Segal-Bargmann transform:
the q-deformation

Guillaume Cébron
Université Paul Sabatier
Institut de Mathématiques de Toulouse
118 Route de Narbonne, 31062 Toulouse, France
guillaume.cebron@math.univ-toulouse.fr

Ching-Wei Ho
Department of Mathematics
University of California, San Diego
La Jolla, CA 92093-0112
cwho@ucsd.edu

March 23, 2017

Abstract

We give identifications of the q-deformed Segal-Bargmann transform and define the Segal-Bargmann transform on mixed q-Gaussian variables. We prove that, when defined on the random matrix model of Śniady for the q-Gaussian variable, the classical Segal-Bargmann transform converges to the q-deformed Segal-Bargmann transform in the large N limit. We also show that the q-deformed Segal-Bargmann transform can be recovered as a limit of a mixture of classical and free Segal-Bargmann transform.

Contents

1 Introduction ... 3
 1.1 q-Deformed Segal-Bargmann Transform 3
 1.2 Matrix Approximations ... 3
 1.3 Two Parameter Case ... 5
 1.4 Multidimensional Case .. 5
 1.5 Mixture of q-Deformed Segal-Bargmann Transform 5
 1.6 Organization of the Paper 6

2 Preliminaries ... 6
 2.1 Segal-Bargmann Transform 6
 2.2 q-Gaussian Measure ... 7
 2.3 q-Gaussian Variables and Wick Product 7
 2.4 Mixed q-Gaussian Variables 9
 2.5 Random Matrix Model of Śniady 10

3 The Two-Parameter q-Deformed Segal-Bargmann Transform 11
 3.1 An Integral Representation 11
 3.2 The Integral Transform ... 14
 3.3 Segal-Bargmann Transform and Conditional Expectation 15
 3.4 Random Matrix Model ... 16
4 Multidimensional q-Segal-Bargmann Transform
 4.1 Classical Segal-Bargmann Transform in the Infinite-Dimensional Case .. 18
 4.2 The q-Deformation of the Segal-Bargmann Transform ... 21
 4.3 Large N Limit ... 22

5 Mixture of Classical and Free Segal-Bargmann Transform
 5.1 The Mixed q-Deformed Segal-Bargmann Transform ... 25
 5.2 The q-Segal-Bargmann Transform in the Limit ... 26
1 Introduction

Let H be a real finite-dimensional Hilbert space. Let γ be the standard Gaussian measure on H, whose density with respect to the Lebesgue measure at $h \in H$ is $(2\pi)^{-d/2} \exp(-\|h\|_H^2/2)$. Let μ be the Gaussian measure on the complexification $H^C = H + iH$ of H whose density with respect to the Lebesgue measure at $h \in H^C$ is $\pi^{-d} \exp(-\|h\|_{H^C}^2)$. For all $f \in L^2(H, \gamma)$, the map $z \mapsto \int_H f(z - x) \, d\gamma(x)$, admits an analytic continuation $\mathcal{S}(f)$ to H^C. Furthermore, the map $\mathcal{S}(f)$ is in the closed subspace of holomorphic functions of $L^2(H^C, \mu)$, hereafter denoted by $\mathcal{H}L^2(H^C, \mu)$. The resulting map

$$\mathcal{S} : L^2(H, \gamma) \to \mathcal{H}L^2(H^C, \mu) \quad (1.1)$$

is known as the Segal-Bargmann transform, introduced by Segal [21, 22] and Bargmann [1, 2] in early 1960s.

1.1 q-Deformed Segal-Bargmann Transform

In [28], Leeuwen and Massen considered a q-deformation of the Segal-Bargmann transform in the one-dimensional case. For all $0 \leq q < 1$, the measure replacing the Gaussian measure is the q-Gaussian measure ν_q on \mathbb{R}, whose density with respect to the Lebesgue measure is

$$\nu_q(dx) = \mathbb{1}_{|x| \leq 2/\sqrt{1-q}} \frac{1}{\pi} \sqrt{1-q} \sin \theta \prod_{n=1}^{\infty} (1 - q^n) |1 - q^n e^{2i\theta}|^2 \, dx,$$

where $\theta \in [0, \pi]$ is such that $x = 2 \cos(\theta)/\sqrt{1-q}$. The q-deformation of the Segal-Bargmann transform is then defined through the kernel

$$\Gamma_q(x, z) = \prod_{k=0}^{\infty} \frac{1}{1 - (1-q)q^k x z + (1-q)q^{2k} z^2}, \quad |x| \leq \frac{2}{\sqrt{1-q}}, \quad |z| < \frac{1}{\sqrt{1-q}}.$$

For all function $f \in L^2(\mathbb{R}, \nu_q)$, the function

$$\mathcal{S}_q(f) : z \mapsto \int_{\mathbb{R}} f(x) \Gamma_q(x, z) \, d\nu_q(x)$$

is defined on the unit disk of radius $1/\sqrt{1-q}$ and the map \mathcal{S}_q is in fact an isomorphism of Hilbert space between $L^2(\mathbb{R}, \nu_q)$ and a reproducing kernel Hilbert space of analytic function on the unit disk of radius $1/\sqrt{1-q}$ which plays the role of the complexified version of ν_q.

Let us remark that $\lim_{q \to 1} \nu_q(dx) = \exp(-x^2/2)/\sqrt{2\pi} \, dx$ and $\lim_{q \to 1} \Gamma_q(x, z) = \exp(xz - z^2/2)$, which suggest to denote the standard normal distribution by ν_1 and the classical Segal-Bargmann transform \mathcal{S} on $L^2(\mathbb{R}, \nu_1)$ by \mathcal{S}_1. The case $q = 0$, studied in [3], is of particular interest, since $\nu_0(dx) = \mathbb{1}_{|x| \leq \sqrt{4-\pi^2}} \frac{2}{2\pi} \, dx$ is the well-known semicircular law and the so-called free Segal-Bargmann transform \mathcal{S}_0 maps isometrically $L^2(\mathbb{R}, \nu_0)$ to the Hardy space of analytic functions on the unit disc. Although beyond the scope of this article, let us mention also the related work [5], where Blitvić and Kemp define a refinement of the q-deformed Segal-Bargmann transform.

1.2 Matrix Approximations

In [3], Biane proves that the free Segal-Bargmann transform \mathcal{S}_0 is the limit of the classical Segal-Bargmann transform on Hermitian matrices in the following sense: for all $N \geq 1$, let \mathbb{M}_N be the space of complex matrices of size $N \times N$, let \mathbb{H}_N be the subspace of Hermitian matrices $M = M^*$ of size $N \times N$, and let Tr denote the usual trace. Let γ_N be the standard Gaussian measure on \mathbb{H}_N for the norm $\|M\|^2 = N\text{Tr}(MM^*)$, and μ_N be
the standard Gaussian measure on \(\mathbb{M}_N = \mathbb{H}_N + i\mathbb{H}_N \) for the norm \(\|M\|^2 = 2N \Re \text{Tr}(M^2) \). This way we can consider the Segal-Bargmann transform \(\mathcal{S} : L^2(\mathbb{H}_N, \gamma_N) \to \mathcal{H} L^2(\mathbb{M}_N, \mu_N) \) defined by \(\{1\} \). Biane extends the transform \(\mathcal{S} \) to act on \(\mathbb{M}_N \)-valued functions, by applying \(\mathcal{S} \) entrywise. More precisely, endowing \(\mathbb{M}_N \) with the norm \(\|M\|_{\mathbb{M}_N}^2 = \text{Tr}(MM^*)/N \), he considers the Hilbert space tensor products \(L^2(\mathbb{H}_N, \gamma_N; \mathbb{M}_N) = L^2(\mathbb{H}_N, \gamma_N) \otimes \mathbb{M}_N \) and \(\mathcal{H} L^2(\mathbb{M}_N, \mu_N; \mathbb{M}_N) = \mathcal{H} L^2(\mathbb{M}_N, \mu_N) \otimes \mathbb{M}_N \), as well as the boosted Segal-Bargmann transform

\[
\mathcal{S}_N = \mathcal{S} \otimes \text{Id}_{\mathbb{M}_N} : L^2(\mathbb{H}_N, \gamma_N; \mathbb{M}_N) \to \mathcal{H} L^2(\mathbb{M}_N, \mu_N; \mathbb{M}_N).
\]

Each polynomial can be seen as an element of \(L^2(\mathbb{H}_N, \gamma_N; \mathbb{M}_N) \) (or of \(\mathcal{H} L^2(\mathbb{M}_N, \mu_N; \mathbb{M}_N) \)) via the polynomial calculus, and Biane proved that, restricted to those polynomial functions, the Segal-Bargmann transform \(\mathcal{S}_N \) converges to the free Segal-Bargmann transform \(\mathcal{S}_0 \) in the following sense: for all polynomial \(P \),

\[
\lim_{N \to \infty} \|\mathcal{S}_N(P) - \mathcal{S}_0(P)\|_{\mathcal{H} L^2(\mathbb{M}_N, \mu_N; \mathbb{M}_N)} = 0.
\]

One of the motivation of this article is to prove that the \(q \)-deformed Segal-Bargmann transform \(\mathcal{S}_q \) can also be approximated by the classical one for \(0 < q \leq 1 \). In the model of Biane, \(L^2(\mathbb{H}_N, \gamma_N; \mathbb{M}_N) \) is an approximation of \(L^2(\mathbb{R}, \nu_0) \) in the sense that, for all polynomial \(P \), \(\|P\|_{L^2(\mathbb{R}, \nu_0)} = \lim_{N \to \infty} \|P\|_{L^2(\mathbb{H}_N, \gamma_N; \mathbb{M}_N)} \). In the case of \(0 < q \leq 1 \), we replace the previous model by a model of Śniady introduced in [23] in order to approximate \(L^2(\mathbb{R}, \nu_q) \). Let us briefly describe this model.

Let \(d \geq 0 \). We endow \(\mathbb{M}_d \) by the inner products, quotient if necessary, \(\langle A, B \rangle_1 = \frac{1}{d} \text{Tr}(AB^*) \) and \(\langle A, B \rangle_0 = \text{Tr}(A) \text{Tr}(B^*) \). For all \(S \subset \{1, \ldots, N\} \), we define the inner product \(\langle \cdot, \cdot \rangle_S \) on \(\mathbb{M}_d \) to be the inner product of the Hilbert space tensor product \(\bigotimes_{r=1}^N (\mathbb{M}_d, \langle A, B \rangle_{\mathbb{M}_r}) \). Let \(\sigma = (\sigma_S)_{S \subset \{1, \ldots, N\}} \) be a family of real numbers indexed by all subsets of \(\{1, \ldots, N\} \). It determines an averaged inner product \(\langle A, B \rangle_{\sigma} = \sum_{S \subset \{1, \ldots, N\}} \sigma_S \cdot \langle A, B \rangle_S \) on \(\mathbb{M}_d \). Let \(\gamma_{dN}^{\sigma} \) be the Gaussian measure on \(\mathbb{H}_d \) whose characteristic function is given by

\[
\int_{\mathbb{H}_d} \exp(i \text{Tr}(MX)) \, d\gamma_{dN}^{\sigma}(X) = \exp(-\|M\|_d^2/2)
\]

and \(\mu_{dN}^{\sigma} \) be the Gaussian measure on \(\mathbb{M}_d \) whose characteristic function is given by

\[
\int_{\mathbb{M}_d} \exp(i \text{Tr}(MX)) \, d\mu_{dN}^{\sigma}(X) = \exp(-\Re \|M\|_d^2/4).
\]

Denoting by \(\text{supp} \gamma_{dN}^{\sigma} \) the support of \(\gamma_{dN}^{\sigma} \), which is a linear subspace of \(\mathbb{H}_d \), we have \(\text{supp} \mu_{dN}^{\sigma} = \text{supp} \gamma_{dN}^{\sigma} + i\text{supp} \gamma_{dN}^{\sigma} \). The linear space \(\text{supp} \gamma_{dN}^{\sigma} \) can be endowed with a unique inner product such that \(\gamma_{dN}^{\sigma} \) is the standard Gaussian measure on \(\text{supp} \gamma_{dN}^{\sigma} \), and therefore the Segal-Bargmann transform

\[
\mathcal{S} : L^2(\mathbb{H}_d, \gamma_{dN}^{\sigma}) = L^2(\text{supp} \gamma_{dN}^{\sigma}, \gamma_{dN}^{\sigma}) \to \mathcal{H} L^2(\text{supp} \mu_{dN}^{\sigma}, \mu_{dN}^{\sigma}) = \mathcal{H} L^2(\mathbb{M}_d, \mu_{dN}^{\sigma})
\]

is well-defined as in \([1] \). Following the model of Biane, we consider the two following Hilbert space tensor products \(L^2(\mathbb{H}_d, \gamma_{dN}^{\sigma}; \mathbb{M}_d) = L^2(\mathbb{H}_d, \gamma_{dN}^{\sigma}) \otimes \mathbb{M}_d \) and \(\mathcal{H} L^2(\mathbb{M}_d, \mu_{dN}^{\sigma}; \mathbb{M}_d) = \mathcal{H} L^2(\mathbb{M}_d, \mu_{dN}^{\sigma}) \otimes \mathbb{M}_d \), where \(\mathbb{M}_d \) is endowed with the norm \(\|M\|_{\mathbb{M}_d}^2 = \text{Tr}(MM^*)/d^N \). Finally, we consider the boosted Segal-Bargmann transform

\[
\mathcal{S}_{dN} = \mathcal{S} \otimes \text{Id}_{\mathbb{M}_d} : L^2(\mathbb{H}_d, \gamma_{dN}^{\sigma}; \mathbb{M}_d) \to \mathcal{H} L^2(\mathbb{M}_d, \mu_{dN}^{\sigma}; \mathbb{M}_d).
\]

Theorem 1.1 (see Theorem 3.14). Let \(0 \leq q \leq 1 \). Under technical assumptions [H.1] [H.2] [H.3] and [H.4] on \(\sigma \) (see Section 2.3) which ensure that, for all polynomial \(P \),

\[
\lim_{N \to \infty} \|P\|_{L^2(\mathbb{H}_d, \gamma_{dN}^{\sigma}; \mathbb{M}_d)} = \|P\|_{L^2(\mathbb{R}, \nu_q)},
\]

4
the Segal-Bargmann transform \mathcal{S}_d^N converges to the q-deformed Segal-Bargmann transform \mathcal{S}_q in the following sense: for all polynomial P,
\[
\lim_{N \to \infty} \| \mathcal{S}_d^N (P) - \mathcal{S}_q (P) \|_{\mathcal{H}L^2(M_{dN}, \gamma_{\nu^2_q M_{dN}})} = 0.
\]

We are able to prove Theorem 1.1 in the two parameter setting and in the multidimensional case.

1.3 Two Parameter Case

A simple scaling of $\mathcal{S} : L^2(H, \gamma) \to \mathcal{H}L^2(H^C, \mu)$ gives us a unitary isomorphism \mathcal{S}^t which depends on one parameter $t > 0$. It is also possible to consider one scaling for the space $L^2(H, \gamma)$ and another scaling for the transform \mathcal{S}. It yields to the two-parameter Segal-Bargmann transform $\mathcal{S}^{s,t}$, where s and t are two parameters with $s > \frac{1}{2} > 0$, which was defined by Driver and Hall in [11, 13]. In this article, all the definition and results are considered in this two-parameter setting. In particular, we shall generalize the transform \mathcal{S}_q of Leeuwen and Massen to a q-deformed Segal-Bargmann transform (with $-1 < q < 1$) given by
\[
\mathcal{S}_q^{s,t}(f) : z \mapsto \int_{\mathbb{R}} f(x) \Gamma_q^{s,t}(x, z) \nu_q^s (dx)
\]
where $\Gamma_q^{s,t}$ is a generating function and ν_q^s is scaled from ν_q so that it has variance s. With this formula, we are able to compute the range of the Segal-Bargmann transform, which is a reproducing kernel Hilbert space of analytic functions in an ellipse. It allows us to prove Theorem 3.14 which is a version of Theorem 1.1 with two parameters s and t.

1.4 Multidimensional Case

In [3], Biane extends the free Segal-Bargmann transform \mathcal{S}_0 to the multidimensional case, replacing \mathbb{R} by an arbitrary real Hilbert space H. The space $L^2(H, \gamma)$ has to be replaced by a non-commutative generalization of a L^2-space. More precisely, in the classical case, $L^2(H, \gamma)$ can be viewed as the space of square-integrable random variables generated by the Gaussian field on H. If $-1 \leq q \leq 1$, it is possible to define some q-deformations of Gaussian field over H (see Section 4.2). The free Segal-Bargmann transform \mathcal{S}_0 acts on the space of square-integrable random variables generated by a 0-deformed Gaussian field on H (called semicircular system in [3]).

In [16], Kemp generalizes Biane’s results and defines a q-deformed Segal-Bargmann transform \mathcal{S}_q acting on the space of square-integrable random variables generated by a q-deformed Gaussian field on H. In [14], the second author defined the two-parameter free Segal-Bargmann transform $\mathcal{S}_q^{s,t}$ acting on the space of square-integrable random variables generated by a 0-deformed Gaussian field on H. In this article, we will follow [3, 14, 16] and define the two-parameter q-deformed Segal-Bargmann transform $\mathcal{S}_q^{s,t}$ acting on the space of square-integrable random variables generated by a q-deformed Gaussian field on H. Of course, if we consider $H = \mathbb{C}$, the q-Segal-Bargmann transform $\mathcal{S}_q^{s,t}$ is equivalent to the integral transform $\mathcal{S}_q^{s,t}$ already defined in (1.2); that is to say the integral transform gives an explicit formula of the q-Segal-Bargmann transform in the one dimensional setting (see Corollary 4.7).

Theorem 1.1 is true in the multidimensional case. Indeed, Theorem 4.8 shows that the two-parameter q-deformed Segal-Bargmann transform $\mathcal{S}_q^{s,t}$ acting on the space of square-integrable random variables generated by a q-deformed Gaussian field on H can be approximated by the classical Segal-Bargmann transform.

1.5 Mixture of q-Deformed Segal-Bargmann Transform

In fact, it is possible to deform a Gaussian field over \mathbb{R}^n in a much more complicated way, where a q_{ij}-deformed Gaussian random variable is considered for each direction of the canonical basis of \mathbb{C}^n, and where the correlation relation between two different variables is determined by some factors q_{ij} ($q_{ij} = 1$ yields the classical independence of random variables and $q_{ij} = 0$ yields the free independence of random variables).
This deformation, first considered by Speicher in [25], is known as mixed q-Gaussian variables, and is uniquely determined by a symmetric matrix $Q = (q_{ij})_{1 \leq i, j \leq n}$ with elements in $[-1, 1]$. The case of the previous section corresponds to the case where all the elements of Q are equal to a single $-1 \leq q \leq 1$. It is also possible in this framework to define a Q-deformed Segal-Bargmann transform $\mathcal{S}_Q^{s,t}$, and restricted on the one-dimensional directions, $\mathcal{S}_Q^{s,t}$ yields to the already defined $\mathcal{S}_{q_{ii}}^{s,t}$. In particular, if all q_{ii} are equal to 0, $\mathcal{S}_Q^{s,t}$ can be seen as a noncommutative mixture of the classical Segal-Bargmann transform $\mathcal{S}_q^{s,t}$ (see Remark 5.7).

In [24], Speicher proves the following central limit theorem: every q-deformed Gaussian random variable can be approximated by a normalised sum of mixed q-Gaussian variables for some appropriate choice of Q with elements in $\{-1, 1\}$. Similarly, Młotkowski proves in [18] that the elements of Q can be chosen in $\{0, 1\}$ in the central limit theorem of Speicher.

Our last result, summed up in Theorem 5.6, is the fact that the q-deformed Segal-Bargmann transform $\mathcal{S}_Q^{s,t}$ can be approximated by a noncommutative mixture $\mathcal{S}_Q^{s,t}$ of the classical Segal-Bargmann transform applied on normalised sum of mixed q-Gaussian variables (see Remark 5.7).

1.6 Organization of the Paper

A brief outline of the paper is as follows. In Section 2, we introduce the Segal-Bargmann transform $\mathcal{S}_q^{s,t}$, continue with a summary of the (mixed) q-random variables and end by a description of the random matrix model of Śniady. In Section 3, we introduce the two-parameter q-deformed Segal-Bargmann transform $\mathcal{S}_q^{s,t}$, and prove Theorem 1.1. In Section 4, we introduce the two-parameter q-deformed Segal-Bargmann transform in the multidimensional case, and prove Theorem 4.3, the analogue of Theorem 1.1 in this multidimensional setting. Finally, in Section 5, we introduce the mixture of q-deformed Segal-Bargmann transform, and prove Theorem 5.6.

2 Preliminaries

We begin by briefly introduce the already existing objects and results that will be useful for us: the two-parameter Segal-Bargmann transform, the q-deformation of the Gaussian measure, the q-deformation of independent Gaussian random variables and the model of random matrix of Śniady which allows to approximate those q-deformed Gaussian random variables.

2.1 Segal-Bargmann Transform

Let H be a real finite-dimensional Hilbert space of dimension $d \geq 1$. For all $t > 0$, we define γ_t to be a Gaussian measure on H whose density with respect to the Lebesgue measure at $x \in H$ is $(2\pi t)^{-d/2} \exp(-\|x\|^2/2t)$. For all $r, s > 0$, we define $\gamma_{r,s}$ to be a Gaussian measure on the complexification $H^C = H + iH$ of H whose density with respect to the Lebesgue measure at $x + iy \in H^C$ is $(2\pi \sqrt{rs})^{-d} \exp(-\|x\|^2/2r - \|y\|^2/2s)$. In other words, identifying $H^C = H + iH$ with $H \times H$, we have $\gamma_{r,s} = \gamma_r \otimes \gamma_s$: the parameters r and s define the respective scaling of the Gaussian measure on the real and the imaginary part of H.

In [11], Driver and Hall introduced a general version of the Segal-Bargmann transform which depends on two parameters s and t. Let $s > t/2 > 0$. For all $f \in L^2(H, \gamma_s)$, the map

$$z \mapsto \int_H f(z - x) \, d\gamma_t(x),$$

has a unique analytic continuation $\mathcal{S}_q^{s,t}(f)$ to H^C. Furthermore, the map $\mathcal{S}_q^{s,t}(f)$ is in the closed subspace of holomorphic functions of $L^2(H^C, \gamma_{s-t/2,t/2})$, denoted in the following by $\mathcal{H}L^2(H^C, \gamma_{s-t/2,t/2})$. The two
parameter Segal-Bargmann transform is the isomorphism of Hilbert space

$$\mathcal{S}^{s,t} : L^2(H, \gamma_s) \rightarrow \mathcal{H}L^2(H^C, \gamma_{s-t/2,t/2})$$

(2.2)

The standard case considered by Segal and Bargmann corresponds to the case $s = t$, and the Segal-Bargmann \mathcal{S} considered in the introduction corresponds to the case $s = t = 1$.

2.2 q-Gaussian Measure

In this section, we will review some facts about q-Gaussian measures and q-Hermite polynomials. More discussions can be found in [6, 27].

Definition 2.1. Let $-1 < q < 1$ and $t \geq 0$. The q-Gaussian measure ν_q of variance 1 is defined to be

$$\nu_q(dx) = \text{1}_{|x| \leq 2/\sqrt{1-q}} \frac{1}{\pi} \sqrt{1-q} \sin \theta \prod_{n=1}^{\infty} (1-q^n)|1 - q^n e^{2i\theta}|^2 \, dx$$

where $\theta \in [0, \pi]$ is such that $x = 2 \cos \theta / \sqrt{1-q}$. The q-Gaussian measure ν_q^t of variance t is given by $\nu_q^t(dx) = \nu_q(dx / \sqrt{t})$.

Let $-1 < q < 1$. For all integer n, set $[n]_q = 1 + \cdots + q^{n-1}$. For all $t \neq 0$, the q-Hermite polynomials $H^{q,t}_n$ of parameter t are defined by $H^{q,t}_0(x) = 1$, $H^{q,t}_1(x) = x$ and the recurrence relation

$$H^{q,t}_{n+1}(x) = xH^{q,t}_n(x) - t[n]_q H^{q,t}_{n-1}(x).$$

They form an orthogonal family with respect to ν_q with norm $[n]_q t^n$. Their generating function

$$\Gamma_q^t(x, z) := \sum_{k=0}^{\infty} \frac{x^k}{[k]_q^t} H^{q,t}_k(x) = \prod_{k=0}^{t} \frac{x}{t - (1-q)q^k z x + (1-q)q^{2k}z^2},$$

where $[n]_q = \prod_{j=1}^{n} [j]_q$, converges whenever $|x| \leq \frac{2\sqrt{t}}{\sqrt{1-q}}$ and $|z| < \sqrt{\frac{t}{1-q}}$.

2.3 q-Gaussian Variables and Wick Product

Definition 2.2. A non-commutative probability space (\mathcal{A}, τ) is a unital \ast-algebra with a linear functional $\tau : \mathcal{A} \rightarrow \mathbb{C}$ such that $\tau [1_A] = 1$ and $\tau [A^* A] \geq 0$ for all $A \in \mathcal{A}$. The element of \mathcal{A} are called random variables.

If \mathcal{X} is a subset of \mathcal{A}, we denote by $L^2(\mathcal{X}, \tau)$ the Hilbert space given by the completion of the (quotiented if necessary) space of the \ast-algebra generated by \mathcal{X} with respect to the norm $||A||^2 = \tau [A^* A]$, and by $\mathcal{H}L^2(\mathcal{X}, \tau)$ the Hilbert space given by the completion of the (quotiented if necessary) space of the algebra generated by \mathcal{X} with respect to the same norm.

The following definition of q-Gaussian variables can be considered as a q-deformation of the Wick formula of Gaussian variables (the classical case corresponds to $q = 1$). Let $P_2(n)$ be the set of pairing of $\{1, \ldots, n\}$. Let π be a pairing of $\{1, \ldots, n\}$. A quadruplet $1 \leq i < j < k < l \leq n$ is called a crossing of π if $\{i, k\} \in \pi$ and $\{j, l\} \in \pi$. The number of crossings of the pairing π is denoted by $\text{cr}(\pi)$.

Definition 2.3. Let $-1 \leq q \leq 1$. A set \mathcal{X} of self-adjoint and centred non-commutative random variables in a non-commutative probability space (\mathcal{A}, τ) is said to be jointly q-Gaussian if, for all $X_1, \ldots, X_n \in \mathcal{X}$, we have

$$\tau [X_1 \cdots X_n] = \sum_{\pi \in P_2(n)} q^{\text{cr}(\pi)} \prod_{\{i, j\} \in \pi} \tau [X_i X_j].$$

(2.3)
Two sets of jointly q-Gaussian variables \mathcal{X} and \mathcal{Y} are called q-independent if and only if $\mathcal{X} \cup \mathcal{Y}$ is jointly q-Gaussian and the elements of \mathcal{X} are orthogonal with the elements of \mathcal{Y} in $L^2(\mathcal{A}, \tau)$.

A set \mathcal{Z} of non-commutative centred random variables in a non-commutative probability space (\mathcal{A}, τ) is said to be jointly q-Gaussian if $\{\mathcal{R}Z, \exists Z : Z \in \mathcal{Z}\}$ is jointly q-Gaussian. Moreover, if $\tau([\mathcal{R}Z]^2) = s$ and $\tau([\mathcal{Z}]^2) = t$, we say that \mathcal{Z} is a (s, t)-elliptic q-Gaussian variable.

Let \mathcal{X} be any set of jointly q-Gaussian variables (not necessarily self-adjoint). Then, by linearity, it follows that the linear span of $\{X, X^* : X \in \mathcal{X}\}$ is also jointly q-Gaussian. If we take $X_1 = \cdots = X_n = X = X^*$ in (2.3) and such that $\tau[X^2] = 1$, we obtain the formula for the moments of the q-Gaussian measure ν_q:

$$\tau[X^n] = \sum_{\pi \in \mathcal{P}_2(n)} q^{\text{cr}(\pi)} = \int \prod x_i^n \nu_q(dx).$$

The q-Gaussian measure is called the distribution of the q-Gaussian variable X.

Remark 2.4. A family of self-adjoint jointly q-Gaussian variables $(X_i)_{i \in I}$ is, up to isomorphism, a q-Gaussian process as defined in [6], with covariance $c : I \times I \rightarrow \mathbb{R}$ given by $c(i, j) = \tau[X_i X_j]$. We can view them as operators acting on a q-deformation of the Fock space over \mathcal{H} (see Section 2.4). In the literature, for example in [6] [7] [10] [12] [16], the q-Gaussian variables have often been considered in this particular representation. Since our work only involves the non-commutative distribution of the q-Gaussian variables, we found more convenient to forget about the representation of a q-Gaussian variables and define it via its non-commutative distribution. This non-commutative distribution is implicitly given in [7] Proposition 2], or alternatively in [12] Corollary 2.1].

Definition 2.5. Let $-1 \leq q \leq 1$. Let $n \geq 0$. The Wick product of n jointly q-Gaussian variables X_1, \ldots, X_n, denoted by $X_1 \odot \cdots \odot X_n$, is uniquely defined by the following recursion formula: the empty Wick product is 1 and

$$X_1 \odot \cdots \odot X_n = X_1 \cdot (X_2 \odot \cdots \odot X_n) - \sum_{i=2}^n q^{i-1} \tau[X_i X_1](X_1 \odot \cdots \odot \hat{X}_i \odot \cdots \odot X_n)$$

where the hat means that we omit the corresponding element in the product.

Remark 2.6. The Wick product has been considered in [6] and [12] with different notation. Considering a set of self-adjoint jointly q-Gaussian variables $(X_i)_{i \in I}$ acting on the q-deformation of the Fock space over $L^2(X_i, \tau)$, the Wick product $X_1 \odot \cdots \odot X_n$ coincides with the quantity denoted by $\Psi(X_1 \otimes \cdots \otimes X_n)$ in [6] Definition 2.5) (they satisfy the same recursion formula thanks to [6] Proof of Proposition 2.7]). The Wick product $X_1 \odot \cdots \odot X_n$ is denoted by $\mathcal{W}_{\mathcal{X}}$ in [12].

In [12] is given an explicit formula for the Wick product of jointly q-Gaussian variables which are self-adjoint that we will present now. By linearity, the formula is also valid for non-necessarily self-adjoint variables. A Feynman diagram γ on $\{1, \ldots, n\}$ is a partition of $\{1, \ldots, n\}$ into one- and two-element sets. The set of Feynman diagrams on $\{1, \ldots, n\}$ is denoted by $\mathcal{F}(n)$, and we have $\mathcal{P}_2(n) \subset \mathcal{F}(n)$. We extend naturally the notion of crossing to $\mathcal{F}(n)$: a quadruplet $1 \leq i < j < k < l \leq n$ is called a crossing of γ if $\{i, k\} \in \gamma$ and $\{j, l\} \in \gamma$. The number of crossings of a Feynman diagram γ is denoted by $\text{cr}(\gamma)$. Similarly, a triplet $1 \leq i < j < k \leq n$ is called a gap of γ if $\{i, k\} \in \gamma$ and $\{j\} \in \gamma$. The number of gaps of a Feynman diagram γ is denoted by $\text{gap}(\gamma)$. Finally, the number of pairings of a Feynman diagram γ is denoted by 2γ.

Theorem 2.7 (Theorem 3.1 of [12]). The Wick product of jointly q-Gaussian variables X_1, \ldots, X_n is given by

$$X_1 \odot \cdots \odot X_n = \sum_{\gamma \in \mathcal{F}(n)} (-1)^{2\gamma} q^{\text{gap}(\gamma) - \text{cr}(\gamma)} \prod_{\{a,b\} \in \gamma} \tau[X_a X_b] \prod_{\{c\} \in \gamma} X_c.$$

In the following proposition, we sum up some properties of the Wick product which can be found in [6] and in [12] for self-adjoint jointly q-Gaussian variables. The general case follows by linearity.
Proposition 2.8.
1. The Wick product is multilinear on the linear span of jointly q-Gaussian variables.

2. If X_1, \ldots, X_n is jointly q-Gaussian, $(X_1 \cdots X_n)^* = X_n^\ast \cdots X_1^\ast$.

3. If X_1, \ldots, X_{n+m} is jointly q-Gaussian (with $n, m \geq 0$),
\[\tau \left[(X_1 \cdots X_n) \cdot (X_{n+1} \cdots X_{n+m}) \right] = \delta_{n,m} \sum_{\pi \in P_2(n,m)} q^{\text{cr} (\pi)} \prod_{\{i,j\} \in \pi} \tau [X_i X_j]. \]

4. If \(\{X_i\}_{i \in I} \) is a set of jointly q-Gaussian variables, the set of Wick products
\[\{X_{i(1)} \cdots X_{i(n)}\}_{n \geq 0, i(1), \ldots, i(n) \in I} \]
is a spanning set of the algebra $C \langle X_i : i \in I \rangle$ generated by $\{X_i\}_{i \in I}$.

2.4 Mixed q-Gaussian Variables

Let $Q = (q_{ij})_{i,j \in I}$ be a symmetric matrix with elements in $[-1, 1]$. We recall now the construction of the mixed q-Gaussian variables operators $X_i = c_i + c_i^\ast$, where c_i satisfy the commutation relations of the form
\[c_i^\ast e_j = q_{ij} c_j^\ast + \delta_{ij} 1. \] (2.4)

We consider a complex Hilbert space K with an orthonormal basis $\{e_i\}_{i \in I}$, and the algebraic full Fock space
\[\mathcal{F}(K) = \mathbb{C} \Omega + \bigoplus_{n=1}^{\infty} (K)^{\otimes n} \]
where Ω is a unit vector called the vacuum. The set of permutations of $\{1, \ldots, n\}$ is denoted by \mathfrak{S}_n, and a pair $1 \leq a < b < l \leq n$ is called an inversion of a permutation $\pi \in \mathfrak{S}_n$ if $\pi(a) \geq \pi(b)$. We define the Hermitian form $\langle \cdot, \cdot \rangle_Q$ to be the conjugate-linear extension of
\[\langle \Omega, \Omega \rangle_Q = 1 \]
\[\langle e_{i(1)} \otimes \cdots \otimes e_{i(k)}, e_{j(1)} \otimes \cdots \otimes e_{j(l)} \rangle_Q = \delta_{k\ell} \sum_{\pi \in \mathfrak{S}_k} \prod_{i = j \circ \pi} q_{i(a)i(b)}. \]

The Q-Fock space $\mathcal{F}_Q(K)$ is the completion of the quotient of $\mathcal{F}(K)$ by the kernel of $\langle \cdot, \cdot \rangle_Q$. For any $i \in I$, define the left creation operator c_i on $\mathcal{F}_Q(K)$ to extend
\[c_i(\Omega) = e_i \]
\[c_i(e_{i(1)} \otimes \cdots \otimes e_{i(k)}) = e_i \otimes e_{i(1)} \otimes \cdots \otimes e_{i(k)}. \]

The annihilation operator is its adjoint, which can be computed as
\[c_i^\ast(\Omega) = 0 \] (2.5)
\[c_i^\ast(e_{i(1)} \otimes \cdots \otimes e_{i(k)}) = \sum_{\ell=1}^{k} \delta_{ii(\ell)} q_{ii(1)} \cdots q_{ii(\ell-1)} \cdot e_{i(1)} \otimes \cdots \otimes e_{i(\ell-1)} \otimes e_{i(\ell+1)} \otimes \cdots \otimes e_{i(k)}. \] (2.6)

Finally, we define the mixed q-Gaussian variables X_i to be $c_i + c_i^\ast$. We can compute explicitly the mixed moment of those variables with respect to the vector state $\tau[.] = \langle \Omega, \Omega \rangle_Q$.

9
Proposition 2.9 (Proof of Theorem 4.4 of [8]). We have

\[\tau[X_{i(1)} \cdots X_{i(n)}] = \sum_{\pi \in P_2(n)} \prod_{\{a,b\} \in \text{cr} (\pi)} q_{i(a)i(b)} \prod_{\{a,b\} \in \pi} \delta_{i(a)i(b)}. \]

(2.7)

As a consequence, the distribution of the variable \(X_i \) is the \(q_{ii} \)-Gaussian measure. Let us remark that if all the \(q_{ij} \) are equal to a single \(q \), the set \(\{X_i\}_{i \in I} \) is jointly \(q \)-Gaussian. Finally, let us mention that it is also possible to define some Wick product for mixed \(q \)-Gaussian variables: see [15, 17].

2.5 Random Matrix Model of Śniady

Let \(d \geq 0 \). We endow \(\mathbb{M}_d \) by the inner products \(\langle A, B \rangle_1 = \frac{1}{d} \text{Tr}(AB^*) \) and \(\langle A, B \rangle_0 = \text{Tr}(A)\text{Tr}(B^*) \). For all \(S \subset \{1, \ldots, N\} \), we define the inner product \(\langle \cdot, \cdot \rangle_S \) on \(\mathbb{M}_d^N \approx \bigotimes_{r=1}^N \mathbb{M}_d \) to be the inner product of the Hilbert space tensor product \(\bigotimes_{r=1}^N (\mathbb{M}_d, \langle A, B \rangle_{1S(r)}) \). Let \(\sigma = (\sigma_S)_{S \subset \{1, \ldots, N\}} \) be a family of real numbers indexed by all subsets of \(\{1, \ldots, N\} \). We define the inner product on \(\mathbb{M}_d^N \) given by

\[\langle A, B \rangle_\sigma = \sum_{S \subset \{1, \ldots, n\}} \sigma_S^2 \cdot \langle A, B \rangle_S. \]

In order to be concrete, let us compute the inner product of elementary matrices. Setting

\[T_{ij,kl}^S = \langle E_{j,i}, E_{k,l} \rangle_{1S(r)} = \begin{cases} \delta_{i,l} \delta_{j,k} & \text{if } r \in S \vspace{1mm} \\ \delta_{i,j} \delta_{k,l} & \text{if } r \notin S \end{cases}, \]

and, for all \(i = (i_1, \ldots, i_N) \), \(j, k, l \in \{1, \ldots, d\}^N \),

\[T_{ij,kl}^S = \langle E_{j,i}, E_{k,l} \rangle_S = \prod_{r=1}^N T_{ij,kl}^{S_{rj,kl}}, \]

we have, for all \(i = (i_1, \ldots, i_N) \), \(j, k, l \in \{1, \ldots, d\}^N \),

\[\langle E_{j,i}, E_{k,l} \rangle_\sigma = \sum_{S \subset \{1, \ldots, N\}} \sigma_S^2 T_{ij,kl}^S. \]

(2.8)

Theorem 2.10 (Theorem 1 of [23]). Let \(\mathcal{X} = \{X_t\}_{t \in T} \) be a set of self-adjoint variables which are jointly \(q \)-Gaussian.

For each \(N \geq 0 \), let \(\sigma^{(N)} = (\sigma_S^{(N)})_{S \subset \{1, \ldots, N\}} \) be a family of real numbers, and let \(\mathcal{X}^{(N)} = \{X^{(N)}_t\}_{t \in T} \) be the Gaussian stochastic process on \(\mathbb{H}_d^N \) (indexed by \(T \)), uniquely defined by the following covariance: for all \(M, N \in \mathbb{H}_d^N \) and all \(s, t \in T \), one has

\[\mathbb{E} \left[\text{Tr}(MX_t^{(N)})\text{Tr}(NX_s^{(N)}) \right] = \tau[X_tX_s]\langle M, N \rangle_{\sigma^{(N)}}. \]

In other words, the entries of the matrices in \(\mathcal{X}^{(N)} \) are centered Gaussian variables with the following covariance: for all \(i, j, k, l \in \{1, \ldots, d\}^N \) and all \(s, t \in T \), one has

\[\mathbb{E} \left[\text{Tr}(E_{j,i}X_t^{(N)})\text{Tr}(E_{k,l}X_s^{(N)}) \right] = \mathbb{E} \left[\text{Tr}(E_{j,i}X_t^{(N)})\text{Tr}(E_{k,l}X_s^{(N)}) \right] = \tau[X_tX_s] \sum_{S \subset \{1, \ldots, N\}} (\sigma_S^{(N)})^2 T_{ij,kl}^S. \]

Under the technical assumptions \([H.1] [H.2] [H.3] \) and \([H.4] \), \(\mathcal{X}^{(N)} \) converges to \(\mathcal{X} \) in noncommutative distribution in the following sense: for all \(t_1, \ldots, t_n \), we have

\[\lim_{N \to \infty} \mathbb{E} \left[\frac{1}{d^N} \text{Tr}(X_{t_1}^{(N)} \cdots X_{t_n}^{(N)}) \right] = \tau[X_{t_1} \cdots X_{t_n}]. \]
Before presenting the technical assumptions \[H.1 \ H.2 \ H.3 \] and \[H.4 \] let us present two simple examples of family of real numbers \(\sigma^{(N)} = (\sigma_S^{(N)})_{S \subset \{1, \ldots, N\}} \) (for \(N \geq 0 \)) fulfilling all assumptions. Those examples are taken from [23, Proposition 1 and 2]: if \(q \) can be written as \(q = \exp(c^2/d^2 - c^2) \) for a real number \(c > 0 \), the sequence of functions defined by

\[
(\sigma_S^{(N)})^2 = \left(\frac{c}{\sqrt{N}} \right)^{|S|} \left(1 - \frac{c}{\sqrt{N}} \right)^{N-|S|}
\]

fulfils the assumptions of Theorem [2.10] if \(q \) can be written as \(q = \exp(c^2/d^2 - c^2) \) for a real number \(c > 0 \), the sequence of functions defined for \(N \) sufficiently large by

\[
(\sigma_S^{(N)})^2 = \begin{cases}
\frac{1}{|c\sqrt{N}|} & \text{if } |S| = |c\sqrt{N}| \\
0 & \text{otherwise}
\end{cases}
\]

fulfils the assumptions of Theorem [2.10]

Definition 2.11. For each \(N \geq 0 \), let \(\sigma^{(N)} = (\sigma_S^{(N)})_{S \subset \{1, \ldots, N\}} \) be a family of real numbers. The assumptions \[H.1 \ H.2 \ H.3 \] and \[H.4 \] are given as follow:

\[H.1 \] for each \(N \in \mathbb{N} \),

\[
\sum_{S \subset \{1, \ldots, N\}} (\sigma_S^{(N)})^2 = 1,
\]

\[H.2 \] we have

\[
\lim_{N \to \infty} \sum_{S_1, S_2, S_3 \subset \{1, \ldots, N\}} (\sigma_{S_1}^{(N)})^2 (\sigma_{S_2}^{(N)})^2 (\sigma_{S_3}^{(N)})^2 = 0,
\]

\[H.3 \] there exists a sequence \((p_i)_{i \geq 0} \) of nonnegative real numbers such that \(\sum_{i \geq 0} p_i = 1 \), \(\sum_{i \geq 0} p_i/d^2i = q \), and such that, for any \(k \in \mathbb{N} \) and any nonnegative integers numbers \((n_{ij})_{1 \leq i < j \leq k} \), we have

\[
\lim_{N \to \infty} \sum_{S_1, \ldots, S_k \subset \{1, \ldots, N\}} (\sigma_{S_1}^{(N)})^2 (\sigma_{S_1}^{(N)})^2 = \prod_{1 \leq i < j \leq k} p_{n_{ij}},
\]

\[H.4 \] for each \(k \in \mathbb{N} \),

\[
\lim_{N \to \infty} \sum_{S_1, \ldots, S_n \subset \{1, \ldots, N\}} \frac{(\sigma_{S_1}^{(N)})^2 \cdots (\sigma_{S_k}^{(N)})^2}{N^{|A_1 \setminus (A_2 \cup \cdots \cup A_n)|}} = 0.
\]

3 The Two-Parameter \(q \)-Deformed Segal-Bargmann Transform

In this section, we define the \(q \)-deformed Segal-Bargmann transform \(\mathcal{J}^s_t \) with parameters \(s > t/2 > 0 \) and prove Theorem [3.14] which reduces to Theorem [1.1] when \(s = t = 1 \).

3.1 An Integral Representation

The integral representation for the one-parameter and the two-parameter cases are similar. The two-parameter case is in fact a generalization of the one-parameter; we separate here simply to make the presentation of the computations clearer.
One-Parameter Case

Definition 3.1. Let $-1 < q < 1$ and $t \geq 0$. We define the q-deformed Segal-Bargmann transform \mathcal{S}_q^t by

$$\mathcal{S}_q^t f(z) = \int f(x) \Gamma_q^t(x, z) \nu_q^t(\, dx).$$

Observe that $\mathcal{S}_q^t H^t_n(z) = z^n$ and \mathcal{S}_q^t is injective (by looking at the Fourier expansion of $L^2(\nu_q^t)$).

Remark 3.2. When $t = 1$, the transform \mathcal{S}_q^1 coincides with the the transform W from [28]. The method is different; while van Leeuwen and Maassen discovered the integral kernel by solving an eigenvalue equation [28, Equation (8)], we make use of the generating function directly to match the result from the Fock space. The method we present here will give us a two-parameter generalization in later sections.

Theorem 3.3. The transform \mathcal{S}_q^t is a unitary isomorphism between $L^2(\nu_q^t)$ and the reproducing kernel Hilbert space \mathcal{H}_q^t of analytic functions on the disk $B \left(0, \sqrt{\frac{1}{1-q}}\right)$ generated by the positive-definite sesqui-analytic kernel

$$K_q^t(z, \zeta) = \int \Gamma_q^t(x, z) \Gamma_q^t(x, \zeta) \nu_q^t(\, dx) = \sum_{k=0}^{\infty} \frac{1}{\Gamma_q^t(k+1)} \left(\frac{z\zeta}{t}\right)^k.$$

Proof. Let us denote $\Gamma_q^t(x, z)$ by $\Gamma_q(x)$ for each $z \in B \left(0, \sqrt{\frac{1}{1-q}}\right)$ and $x \in \mathbb{R}$. We also write $K_q^t(z) = K_q^t(\zeta)$ as an analytic function on $B \left(0, \sqrt{\frac{t}{1-q}}\right)$. Observe that

$$\mathcal{S}_q^t f(\zeta) = \langle f, \bar{\Gamma}_q \rangle_{L^2(\nu_q^t)}.$$

Define $\mathcal{H}_q^t \equiv \mathcal{S}_q^t(L^2(\nu_q^t))$ equipped with the inner product

$$\langle F, G \rangle_{\mathcal{H}_q^t} := \langle (\mathcal{S}_q^t)^{-1} F, (\mathcal{S}_q^t)^{-1} G \rangle_{L^2(\nu_q^t)}$$

which is well-defined since \mathcal{S}_q^t is injective on $L^2(\nu_q^t)$. By construction \mathcal{S}_q^t is a unitary isomorphism between $L^2(\nu_q^t)$ and \mathcal{H}_q^t. Finally, we see that $K_q^t(z) = \mathcal{S}_q^t \bar{\Gamma}_q(z)$ and, for any $F \in \mathcal{H}_q^t$,

$$\langle F, K_q^t \rangle_{\mathcal{H}_q^t} = \langle (\mathcal{S}_q^t)^{-1} F, (\mathcal{S}_q^t)^{-1} K_q^t \rangle_{L^2(\nu_q^t)} = \langle (\mathcal{S}_q^t)^{-1} F, \bar{K}_q \rangle_{L^2(\nu_q^t)} = \mathcal{S}_q^t((\mathcal{S}_q^t)^{-1} F)(\zeta) = F(\zeta),$$

which shows that K_q^t is a reproducing kernel for \mathcal{H}_q^t. \qed

Remark 3.4. Since \mathcal{S}_q^t coincides with W from [28], the reproducing kernel Hilbert space \mathcal{H}_q^t actually is equal to the space $H^2(D_q, \mu_q)$ considered in [28].

Analytic Continuation of a Generating Function In this subsection, we study the analytic continuation on y to the following generating function

$$A(r, x, y) = \sum_{k=0}^{\infty} h^q_k(x) h^q_k(y) \frac{r^n}{(q)_n} = \prod_{k=0}^{\infty} (1 - 4rq^kxy + 2r^2q^{2k}(-1 + 2x + 2y) - 4r^3q^{3k}xy + r^4q^{4k}),$$

where $x, y \in [-1, 1]$, $0 < |r| < 1$ which is either real or purely imaginary, and $h^q_k(x) = H^q_k \left(\frac{x}{2}\sqrt{1-q}\right)$.

This formula is known as the q-Mehler formula and has been studied analytically and combinatorially; see e.g. [6, Theorem 1.10] or [19, Equation (24)]. By a standard theorem (see [20, Theorem 15.4]), the analytic
continuation on the parameter \(y \) of \(\Lambda \) is to solve, for a single \(0 < |r| < 1 \) and all \(x \in [-1,1] \), what \(y \) make
\[
1 - 4rq^kxy + 2r^2q^{2k}(-1 + 2x + 2y) - 4r^3q^{3k}xy + r^4q^{4k} = 0.
\]
The equation
\[
4r^2q^{2k}y^2 - 4tq^kx(1 + r^2q^{2k})y + r^4q^{4k} + 1 + 2r^2q^{2k}(2x^2 - 1) = 0
\]
has solution
\[
y = \frac{1}{2} \left(\left(\frac{1}{rq^k} + rq^k \right) x \pm i \left(\frac{1}{rq^k} - rq^k \right) \sqrt{1 - x^2} \right).
\]
It follows that precisely when
\[
y = \begin{cases}
\frac{1}{2} \left(\left(\frac{1}{|r||q|^k} + |r||q|^k \right) x \pm i \left(\frac{1}{|r||q|^k} - |r||q|^k \right) \sqrt{1 - x^2} \right) & \text{if } r \in \mathbb{R} \\
\frac{1}{2} \left(\pm \left(\frac{1}{|r||q|^k} + |r||q|^k \right) \sqrt{1 - x^2} \right) + \left(\frac{1}{|r||q|^k} - |r||q|^k \right) ix & \text{if } r \in i\mathbb{R}
\end{cases}
\]
(3.1)
for some \(x \in [-1,1] \), \(\Lambda(r, x, y) \) has a zero for the particular \(y \). Denote \(\Omega_{k,r} \) the bounded component, which contains 0, of the complement of the ellipse. Let
\[
\varphi_1(u) = \frac{1}{|r||q|^u} + |r||q|^u
\]
and
\[
\varphi_2(u) = \frac{1}{|r||q|^u} - |r||q|^u.
\]
The derivative \(\varphi'_1(u) = (-\log |q|) \left(\frac{1}{|r||q|^u} - |r||q|^u \right) > 0 \) implies \(\varphi_1 \) is increasing. Obviously \(\varphi_2 \) is increasing. Therefore \(\Omega_{k,r} \) is increasing. Whence the \(y \) parameter in \(\Lambda(r, x, y) \) can be analytically continued to the ellipse \(\Omega_{0,r} \).

Proposition 3.5. The generating function \(\Lambda(r, x, z) \) can be analytically continued to \(x \in [-1,1] \) and \(z \in \Omega_{0,r} \) which is an ellipse with major axis \([-\frac{1}{2}(1/|r| + |r|), \frac{1}{2}(1/|r| + |r|)]\) and minor axis \(i[-\frac{1}{2}(1/|r| - |r|), \frac{1}{2}(1/|r| - |r|)]\).

Two-Parameter Case We intend to define the integral \(q \)-Segal-Bargmann transform \(\mathcal{S}_q^{s,t} \) by
\[
\mathcal{S}_q^{s,t} f(z) = \int f(x) \Gamma_q^{s,t}(x, z) \nu_q^s \, (dx)
\]
where
\[
\Gamma_q^{s,t}(x, z) = \sum_{k=0}^{\infty} \frac{H_k^{q,s-t}(z) H_k^{q,s}(x)}{s^k [n]_q!}
\]
\[
= \sum_{k=0}^{\infty} (s - t)^{k/2} s^{k/2} \frac{H_k^{q,s-t}(z) H_k^{q,s}(x)}{s^k [n]_q!}
\]
\[
= \sum_{k=0}^{\infty} \left(1 - \frac{t}{s} \right)^{k/2} \frac{H_k^{q,s-t}(z) H_k^{q,s}(x)}{[n]_q!}.
\]
By [6] Theorem 1.10], this series converges for \(|x|, |z| \leq 2\sqrt{1/\sqrt{1-q}} \) for real \(x, z \).

Case \(s > t \):
It is easy to see that
\[\Gamma_{q}^{s,t}(x,z) = \Lambda \left(\sqrt{1 - \frac{t}{s}}, \frac{x\sqrt{1-q}}{2\sqrt{s}}, \frac{z\sqrt{1-q}}{2\sqrt{s-t}} \right). \]

By proposition 3.5, \(\Gamma_{q}^{s,t}(x,z) \) is defined as an analytic function on the ellipse \(E_{s,t} \) with major axis
\[\frac{2\sqrt{s-t}}{\sqrt{1-q}} \left(\left(1 - \frac{t}{s}\right) - \left(1 - \frac{t}{s}\right) \right) = \frac{2(2s-t)}{\sqrt{s}\sqrt{1-q}} \]
and minor axis
\[\frac{2\sqrt{s-t}}{\sqrt{1-q}} \left(\left(1 - \frac{t}{s}\right) - \left(1 - \frac{t}{s}\right) \right) = \frac{2t}{\sqrt{s}\sqrt{1-q}}. \]

Case \(s < t \):

Similarly,
\[\Gamma_{q}^{s,t}(x,z) = \Lambda \left(i\sqrt{\frac{t}{s}-1}, \frac{x\sqrt{1-q}}{2\sqrt{s}}, \frac{z\sqrt{1-q}}{2\sqrt{s-t}} \right). \]

By proposition 3.5, \(\Gamma_{q}^{s,t}(x,z) \) is defined as an analytic function on the ellipse \(E_{s,t} \) with major axis on the purely imaginary axis of length
\[\frac{2\sqrt{t-s}}{\sqrt{1-q}} \left(\left(\frac{t}{s} - 1\right) - \left(\frac{t}{s} - 1\right) \right) = \frac{2(2s-t)}{\sqrt{s}\sqrt{1-q}} \]
and minor axis on the real axis of length
\[\frac{2\sqrt{t-s}}{\sqrt{1-q}} \left(\left(\frac{t}{s} - 1\right) - \left(\frac{t}{s} - 1\right) \right) = \frac{2t}{\sqrt{s}\sqrt{1-q}}. \]

Remark 3.6. When \(q = 0 \), the ellipse coincides with the ellipse where the Brown measure of an elliptic element is distributed; see [4].

3.2 The Integral Transform

Definition 3.7. Let \(-1 < q < 1\) and \(s > t/2 > 0\). We define the \(q\)-deformed Segal-Bargmann transform \(S_{q}^{s,t} \) by
\[S_{q}^{s,t} f(z) = \int f(x) \Gamma_{q}^{s,t}(x,z) \nu_{q}^{s,t}(dx) \]
for all \(f \in L^{2}(\nu_{q}^{s}) \). \(S_{q}^{s,t} f \) is an analytic function on the ellipse \(E_{s,t} \).

Observe that \(S_{q}^{s,t} H_{n}^{s,t}(z) = H_{n}^{s,t}(z) \). The two-parameter analogue of Theorem 3.3 holds:

Theorem 3.8. The transform \(S_{q}^{s,t} \) is a unitary isomorphism between \(L^{2}(\nu_{q}^{s}) \) and the reproducing kernel Hilbert space \(H_{q}^{s,t} \) of analytic functions on the ellipse \(E_{s,t} \) generated by the positive-definite sesqui-analytic kernel
\[K_{q}^{s,t}(z,\zeta) = \int \Gamma_{q}^{s,t}(x,z) \Gamma_{q}^{s,t}(x,\zeta) \nu_{q}^{s}(dx). \]
3.3 Segal-Bargmann Transform and Conditional Expectation

The goal of this section is to prove Corollary 3.13 showing that the q-deformed Segal-Bargmann transform can be written as the action of a "q-deformed heat kernel". This result is already known for $q = 0$, thanks to [9, Theorem 3.1].

Recall that the Wick product $X_1 \cdots X_n$ is orthogonal in $L^2(\mathcal{A}, \tau)$ to all products in X_1, \ldots, X_n of degree strictly less than n. Since $X_1 \cdots X_n - X_1 \cdots X_n$ is in the span of the products in X_1, \ldots, X_n of degree strictly less than n, $X_1 \cdots X_n - X_1 \cdots X_n$ can be seen as the orthogonal projection of $X_1 \cdots X_n$ onto the span of the products in X_1, \ldots, X_n of degree strictly less than n. Because the Wick product can be seen as some orthogonal projection, the link with the conditional expectation is not surprising.

Definition 3.9. Let \mathcal{X} be a subset of a non-commutative space (\mathcal{A}, τ). The conditional expectation

$$\tau[\cdot | \mathcal{X}] : L^2(\mathcal{A}, \tau) \to L^2(\mathcal{X}, \tau)$$

is the orthogonal projection of $L^2(\mathcal{A}, \tau)$ onto $L^2(\mathcal{X}, \tau)$.

Remark 3.10. If (\mathcal{A}, τ) is a W^*-probability space, that is to say a von Neumann algebra with an appropriate τ, the conditional expectation $\tau[\cdot | \mathcal{X}]$ maps \mathcal{X} into the von Neumann algebra $W^*(\mathcal{X})$ generated by \mathcal{X}.

Proposition 3.11. Let \mathcal{X} and \mathcal{Y} be two sets of jointly q-Gaussian variables which are q-independent. Let $X_1, \ldots, X_n \in \mathcal{X} \cup \mathcal{Y}$. We have

$$\tau \left[X_1 \cdots X_n \big| \mathcal{X} \right] = 0$$

if one of the X_is belongs to \mathcal{Y}, and $X_1 \cdots X_n$ if all X_is are in \mathcal{X}.

Proof. If all X_is are in \mathcal{X}, $X_1 \cdots X_n$ is in $L^2(\mathcal{X}, \tau)$ and the conditional expectation does not affect $X_1 \cdots X_n$. If one of the X_is belongs to \mathcal{Y}, it is sufficient to verify that $X_1 \cdots X_n$ is orthogonal to $L^2(\mathcal{X}, \tau)$, and it is an immediate consequence of the following fact: for all $X_{n+1}, \ldots, X_{n+m} \in \mathcal{X}$,

$$\tau \left[(X_1 \cdots X_n) \cdot (X_{n+1} \cdots X_{n+m})^* \right] = 0.$$

Indeed, using of Proposition 2.8 the computation of the trace always involves a factor $\tau[X_iX_i^*]$ between a $X_i \in \mathcal{Y}$ and a $X_j \in \mathcal{X}$, which vanishes. \hfill \Box

Corollary 3.12. Let $\mathcal{X} = \{X_i\}_{i \in I}$, $\mathcal{Y} = \{Y_j\}_{j \in J}$ and $\mathcal{Z} = \{Z_j\}_{j \in J}$ be three sets of jointly q-Gaussian variables which are q-independent. The conditional expectations $\tau[\cdot | \mathcal{X} \cup \mathcal{Z}] : L^2(\mathcal{A}, \tau) \to L^2(\mathcal{X} \cup \mathcal{Z}, \tau)$ and $\tau[\cdot | \mathcal{X}] : L^2(\mathcal{A}, \tau) \to L^2(\mathcal{X}, \tau)$ coincide on $L^2(\mathcal{X} \cup \mathcal{Y}, \tau)$.

Proof. Thanks to Proposition 3.11 the two conditional expectations coincide on the Wick products of elements in $\mathcal{X} \cup \mathcal{Y}$ which is a dense subset of $L^2(\mathcal{X} \cup \mathcal{Y}, \tau)$ (see Proposition 2.8). \hfill \Box

Corollary 3.13. Let Z be a (s,t)-elliptic q-Gaussian variable in (\mathcal{A}, τ). If Y is a $(t,0)$-elliptic q-Gaussian variable which is q-independent from Z, we have, for all polynomial P,

$$\mathcal{S}_q^{s,t} P(Z) = \tau[P(Y + Z) | Z].$$

Proof. It suffices to prove the theorem for the Hermite polynomials $\{H_n^{q,s}\}_{n \geq 0}$. Because $\mathcal{S}_q^{s,t} H_n^{q,s} = H_n^{q,s-t}$ for all $n \geq 0$, we need to prove that, for all $n \geq 0$,

$$\tau[H_n^{q,s}(Y + Z) | Z] = H_n^{q,s-t}(Z).$$
We compute
\[\tau[Z^2] = s - t \text{ and } \tau[(Y + Z)^2] = \tau[Z^2] + \tau[Y^2] = (s - t) + t = s, \]
and we deduce the following equalities by induction:
\[H_n^{q,s-t}(Z) = Z^{on} \text{ and } H_n^{q,s}(Y + Z) = (Y + Z)^{on}. \]
Let us conclude by the following computation where we use Proposition 3.11:
\[\tau[H_n^{q,s}(Y + Z)|Z] = \tau[(Y + Z)^{on}|Z] = Z^{on} = H_n^{q,s-t}(Z). \]
\[\square \]

3.4 Random Matrix Model

Let \(\gamma_{d^N}^{\sigma,t} \) be the Gaussian measure on \(\mathbb{H}_{d^N} \) whose characteristic function is given by
\[
\int_{\mathbb{H}_{d^N}} \exp(i\text{Tr}(MX)) \, d\gamma_{d^N}^\sigma(X) = \exp(-t\|M\|_{\sigma}/2).
\]
The measure \(\gamma_{d^N}^\sigma \) is supported on the following vector subspace
\[K_{\sigma} = \{ X \in \mathbb{H}_{d^N} : \text{Tr}(MX) = 0 \text{ for all } M \in \mathbb{H}_{d^N} \text{ such that } \|M\|_{\sigma}^2 = 0 \}. \]
In particular, if \(\| \cdot \|_{\sigma}^2 \) is not faithful, \(\gamma_{d^N}^{\sigma,t} \) is not absolutely continuous with respect to the Lebesgue measure on \(\mathbb{H}_{d^N} \). However, \(\gamma_{d^N}^{\sigma,t} \) is absolutely continuous with respect to the Lebesgue measure on the vector space \(K_{\sigma} \). More precisely, using the Riesz representation theorem, let us define the linear map \(K : K_{\sigma} \rightarrow K_{\sigma} \) to be the unique linear map such that, for all \(x, y \in K_{\sigma}, \text{Tr}(xy) = \langle \phi(x), y \rangle_{\sigma} \). With respect to the Lebesgue measure on the vector space \(K_{\sigma} \), the measure \(\gamma_{d^N}^{\sigma,t} \) has density proportional to
\[\exp \left(-\frac{1}{2t} \text{Tr}(x\phi(x)) \right) = \exp \left(-\frac{1}{2t} \|\phi(x)\|_{\sigma}^2 \right). \]
The quantity \(\|\phi(x)\|_{\sigma} \) is known as the Mahalanobis distance from \(x \) to \(0 \), and it is the norm of \(K_{\sigma} \) for which \(\gamma_{d^N}^{\sigma,t} \) is the standard Gaussian measure.

We follows now Section 2.1 in order to define the Segal-Bargmann transform \(\mathcal{S}^{s,t} \) on \(L^2(K_{\sigma}, \gamma_{d^N}^{\sigma,s}) \). First, we consider the Gaussian measure \(\mu_{d^N}^{\sigma,r,s} \) on \(K_{\sigma} + iK_{\sigma} \) which is given by \(\gamma_{d^N}^{\sigma,t} \otimes \gamma_{d^N}^{\sigma,s} \) when identifying \(K_{\sigma} + iK_{\sigma} \) with \(K_{\sigma} \times K_{\sigma} \). A short computation shows that \(\mu_{d^N}^{\sigma,r,s} \) is the Gaussian measure on \(\mathbb{M}_{d^N} \) whose characteristic function is given by
\[
\int_{\mathbb{M}_{d^N}} \exp(i\text{Tr}(MX^*)) \, d\mu_{d^N}^{\sigma}(X) = \exp(-r\|\Re M\|_{\sigma}^2/2 - s\|\Im M\|_{\sigma}^2/2).
\]
The Segal-Bargmann transform
\[\mathcal{S}^{s,t} : L^2(\mathbb{H}_{d^N}, \gamma_{d^N}^{\sigma,s}) = L^2(K_{\sigma}, \gamma_{d^N}^{\sigma,s}) \rightarrow \mathcal{H}L^2(K_{\sigma} + iK_{\sigma}, \mu_{d^N}^{\sigma,s-t/2,t/2}) = \mathcal{H}L^2(\mathbb{M}_{d^N}, \mu_{d^N}^{\sigma,s-t/2,t/2}) \]
is well-defined as in (2.2).

Following the model of Biane, we consider the two following Hilbert space tensor products
\[L^2(\mathbb{H}_{d^N}, \gamma_{d^N}^{\sigma,s}; \mathbb{M}_{d^N}) = L^2(\mathbb{H}_{d^N}, \gamma_{d^N}^{\sigma,s}) \otimes \mathbb{M}_{d^N} \]
and
\[\mathcal{H} L^2(\mathbb{M}_{dN} ; \mu_{dN}^{\sigma,s-t/2,t/2} ; \mathbb{M}_{dN}) = \mathcal{H} L^2(\mathbb{M}_{dN} ; \mu_{dN}^{\sigma,s-t/2,t/2}) \otimes \mathbb{M}_{dN}, \]
where \(\mathbb{M}_{dN} \) is endowed with the norm \(\| M \|_{\mathbb{M}_{dN}}^2 = \text{Tr}(MM^*)/d^N \). Finally, we consider the boosted Segal-Bargmann transform
\[\mathcal{S}_d^{s,t} = \mathcal{S}_d^{s,t} \otimes \text{Id}_{\mathbb{M}_{dN}} : L^2(\mathbb{H}_{dN} ; \gamma_{dN}^\sigma ; \mathbb{M}_{dN}) \to \mathcal{H} L^2(\mathbb{M}_{dN} ; N_{\mu_{dN}^{\sigma,s-t/2,t/2}}^{\sigma,s-t/2,t/2} ; \mathbb{M}_{dN}). \]

Theorem 3.14. Let \(0 \leq q < 1 \). Assuming (H.1), (H.2), (H.3) and (H.4) on \(\sigma \) ensures that the Segal-Bargmann transform \(\mathcal{S}_d^{q,s,t} \) converges to the \(q \)-deformed Segal-Bargmann transform \(\mathcal{S}_q^{s,t} \) in the following sense: for all polynomial \(P \), we have
\[\lim_{N \to \infty} \left\| \mathcal{S}_d^{s,t}(P) - \mathcal{S}_q^{s,t} P \right\|_{\mathcal{H} L^2(\mathbb{M}_{dN} ; N_{\mu_{dN}^{\sigma,s-t/2,t/2}}^{\sigma,s-t/2,t/2} ; \mathbb{M}_{dN})} = 0. \]

Proof. Let us denote by \(Q \) the polynomial \(\mathcal{S}_q^{s,t} P \).

For all \(z \in \mathbb{H}_{dN} \), we have
\[(\mathcal{S}_d^{s,t}(P))(z) = \int_{\mathbb{H}_{dN}} P(z - x) \, d\gamma_{dN}^{\sigma,s}(x). \]

Because both side are analytic in \(z \), the equality is valid for all \(z \in \mathbb{M}_{dN} \). Thus we can compute
\[\left\| \mathcal{S}_d^{s,t}(P) - Q \right\|_{\mathcal{H} L^2(\mathbb{M}_{dN} ; N_{\mu_{dN}^{\sigma,s-t/2,t/2}}^{\sigma,s-t/2,t/2} ; \mathbb{M}_{dN})} = \int_{\mathbb{M}_{dN}} \int_{\mathbb{H}_{dN}} \int_{\mathbb{H}_{dN}} \left(P(z - x) - Q(z) \right) \left(P(z - y) - Q(z) \right)^* \, d\gamma_{dN}^{\sigma,s}(x) \, d\gamma_{dN}^{\sigma,s}(y) \, d\mu_{dN}^{\sigma,s-t/2,t/2}(z). \]

Considering three independent random matrices \(X^{(N)}, Y^{(N)} \) and \(Z^{(N)} \) of respective distribution \(\gamma_{dN}^{\sigma,s}, \gamma_{dN}^{\sigma,t} \) and \(N_{\mu_{dN}^{\sigma,s-t/2,t/2}}^{\sigma,s-t/2,t/2} \), we can rewrite
\[\left\| \mathcal{S}_d^{s,t}(P) - Q \right\|_{\mathcal{H} L^2(\mathbb{M}_{dN} ; N_{\mu_{dN}^{\sigma,s-t/2,t/2}}^{\sigma,s-t/2,t/2} ; \mathbb{M}_{dN})} = \mathbb{E} \left[(P(Z^{(N)} + X^{(N)}) - Q(Z^{(N)}))(P(Z^{(N)} + Y^{(N)}) - Q(Z^{(N)}))^* \right]. \]

Let \(X, Y \) be two \((t,0)\)-elliptic \(q \)-Gaussian random variables and \(Z \) be a \((s-t/2, t/2)\)-elliptic \(q \)-Gaussian random variable such that \(X, Y \) and \(Z \) are \(q \)-independent. Remark that, for any random Hermitian matrix \(X^{(N)} \) distributed according to \(\gamma_{dN}^{\sigma,s,t} \), for all \(M, N \in \mathbb{H}_{dN} \), one has
\[\mathbb{E} \left[\text{Tr}(MX^{(N)}\text{Tr}(NX^{(N)})) \right] = t(M, N)_\sigma. \]

Moreover, for any random matrix \(Z \) distributed according to \(\mu_{dN}^{\sigma,s-t/2,t/2} \), \(\Re Z \) and \(\Im Z \) are two independent Hermitian random matrices distributed according to \(\gamma_{dN}^{\sigma,s-t/2} \) and \(\gamma_{dN}^{\sigma,t/2} \). Thus, we can apply Theorem 2.10 which says that the Hermitian random matrices \(X^{(N)}, Y^{(N)} \), \(\Re Z^{(N)} \) and \(\Im Z^{(N)} \) converge in noncommutative distribution to \(X, Y, \Re Z \) and \(\Im Z \). In particular, we have the following convergence:
\[\lim_{N \to \infty} \mathbb{E} \left[(P(Z^{(N)} + X^{(N)}) - Q(Z^{(N)}))(P(Z^{(N)} + Y^{(N)}) - Q(Z^{(N)}))^* \right] = \tau \left[(P(Z + X) - Q(Z))(P(Z + Y) - Q(Z))^* \right]. \]
Thus the limit \(\tau [(P(Z + X) - Q(Z))(P(Z + Y) - Q(Z))^*] \) of \(\left\| \mathcal{S}^{s,t}_q(P) - Q \right\|_{\mathcal{H}L^2(M_{dN}, \mu_{dN}^{s-t/4,t/2}; \mathbb{M}_{dN})} \) vanishes:

\[
\tau [(P(Z + X) - Q(Z))(P(Z + Y) - Q(Z))^*] = \tau [(P(Z + X) - \tau[P(Z + X)|Z,Y])(P(Z + Y) - Q(Z))^*] = \tau [(P(Z + X) - P(Z + X))(P(Z + Y) - Q(Z))^*] = 0.
\]

\[\square\]

4 Multidimensional \(q \)-Segal-Bargmann Transform

In this section, we will extend the definition of the \(q \)-Segal-Bargmann transform \(\mathcal{S}^{s,t}_q \) to a multidimensional setting, and prove Theorem 4.8 which says that Theorem 3.14 is also true in this new setting. In order to understand the multidimensional case for \(-1 \leq q \leq 1 \), we decide first to explain the infinite-dimensional case for the classical Segal-Bargmann transform.

4.1 Classical Segal-Bargmann Transform in the Infinite-Dimensional Case

The content of this section is entirely expository. In Section 4.1 we shall define a version of the Segal-Bargmann transform in a probabilistic framework which allows to consider infinite-dimensional Hilbert spaces. In Section 4.2 and 4.1 we give two alternative descriptions of the Segal-Bargmann transform which are adapted to consider \(q \)-deformations.

In a probabilistic framework In order to consider the \(q \)-deformation of this Segal-Bargmann transform, it is convenient to have a version of the \(L^2 \)-spaces with more probabilistic flavor. Let \(h \in H \). The continuous linear functional \((\cdot, h) \in H^* \) can be considered as a random variable defined on the probability space \((H, \mathcal{B}, \gamma_s)\) (where \(\mathcal{B} \) is the Borel \(\sigma \)-field of \(H \)). Let us denote by \(X(h) \) the linear functional \(x \mapsto \langle x, h \rangle \) defined on \(H \) and by \(Z(h) \) the linear functional \(z \mapsto \langle z, h \rangle \) defined on \(H^C \). Because \(H \) is finite-dimensional, the \(\sigma \)-field generated by the random variables \((X(h))_{h \in H} \) is the Borel \(\sigma \)-field \(\mathcal{B} \) of \(H \). Denoting by \(L^2(X) \) the random variables of \(L^2(H, \mathcal{B}, \gamma_s) \) which are measurable with respect to the \(\sigma \)-field generated by the random variables \((X(h))_{h \in H} \), we have \(L^2(X) = L^2(H, \mathcal{B}, \gamma_s) \). Furthermore, it is well-known that the density in \(L^2(H, \mathcal{B}, \gamma_s) \) of polynomial variable follows from Hölder inequality. Finally, the three following Hilbert spaces are identical:

\[
L^2(X) = \mathbb{C}[X(h) : h \in H]^{L^2(H, \mathcal{B}, \gamma_s)} = L^2(H, \mathcal{B}, \gamma_s).
\]

In the same way, denoting by \(\mathcal{H}L^2(Z) \) the completion of the algebra of random variables \(\mathbb{C}[Z(h) : h \in H] \) in \(L^2(H^C, \mathcal{B}, \gamma_{s-t/2,t/2}) \) we have the equality between the three following Hilbert spaces (where the first equality is a definition):

\[
\mathcal{H}L^2(Z) = \mathbb{C}[Z(h) : h \in H]^{L^2(H^C, \mathcal{B}, \gamma_{s-t/2,t/2})} = \mathcal{H}L^2(H^C, \mathcal{B}, \gamma_{s-t/2,t/2}).
\]

The Segal-Bargmann map \(2.2 \) can now be seen as an isomorphism between two spaces of random variables

\[
\mathcal{S}^{s,t}_q : L^2(X) \rightarrow \mathcal{H}L^2(Z).
\]
From the definition 2.1, the action of $\mathcal{S}_{s,t}$ on $\mathbb{C}[X(h) : h \in H]$ is easily described in the following way. The Hermite polynomials of parameter s are defined by $H_{0}^{s}(x) = 1$, $H_{1}^{s}(x) = x$ and the recurrence relation $xH_{n}^{s}(x) = H_{n+1}^{s}(x) + nH_{n-1}^{s}(x)$. If h_{1}, \ldots, h_{k} is an orthonormal family of H, the Hermite polynomials $H_{n_{1}}^{s}(X(h_{1})) \cdots H_{n_{k}}^{s}(X(h_{k}))$ form an orthonormal family of $L^{2}(X)$ and the action of $\mathcal{S}_{s,t}$ on this basis is

$$\mathcal{S}_{s,t} : H_{n_{1}}^{s}(X(h_{1})) \cdots H_{n_{k}}^{s}(X(h_{k})) \mapsto H_{n_{1}}^{s-t}(Z(h_{1})) \cdots H_{n_{k}}^{s-t}(Z(h_{k})).$$

(4.1)

The formula (4.1) determines $\mathcal{S}_{s,t}$ on $\mathbb{C}[X(h) : h \in H]$ by linearity, and thus (4.1) determines uniquely $\mathcal{S}_{s,t}$ on $L^{2}(X)$ by continuity.

In the infinite dimensional case The first approach of Section 2.1 can not extend directly to the infinite-dimensional setting because the Gaussian measures γ_{s} do not make sense as measures on an infinite-dimensional Hilbert space. The dual point of view of Section 4.1 allows to define the Segal-Bargmann transform on infinite-dimensional Hilbert spaces. Indeed, X and Z of last section are particular cases of what we will called Gaussian fields. One has just to replace the underlying probability space (H, B, γ_{s}), which is not well-defined, by a sufficiently big one (Ω, F, \mathbb{P}). In the following, the underlying probability space (Ω, F, \mathbb{P}) will be completely arbitrary, but in concrete cases, the measure of reference \mathbb{P} is often supported on a space Ω bigger than H. For example, in [11], the measure of reference \mathbb{P} is a Wiener measure on a Wiener space whose Cameron-Martin space is H.

Let us fix an underlying probability space (Ω, F, \mathbb{P}) and call random variables the measurable functions on Ω. For all real Hilbert space, a linear map X from H to the space of real random variables is called a Gaussian field on H if, for all $h \in H$, $X(h)$ is centered Gaussian with variance $\mathbb{E}[(X(h))^{2}] = \|h\|^{2}$. For all $r, s \geq 0$, a linear map Z from H to the space of complex random variables is called an (r, s)-elliptic Gaussian field if it has the same distribution as $\sqrt{r}Z_{1} + i\sqrt{s}Z_{2}$, where Z_{1} and Z_{2} are two Gaussian fields on H which are independent (in particular, an $(r, 0)$-elliptic Gaussian field is real-valued and an $(0, s)$-elliptic Gaussian field is purely imaginary-valued). Let $r, s \geq 0$, and let Z be an (r, s)-elliptic Gaussian field. Following the last section, we define $\mathcal{H}L^{2}(Z)$ to be the completion of the algebra of random variables $\mathbb{C}[Z(h) : h \in H]$ in $L^{2}(\Omega, F, \mathbb{P})$. When $s = 0$ or $r = 0$, $\mathcal{H}L^{2}(Z)$ coincide with the random variables of $L^{2}(\Omega, F, \mathbb{P})$ which are measurable with respect to the σ-field generated by the random variables $(Z(h))_{h \in H}$, and we will simply write $L^{2}(Z)$ instead of $\mathcal{H}L^{2}(Z)$.

Let $s > t/2 \geq 0$. In Section 4.1, X was an $(s, 0)$-elliptic Gaussian field and Z was an $(s - t/2, t/2)$-elliptic Gaussian field on a finite-dimensional Hilbert space H. Thanks to Section 4.1, we have the following proposition.

Proposition 4.1. Let H be a (possibly infinite-dimensional) Hilbert space, X be an $(s, 0)$-elliptic Gaussian field on H and Z be an $(s - t/2, t/2)$-elliptic Gaussian field on H. The map given, for all orthonormal family h_{1}, \ldots, h_{k} of H, by

$$\mathcal{S}_{s,t} : H_{n_{1}}^{s}(X(h_{1})) \cdots H_{n_{k}}^{s}(X(h_{k})) \mapsto H_{n_{1}}^{s-t}(Z(h_{1})) \cdots H_{n_{k}}^{s-t}(Z(h_{k})),$$

(4.2)

is a well-defined isometry from $\mathbb{C}[X(h) : h \in H]$ to $\mathbb{C}[Z(h) : h \in H]$ which extends uniquely to an isomorphism of Hilbert space $\mathcal{S}_{s,t} : L^{2}(X) \rightarrow \mathcal{H}L^{2}(Z)$, called in the following the (two-parameter) Segal-Bargmann transform.

Segal-Bargmann transform and Wick products In order to define q-deformation of the Segal-Bargmann transform, we give here a second description of the Gaussian fields and of the Segal-Bargmann transform defined in Section 4.1.

Let X be a Gaussian field on H. The Wick product is the result of the Gram-Schmidt process for the basis of $L^{2}(X)$ given by monomials. More precisely, for all $n \geq 0$ and $h_{1}, \ldots, h_{n} \in H$, we define the Wick product $X(h_{1}) \circ \cdots \circ X(h_{n})$ of $X(h_{1}), \ldots, X(h_{n})$ as the unique element of

$$X(h_{1}) \cdots X(h_{n}) + \text{Span}\{X(k_{1}) \cdots X(k_{m}) : m < n, k_{1}, \ldots, k_{m} \in H\}$$
which is orthogonal to $\text{Span}\{X(k_1) \cdots X(k_m) : m \leq n, k_1, \ldots, k_m \in H\}$, or equivalently, such that
\[
\mathbb{E}[(X(h_1) \diamond \cdots \diamond X(h_n)) \cdot X(k_1) \cdots X(k_m)] = 0
\]
for all $m < n, k_1, \ldots, k_m \in H$. In certain cases, the Wick product can be computed explicitly. For all $n \geq 0, m_1, \ldots, m_n \geq 1$ and h_1, \ldots, h_n an orthonormal family of H, we have
\[
X(h_1)^{m_1} \diamond \cdots \diamond X(h_n)^{m_n} = H_{m_1}^1(X(h_1)) \cdots H_{m_n}^1(X(h_n)).
\]

Let Z be a Gaussian (s, t)-elliptic system on H. In the same way, for all $n \geq 0$ and $h_1, \ldots, h_n \in H$, we define the Wick product $Z(h_1) \diamond \cdots \diamond Z(h_n)$ of $Z(h_1), \ldots, Z(h_n)$ as the unique element of
\[
Z(h_1) \cdots X(h_n) + \text{Span}\{Z(k_1) \cdots Z(k_m) : m < n, k_1, \ldots, k_m \in H\}
\]
which is orthogonal to $\text{Span}\{Z(k_1) \cdots Z(k_m) : m \leq n, k_1, \ldots, k_m \in H\}$, or equivalently, such that
\[
\mathbb{E}[(Z(h_1) \diamond \cdots \diamond Z(h_n)) \cdot Z(k_1) \cdots Z(k_m)] = 0
\]
for all $m < n, k_1, \ldots, k_m \in H$. By multilinearity and the discussion above, for all $n \geq 0, m_1, \ldots, m_n \geq 1$ and h_1, \ldots, h_n an orthonormal family of H, we have
\[
Z(h_1)^{m_1} \diamond \cdots \diamond Z(h_n)^{m_n} = H_{m_1}^{s-t}(Z(h_1)) \cdots H_{m_n}^{s-t}(Z(h_n)).
\]

We are now able to give an alternative description of the Segal-Bargmann transform. Let X be a $(s, 0)$-elliptic Gaussian system, and Z be a Gaussian (s, t)-elliptic system on H. From (4.2), we deduce that, for all orthonormal family h_1, \ldots, h_k of H, we have
\[
\mathcal{S}^{s,t}(X(h_1)^{m_1} \cdots X(h_n)^{m_n}) = Z(h_1)^{m_1} \cdots Z(h_n)^{m_n}
\]
which can be generalized by multilinearity to the following.

Proposition 4.2. Let X be a $(s, 0)$-elliptic Gaussian system, and Z be a Gaussian (s, t)-elliptic system on H. For all $n \geq 0$ and $h_1, \ldots, h_n \in H$, we have
\[
\mathcal{S}^{s,t}(X(h_1) \diamond \cdots \diamond X(h_n)) = Z(h_1) \diamond \cdots \diamond Z(h_n). \tag{4.3}
\]

Segal-Bargmann transform and conditional expectations In the proof of Theorem 4.8, we will need a third description of the Segal-Bargmann transform, which follows directly from the definition. Let X be a $(s, 0)$-elliptic Gaussian system, and Z be a Gaussian (s, t)-elliptic system on H. If Y is a $(t, 0)$-elliptic Gaussian system which is independent from Z, we have, for all $P \in \mathbb{C}[x_h : h \in H]$,
\[
\mathcal{S}^{s,t}(P(X(h) : h \in H)) = \mathbb{E} [P(Z(h) + Y(h) : h \in H)|Z(h) : h \in H]. \tag{4.4}
\]

Because the formula only involves finitely many variables h for each $P \in \mathbb{C}[x_h : h \in H]$, it is enough to prove the formula for finite-dimensional Hilbert spaces H. For convenience, we take the particular case of Section 4.1. $X(h)$ is the linear functional $x \mapsto \langle x, h \rangle$ defined on $(H, \mathcal{B}, \gamma_s)$ and $Z(h)$ the linear functional $z \mapsto \langle z, h \rangle$ defined on $(H^C, \mathcal{B}, \gamma_{s-t/2,t/2})$. Let $P \in \mathbb{C}[x_h : h \in H]$. For all $z \in H$,
\[
\mathcal{S}^{s,t}(P(X(h) : h \in H))(z) = \int_{H} P(X(h) : h \in H)(z - x) \, d\gamma_t(x)
\]
\[
= \int_{H} P((z - x, h) : h \in H) \, d\gamma_t(x)
\]
\[
\mathcal{S}^{s,t}(P(X(h) : h \in H))(z) = \int_{H} P((Z(h))(z) - (X(h))(x) : h \in H) \, d\gamma_t(x).
\]

The last line is also valid for all $z \in H^C$, since each side is analytic. We recognize the conditioning of two independent set of variables: by enlarging the underlying probability space, we assume that there exists a $(t, 0)$-elliptic Gaussian system Y independent from Z and rewrite the last equality as follows.
Proposition 4.3. Let X be a $(s, 0)$-elliptic Gaussian system, and Z be a Gaussian (s, t)-elliptic system on H. Let us assume that there exists a $(t, 0)$-elliptic Gaussian system Y independent from Z. For all $P \in \mathbb{C}[x_h : h \in H]$, we have

$$\mathcal{S}^{s,t}(P(X(h) : h \in H)) = \mathbb{E}\left[P(Z(h) + Y(h) : h \in H)\big| Z(h) : h \in H\right].$$

(4.5)

4.2 The q-Deformation of the Segal-Bargmann Transform

Definition 4.4. Let $-1 \leq q \leq 1$. A q-Gaussian field X_q on H is a linear map from H to a non-commutative probability space (\mathcal{A}, τ) which is an isometry for the L^2-norm and such that $(X_q(h))_{h \in H}$ is jointly q-Gaussian.

A (r, s)-elliptic q-Gaussian field Z_q is a linear map from H to a non-commutative probability space (\mathcal{A}, τ) which can be decomposed as $\sqrt{r}X_q + i\sqrt{s}Y_q$, where X_q and Y_q are two q-Gaussian field which are q-independent. Elliptic q-Gaussian fields are q-independent if the previous decomposition holds simultaneously with q-Gaussian fields which are all q-independent.

The following definition of the Segal-Bargmann transform in the infinite-dimensional case coincide with the classical Segal-Bargmann transform if $q = 1$, with the definition of Kemp in [16] if $s = t$, and with the definition of the second author in [14] if $q = 0$.

Proposition / Definition 4.5. Let X_q be a q-Gaussian $(s, 0)$-elliptic system, and Z_q be a q-Gaussian $(s - t/2, t/2)$-elliptic system from H to \mathcal{A}. The (q-deformed) Segal-Bargmann transform $\mathcal{S}_q^{s,t}$ is the unique unitary isomorphism from $L^2(X_q, \tau)$ to $\mathcal{H}L^2(Z_q, \tau)$ such that, for all $h_1, \ldots, h_n \in H$,

$$\mathcal{S}_q^{s,t}(X_q(h_1) \cdots \diamond X_q(h_n)) = Z_q(h_1) \cdots \diamond Z_q(h_n).$$

(4.6)

We will see in Corollary 4.7 that this transform is indeed a generalization of Definition 3.7.

Proof. The unicity is clear. It remains to prove the existence and the unitarity. Let us first remark that, for all $h, k \in H$, we have

$$\tau[Z_q(h)Z_q(k)^*] = \tau[\Re Z_q(h)^*] + 0 + \tau[\Im Z_q(h)\Im Z_q(h)] = (s - t/2)\langle h, k \rangle_H + (t/2)\langle h, k \rangle_H = s\langle h, k \rangle_H = \tau[X_q(h)X_q(k)^*].$$

Combined with Proposition 2.8, it follows that, for all $h_1, \ldots, h_n \in H$ and $k_1, \ldots, k_m \in H$,

$$\langle X_q(h_1) \cdots \diamond X_q(h_n), X_q(k_1) \cdots \diamond X_q(k_m) \rangle_{L^2(X_q, \tau)} = \langle Z_q(h_1) \cdots \diamond Z_q(h_n), Z_q(k_1) \cdots \diamond Z_q(k_m) \rangle_{\mathcal{H}L^2(Z_q, \tau)}.$$

We deduce the existence of the unitary linear map $\mathcal{S}_q^{s,t}$ from $C(X_q(h) : h \in H)$ to $C(Z_q(h) : h \in H)$ given by (4.6), and we extend this map to $\mathcal{S}_q^{s,t} : L^2(X_q, \tau) \to \mathcal{H}L^2(Z_q, \tau)$ by density. \hfill \Box

Here again, the q-deformed Segal-Bargmann transform can be seen as the action of a ”q-deformed heat kernel”, a result which extends [9] Theorem 3.1 to $-1 \leq q \leq 1$.

Theorem 4.6. Let X_q be a q-Gaussian $(s, 0)$-elliptic system, and Z_q be a q-Gaussian (s, t)-elliptic system from H to \mathcal{A}. If Y_q is a q-Gaussian $(t, 0)$-elliptic system which is q-independent from Z_q, we have, for all noncommutative polynomial $P \in \mathbb{C}[x_h : h \in H]$,

$$\mathcal{S}_q^{s,t}(P(X_q(h) : h \in H)) = \tau[P(Y_q(h) + Z_q(h) : h \in H)|Z_q].$$
Proof. For all \(h_1, \ldots, h_n \), we define a polynomial \(P_{h_1, \ldots, h_n} \in \mathbb{C}(x_h : h \in H) \) by the following recursion formula: \(P_{\emptyset} = 1 \) and
\[
P_{h_1, \ldots, h_n} = x_{h_1} \cdot P_{h_2, \ldots, h_n} - \sum_{i=2}^{n} q^{i-1} s(h_1, h_i)_H \cdot P_{h_1, \ldots, \hat{h}_i, \ldots, h_n}
\]
where the hat means that we omit the corresponding element in the product. Since \(\{P_{h_1, \ldots, h_n}\}_{n \geq 0, h_1, \ldots, h_n \in H} \) is a spanning set of \(\mathbb{C}(x_h : h \in H) \), it suffices to prove the theorem for those polynomials. Remark that, for all \(h, k \in H \), \(\tau[X_q(h)X_q(k)] = s(h, k)_H \). Consequently, the variables \(P_{h_1, \ldots, h_n}(X_q(h) : h \in H) \) and \(X_q(h_1) \circ \cdots \circ X_q(h_n) \) satisfies the same recursion formula, and we have
\[
P_{h_1, \ldots, h_n}(X_q(h) : h \in H) = X_q(h_1) \circ \cdots \circ X_q(h_n).
\]

Similarly, we compute
\[
\tau[(Y_q + Z_q)(h) \cdot (Y_q + Z_q)(k)] = \tau[Z_q(h)Z_q(k)] + \tau[Y_q(h)Y_q(h)] = (s - t) \langle h, k \rangle_H + t \langle h, k \rangle_H = s \langle h, k \rangle_H,
\]
and we deduce the following equality by induction:
\[
P_{h_1, \ldots, h_n}(Y_q(h) + Z_q(h) : h \in H) = (Y_q + Z_q)(h_1) \circ \cdots \circ (Y_q + Z_q)(h_n).
\]

Let us conclude by the following computation where we use Proposition \[3.11\] to compute the conditional expectation:
\[
\tau[P_{h_1, \ldots, h_n}(Y_q(h) + Z_q(h) : h \in H)|Z_q] = \tau[(Y_q + Z_q)(h_1) \circ \cdots \circ (Y_q + Z_q)(h_n)|Z_q]
\]
\[
= Z_q(h_1) \circ \cdots \circ Z_q(h_n)
\]
\[
= \mathcal{S}^{s,t}_q(X_q(h_1) \circ \cdots \circ X_q(h_n))
\]
\[
= P_{h_1, \ldots, h_n}(X_q(h) : h \in H).
\]

\[\square\]

Combining Theorem \[4.6\] with Corollary \[3.13\] and Definitions \[4.5\] and \[4.7\] of \(\mathcal{S}^{s,t}_q(P(X_q(h))) \) for one polynomial \(P \).

Corollary 4.7. Let \(-1 < q < 1\). For a unit vector \(h \) and a polynomial \(P \), we have
\[
\mathcal{S}^{s,t}_q(P(X_q(h))) = \mathcal{S}^{s,t}_q(P(Z_q(h))).
\]

4.3 Large N Limit

Let us construct a boosted version of the Gaussian \((s, 0)\)-elliptic system on a Hilbert space \(H \). Let us consider the tensor product Hilbert space \(H \otimes_{\mathbb{R}} \mathbb{H}_{dN} \) of \(H \) with \(\mathbb{H}_{dN}, ||\cdot||_\sigma \). Let \(X : H \otimes_{\mathbb{R}} \mathbb{H}_{dN} \rightarrow L^2(\mathbb{X}) \subset L^2(\Omega, \mathcal{F}, \mathbb{P}) \) be a Gaussian \((s, 0)\)-elliptic system. We define
\[
X^{(N)} : H \rightarrow L^2(\mathbb{X}) \otimes_{\mathbb{R}} \mathbb{H}_{dN} \simeq L^2(\mathbb{X}) \otimes_\mathbb{C} \mathbb{M}_{dN} \subset L^2(\Omega, \mathbb{P}; \mathbb{M}_{dN})
\]
by duality as the unique linear map \(X^{(N)} \) from \(H \) to the random variables with value in \(\mathbb{M}_{dN} \) such that \(X(h \otimes M) = \text{Tr}(MX^{(N)}(h)) \). Each variable \(\text{Tr}(MX^{(N)}(h)) \) is Gaussian with the covariance given by
\[
\mathbb{E} \left[\text{Tr}(MX^{(N)}(h)) \text{Tr}(NX^{(N)}(k)) \right] = s \langle h, k \rangle_H \langle M, N \rangle_\sigma.
\]

22
In other words, if the norm of \(h \) is 1, the distribution of the random matrix \(X^{(N)}(h) \) is the Gaussian distribution \(\gamma_{d^N}^{\sigma \tau} \) of Section 3.4 and if \(k \) is another vector orthogonal to \(h \), the random matrices \(X^{(N)}(h) \) and \(X^{(N)}(k) \) are independent.

Similarly, let \(Z : H \otimes_{\mathbb{R}} \mathbb{H}_d \rightarrow L^2(\mathcal{X}) \subset L^2(\Omega, \mathcal{F}, \mathbb{P}) \) be a Gaussian \((s-t/2, t/2)\)-elliptic system. We define
\[
Z^{(N)} : H \rightarrow L^2(\mathcal{X}) \otimes_{\mathbb{R}} \mathbb{H}_d \simeq L^2(\mathcal{X}) \otimes_{\mathbb{C}} \mathbb{M}_d \subset L^2(\Omega, \mathbb{P} ; \mathbb{M}_d)
\]
by duality as the unique linear map \(Z^{(N)}(h) \) from the random variables with value in \(\mathbb{M}_d \) such that \(Z(h \otimes M) = \text{Tr}(MZ^{(N)}(h)) \). The Segal-Bargmann transform \(S^{s,t}_d : L^2(\mathcal{X}) \rightarrow \mathcal{H}L^2(\mathbb{Z}) \) is well-defined as in \(\ref{4.1} \). Finally, we consider the following boosted Segal-Bargmann transform
\[
S^{s,t}_{d^N} = S^{s,t} \otimes Id_{\mathbb{M}_d} : L^2(\mathcal{X}) \otimes \mathbb{M}_d \rightarrow \mathcal{H}L^2(\mathbb{Z}) \otimes \mathbb{M}_d.
\]

Theorem 4.8. Let \(0 \leq q \leq 1 \). Assuming \((H.1), (H.2), (H.3) \) and \((H.4) \) on \(\sigma \) ensures that the Segal-Bargmann transform \(S^{s,t}_{d^N} \) converges to the \(q \)-deformed Segal-Bargmann transform \(S^{q,s}_q \) : \(L^2(X_q, \tau) \rightarrow \mathcal{H}L^2(\mathbb{Z}, \tau) \) in the following sense: for all polynomial \(P \) and \(q \in \mathbb{C}[x_h : h \in H] \) such that
\[
S^{q,s}_q(P(X_q(h)) : h \in H)) = Q(Z_q(h) : h \in H),
\]
the norm \(\| P(X^{(N)}(h)) : h \in H) \|_{L^2(\mathcal{X})} = \| S^{q,s}_q(P(X^{(N)}(h)) : h \in H)) \|_{H^2(\mathbb{Z})} \) converges, as \(N \) tends to \(\infty \), to \(\| P(X_q(h) : h \in H) \|_{L^2(\mathcal{X}, \tau)} = \| Q(Z_q(h) : h \in H) \|_{H^2(\mathbb{Z}, \tau)} \) and
\[
\lim_{N \rightarrow \infty} \| S^{q,s}_q(P(X^{(N)}(h)) : h \in H)) - Q(Z^{(N)}(h) : h \in H) \|_{H^2(\mathbb{Z})} = 0.
\]

Proof. Remark that, for all \(M, N \in \mathbb{H}_d \), and all \(h, k \in H \), we have
\[
\mathbb{E} \left[\text{Tr}(MX^{(N)}(h))\text{Tr}(NX^{(N)}(k)) \right] = \tau[X_q(h)X_q(k)](M, N)_{\sigma}.
\]
We can apply Theorem 2.10 which says that the random matrices \(\{ X^{(N)}(h) : h \in H \} \) converge in noncommutative distribution to \(\{ X_q(h) : h \in H \} \). In particular, we have the following convergences:
\[
\lim_{N \rightarrow \infty} \| P(X^{(N)}(h)) : h \in H) \|_{L^2(\mathcal{X})} = \| P(X_q(h) : h \in H) \|_{L^2(\mathcal{X}, \tau)}
\]

The proof of the second limit uses the following lemma. Let \(Y : H \otimes_{\mathbb{R}} \mathbb{H}_d \rightarrow L^2(\mathcal{Y}) \subset L^2(\Omega, \mathcal{F}, \mathbb{P}) \) be a Gaussian \((t, 0)\)-elliptic system independent from \((Z^{(N)}(h))_{h \in H} \), and define
\[
Y^{(N)} : H \rightarrow L^2(\mathcal{Y}) \otimes_{\mathbb{R}} \mathbb{H}_d \simeq L^2(\mathcal{Y}) \otimes_{\mathbb{C}} \mathbb{M}_d \subset L^2(\Omega, \mathbb{P} ; \mathbb{M}_d)
\]
by duality as the unique linear map \(Y^{(N)}(h) \) from \(H \) to the random variables with value in \(\mathbb{M}_d \) such that \(Y(h \otimes M) = \text{Tr}(MY^{(N)}(h)) \).

Lemma 4.9. For all \(P \in \mathbb{C}[x_h : h \in H] \), we have
\[
S^{d^N}_{q,s}(P(X^{(N)}(h)) : h \in H)) = \mathbb{E}\left[P(Z^{(N)}(h) + Y^{(N)}(h)) : h \in H) \right] Z^{(N)}(h) : h \in H.
\]

Proof of Lemma 4.9. One can apply \(\ref{4.3} \) for each coordinate of \(P(X^{(N)}(h)) : h \in H) \) in any basis of \(\mathbb{M}_d \). Alternatively, one can reason as follows.
of Section 4.1 X(h ⊗ M) is the linear functional x ⊗ N → ⟨x, h⟩_H Tr(NM) defined on (H ⊗ ℌdN, B, γs), Y(h ⊗ M) is the linear functional x ⊗ N → ⟨x, h⟩_H Tr(NM) defined on (H ⊗ ℌdN, B, γt) and Z(h ⊗ M) the linear functional z ⊗ N → ⟨z, h⟩_Tr(N^*M) defined on (H_C ⊗ ℌdN, B, γs-t/2, t/2). We consider then the matrix-valued random variables X^{(N)}(h) : x ⊗ M → ⟨x, h⟩_H · M, Y^{(N)}(h) : x ⊗ M → ⟨x, h⟩_H · M and Z^{(N)}(h) : z ⊗ M → ⟨z, h⟩_H_C · M.

Let P ∈ ℂ[X_h : h ∈ H]. We use here the definition 2.1 of the Segal-Bargmann transform $S^{s,t}$, which is also valid for $S^{s,t}$ by linearity: for all z ⊗ M ∈ H ⊗ ℌdN,

$$S^{s,t}(P(X^{(N)}(h) : h ∈ H))(z ⊗ M) = \int_{H ⊗ ℌdN} P(X^{(N)}(h) : h ∈ H)(z ⊗ M - x ⊗ N) dγ_t(x ⊗ N)$$

$$= \int_{H ⊗ ℌdN} P(⟨z, h⟩_M - ⟨x, h⟩_N : h ∈ H) dγ_t(x ⊗ N)$$

$$= \int_{H ⊗ ℌdN} P(⟨Z^{(N)}(h)(z ⊗ M) - Y^{(N)}(h)(x ⊗ N) : h ∈ H) dγ_t(x ⊗ N).$$

The last term is also valid for all z ⊗ M ∈ H_C ⊗ ℌdN, since each side is analytic in z ⊗ M. We recognize the wanted conditioning of Lemma 4.9.

Let us consider an independent copy W^{(N)} of Y^{(N)}. We consider also two q-Gaussian (t, 0)-elliptic system W_q and Y_q which are q-independent from each others and from Z_q. Remark that, for all M, N ∈ ℌdN, and all h, k ∈ H, we have

$$\mathbb{E} \left[Tr(M U^{(N)}(h))Tr(N V^{(N)}(k)) \right] = τ[U_q(h)V_q(k)](M, N)_σ,$$

where the symbols U and V can be replaced by any from the symbols W_q, Y_q, ℍZ_q and ℍZ_q. Thus, we can apply Theorem 2.10 which says that the random matrices \{W^{(N)}(h), Y^{(N)}(h), ℍZ^{(N)}(h), ℍZ^{(N)}(h) : h ∈ H\} converge in noncommutative distribution to \{W_q(h), Y_q(h), ℍZ_q(h), ℍZ_q(h) : h ∈ H\}. In particular, we have the following convergence:

$$\lim_{N → ∞} \left\| S^{s,t}_{dN}(P(X^{(N)}(h) : h ∈ H)) - Q(Z^{(N)}(h) : h ∈ H) \right\|_{HL^2(Z ⊗ ℌdN)}$$

$$= \lim_{N → ∞} \left\| \mathbb{E} \left[P(Z^{(N)}(h) + Y^{(N)}(h) : h ∈ H) | Z \right] - Q(Z^{(N)}(h) : h ∈ H) \right\|_{HL^2(Z ⊗ ℌdN)}$$

$$= \lim_{N → ∞} \left\| \mathbb{E} \left[P(Z^{(N)}(h) + Y^{(N)}(h) : h ∈ H) - Q(Z^{(N)}(h) : h ∈ H) | Z \right] \right\|_{HL^2(Z ⊗ ℌdN)}$$

$$= \lim_{N → ∞} \mathbb{E} \left[\frac{1}{dN} Tr \left(\left(P(Z^{(N)}(h) + Y^{(N)}(h) : h ∈ H) - Q(Z^{(N)}(h) : h ∈ H) \right)^* \right) \right]$$

$$= \mathbb{E} \left[Tr \left((P(Z_q(h) + Y_q(h) : h ∈ H) - Q(Z_q(h) : h ∈ H))^* \right) \right]$$

The last quantity vanishes because Theorem 4.6 tells us that

$$Q(Z_q(h) : h ∈ H) = S^{s,t}_{dN}(P(X_q(h))) = τ[P(Z_q(h) + Y_q(h) : h ∈ H)]Z_q.$$

□
5 Mixture of Classical and Free Segal-Bargmann Transform

In this section, we shall define the Segal-Bargmann transform for a mixture of classical and free random variables and then we recover the \(q \)-Segal Bargmann transform in the limit.

5.1 The Mixed \(q \)-Deformed Segal-Bargmann Transform

Let \(Q = (q_{ij})_{i,j \in I} \) be a symmetric matrix with elements in \([-1, 1]\). We consider a complex Hilbert space \(K \) with an orthonormal basis \(\{e_i\}_{i \in I} \), the Fock space \(F_Q(K) \), and the set of mixed \(q \)-Gaussian variables \(\{X_i\}_{i \in I} \) acting on \(F_Q(K) \) as defined in Section 2.4. The set \(\{\sqrt{s}X_i\}_{i \in I} \) are the mixed \(q \)-Gaussian variables of variance \(s \). Remark that the map \(A \mapsto A(\Omega) \) extend to a unitary isomorphism from \(L^2(\{\sqrt{s}X_i\}_{i \in I}, \tau) \) to \(F_Q(K) \).

As in Section 2.3, we will define the mixed \(q \)-Gaussian variables as a set of variables \(\{Z_i\}_{i \in I} \) indexed by \(I \) such that \(\{\Re Z_i, \Im Z_i\}_{i \in I} \) are a set of mixed \(q \)-Gaussian variables with prescribed variance. The first step is to replace the index set \(I \) by the index set \(I \times \{1, 2\} \), and the matrix \(Q \) by the matrix

\[
\tilde{Q} = \begin{pmatrix} Q & Q \\ Q & \bar{Q} \end{pmatrix} = Q \otimes \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.
\]

We consider the complex Hilbert space \(K^2 \) with an orthonormal basis \(\{e_{i,1}, e_{i,2}\}_{i \in I} \). Considering the Fock space \(F_Q(K^2) \), we define the set of mixed \(q \)-Gaussian variables \(\{X_{i,1}, X_{i,2}\}_{i \in I} \) acting on \(F_Q(K^2) \) as defined in Section 2.4. Finally, we set the mixed \(q \)-Gaussian \(\sigma - t/2, t/2 \)-elliptic variables

\[
Z_i = \sqrt{s-t/2}X_{i,1} + i\sqrt{t/2}X_{i,2}.
\]

Remark that the map \(A \mapsto A(\Omega) \) extend to a unitary isomorphism from \(\mathcal{H}L^2(\{Z_i\}_{i \in I}, \tau) \) to \(F_Q(K^2) \).

We are ready to define the mixed \(q \)-deformed Segal-Bargmann transform.

Definition 5.1. The mixed \(q \)-deformed Segal-Bargmann transform \(\mathcal{S}^{q,t}_Q \) is the unitary isomorphism so that the following diagram commute:

\[
\begin{array}{ccc}
F_Q(K) & \xrightarrow{\delta^t_Q} & F_Q(K^2) \\
A \mapsto A\Omega & \quad \quad \quad & A \mapsto A\Omega \\
L^2(\{X_i\}_{i \in I}, \tau) & \xrightarrow{\mathcal{S}^{q,t}_Q} & \mathcal{H}L^2(\{Z_i\}_{i \in I}, \tau)
\end{array}
\]

where \(\delta^t_Q \) is the Fock extension of \(\delta^t_Q(\sqrt{s}e_i) = \sqrt{s-t/2}e_{i,1} + i\sqrt{t/2}e_{i,2} \), meaning that

\[
\delta^t_Q(h_1 \otimes \ldots \otimes h_k) = \delta^t_Q(h_1) \otimes \ldots \otimes \delta^t_Q(h_k).
\]

For all \(i \in I \), we have

\[
H_{q_{ii},s}^{\sqrt{s}X_i}\Omega = (\sqrt{s}e_i)^{\otimes n}.
\]

Indeed, the definition of the Hermite polynomials is adjusted with the definition (2.6) of the annihilation operator \(c_{i(1)}^s \) in such a way that, by a direct induction, for all \(n \geq 2 \), we have

\[
H_{q_{ii},s}^{\sqrt{s}X_i}\Omega = \sqrt{s}(c_i + c_i^*)(\sqrt{s}e_i)^{\otimes n-1} - s \sum_{k=2}^n q^{n-2} (\sqrt{s}e_i)^{\otimes n-2}
\]

\[
= \sqrt{s}e_i(\sqrt{s}e_i)^{\otimes n-1}
\]

\[
= (\sqrt{s}e_i)^{\otimes n}.
\]

25
Similarly, we have

\[H_{n}^{q_{ii},s^{-1}}(Z_{i})\Omega = (\sqrt{s - t/2}e_{(i,1)} + i\sqrt{t/2}e_{(i,2)})^{\otimes n}. \]

We deduce the following result, which says that restricted on the different \(L^{2}(X_{i}, \tau) \), the mixed \(q \)-deformed Segal-Bargmann transform \(\mathcal{S}_{Q}^{s,t} \) coincides with the \(q \)-deformed Segal-Bargmann transform \(\mathcal{S}_{q_{ii}}^{s,t} \).

Proposition 5.2. For all \(i \in I \) and all polynomial \(P \), we have

\[\mathcal{S}_{Q}^{s,t}(P(\sqrt{s}X_{i})) = (\mathcal{S}_{q_{ii}}^{s,t}P)(Z_{i}). \]

5.2 The \(q \)-Segal-Bargmann Transform in the Limit

Set \(I = \mathbb{N} \). We choose \(Q = (q_{ij} = q_{ji})_{i,j \in I} \) randomly in \(\{-1, +1\} \) or in \(\{0, +1\} \), as independent random variables, identically distributed, with \(\mathbb{E}[q_{ij}] = q \). We consider the mixed \(q \)-Gaussian variables \(\{\sqrt{s}X_{i}\}_{i \in I} \) of variance \(s \) as defined in the previous section.

Remark 5.3. Let us recall first that \(q_{ii} = -1, 0 \) or 1 means respectively that \(X_{i} \) is a Bernoulli variable, a semi-circular variable or a Gaussian variable. Secondly, \(q_{ii} = 0 \) or 1 means respectively that \(X_{i} \) and \(X_{j} \) are freely independent or classically independent.

Let us consider the sum

\[X^{(n)} := \frac{\sqrt{s}X_{1} + \ldots + \sqrt{s}X_{n}}{\sqrt{n}}. \]

These variables define an approximation of a \(q \)-Gaussian variable. Speicher’s central limit theorem ([24 Theorem 1]) makes this statement precise whenever \(q_{ij} \in \{-1, +1\} \). If \(q_{ij} \in \{0, +1\} \), it is not complicated (using for example the characterisation with cumulants of [26]) to prove that we fall in the framework of \(\Lambda \)-freeness of Młotkowski. More precisely, if we define \(\Lambda \) to be the set of \(\{i, j\} \) such that \(q_{ij} = 1 \) and \(i \neq j \), the algebras generated by the different \(X_{i} \) are \(\Lambda \)-free. We can use Młotkowski’s central limit theorem ([18 Theorem 4]) and we get the following result.

Theorem 5.4 (Theorem 1 of [24] and Theorem 4 of [18]). Almost surely, the variable \(X^{(n)} \) converges to a \(q \)-Gaussian variable \(X \) of variance \(s \) in noncommutative distribution in the following sense: for all polynomial \(P \), we have

\[\lim_{N \to \infty} \tau \left[P(X_{(n)}) \right] = \tau[P(X)]. \]

We consider now the mixed \(q \)-Gaussian \((s - t/2, t/2) \)-elliptic variables \(\{Z_{i}\}_{i \in I} \), where the relations are governed by the matrix \(\tilde{Q} \), and we set

\[Z^{(n)} := \frac{Z_{1} + \ldots + Z_{n}}{\sqrt{n}}. \]

The entries of \(\tilde{Q} \) are not any more independent but only block-independent. Nevertheless, as used in [16 Section 4.2], a straightforward modification of Speicher’s proof and of Młotkowski’s proof generalizes the theorem to this case.

Theorem 5.5 (Theorem 1 of [24] and Theorem 4 of [18]). Almost surely, the variable \(Z^{(n)} \) converges to a \(q \)-Gaussian \((s - t/2, t/2) \)-elliptic variable \(Z \) in noncommutative distribution in the following sense: for all polynomial \(P \), we have

\[\lim_{N \to \infty} \tau \left[P(Z^{(n)}) \right] = \tau[P(Z)]. \]

The following theorem says that the mixed \(q \)-Segal-Bargmann transform is also an approximation of the \(q \)-deformed case.
Theorem 5.6. Set $I = \mathbb{N}$. We choose $Q = (q_{ij} = q_{ji})_{i,j \in I}$ randomly in $\{-1, +1\}$ or in $\{0, +1\}$, as independent random variables, and identically distributed with $\mathbb{E}[q_{ij}] = q$ for $i > j$. We consider the mixed q-Gaussian variables $\{\sqrt{s}X_i\}_{i \in I}$ of variance s, the mixed q-Gaussian $(s - t/2, t/2)$-elliptic variables $\{Z_i\}_{i \in I}$ and the mixed q-Segal-Bargmann transform $\mathcal{J}^{s,t}_Q : L^2(\{X_i\}_{i \in I}, \tau) \to \mathcal{H}L^2(\{Z_i\}_{i \in I}, \tau)$.

Almost surely, the Segal-Bargmann transform $\mathcal{J}^{s,t}_Q$ converges to the q-deformed Segal-Bargmann transform $\mathcal{J}^{s,t}_q$ in the following sense: considering the sums

$$X^{(n)} := \frac{\sqrt{s}X_1 + \ldots + \sqrt{s}X_n}{\sqrt{n}} \quad \text{and} \quad Z^{(n)} := \frac{Z_1 + \ldots + Z_n}{\sqrt{n}},$$

for all polynomial P, we have $\lim_{n \to \infty} \left\| \mathcal{J}^{s,t}_Q (P(X^{(n)})) - \mathcal{J}^{s,t}_q P(Z^{(n)}) \right\|_{\mathcal{H}L^2(\{Z_i\}_{i \in I}, \tau)} = 0$.

Remark 5.7. • We can choose q_{ii} arbitrarily. For example, if we choose $q_{ii} = 1$, Proposition 5.2 tells us that $\mathcal{J}^{s,t}_Q$ restricted to $L^2(\sqrt{s}X_i, \tau)$ is the classical Segal-Bargmann transform $\mathcal{J}^{s,t}_{q_{ii}}$.

• Now, assume that $q_{ij} \in \{0, +1\}$. We define Λ to be the (random) set of $\{i, j\}$ such that $q_{ij} = 1$ and $i \neq j$. The algebras generated by the different X_i are Λ-free in the sense of [18]. Decomposing $L^2(\sqrt{s}X_i, \tau) = L^0_i \oplus \mathbb{C}$ (with L^0_i composed of the operators A such that $\tau[A] = 0$), and $L^2(Z_i, \tau) = \mathcal{H}L^0_i \oplus \mathbb{C}$ decomposed similarly, we have the Λ-free products observed in [18]:

$$L^2(\{X_i\}_{i \in I}, \tau) = \bigoplus_{(i(1), \ldots, i(m)) \in S(I, \Lambda)} L^0_i(1) \otimes \ldots \otimes L^0_i(m),$$

$$\mathcal{H}L^2(\{Z_i\}_{i \in I}, \tau) = \bigoplus_{(i(1), \ldots, i(m)) \in S(I, \Lambda)} \mathcal{H}L^0_i(1) \otimes \ldots \otimes \mathcal{H}L^0_i(m),$$

where $S(I, \Lambda)$ is the set of reduced words over I modulo the relations $(\ldots, i, j, \ldots) \simeq (\ldots, j, i, \ldots)$ if $\{i, j\} \in \Lambda$ and $(\ldots, i, i, \ldots) \simeq (\ldots, i, \ldots)$, or, more specifically, a set of representatives of minimal length. Finally, $\mathcal{J}^{s,t}_Q : L^2(\{X_i\}_{i \in I}, \tau) \to \mathcal{H}L^2(\{Z_i\}_{i \in I}, \tau)$ can be decomposed as

$$\bigoplus_{(i(1), \ldots, i(m)) \in S(I, \Lambda)} \mathcal{J}^{s,t}_{q_{i(1)}} \otimes \ldots \otimes \mathcal{J}^{s,t}_{q_{i(n)}},$$

or as a Λ-free product of classical Segal-Bargmann transform whenever $q_{ii} = 1$ for all $i \in I$.

Proof. We consider the index set $I \times \{1, 2, 3, 4\}$, and the matrix

$$R = \begin{pmatrix}
Q & Q & Q & Q \\
Q & Q & Q & Q \\
Q & Q & Q & Q \\
Q & Q & Q & Q
\end{pmatrix} = Q \otimes \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{pmatrix}.$$

We consider the complex Hilbert space $K^4 \supseteq K^2$ with an orthonormal basis $\{e_{i(1)}, e_{i(2)}, e_{i(3)}, e_{i(4)}\}_{i \in I}$ and the Fock space $\mathcal{F}_R(K^4)$. We have the canonical inclusion $\mathcal{F}_Q(K^2) \subseteq \mathcal{F}_R(K^4)$ given by the natural extension of $K^2 \subseteq K^4$. We define the set of mixed q-Gaussian variables $\{X_{i(1)}, X_{i(2)}, X_{i(3)}, X_{i(4)}\}_{i \in I}$ acting on $\mathcal{F}_Q(K^4)$ as defined in Section 2.4, which is an extension of the already defined action of $\{X_{i(1)}, X_{i(2)}\}_{i \in I}$ on $\mathcal{F}_Q(K^2)$. The action of the mixed q-Gaussian $(s - t/2, t/2)$-elliptic variables Z_i extends to $\mathcal{F}_R(K^4)$ by

$$Z_i = \sqrt{s - t/2}X_{i(1)} + i\sqrt{t/2}X_{i(2)},$$

27
and the action of $Z^{(n)}$ extends to $\mathcal{F}_R(K^4)$ by

$$Z^{(n)} := \frac{Z_1 + \ldots + Z_n}{\sqrt{n}}.$$

Finally, we define also

$$Y_i = \sqrt{i}X_{(i,3)}, \quad Y^{(n)} := \frac{Y_1 + \ldots + Y_n}{\sqrt{n}},$$

and

$$W_i = \sqrt{i}X_{(i,4)}, \quad W^{(n)} := \frac{W_1 + \ldots + W_n}{\sqrt{n}}.$$

Lemma 5.8. For all polynomial Q, we have

$$\left\| \mathcal{G}_{\tau}^s \left(P(X^{(n)}) \right) - Q(Z^{(n)}) \right\|_{\mathcal{H}(\mathcal{L}(\{Z_i \mid i \in I, \tau\}))} = \tau \left[\left(P(Z^{(n)} + Y^{(n)}) + Q(Z^{(n)}) \right) \ast \left(P(Z^{(n)} + W^{(n)}) + Q(Z^{(n)}) \right) \right].$$

Proof of Lemma. For all $i(1), \ldots, i(n) \in I$, we define a polynomial $P_{i(1),\ldots,i(n)} \in \mathbb{C}[x_i : i \in I]$ by the following recursion formula:

$$P_{i(1),\ldots,i(n)} = x_{i(1)} \cdot P_{i(2),\ldots,i(n)} - \sum_{k=2}^{n} \delta_i (i(k)) q_i(i(2) \cdots q_i(i(1))i(k-1) \cdot P_{i(1),\ldots,i(k),\ldots,i(n)}.$$

where the hat means that we omit the corresponding index. Since $\{P_{i(1),\ldots,i(n)}\}_{n \geq 0, i(1),\ldots,i(n) \in I}$ is a spanning set of $\mathbb{C}[x_i : i \in I]$, it suffices to prove the theorem for those polynomials.

We have

$$P_{i(1),\ldots,i(n)}(\sqrt{s}X_i : i \in I) \Omega = \sqrt{s}e_{i(1)} \otimes \cdots \otimes \sqrt{s}e_{i(n)}.$$

Indeed, the definition of the polynomials $\{P_{i(1),\ldots,i(n)}\}_{n \geq 0, i(1),\ldots,i(n) \in I}$ is adjusted with the definition (2.6) of the annihilation operator $c_{i(1)}^*$ in such a way that, by a direct induction, for all $i(1), \ldots, i(n) \in I$, we have

$$P_{i(1),\ldots,i(n)}(X_i : i \in I) \Omega = \sqrt{s} (c_{i(1)} + c_{i(1)}^*) \cdot \sqrt{s}e_{i(1)} \otimes \cdots \otimes \sqrt{s}e_{i(n)}$$

$$- s \sum_{k=2}^{n} \delta_i (i(k)) q_i(i(2) \cdots q_i(i(1))i(k-1) \cdot \sqrt{s}e_{i(1)} \otimes \cdots \otimes \sqrt{s}e_{i(1)}$$

$$= \sqrt{s}e_{i(1)} \otimes \cdots \otimes \sqrt{s}e_{i(n)}$$

Similarly, setting $h_i = \sqrt{s - t/2}e_{i(n),1} + i\sqrt{t/2}e_{i(n),2} + \sqrt{s}e_{i(n),3}$, it follows from the definition of the polynomials $\{P_{i(1),\ldots,i(n)}\}_{n \geq 0, i(1),\ldots,i(n) \in I}$ that

$$P_{i(1),\ldots,i(n)}(Z_i + Y_i : i \in I) \Omega = h_{i(1)} \otimes \cdots \otimes h_{i(n)}.$$

Indeed, for all $i(1), \ldots, i(n) \in I$, we have

$$(\sqrt{s - t/2}e_{i(1),1}^* + i\sqrt{s - t/2}e_{i(1),2}^* + \sqrt{t}e_{i(2),3}^*) \cdot h_{i(2)} \otimes \cdots \otimes h_{i(n)}$$

$$= (s - t/2 - t/2 + t) \sum_{k=2}^{n} \delta_i (i(k)) q_i(i(2) \cdots q_i(i(1))i(k-1) \cdot h_{i(1)} \otimes \cdots \otimes h_{i(k)} \otimes \cdots \otimes h_{i(n)}$$

$$= s \sum_{k=2}^{n} \delta_i (i(k)) q_i(i(2) \cdots q_i(i(1))i(k-1) \cdot h_{i(1)} \otimes \cdots \otimes h_{i(k)} \otimes \cdots \otimes h_{i(n)}$$
which allows to write the induction step

\[P_{i(1),\ldots,i(n)}(Z_i + Y_i : i \in I) \Omega = (\sqrt{s-t/2}c_{i(1),1} + i \sqrt{s-t/2}c_{i(1),2} + \sqrt{t}c_{i(2),3}) \cdot h_i(2) \odot \cdots \odot h_{i(n)} \]

\[+ (\sqrt{s-t/2}c_{i(1),1} + i \sqrt{s-t/2}c_{i(1),2} + \sqrt{t}c_{i(2),3}) \cdot h_i(2) \odot \cdots \odot h_{i(n)} \]

\[- s \sum_{k=2}^{n} \delta_{i(1)(k)}q_{i(1)(2)} \cdots q_{i(1)(k-1)} \cdot h_i(2) \odot \cdots \odot h_i(k) \odot \cdots \odot h_{i(n)} \]

\[= (\sqrt{s-t/2}c_{i(1),1} + i \sqrt{s-t/2}c_{i(1),2} + \sqrt{t}c_{i(2),3}) \cdot h_i(2) \odot \cdots \odot h_{i(n)} \]

Setting \(k_i = \sqrt{s-t/2}c_{i(n),1} + i \sqrt{t/2}e_{i(n),2} + \sqrt{s}e_{i(n),4}, \) the same computation yields

\[P_{i(1),\ldots,i(n)}(Z_i + W_i : i \in I) \Omega = k_i(1) \odot \cdots \odot k_i(n). \]

Finally, we have

\[\tau \left[(P_{i(1),\ldots,i(n)}(Z_i + Y_i : i \in I) + Q(Z_i : i \in I))^* \cdot (P_{i(1),\ldots,i(n)}(Z_i + W_i : i \in I) + Q(Z_i : i \in I)) \right] \]

\[= \langle k_i(1) \otimes \cdots \otimes k_i(n) - Q(Z_i : i \in I) \rangle_h, h_i(1) \otimes \cdots \otimes h_i(n) - Q(Z_i : i \in I) \rangle_{R}. \]

Because the \(e_{i(3)} \) occur only in \(h_i(1) \otimes \cdots \otimes h_i(n), \) and the \(e_{i(4)} \) occur only in \(k_i(1) \otimes \cdots \otimes k_i(n), \) they do not contribute to the scalar product, and we can replace \(h_i(1) \otimes \cdots \otimes h_i(n) \) and \(k_i(1) \otimes \cdots \otimes k_i(n) \) by

\[(\sqrt{s-t/2}e_{i(n),1} + i \sqrt{t/2}e_{i(n),2}) \otimes \cdots \otimes (\sqrt{s-t/2}e_{i(n),1} + i \sqrt{t/2}e_{i(n),2}) = \delta_Q^{s,t}(\sqrt{s}e_{i(1)} \otimes \cdots \otimes \sqrt{s}e_{i(n)}), \]

which yields

\[\tau \left[\langle P_{i(1),\ldots,i(n)}(Z_i + Y_i : i \in I) + Q(Z_i : i \in I))^* \cdot (P_{i(1),\ldots,i(n)}(Z_i + W_i : i \in I) + Q(Z_i : i \in I)) \rangle_h, h_i(1) \otimes \cdots \otimes h_i(n) - Q(Z_i : i \in I) \rangle_{R}. \]

Let us denote by \(Q \) the polynomial \(S_{q}^{s,t}P. \) Let \(Y, W \) be two \((0,0)\)-elliptic \(q \)-Gaussian random variables and \(Z \) be a \((s-t/2,t/2)\)-elliptic \(q \)-Gaussian random variable such that \(Y, W \) and \(Z \) are \(q \)-independent. Thanks to the discussion before Theorem 5.3.15.4 we know that we can apply 24.1 Theorem 1 in the case of \(q_{ij} \in \{-1,+1\} \) (or 18.1 Theorem 4) in the case \(q_{ij} \in \{0,+1\} \) which says that the mixed \(q \)-Gaussian random variables \(Y^{(n)}, W^{(n)}, RZ^{(n)} \) and \(\mathbb{Z}Z^{(n)} \) converge in noncommutative distribution to the \(q \)-Gaussian random variables \(Y, W, RZ \) and \(\mathbb{Z}Z. \) In particular, we have the following convergence:

\[\lim_{n \to \infty} \tau \left[(P(Z^{(n)} + Y^{(n)}) - Q(Z^{(n)}))^* (P(Z^{(n)} + W^{(n)}) - Q(Z^{(n)})) \right] = \tau \left[(P(Z + Y) - Q(Z))^* (P(Z + W) - Q(Z)) \right]. \]

From Corollary 3.11 and Corollary 3.13, we know that

\[Q(Z) = S_{q}^{s,t}P(Z) = \tau[P(Z + Y)|Z] = \tau[P(Z + Y)|Z,W]. \]
Thus the limit $\tau [(P(Z + Y) - Q(Z))^*(P(Z + W) - Q(Z))]$ of $\|F^{*,t}_Q (P(X^{(n)})) - Q(Z^{(n)})\|_{H^2(\mathbb{L}, \tau)}$ vanishes:

$$\tau [(P(Z + Y) - Q(Z))^*(P(Z + W) - Q(Z))] = \tau [(P(Z + Y) - \tau [P(Z + Y)|Z, W])^*(P(Z + W) - Q(Z))]$$

$$= \tau [(P(Z + Y) - P(Z + Y))^*(P(Z + W) - Q(Z))]$$

$$= 0.$$

Acknowledgements

The first author was partially funded by the ERC Advanced Grant “NCDFP” held by Roland Speicher. The second author was funded by the same ERC Advanced Grant “Non-commutative distributions in free probability” (grant no. 339760). The second author would like to thank Roland Speicher for allowing his stay in Saarbrücken, Germany so the authors had a chance to collaborate.

References

[1] **Bargmann, V.** On a Hilbert space of analytic functions and an associated integral transform. *Comm. Pure Appl. Math.* 14 (1961), 187–214.

[2] **Bargmann, V.** Remarks on a Hilbert space of analytic functions. *Proc. Nat. Acad. Sci. U.S.A.* 48 (1962), 199–204.

[3] **Biane, P.** Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems. *J. Funct. Anal.* 144, 1 (1997), 232–286.

[4] **Biane, P., and Lehner, F.** Computation of some examples of Brown’s spectral measure in free probability. *Colloq. Math.* 90, 2 (2001), 181–211.

[5] **Blitvić, N., and Kemp, T.** Wick calculus and the Segal-Bargmann transform for $(q; t)$-Gaussian spaces. In preparation.

[6] **Bożejko, M., Kümmerer, B., and Speicher, R.** q-Gaussian processes: non-commutative and classical aspects. *Comm. Math. Phys.* 185, 1 (1997), 129–154.

[7] **Bożejko, M., and Speicher, R.** An example of a generalized Brownian motion. *Comm. Math. Phys.* 137, 3 (1991), 519–531.

[8] **Bożejko, M., and Speicher, R.** Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces. *Math. Ann.* 300, 1 (1994), 97–120.

[9] **Cébron, G.** Free convolution operators and free Hall transform. *Journal of Functional Analysis* 265, 11 (2013), 2645 – 2708.

[10] **Donati-Martin, C.** Stochastic integration with respect to q-Brownian motion. *Probability Theory and Related Fields* 125, 1 (2003), 77–95.

[11] **Driver, B. K., and Hall, B. C.** Yang-Mills theory and the Segal-Bargmann transform. *Comm. Math. Phys.* 201, 2 (1999), 249–290.
[12] Effros, E. G., and Popa, M. Feynman diagrams and Wick products associated with q-Fock space. *Proc. Natl. Acad. Sci. USA* 100, 15 (2003), 8629–8633 (electronic).

[13] Hall, B. C. A new form of the Segal-Bargmann transform for Lie groups of compact type. *Canadian Journal of Mathematics* 51, 4 (1999), 816–834.

[14] Ho, C.-W. The two-parameter free unitary Segal-Bargmann transform and its Biane-Gross-Malliavin identification. preprints arXiv:1601.03182.

[15] Junge, M., and Zeng, Q. Mixed q-Gaussian algebras. preprints arXiv:1505.07852.

[16] Kemp, T. Hypercontractivity in non-commutative holomorphic spaces. *Comm. Math. Phys.* 259, 3 (2005), 615–637.

[17] Królicki, I. Wick product for commutation relations connected with Yang–Baxter operators and new constructions of factors. *Communications in Mathematical Physics* 210, 3 (2000), 685–701.

[18] Młotkowski, W. λ-free probability. *Infinite Dimensional Analysis, Quantum Probability and Related Topics* 07, 01 (2004), 27–41.

[19] Ngo, H. Q. ℙ-species and the q-Mehler formula. *Sém. Lothar. Combin.* 48 (2002), Art. B48b, 21 pp. (electronic).

[20] Rudin, W. *Real and complex analysis*, third ed. McGraw-Hill Book Co., New York, 1987.

[21] Segal, I. E. *Mathematical problems of relativistic physics*, vol. 1960 of *With an appendix by George W. Mackey. Lectures in Applied Mathematics (proceedings of the Summer Seminar, Boulder, Colorado)*. American Mathematical Society, Providence, R.I., 1963.

[22] Segal, I. E. The complex-wave representation of the free boson field. In *Topics in functional analysis (essays dedicated to M. G. Krein on the occasion of his 70th birthday)*, vol. 3 of *Adv. in Math. Suppl. Stud.* Academic Press, New York-London, 1978, pp. 321–343.

[23] Śniady, P. Gaussian random matrix models for q-deformed Gaussian variables. *Communications in Mathematical Physics* 216, 3 (feb 2001), 515–537.

[24] Speicher, R. A non-commutative central limit theorem. *Mathematische Zeitschrift* 209, 1 (1992), 55–66.

[25] Speicher, R. Generalized statistics of macroscopic fields. *Letters in Mathematical Physics* 27, 2 (1993), 97–104.

[26] Speicher, R., and Wysoczanski, J. Mixtures of classical and free independence. *Archiv der Mathe-matik* 107, 4 (2016), 445–453.

[27] Szabłowski, P. J. On the q-Hermite polynomials and their relationship with some other families of orthogonal polynomials. *Demonstratio Math.* 46, 4 (2013), 679–708.

[28] van Leeuwen, H., and Maassen, H. A q-deformation of the Gauss distribution. *Journal of Mathematical Physics* 36, 9 (sep 1995), 4743.