FpCzf14 is a putative C2H2 transcription factor regulating conidiation in *Fusarium pseudograminearum*

Linlin Chen1,2, Jingya Zhao1, Huiqing Xia1, Yuming Ma1, Yankun Liu1, Mengya Peng1, Xiaoping Xing1, Bingjian Sun1, Yan Shi1 and Honglian Li1,2*

Abstract

C2H2 zinc finger transcription factors such as FlbC and Msn2, have broad regulatory roles in fungal growth and conidiation. In the present study, we cloned and characterized a C2H2 zinc finger transcription factor gene, FpCzf14, in the wheat pathogen *Fusarium pseudograminearum*. FpCzf14 was localized to the nuclei. The expression of FpCzf14 was significantly upregulated in conidia, suggesting that FpCzf14 might contribute to conidiation. Further analysis of the fpczf14-deleted mutant (Δfpczf14) demonstrated that it exhibited defect in conidiation, and this defect was restored in the complemented strain Δfpczf14-C expressing FpCzf14, demonstrating that FpCzf14 was essential for conidiation. Moreover, FpCzf14 was required for mycelial growth and pathogenicity of *F. pseudograminearum*. Microscopic observation results showed that Δfpczf14 produced only very few penetration pegs and invasive hyphae inside host tissues compared with WT and Δfpczf14-C. Additionally, results of reverse transcription quantitative PCR (RT-qPCR) showed that FpCzf14 regulated expression of several conidiation-related genes in *F. pseudograminearum*. In conclusion, FpCzf14, as a core regulatory gene in conidiation, provides new insights into the mechanism of conidiation in *F. pseudograminearum*.

Keywords: *Fusarium pseudograminearum*, Transcription factors, FpCZF14, Conidiation, Pathogenicity

Background

Fusarium pseudograminearum, commonly found in soil and various decaying plant materials, is an important pathogen causing Fusarium crown rot (FCR) and Fusarium head blight (FHB) of wheat and barley (Kazan and Gardiner 2018; Zhou et al. 2019). Infection with *F. pseudograminearum* compromises grain yield and quality, and more importantly, *F. pseudograminearum* is a mycotoxin-producing species like some other *Fusarium* spp. that seriously threaten human health through the production of toxins (Tunali et al. 2012; Kazan and Gardiner 2018). In recent years, with the development and application of molecular biological techniques in plant pathogens, the functions of a few genes in *F. pseudograminearum* genome have been elucidated. For example, heat shock protein 70 (FpLhs1) is involved in protein secretion (Chen et al. 2019); Fdb3 and Tri5 function in mycotoxin production (Kettle et al. 2016; Powell et al. 2017); and FpAda1 and FpDep1 are necessary for growth and pathogenesis of *F. pseudograminearum* (Chen et al. 2020; Zhang et al. 2020). However, the functions of genes encoding C2H2 zinc finger (CZF) transcription factors (TFs) are unknown in *F. pseudograminearum*.

Zinc finger TFs are categorized into nine subfamilies on the basis of the number and position of the cysteine (Cys) and histidine (His) residues, including the Cys2/His2-type (C2H2), C3H, C2HC5, C4HC3, C2HC, C4, C6, and C8 subfamilies (Klug 2010). Among them, C2H2, first identified as a DNA-binding motif in TFIIIA from *Xenopus laevis* in 1985, is considered the classical...
zinc finger (Brown et al. 1985). To date, many genes encoding for the CZF domain-containing proteins have been characterized from a wide variety of organisms, including animals, plants and fungi (Carrillo et al. 2017; Mackeh et al. 2018; Han et al. 2020). CZF TFs have been found to be involved in multiple cellular processes in plant pathogenic fungi. For example, among 47 CZF TFs that were deleted in *Magna-
porthe oryzae* using gene knockout method, 44 were found to be required for fungal growth, development and pathogenicity (Cao et al. 2016). In *Fusarium graminearum*, 16 of 91 CZF TFs are involved in H1F + R3 and gave no amplicon with G1 + G2, confirming successful deletion of the *fpczf14* gene in these five transformants (Fig. 2b). Δfpczf14-T1 was further confirmed by Southern blot analysis (Fig. 2c). For functional complementation of *FpCzf14* in the *FpCzf14*-deleted mutant and also subcellular location assay, the *FpCzf14-GFP* fusion construct driven by the *FpCzf14* promoter was introduced into the mutant Δfpczf14-T1. The complemented strain was named Δfpczf14-C. Microscopic observation of conidia, conidial germination and mycelia of Δfpczf14-C indicated that *FpCzf14* was diffuse in the cytoplasm and concentrated in the nuclei, as revealed by DAPI staining results (Fig. 2d).

FpCzf14 is required for growth and conidiation of *F. pseudograminearum*

To determine the role of *FpCzf14* in hyphal growth, the wild-type (WT), Δfpczf14 and Δfpczf14-C strains were inoculated on PDA plates and assayed for mycelial growth and colony morphology. In contrast with WT and the complemented strain Δfpczf14-C, the *FpCzf14*-deleted mutant Δfpczf14 exhibited a significantly reduced colony growth rate (Fig. 3a, b). Microscopic observation showed that the Δfpczf14 mutant produced fewer and
curved hyphal branches (Fig. 3c), which indicated that FpCzf14 is involved in hyphal growth.

To estimate the effect of FpCzf14 on conidiation of F. pseudograminearum, the conidial yields of the WT, Δfpczf14 and Δfpczf14-C strains were individually quantified from 4-day-old cultures in CMC, CL and MB liquid at 25 °C, 150 rpm. The results showed that conidial production in the WT strain began at 20 h, and peaked at 4 d. However, Δfpczf14 cultured in these media could not produce conidia until 10 d. The complemented strain Δfpczf14-C did not show any defects in conidiation (Fig. 4 and Additional file 1: Figure S1a). To exclude the possibility that the defect in conidiation in Δfpczf14 was a consequence of a reduced growth rate, we inoculated WT, Δfpczf14 and Δfpczf14-C on SNA, CLA and MA plates for conidia production. After 10 d, WT and Δfpczf14-C produced abundant normal conidia on all above media. After 17 days, when the colony size of Δfpczf14 was the same as that of WT, we observed that Δfpczf14 failed to produce any conidia on CLA and MA, and only very few small conidia (< 20 conidia in one plate) were observed on SNA (Fig. 4 and Additional file 1: Figure S1b). Cumulatively, this suggested that FpCzf14 was essential in regulating conidia production in F. pseudograminearum.
epidermis. The Δfpczf14 mutant produced very few penetration pegs and invasive hyphae inside wheat epidermis. By contrast, WT and Δfpczf14-C produced very high numbers of infectious hyphae (Fig. 5f). The results indicated that FpCzf14 was essential for the full virulence of *F. pseudograminearum*.

FpCzf14 regulates the expression of conidiation-related genes

Very few genes related to conidiation have been reported in *F. pseudograminearum*. In the present study, eight homologs of conidia-related genes of *A. nidulans* and *N. crassa* (Oiartzabal-Arano et al. 2016; Ruger-Herreros
and Corrochano 2020) were identified in *F. pseudograminearum* (Table 1). To determine if FpCzf14 regulates conidiation by controlling these conidia-related genes, we analyzed the expression levels of these genes in WT, Δfpczf14 and Δfpczf14-C. The expression levels of six genes – FPSE_11664 (abaA), FPSE_02736 (flbC), FPSE_01067 (SteA), FPSE_04527 (fluG), FPSE_11746 (pdeB) and FPSE_01933 (medA) – were down-regulated in Δfpczf14 compared with those in WT and Δfpczf14-C (Fig. 6). In contrast, the genes FPSE_02660 (wetA) and FPSE_02622 (stuA) showed similar expression profiles among WT, Δfpczf14 and Δfpczf14-C (Fig. 6). The results indicated that FpCzf14 might play roles in conidiation by regulating the expression of these conidia-related genes.

Discussion

Wheat FCR caused by *F. pseudograminearum* has been spreading rapidly and has resulted in huge economic losses in the Huanghuai wheat-growing area of China since 2012 (Li et al. 2012; Zhou et al. 2019). However, only a few studies have evaluated the pathogenic mechanism of *F. pseudograminearum*. CZF TFs are conserved and have been demonstrated to play important roles in eukaryotes. In this study, we identified a CZF TF gene, *FpCzf14*, in *F. pseudograminearum* and explored its biological roles. FpCzf14 has three highly conserved CZF motifs, and its homologues are widely present in the fungal kingdom, implying that FpCzf14 may be essential for many fungal species to maintain their normal growth and development, as well as other functional activities. Transcriptome data combined with RT-qPCR results indicate that FpCzf14 is expressed stably in mycelia and during infection stages of *F. pseudograminearum*, but is significantly upregulated at the conidiation stage.

Of FpCzf14 homologues, MoNSDC from *M. oryzae* and GzC2H014 from *F. graminearum* have been functionally characterized (Son et al. 2011; Cao et al. 2016). A MoNSDC-deleted *M. oryzae* strain showed defects in growth and conidiation (Cao et al. 2016). GzC2H014 functioned in mycelial growth, sexual development, deoxynivalenol production and virulence, but was not involved in conidiation of *F. graminearum* (Son et al. 2011). Conidia production was normal in GzC2H014-deleted mutant of *F. graminearum*. FpCzf14 shares over 98% amino acid identity with GzC2H014 from *F. graminearum*. Deletion of FpCzf14 not only inhibited growth and virulence of *F. pseudograminearum*, but also resulted in the developmental failure of conidia. This suggested that FpCzf14 might have distinct strategies in regulating fungal conidiation.
Some CZF TFs from *Fusarium* species have been reported to be involved in conidiation. For instance, pcs1 positively regulates conidiation of *F. graminearum*. Deletion of *pcs1* resulted in a significant reduction in conidial production, and overexpression of *pcs1* increased conidial production (Jung et al. 2014); Ada1, a putative homologue of *A. nidulans* FlbC, regulated asexual reproduction in *F. verticillioides* (Malapi-Wight et al. 2014). Conidiation is well known to be strictly controlled by a central regulatory pathway of three TFs BrlA, AbaA, and WetA which act in concert with other genes, such as FLBs, as an integral part of the fungal life cycle (Park and Yu 2012). According to the RT-qPCR results, the expression levels of FPSE_11664 (*abaA*), FPSE_02736 (*flbC*), FPSE_01067 (*SteA*), FPSE_04527 (*fluG*), FPSE_11746 (*pdeB*) and FPSE_01933 (*medA*) were down-regulated in FpCzf14-deleted mutant of *F. pseudograminearum*, indicating that FpCzf14 might affect conidiation by regulating these genes. Overall, FpCzf14 is an important putative transcription regulator, which is required for growth, conidial development and

Fig. 4 Microscopic observation of conidiation formation by WT, Δfpczf14 and Δfpczf14-C in CMC, CL and MB liquid media (top three rows). Microscopic observation of conidiation formation by WT, Δfpczf14 and Δfpczf14-C on SNA, CLA and MA plates (bottom three rows). Red arrows point to conidia.
Further studies will reveal its regulatory network, illuminating the related regulatory mechanism.

Conclusions
We identified a CZF TF FpCzf14 from *F. pseudograminearum* in this study. The expression of *FpCzf14* was induced in conidia, and the *Δfpczf14* strain exhibited a significant decrease in growth, conidiation and pathogenicity. RT-qPCR analysis further revealed that FpCzf14 had specific effects on other known conidiation regulatory genes. Taken together, the results indicate that FpCzf14 regulates conidiation in *F. pseudograminearum*. This study provides new insights into the mechanisms underlying *F. pseudograminearum* development and virulence.

Table 1 Homologous genes related to conidiation among *Aspergillus nidulans*, *Neurospora crassa* and *Fusarium pseudograminearum*

Fusarium pseudograminearum	*Aspergillus nidulans*	*Neurospora crassa*
FPSE_02660	wetA	NCU01033
FPSE_11664	abaA	–
FPSE_02736	flbC	flb-3
FPSE_01067	SteA	SteA
FPSE_04527	fluG	NCU04264
FPSE_02622	stuaA	Asm-1
FPSE_11746	pdeB	acon-2
FPSE_01933	medA	acon-3

* - indicates no homologous gene

Fig. 5 FpCzf14 contributes to *F. pseudograminearum* virulence.

a. Wheat coleoptiles inoculated with mycelial blocks of WT, *Δfpczf14* and *Δfpczf14*-C.

b. Lesion lengths measured at 3 dpi on five wheat seedlings in each of four independent experiments. The bars indicate the standard deviations (**P < 0.01, t-test**).

c. Barley leaves inoculated with mycelial blocks of WT, *Δfpczf14* and *Δfpczf14*-C.

d. Wheat seedlings inoculated with millet seeds colonized by WT, *Δfpczf14* and *Δfpczf14*-C.

e. DSI of wheat seedlings from the pot-culture experiment. The data shown are representative of three separate experiments. The bars indicate standard deviations (**P < 0.01, t-test**).

f. Microscopic observation of infectious mycelia in wheat coleoptiles at 24 hpi.
Methods

Strains and culture conditions
The WT strain of *F. pseudograminearum* used for transformation and phenotypic analyses was Wz2-8A, which was isolated in Wuzhi, Henan Province of China (Zhou et al. 2019). Both WT and genetically engineered strains in this study were cultured on potato dextrose agar (PDA) medium, containing 200 g/L potato, 20 g/L glucose and 20 g/L agar. For long-term storage, mycelial or conidial cultures were stored as 30% glycerol stocks at −80 °C.

Bioinformatics

FpCzf14 was first identified from the *F. pseudograminearum* CS3096 database (Gardiner et al. 2018) and then cloned from *F. pseudograminearum* strain Wz2-8A for further analysis. *FpCzf14* homologs in other fungi were gathered by protein BLAST algorithm at the database of the National Centre for Biotechnology (NCBI). The C2H2 domains were predicted using the SMART program. The phylogenetic tree of *FpCzf14* with nine homologs was generated using MEGA 5 by the neighbor-joining method with 1000 replicates for bootstrap analysis (Tamura et al. 2011). Crz1p, a C2H2 zinc finger protein from the unicellular fungus *Saccharomyces cerevisiae*, was used as an out-group.

RNA isolation and RT-qPCR
Total RNA was extracted from lyophilized mycelia, conidia and infected plants using EASYspin plant RNA Kit (Aidlab, China), following the manufacturer’s instructions. Digestion of contaminating DNA and reverse transcription of total RNA were performed using a PrimeScript™ RT reagent Kit with gDNA Eraser catalog (TaKaRa, Dalian, China). Real-time quantitative PCR (qPCR) was performed with the Applied Biosystems 7000 Real-Time PCR system using SYBR green dye for fluorescence detection. The primer pairs used for qPCR are listed in Additional file 2: Table S1. The expression level for each gene was normalized to that of the *F. pseudograminearum* TEF1 gene and the relative expression levels were calculated using the 2−ΔΔCt method.

Generation of deletion mutants

The *FpCzf14* gene replacement constructs were generated by the split-marker approach (Catlett et al. 2003). Primers were listed in Additional file 2: Table S1 and a schematic diagram of the primers used for generating deletion mutant and PCR amplification was shown in Fig. 2a. *FpCzf14* upstream and downstream flanking fragments (~1 kb) were amplified by PCR and ligated to the hygromycin phosphotransferase (*hph*) cassette by overlapping PCR and then transformed into protoplasts of Wz2-8A by polyethylene glycol (PEG)-mediated protoplast fungal transformation (Liu and Friesen 2012). Correct transformants were verified by PCR and Southern blotting. Southern blot analysis was performed using the DIG High Prime DNA Labeling and Detection Starter kit I according to the manufacturer’s instructions (Roche Diagnostics, Mannheim, Germany). Hybridization was performed with a DIG-labelled probe specific for the upstream sequences of the *FpCzf14* and *hph* gene amplified using the probe primer pairs (Additional file 2: Table S1).

FpCzf14 complementation and subcellular localization
To further confirm that differences in phenotype between the mutant (Δ*fpczf14*) and the WT strain (Wz2-8A) were due to the loss of *FpCzf14*, the genomic sequence containing the full-length *FpCzf14* gene without stop codon together with its 1531-bp promoter region,
was amplified from the WT genome via PCR, and ligated into the pKNTG vector, and introduced into Δfpczf14 by PEG-mediated transformation. The complementation strains were verified by PCR and green fluorescence assays. Conidia, germinated conidia and mycelia were collected and stained by DAPI for observation of the subcellular localization of FpCzf14 using a Nikon Ti-s instrument.

Growth, conidiation and pathogenicity assays

Mycelial growth and colony morphology of WT, Δfpczf14 and complemented transformant (Δfpczf14-C) were measured when these strains were incubated on PDA plates at 25 °C for 24 h and 3 d. Conidiation was measured by counting the number of conidia produced respectively in carboxymethyl cellulose (CMC) liquid, carnation leaf (CL) liquid and mung bean (MB) liquid media at 25 °C for 4 d with shaking at 150 rpm (Chen et al. 2016; Chen et al. 2019). Conidia were imaged and counted using a Nikon Ti-s instrument. Furthermore, the formation of conidia was also evaluated on spezieller nährstoffer agar (SNA), carnation leaf agar (CLA), and maltose agar (MA) plates. The amount of conidia in WT and Δfpczf14-C strains was measured after a 10-day incubation at 25 °C in darkness, and it was measured in Δfpczf14 after a 17-day incubation under the same condition (Inoue et al. 2002; Droce et al. 2017; Lu et al. 2019). Conidia were imaged using a Nikon SMZ25 stereomicroscopy.

The pathogenicity experiments were performed on 3-day-old wheat coleoptiles and 10-day-old barley leaves. The lengths or diameters of disease lesions were recorded at 3 dpi, and epidermal cells were viewed under a Nikon Ti-s instrument. Infection assay by pot-culture experiment was conducted with 0.5% inoculation millet in sterile soil using pre-germinated wheat seed under high relative humidity conditions at 25 °C with a photoperiod of 16 h/8 h (light/dark cycle). Wheat growth was photographed at 10 d. The disease severity index (DSI) was assessed on each plant within each pot using a 0 to 7 rating scale (Smiley et al. 2005). DSI (%) = [Σ (class value × the number of plants in each class value)/(total number of plants × the highest-class value)] × 100.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s42483-020-00074-7.

Additional file 1: Figure S1. Conidiation quantification and colonies morphology.

Additional file 2: Table S1. Primers used in the study.
Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N, et al. C_jH_j zinc finger proteins: master regulators of abiotic stress responses in plants. Front Plant Sci. 2020;11:115.

Inoue I, Namiki F, Tsuge T. Plant colonization by the vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein. Plant Cell. 2002;14:1869–89.

Jung B, Park J, Son H, Lee YW, Seo YS, Lee J. A putative transcription factor pcf1 positively regulates both conidiation and sexual reproduction in the cereal pathogen Fusarium graminearum. Plant Pathol J. 2014;30:236–44.

Kazan K, Gardiner DM. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: recent progress and future prospects. Mol Plant Pathol. 2018;19:1547–62.

Kettle AJ, Carere J, Batley J, Manners JM, Kazan K, Gardiner DM. The Fdb3 transcription factor of the Fusarium Detoxification of Benzoxazolinone gene cluster is required for MBOA but not BOA degradation in Fusarium pseudograminearum. Fungal Genet Biol. 2016;88:44–53.

Klug A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem. 2010;79:213–31.

Kwon NJ, Gaetza A, Espeso EA, Ugalde U, Yu JH. FlbC is a putative nuclear C2H2 zinc finger protein of the putative C2H2 zinc finger proteins: evolutionarily old and new partners of the nuclear hormone receptors. Nucl Recept Signal. 2012;10:71–19.

Li HL, Yuan HX, Fu B, Xing XP, Sun BJ, Tang WH. First report of Fusarium pseudograminearum causing crown rot of wheat in Henan, China. Plant Dis. 2012;96:1065.

Liu Z, Fleesen TL. Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. In: Bolton M, Thomma B, editors. Plant fungal pathogens. Methods in molecular biology (methods and protocols), vol. 835. New York: Humana Press; 2012. https://doi.org/10.1007/978-1-61779-501-5_21.

Lu N, Zhang Q, Yang R, Hou Y, Lang J, Shi M, et al. Study on sporulation conditions for Fusarium pseudograminearum. J Triticaceae Crops. 2019;59(6):753–8. (In Chinese). https://doi.org/10.7606/j.issn.1009-1041.2019.06.17.

Mackel R, Marr AK, Fadda A, Kino T. C2H2-type zinc finger proteins: evolutionarily old and new partners of the nuclear hormone receptors. Nucl Recept Signal. 2018;15:1–22. https://doi.org/10.1177/1915672918801071.

Malapi-Wight M, Kim JE, Shin WB. The N-terminus region of the putative C2H2 transcription factor Ada1 harbors a species-specific activation motif that regulates asexual reproduction in Fusarium verticillioides. Fungal Genet Biol. 2014;62:25–33.

Mathies J, Yemelina A, Scheps D, Andrensen K, Jacob S, Thines E, et al. Functions of the Magnaporthe oryzae Flb3p and Flb4p transcription factors in the regulation of conidiation. Microbiol Res. 2017;196:106–17.

Oiarzabal-Arano E, Perez-de-Nanclares-Aregui E, Espeso EA, Etxebeste O. Apical control of conidiation in Aspergillus nidulans. Curr Genet. 2016;62:171–7.

Park HS, Yu JH. Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol. 2012;15:669–77.

Powell JJ, Carere J, Fitzgerald TL, Stiller J, Covarelli L, Xu Q, et al. The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.). Ann Bot. 2017;119:983–67.

Ruger-Herreros C, Corrochano LM. Conidiation in Neurospora crassa: vegetative reproduction by a model fungus. Int Microbiol. 2020;23:97–105.

Smiley RW, Gourlie JA, Easley SA, Patterson LM. Pathogenicity of fungi associated with the wheat crown rot complex in Oregon and Washington. Plant Dis. 2005;89:949–57.

Son H, Seo YS, Min K, Park AR, Lee J, Jin JM, et al. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog. 2011;7:e1002310.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGAS: molecular evolutionary genetics analysis. Evolutionary analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:7231–9.

Tunali B, Obanor F, Ewingas G, Westcott RA, Nicol J, Chakraborty S. Fitness of three Fusarium pathogens of wheat. FEMS Microbiol Ecol. 2012;81:596–609.

Yu J. Regulation of development in Aspergillus nidulans and Aspergillus fumigatus. Mycobiology. 2010;38:229–37.

Yun Y, Zhou X, Yang S, Wen Y, You H, Zheng Y, et al. Fusarium oxysporum f. sp. lycopersici C2H2 transcription factor FolCzf1 is required for conidiation, fusicariic acid production, and early host infection. Curr Genet. 2019;65:773–83.