High-resolution UHPLC-MS characterization and isolation of main compounds from the antioxidant medicinal plant *Parastrephia lucida* (Meyen)

Carlos Echiburu-Chau a,b, Leyla Pastén c, Claudio Parra a,b, Jorge Bórquez c, Andrei Mocan d, Mario J. Simirgiotis e,⇑

⇑Corresponding author.

E-mail address: mario.simirgiotis@uach.cl (M.J. Simirgiotis).

* Centro de Investigaciones del Hombre en el Desierto (CIHDE), Av. General Velásquez, 1775, Edificio CIHDE, Piso 2, Arica, Chile

⇑ Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile

⇑ Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile

⇑ Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, 23 Ghe. Marinescu Street, Cluj-Napoca 400010, Romania

⇑ Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5090000, Chile

Article Info

Abstract

High-resolution mass spectrometry is currently used to determine the mass of biologically active compounds in medicinal plants and food and UHPLC-Orbitrap is a relatively new technology that allows fast fingerprinting and metabolomics analysis. Forty-two metabolites including several phenolic acids, flavonoids, coumarins, tremetones and ent-clerodane diterpenes were accurately identified for the first time in the resin of the medicinal plant *Parastrephia lucida* (Asteraceae) a Chilean native species, commonly called umatola, collected in the pre-cordillera and altiplano regions of northern Chile, by means of UHPLC-PDA-HR-MS. This could be possible by the state of the art technology employed, which allowed well resolved total ion current peaks and the proposal of some biosynthetic relationships between the compounds detected. Some major compounds were also isolated using HSCCC. The ethanolic extract showed high total polyphenols content and significant antioxidant capacity. Furthermore, several biological assays were performed that determined the high antioxidant capacity found for the major compound isolated from the plant, 11- p-coumaroyl oxytremetone.

© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The native plant *Parastrephia lucida* (Meyen) Cabrera is a native shrub, commonly called umatola, growing in the pre-cordillera and Altiplano in the North of Chile and Argentina (Benites et al., 2012; CONAMA, 2008; D’Almeida et al., 2012; Marticorena, 2009). This species has been historically used in traditional medicine as an anti-inflammatory agent, to treat toothache (Villagrán et al., 2003). Furthermore, this plant showed some biological activities with potential health benefits such as acaricide (Genin et al., 1995), fungicide (Sayago et al., 2006), bactericide (Zampini et al., 2009) and antioxidant activities (Rojo et al., 2009; Zampini et al., 2008). A few studies have identified different active compounds (Benites et al., 2012; D’Almeida et al., 2012), however, a comprehensive complete metabolomics analysis was not performed, letting out a number of interesting structures that may possess pharmacological interest. The related species *Parastrephia lepidophylla* showed antifungal activity and showed also 19% inhibition of cell proliferation at 200 µg/ml in antiproliferative activity tests performed in Caco-2 cells (Rodrigo et al., 2010). From this plant the analgesic compounds tremetone and methoxytremetone were isolated (Benites et al., 2012). On the other hand, the herbal teas of *P. lepidophylla* and *P. lucida* showed a protective effect against oxidative damage on human erythrocytes greater than of the standard antioxidant Trolox (Rojo et al., 2009; Zampini et al., 2008). In the present work we have performed the isolation of the main compounds plus the high resolution UHPLC orbitrap metabolomic fingerprinting analysis of the resin exudate of this plant and report several poly-methoxilated flavonoids, tremetones and terpenoids...
for the first time. The antioxidant properties of the ethanolic extract of \textit{P. lucida} are also discussed.

2. Materials and methods

2.1. Chemicals and plant material

UHPLC-MS Solvents, LC-MS formic acid and reagent grade chloroform were from Merck (Santiago, Chile). Ultrapure water was obtained from a Millipore water purification system (Milli-Q Merck Millipore, Chile). HPLC standards, (kaempferol, quercetin, isorhamnetin, eriodictyol, luteolin, apigenin, naringenin, all standards with purity higher than 95 \% by HPLC) were purchased either from Sigma Aldrich (Saint Louis, Mo, USA), ChromaDex (Santa Ana, CA, USA), or Extrasynthèse (Genay, France). Folin-Ciocalteu phenol reagent (2N), reagent grade Na$_2$CO$_3$, AlCl$_3$, HCl, FeCl$_3$, NaNO$_2$, NaOH, quercetin, trichloroacetic acid, sodium acetate, Gallic acid, Trolox, ABTS and potassium persulfate, xanthine oxidase and DPPH (1,1-diphenyl-2-picrylhydrazyl radical) were purchased from Sigma-Aldrich Chemical Co. (Santiago, Chile).

2.2. Plant material

The aerial parts of \textit{P. lucida} (Meyen) Cabrera were collected in slopes of Chungará lake (18°23'0" S Longitud 69°16'4"O), in March 2016 at 4524 m.a.s.l. Voucher herbarium specimens are kept in the National Herbarium of Natural History (Santiago, Chile), SGO 166498 (see Fig. 1).

2.3. Extraction

Dried and chopped aerial parts of \textit{P. lucida} (2 g) were extracted with absolute ethanol for 30 min in the dark in an ultrasonic bath (100 mL, three times) in order to obtain an extract for UHPLC, isolation and antioxidant analyses. The extract was immediately concentrated in vacuo and a resulting brown gum was obtained (882 mg).

2.4. Selection of the solvent system for HSCCC

Several isocratic non-aqueous solvent systems composed of \emph{n}-hexane: ethyl acetate: methanol: water and \emph{n}-heptane–ethyl acetate–methanol–water in different ratios were tested. The solvent system selected was the two-phase solvent system: \emph{n}-hexane: ethyl acetate: methanol: water 6:5:6:3 v/v/v which provided the better K values for all mayor compounds (0.5 < K < 1.3). A similar solvent system (\emph{n}-heptane–ethyl acetate–methanol–water, 6:2:6:2, v/v/v/v) was previously used for the separation of terpenoids (Vieira et al., 2015).

2.5. Isolation

A portion of the extract (0.5 g) was filtered and submitted to an HSCCC centrifuge (Quattro MK-7, Bridgend, UK) for the separation of its components. After equilibration of the solvent system in a separatory funnel, the upper and lower working phases were separated and degassed in an ultrasonic bath for 15 min before use. The sample was prepared by dissolving the extract from \textit{P. lucida} in 2.5 mL of each phase of the solvent system, filtered and loaded into an injection valve (Rheodyne model 5010A) equipped with a 5 mL loop. The preparative coil (116 mL) was filled with the upper stationary phase and the apparatus was rotated at 850 rpm. The mobile lower phase was then pumped in a Head to Tail direction (H-T) at a flow rate of 5 mL-minute. After the emersion of mobile phase and the hydrodynamic equilibrium in the column, we recorded the percentage of the retention of stationary phase (60\%). The sample was injected using an injection valve at a flow rate of 6.5 mL-minute. The fractions obtained were collected with a fraction collector (1 min per tube, 6.5 ml each, 100 fractions) and monitored by an Ecom 254 nm detector (Prague, Czech Republic) with Ecomac software and a chromatogram was obtained (Fig. S1, supplementary material) and fractions were further analyzed by TLC (F$_254$ silica gel plates, developed with hexane:EtOAc, 1:1 v/v, while the spots were visualized by spraying using vanillin: sulfuric acid 2\% in ethanol. The rotation was interrupted in tube 55 and the coil content was washed off originating 100 fractions of
6.5 mL each. The tubes were pooled into six fractions (pq-1 to pq-6) according to the HSCCC chromatogram (Fig. S1, Supplementary material) and TLC analysis. After re-purification by Sephadex LH-20 (solvent methanol), HSCCC tubes 17–23 (fraction pq-2) afforded 11-p-coumaroylxylo-tremetone (55 mg) (Bohlmann et al., 1979), whose NMR spectra and validated data is depicted in the Supplementary material, (Figs. S2–S5) and crystal structure determination was unequivocally determined by us lately (Brito et al., 2017). From tubes 24–30 (fraction pq-3) aesculetin and umbelliferone were identified by spiking experiments with authentic standards (Simirgiotis et al., 2013b), and finally, from tubes 55–63 (fraction pq-6), bacchalinol A (23 mg) was isolated, whose NMR spectra are depicted in the Supplementary material (Figs. S6–S9).

2.6. UHPLC-DAD-MS instrument

The Thermo Scientific Dionex Ultimate 3000 UHPLC system hyphenated with a Thermo Q exactive focus machine was already reported (Simirgiotis et al., 2016b). For the analysis 5 mg of the exudate were dissolved in 2 mL of methanol, filtered (PTFE filter) and 10 μL were injected in the instrument, with all specifications set as previously reported (Simirgiotis et al., 2016b).

2.7. LC parameters and MS parameters

Liquid chromatography was performed using an UHPLC C18 column (Acclaim, 150 mm × 4.6 mm ID, 2.5 μm, Thermo Fisher Scientific, Bremen, Germany) operated at 25 °C. The detection wavelength were 254, 280, 330 and 354 nm, and DAD was recorded from 200 to 800 nm for peak characterization. Mobile phases were 1 % formic aqueous solution (A) and acetonitrile (B). The gradient program time (min, % B) was: (0.00, 5); (5.00, 5); (10.00, 30); (15.00, 30); (20.00, 70); (25.00, 70); (35.00, 5) and 12 min for column equilibration before each injection. The flow rate was 1.00 mL min⁻¹, and the injection volume was 10 μL. Standards and the resin extract dissolved in methanol were kept at 10 °C.

2.8. Antioxidant assays

2.8.1. DPPH free radical scavenging activity

The free radical scavenging activity of the resin was determined by the DPPH assay as previously described (Ramirez et al., 2015). Values are reported as IC₅₀ which denotes the concentration of sample required to scavenge 50 % of DPPH free radicals.

2.8.2. ABTS assay

The activity was performed using the ABTS radical cation assay as reported (Sogi et al., 2013). Briefly, 7 mM ABTS was mixed with potassium persulfate 2.45 mM (1:1 v/v) and allowed to stand for 12 h to produce the radical cation. The obtained solution was then diluted to get and absorbance of 0.7 at 734 nm. Then the ABTS solution (3 mL) was mixed with 30 μL of sample and measured after 6 min in the spectrophotometer.

2.8.3. Superoxide anion scavenging assay

The enzyme xanthine oxidase produces superoxide anion radical (O₂⁻) “in vivo” which in turn reduces the nitro blue tetrazolium dye (NBT), leading to a chromophore compound at 520 nm. The Superoxide anion scavenging activities (SAA) of the resin extract and standards were measured spectrophotometrically as reported previously (Simirgiotis et al., 2016a).

2.9. Polyphenol, flavonoid and anthocyanin contents

The total polyphenolic contents (TPC) were determined by the Folin-Ciocalteau method as reported (Simirgiotis et al., 2013b). Determination of total flavonoid content (TFC) of the resin was performed as previously described (Simirgiotis et al., 2013b).

2.10. Cell culture

The human breast non-tumorigenic cell line MCF10F (ATCC), considered the normal counterpart, were used to evaluate the cytotoxic effect and only MCF10F for antioxidant effect in vitro of the extract and pure compounds. These cells were cultured in specific media according to ATCC recommendations. The incubation conditions were established at 37 °C, complete humid atmosphere, 5% CO₂ and 95% O₂.

2.11. Reactive oxygen species (ROS) scavenging activity

MCF10F cells were seeded in 6-well plate (4 × 10⁵ cells per well) and incubated overnight. Cells were exposed to a pretreatment of different concentrations of ethanol extract (10–100 μg/mL) and pure compound (10–200 μM) for 1 h, and then 25 μM of pyocyanin (PCN) was added, as generator of ROS. Three controls were used: DMSO 0.5% was used as vehicle control, N-acetylcysteine 20 mM (NAC) was used for its antioxidant mechanism and pyocyanin was used has ROS producer. The effect of each treatment with PCN was assayed for 30 min. Reactive oxygen species generated by PCN treatment were detected using Muse® Oxidative Stress Kit (Merck #MCH100111) in the Muse Cell Analyzer® (Merck) according manufacture instructions. The Muse® Oxidative Stress Kit allows for the quantitative measurements of ROS in cells undergoing oxidative stress based on the intracellular detection of superoxide radicals. The assay provides relative percentage of cells that are ROS negative and positive.

2.12. Statistical analysis

The statistical analysis was carried out using the originPro 9.1 software packages (Originlab Corporation, Northampton, MA, USA). The determination was repeated at least three times for each sample solution. Analysis of variance was performed using ANOVA. Significant differences between means were determined by Tukey's comparison test (p values < 0.05 were regarded as significant). For biological assays the analysis of variance was performed using one-way ANOVA, using the Dunnett's test to determined significant difference between control group and treatments (p value < 0.05).

3. Results and discussion

The data-dependent scan experiment was very useful for the identification of unknown phenolic compounds since it provides high resolution and accurate mass product ion spectra from precursor ions that are unknown beforehand within a single run (Fig. 2). Combining data-dependent scan and MS² experiments, phenolic compounds were tentatively identified in P. lucida including simple flavones, flavonols, flavanones, coumarins, tremetones, phenolic acids, fatty acids, acetoephones and clerodane terpenoids. Some of the compounds were identified by spiking experiments with available standards. As far as we know, some of the compounds were reported for the first time: aesculetin, 6-hydroxy-7-methoxytremetone, 19-hydroxy-bacchalinol A acetate and derivatives, and dehidro-19-acetyl-
hawthronic acid methyl ester. The generation of molecular formulas was performed using high resolution accurate mass analysis (HRAM) and matching with the isotopic pattern. Lastly, analyzes were confirmed using MS/MS data and comparing the fragments found with the literature. Figs. S10–S12 (Supplementary material) show the full HR-MS spectra and biosynthetic relationships between the compounds under study.

3.1. Phenolics, flavonoids and antioxidant capacities of P. lucida

The ferric reducing antioxidant power (FRAP), scavenging of DPPH free radical, and superoxide anion scavenging (SAA) assays were used to evaluate antioxidant capacities of *P. lucida* (see Table 1). These methods are simple and widely used for the evaluation of antioxidant capacity (Lopez-Alarcon and Denicola, 2013). Moreover, we determined the total phenolic content (TPC) and total flavonoid content (TFC) calculated in dried weight basis of sample (see Table 1), and compared to other plants or fruit material previously analyzed by us. Thus, the TPC values of this plant, 185.12 ± 3.32 mg GAE/g dry weight, were close to those obtained for the aerial parts of *Luma apiculata* (179.83 ± 0.38 mg GAE/g), while the total flavonoid content (163.14 ± 2.84 mg Q/g), were also close than the aerial parts of *L. apiculata* (139.70 ± 1.48 mg Q/g) (Simirgiotis et al., 2013a). In the DPPH assay, *P. lucida* (4.23 ± 0.18) exhibited more DPPH scavenging capacity than the standard quercetin (9.08 ± 0.65). The DPPH values 4.23 ± 0.18 mg/mL, were higher than those obtained for three Chilean Nolana species (from 30 to 120 µg/mL) (Simirgiotis et al., 2015), but were close to those reported for some antioxidant Chilean berries (from 2 to 12 µg/mL) (Ramirez et al., 2015). The ABTS values (1.57 ± 11.42 µM Trolox equivalents/g dry weight) were higher to that of several parts of mango fruits, the value for several reported mango kernels were from 1110 to 1124 µM Trolox equivalents/g dry weight (Sogi et al., 2013). The superoxide anion scavenging activity (SAA) of *P. lucida* (98.12 ± 2.24%) and was higher than reported for blueberries *Vaccinium coriibosum* (72.61 ± 1.91%) (Ramirez et al., 2015) (Table 1).

3.2. Metabolomic analyses

We have determined several metabolites including: 18 flavonoids (peaks 12, 13, 15, 16, 18–28, 30, 31 and 33), 5 coumarins (peaks 5, 6, 8, 10 and 28), 5 tremetones (peaks 29, 32, 35–37), 5 phenolic acids (peaks 1, 4, 7, 9 and 11), 2 fatty acids (Peaks 2 and 3), 2 acetophenones (peaks 14 and 17), and 5 clerodane terpenoids (peaks 34, 38–40 and 42) were identified in the UHPLC chromatogram of the resin of *P. lucida* (Fig. 2). The detailed identification is explained below (see Table 2 and Figs. S11 and S12).

Table 1

Species	DPPH^a	ABTS^b	SAA^c	TPC^d	TFC^e	Extraction Yields (%)^f
P. lucida	4.23 ± 0.18	1.574 ± 11.42	98.12 ± 2.24^d	185.12 ± 3.32	163.14 ± 2.84	41.2
Gallic acid	1.47 ± 0.05	–	93.09 ± 2.37^d	–	–	–
Quercetin	9.08 ± 0.65	–	69.41 ± 2.92^d	–	–	–

^a Antiradical DPPH activities are expressed as IC₅₀ in µg/mL for extracts and compounds.
^b Expressed as µM trolox equivalents/g dry weight.
^c Expressed in percentage scavenging of superoxide anion at 100 µg/mL.
^d Total phenolic content (TPC) expressed as mg gallic acid/g dry weight.
^e Total flavonoid content (TFC) expressed as mg quercetin/g dry weight.
^f Extraction yields expressed in percent (%) by extraction on the basis of fresh material.

Table 1 Scavenging of the 1,1-diphenyl-2-picylhydrazyl Radical (DPPH), ABTS antioxidant activity (ABTS), Superoxide anion scavenging activity (SAA), Total phenolic content (TPC), Total flavonoid content (TFC) and extraction yields of *Parastrephia lucida* from the I Region of Chile.
effects and health benefits have been associated with flavonoid consumption. Examples of those compounds identified are depicted in Fig. S11.

3.2.1.1. Flavones. Luteolin-7-O-glucoside (m/z 447.0934) was identified and confirmed through literature (Ammar et al., 2016). Its aglycone, luteolin (m/z 285.0405) was found and identified by co-elution with an authentic compound. The luteolin derivatives: 3’-methoxyluteolin, 7-methoxyluteolin (m/z 299.0562 and m/z 299.0562, respectively), and 7,3’-dimethoxyluteolin (m/z 313.0718) were also assigned. Apigenin (m/z 269.0455) and 7-methoxyapigenin (m/z 283.0613) were also identified (Table 2).

3.2.1.2. Flavonols. The flavonol isorhamnetin (m/z 315.0512) (Simigratios et al., 2016a) was identified and confirmed by co-injection with an authentic standard. An isomer of the latter was identified as 7-methoxyquercetin (m/z: 315.0511). Quercetin (m/z: 301.0355) was found and identified by co-elution with an authentic compound. Some quercetin derivatives have been also identified as 3’-methoxyquercetin and 7,3’-methoxyquercetin (m/z: 315.0511 and 329.0668, respectively). Kaempferol (m/z: 285.0406) was found in P. lucida by analysis of the chromatograms. In addition, the examination of the chromatograms, led to identification of four myricetin derivatives: 7-methoxymyricetin (m/z: 331.0461), 7,3’-trimethoxymyricetin (m/z: 359.0774) and the isomers 3,7-dimethoxymyricetin (m/z: 345.0617) and 3,7-dimethoxymyricetin (m/z: 345.0618).

3.2.1.3. Flavanones. The flavanone naringenin have been previously reported as main component in extracts of Easter pears by us (Pyrus communis) (Simigratios et al., 2016a) and its MS and UV data matched the one obtained in our P. lucida chromatogram (m/z: 271.0612).

3.2.2. Coumarins

These compounds are classified as a member of the benzopyrone family. All of which consist of a benzene ring joined to a pyrone ring (Fig. S12 (Supplementary material)). It possesses immeasurable anticancer potential with minimum side effects depending on the substitutions on the basic nucleus. Coumarins have a tremendous ability to regulate diverse range of cellular pathways that can be explored for selective anticancer activity (Thakur et al., 2015). Four coumarins were identified in total ion current (TIC), in negative mode and dependent scan spectra:
esculetin (m/z: 177.0190), 7-methoxyesculetin (m/z: 191.0346), 8-hydroxy-7-methoxyesculetin (m/z: 207.0296), 8-hydroxy-7-methoxyscopoletin (m/z: 221.0452) and umbelliferone (m/z: 162.0318) (Simirgiotis et al., 2013b).

3.2.3. Tremetones
These core structures are considered as one of the important heterocyclic rings because of its diverse biological profiles (Kamal et al., 2011). Indeed, medicinal chemists are actively involved in the synthesis of benzofuran ring containing molecules due to its clinical importance (Keay and Hopkins, 2008; Keay et al., 2008). Many of the clinically approved drugs are synthetic and naturally occurring substituted benzofuran derivatives containing fused benzofuran rings in conjunction with other heterocycles. This heterocyclic ring was identified in 5 compounds from P. lucida: p-coumaroyloxytremetone (m/z: 363.1239) (Loyola et al., 1985) and its derivative 7-methoxy-p-coumaroyloxytremetone (m/z: 393.1346), dehidro-6,7-dimethoxytremetone (m/z: 263.1288), 6-hydroxy-7-methoxytremetone (m/z: 247.0974), and dehidro-6-hydroxy-7-methoxytremetone (m/z: 249.1131). In this work we have proposed some biosynthetic relationships for those tremetone derivatives (see Fig. 3).

3.2.4. Phenolic acids
The examination of the chromatograms revealed the presence of 5 phenolic acids: quinic acid (m/z 191.0558) and its derivative dicafeoylquinic acid (m/z 515.1196), caffeic acid (m/z 179.0346) which was identified by comparison with literature (Brito et al., 2014), chlorogenic acid and p-coumaric acid (m/z 353.0880 and m/z 163.0395, respectively) (Simirgiotis et al., 2016a).

3.2.5. Fatty acids
Peak 2 and 3 were tentatively identified as the fatty acids 2,4,5,6,7-pentahydroxypentanoic acid (m/z 209.0664), and 2,4,5,6-tetrahydroxyhexanoic acid (m/z 195.0506).

3.2.6. Acetophenones
These types of compounds were assigned by the presence of 2 peaks on the chromatogram from P. lucida ethanolic extract: 4-hydroxy-3-methoxyacetophenone (m/z 165.0552), and 4-hydroxy-3-methoxypropionophenone (m/z 179.0710) (Kim et al., 2013).

3.2.7. Clerodane terpenoids
Several ent-clerodanes terpenoids were identified. Dehidro-19-acetyl-hawtriwaic acid methyl ester (m/z 389.2335) was related to the furanyl clerodane diterpene hawtriwaic acid (Simirgiotis et al., 2000) while peak 39 was identified as the related compound 19-acetyl-3-O-methoxy-hawtriwaic acid methyl ester (m/z 375.2178) and 19-acetyl-1,2-dihydroxy-hawtriwaic acid methyl ester (m/z 419.2077). Other compounds detected were related to the antibacterial compound solidaagoic acid A, peak 42 (m/z 302.2245) (Nogueira et al., 2001; Starks et al., 2010). Thus, peak 38 was identified as 19-hydroxy-bacchalineol A acetate (m/z 359.2229).

3.3. Biological evaluation of p-coumaroyloxytremetone
To complement the antioxidant activity measured by chemical assays, we have also characterized the antioxidant capacity by reactive oxygen species (ROS) scavenging activity in human derived breast cell lines, induced by the ethanolic extract and the pure phenolic compound isolated from P. lucida.

Thus, to validate the results of antioxidant capacities measured by FRAP, scavenging DPPH and superoxide anion scavenging assays, the antioxidant capacities of the ethanolic extract and the pure isolated compound p-coumaroyloxytremetone (2) in MCF10F cell line using Muse® Oxidative Stress Kit. This assay is based on dihydroethidium (DHE) which is cell permeable; inside the cell DHE reacts principally with superoxide anions, undergoes oxidation to form the DNA-binding fluorophore ethidium bromide which intercalates with DNA resulting in red fluorescence...
(Bindokas et al., 1996). PCN was used as a ROS producer, and NAC as a positive control of antioxidant agent.

The ethanolic extract doses (10–100 μg/mL) were not able to counteract the oxidizing effect of pyocyanin in MCF10F cell line (see Fig. 4). Moreover, in the ethanol extract there are a variety of chemical compounds; these can show an antioxidant effect in chemical assays, but it should not necessarily correlate with an antioxidant activity in a vitro system, like MCF10F cells (Lopez-Alarcon and Denicola, 2013). Otherwise, the p-coumaroyloxytremetone (2) pretreatment applied on cell line MCF10F protect it against oxidant action of PCN, being evident from 50 μM, returning to ROS + control levels from 100 μM dose (no significant differences comparing with control DMSO). Cancer cells have an abnormal redox system, and it has been reported that many types of breast cancer cells have increased levels of ROS, comparing with their normal counterparts (Kobayashi and Suda, 2012). Increase ROS levels in cancer cells have been shown to correlate with the aggressiveness of tumors and poor prognosis for patients (Jezierska-Drutel et al., 2013). There are many reports including studies with phenolic compounds derived from plants of the Asteraceae family, with antioxidant properties in MCF7, HeLa, and other derived cancer cells lines (Agar et al., 2015; Kashif et al., 2015; Kumar et al., 2014), including sesquiterpenes (Kobayashi and Suda, 2012). Increase ROS levels in cancer cells have been shown to correlate with the aggressiveness of tumors and poor prognosis for patients (Jezierska-Drutel et al., 2013).

4. Conclusions

Using UHPLC high resolution orbit mass spectrometry, (UHPLC-OT-HR-MS) we have identified 42 phenolic compounds in the ethanolic extract of *Parastrephia lucida*, most of which, as far as we know, are reported for the first time. Many of these compounds are flavonoids (flavones, flavonols and flavanones), coumarins, tremetones, phenolic acids, fatty acids, acetoephones and clerodane terpenoids. Furthermore, the results obtained in this study clearly show that the ethanolic extract can be a natural source of antioxidants with potential application in food or pharmaceutical industries, given the high activity found in our evaluated models (DPPH, ABTS). Moreover, this extract showed the highest content of phenols and higher radical scavenging activity. The isolated and identified coumaric acid metabolite *p*-coumaroyloxytremetone has antioxidant characteristics that may be associated with the radical scavenging capacity found in the crude extract. This is the first report showing the antioxidant activity of *p*-coumaroyloxytremetone on breast cell lines. This study broadens the knowledge of *P. lucida* from northern Chile. This knowledge might be helpful for further research on *P. lucida* and its applications in food industry. In conclusion, this plant is a very rich source of phenolic compounds with antioxidant activity that could be useful for the preparation of nutraceuticals or healthy foods.

Acknowledgements

This study was supported by CONICYT-FONDECYT (Grant 1140178), FONDEQUIP (EQM140002), FIC BIP N° 3017027-0 (CORE Arica y Parinacota). We really appreciate the collaboration of Gloria Rojas in taxonomic identification of the collected specimens.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jsps.2017.03.001.

References

Agar, O.T., Dikmen, M., Ozturk, N., Yılmaz, M.A., Temel, H., Turkmenoglu, F.P., 2015. Comparative studies on phenolic composition, antioxidant, wound healing and cytotoxic activities of selected *Achillea* L species growing in Turkey. Molecules 20, 17976–18000.

Al-Fatlawi, A.A., Irshad, M., Rahisuddin, Ahmad, A., 2015. Effect of parthenolide on growth and apoptosis regulatory genes of human cancer cell lines. Pharm. Biol. 53, 104–109.

Ammar, N., El-Hawary, S., Mohamed, D., El-Halawany, A., El-Anssary, A., El-Kassem, L., Hussein, R., Jaleel, G., El-Dosoky, A., 2016. Estrogenic activity including bone enhancement and effect on lipid profile of luteolin-7-O-glucoside isolated from *Trifolium alexandrinum* L. in ovariectomized rats. Phytother. Res. 30, 768–773.

Benites, J., Gutierrez, E., Lopez, J., Rojas, M., Rojo, L., Costa, M.C., Vinardell, M.P., Calderon, P.B., 2012. Evaluation of analgesic activities of tremetone derivatives isolated from the Chilean allitopiano medicine *Parastrephia lepidophylla*. Nat. Prod. Commun. 7, 611–614.

Bindokas, V.P., Jordan, J., Lee, C.C., Miller, R.J., 1996. Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J. Neurosci. 16, 1324–1336.

Bohlmann, F., Fritz, U., King, R.M., 1979. Neue tremeton-derivate aus *Parastrephia lucida* (Meyen) Cabrera. J. Ethnoprarm. 142, 407–414.

Brito, A., Ramirez, J.E., Arcehe, C., Sepúlveda, B., Simirgiotis, M.J., 2014. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 19, 17400–17421.

Brito, I., Simirgiotis, M., Muñoz, R., Benites, J., Pasten, L., Bóquez, J., Cárdenas, A., 2017. Crystal structure of 11-(p-coumaroyloxy)-tremetone, *C*_{22}H_{20}O_{8}. Z. Kristallogr. NCS 232, 13–14.

CONAMA, 2008. Biodiversidad de Chile, Patrimonio y Desafíos – Capítulo II Nuestra Diversidad Biológica. Ocho Libros Editores, Santiago de Chile.

D’Almeida, R.E., Alberto, M.R., Quspe, C., Schmeda-Hirschmann, G., Isla, M.J., 2012. Antimicrobial phenylpropanoids from the Argentinean highland plant *Parastrephia lucida* (Meyen) Cabrera. J. Ethnopharm. 142, 407–414.

Garneau, F.-X., Collin, G.J., Jean, F.-I., Gagnon, H., Lopez Arze, J.B., 2013. Essential oils from Bolivia. XII. Asteraceae: Ophryosporus piquerioides (DC) Benth. ex Baker. J. Essential Oil Res. 25, 388–393.

Genin, D., Pech, H.-J., Lizarazu, R., 1995. WAIRA PAMPA: Un sistema pastoral camélidos-oeinos del altiplano árido boliviano.

Jezierska-Drutel, A., Rosenzweig, S.A., Neumann, C.A., 2013. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv. Cancer Res. 119, 107–125.

Kamal, M., Shakya, A.K., Jawaid, T., 2011. Benzofurans: a new profile of biological activities. Int. J. Med. Pharm. Sci. 1, 1–15.
