Atmospheric methane (CH₄) is a potent greenhouse gas responsible for about 15% of the total greenhouse effect (1). The amount of CH₄ in Earth’s atmosphere is gradually increasing (2). The world’s largest single CH₄ source is natural wetlands, one-third of which are temperate and boreal northern wetlands (3, 4). Methane produced by the degradation of organic matter in anoxic sediments reaches the atmosphere via diffusion, transport through aerenchymous roots, or ebullition. Much of the diffusive flux of CH₄ is oxidized by aerobic methanotrophic bacteria at oxic–anoxic interfaces in wetlands, thereby limiting CH₄ emission (5–8). Methane formation is also prevented by the activity of microorganisms that redirect the flow of electrons and carbon away from methanogenic archaea, such as certain sulfur-cycling microorganisms. Microorganisms that respire sulfate (SO₄²⁻) or other oxidized sulfur compounds can contribute considerably to the anaerobic degradation of organic carbon in wetlands and outcompete methanogenic archaea (9, 10).

Aerobic methanotrophic bacteria were long assumed to have a limited substrate spectrum, including methane, methanol, and occasionally other C1 compounds, but no other substrates (11). This assumption was overturned when it was discovered that methanotrophs of the genus *Methylacidiphilum* (family Beijerinckiacae) use some simple organic acids, alcohols, and short-chain alkanes as alternative substrates to methane (11, 12). A few other alphaproteobacterial methanotrophs belonging to the *Methylcystaeeae* or *Beijerinckiacae* families, while not as versatile as *Methylacidiphilum*, have also been shown to metabolize acetate and/or ethanol (13–15). Two cultured Beijerinckiacae methanotrophs even possess the genetic capacity for aerobic CO oxidation (16, 17), and the growth of one of them, *Methylcupta gorgona* MG08, was supported by CO in the presence of methane (18). In addition, thermophilic and mesophilic verrucomicrobial methanotrophs of the proposed genera *Methylacidiphilum* and *Methylacidimicrobiium* grow autotrophically on CO₂ with H₂ as an electron donor (19–23). In fact, genes encoding NiFe hydrogenase are widespread in all major taxonomic families of methanotrophs, suggesting that H₂ may be a common supplemental energy source for these bacteria in nature. Recently, members of the genus *Methylacidiphilum* were also found to grow heterotrophically on various C3 compounds (24). Clearly, some methanotrophs can take advantage of other small-molecule substrates besides methane and methanol, which may enhance their survival and/or growth in natural habitats where CH₄ concentrations are low and/or variable (13).
The oxidation of H₂ to two protons and the oxidation of CO to CO₂ both yield considerably lower standard free-energy changes, \(\Delta G^\circ = -237 \text{ kJ mol}^{-1} \) H₂ and \(\Delta G^\circ = -249 \text{ kJ mol}^{-1} \) CO, respectively, than the complete oxidation of CH₄ to CO₂ (\(\Delta G^\circ = -818 \text{ kJ mol}^{-1} \) CH₄). In comparison, the standard free-energy changes for the oxidation of H₂S to SO₄²⁻ (\(\Delta G^\circ = -797 \text{ kJ mol}^{-1} \) H₂S) and S₂O₃²⁻ to SO₄²⁻ (\(\Delta G^\circ = -818 \text{ kJ mol}^{-1} \) S₂O₃²⁻) are similar to that for CH₄ oxidation. Based on these considerations, reduced sulfur compounds would be well-suited alternative substrates for methanotrophs.

To date, there has been a clear distinction between thirotrophic and methanotrophic microorganisms. The growth of methanotrophs using reduced sulfur compounds as electron donors has never been reported. Recently, a member of the genus Methylacidiphilum was found to degrade methanethiol and sulfide for detoxification, but no growth benefit was observed from their oxidation (25). The common occurrence of sgr (encoding sulfide: quinone oxidoreductase) (Fig. 1) and mtaX (encoding methanothiol oxidase) (25) in methanotroph genomes suggests that detoxification mechanisms are common. However, genomes of some methanotrophs also harbor a complete Sox system (Dataset S1) and isolated a facultative methanotroph (strain HY1) that harbors a complete repertoire of sulfur oxidation genes encoding the Sox–rDsr system (without soxCD).

Material and Methods

Isolation of Methanotrophic Strain HY1. Wetland samples were incubated at pH 4.0 in a low-salt mineral (LSM) medium under methanotrophic conditions. From a methane-oxidizing enrichment culture transferred biweekly for about 6 mo, colonies of methanotrophs were retrieved by using a floating filter technique. A methanotrophic isolate designated HY1 showed 98.7% 16S ribosomal RNA (rRNA) gene-sequence identity to Methylovirgula ligni within the family Beijerinckiaecae in the order Hyphomicrobiales (SI Appendix, Fig. S1). Culture purity was verified via Illumina sequencing of a 16S rRNA gene amplicon, as well as via full genome sequencing and assembly. The average nucleotide identity value for the genome of strain HY1 was 73.6% with that of M. ligni and ranged from 72.2 to 73.6% with selected members of the Beijerinckiaecae, indicating that the isolate represents a novel species of the genus Methylovirgula. Growth was observed at moderate temperature in an acidic pH range between pH 4 and 6 and an optimum at pH 4.5 on methanol (SI Appendix, Fig. S2), similar to other methanotrophic members of the Beijerinckiaecae (SI Appendix, Table S1).

Thirotrophic Growth. Previously isolated strains of Methylovirgula are methylotrophs that cannot oxidize CH₄ as an energy source (27), although they are closely related phylogenetically to the methanotrophic genera Methylocella and Methyloferula within the Beijerinckiaecae (28) (Fig. 1 and SI Appendix, Fig. S1). Strain HY1 was observed in batch culture to grow on methane as well as various C1–C4 alcohols, organic acids, and short-chain alkanes (Table 1). This substrate range is similar to...
facultative methanotrophs of the genus *Methylocella* (Table 1) (11, 12, 29, 30), which show 95.8 to 96.3% 16S rRNA gene-sequence similarity with strain HY1.

Surprisingly, strain HY1 also grew on the inorganic sulfur compounds thiosulfate, tetrathionate, and elemental sulfur (S°), a capability never before observed in any methanotroph (Table 1).

Because growth of a single organism on methane and reduced sulfur was an unprecedented observation, these processes were carefully verified by time-course analysis of batch cultures using analytical methods described in *SI Appendix, Analytical Methods.*

Table 1. Substrate utilization by strain HY1

Substrate	Concentration	Strain HY1	*M. silvestris* BL2	*M. ligni* BW863
Organic				
C1				
Methane	2.5 to 20%	++	++	–
Methanol	20 mM	++	++	++
Formate	5 mM	+	+	–
Formate	20 mM	–	++	–
C2				
Ethane	2.5 to 20%	++	++	–
Ethanol	5 mM, 20 mM	+	+	+
Acetate	5 mM	+	+	–
Acetate	20 mM	–	–	–
Oxalate	5 mM	++	–	–
Oxalate	20 mM	+	–	–
C3				
Propane	2.5%	+	++	–
Propane	20%	–	++	–
1-Propanol	5 mM	+	–	–
1-Propanol	20 mM	–	–	–
2-Propanol	5 mM	+	++	–
2-Propanol	20 mM	–	++	–
1,2-Propanediol	5 mM, 20 mM	++	++	–
Acetone	5 mM	++	+	–
Acetone	20 mM	+	+	–
Acetol	5 mM	++	++	–
Acetol	20 mM	+	++	–
Pyruvate	5 mM	–	++	+
Pyruvate	20 mM	+	+	++
C4				
Butane	2.5%	+	–	–
Butane	20%	–	–	–
1-Butanol	5 mM	++	–	–
1-Butanol	20 mM	–	–	–
2-Butanol	5 mM	++	–	–
1-Butanol	20 mM	–	–	–
Butanal	5 mM	++	–	–
Butanal	20 mM	+	–	–
2-Butanone	5 mM	++	–	–
2-Butanone	20 mM	+	–	–
Succinate	5 mM	+	++	–
Succinate	20 mM	++	++	–
Malate	5 mM	+	+	+
Malate	20 mM	++	++	++
Inorganic				
Sulfur				
Thiosulfate	1 mM	+	–	–
Thiosulfate	15 mM	+	–	–
Tetrathionate	2 mM	+	–	–
Elemental sulfur	3 g/L	+	–	–
Others				
H₂	20%	–	–	–
CO	20%	–	–	–

Each substrate tested was supplied as a sole energy source to batch cultures. Growth is indicated as follows: ++, growth to OD₆₀₀ > 0.25; +, growth to OD₆₀₀ ≥ 0.04 to 0.25; –, growth to OD₆₀₀ < 0.04. All the substrates were tested with 5% CO₂. *M. silvestris* BL2 and *M. ligni* BW863 were retested in parallel to strain HY1, and the results largely conformed to previous reports (11, 12, 29, 30). Accumulation of sulfate was also used as an indicator of biological sulfur oxidation.

*Due to rapid autoxidation of sulfide in our condition (126, 127), growth on sulfide could not be tested. Instead, a microrespirometry experiment was performed to show the oxidation of sulfide by strain HY1 by using high-density cells (Table 2).
Consumption of methane or thiosulfate as sole growth substrates and production of sulfate from thiosulfate were observed concurrently with population growth (Fig. 2). A near-stoichiometric conversion of thiosulfate to sulfate at 1:1.98 was observed when low thiosulfate concentrations (<5 mM) were added (Eq. 1) (Fig. 2B).

\[\text{S}_2\text{O}_3^{2-} + 2\text{O}_2 + \text{H}_2\text{O} \rightarrow 2\text{SO}_4^{2-} + 2\text{H}^+ \]

[1]

Abiotic decomposition of thiosulfate was observed only at pH < 3.0 (SI Appendix, Fig. S3). In this study, strain HY1 was cultivated in a buffered medium at pH 4.5 to 5.0, and abiotic decomposition of thiosulfate was therefore assumed to be negligible.

An increase in 16S rRNA gene copies during the oxidation of methane or thiosulfate indicated that both substrates supported population growth (Fig. 2). Biomass production was also demonstrated via quantification of cellular protein in the cultures and measurement of molar growth yield \(Y_{x/m} \) (g dry cell weight/mol \(-1\) substrate) (Fig. 3). Furthermore, methane and thiosulfate were oxidized concomitantly when both substrates were provided simultaneously (SI Appendix, Fig. S4). Accordingly, the biomass produced when methane and thiosulfate were simultaneously used was almost equal to the sum of the biomass produced when a similar amount of methane and thiosulfate was utilized individually (Fig. 3A). The biomass molar growth yields \(Y_{x/m} \) were comparable between methane- and thiosulfate-grown cells (Fig. 3B), as expected from the similar standard free-energy changes for their oxidations (introduction).

Genomic Properties. The observed capacity of strain HY1 to grow on both methane and reduced sulfur compounds prompted us to investigate the genomic basis for these processes. The final assembled genome contained two circular contigs: a circular chromosome and a 278-kb circular megaplasmid. The overall genomic features of strain HY1 compared with other methanotrophs in the Beijerinckiales are presented in SI Appendix, Table S1. The most surprising finding from the genomic analysis was the identification of a comprehensive genetic repertoire encoding the utilization of reduced sulfur compounds as electron donors (Fig. 1 and Datasets S1 and S2). The assembly verified the presence of genes encoding methane oxidation and sulfur oxidation within a single organism’s genome.

Genes encoding for methane and short-chain alkane oxidation. The key genes encoding \(\text{CH}_4 \) oxidation predicted from the genomic analysis are presented in Dataset S2, and the predicted pathways for methane oxidation are presented in Fig. 4. While a gene cluster for sMMO, a soluble diiron monoxygenase family enzyme (31), is present, genes for particulate methane monoxygenase (pMMO) are absent. The genes encoding sMMO, \textit{mmo}XYBZDC, are closely related phylogenetically to those of other methanotrophs possessing only sMMO, such as \textit{Methylocella}, \textit{Methyloferula}, and \textit{Methyloceanibacter} (32, 33), and the gene arrangements are highly conserved among these methanotrophs (SI Appendix, Fig. S5).

Another key genomic trait of strain HY1 is the absence of genes encoding \(\text{Ca}^{2+} \)-dependent methanol dehydrogenase (MDH) or PQQ-dependent alcohol dehydrogenase. Instead, strain HY1 contains four genes encoding lanthanide-dependent MDH (XoxF-type MDH) affiliated with the XoxF3 and XoxF5 clades (34) (SI Appendix, Table S2). Consistent with this finding, strain HY1 could not grow on methane or methanol without the addition of lanthanides to the medium (SI Appendix, Fig. S6).
Aside from the verrucomicrobial methanotrophs (35–37), strains PC1 and PC4 of *Methylocella tundrave* have been reported to contain only XoxF-type MDH and are dependent on lanthanides for their growth (30). The tetrahydromethanopterin (H₄MPT) pathway for formaldehyde oxidation to formate and the tetrahydrofolate (H₄F) pathway mediating C₁ transfer to the serine cycle, which are widely conserved in *Beijerinckiaceae* methanotrophs, are both encoded in strain HY1 (Dataset S2).

Strain HY1 also utilized butane (2.5%, volume [vol]/vol) and its possible catabolic intermediates (i.e., l-butanol and isobutanol) (Table 1), which are widely conserved in *Beijerinckiaceae* methanotrophs, and can utilize C₁-C₃ alkanes, but also on butane (C₄). Notably, the dedicated propane monooxygenase —— and can utilize C₁-C₃ alkanes, but also on butane (C₄). Notably, the dedicated propane monooxygenase

Fig. 4. Proposed central carbon and energy metabolism in strain HY1 and differential protein abundance between methane-grown and thiosulfate-grown cells. The color scale indicates whether proteins have higher abundance in methane-grown (red) or thiosulfate-grown (blue) cells. The intensity of the color in each protein indicates the relative fold change difference (log₂FC). Methane oxidation: Methane is oxidized to methanol by the soluble methane monooxygenase (sMMO) and described in detail below. Predicted pathways of sulfur oxidation are summarized in Fig. 4 and described in detail below.

In strain HY1, the rDsr system in strain HY1 is widespread in bacterial sulfur oxidizers and occurs in at least four class-level lineages, including Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and *Verrucomicrobia*. The complete set of genes encoding for the tri-carcinogenic acid cycle in strain HY1 (Dataset S2) is a common trait of alphaproteobacterial methanotrophs (48), but is also consistent with strain HY1’s utilization of multicarbon compounds.

Genes encoding for oxidation of reduced sulfur compounds. A repertoire of genes encoding enzymes involved in sulfur oxidation (soxYZAB, dsrABEFHCMKLJOPN, sgr, sorAB, tetH, and *doxAD*) suggested that strain HY1 is capable of using various reduced sulfur compounds for growth (Fig. 1 and Dataset S2). Predicted pathways of sulfur oxidation are summarized in Fig. 4 and described in detail below.

In strain HY1, the sox, dsr, and other genes form a single gene cluster (SI Appendix, Fig. S7). The combination of a periplasmic, truncated Sox system, which lacks SoxCD, with a cytoplasmic rDsr system in strain HY1 is widespread in bacterial sulfur oxidizers and occurs in at least four class-level lineages, including Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria.
and Chlorobia (Fig. 1). Many organisms containing these genes, such as green and purple anoxygenic phototrophic sulfur bacteria, form sulfur deposits as a characteristic intermediate en route to the end-product sulfate (49–51).

The oxidation of reduced sulfur compounds—e.g., thiosulfate, sulfide, or polysulfides—to sulfate is always initiated in the periplasm, and we can confidently state that the SoxAYZB proteins in strain HY1 constitute a periplasmic multienzyme system (Fig. 4). SoxYZ serves as a carrier protein to which reduced sulfur compounds remain attached during the oxidation process. SoxAX catalyzes the oxidative fusion of the sulfur substrate (e.g., thiosulfate) to a conserved cysteine of SoxY. A gene encoding SoxX was not found in the genome of strain HY1, as has been reported for the sulfur oxidizers Halomonas balophila and Beggiatoa sp. PS (52). In classical heterodimeric SoxAX proteins, the ε-type cytochrome SoxX serves as the site of electron storage and transfer to an electron-transfer partner cytochrome c during turnover of the enzyme, while SoxA harbors the catalytically active site (52). It is therefore conceivable for strain HY1 that SoxA alone is active and that it transfers electrons directly to a separate ε-type cytochrome acceptor encoded elsewhere in the genome. Similar observations have been made for thiosulfate dehydrogenase, where the encoding gene tsd is accompanied by the gene tsdB for the electron-accepting cytochrome c in many, but not in all, TsA-containing organisms (53). Once thiosulfate is bound to SoxYZ, the sulfone group (−SO_3^−) is hydrolytically released by SoxB. The SoxB of strain HY1 is related phylogenetically to other alphaproteobacterial SoxB proteins (SI Appendix, Fig. S8) and shows the closest affiliation to the enzymes from known sulfide- and/or thiosulfate-oxidizing organisms of the order Hyphomicrobiales, including aerobic members of the genus Magnetospicillum (54).

Other alphaproteobacterial methanotrophs that contain soxB are Methyllosinus trichosporum OB3b (55) and Methyllosinus sp. 3S-1 (56), but additional components of the Sox machinery (SoxA and SoxX) are not encoded in these organisms (Dataset S1). Thus, it is unlikely that they can oxidize thiosulfate. A complete Sox system containing a SoxCD has been reported in genomes of the gammaproteobacterial methanotroph genera Methylotuswinamicrobium, Methylcorpusculum, Methylbacter, and Methylasarcina, but their potential for sulfur oxidation has not been experimentally proven (Dataset S1). Methylcorpusculum oleiharense XLVM4 could not be grown on thiosulfate compounds, despite possessing a complete Sox system (57). The lack of a potential redox-active motif (CXXXC) in SoxD of methanotrophs (SI Appendix, Fig. S9) implies that it might be nonfunctional or has a different metabolic function (58, 59). In that case, they would need an auxiliary system, such as the Dsr orHdr (heterodisulfide reductase)-like system, for sulfur oxidation to sulfate. Strain HY1 encodes both Dsr andHdr, but these enzymes are not encoded in any other methanotroph genomes presently available (Dataset S1).

As the genome of HY1 does not encode sulfane dehydrogenase SoxCD, sulfane sulfur atoms (−S =) bound to SoxYZ cannot be further oxidized in the periplasm. The described attachment of thiosulfate and release of sulfate likely repeats, and chains of sulfur atoms are formed that probably lead to the intermediary formation of sulfur deposits. Two other enzyme systems can also contribute to sulfate formation. Strain HY1 encodes enzymes of the so-called S₄ intermediate (S₄I) pathway that act on thiosulfate in the periplasm (Fig. 4): Two thiosulfate molecules are first oxidized to tetrahydroxylamine by thiosulfate dehydrogenase (DoxDA), and then tetrathionate hydrolyase (TetH) hydrolyzes tetrathionate to sulfate and disulfane monosulfonic acid, which probably decomposes spontaneously to thiosulfate and sulfate (60, 61). In addition, gene MHY1_02370 encodes a type I Sqr, a periplasmically oriented monotopic membrane protein catalyzing the oxidation of sulfide and probably releasing hydrophilic polysulfides that can also contribute to sulfur deposition (Fig. 4) (62, 63).

In the next step, sulfur formed either via the Sox or S₄I pathways or resulting from the action of Sqr is transferred into the cytoplasm (Fig. 4). How this is achieved in general by sulfur oxidizers is unclear. A YeeE/YedE protein resembling the thiosulfate transporter from Escherichia coli and Spirchoeta thermohalina (64) is possibly involved in the process in Hyphomicrobium denitrificans. However, this organism does not contain Dsr proteins (65). Strain HY1 does not encode a full-length YeeE/YedE homolog; instead, two sets of pmpA and pmpB homologous genes are present (MHY1_00234–235 and MHY1_01361–1362). PmpAB conform to the first third of the YeeE/YedE domain and have also been discussed as potential transport components for sulfur-containing compounds (66). Notably, a gene encoding a periplasmic Dsr-like sulfurtransferase (MHY1_00068) resides in the sox operon of strain HY1, and a membrane-bound DsrE-like sulfurtransferase (MHY1_00073) is encoded in the immediate vicinity, between the sox and dsr clusters. We consider the possibility that the first may be involved in sulfur transfer to the latter, which may then mediate transport of the sulfur into the cytoplasm.

Inside the cytoplasm, sulfur never occurs in free form, but is handled by further sulfurtransferases, such as TsdA (MHY1_00072) and DsrEFH (MHY1_00081–83), and treated by the concerted action of dsr-encoded enzymes (Fig. 4) (49, 50, 67). Fully in line with this concept, the key enzyme of the pathway, siroheme-containing dissimilative sulfate reductase (DsrAB) from strain HY1 falls into the rDsr group (i.e., oxidative DsrAB used for sulfur oxidation) (SI Appendix, Figs. S7 and S10). It is related to rDsrAB sequences from other Alphaproteobacteria (most notably organisms from the order Hyphomicrobiales). Members of the order Hyphomicrobiales, containing closely related DsrAB—i.e., Rhodobium orientis and Rhodobacter vannielii—have a documented capacity for autotrophic growth on sulfide or thiosulfate (68, 69). A further closely related rDsrAB sequence is that of a metagenome-assembled genome of a canonical sulfur-oxidizing phototroph (purple nonsulfur bacterium) of the genus Rhodobacterium, recovered from a permafrost thaw wetland, which was also found to contain sMMO and PMO gene clusters (26).

The protein DsrC (MHY1_00084) is characterized by a conserved carboxyl-terminal motif (Cys₉₋₋₋˓
by a Tau-like exporter (MHY1_01299) (75) and oxidized to sulfate by periplasmic sulfite:cytochrome c oxidoreductase (SorAB; MHY1_p00095–96 residing on the megaplasmid in strain HY1).

Within the family Beijerinkciaceae, genetic equipment of sulfur oxidation closely resembling that of strain HY1 is found in *Rhodoblastus acidophilus* (Fig. 1 and SI Appendix, Figs. S7 and S10), but, surprisingly, the growth of this bacterium was not supported by sulfur compounds in laboratory tests (76).

A putative cytoplasmic αβγδ-heterotetrameric, bidirectional hydrogenase is also encoded by MHY1_02662–2665. This resembles *Pyrococcus furiosus* sulfhydrogenase that catalyzes H₂ production and H₂ oxidation coupled with the reduction of elemental sulfur and polysulfide to sulfide (77, 78). The importance of this enzyme for sulfur metabolism is unclear.

Genes Encoding Autotrophy. In order for strain HY1 to grow by oxidizing reduced sulfur as electron donors, a system for autotrophic CO₂ fixation is required since the serine cycle can be used only in conjunction with methane or methanol oxidation. Indeed, strain HY1 encodes genes required for a complete Sox system containing pMMO (12, 82, 83). Since methane concentrations tested were as follows: 500 μM methane; 20 μM alcohol, sulfite, and sulfide; 4 mM thiosulfate and tetrathionate; and 100 mg of sulfur in a 1-mL vial. nd, not detected; nt, not tested.

Substrate	Methane-grown cells	Thiosulfate-grown cells	Methane-thiosulfate-grown cells
Tetrathionate	nd	9.36 ± 0.53	1.53 ± 0.07
Thiosulfate	nd	7.97 ± 0.41	1.40 ± 0.05
Sulfur	nd	2.22 ± 0.11	0.28 ± 0.01
Sulfite	0.51 ± 0.02*	6.34 ± 0.38	1.01 ± 0.05
Sulfide	nd	6.53 ± 0.27	1.21 ± 0.04
Methane	3.48 ± 0.18	nd	2.20 ± 0.11
Methanol	7.64 ± 0.39	4.95 ± 0.21	6.54 ± 0.33
Ethanol	5.45 ± 0.24	4.59 ± 0.26	5.10 ± 0.32
1-Propanol	5.15 ± 0.29	4.11 ± 0.19	4.75 ± 0.22
2-Propanol	nd	nd	nd
Methane-thiosulfate	nd	nd	nd

Data are expressed as means ±1 SD (n = 5). Values (μmol-mg protein⁻¹-h⁻¹) are calculated based on the amount of substrate consumed by resting cell suspension at OD₆₀₀ = 0.3. The substrates' concentrations tested were as follows: 500 μM methane; 20 μM alcohol, sulfite, and sulfide; 4 mM thiosulfate and tetrathionate; and 100 mg of sulfur in a 1-mL vial. nd, not detected; nt, not tested.

*Reaction stopped in the presence of 200 μM sulfite.**

Induction of Methane and Sulfur Oxidation. To determine whether methane and sulfur metabolisms are constitutive or inducible in strain HY1, oxygen-consumption rates were measured in microrespirometry experiments by using whole cells grown on methane, thiosulfate, or methanethiosulfate (Table 2). Methane-grown cells consumed oxygen in the presence of methane, but not in the presence of reduced sulfur compounds. Similarly, thiosulfate-grown cells could not consume oxygen in the presence of methane. Thus, neither methanotrophy nor oxidative sulfur metabolism is constitutive. Thiosulfate-grown cells actively consumed oxygen in the presence of tetrahydrothionate, indicating that the S₄I pathway is involved in thiosulfate oxidation. Both methane- and thiosulfate-grown cells consumed oxygen with methanol, ethanol, and 1-propanol at similar rates, indicating constitutive expression of alcohol-utilization enzymes (Table 2).

Oxygen-consumption rates of thiosulfate-grown cells on reduced sulfur compounds (except for elemental sulfur) were 1.8 to 2.7 times higher than those of methane-grown cells on methane (Table 2), coinciding with the higher μ_max on thiosulfate than on methane (Fig. 2). Although the affinity of methane-grown cells for methane [K_M(app) = 148 ± 20 μM] was 12 times higher than that of thiosulfate-grown cells for thiosulfate [K_M(app) = 1,859 ± 76 μM] (SI Appendix, Fig. S12), the affinity of thiosulfate-grown cells to sulfide [K_M(app) = 2.7 ± 0.2 μM] was much higher. Sulfide is a common and preferred sulfur species by all sulfur-oxidizing lithotrophs (71, 81). The affinity of the methane-grown cells to methane is similar to values estimated in other methanotrophs containing sMMO, but much lower than the affinities estimated in methanotrophs containing pMMO (12, 82, 83). Since methane concentrations in Yongnep (Materials and Methods) are less than the K_M(app), the low-affinity sMMO-methanotroph strain HY1 may benefit greatly from utilizing other energy sources, such as substrates containing carbon–carbon bonds and reduced sulfur compounds (Table 1).

In the thiosulfate-methane batch cultures, methane and thiosulfate were oxidized concomitantly for growth (SI Appendix, Fig. S4). As expected, both methane and thiosulfate contributed
to net O₂ consumption in microrespirometry experiments using cells grown mixotrophically on methane and thiosulfate (Table 2). These results support that methane- and thiosulfate-oxidation pathways functioned concurrently during the oxidation of both methane and thiosulfate (SI Appendix, Fig. S13A). Accordingly, genes of the serine and CBB cycles for CO₂ fixation were expressed during simultaneous oxidation of methane and thiosulfate (SI Appendix, Fig. S13B). In the microrespirometry experiments, substrate-specific oxygen-consumption rates for each substrate in the mixotrophically grown cells were lower than those in cells grown on either substrate alone. Consistent with this, the mixotrophic growth rate (μₘₐₓ = 0.023 ± 0.001 h⁻¹) (SI Appendix, Fig. S4) was also lower than the growth rate on thiosulfate (μₘₐₓ = 0.033 ± 0.004 h⁻¹), although similar to the growth rate on methane (μₘₐₓ = 0.022 ± 0.006 h⁻¹) (Fig. 2). The facultative methanotroph Methylocystis sp. H2s was also shown to grow more slowly in the presence of methane and acetate than when methane was provided as the only available substrate (13). As demonstrated in other microorganisms (13, 84, 85), our results indicate that simultaneous utilization of methane and sulfur compounds by strain HY1 may not result in higher growth rates than when a single substrate is utilized, although they do benefit from a greater total substrate pool (Fig. 3).

Carbon Monoxide and Hydrogen Metabolism. Strain HY1 possesses coxLMS, encoding carbon monoxide dehydrogenase (CODH) (Dataset S2), which is rare in methanotrophs and found only in the genomes of Methyloferula stellata and M. gorgona (16, 17, 86). The CODH belongs to the form I type, which can be used for the respiratory oxidation of CO (87) (SI Appendix, Fig. S14). Although strain HY1 could not grow with CO as the sole energy source, CO (<5% CO, vol/vol, in head-space) was concomitantly consumed in the presence of other electron donors, such as methane or thiosulfate (SI Appendix, Fig. S15). Similarly, M. gorgona was found to oxidize CO only in the presence of methane (18). The inability to grow on CO as a sole substrate is unexpected since strain HY1 contains a complete CBB cycle to support CO₂ fixation. The inability of M. silvestris BL2T to grow on methane in the presence of CO suggests a function of CODH for detoxification of CO (SI Appendix, Fig. S16). Other potential advantages of CO oxidation in strain HY1, such as increasing starvation survival (86), are yet unclear.

Although many methanotrophs encode hydrogenases (20), strain HY1 encodes a Group 1 Isp-type hydrogenase, which has not been found in any other methanotroph (SI Appendix, Fig. S17). The genes encoding large, small, and membrane-anchored subunits of hydrogenase are located adjacent on the megaplasmid and are closely related to genes in other sulfur-anchored subunits of hydrogenase are located adjacently on the megaplasmid and are closely related to genes in other sulfur-anchored subunits of hydrogenase (Fig. S17). The genes encoding large, small, and membrane-anchored subunits of hydrogenase are located adjacent on the megaplasmid and are closely related to genes in other sulfur-anchored subunits of hydrogenase (Fig. S17). The genes encoding large, small, and membrane-anchored subunits of hydrogenase are located adjacent on the megaplasmid and are closely related to genes in other sulfur-anchored subunits of hydrogenase (Fig. S17). The genes encoding large, small, and membrane-anchored subunits of hydrogenase are located adjacent on the megaplasmid and are closely related to genes in other sulfur-anchored subunits of hydrogenase (Fig. S17). The genes encoding large, small, and membrane-anchored subunits of hydrogenase are located adjacent on the megaplasmid and are closely related to genes in other sulfur-anchored subunits of hydrogenase (Fig. S17).

Proteomic Analyses. In order to provide evidence supporting the predicted pathways of reduced sulfur oxidation and methane oxidation in strain HY1 (Fig. 4), proteomes from cells grown on methane and thiosulfate were compared (see the expression of key and all proteins in Datasets S2 and S3, respectively). The proteome of ethanol-grown cells was analyzed for comparison. The abundances of the structural (MmoX, MmoY, and MmoZ) and chaperone (MmoG) proteins for sMMO were not significantly different between methane- and thiosulfate-grown cells, falling in the range of 0.5 to 4.1% of the total proteins. Abundances of these proteins were higher than those in ethanol-grown cells (Dataset S2). The high abundance of Mmo proteins in thiosulfate-grown cells was unexpected since these cells did not consume oxygen in the microrespirometry experiments when provided with methane as the sole substrate (Table 2). Expression of some genes encoding MMO in the absence of methane was observed previously (19, 98). The presence of these proteins in all of the conditions tested might be an adaptive regulatory trait for rapid induction of methane oxidation in response to dynamic fluxes of methane in wetland environments. The reductase (MmoC), regulatory proteins (MmoD and MmoB), and transcription factor (MmoR), which are all necessary for sMMO activity, were more than threefold increased (P < 0.05) in the methane-grown cells compared with thiosulfate- and ethanol-grown cells, potentially explaining why methane oxidation was observed only in methane-grown cells (Table 2). MDH XoxF5 (MHY1_02202; 3.9 to 7.0% of proteins) and cytochrome c₅₅₃a, XoxG5 (MHY1_00490; 0.12 to 0.27% of proteins) were constitutively expressed on all growth substrates. Proteins involved in H₂,MPT-mediated formaldehyde oxidation to formate, aldehyde oxidation, and propionate metabolism were also constitutively expressed (Dataset S2). These results are consistent with the observed oxygen consumption in the presence of various primary alcohols by cells grown on all the three substrates (Table 2) and might be associated with preferential oxidation of methanol over methane (or thiosulfate), as observed in other methanotrophs possessing only sMMO (11, 17, 99). Among chemotaxis receptor proteins, an aerotaxis receptor (Aer) (MHY1_p00042) was more than 2.6-fold (P < 0.05) more abundant in methane-grown cells than in other conditions. The increased abundance of flagellin and structural proteins of flagella formation in the methane-grown cells compared to thiosulfate- and ethanol-grown cells indicates that motility is important during growth on methane to allow cells to locate optimal conditions within steep methane and O₂ gradients.

The abundances of proteins predicted to be involved in sulfur oxidation in strain HY1, such as the Sox and rDsr systems, DoxAD/TetH, SorAB, and sulfhydrogenase, were all greatly increased in thiosulfate-grown cells compared with methane- and ethanol-grown cells (Fig. 4 and Dataset S2). For example, the abundance of key Sox (e.g., SoxYZ) and rDsr (e.g., DsrEH) proteins was >31-fold (P < 0.05) higher in thiosulfate-grown than in methane- or ethanol-grown cells. Selective occurrence of DoxAD/TetH in thiosulfate-grown cells indicates the operation and relevance of the S₄I pathway as expected from the microrespirometry experiments (Table 2). The abundances of two types of cytochromes, a homolog of cytochrome c₂ (MHY1_02786) and the cytochrome c₅₂ (CycM; MHY1_01465), increased in thiosulfate-grown cells compared with methane-grown cells (more than threefold, P < 0.05), indicating that they may transport electrons from sulfur oxidation to the terminal oxidase. Notably, the subunits of high-affinity cbb₃-type cytochrome c oxidase were >2.7-fold more abundant (P < 0.05) in thiosulfate-grown cells than in cells grown on other substrates (Dataset S2), although cells were grown under oxygen-replete
conditions (>15%, vol/vol). Sulfur oxidation in strain HY1 might be facilitated in microaerobic oxic–anoxic transition zones. The expression of key enzymes of the CBB cycle (CbbL and CbbS) significantly increased (>4.8-fold, P < 0.05) in thiosulfate-grown cells compared to methane-grown or ethanol-grown cells (Dataset S2). This result supports the coupled induction of sulfur oxidation and the CBB cycle during chemolithoautotrophic growth of strain HY1.

An N-type ATPase-encoding operon was found in addition to the other F-type ATPase-encoding operons in strain HY1 (Dataset S2). Biochemical evidence indicates that the c-subunits of *Burkholderia pseudomallei* N-type ATPase predominantly bind H⁺ and are involved in pumping protons (100). Thr65, Met66, and Tyr69 in the C-terminal helix, which are likely to contribute to the hydrogen-bonding network around the proton-binding site, were conserved in the c-subunit sequence of strain HY1 N-type ATPase (*SI Appendix*, Fig. S18). In addition, we speculate that the N-type ATPase of strain HY1 may function as an ATP-driven proton pump for H⁺ homeostasis to survive in acidic stress caused by sulfur oxidation, as observed previously (100). In support of this notion, the N-type ATPase operon is selectively expressed in the cells grown on thiosulfate compared to methane (Dataset S2).

Ecological Relevance. Wetlands are periodically or permanently water-saturated soil environments with a water table at or close to the soil surface. Consequently, steep gradients in soil-redox conditions are developed by a complex pattern of biogeochemical cycling of elements. While the environmental activity of strain HY1 remains unknown, its ability for complete sulfur oxidation could be critical for replenishing the sulfate pool and sustaining sulfate reduction in wetlands. When methane production is repressed by the presence of an active sulfur-redox cycle, thiotrophic capacity could greatly benefit methanotrophs that harbor only sMMO, an enzyme with a low methane affinity (*SI Appendix*, Fig. S12), by allowing them to switch between methane and sulfur oxidation, depending on which substrate is more available (12, 83).

Due to the changes in groundwater tables, wetlands frequently shift in the dominance of sulfate reduction over methanogenesis and vice versa (101, 102). As shown in Table 2, activities of mixotrophically grown cells of strain HY1 to sulfur species and methane and sulfur oxidation, depending on which substrate is more available (12, 83).

To the soil surface. Consequently, steep gradients in soil-redox conditions are developed by a complex pattern of biogeochemical cycling of elements. While the environmental activity of strain HY1 remains unknown, its ability for complete sulfur oxidation could be critical for replenishing the sulfate pool and sustaining sulfate reduction in wetlands. When methane production is repressed by the presence of an active sulfur-redox cycle, thiotrophic capacity could greatly benefit methanotrophs that harbor only sMMO, an enzyme with a low methane affinity (*SI Appendix*, Fig. S12), by allowing them to switch between methane and sulfur oxidation, depending on which substrate is more available (12, 83).

Conclusions

A methanotrophic bacterium showing respiratory oxidation of sulfur compounds was discovered, which greatly expands the current concept of facultative methanotrophy. This study revealed that thiotrophy and methanotrophy are metabolically compatible, which blurs the long-observed distinctness of methanotrophic and thiotrophic microorganisms. It also highlights the difficulties in inferring methanotrophy and thiotroph by on phylogeny. Further studies on the regulation, kinetics, and evolution of thiotrophic and methanotrophic metabolisms in this strain are required. Due to possible combination with other metabolisms, unexpected metabolic versatility of methanotrophs could remain to be discovered in various sediment environments. Together, our findings set a framework for better understanding methane- and sulfur-cycle interaction in the oxic–anoxic interface zone of natural and engineered ecosystems.

Isolated Methylovirgula Species. Strain HY1 is a novel species of the genus *Methylovirgula* of the family Beijerinckiaceae and is capable of both methane and sulfur oxidation for growth. We propose the following candidate status:

Taxonomy.

(i) Etymology. The taxonomy for *Methylovirgula thiovorans* sp. nov. is as follows: thio.thio.vo.rans. Gr. neut. n. theion, sulfur; L. pres. part. vorans, eating; N.L. part. adj. thiovorans, sulfur-eating.

(ii) Habitat. An acidic wetland on top of Mount (Mt.) Daeam located in South Korea.

(iii) Diagnosis. Cells are straight rods, with a diameter of 0.2 to 0.3 μm and a length of 0.4 to 1.7 μm (*SI Appendix*, Fig. S19). Grows between pH 15 and 30°C with an optimum at 27°C and between pH 4.0 to 6.0 with an optimum at pH 4.5. The strain grows via oxidizing methane, various multielement organic compounds, and reduced sulfur compounds (Table 1). The G+C content of the type strain is 60.1 mol%. The 16S rRNA gene sequence similarity is 98.7% with *M. ligni* and ranges from 95.8 to 97.3% with closely related genera: *Methylocapta, Methyloferula, Beijerinckia*, and *Methylocella*.

Materials and Methods

Sampling, Enrichment, and Isolation. Peat samples were collected in August 2016 from Yongneup (38°12′53.6″ N, 128°07′27.3″ E), an acidic wetland (pH 4.2 to 6.4) located at the northwestern slope of Mt. Daeam (1,200 to 1,280 m above sea level), Korea. The samples were taken from a depth of 0 to 5 cm below the peat-bog surface for cultivation. The average temperature was 10.0°C and the annual precipitation was 1,187.5 mm. In the 30-cm column obtained in November 2021, sulfate and methane concentrations were 8.6 to 38.9 μM and 1.2 to 41.3 μM, respectively. Sulfide and elemental sulfur concentrations were below the detection level. The conductivity of pore water was in the range of 15.2 to 34.7 μS/cm. The oxygen penetration depth into the wetland was less than 1 mm. Analytical methods are described in *SI Appendix*, Analytical Methods. After transporting the samples to the laboratory, they were stored at 4°C before use, and 5 g of sample was immediately frozen for 16S rRNA gene-amplicon sequencing (see below). Enrichment of methanotrophs is described in *SI Appendix*, Enrichment. Pure cultures of the methane-oxidizers were obtained by repeatedly diluting the enrichment cultures as described (103). The most diluted culture showing methane oxidation was serially diluted and filtered through 0.2-μm Track-Etch membrane polycarbonate filters (Whatman). The filters were placed on LSM medium in Petri dishes and incubated in airtight containers containing CH₄ (20%, vol/vol) and CO₂ (5%, vol/vol) in air at 25°C. Colonies that appeared after 3 wk of incubation were transferred to fresh LSM medium in serum vials with the same gas composition. Individual isolates were identified by sequencing the 16S rRNA gene with the 27F/1492R (104) primer set. Isolation in axenic culture was confirmed by seeding aliquots of the methane-grown cultures into LSM medium with 0.05% (weight/vol) yeast extract, tryptic soy broth, and Luria-Bertani broth without CH₄ and incubated at 25°C. No growth was observed in these media. To confirm the purity of the isolated strain from methane-grown culture, 16S rRNA gene-amplicon sequencing was performed and confirmed the presence of a single strain (*SI Appendix, 16S rRNA Gene Amplicon Library Analysis*). The isolated methanotrophic strain was routinely maintained on solid and liquid LSM with methane as an energy source.

Batch-Culture Growth Experiments. Unless stated otherwise, growth experiments were performed in 160-mL serum bottles containing 20 mL of LSM medium and inoculated with 1 to 10% (vol/vol) actively growing cells from the
log phase (starting optical density values at 600 nm [OD_{600}] < 0.08) with the appropriate carbon and energy sources of interest. To avoid the carryover of other substrates during inoculation, cells grown over multiple transfers on the substrate of interest or washed cells grown on a different substrate were used as inoculum. For washing, cells were centrifuged at 4,000 x g for 20 min and washed twice with fresh basal LSM medium. The culture incubations were performed at 25 °C with shaking at 200 rpm. Growth of the strain was determined by monitoring changes in OD_{600} of the culture using a spectrophotometer (Optizen 2120UV, Mecasys Co.) and real-time quantification of 16S rRNA gene abundances using the 518F/878R primer set (105). The specific growth rate was calculated by determining the slope of the Log_{10}-transformed OD_{600} values plotted against time. Specific analytical methods for the determination of CH₄, CO, CO₂, H₂, sulfuric, thiosulfate, cellular protein concentration, and dry cell weight in batch cultures are all described in SI Appendix, Analytical Methods: Determination of the optimal pH and temperature, utilization of different growth substrates, carbon dioxide requirement, and dependency on lanthanide were performed as described in SI Appendix, Growth Properties.

DNA Isolation, Genome Analysis, and Phylogenetic Analysis. Extraction of high-molecular-weight genomic DNA from strain HY1 and genome sequencing is described in SI Appendix, Genomic and Phylogenetic Analyses. Annotation of the assembled genome was performed with the Prokka annotation pipeline (version v1.14.6) (106), MicroScope (107), and PATRIC (108) annotation platforms. Functional assignment of the predicted genes was improved by using a set of public databases [InterPro (109), Gene Ontology (110, 111), Pfam (112), the Conserved Domains Database (113), TIGRfam (114), and EggNOG (115)]. Prediction of signal peptides and transmembrane helices was performed by using the web-based services SignalP (v5.0) (116) and TMHMM (v2.0) (117) with default settings. For calculation of average nucleotide identity value of strain HY1 compared to reference genomes, the Orthologous Average Identity Tool was used (118). Phylogenomic analysis of strain HY1 was performed by following the Anvi’o phylogenomics workflow (119), described in detail in SI Appendix, Genomic and Phylogenetic Analyses. Phylogenetic analysis of the 16S RNA gene, methane monoxygenase (MmxOYBZDC), large subunits of the carbon monoxide dehydrogenase (CoxL), [NiFe]-hydrogenases (HydB), SidA, and SoxB of strain HY1 are described in SI Appendix, Genomic and Phylogenetic Analyses.

Microrespirometry and Kinetics Experiments. Substrate-dependent oxygen consumption of methane-, thiosulfate-, or methane-thiosulfate-grown cells was assayed in a 2-mL microrespiration chamber, as detailed in SI Appendix, Assay of Oxygen Consumption. To avoid the carryover of alternate substrates, cells were grown over multiple transfers on a substrate of interest and washed twice in basal LSM medium before inoculation into the microrespiration chamber. To calculate substrate oxidation rate based on the measured oxygen-consumption rate, the stoichiometry of substrate respiration (substrate vs. O₂) was obtained from microrespirometry experiments. The stoichiometries of methane, thiosulfate, and sulfate oxidation to oxygen consumption were estimated as 1:1.57, 1:1.65, and 1:1.64, respectively, and were in a similar range with those of microorganisms with the same metabolic pathways (120, 121). The Michaelis–Menten equation (Eq. 2) was fitted to the O₂ and substrate oxidation rates to estimate the kinetics constants, K_{m(app)} and V_{max} while the specific affinity (a²) was estimated from the K_{m(app)} and V_{max} values (Eq. 3) as described (122).

\[v = (V_{\text{max}} \times [S]) \times (K_{m(app)} + [S])^{-1}, \]

\[a^2 = V_{\text{max}} \times K_{m(app)}^{-1}, \]

where v represents the oxidation rate (expressed in μM·h⁻¹) and V_{max} denotes the maximum rate (expressed in μM·h⁻¹). For comparison and calculation of a², the V_{max} is divided by cellular protein concentration (mg·protein·L⁻¹) and expressed in μmol·mg·protein⁻¹·h⁻¹. K_{m(app)} is the apparent Michaelis–Menten half-saturation constant (in μM), [S] represents the substrate concentration (μM), and a² is the specific affinity (L·mg·protein⁻¹·h⁻¹).

Transcriptome and Proteome Analyses. To avoid the carryover of substrates, cells grown over multiple transfers on a substrate of interest were used for transcriptomic and proteomic analyses. For analysis of expression of genes of CO₂ fixation pathways, transcriptomic analysis was performed as described in detail in SI Appendix, Transcriptome Analysis. For proteomic analysis, cells of strain HY1 were cultivated in 160-mL serum vials containing 20 mL of medium at pH 5.0 with headspace containing CO₂ (10%, vol/vol). Methane (20%, vol/vol), thiosulfate (8 mM), or ethanol (20 mM) was used individually as a sole energy source. A set of four replicates were conducted for each growth condition. The cells were harvested at the midexponential phase (methane and ethanol, OD_{600} = 0.2; thiosulfate, OD_{600} = 0.1) at 5,000 x g (10 min, 25 °C). The cell pellets were frozen immediately in liquid dinitrogen and stored at –80 °C until analyses. Mass spectrometric analysis of peptide lysates, raw data processing, and statistical analysis are described in detail in SI Appendix, Proteome Analysis.

Data Availability. The complete genome sequence of strain HY1 was deposited in the National Center for Biotechnology Information (NCBI) GenBank (accession nos. CP073764 (128) [Chromosome] and CP073765 (129) [Megaplasmid]). The mass spectrometry proteomics data have been deposited to the ProteomeX-Change Consortium via the Proteomics Identification Database (123) partner repository with (dataset identifier PXD025979) (130). The whole-transcriptome data were deposited in the NCBI BioProject database (accession no. PRJNA790002) (131).

ACKNOWLEDGMENTS. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (Ministry of Education) (2020R1A6A1A06046235); NRF grants funded by the Korean government (Ministry of Science and ICT) (2021R1A2C304015); and the National Institute of Agricultural Science, Ministry of Rural Development Administration, Republic of Korea (PJ01700703). We are grateful to the contribution of Dr. So-Jeong Kim of the Korea Institute of Geoscience and Mineral Resources, Daejeon; and Drs. Sung Gun Kang and Hae Chang Jung of the Korea Institute of Ocean Science and Technology, Busan, toward gas analysis. We thank Dr. Myung Suk Kang of the National Institute of Biosciences and Bioresources, Korea, for access to the sampling sites. A.L. was supported by the Austrian Science Fund (FWF Project P 31996-B); P.F.D. was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant (NSERC-RGPIN-2019-06265); and K.D.K. was supported by the European Union (MSCA-IF project 796687-H2Gut).

Author affiliations: *Department of Biological Sciences and Biotechnology, Chungbuk National University, Seowon-Gu, Cheongju 28644, Republic of Korea; †Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research–Zentrum für Umweltforschung GmbH, 04318 Leipzig, Germany; ‡Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany; §Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1030, Austria; ‡Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; †Institute for Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universitat Bonn, 53115, Bonn, Germany; and ‡Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea

1. G. Allen, Biogeochemistry: Rebalancing the global methane budget. Nature 538, 46–48 (2016).
2. M. Sauinios, R. B. Jackson, P. Bousquet, B. Poulter, J. G. Canadell, The growing role of methane in anthropogenic climate change. Environ. Res. Lett. 11, 120207 (2016).
3. E. Mathews, “Wetlands” in Atmospheric Methane: Its Role in the Global Environment, M. A. K. Khalil, Ed. (Springer Berlin Heidelberg, Berlin, 2000), pp. 202–233.
4. J. T. Houghton et al., Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK, 2001).
5. R. Consal, F. Rothfuss, Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol. Fertil. Soils 12, 28–32 (1991).
6. J. B. Yavitt, G. E. Lang, D. M. Downey, Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains, United States. Global Biogeochem. Cycles 2, 253–268 (1988).
7. H. Zhang et al., Methane production and oxidation potentials along a fen-bog gradient from southern boreal to subarctic peatlands in Finland. Glob. Change Biol. 27, 4449–4464 (2021).
8. H. J. Lammek, Methane emission from natural wetlands: Interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann. Bot. 105, 141–153 (2010).
9. F. N. Ponnamperuma, “The chemistry of submerged soils” in Advances in Agronomy, N. C. Brady, Ed. (Academic Press, New York, 1972), vol. 24, pp. 29–96.
