A HERBRAND-RIBET THEOREM FOR FUNCTION FIELDS

LENNY TAEMLAN

Abstract. We prove a function field analogue of the Herbrand-Ribet theorem on cyclotomic number fields. The Herbrand-Ribet theorem can be interpreted as a result about cohomology with \(\mu_p \)-coefficients over the splitting field of \(\mu_p \), and in our analogue both occurrences of \(\mu_p \) are replaced with the \(p \)-torsion scheme of the Carlitz module for a prime \(p \) in \(F_q[t] \).

Contents

1. Introduction and statement of the theorem 1
2. Tables of small irregular primes 4
3. Notation and conventions 4
4. Overview of the proof 5
5. Flat duality 7
6. Flat cohomology with \((A/p)^D\) coefficients 8
7. Comparing \((A/p)^D\) and \(C[p]^D\)-coefficients 9
8. A candidate cohomology class 11
9. Vanishing of \(\lambda_n\) 13
10. Complement: the class module of \(Y\) 15
References 16

1. Introduction and statement of the theorem

Let \(p \) be a prime number, \(F = \mathbb{Q}(\zeta_p) \) the \(p \)-th cyclotomic number field and \(\text{Pic} \, \mathcal{O}_F \) its class group. Then \(F_p \otimes \mathbb{Z} \text{Pic} \, \mathcal{O}_F \) decomposes in eigenspaces under the action of the Galois group \(\text{Gal}(F/\mathbb{Q}) \) as

\[
F_p \otimes \mathbb{Z} \text{Pic} \, \mathcal{O}_F = \bigoplus_{n=1}^{p-1} (F_p \otimes \mathbb{Z} \text{Pic} \, \mathcal{O}_F) (\omega^n)
\]

where \(\omega : \text{Gal}(F/\mathbb{Q}) \to F_p^\times \) is the cyclotomic character.

If \(n \) is a nonnegative integer we denote by \(B_n \) the \(n \)-th Bernoulli number, defined by the identity

\[
\frac{\exp z - 1}{z} = \sum_{n=0}^{\infty} B_n \frac{z^n}{n!}.
\]

If \(n \) is smaller than \(p \) then \(B_n \) is \(p \)-integral. The Herbrand-Ribet theorem \([9]\) \([14]\) states that if \(n \) is even and \(1 < n < p \) then

\[
(F_p \otimes \mathbb{Z} \text{Pic} \, \mathcal{O}_F) (\omega^{1-n}) \neq 0 \text{ if and only if } p \mid B_n.
\]
The Kummer-Vandiver conjecture asserts that for all odd n we have
\[(\mathbb{F}_p \otimes \mathbb{Z} \text{Pic} \mathcal{O}_F) (\omega^{1-n}) = 0.\]

In this paper we will state and prove a function field analogue of the Herbrand-Ribet theorem and state an analogue of the Kummer-Vandiver conjecture.

Let k be a finite field of q elements and $A = k[t]$ the polynomial ring in one variable t over k. Let K be the fraction field of A.

Definition 1. The Carlitz module is the A-module scheme C over $\text{Spec} \, A$ whose underlying k-vector space scheme is the additive group G_a and whose $k[t]$-module structure is given by the k-algebra homomorphism
\[\varphi: A \to \text{End}(G_a), t \mapsto t + F,\]
where F is the q-th power Frobenius endomorphism of G_a.

The Carlitz module is in many ways an A-module analogue of the \mathbb{Z}-module scheme G_n. For example, the $\text{Gal}(K^{\text{sep}}/K)$-action on torsion points is formally similar to the $\text{Gal}(\mathbb{Q}/\mathbb{Q})$-action on roots of unity:

Proposition 1 ([2] §7.5]). Let $p \subset A$ be a nonzero prime ideal, then $C[p](K^{\text{sep}}) \cong A/p$ and the resulting Galois representation
\[\rho: \text{Gal}(K^{\text{sep}}/K) \longrightarrow (A/p)^\times,\]
satisfies

1. if a prime $q \subset A$ is coprime with p then ρ is unramified at q and maps a Frobenius element to the class in $(A/p)^\times$ of the monic generator of q;
2. $\rho(D_\infty) = \rho(I_\infty) = k^\times$;
3. $\rho(D_p) = \rho(I_p) = (A/p)^\times$,

where the D’s and I’s denote decomposition and inertia subgroups. \[\square\]

Now fix a nonzero prime ideal $p \subset A$ of degree d. Let L be the splitting field of ρ. Then L/K is unramified outside p and ∞, and ρ induces an isomorphism $\chi: G = \text{Gal}(L/K) \xrightarrow{\sim} (A/p)^\times$.

Let R be the normalization of A in L and $Y = \text{Spec} \, R$. Let D_{fl} be the flat site on Y: the category of schemes locally of finite type over Y, with covering families being the jointly surjective families of flat morphisms.

The p-torsion $C[p]$ of C is a finite flat group scheme of rank q^d over $\text{Spec} \, A$. Let $C[p]^D$ be the Cartier dual of $C[p]$ and consider the decomposition
\[H^1(Y_{\text{fl}}, C[p]^D) = \bigoplus_{n=1}^{q^d-1} H^1(Y_{\text{fl}}, C[p]^D)(\chi^n)\]
of the A/p-vector space $H^1(Y_{\text{fl}}, C[p]^D)$ under the natural action of G.

Our analogue of the Herbrand-Ribet theorem will give a criterion for the vanishing of some of these eigenspaces in terms of divisibility by p of the so-called Bernoulli-Carlitz numbers, which we now define.

The **Carlitz exponential** is the unique power series $e(z) \in K[[z]]$ which satisfies

1. $e(z) = z + e_1z^q + e_2z^{q^2} + \cdots$ with $e_i \in K$;
2. $e(tz) = e(z)^q + te(z)$.
The Carlitz exponential converges on any finite extension of K_∞ and on an algebraic closure \bar{K}_∞. We define $BC_n \in K$ by the power series identity

$$
\frac{z}{e(z)} = \sum_{n=0}^{\infty} BC_n z^n.
$$

If n is not divisible by $q-1$ then BC_n is zero. If n is less than q^d then BC_n is p-integral.

Theorem 1. Let $0 < n < q^d - 1$ be divisible by $q-1$. Then p divides BC_n if and only if $H^1(Y_{fl}, C[p]^D)(\chi^{n-1})$ is nonzero.

This is the analogue of the Herbrand-Ribet theorem. The proof is given in section 4, modulo auxiliary results which are proven in sections 6–9.

In this context a natural analogue of the Kummer-Vandiver conjecture is the following:

Question 1. Does $H^1(Y_{fl}, C[p]^D)(\chi^{n-1})$ vanish if n is not divisible by $q-1$?

By computer calculation we have verified that these groups indeed vanish for small q and primes p of small degree, see §2. However, if one believes in a function field version of Washington’s heuristics [18, §9.3] then one should expect that counterexamples do exist, but are very sparse, making it difficult to obtain convincing numerical evidence towards Question 1.

Remark 1. Our BC_n differ from the commonly used Bernoulli-Carlitz numbers by a Carlitz factorial factor (see for example [7, §9.2]). This factor is innocent for our purposes since it is a unit at p for $n < q^d$.

Remark 2. Let p be an odd prime number, $F = \mathbb{Q}(\zeta_p)$ and $D = \text{Spec} \mathcal{O}_F$. Global duality [10] provides a perfect pairing between

$$
F_p \otimes \mathbb{Z} \text{Pic } D = \text{Ext}^2_{D_{\text{et}}}(\mathbb{Z}/p\mathbb{Z}, \mathbb{G}_m, D
$$

and

$$
H^1(D_{\text{et}}, \mathbb{Z}/p\mathbb{Z}) = H^1(D_{\text{fl}}, \mathbb{Z}/p\mathbb{Z}).
$$

The Herbrand-Ribet theorem thus says that (for $1 < n < p-1$ even)

$$
p \mid B_n \text{ if and only if } H^1(D_{\text{fl}}, \mu_p^D)(\chi^{n-1}) \neq 0,
$$

in perfect analogy with the statement of Theorem 1.

Remark 3. The analogy goes even further. In [16] and [15] we have defined a finite A-module $H(C/R)$, analogue of the class group $\text{Pic} \mathcal{O}_F$, and although we will not use this in the proof of Theorem 1 we show in Section 10 of this paper that there are canonical isomorphisms

$$
A/p \otimes_A H(C/R) \xrightarrow{\sim} \text{Hom}(H^1(Y_{fl}, C[p]^D), F_p).
$$

Remark 4. A more naive attempt to obtain a function field analogue of the Herbrand-Ribet theorem would be to compare the p-divisibility of the Bernoulli-Carlitz numbers with the p-torsion of the divisor class groups of \bar{Y} and \bar{L} (where p is the characteristic of k). In other words, to consider cohomology with μ_p-coefficients
on the curves defined by the splitting of $C[p]$. Several results of this kind have in fact been obtained by Goss [6], Gekeler [5], Okada [12], and Anglès [2], but there appears to be no complete analogue of the Herbrand-Ribet theorem in this context.

In the proof of Theorem 1 we will see that the A-module $H^1(Y_{\text{fl}}, C[p]D)$ and the group $(\text{Pic} Y)[p]$ are related, and this relationship might shed some new light on these older results.

Remark 5. I do not know if there is a relation between Question 1 and Anderson’s analogue of the Kummer-Vandiver conjecture [1].

Acknowledgements. I am grateful to David Goss for his insistence that I consider the decomposition in isotypical components of the “class module” of [16] and [15], and to the referee for several useful suggestions. The author is supported by a grant of the Netherlands Organisation for Scientific Research (NWO).

2. **Tables of small irregular primes**

The results of section 1 indicate a method for computing the modules $H^1(Y_{\text{fl}}, C[p]D)$ with their G-action in terms of finite-dimensional vector spaces of differential forms on the compactification X of Y.

Assisted by the computer algebra package MAGMA we were able to compute them in the following ranges:

- (1) $q = 2$ and $\deg p \leq 5$;
- (2) $q = 3$ and $\deg p \leq 4$;
- (3) $q = 4$ and $\deg p \leq 3$;
- (4) $q = 5$ and $\deg p \leq 3$.

In all these cases $H^1(Y_{\text{fl}}, C[p]D)$ turns out to be at most one-dimensional, and to fall in the χ^{q-1}-component with n divisible by $q - 1$ (and hence with p dividing BC_n.) In particular we have not found any counterexamples to Question 1.

In tables 1–3 we list all cases where the cohomology group is nontrivial. For $q = 5$ and $\deg p \leq 3$ the group turns out to vanish. In the middle columns, only n in the range $1 \leq n \leq q^{\deg p}$ are printed.

| p | $\{n : p | BC_n\}$ | $\dim H^1(Y_{\text{fl}}, C[p]D)$ |
|-----|---------------------|-------------------------------|
| $(t^4 + t + 1)$ | $\{9\}$ | 1 |

Table 1. All irregular primes in $F_2[t]$ of degree at most 5

3. **Notation and conventions**

Basic setup. k is a finite field of q elements, p its characteristic. $A = k[t]$ and $p \subset A$ a nonzero prime. These data are fixed throughout the text. We denote by d the degree of p, so that A/p is a field of q^d elements.

The Carlitz module. The Carlitz module is the A-module scheme C over $\text{Spec} A$ defined in Definition 1.

Cyclotomic curves and fields. K is the fraction field of A, and L/K the splitting field of $C[p][K]$. The integral closure of A in L is denoted by R, and $Y = \text{Spec} R$. We denote by $\mathfrak{P} \subset R$ the unique prime lying above $p \subset A$.

Sites. For any scheme S we denote by S_{et} the small étale site on S and by S_{fl} the flat site in the sense of [11]: the category of schemes locally of finite type over S.

where covering families are jointly surjective families of flat morphisms. For every S there is a canonical morphism of sites $f : S_{fl} \to S_{et}$. Any commutative group scheme over S defines a sheaf of abelian groups on S_{fl} and on S_{et}.

Cartier dual. If G is a finite flat commutative group scheme, then G^D denotes the Cartier dual of G.

Frobenius and Cartier operators. For any k-scheme S we denote by

$$F : G_{a,S} \to G_{a,S}, \ x \mapsto x^q$$

the q-power Frobenius endomorphism of sheaves on S_{fl} or S_{et}, and by

$$c : \Omega_S \to \Omega_S$$

the q-Cartier operator of sheaves on S_{et}. If $q = p^r$ with p prime this is the r-th power of the usual Cartier operator. The endomorphism c satisfies $c(f^q \omega) = f c(\omega)$ for all local sections f of \mathcal{O}_S and ω of Ω_S. In particular it is k-linear.

4. Overview of the proof

Choose a generator λ of $C[p](L)$. It defines a map of finite flat group schemes

$$\lambda : (A/p)_Y \to C[p]_Y$$

which is an isomorphism over $Y - \mathfrak{P}$. It induces a map of Cartier duals

$$C[p]_Y^D \to (A/p)_Y^D$$

\begin{table}[h]
\begin{tabular}{|c|c|c|}
\hline
p & $\{ n : p \mid BC_n \}$ & $\dim H^1(Y_{fl}, C[p]^D)$ \\
\hline
$(t^3 - t + 1)$ & $\{10\}$ & 1 \\
$(t^3 - t - 1)$ & $\{10\}$ & 1 \\
$(t^4 - t^3 + t^2 + 1)$ & $\{40\}$ & 1 \\
$(t^4 - t^2 - 1)$ & $\{32\}$ & 1 \\
$(t^4 - t^3 - t^2 + t - 1)$ & $\{32\}$ & 1 \\
$(t^4 + t^3 + t^2 + 1)$ & $\{40\}$ & 1 \\
$(t^4 + t^3 - t^2 - t - 1)$ & $\{32\}$ & 1 \\
$(t^4 + t^2 - 1)$ & $\{40\}$ & 1 \\
\hline
\end{tabular}
\caption{All irregular primes in $F_3[t]$ of degree at most 4}
\end{table}

\begin{table}[h]
\begin{tabular}{|c|c|c|}
\hline
p & $\{ n : p \mid BC_n \}$ & $\dim H^1(Y_{fl}, C[p]^D)$ \\
\hline
$(t^3 + t^2 + t + \alpha)$ & $\{33\}$ & 1 \\
$(t^3 + t^2 + t + \alpha^2)$ & $\{33\}$ & 1 \\
$(t^3 + \alpha)$ & $\{33\}$ & 1 \\
$(t^3 + \alpha^2)$ & $\{33\}$ & 1 \\
$(t^3 + \alpha^2t^2 + \alpha t + \alpha^2)$ & $\{33\}$ & 1 \\
$(t^3 + \alpha^2 + \alpha^2t + \alpha)$ & $\{33\}$ & 1 \\
$(t^3 + \alpha^2t^2 + \alpha^2 t + \alpha)$ & $\{33\}$ & 1 \\
$(t^3 + \alpha^2t^2 + \alpha t + \alpha)$ & $\{33\}$ & 1 \\
\hline
\end{tabular}
\caption{All irregular primes in $F_4[t]$ of degree at most 3 (with $F_4 = F_2(\alpha)$).}
and a map on cohomology
\[H^1(Y_{\text{fl}}, C[p]^D) \to H^1(Y_{\text{fl}}, (A/p)^D). \]

This map is not \(G\)-equivariant (since \(\lambda\) is not \(G\)-invariant), but rather restricts for every \(n\) to a map
\[H^1(Y_{\text{fl}}, C[p]^D)_{(\chi^{n-1})} \to H^1(Y_{\text{fl}}, (A/p)^D)_{(\chi^n)}. \]

We will see in section \(\S\) that there is a natural \(G\)-equivariant isomorphism
\[H^1(Y_{\text{fl}}, (A/p)^D) \simto A/p \otimes_k \Omega_{R}^{\omega=1} \]
where \(\Omega_{R}^{\omega=1}\) is the \(k\)-vector space of \(q\)-Cartier invariant Kähler differentials. Also, we will see that the Kummer sequence induces a short exact sequence
\[
0 \to A/p \otimes_{\mathbb{Z}} \Gamma(Y, \mathcal{O}_Y^\times) \xrightarrow{\text{dlog}} A/p \otimes_k \Omega_{R}^{\omega=1} \to A/p \otimes_{\mathcal{F}_p} (\text{Pic} Y)[p] \to 0.
\]

Note that the residue field of the completion \(R_p\) is \(A/p\), so \(R_p\) is naturally an \(A/p\)-algebra. In particular, for all \(m\) the \(R\)-module \(\Omega_{R}/\mathfrak{m}^m\Omega_{R}\) is naturally an \(A/p\)-module. Using this the quotient map \(\Omega_{R} \to \Omega_{R}/\mathfrak{m}^m\Omega_{R}\) extends to an \(A/p\)-linear map
\[A/p \otimes_k \Omega_{R} \to \Omega_{R}/\mathfrak{m}^m\Omega_{R}. \]

In section \(\S\) we will use the results on flat duality of Artin and Milne \(\cite{3}\) to show the following.

Theorem 2. For all \(n\) the sequence of \(A/p\)-vector spaces
\[0 \to H^1(Y_{\text{fl}}, C[p]^D)_{(\chi^{n-1})} \xrightarrow{\lambda} A/p \otimes_k \Omega_{R}^{\omega=1} \to \Omega_{R}/\mathfrak{m}^d\Omega_{R} \]
is exact.

The function \(\lambda\) is invertible on \(Y - \mathfrak{m}\). Consider the decomposition of \(1 \otimes \lambda \in A/p \otimes_{\mathbb{Z}} \Gamma(Y - \mathfrak{m}, \mathcal{O}_Y^\times)\) in isotypical components:
\[
1 \otimes \lambda = \sum_{n=1}^{q^d-1} \lambda_n \quad \text{with} \quad \lambda_n \in A/p \otimes_{\mathbb{Z}} \Gamma(Y - \mathfrak{m}, \mathcal{O}_Y^\times)_{(\chi^n)}.
\]

The homomorphism \(\text{dlog}: R^\times \to \Omega_{R}\) extends to an \(A/p\)-linear map
\[A/p \otimes_{\mathbb{Z}} \Gamma(Y, \mathcal{O}_Y^\times) \to \Omega_{R}. \]

Inspired by Okada’s construction \(\cite{12}\) of a Kummer homomorphism for function fields we prove in section \(\S\) the following result.

Theorem 3. If \(1 \leq n < q^d - 1\) then \(\lambda_n \in A/p \otimes_{\mathbb{Z}} \Gamma(Y, \mathcal{O}_Y^\times)\) and the following are equivalent:

1. \(p\) divides \(BC_n\);
2. \(\text{dlog}\lambda_n\) lies in the kernel of \(A/p \otimes_k \Omega_{R} \to \Omega_{R}/\mathfrak{m}^d\Omega_{R}\).

It may (and does) happen that \(\lambda_n\) vanishes for some \(n\) divisible by \(q - 1\). However, the following theorem provides us with sufficient control over the vanishing of \(\lambda_n\).

Theorem 4. If \(n\) is divisible by \(q - 1\) but not by \(q^d - 1\) then the following are equivalent:

1. \(\lambda_n = 0\);
2. \(A/p \otimes_{\mathcal{F}_p} (\text{Pic} Y)[p](\chi^n) \neq 0\).
The proof is an adaptation of work of Galovich and Rosen [4], and uses L-functions in characteristic 0. It is given in section 9.

Assuming the three theorems above, we can now prove the main result.

Proof of Theorem 4. Assume $q - 1$ divides n and p divides BC_n. We need to show that $H^1(Y_{fl}, C[p]^D)(\chi^{1-n})$ is nonzero. Being a (component of) a differential logarithm $d\log \lambda_n$ is Cartier-invariant and Theorem 3 tells us that $d\log \lambda_n \in A/p \otimes_k \Omega_{R}^{c=1}(\chi^n)$ maps to 0 in $\Omega_R/\mathcal{P}^d\Omega_R$. If $\lambda_n \neq 0$ then by Theorem 2 we conclude that $H^1(Y_{fl}, C[p]^D)(\chi^{n-1})$ is nonzero and we are done. So assume that $\lambda_n = 0$. Consider the short exact sequence (2). By Theorem 4 we have that

$$\dim_{A/p} A/p \otimes_k \Gamma(Y, C^\wedge_1)^{\chi^n} \geq 1,$$

and since $A/p \otimes k \Gamma(Y, C^\wedge_1)\chi^n$ is one-dimensional, we find that

$$\dim_{A/p} A/p \otimes_k \Omega_{R}^{c=1}(\chi^n) \geq 2.$$

But $\Omega_R/\mathcal{P}^d\Omega_R(\chi^n)$ is one-dimensional, so it follows from Theorem 2 that $H^1(Y_{fl}, C[p]^D)(\chi^{n-1}) \neq 0$.

Conversely, assume that $q - 1$ divides n and p does not divide BC_n. Then Theorem 3 guarantees that $d\log \lambda_n$ is nonzero and it follows from Theorem 4 and the short exact sequence (2) that

$$\dim A/p \otimes_k \Omega_{R}^{c=1}(\chi^n) = 1.$$

Therefore $A/p \otimes_k \Omega_{R}^{c=1}(\chi^n)$ is generated by $d\log \lambda_n$ and since the image of $d\log \lambda_n$ in $\Omega_R/\mathcal{P}^d\Omega_R$ is nonzero we conclude from Theorem 2 that $H^1(Y_{fl}, C[p]^D)(\chi^{n-1})$ vanishes. □

5. Flat duality

In this section we summarize some of the results of Artin and Milne [3] on duality for flat cohomology in characteristic p.

Let S be a scheme over k and \mathcal{V} a quasi-coherent O_S-module. Then the pull-back $F^*\mathcal{V}$ of \mathcal{V} under F: $S \to S$ is a quasi-coherent O_S-module and there is a k-linear (typically not O_S-linear) isomorphism

$$F: \mathcal{V} \longrightarrow F^*\mathcal{V}$$

of sheaves on S_{fl}.

If S is smooth of relative dimension 1 over k then the q-Cartier operator induces a canonical map

$$c: \mathcal{H}om(F^*\mathcal{V}, \Omega_{S/k}) \longrightarrow \mathcal{H}om(\mathcal{V}, \Omega_{S/k})$$

of sheaves on S_{ct}.

Recall that we denote the canonical map $S_{fl} \to S_{ct}$ by f.

Theorem 5 (Artin & Milne). Let S be smooth of relative dimension 1 over $\text{Spec } k$. Let

$$0 \longrightarrow G \longrightarrow \mathcal{V} \xrightarrow{a} F^*\mathcal{V} \longrightarrow 0$$

be a short exact sequence of sheaves on S_{fl} with

1. \mathcal{V} a locally free coherent O_S-module;
(2) $\alpha : \mathcal{V} \to F^*\mathcal{V}$ a morphism of \mathcal{O}_S-modules. Then G is a finite flat group scheme and there is a short exact sequence

$$(4) \quad 0 \to R^1f_*G^D \to \mathcal{H}_{\text{om}}(F^*\mathcal{V}, \Omega_{S/k}) \xrightarrow{\alpha} \mathcal{H}_{\text{om}}(\mathcal{V}, \Omega_{S/k}) \to 0$$

of sheaves on S_{et}, functorial in \mathcal{V}. Moreover, for all $i \neq 1$ one has $R^i f_* G^D = 0$.

Proof. Locally on S, we have that G is given as a closed subgroup scheme of \mathcal{G}_a defined by equations of the form $FX - \alpha X = 0$. In particular G is flat of degree $q \text{rk} \mathcal{V}$. The Cartier dual G^D of G is a finite flat group scheme of height 1.

If q is prime then the existence of (4) is shown in [3, §2]. One can deduce the general case from this as follows. Assume n is a positive integer, and assume given a short exact sequence

$$0 \to G \to V \xrightarrow{\alpha F} (F^n)^*V \to 0$$

of sheaves on S_{fl}, with $\alpha : V \to (F^n)^*V$ an \mathcal{O}_S-linear map. Define $V' := V \oplus F^*V \oplus \cdots \oplus (F^{n-1})^*V$.

The map α induces an \mathcal{O}_S-linear map

$$\alpha' : V' \to F^*V'$$

defined by mapping the component V to the component $(F^n)^*V$ using α, and mapping all other components to zero. We thus have a short exact sequence

$$0 \to G \to V' \xrightarrow{\alpha' - F} F^*V' \to 0$$

and one deduces the theorem for F^n from the theorem for F. \qed

Example 5.1. If $k = \mathbb{F}_p$ then the Artin-Schreier exact sequence

$$0 \to \mathbb{Z}/p \mathbb{Z} \to G_a \xrightarrow{1-F} G_a \to 0$$

on S_{fl} induces a dual exact sequence

$$0 \to R^1 f_* \mu_p \to \Omega_{S/k} \xrightarrow{1-\xi} \Omega_{S/k} \to 0$$

on S_{et}, and the exact sequence

$$0 \to \alpha_p \to G_a \xrightarrow{1-\xi} G_a \to 0$$

on S_{fl} induces a dual exact sequence

$$0 \to R^1 f_* \alpha_p \to \Omega_{S/k} \xrightarrow{1-\xi} \Omega_{S/k} \to 0$$

on S_{et}.

6. **Flat cohomology with $(A/p)^D$ coefficients**

The constant sheaf A/p on Y_{fl} has a resolution

$$0 \to A/p \to A/p \otimes_k G_{a,Y} \xrightarrow{1-\xi} A/p \otimes_k \Omega_{Y} \xrightarrow{1-\xi} A/p \otimes_k \Omega_{Y} \to 0$$

so by Theorem 5 we have $R^i f_*(A/p)^D = 0$ for $i \neq 1$, and $R^1 f_*(A/p)^D$ sits in a short exact sequence

$$1 \to R^1 f_*(A/p)^D \to A/p \otimes_k \Omega_{Y} \xrightarrow{1-\xi} A/p \otimes_k \Omega_{Y} \to 0$$

of sheaves on Y_{et}. Taking global sections now yields an isomorphism

$$H^1(Y_{\text{fl}}, (A/p)^D) \xrightarrow{\sim} A/p \otimes_k \Omega_{Y}^{e-1}_{k}.$$
where \(\Omega^{c=1}_{R/k} \) denotes the \(k \)-vector space of Cartier-invariant Kähler differentials.

On the other hand, we have a natural isomorphism

\[(A/p)^{D} \overset{\sim}{\longrightarrow} A/p \otimes_{F_{p}} \mu_{p},\]

of sheaves on \(Y_{\bar{R}} \) and the Kummer sequence

\[1 \longrightarrow \mu_{p} \longrightarrow \mathbb{G}_{m} \overset{p}{\longrightarrow} \mathbb{G}_{m} \longrightarrow 1\]

gives rise to a short exact sequence

\[(5) \quad 0 \longrightarrow A/p \otimes_{Z} \Gamma(Y, \mathcal{O}) \longrightarrow H^{1}(Y_{\bar{R}}, (A/p)^{D}) \longrightarrow A/p \otimes_{k} \Omega^{c=1}_{R} \rightarrow 0.\]

The proof of Theorem 5 shows that the resulting composed morphism

\[A/p \otimes_{k} \Gamma(Y, \mathcal{O}) \longrightarrow H^{2}(Y_{\bar{R}}, (A/p)^{D}) \overset{\sim}{\longrightarrow} A/p \otimes_{k} \Omega^{c=1}_{R}\]

is the map induced from

\[\text{dlog}: \Gamma(Y, \mathcal{O}) \longrightarrow \Omega^{c=1}_{R}; \quad u \mapsto \frac{du}{u},\]

so that (5) becomes the short exact sequence (2).

7. Comparing \((A/p)^{D}\) and \(C[p]^{D}\)-coefficients

Choose a nonzero torsion point \(\lambda \in C[p](L) \). Then \(\lambda \) defines a morphism \((A/p)_{Y} \to C[p]_{Y}\) and hence a morphism of Cartier duals

\[C[p]^{D}_{Y} \overset{\lambda}{\longrightarrow} (A/p)^{D}_{Y}.\]

Let \(\mathfrak{p} \in Y \) be the unique prime above \(p \subset A \). We have \(\mathfrak{p} = \mathfrak{R} \lambda \).

Proposition 2. The sequence

\[(6) \quad 0 \longrightarrow R^{1}f_{*}C[p]^{D}_{Y} \overset{\lambda}{\longrightarrow} R^{1}f_{*}(A/p)^{D} \longrightarrow \Omega_{Y}/\mathfrak{p}^{N}\Omega_{Y} \longrightarrow 0,\]

of sheaves on \(Y_{\bar{R}} \) is exact and if \(i \neq 1 \) then \(R^{i}f_{*}C[p]^{D} = 0 \).

Note that for all \(N \) the sheaf \(\Omega_{Y}/\mathfrak{p}^{N}\Omega_{Y} \) on \(Y_{\text{et}} \) is naturally a sheaf of \(A/p \)-modules. The middle map in the proposition is the composition

\[R^{1}f_{*}(A/p)^{D} \longrightarrow A/p \otimes_{k} \Omega_{Y} \longrightarrow \Omega_{Y}/\mathfrak{p}^{N}\Omega_{Y}.\]

Taking global sections in (6) we obtain an exact sequence of \(A/p \)-vector spaces

\[0 \longrightarrow H^{1}(Y_{\bar{R}}, C[p]^{D}_{Y}) \overset{\lambda}{\longrightarrow} A/p \otimes_{k} \Omega^{c=1}_{R} \longrightarrow \Omega_{R}/\mathfrak{p}^{N}\Omega_{R}\]

and considering the \(G \)-action on \(\lambda \) we see that Proposition 2 implies Theorem 2.

As one may expect, the proof of Proposition 2 relies on a careful analysis of the group scheme \(C[p]_{Y} \) near the prime \(\mathfrak{p} \).

Let \(\bar{s} \to Y \) be a geometric point lying above \(\mathfrak{p} \in Y \),

Lemma 1. There is an étale neighborhood \(V \to Y \) of \(\bar{s} \) and a short exact sequence

\[0 \longrightarrow C[p]_{V} \longrightarrow G_{n}^{d-1} \longrightarrow G_{n}^{d} \longrightarrow 0\]

of sheaves of \(A/p \)-vector spaces on \(V_{\bar{R}} \).
Proof. Let \(O_{Y,s} \) be the étale stalk of \(O_Y \) at \(s \) (a strict henselization of \(O_{Y,s} \)) and let \(S = \text{Spec} O_{Y,s} \). We have that \(C[p]_S \) is a finite flat \(A/p \)-vector space scheme of rank \(q^d \) over \(S \), étale over the generic fibre. Such vector space schemes have been classified by Raynaud [13] \S 1.5) (generalizing the results of Oort and Tate [17]). Let \(q = p^r \), with \(p = \text{char} \ k \), then the classification says that \(C[p]_S \) is a subgroupscheme of \(G_a^{q^d} \) given by equations
\[
X_i = a_i X_{i+1}
\]
for some \(a_i \in O_{Y,s} \), and where the index \(i \) runs over \(\mathbb{Z}/rd\mathbb{Z} \). Since the special fibre of \(C[p]_S \) is the kernel of \(F^d \) on \(G_a \), we find that all but one \(a_i \) are units. In particular, we can eliminate all but one variable and find that \(C[p]_S \) sits in a short exact sequence
\[
0 \to C[p]_S \to G_{a,S} \xrightarrow{a-F^d} G_{a,S} \to 0
\]
for some \(a \in O_{Y,s} \), well-defined up to a unit. We claim that \(a = \lambda^{q^d-1} \) (up to a unit). To see this, we compute the discriminant of the finite flat \(S \)-scheme \(C[p]_S \) in two ways. On the one hand \(C[p]_S \) is defined by the equation \(X^{q^d} - aX \), with discriminant \(a^{q^d} \) (modulo squares of units). On the other hand, \(C[p] \) is the \(p \)-torsion scheme of the Carlitz module and hence it is given by an equation
\[
X^{q^d} + b_{d-1} X^{q^d-1} + \ldots + b_0 X
\]
with \(b_i \in A \), and with \(b_0 \) a generator of \(p \). In this way we find that the discriminant equals \(b_0^{q^d} \) (modulo squares of units). Comparing the two expressions we conclude that we can take \(a = \lambda^{q^d-1} \), which proves the claim.

To finish the proof it suffices to observe that this short exact sequence is already defined over some étale neighbourhood \(V \to Y \) of \(s \). \(\square \)

Using this lemma we can now prove Proposition 2.

Proof of Proposition 2. Let \(V \) be as in the lemma and \(U := Y - \mathcal{Q} \). Then \(\{U, V\} \) is an étale cover of \(Y \) and it suffices to prove that the pull-backs of (6) to \(U_{\text{et}} \) and \(V_{\text{et}} \) are exact.

The pull-back to \(U_{\text{et}} \) is the sequence
\[
0 \to R^1 f_* C[p]_U^D \xrightarrow{\lambda} R^1 f_* (A/p)_U^D \to 0
\]
which is exact because \(\lambda : (A/p)_U \to C[p]_U \) is an isomorphism of sheaves on \(U_{\text{et}} \).

For the exactness over \(V_{\text{et}} \), consider the commutative square
\[
\begin{array}{ccc}
G_{a,V} & \xrightarrow{1-F^d} & G_{a,V} \\
\downarrow & & \downarrow \\
G_{a,V} & \xrightarrow{\lambda^{q^d-1-F^d}} & G_{a,V}
\end{array}
\]
It extends to a map of short exact sequences
\[
\begin{array}{ccccccccc}
0 & \to & (A/p)_V & \to & G_{a,V} & \xrightarrow{1-F^d} & G_{a,V} & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & C[p]_V & \to & G_{a,V} & \xrightarrow{\lambda^{q^d-1-F^d}} & G_{a,V} & \to & 0
\end{array}
\]
and without loss of generality we may assume that the leftmost vertical map is the
one induced by λ. Now Theorem 5 (with k, F, S replaced by $A/p, F^d$ and V)
yields a commutative diagram of sheaves of A/p-vector spaces on V_{et} with exact
rows:

$$
\begin{array}{c}
0 & \rightarrow & R^1f_*C[p]^D_V & \rightarrow & \Omega_V & \rightarrow & 0 \\
& & \downarrow & \lambda & & & \\
0 & \rightarrow & R^1f_*(A/p)^D_V & \rightarrow & \Omega_V & \rightarrow & 0
\end{array}
$$

(where by abuse of notation, we denote the canonical maps of sites $V_{\text{fl}} \rightarrow V_{\text{et}}$ and
$Y_{\text{fl}} \rightarrow Y_{\text{et}}$ by the same symbol f.) This shows that on V_{et} we have an exact sequence

$$
0 \rightarrow R^1f_*C[p]^D_V \xrightarrow{\lambda} R^1f_*(A/p)^D_V \rightarrow \Omega_V/\lambda \Omega_V \rightarrow 0.
$$

so the pullback of (6) to V_{et} is exact. □

8. A CANDIDATE COHOMOLOGY CLASS

Let $\lambda \in R$ be a primitive p-torsion point of the Carlitz module. Consider the
decomposition

$$
1 \otimes \lambda = \sum_{n=1}^{q^d-1} \lambda_n
$$

in $A/p \otimes \mathbb{Z} \Gamma(Y - \mathfrak{P}, \mathcal{O}_Y^\times)$. In this section we will prove Theorem 3 which states
that for $1 \leq n < q^d - 1$ we have

$$
\lambda_n \in A/p \otimes \Gamma(Y, \mathcal{O}_Y^\times)
$$

and that the following are equivalent

1. p divides BC_n;
2. $d\log \lambda_n$ lies in the kernel of $A/p \otimes_k \Omega_R \rightarrow \Omega_R/\mathfrak{P}^{q^d} \Omega_R$.

We start with the first assertion.

Proposition 3. If $1 \leq n < q^d - 1$ then $\lambda_n \in A/p \otimes \mathbb{Z} \Gamma(Y, \mathcal{O}_Y^\times)$.

Proof. For all integers n we have

$$
\lambda_n = -\sum_{g \in G} \chi(g)^{-n} \otimes g\lambda.
$$

If moreover n is not divisible by $q^d - 1$ then $\sum_{g \in G} \chi(g)^{-n} = 0$ so that we can rewrite the above identity as

$$
\lambda_n = -\sum_{g \in G} \chi(g)^{-n} \otimes \frac{g\lambda}{\lambda}.
$$

Since the point \mathfrak{P} is fixed under G it follows that for all $g \in G$ one has that $g\lambda/\lambda$
has valuation 0 at \mathfrak{P} and therefore for all $1 \leq n < q^d - 1$ we have

$$
\lambda_n \in A/p \otimes \Gamma(Y, \mathcal{O}_Y^\times),
$$

as was claimed. □

Now let $L_{\mathfrak{P}}$ be the completion of L at \mathfrak{P} and \mathfrak{m} the maximal ideal of its valuation
ring $\mathcal{O}_{Y, \mathfrak{P}}$. Note that $\mathfrak{m} = (\lambda)$.

Consider the quotient $\mathfrak{m}/\mathfrak{m}^{q^d}$. It carries two A-module structures:
the linear action coming from the A-algebra structure of $O_{Y,p}^\circ$;
(2) the Carlitz action defined using φ.

Also, the Galois group G acts on m/m^q and the action commutes with both A-module structures.

Lemma 2. Both actions on m/m^q factor over A/p.

Proof. Note that $pO_{Y,p}^\circ = m^{q^d-1}$. In particular the assertion is immediate for the linear action. For the Carlitz action, consider a generator f of p. Then
\[\varphi(f) = a_0 + a_1 F + \cdots + a_{d-1} F^{d-1} + F^d \]
with $a_i \in p$ for all i. From this it follows that $\varphi(f)$ maps $m \subset O_{Y,p}^\circ$ into m^{q^d}, as desired.

The Carlitz exponential series
\[e(z) = \sum_{n=1}^{\infty} e_n z^n \in K[[z]] \]
has the property that for all $n < q^d$ the coefficient e_n is p-integral, so the truncated and reduced exponential power series
\[\bar{e}(z) = \sum_{n=1}^{q^d-1} e_n z^n \in (A/p)[[z]]/(z^{q^d}) \]
defines a k-linear map
\[\bar{e} : m/m^{q^d} \to m/m^{q^d} \]
which is an isomorphism because it induces the identity map on the intermediate quotients m^i/m^{i+1}. Note that \bar{e} is G-equivariant, as the coefficients e_i of the Carlitz exponential lie in K.

Lemma 3. For all $x \in m/m^{q^d}$ and $a \in A$ we have $\bar{e}(ax) = \varphi(a)\bar{e}(x)$.

Proof. In $K[[z]]$ we have the identity
\[e(tz) = te(z) + e(z)^q \]
of formal power series. Identifying coefficients on both sides we find that in $(A/p)[[z]]/(z^{q^d})$ we have
\[\bar{e}(tz) = t\bar{e}(z) + \bar{e}(z)^q, \]
and we deduce that for all $a \in A$ and $x \in m/m^{q^d}$ we have $\bar{e}(ax) = \varphi(a)\bar{e}(x)$. □

Put $\bar{\pi} := \bar{e}^{-1}(\bar{\lambda})$, where $\bar{\lambda}$ is the image of $\lambda \in m$ in m/m^{q^d}.

Lemma 4. For all $g \in G$ we have $g\bar{\pi} = \chi(g)\bar{\pi}$.

In other words $\bar{\pi} \in m/m^{q^d}(\chi)$.

Proof of Lemma 4 Let $g \in G$ and $a \in A$ be so that a reduces to g in $G = (A/p)^\times$. Since λ is a p-torsion point of the Carlitz module we have that
\[g\bar{\lambda} = \varphi(a)\bar{\lambda}. \]
Applying \bar{e}^{-1} to both sides we find with Lemma 3 that
\[g\bar{\pi} = a\bar{\pi} \]
and by definition $a\bar{\pi}$ equals $\chi(g)\bar{\pi}$.

□
Choose a lift \(\pi \in m \) of \(\bar{\pi} \) such that \(g\pi = \chi(g)\pi \) for all \(g \). Then \(\pi \) is a uniformizing element of \(Lp \).

Proposition 4. Let \(1 \leq n < q^d - 1 \). Then
\[
d\log \lambda_n = (BC_n\pi^n + \delta) d\log \pi
\]
for some \(\delta \in m^{n+q^d-1} \).

Proof. Since \(\bar{\lambda} = \bar{\chi}(\bar{\pi}) \) we have in \(\mathcal{O}_{Y,p}^\chi \) the identity
\[
\lambda = \sum_{n=1}^{q^d-1} e_n\pi^n + \delta_1
\]
for some \(\delta_1 \in m^{q^d} \). Since \(d\pi^n = 0 \) for any \(n \) divisible by \(q \) we find
\[
d\lambda = (1 + \delta_2)d\pi
\]
for some \(\delta_2 \in m^{q^d} \). Dividing both expressions we find
\[
d\log \lambda = \left(\sum_{n=0}^{q^d-2} BC_n\pi^n + \delta_3 \right) d\log \pi
\]
for some \(\delta_3 \in m^{q^d-1} \). Now the proposition follows from decomposing this identity in isotypical components, since \(d\log \pi \) is \(G \)-invariant and \(g\pi = \chi(g)\pi \) for all \(g \in G \). \(\Box \)

We can now finish the proof of Theorem 3.

Proof of Theorem 3. If \(n > 1 \) then the Theorem follows from the above proposition. If \(n = 1 \) we consider two cases. Either \(q > 2 \) and then \(BC_1 = 0 \) and \(d\log \lambda_1 = 0 \), or else \(q = 2 \) and then \(p \) does not divide \(BC_1 \) and from the above \(\pi \)-adic expansion we see that \(d\log \lambda_1 \) does not map to zero in \(\Omega_R/\mathfrak{p}^{q^d}\Omega_R \). In both cases the theorem holds. \(\Box \)

9. Vanishing of \(\lambda_n \)

Let \(W \) be the ring of Witt vectors of \(A/p \). For \(a \in (A/p)^x \) we denote by \(\hat{a} \in W^x \) the Teichmüller lift of \(a \). Also, we denote by \(\hat{\chi}: G \to W^x \) the Teichmüller lift of the character \(\chi: G \to (A/p)^x \). If \(M \) is a \(W[G] \)-module then it decomposes into isotypical components
\[
M = \bigoplus_{n=1}^{q^d-1} M(\hat{\chi}^n)
\]
with \(G \) acting via \(\hat{\chi}^n \) on \(M(\hat{\chi}^n) \).

Put \(U := W \otimes_{\mathbb{Z}} \Gamma(Y, \mathcal{O}_Y^\chi) \) and let \(D \) be the \(W \)-module of degree zero \(W \)-divisors on \(X - Y \). Then we have a natural inclusion \(U \hookrightarrow D \) with finite quotient. Consider the decomposition of \(1 \otimes \lambda \in W \otimes \Gamma(Y - \mathcal{P}, \mathcal{O}_Y^\chi) \) in isotypical components:
\[
1 \otimes \lambda = \sum_{n=1}^{q^d-1} \hat{\lambda}_n \quad \text{with} \quad \hat{\lambda}_n \in W \otimes_{\mathbb{Z}} \Gamma(Y - \mathcal{P}, \mathcal{O}_Y^\chi)(\hat{\chi}^n).
\]
We have
\[
\hat{\lambda}_n = \sum_{g \in G} \chi(g)^{-n} \otimes g\lambda
\]
and for $1 < n < q^d - 1$ we have that $\tilde{\lambda}_n$ lies in $U(\tilde{\chi}^n)$ and it maps to λ_n under the reduction map

$$U \longrightarrow A/p \otimes \mathbb{Z} \Gamma(Y, O_Y^\times).$$

If n is divisible by $q - 1$ but not by $q^d - 1$, the W-modules $D(\tilde{\chi}^n)$ and $U(\tilde{\chi}^n)$ are free of rank one. In particular

$$\lambda_n = 0 \text{ if and only if } \frac{U(\tilde{\chi}^n)}{W\lambda_n} \neq 0,$$

and Theorem 4 follows from the following.

Proposition 5. Let n be divisible by $q - 1$ but not by $q^d - 1$. Then the finite W-modules

$$\frac{U(\tilde{\chi}^n)}{W\lambda_n}$$

and

$$W \otimes \mathbb{Z} \text{Pic}_Y(\tilde{\chi}^n)$$

have the same length.

Proof. Let X be the canonical compactification of Y. Since we have a short exact sequence of W-modules

$$0 \longrightarrow \frac{D(\tilde{\chi}^n)}{U(\tilde{\chi}^n)} \longrightarrow W \otimes \mathbb{Z} (\text{Pic}^0 X)(\tilde{\chi}^n) \longrightarrow W \otimes \mathbb{Z} (\text{Pic} Y)(\tilde{\chi}^n) \longrightarrow 0,$$

it suffices to show that

$$\frac{D(\tilde{\chi}^n)}{W\lambda_n} \text{ and } W \otimes \mathbb{Z} (\text{Pic}^0 X)(\tilde{\chi}^n)$$

have the same length. By Goss and Sinnott [8] the length of $W \otimes \mathbb{Z} (\text{Pic}^0 X)(\tilde{\chi}^n)$ is the p-adic valuation of $L(1, \tilde{\chi}^{-n}) \in W$. We will show that also the length of $D(\tilde{\chi}^n)/W\lambda_n$ equals the p-adic valuation of $L(1, \tilde{\chi}^{-n})$.

Since n is divisible by $q - 1$, the representation $\tilde{\chi}^{-n}$ is unramified at ∞. Since all the points of X lying above ∞ are k-rational, the local L-factor at ∞ of $L(T, \tilde{\chi}^{-n})$ is $(1 - T)^{-1}$. Since n is not divisible by $q^d - 1$, the representation is ramified at p and hence the local L-factor at p is 1. Recall that for a prime $q \subset A$ coprime with p we have that $\chi(\text{Frob}_q)$ is the image of the monic generator of q in $(A/p)^\times$. Together with unique factorization in A we obtain

$$L(T, \tilde{\chi}^{-n}) = (1 - T)^{-1} \sum_{a \in A_+, a \not\in p} \tilde{a}^{-n} T^{\deg a},$$

where A_+ is the set of monic elements of A. In fact it is easy to see that for $m \geq d$ the coefficient of T^m in the sum vanishes, so we have

$$L(T, \chi^{-n}) = (1 - T)^{-1} \sum_{a \in A_+^{<d}} \tilde{a}^{-n} T^{\deg a},$$

where $A_+^{<d}$ is the set of monic elements of degree smaller than d.

Since n is divisible by $q - 1$ we have

$$\sum_{a \in A_+^{<d}} \tilde{a}^{-n} T^{\deg a} = \frac{1}{q - 1} \sum_{a \in A^{<d}} \tilde{a}^{-n} T^{\deg a}.$$
We conclude from (7) that
\[
L(1, \chi^{-n}) = \frac{1}{q-1} \sum_{a \in A_{<d}} (\deg a) \tilde{a}^{-n}.
\]

Consider the function
\[
\deg : G \to \{0, 1, \ldots, d-1\}
\]
which maps \(g \in G\) to the degree of its unique representative in \(A_{<d}\). Then the above identity can be rewritten as
\[
L(1, \chi^{-n}) = \frac{1}{q-1} \sum_{g \in G} (\deg g) \tilde{g}^{-n}.
\]

By [4, p. 372] there is a point in \(X - Y\) with associated valuation \(v\) and integers \(u, w\) with \((u, p) = 1\) such that
\[
v(g\lambda) = u \deg g + w
\]
for all \(g \in G\). The valuation \(v\) extends to an isomorphism of \(W\)-modules
\[
v : D(\chi^n) \to W,
\]
and we have
\[
v(\lambda_n) = \sum_{g \in G} \tilde{g}^{-n} v(g\lambda) = u(q-1)L(1, \chi^{-n}) + w \sum_{g \in G} \tilde{g}^{-n} = u(q-1)L(1, \chi^{-n}).
\]

In particular, the length of \(D(\chi^n)/\lambda_n\) is the \(p\)-adic valuation of \(L(1, \chi^{-n})\) and the proposition follows. \(\square\)

10. Complement: the class module of \(Y\)

Let \(L\) be an arbitrary finite extension of \(K\) and \(R\) the integral closure of \(A\) in \(L\). Put \(Y = \text{Spec } R\). In [10] and [15] we have given several equivalent definitions of a finite \(A\)-module \(H(C/Y)\) depending on \(Y\), that is analogous to the class group of a number field. One of these definitions is the following.

Let \(X\) be the canonical compactification of \(Y\) and let \(\infty\) be the divisor on \(X\) of zeroes of \(1/t \in L\). (This is also the inverse image of the divisor \(\infty\) on \(\mathbb{P}^1\).) Then \(H(C/Y)\) is defined by the exact sequence
\[
A \otimes_k H^1(X, \mathcal{O}_X) \xrightarrow{\partial} A \otimes_k H^1(X, \mathcal{O}_X(\infty)) \to H(C/Y) \to 0,
\]
where
\[
\partial = 1 \otimes (t + F) - t \otimes 1.
\]

Theorem 6. Let \(I \subset A\) be a nonzero ideal. Then there is a natural isomorphism
\[
H^1(Y_\text{fl}, C[I]^D) \cong H(C/Y) \otimes_A A/I
\]
where \((-)^\vee\) denotes the \(k\)-linear dual.
Proof. The starting point of the proof is the exact sequence of sheaves of A-modules
\[0 \rightarrow A \otimes_k \mathbb{G}_a \xrightarrow{\partial} A \otimes_k \mathbb{G}_a \xrightarrow{\alpha} C \rightarrow 0 \]
with $\partial(a \otimes f) = a \otimes (f^q + tf) - ta \otimes f$ and with $\alpha(a \otimes f) = \varphi(a)f$. From this we derive a short exact sequence
\[0 \rightarrow C[I]_Y \rightarrow A/I \otimes_k \mathbb{G}_a \xrightarrow{\partial} A/I \otimes_k \mathbb{G}_a \rightarrow 0. \]
Using Theorem 5 we obtain a dual resolution:
\[0 \rightarrow R^i f_* C[I]^D \rightarrow A/I \otimes_k \Omega_Y \xrightarrow{\partial^*} A/I \otimes_k \Omega_Y \rightarrow 0 \]
of sheaves of A-modules on Y_{et}, where $\partial^* = 1 \otimes (t+c) - t \otimes 1$. Since $R^i f_* C[I]^D = 0$ for $i \neq 1$, taking global sections we obtain an exact sequence of A-modules
\[0 \rightarrow H^1(Y_{fl}, C[I]^D) \rightarrow A/I \otimes_k \Gamma(Y, \Omega_Y) \xrightarrow{\partial^*} A/I \otimes_k \Gamma(Y, \Omega_Y). \]

Now we claim that the natural inclusion of the complex
\[A/I \otimes_k \Gamma(X, \Omega_X(-\infty)) \xrightarrow{\partial^*} A/I \otimes_k \Gamma(X, \Omega_X) \]
in the complex
\[A/I \otimes_k \Gamma(Y, \Omega_Y) \xrightarrow{\partial^*} A/I \otimes_k \Gamma(Y, \Omega_Y) \]
is a quasi-isomorphism. Indeed, the quotient has a filtration with intermediate quotients of the form
\[A/I \otimes_k \frac{\Gamma(X, \Omega_X(n\infty))}{\Gamma(X, \Omega_X((n-1)\infty))} \xrightarrow{\partial^*} A/I \otimes_k \frac{\Gamma(X, \Omega_X(n+1\infty))}{\Gamma(X, \Omega_X(n\infty))} \]
with $n \in \mathbb{Z}_{\geq 0}$. On these intermediate quotients we have that $1 \otimes c$ and $t \otimes 1$ are zero, so that $\partial^* = 1 \otimes t$, which is an isomorphism.

Hence we obtain from (9) a new exact sequence
\[0 \rightarrow H^1(Y_{fl}, C[I]^D) \rightarrow A/I \otimes_k \Gamma(X, \Omega_X(-\infty)) \xrightarrow{\partial^*} A/I \otimes_k \Gamma(X, \Omega_X). \]
Under Serre duality the q-Cartier operator c on Ω_X is adjoint to the q-Frobenius F on \mathcal{O}_X, so we obtain a dual exact sequence
\[A/I \otimes_k H^1(X, \mathcal{O}_X) \xrightarrow{\partial} A/I \otimes_k H^1(X, \mathcal{O}_X(\infty)) \rightarrow H^1(Y_{fl}, C[I]^D)^{\vee} \rightarrow 0. \]
Theorem 5 now follows by comparing this sequence with the sequence obtained by reducing (8) modulo I. \qed

References

[1] Greg W. Anderson. Log-algebraicity of twisted A-harmonic series and special values of L-series in characteristic p. J. Number Theory, 60(1):165–209, 1996. MR1405732
[2] Bruno Anglès. On Gekeler’s conjecture for function fields. J. Number Theory, 87(2):242–252, 2001. MR1824146
[3] M. Artin and J. S. Milne. Duality in the flat cohomology of curves. Invent. Math., 35:111–129, 1976. MR0419350
[4] Steven Galovich and Michael Rosen. The class number of cyclotomic function fields. J. Number Theory, 13(3):363–375, 1981. MR642206
[5] Ernst-Ulrich Gekeler. On regularity of small primes in function fields. J. Number Theory, 34(1):114–127, 1990. MR1039771
[6] David Goss. Analogies between global fields. In Number theory (Montreal, Que., 1985), volume 7 of CMS Conf. Proc., pages 83–114. Amer. Math. Soc., Providence, RI, 1987. [MR894321]

[7] David Goss. Basic structures of function field arithmetic, volume 35 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1996. [MR1423131]

[8] David Goss and Warren Sinnott. Class-groups of function fields. Duke Math. J., 52(2):507–516, 1985. [MR792185]

[9] J. Herbrand. Sur les classes des corps circulaires. J. Math. Pures Appl., IX. Sér., 11:417–441, 1932.

[10] Barry Mazur. Notes on étale cohomology of number fields. Ann. Sci. École Norm. Sup. (4), 6:521–552 (1974), 1973. [MR0344251]

[11] J. S. Milne. Arithmetic duality theorems, volume 1 of Perspectives in Mathematics. Academic Press Inc., Boston, MA, 1986. [MR881804]

[12] Shozo Okada. Kummer’s theory for function fields. J. Number Theory, 38(2):212–215, 1991. [MR1111373]

[13] Michel Raynaud. Schémas en groupes de type (p,\ldots,p). Bull. Soc. Math. France, 102:241–280, 1974. [MR0419467]

[14] Kenneth A. Ribet. A modular construction of unramified p-extensions of $\mathbb{Q}(\mu_p)$. Invent. Math., 34(3):151–162, 1976. [MR0419403]

[15] Lenny Taelman. The Carlitz shtuka. J. Number Theory, 131(3):410–418, 2011. [MR2739613]

[16] Lenny Taelman. Special L-values of Drinfeld modules. To appear in Annals of Math., 2011.

[17] John Tate and Frans Oort. Group schemes of prime order. Ann. Sci. École Norm. Sup. (4), 3:1–21, 1970. [MR0255368]

[18] Lawrence C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1997. [MR1421575]

Mathematisch Instituut, P.O. Box 9512, 2300 RA Leiden, The Netherlands
E-mail address: lenny@math.leidenuniv.nl