Symmetry of terminating basic hypergeometric series representations of the Askey–Wilson polynomials

Howard S. Cohl† and Roberto S. Costas-Santos§

† Applied and Computational Mathematics Division, National Institute of Standards and Technology, Mission Viejo, CA 92694, USA
URL: http://www.nist.gov/itl/math/msg/howard-s-cohl.cfm
E-mail: howard.cohl@nist.gov

§ Dpto. de Física y Matemáticas, Universidad de Alcalá, c.p. 28871, Alcalá de Henares, Spain
URL: http://www.rscosan.com
E-mail: rscosa@gmail.com

Received February 21, 2022 in final form ?????; Published online ?????
doi:10.3842/JOURNAL.202*.*

Abstract. In this paper, we explore the symmetric nature of the terminating basic hypergeometric series representations of the Askey–Wilson polynomials and the corresponding terminating basic hypergeometric transformations that these polynomials satisfy. In particular we identify and classify the set of 4 and 7 equivalence classes of terminating balanced $4\phi_3$ and terminating very-well poised $8W_7$ basic hypergeometric series which are connected with the Askey–Wilson polynomials. We study the inversion properties of these equivalence classes and also identify the connection of both sets of equivalence classes with the symmetric group S_6, the symmetry group of the terminating balanced $4\phi_3$. We then use terminating balanced $4\phi_3$ and terminating very-well poised $8W_7$ transformations to give a broader interpretation of Watson’s q-analog of Whipple’s theorem and its converse. We give a broad description of the symmetry structure of the terminating basic hypergeometric series representations of the Askey–Wilson polynomials.

Key words: Basic hypergeometric series; Basic hypergeometric orthogonal polynomials; Basic hypergeometric transformations

2020 Mathematics Subject Classification: 33D15, 33D45

Dedicated to the life and mathematics of Dick Askey, 1933-2019.

1 Introduction

This paper is a study in q-calculus (typically taken with $|q| < 1$). The q-calculus (introduced by such luminaries as Leonhard Euler, Eduard Heine and Carl Gustav Jacobi) is a calculus of finite differences which becomes the standard infinitesimal calculus (introduced by Isaac Newton and Gottfried Wilhelm Leibniz) in the limit as $q \to 1$. One of the most important aspects of q-calculus is the theory of basic hypergeometric series which are the q-analogue of generalized hypergeometric series. Observe that these obey a natural scheme which is often referred to as the scheme of basic hypergeometric orthogonal polynomials. Hereafter we refer to this scheme, which represents a hierarchy of basic hypergeometric orthogonal polynomials (see e.g., [10, p. 414]), as the q-Askey scheme, in honor of Dick Askey who was instrumental in the understanding and classification of hypergeometric orthogonal polynomials. The Askey–Wilson polynomials are at the very top of the q-Askey scheme and all polynomials within the q-Askey scheme can be written as either a specialization or limit of the Askey–Wilson polynomials. The work contained in this paper is associated with the Askey–Wilson polynomials $p_n(x; a|q)$ [10,
The Askey–Wilson polynomials are basic hypergeometric orthogonal polynomials with interpretations in quantum group theory, combinatorics, and probability. The applications of Askey–Wilson polynomials include invariants of links, 3-manifolds and $6j$-symbols (see e.g., [13]). The definition of the Askey–Wilson polynomials in terms of terminating basic hypergeometric series is given in Theorem 7 below. The Askey–Wilson polynomials are symmetric with respect to their four free parameters, that is, they remain unchanged upon interchange of any two of the four free parameters. It should be emphasized that since 1970, the subjects of special functions and special families of orthogonal polynomials have gone through major developments, of which the study of the Askey–Wilson polynomials has been central. Many of the properties of these polynomials can be derived from their terminating basic hypergeometric representations, so an exhaustive catalog of these representations, as contained here, will be quite convenient for lookup.

From the terminating basic hypergeometric representations of the Askey–Wilson polynomials, one can easily derive transformation formulas for terminating basic hypergeometric functions. The main focus of this survey paper will be to exhaustively describe the transformation identities for the terminating basic hypergeometric functions which appear as representations for these polynomials. Some of these transformation identities are well-known in the literature, but we also give the transformation identities for these basic hypergeometric functions which are obtained by the symmetry of the polynomials under parameter interchange, and under the map $\theta \mapsto -\theta$, for $x = \cos \theta$.

This paper follows from the preliminary work done by the authors in [4, 3]. In order to study the symmetry properties of the terminating basic hypergeometric functions which appear in the series representations of the Askey–Wilson polynomials, a detailed parametric connection between them was provided in [4, Corollary 3]. However, there were some typographical errors in that result and some representations which arise by inversion were inadvertently left off. An attempt to remedy this was executed in [3] (we also missed some of the connections between classes of 4-parameter symmetric interchange transformations in [4, §3.3], a complete description is now given in Appendix A below).

Further continuation of our study of the mapping properties of these functions was made clear by previous and our work on the group theoretic description of the transformation properties of these functions (see e.g., [12, 16] and Propositions 15, 17 below). This work in this present paper provides a framework for future work on the symmetry analysis of terminating basic hypergeometric functions which is more complicated than that for the nonterminating case [15] and that it is not surprising that the classes of terminating basic hypergeometric functions are not connected by the known nonterminating transformations (see Figures 1, 2, 3 below). In this paper, for the first time, we present the full symmetry structure of the terminating $8W_7$ representations for the Askey–Wilson polynomials and a detailed connection with the terminating balanced $4\phi_3$ representations.

2 Preliminaries

We adopt the following set notations: $\mathbb{N}_0 := \{0\} \cup \mathbb{N} = \{0, 1, 2, \ldots\}$, and we use the sets \mathbb{Z}, \mathbb{R}, \mathbb{C} which represent the integers, real numbers and complex numbers respectively, $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$, and $\mathbb{C}^\dagger := \mathbb{C}^* \setminus \{z \in \mathbb{C} : |z| = 1\}$. We also adopt the following notation and conventions. Let $\mathbf{a} := \{a_1, a_2, a_3, a_4\}$, $b, a_k \in \mathbb{C}$, $k = 1, 2, 3, 4$. Define $\mathbf{a} + b := \{a_1 + b, a_2 + b, a_3 + b, a_4 + b\}$, $a_{12} := a_1 a_2$, $a_{13} := a_1 a_3$, $a_{23} := a_2 a_3$, $a_{123} := a_1 a_2 a_3$, $a_{1234} := a_1 a_2 a_3 a_4$, etc. Throughout the paper, we assume that the empty sum vanishes and the empty product is unity.

Definition 1. Throughout this paper we adopt the following conventions for succinctly writing...
elements of lists. To indicate sequential positive and negative elements, we write
\[\pm a := \{ a, -a \}. \]

We also adopt an analogous notation
\[e^{\pm i\theta} := \{ e^{i\theta}, e^{-i\theta} \}. \]

In the same vein, consider the numbers \(f_s \in \mathbb{C} \) with \(s \in \mathcal{S} \subset \mathbb{N} \), with \(\mathcal{S} \) finite. Then, the notation \(\{ f_s \} \) represents the set of all complex numbers \(f_s \) such that \(s \in \mathcal{S} \). Furthermore, consider some \(p \in \mathcal{S} \), then the notation \(\{ f_s \}_{s \neq p} \) represents the sequence of all complex numbers \(f_s \) such that \(s \in \mathcal{S} \setminus \{ p \} \). In addition, for the empty list, \(n = 0 \), we take
\[\{ a_1, \ldots, a_n \} := \emptyset. \]

Consider \(q \in \mathbb{C}^\ast \). Define the sets \(\Omega_q^n := \{ q^{-k} : n, k \in \mathbb{N}_0, 0 \leq k \leq n - 1 \} \), \(\Omega_q := \Omega_q^\infty := \{ q^{-k} : k \in \mathbb{N}_0 \} \). In order to obtain our derived identities, we rely on properties of the \(q \)-Pochhammer symbol (\(q \)-shifted factorial). For any \(n \in \mathbb{N}_0 \), \(a, q \in \mathbb{C} \), the \(q \)-Pochhammer symbol is defined as
\[(a; q)_n := (1 - a)(1 - aq) \cdots (1 - aq^{n-1}), \quad n \in \mathbb{N}_0. \] (1)

One may also define
\[(a; q)_\infty := \prod_{n=0}^{\infty} (1 - aq^n), \] (2)

where \(|q| < 1 \). We will also use the common notational product conventions
\[(a_1, \ldots, a_k; q)_b := (a_1; q)_b \cdots (a_k; q)_b. \]

The following properties for the \(q \)-Pochhammer symbol can be found in Koekoek et al. \cite[(1.8.7), (1.8.10-11), (1.8.14), (1.8.19), (1.8.21-22)]{koekoek2010}, namely for appropriate values of \(q, a \in \mathbb{C}^\ast \) and \(n, k \in \mathbb{N}_0 \):
\[(a; q^{-1})_n = (a^{-1}; q)_n (-a)^n q^{-\binom{n}{2}}. \] (3)

The basic hypergeometric series, which we will often use, is defined for \(q, z \in \mathbb{C}^\ast \), such that \(|q|, |z| < 1 \), \(s, r \in \mathbb{N}_0 \), \(b_j \not\in \Omega_q \), \(j = 1, \ldots, s \), as \cite[(1.10.1)]{koekoek2010}
\[_r\phi_s \left(\frac{a_1, \ldots, a_r}{b_1, \ldots, b_s}; q, z \right) := \sum_{k=0}^{\infty} \frac{(a_1, \ldots, a_r; q)_k}{(q, b_1, \ldots, b_s; q)_k} \left((-1)^k q \binom{k}{2} \right)^{1+s-r} z^k. \] (4)

Note that we refer to a basic hypergeometric series as \(\ell \)-balanced if \(q^\ell a_1 \cdots a_r = b_1 \cdots b_s \), and balanced (Saalschützian) if \(\ell = 1 \). A basic hypergeometric series \(_r\phi_s \) is well-poised if the parameters satisfy the relations
\[qa_1 = b_1 a_2 = b_2 a_3 = \cdots = b_r a_{r+1}. \]

It is very-well poised if in addition, \(\{ a_2, a_3 \} = \pm q \sqrt{a_1} \).

Similarly for terminating basic hypergeometric series which appear in basic hypergeometric orthogonal polynomials, one has
\[_r\phi_s \left(\frac{q^{-n}, a_1, \ldots, a_r-1}{b_1, \ldots, b_s}; q, z \right) := \sum_{k=0}^{n} \frac{(q^{-n}, a_1, \ldots, a_r-1; q)_k}{(q, b_1, \ldots, b_s; q)_k} \left((-1)^k q \binom{k}{2} \right)^{1+s-r} z^k. \] (5)
where \(b_j \not\in \Omega_q^m, j = 1, \ldots, s \). Define the very-well poised basic hypergeometric series \(r+1 W_r \) [6, (2.1.11)]

\[
r+1 W_r (b; a_4, \ldots, a_{r+1}; q, z) := r+1 \phi_r \left(b, \pm q \sqrt{b}, a_4, \ldots, a_{r+1}; q, z \right),
\]

where \(\sqrt{b}, \frac{q b}{a_4}, \ldots, \frac{q b}{a_{r+1}} \not\in \Omega_q \). When the very-well poised basic hypergeometric series is terminating, then one has

\[
r+1 W_r (b; q^{-n}, a_5, \ldots, a_{r+1}; q, z) = r+1 \phi_r \left(b, \pm q \sqrt{b}, q^{-n}, a_5, \ldots, a_{r+1}; q, z \right),
\]

where \(\sqrt{b}, \frac{q b}{a_5}, \ldots, \frac{q b}{a_{r+1}} \not\in \Omega_q^m \cup \{0\} \). The Askey–Wilson polynomials are intimately connected with the terminating very-well poised \(s W_7 \), which is given by

\[
s W_7 (b; q^{-n}, c, d, e, f; q, z) = s \phi_r \left(b, \pm q \sqrt{b}, q^{-n}, c, d, e, f; q, z \right),
\]

where \(\sqrt{b}, \frac{q b}{c}, \frac{q b}{d}, \frac{q b}{e} \not\in \Omega_q^m \cup \{0\} \).

The following notation \(r+1 \phi_s^m \), \(m \in \mathbb{Z} \) (originally due to van de Bult & Rains [14, p. 4]), for basic hypergeometric series with zero parameter entries. Consider \(p \in \mathbb{N}_0 \). Then define

\[
r+1 \phi_s^{−p} \left(a_1, \ldots, a_{r+1}; b_1, \ldots, b_s ; q, z \right) := r+p+1 \phi_s \left(a_1, a_2, \ldots, a_{r+1}, \underbrace{0, \ldots, 0}_{p}; b_1, b_2, \ldots, b_s ; q, z \right),
\]

\[
r+1 \phi_s^p \left(a_1, \ldots, a_{r+1}; b_1, \ldots, b_s ; q, z \right) := r+1 \phi_{s+p} \left(a_1, a_2, \ldots, a_{r+1}, \underbrace{0, \ldots, 0}_{p}; b_1, b_2, \ldots, b_s ; q, z \right),
\]

where \(b_1, \ldots, b_s \not\in \Omega_q \cup \{0\} \), and \(r+1 \phi_s^0 = r+1 \phi_s \). The terminating basic hypergeometric series \(r+1 \phi_s^m (q^{-n}; a; b; q, z) \), for some \(n \in \mathbb{N}_0 \), \(a := \{a_1, \ldots, a_r\} \), \(b := \{b_1, \ldots, b_s\} \), is well-defined for all \(r, s \in \mathbb{N}_0, m \in \mathbb{Z} \). In [6, Exercise 1.4ii] one finds the inversion formula for terminating basic hypergeometric series.

Theorem 2 (Gasper and Rahman’s (2004) Inversion Theorem). Let \(m, n, k, r, s \in \mathbb{N}_0, a_k \in \mathbb{C}, 1 \leq k \leq r, b_m \not\in \Omega_q^m, 1 \leq m \leq s, \), \(q \in \mathbb{C} \). Then,

\[
r+1 \phi_s \left(q^{-n}, a_1, \ldots, a_r; b_1, \ldots, b_s ; q, z \right) = \frac{(a_1, \ldots, a_r; q)_n}{(b_1, \ldots, b_s; q)_n} \left(\frac{z}{q} \right)^n \left((-1)^n q \right)^{s-r-1} \times \phi_{s+1}^p \left(q^{-n}, \frac{q}{b_1}, \ldots, \frac{q}{b_s}; q, \frac{q^{n+1} b_1 \cdots b_s}{a_1 \cdots a_r} ; q, \frac{q}{z} \right). \tag{11}
\]

Corollary 3. Let \(n, r \in \mathbb{N}_0, q \in \mathbb{C}, a_k, b_k \not\in \Omega_q^m \cup \{0\}, 1 \leq k \leq r \). Then,

\[
r+1 \phi_r \left(q^{-n}, a_1, \ldots, a_r; b_1, \ldots, b_r ; q, z \right)
\]

\[
= q^{-\binom{r}{2}} \left(\frac{z}{q} \right)^n \frac{(a_1, \ldots, a_r; q)_n}{(b_1, \ldots, b_r; q)_n} \phi_r \left(q^{-n}, \frac{q}{b_1}, \ldots, \frac{q}{b_r}; \frac{q^{n+1} b_1 \cdots b_r}{a_1 \cdots a_r}; q, \frac{q}{z} \right). \tag{12}
\]
Proof. Take \(r = s \), in (11) and using the definition (4) completes the proof.

Note that in Corollary 3 if the terminating basic hypergeometric series on the left-hand side is balanced then the argument of the terminating basic hypergeometric series on the right-hand side is \(q^2/z \).

Applying Corollary 3 to the definition of \(r + 1 W_r \), we obtain the following transformation formula for a terminating very-well poised basic hypergeometric series \(r + 1 W_r \).

Corollary 4. Let \(n \in \mathbb{N}_0 \), \(b, a_k, q, z \in \mathbb{C}^* \), \(\sqrt{b}, q^{n+1} b, \frac{q}{a_k}, q^{1-n}, q^{1-n} \not\in \Omega_q \), \(k = 5, \ldots, r + 1 \). Then, one has the following transformation formula for a very-well poised terminating basic hypergeometric series:

\[
\begin{align*}
\left. r + 1 W_r \right| (b; q^{-n}, a_5, \ldots, a_{r+1}; q, z) &= q^{-\binom{n}{2}} \left(\frac{-z}{q} \right)^n \frac{(\pm q \sqrt{b}, b, a_5, \ldots, a_{r+1}; q)_n}{(\pm \sqrt{b}, q^{n+1} b, \frac{q}{a_5}, \ldots, \frac{q}{a_{r+1}}; q)_n} \\
&\times r + 1 W_r \left(\frac{q^{-2n}}{b}; \frac{q^{-n}}{b}, \frac{q^{-n} a_5}{b}, \ldots, \frac{q^{-n} a_{r+1}}{b}; q, \frac{q^{2n+r-3} b^{-3}}{(a_5 \cdots a_{r+1})^2 z} \right) \quad (13)
\end{align*}
\]

Proof. Use Corollary 3 and (7).

An interesting and useful consequence of this formula is the \(r = 7 \) special case,

\[
\begin{align*}
\left. s W_7 \right| (b; q^{-n}, c, d, e, f; q, z) &= q^{-\binom{2}{2}} \left(\frac{-z}{q} \right)^n \frac{(\pm q \sqrt{b}, b, c, d, e, f; q)_n}{(\pm \sqrt{b}, q^{n+1} b, \frac{q}{c}, \frac{q}{d}, \frac{q}{e}, \frac{q}{f}; q)_n} \\
&\times s W_7 \left(\frac{q^{-2n}}{b}; \frac{q^{-n}}{b}, \frac{q^{-n} c}{b}, \frac{q^{-n} d}{b}, \frac{q^{-n} e}{b}, \frac{q^{-n} f}{b}; q, \frac{q^{2n+4b^4}}{z(cdef)^2} \right) \quad (14)
\end{align*}
\]

Note that when one obtains an \(s W_7 \) from a balanced \(4 \phi_3 \) using (12), then \(q^{2n+4b^4}/(z(cdef)^2) = z \).

We will obtain new transformations for basic hypergeometric orthogonal polynomials by taking advantage of the following remark.

Remark 5. Since \(x = \cos \theta \) is an even function of \(\theta \), all polynomials in \(\cos \theta \) will be invariant under the map \(\theta \mapsto -\theta \).

Remark 6. Observe in the following discussion we will often be referring to a collection of constants \(a, b, c, d, e, f \). In such cases, which will be clear from context, then the constant \(e \) should not be confused with Euler’s number \(e \), the base of the natural logarithm, i.e., \(\log e = 1 \). Observe the different (roman) typography for Euler’s number.

3 The Askey–Wilson polynomials

Define the sets \(4 := \{1, 2, 3, 4\} \), \(a := (a_1, a_2, a_3, a_4) \), \(a_k \in \mathbb{C}^* \), \(k \in 4 \), and \(x = \cos \theta \in [-1, 1] \).

The Askey–Wilson polynomials \(p_n(x; a|q) \) are a family of polynomials symmetric in the four free parameters \(a_1, a_2, a_3 \) and \(a_4 \). These polynomials have a long and in-depth history and their properties have been studied in detail. The basic hypergeometric series representation of the Askey–Wilson polynomials fall into four main categories: (1) terminating \(4 \phi_3 \) representations; (2) terminating \(s W_7 \) representations; (3) nonterminating \(s W_7 \) representations; and (4) nonterminating \(4 \phi_3 \) representations. One may obtain the alternative nonterminating representations of the Askey–Wilson polynomials using [6, (2.10.7)] and [5, 17.9.16]. However, these nonterminating representations will not be further discussed in this paper.
3.1 The Askey–Wilson polynomial terminating series representations

First we present the terminating series representations of the Askey–Wilson polynomials. They are given in terms of terminating balanced $4\phi_3$ and terminating very-well-poised $8\phi_7$ basic hypergeometric series. This result was presented in [4, Theorem 3]. The symmetric structure of the mapping properties of the utilized basic hypergeometric functions which appear in this theorem are the essential ingredients for the remainder of the paper.

Theorem 7. Let $n \in \mathbb{N}_0$, $p, s, r, t, u \in \mathfrak{A}$, p, r, t, u distinct and fixed, $q \in \mathbb{C}^\dagger$. Then, the Askey–Wilson polynomials have the following terminating basic hypergeometric series representations given by:

$$
p_n(x; a|q) := a_p^{-n} \{a_{ps}\}_{s \neq p}, q_n \ 4\phi_3 \left(\begin{array}{c} q^{-n}, q^{n-1}a_{1234}, a_p e^{\pm \iota \theta} \\
\{a_{ps}\}_{s \neq p} & q, q \end{array} \right)
$$

$$= q^{-\binom{n}{2}} (-a_p)^{-n} \frac{\left(a_{1234} q \right)_{2n} \left(a_p e^{\pm \iota \theta}; q \right)_n}{\left(a_{1234}; q \right)_n} \ 4\phi_3 \left(\begin{array}{c} q^{-n}, \{q^{-n} a_{ps}\}_{s \neq p} \\
q^{2-2n}, q^{1-n} e^{\pm \iota \theta}; q, q \end{array} \right)
$$

$$= e^{i \theta} \left(a_{pr}, a_r e^{-i \theta}, a_u e^{-i \theta}; q \right)_n \ 4\phi_3 \left(\begin{array}{c} q^{-n}, a_p e^{i \theta}, a_p e^{i \theta}, q^{1-n} a_{tu} \\
\{a_{pr}, q^{1-n} e^{i \theta}; q, q \}
\end{array} \right)
$$

$$= e^{i \theta} \left(a_{pr}, a_r e^{-i \theta}, a_u e^{-i \theta}; q \right)_n \ 4\phi_3 \left(\begin{array}{c} a_{ps} e^{-i \theta} \\
\{a_{ps}, q^{1-n} e^{i \theta}; q, q \}
\end{array} \right)
$$

$$= a_p^{-n} \left(a_{pr}, a_{pu}, a_r e^{\pm \iota \theta}; q \right)_n \ 8\phi_7 \left(\begin{array}{c} q^{-n} a_p, q^{-n} a_{rt}, q^{1-n} a_{rt}, q^{1-n} a_{ru}, q^{1-n} a_{tu} \\
\left(a_r; q \right)_n, \left(a_{ps}; q \right)_n, \left(a_{ps}; q \right)_n, \left(a_p; q \right)_n
\end{array} \right)
$$

$$= e^{i \theta} \left(a_r e^{-2i \theta}; q \right)_n \ 8\phi_7 \left(\begin{array}{c} q^{2-n} a_{1234} \\
q^{-n}, \{a_r e^{i \theta}; q, q \}
\end{array} \right).
$$

Proof. See the proof of [4, Theorem 3].

Remark 8. Please note the following symmetry properties of Theorem 7. When inversion (Corollary 3) is applied to (15) one obtains (16), and when one applies it to (17), one obtains the same formula back with $\theta \rightarrow -\theta$ and $\{r, s\} \leftrightarrow \{t, u\}$. Applying (11) to (17), (18), (19), (21) simply takes $\theta \rightarrow -\theta$, and applying it to (20) interchanges a_p and a_r. Mapping $\theta \rightarrow -\theta$ may give additional representations, however those are omitted.
3.2 Terminating 4-parameter symmetric transformations

Corollary 9. Let \(n \in \mathbb{N}_0, b, c, d, e, f \in \mathbb{C}^*, q \in \mathbb{C} \). Then, one has the following transformation formulas for a terminating \(sW_7 \) to a terminating \(sW_7 \):

\[
sW_7 \left(b; q^{-n}, c, d, e, f; q; \frac{q^{n+2}b^2}{cdef} \right) = q^{n+1}(q)_2 \left(-q^{2b^2} \right)^n \left(\frac{q^{2b^2}}{cdef} \right) \left(\frac{gb, b, c, d, e, f; q}{cdef} \right)_{n} sW_7 \left(q^{-2n} b; q^{-n}, \frac{q^{-n}c}{b}, \frac{q^{-n}d}{b}, \frac{q^{-n}e}{b}, \frac{q^{-n}f}{b}; q; \frac{q^{n+2}b^2}{cdef} \right)
\]

\[
= \left(\frac{gb}{c}, \frac{gb}{d}, \frac{gb}{e}, \frac{gb}{f}; q \right)_{n} sW_7 \left(q^{-n} c, d, e, f; q; \frac{q^{-n}c}{b}, \frac{gb}{d}, \frac{gb}{e}, \frac{gb}{f}; q; \frac{q^{n+2}b^2}{cdef} \right)
\]

\[
= \left(\frac{de, ef, gb}{cdef}, q; q \right)_{n} sW_7 \left(q^{-n} b; q^{-n}, \frac{q^{-n}c}{b}, \frac{gb}{d}, \frac{gb}{e}, \frac{gb}{f}; q; \frac{q^{n+2}b^2}{cdef} \right)
\]

\[
= q^{n+1}(q)_2 \left(-q^{2b^2} \right)^n \left(\frac{gb}{cdef}, q; q \right)_{n} sW_7 \left(q^{-2n} b; q^{-n}, \frac{q^{-n}c}{b}, \frac{gb}{d}, \frac{gb}{e}, \frac{gb}{f}; q; \frac{q^{n+2}b^2}{cdef} \right)
\]

Proof. Start with Theorem 7 and set \(e^{2i\theta} = q^n b, a_p = q^{-\frac{n}{2}} \frac{c}{\sqrt{b}}, a_r = q^{-\frac{n}{2}} \frac{d}{\sqrt{b}}, a_t = q^{-\frac{n}{2}} \frac{e}{\sqrt{b}}, a_u = q^{-\frac{n}{2}} \frac{f}{\sqrt{b}} \), setting \(\theta \mapsto -\theta \) where necessary. Then, multiply every formula by the factor

\[
A_n(b, c, d, e, f; q) := \frac{q^{n+1}(q)_2(-1)^n(bq)^{\frac{n}{2}}(qb; q)_n}{(cdef)_n}.
\]

With simplification, this completes the proof.

The above corollary relates a terminating very-well-poised \(sW_7 \) to six other representations of terminating very-well-poised \(sW_7 \)s. The following corollary which results from comparing the symmetric \(sW_7 \) representation of the Askey–Wilson polynomials to the \(4\phi_3 \) representations of the Askey–Wilson polynomials is directly connected to Watson’s \(q \)-analog of Whipple’s theorem [5, (17.9.15)]. However, beyond the single representation which is usually displayed, we are able to extend this to a total of four representations of terminating balanced \(4\phi_3 \)s.

Corollary 10. (*Watson’s \(q \)-analog of Whipple’s theorem [5, (17.9.15)].*) Let \(n \in \mathbb{N}_0, b, c, d, e, f \in \mathbb{C} \). The following equalities hold:

\[
\begin{align*}
&1.
\end{align*}
\]

\[
\begin{align*}
&2.
\end{align*}
\]

\[
\begin{align*}
&3.
\end{align*}
\]

\[
\begin{align*}
&4.
\end{align*}
\]
\[C^*, \, q \in \mathbb{C}^\dagger. \text{ Then} \]
\[sW_7 \left(b; q^{-n}, c, d, e, f; q, q^{n+2}cdef \right) = \frac{(qb, qf; q)_n}{(qf, cd; q)_n} 4\phi_3 \left(q^{-n}, q^b, q^e, q^f; q, q \right) \]
\[= \left(\frac{q^b}{cd} \right)_n \frac{(qf, cd; q)_n}{(qf, q^b, cd; q)_n} 4\phi_3 \left(q^{-n}, q^b, q^e, q^f; q, q \right) \]
\[= e^n \left(\frac{qb, qf; q}{q^b, cd; q, q} \right)_n 4\phi_3 \left(q^{-n}, q^{-n-1}cdef, q^{n-1}abc, q^{n-1}def, q^{n-1}; q, q \right). \]

Note that the above terminating 4\phi_3s are balanced.

Proof. Same as in the proof of Corollary 9 except applying the transformation to the terminating balanced 4\phi_3s in Theorem 7. This completes the proof. \[\blacksquare \]

Remark 11. The Askey–Wilson polynomials are symmetric in their four parameters, the \(sW_7 \) representation in which this symmetry is evident demonstrates this symmetry. On the other hand, the polynomial nature of the Askey–Wilson polynomials is not clearly evident from the \(sW_7 \) representation. In the first 4\phi_3 representation, the polynomial nature of evident.

3.3 Converse for Watson’s \(q \)-analog of Whipple’s theorem

One important transformation for terminating basic hypergeometric series related to the Askey–Wilson polynomials is Watson’s \(q \)-analog of Whipple’s theorem [5, (17.9.15)]. This result relates a terminating balanced 4\phi_3 to a terminating very-well poised \(sW_7 \). The following corollary, an extension of this theorem, is a direct consequence of Corollary 10. Both of the following results directly relate a terminating balanced 4\phi_3 to a terminating very-well-poised \(sW_7 \). The balancing condition for the terminating 4\phi_3 is \(q^{1-n}abc = def \).

Corollary 12. (Converse for Watson’s \(q \)-analog of Whipple’s theorem). Let \(n \in \mathbb{N}_0, a, b, c, d, e, f \in \mathbb{C}^*, \, q \in \mathbb{C}^\dagger \), such that \(q^{1-n}abc = def \) (balancing condition for the terminating 4\phi_3). Then

\[4\phi_3 \left(q^{-n}, a, b, c; d, e, f; q, q \right) = \frac{(f, e; q)_n}{(q^{-n}, a, b, c, q)_n} 8W_7 \left(q^{-n}bc; q^{-n}, d, e, f, a, b, c; q, q \right) \]
\[= \frac{(f, e; q)_n}{(ab, q^{-n}, a, b, c, q)_n} 8W_7 \left(q^{-n}f; q^{-n}, \frac{q^{1-n}}{d}, e, f, a, b, c; q, q \right) \]
\[= e^n \left(\frac{d, e, f, c}{q^{-n}, a, b, c, q}_n \right)_n 8W_7 \left(q^{-n}c; q^{-n}, q^{-n}d, e, f, a, b, c; q, q \right) \]
\[= \left(\frac{de, e, f, c; q_n}{q^{-n}, a, b, c, q}_n \right)_n 8W_7 \left(q^{-n}d; q^{-n}, q^{-n}e, f, a, b, c; q, q^n \right). \]

Proof. Consider (29), then solving the following set of algebraic equations

\[\left(A, B, C, D, E, \frac{q^{-1}BC}{DE} \right) = \frac{\left(qb, q^b, q^d, q^e, qf, cd; q, qf \right)_n}{ \left(q^b, cd, q^e, qf, q^a, f \right)_n}. \]
gives the solution
\[(b, c, d, e, f) = \left(\frac{q^{-n} BC}{D}, B, C, \frac{q^{1-n} BC}{DE}, F \right). \] (38)

Now make these replacements in (22)–(28), and solving for the $4\phi_3$ in (29), while replacing
\((A, B, C, D, E, F) \mapsto (a, b, c, d, e, f)\), and utilizing the balancing condition $q^{1-n} abc = def$. Note that one can write (33), (34) as equivalent expressions using the balancing condition as follows
\[4\phi_3 \left(\frac{q^{-n}, a, b, c}{d, e, f} \right) : q, q \]
\[= q^{(n)} \left(\frac{-de}{bc} \right)^n \frac{\left(\frac{de}{qa} \cdot \frac{de}{qa} \cdot \frac{de}{qa} \right) \Theta_{W_7} \left(\frac{de}{qa}, q^{-n}, \frac{d}{a}, \frac{e}{a}, b, c, q, qa \right)}{n} \]
\[\times 8W_7 \left(\frac{q^{1-n} a}{de} : q^{-n}, \frac{q^{1-n}}{d}, \frac{q^{1-n}}{e}, \frac{q^{1-n} ab}{de}, \frac{q^{1-n} ac}{de} ; q, qa \right), \] (40)

which reduces the number of inequivalent expressions by two. This completes the proof. \hfill \Box

4 The symmetric structure of terminating representations of the Askey–Wilson polynomials

In this section we describe the symmetric nature of the equivalence classes of expressions for the terminating basic hypergeometric representations which correspond to the Askey–Wilson polynomials.

Consider the 11 equivalence classes of terminating $4\phi_3$ and $8W_7$ expressions in Corollaries 9-10, namely (22)–(32). There are four equivalence classes of balanced terminating $4\phi_3$ expressions (29)–(32) and 7 equivalence classes of very-well-poised terminating $8W_7$ expressions (22)–(28). Equivalent expressions within an equivalence class are obtained by compositions of the trivial interchange of positions for numerator and/or denominator parameters in the basic hypergeometric series and under the $4! = 24$ permutations of the symmetric parameter c, d, e, f labeling.

The above described 11 equivalence classes in Corollaries 9-10 correspond to a total of 7 equivalence classes of terminating basic hypergeometric series representations of the Askey–Wilson polynomials. These are represented by 3 $4\phi_3$ equivalence classes and 4 $8W_7$ equivalence classes which are given in Theorem 7. Note that each of these equivalence classes are equivalent under the map $\theta \mapsto -\theta$.

In this section we describe the symmetric nature of these equivalence classes under the mapping of inversion (11) and that due to a theorem due to Van der Jeugt and Rao [16] which provides the symmetry group of nonterminating very well poised $8W_7$ basic hypergeometric functions, namely Theorem 13 below. The symmetry groups of several relevant basic hypergeometric functions have been studied in the literature [9, 11, 12, 16]. For terminating balanced $4\phi_3$ expressions, the following surprisingly simple result has been established in [16, Proposition 2].

Theorem 13 (Van der Jeugt and Rao (1999)). Let $n \in \mathbb{N}_0$, $q \in \mathbb{C}^\dagger$, $x := \{x_1, x_2, x_3, x_4, x_5, x_6\}$, $x_k \in \mathbb{C}^\ast$, $k \in \{1, 2, 3, 4, 5, 6\}$, be six parameters satisfying $x_{123456} = q^{1-n}$, with $f : \mathbb{C}^6 \times \mathbb{C}^\dagger \to \mathbb{C}$ defined by
\[f(x; q) := q^{(n)} \left(\frac{x_{1234}, x_{1235}, x_{1236}}{x_{123}} \right)_{4\phi_3} \left(\frac{q^{-n}, x_{23}, x_{13}, x_{12}}{x_{1234}, x_{1235}, x_{1236}} ; q, q \right). \] (41)

Then $f(x)$ is symmetric in the variables x_k.

From Van der Jeugt and Rao’s (1999) result, it is clear that the symmetry group of the terminating balanced $4\phi_3$ is S_6, the symmetric group of degree six, $|S_6| = 720$. This was originally established by [2], although the 720 transformations were explicitly written out by Bailey [1, Chapter VII]. Upon examination of the terminating balanced $4\phi_3$ expressions in Corollary 10, we see that there are four equivalence classes of basic hypergeometric representations for these expressions (31)–(32).

Remark 14. The Van der Jeugt and Rao (1999) result [16, Proposition 2] clearly indicates that the symmetry group structure of the terminating balanced $4\phi_3$ is S_6, which has order equal to 720. It is interesting to make comparison of this result with the four terminating balanced expressions in Corollary 10, namely (29)–(32).

Proposition 15. The number of allowed permutations and rearrangements of the terminating balanced $4\phi_3$s (29)–(32) in Corollary 10 is $|S_6| = 720$ (where $|\cdot|$ represents the cardinality).

Proof. There are 6 possible variable pair product combinations (cd, ce, cf, de, df, ef). In what proceeds, we ignore the positioning of the numerator factor q^{-n}. For (29), (30) there are 6 possible numerator positionings for each pair combination and 6 possible denominator positionings for each pair combination, so $|(29)| = 6^3 = 216$. Therefore $|(29), (30)| = 432$. For (31), (32), there are four variables, (c, d, e, f) and again 6 possible numerator positionings and 6 possible denominator positionings, so $|(31)| = 6 \times 6 \times 4 = 144$. Since (32) is the inversion of (31), the counting is the same. Hence, $|(31), (32)| = 288$. Finally we have $|(29), (30), (31), (32)| = 432 + 288 = 720 = |S_6|$. ■

Remark 16. There is no symmetry analysis for a terminating $8W_7$ which corresponds to the Van der Jeugt and Rao (1999) result for a terminating balanced $4\phi_3$. They do however have a symmetry proposition for a nonterminating $8W_7$, namely [16, Proposition 5], see Theorem 22 below. It is important to note that the nonterminating $8W_7$ does not possess Gasper and Rahman’s inversion symmetry, Theorem 2, and there is no nonterminating analog of this symmetry, so the group structure of the terminating $8W_7$ is not necessarily clear. On the other hand, one has the Watson q-analog of Whipple’s theorem [5, (17.9.16)] which relates a terminating balanced $4\phi_3$ to a terminating very-well-poised $8W_7$, so one expects there to be a one-to-one relation between these functions.

We now prove this result.

Proposition 17. The number of allowed permutations and rearrangements of the terminating balanced $8W_7$s (22)–(28) in Corollary 9 is $|S_6| = 720$.

Proof. As in Proposition 15, ignore the positioning of the numerator factor q^{-n}. For (22), (23), there are 4! = 24 permutations of the variables c, d, e, f. For (27), there are four triple-variable product combinations (cde, ced, cdf, def), and therefore the number of possibilities for each of the 24 possibilities. Hence $|(27)| = 24 \times 4 = 96$. Its inversion pair (28) has the same number of possibilities, namely 96. For (25) one has 4 variables with four possible three-variable product combinations, for each of the four three-variable product combinations, there are 4 possible numerator parameter positions for the cdf term, and 6 possible arrangements of the three remaining variables. Hence there are 24 possible positionings of the numerator parameters. Again with four possible three-variable product combinations (cde, ced, cfd, def), we arrive again at 96, and as well for its inversion pair (26), so $|(25), (26), (27), (28)| = 96 \times 4 = 384$. For (24), which is its own self-inverse, we have 48 possibilities. Since there are 6 two-variable product combinations (cd, ce, cf, de, df, ef), then one has $|(24)| = 46 \times 6 = 288$. Summing up the contributions one has $|(22), (23), (24), (25), (26), (27), (28)| = 24 \times 2 + 96 \times 4 + 288 = 720 = |S_6|$. This completes the proof. ■
Table 1: Total number of arrangements for terminating balanced $4\phi_3$ (29)–(32) and terminating very-well-poised $8W_7$ (22)–(28) expressions (in bold) in Corollaries 9-10. The total number of possibilities, namely the possible arrangements and relabelings, sum separately to the order $|S_6| = 720$, namely for each set of equivalence classes of $4\phi_3$ and $8W_7$ separately. See Propositions 15, 17.

See Table 1 for a delineation of the total number of possibilities of expressions in Corollaries 9-10.

Remark 18. Even though the set of transformations for the terminating balanced $4\phi_3$ and $8W_7$ each correspond to the symmetric group S_6, the breakdown of equivalence classes does not appear to be isomorphic to any of the subgroups of S_6 that the authors investigated. However there are many subgroups of S_6 (1455) [7], so future investigations may provide some insight here.

Remark 19. A straightforward analysis of the transformations implied by Theorem 13, indicates that under these transformations, each of the four equivalence classes of the balanced $4\phi_3$ expressions in Corollary 10 maps using Theorem 13 separately to all three other equivalence classes, see Figure 2.

Remark 20. Observe that the $4\phi_3$ equivalence classes of expressions (29)–(32) in Corollary 10 are paired (29)↔(30) and (31)↔(32) under Gasper and Rahman’s inversion formula, $z = q$, $r = 3$ in (12), for a terminating basic hypergeometric $4\phi_3$ representation of the Askey–Wilson polynomial,

$$4\phi_3 \left(q^{-n}, a_1, a_2, a_3 ; b_1, b_2, b_3 ; q, q \right) = q^{-(2)}(-1)^n \frac{(a_1, a_2, a_3; q)_n}{(b_1, b_2, b_3; q)_n} 4\phi_3 \left(q^{-n}, q^{1-n}_{b_1}, q^{1-n}_{b_2}, q^{1-n}_{b_3} ; q, q \right)$$

where $q^{1-n}a_{123} = b_{123}$. Furthermore, the $8W_7$ equivalence classes of expressions (22)–(23) are paired using Gasper and Rahman’s inversion formula, namely the equality (22) = (23). See the shaded regions and thick arrows in Figure 1 for a pictorial representation of these inversion pairings.

Remark 21. One can study the mappings of the equivalence classes of expressions in Corollaries 9-10 to the terminating representations of the Askey–Wilson polynomials in Theorem 7 by using the standard map

$$\left(b, c, d, e, f \right) \mapsto \left(q^{-n}e^{2i\theta}, a_0e^{i\theta}, a_1e^{i\theta}, a_2e^{i\theta}, a_3e^{i\theta} \right)$$

Both expressions (29), (30), map to the basic hypergeometric representation (17), except with (30), one has $\theta \mapsto -\theta$. For the $4\phi_3$ expressions under the standard map (43), the expression (31) maps to (16) and the expression (32) maps to (15). Similarly for the $8W_7$ expressions using (43), then (22), (23) ($\theta \mapsto -\theta$) map to (21); (24) maps to (20); (27), (26) ($\theta \mapsto -\theta$) maps to (18); and (25), (28) ($\theta \mapsto -\theta$) maps to (19). See Figure 1 for a pictorial representation of these mappings from Corollaries 9-10 to the terminating representations of the Askey–Wilson polynomials in Theorem 7.
Figure 1: This figure depicts the equivalence classes of terminating $8W_7$ (22)–(28) and $4\phi_3$ (29)–(32) expressions in Corollaries 9-10 and their corresponding equivalence classes of terminating Askey–Wilson basic hypergeometric representations in Theorem 7, (15)–(21). The expressions (22)–(32) are paired (using thick arrows) using Gasper and Rahman’s inversion formula (11). More specifically, to verify the inversion pairings for the $4\phi_3$ expressions, one can use (12), and for the $8W_7$ expressions, one can use (14), or more explicitly the equality of (22) and (23). Note that (24) is the sole expression which is its own self-inverse. For the terminating Askey–Wilson hypergeometric representation equivalence classes (15)–(21), arrows indicate which expressions in Corollaries 9-10 are mapped to under the standard map (43) to the terminating representations of the Askey–Wilson polynomials in Theorem 7. Arrows marked $\theta \mapsto -\theta$ indicate that the expressions in Corollaries 9-10 map to the same terminating Askey–Wilson basic hypergeometric representation equivalence class under this mapping.

Now consider the equivalence classes of terminating $8W_7$ expressions in Corollary 9, namely (22)–(28). There is a surprising structure to the behavior under mappings of these equivalence classes. Let us start this discussion by reviewing what is known about the symmetry of the nonterminating $8W_7$. For nonterminating very-well-poised $8W_7$ expressions, the following result has been previously established in [16, Proposition 5].

Theorem 22 (Van der Jeugt and Rao (1999)). Let $q \in \mathbb{C}^\dagger$, $\mathbf{x} := \{x_1, x_2, x_3, x_4, x_5\}$, $x_k \in \mathbb{C}^*$, $k \in \{0, 1, 2, 3, 4, 5\}$, be six parameters with $f : \mathbb{C}^6 \times \mathbb{C}^\dagger \rightarrow \mathbb{C}$ defined by

$$f(x_0; \mathbf{x}; q) := w \left(q^{-1} x_0^3 x_{12345}; \frac{x_{012345}}{x_1^2}, \frac{x_{012345}}{x_2^2}, \frac{x_{012345}}{x_3^2}, \frac{x_{012345}}{x_4^2}, \frac{x_{012345}}{x_5^2}; q\right),$$

where

$$w(b; a, c, d, e, f; q) = \frac{(q^2b^2; q_{abcd}^\infty, q_{abcdef}^\infty)_{\infty}}{(q; q)^{\infty}} 8W_7 \left(b; a, c, d, e, f; q, \frac{q^2b^2}{q_{abcd}}\right).$$

Then $f(x_0; \mathbf{x}; q)$ satisfies $f(x_0; \mathbf{x}; q) = f(x_0; p \cdot \mathbf{x}; q)$, for every element $p \in WB_5$ that has an even number of minus signs in its matrix representation. Hence the invariance group of the very-well-poised nonterminating $8W_7$ is the group WD_5.

Note that the the groups WB_n and WD_n are the Weyl groups of the root systems of types B_n and D_n (see [8, Chapter III]). It is clear from Van der Jeugt and Rao’s (1999) discussion that the symmetry group of the nonterminating very-well-poised $8W_7$ is WD_5, $|WD_5| = 52^4 = 1920$. According to Zudilin [18] this transformation group was clear in Bailey (1964) [1, Section 7.5] which focused on a study of the transformations of the very-well-poised nonterminating $7F_6$, whose q-analog is the nonterminating very-well-poised $8W_7$. (See Zudilin [17, Lemma 8] for a discussion of the computation of the order and some properties of this symmetry group which is connected to the group structure of the Riemann zeta value $\zeta(3)$.)

Now we discuss the symmetric nature of the terminating $8W_7$s in Corollary 9. Terminating $8W_7$ expressions may be obtained from nonterminating $8W_7$ expressions by setting one of the
numerator parameters equal to q^{-n}, $n \in \mathbb{N}_0$. If you apply Van der Jeugt and Rao’s Theorem 22 with one of the numerator parameters equal to some q^{-n}, then some subset of the transformations map to equivalence classes for terminating expressions, and the complement maps to equivalence classes of nonterminating expressions (not explicitly treated in this paper). The result of the mappings using Theorem 22 from terminating sW_7 equivalence classes to terminating sW_7 equivalence classes is listed in Table 2 and displayed pictorially in Figure 2.

ORIGINAL sW_7 EXPRESSION EQUIVALENCE CLASS	MAPPED sW_7 EXPRESSION EQUIVALENCE CLASSES	(22)	(27)	(23)	(26)	(24)	(25)	(28)
\{(22)\}	\{(22), (27)\}	120	480	-	-	-	-	-
\{(27)\}	\{(22), (27)\}	120	480	-	-	-	-	-
\{(23)\}	\{(23), (26)\}	-	-	120	480	-	-	-
\{(26)\}	\{(23), (26)\}	-	-	120	480	-	-	-
\{(24)\}	\{(24), (25), (28)\}	-	-	-	-	120	360	120
\{(25)\}	\{(24), (25), (28)\}	-	-	-	-	120	360	120
\{(28)\}	\{(24), (25), (28)\}	-	-	-	-	120	360	120

Table 2: Given that the original and mapped sW_7 expressions are terminating, this table provides the mapping properties of the sW_7 equivalence classes (22)–(28) under the action of Theorem 22. The numbers on the right-part of the table indicate the total number of sW_7 expressions which are mapped using Theorem 22, given a specific choice of parameter labeling (dashes represent zero). See Figure 2 for a graphical representation of these mapping properties.

Figure 2: This figure provides a graphical representation of Table 2 together with the action of inversion (11). More specifically, it depicts the equivalence classes of terminating very-well-poised sW_7 expressions (22)–(28) in Corollary 9, with thick arrows indicating pairings using inversion (11), and thin arrows indicating mappings using Theorem 22. The shaded regions indicate equivalence class grouping under Theorem 22.

Upon examination of the terminating balanced sW_7 expressions in Corollary 9, we see that there are seven equivalence classes of terminating sW_7 expressions (22)–(28). A straightforward computer algebra analysis of the transformations implied by Van der Jeugt and Rao’s nonterminating Proposition, Theorem 22 (where we have selected only those expressions which result in terminating expressions), has indicated that under these transformations, each of the seven
equivalence classes of the very-well-poised \(8W_7\) expressions split into three separate associations of terminating very-well-poised \(8W_7\) equivalence classes.

Remark 23. The three separate associations of equivalence classes for terminating very-well-poised \(8W_7\)s in Corollary 9 which are obtained by applying Theorem 22 for nonterminating \(8W_7\) misses the connections between the three associations. In order to connect these associations, one must rely on Gasper and Rahman’s inversion formula, which have no nonterminating counterpart, so therefore would be undiscoverable using Van der Jeugt and Rao’s (1999) analysis [16, Proposition 5].

Original \(4\phi_3\) Expression Equivalence Class	(22)	(23)	(24)	(25)	(26)	(27)	(28)
\{(29)\}	4	4	56	20	20	20	20
\{(30)\}	4	4	56	20	20	20	20
\{(31)\}	6	6	60	18	18	18	18
\{(32)\}	6	6	60	18	18	18	18

Table 3: This table lists the mappings and their total number of occurrences which occur if one applies the converse for Watson’s \(q\)-analog of Whipple’s theorem, namely Corollary (12) to the terminating balanced \(4\phi_3\) expressions in Corollary 10. For each \(4\phi_3\) expression, terminating very-well-poised \(8W_7\) expressions are produced when you include all permutations of the numerator parameters and denominator parameters. The numbers on the right-part of the table indicate the total number of expression equivalence classes (out of a \(3!^2 = 36\) permutations) mapped to for a given choice of parameter labeling. Dotted lines represent boundaries of inversion pairs.

Original \(8W_7\) Expression Equivalence Class	(29)	(30)	(31)	(32)
\{(22)\}	24	24	24	24
\{(23)\}	24	24	24	24
\{(24)\}	28	28	20	20
\{(25)\}	30	30	16	16
\{(26)\}	30	30	16	16
\{(27)\}	30	30	16	16
\{(28)\}	30	30	16	16

Table 4: This table lists the mappings which occur if one applies Watson’s \(q\)-analog of Whipple’s theorem, namely Corollary 10, including all permutations of the numerator parameters, to the terminating very-well-poised \(8W_7\) expressions in Corollary 9. This results in the production of terminating balanced \(4\phi_38\) for each \(8W_7\) expression. The numbers on the right-part of the table indicate the total number of expression equivalence classes (out of \(2 \cdot 4! = 48\) permutations) mapped to give a given choice of parameter labeling. Dotted lines represent boundaries of inversion pairs.
Acknowledgments

We would like to thank Mourad Ismail, Tom Koornwinder, Eric Rains, Hjalmar Rosengren and Joris Van der Jeugt for valuable discussions. R.S.C-S acknowledges financial support through the research project PGC2018-096504-B-C33 supported by Agencia Estatal de Investigación of Spain.

Table 5: This table describes mapping properties of the converse for Watson’s q-analog of Whipple’s theorem, Corollary 12. It first provides the mapping properties for the $8W_7$ equivalence classes (33)–(36) which are mapped if one applies Van der Jeugt and Rao’s nonterminating Proposition, Theorem 22 (where we have selected only those expressions which result in terminating expressions). The numbers on the right-part of the table indicate the total number of $8W_7$ expression equivalence classes mapped to for a given choice of parameter labeling. Dashes indicate zero mappings. See Figure 3.

A Full collections of terminating 4-parameter symmetric interchange transformations

In this appendix, as a matter of completeness, we present the entirety of all of the parameter interchange transformations for terminating basic hypergeometric transformations which arise from the Askey–Wilson polynomials. One may use the transformations presented in this subsec-
tion to rewrite all the expressions given in Corollaries 9-10. To learn more about the symmetric interchange transformations for Askey–Wilson polynomials and to see the proofs of the results presented in this section, see [4, Section 3.3].

The evidence that the first (and second) W_7 in Corollary 9 are symmetric in the variables c, d, e, f is clear. Therefore, all of the formulas in this corollary are invariant under the interchange of any two of those variables. This is true whether the symmetry between those variables is evident in the corresponding mathematical expression or not. Perhaps, the most famous parameter interchange transformation of this sort is Sears’ balanced ϕ_3 transformations [5, (17.9.14)] which demonstrate the invariance (and provide specific transformation formulas) of the Askey–Wilson polynomials under parameter interchange. Other interesting parameter interchange transformations of this type can be obtained, such as by (24) with $c \leftrightarrow d$ (preserves the argument), $c \leftrightarrow e$, $c \leftrightarrow f$, $d \leftrightarrow e$, $d \leftrightarrow f$ interchanged (the invariance under the interchange $e \leftrightarrow f$ is evident). Furthermore, when the symmetry within a set of variables is evident in the transformation corollaries presented below, then due to this symmetry, non-trivial transformation formulas can be obtained by equating the two expressions with certain variables interchanged.

Corollary 24. [4, Corollary 4] Let $n \in \mathbb{N}_0$, $b, c, d, e, f \in \mathbb{C}^*$, $q \in \mathbb{C}^\dagger$. Then, one has the following parameter interchange transformations for a terminating W_7:
Corollary 25. [4, Corollary 5] Let \(n \in \mathbb{N}_0, b, c, d, e, f \in \mathbb{C}^*, q \in \mathbb{C}^\dagger \). Then, one has the following parameter interchange transformations for a terminating \(sW_7 \):

\[
\begin{align*}
8W_7 \left(\frac{q^{-n}c}{d}; q^{-n}, \frac{q^{-n}c}{b}, \frac{qb}{dc}, \frac{qb}{df}, c; q, \frac{ef}{b} \right) \\
= \left(\frac{qb}{dc}, \frac{qb}{ef}, \frac{q}{d}; c; q \right)_n 8W_7 \left(\frac{q^{-n}d}{c}; q^{-n}, \frac{q^{-n}d}{b}, \frac{qb}{ce}, \frac{qb}{df}, d; q, \frac{ef}{b} \right) \\
= \left(\frac{qb}{cd}, \frac{qb}{ce}, \frac{q}{d}; c; q \right)_n 8W_7 \left(\frac{q^{-n}e}{c}; q^{-n}, \frac{q^{-n}e}{b}, \frac{qb}{cd}, \frac{qb}{df}, c; q, \frac{df}{b} \right) \\
= \left(\frac{qb}{cd}, \frac{qb}{ce}, \frac{q}{d}; c; q \right)_n 8W_7 \left(\frac{q^{-n}f}{c}; q^{-n}, \frac{q^{-n}f}{b}, \frac{qb}{cd}, \frac{qb}{df}, f; q, \frac{de}{b} \right) \\
= \left(\frac{qb}{ef}, \frac{q}{d}; c; q \right)_n 8W_7 \left(\frac{q^{-n}e}{d}; q^{-n}, \frac{q^{-n}e}{b}, \frac{qb}{df}, c; q, \frac{cf}{b} \right) \\
= \left(\frac{qb}{ef}, \frac{q}{d}; c; q \right)_n 8W_7 \left(\frac{q^{-n}d}{ef}; q^{-n}, \frac{q^{-n}d}{b}, \frac{qb}{ce}, \frac{qb}{df}, d; q, \frac{cf}{b} \right) \\
= \left(\frac{qb}{ef}, \frac{q}{d}; c; q \right)_n 8W_7 \left(\frac{q^{-n}f}{ef}; q^{-n}, \frac{q^{-n}f}{b}, \frac{qb}{ce}, \frac{qb}{df}, f; q, \frac{ce}{b} \right) \\
= \left(\frac{qb}{ef}, \frac{q}{d}; c; q \right)_n 8W_7 \left(\frac{q^{-n}e}{ef}; q^{-n}, \frac{q^{-n}e}{b}, \frac{qb}{ce}, \frac{qb}{df}, e; q, \frac{cd}{b} \right).
\end{align*}
\]
\[
W_7 \left(\frac{q b^2}{de f}; q^{-n}, \frac{q b}{de}, \frac{q b}{ef}, c; q, \frac{q^{n+1} b}{c} \right)
\]

\[
= \left(\frac{q b}{e}, \frac{q^2 b^2}{de f}; q \right)_n W_7 \left(\frac{q b^2}{ce f}; q^{-n}, \frac{q b}{ce}, \frac{q b}{ef}, d; q, \frac{q^{n+1} b}{d} \right)
\]

\[
= \left(\frac{q b}{e}, \frac{q^2 b^2}{de f}; q \right)_n W_7 \left(\frac{q b^2}{cdf}; q^{-n}, \frac{q b}{cd}, \frac{q b}{df}, e; q, \frac{q^{n+1} b}{e} \right)
\]

\[
= \left(\frac{q b}{f}, \frac{q^2 b^2}{de f}; q \right)_n W_7 \left(\frac{q b^2}{cde}; q^{-n}, \frac{q b}{cd}, \frac{q b}{de}, f; q, \frac{q^{n+1} b}{f} \right).
\]

Corollary 26. [4, Corollary 6] Let \(n \in \mathbb{N}_0, b, c, d, e, f \in \mathbb{C}^*, q \in \mathbb{C}^\dagger \). Then, one has the following parameter interchange transformations for a terminating \(4\phi_3 \):

\[
4\phi_3 \left(q^{-n}, \frac{q b}{e}, \frac{q b}{f}; q, q \right)
\]

\[
= \left(\frac{q b}{de}, \frac{q b}{ce}; q \right)_n 4\phi_3 \left(q^{-n}, \frac{q b}{ef}, d, e; \frac{q^{n} b}{de f}, \frac{q b}{e}, \frac{q b}{f}; q, q \right)
\]

\[
= \left(\frac{q b}{de}, \frac{q b}{ce}; q \right)_n 4\phi_3 \left(q^{-n}, \frac{q b}{cd}, d, f; \frac{q^{n} b}{cd f}, \frac{q b}{cd}, \frac{q b}{e}; q, q \right)
\]

\[
= \left(\frac{q b}{de}, \frac{q b}{ce}; q \right)_n 4\phi_3 \left(q^{-n}, \frac{q b}{cd}, c, e; \frac{q^{n} b}{cd e}, \frac{q b}{cd}, \frac{q b}{e}; q, q \right)
\]

\[
= \left(\frac{q b}{de}, \frac{q b}{ce}; q \right)_n 4\phi_3 \left(q^{-n}, \frac{q b}{cd}, c, f; \frac{q^{n} b}{cd f}, \frac{q b}{cd}, \frac{q b}{f}; q, q \right)
\]

\[
= \left(\frac{q b}{de}, \frac{q b}{ce}, \frac{q b}{ef}; q \right)_n 4\phi_3 \left(q^{-n}, \frac{q b}{cd}, e, f; \frac{q^{n} b}{cd e f}, \frac{q b}{cd}, \frac{q b}{f}; q, q \right).
\]

Proof. Start with (29) and consider all permutations of the symmetric parameters \(c, d, e, f \) which produce non-trivial transformations.

Corollary 27. [4, Corollary 7] Let \(n \in \mathbb{N}_0, b, c, d, e, f \in \mathbb{C}^*, q \in \mathbb{C}^\dagger \). Then, one has the following
parameter interchange transformations for a terminating $4\phi_3$:

\[
4\phi_3\left(\frac{q^{-n} q^b}{cdef}, \frac{q^b}{c}, \frac{q^b}{c} \phi f, \frac{q^b}{c} \phi c, \frac{q^b}{c} \phi d, \frac{q^b}{c} \phi e; q, q\right)
\]

\[= \left(\frac{\frac{q^b}{c}, d; q}{e} \right)_n 4\phi_3\left(\frac{q^{-n} q^b}{cdef}, \frac{q^b}{e} \phi c, \frac{q^b}{e} \phi d, \frac{q^b}{e} \phi f; q, q\right)\] \hspace{0.5cm} (68)

\[= \left(\frac{\frac{q^b}{e}, c; q}{f} \right)_n 4\phi_3\left(\frac{q^{-n} q^b}{cdef}, \frac{q^b}{f} \phi e, \frac{q^b}{f} \phi d, \frac{q^b}{f} \phi f; q, q\right)\] \hspace{0.5cm} (69)

\[= \left(\frac{\frac{q^b}{f}, e; q}{d} \right)_n 4\phi_3\left(\frac{q^{-n} q^b}{cdef}, \frac{q^b}{d} \phi f, \frac{q^b}{d} \phi e, \frac{q^b}{d} \phi f; q, q\right)\] \hspace{0.5cm} (70)

\[= \left(\frac{\frac{q^b}{d}, e; q}{f} \right)_n 4\phi_3\left(\frac{q^{-n} q^b}{cdef}, \frac{q^b}{f} \phi e, \frac{q^b}{f} \phi d, \frac{q^b}{f} \phi f; q, q\right)\] \hspace{0.5cm} (71)

Proof. Start with (31) and consider all permutations of the symmetric parameters c, d, e, f which produce non-trivial transformations. □

References

[1] W. N. Bailey. *Generalized hypergeometric series*. Cambridge Tracts in Mathematics and Mathematical Physics, No. 32. Stechert-Hafner, Inc., New York, 1964.

[2] W. A. Beyer, J. D. Louck, and P. R. Stein. Group theoretical basis of some identities for the generalized hypergeometric series. *Journal of Mathematical Physics*, 28(3):497–508, 1987.

[3] H. S. Cohl, R. S. Costas-Santos, and L. Ge. Correction: Cohl, H.S.; Costas-Santos, R.S.; Ge, L. Terminating Basic Hypergeometric Representations and Transformations for the Askey-Wilson Polynomials Symmetry 2020, 12, 1290. *Symmetry*, 12(12), 2020.

[4] H. S. Cohl, R. S. Costas-Santos, and L. Ge. Terminating Basic Hypergeometric Representations and Transformations for the Askey-Wilson Polynomials. *Symmetry*, 12(8):14, 2020.

[5] NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.1.4 of 2022-01-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

[6] G. Gasper and M. Rahman. *Basic hypergeometric series*, volume 96 of *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, Cambridge, second edition, 2004. With a foreword by Richard Askey.

[7] The Group Properties Wiki. https://groupprops.subwiki.org/, Seen of 2022-01-20.

[8] J. E. Humphreys. *Introduction to Lie algebras and representation theory*, volume 9 of *Graduate Texts in Mathematics*. Springer-Verlag, New York-Berlin, 1978. Second printing, revised.

[9] Y. Kajihara. Symmetry groups of A_n hypergeometric series. *SIGMA. Symmetry, Integrability and Geometry. Methods and Applications*, 10:Paper 026, 29, 2014.
[10] R. Koekoek, P. A. Lesky, and R. F. Swarttouw. *Hypergeometric orthogonal polynomials and their q-analogues*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010. With a foreword by Tom H. Koornwinder.

[11] C. Krattenthaler and S. K. Rao. On group theoretical aspects, hypergeometric transformations and symmetries of angular momentum coefficients. In *Symmetries in science XI*, pages 355–376. Kluwer Acad. Publ., Dordrecht, 2004.

[12] S. Lievens and J. Van der Jeugt. Symmetry groups of Bailey’s transformations for $10\phi_9$-series. *Journal of Computational and Applied Mathematics*, 206(1):498–519, 2007.

[13] H. Rosengren. An elementary approach to $6j$-symbols (classical, quantum, rational, trigonometric, and elliptic). *Ramanujan Journal. An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan*, 13(1-3):131–166, 2007.

[14] F. J. van de Bult and E. M. Rains. Basic hypergeometric functions as limits of elliptic hypergeometric functions. *Symmetry, Integrability and Geometry: Methods and Applications*, 5(059), 2009.

[15] J. Van der Jeugt. private communication, 2020.

[16] J. Van der Jeugt and S. K. Rao. Invariance groups of transformations of basic hypergeometric series. *Journal of Mathematical Physics*, 40(12):6692–6700, 1999.

[17] W. Zudilin. Arithmetic of linear forms involving odd zeta values. *J. Théor. Nombres Bordeaux*, 16(1):251–291, 2004.

[18] W. Zudilin. Hypergeometric heritage of W. N. Bailey. *ICCM Not.*, 7(2):32–46, 2019. With an appendix containing letters from Bailey to Freeman Dyson.