Association of Level and Increase in D-Dimer With All-Cause Death and Poor Functional Outcome After Ischemic Stroke or Transient Ischemic Attack

Huiqing Hou, MD, PhD; Xianglong Xiang, MD; Yuesong Pan, PhD; Hao Li, PhD; Xia Meng, MD, PhD; Yongjun Wang, MD, PhD

BACKGROUND: D-dimer is involved in poor outcomes of stroke as a coagulation biomarker. We aimed to investigate the associations of the level and increase in D-dimer between baseline and 90 days with all-cause death or poor functional outcome in patients after ischemic stroke or transient ischemic attack.

METHODS AND RESULTS: We collected data from the CNSR III (Third China National Stroke Registry) study. The present substudy included 10,518 patients within 7 days (baseline) of ischemic stroke or transient ischemic attack and 6,268 patients at 90 days. Poor functional outcome at 1 year was assessed on the basis of the modified Rankin Scale (≥3). Multivariable Cox regression or logistic regression was used to assess the association of D-dimer levels with all-cause death or poor functional outcome. D-dimer levels at 90 days were lower than those at baseline (1.4 µg/mL versus 1.7 µg/mL; P<0.001). Higher baseline D-dimer level was associated with all-cause death (adjusted hazard ratio [HR], 1.77; 95% CI, 1.25–2.52; P=0.001) and poor functional outcome (adjusted odds ratio [OR], 1.49; 95% CI, 1.23–1.80; P<0.001) during 1-year follow-up. Higher D-dimer level at 90 days was also associated with poor outcomes independently. Furthermore, an increase in D-dimer levels between baseline and 90 days was associated with all-cause death (since 90 days to 1 year after index event) (adjusted HR, 1.99; 95% CI, 1.12–3.53; P=0.019) but not with poor functional outcome (adjusted OR, 1.08; 95% CI, 0.82–1.41).

CONCLUSIONS: Our study shows that high level and an increase in D-dimer between baseline and 90 days are associated with poor outcomes in patients after ischemic stroke or transient ischemic attack.

Key Words: D-dimer ■ outcome ■ risk factor ■ stroke ■ transient ischemic attack
with poor outcomes in patients with stroke. However, these studies measured D-dimer at only a single time point and did not consider the different phases of recovery after stroke. Because D-dimer levels change during progression of stroke,17,18 whether this relative change is associated with poor outcomes after stroke remains unclear.

We hypothesized that the level and an increase in D-dimer are associated with poor outcome. Using data from the CNSRIII (Third China National Stroke Registry) study, the present study aimed to examine the associations of the levels and changes in D-dimer between baseline and 90 days with poor outcomes followed up to 1 year.

METHODS
The data that support the findings of this study are available from the corresponding author upon reasonable request.

STUDY DESIGN AND PARTICIPANTS
The study design and methods for the CNSRIII were previously reported.19 The CNSRIII is a nationwide prospective registry of patients presenting to hospitals with acute ischemic stroke or TIA within 7 days of symptom onset from 201 hospitals in China.19 The present substudy enrolled 10 518 patients with D-dimer levels measured at admission (baseline), and 6268 patients with D-dimer levels measured at 90 days after ischemic stroke or TIA. The ethics committee of the study center approved the study protocol. Written informed consent was provided by all participants or their legal proxies.

The CNSRIII study was performed according to the principles expressed in the Declaration of Helsinki.

MEASUREMENT OF BIOMARKERS
Fasting blood samples from CNSRIII patients were obtained within 24 hours of admission and at 90 days. EDTA plasma and serum samples were extracted and stored in cryotube at −80°C until use. No freezing or thawing circle occurred before testing. D-dimer and fibrinogen levels were measured using an OLYMPUS AU2700 analyzer (Beckman, Japan) and an immunoturbidimetric assay (Kamiya Biomedical, Seattle, WA, USA), as previously reported.6,11,20,21 Hs-CRP (high-sensitivity C-reactive protein) was tested on a Cobas c501 analyzer using a cardiac CRP (latex) high-sensitive assay (Roche, Basel, Switzerland). Measurements were performed in a core laboratory certified by the College of American Pathologists, with laboratory personnel blinded to the clinical data according to the manufacturers’ recommendations.

FUNCTIONAL OUTCOMES AND FOLLOW-UP
The study outcomes included all-cause death or poor functional outcome at 1-year follow-up interview. Poor functional outcome was defined as a modified Rankin Scale of 3 to 6. Information on death was confirmed on a death certificate from the attended hospital or the local citizen registry. Patients with a modified Rankin Scale ranging from 0 to 5 were assessed at 1-year follow-up over the telephone by trained research coordinators.

STATISTICAL ANALYSIS
Demographic and clinical characteristics were analyzed using quartiles of D-dimer levels with χ² statistics for categorical variables and the Kruskal-Wallis test for continuous variables. Absolute levels and the relative change in D-dimer were assessed as categorical variables. For categorical analyses, individuals were classified according to quartiles of the distribution of D-dimer levels as previously described.22 Because

CLINICAL PERSPECTIVE

What Is New?
- Baseline and 90-day D-dimer levels were associated with all-cause death and poor functional outcome in a large population with ischemic stroke or transient ischemic attack.
- An increase in D-dimer levels was associated with all-cause death after ischemic stroke or transient ischemic attack.

What Are the Clinical Implications?
- Dynamic measurements of D-dimer levels might be helpful for identifying patient with stroke or transient ischemic attack at a higher risk of recurrent events.
- It is uncertain if patients with stroke or transient ischemic attack and an elevated D-dimer may benefit from more aggressive antithrombotic or anticoagulant measures for secondary stroke prevention.

Nonstandard Abbreviations and Acronyms

Abbreviation	Full Form
CNSRIII	Third China National Stroke Registry
mRS	modified Rankin Scale
NIHSS	National Institutes of Health Stroke Scale
TOAST	Trial of Org 10172 in Acute Stroke Treatment

CLINICAL PERSPECTIVE

What Is New?
- Baseline and 90-day D-dimer levels were associated with all-cause death and poor functional outcome in a large population with ischemic stroke or transient ischemic attack.
- An increase in D-dimer levels was associated with all-cause death after ischemic stroke or transient ischemic attack.

What Are the Clinical Implications?
- Dynamic measurements of D-dimer levels might be helpful for identifying patient with stroke or transient ischemic attack at a higher risk of recurrent events.
- It is uncertain if patients with stroke or transient ischemic attack and an elevated D-dimer may benefit from more aggressive antithrombotic or anticoagulant measures for secondary stroke prevention.
D-dimer levels were measured in different populations in the acute stage (baseline) and recovery stage (90 days), baseline cut points of <0.6, ≥0.6 to 1.0, ≥1 to 2.0, and >2.0 µg/mL and 90-day cut points of <0.5, ≥0.5 to 0.8, ≥0.9 to 1.5, and >1.5 µg/mL were used, respectively. The lowest quartile group was used as the reference group. To assess the association of a change (decrease, unchanged, and increase) in D-dimer levels between baseline and 90 days with poor outcomes, individuals were classified according to tertiles of the change and the tertile 2 group was used as the reference group.

The associations of the levels and changes in D-dimer with poor outcomes were assessed. For all-cause death, adjusted hazard ratios (HRs) with 95% CIs were assessed using a Cox regression model. The proportional hazards assumption was tested by adding a time-dependent covariate with interaction of D-dimer and a logarithmic function of survival time in the Cox model. For poor functional outcome, adjusted odds ratios (ORs) with their 95% CIs were assessed by a logistic regression model. Variables with a P value of <0.05 in the baseline characteristics were incorporated into the multiple linear models. Subsequently, variables with a P value of <0.1 were screened out by the backward method and then used as correction covariates in the multivariate models to investigate the associations of levels or changes in D-dimer with poor outcomes. We also evaluated the association between changes in D-dimer levels (continuous measures) and the risk of poor outcomes with restricted cubic splines that were adjusted for all potential covariates.

All statistical analyses were conducted by SAS software, version 9.4 (SAS Institute Inc, Cary, NC). All P values were 2-sided and P<0.05 was considered to be statistically significant.

RESULTS

Baseline Characteristics
Of 15,166 patients in the CNSRIII study, 10,518 patients at baseline and 6268 patients at 90 days provided plasma samples for D-dimer measurement. There were no differences in the baseline characteristics between the included and excluded patients, apart from a slightly higher proportion of history of dyslipidemia, atrial fibrillation, and ischemic stroke in the included patients with acute ischemic stroke or TIA, and a slightly lower proportion of history of atrial fibrillation in the included patients at 90 days after ischemic stroke or TIA (Tables S1 and S2). Of the 10,518 included patients, the mean age was 61.8±11.1 years and 1,962 (31.30%) females, and had a higher 90-day modified Rankin Scale. The median D-dimer level was 0.9 (interquartile range, 0.5–1.5) µg/mL. Patients with high D-dimer level were older, had a higher proportion of females, and had a higher 90-day modified Rankin Scale. Table 1 shows the baseline characteristics of included patients at 90 days after stratification according to D-dimer quartiles. Of the 6268 included patients at 90 days, the mean age was 61.8±11.1 years and 1962 (31.30%) were female. The median D-dimer level was 0.9 (interquartile range, 0.5–1.5) µg/mL. Patients with high D-dimer level were older, had a higher proportion of females, and had a higher 90-day modified Rankin Scale. Table 2 shows the baseline characteristics of included patients at 90 days after stratification according to D-dimer quartiles. For patients with 2 measurements, the median change in the D-dimer levels was −0.2 µg/mL (interquartile range, −1.0 to 0.4 µg/mL). The baseline characteristics of patients with 2 measurements after stratification according to the tertiles of changes are shown in Table S3.

Baseline D-Dimer Levels and Poor Outcomes
The associations of absolute D-dimer levels with poor outcomes are shown in Table 3. Baseline D-dimer levels were strongly associated with all-cause death (P for trend <0.001) (Figure 1) and poor functional outcome (P for trend <0.001) in acute ischemic stroke or TIA. Of the 10,518 patients, 336% died (41.08% of whom died of cardiovascular causes, 32.01% of noncardiovascular cause, and 26.91% of unknown causes) and 13.03% had a poor functional outcome during 1-year follow-up.

According to the multiple linear regression analysis (Table S4), the potential confounding risk factors were adjusted. Baseline D-dimer level in quartile 4 was associated with an increased risk of all-cause death (adjusted HR, 1.87; 95% CI, 1.33–2.63; P<0.001) compared with quartile 1 in model 1. After further adjustment for baseline fibrinogen and hs-CRP levels, this association remained significant (adjusted HR, 1.77; 95% CI, 1.25–2.52; P<0.001) in model 2. Baseline D-dimer level in quartile 4 was associated with an increased risk of poor functional outcome (adjusted OR, 1.59; 95% CI, 1.32–1.91; P<0.001) compared with quartile 1 in model 1. After further adjustment for baseline fibrinogen and hs-CRP levels, this association remained significant (adjusted OR, 1.49; 95% CI, 1.23–1.80; P<0.001) in model 2.

D-Dimer Levels at 90 Days and Poor Outcomes
D-dimer levels at 90 days were strongly associated with all-cause death (P for trend <0.001) (Figure 1) and poor functional outcome (P<0.001) in model 1. After further adjustment for baseline fibrinogen and hs-CRP levels, the association remained significant (adjusted HR, 1.77; 95% CI, 1.25–2.52; P<0.001) in model 2.
In the study, the researchers found that D-dimer levels at 90 days in quartile 2, quartile 3, and quartile 4 were associated with an increased risk of all-cause death (adjusted HR, 3.52; 95% CI, 1.18–10.47; \(P = 0.024 \); adjusted HR, 3.45; 95% CI, 1.18–10.12; \(P = 0.024 \); and adjusted HR, 4.79; 95% CI, 1.69–13.54; \(P = 0.003 \)) compared with quartile 1.

Table 1. Characteristics of the Study Population (n=10 518) by D-Dimer Quartiles in Patients With Acute Ischemic Stroke or TIA

Characteristics	All (N=10 518)	Quartiles of D-Dimer at Baseline			
		<0.6 µg/mL	0.6–1.0 µg/mL	1.1–2.0 µg/mL	>2.0 µg/mL
Age, mean (SD), y	62.3±11.4	62.3±11.4	62.1±11.3	62.1±11.3	62.3±11.4
Female, n (%)	3283 (31.2)	3283 (31.2)	3258 (32.7)	3464 (34.2)	3228 (32.0)
Body mass index, median (IQR), kg/m²	24.5 (22.5–26.5)	24.5 (22.7–26.5)	24.5 (22.8–26.6)	24.5 (22.6–26.7)	24.4 (22.1–26.2)
Smoking, n (%)	3348 (31.8)	3424 (33.3)	3316 (34.0)	3324 (34.3)	3284 (33.1)
Drinking, n (%)	1502 (14.3)	1548 (15.0)	1430 (15.1)	1421 (15.0)	1450 (15.0)
Baseline National Institutes of Health Stroke Scale, n (%)	<0.001				
≤3	5616 (53.4)	5616 (53.4)	5616 (53.4)	5616 (53.4)	5616 (53.4)
>3	4902 (46.6)	4902 (46.6)	4902 (46.6)	4902 (46.6)	4902 (46.6)
Fibrinogen, median (IQR), g/L	3.8 (3.2–4.5)	3.7 (3.1–4.4)	3.8 (3.2–4.5)	3.9 (3.2–4.6)	3.9 (3.1–4.7)
High-sensitivity C-reactive protein, median (IQR), mg/L	1.8 (0.8–4.8)	1.3 (0.7–3.0)	1.6 (0.8–3.9)	2.0 (0.8–5.1)	2.8 (1.0–8.1)
Time after event within 24 h, n (%)	7803 (74.2)	1832 (72.9)	1797 (73.3)	2116 (73.8)	2058 (76.6)
History of hypertension, n (%)	6573 (62.5)	1577 (62.8)	1545 (63.0)	1815 (63.3)	1636 (60.9)
History of diabetes mellitus, n (%)	2486 (23.6)	608 (24.2)	582 (23.7)	713 (24.9)	583 (21.7)
History of dyslipidemia, n (%)	896 (8.5)	231 (9.2)	207 (8.4)	246 (8.6)	214 (8.0)
History of atrial fibrillation, n (%)	763 (7.3)	107 (4.3)	124 (5.1)	214 (7.5)	318 (11.8)
History of ischemic stroke, n (%)	2231 (21.2)	513 (20.4)	501 (20.4)	617 (21.5)	600 (22.3)
History of TIA, n (%)	316 (3.0)	81 (3.2)	78 (3.2)	89 (3.1)	68 (2.5)
History of myocardial infarction, n (%)	228 (2.2)	56 (2.2)	56 (2.3)	57 (2.0)	59 (2.2)
History of angina, n (%)	411 (3.9)	89 (3.5)	85 (3.5)	120 (4.2)	117 (4.4)
History of venous thrombus, n (%)	39 (0.4)	5 (0.2)	8 (0.3)	10 (0.4)	16 (0.6)
History of heart failure, n (%)	75 (0.7)	11 (0.4)	10 (0.4)	22 (0.8)	32 (1.2)
Complication during hospitalization, n (%)	582 (5.5)	68 (2.7)	117 (4.8)	144 (5.0)	253 (9.4)
Urinary infection	156 (1.5)	28 (1.1)	27 (1.1)	40 (1.4)	61 (2.3)
Deep vein thrombosis	62 (0.6)	11 (0.4)	11 (0.5)	11 (0.4)	30 (1.1)
Trial of Org 10172 in Acute Stroke Treatment subtypes, n (%)	<0.001				
Large artery atherosclerosis	2625 (25.0)	599 (23.9)	596 (24.3)	745 (26.0)	686 (25.49)
Small artery occlusion	2184 (20.6)	580 (23.1)	552 (22.5)	581 (20.3)	471 (17.53)
Cardioembolism	685 (6.5)	115 (4.6)	123 (5.0)	200 (7.0)	247 (9.2)
Other/undetermined	116 (1.1)	22 (0.9)	22 (0.9)	32 (1.1)	40 (1.5)
Undefined	4908 (46.7)	1196 (47.6)	1160 (47.3)	1308 (45.6)	1244 (46.3)
Ischemic stroke, n (%)	9790 (93.1)	2326 (92.6)	2285 (93.2)	2664 (93.0)	2525 (93.6)
TIA, n (%)	728 (6.9)	186 (7.4)	168 (6.9)	202 (7.1)	172 (6.4)

IQR indicates interquartile range; and TIA, transient ischemic attack.

In summary, D-dimer levels at 90 days in quartile 2, quartile 3, and quartile 4 were associated with an increased risk of all-cause death. This finding suggests that D-dimer measurement could be a potential biomarker for monitoring the risk of adverse outcomes in patients with acute ischemic stroke or TIA.
1 in model 1. After further adjustment for 90-day fibrinogen and hs-CRP levels, this association remained significant (adjusted HR, 3.52; 95% CI, 1.18–10.50; \(P = 0.024 \); adjusted HR, 3.50; 95% CI, 1.20–10.27; \(P = 0.022 \); and adjusted HR, 4.62; 95% CI, 1.63–13.10; \(P = 0.004 \) in model 2. D-dimer levels at 90 days in quartile 3 and quartile 4 were associated with an increased risk of poor functional outcome (adjusted OR, 1.46; 95% CI, 1.04–2.04; \(P = 0.027 \) and adjusted OR, 1.75; 95% CI, 1.27–2.41; \(P = 0.001 \)) compared with quartile 1 in model 1. After further adjustment for 90-day fibrinogen and hs-CRP levels, this association remained significant (adjusted OR, 1.44; 95% CI, 1.03–2.01; \(P = 0.035 \) and adjusted OR, 1.70; 95% CI, 1.23–2.35; \(P = 0.001 \)) in model 2.
Table 3. Hazard Ratio/Odd Ratio of Poor Outcomes According to D-Dimer Quartile Categories

Outcomes	D-Dimer Levels	N	Events, n (%)	Crude OR/HR (95% CI)	P Value	Adjusted Model 1† OR/HR (95% CI)	P Value	Adjusted Model 2‡ OR/HR (95% CI)	P Value	P for Trend
D-dimer level at baseline										
All-cause death	<0.6 µg/mL	2512	45 (1.79)	1 (Reference)	…	1 (Reference)	…	1 (Reference)	…	<0.001
	0.6–1.0 µg/mL	2453	61 (2.49)	1.39 (0.94–2.04)	0.097	1.17 (0.79–1.72)	0.431	1.19 (0.80–1.76)	0.390	
	1.1–2.0 µg/mL	2866	80 (2.79)	1.57 (1.09–2.25)	0.016	1.16 (0.80–1.67)	0.436	1.14 (0.791–1.67)	0.483	
	>2.0 µg/mL	2687	167 (6.22)	3.55 (2.55–4.93)	<0.001	1.87 (1.33–2.63)	<0.001	1.77 (1.25–2.52)	0.001	
Poor functional outcome§	>0.6 µg/mL	2443	215 (8.80)	1 (Reference)	…	1 (Reference)	…	1 (Reference)	…	<0.001
	0.6–1.0 µg/mL	2403	270 (11.24)	1.31 (1.09–1.58)	0.005	1.12 (0.92–1.37)	0.264	1.08 (0.88–1.32)	0.486	
	1.1–2.0 µg/mL	2788	371 (13.31)	1.59 (1.33–1.90)	<0.001	1.23 (1.02–1.49)	0.031	1.20 (0.99–1.46)	0.062	
	>2.0 µg/mL	2617	515 (19.66)	2.54 (2.14–3.01)	<0.001	1.59 (1.32–1.91)	<0.001	1.49 (1.23–1.80)	<0.001	
D-dimer level at 90 d										
All-cause death	<0.5 µg/mL	1385	4 (0.29)	1 (Reference)	…	1 (Reference)	…	1 (Reference)	…	<0.001
	0.5–0.8 µg/mL	1609	17 (1.06)	3.69 (1.21–10.96)	0.019	3.52 (1.18–10.47)	0.024	3.52 (1.18–10.50)	0.024	
	0.9–1.5 µg/mL	1648	20 (1.21)	4.21 (1.44–12.32)	0.009	3.45 (1.18–10.12)	0.024	3.50 (1.20–10.27)	0.022	
	>1.5 µg/mL	1626	42 (2.64)	8.64 (3.09–24.15)	<0.001	4.79 (1.69–13.54)	0.003	4.62 (1.63–13.10)	0.004	
Poor functional outcome§	<0.5 µg/mL	1375	80 (5.82)	1 (Reference)	…	1 (Reference)	…	1 (Reference)	…	<0.001
	0.5–0.8 µg/mL	1589	120 (7.55)	1.32 (0.98–1.77)	0.061	1.35 (0.95–1.91)	0.091	1.32 (0.94–1.88)	0.110	
	0.9–1.5 µg/mL	1634	154 (9.42)	1.68 (1.27–2.23)	<0.001	1.46 (1.04–2.04)	0.027	1.44 (1.03–2.01)	0.035	
	>1.5 µg/mL	1602	256 (15.98)	3.08 (2.37–4.00)	<0.001	1.75 (1.27–2.41)	0.001	1.70 (1.23–2.35)	0.001	

HR indicates hazard ratio; and OR, odd ratio.
†HR for all-cause death, and OR for poor functional outcome.
‡Adjusted for the same risk factors as † plus fibrinogen and high-sensitivity C-reactive protein.
§Poor functional outcome: modified Rankin scale score 3 to 6.

1Adjusted for age, sex, baseline National Institutes of Health Stroke Scale, body mass index, diabetes mellitus, atrial fibrillation, heart failure, pulmonary infection, deep vein thrombosis, and TOAST (Trial of Org 10172 in Acute Stroke Treatment) at baseline; adjusted for age, sex, baseline National Institutes of Health Stroke Scale, drinking, 90-day modified Rankin Scale score, myocardial infarction, pulmonary infection, and TOAST at 90 days.
1Adjusted for the same risk factors as † plus fibrinogen and high-sensitivity C-reactive protein.
Hou et al D-Dimer and Outcome of Ischemic Stroke or TIA

Change in D-Dimer Levels With Poor Outcomes

The associations of changes in D-dimer levels between baseline and 90 days with poor outcomes followed up to 1 year are shown in Table 4. After adjustment for all potential confounding factors, an increase in D-dimer levels in tertile 3 was associated with an increased risk of all-cause death (adjusted HR, 1.99; 95% CI, 1.12–3.53; \(P=0.019 \)) compared with a smaller change in D-dimer levels in tertile 2. However, an increase in D-dimer levels was not associated with poor functional outcome (adjusted OR, 1.08; 95% CI, 0.82–1.41; \(P=0.586 \)).

By using a regression model with a restricted cubic spline, we found that the correlation between increase in D-dimer and 1-year all-cause death (Figure 2).

DISCUSSION

In the present study, we found that D-dimer levels at 90 days were significantly lower than those at baseline. Baseline and 90-day D-dimer levels were associated with all-cause death and poor functional outcome. Furthermore, an increase in D-dimer levels was associated with all-cause death after ischemic stroke or TIA.

High D-dimer reflects thrombus formation and hypercoagulation, and it is associated with death in patients with coronary artery disease and cancer. However, the evidence of association between D-dimer levels and death or poor functional outcome after stroke is limited and inconsistent. A meta-analysis that included 9 studies showed that high D-dimer levels within 24 hours of stroke onset were associated with death and poor functional outcome. However, 4 studies showed that these associations were no longer significant in multivariate models. Stroke severity and stroke subtypes were found to be associated with poor outcomes. However, some studies suggested that high D-dimer level was associated with an increased risk for death or poor functional outcome.

Table 4. Association of Change in D-Dimer With Poor Outcomes

Outcomes	Groups	Crude OR/HR (95% CI)*	\(P \) Value	Adjusted Model 1† OR/HR (95% CI)	\(P \) Value	Adjusted Model 2‡ OR/HR (95% CI)	\(P \) Value
All-cause death	\(< −0.7 \mu g/mL\)	1.24 (0.65–2.37)	0.510	0.98 (0.51–1.89)	0.957	0.94 (0.48–1.81)	0.841
	−0.7 to 0.2 \mu g/mL	1 (Reference)	...	1 (Reference)	...	1 (Reference)	...
	>0.2 \mu g/mL	2.26 (1.27–4.00)	0.005	1.98 (1.11–3.51)	0.020	1.99 (1.12–3.53)	0.019
Poor functional outcome§	\(< −0.7 \mu g/mL\)	1.28 (1.02–1.60)	0.032	0.94 (0.72–1.24)	0.658	0.93 (0.71–1.23)	0.622
	−0.7 to 0.2 \mu g/mL	1 (Reference)	...	1 (Reference)	...	1 (Reference)	...
	>0.2 \mu g/mL	1.38 (1.11–1.72)	0.004	1.07 (0.82–1.40)	0.624	1.08 (0.82–1.41)	0.586

HR indicates hazard ratio; and OR, odd ratio.

*HR for all-cause death, and OR for poor functional outcome.
†Adjusted for baseline National Institutes of Health Stroke Scale, 90-day modified Rankin Scale score, atrial fibrillation, venous thrombus, and Trial of Org 10172 in Acute Stroke Treatment.
‡Adjusted for the same risk factors as † plus fibrinogen and high-sensitivity C-reactive protein at 90 days.
§Poor functional outcome: modified Rankin scale score 3 to 6.
and these associations were independent of stroke severity or stroke type in acute ischemic stroke.10,11,27 In contrast, a prospective, single-center study showed that high D-dimer level was no longer associated with an increased risk of death during follow-up in a multivariate model,16 which included some biomarkers in addition to clinical risk factors. D-dimer might act as a stimulant to the inflammatory process.28 Therefore, more adjustment for potential inflammatory factors may eliminate the association of D-dimer levels with poor outcome.16,29 Because hs-CRP and fibrinogen are the most common markers of inflammation or hypercoagulability, they show a moderate correlation with D-dimer.30 Previous studies have suggested that when hs-CRP is taken into account, D-dimer was no longer associated with poor outcomes.30,31 Additionally, early stroke-related deep vein thrombosis32 and infection33,34 have an increased risk of poor outcome. In our study, stroke-related pulmonary infection and deep venous thrombosis were adjusted in addition to stroke subtypes and stroke severity. Furthermore, hs-CRP and fibrinogen were further adjusted in an additional multivariate model in this study. We found that high D-dimer level was associated with poor outcomes independent of all of the aforementioned risk factors.

D-dimer levels are higher in acute stroke and change during progression of stroke.17,35 Because of these sequential changes in D-dimer levels after stroke, measurements at different phases of recovery after stroke may be helpful for fully understanding the association of D-dimer levels with stroke. Consistent with previous study, we found that D-dimer levels were significantly decreased at 90 days compared with those at baseline.36 To date, there have been no studies regarding D-dimer measurements at 2 points to identify its association with poor outcomes after stroke. In the present study, we also found that high D-dimer level at 90 days was an independent risk factor for poor outcomes.

Several mechanisms may explain the association of high D-dimer levels with poor outcomes. One explanation is that D-dimer may play an important role in coagulation activity, thrombin generation, and fibrin formation. High D-dimer level might be associated with progression of stroke.28 This may subsequently aggravate the severity of stroke and lead to poor outcomes. There is also evidence that D-dimer is the most common risk factor of venous thrombosis events after stroke, which might reflect a prothrombotic state that increases susceptibility to a major thrombotic event.22 Another potential explanation is that D-dimer might regulate the inflammatory response. Previous studies have suggested that D-dimer upregulates the interleukin-6 pathway,37 which was confirmed to be associated with recurrent vascular diseases.38 Because recurrent vascular disease is unfavorable, subsequent vascular events might lead to functional disability.4

We further evaluated the association of an increase in D-dimer levels between baseline and 90 days with poor outcomes. Although the association of an increase in D-dimer levels with the risk of death has been shown in patients with stable coronary heart disease,22 its association with poor outcomes after stroke has not been defined. We found that an increase in D-dimer levels was associated with an increased risk of death. Because death is the poorest outcome, an increase in D-dimer levels might indicate occurrence of exacerbation of stroke or malignant diseases. Therefore, repeated measurements of D-dimer levels should be considered for patients after stroke. This study suggests that D-dimer might be a novel target for stroke treatment. Our finding suggests that appropriate anticoagulation might be applied for treating stroke to reduce the occurrence of poor outcomes in clinical practice.

There are some limitations of this study. First, a large number of patients did not provide blood samples at 90 days. The characteristics of patients with available blood samples at 90 days and those who were excluded were well balanced. However, some
deviation in the analysis of the associations between D-dimer levels and outcomes may have been present. Second, we measured D-dimer levels only at 2 recovery times. Dynamic detection at multiple time points may help to improve prediction of outcome after stroke and further understanding of the mechanism of injury. Third, we collected venous blood using vacuum tubes with EDTA as the anticoagulant, whereas sodium citrate is used as the anticoagulant in clinical practice. Furthermore, we used immunoturbidimetry to measure D-dimer levels,6,11,39,40 which differs from common clinical practice. Nevertheless, our detection range was similar to that previously reported.16 Therefore, these detection differences were unlikely to have affected the association of D-dimer stratification with poor outcomes in our study.

CONCLUSIONS

In conclusion, high D-dimer level was associated with all-cause death and poor functional outcome in patients with ischemic stroke or TIA. Furthermore, an increase in D-dimer levels between baseline and 90 days is associated with the poorest outcome.

ARTICLE INFORMATION

Received July 19, 2020; accepted November 24, 2020.

Affiliations

From the Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (H.H., X.X., Y.P., H.L., X.M., Y.W.); China National Clinical Research Center for Neurological Diseases, Beijing, China (H.H., X.X., Y.P., H.L., X.M., Y.W.); Center of Stroke, Beijing Institute for Brain Disorders, China (H.H., X.X., Y.P., H.L., X.M., Y.W.); and Department of Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang, China (H.H.).

Acknowledgments

Authors contributions: Wang had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Wang, Hou and Meng. Drafting of the manuscript: Wang and Hou. Statistical analysis: Xiang, Pan and Li.

Sources of Funding

This study was supported by grants from National Natural Science Foundation of China (81870905), the Ministry of Science and Technology of the People’s Republic of China (2016YFC0901001, 2016YFC0901002, 2017YFC1310901, 2017YFC1310902, 2018YFC1311700 and 2018YFC1311706), and grants from Beijing Municipal Commission of Health and Family Planning (No. 2016-1-2041, SML20150052).

Disclosures

None.

Supplementary Material

Tables S1–S4

REFERENCES

1. Wang W, Jiang B, Sun H, Ru X, Sun D, Wang L, Wang L, Jiang Y, Li Y, Wang Y, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults. Circulation. 2017;135:759–771. DOI: 10.1161/CIRCULATIONNAHA.116.025250.
2. Wang D, Liu J, Liu M, Lu C, Brainin M, Zhang J. Patterns of stroke between university hospitals and nonuniversity hospitals in mainland China: prospective multicenter hospital-based registry study. World Neurosurg. 2017;98:258–265. DOI: 10.1016/j.wneu.2016.11.006.
3. Lin J, Zheng H, Cucchiara BL, Li J, Zhao X, Liang X, Wang C, Li H, Mullen MT, Johnston SC, et al. Association of Lp-PLA2-A and early recurrence of vascular events after TIA and minor stroke. Neurology. 2015;85:1585–1591.
4. Li J, Zhao X, Meng X, Lin J, Liu L, Wang C, Wang A, Wang Y, Wang Y. High-sensitive C-reactive protein predicts recurrent stroke and poor functional outcome: subanalysis of the clopidogrel in high-risk patients with acute nondisabling cerebrovascular events trial. Stroke. 2016;47:2025–2030. DOI: 10.1161/STROKEAHA.116.012901.
5. Li J, Wang Y, Lin J, Wang D, Wang A, Zhao X, Liu L, Wang C, Wang Y. Soluble CD40L is a useful marker to predict future strokes in patients with minor stroke and transient ischemic attack. Stroke. 2015;46:1990–1992.
6. Folsom AR, Gottesman RF, Appiah D, Shahar E, Mosley Th. Plasma d-dimer and incident ischemic stroke and coronary heart disease: the Atherosclerosis Risk in Communities Study. Stroke. 2016;47:18–23.
7. Adam SS, Key NS, Greenberg GS. D-dimer antigen: current concepts and future prospects. Blood. 2009;113:2878–2887. DOI: 10.1182/blood -2008-06-165845.
8. Duprez DA, Ohvos J, Sanchez OA, Mackey RH, Tracy R, Jacobs DR Jr. Comparison of the predictive value of GlycA and other biomarkers of inflammation for total death, incident cardiovascular events, non-cardiovascular and noncancer inflammatory-related events, and total cancer events. Clin Chem. 2016;62:1020–1031. DOI: 10.1373/clinchem.2015.255828.
9. Di Castelnuovo A, de Curtis A, Costanzo S, Persichillo M, Olivieri M, Zito F, Donati MB, de Gaetano G, Iacoviello L. MOLI-SANI Project Investigators. Association of D-dimer levels with all-cause mortality in a healthy adult population: findings from the MOLI-SANI study. Haematologica. 2013;98:1476–1480. DOI: 10.3324/haematol.2012.083410.
10. Feinberg WM, Erickson LP, Bruck D, Kettelson J. Hemostatic markers in acute ischemic stroke. Association with stroke type, severity, and outcome. Stroke. 1996;27:1296–1300. DOI: 10.1161/01.STR.27.8.1296.
11. Yang X, Gao S, Ding J, Chen Y, Zhou XS, Wang JE. Plasma D-dimer predicts short-term poor outcome after acute ischemic stroke. PLoS One. 2014;9:e98756. DOI: 10.1371/journal.pone.0098756.
12. Lemolo F, Sanzaro E, Duro G, Giordano A, Paciarini M. The prognostic value of biomarkers in stroke. Immun Ageing. 2016;13:19. DOI: 10.1186/ s12979-016-0074-z.
13. Welsh P, Barber M, Langhorne P, Rumley A, Lowe GD, Stott DJ. Associations of inflammatory and haemostatic biomarkers with poor outcome in acute ischaemic stroke. Cerebrovasc Dis. 2009;27:247–253. DOI: 10.1159/000196823.
14. Zhang J, Liu L, Tao J, Song Y, Fan Y, Mou X, Xu J. Prognostic role of early D-dimer level in patients with acute ischemic stroke. PLoS One. 2019;14:e0211458. DOI: 10.1371/journal.pone.0211458.
15. Wang J, Ning R, Wang Y. Plasma D-dimer level, the promising prognostic biomarker for the acute cerebral infarction patients. J Stroke Cerebrovasc Dis. 2016;25:2011–2015. DOI: 10.1016/j.jstrokecerebrovasdis.2015.12.031.
16. Dieplinger B, Bockskrucker C, Egger M, Eggers C, Halmayer M, Mueller T. Prognostic value of inflammatory and cardiovascular biomarkers for prediction of 90-day all-cause mortality after acute ischemic stroke results from the Linz Stroke Unit Study. Clin Chem. 2017;63:1101–1109. DOI: 10.1373/clinchem.2016.269969.
17. Haapaniemi E, Soinne L, Syrjälä M, Kaste M, Tatlisumak T. Serial changes in fibrinolysis and coagulation activation markers in acute and convalescent phase of ischemic stroke. Acta Neurol Scand. 2004;110:242–247. DOI: 10.1111/j.1600-4042.2004.00304.x.
18. Reganon E, Vila V, Martinez-Sailes V, Vaya A, Lago A, Alonso P, Aznar J. Association between inflammation and hemostatic markers in atherothrombotic stroke. Thromb Res. 2005;112:217–221. DOI: 10.1016/j.thromres.2003.12.008.
19. Wang Y, Jing J, Meng X, Pan Y, Wang Y, Zhao X, Lin J, Li W, Jiang Y, Li Z, et al. The Third China National Stroke Registry (CNSR-III) for patients with acute ischaemic stroke or transient ischaemic attack: design, rationale and baseline patient characteristics. Stroke Vasc Neurology. 2019;4:158–164. DOI: 10.1159/svn-2019-000242.
20. Whitten CM, Sands D, Hubbard AR, Gaffney PJ. A collaborative study to establish the 2nd International Standard for Fibrinogen. Plasma. Thromb Haemost. 2000;84:258–262. DOI: 10.1055/s-0037-1614005.

21. Mora S, Rifai N, Buring JE, Ridker PM. Additive value of immunoasay-measured fibrinogen and high-sensitivity C-reactive protein levels for predicting incident cardiovascular events. Circulation. 2006;114:381–387. DOI: 10.1161/CIRCULATIONAHA.106.634289.

22. Simes J, Robledo KP, White HD, Espinoza D, Stewart RA, Sullivan DR, Zeller T, Hague W, Nestel PJ, Glasziou PP, et al. D-dimer predicts long-term cause-specific mortality, cardiovascular events, and cancer in patients with stable coronary heart disease. Circulation. 2018;138:712–723. DOI: 10.1161/CIRCULATIONAHA.117.029901.

23. Yuan W, Shi ZH. The relationship between plasma D-dimer levels and outcome of Chinese acute ischemic stroke patients in different stroke subtypes. J Neural Transm (Vienna). 2014;121:409–413. DOI: 10.1007/s00702-013-1113-y.

24. Morange PE, Bickel C, Nicaud V, Schnabel R, Rupprecht HJ, Peetz D, Lackner KJ, Cambien F, Blankenberg S, Tietz L, et al. Haemostatic factors and the risk of cardiovascular death in patients with coronary artery disease: the AtheroGene study. Arterioscler Thromb Vasc Biol. 2006;26:2793–2799. DOI: 10.1161/01.ATV.0000249406.92992.0d.

25. Ay C, Dunkler D, Pirker R, Thaler J, Guehennequer P, Wagner O, Ziebinski C, Pabinger I. High D-dimer levels are associated with poor prognosis in cancer patients. Haematologica. 2012;97:1158–1164. DOI: 10.3324/haematol.2011.054718.

26. Kim D, Lee SH, Joon Kim B, Jung KH, Yu KH, Lee BC, Roh JK. Secondary prevention by stroke subtype: a nationwide follow-up study in 46 108 patients after acute ischaemic stroke. Eur Heart J. 2013;13:150–157. DOI: 10.1093/eurheartj/ehs158.

27. Yao T, Tian B-L, Li G, Cui Q, Wang C-F, Zhang QL, Peng BO, Gao Y, Zhan Y-Q, Hu D, et al. Elevated plasma D-dimer levels are associated with short-term poor outcome in patients with acute ischemic stroke: a prospective, observational study. BMC Neuro. 2019;19:175. DOI: 10.1186/s12883-019-1538-3.

28. Barber M, Langhorne P, Rumley A, Lowe GD, Stott DJ. Hemostatic function and progressing ischemic stroke: D-dimer predicts early clinical progression. Stroke. 2004;35:1421–1425. DOI: 10.1161/01.STR.0000126890.63512.41.

29. Rallidis LS, Vikelis M, Panagiotakos DB, Liakos GK, Krania E, Kremastinos DT. Usefulness of inflammatory and haemostatic markers to predict short-term risk for death in middle-aged ischaemic stroke patients. Acta Neurol Scand. 2008;117:415–420. DOI: 10.1111/j.1600-0404.2007.00971.x.

30. Di Napoli M, Papa F. Inflammation, hemostatic markers, and antithrombotic agents in relation to long-term risk of new cardiovascular events in first-ever ischemic stroke patients. Stroke. 2002;33:1763–1771. DOI: 10.1161/01.STR.0000019124.54361.08.

31. Tohgi H, Konno S, Takahashi S, Koizumi D, Kondo R, Takahashi H. Activated coagulation/fibrinolysis system and platelet function in acute thrombotic stroke patients with increased C-reactive protein levels. Thromb Res. 2000;100:373–379. DOI: 10.1016/S0049-8688(00)00356-X.

32. Berneben J, Karlinski M, Kobayashi A, Czolkowska A. Early stroke-related deep venous thrombosis: risk factors and influence on outcome. J Thromb Thrombolysis. 2011;32:96–102. DOI: 10.1007/s11239-010-0548-3.

33. Mengel A, Ulm L, Hutter B, Harms H, Piper SK, Grittner U, Montaner J, Meisel C, Meisel A, Hoffmann S. Biomarkers of immune capacity, infection and inflammation are associated with poor outcome and mortality after stroke—the PREDICT study. BMC Neurol. 2019;19:148. DOI: 10.1186/s12883-019-1375-6.

34. Chapman G, Cadilhac DA, Morgan P, Kilkenny MF, Grimley R, Sundararajan V, Purvis T, Johnston T, Lannin NA, Andrew NE. Chest infection within 30 days of acute stroke, associated factors, survival and the benefits of stroke unit care: analysis using linked data from the Australian Stroke Clinical Registry. Int J Stroke. 2020;15:390–398. DOI: 10.1111/ijs.1493019833006.

35. Lip GYR, Blann AD, Farooqi IS, Zarifis J, Sagar G, Beevers DG. Sequential alterations in haemorheology, endothelial dysfunction, platelet activation and thrombogenesis in relation to prognosis following acute stroke: the West Birmingham Stroke Project. Blood Coagul Fibrinolysis. 2002;13:339–347. DOI: 10.1007/100071200206000-00010.

36. Kelly J, Rudd A, Lewis RR, Parmar K, Moody A, Hunt BJ. The relationship between acute ischaemic stroke and plasma D-dimer levels in patients developing neither venous thromboembolism nor major intercurrent illness. Blood Coagul Fibrinolysis. 2003;14:639–645. DOI: 10.1097/00001721-200310000-00004.

37. Lowe GD, Rumley A, McMahon AD, Ford I, O’Reilly DS, Packard CJ. West of Scotland Coronary Prevention Study Group. Interleukin-6, fibrinogen, and coagulation factors VII and XIIa in prediction of coronary heart disease. Arterioscler Thromb Vasc Biol. 2004;24:1529–1534. DOI: 10.1161/01.ATV.0000135995.39488.6c.

38. Rickard PM, Lüscher TF. Anti-inflammatory therapies for cardiovascular disease. Eur Heart J. 2014;35:1782–1791. DOI: 10.1093/eurheartj/ehu203.

39. Villa P, Ferrando F, Serra J, Faus H, Mira Y, Vayá A, Aznar J. Quantification of D-dimer using a new fully automated assay: its application for the diagnosis of deep vein thrombosis. Haematologica. 2000;85:520–524.

40. Bozic M, Stegnar M. Validation of an automated immunnonturbidimetric assay for measurement of plasma D-dimer. Clin Chem Lab Med. 2003;41:958–962. DOI: 10.1515/CCLM.2003.146.
SUPPLEMENTAL MATERIAL
Table S1. Baseline characteristics between the study patients at baseline and those excluded.

	Patients excluded (N=4648)	Patients included (N=10518)
Age, mean (SD), y	62.1±11.2	62.3±11.4
Sex (female), n (%)	1519 (32.7)	3283 (31.2)
BMI, median (IQR)	24.5 (22.9-26.6)	24.5 (22.5-26.5)
Time after event within 24 hours, n (%)	3317 (71.4)	7803 (74.2)
Smoking, n (%)	1404 (30.2)	3348 (31.8)
Drinking, n (%)	624 (13.4)	1502 (14.3)
History of hypertension, n (%)	2921 (62.8)	6573 (62.5)
History of diabetes mellitus, n (%)	1024 (22.0)	2486 (23.6)
History of dyslipidemia, n (%)	293 (6.30)	898 (8.54)
History of atrial fibrillation, n (%)	256 (5.51)	763 (7.25)
History of ischemic stroke, n (%)	918 (19.75)	2231 (21.21)
History of TIA, n (%)	100 (2.15)	316 (3.00)
History of myocardial infarction, n (%)	64 (1.38)	228 (2.17)
History of angina, n (%)	152 (3.27)	411 (3.91)
History of venous thrombus, n (%)	5 (0.11)	39 (0.37)
History of heart failure, n (%)	19 (0.41)	75 (0.71)

BMI indicates body mass index (the weight in kilograms divided by the square of the height in meters); IQR, interquartile range; NIHSS, National Institutes of Health Stroke Scale; and TIA, transient ischemic attack.
Table S2. Baseline characteristics between the study patients at 90 days and those excluded.

	Patients excluded (N=8898)	Patients included (N=6268)
Age, mean (SD), y	62.5±11.4	61.8±11.1
Sex (female), n (%)	2840 (31.9)	1962 (31.3)
BMI, median (IQR)	24.5 (22.5-26.4)	24.5 (22.8-26.7)
Smoking, n (%)	2731 (30.7)	2021 (32.2)
Drinking, n (%)	1229 (13.8)	897 (14.3)
Baseline NIHSS, n (%)	4748 (53.4)	3512 (56.0)
≤3	4150 (46.6)	2756 (44.0)
90-day mRS, n (%)	7305 (83.8)	5604 (89.4)
>2	1413 (16.2)	662 (10.6)
History of hypertension, n (%)	5558 (62.5)	3936 (62.8)
History of diabetes mellitus, n (%)	2055 (23.1)	1455 (23.2)
History of dyslipidemia, n (%)	680 (7.6)	511 (8.2)
History of atrial fibrillation, n (%)	657 (7.4)	362 (5.8)
History of ischemic stroke, n (%)	1816 (20.4)	1333 (21.3)
History of TIA, n (%)	213 (2.4)	203 (3.2)
History of myocardial infarction, n (%)	183 (2.1)	109 (1.7)
History of angina, n (%)	301 (3.4)	262 (4.2)
History of venous thrombus, n (%)	16 (0.2)	28 (0.5)
History of heart failure, n (%)	66 (0.7)	28 (0.5)

BMI indicates body mass index (the weight in kilograms divided by the square of the height in meters); IQR, interquartile range; mRS, modified Rankin Scale score; and TIA, transient ischemic attack.
Table S3. Characteristics of the study population by change in D-dimer level.

Characteristics	Change in D-dimer between baseline and 90 days	P Value		
	≤0.7 µg/ml (N=1795)	0.7-0.2 µg/ml (N=1892)	>0.2 µg/ml (N=1889)	
Age, mean (SD), y	62±11.3	60.9±11.0	62.2±11.1	<0.001
Female, n (%)	59±32.9	55±29.6	58±30.8	0.081
BMI, median (IQR), kg	24.5 (22.5-26.6)	24.5 (22.8-26.6)	24.5 (22.6-26.6)	0.918
Smoking, n (%)	54±30.6	64±34.3	60±32.2	0.053
Drinking, n (%)	248±13.8	287±15.2	267±14.1	0.469
History of myocardial infarction, n (%)	969 (54.0)	1108 (58.6)	1062 (56.2)	0.020
History of TIA, n (%)	826 (46.0)	784 (41.4)	927 (43.8)	0.237
History of ischemic stroke, n (%)	1376 (76.7)	1410 (74.5)	1409 (74.6)	<0.001
History of dyslipidemia, n (%)	42 (3.5-5.1)	4.1 (3.5-4.9)	4.1 (3.4-5.0)	0.001
History of hypertension, n (%)	1111 (61.9)	1178 (62.3)	1196 (63.3)	0.650
History of diabetes mellitus, n (%)	398 (22.2)	433 (22.9)	455 (24.1)	0.377
History of heart failure, n (%)	150 (8.4)	153 (8.1)	173 (9.2)	0.472
History of atrial fibrillation, n (%)	146 (8.1)	85 (4.5)	95 (5.0)	<0.001
History of ischemic stroke, n (%)	401 (22.3)	399 (21.1)	414 (21.9)	0.066
History of TIA, n (%)	61 (3.4)	65 (3.4)	65 (3.4)	0.997
History of myocardial infarction, n (%)	29 (1.6)	27 (1.4)	44 (2.3)	0.089
History of angina, n (%)	96 (5.4)	76 (4.0)	67 (3.6)	0.020
History of venous thrombus, n (%)	14 (0.8)	9 (0.5)	4 (0.2)	0.046
History of heart failure, n (%)	9 (0.5)	7 (0.4)	11 (0.6)	0.637
Ischemic stroke, n (%)	1659 (92.4)	1731 (91.5)	1748 (92.5)	0.425
TIA, n (%)	136 (7.6)	161 (8.5)	141 (7.5)	0.321

BMI indicates body mass index (the weight in kilograms divided by the square of the height in meters); hsCRP, high-sensitive C-reactive protein; IQR, interquartile range; mRS, modified Rankin Scale score; NIHSS, National Institutes of Health Stroke Scale; and TIA, transient ischemic attack.
Table S4. Multiple linear regression analysis for D-dimer with the prespecified univariate.

Independent variable	At baseline		P value	At 90 days		P value	Change in D-dimer		P value
	β	SE		β	SE		β	SE	
Age	0.016	0.002	<0.001	0.019	0.003	<0.001	-	-	-
Sex (female)	0.209	0.054	<0.001	0.143	0.071	0.042	-	-	-
Baseline NIHSS	0.202	0.050	<0.001	-0.122	0.066	0.062	-0.216	0.082	0.009
BMI	-0.015	0.007	0.040	-	-	-	-	-	-
History of diabetes mellitus	-0.133	0.058	0.022	-	-	-	-0.389	0.170	0.022
History of atrial fibrillation	0.433	0.098	<0.001	-	-	-	-0.464	0.165	0.005
History of heart failure	0.489	0.292	0.094	-	-	-	-0.294	0.112	0.009
Pulmonary infection	2.018	0.324	<0.001	-	-	-	-0.247	0.061	<0.001
Deep vein thrombosis	0.622	0.233	0.008	-	-	-	-0.622	0.233	0.008
TOAST subtypes-small artery occlusion	-0.247	0.061	<0.001	-	-	-	-0.247	0.061	<0.001
TOAST subtypes-other/undetermined	-	-	-	0.167	0.063	0.008	0.181	0.092	0.050
Fibrinogen at baseline	-0.002	0.000	<0.001	-	-	-	-0.017	0.001	<0.001
hsCRP at baseline	0.017	0.001	<0.001	-	-	-	-0.184	0.093	0.049
Drinking	-	-	-	0.628	0.107	<0.001	0.283	0.132	0.032
History of myocardial infarction	-	-	-	0.463	0.239	0.053	-0.002	0.000	<0.001
Fibrinogen at 90 days	-	-	-	-0.002	0.000	<0.001	0.000	0.000	<0.001
hsCRP at 90 days	-	-	-	0.015	0.002	<0.001	0.006	0.002	0.057
History of venous thrombus	-	-	-	-0.146	0.056	0.093	-0.946	0.562	0.093

BMI indicates body mass index (the weight in kilograms divided by the square of the height in meters); hsCRP, high-sensitive C-reactive protein; mRS, modified Rankin Scale score; NIHSS, National Institutes of Health Stroke Scale; and TOAST, Trial of Org 10172 in Acute Stroke Treatment.