1998-08

Activation of peroxisome proliferator-activated receptors by chlorinated hydrocarbons and endogenous steroids

Zhou, Y C, D J Waxman. "Activation of Peroxisome Proliferator-Activated Receptors by Chlorinated Hydrocarbons and Endogenous Steroids." Environmental Health Perspectives 106(Suppl 4): 983-988. (1998)
https://hdl.handle.net/2144/2807

Boston University
Activation of Peroxisome Proliferator-Activated Receptors by Chlorinated Hydrocarbons and Endogenous Steroids

Yuan-Chun Zhou and David J. Waxman

Department of Biology, Boston University, Boston, Massachusetts

Trichloroethylene (TCE) and related hydrocarbons constitute an important class of environmental pollutants whose adverse effects on liver, kidney, and other tissues may, in part, be mediated by peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors belonging to the steroid receptor superfamily. Activation of PPAR induces a dramatic proliferation of peroxisomes in rodent hepatocytes and ultimately leads to hepatic cellular carcinoma. To elucidate the role of PPAR in the pathophysiologic effects of TCE and its metabolites, it is important to understand the mechanisms whereby PPAR is activated both by TCE and endogenous peroxisome proliferators. The investigations summarized in this article help clarify the mechanism by which TCE and its metabolites induce peroxisome proliferation and explore the potential role of the adrenal steroid and anticancer agent dehydroepiandrosterone 3β-sulfate (DHEA-S) as an endogenous PPAR activator. Transient transfection studies have demonstrated that the TCE metabolites trichloroacetate and dichloroacetate both activate PPARα, a major liver-expressed receptor isoform. TCE itself was inactive when tested over the same concentration range, suggesting that its acidic metabolites mediate the peroxisome proliferative potential of TCE. Although DHEA-S is an active peroxisome proliferator in vivo, this steroid does not stimulate transactivation of PPARα or other peroxisome proliferator isoforms, γ and δ (Nuc1), when tested in COS-1 cell transfection studies. To test whether PPARα mediates peroxisomal gene induction by DHEA-S in intact animals, DHEA-S has been administered to mice lacking a functional PPARα gene. DHEA-S was thus shown to markedly increase hepatic expression of two microsomal P450A4a4 proteins associated with the peroxisomal proliferative response in wild-type mice. In contrast, DHEA-S did not induce these hepatic proteins in PPARα-deficient mice. Thus, despite its unresponsiveness to steroidal peroxisome proliferators in transfection assays, PPARα is an obligate mediator of DHEA-S-stimulated hepatic peroxisomal gene induction. DHEA-S, or one of its metabolites, may thus serve as an important endogenous regulator of liver peroxisomal enzyme expression.

— Environ Health Perspect 106(Suppl 4):983–988 (1998). http://ehpnet1.niehs.nih.gov/docs/1998/Suppl-4/983-988/zhouch/abstract.html

Key words: chlorinated hydrocarbons, trichloroethylene, trichloroacetic acid, DHEA-S, PPARα, peroxisome proliferators

Introduction

Trichloroethylene (TCE) is a widely used agent in dry cleaning, painting stripping, and industrial cleaning that is of particular interest to Superfund cleanup efforts. It is a common and persistent environmental pollutant, and has been found in over one-third of hazardous waste sites and in 10% of groundwater sources (1). Exposure to TCE and related chlorinated hydrocarbons is associated with a number of several adverse health effects, including liver, kidney, and central nervous system toxicity (2). The toxicity of these chemicals appears to be enhanced by their metabolism catalyzed by liver cytochrome P450 (CYP) enzymes, which produce multiple reactive and/or toxic metabolites (3). These metabolites may act, at least in part, via peroxisome proliferator-activated receptor (PPAR), a ligand-activated transcription factor that belongs to the steroid receptor superfamily (4). Three mammalian PPAR subtypes, α, δ (or Nucl1), and γ, have been identified. Gene knockout studies in the mouse model demonstrate that PPARα, which is highly expressed in liver, is responsible for the proliferative effects of chemical peroxisome proliferators such as clofibrate (5). By contrast, PPARδ/Nucl1 is expressed in many cell types, whereas PPARγ is abundant in adipose tissues where it plays an important role in adipocyte differentiation (6). The present study investigates the role of TCE and its metabolites in activation of PPAR protein using a transient transfection assay. As reported below, the peroxisome proliferative effects of TCE are mediated by PPARα via its interactions with TCE’s acidic metabolites, trichloroacetic acid (TCA), and dichloroacetic acid (DCA).

To elucidate the role of PPAR in the pathophysiologic effects of TCE and its metabolites, it is additionally important to understand the physiologic effects of PPARα activation by endogenous regulators. Such information may help identify any synergistic or antagonistic interactions between endogenous peroxisome proliferators and chlorinated hydrocarbons at the level of PPAR receptor activation. One such potential endogenous PPAR activator is dehydroepiandrosterone (DHEA), a naturally occurring adrenal steroid with known peroxisome proliferative potential (7). DHEA is distinguished from other steroids by its chemoprotective properties (8,9). DHEA can also stimulate a dramatic increase in both the size and number of peroxisomes in liver when given to rodents at high doses. This response is accompanied by a substantial increase in peroxisomal β-oxidation and fatty acid-metabolizing CYP4A enzymes (10–14). Moreover, chronic administration of DHEA can lead to hepatocarcinogenesis (15). The cellular mechanism(s) underlying the DHEA-induced peroxisome proliferative effect is poorly understood. In primary rat hepatocytes, DHEA is inactive as a peroxisome proliferator unless it is first metabolized to the corresponding 3β-sulfate (DHEA-S) (16,17). Recent studies on male workers chronically exposed to TCE have shown that increased plasma levels of DHEA-S are associated with years of exposure to TCE, rising from 255 to 718 ng/ml for workers exposed to TCE for less than 3 and greater
than or equal to 7 years, respectively (18). This relationship between DHEA-S and TCE suggests that TCE may disrupt peripheral endocrine function, perhaps through its peroxisome proliferative effects in liver and other tissues. In addition, it is conceivable that TCE may compete with DHEA-S for binding to PPAR, ultimately stimulating an elevation of plasma DHEA-S as a compensatory response. More studies are required to elucidate the mechanism underlying these interactions between TCE and DHEA-S and the potential role of PPAR and peroxisome proliferation in these events.

As is the case for chlorinated hydrocarbons such as TCE, peroxisome proliferation induced by endogenous fatty acids, as well as by structurally diverse hypolipidemic fibrates and other foreign chemicals, is mediated by the α isofrom of PPAR, PPARα (19). However, as described below, unlike the TCE metabolites tri-chloroacetate and dichloroacetate, DHEA and DHEA-S fail to activate PPARα in transient cotransfection assays. It is possible that DHEA and/or DHEA-S might mediate their effects through other related receptors, specifically, PPARγ (20) or PPARδ/Nuc1 (21). Alternatively, the in vitro transfection systems used to test for DHEA and/or DHEA-S activation of PPARα may be insufficiently sensitive to detect weak activation by the steroid or may lack metabolic capacity or other key factors present only in the intact animal. Several of these possibilities have been examined recently (22), along with the role of PPARα in DHEA-S-induced peroxisome proliferation in vitro using a mouse line that lacks the PPARα receptor (5) and its associated pleotropic response to peroxisome proliferators. These studies are summarized below. The results establish that despite its apparent inactivity in vitro, PPARα mediates the in vivo effects of DHEA-S on peroxisomal proliferation.

Materials and Methods

Plasmids

Reporter plasmid pLucA6-880, containing 880 nts (nucleotides) of 5’-flanking DNA of the rabbit CYP4A6 gene cloned into p19Luc, and the mouse PPARα expression plasmids pCMV-PPARα and pCMV-PPARα-G (23) were kindly provided by E. Johnson (The Scripps Research Institute, La Jolla, CA). A plasmid expressing full-length human PPARα/Nuc1 cloned into p8omega (21) was kindly provided by A. Schmidt (Merck Research Labs, West Point, PA). Mouse PPARγ cloned into pSV-Sport1 (24) was provided by J. Reddy (Northwestern University Medical School, Chicago, IL) and mouse RXRα expression plasmid pCMX-mRXRα (25) was provided by R. Evans (Salk Institute, San Diego, CA). β-Galactosidase expression plasmid (pSV-β-gal) was purchased from Promega (Madison, WI).

Transfection Studies

Transfection of COS-1 cells grown in 12-well tissue culture plates was carried out by a calcium phosphate precipitation method. After transfection, cells were incubated in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% charcoal-stripped, delipitated bovine calf serum. Transfections were performed as described elsewhere (22) using a β-galactosidase plasmid as an internal control. Chlorinated hydrocarbons, including TCE, TCA, and DCA, were purchased from Aldrich Chemical Co. (Milwaukee, WI) and were dissolved in DMEM before administered to cells. Potential PPAR activators, including Wy-14,643, DHEA-S, DHEA, and AIDIOL were purchased from Sigma Chemical Co. (St. Louis, MO), each diluted from a 1000-fold stock in dimethyl sulfoxide. Chemicals were added to the cells in fresh media 24 hr after transfection at the concentrations indicated. Forty-eight hours after initiating the transfection, cells were washed twice with cold phosphate-buffered saline, then dissolved by incubation for 15 min at 4°C in lysis solution (100 mM KPi, pH 7.8, 0.2% Triton X-100, with 1 mM diithiothreitol added prior to use; 80 µl/well). The cell extract was then scraped and transferred to a centrifuge tube for removal of insoluble cell debris in an Eppendorf centrifuge. Luciferase and β-galactosidase activities were measured. Luciferase activity values were normalized for transfection efficiency using β-galactosidase activity values determined from the same preparation of cell lysate.

PPAR Knockout Mice

Male PPARα(−/−) mice or (+/+) (F3 homozygotes or wild-type; hybrids of C57BL/6N × ISV129 genetic background; 10–12 weeks of age) (5) were injected with either DHEA-S or clofibrate (Sigma) at 15 mg/100 g body weight or corn oil (vehicle control) for 4 consecutive days by intraperitoneal injection (22). Twenty-four hours after the final injection, mice were killed by carbon dioxide asphyxiation, and the liver and kidneys were removed and used for isolation of microsomes.

Analysis of Microsomal CYP4A Protein Expression

Liver microsomes prepared from frozen tissues by differential centrifugation were analyzed by Western blotting using polyclonal antirat CYP4A antibody raised to a di(2-ethylhexyl)phthalate-inducible rat liver CYP4A protein related to CYP4A1. This antibody has been characterized elsewhere (27) and was provided by R.T. Okita (Washington State University, Pullman, WA).

Results

Chlorinated Hydrocarbons and Peroxisome Proliferation

Rodent bioassays establish that TCE is a complete hepatocarcinogen, with chronic exposure to TCE leading to hepatocellular carcinoma development (28,29). The hepatotoxicity and carcinogenicity of TCE appears to be related directly to the extent of its oxidative metabolism, which is primarily catalyzed by liver CYP enzymes and yields multiple reactive and toxic metabolites (Figure 1). At least some of these active metabolites may achieve their deleterious effects via a mechanism that involves peroxisome proliferation (28). Peroxisome proliferation is a trophic phenomenon in the liver, originally described after administration of the hypolipidemic drug clofibrate to rodents (30). This proliferative response is characterized in the short term by a dramatic increase in both the size and number of peroxisomes. It is also associated with upregulation of peroxisomal fatty acid β-oxidation enzymes and microsomal P450A4 fatty acid hydroxylase enzymes as well as increased cell differentiation and liver weight gain. Chronic exposure to peroxisome proliferators leads to hepatocellular carcinoma. A broad spectrum of structurally diverse compounds, including certain hypolipidemic drugs, herbicides, industrial solvents, and the adrenal steroid DHEA, has been shown to induce peroxisome proliferation. These peroxisome proliferators stimulate liver growth and tumor formation by a nongenotoxic mechanism, i.e., one that does not involve DNA damage caused by the peroxisome proliferators or their metabolites (31). PPAR, a ligand-activated transcription factor and a member of the steroid receptor superfamily, has been shown to be activated by diverse peroxisome proliferators and can
thus mediate their peroxisome proliferative effects (19).

Activation of PPARα by Chlorinated Hydrocarbons

Trichloroacetic acid and dichloroacetic acid are secondary metabolites of TCE (32). TCA, in particular, has been implicated as a key hepatocarcinogenic metabolite of TCE and is believed to act by inducing peroxisome proliferation (33). Transient transactivation assays using chimeric receptors (ER/PPARα and GR/PPARα) containing a PPARα transactivation domain suggest that TCA may be a weak activator of PPARα (19). To investigate the responsiveness of PPAR to activation by TCE and its acidic metabolites, TCA and DCA, COS-1 cells were cotransfected with a PPAR expression plasmid, pCMV-mPPARα, together with a reporter plasmid containing a peroxisome proliferator response element, pLuc4A6-880 (23). As shown in Table 1, treatment of the transfected COS-1 cells with TCA and DCA for 24 hr resulted in the activation of a luciferase reporter gene. This activation was not apparent at 0.1 mM TCA or 0.1 mM DCA, but was readily seen at the two higher concentrations tested, 1 and 5 mM. Activations of 16- and 10-fold, respectively, were observed with TCA and DCA at concentrations of 5 mM. When tested over the same concentration range, TCE alone did not substantially activate reporter gene expression (Table 1). These results indicate that the PPARα-dependent effects of TCE on gene expression most likely proceed through its oxidative metabolites TCA and DCA. The specific P450 enzymes that catalyze the oxidative metabolism of TCE, and that ultimately yield TCA and DCA, may thus play a critical role in the activation of TCE to metabolites that contribute to its deleterious effects on liver, kidney, and perhaps other tissues.

Concentration, mM	Trichloroacetic acid	Dichloroacetic acid	Trichloroethylene
Control	1.00	1.00	1.00
0.1	1.06±0.11	1.31±0.11	1.27
1.0	8.14±1.56	4.18±0.37	1.74±0.54
5.0	16.54±0.94	10.94±1.24	1.72±0.25

Cotransfection of PPARα expression plasmid with a P450A456 promoter–luciferase reporter construct was carried out in COS-1 monkey kidney cells using a calcium phosphate precipitation method. Cells were treated with either TCA, DCA, or TCE, as indicated, for a 24-hr period beginning 24 hr after washing of the cells to remove the calcium phosphate DNA precipitate. Luciferase reporter activity of cell extracts was then determined and the data were normalized to a β-galactosidase reporter (pSV-β-gal) as an internal standard. Data shown are mean ± range for duplicate determinations.

Figure 1. Pathways of P450-dependent metabolism of TCE and PCE.

DHEA-S-Induced CYP4A Induction in Vivo

Dehydroepiandrosterone is a naturally occurring steroid hormone that has various beneficial effects on rodents, including antidiabetic, anticarcinogenic, and antiobesity effects. DHEA has been characterized as a peroxisome proliferator (7). At pharmacologic doses, DHEA induces peroxisome proliferation, with an increased expression of peroxisomal β-oxidation enzymes and some other enzymes involved in lipid metabolism such as microsomal CYP4A enzymes. Like other peroxisome proliferators, DHEA can induce hepatocarcinogenesis when administered to rodents at moderate to high doses. The apparent peroxisome proliferative effect of DHEA in intact animals and its ineffectiveness at inducing peroxisomal gene expression in cultured hepatocytes (16,17) suggest that DHEA undergoes metabolism in vivo to an active derivative that mediates the peroxisome proliferative response. The finding that the sulfate of DHEA, DHEA-S, is an active inducer of peroxisomal enzyme and CYP4A expression in hepatocyte culture (16) raised the possibility that DHEA sulfation, catalyzed by liver sulfotransferase enzymes, is a prerequisite for DHEA to attain its peroxisome proliferative effects. To investigate this possibility, studies were conducted to determine whether DHEA-S is preferred to DHEA with respect to CYP4A induction in vivo (22). DHEA-S given at a low dose (10 mg/kg daily for 4 days) was found to be substantially more active than DHEA with respect to liver CYP4A3 mRNA induction. This finding is consistent with the observation that acetaminophen, an inhibitor of sulfate conjugation, reduces the peroxisomal β-oxidation activity induced by DHEA, but does not affect the activity induced by DHEA-S and clofibrate (17). By contrast, at a higher dose of steroid (60 mg/kg), DHEA and DHEA-S were equally active at inducing a
peroxisome proliferative response (22). The equal effectiveness of DHEA and DHEA-S at the higher dose is presumably due to the efficient sulfation of DHEA in vivo, in a reaction catalyzed by liver sulfotransferases.

trans-Accoration of PPAR by DHEA-S and Related Steroids

Although many foreign chemical peroxisome proliferators can activate PPARα to initiate pathophysiologic events, the physiologic effects of PPARα activation are likely to involve endogenous regulators that may serve to modulate PPARα activity. Characterization of the physiologic role of PPARα in responding to these endogenous activators is thus critical for a full understanding of the pathophysiologic effects of foreign peroxisome proliferators, including TCE and its metabolites. Endogenous PPARα activators derived from fatty acids and their metabolites have been described and include linoleic acids, polyunsaturated fatty acids, and eicosanoids (34–36). By contrast, steroidal activators of PPAR have not been identified. In view of its peroxisomal proliferative effects in vivo, DHEA-S is a good candidate for an endogenous steroidal PPARα activator. Studies were therefore conducted to investigate the role of PPARα in DHEA-S-activated peroxisome proliferation using transient transfection methods (22). Unlike the prototypic foreign chemical peroxisome proliferator Wy-14,643, which can induce luciferase reporter activity by 15-fold after 24-hr treatment of PPARα-transfected COS-1 cells, DHEA-S was unable to induce reporter activity. DHEA, and the related steroids 7-keto-DHEA and ADIOL-S were also inactive in terms of induction of PPARα-stimulated reporter activity (Figure 2A).

Retinoic X receptor (RXR) is a common partner for many steroid receptors. RXR forms a heterodimer with PPAR and this heterodimerization enhanced PPAR–DNA binding and transcriptional activation activity (37). To investigate whether RXR is required for DHEA-S-induced PPARα activation, a mouse RXRα expression plasmid was cotransfected with pCMV–PPARα. As shown in Figure 2A, basal luciferase reporter activity was increased 3-fold in cells transfected with RXRα. However, no further increase in activity was detected after treatment of the transfected cells with DHEA, 7-keto DHEA, DHEA-S, or ADIOL-S.

Transfection of PPARα expression plasmid results in a substantial increase in basal luciferase reporter activity in the absence of peroxisome proliferator treatment, as shown by comparing the –PPARα sample with the +PPARα sample in vehicle control in Figure 2B. This finding suggests the existence of endogenous activator(s) of PPARα in COS-1 cells. Similar results have been reported by others (23). PPARα-G, a PPARα mutant that has a Glu to Gly substitution, can substantially lower the basal activation while it remains sensitive to peroxisome proliferator activation (38).

Given this potentially greater sensitivity for detection of a weak peroxisome proliferative response using this mutant receptor, PPARα-G was tested in transfection studies to examine whether DHEA-S can induce a low activation of PPAR. Figure 2B shows that PPARα-G transfection results in a 6-fold decrease in basal PPAR activation when compared to wild-type PPARα, and its activity was induced 30-fold after Wy-14,643 treatment in the experiment shown. However, no increase in reporter gene activity could be detected in cells treated with DHEA, 7-keto DHEA, DHEA-S, or ADIOL-S, either in the absence (Figure 2B; data not shown) or in the presence of cotransfected RXRα (data not shown).

To address the possibility that other PPAR subtypes may mediate DHEA-S-dependent peroxisome proliferator responses, cotransfection experiments have been carried out using PPARγ and PPARδ/Nur1 expression plasmids in the presence of cotransfected RXRα. PPARγ and PPARδ/Nur1 were found to be weakly activated by high concentrations of Wy-14,643 (100 μM), in agreement with a previous report (39). However, DHEA, DHEA-S, and ADIOL-S did not induce significant responses from PPARγ or PPARδ/Nur1 (22). Therefore, despite the fact that DHEA-S is an active peroxisome proliferator in vivo and in primary rat hepatocytes, it is apparently inactive with respect to PPAR activation in transient transactivation assays using cultured cells that respond to a wide range of other PPAR activators and peroxisome proliferators.

Influence of PPARα Gene Knockout on DHEA-S-Induced Peroxisome Proliferation in Liver

To probe the role of PPARα for a DHEA-S-stimulated peroxisome proliferative response in vivo, PPARα knockout mice and wildtype mice (5) were tested for their responsiveness to DHEA-S-induced peroxisome proliferation. As we recently reported (22), Western blot analysis of liver microsomal CYP4A revealed two CYP4A proteins that were highly inducible in livers of PPARα wild-type mice [PPARα (+/+) mice when treated with DHEA-S and clofibrate. In contrast, those same CYP4A proteins were not induced by either clofibrate or DHEA-S injection in PPARα knockout mice [PPARα (−/−) mice]. This constitutively expressed CYP4A immunoreactive protein of slightly lower apparent molecular weight was also detected (Figure 3, band C), but its level was unaffected by either peroxisome proliferator or by the PPARα knockout phenotype.
with increases CYP4A1, CYP4A3, acyl-CoA-oxidase, bifunctional enzyme, and 3-ketoacyl-CoA thiolase in PPARα (+/+) mice but not PPARα (-/-) mice after DHEA-S and clofibrate treatment (22).

Thus, although DHEA-S is inactive with respect to PPAR activation in transient trans-activation assays in COS-1 cells, experiments carried out using a PPARα gene knockout mouse model demonstrate that PPARα is required for DHEA-S induction of hepatic proliferative responses. These studies also indicate that the peroxisome proliferative response of DHEA-S is not mediated by two other PPAR forms, PPARγ and PPARδ/Nuc1, despite the presence of the latter nuclear receptor at a significant level in liver tissue (20,24). Several mechanisms could explain the discrepancy between the findings from the in vitro study and transient cell transfection experiments: a) Other factors that may be necessary for DHEA-S induction of peroxisome proliferation in vivo may be absent from the in vitro PPAR trans-activation system. b) DHEA-S might act in liver or other tissues to stimulate production of another endogenous chemical that serves as a proximal PPARα activator. c) The entry of DHEA-S into cells may require a specific plasma membrane transporter that is known to be present in hepatocytes (40), but may be absent in COS-1 and other cell types used for PPAR transfection studies. Finally, d) DHEA-S may be converted to an activated metabolite by a metabolic process which occurs in hepatocytes but not in the cell lines used for transfection studies.

In conclusion, the findings summarized in this report establish that oxidized metabolites of TCE and other chlorinated hydrocarbons, including TCA and DCA, activate mouse PPARα. In vivo experiments further establish that PPARα is an obligate mediator of the hepatic gene induction effects of the endogenous steroid peroxisome proliferator DHEA-S. Further investigation will be necessary to elucidate any interactions that may occur between DHEA-S and chlorinated hydrocarbons at the level of receptor activation, and to determine whether this potential for DHEA-S and its metabolites to serve as physiologic modulators of liver fatty acid metabolism and peroxisomal enzyme expression contributes to the antitumorogenic and other beneficial chemoprotective properties of this intriguing class of endogenous steroids.

REFERENCES AND NOTES

1. Campos-Outcalt D. Trichloroethylene: environmental and occupational exposure. Am Fam Physician 46:495-500 (1992).
2. Candura SM, Faustman EM. Trichloroethylene: toxicology and health hazards. G Ital Med Lav 13:17-25 (1991).
3. Buben JA, O’Flaherty EJ. Delineation of the role of metabolism in the hepatotoxicity of trichloroethylene and per-chloroethylene: a dose-effect study. Toxicol Appl Pharmacol 78:105-122 (1985).
4. Schoonjans K, Martin G, Staels B, Auwerx J. Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr Opin Lipidol 8:159-166 (1997).
5. Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Krantz DL, Fernandez-Salgueiro PM, Westphal H, Gonzalez FJ. Targeted disruption of the α isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15:3012-3022 (1995).
6. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR γ 2, a lipid-activated transcription factor. [Published erratum appears in Cell 80(6):following 957 (1995)]. Cell 79:1147-1156 (1994).
7. Waxman DJ. Role of metabolism in the activation of dehydroepiandrosterone as a peroxisome proliferator. J Endocrinol 150 Suppl S129-S147 (1996).
8. Gordon GB, Shantz LM, Talalay P. Induction of phase II enzyme and diet-related expression of the microsomal xenobiotic and carcinogen by dehydroepiandrosterone. Adv Enz Reg 26:355-382 (1987).
9. Schwartz AG, Whitcomb JM, Nyce JW, Lewbar ML, Pashko LL. Dehydroepiandrosterone and structural analogs: a new class of cancer chemopreventive agents. Adv Cancer Res 51:391-424 (1988).
10. Wu HQ, Masett BJ, Tweedie DJ, Milewich L, Frenkel RA, Martin WC, Estabrook RW, Prough RA. Induction of microsomal NADPH-cytochrome P-450 reductase and cytochrome P-450Iva1 (P-450Ia omega) by dehydroepiandrosterone in rats: a possible peroxisomal proliferator. Cancer Res 49:2337-2343 (1989).
11. Frenkel RA, Slaughter CA, Orth K, Moomaw CR, Hicks SH, Snyder JM, Bennett M, Prough RA, Putnam RS, Milewich L. Peroxisome proliferation and induction of peroxisomal enzymes in mouse and rat liver by dehydroepiandrosterone feeding. J Steroid Biochem 35:333-342 (1990).
12. Yamada J, Sakuma M, Ikeda T, Fukuda K, Suga T. Characterization of dehydroepiandrosterone as a peroxisome proliferator. Biochim Biophys Acta 1092:233-243 (1991).
13. Rao MS, Reid B, Ide H, Subbarao V, Reddy JK. Dehydroepiandrosterone-induced peroxisome proliferation in rat: evaluation of sex differences. Proc Soc Exp Biol Med 207:186-190 (1994).
14. Prough RA, Webb SJ, Wu HQ, Lapenson DP, Waxman DJ. Induction of microsomal and peroxisomal enzymes by dehydroepiandrosterone and its reduced metabolite in rats. Cancer Res 54:2878-2886 (1994).
15. Hayashi F, Tamura H, Yamada J, Kasai H, Suga T. Characteristics of the hepatocarcinogenesis caused by dehydroepiandrosterone, a peroxisome proliferator, in male F-344 rats. Carcinogenesis 15:2215-2219 (1994).
16. Ram PA, Waxman DJ. Dehydroepiandrosterone-3β-sulfate is an endogenous activator of the peroxisome proliferation...
pathway. Induction of cytochrome P450 4A and acyl CoA oxidase mRNAs in primary rat hepatocyte culture and inhibitory effects of Ca++ channel blockers. Biochem J 301:753–758 (1994).
17. Yamada J, Sakuma M, Ikeda T, Suga T. Activation of dehydroepiandrosterone as a peroxisome proliferator by sulfate conjugation. Arch Biochem Biophys 213:379–381 (1974).
18. Chia SE, Goh VH, Ong CN. Endocrine profiles of male workers with exposure to trichloroethylene. Am J Ind Med 32:217–222 (1997).
19. Issemany I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650 (1990).
20. Klierer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ, Umesono K, Evans RM. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 91:7355–7359 (1994).
21. Schmidt A, Endo N, Rutledge SJ, Vogel R, Shinar D, Rodan GA. Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids. Mol Endocrinol 6:1634–1641 (1992).
22. Peters JM, Zhou YC, Ram PA, Lee SST, Gonzalez FJ, Waxman DJ. Peroxisome proliferator-activated receptor α required for gene induction by dehydroepiandrosterone-Sβ-sulfate. Mol Pharmacol 50:67–74 (1996).
23. Muerhoff AS, Griffin KJ, Johnson EF. The peroxisome proliferator-activated receptor mediates the induction of CYP4A6, a cytochrome P450 fatty acid omega-hydroxylase, by clofibrate acid. J Biol Chem 267:19051–19053 (1992).
24. Zhi Y, Alvarès K, Huang Q, Rao MS, Reddy JK. Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J Biol Chem 268:26817–26820 (1993).
25. Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, Kakizuka A, Evans RM. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Develop 6:329–344 (1992).
26. Sundseth SS, Waxman DJ. Sex-dependent expression and clofibrate inducibility of cytochrome P450 4A fatty acid omega-hydroxylases. Male specificity of liver and kidney CYP4A2 mRNA and tissue-specific regulation by growth hormone and testosterone. J Biol Chem 267:3915–3921 (1992).
27. Okita TT, Okita JR. Characterization of a cytochrome P450 from di(2-ethylhexyl)phthalate-treated rats which hydroxylates fatty acids. Arch Biochem Biophys 294:475–481 (1992).
28. Herren-Freund SL, Pereira MA, Khoury MD, Olson G. The carcinogenicity of trichloroethylene and its metabolites, trichloroacetic acid and dichloroacetic acid, in mouse liver. Toxicol Appl Pharmacol 90:183–189 (1987).
29. Bruckner JV, Davis BD, Blanco JN. Metabolism, toxicity, and carcinogenicity of trichloroethylene. Crit Rev Toxicol 20:31–50 (1989).
30. Hess R, Staubli W, Riss W. Nature of the hepatomegaly effect produced by ethyl-chlorophenoxy-siobutyrate in the rat. Nature 208:856–888 (1969).
31. Warren JR, Simmon VF, Reddy JK. Properties of hypolipidemic peroxisome proliferators in the lymphocyte [3H]-thymidine and Salmo nella mutagenesis assays. Cancer Res 40:36–41 (1980).
32. Costa AK, Ivanetich KM. Tetrachloroethylene metabolism by the hepatic microsomal cytochrome P450 system. Biochem Pharmacol 29:2863–2869 (1980).
33. Elcombe CR. Species differences in carcinogenicity and peroxisome proliferation due to trichloroethylene: a biochemical human hazard assessment. Arch Toxicol Suppl 8:6–17 (1985).
34. Gottlicher M, Widmark E, Li Q, Gustafsson JA. Fatty acids activate a chimeric of the clofibrin acid-activated receptor and the glucocorticoid receptor. Proc Natl Acad Sci USA 89:4653–4657 (1992).
35. Yu K, Bayona W, Kallen CB, Harding HP, Ravera CP, McMahon G, Brown M, Lazar MA. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem 270:23975–23983 (1995).
36. Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc Natl Acad Sci USA 94:4312–4317 (1997).
37. Klierer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358:771–774 (1992).
38. Hsu MH, Palmer CNA, Griffin KJ, Johnson EF. A single amino acid change in the mouse peroxisome proliferator-activated receptor α alters transcriptional responses to peroxisome proliferators. Mol Pharmacol 48:559–567 (1995).
39. Lehman JM, Moore LB, Smith- Oliver TA, Wilkinson WO, Wilsson TM, Klierer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPAR γ). J Biol Chem 270:12953–12956 (1995).
40. Reuter S, Mayer D. Transport of dehydroepiandrosterone and dehydroepiandrosterone sulphate into rat hepatocytes. J Steroid Biochem Mol Biol 54:227–235 (1995).