NECESSARY AND SUFFICIENT CONDITIONS
FOR ASYMPTOTICALLY OPTIMAL LINEAR PREDICTION
OF RANDOM FIELDS ON COMPACT METRIC SPACES

BY KRISTIN KIRCHNER 1 AND DAVID BOLIN 2

1Delft Institute of Applied Mathematics, Delft University of Technology, k.kirchner@tudelft.nl
2CEMSE Division, King Abdullah University of Science and Technology, david.bolin@kaust.edu.sa

Optimal linear prediction (aka. kriging) of a random field \(\{ Z(x) : x \in \mathcal{X} \} \) indexed by a compact metric space \(\mathcal{X} \) can be obtained if the mean value function \(m : \mathcal{X} \to \mathbb{R} \) and the covariance function \(\varphi : \mathcal{X} \times \mathcal{X} \to \mathbb{R} \) of \(Z \) are known. We consider the problem of predicting the value of \(Z(x^*) \) at some location \(x^* \in \mathcal{X} \) based on observations at locations \(\{ x_j \}_{j=1}^n \) which accumulate at \(x^* \) as \(n \to \infty \) (or, more generally, predicting \(\varphi(Z) \) based on \(\{ \varphi_j(Z) \}_{j=1}^n \) for linear functionals \(\varphi, \varphi_1, \ldots, \varphi_n \)). Our main result characterizes the asymptotic performance of linear predictors (as \(n \) increases) based on an incorrect second order structure \((\tilde{m}, \tilde{\varphi}) \), without any restrictive assumptions on \(m, \varphi \) such as stationarity. We, for the first time, provide necessary and sufficient conditions on \((\tilde{m}, \tilde{\varphi}) \) for asymptotic optimality of the corresponding linear predictor holding uniformly with respect to \(\varphi \). These general results are illustrated by weakly stationary random fields on \(\mathcal{X} \subset \mathbb{R}^d \) with Matérn or periodic covariance functions, and on the sphere \(\mathcal{X} = \mathbb{S}^2 \) for the case of two isotropic covariance functions.

1. Introduction. Optimal linear prediction of random fields, often also called kriging, is an important and widely used technique for interpolation of spatial data. Consider a random field \(\{ Z(x) : x \in \mathcal{X} \} \) on a compact topological space \(\mathcal{X} \) such as a closed and bounded subset of \(\mathbb{R}^d \). Assume that \(Z \) is almost surely continuous on \(\mathcal{X} \) and that we want to predict its value at a location \(x^* \in \mathcal{X} \) based on a set of observations \(\{ Z(x_j) \}_{j=1}^n \) for locations \(x_1, \ldots, x_n \in \mathcal{X} \) all distinct from \(x^* \). The kriging predictor is the linear predictor \(\hat{Z}(x^*) = \alpha_0 + \sum_{j=1}^n \alpha_j Z(x_j) \) of \(Z(x^*) \) based on the observations, where the coefficients \(\alpha_0, \ldots, \alpha_n \in \mathbb{R} \) are chosen such that the variance of the error \((\hat{Z} - Z)(x^*) \) is minimized. By letting \(m(\cdot) \) and \(\varphi(\cdot, \cdot) \) denote the mean and the covariance function of \(Z \), we can express \(\hat{Z}(x^*) \) as

\[
\hat{Z}(x^*) = m(x^*) + c_n^\top \Sigma_n^{-1} (Z_n - m_n),
\]

where \(Z_n := (Z(x_1), \ldots, Z(x_n))^\top \), \(m_n := (m(x_1), \ldots, m(x_n))^\top \), \(\Sigma_n \in \mathbb{R}^{n \times n} \) has elements \([\Sigma_n]_{ij} := \varphi(x_i, x_j) \), and \(c_n := (\varphi(x^*, x_1), \ldots, \varphi(x^*, x_n))^\top \).

In applications the mean and covariance functions are rarely known and therefore need to be estimated from data. It is thus of interest to study the effect which a misspecification of the mean or the covariance function has on the efficiency of the linear predictor. Stein \([20, 21]\) considered the situation that the sequence \(\{ x_j \}_{j \in \mathbb{N}} \subset \mathbb{R}^d \) has \(x^* \) as a limiting point and the predictor \(\hat{Z} \) is computed using misspecified mean and covariance functions, \(\tilde{m} \) and \(\tilde{\varphi} \). His main outcome was that the best linear predictor based on \((\tilde{m}, \tilde{\varphi}) \) is asymptotically efficient, as \(n \to \infty \), provided that the Gaussian measures corresponding to \((m, \varphi) \) and \((\tilde{m}, \tilde{\varphi}) \) are equivalent (see Appendix A). This result in fact holds uniformly with respect to \(x^* \) and, moreover, uniformly for each linear functional \(\varphi \) such that \(\varphi(Z) \) has finite variance \([21]\).

MSC2020 subject classifications: Primary 62M20; secondary 60G12, 60G25, 60G60.

Keywords and phrases: Kriging, approximation in Hilbert spaces, spatial statistics.
For stationary covariance functions, there exist simple conditions for verifying whether the corresponding Gaussian measures are equivalent \([2, 4, 22]\) and thus if the linear predictions are asymptotically efficient. However, for any constant \(c \in (0, \infty)\), the linear predictor based on \((m, cg)\) is equal to that based on \((m, g)\), whereas the Gaussian measures corresponding to \((m, cg)\) and \((m, g)\) are orthogonal for all \(c \neq 1\). This shows that equivalence of the measures is a sufficient but not necessary condition for asymptotic efficiency. Less restrictive conditions have been derived for some specific cases such as periodic processes on \([0, 1]^d\) and weakly stationary random fields on \(\mathbb{R}^d\) observed on a lattice \([23, 24]\). With these results in mind, an immediate question is if one can find necessary and sufficient conditions for uniform asymptotic efficiency of linear prediction using misspecified mean and covariance functions. The aim of this work is to show that this indeed is the case.

We derive necessary and sufficient conditions for general second order structures \((m, g)\) and \((\bar{m}, \bar{g})\), without any restrictive assumptions such as periodicity or stationarity. These conditions are weaker compared to those of the Feldman–Hájek theorem and thus clearly exhibit their fulfillment in the case that the Gaussian measures corresponding to \((m, g)\) and \((\bar{m}, \bar{g})\) are equivalent (see Remark 3.4). Furthermore, our results are formulated for random fields on general compact metric spaces, which include compact Euclidean domains in \(\mathbb{R}^d\), but also more general domains such as the sphere \(\mathbb{S}^2\) or metric graphs (see Example 2.1). Assuming compactness of the space is meaningful, since in applications the observed locations are always contained in some compact subset (e.g., a bounded and closed domain in \(\mathbb{R}^d\)).

This general setting is outlined in Section 2. Our main results are stated in Section 3 and proven in Section 4. Section 5 presents simplified necessary and sufficient conditions for the two important special cases when \(g, \bar{g}\) induce the same eigenfunctions, or when \(g, \bar{g}\) are translation invariant on \(\mathbb{R}^d\) and have spectral densities. Section 6 verifies these conditions for weakly stationary random fields on \(\mathcal{X} \subset \mathbb{R}^d\), where \(g, \bar{g}\) are of Matérn type or periodic on \([0, 1]^d\). We also discuss an example on \(\mathcal{X} = \mathbb{S}^2\) which, to the best of our knowledge, is the first result on asymptotically optimal linear prediction on the sphere. The Supplementary Material [9] contains three appendices (Appendix A/B/C) pertaining to this article.

2. Setting and problem formulation. We assume that we are given a square-integrable stochastic process \(Z : \mathcal{X} \times \Omega \to \mathbb{R}\) defined on a complete probability space \((\Omega, \mathcal{A}, \mathbb{P})\) and indexed by a connected, compact metric space \((\mathcal{X}, d_\mathcal{X})\) of infinite cardinality. In addition, we let \(m : \mathcal{X} \to \mathbb{R}\) denote the mean value function of \(Z\) and assume that the covariance function,

\[
g : \mathcal{X} \times \mathcal{X} \to \mathbb{R}, \quad g(x, x') := \int_\Omega (Z(x, \omega) - m(x))(Z(x', \omega) - m(x')) \, d\mathbb{P}(\omega),
\]

is (strictly) positive definite and continuous. Let \(\nu_\mathcal{X}\) be a strictly positive and finite Borel measure on \((\mathcal{X}, \mathcal{B}(\mathcal{X}))\). Here and throughout, \(\mathcal{B}(\mathcal{T})\) denotes the Borel \(\sigma\)-algebra on a topological space \(\mathcal{T}\). As the symmetric covariance function \(g\) is assumed to be positive definite and continuous, the corresponding covariance operator, defined by

\[
(\mathcal{C} w)(x) := \int_{\mathcal{X}} g(x, x') w(x') \, d\nu_\mathcal{X}(x'),
\]

is self-adjoint, positive definite, and compact on \(L_2(\mathcal{X}, \nu_\mathcal{X})\). Since \((\mathcal{X}, d_\mathcal{X})\) is connected and compact, the set \(\mathcal{X}\) is uncountable and \(L_2(\mathcal{X}, \nu_\mathcal{X})\) is an infinite-dimensional separable Hilbert space. By compactness of \(\mathcal{C}\), there exists a countable system of (equivalence classes of) eigenfunctions \(\{\varepsilon_j\}_{j \in \mathbb{N}}\) of \(\mathcal{C}\) which can be chosen as an orthonormal basis for \(L_2(\mathcal{X}, \nu_\mathcal{X})\).

Moreover, it can be shown that \(\mathcal{C}\) maps into the space of continuous functions. For this reason, we may identify the eigenfunctions \(\{\varepsilon_j\}_{j \in \mathbb{N}}\) with their continuous representatives. We let \(\{\gamma_j\}_{j \in \mathbb{N}}\) denote the positive eigenvalues corresponding to \(\{\varepsilon_j\}_{j \in \mathbb{N}}\). By Mercer’s theorem (see e.g. [15, 26]) the covariance function \(g\) then admits the series representation

\[
g(x, x') = \sum_{j \in \mathbb{N}} \gamma_j \varepsilon_j(x) \varepsilon_j(x'), \quad x, x' \in \mathcal{X},
\]
where the convergence of this series is absolute and uniform. In addition, we can express the action of the covariance operator by a series,
\[Cw = \sum_{j \in \mathbb{N}} \gamma_j (w, e_j) L_2(\mathcal{X}, \mu_X) e_j, \quad w \in L_2(\mathcal{X}, \nu_X), \]
converging pointwise—i.e., for all \(w \in L_2(\mathcal{X}, \nu_X) \)—and uniformly, i.e., in the operator norm. Finally, we note that square-integrability of the stochastic process implies that \(C \) has a finite trace on \(L_2(\mathcal{X}, \nu_X) \), \(\text{tr}(C) = \sum_{j \in \mathbb{N}} \gamma_j < \infty \).

Example 2.1. Examples of covariance functions on a compact metric space \((\mathcal{X}, d_X)\) are given by the Matérn class,
\[\varrho(x, x') := \varrho_M(d_X(x, x')) \quad \text{with} \quad \varrho_M(r) := \frac{\sigma^2}{2^{\nu-1} \Gamma(\nu)} (\kappa r)^\nu K_\nu(\kappa r), \quad r \geq 0. \]
More precisely, one may consider stochastic processes with Matérn covariance functions, indexed by one of the following compact metric spaces:
(a) \(\mathcal{X} \subset \mathbb{R}^d \) is a connected, compact Euclidean domain equipped with the Euclidean metric for all parameters \(\sigma, \nu, \kappa \in (0, \infty) \), see [14];
(b) \(\mathcal{X} := S^d = \{ x \in \mathbb{R}^{d+1} : ||x||_{\mathbb{R}^{d+1}} = 1 \} \) is the \(d \)-sphere equipped with the great circle distance \(d_{S^d}(x, x') = \arccos((x, x')_{\mathbb{R}^{d+1}}) \) for \(\sigma, \nu \in (0, \infty) \) and \(\kappa \in (0, 1/2) \), see [6, Section 4.5, Example 2];
(c) \(\mathcal{X} \subset \mathbb{R}^D \) is a \(d \)-dimensional connected, compact manifold (e.g., the \(d \)-sphere \(S^d \)), embedded in \(\mathbb{R}^D \) for some \(D > d \) and equipped with the Euclidean metric on \(\mathbb{R}^D \) for any set of parameters \(\sigma, \nu, \kappa \in (0, \infty) \), see e.g. [7];
(d) \(\mathcal{X} \) is a graph with Euclidean edges equipped with the resistance metric for \(\sigma, \kappa \in (0, \infty) \) and \(\nu \in (0, 1/2) \), see [1, Definition 1, Section 2.3 and Table 1].

We point out that, for \(\nu \in (1/2, \infty) \), the function \((x, x') \mapsto \varrho_M(d_X(x, x')) \) in (b) and (d) is not (strictly) positive definite and, thus, not a valid covariance function for our setting. We furthermore emphasize that the Matérn covariance families in (a) and (b) are stationary on \(\mathbb{R}^d \) and isotropic on \(S^d \), respectively, but we do not require \(\varrho \) to have these properties.

Since the kriging predictor in (1.1) only depends on the mean value function and the covariance function of the process \(Z \), it is identical to the kriging predictor for a Gaussian process with the same first two moments. For ease of presentation, we therefore from now on assume that \(Z \) is a Gaussian process on \((\mathcal{X}, d_X)\) with mean value function \(m \in L_2(\mathcal{X}, \nu_X) \), continuous, (strictly) positive definite covariance function \(\varrho \) and corresponding covariance operator \(C \). Note, however, that all our results extend to the case of non-Gaussian processes, as their proofs rely only on the first two statistical moments. We write \(\mu = N(m, C) \) for the Gaussian measure on the Hilbert space \(L_2(\mathcal{X}, \nu_X) \) induced by the process \(Z \), i.e., for every Borel set \(A \in \mathcal{B}(L_2(\mathcal{X}, \nu_X)) \) we have
\[\mu(A) = \mathbb{P}(\{ \omega \in \Omega : Z(\cdot, \omega) \in A \}). \]
The operator \(\mathbb{E}[\cdot] \) will denote the expectation operator under \(\mu \), i.e., for an \(L_2(\mathcal{X}, \nu_X) \)-valued random variable \(Y \) with distribution \(\mu \) and a Borel measurable mapping \(\varphi : L_2(\mathcal{X}, \nu_X) \to \mathbb{R} \), the expected values \(E[Y] \in L_2(\mathcal{X}, \nu_X) \) and \(E[\varphi(Y)] \in \mathbb{R} \) are the Bochner integrals
\[E[Y] = \int_{L_2(\mathcal{X}, \nu_X)} y \, d\mu(y) \quad \text{and} \quad E[\varphi(Y)] = \int_{L_2(\mathcal{X}, \nu_X)} \varphi(y) \, d\mu(y), \]
cf. [11, Corollary 5.1]. Furthermore, we use the following notation for the real-valued variance and covariance operators with respect to \(\mu \): If \(\varphi, \varphi' : L_2(\mathcal{X}, \nu_X) \to \mathbb{R} \) are Borel measurable and \(g := \varphi(Y) \), \(g' := \varphi'(Y) \), then
\[\text{Var}[g] := E[(g - E[g])^2], \quad \text{Cov}[g, g'] := E[(g - E[g])(g' - E[g'])]. \]
To present the theoretical setting of optimal linear prediction (kriging) as well as the necessary notation, we proceed in two steps: We first consider the centered case with \(m = 0 \), and then extend it to the general case.

2.1. **Kriging assuming zero mean.** Let \(Z^0 : \mathcal{X} \times \Omega \to \mathbb{R} \) be a centered Gaussian process. Assuming that it has a continuous covariance function \(\varrho \), we may identify \(Z^0 : \mathcal{X} \to L_2(\Omega, \mathbb{P}) \) with its continuous representative. In particular, for each \(x \in \mathcal{X} \), the real-valued random variable \(Z^0(x) \) is a well-defined element of \(L_2(\Omega, \mathbb{P}) \). Consider the vector space \(Z^0 \subset L_2(\Omega, \mathbb{P}) \) of finite linear combinations of such random variables,

\[
Z^0 := \left\{ \sum_{j=1}^K \alpha_j Z^0(x_j) : K \in \mathbb{N}, \alpha_1, \ldots, \alpha_K \in \mathbb{R}, \ x_1, \ldots, x_K \in \mathcal{X} \right\}.
\]

We then define the (Gaussian) Hilbert space \(\mathcal{H}^0 \) (cf. \cite{8}) as the closure of \(Z^0 \) with respect to the norm \(\| \cdot \|_{\mathcal{H}^0} \) induced by the \(L_2(\Omega, \mathbb{P}) \) inner product,

\[
\langle \sum_{i=1}^K \alpha_i Z^0(x_i), \sum_{j=1}^{K'} \alpha'_j Z^0(x'_j) \rangle_{\mathcal{H}^0} := \sum_{i=1}^K \sum_{j=1}^{K'} \alpha_i \alpha'_j \mathbb{E}[Z^0(x_i)Z^0(x'_j)],
\]

\[
\mathcal{H}^0 := \left\{ g \in L_2(\Omega, \mathbb{P}) \mid \exists \{g_j\}_{j \in \mathbb{N}} \subset Z^0 : \lim_{j \to \infty} \| g - g_j \|_{L_2(\Omega, \mathbb{P})} = 0 \right\}.
\]

Continuity of the covariance kernel \(\varrho \) on \(\mathcal{X} \times \mathcal{X} \) implies separability of the Hilbert space \(\mathcal{H}^0 \), see \cite[Theorem 32]{3} and \cite[Theorem 2C]{16}.

By definition, see e.g. \cite[Section 1.2]{25}, the kriging predictor \(h_n^0 \) of \(h^0 \in \mathcal{H}^0 \) based on a set of observations \(\{y_{n1}, \ldots, y_{nn}\} \subset \mathcal{H}^0 \) is the best linear predictor in \(\mathcal{H}^0 \) or, in other words, the \(\mathcal{H}^0 \)-orthogonal projection of \(h^0 \) onto the linear space generated by \(y_{n1}, \ldots, y_{nn} \). By recalling the inner product on \(\mathcal{H}^0 \) from (2.4), the kriging predictor \(h_n^0 \) is thus the unique element in the finite-dimensional subspace \(\mathcal{H}_{n0}^0 := \text{span}\{y_{n1}, \ldots, y_{nn}\} \subset \mathcal{H}^0 \) satisfying

\[
h_n^0 \in \mathcal{H}_{n0}^0 : (h_n^0 - h^0, g_n^0)_{\mathcal{H}^0} = \mathbb{E}\left[(h_n^0 - h^0)g_n^0 \right] = 0 \quad \forall g_n^0 \in \mathcal{H}_{n0}^0.
\]

Consequently, \(h_n^0 \) is the \(\mathcal{H}^0 \)-best approximation of \(h^0 \) in \(\mathcal{H}_{n0}^0 \), i.e.,

\[
\| h_n^0 - h^0 \|_{\mathcal{H}^0} = \inf_{g_n^0 \in \mathcal{H}_{n0}^0} \| g_n^0 - h^0 \|_{\mathcal{H}^0}.
\]

2.2. **Kriging with general mean.** Let us next consider the case that the Gaussian process \(Z \) has a general mean value function \(m : \mathcal{X} \to \mathbb{R} \) which, for now, we assume to be continuous. The analytical framework for kriging then needs to be adjusted, since the space of possible predictors has to contain functions of the form (1.1) including constants.

Evidently, every linear combination \(h = \sum_{j=1}^K \alpha_j Z(x_j) \) has a representation \(h = c + h^0 \) with \(c \in \mathbb{R} \) and \(h^0 \in Z^0 \subset \mathcal{H}^0 \), where the vector spaces \(Z^0, \mathcal{H}^0 \subset L_2(\Omega, \mathbb{P}) \) are generated by linear combinations of the process \(Z^0 \) at locations in \(\mathcal{X} \), see (2.3). A constant \(c \neq 0 \) in \(Z^0 \) would thus imply that the corresponding linear combination \(c = \sum_{j=1}^K \alpha_j Z(x_j) \) has zero variance, which contradicts the (strict) positive definiteness of the covariance function \(\varrho \). For this reason, the decomposition in (2.6) is unique. This motivates to define the Hilbert space containing all possible observations and predictors for a general second order structure \((m, \varrho)\) as the (internal) direct sum of vector spaces, given by

\[
\mathcal{H} := \mathbb{R} \oplus \mathcal{H}^0 = \{ h \in L_2(\Omega, \mathbb{P}) : \exists c \in \mathbb{R}, \exists h^0 \in \mathcal{H}^0 \text{ with } h = c + h^0 \},
\]

(2.7)
which is equipped with the graph norm,

\[\| h \|_\mathcal{H}^2 = |c|^2 + \| h^0 \|_{\mathcal{H}^0}^2 \quad \text{if} \quad h = c + h^0 \in \mathbb{R} \oplus \mathcal{H}^0 = \mathcal{H}. \]

Note that, similarly as for \(\mathcal{H}^0 \), the inner product on \(\mathcal{H} \) equals the inner product on \(L_2(\Omega, \mathbb{P}) \):

\[(g, h)_\mathcal{H} = (E[g], E[h])_\mathbb{R} + (g - E[g], h - E[h])_{\mathcal{H}^0} = E[g]E[h] + \text{Cov}[g, h] = E[gh].\]

Now suppose that we want to predict \(h \in \mathcal{H} \) given a set of observations \(y_{nj} = c_{nj} + y_{nj}^0 \in \mathcal{H} \), where \(c_{nj} \in \mathbb{R} \), \(y_{nj}^0 \in \mathcal{H}^0 \), \(j \in \{1, \ldots, n\} \).

The kriging predictor of \(h = c + h^0 \in \mathbb{R} \oplus \mathcal{H}^0 = \mathcal{H} \) based on the observations \(\{y_{n1}, \ldots, y_{nn}\} \) is then \(h_n = c + h_n^0 \), where \(h_n^0 \) is the kriging predictor of \(h^0 \) based on the centered observations \(\{y_{n1}^0, \ldots, y_{nn}^0\} \subset \mathcal{H}^0 \), as defined in (2.5). The definition of the norm on \(\mathcal{H} \) in (2.8) readily implies that

\[\| h_n - h \|_\mathcal{H}^2 = |c - c|^2 + \| h_n^0 - h^0 \|_{\mathcal{H}^0}^2 = 0 + \inf_{g_n^0 \in \mathcal{H}^0} \| g_n^0 - h^0 \|_{\mathcal{H}^0}^2. \]

Hence, if we, for \(y_{n1}, \ldots, y_{nn} \in \mathcal{H}^0 \), define the subspace \(\mathcal{H}_n \subset \mathcal{H} \) by

\[\mathcal{H}_n := \mathbb{R} \oplus \mathcal{H}_n^0, \quad \text{where} \quad \mathcal{H}_n^0 := \text{span} \{ y_{n1}^0, \ldots, y_{nn}^0 \} \subset \mathcal{H}^0, \]

we have that in either case (centered and non-centered) the kriging predictor of \(h \in \mathcal{H} \) based on the observations \(\{y_{n1} = c_{n1} + y_{n1}^0, \ldots, y_{nn} = c_{nn} + y_{nn}^0\} \) is given by the \(\mathcal{H} \)-orthogonal projection of \(h \) onto \(\mathcal{H}_n \), i.e.,

\[h_n \in \mathcal{H}_n : \quad (h_n - h, g_n)_\mathcal{H} = E[(h_n - h)g_n] = 0 \quad \forall g_n \in \mathcal{H}_n, \]

\[h_n \in \mathcal{H}_n : \quad \| h_n - h \|_\mathcal{H} = \inf_{g_n \in \mathcal{H}_n} \| g_n - h \|_\mathcal{H}. \]

For this reason, for every \(h \in \mathcal{H} \), the kriging predictor \(h_n \) is fully determined by the subspace \(\mathcal{H}_n \) and we also call \(h_n \) the kriging predictor (or best linear predictor) based on \(\mathcal{H}_n \) (instead of based on the set of observations \(\{y_{n1}, \ldots, y_{nn}\} \)).

Finally, since the definitions (2.7), (2.9) and (2.10) of the spaces \(\mathcal{H}, \mathcal{H}_n \) and the kriging predictor \(h_n \) are meaningful even if the mean value function is not continuous, hereafter we only require that \(m \in L_2(\mathcal{X}, \nu_{\mathcal{X}}) \). Note, however, that then the point evaluation \(Z(x^*) \), \(x^* \in \mathcal{X} \), might not be an element of \(\mathcal{H} \).

2.3. Problem formulation. We assume without loss of generality that the centered observations \(y_{n1}^0, \ldots, y_{nn}^0 \) are linearly independent in \(\mathcal{H}^0 \) so that in (2.9) we have \(\dim(\mathcal{H}_n^0) = n \). Furthermore, we suppose that the family of subspaces \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \) generated by the observations, see (2.9), is dense in \(\mathcal{H} \). More specifically, we require that, for any \(h \in \mathcal{H} \), the corresponding kriging predictors \(\{h_n\}_{n \in \mathbb{N}} \) defined via (2.10) are consistent in the sense that

\[\lim_{n \to \infty} E[(h_n - h)^2] = \lim_{n \to \infty} \| h_n - h \|_\mathcal{H}^2 = 0. \]

For future reference, we introduce the set \(S^\mu_{\text{adm}} \) which contains all admissible sequences \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \) of subspaces of \(\mathcal{H} \) generated by observations which provide \(\mu \)-consistent kriging,

\[S^\mu_{\text{adm}} := \{ \{\mathcal{H}_n\}_{n \in \mathbb{N}} | \forall n \in \mathbb{N} : \mathcal{H}_n \text{ is as in (2.9) with dim}(\mathcal{H}_n^0) = n, \forall h \in \mathcal{H} : \{h_n\}_{n \in \mathbb{N}} \text{ as in (2.10) satisfy (2.11)} \}. \]

Since \((\mathcal{X}, d_{\mathcal{X}}) \) is connected and compact, we have \(S^\mu_{\text{adm}} \neq \emptyset \). Note that we do not assume nestedness of \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \). Therefore, we cover situations when the observations are not part of a sequence and \(\{y_{n1}, \ldots, y_{nn}\} \not\subset \{y_{n+1,1}, \ldots, y_{n+1,n+1}\} \).
EXAMPLE 2.2. Suppose that \(m \) and \(q \) are continuous and that \(\{x_j\}_{j \in \mathbb{N}} \) is a sequence in \((\mathcal{X}, d_{\mathcal{X}}) \) which accumulates at \(x^* \in \mathcal{X} \), i.e., there exists a subsequence \(\{\tilde{x}_k\}_{k \in \mathbb{N}} \subseteq \{x_j\}_{j \in \mathbb{N}} \) such that \(\lim_{k \to \infty} d_{\mathcal{X}}(\tilde{x}_k, x^*) = 0 \). Assume further that \(\mathcal{H}_n \supseteq \mathbb{R} \oplus \text{span}\{Z^0(x_j) : j \leq n\} \) for all \(n \). Then, the kriging predictors \(\{h_n\}_{n \in \mathbb{N}} \) for \(h := Z(x^*) \) are consistent: For \(n \) sufficiently large such that \(\{x_j\}_{j=1}^n \cap \{\tilde{x}_k\}_{k \in \mathbb{N}} = \{\tilde{x}_k\}_{k=1}^{k_n} \) is not empty (i.e., \(k_n \in \mathbb{N} \)), we have

\[
\mathbb{E}\left[(h_n - h)^2\right] \leq \inf_{\alpha_0, \alpha_1, \ldots, \alpha_n \in \mathbb{R}} \mathbb{E}\left[(Z(x^*) - \alpha_0 - \sum_{j=1}^n \alpha_j Z^0(x_j))^2\right]
\]

\[
= \inf_{\alpha_1, \ldots, \alpha_n \in \mathbb{R}} \mathbb{E}\left[(Z^0(x^*) - \sum_{j=1}^n \alpha_j Z^0(x_j))^2\right] \leq \mathbb{E}\left[(Z^0(x^*) - Z^0(\tilde{x}_{k_n}))^2\right]
\]

\[
= \varphi(x^*, x^*) + \varphi(\tilde{x}_{k_n}, \tilde{x}_{k_n}) - 2\varphi(\tilde{x}_{k_n}, x^*) \to 0, \quad \text{as} \quad n \to \infty.
\]

This shows (2.11) for \(h = Z(x^*) \). Note that the kriging predictors based on the subspaces \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \) have to be consistent for every \(h \in \mathcal{H} \) so that the sequence is admissible, \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subseteq \mathcal{S}_{\text{adm}}^\mu \), see (2.12). Assuming that every \(\mathcal{H}_n^\mu \) is generated by centered point observations \(Z^0(x_1), Z^0(x_2), \ldots \), the above argument shows that, for any \(h = \sum_{l=1}^L c_l Z(x_l^\cdot) \) in \(\mathbb{R} \oplus Z^0 \), the kriging predictors \(\{h_n\}_{n \in \mathbb{N}} \) based on \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \), \(\mathcal{H}_n := \mathbb{R} \oplus \mathcal{H}_n^\mu \), are consistent whenever the sequence of observation points \(\{x_j\}_{j \in \mathbb{N}} \) accumulates at any \(x^* \in \mathcal{X} \). Since \(Z^0 \) is dense in the Hilbert space \(\mathcal{H}^0 \), the same is true for every \(h \in \mathcal{H} = \mathbb{R} \oplus \mathcal{H}^0 \).

Suppose that \(\tilde{\mu} = N(\tilde{m}, \tilde{C}) \) is a second Gaussian measure on \(L_2(\mathcal{X}, \nu_{\mathcal{X}}) \) with mean value function \(\tilde{m} \in L_2(\mathcal{X}, \nu_{\mathcal{X}}) \) and trace-class covariance operator \(\tilde{C} : L_2(\mathcal{X}, \nu_{\mathcal{X}}) \to L_2(\mathcal{X}, \nu_{\mathcal{X}}) \). Let \(\mathbb{E}[^\cdot], \var{\cdot}, \text{Cov}[\cdot, \cdot] \) denote the real-valued expectation, variance, and covariance operators under \(\tilde{\mu} \). We are now interested in the asymptotic behavior of the linear predictor based on \(\tilde{\mu} \). That is, what happens if, instead of the kriging predictor \(h_n \), we use the linear predictor \(\tilde{h}_n \) which is the kriging predictor if \(\tilde{\mu} \) was the correct model?

3. General results on compact metric spaces. We first generalize the results of [21, Section 3] and [25, Chapter 4, Theorem 10] to our setting of Gaussian processes on a compact metric space \((\mathcal{X}, d_{\mathcal{X}}) \). That is, uniformly asymptotically optimal linear prediction under the assumption that the two Gaussian measures \(\mu \) and \(\tilde{\mu} \) are equivalent on \(L_2(\mathcal{X}, \nu_{\mathcal{X}}) \).

\[
\text{Theorem 3.1.} \quad \text{Let} \quad \mu = N(m, C) \quad \text{and} \quad \tilde{\mu} = N(\tilde{m}, \tilde{C}) \quad \text{be equivalent. Define} \quad \mathcal{H}^0 \quad \text{and} \quad \tilde{\mathcal{H}}^0 \quad \text{as in (2.4) with respect to} \quad \mu \quad \text{and} \quad \tilde{\mu}, \quad \text{respectively. Then,} \quad \mathcal{H}^0 \quad \text{and} \quad \tilde{\mathcal{H}}^0 \quad \text{are norm equivalent,} \quad \mathcal{S}_{\text{adm}}^\mu = \mathcal{S}_{\text{adm}}^{\tilde{\mu}} \quad \text{(see (2.12)), and for all} \quad \{\mathcal{H}_n\}_{n \in \mathbb{N}} \subseteq \mathcal{S}_{\text{adm}}^\mu \quad \text{the following hold:}
\]

\[
\lim_{n \to \infty} \sup_{h \in \mathcal{H}_n} \frac{\mathbb{E}\left[(h_n - h)^2\right]}{\mathbb{E}\left[(h_n - h)^2\right]} = \lim_{n \to \infty} \sup_{h \in \mathcal{H}_{\infty}} \frac{\mathbb{E}\left[(h_n - h)^2\right]}{\mathbb{E}\left[(h_n - h)^2\right]} = 1,
\]

\[
\lim_{n \to \infty} \sup_{h \in \mathcal{H}_{\infty}} \left| \frac{\mathbb{E}\left[(h_n - h)^2\right] - 1}{\mathbb{E}\left[(h_n - h)^2\right]} \right| = \lim_{n \to \infty} \sup_{h \in \mathcal{H}_{\infty}} \left| \frac{\mathbb{E}\left[(h_n - h)^2\right] - 1}{\mathbb{E}\left[(h_n - h)^2\right]} \right| = 0.
\]

Here, \(h_n, \tilde{h}_n \) are the best linear predictors of \(h \) based on \(\mathcal{H}_n \) and the measures \(\mu \) and \(\tilde{\mu} \), respectively. The set \(\mathcal{H}_{\infty} \subseteq \mathcal{H} \) contains all elements with \(\mathbb{E}\left[(h_n - h)^2\right] > 0 \).

The norm equivalence of \(\mathcal{H}^0 \) and \(\tilde{\mathcal{H}}^0 \) guarantees that the best linear predictors \(\{\tilde{h}_n\}_{n \in \mathbb{N}} \) of \(h \) based on \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subseteq \mathcal{S}_{\text{adm}}^\mu \) and \(\tilde{\mu} \) are well-defined. Furthermore, it corresponds to equivalence of \(\var{\cdot} \) and \(\var{\cdot} \) on \(\mathcal{H} \), see Proposition 3.5 below, so that in combination with the restriction \(h \in \mathcal{H}_{\infty} \), it ensures that the case 0/0 in (3.1), (3.2) is evaded: For \(h \in \mathcal{H}_{\infty} \), we obtain \(\mathbb{E}\left[(h_n - h)^2\right] = \var{h_n - h} \geq c \var{h_n - h} \geq c \var{h_n - h} = c \mathbb{E}\left[(h_n - h)^2\right] > 0 \), with \(c \in (0, \infty) \) independent of \(n \) and \(h \).
Equivalence of the Gaussian measures $\mu = N(m, C)$ and $\tilde{\mu} = N(\tilde{m}, \tilde{C})$ implies that $m - \tilde{m}$ is in the Cameron–Martin space $H^* := C^{1/2}(L_2(\mathcal{X}, \nu_\mathcal{X}))$ which is a Hilbert space with respect to $(\cdot, \cdot)_{H^*} := (C^{-1}, \cdot)_{L_2(\mathcal{X}, \nu_\mathcal{X})}$, see Appendix A in the Supplementary Material [9]. However, m and \tilde{m} are not necessarily both elements of H^*. Thus, Theorem 3.1 generalizes [25, Chapter 4, Theorem 10], where $m = 0$ is assumed, even on Euclidean domains.

These results for equivalent measures μ and $\tilde{\mu}$ also apply when considering the variances of the prediction errors. This is subject of the next corollary.

Corollary 3.2. The statements of Theorem 3.1 remain true if we replace each second moment in (3.1) and (3.2) by the corresponding variance. That is, for all $\{H_n\}_{n \in \mathbb{N}} \in S^*_\text{adm}$, the following hold:

\[
\begin{align*}
(3.3) \quad & \lim_{n \to \infty} \sup_{h \in H_n} \frac{\text{Var}[\tilde{h}_n - h]}{\text{Var}[h_n - h]} = \lim_{n \to \infty} \sup_{h \in H_n} \frac{\tilde{\text{Var}}[h_n - h]}{\text{Var}[h_n - h]} = 1, \\
(3.4) \quad & \lim_{n \to \infty} \sup_{h \in H_n} \left| \frac{\tilde{\text{Var}}[h_n - h]}{\text{Var}[h_n - h]} - 1 \right| = \lim_{n \to \infty} \sup_{h \in H_n} \left| \frac{\text{Var}[\tilde{h}_n - h]}{\text{Var}[h_n - h]} - 1 \right| = 0.
\end{align*}
\]

Theorem 3.1 shows that equivalence of μ and $\tilde{\mu}$ is sufficient for uniformly asymptotically optimal linear prediction. The following (less restrictive) assumptions will subsequently be shown to be necessary and sufficient.

Assumption 3.3. Let $\varrho, \tilde{\varrho} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be two continuous, (strictly) positive definite covariance functions with corresponding covariance operators C, \tilde{C}, defined on $L_2(\mathcal{X}, \nu_\mathcal{X})$ via (2.1). Assume that C, \tilde{C} and $m, \tilde{m} \in L_2(\mathcal{X}, \nu_\mathcal{X})$ are such that:

I. The Cameron–Martin spaces $H^* = C^{1/2}(L_2(\mathcal{X}, \nu_\mathcal{X}))$ and $\tilde{H}^* = \tilde{C}^{1/2}(L_2(\mathcal{X}, \nu_\mathcal{X}))$ are norm equivalent Hilbert spaces.

II. The difference between the mean value functions $m, \tilde{m} \in L_2(\mathcal{X}, \nu_\mathcal{X})$ is an element of the Cameron–Martin space, i.e., $m - \tilde{m} \in H^*$.

III. There exists a positive real number $a \in (0, \infty)$ such that the operator

\[
(3.5) \quad T_a : L_2(\mathcal{X}, \nu_\mathcal{X}) \to L_2(\mathcal{X}, \nu_\mathcal{X}), \quad T_a := C^{-1/2}\tilde{C}^{-1/2} - a\mathcal{I}
\]

is compact. Here and below, \mathcal{I} denotes the identity on $L_2(\mathcal{X}, \nu_\mathcal{X})$.

Remark 3.4. We briefly comment on the similarities and differences between Assumptions 3.3.I–III and the set of assumptions in the Feldman–Hájek theorem (Theorem A.1 for $E = L_2(\mathcal{X}, \nu_\mathcal{X})$, see Appendix A in the Supplementary Material [9]) that are necessary and sufficient for equivalence of two Gaussian measures $\mu = N(m, C)$ and $\tilde{\mu} = N(\tilde{m}, \tilde{C})$. Note that all assumptions are identical except for the third. For equivalence of the measures μ and $\tilde{\mu}$, the operator $T_1 = C^{-1/2}\tilde{C}^{-1/2} - \mathcal{I}$ has to be Hilbert–Schmidt on $L_2(\mathcal{X}, \nu_\mathcal{X})$. Since every Hilbert–Schmidt operator is compact, this in particular implies that Assumption 3.3.III holds for $a = 1$. This shows the greater generality of our Assumptions 3.3.I–III compared to the assumption that the two Gaussian measures μ and $\tilde{\mu}$ are equivalent.

Proposition 3.5. Let $\mu = N(m, C)$, $\tilde{\mu} = N(\tilde{m}, \tilde{C})$, and define $\mathcal{H}^0, \tilde{\mathcal{H}}^0$ as in (2.4) with respect to the measures μ and $\tilde{\mu}$, respectively. The following are equivalent:

(i) Assumption 3.3.1 is satisfied.

(ii) The linear operator $(\tilde{C}^{1/2}C^{-1/2} : L_2(\mathcal{X}, \nu_\mathcal{X}) \to L_2(\mathcal{X}, \nu_\mathcal{X})$ is an isomorphism, i.e., it is bounded and has a bounded inverse.
(iii) The Hilbert spaces \mathcal{H}^0, $\tilde{\mathcal{H}}^0$ are norm equivalent. In particular, there exist $k_0, k_1 \in (0, \infty)$ such that $k_0 \text{Var}[h] \leq \text{Var}[\tilde{h}] \leq k_1 \text{Var}[h]$ holds for all $h \in \mathcal{H}$, with \mathcal{H} as in (2.7).

(iv) There exist $0 < k \leq K < \infty$ such that, for all $\{\mathcal{H}_n\}_{n \in \mathbb{N}} \in S^\mu_{\text{adm}}$, any of the following fractions is bounded from below by $k > 0$ and from above by $K < \infty$, uniformly with respect to $n \in \mathbb{N}$ and $h \in \mathcal{H}_n$:

$$
\frac{\tilde{\text{Var}}[h_n - h]}{\text{Var}[h_n - h]}, \quad \frac{\text{Var}[\tilde{h}_n - h]}{\text{Var}[h_n - h]}, \quad \frac{\text{Var}[\tilde{h}_n - h]}{\text{Var}[h_n - h]}, \quad \frac{\tilde{\text{Var}}[h_n - h]}{\text{Var}[h_n - h]}.
$$

Here, h_n, \tilde{h}_n are the best linear predictors of h based on \mathcal{H}_n and μ resp. $\tilde{\mu}$.

Proposition 3.5 elucidates the role of Assumption 3.3.I: As previously noted, the norm equivalence of the spaces \mathcal{H}^0 and $\tilde{\mathcal{H}}^0$ in (iii) ensures that, for any $h \in \mathcal{H}$, the best linear predictors $\{\tilde{h}_n\}_{n \in \mathbb{N}}$ based on $\{\mathcal{H}_n\}_{n \in \mathbb{N}} \in S^\mu_{\text{adm}}$ and the measure $\tilde{\mu}$ are well-defined. Furthermore, uniform boundedness of the fractions in (iv) guarantees that the sequence $\{h_n\}_{n \in \mathbb{N}}$ is μ-consistent,

$$
\lim_{n \to \infty} \text{Var} [\tilde{h}_n - h] \leq \sup_{\ell \in \mathbb{N}} \sup_{g \in \mathcal{H}_\ell} \frac{\text{Var}[\tilde{g}_\ell - g]}{\text{Var}[g_{\ell} - g]} \lim_{n \to \infty} \mathbb{E} [(h_n - h)^2] = 0,
$$

which clearly is necessary for asymptotically optimal linear prediction.

Including one more assumption, namely Assumption 3.3.III, yields necessary and sufficient conditions for uniform asymptotic optimality of linear predictors, when the quality of the linear predictors is measured by the variance of the error. This result is formulated in the following theorem.

Theorem 3.6. Let $\mu = N(m, \mathcal{C})$ and $\tilde{\mu} = N(\tilde{m}, \tilde{\mathcal{C}})$. In addition, let h_n, \tilde{h}_n denote the best linear predictors of h based on \mathcal{H}_n and the measures μ and $\tilde{\mu}$, respectively. Then, any of the assertions,

$$
\lim_{n \to \infty} \sup_{h \in \mathcal{H}_n} \frac{\text{Var}[\tilde{h}_n - h]}{\text{Var}[h_n - h]} = 1,
$$

$$
\lim_{n \to \infty} \sup_{h \in \mathcal{H}_n} \frac{\text{Var}[\tilde{h}_n - h]}{\text{Var}[h_n - h]} = 1,
$$

$$
\lim_{n \to \infty} \sup_{h \in \mathcal{H}_n} \left| \frac{\tilde{\text{Var}}[h_n - h]}{\text{Var}[h_n - h]} - a \right| = 0,
$$

$$
\lim_{n \to \infty} \sup_{h \in \mathcal{H}_n} \left| \frac{\tilde{\text{Var}}[h_n - h]}{\text{Var}[h_n - h]} - \frac{1}{a} \right| = 0,
$$

holds for all $\{\mathcal{H}_n\}_{n \in \mathbb{N}} \in S^\mu_{\text{adm}}$ if and only if Assumptions 3.3.I and 3.3.III are fulfilled. The constant $a \in (0, \infty)$ in (3.9) and (3.10) is the same as that in (3.5) of Assumption 3.3.III.

Remark 3.7. Theorem 3.6 shows, in particular, that either all of the four asymptotic statements (3.7)–(3.10) hold simultaneously or none of them are true.

Finally, when measuring the quality of the linear predictors in terms of the mean squared error, additionally the behavior of the difference $m - \tilde{m}$ between the mean value functions matters, and all three of Assumptions 3.3.I–III are necessary and sufficient for uniform asymptotic optimality in this sense. This characterization is formulated in Theorem 3.8 which is our main result.
THEOREM 3.8. Let $\mu = N(m, C)$ and $\tilde{\mu} = N(\tilde{m}, \tilde{C})$. In addition, let h_n, \tilde{h}_n denote the best linear predictors of h based on H_n and the measures μ and $\tilde{\mu}$, respectively. Then, any of the assertions,

$$
\lim_{n \to \infty} \sup_{h \in H_n} \frac{\mathbb{E}[\tilde{h}_n - h]^2}{\mathbb{E}[(h_n - h)^2]} = 1,
$$

(3.11)

$$
\lim_{n \to \infty} \sup_{h \in H_n} \frac{\mathbb{E}[h_n - h]^2}{\mathbb{E}[(h_n - h)^2]} = 1,
$$

(3.12)

$$
\lim_{n \to \infty} \sup_{h \in H_n} \left| \frac{\mathbb{E}[(h_n - h)^2]}{\mathbb{E}[(h_n - h)^2]} - a \right| = 0,
$$

(3.13)

$$
\lim_{n \to \infty} \sup_{h \in H_n} \left| \frac{\mathbb{E}[(\tilde{h}_n - h)^2]}{\mathbb{E}[(h_n - h)^2]} - \frac{1}{a} \right| = 0,
$$

(3.14)

holds for all $\{H_n\}_{n \in \mathbb{N}} \subseteq \mathcal{S}_{\text{adm}}^\mu$ if and only if Assumptions 3.3.I–III are satisfied. The constant $a \in (0, \infty)$ in (3.13) and (3.14) is the same as that in (3.5) of Assumption 3.3.III.

4. Proofs of the results. Throughout this section, we abbreviate $L_2(\mathcal{X}, \nu_\mathcal{X})$ by L_2, $\mathcal{L}(L_2)$ is the space of bounded linear operators on L_2 and the subspaces $\mathcal{K}(L_2) \subset \mathcal{L}(L_2)$ as well as $L_2(\mathcal{L}_2) \subset \mathcal{L}(L_2)$ contain all compact and Hilbert–Schmidt operators, respectively (see Appendix A in the Supplementary Material [9]).

Recall that $Z^0 = Z - m$, where Z is a Gaussian process on $(\mathcal{X}, d_\mathcal{X})$ with corresponding Gaussian measure $\mu = N(m, C)$, and that $\{e_j\}_{j \in \mathbb{N}}$ is an orthonormal basis for L_2 consisting of (the continuous representatives of) eigenfunctions of the covariance operator C, with corresponding positive eigenvalues γ_j. In the next lemma a relation between the (dual of the) Cameron–Martin space for μ and the Hilbert space \mathcal{H}^0 in (2.4) is established, similarly as in [16, Theorem 5D] or [3, Theorem 35]. This relation will be crucial for proving all results.

LEMMA 4.1. For each $j \in \mathbb{N}$, define $v_j := \frac{1}{\sqrt{\gamma_j}} e_j$ as well as the real-valued random variable $z_j := (Z^0, v_j)_{L_2}$. Then, the following hold:

(i) $\{v_j\}_{j \in \mathbb{N}}$ is an orthonormal basis for $H := C^{-1/2}(L_2)$, with $(v, v')_H := (Cv, v')_{L_2}$, which is the dual of the Cameron–Martin space $H^* = C^{1/2}(L_2)$.

(ii) $\{z_j\}_{j \in \mathbb{N}}$ is an orthonormal basis for the Hilbert space \mathcal{H}^0 equipped with the inner product $(\cdot, \cdot)_{\mathcal{H}^0} = \mathbb{E}[\cdot, \cdot] = \text{Cov}[\cdot, \cdot]$, see (2.4).

(iii) The linear operator

$$
\mathcal{J} : H \to \mathcal{H}^0, \quad v \mapsto (Z^0, v)_{L_2},
$$

is a well-defined isometric isomorphism and, for all $v, v' \in H$, we have

$$
(v, v')_H = (Cv, v')_{L_2} = \mathbb{E}[\mathcal{J} v, \mathcal{J} v'] = \mathbb{E}[(\mathcal{J} v, \mathcal{J} v')] = (\mathcal{J} v, \mathcal{J} v')_{\mathcal{H}^0}.
$$

PROOF. Since $L_2 \subset H$ and $v_j = C^{-1/2} e_j$, claim (i)—orthonormality and the basis property of $\{v_j\}_{j \in \mathbb{N}}$ in H—follows directly from the corresponding properties of $\{e_j\}_{j \in \mathbb{N}}$ in L_2.

To prove the second assertion (ii), we first note that $v_j : \mathcal{X} \to \mathbb{R}$ is continuous for every $j \in \mathbb{N}$. Thus, by Lemma B.3 (see Appendix B in the Supplementary Material [9]) we find that $z_j \in \mathcal{H}^0$ for all $j \in \mathbb{N}$. Next, we prove that $\{z_j\}_{j \in \mathbb{N}}$ constitutes an orthonormal basis for \mathcal{H}^0.

For this, we need to show that $(z_i, z_j)_{\mathcal{H}^0} = \delta_{ij}$ (orthonormality) and

$$
(h, z_j)_{\mathcal{H}^0} = 0 \quad \forall j \in \mathbb{N} \quad \Rightarrow \quad h = 0 \quad \text{(basis property)}.
$$

Due to the identities $\mathbb{E}[z_i z_j] = \text{Cov}[(Z^0, v_i)_{L_2}, (Z^0, v_j)_{L_2}] = (Cv_i, v_j)_{L_2} = (v_i, v_j)_{H}$, orthornormality follows from (i). Now let $h \in \mathcal{H}^0$ be such that $(h, z_j)_{\mathcal{H}^0} = 0$ vanishes for all $j \in \mathbb{N}$. Therefore, $h = 0$ in \mathcal{H}^0.
By Fubini’s theorem we then obtain that, for all $j \in \mathbb{N}$,

$$0 = \mathbb{E}[h(Z^0, e_j)_{L_2}] = \int_{\mathcal{X}} \mathbb{E}[hZ^0(x)e_j(x)] \, d\nu(\mathcal{X})(x) = (\mathbb{E}[hZ^0(\cdot)], e_j)_{L_2}. $$

Since $\{e_j\}_{j \in \mathbb{N}}$ is an orthonormal basis for L_2 and the mapping $\mathcal{X} \ni x \mapsto \mathbb{E}[hZ^0(x)] \in \mathbb{R}$ is continuous, this shows that $\mathbb{E}[hZ^0(x)] = 0$ for all $x \in \mathcal{X}$, which implies (due to strict positive definiteness of ϱ) that $h \in \mathcal{H}^0$ has to vanish. We conclude (ii), $\{z_j\}_{j \in \mathbb{N}}$ is an orthonormal basis for \mathcal{H}^0.

It remains to prove (iii). Clearly, $\mathcal{J}v_j = z_j$ for all $j \in \mathbb{N}$. Thus, the linear mapping $\mathcal{J} : H \to \mathcal{H}^0$ is well-defined and an isometry, since by (i) and (ii) $\{v_j\}_{j \in \mathbb{N}}$ and $\{z_j\}_{j \in \mathbb{N}}$ are orthonormal bases for H and \mathcal{H}^0, respectively. Furthermore, $(v, v')_H = (Cv, v')_{L_2} = \text{Cov}[(Z^0, v)_{L_2}, (Z^0, v')_{L_2}] = \text{Cov}[\mathcal{J}v, \mathcal{J}v'] = (\mathcal{J}v, \mathcal{J}v')_{\mathcal{H}^0}$ for all $v, v' \in H$, completing the proof of (iii).

\begin{proof}[Proof of Proposition 3.5] We first show (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i), followed by the proof of the equivalence (iii) \Leftrightarrow (iv):

(i) \Rightarrow (ii): Under Assumption 3.3.I, the norms on H^* and \hat{H}^* are equivalent, i.e., there are $c_0, c_1 \in (0, \infty)$ such that $\|C^{-1/2}u\|_{L_2} \leq c_0\|C^{-1/2}u\|_{L_2}$ and $\|C^{-1/2}u\|_{L_2} \leq c_1\|C^{-1/2}u\|_{L_2}$ for all $u \in H^* = \hat{H}^*$. Thus, for any $w \in L_2$, $\hat{C}^{-1/2}w \in H^*$ with $\|C^{-1/2}\hat{C}^{-1/2}w\|_{L_2} \leq c_0\|w\|_{L_2}$ and, in addition, $C^{1/2}w \in \hat{H}^*$ with $\|\hat{C}^{-1/2}C^{1/2}w\|_{L_2} \leq c_1\|w\|_{L_2}$. This shows that $C^{-1/2}\hat{C}^{-1/2}$ and, thus, also its adjoint $\hat{C}^{1/2}C^{-1/2}$ are isomorphisms on L_2, and (ii) follows.

(ii) \Rightarrow (iii): Let the Hilbert space H and the isometry $\mathcal{J} : H \to \mathcal{H}^0$ be defined as in Lemma 4.1(iii). In addition, define $\hat{H} := \hat{C}^{-1/2}(L_2)$ and the isometry $\tilde{\mathcal{J}} : \hat{H} \to \hat{\mathcal{H}}^0$ in the obvious analogous way. If $c_0 := \|C^{1/2}\hat{C}^{-1/2}\|_{L(L_2)}$ and $c_1 := \|C^{1/2}\hat{C}^{-1/2}\|_{L(L_2)}$ are finite, then H and \hat{H} are norm equivalent, i.e., $c_1^{-1}\|v\|_H \leq \|v\|_H \leq c_0\|v\|_H$ holds for all $v \in H = \hat{H}$, and the inclusion mapping $\mathcal{I}_{H \to \hat{H}}$ of H in \hat{H} is continuous. Thus, we obtain $\|\tilde{\mathcal{J}}\mathcal{I}_{H \to \hat{H}}\mathcal{J}^{-1}h^0|_{\hat{H}} = \|\mathcal{I}_{H \to \hat{H}}\mathcal{J}^{-1}h^0|_{\hat{H}} \leq c_0\|\mathcal{J}^{-1}h^0|_H = c_0\|h^0|_{\mathcal{H}^0}$ for every $h^0 \in \mathcal{H}^0$. Next, let $h^0 \in H^0$ and set $v^h := \mathcal{J}^{-1}h^0 \in H$. Then, we observe the identities $\|\tilde{\mathcal{J}}\mathcal{I}_{H \to \hat{H}}\mathcal{J}^{-1}h^0|_{\hat{H}} = \|\mathcal{I}_{H \to \hat{H}}\mathcal{J}^{-1}h^0|_{\hat{H}} = \|\mathcal{J}v^h|_{\hat{H}} = \text{Var}[(Z, v^h)_{L_2}] = \text{Var}[(Z^0, v^h)_{L_2}] = \text{Var}[h^0]$, which combined with the above show that $\text{Var}[h] = \text{Var}[h^0] \leq c_0^2\|h^0\|_{\mathcal{H}^0}^2 = c_0^2\text{Var}[h]$ for all $h \in H$, where we set $h^0 := h - \mathcal{E}[h] \in \mathcal{H}_0$. Similarly, we derive $\|\tilde{\mathcal{J}}\mathcal{I}_{H \to \hat{H}}\mathcal{J}^{-1}h^0|_{\hat{H}} \leq c_1\|\mathcal{J}^{-1}h^0|_{\mathcal{H}^0} = \text{Var}[h^0]$ for all $h^0 \in \mathcal{H}^0$, and we may change the roles of H and \hat{H} (respectively, of \mathcal{H}^0 and $\hat{\mathcal{H}}^0$) to conclude that also the relation $\text{Var}[h] \leq c_1^2\text{Var}[h]$ holds for all $h \in H = \mathcal{H} = \hat{\mathcal{H}}^0$.

(iii) \Rightarrow (i): We prove that the dual spaces, $H = \hat{C}^{-1/2}(L_2)$, $\hat{H} = \hat{C}^{-1/2}(L_2)$, are norm equivalent, which implies the result for H^* and \hat{H}^*. Norm equivalence of \mathcal{H}^0 and $\hat{\mathcal{H}}^0$ implies continuity of the inclusion maps $\mathcal{I}_{\mathcal{H}^0 \to \hat{\mathcal{H}}^0}, \mathcal{I}_{\hat{\mathcal{H}}^0 \to \mathcal{H}^0}$ which, similarly as above, yields continuity of $\tilde{\mathcal{J}}^{-1}\mathcal{I}_{\mathcal{H}^0 \to \hat{\mathcal{H}}^0}, \tilde{\mathcal{J}}^{-1}\mathcal{I}_{\hat{\mathcal{H}}^0 \to \mathcal{H}^0} : H \to \hat{H}$ and of $\mathcal{J}^{-1}\mathcal{I}_{\mathcal{H}^0 \to \hat{\mathcal{H}}^0}, \tilde{\mathcal{J}}^{-1}\mathcal{I}_{\hat{\mathcal{H}}^0 \to \mathcal{H}^0} : \hat{H} \to H$. Thus, it follows that $\|v\|_H \leq c_0\|v\|_H$ and $\|\tilde{v}\|_\hat{H} \leq c_1\|\tilde{v}\|_\hat{H}$ hold for all $v \in H$, $\tilde{v} \in \hat{H}$ with some constants $c_0, c_1 \in (0, \infty)$, since $\|\tilde{\mathcal{J}}^{-1}\mathcal{I}_{\mathcal{H}^0 \to \hat{\mathcal{H}}}v|_H = \|v\|_H$ and $\|\mathcal{J}^{-1}\mathcal{I}_{\mathcal{H}^0 \to \hat{\mathcal{H}}}\tilde{v}|_\hat{H} = \|\tilde{v}\|_\hat{H}$.

(iii) \Rightarrow (iv): Suppose that $k_0 \text{Var}[h] \leq \text{Var}[h] \leq k_1 \text{Var}[h]$ holds for every $h \in \mathcal{H} = \hat{\mathcal{H}}$ and let $\{\mathcal{H}_n\}_{n \in \mathbb{N}} \in \mathcal{S}^\mu_{\text{adm}}$. Then, for every $n \in \mathbb{N}$ and all $h \in \mathcal{H}_n$, $k_0 \leq \frac{\text{Var}[h_n - h]}{\text{Var}[h_n - h]} \leq k_1$ as well as $k_1^{-1} \leq \frac{\text{Var}[h_n - h]}{\text{Var}[h_n - h]} \leq k_0^{-1}$ readily follow. Subsequently, we find that

$$1 \leq \frac{\text{Var}[h_n - h]}{\text{Var}[h_n - h]} = \frac{\text{Var}[h_n - h]}{\text{Var}[h_n - h]} \frac{\text{Var}[h_n - h]}{\text{Var}[h_n - h]} \frac{\text{Var}[h_n - h]}{\text{Var}[h_n - h]} \leq k_0^{-1}k_1, \quad (4.3)$$

and a similar trick shows that also $rac{\text{Var}[h_n-h]}{\text{Var}[h_n-h]} \in [1, k_1 k_0^{-1}]$ for all n and h.

(iv) \Rightarrow (iii): We first show necessity of (iii) for uniform boundedness (from above and below) of the first two fractions in (3.6). For this, let $h \in \mathbb{Z}^0 \setminus \{0\}$. By positive definiteness of φ, there exists $\phi \in \mathbb{Z}^0$ so that $\{h, \phi\}$ are linearly independent. Define $\psi_1' := \phi - \frac{(\phi, h)_{\mathbb{H}^0}}{(h, h)_{\mathbb{H}^0}} h$, $\psi_1 := \frac{1}{\|\psi_1\|_{\mathbb{H}^0}} \psi_1'$, and $\bar{\psi}_1 := \frac{1}{\|\bar{\psi}_1\|_{\mathbb{H}^0}} \psi_1'$, and note that $h \in \mathbb{Z}^0$ is orthogonal to $\psi_1 \in \mathbb{Z}^0$ in \mathbb{H}^0 and to $\bar{\psi}_1 \in \mathbb{Z}^0$ in $\tilde{\mathbb{H}}^0$. By separability of \mathbb{H}^0 there exist sequences $\{\psi_j\}_{j \geq 2}$ and $\{\bar{\psi}_j\}_{j \geq 2}$ such that $\{\psi_j\}_{j \in \mathbb{N}}$ and $\{\bar{\psi}_j\}_{j \in \mathbb{N}}$ are orthonormal bases for \mathbb{H}^0. For $n \in \mathbb{N}$, define the spaces $\mathbb{H}_n^*: = \mathbb{R} \oplus \text{span}\{\psi_1, \ldots, \psi_n\}$, $\mathbb{H}_n^\#: = \mathbb{R} \oplus \text{span}\{\bar{\psi}_1, \ldots, \bar{\psi}_n\}$. Then, $\{\mathbb{H}_n^*, \mathbb{H}_n^\#\}_{n \in \mathbb{N}} \in \mathcal{S}_{\text{adm}}^\mu$ and, if h_1 denotes the best linear predictor of h based on \mathbb{H}_1^* and $\bar{\mu}$, and \tilde{h}_1 denotes the best linear predictor of h based on \mathbb{H}_1^* and $\bar{\mu}$, then $h_1 = \tilde{h}_1 = 0$ follows. By boundedness of the first or second fraction in (3.6) (with $n = 1$), we have that $\frac{\text{Var}[h]}{\text{Var}[h]} = \frac{\text{Var}[h_1-h]}{\text{Var}[h_1-h]} \in [k, K]$ or $\frac{\text{Var}[h]}{\text{Var}[h]} = \frac{\text{Var}[\tilde{h}_1-h]}{\text{Var}[\tilde{h}_1-h]} \in [k, K]$. Thus, in both cases $k_0 \text{Var}[h] \leq \tilde{\text{Var}}[h] \leq k_1 \text{Var}[h]$ holds, where $k_0 := \min\{k, K^{-1}\}$ and $k_1 := \max\{K, k^{-1}\}$. Since $h \in \mathbb{Z}^0$ was arbitrary and since the constants $k, K \in (0, \infty)$ do not depend on h (as the fractions in (3.6) are bounded uniformly in $\{\mathbb{H}_n\}_{n \in \mathbb{N}}$, n and h), assertion (iii) follows by density of \mathbb{Z}^0 in \mathbb{H}^0 and in $\tilde{\mathbb{H}}^0$.

Assume next that the third fraction in (3.6) is bounded, uniformly with respect to $\{\mathbb{H}_n\}_{n \in \mathbb{N}} \in \mathcal{S}_{\text{adm}}^\mu$, $n \in \mathbb{N}$ and $h \in \mathbb{H}_{-n}$. In either of the two cases, $\alpha_0 = 0$ or $\alpha_1 = \infty$, where $\alpha_0 := \inf_{h \in \mathbb{H}_{-n} \cap \tilde{\mathbb{H}}^0} \frac{\text{Var}[h]}{\text{Var}[h]}$, $\alpha_1 := \sup_{h \in \mathbb{H}_{-n} \cap \tilde{\mathbb{H}}^0} \frac{\text{Var}[h]}{\text{Var}[h]}$, it follows as in [5, Proof of Theorem 5] that there exist sequences $\{h^{(\ell)}\}_{\ell \in \mathbb{N}}, \{\psi_1^{(\ell)}\}_{\ell \in \mathbb{N}} \subset \mathbb{H}^0 \cap \tilde{\mathbb{H}}^0$, normalized in \mathbb{H}^0, with $\frac{\text{Var}[h^{(\ell)}_1-h^{(\ell)}]}{\text{Var}[h^{(\ell)}_1-h^{(\ell)}]} \geq \ell$ for all $\ell \in \mathbb{N}$, where $h^{(\ell)}_1, \tilde{h}^{(\ell)}_1$ are the best linear predictors of $h^{(\ell)}$ based on μ resp. $\bar{\mu}$ and $\mathbb{H}^{1}_{\ell} := \mathbb{R} \oplus \text{span}\{\psi_1^{(\ell)}\}$. By separability of $\tilde{\mathbb{H}}^0$, for each $\ell \in \mathbb{N}$, we may complement $\psi_1^{(\ell)}$ to an orthonormal basis $\{\psi_j^{(\ell)}\}_{j \in \mathbb{N}}$ for $\tilde{\mathbb{H}}^{1}_{\ell}$. Thus, for all $\ell \in \mathbb{N}$, $\{\mathbb{H}_n^{(\ell)}\}_{n \in \mathbb{N}} \in \mathcal{S}_{\text{adm}}^\mu$ holds, where $\mathbb{H}_1^{(\ell)} := \mathbb{R} \oplus \text{span}\{\psi_1^{(\ell)}, \ldots, \psi_n^{(\ell)}\}$ and $\sup_{\ell \in \mathbb{N}} \sup_{n \in \mathbb{N}} \frac{\text{Var}[ilde{h}_1^{(\ell)}-h]}{\text{Var}[h_1^{(\ell)}-h]} \geq \sup_{\ell \in \mathbb{N}} \frac{\text{Var}[\tilde{h}^{(\ell)}_1-h^{(\ell)}]}{\text{Var}[h^{(\ell)}_1-h^{(\ell)}]} \geq \infty$, contradicting uniform boundedness of the third fraction in (3.6). We therefore conclude that $\alpha_0, \alpha_1 \in (0, \infty), \mathbb{H}^0 \cap \tilde{\mathbb{H}}^0 = \mathbb{H}^0 = \tilde{\mathbb{H}}^0$ and (iii) follows.

Finally, assuming uniform boundedness of the last fraction in (3.6), analogous arguments show that $\bar{\alpha}_0 := \inf_{h \in \mathbb{H}_{-n} \cap \tilde{\mathbb{H}}^0} \frac{\text{Var}[h]}{\text{Var}[h]}$, $\alpha_1 := \sup_{h \in \mathbb{H}_{-n} \cap \tilde{\mathbb{H}}^0} \frac{\text{Var}[h]}{\text{Var}[h]}$ satisfy $\bar{\alpha}_0, \alpha_1 \in (0, \infty)$, again yielding (iii).

\textbf{Remark 4.2.} The arguments in the proof of Proposition 3.5 imply, in particular, that under Assumption 3.3.I we have, for all $v, v' \in H = \tilde{H}$, that

\begin{equation}
(v, v')_H = (\tilde{C}v, v')_{L_2} = \text{Cov}\left([(Z^0, v)_{L_2}, (Z^0, v')_{L_2}] = \tilde{C}\text{Cov}[\mathcal{J} v, \mathcal{J} v'].
\end{equation}

\textbf{Lemma 4.3.} Suppose Assumption 3.3.I is satisfied and let $\{\mathbb{H}_n\}_{n \in \mathbb{N}}$ be a sequence of subspaces of \mathbb{H} such that, for all $n \in \mathbb{N}$, \mathbb{H}_n is of the form (2.9). Then, for every $h \in \mathbb{H}$, the kriging predictors $\{h_n\}_{n \in \mathbb{N}}$ based on $\{\mathbb{H}_n\}_{n \in \mathbb{N}}$ and the measure μ are μ-consistent if and only if the kriging predictors $\{\tilde{h}_n\}_{n \in \mathbb{N}}$ based on $\{\mathbb{H}_n\}_{n \in \mathbb{N}}$ and $\bar{\mu}$ are $\bar{\mu}$-consistent. In particular, $\mathcal{S}_{\text{adm}}^\mu = \mathcal{S}_{\text{adm}}^\bar{\mu}$.
PROOF. Let \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subseteq S^\mu_{\text{adm}} \). By Proposition 3.5(i) \(\Leftrightarrow \) (iii), \(\mathcal{H}^0 \) and \(\tilde{\mathcal{H}}^0 \) are norm equivalent. Thus, \(\mathbb{E}[\hat{h}_n - h]^2 = \text{Var}[\hat{h}_n - h] \leq \tilde{\mathbb{E}}[\hat{h}_n - h] \leq k_1 \text{Var}[\hat{h}_n - h] = k_1 \mathbb{E}[\hat{h}_n - h]^2 \) holds, for any \(h \in \mathcal{H} = \tilde{\mathcal{H}} \), where \(k_1 \in (0, \infty) \) is independent of \(n \) and \(h \). This shows that \(S^\mu_{\text{adm}} \subseteq \tilde{S}^\mu_{\text{adm}} \). Analogously, \(\mathbb{E}[\hat{h}_n - h]^2 \leq k_0^{-1} \tilde{\mathbb{E}}[\hat{h}_n - h]^2 \) follows for \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subseteq S^\mu_{\text{adm}} \), with \(k_0 \in (0, \infty) \) independent of \(n \) and \(h \), showing the reverse inclusion \(S^\mu_{\text{adm}} \subseteq \tilde{S}^\mu_{\text{adm}} \). □

PROPOSITION 4.4. Let \(\mu = \mathbb{N}(m, \mathcal{C}) \) and \(\tilde{\mu} = \mathbb{N}(\tilde{m}, \tilde{\mathcal{C}}) \). Suppose that Assumptions 3.3.I and 3.3.III are satisfied and let \(a \in (0, \infty) \) be the constant in (3.5) of Assumption 3.3.III. In addition, let \(h_n, \tilde{h}_n \) denote the best linear predictors of \(h \) based on \(\mathcal{H}_n \) and the measures \(\mu \) and \(\tilde{\mu} \), respectively. Then, (3.7)–(3.10) hold for all \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subseteq S^\mu_{\text{adm}} \). If, in addition, Assumption 3.3.II is fulfilled, then (3.11)–(3.14) hold for all \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subseteq S^\mu_{\text{adm}} \).

PROOF. Let \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subseteq S^\mu_{\text{adm}} \). As shown in Proposition C.2 (see Appendix C in the Supplementary Material [9]), we can without loss of generality assume that \(\mu \) has zero mean and that \(\tilde{\mu} \) has mean \(\tilde{m} - m \). We first show that Assumptions 3.3.I and 3.3.III imply that (3.9) and (3.10) hold. To this end, let \(n \in \mathbb{N} \) and recall that \(h_n \) is the kriging predictor of \(h \) based on \(\mathcal{H}_n = \mathbb{R} \oplus \mathcal{H}^0_n \) and \(\mu \). We let \(\{\psi_1^{(n)}, \ldots, \psi_k^{(n)}\} \) be an \(\mathcal{H}^0 \)-orthonormal basis for \(\mathcal{H}^0_n \), i.e.,

\[
\mathbb{E}[\psi_k^{(n)} \psi_\ell^{(n)}] = \delta_{k\ell}.
\]

Since \(\mathcal{H}^0 \) is a separable Hilbert space there exists a countable orthonormal basis of the orthogonal complement of \(\mathcal{H}^0_n \) in \(\mathcal{H}^0 \), which will be denoted by \(\{\psi_k^{(n)}\}_{k > n} \). Then, by construction \(\{\psi_k^{(n)}\}_{k \in \mathbb{N}} \) is an orthonormal basis for \(\mathcal{H}^0 \). We identify \(\psi_k^{(n)} \in \mathcal{H}^0 \) with \(v_k^{(n)} := J^{-1} \psi_k^{(n)} \in H \), where \(J : H \to \mathcal{H}^0 \) is the isometric isomorphism in (4.1) from Lemma 4.1(iii). Due to (4.2), \(\{v_k^{(n)}\}_{k \in \mathbb{N}} \) is then an orthonormal basis for \(H = C^{-1/2}(L_2) \). Furthermore, we note that, for every \(h \in \mathcal{H}_{-n} \), the vector \(h_n - h \in \mathcal{H}^0 \) can be written as a linear combination of \(\{v_k^{(n)}\}_{k > n} \), i.e., \(h_n - h = \sum_{k=n+1}^{\infty} c_k^{(n)} \psi_k^{(n)} \) with \(\sum_{k=n+1}^{\infty} |c_k^{(n)}|^2 < \infty \).

We recall the identities in (4.2) and (4.4) from Lemma 4.1(iii) and Remark 4.2 and rewrite the term \(\text{(A)} := |\text{Var}[h_n - h] - a \text{Var}[h_n - h]| \) as follows,

\[
\text{(A)} = \left| \sum_{k, \ell = n+1}^{\infty} c_k^{(n)} c_\ell^{(n)} \left(\text{Cov}[\psi_k^{(n)}, \psi_\ell^{(n)}] - a \text{Cov}[\psi_k^{(n)}, \psi_\ell^{(n)}] \right) \right| = \left| \sum_{k, \ell = n+1}^{\infty} c_k^{(n)} c_\ell^{(n)} \left(\left(\mathcal{C}^{(n)} \psi_k^{(n)}, \psi_\ell^{(n)} \right)_L - a \left(\mathcal{C}^{(n)} \psi_k^{(n)}, \psi_\ell^{(n)} \right)_L \right) \right|.
\]

Since \(\{v_k^{(n)}\}_{k \in \mathbb{N}} \) is an orthonormal basis for \(H = C^{-1/2}(L_2) \), so is \(\{v_k^{(n)}\}_{k \in \mathbb{N}} \) for \(L_2 \), where \(w_k^{(n)} := \mathcal{C}^{1/2} v_k^{(n)} \). We set \(w_k^{(n)} := \sum_{k=n+1}^{\infty} c_k^{(n)} w_k^{(n)} \) and obtain

\[
\text{(A)} = \left| \left(\left(C_{-\mathcal{C}^{-1/2}} - a J \right) Q^+_n w_n^{(n)} , Q^+_n w_k^{(n)} \right)_L \right| ,
\]

where \(Q^+_n := I - Q_n \) and \(Q_n : L_2 \to W_n \) denotes the \(L_2 \)-orthogonal projection onto the subspace \(W_n := \text{span}\{w_1^{(n)}, \ldots, w_n^{(n)}\} \). By Assumption 3.3.III, \(T_a = C^{-1/2} \mathcal{C}^{-1/2} - a J \) is compact on \(L_2 \). For this reason, there exists an orthonormal basis \(\{b_j\}_{j \in \mathbb{N}} \) for \(L_2 \) consisting of eigenvectors of \(T_a \) with corresponding eigenvalues \(\{\tau_j\}_{j \in \mathbb{N}} \subseteq \mathbb{R} \) accumulating only at zero. For \(J \in \mathbb{N} \), we define \(V_j := \text{span}\{b_1, \ldots, b_j\} \). We write \(P_j : L_2 \to V_j \) for the corresponding \(L_2 \)-orthogonal projection and set \(P^+_j := I - P_j \). Then, by invoking the chain of identities

\[
\|w_k^{(n)}\|_L^2 = \sum_{k=n+1}^{\infty} |c_k^{(n)}|^2 = \mathbb{E}[\hat{h}_n - h]^2 = \text{Var}[h_n - h],
\]

we estimate

\[
\text{(A)} \leq \text{Var}[h_n - h] \sup_{\|w\|_L^2 = 1} \left| \left(T_a Q^+_n w , Q^+_n w \right)_L \right|.
\]
Clearly, if $T_a = 0$, we obtain that (A) = 0. Thus, from now on we assume that $\|T_a\|_{L(L_2)} > 0$. Since $I = P_J + P_J^\perp$ and $P_J^\perp T_a P_J = P_J T_a P_J^\perp = 0$ we find

\[
\frac{(A)}{\text{Var}[h_n - h]} \leq \sup_{\|w\|_{L_2} = 1} \left| \left(P_J^\perp T_a P_J^\perp Q_n^J w, Q_n^J w \right)_{L_2} + \left(P_J T_a P_J Q_n^J w, Q_n^J w \right)_{L_2} \right|
\]

(4.5)

\[
\leq \sup_{\|w\|_{L_2} = 1} \left| \left(T_a P_J^J w, P_J^J w \right)_{L_2} \right| + \sup_{\|w\|_{L_2} = 1} \left| \left(Q_n^J P_J T_a P_J Q_n^J w \right)_{L_2} \right|.
\]

Here, we have used self-adjointness of T_a, P_J, P_J^\perp and Q_n^J on L_2 in the last step. Now fix $\varepsilon \in (0, \infty)$. Since $\lim_{j \to \infty} \tau_j = 0$, there exists $J_\varepsilon \in \mathbb{N}$ with

\[
(4.6) \quad \sup_{\|w\|_{L_2} = 1} \left| \left(T_a P_J^J w, P_J^J w \right)_{L_2} \right| = \sup_{j > J_\varepsilon} |\tau_j| < \frac{\varepsilon}{2}.
\]

In addition, for $w := \sum_{k \in \mathbb{N}} \alpha_k w_k \in L_2$ and $h^w := \sum_{k \in \mathbb{N}} \alpha_k \psi_k \in \mathcal{H}_0$, with some square-summable coefficients $\{\alpha_k\}_{k \in \mathbb{N}}$, we find that

\[
(4.7) \quad \|Q_n^J w\|_{L_2}^2 = \sum_{k = n + 1}^{\infty} |\alpha_k|^2 = \left\| \sum_{k = n + 1}^{\infty} \alpha_k \psi_k \right\|_{\mathcal{H}_0}^2 = \|h^w - h^\perp\|_{\mathcal{H}}^2.
\]

Because of this relation and thanks to the assumption that $\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subset \mathcal{S}_\text{adm}^\mu$, there exists $n_\varepsilon \in \mathbb{N}$ such that $\max_{1 \leq j \leq J_\varepsilon} \|Q_n^J b_j\|_{L_2} < \frac{\varepsilon}{2|\tau_n|_{L(L_2)} \vee J_\varepsilon}$ holds for every $n \geq n_\varepsilon$, cf. (2.12). Therefore, for all $n \geq n_\varepsilon$, we obtain that

\[
\|Q_n^J P_J w\|_{L_2} \leq \frac{\varepsilon}{2|\tau_n|_{L(L_2)} \vee J_\varepsilon} \sum_{j = 1}^{J_\varepsilon} \|w, b_j\|_{L_2} \leq \frac{\varepsilon}{2|\tau_n|_{L(L_2)} \vee J_\varepsilon} \|P_J w\|_{L_2} \quad \forall w \in L_2.
\]

The norm identities $\|P_J\|_{L(L_2)} = \|Q_n^J\|_{L(L_2)} = 1$ thus imply that, for every $n \geq n_\varepsilon$, and for all $w \in L_2$,

\[
(4.8) \quad \|Q_n^J P_J T_a P_J Q_n^J w\|_{L_2} \leq \frac{\varepsilon}{2|\tau_n|_{L(L_2)} \vee J_\varepsilon} \|P_J T_a P_J Q_n^J w\|_{L_2} \leq \frac{\varepsilon}{2} \|w\|_{L_2}
\]

holds. Combining (4.5), (4.6) and (4.8) shows that $\sup_{h \in \mathcal{H}_{-n}} \frac{(A)}{\text{Var}[h_n - h]} < \varepsilon$ for every $n \geq n_\varepsilon$ and, since $\varepsilon \in (0, \infty)$ was arbitrary,

\[
\lim_{n \to \infty} \sup_{h \in \mathcal{H}_{-n}} \frac{(A)}{\text{Var}[h_n - h]} = \lim_{n \to \infty} \sup_{h \in \mathcal{H}_{-n}} \left| \frac{\text{Var}[h_n - h]}{\text{Var}[h_n - h]} - a \right| = 0,
\]

i.e., (3.9) follows. Furthermore, $\widetilde{C}^{-1/2} C^{-1/2} - a^{-1} I$ is compact on L_2 by Lemma B.1 (see Appendix B in the Supplementary Material [9]) and $\mathcal{S}_\text{adm}^\mu = \mathcal{S}_\text{adm}^\mu$ by Lemma 4.3 so that, after changing the roles of the measures μ and $\widetilde{\mu}$, (3.9) implies (3.10).

Next, we show validity of (3.13) under Assumptions 3.3.1–III. To this end, we first split $|\mathbb{E}[((h_n - h)^2)] - a \mathbb{E}[(h_n - h)^2]| \leq (A) + (B)$ in term (A), which is defined as above, and term (B) := $|\mathbb{E}[(h_n - h)^2]|$. By the Cauchy–Schwarz inequality,

\[
(B) = \left| \sum_{k = n + 1}^{\infty} \epsilon_k^{(n)} \mathbb{E}[(\psi_k^{(n)})^2] \right| \leq \mathbb{E}[(h_n - h)^2] \sum_{k = n + 1}^{\infty} |\mathbb{E}[(\psi_k^{(n)})^2]|^2.
\]

For each $k \geq n + 1$, we let $\{\psi_k^{(n)}\}_{j \in \mathbb{N}}$ be the coefficients of $\psi_k^{(n)}$ when represented with respect to the orthonormal basis $\{z_j\}_{j \in \mathbb{N}}$ from Lemma 4.1(ii). We then find (recall that we have centered μ so that $\widetilde{\mu}$ has mean $\widetilde{m} - m$):

\[
\sum_{k = n + 1}^{\infty} |\mathbb{E}[(\psi_k^{(n)})^2]|^2 = \sum_{k = n + 1}^{\infty} \sum_{j \in \mathbb{N}} |\psi_k^{(n)} \mathbb{E}[z_j]|^2 = \sum_{k = n + 1}^{\infty} \sum_{j \in \mathbb{N}} |\psi_k^{(n)} \mathbb{E}[(Z^0, v_j)_{L_2}]|^2.
\]
= \sum_{k=n+1}^{\infty} \left| \sum_{j \in \mathbb{N}} \psi_j^{(k)} \left(\tilde{m} - m, C^{-1/2} e_j \right) \right|_{L_2}^2 = \sum_{k=n+1}^{\infty} \left(C^{-1/2}(\tilde{m} - m), w_k^{(n)} \right)_{L_2}^2,

since w_k^{(n)} = C^{1/2} \psi_k^{(n)} = C^{1/2} \mathcal{J}^{-1} \psi_k^{(n)} = \sum_{j \in \mathbb{N}} \psi_j^{(k)} e_j \text{ and this series converges in } L_2.

Therefore, \(\sum_{k=n+1}^{\infty} \left| \mathbb{E} \left[\psi_j^{(k)} \right] \right|^2 = \| Q_n C^{-1/2}(m - \tilde{m}) \|_{L_2}^2 \) follows. By Assumption 3.3.2 the difference of the means \(m - \tilde{m} \) is an element of the Cameron–Martin space \(H^* = C^{1/2}(L_2) \).

Consequently, \(C^{-1/2}(m - \tilde{m}) \in L_2 \) and the norm on the right-hand side converges to zero as \(n \to \infty \) by (4.7) and (2.11). This shows that also

\[
(4.9) \quad \lim_{n \to \infty} \sup_{h \in \mathcal{H}_n} \frac{\mathbb{E} \left[(h_n - h)^2 \right]}{\mathbb{E} \left[(h_n - h)^2 \right]} = \lim_{n \to \infty} \sup_{h \in \mathcal{H}_n} \frac{\mathbb{E} \left[(h_n - h)^2 \right]}{\mathbb{E} \left[(h_n - h)^2 \right]} = 0.
\]

We thus conclude with (3.9) and (4.9) that, uniformly in \(h \),

\[
\left| \frac{\mathbb{E} \left[(h_n - h)^2 \right]}{\mathbb{E} \left[(h_n - h)^2 \right]} - a \right| \leq \frac{\text{Var} \left[h_n - h \right]}{\text{Var} \left[h_n - h \right]} + \frac{\mathbb{E} \left[(h_n - h)^2 \right]}{\mathbb{E} \left[(h_n - h)^2 \right]} \to 0 \quad \text{as} \quad n \to \infty,
\]

and (3.13) follows. Again, by virtue of Lemma 4.3 and Lemma B.1 (see Appendix B in the Supplementary Material [9]) we may change the roles of \(\mu \) and \(\tilde{\mu} \) which gives (3.14).

To derive (3.11), note that \(\mathbb{E} \left[(h_n - h)^2 \right] \leq \mathbb{E} \left[(h_n - h)^2 \right] \) as \(h_n \) is the \(\mu \)-best linear predictor. For the same reason, we obtain \(\mathbb{E} \left[(\tilde{h}_n - h)^2 \right] \leq \mathbb{E} \left[(\tilde{h}_n - h)^2 \right] \), and the estimates

\[
1 \leq \frac{\mathbb{E} \left[(\tilde{h}_n - h)^2 \right]}{\mathbb{E} \left[(\tilde{h}_n - h)^2 \right]} \leq \frac{\mathbb{E} \left[(\tilde{h}_n - h)^2 \right]}{\mathbb{E} \left[(\tilde{h}_n - h)^2 \right]} \quad \text{follow similarly as in (4.3). By (3.14) and (3.13) the}
\]

last two fractions converge to \(a^{-1} \) and to \(a \), uniformly in \(h \), as \(n \to \infty \) and (3.11) follows. Changing the roles of \(\mu \) and \(\tilde{\mu} \) implies (3.12).

Finally, note that if \(\mu = \mathcal{N}(m, C) \) and \(\tilde{\mu} = \mathcal{N}(\tilde{m}, \tilde{C}) \) are such that Assumptions 3.3.1 and 3.3.3.1 and 3.3.3.2 are satisfied, then the centered measures \(\mu_c = \mathcal{N}(0, C) \) and \(\tilde{\mu}_c = \mathcal{N}(0, \tilde{C}) \) satisfy Assumptions 3.3.1–III so that (3.11), (3.12) hold for the pair \(\mu_c, \tilde{\mu}_c \) and (3.7), (3.8) follow from the identities in (C.2) and (C.3), see Appendix C in the Supplementary Material [9].

Proof of Theorem 3.1 & Corollary 3.2. If the measures \(\mu \) and \(\tilde{\mu} \) are equivalent, then by the Feldman–Hajek theorem (see Theorem A.1 in Appendix A of the Supplementary Material [9]) Assumptions 3.3.1–II hold and \(T_1 = C^{-1/2} \tilde{C} C^{-1/2} - \mathcal{I} \in \mathcal{L}_2(L_2). \) Since every Hilbert–Schmidt operator is compact, this implies that also Assumption 3.3.3.1 is fulfilled for \(a = 1. \) Therefore, for every \(\{H_n\}_{n \in \mathbb{N}} \in \mathcal{S}^{\mu}_{\text{adm}}, \) all assertions in (3.1), (3.2), (3.3), (3.4) follow from Proposition 4.4.

Lemma 4.5. Let \(\mu = \mathcal{N}(m, C), \tilde{\mu} = \mathcal{N}(\tilde{m}, \tilde{C}). \) In (3.7)–(3.10) let \(h_n, \tilde{h}_n \) denote the best linear predictors of \(h \) based on \(H_n \) and the measures \(\mu, \tilde{\mu}. \) Then, validity of any of the statements (3.7), (3.8), (3.9), or (3.10) for all \(\{H_n\}_{n \in \mathbb{N}} \in \mathcal{S}^{\mu}_{\text{adm}} \) implies that the Assumptions 3.3.1 and 3.3.3.1 and 3.3.3.1 are satisfied, and the constant \(a \in (0, \infty) \) in (3.9), (3.10) is the same as in (3.5).

Proof. By the identities (C.2)–(C.5) (see Appendix C in the Supplementary Material [9]) we can without loss of generality assume that \(m = \tilde{m} = 0. \) Then, \(\text{Var} [h_n - h] = \mathbb{E} \left[(h_n - h)^2 \right] \) and \(\text{Var} [\tilde{h}_n - h] = \mathbb{E} \left[(\tilde{h}_n - h)^2 \right] \) follow. Furthermore, \(\text{Var} [h_n - h] = \mathbb{E} \left[(h_n - h)^2 \right] \) and \(\text{Var} [\tilde{h}_n - h] = \mathbb{E} \left[(\tilde{h}_n - h)^2 \right] \) always hold by unbiasedness of the kriging predictor. Recall from Lemma 4.1 the orthonormal bases \(\{e_j\}_{j \in \mathbb{N}} \) for \(L_2, \{v_j\}_{j \in \mathbb{N}} \) for \(H = C^{-1/2}(L_2), \) and \(\{z_j\}_{j \in \mathbb{N}} \) for \(H^0 \) as well as the isometry \(J: H \to H^0 \) which identifies \(v_j \) with \(z_j. \)

If any of the statements (3.7), (3.8), (3.9), or (3.10) holds for every \(\{H_n\}_{n \in \mathbb{N}} \in \mathcal{S}^{\mu}_{\text{adm}}, \) then by Lemma B.4 (see Appendix B in the Supplementary Material [9]), all four assertions of Proposition 3.5 and, in particular, Proposition 3.5(i) hold, i.e., Assumption 3.3.1 is satisfied.
Next, we prove that validity of (3.8) for all \(\{ \mathcal{H}_n \}_{n \in \mathbb{N}} \in S_{\text{adm}}^{\mu} \) implies Assumption 3.3.III. For \(n \in \mathbb{N} \), define \(E_n := \text{span}\{e_1, \ldots, e_n\} \subset L_2 \) and \(H_n := \text{span}\{v_1, \ldots, v_n\} \subset H \), and let \(E_n^\perp = \text{span}\{e_j\}_{j > n} \) as well as \(H_n^\perp = \text{span}\{v_j\}_{j > n} \) be their orthogonal complements in \(L_2 \) and \(H \), respectively. Note that \(E_n = H_n \) and \(E_n^\perp \subset H_n^\perp \). Now suppose that, for all \(a \in (0, \infty) \), the linear operator \(T_n = C^{-1/2}C^{-1/2} - aI \) is not compact on \(L_2 \), and define \(\alpha := \|C^{1/2}C^{-1/2}\| L(\mathbb{C})^{-2} \) and \(\tilde{\alpha} := \|C^{1/2}C^{-1/2}\| L(\mathbb{C})^{-2} \). Then, by Lemma B.2 (see Appendix B in the Supplementary Material [9]) there exist \(\delta \in (0, \infty) \) and, for every \(n \in \mathbb{N} \), \(\omega_n, \overline{\omega}_n \in [a, \tilde{\alpha}] \) and \(\omega_n, \overline{\omega}_n \in E_n \setminus \{0\} \) such that, for all \(n \in \mathbb{N} \), we have \(\overline{\omega}_n - \omega_n \geq \delta \) and

\[
\left| \frac{(C^{-1/2}C^{-1/2} - aI)_{\omega_n, \overline{\omega}_n}{L_2} - \omega_n}{(\overline{\omega}_n, \overline{\omega}_n)_{L_2}} \right| < \frac{\delta \alpha^2}{3\alpha^2}, \quad \left| \frac{(C^{-1/2}C^{-1/2} - aI)_{\omega_n, \overline{\omega}_n}{L_2} - \overline{\omega}_n}{(\overline{\omega}_n, \overline{\omega}_n)_{L_2}} \right| < \frac{\delta \alpha^2}{3\alpha^2}.
\]

We set \(\omega_n := \overline{\omega}_n^{-1}, \overline{\omega}_n := \omega_n^{-1}, \) and \(\omega_n := C^{-1/2}w_n, \overline{\omega}_n := C^{-1/2}w_n \). Then, we obtain that, for all \(n \in \mathbb{N}, \omega_n, \overline{\omega}_n \in [a^{-1}, \tilde{\alpha}^{-1}] \), and \(\overline{\omega}_n - \omega_n \geq \delta' := \delta \alpha^{-2} \). The vectors \(\omega_n, \overline{\omega}_n \in H_n\) satisfy \(\frac{(C\omega_n, \overline{\omega}_n)_{L_2}}{(C\omega_n, \overline{\omega}_n)_{L_2}} - \omega_n < \delta', \frac{(C\omega_n, \overline{\omega}_n)_{L_2}}{(C\omega_n, \overline{\omega}_n)_{L_2}} - \overline{\omega}_n < \delta' \). We then define \(\phi_n := \text{span} \{ \omega_n \} \in H \) and \(\phi_n := \text{span} \{ \overline{\omega}_n \} \in H \) and find that

\[
\frac{\mathbb{E} \left[\phi_n \right]^2}{\mathbb{E} \left[\phi_n^2 \right]} = \left(\frac{C\omega_n, \overline{\omega}_n)_{L_2}}{(C\omega_n, \overline{\omega}_n)_{L_2}} \right), \quad \frac{\mathbb{E} \left[\phi_n^2 \right]}{\mathbb{E} \left[\phi_n^2 \right]} = \left(\frac{C\omega_n, \overline{\omega}_n)_{L_2}}{(C\omega_n, \overline{\omega}_n)_{L_2}} \right)
\]

As in [5, Proof of Theorem 5] it follows that there exist \(h_1^{(n)}, \psi_n \in \text{span} \{ \phi_n, \overline{\omega}_n \} \) such that

\[
\frac{\mathbb{E} \left[(h_1^{(n)} - h(n))^2 \right]}{\mathbb{E} \left[(h_1^{(n)} - h(n))^2 \right]} = \frac{\overline{\theta}_n + \overline{\theta}_n}{4 \overline{\theta}_n \overline{\theta}_n}
\]

holds, where \(h_1^{(n)} \) and \(\overline{\theta}_n \) are the best linear predictors of \(h(n) \) based on the subspace \(\mathcal{V}_n := \mathbb{R} \oplus \text{span}\{\psi_n\} \subset H \) and the measures \(\mu \) and \(\overline{\mu} \), respectively. Moreover,

\[
\overline{\theta}_n := \min \{ \mathbb{E} \left[h^2 \right] / \mathbb{E} \left[h^2 \right] : h \in \text{span} \{ \phi_n, \overline{\omega}_n \}, h \neq 0 \},
\]

and \(\overline{\theta}_n \in (0, \infty) \) is defined as \(\overline{\theta}_n \) with min replaced by max. Clearly, these definitions yield that \(\theta_n \leq \mathbb{E} \left[\phi_n^2 \right] / \mathbb{E} \left[\phi_n^2 \right] < \overline{\theta}_n + \delta' \) and \(\overline{\theta}_n \geq \mathbb{E} \left[\phi_n^2 \right] / \mathbb{E} \left[\phi_n^2 \right] > \theta_n - \delta' \), which implies that \(\overline{\theta}_n - \theta_n > \overline{\theta}_n - \theta_n - 2\delta' > \delta' \). As we have already derived fulfillment of Assumption 3.3.1, Proposition 3.5(i) \(\iff \) (ii) shows that \(\overline{\theta}_n \leq \sup_{h \in \mathcal{H}_n \setminus \{0\}} \frac{\mathbb{E}[h^2]}{\mathbb{E}[h^2]} \leq \|C^{1/2}C^{-1/2}\| L(\mathbb{C}) < \infty \). Define \(\mathcal{H}_n := \mathcal{V}_n \) and, for \(n \geq 2 \), set \(\mathcal{H}_n := \mathbb{R} \oplus \text{span}\{z_1, \ldots, z_{n-1}, \psi_n\} \). By the basis property of \(\{z_j\}_{j \in \mathbb{N}} \) in \(H \), see Lemma 4.1(ii), the so constructed subspaces are admissible, i.e., \(\mathcal{H}_n \subset S_{\text{adm}}^{\mu} \). Since \(h_1^{(n)}, \psi_n \in \text{span} \{ \phi_n, \overline{\omega}_n \} \) and since \(\phi_n, \overline{\omega}_n \) are \(H \)-orthogonal to \(z_1, \ldots, z_{n-1} \), we obtain \(h_1^{(n)} = h_1^{(n)} \), where \(h_1^{(n)} \) is the best linear predictor of \(h(n) \) based on \(\mathcal{H}_n \) and \(\mu \). Thus, by using (4.10) we obtain, for all \(n \in \mathbb{N} \),

\[
\frac{\mathbb{E} \left[(h_1^{(n)} - h(n))^2 \right]}{\mathbb{E} \left[(h_1^{(n)} - h(n))^2 \right]} - 1 \geq \frac{(\overline{\theta}_n - \overline{\theta}_n)^2}{4 \overline{\theta}_n \overline{\theta}_n} > \frac{\delta^2}{3 \overline{\theta}_n^2} \geq \frac{\delta^2}{36 \overline{\theta}_n^2} \geq \frac{\delta^2}{36 \overline{\theta}_n^2} \geq \frac{\delta^2}{36 \|C^{1/2}C^{-1/2}\| L(\mathbb{C})^2},
\]

a contradiction to (3.8) for the sequence \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \in S_{\text{adm}}^{\mu} \), which proves that (3.8) holding for all \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \in S_{\text{adm}}^{\mu} \) implies Assumption 3.3.III. Next, we show that validity of (3.9) for all \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \in S_{\text{adm}}^{\mu} \) also implies that Assumption 3.3.III is satisfied. To this end, suppose that this assumption does not hold. It then again follows from Lemma B.2 (see Appendix B in the Supplementary Material [9]) that there are \(\delta \in (0, \infty) \) and, for all \(n \in \mathbb{N} \), \(\omega_n, \overline{\omega}_n \in [a, \tilde{\alpha}] \) and \(\omega_n, \overline{\omega}_n \in H_n \), linearly independent, such
that \(\left(\frac{\bar{\tau}_{n - \epsilon} - \bar{\tau}_n}{\bar{\tau}_{n - \epsilon} - \bar{\tau}_n} - \frac{\bar{\tau}_n - \bar{\tau}_n}{\bar{\tau}_n - \bar{\tau}_n} \right) < \frac{\delta}{3} \), and \(\bar{\tau}_n - \bar{\tau}_n \geq \delta \) for all \(n \in \mathbb{N} \). Define \(\bar{h}(n) := \mathcal{N} \bar{\tau}_n \in \mathcal{H}^0 \) and \(\bar{h}(n) := \mathcal{J} \bar{\tau}_n \in \mathcal{H}^0 \). Then, for \(\mathcal{H}^* := \mathbb{R} \oplus \text{span}\{z_1, \ldots, z_n\} \subset \mathcal{H} \) and all \(n \in \mathbb{N} \),

\[
\frac{\text{Var}[\bar{h}(n)] - \text{Var}[\bar{h}(n)]}{\text{Var}[\bar{h}(n)] - \text{Var}[\bar{h}(n)]} = \frac{\text{Var}[\bar{h}(n)]}{\text{Var}[\bar{h}(n)]} \geq \frac{\delta}{3}.
\]

Note that, if (3.9) holds for all sequences \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subset \mathcal{S}_{\text{adm}}^\mu \), then, in particular,

\[
\forall \{\mathcal{H}_n\}_{n \in \mathbb{N}} \subset \mathcal{S}_{\text{adm}}^\mu : \lim_{n \to \infty} \left(\sup_{g \in \mathcal{H}_n} \text{Var}[g_n - g] - \inf_{h \in \mathcal{H}_n} \text{Var}[h_n - h] \right) = 0
\]

follows. Therefore, (4.11) contradicts (3.9) for the sequence \(\{\mathcal{H}_n^*\}_{n \in \mathbb{N}} \subset \mathcal{S}_{\text{adm}}^\mu \) and, thus, Assumption 3.3. III is satisfied if (3.9) holds for all \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subset \mathcal{S}_{\text{adm}}^\mu \).

Finally, necessity of Assumption 3.3. III for validity of (3.7) or (3.10) holds for all \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subset \mathcal{S}_{\text{adm}}^\mu \), follows from changing the roles of \(\mu \) and \(\bar{\mu} \): If \(\mu \) and \(\bar{\mu} \) are such that (3.7) or (3.10) holds for every \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subset \mathcal{S}_{\text{adm}}^\mu \), then (3.8) or (3.9) is true for the pair \(\bar{\mu}, \mu \) and every \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subset \mathcal{S}_{\text{adm}}^\mu \). Since necessity of Assumption 3.3. I has already been derived, by Lemma 4.3 we have \(\mathcal{S}_{\text{adm}}^\mu = \mathcal{S}_{\text{adm}}^\mu \) so that the above arguments combined with Lemma B.1 in Appendix B of the Supplementary Material [9] show that Assumption 3.3. III also holds. ☐

PROOF OF THEOREM 3.6. Sufficiency and necessity of Assumptions 3.3. I and 3.3. III for (3.7)–(3.10) to hold for all \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subset \mathcal{S}_{\text{adm}}^\mu \) have been proven in Proposition 4.4 and Lemma 4.5, respectively.

\[\text{Lemma 4.6.} \quad \text{Define the Gaussian measures } \mu_c = \mathcal{N}(0, \mathcal{C}) \text{ and } \mu_s = \mathcal{N}(\mathcal{H} - m, \mathcal{C}), \text{ with corresponding expectation operators } \mathbb{E}_c, \mathbb{E}_s. \text{ Let } h_c, h_s \text{ denote the best linear predictors of } \mathcal{H} \text{ based on } \mathcal{H}_n \in \{\mathcal{H}_n\}_{n \in \mathbb{N}} \subset \mathcal{S}_{\text{adm}}^\mu \text{ and the measures } \mu_c \text{ resp. } \mu_s. \text{ For } n \in \mathbb{N} \text{ and } h \in \mathcal{H}_n, \text{ consider the errors of the predictors, } e_c = e_c(h, n) := h_c - h, e_s = e_s(h, n) := h_s - h. \text{ Then,}
\]

\[\begin{align*}
\mathbb{E}_c \left[e_c^2 \right] - \mathbb{E}_c \left[e_c^2 \right] &= 1 = \mathbb{E}_s \left[e_s^2 \right] - \mathbb{E}_s \left[e_s^2 \right] - 1 = \mathbb{E}_c \left[e_c^2 \right] - \mathbb{E}_c \left[e_c^2 \right] - 1 = \mathbb{E}_c \left[e_c^2 \right] - \mathbb{E}_c \left[e_c^2 \right].
\end{align*}\]

Further, for all \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subset \mathcal{S}_{\text{adm}}^\mu \), this term is bounded, uniformly with respect to \(n \in \mathbb{N} \) and \(h \in \mathcal{H}_n \), if and only if Assumption 3.3. II is satisfied. Under Assumption 3.3. II,

\[\lim_{n \to \infty} \sup_{h \in \mathcal{H}_n} \frac{|\mathbb{E}_c[h_c(h, n)]|^2}{\mathbb{E}_c[e_c(h, n)]^2} = 0 \text{ holds for all } \{\mathcal{H}_n\}_{n \in \mathbb{N}} \subset \mathcal{S}_{\text{adm}}^\mu.\]

\[\text{PROOF. } \text{Let } n \in \mathbb{N} \text{ and } h \in \mathcal{H}_n. \text{ By } \mathcal{H}\text{-orthogonality of } e_c = h_c - h \text{ to } \mathcal{H}_n \text{ we obtain}
\]

\[\mathbb{E}_c \left[e_c^2 \right] - \mathbb{E}_c \left[e_c^2 \right] = \mathbb{E}_c \left[e_s(h, h) - \mathbb{E}_c \left[e_s(h, h) \right] \right] - \mathbb{E}_c \left[e_c e_c \right] = \mathbb{E}_c \left[(h_c - h_c)^2 \right].
\]

Since \(\mu_c \) and \(\mu_s \) have the same covariance operator, we can combine the above equality with (C.1) from Lemma C.1 (see Appendix C in the Supplementary Material [9]) which gives

\[\mathbb{E}_c \left[e_c^2 \right] - \mathbb{E}_c \left[e_c^2 \right] = \mathbb{E}_c \left[(h_c - h_c)^2 \right] = \mathbb{E}_c \left[e_c^2 \right].\]

Noting that \(|\mathbb{E}_c[e_c]| = |\mathbb{E}_c[e_c]| = |\mathbb{E}_c[e_c]| = |\mathbb{E}_c[e_c]| = |\mathbb{E}_c[e_c]| = |\mathbb{E}_c[e_c]| \) due to the identical covariance operators of \(\mu_c, \mu_s \) yields the relation \(\frac{|\mathbb{E}_c[e_c]|}{|\mathbb{E}_c[e_c]|} - 1 = \frac{|\mathbb{E}_c[e_c]|}{|\mathbb{E}_c[e_c]|}.\) Next, again by equality of the covariance operators, we find that \(|\mathbb{E}_c[e_c^2] - \mathbb{E}_c[e_c^2]| = |\mathbb{E}_c[e_c^2]| = |\mathbb{E}_c[e_c^2]| = |\mathbb{E}_c[e_c^2]| \) which completes the proof of (4.12).

Now suppose that Assumption 3.3. II is satisfied and let \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \subset \mathcal{S}_{\text{adm}}^\mu \). Then, we obtain

\[\lim_{n \to \infty} \sup_{h \in \mathcal{H}_n} \frac{|\mathbb{E}_c[h_c(h, n)]|^2}{\mathbb{E}_c[e_c(h, n)]^2} = 0 \text{ as in (4.9) with } \mathcal{C} = \mathcal{C}. \text{ In particular, there exists } K \in (0, \infty) \text{ such that}
\]

\[\sup_{h \in \mathcal{H}_n} \sup_{h \in \mathcal{H}_n} \frac{|\mathbb{E}_c[h_c(h, n)]|^2}{\mathbb{E}_c[e_c(h, n)]^2} \leq K.
\]
Finally, assume that \(m - \bar{m} \notin H^* = C^{1/2}(L_2) \), i.e., Assumption 3.3.II is not satisfied. For \(n \in \mathbb{N} \), define \(H_n = \text{span}\{v_1, \ldots, v_n\} \), where \(\{v_j\}_{j \in \mathbb{N}} \) is the orthonormal basis of \(H \) from Lemma 4.1(i), and let \(H_n^\perp \) be the \(H \)-orthogonal complement of \(H_n \). Since \(m - \bar{m} \notin H^* \) and \(L_2 \) is dense in \(H \), we can find \(\{\mathbf{v}_n\}_{n \in \mathbb{N}} \subset L_2 \setminus \{0\} \) such that \((m - \bar{m}, \mathbf{v}_n)_{L_2} \geq n\|\mathbf{v}_n\|_H \). Furthermore, we may pick \(\mathbf{v}_n \) in \(H_n^\perp \subset H \), since \(\dim(H_n) < \infty \). In summary,

\[
\forall n \in \mathbb{N} \quad \exists \mathbf{v}_n \in L_2 \cap H_n^\perp, \quad \mathbf{v}_n \neq 0 : \quad (m - \bar{m}, \mathbf{v}_n)_{L_2} \geq n\|\mathbf{v}_n\|_H.
\]

By (4.2) \(h^{(n)} := f(\mathbf{v}_n) \in \mathcal{H}_n^0 \) is \(\mathcal{H}_n^0 \)-orthogonal to \(\mathcal{H}_n^0 := \text{span}\{z_1, \ldots, z_n\} \) if \(\{z_j\}_{j \in \mathbb{N}} \) is the orthonormal basis for \(\mathcal{H}_n^0 \) from Lemma 4.1(ii). Therefore, the kriging predictor of \(h^{(n)} \) based on \(\mathcal{H}_n^* := \mathbb{R} \oplus \mathcal{H}_n^0 \) and \(\mu_c = N(0, C) \) vanishes, \(h^{(n),c} = 0 \). Thus, there exist square-summable coefficients \(\{c_j^{(n)}\}_{j > n} \) such that \(h^{(n)} = \sum_{j > n} c_j^{(n)} z_j \) and \(\mathbf{v}_n = \sum_{j > n} c_j^{(n)} v_j \), and we find that

\[
\frac{E_c[|h^{(n),c} - h^{(n)}|^2]}{E_c[|h^{(n)}|^2]} = \frac{E_c[|\sum_{j > n} c_j^{(n)} (Z^0, v_j)_{L_2}|^2]}{(C^0, \mathbf{v}_n)_{L_2}} = \frac{(\bar{m} - m, \mathbf{v}_n)_{L_2}^2}{(C^0, \mathbf{v}_n)_{L_2}} \geq n^2.
\]

Furthermore, \(\{\mathcal{H}_n^*\}_{n \in \mathbb{N}} \in S^\mu_{\text{adm}} \) so that this yields a contradiction. \(\square \)

Proof of Theorem 3.8. In this proof, all references starting with “C” are referring to Appendix C in the Supplementary Material [9]. As shown in (C.2)–(C.5), see Proposition C.2, we can equivalently prove the claim for the pair of measures \(\mu_c = N(0, C) \), \(\mu_\mu = N(\bar{m} - m, C) \) in place of \(\mu = N(m, C) \) and \(\bar{\mu} = N(\bar{m}, \bar{C}) \). Sufficiency of Assumptions 3.3.I–III for each of the assertions (3.11)–(3.14) to hold for all \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \in S^\mu_{\text{adm}} \) is shown in Proposition 4.4.

Conversely, if (3.11) (or (3.12)) holds for \(\mu_c, \mu_\mu \) and all \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \in S^\mu_{\text{adm}} \), then by (C.7) the relation (3.7) (or (3.8)) holds for the pair \(\mu, \bar{\mu} \) and all \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \in S^\mu_{\text{adm}} \). By Lemma 4.5 Assumptions 3.3.I and 3.3.III have to be satisfied. Subsequently, necessity of Assumption 3.3.II for (3.12) follows from (C.8) combined with Lemma 4.6. Since we have already derived Assumption 3.3.I, we may also combine (C.8) with Lemma 4.6 applied for \(\bar{\mu}_c \) and \(\bar{\mu}_\mu \), showing necessity of Assumption 3.3.II for (3.11).

If (3.13) (or (3.14)) holds for \(\mu_c, \mu_\mu \) and all \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \in S^\mu_{\text{adm}} \), then (C.6) combined with Proposition 3.5(i) \(\iff \) (iv), see also Remark C.3, show that Assumption 3.3.I has to be satisfied. Thereafter, (C.6) and Lemma 4.6, (using \(\mu_c, \mu_\mu \) for (3.13) and \(\bar{\mu}_c, \bar{\mu}_\mu \) for (3.14)) show that also Assumption 3.3.II holds. Finally, again the identity in (C.6) implies (3.9) (or (3.10)) for the pair \(\mu, \bar{\mu} \) and all \(\{\mathcal{H}_n\}_{n \in \mathbb{N}} \in S^\mu_{\text{adm}} \) and Assumptions 3.3.III follows from Lemma 4.5. \(\square \)

5. **Simplified necessary and sufficient conditions.** In order to exploit Theorem 3.8 to check if two models provide uniformly asymptotically equivalent linear predictions, one has to verify Assumptions 3.3.I–III. Depending on the form of the covariance operators, this may be difficult. In this section we provide equivalent formulations of Assumptions 3.3.I and III for two important cases: 1. the two covariance operators diagonalize with respect to the same eigenbasis, and 2. \(\varphi, \varphi: \mathcal{X} \times \mathcal{X} \to \mathbb{R} \) are covariance functions of weakly stationary random fields on \(\mathcal{X} \subset \mathbb{R}^d \), a-priori defined on all of \(\mathbb{R}^d \) and with spectral densities \(f, \tilde{f}: \mathbb{R}^d \to [0, \infty) \).

5.1. Common eigenbasis
In the case that the two covariance operators diagonalize with respect to the same eigenbasis, conditions I and III of Assumption 3.3 can be formulated as conditions on the ratios of the eigenvalues. We consider this scenario in the next corollary.

Corollary 5.1. Suppose that \(C, \bar{C} \) are self-adjoint, positive definite, compact operators on \(L_2(\mathcal{X}, \nu_\mathcal{X}) \) which diagonalize with respect to the same orthonormal basis \(\{e_j\}_{j \in \mathbb{N}} \) for \(L_2(\mathcal{X}, \nu_\mathcal{X}) \), i.e., there exist corresponding eigenvalues \(\gamma_j, \bar{\gamma}_j \in (0, \infty), \) \(j \in \mathbb{N} \), accumulating only at zero such that \(C e_j = \gamma_j e_j \) and \(\bar{C} e_j = \bar{\gamma}_j e_j \) for all \(j \in \mathbb{N} \). Then Assumptions 3.3.I and 3.3.III are satisfied if and only if there exists \(a \in (0, \infty) \) such that \(\lim_{j \to \infty} \frac{\gamma_j}{\bar{\gamma}_j} = a \).
PROOF. We start by showing that \(\lim_{j \to \infty} \gamma_j = a \in (0, \infty) \) is sufficient for Assumptions 3.3.I and 3.3.III. By Proposition 3.5, Assumption 3.3.I is equivalent to requiring that \(\mathcal{C}^{1/2} \mathcal{C}^{-1/2} \) is an isomorphism on \(L_2 \). If \(\mathcal{C} \) and \(\mathcal{C} \) admit the same eigenbasis \(\{ e_j \}_{j \in \mathbb{N}} \), then these are also eigenvectors of the self-adjoint, positive definite linear operator \(\mathcal{C}^{-1/2} \mathcal{C}^{-1/2} \) with corresponding eigenvalues \(\{ \gamma_j \}_{j \in \mathbb{N}} \). By assumption this sequence converges. Hence, \(\| \mathcal{C}^{1/2} \mathcal{C}^{-1/2} \|_{L_2}^2 = \sup_{\|v\|_{L_2} = 1} \| \mathcal{C}^{1/2} \mathcal{C}^{-1/2} v \|_{L_2} = \sup_{j \in \mathbb{N}} \| \gamma_j \|_{L_2} = 0, \infty \) follows, and \(\lim_{j \to \infty} \gamma_j = \alpha \) implies that \(\| \mathcal{C}^{1/2} \mathcal{C}^{-1/2} \|_{L_2}^2 = \sup_{j \in \mathbb{N}} \gamma_j = 0, \infty \) by the same argument. Thus, Assumption 3.3.I is satisfied. Furthermore, also Assumption 3.3.III follows, since \(T_\alpha = \mathcal{C}^{-1/2} \mathcal{C}^{-1/2} - \alpha I \) diagonalizes with respect to \(\{ e_j \}_{j \in \mathbb{N}} \) with corresponding eigenvalues \(\{ \gamma_j - \alpha \}_{j \in \mathbb{N}} \) which by assumption accumulate only at zero and, hence, \(T_\alpha \) is compact on \(L_2(\mathcal{X}, \nu_\mathcal{X}) \). Conversely, if Assumptions 3.3.I and 3.3.III are satisfied, then by the latter there exists \(a \in (0, \infty) \) such that \(T_\alpha \) is compact and \(\{ \gamma_j - \alpha \}_{j \in \mathbb{N}} \) is a null sequence, i.e., \(\{ \gamma_j / \gamma_j \}_{j \in \mathbb{N}} \) converges to \(a \in (0, \infty) \).

5.2. Weakly stationary random fields. We consider a connected, compact subset \(\mathcal{X} \) of \(\mathbb{R}^d \) equipped with the Euclidean metric and the Lebesgue measure \(\lambda_d \). For brevity we omit \(\lambda_d \) in the notations \(L_2(\mathcal{X}), L_2(\mathbb{R}^d) \). We assume that the operators \(\mathcal{C}, \mathcal{C} : L_2(\mathcal{X}) \to L_2(\mathcal{X}) \) are induced by continuous, (strictly) positive definite kernels \(\varphi_{\mathcal{X} \times \mathcal{X}}, \tilde{\varphi}_{\mathcal{X} \times \mathcal{X}} \) which are restrictions of translation invariant covariance functions \(\varphi, \tilde{\varphi} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \). Translation invariance of \(\varphi \) implies that there exists an even function \(\varphi_0 : \mathbb{R}^d \to \mathbb{R} \) such that \(\varphi(x, x') = \varphi_0(x - x') \) for all \(x, x' \in \mathbb{R}^d \), and similarly \(\tilde{\varphi}_0 \) is defined for \(\tilde{\varphi} \). We assume \(\varphi_0, \tilde{\varphi}_0 \in L_1(\mathbb{R}^d) \), such that the corresponding spectral densities \(f, \tilde{f} : \mathbb{R}^d \to [0, \infty) \) exist. Recall that the spectral density \(f \) and \(\varphi_0 \) relate via the inversion formula (see e.g., [25, p. 25]): For all \(\omega \in \mathbb{R}^d \), we have

\[
\tag{5.1} f(\omega) = \frac{1}{(2\pi)^d} \langle \mathcal{F} \varphi_0, \omega \rangle = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \exp(-i\omega \cdot x) \varphi_0(x) \, dx.
\]

Using this convention for the Fourier transform \(\mathcal{F} \), its inverse becomes

\[
(\mathcal{F}^{-1} \tilde{f})(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \exp(i\omega \cdot x) \tilde{f}(\omega) \, d\omega, \quad x \in \mathbb{R}^d.
\]

Let the linear operator \(\mathcal{F}_\mathcal{X} : L_2(\mathcal{X}) \to L_2(\mathbb{R}^d) \) be the composition \(\mathcal{F}_\mathcal{X} := \mathcal{F} \circ \mathcal{E}_x^0 \), where \(\mathcal{E}_x^0 \) is the zero extension \(L_2(\mathcal{X}) \ni w \mapsto E_x^0 w \in L_1(\mathbb{R}^d) \cap L_2(\mathbb{R}^d) \) that sets \((E_x^0 w)(x) = 0 \) for all \(x \in \mathbb{R}^d \setminus \mathcal{X} \). We then consider the following subset of the space of complex-valued square-integrable functions \(L_2(\mathbb{R}^d; \mathbb{C}) \), which itself is a vector space over \(\mathbb{R} \),

\[
\mathcal{F}_\mathcal{X}(L_2(\mathcal{X})) = \{ \hat{w} : \mathbb{R}^d \to \mathbb{C} | \exists w \in L_2(\mathcal{X}) : \hat{w} = \mathcal{F}_\mathcal{X} w \} \subset L_2(\mathbb{R}^d; \mathbb{C}),
\]

and define the Hilbert space \(H_f \) (over \(\mathbb{R} \)) as the closure of \(\mathcal{F}_\mathcal{X}(L_2(\mathcal{X})) \) with respect to norm induced by the weighted \(L_2(\mathbb{R}^d; \mathbb{C}) \)-inner product with weight \(f \),

\[
\tag{5.2} (\hat{v}_1, \hat{v}_2)_{H_f} := \int_{\mathbb{R}^d} f(\omega) \hat{v}_1(\omega) \overline{\hat{v}_2(\omega)} \, d\omega, \quad H_f := \mathcal{F}_\mathcal{X}(L_2(\mathcal{X}))^\|\cdot\|_{H_f}.
\]

We recall the Hilbert space \(H = \mathcal{C}^{-1/2}(L_2(\mathcal{X})) \) with inner product \(\langle \cdot, \cdot \rangle_H = \langle \cdot, \cdot \rangle_{L_2(\mathcal{X})} \) from Lemma 4.1(i) and find by invoking (5.1) that, for all \(v_1, v_2 \in L_2(\mathcal{X}) \),

\[
\tag{5.3} (\mathcal{F}_\mathcal{X} v_1, \mathcal{F}_\mathcal{X} v_2)_{H_f} = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \mathcal{F}(\varphi_0)(\omega) \mathcal{F}(\mathcal{F}_\mathcal{X} v_1)(\omega) \overline{\mathcal{F}(\mathcal{F}_\mathcal{X} v_2)(\omega)} \, d\omega
\]

\[
= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \mathcal{F}(\varphi_0 * (E_x^0 v_1))(\omega) \overline{\mathcal{F}(E_x^0 v_2)(\omega)} \, d\omega
\]

\[
= \langle \varphi_0 * (E_x^0 v_1), E_x^0 (v_2) \rangle_{L_2(\mathbb{R}^d)} = \langle \mathcal{C} v_1, v_2 \rangle_{L_2(\mathcal{X})} = \langle v_1, v_2 \rangle_H.
\]
By density of $L_2(\mathcal{X})$ in H and of $\mathcal{F}_X(L_2(\mathcal{X}))$ in H_f, \mathcal{F}_X thus admits a unique continuous linear extension to an inner product preserving isometric isomorphism between H and H_f. Its inverse $\mathcal{F}_X^{-1} : H_f \rightarrow H$ is the unique continuous linear extension of $R_X \circ \mathcal{F}^{-1} : \mathcal{F}_X(L_2(\mathcal{X})) \rightarrow L_2(\mathcal{X}) \subset H$, where $R_X : L_2(\mathbb{R}^d) \rightarrow L_2(\mathcal{X})$ denotes the restriction to \mathcal{X}.

Proposition 5.2. Suppose that the self-adjoint, positive definite, compact operators $C, \tilde{C} : L_2(\mathcal{X}) \rightarrow L_2(\mathcal{X})$ are induced by restrictions (to $\mathcal{X} \times \mathcal{X}$) of translation invariant covariance functions $\varrho, \tilde{\varrho} : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$, which have spectral densities $f, \tilde{f} : \mathbb{R}^d \rightarrow [0, \infty)$ defined via (5.1). Then, Assumptions 3.3.1 and 3.3.3 are satisfied if and only if:

(I') The spaces H_f and H_f are isomorphic with equivalent norms, i.e., there exist constants $0 < k \leq K < \infty$ such that

$$k\|\hat{v}\|^2_{H_f} \leq \int_{\mathbb{R}^d} \tilde{f}(\omega)|\hat{v}(\omega)|^2 \, d\omega \leq K\|\hat{v}\|^2_{H_f}, \quad \forall \hat{v} \in \mathcal{F}_X(L_2(\mathcal{X})).$$

(III') There exists $a \in (0, \infty)$ such that the linear operator $\tilde{T}_a := S - aI_{H_f}$ is compact on H_f, where I_{H_f} denotes the identity on H_f and $S : H_f \rightarrow H_f$ is defined by

$$\langle S\hat{v}_1, \hat{v}_2 \rangle_{H_f} = \int_{\mathbb{R}^d} \tilde{f}(\omega)\hat{v}_1(\omega)\overline{\hat{v}_2(\omega)} \, d\omega, \quad \forall \hat{v}_1, \hat{v}_2 \in H_f.$$

Proof. (I') Let $\hat{v}_1, \hat{v}_2 \in \mathcal{F}_X(L_2(\mathcal{X}))$ and $v_1, v_2 \in L_2(\mathcal{X})$ be such that $\hat{v}_1 = \mathcal{F}_X v_1$ and $\hat{v}_2 = \mathcal{F}_X v_2$. Applying the inversion formula (5.1) for \tilde{f} gives, similarly as in (5.3),

$$\langle \tilde{C}v_1, v_2 \rangle_{L_2(\mathcal{X})} = \int_{\mathbb{R}^d} \frac{(\mathcal{F}_{\tilde{f}}0(\omega)}{(2\pi)^d} \hat{v}_1(\omega)\overline{\hat{v}_2(\omega)} \, d\omega = \int_{\mathbb{R}^d} \tilde{f}(\omega)\hat{v}_1(\omega)\overline{\hat{v}_2(\omega)} \, d\omega.$$

Therefore, (5.4) is equivalent to

$$k\|Cv, v\|_{L_2(\mathcal{X})} \leq \langle \tilde{C}v, v \rangle_{L_2(\mathcal{X})} \leq K\|Cv, v\|_{L_2(\mathcal{X})}$$

holding for all $v \in L_2(\mathcal{X})$, which by density of $L_2(\mathcal{X})$ in H can be reformulated as the relation

$$\|\tilde{C}^{1/2}C^{-1/2}u\|_{L_2(\mathcal{X})} \leq \|u\|_{L_2(\mathcal{X})}$$

for all $u \in L_2(\mathcal{X})$ with $\|u\|_{L_2(\mathcal{X})} = 1$, i.e., $\tilde{C}^{1/2}\tilde{C}^{-1/2}$ is an isomorphism on $L_2(\mathcal{X})$. By Proposition 3.5(i) \Leftrightarrow (ii) this is equivalent to Assumption 3.3.1.

(III') We proceed as illustrated below: We prove that T_a can be expressed as the composition $T_a = C^{1/2} \mathcal{F}_X^{-1} \tilde{T}_a \mathcal{F}_X C^{-1/2}$. Since $C^{-1/2} : L_2(\mathcal{X}) \rightarrow H$ and $\mathcal{F}_X : H \rightarrow H_f$ are inner product preserving isometric isomorphisms, this shows that $T_a \in \mathcal{K}(L_2(\mathcal{X}))$ is equivalent to compactness of \tilde{T}_a on H_f.

Part (I') implies that $b(\hat{v}_1, \hat{v}_2) := \int_{\mathbb{R}^d} \tilde{f}(\omega)\hat{v}_1(\omega)\overline{\hat{v}_2(\omega)} \, d\omega$ defines a continuous, coercive bilinear form on the real Hilbert space H_f. Thus, for every $\hat{v}_1 \in H_f$, existence and uniqueness of $S\hat{v}_1$ satisfying (5.5) follows from the Riesz representation theorem, and $S : H_f \rightarrow H_f$ is well-defined, linear and bounded. For $v_1, v_2 \in L_2(\mathcal{X})$ and $\hat{v}_1 := \mathcal{F}_X v_1, \hat{v}_2 := \mathcal{F}_X v_2$, we have

$$\langle (\tilde{C}^{1/2} - aI_{H_f})v_1, v_2 \rangle_H = \langle \tilde{C} - aC \rangle v_1, v_2 \rangle_{L_2(\mathcal{X})} = \int_{\mathbb{R}^d} \tilde{f}(\omega) - af(\omega)\hat{v}_1(\omega)\overline{\hat{v}_2(\omega)} \, d\omega.$$
\[(S - a T_a H) \hat{v}_1, \hat{v}_2)_{H_f} = (\hat{T}_a \hat{v}_1, \hat{v}_2)_{H_f} = (F_{X'}^{-1} \hat{T}_a F_{X'} v_1, v_2)_{H_f},\]

where we used (5.2), (5.3) and (5.6). By density of \(L_2(\mathcal{X}) \) in \(H \) and continuity of \(F_{X'}^{-1} \hat{T}_a F_{X'} \) on \(H \), this equality holds also for all \(v_1, v_2 \in H \). Consequently, we obtain the chain of identities \(T_a = C^{-1/2} \tilde{C} C^{-1/2} - a \mathcal{L} = C^{1/2} (C^{-1/2} \tilde{C} - a T_a H) C^{-1/2} = C^{1/2} F_{X'}^{-1} \hat{T}_a F_{X'} C^{-1/2}. \)

Remark 5.3. We emphasize that the Hilbert spaces \(\mathcal{H}_0 \) in (2.4), \(H \) from Lemma 4.1(i) and \(H_f \) in (5.2) are mutually isomorphic, with inner product preserving isomorphisms \(\mathcal{J}: H \to \mathcal{H}_0 \) and \(\mathcal{F}_{X'}: H \to H_f. \)

For two continuous functions \(g, \tilde{g}: \mathbb{R}^d \to [0, \infty) \), the notation \(g \asymp \tilde{g} \) indicates that there exist \(k, K \in (0, \infty) \) such that the relations \(k g(\omega) \leq \tilde{g}(\omega) \leq K g(\omega) \) hold for all \(\omega \in \mathbb{R}^d. \)

Corollary 5.4. Suppose the setting of Proposition 5.2.

(i') **Assumption 3.3.1** is satisfied whenever \(f \asymp \tilde{f} \).

(ii') Suppose that \(g_0: \mathbb{R}^d \to \mathbb{R} \) related to \(f: \mathbb{R}^d \to [0, \infty) \) via (5.1) is not infinitely differentiable in at least one Cartesian coordinate direction. Then, in either of the cases
\[
\frac{\tilde{f}^{(r)}(\omega)}{f^{(r)}(\omega)} \to 0 \text{ or } \frac{\tilde{f}^{(r)}(\omega)}{f^{(r)}(\omega)} \to \infty \text{ as } \|\omega\|_{\mathbb{R}^d} \to \infty, \text{ Assumption 3.3.1 is not satisfied.}
\]

Proof. (i') Clearly, the relation \(f \asymp \tilde{f} \) in (i') implies that (5.4) holds. Therefore, by Proposition 5.2(i') Assumption 3.3.1 is satisfied.

(ii') Without loss of generality, we may assume that \(\mathcal{X} \) contains an open subset containing the origin and pick \(L \in (0, \infty) \) with \([-L^{-1}, L^{-1}]^d \subseteq \mathcal{X} \). By assumption on the differentiability of \(g_0 \), there exist \(j \in \{1, \ldots, d\} \) and \(p \in \mathbb{N} \) such that \(\int_{\mathbb{R}} f_j(\omega_j) \omega_j^{2p} \, d\omega_j = \infty \), where
\[
f_j: \mathbb{R} \to [0, \infty), \quad f_j(\omega_j) := \int_{\mathbb{R}^{d-1}} f(\omega_1, \ldots, \omega_j, \ldots, \omega_d) \, d\lambda_{d-1}(\omega_1, \ldots, \omega_{j-1}, \omega_{j+1}, \ldots, \omega_d).
\]

Let \(r(\cdot) \) be the rectangular function, defined as \(r(x) = 1 \) for \(|x| \leq \frac{1}{2} \) and \(r(x) = 0 \) for \(|x| > \frac{1}{2} \). For \(n \in \mathbb{N} \) such that \(n > pL \), consider the forward difference operator \(\Delta_n: L_2(\mathbb{R}) \to L_2(\mathbb{R}), \Delta_n g(x) := n(g(x + 1/n) - g(x)) \), and set
\[
v_n(x) := n^d \Delta_n^p \left(\frac{r(nx - \frac{1}{2})}{r(nx - \frac{1}{2})} \prod_{k \neq j} r(nx_k - \frac{1}{2}) \right), \quad n \in \mathbb{N}, \ n > pL.
\]

Each function \(v_n \) has compact support in \([-L^{-1}, L^{-1}]^d \subseteq \mathcal{X} \) and \(v_n \in L_2(\mathcal{X}) \). Furthermore, its Fourier transform is \(\hat{v}_n(\omega) := (F_{X'} v_n)(\omega) = n^p (e^{i \omega_j / n} - 1)^p \prod_{k=1}^d e^{-i \omega_k / 2} \sin \left(\frac{\omega_k}{2\pi} \right), \) where \(\sin(x) := \frac{\sin(x \pi)}{\pi x} \) for all \(x \in \mathbb{R} \), and by basic trigonometric identities
\[
|\hat{v}_n(\omega)|^2 = \left[2n \sin \left(\frac{\omega_j}{2\pi} \right) \right]^{2p} \prod_{k=1}^d \sin \left(\frac{\omega_k}{2\pi} \right), \quad (5.7)
\]

follows. Fix \(\ell \in \mathbb{N} \). By assumption there exists a constant \(M_\ell \in (0, \infty) \) such that one of the following holds for all \(\omega \) with \(\|\omega\|_{\mathbb{R}^d} > M_\ell: a) \tilde{f}(\omega) < \frac{1}{\ell} f(\omega) \) or \(b) \tilde{f}(\omega) > 2 \ell f(\omega). \) Next, define the infinite strip \(A_\ell := \{ \omega \in \mathbb{R}^d: |\omega_j| \leq M_\ell \}. \) Then, for every \(n > pL \), we find by (5.7)
\[
\int_{A_\ell} f(\omega) |\hat{v}_n(\omega)|^2 \, d\omega \leq \int_{A_\ell} f(\omega) \omega_j^{2p} \, d\omega \leq M_\ell^{2p} \int_{\mathbb{R}^d} f(\omega) \, d\omega = M_\ell^{2p} g_0(0),
\]

since \(2n \sin \left(\frac{\omega_j}{2\pi} \right) = \sin \left(\frac{\omega_j}{2\pi} \right) \omega_j \) and \(\|\sin(x)\| \leq 1 \) for all \(x \in \mathbb{R} \). By the same arguments, \(\int_{A_\ell} \tilde{f}(\omega) |\hat{v}_n(\omega)|^2 \, d\omega \leq M_\ell^{2p} g_0(0) \) holds for all \(n > pL \). In addition, for every \(n \in \mathbb{N} \) with \(n > \max\{pL, M_\ell / \pi \} \), define the set
\[
B_\ell^n := \{ \omega \in \mathbb{R}^d: M_\ell < |\omega_j| < n\pi, \ |\omega_k| < n\pi \ \forall k \neq j \} \subset A_\ell^n := \mathbb{R}^d \setminus A_\ell.
\]
Since \(\text{sinc}^2(\theta/(2\pi n)) > (2/\pi)^2 \) for \(\theta \in (-\pi n, \pi n) \), we obtain again by (5.7) that

\[\int_{B_{\ell}} f(\omega)|\hat{v}_n(\omega)|^2 d\omega > \frac{A_{d-p}}{\pi^{d'}} \int_{B_{\ell}} f(\omega) \left[2n \sin \left(\frac{\omega_j}{2n} \right) \right]^{2p} d\omega > \frac{A_{d-p}}{\pi^{2(d+p)}} \int_{B_{\ell}} f(\omega) \omega_j^{2p} d\omega. \]

Furthermore, note that \(\lim_{n \to \infty} \int_{B_{\ell}} f(\omega) \omega_j^{2p} d\omega = \int_{A_{\ell}} f(\omega) \omega_j^{2p} d\omega = \infty \), since the integral \(\int_{\mathbb{R}^d} f(\omega) \omega_j^{2p} d\omega = \int_{\mathbb{R}} f_j(\omega_j) \omega_j^{2p} d\omega_j = \infty \) diverges and \(\int_{A_\ell} f(\omega) \omega_j^{2p} d\omega \leq M_{2p}^\omega (0,0) \) is finite. For this reason, there exists an integer \(n_0 = n_0(\ell) > \max\{pL, M_\ell/\pi\} \) such that \(\int_{A_\ell} f(\omega)|\hat{v}_n(\omega)|^2 d\omega > \int_{B_{\ell}} f(\omega)|\hat{v}_n(\omega)|^2 d\omega > 2\ell M_{2p}^\omega \max\{\theta(0), \tilde{\theta}(0)\} \),

for all \(n > n_0 \). We then obtain, for each \(n \geq n_0 \), in case a) the estimate

\[\frac{\int_{B_\ell} \tilde{f}(\omega)|\hat{v}_n(\omega)|^2 d\omega}{\|\hat{v}_n\|_{L^2}} \leq \frac{\int_{A_\ell} \tilde{f}(\omega)|\hat{v}_n(\omega)|^2 d\omega}{\int_{A_\ell} \tilde{f}(\omega)|\hat{v}_n(\omega)|^2 d\omega + \int_{A_\ell} \tilde{f}(\omega)|\hat{v}_n(\omega)|^2 d\omega} < \ell^{-1}, \]

and in case b) we have, for all \(n \geq n_0 \),

\[\frac{\int_{B_\ell} \tilde{f}(\omega)|\hat{v}_n(\omega)|^2 d\omega}{\|\hat{v}_n\|_{L^2}} \geq \frac{\int_{A_\ell} \tilde{f}(\omega)|\hat{v}_n(\omega)|^2 d\omega}{\int_{A_\ell} \tilde{f}(\omega)|\hat{v}_n(\omega)|^2 d\omega + \int_{A_\ell} \tilde{f}(\omega)|\hat{v}_n(\omega)|^2 d\omega} \geq \frac{\ell}{\ell + 1} \geq \ell. \]

Since \(\ell \in \mathbb{N} \) was arbitrary, in case a) there is no constant \(k \in (0, \infty) \) such that the lower bound in (5.4) holds and in case b) we cannot find \(K \in (0, \infty) \) for the upper bound in (5.4). Thus, the result follows by Proposition 5.2(1').

In what follows, we let \(\mathcal{W}_{\Pi_R} \) denote the class of Fourier transforms \(\mathcal{F}v \) of square-integrable functions \(v \in L^2(\mathbb{R}^d; \mathbb{C}) \) with support \(\text{supp}(v) \subseteq \Pi_R \) inside the bounded parallelepiped \(\Pi_R = \{ x \in \mathbb{R}^d : -R_j \leq x_j \leq R_j, j = 1, \ldots, d \} \).

Corollary 5.5. Suppose the setting of Proposition 5.2, \(f \asymp \tilde{f} \), and furthermore that there exists \(\varphi_0 \in \mathcal{W}_{\Pi_R} \) such that \(f \asymp |\varphi_0|^2 \). Then Assumptions 3.3.1 and 3.3.3 are satisfied whenever there exists a constant \(a \in (0, \infty) \) such that \(\frac{\tilde{f}(\omega)}{f(\omega)} \to a \) as \(\|\omega\|_{\mathbb{R}^d} \to \infty \).

Proof. By Corollary 5.4(i') \(f \asymp \tilde{f} \) implies that Assumption 3.3.1 holds.

Next, recall the bounded linear operator \(S : H_f \to H_f \) from (5.5) and, for \(\ell \in \mathbb{N} \), define the self-adjoint linear operator \(\tilde{T}_\ell^a : H_f \to H_f \) similarly via

\[(\tilde{T}_\ell^a \hat{v}_1, \hat{v}_2)_{H_f} = \int_{B_\ell} \tilde{f}(\omega) \hat{v}_1(\omega) \hat{v}_2(\omega) d\omega \quad \forall \hat{v}_1, \hat{v}_2 \in H_f, \]

where \(B_\ell := \{ w \in \mathbb{R}^d : \|\omega\|_{\mathbb{R}^d} < \ell \} \) is the ball around the origin with radius \(\ell \). By Proposition 5.2(1') \(\tilde{T}_\ell^a \) is bounded with \(\|\tilde{T}_\ell^a\|_{L(H_f)} \leq a + \|S\|_{L(H_f)} \) for all \(\ell \in \mathbb{N} \). We now proceed in two steps: We first show that, for every \(\ell \in \mathbb{N} \), \(\tilde{T}_\ell^a \) is compact on \(H_f \). Secondly, we prove convergence \(\lim_{\ell \to \infty} \|\tilde{T}_\ell^a - \tilde{T}_a\|_{L(H_f)} = 0 \), which implies that \(\tilde{T}_\ell = S \circ (\ell - a I_{H_f}) \) is compact on \(H_f \), since \(K(H_f) \) is closed in \(L(H_f) \). Then, Assumption 3.3.3 holds by Proposition 5.2(3(II')). By Proposition 5.2(1') \(H_f \) and \(H_{|\varphi_0|^2} \) are isomorphic and \(c \|\hat{v}\|_{H_f} \leq \|\hat{v}\|_{H_{|\varphi_0|^2}} \leq C \|\hat{v}\|_{H_f} \) for some constants \(c, C \in (0, \infty) \) independent of \(\hat{v} \in H_f \). For this reason, the operator \(\tilde{T}_\ell^a \) is...
compact on \(H_f \) if and only if it is compact on \(H_{|\varphi_0|^2} \). To see that, for every \(\ell \in \mathbb{N} \), the operator \(\hat{T}_a^{\ell} \) is compact on \(H_{|\varphi_0|^2} \), we prove the stronger result that \(\hat{T}_a^{\ell} \) is Hilbert–Schmidt on \(H_{|\varphi_0|^2} \). Let \(\{\hat{v}_j\}_{j \in \mathbb{N}} \) be an orthonormal basis for \(H_{|\varphi_0|^2} \). Then, we note that the relations \(f \propto |\varphi_0|^2 \) imply equality of the supports, \(\text{supp}(f) = \text{supp}(f_0) = \text{supp}(\varphi_0) \), and estimate
\[
C^{-1} \sum_{j \in \mathbb{N}} \|\hat{T}_a^{\ell} \hat{v}_j\|_{H_{|\varphi_0|^2}}^2 \leq \sum_{j \in \mathbb{N}} \|\hat{T}_a^{\ell} \hat{v}_j\|_{H_f}^2 = \sum_{j \in \mathbb{N}} \sup_{\|\hat{w}\|_{H_{|\varphi_0|^2}} = 1} |(\hat{T}_a^{\ell} \hat{v}_j, \hat{w})_{H_f}|^2
\]
\[
= \sum_{j \in \mathbb{N}} \sup_{\|\hat{w}\|_{H_{|\varphi_0|^2}} = 1} \left| \int_{\text{supp}(\varphi_0) \cap B_\ell} \frac{\hat{f}(\omega) - a f(\omega)}{|\varphi_0(\omega)|^2} |\varphi_0(\omega)|^2 \hat{v}_j(\omega) \overline{\hat{w}(\omega)} \, d\omega \right|^2
\]
\[
\leq \sum_{j \in \mathbb{N}} \sup_{\|\hat{w}\|_{H_{|\varphi_0|^2}} = 1} \left| \int_{\text{supp}(\varphi_0) \cap B_\ell} \frac{\hat{f}(\omega) - a f(\omega)}{|\varphi_0(\omega)|^2} |\varphi_0(\omega)|^2 |\hat{v}_j(\omega)|^2 \, d\omega \right|^2
\]
\[
\leq C \sup_{\omega \in \text{supp}(\varphi_0)} \left| \frac{\hat{f}(\omega) + a f(\omega)}{|\varphi_0(\omega)|^2} \right|^2 \int_{\text{supp}(\varphi_0) \cap B_\ell} \frac{\hat{f}(\omega) + a f(\omega)}{|\varphi_0(\omega)|^2} |\varphi_0(\omega)|^2 |\hat{v}_j(\omega)|^2 \, d\omega.
\]
Since \(f \propto |\varphi_0|^2 \) and \(f \propto \hat{f} \), the supremum in this bound is finite. Furthermore, as \(\varphi_0 \in \mathcal{W} \Pi_\alpha \) by [19, Lemma on p. 34] we obtain the bound
\[
|\varphi_0(\omega)|^2 \sum_{j \in \mathbb{N}} |\hat{v}_j(\omega)|^2 \leq C_{R, K}, \quad \text{where} \quad C_{R, K} := \prod_{j=1}^d \frac{(R_j + K_j)}{\pi},
\]
and \(\Pi_K \) is a parallelepiped enclosing the compact set \(\mathcal{X} \subseteq \Pi_K \). Consequently,
\[
\sum_{j \in \mathbb{N}} \|\hat{T}_a^{\ell} \hat{v}_j\|_{H_{|\varphi_0|^2}}^2 \leq C^2(2\ell)^d C_{R, K} \sup_{\omega \in \text{supp}(\varphi_0)} \left| \frac{\hat{f}(\omega) + a f(\omega)}{|\varphi_0(\omega)|^2} \right|^2 < \infty,
\]
i.e., for every \(\ell \in \mathbb{N} \), the operator \(\hat{T}_a^{\ell} \) is Hilbert–Schmidt on \(H_{|\varphi_0|^2} \) and, thus, compact on \(H_f \).

Finally, let \(\varepsilon \in (0, \infty) \) and \(\ell_\varepsilon \in \mathbb{N} \) be such that \(\sup_{\omega \in B_{\ell_\varepsilon}} |\hat{f}(\omega) - a| < \varepsilon \) for all \(\ell \geq \ell_\varepsilon \), where \(B_{\ell_\varepsilon} := \mathbb{R}^d \setminus B_{\ell_\varepsilon} \). Then, for every \(\ell \geq \ell_\varepsilon \) and all \(\hat{v}_1, \hat{v}_2 \in H_f \),
\[
((\hat{T}_a - \hat{T}_a^{\ell}) \hat{v}_1, \hat{v}_2)_{H_f} = \int_{B_{\ell_\varepsilon}} (\hat{f}(\omega) - a f(\omega)) \hat{v}_1(\omega) \overline{\hat{v}_2(\omega)} \, d\omega \leq \varepsilon \|\hat{v}_1\|_{H_f} \|\hat{v}_2\|_{H_f}.
\]
Thus, \(\lim_{\ell \to \infty} \|\hat{T}_a^{\ell} - \hat{T}_a\|_{L(H_f)} = 0 \) and \(\hat{T}_a \) is compact on \(H_f \).

\section{Applications.} In the following we exemplify the results of Section 3 and Section 5 by three specific applications. Corollary 5.4 and Corollary 5.5 can be used to check for uniformly asymptotically optimal linear prediction in the case of weakly stationary processes on compact subsets of \(\mathbb{R}^d \), using their spectral densities. As an explicit example we consider the Matérn covariance family in Section 6.1. Corollary 5.1 is applicable, e.g., to periodic random fields on \(\mathcal{X} = [0, 1]^d \) as considered by Stein [23], see Section 6.2. Moreover, as Theorem 3.8 it also holds for random fields on more general domains. As a further illustration we consider an application on the sphere \(\mathcal{X} = S^2 \) in Section 6.3.

\subsection{The Matérn covariance family.} The Matérn covariance function \(\varrho|_{\mathcal{X} \times \mathcal{X}} \) on \(\mathcal{X} \subseteq \mathbb{R}^d \) with parameters \(\sigma, \nu, \kappa \in (0, \infty) \), see Example 2.1(a), has the spectral density
\[
(6.1) \quad f_M(\omega) = \frac{1}{(2\pi)^d} (F \varrho_M)(\omega) = \frac{\Gamma(\nu + d/2)}{\Gamma(\nu) \pi^{d/2}} \frac{\sigma^2 \kappa^{2\nu}}{(\kappa^2 + \|\omega\|^2_{\mathbb{R}^d})^{\nu + d/2}}, \quad \omega \in \mathbb{R}^d,
\]
cf. [25, Equation (32) on p. 49]. Assume that \(\tilde{\varrho} \) is a further Matérn covariance function with parameters \(\tilde{\sigma}, \tilde{\nu}, \tilde{\kappa} \in (0, \infty) \) and corresponding spectral density \(\tilde{f}_M \). Since
\[
\frac{\tilde{f}_M(\omega)}{f_M(\omega)} = \frac{\Gamma(\tilde{\nu} + d/2)}{\Gamma(\tilde{\nu})} \frac{\sigma^2 \kappa^{2\tilde{\nu}}}{\tilde{\sigma}^2 \kappa^{2\tilde{\nu}}} \frac{\Gamma(\nu + d/2)}{\Gamma(\nu + d/2)} \frac{\kappa^{2\nu}}{(\kappa^2 + \|\omega\|^2_{\mathbb{R}^d})^{\nu + d/2}}, \quad \omega \in \mathbb{R}^d,
\]
we conclude with Corollary 5.4(ii') that Assumption 3.3.I can only be satisfied if \(\tilde{\nu} = \nu \). In this case, \(f_M \approx \tilde{f}_M \) and, since by [10, Remark 4.1] also \(f_M \approx |\varphi| |^2 \) holds for some \(\varphi \in \mathcal{W}_{11n} \) and some parallelepiped \(\mathbf{R} \), Corollary 5.5 is applicable and shows that Assumptions 3.3.I and 3.3.III hold, with \(a = \frac{\nu^2}{\pi \nu^2} \) in (3.5). Thus, misspecifying the second order structure \((0, \varrho)\) by \((0, \widetilde{\varrho})\) yields uniformly asymptotically optimal linear prediction if and only if \(\nu = \tilde{\nu} \). For equivalence of the corresponding Gaussian measures, \(a = 1 \) is necessary, i.e., the microergodic parameter \(\sigma^2 \kappa^{2\nu} \) has to coincide for the two models. This is in accordance with the identifiability of this parameter under infill asymptotics, see [28].

6.2. Periodic random fields. A stochastic process \(\{Z(x)\}_{x \in \mathcal{X}} \) indexed by \(\mathcal{X} := [0, 1]^d \) is said to be weakly periodic if its mean value function \(E[Z] = m \) is constant on \([0, 1]^d \) and, in addition, its covariance function \(\rho(x, x') \) only depends on the difference \(x - x' \), where the difference is taken modulo 1 in each coordinate (see [23]). Let \(\mathbb{Z}_+^d \) denote all elements \(k = (k_1, \ldots, k_d)^\top \in \mathbb{Z}_+^d \) such that at least one element in the vector is nonzero, and the first nonzero component is positive. A weakly periodic process admits the series expansion
\[
Z(x) = X_0 + \sum_{k \in \mathbb{Z}_+^d} \left[X_k^e \cos(2\pi k \cdot x) + X_k^s \sin(2\pi k \cdot x) \right],
\]
where \(X_0, X_k^e, X_k^s \) are pairwise uncorrelated random variables such that \(E[X_0] = E[Z] = m \) and, for all \(k \in \mathbb{Z}_+^d \), one has \(E[X_k^e] = E[X_k^s] = 0 \) as well as \(E[|X_k^e|^2] = E[|X_k^s|^2] \). Define \(f : \mathbb{Z}_+^d \to [0, \infty) \) by \(f(0) := \text{Var}[X_0], f(k) := \frac{1}{2} \text{Var}[X_k^e] + \frac{1}{2} \text{Var}[X_k^s] \) for \(k \in \mathbb{Z}_+^d \), and \(f(-k) = f(k) \). Then, we can represent the covariance function of \(Z \) as
\[
\rho(x, x') = \sum_{k \in \mathbb{Z}_+^d} f(k) \left[\cos(2\pi k \cdot x) \cos(2\pi k \cdot x') + \sin(2\pi k \cdot x) \sin(2\pi k \cdot x') \right]
= \sum_{k \in \mathbb{Z}_+^d} f(k) \cos(2\pi k \cdot (x - x')) := \rho_0(x - x').
\]
For this reason, \(f \) can be viewed as the spectral density with respect to the counting measure on \(\mathbb{Z}_+^d \). It is not difficult to show that the set
\[
\{1, e_k^e, e_k^s : k \in \mathbb{Z}_+^d \}, \quad e_k^e(x) := \sqrt{2} \cos(2\pi k \cdot x), \quad e_k^s(x) := \sqrt{2} \sin(2\pi k \cdot x),
\]
forms an orthonormal basis for \(L_2([0, 1]^d) \). Moreover, it is an eigenbasis of the covariance operator with kernel \(\rho_0 \). Indeed, \(\int_{\mathcal{X}} \rho(x, x') e_k^s(x') \, dx' = f(0) \) and
\[
\forall k \in \mathbb{Z}_+^d : \int_{\mathcal{X}} \rho(x, x') e_k^s(x') \, dx' = f(k) e_k^s(x), \quad \mu \in \{e, s\}.
\]
Since \(\rho_0(0) = \sum_{k \in \mathbb{Z}_+^d} f(k) < \infty \) and \(f(k) \geq 0 \), it is clear that \(f(k) \) accumulates only at zero. Thus, for any two weakly periodic random fields on \([0, 1]^d \) with corresponding spectral densities \(f, \tilde{f} : \mathbb{Z}_+^d \to [0, \infty) \) defined as above, we are in the setting of Corollary 5.1: Assumptions 3.3.I and 3.3.III are satisfied if and only if \(\tilde{f}(k) / f(k) \to a \) for some \(a \in (0, \infty) \) as \(|k| \to \infty \). This result holds without any further assumptions on the spectral densities, and can be viewed as a version of [25, p. 102, Theorem 10] for periodic random fields.

6.3. Random fields on the sphere. Due to the popularity of the Matérn covariance family on \(\mathbb{R}^d \) (see Example 2.1(a) and Section 6.1) it is highly desirable to have a corresponding covariance model also on the sphere \(\mathbb{S}^2 \). A simple remedy for this is to define the covariance function as in Example 2.1(c), i.e., via the chordal distance \(d_{\mathbb{R}^2}(x, x') = \|x - x'|_{\mathbb{R}^2} \). One reason for why this is a common choice is that the (more suitable) great circle distance \(d_{\mathbb{S}^2}(x, x') = \arccos((x, x')_{\mathbb{R}^2}) \) results in a kernel \(\rho \) which is (strictly) positive definite only for \(\nu \leq 1 / 2 \), see Example 2.1(b) and [6]. As this severely limits the flexibility of the model, several authors have suggested alternative “Matérn-like” covariances on \(\mathbb{S}^2 \).
Guinness and Fuentes [7] proposed the Legendre–Matérn covariance,

\[\varrho_1(x, x') = \sum_{\ell=0}^{\infty} \frac{\sigma_1^2}{(\kappa_1^2 + \ell^2)^{\nu_1+1/2}} P_\ell \left(\frac{\cos d_{R^2}(x, x')}{r_1} \right), \quad x, x' \in S^2, \]

where \(\sigma_1, \nu_1, \kappa_1 \in (0, \infty) \) are model parameters and \(P_\ell : [-1, 1] \to \mathbb{R} \) is the \(\ell \)-th Legendre polynomial, i.e.,

\[P_\ell(y) = 2^{-\ell} \frac{d^\ell}{dy^\ell} (y^2 - 1)^\ell, \quad y \in [-1, 1], \quad \ell \in \mathbb{N}_0 := \{0, 1, 2, \ldots\}. \]

This choice is motivated firstly by the Legendre polynomial representation of positive definite functions on \(S^2 \) (see [17]) and secondly by the fact that the spectral density \(f_M(\omega) \) for the Matérn covariance on \(\mathbb{R}^d \) is proportional to \(\sigma^2 \nu (\|\omega\|_{\mathbb{R}^d}^2)^{-2d/2} \), see (6.1). However, note that the parameter \(\sigma_1^2 \) in (6.2) is not the variance since \(\varrho_1(x, x) = \sigma_1^2 \sum_{\ell=0}^{\infty} (\kappa_1^2 + \ell^2)^{-\nu_1-1/2} \).

Another plausible way of defining a Matérn model on \(S^2 \) is to use the stochastic partial differential equation (SPDE) representation of Gaussian Matérn fields derived by Whittle [27], according to which a centered Gaussian Matérn field \(\{Z^0(x) : x \in \mathbb{R}^d\} \) can be viewed as a solution to the SPDE

\[(\kappa^2 - \Delta)^{\nu/2} (\tau Z^0) = \mathcal{W} \quad \text{on} \quad \mathbb{R}^d, \]

where the parameter \(\tau \in (0, \infty) \) controls the variance of \(Z^0 \), \(\mathcal{W} \) is Gaussian white noise, and \(\Delta \) is the Laplacian. Lindgren, Rue and Lindström [12] proposed Gaussian Matérn fields on the sphere as solutions to (6.3) formulated on \(S^2 \) instead of \(\mathbb{R}^d \). In this case, \(\Delta \) is the Laplace–Beltrami operator.

In order to state the corresponding covariance function \(\varrho_2 : S^2 \times S^2 \to \mathbb{R} \), we introduce the spherical coordinates \((\vartheta, \varphi) \in [0, \pi] \times [0, 2\pi) \) of a point \((x_1, x_2, x_3)^T \in \mathbb{R}^3 \) on \(S^2 \) by \(\vartheta = \arccos(x_3) \) and \(\varphi = \arccos(x_1(x_1^2 + x_2^2)^{-1/2}) \). For all \(\ell \in \mathbb{N}_0 \) and \(m \in \{-\ell, \ldots, \ell\} \), we then define the (complex-valued) spherical harmonic \(Y_{\ell,m} : S^2 \to \mathbb{C} \) as (see [13, p. 64])

\[Y_{\ell,m}(\vartheta, \varphi) = C_{\ell,m} P_{\ell,m}(\cos \vartheta)e^{im\varphi}, \quad m \geq 0, \]

\[Y_{\ell,m}(\vartheta, \varphi) = (-1)^m \bar{Y}_{\ell,-m}(\vartheta, \varphi), \quad m < 0, \]

where, for \(\ell \in \mathbb{N}_0 \) and \(m \in \{0, \ldots, \ell\} \), we set \(C_{\ell,m} := \sqrt{\frac{2\ell+1}{4\pi}(\ell-m)!} \) and \(P_{\ell,m} : [-1, 1] \to \mathbb{R} \) denotes the associated Legendre polynomial, given by

\[P_{\ell,m}(y) = (-1)^m \left(1 - y^2 \right)^{m/2} \frac{d^m}{dy^m} P_\ell(y), \quad y \in [-1, 1]. \]

The spherical harmonics \(\{Y_{\ell,m} : \ell \in \mathbb{N}_0, m = -\ell, \ldots, \ell\} \) are eigenfunctions of the Laplace–Beltrami operator, with corresponding eigenvalues given by \(\lambda_{\ell,m} = -\ell(\ell + 1) \). In addition, they form an orthonormal basis of the complex-valued Lebesgue space \(L_2^2(S^2, \nu_{S^2}; \mathbb{C}) \), see [13, Proposition 3.29]. Here, \(\nu_{S^2} \) denotes the Lebesgue measure on the sphere which, in spherical coordinates, can be expressed as \(d\nu_{S^2}(x) = \sin \vartheta \, d\vartheta \, d\varphi \).

The covariance function of the solution \(Z^0 \) to the SPDE (6.3) on \(S^2 \) can thus be represented using the spherical harmonics via the series expansion (cf. [13, Theorem 5.13 and p. 125])

\[\varrho_2(x, x') = \sum_{\ell=0}^{\infty} \frac{\tau^{-2}}{(\kappa_1^2 + \ell(\ell + 1))^{\nu_1+1}} \sum_{m=-\ell}^{\ell} Y_{\ell,m}(\vartheta, \varphi) \bar{Y}_{\ell,m}(\vartheta', \varphi'), \]

where \((\vartheta, \varphi) \), \((\vartheta', \varphi') \) are the spherical coordinates of \(x \) and \(x' \), respectively. Then, by expressing also the Legendre–Matérn covariance function in (6.2) in spherical coordinates and
by using the addition formula for the spherical harmonics [13, Equation (3.42)], we find that
\[
q_1(x, x') = \sum_{\ell=0}^{\infty} \frac{\sigma_1^2}{(\kappa_1^2 + \ell^2)\nu_{\ell+1/2}} P_\ell((x, x')_\mathbb{R}^d)
\]
\[
= \sum_{\ell=0}^{\infty} \frac{\sigma_1^2}{(\kappa_1^2 + \ell^2)\nu_{\ell+1/2}} \frac{4\pi}{2\ell + 1} \sum_{m=-\ell}^{\ell} Y_{\ell,m}(\theta, \varphi) \overline{Y}_{\ell,m}(\varphi', \varphi').
\]
Thus, the covariance functions \(q_1, q_2\) are similar, but not identical. Due to the SPDE representation of \(q_2\), we believe that this is the preferable model. However, an immediate question is now if the two models provide similar kriging predictions. The answer to this is given by Corollary 5.1: Since \(\sum_{m=-\ell}^{\ell} Y_{\ell,m}(\theta, \varphi) \overline{Y}_{\ell,m}(\varphi', \varphi') = \sum_{m=-\ell}^{\ell} v_{\ell,m}(\theta, \varphi) v_{\ell,m}(\varphi', \varphi')\), where
\[
v_{\ell,m}(\theta, \varphi) := \begin{cases}
\sqrt{2} C_{\ell,-m} P_{\ell,-m}(\cos \theta) \cos(m \varphi) & \text{if } m < 0, \\
(1/\sqrt{4\pi}) P_\ell(\cos \theta) & \text{if } m = 0, \\
\sqrt{2} C_{\ell,m} P_{\ell,m}(\cos \theta) \sin(m \varphi) & \text{if } m > 0,
\end{cases}
\]
the two covariance operators have the same (orthonormal, real-valued) eigenfunctions in \(L_2(\mathbb{S}^2, \nu_{\mathbb{S}^2}; \mathbb{R})\). Thus, we are in the setting of Corollary 5.1 and consider the limit of the ratio of the corresponding eigenvalues:
\[
\lim_{\ell \to \infty} \frac{(\kappa_1^2 + \ell^2)^\nu_{\ell+1/2}(2\ell + 1)}{(\kappa_2^2 + \ell(\ell + 1))^\nu_{\ell+1}} \frac{1}{\tau^2\sigma_1^44\pi} = \begin{cases}
0 & \text{if } \nu_1 < \nu, \\
\infty & \text{if } \nu_1 > \nu, \\
\frac{1}{\tau^2\sigma_1^44\pi} & \text{if } \nu_1 = \nu.
\end{cases}
\]
We conclude that the models will provide asymptotically equivalent kriging prediction as long as they have the same smoothness parameter \(\nu\) (and positive, finite variance parameters). By the same reasoning, it is easy to see that one may misspecify both \(\tau\) and \(\kappa\) as well as \(\sigma_1\) and \(\kappa_1\) for the two covariance models and still obtain asymptotically optimal linear prediction.

7. Discussion. For statistical applications it is crucial to understand the effect that misspecifying the mean or the covariance function has on linear prediction. We have addressed this by providing three necessary and sufficient conditions, Assumptions 3.3.I–III, for uniformly asymptotically optimal linear prediction of random fields on compact metric spaces.

There are several directions in which this work can be continued in the future. An interesting question is whether Assumptions 3.3.I–III can be relaxed if the uniformity requirement on the optimality is dropped. Furthermore, the results of Section 5.2 can likely be refined to obtain necessary and sufficient conditions on the spectral densities \(f\) and \(\tilde{f}\). This should be possible at least in the case that \(f \asymp |\varphi_0|^2\) holds for some \(\varphi_0 \in \mathcal{W}_{1\mathbb{R}}\).

A more challenging problem would be to generalize our results to the setting of locally compact spaces. This extension is conceivable, but it would require substantial changes to both the problem formulation and the methods of proving. For the current setting of compact metric spaces, there are several additional applications that can be considered. For example, the application to Gaussian Matérn fields on the sphere in Section 6.3 can easily be extended to SPDE-based Gaussian Matérn fields on more general domains, since our arguments depend only on the asymptotic behavior of the eigenvalues of the Laplace–Beltrami operator which is also known, for instance, on compact Riemannian manifolds, see e.g. [18, Theorem 15.2].

Acknowledgments. The authors thank S.G. Cox and J.M.A.M. van Neerven for fruitful discussions on spectral theory which considerably contributed to the proof of Lemma B.2, see Appendix B in the Supplementary Material [9]. In addition, we thank the reviewer and the editor for their valuable comments.
SUPPLEMENTARY MATERIAL

Supplement to “Necessary and sufficient conditions for asymptotically optimal linear prediction of random fields on compact metric spaces”

Three appendices of the manuscript.

REFERENCES

[1] ANDERES, E., MÖLLER, J. and RASMUSSEN, J. G. (2020). Isotropic covariance functions on graphs and their edges. *Ann. Statist.* 48 2478–2503.

[2] ARAFAT, A., PORCU, E., BEVILACQUA, M. and MATEU, J. (2018). Equivalence and orthogonality of Gaussian measures on spheres. *J. Multivariate Anal.* 167 306–318.

[3] BERLINET, A. and THOMAS-AGNAN, C. (2004). *Reproducing Kernel Hilbert Spaces in Probability and Statistics.* Kluwer Academic Publishers, Boston, MA.

[4] BEVILACQUA, M., FAOUZI, T., FURRER, R. and PORCU, E. (2019). Estimation and prediction using generalized Wendland covariance functions under fixed domain asymptotics. *Ann. Statist.* 47 828–856.

[5] CLEVELAND, W. S. (1971). Projection with the wrong inner product and its application to regression with correlated errors and linear filtering of time series. *Ann. Math. Statist.* 42 616–624.

[6] GNEITING, T. (2013). Strictly and non-strictly positive definite functions on spheres. *Bernoulli* 19 1327–1349.

[7] GUINNESS, J. and FUENTES, M. (2016). Isotropic covariance functions on spheres: some properties and modeling considerations. *J. Multivariate Anal.* 143 143–152.

[8] JANSON, S. (1997). *Gaussian Hilbert Spaces.* Cambridge Tracts in Mathematics 129. Cambridge University Press, Cambridge.

[9] KIRCHNER, K. and BOLIN, D. Supplement to “Necessary and sufficient conditions for asymptotically optimal linear prediction of random fields on compact metric spaces”. DOI: 10.1214/XXX.

[10] KRASNIKSKIL, S. M. (1990). Conditions for the equivalence of distributions of homogeneous Gaussian fields. *Theory Probab. Appl.* 34 720–725.

[11] KUKUSH, A. (2019). *Gaussian Measures in Hilbert Space: Construction and Properties.* Mathematics and Statistics. ISTE Ltd, London.

[12] LINDGREN, F., RUE, H. and LINDSTROM, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. *J. R. Stat. Soc. Ser. B Stat. Methodol.* 73 423–498. With discussion.

[13] MARINUCCI, D. and PECCATI, G. (2011). *Random Fields on the Sphere.* London Mathematical Society Lecture Note Series 389. Cambridge University Press, Cambridge.

[14] MATERN, B. (1960). *Spatial variation: Stochastic models and their application to some problems in forest surveys and other sampling investigations.* Meddelanden Från Statens Skogsforskningsinstitut, Band 49, Nr. 5, Stockholm.

[15] MERCER, J. (1909). Functions of positive and negative type and their connection with the theory of integral equations. *Philos. Trans. Roy. Soc. A* 209 415–446.

[16] PARZEN, E. (1959). Statistical inference on time series by Hilbert space methods. I. Technical Report No. 23, Department of Statistics, Stanford University.

[17] SCHÖENBERG, I. J. (1942). Positive definite functions on spheres. *Duke Math. J.* 9 96–108.

[18] SHUBIN, M. A. (2001). *Pseudodifferential operators and spectral theory*. Second ed. Springer-Verlag, Berlin.

[19] SKOROKHOD, A. V. and YADRENKO, M. I. (1973). On absolute continuity of measures corresponding to homogeneous Gaussian fields. *Theory Probab. Appl.* 18 27–40.

[20] STEIN, M. L. (1988). Asymptotically efficient prediction of a random field with a misspecified covariance function. *Ann. Stat.* 16 55–63.

[21] STEIN, M. L. (1990). Uniform asymptotic optimality of linear predictions of a random field using an incorrect second-order structure. *Ann. Stat.* 18 850–872.

[22] STEIN, M. L. (1993). A simple condition for asymptotic optimality of linear predictions of random fields. *Statist. Probab. Lett.* 17 399–404.

[23] STEIN, M. L. (1997). Efficiency of linear predictors for periodic processes using an incorrect covariance function. *J. Statist. Plann. Inference* 58 321–331.

[24] STEIN, M. L. (1999). Predicting random fields with increasing dense observations. *Ann. Appl. Probab.* 9 242–273.
[25] Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer-Verlag, New York.

[26] Steinwart, I. and Scovel, C. (2012). Mercer’s theorem on general domains: on the interaction between measures, kernels, and RKHSs. Constr. Approx. 35 363–417.

[27] Whittle, P. (1963). Stochastic processes in several dimensions. Bull. Internat. Statist. Inst. 40 974–994.

[28] Zhang, H. (2004). Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J. Amer. Statist. Assoc. 99 250–261.
SUPPLEMENT TO “NECESSARY AND SUFFICIENT CONDITIONS FOR ASYMPTOTICALLY OPTIMAL LINEAR PREDICTION OF RANDOM FIELDS ON COMPACT METRIC SPACES”

BY KRISTIN KIRCHNER1 AND DAVID BOLIN2

1Delft Institute of Applied Mathematics, Delft University of Technology, k.kirchner@tudelft.nl

2CEMSE Division, King Abdullah University of Science and Technology, david.bolin@kaust.edu.sa

In this supplement all references to sections or equations of the form “Section X” or “(X,Y)”, where X is a number (and not a letter), refer to the main file of the article.

APPENDIX A: EQUIVALENCE OF GAUSSIAN MEASURES

In this section we recall several notions from operator theory and we state the Feldman–Hájek theorem as formulated by Da Prato and Zabczyk [2], see Theorem A.1 below. This theorem characterizes equivalence of two Gaussian measures on a Hilbert space by three necessary and sufficient conditions.

Assume that $(E, (\cdot, \cdot)_E)$ is a separable Hilbert space and let $\{e_j\}_{j \in \mathbb{N}}$ be an orthonormal basis for E. The space of bounded linear operators on E is denoted by $\mathcal{L}(E)$, and we write $T^*: E \to E$ for the adjoint operator of $T \in \mathcal{L}(E)$. We recall that a linear operator $T: E \to E$ is compact, denoted by $T \in K(E)$, if and only if it is the limit (in the space $\mathcal{L}(E)$) of finite-rank operators. Besides, T is said to be a trace-class operator or a Hilbert–Schmidt operator provided that $\text{tr}(T) := \sum_{j \in \mathbb{N}} \langle Te_j, e_j \rangle_E < \infty$ or $\text{tr}(T^*T) = \sum_{j \in \mathbb{N}} \|Te_j\|^2_E < \infty$, respectively. In the case that T is self-adjoint (i.e., $T^* = T$), these conditions are equivalent to the (real-valued) eigenvalues of T being summable and square-summable, respectively.

Let $\mu = \mathcal{N}(m, \mathcal{C})$ be a Gaussian measure on E with mean $m \in E$ and self-adjoint, positive definite, trace-class covariance operator $\mathcal{C}: E \to E$. The Cameron–Martin space $\mathcal{C}^{1/2}(E)$ associated with μ on E (also known as reproducing kernel Hilbert space of μ) is the Hilbert space which is defined as the range of $\mathcal{C}^{1/2}$ in E and which is equipped with the inner product $(\mathcal{C}^{-1/2}, \cdot)_E$. As opposed to Da Prato and Zabczyk [2], we always assume that \mathcal{C} is strictly positive definite so that this definition requires no pseudo-inverse.

Let $\tilde{\mu} = \mathcal{N}(\tilde{m}, \tilde{\mathcal{C}})$ be a second Gaussian measure on E. Then, μ and $\tilde{\mu}$ are said to be equivalent if they are mutually absolutely continuous. That is, for all sets A in the Borel σ-algebra $\mathcal{B}(E)$, one has $\mu(A) = 0$ if and only if $\tilde{\mu}(A) = 0$. In contrast, μ and $\tilde{\mu}$ are called singular (or orthogonal) if there exists some $A \in \mathcal{B}(E)$ such that $\mu(A) = 0$ and $\tilde{\mu}(A) = 1$. The next theorem is taken from [2, Theorem 2.25].

Theorem A.1 (Feldman–Hájek). Two Gaussian measures $\mu = \mathcal{N}(m, \mathcal{C})$, $\tilde{\mu} = \mathcal{N}(\tilde{m}, \tilde{\mathcal{C}})$ on the Hilbert space E are either singular or equivalent. They are equivalent if and only if the following three conditions are satisfied:

(i) The Cameron–Martin spaces $\mathcal{C}^{1/2}(E)$ and $\tilde{\mathcal{C}}^{1/2}(E)$ are norm equivalent.

(ii) The difference of the means satisfies $m - \tilde{m} \in \mathcal{C}^{1/2}(E)$.

(iii) The operator $T_1 := \mathcal{C}^{-1/2}\tilde{\mathcal{C}}\mathcal{C}^{-1/2} - I_E$ is a Hilbert–Schmidt operator on E.

APPENDIX B: AUXILIARY RESULTS

The following Lemmas B.1, B.2 and B.3 contain auxiliary results which are used in the proofs of Section 4. Throughout this section, let $(E, (\cdot, \cdot)_E)$ be a separable Hilbert space with $\dim(E) = \infty$, and identity $I_E: E \to E$.

28
LEMMA B.1. Let \(\mathcal{C}, \hat{\mathcal{C}} : E \to E \) be self-adjoint and positive definite linear operators. Suppose that \(\hat{\mathcal{C}}^{1/2} \mathcal{C}^{-1/2} \) defines an isomorphism on \(E \) and that there exists a positive real number \(a \in (0, \infty) \) such that the operator \(T_a := \mathcal{C}^{-1/2} \hat{\mathcal{C}}^{-1/2} - aI_E \) is compact on \(E \). Then, the following operators are all compact on \(E \):

\[
\mathcal{C}^{-1/2} \hat{\mathcal{C}}^{-1/2} - a^{-1}I_E, \quad \hat{\mathcal{C}}^{1/2} \mathcal{C}^{-1/2} - aI_E, \quad \mathcal{C}^{1/2} \hat{\mathcal{C}}^{-1/2} - a^{-1}I_E.
\]

Proof. By assumption \(T_a = \mathcal{C}^{-1/2} \hat{\mathcal{C}}^{-1/2} - aI_E \) is compact on \(E \) and \(S := \hat{\mathcal{C}}^{1/2} \mathcal{C}^{-1/2} \) is an isomorphism on \(E \) and, thus, \(S, S^*, S^{-1}, (S^{-1})^* \in \mathcal{L}(E) \). Since the space of compact operators \(\mathcal{K}(E) \) forms a two-sided ideal in \(\mathcal{L}(E) \), we conclude that

\[
\tilde{T}_a := \mathcal{C}^{-1/2} \hat{\mathcal{C}}^{-1/2} - a^{-1}I_E = -a^{-1}(S^{-1})^*T_aS^{-1} \in \mathcal{K}(E).
\]

Then, again by the ideal property of \(\mathcal{K}(E) \), \(\mathcal{C}^{1/2} \hat{\mathcal{C}}^{-1/2} - a^{-1}I_E = ST_aS^{-1} \in \mathcal{K}(E) \) and \(\mathcal{C}^{1/2} \hat{\mathcal{C}}^{-1/2} - a^{-1}I_E = -S^{-1}T_aS \in \mathcal{K}(E) \) follow. \(\square \)

LEMMA B.2. Let \(\{e_j\}_{j \in \mathbb{N}} \) be an orthonormal basis for \(E \). For \(n \in \mathbb{N} \), define the \(n \)-dimensional subspace \(E_n := \text{span}\{e_j\}_{j=1}^n \) with \(E \)-orthogonal complement \(E_n^\bot := \text{span}\{e_j\}_{j>n} \), and let \(P_n : E \to E_n \) as well as \(P_n^\bot := I_E - P_n \) be the \(E \)-orthogonal projections onto \(E_n \) and \(E_n^\bot \), respectively. Assume that \(S : E \to E \) is a self-adjoint, positive definite isomorphism such that, for any \(a \in (0, \infty) \), the operator \(T_a := S - aI_E \) is not compact on \(E \). Then, there exist sequences \(\{a_n\}_{n \in \mathbb{N}}, \{\bar{a}_n\}_{n \in \mathbb{N}} \subset \{||S^{-1/2}||_{\mathcal{L}(E)} ||S_n||_{\mathcal{L}(E)} \}, \delta \in (0, \infty) \) and, for every \(n \in \mathbb{N} \),

\[
|\text{sup} \{ (S_{w_n}, w_n)_{E} \} - \text{inf} \{ (S_{w_n}, w_n)_{E} \} | < \frac{\delta}{3}, \quad \text{and} \quad \left| \frac{(S_{\bar{w}_n}, \bar{w}_n)_{E}}{(w_n, w_n)_{E}} - \bar{a}_n \right| < \frac{\delta}{3},
\]

where \(\delta := \delta ||S^{-1/2}||_{\mathcal{L}(E)} ||S||_{\mathcal{L}(E)} \in (0, \delta] \).

PROOF. We will show that

\[
\frac{a_n}{(u, u)_E} \leq \frac{\text{sup}_{u \in E_n^\bot \setminus \{0\}} (S_{u, u})_{E}}{(u, u)_E}, \quad \text{and} \quad \frac{\text{inf}_{u \in E_n^\bot \setminus \{0\}} (S_{u, u})_{E}}{(u, u)_E} \leq -\frac{a_n}{(u, u)_E}.
\]

and \(\delta := \text{inf}_{n \in \mathbb{N}} (\bar{a}_n - a_n) \) have the desired properties.

Step 1: \(\delta > 0 \). By the definitions in (B.2), \(\bar{a}_n - a_n \geq 0 \) for all \(n \in \mathbb{N} \) and \(\delta \geq 0 \) follows. Since \(S : E \to E \) is an isomorphism, the sequences \(\{a_n\}_{n \in \mathbb{N}} \) and \(\{\bar{a}_n\}_{n \in \mathbb{N}} \) take values in the compact interval \([\alpha, \beta] \subset (0, \infty) \), where \(\alpha := ||S^{-1/2}||_{\mathcal{L}(E)} \), \(\beta := ||S||_{\mathcal{L}(E)} \). Furthermore, by definition they are monotone increasing and decreasing, respectively. For this reason they converge \(a_n \uparrow a, \bar{a}_n \downarrow \bar{a} \) as \(n \to \infty \), with limits \(a, \bar{a} \in [\alpha, \beta] \). Assume that \(\delta = 0 \). This would imply that \(\bar{a}_n = a_n = a \) and, for all \(\varepsilon \in (0, \infty) \), there exists \(n_{\varepsilon} \in \mathbb{N} \) such that

\[
\forall n \geq n_{\varepsilon} : \quad \varepsilon > |a_n - a| = \inf_{u \in E_n^\bot \setminus \{0\}} \frac{(S_{u, u})_{E}}{(u, u)_E} = \sup_{u \in E_n^\bot \setminus \{0\}} \frac{((a, I_E - S)u, u)_E}{(u, u)_E},
\]

\[
\forall n \geq n_{\varepsilon} : \quad \varepsilon > |\bar{a}_n - a| = \sup_{u \in E_n^\bot \setminus \{0\}} \frac{(S_{u, u})_{E}}{(u, u)_E} - a = \inf_{u \in E_n^\bot \setminus \{0\}} \frac{((S - a, I_E)u, u)_E}{(u, u)_E}.
\]

This shows that \(T_{a_n} \) is the limit in \(\mathcal{L}(E) \) of finite-rank operators,

\[
\left\| P_n T_{a_n} P_{n}^\bot \right\|_{\mathcal{L}(E)} = \sup_{w \in E_n^\bot \setminus \{0\}} \left| (P_n T_{a_n} P_{n}^\bot w, w)_E \right| = \sup_{w \in E_n^\bot \setminus \{0\}} \left| ((S - a, I_E)u, u)_E \right| < \varepsilon,
\]

for all \(n \geq n_{\varepsilon} \), contradicting the assumption that \(T_{a_n} \) is not compact on \(E \).

Step 2: Since \(\delta \in (0, \infty) \), for every \(n \in \mathbb{N} \), there exist vectors \(w_n, \bar{w}_n \in E_n^\bot \) such that

\[
\left| \frac{(S_{w_n}, w_n)_E}{(w_n, w_n)_E} - a_n \right| < \frac{\delta}{3} \quad \text{and} \quad \left| \frac{(S_{\bar{w}_n}, \bar{w}_n)_E}{(w_n, w_n)_E} - \bar{a}_n \right| < \frac{\delta}{3}
\]

by definition of \(a_n, \bar{a}_n \) as the accumulation points in (B.2). \(\square \)
In what follows, $C(\mathcal{X})$ denotes the vector space of all continuous functions $v: \mathcal{X} \to \mathbb{R}$, defined on the connected, compact metric space $(\mathcal{X}, d_{\mathcal{X}})$. Let $\nu_{\mathcal{X}}$ be a strictly positive, finite Borel measure on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$. Recall that the norm $\|v\|_{C(\mathcal{X})} := \sup_{x \in \mathcal{X}} |v(x)|$ renders $C(\mathcal{X})$ a Banach space.

Lemma B.3. Let $Z^0: \mathcal{X} \times \Omega \to \mathbb{R}$ be a centered Gaussian random field indexed by the compact metric space $(\mathcal{X}, d_{\mathcal{X}})$ with continuous, strictly positive definite covariance function $\rho: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, and let \mathcal{H}^0 be the Hilbert space defined in Equation (2.4) in Section 2.1. Then, for every $v \in C(\mathcal{X})$, the random variable $z_v := (Z^0, v)_{L^2(\mathcal{X}, \nu_{\mathcal{X}})}$ is an element of \mathcal{H}^0.

Proof. We first note that continuity of the inner product $(\cdot, \cdot)_{L^2(\mathcal{X}, \nu_{\mathcal{X}})}$ and measurability of the process $Z^0: (\Omega, \mathcal{A}) \to (L^2(\mathcal{X}, \nu_{\mathcal{X}}), \mathcal{B}(L^2(\mathcal{X}, \nu_{\mathcal{X}})))$ imply that, for every $v \in C(\mathcal{X})$, the mapping $z_v: (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is measurable, i.e., that $z_v = (Z^0, v)_{L^2(\mathcal{X}, \nu_{\mathcal{X}})}$ is a well-defined real-valued random variable. We now show that, for any $\varepsilon \in (0, \infty)$, there exist an integer $K \in \mathbb{N}$, real numbers $a_1, \ldots, a_K \in \mathbb{R}$ and points $x_1, \ldots, x_K \in \mathcal{X}$, such that

$$\left\| \sum_{k=1}^{K} a_k Z^0(x_k) - z_v \right\|_{\mathcal{H}^0}^2 = \mathbb{E} \left[\left(\sum_{k=1}^{K} a_k Z^0(x_k) - z_v \right)^2 \right] < \varepsilon,$$

i.e., that we can approximate $z_v = (Z^0, v)_{L^2(\mathcal{X}, \nu_{\mathcal{X}})}$ arbitrarily well in $L^2(\Omega, \mathbb{P})$ by an element of the vector space Z^0 given in (2.3). This proves the assertion of the lemma.

The case $v = 0$ is trivial. Thus, from now on we assume that $v \in C(\mathcal{X}) \setminus \{0\}$ so that $\|v\|_{C(\mathcal{X})} \in (0, \infty)$. We first note that by square-integrability of Z^0 Fubini’s theorem allows us to exchange the order of integration with respect to (Ω, \mathbb{P}) and with respect to $(\mathcal{X}, \nu_{\mathcal{X}})$. Thus, we find that

$$\left\| \sum_{k=1}^{K} a_k Z^0(x_k) - z_v \right\|_{\mathcal{H}^0}^2 = \int_{\mathcal{X}} \int_{\mathcal{X}} \rho(x, x') v(x)v(x') \, d\nu_{\mathcal{X}}(x) \, d\nu_{\mathcal{X}}(x').$$

(B.4)

Now fix $\varepsilon \in (0, \infty)$. Furthermore, let $\{e_j\}_{j \in \mathbb{N}} \subset C(\mathcal{X})$ be an orthonormal basis for $L^2(\mathcal{X}, \nu_{\mathcal{X}})$ consisting of the continuous representatives of eigenfunctions of the covariance operator C corresponding to ρ, see (2.1), with corresponding positive eigenvalues $\{|\gamma_j|\}_{j \in \mathbb{N}}$. Since the series in (2.2) converges uniformly, there exists a finite integer $N \in \mathbb{N}$, such that

$$\sup_{x, x' \in \mathcal{X}} |\rho(x, x') - \rho_N(x, x')| < \frac{\varepsilon}{2} \|v\|_{C(\mathcal{X})}^2 |\mathcal{X}|^{-2},$$

where $\rho_N(x, x') := \sum_{j=1}^{N} \gamma_j e_j(x) e_j(x')$ and $|\mathcal{X}| := \nu_{\mathcal{X}}(\mathcal{X}) \in (0, \infty)$.

By continuity of the eigenfunctions $M_N := \max_{1 \leq j \leq N} \|e_j\|_{C(\mathcal{X})} \in (0, \infty)$ and, for every $x \in \mathcal{X}$, there exists $\delta_x^* \in (0, \infty)$ such that, for all $x' \in B(x, \delta_x^*)$,

$$\max_{1 \leq j \leq N} |e_j(x) - e_j(x')| < \frac{\varepsilon}{6} (\text{tr}(C) M_N \|v\|_{C(\mathcal{X})}^2 |\mathcal{X}|^2)^{-1}.$$

(B.6)

Here, $B(x, \delta) := \{x' \in \mathcal{X} : d_{\mathcal{X}}(x, x') < \delta\}$ denotes the open ball in $(\mathcal{X}, d_{\mathcal{X}})$ centered at $x \in \mathcal{X}$, with radius $\delta > 0$. An open cover of \mathcal{X} is then given by $\mathcal{X} \subseteq \bigcup_{x \in \mathcal{X}} B(x, \delta_x^*)$. By compactness of the metric space $(\mathcal{X}, d_{\mathcal{X}})$, it contains a finite subcover, i.e., there are finitely many $x_1, \ldots, x_K \in \mathcal{X}$ such that $\mathcal{X} \subseteq \bigcup_{k=1}^{K} B(x_k, \delta_{x_k}^*)$. Furthermore, there exists a corresponding partition of unity $\{\chi_k\}_{k=1}^{K}$, i.e., $\chi_k: \mathcal{X} \to [0, 1]$ has support $\text{supp} \chi_k \subseteq B(x_k, \delta_{x_k}^*)$ and $\sum_{k=1}^{K} \chi_k(x) = 1$ for all $x \in \mathcal{X}$. We set $a_k := \int_{\mathcal{X}} \chi_k(x) v(x) \, d\nu_{\mathcal{X}}(x)$, for $k = 1, \ldots, K$.

Note that this definition implies the estimate

$$\sum_{k=1}^{K} |a_k| \leq \sum_{k=1}^{K} \int_{\mathcal{X}} \chi_k(x) |v(x)| \, d\nu_{\mathcal{X}}(x) \leq \|v\|_{C(\mathcal{X})} |\mathcal{X}|.$$

(B.7)
The identity (B.4) then yields
\[
\left\| \sum_{k=1}^{K} a_k Z^k(x_k) - z_v \right\|_{\mathcal{H}^0}^2 = \sum_{k=1}^{K} \sum_{\ell=1}^{K} a_k a_\ell (q(x_k, x_\ell) - q_N(x_k, x_\ell))
\]
\[
- 2 \sum_{k=1}^{K} a_k \int_{\mathcal{X}} (q(x_k, x') - q_N(x_k, x')) v(x') \, d\nu_\mathcal{X}(x')
\]
\[
+ \int_{\mathcal{X}} \int_{\mathcal{X}} (q(x, x') - q_N(x, x')) v(x) v(x') \, d\nu_\mathcal{X}(x) \, d\nu_\mathcal{X}(x')
\]
\[
+ \sum_{k=1}^{K} a_k \left(\int_{\mathcal{X}} q_N(x_k, x_\ell) \, d\nu_\mathcal{X}(x) - \sum_{k=1}^{K} a_k q_N(x_k, x_\ell) \right) v(x') \, d\nu_\mathcal{X}(x')
\]
\[
=: (I) - 2 (II) + (III) + (IV) + (V).
\]

We now bound the absolute values of these five expressions term by term. Firstly, by (B.5) and (B.7) we obtain that
\[
|I| \leq \sup_{x, x' \in \mathcal{X}} |q(x, x') - q_N(x, x')| \left(\sum_{k=1}^{K} |a_k| \right)^2 < \frac{\varepsilon}{6}.
\]

Again by (B.5) and (B.7) also the second and third terms can be bounded,
\[
|II| \leq \sup_{x, x' \in \mathcal{X}} |q(x, x') - q_N(x, x')| \left(\sum_{k=1}^{K} |a_k| \int_{\mathcal{X}} |v(x')| \, d\nu_\mathcal{X}(x') \right) < \frac{\varepsilon}{6},
\]
\[
|III| \leq \sup_{x, x' \in \mathcal{X}} |q(x, x') - q_N(x, x')| \left(\int_{\mathcal{X}} |v(x)| \, d\nu_\mathcal{X}(x) \right)^2 < \frac{\varepsilon}{6}.
\]

For the remaining two terms, we use the relation (B.6) and thus obtain that
\[
|IV| \leq \sum_{k=1}^{K} |a_k| \left| \sum_{\ell=1}^{K} \int_{\mathcal{X}} \chi_\ell(x') v(x') \, d\nu_\mathcal{X}(x') \right|
\]
\[
\leq \sum_{j=1}^{N} \gamma_j \sum_{k=1}^{K} |a_k| |e_j(x_k)| \left| \sum_{\ell=1}^{K} \int_{B_\ell} \chi_\ell(x') v(x') \, d\nu_\mathcal{X}(x') \right|
\]
\[
\leq \text{tr}(C) M_N \|v\|_{L^2(C(\mathcal{X}))}^2 \max_{1 \leq j \leq N} \max_{1 \leq \ell \leq K} \sup_{x, x' \in B_\ell} |e_j(x_\ell) - e_j(x')| < \frac{\varepsilon}{6},
\]

where $B_\ell := B(x_\ell, \delta^*_{x_\ell})$ for $\ell = 1, \ldots, K$, as well as
\[
|V| = \left| \int_{\mathcal{X}} \left(\sum_{k=1}^{K} \int_{\mathcal{X}} \chi_k(x) v(x) (q_N(x, x') - q_N(x_k, x')) \, d\nu_\mathcal{X}(x') \right) v(x') \, d\nu_\mathcal{X}(x') \right|
\]
\[
= \sum_{j=1}^{N} \gamma_j \int_{\mathcal{X}} e_j(x') v(x') \, d\nu_\mathcal{X}(x) \sum_{k=1}^{K} \chi_k(x) v(x) (e_j(x_\ell) - e_j(x_k)) \, d\nu_\mathcal{X}(x)
\]
\[
\leq \sum_{j=1}^{N} \gamma_j \|e_j\|_{L^2(C(\mathcal{X}))} \max_{1 \leq j \leq N} \max_{1 \leq \ell \leq K} \sup_{x, x' \in \mathcal{X}} |e_j(x_\ell) - e_j(x')| < \frac{\varepsilon}{6}.
\]

We conclude that, for this choice of $K \in \mathbb{N}$, $a_1, \ldots, a_k \in \mathbb{R}$, $x_1, \ldots, x_K \in \mathcal{X}$ (B.3) holds, which completes the proof, since $\varepsilon \in (0, \infty)$ was arbitrary. □
We close this section with a further auxiliary result which shows that assuming boundedness (from below and above), uniformly with respect to \(n \) and \(h \), of any fraction in (3.6) for all admissible sequences of subspaces \(\{ H_n \}_{n \in \mathbb{N}} \subseteq S^\mu_{\text{adm}} \) implies uniform boundedness (from below and above) with respect to \(\{ H_n \}_{n \in \mathbb{N}} \subseteq S^\mu_{\text{adm}} \), \(n \) and \(h \) of all terms in (3.6).

Lemma B.4. Let \(\mu = \mathbb{N}(m, C) \) and \(\bar{\mu} = \mathbb{N}(\bar{m}, \bar{C}) \). In addition, let \(h_n, \bar{h}_n \) denote the best linear predictors of \(h \) based on \(H_n \) and the measures \(\mu \) and \(\bar{\mu} \), respectively, and let \(S^\mu_{\text{adm}} \) be defined as in (2.12). In the case that for every \(\{ H_n \}_{n \in \mathbb{N}} \subseteq S^\mu_{\text{adm}} \) there exist \(k, K \in (0, \infty) \) such that one of the following fractions is bounded from below by \(k \) and from above by \(K \), uniformly with respect to \(n \in \mathbb{N} \) and \(h \in H_{-\infty} \),

\[
\begin{align*}
\frac{\widehat{\text{Var}}[h_n - h]}{\text{Var}[h_n - h]}, & \quad \frac{\text{Var}[h_n - h]}{\text{Var}[h_n - h]}, & \quad \frac{\text{Var}[h_n - h]}{\text{Var}[h_n - h]}, & \quad \frac{\text{Var}[h_n - h]}{\text{Var}[h_n - h]},
\end{align*}
\]

then all assertions (i)–(iv) of Proposition 3.5 hold and, in particular, all of the above expressions are bounded uniformly with respect to \(\{ H_n \}_{n \in \mathbb{N}} \subseteq S^\mu_{\text{adm}}, \ n \in \mathbb{N} \) and \(h \in H_{-\infty} \).

Proof. We show that the assumptions of the lemma imply validity of Proposition 3.5(iii). The remaining claims follow by equivalence of the four statements (i)–(iv) in Proposition 3.5. To this end, by (C.2)–(C.5), see Proposition C.2 below, we may without loss of generality assume that \(\mu \) and \(\bar{\mu} \) are centered, \(m = \bar{m} = 0 \).

We start with proving necessity of (iii) for uniform boundedness in \(n \) and \(h \) (from above and below) of the first two fractions in (B.8) holding for all \(\{ H_n \}_{n \in \mathbb{N}} \subseteq S^\mu_{\text{adm}} \). Let \(n \in \mathbb{N} \). If Proposition 3.5(iii) does not hold, then the norms \(\| \|_H = \text{Var}[\cdot] \) and \(\| \|_H^\mu = \bar{\text{Var}}[\cdot] \) cannot be equivalent on the orthogonal complements of \(H_n^0 := \text{span}\{z_1, \ldots, z_n\} \) in \(H^0 \) and in \(H_n^0 \) (due to their equivalence on the finite-dimensional subspace \(H_n^0 \)), where \(\{z_j\}_{j \in \mathbb{N}} \subseteq H^0 \cap H_n^0 \) is the orthonormal basis for \(H^0 \) from Lemma 4.1(ii). Thus, for any fixed \(n \in \mathbb{N} \), there exist \(h(n) \in H^0 \) and \(g(n) \in H_n^0 \) such that \(h(n) \) and \(g(n) \) are orthogonal to \(H_n^0 \) in \(H^0 \) and in \(H_n^0 \), respectively, and such that the relations \(\frac{\text{Var}[h(n)]}{\text{Var}[h_n]} \geq n \) and \(\frac{\text{Var}[g(n)]}{\text{Var}[g_n]} \geq n \) hold, or we obtain that \(\frac{\text{Var}[h(n)]}{\text{Var}[h_n]} \geq n \) and \(\frac{\text{Var}[g(n)]}{\text{Var}[g_n]} \geq n \). Note that in either case, \(h(n) = 0 \) and \(g(n) = 0 \) vanish, where \(h(n), g(n) \) denote the best linear predictors of \(h(n), g(n) \) based on \(H_n := \mathbb{R} \oplus H_n^0 \) and the measures \(\mu \) and \(\bar{\mu} \), respectively. In the first case, we therefore obtain

\[
\begin{align*}
\frac{\text{Var}[h(n)]}{\text{Var}[h_n]} & = \frac{\bar{\text{Var}}[h(n)]}{\text{Var}[h_n]} \geq n, & \frac{\text{Var}[g(n)]}{\text{Var}[g_n]} & = \frac{\bar{\text{Var}}[g(n)]}{\text{Var}[g_n]} \geq n^{-1},
\end{align*}
\]

so that in the limit \(n \to \infty \) the first fraction is unbounded and the second converges to zero. Since \(\{z_j\}_{j \in \mathbb{N}} \subseteq H^0 \) is an orthonormal basis for \(H^0 \), we have \(\{ H_n \}_{n \in \mathbb{N}} \subseteq S^\mu_{\text{adm}} \) and (B.9) contradicts the boundedness (from above and below) of the first two fractions in (B.8). In the second case, we have the reverse situation: \(\frac{\text{Var}[h(n)]}{\text{Var}[h_n]} \leq n^{-1} \) and \(\frac{\text{Var}[g(n)]}{\text{Var}[g_n]} \leq n \), again a contradiction.

We proceed with the latter two terms in (B.8). To this end, assume again that Proposition 3.5(iii) does not hold and, for any fixed \(n \in \mathbb{N} \), define \(\tilde{z}_n, \ldots, \tilde{z}_1 \) as the Gram–Schmidt orthonormalization of \(z_n, \ldots, z_1 \) in \(H^0 \). In particular, we have \(\tilde{z}_n = z_n / \sqrt{\zeta_n} \), where we set \(\zeta_n := \| z_n \|_H^2 = \text{Var}[z_n] = \gamma_n^{-1} \| \tilde{C}^{1/2} z_n \|_{L_2(\mu, \nu)}^2 < \infty \). If Proposition 3.5(iii) does not hold, then, for any fixed \(n \in \mathbb{N} \), there exist \(\phi_n, \varphi_n \in H^0 \) such that \(\phi_n \) and \(\varphi_n \) are orthogonal to \(\text{span}\{z_1, \ldots, z_n\} \) in \(H^0 \) and in \(H_n^0 \), respectively, and such that either \(\frac{\text{Var}[\phi_n]}{\text{Var}[\varphi_n]} \leq n \zeta_n \) and \(\frac{\text{Var}[\varphi_n]}{\text{Var}[\varphi_n]} \geq n \zeta_n \), or the two relations \(\frac{\text{Var}[\phi_n]}{\text{Var}[\varphi_n]} \geq n^{-1} \) and \(\frac{\text{Var}[\varphi_n]}{\text{Var}[\varphi_n]} \geq n^{-1} \) hold. Define
\[
\theta_n := \min \left\{ \frac{E[h^2]}{E[h^2]} : h \in \text{span}\{\varphi_n, z_n\}, h \neq 0 \right\}, \\
\tilde{\theta}_n := \min \left\{ \frac{E[h^2]}{E[h^2]} : h \in \text{span}\{\phi_n, z_n\}, h \neq 0 \right\},
\]

and \(\Theta_n, \tilde{\Theta}_n \in (0, \infty)\) are given in the same way with min replaced by max. Note that in both cases \(\min \{\Theta_n, \theta_n^{-1}, \tilde{\Theta}_n, \tilde{\theta}_n^{-1}\} \geq n\). It then follows as in [1, Proof of Theorem 5] that there are \(g^{(n)}, \xi_n \in \text{span}\{\varphi_n, z_n\}\) and \(h^{(n)}, \psi_n \in \text{span}\{\phi_n, z_n\}\) such that

\[
E\left[(\tilde{g}^{(n)}_1 - \tilde{g}^{(n)}_1)^2 \right] = \frac{(\theta_n + \Theta_n)^2}{4\theta_n \Theta_n}, \quad \text{and} \quad E\left[(\tilde{h}^{(n)}_1 - \tilde{h}^{(n)}_1)^2 \right] = \frac{(\tilde{\theta}_n + \tilde{\Theta}_n)^2}{4\tilde{\theta}_n \tilde{\Theta}_n},
\]

where \(\tilde{g}_1^{(n)}, \tilde{h}_1^{(n)}\) denote the best linear predictors of \(g^{(n)}\) (of \(h^{(n)}\)) based on the subspace \(U_n := \mathbb{R} \oplus \text{span}\{\xi_n\} \subset \mathcal{H}\) (\(V_n := \mathbb{R} \oplus \text{span}\{\psi_n\} \subset \mathcal{H}\)) and the measures \(\mu\) and \(\tilde{\mu}\), respectively. We now define \(\mathcal{H}^*_n := U_n\) and, for \(n \geq 2\), \(\mathcal{H}^*_n := U_n \oplus \text{span}\{z_1, \ldots, z_{n-1}\}\). Recall that \(\tilde{g}^{(n)}_n \in \text{span}\{\varphi_n, z_n\}\) and that \(\varphi_n, z_n\) are \(\mathcal{H}^0\)-orthogonal to \(z_1, \ldots, z_{n-1}\). By letting \(g^{(n)}_n, \tilde{g}^{(n)}_n\) denote the best linear predictors of \(g^{(n)}\) based on \(\mathcal{H}^*_n\) and the Gaussian measures \(\mu\) and \(\tilde{\mu}\), respectively, we therefore conclude that \(\tilde{g}^{(n)}_n = g^{(n)}_1\), and, in addition, the estimate

\[
E\left[(\tilde{g}^{(n)}_n - g^{(n)}_n)^2 \right] \leq E\left[(g^{(n)}_1 - g^{(n)}_1)^2 \right] \quad \text{holds, since} \quad \tilde{g}^{(n)}_1 \in U_n \subset \mathcal{H}^*_n. \quad \text{Hence,}
\]

\[
E\left[(\tilde{g}^{(n)}_n - g^{(n)}_n)^2 \right] = E\left[(\tilde{g}^{(n)}_1 - g^{(n)}_1)^2 \right] \geq E\left[(\tilde{g}^{(n)}_1 - g^{(n)}_1)^2 \right] = \frac{(\theta_n + \Theta_n)^2}{4\theta_n \Theta_n} \geq \frac{1}{4} \frac{\Theta_n}{\theta_n} \geq \frac{n}{4}.
\]

By defining \(\mathcal{H}^*_n := V_1\) and, for \(n \geq 2\), \(\mathcal{H}^*_n := V_n \oplus \text{span}\{z_1, \ldots, z_{n-1}\}\), we furthermore obtain that \(E[(h^{(n)}_n - h^{(n)}_n)^2] \geq \frac{\tilde{\Theta}_n}(4\tilde{\Theta}_n) \geq \frac{n}{4}\) where \(h^{(n)}_n\) and \(\tilde{h}^{(n)}_n\) denote the best linear predictors of \(h^{(n)}\) based on \(\mathcal{H}^*_n\) and \(\mu\) resp. \(\tilde{\mu}\). We thus have constructed two sequences of subspaces \(\{\mathcal{H}^*_n\}_{n \in \mathbb{N}}, \{\mathcal{H}^*_n\}_{n \in \mathbb{N}}\), which are not necessarily nested, such that

\[
\forall n \in \mathbb{N}, \exists g^{(n)}, h^{(n)} \in \mathcal{H} : \quad \frac{\text{Var}[\tilde{g}^{(n)}_n - g^{(n)}_n]}{\text{Var}[g^{(n)}_n - g^{(n)}_n]} \geq \frac{n}{4} \quad \text{and} \quad \frac{\text{Var}[\tilde{h}^{(n)}_n - h^{(n)}_n]}{\text{Var}[h^{(n)}_n - h^{(n)}_n]} \geq \frac{n}{4}.
\]

Here, we used that \(m = \tilde{m} = 0\) which implies that \(\text{Var}[\tilde{g}^{(n)}_n - g^{(n)}_n] = E[(\tilde{g}^{(n)}_n - g^{(n)}_n)^2]\) and \(\text{Var}[\tilde{h}^{(n)}_n - h^{(n)}_n] = E[(\tilde{h}^{(n)}_n - h^{(n)}_n)^2]\). Finally, since, for all \(n \geq 2\), \(\text{span}\{z_1, \ldots, z_{n-1}\} = \mathcal{H}^*_n \cap \mathcal{H}^*_n\) holds, we obtain that \(\{\mathcal{H}^*_n\}_{n \in \mathbb{N}}, \{\mathcal{H}^*_n\}_{n \in \mathbb{N}} \in \mathcal{S}^\mu_{\text{adm}}\) and that the desired contradiction follows.

\appendix{C: Calculations for Different Means}

In this section we justify that we may, without loss of generality, assume that \(m = 0\) when proving all the theorems of Section 3. We first show that the best linear predictors based on two different Gaussian measures with the same covariance operator differ by a constant.

\textbf{Lemma C.1.} Let \(C : L_2(\mathcal{X}, \nu) \rightarrow L_2(\mathcal{X}, \nu)\) be a self-adjoint, positive definite, trace-class linear operator. For \(\tilde{m}, \tilde{m} \in L_2(\mathcal{X}, \nu)\), consider two Gaussian measures \(\tilde{\mu} := N(\tilde{m}, \tilde{C})\) and \(\mu := N(m, C)\). Then,

\[
\tilde{h}_n = \tilde{h}_n - \tilde{E}[\tilde{h}_n - h] \quad \text{and} \quad \tilde{h}_n = \tilde{h}_n - \tilde{E}[\tilde{h}_n - h],
\]

where \(\tilde{h}_n, \hat{h}_n\) are the best linear predictors based on a subspace \(\mathcal{H}_n\) of \(\mathcal{H}\) corresponding to \(n\) linearly independent observations (cf. Equation (2.9) in Section 2.2) and the measures \(\tilde{\mu}\) resp. \(\hat{\mu}\). Furthermore, \(\tilde{E}\) and \(\hat{E}\) denote the expectation operators under \(\tilde{\mu}\) and \(\hat{\mu}\), respectively.
PROOF. Firstly, unbiasedness \(\mathbb{E}[\hat{h}_n - h] = 0 \) for \(\hat{h}_n \) as in (C.1) is obvious. If \(\tilde{h}_n \) is the best linear predictor based on \(\mathcal{H}_n \) and \(\tilde{\mu} \), we obtain \(\mathbb{E}[\hat{h}_n - \hat{h}] = 0 \) and the identical covariances of \(\tilde{\mu} \) and \(\tilde{\mu} \) show that, for all \(g_n \in \mathcal{H}_n \),

\[
0 = \mathbb{E}[(\hat{h}_n - h)g_n] = \mathbb{E}[(\tilde{h}_n - h + \mathbb{E}[\hat{h}_n - h]) (g_n - \mathbb{E}[g_n])]
\]

\[
= \mathbb{E}[(\hat{h}_n - h - \mathbb{E}[\hat{h}_n - h]) (g_n - \mathbb{E}[g_n])] = \mathbb{E}[(\hat{h}_n - \tilde{\mathbb{E}}[\hat{h}_n - h] - h)g_n].
\]

By uniqueness of the kriging predictor defined in (2.10), we conclude that \(\tilde{h}_n \) in (C.1) is the best linear predictor based on \(\mathcal{H}_n \) and the measure \(\tilde{\mu} \). Changing the roles of \(\tilde{\mu}, \tilde{\mu} \) proves the second assertion in (C.1).

In addition to \(\mu = N(m, C) \) and \(\tilde{\mu} = N(\tilde{m}, \tilde{C}) \), we consider the centered and mean-shifted Gaussian measures \(\mu_c := N(0, C), \mu_s := N(\tilde{m} - m, C), \tilde{\mu}_c := N(0, \tilde{C}), \tilde{\mu}_s := N(\tilde{m} - m, \tilde{C}) \).

Similarly as for \(\mu \) and \(\tilde{\mu} \), \(E_c[\cdot], E_s[\cdot], \tilde{E}_c[\cdot], \tilde{E}_s[\cdot] \) and \(Var_c[\cdot], Var_s[\cdot], \tilde{Var}_c[\cdot], \tilde{Var}_s[\cdot] \) denote the expectation and variance operators under the measures \(\mu_c, \mu_s, \tilde{\mu}_c \) and \(\tilde{\mu}_s \), respectively. Furthermore, \(h_n^c, h_n^s, h_n^{c, \mu_c} \) and \(h_n^{s, \mu_s} \) are the best linear predictors of \(h \) based on a subspace \(\mathcal{H}_n \), generated by \(n \) observations, and the measures \(\mu_c, \mu_s, \tilde{\mu}_c, \tilde{\mu}_s \), cf. (2.10).

For fixed \(n \in \mathbb{N} \), we now consider the corresponding errors

\[
e_c := h_n - h, \quad e_c^c := h_n^c - h, \quad e_s := h_n^s - h, \quad e_s^c := h_n^{s, \mu_s} - h.
\]

Proposition C.2. With the above definitions, we have the identities:

\[
\begin{align*}
\mathbb{E}[e_c^2] &= E_c[e_c^2], & \mathbb{E}[e_s^2] &= E_s[e_s^2], & \mathbb{E}[e_s^c] &= E_c[e_s^c], \\
\mathbb{E}[\tilde{e}_c^2] &= \tilde{E}_c[\tilde{e}_c^2], & \mathbb{E}[\tilde{e}_s^2] &= \tilde{E}_s[\tilde{e}_s^2], & \mathbb{E}[\tilde{e}_s^c] &= \tilde{E}_c[\tilde{e}_s^c].
\end{align*}
\]

Furthermore, we obtain the following relations:

\[
\begin{align*}
\mathbb{E}[\tilde{E}_s[e_c^2]] &= \mathbb{E}[\tilde{E}_s[e_c^2]] = \mathbb{E}[\tilde{E}_s[e_c^2]] = \mathbb{E}[\tilde{E}_s[e_c^2]], \\
\mathbb{E}[\tilde{E}_s[e_c^2]] &= \mathbb{E}[\tilde{E}_s[e_c^2]] = \mathbb{E}[\tilde{E}_s[e_c^2]] = \mathbb{E}[\tilde{E}_s[e_c^2]].
\end{align*}
\]

where (C.8) holds, provided that

\[
c_0 := \|C^{-1/2}C^{-1/2}\|_\mathcal{L}(L^2(X,\nu_x)) \in (0, \infty) \quad \text{and} \quad c_1 := \|C^{1/2}C^{-1/2}\|_\mathcal{L}(L^2(X,\nu_x)) \in (0, \infty).
\]
PROOF. We first note that the covariance operators of μ, μ_c, μ_s are identical, and the same holds for those of $\bar{\mu}, \bar{\mu}_c, \bar{\mu}_s$. For this reason, the statements for the variances in (C.2)–(C.5) readily follow from Lemma C.1 which shows that the errors of best linear predictors for Gaussian measures with the same covariance operator differ by a constant. By the same argument we find that
\begin{equation}
E[e^2] = \text{Var}[e] = \text{Var}[e_c] = \text{Var}_c[e_c] = E_c[e_c^2].
\end{equation}
Furthermore, $\bar{E}[e] = \bar{E}[e_c - E[e]] = \bar{E}[e_c] - \bar{E}[e] = \bar{E}_s[e_c]$, where we used that, for all $h \in \mathcal{H}$, $\bar{E}_s[h] = \bar{E}[h] - E[h]$. Therefore,
\begin{equation}
E[e^2] = \text{Var}[e] = |\bar{E}[e]|^2 = \text{Var}_e[e_c] + |\bar{E}_s[e_c]|^2 = \bar{E}_s[e_c^2].
\end{equation}
Combining the two equalities (C.9) and (C.10) proves the identity for the second moments in (C.4). Next, we prove the corresponding statement in (C.2). Lemma C.1 yields the identities $\bar{h}_n = \bar{h}_n^c - E[\bar{h}_n^c - h]$ and $h_n^c = \bar{h}_n^c - \bar{E}_s[\bar{h}_n^c - h]$. Thus,
\begin{align*}
E[e] &= E[\bar{h}_n^c - h - \bar{E}[\bar{h}_n^c - h]] = -\bar{E}[e_c] + E[e_c] \\
&= -\bar{E}_s[e_c] = \bar{E}_c[\bar{h}_n^c - h - \bar{E}_s[\bar{h}_n^c - h]] = \bar{E}_c[e_s] = E[e_s].
\end{align*}
Since μ and μ_c have identical covariance operators, this implies that
\begin{equation}
E[e^2] = \text{Var}[e] + |E[e]|^2 = \text{Var}_e[e_c] + |E_e[e_c]|^2 = E_c[e_c^2].
\end{equation}
Combining (C.9) and (C.11) shows the first equality in (C.2). For (C.3) and (C.5) the second moment identities can be derived similarly: By changing the roles of μ and $\bar{\mu}$, (C.9)–(C.11) above show that
\begin{align}
\frac{\bar{E}[e^2]}{E[e^2]} &= \frac{\bar{E}_c[e^2_c]}{E_c[e^2_c]}, \quad \text{and} \quad \frac{E[e^2]}{E[e^2]} = \frac{E_s[e^2_s]}{E_c[e^2_c]},
\end{align}
In addition, we obtain
\begin{equation}
\bar{E}_c[e^2_c] = \text{Var}_c[e_c] = \text{Var}_e[e_s] = \bar{E}_s[e^2_s],
\end{equation}
as well as
\begin{align}
\bar{E}_c[e^2_s] &= \text{Var}_e[e_s] + |\bar{E}_c[e_s]|^2 = \text{Var}_e[e_c] + |\bar{E}_s[e_c]|^2 = \bar{E}_s[e^2_c], \\
E_s[e^2_c] &= \text{Var}_e[e_c] + |E_s[e_c]|^2 = \text{Var}_e[e_c] + |E_c[e_c]|^2 = E_c[e^2_c].
\end{align}
Here, we have used that $e_s = e_c - \bar{E}_s[e_c]$, $\bar{E}_c[e_c] = E_c[e_c] = 0$, $E_s[e_c] = \bar{E}_s[e_c]$, as well as $e_c = e_c - \bar{E}_c[e_c]$, $e_s = \bar{E}_s[e_c] = 0$, and $\bar{E}_c[e_c] = E_c[e_c]$. Combining the identities (C.12), (C.13), (C.14), (C.15) finishes the proof of (C.2)–(C.5).

It remains to derive (C.6)–(C.8). To this end, we again exploit Lemma C.1, which gives that $e_c = e - E_c[e], \bar{e}_c = e_c - \bar{E}_c[e_c]$ and $\bar{e}_c = e - \bar{E}_c[e]$. Then,
\begin{align*}
\bar{E}_s[e^2_c] &= \text{Var}_s[e_c] + |\bar{E}_s[e_c]|^2 = \text{Var}[e] + |E_s[e_c]|^2, \\
E_c[e^2_s] &= E_c[e^2_c] + |\bar{E}_s[e_c]|^2 - 2E_c[e_c]\bar{E}_s[e_c] = \text{Var}[e] + |\bar{E}_s[e_c]|^2,
\end{align*}
where the last equality holds, since $E_c[e_c] = \bar{E}_c[e_c] = 0$. Combining these identities with (C.9) shows the first relations in (C.6) and (C.7),
\begin{align*}
\frac{\bar{E}_s[e^2_c]}{E_c[e^2_c]} &= \frac{\text{Var}[e]}{E_c[e^2_c]} + \frac{|\bar{E}_s[e_c]|^2}{E_c[e^2_c]}, \\
E_c[e^2_s] - 1 &= \frac{\text{Var}[e]}{E_c[e^2_c]} - 1 + \frac{|\bar{E}_s[e_c]|^2}{E_c[e^2_c]} \geq \frac{\text{Var}[e]}{E_c[e^2_c]} - 1.
\end{align*}
By changing the roles of $\mu, \tilde{\mu}$, these two relations imply that

$$\frac{E_s[\tilde{e}_c^2]}{E_c[\tilde{e}_c^2]} = \frac{\text{Var}[\tilde{e}]}{\text{Var}[e]} + \frac{|\tilde{E}_e[e_c]|^2}{E_c[e_c^2]}, \quad \frac{\tilde{E}_e[e_c^2]}{E_c[e_c^2]} - 1 \geq \frac{\text{Var}[e]}{\text{Var}[\tilde{e}]} - 1,$$

which combined with (C.13), (C.14) and (C.15) yield the remaining relations in (C.6), (C.7).

To derive (C.8), we recall that $\frac{\text{Var}[\tilde{e}]}{\text{Var}[e]} - 1 \geq 0$. By invoking that $E_c[\tilde{e}_c^2] \leq c_1^2$ and $E_c[e_c^2] \geq 1$, we therefore obtain

$$\frac{E_c[e_c^2]}{E_c[e_c^2]} - 1 = \frac{\text{Var}[e]}{\text{Var}[e]} - 1 + \frac{|\tilde{E}_e[e_c]|^2}{E_c[e_c^2]} \geq \frac{|\tilde{E}_e[e_c]|^2}{E_c[e_c^2]} = \frac{|\tilde{E}_e[e_c]|^2}{E_c[e_c^2]} + \frac{c_1^2}{E_c[e_c^2]} = \frac{c_1^2}{E_c[e_c^2]},$$

This shows the first inequality in (C.8). Since $\frac{\tilde{E}_e[e_c^2]}{E_c[e_c^2]} \leq c_2^2$ is also bounded, we can exchange the roles of $\mu, \tilde{\mu}$ which combined with (C.13) and (C.14) show the second inequality in (C.8). This completes the proof.

Remark C.3. Note that, if for a sequence $\{H_n\}_{n \in \mathbb{N}} \in S_{\text{adm}}^\mu$ (with S_{adm}^μ defined as in Equation (2.12) in Section 2.3) any of the left-hand sides in (C.6) is bounded uniformly in $n \in \mathbb{N}$ and in $h \in H_{-n}$, then so are both terms on the corresponding right-hand side, because all arising terms are nonnegative.

REFERENCES

[1] Cleveland, W. S. (1971). Projection with the wrong inner product and its application to regression with correlated errors and linear filtering of time series. Ann. Math. Statist. 42 616–624.

[2] Da Prato, G. and Zabczyk, J. (2014). Stochastic Equations in Infinite Dimensions, second ed. Encyclopedia of Mathematics and its Applications 152, Cambridge University Press, Cambridge.