An approximate height growth and site index model for *Quercus sideroxyla* Bonpl. in mixed-species stands of Durango, Mexico

Un modelo aproximado de crecimiento en altura e índice de sitio para *Quercus sideroxyla* Bonpl. en rodales mezclados de Durango, México

Gerónimo Quiñonez-Barraza\(^1\); Dehai Zhao\(^2\); Héctor M. de los Santos-Posadas\(^3\); José J. Corral-Rivas\(^4\)

\(^1\)Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Campo Experimental Valle del Guadiana. Carretera Durango-Mezquital km 4.5. C. P. 34170. Durango, Durango, México.
\(^2\)The University of Georgia, Warnell School of Forestry & Natural Resources. Georgia, 30606, USA.
\(^3\)Colegio de Postgraduados, Postgrado en Ciencias Forestales. C. P. 56230. Montecillo, Texcoco, Estado de México, México.
\(^4\)Universidad Juárez del Estado de Durango, Facultad de Ciencias Forestales. Río Papaloapan, Valle del Sur. C. P. 34120. Durango, Dgo., México.

*Corresponding author: quinonez.geronimo@inifap.gob.mx; tel.: +52 618 158 7865.

Abstract

Introduction: Predictions of dominant or co-dominant height are an important element in planning forest management with timber production objectives.

Objective: To develop dominant height growth and site index (SI) equations for *Quercus sideroxyla* Bonpl.

Materials and methods: The height current annual increment model was fitted, and the age of the sections was estimated from a database of 29 stem-mapped plots. A taper analysis data of 37 trees was also used to reconstruct dominant height growth trajectories. Three equations based on algebraic difference approach (ADA; one anamorphic and two polymorphic) and an equation based on generalized algebraic difference approach (GADA) were used to simultaneously model the dominant height and SI.

Results and discussion: The ADA polymorphic equations were statistically better than the anamorphic equation, according to the adjusted coefficient of determination, root mean square error, mean bias, Akaike’s information criterion and log-likelihood; however, the GADA equation was better than the ADA equations. The growth curves were biologically realistic and showed SI classes at a base age of 60 years.

Conclusions: The developed equations can be used for decision making in forest management when *Q. sideroxyla* shows dominance over *Pinus* species and the main objective is timber production.

Keywords: growth model; dominant height; generalized algebraic difference approach; current annual increment; height growth trajectories.

Palabras clave: modelo de crecimiento; altura dominante; diferencia algebraica generalizada; incremento corriente anual; trayectorias de crecimiento.

Please cite this article as follows (APA 6): Quiñonez-Barraza, G., Zhao, D., Santos-Posadas, H. M., & Corral-Rivas, J. J. (2020). An approximate height growth and site index model for *Quercus sideroxyla* Bonpl. in mixed-species stands of Durango, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 26(1), 53-69. doi: 10.5154/r.rchscfa.2019.03.025
Introduction

Forest management planning is based on growth and yield systems for estimating and projecting forest species development, which considers assumptions and restrictions to estimate the wood supply through forest management systems (Sharma & Reid, 2018). In Mexico, forest management is immersed in several contexts as ecological, socio-cultural, political, economic, technological and silvicultural. These aspects have taken the use of the forest with different purposes and schemes of management. The diversity of these aspects in which forest areas are immersed has given rise to strategies and methods for the forest resources management (Torres-Rojo, Moreno-Sánchez, & Mendoza-Briseño, 2016).

The forest management is based on two main methods or systems: (1) rotational forest management (RFM) characterized by practicing standard silvicultural treatments (three or four thinning) and repetitive short cycles of regeneration followed by natural regeneration or planting; and (2) continuous cover forestry (CFC) including selection cutting and natural regeneration (Pukkala & Gadow, 2011). In Mexico, RFM and CFC methods are called the Method for Silvicultural Development (MSD) and the Mexican Method of Irregular Forest Regulation (MMIFR), respectively (Torres-Rojo et al., 2016).

Growth and yield of mixed-species stands has become an important issue in forestry research because they provide functions and services to society. An important component in the modeling of growth and yield is the assessment of site quality potential of forests and stands (Allen & Burkhart, 2015; del Río et al., 2016). Quantification and prediction of stand productivity is a key question of forest research, with obvious implications for management and planning. Site productivity describes a highly complex genetic trait with several interconnected physiological and biochemical processes that are modified by natural aspects and silvicultural treatments (Sharma, Subedi, Ter-Mikaelian, & Parton, 2015; Yue, Kahle, von Wilpert, & Kohnle, 2016). These aspects reflect the inherent characteristics for specific site such as soil and climate that are directly related to forest productivity (Antón-Fernández, Mola-Yudego, Dalsgaard, & Astrup, 2016).

The estimation of forest productivity is relevant for forest management and ecological studies in terms of accurate assessments of site conditions (Seki & Sakici, 2017), such estimation is the baseline for planning silvicultural treatments (Sharma & Parton, 2018). With the development of technology, numerical calculation techniques, and increased information on height growth processes, site index (SI) modeling has become a topic of interest in forestry research (Sharma & Parton, 2018). These aspects reflect the inherent characteristics for specific site such as soil and climate that are directly related to forest productivity. Growth and yield processes, site index (SI) modeling, and other aspects have taken the use of the forest with different purposes and schemes of management. The diversity of these aspects in which forest areas are immersed has given rise to strategies and methods for the forest resources management (Torres-Rojo, Moreno-Sánchez, & Mendoza-Briseño, 2016).

Introducción

La planeación del manejo forestal se basa en sistemas de crecimiento y rendimiento para estimar y proyectar el desarrollo de especies forestales, la cual considera supuestos y restricciones en el suministro de madera a través de métodos de manejo forestal (Sharma & Reid, 2018). En México, el manejo forestal está inmerso en contextos ecológicos, socioculturales, políticos, económicos, tecnológicos y silviculturales que han propiciado el uso del bosque con varios propósitos y esquemas de administración y manejo. La diversidad de estos aspectos en los cuales las áreas forestales están inmersas ha dado lugar a estrategias y métodos para el manejo de los recursos forestales (Torres-Rojo, Moreno-Sánchez, & Mendoza-Briseño, 2016).

El manejo forestal se basa en dos métodos o sistemas principales: (1) manejo forestal de rotación (MFR) que se caracteriza por practicar tratamientos silvícolas estándar (tres o cuatro aclareos) y ciclos repetitivos de cortas de regeneración, seguido por regeneración natural o plantación; y (2) método de cubierta forestal continua (CFC) que incluye cortas de selección y regeneración natural (Pukkala & Gadow, 2011). En México, los métodos MFR y CFC son llamados método de desarrollo silvícola (MDS) y método mexicano de ordenación de bosques irregulares (MMOBI), respectivamente (Torres-Rojo et al., 2016).

El crecimiento y rendimiento de rodales mezclados se ha convertido en un tema importante en la investigación forestal, debido a que proveen funciones y servicios a la sociedad. Un componente importante en la modelación del crecimiento y rendimiento es la evaluación del potencial de la calidad de sitio de bosques y rodales (Allen & Burkhart, 2015; del Río et al., 2016). La cuantificación y predicción de la productividad de rodales son aspectos clave en la investigación forestal, con implicaciones evidentes en el manejo y planeación. La productividad del sitio describe un rasgo genético altamente complejo con varios procesos fisiológicos y bioquímicos interconectados, que son modificados por aspectos naturales y tratamientos silvícolas (Sharma, Subedi, Ter-Mikaelian, & Parton, 2015; Yue, Kahle, von Wilpert, & Kohnle, 2016). Estos aspectos reflejan las características inherentes del sitio como el suelo y el clima que están directamente relacionados con la productividad forestal (Antón-Fernández, Mola-Yudego, Dalsgaard, & Astrup, 2016).

La estimación de la productividad forestal es relevante para el manejo forestal y estudios ecológicos en términos de evaluaciones precisas de las condiciones del sitio (Seki & Sakici, 2017), tal estimación es la línea base para la planeación de los tratamientos silvícolas (Sharma & Parton, 2018). Con el desarrollo de la tecnología, técnicas de cálculo numérico e incremento
Silvicultural treatments influence growth and development of stands and forests after harvest, and height growth models are necessary to reflect a range of potential outcomes for specific site qualities (Costa, Calegario, Araújo, Pereira, & García, 2018; Sharma & Parton, 2018). Common methods for modeling dominant height growth and SI are based on the algebraic difference approach (ADA) and the generalized algebraic difference approach (GADA). In the first case, a growth model can be fitted to estimate parameters and then one of these is assumed to be dependent on SI to generate anamorphic and polymorphic growth curves. These equations have the capacity to represent invariant base age models and invariant path simulation (Bailey & Clutter, 1974). GADA equations can be used to derive truly invariant base age equations. These equations have the ability to describe concurrent polymorphism and variable asymptotes, which is an important property in SI equations that should be considered in the modeling of individual trees trends growth (Cieszkewski & Bailey, 2000).

Most of the forests in Durango, Mexico, are dominated by uneven-aged and mixed-species stands with species of the Pinus, Quercus, Juniperus and Arbutus genus, but forest management focuses mainly on Pinus and Quercus (Quiñonez-Barraza, Zhao, De los Santos Posadas, & de la información sobre procesos de crecimiento en altura, la modelación del índice de sitio (IS) se ha convertido en un tema de interés en la investigación forestal (Seki & Sakici, 2017). Esta es una característica importante para el manejo forestal y la modelación del crecimiento, especialmente, con respecto a los cambios ambientales en curso (Yue, Mäkinen, Klädtke, & Kohnle, 2014). El IS es el valor de la altura dominante a una edad de referencia (Clutter, Fortson, Pienaar, Brister, & Bailey, 1983), puede incluir la altura promedio de árboles dominantes o codominantes a una edad base y es usado extensivamente para estimar la productividad de especies comerciales (Sharma & Reid, 2018). El IS es la medida más común de la productividad forestal y la más usada en la investigación forestal; además, es utilizada como la línea base para niveles de planeación forestal y la formulación de estrategias silviculturales (David et al., 2015; Watt, Dash, Bhandari, & Watt, 2015). Este método ha sido el más popular para evaluar la productividad en rodales mezclados de México (Quiñonez-Barraza et al., 2015; Vargas-Larreta et al., 2017). El IS, generalmente, se determina tomando mediciones de campo y, típicamente, se estima a partir de mediciones de altura dentro de la parcela o a nivel rodal (Watt et al., 2015). Las curvas de IS son desarrolladas a partir de una de las tres fuentes de datos siguientes: (1) parcelas permanentes de muestreo, (2) parcelas de medición temporal y (3) datos de análisis troncales. Allen y Burkhart (2015) consideran que las parcelas permanentes de muestreo son la mejor fuente de datos para modelar la relación altura-edad; sin embargo, debido a las restricciones de tiempo y costos, los datos provenientes de parcelas temporales de muestreo y de análisis troncales son adecuados para el ajuste de ecuaciones de crecimiento en altura dominante.

Los tratamientos silvícolas influyen en el crecimiento y desarrollo de rodales y bosques después de la cosecha, y los modelos de crecimiento en altura son necesarios para reflejar un rango de resultados potenciales para calidades de estación específicas (Costa, Calegario, Araújo, Pereira, & García, 2018; Sharma & Parton, 2018). Los métodos comunes para modelar el crecimiento en altura dominante e IS se basan en el enfoque de diferencias algebraicas (ADA) y la versión generalizada (GADA). En el primer caso, un modelo de crecimiento puede ser ajustado para estimar los parámetros y después uno de estos se asume dependiente del IS para generar curvas de crecimiento anamórficas y polimórficas. Este tipo de ecuaciones tienen la capacidad de representar modelos invariantes de la edad base y del camino de simulación (Bailey & Clutter, 1974). Las ecuaciones GADA pueden ser usadas para derivar ecuaciones realmente invariantes de la edad base. Estas ecuaciones tienen la capacidad de describir polimorfismo y asintotas variables concurrentemente,
Corral-Rivas, 2018). Main productivity studies in mixed-species stands have focused on the genus *Pinus*, because its species are the most important in terms of timber production (Quiñonez-Barraza et al., 2015). *Quercus* species play an important role in natural, ecological and timber production dynamics of mixed-species forests, so the study of this genus is also desirable. The objectives of the study were to develop mean annual increment and current annual increment models for *Quercus sideroxyla* Bonpl.; to build height growth trajectories from a taper data with the estimated age at upper heights in each tree; and to fit three ADA and one GADA equation to the height growth trajectories and generate site index curves.

Materials and methods

Study area

Data was generated in mixed-species stands of the polygon called “Ejido San Diego de Tezains” (24° 48’ 16.98” - 25° 13’ 47.25” N and 105° 53’ 9.81” - 106° 12’ 52.58” W) in Durango, Mexico (Figure 1). Predominant climates are temperate, warm humid and temperate sub-humid climate, with an average annual rainfall of 840 mm. The average annual temperature ranges from 8 to 24 °C (García, 2004; Quiñonez-Barraza et al., 2019). The total area of the polygon is 62 802 ha, of which 26 038 ha are for timber production. Mixed-species stands are represented by species of the genus *Pinus*, *Quercus*, *Juniperus*, *Cupressus*, *Pseudotsuga*, *Arbutus* and *Alnus* (Quiñonez-Barraza et al., 2018). This study was conducted in mixed-species stands where *Q. sideroxyla* is dominant over species of the genus *Pinus*.

Description of the data

The database to fit the approximate model of dominant height and SI considered two sources of information. The first was based on 29 stem-mapped measurement sampling plots established in 2008 with a symmetrical grid of 3 km × 3 km that were remeasured in 2013 (Figure 1). Each 50 m × 50 m rectangular plot was divided into four 25 m × 25 m quadrants. The heights of all *Q. sideroxyla* trees were considered in the stem-mapped measurement and remeasurement plots. The second source of information included the taper analysis of 37 trees (Figure 1). In the taper analysis, each tree was cut, and four measurements were taken before the section of the diameter at breast height at 1.3 m. Subsequently, heights and diameters were measured every 2 m, and the last measurement was taken before the total height of each tree to estimate the age of the commercial height-diameter relationship (Quiñonez-Barraza et al., 2019). The variables for the two sources of information are summarized in Table 1.
Figure 1. Study and location area of stem-mapped remeasured plots and sampled trees for taper analysis in Durango, Mexico.

Figura 1. Área de estudio y localización de las parcelas de remediación y árboles muestreados para el análisis de ahusamiento en Durango, México.

Table 1. Descriptive statistics of databases used in the adjustment of equations of increment and height growth of *Quercus sideroxyla*.

Base	Variable	n	Minimum / Mínimo	Maximum / Máximo	Average / Promedio	SD / DE
1	dbh1 (cm)	425	5.41	71.50	18.12	12.92
	dbh2 (cm)	425	7.40	73.30	19.64	13.17
	H1 (m)	425	1.35	21.80	7.94	3.87
	H2 (m)	425	2.40	25.70	9.81	4.03
	dbhInc5 (cm)	425	0.40	5.50	1.52	0.81
	HInc5 (m)	425	1.00	4.00	1.87	0.72
2	H (m)	37	6.60	23.00	12.39	4.30
	dbh (cm)	37	12.00	52.00	28.05	11.07
	d (cm)	485	0.00	67.00	21.39	12.66
	h (m)	485	0.07	23.00	5.87	4.93
	EA (years) / (años)	485	1.00	88.00	25.49	18.18

dbh1 = diameter at breast height measured in 2008; dbh2 = diameter at breast height measured in 2013; H1 = total height measurement in 2008; H2 = total height remeasured in 2013; dbhInc5 = in diameter at breast height increment in five years; HInc5 = height increment in in five years; H = total height; d = diameter at upper height h; h = upper diameter at height d; EA = estimated age for a specific upper height in the taper analysis data; n = number of observations; SD = standard deviation.

dbh1 = diámetro normal medido en 2008; dbh2 = diámetro normal remediado en 2013; H1 = altura total medida en 2008; H2 = altura total remediada en 2013; dbhInc5 = incremento en diámetro normal en cinco años; HInc5 = incremento en altura en cinco años; H = altura total; d = diámetro a la altura comercial h; h = altura comercial al diámetro d; EA = edad estimada para una altura comercial específica en la base de datos de análisis de ahusamiento; n = número de observaciones; DE = desviación estándar de la media.
Model age derivation

Tree age is a critical factor in ecology and forestry studies (Fraver, Bradford, & Palik, 2011). Accurate age estimation is a methodological constraint on plant population dynamics and is difficult to measure in the absence of growth sections or growth cores (Rozas, 2003). Due to this condition, in the taper analysis of Q. sideroxyla, the database did not consider the number of growth rings in each cutting section, because they are difficult to differentiate in this species. Therefore, the number of rings or age in the cross section of the diameter at breast height (1.3 m) was estimated for upper heights in the taper analysis data. An average increment model based on the measurement (2008) and remeasurement (2013) of the 29 stem-mapped plots was developed to evaluate the annual increment in height. The model considered the five-year mean annual increment (MAI) and the mathematical formula was proposed to fit the current annual increment (CAI) in height (equation 1).

\[
\begin{align*}
CAI_{ij} &= \beta_0 + \beta_1(h_{ij} - h_{ij0})^2 + \epsilon_{ij} \\
&= \text{current annual increment in height (m-year)}^{-1}
\end{align*}
\]

where,

\[
\begin{align*}
CAI_{ij} &= \text{current annual increment in height (m-year)}^{-1} \quad \text{of the } j^{th} \text{ tree of the } i^{th} \text{ plot} \\
MAI &= \text{average annual increment (m-year)}^{-1} \text{ of the } i^{th} \text{ plot} \\
ICA_{ij} &= \text{incremental change in height (m-year)}^{-1} \text{ of the } j^{th} \text{ tree in the } i^{th} \text{ plot} \\
IMA &= \text{incremental change in height (m-year)}^{-1} \text{ of the } i^{th} \text{ plot} \\
\end{align*}
\]

The number of years between two pairs of upper heights at upper diameters based on taper analysis was estimated with the following equation:

\[
\begin{align*}
NA_{jk} &= \frac{h_{jk} - h_{jk0}}{\hat{\beta}_0 + \hat{\beta}_1(h_{jk} - h_{jk0})^2} \\
&= \text{number of rings or year of the } k^{th} \text{ height measured in the } j^{th} \text{ tree} \\
&= \text{measurement of the } k^{th} \text{ upper height in the } j^{th} \text{ tree} \\
&= \text{measurement of the } k^{th} \text{ upper height in the } j^{th} \text{ tree at the previous time } t (t - 1).
\end{align*}
\]

The growth trajectories in the taper data were constructed with the estimated age for each upper height of each tree. Partial or total age was estimated by NA accumulation and was determined by equation 3, where EA is the estimated age for kth upper height in the jth tree.

\[
\begin{align*}
EA_{jk} &= \frac{h_{jk} - h_{jk0}}{\hat{\beta}_0 + \hat{\beta}_1(h_{jk} - h_{jk0})^2} \\
&= \text{measurement of the } k^{th} \text{ upper height in the } j^{th} \text{ tree} \\
&= \text{measurement of the } k^{th} \text{ upper height in the } j^{th} \text{ tree at the previous time } t (t - 1).
\end{align*}
\]

Derivación del modelo

La edad de los árboles es un factor crítico en estudios de ecología y silvicultura (Fraver, Bradford, & Palik, 2011). La estimación precisa de la edad es una restricción metodológica en la dinámica de poblaciones de plantas y es difícil de medir en ausencia de secciones o virutas de crecimiento (Rozas, 2003). Debido a esta condición, en el análisis de ahusamiento de Q. sideroxyla, la base de datos no consideró el número de anillos de crecimiento en cada sección de corte, debido a que son difíciles de diferenciar en esta especie. Por lo anterior, el número de anillos o la edad en la sección transversal del diámetro normal (1.3 m) se estimó para las alturas comerciales en los datos de análisis de ahusamiento. Un modelo de incremento promedio basado en la medición (2008) y remedición (2013) de las 29 parcelas de muestreo fue desarrollado para evaluar el incremento anual en altura. El modelo consideró el incremento medio anual (IMA) de cinco años y la fórmula matemática fue propuesta para ajustar el incremento corriente anual (ICA) en altura (ecuación 1).

\[
\begin{align*}
ICA_{ij} &= \beta_0 + \beta_1(h_{ij} - h_{ij0})^2 + \epsilon_{ij} \\
&= \text{incremental change in height (m-year)}^{-1} \text{ of the } j^{th} \text{ árbol in the } i^{th} \text{ parcela} \\
&= \text{altura (m) medida en el } j^{th} \text{ árbol en la } i^{th} \text{ parcela} \\
IMA &= \text{incremental change in height (m-year)}^{-1} \text{ of the } i^{th} \text{ parcela en el tiempo } t (t + a); \text{ en este caso } a = 5 \text{ años} \\
IMA &= \text{altura (m) medida en el } j^{th} \text{ árbol de la } i^{th} \text{ parcela en el tiempo } t \\
&= \text{error del } j^{th} \text{ árbol en la } i^{th} \text{ parcela} \\
&= \text{parámetros a ser estimados.}
\end{align*}
\]

El número de años entre dos pares de alturas comerciales a diámetros variables en la base de análisis de ahusamiento se estimó con la ecuación siguiente:

\[
\begin{align*}
NA_{jk} &= \frac{h_{jk} - h_{jk0}}{\hat{\beta}_0 + \hat{\beta}_1(h_{jk} - h_{jk0})^2} \\
&= \text{number of rings or year of the } k^{th} \text{ height measured in the } j^{th} \text{ tree} \\
&= \text{measurement of the } k^{th} \text{ upper height in the } j^{th} \text{ tree} \\
&= \text{measurement of the } k^{th} \text{ upper height in the } j^{th} \text{ tree at the previous time } t (t - 1).
\end{align*}
\]
With reconstructed measurements of age in taper data, approximate equations of dominant height growth and SI were developed. Three ADA equations (Bailey & Clutter, 1974) based on the Chapman-Richards growth function (Richards, 1959) and the GADA equation (Cieszewski & Bailey, 2000) reported by Quiñonez-Barraza et al. (2015) were used to fit the dominant height growth and SI. The first ADA equation assumes variable maximum potentiality with constant growth rates (anamorphic form) and the other two ADA equations assume variable growth rates and common asymptote (polymorphic form), while the GADA equation assumes complex polymorphism. All equations were based on equation 4; ADA and GADA equations are represented by equations 5 to 8.

\[H_j = \alpha_1 (1 - e^{-\alpha_2 t}) + \alpha_3 + \varepsilon_k \]

where,

\[H_j = k^j \text{ height in the } j^{th} \text{ tree} \]
\[t_k = k^j \text{ estimated age in the } j^{th} \text{ tree} \]
\[\alpha_1 = \text{ parameter of the upper asymptote} \]
\[\alpha_2 = \text{ growth rate parameter} \]
\[\alpha_3 = \text{ exchange rate parameter} \]

\[H_{d(k,j,k_2)} = H_{d(k,j,k_1)} \left(1 - \frac{e^{-\alpha_2 j k_2}}{1 - e^{-\alpha_2 j k_1}} \right) + \varepsilon_k \]

\[H_{d(k,j,k_2)} = \beta_1 \left(1 - \left(\frac{H_{d(k,j,k_1)}}{\beta_1} \right)^{\frac{1}{\beta_2}} \right) + \varepsilon_k \]

\[H_{d(k,j,k_2)} = \beta_1 \left(\frac{\ln(1 - e^{-\alpha_2 j k_2})}{\ln(1 - e^{-\alpha_2 j k_1})} \right)^{\beta_2} + \varepsilon_k \]

where,

\[H_{d(k,j,k_2)} = \text{ dominant height of the } k^j \text{ measurement in the } j^{th} \text{ tree in stage 2} \]
\[H_{d(k,j,k_1)} = \text{ dominant height of the } k^j \text{ measurement in the } j^{th} \text{ tree in stage 1} \]
\[E_{A_{k,j}} \text{ and } E_{A_{k_2,j}} = \text{ estimated age of the } k^j \text{ measurement of the upper height in the } j^{th} \text{ trees in stage 1 and 2 in an overlapping database} \]
\[\beta_1 (1, 2, 3) = \text{ parameters to be estimated, which were reformulated from the base model for each equation.} \]

The approximate SI models for each ADA (equations 5 to 7) and GADA equation (equation 8) represent the change of \(H_{d(k,j,k_2)} \) by SI, \(H_{d(k,j,k_1)} \) by the dominant height, \(E_{A_{k,j}} \) by the age or estimated age for the dominant height of a tree, and \(y \ E_{A_{k,j}} \) by the base age (Ab) or reference age.

\[E_{A_{k,j}} = \frac{E_{A_{k,j}}}{E_{A_{j+1}}} + NA_{k,j} \]

where, \(NA_{k,j} = \text{número de anillos o años de la } k^j \text{ medición de altura en el } j^{th} \text{ árbol} \)
\(h_{E_{k,j}} = \text{medida de la } k^j \text{ altura variable en el } j^{th} \text{ árbol, en el tiempo } t \) (es desconocido)
\(h_{E_{k,j+1}} = \text{medida de la } k^j \text{ altura variable en el } j^{th} \text{ árbol al tiempo anterior } t (t - 1) \).

Las trayectorias de crecimiento en los datos de ahusamiento se construyeron con la edad estimada para cada altura variable de cada árbol. La edad parcial o total se estimó por la acumulación de NA y fue determinada con la ecuación 3, donde \(EE_{k,j} \) es la edad estimada para la \(k^j \text{ altura variable en el } j^{th} \text{ árbol}. \)

\[EE_{k,j} = EE_{k,j+1} + NA_{k,j} \]

Con las mediciones reconstruidas de la edad en los datos de ahusamiento, se desarrollaron ecuaciones aproximadas de crecimiento en altura dominante e IS. Tres ecuaciones ADA (Bailey & Clutter, 1974) basadas en la función de crecimiento de Chapman-Richards (Richards, 1959) y la ecuación GADA (Cieszewski & Bailey, 2000) reportada por Quiñonez-Barraza et al. (2015) se usaron para ajustar el crecimiento en altura dominante e IS. La primera ecuación ADA asume potencialidad máxima variable con tasas de crecimiento constantes (forma anamórfica) y las otras dos ecuaciones ADA suponen tasas de crecimiento variables y asintota común (forma polimórfica), mientras que la ecuación GADA asume polimorfismo complejo. Todas las ecuaciones se basaron en la ecuación 4; las ecuaciones ADA y GADA son representadas por las ecuaciones 5 a 8.

\[H_j = \alpha_1 (1 - e^{-\alpha_2 t}) + \alpha_3 + \varepsilon_k \]

donde,

\(NA_{k,j} = \text{número de anillos o años de la } k^j \text{ medición de altura en el } j^{th} \text{ árbol} \)
\(h_{E_{k,j}} = \text{medida de la } k^j \text{ altura variable en el } j^{th} \text{ árbol, en el tiempo } t \) (es desconocido)
\(h_{E_{k,j+1}} = \text{medida de la } k^j \text{ altura variable en el } j^{th} \text{ árbol al tiempo anterior } t (t - 1) \).

\[H_{d(k,j,k_2)} = H_{d(k,j,k_1)} \left(1 - \frac{e^{-\alpha_2 j k_2}}{1 - e^{-\alpha_2 j k_1}} \right) + \varepsilon_k \]

\[H_{d(k,j,k_2)} = \beta_1 \left(1 - \left(\frac{H_{d(k,j,k_1)}}{\beta_1} \right)^{\frac{1}{\beta_2}} \right) + \varepsilon_k \]

\[H_{d(k,j,k_2)} = \beta_1 \left(\frac{\ln(1 - e^{-\alpha_2 j k_2})}{\ln(1 - e^{-\alpha_2 j k_1})} \right)^{\beta_2} + \varepsilon_k \]

where,

\[H_{d(k,j,k_2)} = \text{dominant height of the } k^j \text{ measurement in the } j^{th} \text{ tree in stage 2} \]
\[H_{d(k,j,k_1)} = \text{dominant height of the } k^j \text{ measurement in the } j^{th} \text{ tree in stage 1} \]
\[E_{A_{k,j}} \text{ and } E_{A_{k_2,j}} = \text{estimated age of the } k^j \text{ measurement of the upper height in the } j^{th} \text{ trees in stage 1 and 2 in an overlapping database} \]
\[\beta_1 (1, 2, 3) = \text{parameters to be estimated, which were reformulated from the base model for each equation.} \]
In this case, the Ab was defined at 60 years. With these characteristics, seven symmetrical growth curves and SI were generated for each ADA and GADA equation. SI classes were from 14 to 26 m with intervals of 2 m.

Fitting and evaluation of equations

The nonlinear least squares (NLS) and generalized nonlinear least squares (GNLS) technique of the NLME package (Pinheiro, Bates, DebRoy, & Sarkar, 2015) of the R software (R Development Core Team, 2017) were used to fit the CAI equation for height and ADA and GADA equations, respectively. The CAI equation for height was adjusted for all $Q. sideroxyla$ trees and for each crown class condition. In this case, the crown position procedure proposed by Bechtold (2003) with the superstory, overstory, and understory categories was made compatible with the crown size procedure proposed by Meadows, Burkhardt, Johnson, and Hodges (2001) with dominant, intermediate, and suppressed categories. ADA and GADA equations were fitted using an overlapping database of commercial height and estimated age for each tree. In addition, the variance was modeled with an exponential function of estimated age covariates (VarExp) to correct heteroscedasticity, while a moving average autoregressive correlation structure (corARMA 1, 1) was used to model the error dependence within each tree (Pinheiro & Bates, 2000). The residual values were used to estimate six statistics that allowed us to evaluate the accuracy of the fitted equations: root mean square error (RMSE), adjusted coefficient of determination (R^2), log-likelihood (LogLik), Durbin-Watson test (DW), Akaike’s information criterion (AIC) and mean bias (E).

Results and discussion

Table 2 shows the estimated parameters and height fit statistics of the CAI model for all $Q. sideroxyla$ trees (equation 1) and for each crown position class (dominant, intermediate and suppressed). Fitting statistics showed the models’ ability to predict height CAI. Height CAI equations, the number of years between two commercial height measurements (equation 2) and the estimated age equation (equation 3) allowed to construct the growth trajectories in the taper data. The equations developed from height CAI, with data from stem-mapped remeasured plots, showed suitable goodness of fit by class of tree crown position proposed by Bechtold (2003) and for all tree crown positions. This is because crown classes based on tree position in canopy are difficult to classify in mixed stands and hardwood species such as $Q. sideroxyla$. The highest value of R^2 was observed for the suppressed tree crown class and the lowest for the intermediate crown class, with values of 0.9705 and 0.9620, respectively. Moreover, the lowest donde,

Hd_{jk2} = altura dominante de la k^{th} medición en el j^{th} árbol en el estado 2

Hd_{jk1} = altura dominante de la k^{th} medición en el j^{th} árbol en el estado 1

EE_{jk1} y EE_{jk2} = edad estimada de la k^{th} medición de la altura superior en el j^{th} árbol en los estados 1 y 2 en una base de datos traslapada

β_i (i = 1, 2, 3) = parámetros a ser estimados, los cuales fueron reformulados del modelo base para cada ecuación.

Las modelos aproximados de IS para cada ADA (ecuaciones 5 a 7) y la ecuación GADA (ecuación 8) representan el cambio de Hd_{jk1} por IS, Hd_{jk2} por la altura dominante, EE_{jk1} por la edad o edad estimada para la altura dominante de un árbol, y EE_{jk2} por la edad base (Eb) o edad de referencia. En este caso, la Eb fue definida a los 60 años. Con estas características, siete curvas simétricas de crecimiento e IS se generaron para cada ecuación ADA y GADA. Las clases de IS fueron de 14 a 26 m con intervalos de 2 m.

Ajuste y evaluación de las ecuaciones

La técnica de mínimos cuadrados no lineales (NLS) y mínimos cuadrados no lineales generalizados (GNLS) del paquete de modelos de efectos mixtos no lineales (NLME) (Pinheiro, Bates, DebRoy, & Sarkar, 2015) del software R (R Development Core Team, 2017) se usaron para ajustar la ecuación de ICA en altura y las ecuaciones ADA y GADA, respectivamente. La ecuación de ICA en altura se ajustó para todos los árboles de $Q. sideroxyla$ y para cada condición de clase de copa. En este caso, el procedimiento de posición de copas propuesto por Bechtold (2003) con las categorías superposición, sobreposición y suprimido fue compatible con el procedimiento de tamaño de copas propuesto por Meadows, Burkhardt, Johnson, y Hodges (2001) con las categorías dominante, intermedio y suprimido. Las ecuaciones ADA y GADA se ajustaron mediante una base de datos traslapada de altura comercial y edad estimada para cada árbol. Además, la varianza se modeló con una función exponencial de covariables de la edad estimada (VarExp) para corregir la heterocedasticidad, mientras que una estructura de correlación autorregresiva de media móvil (corARMA 1, 1) se usó para modelar la dependencia de los errores dentro de cada árbol (Pinheiro & Bates, 2000). Con los valores de los residuales se calcularon seis estadísticos que permitieron evaluar la precisión de las ecuaciones ajustadas: raíz del cuadrado medio del error (RMSE), coeficiente de determinación ajustado (R^2), logaritmo de la verosimilitud (LogLik), prueba de Durbin-Watson (DW), criterio de información de Akaike (AIC) y sesgo promedio (E).
RMSE value was obtained for the suppressed class and the highest value for the dominant class. When height CAI equation was fitted for the set of the three crown classes, the statistics showed suitable statistical precision with all degrees of freedom from the entire data of stem-mapped remeasured plots. Therefore, the latter procedure was used to estimate the age of the height-diameter relationship of the taper data.

The estimated parameters for ADA and GADA equations and the fitting statistics are shown in Table 3. All parameters were significantly different from zero at a significance level of 1%. The polymorphic equation I (equation 6) generated a higher value of the asymptote parameter (53.09 m) than the polymorphic equation II (44.23 m). The three ADA equations showed consistent results, but the polymorphic equation II (equation 7) had the best results according to the fit statistics (lower values of RMSE, E and AIC and higher values of R² and LogLik). However, the GADA equation was better than the polymorphic equation II because it provided more desirable fit statistics for RMSE, AIC, LogLik and E. In parallel, the estimated parameters of the variance function (varExp) and the autocorrelation structure (corARMA 1, 1) are shown in Table 3. This structure allowed correcting the assumptions of heteroscedasticity and autocorrelation with time series data used in the fitting of the equations, through generalized nonlinear least squares (Pinheiro & Bates, 2000; Pinheiro et al., 2015). Similar functions to correct these regression assumptions were used by Quiñonez-Barraza, García-Espinoza, and Aguirre-Calderón (2018), Sharma and Parton (2018), Quiñonez-Barraza et al.

Resultados y discusión

El Cuadro 2 muestra los parámetros estimados y los estadísticos de ajuste del modelo de ICA en altura para todos los árboles de *Q. sideroxyla* (ecuación 1) y para cada clase de posición de copa (dominante, intermedia y suprimida). Los estadísticos de ajuste mostraron la capacidad del modelo para predecir el ICA en altura. Las ecuaciones de ICA en altura, el número de años entre dos mediciones de altura comercial (ecuación 2) y la ecuación de edad estimada (ecuación 3) permitieron construir las trayectorias de crecimiento en la base de datos de ahusamiento. Las ecuaciones desarrolladas de ICA en altura, con datos de parcelas de remediación, mostraron bondad de ajuste adecuada por clase de la posición de copas de los árboles propuesta por Bechtold (2003) y para todas las posiciones de copas de los árboles. Esto debido a que las clases de copas basadas en la posición del árbol en el dosel son difíciles de clasificar en los rodados mezclados y en las especies de maderas duras como *Q. sideroxyla*. El valor más alto de R² se observó para la clase de copas de árboles suprimido y el más bajo para la clase de copas intermedia, con valores de 0.9705 y 0.9620, respectivamente. En adición, el menor valor de RMSE se obtuvo para la clase suprimido y el valor más alto para la clase dominante. Cuando la ecuación de ICA en altura se ajustó para el conjunto de las tres clases de copas, los estadísticos mostraron una precisión estadística adecuada con todos los grados de libertad de la base de datos de parcelas de remediación. Por tanto, este último procedimiento se utilizó para estimar la edad de la relación altura-diámetro de la base de datos de ahusamiento.
Los parámetros estimados para las ecuaciones ADA y GADA están presentados en el Cuadro 3. Todos los parámetros fueron significativamente diferentes de cero a un nivel de significancia del 1%. La ecuación polimórfica I (ecuación 6) generó un valor mayor del parámetro de la asíntota (53.09 m) que la ecuación polimórfica II (44.23 m). Las tres ecuaciones ADA mostraron resultados confiables, pero la ecuación polimórfica II (ecuación 7) presentó mejores resultados de acuerdo con los estadísticos de ajuste (valores menores de la RMSE, E y AIC y valores mayores de R² y LogLik). No obstante, la ecuación GADA fue mejor que la ecuación polimórfica II, debido a que ofreció estadísticos de ajuste más deseadables en la RMSE, AIC, LogLik y E. De manera paralela, los parámetros estimados de la función de varianza (varExp) y la estructura de autocorrelación (corARMA 1, 1) son mostrados en el Cuadro 3. La estructura permitió corregir los supuestos de heterocedasticidad y autocorrelación con datos de series de tiempo usadas en el ajuste de las ecuaciones, a través de mínimos

Equation / Ecuación	Parameter / Parámetro	Estimator / Estimador	EE	RMSE (m)	R²	DW	AIC	LogLik	E (m)
ADA1	β₂	0.0062	0.0022	0.4372	0.9918	1.75	409.21	−198	−0.0210
	β₃	1.2762	0.0286						
	φ₁	0.1797	0.1355						
	θ₁	0.7204	0.8568						
	τ₁	0.0778	0.0078						
ADA2	β₁	53.0939	12.3286	0.4295	0.9921	1.82	400.85	−194	−0.0076
	β₂	1.3106	0.0299						
	φ₁	0.2049	0.1379						
	θ₁	0.5221	0.5175						
	τ₁	0.0756	0.0077						
ADA3	β₁	44.2324	8.2474	0.4256	0.9923	1.64	370.82	−179	−0.0015
	β₂	0.0111	0.0022						
	φ₁	0.2176	0.1020						
	θ₁	0.9998	1.0176						
	τ₁	0.0857	0.0082						
GADA	β₁	4.8076	0.5614	0.4255	0.9923	1.74	369.55	−178	−0.0008
	β₂	−0.7348	0.1941						
	β₃	0.0121	0.0022						
	φ₁	0.1753	0.0451						
	θ₁	0.8196	0.0460						
	τ₁	0.0196	0.0033						

EE = standard error of the parameter; RMSE = root mean square error; = adjusted coefficient of determination; DW = Durbin-Watson value; AIC = Akaike’s information criterion; and = estimated parameters for the corARMA structure (1, 1); = estimated parameter for the varExp function.

EE = error estándar del parámetro; RMSE = raíz del cuadrado medio del error; = coeficiente de determinación ajustado; DW = valor de Durbin-Watson; AIC = criterio de información de Akaike; E = sesgo promedio; y = parámetros estimados para la estructura corARMA (1, 1); = parámetro estimado para la función varExp.

Figure 2 shows that the growth curves for each SI class at a base age of 60, which followed the growth trajectories of Q. sideroxyla. The polymorphic equation II modeled the dominant height and SI better than the other two ADA equations, but the GADA equation had better SI curves on the growth trajectories at height. In the case of the polymorphic ADA equations, the growth curves showed different rates between each SI curve and common asymptotes, while the anamorphic ADA equation had similar growth rates between the SI curves with variable asymptotes. On the other hand, the GADA equation showed SI curves with complex polymorphism.

Although height growth was assumed to be constant between every two measurements in the taper data,
the ADA equations represented the anamorphic and polymorphic SI curves for upper stem heights measured at in the taper analysis. The SI curves are invariant to the reference age; if the base age is modified, curves are equivalent and the polymorphic shapes (non-proportional SI curves with different relative growth rates) show different growth rates at the base age of 60 years (Bailey & Clutter, 1974). The ADA equations are easy to apply, can predict height growth and generate SI curves with the same formulation, and their estimated parameters are dynamic (Sharma & Parton, 2018).

Algunas funciones similares para corregir estos supuestos de regresión fueron utilizadas por Quiñonez-Barraza, García-Espinoza, y Aguirre-Calderón (2018), Sharma y Parton (2018), Quiñonez-Barraza et al. (2015) y Rodríguez-Carrillo, Cruz-Cobos, Vargas-Larreta, y Hernández (2015) en ecuaciones dinámicas ADA y GADA para _Pinus teocote_ Schiede ex Schltdl. & Cham., especies de _Pinus_ y _Picea_, especies de _Juniperus_, respectivamente.

Figure 2. Site index curves with the ADA equations (anamorphic and polymorphic I and II) and GADA equation (complex polymorphism) for *Quercus sideroxyla* at the base age of 60 years.

Figura 2. Curvas de índice de sitio con las ecuaciones ADA (anamórfica y polimórfica I y II) y GADA (polimorfismo complejo) para *Quercus sideroxyla* a la edad base de 60 años.
According to fit statistics, the polymorphic equation II (equation 7) was greater to the other two ADA equations (Table 3). This ADA equation showed the highest value in the R^2 and LogLik statistics and the lowest value in RMSE, AIC and E statistics; but in the SI curves, the classes of 22 m to 26 m overestimated the height growth trajectories (Figures 2 and 4). In the ADA equations, the polymorphic equation I (equation 6) was more realistic for modeling the dominant height growth trajectories. Alternatively, the GADA equation outperformed the ADA equations by showing larger values in the LogLik statistic and smaller values in the AIC (Table 3). The GADA equation (equation 8) represents the concurrent ability to express asymptotic variables and polymorphism in SI curves (Cieszewski & Bailey, 2000); this equation considered the parameters of the upper asymptote and the rate of change as site-specific (Quiñonez-Barraza et al., 2015).

In this study, the SI classes were similar to the dominant height growth curves proposed by Quiñonez-Barraza et al. (2015) for Pinus arizonica Engelm., Pinus durangensis Martínez, Pinus teocote Schltdl. & Cham., Pinus leiophylla Schiede ex Schltdl. & Cham. and Pinus ayacahuite Ehrenb. ex Schltdl. in the same mixed-species stands and at the same reference age (60 years). The developed dynamic equations and SI curves are biologically realistic because Pinus and Quercus species share growth space and there is intensive competition between species (Quiñonez-Barraza et al., 2018). Although the interpretation of SI equations under multispecies and uneven-aged stand conditions may be complex under traditional definitions, the estimated SI for the height-age relationship remains the most common implementation (Westfall, Hatfield, Sowers, & O’Connell, 2017).

The CAI and MAI curves for each SI classes are shown in Figure 3. With ADA anamorphic equations, CAI and MAI curves showed increases in constant height and the optimal growth in height was represented at 76 years for all SI classes at a reference age of 60 years. In the polymorphic equation II, the SI classes of 22 to 26 m did not show a good fit to the data and they were collapsed, which was assumed due to the overestimation of the growth trajectories for these SI classes. CAI and MAI curves were better with the polymorphic equation I than with the polymorphic equation II; however, the GADA equation showed the increment curves better than ADA equations, and the optimal growth in height for each SI class was more realistic.

Residual values versus predicted values showed the trends of the deviations for each ADA and GADA equation (Figure 4). A small overestimate was observed in the residual plots for most cases of the mean height classes.

La Figura 2 muestra que las curvas de crecimiento para cada clase de IS a una edad base de 60 años siguieron las trayectorias de crecimiento de Q. sideroxyla. La ecuación polimórfica II modeló mejor la altura dominante e IS que las otras dos ecuaciones ADA, pero la ecuación GADA mostró mejor las curvas de IS sobre las trayectorias de crecimiento en altura. En el caso de las ecuaciones polimórficas ADA, las curvas de crecimiento presentaron tasas diferentes entre cada curva de IS y asintotas comunes, mientras que la ecuación anamórfica ADA presentó tasas de crecimiento similares entre las curvas de IS con asintotas variables. Por otro lado, la ecuación GADA mostró curvas de IS con polimorfismo complejo.

Aunque el crecimiento en altura se asumió constante entre cada dos mediciones en la base de datos de ahusamiento, las ecuaciones ADA representaron las curvas de IS anamórficas y polimórficas para las mediciones a diferentes alturas en el fuste de análisis de ahusamiento. Las curvas de IS son invariantes de la edad de referencia; si la edad base es modificada, las curvas son equivalentes y las formas polimórficas (curvas de IS no proporcionales con tasas de crecimiento relativas diferentes) muestran tasas diferentes de crecimiento a la edad base de 60 años (Bailey & Clutter, 1974). Las ecuaciones ADA son fáciles de aplicar, son capaces de predecir el crecimiento en altura y generar curvas de IS con la misma formulación, y sus parámetros estimados son dinámicos (Sharma & Parton, 2018). De acuerdo con los estadísticos de ajuste, la ecuación polimórfica II (ecuación 7) fue superior a las otras dos ecuaciones ADA (Cuadro 3). Esta ecuación ADA presentó el mayor valor en los estadísticos R^2 y LogLik y menor valor en los estadísticos RMSE, AIC y E; pero en las curvas de IS, las clases de 22 m a 26 m sobreestimaron las trayectorias del crecimiento en altura (Figuras 2 y 4). En las ecuaciones ADA, la ecuación polimórfica I (ecuación 6) fue más realista para modelar las trayectorias de crecimiento de altura dominante. Alternativamente, la ecuación GADA superó en ajuste a las ecuaciones ADA, ya que mostró valores más grandes en el estadístico LogLik y valores menores en el AIC (Cuadro 3). La ecuación GADA (ecuación 8) representa la habilidad concurrente de expresar variables asintotas y polimorfismo en las curvas de IS (Cieszewski & Bailey, 2000); esta ecuación consideró los parámetros de la asintota superior y la tasa de cambio como específicos del sitio (Quiñonez-Barraza et al., 2015).

En este estudio, las clases de IS fueron similares a las curvas de crecimiento en altura dominante propuestas por Quiñonez-Barraza et al. (2015) para Pinus arizonica Engelm., P. durangensis Martínez, P. teocote Schltdl. & Cham., P. leiophylla Schiede ex Schltdl. & Cham. y P. ayacahuite Ehrenb. ex Schltdl. en los mismos rodales mezclados y a la misma edad de referencia (60 años).
The developed height growth equations can predict and project growth at ages greater than the base age used, because the maximum estimated age was 88 years and is compatible with the forest rotation. This feature is important in forest rotation management systems (Pukkala & Gadow, 2011; Quiñonez-Barraza et al., 2018) of the selected trees dominant and co-dominant to carry out this study, which coincides with the point made by Quiñonez-Barraza et al. (2018).

Las ecuaciones dinámicas desarrolladas y las curvas de IS son biológicamente realistas debido a que las especies de Pinus y Quercus comparten el espacio de crecimiento y existe una competencia intensiva entre especies (Quiñonez-Barraza et al., 2018). Aunque la interpretación de las ecuaciones de IS en condiciones de multiespecies y rodales incoetáneos puede ser compleja bajo las definiciones tradicionales, el IS

Figure 3. CAI (current annual increment) and MAI (mean annual increment) curves for the site index classes with ADA (anamorphic and polymorphic I and II) and GADA (complex polymorphism) equations for Quercus sideroxyla at the base age of 60 years.

Figura 3. Curvas de ICA (incremento corriente anual) e IMA (incremento medio anual) para las clases de índice de sitio con las ecuaciones ADA (anamórfica y polimórfica I y II) y GADA (polimorfismo complejo) para Quercus sideroxyla a la edad base de 60 años.
Allen and Burkhart (2015). In addition, the equations consider more realistic estimates of local productive capacity and, therefore, reliable SI estimates for mixed-species stands. Dominant height growth equations and SI developed with the GADA methodology are desirable in forest management and planning situations (Kahriman, Sönmez, & Gadow, 2018).

The computational advantages and flexibility of ADA and GADA equations allow their use and application in forest management (Garcia, 2011). Forest managers can use the ADA and GADA equations fitted in this study to define the most appropriate regimes of *Q. sideroxyla* with different forest management objectives; furthermore, they should consider productive capacity as the SI in calculated for the relationship height-age continues being the most common implementation (Westfall, Hatfield, Sowers, & O’Connell, 2017).

Las curvas de ICA e IMA para cada clase de IS se ilustran en la Figura 3. Con las ecuaciones anamórficas ADA, las curvas de ICA e IMA mostraron incrementos en altura constantes y el crecimiento óptimo en altura fue representado a los 76 años para todas las clases de IS a una edad de referencia de 60 años. En la ecuación polimórfica II, las clases de IS de 22 a 26 m no mostraron buen ajuste a los datos y se colapsaron, lo cual se asumió debido a la sobrestimación en las trayectorias de crecimiento para estas clases de IS. Las curvas de ICA e IMA fueron mejores con la ecuación...
forest growth and production diagnostic models as an input variable (Costa et al., 2018; Westfall et al., 2017). To estimate the age and then the SI at a base age, it is recommended to take at least five measurements of stem height; the application of the best ADA and GADA equations (equations 6 and 8, respectively) will depend on the estimated age for each subject tree.

Conclusions

The site index for qualifying the productivity of mixed-species stands with dominance of *Quercus sideroxyla* can be estimated with the equations developed in this study; the application depends on the use of a model of current annual increment in height. To do this, it is necessary to estimate at least five measurements of height between the ground and the total height and then estimate the total age with the mean increment equations in height. The GADA equation represented best the growth trajectories in the site index classes and increment curves; for this reason, it is recommended to estimate the height growth and site index of *Q. sideroxyla* in mixed-species stands. The developed equations of height growth and site index can be used in the informed decision making of forest management in mixed-species stand, in order to allow the balance of tree diversity, resistance and resilience of these ecosystems to climate change.

Acknowledgements

The main author thanks the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the funding 247171 for postdoctoral fellowship, the Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP) and Daniel B. Warnell School of Forestry & Natural Resources, The University of Georgia (UGA) for receiving me as a postdoctoral student.

References / Referencias

Allen, M. G., & Burkhart, H. E. (2015). A comparison of alternative data sources for modeling site index in loblolly pine plantations. *Canadian Journal of Forest Research, 45*(8), 1026–1033. doi: 10.1139/cjfr-2014-0346

Antón-Fernández, C., Mola-Yudego, B., Dalsgaard, L., & Astrup, R. (2016). Climate-sensitive site index models for Norway. *Canadian Journal of Forest Research, 46*(6), 794–803. doi: 10.1139/cjfr-2015-0155

Bailey, R. L., & Clutter, J. L. (1974). Base-age invariant polymorphic site curves. *Forest Science, 20*(2), 155–159. doi: 10.1093/forests/20.2.155

Bechtold, W. A. (2003). Crown position and light exposure classification–An alternative to field-assigned crown polimórfica I que con la ecuación polimórfica II; sin embargo, la ecuación GADA mostró mejor las curvas de incremento que las ecuaciones ADA, y el crecimiento óptimo en altura para cada clase de IS fue más realista.

Los valores residuales frente a los valores predichos mostraron las tendencias de las desviaciones para cada ecuación ADA y GADA (Figura 4). Una sobrestimación pequeña se observó en las gráficas de residuales para la mayoría de los casos de las clases de altura promedio.

Las ecuaciones de crecimiento en altura desarrolladas tienen la capacidad de predecir y proyectar el crecimiento a edades mayores que la edad base utilizada, debido a que la edad estimada máxima fue de 88 años y es compatible con los turnos de corta. Esta característica es importante en los sistemas de manejo de turno de corta (Pukkala & Gadow, 2011; Quiñonez-Barraza et al., 2018) de los árboles dominantes y codominantes seleccionados para llevar a cabo este estudio, lo cual coincide con el punto preciso por Allen y Burkhart (2015). Además, las ecuaciones consideran estimaciones más realistas de la capacidad productiva local y, por consiguiente, estimaciones confiables del IS para rodales mezclados. Las ecuaciones de crecimiento en altura dominante e IS desarrolladas con la metodología GADA son preferibles en situaciones de manejo y planeación forestal (Kahriman, Sönmez, & Gadow, 2018).

Las ventajas computacionales y la flexibilidad de las ecuaciones ADA y GADA permiten su uso y aplicación en el manejo forestal (García, 2011). Los manejadores forestales pueden utilizar las ecuaciones ADA y GADA ajustadas en este estudio para definir los regímenes más adecuados de *Q. sideroxyla* bajo diferentes objetivos de manejo forestal; asimismo, deben considerar la capacidad productiva como el IS en los modelos de diagnóstico del crecimiento y producción forestal como variable de entrada (Costa et al., 2018; Westfall et al., 2017). Para estimar la edad y después el IS a una edad base, se recomienda hacer al menos cinco mediciones de altura de fuste; la aplicación de las mejores ecuaciones ADA y GADA (ecuaciones 6 y 8, respectivamente) dependerá de la edad estimada para cada árbol objetivo.

Conclusions

El índice de sitio para calificar la productividad de rodales mezclados con dominancia de *Quercus sideroxyla* puede estimarse con las ecuaciones desarrolladas en este estudio; la aplicación depende del uso de un modelo de incremento corriente anual en altura. Para ello, es necesario estimar al menos cinco medidas de altura entre el suelo y la altura total y después estimar la edad total con las ecuaciones de incremento medio en altura. La ecuación GADA representó mejor las
El autor principal agradece al Consejo Nacional de Ciencia y Tecnología (CONACYT) por el financiamiento con la beca postdoctoral 247171, al Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP) y a Daniel B. Warnell School of Forestry & Natural Resources, The University of Georgia (UGA) por recibirme como becario postdoctoral.

Agradecimientos

Quiñoñez-Barraza, G., De los Santos-Posadas, H. M., Cruz-Cobos, F., Velázquez-Martínez, A., Ángeles-Pérez, G., & Ramírez-Valverde, G. (2015). Site index con complex polymorphism of forest stands in Durango, Mexico. *Agrociencia, 49*(4), 439–454. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952015000400007

Quiñoñez-Barraza, G., García-Espinoza, G. G., & Aguirre-Calderón, O. A. (2018). How to correct the heteroscedasticity and autocorrelation of residuals in taper and height growth models? *Revista Mexicana de Ciencias Forestales, 9*(49), 28–59. doi: 10.29298/rmcf.v9i49.151

Quiñoñez-Barraza, G., Zhao, D., de los Santos-Posadas, H. M., Santiago-García, W., Tamarit-Urias, J. C., & Nájera-Luna, J. A. (2019). Compatible taper, volume, green weight, biomass and carbon concentration system for *Quercus sideroxyla* Bonpl. *Revista Chapingo Serie Ciencias Forestales y del Ambiente, 25*(1), 49–69. doi: 10.5154/r.rchscfa.2018.06.050

Quiñoñez-Barraza, G., Tamarit-Urias, J. C., Martinez-Salvador, M., García-Cuevas, X., de los Santos-Posadas, H. M., & Santiago-García, W. (2018). Maximum density and density management diagram for mixed-species forests in Durango, Mexico. *Revista Chapingo Serie Ciencias Forestales y del Ambiente, 24*(1), 73–90. doi: 10.5154/r.rchscfa.2017.09.056

Quiñoñez-Barraza, G., Zhao, D., De Los Santos Posadas, H. M., & Corral-Rivas, J. J. (2018). Considering neighborhood effects improves individual DBH growth models for natural mixed-species forests in Mexico. *Annals of Forest Science, 75*(3), 1–11. doi: 10.1007/s13595-018-0762-2

Fin de la versión en español
R Development Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Richards, F. (1959). A flexible growth function for empirical use. *Journal of Experimental Botany, 10*(2), 290–301. Retrieved from https://www.jstor.org/stable/23686557

Rodriguez-Carrillo, A., Cruz-Cobos, F., Vargas-Larreta, B., & Hernández, F. J. (2015). Compatible dominant height-site index model for juniper (*Juniperus deppeana* Steud.). *Revista Chapingo Serie Ciencias Forestales y del Ambiente, 21*(1), 97–108. doi: 10.5154/r.rchscfa.2014.09.041

Rozas, V. (2003). Tree age estimates in *Fagus sylvatica* and *Quercus robur*: testing previous and improved methods. *Plant Ecology, 167*(2), 193–212. doi: 10.1023/A:1023969822044

Seki, M., & Sakici, O. E. (2017). Dominant height growth and dynamic site index models for Crimean pine in Kastamonu-Taşköprü region of Turkey. *Canadian Journal of Forest Research, 47*(11), 1441–1449. doi: 10.1139/cjfr-2017-0131

Sharma, M., & Parton, J. (2018). Climatic effects on site productivity of red pine plantations. *Forest Science, 64*(5), 544–554. doi: 10.1093/foresci/fxy013

Sharma, M., & Reid, D. E. B. (2018). Stand height/site index equations for jack pine and black spruce trees grown in natural stands. *Forest Science, 64*(1), 33–40. doi: 10.5849/FS-2016-133

Sharma, M., Subedi, N., Ter-Mikaelian, M., & Parton, J. (2015). Modeling climatic effects on stand height/site index of plantation-grown jack pine and black spruce trees. *Forest Science, 61*(1), 25–34. doi: 10.5849/forsci.13-190

Torres-Rojo, J. M., Moreno-Sánchez, R., & Mendoza-Briseño, M. A. (2016). Sustainable forest management in Mexico. *Current Forestry Reports, 2*(2), 93–105. doi: 10.1007/s40725-016-0033-0

Vargas-Larreta, B., Corral-Rivas, J. J., Aguirre-Calderón, O. A., López-Martínez, J. O., de los Santos-Posadas, H. M., Zamudio-Sánchez, F. J., . . . Aguirre-Calderón, C. G. (2017). SiBiFor: Forest Biometric System for forest management in Mexico. *Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23*(3), 437–455. doi: 10.5154/r.rchscfa.2017.06.040

Watt, M. S., Dash, J. P., Bhandari, S., & Watt, P. (2015). Comparing parametric and non-parametric methods of predicting Site Index for radiata pine using combinations of data derived from environmental surfaces, satellite imagery and airborne laser scanning. *Forest Ecology and Management, 357*, 1–9. doi: 10.1016/j.foreco.2015.08.001

Westfall, J. A., Hatfield, M. A., Sowers, P. A., & O’Connell, B. M. (2017). Site index models for tree species in the Northeastern United States. *Forest Science, 63*(3), 283–290. doi: 10.5849/FS-2016-090

Yue, C., Kahle, H-P., von Wilpert, K., & Kohnle, U. (2016). A dynamic environment-sensitive site index model for the prediction of site productivity potential under climate change. *Ecological Modelling, 337*, 48–62. doi: 10.1016/j.ecolmodel.2016.06.005

Yue, C., Mäkinen, H., Klädtke, J., & Kohnle, U. (2014). An approach to assessing site index changes of Norway spruce based on spatially and temporally disjunct measurement series. *Forest Ecology and Management, 323*, 10–19. doi: 10.1016/j.foreco.2014.03.031