REVIEW

Recent advances in understanding basophil functions \textit{in vivo}
[version 1; referees: 5 approved]

David Voehringer

Department of Infection Biology, University Hospital Erlangen, Erlangen, Germany

Abstract
Basophils are mainly known as pro-inflammatory effector cells associated with allergy and helminth infections. Although they were identified over 130 years ago, their \textit{in vivo} functions are still poorly understood. New insights into basophil development and function have been gained by the development of various transgenic mouse lines and staining techniques to detect and purify these cells from different organs. Several studies over the past few years have identified unexpected functions for basophils, including immunomodulatory properties and interactions with other immune cells. Here, I summarize and discuss the main findings.
Introduction
Basophils belong to the group of granulocytes which constitute rather short-lived effector cells of the innate immune system. They usually represent less than 1% of all leukocytes in the peripheral blood, but they have potent effector functions. In contrast to many other cell types of the immune system, it is poorly understood how basophils develop and execute their effector functions. Not too long ago, it was even questioned whether mice contain a bona fide basophil population mainly because mouse basophils contain fewer granules as compared to human basophils1. After establishing staining protocols and genetically engineered mouse strains basophils could be identified, isolated, and functionally characterized in various settings of immune responses. Basophils and mast cells share the expression of the high-affinity receptor for IgE (FceRI), histamine, and a few other effector molecules, yet basophils do not represent a subset or precursor population of mast cells; rather, they constitute a distinct cell lineage with a very different gene expression profile1. Basophils can be efficiently depleted in vivo with the monoclonal antibody MAR-1 directed against FceRI or Ba103 which binds to another activating receptor named CD200R3. However, since the recognized antigens of both antibodies are not exclusively expressed on basophils, this approach can cause bystander effects that interfere with clear interpretations of such depletion experiments. Transgenic mice expressing the Cre recombinase, GFP, or human diphtheria-toxin receptor under control of regulatory elements of the Mcpt8 gene have been developed by several groups over the past few years (reviewed in 3). Mcpt8 encodes the mouse mast cell protease 8 (mMCP-8), a serine protease which is highly expressed in basophils but not mast cells4. The genetically modified mouse strains facilitate the functional characterization of basophils in vivo. However, it is important to keep in mind that mouse and human basophils differ in many respects, and it remains to be determined to what extent findings in mouse models can be translated to the human immune system. In the following paragraphs, I summarize some major new findings regarding the in vivo functions of basophils published during the past few years.

Basophil development and critical transcription factors
Interleukin (IL)-3 is the most potent cytokine to promote basophil proliferation, but high concentrations of thymic stromal lymphopoietin (TSLP) can have similar effects5. IL-3 and TSLP-elicited basophils differ in terms of their gene expression profiles and may resemble different states of activation rather than representing stable subpopulations of basophils. The receptors for IL-3 and TSLP are linked to the STAT5 signaling pathway, and it was recently shown that STAT5 binds to regulatory elements of Gata2, which is another critical transcription factor for basophil development4. In addition, it was found that IRF8 can also promote Gata2 expression in precursor cells and thereby drive basophil differentiation5. Other transcription factors including Gata1, P1-Runx1, c/EBPδ, and MITF also play an important role in basophil development and maintenance (reviewed in 8).

Relevance of antigen-presentation by basophils
Basophils were found to display low levels of major histocompatibility complex class II (MHC-II) on the cell surface, and antibody-mediated depletion of basophils resulted in poor Th2 polarization14,15. However, genetically basophil-depleted Mcpt8Cre mice showed normal expansion of Th2 cells during primary infection with the helminths Nippostrongylus brasiliensis16, Heligmosomoides polygyrus17, and Schistosoma mansoni18. Ovalbumin (HOA)-alum immunized and challenged Mcpt8Cre mice also showed an unimpaired Th2 response and eosinophilia in the lung19. Furthermore, papain+OVA-induced T-cell proliferation and Th2 polarization in draining lymph nodes was normal in Mcpt8Cre mice while genetically dendritic cell (DC)-depleted mice showed a severely impaired response12. With another genetically basophil-depleted mouse model (Basophil x Rosa-DTa mice), it was shown that footpad immunization with S. mansoni eggs results in normal Th2 priming in the absence of basophils15. In contrast, diphtheria toxin (DT)-mediated depletion of DCs causes impaired Th2 priming upon S. mansoni egg immunization and diminished Th2 cell accumulation in the liver of S. mansoni-infected mice16. It was further shown that DCs are required and sufficient for the Th2 response to house dust mite antigens17. This study also demonstrated that a subset of monocyte-derived DCs express FceRI. These cells will therefore also be depleted with the anti-FceRI antibody MAR-1 frequently used to deplete basophils in vivo.

Basophils lack the machinery for antigen uptake and processing, although they can contain MHC-II molecules on the cell surface which may be loaded with exogenous peptides and are then capable of stimulating T cells4,18,17. Two other studies provide evidence that basophils and DCs cooperate to promote Th2 polarization. It was shown that subcutaneous papain injection induced reactive oxygen species that indirectly activated DCs to promote basophil recruitment into lymph nodes and subsequent Th2 polarization18. Another study showed that TSLP-elicited dermal DCs express OX40L to induce IL-3 secretion from T cells leading to the recruitment of basophils which then promote Th2 polarization19. The Th2-promoting activity of basophils in both studies might be explained by basophil-derived IL-4 rather than direct antigen recognition on basophils.

Recent evidence shows that basophils can in fact acquire MHC-II from DCs by the uptake of plasma membrane patches, a process termed trogocytosis19. Clearly, further studies are needed to determine whether MHC-II trogocytosis by basophils has functional consequences for T-cell activation or memory formation or other processes that are regulated by antigen recognition.

Basophil functions in type 2 immune responses
Lung inflammation
In a mouse model of allergic lung inflammation induced by the administration of the cysteine protease papain, it was found that basophil-derived IL-4 promotes the secretion of IL-5, IL-9, and
IL-13 from type 2 innate lymphoid cells (ILC2s) in the lung and thereby induces lung eosinophilia22. Another type 2 immunity-inducing property of basophils was observed in a commonly used model for allergic lung inflammation which is based on alum adjuvant-mediated priming of the Th2 response. It was recently reported that alum enhanced the ability of basophils to induce Th2 polarization by the release of TSLP and IL-25 but independently of IL-4 secretion25. However, we and others observed no impairment in lung Th2 responses with \textit{N. brasiliensis} infection or OVA/alum immunization in genetically basophil-depleted mice12,15.

\textbf{Local inflammatory responses in the skin}

Similar to reports from papain-induced lung inflammation, it was reported that basophil-derived IL-4 induces ILC2 accumulation and proliferation in the skin after topical application of MC903, a vitamin D analog23. MC903 elicits high levels of TSLP expression in the skin and causes pathology reminiscent of skin lesions of atopic dermatitis patients. Anti-TSLP antibodies can block the accumulation of basophils in the skin26 but also inhibit peripheral TSLP-induced basophilia during \textit{Trichinella spiralis} infection27. Experiments with mixed bone marrow chimeras revealed that basophil accumulation in the MC903-treated ear does not require direct recognition of TSLP by basophils28. Basophils were further found to cooperate with fibroblasts to promote the recruitment of eosinophils in a murine model of irritant contact dermatitis29. Related to this, it was reported that basophils regulate the entry of eosinophils into the skin by the induction of VCAM-1 expression on endothelial cells30.

Local activation of basophils in the ear skin via FcεRI causes an ear swelling response termed “chronic allergic inflammation” or IgE-CAI, which peaks at day 2–3 and resolves by day 6. This IgE-CAI response is strictly dependent on basophils31. Using this model, Egawa \textit{et al}. reported that the release of IL-4 from basophils promotes the differentiation of alternatively activated or “M2” macrophages which have anti-inflammatory and tissue repair properties, arguing for a role of basophils in the resolution of inflammation32. Others observed that α(1,3)fucosyltransferases IV and VII are essential for the initial recruitment of basophils in the IgE-CAI model33. Basophils express various proteases including mMCP-8 and mMCP-11. By analyzing mMCP-11-deficient mice, Iki \textit{et al}. showed that mMCP-11 promotes the ear swelling response in IgE-CAI34. However, basophils can also have anti-inflammatory properties, as shown in a model of skin contact hypersensitivity where UVB irradiation reduced the hapten-induced ear swelling response. In this model, it could be demonstrated that basophil-restricted expression of amphiregulin, a cytokine with tissue repair activities, was required for the suppressive effect of UVB irradiation35. Increased numbers of basophils were also found in skin biopsies from patients with various skin disorders, indicating that these cells also regulate inflammatory responses in human skin36.

\textbf{Protection against parasites in the skin and intestine}

The presence of basophils in the skin indicates that they could be involved in protective immunity against helminths that enter their hosts via the skin or against ectoparasites like ticks. Using basophil-depleted mice, Wada \textit{et al}. showed that basophils impair tick feeding upon secondary engorgement37. Furthermore, basophils promote the trapping of larvae in the skin upon secondary \textit{N. brasiliensis} infection38. In addition, basophils accumulate in the small intestine and induce rapid expansion of Th2 cells and protection against \textit{N. brasiliensis} or \textit{H. polygyrus} during secondary infection by IgE-induced secretion of IL-4/IL-1313. Basophils further promote a Th2 response in a TSLP-dependent manner during \textit{T. spiralis} and \textit{Trichuris muris} infections39,40. In contrast, basophils play only a minor role in the control of \textit{Strongyloides ratti} infection41. Anti-CD200R3-mediated depletion of basophils resulted in smaller granulomas around \textit{S. mansoni} eggs in the liver42, while this effect was not observed in genetically basophil-depleted \textit{Mept8Cre} mice43. This difference might be explained by secondary effects caused by the injected antibody, including mast cell activation and Fc receptor-mediated modulation of phagocytes.

\textbf{Basophils in food allergy and eosinophilic esophagitis}

An interesting role for basophils during skin sensitization followed by oral challenge to elicit a food allergic response has been described. Mice developed a severe food allergic response when chicken OVA was first applied in combination with MC903 to the ear skin and later given intragastrically by oral gavage44. The authors further showed that basophils and TSLP are required for this effect. In a subsequent study, it was further revealed that basophil-derived IL-4 promoted the IgE-mediated food allergic response and eosinophils were dispensable for this effect45. A role for basophils, TSLP, and IL-33 to elicit an anaphylactic response to oral antigens was also shown in another model where OVA was applied to skin pretreated with 4% SDS instead of MC90346.

The impaired skin barrier function in atopic dermatitis may facilitate allergic sensitization that can lead to eosinophilic esophagitis (EoE). Pathology reminiscent of EoE can be elicited by intranasal OVA challenge of MC903+OV A skin-sensitized mice47. However, basophils can also have anti-inflammatory properties, as shown in a model of skin contact hypersensitivity where UVB irradiation reduced the hapten-induced ear swelling response. In this model, it could be demonstrated that basophil-restricted expression of amphiregulin, a cytokine with tissue repair activities, was required for the suppressive effect of UVB irradiation48. Increased numbers of basophils were also found in skin biopsies from patients with various skin disorders, indicating that these cells also regulate inflammatory responses in human skin49.

\textbf{Basophils in other inflammatory settings, allograft transplantation, and tumor control}

Intravenous immunoglobulin (IVIG) therapy, the intravenous administration of high doses of purified IgG, is used as a therapeutic approach to treat autoantibody-mediated inflammation in various clinical settings. The anti-inflammatory mechanism of IVIG therapy is incompletely understood. Using a mouse model of serum-induced arthritis, researchers showed that IVIG elicits IL-33 secretion, which in turn promotes IL-4 release from basophils. Basophil-derived IL-4 then upregulates the inhibitory Fc receptor FcγRIIB on macrophages and thereby ameliorates pathology50. However, others found no role for basophils in IVIG-induced suppression of serum-induced arthritis51. The apparent discrepancies between these observations remain to be resolved.
Systemic lupus erythematosus (SLE) is another autoantibody-mediated disease. SLE patients were found to have higher serum levels of IgE and activated basophils\(^6\). Another study showed that basophils from SLE patients promoted Th17 differentiation in vitro, probably by the secretion of IL-6\(^7\). Depletion of basophils from SLE-prone MRL-lpr/lpr mice resulted in ameliorated pathology and an extended lifespan, while adoptive transfer of basophils had the opposite effect\(^8\). Further evidence for an important role of basophil-derived IL-6 in Th17 differentiation is based on a cholera toxin-induced lung inflammation model. Here it was shown that Th17-associated lung inflammation was reduced in the absence of basophils and could be restored by the transfer of wild-type but not IL-6-deficient basophils\(^9\).

Basophils were also found to regulate the rejection of allogeneic transplants. In a mouse model of pancreatic islet allotransplantation, it was reported that the depletion of basophils results in improved graft survival\(^10\). Furthermore, basophil-derived IL-4 was found to act on myofibroblasts and promote fibrosis in a cardiac allotransplantation model\(^11\). In vitro studies with human basophils further revealed their potential to inhibit TLR4-induced monocyte activation\(^12\) and to induce the differentiation of alternatively activated macrophages\(^13\).

Recently, basophils were further found to modulate immune responses against solid tumors. One study described the recruitment of basophils into tumor-draining lymph nodes in correlation with a Th2-biased immune response and poor survival of pancreatic cancer patients\(^14\). In contrast, basophils were also shown to promote tumor rejection by recruiting CD8\(^+\) T cells.

Future perspective

Our current understanding of basophil development and effector functions has improved considerably over the past few years. We realize now that basophils not only function as pro-inflammatory cells during allergic responses and helminth infections but also modulate the immune system in many ways. Most of our knowledge is still based on mouse models. It will be important to translate these findings to the human immune system in order to develop new therapeutic approaches for the treatment of inflammatory diseases where basophils may play an important role.

Abbreviations

DC, dendritic cell; EoE, eosinophilic esophagitis; Fc\(\gamma\)RI, high-affinity IgE receptor; IL, interleukin; ILC2, type 2 innate lymphoid cells; IVIG, intravenous immunoglobulin; MHC-II, major histocompatibility complex class II; m MCP-8, mouse mast cell protease 8; OVA, ovalbumin; SLE, systemic lupus erythematosus; TSLP, thymic stromal lymphopoietin.

Competing interests

The author declares that he has no competing interests.

Grant information

Work on basophils in the Voehringer lab is currently supported by grant Vo944/7-1 from the Deutsche Forschungsgemeinschaft (DFG).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Lee JJ, McGarry MP: When is a mouse basophil not a basophil? Blood. 2007; 109(3): 858–61. Published Abstract | Publisher Full Text | Free Full Text
2. Dwyer DF, Barrett NA, Austen KF, et al.: Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol. 2016; 17(7): 878–87. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
3. Voehringer D: Protective and pathological roles of mast cells and basophils. Nat Rev Immunol. 2013; 13(5): 362–75. Published Abstract | Publisher Full Text | F1000 Recommendation
4. Lützelschwab C, Huang MR, Kulberg MC, et al.: Characterization of mouse mast cell protease-8, the first member of a novel subfamily of mouse mast cell serine proteases, distinct from both the classical chymases and tryptases. Eur J Immunol. 1998; 28(3): 1022–33. Published Abstract
5. Schwartz C, Eberle JU, Hoyter T, et al.: Opposing functions of thymic stromal lymphopoietin-responsive basophils and dendritic cells in a mouse model of atopic dermatitis. J Allergy Clin Immunol. 2016; 138(5): 14430–1443.e8. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
6. Li Y, Qi X, Liu B, et al.: The STAT5-GATA2 pathway is critical in basophil and mast cell differentiation and maintenance. J Immunol. 2016; 196(9): 4328–38. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
7. Sasaki H, Kurotaki D, Osato N, et al.: Transcription factor IRF8 plays a critical role in the development of murine basophils and mast cells. Blood. 2015; 125(2): 358–69. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
8. Huang H, Li Y, Liu B: Transcriptional regulation of mast cell and basophil lineage commitment. Semin Immunopathol. 2016; 38(5): 539–48. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
9. Perrigueux JG, Saenz SA, Sincasa MC, et al.: MHC class II-dependent basophil-CD4+ T cell interactions promote T\(_2\) cytokine-dependent immunity. Nat Immunol. 2009; 10(7): 697–705. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
10. Sokol CL, Chu NQ, Yu S, et al.: Basophil functions as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol. 2009; 10(7): 713–20. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
11. Yoshimoto T, Yasuda K, Tanaka H, et al.: Basophils contribute to T\(_2\)-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat Immunol. 2009; 10(7): 706–12. Published Abstract | Publisher Full Text | F1000 Recommendation
12. Chinmacht C, Schwartz C, Panzer M, et al.: Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity. 2010; 33(3): 364–74. Published Abstract | Publisher Full Text | F1000 Recommendation
13. Schwartz C, Turqueti-Neves A, Hartmann S, et al.: Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proc Natl Acad Sci U S A. 2011; 114(48): E5169–77. Published Abstract | Publisher Full Text | Free Full Text
14. Schwartz C, Oser K, Prazeres da Costa C, et al.: T cell-derived IL-4/LT-13 protects mice against fatal Schistosoma mansoni infection independently of basophils. J Immunol. 2014; 193(7): 3590–9. Published Abstract | Publisher Full Text
15. Sullivan BM, Liang HE, Bande J, et al.: Genetic analysis of basophil
functions in vivo. Nat Immunol. 2011; 12(6): 597–599.

Phyphian-Adams AT, Cook PC, Lunde RJ, et al.: CD11c depletion severely disrupts Th2 induction and development in vivo. J Exp Med. 2010; 210(10): 2089–2096. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Hammad H, Plantinga M, Deswarte K, et al.: Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med. 2010; 210(7): 2097–2111. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Okuda A, Nakajima S, Kubo M, et al.: Basophils are required for the induction of Th2 immunity to hapten antigens. Nat Commun. 2013; 4: 1739. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Miyake K, Shiozawa N, Nagao T, et al.: Interleukin-4 and NACHT, LRR and PYD domains-containing protein 3-dependent mechanisms of alum enhanced T helper type 2 responses on basophils. Immunology. 2016; 149(2): 238–251. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Kim BS, Wang K, Siracusa MC, et al.: Basophil promote innate lymphoid cell responses in inflamed skin. J Immunol. 2014; 193(7): 3717–25. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Siracusa MC, Saenz SA, Hill DA, et al.: ThSL promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature. 2011; 477(7354): 110–13. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Nakashima C, Otsuka A, Kitch A, et al.: Basophils regulate the recruitment of eosinophils to an immune model of irritant contact dermatitis. J Allergy Clin Immunol. 2014; 134(1): 100–19. PubMed Abstract | Publisher Full Text | Free Full Text

Cheng LE, Sullivan BM, Retana LE, et al.: IgE-activated basophils regulate eosinophil tissue entry by modulating endothelial function. J Exp Med. 2015; 212(11): 213–24. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Mukai K, Matsuka K, Taya C, et al.: Basophils play a critical role in the development of IgE-mediated chronic allergic inflammation independently of T cells and mast cells. Immunity. 2005; 23(2): 191–202. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Egawa M, Mukai K, Yoshikawa S, et al.: Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity. 2013; 38(3): 570–80. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Sakai K, Sato T, Yokoezki H, et al.: U(1,3) Fucosyltransferases IV and VII are essential for the initial recruitment of basophils in chronic allergic inflammation. J Invest Dermatol. 2013; 133(9): 1061–9. PubMed Abstract | Publisher Full Text | Free Full Text

Kii M, Tanaka K, Deki H, et al.: Basophil tryptase mMCPIP-11 plays a crucial role in IgE-mediated, delayed-onset allergic inflammation in mice. Blood. 2016; 127(19): 2309–2331. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Meulenbroeks C, van Weelden H, Schwartz C, et al.: Basophil-derived amphiregulin is essential for UVB irradiation-induced immune suppression. J Invest Dermatol. 2015; 135(1): 222–8. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Ito Y, Sato T, Takayama K, et al.: Basophil recruitment and activation in inflammatory skin diseases. Allergy. 2017; 71(8): 1107–13. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Wada T, Ishiwa K, Kosaka H, et al.: Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J Clin Invest. 2010; 120(8): 2967–75. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Obata-Ninomiya K, Ishiwha K, Tatsuri H, et al.: The skin is an important bulwark of acquired immunity against intestinal helminths. J Exp Med. 2013; 210(12): 2583–85. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Reitz M, Brunn ML, Rodewald HR, et al.: Mucosal mast cells are indispensable for the timely termination of Strongyloides ratti infection. Mucosal Immunol. 2017; 10(2): 481–92. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Anyan WK, Sehi T, Kumagai T, et al.: Basophil depletion downregulates Schistosoma mansoni egg-induced granuloma formation. Parasitol Int. 2013; 62(6): 508–13. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Noél M, Kim BS, Siracusa MC, et al.: Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immunol. 2014; 133(3): 1390–9, 1399. e1–6. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Hussain M, Borcard L, Walsh KP, et al.: Basophil-derived IL-4 promotes eucapnic antigen sensitization concomitant with the development of food allergy. J Allergy Clin Immunol. 2017; pii: S0091-6749(17)30666-3. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Muto T, Fukuda A, Kabashima K, et al.: The role of basophils and proallergic cytokines, TSLP and IL-33, in cutaneously sensitized food allergy. J Allergy Clin Immunol. 2014; 133(6): 1539–48. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Venturelli N, Lexmond WS, Ohaski A, et al.: Allergic skin sensitization promotes eosinophilic eosinophagitis through the IL-33-basophil axis in mice. J Allergy Clin Immunol. 2016; 138(5): 1367–1380.e5. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Anthony RM, Kobayashi T, Wermeling F, et al.: Intravenous gamaglobulin suppresses inflammation through a novel T2 pathway. Nature. 2011; 473(7354): 110–3. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Campbell IK, Miescher S, Branch DR, et al.: Therapeutic effect of IVIG on inflammatory arthritis in mice is dependent on the Fc portion and independent of sialylation or basophils. J Immunol. 2014; 192(11): 5031–8. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Charles N, Hardwick D, Daugas E, et al.: Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat Med. 2010; 16(6): 701–7. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Pan Q, Gong L, Xiao H, et al.: Basophil Activation-Dependent Autoimmunity and Interleukin-17 Production Exacerbate Systemic Lupus Erythematosus. Front Immunol. 2017; 8: 348. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Yuk CM, Park HJ, Kwon B, et al.: Basophil-derived IL-4 regulates T_17 cell differentiation and CD4 T cell immunity. Sci Rep. 2017; 7: 4174. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Yazawa N, Imazumi T, Makuchii H, et al.: Treatment with Anti-FcR(n) (MAR-1) Antibody Prevents Acute Islet Allograft Rejection in a Murine Model. Tokai J Exp Clin Med. 2015; 40(4): 141–8. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Schioetti G, Hermann FJ, Rodriguez-Gomez M, et al.: Basophils Trigger Fibroblast Activation in Cardiac Allograft Fibrosis Development. Am J Transplant. 2016; 16(9): 2574–88. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Rivellese F, Suommond J, de Paula A, et al.: IgE and IL-33-mediated triggering of human basophils inhibits TLR4-induced monocyte activation. Eur J Immunol. 2014; 44(10): 3045–55. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Borriello F, Longo M, Spinelli R, et al.: IL-3 synergises with basophil-derived IL-4 and IL-13 to promote the alternative activation of human monocytes. Eur J Immunol. 2015; 45(7): 2042–51. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

De Monte L, Wörmann S, Brunetto E, et al.: Basophil Recruitment into Tumor-Draining Lymph Node Correlates with Th2 Inflammation and Reduced Survival in Pancreatic Cancer Patients. Cancer Res. 2016; 76(7): 1792–803. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
Open Peer Review

Current Referee Status: ✔️ ✔️ ✔️ ✔️ ✔️

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 Kenji Kabashima Kyoto University, Kyoto, Japan
 Competing Interests: No competing interests were disclosed.

1 Hajime Karasuyama Department of Immune Regulation, Tokyo Medical and Dental University, Tokyo, Japan
 Competing Interests: No competing interests were disclosed.

1 Mark Siracusa Rutgers New Jersey Medical School, Newark, NJ, USA
 Competing Interests: No competing interests were disclosed.

1 Gianni Marone University of Naples, Federico II, Naples, Italy
 Competing Interests: No competing interests were disclosed.

1 David Huston Texas A&M University, Houston, TX, USA
 Competing Interests: No competing interests were disclosed.