LANDAU AND GRÜSS TYPE INEQUALITIES FOR INNER PRODUCT TYPE INTEGRAL TRANSFORMERS IN NORM IDEALS

DANKO R. JOCIĆ, ĐORĐE KRTINIĆ AND MOHAMMAD SAL MOSLEHIAN

Abstract. For a probability measure μ and for square integrable fields (A_t) and (B_t) ($t \in \Omega$) of commuting normal operators we prove Landau type inequality

$$\left\| \int_{\Omega} A_tX B_t d\mu(t) - \int_{\Omega} A_t d\mu(t)X \int_{\Omega} B_t d\mu(t) \right\| \leq \left(\int_{\Omega} |A_t|^2 d\mu(t) - \left(\int_{\Omega} A_t d\mu(t) \right)^2 \right)^{1/2} \times \left(\int_{\Omega} |B_t|^2 d\mu(t) - \left(\int_{\Omega} B_t d\mu(t) \right)^2 \right)^{1/2}$$

for all $X \in \mathcal{B}(H)$ and for all unitarily invariant norms $\| \cdot \|$.

For Schatten p-norms similar inequalities are given for arbitrary double square integrable fields. Also, for all bounded self-adjoint fields satisfying $C \leq A_t \leq D$ and $E \leq B_t \leq F$ for all $t \in \Omega$ and some bounded self-adjoint operators C,D,E and F, and for all $X \in \mathfrak{C}_{\|\cdot\|}(H)$ we prove Grüss type inequality

$$\left\| \int_{\Omega} A_tX B_t d\mu(t) - \int_{\Omega} A_t d\mu(t)X \int_{\Omega} B_t d\mu(t) \right\| \leq \frac{\|D-C\| \cdot \|F-E\|}{4} \cdot \|X\|.$$

More general results for arbitrary bounded fields are also given.

Mathematics subject classification (2010): Primary 47A63; Secondary 46L05, 47B10, 47A30, 47B15.

Keywords and phrases: Landau type inequality, Grüss type inequality, Gel’fand integral, norm inequality, elementary operators, Hilbert modules.

REFERENCES

[1] D. ANDRICA AND C. BADEA, Grüss’ inequality for positive linear functionals, Period. Math. Hungar. 19, 2 (1988), 155–167.
[2] S. BANIĆ, Đ. ILIŠEVIĆ AND S. VAROŠANEC, Bessel- and Grüss-type inequalities in inner product modules, Proc. Edinb. Math. Soc. (2) 50, 1 (2007), 23–36.
[3] R. BHATIA, Matrix Analysis, Graduate texts in Mathematics, 169, Springer-Verlag, New York, Inc., 1997.
[4] C. BUSE, P. CERONE, S. S. DRAGOMIR AND J. ROUMELIOTIS, A refinement of Grüss type inequality for the Bochner integral of vector-valued functions in Hilbert spaces and applications, J. Korean Math. Soc. 43, 5 (2006), 911–929.
[5] X. L. CHENG AND J. SUN, A note on the perturbed trapezoid inequality, J. Inequal. Pure Appl. Math. 3, 2 (2002), Article 29, 7 pp.
[6] J. DIESTEL AND J. J. UHL, Vector Measures, Math. Surveys, 15, Amer. Math. Soc. Providence, RI, 1977.
[7] S. S. DRAGOMIR, A Grüss type discrete inequality in inner product spaces and applications, J. Math. Anal. Appl. 250, 2 (2000), 494–511.
[8] S. S. DRAGOMIR, Advances in inequalities of the Schwarz, Grüss and Bessel type in inner product spaces, Nova Science Publishers, Inc., Hauppauge, NY, 2005.
[9] A. M. Fink, A treatise on Grüss’ inequality, Analytic and geometric inequalities and applications, 93–113, Math. Appl., 478, Kluwer Acad. Publ., Dordrecht, 1999.

[10] G. Grüss, Über das Maximum des absoluten Betrages von \(\frac{1}{b-a} \int_a^b f(x)g(x)dx - \left(\frac{1}{b-a} \int_a^b f(x)dx \right) \left(\frac{1}{b-a} \int_a^b g(x)dx \right) \), Math. Z. 39 (1935), 215–226.

[11] D. Ilišević and S. Varošanec, Grüss type inequalities in inner product modules, Proc. Amer. Math. Soc. 133 (2005), 3271–3280.

[12] S. Izumino, J. E. Pečarić and B. Tepeš, Some extensions of Grüss’ inequality, Math. J. Toyama Univ. 26 (2003), 61–73.

[13] D. R. Jocić, Cauchy–Schwarz norm inequalities for weak*-integrals of operator valued functions, J. Funct. Anal. 218 (2005), 318–346.

[14] D. R. Jocić, Interpolation norms between row and column spaces and the norm problem for elementary operators, Linear Alg. Appl. 430 (2009) 2961–2974.

[15] D. R. Jocić, Multipliers of elementary operators and comparison of row and column space Schatten p-norms, Linear Alg. Appl. 431 (2009), 2062–2070.

[16] X. Li, R. N. Mohapatra and R. S. Rodriguez, Grüss-type inequalities, J. Math. Anal. Appl. 267, 2 (2002), 434–443.

[17] E. Landau, Über einige Ungleichungen von Herrn G. Grüss, Math. Z. 39 (1935), 742–744.

[18] E. Landau, Über mehrfach monotone Folgen, Prace Mat.-Fiz. XLIV (1936), 337–351.

[19] A. Mc. D. Mercer and P. R. Mercer, New proofs of the Grüss inequality, Aust. J. Math. Anal. Appl. 1, 2 (2004), Art. 12, 6 pp.

[20] D. S. Mitrović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.

[21] M. S. Moslehian and R. Rajić, A Grüss inequality for n-positive linear maps, Linear Algebra Appl. 433 (2010), 1555–1560.

[22] G. J. Murphy, C*-algebras and Operator Theory, Academic Press, Boston, 1990.

[23] I. Perić and R. Rajić, Grüss inequality for completely bounded maps, Linear Algebra Appl. 390 (2004), 287–292.

[24] P. F. Renaud, A matrix formulation of Grüss inequality, Linear Algebra Appl. 335 (2001), 95–100.

[25] N. Ujević, A generalization of the pre-Grüss inequality and applications to some quadrature formulæ, J. Inequal. Pure Appl. Math. 3, 1 (2002), Article 13, 9 pp.