Ultrasonic imaging using air-coupled P(VDF/TrFE) transducers with through-transmission method at 2 MHz

Sadayuki Takahashi*

Faculty of Education, Art and Science, Yamagata University, 1–4–12 Kojirakawa-cho, Yamagata, 990–8560 Japan

(Received 11 December 2019, Accepted for publication 10 January 2020)

Abstract: Concave-type twin transducers with a center frequency of 1.93 MHz have been fabricated using polyvinylidene fluoride trifluoroethylene (P(VDF/TrFE)) resonators that have a transducer insertion loss of 100 dB (although this figure does not include the air absorption loss). A through-transmission acoustic imaging system was constructed using these twin (transmitting/receiving) P(VDF/TrFE) transducers. Burst waves composed of 50 cycles of sine-waves from a radio-frequency (RF) source were excited to approximately 600 Vpp by using a high-voltage power amplifier, and these high voltage burst waves were then input into the transmitting P(VDF/TrFE) transducer. Acquisition of the resulting small signal after it had passed through a sample object (a Rockwell 11229-12 logic integrated circuit) allowed the through-transmission image to be displayed on a personal computer monitor. The transverse resolution of this imaging system is approximately 0.5 mm. The results of this study demonstrate that these P(VDF/TrFE) piezoelectric films with their low acoustic impedances are applicable to through-transmission imaging in air in the MHz range.

Keywords: Air-coupled, P(VDF/TrFE) transducer, Through-transmission imaging, MHz-range

PACS number: 43.38.Fx, 43.58.~e, 43.60.Lq [doi:10.1250/ast.41.900]

1. INTRODUCTION

In recent years, research into ultrasonic inspection in air using air-coupled transducers has been reported frequently [1–6]. In the MHz-range ultrasonic imaging field, acoustic imaging using a lead zirconate titanate (PZT) transducer was first reported by Fox et al. in 1985 [7], and applications of air-coupled ultrasonics using PZT-5A disks were reported by Grandia and Fortunko in 1995 [8]. However, much of the research in ultrasonic imaging has used kHz-range transducers [6,9] because the attenuation of ultrasonic energy in air is approximately three orders of magnitude higher than that in water and is also proportional to the square of the operating frequency [10–12]. Detection of high-frequency ultrasonic waves that have passed through an object under study using an air-coupled transducer is more difficult than pulse-echo imaging from the object surface. It is therefore necessary to apply high-amplitude voltages to the transducer, which is excited in the MHz-range. In these cases, application of high voltages to transducers that are made from piezoelectric ceramics such as PZT could lead to dielectric breakdown. In contrast, the piezoelectric copolymer polyvinylidene fluoride trifluoroethylene (P(VDF/TrFE)) has an electric coercive field (E_c) that is approximately 10 times as high as that of PZT, and it also offers the highest electromechanical coupling factor (k_t) among the piezoelectric polymers ($k_t \sim 0.3$) [13,14]. Piezoelectric polymer transducers have lower acoustic impedances and the impedance matching loss between this type of transducer and the air is much lower than that of piezoelectric ceramic transducers. While there is attenuation of 86 dB at the boundary between PZT and the air, the corresponding value between P(VDF/TrFE) and the air is only 68 dB [15]. Therefore, P(VDF/TrFE) transducers make it possible to transmit and receive signals in the air more efficiently than PZT transducers. The ultrasound wavelength distance is approximately 170 μm at 2 MHz in air. Therefore, it is possible to acquire high-resolution ultrasonic images using MHz-range ultrasound in the air. P(VDF/TrFE) transducers are also highly advantageous for object penetration during ultrasonic inspection because their low acoustic impedance allows more efficient transmission in the air than a PZT transducer. Thus far, the through-transmission imaging using P(VDF/TrFE) transducers has not ever been done in air.
In this study, a transmission scanning acoustic imaging system has been constructed using concave-type twin (transmitting/receiving) P(VDF/TrFE) transducers with a center frequency of approximately 2 MHz ($f_c = 1.93$ MHz) that were fabricated using a casting method [16]. As a result, we have successfully displayed an acoustic image of a logic integrated circuit (IC; 11229-12, Rockwell) [17] acquired via through-transmission at 2 MHz in air.

2. EXPERIMENTS ON P(VDF/TrFE) PIEZOELECTRIC POLYMER

2.1. Fabrication and Evaluation of P(VDF/TrFE) Piezoelectric Film

P(VDF/TrFE) (with 75 mol% VDF, molecular weight 350,000 g/mol) was dissolved in dimethyl formamide (DMF) to produce an approximately 20 wt.% P(VDF/TrFE) solution. A film was then formed by casting the solution on a 0.6-mm-thick ($\lambda/4$) Cu plate substrate that also acted as a backing electrode [16]. The film was then annealed at 145°C for 2 h to enhance its crystallinity (β-form crystals), and an Au layer was subsequently deposited on the film using a vacuum evaporation process to form the front electrode. The P(VDF/TrFE) film, which was approximately 300 µm thick, was poled under an electric field E_p (± 75 MV m$^{-1}$) that was suitably higher than the coercive field E_c (~ 50 MV m$^{-1}$). The complex admittance of the resulting poled film resonator was then measured using a network analyzer (4395A, Agilent). Figure 1 shows the piezoelectric resonance behavior of the P(VDF/TrFE) resonator, which had an air/evaporated Au (0.2 µm)/P(VDF/TrFE) (300 µm)/Cu plate (600 µm) structure. The electromechanical coupling factor $k_t \sim 0.22$ was determined by fitting of the resonance behavior using Mason’s equivalent circuit [18,19]. The parameter values that were determined are listed in Table 1.

Because the electromechanical coupling factor $k_t \sim 0.22$ is small, the crystal direction of P(VDF/TrFE) has a random orientation, which means that it is necessary to apply a higher voltage to the P(VDF/TrFE) film (thickness = 300 µm). However, poling was suspended because electrical breakdown occurred at voltages exceeding the field E_p (± 75 MV m$^{-1}$). Therefore, the electromechanical coupling factor of this P(VDF/TrFE) film is considered to have stagnated at $k_t \sim 0.22$.

2.2. Fabrication and Evaluation of P(VDF/TrFE) Transducers

The P(VDF/TrFE) transducer has an aperture angle of $\theta = 83^\circ$ and a focal length of 15 mm, as shown in Fig. 2. The structure described in order from the front side is composed of the front Au evaporated electrode, the P(VDF/TrFE) film, the Cu backing plate and air (which act as the backing load). This concave-type transducer, which has a center frequency of 1.93 MHz, was fabricated using the P(VDF/TrFE) resonator shown in Fig. 1.

Table 1 Electromechanical properties of P(VDF/TrFE) and air used in simulations.

Property	Value
active area of transducer	380 mm2
density [P(VDF/TrFE)]	1.89 g cm$^{-3}$
sound speed [P(VDF/TrFE)]	2400 m s$^{-1}$
thickness [P(VDF/TrFE)]	298 µm
dielectric constant ϵ_r	5.1
coupling factor k_t [P(VDF/TrFE)]	0.22
dielectric loss tangent, $\tan \delta_d$ [P(VDF/TrFE)]	0.13
mechanical loss tangent, $\tan \delta_m$ [P(VDF/TrFE)]	0.06
backing-layer (Cu)	600 µm
forward-layer (Au)	0.2 µm
sound speed (Cu)	5000 m s$^{-1}$
sound speed (Au)	3200 m s$^{-1}$
sound speed (air)	340 m s$^{-1}$
density (air)	0.0013 g cm$^{-3}$

From the fitting curve shown in Fig. 1.
Figure 3 shows the measurement system that was used to measure the efficiency of the 2 MHz concave-type transducers (30-mm-long one-way signal path in air). The RF source signal voltage (33500B, Keysight) input to transmitting transducer was 6.43 VPP (sine burst waves 80 cycles), and the amplified signal voltage from receiving transducer of same structure with transmitting transducer (Fig. 2) was 3.75 mVPP as shown in the below of Fig. 4.

As shown in Fig. 4, is defined as the ratio of the output acoustic power in air to the input electric power, which is given by

\[P_{\text{out}} \rightarrow P_{\text{in}} = C_0 \left(\frac{V_{\text{out}}}{V_{\text{in}}} \right)^2 \]

and consists of the transmitting and receiving transducer loss (2TL) and the one-way absorption loss in air (AL). The obtained the 2TL + 53 dB (low noise amplifier LA110, R&K; impedance: 50 ohm) + AL characteristic was 117 dB. The value of AL, i.e., the air absorption loss, is \(1.6 \times 10^{-12}\) (frequency)\(^2\) (dB/cm), according to [16].

The concave-type P(VDF/TrFE) transducer insertion loss [2TL = (transducer observed loss) + (amplifier gain 53 dB) – (air absorption loss 17 dB)] was 100 dB at 1.93 MHz.

Figure 3 Block diagram of transducer insertion loss measurement system.

Figure 4 The RF source signal voltage was 6.43 VPP (sine burst waves 80 cycles), and the amplified signal voltage from receiving transducer was 3.75 mVPP at 1.93 MHz in air (transducer focal length = 15 mm).

3. ULTRASONIC IMAGING SYSTEM OF THROUGH-TRANSMISSION METHOD USING AIR-COUPLED P(VDF/TrFE) TRANSDUCERS

A block diagram of the through-transmission acoustic imaging system, which is controlled via a computer program, is shown in Fig. 5. The burst waves, which were composed of 50 cycles of sine waves from a radio-frequency (RF) source (33500B, Keysight), were excited up to approximately 600 VPP using a high-voltage power amplifier, and the resulting high-voltage bursts were input to the transmitting P(VDF/TrFE) transducer. Because impedance matching with a low-noise amplifier (LA110, R&K; impedance: 50 ohm) was required, a radial leaded inductor was added to the receiving P(VDF/TrFE) transducer. After the small transmitted waves that passed through the sample object were detected using the twin receiving P(VDF/TrFE) transducer, the signal waves were then amplified using the low-noise amplifier (gain: 53 dB) and the cascading small signal amplifiers, and sent to a digital oscilloscope (DSOX3012T, Keysight). Figure 6(a) shows a photograph of a Rockwell 11229-12 logic IC [17] mounted on an acrylic plate that was used as the sample object and Fig. 6(b) shows the P(VDF/TrFE) twin transducer arrangement. The dimensions of this IC are 24 mm x 24 mm with a thickness of 1.5 mm. Figure 7 shows the averaged receiving signals (16, 32, 64, 128, 256, 512 and 1,024 times) of passed through in the central aria (Si-chip) of Rockwell 11229-12 logic IC, respectively. In this study, the signal detected from the receiving P(VDF/TrFE) transducer was averaged 512 times using the digital oscilloscope for noise reduction.
4. THROUGH-TRANSMISSION SCANNING ACOUSTIC IMAGING OF INTEGRATED CIRCUIT

Figure 8(a) shows a through-transmission acoustic image of the same IC acquired in air at 2 MHz (using the concave-type P(VDF/TrFE) twin transducers shown in Fig. 2 and the ultrasonic imaging system shown in Fig. 5. Figure 8(b) shows an X-ray image of the same IC. In this study, the mechanical scanning X-Y stage that was driven using a pulse motor to display the through-transmission acoustic image (two-dimensional) showed a width displacement of 40 μm/step [21]. The mechanical scanning was driven using pulse motors that were controlled by a personal computer program. Figure 9(a) shows a photograph (rear view) of a Rockwell 11229-12 logic IC with the epoxy over-mold removed. (b) Photograph of the structure of the same IC, which has a silicon substrate (chip dimensions of 6 × 6 mm, with thickness of 350 μm) on a copper frame (8 × 8 mm), for inspection after the chip was dismantled by heating and removal of the epoxy over-mold; the fixing tape (width of 1.2 mm) on the lead frame is also shown. (c) Structure of a Rockwell 11229-12 logic IC showing the Si chip, the bonding wire and the fixing tape; the image also shows the attenuations of (1) the Si chip: 39 dB; (2) the area around the Si chip: 64 dB; (3) the outer lead: 36 dB; and (4) the fixing tape (including the outer lead): 41 dB.
the structure of the same type of IC, which has a silicon substrate (chip dimensions 6×6 mm, thickness of 350 μm) on a copper frame (8×8 mm), intended for inspection after being dismantled by heating and removing the epoxy over-mold, and also shows the fixing tape (width: 1.2 mm) on the lead flame. The locations of Si chip, the bonding wire and the fixing tape are confirmed using the acoustic image shown in Fig. 9(c). In this displayed image, the ultrasonic energy transmission is divided into 16 color (monochrome) values, which were converted into image data after detection by the receiving P(VDF/TrFE) transducer (the lighter colors indicate higher transmission and the dark colors indicate lower transmission for the ultrasonic energy transmission processes.). In addition, several partial attenuation values of parts of this logic IC at 2 MHz are shown in the figure, including: 1. Si chip: 39 dB; 2. surrounding area of the Si chip: 64 dB; 3. outer lead: 36 dB; and 4. fixing tape (including the outer lead): 41 dB. Figure 10(a) shows a through-transmission acoustic image of the Si chip and surrounding area with outer lead (monochrome), and Fig. 10(b) shows the same area that is divided into 16 color (Z axis = 0 mm). Figure 10(c) also shows an acoustic image of the Si chip and its surrounding area produced by adjusting the focus position (Z axis = -0.3 mm) to be near the Si chip. As a result, this acoustic image can be used to confirm the bonding of the wire and Si chip, along with the frame of Si chip [20]. A three-dimensional image in the form of a graph in Microsoft Excel® of the same area shown in Fig. 10(b) (two-dimensional image) is shown in Fig. 10(d). The transverse resolution of the proposed imaging system is approximately 0.5 mm, based on the bonding wire distance shown in Fig. 10(a) and Fig. 10(b).

5. CONCLUSION

Ultrasonic through-imaging techniques play an important role in nondestructive testing of various substances. Because the P(VDF/TrFE) piezoelectric polymer has a much lower acoustic impedance than PZT, it provides a better match for the low acoustic impedance of the air. Therefore, this study has focused on enhancing the display of ultrasonic through-transmission images of an IC by improving on the research on P(VDF/TrFE) transducers to date [21,22]. While the electromechanical coupling factor k_t remains small at this initial development stage, it is still possible to reinforce the difference in efficiency (k_t) for a P(VDF/TrFE) transducer that is excited using a high voltage. As a result, we have successfully displayed a through-transmission acoustic image of an IC that was acquired at 2 MHz in air. The insertion losses of the transducers that were used in this study are still quite large (100 dB) at present. Additionally, to improve the through-transmission acoustic image by providing high transverse resolution, it will be necessary for the transducer with the P(VDF/TrFE) piezoelectric resonant film to have a high electromechanical coupling factor k_t, which will be addressed in future work.

ACKNOWLEDGMENTS

The author is grateful to Dr. H. Ohigashi for his valuable advice on this study. This word was supported by JSPS KAKENHI [grant Number JP16K06378].

REFERENCES

[1] A. Singhvi, K. C. Boyle, M. Fallahpour, B. T. Khuri-Yakub and A. Arbabian, “A microwave-induced thermoacoustic imaging system with non-contact ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 66, 1587–1599 (2019).
[2] H. Li and Z. Zhou, “Application of P4 Polyphase codes pulse compression method to air-coupled ultrasonic testing systems,” Ultrasonics, 78, 57–69 (2017).
[3] T. Yonathan Sunasa, P. Aryan, I. Jeon, B. Park, P. Liu and H. Sohn, “A reference-free and non-contact method for detecting and imaging damage in adhesive-bonded structures using air-
coupled ultrasonic transducers,” *Materials (Basel)*, 10(12), 1402 (2017).

[4] T. Ullmann, Y. Shi and R. Aoki, “Capabilities of lock-in thermography for non-destructive inspection of fiber reinforced composites,” *11th Int. Conf. Quantitative InfraRed Thermography*, 11–14 June 2012, Naples, Italy (2012).

[5] P. Pallav, D. A. Hutchins and T. H Gan, “Air-coupled ultrasonic evaluation of food materials,” *Ultrasonics*, 49, 244–253 (2009).

[6] T. G. Álvarez-Arenas, “Air-coupled piezoelectric transducers with active polypropylene foam matching layers,” *Sensors*, 13, 5996–6013 (2013).

[7] J. D. Fox, G. S. Kino and B. T. Khuri-Yakub, “Acoustic microscopy in air at 2 MHz,” *Appl. Phys. Lett.*, 47, 465–467 (1985).

[8] W. A. Grandia and C. M. Fortunko, “NDE applications of air-coupled ultrasonic transducers,” *Proc. 1995 IEEE Ultrason. Symp.*, pp. 697–709 (1995).

[9] M. C. Remillieux, B. E. Anderson, P.-Y. Le Bas and T. J. Ulrich, “Improving the air coupling of bulk piezoelectric transducers with wedges of power-law profiles: A numerical study,” *Ultrasonics*, 54, 1409–1416 (2014).

[10] W. Tempest and H. D. Parbrook, “The absorption of sound in argon, nitrogen and oxygen,” *Acustica*, 7, 354–362 (1957).

[11] L. J. Bond, C.-H. Chiang and C. M. Fortunko, “Absorption of ultrasonic waves in air at high frequencies (10–20 MHz),” *J. Acoust. Soc. Am.*, 92, 2006–2015 (1992).

[12] H. E. Bass, “Atmospheric absorption of sound—Update,” *J. Acoust. Soc. Am.*, 88, 2019–2020 (1990).

[13] H. Ohigashi and K. Koga, “Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor,” *Jpn. J. Appl. Phys.*, 1, 21, 455–457 (1982).

[14] K. Koga and H. Ohigashi, “Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers,” *J. Appl. Phys.*, 59, 2142–2149 (1986).

[15] REFLECTION AND TRANSMISSION, (Chapter 6), https://edisciplinas.usp.br/pluginfile.php/3723813/mod_resource/content/0/Fundamentals%20of%20Acoustics%204ed-Cap6.pdf (accessed 26 June 2018).

[16] S. Takahashi, “Properties and characteristic of P(VDF/TrFE) transducers manufactured by a solution casting method for use in the MHz-range ultrasound in air,” *Ultrasonics*, 52, 422–426 (2012).

[17] RC56HCF-PCI Host-Controlled K56flex, Data Sheet, Order No. MD189, Rev. 2, October 17 (1997).

[18] W. P. Mason, *Crystal Physics of Interaction Process* (Academic Press, New York, 1966).

[19] H. Ohigashi, T. Itoh, K. Kimura and T. Nakanishi, “Analysis of frequency response characteristics of polymer ultrasonic transducers,” *Jpn. J. Appl. Phys.*, 27, 354–360 (1988).

[20] S. Takahashi, “Acoustic imaging using air-coupled focus-type P(VDF/TrFE) transducers of Integrated Circuit using through-transmission method at 2 MHz,” *Proc. Autumn Meet. Acoust. Soc. Jpn.*, pp. 61–62 (2018) (in Japanese).

[21] S. Takahashi and H. Ohigashi, “Ultrasonic imaging using air-coupled P(VDF/TrFE) transducers at 2 MHz,” *Ultrasonics*, 49, 495–498 (2009).

[22] S. Takahashi and H. Ohigashi, “A system using a piezoelectric polymer for acoustic imaging of amplitude and phase differences in air,” *Acoust. Sci. & Tech.*, 29, 394–396 (2008).

Microsoft Excel®: The Careers in Practice Series is an independent publication and is not affiliated with, nor has it been authorized, sponsored, or otherwise approved by Microsoft Corporation.