Effect of por-SiC buffer layer on the parameters of thin \(\text{Er}_2\text{O}_3 \) layers on silicon carbide substrates

Yu Yu Bacherikov\(^1\), R V Konakova\(^1\), O B Okhrimenko\(^1\), N I Berezovska\(^2\), L M Kapitanchuk\(^3\), A M Svetlichnyi\(^4\), LA Svetlichnaya\(^4\)

\(^1\) Kyiv, 03028, Ukraine, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
\(^2\) Kyiv, 01601, Ukraine, Faculty of Physics, Taras Shevchenko National University of Kyiv
\(^3\) Kyiv, 03680, Ukraine, Paton Institute of Electric Welding, National Academy of Sciences of Ukraine,
\(^4\) Taganrog, 347928, Russia, Institute of Nanotechnologies, Electronics, and Electronic Equipment Engineering, Southern Federal University

E-mail: olga@isp.kiev.ua

Abstract. Using optical absorption and Auger spectrometry techniques, we studied the effect of rapid thermal annealing (RTA) on the properties of erbium oxide films deposited onto a porous silicon carbide buffer layer formed on 4H-SiC substrates. An analysis of atomic composition of the films under investigation as a function of RTA duration was performed. It is shown that phase composition of erbium oxide films on silicon carbide substrates with a porous SiC layer can be changed by varying RTA duration.

1. Introduction

High thermal stability, big values of permittivity and relative simplicity of growing process for films of a number of rare earths oxides make them promising for preparation of isolating layers in microelectronic circuits. So development of high-quality stable dielectric layers (in particular, those based on erbium and dysprosium oxides) makes an up-to-date problem in silicon carbide-based high-temperature electronics.

It is known that, in the course of further high-temperature technological process, structural defects of a semiconductor substrate penetrate a thin film growing on that substrate. This can substantially impair the device characteristics. One of the ways for reduction of the above effect is formation of a porous interlayer between the substrate and epitaxial layer [1, 2]. To illustrate, layers of porous silicon carbide (por-SiC) are used to decrease defect concentration at the porous layer-epitaxial film interface in composite structures [2-6], and porous InP and GaAs layers are applied to obtain quite unstrained autoepitaxial films on them [7, 8].

The object of the present work is investigation of the features of formation of 4H-SiC/por-SiC/Er\(_2\)O\(_3\) structure in which por-SiC serves as a buffer layer between Er\(_2\)O\(_3\) film and silicon carbide substrate.

* Corresponding author.
2. Samples and measurement techniques
As a first step in obtaining SiC/por-SiC/Er$_2$O$_3$ structure, we formed a por-SiC layer on the silicon carbide substrate. Porous surface of silicon carbide was obtained using electrochemical etching in the HF:C$_2$H$_5$OH = 1:1 solution for 10 min.; the current density was 10 mA/cm2. After this, before deposition of rare-earth element, pore opening was made in KOH melt at a temperature of 550$^\circ$C. Formation of Er$_2$O$_3$ film was performed in several technological steps. Firstly an erbium film was deposited onto the por-SiC surface with thermal spraying. Then the specimens were annealed in the vacuum at a temperature of 800$^\circ$C for 8 min. After this the specimens were subjected to rapid thermal annealing (RTA) at 400$^\circ$C for 1, 3 and 5 s.

An analysis of atomic composition of the structures under investigation was made using the Auger electron spectroscopy technique at layer-by-layer etching of the specimens by 1 keV argon ions. The specimens were studied using an instrument system LAS-2000 (Riber, France) with a cylindrical mirror spectrometer. The transmission spectra were registered with a ДФС-24 spectrometer at room temperature.

3. Results and discussion
Earlier [9-10] we considered the features of erbium oxide formation on crystalline 6H-SiC substrates by RTA at 350$^\circ$C for 1, 3 and 5 s. It was found [9-10] that a thin (~100-150 nm) Er$_2$O$_3$ layer is formed on the 6H-SiC substrate in the course of RTA. An increase of RTA duration leads to increase of layer thickness and promotes formation of stoichiometric erbium oxide. The specimen surface was investigated with a scanning electron microscope (SEM) S-4800 (Hitachi, Japan).

Figure 1 presents a SEM image of porous surface. One can see that diameter of pores in the buffer por-SiC layer is ~30 nm.

Figure 1. SEM image of porous surface.
Shown in Fig. 2 are SEM images of Er$_2$O$_3$ films subjected to RTA for 1 and 5 s. One can see from Fig. 2a that, at RTA duration of 1 s, the erbium oxide film is of island type. The characteristic island sizes lie within 110-500 nm. As RTA duration is increased, the film structure becomes more uniform (Fig. 2b).

Figure 2. SEM images of erbium oxide film surface. RTA duration: a – 1 s, b - 5 s

Figure 3 presents elemental composition of the SiC/por-SiC/Er$_2$O$_3$ structures. An analysis of the elemental concentration depth profiles in those structures obtained with Auger electron spectroscopy showed that the oxide film composition is approaching to stoichiometric one ($N_O/N_{Er} \approx 1.6–1.7$) as RTA duration increases. The oxide film thickness was 80-100 nm.
Shown in Fig. 4 are optical transmission spectra for the SiC/por-SiC/Er$_2$O$_3$ structures. One can see that for those structures (as well as for the 6H-SiC/Er$_2$O$_3$ structures [9]) increase of RTA duration results in growth of transmission in the 400-800 nm spectral range. This effect is due to increase of the part of erbium oxide film of stoichiometric composition relative to sub-oxidized metal layer, which is supported by the results of Auger electron spectroscopy.

Figure 4. Optical transmission spectra of the SiC/por-SiC/Er$_2$O$_3$ structures. RTA duration: a - 1 s, b - 5 s.
4. Conclusions
So the experimental results obtained by us show that application of RTA makes it possible to form thin layers of stoichiometric erbium oxide on the surface of por-SiC. As RTA duration grows, a clearer por-SiC/Er₂O₃ interface is formed.

References:

[1] Mynbaeva M G, Lavrent’ev A A, Kuznetsov N I, Kuznetsov A N, Mynbaev K D, Lebedev A A 2003 *Semiconductors* **37** 594

[2] Savkina N S, Ratnikov V V, Rogachev A Yu, Shuman V B, Tregubova A S, Volkova A A 2002 *Semiconductors* **36** 758

[3] Sorokin L M, Savkina N S, Shuman V B, Lebedev A A, Mosina G N, Hutchison G 2002 *Technical Physics Letters* **28** 935

[4] Polupan G, Torchynska T V 2010 *Thin Solid Films* **518** S208

[5] Torchynska T V, Díaz Cano A, Dybic M, Ostapenko S, Mynbaeva M 2006 *Physica B* **376–377** 367

[6] Ashutosh Sagar, Feenstra R M, Inoki C K, Kuan T S, Koleske D D 2004 *Published in Mat. Res. Soc. Symp. Proc.* **798**, Y9.6.1.

[7] Sitnikova A A, Bobyl A V, Konnikov S G, Ulin V P 2005 *Semiconductors* **39** 523

[8] Sedova I V, L’vova T V, Ulin V P, Sorokin S V, Ankudinov A V, Berkovits V L, Ivanov S V, Kopyev P S 2002 *Semiconductors* **36** 54

[9] Bacherikov Yu Yu, Dmitruk N L, Konakova R V, Kondratenko O S, Ltvyn O S, Milenin V V, Okhrimenko O B, Kapitanchuk L M, Svetlichnyi A M, Polyakov V V, Shelcunov A A 2007 *Technical Physics* **52** 253