RESEARCH ARTICLE

Assessing The Phytochemical Contents and Antimicrobial Activity of Bitter Leaf (Vernonia Amygdalina) on Micro-Organisms

Andrew Omachi
Department of Chemistry, Kogi State College of Education, Ankpa.

Abstract

Medicinal plants have assumed the basis of traditional medicine and have proven effective in human health care across the world. There is a growing interest in the role of complementary and alternative medicines to treat various illnesses. The continued consumption of antibiotic with little or no impact on bacteria have negatively affected health care delivery. Bitter leaf (Vernonia amygdalina) is a popular shrub belonging to the family Asteraceae and a perennial shrub commonly cultivated as a homestead vegetable and fodder tree in various parts of Nigeria. The current study was conducted to assess the phytochemical constituents and antimicrobial activity of bitter leaf on Candida albicans, Pseudomonas aeruginosa and Staphylococcus aureus. The result of the phytochemical analysis conducted on the root and stem bark of V. amygdalina revealed the presence of alkaloids, tannin, steroids, flavonoids, phenol, and saponins. However, it was found that tannins and phenol were mainly deposited in the plant's stem bark. Also, the antimicrobial analysis conducted revealed that S. aureus was more vulnerable to the ethanol, acetone, and hot aqueous extracts of V. amygdalina. while, P. aeruginosa, and C. Albicans showed sensitivity to ethanol and acetone exposure but failed to react to the hot aqueous extracts. The study concludes that the observed biological reactions shown by the aqueous extracts of V. amygdalina corroborate the traditional application of this plant as an alternative antibiotic.

Introduction:

Over the years, medicinal plants have played a substantial role in Nigeria's health sector. Medicinal plants have assumed the basis of traditional medicine and have proven effective in human health care across the world (Asif, 2013; Hamayun et al., 2006; Johnson et al., 2015; Kumar et al., 2013; Tripathi & Pandey, 2017). There is a growing interest in the role of complementary and alternative medicines to treat various illnesses (Albejo et al., 2015; S. Ali et al., 2020; Baars et al., 2019; James et al., 2018; Mordeniz, 2019). Plant's secondary metabolites and phytochemicals are the essential elements in the curative success of plants. However, the mechanisms underlying most medicinal plant-related cure is still unclear. The success of complementary and alternative medicines in treating infectious diseases indicates the effectiveness of plants in treating different types of fungal, bacterial, and other infections (el Hajj & Holst, 2020; Kamatenesi-Mugisha et al., 2008; Kayanja, 2008; Martin & Ernst, 2003; Wang et al., 2014). Complementary and alternative medicine is increasingly employed to curb infectious disease in Nigeria. The
trend has continued to attract wide patronage following most conventional antibiotics' ineffectiveness due to the antimicrobial resistance by bacteria.

The growing occurrence of antimicrobial drug resistance by most bacteria has triggered a public health concern (Bennani et al., 2020; Buchy et al., 2020; Christaki et al., 2020; Dadgostar, 2019; Didier et al., 2019; Lowy, 2003; Taneja & Sharma, 2019; Vidovic & Vidovic, 2020; WHO, 2014). The continued consumption of antibiotics with little or no impact on bacteria has negatively affected health care delivery worldwide. Perhaps, extensive research has been dedicated to searching for an alternative remedy to bacterial infections. (Alsheikh et al., 2020; Chandra et al., 2017; Esmael et al., 2020; Nawab et al., 2020; Santos et al., 2019; Septama et al., 2020; Shin et al., 2018; Singh et al., 2020; Srivastava et al., 2014; Yang et al., 2018). Mostly, the research in alternative to the chemically powered antibiotics has focused on plant bioactive components. Phytochemical contents of many plants such as alkaloids, essential oils, resins, lactose, and saponins have proved relevant in curbing bacterial activities (Igbinaduwa et al., 2012; Mujeeb et al., 2014; Muthu et al., 2006; Steenkamp et al., 2004; Umaru et al., 2019). Thus, this study is aimed to ascertain the aqueous constituents and the antimicrobial properties of a bitter leaf on microorganisms.

Bitter leaf (*Vernonia amygdalina*) is a popular shrub belonging to the family Asteraceae (Okwuzu et al., 2017). *V. amygdalina* is a perennial shrub commonly cultivated as a homestead vegetable and fodder tree (Ndaeyo, 2007). It is widely found in various parts of Nigeria. Bitter leaf is one of the leafy vegetables crucial in curbing micronutrient malnutrition (Tonukari et al., 2015). The plant is an essential protective vegetable and a popular ingredient used in making soup (Onabanjo & Oguntona, 2003; Shokunbi et al., 2011; Uchechukwu Anastasia, 2011). The leaves are widely considered appetizers and used to aid digestion (Oyeyemi et al., 2018). It is beneficial for human health care and the treatment of various diseases. Bitter leaf is widely recognized due to the vast bioactive compounds obtained in various plant parts (Oyeyemi et al., 2018).

Research on the pharmacological potentials of *V. amygdalina* indicates that the plant possesses immunomodulatory activities (Setiawan et al., 2018), antimicrobial properties (Ijeh & Ejike, 2011; Salawu et al., 2011), antibacterial activity (Habtamu & Melaku, 2018), insecticidal properties (Green et al., 2017; Ileke Kayode & Olabimi Isaac, 2019), Antidiabetic (Owen et al., 2011), Anthelmintic (Nalule et al., 2011), Anticancer (Izevbigie et al., 2008; Yedjou et al., 2015), Antihelmitic and Antimalarial properties (Oboh, 2006), anxiolytic, sedative and hypothermic effects (Oloruntobi et al., 2014). Although *V. amygdalina* has been widely studied and its bioactive components and antimicrobial effects are well documented. This study aimed to further evaluate existing evidence from the literature on the antimicrobial effects of *V. amygdalina* on bacteria. Thus, the current study's primary purpose is to determine the phytochemical contents and the antimicrobial activity of *V. amygdalina* on *Staphylococcus aureus*, *Pseudomonas aeruginosa* and *Candida albicans*.

## Materials and Methods:-
### Collection and Preparation of Plant Materials
Fresh samples of *V. amygdalina* plant was collected from the open market in Kogi State, Nigeria, and were taken to the lab for proper identification and authentication. The samples were washed and prepared according to the method described in (Alara et al., 2019).

### Sample Extraction
#### Aqueous Extract
Ten grams of the ground sample of the plant stem bark and leaf were extracted was added to 100ml of sterile distilled. The extraction of the plant's aqueous components was done following the method adopted in (Abdulmalik et al., 2016; Ali et al., 2017).

### Phytochemical Screening of V. amygdalina
Phytochemical screening of the *V. amygdalina* stem bark and root extracts was conducted to ascertain bioactive components such as alkaloids, tannins, saponins, steroids, phenols, and flavonoids using the standard qualitative method as previously described by Trease and Evans (1989).

### Sterility Test of the Plant Extracts
The plant's extracted constituents were tested for sterility following sterilization by inoculating 1 mL of each extract on sterile nutrient agar incubated at 37°C for 24 hours. Perhaps, the plates were carefully observed for growth.
Standardization of the Bacterial Cell Suspension
McFarland standard was adopted to test for the standardization of the bacterial suspension. Colonies of the tested organism were picked into a sterile test-tube containing sterile nutrient broth and incubated for one day.

Determination of Antimicrobial Activities
The crude extracts' antimicrobial activity was conducted using the agarwell diffusion method described by (Gashe & Zeleke, 2017) with few modifications.

Table 1: Table showing the phytochemical contents of the root and stem bark of V. amygdalina.

| Phytochemical compounds | Root | Stem bark |
|-------------------------|------|-----------|
| Alkaloids               | +   | ++        |
| Saponins                | +   | +++       |
| Phenolic                | -   | +++       |
| Steroid                 | +++ | +         |
| Tannin                  | -   | +++       |
| Flavonoids              | ++  | +         |

Key: + = Positive, + + = Moderate + + + = High, - = Negative

The above table shows the outcome of the aqueous screening conducted on the root and stem bark of V. amygdalina indicates that the plant contains a significant number of alkaloids, tannin, steroids, flavonoids, phenol, and saponins. However, the screening revealed tannins and phenols in the stem bark and not the plant's root.

Table 2: Table showing the sensitivity parameter of the organisms to ethanol extract.

| Organisms  | Stem bark | % | Root | % |
|------------|-----------|---|------|---|
| C. albicans| 8mm       | 36.89 | 2mm | 12.45 |
| P. aeruginosa| 5mm | 18.21 | 1mm | 6.78 |
| S. aureus  | 8mm       | 37.10 | 7mm | 36.26 |

Table showing the observed zone of inhibition of ethanol extract on V. amygdalina stem bark and root against some pathogenic organisms. Exposing the organisms to the aqueous extract of stem bark for sensitivity revealed the same 8mm diameter of inhibition zone (36.89% and 37.10%), respectively, for C. Albicans and S. aureus. However, P. aeruginosa possessed a minimal 5mm (6.78%) diameter inhibition zone compared to C. Albicans and S. aureus. The test on an ethanol extract of the root shows that S. aureus produced a high diameter of inhibition zone of 7mm (36.26%) while C. Albicans produced lower with 3mm (12.45%) diameter of inhibition zone.

Table 3: Table showing the sensitivity parameter of organism to acetone extract of the plant.

| Organisms  | Stem bark | % | Root | % |
|------------|-----------|---|------|---|
| C. albicans| 8mm       | 21.38 | 7mm | 41.19 |
| P. aeruginosa| 15mm | 31.36 | 3mm | 8.82 |
| S. aureus  | 15mm      | 36.10 | 5mm | 26.16 |

The table above shows the test organisms' sensitivity parameter when exposed to an acetone extract of V. amygdalina stem bark and root. The result indicated a high diameter of inhibition zones of 15mm for P. aeruginosa and S. aureus (31.36% and 36.10%), respectively, when tested with acetone stem bark extract of V. amygdalina. However, C. Albicans produced a reduced diameter of inhibition zones of 8mm (21.38%). Furthermore, it was revealed that C. Albicans produced an increased diameter of inhibition zones of 7mm (41.19%) when subjected to acetone root extract of V. amygdalina.

Table 4: Table showing the sensitivity position of the test organisms to hot aqueous extract.

| Organisms  | Stem bark | % | Root | % |
|------------|-----------|---|------|---|
| C. albicans| r         | - | r    | - |
| P. aeruginosa| r | - | r    | - |
| S. aureus  | 8mm       | 96.10 | r   | - |
The organisms were exposed to hot aqueous extract of the plant. Only one pathogenic organism (S. aureus) exhibited a reaction with the 8mm diameter of inhibition zone. Thus, other organisms maintained a resistant position towards the extract.

**Discussion:-**
The current study was conducted to assess the phytochemical constituents and antimicrobial activity of bitter leaf on *Candida albicans*, *Pseudomonas aeruginosa*, and *Staphylococcus aureus*. The result of the phytochemical analysis conducted on the root and stem bark of *V. amygdalina* revealed the presence of alkaloids, tannin, steroids, flavonoids, phenol, and saponins. However, it was found that tannins and phenol were mainly deposited in the plant's stem bark. Thus, the study is consistent with previous studies (Alara et al., 2019; Asfere et al., 2018; Oyeyemi et al., 2018). The plant's bioactive content has been implicated in the antimicrobial potentials of *V. amygdalina* (Jin et al., 2017; Nenaah, 2013).

Furthermore, the antimicrobial analysis conducted revealed that *S. aureus* was more vulnerable to the ethanol, acetone, and hot aqueous extracts of *V. amygdalina*. This is indicated in the increased size of the inhibition zones' diameter, as shown in the tables. However, *P. aeruginosa* and *C. albicans* showed sensitivity to ethanol and acetone exposure. However, they failed to react to the hot aqueous extracts. Consistent with (Adetutu et al., 2011; Moreno et al., 2006), the findings affirmed ethanol and acetone extracts' antimicrobial potentials compared to aqueous extracts.

**Conclusion:-**
The present study assessed the antimicrobial potentials of *V. amygdalina* extracts on *Candida albicans*, *Pseudomonas aeruginosa*, and *Staphylococcus aureus*. The result confirmed that the stem bark and root extracts of the plant possess antimicrobial tendencies. Thus, the observed biological reactions shown by the aqueous extracts of *V. amygdalina* corroborate the traditional application of this plant as an alternative antibiotic.

**References:-**
1. Abdulmalik, O., Oladapo, O. O., & Bolaji, M. O. (2016). Effect of aqueous extract of Vernonia amygdalina on atherosclerosis in rabbits. ARYA Atherosclerosis, 12(1).
2. Adetutu, A., Morgan, W. A., & Corcoran, O. (2011). Ethnopharmacological survey and in vitro evaluation of wound-healing plants used in South-western Nigeria. Journal of Ethnopharmacology, 137(1). https://doi.org/10.1016/j.jep.2011.03.073
3. Alara, O. R., Abdurahman, N. H., Ukaegbu, C. I., & Kabbashi, N. A. (2019). Extraction and characterization of bioactive compounds in Vernonia amygdalina leaf ethanolic extract comparing Soxhlet and microwave-assisted extraction techniques. Journal of Taibah University for Science, 13(1). https://doi.org/10.1080/16583655.2019.1582460
4. Albejo, B., Endale, M., Kibret, B., & Anza, M. (2015). Phytochemical investigation and antimicrobial activity of leaves extract of Vernonia auriculifera Hiern. Journal of Pharmacy and Pharmacognosy Research, 3(6).
5. Ali, M., Yahaya, A., Zage, A., & Yusuf, Z. (2017). In-vitro Antibacterial Activity and Phytochemical Screening of Psidium guajava on Some Enteric Bacterial Isolates of Public Health Importance. Journal of Advances in Medical and Pharmaceutical Sciences, 12(3). https://doi.org/10.9734/jamps/2017/31126
6. Ali, S., Ullah, S., Paudyal, V., Ali, M., Khalid Tipu, M., & Ur-Rehman, T. (2020). Complementary and Alternative Medicines for the Treatment of Hepatitis C: Perspectives of Users and CAM Practitioners. Evidence-Based Complementary and Alternative Medicine, 2020. https://doi.org/10.1155/2020/3932690
7. Alsheikh, H. M. al, Sultan, I., Kumar, V., Rather, I. A., Al-sheikh, H., Jan, A. T., & Haq, Q. M. R. (2020). Plant-based phytochemicals as a possible alternative to antibiotics in combating bacterial drug resistance. In Antibiotics (Vol. 9, Issue 8). https://doi.org/10.3390/antibiotics9080480
8. Asfere, Y., Kebede, A., & Muthuswamy, M. (2018). In-vitro Antimicrobial Activities and Phytochemical Screening of Calotropis Procera (Ait.) and Vernonia amygdalina (Del.) Extracts Against Some Medically Important Pathogenic Bacteria. American Journal of Bioscience and Bioengineering, 6(6).
9. Asif, M. (2013). Anticonvulsant potential of some medicinal plants and their beneficial properties. Tang Humanitas Medicine, 3(4). https://doi.org/10.5667/tang.2013.0012
10. Baars, E. W., Zoen, E. B. van, Breitkreuz, T., Martin, D., Matthes, H., Schoen-Angerer, T. von, Soldner, G., Vagedes, J., Wietmarschen, H. van, Patijn, O., Willcox, M., Flotow, P. von, Teut, M., Ammon, K. von, Thangavelu, M., Wolf, U., Hummelsberger, J., Nicolai, T., Hartemann, P., ... Huber, R. (2019). The Contribution of Complementary and Alternative Medicine to Reduce Antibiotic Use: A Narrative Review of
Health Concepts, Prevention, and Treatment Strategies. In Evidence-based Complementary and Alternative Medicine (Vol. 2019). https://doi.org/10.1155/2019/5365608

11. Bennani, H., Mateus, A., Mays, N., Eastmure, E., Stärk, K. D. C., & Häsl, B. (2020). Overview of evidence of antimicrobial use and antimicrobial resistance in the food chain. In Antibiotics (Vol. 9, Issue 2). https://doi.org/10.3390/antibiotics9020049

12. Buchy, P., Ascioglu, S., Buisson, Y., Datta, S., Nissen, M., Tambyah, P. A., & Vong, S. (2020). Impact of vaccines on antimicrobial resistance. In International Journal of Infectious Diseases (Vol. 90). https://doi.org/10.1016/j.ijid.2019.10.005

13. Chandra, H., Bishnoi, P., Yadav, A., Patni, B., Mishra, A. P., & Nautiyal, A. R. (2017). Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials - A review. In Plants (Vol. 6, Issue 2). https://doi.org/10.3390/plants6020016

14. Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. In Journal of Molecular Evolution (Vol. 88, Issue 1). https://doi.org/10.1007/s00239-019-09914-3

15. Dadgostar, P. (2019). Antimicrobial resistance: implications and costs. In Infection and Drug Resistance (Vol. 12). https://doi.org/10.2147/IDR.S234610

16. Didier, K., Salomé, K., Joanne, B., Pierre, A., Fernand, G., Bénédicta, K.-K., Brice, S., Michel, F., & Joëlle, Q.-L. (2019). Chemical composition, in vitro antioxidant and antiparasitic properties of the essential oils of three plants used in traditional medicine in Benin. Journal of Medicinal Plants Research, 13(16). https://doi.org/10.5897/jmpr2019.6791

17. el Hajj, M., & Holst, L. (2020). Herbal Medicine Use During Pregnancy: A Review of the Literature with a Special Focus on Sub-Saharan Africa. In Frontiers in Pharmacology (Vol. 11). https://doi.org/10.3389/fphar.2020.00866

18. Esmael, A., Hassan, M. G., Amer, M. M., Abdelrahman, S., Hamed, A. M., Abd-raboh, H. A., & Foda, M. F. (2020). Antimicrobial activity of certain natural-based plant oils against the antibiotic-resistant acne bacteria. Saudi Journal of Biological Sciences, 27(1). https://doi.org/10.1016/j.sjbs.2019.11.006

19. Green, P. W. C., Belmain, S. R., Ndakidemi, P. A., Farrell, I. W., & Stevenson, P. C. (2017). Insecticidal activity of Tithonia diversifolia and Vernonia amygdaлина. Industrial Crops and Products, 110. https://doi.org/10.1016/j.indcrop.2017.08.021

20. Habtamu, A., & Melaku, Y. (2018). Antibacterial and Antioxidant Compounds from the Flower Extracts of Vernonia amygdaлина. Advances in Pharmacological Sciences, 2018. https://doi.org/10.1155/2018/4083736

21. Hamayun, M., Khan, S. A., Kim, H. Y., Chae, I. N., & Lee, I. J. (2006). Traditional knowledge and ex situ conservation of some threatened medicinal plants of Swat Kohistan, Pakistan. International Journal of Botany, 2(2). https://doi.org/10.3923/ijb.2006.205.209

22. Igbineduwa, P., Usifoh, C., & Ugwu, C. (2012). Phytochemical analysis and toxicological evaluation of the methanolic extract of Jatropha tanjorensis leaf. Journal of Pharmacy & Bioreources, 8(2). https://doi.org/10.4314/jpb.v8i2.4

23. Ijeh, I. I., & Ejike, C. E. C. C. (2011). Current perspectives on the medicinal potentials of Vernonia amygdaлина Del. In Journal of Medicinal Plants Research (Vol. 5, Issue 7).

24. Ileke Kayode, D., & Olabimi Isaac, O. (2019). Insecticidal Activities of Chromolaena odorata and Vernonia amygdaлина leaf extracts against Anopheles gambiae [Diptera: Culicidae]. International Journal of Tropical Diseases, 2(1). https://doi.org/10.23937/ijtd-2017/1710018

25. Izevbigie, E., Howard, C., & Lee, K. (2008). V. Amygdalina: Folk Medicine, Analysis, and Potential Application for Cancer Treatment. Current Pharmaceutical Analysis, 4(1). https://doi.org/10.2174/157341208783497579

26. James, P. B., Wardle, J., Steel, A., & Adams, J. (2018). Traditional, complementary and alternative medicine use in Sub-Saharan Africa: A systematic review. BMJ Global Health, 3(5). https://doi.org/10.1136/bmjgh-2018-000895

27. Jin, Z., Gao, L., Zhang, L., Liu, T., Yu, F., Zhang, Z., Guo, Q., & Wang, B. (2017). Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng. Natural Product Research, 31(22). https://doi.org/10.1080/14786419.2017.1292265

28. Johnson, M., Kolarowele, O. S., & Olufunmilayo, L. A. (2015). Phytochemical analysis, in vitro evaluation of the antioxidant and antimicrobial activity of methanolic leaf extract of Vernonia amygdaлина (bitter leaf) against Staphylococcus aureus and Pseudomonas aeruginosa. International Journal of Current Microbiology and Applied Sciences, 4(5).
29. Kamatenesi-Mugisha, M., Oryem-Origa, H., Odyek, O., & Makawiti, D. W. (2008). Medicinal plants used in the treatment of fungal and bacterial infections in and around Queen Elizabeth Biosphere Reserve, western Uganda. African Journal of Ecology, 46(SUPPL. 1). https://doi.org/10.1111/j.1365-2028.2008.00935.x

30. Kayanja, F. I. B. (2008). Biodiversity in inhabited areas of Eastern Africa. African Journal of Ecology, 46(1).

31. Kumar, G., Jalaluddin, M., Rout, P., Mohanty, R., & Dileep, C. L. (2013). Emerging trends of herbal care in dentistry. In Journal of Clinical and Diagnostic Research (Vol. 7, Issue 8). https://doi.org/10.7860/JCDR/2013/6339.3282

32. Lowy, F. D. (2003). Antimicrobial resistance: The example of Staphylococcus aureus. In Journal of Clinical Investigation (Vol. 111, Issue 9). https://doi.org/10.1172/JCI18535

33. Martin, K. W., & Ernst, E. (2003). Herbal medicines for the treatment of bacterial infections: A review of controlled clinical trials. In Journal of Antimicrobial Chemotherapy (Vol. 51, Issue 2). https://doi.org/10.1093/jac/dkg087

34. Mordeniz, C. (2019). Introductory Chapter: Traditional and Complementary Medicine. In Traditional and Complementary Medicine. https://doi.org/10.5772/intechopen.86373

35. Moreno, S., Scheyer, T., Romano, C. S., & Vojnov, A. A. (2006). Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radical Research, 40(2). https://doi.org/10.1080/10715760500473834

36. Mujeeb, F., Bajpai, P., & Pathak, N. (2014). Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of aeglemarmelos. BioMed Research International, 2014. https://doi.org/10.1155/2014/497606

37. Muthu, C., Ayyanar, M., Raja, N., & Ignacimuthu, S. (2006). Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu, India. Journal of Ethnobiology and Ethnomedicine, 2. https://doi.org/10.1186/1746-4269-2-43

38. Nahule, A. S., Karue, C. N., & Katunguka-Rwakishaya, E. (2011). Anthelmintic activity of Phytolacca dodecandra and Vernonia amygdalina leaf extracts in naturally infected small East African goats. Livestock Research for Rural Development, 23(12).

39. Nawab, A., Li, G., Nawab, Y., Zhao, Y., Xiao, M., Tang, S., & Sun, C. (2020). The Potential Effect of Dietary Tannins on Enteric Methane Emission and Ruminant Production, as an Alternative to Antibiotic Feed Additives-A Review. Annals of Animal Science, 20(2). https://doi.org/10.2478/aoas-2020-0005

40. Ndeyo, N. U. (2007). Assessing the contributions of homestead farming to food security in a developing economy: a case study of southeastern Nigeria. Journal of Agriculture and Social Sciences, 3(1).

41. Nenaah, G. (2013). Antimicrobial activity of Calotropis procera Ait. (Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents. World Journal of Microbiology and Biotechnology, 29(7). https://doi.org/10.1007/s11274-013-1288-2

42. Oboh, G. (2006). Nutritive value and haemolytic properties (in vitro) of the leaves of Vernonia amygdalina on human erythrocyte. Nutrition and Health, 18(2). https://doi.org/10.11177/2601060061800207

43. Okwuzi, J. O., Odeiga, P., Adetoroootubanjo, O., & Ezeki, O. C. (2017). Cytotoxicity testing of aqueous extract of bitter leaf (Vernonia amygdalina Del) and sniper 1000EC (2,3 dichlorovinyl dimethyl phosphate) using the Ailum cepa test. African Health Sciences, 17(1). https://doi.org/10.4314/ahs.v17i1.19

44. Oloruntobi, I., Ajayi, O., & Rufus, I. (2014). Anxiolytic, Sedative and Hypothermic Effects of Aqueous Leaf Extract of Vernonia amygdalina Del. (Asteraceae) in Albino Mice. British Journal of Pharmaceutical Research, 4(18). https://doi.org/10.9734/bjpr/2014/12529

45. Onabanjo, O. O., & Oguntona, C. R. B. (2003). Iron, zinc, copper, and phytate content of standardized Nigerian dishes. Journal of Food Composition and Analysis, 16(6). https://doi.org/10.1016/S0889-1575(03)00063-2

46. Owen, O. J., Amakiri, A. O., & Karibi-Botoye, T. A. (2011). Sugar-lowering effects of bitter leaf (Vernonia amygdalina) in experimental broiler finisher chickens. Asian Journal of Pharmaceutical and Clinical Research, 4(SUPPL. 1).

47. Oyeyemi, I. T., Akinladi, A. A., Adewumi, A., Aleshinloye, A. O., & Oyeyemi, O. T. (2018). Vernonia amygdalina: A folkloric herb with anthelmintich properties. Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 43–49. https://doi.org/10.1016/j.bjbas.2017.07.007

48. Salawu, S. O., Ogundare, A. O., & Ol-Salawu, B. B., & Akindahunsi, A. A. (2011). Antimicrobial activities of phenolic containing extracts of some tropical vegetables. African Journal of Pharmacy and Pharmacology, 5(4). https://doi.org/10.5897/AJPP10.317

49. Santos, S. A. O., Martins, C., Pereira, C., Silvestre, A. J. D., & Rocha, S. M. (2019). Current challenges and perspectives for the use of aqueous plant extracts in the management of bacterial infections: The case-study of
salmonella enterica serovars. In International Journal of Molecular Sciences (Vol. 20, Issue 4). https://doi.org/10.3390/ijms2004940

50. Septama, A. W., Simbak, N., & Rahmi, E. P. (2020). Prospect of plant-based flavonoids to overcome antibacterial resistance: A mini-review. In Walailak Journal of Science and Technology (Vol. 17, Issue 5). https://doi.org/10.48048/wjst.2020.5583

51. Setiawan, L. T. K., Nugraha, J., Tamayanti, W. D., & Utomo, D. H. (2018). The computational study reveals the immunomodulatory and antiviral effects of vernonia amygdalina extract. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 20(December).

52. Shin, J., Prabhakaran, V. S., & Kim, K. sun. (2018). The multi-faceted potential of plant-derived metabolites as antimicrobial agents against multidrug-resistant pathogens. In Microbial Pathogenesis (Vol. 116).

53. Shokunbi, O. S., Anionwu, O. A., Sonuga, O. S., & Tayo, G. O. (2011). Effect of post-harvest processing on the nutrient and anti-nutrient compositions of Vernonia amygdalina leaf. African Journal of Biotechnology, 10(53). https://doi.org/10.5897/ajb11.1532

54. Singh, A., Gautami, P. K., Verma, A., Singh, V., Shivapriya, P. M., Shivalkari, S., Sahoo, A. K., & Samanta, S. K. (2020). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnology Reports, 25. https://doi.org/10.1016/j.btre.2020.e00427

55. Srivastava, J., Chandra, H., Nautiyal, A. R., & Kalra, S. J. S. (2014). Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAMs) as an alternative drug line to control infections. In 3 Biotech (Vol. 4, Issue 5).

56. Steenkamp, V., Mathivha, E., Gouws, M. C., & van Rensburg, C. E. J. (2004). Studies on antibacterial, antioxidant, and fibroblast growth stimulation of wound healing remedies from South Africa. Journal of Ethnopharmacology, 95(2–3). https://doi.org/10.1016/j.jep.2004.08.020

57. Taneja, N., & Sharma, M. (2019). Antimicrobial resistance in the environment: The Indian scenario. In Indian Journal of Medical Research (Vol. 140, Issue 2). https://doi.org/10.4103/ijmr.IJMR_331_18

58. Tonukari, N. J., Avwioroko, O. J., Ezedom, T., & Anigboro, A. A. (2015). Effect of Preservation on Two Different Varieties of Vernonia amygdalina; Del. (Bitter) Leaves. Food and Nutrition Sciences, 06(07). https://doi.org/10.4236/fns.2015.67067

59. Tripathi, Y. C., & Pandey, A. K. (2017). Bioprospecting of Phytodiversity for New Therapeutic Products : Trends, Potential, and Challenges. Organic and Medicinal Chemistry International Journal, 2(1).

60. Uchechukwu Anastasia, U. N. (2011). The body calming and body vitalizing effects of Vernonia amygdalina leaf extract and leaf powder and their mechanisms. American Journal of Agricultural and Biological Science, 6(3). https://doi.org/10.3844/ajabssp.2011.429.432

61. Umaru, I. J., Badruddin, F. A., & Umaru, H. A. (2019). Phytochemical Screening of Essential Oils and Antioxidant Activity and Antioxidant Properties of Barringtonia asiatica (L) Leaf Extract. Biochemistry Research International, 2019. https://doi.org/10.1155/2019/7143989

62. Vidovic, N., & Vidovic, S. (2020). Antimicrobial resistance and food animals: Influence of livestock environment on the emergence and dissemination of antimicrobial resistance. In Antibiotics (Vol. 9, Issue 2). https://doi.org/10.3390/antibiotics9020052

63. Wang, Y. F., Que, H. F., Wang, Y. J., & Cui, X. J. (2014). Chinese herbal medicines for treating skin and soft-tissue infections. In Cochrane Database of Systematic Reviews (Vol. 2014, Issue 7). https://doi.org/10.1002/14651858.CD010619.pub2

64. WHO. (2014). Antimicrobial resistance. Global report on surveillance. World Health Organization, 61(3). https://doi.org/10.1007/s13312-014-0374-3

65. Yang, S. K., Low, L. Y., Yap, P. S. X., Yusoff, K., Mai, C. W., Lai, K. S., & Lim, S. H. E. (2018). Plant-derived antimicrobials: Insights into mitigation of antimicrobial resistance. In Records of Natural Products (Vol. 12, Issue 4). https://doi.org/10.25135/rnp.41.17.09.058

66. Yedjou, C. G., Tchounwou, P. B., Miele, L., Ogungbe, I. v., Brown, R. J., & Payton, M. (2015). Abstract 5313: The anticancer effect of Vernonia amygdalina in the MMTV-PyVT transgenic mouse model. https://doi.org/10.1158/1538-7445.am2015-5313.