The minimum-uncertainty squeezed states for atoms and photons in a cavity

Sergey I Kryuchkov¹, Sergei K Suslov² and José M Vega-Guzmán¹

¹ Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287-1904, USA
² School of Mathematical and Statistical Sciences & Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287-1804, USA

E-mail: sergeykryuchkov@yahoo.com, sks@asu.edu and jmvega@asu.edu

Received 9 November 2012, in final form 28 February 2013
Published 9 May 2013
Online at stacks.iop.org/JPhysB/46/104007

Abstract

We describe a multi-parameter family of the minimum-uncertainty squeezed states for the harmonic oscillator in nonrelativistic quantum mechanics. They are derived by the action of the corresponding maximal kinematical invariance group on the standard ground state solution. We show that the product of the variances attains the required minimum value $1/4$ only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. The generalized coherent states are explicitly constructed and their Wigner function is studied. The overlap coefficients between the squeezed, or generalized harmonic, and the Fock states are explicitly evaluated in terms of hypergeometric functions and the corresponding photon statistics are discussed. Some applications to quantum optics, cavity quantum electrodynamics and superfocusing in channelling scattering are mentioned. Explicit solutions of the Heisenberg equations for radiation field operators with squeezing are found.

Online supplementary data available from stacks.iop.org/JPhysB/46/104007/mmedia

1. An introduction

From the very beginning, nonclassical states of the linear Planck oscillator, in particular the coherent and squeezed states, have been a subject of considerable interest in quantum physics (see [34, 42, 62, 86, 90, 143, 144] and the references therein). They occur naturally on an atomic scale [14, 84] and, possibly, can be observed among vibrational modes of crystals and molecules [30, 31, 44, 52]. A single monochromatic mode of light also represents a harmonic oscillator system for which nonclassical states can be generated very efficiently by using the interaction of laser light with nonlinear optical media [17, 102, 109–112, 131, 140, 167]. Generation of squeezed light with a single atom has been experimentally demonstrated [127]. On a macroscopic scale, the squeezed states are utilized for the detection of gravitational waves [75] below the so-called vacuum noise level and without violation of the uncertainty relation [1, 46, 130, 162].

The past decades’ progress in the generation of pure quantum states of motion of trapped particles provides not only a clear illustration of basic principles of quantum mechanics, but it also manifests the ultimate control of particle motion. These states are of interest from the standpoint of quantum measurement concepts and facilitate other applications including quantum computation (see [13, 19, 22, 24, 61, 68, 73, 84, 101, 117, 121, 128, 135, 138] and the references therein).

It is well known that the harmonic quantum states can be analysed through the dynamics of a single, two-level atom which radiatively couples to the single-mode radiation field in the Jaynes–Cummings(–Paul) model [21, 25, 82, 101, 141, 147, 165] extensively studied in the cavity QED [45, 68, 132, 133]. Creation and detection of thermal, Fock, coherent and squeezed states of motion of a single $^9\text{Be}^+$ ion confined in an rf Paul trap was reported in [117], where the state of atomic motion had been observed through the evolution of the atom’s internal levels (e.g., collapse and revival) under the influence of a Jaynes–Cummings interaction realized with the application of external (classical) fields. The distribution over the Fock states is deduced from an analysis of Rabi oscillations.

Moreover, Fock, coherent and squeezed states of motion of harmonically bound cold caesium atoms were experimentally observed in a 1D optical lattice [13, 121]. This method gives a direct access to the momentum distribution
through the square of the modulus of the wavefunction in velocity space (see also [20, 21, 23, 26, 32, 73, 83, 84, 101, 128, 163] and the references therein regarding cold trapped ions and their nonclassical states; progress in atomic physics and quantum optics using superconducting circuits is reviewed in [59, 173]).

Recent reports on observations of the dynamical Casimir effect [95, 172] strengthen the interest to the nonclassical states of generalized harmonic oscillators [34, 35, 39–41, 67, 114, 115, 123, 157, 166]. The amplification of quantum fluctuations by modulating parameters of an oscillator is closely related to the process of particle production in quantum fields [35, 80, 115, 123]. Other dynamical amplification mechanisms include the Unruh effect [161] and Hawking radiation [12, 71, 72].

The purpose of this paper is to construct the minimum-uncertainty squeezed states for quantum harmonic oscillators, which are important in these applications, in the most simple closed form. Our approach reveals the quantum numbers/integrals of motion of the squeezed states in terms of solution of a certain Ermakov-type system [104, 105, 153]. The corresponding generalizations of Fock states, which were originally found in [116] and recently rediscovered in [105], are discussed in detail. As a result, the probability amplitudes of these nonclassical states of motion are explicitly evaluated in terms of hypergeometric functions. Their experimental observations in cavity QED and quantum optics are briefly reviewed. Moreover, the radiation field operators of squeezed photons, which can be created from the QED vacuum, are introduced by second quantization with the aid of hidden symmetry of the harmonic oscillator problem in the Heisenberg picture.

In summary, experimental recognitions of the nonclassical harmonic states of motion have been achieved through the reconstruction of the Wigner function in optical quantum-state tomography [17, 112], from a Fourier analysis of Rabi oscillations of a trapped atom [117], and/or by a direct observation of the square of the modulus of the wavefunction for a large sample of cold caesium atoms in a 1D optical lattice [13, 121]. Our theoretical consideration complements all of these advanced experimental techniques by identifying the state quantum numbers from first principles. This approach may provide a guidance for engineering more advanced nonclassical states.

The paper is organized as follows. In sections 2 and 3, we describe the minimum-uncertainty squeezed states for the linear harmonic oscillator in coordinate representation. The generalized coherent, or TCS, states are constructed in section 4. In sections 4 and 5, the Wigner and Moyal functions of the squeezed states are evaluated directly from the corresponding wavefunctions and their classical time evolution is verified with the help of a computer algebra system. The eigenfunction expansions of the squeezed (or generalized harmonic) states in terms of the standard Fock ones are derived in section 6 (see also [38, 43, 87] and the references therein for important special cases). Some experiments on engineering of nonclassical states of motion are analysed in section 7. Here, the experimentally observed probability distributions are derived from our explicit expression for the probability amplitudes obtained in the previous section. Theoretically predicted in [30, 31], superfocusing in channel scattering is also discussed. In section 8, we revisit the radiation field quantization in a perfect cavity, which is important for applications to quantum optics. Nonstandard solutions of the Heisenberg equations of motion for the electromagnetic field operators, that naturally describe squeezing in the Heisenberg picture, are found. The variance of the number operator, which together with the eigenfunction expansion allows one to compare our results with experimentally observed squeezed photon statistics [17, 140], is evaluated from first principles in section 9. A brief summary is provided in the last section. A compact complex parametrization of the Schrödinger group can be found in the appendix.

2. The minimum-uncertainty squeezed states

The Heisenberg uncertainty principle is one of the fundamental laws of nature and the coherent states that minimize this uncertainty relation are well known. But, equally important in recent developments, minimum-uncertainty squeezed states are not so familiar outside a relatively narrow group of experts. Here, for the benefits of the reader, we construct these states as explicitly as possible and elaborate on some of their remarkable features.

The time-dependent Schrödinger equation for the simple harmonic oscillator in one dimension,

\[2i\psi_t + \psi_{xx} - \chi^2 \psi = 0, \]

has the following square integrable solution (Gaussian wave packet):

\[\psi_0(x, t) = e^{i(\alpha(x^2 + \beta x + \gamma t) + \delta(x + \epsilon t))} \sqrt{\beta(t)} e^{-(\beta(x + \epsilon t)^2)/2}, \]

where

\[\alpha(t) = \frac{\alpha_0 \cos 2t + \sin 2t}{\beta_0^2 \sin^2 t + (2\alpha_0 \sin t + \cos t)^2}, \]

\[\beta(t) = \frac{\beta_0}{\sqrt{\beta_0^4 \sin^2 t + (2\alpha_0 \sin t + \cos t)^2}}, \]

\[\gamma(t) = \gamma_0 - \frac{1}{2} \arctan \frac{\beta_0^2 \tan t}{1 + 2\alpha_0 \tan t}, \]

\[\delta(t) = \frac{\delta_0 (2\alpha_0 \sin t + \cos t) + \epsilon_0 \beta_0^2 \sin t}{\beta_0^4 \sin^2 t + (2\alpha_0 \sin t + \cos t)^2}, \]

\[\epsilon(t) = \frac{\epsilon_0 (2\alpha_0 \sin t + \cos t) - \beta_0 \delta_0 \sin t}{\sqrt{\beta_0^4 \sin^2 t + (2\alpha_0 \sin t + \cos t)^2}}, \]

\[\kappa(t) = \kappa_0 + \frac{\sin^2 t}{4} \left(\frac{\epsilon_0 \beta_0^2 (\alpha_0 \epsilon_0 - \beta_0 \delta_0) - \alpha_0 \delta_0^2}{\beta_0^4 \sin^2 t + (2\alpha_0 \sin t + \cos t)^2} + \frac{\epsilon_0^2 \beta_0^4 - \delta_0^4}{\beta_0^4 \sin^2 t + (2\alpha_0 \sin t + \cos t)^2} \right), \]
The ‘dynamic harmonic oscillator ground state’ (2.2)–(2.8) is the eigenfunction

$$E(t)\psi_0(x,t) = \frac{1}{\sqrt{2}} \psi_0(x,t),$$

of the time-dependent dynamical invariant,

$$E(t) = 1 + \frac{1}{2} \left(\frac{p^2 - 2ax - \delta^2}{\beta^2} + (\beta x + \epsilon)^2 \right)$$

$$= \frac{1}{\sqrt{2}} \left(\beta x + \epsilon - i \frac{p - 2ax - \delta}{\beta} \right) \alpha(t),$$

$$\frac{d}{dt}(\alpha(t)) = 0, \quad H = \frac{1}{2}(p^2 + x^2).$$

The time-dependent annihilation \(\alpha(t) \) and creation \(\alpha^\dagger(t) \) operators are given by the following Bogoliubov-type transformation:

$$\alpha(t) = \frac{1}{\sqrt{2}} \left(\beta x + \epsilon + i \frac{p - 2ax - \delta}{\beta} \right) \beta$$

$$= \frac{1}{\sqrt{2}} \left(\beta x + \epsilon - i \frac{p - 2ax - \delta}{\beta} \right),$$

where \(p = i \frac{d}{dt} \). In terms of solutions (2.3)–(2.8) [105]. They satisfy the canonical commutation relation,

$$\alpha(t)\alpha^\dagger(t) - \alpha^\dagger(t)\alpha(t) = 1,$$

and the spectrum of invariant \(E \) can be obtained by using the Heisenberg–Weyl algebra (a ‘second quantization’, the Fock states [57, 58, 129]). In particular,

$$\alpha(t)\psi_0(x,t) = 0, \quad \psi_0(x,t) = e^{i\epsilon(t)} \psi_0(x,t),$$

for the corresponding ‘vacuum state’. This form of quadratic dynamical invariant and creation and annihilation operators for the generalized harmonic oscillators has been obtained in [137] (see also [29, 40, 41, 156] and the references therein for important special cases). An application to the electromagnetic-field quantization is discussed in [93] (see also section 8).

The maximum kinematical invariance groups of the free particle and harmonic oscillator were introduced in [5, 6, 66, 79, 124, 125] (see also [16, 85, 120, 134, 154, 155] and the references therein). We use connections with the Ermakov-type system [104, 105] (see [49, 99] and the references therein regarding the Ermakov equation). A general procedure of obtaining new solutions by using envelopes of solutions (2.2)–(2.8).

$\textbf{3. The uncertainty relation and squeezing}$

A quantum state is said to be ‘squeezed’ if its oscillating variances \(\langle \Delta p \rangle^2 \) and \(\langle \Delta x \rangle^2 \) become smaller than the variances of the ‘static’ vacuum state \(\langle \Delta p \rangle^2 = \langle \Delta x \rangle^2 = 1/2 \) (with \(h = 1 \)). For the harmonic oscillator, the product of the variances attains a minimum value only at the instances when one variance is a minimum and the other is a maximum. If the minimum value of the product is equal to 1/4, then the state is called a minimum-uncertainty squeezed state (see, for example, [45, 70, 78, 146, 151, 152, 168, 174]). This property can be easily verified for solution (2.2).

According to the transform (2.12), the corresponding expectation values oscillate sinusoidally in time,

$$\langle x \rangle = -\frac{1}{\beta_0} \cos 2t + \epsilon_0 \cos t,$$

$$\langle p \rangle = -\frac{1}{\beta_0} \sin 2t + \epsilon_0 \sin t,$$

with the initial data \(\langle x \rangle|_{t=0} = -\epsilon_0/\beta_0 \) and \(\langle p \rangle|_{t=0} = -2\epsilon_0/\beta_0 \). This provides a connection of these parameters with the Ehrenfest theorem [47, 69, 170].

The expectation values \(\langle x \rangle \) and \(\langle p \rangle \) satisfy the classical equation for harmonic motion, \(y'' + y = 0 \), with the total ‘classical mechanical energy’ given by

$$\frac{1}{4} \left(\langle p \rangle^2 + \langle x \rangle^2 \right) = \frac{2\epsilon_0^2 - \beta_0^2}{2\beta_0^2} \left| \frac{1}{\epsilon_0^2} \right|^2,$$

for the standard deviations on solution (2.2)–(2.8), one obtains

$$\langle \Delta p \rangle^2 = \langle p^2 \rangle - \langle p \rangle^2 = \frac{1 + 4\beta_0^2}{4\beta_0^2} \cos 2t - 4\epsilon_0 \sin 2t,$$

$$\langle \Delta x \rangle^2 = \langle x^2 \rangle - \langle x \rangle^2 = \frac{1 + 4\epsilon_0^2}{4\epsilon_0^2} \cos 2t + 4\epsilon_0 \sin 2t.$$
and
\[
\langle (\Delta p)^2 \rangle (\langle \Delta x \rangle^2) = \frac{1}{16\beta_0^4} [(1 + 4\alpha_0^2 + \beta_0^4)^2 - (4\alpha_0^2 + \beta_0^4 - 1) \cos 2\tau - 4\alpha_0 \sin 2\tau]^2. \tag{3.6}
\]
Here,
\[
\sigma_p = \langle (\Delta p)^2 \rangle^{1/2}, \quad \sigma_x = \langle (\Delta x)^2 \rangle^{1/2} = \frac{1}{2\beta^2},
\]
\[
\sigma_{\mu} = \frac{1}{2} \langle (\Delta p \Delta x + \Delta x \Delta p) \rangle = \frac{\alpha}{\beta^2}.
\tag{3.7}
\]
with two invariants:
\[
\begin{align*}
\sigma_p + \sigma_x &= \frac{4\alpha^2 + \beta^4 + 1}{2\beta^2} = \frac{4\alpha_0^2 + \beta_0^4 + 1}{2\beta_0^2}, \\
\sigma_{\mu} &= \frac{1}{4}.
\end{align*}
\tag{3.8}
\]
(More invariants are given in (6.11) and (6.12.).)

The Schrödinger minimum-uncertainty states [144], when \(\langle (\Delta p)^2 \rangle = \langle (\Delta x)^2 \rangle = 1/2\), are defined by taking \(\alpha_0 = 0\) and \(\beta_0 = 1\). For the ground state solution, when \(\alpha_0 = \delta_0 = \epsilon_0 = 0\) and \(\beta_0 = \pm 1\), one obtains \(\langle x \rangle = (\langle p \rangle) = 0\) and
\[
\langle (\Delta p)^2 \rangle = \langle (\Delta x)^2 \rangle = \frac{1}{4}
\tag{3.9}
\]
as presented in [55, 64, 65, 70, 96, 119, 129].

By adding (3.3)–(3.5), we arrive at
\[
\langle H \rangle = \frac{1}{2} [\langle p^2 \rangle + \langle x^2 \rangle] = \frac{1 + 4\alpha_0^2 + \beta_0^4}{16\beta_0^4} + \frac{(2\alpha_0\beta_0 - \beta_0\beta_0)^2}{2\beta_0^4} + \frac{\alpha_0^2}{\beta_0^2} \geq \frac{1}{2}
\tag{3.10}
\]
for the total ‘quantum mechanical energy’ in terms of integrals of motion (the vacuum value 1/2 occurs when \(\beta_0 = \pm 1\) and \(\alpha_0 = \delta_0 = \epsilon_0 = 0\). See also [17, 43].

Therefore, the upper and lower bounds in the Heisenberg uncertainty relation are given by
\[
\max\{(\Delta p)^2\} \langle (\Delta x)^2 \rangle = \frac{(1 + 4\alpha_0^2 + \beta_0^4)^2}{16\beta_0^4},
\]
when
\[
\cot 2\tau = \frac{4\alpha_0}{4\alpha_0^2 + \beta_0^4 - 1}
\tag{3.11}
\]
and
\[
\min\{(\Delta p)^2\} \langle (\Delta x)^2 \rangle = \frac{1}{4} \quad \text{if} \quad \tan 2\tau = -\frac{4\alpha_0}{4\alpha_0^2 + \beta_0^4 - 1}. \tag{3.12}
\]

Our explicit formulas (3.4) and (3.5) show that the product of the variances attains the minimum value 1/4 only at the instances that one variance is a minimum and the other is a maximum as stated in [70]. Here, squeezing of one of the variances is explicitly described. Indeed,
\[
(4\alpha_0^2 + \beta_0^4 - 1) \cos 2\tau - 4\alpha_0 \sin 2\tau = \pm (4\alpha_0^2 + (\beta_0^2 + 1)^2) \sqrt{4\alpha_0^2 + (\beta_0^2 - 1)^2}^{1/2} \tag{3.13}
\]
derived under the minimization condition (3.12) and at the minimum
\[
\langle (\Delta p)^2 \rangle = \frac{1}{4\beta_0^4} [(1 + 4\alpha_0^2 + \beta_0^4) \pm (4\alpha_0^2 + (\beta_0^2 + 1)^2)^{1/2}
\times (4\alpha_0^2 + (\beta_0^2 - 1)^2)^{1/2}]. \tag{3.14}
\]

for all real values of our parameters. At this instant the squeezing occurs:
\[
\langle (\Delta p)^2 \rangle > \frac{1}{2} \left(\frac{1}{2} \right), \quad \langle (\Delta x)^2 \rangle < \frac{1}{2} \left(\frac{1}{2} \right)
\]
(for upper and lower signs, respectively). As a result, the minimum-uncertainty squeezed states for the linear harmonic oscillator are presented in closed form (2.3)–(2.8) (see also [70] for numerical simulations). A natural generalization of the Schrödinger minimum-uncertainty squeezed states for the linear harmonic oscillators discussed in [28, 29, 40] (see also [105] for more details). Experimentally observed time oscillations of the velocity variance [121] reveal certain coherence, which can be explained in models of quantum-damped oscillators discussed in [28, 29, 40] (see also the references therein).

4. An extension: the TCS states

We construct an analogue of the coherent states (generalized coherent states, or the TCS states in the terminology of [174]) in a standard fashion
\[
\psi(x, t) = e^{-|\xi|^2/2} \sum_{n=0}^{\infty} \frac{\eta^n}{\sqrt{n!}} e^{i(n\beta x + (2n + 1)\gamma)} H_n(\xi), \eta = e^{i\epsilon}, \tag{4.1}
\]
where \(\xi\) is an arbitrary complex parameter and the ‘dynamic’ wavefunctions are given by equations (1.2) and (1.16) of [105] reproduced here for the reader’s convenience:
\[
\Psi_n(x, t) = e^{i(\alpha x^2 + \delta x + \epsilon)} \sum_{n=0}^{\infty} \frac{(n)!}{\sqrt{n!}} H_n(\xi), \quad \xi = \beta x + \epsilon
\tag{4.2}
\]
(see also [40] and [116], where \(H_n(x)\) are the Hermite polynomials [126]. In the explicit form [144],
\[
\psi(x, t) = \frac{\sqrt{\beta/\pi}}{\sqrt{\beta}} e^{-((\xi^2 - |\eta|^2)/2)\sqrt{\beta/\pi}} \sum_{n=0}^{\infty} \left(\frac{\eta}{\sqrt{2}} \right)^n H_n(\xi), \tag{4.3}
\]
and the eigenvalue problem is given by [174]
\[
\hat{a}(t)\psi(x, t) = \eta\psi(x, t). \tag{4.4}
\]

An elementary calculation shows that on these ‘dynamic coherent states’,
\[
\langle x \rangle = \frac{1}{\beta\sqrt{2}} (\eta + \eta^*) - \frac{\epsilon}{\beta}, \quad \langle x \rangle_{|\epsilon=0} = \sqrt{\frac{\beta}{\beta_0}} |\xi| \cos(2(\gamma_0 + \phi)) - \frac{\epsilon_0}{\beta_0}, \tag{4.5}
\]
J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 104007
and
\begin{equation}
\langle p \rangle = \frac{\beta}{i\sqrt{2}} (\eta - \eta^*) + \frac{\alpha \sqrt{2}}{\beta} (\eta + \eta^*) + \left(\frac{2\alpha \epsilon}{\beta} \right),
\end{equation}
\begin{equation}
\langle p \rangle |_{\xi=0} = \beta_0 \sqrt{2} |\xi| \sin (2 \gamma_0 + \phi)
\end{equation}
\begin{equation}
+ 2^{3/2} \beta_0 |\xi| \cos (2 \gamma_0 + \phi) + \left(\delta_0 - 2 \alpha_0 \delta_0 \right),
\end{equation}
if \(\xi = |\xi| e^{i\phi} \). Moreover, a direct Mathematica verification shows that these expectation values satisfy the required classical equation for simple harmonic motion.

A similar calculation reveals that the corresponding oscillating variances \((\langle \Delta p \rangle^2)\) and \((\langle \Delta x \rangle^2)\) coincide with those for the ‘dynamic vacuum states’ given by (3.4) and (3.5). The ‘dynamic coherent states’ (4.3) are also the minimum-uncertainty squeezed states, but they are not eigenfunctions of the time-dependent dynamic invariant (2.10) when \(\eta \neq 0 \).

The Wigner function \(W(x, p) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi^*(x + y/2) \psi(x - y/2) e^{iyp} dy\), (4.7)
for the TCS states (4.3) is given by
\begin{equation}
W(x, p) = \frac{1}{\pi} \exp \left[- \left(p + \frac{\eta - \eta^*}{\sqrt{2}} \right)^2 - \left(Q - \frac{\eta + \eta^*}{\sqrt{2}} \right)^2 \right],
\end{equation}
(4.8)
where
\begin{equation}
P = \frac{p - 2\alpha x - \delta}{\beta}, \quad Q = \beta x + \epsilon.
\end{equation}
In view of (4.5) and (4.6), we arrive at the following expression of the Wigner function:
\begin{equation}
W(x, p) = \frac{1}{\pi} \exp \left[- \left(p - \langle p \rangle \right)^2 + 4\alpha^2 (p - \langle p \rangle) (x - \langle x \rangle) \right.
\end{equation}
\begin{equation}
\left. - \frac{2\alpha \epsilon + \beta^2}{\beta^2} (x - \langle x \rangle)^2 \right],
\end{equation}
(4.10)
in terms of the classical trajectories \(\langle x \rangle \) and \(\langle p \rangle \) and the solutions of the Ermakov-type system (2.3) and (2.4). Taking into account the time-dependent variances (3.7), one obtains
\begin{equation}
W(x, p; t) = W(x \cos t - p \sin t, x \sin t + p \cos t; t = 0)
\end{equation}
(4.12)
by a direct calculation—the graph of the Wigner function rotates in the phase plane without changing its shape [150]. (In a traditional approach, the quantum Liouville equation of motion for the Wigner function of the corresponding quadratic system is used in order to determine this time evolution [141]. We have obtained the same result directly from the wavefunctions; see also [142].) Some Mathematica animations can be found in [94].

5. The Moyal functions

The total energy of a ‘dynamic harmonic state’ (4.2) can be presented as
\begin{equation}
\langle H \rangle = \frac{1}{2} (\langle p^2 \rangle + \langle x^2 \rangle)
\end{equation}
\begin{equation}
= \left(n + \frac{1}{2} \right) + \frac{4\alpha^2}{\beta^2} + \frac{\alpha \epsilon}{\beta} + \frac{\beta^2}{2} (2\alpha \delta_0 - \beta \delta_0)^2 + \frac{\epsilon^2}{\beta^2}
\end{equation}
(5.1)
by (A.3)–(A.5) of [105].

The Moyal functions [122] for the ‘dynamic harmonic states’ (4.2)
\begin{equation}
W_{\eta}(x, p, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi^*(x + y/2, t) \psi(x - y/2, t) e^{iyp} dy
\end{equation}
(5.2)
can be evaluated in terms of Laguerre and Charlier polynomials in the standard way [88, 126, 141, 142]:
\begin{equation}
W_{\eta}(x, p, t) = (-1)^m e^{2i(\sigma - m)y} e^{-Q^2 - \pi^2/2} \pi^{m!} \sqrt{\beta^2}
\end{equation}
\begin{equation}
\times (Q - i \beta)^{n-m} \sqrt{\alpha^2} L_m^{n-m} (2(Q^2 + P^2))
\end{equation}
(5.3)
in the notation (5.4). Once again, the time evolution of the corresponding Wigner function \(W_{\eta}(x, p, t)\) is defined by equation (4.12).

In the case of an arbitrary linear combination,
\begin{equation}
\psi(x, t) = \sum_m c_m \psi_m(x, t),
\end{equation}
the Wigner function can be obtained as a double sum of Moyal’s functions:
\begin{equation}
W(x, p, t) = \sum_{m,n} c_m^* c_n W_{\eta}(x, p, t).
\end{equation}
(5.5)
A coherent superposition of two Fock states with \(n = 0 \) and \(n = 1 \) was experimentally realized in [121]. Moreover, the state of the electromagnetic field can be chosen anywhere between the single-photon and squeezed state in [81].

6. Eigenfunction expansions

Experimentally observed statistics for various squeezed states of photons and ions in a box [17, 68, 101, 112, 117, 140] can be naturally explained in terms of explicit developments with respect to the Fock states. For a linear harmonic oscillator in coordinate representation, we consider the corresponding wavefunctions and use known expansions in Hermite polynomials [97, 103, 126]. Group-theoretical properties are discussed, for example, in [41, 87, 126, 129].

6.1. Familiar expansions

For the stationary harmonic oscillator wavefunctions,
\begin{equation}
\Psi_n(x) = \frac{e^{-x^2/2}}{\sqrt{2^n n! \sqrt{\pi}}} H_n(x),
\end{equation}
(6.1)
there are two well-known expansions:
\begin{equation}
e^{i(k + A\beta)} \Psi_n(x + A) = \sum_{m=0}^{\infty} T_{nm}(A, B, \Gamma) \Psi_m(x),
\end{equation}
(6.2)
where
\[T_{mn}(A, B, \Gamma) = \int_{-\infty}^{\infty} \Psi_m^*(x) e^{i(\Gamma+\text{Re}B)x} \Psi_n(x + A) \, dx \]
\[= \frac{e^{(\text{Im}B/2)}}{\sqrt{m!n!}} e^{-\gamma/2} \left(\frac{\text{Re}A + \text{Re}B}{\sqrt{2}} \right) \left(\frac{\text{Re}A - \text{Re}B}{\sqrt{2}} \right)^n \times 2F_0 \left(\left. -n, -m; -\frac{1}{2} \right| - \frac{1}{v} \right) \]
with \(v = (\text{Re}A^2 + \text{Im}B^2)/2 \) (see, for example, [103, 126] for relations with the Heisenberg–Weyl group, Charlier polynomials and Poisson distribution) and
\[e^{i\alpha x^2} \Psi_n(\beta x) = \sum_{m=0}^\infty M_{mn}(\alpha, \beta) \Psi_m(x). \]

By the orthogonality,
\[M_{mn}(\alpha, \beta) = \int_{-\infty}^{\infty} \Psi_m^*(x) e^{i\alpha x^2} \Psi_n(x) \, dx, \]
and one can use the integral evaluated by Bailey:
\[\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} H_m(ax) H_n(bx) \, dx \]
\[= \frac{2^{m+n+1}}{\Gamma} \frac{1}{\sqrt{m!n!}} \left(\frac{m+n+1}{2} \right) (a^2 - \lambda^2)^{n/2} (b^2 - \lambda^2)^{n/2} \times 2F_1 \left(\left. -m, -n; \frac{1}{2} \right| \frac{1 - ab}{\sqrt{(a^2 - \lambda^2)(b^2 - \lambda^2)}} \right), \]
Re \(\lambda^2 > 0 \) if \(m + n \) is even; the integral vanishes by symmetry if \(m + n \) is odd; see [8, 107] and the references therein for earlier works on these integrals, some of their special cases and extensions. As a result,
\[M_{mn}(\alpha, \beta) = \frac{\Gamma}{\sqrt{m!n!}} \frac{1}{\sqrt{\pi}} \frac{1}{\frac{1}{2} \frac{2m+n+1}{2}} \left(\frac{m+n+1}{2} \right) (a^2 - \lambda^2)^{n/2} (b^2 - \lambda^2)^{n/2} \times 2F_1 \left(\left. -m, -n; \frac{1}{2} \right| \frac{1 - ab}{\sqrt{(a^2 - \lambda^2)(b^2 - \lambda^2)}} \right). \]

The terminating hypergeometric function can be transformed as follows:
\[2F_1 \left(\left. -k, -n; \frac{1}{2} \left(1 + i\epsilon \right) \right| \frac{1}{2} \right) = \frac{1}{2} \frac{1}{\Gamma} \frac{1}{\frac{1}{2} \frac{2m+n+1}{2}} \left(\frac{m+n+1}{2} \right) (a^2 - \lambda^2)^{n/2} (b^2 - \lambda^2)^{n/2} \times 2F_1 \left(\left. -m, -n; \frac{1}{2} \right| \frac{1 - ab}{\sqrt{(a^2 - \lambda^2)(b^2 - \lambda^2)}} \right). \]

6.2. Probability amplitudes

Expansions (6.2) and (6.4) result in
\[\psi_n(x, t) = e^{i(2\epsilon + 1)(\gamma - \eta)} \sqrt{\beta} \sum_{m=0}^\infty C_{mn}(t) \Psi_m(x), \]
where
\[C_{mn}(t) = \sum_{k=0}^\infty M_{mk}(\alpha, \beta) T_{kn} \left(\left. \frac{\epsilon}{\beta}, \delta - \frac{2\alpha \epsilon}{\beta}, \kappa - \frac{\alpha \epsilon^2}{\beta^2} \right| \frac{M_{mn}(\alpha, \beta)}{\beta}. \right) \]
The invariants are
\[\frac{4\alpha^2 + \beta^4 + 1}{2\beta^2} = \frac{4\alpha_0^2 + \beta_0^4 + 1}{2\beta_0^2}, \quad \kappa - \frac{\delta \epsilon}{\beta} = \kappa_0 - \frac{\delta_0 \epsilon_0}{\beta_0} \]
by a direct calculation. Another useful identity is given by
\[\frac{4\alpha^2 + \beta^4 + 1}{2\beta^2} = \frac{4\alpha_0^2 + \beta_0^4 + 1}{2\beta_0^2} = \frac{\sigma_\alpha + \sigma_\beta}{2}. \]
Thus all arguments of the hypergeometric functions in (6.10) are constants. Moreover, the time dependences of the matrix elements are given by complex phase factors only:
\[T_{mn} \left(\left. \frac{\epsilon}{\beta}, \delta - \frac{2\alpha \epsilon}{\beta}, \kappa - \frac{\alpha \epsilon^2}{\beta^2} \right| \frac{M_{mn}(\alpha, \beta)}{\beta}. \right) \]
\[= e^{i(\alpha - m)\beta t} \frac{\epsilon_0}{\beta_0} \frac{\delta_0 - 2\alpha_0 \epsilon_0}{\beta_0} \frac{\kappa_0 - \alpha_0 \epsilon_0^2}{\beta_0^2} \]
and
\[M_{mn}(\alpha, \beta) = e^{-i(2\epsilon + 1)(\gamma - \eta)} e^{i(n + 1/2)\sqrt{\frac{\beta_0}{\beta}} M_{mn}(\alpha_0, \beta_0)} \]
in view of the following identities:
\[\delta + i\epsilon = \left(\frac{\delta_0}{\beta_0} + i\epsilon_0 \right) e^{2i(y - y_0)} \]
\[\delta - \frac{2\alpha \epsilon}{\beta} + i\epsilon \beta = \left(\delta_0 - \frac{2\alpha_0 \epsilon_0}{\beta_0} + i\epsilon_0 \beta_0 \right) e^{-\nu}, \]
\[\frac{1 - \beta^2}{2} + i\epsilon \beta = \frac{\epsilon_0}{\beta_0} \left(\frac{1 - \beta_0^2}{2} + i\epsilon_0 \right) \]
\[\frac{1 + \beta^2}{2} - i\epsilon \beta = \frac{\epsilon_0}{\beta_0} \left(\frac{1 + \beta_0^2}{2} - i\epsilon_0 \right) \]
It is valid in the entire complex plane; the details are given in appendix B of [97]. The latter transformation completes evaluation of the Bailey integral (6.6) and the matrix elements (6.7) in terms of the hypergeometric functions. (Relations with the group SU(1, 1), Meixner polynomials [126] and with two special cases of the negative binomial, or Pascal, distribution [97] are discussed elsewhere.)
and some of their complex conjugates (see also the appendix for a complex parametrization of the Schrödinger group).

Finally, the eigenfunction expansion takes the form

$$\psi_n(x, t) = \sqrt{\beta_0} \sum_{m=0}^{\infty} c_{mn} e^{-i(m+1/2)t} \psi_m(x), \quad (6.21)$$

where the time-independent coefficients are explicitly given by

$$c_{mn} = \sum_{k=0}^{\infty} M_{mk}(\alpha_0, \beta_0) T_m \left(\frac{\epsilon_0}{\beta_0}, \frac{\delta_0}{\beta_0}, \kappa_0 \right)$$

$$= \sum_{k=0}^{\infty} T_m \left(\frac{\epsilon_0}{\beta_0}, \frac{\delta_0 - 2\alpha_0\epsilon_0}{\beta_0}, \kappa_0 - \frac{\alpha_0\epsilon_0^2}{\beta_0^2} \right) M_{kn}(\alpha_0, \beta_0) \quad (6.22)$$

in terms of the initial data/integrals of motion (of the corresponding Ermakov-type system). Thus the total probability amplitude is connected to the product of two infinite matrices related to the Poisson and Pascal distributions.

Moreover, a combination of (4.1) and (6.21) gives the eigenfunction expansion of the TCS states. It is worth noting also that our expansion (6.21) gives an independent verification of the fact that the ‘missing’ solutions (4.2) do satisfy the time-dependent Schrödinger equation (2.1). Indeed, they are written as the linear superposition (6.21) and (6.22) of standard solutions.

7. Nonclassical harmonic states of motion and photon statistics

A fundamental manifestation of the interaction between an atom and a field mode at resonance in an ideal cavity is the Rabi oscillations [68]. The first observation of the nonclassical radiation field of a micromaser is reported in [132] (the statistical and discrete nature of the photon field leads to collapse and revivals in the Rabi nutation [133]). Implementation of light for purposes of quantum information relies on the ability to synthesize, manipulate and characterize various quantum states of the electromagnetic field. A review [112] covers the latest developments in quantum-state tomography of optical fields and photons (see also the references therein).

Various classes of motional states in ion traps are discussed, for example, in [101]. Our expansion formula (6.22) is consistent with statistics for the coherent, squeezed and Fock states observed in [17, 101] for ions and photons in a box (see also [43, 87, 101]). A method to measure the quantum state of a harmonic oscillator through instantaneous probe–system interaction, preventing decoherence from disturbing the measurement, is proposed in [138].

7.1. Coherent states

In breakthrough experiments of the NIST group on engineering ionic states of motion, the coherent states of a single 9Be$^+$ ion confined in a Paul trap were produced from the ground state by a spatially uniform classical driving field and by ‘moving standing wave’ (see [101, 117] and the references therein for details). For the data presented in [117], the authors used the first method. The Poissonian distribution with the fitted mean quantum number $\bar{n} = 3.1 \pm 0.1$ was identified from the Fourier analysis of Rabi oscillations. In our notation, $\alpha_0 = 0$, $\beta_0 = 1$ and $\bar{n} = (\Delta_0^2 + \Delta_1^2)/2$.

The time evolution of the coherent state of cold Cs atoms was measured in [121]. For experimentally observed coherent photon states [62]; see, for example, [17] and [109].

7.2. Squeezed vacuum and Fock states

The minimum-uncertainty squeezed state with $\gamma_0 = \delta_0 = \epsilon_0 = \kappa_0 = 0$ is called the squeezed vacuum (see [43, 87, 101] when $\alpha_0 = 0$). Expansion (6.21) simplifies to

$$\psi_0(x, t) = e^{i(p(x)\sigma_z/2)} \sqrt{\beta(t)} \frac{\beta(t)}{\sqrt{\pi}} e^{-\beta^2(t)/2}$$

$$= \sqrt{\beta_0} \sum_{p=0}^{\infty} \sqrt{2p+1} p! \left(\frac{1 - \beta_0^2}{2} + \text{im}_0 \right)^p e^{-i(2p+1)/2} \psi_{2p}(x). \quad (7.1)$$

The probability distribution is restricted to the even states and given by

$$P_{m=2p} = \frac{(2p)!}{(\sigma_p + \sigma_z + 1)^{1/2} (2p)^{1/2} \Gamma(p)^2} \left(\frac{\sigma_p + \sigma_z - 1}{\sigma_p + \sigma_z + 1} \right)^p \quad (7.2)$$

in terms of the variances (3.8). This is a special case of the negative binomial, or Pascal, distribution.

A vacuum squeezed state of ionic motion was created in the NIST group experiments [117] by a parametric drive at 2ν (see also [73, 101] and the references therein). The data were fitted to the vacuum state distribution (7.2) with $\sigma_p + \sigma_z = 40 \pm 10$ and $\alpha_0 = 0$ (corresponding to a noise level 16 dB below the zero-point variance in the squeezed quadrature component; see [101, 117] for more experimental details).

A vacuum squeezed state of motion of neutral Cs atoms was also generated in [121]. Here, the cold atom sample contains about 10^7 atoms. Therefore a single image provides the full velocity distribution of the quantum state and the squeezing can be readily visualized—a set of images gives the full velocity distribution of the quantum state and the state’s time evolution (see [121] and the references therein for more details).

In a similar fashion, for the squeezed Fock state with $n = 1$ and $\gamma_0 = \delta_0 = \epsilon_0 = \kappa_0 = 0$, expansion (6.21) simplifies to

$$\psi_1(x, t) = \frac{2\beta(t)}{\sqrt{\pi}} e^{i(\sigma_0^2+\gamma(t))} \beta(t) x e^{-\beta^2(t)/2}$$

$$= \frac{\beta_0^{3/2}}{\sqrt{\pi}} \sum_{p=0}^{\infty} \frac{\Gamma(p+3/2)}{\sqrt{(2p+1)!}}$$

Omitted in ‘The Bible of Theoretical Physics’ [96].
The corresponding Pascal distribution for the odd states is given by
\[
P_{m=2p+1} = \frac{2^{3/2} (3/2)^p}{(\sigma_p + \sigma_s + 1)^{3/2}} \left(\frac{\sigma_p + \sigma_s - 1}{\sigma_p + \sigma_s + 1} \right)^p,
\]
(7.4)
where (3/2)_0 = 1 and (3/2)_p = (3/2)(5/2) · · · (1/2 + p).
These squeezed Fock states were generated in [13] and their dynamics was analysed in [121]. When ε_0 ≠ 0, displaced Fock states of the electromagnetic field have been synthesized in [109] (see also the references therein).

Moreover, even/odd oscillations in the photon number distribution of the ‘squeezed vacuum’ state, which are the consequence of pairwise generation of photon, were observed in [17, 140]. For an ideal minimum-uncertainty squeezed state zero probabilities for odd n are expected, since the Hamiltonian describing the parametric process occurring inside the nonlinear crystal is quadratic in the creation and annihilation operators [43, 141]. However, the probabilities for odd photon numbers are nonzero because the squeezed state detected there is a mixed state having undergone losses inside the resonator and during the detection process which cause the distribution to smear out (see [43, 140] for more details). The corresponding Pascal distributions (7.2) and (7.4) have different parameter values for even and odd states, which is consistent with the result of these experiments. Further details will be discussed elsewhere.

7.3. Superposition of Fock states

Generation of a coherent superposition of the ground state and the first excited Fock states of motion of cold Cs atoms in the harmonic microtraps, namely,
\[
\psi(x, t) = c_0 e^{-i\theta/2} \Psi_0(x) + c_1 e^{-i\theta/2} \Psi_1(x),
\]
(7.5)
where c_0 = 2^{-1/2} and c_1 = 2^{-1/2}e^{i\theta}, was reported in [121] and the corresponding time evolution had been experimentally observed. This nonclassical evolution contrasts with that of a coherent state which oscillates as a classical particle without deformation (see [121] for more details).

7.4. Superfocusing of particle beams

An effect of a proton beam focusing in a thin monocrystal film was predicted in [30, 31]. A highly collimated beam of protons (≈1 MeV) entering the channel of a monocrystal film forms at a certain depth an extremely sharp (<0.005 nm) and relatively long (some monolayers of the crystal) focusing area where the increase of the flux density can reach up to a thousand times. We shall refer to this effect as superfocusing (or Demkov’s microscope). The mean effective potential of the channel can be calculated and the deflection of the fast particle within the channel can be found. In many cases the potential of the central part of the averaged channel is cylindrically symmetric and harmonic to a good approximation which can create isochronous oscillations of the ions in the plane normal to the direction of the channel. The radius of this focus can, in principle, be as small as 10^{-2} nm.

According to Demkov’s theoretical model [30], the channel average potential is independent of the channel direction z and can be approximated by (x^2 + y^2)/2 for the transverse direction. The z motion along the channel is treated classically which allows one to replace z by the time t setting the velocity equal to unity. By the separation of variables, the normalized 2D time-dependent Schrödinger equation,
\[
2i\partial_t \psi + \partial_{xx} + \partial_{yy} = (x^2 + y^2)\psi,
\]
(7.6)
has the following orthonormal solution:
\[
\psi(x, y, t) = \frac{1}{\sqrt{\pi}} \left(\frac{\beta_0^2 \sin^2 t + \beta_0^{-2} \cos^2 t}{\beta_0^2 \sin^2 t + \beta_0^{-2} \cos^2 t} \right)^{-1/2} e^{-i \frac{\theta}{2} \tan(\beta_0^2 \tan t)}
\]
\[
\times \exp \left(\frac{i}{4} \left(\frac{\beta_0^2 - \beta_0^{-2}}{\beta_0^2 \sin^2 t + \beta_0^{-2} \cos^2 t} \right) \left(x^2 + y^2 \right) \right)
\]
\[
\times \exp \left(\frac{i}{2} \left(\frac{\delta_0 (2x - \delta_0 \sin t) \cos t}{\beta_0^2 \sin^2 t + \beta_0^{-2} \cos^2 t} \right) \frac{\sin^2 t}{\beta_0^2 \sin^2 t + \beta_0^{-2} \cos^2 t}
\]
\[
\times \exp \left(\frac{i}{2} \left(\frac{\delta_0 (2x - \delta_0 \sin t) \cos t}{\beta_0^2 \sin^2 t + \beta_0^{-2} \cos^2 t} \right) \frac{\sin^2 t}{\beta_0^2 \sin^2 t + \beta_0^{-2} \cos^2 t} \right) \right).
\]
(7.7)

(see the minimum-uncertainty squeezed state). Then
\[
|\psi(r, t)|^2 = \exp \left(\frac{-\left(x - \delta_0 \sin t \right)^2 + y^2}{2\beta_0^2 \sin^2 t + \beta_0^{-2} \cos^2 t} \right) \left(\frac{\pi}{\beta_0^2 \sin^2 t + \beta_0^{-2} \cos^2 t} \right)
\]
(7.8)

with δ_0 = -p_x and β_0 = R_{min}, β_0^{-1} = R_. Here, R_{min}R_ = 1 in the units of original papers [30, 31].

Among other things, Demkov has predicted that the counter beams may raise a yield of nuclear reactions by orders of magnitude. He also proposed an idea of grouping of beams under an action of longitudinal sawtooth fluctuations of accelerating potential. The validity of his 2D harmonic channel model was confirmed by Monte Carlo computer experiments [30, 31]. (For analogous lens effects in paraxial optics, see [2, 3, 113, 164] and the references therein.)

8. An application to cavity QED and quantum optics

Foundations of quantum electrodynamics and quantum optics are presented in many excellent books and articles [4, 10, 11, 15, 33, 37, 45, 50–54, 57, 58, 62, 63, 69, 78, 82, 89, 90, 108, 119, 136, 139, 145, 148, 167–169]. Here, we suggest a modification of the radiation field operators in a perfect cavity in order to incorporate the Schrödinger symmetry group into the second quantization. Our approach gives a natural description of squeezed photons that can be created as a result of the parametric amplification of quantum fluctuations in the dynamic Casimir effect [95, 172] and are registered in quantum optics [17, 112, 127].
8.1. Radiation field quantization in a perfect cavity

In the formalism of second quantization, one expands electromagnetic fields in terms of resonant modes of the particular cavity under consideration [45, 63, 82, 141, 148]. The cavity is represented by a volume V, bounded by a closed surface. Let $E_\alpha(r)$, $k_\alpha^2 = \omega_\alpha^2/c^2$ be the eigenfunctions and the eigenvalues of the corresponding boundary-value problem:

$$\nabla \times \nabla \times E - k^2 E = 0 \quad \text{in} \ V,$$

$$\nabla \times E = 0 \quad \text{on} \ S,$$

where \mathbf{n} is a unit normal vector to S. The vector functions $H_\alpha(r)$ are related to $E_\alpha(r)$ by

$$\nabla \times E_\lambda = k_\lambda H_\lambda, \quad \nabla \times H_\lambda = k_\lambda E_\lambda. \quad (8.2)$$

The eigenfunctions are orthonormal in V:

$$\int_V E_\lambda \cdot E_\mu \, dV = \delta_{\lambda\mu}, \quad \int_V H_\lambda \cdot H_\mu \, dV = \delta_{\lambda\mu}. \quad (8.3)$$

The electric and magnetic fields are expanded in the following forms:

$$E(r, t) = -\frac{\sqrt{4\pi}}{c} \sum_\lambda \psi_\lambda(t) E_\lambda(r), \quad H(r, t) = \frac{\sqrt{4\pi}}{c} \sum_\lambda \omega_\lambda \psi_\lambda(t) H_\lambda(r). \quad (8.4)$$

The total energy is given by

$$\mathcal{H} = \int \frac{\mathbf{H}^2 + E^2}{8\pi} \, dV = \frac{1}{2} \sum_\lambda \left(p_\lambda^2 + \omega_\lambda^2 q_\lambda^2 \right) \quad (8.5)$$

and the Maxwell equations,

$$\nabla \times E = -\frac{1}{c} \frac{\partial H}{\partial t}, \quad \nabla \times H = \frac{1}{c} \frac{\partial E}{\partial t}, \quad (8.6)$$

are equivalent to the canonical Hamiltonian equations,

$$\frac{dp_\lambda}{dt} = \frac{\partial \mathcal{H}}{\partial q_\lambda} = p_\lambda, \quad \frac{dq_\lambda}{dt} = -\frac{\partial \mathcal{H}}{\partial p_\lambda} = -\omega_\lambda^2 q_\lambda. \quad (8.7)$$

respectively.

In the second quantization, one replaces canonically conjugate coordinates and momenta by the time-dependent operators $q_\lambda(t)$ and $p_\lambda(t)$ that satisfy the commutation rules

$$[q_\lambda(t), q_\mu(t)] = [p_\lambda(t), p_\mu(t)] = 0, \quad [q_\lambda(t), p_\mu(t)] = i\hbar \delta_{\lambda\mu}. \quad (8.8)$$

The time evolution is determined by the Heisenberg equations of motion [69]:

$$\frac{d}{dt} p_\lambda(t) = \frac{i}{\hbar} [\mathcal{H}, q_\lambda(t)], \quad \frac{d}{dt} q_\lambda(t) = \frac{i}{\hbar} [q_\lambda(t), \mathcal{H}], \quad (8.9)$$

with appropriate initial conditions8. (From now on, we consider a single photon cavity mode, say ν, with frequency $\omega_\nu = 1$ and use the units $c = \hbar = 1$.)

8 The standard form of Heisenberg’s equations can be obtained by the time reversal $t \rightarrow -t$ (with $\omega_\nu \rightarrow -\omega_\nu$, $\gamma_0 \rightarrow -\gamma_0$, $\delta_0 \rightarrow -\delta_0$ and $\kappa_0 \rightarrow -\kappa_0$).

8.2. Nonstandard solutions of Heisenberg’s equations

Explicit solution of equations (8.9) for squeezed states can be found as follows:

$$p(t) = \frac{\hat{b}(t) - \hat{b}^\dagger(t)}{\sqrt{2}}, \quad q(t) = \frac{\hat{b}(t) + \hat{b}^\dagger(t)}{\sqrt{2}}. \quad (8.10)$$

The time-dependent annihilation $\hat{b}(t)$ and creation $\hat{b}^\dagger(t)$ operators are given by [93]

$$\hat{b}(t) = \frac{e^{-2i\gamma t}}{\sqrt{2}} \left(\beta x + \epsilon + i\frac{p - 2ax - \delta}{\beta} \right), \quad (8.11)$$

in terms of solutions (2.3)–(2.8) of the Ermakov-type system. The time-independent operators x and p obey the canonical commutation rule $[x, p] = i$ in an abstract Hilbert space. At all times,

$$\hat{b}(t)\hat{b}^\dagger(t) - \hat{b}^\dagger(t)\hat{b}(t) = 1. \quad (8.12)$$

By back substitution, the operators $\hat{b}(t)$ and $\hat{b}^\dagger(t)$ are solutions of the Heisenberg equation:

$$\frac{d}{dt} \hat{b}(t) = i[\hat{b}(t), \mathcal{H}], \quad \frac{d}{dt} \hat{b}^\dagger(t) = i[\hat{b}^\dagger(t), \mathcal{H}], \quad (8.13)$$

with the standard Hamiltonian

$$\mathcal{H} = \frac{1}{2}(p^2 + x^2) \quad (8.14)$$

subject to the following initial conditions:

$$\hat{b}(0) = \frac{e^{-2i\gamma_0}}{\sqrt{2}} \left(\beta_0 x + \epsilon_0 + i\frac{p - 2ax_0 - \delta_0}{\beta_0} \right), \quad \hat{b}^\dagger(0) = \frac{e^{2i\gamma_0}}{\sqrt{2}} \left(\beta_0 x + \epsilon_0 - i\frac{p - 2ax_0 - \delta_0}{\beta_0} \right). \quad (8.15)$$

One may say that the transformation (8.11) allow us to incorporate the Schrödinger group of harmonic oscillator, originally found in coordinate representation [125], into a more abstract Heisenberg picture (the classical case occurs when $\beta_0 = 1$ and $\omega_0 = \gamma_0 = \delta_0 = \epsilon_0 = \kappa_0 = 0$).

8.3. Dynamic Fock space for a single mode

The time-dependent quadratic invariant,

$$\hat{E}(t) = \frac{1}{2} \left[\frac{(p - 2ax - \delta)^2}{\beta^2} + (\beta x + \epsilon)^2 \right] = \frac{1}{2} [\hat{b}(t)\hat{b}^\dagger(t) + \hat{b}^\dagger(t)\hat{b}(t)], \quad \frac{d}{dt} \hat{E}(t) = 0 \quad (8.16)$$

with

$$\frac{d}{dt} \hat{E} + i\hbar^{-1}[\hat{E}, \mathcal{H}] = 0, \quad \mathcal{H} = \frac{1}{2}(p^2 + x^2), \quad (8.17)$$

extends the standard Hamiltonian/number operator \mathcal{H} for any given real values of parameters/integrals of motion in our description of the squeezed photon state. The oscillator-type spectrum,

$$\hat{E}(t)|\psi_\nu(t)\rangle = (n + \frac{1}{2})|\psi_\nu(t)\rangle. \quad (8.18)$$
can be obtained by using the modified creation and annihilation operators [4]
\[
\hat{b}(t)|\psi_n(t)\rangle = \sqrt{n} |\psi_{n-1}(t)\rangle, \\
\hat{b}^\dagger(t)|\psi_n(t)\rangle = \sqrt{n + 1} |\psi_{n+1}(t)\rangle.
\]
(8.19)

With a proper choice of the global phase, the latter eigenstates of dynamical invariant satisfy the time-dependent Schrödinger equation in an abstract Hilbert space [56, 93].

For the ‘minimum-uncertainty squeezed states’, one obtains
\[
\hat{b}(t)|\psi_0(t)\rangle = 0
\]
(8.20)

with
\[
\langle \psi_0(t)|H|\psi_0(t)\rangle = \frac{1 + 4\alpha_0^2 + \beta_0^2}{4\beta_0^2} + \frac{(2\alpha_0\beta_0 - \beta_0\delta_0)^2 + \delta_0^2}{2\beta_0^2} \geq 1
\]
(8.21)
in the Schrödinger picture. The generalized coherent (or TCS) states are given by
\[
\hat{b}(t)|\psi(t)\rangle = \zeta|\psi(t)\rangle
\]
(8.22)

for an arbitrary complex \(\zeta \neq 0\).

8.4. Expectation values and variances for field oscillators

The noncommuting electric \(\mathbf{E}(r, t)\) and magnetic \(\mathbf{H}(r, t)\) field operators are given by equations (8.4), (8.10) and (8.11) for a squeezed photon in the Heisenberg picture, which provides a more direct analogy between quantum and classical physics [68]. The electromagnetic radiation mode in a cavity resonator is analogous to a harmonic oscillator [70]. In the Schrödinger picture, all previous results on the minimum-uncertainty squeezed states can be reproduced for the field oscillators in an operator QED style. For a single mode with \(\omega_0 = 1\),
\[
\langle \mathbf{E}(r, t) \rangle = -\sqrt{4\pi} E_0(r) \langle \psi(r) | p | \psi(r) \rangle, \\
\langle \mathbf{H}(r, t) \rangle = \sqrt{4\pi} H_0(r) \langle \psi(r) | x | \psi(r) \rangle,
\]
(8.23)

where equations (3.1) and (3.2) hold. The corresponding variances are given (up to a normalization) by equations (A.4) and (A.5) of [105].

The minimum-uncertainty squeezed states are identified in quantum optics [34, 70, 65, 81, 87, 101, 146, 149, 131, 136, 174] and in state tomography [18, 48, 102, 112]. They are also important in the dynamical Casimir effect [35–37, 45, 59, 93, 95, 115, 172, 173], where the photon squeezing occurs as a result of a “parametric excitation” of vacuum oscillations.

9. An important variance

The Hamiltonian \(H = (p^2 + x^2)/2\) can be rewritten in terms of the creation and annihilation operators (2.12) as follows:
\[
H = \left(\frac{4\alpha^2 - \beta^2 + 1}{4\beta^2} - i\alpha\right) \hat{a}^\dagger(t) \\
+ \left(\frac{4\alpha^2 - \beta^2 + 1}{4\beta^2} + i\alpha\right) \hat{a}(t)^2 \\
+ \frac{4\alpha^2 + \beta^2 + 1}{4\beta^2} \left[\hat{a}(t)\hat{a}^\dagger(t) + \hat{a}^\dagger(t)\hat{a}(t)\right]
\]

and by definition
\[
\operatorname{Var} H = \langle (H - \langle H \rangle)^2 \rangle = \langle H^2 \rangle - \langle H \rangle^2.
\]
(9.2)

Then a direct Mathematica calculation results in
\[
\begin{align*}
\operatorname{Var} H &= \left(4\alpha_0^2 + (\beta_0^2 + 1)^2\right) \left(4\alpha_0^2 + (\beta_0^2 - 1)^2\right) \\
&\times \left[\left(n + \frac{1}{2}\right)^2 + \frac{3}{4}\right] \\
&+ \left(4\alpha_0^2 + (\beta_0^2 + 1)^2\right)\left(2\alpha_0\beta_0 - \beta_0\delta_0\right)^2 + \delta_0^2 \\
&- \delta_0^2 \left(\delta_0^2 + \beta_0^2\right) \left(n + \frac{1}{2}\right),
\end{align*}
\]
(9.3)

for the wavefunctions (4.2) in terms of the invariants (6.11) and (6.12). (These calculations can be performed in the pure operator form with the help of standard relations (1.15) of [105]; see also (8.19).) In terms of the variances,
\[
\begin{align*}
\operatorname{Var} H &= \frac{1}{2} \left[\sigma_p + \sigma_x^2 - 1\right] \left(n + \frac{1}{2}\right)^2 + \frac{3}{4} \\
&+ 2\left[\sigma_p (p)^2 + 2\sigma_p (p) (x) + \sigma_x (x)^2\right] \left(n + \frac{1}{2}\right),
\end{align*}
\]
(9.4)

where \(\sigma_p, \sigma_x, \sigma_x\) are given by (3.7). When \(n = 0\), this formula is consistent with the variance of the number operator derived for a generic Gaussian Wigner function in [43].

A similar expression holds for the TCS states. Computational details are left to the reader.

10. Conclusion

In this paper, we have reviewed some properties of the nonclassical states of harmonic motion which were originally found in [116] (in coordinate representation) and have been rediscovered recently in [105]. They are useful in applications to cavity QED, quantum optics and in channelling scattering [30]. In particular, the minimum-uncertainty squeezed states have been studied in detail. Expansions in the Fock states have been established and their relations with experimentally observed photon statistics briefly discussed. In the method of second quantization, a modification of the radiation field operators for squeezed photons in a perfect cavity has been suggested with the help of a nonstandard solution of Heisenberg’s equation of motion. These results may be of interest to everyone who studies introductory quantum mechanics and quantum optics.

Acknowledgments

We would like to thank Viktor Dodonov, Mark Faifman, Geza Giedke, John R. Klauder, Alex Mahalov, Vladimir I. Man’ko.
and Andreas Ruffing for valuable discussions. The authors are grateful to the referees for valuable suggestions. This research is supported in part by the National Science Foundation—Enhancing the Mathematical Sciences Workforce in the 21st Century (EMSW21), award # 0838705; the Alfred P Sloan Foundation—Sloan National Pipeline Program in the 21st Century (EMSW21), award # LTR 05/19/09.

Appendix: complex parametrization of the Schrödinger group

The ansatz
\[
\psi(x, t) = \sqrt{\beta(t)} e^{i \omega(t,t)} \chi(\xi, \tau),
\]
where relations (2.3)–(2.8) hold, transforms the time-dependent Schrödinger equation (2.1) into itself:
\[
2i \dot{\psi}_t + \psi_{xx} - \lambda^2 \psi = e^{i\delta} \beta^{5/2}(2i\chi_{t} + \chi_{xx} - \xi^2 \chi) = 0
\]
with respect to the new variables \(\xi = \beta(t)x + \epsilon(t) \) and \(\tau = -\gamma(t) \). This transformation is known as the Schrödinger group for the linear harmonic oscillator [125].

Let us introduce the following complex-valued function:
\[
z = c_1 e^{\epsilon i} + c_2 e^{-\epsilon i}, \quad z' + z = 0,
\]
where by definition
\[
c_1 = (1 + \beta_0^2)/2 - i\epsilon_0, \quad c_2 = (1 - \beta_0^2)/2 + i\epsilon_0
\]
\[
(1 + c_2 c_1^2 = 1, \quad |c_1|^2 - |c_2|^2 = \beta_0^2)
\]
and
\[
c_3 = \delta_0 - \beta_0^2 - i\epsilon_0
\]
Then equations (2.3)–(2.8) can be rewritten in a compact form in terms of our complex parameters \(c_1, c_2 \) and \(c_3 \). Indeed, with the help of identities (6.17)–(6.20), one obtains
\[
|z| = (|c_1|^2 + c_1 c_2^* e^{2i\epsilon} + c_1 c_2 e^{-2i\epsilon} + |c_2|^2)^{1/2}
\]
and
\[
\alpha = i \frac{c_1 c_2^* e^{2i\epsilon} - c_1 c_2 e^{-2i\epsilon}}{2|z|^2}
\]
\[
|z| = \frac{\beta_0}{|z|} e^{\pm \sqrt{|c_1|^2 - |c_2|^2}},
\]
\[
\gamma = \gamma_0 - \frac{1}{2} \arg z,
\]
\[
\delta = \frac{\beta_0}{2|z|} (c_3 e^{i\arg z} + c_3^* e^{-i\arg z}),
\]
\[
\epsilon = \frac{1}{2} (c_3 e^{i\arg z} - c_3^* e^{-i\arg z}),
\]
\[
\kappa = \kappa_0 - \frac{1}{8} \left[(1 - c_3 c_3^*) (1 - e^{-2i\arg z}) \right]
\]
The inverse relations between the essential, real and complex, parameters are given by
\[
\alpha_0 = \frac{i}{2} (c_1 c_2^* - c_1 c_2), \quad \beta_0 = \pm \sqrt{|c_1|^2 - |c_2|^2}, \quad \delta_0 = \pm \frac{1}{2} \sqrt{|c_1|^2 - |c_2|^2} (c_1 + c_2^*)
\]
Formulas (A.7)–(A.12) provide a complex parametrization of the Schrödinger group for the simple harmonic oscillator originally found in [125] (see also [104, 105] and the references therein). A similar parametrization for the wavefunctions (4.2) was used in [40] (see [67] and [93] for an extension to generalized harmonic oscillators).

References

[1] Abadie J et al 2011 A gravitational wave observatory operating beyond the quantum shot-noise limit Nature Phys. 7 962–5
[2] Abramochkin E G and Volostnikov V G 2004 Sprial light beams Phys.—Usp. 47 1177–205
[3] Agrawal G P, Ghatak A K and Mehtav C L 1974 Propagation of a partially coherent beam through Selfoc fibers Opt. Commun. 12 333–7
[4] Akhiezer A and Beresteiskii V B 1965 Quantum Electrodynamics (New York: Interscience)
[5] Anderson R L, Kumei S and Wulfman C E 1972 Invariants of the equations of wave mechanics: I Rev. Mex. Fís. 21 1–33
[6] Anderson R L, Kumei S and Wulfman C E 1972 Invariants of the equations of wave mechanics: II One-particle Schrödinger equations Rev. Mex. Fís. 21 35–57
[7] Bagrov V G, Belov V V and Ternov I M 1983 Quasiclassical trajectory-coherent states of a particle in an arbitrary electromagnetic field J. Math. Phys. 24 2855–9
[8] Bailey W N 1948 Some integrals involving Hermite polynomials J. Lond. Math. Soc. 23 291–7
[9] Belov V V and Karavaev A G 1987 Higher approximations for quasiclassical trajectory-coherent states Izv. Vyssh. Uchebn. Zaved. Fiz. 31 14–8 (in Russian)

See also Belov V V and Karavaev A G 1989 Sov. Phys. J. 30 819–22 (Engl. transl.)
[10] Beresteikii V B, Lifshitz E M and Pitaevskii L P 1971 Relativistic Quantum Theory (Oxford: Pergamon)
[11] Białynicki-Birula I and Białynicki-Birula Z 1975 Quantum Electrodynamics (Oxford: Pergamon)
[12] Birrell N D and Davies P C W 1982 Quantum Fields in Curved Space (Cambridge: Cambridge University Press)
[13] Boucholle I, Perrin H, Kuhn A, Morinaga M and Salomon C 1999 Neutral atoms prepared in Fock states of a one-dimensional harmonic potential Phys. Rev. A 59 R8–11
[14] Buchleitner A, Delande D and Zakrzewski J 2002 Non-dispersive wave packets in periodically driven quantum systems Phys. Rep. 368 409–547
[15] Bogoliubov N N and Shirkov D K V 1980 Introduction to the Theory of Quantized Fields 3rd edn (New York: Wiley)
[16] Boyer C P, Sharp R T and Winternitz P 1976 Symmetry breaking interactions for the time dependent Schrödinger equation J. Math. Phys. 17 1439–51
[17] Breitenbach G, Schiller S and Mlynek J 1997 Measurement of the quantum states of squeezed light Nature 387 471–5
[18] Chergnej V N and Man ko V V 2011 Probability representation and state-extended uncertainty relations J. Russ. Laser Res. 32 125–9
[19] Cirac J I 2012 Entanglement in many-body quantum systems arXiv:1205.3742v1 [quant-ph]
[20] Cirac J I, Blatt R, Parkins A S and Zoller P 1993 Preparation of Fock states by observing of quantum jumps in an ion trap Phys. Rev. Lett. 70 762–5
[21] Cirac J I, Blatt R, Parkins A S and Zoller P 1994 Quantum collapse and revival in the motion of a single trapped ion Phys. Rev. A 49 1202–7
[159] Suslov S K 2011 http://hahn.la.asu.edu/~suslov/curres/index.htm

[160] Takabayasi T 1954 The formulation of quantum mechanics in terms of ensemble in phase space Prog. Theor. Phys. 11 341–73

[161] Unruh W G 1976 Notes on black-hole evaporation Phys. Rev. D 14 870–92

[162] Vahlbruch H et al 2008 Observation of squeezed light with 10-dB quantum-noise reduction Phys. Rev. Lett. 100 033602

[163] Verkerk P, Lounis B, Salomon C and Cohen-Tannoudji C 1992 Dynamics and spatial order of cold Cesium atoms in a periodic optical potential Phys. Rev. Lett. 68 3861–4

[164] Vinogradova M B, Rudenko O V and Sukhorukov A P 1979 Theory of Waves (Moscow: Nauka) (in Russian)

[165] Vogel W and de Matos Filho R L 1995 Nonlinear Jaynes–Cummings dynamics of a trapped ion Phys. Rev. A 52 4214–7

[166] Vysotskii V I, Vysotskyy M V and Adamenko S V 2012 Formation and application of correlated states in nonstationary systems at low energies of interacting particles J. Exp. Theor. Phys. 114 243–52

[167] Walls D F 1983 Squeezed states of light Nature 306 141–6

[168] Walls D F and Milburn G J 2008 Quantum Optics (Berlin: Springer)

[169] Weinberg S 1998 The Quantum Theory of Fields vol 1–3 (Cambridge: Cambridge University Press)

[170] Weinberg S 2013 Lectures on Quantum Mechanics (New York: Cambridge University Press)

[171] Wigner E 1932 On the quantum correction for thermodynamic equilibrium Phys. Rev. 40 749–59

[172] Wilson C M, Johansson G, Pourkabirian A, Simoen M, Johansson J R, Duty T, Nori F and Delsing P 2011 Observation of the dynamical Casimir effect in a superconducting circuit Nature 479 376–9

[173] You J Q and Nori F 2011 Atomic physics and quantum optics using superconducting circuits Nature 474 589–97

[174] Yuen H P 1976 Two-photon coherent states of the radiation field Phys. Rev. A 13 2226–43