Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Distributed manufacturing: A case study in additive manufacturing face masks for the COVID-19 pandemic

Alex Roschli¹, Peter Wang, Christopher Hershey, Brian Post, John Lindahl, Lonnie Love

Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, United States

A R T I C L E I N F O

Keywords:
COVID-19
Facial respirator
Pandemic
Face mask
N95
Silicone casting
PAPR

A B S T R A C T

At the onset of the COVID-19 (Coronavirus Disease 2019) pandemic, USA faced supply chain issues causing a nationwide shortage of N95 respirators and PAPR devices. Researchers at Oak Ridge National Laboratory’s (ORNL) Manufacturing Demonstration Facility (MDF) were sent to work from home to help slow the spread of the pandemic, and during that time they were tasked with using their manufacturing expertise to research alternative methods of producing face masks. To rapidly iterate on face mask designs without access to a research or manufacturing facility, 3D (3-Dimensional) printing and silicone casting were used. Molds and components for the masks are modeled with computer-aided design (CAD), printed with common home desktop 3D printers, and test poured with skin-safe silicone rubber. The resulting masks are form fitting and comfortable to wear. To ease the shortage of N95 filter media, the masks are designed to use existing filter materials such as home HVAC (heating, ventilation, and air conditioning) filters. The masks can be sanitized, and the filter replaced to allow the same mask to be reused. The result is not equivalent to an N95 mask, and not meant to be a replacement, but is meant to be a stopgap mask that still able to provide the wearer filtered protection. Filtration testing has not been performed because it is not the intention of the authors to make medical claims. This research is meant to demonstrate the rapid design, iteration, and manufacturing processes of a stopgap mask.

Introduction

N95 respirators

The N95 facial respirator was originally developed in 1995 by Peter Tsai [University of Tennessee Research Foundation, 2019]. It is a respirator worn over the mouth and nose intended to filter out harmful viruses and bacteria in the air. The name N95 comes from the ability to filter out 95% of particles in the air as certified by the National Institute of Health (NIOSH) [Centers for Disease Control and Prevention, 2021] [13].

At the onset of the COVID-19, SARS-CoV-2, pandemic in the USA, N95 respirators were in high demand for healthcare workers and supplies were very low [1]. When N95 supplies are limited, the supplies are focused on hospitals. However, the public still requires protection and the go-to for public use is a cloth mask with limited protection [FDA, [7]] [Mueller, 2020]. There is no good alternative for the public to use in a non-hospital environment that is available at a low cost with high protection. A nationwide effort developed around trying to improve manufacturing speed for new masks and sanitize used masks [Juan and Tsai, [10]]. Manufacturing was suffering from a shortage of filter material and components to assemble the masks. Working from home, researchers from ORNL’s MDF began work on development of high protection masks at a low cost.

Additive manufacturing

Additive manufacturing (AM), more commonly known as 3D printing, is a manufacturing method that grows a part by adding stock rather than subtracting it away as in traditional manufacturing processes [8]. AM comes in many forms including material extrusion, sheet lamination, and powder bed fusion, to name a few. In total the ASTM F42/ISO TC 261 standards recognize seven forms of additive manufacturing.

Using AM, intricate parts can be quickly designed on a computer (computer-aided design, or CAD) and then "printed" out on a 3D printer. The entire process can be completed at home using off-the-shelf equipment. Because of this, the possibilities and use cases for AM are virtually endless. AM has already made a major impact in several industries including boat making [16], medical prosthetics [17], and rocket fuel [5]. There has also been considerable research with AM during the pandemic to help offset shortages of medical devices [2,3,6,19].

¹ Corresponding author.
E-mail address: roschliac@ornl.gov (A. Roschli).

https://doi.org/10.1016/j.addlet.2021.100012
Received 30 September 2021; Received in revised form 13 October 2021; Accepted 14 October 2021
2772-3690/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Silicone casting

Silicone Rubber is a flexible and durable material that can withstand temperatures up to 300 °C without permanent damage or deformation. Parts are traditionally manufactured by injection molding, compression molding or extrusion. Silicone rubbers come in two primary forms, two component and single component. The most common single component type is Room Temperature Vulcanization (RTV) which uses the moisture in the air to trigger the crosslinking which solidifies the gel into a rubber [Shit and Shah, 2018]. Silicone was chosen because it is a skin safe material commonly used in medical devices and other facial respirators [14].

Resin Casting is a means of manufacturing a part by filling a mold with silicone, or resin, which then solidifies and can be used with a variety of different materials including RTV Silicone [Haenssgen, Makanya, and Djnov, [9]]. During the casting process, bubbles of air will become entrained in the Silicone and will negatively affect the sealing capabilities, the surface finish and overall strength of the final cast part. The degassing process involves introducing a vacuum to the part and allowing for the air to escape before the part hardens [11].

Original design

Design

The design for the first mask was inspired by online community designs that used CPAP (continuous positive airway pressure) filters in front of the mouth to filter air. These filters are readily available through online retailers for less than one dollar (USD) each. The community designs focused on 3D printing the entire mask, which was a one-size-fits-all approach that resulted in masks that rarely maintained airtight seal to the face thus defeating the purpose of the mask [20].

These fully 3D printed masks are rigid and do not adjust to a moving face, such as when the wearer is speaking. This spawned the idea to adapt an iteration to be molded with a flexible material such as silicone rubber. Working from the solid body of a 3D printable mask, Fig. 1, a mold was created in Solidworks. This was done by making a solid block around the mask outline, hollowing the inside to match the shape of the mask, and then cutting the mask into two halves. Next, a fill hole and an air escape hole were added to the female side of the mold to assist with pouring the silicone. Finally, the outer block was trimmed to contour to the mask shape which helped to save time and material in the 3D printing process. Fig. 2 shows both halves of the mask as designed with CAD.

Printing the mold

The mold for this mask was printed using a desktop FFF 3D printer using PLA (polylactic acid) filament. PLA was chosen because it is low cost (approximately $30 USD per kilogram) and because PLA is very easy to work with due to low process temperature and low thermal expansion.

The mold itself is printed in two parts, a male half (shown in black) and a female half (shown in red). Each half was printed with a resolution, or layer height, of 0.2 mm so that post-processing of the mold surface would not be needed. Two outer contours, combined with 50% dense infill, were used to give a solid outer surface while reducing material use. In addition to the mold halves, four rods were designed to be inserted into the mold so that holes would be created for the mask straps to fit through. The male half is meant to be the bottom with the female half on top having a fill hole for the silicone and an air escape hole. Print time for the male half was 6 h and the female half took 8 h. The four mask strap rods took a total print time of 10 min. Fig. 3 shows the two halves printing simultaneously on different printers and Fig. 4 shows the two completed halves.

Pouring the silicone

To prepare the molds for pouring, and to prevent sticking of the silicone, the male and female mold surfaces were coated with a thin layer of white petroleum. The silicone rubber used was Mold Star 30 from Smooth-On. This silicone rubber is a two-part resin with a shore hardness of 30A when fully cured. The pot life is 45 min and the cure time is 6 h. The result is a medium shade of blue. This silicone was selected because of its low cost, ease of use, and being readily available.

The design had a single fill port for adding the silicone which meant the mold had to be shaken and rotated to help distribute the silicone within the mold. In total, filling the mold with the resin took about twenty minutes. Once poured full, the four 3D printed strap rods were inserted to the mold. A small amount of silicone oozed out around the male/female mating surfaces, Fig. 5. After six hours of curing, the four sticks were carefully pulled out and the mold was separated. The result was a fully cured blue silicone rubber mask, Fig. 6.

Testing

The mask was a good fit, albeit a little bit small for most faces (Fig. 7). The filter was able to press fit into the front of the mask but did not always stay firmly lodged in place due to the mask flexing when the wearer
A. Roschli, P. Wang, C. Hershey et al.

Fig. 3. Simultaneous printing the male and females mold halves using two desktop 3D Printers.

Fig. 4. Completed female (left) and male (right) mold halves.

Fig. 5. The poured mold with mask strap rods inserted and excess resin leaking around the mating surfaces.

Fig. 6. Original mask design after demolding and trimming the edges (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).

Fig. 7. Test fit of mask without straps and filter.

talked. A more permanent and substantial filter mounting mechanism was desired. The other issue with the filter was that it was very small, letting only a small amount of air through, making it hard to breath. When the mask was fit snug to the face, air could only enter through the small filter hole which noticeably made breathing more difficult.

The only manufacturing defect was observed at the strap mounting points. The four insert rods failed to improve the molding quality. Of the four attachment points, only one successfully functioned after demolding. The failure was a combination of the silicone sticking to the rods, which lacked the white petroleum lubricant, and the resin not fully flowing around the attachment points. Investigation revealed that the cavities were too small for the resin to flow into them without additional pressure. Injection of silicone under pressure was dismissed since...
the mold was not designed to handle elevated pressures and would have significant leaking. Fig. 8 shows one failed strap attachment point.

Iterating on the design

The original mask design fit well, and the manufacturing process was satisfactory, but there were some shortcomings with the design. First, the mask had no rigidity due to the entire body being made from cast silicone. This made it nearly impossible to keep a filter in the mask because talking caused movement of the face which flexed the mask and allowed it to slip out of the holder. Second, the filter size was too small of a cross-sectional area. This made it hard to breathe due to the reduced airflow through the opening. Third, the features for the mask straps to connect to the mask were delicate and quickly failed. This meant that the mask could not be secured to the head with elastic bands. With these ideas in mind, a new design was created.

New design

The starting point for the new design was the small filter issue. This was remedied by moving to a circular filter opening of a large diameter that sat directly in front of the mouth. The entire mask needed to be expanded to accommodate for the large hole while still providing sufficient contact with the face. Making a larger mask solved the issue of the mask being a small, or tight, fit on the face of larger individuals. Fig. 9 shows a CAD representation of the new silicone mask piece as it conforms to a model human head.

The other major issue from the first design was the lack of rigidity in the mask causing it to flex resulting in the filter popping out. This also caused an issue with the mask not always staying airtight to the face, thus allowing air to come in around the mask and not go through the filter. The new mask design fixed these issues by adding a rigid outer body that presses the silicone piece, seen in Fig. 10, against the face. The silicone piece conforms to the face making it comfortable and airtight while the rigid outer body helps keep the silicone inner body against the face. This enabled the outer body to be custom made for different face sizes and swapped out as needed. By using a silicone liner to contact the face, and not using a 3D printed part directly on the skin, the stair stepping effect seen in 3D printing does not impact fit or seal to the face.

The outer body design was generated by offsetting the silicone inner body and then trimming the edges back to make it slightly smaller. The trimming was done so that the edges of the rigid body ended within the bounds of the silicone and thus created a seal to the face with the silicone. With this new design, the silicone inner body protrudes through the circular airway and is always captured by an inner retaining ring (to keep the airway open) and an outer cap that presses onto the main outer body. The outer cap helps to lock everything in place and hold the mask together. This outer cap also provides a cover over the filter to help protect the filter from spills and incidental sneezes. Fig. 11 shows a CAD representation of the assembly of all the pieces, including the filter, coming together.

The rigid outer body contains mounting points for mask straps. The straps quickly failed when attached to the silicone of the original design. Mounting the straps to the rigid outer body gives a more solid anchor point for the straps and helps press the outer body against the inner body and seal to the face. Similar to the first design, there are four mounting points, two on each side of the filter.

The press-fit outer cap is used to capture the filter material in place. Going with a circular opening that captures a flat sheet of filter allowed for use of other filter media. The original mask design was based on
premade filters for CPAP masks found online, but the long-term supply chain of such a specific filter is unknown. Being able to use any flat piece of filter means that generic filter cloth from any number of existing filters can be used. For our testing, a home HVAC filter can cut and placed in the mask.

Manufacturing mask pieces

The new design in Section 3.1 resulted in three rigid body pieces that needed to be printed: the main outer body, the inner retaining ring, and the outer screw cap (Fig. 12). The main outer body was the most complex part because of the organic contours meant to represent the facial structure and the mounting points for the straps. The complex geometry required support material to print cleanly and then post-processing to remove the support and clean up all mating faces. Print time for the outer body was 3 h.

The inner retaining ring and outer screw cap were simple prints due to their basic shape that required no support material or post-processing. Print times were 30 min for the inner retaining ring and 90 min for the outer screw cap. All three pieces were printed with desktop FFF printers from PLA filament with a total cost of approximately $1.50.

Making molds

The inner body to be made from silicone required a mold. Following the original design, the inner body was designed using CAD and then a mold was designed around the inner body. The mold was then cut into two halves, a male and female half, and then air and fill holes were added. The original mold had just a single fill hole meaning the mold had to be shaken and tilted to help distribute the silicone through the mold. The new design included a second fill hole that allowed for even distribution when filling.

The design for this mold is simpler than that of the original mold because the silicone inner body no longer needs to attach to the straps because the mask straps attach to the rigid outer body. This eliminated the additional inserts used in the original design. The male half is smaller than the female half and printed in 5 h while the female half took 7 h. Both halves were printed with a 0.2 mm resolution allowing for a minimal amount of layer lines and no post-processing or surface finishing of the mold surface. Both pieces can be seen in Fig. 13.

Pouring the silicone

Once the male and female mold had been printed, it was time to cast a silicone inner body. This new mold included a second fill hole to allow for better distribution of the resin within the mold body. The large center hole on this meant that zip ties could be used to hold the mold together to ensure a better seal around the entire mold during curing. Mold Star 30 silicone rubber was used. Filling the mold with resin took about ten minutes and used approximately $0.50 of silicone.

Testing

The assembled new mask, while much larger, was a good fit on the face (Fig. 14). The rigid outer body made for a nice seal all the way around the face. The stair stepping effect of 3D printing is overcome by using the silicone liner to contact the face rather than the 3D printed components. The increased filter size made breathing very easy. One of the author’s was able to don the mask and go for a short run without any issues of mask discomfort or inability to breathe. The only issue was light buildup of moisture inside of the mask that could be easily wiped out.

Modifications for PAPR

The modular design of the mask allows for reconfiguration of the mask. One of the alternative configurations used is the Powered Air Purifying Respirator (PAPR). Using the same outer body and inner body, the outer screw cap can be replaced with a modified design that attaches to the PAPR hose. This type of respirator has an intake air pump that filters the air and forces fresh air into the mask. The exhaust then passes through another filter before releasing to the air, which continues to protect those around the wearer from the exhaled particles. The PAPR provides a constant flow of fresh air which prevents humidity and heat from building up within the mask, which makes them much more comfortable to wear. The constant flow of fresh air also eliminates any resistance to breathing the wearer may encounter with traditional unpowered respirators such as the standard N95 respirators. With these added benefits, a battery pack and intake air pump/fan must be worn on the waist.

The PAPR was constructed using readily available off the shelf components and modified mask end cap to allow for the connection of the intake pump. The air hose used is a standard hose used on a CPAP machine, the intake fan used comes from inflatable costumes, like ones used for Halloween, and the battery pack is a standard 20 V battery used in home power tools. The fan runs at 6 V consuming 3 W, with a 3Ah and 5Ah battery should last 6 and 10 h, respectively. The fully assembled mask is shown in Fig. 15. The mask assembly with the hose attachment and exhaust filter is shown in Fig. 16. The intake fan with filter and battery pack is shown in Fig. 17.

Conclusions

In this paper, additive manufacturing and silicone casting were used to rapid prototype replacement face mask components and molds. Starting with online designs and low-cost CPAP filters, the design was iterated upon to improve the manufacturing process, improve the seal and comfort, and adapt the mask to user commonly available filter material thus avoiding the existing supply chain with N95 respirator filter material.

The result is a mask design with a total print time of 17 h for all components. Excluding the mold print time, a single mask can be printed in 5 h. Using the Mold Star 30 silicone rubber, it took just over 6 h to mix, pour, and cure the inner liner using the 3D printed molds. Using high efficiency filters, this mask can achieve a high level of protection at a low cost without disrupting existing supply chains. Table 1 shows a comparison among the reusable mask from this paper, an N95, and a commercial PAPR.

Table 1 shows a comparison among the mask manufactured in this paper and the industry standard N95 and PAPR devices. The cost for the ORNL Mask doesn’t include the cost of the mold, only the printed components and silicone. The PAPR pricing is based off of the approxi-
mate price of 3 M PAPR devices for hospital use. Filter cost for the ORNL mask is based off of MERV 13 HVAC filters from 3 M.

Impacts

COVID-19, caused a global pandemic. Safe masks and facial respirators were in short supply around the world, but usable filter material, such as the home HVAC filters used in this research, were still widely available. This research proves the use of a home 3D printer to make and cast face masks. Desktop 3D printers are available in most countries, including those underserved with medical supplies during the pandemic. With the democratization of manufacturing, these capabilities allow for small communities to become self-sufficient in times of supply shortage.

At the time of publication, N95 masks are no longer in shortage. However, this paper serves as documentation of what was done during the shortage and can be used as a reference for future events or other similar manufacturing needs.

Future work

The markets in which simplified manufacturing processes combined with additive manufacturing would enable access to products that would significantly improve quality of life is worth investigation. Given the relative low cost of these types of manufacturing operations the further
Table 1

Comparison of Manufactured Mask, N95, and PAPR	ORNL MDF Mask	N95 Respirator	PAPR
Filter Surface Area (sq. cm)	45.60	96.25	N/A
Cost (USD)	$2500–400	$5000–800	$9000–9000
Reusable	Yes	No	Yes
Reusable Replacement Parts Replacement Frequency	Daily	Daily	40 h of use or 30 days
Cost of Replacement Parts (USD)	$0.40	$2–4	$4–4
Replacement Frequency	Daily	Daily	40 h of use or 30 days
ORNL/MDF Mask	32.25	$2500–400	$5000–800
N95 Respirator	32.25	$2500–400	$5000–800
PAPR	32.25	$2500–400	$5000–800

Acknowledgments

This research was supported by the DOE Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office (AMO) and used resources at the Manufacturing Demonstration Facility (MDF).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Development of Small-Scale Manufacturing

The development of small-scale manufacturing has the potential to significantly impact the lives of those in disadvantaged communities spurring the local economy while providing needed, but previously inaccessible commodities.

Future mold designs will include even more fill holes to allow for quick and even distribution of the silicone rubber. The new design took approximately ten minutes to fully pour, an improvement from the twenty minutes of the original design. Mold Star offers a fast-setting resin with a pot life of ninety seconds and a cure time of nine minutes. Speeding up the pouring process would allow for use of this fast set silicone rubber and thus get the production time down to nine minutes per mask per mold. This fast set silicone is certified as safe for direct contact with skin.

3D scanning is a rapidly evolving technology that can be used to scan the face of the would-be mask wearer. This scan can be used to make a mask custom sized and fit for each individual. While this resultant design would be less valuable for a mass-market product, it would be an improvement for an even tighter and more precise fit.

A final area to research is coatings to seal the surface of the printed components. 3D printed parts are known to have porosity [12] where the virus could enter. A coating that can be sprayed onto the components, or the components can be dipped in, would be valuable for preventing the virus from penetrating the mask body and circumventing the filter.
for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Funding

This manuscript has been funded in part by UT-Battelle, LLC, under contract DE-AC05–00OR22725 with the US Department of Energy (DOE).

References

[1] Bowman, E., 2020. “N95 mask shortage brings inventor out of retirement in search of safe reuse method.” NPR, NPR, 17 Apr. 2020, www.npr.org/sections/coronavirus-live-updates/2020/04/17/836719917/n95-filter-inventor-comes-out-of-retirement-to-help-further.

[2] E.G. Bishop, S.J. Leigh, Using large scale additive manufacturing as a bridge manufacturing process in response to shortages in personal protective equipment during the COVID-19 outbreak, Int. J. Bioprinting 6 (2020) 4.

[3] H.K. Celik, et al., Design and additive manufacturing of medical face shield for healthcare workers battling coronavirus (COVID-19), Int. J. Bioprinting 6 (2020) 4.

[4] Centers for Disease Control and Prevention, Approved N95 respirators a suppliers list, Centers Dis. Control Prev. (2021) Accessed 11 October 2020, www.cdc.gov/niosh/npptl/topics/respirators/disp_part/n95list1-a.html.

[5] R.A. Chandru, et al., Additive manufacturing of solid rocket propellant grains, J. Propuls. Power 34 (4) (2018) 1090–1093.

[6] Y.Y.C. Choong, et al., The global rise of 3D printing during the COVID-19 pandemic, Nat. Rev. Mater. 5 (9) (2020) 637–639.

[7] FDA Office of Product Evaluation and Quality. “Enforcement Policy for face masks and respirators during the coronavirus disease (COVID-19) public health emergency (revised): guidance for industry and food and drug administration staff.” Published 2020. Accessed 11 October 2021, https://www.fda.gov/regulatory-information/search-fda-guidance-documents.

[8] Gibson, et al., Additive Manufacturing Technologies, Springer, New York, NY, 2015.

[9] K. Haenssgen, A.N. Makanya, V. Valentin Djonov, Casting materials and their application in research and teaching, Microsc. Microanal. 20 (2) (2014) 493–513.

[10] P. Juang, P. Tsai, N95 respirator cleaning and reuse methods proposed by the inventor of the N95 mask material, J. Emerg. Med. 58 (5) (2020) 817–820.

[11] Kuo, C. and Lai, M., 2011. “Development of an automatic vacuum degassing system and parameters optimization for degassing process.”

[12] Y. Liao, et al., Effect of porosity and crystallinity on 3D printed PLA properties, Polymers 11 (9) (2019) 1487 (Basel).

[13] Liverman C.T., Alper J. “Integration of FDA and NIOSH processes used to evaluate respiratory protective devices for health care workers,” (Liverman CT, Alper J, eds.). National Academies Press; 2017. doi:10.17226/23679

[14] P.V. Mohanan, K. Rathinam, Biocompatibility studies on silicone rubber, in: Proceedings of the First Regional Conference, IEEE Engineering in Medicine and Biology Society and 14th Conference of the Biomedical Engineering Society of India. An International Meet, IEEE, 1995.

[15] Mueller A.V., Fernandez L.A. “Assessment of fabric masks as alternatives to standard surgical masks in terms of particle filtration efficiency,” medRxiv. Published online May 6, 2020:2020.04.17.20069567. doi:10.1101/2020.04.17.20069567

[16] B.K. Post, et al., Using big area additive manufacturing to directly manufacture a boat hull mould, Virtual Phys. Prototypy. 14 (2) (2019) 123–129.

[17] B.J. Rhyne, et al., Reverse engineering a transhumeral prosthetic design for additive manufacturing, in: Proceedings of the Solid Freeform Fabr. Symposium, 2017, p. 11.

[18] S.C. Shif, P. Shah, A review on silicone rubber, Natl. Acad. Sci. Lett. 36 (4) (2013) 355–365.

[19] A. Shchipcha, et al., Engineering a model to study viral infections: bioprinting, microfluidics, and organoids to defeat coronavirus disease 2019 (COVID-19), Int. J. Bioprinting 6 (2020) 4.

[20] C.S.L. Spake, T.N. Carruthers, J.W. Crozier, et al., 3D Printed N-95 masks during the COVID-19 pandemic: lessons learned, Ann. Biomed. Eng. (2021) Published online September 3, 2021:1-10, doi:10.1007/s10439-021-03859-z.

[21] UT Researcher’s Nonwoven Fabrics Protect the Health of More Than A Billion People, University of Tennessee Research Foundation, 2019 August 27, Retrieved April 18, 2020.