Examining the ability to track multiple moving targets as a function of postural stability: A comparison between team sports players and sedentary individuals (#74148)

Guidance from your Editor

Please submit by **4 Jul 2022** for the benefit of the authors (and your $200 publishing discount).

- **Structure and Criteria**
 Please read the 'Structure and Criteria' page for general guidance.

- **Custom checks**
 Make sure you include the custom checks shown below, in your review.

- **Raw data check**
 Review the raw data.

- **Image check**
 Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files
Download and review all files from the [materials page](#).

- 3 Figure file(s)
- 2 Table file(s)
- 1 Raw data file(s)

Custom checks

- **Human participant/human tissue checks**
 - Have you checked the authors [ethical approval statement](#)?
 - Does the study meet our [article requirements](#)?
 - Has identifiable info been removed from all files?
 - Were the experiments necessary and ethical?
For assistance email peer.review@peerj.com

Structure and Criteria

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:

1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING
- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
- Literature well referenced & relevant.
- Structure conforms to PeerJ standards, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see PeerJ policy).

EXPERIMENTAL DESIGN
- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS
- Impact and novelty not assessed. Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
Standout reviewing tips

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources	**Example**
Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.	

Give specific suggestions on how to improve the manuscript	**Example**
Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).	

Comment on language and grammar issues	**Example**
The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.	

Organize by importance of the issues, and number your points	**Example**
1. Your most important issue	
2. The next most important item
3. ...
4. The least important points |

Please provide constructive criticism, and avoid personal opinions	**Example**
I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC	

Comment on strengths (as well as weaknesses) of the manuscript	**Example**
I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.	
Examining the ability to track multiple moving targets as a function of postural stability: A comparison between team sports players and sedentary individuals

Teresa Zwierko, Piotr Lesiakowski, Beatriz Redondo, Jesús Vera

1 Institute of Physical Culture Sciences, Laboratory of Kinesiology, Functional and Structural Human Research Center, University of Szczecin, Szczecin, Poland
2 Department of Physical Education and Sport, Pomeranian Medical University, Szczecin, Poland
3 CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, University of Granada, Granada, Spain

Background. The ability to track multiple objects plays a key role in team ball sports actions. However, there is a lack of research focused on identifying multiple object tracking (MOT) performance under rapid, dynamic and ecologically valid conditions. Therefore, we aimed to assess the effects of manipulating postural stability on MOT performance.

Methods. Nineteen team sports players (soccer, basketball, handball) and sixteen sedentary individuals performed the MOT task under three levels of postural stability (high, medium, and low). For the MOT task, participants had to track three out of eight balls for 10 seconds, and the object speed was adjusted following a staircase procedure. For postural stability manipulation, participants performed three identical protocols (randomized order) of the MOT task while standing on an unstable platform, using the training module of the Biodex Balance System SD at levels 12 (high-stability), 8 (medium-stability), and 4 (low-stability).

Results. We found that the ability to track moving targets is dependent on the balance stability conditions ($F_{2.66} = 8.7, p < 0.001, \eta^2 = 0.09$), with the disturbance of postural stability having a negative effect on MOT performance. Moreover, when compared to sedentary individuals, team sports players showed better MOT scores for the high-stability and the medium-stability conditions (corrected p-value = 0.008, Cohen´s d = 0.96 and corrected p-value = 0.009, Cohen´s d = 0.94; respectively) whereas no differences were observed for the more unstable conditions (low-stability) between-groups.

Conclusions. The ability to track moving targets is sensitive to the level of postural stability, with the disturbance of balance having a negative effect on MOT performance. Our results suggest that expertise in team sports training is transferred to non-specific sport domains, as shown by the better performance exhibited by team sports players in comparison to sedentary individuals. This study provides novel insights into the link between individual’s ability to track multiple moving objects and postural control in team sports players and sedentary individuals.
Examining the ability to track multiple moving targets as a function of postural stability: A comparison between team sports players and sedentary individuals

Teresa Zwierko, Piotr Lesiakowski, Beatriz Redondo, Jesús Vera

1 Institute of Physical Culture Sciences, Laboratory of Kinesiology, Functional and Structural Human Research Center, University of Szczecin, Szczecin, Poland
2 Department of Physical Education and Sport, Pomeranian Medical University, Szczecin, Poland
3 CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, University of Granada, Granada, Spain

Corresponding Author: Teresa Zwierko
17C Narutowicza St., 70-240 Szczecin, Poland
Email address: teresa.zwierko@usz.edu.pl

Abstract

Background. The ability to track multiple objects plays a key role in team ball sports actions. However, there is a lack of research focused on identifying multiple object tracking (MOT) performance under rapid, dynamic and ecologically valid conditions. Therefore, we aimed to assess the effects of manipulating postural stability on MOT performance.

Methods. Nineteen team sports players (soccer, basketball, handball) and sixteen sedentary individuals performed the MOT task under three levels of postural stability (high, medium, and low). For the MOT task, participants had to track three out of eight balls for 10 seconds, and the object speed was adjusted following a staircase procedure. For postural stability manipulation, participants performed three identical protocols (randomized order) of the MOT task while standing on an unstable platform, using the training module of the Biodex Balance System SD at levels 12 (high-stability), 8 (medium-stability), and 4 (low-stability).

Results. We found that the ability to track moving targets is dependent on the balance stability conditions (F2,66 = 8.7, p < 0.001, η² = 0.09), with the disturbance of postural stability having a negative effect on MOT performance. Moreover, when compared to sedentary individuals, team
sports players showed better MOT scores for the high-stability and the medium-stability conditions (corrected p-value = 0.008, Cohen’s d = 0.96 and corrected p-value = 0.009, Cohen’s d = 0.94; respectively) whereas no differences were observed for the more unstable conditions (low-stability) between-groups.

Conclusions. The ability to track moving targets is sensitive to the level of postural stability, with the disturbance of balance having a negative effect on MOT performance. Our results suggest that expertise in team sports training is transferred to non-specific sport domains, as shown by the better performance exhibited by team sports players in comparison to sedentary individuals. This study provides novel insights into the link between individual’s ability to track multiple moving objects and postural control in team sports players and sedentary individuals.

Introduction

In the highly dynamic and constantly changing scenario of team sports such as basketball, soccer or handball, athletes need to rapidly process a considerable amount of information in order to make appropriate decisions (Ashford et al. 2021; Roca & Williams 2016). In this regard, the ability to track moving objects seems to be a crucial aspect of perceptual-cognitive function towards skilled performance in different sport disciplines (Howard et al. 2018; Mackenzie et al. 2021).

The multiple object tracking (MOT) test, which is based on the manipulation of spatiotemporal demands, has been developed to evaluate and enhance the ability to track targets within a dynamic environment where all objects are in constant motion (Pylyshyn & Storm, 1988). In team sports, there is scientific evidence showing that the speed of tracking multiple objects is positively associated with sport expertise in soccer (Faubert 2013) and rugby (Harris et al. 2020), and basketball (Jin et al. 2020; Qiu et al. 2018). Indeed, MOT performance has demonstrated to be associated with specific measures of game performance (assists, turnovers, assist-to-turnover ratio, steals) in professional basketball players (Mangine et al., 2014). Interestingly, a laboratory MOT training intervention improved passing decision-making in soccer players (Romeas et al., 2016) and enhanced processing speed and sustained attention in volleyball players (Fleddermann et al. 2019). Moreover, the ability to track moving targets seems
to be associated with sport performance, and also, its improvement could have a positive impact on applied contexts.

In real game situations, a number of targets are in constant motion (i.e., the opponent, teammates, the ball), and it usually occurs while players' moving. Indeed, team sports are characterized by the repeated combination of high-intensity actions such as sprints, jumps, accelerations, decelerations and multiple changes-of-direction, interspersed with brief low-intensity periods of running and standing (Bishop & Girard 2013). To maintain the integrity of the sport-specific skills, team sports have a greater demand on coupling the athlete’s perceptual-cognitive and motor subsystems (Davids et al. 2001; Farrow & Abernethy 2003). This integrity between higher perceptual-cognitive function and the player’s motor system has been confirmed by the analysis of effective motor behaviors in skilled athletes, as for example in soccer dribbling (Fransen et al. 2017), agility tasks performance (Spiteri et al. 2018), and defensive actions in soccer (Roca et al. 2011). In addition, dynamic balance is defined as the ability to control the postural stability during complex movements and challenging postural conditions (e.g., during external mechanical perturbations) (Paillard & Noé 2015). Regarding team sports, dynamic balance is considered as a functional prerequisite to perform complex motor skills such as ball control (Paillard 2017) or agility tasks (Stirling et al. 2018). In this context, it seems appropriate to consider the bidirectional relationship between the motor and perceptual-cognitive functions in more realistic scenarios, namely when stability is compromised. In our opinion, a lack of perception-movement coupling in research contexts is failing to replicate sport-specific situations, and thus, there is a lack of knowledge in this matter.

Based on the previously reported research gaps, the aim of the present study was to assess the impact of manipulating the level of postural stability on MOT performance in a sample of team sports players and sedentary individuals. In this study, participants performed the MOT task under three levels of postural stability using the Biodex Balance System (Biodex Medical Systems Inc, Shirley, New York, USA). It is expected that MOT performance would be positively associated with the level of stability since visual search performance has been linked to stability (Marsh et al. 2010). Also, it is hypothesized that athletes, when compared to non-athletes, would achieve greater MOT scores (Howard et al. 2018; Qiu et al. 2018) and have
better dynamic postural control (Reynard et al. 2019), resulting in a better MOT performance with different levels of stability.

Materials & Methods

Participants

An a-priori sample size calculation was performed using G*Power 3.1 (Faul et al., 2007), assuming an effect size of 0.25, alpha of 0.05, and power of 0.85. This analysis projected a minimum sample size of 32 participants (16 participants in each group) for the desired statistical power. A total of 35 males were included in this study, 19 professional and semiprofessional team sports players (soccer: n = 6; basketball: n = 7; and handball: n = 6) and 16 university students, who did not regularly practice physical activity (see Table 1 for a description of the experimental sample). All participants had no history of major lower limb injury and were free of any visual deficit. All participants were informed about the testing procedure, and signed a written informed consent. This study was approved by the University of Granada’s Institutional Review Board (IRB approval: 1180/CEIH/2020).

Postural stability assessment

Participants were tested individually, and all assessments were conducted in the same room under constant environmental conditions. Initially, the bilateral static and dynamic postural stability tests were carried out by using the Biodex Balance System SD (Biodex Medical Systems Inc, Shirley, New York, USA). Postural stability tests were performed on static (rigid surface setting) and dynamic platforms (multiaxial platform with 12 levels of instability, maximum tilt of 20 degrees). Test duration for each of the two balance tasks was 80 seconds (three trials of 20 seconds each, with a rest interval of 10 seconds between each). The dynamic postural stability test was performed with platform stability on levels 8 to 4. For all trials, participants were tested barefoot. During testing, participants looked straight ahead to a reference point with their arms folded along their chest. The overall stability index (OSI) (°), the anterior-posterior stability index (APSI) (°), and the medial-lateral stability index (MLSI) (°) were determined. Higher scores of stability index indicate poorer postural stability.
Multiple object tracking (MOT)

Following previously described procedures for the MOT test (see Figure 1, panel C), eight identical black balls (diameter 2.06º) were projected on a 65 cm white square background with a luminance of 107 cd/m2, which subtended a visual angle of 36º, using a 55-inches television monitor (Samsung, UE55NU7172, Korea) placed at 1 m. Three of these balls were randomly illuminated in green for 2 seconds before returning to the baseline black color. The participant was instructed to track these three balls for 10 seconds. The examiner did not give any specific instruction about how performing the task (eye movements were allowed). All balls moved randomly following a linear path and a constant speed and step size. The balls only deviated from a smooth path when they collided against another ball or the walls. After 10 seconds, all the balls were frozen in place and a number, from 1 to 8, was assigned to each one. The participant was asked to identify the three balls that were originally illuminated based on their location in the display (Fehd & Seiffert, 2008). The speed of the balls was adjusted with a 1-up 1-down staircase procedure, increasing the speed if the participant correctly identified all three balls or decreasing the speed if at least one ball identified incorrectly (Levitt, 1971). The initial speed of the balls was set at 26.3 cm/s, and after each correct or incorrect response the speed was increased or decreased by 0.05 log, respectively. The staircase stopped after six reversals, and the threshold was estimated by the mean of the speeds of the last four reversals.

Procedure

To complete the MOT task, each participant performed three testing conditions (three levels of stability) in a randomized manner with a rest interval of 10 minutes between two consecutive conditions. During the execution of the MOT task, participants tried to keep balance on an unstable platform working at the training module of the Biodex Balance System SD. Each testing session was different with levels of platform stability, (i.e., level 12 [high stability with maximum platform tilt of 1.7º], level 8 [medium stability with maximum platform tilt of 8.4º] and level 4 [low stability with maximum platform tilt of 15.0º]). An experienced examiner gave standardized instructions and monitored the testing procedure. All assessments had a standardized familiarization protocol, which included two MOT trials using the initial speed (26.3 cm/s). Figure 1 depicts a graphical illustration of the testing procedure.

Statistical analyses
Descriptive data are presented as means and standard deviations. The normal distribution of the data (Shapiro-Wilk test) and the homogeneity of variances (Levene’s test) were confirmed ($p > 0.05$). In order to determine the possible differences between team sports players and sedentary individuals for OSI, APSI, and MLSI, three separate t-tests for independent samples were carried out. For the main analysis, a mixed ANOVA with “stability level” as the only within-participants factor, and “group” as the only between-participants factor, was performed for MOT score. The possible associations between stability indexes (OSI, APSI, and MLSI) in static and dynamic conditions with MOT scores were assessed by separate linear regression analyses. A p-value of 0.05 was considered to determine statistical significance, and the magnitude of the differences (effect sizes) were reported using the Cohen’s d (d') and eta squared (η^2) for t- and F-tests, respectively. The criteria for interpreting the magnitude of the effect sizes were: trivial (<0.2), small (0.2–0.6), moderate (0.6–1.2), large (1.2–2.0) and extremely large (>2.0) for Cohen’s d (Hopkins et al. 2009) and small (0.01), medium (0.06), and large (0.14) for eta squared (Cohen 1988). Post-hoc comparisons were corrected by the Holm-Bonferroni procedure, and the JASP statistical package (version 16.1) was used for all analyses.

Results

Descriptive and statistical values for static and dynamic OSI, APSI, and MLSI in the groups of team sports players and sedentary individuals are shown in Table 2.

In the static postural balance task, team sports players did not statistically differ from sedentary individuals in terms of stability indexes (p-values > 0.05, Cohen’s ds ranging from 0.073 to 0.297). Similarly, in the dynamic postural balance task, there were no statistically significant differences between both experimental groups (p-values > 0.05, Cohen’s ds ranging from 0.035 to 0.240).

For the analysis of MOT performance, the main effects of “stability level” ($F_{2,66} = 8.7, p < 0.001, \eta^2 = 0.09$) and “group” ($F_{1,33} = 10.9, p = 0.002, \eta^2 = 0.15$) reached statistical significance, but the interaction “stability level” × “group” was not statistically significant ($F_{2,66} = 1.9, p = 0.678, \eta^2 = 0.01$) (Figure 2). Regarding stability level, greater MOT scores were found for the high-stability in comparison to the medium-stability (corrected p-value < 0.001, Cohen’s $d = 0.67$) and low-stability (corrected p-value = 0.005, Cohen’s $d = 0.54$) conditions. However,
the comparison between the medium-stability and low-stability conditions did not reveal statistically significant differences (corrected p-value = 0.444, Cohen’s d = 0.13). Statistically significant post-hoc comparisons between both experimental groups for each stability level are depicted in Figure 2.

The analysis of the association between stability indices and changes in MOT performance across conditions showed that either static and dynamic postural balance were not correlated with MOT performance. However, there were positive correlations between sports experience and MOT scores in the high-stability (r = 0.414, p = 0.013) and medium-stability (r = 0.365, p = 0.031) conditions (Figure 3).

Discussion

We examined the effects of manipulating postural stability on the ability to track moving objects in team sports players and sedentary individuals. Our main findings are that, when compared to sedentary individuals, team sports players showed better MOT scores for the high-stability and medium-stability conditions whereas no between-groups differences were reached in the more unstable conditions (low-stability). Also, a negative association was found between MOT performance and the stability level, showing that the ability to track moving targets is dependent on the stability conditions.

Our results are in line with previous studies showing that the ability to track moving targets is of special relevance in dynamic sports, and thus, expertise from the sport domain characterized by dynamically changing, high-paced and unpredictable scenario may transfer to a more general perceptual-cognitive domain (i.e., MOT) (Faubert 2013; Harris et al. 2020; Howard et al. 2018; Jin et al. 2020; Qiu et al. 2018). Electrophysiological evidence suggests that the effects of regular sport training cause improvements in the sensory stage of information processing (Zwierko et al. 2014), as well as the decision making stage (Sharhidd Taliep et al. 2008). Specifically, Qiu et al. (2019) reported that the neural efficiency of better MOT performance in team sport athletes is associated with bidirectional reductions in cortical activation and deactivation. In fact, these authors found that during the execution of a MOT task, athletes demonstrated less activation in attention-related brain areas and less deactivation in the medial superior frontal gyrus in comparison to non-athletes. Taken together, the results of this
study corroborate that team sports players have a greater ability to track moving targets than individuals who do not regularly practice physical activity.

Our findings suggest that the advantage of athletes over non-athletes in MOT scores may result mainly from perceptual-cognitive expertise and enhanced ability to perception-action coupling, rather than a better postural control. Somewhat surprisingly, the initial scores of dynamic overall stability index indicated non-statistically significant differences between groups, with the magnitude of the differences being negligible to small (Cohen’s d ≤ 0.240). Although, it is widely accepted that postural performance is improved after regular sport activity (Reynard et al. 2019), it is also known that in experienced athletes the postural balance adaptation is very specific to the context of the sport practice, therefore an effect of its transfer to non-specific contexts is modest or inexistent (Paillard 2017). Moreover, morphological parameters of athletes, such is a higher body height, may also have some influence on the postural stability test results. Indeed, body height is recognized as the anthropometric variable with greater influence on postural balance (Alonso et al. 2012), which may partially explain the current results (p-value = 0.099 for the height differences between groups).

Despite the differences in MOT performance between team sports players and sedentary individuals, the changes in MOT scores under increasing postural instability was similar in both experimental groups. In other words, the ability to track moving objects was modulated as a function of postural stability regardless of sport experience. Given the complexity of the task used (i.e., MOT in unstable conditions) in this investigation, the integration of multiple sensory inputs and the coordination of multiple motor outputs is required. The results obtained may be explained by the uncoupling of the perceptual-cognitive and motor systems as result of the disturbance caused by compromising postural balance (Vidal & Lacquaniti 2021). Moreover, in challenging spatiotemporal conditions, attention narrows to goal-directed orientation (i.e. objects' tracking), limiting the cognitive/motor processing linked to keep balance on an unstable platform (Abernethy 1993). This "competition" for attention negatively affects the motor control system, resulting in a dysfunction of the perceptual-cognitive and motor flow integrity (Tenenbaum & Land 2009). Of note, the cognition-action interaction in the domain of visual attention involves arousal processes (Davranche & Audiffren 2004), but also, inhibitory control processes play a role in this activity (Tiego et al. 2018). Recently, Park et al. (2021) examined the impact of
performing physical effort (handgrip exertion) at two intensity levels on visual search. They found a faster behavioral performance with physical effort due to the arousing effects of handgrip exertion, however, the most physically demanding condition caused a heightened interference from the singleton distractor and impaired cognitive performance as consequence of the reduced inhibitory control. Moreover, perceptual-cognitive skills seem to be highly dependent on the specific context of assessment, as corroborated by the manipulation of the stability conditions in the current study.

It is also plausible to hypothesize that changes in MOT performance results during the increasing instability of the platform were caused by oculomotor system disturbances. During the execution of the MOT task, the observer is required to maintain its fixation, specifically when the center-looking strategy (attending to all the targets as a group) is used (Fehd & Seiffert 2008), which consequently causes the inhibition of eye movements (Howe et al. 2009). On the contrary, postural balance in dynamic conditions is controlled by the use of saccadic eye movements or smooth pursuit movements which, in contrary to fixation, attenuate postural sway (Rodrigues et al. 2015; Zwierko et al. 2020). The issue of oculomotor coordination when performing tasks with concomitant demands of different nature worth being investigated. Future research should try to determine the eye movement strategies that lead to successful tracking of moving objects in unstable conditions.

The current results provide novel insights into the relationship between the ability to track multiple moving targets and the level of postural stability. However this study is not exempt of limitations and they must be acknowledged. First, our experimental sample was formed by athletes from three sport disciplines (i.e., soccer, basketball, and handball). There is scientific evidence that the ability of attentional control in MOT tasks varies across sport disciplines (Harris et al. 2020), and even across representatives of the same sport discipline as an effect of playing position on the court (Mangine et al. 2014; Martín et al. 2017). Second, previous studies have shown a gender-effect on the ability to track multiple objects (Roudaia & Faubert 2017) and thus, the level of association between the MOT task and dynamic postural stability could differ between men and women. Therefore, our results need to be cautiously interpreted in this regard (i.e., sport discipline/expertise and gender). Third, while the current findings support the potential utility of including MOT for team sport training, further studies
examining the relationship between MOT performance in ecological contexts (e.g., under dynamic conditions) and game-related performance are needed.

Conclusions

Our data exhibit that team sports players have a better ability to track multiple moving targets under different levels of postural stability than sedentary individuals. Based on the present findings, it seems reasonable to state that expertise in team sports training, integrating the perceptual-cognitive and movement processes, is transferred to non-specific sport domains. The ability to track moving targets is sensitive to the postural stability level, with the disturbance of postural stability having a negative effect on MOT performance. These findings provide novel insights into the link between individual’s ability to track multiple moving objects and postural control in team sports players and sedentary individuals.

References

Abernethy B. 1993. Searching for the minimal essential information for skilled perception and action. Psychological Research 55:131-138. 10.1007/BF00419644

Alonso AC, Luna NM, Mochizuki L, Barbieri F, Santos S, and Greve JM. 2012. The influence of anthropometric factors on postural balance: the relationship between body composition and posturographic measurements in young adults. Clinics (Sao Paulo) 67:1433-1441. 10.6061/clinics/2012(12)14

Ashford M, Abraham A, and Poolton J. 2021. Understanding a Player’s Decision-Making Process in Team Sports: A Systematic Review of Empirical Evidence. Sports 9:65.

Bishop DJ, and Girard O. 2013. Determinants of team-sport performance: implications for altitude training by team-sport athletes. Br J Sports Med 47 Suppl 1:i17-21. 10.1136/bjsports-2013-092950

Cohen J. 1988. Statistical Power Analysis for the Behavioral Sciences. New York, NY: Routledge Academic.
Davids K, Kingsbury D, Bennett S, and Handford C. 2001. Information--movement coupling: implications for the organization of research and practice during acquisition of self-paced extrinsic timing skills. J Sports Sci 19:117-127. 10.1080/026404101300036316

Davranche K, and Audiffren M. 2004. Facilitating effects of exercise on information processing. J Sports Sci 22:419-428. 10.1080/02640410410001675289

Farrow D, and Abernethy B. 2003. Do expertise and the degree of perception-action coupling affect natural anticipatory performance? Perception 32:1127-1139. 10.1068/p3323

Faubert J. 2013. Professional athletes have extraordinary skills for rapidly learning complex and neutral dynamic visual scenes. Sci Rep 3:1154. 10.1038/srep01154

Fehd HM, and Seiffert AE. 2008. Eye movements during multiple object tracking: where do participants look? Cognition 108:201-209. 10.1016/j.cognition.2007.11.008

Fleddermann MT, Heppe H, and Zentgraf K. 2019. Off-Court Generic Perceptual-Cognitive Training in Elite Volleyball Athletes: Task-Specific Effects and Levels of Transfer. Front Psychol 10:1599. 10.3389/fpsyg.2019.01599

Fransen J, Lovell TW, Bennett KJ, Deprez D, Deconinck FJ, Lenoir M, and Coutts AJ. 2017. The Influence of Restricted Visual Feedback on Dribbling Performance in Youth Soccer Players. Motor Control 21:158-167. 10.1123/mc.2015-0059

Hopkins WG, Marshall SW, Batterham AM, and Hanin J. 2009. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3-13. 10.1249/MSS.0b013e31818cb278

Harris DJ, Wilson MR, Crowe EM, and Vine SJ. 2020. Examining the roles of working memory and visual attention in multiple object tracking expertise. Cognitive processing 21:209-222. 10.1007/s10339-020-00954-y

Howard CJ, Uttley J, and Andrews S. 2018. Team ball sport participation is associated with performance in two sustained visual attention tasks: Position monitoring and target identification in rapid serial visual presentation streams. Prog Brain Res 240:53-69. 10.1016/bs.pbr.2018.09.001

Howe PD, Horowitz TS, Morocz IA, Wolfe J, and Livingstone MS. 2009. Using fMRI to distinguish components of the multiple object tracking task. Journal of vision 9:1-11. 10.1167/9.4.10
Jin P, Li X, Ma B, Guo H, Zhang Z, and Mao L. 2020. Dynamic visual attention characteristics and their relationship to match performance in skilled basketball players. PeerJ 8:e9803. 10.7717/peerj.9803

Mackenzie AK, Vernon ML, Cox PR, Crundall D, Daly RC, Guest D, Muhl-Richardson A, and Howard CJ. 2021. The Multiple Object Avoidance (MOA) task measures attention for action: Evidence from driving and sport. Behav Res Methods. 10.3758/s13428-021-01679-2

Mangine GT, Hoffman JR, Wells AJ, Gonzalez AM, Rogowski JP, Townsend JR, Jajtner AR, Beyer KS, Bohner JD, Pruna GJ, Fragala MS, and Stout JR. 2014. Visual tracking speed is related to basketball-specific measures of performance in NBA players. J Strength Cond Res 28:2406-2414. 10.1519/JSC.0000000000000550

Marsh DW, Richard LA, Verre AB, and Myers J. 2010. Relationships among balance, visual search, and lacrosse-shot accuracy. J Strength Cond Res 24:1507-1514. 10.1519/JSC.0b013e3181d8e6ed

Martín A, Sfer AM, D’Urso Villar MA, and Barraza JF. 2017. Position Affects Performance in Multiple-Object Tracking in Rugby Union Players. Frontiers in Psychology 8. 10.3389/fpsyg.2017.01494

Paillard T. 2017. Plasticity of the postural function to sport and/or motor experience. Neuroscience & Biobehavioral Reviews 72:129-152. https://doi.org/10.1016/j.neubiorev.2016.11.015

Paillard T, and Noé F. 2015. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects. BioMed Research International 2015:891390. 10.1155/2015/891390

Park HB, Ahn S, and Zhang W. 2021. Visual search under physical effort is faster but more vulnerable to distractor interference. Cogn Res Princ Implic 6:17. 10.1186/s41235-021-00283-4

Qiu F, Pi Y, Liu K, Li X, Zhang J, and Wu Y. 2018. Influence of sports expertise level on attention in multiple object tracking. PeerJ 6:e5732. 10.7717/peerj.5732

Qiu F, Pi Y, Liu K, Zhu H, Li X, Zhang J, and Wu Y. 2019. Neural efficiency in basketball players is associated with bidirectional reductions in cortical activation and deactivation
during multiple-object tracking task performance. Biol Psychol 144:28-36.

10.1016/j.biopsycho.2019.03.008

Reynard F, Christe D, and Terrier P. 2019. Postural control in healthy adults: Determinants of trunk sway assessed with a chest-worn accelerometer in 12 quiet standing tasks. PLoS One 14:e0211051. 10.1371/journal.pone.0211051

Roca A, Ford PR, McRobert AP, and Mark Williams A. 2011. Identifying the processes underpinning anticipation and decision-making in a dynamic time-constrained task. Cogn Process 12:301-310. 10.1007/s10339-011-0392-1

Roca A, and Williams AM. 2016. Expertise and the Interaction between Different Perceptual-Cognitive Skills: Implications for Testing and Training. Frontiers in Psychology 7. 10.3389/fpsyg.2016.00792

Rodrigues ST, Polastri PF, Carvalho JC, Barela JA, Moraes R, and Barbieri FA. 2015. Saccadic and smooth pursuit eye movements attenuate postural sway similarly. Neurosci Lett 584:292-295. 10.1016/j.neulet.2014.10.045

Roudaia E, and Faubert J. 2017. Different effects of aging and gender on the temporal resolution in attentional tracking. J Vis 17:1. 10.1167/17.11.1

Sharhidd Taliep M, St Clair Gibson A, Gray J, van der Merwe L, Vaughan CL, Noakes TD, Kellaway LA, and John LR. 2008. Event-related potentials, reaction time, and response selection of skilled and less-skilled cricket batsmen. Perception 37:96-105. 10.1068/p5620

Spiteri T, McIntyre F, Specos C, and Myszka S. 2018. Cognitive Training for Agility: The Integration Between Perception and Action. Strength & Conditioning Journal 40:39-46. 10.1519/ssc.0000000000000310

Stirling L, Eke C, and Cain SM. 2018. Examination of the perceived agility and balance during a reactive agility task. PLoS One 13:e0198875. 10.1371/journal.pone.0198875

Tenenbaum G, and Land WM. 2009. Mental representations as an underlying mechanism for human performance. Prog Brain Res 174:251-266. 10.1016/S0079-6123(09)01320-X

Tiego J, Testa R, Bellgrove MA, Pantelis C, and Whittle S. 2018. A Hierarchical Model of Inhibitory Control. Frontiers in Psychology 9. 10.3389/fpsyg.2018.01339

Vidal P-P, and Lacquaniti F. 2021. Perceptual-motor styles. Experimental Brain Research 239:1359-1380. 10.1007/s00221-021-06049-0
Zwierko M, Lesiakowski P, and Zwierko T. 2020. Postural Control during Progressively Increased Balance-Task Difficulty in Athletes with Unilateral Transfemoral Amputation: Effect of Ocular Mobility and Visuomotor Processing. Int J Environ Res Public Health 17. 10.3390/ijerph17176242

Zwierko T, Lubinski W, Lesiakowski P, Steciuk H, Piasecki L, and Krzepota J. 2014. Does athletic training in volleyball modulate the components of visual evoked potentials? A preliminary investigation. J Sports Sci 32:1519-1528. 10.1080/02640414.2014.903334

Figure legends

Figure 1. A graphical illustration of the testing procedure A) starting position where the participant was standing on an unstable platform working at the training module of the Biodex Balance System SD placed 1 m in front of the television monitor; B) three levels of platform stability: high (level 12), medium (level 8) and low (level 4); C) four stages of the MOT task, i.e. presentation stage where three out of eight targets (balls) were temporarily (2 s) highlighted on green color; movement stage where the targets were at the same color (black) and all moved for 10 seconds crossing and bouncing each other; identification stage where the targets were frozen and marked with numbers, and the participant had to identify by giving three numbers of balls originally highlighted in the presentation stage; feedback stage where the participant was given information of the correct targets.

Figure 2. Boxplot of the effect of stability conditions on multiple objects tracking performance in a group of team sports players (in red) and sedentary individuals (in blue). Statistically significant differences are depicted in the figure (Holm-Bonferroni corrected p-value < 0.05), and the magnitude of the differences are reported by Cohen’s d. The box plots represent 75th, 50th and 25th centiles. Horizontal lines and circles into the box represent median and mean values, respectively. The whiskers show the standard deviation.

Figure 3. Heat map showing separate linear regression analyses between the different variables assessed in this study. *p < 0.05, **p < 0.01, ***p < 0.001
Figure 1

A graphical illustration of the testing procedure

A) starting position where the participant was standing on an unstable platform working at the training module of the Biodex Balance System SD placed 1 m in front of the television monitor; B) three levels of platform stability: high (level 12), medium (level 8) and low (level 4); C) four stages of the MOT task, i.e. presentation stage where three out of eight targets (balls) were temporarily (2 s) highlighted on green color; movement stage where the targets were at the same color (black) and all moved for 10 seconds crossing and bouncing each other; identification stage where the targets were frozen and marked with numbers, and the participant had to identify by giving three numbers of balls originally highlighted in the presentation stage; feedback stage where the participant was given information of the correct targets.
Figure 2

Boxplot of the effect of stability conditions on multiple objects tracking performance in a group of team sports players (in red) and sedentary individuals (in blue).

Statistically significant differences are depicted in the figure (Holm-Bonferroni corrected p-value < 0.05), and the magnitude of the differences are reported by Cohen’s d. The box plots represent 75th, 50th and 25th centiles. Horizontal lines and circles into the box represent median and mean values, respectively. The whiskers show the standard deviation.
MOT performance (speed movement, cm/sec)

- High-stability
- Medium-stability
- Low-stability

- Team sports players
- Sedentary individuals

Statistical analysis:

- $p = 0.005$, $d = 0.54$
- $p < 0.001$, $d = 0.67$
- $p = 0.008$, $d = 0.96$
- $p = 0.009$, $d = 0.95$
Figure 3

Heat map showing separate linear regression analyses between the different variables assessed in this study.

*p < 0.05, ** p < 0.01, *** p < 0.001
Table 1 (on next page)

Descriptive (mean ± standard deviation) characteristics of the experimental sample, and its statistical comparison between groups.
Table 1. Descriptive (mean ± standard deviation) characteristics of the experimental sample, and its statistical comparison between groups.

	Team sports players (n =19)	Sedentary individuals (n = 16)	p-value
Age (years)	20.7 ± 2.6	19.7 ± 2.0	0.222
Height (cm)	188.1 ± 8.0	183.9 ± 6.2	0.099
Weight (Kg)	82.2 ± 12.0	78.3 ± 9.5	0.301
Table 2 (on next page)

Descriptive and statistical values for static and dynamic OSI, APSI, and MLSI in the groups of team sports players and sedentary individuals.

Note: OSI- overall stability index, APSI- anterior-posterior stability index, MLSI- medial-lateral stability index
Table 2. Descriptive and statistical values for static and dynamic OSI, APSI, and MLSI in the groups of team sports players and sedentary individuals.

Postural balance	Stability index	Team sports players	Sedentary individuals	p-value (Cohen’s d)
Static	OSI (°)	0.311 ± 0.221	0.369 ± 0.260	0.479 (0.243)
	APSI (°)	0.216 ± 0.201	0.275 ± 0.198	0.388 (0.297)
	MLSI (°)	0.153 ± 0.077	0.163 ± 0.182	0.831 (0.073)
Dynamic	OSI (°)	0.884 ± 0.257	0.956 ± 0.346	0.485 (0.240)
	APSI (°)	0.658 ± 0.295	0.669 ± 0.336	0.920 (0.035)
	MLSI (°)	0.526 ± 0.268	0.569 ± 0.265	0.642 (0.159)

Note: OSI- overall stability index, APSI- anterior-posterior stability index, MLSI- medial-lateral stability index