptor β2 bypasses RB-dependent proliferation in RB-deficient cells. Cancer Res. 77, 6838–6850 CrossRef Medline

13. Aranda, A., Martínez-Iglesias, O., Ruiz-Llorente, L., García-Carpizo, V., and Zambrano, A. (2009) Thyroid receptor: roles in cancer. Trends Endocri-

nol. Metab. 20, 318–324 CrossRef Medline

14. Wood, W. M., Dowding, J. M., Haugen, B. R., Bright, T. M., Gordon, D. F., and Ridgway, E. C. (1994) Structural and functional characterization of the genomic locus encoding the murine β2 thyroid hormone receptor. Mol. Endocrinol. 8, 1605–1617 CrossRef Medline

15. Pávila, J. B., and Privalkov, M. L. (2013) Research resource: identification of novel coregulators specific for thyroid hormone receptor-β2. Mol. Endocrinol. 27, 840–859 CrossRef Medline

16. Langlois, M. F., Zanger, K., Mendoza, T., Safer, J. D., Hollenberg, A. N., and Wondisford, F. E. (1997) A unique role of the β-2 thyroid hormone rece-

tor isoform in negative regulation by thyroid hormone. Mapping of a novel amino-terminal domain important for ligand-independent activation. J. Biol. Chem. 272, 24927–24933 CrossRef Medline

17. Oberste-Berghofer, C., Zanger, K., Hashimoto, K., Cohen, R. N., Hollenberg, A. N., and Wondisford, F. E. (2000) Thyroid hormone-independent interaction between the thyroid hormone receptor β2 amino terminus and coactivators. J. Biol. Chem. 275, 1787–1792 CrossRef Medline

18. Pávila, J. M., Lee, S., Hahn, J. B., Young, B. M., Fong, R. N., and Chan, I. H. (2009) The p160 coactivator PAS-B motif stabilizes nuclear receptor binding and contributes to isoform-specific regulation by thyroid hor-

mone receptors. J. Biol. Chem. 284, 19554–19563 CrossRef Medline

19. Hönes, G. S., Rakov, H., Logan, J., Liao, X. H., Werbenko, E., Pollard, A. S., Prathosh, S. M., Siersbaek, M. S., Rintjes, E., Gassen, J. L., Latteyer, S., Engels, K., Struckenberg, K. H., Kleinbongard, P., Zwangser, D., et al. (2017) Noncanonical thyroid hormone signaling mediates cardiometa-

bolic effects in vivo. Proc. Natl. Acad. Sci. U.S.A. 114, E1323–E1332 CrossRef Medline

20. Martin, N. P., Marron Fernandez de Velasco, E., Mizuno, F., Scappini, E. L., Gloss, B., Erdeben, C., Williams, J. G., Stapleton, H. M., Gentile, S., and Armstrong, D. L. (2014) A rapid cytoplasmic mechanism for P13 ki-

nase regulation by the nuclear thyroid hormone receptor, TRβ, and gen-

etic evidence for its role in the maturation of mouse hippocampal syn-

apses in vivo. Endocrinology 155, 3713–3724 CrossRef Medline

21. Martinez-Iglesias, O. A., Alonso-Merino, E., Gómez-Rey, S., Velasco-Cárdenas, J. P., Martín Orozco, R., Luengo, E., García Martín, R., Ibáñez de Cárdenas, I., Fernández, A. F., Fraga, M. F., González-Peramato, P., Varona, C., Palacios, J., Regadera, J., and Aranda, A. (2016) Autoregulatory loop of nuclear corepressor 1 expression controls invasion, tumor growth, and metastasis. Proc. Natl. Acad. Sci. U.S.A. 113, E328–E337 CrossRef Medline

22. Lu, Z., Bauzon, F., Hu, H., Cui, J., Zhao, H., Nakayama, K., Nakayama, K., and Zhu, L. (2014) SKP2 suppresses apoptosis in Rb-deficient tumours by limiting E2F1 activity. Nat. Commun. 5, 3463 CrossRef Medline

23. Wang, H., Bauzon, F., Ji, P., Xu, X., Sun, D., Locker, J., Sellers, R. S., Na-

kayama, K., Nakayama, K. I., Cobrinik, D., and Zhu, L. (2010) SKP2 is required for survival of aberrantly proliferating Rb-deficient cells and for tumorigenesis in Rb1−/− mice. Nat. Genet. 42, 83–88 CrossRef Medline

24. Lee, T. C., Almeida, D., Claros, N., Abramson, D. H., and Cobrinik, D. (2006) Cell cycle-specific and cell type-specific expression of Rb in the developing human retina. Invest. Ophthalmol. Vis. Sci. 47, 5590–5598 CrossRef Medline

25. Ng, L., Ma, M., Curran, T., and Forrest, D. (2009) Developmental expres-

sion of thyroid hormone receptor β2 protein in cone photoreceptors in the mouse. Neureport 20, 627–631 CrossRef Medline

26. Anyetei-Anum, C. S., Roggero, V. R., and Allison, L. A. (2018) Thyroid hormone receptor localization in target tissues. J. Endocrinol. 237, R19–R34 CrossRef Medline

27. Davis, P. J., Davis, F. B., and Lin, H. Y. (2008) Promotion by thyroid hor-

mone of cytoplasm-to-nucleus shuttling of thyroid hormone receptors. Proc. Natl. Acad. Sci. U.S.A. 105, 20,318–20,324 CrossRef Medline

28. Maruvada, P., Dmitrieva, N. I., East-Palmer, J., and Yen, P. M. (2004) Cell cycle-dependent expression of thyroid hormone receptor-β is a mecha-

nism for variable hormone sensitivity. Mol. Biol. Cell 15, 1895–1903 CrossRef Medline

ACCELERATED COMMUNICATION: TRβ2-46 promotes cell proliferation
29. Carrano, A. C., Eytan, E., Hershko, A., and Pagano, M. (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. *Nat. Cell Biol.* 1, 193–199 [CrossRef Medline]

30. Sutterlüty, H., Chatelain, E., Marti, A., Wirbelauer, C., Senften, M., Müller, U., and Krek, W. (1999) p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. *Nat. Cell Biol.* 1, 207–214 [CrossRef Medline]

31. Clement, E., Inuzuka, H., Nihira, N. T., Wei, W., and Toker, A. (2018) Skp2-dependent reactivation of AKT drives resistance to PI3K inhibitors. *Sci. Signal.* 11, eaao3810 [CrossRef Medline]

32. Inuzuka, H., Gao, D., Finley, L. W., Yang, W., Wan, L., Fukushima, H., Chiu, Y. R., Zhai, B., Shaik, S., Lau, A. W., Wang, Z., Gygi, S. P., Nakayama, K., Teruya-Feldstein, J., Toker, A., et al. (2012) Acetylation-dependent regulation of Skp2 function. *Cell* 150, 179–193 [CrossRef Medline]

33. Zhang, S., Chen, Q., Liu, Q., Li, Y., Sun, X., Hong, L., Ji, S., Liu, C., Geng, J., Zhang, W., Lu, Z., Yin, Z. Y., Zeng, Y., Lin, K. H., Wu, Q., et al. (2017) Hippo signaling suppresses cell ploidy and tumorigenesis through Skp2. *Cancer Cell* 31, 669–684.e7 [CrossRef Medline]

34. Ng, L., Lu, A., Swaroop, A., Sharlin, D. S., Swaroop, A., and Forrest, D. (2011) Two transcription factors can direct three photoreceptor outcomes from rod precursor cells in mouse retinal development. *J. Neurosci.* 31, 11118–11125 [CrossRef Medline]

35. Hinnebusch, A. G., Ivanov, I. P., and Sonenberg, N. (2016) Translational control by 5' untranslated regions of eukaryotic mRNAs. *Science* 352, 1413–1416 [CrossRef Medline]

36. Tamarkin-Ben-Harush, A., Vasseur, J. J., Debart, F., Ulitsky, I., and Dickstein, R. (2017) Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress. *Elife* 6, e21907 [CrossRef Medline]

37. Wang, X., Hou, J., Quedenau, C., and Chen, W. (2016) Pervasive isomser-specific translational regulation via alternative transcription start sites in mammals. *Mol. Syst. Biol.* 12, 875 [CrossRef Medline]

38. Sjöberg, M., and Vennström, B. (1995) Ligand-dependent and -independent transactivation by thyroid hormone receptor β2 is determined by the structure of the hormone response element. *Mol. Cell. Biol.* 15, 4718–4726 [CrossRef Medline]

39. Wan, W., Farboud, B., and Privalsky, M. L. (2005) Pituitary resistance to thyroid hormone syndrome is associated with T3 receptor mutants that selectively impair β2 isofrom function. *Mol. Endocrinol.* 19, 1529–1542 [CrossRef Medline]

40. Onishi, A., Peng, G. H., Chen, S., and Blackshaw, S. (2010) Pias3-dependent SUMOflation controls mammalian cone photoreceptor differentiation. *Nat. Neurosci.* 13, 1059–1065 [CrossRef Medline]

41. Gao, D., Inuzuka, H., Tseng, A., Chin, R. Y., Toker, A., and Wei, W. (2009) Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APC/C mediated Skp2 destruction. *Nat. Cell Biol.* 11, 397–408 [CrossRef Medline]

42. Lin, H. K., Wang, G., Chen, Z., Teruya-Feldstein, J., Liu, Y., Chan, C. H., Yang, W. L., Erdjument-Bromage, H., Nakayama, K. I., Nimer, S., Tempst, P., and Pandolfi, P. P. (2009) Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. *Nat. Cell Biol.* 11, 420–432 [CrossRef Medline]

43. Song, G. J., Leslie, K. L., Barrick, S., Mamonova, T., Fitzpatrick, J. M., Drombosky, K. W., Peyer, N., Wang, B., Pellegrini, M., Bauer, P. M., Friedman, P. A., Mierke, D. F., and Bisello, A. (2015) Phosphorylation of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) by Akt promotes stability and mitogenic function of S-phase kinase-associated protein-2 (Skp2). *J. Biol. Chem.* 290, 2879–2887 [CrossRef Medline]

44. Qi, D. L., and Cobrinik, D. (2017) MDM2 but not MDM4 promotes retinoblastoma cell proliferation through p53-independent regulation of MYCN translation. *Oncogene* 36, 1760–1769 [CrossRef Medline]

45. Hilton, B. A., Li, Z., Musich, P. R., Wang, H., Cartwright, B. M., Serrano, M., Zhou, X. Z., Lu, K. P., and Zou, Y. (2015) ATR plays a direct antiapoptotic role at mitochondria, which is regulated by prolyl isomserase Pin1. *Mol. Cell* 60, 35–46 [CrossRef Medline]