Ca2+/calmodulin-dependent protein kinase II alpha subunit (CaMKII\textalpha) is a key neuronal signaling protein and an emerging drug target. The central hub domain regulates the activity of CaMKII\textalpha by organizing the holoenzyme complex into functional oligomers, yet pharmacological modulation of the hub domain has never been demonstrated. Here, using a combination of photoaffinity labeling and chemical proteomics, we show that compounds related to the natural substance \textgamma-hydroxybutyrate (GHB) bind selectively to CaMKII\textalpha. By means of a 2.2-Å x-ray crystal structure of ligand-bound CaMKII\textalpha hub, we reveal the molecular details of the binding site deep within the hub. Furthermore, we show that binding of GHB and related analogs to this site promotes concentration-dependent increases in hub thermal stability believed to alter holoenzyme functionality. Selectively under states of pathological CaMKII\textalpha activation, hub ligands provide a significant and sustained neuroprotection, which is both time and dose dependent. This is demonstrated in neurons exposed to excitotoxicity and in a mouse model of cerebral ischemia with the selective GHB analog, HOCPCA (3-hydroxycyclopent-1-ene-carboxylic acid). Together, our results indicate a hitherto unknown mechanism for neuroprotection by a highly specific and unforeseen interaction between the CaMKII\textalpha hub domain and small molecule brain-penetrant GHB analogs. This establishes GHB analogs as powerful tools for investigating CaMKII neuropharmacology in general and as potential therapeutic compounds for cerebral ischemia in particular.

Significance

GHB is a natural brain metabolite of GABA, previously reported to be neuroprotective. However, the high-affinity binding site for GHB has remained elusive for almost 40 y. We here unveil CaMKII\textalpha, a highly important neuronal kinase, as the long-sought-after GHB high-affinity target. Via a specific interaction within the central hub domain of CaMKII\textalpha, GHB analogs act to stabilize the hub oligomer complex. This interaction potentially explains pronounced neuroprotective effects of GHB analogs in cultured neurons exposed to a chemical insult and in mice exposed to ischemia. The posts ischemic treatment effects of GHB analogs underlie these compounds as selective and high-affinity potential drug candidates and CaMKII\textalpha as a relevant pharmacological target for stroke therapy.

Author contributions: U.L., A.B.K., E.D.M., S.M.\textalpha., G.M.v.W., R.P.C., J.K., A.N.C., and P.W. performed research; C.D.K., J.V.O., A.B., B.F., and R.P.C. contributed new reagents/analytic tools; U.L., A.B.K., E.D.M., N.G.-K., S.M.\textalpha., J.H., I.S.V., S.B.V., L.H., S.J.G., L.B.P., A.S.G.L., M.A.S., C.D.K., R.O.B., D.S.K., E.K.G., S.M.W.T., C.C.C., C.L.G., G.M.v.W., A.N.C., and P.W. analyzed data; U.L., A.B.K., N.G.-K., B.R.K., J.K., A.N.C., and P.W. wrote the paper; U.L., R.P.C., and P.W. conceptualized the original idea; N.G.-K. and P.W. supervised and administered the project overall.

Competing interest statement: The University of Copenhagen and Otago Innovation Ltd. have licensed the patent rights for GHB derivatives and their uses (WO/2019/149329) to Ceremed Ltd., of which B.F., B.R.K., and P.W. are cofounders.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

ul.L., A.B.K., and E.D.M. contributed equally to this work.

N.G.-K. and S.M.\textalpha. contributed equally to this work.

To whom correspondence may be addressed. Email: pw@sund.ku.dk.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2108079118/-/DCSupplemental.

Published July 30, 2021.
autonomous activity which can persist for hours (14–16) and cause cell death (17).

The natural brain substance γ-hydroxybutyrate (GHB) is a metabolite of γ-aminobutyric acid (GABA) which has been reported to be neuroprotective in mammals (18–20). GHB binds with high affinity to an until-now unknown specific binding protein highly expressed in forebrain regions (21). This site is distinct from GABAB receptors also known to bind GHB, albeit with low affinity (22). We here reveal CaMKIIX as the long-sought-after specific GHB high-affinity binding site (SI Appendix, Fig. S1). Moreover, we show that the highly selective and brain-penetrant GHB analog 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) (23) confers significant neuroprotection in pathological states of CaMKII activation, such as after an ischemic injury. This is plausibly explained by the pronounced effect of GHB analogs on CaMKIIα hub stabilization upon binding and consequently functional regulation of the holoenzyme, although a causal link remains to be fully proven.

Results
CaMKIIX is the Specific High-Affinity Target for GHB. To enable unbiased identification of the elusive GHB high-affinity binding site, we designed a photolabile diazide–labeled GHB analog, 4-(4-((3-azido-5-(azidomethyl)benzyl)oxy)phenyl)-4-hydroxybutanoate (SBV3), based on previous studies on GHB substituted in the 4-position with biaromatic moieties (24, 25). SBV3 bears two orthogonal azides: a photolabile aromatic azide for linking and an aliphatic azide that is not photolabile but is employed in a bioorthogonal click reaction (26) (Fig. L4). We found that this compound possesses high affinity for the binding site present in cortical homogenate (Kᵢ 66 nM; SI Appendix, Fig. S2). Both the Huisgen click reaction and the Bertozzi–Staudinger ligation were employed for biotin labeling of the photolinked target protein under various conditions, with the latter giving the best result (SI Appendix, Fig. S2 A–C). To enable differentiation of endogenously biotinylated proteins from the biotin-labeled GHB target, SBV3 was incubated with rat hippocampal membranes in competition with

Fig. 1. Identification of CaMKIIX as the specific GHB high-affinity target. (A–D) Target identification using a combination of photoaffinity labeling (PAL), affinity purification, and chemical quantitative proteomics. (A) Bioorthogonal approach using the photolabile diazide–labeled GHB analog SBV3 (GHB moiety in blue), in competition with 5-HDC (orange) for PAL followed by biotin-ligation. (B) Representative anti-biotin Western blot after PAL and concentration-dependent competition with 5-HDC (see also SI Appendix, Fig. S2). (C) Identification of CaMKIIX from LC-MS/MS data as the best hit from nonlinear regression analysis for all proteins and (D) concentration-dependent competition of the best hits (proteins were quantified using the label-free quantification [LFQ] algorithm) (see also Dataset S1). (E) Target validation by [3H]HOCPCA autoradiography using brain slices from Camk2a and Camk2b+/− mice (cresyl violet staining for tissue visualization) (see also SI Appendix, Fig. S3). (F–H) Target validation by [3H]HOCPCA binding to whole-cell homogenate from HEK293T cells transfected with CaMKIIX, (F) [3H]HOCPCA saturation binding to CaMKIIX (n = 5); shown is one representative curve (means ± SD). (G) [3H]HOCPCA competition binding to CaMKIIX in the presence of GHB (n = 3), HOCPCA (n = 5), and 5-HDC (n = 3), pooled data (means ± SEM) (see also SI Appendix, Table S1). (H) Subtype-selective specific [3H]HOCPCA binding for CaMKIIXα and CaMKIIXβ. Data are pooled (n = 3) for each subtype and depicted as specific binding (% of total) (see also SI Appendix, Fig. S4A).
5-hydroxydiclofenac (5-HDC), a derivative of diclofenac (27) and incidentally, the most high-affinity GHB ligand reported to date (Ki 35 nM; SI Appendix, Fig. S2). Hereby, we could obtain concentration-dependent binding profiles (Fig. 1B and SI Appendix, Fig. S2). Streptavidin affinity purification followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis identified 1,184 proteins that were analyzed for concentration-dependent profiles. CaMKIIα was identified as the top candidate (R² = 0.81; abundance 7.97 × 10⁹) (Fig. 1C), clearly superior with respect to abundance and goodness of the curve fit to the next-in-line candidates, four of which are in fact known CaMKIIα interactors (28) (Fig. 1D; summarized in SI Appendix, Table S1). Furthermore, the identified molecular mass (55 kDa), the brain regional expression profile (forebrain abundance), and ontogenesismatch very well with both CaMKIIα and our previously reported specific GHB binding site (29–31).

Fig. 2. GHB analogs bind the CaMKIIα hub domain. (A) Schematic of a single CaMKIIα subunit composed of a kinase domain (gray), regulatory segment (green), linker (yellow), and hub domain (lilac). Twelve to 14 hub domains oligomerize into the holoenzyme, shown here in an activated form. (B) Concentration-dependent binding of 5-HDC to immobilized CaMKIIα 6x Hub measured by surface plasmon resonance (Top); Langmuir-binding isotherm (Bottom), representative data (see also SI Appendix, Fig. S4B–F). (C) Absence of [3H]HOCPCA binding to the CaMKIIα mutant lacking the hub domain (Δhub) with representative Western blot showing expected sizes. Na⁺/K⁺-ATPase was used as a loading control; red arrows indicate the relevant bands. (D) X-ray crystal structure of 5-HDC bound to the CaMKIIα 6x Hub (14-mer). (E) Close-up view of a single hub subunit showing the key molecular interactions with displacement (flip) of Trp403 with ligand bound highlighted. (F) Ball and stick model of key binding residues (bold), nearby residues, and hydrogen bonds in green-dashed lines (for electron densities, reference SI Appendix, Fig. S5). (G) Quenching of intrinsic tryptophan fluorescence caused by Trp403 flip (6x Hub) with increasing concentrations of 5-HDC (Left) and resulting inhibition curve (Right) (n = 8), pooled data (means ± SEM) (see also SI Appendix, Fig. S6A–C).
Validation of CaMKIIα as the high-affinity GHB target. To validate CaMKIIα as the specific GHB target, we carried out a number of experiments in native tissues, cortical homogenate, and recombinant CaMKIIα utilizing selective GHB analogs. These included the cyclic GHB analog HOCPA that displays no affinity for low-affinity GABA_B receptors (23), the commercially available NCS-382, and their derived radioligands (32–34). By means of in vitro autoradiography, we show that ^{[3]H}HOCPA (Fig. 1E), ^{[3]H}NCS-382, and ^{[³H}]GHB (SI Appendix, Fig. S3) display intact binding to brain tissue of Camk2α^{+/−}, Camk2β^{+/−}, and Camk2β^{−/−} mice but complete lack of binding to slices of Camk2α^{−/−} mice. This striking CaMKIIα subtype selectivity was further corroborated by the absence of binding of the photoligand SBV3 to homogenate from Camk2α^{−/−} mice (SI Appendix, Fig. S3). Additionally, to validate binding in an overexpressed system, we prepared whole-cell homogenates from CaMKIIα-transfected HEK293T cells and demonstrate a saturable ^{[3]H}HOCPA binding profile (Fig. 1F; summarized in SI Appendix, Table S2), as well as concentration-dependent inhibition by GHB, HOCPA, and 5-HDC in the expected relative rank order (Fig. 1G; summarized in SI Appendix, Table S3). Finally, no ^{[3]H}HOCPA binding was observed to CaMKII_{γδ} subtypes heterologously expressed in HEK293T cells (Fig. 1H and SI Appendix, Fig. S4). To our knowledge, such CaMKIIα subtype selectivity is completely unforeseen.

Structural Evidence for a Hub Domain Ligand Binding Site. Potential ligand binding sites in CaMKIIα include the kinase domain, the regulatory segment, and the hub domain (Fig. 2A). From previous crystal structures (4), we hypothesized that a deep cavity in the hub that contains several positively charged arginine (Arg) residues is the binding pocket for GHB analogs. By surface plasmon resonance, we detected binding to the isolated CaMKIIα hub by GHB analogs, the strongest interaction being with 5-HDC (K_D 0.30 μM) (Fig. 2B and SI Appendix, Fig. S4 B–F). Further evidence for selective binding to the hub was obtained using HEK293T cells transiently expressing a CaMKIIα hub deletion mutant (Δhub, 35 kDa) that showed complete absence of ^{[3]H}HOCPA binding (Fig. 2C). Final proof of the binding location was obtained from cocystalization with the human hub domain. Using a previously reported stabilized form of the hub (6x Hub) (2), we obtained an x-ray crystal structure of the tetradecameric CaMKIIα hub oligomer bound to 5-HDC (2.2-Å resolution) (Fig. 2D–F; further structural data are provided in SI Appendix, Fig. S5 and Table S4). The structure highlights direct interactions of 5-HDC with the predicted Arg residues 433, 453, 469, and His395 (Fig. 2F) (4). The structure also reveals a distinct conformational shift in Trp403 located at the edge of the binding pocket upon 5-HDC binding (Fig. 2E). This “Trp flip” was further consolidated using an in-house–developed intrinsic tryptophan fluorescence assay for the isolated hub domain protein (Fig. 2G, modeled in SI Appendix, Fig. S6). Convincingly, in this assay, 5-HDC exhibited a concentration-dependent quenching of the fluorescence in both the 6x Hub mutant and the wild-type (WT) hub protein (half maximal inhibitory concentration [IC₅₀] values of 1.81 and 1.47 μM, respectively), which was, however, not seen for HOCPA (SI Appendix, Fig. S6). This likely reflects the smaller size of HOCPA, allowing for the simultaneous occupancy of HOCPA and Trp403 inside the binding cavity, also supported by modeling (SI Appendix, Fig. S6C).

GHB Analog Stabilizes CaMKIIα Hub Oligomer Formation. Intrigued by GHB analogs binding in a specific hub cavity and the functional importance of hub oligomerization for normal CaMKIIα function (6, 7, 35), we investigated a potential effect of the compounds on hub dynamics. Employing a thermal shift assay of the purified CaMKIIα WT hub protein using differential scanning fluorometry, we observed pronounced effects on protein denaturation. In the presence of saturating concentrations of each of the three compounds GHB, HOCPA, and 5-HDC, extensive concentration-dependent stabilization of the hub domain was observed, resulting in respective maximum T_m increases of 13, 15, and 29°C (Fig. 3A–C and SI Appendix, Fig. S6 D and E). As shown, the thermal shift curves were concentration-dependent with potencies corresponding with the relative affinity rank order of the compounds obtained in radioligand binding assays on cortical homogenate: 5-HDC > HOCPA > GHB (SI Appendix, Table S3). However, whereas these data confirm the binding site to the hub and a marked effect on hub stability, they offer no direct interpretation of downstream functional effects resulting from this.

Lack of Effects of GHB Ligands on Basal and Stimulated CaMKIIα Activity. To explore a potential functional relevance of the hub binding site
on CaMKII activity, we probed the ability of compounds (GHB, HOCPA, and 5-HDC; CN21 peptide as control) to inhibit phosphorylation of a commonly used peptide substrate (syntide) in the ADP-Glo assay employing recombinant CaMKIIα and a fixed concentration of CaM. Whereas we observed the expected concentration-dependent inhibition of CaMKII activation by syntide by CN21, no effect was seen of the three GHB analogs applied over a wide concentration span (Fig. 3D).

In order to study the effects of the compounds on the enzymatic activity of CaMKII in a more physiological setting, we also assessed Thr286 autophosphorylation levels in mouse primary cortical neurons, optimized to ensure a native high expression of CaMKIIα and ability to bind [3H]HOCPA (SI Appendix, Fig. S7). In these studies, as well as in subsequent in vivo studies, HOCPA was selected as model compound due to its high selectivity and affinity for CaMKIIα (Fig. 1E), as well as its known cellular and brain permeability (32, 36). Following compound stimulation for 1 h, pThr286 levels were measured by Western blotting. Whereas KN93, a reported CaM inhibitor (37), showed significant inhibition of Thr286 autophosphorylation already at basal conditions, HOCPA (3 mM) did not affect Thr286 autophosphorylation during basal nor Ca2+-stimulated conditions (Fig. 3E–H). In line with this overall lack of effect on CaMKIIα enzymatic activity, bath application of HOCPA did not inhibit classical long-term potentiation (LTP) induced in mouse hippocampal slices when given as a single dose (SI Appendix, Fig. S8). These findings underline that binding to the hub does not per se affect the enzymatic function of CaMKIIα under naïve nonpathological conditions.

CaMKIIα Hub Ligands Are Cellular Protectants. Previous studies have reported GHB to be neuroprotective after ischemia (18–20) by yet-unknown mechanisms. Given our findings that GHB ligands strongly impair CaMKIIα hub dynamics, we hypothesized that an effect might depend on the activation state of the holoenzyme. In order to investigate this, we designed a number of experiments to examine the neuroprotective effect of HOCPA in neurons subjected to excitotoxicity. Under such circumstances, intracellular Ca2+ levels rise, resulting in CaMKIIα autonomy (16, 17) and translocation to the PSD, where it colocalizes with the NMDA-type glutamate receptor subunit GluN2B (13). As tat-CN21 is known to be neuroprotective after this type of insult to neurons and inhibit GluN2B colocalization (38), we used this compound for comparison.

In C57/B6-derived cortical neurons, excitotoxicity was induced by a high concentration of l-glutamate (Glu), as described by others (39), and cell viability quantified by lactate dehydrogenase activity (Fig. 4A). Using this protocol, we observed a strong susceptibility to cell death by a brief Glu stimulus (Fig. 4B), which was CaMKII dependent since tat-CN21 significantly reduced cell death (Fig. 4C). Application of HOCPA (1 mM) immediately or 30 min after stimulation did not have any effect on cell survival (Fig. 4C, Left). However, application of HOCPA 1 h after the noxious Glu stimulus, significantly reduced cell death which was found to be concentration dependent (Fig. 4C, Right). Similar findings were obtained with live/dead staining on primary hippocampal cultures from FvB mice, as also here application of HOCPA (1 mM) 1 h poststimulation resulted in a significantly increased cell live/dead ratio (Fig. 4D).

To address target engagement, this experimental setup was repeated in neurons isolated from Camk2α+/- and Camk2α− mouse littersmates. These experiments are unavoidably endowed with more variability, as individual embryos were used for neuron isolation to permit littermate matching by genotyping. In Camk2α+/− neurons, we observed a significant Glu response (56% mean cell death), which was significantly improved in the tat-CN21 condition. HOCPA application showed a trend, though not significant, toward improved live/dead ratio (18% mean recovery compared with the Glu-only condition). (Fig. 4 E and F). Interestingly, in Camk2α− neurons, we observed a milder but still significant Glu response. In these neurons, neither tat-CN21 nor HOCPA improved cell survival. As HOCPA presented with a very high P value (>0.9999) in the test for statistical difference between control and HOCPA conditions, we also tested the meaningful hypothesis that Glu and HOCPA treatments are equivalent in Camk2α− neurons (40). In this test, HOCPA was found to be equal to Glu with at least 95% confidence (90% CI [−0.202–0.198] live/dead ratio) whereas CN21 was not (90% CI [−0.093–0.381]).

Finally, to visualize the direct effect of the compound on CaMKII under these conditions, we examined the GluN2B–CaMKIIα colocalization in hippocampal dendritic spines after Glu stimulation in presence or absence of the compound. As a control, tat-CN21 was taken along again, which blocked the increased GluN2B–CaMKIIα colocalization as expected (38, 41). Strikingly, application of HOCPA blocked the increase in GluN2B–CaMKIIα colocalization, similar to tat-CN21 (Fig. 4 G and H). These data show that HOCPA behaves similar to the CaMKII–specific inhibitor tat-CN21 in neurons despite having a different binding domain on CaMKII, thereby adding to the mounting evidence that the observed neuroprotective effect of HOCPA is mediated via CaMKIIα.

CamKIIα Hub Ligands Afford Lasting Neuroprotection In Vivo. For in vivo validation of the HOCPA effect, we turned to a model of ischemic stroke, employing a noninvasive, well-validated photothermic model of focal ischemic injury in C57/B6 mice, which allows for evaluation of infarct sizes and motor performance (42). Similar to other models of stroke, we confirmed a CaMKIIα–relevant pathogenesis (16), as evidenced by an elevation in pThr286 levels 3 to 12 h postinjury (SI Appendix, Fig. S9). This guided the timing of compound treatment for the in vivo studies (Fig. 5A). Given the reported neuroprotective action of GHB in vivo (18–20), we hypothesized that this effect is mediated at least in part by interaction with the CaMKIIα hub (ΔK; 3.0 μM; SI Appendix, Table S3). However, as GHB is also known to bind to GABAA receptors, and this mediates hypothermia and sedation (22) albeit with much lower affinity (ΔK 230 μM) (23), we also considered that a GABAA receptor–mediated effect could contribute to the neuroprotective action of GHB. The obvious way to discern this is to use HOCPA as this compound exhibits submicromolar affinity for the CaMKIIα hub domain (ΔK 0.13 μM) and, most importantly, has been reported to lack affinity to native GABAA receptors at 1 mM (23). To further underscore the absence of GABAA effects of HOCPA in vivo, we compared the effects of GHB and HOCPA on body temperature in C57/B6 mice. Whereas GHB (275 mg/kg) by intraperitoneal (i.p.) injection produced the expected GABAA-mediated strong hypothermia, a high dose of HOCPA (175 mg/kg) produced no hypothermia (SI Appendix, Fig. S10A).

Turning now to the stroke model, we initially tested both GHB (275 mg/kg) and HOCPA (17.5 and 175 mg/kg) at an early time point (30 min poststroke). In both cases, infarct volumes were significantly reduced with the high dose of each compound (SI Appendix, Fig. S10B). Compellingly, when HOCPA (175 mg/kg) was administered later, at 3, 6, and 12 h postphotothermic stroke (Fig. 5A), it resulted in a more-pronounced reduction in infarct volume by ~40 to 50% measured 7 d poststroke (Fig. 5B). This was accompanied by improvements in motor coordination measured in paw placement on the grid-walking task (Fig. 5C) and in forelimb asymmetry in the cylinder test (SI Appendix, Fig. S10C).

To point to a preclinical relevance, significant treatment effects of single doses of HOCPA were confirmed in both aged female mice (175 mg/kg; Fig. 5D) and with a lower dose in young males (90 mg/kg) (SI Appendix, Fig. S10 D–F). To provide target engagement by HOCPA in these effects, we again tried to make use of the Camk2α− mice. As seen in other models of stroke (43), our photothermic stroke model likewise produced much larger infarcts in Camk2α− compared with Camk2α+/- littersmates (SI Appendix, Fig. S9).
S10G). Unfortunately, these larger infarcts were accompanied by marked hemorrhagic transformation (SI Appendix, Fig. S10H), hampering a subsequent treatment study.

Finally, to investigate potentially sustained functional effects of HOCPCA (175 mg/kg) after a single, acute treatment at 3 h poststroke, we assessed the interhemispheric transfer and integration of sensorimotor and cognitive information via axons through the corpus callosum 14 d poststroke (44) by recording of compound action potentials (CAPs). This showed an overall significant increase in CAPs with HOCPCA treatment (~50 to 60% of control) (Fig. 5F and G). The impairments in axon function and reversal after a single treatment with HOCPCA were further supported by a reversal of the stroke-induced decrease in transport of the neuroanatomical tracer biotinylated dextran amine by HOCPCA (SI Appendix, Figs. S10 I and J).

Discussion

The role of the CaMKIIa hub as a determinant for holoenzyme assembly and structural integrity is well-established (4, 7, 9), yet its functional importance has been less appreciated. This study identifies a binding site in the CaMKIIa hub domain for GHB-related small molecules that appears to be the long-sought-after GHB high-affinity site in the mammalian brain. Although this evolutionarily conserved and abundant forebrain high-affinity binding site was reported already in 1982 (45), it has never been unambiguously annotated (30, 31, 46). Compared with our previous proteomics study (30), in which a large number of potential hits were identified, the current study identifies only one main target: CaMKIIa. This milestone finding was achieved by an inventive approach combining a bifunctional photoligand, allowing for the introduction of a biotin tag for affinity purification, and the competition of the photoaffinity labeling reaction to permit quantitative
proteomics. The finding opens for further understanding the role of GHB as a natural GABA metabolite in the mammalian brain.

The CaMKIIα hub structure presented here uniquely has a bound ligand. The central Arg residues 453 and 469 in the pocket make important interactions with the carboxylic acid moiety, as previously suggested (2, 4). The fact that the cocrystal with 5-HDC is a tetradecamer shows how this oligomeric state can coexist with ligand bound. The Trp403 displacement upon binding illustrates a hub conformation with potential functional relevance potentially involved in stabilizing an oligomeric state of the protein. Interestingly, this residue was recently reported as a part of a loop mediating kinase docking in CaMKIIα lacking a linker region (9), suggesting that a conformational change in this part of the hub may also influence allosteric control of kinase activity (9); although under the standard conditions tested here, no effect on substrate phosphorylation or Thr286 autophosphorylation was observed. As Trp403 is unique to CaMKIIα and not in CaMKIIβγδ subtypes, it may also be an important molecular determinant for CaMKIIα selectivity and/or dynamics.

Our structural and molecular data suggest a prototypical action of small-molecule hub ligands, such as GHB analogs, in providing pharmacological compensation of CaMKIIα overactivity during abnormal activation states of CaMKIIα activity such as excitotoxicity or destabilization. The effect on hub stabilization suggests that compounds can alter hub oligomeric state, but a full understanding of the functional consequences of this remain to be fully investigated. It is envisaged that to detect such effects, assays must be tailor made to pick up modulation via the hub. Here, GHB ligands will serve as important tools.

Using the highly selective CaMKIIα ligand HOCPCA, we provide pharmacological insight into this role of the enigmatic GHB high-affinity site ligands as cellular protectants. The specific interaction with CaMKIIα is obtained from various in vitro binding studies and is further augmented by target-specific functional effects in neurons: Genetic deletion of CaMKIIα abrogates the effect of HOCPCA in Camk2a-/- neurons, although Glu responses are generally quite low. Furthermore, a significant reduction in PS translocation of CaMKIIα is observed upon HOCPCAtreatment, inferring a CaMKIIα-specific effect of this ligand. The peptide CN21 shares the...
functional effects with HOCPCA but is not selective for CaMKIIα, which may explain its slightly different efficacy. After all, CN21 is not a hub ligand. The in vitro findings indicating a late-onset effect are further corroborated by extensive neuroprotection observed in vivo in mice when HOCPCA is administered 3 to 12 h post-stroke. This points to a clinically relevant time window for patient treatment where brain tissue can be salvaged and where there is currently no other treatment. Given that the effect of HOCPCA on brain connectivity is still apparent 14 d after a single treatment at 3 h poststroke further indicates that compound administration at the right time postinjury can provide lasting effects. It underscores CaMKIIα as a clinically relevant target in stroke therapy. Given the limited treatment options and general poor prognosis for functional recovery after cerebral ischemia (47), these findings offer a mechanism with an extended time window for therapeutic rescue of neuronal tissue at risk. Since HOCPCA does not appear to inhibit LTP, analogs of this type are also promising in terms of producing drug candidates with fewer adverse effects given its unique hub site-of-action.

Overall, our elucidations present a principle for regulating CaMKIIα function via modulation of the hub domain and suggests CaMKIIα hub ligands for ameliorating several states of CaMKII dysregulation such as cerebral ischemia, conditions involving excitotoxicity, and protein destabilization. Whereas the GABAAR receptor has been pharmacologically validated GHB target in vivo (22), we here extend this to include CaMKIIα. This prompts considerations of CaMKIIα as contributing factor to the neuroprotective actions of GHB but also in clinical conditions like alcoholism and narcolepsy where GHB is employed (48) and plausibly in relation to the endogenous role of GHB. The structural and molecular insight into the CaMKIIα hub provided here, and the identification of a unique binding site for small molecules, permits ways for tailoring of future therapeutically relevant drug candidates targeting this very important brain kinase.

Materials and Methods

Materials and procedures are described in full in SI Appendix, Supplementary Information Text.

Data Availability. All raw mass spectrometry proteomics data from this study have been deposited to the ProteomeXchange Consortium via the PRIDE partnership (49), with accession numbers P1056799. The atomic coordinates have been deposited to the Protein Data Bank with the identifier 7REC (51). All other data are available in the main text or the supplementary information.

ACKNOWLEDGMENTS. We thank members of all laboratories for their support. We appreciate insightful comments from Ype Elgersma and Howard Schulman for expert advice from Bernard Küster and PAXE Gibson. A special thanks to Kristen Lindorff-Larsen and Nils Ole Dalby for invaluable input. We thank Mehnoosh A. Jolfei for help with the LTP experiments, Ales Marek for providing [(3H)HOCPCA radioligand, and Anders S. Kristensen for providing access to the Safire® plate reader. For x-ray crystallography data, we thank James Holton and Geoge Meigs at the Advanced Light Source Beamline 8.3.1 for assistance with data collection. Beamline 8.3.1 at the Advanced Light Source is operated by the University of California Office of the President, Multicampus Research Programs and Initiatives Grant MR-15-328589, the NIH (grants GM121419 and GM124169), Plexikon Inc., and the Integrated Diffraction Analysis Technologies program of the US Department of Energy Office of Biological and Environmental Research. The Advanced Light Source (Berkeley, CA) is a national user facility operated by Lawrence Berkeley National Laboratory on behalf of the US Department of Energy under Contract DE-AC02-07CH11300. This work was supported by the Lundbeck Foundation (Grants R83-2011-8000 to P.W., R77-2011-A6415 to B.F., R139-2012-12270 to P.W., R190-2014-3710 to A.B., R192-2015-666 to U.L., R303-2018-3162 to M.A.S., and R277-2018-260 to P.W.), the Novo Nordisk Foundation (Grants NNFI70C0028664 to P.W., NNFI40CC001 to J.V.O., and NNFI95A005741 to B.R.K.), the Independent Research Fund Denmark (Grants 8020-00156B to P.W. and 1333-00161B to A.B.K.), a Drug Research Academy and Lundbeck Foundation pre-graduate scholar stipend in Pharmaceutical Neuroscience (to A.S.G.L. and S.J.G.), the Netherlands Organizational for Scientific Research (Grants NWO-VIDI 016.Vidi 188.014 to G.M.W.), a Royal Society of New Zealand Project Grant, Brain Research New Zealand (to A.N.C.), and the Howard Hughes Medical Institute (J.K.).

1. P. De Koninck, H. Schulman, Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279, 227–230 (1998).
2. E. D. McSpadden et al., Variation in assembly stoichiometry in non-metazoan homologs of the hub domain of Ca2+/calmodulin-dependent protein kinase II. Protein Sci. 28, 1071–1082 (2019).
3. O. S. Rosenberg et al., Oligomerization states of the association domain and the holoenzyme of Ca2+/CaM kinase II. FEBS J. 273, 682–694 (2006).
4. A. Hoelt, A. C. Nairn, J. Kuriyan, Crystal structure of a tetradecameric assembly of the association domain of Ca2+/calmodulin-dependent kinase II. Mol. Cell. 11, 1241–1251 (2003).
5. O. S. Rosenberg, S. Deindl, R. J. Sung, A. C. Nairn, J. Kuriyan, Structure of the auto-inhibited kinase domain of CaMKII and SAKS analysis of the holoenzyme. Cell 123, 849–860 (2005).
6. M. Stratton et al., Activation-triggered subunit exchange between CaMKII holoenzymes facilitates the spread of kinase activity. eLife 3, e01610 (2014).
7. M. Bhattacharyya et al., Molecular mechanism of activation-triggered subunit exchange in Ca2+/calmodulin-dependent protein kinase II. eLife 5, e13405 (2016).
8. M. L. Chao et al., A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin-dependent kinase II holoenzyme. Cell 146, 732–745 (2011).
32. S. B. Vogensen et al., New synthesis and tritium labeling of a selective ligand for studying high-affinity \(\gamma\)-hydroxybutyrate (GHB) binding sites. J. Med. Chem. 56, 8201–8205 (2013).
33. A. K. Mehta, N. M. Muschavek, D. Y. Maeda, A. Coop, M. K. Ticku, Binding characteristics of the \(\gamma\)-hydroxybutyric acid receptor antagonist \([\text{H}]\text{[2E-5-hydroxy-5,7,8,9-tetrahydro-6H-benz[a]annulen-6-ylidene]}\) ethanoic acid in the rat brain. J. Pharmacol. Exp. Ther. 299, 1148–1153 (2001).
34. N. Griem-Krey, A. B. Klein, M. Herth, P. Wellendorph, Autoradiography as a simple and powerful method for visualization and characterization of pharmacological targets. J. Vis. Exp. 145, https://doi.org/10.3791/58879 (2019).
35. D. Karandur et al., Breakage of the oligomeric CaMKII hub by the regulatory segment of the kinase. eLife 9, e57784 (2020).
36. L. Thiesen et al., In vitro and in vivo evidence for active brain uptake of the GHB analog HOCPCA by the monocarboxylate transporter subtype 1. J. Pharmacol. Exp. Ther. 354, 166–174 (2015).
37. M. H. Wong et al., The KN-93 molecule inhibits calcium/calmodulin-dependent protein kinase II (CaMKII) activity by binding to Ca\(^{2+}\)/CaM. J. Mol. Biol. 431, 1440–1459 (2019).
38. O. R. Buonarati et al., CaMKII versus DAPK1 binding to GluN2B in ischemic neuronal cell death after resuscitation from cardiac arrest. Cell Rep. 30, 1–8.e4 (2020).
39. N. M. Ashpole, A. Hudmon, Excitotoxic neuroprotection and vulnerability with CaMKII inhibition. Mol. Cell. Neurosci. 46, 720–730 (2011).
40. D. J. Schuirmann, A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokin. Biopharm. 15, 657–680 (1987).
41. R. S. Vest, K. D. Davies, H. O’Leary, J. D. Port, K. U. Bayer, Dual mechanism of a natural CaMKII inhibitor. Mol. Biol. Cell 18, 5024–5033 (2007).
42. A. N. Clarkson, B. S. Huang, S. E. Macisaac, I. Mody, S. T. Carmichael, Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468, 305–309 (2010).
43. M. N. Washam, J. C. Grotta, A. J. Silva, R. Strong, J. Aronowski, Ischemia-induced neuronal damage: A role for calcium/calmodulin-dependent protein kinase II. J. Cereb. Blood Flow Metab. 16, 1–6 (1996).
44. W. Singer, Development and plasticity of cortical processing architectures. Science 270, 758–764 (1995).
45. J. Benavides et al., High affinity binding sites for \(\gamma\)-hydroxybutyric acid in rat brain. Life Sci. 30, 953–961 (1982).
46. C. Andriamampandry et al., Cloning and functional characterization of a \(\gamma\)-hydroxybutyric acid receptor identified in the human brain. FASEB J. 21, 885–895 (2007).
47. V. L. Feigin, B. Norving, G. A. Mensah, Global burden of stroke. Circ. Res. 120, 439–448 (2017).
48. F. P. Busardo, C. Kyriakou, S. Napoletano, E. Marinelli, S. Zaami, Clinical applications of sodium oxybate (GHB): From narcolepsy to alcohol withdrawal syndrome. Eur. Rev. Med. Pharmacol. Sci. 19, 4654–4663 (2015).
49. J. A. Vizcaino et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).
50. U. Leurs, J. V. Olsen, GHB analogs confer neuroprotection through specific interaction with the CaMKIIa hub domain. Proteomics IDEntifications Database repository (PRIDE). http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD019679. Deposited 6 September 2020.
51. E. D. McSpadden, C. C. Chi, C. L. Gee, J. Kuriyan, Structure of Thr354Asn, Glu355Gln, Thr412Asn, Ile414Met, Ile464His, and Phe467Met mutant human CaMKIIalpha hub bound to S-HDC. Protein Data Bank. https://doi.org/10.2210/pdb7REC/pdb. Deposited 7 July 2020.

Leurs et al. GHB analogs confer neuroprotection through specific interaction with the CaMKII alpha hub domain

PNAS | 9 of 9
https://doi.org/10.1073/pnas.2108079118