A study on the characteristics of resin composites for provisional restorations

Yuta KATAYAMA¹, Katsura OHASHI¹, Taro IWASAKI², Yuka KAMEYAMA¹, Yuuki WADA¹, Kaori MIYAKE¹, Yasuhiro TANIMOTO² and Tomotaro NIHEI¹

¹ Division of Clinical Biomaterials, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
² Department of Dental Biomaterials, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan

Corresponding author, Katsura OHASHI; E-mail: ohashi@kdu.ac.jp

In this study, we evaluated the characteristics of five commercial resin composites used for provisional restorations. The inorganic filler contents of the resins were measured, and three-point bending, wear, surface hardness, water absorption, and staining tests were performed. The specimens underwent additional three-point bending tests after water storage and undergoing thermal stresses at 5°C and 55°C (10,000 cycles). Data were analyzed using one- or two-way analysis of variance and Bonferroni post-hoc tests. Pearson's correlation coefficient was used for pairwise comparisons. Each resin composite presented with different mechanical properties, based on variations in the inorganic filler content. The flexural strength of each resin composite was significantly decreased after water storage. There is a positive correlation between flexural strength and dynamic hardness but a negative correlation between flexural strength and maximum wear depth. The types and contents of the inorganic fillers, the composition of the monomer in the resin matrix, and the addition of plasticizers can affect the properties of the material.

Keywords: Provisional restoration, Resin composite, Mechanical property, Water absorption, Staining

Received Jan 12, 2021; Accepted Oct 8, 2021
doi:10.4012/dmj.2021-006 JOI JST.JSTAGE/dmj/2021-006

INTRODUCTION

Provisional restorations, including crowns and fixed partial dentures made from acrylic resin, protect and recover the abutment tooth esthetics for a certain amount of time before the final coronal restorations are delivered⁹. Furthermore, a good provisional restoration contributes to the design of the final coronal restoration via their harmonization with the periodontal tissues⁰. Conventionally, methyl methacrylate-based cold cure resins have been frequently utilized for provisional restorations due to the low cost and ease of use in daily clinical practice. However, cold cure resins are associated with certain disadvantages, such as an irritating odor, polymerization shrinkage, and low wear resistance⁹. For long-term provisional restorations, physical properties that contribute to maintaining the mechanical strength and resisting stain formation after water absorption are required⁹. Further, considering the increase in the application of glass-ceramics and zirconia to coronal restorations, the materials used for provisional restorations are expected to have the same level of function and esthetics. Currently, the application of bis-acryl resin as an alternative to cold cure resin is on the rise. Bis-acrylic resins with inorganic fillers show superior physical properties compared to cold cure resins⁸⁹. In addition, the injection type of resin composite for provisional restorations is less technique sensitive⁹ relative to the conventional hand-mixed resin. The catalyst and base are uniformly auto-mixed; hence, it presents with stable mechanical properties. Consequently, bis-acrylic resin is more suitable for medium to long-term provisional restorations compared to cold cure resin. Nevertheless, few studies have reported the durability of resin composites for provisional restorations.

In the present study, we measured the inorganic filler content and performed three-point bending, two-body wear, dynamic hardness, water absorption, and staining tests of five commercially available resin composite products for provisional restorations. In addition, the characteristics, durability and color stability of each product were compared and evaluated. The null hypotheses to be tested were that inorganic filler content does not affect the characteristics of five commercially available resin composite products for provisional restorations.

MATERIALS AND METHODS

Materials

The five resin composites for provisional restorations (Luxacrown [LC], Luxatemp automix plus [LT], Luxatemp Star [LS], Tempsmart [TS], and Protemp 4 [P4]) used in the present study and their composition are described in Table 1.

Methods

1. Measurement of inorganic filler content

Each resin composite was placed in a metal mold that was 25 mm in length, 2 mm in width, and 2 mm in thickness (n=4 for each group). Cover glasses were placed on the top and bottom of the specimen and a load of 1 kg weight was applied on both sides for one minute. The specimen was removed from the mold after polymerization, according to the manufacturers’ instructions in the laboratory at room temperature of 23°C. After that, each specimen was cut (length, 3 mm) using an automatic...
Table 1 Resin composite for provisional restorations used in this study

Materials	Lot No.	Color	Manufacturer	Code	Contents
Luxacrown	785251	A2	DMG	LC	Bis-GMA, DDDMA, HDMMA, UDMA, TEGDMA, 2-HEMA, ethoxylated bisphenol-A-dimethacrylate, silanised glass-powder, stabilisor, food-pigments
Luxatemp	783358	A2	DMG	LT	TEDMA, HEMA, UDMA, ethoxylated bisphenol-A-dimethacrylate, polymethylmethacrylate, silanised glass powder, paraffine, food-pigments
Luxatemp Star	798343	A2	DMG	LS	TEDMA, HEMA, ethoxylated bisphenol-A-dimethacrylate, urethan-acryate oligomers and polymers, silanized glass powder, food-pigments
Tempsmart	1809031	A3	GC	TS	Bis-GMA, UDMA, dimethacrylate, silica filler, photo initiator, pigment
Protemp 4	4258600	A2	3M ESPE	P4	dimethacrylate, methacrylate, inorganic filler, catalyst, polymerization initiator

*Manufacturer’s published value

2. Three-point bending test
Three-point bending tests were conducted according to ISO 4049. Each resin composite was placed in a metal mold (25 mm in length, 2 mm in width, and 2 mm in thickness) and polymerized as described earlier (n=10). After heating at 800°C for 3 h (rate of increase in temperature, 10°C/min), the specimens were cooled down to room temperature, and the residual weight was measured using a thermogravimetric analyzer (TG/DTA6300, Seiko Instruments, Chiba, Japan). The residual weight was divided by the weight before thermal loading and multiplied by 100 to obtain the inorganic filler content (wt%).

3. Two-body wear test
Two-body wear tests were conducted according to former studies9,10). Each resin composite was placed in a disk mold (15 mm in diameter and 2 mm in thickness; n=10). After compression with a load of 1 kg weight for one minute, each specimen was polymerized as same as “measurement of inorganic filler content”. Then, both surfaces were polished up to #2000 grit silicone carbide paper, and the specimens were cleaned in an ultrasonic bath for 15 min. Subsequently, the specimens were attached to a sliding impact wear testing machine (K655, Tokyo Giken, Tokyo, Japan), and wear testing was conducted for 10,000 cycles in the water at 37ºC with a load of 5 kg and 3 mm of the sliding distance; a stainless hemispherical rod was used as an antagonist. This antagonist for a sliding impact wear testing machine was a stainless-steel ball bearing (radius=2.0 mm) set inside a collet assembly. The maximum wear depth was measured using a laser scanning microscope (VR-5000, Keyence, Osaka, Japan).

4. Dynamic hardness test
Dynamic hardness tests were conducted according to former studies11). Resin composite specimens (n=5) were fabricated following the method and dimensions used for the wear test in the present study. Both sides of each specimen were polished up to #600-grit silicone carbide paper. A dynamic ultra microhardness tester (DUH211,
RESULTS

Measurement of inorganic filler content

The inorganic filler content (wt%) of each resin composite for provisional restorations is presented in Fig. 1. Significant differences in inorganic filler content were observed among the resin composites \((p<0.05)\). LC presented with the highest filler contents, whereas TS had the lowest filler contents (24%).

Three-point bending test

The flexural strengths and elastic moduli of each resin composite are presented in Table 2, Figs. 2 and 3.

Fig. 1 Inorganic filler content of each resin composite for provisional restorations. A significant difference in inorganic filler content was observed among all groups \((n=4; p<0.05)\). LC and TS exhibited the highest and lowest inorganic filler contents, respectively.
Table 2 Result of each composite resin for provisional restorations by three-point bending test

	Flexural strength (MPa)	Elastic modulus (GPa)				
	Control	Water immersion for 7 days	Thermal cycle	Control	Water immersion for 7 days	Thermal cycle
LC	110.4 (5.9)	91.3 (7.6)	110.9 (6.7)	4.2 (0.3)	3.2 (0.3)	4.7 (0.2)
LT	110.6 (6.0)	102.8 (7.3)	110.3 (14.1)	4.0 (0.3)	3.5 (0.3)	4.7 (0.1)
LS	113.4 (10.9)	101.8 (6.0)	115.5 (14.1)	4.2 (0.4)	3.6 (0.4)	4.5 (0.2)
TS	98.4 (5.4)	80.2 (3.7)	87.9 (11.1)	3.5 (0.3)	2.7 (0.3)	3.6 (0.4)
P4	91.2 (5.4)	74.9 (8.4)	85.1 (7.3)	2.9 (0.2)	2.1 (0.3)	3.2 (0.3)

Fig. 2. Flexural strength of each resin composite for provisional restorations.
A significant difference was observed between each resin composite and the control (n=10; *p<0.05). LS exhibited the highest flexural strength. The flexural strength of all resin composite after water storage was significantly lower than that of the control (p<0.05).

Fig. 3 Elastic modulus of each resin composite for provisional restorations.
A significant difference from control in each resin composites from control (n=10; *p<0.05). LC and LS exhibited the highest elastic modulus. The elastic modulus of all resin composite after water storage was significantly lower than that of the control (p<0.05).

3, respectively. LS presented with the highest flexural strength. All specimens showed significantly lower flexural strength values after water storage relative to the control group (p<0.05). On the other hand, no significant differences in flexural strength were observed in the specimens after thermal cycling when compared to those in the control group (p>0.05). In the control groups, LC and LS showed the highest values for the elastic modulus; after water storage, the values of all specimens were significantly lower than those in the control group (p<0.05). An increasing tendency in the elastic modulus after thermal cycling was observed relative to the control group.

Two-body wear test
The maximum wear depth of each resin composite is presented in Fig. 4; significant differences were observed among all resin composites (p<0.05). And the wear marks of each resin composite captured by the microscope is presented in Fig. 5. LS showed the lowest value, whereas the highest value was noted in the P4 specimens.
Fig. 4 Maximum wear depth of each resin composite for provisional restorations. Significant differences were observed among the five groups ($n=10$; $p<0.05$). LS exhibited the lowest maximum wear depth, and P4 exhibited the highest maximum wear depth.

Fig. 5 Images of water marks of each resin composite for provisional restorations by two-body wear test. The gradient from red to blue indicates the wear depth, with LS having the lowest maximum wear depth and P4 having the highest maximum wear depth.

Fig. 6 Dynamic hardness of each resin composite for provisional restorations. Different superscript letters represent significant results ($n=5$; $p<0.05$). LS exhibited the highest dynamic hardness in the control for each resin composite. P4 showed a significantly lower dynamic hardness than LC, LT and LS ($p<0.05$).

Fig. 7 Amount of water sorption of resin composite for provisional restorations. A significant difference was observed from Day 1 in each resin composite for provisional restorations ($n=5$; $p<0.05$). LS exhibited the lowest water absorption, and TS exhibited the highest water absorption.
Dynamic hardness test
The dynamic hardness test results of each resin composite for provisional restorations are presented in Fig. 6. The dynamic hardness of LS, LC, LT, and TS have no significant difference ($p>0.05$). On the other hand, the dynamic hardness of P4 was significantly lower than those of LC, LT, and LS ($p<0.05$).

Water absorption
After 28 days, a significant difference in water absorption was noted among all the resin composites ($p<0.05$; Fig. 7). LS presented with the lowest values, whereas TS showed the highest water absorption among the five specimens.

Staining test
The color differences among the resin composites are presented in Table 3 and Fig. 8. Significant increases in color differences in LT and LS were observed after Day 2 compared to those on Day 1 ($p<0.05$). Only TS showed a significant decrease in the color difference after 28 days ($p<0.05$).

Type of resin composites	1 day	2 days	3 days	7 days	14 days	28 days
LC	1.3 (0.2)	1.7 (0.2)	2.0 (0.3)	2.7 (0.3)	2.9 (0.4)	3.3 (0.3)
LT	2.8 (0.3)	3.5 (0.4)	4.0 (0.3)	5.2 (0.5)	5.7 (0.2)	6.0 (0.4)
LS	2.0 (0.3)	2.5 (0.3)	2.5 (0.3)	3.7 (0.2)	3.7 (0.4)	4.0 (0.3)
TS	1.9 (0.3)	1.6 (0.3)	1.6 (0.4)	1.7 (0.2)	1.8 (0.3)	1.4 (0.3)
P4	1.8 (0.2)	1.7 (0.1)	1.8 (0.2)	2.5 (0.3)	3.0 (0.4)	3.4 (0.4)

Mean (SD)

Fig. 8 The color difference (ΔE^{*}_{ab}) of resin composite for provisional restorations.
A significant difference from Day 1 in each resin composite for provisional restorations ($n=5$; $p<0.05$). LT exhibited the highest ΔE^{*}_{ab} values after 28 days, and TS the lower ΔE^{*}_{ab} values after 28 days.

Fig. 9 SEM images of each resin composite for provisional restorations.
Irregularly-shaped filler particles (20 nm–1.5 μm) were observed in LC, LT, and LS. Likewise, particles up to 2.5 μm in size were observed in LS. Nano-sized spherical fillers were uniformly observed in TS and P4.
For provisional restorations is lower than that in the fillers of the commercially available resin composites. The containing of inorganic fillers of various types, sizes, shapes, contents, and surface modifications. Therefore, recent resin composites contain inorganic fillers. Using temporary restorative materials are expected to require provisional restorations that can be utilized for a short duration. However, the duration of provisional restorations varies depending upon the surrounding periodontal tissues and other factors. Furthermore, the long-term use of provisional restorations is a matter of concern for vital teeth due to the adverse effects, such as the onset of hypersensitivity, on the pulp tissue. Therefore, provisional restorative materials with properties that stably protect the abutment teeth are required.

Several previous studies have reported that the increase in filler contents improves the mechanical strength and wear resistance and reduces the polymerization shrinkage of resin composites. Therefore, recent resin composites contain inorganic fillers of various types, sizes, shapes, contents, and surface modifications. The containing of inorganic fillers of the commercially available resin composites for provisional restorations is lower than that in the restorative resin composites. Still, the characteristics are identical to those in the restorative resin composites. Hence, correlations between the inorganic filler content and flexural strength, maximum wear depth, dynamic hardness, and water absorption were evaluated in the present study. However, no correlations were observed between the inorganic filler content and most of the tested properties. Thus, the null hypothesis was accepted in this study. The inorganic filler content was obtained by measuring the weight of the residue after heating each resin composite to eliminate the organic filler; this process of excluding the organic composite fillers is considered to affect the results. The inorganic filler contents of LC, LT, and LS were generally consistent with the manufacturer’s published values. Likewise, the inorganic filler contents of TS and P4 were similar to the results in previous studies. Furthermore, the amount of inorganic fillers content in the resin composites for provisional restorations in the current study was less than 50%, suggesting that they might have a limited effect on the mechanical properties. The inorganic fillers included in each resin composite for provisional restorations were divided into two groups (glass and spherical) based on the SEM surface findings. The glass fillers in LC, LT, and LS were larger in diameter and irregularly shaped relative to the spherical fillers in TS and P4, thus contributing to the increase in the filler contents.

The results of the two-way ANOVA on the flexural bending test are presented below. The main effects of the types of resin composites ($F=34.185; p<0.001$) and storage conditions ($F=34.220; p<0.001$) were statistically significant, as well as the interaction effects ($F=2.524, p=0.008$) in flexural strength. In elastic modulus, the main effects of types of resin composites ($F=757.394, p<0.001$) and storage conditions ($F=40.24, p<0.001$) are statistically significant, as well as the interaction effects ($F=28.297, p<0.001$). The flexural strength and elastic modulus of the specimens in the water storage group showed a significant decrease relative to those in the control group. Water absorption has been shown to cause the hydrolysis of the silane-treated layer in inorganic fillers, resulting in the detachment of the fillers. Additionally, it has been reported that the quantity of monomers such as bisphenol A-glycidyl methacrylate (Bis-GMA) and triethyleneglycol dimethacrylate

Table 4 Interrelationship by Pearson’s correlation coefficient

	Inorganic filler content	Flexural strength (control group)
Flexural strength	$r=0.87 \ (p=0.06)$	
Elastic modulus	$r=0.83 \ (p=0.08)$	$r=0.98 \ (p<0.01)$
Wear loss values	$r=-0.87 \ (p=0.05)$	$r=-0.98 \ (p<0.01)$
Dynamic surface hardness	$r=0.56 \ (p=0.33)$	$r=0.89 \ (p=0.04)$
Amount of water sorption	$r=-0.70 \ (p=0.20)$	$r=-0.38 \ (p=0.53)$

*Bold indicates $p<0.05$.

SEM surface observations Images of the resin composite surfaces observed using a SEM are presented in Fig. 9. Irregularly shaped filler particles (diameter, 20 nm–1.5 μm) were observed in LC, LT, and LS. Furthermore, irregularly shaped fillers up to 2.5 μm in diameter were observed in LS. TS and P4 consisted of uniformly distributed nano-sized spherical fillers.

Correlations The correlation analyses comparing the filler content and flexural strengths with the elastic modulus of the control groups, maximum wear depth, and dynamic hardness are presented in Table 4. No significant correlation was observed between the inorganic filler content and the other material properties ($p>0.05$). The flexural strength was positively correlated with the elastic modulus and dynamic hardness ($p<0.05$), and negatively correlated with the maximum wear depth.

DISCUSSION

In general, provisional restorations for fixed prosthetics using temporary restorative materials are expected to function for a few days to several weeks. In complicated situations like full mouth reconstruction, it can vary from 6 to 12 weeks. In complicated situations like full mouth reconstruction, it can vary from 6 to 12 weeks. In complicated situations like full mouth reconstruction, it can vary from 6 to 12 weeks. In complicated situations like full mouth reconstruction, it can vary from 6 to 12 weeks. In complicated situations like full mouth reconstruction, it can vary from 6 to 12 weeks. In complicated situations like full mouth reconstruction, it can vary from 6 to 12 weeks.
(TEGDMA) affects the mechanical properties, including the flexural strength and elastic modulus\(^{28}\). Variations in the type and amount of monomers and the filler content in each resin composite are considered to be related to the flexural strength. However, no significant decrease in flexural strength and elastic modulus values was observed after thermal cycling. The effects of thermal stress and water absorption by thermal cycling on the flexural strength and elastic modulus have been reported previously\(^{10,17,19,20}\). A majority of the resin composites for provisional restorations used in the present study were of the self-cure type. Mei et al.\(^{21}\) reported that the flexural strength of bis-acryl resins increases at a polymerization temperature of 60°C. Thus, the difference in polymerization in the current study may be attributed to the promotion of heat polymerization in a hot water bath.

Mair et al.\(^{22}\) classified wear into four types: adhesive, abrasive, fatigue, and corrosive wear. Wear behavior should be evaluated, considering multiple factors such as the media and tooth wear, in the oral cavity\(^{23}\). In the present study, a two-body wear test that simply observes the fatigue wear, excluding the effects of the media, was used. LC, LT, and LS showed significantly lower maximum wear depth relative to the other resin composites. No correlation between maximum wear depth and inorganic filler content was noted. Since the inorganic filler content of LC, LT, and LS was higher than 40%, their wear resistance was higher than those of the other resin composites. As reported previously, the maximum wear depth showed a strong negative correlation with flexural strength and elastic modulus\(^{29}\).

The dynamic hardness tests were conducted using a dynamic ultra microhardness tester in the present study. This testing method repeatedly measures the process of hitting an indenter on the specimen surface with impact\(^{24}\). The effectiveness of this method in evaluating resin composite surface hardness has been reported previously\(^{30}\). It is well known that the surface hardness of a resin composite is associated with the inorganic filler content and the wear depth; nonetheless, no significant correlations were observed in the present study. Hu et al.\(^{25}\) reported that the coefficient of friction, the bond strength between the filler and resin matrix, and the resin matrix surface’s integrity are essential in determining the wear resistance of resin composite in two-body wear tests. Therefore, differences in the types, shapes, content, and size of the fillers in the composite resins used in this study may have affected the correlation between wear depth and surface hardness. Also, as suggested by Hirayama et al.\(^{11}\), the composition and viscosity of the resin matrix were found to affect the surface hardness in the present study.

Resin composite materials show water-absorbing properties, which are known to affect the mechanical properties and cause color changes. Clinically, water absorption affects the bonding surface, resulting in dislodgement. In general, the amount of water sorption is dependent on the contents of the resin matrix. Thus, an increase in filler contents will lead to a decrease in the amount of the resin matrix, resulting in a decrease in water sorption. The main effects of resin composite types (\(F=2807.831, \ p<0.001\)), and storage conditions (\(F=3451.643, \ p<0.001\)) showed a statistical significance. Likewise, the interaction effects (\(F=182.996, \ p<0.001\)) showed a statistical significance. Hydrophilic monomers, Bis-GMA, and TEGDMA are known to have high water absorbability. Both Bis-GMA and urethane dimethacrylate (UDMA) have high viscosity; hence, TEGDMA needs to be frequently added as a diluent material. TEGDMA consists of ethylene glycol as the main chain and is, therefore, highly flexible and water absorbable\(^{26-28}\). On the other hand, although UDMA is a hydrophilic monomer, it has a hydrophilic isocyanate group. Some studies have reported that UDMA affects water absorbability\(^{29-31}\). The resin composites for provisional restorations in the present study contained various types of monomers. Thus, water absorption could be affected not only by the inorganic filler contents but also by other factors, such as the various types of monomers in the resin composite.

Several studies reported staining problems after long-term use of conventional resin composite materials\(^{22-34}\). In addition to the mechanical properties, the esthetics of the provisional restorations during middle- to long-term use is essential. In the present study, the staining of the resin composites was compared and evaluated using the color difference measurement. There are several reports on the staining of resin composites\(^{35,36}\). In the present study, we selected coffee that is universally consumed by people across a wide age range. Moreover, the stainability of coffee is the second-highest after red wine\(^{37}\). Guler et al.\(^{38}\) reported that sugar in coffee or tea accelerated the color changes. Therefore, we used premade coffee with a relatively constant concentration to exclude the effects of other ingredients. In the present study, the soaking duration in coffee to evaluate the staining of medium to long-term provisional restorations was 28 days. Previous in vitro studies have shown that 28 days of soaking is equivalent to about 2.5 years in the oral cavity\(^{39-41}\). However, it is challenging to simulate the oral environment in vitro. Thus, it is suggested that the color difference in the oral cavity could be greater than the values obtained in the experiment. International Commission on Illumination (CIE) defined the standard definition of color difference to \(\Delta E_{ab}^*\). \(\Delta E_{ab}^*\) 0.6 determined 1st-grade limits practical tolerances when various error factors are considered. \(\Delta E_{ab}^*\) 1.2 defined 2nd grade that most people can easily recognize the color difference when judged by comparing them. \(\Delta E_{ab}^*\) 2.5 determined 3rd grade almost identical when evaluated at a distance. \(\Delta E_{ab}^*\) 5.0 defined 4th grade that Almost identical when compared over time. Vichi et al.\(^{42}\) divided the values of \(\Delta E_{ab}^*\) into three categories, wherein \(\Delta E_{ab}^*<1.0\), “1.0<\(\Delta E_{ab}^*<3.3\), and “\(\Delta E_{ab}^*\geq 3.3\)” denoted “not appreciable by the human eye”, “appreciable by skilled operators”, and “clinically not acceptable”, respectively. Douglas et al.\(^{43}\) reported that a \(\Delta E_{ab}^*\) of 2.6 was denoted as “not acceptable by
50% of dentists”. In one study, a \(\Delta E^{*}_{ab} \) of “\(<1.0\)” was considered as “not appreciable by the human eye”\(^{49} \), whereas in two other studies, a “\(\Delta E^{*}_{ab} \) of 3.3” was set as the “clinically acceptable limit”\(^{45,46} \). There seems to be no certain standard for color difference and tolerance. The main effects of resin composite types (\(F=91.879, p<0.001 \)) and storage conditions (\(F=153.668, p<0.001 \)) showed a statistical significance, and the interaction effects (\(F=157.584, p<0.001 \)) also showed a statistical significance. Furthermore, the color difference was significantly increased in all the resin composites over time, except for TS. TS did not show a significant increase in the color difference regardless of the soaking time probably due to the lack of a plasticizer. A plasticizer is often included in bis-acryl resins to add flexibility and plasticity. However, since it is not chemically bonded to monomers\(^{47,48} \), it may affect the deterioration of the resin composite during polymerization or storage in a solution.

In medium to long-term provisional restorations, the characteristics required by clinicians vary depending upon the treatment location and the oral environment. Esthetic anterior provisional restorations should present with high stain resistance. On the other hand, posterior restorations need mechanical strength and provide medium- to long-term services.

CONCLUSIONS

In the present study, we evaluated the characteristics of commercially available resin composites for provisional restorations. After comparing and evaluating the characteristics and durability of commercially available resin composites for provisional restorations, the following conclusions were reached:

1. The flexural strength significantly decreased after water storage.
2. There was no correlation between inorganic filler content and the results of each test.
3. Wear depth showed a negative correlation with flexural strength.
4. The inorganic filler content is not the only factor that affects the amount of water absorption.
5. A significant increase in color difference was observed with the increase in the soaking time in coffee in all groups, except for TS.

These findings indicate that the types and contents of inorganic fillers, the composition of the monomer in the resin matrix, and the addition of plasticizers could affect the properties of the material. The characteristics of provisional restorations can change depending on the composition of each ingredient. Thus, understanding the characteristics of each product is of importance in clinical practice.

CONFLICTS OF INTEREST

The authors have no conflict of interest to declare.

REFERENCES

1. Hernandez EP, Oshida Y, Platt JA, Andres CJ, Barco MT, Brown DT. Mechanical properties of four methylmethacrylate-based resins for provisional fixed restorations. Biomater Eng 2004; 14: 107-122.
2. Patras M, Naka O, Doukoudakis S, Pissiotis A. Management of provisional restorations’ deficiencies: a literature review. J Esthet Esthet Dent 2012; 24: 26-38.
3. Schwartz JR, Oliveira-Ogilvar A, Moereis CT, Leaf FB, Ogilvar FA, Moraes RR. Characterization of bis-acryl composite resins for provisional restorations. Braz Dent J 2017; 28: 354-361.
4. Lohiding DW. Long-term esthetic provisional restorations in dentistry. Curr Opin Cosmet Dent 1997; 4: 16-21.
5. Takamizawa T, Barkmeier WW, Tsujimoto A, Scheidel D, Erickson RL, Latta MA, et al. Mechanical properties and simulated wear of provisional resin materials. Oper Dent 2015; 40: 603-613.
6. Haselton DR, Diaz-Arnold AM, Vargas MA. Flexural strength of provisional crown and fixed partial denture resins. J Prosthet Dent 2002; 87: 225-228.
7. Shibasaki S, Takamizawa T, Suzuki T, Nojiri K, Tsujimoto A, Barkmeier WW, et al. Influence of different curing modes on polymerization behavior and mechanical properties of dual-cured provisional resins. Oper Dent 2017; 42: 526-536.
8. Sari T, Usunmez A, Strasser T, Şahinbas A, Rosentritt M. Temporary materials: Comparison of in vivo and in vitro performance. Clin Oral Investig 2020; 24: 4591-4608.
9. Imai A, Takamizawa T, Sugimura R, Tsujimoto A, Ishii R, Kawazu M, et al. Interrelation among the handling, mechanical, and wear properties of the newly developed flowable resin composites. J Mech Behav Biomed Mater 2019; 95: 2-8.
10. Akiba S, Takamizawa T, Tsujimoto A, Moritake N, Ishii R, Barkmeier WW, et al. Influence of different curing modes on flexural properties, fracture toughness, and wear behavior of dual-cure provisional resin-based composites. Dent Mater J 2019; 38: 728-737.
11. Hirayama S, Iwai H, Tanimoto Y. Mechanical evaluation of five flowable resin composites by the dynamic micro-indentation method. J Dent Biomech 2014; 5: 1-8.
12. Singla M, Padmaja K, Arora J, Shah A. Provisional restoration in fixed prosthodontics. Int Dent Res 2014; 1: 148-151.
13. Al Jabbari YS, Al-Rasheed A, Smith JW, Iacopino AM. An indirect technique for assuring simplicity and marginal integrity of provisional restorations during full mouth rehabilitation. Saudi Dent J 2013; 25: 39-42.
14. Kim KH, Ong JL, Okuno O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent 2002; 87: 642-649.
15. Wille S, Hölken I, Haidarschin G, Adelung R, Kern M. Biaxial flexural strength of new Bis-GMA/TEGDMA based composites with different fillers for dental applications. Dent Mater 2016; 32: 1073-1078.
16. Gantz L, Fauqipoint G, Arntz Y, Pelletier H, Etienne O. In vitro comparison of the surface roughness of polymethyl methacrylate and bis-acryl resins for interim restorations before and after polishing. J Prosthet Dent 2021; 125: 833. e1-833.e10.
17. Debnath S, Wundera SL, McCoob JB, Baranc GR. Silane treatment effects on glass/resin interfacial shear strengths. Dent Mater 2003; 19: 441-448.
18. Asmussen E, Peutzfeldt S. Influence of UEDMA, Bis-GMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent Mater J 1998; 14: 51-56.
19. Kawano F, Ohguri T, Ichikawa T, Matsumoto N. Influence of thermal cycles in water on flexural strength of laboratory-processed composite resin. J Oral Rehabil 2001; 28: 703-707.
20. Lauvahutanon S, Takahashi H, Shiozawa M, Iwasaki N,
Asakawa Y, Meiko O. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J 2014; 33: 705-710.

21) Mei ML, So SYC, Li H, Chu CH. Effect of heat treatment on the physical properties of provisional crowns during polymerization: An in vitro study. Materials (Basel) 2015; 8: 1766-1777.

22) Mair LH, Stolarski TA, Vowles RW, Lloyd CH. Wear: Mechanisms, manifestations and measurement. Report of a workshop. J Dent 1996; 24: 141-148.

23) Heintze SD. How to qualify and validate wear simulation devices and methods. Dent Mater 2006; 22: 712-734.

24) Bauri R, Surappa MK. Investigations on serrated flow in 8090 Al alloy and 8090 Al–SiCp composites occurring during dynamic ultra low load micro hardness (DUH) indentation. Mater Sci Eng A Struct Mater 2005; 393: 22-26.

25) Hu X, Marquis PM, Shortall AC. Influence of filler loading on the two-body wear of a dental composite. J Oral Rehabil 2003; 30: 729-737.

26) Söderholm KJ. Water sorption in a bis (GMA)/TEGDMA resin. J Biomed Mater Res 1984; 18: 271-279.

27) Braden M. Water absorption characteristics of dental microfine composite filling materials: II. Experimental materials. Biomaterials 1984; 5: 373-375.

28) Kalachandra S, Turner DT. Water sorption of polymethacrylate networks: Bis-GMA/TEGDMA copolymers. J Biomed Mater Res 1987; 21: 329-338.

29) Meşe A, Burrow MF, Tyas MJ. Sorption and solubility of luting cements in different solutions. Dent Mater J 2008; 27: 702-709.

30) Sideridou ID, Karabela MM, Bikiairis DN. Aging studies of light cured dimethacrylate-based dental resins and a resin composite in water or ethanol/water. Dent Mater 2007; 23: 1142-1149.

31) Xu Y, Zhang J, Wang H, Xie D. Preparation of a low viscosity urethane-based composite for improved dental restoratives. Dent Mater J 2018; 37: 400-407.

32) Sham AS, Chu FC, Chai J, Chow TW. Color stability of provisional prosthodontic materials. J Prosthodont 2004; 91: 447-452.

33) Haselton DR, Diaz-Arnold AM, Dawson DV. Color stability of provisional crown and fixed partial denture resins. J Prosthodont Dent 2005; 93: 70-75.

34) Scotti R, Masclenani SC, Forinini F. The in vitro color stability of acrylic resins for provisional restorations. Int J Prosthodont 1997; 10: 164-168.

35) Um CM, Ruyter IE. Staining of resin-based veneering materials with coffee and tea. Quintessence Int 1991; 22: 377-386.

36) Nasim I, Neelakantan P, Sujeer R, Subbarao CV. Color stability of microfilled, microhybrid and nanocomposite resins—an in vitro study. J Dent 2010; 38: 137-142.

37) Ertas E, Güler AU, Yücel AC, Köprülü H, Güler E. Color stability of resin composites after immersion in different drinks. Dent Mater J 2006; 25: 371-376.

38) Güler AU, Yilmaz F, Kulunk T, Güler E, Kurt S. Effects of different drinks on stainability of resin composite provisional restorative materials. J Prosthet Dent 2005; 94: 118-124.

39) Arocha MA, Basilio J, Llopis J, Di Bella E, Roig M, Ardu S, et al. Colour stability of indirect CAD/CAM processed composites vs. conventionally laboratory processed composites after immersion in staining solutions. J Dent 2014; 42: 831-838.

40) Saba DA, Salama RA, Hariidy R. Effect of different beverages on the color stability and microhardness of CAD/CAM hybrid versus feldspathic ceramic blocks: An in vitro study. Futur Dent J 2017; 3: 61-66.

41) Ardu S, Duc O, Di Bella E, Krejci I, Daher R. Color stability of different composite resins after polishing. Odontology 2018; 106: 328-333.

42) Vichi A, Ferrari M, Davidson CL. Color and opacity variations in three different resin-based composite products after water aging. Dent Mater 2004; 20: 530-534.

43) Douglas RD, Steinhaeuer TJ, Wee AG. Intraoral determination of the tolerance of dentists for perceptibility and acceptability of shade mismatch. J Prosthodont Dent 2007; 97: 200-208.

44) Stawarczyk B, Sener B, Trottmann A, Roos M, Özcan M, Hämmerle CH. Discoloration of manually fabricated CAD/CAM blocks versus glass-ceramic: Effect of storage media, duration, and subsequent polishing. Dent Mater J 2012; 31: 377-383.

45) Ruyter IE, Nilker M, Moller B. Color stability of dental composite resin materials for crown and bridge veneers. Dent Mater J 2018; 37: 246-251.

46) Wieckiewicz M, Opitz V, Richter G, Boening KW. Physical properties of polyamide-12 versus PMMA denture base material. Biomed Res Int 2014; 2014: 150298.

47) Kawahara T, Nomura Y, Tanaka N, Teshima W, Okazaki M, Shintani H. Leachability of plasticizer and residual monomer from commercial temporary restorative resins. J Dent 2004; 32: 277-283.

48) Tanaka N, Nomura Y, Nishikiori R, Shibata S, Shirai K, Fujitani M. Temporary restorative resins using non-phthalate ester plasticizers. J Dent 2005; 33: 577-583.