Microphthalmia-associated Transcription Factor (MITF) Promotes Differentiation of Human Retinal Pigment Epithelium (RPE) by Regulating microRNAs-204/211 Expression*§

Received for publication, February 20, 2012, and in revised form, April 18, 2012. Published, JBC Papers in Press, April 20, 2012, DOI 10.1074/jbc.M112.354761

Jeffrey Adjianto 1, John J. Castorino 1, Zi-Xuan Wang 1, Arvydas Maminishkis 5, Gerald B. Grunwald 6, and Nancy J. Philp 1,2

From the 1 Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and the 5 NEI, National Institutes of Health, Bethesda, Maryland 20892

Background: microRNAs 204/211 regulate retinal pigment epithelial cell phenotype.

Results: In RPE, MITF regulates miR-204/211 expression and down-regulation of MITF results in loss of RPE phenotype, which can be prevented by overexpressing miR-204/211.

Conclusion: MITF-mediated expression of miR-204/211 directs RPE differentiation.

Significance: miR-204/211-based therapeutics may be effective treatments for diseases that involve loss of RPE phenotype.

The retinal pigment epithelium (RPE) plays a fundamental role in maintaining visual function and dedifferentiation of RPE contributes to the pathophysiology of several ocular diseases. To identify microRNAs (miRNAs) that may be involved in RPE differentiation, we compared the miRNA expression profiles of differentiated primary human fetal RPE (hfRPE) cells to dedifferentiated hfRPE cells. We found that miR-204/211, the two most highly expressed miRNAs in the RPE, were significantly down-regulated in dedifferentiated hfRPE cells. Importantly, transfection of pre-miR-204/211 into hfRPE cells promoted differentiation whereas adding miR-204/211 inhibitors led to their dedifferentiation. Microphthalmia-associated transcription factor (MITF) is a key regulator of RPE differentiation that was also down-regulated in dedifferentiated hfRPE cells. MITF knockdown decreased miR-204/211 expression and caused hfRPE dedifferentiation. Significantly, co-transfection of MITF siRNA with pre-miR-204/211 rescued RPE phenotype. Collectively, our data show that miR-204/211 promote RPE differentiation, suggesting that miR-204/211-based therapeutics may be effective treatments for diseases that involve RPE dedifferentiation such as proliferative vitreoretinopathy.
MiRNAs are small (~23 nucleotides) regulatory RNAs that suppress gene expression by binding to specific sequences in the 3’-untranslated region of their target mRNA. Studies in various organ systems revealed that certain miRNAs are highly enriched in a tissue-specific pattern (13–16). Furthermore, transfection of such miRNAs into stem cells (17, 18) or even fibroblasts (19) can induce differentiation into the cell type that normally expresses the miRNA at high levels. These findings support the notion that specific miRNAs may direct cell specification and differentiation of cells that normally express them at high levels (reviewed in Ref. 20). Because down-regulation of tissue-specific miRNAs is commonly associated with disease, their restoration may slow or inhibit disease progression. For example, miR-145 directs smooth muscle differentiation, and its expression was down-regulated in vascular walls with neointimal lesions induced by arterial injury (15). Formation of its expression was down-regulated in vascular walls with neointimal lesions induced by arterial injury (15). Formation of these lesions was inhibited when injured arteries were transfected with miR-145.

In the RPE, miR-204 and 211 are the two most highly enriched miRNAs, and their expression is critical for maintaining barrier properties and function (16). miR-211 resides in the sixth intron of TRPM1 (melastatin, transient receptor potential cation channel subfamily M member 1), the transcription of which is regulated by microphthalmia-associated transcription factor (MITF) (21), a master regulator of melanocyte and RPE differentiation (22, 23). Mice with homozygous null mutation in the MITF gene have white coats and microphthalmia (24). Furthermore, histological analysis of microphthalmia mouse eyes demonstrated that the absence of MITF prevented RPE differentiation (25). Because MITF and miR-204/211 are important regulators of RPE development and function, it was of interest to determine whether MITF regulates miR-204/211 expression in the RPE and whether expressing high levels of miR-204/211 alone is sufficient to direct RPE differentiation.

In this study, we used primary cultures of human fetal RPE cells (hfRPE) developed by Maminiushkis et al. as a model system (26, 27). These cells exhibit properties (morphology, physiology, protein and mRNA profiles) characteristic of native fetal or adult human RPE. In our experiments, we mimicked RPE detachment and dedifferentiation (as occurs in PVR) by subculturing cells at low cell density and found that this process resulted in significant down-regulation of MITF and miR-204/211. Using this in vitro model of RPE dedifferentiation, we found that introduction of pre-miR-204/211 promoted RPE differentiation and protected them from dedifferentiation. Our findings may help facilitate development of miR-204/211-based therapies for human ocular diseases that involve RPE dedifferentiation such as age-related macular degeneration and PVR.

EXPERIMENTAL PROCEDURES

hfRPE Culture Model—hfRPE monolayers were cultured on T25 flasks (P0 hfRPE) as described previously (26). Briefly, hfRPE cells were trypsinized from a T25 flask and seeded onto 12-well Transwells at ~1.25 × 10^5 cells/well. P1 hfRPE cells were cultured for 3–4 weeks to reach maturity (transepithelial resistance (TER) >500 ohms-cm^2) prior to experimentation. TER was measured with an epithelial volt-ohm meter (EVOM) (WPI, Sarasota, FL) at room temperature. Media and Transwell resistances were taken into account by subtracting 122 ohms-cm^2 from the EVOM readout. To test for choroidal fibroblast contamination, hfRPE cells were stained with collagen type I/procollagen antibody (Cell Sciences; Canton, MA). Human fetal choroidal fibroblast cells were used as positive controls and were cultured in the same medium as hfRPE cells.

Total mRNA Extraction—Total mRNA of samples was extracted using miVana miRNA extraction kit (Ambion, Austin, TX) according to the manufacturer’s protocol. RNA bound in the column matrix was treated with RQ1 DNase (5 units/sample; Promega) at 37 °C for 30 min followed by multiple wash steps according to the manufacturer’s protocol. RNA was eluted with diethylpyrocarbonate-treated water preheated to 85 °C. Total RNA concentration was measuring using Qubit® fluorometer (Invitrogen).

miRNA Microarray and Data Analysis—Total mRNA of differentiated and dedifferentiated hfRPE samples were prepared using TRIzol (Invitrogen) as described previously (28), and 100 ng of total mRNA from each sample was labeled and hybridized to a human miRNA microarray (V2) from Agilent Technologies (Santa Clara, CA) according to the manufacturer’s protocol. The microarray was scanned with an Agilent Microarray Scanner, and the data were processed using Feature Extraction software v10.7.3.1 (Agilent). The microarray was normalized to miR-24 and miR-130a, whose expression levels were the least different between the two RPE cell phenotypes. The normalized array was analyzed using Significance Analysis of Microarrays (SAM 4.0 with R2.14.1) (29) for two-class unpaired statistical analysis with Δ = 5.0 and -fold change ≥2. miRNAs with fluorescence <50 in both RPE sample types were eliminated. LOG2 fluorescence intensities of miRNAs were represented with a heatmap generated in MultiExperiment Viewer (MeV v4.8). The normalized version of the microarray data can be downloaded from NCBI GEO database (accession number GSE36137).

Reverse Transcription and Real-time Quantitative PCR (qPCR)—RNA (1 μg/sample) was reverse transcribed using oligo(dT)_20 primers and SuperScript III (Invitrogen). qPCRs for gene expression studies were performed using iTaq SYBR Green Supermix with ROX (Bio-Rad) in 20-μl reactions (10 ng of cDNA/RxN). qPCR was performed using Eppendorf Mastercycler® ep realplex³. Primers were designed according to guidelines set by Dieffenbach et al. (30). Custom oligonucleotides were purchased from Eurofins MWG Operon (Huntsville, AL). Sequences for all primers used in this study are listed in supplemental Table 1.

qRT-PCR Using TaqMan miRNA Assays—miR-204, miR-211, miR-125b, let-7g, miR-21, and miR-31 TaqMan primers and probes were purchased from Applied Biosystems. 10 ng of total RNA was used in reverse transcription, and the PCRs were performed according to the manufacturer’s protocol. qPCR data were analyzed using the comparative 2^–ΔΔCt method (31).

qPCR Data Analysis—For SYBR Green qRT-PCR, ribosomal protein S18 (RPS18) gene was used as reference gene because the 2^–ΔCt values of RPS18 from differentiated versus dedifferentiated hfRPE samples were statistically insignificant. For TaqMan assays, U18 snoRNA was used as reference gene because
miR-204/211 targets were obtained from TargetScan, miRanda, PicTar, and miRDB. Because predictions made by TargetScan (and PicTar), among other algorithms, have been shown to be among the most accurate (as analyzed by proteomics) (32), miRNA target genes ranked in the “top 100” list of TargetScan were scored higher. Each gene was annotated with their respective ontology profiles and pathway profile (GenMAPP and KEGG data bases) that were extracted from the annotation files of Affymetrix human microarray chipset (HG-U133 Plus 2). This list of miR-204/211 targets is available in supplemental Table 3, and a selection of these targets was categorized and is listed in Fig. 6.

RESULTS

RPE Dedifferentiation Involves Loss of RPE-specific Genes and miR-204/211—The RPE is normally quiescent and nonmigratory, but in disease conditions such as PVR, it can undergo dedifferentiation into fibroblast-like cells that are proliferative and motile. This phenomenon was observed in vitro as cells at the free edge of differentiated hfRPE monolayer dedifferentiate, migrate, and establish a new population of sparsely pigmented fibroblast-like cells (28). To study the role of miRNAs in RPE differentiation, we compared the miRNA expression profile of dedifferentiated versus differentiated hfRPE cells using miRNA microarray analysis (Fig. 1A). In this experiment, we also included a sample of partially differentiated hfRPE cells (pigmented but lost epithelial morphology) to represent RPE cells in an earlier stage of dedifferentiation. From this array, we found that the three most highly expressed miRNAs (miR-204, miR-211, and miR-125b) in the RPE (16) were significantly down-regulated in dedifferentiated hfRPE cells. miR-200a and miR-200b, which suppress EMT by targeting Zeb1 and Zeb2 transcription factors (33), were also down-regulated in dedifferentiated RPE cells. In addition, expression of miRNAs that are commonly down-regulated (let-7 family) or up-regulated (miR-21 and miR-31) in cancer was also altered. This model of RPE dedifferentiation, however, was difficult to manipulate because dedifferentiation and migration of cells from the edge of the RPE monolayer occur sporadically and therefore cannot be experimentally induced and controlled. Thus, we developed an alternative in vitro model of RPE dedifferentiation in which we passaged P1 hfRPE cells at low density (P2 at 1%, P3 at 30%) twice to produce a homogeneous population of dedifferentiated hfRPE cells (Fig. 1B). However, such seeding conditions also promote growth of choroidal fibroblast contaminants that may be present in the hfRPE culture. To address this concern, we examined the purity of our hfRPE cultures and showed that our dedifferentiated hfRPE cells did not express collagen type I (gene and protein), which was highly expressed in choroidal fibroblast cells (supplemental Fig. 2). Using this model of RPE dedifferentiation, we validated our microarray data with TaqMan qRT-PCR miRNA assay (Fig. 1C). In agreement with the microarray data, we found that miR-204/211 were among the most significantly down-regulated miRNAs in dedifferentiated RPE cells.

To further understand the biological role of miR-204/211 in the RPE, putative miR-204/211 target genes were identified using in silico miRNA target prediction tools (see Fig. 6). Next, we compared the expression of these genes in differentiated versus dedifferentiated RPE cells by qRT-PCR analysis. We found that several of the predicted miR-204/211 target genes (CDH2, CREBS, TCF3 (TCF7L1), TGFBR1, RAB22A, ELOVL6, TCF12, TCF4 (TCF7L2), SMAD4, and SIRT1) were up-regulated in dedifferentiated hfRPE cells, consistent with the loss of miR-204/211 (Fig. 1C). In addition, dedifferentiated hfRPE cells express low levels of genes that are known to be important for RPE function: blood-retinal barrier (CDH1, CLDN10, OCLN), ion and nutrient transport (BEST1, SLC16A1 (MCT1), SLC16A8 (MCT3), SLC2A1 (GLUT1)), and retinal cycle (RPE65, CRALBP) (Fig. 1E). Accompanying these changes was
significant up-regulation of genes that are commonly associated with EMT (i.e. CDH2, CCND1, VIM, ZEB1, ZEB2, TGFB1, TGFB2, and SNAI2) (Fig. 1F). The changes in gene expression were mirrored by changes in protein expression; RPE-specific proteins (CRLBP, MCT3, and RPE65) were down-regulated in dedifferentiated hfRPE cells, whereas vimentin and N-cadherin were up-regulated (Fig. 1G).

The study of miR-204/211 in RPE differentiation necessitates the use of a model system of RPE differentiation and dedifferentiation. We chose to vary seeding density (P1 to P2 at 7.5, 15,
With pre-miR-204/211 (25 nM each) or control miRNA (50 nM), we transfected hfRPE cells (15% density) to induce RPE dedifferentiation and transfected them with pre-miR-control (50 nM), pre-miR-204 (25 nM), pre-miR-211 (25 nM), or both pre-miR-204/211 (25 nM each) and cultured for 7 days. RNA was extracted, and TaqMan qRT-PCR was performed to verify increased expression of mature miR-204/211 in samples transfected with corresponding miRNAs. In samples treated with pre-miR-204, -211, or both, the mRNA levels of several putative miR-204/211 target genes (CREBS, RAB22A, ELOVL6, and TCF12) were also down-regulated (Fig. 2B). Furthermore, cells transfected with miR-204/211 expressed significantly higher levels of RPE-specific genes (CLDN10, CLDN19, BEST1, MCT3, RPE65, and CRALBP) (Fig. 2C), and lower levels of genes associated with EMT (CDH2, VIM, and SNAI2) (Fig. 2D), suggesting that miR-204/211 promote RPE epithelial phenotype by suppressing genes that promote EMT. Western blot analysis also demonstrated that miR-204/211-transfected cells expressed higher levels of CRALBP and MCT3 and lower levels of N-cadherin (Fig. 2E).

To evaluate the role of miR-204/211 in establishing barrier functions of the RPE, we transfected hfRPE cells (15% density) with pre-miR-204/211 (25 nM each) or control miRNA (50 nM) on Transwell filters and measured TER after 21 days in culture. In this experiment, pre-miRNAs were transfected only twice (once upon seeding and another on the 3rd day). Fig. 2F shows that at the end of the 3rd week, hfRPE cells transfected with miR-204/211 had higher TER (79 ± 23 ohms/cm²) compared with control (35 ± 8 ohms/cm²; n = 4; p = 0.03). Immunostaining of these cells revealed that hfRPE cells transfected with control miRNA formed multiple layered fibroblast-like cells with stress fibers that did not express MCT3 (Fig. 2G, upper). In contrast, hfRPE cells transfected with pre-miR-204/211 formed a monolayer of hexagonally packed cells with circumferential bundles of actin filaments at the lateral junctions and apical microvilli as revealed by phalloidin staining. Furthermore, these cells reestablished proper epithelial polarity as MCT3 labeling was restricted to the basolateral membrane as observed in a mature and polarized RPE in situ. Taken together, our data indicate that miR-204/211 can prevent RPE dedifferentiation. Inhibiting miR-204/211 Caused RPE Dedifferentiation—Because pre-miR-204/211 prevented RPE dedifferentiation, functional inhibition of miR-204/211 using miR-204/211 antagonists (anti-miRs) should block RPE differentiation. To test this hypothesis, we seeded hfRPE cells at 30% density and transfected them with anti-miR-204 (25 nM + 25 nM control anti-miR), 25 nM anti-miR-211 (25 nM + 25 nM control anti-miR), or both anti-miR-204/211 (25 nM each). qRT-PCR analysis showed that transfection of either anti-miR-204 or anti-miR-211 alone decreased expression of both miR-204 and miR-211 (Fig. 3A). However, the expression of miR-204/211 target genes (CREBS, ELOVL6, TCF12, and RAB22A) was significantly increased only in cells co-transfected with both anti-miR-204 and -211 (Fig. 3B). qRT-PCR results showed that transfection of anti-miR-204 or -211 resulted in down-regulation of RPE-specific genes (BEST1, CLDN10, CLDN19, MCT3, and RPE65) (Fig. 3C) and up-regulation of EMT-associated genes (CDH2, VIM, and SNAI2) (Fig. 3D). Our data are consistent with findings by Wang et al., who showed that inhibiting miR-204 or -211 in differentiated RPE cells resulted in loss of RPE-specific genes and up-regulation of EMT-associated genes (16). Importantly, we found that co-transfection of anti-miR-204 and -211 resulted in more significant down-regulation of RPE-specific genes and up-regulation of EMT-associated genes compared with anti-miR-204 or anti-miR-211 alone. Consistent with qRT-PCR data, Western blot analysis also demonstrated that inhibition of both miR-204 and -211 resulted in the most significant down-regulation of RPE-specific proteins (CRALBP and MCT3) and up-regulation of EMT-associated proteins (vimentin and N-cadherin) (Fig. 3E), indicating that miR-204 compensated for miR-211 activity and vice versa.

To test the effect of anti-miR-204/211 on RPE barrier function, we measured the TER of hfRPE cells cultured at 30% density transfected with anti-miR-204, -211, or both anti-miR-204/211 (two transfections over 14 days). After 14 days in culture, control hfRPE cells established a resistance of 7250 ohms cm², whereas cells transfected with anti-miR-204, -211, or both 204/211 had significantly lower resistances (7120, 180, and 80 ohms cm², respectively) (Fig. 3F). The morphology of cells transfected with either anti-miR-204 or -211 alone was not sig-
FIGURE 2. miR-204/211 promote RPE function and integrity. **A**–**D**, hRPE cells were seeded at 15% density on Transwell filters and transfected (twice; days 0 and 3) with control pre-miRNA (50 nM), pre-miR-204 (25 nM + 25 nM control pre-miRNA), pre-miR-211 (25 nM + 25 nM control pre-miRNA), or pre-miR-204/211 (25 nM each) and cultured for 7 days. In these samples, qRT-PCR was performed to compare relative expression of mature miR-204/211 (**A**), miR-204/211 targets (**B**), RPE-specific genes (**C**), and EMT-associated genes (**D**). **E**, in a parallel experiment with identical treatment but grown over 21 days, Western blotting was performed to analyze relative expression of RPE-specific and EMT-associated proteins. **F**, TER of these samples were measured on the 21st day to evaluate barrier function. **G**, a set of these samples was fixed and immunostained with DAPI, phalloidin (actin filaments), and MCT3. The confocal vertical (Z-X) sections of the samples are shown in panels above their corresponding en-face (X-Y) representations. Statistically significant changes (p < 0.05) are marked with asterisks. Error bars: S.D.
FIGURE 3. Inhibition of miR-204/211 results in loss of RPE morphology and phenotype. A–D, hfRPE cells were seeded at 30% cell density on Transwell filters and transfected (twice; days 0 and 3) with control anti-miR (50 nM), anti-miR-204 (25 nM + 25 nM control anti-miR), anti-miR-211 (25 nM + 25 nM control anti-miR), or both anti-miR-204/211 (25 nM each) and cultured for 7 days. In these samples, qRT-PCR was performed to compare relative expression of mature miR-204/211 (A), miR-204/211 targets (B), RPE-specific genes (C), or EMT-associated genes (D). E, in a parallel experiment with identical treatment but grown over 10 days, Western blotting was performed to analyze protein expression RPE-specific and EMT-associated proteins. F, in a separate experiment with the same treatment (two transfections at days 0 and 3) but grown over 14 days, TER was measured with EVOM to evaluate RPE barrier function. G and H, from the experiment in which RPE cells were treated with anti-miRs and grown over 10 days, a set of samples was fixed and immunostained with ZO-1 and MCT3 (G) and DAPI and phalloidin (actin filaments) (H). The confocal vertical (Z-X) sections of the samples are shown in panels above their corresponding en-face (X-Y) representations. Statistically significant changes (p < 0.05) are marked with asterisks. Error bars, S.D.
nificantly different from control anti-miRNA-transfected cells (data not shown), but cells transfected with both anti-miR-204 and -211 exhibited dramatic loss of RPE phenotype as characterized by the complete loss of MCT3 and ZO-1 and the formation of multilayered cells with stress fibers (Fig. 3, G and H). Collectively, our data indicate that inhibition of both miR-204 and -211 is required to induce RPE dedifferentiation.

MITF Knockdown Decreased Expression of miR-204/211 and Their Host Genes, TRPM1 and TRPM3—Because down-regulation of miR-204/211 caused RPE dedifferentiation, we examined upstream mechanisms that regulate miR-204/211 expression. miR-204 and miR-211 lie within the introns of TRPM3 and TRPM1, respectively, and early studies in melanocytes showed that transcription of miR-211 and its host gene, TRPM1, are coordinately regulated by MITF. Thus, we compared MITF gene expression in differentiated versus dedifferentiated RPE cells and found that MITF and its target genes (TRPM1, TRPM3, TYR, and TYRP1) were significantly down-regulated in dedifferentiated RPE cells (Fig. 4A). To further examine the role of MITF in miR-204/211 expression, we transfected hRPE cells (30% density) with MITF siRNA (30 nM) versus control siRNA (30 nM) and found that MITF knockdown caused significant down-regulation of its target genes (TRPM1, TRPM3, TYR, and TYRP1) and miR-204/211 (Fig. 4, B and C). The MITF KD-induced decrease in miR-204/211 expression was accompanied by a concomitant up-regulation of miR-204/211 target genes (CREB5, RAB22A, ELOVL6, SNAI2, and TCF12) (Fig. 4D).

To determine whether miR-204/211 down-regulation was the primary cause for the loss of RPE phenotype in MITF KD cells, we examined whether addition of pre-miR-204/211 could prevent RPE dedifferentiation caused by MITF KD. hRPE cells (30% density) were transfected with MITF siRNA (30 nM) + control miRNA (30 nM), MITF siRNA (30 nM) + pre-miR-204/211 (15 nM each), or control miRNA and siRNA (30 nM each) (once at time of seeding and again 3 days later) and cultured for 7 days. Consistent with miR-204/211 levels (Fig. 5A), expression of miR-204/211 targets (CREB5, ELOVL6, TCF12, and RAB22A) was up-regulated in MITF KD cells, and these genes were suppressed in hRPE cells transfected with both MITF siRNA and pre-miR-204/211 (Fig. 5B). MITF siRNA also decreased expression of RPE-specific genes (BEST1, CRALBP, CLDN19, MCT3, and RPE65), and this effect was prevented by co-transfection with pre-miR-204/211 (Fig. 5C). Expression of EMT-associated genes that were up-regulated in MITF KD cells was also suppressed in hRPE cells transfected with both MITF siRNA and pre-miR-204/211 (Fig. 5D). These effects were confirmed at the protein level by Western blot analysis (Fig. 5E; hRPE cultured for 21 days).

Next, we examined whether hRPE cells transfected with both MITF siRNA and miR-204/211 could reestablish barrier functions. TER was measured on the 14th and 21st day, and we observed that hRPE cells with MITF KD had no detectable resistance at either time point (Fig. 5F). However, hRPE cells transfected with both MITF siRNA and pre-miR-204/211 had resistances of ~240 ohms-cm² on the 21st day, demonstrating
that miR-204/211 can prevent loss of RPE barrier function caused by MITF KD. Immunofluorescence staining of these samples showed that MITF KD resulted in loss of MCT3 and ZO-1 (Fig. 5G), whereas co-transfecting miR-204/211 with MITF siRNA maintained expression and polarized distribution of MCT3 and ZO-1 to the basolateral membrane and tight junction region, respectively. Phalloidin staining revealed that knockdown of MITF in hRPE resulted in the formation of mul-
MITF Promotes RPE Differentiation by Regulating miR-204/211

tilayered fibroblast-like cells with stress fibers. Co-transfection of hfRPE cells with MITF siRNA and pre-miR-204/211 rescued the RPE phenotype (Fig. 5H). Taken together, our data strongly suggest that loss of MITF led to miR-204/211 down-regulation and subsequent loss of RPE phenotype and function.

DISCUSSION

Dedifferentiation of RPE cells is a major contributing factor to the pathophysiolo gy of proliferative ocular diseases such as PVR (8). Thus, we sought to understand the molecular mechanisms underlying RPE dedifferentiation and identify potential therapeutics that could inhibit this process. We focused our search to microRNAs because they are important regulators of gene expression and have well established roles in many biological processes including development and differentiation (17, 34–37). Previously, we and others demonstrated that RPE cells at the free edge of an intact monolayer can proliferate and migrate, giving rise to mesenchymal cells that express low levels of RPE-specific proteins and increased levels of EMT-associated proteins (28, 38). Microarray analysis comparing the miRNA profile of these samples with that of differentiated RPE cells revealed that miR-204 and miR-211 are among the most significantly down-regulated miRNAs in RPE dedifferentiation. Because different tissues have unique miRNA profiles that reflect their state of differentiation and functional activity, this finding is consistent with an early study by Wang et al., who demonstrated that miR-204/211 are the two most highly expressed miRNAs in the RPE and are also critical for maintaining its epithelial phenotype and function (16). Here, we extend upon the previously established role of miR-204/211 in maintaining RPE function by demonstrating that miR-204/211 could also direct RPE differentiation. Furthermore, we demonstrate that MITF regulates the transcription of miR-204/211 in the RPE and show for the first time that miR-204/211 act downstream of MITF to promote RPE differentiation.

In addition to miR-204/211, our microarray analysis revealed 49 additional miRNAs that were down-regulated by >2-fold in dedifferentiated RPE cells (Fig. 1A). Although any one of these miRNAs could potentially have a role in RPE differentiation, the let-7 family of miRNA was of particular interest as many of its members (isoforms a, b, c, d, e, f, and g) were significantly down-regulated in dedifferentiated RPE cells. Let-7 is a marker of cellular differentiation (39) that also has well established functions as a tumor suppressor (40). Earlier studies showed that let-7 inhibits tumor growth by suppressing the expression of high mobility group A2 (41–43), which induces transcription of two well established regulators of EMT, SNAIL, and TWIST (44, 45). Therefore, down-regulation of let-7 and the resultant increase in SNAIL and TWIST expression in RPE cells may contribute to the loss of RPE phenotype. In addition to let-7, miR-26a/b were also down-regulated in dedifferentiated RPE cells. Because miR-26a/b regulate cell cycle progression by targeting genes such as cyclin D2, D3, E1, and E2, and cyclin-dependent kinases (CDK4 and 6) (46, 47), down-regulation of miR-26a/b may also contribute to the increased proliferative potential that is characteristic of dedifferentiated RPE cells. MiR-204 and -211, the two most highly enriched miRNAs in the RPE, were most significantly down-regulated in dedifferentiated hfRPE cells. Because miR-204/211 target EMT-associated genes (SNAI2 and TGFBR2) and are necessary for maintaining RPE function (16), we asked whether they could also directly regulate RPE differentiation. To test this idea, we developed a new model in which we can induce RPE dedifferentiation by subculturing hfRPE cells at low cell density and test whether overexpressing miR-204/211 in these cells could rescue the RPE phenotype.

This model system is based upon the finding that primary RPE cells have a limited number of divisions within which they can return to a differentiated state (48). Thus hfRPE cells seeded above a “threshold” density will differentiate whereas cells seeded below the threshold will dedifferentiate. By varying cell seeding density, we found that hfRPE cells seeded at 30% or higher achieved differentiation whereas hfRPE cells seeded at 15% density or lower resulted in dedifferentiation (supplemental Fig. 1). However, concerns arise when primary cells were seeded at low densities to induce dedifferentiation because these conditions favor the overgrowth of contaminating fibroblasts, which may be a confounding factor in our analysis.

To address this issue, we first demonstrated that collagen type I/procollagen is a suitable fibroblast marker by showing that fibroblasts derived from human fetal choroid (the most likely source of contaminating cells) stained positive for collagen type I/procollagen whereas P1 RPE cells on Transwells do not (supplemental Fig. 2, A and B). However, we did find an average of 31 ± 7 randomly scattered collagen I-positive fibroblast cells embedded underneath the RPE monolayer (~600,000 RPE cells/Transwell) (n = 9). RPE cells seeded at 15% density on Transwells for 3 days; n = 3 each) had ~2–3 collagen I-positive cells (supplemental Fig. 2C). Because fibroblast cells have a doubling time of ~24 h, a small starting number of fibroblasts (120,000 RPE cells) could not have overtaken the RPE culture. Consistent with these observations, RT-PCR and Western blot analysis showed that choroid-derived fibroblasts express collagen type I, whereas dedifferentiated RPE cells (from RPE seeded at 1% density) do not (supplemental Fig. 2, D and E), thus confirming that dedifferentiated RPE cells were of RPE origin and that our model system is valid for the study of RPE dedifferentiation.

FIGURE 5. MITF knockdown causes loss of miR-204/211 and RPE phenotype that can be prevented by transfection with pre-miR-204/211. A–D, hfRPE cells were seeded at 30% cell density and transfected (twice; days 0 and 3) with control siRNA (30 nm) + control pre-miRNA (30 nm), MITF siRNA (30 nm) + control pre-miRNA (30 nm), or MITF siRNA (30 nm) + pre-miR-204/211 (15 nm each) and cultured for 7 days. In these samples, qRT-PCR was performed to compare relative expression of mature miR-204/211 (A), miR-204/211 targets (B), RPE-specific genes (C), and EMT-associated genes (D). E, in a parallel experiment with identical treatment but grown over 21 days, Western blotting was performed to analyze protein expression RPE-specific and EMT-associated proteins, F–H, in these samples TER was measured with EVOM (14 and 21 days) to evaluate RPE barrier function (F), and a set of these samples was fixed and stained with ZO-1 and MCT3 antibodies (G) and DAPI and phalloidin (actin filaments) (H). The confocal vertical (Z-X) sections of the samples are shown in panels above their corresponding en-face (X-Y) representations. Statistically significant changes (p < 0.05) are marked with asterisks. Error bars, S.D.
Using this model, we show that hRPE dedifferentiation caused by seeding at 15% density can be prevented by transfecting with pre-miR-204, -211, or both -204/211, as evaluated by increases in RPE-specific gene and protein expressions, increase in TER, and formation of characteristic RPE morphology (Fig. 2). Of particular importance is the observation that transfecting pre-miR-204 or -211 individually had the same effect on RPE differentiation (mRNA, protein, morphology) as transfecting both pre-miR-204 and -211. In addition, antimiR-induced loss of RPE phenotype (mRNA, proteins, and morphology) occurred only when cells were transfected simultaneously with both anti-miR-204 and -211, but not individually (Fig. 3). Collectively, these results suggest that miR-204 and -211 are functionally redundant in RPE cells, consistent with the fact that miR-204 and -211 possess an identical seed sequence.

Acknowledgments—We thank Dr. Stephen Peiper for providing microRNA microarray chips; Alex Mingda Zhu, Vanessa Tercero, and Lea Hecht for technical assistance; George Purkins for help with microRNA microarray analysis; Dr. Ashiwel Undieh for permission to use the facilities of the Department of Pharmaceutical Sciences and Dr. Kathy Boesze-Battaglia and Frank Stefano for training and use of the AER Nikon confocal microscope at the University of Pennsylvania, School of Dental Medicine, live-cell imaging core.
REFERENCES

1. Strauss, O. (2005) The retinal pigment epithelium in visual function. Physiol. Rev. 85, 845–881
2. Adjianto, J., Banzon, T., Jalicke, S., Wang, N. S., and Miller, S. S. (2009) CO2-induced ion and fluid transport in human retinal pigment epithelium. J. Gen. Physiol. 133, 603–622
3. Lamb, T. D., and Pugh, E. N., Jr. (2004) Dark adaptation and the retinoid cycle of vision. Prog. Retin. Eye Res. 23, 307–380
4. Kevany, R. M., and Palczewski, K. (2010) Phagocytosis of retinal rod and cone photoreceptors. Physiology 25, 8–15
5. Steele, F. R., Chader, G. J., Johnson, L. V., and Tombran-Tink, J. (1993) Mitf functions as an alternative transcription factor for cell differentiation and proliferation during development of the chick RPE. Dev. Biol. 161, 355–369
6. Shibata, Y., and Yamamoto, H. (2009) Mitf as a regulator of RPE differentiation. Invest. Ophthalmol. Vis. Sci. 51, 705–710
7. Sparrow, J. R., Hicks, D., and Hamel, C. P. (2010) The retinal pigment epithelium differentiates as neural retina in the microphthalmia (mi/mi) mouse. Invest. Ophthalmol. Vis. Sci. 51, 903–908
8. Hiscott, P., Sheridan, C., Magee, R. M., and Grierson, I. (1999) Matrix and microRNA expression profiles in normal human tissues. Nat. Rev. Mol. Cell. Biol. 3, 303–309
9. Lamb, T. D., and Pugh, E. N., Jr. (2004) Dark adaptation and the retinoid cycle of vision. Prog. Retin. Eye Res. 23, 307–380
10. Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory function. Cell 136, 215–233
11. Zavadil, J., Narasimhan, M., Blumenberg, M., and Schneider, R. J. (2007) Transforming growth factor-β and microRNA: mRNA regulatory networks in epithelial plasticity. Cells Tissues Organs 185, 157–161
12. Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., Vadas, M. A., Khew-Goodall, Y., and Goodall, G. J. (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell. Biol. 10, 593–601
13. Liang, Y., Ridzon, D., Wong, L., and Chen, C. (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8, 166
14. Fineberg, S. K., Kosik, K. S., and Davidson, B. L. (2009) MicroRNAs potentiate neural development. Neuronuvres 64, 303–309
15. Cheng, Y., Liu, X., Yang, J., Lin, Y., Xu, D. Z., Lu, Q., Deitch, E. A., Hua, Y., Delphin, E. S., and Zhang, C. (2009) MicroRNA-145, a novel smooth muscle cell phenotype marker and modulator, controls vascular neointimal lesion formation. Circ. Res. 105, 158–166
16. Wang, K. E., Zhang, C., Maminishkis, A., Dong, L., Zhi, C., Li, R., Zhao, J., Majerciak, V., Gaur, A. B., Chen, S., and Miller, S. S. (2010) MicroRNA-204/211 alters epithelial physiology. FASEB J. 24, 1552–1571
17. Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Ray, A., and Perera, R. J. (2010) The regulation of miR-211 expression during wound healing of the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 51, 3534–3530
18. Tusher, V. G., Tibshirani, R., and Chu, G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA. 98, 5116–5121
19. Dieffenbach, C. W., Lowe, T. M., and Dveksler, G. S. (1993) General concepts for PCR primer design. PCR Methods Appl. 3, S30–S37
20. Schmittgen, T. D., and Livak, K. J. (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108
21. Baek, D., Villén, J., Shin, C., Camargo, F. D., Gygi, S. P., and Bartel, D. P. (2008) The impact of microRNAs on protein output. Nature 455, 64–71
22. Korpal, M., Lee, E. S., Hsu, G., and Kang, Y. (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914
23. Chen, C. Z., Li, L., Lodish, H. F., and Bartel, D. P. (2004) MicroRNAs mediate hematopoietic lineage differentiation. Science 303, 83–86
24. Makeyev, E. V., Zhang, J., Carrasco, M. A., and Maniatis, T. (2007) The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448
25. Lu, J., Guo, S., Ebert, B. L., Zhang, H., Peng, X., Bocso, J., Pretz, J., Schlinger, R., Wang, J. Y., Mak, R. H., Dombkowski, D. M., Pfrepper, F. L., Scadden, D. T., and Golub, T. R. (2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev. Cell 14, 843–853
26. King, I. N., Qian, L., Liang, J., Huang, Y., Shieh, J. T., Kwon, C., and Srivastava, D. (2011) A genome-wide screen reveals a role for microRNA-1 in regulating cardiac cell polarity. Dev. Cell 20, 497–510
27. Tamiya, S., Liu, L., and Kaplan, H. J. (2010) Epithelial-mesenchymal transition and proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell contact. Invest. Ophthalmol. Vis. Sci. 51, 2755–2763
28. Thomson, J. M., Parker, J., Perou, C. M., and Hammond, S. M. (2004) A custom microarray platform for analysis of microRNA gene expression. Nature 430, 1–7
29. Park, S. M., Shell, S., Radjabi, A. R., Schickel, R., Feig, C., Boyerinas, B., Dineuless, D. M., Lengyl, E., and Peter, M. E. (2007) Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMG2. Cell Cycle 6, 2585–2590
30. Lee, I. S., and Dutta, A. (2007) The tumor suppressor microRNA let-7 represses the HMG2 oncogene. Genes Dev. 21, 1025–1030
31. Mayr, C., Hemmann, M. T., and Bartel, D. P. (2007) Disrupting the pairing between let-7 and Hmg2a enhances oncogenic transformation. Science 315, 1576–1579
32. Shell, S., Park, S. M., Radjabi, A. R., Schickel, R., Kistner, E. O., Jewell, D. A., Feig, C., Lengyl, E., and Peter, M. E. (2007) Let-7 expression defines two differentiation stages of cancer. Proc. Natl. Acad. Sci. USA. 104, 11400–11405
33. Tan, E. J., Thauault, S., Caja, L., Carletti, T., Heldin, C. H., and Moustakas, A. (2012) Regulation of transcription factor Twist expression by the DNA architectural protein high mobility group A2 during epithelial-to-mesenchymal transition. J. Biol. Chem. 287, 7134–7145
45. Thuault, S., Tan, E. J., Peinado, H., Cano, A., Heldin, C. H., and Moustakas, A. (2008) HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J. Biol. Chem. 283, 33437–33446
46. Lu, J., He, M. L., Wang, L., Chen, Y., Liu, X., Dong, Q., Chen, Y. C., Peng, Y., Yao, K. T., Kung, H. F., and Li, X. P. (2011) MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res. 71, 225–233
47. Zhu, Y., Lu, Y., Zhang, Q., Liu, J. J., Li, T. J., Yang, J. R., Zeng, C., and Zhuang, S. M. (2011) MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res., in press
48. Grisanti, S., and Guidry, C. (1995) Transdifferentiation of retinal pigment epithelial cells from epithelial to mesenchymal phenotype. Invest. Ophthalmol. Vis. Sci. 36, 391–405
49. Keene, J. D., Komisarow, J. M., and Friedersdorf, M. B. (2006) RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat. Protoc. 1, 302–307
50. Yasumoto, K., Yokoyama, K., Takahashi, K., Tomita, Y., and Shibahara, S. (1997) Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J. Biol. Chem. 272, 503–509
51. Cheli, Y., Ohanna, M., Ballotti, R., and Bertolotto, C. (2010) Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res. 23, 27–40
52. Deo, M., Yu, J. Y., Chung, K. H., Tippens, M., and Turner, D. L. (2006) Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev. Dyn. 235, 2538–2548
53. Liu, M. M., Tuo, J., and Chan, C. C. (2011) Gene therapy for ocular diseases. Br. J. Ophthalmol. 95, 604–612
54. Bainbridge, J. W., Smith, A. J., Barker, S. S., Robbie, S., Henderson, R., Balaggar, K., Viswanathan, A., Holder, G. E., Stockman, A., Tyler, N., Petersen-Jones, S., Bhattacharya, S. S., Thrasher, A. J., Fitzke, F. W., Carter, B. J., Rubin, G. S., Moore, A. T., and Ali, R. R. (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N. Engl. J. Med. 358, 2231–2239
55. Cideciyan, A. V., Hauswirth, W. W., Aleman, T. S., Kaushal, S., Schwartz, S. B., Boye, S. L., Windsor, E. A., Conlon, T. J., Sumaroka, A., Pang, J. J., Roman, A. J., Byrne, B. J., and Jacobson, S. G. (2009) Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum. Gene Ther. 20, 999–1004
56. Maguire, A. M., Simonelli, F., Pierce, E. A., Pugh, E. N., Jr., MingoZZi, F., BenniZZelli, J., Banfi, S., Marshall, K. A., Testa, F., Surace, E. M., Rossi, S., Lyubarsky, A., Arruda, V. R., Konkle, B., Stone, E., Sun, J., Jacobs, J., Dell’Osso, L., Hertle, R., Ma, J. X., Redmond, T. M., Zhu, X., Hauck, B., Zelenaa, O., Shindler, K. S., Maguire, M. G., Wright, J. F., Volpe, N. J., McDonnell, J. W., Auricchio, A., High, K. A., and Bennett, J. (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med. 358, 2240–2248
57. Simonelli, F., Maguire, A. M., Testa, F., Pierce, E. A., MingoZZi, F., BenniZZelli, J. L., Rossi, S., Marshall, K., Banfi, S., Surace, E. M., Sun, J., Redmond, T. M., Zhu, X., Shindler, K. S., Ying, G. S., ZiviZZello, C., Acerra, C., Wright, J. F., McDonnell, J. W., High, K. A., Bennett, J., and Auricchio, A. (2010) Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol. Ther. 18, 643–650