Parasite assemblages of whitemouth croaker, *Micropogonias furnieri*: comparison between marine and brackish waters from the Argentine Sea

Ana J. Alarcos1 · Paola E. Braicovich1

Received: 5 August 2021 / Accepted: 16 December 2021 / Published online: 23 January 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

The whitemouth croaker, *Micropogonias furnieri*, a coastal demersal fish with wide distribution in the Southwest Atlantic Ocean, is a euryhaline species, inhabiting waters with a wide range in salinity. Here, the composition of parasite assemblages of *M. furnieri* caught along the coastal area off Mar del Plata, Argentina, was described and the infracommunity structure compared with fish from brackish waters to determine variations of its parasite communities due to fish migration between these environments. The relationships between the presence of parasites and the diet and ecological traits of this fish host were discussed. A total of 61 fish from Mar del Plata (MDP) were examined for parasites and compared with previously published data for whitemouth croakers from Mar Chiquita coastal lagoon (MCH), an estuarine system connected to the sea. *Corynosoma australe*, *Dichelyne sciaenidicola*, and *Neopterinotrematoides avaginata* were the most prevalent and abundant species in MDP. Comparisons of infracommunity descriptors showed that fish from MDP harbored a higher number of parasites, as well as richer and more diverse infracommunities than those of MCH. Significant differences occurred in the structure and composition of parasite assemblages of whitemouth croaker from MDP compared to those from MCH, in which *Neomacrovalvitrema argentinensis*, *N. avaginata*, *Neobrachiella chevreuxii*, *D. sciaenidicola*, and *C. australe* were the key discriminating species related to these differences. The present study provides comparative data, of great importance for the understanding of parasite-host-environment interactions, particularly in a host that alternates between brackish and marine waters during its life cycle.

Keywords Parasite ecology · Fishes · Sciaenidae · Community structure · Argentine Sea

Introduction

The whitemouth croaker, *Micropogonias furnieri* (Desmarest, 1823), is a coastal demersal species, with wide distribution in the Southwest Atlantic Ocean, from Gulf of Mexico (20° 20′N) to San Jorge Gulf (47° 00′S) in Argentina (Sánchez et al. 1991; Cousseau and Perrota 2013). This species is an important euryhaline estuarine-dependent sciaenid, inhabiting waters with a wide salinity range. It is an important component of commercial and recreational fisheries of the coastal and estuarine areas in the southwestern Atlantic (Jaureguizar et al. 2003). In Argentina, it occurs in estuaries and coastal lagoons, which are variable and lower salinity systems, and in marine areas, with homogenous and higher salinity environments. The highest concentration of this resource is located in the Río de la Plata estuary, north to Mar del Plata, while toward the south, it also reaches significant concentrations in a zone known as El Rincón estuary (Acha et al. 2004; Carozza et al. 2004; Lucas et al. 2005).

In Argentina, *M. furnieri* is exploited by different types of fishing operations, using different fishing strategies, resulting in variable impact on this natural resource during some periods of the year. This fish is also included in a fishing practice known as “variado costero”, which is based on the exploitation of different fish species as a single resource,
disregarding population dynamics of each species (Carozza et al. 2004). The most important landing ports for *M. furnieri* are found in the Buenos Aires Province, where in the port of Mar del Plata the species accounts for 65% of the total annual catch (Carozza et al. 2000). Therefore, studies regarding this fish are important, especially for the application of policies for the specific assessment methods or fishery management plans.

Whitemouth croakers have generalist-opportunistic trophic behavior, feeding mainly on benthic organisms (polychaetes, bivalves, snails, shrimp, and small crustaceans) (Martins and Haimovici 2020) and occasionally on small fish, such as anchovy (Cousseau and Perrota 2013). Juveniles often leave the open sea and enter streams and estuaries and have been found in estuarine environments in Buenos Aires Province, inhabiting shallow waters with low levels of salinity, along with adult whitemouth croakers (Sánchez et al. 1991; Jaureguizar et al. 2003, 2008). Thus, *M. furnieri* uses the World Reserve of Biosphere Mar Chiquita, a coastal lagoon, located in Buenos Aires Province, as a nursery and feeding area, where small-scale fishing is carried out by commercial fishermen year-round (Hozbor and García de la Rosa 2000; Cousseau et al. 2001).

Estuaries are transitional environments, especially regarding water salinity and temperature, two of the main factors affecting the distribution and abundance of marine parasites (Rohde 1992; Zander 2004). Therefore, changes in environmental conditions are expected to influence the composition of parasite communities of fish inhabiting (or visiting) estuarine waters. Previous parasite records in *M. furnieri* from Argentina included monogeneans, digeneans, nematodes, and trichodinid ciliophorans (Martorelli et al. 2007, 2013; Marcotegui and Martorelli 2009; Timi et al. 2009; Montes et al. 2016). However, studies of quantitative aspects of the parasite communities of *M. furnieri* from Mar del Plata coastal area, Bahía Samborombón, and Mar Chiquita coastal lagoon (Sardella et al. 1995; Alarcos and Etchegoin 2010) have not been used to date for comparing the structure of parasite assemblages. Therefore, the aim of this study was to describe the composition and structure of the parasite assemblages of the whitemouth croaker, inhabiting a marine environment in the Mar del Plata coastal area, to evaluate variations in the parasite communities due to fish migration between the marine-brackish water transition zones, as well as to evaluate the relationships between the presence of parasites and the diet and ecological traits of this fish host.

Materials and methods

Fish and parasite sampling

Sixty-one specimens of *M. furnieri* were caught by commercial trawlers, 30 miles off the coast of Mar del Plata city (MDP), Buenos Aires Province, Argentina, in March 2007. Fish were either kept fresh or deep frozen at −18 °C until examination. Whitemouth croakers were measured for total length (TL, mm). Body surface, gills, branchial and body cavities, viscera (stomach, intestine, heart, gonads, and mesenteries), swim bladder, and musculature were examined using a stereomicroscope and metazoan parasites were collected and preserved according to standardized protocols (Pritchard and Kruse 1982; Berland 1984).

In order to compare changes in parasite communities between whitemouth croakers inhabiting the marine coast and those moving into brackish area, previously published data from Mar Chiquita coastal lagoon (MCH) were included in the analysis (Alarcos and Etchegoin 2010). Data related to the 88 hosts analyzed in the present study, along with information on sampling areas, are presented in Table 1 and Fig. 1.

General quantitative analysis of parasites

The prevalence (P) (the number of fish infected divided by the number of fish examined, expressed as a percentage) and mean abundance (MA) (number of parasite found in any fish, divided by the total number of hosts, infected or not) (Bush et al. 1997) were calculated for each parasite species at each sampling site. Sterne’s exact 95% confidence limits, with 95% bootstrap confidence intervals, were calculated for P and MA using Quantitative Parasitology 3.0 software (QP3.0) (Rózsa et al. 2000; Reiczigel et al., 2019).

Similarity analysis at infracommunity level

Comparative analyses were performed including the raw data by Alarcos and Etchegoin 2010 (N = 27, see

Table 1	Location and composition of the samples of whitemouth croakers, *Micropogonias furnieri*, from two regions of the Argentine Sea. TL, total length				
Locality	Capture coordinates	Date of capture	TL mean ± S.D. (range) (mm)	N	Source
------------------	----------------------	-----------------	------------------------------	----	-------------------------
Mar del Plata (MDP)	38°08'S; 57°32'W	March 2007	491.3 ± 64.6 (380–635)	61	Present study
Mar Chiquita (MCH)	37°46'S; 57°27'W	January–February 2005 to April–May 2006	401.5 ± 99.6 (305–628)	27	Alarcos and Etchegoin 2010
Table 1) and a subsample of fish from MDP (N = 30; TL mean [range] = 439.7 [380–480]) from the present study, selected so that TL of fish from MDP were comparable to those from MCH. At the infracommunity level, the following community descriptors were calculated: total abundance (the number of parasites per host, N), species richness (S), and Brillouin’s index of diversity (HB) (because each infracommunity was fully censused) for each individual fish harboring two or more parasites species (Magurran 1988). The potential relationship of the infracommunity indices (N, S, and HB) to host size was tested by mean of Spearman’s rank correlation (Zar 1999).

Given the variability of the samples in relation to year of capture and fish length, we expected that a considerable proportion of the observed differences in parasite abundance would be explained by these factors. Consequently, multivariate analyses were conducted using both Bray–Curtis index (based on abundances) and Jaccard index (based on presence/absence) data to diminish the effect of year of capture and host length on parasite loads, allowing the

Fig. 1 Location of sampling areas in Buenos Aires Province, Argentina: Mar Chiquita coastal lagoon (MCH) and Mar del Plata coastal area (MDP)
location effects to be more evident. The total length of fish was compared across the sites by Mann–Whitney rank sum test because the test for normality (Kolmogorov–Smirnov test) failed ($P > 0.05$).

The differences in infracommunity composition between samples were tested by 1-way permutational multivariate analysis of variance (PERMANOVA) using the abundance values for all the identified parasite species. Following Anderson et al. (2008), a permutation of residuals with a reduced model was used as the method of permutation. A sequential sum of squares (Type I SS) was applied because host size was introduced as a covariable (ANCOVA model) and the samples were unbalanced (different numbers of fish examined by sample). The differences in infracommunity composition between sites were tested, using a 1×2 factorial design, with “locality” as the fixed factor. The TL was included as a covariable. Differences in community structure between localities were tested using Bray–Curtis (abundances) and Jaccard (presence/absence) (Magurran 1988) indices as similarity measurements, respectively, for all identified parasite species.

Nonparametric statistics based on the Bray–Curtis and the Jaccard similarity matrices were calculated using parasite abundance between all possible pairs of hosts (infracommunities) in PERMANOVA + package implemented in PRIMER V6 (Clarke and Gorley 2006; Anderson et al. 2008). The Bray–Curtis index was used as a measure of dissimilarity on square-root-transformed data to decrease the weight of common species relative to rare species in the index. As PERMANOVA is sensitive to differences in multivariate dispersion between groups, the same models were tested for differences in dispersion using the routine PERMDISP (Anderson et al. 2008). Dispersion was measured as the distance to the centroids.

Nonmetric multidimensional scaling (nMDS) (Clarke and Gorley 2006) was performed to obtain a graphical ordination of patterns in the composition of parasite assemblages across the two locations. MDS was conducted using the Bray–Curtis and Jaccard similarity indices at the infracommunity level. The fit of the nMDS ordinations was quantified by a value of stress.

Results

General quantitative analysis of parasites

A total of 6722 parasites were quantified from MDP. Each whitemouth croaker was parasitized by at least three of 14 metazoan parasite species (3 Nematoda, 2 Acanthocephala, 2 Monogenea, 2 Digenea, 1 Aspidobothrea, 2 Cestoda, and 2 Copepoda) (Table 2). The acanthocephalan *Corynosoma australe*, the nematode *Dichelyne sciaenidicola*, and the monogenean *Neopterinotrematoides avaginata* were the most prevalent and abundant species, representing together 90.87% of all the parasites recovered (75.66%, 8.09%, and 7.12%, respectively).

The fish from MDP harbored similar percentages of adult and larval stages of parasite species, representing 57.1% and 42.9% of the parasite richness, respectively (Table 2). The maximum infracommunity species richness (eight species) was found in only one fish from MDP.

Similarity analysis at infracommunity level

When the subsamples from MDP and MCH were analyzed, significant differences were observed for all infracommunity indices, regarding richness ($H_1 = 18.893, P < 0.01$), total number of parasites ($H_1 = 23.352, P < 0.01$), and Brillouin’s index of diversity ($H_1 = 9.957, P < 0.01$), for those hosts harboring one or more parasite species. Parasite abundance, species richness, and Brillouin’s index were higher in MDP (Fig. 2). Diversity, species richness, and number of parasites increased significantly with the host length ($r^2 = 0.30, r^2 = 0.37$, and $r^2 = 0.44$, for fish from MDP and $r^2 = 0.32, r^2 = 0.31$, and $r^2 = 0.29$ for fish from MCH all $P < 0.01$, respectively).

Significant differences in fish TL were found, in which whitemouth croakers from MCH were smaller than those from MDP (Mann–Whitney U test, $U = 557, P < 0.01$). PERMANOVA analyses on both Bray–Curtis (abundance) and Jaccard (presence/absence) of parasites of *M. furnieri* (Table 3) showed an effect of host TL on infracommunity structure and composition, although no interaction between host TL and the locality was observed (Table 3). Significant variability was detected between localities after considering the variations among samples due to host TL ($P_{\text{perm}} < 0.01$). A proportion of these differences can be attributed to differences in the multivariate dispersions of parasite infracommunities measured by their deviations from centroids because the PERMDISP results were significant for both the Bray–Curtis and Jaccard indices ($F_{1,54} = 32.356$, and $F_{1,54} = 25.288$, respectively, all $P_{\text{perm}} < 0.01$).

The nMDS ordination plot based on the Bray–Curtis index (abundances) (Fig. 3a) and Jaccard index (presence/absence) (Fig. 3b) showed a separation of the parasite assemblages, where the sample from MDP formed a distinct group from that of MCH, the latter being more dispersed. However, higher overlap of MCH and MDP was observed in the plot based on Jaccard index data (Fig. 3b). A relatively good fit was accomplished through these ordinations as the stress value was 0.14 for Bray–Curtis and 0.12 for Jaccard. The parasites that most contributed ($r > 0.4$) to this separation were the most abundant and prevalent species. Abundances of *Neomacrovalvitrema argentensis*, *N. avaginata*, *Neobrachiella chevreuxii*, *D.
Table 2 Prevalence (P), mean abundance (MA), and site of infection of parasites of *Micropogonias furnieri*, from two regions of the Argentine Sea (MDP, Mar del Plata coastal area; MCH, Mar Chiquita coastal lagoon). The P and MA include 95% bootstrap confidence interval (BCI). BCI_{inf}, low limit; BCI_{up}, upper limit. Sterne’s exact method up to N=1000. Number of bootstrap replications = 2000. (l) larva, (a) adult

Parasite species	Site of infection	MDP P (BCI_{inf}–BCI_{up})	MCH P (BCI_{inf}–BCI_{up})
Nematoda			
Dichelyne sciaenidicola (a)	Intestine	96.7 (88.77–99.41)	81.5 (63.12–92.40)
Ascarophis marina (a)	Intestine	0.00	3.70 (0.19–18.12)
Anisakis sp. (l)	Body cavity	0.00	3.70 (0.19–18.12)
Lappetasicaris sp. (l)	Intestine	0.00	3.70 (0.19–18.12)
Hysterothylacium sp. (l)	Body cavity	1.60 (0.09–8.73)	3.70 (0.19–18.12)
Hysterothylacium aduncum (l)	Intestine	6.60 (2.28–16.13)	3.70 (0.19–18.12)
Terranova sp. (l)	Body cavity	0.00	3.70 (0.19–18.12)
Acanthocephala			
Profilicollis chasmagnathi (l)	Body cavity/intestine	0.00	29.60 (14.77–50.00)
Corynosoma austral (l)	Body cavity	93.40 (83.87–97.72)	18.50 (7.60–36.88)
Corynosoma cetaceum (l)	Body cavity	9.80 (4.38–20.28)	3.70 (0.19–18.12)
Monogenea			
Neomacrovalvitrema argentinensis (a)	Gills	59.00 (45.88–70.60)	29.60 (14.77–50.00)
Neopterinotrematoies avaginata (a)	Gills	88.50 (78.03–94.49)	18.50 (7.60–36.88)
Digenea			
Lecithochirium microstomum (a)	Stomach	2.89 (0.52–9.93)	2.60 (0.00–1.03)
Pachycreadium gastrocotylum (a)	Stomach/intestine	26.20 (16.14–38.46)	3.70 (0.19–18.12)
Aspidogastrea			
Lobatostoma ringens (a)	Intestine	21.73 (12.50–3350)	7.40 (1.34–23.70)
Cestoda			
Pterobothrium cf. heteracanthum (l)	Body cavity	0.00	3.70 (0.19–18.12)
Scolex polymorphus (l)	Intestine	3.30 (0.59–11.23)	0.00
Callitetrarhynchus cf. gracilis (l)	Body cavity	3.30 (0.59–11.23)	0.00
Copepoda			
Clavellotis sp. (a)	Gills	6.60 (2.28–16.13)	3.70 (0.19–18.12)
Neobrachiella chevreuxii (a)	Gills	13.10 (6.15–24.39)	3.70 (0.19–18.12)

sciaenidicola, and *C. austral* were related to MDP samples, while *Profilicollis chasmagnathi* was the only species associated to MCH samples (Fig. 3a). A similar pattern was observed when the Jaccard index was applied, except that *D. sciaenidicola* was not important in the sample from MDP (Fig. 3b). When host TL was overlaid as an explanatory variable, it was evident that this variable contributed to the observed distribution pattern of samples (Fig. 3).

Discussion

Studies on parasites of *M. furnieri* from the Argentine coastal zone are mainly descriptive (Suriano 1966; Rohde et al. 1995; Sardella et al. 1995; Timi et al. 2009), although Alarcos and Etchegoin (2010) analyzed the influence of the brackish environment on the parasite species composition.
of this fish from Mar Chiquita coastal lagoon. Previous records of helminth parasites in *M. furnieri* in Argentine include 3 monogeneans, 2 digeneans, 1 aspidogastrean, 1 cestode, 6 nematodes, and 4 acanthocephalans (Sardella et al. 1995; Timi et al. 2009; Alarcos and Etchegoin 2010); however, only 9 species were reported in the marine zone (Sardella et al. 1995). Thus, the present findings represent new host records in fish from the marine environment for the nematode *Hysterothylacium aduncum* and the cestodes *Scolex polymorphus* and *Callitetrarhynchus cf. gracilis*, increasing the known helminth parasites of *M. furnieri* to 19 species in this region. All the infracommunity indices in whitemouth croakers from MDP were higher than those found from MCH. However, at the component community level, the total number of species found was lower in MDP than that in MCH, being 14 and 16 species, respectively, with 10 species shared in the two localities (Alarcos and Etchegoin 2010). In the whitemouth croakers from MCH, 3 nematodes (*Ascarophis marina, Anisakis* sp., and *Lappetascaris* sp.), 1 acanthocephalan (*P. chasmagnathi*), and 1 cestode (*Pterobothrium cf. heteracanthum*) were found at a prevalence lower than 10% (with the exception of *P. chasmagnathi*) (Alarcos and Etchegoin 2010), and these parasites were not found in MDP. These parasite species are involved in marine life cycles and such infections in the whitemouth croaker may be considered accidental and probably occur only occasionally, when fish make inursions into waters further offshore.

The cystacanth *C. australe*, the adult nematode *D. sciaenidicola*, and the monogeneans *N. avaginata* and *N. argentinensis* dominated the parasite community in MDP, while the nematode *D. sciaenidicola* and cystacanth *P. chasmagnathi* were the most prevalent and abundant species in MCH. The nematode *H. aduncum* and the cestodes *S. polymorphus* and *C. cf. gracilis* were found in the whitemouth croakers from MDP and absent in MCH. *Corynosoma australum* is reported frequently in various fishes from central and northern areas of Argentine Sea (Cantatore and Timi 2015; Canel et al. 2019), being highly abundant in other sciaenids (i.e., *Umbrina canosai*) in the same region. These sciaenid fishes may specialize for preying on intermediate hosts of *C. australum* (Canel et al. 2019), which could contribute to their abundance in whitemouth croakers from MDP, while in fish from MCH the effect of the smaller host size or lower host age may be responsible for the lower infection rates in MCH, as this parasite is long-lived and its infections tend to the cumulative over time (Braicovich et al. 2016). The adult nematode *D. sciaenidicola* was found in samples from both marine and estuarine habitats. Even though the intermediate host of this nematode is unknown, other congeners use polychaetes as intermediate hosts (Køie 2001). These nematodes are found in the intestine reflecting the dietary preferences of their hosts. Therefore, due to the high prevalence and abundance of *D. sciaenidicola* in whitemouth croakers from MDP and MCH as well as in croakers from other areas (Alves and Luque 2001), it could be assumed that polychaetes are not only present in the diet of young croakers, as previous studies suggested (Hozbor and García de la Rosa 2000), but also are important in the diet of larger fish. The monogeneans *N. avaginata* and *N. argentinensis* had high prevalence and abundance in the fish from MDP, and they were also present in MCH, but at lower infection levels. The same pattern was found in whitemouth croakers from Patos Lagoon estuary in Brazil, where the lower loads of *N. avaginata* and *N. argentinensis* in brackish environments...
were related to the preference of these monogeneans for higher salinities (Velloso and Pereira Jr. 2010).

The most prominent feature in the parasite assemblages of the whitemouth croakers from MCH was the high dominance in the intestine of the acanthocephalan cystacanths *P. chasmagnathi* (Alarcos and Etchegoin 2010), which also were found in mesenteries (A.J. Alarcos, personal observation). The parasite may be acquired through the consumption of decapods, e.g., the crabs *Cyrtograpsus angulatus* and *Neohelice granulata*, which serve as intermediate hosts for *P. chasmagnathi* in the lagoon (Etchegoin 1997; Alarcos and Etchegoin 2010; Lorenti et al. 2018). Recently, Levy et al. (2020) found a possible case of incipient parathenia of *P. chasmagnathi* in other fish hosts inhabiting MCH, which could explain the abundance of these cystacanths in the body cavity of the whitemouth croakers. Studies of the patterns of estuarine use and habitat shift based on otolith chemistry in *M. furnieri* from the coastal region of the Southwest Atlantic Ocean suggested that adult fish may remain in estuarine waters after reproduction (Albuquerque et al. 2012). Therefore, the high abundance of *P. chasmagnathi* in fish from MCH and their absence in those from marine habitats suggest that a proportion of adult fish remain for longer periods in estuarine areas, contributing to the different parasite community structure from that of fish from MDP.

Most of the parasite species recovered in the present study have been previously reported in *M. furnieri* from Argentina. Sardella et al. (1995) found fewer parasite species in juvenile and adult fish from the Mar del Plata and Bahía Samborombón coasts compared to the present study (11 vs. 19). Conversely, Alves and Luque (2001) found 28 parasite species infecting *M. furnieri* from the coastal zone of the State of Rio de Janeiro, Brazil. Environmental factors such as latitude and host traits such as diet and body size are all variables associated with the richness of parasite communities (Holmes and Price 1986; Esch et al. 1990; Sousa 1994). The observed differences in abundance and species composition of parasites from MDP and MCH could be a consequence in part of the variable size of fish from MCH. However, it is possible that small-scale characteristics of the coastal systems, mainly

Table 3 PERMANOVA results of comparisons of parasite communities of *Micropogonias furnieri* based on abundance (Bray–Curtis index) and presence-absence (Jaccard index) with host length as covariable across two samples from the Argentine Sea. *P* values obtained after 9999 permutations.

Response variable	Source	d.f	SS	MS	Pseudo F	P (perm)
Infracommunity structure	Host size	1	7054.8	7054.8	4.0075	<0.01
Bray–Curtis similarity	Locality	1	30,630	30,630	17.4	<0.01
	Host size × sample	1	1724.8	1724.8	0.97977	>0.05
	Residual	52	91,541	1760.4		
	Total	55	1.3095e5	1.3095e5	<0.01	<0.01
Infracommunity structure	Host size	1	6825.2	6825.2	3.921	<0.01
Jaccard similarity	Locality	1	25,363	25,363	14.571	<0.01
	Host size × sample	1	1466.4	1466.4	0.84246	>0.05
	Residual	52	90,515	1740.7		
	Total	55	1.2417e5	1.2417e5	<0.01	<0.01

Fig. 3 Non-metric two-dimensional scaling plot (nMDS) based on Bray–Curtis (abundances) (a) and Jaccard (presence/absence) (b) dissimilarity indices of parasite infracommunities of *Micropogonias furnieri* in two localities from the Argentine Sea. Vector overlays are Spearman correlations of parasite species and fish length with the nMDS axes (restricted to those having |r|>0.4). Cau, *Corynosoma australi*; Dsc, *Dichelyne sciaenidicola*; Nar, *Neomacrovalvitrema argentinensis*; Nav, *Neopterinotrematoies avaginata*; Nch, *Neobrachiella chevreuxii*; Pch, *Profilicollis chasmagnathi*; TL, total fish length. Circles: MDP, Mar del Plata coastal area. Squares: Mar Chiquita coastal lagoon MCH.
caused by different biotic and abiotic conditions at these sites, also play a role in determining the parasite community structure and composition. It should be highlighted that an effect of year of capture on the parasite community structure cannot be disregarded.

The parasite community of *M. furnieri* was less diverse and showed lower parasite abundance than other sympatric sciaenids, such as *Cynoscion guatucupa* and *Umbrina canosai* (Timi et al. 2005; Canel et al. 2019). Variations of both the number and type of prey and their relative contribution to diet determine the host trophic level. Consequently, hosts at higher levels should be exposed to more parasite infective stages and a broader range of intermediate hosts than those at lower trophic levels (Timi et al. 2011). Thus, the higher trophic level displayed in *C. guatucupa* and *U. canosai* with respect to *M. furnieri* leads it to emerge as a possible explanatory factor for differences of parasite assemblages in these sciaenids.

Studies of parasites in wild fish populations generate important information regarding parasite-host-environment relationships, as well as contribute to a better understanding of parasite diversity (Oliveira et al. 2016). Mar Chiquita coastal lagoon is an ecotonal region that combines freshwater environments, wetlands with marshes, and coastal dunes and beaches, representing a transitional zone between freshwater and marine waters (Olivier et al. 1972). On the other hand, MDP is dominated by marine shelf waters penetrating the coastal region. This results from the closeness of the 50-m isobath to the coast and the lack of locally formed coastal water (Olivier et al. 2006) than MCH. Characteristics of local ecosystems can determine not only the richness but also the abundance of parasites in fishes (Luque and Poulin 2004). Fish from the two sites differed from each other in the structure of their infra-communities, being richer in MCH, though parasites were more abundant in MDP. In other words, larger hosts, present in MDP, can support more parasite specimens, while the heterogeneity of habitat in MCH contributes to greater diversity of parasite species.

While *M. furnieri* is a resource that sustains the most important demersal coastal fishery of the southwestern Atlantic (Haimovici and Cardoso 2017; Thykjaer et al. 2020), insufficient information exists on the status of their populations inhabiting marine coastal areas from Argentina. Therefore, knowledge of their parasite assemblages from different brackish and marine habitats provide further insight into the biology of this fish, complementing other ichthyological studies to date.

Acknowledgements We are grateful to Dr David Marcogliese (Aquatic Contaminants Research Division, St. Lawrence Centre, Canada) for his valuable comments on the manuscript. Thanks are extended to the anonymous reviewers for their comments that helped improve this article. We also thank “Albatros” fish market for kindly providing fish samples.

Funding Financial support was provided by grants from Fondo para la Investigación Científica y Tecnológica ANPCyP (PICT 2018 # 2213) and Universidad Nacional de Mar del Plata (EXA 15/E974).

Declarations

Ethics approval All fish used in this work were obtained from commercial catches. Therefore, no ethical statement is needed regarding use of animals for scientific purposes.

Conflict of interest The authors declare no competing interests.

References

Acha EM, Mianzán HW, Guerrero RA, Favero M, Bava J (2004) Marine fronts at the continental shelves of austral South America physical and ecological process. J Mar Syst 44:83–105. https://doi.org/10.1016/j.jmarsys.2003.09.005

Alarcos AJ, Etcheogin JA (2010) Parasite assemblages of estuarine-dependent marine fishes from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). Parasitol Res 107:1083–1091. https://doi.org/10.1007/s00436-010-1974-z

Albuquerque CQ, Miekeley N, Muelbert JH, Walther BD, Jaureguizar AJ (2012) Estuarine dependency in a marine fish evaluated with otolith chemistry. Mar Biol 159:2229–2239. https://doi.org/10.1007/s00227-012-2007-5

Alves DR, Luque JL (2001) Community ecology of the metazoan parasites of white croaker, *Mispogonias furnieri* (Osteichthyes: Sciaenidae), from the coastal zone of the state of Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 96:145–153

Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

Berland B (1984) Basic techniques involved in helminth preservation. Syst Parasitol 6:242–245

Braicovich PE, Ieno EN, Séaz M, Despos J, Timi JT (2016) Assessing the role of host traits as drivers of the abundance of long-lived parasites in fish-stock assessment studies. J Fish Biol 89:2419–2433. https://doi.org/10.1111/jfb.13127

Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583. https://doi.org/10.2307/3284227

Canel D, Levy E, Soares IE, Braicovich PE, Haimovici M, Luque JL, Timi JT (2019) Stocks and migrations of the demersal fish *Umbrina canosai* (Sciaenidae) endemic from the subtropical and temperate southwestern Atlantic revealed by its parasites. Fish Res 214:10–18. https://doi.org/10.1016/j.fishres.2019.02.001

Cantatore DMP, Timi JT (2015) Marine parasites as biological tags in South American Atlantic waters, current status and perspectives. Parasitology 142:5–24. https://doi.org/10.1017/S003100101400138

Carozza C, Lasta C, Ruarte C (2000) Pesquerías de Argentina 1997–1999. Inf Téc Inidep 53–64

Carozza C, Lasta C, Ruarte C, Cotrina C, Mianzan H, Acha M (2004) Corvina rubia (*Mispogonias furnieri*). El Mar Argentino y Sus Recursos Pesqueros 4:255–270
Timi JT, Rossin MA, Alarcos AJ, Braicovich PE, Cantatore DMP, Lanfranchi AL (2011) Fish trophic level and the similarity of larval parasite assemblages. Int J Parasitol 41:309–316. https://doi.org/10.1016/j.ijpara.2010.10.002

Velloso AL, Pereira J Jr (2010) Influence of ectoparasitism on the welfare of Micropogonias furnieri. Aquaculture 310:43–46. https://doi.org/10.1016/j.aquaculture.2010.10.030

Zander CD (2004) Four-year monitoring of parasite communities in gobiid fishes of the south-western Baltic. Parasitol Res 93:17–29. https://doi.org/10.1007/s00436-004-1087-7

Zar JH (1999) Biostatistical analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.