Pharmacokinetic study of paclitaxel in malignant ascites from advanced gastric cancer patients

Michiya Kobayashi, Junichi Sakamoto, Tsutomu Namikawa, Ken Okamoto, Takehiro Okabayashi, Kengo Ichikawa, Keijiro Araki

Michiya Kobayashi, Tsutomu Namikawa, Ken Okamoto, Takehiro Okabayashi, Kengo Ichikawa, Keijiro Araki, Department of Tumor Surgery, Kochi Medical School, Kohasu, Oko-cho, Nankoku 783-8505, Japan
Junichi Sakamoto, Department of Epidemiological & Clinical Research Information Management, Kyoto University Graduate School of Medicine, Yoshida Hon-machi, Sakyo-ku 606-8317, Japan
Supported by Kobayashi Magobe Memorial Medical Foundation and the Epidemiology and Clinical Research Information Network
Correspondence to: Dr Michiya Kobayashi, Department of Surgery, Kochi Medical School, Kohasu, Oko-cho, Nankoku 783-8505, Japan. kobayasm@kochi-ms.ac.jp
Telephone: +81-88-8802370 Fax: +81-88-8802371
Received: 2005-08-06 Accepted: 2005-10-10

Abstract

AIM: To examine the paclitaxel concentrations in plasma and ascites after its intravenous administration in patients with ascites due to peritonitis carcinomatosa resulting from advanced gastric cancer.

METHODS: Two patients with ascites due to peritonitis carcinomatosa resulting from gastric cancer were included in this study. The paclitaxel concentrations in plasma and ascites were investigated for both the cases. The paclitaxel concentrations in plasma and ascites became similar, with the optimal level being maintained up to 72 h following administration.

RESULTS: The paclitaxel concentration in plasma peaked immediately after administration, followed by rapid decrease below the threshold value of 0.1 μmol (85 ng/mL) within 24 h. In contrast, the paclitaxel concentration in ascites increased gradually for 24 h after administration to a level consistent with the level found in plasma. After 24 h the level of paclitaxel in ascites and plasma became similar, with the optimal level being maintained up to 72 h following administration.

CONCLUSION: The concentration of paclitaxel in ascites is maintained within the optimal level for the treatment of cancer cells for up to 72 h after intravenous administration. Paclitaxel is a promising drug for the treatment of malignant ascites of gastric cancer.

Key words: Paclitaxel; Chemotherapy; Gastric cancer; Peritoneal carcinomatosis; Pharmacokinetic study;

INTRODUCTION

Paclitaxel (PTX) is a potent inhibitor of cell replication and was originally isolated from the bark of the tree Taxus brevifolia. The anti-mitotic activity of PTX results from its effectively blocking the late G2 and M phases of the cell cycle. PTX has significant antitumor activity in several human tumors, such as advanced ovarian, lung, and breast cancers[1]. Chang et al[2] demonstrated that PTX inhibited the proliferation of gastric carcinoma cell lines at clinically attainable concentrations. Several reports have shown that PTX in combination chemotherapy with 5-fluorouracil and cisplatin is effective in the treatment of advanced gastric cancer[3-8].

We have recently completed two phase I clinical studies of combination chemotherapy involving weekly administration of PXT with either 5-fluorouracil or cisplatin. The recommended dose of PTX was 80 mg/m2 in both regimens. Some cases with peritoneal carcinomatosis showed a marked decrease in malignant ascites following combination chemotherapy. In the present study, we investigated changes in PTX concentration in plasma and ascites over time to determine the effectiveness of weekly administration of PTX in treating malignant ascites.

MATERIALS AND METHODS

We investigated 2 cases with gastric carcinoma and malignant ascites. Case 1 was recruited in our phase I study of combination chemotherapy involving 5-fluorouracil and weekly administration of 80 mg/m2 PTX. Case 1 received 60 mg/m2 of PTX intravenously. Case 2 was involved in our phase II study of combination chemotherapy involving cisplatin and weekly administration of 80 mg/m2 PTX intravenously. The PTX concentrations in plasma and ascites were measured for both the cases.

PTX was administered by drip infusion for 1.5 h
following standard prophylaxis for taxol-associated hypersensitivity reactions with dexamethasone (20 mg iv), diphenhydramine (25 mg po), and ranitidine (50 mg iv). After taking informed consent from the patients, samples from blood and ascites were taken prior to PTX administration, immediately after PTX administration, then 4, 8, 12, 24, 36, 48, 60, and 72 h after PTX administration in case 1, and after a further 84, 96, 108, 120, 132, 144, 156, and 168 h in case 2. Ascitic fluid was not drained for the duration of the study and the volume taken for measurement of PTX concentration was limited to 5 mL. Ascites and blood samples were collected in heparinized tubes, centrifuged, and the supernatant was stored at -20 °C until assay. The PTX concentrations in plasma and ascites were analyzed by high-performance liquid chromatography as previously described[9].

RESULTS

The PTX concentrations in plasma and ascites are shown in Table 1. The concentration of PTX in plasma peaked immediately after administration, followed by rapid decrease below the threshold value of 0.1 μmol (85 ng/mL) within 24 h. On contrary, the concentration of PTX in ascites increased gradually to the peak level, as found in plasma, within 24 h of administration. From 24 h, the concentration of PTX in plasma and ascites became almost the same and remained above 0.01 μmol (8.5 ng/mL) up to 72 h after administration. The PTX concentration in ascites after 84 h was below 0.01 μmol in case 2. Figures 1 and 2 show the disappearance curve of PTX in the plasma and ascites in cases 1 and 2, respectively.

Both cases showed marked decrease of ascites after chemotherapy. The CT scan showed that the amount of ascites was markedly decreased after 2 courses of combination chemotherapy of 5-fluorouracil and PTX (Figure 3).

DISCUSSION

Gastric cancer is one of the most common cancers in Japan. Although advances in early diagnosis and surgical technique have improved the outcome of treatment for gastric cancer, optimal chemotherapy regimes have not been determined for advanced or recurrent gastric cancer. The most serious recurrence of gastric cancer is peritoneal carcinomatosis and is usually regarded as the terminal stage of advanced gastric cancer. At present, there are no effective therapeutic regimes for control of malignant ascites due to peritoneal carcinomatosis, which is essential for quality of life. Several reports have demonstrated that intraperitoneal infusion of anti-cancer agents is effective only to a limited shallow area beneath the peritoneum[10,11]. Inadequate exposure of the peritoneum to anti-cancer drugs presents a limitation to their effectiveness. Intraperitoneal administration of PTX has been used to treat ovarian cancer[12,13], but there is limited information on the levels of PTX in ascites following intravenous administration. O’Boyle et al.[15] investigated the level of PTX in sera and in cerebrospinal, ascitic and pleural

Table 1 Changes of paclitaxel concentrations over time in plasma and ascites (ng/mL).

Case 1 (60 mg/m²)	0	4	8	12	24	36	48	60	72	84 (h)
Plasma	1240	-	112	-	55	40	26	20	-	
Ascites	19	30	50	54	62	40	25	20	20	
Case 2 (80 mg/m²)	468	-	203	-	55	31	27	15	14	ND
Plasma	468	-	203	-	55	31	27	15	14	ND
Ascites	11	17	27	30	27	23	19	17	12	ND

ND: Paclitaxel in ascites was not detected after 84 h through to 168 h.
fluids by immunoradiometric assay and conventional radioimmunoassay and showed the maintenance of high levels of PTX in ascitic fluid in a patient with ovarian carcinoma treated with 135 mg/m² PTX.

Several reports have demonstrated that systemic administration of PTX is effective in the control of malignant ascites in gastric cancer patients [16,17]. In the present study, we showed a marked decrease in ascitic fluid volume after combination chemotherapy involving PTX and 5-fluorouracil (case 1), and PTX and cisplatin (case 2). Chang et al [2] demonstrated that exposure of cells to 0.01 μmol/L of PTX for 24 h was cytotoxic. In another study, Gianni et al [18] revealed that exposure of plasma to PTX concentrations over 0.05 μmol/L led to myelosuppression and that a concentration of 0.1 μmol/L was clinically relevant. The clinical relevant threshold of 0.1 μmol/l is consistent with findings from other investigators [19-21]. Taken together, the above findings suggest that the clinically effective range for PXT is 0.01 to 0.1 μmol and this range was applied to the present study.

The pharmacokinetic data of the present study revealed that PTX remains within the effective dose range in malignant ascites for at least 72 h following systemic administration. The peak plasma level of PTX varies according to case and peaks immediately after administration. These results are consistent with our previous investigation of 36 cases recruited in two Phase 1 studies (submitted for publication). The observed variation in peak PXT levels according to case may be the result of slight time differences between administration and blood sampling during the period of rapid increase in PTX levels following administration.

PTX has a bulky molecular structure, high molecular weight, and an affinity for binding proteins found at high levels in the peritoneal cavity, especially in malignant effusions. For these reasons, the intraperitoneal clearance of PTX is extraordinarily low, probably the lowest of any known anti-neoplastic agent. As a result of the low clearance rate of PXT from the peritoneal cavity, biologically relevant concentrations can be sustained for long periods allowing maximal exposure to cancer cells. It is well established that the cytotoxic activity of PTX is related to duration of exposure [22-25]. In conclusion, the inherent properties of PXT allowing its sustained exposure to cancer cells in ascites make this drug an effective candidate in the control of malignant ascites. As administration of PXT is systemic, PXT may also be effective for the control of cancer cells in other regions of the body.

REFERENCES
1 Rowinsky EK, Donehower RC. Paclitaxel (taxol) N Engl J Med 1995; 332: 1004-1014
2 Chang YF, Li LL, Wu CW, Liu TY, Lui WY, Peng FK, Chi CW. Paclitaxel-induced apoptosis in human gastric carcinoma cell lines. Cancer 1996; 77: 14-18
3 Kim YH, Shin SW, Kim BS, Kim JH, Kim JG, Mok YJ, Kim CS, Rhyu HS, Hyun JH, Kim JS. Paclitaxel, 5-fluorouracil, and cisplatin combination chemotherapy for the treatment of advanced gastric carcinoma. Cancer 1999; 85: 295-301
4 Murad AM, Petroianu A, Guimaraes RC, Aragao BC, Cabral LO, Scalabrini-Neto AO. Phase II trial of the combination of paclitaxel and 5-fluorouracil in the treatment of advanced gastric cancer: a novel, safe, and effective regimen. Am J Clin Oncol 1999; 22: 580-586
Kobayashi M et al. Paclitaxel in malignant ascites

5 Lokich JJ, Sonneborn H, Anderson NR, Bern MM, Coco FV, Dow E, Oliynyk P. Combined paclitaxel, cisplatin, and etoposide for patients with previously untreated esophageal and gastroesophageal carcinomas. Cancer 1999; 85:2347-2351

6 Kollmannsberger C, Quietzsch D, Haag C, Lingenfelser T, Schroeder M, Hartmann JT, Barontius W, Hempel V, Clemens M, Kanz L, Bokemeyer C. A phase II study of paclitaxel, weekly, 24-hour continuous infusion 5-fluorouracil, folinic acid and cisplatin in patients with advanced pancreatic cancer. Br J Cancer 2000; 83:458-462

7 Garcia AA, Leichman CG, Lenz HJ, Baranda J, Lujan R, Casagrande Y, Leichman L. Phase II trial of outpatient schedule of paclitaxel in patients with previously untreated metastatic, measurable adenocarcinoma of the stomach. Int J Clin Oncol 2001; 31:275-278

8 Yamada Y, Shirao K, Ohtsu A, Boku N, Hyodo I, Saitoh H, Miyata Y, Taguchi T. Phase II trial of paclitaxel by three-hour infusion for advanced gastric cancer with short premedication for prophylaxis against paclitaxel-associated hypersensitivity reactions. Ann Oncol 2001; 12:1153-1157

9 Wiernik PH, Schwartz EL, Einzig A, Strauman JJ, Lipton RB, Dutcher JP. Phase I trial of taxol given as a 24-hour infusion every 21 days: responses observed in metastatic melanoma. J Clin Oncol 1987; 5:1232-1239

10 Los G, Mutsaers PH, van der Vijgh WJ, Baldew GS, de Graaf PW, McVie JC. Direct diffusion of cis-diaminedichloroplatinum (II) in intraperitoneal rat tumors after intraperitoneal chemotherapy: a comparison with systemic chemotherapy. Cancer Res 1989; 49:3380-3384

11 Los G, Mutsaers PH, Lenglet WJ, Baldew GS, McVie JC. Platinum distribution in intraperitoneal tumor after intraperitoneal cisplatin treatment. Cancer Chemother Pharmacol 1990; 25:389-394

12 Francis P, Rowinsky E, Schneider J, Hakes T, Hoskins W, Markman M. Phase I feasibility and pharmacologic study of weekly intraperitoneal paclitaxel: a Gynecologic Oncology Group Pilot Study. J Clin Oncol 1995; 13:2961-2967

13 Markman M. Intraperitoneal taxol. Cancer Treat Res 1996; 81:1-5

14 Markman M, Brady MF, Spirtos NM, Hanjani P, Rubin SC. Phase II trial of intraperitoneal paclitaxel in carcinoma of the ovary, tube, and peritoneum: a Gynecologic Oncology Group Study. J Clin Oncol 1998; 16:2620-2624

15 O'Boyle KP, Wang Y, Schwartz EL, Regl DL, Einzig A, Dutcher JP, Wiernik PH, Horwitz SB. Development of two radio-immunoassays to detect paclitaxel in sera and in cerebrospinal, ascitic, and pleural fluids. Cancer 1997; 79:1022-1030

16 Ishida T, Shimokawa H, Kawaguchi K, Nose N, Ikegami T, Itoh H, Kido A, Sasaki Y, Ezaki T. Effective weekly paclitaxel administration for gastric cancer with malignant ascites—a case report. Gan To Kagaku Ryoho 2002; 29:1643-1646

17 Cho H, Kanari M, Sano H, Tsukiyama A, Kobayashi O, Sairenji M, Motohashi H, Imada T. A case of metastatic gastric cancer responding to weekly administration of paclitaxel as a second-line therapy. Gan To Kagaku Ryoho 2003; 30:129-132

18 Gianni L, Keams CM, Giani A, Capri G, Viganò L, Lacatelli A, Bonadonna G, Egorin MJ. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 1995; 13:180-190

19 Wiernik PH, Schwartz EL, Strauman JJ, Dutcher JP, Lipton RB, Paietta E. Phase I clinical and pharmacokinetic study of taxol. Cancer Res 1987; 47:2486-2493

20 Rowinsky EK, Donehower RC, Jones RJ, Tucker RW. Microtubule changes and cytotoxicity in leukemic cell lines treated with taxol. Cancer Res 1988; 48:4093-4100

21 Rowinsky EK, Cazenave LA, Donehower RC. Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst 1990; 82:1247-1259

22 Markman M. Intraperitoneal antineoplastic agents for tumors principally confined to the peritoneal cavity. Cancer Treat Rev 1986; 13:219-242

23 Markman M, Rowinsky E, Hakes T, Reichman B, Jones W, Lewis JL Jr, Rubin S, Curtin J, Barakat R, Phillips M. Phase I trial of intraperitoneal taxol: a Gynecologic Oncology Group study. J Clin Oncol 1992; 10:1485-1491

24 Rowinsky EK, Burke PJ, Karp JE, Tucker WR, Ettinger DS, Donehower RC. Phase I and pharmacodynamic study of taxol in refractory acute leukemias. Cancer Res 1989; 49:4640-4647

25 Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 1980; 77:1561-1565

S-Editor Wang J L-Editor Kumar M E-Editor Ma WH

www.wjgnet.com