Field cress genome mapping: Integrating linkage and comparative maps with cytogenetic analysis for rDNA carrying chromosomes

Zeratsion Abera Desta¹*, Bozena Kolano², Zeeshan Shamim³⁴, Susan J. Armstrong⁴, Monika Rewers⁵, Elwira Sliwinska⁵, Sandeep Kumar Kushwaha¹, Isobel A. P. Parkin⁶, Rodomiro Ortiz¹ & Dirk-Jan de Koning⁷

Field cress (Lepidium campestre L.), despite its potential as a sustainable alternative oilseed plant, has been underutilized, and no prior attempts to characterize the genome at the genetic or molecular cytogenetic level have been conducted. Genetic maps are the foundation for anchoring and orienting annotated genome assemblies and positional cloning of candidate genes. Our principal goal was to construct a genetic map using integrated approaches of genetic, comparative and cytogenetic map analyses. In total, 503 F₂ interspecific hybrid individuals were genotyped using 7,624 single nucleotide polymorphism markers. Comparative analysis demonstrated that ~57% of the sequenced loci in L. campestre were congruent with Arabidopsis thaliana (L.) genome and suggested a novel karyotype, which predates the ancestral crucifer karyotype. Aceto-orcein chromosome staining and fluorescence in situ hybridization (FISH) analyses confirmed that L. campestre, L. heterophyllum Benth. and their hybrids had a chromosome number of 2n = 2x = 16. Flow cytometric analysis revealed that both species possess 2C roughly 0.4 picogram DNA. Integrating linkage and comparative maps with cytogenetic map analyses assigned two linkage groups to their particular chromosomes. Future work could incorporate FISH utilizing A. thaliana mapped BAC clones to allow the chromosomes of field cress to be identified reliably.

The genus Lepidium consisting of ~231 species is one of the largest of 338 genera in the Brassicaceae (Cruciferae or Mustard) family¹. Field cress (Lepidium campestre L.) is a self-pollinated, diploid (2n = 2x = 16) biennial plant originating in Europe¹ and subsequently appearing as an introduced weed in North America. Smith's pepperwort (Lepidium heterophyllum Benth.) is a diploid (2n = 2x = 16) perennial plant, and has relatively lower winter hardiness than L. campestre¹. L. campestre has potential as an oilseed crop³⁴, and could provide an alternative intercrop species with members of the Poaceae family (e.g. barley)³. Following the harvest of the main crop, field cress can be engaged as a catch crop during the off-season to prevent soil nutrient leaching⁶, in turn this alleviates underground environmental pollution. Furthermore, field cress could reduce fertilizer dependency (e.g. nitrogen fertilizer), which maintains the soil quality, thereby mitigating the current and future challenges of climate change. These

¹Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundesvagen 10, Box 101, SE-23053, Alnarp, Sweden. ²Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland. ³Mirpur University of Science and Technology (MUST), Mirpur AJK, Pakistan. ⁴School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom. ⁵Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Kaliskiego Ave. 7, 85-789, Bydgoszcz, Poland. ⁶Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N0X2, Canada. ⁷Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE 75007, Uppsala, Sweden. *email: zeratsion.abera@slu.se
foundational features of the species suggest the possibilities that could arise from domestication of field cress which has yet been underutilized and has been the focus of limited research.

There have been substantial advances in the ability to generate draft genome assemblies for many crop species, as well as in dense genotyping platforms to underpin whole-genome prediction1. However, the importance of genetic mapping and molecular cytogenetics remains undiminished, both in supporting these technologies, and in addressing fundamental biological questions related to genome and karyotype evolution. To date, neither a linkage map nor molecular cytogenetic analysis has ever been developed for L. campestre. Indeed, cytological investigations of Lepidium species have been mainly restricted to chromosome counts4,16. Lepidium like many of the genera in the Brassicaceae family (e.g., Arabidopsis and Cardamine)9,10 has small and poorly differentiated chromosomes that complicate karyotyping efforts. Hence, additional landmarks are required to identify chromosome pairs. The markers most often used are the 5S and 45S rDNA sequences due to their abundance in the genome and their relatively conserved nature11,12.

Meiotic recombination, the reshuffling of genes derived from ancestral gametes during meiosis, allows segregation of parental alleles to be detected in zygote progeny, and hence the inference of order and distance of genes to generate a genetic linkage map that represents a model of the physical chromosomes. Thus, the more meiotic recombination events are captured, the better the resolution of the linkage map15. Successful plant improvement strategies predominantly rely on the distribution of crossovers between homologous chromosomes4,13. Linkage maps are further employed to detect quantitative trait loci (QTL), to anchor and orient annotated genome assemblies, and to locate candidate genes in fine mapping.

The availability of reference sequences in model plants – such as thale cress (Arabidopsis thaliana L.) – sheds contemporary light on the underlying mechanisms of genome architecture evolution. Anchoring linkage maps to the A. thaliana genome uncovered highly conserved genomic regions in Brassica species14,15, indicating that a linkage map could serve as a supplementary toolkit in comparative genomics to translate genomic information between related taxa. Here we analysed with 7,624 single nucleotide polymorphism (SNP) markers the genomes of 501 F2 interspecific hybrid individuals resulting in a map with eight linkage groups (LGs). Integrating the SNP loci of field cress into the Arabidopsis genome revealed a high proportion (~57%) of sequenced loci were found in regions of conserved synteny between species. We further intertwined the linkage and comparative maps with cytogenetic map, and the cooperative actions of these techniques posited the allocation of LGs into their chromosomes.

Towards the plant domestication of a potentially valuable oilseed plant, we describe herein the aims of (i) developing a linkage map and assigning LGs to their chromosomes in L. campestre using integrating techniques of genetic, comparative, and cytogenetic map analyses; (ii) estimating the genome size of L. campestre and L. heterophyllum; (iii) conducting molecular cytogenetic analysis in L. campestre, L. heterophyllum, and their hybrid individuals; and (iv) identifying the ancestral genomic block (GB) structure for L. campestre.

Results and Discussion

Genome size estimation. The 2C DNA content of the 54 L. campestre accessions ranged from 0.394 pg/2C to 0.439 pg/2C, which corresponded to 385 megabase pairs (Mb)/2C and 429 Mb/2C, respectively (Supplementary Table 1, Supplementary Fig. 1). The mean genome sizes of L. campestre and L. heterophyllum were 0.416 pg/2C (407 Mb/2C) and 0.411 pg/2C (402 Mb/2C), respectively. For L. heterophyllum, this is the first report of genome size estimation. Despite differences in their growth habits, there was no significant difference in mean genome size between studied species (ANOVA) $F = 1.918$, degree of freedom [df] = 1, $P = 0.172$. According to the proposed categorization18, L. campestre and L. heterophyllum possess very small genomes (<2.8 pg/2C). A previous report for L. campestre genome size (0.7 pg/2C)19 and other prior estimates for higher ploidy Lepidium species – ranging between 0.66 and 2.08 pg/2C20 – were higher than the estimate established here.

Chromosomal counting and fluorescence in situ hybridization (FISH) analysis. In addition to chromosome counting in L. campestre and L. heterophyllum with a standard acetoorcein chromosome staining method, we performed FISH analysis, and both species including their hybrids had 2n = 2x = 16 chromosomes (Fig. 1a,d–f), in accordance with the published indexes (http://ccdb.tau.ac.il/Angiosperms/Brassicaceae/Lepidium/; http://www.tropicos.org/Project/IPCN). Their karyotypes contained mostly metacentric and sub-metacentric chromosomes, which showed a gradual decrease in their length, except one pair of homologues, which was remarkably longer than the others (Figs 1a,d, 2).

This is the first report of rDNA localization in chromosomes of L. campestre, L. heterophyllum as well as their hybrids. rDNA sequences can be localized by FISH and can provide cytogenetic markers that are useful for the identification of individual chromosomes11,12. Similar to previously described L. africanum (2n = 2x = 16) and many other angiosperms22,23, in all analysed Lepidium samples (Fig. 1a,d–f), we found that 5S and 45S rDNA loci were localized on different chromosomes. Two hybridization signals for 45S rDNA were observed on mitotic metaphase chromosomes of L. campestre and L. heterophyllum (Fig. 1a,d,e). In many angiosperms, 45S rDNA loci were most often found in sub-terminal regions of the short arm of the chromosome25. Such localization of 45S rDNA loci was also reported in other Lepidium species26; however, L. campestre and L. heterophyllum revealed 45S rDNA loci, both on the short and long arm of the same chromosome, in a more proximal location. To delineate the chromosomal localization of the rDNA, mitotic pro-metaphase chromosomes and meiotic (pachytene and metaphase) chromosomes were probed using FISH. The hybridization signals of 45S rDNA seem to cover most of the short arm, but also span to the proximal part of the long arm in the longest chromosome of L. campestre as seen at the pachytene stage, when the chromosomes are paired up and most extended (Figs 1a–c and 2).

The proximal localization of 5S rDNA loci was frequently reported in karyotypes of angiosperms with small chromosomes29. As in previous research of other Lepidium species29, our analysis revealed the 5S rDNA locus in the interstitial position of the short arm of the sub-metacentric chromosomes (Figs 1a,b and 2). In all analysed
field cress accessions, only one 5S rDNA locus was detected, whereas *L. heterophyllum* showed intraspecific polymorphism in 5S rDNA locus number, depending on the accession type, one pair (sample code BP1_1) or two pairs (sample code C66_4) of the loci were recorded (Fig. 1a,d,e; Supplementary Table 2). Such a phenomenon was described in many plant genera. In addition to the epigenetic nature of the specific locus (5S rDNA), various mechanisms have been postulated to account for this state such as a transposon-mediated transposition event or chromosome rearrangements caused by homologous or a non-homologous unequal crossing-over and gene conversion. Taken together, these results may reflect the high levels of micro-evolutionary or epigenetic changes within these taxa. Furthermore, in a hybrid individual (coded as Hy56_1) (Supplementary Table 2) one pair of 45S rDNA and one pair of 5S rDNA loci were detected (Fig. 1f). Interestingly, the karyotypes of all analysed accessions of *Lepidium* – in both species as well as their hybrid – were similar to each other.

Genetic linkage map construction. In total, 503 F₂ interspecific hybrid individuals derived from two F₁ parents (see methods section) were genotyped using 7,624 SNP markers. Segregating SNP loci common to both sub-populations were analysed, and these were combined with the uniquely segregating SNPs from each sub-population. In a combined linkage analysis, 2,016 of the 7,624 SNP markers were scored in 487 individuals. After quality control (see methods section for details), 1,517 SNPs were employed in 482 F₂ individuals to generate a genetic linkage map for *L. campestre* (Fig. 3a; Supplementary Fig. 3). In the final mapping, 1,401 segregating SNP loci were common to both sub-populations, whereas 116 SNP loci were unique to one or other sub-population (Table 1).

The distribution of SNP loci varied in terms of number, density, and distance across LGs. The number of SNPs per LG ranged from the largest LG1 (434) to the smallest LG8 (60) (Table 1). The eight LGs (Fig. 1a, Supplementary Fig. 2) spanned 566.07 centimorgans (cM), with individual LG lengths of 24 cM (LG8) to 115.90 cM (LG7), and a mean density of three SNPs per cM (one SNP per 0.35 cM). The average distance between adjacent SNP loci ranged from 0.18 cM in LG1 to 0.69 cM in LG2, with a mean of 0.42 cM (Table 1). At least one chiasma per LG were captured except for LG8, as this was smaller than 50 cM. For this LG, we are presumably missing some markers because for all of the metaphase I bivalents we have always seen at least one crossover.

Segregation distortion. A total of 483 (~32%) mapped SNP loci deviated significantly (linkage test: \(P < 0.05 \)) from an expected Mendelian segregation ratio of 1:2:1 (Table 1). The highest number of distorted loci were on LG6 (181), followed by LG7 (102), whereas no distorted loci were found on LG1, LG5, and LG8. Skewed segregation of loci is not uncommon in interspecific hybrids, as already well exemplified in crops such as...
Notably, the genetic causes of segregation abnormalities remain largely enigmatic. A number of hypotheses have been proposed to explain such events, for example the degree of divergence of the parental lines, or selection during gamete or zygote formation. Regardless of segregation distortion, the relative order of loci in linkage maps remains unaffected. Indeed, the inclusion of segregation distortions in highly distant crosses has biological relevance to circumvent further differentiation of LGs. Nevertheless, strict checking of marker data is imperative to control for the spurious association of loci while fitting loci with deviant segregation patterns.

Evaluation of genetic linkage map. To evaluate the position and distribution of loci within and between LGs, we used various visualization plots. The presence of singletons not only creates erroneous artefacts, but can also merges two unrelated LGs together. When marker loci are separated with a maximum gap of ~40 cM in the same homologous chromosomes, these markers could actually be unlinked and form different chromosomes. In light of this, we refined the clustering of loci on the basis of patterns apparent in 2D non-parametric multi-dimensional scaling (npMDS) ordination plots (Fig. 4a), and hierarchical clustering dendrograms (Fig. 4b) to potentially resolve spurious linkages. In agreement with linkage mapping, the npMDS identified the same pattern and distribution of loci within and between LGs, while clustering dendrograms highlighted the distinction of loci between LGs.

To gain additional insight, we computed significant strong cross link (SCL) values (LOD threshold value ~3) to verify LGs in genetic mapping. Based on these values, Fig. 3b reveals the interplay between the sub-groups of the potentially sub-divided LGs (LG5 and LG7) with persistent routes found between them, reflecting that the subdivided LGs were the fusion of their original LGs designation. To scrutinize this further, we explored the relative map position of loci using higher and then lower stringency LOD threshold values, although this approach is less reliable. In this context, we noted similar loci orders (Supplementary Table 3) between the highly stringent (LOD threshold values ≥9 and ≥11 for LG5 and LG7, respectively) and the less stringent LOD threshold values.
Figure 3. Genetic linkage map constructed for field cress. (a) The expected eight linkage groups (LGs) constructed using 1,517 SNP markers. The left side ruler is highlighted to indicate the distance intervals between adjacent loci. (b) The strong cross-link (SCL) values used to indicate the loop interplaying routes of loci between the potentially fragmented LG5 and LG7 related to their sub-LGs (Sub-LG5a, sub-LG5b, and sub-LG7a, sub-LG7b, respectively). The subdivision of LGs existed under logarithms of the odds (LOD) threshold values ≥ 9 and ≥ 11 for LG5 and LG7, respectively. The locus highlighted in blue is an entry to a group of loci from the other subdivided LG.

(LOD threshold values < 9 for LG5, < 11 for LG7), lending additional support that the resulting fragments within these LGs (Fig. 1b) should not be split into independent LGs. Moreover, the above evidence was corroborated with molecular cytogenetic studies (see the results of the cytogenetic section). Given the similarity karyotype
analyses across all samples, we reasoned that the resulting gaps within both LG5 and LG7 possibly stemmed from ancestral rearrangements of chromosomes in both *Lepidium* species (*L. campestre* and *L. heterophyllum*), and have existed after their evolutionary divergence of the two species.

Comparative map analysis. The local alignment search tool nucleotide (BLASTN) search using *L. campestre* SNP sequences showed ~83% (1,254) of the 1,517 SNP loci shared sequence similarity with the *A. thaliana* genome (Table 2; Supplementary Table 4). However, the presence of sequence similarity or BLAST hits between species does not necessarily reflect their syntenic relationships. In our comparative map analysis, ~69% (866) of the 1,254 similar sequence loci (or ~57% of the 1,517 polymorphic sequence loci) were congruent with the *Arabidopsis* genome (Fig. 5; Table 2). The relative reduction in homologous loci (from ~69% to ~57%) probably due to the occurrence of translocation, fusion or fission of genes after the evolutionary divergence of these two species. However, the 866 homologous loci identified highly conserved regions of the genomes after the evolutionary divergence of the two species. The number of conserved syntenic loci per LG varied between 36 (LG5) and 280 (LG1) (Table 2).

Comparative mapping is not only used to elucidate QTL bearing regions, but also to engage in positional cloning of genes. The characterization of flowering time in the *Arabidopsis* genome is one of the notable examples in translating genomics between related species. The *Flowering Locus C* (*FLC*) gene has been found to underlie a major domestication QTL, which inhibits flowering in plants. The orthologous analyses of *FLC* genes unveiled common regions between *Brassica* species and *Arabidopsis* genome. Since ancestrally conserved regions typically harbour functional genes, mapping genomic regions and exploiting known syntenic relationships, could be a keystone to accelerate the future domestication and improvement of field cress.

Next, we quantified 60 insertion—deletions (indels) that ranged from two on LG5 to 18 on LG1 (Table 2, Supplementary Table 4). We speculate that the presence of only a few indels might be either because of losses in diversity (e.g., small effective population size) or because of the short evolutionary history of divergence accompanied by slow evolution rates of indel polymorphisms. To this end, however, we note further efforts are needed for gaining an in-depth understanding of the underlying genomic plasticity that result in indel variation.

The comparative study between field cress and *Arabidopsis* yielded 46 nuclear duplications in seven of the eight LGs (Table 2, Supplementary Table 5). Lu and Adam found the expression of *SHORT SUSPENSOR* (SSP) gene was retained following duplication, suggesting neofunctionalization (new functions) in genes controlling brassinosteroid signal transduction of *Brassica* species. The *Conserved Telomere Maintenance Component 1* (*CTC1*) was one of the paradigmatic duplications in *L. campestre* found in LG1 (Supplementary Table 4); however, further functional validation of the *CTC1* gene is crucial. In higher plants, the interaction of *CTC1* with SRN1 led to a new function that integrates and maintains the telomere regions of the chromosome. Collectively, these findings indicate that exploring the conserved synteny with *A. thaliana* can provide biological insights to unlock genes that underlie traits of interest in field cress.

Defining the ancestral genomic block structure for field cress. The study of genome evolution within the Brassicaceae has been facilitated by the definition of 24 ancestral genomic blocks (GBs), A–X, that are identified based on conserved gene content and order across all species of the family studied to date. Utilizing the conserved synteny mapped between *A. thaliana* and *L. campestre* genomes, it was possible to identify 21 of the 24 GBs (Fig. 6, Supplementary Table 6), three of the blocks (G, S and T) were not found, which can be explained by their consistent peri-centromeric location that often leads to a paucity of useful polymorphic markers. *L. campestre* in most recent studies has been placed at the base of clade A (or lineage I) of the Brassicaceae and would be expected to have evolved from the previously characterized ancestral crucifer karyotype (ACK). Indeed, six of the *L. campestre* linkage groups share a common GB structure with six of the ACK chromosomes (Fig. 6). However, LG1 and LG2 of *L. campestre* are rearranged from two ACK chromosomes (AK6 and AK8) and most interestingly show ancestral GB associations (R-W and Q-X; Fig. 6) that have not been documented in 18 previously studied clade A species and were thought to be indicative of species from clade B. The karyotype of field cress...
cress effectively links clade A and B and the basal position of the species within clade A suggests that this novel karyotype pre-dates the ACK.

Assigning LGs to their chromosomes. A key challenge in genetic mapping is the reliable alignment of LGs to their chromosomes. This becomes even more problematic when genotyping is done in the absence of a reference genome, which is the case for *L. campestre* in this study. Thus, additional techniques such as cytogenetic and physical map analyses could reliably orient LGs to their chromosomes. Given the cytogenetic analysis, the present findings are helpful for an initial overview to assign LGs to their chromosomes. To estimate the LG map based on diakinesis or metaphase I cells, we inferred the number of crossovers and found a mean crossover number of 13, equivalent to 650 Cm (13 multiplied by 50 cM).

Figure 4. Visualization of loci distribution between and within linkage groups (LGs) of *Lepidium campestre*. (a) The 2D npMDS plot used to distinguish the structure and distribution of loci between and within LGs. (b) Hierarchal cladogram clustering employed to visualize loci positions between and within LGs.
The relatively small reduction (13%) in size between genetic map (566.07 cM) (Table 1) and cytogenetic map (650 cM) (Fig. 5) is not unexpected, as linkage is highly sensitive to various factors such as accuracy of genotype scoring, representation of recombinants in the population, density of markers, and other constraints of mapping estimations53. This is exemplified by LG8 at 24 cM, which could result from a shortage of polymorphic markers. A minimum of one crossover would be expected because of the requirement that at least one obligate crossover (a size of 50 cM) was needed for normal segregation and perfect fertility54. Thus, the LG map is likely to be expanded as more markers become available.

Extrapolating chromosome 1 from the defined karyotype (Fig. 2) suggests it is highly likely related to LG7 for the following reasons. First, chromosome 2 in Arabidopsis has a large site for 45S rDNA, and it is evident

LG	Marker locus	Blast hit	Ins	Del	Dup	Homol. loci	Loci homologous to A. thaliana chromosomes				
LG1	434	356	6	13	22	280	—	2	—	109	169
LG2	217	179	5	5	4	107	—	—	—	107	
LG3	152	135	2	6	6	96	96	—	—	—	
LG4	183	144	4	1	2	74	14	60	—	—	
LG5	85	70	1	1	—	36	—	9	27	—	
LG6	213	168	4	4	4	127	127	—	—	—	
LG7	173	146	1	3	6	104	104	—	—	—	
LG8	60	56	3	1	2	42	—	—	42	—	
Total	1,517	1,254	26	34	46	866	233	129	87	151	276

Table 2. The 1,517 sequence loci in eight linkage groups (LGs) of field cress related to indels, duplications, collinearity, and homology with Arabidopsis genome.

Figure 5. Graphical representation of sequence similarity that reveals the conserved syntenic regions between linkage groups (LGs) of field cress and chromosomes of Arabidopsis thaliana. The black bars show the level of similarity of SNP loci against the Arabidopsis genome.
that chromosome 2 and LG7 share substantial conserved syntenic regions (Fig. 5, Table 2). Second, there is a large gap on LG7, which could be due to the presence of a large 45S rDNA site (Fig. 2). And third, an estimate of crossovers from chromosome 1 indicates that it is at least twice 100 cM in size (on average two chiasmata), which is almost commensurate with the longest LG (LG7 = 115.90 cM; Table 1). Although it was the longest among the LGs or chromosomes, the genetic map was unable to capture any crossovers in the heterochromatic regions of chromosomes, which may be the site of 45S rDNA, known as ‘coldspots’ 55. Considering the point that there appears to be discontinuous LGs for chromosomes 1 and 5, this may be due to an early reorganization of these chromosomes, prior to separation of the chromosomes into field cress and *L. heterophyllum*, and predating the organisation of *Arabidopsis*.

In similar manner, we explored chromosome 5 (of the defined karyotype in Fig. 2), which could possibly be aligned to LG2. The major locus of 5S rDNA in *A. thaliana* karyotype is placed on chromosome 5, and in turn, LG2 is congruent with chromosome 5 (Fig. 5, Table 2). Moreover, we found two crossovers between the long arms of chromosome 5 in metaphase I bivalents, suggesting an estimated size of 100 cM, which is comparable to the length of LG2 (Table 1). Though our analysis suffers from ascertainment bias owing to the lack of reference genome, we have assigned two LGs to their particular chromosomes. To ensure the alignment of LGs to their chromosomes reliably (e.g. as previously carried out in *Brassica oleoracea* 53) future work could include the integration of mapped BAC clones in *Arabidopsis* or other markers developed for *L. campestre* as FISH probes. These analyses may also provide in developing specific chromosome markers for *L. campestre*.

Conclusion

In summary, our results provide the first glimpse of the genome of field cress and have posited on how to integrate multiple techniques – genetic map to comparative and molecular cytogenetic maps – elucidating the resources to effectively assign two LGs to their chromosomes. Each technique individually cannot be guaranteed to identify chromosomes, instead their joint contributions not only correlate LGs to their chromosomes, but also assist in verifying LG contiguity when large gaps are present in the genetic map. Intriguingly, the detection of huge heterochromatin regions (Fig. 2) was supported with overlapping evidence in both FISH and linkage map analyses.

Using cytogenetic analysis, strikingly similar regions of the chromosome inert for crossovers were detected in both species (field cress and *L. heterophyllum*) including their hybrid individual, suggesting that these regions may be derived from their progenitor’s chromosomal rearrangements of these two species. However, additional efforts in integrating BAC clones of *Arabidopsis* or other FISH probe markers for field cress genome could assign reliably
the fragmentated LGs to their chromosomes. Genetic mapping is the indirect representation of marker loci in a LG; in other words, it does not reflect the physical presence of nucleotide bases in a chromosome. Notwithstanding this limitation, by exploiting conserved synteny our results could plausibly contribute to identifying candidate QTL in marker-assisted selection (MAS), genome-wide association studies (GWAS), and genomic selection.

Apart from the integrated genome mapping, here we report for the first time – to our knowledge – FISH analysis in *L. campestris* and *L. heterophyllum* along with their hybrid individual. We have uncovered intraspecific polymorphism in SS rDNA loci number in *L. heterophyllum*, which could suggest either a relatively high level of microevolutionary changes or epigenetic behaviour of this specific locus (SS rDNA) within this taxon.

Based on comparative genome analysis, anchoring the linkage map of field cress to the *Arabidopsis* genome has revealed several regions of conserved synteny, which will play a substantial role in the discovery of novel genes or alleles that maybe utilized in the domestication and molecular breeding of *L. campestris*. Interestingly, field cress (a member of lineage I or Clade A) shares common ancestral genomic block organisation with members of species in the lineage II or Clade B (which includes all *Brassica* species). This finding is a novel compared to all previously studied members of lineage I and suggests an alternative organisation for the ACK, which is currently the foundation of all Brassicaceae comparative mapping.

Methods

Flow cytometry. Samples of young leaves of *Lepidium* and an internal standard (*Raphanus sativus* cv. Saxa, 1.11 pg/2C) were prepared as previously described, using Galbraith’s buffer, supplemented with propidium iodide (PI, 50 μg/mL) and ribonuclease A (50 μg/mL) for nuclei isolation. The suspension of nuclei was analyzed directly after preparation using a CyFlow SL Green (Partec GmbH, Münster, Germany) flow cytometer. For each sample, nuclear DNA content in 3000–6000 nuclei was measured, using linear amplification. Analyses were performed on 48 and three samples of *L. campestris* and *L. heterophyllum*, respectively (Supplementary Table 1). Histogram plots were evaluated using FlowMax software (Partec GmbH, Münster, Germany). The coefficient of variation (CV) of the G0/G1 peak of *Lepidium* species ranged from 3.52 and 7.05%. Nuclear DNA content was calculated using the linear relationship between the ratios of the 2C peak positions of *Lepidium* and *Raphanus* on a histogram of fluorescence intensities. The 2C genome sizes in picograms (pg) were converted to mega base pair (Mb) using the formula 1 pg = 978 Mb. One-way ANOVA was performed to check the significant difference in the genome size between and within the species.

Chromosome counting. Chromosome counts were made from root-tip meristems of young seedlings. Seeds were placed on wet filter paper (65% humidity) and incubated in the growth chamber at 23 ± 1 °C in 16/8 h photoperiod. After radicle protrusion isolated root-tips were pretreated with 0.002 M 8-hydroxyquinoline for 2 h at 16 °C in darkness. Afterwards, the material was fixed in absolute ethanol and glacial acetic acid (3:1, respectively) for 24 h at 4 °C, and then stored in 70% ethanol at 4 °C. Meristems were stained with 1% aqueous aceto-orcein solution for 24 h, and squashed on slides in 45% acetic acid: glycerol solution (9:1, respectively). Chromosomes were counted on at least 50 metaphase plates for each species and were photographed with a CAMEO DIGITAL MICROSCOPE (Olympus) mounted on a BX41 microscope (Olympus).

Molecular cytogenetic analysis. For cytogenetic analyses, three accessions of *L. campestris*, two accessions of *L. heterophyllum*, and three hybrid samples (Supplementary Table 2) were used. Mitotic chromosomes isolated from the root meristems and tapetal cells as well as meiotic chromosomes at the pachytene and metaphase I stage in pollen mother cells were used for cytogenetic studies.

The seeds were germinated on agar plates, and the seedlings were vernalized at 4 °C for six weeks. We next transferred seedlings to a soil-based compost and grew in a glasshouse on average temperature of 18.5 °C under 16 h light, and 8 h of dark cycles. For chromosome preparation, primary inflorescences were harvested during inflorescence initiation stage. Individual stamens from suitable buds were dissected to get mitotic and early meiotic stages under a stereo microscope by using lacto-propionic orcein stain and a squashing method. The remaining anthers from these buds were fixed in fresh ice-cold fixative (ethanol and acetic acid in the ratio 3:1).

The protocol of chromosome preparations was carried out as follows. Fixed anthers or buds were washed with citrate buffer (10 mM, pH 4.5) three times for five minutes each before being subjected to enzyme digestion for up to 3 h in a moist chamber at 37 °C. The digestion medium comprised of 0.1% (w/v) cellulase, 0.1% (w/v) pectolyase (Sigma) in 10 mM citrate buffer pH 4.5, which breaks down the cell walls during the incubation period. After incubation in the enzyme mixture, anthers were squashed using a needle in a drop of 60% acetic acid for up to 3 h in a moist chamber at 37 °C. The slides were tilted and flushed with cold fixative before air-drying. Thereafter, they are observed with a phase contrast microscope for suitable meiotic and mitotic stages.

For mitotic chromosome preparation from root meristems whole seedlings (approximately 3 cm long) were pretreated with 2 mM 8-hydroxyquinoline for 6 h and fixed in 3:1 ethanol/acetic acid. After several washes in 0.01 M citric acid-sodium citrate buffer (pH 4.8), the excised roots were subjected to enzymatic digestion in a mixture comprising 20% pectinase (Sigma P0690) and 2% cellulase (Onozuka R-10 Serva) for 45 min at 37 °C. Meristems were dissected out from root tips, and then squashed in a drop of 45% acetic acid on microscope slide. After freezing, coverslips were removed and the slides were air-dried.

The probe used for detection of 45S rRNA gene loci was a clone pTa71 containing a 9 kb EcoRI fragment of *Triticum aestivum*, consisting of the 18S-5.8S-25S rRNA genes and the non-transcribed intergenic spacer regions (EMBL X07841), labelled with fluorescein-12-dUTP (Sigma). For detection of 5S rDNA sites, a 500-bp clone pCT4.2 isolated from *A. thaliana* was labelled with biotin-16-dUTP (Sigma). Both DNA probes were labelled by nick translation (Roche). FISH was performed according to the protocols published earlier. The selected slides are washed in 2X SSC solution for 10 min at room temperature before being subjected to pepsin (0.01
The simulated annealing parameters were used for map order optimization, and the chain length was adjusted for 30,000, cooling control parameter to 0.0001, the stop number of chains without improvement to 20,000. Thresholds of five recombination frequencies (that is, 0.100, 0.050, 0.030, 0.020, and 0.010) were employed as spa-

The structure and distribution of marker loci were visualized (Fig. 4) using 2-D non-parametric multi-dimensional scaling (npMDS), and hierarchical clustering in R version 3.4.1 software package67 while visualization of trees were implemented using Dendroscope 3 (version 3.5.9)68. The Manhattan distance using average method was employed in clustering using factoextra package. The dimensional distances in npMDS with isoMDS package were computed using 1—cor Spearman’s correlation as this treats non-continuous data more vigorously than Pearson’s correlation coefficient69.

Comparative map analysis. To discover putative sequence similarities in the flanking marker loci of *L. campestre*, a basic local alignment search tool nucleotide (BLASTN) search was performed against the coding
sequences (CDS) and genomic sequences of *A. thaliana* genome (TAIR; www.arabidopsis.org) (Supplementary Table 4). We used the sliding window approach with word length, \(W = 9 \) and significant E-value cutoff 1e-05 settings.

The BLASTN results were sorted according to genetic distance (cM) in ascending order within each LSG. We wrote a PERL script to identify the gene orientation and order of marker loci as prescribed38. Subsequently, neighboring genes of marker sequences were identified with an extension of 120,000 base pairs in both sides of each query of sequence loci compared to *Arabidopsis* chromosome within clusters of at least three genes (Supplementary Table 4). The syntenic regions between *L. campestris* and *A. thaliana* genome were visualized using Circos-0.69 software package (Fig. 5)51. To perform gene duplications of *Lepidium*, initially, self-BLAST to *Lepidium* SNP sequences was carried out, in turn the output was employed as substrate for MCL-edge software22 to recognize the duplicate and multi-member gene families (Supplementary Table 5). The synteny data was utilized to identify the ancestral genomic block structure of *L. campestris*. The likely ancestral origin of each locus was determined based on its homology to *A. thaliana* and the position of the corresponding *Arabidopsis* gene within the pre-classified ancestral blocks (Supplementary Table 6)50.

References

1. Warwick, S., Francis, A. & Al-Shehbaz, I. Brassicaceae: species checklist and database on CD-Rom. Plant Systematics and Evolution 259, 249–258 (2006).
2. Bandara, M., Savidov, N. & Driedger, D. In II International Symposium on Human Health Effects of Fruits and Vegetables: 841, 323–328 (FAVHEALTH 2007).
3. Nilsson, P., Johansson, S. Å. & Merker, A. Variation in seed oil composition of species from the genera *Barbarea* and *Lepidium*. Acta Agriculturae Scandinavica Section B—Plant Soil Sciences 48, 159–164 (1998).
4. Merker, A. & Nilsson, P. Some oil crop properties in wild *Barbarea* and *Lepidium* species. Swedish Journal of Agricultural Research (1995).
5. Merker, A., Eriksson, D. & Bertholdsson, N.-O. Barley yield increases with undersown *Lepidium campestris*. Acta Agriculturae Scandinavica Section B—Soil & Plant Science 60, 269–273 (2010).
6. Ulen, B. & Aromsson, H. Nitrogen and phosphorus leaching under the potential biennial oilseed plant *Lepidium campestris*. L. in a field trial. *Acta Agriculturae Scandinavica, Section B—Soil & Plant Science* 68, 555–561 (2018).
7. Desta, Z. A. & Ortiz, R. Genomic selection: genome-wide prediction in plant improvement. *Trends in Plant Science* 19, 592–601 (2014).
8. Al-Shhebazi, I. A. The genera of Lepidiae (Cruciferae; Brassicaceae) in the southeastern United States. *Journal of the Arnold Arboretum* 67, 265–311 (1986).
9. Mandáková, T. et al. The more the merrier: recent hybridization and polyploidy in *Cardamine*. The Plant Cell 25, 3280–3295 (2013).
10. Pontes, O. et al. Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid *Arabidopsis suecica* genome. *Proceedings of the National Academy of Sciences* 101, 18240–18245 (2004).
11. Hasterok, R. et al. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. *Annuals of Botany* 97, 205–216 (2005).
12. Hemleben, V., Volkov, R. A., Zentgraf, U. & Medina, F. J. Molecular Cell Biology: Organization and Molecular Evolution of rDNA, Nucleolar Dominance, and Nucleolar Structure. In: Esser K., Lüttge U., Bseyslach W. & Murrata J. (eds) Progress in Botany, vol 65, 106–146 (Springer-Verlag, 2004).
13. Sadhu, M. J., Bloom, J. S., Day, L. & Kruglyak, L. CRISPR-directed mitotic recombination enables genetic mapping without crosses. *Science* 352, 1133–1136 (2016).
14. Fernandes, J. R. B., Seguéla-Arnaud, M., Larchévéque, C., Lloyd, A. H. & Mercier, R. Unleashing meiotic crossovers in hybrid plants. *Proceedings of the National Academy of Sciences* 2017, 13078 (2017).
15. Wijnker, E. & de Jong, H. Managing meiotic recombination in plant breeding. *Trends in Plant Science* 13, 640–646 (2008).
16. Luken, L., Zou, F., Lydiate, D., Parkin, I. & Osborn, T. Comparison of a Brassica oleracea genetic map with the genome of *Arabidopsis thaliana*. *Genetics* 164, 359–372 (2003).
17. Parkin, I. A. et al. Segmental structure of the Brassica napus genome based on comparative analysis with *Arabidopsis thaliana*. *Genetics* 171, 765–781 (2005).
18. Solitis, D. E., Solitis, P. S., Bennett, M. D. & Leitch, I. J. Evolution of genome size in the angiosperms. *American Journal of Botany* 90, 1596–1603 (2003).
19. Bainard, J. D., Bainard, L. D., Henry, T. A., Fazekas, A. J. & Newmaster, S. G. A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits. *New Phytologist* 196, 1240–1250 (2012).
20. Bennett, M. & Leitch, I. Plant DNA C Values Database (Release 6.0, Dec. 2012 http://www.kew.org/cvalues/, 2005).
21. Kolano, B., Saracka, K., Broda-Cnota, A. & Maluszynska, J. Localization of ribosomal DNA and CMA3/DAP1 heterochromatin in cultivated and wild *Amaranthus* species. *Scientia Horticulturae* 164, 249–255 (2013).
22. Dierschke, T., Mandáková, T., Lysák, M. A. & Mummenhoff, K. A bicontinental origin of polyploid *Australo-arboretum*. *Journal of the Arnold Arboretum* 67, 265–311 (1986).
23. Cardamine species. *Acta Agriculturae Scandinavica, Section B—Soil & Plant Science* 68, 555–561 (2018).
24. Desta, Z. A. & Ortiz, R. Genomic selection: genome-wide prediction in plant improvement. *Trends in Plant Science* 19, 592–601 (2014).
25. Altinkut, A. et al. Development and bin mapping of gene-associated interspecific SNPs for cotton (*Gossypium hirsutum* L.) introgression breeding efforts. *BMC genomics* 15, 945 (2014).
26. Chen, Y. et al. Construction of a complete set of alien chromosome addition lines from *Gossypium australe* in *Gossypium hirsutum* L.: morphological, cytological, and genotypic characterization. *Theoretical and Applied Genetics* 127, 1105–1121 (2014).
30. Xu, C. et al. Genome-wide disruption of gene expression in polyploids but not hybrids of rice subspecies. *Molecular Biology and Evolution* **31**, 1066–1076 (2014).
31. Semagn, K. et al. Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. *Genome* **49**, 545–555 (2006).
32. Bing, Z. et al. Analysis of segregation distortion of molecular markers in F2 population of rice. *Acta Genetica Sinica* **33**, 449–457 (2006).
33. Dai, B., Guo, H., Huang, C., Ahmed, M. M. & Lin, Z. Identification and characterization of segregation distortion loci on cotton chromosome 18. *Frontiers in Plant Science* **7**, 2037 (2017).
34. Hudson, C. J. et al. High synten and colinearity among Eucalyptus genomes revealed by high-density comparative genetic mapping. *Tree Genetics & Genomes* **8**, 339–352 (2012).
35. Van Ooijen, J. W. & Jansen, J. Genetic mapping in experimental populations. (Cambridge University Press, 2013).
36. Vukosavljev, M. et al. High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose, inferred from admixed progeny using the 68k rose SNP array. *Horticulture Research* **3**, 16052 (2016).
37. Van Ooijen, J. JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. *Kyazma BV, Wageningen, Netherlands*, **33** (2006).
38. Gao, S., Yuan, Z., Li, N., Zhang, J. & Liu, Z. Determining Sequence Identities: BLAST, Phylogenetic Analysis, and Syntenic Analyses. In: Zhanjiang John Liu (ed.), *Bioinformatics in Aquaculture: Principles and Methods*. Wiley Blackwell (2017).
39. Francki, M. & Appels, R. Comparative genomics and crop improvement. In: Brown, J. R. (ed.), *Comparative genomics: basic and applied research*. CRC press, 321–340 (2008).
40. Parkin, J. Chasing ghosts: Comparative mapping in the Brassicaceae. In Bancroft, I. and Schmidt, R. (eds) *Genetics and Genomics of the Brassicaceae*, 153–170 (Springer, New York, 2011).
41. Dirlewanger, E. et al. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. *Proceedings of the National Academy of Sciences of the United States of America* **101**, 9891–9896 (2004).
42. Michaels, S. D. & Amasino, R. M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. *The Plant Cell* **11**, 949–956 (1999).
43. Deng, W. et al. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. *Proceedings of the National Academy of Sciences* **108**, 6680–6685 (2011).
44. Cole, C., Quijada, P., Michaels, S., Amasino, R. & Osborn, T. Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. *Theoretical and Applied Genetics* **102**, 425–430 (2001).
45. Yang, T.-J. et al. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. *The Plant Cell* **18**, 1339–1347 (2006).
46. Saint-Oyan, L. H. et al. A high-quality genome sequence of Rosa chinesis to elucidate ornamental traits. *Nature Plants*, **1** (2018).
47. Appels, R. et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. *Science* **361**, eaar791 (2018).
48. Liu, S.-L. & Adams, K. L. Dramatic change in function and expression pattern of a gene duplicated by polyploidy created a paternal genome. *The Plant Cell* **11**, 949–956 (1999).
49. Schranz, M. E., Lysak, M. A. & Mitchell-Olds, T. The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. *Trends in Plant Science* **11**, 535–542 (2006).
50. Lysak, M. A., Mandáková, T. & Schranz, M. E. Comparative paleogonomics of crucifers: ancestral genomic blocks revisited. *Current Opinion in Plant Biology* **30**, 108–115 (2016).
51. Huang, C.-H. et al. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. *Molecular Biology and Evolution* **33**, 394–412 (2015).
52. Howell, E. C. et al. Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. *Genetics* **161**, 1225–1234 (2002).
53. Jones, G. H. & Franklin, F. C. H. Meiotic crossing-over: obligation and interference. *Cell* **126**, 246–248 (2006).
54. Surovtseva, Y. V. et al. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. *Molecular Cell* **36**, 207–218 (2009).
55. Schranz, M. E., Lysak, M. A. & Mitchell-Olds, T. The ABCs of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. *Trends in Plant Science* **11**, 535–542 (2006).
56. Lysak, M. A., Mandakova, T. & Schranz, M. E. Comparative paleogonomics of crucifers: ancestral genomic blocks revisited. *Current Opinion in Plant Biology* **30**, 108–115 (2016).
57. Huang, C.-H. et al. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. *Molecular Biology and Evolution* **33**, 394–412 (2015).
58. Howell, E. C. et al. Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. *Genetics* **161**, 1225–1234 (2002).
59. Jones, G. H. & Franklin, F. C. H. Meiotic crossing-over: obligation and interference. *Cell* **126**, 246–248 (2006).
60. Armstron, S. Spreading and Fluorescence. *Scientific Reports* (2019) 9:17028, https://doi.org/10.1038/s41598-019-53320-0.
Acknowledgements

This research was supported by the “Mistra Biotech” project, a research program financed by the Swedish foundation for strategic environmental research (MISTRA) and Swedish University of Agricultural Sciences (SLU). The research carried out by Zeeshan Shamim, during his time at the University of Birmingham was supported by the University of Mirpur University of Science and Technology (MUST) Kashmir, Pakistan. We thank Mulatu Geleta (SLU) for providing the F₂ hybrids along with the newly collected ecotypes of Lepidium. We would like to thank Johan W. Ooijen (Kyazma, Netherlands) for the advises in the initial setup of the linkage mapping. We thank Graham King for useful comments in reviewing the manuscript. We would like to acknowledge Anna Zborowska and Cecilia Gustafson for their help in DNA extraction and dispatching the DNA samples of Lepidium to Scotland. We thank Richard Talbot (Edinburgh Genomics Institute) for the description of the iSelect Infinium assay for Lepidium genotyping. Open access funding provided by Swedish University of Agricultural Sciences.

Author contributions

Z.A.D. recorded and analysed the genetic data, and wrote the manuscript B.K., Z.S., and S.J.A. accomplished the molecular cytogenetic part of the manuscript and wrote this part of the manuscript M.R. and E.S. performed the chromosome counting and genome size estimation and wrote this part of the manuscript. S.K.K. accomplished the bioinformatics with blast, duplication and synteny analysis I.A.P.P. completed the ancestral crucifer karyotyping section, and edited the manuscript R.O. edited the manuscript D.J.K. edited and revised the manuscript, and secured the fund of this research project.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-53320-0.

Correspondence and requests for materials should be addressed to Z.A.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019