Maximizing the Probability of Fixation in the Positional Voter Model

Petros Petsinis, Andreas Pavlogiannis, Panagiotis Karras

Department of Computer Science
Aarhus University

February 11, 2023
Diffusion processes

Natural spread through networks

- propagation of information in social networks
- spread of virus in human population
- spread of mutation in biological networks
Diffusion processes

Natural spread through networks

- propagation of information in social networks
- spread of virus in human population
- spread of mutation in biological networks

Type of Diffusion process

- Progressive:
 - independent cascade,
 - linear threshold,
 - triggering,...

- Non-Progressive:
 - moran,
 - voter,
 - SIR,
 - SIS,...

This paper:
Non-Progressive model that describes the spread of mutation/novel-trait.
Diffusion processes

Natural spread through networks
- propagation of information in social networks
- spread of virus in human population
- spread of mutation in biological networks

Type of Diffusion process
1. Progressive:
 - independent cascade,
 - linear threshold,
 - triggering,...
Diffusion processes

Natural spread through networks
- propagation of information in social networks
- spread of virus in human population
- **spread of mutation** in biological networks

Type of Diffusion process
1. **Progressive:**
 - independent cascade,
 - linear threshold,
 - triggering,...
2. **Non-Progressive:**
 - moran, voter, SIR, SIS,...
Diffusion processes

Natural spread through networks

- propagation of information in social networks
- spread of virus in human population
- **spread of mutation** in biological networks

Type of Diffusion process

1. **Progressive:**
 - independent cascade,
 - linear threshold,
 - triggering,...

2. **Non-Progressive:**
 - moran, voter, SIR,
 - SIS,...

This paper: Non-Progressive model that describes the spread of mutation/novel-trait.
Positional Voter Model - This Work

Graph: Population of \(n \) agents spread over nodes of graph \(G = (V, E, w) \).
Graph: Population of n agents spread over nodes of graph $G = (V, E, w)$.

Agents:
- Mutants
- Residents

Nodes:
- Biased
- Unbiased

Example for $\delta=2$
Graph: Population of \(n \) agents spread over nodes of graph \(G = (V, E, w) \).

Agents:
- Mutants
- Residents

Nodes:
- Biased
- Unbiased

Process:
1. Initially residents occupy all nodes.
2. At \(t = 0 \): random mutation in one agent.
3. For \(t > 0 \): repeat death-Birth steps:
 - Death: Pick a random node \(v \) to update.
 - Birth: Pick an in-neighbor node \(u \) of \(v \) proportionally to its fitness \(f(u|v) \) and edge-weight \(w(u,v) \) to transfer its trait on \(v \).

Example for \(\delta = 2 \):
Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G = (V, E, w)$.

Agents:
- **Mutants**
- **Residents**

Nodes:
- **Biased**
- **Unbiased**

Process:
\Rightarrow Initially **residents** occupy all nodes.

Example for $\delta=2$

Petros Petsinis, Andreas Pavlogiannis, Panagiotis Karras

Department of Computer Science, AU

Maximizing the Probability of Fixation in the Positional Voter Model
Graph: Population of n agents spread over nodes of graph $G = (V, E, w)$.

Agents:
- Mutants
- Residents

Nodes:
- Biased
- Unbiased

Process:
⇒ Initially residents occupy all nodes.
⇒ $t = 0$: random mutation in one agent.

Example for $\delta=2$
Graph: Population of n agents spread over nodes of graph $G = (V, E, w)$.

Agents:
- Mutants
- Residents

Nodes:
- Biased
- Unbiased

Process:
- Initially residents occupy all nodes.
- $t = 0$: random mutation in one agent.
- $t > 0$: repeat death-Birth steps:
 1. Death: Pick random node v to update.
 2. Birth: Pick an in-neighbor node u of v proportionally to its fitness $f(u|v)$ and edge-weight $w(u, v)$ to transfer its trait on v.

Example for $\delta=2$
Graph: Population of \(n \) agents spread over nodes of graph \(G = (V, E, w) \).

Agents:
- **Mutants**
- **Residents**

Nodes:
- **Biased**
- **Unbiased**

Process:
- Initially **residents** occupy all nodes.
- \(t = 0 \): random **mutation** in one agent.
- \(t > 0 \): repeat death-Birth steps:
 1. **death**: Pick random node \(v \) to update.

Example for \(\delta = 2 \)
Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G = (V, E, w)$.

Agents:
- Mutants
- Residents

Nodes:
- Biased
- Unbiased

Fitness:

| death - Birth | $f(u|v)$ |
|--------------|---------|
| v to u | $1+\delta$ |
| v to u | 1 |
| v to u | 1 |
| v to u | 1 |

Process:
- Initially residents occupy all nodes.
- $t = 0$: random mutation in one agent.
- $t > 0$: repeat death-Birth steps:
 1. death: Pick random node v to update.
 2. Birth: Pick an in-neighbor node u of v proportionally to its fitness $f(u|v)$ and edge-weight $w(u, v)$ to transfer its trait on v.

Example for $\delta=2$
Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G = (V, E, w)$.

Agents:
- **Mutants**
- **Residents**

Nodes:
- **Biased**
- **Unbiased**

Fitness:

| death - Birth | $f(u|v)$ |
|---------------|---------|
| v to u | $1+\delta$ |
| v to u | 1 |
| v to u | 1 |
| v to u | 1 |

Process:
- Initially **residents** occupy all nodes.
- $t = 0$: random **mutation** in one agent.
- $t > 0$: repeat **death-Birth** steps:
 1. **death**: Pick random node v to update.
 2. **Birth**: Pick an in-neighbor node u of v proportionally to its **fitness** $f(u|v)$ and edge-weight $w(u,v)$ to transfer its trait on v.

Example for $\delta=2$

Petros Petsinis, Andreas Pavlogiannis, Panagiotis Karras

Department of Computer Science, AU

Maximizing the Probability of Fixation in the Positional Voter Model
Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G = (V, E, w)$.

Agents:
- Mutants
- Residents

Nodes:
- Biased
- Unbiased

Fitness:

| death - Birth | $f(u|v)$ |
|---------------|----------|
| v→u | $1+\delta$ |
| v→u | 1 |
| v→u | 1 |
| v→u | 1 |

Process:
- Initially residents occupy all nodes.
- $t = 0$: random mutation in one agent.
- $t > 0$: repeat death-Birth steps:
 1. death: Pick random node v to update.
 2. Birth: Pick an in-neighbor node u of v proportionally to its fitness $f(u|v)$ and edge-weight $w(u, v) \left(\frac{f(u|v)w(u,v)}{\sum_{k} f(k|v)w(k,v)} \right)$ to transfer its trait on v.

Example for $\delta=2$
Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G = (V, E, w)$.

Agents:

- Mutants
- Residents

Nodes:

- Biased
- Unbiased

Fitness:

| death - Birth | $f(u|v)$ |
|---------------|---------|
| $v \rightarrow u$ | $1+\delta$ |
| $v \rightarrow u$ | 1 |
| $v \rightarrow u$ | 1 |
| $v \rightarrow u$ | 1 |

Process:

⇒ Initially residents occupy all nodes.
⇒ $t = 0$: random mutation in one agent.
⇒ $t > 0$: repeat death-Birth steps:

1. death: Pick random node v to update.
2. Birth: Pick an in-neighbor node u of v proportionally to its fitness $f(u|v)$ and edge-weight $w(u, v)$

$$
\left(\frac{f(u|v) w(u,v)}{\sum_k f(k|v) w(k,v)} \right)
$$
to transfer its trait on v.

Example for $\delta=2$

Petros Petsinis, Andreas Pavlogiannis, Panagiotis Karras
Department of Computer Science, AU
Maximizing the Probability of Fixation in the Positional Voter Model
Positional Voter Model - This Work

Graph: Population of \(n \) agents spread over nodes of graph \(G = (V, E, w) \).

Agents:
- Mutants
- Residents

Nodes:
- Biased
- Unbiased

Fitness:
| death - Birth | \(f(u|v) \) |
|---------------|-------------|
| \(v \) \rightarrow \(u \) | \(1+\delta \) |
| \(v \) \rightarrow \(u \) | 1 |
| \(v \) \rightarrow \(u \) | 1 |
| \(v \) \rightarrow \(u \) | 1 |

Process:
\(\Rightarrow \) Initially residents occupy all nodes.
\(\Rightarrow \) \(t = 0 \): random mutation in one agent.
\(\Rightarrow \) \(t > 0 \): repeat death-Birth steps:

1. death: Pick random node \(v \) to update.
2. Birth: Pick an in-neighbor node \(u \) of \(v \) proportionally to its fitness \(f(u|v) \) and edge-weight \(w(u,v) \) to transfer its trait on \(v \).

Example for \(\delta = 2 \):
Fixation Probability

Setting Parameters: graph G, set of biased nodes S, bias δ.

Fixation Probability: The probability $f_p(G^S, \delta)$ that a random mutation leads to fixation.
Positional vs. Standard Voter Model [Liggett 1975]

\[S = V \implies \text{Positional} = \text{Standard} \]
Optimization Problem: Given a graph G and a budget k, which k nodes should we bias with δ to maximize the fixation probability?

$$S^* = \arg\max_{S, |S| = k} \text{fp}(G^S, \delta)$$
Fixation Maximization

Optimization Problem: Given a graph G and a budget k, which k nodes should we bias with δ to maximize the fixation probability?

$$S^* = \arg \max_{S, |S|=k} fp(G^S, \delta)$$

Results Overview:

1. **FPRAS:** for $fp(G^S, \delta)$ in undirected graphs.
2. Monotone and non-Submodular in general.
3. NP-hardness of $S^* = \arg \max_{S, |S|=k} fp(G^S, \delta)$.
4. Approximations for undirected graphs with self-loops and $\delta \to \infty$.
5. Optimal Solution in polynomial time for symmetric graphs (i.e. $w(u, v) = w(v, u)$) as $\delta \to 0$.

Petros Petsinis, Andreas Pavlogiannis, Panagiotis Karras

Department of Computer Science, AU

Maximizing the Probability of Fixation in the Positional Voter Model

6 / 14
Fixation Maximization

Optimization Problem: Given a graph G and a budget k, which k nodes should we bias with δ to maximize the fixation probability?

$$S^* = \arg \max_{S, |S|=k} \text{fp}(G^S, \delta)$$

Results Overview:

1. **FPRAS**: for $\text{fp}(G^S, \delta)$ in undirected graphs.

![Graph with fixation probability curves showing the effect of bias δ on fixation probability.](image)
Fixation Maximization

Optimization Problem: Given a graph G and a budget k, which k nodes should we bias with δ to maximize the fixation probability?

$$S^* = \arg\max_{S, |S| = k} \text{fp}(G^S, \delta)$$

Results Overview:

1. FPRAS: for $\text{fp}(G^S, \delta)$ in undirected graphs.
2. Monotone and non-Submodular in general.
Fixation Maximization

Optimization Problem: Given a graph G and a budget k, which k nodes should we bias with δ to maximize the fixation probability?

$$S^* = \arg\max_{S, |S| = k} fp(G^S, \delta)$$

Results Overview:

1. **FPRAS**: for $fp(G^S, \delta)$ in undirected graphs.
2. **Monotone and non-Submodular** in general.
3. **NP-hardness** of $S^* = \arg\max_{S, |S| = k} fp(G^S, \delta)$.

Petros Petsinis, Andreas Pavlogiannis, Panagiotis Karras

Department of Computer Science, AU

Maximizing the Probability of Fixation in the Positional Voter Model
Optimization Problem: Given a graph G and a budget k, which k nodes should we bias with δ to maximize the fixation probability?

$$S^* = \arg \max_{S, |S|=k} fp(G^S, \delta)$$

Results Overview:

1. **FPRAS**: for $fp(G^S, \delta)$ in undirected graphs.
2. **Monotone and non-Submodular** in general.
3. **NP-hardness** of
 $$S^* = \arg \max_{S, |S|=k} fp(G^S, \delta).$$
4. **Approximations** for undirected graphs with self-loops and $\delta \to \infty$.
Optimization Problem: Given a graph G and a budget k, which k nodes should we bias with δ to maximize the fixation probability?

$$S^* = \arg \max_{S, |S|=k} \mathbf{fp}(G^S, \delta)$$

Results Overview:

1. **FPRAS**: for $\mathbf{fp}(G^S, \delta)$ in undirected graphs.

2. **Monotone and non-Submodular** in general.

3. **NP-hardness** of
 $$S^* = \arg \max_{S, |S|=k} \mathbf{fp}(G^S, \delta).$$

4. **Approximations** for undirected graphs with self-loops and $\delta \to \infty$.

5. **Optimal Solution** in polynomial time for symmetric graphs (i.e. $w(u, v) = w(v, u)$) as $\delta \to 0$.

\[\text{Fixation Probability} \]

\[\text{Bias } \delta \to 0 \quad \text{Bias } \delta \to \infty\]
The complexity of computing $\text{fp}(G^S, \delta)$ is OPEN even when $S = V$.

Lemma 1 - Expected Time

For undirected graphs, the expected time to a homogeneous state (all nodes are either mutants or residents) is $O(n^5)$.

Approximations of $\text{fp}(G^S, \delta)$ via monte-carlo simulations in P-time.
Lemma 2 - Monotonicity

Given biased sets S_1, S_2 with $S_1 \subseteq S_2$ and $\delta_1, \delta_2 \geq 0$ with $\delta_1 \leq \delta_2$, we have:

$$fp(G^{S_1}, \delta_1) \leq fp(G^{S_2}, \delta_2)$$

| death - Birth | $f(u|v)$ |
|----------------|---------|
| v | u | 1+\delta |
| v | u | 1 |
| v | u | 1 |

Lemma 3 - Non-Submodularity

- $fp(G^S, \delta)$ is not submodular.
- $fp^\infty(G^S)$ is not submodular in general.

Submodular function: $\forall S_1, S_2 \subseteq V \Rightarrow f(S_1) + f(S_2) \geq f(S_1 \cup S_2) + f(S_1 \cap S_2)$
Key Lemma

Lemma 4 - Self-looped Graphs

In undirected graphs with self-loops, if \(\delta \rightarrow \infty \), mutant agents in biased nodes are deathless; reproduce to themselves with probability 1.

If trajectory \(X_t = (X_0, X_1, ..., X_t) \) hits \(S \), mutants fixate.

\[
\begin{array}{|c|c|}
\hline
\text{death - Birth} & f(u|v) \\
\hline
\rightarrow u & 1 + \delta \\
\rightarrow v & 1 \\
\rightarrow u & 1 \\
\rightarrow v & 1 \\
\hline
\end{array}
\]
Theorem 5 - NP-hard

Maximizing $fp(G^S, \delta)$ with $|S| = k$, is NP-hard.
Theorem 5 - NP-hard

Maximizing $fp(G_S^S, \delta)$ with $|S| = k$, is NP-hard.

Proof.

Reduction from Vertex Cover in regular graphs, which is NP-hard. On undirected d-regular graphs with self-loops:

$$fp^\infty(G_S^S) = \frac{|S| + d}{n + d} \iff S \text{ is a vertex-cover}.$$

$$fp^\infty(G_S^S) = \frac{2}{4} + \frac{3}{1+3} = \frac{3.5}{4}$$

$$fp^\infty(G_S^S) < \frac{3.5}{4}$$
Lemma 6 - Submodularity

For undirected graphs with self-loops \(f_{p^\infty}^S(G_S) \) is submodular;
Lemma 6 - Submodularity

For undirected graphs with self-loops $f^\infty(p)$ is submodular.

Proof.

Submodular function: $\forall S_1, S_2 \subseteq V \Rightarrow f(S_1) + f(S_2) \geq f(S_1 \cup S_2) + f(S_1 \cap S_2)$

X_t hits $S \implies$ mutants fixate

$fp^\infty(G^{S_1}) + fp^\infty(G^{S_2}) \geq fp^\infty(G^{S_1 \cup S_2}) + fp^\infty(G^{S_1 \cap S_2})$
Lemma 6 - Submodularity

For undirected graphs with self-loops $f_{p^\infty}(G^S)$ is submodular;

Proof.

Submodular function: $\forall S_1, S_2 \subseteq V \Rightarrow f(S_1) + f(S_2) \geq f(S_1 \cup S_2) + f(S_1 \cap S_2)$

X_t hits $S \implies$ mutants fixate

$$f_{p^\infty}(G^{S_1}) + f_{p^\infty}(G^{S_2}) \geq f_{p^\infty}(G^{S_1 \cup S_2}) + f_{p^\infty}(G^{S_1 \cap S_2})$$
Lemma 6 - Submodularity

For undirected graphs with self-loops \(fp^\infty (G^S) \) is submodular;

Proof.

Submodular function: \(\forall S_1, S_2 \subseteq V \Rightarrow f(S_1) + f(S_2) \geq f(S_1 \cup S_2) + f(S_1 \cap S_2) \)

\(X_t \) hits \(S \) \(\implies \) mutants fixate

\[
\frac{fp^\infty (G^{S_1})}{fp^\infty (G^{S_2})} \geq \frac{fp^\infty (G^{S_1 \cup S_2})}{fp^\infty (G^{S_1 \cap S_2})}
\]
Lemma 6 - Submodularity

For undirected graphs with self-loops \(f_p^\infty(G^S) \) is submodular;

Proof.

Submodular function: \(\forall S_1, S_2 \subseteq V \Rightarrow f(S_1) + f(S_2) \geq f(S_1 \cup S_2) + f(S_1 \cap S_2) \)

\[X_t \text{ hits } S \implies \text{mutants fixate} \]

\[
\frac{f_p^\infty(G^{S_1}) + f_p^\infty(G^{S_2})}{\geq} \frac{f_p^\infty(G^{S_1 \cup S_2}) + f_p^\infty(G^{S_1 \cap S_2})}{\ }
\]
Corollary - Approximations

In undirected graphs with self-loops, $f_{p}^{\infty}(G^{S})$ is:

- **Monotone**
- **Submodular**

$(1-1/e)$ greedy approximation algorithm [Nemhauser1978]
Theorem 7 - Optimal Solution

For symmetric graphs \((w(u, v) = w(v, u))\), when \(\delta \to 0\), finding \(S^* = \arg \max_{S, |S| = k} fp(G^S, \delta)\) can be solved in P-time.
Theorem 7 - Optimal Solution

For symmetric graphs \((w(u, v) = w(v, u))\), when \(\delta \to 0\), finding \(S^* = \arg \max_{S, |S| = k} \text{fp}(G^S, \delta)\) can be solved in P-time.

Proof.

Using the Taylor expansion of \(\text{fp}(G^S, \delta)\) around \(\delta = 0\), that is:

\[
\frac{\text{fp}(G^S, 0)}{1/n} + \delta \cdot \frac{\text{fp}'(G^S, 0)}{\text{Maximize this}} + O(\delta^2)
\]

By solving a linear system of \(n^2\) unknowns we can find the optimal \(S^* = \arg \max_{S, |S| = k} \text{fp}'(G^S, 0)\).
FPRAS: for $\text{fp}(G^S, \delta)$ in undirected graphs.

2 Monotone and not Submodular in general.

3 NP-hardness of $S^* = \arg \max_{S, |S|=k} \text{fp}(G^S, \delta)$.

4 Approximation Algorithm for undirected graphs with self-loops and $\delta \to \infty$:
 Monotone + Submodular $\to 1 - \frac{1}{e}$ greedy apx. algorithm.

5 Optimal Solution in polynomial time for symmetric graphs (i.e. $w(u, v) = w(v, u)$) as $\delta \to 0$.

Thank you!