Molecular characterization of *Coxiella burnetii* isolates by infrequent restriction site-PCR and MLVA typing

Nathalie Arricau-Bouvery*1, Yolande Hauck2, Awatef Bejaoui1, Dimitrios Frangoulidis3, Christelle C Bodier1, Armel Souriau1, Hermann Meyer3, Heinrich Neubauer3, Annie Rodolakis1 and Gilles Vergnaud2,4

Address: 1INRA, Pathologie Infectieuse et Immunologie, 37380 Nouzilly, France, 2Institute of Genetics and Microbiology, University Paris XI, 91405 Orsay cedex, France, 3Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany and 4Division d'Analyses Biologiques, Centre d'Etudes du Bouchet, BP3, 91710 Vert le Petit, France

Email: Nathalie Arricau-Bouvery* - bouvery@tours.inra.fr; Yolande Hauck - Yolande.Hauck@igmors.u-psud.fr; Awatef Bejaoui - elessa_2@yahoo.fr; Dimitrios Frangoulidis - Dimitrios.Frangoulidis@Bundeswehr.org; Christelle C Bodier - Christelle.Bodier@tours.inra.fr; Armel Souriau - Armel.Souriau@tours.inra.fr; Hermann Meyer - Hermann.Meyer@Bundeswehr.org; Heinrich Neubauer - Heinrich.Neubauer@Bundeswehr.org; Annie Rodolakis - Annie.Rodolakis@tours.inra.fr; Gilles Vergnaud - Gilles.Vergnaud@igmors.u-psud.fr

* Corresponding author

Abstract

Background: *Coxiella burnetii*, the causative agent of Q fever, has a wide host range. Few epidemiological tools are available, and they are often expensive or not easily standardized across laboratories. In this work, *C. burnetii* isolates from livestock and ticks were typed using infrequent restriction site-PCR (IRS-PCR) and multiple loci variable number of tandem repeats (VNTR) analysis (MLVA).

Results: By applying IRS-PCR, 14 *C. burnetii* isolates could be divided into six groups containing up to five different isolates. Clustering as deduced from MLVA typing with 17 markers provided an increased resolution with an excellent agreement to IRS-PCR, and with the plasmid type of each strain. MLVA was then applied to 28 additional *C. burnetii* isolates of different origin and 36 different genotypes were identified among the 42 isolates investigated. The clustering obtained is in agreement with published Multiple Locus Sequence Typing (MLST) data. Two panels of markers are proposed, panel 1 which can be confidently typed on agarose gel at a lower cost and in any laboratory setting (10 minisatellite markers with a repeat unit larger than 9 bp), and panel 2 which comprises 7 microsatellites and provides a higher discriminatory power.

Conclusion: Our analyses demonstrate that MLVA is a powerful and promising molecular typing tool with a high resolution and of low costs. The consistency of the results with independent methods suggests that MLVA can be applied for epidemiological studies. The resulting data can be queried on a dedicated MLVA genotyping Web service.
Background

Q fever is caused by Coxiella burnetii, a small, Gram-negative and strict intracellular bacterium. Although Coxiella was historically considered as a member of the genus Rick-etteia, gene-sequence analysis classified the Coxiella genus in the order Legionellales, family Coxiellaceae with Richetteia and Aquicella, and C. burnetii as the only known species of this genus [1]. Q fever is characterized by acute and chronic courses. In humans, acute Q fever usually presents a flu-like, self-limiting disease accompanied by myalgia and severe headache, but complications such as pneumonia or hepatitis may occur. In chronic cases, endocarditis is the main severe complication in patients with valvulopathies. Granulomatous hepatitis, vasculitis, osteomyelitis, post-Q fever fatigue syndrome (QFS) and premature delivery or abortion have also been reported [2,3]. In animals, Q fever affects livestock and is associated with pneumonia and reproductive disorders in livestock, with abortion, stillbirth, delivery of weak and unviable newborns, placentitis, endometritis and infertility [4-6]. C. burnetii infections have been reported in a variety of wild and domestic mammals, including dogs, cats and birds. The agent has also been isolated from ticks that are vectors for spreading and maintaining C. burnetii in nature [7,8]. The main route of infection is inhalation of contaminated aerosol or dust containing bacteria shed by infected animals with milk, feces, placenta or vaginal secretions [6,9-14]. Oral transmission seems less common, but the consumption of contaminated raw milk and dairy-products represents a potential source of human infection [15].

Human Q fever seems to be re-emerging in various countries as the number of cases described in the literature is increasing. This increase in clinical awareness could result from renewed interest in Coxiella burnetii because of bioterrorism concerns since this highly-infectious bacterium is classified as a category B potential biological weapon. However, epidemiological markers are lacking. As a consequence, the source of human infections often remains unidentified but sheep and goats are more frequently involved in the disease cycle than other animal species. In many cases, the occurrence of human cases can be traced back to an infected flock, where the number of aborting ewes has not alerted the farmer [16].

The systematic genotyping of C. burnetii isolates would enhance our ability to identify the source of infections and consequently help reduce the number of cases in an outbreak. Although different virulence levels of infections have been observed, it is still not clear whether this is the result of a variability in bacterial virulence factors or whether it depends on the immunological background of the host. Involvement of specific virulence factors, or of particular strains, which can provoke acute or chronic forms, has not yet been demonstrated. Initially, the com1 sequence and a certain plasmid profile were assumed to be associated with so-called acute or chronic C. burnetii isolates. Recent findings, however, revealed no correlation between these criteria [17-19]. Development of the acute or chronic form of Q fever seems to depend upon the patient's condition and immune status [17,18].

Taking into account the strong similarity or event identity between QpH1 and QpDG, Coxiella strains can be divided into four groups based on the occurrence of the plasmids QpH1, QpRS, QpDV and one plasmid (without designation) derived from a chines C. burnetii isolate [20-25]. Plasmidless C. burnetii strains carry large plasmid-homologous sequences integrated into the chromosome [26]. Analysis of the genome by techniques such as DNA-DNA hybridization or restriction fragment length polymorphism is hampered, because cultivation of the agent is wearisome. These bacteria are usually grown on cell cultures or embryonated hen's eggs.

Pulsed-field gel electrophoresis has been used for typing of C. burnetii strains [27-29], but it is sophisticated and laborious and thus not well suited for routine use. Therefore, the use of newer (usually PCR-based) DNA methods appears to be more appropriate. Infrequent restriction site-PCR (IRS-PCR) has been shown to be a robust method for the molecular characterization of bacteria such as Bartonella, Brucella, Legionella, Listeria and Salmonella [30-33]. Recently, an MLST (Multiple Loci Sequence Typing) assay was proposed for C. burnetii [34]. The assay is based upon the sequencing of 10 short intergenic regions. One hundred and seventy-three isolates of various origins could be separated into 30 different sequence types.

Multiple Loci Variable Number of Tandem Repeats (VNTR) Analysis (MLVA) is a typing method, which is gaining importance due to the availability of whole genome sequences, the often very high discriminatory power, and its very low cost, as compared to MLST for instance. MLVA typing is now considered to be the reference method for many pathogens including Mycobacterium tuberculosis [35], Bacillus anthracis [36,37], Yersinia pestis [38] and is usually applied whenever new genome sequences are released for pathogens of interest [39-43]. In a number of instances, especially in species of recent origin, the discriminatory power of MLVA is much higher than MLST [44]. Freely available resources are accessible over the internet to facilitate the setting-up of new MLVA assays [45,46] or to query existing data [47]. The main aim of the present study is to examine the interest of MLVA to reveal molecular diversity among isolates of C. burnetii from livestock and man. A recent investigation lead to the development of a first MLVA assay for Coxiella burnetii,
using 7 markers and 16 isolates [48]. We explore here additional markers which could be used in an MLVA assay and propose two complementary panel, as recently done for Brucella MLVA typing [43]. We compare MLVA to IRS-PCR analysis, and to previous MLST and MLVA reports using published data.

Results and discussion

Classification of C. burnetii isolates by IRS-PCR

Analysis of 14 C. burnetii isolates (Table 1) by four different IRS-PCR assays resulted in a total of six patterns (Table 2). The number of DNA fragments generated by IRS-PCR depends on the primers used (i.e. PsalA, PsalC, PsalG, or PsaiT), and varied between 6 and 10. The size of the amplicons varied between 100 and 1,000 bp (Figure 1 and data not shown). IRS-PCR assays using PsalG and PS1 generated the highest number of DNA fragments, whereas those using PsalC/PS1 or PsaiT/PS1 generated the most diverse patterns. IRS-PCR analysis was made in duplicates and little to no pattern variability between duplicate reactions was found, only minor variations in the intensity of bands. However, the number of DNA fragments was

Table 1: Designation and origin of Coxiella burnetii isolates
Strain

CbB1
CbB2
CbB3
CbB4
CbB5
CbB7
CbB10
CbC1
CbC2
CbC4
CbC5
CbC6
CbC7
CbO1
CbO2
CbO184
CbO4
Scurry Q217
F2
F4
R1140
Namibia
Priscilla Q177
Nine Mile RSA493
J-3
CS-Dayer
Dugway 5J108-111
Z 2775/90
Tiho 1
Z 3749/92
Z 257/94
Z 3205/91b
Z 3351/92
CS-Bud
CS-R
CS-Florian
Innsbruck
Z 3464/92
Z 349-36/94
Max
Z 4313/93
Pohleim
smaller in our study compared to others [31-33], which illustrates the interlaboratory reproducibility problems inherent with multiple loci PCR amplifications.

MLVA set-up

By analyzing available sequence data, thirty-five tandem repeats with a repeat unit longer than 6 bp, and at least four units were identified in the Microorganism Tandem Repeats Database [46]. One failed to yield a PCR product, 18 were polymorphic and 17 were kept for subsequent analyses (one was not robust enough in our hands, and did not give reproducible results). The 17 markers and corresponding primers are listed in Table 3. The loci are divided in two panels according to repeat unit length. Ten tandem repeats with repeat units equal to or longer that 9 bp which can be confidently typed on agarose gels constitute panel 1. This set contains one of the seven loci previously reported by Svraka *et al.* [48], Cox3 (alias ms26). Seven loci have repeat units of 6 or 7 bp, six of which were previously reported [48], and the correspondence is indicated in Table 3. Cox4 (alias ms24) is reported as having a 21 base-pairs repeat unit. However, it is also seen as a 7 bp repeat unit tandem repeat in the tandem repeat database [46], and we observe allele size variations in agreement with this alternative view. Four strains are shared by the two investigations (Nine Mile, Priscilla, Florian, Dugway). Unfortunately, although Svraka *et al.* sequenced all the alleles they observed, the data was not made available [48]. In addition, Svraka *et al.* mention that they observed a discrepancy in the size estimate provided by their capillary electrophoresis equipment compared to the sequence data, and preferred to use the first estimate which is equipment-dependant, and this then makes interlaboratory comparisons more complicated.

A collection of 42 *C. burnetii* isolates could be differentiated by MLVA typing into 22 genotype with panel 1 alone (Figure 3) or 36 genotypes when using the 2 panels (Figure 4). Some isolates have an identical genotype with MLVA. For example, CbB4 and CbB7 are two isolates from French cattle with the same geographic origin. The exact source of the isolates is unknown, it could be from the same herd and explain the identical genotype.

Genetic relationship of isolates

Figure 2 shows the results of MLVA clustering analysis compared to IRS-PCR typing for 14 isolates analyzed with both methods. The two methods are in very good agreement, 6 different genotypes are identified with IRS-PCR as compared to 11 genotypes with MLVA. One discrepancy was observed for strain CbB2. CbB2 is identical to CbB1 and CbB5 by MLVA but shows a different IRS-PCR profile. CbB2 and CbB5 are two isolates obtained in 2001 from neighboring flocks. The affected cows showed different clinical signs (Table 1). CbB2 was isolated from cows having metritis whereas CbB5 had been isolated from cows with abortions. CbB1 originated in placenta of an aborted cow from the same area, but abortion arose before 1998. The two abortive isolates are closely related by the two typing methods.

Figure 3 shows the result of MLVA clustering from typing 42 *C. burnetii* isolates with panel 1. Twenty-two genotypes are resolved. The Hunter-Gaston diversity index (HGD1) for the panel 1 assay in this collection of strains is 0.92. Three main clusters are identified, comprising respectively 6, 8 and 8 different genotypes. Each cluster contains isolates of various geographic origins. MLVA clustering appears to correctly predict plasmid composition. Eleven

Isolates	Plasmid typea	IRS-PCR pattern
CbB1	QpH1	A
CbB2	QpH1	A
CbB3	QpH1	A
CbB4	QpH1	A
CbB5	QpH1	A
CbB7	QpH1	A
CbC1	QpH1	A
CbC2	QpH1	A
CbC5	QpH1	A
CbC6	QpRS	A
CbO1	QpRS	B
CbO2	QpRS	B
CbO4	QpH1	A
Nine Mile RSA493	QpH1	A

a the plasmid type was determined by plasmid-specific PCR

Table 2: Plasmid types and IRS-PCR patterns of French *Coxiella burnetii* isolates
reference strains (Scurry Q217, R1140, Namibia, Priscilla Q177, Nine Mile RSA493, J-3, Dugway 51108-111, Z 2775/90, CS-Florian, Z 3464/92 and Z 349-36/94) were used in our study and the recently published MLST (Multiple Loci Sequence Typing) genotyping assay [34]. In this publication, MLST typing was applied to 173 isolates of various origins. Thirty different sequence types (ST) were reported. The published sequence type (ST) is indicated in Figure 3. The isolates are grouped similarly using both methods, i.e. R1140, Namibia and Priscilla Q177 (ST2, ST30 and ST8) in a first cluster, Nine Mile RSA493, J-3, Dugway 51108-111 and Z 2775/90 (ST16 and ST20) in a second cluster, and CS-Florian, Z 3464/92 and Z 349-36/94 (ST18) in a third group. Scurry Q217 (ST21) behaves like an outgroup in the MLST investigation, and is similarly poorly connected to the other groups by MLVA (see Figures 3 and 4, the different data sets associate “Scurry” to either the “red” or the “blue” clusters). The two methods are unable to discriminate the German isolates Z 3464/92 and Z 349-36/94. Overall however, and although the methods have not been applied to the same set of isolates, the discriminatory power of MLVA panel 1 alone seems to be comparable to that achieved by the MLST assay, since 22 genotypes are distinguished here among 42 isolates, as compared to the 30 STs observed in 173 various isolates. MLVA distinguishes three ST16 isolates, but does not distinguish the ST20 strain with one of the ST16 strains (at this stage a strain error cannot be excluded). This question would eventually be solved by MLVA typing the 173 isolates previously investigated by MLST.

Conclusion

Some difficulties of the molecular epidemiology of *C. burnetii* are related to the fastidious growth of this bacterium. MLVA analysis does not require the isolation of the isolates. Genomic analyses of strains can be made directly with DNA purified from milk or placenta. Moreover

Figure 1

IRS-PCR pattern of *C. burnetii* isolates using primers PsaIT et PS1. Lane M: molecular weight marker. *C. burnetii* strains and patterns shown are cited in Table 1. NM: Nine Mile reference strain.
Table 3: MLVA loci and properties.

Locus name	alias*	% matches	% G+C content	Primer sequence	Estimated size range (bp)	Unit numbera,b	No. of allelesa	HGDI
Panel 1 markers (minisatellites, repeat unit above 9 base-pairs)								
Cbu0033_ms01_1 6bp_4U_198bp	77	35		L: GGCTCATTTCAATT TTAGCTTCG R: AACGTGGGGAAAT TTTGTTATTT	182–198	3–4	2	0.47
Cbu0448_ms03_1 2bp_7U_229bp	81	18		L: TGTCGATAAACGGGAAACTT R: CACTGGGAAAAAG GAGAAAAAG	217–229	6–7	2	0.46
Cbu0988_ms07_1 26bp_8U_1112bp	69	6		L: CTCTTAGCCATCGCTATTCAC	734–1112	5–8	4	0.42
Cbu1316_ms12_1 26bp_8U_1074bp	74	12		L: GACGAAAAATG GGGCATATTTT	570–1200	4, 7–9	4	0.67
Cbu1941_ms20_1 8bp_15U_402bp	76	6		L: CGTAACACCCTGCTATTCAC	384–528	14–15, 18–19, 22	6	0.7
Cbu1963_ms21_1 2bp_6U_210bp	75	9		L: GGGGGTTTGAACA TAGCAATACC R: CACATCTGCTT CTCAAGTTTC	246–257	6–7	2	0.28
Cbu1980_ms22_1 1bp_6U_246bp	66	9		L: GAAACCAGTCTTCCTCAACAG R: ATACCGTCATC GTCACCTTCT	197–215	5–6	2	0.42
Cbu0831_ms26_9 8bp_4U_127bp	94	99		L: AGAATCAAACCT GCAAAACCTT R: AGTGGAGTTAGACA AAAGATGGA	109–244	2, 4–5, 11, 13–14, 17 (2,4,13,14,16,18)c	6	0.73
Cbu1351_ms30_1 8bp_6U_215bp	63	81		L: ATTCCTCGACAT CAACTTTC	474–601	7,15,17,21	4	0.55
Cbu1941_ms36_9 bp_4U_447bp	80	59		L: GAAACCAGCTT CCCCACCAACAG R: ATACCGTCTAC TGCACCTTCT	474–601	7,15,17,21	4	0.55
Table 3: MLVA loci and properties. (Continued)

Panel 2 markers (microsatellites, 6 or 7 bp repeat units)	Cbu	ms	bp	Location	L: Locus sequence	R: R locus sequence	Allele size range	Coverage (n)	Identity (I)
Cbu0197_ms23_7 bp_8U_157bp	Cox6	90	51	122–157	GGACAAAAATCA ATAGCCCGTA GAAAAACAGAGT TGTGTTGGCTTC	0.73			
Cbu0259_ms24_7 bp_27U_344bp	Cox4	94	46	204–344	ATGAAGAAAGGA TGGAGGGACT	0.79			
Cbu0838_ms27_6 bp_4U_276bp	Cox2	90	99	264–282	ATGAAGAAAGGA TGGAGGGACT	0.73			
Cbu0839_ms28_6 bp_6U_276bp	Cox5	94	83	258–288	ATGAAGAAAGGA TGGAGGGACT	0.74			
Cbu1418_ms31_7 bp_5U_182bp	Cox7	89	41	161–182	ATGAAGAAAGGA TGGAGGGACT	0.51			
Cbu1435_ms33_7 bp_9U_262bp	Cox1	100	99	192–252	ATGAAGAAAGGA TGGAGGGACT	0.86			

*a previously described loci (and corresponding data) is indicated; b an uninterrupted allele range is indicated by a ‘-’; c allele size range reported by [48]; d Cox4 was initially reported as a 21 bp tandem repeat [48], however we observe a 7 bp repeat unit based variation, in agreement with [46]
MLVA typing can be standardized and performed at low cost, thus enabling large-scale molecular epidemiology investigations. Characterizing isolates provoking clearly defined symptoms will allow the identification of strains deserving full genome sequence determination.

Several Q-fever outbreaks have been reported in France but their origin is still unidentified [16]. The lack of epidemiological markers for *C. burnetii* led us to make a global analysis of the available *Coxiella burnetii* genome sequence in order to identify polymorphic tandem repeat loci. Using 17 such loci, we could demonstrate that IRS-PCR can divide 14 *C. burnetii* isolates into 6 different genotypes whereas MLVA differentiates 11 genotypes. An additional limitation of IRS-PCR is that it is essentially a pattern-based assay, which is not easily amenable to interlaboratory standardization and to the making of international databases. MLVA is highly reproducible, has proved to provide efficient discriminatory tools for the molecular typing of bacteria [32], and databases are easy to set-up [45,47] once a few common decisions for allele calling and marker panels have been made [44].

The discriminatory power of MLVA was evaluated using 42 *C. burnetii* isolates. Thirty-six genotypes are identified. Therefore, we recommend MLVA as a valuable tool for epidemiological studies. In particular, we propose to use two panels, panel 1 as a first easy screen, which can be used on agarose gels as well as more sophisticated approaches, and a panel 2, which largely corresponds to the panel previously described by Svračka *et al.* [48] and is best typed using a capillary electrophoresis type of equipment. The present study is an additional step towards the development of MLVA typing for *Coxiella burnetii*. Some of

Figure 2
Comparison of MLVA clustering analysis and IRS-PCR patterns. Fourteen isolates were analysed with IRS-PCR and MLVA. A schematic view of IRS-PCR data is presented, showing informative bands.
Coxiella burnetii isolates. Key is a referencing code and refers to a DNA preparation. SeqType, sequence type (ST) as published in [34]. The genotypes have been numbered from 1 to 22 (panel 1 column) for convenience.

Methods

Bacterial strains and purification

The C. burnetii isolates used in this study are listed in Table 1. Coxiella burnetii reference strain Nine Mile was provided by AFSSA (Agence Française de Sécurité Sanitaire des Aliments), Sophia Antipolis, France. Isolates were identified as Coxiella by phenotypic and genotypic characterization.

Isolation of isolates used for IRS-PCR was performed by intraperitoneal inoculation of 3 OF1 mice (8 weeks old) with 0.2 mL of the respective animal samples (Table 1). The mice were killed nine days post inoculation and the spleens were sampled and reinoculated into 6-days-old, with 0.2 mL of the respective animal samples (Table 1).

The bacterial suspensions were aliquoted and frozen at -80°C. Bacterial suspensions were typed. Also, as soon as additional genome sequences will be available, it will be possible to search for additional polymorphic tandem repeats which might have been missed in the present investigation because they have less than 4 repeat units in the Nine Mile RS493 strain genome sequence analyzed here [45].

The markers described, in particular panel 2 markers, may eventually turn out to be too variable to be of use (discussed by [44]) when much larger collection of isolates have been typed. Also, as soon as additional genome sequences will be available, it will be possible to search for additional polymorphic tandem repeats which might have been missed in the present investigation because they have less than 4 repeat units in the Nine Mile RS493 strain genome sequence analyzed here [45].

The bacterial strains and purification

The C. burnetii isolates used in this study are listed in Table 1. Coxiella burnetii reference strain Nine Mile was provided by AFSSA (Agence Française de Sécurité Sanitaire des Aliments), Sophia Antipolis, France. Isolates were identified as Coxiella by phenotypic and genotypic characterization.

Isolation of isolates used for IRS-PCR was performed by intraperitoneal inoculation of 3 OF1 mice (8 weeks old) with 0.2 mL of the respective animal samples (Table 1). The mice were killed nine days post inoculation and the spleens were sampled and reinoculated into 6-days-old, specific pathogen free, embryonated hen eggs. The infected yolk sacs (YS) of dead and viable embryos were harvested between 8 and 10 days after inoculation. C. burnetii isolates in their 3rd passage in the chicken embryo were aliquoted and frozen at -80°C. Bacterial suspensions were prepared from infected YS by a series of differential sucrose density centrifugations. Prior to the purification process YS were heat inactivated (80°C for 1 hour). This was followed by sonication and by centrifugation for 45 min at 2,000 g in a JOUAN GR412. The supernatant (30 mL) was homogenized with 20 mL of 20% sucrose/phosphate buffer (pH 7.4) and re-centrifuged. After removal of
Dendrogram construct from MLVA Panel 1+2 data of the 42 C. burnetii isolates. Thirty-six different genotypes are distinguished. Strains are color-coded with the same code used in Figure 3, to illustrate that the global clustering is preserved when panel 2 is added. The "Scurry" strain is the exception.
the supernatant, the pellet was suspended in 10 mL Tris-
KCl and briefly sonicated again. This bacterial suspension was deli-
cately added up to a centrifuge tube containing 5 mL of 60% sucrose in
PBS, 5 mL of 50% sucrose in PBS and 10 mL of 40% sucrose in PBS. Centrifuga-
tion was performed at 150,000 g for 1 h at 4°C in a Beckman L8-55
ultracentrifuge. Coxiella bands were removed, diluted in
30 mL PBS and centrifuged at 150,000 g for 1 hour. The
pellet was washed in 5 mL of PBS and centrifuged again.

DNA preparation
Preparations of purified bacteria were digested with
DNase RQ1 (Promega) at 37 °C for 30 min and the reaction was stopped by addition of RQ1 stop solution. This step ensures degradation of cellular DNA. Bacteria were suspended in TNE buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 1 mM EDTA) and digested with proteinase K (Sigma) in the presence of 0.5% sodium dodecyl sulfate at 55 °C for 1 h. DNA was extracted with phenol and chloro-
form, precipitated with ethanol, dried under vacuum, and
resuspended in TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA). The DNA concentration and purity was determined by measuring the optical density at both 260 and 280 nm. DNA concentrations were adjusted to 0.1 µg/µL to 0.8 µg/µL. DNAs were stored at -20°C.

Plasmid specific PCR

The plasmid composition of not previously described isolates was assayed using primers listed in Table 4. PCR amplification conditions are described in Table 4; amplimer lengths were 977 bp for QpH1 and 693 bp for QpRS.

IRS-PCR

IRS-PCR was performed as described previously [30]. The oligonucleotides that form adapters and are used for PCR amplification are listed in Table 4. The adapters were designed to ligate specifically to the cohesive ends of the *Pst*I and *Sal*I restricted fragments. All oligonucleotides were purchased from Sigma-Genosys. In brief, about 0.5 µg of *Coxiella* DNA was digested with 10 U of *Pst*I (Promega) and 10 U of *Sal*I (Promega) for 2 h 30 min at 37 °C in a volume of 15 µL. Ligation of the *Pst*I (20 pmol) and the *Sal*I adapters (20 pmol) was performed by adding 2.5 U of T4 DNA ligase (Promega) in a total volume of 25 µL. The mixture was incubated at 16 °C for 2 h and then at 60°C for 20 min to inactivate T4 DNA ligase. The sample was redigested with 5 U of *Pst*I and 5 U *Sal*I at 37°C for 30 min to cleave any restriction sites reformed by ligation, and then was submitted to amplification. Amplification was performed in an iCycler thermocycler (Bio-Rad, Marnes la Coquette, France) according to the tandem repeat unit length. Gel images were managed using the Bionumerics software package (version 4.5, Applied-Maths, Belgium).

Identification of tandem repeats

Methods previously described [36,45,49] and accessible [46] were used to identify tandem repeats in the published genome of *Coxiella burnetii* RS A493 [1].

The various tandem repeat loci are designated by using the nomenclature described previously [35]. For instance Cbu0033-ms01_16bp_5U_198bp (ms01) is a tandem repeat locus at position 33 Kb in the *C. burnetii* RSA493 genome. It has a 16 bp motif and a total PCR product length of 198 bp in the RSA493 strain when using the primers set indicated in Table 3. This allele size is coded as a 5 units allele. The common laboratory name is ms01.

VNTR amplification and genotyping

PCR amplifications were done in a total volume of 15 µl containing 1 ng of DNA, 1× PCR reaction buffer, 1 U of *Taq* DNA polymerase (Qiagen, Illkirch, France), 200 µM of each deoxynucleotide triphosphate, and 0.3 µM of each flanking primer (1× PCR buffer is 20 mM Tris pH 8.75, 10 mM KCl, 10 mM (NH4)2SO4, 2 mM MgSO4, 1.5 mM MgCl2, 0.1% Triton X-100, 1 M Betaine). Amplifications were performed in an MJ Research PTC200 thermocycler. Initial denaturation at 94°C for 5 minutes was followed by 30 cycles consisting of denaturation at 94°C for 30 s, primer annealing at 60°C for 30 s, and elongation at 70°C for 1 min. The final extension step was at 72°C for 5 min. A different elongation time was used for ms07, ms12 and ms33 (the extension time was 150 seconds at 70°C). Five microliters of amplification product were loaded on a 2% standard agarose gel for panel 1 markers and on a 3% standard agarose gel (Qiagen, Illkirch, France) for tandem repeats with a 6 or 7 bp repeat unit (panel 2). Gels were stained with ethidium bromide, visualized under UV light, and photographed (Vilber Lourmat, Marnes-la-Vallée, France). The size markers used were a 100-bp or 20-bp ladder (Bio-Rad, Marnes la Coquette, France) according to the tandem repeat unit length. Gel images were managed using the Bionumerics software package (version 4.5, Applied-Maths, Belgium).

Data analysis

IRS-PCR patterns were analysed using an Alpha Imager Gel Analysis System Fluorchem version 2.00 (Alpha Innotech Corporation) following the manufacturer’s recommendations. VNTR alleles size estimates were converted to number of units within a character dataset. Clustering analyses used the categorical coefficient and UPGMA (Unweighted Pair Group Method using Arithmetic averages). The use of the categorical parameter implies that the character states are considered unordered. The same weight is given to a large or a small number of differences in the number of repeats at each locus. Simpson’s diversity index was used as suggested by [50].

Authors’ contributions

NAB participated in the design of the study, culture of isolates and molecular genetic studies. YH evaluated tandem repeat markers and carried out all the MLVA molecular genetic studies. GV analyzed the typing data. AB participated in PCR amplification of plasmids. DF and HM selected strains. CCB participated in IRS-PCR molecular genetic studies. AS participated in isolation and culture of isolates, and purification of bacteria. AR participated in search and obtaining grant. NAB, DF, HM and GV drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the "Département Santé Animale" for INRA (Institut National de Recherche Agronomique), by the French DGA (Délé-gation Générale pour l'Armement) and the European bio-defense project CEPA 1.14 as part of efforts to control dangerous pathogens by developing surveillance tools.

We like to thank G. Baljer (Gießen, Germany) for providing us with Coxiella DNA and strains.

References

1. Seshadri R, Paulsen IT, Eisen JA, TD R, Nelson KE, Nelson WC, Ward NL, Tettel H, Davidson TM, Beanaj M, Deboy RT, Daugher SC, Fishbein LM, Raoult D, 1979: Molecular characterization of cloned variants of Coxiella burnetii isolated in China. Acta Virol 1992, 36:173-183.
2. Thiele D, Willems H, Haas M, Krauss H: Analysis of the entire nucleotide sequence of the cryptic plasmid QpH1 from Coxiella burnetii. Eur J Epidemiol 1994, 10:413-420.
3. Valekova D, Kazar J: A new plasmid (QpDV) common to Coxiella burnetii isolates associated with acute and chronic Q fever. FEMS Microbiol Lett 1995, 125:275-280.
4. Thiel D, Willems H, Jager C, Lautenschlager S, Baillie G: Coxiella burnetii plasmid types QpDG and QpH1 are closely related and likely identical. Vet Microbiol 2002, 89:161-166.
5. Willems H, Ritter M, Jager C, Thiele D: Plasmid-homologous sequences in the chromosome of plasmidless Coxiella burnetti. Scrum Q217, J Bacteriol 1997, 179:3293-3297.
6. Heinen R, Sieler G, Whiting LL, Schmitt SA, Malavia LP, Frazier ME: Use of pulse field gel electrophoresis to differentiate Coxiella burnetii strains. Ann NY Acad Sci 1990, 590:504-513.
7. Jager C, Willems H, Thiele D, Baljer G: Molecular characterization of Coxiella burnetii isolates. Epidemiol Infect 1998, 120:157-164.
8. Thiele D, Willems H, Kopf G, Krauss H: Polymorphism in DNA restriction patterns of Coxiella burnetii isolates investigated by pulse field gel electrophoresis and image analysis. Eur J Epidemiol 1993, 9:419-425.
9. Cloeckaert A, Grayson M, Grepinet O, Bourned KS: Classification of Brucella strains isolated from marine mammals by infrequent restriction site-PCR and development of specific PCR identification tests. Microbes Infect 2003, 5:593-602.
10. Francisca G, Tarraro S, Weddel-Dierard C, Auriel P: Characterization of Listeria monocytogenes strains involved in invasive and noninvasive listeriosis outbreaks by PCR-based fingerprinting techniques. Appl Environ Microbiol 2001, 67:1793-1799.
11. Garaizar J, Lopez-Molina N, Lacerqua L, Lau Baggesen D, Rementeria A, Vicano A, Audicana A, Perales I: Suitability of PCR-fingerprinting, infrequent-restriction-site PCR, and pulsed-field gel electrophoresis, combined with computerized gel analysis, in library typing of Salmonella enterica serovar Enteritidis. J Clin Microbiol 2001, 39:4277-4282.
12. Handley SA, Regnery RL: Differentiation of pathogenic Bartonella species by infrequent restriction site PCR. J Clin Microbiol 2000, 38:3010-3015.
13. Glazunova O, Roux V, Freylikman O, Selyevozozova F, Tyczka J, Tokarevich N, Knopp S, Harle JR, Weiller PJ: Isolation of Coxiella burnetii from dairy cattle. J Vet Diagn Invest 1993, 5:491-495.
14. Koeck JL, Vergnaud G: Isolation of Coxiella burnetii by enrichment of the gene (com1) encoding a 27-kDa outer membrane protein. Microb Immunol 1997, 41:871-877.
15. Hendrix LR, Samuel JE, Mallavia LP: Differentiation of Coxiella burnetii isolates by analysis of restriction-endonuclease-digested DNA separated by SDS-PAGE. J Gen Microbiol 1991, 137:269-276.
16. Lautenschlager S, Willems H, Jager C, Baljer G: Sequencing and characterization of the cryptic plasmid QpRS from Coxiella burnetii. Plasmid 2000, 43:85-88.
17. Ning Z, Yu SR, Quan YG, Xue Z: Molecular characterization of cloned variants of Coxiella burnetii isolated in China. Acta Virol 1992, 36:173-183.
42. Koeck JL, Njanpop-Lafourcade BM, Cade S, Varon E, Sangare L, Valjevac S, Vergnaud G, Pourcel C: Evaluation and selection of tandem repeat loci for Streptococcus pneumoniae MLVA strain typing. BMC Microbiol 2005, 5:66.
43. Le Fleche P, Jacques I, Grayon M, Al Dahouk S, Bouchon P, Denoeud F, Nockler K, Neubauer H, Guillouteau LA, Vergnaud G: Evaluation and selection of tandem repeat loci for a Brucella MLVA typing assay. BMC Microbiol 2006, 6:9.
44. Denoeud F, Vergnaud G: Identification of polymorphic tandem repeats by direct comparison of genome sequence from different bacterial strains: a Web-based resource. BMC Bioinformatics 2004, 5:4.
45. The Microorganisms Tandem Repeats Database [http://minisatellites.u-psud.fr]
46. The MLVA Web Service [http://bacterial-genotyping.igmors.u-psud.fr]
47. Svraka S, Toman R, Skultety L, Slaba K, Homan WL: Establishment of a genotyping scheme for Coxiella burnetii. FEMS Microbiol Lett 2006, 254:268-274.
48. Vergnaud G, Denoeud F: Minisatellites: Mutability and Genome Architecture. Genome Res 2000, 10:899-907.
49. Pirt SR, Gasston MA: Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 1988, 26:2465-2466.
50. Arriacou Bouvery N, Souriau A, Lechopier P, Rodolakis A: Experimental Coxiella burnetii infection in pregnant goats: excretion routes. Vet Res 2003, 34:423-433.
51. Samuel JE, Frazier ME, Mallavia LP: Correlation of plasmid type and disease caused by Coxiella burnetii. Infect Immun 1985, 49:775-779.
52. Stein A, Raoult D: Detection of Coxiella burnetii by DNA amplification using polymerase chain reaction. J Clin Microbiol 1992, 30:2462-2466.
53. Willems H, Thiele D, Krauss H: Plasmid based differentiation and detection of Coxiella burnetii in clinical samples. Eur J Epidemiol 1993, 9:411-418.
54. Nguyen SV, Hirai K: Differentiation of Coxiella burnetii isolates by sequence determination and PCR-restriction fragment length polymorphism analysis of isocitrate dehydrogenase gene. FEMS Microbiol Lett 1999, 180:249-254.
55. Zhang GQ, Hotta A, Mizutani M, Ho T, Yamaguchi T, Fukushima H, Hirai K: Direct identification of Coxiella burnetii plasmids in human sera by nested PCR. J Clin Microbiol 1998, 36:2210-2213.