Role of fosaprepitant, a neurokinin Type 1 receptor antagonist, in morphine-induced antinociception in rats

Pranav Prasoon, Shivani Gupta, Rahul Kumar, Mayank Gautam, Saroj Kaler, Subrata Basu Ray

Abstract:
Objectives: Opioids such as morphine form the cornerstone in the treatment of moderate to severe pain. However, opioids also produce serious side effects such as tolerance. Fosaprepitant is a substance P (SP) receptor antagonist, which is used for treating chemotherapy-induced nausea and vomiting. SP is an important neuropeptide mediating transmission of pain at the spinal level. Thus, it was hypothesized that combining morphine with fosaprepitant would increase the antinociceptive effect of morphine. The objectives were to evaluate the effect of fosaprepitant on morphine-induced antinociception in rats and to investigate its mechanism of action.

Methods: Sprague-Dawley rats were injected with morphine (10 mg/kg twice daily) and/or fosaprepitant (30 mg/kg once daily) for 7 days. Pain threshold was assessed by the hot plate test. Expression of SP and calcitonin gene-related peptide (CGRP) in the spinal cords of these rats was evaluated by immunohistochemistry.

Results: Morphine administration resulted in an antinociceptive effect compared to the control group (day 1 and to a lesser extent on day 4). The decreased antinociception despite continued morphine treatment indicated development of tolerance. Co-administration of fosaprepitant attenuated tolerance to morphine (days 1 and 3) and increased the antinociceptive effect compared to control group (days 1–4). Expression of SP was increased in the morphine + fosaprepitant group.

Conclusions: The results show that fosaprepitant attenuates the development of tolerance to morphine and thereby, increases the antinociceptive effect. This is likely linked to decreased release of SP from presynaptic terminals.

Key words: Breakthrough pain, morphine tolerance, nociception, rodent, thermal escape behavior, withdrawal threshold
neurons, leading to lowering of nociceptive threshold known as central sensitization.\cite{55} Correspondingly, ablation of the NK1r expressing neurons by SP-Saporin complex impairs central sensitization without affecting basal pain sensitivity.\cite{56} Thus, it was hypothesized that combining morphine with an NK1r antagonist such as fosaprepitant might attenuate the development of tolerance to morphine. The NK1r antagonist aprepitant (Emend9) is often used for treating chemotherapy-induced nausea and vomiting.\cite{57} Fosaprepitant (dimeglumine), a water-soluble prodrug of aprepitant, was later introduced in the market. Fosaprepitant administration gives rise to high NK1r occupancy in the CNS for a prolonged period of time (41–75% receptor occupancy at 120 h).\cite{58} The expression of SP in the spinal cord was determined at the end of the behavioral study. Apart from SP, calcitonin gene-related peptide (CGRP) is also present in primary nociceptive afferents and takes part in the process of central sensitization.\cite{59} Its expression was also evaluated.

Methods

Male Sprague-Dawley rats (n = 24) weighing approximately 250 g were used for the study. Permission for the experimental work was obtained from the Institutional Animal Ethics Committee (767/IAEC/13 dated 1-1-2014). Rats were divided into 4 equal groups and injected physiological saline (twice daily subcutaneously in the morning and evening; Group I), morphine sulfate (10 mg/kg twice daily subcutaneously; Group II), fosaprepitant (30 mg/kg once by intraperitoneal route; Group III), and finally, the last group was co-administered both morphine and fosaprepitant (Group IV) in the same doses as in Group II and III, respectively, for a week. In the last group, fosaprepitant was injected 30 min before the morphine injection. The dose of fosaprepitant (30 mg/kg) was higher than that used in an earlier study (25 mg/kg).\cite{60} The approximate LD\textsubscript{50} is >200 mg/kg in rats. The rationale for selecting a higher dose was the rapid conversion of fosaprepitant to aprepitant (half-life ~30 min) in the rat compared to dogs and humans. Hot plate latency or the thermal escape behaviour was determined in the morning, 40 min after saline (Group I), fosaprepitant (Group III), or morphine injection (Group II and IV). This time point was previously standardized as corresponding with maximum antinociceptive effect of morphine. Testing for latency was done at 24 h intervals. The hot plate test is commonly employed for screening the putative antinociceptive property of drugs. The advantages of this test are the brief nature of the noxious stimulus, which does not produce any tissue damage and that multiple testing can be done in the same animal.\cite{61,62} The predictability of this test to clinical situations is high for morphine and related opioid substances.\cite{63}

Animals were initially acclimatized to the testing chamber for 15 min at room temperature. Testing was done in a quiet room with the ambient temperature between 22°C and 25°C. On the day of the experiment, the testing platform of the hot plate apparatus (Stoelting, USA) was set at a constant temperature of 52.5°C. The rats were placed on the hot plate, and the behavioral end points were either licking of the hindpaw or jumping.\cite{64} The test was repeated thrice at 5–7 min intervals and the average of these values was the latency period (sec). A 40 s, cut-off was fixed to prevent damage to the completely analgesic paw after morphine injection. Transformation of these values was done by calculating the percent maximum possible effect (%MPE) as follows:

\[
\text{(%MPE) = } \left(\frac{\text{Drug induced latency − basal response time}}{\text{40 s − basal response time}} \right) \times 100
\]

On day 8 (morning), rats were anesthetized by pentobarbitral injection (100 mg/kg intraperitoneal). This was followed by intracardiac perfusion with 4% paraformaldehyde solution in 0.1 M phosphate buffer saline. The cervical enlargement (upper part) was isolated after laminectomy. Transverse sections of the spinal cord (20 µm thick) were obtained in a cryostat and processed for immunohistochemical localization of SP and CGRP using specific antibodies (anti-SP antibody, Abcam, UK; anti-CGRP antibody, Calbiochem, USA; 1:500 titer) using the Avidin-Biotin complex method (Vector Labs, USA).\cite{65} Representative sections (3/rat; systematic random sampling) were later viewed under a microscope and the images captured. The expression of SP and CGRP in the superficial laminae (Rexed’s laminae I-II) of the gray matter was quantitated by Image J software (NIH, USA). Specific expression was obtained after deducting background staining in the white matter (lateral funiculus) from the total value obtained from the superficial laminae. Some of the cryostat sections were stained with 0.5% Cresyl violet for localization of neurons in the dorsal horn.

Statistical evaluation of data was done by GraphPad Prism version 5 (GraphPad software, La Jolla, San Diego, USA). Values of latency period of the different groups of animals were independently analyzed at each time point by one-way analysis of variance followed by Bonferroni multiple comparison test. P < 0.05 was considered statistically significant. Values are represented as mean ± standard error of mean. Each experimental group had 6 animals.

Results

The various groups of rats had different baseline values, which affected the subsequent comparison of the antinociceptive effect of the drugs [Figure 1a]. Hence, normalization of the data was done by calculating the %MPE [Figure 1b]. The %MPE values of control and the fosaprepitant-treated groups did not show any statistically significant change during the experiment. Morphine injection produced significantly higher antinociceptive effect on day 1 (P < 0.001) and to a lesser extent day 4 (P < 0.05) compared to the control group. The sharp decrease in the antinociceptive effect from day 2 in the morphine treated group indicated the development of tolerance. Morphine + fosaprepitant combination delayed the onset of tolerance in comparison to morphine treated group on days 1 (P < 0.01) and 3 (P < 0.001). Compared to control, antinociception was higher between days 1 and 4 (P < 0.001) for this group.

Cresyl violet staining showed the dorsal horn neurons arranged in various laminae [Figure 2]. Immunohistochemical study revealed the expression of SP and CGRP over the superficial laminae (laminae I-II) of the dorsal horn [Figure 2]. Quantitative image analysis revealed increased SP expression in the morphine + fosaprepitant treated group compared to others [Figure 3]. Statistically significant difference was present between morphine and morphine + fosaprepitant co-treatment.
Discussion

The Aδ and C groups of nerve fibers carry pain from the periphery to the spinal cord. Majority of these fibers end in laminae I and II of the dorsal horn. The peptidergic subgroup of these nerve fibers contains neuropeptides such as SP and CGRP, which are released into the synaptic cleft following noxious stimulation. These neuropeptides diffuse to the postsynaptic terminal, where they bind to the corresponding receptors. Morphine-induced antinociception is linked to decreased release of glutamate, SP, CGRP, etc., from presynaptic terminals and greater postsynaptic hyperpolarization due to the activation of inwardly rectifying potassium channels.[23] Both these effect decrease onward neurotransmission of pain signals. Co-administration of fosaprepitant possibly interfered with the binding of SP to the NK1r expressed by postsynaptic neurons in the spinal cord. The results of this study show that combining morphine with fosaprepitant (Group IV) delayed the development of morphine tolerance and concurrently increased the antinociceptive effect compared to the control group. As mentioned earlier, this could be due to decreased binding of SP to the NK1r. Evidence from electrophysiological experiments indicates that noxious stimuli produce slow and prolonged excitatory potentials in postsynaptic dorsal horn neurons, which are inhibited by NK1r antagonist.[18] Since fosaprepitant treatment (Group III) alone did not result in an antinociceptive effect, the interaction between morphine and fosaprepitant is likely synergistic in nature. Previously, injection of a bifunctional peptide having both μ-opioid receptor agonist and NK1r antagonist properties relieved pain in neuropathic rats without producing tolerance.[19] In a different study, Tumati et al. reported that intrathecal administration of both morphine and a NK1r antagonist reduced subsequent opioid withdrawal-induced hyperalgesia.[20] Paradoxically, a SP-opioid receptor agonist chimera inhibited development of opioid tolerance.[21] Pharmacokinetic interaction between fosaprepitant/aprepitant and morphine could also contribute to the enhanced antinociceptive effect. Aprepitant is mainly metabolized by CYP3A4 enzyme.[22] N-Demethylation of morphine by CYP3A4 is an important biotransformation pathway in rodents. Hence, morphine concentration in the nervous system could be increased by concurrent administration of these drugs.

Significant alterations in the expression of SP and CGRP were not observed except in the group treated with morphine + fosaprepitant combination (Group IV). This was unexpected because prevailing evidence suggests that NK1r does not regulate the release of SP in the spinal cord. However, contrary to this, NK1r has been recently reported to be crucial for release of SP from dorsal root ganglion neurons.[23] Thus, a possibility exists that fosaprepitant decreased release of SP from presynaptic terminals. Moreover, it has been speculated that there could be SP autoreceptors on presynaptic terminals, which can modulate SP release.[24] But, fosaprepitant treatment
alone did not increase SP immunoreactivity in the present work. As noted earlier, morphine inhibits the release of SP under acute conditions but rats chronically treated with morphine in our study did not show a statistically significant increase in SP expression. Presumably, both NK1 autoreceptors as well as morphine-induced inhibition of SP release might have contributed to the increased SP expression in Group IV [Figure 4]. A limitation of this study was that the expression of SP and CGRP was evaluated at the end of the observation period and not between days 1 and 4, when the antinociceptive effect was maximum. Another limitation was the use of a fixed-dose combination of morphine and fosaprepitant.

The antinociceptive effect of morphine decreased rapidly following daily administration, indicating development of tolerance. Morphine tolerance has been reported to be counter-adapting processes, which maintains the status quo in the spinal cord. Similarly, the potentiation of the antinociceptive effect of morphine by fosaprepitant is also lost on continued administration (day 5 onward). Identical result was reported with a chimera possessing both opioid agonist and NK1r antagonist properties. Morphine tolerance is a complex phenomenon with several factors contributing to it. Moreover, the factors can differ depending upon the specific µ-opioid receptor agonist used for producing the tolerance.

Conclusion

The results indicate that addition of fosaprepitant to morphine can delay morphine tolerance for a limited period of time. This information could be used to treat breakthrough pain in cancer patients. To the best of our knowledge, this is the first report on the novel antinociceptive effect of morphine + fosaprepitant combination. Further studies are required to further elucidate this novel antinociceptive effect of morphine + fosaprepitant combination.

Acknowledgement

Financial support was provided by the Department of Biotechnology (BT-PR14279Med/30/452/2010), Government of India.

Financial Support and Sponsorship

Nil.

Conflicts of Interest

There are no conflicts of interest.

References

1. Costantini M, Ripamonti C, Becaro M, Montella M, Borgia P, Casella C, et al. Prevalence, distress, management, and relief of pain during the last 3 months of cancer patients’ life. Results of an Italian mortality follow-back survey. Ann Oncol 2009;20:729-35.
2. Simon SM, Schwartzberg LS. A review of rapid-onset opioids for breakthrough pain in patients with cancer. J Opioid Manag 2014;10:207-15.
3. Raphael J, Ahmedzai S, Hester J, Urch C, Barrie J,
Williams J, et al. Cancer pain: Part 1: Pathophysiology; oncological, pharmacological, and psychological treatments: A perspective from the British Pharmacological Society endorsed by the UK association of palliative medicine and the Royal College of Medical Practitioners. Pain Med 2010;11:742-64.

4. Shinde S, Gordon P, Sharma P, Gross J, Davis MP. Use of non-opioid analgesics as adjuvants to opioid analgesia for cancer pain management in an inpatient palliative unit: Does this improve pain control and reduce opioid requirements? Support Care Cancer 2013;21:695-703.

5. Gouardères C, Beaudet A, Zajac JM, Cros J, Quirion R. High resolution radioautographic localization of [125I] FK-33-824-labelled mu opioid receptors in the spinal cord of normal and deafferented rats. Neuroscience 1991;43:197-209.

6. Nakaya Y, Kaneko T, Shigemoto R, Nakanishi S, Mizuno N. Immunohistochemical localization of substance P receptor in the central nervous system of the adult rat. J Comp Neurol 1994;347:249-74.

7. Woolf CJ. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011;152 Suppl S2:15.

8. Khasabov SG, Rogers SD, Ghilardi JR, Peters CM, Mantyh PW, Simone DA. Spinal neurons that possess the substance P receptor are required for the development of central sensitization. J Neurosci 2002;22:9086-98.

9. Celio L, Ricchini F, De Braud F. Safety, efficacy, and patient acceptability of single-dose fosaprepitant regimen for the prevention of chemotherapy-induced nausea and vomiting. Patient Prefer Adherence 2013;7:391-400.

10. Van Laere K, De Hoon J, Bormans G, Koole M, Derdelinckx I, Van den Eynde I, Kosson P, Schulz S, et al. Tachykinin NK1 receptor antagonist co-administration attenuates opioid withdrawal-mediated spinal microglia and astrocyte activation. Eur J Pharmacol 2012;684:64-70.

11. Nasu F. Analysis of calcitonin gene-related peptide (CGRP)-containing nerve fibres in the rat spinal cord using light and electron microscopy. J Electron Microsc (Tokyo) 1999;48:267-75.

12. Huskey SE, Luffer-Atlas D, Dean BJ, McGowan EM, Feeney WP, Chiu SH. Substance P receptor antagonist I: Conversion of phosphoramidate prodrug after i.v. administration to rats and dogs. Drug Metab Dispos 1999;27:1367-73.

13. Pan ZZ, editor. Opioid tolerance in adult and neonatal rats. In: Methods in Molecular Medicine: Opioid Research: Methods and Protocols. Vol. 84. Totowa, NJ: Humana Press; 2005. p. 223-32.

14. Allen JW, Yaksh TL. Assessment of acute thermal nociception in laboratory animals. In: Luo ZD, editor. Pain Research: Methods and Protocols. New Jersey: Humana Press; 2004. p. 11-23.

15. Bars DL, Gozario M, Cadden SW. Animal models of nociception. PharmacoL Rev 2001;53:597-652.

16. Gerfen CR, Rogawski MA, Sibley DR, Skolnick P, Wray S, editors. Neuroanatomical methods; Immunohistochemical localization of proteins in the nervous system. In: Short Protocols in Neuroscience. New Jersey: John Wiley & Sons; 2006. p. 8-11.

17. Law PY, Wong YH, Loh HH. Molecular mechanisms and regulation of opioid receptor signalling. Ann Rev Pharmacol Toxicol 2000;40:389-430.

18. Todd AJ, Koerber HR. Neuroanatomical substrates of spinal nociception. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC, editors. Wall and Melzack’s Textbook of Pain. Philadelphia: Elsevier; 2013. p. 77-93.

19. Largent-Milnes TM, Yamamoto T, Nair P, Moulton JW, Hruby VJ, Lal J, et al. Spinal or systemic TY005, a peptidic opioid agonist/neurokinin 1 antagonist, attenuates pain with reduced tolerance. Br J Pharmacol 2010;161:986-1001.

20. Tumati S, Largent-Milnes TM, Keresztes AI, Yamamoto T, Vanderah TW, Roeske WR, et al. Tachykinin NK1 receptor antagonist induces co-administration attenuates opioid withdrawal-mediated spinal microglia and astrocyte activation. Eur J Pharmacol 2012;684:64-70.

21. Foran SE, Carr DB, Lipkowski AW, Maszczynska I, Marchand JE, Misiccka A, et al. Inhibition of morphine tolerance development by a substance P opioid peptide chimera. J Pharmacol Exp Ther 2000;295:1142-8.

22. Colon-Gonzalez F, Kraft WK. Pharmacokinetic evaluation of fosaprepitant dimeglumine. Expert Opin Drug Metab Toxicol 2010;6:1277-86.

23. Tang HB, Li YS, Arihiro K, Nakata Y. Activation of the neurokinin-1 receptor by substance P triggers the release of substance P from cultured adult rat dorsal root ganglion neurons. Mol Pain 2007;3:42.

24. Malcangio M, Bowery NG. Peptide autoreceptors: Does an autoreceptor for substance P exist? Trends Pharmacol Sci 1999;20:405-7.

25. Guillemyn K, Klesczykowska P, Novoa A, Vandormael B, Van den Eynede I, Kosson P, et al. In vivo antinociception of potent mu opioid agonist tetrapeptide analogues and comparison with a compact opioid agonist-neurokinin 1 receptor antagonist chimera. Mol Brain 2012;5:44.

26. Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, et al. regulation of µ-opioid receptors: Desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 2013;65:223-54.

27. Dumas EO, Pollack GM. Opioid tolerance development: A pharmacokinetic/pharmacodynamic perspective. AAPS J 2008;10:337-51.

28. Grecksch G, Just S, Pierschorff C, Imhof AK, Glück L, Doll C, et al. Analogic tolerance to high-efficacy agonists but not to morphine is diminished in phosphorylation-deficient S375A µ-opioid receptor knock-in mice. J Neurosci 2011;31:13890-6.