Limits of the trivial bundle on a curve

Arnaud Beauville

Abstract. We attempt to describe the vector bundles on a curve C which are specializations of O_C^2. We get a complete classification when C is Brill-Noether-Petri general, or when it is hyperelliptic; in both cases all limit vector bundles are decomposable. We give examples of indecomposable limit bundles for some special curves.

Keywords. Vector bundles; limits; Brill-Noether theory; hyperelliptic curves

2010 Mathematics Subject Classification. 14H60

[Français]

Titre. Limites du fibré trivial sur une courbe

Résumé. Nous essayons de décrire les fibrés vectoriels qui sont des spécialisations de O_C^2. Nous obtenons une classification complète lorsque C est générale au sens de Brill-Noether-Petri, ou lorsque C est hyperelliptique; les fibrés limites sont décomposables dans chacune des deux situations. Nous donnons également des exemples de fibrés limites indécomposables sur certaines courbe spéciales.
1. Introduction

Let C be a smooth complex projective curve, and E a vector bundle on C, of rank r. We will say that E is a limit of O_C^r if there exists an algebraic family $(E_b)_{b \in B}$ of vector bundles on C, parametrized by an algebraic curve B, and a point $o \in B$, such that $E_o = E$ and $E_b \cong O_C^r$ for $b \neq o$. Can we classify all these vector bundles? If E is a limit of O_C^2 clearly $E \oplus O_C^{r-2}$ is a limit of O_C^r, so it seems reasonable to start in rank 2.

We get a complete classification in two extreme cases: when C is generic (in the sense of Brill-Noether theory), and when it is hyperelliptic. In both cases the limit vector bundles are of the form $L \oplus L^{-1}$, with some precise conditions on L. However for large families of curves, for instance for plane curves, some limits of O_C^2 are indecomposable, and those seem hard to classify.

2. Generic curves

Throughout the paper we denote by C a smooth connected projective curve of genus g over \mathbb{C}.

Proposition 1. Let L be a line bundle on C which is a limit of globally generated line bundles (in particular, any line bundle of degree $\geq g + 1$). Then $L \oplus L^{-1}$ is a limit of O_C^2.

Proof. By hypothesis there exist a curve B, a point $o \in B$ and a line bundle L on $C \times B$ such that $L_{|C \times \{o\}} \cong L$ and $L_{|C \times \{b\}}$ is globally generated for $b \neq o$. We may assume that B is affine and that o is defined by $f = 0$ for a global function f on B; we put $B' := B \setminus \{o\}$.

We choose two general sections s, t of L on $C \times B'$; reducing B' if necessary, we may assume that they generate L. Thus we have an exact sequence on $C \times B'$

$$0 \to L^{-1} \xrightarrow{(t,-s)} O^2_{C \times B'} \xrightarrow{(s,t)} L \to 0$$

which corresponds to an extension class $e \in H^1(C \times B', L^{-2})$. For n large enough, f^ne comes from a class in $H^1(C \times B, L^{-2})$ which vanishes along $C \times \{o\}$; this class gives rise to an extension

$$0 \to L^{-1} \to E \to L \to 0$$

with $E_{|C \times \{b\}} \cong O^2_C$ for $b \neq o$, and $E_{|C \times \{o\}} \cong L \oplus L^{-1}$. \hfill \square

Remark 1. Let E be a vector bundle limit of O_C^r. We have $\det E = O_C$, and $h^0(E) \geq 2$ by semi-continuity. If E is semi-stable this implies $E \cong O_C^r$; otherwise E is unstable. Let L be the maximal destabilizing sub-line bundle of E; we have an extension $0 \to L \to E \to L^{-1} \to 0$, with $h^0(L) \geq 2$. Note that this extension is trivial (so that $E = L \oplus L^{-1}$) if $H^1(L^2) = 0$, in particular if $\deg(L) \geq g$.

Proposition 2. Assume that C is Brill-Noether-Petri general. The following conditions are equivalent:

(i) E is a limit of O_C^2;
(ii) $h^0(E) \geq 2$ and $\det E = \mathcal{O}_C$;

(iii) $E = L \oplus L^{-1}$ for some line bundle L on C with $h^0(L) \geq 2$ or $L = \mathcal{O}_C$.

Proof. We have seen that (i) implies (ii) (Remark 1). Assume (ii) holds, with $E \not\cong \mathcal{O}_C^2$. Then E is unstable, and we have an extension $0 \to L \to E \to L^{-1} \to 0$ with $h^0(L) \geq 2$. Since C is Brill-Noether-Petri general we have $H^0(C, K_C \otimes L^{-2}) = 0$ [ACG, Ch. 21, Proposition 6.7], hence $H^1(C, L^2) = 0$. Therefore the above extension is trivial, and we get (iii).

Assume that (iii) holds. Brill-Noether theory implies that any line bundle L with $h^0(L) \geq 2$ is a limit of globally generated ones \footnote{Indeed, the subvariety $W^r_d(C)$ parametrizing line bundles L with $h^0(L) \geq r+1$ is equidimensional, of dimension $g - (r+1)(r+g-d)$; the line bundles which are not globally generated belong to the subvariety $W^r_{d-1}C$, which has codimension r.}. So (i) follows from Proposition 1.

3. Hyperelliptic curves

Proposition 3. Assume that C is hyperelliptic, and let H be the line bundle on C with $h^0(H) = \deg(H) = 2$. The limits of \mathcal{O}_C^2 are the decomposable bundles $L \oplus L^{-1}$, with $\deg(L) \geq g + 1$ or $L = H^k$ for $k \geq 0$.

Proof. Let $\pi : C \to \mathbb{P}^1$ be the two-sheeted covering defined by $|H|$. Let us say that an effective divisor D on C is simple if it does not contain a divisor of the form $\pi^* p$ for $p \in \mathbb{P}^1$. We will need the following well-known lemma:

Lemma 1. Let L be a line bundle on C.

1) If $L = H^k(D)$ with D simple and $\deg(D) + k \leq g$, we have $h^0(L) = h^0(H^k) = k + 1$.

2) If $\deg(L) \leq g$, L can be written in a unique way $H^k(D)$ with D simple. If L is globally generated, it is a power of H.

Proof of Lemma 1. 1) Put $\ell := g - 1 - k$ and $d := \deg(D)$. Recall that $K_C \cong H^{g-1}$. Thus by Riemann-Roch, the first assertion is equivalent to $h^0(H^\ell(-D)) = h^0(H^\ell) - d$. We have $H^0(C, H^\ell) = \pi^* H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(\ell))$; since D is simple of degree $\leq \ell + 1$, it imposes d independent conditions on $H^0(C, H^\ell)$, hence our claim.

2) Let k be the greatest integer such that $h^0(L \otimes H^{-k}) > 0$; then $L = H^k(D)$ for some effective divisor D, which is simple since k is maximal. By 1) D is the fixed part of $|L|$, hence is uniquely determined, and so is k. In particular the only globally generated line bundles on C of degree $\leq g$ are the powers of H.

Proof of the Proposition: Let E be a vector bundle on C limit of \mathcal{O}_C^2. Consider the exact sequence

$$0 \to L \to E \to L^{-1} \to 0,$$

where we can assume $\deg(L) \leq g$ (Remark 1). By Lemma 1 we have $L = H^k(D)$ with D simple of degree $\leq g - 2k$. After tensor product with H^k, the corresponding cohomology exact sequence reads

$$0 \to H^0(C, H^{2k}(D)) \to H^0(C, E \otimes H^k) \to H^0(C, \mathcal{O}_C(-D)) \xrightarrow{\partial} H^1(C, H^{2k}(D))$$

which implies $h^0(E \otimes H^k) = h^0(H^{2k}(D)) + \dim \ker \partial = 2k + 1 + \dim \ker \partial$ by Lemma 1.

By semi-continuity we have $h^0(E \otimes H^k) \geq 2h^0(H^k) = 2k + 2$; the only possibility is $D = 0$ and $\partial = 0$. But $\partial(1)$ is the class of the extension (l), which must therefore be trivial; hence $E = H^k \otimes H^{-k}$.
4. Examples of indecomposable limits

To prove that some limits of O_C^2 are indecomposable we will need the following easy lemma:

Lemma 2. Let L be a line bundle of positive degree on C, and let

$$0 \to L \to E \to L^{-1} \to 0$$

be an exact sequence. The following conditions are equivalent:

(i) E is indecomposable;

(ii) The extension (2) is nontrivial;

(iii) $h^0(E \otimes L) = h^0(L^2)$.

Proof. The implication (i) \Rightarrow (ii) is clear.

(ii) \Rightarrow (iii) : After tensor product with L, the cohomology exact sequence associated to (2) gives

$$0 \to H^0(L^2) \overset{i}{\to} H^0(E \otimes L) \to H^0(O_C) \overset{\partial}{\to} H^1(L^2),$$

where ∂ maps $1 \in H^0(O_C)$ to the extension class of (2). Thus (ii) implies that i is an isomorphism, hence (iii).

(iii) \Rightarrow (i): If E is decomposable, it must be equal to $L \oplus L^{-1}$ by unicity of the destabilizing bundle. But this implies $h^0(E \otimes L) = h^0(L^2) + 1.$

The following construction was suggested by N. Mohan Kumar:

Proposition 4. Let $C \subset \mathbb{P}^2$ be a smooth plane curve, of degree d. For $0 < k < \frac{d}{4}$, there exist extensions

$$0 \to O_C(k) \to E \to O_C(-k) \to 0$$

such that E is indecomposable and is a limit of O_C^2.

Proof. Let Z be a finite subset of \mathbb{P}^2 which is the complete intersection of two curves of degree k, and such that $C \cap Z = \emptyset$. By [S, Remark 4.6], for a general extension

$$0 \to O_{\mathbb{P}^2}(k) \to E \to I_Z(-k) \to 0,$$

the vector bundle E is a limit of $O_{\mathbb{P}^2}^2$; therefore $E|_C$ is a limit of O_C^2.

The extension (3) restricts to an exact sequence

$$0 \to O_C(k) \to E|_C \to O_C(-k) \to 0.$$

To prove that $E|_C$ is indecomposable, it suffices by Lemma 2 to prove that $h^0(E|_C(k)) = h^0(O_C(2k)).$ Since $2k < d$ we have $h^0(O_C(2k)) = h^0(O_{\mathbb{P}^2}(2k)) = h^0(E(k))$, so in view of the exact sequence

$$0 \to E(k-d) \to E(k) \to E|_C(k) \to 0$$

it suffices to prove $H^1(E(k-d)) = 0$, or by Serre duality $H^1(E(d-k-3)) = 0$.

The exact sequence (3) gives an injective map $H^1(E(d-k-3)) \hookrightarrow H^1(I_Z(d-2k-3))$. Now since Z is a complete intersection we have an exact sequence

$$0 \to O_{\mathbb{P}^2}(-2k) \to O_{\mathbb{P}^2}(-k)^2 \to I_Z \to 0;$$

since $4k < d$ we have $H^2(O_{\mathbb{P}^2}(d-4k-3)) = 0$, hence $H^1(I_Z(d-2k-3)) = 0$, and finally $H^1(E(d-k-3)) = 0$ as asserted. \hfill \square
We can also perform the Strømme construction directly on the curve C, as follows. Let L be a base point free line bundle on C. We choose sections $s, t \in H^0(L)$ with no common zero. This gives rise to a Koszul extension
\[0 \rightarrow L^{-1} \xrightarrow{i} O_C^2 \xrightarrow{p} L \rightarrow 0 \quad \text{with} \quad i = (-t, s), \ p = (s, t). \tag{4} \]
We fix a nonzero section $u \in H^0(L^2)$. Let \mathcal{L} be the pull-back of L on $C \times \mathbb{A}^1$. We consider the complex ("monad")
\[L^{-1} \xrightarrow{\alpha} L^{-1} \oplus O_C \oplus \mathcal{L} \xrightarrow{\beta} \mathcal{L}, \quad \alpha = (\lambda, i, u), \ \beta = (u, p, -\lambda), \]
where λ is the coordinate on \mathbb{A}^1. Let $\mathcal{E} := \text{Ker} \beta/\text{Im} \alpha$, and let $E := \mathcal{E}_{|C \times \{0\}}$.

Lemma 3. E is a rank 2 vector bundle, limit of O_C^2. There is an exact sequence $0 \rightarrow L \rightarrow E \rightarrow L^{-1} \rightarrow 0$; the corresponding extension class in $H^1(L^2)$ is the product by $u^2 \in H^0(L^4)$ of the class $e \in H^1(L^{-2})$ of the Koszul extension (4).

Proof. The proof is essentially the same as in [S]; we give the details for completeness.

For $\lambda \neq 0$, we get easily $\mathcal{E}_{|C \times \{\lambda\}} \cong O_C^2$; we will show that E is a rank 2 vector bundle. This implies that \mathcal{E} is a vector bundle on $C \times \mathbb{A}^1$, and therefore that E is a limit of O_C^2.

Let us denote by α_0, β_0 the restrictions of α and β to $C \times \{0\}$. We have $\text{Ker} \beta_0 = L \oplus N$, where N is the kernel of $(u, p) : L^{-1} \oplus O_C^2 \rightarrow L$. Applying the snake lemma to the commutative diagram
\[
\begin{array}{ccc}
0 & \rightarrow & L^{-1} \\
\downarrow & & \downarrow i \\
0 & \rightarrow & O_C^2 \\
\downarrow & & \downarrow p \\
0 & \rightarrow & L \\
\end{array}
\]
we get an exact sequence
\[0 \rightarrow L^{-1} \rightarrow N \rightarrow L^{-1} \rightarrow 0, \tag{5} \]
which fits into a commutative diagram
\[
\begin{array}{ccc}
0 & \rightarrow & L^{-1} \\
\downarrow & & \downarrow i \\
0 & \rightarrow & O_C^2 \\
\downarrow & & \downarrow p \\
0 & \rightarrow & L \\
\end{array}
\]
this means that the extension (5) is the pull-back by $\times u : L^{-1} \rightarrow L$ of the Koszul extension (4).

Now since E is the cokernel of the map $L^{-1} \rightarrow L \oplus N$ induced by α_0, we have a commutative diagram
\[
\begin{array}{ccc}
0 & \rightarrow & L^{-1} \\
\downarrow & & \downarrow i \\
0 & \rightarrow & N \\
\downarrow & & \downarrow p \\
0 & \rightarrow & E \\
\end{array}
\]
so that the extension $L \rightarrow E \rightarrow L^{-1}$ is the push-forward by $\times u$ of (5). This implies the Lemma. \hfill \square

Unfortunately it seems difficult in general to decide whether the extension $L \rightarrow E \rightarrow L^{-1}$ nontrivial. Here is a case where we can conclude:

Proposition 5. Assume that C is non-hyperelliptic. Let L be a globally generated line bundle on C such that $L^2 \cong K_C$. Let $0 \rightarrow L \rightarrow E \rightarrow L^{-1} \rightarrow 0$ be the unique nontrivial extension of L^{-1} by L. Then E is indecomposable, and is a limit of O_C^2.
Proof. We choose \(s, t \) in \(H^0(L) \) without common zero, and use the previous construction. It suffices to prove that we can choose \(u \in H^0(K_C) \) so that \(u^2 e \neq 0 \): since \(H^1(K_C) \cong \mathbb{C} \), the vector bundle \(E \) will be the unique nontrivial extension of \(L^{-1} \) by \(L \), and indecomposable by Lemma 2.

Suppose that \(u^2 e = 0 \) for all \(u \) in \(H^0(K_C) \); by bilinearity this implies \(uv e = 0 \) for all \(u, v \) in \(H^0(K_C) \). Since \(C \) is not hyperelliptic, the multiplication map \(S^2 H^0(K_C) \to H^0(K_C^2) \) is surjective, so we have \(w e = 0 \) for all \(w \in H^0(K_C^2) \). But the pairing

\[
H^1(K_C^{-1}) \otimes H^0(K_C^2) \to H^1(K_C) \cong \mathbb{C}
\]

is perfect by Serre duality, hence our hypothesis implies \(e = 0 \), a contradiction.

\(\square \)

Remark 2. In the moduli space \(\mathcal{M}_g \) of curves of genus \(g \geq 3 \), the curves \(C \) admitting a line bundle \(L \) with \(L^2 \cong K_C \) and \(h^0(L) \geq 2 \) form an irreducible divisor \([T2]\); for a general curve \(C \) in this divisor, the line bundle \(L \) is unique, globally generated, and satisfies \(h^0(L) = 2 \) \([T1]\). Thus Proposition 5 provides for \(g \geq 4 \) a codimension 1 family of curves in \(\mathcal{M}_g \) admitting an indecomposable vector bundle limit of \(O_C^2 \).

Remark 3. Let \(\pi : C \to B \) be a finite morphism of smooth projective curves. If \(E \) is a vector bundle limit of \(O_B^2 \), then clearly \(\pi^* E \) is a limit of \(O_C^2 \). Now if \(E \) is indecomposable, \(\pi^* E \) is also indecomposable. Consider the nontrivial extension \(0 \to L \to E \to L^{-1} \to 0 \) (Remark 1); by Lemma 2 it suffices to show that the class \(e \in H^1(B, L^2) \) of this extension remains nonzero in \(H^1(C, \pi^* L^2) \). But the pull-back homomorphism \(\pi^* : H^1(B, L^2) \to H^1(C, \pi^* L^2) \) can be identified with the homomorphism \(H^1(B, L^2) \to H^1(B, \pi_* \pi^* L^2) \) deduced from the linear map \(L^2 \to \pi_* \pi^* L^2 \), and the latter is an isomorphism onto a direct factor; hence \(\pi^* \) is injective and \(\pi^* e \neq 0 \), so \(E \) is indecomposable.

Thus any curve dominating one of the curves considered in Propositions 4 and 5 carries an indecomposable vector bundle which is a limit of \(O_C^2 \).

References

[ACG] E. Arbarello, M. Cornalba, P.A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, vol. 267, Springer-Verlag, New York, 1985. MR-070932

[ACGH] E. Arbarello, M. Cornalba, P.A. Griffiths, Geometry of algebraic curves. Vol. II, with a contribution by Joseph Daniel Harris, Grundlehren der Mathematischen Wissenschaften, vol. 268, Springer, Heidelberg, 2011. MR-2807457

[H] J. Harris, Theta-characteristics on algebraic curves, Trans. Amer. Math. Soc. 271 (1982), no. 2, 611–638. MR-0654853

[S] S. A. Strømme, Deforming vector bundles on the projective plane, Math. Ann. 263 (1983), no. 3, 385–397. MR-0704303

[T1] M. Teixidor i Bigas, Half-canonical series on algebraic curves, Trans. Amer. Math. Soc. 302 (1987), no. 1, 99–115. MR-0887499

[T2] M. Teixidor i Bigas, The divisor of curves with a vanishing theta-null, Compositio Math. 66 (1988), no. 1, 15–22. MR-0937985