Corrigendum

Corrigendum to “Polychromatic Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography”

Thomas Weidinger,1 Thorsten M. Buzug,1 Thomas G. Flohr,2 Steffen Kappler,2 and Karl Stierstorfer2

1Institute of Medical Engineering, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
2Siemens AG, Healthcare Sector, Imaging & Therapy Division, Siemensstraße 1, 91301 Forchheim, Germany

Correspondence should be addressed to Thomas Weidinger; weidinger@imt.uni-luebeck.de

Received 29 April 2018; Accepted 6 May 2018; Published 9 August 2018

Copyright © 2018 Thomas Weidinger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the article titled “Polychromatic Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography” [1], there were errors in equations (13) and (28) in addition to some errors in the text. This should be corrected as follows:

(1) Equation (13) should be corrected to

\[
\tilde{\beta}_i^{b(n)}(E) = \frac{N_{i}^{b,(n)}(f^{(n)})}{t_i(E, f^{(n)})}. \tag{13}
\]

(2) The text between equations (14) and (15) should be corrected to

\[
N_i^b(f) = \int \frac{N_{i,0}^{b}(E)}{\beta_i^{b,(n)}(E, f^{(n)})} t_i(E, f_i^{(n)}) \beta_i^{b(n)}(E, f^{(n)}) \, dE. \tag{14}
\]

Since \(h_i^b \) is a convex function, it holds that

\[
\int \frac{N_{i,0}^{b}(E)}{\beta_i^{b,(n)}(E, f^{(n)})} \, dE = 1. \tag{15}
\]

(3) Equation (28) should be corrected to

\[
\frac{\partial^2 Q_3}{\partial f_k^j \partial f_m^j} = \sum_{b=1}^{n} \sum_{i=1}^{N_b} \int \frac{N_i^{b,(n)}(E)}{\beta_i^{b,(n)}(E, f^{(n)})} \frac{\partial^2 N_i^{b,(n)}(E)}{\partial f_k^j} \frac{\partial \mu_k(E) \mu_m(E)}{\partial f_j^k} \, dE.
\]

Since \(h_i^b \) is a convex function, it holds that

\[
\int \frac{N_{i,0}^{b}(E)}{\beta_i^{b,(n)}(E, f^{(n)})} \, dE = 1.
\]

(4) In the “Summary of the Algorithm” subsection, step 3 should be corrected to

(3) Additionally, calculate

\[
\int N_{i,0}^{b}(E) \frac{\partial \mu_k(E) \mu_m(E)}{\partial f_j^k} \, dE,
\]

which equates to \(-(1/a_{ij})(\partial N_i^{b,(n)}/\partial f_j^k)\).

References

[1] T. Weidinger, T. M. Buzug, T. Flohr, S. Kappler, and K. Stierstorfer, “Polychromatic iterative statistical material image reconstruction for photon-counting computed tomography,” International Journal of Biomedical Imaging, vol. 2016, Article ID 5871604, 15 pages, 2016.