Germination of seeds from herbarium specimens as a last conservation resort for resurrecting extinct or critically endangered Hawaiian plants

Dustin Wolkis1,2,3 | Kelli Jones1 | Tim Flynn1 | Mike DeMotta1 | Nina Rønsted1,2

1National Tropical Botanical Garden, Kalaheo, Hawaii, USA
2Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
3Seed Conservation Specialist Group, Species Survival Commission, International Union for Conservation of Nature, Gland, Switzerland

Abstract

Historical herbarium collections have been proposed as a last resort for recovery of extinct plant species not represented in dedicated seed banks or other living conservation collections. For critically endangered plants at the brink of extinction, herbarium collections may also contain historical material from extinct subpopulations representing a species’ former range and lost genetic diversity of high value for conservation management. We explored the potential for germination of 81 critically endangered seed plant taxa endemic to the Hawaiian island of Kauai from herbarium specimens in herbarium PTBG of the National Tropical Botanical Garden (NTBG). Of 1250-recorded specimens of wild origin, 138 specimens representing 37 taxa contained mature seeds that could be subjected to germination testing. Seven of these taxa were not represented by any NTBG seed bank collections. Fresh embryos were observed in one seed of each of the three species Schiedea helleri, Schiedea kauaiensis, and Viola helena. While potential germination success may be low, we conclude that testing of seeds from herbarium collections should be extended from a focus on strictly extinct taxa to critically endangered taxa, which may not have sufficient representation in seed banks or other living collections of subpopulations and genetic diversity across their wild range.

KEYWORDS
extinct plant species, historical seed collections, reintroduction, resurrection ecology, Schiedea helleri, Schiedea kauaiensis: Viola helena, seed longevity

1 INTRODUCTION

A report published in 2019 by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019) assessed that up to 1 million species of plants and animals are threatened with extinction. Other studies have shown extinction rates of seed plants to be faster than the normal turnover of species—over the past 250 years, an average of 2.3 plant species per year have gone extinct (Barnosky et al., 2011; Humphreys et al., 2019). Oceanic islands are hotspots of endemicity due to their isolation which have allowed high numbers of
plants to evolve unique adaptations to their local environment (Barnosky et al., 2011; Sakai et al., 2002). For example, the Hawaiian Islands are host to more than 1360 native plants of which 90% are endemic to the islands (Wagner et al., 1999, 2005). However, 727 taxa or about half of the native flora are considered threatened or endangered (Laukahi, 2021) and 435, or more than 30%, are listed under the U.S. Endangered Species Act (U.S. Fish and Wildlife Service, 2021). It is also estimated that 134 have already gone extinct since 1840 (Wood et al., 2019). According to the Hawai‘i Plant Extinction Prevention Program (PEPP, 2021), 237 native Hawaiian plants have less than 50 individuals left in the wild and are of high conservation priority.

The current framework for plant conservation is provided by the Global Strategy for Plant Conservation (GSPC), which is a program of the United Nations Convention on Biological Diversity (CBD) aiming specifically to halt continuing loss of plant diversity (Secretariat of the Convention on Biological Diversity, 2010). The Hawai‘i Strategy for Plant Conservation (HSPC) is the regional adaptation of the GSPC (Weisenberger & Keir, 2014). One of the targets in both the GSPC and HSPC is to ensure at least 75% of all threatened plants are conserved in ex situ collections, and seed banks are an ideal and most cost-effective and common means to store seeds for later propagation and restoration projects, including in Hawai‘i (Abeli et al., 2019; Chau et al., 2019). However, while seed banks offer optimal storage conditions for conservation collections of rare and endangered plants, seed bank collections may only represent a fraction of the wild genetic diversity (Hoban & Schlarbaum, 2014; Merritt & Dixon, 2011), when standard seed collecting protocols (e.g., Basey et al., 2015; Brown & Marshall, 1995; Hoban & Schlarbaum, 2014; Hoban & Strand, 2015) cannot be followed, as is the case with some rare species. For critically endangered plants with small population sizes (IUCN, 2021) such as *Cynanea kuhikehua* with only two individuals known to be surviving in the wild (Ronsted & Wood, 2020), mature seeds may not have been available or accessible for collection or only a few collections have been made resulting in lack of genetic diversity in the conservation collection of the most endangered plants (Hoban et al., 2021).

Herbaria have, therefore, been proposed as an alternative resource for obtaining seeds of extinct or nearly extinct plants (Bowles et al., 1993; Godefroid et al., 2011) adding to the many translational uses of herbaria (Funk, 2004; Meineke et al., 2018; Renstedt et al., 2020). Herbaria generally provide poor seed storage conditions with higher temperature and humidity as well as use of chemicals and high temperature drying, compared to seed banks focused on desiccation and freezing for storage of seeds (Strang, 1999; Wolkis & Deans, 2019). However, seeds may survive even extreme conditions for long time spans as illustrated by regeneration of eight fertile plants from 30,000-year-old fruit tissue buried in Siberian permafrost (Yashina et al., 2012).

Many studies have also reported the occasional success with germination of seeds from herbarium or other archival collections up to more than 150 years old (e.g., Becquerel, 1934; Bowles et al., 1993; Daws et al., 2007; Godefroid et al., 2011; Leino & Edqvist, 2010). In one known example, propagules gained from herbarium specimens of *Crepis foetida* subsp. *foetida* resulted in the establishment of viable plant populations in the United Kingdom (Sears, 2011).

Godefroid et al. (2011) therefore proposed that routine testing of seeds from herbarium specimens of extinct plants should be performed. With the high number of plants at the brink of extinction, it could be argued that screening of seeds from herbaria should extend the focus to include Critically Endangered taxa according to the IUCN Red List criteria (IUCN, 2021) with no or limited representation in ex situ living collections.

The aim of the present study is to test the potential for using seeds from the PTBG herbarium collections of the National Tropical Botanical Garden on Kaua‘i as a backup for resurrecting already extinct Hawaiian plant species or restoring species at the brink of extinction.

2 METHODS

2.1 Sampling strategy

As a case study, we focused on the accessioned herbarium collections in herbarium PTBG of the National Tropical Botanical Garden (formerly Pacific Tropical Botanical Garden) on Kaua‘i, Hawai‘i. Herbarium PTBG includes nearly 90,000 herbarium specimens focused primarily on the plants of the Hawaiian Islands and areas of the tropical Pacific (primarily Polynesia, Micronesia and Melanesia) with ca. 86% of the collections from these areas. The oldest collections are from 1837 and the majority of the collections are from the last 50–60 years following the establishment of the herbarium as part of the National Tropical Botanical Garden in 1964. The PTBG herbarium is well curated and all specimens have updated annotations based on the taxonomic concepts defined by the online Flora of the Hawaiian Islands (Wagner et al., 2005).

We used the PEPP species list (PEPP, 2019) as a basis for taxon sampling. The PEPP species list includes taxa that have less than 50 individuals left in the wild. Since completion of the sampling for this study, the PEPP list was updated in 2021 excluding *Euphorbia eleanoriae* as a PEPP species due to recent findings of new subpopulations by drone survey increasing the wild population of
Family	Taxon	Collection date range	Number of sheets	Specimens with seeds present	Date range of specimens with seeds	Seed harvested	Seeds sown	Number of seed bank accessions
Asteliaceae	*Astelia waialealae* Wawra	1989–2006	9	0	NA	NA	0	0
Campanulaceae	*Cyanea kolekoleensis* (H. St. John) Lammers	1993–1998	2	0	NA	NA	0	0
Campanulaceae	*Cyanea kuhíhewa* Lammers	1991–2017	6	0	NA	NA	0	6
Campanulaceae	*Cyanea remyi* Rock	1972–2017	37	1	1991	Yes	21	6
Campanulaceae	*Cyanea rivularis* Rock	1988–2016	26	4	1993–1994	Yes	50	6
Campanulaceae	*Cyanea undulata* C. N. Forbes	1989–2019	21	1	2012	Yes	13	0
Gesneriaceae	*Cyrtandra paliku* W. L. Wagner, K. R. Wood & Lorence	1993–2019	7	0	NA	NA	0	0
Campanulaceae	*Delissea kauaiensis* (Lammers) Lammers	1972–2016	18	6	1990–2204	Yes	207	86
Campanulaceae	*Delissea rhytidosperma* H. Mann	1984–2017	11	2	1984–1992	Yes	60	43
Asteraceae	*Dubautia kalalauensis* B.G. Balwin & G.D. Carr	1985–2004	4	1	1985	Yes	3	13
Asteraceae	*Dubautia kenwoodii* G. D. Carr	1991	1	0	NA	NA	0	0
Asteraceae	*Dubautia pauciflorula* H. St. John & G. D. Carr	1979–2012	21	12	1987–2012	Yes	307	1
Euphorbiaceae	*Euphorbia eleanoriae* (Lorence & W. L. Wagner) Govaerts	1990–2016	22	0	NA	NA	0	0
Euphorbiaceae	*Euphorbia remyi* var. *hanaleiensis* Scherff	1972–1993	2	0	NA	NA	0	0
Phyllanthaceae	*Flueggea neoawawae* W. J. Hayden	1987–2018	38	6	1990–2007	Yes	60	9
Rhamnaceae	*Gouania meyenii* Steud.	1991–1994	8	2	1992–1994	Yes	13	3
Malvaceae	*Hibiscadelphus distans* L.E.Bishop & D.R.Herbst	1982–2005	13	1	1992	Yes	1	28
Malvaceae	*Hibiscadelphus woodii* Lorence & W. L. Wagner	1991–2005	5	0	NA	NA	0	0
Rubiaceae	*Kadua haupuensis* Lorence & W. L. Wagner	1998	3	0	NA	NA	0	10
Rubiaceae	*Kadua st.-johnii* B. C. Stone & Lane W. L. Wagner & Lorence	1993–2013	8	0	NA	NA	0	32

(Continues)
Family	Taxon	Collection date range	Number of sheets	Specimens with seeds present	Date range of specimens with seeds	Seed harvested	Seeds sown	Number of seed bank accessions
Malvaceae	*Kokia kauaiensis* (Rock) O. Deg. & Duvel	1971–2017	27	0	NA	NA	0	20
Loganiaceae	*Geniostoma lorenciana* (K. R. Wood, W. L. Wagner & T. Motley) Byng & Christenh.	1998–2206	20	1	2001	Yes	10	1
Loganiaceae	*Geniostoma lydgatei* (C. N. Forbes) Byng & Christenh.	1987–2018	85	7	1993–2012	Yes	253	19
Loganiaceae	*Geniostoma tinifolia* var. *wahiawaense* (H. St. John) Byng & Christenh.	1979–2013	18	3	1991–1996	Yes	53	3
Brassicaceae	*Lepidium orbiculare* St. John	1992–2015	11	8	1992–2015	Yes	111	13
Primulaceae	*Lysimachia iniki* K. L. Marr	1992–2017	12	0	NA	NA	0	5
Primulaceae	*Lysimachia ovoidea* H. St. John	1987–2016	9	0	NA	NA	0	1
Primulaceae	*Lysimachia pendens* K. L. Marr	1987–2010	7	0	NA	NA	0	0
Primulaceae	*Lysimachia scopulensis* Marr	1991–2017	18	8	1991–2016	Yes	66	5
Primulaceae	*Lysimachia venosa* (Wawra) H. St. John	2012–2015	7	0	NA	NA	0	1
Asteraceae	*Melanthera micrantha* subsp. *micrantha* (Nutt.) W. L. Wagner & H. Rob.	1990–2016	10	0	NA	NA	0	2
Asteraceae	*Melanthera waimeaensis* (H. St. John) W. L. Wagner & H. Rob.	1991–2018	6	0	NA	NA	0	11
Rutaceae	*Melicope degeneri* (B. C. Stone) T. G. Hartley & B. C. Stone	1995–2016	45	4	2004–2016	Yes	14	0
Rutaceae	*Melicope haupuenis* (H. St. John) T. G. Hartley & B. C. Stone	1990–2018	41	1	2011	Yes	2	0
Rutaceae	*Melicope knudsenii* (Hillebr.) T. G. Hartley & B. C. Stone	1990–2016	28	0	NA	NA	0	1
Rutaceae	*Melicope quadrangularis* (H. St. John & E. P. Hume) T. G. Hartley & B. C. Stone	1991–2018	13	0	NA	NA	0	0
Rutaceae	*Melicope stonei* K. R. Wood, Appelhans & W. L. Wagner	1994–2018	6	0	NA	NA	0	0
Family	Taxon	Collection date range	Number of sheets	Specimens with seeds present	Date range of specimens with seeds	Seed harvested	Seeds sown	Number of seed bank accessions
--------	-------	-----------------------	------------------	-------------------------------	-----------------------------------	----------------	------------	--------------------------------
Fabaceae	*Mezoneuron kavaiense* (H. Mann) Hillebr.	1987–2011	4	0	NA	NA	0	36
Primulaceae	*Myrsine knudsenii* (Rock) Hosaka	1986–2018	59	10	1996–2014	Yes	58	8
Primulaceae	*Myrsine mezii* Hosaka	1993–2018	14	0	NA	NA	0	0
Solanaceae	*Nothocestrum peltatum* Skottsb.	1985–2018	47	3	1991–2003	Yes	36	3
Poaceae	*Panicum niuaiense* H. St. John	1985–2014	8	2	1985–1993	Yes	75	66
Lamiaceae	*Phyllostegia electra* C. N. Forbes	1976–2019	86	17	1988–2017	Yes	179	18
Lamiaceae	*Phyllostegia helleri* Sherff	1993–2015	6	1	2015	Yes	5	1
Lamiaceae	*Phyllostegia knudsenii* Hillebr.	1994–2001	2	0	NA	NA	0	0
Lamiaceae	*Phyllostegia waimeae* Wawra	2000–2010	6	1	2010	Yes	15	1
Lamiaceae	*Phyllostegia wawrana* Sherff	1993–2017	18	7	1993–2004	Yes	71	1
Plantaginaceae	*Plantago princeps var. anomala* Rock	1986–2014	17	2	1993–2014	Yes	9	15
Orchidaceae	*Platanthera holochila* (Hillebr.) Kranzsl.	1991–2005	4	0	NA	NA	0	3
Araliaceae	*Polyscias bisattenuata* (Sherff) Lowry & G. M. Plunkett	1988–2018	54	0	NA	NA	0	7
Araliaceae	*Polyscias fynnii* (Lowry & K. R. Wood) Lowry & G. M. Plunkett	1986–2019	45	0	NA	NA	0	1
Arecales	*Pritchardia viscosa* Rock	1989–2012	3	1	1989	Yes	3	1
Rubiaceae	*Psychotria grandiflora* H. Mann	1993–2016	16	0	NA	NA	0	1
Asteraceae	*Remya montgomeryi* W.L. Wagner & D.R. Herbst	1986–2000	14	4	1986–1994	Yes	92	10
Caryophyllaceae	*Schiedea attenuata* W. L. Wagner, Weller & A. K. Sakai	1991–1994	3	2	1991–1994	Yes	79	17
Caryophyllaceae	*Schiedea helleri* Sherff	1993–2018	20	3	1993–2001	Yes	25	25
Caryophyllaceae	*Schiedea kauaiensis* H. St. John	1992–2017	15	1	2017	Yes	13	95
Caryophyllaceae	*Schiedea membranacea* H. St. John	1974–2019	29	2	1974–1981	Yes	7	27
Caryophyllaceae	*Schiedea perlmanni* W. L. Wagner & Weller	1992–2011	11	0	NA	NA	0	1
We restricted sampling to only taxa endemic to Kaua‘i Island as those are the main focus of the herbarium PTBG and constitute nearly 40% of Hawaii single-island endemicity (Sakai et al., 2002). We also excluded non-seed plants (seven fern and one clubmoss species) from the PEPP list. This resulted in a curated list of 81 plant taxa endemic to Kaua‘i and considered Critically Endangered according to the IUCN Red List criteria (IUCN, 2021). We followed the taxonomic concepts of the online Flora of the Hawaiian Islands (Wagner et al., 2005).

For each taxon, we counted the total number of herbarium sheets held at PTBG excluding specimens of horticultural origin or outside the taxon’s endemic range. For each taxon, this was then considered the number of available specimens (Table 1). Next, we recorded if each sheet included fruit or potentially mature seeds that could be tested for germination. As removal of seeds can reduce the diagnostic value of a specimen, we then set a threshold of only sampling seeds if there were more than five seeds present on a specimen and to a maximum of 20 percent of those seeds. Even when abundant seeds were present, no more than 50 seeds were sampled from any specimen to avoid unnecessary oversampling.

2.2 Seed viability

Seed viability was estimated through germination testing. We used standard protocols for rare Hawaiian plants already in use by the NTBG Seed Bank and Lab (www.ntbg.org/collections/seedbank) and the Hawai‘i Seed Bank Partnership (Laukahi, 2021). A maximum of 50 seeds were tested per accession. To prevent imbibition damage, all seeds were rehydrated overnight by placing seeds in a sealed chamber over a saturated solution of potassium sulfate at ambient lab temperature (~22°C) achieving a relative humidity of ~91%. To inhibit fungal growth without affecting germination (Guri & Patel, 1998) seeds were soaked for 7 h in a 5% solution of plant preservative mixture (PPM™; Plant Cell Technologies, Washington, DC) in distilled water.

For some accessions of Labordia, Myrsine, Phillostegia, and Stenogyne, the seeds could not be separated from the surrounding fruit without damaging the seeds and they were therefore sown in their surrounding fruit material. In some cases, seeds could be separated from the fruit material after soaking in distilled water (e.g., Solanum sandwicense), or with 5% PPM and in other cases whole fruits or seeds with attached fruit material were sown. Seeds (or seeds with fruit material) were then sown in 60-mm-diameter Petri dishes on blotter paper moistened with a
0.05% solution of PPM in distilled water, and sealed with plastic paraffin film, and exposed to a daily 12-h light (41 mmol/m²/s cool white [4100 K] fluorescent light)/12-h dark with simultaneous, alternating temperature regimens of 25/15°C. To elicit germination in taxa that may require cold stratification, after 97–176 days, all non-germinated seeds were transferred to a 15/5°C thermoperiod (and 12/12-h photoperiod) for 28–43 days, then transferred back to the original 25/15°C conditions for 27–41 days.

Seeds were assayed once every 2 weeks and rewatered with a 0.1% solution of PPM in distilled water as needed. Germination was defined as radical emergence. Seeds that germinated at any point during the experiment were transferred to the NTBG Conservation Nursery for propagation. The germination experiments were ended after a total of 152–260 days elapsed since sowing, after which all non-germinated seeds were transferred to the nursery for transplantation and propagation attempt. Embryos and seedlings were included in the conservation collections and mature plants can potentially be used to harvest F1 seeds, make cuttings, or conduct pollination experiments to further extend the conservation collection of that specific taxon.

3 | RESULTS

3.1 | Availability and taxonomic diversity of specimens and seeds

We recorded 1250 specimens collected between 1971 and 2019 representing 70 taxa from 26 families (86% of 81 Kaua’i endemic PEPP taxa sensu 2019) of wild origin within the taxon’s native range (Table 1; Appendix S1). Of these, 1112 specimens contained no seeds or fruits and were excluded from further experiments. In a few cases of Myrsine knudsenii, no seeds were present inside the fruits and these specimens were also excluded from further studies. Two accessions of Melicope degeneri (PTBG 20140308 & PTBG 20140193) contained seeds that did not look like Melicope seeds but were sown anyway.

![Figure 1](image-url)
A total of 2103 seeds from 138 specimens representing 38 taxa from 17 families (47% of Kaua‘i endemic PEPP taxa sensu 2019) collected between 1974 and 2017 were harvested for germination studies (Table 1, Appendix S1).

3.2 Germination success of historical seeds

Germination was observed in only a single seed of Schiedea kauaiensis from 2017 (PTBG sheet number 076512), after 232 days of incubation (after returning to 25/15 °C from 15/5 °C). Embryos were observed outside of their coats in Schiedea helleri from 1996 (PTBG sheet number 054716) and Viola helena from 1991 (PTBG sheet number 012540) after 237 (after returning to 25/15°C from 15/5°C), and 90 days of incubation, respectively (Figure 1).

4 DISCUSSION

The herbarium collections of PTBG contained a large number of sheets representing 70 of 81 critically endangered PEPP listed species with less than 50 individuals left in the wild. This confirms that herbarium collections may contain a relatively broad representation of even very rare species which may include collections from species or subpopulations that have been already lost. For example, Nakahama et al. (2015) identified a unique allele no longer detected in wild populations of the threatened Japanese Vincetoxicum pycnostelma from herbarium specimens up to 18 years old.

A large proportion of the sheets did not contain any seeds and it has been suggested (Godefroid et al., 2011) that general collecting efforts focus on flowering specimens rather than fruiting or sterile specimens. Even specimens collected with fruits may in fact only contain immature seeds and the longevity of immature seeds is reduced compared to fully matured ones (Hay & Smith, 2003), which could also account for the low viability observed.

Specimens deposited as vouchers in connection with seed collecting for seed banking and restoration purposes may also deliberately have had all seeds removed from the voucher specimens before depositing. However, we did not observe a trend of more specimens without fruit originating after the establishment of a NTBG seed collecting program in 1989 and the time range for specimens with and without seeds present were roughly the same. While seeds deposited with herbarium voucher specimens may not be viable, they may still contribute to seed morphology, genetic, and other studies (Walters et al., 2006).

To avoid oversampling of the specimens, seeds were only sampled from specimens with five or more seeds present, but no specimens with less than five seeds were observed in the present study. In extreme cases where the seeds of a herbarium specimen would for example be the absolutely last opportunity for resurrecting an already extinct species, any such sheets could have been considered too.

Thirty-one (82%) of the 38 taxa sampled for germination testing were also represented by seed accessions stored in the NTBG Seed Bank and Lab. In addition to the seven taxa (18%) not currently secured in the seed bank (Cyanea kolekoleensis, Cyanea undulata, M. degeneri, Melicope haupuensis, V. helena, Viola kauaensis var. wahiawaensis, and Xylosma crenatum), another seven (18%) of the sampled taxa (Dubautia pauciflora, Geniostoma lorecianica, Phylostegia helleri, Phyllostegia waiameae, Phyllostegia wawrana, Pritchardia viscosa, and Stenogyne campanulata) were only represented by one accession in the seed bank (see Table S1 for details) suggesting the seeds obtained from the herbarium collections could represent additional geographic or genetic diversity, including from subpopulations that could subsequently have gone extinct and could therefore no longer be sampled in the wild.

The three species for which germination was observed date back to 1991 or nearly 30 years. V. helena is not currently stored in the seed bank, and successful propagation from the herbarium seed collection would therefore represent a new conservation collection. S. helleri and S. kauaiensis were already backed by 25 and 96 accessions, respectively, in the seed bank of which 8 and 13 are from the same accessions represented by the herbarium specimen, respectively.

While herbarium samples may represent lost or additional diversity, the germination success is very limited. Germination or embryo emergence were only observed for three of 2103 sown seeds (0.14%) and in two of the cases it was not clear if the seeds had germinated or if the embryos were ejected from the seed coat by some mechanical process. Pericarp decomposition has been observed for Erechtites hieracifolia seeds buried in soil for 8 years (Baskin & Baskin, 1996). This was not the case for our study as the seed coats were intact when the embryos presented themselves. This is comparable to the findings of Godefroid et al. (2011), who observed germination of 8 seeds out of 2672 seeds (0.30%) from herbarium vouchers of extinct Belgium plants at herbarium BR of Meise Botanic Garden.

None of the two embryos and one seedling, that were transferred to the nursery survived. Low survival was also found in the study by Godefroid et al. (2011).

Optimized germination protocols were used in the present study, but it is possible that higher germination
rates could be obtained with more experimentation. In extreme cases, where filled, apparently healthy seeds fail to germinate and grow, embryo rescue may be also be a possibility (Sarasan et al., 2016).

It is also well known that rare wild species may exhibit individual variation in seed behavior both under storage and in germination processes (Chau et al., 2019; Godefroid et al., 2010). However, we suspect that the low germination success could be due to the generally poor drying and storage conditions for seeds in herbarium collections compared to modern seed banks (Bowles et al., 1993; Strang, 1999; Wolkis & Deans, 2019), although seeds of a common Hawaiian endemic species, Metrosideros polymorpha, was able to withstand the PTBG herbarium entry protocol of drying then freezing (Wolkis & Deans, 2019). It is also possible that postharvest specimen handling was not optimal, which could have resulted in loss of viability before transfer from the herbarium (Wolkis & Deans, 2019).

Despite the low germination success overall, any germination of an otherwise extinct species is an encouraging result significantly increasing the potential of resurrection and conservation of that species. Our results thus support the recommendation of Godefroid et al. (2011) to conduct routine germination testing on seeds from extinct species held in herbaria in the hope of finding even a few needles in the haystack. We further recommend extending the focus from strictly extinct taxa to also critically endangered taxa, which may not have sufficient representation in seed banks or other living collections of subpopulations and genetic diversity across their wild range (Hoban & Schlarbaum, 2014; Merritt & Dixon, 2011).

ACKNOWLEDGMENTS
The authors thank the many collectors of PTBG herbarium specimens and seed accessions for contributing to the collections over the years and the volunteers in the PTBG herbarium and the NTBG Seed Bank and Laboratory for help maintaining the collections. Rhian Campbell of the NTBG Conservation Nursery is thanked for help with transplantation and propagation attempt of seeds and germinants and Neil Brosnahan for scanning the herbarium sheets for the figure.

CONFLICT OF INTEREST
The authors declare no potential conflict of interest.

AUTHOR CONTRIBUTIONS
Nina Ronsted and Dustin Wolkis designed the study. Tim Flynn curated the herbarium specimens and provided recommendations for collecting materials. K.J. conducted the sampling and the germination tests. Mike DeMotta led the transplantation and propagation of seeds in the conservation nursery. Nina Ronsted drafted the manuscript with Dustin Wolkis and Kelli Jones. All authors revised and approved the final manuscript.

DATA AVAILABILITY STATEMENT
The datasets analyzed during the current study are available by request from National Tropical Botanical Garden.

ORCID
Dustin Wolkis https://orcid.org/0000-0002-8683-5855
Nina Ronsted https://orcid.org/0000-0002-2002-5809

REFERENCES
Abeli, T., Dalrympe, S., Godefroid, S., Mondoni, A., Müller, J. V., Rossi, G., & Orsenigo, S. (2019). Ex situ collections and their potential for the restoration of plants. Conservation Biology, 34, 303–313. https://doi.org/10.1111/cobi.13391
Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., Quental, T. B., Marshall, C., McGuire, J. L., Lindsey, E. L., Maguire, K. C., Mersey, B., & Ferrer, E. A. (2011). Has the Earth’s sixth mass extinction already arrived? Nature, 471, 51–57. https://doi.org/10.1038/nature09678
Basye, A. C., Fant, J. B., & Kramer, A. T. (2015). Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Native Plants Journal, 16, 37–52. https://doi.org/10.3368/npj.16.1.37
Baskin, C. C., & Baskin, J. M. (1996). Role of temperature and individual variation in seed behavior both under storage and in germination processes (Chau et al., 2019; Godefroid et al., 2010). However, we suspect that the low germination success could be due to the generally poor drying and storage conditions for seeds in herbarium collections compared to modern seed banks (Bowles et al., 1993; Strang, 1999; Wolkis & Deans, 2019), although seeds of a common Hawaiian endemic species, Metrosideros polymorpha, was able to withstand the PTBG herbarium entry protocol of drying then freezing (Wolkis & Deans, 2019). It is also possible that postharvest specimen handling was not optimal, which could have resulted in loss of viability before transfer from the herbarium (Wolkis & Deans, 2019).

Despite the low germination success overall, any germination of an otherwise extinct species is an encouraging result significantly increasing the potential of resurrection and conservation of that species. Our results thus support the recommendation of Godefroid et al. (2011) to conduct routine germination testing on seeds from extinct species held in herbaria in the hope of finding even a few needles in the haystack. We further recommend extending the focus from strictly extinct taxa to also critically endangered taxa, which may not have sufficient representation in seed banks or other living collections of subpopulations and genetic diversity across their wild range (Hoban & Schlarbaum, 2014; Merritt & Dixon, 2011).

ACKNOWLEDGMENTS
The authors thank the many collectors of PTBG herbarium specimens and seed accessions for contributing to the collections over the years and the volunteers in the PTBG herbarium and the NTBG Seed Bank and Laboratory for help maintaining the collections. Rhian Campbell of the NTBG Conservation Nursery is thanked for help with transplantation and propagation attempt of seeds and germinants and Neil Brosnahan for scanning the herbarium sheets for the figure.

CONFLICT OF INTEREST
The authors declare no potential conflict of interest.

AUTHOR CONTRIBUTIONS
Nina Ronsted and Dustin Wolkis designed the study. Tim Flynn curated the herbarium specimens and provided recommendations for collecting materials. K.J. conducted the sampling and the germination tests. Mike DeMotta led the transplantation and propagation of seeds in the conservation nursery. Nina Ronsted drafted the manuscript with Dustin Wolkis and Kelli Jones. All authors revised and approved the final manuscript.

DATA AVAILABILITY STATEMENT
The datasets analyzed during the current study are available by request from National Tropical Botanical Garden.

ORCID
Dustin Wolkis https://orcid.org/0000-0002-8683-5855
Nina Ronsted https://orcid.org/0000-0002-2002-5809

REFERENCES
Abeli, T., Dalrympe, S., Godefroid, S., Mondoni, A., Müller, J. V., Rossi, G., & Orsenigo, S. (2019). Ex situ collections and their potential for the restoration of plants. Conservation Biology, 34, 303–313. https://doi.org/10.1111/cobi.13391
Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., Quental, T. B., Marshall, C., McGuire, J. L., Lindsey, E. L., Maguire, K. C., Mersey, B., & Ferrer, E. A. (2011). Has the Earth’s sixth mass extinction already arrived? Nature, 471, 51–57. https://doi.org/10.1038/nature09678
Basye, A. C., Fant, J. B., & Kramer, A. T. (2015). Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Native Plants Journal, 16, 37–52. https://doi.org/10.3368/npj.16.1.37
Baskin, C. C., & Baskin, J. M. (1996). Role of temperature and light in the germination ecology of buried seeds of weeds species of disturbed forests. II. Erechtites hieracifolia. Canadian Journal of Botany, 74, 2002–2005. https://doi.org/10.1139/b96-240
Becquerel, P. (1934). La longévité des graines macrobiotiques. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 199, 1662–1664.
Bowles, M. L., Betz, R. F., & DeMauro, M. M. (1993). Propagation of rare plants from historic seed collections: Implications for species restoration and herbarium management. Restoration Ecology, 1, 101–106. https://doi.org/10.1111/j.1526-100X.1993.tb00015.x
Brown, A. H. D., & Marshall, D. (1995). A basic sampling strategy: Theory and practice. In L. Guarino, V. R. Rao, & R. Reid (Eds.), Collecting plant genetic diversity: Technical guidelines (pp. 75–91). University Press.
Chau, M., Chambers, T., Weisenberger, L., Keir, M., Kroessig, T. I., Wolkis, D., Kam, R., & Yoshinaga, A. Y. (2019). Seed freeze sensitivity and ex situ longevity of 295 species in the native Hawaiian flora. American Journal of Botany, 106, 1–23. https://doi.org/10.1002/ajb2.1351
Daws, M. I., Davies, J., Vaes, E., van Gelder, R., & Pritchard, H. W. (2007). Two-hundred-year seed survival of Leucosperrnum and two other woody species from the cape floristic region, South Africa. Seed Science Research, 17, 73–79. https://doi.org/10.1017/S0960258507707638
Funk, V. A. (2004). 100 uses for an herbarium (well at least 72). ASPT Newsletter, 17, 17–19.
Godefroid, S., Van de Vyer, A., Stoffelen, P., Robbrecht, E., & Vanderborgh, T. (2011). Testing the viability of seeds from old herbarium specimens for conservation purposes. Taxon, 60, 565–569. https://doi.org/10.1002/tax.602022
Godefroid, S., van de Vyver, A., & Vanderborght, T. (2010). Germination capacity and viability of threatened species collections in seed banks. *Biodiversity and Conservation*, 19, 1365–1383. https://doi.org/10.1007/s10531-009-9767-3

Guri, A. Z., & Patel, K. N. (1998). Compositions and methods to prevent microbial contamination of plant tissue culture media. *United States Patent*, 5(750), 402.

Hay, F. R., & Smith, R. D. (2003). Seed maturity: When to collect seeds from wild plants. In R. D. Smith, J. B. Dickie, S. L. Linington, H. W. Pritchard, & R. J. Frobert (Eds.), *Seed conservation: Turning science into practice* (pp. 97–133). The Royal Botanic Gardens, Kew.

Hoban, S., & Schlarbaum, S. (2014). Optimal sampling of seeds from plant populations for ex-situ conservation of genetic biodiversity, considering realistic population structure. *Biological Conservation*, 177, 90–99. https://doi.org/10.1016/j.biocon.2014.06.014

Hoban, S., & Strand, A. (2015). Ex situ seed collections will benefit from considering spatial sampling design and species' reproductive biology. *Biological Conservation*, 187, 181–191. https://doi.org/10.1016/j.biocon.2015.04.023

Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Nic Lughadha, E., & Vorontsova, M. S. (2019). Global dataset shows serving and monitoring genetic diversity are now necessary and feasible. *Bioscience*, 71, 964–976. https://doi.org/10.1093/biosci/bia054

IUCN (2021). The IUCN red list of threatened species. Version 2021-1. Retrieved from https://www.iucnredlist.org

IPBES (2019). *Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services* (p. 1148). In: E.S. Brondizio, J. Settele, S. Diaz & H.T. Ngo, (Eds.), Bonn, Germany: IPBES secretariat. https://doi.org/10.25217/zeno.3831673

P.E.P.P. (2019). Hawaii plant extinction prevention program. PEP species list. Retrieved from http://www.pepphi.org/pep-species-list.html

P.E.P.P. (2021). *Plant Extinction Prevention Program species list, March 2021*. www.pepphi.org

Ronsted, N., & Wood, K. R. (2020). *Cyanea kuahiwa*: Rediscovering one of Hawai‘i’s rarest trees. *Plants People Planet*, 2, 107–110. https://doi.org/10.1002/ppp.10099

Sakai, A. K., Wagner, W. L., & Mehrhoff, L. A. (2002). Patterns of endangerment in the Hawaiian Flora. *Systematic Biology*, 5, 276–302. https://doi.org/10.1080/10635150252899770

SEARS (2011). Re-introduction of stinking hawk’s-beard into south-East England, UK. In P. S. Sooae (Ed.), *Global reintroduction perspectives: Additional case-studies from around the globe* (pp. 234–238). International Union for Conservation of Nature Species Survival Commission, Re-introduction Specialist Group.

Strang, T. J. K. (1999). Sensitivity of seeds in herbarium collections to storage conditions and implications for thermal insect control methods. In D. A. Metsger & S. C. Byers (Eds.), *Managing the modern herbarium: An interdisciplinary approach* (pp. 81–102). Society for the Preservation of Natural History Collections.

U.S. Fish and Wildlife Service. (2021). Retrieved from https://www.fws.gov/endangered/

Wagner, W. L., Herbst, D. R. & Lorence, D. H. (2005). *Flora of the Hawaiian Islands*. University of Hawai‘i Press.

Weisenberger, L., & Keir, M. (2014). Hawai‘i strategy for plant conservation. Hawai‘i Plant Conservation Network. Retrieved from https://laukahi.org/hawaii-strategy-for-plant-conservation/
Yashina, S., Gubin, S., Maksimovich, S., Yashina, A., Gakhova, E., & Gilichinsky, D. (2012). Regeneration of whole 8 fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. *Proceedings of the National Academy of Sciences, 109*, 4008–4013. https://doi.org/10.1073/pnas.1118386109

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Wolkis, D., Jones, K., Flynn, T., DeMotta, M., & Rønsted, N. (2022). Germination of seeds from herbarium specimens as a last conservation resort for resurrecting extinct or critically endangered Hawaiian plants. *Conservation Science and Practice, 4*(1), e576. https://doi.org/10.1111/csp2.576