Microscopic Nuclear Structure Based upon a Chiral NN Potential

L. Coraggio,1 A. Covello,1 A. Gargano,1 N. Itaco,1 T. T. S. Kuo,2 D. R. Entem,3,4 and R. Machleidt3

1Dipartimento di Scienze Fisiche, Università di Napoli Federico II, and Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, Via Cintia - I-80126 Napoli, Italy
2Department of Physics, SUNY, Stony Brook, New York 11794
3Department of Physics, University of Idaho, Moscow, Idaho 83844
4Grupo de Física Nuclear, Universidad de Salamanca, 37008 Salamanca, Spain

(Dated: November 4, 2018)

We report on shell-model calculations employing effective interactions derived from a new realistic nucleon-nucleon (NN) potential based on chiral effective field theory. We present results for 18O, 134Te, and 210Po. Our results are in excellent agreement with experiment indicating a remarkable predictive power of the chiral NN potential for low-energy microscopic nuclear structure.

PACS numbers: 21.30.Fe, 21.60.Cs, 27.20.+n, 27.60.+j, 27.80.+w

One of the most fundamental challenges pervading theoretical nuclear physics for half a century is to understand the properties of nuclei in terms of the basic interactions between the constituents. After early progress \cite{1}, the field was plagued for decades by what is known as the off-shell uncertainty of the nuclear force. Related to this issue is the problem that it was not possible to derive the nuclear force from first principles.

Recently, the picture changed dramatically when the effective field theory (EFT) concept was recognized in nuclear physics \cite{2}. The fundamental theory of strong interaction, QCD, is nonperturbative in the low-energy regime characteristic for nuclear physics; and this fact was generally perceived as the great obstacle for a proper derivation of the nuclear force. EFT shows the way out of this dilemma. The key is to notice that different phenomena in nature are often characterized by different energy scales. Traditional nuclear physics typically deals with low energies below the so-called chiral symmetry breaking scale, $\Lambda\approx 1$ GeV, where the appropriate degrees of freedom are pions and nucleons (and not quarks and gluons) interacting via a force that is governed by the symmetries of QCD, particularly, (broken) chiral symmetry.

The derivation of the nuclear force from chiral EFT was initiated by Weinberg \cite{3} and pioneered by Ordóñez \cite{4} and van Kolck \cite{5,6}. Subsequently, many groups got involved in the subject \cite{7,8,9,10,11,12}. As a result, efficient methods for deriving the nuclear force from chiral Lagrangians emerged \cite{7,10} and the quantitative nature of the chiral NN potential improved \cite{10}. Nevertheless, for a long time, even the ‘best’ chiral NN potentials were too inaccurate to serve as reliable input for exact few-nucleon calculations or microscopic nuclear many-body theory. Recently, the situation has changed substantially with the appearance of the chiral NN potential of Ref. \cite{13}, also known as the Idaho chiral potential. This potential reproduces the NN data below 210 MeV with a χ^2/datum = 0.98 \cite{14}, i. e., with the same accuracy as the high-precision NN potentials constructed in the 1990’s \cite{15,16,17,18}.

The EFT approach inspires a new method \cite{19} to renormalize the bare NN interaction. The idea is to derive a low-momentum NN potential, $V_{\text{low}-k}$, that preserves the physics of the original NN interaction up to a certain cut-off momentum Λ. The deuteron binding energy, low-energy scattering phase shifts, and low-momentum half-on shell T-matrix of the original V_{NN} are reproduced by $V_{\text{low}-k}$ \cite{19}. This is achieved by integrating out high-momentum components of the original V_{NN} by means of an iterative method \cite{20,21}. Such decimation is similar to a Renormalization Group (RG) transformation \cite{22}. The resulting $V_{\text{low}-k}$ is a smooth potential, which is suitable for being used in low-energy nuclear physics.

We have employed the chiral NN potential to conduct shell-model calculations for various two valence-particles nuclei. More precisely, once we have derived the $V_{\text{low}-k}$, starting from the chiral Idaho-B NN potential \cite{13}, we have employed it to calculate shell-model effective interactions using the Q-box plus folded diagram method \cite{23}. These are the first microscopic nuclear structure calculations, for a wide mass range, performed by using a new realistic NN potential based on chiral effective field theory.

In order to illustrate how shell-model calculations based upon these new chiral effective interactions can describe the spectroscopic properties of nuclei near closed shells, we report here results we have obtained for 18O, 134Te, and 210Po, which are specimens of light-, medium-, and heavy-mass nuclei with two valence particles.

As customary, we use single-particle energies extracted from the experimental spectra of the corresponding single-particle valence nuclei. In Figs. 1-3 we compare the experimental \cite{24} and theoretical spectra for 18O, 134Te, and 210Po, respectively. More precisely, we consider the positive parity energy spectrum up to 4 MeV for 18O, while for 134Te and 210Po we report the whole...
experimental spectra up to 5 and 3.3 MeV, respectively.

From Figs. 1-3 we see that the experimental spectra are very well reproduced by the calculated ones, the discrepancy in the excitation energies being less than 100 keV for most of the states. As a matter of fact the rms deviation σ turn out to be 140, 111, and 86 keV for 18O, 134Te, and 210Po, respectively.

In Table I, we show the observed [26, 27] and calculated ground-state binding energies relative to the closest doubly closed core for the three nuclei under consideration. For the absolute scaling of the sets of single-particle energies, the mass excess values for nuclei with one particle with respect to 16O, 132Sn, and 208Pb have been taken from Ref. [28].

For 134Te and 210Po, we assume that the contribution of the Coulomb interaction between the valence protons is equal to the matrix element of the Coulomb force between the states \((g_{\pi})_{\gamma=0+} \) and \((h_{\pi})_{\gamma=0+} \), respectively. From Table I we see that our predictions are in very good agreement with experiment.

In summary, we have performed shell-model calculations in which V_{low-k} vertices derived from a chiral NN potential (Idaho B) are used as input instead of G matrix vertices. The calculated spectra as well as the binding energies for the three nuclei 18O, 134Te, and 210Po are in excellent agreement with the experimental data. We wish to point out that the degree of accuracy is comparable to that obtained in our previous studies using effective interactions derived from modern realistic NN potentials rooted in the meson theory of nuclear forces, in particular the CD-Bonn potential [28]. We may conclude that our present calculations, which are the first where a realistic chiral NN potential has been used, show that this potential is a valid input for a microscopic description of nuclear structure properties.

This work was supported in part by the Italian Ministero dell’Universitá e della Ricerca Scientifica e Tecnologica (MURST), by the European Social Fund (ESF), by the U.S. DOE Grant No. DE-FG02-88ER40388, by the U.S. NSF Grant No. PHY-0099444, and by the Ramón Areces Foundation (Spain).

[1] T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966).
[2] P. Bedaque et. al. (eds.), Nuclear Physics with Effective Field Theory II, (World Scientific Press, 1999).
[3] S. Weinberg, Phys. Lett. B 251, 288 (1990); Nucl. Phys. B363, 3 (1991).
[4] C. Ordóñez and U. van Kolck, Phys. Lett. B 291, 459 (1992).
[5] C. Ordóñez, L. Ray, and U. van Kolck, Phys. Rev. Lett. 72, 1982 (1994); Phys. Rev. C 53, 2086 (1996).
[6] U. van Kolck, Prog. Part. Nucl. Phys. 43, 337 (1999).
[7] C. A. da Rocha and M. R. Robilotta, Phys. Rev. C 49, 1818 (1994); ibid. 52, 531 (1995); J.-L. Ballot et al., ibid. 57, 1574 (1998).
[8] N. Kaiser, R. Brockmann, and W. Weise, Nucl. Phys. A625, 758 (1997).
[9] N. Kaiser, S. Gerstendörfer, and W. Weise, Nucl. Phys. A637, 395 (1998).
[10] N. Kaiser, Phys. Rev. C 61, 014003 (1999); ibid. 62, 024001 (2000); ibid. 63, 044010 (2001).
[11] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B424, 390 (1998); Nucl. Phys. B534, 329 (1998).
[12] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Nucl. Phys. A637, 107 (1998); ibid. A671, 295 (2000).
[13] D. R. Entem and R. Machleidt, Proc. 7-th International Spring Conference on Nuclear Structure Physics “Challenges of Nuclear Structure”, Maiori, Italy, May, 2001 (World Scientific, Singapore) to be published, nucl-th/0107057; nucl-th/0108057, Phys. Lett. B, in press.
[14] D. R. Entem, R. Machleidt, and H. Witala, nucl-th/011033; see Table IV therein for χ^2.
[15] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J. de Swart, Phys. Rev. C 49, 2950 (1994).
[16] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).
[17] R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. C 53, R1483 (1996).
[18] R. Machleidt, Phys. Rev. C 63, 024001 (2001).
[19] Scott Bogner, T.T.S. Kuo, and L. Coraggio, Nucl. Phys. A684, 432e (2001).
[20] F. Andreozzi, Phys. Rev. C 54, 684 (1996).
[21] K. Suzuki and S. Y. Lee, Prog. Theor. Phys. 64, 2091 (1980).
[22] K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974).
[23] T. T.S. Kuo and E. M. Krenciäowa, Nucl. Phys. A342, 454 (1980).
[24] Data extracted using the NNDC On-Line Data Service from the ENSDF database, files revised as of December 5, 2001, M.R. Bhat, Evaluated Nuclear Structure Data File (ENSDF), Nuclear Data for Science and Technology, edited by S. M. Quain (Springer-Verlag, Berlin, Germany, 1999), p. 817.
[25] We define $\sigma = \left\{ \frac{1}{N_d} \sum_{i} \left[E_{\exp}(i) - E_{\text{calc}}(i) \right]^2 \right\}^{1/2}$, where N_d is the number of data.
[26] G. Audi and A. H. Wapstra, Nucl. Phys. A565, 1 (1993).
[27] B. Fogelberg, K. A. Mezilev, H. Mach, V. I. Isakov, and J. Slivova, Phys. Rev. Lett. 82, 1823 (1999).
[28] L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo, Proceedings of the International Nuclear Physics Conference, INPC2001, Berkeley, USA, July-August 2001 (AIP, New York), to be published, nucl-th/0109025.
TABLE I: Experimental and calculated ground-state binding energies (MeV). See text for comments.

Nucleus	Expt.	Calc.
^{18}O	12.19 ± 0.00	12.19
^{134}Te	20.56 ± 0.03	20.64
^{210}Po	8.78 ± 0.00	8.78

FIG. 1: Experimental and calculated spectrum of ^{18}O.
FIG. 2: Experimental and calculated spectrum of ^{134}Te.
FIG. 3: Experimental and calculated spectrum of ^{210}Po.
^{18}O

Energy (MeV)	Expt.	Calc.	
0	0$^+$	0$^+$	
1			
2	2$^+$		
3	0$^+$	2$^+$	
4	2$^+$	0$^+$	4$^+$
\[\begin{align*}
\text{E(MeV)} & \quad 0^+ & \quad 1 & \quad 2 & \quad 3 & \quad 4 \\
\text{Expt.} & \quad 2^+ & \quad 6^+ & \quad 4^+ & \quad 2^+ & \quad 0^+ \\
\text{Calc.} & \quad 0^+ & \quad 6^+ & \quad 4^+ & \quad 2^+ \\
\text{134 Te} & \quad 8^- & \quad 6^+ & \quad 5^- & \quad 5^+ & \quad 8^- \\
& \quad 5^- \\
& \quad 9^- \\
& \quad 2^+ \\
& \quad 6^+ \\
& \quad 4^+ \\
& \quad 2^+ \\
\end{align*} \]