Behavioral Responses of Aphis citricola (Hemiptera: Aphididae) and Its Natural Enemy Harmonia axyridis (Coleoptera: Coccinellidae) to Non-Host Plant Volatiles

Authors: Beizhou Song, Yinping Liang, Sizhou Liu, Linfeng Zhang, Guangbo Tang, et. al.
Source: Florida Entomologist, 100(2) : 411-421
Published By: Florida Entomological Society
URL: https://doi.org/10.1653/024.100.0202
Behavioral responses of *Aphis citricola* (Hemiptera: Aphididae) and its natural enemy *Harmonia axyridis* (Coleoptera: Coccinellidae) to non-host plant volatiles

Beizhou Song1,2,#, Yinpeng Liang1,#, Sizhou Liu1, Linfeng Zhang1, Guangbo Tang1, Teng Ma1, and Yuncong Yao1,2,*

**Abstract**

Plant volatiles can act as chemical signals that influence the behavior and distribution of insects. Although considerable information has been acquired on the effects of plant volatiles emitted from plants on herbivorous insects and their natural enemies, practical implementation of this knowledge is still lacking. We investigated 3 aromatic plant species, French marigold, *Tagetes patula* L. (Asteraceae), ageratum, *Ageratum houstonianum* Mill. (Asteraceae), and catnip, *Nepeta cataria* L. (Lamiaceae), to test their effectiveness in repelling or attracting spirea aphid, *Aphis citricola* van der Goot (Hemiptera: Aphididae), and its natural enemy, the multicolored Asian lady beetle, *Harmonia axyridis* (Pallas) (Coleoptera: Coccinellidae), in the field and the laboratory. We found that intercropping apple trees *Malus* spp. (Rosaceae) with aromatic plants in an orchard significantly reduced the number of *A. citricola* aphids present, but had the opposite effect on *H. axyridis*. In addition, the association between *H. axyridis* and *A. citricola* numbers was strengthened when the intercropping included French marigold. Using an H-tube olfactometer, we found that *A. citricola* was repelled by French marigold and catnip, whereas *H. axyridis* was attracted most by French marigold. Volatile analysis revealed that the sesquiterpenes D-limonene and terpinolene and the alcohol 2-ethyl-1-hexanol were the most abundant volatile compounds released by French marigold and catnip. *Harmonia axyridis* was significantly attracted by 12.5 μL/L D-limonene, 50 μL/L terpinolene, and 25 μL/L of a 1:1 mixture of the 2 compounds, but was repelled by higher concentrations of D-limonene. The results suggest that aromatic plants increase the resistance of apple trees to *A. citricola* both directly, by reducing the population of *A. citricola* through chemical repulsion, and indirectly, by increasing the *H. axyridis* population through chemical attraction.

Key Words: aphid; aromatic plant; repellency; attractancy

**Resumen**

Los volátiles de las plantas pueden actuar como señales químicas que influyen en el comportamiento y distribución de los insectos. Aunque se ha adquirido bastanta información sobre los efectos de los volátiles vegetales emitidos por las plantas sobre los insectos herbívoros y sus enemigos naturales, todavía falta la aplicación práctica de estos conocimientos. Se investigaron 3 especies de plantas aromáticas, clave de moro, *Tagetes patula* L. (Asteraceae), ageratum, *Ageratum houstonianum* Mill. (Asteraceae) y menta de gato, *Nepeta cataria* L. (Lamiaceae), para probar su efectividad en repeler o atraer al pulgón spirea, *Aphis citricola* van der Goot (Hemiptera: Aphididae), y su enemigo natural, la mariquita asiática de multicolores, *Harmonia axyridis* (Pallas) (Coleoptera: Coccinellidae), en el campo y en el laboratorio. Se encontró que al intercalar manzanos *Malus* spp. (Rosaceae) con plantas aromáticas en un huerto redujeron significativamente el número de áfidos de *A. citricola* presentes, pero tuvieron el efecto opuesto en *H. axyridis*. Además, la asociación entre *H. axyridis* y el número de *A. citricola* se fortaleció cuando el clave de moro fue intercalado. Usando un olfactómetro tubo-H, encontramos que *A. citricola* fue repelido por el clave de moro y la menta de gato, mientras que *H. axyridis* fue atraído más por el clave de moro. El análisis volátil reveló que los sesquiterpenos D-limoneno y terpinoleno y el alcohol 2-etil-1-hexanol eran los compuestos volátiles más abundantes liberados por el clave de moro y la menta de gato. *Harmonia axyridis* fue atraído significativamente por 12.5 μL/L de D-limoneno, 50 μL/L de terpinoleno, y 25 μL/L de una mezcla 1:1 de los 2 compuestos, pero fue repelido por mayores concentraciones de D-limoneno. Los resultados sugieren que las plantas aromáticas aumentan la resistencia de los manzanos a *A. citricola* tanto directamente, reduciendo la población de *A. citricola* mediante la repulsión química, como indirectamente, aumentando la población de *H. axyridis* a través de la atracción química.

Palabras Clave: áfido; planta aromatic; repelencia; atracción

---

1College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China; E-mail: songbeizhou0821@163.com (B. S.), 1029686853@qq.com (Y. L.), 156984627@qq.com (T. M.)
2Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, 102206, China; E-mail: yaoyc_20@126.com (Y. Y.)
3Authors contributed equally to the work.
4Corresponding author; E-mail: yaoyc_20@126.com (Y. Y.)

Supplementary material in Florida Entomologist 100(2) (Jun 2017) is online at http://purl.fcla.edu/fcla/entomologist/browse
volariles that affect the performance or behavior of herbivores and that may have a direct repellent effect on herbivores (Lucas-Barbosa et al. 2011). Examples include induced volatiles from tobacco, *Nicotiana tabacum* L. (Solanaceae), that are highly repellent to female moths of *Heliotis virescens* (F.) (Lepidoptera: Noctuidae) (Moraes et al. 2001) and induced volatiles from aromatic plants that are highly repellent to the beetles *Serica orientalis* Motschulsky, *Maladera verticalis* (Fairmaire), and *Anomala corporula* Motschulsky (all Coleoptera: Scarabaeidae) (Tang et al. 2013).

The other type of plant defense based on plant volatiles involves indirect defenses wherein induced volatiles attract the predators of herbivores, thereby exerting a degree of biological control (McCormick et al. 2012; Schausberger et al. 2012). For example, egg parasitoids (*Trichogramma bournieri* Pintureau & Babault; Hymenoptera: Trichogrammatidae) and larval parasitoids (*Cotesia sesamiae* [Cameron]; Hymenoptera: Braconidae) are attracted by volatiles induced by the stalk borers *Chilo partellus* Swinhoe (Lepidoptera: Crambidae) on teosinte, *Zea* sp. (Poaceae), which thereby provides an indirect defense mechanism against the stalk borers (Mutymbai et al. 2015). As another example, treatment of seeds with the phytohormone auxinoids (*Pintureau & Babault; Hymenoptera: Eulophidae*) is a major apple tree pest in Chinese apple production areas and may use them as a cue for host location (Maru et al. 2011), and plant volatiles can also attract herbivores. The redbay ambrosia beetle, *Xyleborus glabratus* Eichhoff (Coleoptera: Curculionidae), for example, is attracted by the leaf volatiles of its host plants in North America and may use them as a cue for host location (Marti et al. 2015). Females of the diamondback moth, *Plutella xylostella* (L.) (Lepidoptera: Plutelidae) are attracted to the place of oviposition by the volatiles emitted from host plants infested by the imported cabbage worm, *Pieris rapae* (L.) (Lepidoptera: Pieridae) (Shiojiri & Taka-bayashi 2003).

In addition, the intermingling of volatiles released by host plants and non-host plants may hamper searching behavior and reduce the host-finding success of parasitoids (Perfecto & Vet 2003; Gols et al. 2005). For instance, experienced parasitoid, *Oomyzus galerucivorus* (Hedqvits) (Hymenoptera: Eulophidae), females were shown to be attracted by the volatiles of yarrow, *Achillea millefolium* L. (Asteraceae), but showed no response when yarrow volatiles were offered simultaneously with those of a non-host plant (Randilkefer et al. 2007). However, insects can also identify volatile blends released by different plants through olfactory learning (Guillette et al. 2009; Shikano & Isman 2009), which may inform foraging insects of the identity and quality of the host plant. Taken together, these different factors and effects limit the use of plant volatiles to reduce herbivorous pest pressure and enhance biocontrol in agricultural production.

The spirea aphid, *Aphis citrina* van der Goot (Hemiptera: Aphididae), is a major apple tree pest in Chinese apple production areas and often causes serious economic losses; however, a generalist predator, the multicolored Asian lady beetle, *Harmonia axyridis* (Pallas) (Coleoptera: Coccinellidae), is successfully used to control this pest (Qi et al. 2010; Wang et al. 2011). Conservation biological control of fruit tree aphids has been evaluated in many studies of orchard ecosystems (Fréchette et al. 2008; Song et al. 2010). Beginning in 2007, our group has studied the mechanism of intercropping aromatic plants with pear trees or apple trees in the ecological control of pests. We selected 10 aromatic plant species from 100 available species (Song et al. 2011, 2013; Wan et al. 2015), including French marigold, *Tagetes patula* L. (Asteraceae); ageratum, *Ageratum houstonianum* Mill. (Asteraceae); savvy, *Satureja hortensis* L. (Lamiaceae); basil, *Ocimum basilicum* L. (Lamiaceae); catnip, * Nepeta cataria* L. (Lamiaceae); and others for further study.

Previous research by our group demonstrated that intercropping pear trees with aromatic plants can regulate the trophic structure of the arthropod community and significantly reduce the abundance of pests such as *Psylla chiniensis* Yang & Li (Hemiptera: Psyllidae), *A. citrina*, and *Pseudococcus comstockii* Kuwana (Hemiptera: Pseudococcidae) (Wan et al. 2015). However, little is known about how the volatiles from the aromatic plants regulate the behavior of the spirea aphid and its lady beetle natural enemy; this is information that would be useful for biocontrol in apple production.

To test the behavioral responses of *A. citrina* and its natural enemy *H. axyridis* to aromatic plants and their volatiles, the volatile compounds from the aromatic plants were identified and their effectiveness in repelling or attracting *A. citrina* and *H. axyridis* were tested. We specifically addressed the following questions in this study: (1) Do aromatic plants increase the resistance of apple trees to *A. citrina*? (2) Do the volatile compounds from aromatic plants repel or attract *H. axyridis*? (3) What is the mechanism by which aromatic plants regulate *A. citrina* and *H. axyridis* populations?

### Materials and Methods

#### INSECTS

*Aphis citrina* and *H. axyridis* adults were originally collected from apple trees in the experimental orchard in the Changping District, north of Beijing, China. The aphids were reared on fresh apple leaves for at least 2 generations and maintained in a growth chamber under controlled conditions: 28 ± 5 °C, 70 ± 5% RH, and a 16:8 h:LD photoperiod. *Harmonia axyridis* colonies were reared on *A. citrina* for at least 2 generations and maintained in a growth chamber under controlled conditions: 26 ± 2 °C, 70 ± 5% RH, and a 14:10 h:LD photoperiod (Li et al. 2010; Wang et al. 2011).

#### AROMATIC PLANTS

Seeds of French marigold, ageratum, and catnip were sown in a greenhouse in early Mar of 2014 and 2015, and seedlings (about 10 cm high) were transplanted individually to plastic pots (10 cm in diameter, 12 cm high). Each pot, containing 2 or 3 plants, was maintained in a climate chamber under controlled conditions: 25 ± 3 °C, 65 ± 5% RH, and a 16:8 h:LD photoperiod. The height of the aromatic plants used in the experiments was approximately 30 to 35 cm.
APPLE TREES

One-yr-old apple trees, Malus domestica Borkh. ‘Fuji’ (Rosaceae), were planted individually in plastic pots (40 cm in diameter, 50 cm high). The plants were kept in a greenhouse under controlled conditions (25 ± 3 °C, 65 ± 5% RH) and were watered weekly to full soil capacity. After 1 yr, the 2-yr-old trees were used for the experiments. The height and canopy width of the trees were approximately 110 and 35 cm, respectively.

H-TUBE OLFACTOMETER

The H-tube olfactometer used in this study, redesigned according to Liu (2001) as shown in Supplementary Fig. S1 (available online in Florida Entomologist 100[2] [Jun 2017] at http://purl.fcla.edu/fcla/entomologist/browse), consisted of 2 plastic boxes (80 cm L, 80 cm W, 150 cm H) with a 8.2 × 8.2 cm hole on one side 80 cm above the bottom. These were connected by a cross arm (20 cm L, 8 cm W, 8 cm H) with a 5 × 5 cm hole in the middle of the upper surface.

EXPERIMENTAL DESIGN IN THE ORCHARD

The experiment was performed in a 3.5 ha organic apple (M. domestica ‘Fuji’) orchard in the Changping District, north of Beijing, China. Beginning Mar 2012 and continuing to 2015, seeds from 2 of the 3 test plants (ageratum, French marigold, and catnip), were sown at a ratio of 1:1 in the area between 2 rows of apple trees and covered with plastic film to keep them warm. The experiment involved a randomized block design with 3 replicates, and 12 plots in total were created. The composition of each plot was as follows: catnip + French marigold, ageratum + French marigold, catnip + ageratum, and native vegetation (control). Each plot size was 18 × 40 m, and plots were spaced 18 m apart, separated by 3 clean tillage lines (only apple trees were present). Each plot contained 4 rows of fruit trees, and each row had 8 fruit trees. The distance between rows and distance between trees were 5 and 6 m, respectively.

The coverage rate of the intercrops in all the intercropped plots was >80% (the distance from intercrop margins to fruit trees was 0.6 m). The native vegetation had been removed entirely by rototilling before the intercropped plants were seeded, and emerging weeds were completely removed by weeding. In the control treatment plots, the native vegetation consisted mainly of 7 species: slender amaranth, Amaranthus viridis L. (Amaranthaceae); viola, Viola philippica Cav. var. philippica (Violaceae); plantain, Plantago asiatica L. (Plantaginaceae); dandelion, Taraxacum officinale (L.) [Weber] ex Wigg. (Asteraceae); green bristlegrass, Setaria viridis (L.) P. Beauv. (Poaceae); petunia, Petunia hybrida (Hook f.) Vilm. (Solanaceae); and shepherd’s purse, Capsella bursa-pastoris (L.) Medik. (Brassicaceae). These were also kept at an 80% coverage rate. Plots were mowed 2 to 3 times per year and the clippings left in place to naturally degrade.

The numbers of A. citricola nymphs and adults and H. axyridis larvae and adults were recorded annually from May to Aug from 2012 to 2015. In each year, insects in apple trees and aromatic plants were collected from a series of sampling points. The specific methods used were as follows: Apple tree canopy surveys were performed by collecting samples on 1 d in each month from May to Aug each year. Within each plot, 4 apple trees were selected at random as sampling points, and each tree was sampled from 4 directions (east, south, west, and north). On each side, three 30 cm twigs from a high, middle, and low point of the tree were chosen to check for the presence of A. citricola and H. axyridis. The sampled twigs were covered with nylon sweep nets (30 cm in diameter, 50 cm deep) to prevent the escape of H. axyridis adults. Also, sweeping was used to sample H. axyridis present in the ground cover. The sweep net was also used to collect arthropods on intercrop vegetation in each plot. In the center of each plot, a 10-m-long area was selected as a sampling point, and each plot received 5 sweeps. A sweep was defined as a rapid 2-m-long movement of the net through the vegetation.

ANALYSIS OF AROMATIC PLANT VOLATILES

French marigold and catnip volatile compounds were collected in oven bags (355 × 508 mm; Reynolds, USA) using a dynamic headspace sampling method (Raguso & Pellmyr 1998; Oruna-Concha et al. 2002; Cozzolino et al. 2015). Both plants and plastic pots were placed in the oven bag when volatile compounds were collected. The volatiles were collected for 20 min and pulled out of the bag at a rate of 300 mL/min over a stainless steel column filled with 20 mg Tenax® Porous Polymer Adsorbent matrix Tenax GR (60–80 mesh; Chrompack, Varian, Palo Alto, California). A pot with soil but no plant was placed in the oven bag to collect ambient air at the same time and was used as a control. An automated thermal desorption–gas chromatograph/mass spectrometer (ATD-GC/MS) was used to analyze the volatiles. The volatiles were desorbed from the steel column by heating in an automated thermal desorber (TurboMatrix 650 ATD, PerkinElmer, Inc, Shelton, Connecticut) at 260 °C for 10 min and then cryo-focused for 3 min in a cold trap with a temperature maintained at −25 °C. The cold trap was then rapidly heated to 300 °C and maintained at that temperature for 5 min, allowing transfer of the volatiles to the GC (Clarus 600 GC, PerkinElmer, Inc, Shelton, Connecticut). The GC was equipped with a capillary DB-5MS column (30 m × 0.25 mm MD, with a 0.25 μm film thickness), and helium was used as the carrier gas. The GC oven was kept at 40 °C for 2 min, and then the temperature was increased at 4 °C/min to 160 °C, followed by an increase of 20 °C/min to 270 °C, where it was held for 3 min. The MS (Clarus 60 T, PerkinElmer, Inc, Shelton, Connecticut) was operated in the EI ionization mode at 70 eV and with a mass scan range of 29 to 600 amu. The temperatures of the interface and ion source were 250 and 220 °C, respectively. Compounds were identified by searching the NIST08 and Wiley online library in the TurboMass Ver5.4.2 software package (PerkinElmer, Inc, Shelton, Connecticut) and comparing their retention indices. The amounts of the compounds were calculated using the peak area normalization method (Raguso & Pellmyr 1998).

RESPONSES OF A. CITRICOLA AND H. AXYRIDIS TO CATNIP AND FRENCH MARIGOLD VOLATILES

The behavioral responses of A. citricola and H. axyridis were investigated using an H-tube olfactometer. Each treatment was performed as follows and replicated 3 times:

(a) Responses of A. citricola to French marigold and catnip: Two small apples trees grown in pots (40 cm diameter) and measuring about 110 cm in height were individually placed in the 2 plastic boxes of the H-tube olfactometer. Four pots of French marigold were simultaneously placed on one side, while the other side contained only the apple tree. The plants were left in this configuration for 1 d before testing to allow them to adapt to the new environmental conditions. The 2 boxes were not covered on the top and were not joined by the arm of the H-tube olfactometer before the formal test. Sixty A. citricola winged aphids (starved for 3 h) were introduced into the hole of the cross arm of the olfactometer and left for 2 h. Then, the number of aphids that chose the each box was recorded after 30, 60, 90, and 120 min. The aphids were considered to have made a choice when they walked at least 5 cm from the release point and remained there for at least 1 min. We also tested the response of A. citricola to catnip. The
experimental conditions were the same as above, but 4 pots of catnip were introduced instead of French marigold.

(b) Responses of H. axyridis to French marigold and catnip with no aphid: The experimental conditions were the same as in (a), but 30 H. axyridis adults (starved for 12 h) were introduced instead of A. citricola, and the number of individuals that made a choice was recorded at 5, 10, 30, 60, 90, and 120 min.

(c) Responses of H. axyridis to French marigold and catnip with aphids: The experimental conditions were the same as in (a), but 60 aphids (wingless spirea aphids, starved for 3 h) were applied to an apple tree on both sides at 2 h before testing. Subsequently, 30 H. axyridis adults, starved for 12 h, were introduced into the cross arm, and the number of H. axyridis adults that made a choice was recorded after 5, 10, 30, 60, 90, and 120 min.

(d) Responses of H. axyridis to French marigold and catnip with aphids that were removed after 2 h: The experimental conditions were the same as in (c), but all aphids were removed when the experiment started. Thirty H. axyridis adults (starved for 12 h) were introduced into the cross arm for testing, and the number of adults that made a choice was recorded at 5, 10, 30, 60, 90, and 120 min.

(e) Responses of H. axyridis to D-limonene and terpinolene with no aphids: Analytical reagent-grade pure D-limonene and terpinolene were used to test the behavioral responses of H. axyridis. The D-limonene and terpinolene samples were separately diluted to 12.5 μL/L, 25 μL/L, and 50 μL/L solutions, and a 1:1 D-limonene:terpinolene combination was also tested. The experimental conditions were the same as in (b), but cotton balls were dipped in 2 mL of each of the above solutions and used instead of aromatic plants on one side, and a cotton ball dipped in an equal volume of distilled water was used on the other side as a control. So one side was apple tree + plant volatiles, and the other side was apple tree + distilled water. The number of beetles that made a choice was recorded at 5, 10, 20, 30, and 60 min.

(f) Responses of H. axyridis to D-limonene and terpinolene with aphids: The experimental conditions were the same as in (e), but 60 aphids (wingless spirea aphids, starved for 3 h) were applied to an apple tree on both sides at 2 h before testing. Subsequently, 30 H. axyridis adults (starved for 12 h) were introduced into the cross arm, and the number of beetles that made a choice was recorded at 5, 10, 20, 30, and 60 min.

**Statistical Analyses**

All statistical analyses were performed using the Origin® Pro 8.0 (OriginLab® Corporation, Northampton, Massachusetts) and SPSS 17.0 (IBM Corporation, Armonk, New York) software packages. To test the temporal dynamics of spirea aphids and multicolored Asian lady beetles in response to the different treatments in the orchard, the total individual number of A. citricola aphids and H. axyridis beetles were calculated for each year from 2012 to 2015, and the differences in the total numbers of A. citricola and H. axyridis individuals in the different treatment plots during the sampling years were tested by a 2-way analysis of variance with a Duncan multiple range test. We applied a linear regression model analysis to the relationship of the abundance of spirea aphids and multicolored Asian lady beetle abundance to spirea aphid abundance, and the sample years. Differences in the preferences of A. citricola and H. axyridis for pairs of plants and the H. axyridis responses to the relative amount of volatiles from aromatic plants were analyzed for significance using a paired t-test.

**Results**

**Numbers of A. Citricola and H. Axyridis Individuals**

The numbers of A. citricola nymphs and adults present on the apple trees showed a trend of increased abundance from 2012 to 2015 in all treatment plots (Fig. 1A). However, the numbers of A. citricola nymphs and adults in catnip + French marigold, ageratum + French marigold, and catnip + ageratum treatments were significantly lower than in the native vegetation treatment in all years (F_{3,6} = 12.84; P < 0.001), particularly in the catnip + French marigold treatment plot in 2013 (Fig. 1A; F_{3,6} = 71.45; P < 0.001). The numbers of H. axyridis larvae and adults showed a trend of increasing abundance from 2012 to 2015 in the catnip + French marigold and the ageratum + French marigold plots, but the opposite trend from 2012 to 2015 in the catnip + ageratum and native vegetation treatments (Fig. 1B). The numbers of H. axyridis larvae and adults in
the catnip + French marigold and ageratum + French marigold plots were significantly higher than in the native vegetation plots in 2014 and 2015 (Fig. 1B; 2014: $F_{\chi} = 52.22; P < 0.0001; 2015: F_{\chi} = 12.52; P = 0.005$). In addition, the number in the catnip + ageratum plots was significantly higher than in the native vegetation plots in 2012 and 2013, whereas there were no differences between the two in 2014 and 2015 (Fig. 1B).

RELATIONSHIP BETWEEN NUMBERS OF A. CITRICOLA AND H. AXYRIDIS INDIVIDUALS

A linear regression model analysis showed that the numbers of H. axyridis larvae and adults were significantly and positively correlated with the numbers of A. citricola nymphs and adults in all sample years (Fig. 2; A: $F_{\chi} = 73.35; P < 0.0001; B: F_{\chi} = 24.20; P < 0.0001; C: F_{\chi} = 32.75; P < 0.0001; D: F_{\chi} = 37.09; P < 0.0001$), especially in the catnip + French marigold treatment plots (Fig. 2A). The ratio of H. axyridis to A. citricola abundance showed a negative correlation with the sample years, and the trend of a decreasing ratio was relatively less in the treatments containing French marigold (Fig. 3; A: $F_{\chi} = 2.58; P = 0.115; B: F_{\chi} = 1.57; P = 0.694; C: F_{\chi} = 15.69; P < 0.0001; D: F_{\chi} = 4.81, P = 0.033$).

RESPONSE OF A. CITRICOLA AND H. AXYRIDIS TO FRENCH MARIGOLD AND CATNIP

Fewer A. citricola aphids chose the apple tree + French marigold, or French marigold + catnip treatments, than the apple tree alone treatment (Fig. 4). The numbers of aphids that chose the apple tree alone treatment in the 120 min tests were 9-fold and 3.25-fold higher than those selecting the apple tree + French marigold or catnip treatments, respectively. We observed no differences in the numbers of H. axyridis beetles that chose the French marigold + apple tree treatment and the apple tree alone treatment from 5 min to 60 min, regardless of whether or not aphids had been present anywhere (Fig. S2). However, more beetles chose the French marigold + apple tree treatment than the apple tree alone treatment at 120 min when aphids were not present (Fig. 5A), and the choice was more significant when aphids were present (Fig. S2B). Fewer beetles choose the catnip + apple tree treatment than chose the apple tree alone treatment, whether aphids were present or not (Fig. 5B), but no significant differences were observed for the other treatments (Fig. S2).

FRENCH MARIGOLD AND CATNIP VOLATILES

Twenty-one and 24 compounds were separately identified from the French marigold and catnip volatiles, respectively, consisting
mainly of alcohols, terpenoid, ketone, and ester compounds (Tables S1 and S2). The principal volatile compounds from French marigold were 2-ethyl-1-hexanol (25.90%), D-limonene (16.73%), terpinolene (14.82%), 1-methyl-l-4-(1-methylethenyl)-benzene (7.76%), hexanal (4.76%), p-isopropyltoluene (3.59%), ocimene (3.40%), and a-pinene (2.18%) (Table S1; Fig. 6B). The main volatile compounds from catnip were 2-ethyl-1-hexanol (23.29%), o-xylene (9.05%), ethylbenzene (8.04%), p-xylene (7.6%), octamethyl cyclotetrasiloxane (6.41%), terpinolene (7.75%), and D-limonene (3.85%) (Table S2; Fig. 6C). The compound 2-ethyl-1-hexanol was also identified from the control (air, Table S3), so there were only 2 major volatile compounds, terpinolene and D-limonene, that were identified from both French marigold and catnip and which had relatively high abundance. The ratio of D-limonene to terpinolene was 1.23:1 in French marigold plants, and the ratio of D-limonene to terpinolene was 0.50:1 in catnip plants. In addition, A. citricola showed the same response to French marigold and catnip, but the H. axyridis responses differed between the 2 plant species. We postulated that the different responses of H. axyridis to French marigold and catnip may be due to the different content of D-limonene and terpinolene or their ratio. Thus, D-limonene and terpinolene were used to test the behavioral responses of H. axyridis.

RESPONSE OF H. AXYRIDIS TO D-LIMONENE AND TERPINOLENE

The number of H. axyridis beetles that chose the 12.5 μL/L D-limonene + apple tree treatment was significantly greater than the number of beetles that chose the apple tree + distilled water treatment at 60 min, regardless of whether or not aphids had been present anywhere (Fig. S3A, D). However, fewer beetles chose the 50 μL/L D-limonene + apple tree treatment than the apple tree + distilled water treatment from 5 to 60 min (Fig. S3C, F). The numbers of beetles that chose the 12.5 μL/L D-limonene + apple tree treatment were significantly greater than those of the numbers of beetles that chose the 50 μL/L D-limonene + apple tree treatment at 60 min, whether or not aphids were present (Fig. 7A, B).
More beetles chose the 50 μL/L terpinolene + apple tree treatment than the apple tree + distilled water treatment from 30 to 60 min when aphids were present (Fig. S4F). Also, more beetles chose the 50 μL/L terpinolene + apple tree treatment than the 12.5 μL/L terpinolene + apple tree treatment at 60 min, whether or not aphids were present (Fig. 7C, D).

The numbers of beetles that chose the 25 μL/L 1:1 D-limonene to terpinolene + apple tree treatment were significantly greater than the numbers of beetles that chose the apple tree + distilled water treatment at 60 min, especially when aphids were present (Fig. S5B, E). The same results were observed in the 50 μL/L 1:1 D-limonene to terpinolene + apple tree treatment when aphids were introduced and then removed after infesting the apple tree (Fig. S5F). More beetles chose the 25 μL/L 1:1 D-limonene to terpinolene + apple tree treatment than the 12.5 μL/L and 50 μL/L treatments at 60 min, whether or not aphids were present (Fig. 8).

**Discussion**

Plant volatiles can act as important chemical signals that form communication links between insects and their host plants (Raguso & Pellmyr 1998; Tasin et al. 2010; McCallum et al. 2011; Sun et al. 2014; Thöming et al. 2014) and can function either as attractants or repellants. The interactions between insects and plants are usually affected by the environment, plant type, insect species, and others factors and are often disturbed when host plants and non-host plants are co-located (Bernasconi et al. 1998; Nottingham et al. 1991). In this study, aromatic non-host plants were introduced to an apple orchard environment and shown to have significant effects on populations of *A. citricola*. The volatiles from catnip and French marigold influenced the host location activities of *A. citricola*, and the olfactometer bioassays and field experiments demonstrated that they have a direct repellent effect on *A. citricola* (Figs. 1 and 4), thereby playing an indirect role in protecting the apple trees. These data provide supporting evidence for the chemical repellent hypothesis, as has been reported in other plant–herbivore systems (Ukeh et al. 2010; Kappers et al. 2011; Signoretti et al. 2012).

We expected to see a significant increase in the number of *H. axyridis* beetles in treatments that included aromatic plants. Indeed, this was the case in the treatment plots of catnip + French marigold and ageratum + French marigold in 2014 and 2015, and significant increases were observed in the treatment plots of catnip + ageratum in 2012 and 2013 (Fig. 1). We believed that *H. axyridis* was attracted by the volatiles from the aromatic plants, and we noted a consistent increase in the number of the beetles in the plots containing French marigold. To verify this hypothesis, we chose French marigold and catnip to test the behavioral response of *H. axyridis*. The results showed that the beetles were indeed attracted by French marigold, regardless of whether aphids were present for up to 120 min (Fig. S2A, B), and were repelled by catnip after 120 min, again whether or not aphids were present or had been removed after 2 h (Fig. S2E, F). The number of beetles that chose French marigold increased with increasing duration of exposure, but there were no significant differences between the treatment and control until the 120 min time point (Fig. S2).

We propose two explanations: one is that the volatiles from French marigold may not have reached a sufficient concentration to act as attractants until that time point; the other is that the beetles may have required a learning, identification, and adaptation process to the French marigold volatiles that did not result in attraction until that time point. Insects are known to be able to identify volatile blends released by different plants through olfactory learning (Guillette et al. 2009; Shikano & Isman 2009), which may inform them about the identity and quality of the host plant. Our results also indicated that French marigold provided an indirect defense for the apple trees. In contrast, catnip had no effect on *H. axyridis*, because more beetles chose the control treatment than the catnip treatment after 120 min when aphids were present or had been present for 2 h (Fig. S2). We propose that aphid-induced volatiles released from the apple tree may be an important factor in *H. axyridis* attraction.

We next wanted to determine what plants and volatile compounds attracted *H. axyridis*. French marigold was selected for analysis and identification of volatile components, and because D-limonene and terpinolene were the most abundant, these were chosen to test the behavioral responses of *H. axyridis*. Subsequent experiments showed that the beetles were significantly attracted by low concentrations of D-limonene (Fig. S3A, D) but repelled by higher concentrations (Fig. S3C, F). We also observed that the beetles were significantly attracted by 50 μL/L terpinolene (Fig. S4, S5), but only in the presence of the aphids, suggesting that aphid-induced volatiles released from the apple trees may be important for *H. axyridis* attraction, but that terpinolene alone is not an attractant. In addition, 25 μL/L of a 1:1

---

**Fig. 5.** Differences in the number of *Harmonia axyridis* adults responding to French marigold (*Tagetes patula*) (A) and catnip (*Nepeta cataria*) (B) after 60 min. T: Apple trees + aromatic plants; CK: apple trees. Aphids removed: aphids introduced for 2 h and then removed. The numbers of asterisks represent the level of significance: * significant (*P < 0.05*); n.s. no significant difference.
mixture of D-limonene and terpinolene resulted in a significant attraction of the beetles (Fig. S5B, E). We suggest that there are two explanations for these results. One explanation is that D-limonene was diluted to a level that resulted in attraction, because it was mixed with terpinolene, which is consistent with our results reported above that low concentrations of D-limonene attracted the beetles. The second explanation is that the aphid-induced volatiles released by the apple tree played a dominant role in *H. axyridis* attraction because a higher concentration of 1:1 mixed D-limonene and terpinolene also attracted the beetles.

Fig. 6. Typical chromatograms obtained from headspace collections of volatiles from French marigold (*Tagetes patula*) (B) and catnip (*Nepeta cataria*) (C). A, air control.
These data provide evidence for the important role of plant volatiles in the behavior of the natural enemies of herbivorous insects. They also confirm previous reports that volatile plant compounds released in response to insect feeding serve as attractants and affect the behavior of the natural enemies of the herbivorous insects. Numerous studies have demonstrated the dynamic role of herbivore damaged plants in the attraction of natural enemies (Schaller & Nentwig 2000; Zhu & Park 2005; Tan & Liu 2014).

**Fig. 7.** Differences in the number *Harmonia axyridis* adults in response to 12.5 μL/L, 25 μL/L, and 50 μL/L D-limonene (A, B) and terpinolene (C, D) after 60 min. A, C: No aphids; B, D: aphids present. The numbers of asterisks represent the level of significance: ** highly significant (*P* < 0.01); * significant (*P* < 0.05); n.s. no significant difference.

**Fig. 8.** Response of *Harmonia axyridis* adults to 12.5 μL/L, 25 μL/L, and 50 μL/L 1:1 mixed D-limonene and terpinolene after 60 min. A: No aphids; B: aphids present. The numbers of asterisks represent the level of significance: ** highly significant (*P* < 0.01); * significant (*P* < 0.05); n.s. no significant difference.
The interaction between *A. citricola* and *H. axyridis* and the ratio of their relative abundances were also influenced by the chemical repellency and attraction effects of the aromatic plants. Because the catnip + French marigold treatment plots were most effective in repelling *A. citricola* and attracting *H. axyridis*, the trend of a decreasing ratio of *H. axyridis* to *A. citricola* abundance was relatively less in the treatments (Fig. 3B). The strongest positive association between *A. citricola* and *H. axyridis* was shown in the catnip + French marigold treatment (Fig. 2). The changes in these associations may affect biological control of *A. citricola* in the presence or absence of aromatic plants, because the effect of the aromatic plants on *A. citricola* was strong in plots containing aromatic plants, but the role of the natural enemies of *A. citricola* may be predominant in naturally vegetated plots.

Taken together, our results indicate that intercropping with aromatic plants in apple orchards can increase the resistance of apple plants to *A. citricola* directly or indirectly, either by significantly reducing the populations of *A. citricola* by chemical repulsion or by significantly increasing the population of *H. axyridis* by chemical attraction (Fig. 9). Of the volatiles involved, D-limonene and terpinolene play an important role in influencing the behavioral responses of *H. axyridis* adults. Future research will investigate whether these chemicals can be effectively applied for use in agricultural biocontrol programs. The development of an effective *A. citricola* repellent would greatly improve the ability to manage this herbivore.

Acknowledgments

We thank the Key Laboratory of Pomology and the Key Laboratory of Agricultural Application at the Beijing University of Agriculture for providing facilities and equipments during experimentation. We further thank PlantScribe (www.plantscribe.com) for editing this manuscript. Financial support was provided by a National Natural Science Foundation of China grant (31301736) and a scientific research quality improvement grant from Beijing University of Agriculture (JGBJ20130004).

References Cited

Bernasconi ML, Turlings TCI, Ambrosetti L, Bassetti P, Dorn S. 1998. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, *Rhopalosiphum maidis*. *Entomologia Experimentalis et Applicata* 87: 133–142.

Chen XX, Song YQ, Wang BZ, Yao YC, Wu HY, Hu JH, Zhao LL. 2014. Aromatic plants play an important role in promoting soil biological activity related to nitrogen cycling in an orchard ecosystem. Science of the Total Environment 472: 939–946.

Cozzolino S, Fineschi S, Litto M, Scopece G, Trunschke J, Schiestl FP. 2015. Herbivory increases fruit set in *Silene latifolia*: a consequence of inducedpollinator-attracting floral volatiles? *Journal of Chemical Ecology* 41: 1–9.

Dickie M. 2015. Herbivore-induced plant volatiles as a rich source of information for arthropod predators: fundamental and applied aspects. *Journal of the Indian Institute of Science* 95: 35–42.

Dudareva N, Negre F, Nagegowda DA, Orlova I. 2006. Plant volatiles: recent advances and future perspectives. *Critical Reviews in Plant Sciences* 25: 417–440.

Fréchette B, Cormier D, Chouinard G, Vanoostrwyhe F, Lucas E. 2008. Apple aphid, *Aphis* sp. (Hemiptera: Aphiididae), and predator populations in an apple orchard at the non-bearing stage: the impact of ground cover and cultivar. *European Journal of Entomology* 105: 521–529.

Gols R, Bukovinszky T, Hemenik L, Harvey JA, Vanlenteren JC, Vet LEM. 2005. Reduced foraging efficiency of a parasitoid under habitat complexity: implications for population stability and species coexistence. *Journal of Animal Ecology* 74: 1059–1068.

Guillouze LM, Hollis KL, Markarian A. 2009. Learning in a sedentary insect predator: antions (Neuroptera: Myrmeleontidae) anticipate a long wait. *Behavioural Processes* 80: 224–232.

Kaplan I. 2012. Attracting carnivorous arthropods with plant volatiles: the future of biocontrol or playing with fire? *Biological Control* 60: 77–89.

Kappers IF, Hoogerbrugge H, Bouwmeester HJ, Dicke M. 2011. Variation in herbivory-induced volatiles among cucumber (*Cucumis sativus*) varieties. The importance of aphid morphology for the attraction of carnivorous natural enemies. *Journal of Chemical Ecology* 37: 150–160.

Karban R, Baldwin IT, Baker KJ, Laue G, Felton GW. 2000. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. *Oecologia* 125: 66–71.

Li H, Yang XK, Liu Q. 2010. Impacts of six germicides on *A. citricola* populations and their natural enemies. *Unpublished Ph.D. dissertation, Zhejiang University, Zhejiang, China.*

Lucas-Barbosa D, Loon IAV, Marcel D. 2011. The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. *Physicochemistry* 72: 1647–1654.

Martini X, Hughes MA, Smith JA, Stelniski LL. 2015. Attraction of redbay ambrosia beetle, *Xyleborus glabratus*, to leaf volatiles of its host plants in North America. *Journal of Chemical Ecology* 41: 613–621.

McCallum EJ, Cunningham JP, Lucker J, Zalucki MP, De Voss JJ, Botella JR. 2011. Increased plant volatile production affects oviposition, but not larval development, in the moth *Helicoverpa armigera*. *Journal of Experimental Biology* 214: 3672–3677.

McCormick AC, Unsicker SB, Gershenzon J. 2012. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. *Trends in Plant Science* 17: 303–310.

Moraes CMD, Mescher MC, Tumlinson JH. 2001. Caterpillar-induced nocturnal plant volatiles repel nonspecific females. *Nature* 410: 577–580.

Mutinyambai DM, Bruce TJA, Midega CAO, Woodcock CM, Caulfield JC, Berg JVD, Pickett JA, Khan ZR. 2015. Responses of parasitoids to volatiles induced by *Chilo partellus* oviposition on teosinte, a wild ancestor of maize. *Journal of Chemical Ecology* 41: 323–329.

Nottingham SF, Hardie J, Dawson GW, Hick AJ, Pickett JA, Wadhams LJ, Woodcock CM. 1991. Behavioral and electrophysiological responses of aphids to host and nonhost plant volatiles. *Journal of Chemical Ecology* 17: 1231–1242.

Oruna-Concha MJ, Babker J, Ames JM. 2002. Comparison of the volatile components of two cultivars of potato cooked by boiling, conventional baking and microwave baking. *Journal of the Science of Food and Agriculture* 82: 1080–1087.

Paré PW, Tumlinson JH. 1999. Plant volatiles as a defense against insect herbivores. *Plant Physiology* 121: 325–331.

Perfecto I, Vet LEM. 2003. Effect of a nonhost plant on the location behavior of two parasitoids: the tritrophic system of *Cotesia spp.* (Hymenoptera: Braconidae), *Pieris rapae* (Lepidoptera: Pieridae), and *Brassica oleracea*. *Environmental Entomology* 32: 163–174.
Pichersky E, Gershenzon J. 2002. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinions in Plant Biology 5: 237–243.
Qi G, Zhang H, Yan W, Zhang P, Zheng Y, Liu C. 2010. Evaluation of eight insecticides against Aphis citricola. Plant Protection 36: 165–166.
Raguso RA, Pellmyr O. 1998. Dynamic headspace analysis of floral volatiles: a comparison of methods. Oikos 81: 238–254.
Randlkofer B, Obermaier E, Meiners T. 2007. Mother’s choice of the oviposition site: balancing risk of egg parasitism and need of food supply for the progeny with an infochemical shelter? Chemoecology 17: 177–186.
Schaller M, Nentwig W. 2000. Olfactory orientation of the seven-spot ladybird beetle, Coccinella septempunctata (Coleoptera: Coccinellidae): attraction of adults to plants and conspecific females. European Journal of Entomology 97: 155–159.
Schausberger P, Peneder S, Jurschik S, Hoffmann D. 2012. Mycorrhiza changes plant volatiles to attract spider mite enemies. Functional Ecology 26: 441–449.
Shikano I, Isman MB. 2009. A sensitive period for larval gustatory learning influences subsequent oviposition choice by the cabbage looper moth. Animal Behaviour 77: 247–251.
Shiojiri K, Takabayashi J. 2003. Effects of specialist parasitoids on oviposition preference of phytophagous insects: encounter–dilution effects in a tri-trophic interaction. Ecological Entomology 28: 573–578.
Signoretti AGC, Peñaflo MFGV, Bento JMS. 2012. Fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), female moths respond to herbivore-induced corn volatiles. Neotropical Entomology 41: 22–26.
Smart LE, Martin JL, Limpalaër M, Bruce TJA, Pickett JA. 2013. Responses of herbivore and predatory mites to tomato plants exposed to jasmonic acid seed treatment. Journal of Chemical Ecology 39: 1297–1300.
Song BZ, Tang GB, Sang XS, Zhang J, Yao YC, Wiggins NL. 2013. Intercropping with aromatic plants hindered the occurrence of Aphis citricola in an apple orchard system by shifting predator–prey abundances. Biocontrol Science and Technology 23: 381–395.
Sun XL, Wang GC, Gao Y, Zhang XZ, Xin ZJ, Chen ZM. 2014. Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths. Journal of Chemical Ecology 40: 1080–1089.
Tan XL, Liu TX. 2014. Aphid-induced plant volatiles affect the attractiveness of tomato plants to Bemisia tabaci and associated natural enemies. Entomologia Experimentalis et Applicata 151: 259–269.
Tang GB, Song BZ, Zhao LL, Sang XS, Wan HH, Jie Z, Yao YC. 2013. Repellent and attractive effects of herbs on insects in pear orchards intercropped with aromatic plants. Agroforest System 87: 273–285.
Tasin M, Bäckman AC, Anfora G, Carlin S, Ioriatti C, Witzgall P. 2010. Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants. Chemical Senses 35: 57–64.
Thöming G, Norli HR, Saucke H, Knudsen GK. 2014. Pea plant volatiles guide host location behaviour in the pea moth. Arthropod–Plant Interactions 8: 109–122.
Ukeh DA, Birkett MA, Bruce TJA, Allan EJ, Pickett JA, Mordue AJ. 2010. Behavioural responses of the maize weevil, Sitophilus zeamais, to host (stored-grain) and non-host plant volatiles. Pest Management Science 66: 44–50.
Wan HH, Song BZ, Tang GB, Zhang J, Yao YC. 2015. What are the effects of aromatic plants and meteorological factors on Pseudococcus comstockii and its predators in pear orchards? Agroforestry Systems 89: 537–547.
Wang XL, Sun XG, Xiang YY, Li H, Li Y. 2011. Effects of abamectin stress on the food chain of Malus micromalus - Aphis citricola - Harmonia axyridis. Scientia Silvae Sinicar 47: 172–177. [In Chinese]}

Zakir A, Sadek MM, Bengtsson M, Hansson BS, Witzgall P, Anderson P. 2013. Herbivore-induced plant volatiles provide associational resistance against an ovipositing herbivore. Journal of Ecology 101: 410–417.
Zhu J, Park KC. 2005. Methyl salicylate, a soybean aphid induced plant volatile attractive to the predator Coccinella septempunctata. Journal of Chemical Ecology 31: 1733–1746.