Calcium channels and iron uptake into the heart

Nipon Chattipakorn, Sirinart Kumfu, Suthat Fucharoen, Siriporn Chattipakorn

Abstract
Iron overload can lead to iron deposits in many tissues, particularly in the heart. It has also been shown to be associated with elevated oxidative stress in tissues. Elevated cardiac iron deposits can lead to iron overload cardiomyopathy, a condition which provokes mortality due to heart failure in iron-overloaded patients. Currently, the mechanism of iron uptake into cardiomyocytes is still not clearly understood. Growing evidence suggests T-type Ca$^{2+}$ channels (TTCC) have been shown to play an important role in the diseased heart. Although TTCC and iron uptake in cardiomyocytes has not been investigated greatly, a recent finding indicated that TTCC could be an important portal in thalassemic hearts. In this review, comprehensive findings collected from previous studies as well as a discussion of the controversy regarding iron uptake mechanisms into cardiomyocytes via calcium channels are presented with the hope that understanding the cellular iron uptake mechanism in cardiomyocytes will lead to improved treatment and prevention strategies, particularly in iron-overloaded patients.

INTRODUCTION
Iron (Fe) is an essential element for all living organisms and plays a central role in many Fe-containing proteins such as in iron storage proteins (ferritin and hemosiderin), energy metabolism (cytochromes, mitochondrial aconitase and Fe-S proteins of the electron transport chain), cellular respiration (hemoglobin and myoglobin), and DNA synthesis (ribonucleotide reductase). However, under iron overload conditions the regulatory mechanism which keeps the balance between iron uptake...
and iron excretion could be disrupted, causing an elevation of non-transferrin bound iron (NTBI) in the plasma of iron-overloaded patients[4,5]. NTBI is toxic and participates in the production of harmful hydroxyl radicals, which could cause severe cellular damage and organ dysfunction[6,7]. An excess of plasma iron can lead to iron accumulation in many organs including the heart[8]. Excessive iron accumulation in the heart can cause cardiac cellular damage known as iron-overload cardiomyopathy. This cardiac complication causes 71% of all deaths in thalassemia major patients[9]. Although iron chelation therapy is widely used for treating iron overload patients, iron overload cardiomyopathy is still the most common cause of mortality in these patients[8,10]. Even though the fundamental mechanisms for excessive iron uptake in the heart have been investigated for decades, the precise mechanism underlying cardiomyocyte dysfunction induced by iron overload is not clearly understood. Although several NTBI transporters have been proposed and are responsible for cellular iron uptake, recent evidence suggests that calcium channels may play an important role as a portal for cardiac iron uptake[11]. In this review, the role of L-type Ca2+ channels (LTCC) as well as T-type Ca2+ channels (TTCC) as iron transporters into the heart are presented. The consistent findings as well as discrepancies of results among various studies on iron uptake into cardiomyocytes via these calcium channels under various conditions are comprehensively reviewed and discussed.

LTCCS AS A PORTAL FOR IRON UPTAKE INTO CARDIOMYOCYTES

The L-type Ca2+ channel is a voltage-gated ion channel that plays a central role in cardiac and smooth muscle contraction[12]. LTCCs are heterotetrameric polypeptide complexes that are composed of α1, α2βδ, β, and, in some tissues, γ subunits[13]. The Ca2+ channel α1 subunit (170-240 kD) is organized into four homologous motifs (I–IV), with six transmembrane segments (S1–S6)[14]. Recently, 10 α1 subunit genes have been identified including Ca-1.1 (α1S), 1.2 (α1C), 1.3 (α1D), 1.4 (α1F), Ca-2.1 (α1A), 2.2 (α1B), 2.3 (α1E), Ca-3.1 (α1G), 3.2 (α1H), and 3.3 (α1I). For LTCCs, these can be divided into 4 classes: Ca-1.1 (α1S), 1.2 (α1C), 1.3 (α1D), and 1.4 (α1F). In cardiac muscles, only the α1C (dihydropyridine-sensitive) subunit is expressed in high levels and is also called a high-voltage-activated channel[12]. LTCCs can be found in the heart and are primarily used for Ca2+ transport as well as playing an important role in the electrical activity of the heart. However, previous studies have shown that LTCCs can also transport other divalent cations including Fe3+[13-15]. Several findings have been shown to support the role of LTCC in myocardial iron transport[11,14]. A study in an iron loaded perfused rat heart showed that iron uptake was increased by the LTCC agonist, Bay K 8644 and iron uptake was inhibited by the LTCC blocker, nifedipine[15]. Oudit et al[14] demonstrated that treatments with LTCC blockers such as amlodipine and verapamil could lead to the inhibition of LTCC current in cardiomyocytes, reduced myocardial iron accumulation, decreased oxidative stress and improved survival in iron-loaded mice. In addition, iron overloaded transgenic mice with cardiac-specific overexpression of LTCC were shown to have increased myocardial iron accumulation and oxidative stress, resulting in impaired cardiac function in comparison with control mice[16]. Furthermore, since the LTCC does not contain iron responsive elements (IREs) in the LTCC mRNA, it is not regulated by cellular iron levels under an iron overload condition. As a result, L-type Ca2+ currents were not decreased in iron overload conditions[14], confirming that the expression of LTCC was not regulated by the IRE. Furthermore, it has been shown in iron overloaded rats that the LTCC blocker diazepam could reduce mortality from iron overload without inhibition of iron absorption or urinary iron excretion[17].

In addition to the heart, a previous study also demonstrated that LTCC blockers verapamil and amiodipine did not decrease iron accumulation in the liver of mice with iron overload, and hypothesized that this was due to the fact that hepatocytes express minimal levels of LTCC[16]. However, a recent study by Ludwiczek and colleagues demonstrated that the LTCC blocker nifedipine could reduce iron accumulation in the liver of wild-type mice, but had no effect in divalent metal transporter 1 (DMT1) deficient mice, suggesting that this effect of nifedipine-mediated modulation of iron transport is via DMT1[18]. Nevertheless, these findings suggest that nifedipine could possibly be beneficial in iron overload cardiomyopathy.

DISCREPANCIES IN FINDINGS ON IRON UPTAKE INTO CARDIOMYOCYTES VIA LTCC

It is important to realize that not all reports regarding the mechanisms of iron uptake via LTCC are consistent. Despite strong evidence supporting the role of LTCC as a route for NTBI transport in the heart, Parkes and colleagues demonstrated otherwise[19]. In cultured rat neonatal myocytes, they demonstrated that LTCC blockers (nifedipine, verapamil, and diltiazem) did not alter iron uptake in these cells[19]. Our recent findings also demonstrated that the LTCC blocker verapamil could not prevent iron uptake into cultured adult mouse cardiomyocytes[20]. Several reasons to explain these inconsistent results may be drawn from previous reports. Most studies that support the role of LTCC for iron uptake in cardiomyocytes used freshly prepared cardiomyocytes taken from isolated perfused hearts[18] or in vivo[20]. However, a report that failed to show the role of LTCC in iron uptake into cardiomyocytes used cultured cardiomyocytes[15,21].

In cultured cardiomyocytes, it is possible that LTCC
Disorders of iron metabolism.
Rowley DA, Griffiths E, Halliwell B. Low-
Ponka P, Richardson DR. Iron trafficking in the
cells more than that in
thalassemic cardiomyocytes could have played a role in this
In the light of these inconsistent findings, it is possible
that cardiomyocytes obtained from different methods
may have different cellular characteristics and properties.
All of these proposed hypotheses have not been tested
and will need to be further investigated to elucidate the
definite mechanism of iron uptake into the heart and re-
solve these existing discrepancies.

TTCC AS A PORTAL FOR IRON UPTAKE INTO CARDIOMYOCYTES

TTCC have three isoforms: Ca3.1 (α1G), 3.2 (α1H), and
3.3 (α1I) that are localized to the brain, kidney, and heart
and are also called low-voltage-activated channels[21]. It
has been shown that only Ca3.1 and Ca3.2 are expressed in
the heart[21]. TTCCs have been reported to be function-
ally expressed only in embryonic hearts and disappear in
adults[24]. TTCC can be found abundantly only in sino-
atrial pacemaker cells and Purkinje fibers of many species
in adult hearts and are important for the maintenance of
pacemaker activity[21,23]. However, TTCC currents and ex-
pression have been demonstrated to reappear and play an
important pathological role in diseased hearts with con-
ditions such as ventricular hypertrophy[21,24,25] and post-
myocardial infarction[30]. The increased TTCC expression
have been shown to contribute to the progression of heart
failure[21].

Growing evidence indicates that TTCC blockers
could be beneficial in diseased hearts. Recently, Horiba
and colleagues demonstrated that the blockade of Ca2+
entry into cardiomyocytes via TTCC using the TTCC
blocker efonidipine could block signal transduction in-
volved in cardiac hypertrophy[27]. In addition, a study in a
mouse model of dilated cardiomyopathy has shown that
a TTCC blocker could restore the resting membrane po-
tential, and reduce the number of premature ventricular
contractions and ventricular tachycardia, thus reducing the
incidence of sudden death in these mice[28]. These
findings suggest that TTCC blockade may be potentially
useful for the prevention of sudden death in patients
with heart failure[29]. It is known that iron overload condi-
tions can lead to increased iron uptake into cardiomyo-
cytes, resulting in cardiac hypertrophy and failure[25,26,30]. However, it is not known if TTCC blockers could be
antiarrhythmic in this type of cardiomyopathy.

Recently, our study using cultured cardiomyocytes
taken from the heart of thalassemic mice demonstrated that
intracellular iron accumulation in cultured ventricular
myocytes of thalassemic mice was significantly higher
than in wild type (WT) cells[24]. These findings suggest that
thalassemic cardiomyocytes could have pathways which
can greatly uptake iron into the cells more than that in
WT cells. In addition, under an iron overloaded condition,
our results demonstrated that the TTCC blocker, efoni-
dipine, could prevent iron uptake into cultured thalassemic
cardiomyocytes[20]. Although efonidipine is not a selective
TTCC blocker and could also block LTCC, its efficacy in
blocking TTCC is greater than that of LTCC[21]. In that
study, since verapamil could not prevent iron uptake when
efonidipine could, these findings suggested that TTCC
could play a significant role in iron uptake into cardiomyo-
cytes in this thalassemic cardiomyocyte model[20]. More-
over, our microarray data demonstrated that the TTCC
genesis were up-regulated in thalassemic hearts, which is
well correlated with the iron uptake results, suggesting
that TTCCs could play an important role in iron uptake in
thalassemic hearts, and that their re-expression could be
due to the pathological state of a thalassemic heart itself
or from the iron-overloaded condition, or both.

Since iron overload patients can develop cardiomyop-
athy and heart failure[31,32], it is important that the associa-
tion between iron overload, TTCC expression/function
and cardiac complications be determined. Future studies
in both basic and clinical research are needed to warrant
the clinical usefulness of TTCC blockers in the preven-
tion and treatment of iron overload cardiomyopathy par-
ticularly in thalassemia patients.

CONCLUSION

Iron overload is a serious and fatal complication in many
diseases including iron-overload cardiomyopathy in thal-
assemia patients. Although pathways for cellular iron up-
take have been investigated for many decades, its mecha-
nism is still not clearly understood. In the past few years,
findings regarding new possible pathways for cellular iron
uptake have been suspected, including LTCC and TTCC.
However, their definite roles as iron transporters in car-
diomyocytes are still debated. Understanding the mecha-
nism by which iron enters cardiac cells is very important,
since it will provide us with the knowledge to be used in
developing better treatment and prevention strategies in
iron overloaded patients.

REFERENCES

1. Andrews NC. Disorders of iron metabolism. *N Engl J Med* 1999; 341: 1986-1995
2. Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. *Cell* 2004; 117: 285-297
3. Napier I, Ponka P, Richardson DR. Iron trafficking in the mitochondria: novel pathways revealed by disease. *Blood* 2005; 105: 1867-1874
4. Esposito BP, Breuer W, Sirankapracha P, Pootrakul P, Hershko C, Cabantchik ZI. Labile plasma iron in iron overload: redox activity and susceptibility to chelation. *Blood* 2003; 102: 2670-2677
5. Templeton DM, Liu Y. Genetic regulation of cell function in response to iron overload or chelation. *Biochim Biophys Acta* 2003; 1619: 113-124
6. Gutteridge JM, Rowley DA, Griffiths E, Halliwell B. Low-molecular-weight iron complexes and oxygen radical reac-
tions in idiopathic haemochromatosis. Clin Sci (Lond) 1985; 68: 463-467
7 Gao X, Qian M, Campian JL, Marshall J, Zhou Z, Roberts AM, Kang YJ, Prabhu SD, Sun XF, Eaton JW. Mitochondrial dysfunction may explain the cardiomyopathy of chronic iron overload. Free Radic Biol Med 2010; 49: 401-407
8 Wood JC, Enriquez C, Ghugre N, Otto-Duessel M, Aguilar M, Nelson MD, Moats R, Coates TD. Physiology and pathophysiology of iron cardiomyopathy in thalassemia. Ann N Y Acad Sci 2005; 1054: 386-395
9 Modell B, Khan M, Darlison M. Survival in beta-thalassaemia major in the UK: data from the UK Thalassaemia Register. Lancet 2000; 355: 2051-2052
10 Li CK, Luk CW, Ling SC, Chik KW, Yuen HL, Li CK, Shing MM, Chang KO, Yuen PM. Morbidity and mortality patterns of thalassaemia major patients in Hong Kong: retrospective study. Hong Kong Med J 2002; 8: 255-260
11 Oudit GY, Trivieri MG, Khafer N, Liu PP, Backs PH. Role of L-type Ca2+ channels in iron transport and iron-overload cardiomyopathy. J Mol Med (Berl) 2006; 84: 349-364
12 Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 2000; 16: 521-555
13 Lansman JB, Hess P, Tsien RW. Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of cardiac entry into the pore. J Gen Physiol 1986; 88: 321-347
14 Hess P, Lansman JB, Tsien RW. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J Gen Physiol 1986; 88: 293-319
15 Tsushima RG, Wickenden AD, Bouchard RA, Oudit GY, Liu PP, Backs PH. Modulation of iron uptake in heart by L-type Ca2+ channel modifiers: possible implications in iron overload. Circ Res 1999; 84: 1302-1309
16 Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ack-erley C, Yazdanpanah M, Wilson GJ, Schwartz A, Liu PP, Backs PH. L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 2003; 9: 1187-1194
17 Fassos FF, Berkovich M, Daneman N, Koren L, Cameron R, Klein J, Falcitelli C, St Louis P, Daneman R, Koren G. The efficacy of dazepam in the treatment of acute iron overload in rats. Can J Physiol Pharmacol 1998; 76: 895-899
18 Ludwiczek S, Theuril J, Muckenthaler MU, Jakab M, Mair SM, Theuril M, Kiss J, Paulmichl M, Hentze MW, Ritter M, Weiss G. Ca2+ channel blockers reverse iron overload by a new mechanism via divalent metal transporter-1. Nat Med 2007; 13: 448-454
19 Parkes JG, Olivieri NF, Templeton DM. Characterization of Fe2+ and Fe3+ transport by iron-loaded cardiac myocytes. Toxicology 1997; 117: 141-151
20 Kumfu S, Chattipakorn S, Srichairatanakool S, Settakorn J, Fucharoen S, Chattipakorn N. T-type calcium channel as a portal of iron uptake into cardiomyocytes of beta-thalassaemic mice. Eur J Haematol 2011; 86: 156-166
21 Vassort G, Talavera K, Alvarez JL. Role of T-type Ca2+ channels in the heart. Cell Calcium 2006; 40: 205-220
22 Lory P, Bidaud I, Chemin J. T-type calcium channels in differentiation and proliferation. Cell Calcium 2006; 40: 135-146
23 Niwa N, Yasui K, Ophoth T, Takomura H, Shimizu A, Horiba M, Lee JK, Honjo H, Kamiya K, Kodama I. Cav3.2 subunit undergoes the functional T-type Ca2+ channel in murine hearts during the embryonic period. Am J Physiol Heart Circ Physiol 2004; 286: H2257-H2263
24 Nuss HB, Houser SR. T-type Ca2+ current is expressed in hypertrophied adult female left ventricular myocytes. Circ Res 1993; 73: 777-782
25 Martinez ML, Heredia MP, Delgado C. Expression of T-type Ca2+ channels in ventricular cells from hypertrophied rat hearts. J Mol Cell Cardiol 1999; 31: 1617-1625
26 Huang B, Qin D, Deng L, Boutjdir M, El-Sherif N. Reexpression of T-type Ca2+ channel gene and current in post-infarction remodeled rat ventricle. Cardiovasc Res 2000; 46: 442-449
27 Horiba M, Muto T, Ueda N, Ophoth T, Miwa K, Hojo M, Lee JK, Kamiya K, Kodama I, Yasui K. T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2+ channel blockers. Life Sci 2008; 82: 554-560
28 Kinoshita H, Kuwahara K, Takano M, Arai Y, Kuwabara Y, Yasuno S, Nakagawa Y, Nakanishi M, Harada M, Fujiwara M, Murakami M, Ueshima K, Nakao K. T-type Ca2+ channel blockade prevents sudden death in mice with heart failure. Circulation 2009; 120: 743-752
29 Hause AO, Aggoun Y, Bonnet D, Sidi D, Munnich A, Röth A, Rustin P. Idefenone and reduced cardiac hypertrophy in Friedreich's ataxia. Heart 2002; 87: 346-349
30 Wood JC, Otto-Duessel M, Gonzalez I, Aguilar MI, Shimada H, Nick H, Nelson M, Moats R. Deferasirox and deferoxiprone remove cardiac iron in the iron-overloaded gerbil. Transl Res 2006; 148: 272-280
31 Yang T, Dong WQ, Kuryshay VA, Brown AM. Deferoxamine prevents cardiac hypertrophy and failure in the gerbil model of iron-induced cardiomyopathy. J Lab Clin Med 2003; 142: 332-340
32 Yang T, Dong WQ, Kuryshay VA, Obejero-Paz C, Levy MN, Brittenham GM, Kiatchoosakun S, Kirkpatrick D, Hoit BD, Brown AM. Bimodal cardiac dysfunction in an animal model of iron overload. J Lab Clin Med 2002; 140: 263-271
33 Olivieri NF, Nathan DG, MacMillan JH, Wayne AS, Liu PP, McGee A, Martin M, Koren G, Cohen AR. Survival in medically treated patients with homozygous beta-thalassemia major in the UK: data from the UK Thalassaemia Register. Lancet 1985; 2: H2257-H2263
34 Olivieri NF. The beta-thalassemias. N Engl J Med 1999; 341: 99-109
35 Brittenham GM, Griffith PM, Nienhuis AW, McLaren CE, Young NS, Tucker EE, Allen CJ, Farrell DE, Harris JW. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N Engl J Med 1994; 331: 567-573

S-Editor Cheng JX L-Editor O’Neill M E-Editor Zheng XM