L shell x-ray production in high-Z elements using 4-6 MeV/u fluorine ions

Sunil Kumar1,2, Uday Singh2, M. Oswal3, G. Singh1, N. Singh1, D. Mehta1, G. Lapicki4 and T. Nandi5*

1Department of Physics, Panjab University, Chandigarh160014, India.
2Department of Applied Sciences, Chitkara University, Himachal Pradesh 174103, India.
3 Department of Physics, Dev Samaj College Sec 45-B Chandigarh 160047, India
4 Department of Physics, East Carolina University, Greenville, North Carolina 27858, USA.
5Inter-University Accelerator Centre, New Delhi110067, India.

Abstract

L shell line and total x-ray production cross sections in 78Pt, 79Au, 82Pb, 83Bi, 90Th, and 92U targets ionized by 4-6 MeV/u fluorine ions were measured. These cross sections are compared with available theories for L shell ionization using single- and multiple-hole fluorescence and the Coster-Kronig yields. The ECPSSR and the ECUSAR theories exhibit good agreement with the measured data, whereas, the FBA theory overestimates them by a factor of two. Although for the F ion charge states q = 6-8 the multiple-hole atomic parameters do not significantly differ from the single-hole values, after an account for the multiple-holes, our data are better in agreement with the ECUSAR than the ECPSSR theory.

Keywords: L-shell x-rays, heavy ions, ionization, multiple ionization.

PACS number(s): 34.50.Fa, 34.80.Dp, 31.15.xp, 32.30.Rj

*Corresponding Author.

Email: nandita.pan@gmail.com
1. INTRODUCTION

The measurement of emitted x-rays from targets has resulted in major advances in radiation[1], plasma [2], atomic and nuclear physics [3], and in particle induced x-ray emission (PIXE) technique [4,5]. While PIXE originated and continues using light ions such as protons or alphas [6–16], there is an increasing interest to use heavy ions for PIXE analysis due to higher cross sections and thereby better sensitivity [17]. While discrepancies between theories and experiment were attributed to multiple ionization even with protons[18], multiple-ionization effect has been known for decades in L-shell ionization by heavier ions [19–34]. However this effect is still rarely addressed for the x-ray emission elemental analysis in the aftermath of ionization by such ions.

The sum of electron capture (EC) from a projectile with the atomic number \(Z_P\) and direct ionization (DI) of a target with the atomic number \(Z_T\) results in ionization of the target atom’s inner shells. In asymmetric collisions, i.e., \(Z_P/Z_T \ll 1\), the DI is dominant, whereas, for symmetric collisions, i.e., with \(Z_P/Z_T\) approaching 1, the EC process becomes increasingly important. As presented in Section 2, the L shell x-ray production cross sections have been measured in high \(Z_T\)-targets ionized by the 76–114 MeV \(^{19}\)F ions. With \(Z_P = 9\), \(0.010 \leq Z_P/Z_T \leq 0.012\) and the ratio of the projectile velocity \(v_p = 6.351 [E_p(\text{MeV})/A_p(\text{u})]^{1/2}\) (a.u) to the orbital velocity of the L-shell electrons \(v_T = (Z_T - 4.15)/2\) less than 1 i.e., \(0.029 \leq v_p/v_T \leq 0.042\), the present data are in the asymmetric and slow collision regime.

While expanding on the existing data base with ionization by heavy ions as desired for PIXE analysis, the collision regime of the present data allows for a meaningful comparison with existing ionization theories as discussed in Section 3. Section 4 addresses effects of the single- and multiple-hole atomic parameters required for conversion of ionization to x-ray production cross sections, and Section 5 summarizes our findings.

2. EXPERIMENTAL DETAILS AND DATA ANALYSIS

The L shell x-ray production cross sections in the elements with \(78 \leq Z_T \leq 92\) elements using the \(^{19}\)F ions (charge states \(q = 6^+, 7^+, 8^+\)) in the 76 – 114 MeV energy range had been measured. Heavy ions of \(^{16}\)F (76 and 84 MeV), \(^{17}\)F (90 MeV) and \(^{18}\)F (98, 106 and 114 MeV) were obtained from the 15 UD Pelletron accelerator at Inter-University Accelerator Centre,
New Delhi. Two silicon surface barrier detectors at ± 7.5° to the beam direction were used to monitor the projectile ions. The chamber was evacuated to about 10⁻⁶ Torr and equipped with a 5 mm diameter collimator and 6 µm Mylar window in front of the Si(Li) detector. In the energy range of the measured L x-ray spectra, the energy resolution of the detector was ~200 eV for the Mn Kα x rays. A Si(Li) solid state detector (thickness = 5 mm, diameter = 10 mm, 25 µm Be window from ORTEC, Oak Ridge, Tennessee, USA) was placed in the horizontal ion beam plane configuration outside the vacuum chamber at an angle of 125° to the beam direction and a distance of 170 mm from the target. The targets were mounted on a steel ladder at a 90° angle to the beam direction. The ladder could accommodate up to 24 targets (8 rows and 3 columns) each of 11.7 mm diameter and the desired target was brought along the beam direction by the horizontal and the vertical movement of the target ladder using the stepper motor arrangement. The spot size of the ion beam at the target was ~ 2 mm diameter. The spectra were taken at different positions of each target by tiny steering the beam. The thickness and the uniformity of these targets were measured by the energy loss method using alpha particles from a radioactive decay of ²⁴¹Am. Targets of ⁷⁸Pt, ⁷⁹Au, ⁸₂Pb, and ⁸³Bi (thickness ~ 120 µg/cm²) were prepared on the 20µg/cm² carbon backing using the vacuum deposition technique [35]. Thinner and spectroscopically pure (99.999 % pure) targets of ThF₄ (48.7 µg/cm²) and UF₄ (48.6 µg/cm²) on Mylar backing (thickness = 3 µm) procured from Micromatter, Deer Harbor, Washington, USA were also used in the present work. The target uniformity was verified to be better than 5%. The beam current was kept below 1nA to avoid the pile up effects and the damage to the target. The spectra were collected for 30 minutes to 1 hour so as to get good statistical accuracy.

Figure 1 shows typical L x-ray spectra from the targets of ⁷⁸Pt, ⁷⁹Au, ⁸₂Pb, ⁸₃Bi, ⁹₀Th, and ⁹₂U elements ionized by the 98 MeV ¹⁹F ions. These spectra result from ionization of Lᵢ (i = 1-3) subshells, with which x-ray line peaks correlate viz., L₁, Lα₁,₂, and Lβ₂,₁₅,₆,₇ from the L₃ subshell, the Lη, Lβ₁, and Lγ₁,₅ from the L₂ subshell, and the Lβ₃,₄ and Lγ₂,₃,₄ from the L₁ subshell. Figure 2 displays L x-ray spectra of ⁹₂U target bombarded by the ¹⁹F ion beam at different energies. The differential L x-ray production cross sections for the major peaks were evaluated with

\[
\frac{d\sigma_i}{d\Omega} = \frac{N_A}{N_p \tau \epsilon \beta}
\]
where \(N_x \) is the net x-ray counts per second under the L x-ray peak, \(A \) is atomic mass (in grams), \(N_A \) is the Avogadro’s number, and \(N_p \) is the number of incident ions collected in the Faraday cup. The ion beam changes its charge state during its passage through the target. The mean distribution in charge state of the ion beam after passing through the target and its backing is calculated using the computer code ETACHA [36]. This code accounts for electron loss, capture, and excitation from and to all the subshells based on an independent electron model. The measured charge in the Faraday cup using a current integrator has been corrected for the change in charge state and used for \(N_p \) with the incident charge state in Equation (1). Also in this equation, \(t \) is the target thickness in \(\mu g/cm^2 \), \(\varepsilon \) is the absolute detection efficiency (included all absorbing components of the set-up), and \(\beta \equiv [1 - \exp(-\mu t)]/\mu t \) is the correction factor for the absorption of the emitted L x-rays in the present target, where \(\mu \) in \(cm^2/\mu g \) is the attenuation coefficient [37]. The \(\beta \) is \(\geq 0.99 \) for the target thickness used in the present measurements. The energy loss calculation using the SRIM code [38] for the incident beam within the target suggests negligibly small energy loss for the target thickness and the beam energies used in the present work. For example, 76 and 114 MeV fluorine ion lose 267 and 223 keV in Pt, and 104 and 87 keV in U target, respectively. The peak areas, \(N_x \), are evaluated using the computer program CANDLE [39]. This software is an improved version of the Levenburg-Marquardt [40] non-linear minimization algorithms for the peak fitting. The FWHM for the intrinsic Lorentzian broadening associated with the L x-ray lines is \(< 12 \) eV [41]. The energy calibration of the detector is performed before and after the in-beam measurements. Relative efficiency of the x-ray detector in the energy region of interest is deduced by measuring the fluorescence K x-ray yields from various elemental targets excited by the 59.54 keV photons from a point 100 mCi \(^{241}\text{Am} \) source, which was mounted in the chamber instead of the ion beam. The Cu-Al attenuator of suitable thickness is used with the source to remove the low energy \(^{93}\text{Np} \) L x-rays and 26 keV \(\gamma \)-ray emitted from the source. Thick targets of \(^{26}\text{Fe}, \, ^{29}\text{Cu}, \, ^{30}\text{Zn}, \, ^{33}\text{As}, \, ^{34}\text{Se}, \, ^{39}\text{Y}, \, ^{40}\text{Zr}, \, ^{41}\text{Nb}, \, ^{42}\text{Mo}, \, ^{46}\text{Pd}, \, ^{47}\text{Ag}, \, ^{48}\text{Cd}, \, ^{49}\text{In}, \) and \(^{50}\text{Sn} \) elements were excited by the 59.54 keV photons. The efficiency of the detector is calculated from

\[
I_o \Omega \varepsilon_{KX} = \frac{4\pi N_{KX}}{\sigma_{KX} t \beta_{KX}}
\]

where \(I_o \) is the intensity of the incident photons to be collected into the solid angle \(\Omega \) and \(\varepsilon_{KX} \) is the absorption of the x-rays in air and Mylar window. \(N_{KX} \) is the measured count rate under the K x-ray peak, while \(\sigma_{KX} \) is calculated as product of the K shell photoionization cross section...
the fluorescence yield [43,44], and the fractional emission rates [45] for the Kα and Kβ x-rays. As in Eq.(1), \(t \) is the thickness of target element and \(\beta_{\text{KX}} \) is the absorption correction factor that now depends both on the incident \(\theta_i \) and emitted angles \(\theta_e \) with respect to the normal to the target. This self-absorption correction factor, accounting for the attenuation of the incident and the emitted K x-rays of the target element, is given by

\[
\beta_{\text{KX}} = \frac{1 - \exp\left[-\left(\frac{\mu_i}{\cos\theta_i} + \frac{\mu_e}{\cos\theta_e}\right)t\right]}{\left(\frac{\mu_i}{\cos\theta_i} + \frac{\mu_e}{\cos\theta_e}\right)t}\]

(3)

where, \(\mu_i \) and \(\mu_e \) are the mass-attenuation coefficients for the incident and the emitted x-rays in the target calculated using XCOM [37]. A semi-empirically fitted relative efficiency curve is generated by taking into account the absorption of the various K x-rays of the target elements. Figure 3 shows the absolute efficiency \(\varepsilon \) of the Si(Li) detector obtained using the calibrated radioactive sources of \(^{137}\text{Cs}\) and \(^{155}\text{Eu}\). The relative efficiency curve obtained by measuring the K x-ray yields is normalized with respect to the absolute source strength to obtain an absolute efficiency curve.

Although the LƖ line that is weakest in L x-ray spectra is not perfectly isotropic [46–48] differential x-ray production cross sections have been measured at an emission angle \(\Psi = 125^\circ \) where the second-order Legendre polynomial term, \(P_2(\cos\Psi) \approx 0 \). Thus integrated x-ray production cross sections were deduced by multiplying the differential cross sections of Eq.(1) by a factor of \(4\pi \).

The percentage error in the measured x-ray production cross sections is about 10-15%. This error is attributed to the uncertainties in different parameters used in the analysis, namely, the photopeak area evaluation (~ 5% for the LƖ x-ray peak and 3% for the other peaks), ion beam current (~ 7%), target thickness (~ 3%). The error in the absolute efficiency values, \(\varepsilon \), is 5-8% in the energy region of interest. The measured cross sections taken for an element from different locations on the same target are found to agree within the experimental error and their weighted average is given in Table 1.
3. IONIZATION THEORIES

Direct ionization (DI) of inner shells can be calculated with the plane wave Born approximation (PWBA) [49–51], binary encounter approximation (BEA) [7,52] and semi-classical approximation (SCA) [53] while the Oppenheimer-Brinkman-Kramers formulation of Nikolaev (OBKN) [54] may be used to evaluate electron capture (EC). The sum of the PWBA and OBKN constitute the first Born approximation (FBA) for inner-shell ionization [49–51,54] calculations. An approach that goes beyond the FBA is the ECPSSR theory that accounts the energy-loss (E) and Coulomb-deflection (C) of the projectile and perturbed-stationary state (PSS) and relativistic (R) nature of the target’s inner shells [55]. PSS formulas of the ECPSSR theory were further modified for united and separated atom (USA) treatments of the electron wave function to generate the ECUSAR theory [56].

The theoretical x-ray production cross sections $\sigma_{\ell p}^{i}(p = l, \alpha, \beta, \gamma)$ for the most commonly resolved LL, Lα, Lβ, and Lγ lines are related to the σ_{Li} ($i = 1-3$) that are the ionization cross sections for the L$_1$, L$_2$, and L$_3$ as

$$\sigma_{\ell \ell} = [\sigma_{L1}(f_{12}F_{23} + f_{13}) + \sigma_{L2}f_{23} + \sigma_{L3}F_{3\ell}]\omega_{l}F_{3l}$$ \hspace{1cm} (4a)

$$\sigma_{L\alpha} = [\sigma_{L1}(f_{12}F_{23} + f_{13}) + \sigma_{L2}f_{23} + \sigma_{L3}F_{3\alpha}]\omega_{\alpha}F_{3\alpha}$$ \hspace{1cm} (4b)

$$\sigma_{L\beta} = \sigma_{L1}[\omega_{1}F_{3\beta} + f_{12}\omega_{2}F_{23} + (f_{12}f_{23} + f_{13})\omega_{3}F_{3\beta}] + \sigma_{L2}(\omega_{2}F_{23} + f_{23}\omega_{3}F_{3\beta}) + \sigma_{L3}\omega_{3}F_{3\beta}$$ \hspace{1cm} (4c)

$$\sigma_{L\gamma} = \sigma_{L1}[(\omega_{1}F_{1\gamma} + f_{12}\omega_{2}F_{12\gamma}) + \sigma_{L2}\omega_{2}F_{2\gamma}]$$ \hspace{1cm} (4d)

The measured L line x-ray production cross sections and the calculated ones using the L$_i$ subshell ionization cross sections from different theories including the correction for multiple ionization (MI) effects, viz., FBA-MI [49–51,54], ECPSSR-MI [55], and ECUSAR-MI [56] are given in Table 1. The theoretical cross sections have been calculated using the L$_i$ subshell ionization cross sections corresponding to the incident ion charge state. A representative case of L$_i$ subshell ionization in gold bombarded by different charge states of 19F projectile ions based on the FBA [49–51,54] and ECUSAR [56] is shown in the Figure 4. F_{ip} (i = 1-3, p = 1, α, β, γ) are the radiative fractional emission rates. The L x-ray emission rates based on DHS calculation [57] and the interpolated values by Campbell and Wang [45] have been used in the present measurements. For the two datasets of $F_{3\beta}$, $F_{1\gamma}$, and $F_{2\gamma}$ values, the difference is 5-8% over the atomic range $Z_T = 50-92$, whereas, other values of the emission rates differ from each other by
less than 4%. The parameters ω_i ($i = 1-3$) are the fluorescence yields of the L$_i$ subshells and f_{ij} ($i<j$) are the CK yields for the transition between L$_i$ and L$_j$ subshells. The single-hole fluorescence ω_i^0 and CK yields f_{ij}^0 can be obtained from Krause [58] and Chen et al. [59]. As given in Table 2, the datasets of ω_i^0 and f_{ij}^0 significantly differ from each other. For the present elements under consideration, the f_{13}^0(Rec.) values are on the average about 15% lower than the f_{13}^0(DHS) values and ~ 9% higher than the f_{13}^0(Krause) values. The f_{12}^0(Rec.) values differ ~15% in average higher than the f_{12}^0(DHS) values and are about half the f_{12}^0(Krause) values. The f_{23}^0(Rec.) values from different sets do not differ significantly. The ω_2^0(Rec.) and ω_3^0(Rec.) values agree with the DHS values and are higher from Krause’s values below 10% for the present elements. The ω_1^0(Rec.) values differ from ω_1^0(Krause) values by 0-14% and from ω_1^0(DHS) by 13-52%. The use of different sets of atomic parameters can change x-ray production cross section by ~30%. Recent values of ω_i^0 and f_{ij}^0 compiled by Campbell [43,44] for the elements with $25 \leq Z \leq 96$ have been used in the present work for singly-ionized atoms.

4. EFFECT OF SINGLE- AND MULTIPLE-HOLE ATOMIC PARAMETERS ON THE CONVERSION OF IONIZATION TO X-RAY PRODUCTION CROSS SECTIONS

Multiple vacancies in the target atom change the atomic parameters by increasing fluorescence yields and decreasing CK yields which in turn enhances x-ray production cross sections. In the present work, single-hole fluorescence ω_i^0 and CK yields f_{ij}^0 [43], were corrected for multiple ionization using a model prescribed by Lapicki et al. [60]. Each electron in a manifold of the outer subshells is ionized with a probability P which is calculated from Equation (A3) of [60] and replacing the projectile atomic number Z_p by its charge state q [61],

$$P = \frac{q^2}{2\beta v_p^2} \left(1 - \frac{\beta}{4v_p^2} \right)$$

(5)

With $\beta = 0.9$. For charge state q, we take the incident charge state of the projectile. The ω_i^0 values corrected for simultaneous ionization in outer subshells are given by

$$\omega_i = \omega_i^0 \left[1 - P(1 - \omega_i^0) \right]^{-1}$$

(6)

While the f_{ij} values for multiple ionization are given by

$$f_{ij} = f_{ij}^0 (1 - P)^2.$$

(7)
Note that the fractional rates \(F_i \) remain unchanged because both partial and total non-radiative widths are narrowed by identical factors. With Eq. (6) and Eq. (7), the single-hole fluorescence and CK yields change at different ion beam energies and charge states. Fluorescence and CK yields for singly- and multiply-ionized \(^{78}\text{Pt} \) and \(^{92}\text{U} \) elements are given in Table 3. It is clear from this table that in the extreme the \(L_i \) subshell fluorescence yields are enhanced by ~15% and CK yields are reduced up to ~27% from single-hole to multiple-hole atom in \(^{78}\text{Pt} \). These values differ by 2-3% over the range of the ion beam energies and the projectile charge states used in the present experiment.

\(L \)-shell line and total x-ray production cross sections, at corresponding energies and incident charge state of the fluorine ions, are listed in Table 1 and shown in Figures 5-7. Although the connection between observed \(L \) x-ray lines and calculated \(L_i \) subshell ionization cross sections depends on a combination of intra-shell coupling and inner shell multiple ionization effects [62,63], the data for ionization of comparably heavy targets as ours but by significantly slower 4-8 MeV carbon ions [64] show that multiple-ionization is more effective. While both effects subside in the 4-6 MeV/amu range of the present experiment, the effect of the intra-shell coupling is overshadowed by multiple ionization [64]. Thus in Table 1, ignoring the negligible effect the intra-shell coupling, all measured cross sections are compared to the predictions of the FBA [49–51,54], ECPSSR [55], and ECUSAR [56] ionization theories converted to the x-ray production cross sections using multiple-hole atomic parameters calculated with Eqs.(5)-(7). Within experimental error, the ratios of our data to ECPSSR [55] and ECUSAR [56] are practically the same at \(q = 6^+ \) and \(q = 7^+ \); at \(q = 8^+ \), ECUSAR [56] is distinctly better than ECPSSR[55]. After averaging over energies and charge states, for each element Table 4 shows the standard deviations of the so calculated x-ray production cross sections from our measurements. For comparison this table also shows the standard deviations when the ionization theories are converted with single-hole atomic parameters that are listed in Table 3. Theories converted with multiply-ionized atomic parameters are clearly in better agreement with our data.

5. CONCLUSIONS

In the present work, the \(L \) x-ray production cross sections of \(^{78}\text{Pt}, ^{79}\text{Au}, ^{82}\text{Pb}, ^{83}\text{Bi}, ^{90}\text{Th}, \) and \(^{92}\text{U} \) elements for the incident \(^{19}\text{F} \) ions of charge states \(6^+, 7^+ \) and \(8^+ \) have been measured. These data were compared with the theoretical \(L \) x-ray production cross section calculated from the \(L_i \) \((i = 1-3) \) subshell ionization cross sections using FBA, ECPSSR and ECUSAR and recently
recommended set of the $L_i (i = 1-3)$ subshell fluorescence and CK yields with and without modifications for the multiple vacancies in the outer shells. While the measured values are about two times lower than those calculated using the FBA, exhibit agreement with those based on the ECPSSR and ECUSAR calculations. This is particularly so when the fluorescence yields are corrected for the outer-shell multiple ionization. Although the ionization cross sections for the 19F ions with the $6^+, 7^+$, and 8^+ charge states over the ion beam energies used in the present work are almost independent of the charge state, the multiple ionization effect is essentially equal in the ECPSSR-MI and ECUSAR-MI calculations for $q = 6^+$ and 7^+. At $q = 8^+$, the ECUSAR-MI agrees better with the data than the ECPSSR-MI theory.

Singh et al.[28] reported L-x ray production cross sections in gold and bismuth with fluorine ions at 83 and 98 MeV of essentially the same charge state as the present data. While for 79Au their total cross sections fluctuate from as much as 7% above ours at 84 MeV to as much as 27% below ours at 98 MeV, for 83Bi their measurements are below ours by about 22% at 84 MeV and almost 43% below at 98 MeV. Even with a conservative estimate of 20% for experimental errors, the discrepancies between the Singh et al.[28] and our measurements are difficult to explain, and suggest that - aside from its inherent interest for comparison with theories and PIXE applications - it would be worth for other experimentalists to revisit this collision regime.

Acknowledgements

Financial support from the Science and Engineering Research Board (SERB), New Delhi to Dr. Sunil Kumar in terms of Young Scientist Scheme and grant from IUAC, New Delhi in terms of UF-UP-43302 project is highly acknowledged. Author also acknowledges the work of Pelletron staff for smooth conduct of experiment.
Figure Captions

Fig.1 L x-ray spectra from 78Pt, 79Au, 82Pb, 83Bi, ThF$_4$, UF$_4$ bombarded with the 98 MeV 19F ions.

Fig.2 L x-ray spectra from 92U (48.6 μg/cm2 UF$_4$ target) bombarded with 76, 84, 90, 98, 106, and 114 MeV 19F ions.

Fig.3 Efficiency curve obtained by measuring the K x-rays fluorescence yields from targets excited by the 59.54 keV γ-ray photons. Measured values were normalized to absolute efficiency obtained using the calibrated 137Cs and 155Eu radioactive sources.

Fig.4 L\it{l} subshell ionization in gold bombarded by 19F ions based on the FBA [49–51,54] and ECUSAR [56].

Fig.5 L\it{l}, Lγ, Lβ, Lα and total L x-ray production in 78Pt and 79Au targets bombarded by 19F ions according to FBA-MI, ECUSAR-MI, and present measurements.

Fig.6 L\it{l}, Lγ, Lβ, Lα and total L x-ray production in 82Pb and 83Bi targets bombarded by 19F ions according to FBA-MI, ECUSAR-MI, and present measurements.

Fig.7 L\it{l}, Lγ, Lβ, Lα and total L x-ray production in 90Th and 92U targets bombarded by 19F ions according to FBA-MI, ECUSAR-MI, and present measurements.
References

[1] Satoh T 2015 Development of particle induced X-ray emission-computed tomography in Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency Int. J. PIXE 25 147

[2] Sharma P and Nandi T 2016 Experimental evidence of beam-foil plasma creation during ion-solid interaction Phys. Plasmas 23 83102

[3] Dyson N A 1990 X-rays in atomic and nuclear physics (Cambridge University Press)

[4] Antoszewska-Moneta M, Brzozowski R and Moneta M 2015 Modification of thin films induced by slow heavy ions analysed with PIXE and SRIM Eur. Phys. J. D 69 77

[5] Gillespie A W, Phillips C L, Dynes J J, Chevrier D, Regier T Z and Peak D 2015 Advances in Using Soft X-Ray Spectroscopy for Measurement of Soil Biogeochemical Processes Adv. Agron. 133 1

[6] Johansson T B, Akselsson R and Johansson S A E 1970 X-ray analysis: Elemental trace analysis at the 10-12 g level Nucl. Inst. Meths. B 84 141

[7] Garcia J D 1970 Inner-Shell Ionizations by Proton Impact Phys. Rev. A 1 280

[8] Richard P 1975 Ion-Atom Collisions, in Atomic Inner-Shell Processes ed B Crasemann (New York: Academic Press) Vol.1 p.79

[9] Joseph D, Nageshwara Rao S V S and Kailas S 2013 Measurement of L X-Ray Production Cross-Sections of Au , Ho , Bi and K-X-Ray Cross Sections of Nb , Sn , Sb by Using Protons of Energy 4 MeV Mapana J. Sci. 12 1

[10] Zhou X, Zhao Y, Cheng R, Wang Y, Lei Y, Wang X and Sun Y 2013 K and L-shell X-ray production cross sections for 50–250 keV proton impact on elements with Z=26–30 Nucl. Inst. Meths. B 299 61

[11] Miranda J, Murillo G, Méndez B, López-Monroy J, Aspiazu J, Villaseñor P, Pineda J C and Reyes-Herrera J 2013 Measurement of L X-ray production cross sections by impact of proton beams on Hf, Ir, and Tl Nucl. Inst. Meths. B 316 113

[12] Bertol A P L, Trincavelli J, Hinrichs R and Vasconcellos M A Z 2014 L-shell X-ray production cross sections induced by protons and alpha-particles in the 0.7-2.0 MeV/amu range for Ru and Ag Nucl. Instr. Meth. B 318 19

[13] Batyrbekov E, Gorlachev I, Ivanov I and Platov A 2014 K-, L- and M-shell x-ray production cross sections by 1–1.3MeV protons Nucl. Instr. Meth. B 325 84

[14] Miranda J and Lapicki G 2014 Experimental cross sections for L-shell x-ray production and ionization by protons At. Data Nucl. Data Tables 100 651
[15] Mohan H, Jain A K, Kaur M, Singh P S and Sharma S 2014 Cross section for induced L X-ray emission by protons of energy < 400keV Nucl. Instr. Meth. B 332 103
[16] Bertol A P L, Hinrichs R and Vasconcellos M A Z 2015 Proton induced L1, L2, L3-sub-shell X-ray production cross sections of Hf and Au Nucl. Instr. Meth. B 363 28
[17] Siegle R, Cohen D D and Dytlewski N 1999 The ANSTO high energy heavy ion microprobe Nucl. Inst. Meths. B 158 31
[18] Naga Raju G J, Ramana Murty G A V, Seetharami Reddy B, Seshi Reddy T, Lakshminarayana S and Bhuloka Reddy S 2004 Multiple ionization effects on L X-ray intensity ratios in Hf, Ta, Re, Ir, Pt, Au and Pb due to proton bombardment at energies 1-5 MeV Eur. Phys. J. D 30 171
[19] Uchai W, Lapicki G, Milner W T, Raman S, Rao P V and Vane C R 1985 L X-ray emission from high-Z elements after ionisation by 1 MeV u -1 Ag ions J. Phys. B 18 L389
[20] Ito S, Shoji M, Maeda N, Katano R, Mukoyama T, Ono R, Nakayama Y, P L F, S M T and I, Parente F, Chen M H C B and M H, H S J, Uchai W, Lapicki G, Milner W T, Raman S R P V and V C R and Uchai W, Nestor C W R S and V C R 1987 L γ X-ray emission in heavy-ion bombardment of Bi J. Phys. B 20 L597
[21] Berinde A, Ciortea C, Enulescu A, Fluerasu D, Hock G, Piticu I, Sarkadi L, Sulik B and Zoran V 1987 On the L-M-N multiple ionisation in heavy elements J. Phys. B 20 L481
[22] Braziewicz J, Semaniak J, Czyzewski T, Glowacka L, Jaskola M, Haller M, Karschnick R, Kretschmer W and Trautmann D 1994 L-subshell ionization of rare earth elements by carbon ion bombardment J. Phys. B 27 1535
[23] Mehta R, Sun H L, Marble D K, Duggan J L, McDaniel F D and Lapicki G 1995 L-shell X-ray production by 2-12 MeV carbon ions in fifteen selected elements from copper to lead J. Phys. B 28 1187
[24] Yu Y, Wang C, Lin E and Liu T 1997 L x-ray production in lanthanide elements by 1-5 MeV helium ions J. Phys. B 30 5791
[25] Bogdanović I, Tadić T, Jakšić M, Halabuka Z and Trautmann D 1999 L-shell ionization of Cd, Sb, Te, Ba, La, Eu, Tb and Yb by 16O ions in the energy range from 0.19 to 0.75 MeV u-1 Nucl. Instr. Meth. B 150 18
[26] Yu Y C, Azordegan A R, Sun H L, Duggan J L, McDaniel F D, Lin E K, Wang C W and Lapicki G 1999 Charge state dependence of L-shell X-ray production cross sections of 28Ni, 29Cu, 30Zn, 31Ga and 32Ge by 12 MeV 16Oq+ ions Nucl. Instr. Meth. B 150 27
[27] Mitra D, Sarkar M, Bhattacharya D, Sen P and Lapicki G 1999 L subshell ionisation cross section of gold by 8-15 MeV Si ions Nucl. Instr. Meth. B 152 207
[28] Singh Y P, Mitra D, Tribedi L C and Tandon P N 2000 L-subshell ionization of Bi, Au, and Yb induced by F ions at intermediate velocities Phys. Rev. A 63 12713
[29] Banaś D, Pajek M, Semaniak J, Braziewicz J, Kubala-Kukuś A, Majewska U, Czyżewski T, Jaskóła M, Kretschmer W, Mukoyama T and Trautmann D 2002 Multiple ionization effects in low-resolution X-ray spectra induced by energetic heavy ions Nucl. Instr. Meth. B 152 207
[30] Banaś D, Braziewicz J, Pajek M, Semaniak J, Czyżewski T, Fijal I, Jaskóła M, Kretschmer W, Mukoyama T and Trautmann D 2002 The role of multiple ionization and subshell coupling effects in L-shell ionization of Au by oxygen ions J. Phys. B 35 3421
[31] Pajek M, Banaś D, Semaniak J, Braziewicz J, Majewska U, Chojnacki S, Czyżewski T, Fijał I, Jaskóła M, Glombik A, Kretschmer W, Trautmann D, Lapicki G and Mukoyama T 2003 Multiple ionization and coupling effects in L-subshell ionization of heavy atoms by oxygen ions Phys. Rev. A 68 1
[32] Czarnota M, Banaś D, Berset M, Chmielewska D, Dousse J-C, Hoszowska J, Maillard Y-P, Mauron O, Pajek M, Polasik M, Raboud P A, Rzadkiewicz J, Słabkowska K and Sujkowski Z 2010 High-resolution X-ray study of the multiple ionization of Pd atoms by fast oxygen ions Eur. Phys. J. D 57 321
[33] Miranda J, Murillo G, Méndez B, López-Monroy J, Díaz R V, Aspiazu J and Villaseñor P 2013 L-shell X-ray production cross sections of selected lanthanoids by impact of 7Li2+ ions with energies between 3.50MeV and 5.25MeV Radiat. Phys. Chem. 83 48
[34] Murillo G, Méndez B, López-Monroy J, Miranda J and Villaseñor P 2016 L-shell X-ray production cross sections of Ce, Nd, Sm, Eu, Gd, and Dy by impact of 14N2+ ions with energies between 7.0MeV and 10.5MeV Nucl. Instr. Meths. B 383 89
[35] Kalkal S, Abhilash S R, Kabiraj D, Mandal S, Madhavan N and Singh R 2010 Fabrication of 90,94Zr targets on carbon backing Nucl. Instr. Meth. A 613 190
[36] Rozet J P, Stéphan C and Vernhet D 1996 ETACHA: a program for calculating charge states at GANIL energies Nucl. Instr. Meths. B 107 67
[37] Berger M, Hubbell J, Seltzer S and Chang J 1998 XCOM: photon cross sections database NIST Stand. Ref. 8 3587
[38] Ziegler J F, Ziegler M D and Biersack J P 2010 SRIM – The stopping and range of ions in matter (2010) Nucl. Inst. Meths. B 268 1818
[39] Subramaniam E and Kumar B 2010 Data Acquisition Systems-Current and Future
Trends DAE Symp. Nucl. Phys 117

[40] Marquardt D W 1963 Algorithm for Least-Squares Estimation of Nonlinear Parameters J. Soc. Indust. Appl. Math 11 431

[41] Campbell J L and Papp T 2001 Widths of the Atomic K–N7 Levels At. Data Nucl. Data Tables 77 1

[42] Scofield J H 1973 Theoretical photoionization cross sections from 1 to 1500 keV, Lawrence Livermore Laboratory Report No, UCRL-51326 (California)

[43] Campbell J L 2003 Fluorescence yields and Coster – Kronig probabilities for the atomic L subshells q At. Data Nucl. Data Tables 85 291

[44] Campbell J L 2009 Fluorescence yields and Coster-Kronig probabilities for the atomic L subshells. Part II: The L1 subshell revisited At. Data Nucl. Data Tables 95 115

[45] Campbell J L and Wang J X 1989 Interpolated Dirac–Fock values of L-subshell x-ray emission rates including overlap and exchange effects At. Data Nucl. Data Tables 43 281

[46] Sarkadi L and Mukoyamai T 1980 Measurements of L x-ray production and subshell ionisation cross sections of gold by light and heavy ion bombardment in the energy range 0 . 4-3-4 MeV J. Phys B 13 2255

[47] Palinkas J, Sarkadi L, Schlenk B, Torok I, Kalman G, Bauer C, Brankoff K, Grambole D, Heiser C, Rudolph W and Thomas H J 1984 Study of the L-shell ionisation of gold by 3.0-18.2 MeV nitrogen-ion bombardment J. Phys. B 17 131

[48] Kumar A, Agnihotri A N, Chatterjee S, Kasthurirangan S, Misra D, Choudhury R K, Sarkadi L and Tribedi L C 2010 L3-subshell alignment of Au and Bi in collisions with 12-55-MeV carbon ions Phys. Rev. A 81 62709

[49] Merzbacher E and Lewis H W 1958 Handbuch der Physik, ed S. Flügge (Springer, Berlin) Vol,38, p.161.

[50] Khandelwal G S, Choi B -H, and Merzbacher E 1969 Tables for Born approximation calculations of K and L-shell ionization by protons and other charged particles At. Data Nucl. Data Tables 1 103

[51] Choi B -H, Merzbacher E and Khandelwal G S 1973 Tables for Born Approximation Calculations of L-Subshell Ionization By Simple Heavy Charged Particles At. Data Nucl. Data Tables 5 291

[52] Hansen J S 1973 Formulation of the Binary-Encounter Approximation in Configuration Space and its Application to Ionization by Light Ions Phys. Rev. A 8 822

[53] Hansteen J M and Mosebekk O P 1970 Inner shell ionization by heavy, charged particles
and associated energy loss of the projectile Zeit. fur Phys. 234 281

[54] Nikolaev V S 1966 Calculation of the effective cross section for proton charge exchange in multi-electron atoms Zh.Eksp.Teor.Fiz. 51 (1966) 1263 [Sov. Phys.-1967 JETP. 24 847].

[55] Brandt W and Lapicki G 1981 Energy-loss effect in inner-shell Coulomb ionization by heavy charged particles Phys. Rev. A 23 1717

[56] Lapicki G 2002 The status of theoretical L-subshell ionization cross sections for protons Nucl. Instr. Meths. B 189 8

[57] Scofield J H 1974 Relativistic hartree-slater values for K and L X-ray emission rates At. Data Nucl. Data Tables 14 121

[58] Krause M O 1979 Atomic radiative and radiationless yields for K and L shells J. Phys. Chem. Ref. Data 8 307

[59] Chen M H, Crasemann B and Mark H 1981 Widths and fluorescence yields of atomic L-shell vacancy states Phys. Rev. A 24 177

[60] Lapicki G, Mehta R, Duggan J L, Kocur P M, Price J L and McDaniel F D 1986 Multiple outer-shell ionization effect in inner-shell x-ray production by light ions Phys. Rev. A 34 3813

[61] Mehta R, Duggan J L, McDaniel F D, Mcneir M R, Yu Y C, Marble D K and Lapicki G 1993 L-shell X-ray production cross sections for 29Cu, 31Ga, 32Ge, 35Br, 39Y, 60Nd, 64Gd, 67Ho, 70Yb, 79Au, and 82Pb for 2-25 MeV carbon ions Nucl. Instr. Meths. B 79 175

[62] Sarkadi L 1986 L3-subshell alignment calculations in the second-order Born approximation for light- and heavy-ion impact on Au J. Phys. B At. Mol. Phys. 19 2519

[63] Sarkar M, Bhattacharya D, Chatterjee M B, Sen P, Kuri G, Mahapatra D P and Lapicki G 1995 Importance of subshell coupling in L-shell ionization by low-velocity heavy ions Nucl. Instr. Meth. B 103 23

[64] Lapicki G, Ramana Murty G A V., Naga Raju G J, Reddy B S, Reddy S B and Vijayan V 2004 Effects of multiple ionization and intrashell coupling in L-subshell ionization by heavy ions Phys. Rev. A 70 62718
Table 1. The LƖ, Lα, Lβ, Lγ, and total L x-ray production cross section (barn) in elements with 78≤Z≤92 for incident 19F ions as measured and calculated with ionization cross sections according to the FBA [49–51,54], ECPSSR [55], and ECUSAR [56] converted to x-ray production cross sections with atomic parameters modified for multiply-ionized (MI) elements [60]. The ratios of the measured to calculated cross sections are listed in the parenthesis. In bold print are the best ratios. With q = 6+ and 7+, the ratios of the data to ECUSAR-MI and ECPSSR-MI are (within 15% uncertainties of our measurements) statistically similar, while the ECUSAR-MI are definitely in closer agreement with the measurements than ECPSSR-MI above 100 MeV and q = 8+.

Element	19F ion beam	x-ray production cross sections (barn)				
	Energy (MeV)	Charge q	Measured	ECUSAR-MI	ECPSSR-MI	FBA-MI
78Pt						
LƖ x-ray	76	6+	206	207(1.00)	203(1.01)	417(0.49)
	84	6+	226	253(0.89)	249(0.91)	474(0.48)
	90	7+	260	296(0.88)	291(0.89)	534(0.49)
	98	8+	323	372(0.87)	347(0.93)	678(0.48)
	106	8+	423	425(1.00)	385(1.10)	737(0.57)
	114	8+	416	477(0.87)	448(0.93)	794(0.52)
Lα x-ray	76	6+	4449	4166(1.07)	4092(1.09)	8411(0.53)
	84	6+	4685	5110(0.92)	5018(0.93)	9567(0.49)
	90	7+	5749	5975(0.96)	5863(0.98)	10768(0.53)
	98	8+	7015	7507(0.93)	7009(1.00)	13677(0.51)
	106	8+	8602	8568(1.00)	7758(1.11)	14872(0.58)
	114	8+	8811	9624(0.92)	8045(1.10)	16008(0.55)
Lβ x-ray	76	6+	2532	2373(1.07)	2339(1.08)	5169(0.49)
	84	6+	3037	2962(1.03)	2919(1.04)	5940(0.51)
	90	7+	3613	3517(1.03)	3463(1.04)	6826(0.53)
	98	8+	4338	4466(0.971)	4219(1.028)	8593(0.50)
	106	8+	5507	5169(1.07)	4713(1.17)	9482(0.58)
	114	8+	6007	5879(1.02)	5576(1.08)	10340(0.58)
Lγ x-ray	76	6+	346	342(1.01)	337(1.03)	776(0.45)
	84	6+	498	433(1.15)	428(1.16)	898(0.55)
---	---	---	---	---	---	
90	7⁺	481	521(0.92)	514(0.94)	1051(0.46)	
98	8⁺	598	667(0.90)	636(0.94)	1315(0.45)	
106	8⁺	804	780(1.03)	715(1.12)	1466(0.55)	
114	8⁺	883	895(0.99)	855(1.03)	1615(0.55)	
Total						
76	6⁺	7533	7087(1.06)	6971(1.08)	14773(0.51)	
84	6⁺	8377	8758(0.96)	8614(0.97)	16880(0.50)	
90	7⁺	10103	10309(0.98)	10131(1.00)	19180(0.53)	
98	8⁺	12274	13012(0.94)	12211(1.01)	24263(0.51)	
106	8⁺	15337	14941(1.03)	13571(1.13)	26558(0.58)	
114	8⁺	16117	16876(0.96)	15924(1.01)	28755(0.56)	

79Au

LƖ x-ray

76	6⁺	182	193(0.94)	189(0.96)	395(0.46)
84	6⁺	220	237(0.93)	233(0.94)	450(0.49)
90	7⁺	270	278(0.97)	273(0.99)	508(0.53)
98	8⁺	323	349(0.93)	327(0.99)	643(0.50)
106	8⁺	453	400(1.13)	363(1.25)	701(0.65)
114	8⁺	463	451(1.03)	424(1.09)	757(0.61)

Lαx-ray

76	6⁺	3854	3829(1.01)	3765(1.02)	7849(0.49)
84	6⁺	3921	4713(0.83)	4634(0.85)	8952(0.44)
90	7⁺	5344	5521(0.97)	5421(0.99)	10097(0.53)
98	8⁺	6416	6939(0.93)	6498(0.99)	12775(0.50)
106	8⁺	8632	7948(1.09)	7210(1.20)	13940(0.62)
114	8⁺	9574	8958(1.07)	8437(1.13)	15054(0.64)

Lβx-ray

76	6⁺	2169	2160(1.00)	2130(1.03)	4776(0.45)	
84	6⁺	2397	2704(0.89)	2667(0.90)	5504(0.44)	
90	7⁺	3265	3216(1.02)	3168(1.03)	6333(0.52)	
------	------	------	------	------	------	
	8^+	3850	4084(0.94)	3868(1.00)	7945(0.48)	
	106	5382	4742(1.13)	4331(1.24)	8792(0.61)	
	114	6224	5411(1.15)	5141(1.21)	9614(0.65)	
	6^+	76	294	313(0.94)	309(0.95)	723(0.41)
		84	276	398(0.69)	393(0.70)	839(0.33)
		90	441	479(0.92)	473(0.93)	983(0.45)
		98	720	614(1.17)	587(1.23)	1225(0.59)
		106	791	721(1.10)	662(1.19)	1371(0.58)
		114	987	830(1.19)	794(1.24)	1513(0.65)
Total L						
	6^+	76	6499	6494(1.00)	6394(1.02)	13742(0.47)
		84	6814	8052(0.85)	7928(0.86)	15746(0.43)
		90	9319	9493(0.98)	9335(1.00)	17920(0.52)
		98	11309	11987(0.94)	11279(1.00)	22587(0.50)
		106	15258	13811(1.14)	12565(1.21)	24804(0.62)
		114	17249	15649(1.10)	14797(1.17)	26938(0.64)
82Pb						
Ll x-ray	6^+	76	152	138(1.10)	151(1.01)	327(0.46)
		84	163	189(0.86)	187(0.87)	375(0.43)
		90	215	223(0.96)	219(0.98)	425(0.51)
		98	260	280(0.93)	264(0.98)	533(0.49)
		106	370	324(1.14)	295(1.25)	586(0.63)
		114	325	367(0.89)	348(0.93)	637(0.51)
Lα x-ray	6^+	76	3010	2611(1.15)	2858(1.05)	6206(0.49)
		84	3000	3595(0.83)	3539(0.85)	7122(0.42)
		90	4202	4228(0.994)	4159(1.010)	8057(0.52)
		98	4794	5321(0.90)	5015(0.96)	10110(0.47)
		106	6747	6140(1.10)	5593(1.21)	11110(0.61)
		114	6799	6971(0.98)	6596(1.03)	12077(0.56)
Lβ x-ray	18					
---	---	---	---	---	---	
76	6⁺	1662	1559 (1.07)	1605 (1.04)	3752 (0.44)	
84	6⁺	1743	2048 (0.85)	2022 (0.86)	4354 (0.40)	
90	7⁺	2455	2445 (1.00)	2412 (1.02)	5021 (0.49)	
98	8⁺	2886	3108 (0.93)	2961 (0.97)	6247 (0.46)	
106	8⁺	4112	3637 (1.13)	3334 (1.23)	6962 (0.59)	
114	8⁺	4415	4181 (1.06)	3993 (1.11)	7665 (0.58)	

Lγ x-ray

76	6⁺	216	236 (0.915)	234 (0.923)	572 (0.38)
84	6⁺	212	302 (0.70)	299 (0.71)	670 (0.32)
90	7⁺	371	366 (1.01)	362 (1.02)	787 (0.47)
98	8⁺	398	470 (0.85)	451 (0.88)	973 (0.41)
106	8⁺	587	556 (1.06)	512 (1.15)	1097 (0.54)
114	8⁺	647	646 (1.00)	622 (1.04)	1220 (0.53)

Total L

76	6⁺	5039	4544 (1.11)	4848 (1.04)	10858 (0.46)
84	6⁺	5118	6135 (0.83)	6047 (0.85)	12522 (0.41)
90	7⁺	7242	7262 (1.00)	7152 (1.01)	14290 (0.51)
98	8⁺	8338	9180 (0.91)	8692 (0.96)	17862 (0.47)
106	8⁺	11816	10658 (1.11)	9734 (1.21)	19754 (0.60)
114	8⁺	12186	12165 (1.00)	11558 (1.05)	21598 (0.56)

83Bi

Li x-ray

76	6⁺	172	142 (1.21)	140 (1.23)	307 (0.56)
84	6⁺	162	176 (0.92)	173 (0.94)	353 (0.46)
90	7⁺	181	207 (0.87)	204 (0.89)	400 (0.45)
98	8⁺	259	261 (0.99)	246 (1.05)	500 (0.52)
106	8⁺	361	301 (1.12)	275 (1.31)	551 (0.66)
114	8⁺	311	343 (0.91)	325 (0.96)	600 (0.52)

Lα x-ray

76	6⁺	2963	2648 (1.12)	2610 (1.14)	5744 (0.52)	
84	6⁺	2860	3287 (0.87)	3238 (0.88)	6603 (0.43)	
90	7⁺	3428	3871 (0.89)	3811 (0.90)	7476 (0.46)	
98	8⁺	4730	4873 (0.971)	4602 (1.028)	9355 (0.51)	
106	8⁺	6015	5635 (1.07)	5138 (1.17)	10301 (0.58)	
114	8⁺	6557	6411 (1.02)	6075 (1.08)	11220 (0.58)	
	76 6⁺	84 6⁺	90 7⁺	98 8⁺	106 8⁺	114 8⁺
-----	-------	-------	-------	-------	--------	--------
Lβ	1630	1648	2049	2746	3638	4253
	1480(1.10)	1868(0.88)	2232(0.92)	2839(0.97)	3329(1.09)	3836(1.11)
	1462(1.11)	1845(0.89)	2203(0.93)	2709(1.01)	3055(1.19)	3668(1.16)
	3465(0.47)	4028(0.41)	4648(0.44)	5767(0.48)	6441(0.56)	7106(0.60)
Lγ	213	190	255	374	657	596
	215(0.99)	276(0.688)	335(0.76)	430(0.87)	511(1.29)	595(1.00)
	213(1.00)	274(0.693)	331(0.77)	414(0.90)	471(1.39)	573(1.04)
	530(0.40)	622(0.31)	731(0.35)	902(0.41)	1019(0.64)	1137(0.52)
Total L	4978	4859	5913	8109	10671	11717
	4485(1.11)	5607(0.87)	6645(0.89)	8402(0.97)	9776(1.09)	11185(1.05)
	4425(1.12)	5530(0.88)	6550(0.90)	7972(1.02)	8940(1.19)	10642(1.10)
	10046(0.50)	11607(0.42)	13255(0.45)	16525(0.49)	18313(0.58)	20064(0.58)

	76 6⁺	84 6⁺	90 7⁺	98 8⁺	106 8⁺	114 8⁺
Th	86	108	144	144	204	297
	85(1.01)	106(1.02)	126(1.17)	159(0.91)	186(1.10)	213(1.39)
	84(1.02)	105(1.03)	125(1.18)	152(0.95)	171(1.19)	205(1.45)
	203(0.42)	235(0.46)	267(0.55)	328(0.44)	366(0.56)	403(0.74)

	76 6⁺	84 6⁺	90 7⁺	98 8⁺	106 8⁺	114 8⁺
α	1365	1510	2411	2453	3375	3717
	1416(0.96)	1775(0.85)	2104(1.15)	2646(0.93)	3099(1.09)	3554(1.05)
	1401(0.97)	1755(0.86)	2078(1.16)	2534(0.97)	2854(1.18)	3421(1.09)
	3378(0.40)	3923(0.38)	4457(0.54)	5470(0.45)	6095(0.55)	6716(0.55)

Lβ x-ray
76	6⁺	757	762(0.99)	755(1.00)	1960(0.39)
84	6⁺	807	970(0.83)	961(0.84)	2297(0.35)
90	7⁺	1313	1165(1.13)	1153(1.14)	2662(0.49)
98	8⁺	1346	1479(0.91)	1430(0.94)	3249(0.41)
106	8⁺	1860	1757(1.06)	1628(1.14)	3672(0.51)
114	8⁺	2125	2034(1.05)	1983(1.07)	4098(0.52)

Lγ x-ray

76	6⁺	109	109(1.00)	108(1.01)	299(0.36)
84	6⁺	114	141(0.809)	140(0.814)	353(0.32)
90	7⁺	200	172(1.16)	171(1.17)	418(0.48)
98	8⁺	192	221(0.87)	216(0.89)	508(0.38)
106	8⁺	302	267(1.13)	248(1.22)	582(0.52)
114	8⁺	340	311(1.09)	308(1.10)	658(0.52)

Total L

76	6+	2318	2371(0.98)	2348(0.99)	5839(0.40)
84	6+	2538	2993(0.85)	2961(0.86)	6808(0.37)
90	7+	4072	3566(1.14)	3527(1.15)	7804(0.52)
98	8+	4136	4505(0.92)	4332(0.95)	9556(0.43)
106	8+	5742	5309(1.08)	4901(1.17)	10715(0.54)
114	8+	6479	6112(1.06)	5918(1.09)	11876(0.55)

92U

Ll x-ray

76	6⁺	97	75(1.29)	74(1.31)	183(0.53)
84	6⁺	91	94(0.97)	93(0.98)	213(0.43)
90	7⁺	194	111(1.75)	110(1.76)	242(0.80)
98	8⁺	203	140(1.45)	134(1.51)	296(0.69)
106	8⁺	262	164(1.60)	152(1.72)	330(0.79)
114	8⁺	293	190(1.54)	182(1.61)	365(0.80)

Lα x-ray

76	6⁺	1113	1205(0.92)	1192(0.93)	2955(0.38)
84	6⁺	1250	1513(0.83)	1497(0.84)	3439(0.36)
90	7⁺	1997	1795(1.11)	1774(1.13)	3906(0.51)
98	8⁺	2201	2255(0.976)	2168(1.015)	4767(0.46)
106	8⁺	2871	2649(1.08)	2446(1.17)	5325(0.54)
114	8⁺	3184	3060(1.04)	2942(1.08)	5883(0.54)

Lβ x-ray
Table 2. Fluorescence and CK yields for singly-ionized elements. Values listed as recommended by Campbell [43,44] are used in the present work.

Element	Fluorescence yield								
	\(\omega_1^0 \)	\(\omega_2^0 \)	\(\omega_3^0 \)						
	Campbell [43,44]	Krause [58]	Chen et al [59]	Campbell [43,44]	Krause [58]	Chen et al [59]	Campbell [43,44]	Krause [58]	Chen et al [59]
78Pt	0.114	0.114	0.074	0.344	0.321	0.344	0.303	0.306	0.303
79Au	0.117	0.107	0.078	0.358	0.334	0.358	0.313	0.320	0.313
82Pb	0.128	0.112	0.093	0.397	0.373	0.397	0.343	0.360	0.343
83Bi	0.132	0.117	0.098	0.411	0.387	0.411	0.353	0.373	0.353
90Th	0.159	0.161	0.139	0.503	0.479	0.503	0.424	0.463	0.424
Element	CK yield								
---------	----------								
	f_{13}^0	f_{12}^0	f_{23}^0						
	Campbell	Krause	Chen et al						
	[43,44]	[58]	[59]						
78Pt	0.545	0.500	0.716	0.075	0.140	0.067	0.126	0.124	0.132
79Au	0.615	0.530	0.711	0.074	0.140	0.068	0.125	0.122	0.129
82Pb	0.620	0.580	0.708	0.066	0.120	0.054	0.119	0.116	0.123
83Bi	0.620	0.580	0.703	0.063	0.110	0.055	0.117	0.113	0.121
90Th	0.620	0.570	0.659	0.040	0.090	0.058	0.103	0.108	0.106
92U	0.620	0.570	0.660	0.035	0.080	0.051	0.140	0.167	0.139

Table 3. Fluorescence and CK yields for singly-ionized [43,44] and the ratios of atomic parameters for multiply-ionized [60] to these singly-ionized for 78Pt and 92U.

Ion beam	Fluorescence yield	CK yield					
Energy (MeV)	Charge state q	ω_1	ω_2	ω_3	f_{13}	f_{12}	f_{23}
Singly-ionized 78Pt							
0.114	0.344	0.303	0.545	0.075	0.126		

| Ratios of atomic parameters for multiply [60] to singly [43,44] ionized 78Pt |
76	6^+	1.123	1.087	1.096	0.767	0.773	0.770
84	6^+	1.114	1.078	1.086	0.789	0.787	0.786
90	7^+	1.140	1.102	1.109	0.736	0.733	0.738
98	8^+	1.175	1.125	1.135	0.688	0.693	0.690
Table 4. Standard deviation of the theoretical estimates for singly (SI) and multiply (MI) ionized atoms with respect to measured values. The average standard deviation over all six target elements is also given.

Theory	Target	Standard deviation of theories from the present experimental results	LƖ	Lα	Lβ	Lγ	L-Total
ECPSSR-SI	Pt	20.4 15.9 20.2 17.1 17.1	20.4	15.9	20.2	17.1	17.1
	Au	19.5 18.8 21.5 23.2 19.9	19.5	18.8	21.5	23.2	19.9
	Pb	23.0 18.8 19.8 15.8 18.9	23.0	18.8	19.8	15.8	18.9
	Bi	34.3 18.8 19.6 27.2 19.5	34.3	18.8	19.6	27.2	19.5
	Th	22.7 17.3 15.5 18.5 16.8	22.7	17.3	15.5	18.5	16.8
	U	43.7 16.1 17.6 20.9 18.2	43.7	16.1	17.6	20.9	18.2
	Average	27.3 17.6 19.0 20.5 18.4	27.3	17.6	19.0	20.5	18.4
ECUSAR-SI	Pt	18.5 14.6 22.1 19.9 17.5	18.5	14.6	22.1	19.9	17.5
	Au	16.3 15.9 19.2 21.4 17.3	16.3	15.9	19.2	21.4	17.3
	Pb	19.8 16.3 17.2 13.4 16.2	19.8	16.3	17.2	13.4	16.2
	Bi	29.8 15.4 17.0 24.3 16.3	29.8	15.4	17.0	24.3	16.3
	Th	21.6 14.9 13.3 16.6 14.6	21.6	14.9	13.3	16.6	14.6
	U	42.6 14.1 15.2 18.8 16.0	42.6	14.1	15.2	18.8	16.0
	Average	24.8 15.2 17.3 19.0 16.3	24.8	15.2	17.3	19.0	16.3
ECPSSR -MI	Pt	21.8 9.5 11.1 9.7 8.9	21.8	9.5	11.1	9.7	8.9
	Au	14.4 14.0 15.5 17.3 14.5	14.4	14.0	15.5	17.3	14.5
	Pb	19.3 14.2 13.8 12.3 13.7	19.3	14.2	13.8	12.3	13.7
Element	ECUSAR-MI						
---------	-----------	---	---	---	---		
Bi	28.5	13.6	13.7	23.7	14.0		
Th	19.5	12.7	10.8	13.8	12.2		
U	40.0	11.8	12.7	16.2	13.4		
Average	23.9	12.6	12.9	15.5	12.8		
Pt	25.3	10.3	5.1	8.0	6.1		
Au	9.3	9.5	11.1	14.1	9.8		
Pb	17.2	11.8	9.8	11.4	10.4		
Bi	23.4	9.3	10.6	20.9	9.6		
Th	17.3	9.6	8.7	11.9	9.4		
U	37.1	8.5	9.7	14.0	10		
Average	21.6	9.8	9.7	13.4	9.2		
Figure 1

[Graphs showing X-ray energy spectra for different elements, including 78Pt, 79Au, 82Pb, 83Bi, 90Th, and 92U]
Figure 2
Figure 3
Figure 4
Figure 5
Figure 7