Social capital and geographical variation in the incidence of COVID-19: an ecological study

Christopher W N Saville,‡,1 Daniel Rhys Thomas‡,2

ABSTRACT

Background The new behavioural norms needed to reduce the spread of COVID-19 are likely scaffolded by social capital. Research on social capital and COVID-19 has yielded mixed results, with some studies finding it to be protective while others identifying it as a risk factor. We examined the association between social capital and COVID-19 at a finer spatial scale than previous research, and examined changes in the relationship over the course of the pandemic.

Methods Routine COVID-19 surveillance data from Wales were linked to estimates of social capital at a small area level. Generalised linear mixed effects models predicting COVID-19 case rates across areas using social capital estimates and possible confounding variables were fitted to the data. A moving window version of the analysis explored whether this relationship varied across time.

Results Areas with higher levels of social capital had lower rates of COVID-19 (rate ratio for trust=0.94, 95% CI 0.92 to 0.96; rate ratio for belonging=0.94, 95% CI 0.92 to 0.96). These associations were strongest during periods of lockdown, with evidence that social capital was less protective, and potentially even a risk factor, during periods when restrictions were eased. Trust, but not belonging, remained protective after adjusting for deprivation, population density, ethnicity and proportion population aged over 65 years.

Conclusions Social capital is an important public health resource, which should be considered in future pandemic preparedness. Its importance may be greatest during times when social activity is most restricted.

INTRODUCTION

Governments’ public health responses to COVID-19 are dependent on creating and maintaining new social norms to minimise viral spread. Acceptance of these new norms, however, is likely underpinned by more fundamental values. One conceptual framework for understanding these values is that of social capital.

Social capital refers to resources embedded within social networks.1 2 The construct has been extensively applied to social epidemiology,3-4 where it has generally been found to be protective in a variety of health contexts.5-6 However, especially in the Bourdieusian tradition, social capital is a form of capital and should not be mistaken for a universal public good. A growing body of work shows that social capital can also be a risk factor for health problems under certain circumstances.7-8

In the context of COVID-19, the networks that social capital reflects are both the basis of the collective action needed to limit the person-to-person spread of the virus and the vectors along which the virus spreads. Thus, it is plausible that social capital could be a risk or a protective factor.

The emerging evidence on social capital and COVID-19 has yielded mixed results. Makridis and Wu9 and Borgonovi et al10 run similar analyses on the association between social capital and COVID-19 cases and deaths, across US counties, finding social capital to be protective. Similarly, Bartscher et al11 found a protective association between electoral turnout, a proxy for social capital and case rates in subnational regions in Europe. Conversely, Elgar et al12 examined the association between different facets of social capital and the growth of COVID-19 mortality across 84 countries. Some facets were protective (civic engagement and confidence in state institutions), while others were associated with worse outcomes (generalised trust, group affiliations). In another between-countries analysis, Min13 found that social trust was associated with infections peaking faster.

One pattern in these results is that studies finding a protective effect of social capital looked at subnational units, while studies finding adverse associations with social capital made international comparisons. The dependence of contextual health effects on the spatial scale of analysis is a fundamental problem,14 but here there are particular reasons to expect differences. Analyses on higher spatial scales may combine the effects of ‘traditional’ social capital mechanisms with those of governmental policy responses. Given that governmental responses may be downstream of citizens’ values, such policy differences may indeed be a distal causal outcome of differences in social capital, but there is value in trying to disentangle these associations. This necessitates looking at spatial scales below the lowest level of geography where policy is made. The smallest spatial scale of the studies above is the US county level, which does not meet these criteria.

A second consideration is that the existing literature focuses primarily on the first months of the pandemic. It is plausible that the association between social capital and COVID-19 spread is not consistent over time, and may manifest differently as behavioural interventions change over time.

The present study looks at the association between social capital and COVID-19 spread on a finer spatial scale than previously: the middle super output area (MSOA) in Wales. MSOAs exist below the smallest unit of administrative geography in Wales, and are thus ideal for our purposes.
METHODS

Data

Data provided by Public Health Wales were a collated version of those publicly available via their COVID-19 dashboard. The outcome data were the number of cases of COVID-19 in Wales, confirmed by PCR testing and reported to Public Health Wales through routine daily surveillance established at the start of the pandemic, stratified by week and MSOA of residence. MSOAs are a unit of census geography with populations of ~8000, developed using UK Census data for disclosure control and standardising the reporting of small-area statistics, with 410 in Wales. MSOAs are designed to reflect the structure of the underlying communities (as opposed to, eg, zip codes). The period of data used was the week beginning 13 April 2020 until the week starting 11 January 2021.

The main exposures used were modelled estimates of generalised trust and sense of belonging at MSOA level. These estimates were derived using multilevel regression with poststratification as part of a previous study using the National Survey for Wales 2016/2017 (n=10 486). Estimates are available to download. A full description of how these estimates were derived can be found elsewhere, but to summarise: trust was measured using the item: ‘Would you say that most people can be trusted? Please answer on a scale from nought to 10 where nought means that in general you do not trust any other person and 10 that you feel most people can be trusted.’ Data were dichotomised so 0–4 were categorised as 0, and 5–10 as 1. Belonging was measured using the item ‘I belong to my local area’. Responses were dichotomised so the responses ‘strongly disagree’ or ‘tend to disagree’ were coded as 0 and the responses ‘strongly agree’, ‘tend to agree’ or ‘neither agree nor disagree’ were coded as 1. Generalised mixed effects models were fitted to these data with fixed effects of population density and the proportion of residents with no formal qualifications for trust and measures of population turnover and unemployment for belonging. Both models had identical random effect structure: random intercepts of age band and sex, with random slopes for national identity and ability to speak Welsh by local authority (an administrative unit which MSOAs are nested within, n=22). The resulting coefficients were poststratified using 2011 census data to derive the estimates of the two measures of social capital in each MSOA. Adjusted models (see below) used data on the proportion of residents in each MSOA on low-income-related benefits, from the Welsh Index of Multiple Deprivation, and population density, proportion of residents aged 65 or older, per cent identifying their ethnicity as ‘White Welsh/English/Scottish/Northern Irish/British’ from the 2011 UK Census. These variables were selected as factors associated with both COVID-19 and social capital in other studies, and thus potential for confounding.

Analyses

Generalised linear mixed effects models with Poisson log-link, implemented in the glmmTMB package, for R were fitted to case count data, stratified by MSOA and week. All models contained population aged 3+ as an offset, random intercepts of MSOA, nested within local authority (410 levels, nested within 22 local authorities) and random intercepts of week (40 levels). Two models were fitted for each of the two measures of social capital: an unadjusted model with area-level trust/belonging (z-scored) as the only fixed effect, and an adjusted model with trust/belonging and four confounding variables: percentage of residents on income support, population density, percentage of residents aged 65+ and percentage of residents reporting White Welsh/English/Scottish/Northern Irish/British ethnicity as fixed effects (all z-scored).

Moving window analyses were run to visualise how the relationship varied across time. Models were fitted on 6-week blocks of data, modelling cases as a function of social capital, with a random intercept of MSOA, nested within local authority and an offset for population. The 6-week window was moved across the data, 1 week at a time and the coefficients and CIs were plotted as a function of time to identify temporal variability in the relationship. Unadjusted and adjusted versions, as above, were fitted for trust and belonging.

RESULTS

Figure 1 shows the distribution of confirmed COVID-19 cases in Wales, along with estimates of trust and belonging. High infection rates are seen in the south, in a belt from the South Wales Valleys towards the city of Swansea and, to a lesser extent, in the north-eastern counties of Wrexham and Flintshire. Likewise, the social capital measures were lowest in the valleys, the major cities of the south, Wrexham in the north-east and the north-east coast. These distributions reflect the social geography of Wales. The valleys are a postindustrial region with high rates of poverty and poor health, while Welsh-speaking communities in the west have better health.

COVID-19 rates decline with increasing social capital. Figure 2 shows the overall recorded case rates for each MSOA, plotted against estimates of trust (left) and belonging (right). This is confirmed by the mixed effects models in table 1. In the unadjusted models, an −6% reduction in cases was shown for every SD increase in trust (rate ratio (RR)=0.94, 95% CI 0.92 to 0.96) or belonging (RR=0.94, 95% CI 0.92 to 0.96). Trust remained protective (RR=0.88, 95% CI 0.82 to 0.93) after adjusting for the identified confounds. Belonging, however, did not survive adjustment (RR=0.99, 95% CI 0.94 to 1.05).
Figure 3 shows the results of the moving window analyses. In the unadjusted models, trust was a fairly consistent protective factor, except during the relaxation of lockdown rules over the summer. This pattern was even clearer for belonging, which was a strong protective factor during lockdowns but not at other times.

In the adjusted models, the protective status of both constructs was generally attenuated, especially earlier in the pandemic. Later on, trust was a fairly consistent protective factor while belonging was a risk factor during the relaxation of rules following the autumn ‘firebreak’ lockdown (23 October to 9 November 2020).

DISCUSSION

We used routine surveillance data to investigate the association between social capital and COVID-19 rates at a finer grained level of geography than previous work. Overall, as with previous within-country studies, we find social capital to be protective. However, we also present exploratory analyses of temporal variability in this relationship finding social capital to be more protective during lockdowns than other periods, suggesting that social capital might facilitate the collective action required during lockdowns. Interestingly, sense of belonging became a risk factor (after adjustment for confounds) during the more relaxed period in the autumn, supporting the idea that strong community ties can have both positive and negative effects during a pandemic.

Term	Unadjusted model	Adjusted model				
	RR	2.5%	97.5%	RR	2.5%	97.5%
Trust models						
Trust (z-scored)	0.941	0.921	0.961	0.876	0.822	0.933
Income deprivation (z-scored)	0.928	0.879	0.980			
Population density (z-scored)	0.964	0.931	0.998			
Per cent 65+ (z-scored)	0.966	0.942	0.991			
Per cent White Welsh/British/English/Scottish/NI (z-scored)	0.964	0.935	0.994			
Belonging models						
Belonging (z-scored)	0.941	0.919	0.963	0.9902	0.9373	1.0461
Income deprivation (z-scored)	1.0245	0.9835	1.0673			
Population density (z-scored)	1.0041	0.9749	1.0341			
Per cent 65+ (z-scored)	0.9699	0.9431	0.9976			
Per cent White Welsh/British/English/Scottish/NI (z-scored)	0.9777	0.9457	1.0108			

NI, Northern Irish; RR, rate ratio.
These results echo the previous findings. Like other within-country studies, we find evidence that social capital scaffolded lockdowns, but also replicate studies finding that higher belonging can lead to faster spread. Indeed, these results are a microcosm for the literature on social capital and health in general: social capital is generally a health asset, but is unevenly distributed and can contribute to poorer health outcomes under certain circumstances.

Our results do not identify specific mechanisms, but we propose several possibilities. One is that social trust and belonging are necessary for the social solidarity to make the shared sacrifices of lockdowns. The first lockdown featured the emergence of conspicuous displays of social solidarity, such as the singing in Italian cities, and ‘Clap for Carers’ in several European countries. The value of such symbolic gestures was the subject of debate in the UK, but these novel rituals can be seen as a way to signal and spread adherence to new norms. Second, these values may be a proxy for institutional trust, which has been shown to signal and spread adherence to new norms. Third, data represent cases confirmed by routine testing, presenting several issues. Social capital may be a determinant of whether people present for testing. The lack of economic support to people self-isolating in the UK has been criticised, and willingness to self-isolate may be lower in areas of low social capital, either due to social norms or structural factors like insecure work. A separate issue is that testing capacity increased markedly during the study period and testing policy changed. Thus, confirmed cases represent a smaller proportion of true cases earlier in the study. It is unclear what effect this changing mapping between true incidence and observed incidence may have had on our results. Another option would have been to analyse COVID-19 deaths, which may be recorded more consistently over the course of the pandemic. However, dividing these among small geographical areas would have presented issues of statistical power.

Fourth, the moving window analysis was exploratory, designed to look at heterogeneity in the relationship over time, rather than an explicit test of whether social capital is protective because of its facilitation of lockdown behaviours. It may be that the lower case rates following lockdowns biased RRs towards the null, and the apparent relationship seen is artefactual. That said, the increase in testing described above means that the number of confirmed cases is less confounded with lockdown across the period of the study than one might imagine.

Fifth, social capital is a multifaceted construct and our study only looks at two aspects of it, both of which fall under the umbrella of cognitive social capital. Network or structural measures of social capital may have had different associations, indeed other work has found measures of civic engagement and structural capital to have been protective. Furthermore, the estimates were generated using survey data from 2016/2017 and it is possible that the geography of social capital has changed since. There are advantages to using pre-existing estimates, as they maximise comparability with other published work and minimise the risk of p-hacking. The 2016/2017 survey was also the only year where both belonging and trust were available in the same survey.

Finally, there is a risk that this study falls into victim blaming, where high case rates result from unwillingness to follow the rules. Indeed, the concept of social capital has long been criticised as a peculiarly individualist conception of communitarianism. Bourdieu’s conception of social capital, although less common in social epidemiology than Putnam’s, is more cynical, putting it alongside economic capital as an unequally distributed resource. We hope our findings are viewed in the tradition of health inequities, rather than as chiding of disadvantaged communities for not sticking to the rules.

FUTURE WORK
This study used an ecological design, but future work would benefit from combining individual and area-level data to explore how individual and contextual social capital interact to determine outcomes. Furthermore, geospatial statistical techniques, such as geographically weighted regression, allow analysis of how statistical relationships vary over space, which might be a useful approach.

IMPLICATIONS
Our work underscores the importance of social values like trust and belonging to the successful implementation of public health measures. Ensuring public trust in public health measures has been widely recognised as key to the fight against COVID-19.
and future pandemics, but the work of building trust and social capital should also be seen as a long-term project to prepare for future public health emergencies. Indeed, social capital has also been shown to be part of community resilience in the wake of natural disasters. Thus, ‘third places’ like pubs, libraries and community centres which foster social capital may be important health assets and their decline should be a cause for concern on public health grounds, as well as in purely civic terms.

To conclude, we examined the association between area-level social capital and COVID-19 case rates on a finer grained scale than previously. It appeared that social capital was mainly protective during periods of lockdown, with sense of belonging becoming a risk factor during periods of more relaxed rules. The results contribute to our understanding of the complex relationship between social capital and health, both in the specific context of COVID-19 and more broadly. Building social capital and increasing community resilience should be an essential component of future pandemic preparedness.

What is already known on this subject

► Area-level social capital has received wide attention as a social determinant of health in a number of settings. It is generally protective, but can be a risk factor under some circumstances. Work on the relationship between social capital and COVID-19 outcomes, however, has been mixed.

What this study adds

► Area-level social capital is, in aggregate, associated with lower COVID-19 infection rates, but this association is not consistent across time. Social capital was most protective during periods of ‘lockdown’ but less protective, and sometimes even a risk factor, during periods of less stringent restrictions.

Twitter

Christopher W N Saville @cowsenville and Daniel Rhys Thomas @DanielRThom1

Acknowledgements

We would like to thank all those in Public Health Wales Microbiology and Communicable Disease Surveillance Centre involved in setting up and running the COVID-19 surveillance in Wales. Laura Evans assisted by preparing the COVID-19 case data.

Contributors

CWNS designed the project, ran the analyses, led on the writing, and is guarantor of the work. DRT contributed to interpreting the results and to writing the manuscript.

Funding

The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Map disclaimer

The depiction of boundaries on this map does not imply the expression of any opinion whatsoever on the part of BMJ (or any member of its group) concerning the legal status of any country, territory, jurisdiction or area or of any of its authorities. This map is provided without any warranty of any kind, either express or implied.

Competing interests

None declared.

Patient consent for publication

Not applicable.

Ethics approval

This study does not involve human participants. This project was approved by Bangor University School of Psychology Ethics Committee.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data availability statement

Data are available in a public, open access repository. Data may be obtained from a third party and are not publicly available. COVID-19 case data were weekly versions of data available from the Public Health Wales dashboard (https://public.tableau.com/profile/public.health.wales.health.protection#!/vizhome/RapidCOVID-19virology-Public/Headlinesummary). Please contact Public Health Wales to discuss the access to the weekly data. Social capital estimates are available at https://osf.io/rd83q/

This article is made freely available for personal use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

ORCID iDs

Christopher W N Saville http://orcid.org/0000-0003-4870-7630
Daniel Rhys Thomas http://orcid.org/0000-0002-2426-5893

REFERENCES

1 Bourdieu P. The Forms of Capital. In: Richardson J, ed. Handbook of theory and research for the sociology of education. Westport, CT: Greenwood, 1986: 241–58.
2 Putnam RD. Bowling alone: the collapse and revival of American community. New York: Simon & Schuster, 2000.
3 Moore S, Kawachi I. Twenty years of social capital and health research: a glossary. J Epidemiol Community Health 2017;71:513–7.
4 Carpianno RM. Toward a neighborhood resource-based theory of social capital for health: can Bourdieu and sociology help? Soc Sci Med 2006;62:165–75.
5 Aldrich DP, Meyer MA. Social capital and community resilience. Am Behav Sci 2015;59:254–69.
6 Ehsan AM, De Silva MJ. Social capital and common mental disorder: a systematic review. J Epidemiol Community Health 2015;69:1021–8.
7 Villalonga-Olives E, Kawachi I. The dark side of social capital: a systematic review of the negative health effects of social capital. Soc Sci Med 2017;194:105–27.
8 Saville CWN. Not belonging where others do: a cross-sectional analysis of multi-level social capital interactions on health and mental well-being in Wales. J Epidemiol Community Health 2021;75:349–56.
9 Makridis CA, Wu C. How social capital helps communities weather the COVID-19 pandemic. PLoS One 2021;16:e0245135.
10 Bongonov F, Andreiau E, Subramanian SV. Community-level social capital and COVID-19 infections and fatality in the United States. Covid Economics 2020;32.
11 Bartscher AR, Seto S, Slotwinski M. Social capital and the spread of Covid-19: insights from European countries. CESifo Working Paper No. 8346, 2020.
12 Elgar FJ, Stanﬁndak A, Wohl MJA. The trouble with trust: time-series analysis of social capital, income inequality, and COVID-19 deaths in 84 countries. Soc Sci Med 2020;263:113365.
13 Min J. Does social trust slow down or speed up the transmission of COVID-19? PLoS One 2020;15:e0244273.
14 Kwan M-P. The uncertain geographic context problem. Ann Assoc Am Geogr 2012;102:958–68.
15 Public Health Wales. Rapid COVID-19 virology. Available: https://public.tableau.com/profile/public.health.wales.health.protection#!/vizhome/RapidCOVID-19virology-Public/Headlinesummary
16 Saville CWN. Estimating ecological social capital using multi-level regression with post-stratiﬁcation: a spatial analysis of psychiatric admission rates in Wales. Health Place 2019;59:102187.
17 Saville CWN. Area-level exposures for social epidemiology in Wales. Available: https://osf.io/5ks46/?view_only=e86ea0110a2254581706a9353ac2fa
18 Welsh Government. Welsh index of multiple deprivation (WIMD). 2014.
19 Ofﬁce for national statistics, National records of Scotland, Northern Ireland statistics and research Agency. 2011 census aggregate data. UK data service (edition: June 2016), 2016. Available: http://dx.doi.org/10.5257/census/aggregate-2011-1
20 Bray I, Gibson A, White J. Coronavirus disease 2019 mortality: a multivariate ecological analysis in relation to ethnicity, population density, deprivation and pollution. Public Health 2020;185:261–3.
21 Thomas DR, Oriie O, Pimmer A, et al. Ethnic variation in outcome of people hospitalised during the first COVID-19 epidemic wave in Wales (UK): an analysis of national surveillance data using Onomaz, a name-based ethnicity classiﬁcation tool. BMJ Open 2021;11:e048335.
22 Delhey J, Newton K. Who trusts?: the origins of social trust in seven societies. Eur Soc 2003;5:93–137.
23 Dinesen PT, Schaeffer M, Sønderskov KM. Ethnic diversity and social trust: a narrative and Meta-Analytical review. Ann Rev Public Health 2020;22:441–65.
24 Brooks Mollie F, Kristensen K, Benthem Koen, J, van, et al. glmTM balance speeds balance and ﬂexibility among packages for Zero-inflated generalized linear mixed modeling. R J 2017;9:378–400.
25 R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2019. Available: http://www.R-project.org/
26 Higgins G, Senior MJ, Williams HC. Spatial and temporal variation of mortality and deprivation. 1: widening health inequalities. Environ Plan A 1998;30:1661–82.
27 Saville CWN. Social and mental health disparities between national identity groups in Wales. J Racial Ethn Health Disparities 2022;9:270–87.

Saville CWN, Thomas DR. J Epidemiol Community Health 2022;0:1–6. doi:10.1136/jech-2021-217360

Original research
Original research

28 Borgonovi F, Andrieu E. Bowling together by bowling alone: social capital and COVID-19. *Soc Sci Med* 2020;265:113501.

29 Hao F, Shao W, Huang W. Understanding the influence of contextual factors and individual social capital on American public mask wearing in response to COVID-19. *Health Place* 2021;68:102537.

30 Ye M, Lyu Z, Trust L. Trust, risk perception, and COVID-19 infections: evidence from multilevel analyses of combined original dataset in China. *Soc Sci Med* 2020;265:113517.

31 Corvo E, De Caro W. COVID-19 and spontaneous singing to decrease loneliness, improve cohesion, and mental well-being: an Italian experience. *Psychol Trauma: Theory Res Pract Policy* 2021;12:S247–8.

32 Paglianti NN. Rituals During Lockdown: The "Clap for our Carers" Phenomenon in France. *Culture e Studi del Sociale*;5:315–22.

33 Wood H, Skeggs B. Clap for carers? from care gratitude to care justice. *Eur J Cult Stud* 2020;23:641–7.

34 Abreu M, Jones C. The shadow of the Pithead: understanding social and political attitudes in former coal mining communities in the UK. *Appl Geogr* 2021;131:102448.

35 Beynon H, Blakely H, Bryson A. The persistence of Union membership within the Coalfields of Britain. *BJIR* 2021. doi:10.1111/bjir.12588

36 Abbasi K. Why vaccinating staff and supporting self-isolating people are national emergencies. *BMJ* 2021;372:n239.

37 Navarro V. A critique of social capital. *Int J Health Serv* 2002;32:423–32.

38 Lynch JA, Dobson AJ, Guo D, et al. Social capital and neighborhood mortality rates in Chicago. *Soc Sci Med* 2003;56:1797–805.

39 Cintra J, Mount MP. How third places foster and shape community cohesion, economic development and social capital: the case of pubs in rural Ireland. *J Rural Stud* 2017;55:71–82.