Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
On fractal-fractional Covid-19 mathematical model

Hasib Khana,b, Farooq Ahmadb, Osman Tunçc, Muhammad Idreesb

a Department of Mathematics, Shaheen Benazir Bhutto University, Sheringal, Dir Upper, 18000, Khyber Pakhtunkhwa, Pakistan
b Department of Mathematics, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
c Department of Computer Programming, Baskale Vocational School, Van Yuzuncu Yil University, Campus, 65080, Van-Turkey

\textbf{A R T I C L E I N F O}

Article history:
Received 13 January 2022
Revised 18 February 2022
Accepted 19 February 2022
Available online 25 February 2022

Keywords:
Fractal-fractional calculus
Covid-19 mathematical model
Existence of solution
Stability analysis
Numerical simulations

\textbf{A B S T R A C T}

In this article, we are studying a Covid-19 mathematical model in the fractal-fractional sense of operators for the existence of solution, Hyers-Ulam (HU) stability and computational results. For the qualitative analysis, we convert the model to an equivalent integral form and investigate its qualitative analysis with the help of iterative convergent sequence and fixed point approach. For the computational aspect, we take help from the Lagrange’s interpolation and produce a numerical scheme for the fractal-fractional waterborne model. The scheme is then tested for a case study and we obtain interesting results.

© 2022 Published by Elsevier Ltd.

1. Introduction

As we know the Covid-19 is violent acute aspiration syndrome, and it is also a pandemic [1]. After the end of 2019, he Covid-19 has caused significant economic loss and destruction, and a few million people also died from this virus.

Due to the enormous public health problems and the need to direct health measures, many researchers have focused their efforts on the Covid-19 modeling and its spread in the population [2–4,6,8,12,14–19]. Both mathematical models [20–22] and statistical approaches [32] were used.

During the recent years, numerous mathematical models of fractal and fractional order to the Covid-19 have also been constructed by researchers [2–32]. Now, we would like to summarize some works on the Covid-19 briefly. Also, for some very interesting and recent works on Covid-19, we refere to the readers to the papers of [33–35].

In Kolabje et al. [4], the authors investigated the time-series evolution of the cumulative number of confirmed cases of Covid-19, the novel coronavirus disease for some African countries.

In Ullah et al. [6], the transmission dynamics of a Covid-19 pandemic model with vertical transmission has been improved for nonsingular kernel type of fractional differentiation. Here, numerical simulations have also been given depending upon based on real data of Covid-19 in Indonesia to show the plots of the impacts of the fractional order derivative with the expectation. The constructed model gives better than classical models.

Das and Samanta [7] discussed transmission dynamics of the Covid-19 in Italy 2020. Here, taking into account the uncertainty due to the limited information about the Covid-19, the authors have taken the modified susceptible-asymptomatic-infectious-recovered compartmental model under fractional order framework. The validity of the Covid-19 model is justified by comparing real data with the results obtained from simulations.

In Baba and Nasidi [9] presented a fractional order SIR model incorporating individual with mild cases as a compartment to become SMIR model. Here, it was shown that when the rate of infection of the mild cases increases, there is equivalent increase in the overall population of infected individuals. Hence, it is noticed that to curtail the spread of the disease, there is need to take care of the mild cases as well.

Oname et al. [25] considered and analyzed a fractional order model for Covid-19 and tuberculosis co-infection, using the Atangana-Baleanu derivative. The model was simulated using data relevant to both diseases in New Delhi, India. Simulations of the fractional order model revealed that reducing the risk of Covid-19 infection by latently-infected TB individuals will not only bring down the burden of Covid-19, but will also reduce the co-infection of both diseases in the population. Rezapour et al. [30] provided a SEIR epidemic model for the spread of Covid-19 using the Caputo fractional derivative. Using the fractional Euler method, they have got an approximate solution to the model. To predict the transmis-
sion of ovid-19 in Iran and in the world, they provided a numerical simulation based on real data.

Tuan et al. [31] gave a mathematical model for the transmission of Covid-19 by the Caputo fractional-order derivative. Using the generalized Adams-Bashforth-Moulton method, they solved the system and obtain the approximate solutions. They also presented a numerical simulation for the transmission of Covid-19 in the world. Here, the reproduction number was also obtained as which shows that the epidemic continues.

Using the fractal-fractional sense of differential and integral operators we get the following the Covid-19 model:

\[
\begin{align*}
\mathcal{F}_{D}^{\alpha} e^t &\frac{d}{dt} \phi(t) = -\frac{\alpha_1}{\Gamma(\alpha_1)} \int_0^t (t-s)^{\alpha_1-1} \phi(s) \, ds,
\end{align*}
\]

where \(\phi(t) \) is the Mittag-Leffler type is given by

\[
\begin{align*}
\mathcal{F}_{D}^{\alpha} e^t &\frac{d}{dt} \phi(t) = -\frac{\alpha_1}{\Gamma(\alpha_1)} \int_0^t (t-s)^{\alpha_1-1} \phi(s) \, ds,
\end{align*}
\]

where, \(\phi(t) \) is the Mittag-Leffler type is given by

\[
\begin{align*}
\mathcal{F}_{D}^{\alpha} e^t &\frac{d}{dt} \phi(t) = -\frac{\alpha_1}{\Gamma(\alpha_1)} \int_0^t (t-s)^{\alpha_1-1} \phi(s) \, ds,
\end{align*}
\]

where, \(\phi(t) \) is the Mittag-Leffler type is given by

\[
\begin{align*}
\mathcal{F}_{D}^{\alpha} e^t &\frac{d}{dt} \phi(t) = -\frac{\alpha_1}{\Gamma(\alpha_1)} \int_0^t (t-s)^{\alpha_1-1} \phi(s) \, ds,
\end{align*}
\]

where, \(\phi(t) \) is the Mittag-Leffler type is given by

\[
\begin{align*}
\mathcal{F}_{D}^{\alpha} e^t &\frac{d}{dt} \phi(t) = -\frac{\alpha_1}{\Gamma(\alpha_1)} \int_0^t (t-s)^{\alpha_1-1} \phi(s) \, ds,
\end{align*}
\]

where, \(\phi(t) \) is the Mittag-Leffler type is given by

\[
\begin{align*}
\mathcal{F}_{D}^{\alpha} e^t &\frac{d}{dt} \phi(t) = -\frac{\alpha_1}{\Gamma(\alpha_1)} \int_0^t (t-s)^{\alpha_1-1} \phi(s) \, ds,
\end{align*}
\]
Theorem 2.1. The kernels Q_1, Q_2, Q_3, Q_4 are satisfying the Lipschitz condition if the assumption C' holds and satisfies $\phi_i < 1$ for $i \in \mathbb{N}_1^4$ and are contractions provided that $\psi_i < 1$ for every $i \in \mathbb{N}_1^4$.

Proof. First, we prove that $Q_1(t, S)$ satisfies Lipschitz condition. Using $S(t)$ and $S^*(t)$, we have

$$
\|Q_1(t, S) - Q_1(t, S^*)\| = \left\| \Lambda_1 - (\mu + \theta_1)S(t) - \beta_1 \frac{S(t)E(t)}{N} - \beta_2 \frac{S(t)I(t)}{N} \right\|
\leq \left[\mu + \theta_1 + \beta_1 \frac{1}{N} \|S(t)\| + \beta_2 \frac{1}{N} \|I(t)\| \right] \|S - S^*\|
\leq \psi_1 \|S - S^*\|
$$

where $\phi_1 = \mu + \theta_1 + \beta_1 c_1 + \beta_2 c_2 < 1$. Hence, Q_1 satisfies Lipschitz condition and $\phi_1 < 1$. Next, we prove that $Q_2(t, E)$ satisfies Lipschitz condition for this E, E^* we have

$$
\|Q_2(t, E) - Q_2(t, E^*)\| = \left\| \beta_1 \frac{S(t)E(t)}{N} + \beta_2 \frac{S(t)I(t)}{N} - (\mu + \alpha_1 + \theta_2)E(t) \right\|
\leq \left[\beta_1 \frac{1}{N} \|S(t)\| + \lambda_1 + \theta_1 + \mu \right] \|E - E^*\|
\leq \psi_2 \|E - E^*\|
$$

where, $\psi_2 = \beta_1 c_3 + \lambda_1 + \theta_1 + \mu < 1$. Hence, Q_2 satisfies Lipschitz condition and $\psi_2 < 1$.

Next, we prove that $Q_3(t, S_2)$ satisfies Lipschitz condition for this using I, I^* we have

$$
\|Q_3(t, I) - Q_3(t, I^*)\| = \left\| \alpha_1 E(t) - (\alpha_2 + \theta_3 + \mu + \delta_1)I(t) \right\|
\leq \left[\alpha_2 + \theta_3 + \mu + \delta_1 \right] \|I - I^*\|
\leq \psi_3 \|I - I^*\|
$$

where, $\psi_3 = \alpha_2 + \theta_3 + \mu + \delta_1 < 1$. Hence, Q_3 satisfies Lipschitz condition and $\psi_3 < 1$. Next, we prove that $Q_4(t, R)$ satisfies Lipschitz condition. For this we have

$$
\|Q_4(t, R) - Q_4(t, R^*)\| = \left\| \alpha_2 I(t) - \mu R(t) \right\|
\leq \mu \|R - R^*\|
\leq \psi_4 \|R - R^*\|
$$

where, $\psi_4 = \mu < 1$.

Hence, Q_4 satisfies Lipschitz condition and $\psi_4 < 1$.

Next, we prove that $Q_5(t, Q_2)$ satisfies Lipschitz condition. For this we have

$$
\|Q_5(t, Q_2) - Q_5(t, Q_2^*)\| = \left\| \theta_1 S(t) + \theta_2 E(t) + \theta_3 I(t) - \mu Q_2(t) \right\|
\leq \mu \|Q_2 - Q_2^*\|
\leq \psi_4 \|Q_2 - Q_2^*\|
$$

Hence, Q_5 satisfies Lipschitz condition and $\psi_4 < 1$.

Ultimately all the functions satisfies Lipschitz conditions with $\psi_i < 1$ for $i \in \mathbb{N}_1^4$ complete the proof. \hfill \Box
\[I_3(t) = \frac{k_1 k_2}{AB(k_1) \Gamma(k_1)} \int_0^t (t-s)^{k_2-1}S^{k_2-1}Q_3(s, I(s))\,ds \\
+ \frac{k_2(1-k_1)}{AB(k_1)} t^{k_2-1}Q_3(t, I(t)) \\
R(t) = \frac{k_1 k_2}{AB(k_1) \Gamma(k_1)} \int_0^t (t-s)^{k_1-1}S^{k_1-1}Q_4(s, R(s))\,ds \\
+ \frac{k_2(1-k_1)}{AB(k_1)} t^{k_2-1}Q_4(t, R(t)) \\
Q(t) = \frac{k_1 k_2}{AB(k_1) \Gamma(k_1)} \int_0^t (t-s)^{k_1-1}S^{k_2-1}Q_5(s, Q(t))\,ds \\
+ \frac{k_2(1-k_1)}{AB(k_1)} t^{k_2-1}Q_5(t, R(t)). \]

Now, we define the following recursive formulas:
\[S_n(t) = \frac{k_1 k_2}{AB(k_1) \Gamma(k_1)} \int_0^t (t-s)^{k_1-1}S^{k_2-1}Q_4(s, S_{n-1}(s))\,ds \\
+ \frac{k_2(1-k_1)}{AB(k_1)} t^{k_2-1}Q_4(t, S_{n-1}(t)). \]
\[E_n(t) = \frac{k_1 k_2}{AB(k_1) \Gamma(k_1)} \int_0^t (t-s)^{k_1-1}S^{k_2-1}Q_4(s, E_{n-1}(s))\,ds \\
+ \frac{k_2(1-k_1)}{AB(k_1)} t^{k_2-1}Q_4(t, E_{n-1}(t)). \]
\[I_n(t) = \frac{k_1 k_2}{AB(k_1) \Gamma(k_1)} \int_0^t (t-s)^{k_1-1}S^{k_2-1}Q_5(s, I_{n-1}(s))\,ds \\
+ \frac{k_2(1-k_1)}{AB(k_1)} t^{k_2-1}Q_5(t, I_{n-1}(t)) \]
\[R_n(t) = \frac{k_1 k_2}{AB(k_1) \Gamma(k_1)} \int_0^t (t-s)^{k_1-1}S^{k_2-1}Q_4(s, R_{n-1}(s))\,ds \\
+ \frac{k_2(1-k_1)}{AB(k_1)} t^{k_2-1}Q_4(t, R_{n-1}(t)). \]
\[Q_n(t) = \frac{k_1 k_2}{AB(k_1) \Gamma(k_1)} \int_0^t (t-s)^{k_1-1}S^{k_2-1}Q_5(s, Q_{n-1}(s))\,ds \\
+ \frac{k_2(1-k_1)}{AB(k_1)} t^{k_2-1}Q_5(t, Q_{n-1}(t)). \]

Next, we consider the differences as follow:
\[\Delta S_{n+1}(t) = S_{n+1}(t) - S_n(t) \]
\[= \frac{k_1 k_2}{AB(k_1) \Gamma(k_1)} \int_0^t (t-s)^{k_1-1} \times S^{k_2-1}[Q_4(s, S_n(s)) - Q_4(s, S_{n-1}(s))]\,ds \\
+ \frac{k_2(1-k_1)}{AB(k_1)} t^{k_2-1}[Q_4(t, S_n(t)) - Q_4(t, S_{n-1}(t))]. \]
\[\Delta E_{n+1}(t) = E_{n+1}(t) - E_n(t) \]
\[= \frac{k_1 k_2}{AB(k_1) \Gamma(k_1)} \int_0^t (t-s)^{k_1-1} \times S^{k_2-1}[Q_4(s, E_n(s)) - Q_4(s, E_{n-1}(s))]\,ds \\
+ \frac{k_2(1-k_1)}{AB(k_1)} t^{k_2-1}[Q_4(t, E_n(t)) - Q_4(t, E_{n-1}(t))]. \]
\[\Delta I_{n+1}(t) = I_{n+1}(t) - I_n(t) \\
+ \frac{k_1 k_2}{AB(k_1) \Gamma(k_1)} \int_0^t (t-s)^{k_1-1} \times S^{k_2-1}[Q_5(s, I_n(s)) - Q_5(s, I_{n-1}(s))]\,ds \\
+ \frac{k_2(1-k_1)}{AB(k_1)} t^{k_2-1}[Q_5(t, I_n(t)) - Q_5(t, I_{n-1}(t))]. \]
\[\Delta R_{n+1}(t) = R_{n+1}(t) - R_n(t) \]
\[\]
\[\Delta Q_{Tn+1}(t) = Q_{Tn+1}(t) - Q_{Tn}(t) \]

\[= \frac{K_1K_2}{\Gamma(\kappa_1)\Gamma(\kappa_1)} \int_0^t (t-s)^{\kappa_1-1} \]
\[\times S^{\kappa_2-1}[Q_5(s, Q_{Tn}(s) - Q_5(s, Q_{Tn-1}(s))]ds \]
\[+ \frac{K_2(1-\kappa_1)}{\Gamma(\kappa_1)} t^{\kappa_2-1}[Q_5(t, Q_{Tn}(t) - Q_5(t, Q_{Tn-1}(t))]. \]

Now, taking norm of the above system on both sides,

\[\| \Delta S_{n+1}(t) \| = \frac{K_1K_2}{\Gamma(\kappa_1)\Gamma(\kappa_1)} \int_0^t (t-s)^{\kappa_1-1} \]
\[\times S^{\kappa_2-1}[\|Q_1(s, S_n(s) - Q_1(s, S_{n-1}(s))\|]ds \]
\[+ \frac{K_2(1-\kappa_1)}{\Gamma(\kappa_1)} t^{\kappa_2-1}\|Q_1(t, S_n(t) - Q_1(t, S_{n-1}(t))\|. \]

\[\| \Delta E_{n+1}(t) \| = \frac{K_1K_2}{\Gamma(\kappa_1)\Gamma(\kappa_1)} \int_0^t (t-s)^{\kappa_1-1} \]
\[\times S^{\kappa_2-1}[\|Q_2(s, E_n(s) - Q_2(s, E_{n-1}(s))\|]ds \]
\[+ \frac{K_2(1-\kappa_1)}{\Gamma(\kappa_1)} t^{\kappa_2-1}\|Q_2(t, E_n(t) - Q_2(t, E_{n-1}(t))\|. \]

\[\| \Delta I_{n+1}(t) \| = \frac{K_1K_2}{\Gamma(\kappa_1)\Gamma(\kappa_1)} \int_0^t (t-s)^{\kappa_1-1} \]
\[\times S^{\kappa_2-1}[\|Q_3(s, I_n(s) - Q_3(s, I_{n-1}(s))\|]ds \]
\[+ \frac{K_2(1-\kappa_1)}{\Gamma(\kappa_1)} t^{\kappa_2-1}\|Q_3(t, I_n(t) - Q_3(t, I_{n-1}(t))\|. \]

\[\| \Delta R_{n+1}(t) \| = \frac{K_1K_2}{\Gamma(\kappa_1)\Gamma(\kappa_1)} \int_0^t (t-s)^{\kappa_1-1} \]
\[\times S^{\kappa_2-1}[\|Q_4(s, R_n(s) - Q_4(s, R_{n-1}(s))\|]ds \]
\[+ \frac{K_2(1-\kappa_1)}{\Gamma(\kappa_1)} t^{\kappa_2-1}\|Q_4(t, R_n(t) - Q_4(t, R_{n-1}(t))\|. \]

\[\| \Delta Q_{Tn+1}(t) \| = \frac{K_1K_2}{\Gamma(\kappa_1)\Gamma(\kappa_1)} \int_0^t (t-s)^{\kappa_1-1} \]
\[\times S^{\kappa_2-1}[\|Q_5(s, Q_{Tn}(s) - Q_5(s, Q_{Tn-1}(s))\|]ds \]
\[+ \frac{K_2(1-\kappa_1)}{\Gamma(\kappa_1)} t^{\kappa_2-1}\|Q_5(t, Q_{Tn}(t) - Q_5(t, Q_{Tn-1}(t))\|. \]

Theorem 2.2. The fractal fractional order COVID-19 model (1) has a solution if the following holds true,

\[\Delta = \max \{|\psi_1, \psi_2, \psi_3, \psi_4, \psi_5| < 1. \]

Proof. We define the function

\[H_{1n}(t) = S_{n+1}(t) - S(t) \]
\[H_{2n}(t) = E_{n+1}(t) - E(t) \]
\[H_{3n}(t) = I_{n+1}(t) - I(t) \]
\[H_{4n}(t) = R_{n+1}(t) - R(t) \]
\[H_{5n}(t) = Q_{Tn+1}(t) - Q_T(t) \]

Taking norm of the above system we have,

\[\|H_{1n}(t)\| = \|S_{n+1}(t) - S(t)\| \]

\[= \frac{K_1K_2}{\Gamma(\kappa_1)\Gamma(\kappa_1)} \int_0^t (t-s)^{\kappa_1-1} \]
\[\times S^{\kappa_2-1}[\|Q_1(s, S_n(s) - Q_1(s, S(s)))\|]ds \]
Theorem 3.1. The fractal fractional (1) has unique solution if the following holds true:

\[
\left[\frac{\kappa_1 \kappa_2}{AB(k_1)} \Gamma(k_1 + k_2) + \frac{\kappa_2 (1 - \kappa_1)}{AB(k_1)} \right] \phi_i \leq 1, \ i \in N^2.
\]

Proof. Let us consider contradiction that there exists another solution of fractal fractional model (1) such that \(S(t), \hat{E}(t), \hat{I}(t), \hat{R}(t), \hat{Q}(t) \) such that

\[
\begin{align*}
\dot{S}(t) &= \frac{\kappa_1 \kappa_2}{AB(k_1)} \Gamma(k_1 + k_2) \int_0^t (t - s)^{k_1 - 1} s^{k_2 - 1} Q_1(s, \hat{S}(s)) \, ds \\
&\quad + \frac{\kappa_2 (1 - \kappa_1)}{AB(k_1)} t^{k_2 - 1} Q_3(t, \hat{S}(t)) \\
\dot{E}(t) &= \frac{\kappa_1 \kappa_2}{AB(k_1)} \Gamma(k_1 + k_2) \int_0^t (t - s)^{k_1 - 1} s^{k_2 - 1} Q_2(s, \hat{E}(s)) \, ds \\
&\quad + \frac{\kappa_2 (1 - \kappa_1)}{AB(k_1)} t^{k_2 - 1} Q_4(t, \hat{E}(t)) \\
\dot{I}(t) &= \frac{\kappa_1 \kappa_2}{AB(k_1)} \Gamma(k_1 + k_2) \int_0^t (t - s)^{k_1 - 1} s^{k_2 - 1} Q_3(s, \hat{I}(s)) \, ds \\
&\quad + \frac{\kappa_2 (1 - \kappa_1)}{AB(k_1)} t^{k_2 - 1} Q_5(t, \hat{I}(t)) \\
\dot{R}(t) &= \frac{\kappa_1 \kappa_2}{AB(k_1)} \Gamma(k_1 + k_2) \int_0^t (t - s)^{k_1 - 1} s^{k_2 - 1} Q_4(s, \hat{R}(s)) \, ds \\
&\quad + \frac{\kappa_2 (1 - \kappa_1)}{AB(k_1)} t^{k_2 - 1} Q_6(t, \hat{R}(t)) \\
\dot{Q}(t) &= \frac{\kappa_1 \kappa_2}{AB(k_1)} \Gamma(k_1 + k_2) \int_0^t (t - s)^{k_1 - 1} s^{k_2 - 1} Q_3(s, \hat{Q}(s)) \, ds \\
&\quad + \frac{\kappa_2 (1 - \kappa_1)}{AB(k_1)} t^{k_2 - 1} Q_5(t, \hat{Q}(t)).
\end{align*}
\]

Now taking differences of \(S(t), \hat{S}(t) \) and then take norm, we have

\[
\begin{align*}
\| S(t) - \hat{S}(t) \| &= \frac{\kappa_1 \kappa_2}{AB(k_1)} \Gamma(k_1 + k_2) \int_0^t (t - s)^{k_1 - 1} s^{k_2 - 1} \| Q_1(S, S(t)) - Q_1(S, \hat{S}(t)) \| \, ds \\
&\quad + \frac{\kappa_2 (1 - \kappa_1)}{AB(k_1)} \int_0^t (t - s)^{k_1 - 1} s^{k_2 - 1} \| Q_3(S, \hat{S}(s)) - Q_3(S, \hat{S}(s)) \| \, ds \\
&\leq \frac{\kappa_1 \kappa_2}{AB(k_1)} \Gamma(k_1 + k_2) \int_0^t (t - s)^{k_1 - 1} s^{k_2 - 1} \| Q_1(s, \hat{S}(s)) \| \, ds \\
&\quad + \frac{\kappa_2 (1 - \kappa_1)}{AB(k_1)} \int_0^t (t - s)^{k_1 - 1} s^{k_2 - 1} \| Q_3(s, \hat{S}(s)) \| \, ds \\
&\leq \frac{\kappa_1 \kappa_2}{AB(k_1)} \Gamma(k_1 + k_2) \int_0^t (t - s)^{k_1 - 1} s^{k_2 - 1} \| Q_1(s, \hat{S}(s)) \| \, ds \\
&\quad + \frac{\kappa_2 (1 - \kappa_1)}{AB(k_1)} \int_0^t (t - s)^{k_1 - 1} s^{k_2 - 1} \| Q_3(s, \hat{S}(s)) \| \, ds \leq 0.
\end{align*}
\]
The above inequality is true if
\[\|S - \hat{S}\| = 0 \]
\[\Rightarrow S = \hat{S}. \]

\[\|E - \hat{E}\| \leq \left[\frac{k_1 k_2 \Gamma(k_2)}{AB(k_1) \Gamma'(k_1 + k_2)} + \frac{k_2 (1 - k_1)}{AB(k_1)} \right] \phi_2 \|E - \hat{E}\| \]
\[\left[1 - \left[\frac{k_1 k_2 \Gamma(k_2)}{AB(k_1) \Gamma'(k_1 + k_2)} + \frac{k_2 (1 - k_1)}{AB(k_1)} \right] \phi_2 \right] \|E - \hat{E}\| \leq 0. \]

The above inequality is true if
\[\|E - \hat{E}\| = 0 \]
\[\Rightarrow E = \hat{E}. \]

\[\|I - \hat{I}\| \leq \left[\frac{k_1 k_2 \Gamma(k_2)}{AB(k_1) \Gamma'(k_1 + k_2)} + \frac{k_2 (1 - k_1)}{AB(k_1)} \right] \phi_3 \|I - \hat{I}\| \]
\[\left[1 - \left[\frac{k_1 k_2 \Gamma(k_2)}{AB(k_1) \Gamma'(k_1 + k_2)} + \frac{k_2 (1 - k_1)}{AB(k_1)} \right] \phi_3 \right] \|I - \hat{I}\| \leq 0. \]

The above inequality is true if
\[\|I - \hat{I}\| = 0. \quad \text{this implies } I = \hat{I}. \]

\[\|R - \hat{R}\| \leq \left[\frac{k_1 k_2 \Gamma(k_2)}{AB(k_1) \Gamma'(k_1 + k_2)} + \frac{k_2 (1 - k_1)}{AB(k_1)} \right] \phi_4 \|R - \hat{R}\| \]
\[\left[1 - \left[\frac{k_1 k_2 \Gamma(k_2)}{AB(k_1) \Gamma'(k_1 + k_2)} + \frac{k_2 (1 - k_1)}{AB(k_1)} \right] \phi_4 \right] \|R - \hat{R}\| \leq 0. \]

The above inequality true if
\[\|R - \hat{R}\| = 0 \]
\[\Rightarrow R = \hat{R}. \]

Similarly,
\[\|Q_r - \hat{Q}_r\| \leq \left[\frac{k_1 k_2 \Gamma(k_2)}{AB(k_1) \Gamma'(k_1 + k_2)} + \frac{k_2 (1 - k_1)}{AB(k_1)} \right] \phi_5 \|Q_r - \hat{Q}_r\| \]
\[\left[1 - \left[\frac{k_1 k_2 \Gamma(k_2)}{AB(k_1) \Gamma'(k_1 + k_2)} + \frac{k_2 (1 - k_1)}{AB(k_1)} \right] \phi_5 \right] \|Q_r - \hat{Q}_r\| \leq 0. \]

The above inequality true if
\[\|Q_r - \hat{Q}_r\| = 0 \]
\[\Rightarrow Q_r = \hat{Q}_r. \]

Thus the (1) has unique solution. □

4. Hyers-Ulams stability

Definition 4.1. The fractal fractional integral system (1) is to be Hyers-Ulam stability if there exist a constant \(\varphi_1 > 0, i \in \mathbb{N}_1^2 \) satisfying for every \(\beta_i > 0, i \in \mathbb{N}_1^2 \)

Definition 4.2.

\[\|S(t) - \int_0^t (t-s)^{k_1-1} s^{k_2-1} Q_1(s, S(s)) ds \| \leq \beta_1 \]
\[\|E(t) - \int_0^t (t-s)^{k_1-1} s^{k_2-1} Q_2(s, E(s)) ds \| \leq \beta_2 \]
\[\|I(t) - \int_0^t (t-s)^{k_1-1} s^{k_2-1} Q_3(s, I(s)) ds \| \leq \beta_3 \]
\[\| R(t) - \frac{\kappa_1 \kappa_2}{A \Gamma(k_1 + k_2)} \int_0^t (t-s)^{k_2-1} \| Q_2(s, E(s)) ds \]
\[- \frac{\kappa_1 (1-k_1)}{A \Gamma(k_1)} t^{k_1-1} Q_4(t, R(t)) \leq \beta_4 \]

\[\| Q_2(t) - \frac{\kappa_1 \kappa_2}{A \Gamma(k_1 + k_2)} \int_0^t (t-s)^{k_2-1} \| Q_2(s, Q_2(t)) ds \]
\[- \frac{\kappa_2 (1-k_1)}{A \Gamma(k_1)} t^{k_2-1} Q_5(t, Q_2(t)) \leq \beta_5. \]

There exist approximate solution of the model (1) \(S^*(t), E^*(t), I^*(t), R^*(t), Q_2^*(t) \) that satisfies the given model, such that

\[\| S(t) - S^*(t) \| = \frac{\kappa_1 \kappa_2}{A \Gamma(k_1) \Gamma(k_2)} \int_0^t (t-s)^{k_2-1} \| Q_1(t, S(t)) - Q_1(t, S^*(t)) \|
\]
\[\times \| Q_1(t, S(t)) - Q_1(t, S^*(t)) \|
\]
\[+ \frac{\kappa_2 (1-k_1)}{A \Gamma(k_1)} t^{k_2-1} \| Q_2(t, S(t)) - Q_2(t, S^*(t)) \|
\]
\[\leq \left[\frac{\kappa_1 \kappa_2 \Gamma(k_2)}{A \Gamma(k_1) \Gamma(k_1 + k_2)} + \frac{\kappa_2 (1-k_1)}{A \Gamma(k_1)} \right] \phi_1 \| S - S^* \|. \]

Let
\[\xi_1 = \left[\frac{\kappa_1 \kappa_2 \Gamma(k_2)}{A \Gamma(k_1) \Gamma(k_1 + k_2)} + \frac{\kappa_2 (1-k_1)}{A \Gamma(k_1)} \right] \phi_1 \| S - S^* \|. \]

\(\eta_1 = \phi_1 \) the above an equalities become

\[\| S(t) - S^*(t) \| \leq \eta_1 \xi_1. \]

Similarly we have

\[\| E(t) - E^*(t) \| \leq \eta_2 \xi_2 \]

\[\| I(t) - I^*(t) \| \leq \eta_3 \xi_3 \]

\[\| R(t) - R^*(t) \| \leq \eta_4 \xi_4 \]

\[\| Q_2(t) - Q_2^*(t) \| \leq \eta_5 \xi_5. \]

Theorem 4.1. *If the above assumptions hold, then the fractal fractional COVID-19 model (1) is HU stable*

Proof. We know that the fractal fractional COVID-19 model (1) has unique solution let \(S^*(t), E^*(t), I^*(t), R^*(t), Q_2^*(t) \) be approximate solution of model (1) which satisfy the model then we have

\[\| S(t) - S^*(t) \| = \frac{\kappa_1 \kappa_2}{A \Gamma(k_1) \Gamma(k_2)} \int_0^t (t-s)^{k_2-1} \| Q_1(t, S(t)) - Q_1(t, S^*(t)) \|
\]
\[\times \| Q_1(t, S(t)) - Q_1(t, S^*(t)) \|
\]
\[+ \frac{\kappa_2 (1-k_1)}{A \Gamma(k_1)} t^{k_2-1} \| Q_2(t, S(t)) - Q_2(t, S^*(t)) \|
\]
\[\leq \left[\frac{\kappa_1 \kappa_2 \Gamma(k_2)}{A \Gamma(k_1) \Gamma(k_1 + k_2)} + \frac{\kappa_2 (1-k_1)}{A \Gamma(k_1)} \right] \phi_1 \| S - S^* \|. \]

Let
\[\alpha_1 = \left[\frac{\kappa_1 \kappa_2 \Gamma(k_2)}{A \Gamma(k_1) \Gamma(k_1 + k_2)} + \frac{\kappa_2 (1-k_1)}{A \Gamma(k_1)} \right] \phi_1 \| S - S^* \|
\]
and
\[\beta_1 = \phi_1. \]
so the above inequality become

\[\| S - S^* \| \leq \alpha_1 \beta_1. \]
similarly

\[\| E - E^* \| \leq \alpha_2 \beta_2 \]
\[\| I - I^* \| \leq \alpha_3 \beta_3 \]
\[\| R - R^* \| \leq \alpha_4 \beta_4 \]
\[\| Q_2 - Q_2^* \| \leq \alpha_5 \beta_5. \]
consequently by definition the COVID-19 model (1) is hyers-ulans stable which is complete the proof. \(\Box \)
5. Numerical scheme

Let us consider
\[
F_{0}^{\text{FM}}D_{t}^{\alpha}x_{2}(t) = V(t, \varphi(t)), \quad \text{where} \; \varphi(0) = \varphi_{0}.
\]

The above equation can be written in Antangana-Baleanu fractional derivative as following
\[
F_{0}^{\text{AB}}D_{t}^{\alpha}x_{2}(t) = \kappa_{2}t^{\varepsilon_{2}-1}L(t, \varphi(t)) = V(t, \varphi(t)).
\]
Taking Antangana-Baleanu integral, we get
\[
\varphi(t) = \varphi(0) + \frac{\kappa_{1}}{\Gamma(\kappa_{1})} \int_{0}^{t} (t - \tau)^{\varepsilon_{1}-1}V(\tau, \varphi(\tau)) d\tau .
\]
Replacing (t) by \(t + 1 \) we have
\[
\varphi^{n+1} = \varphi(0) + \frac{\kappa_{1}}{\Gamma(\kappa_{1})} \int_{0}^{t+1} (t + 1 - \tau)^{\varepsilon_{1}-1}V(\tau, \varphi(\tau)) d\tau .
\]

By applying two step Lagrange Polynomial we obtain
\[
V(x, \varphi(t)) = \frac{V(t_{k}, \varphi(t_{k}))}{t_{k} - t_{k-1}} (x - t_{k-1}) - \frac{V(t_{k-1}, \varphi(t_{k-1}))}{t_{k} - t_{k-1}} (x - t_{k}) = \frac{V(t_{k}, \varphi(t_{k}))}{t_{k} - t_{k-1}} (x - t_{k-1}) - \frac{V(t_{k-1}, \varphi(t_{k-1}))}{t_{k} - t_{k-1}} (x - t_{k}).
\]

Proceeding to consider the equation, we get
\[
\varphi^{n+1} = \varphi(0) + \frac{\kappa_{1}}{\Gamma(\kappa_{1})} \int_{0}^{t+1} \frac{V(t_{k}, \varphi(t_{k}))}{t_{k} - t_{k-1}} (x - t_{k-1}) - \frac{V(t_{k-1}, \varphi(t_{k-1}))}{t_{k} - t_{k-1}} (x - t_{k}) d\tau .
\]

Now solving the integral we get
\[
\varphi^{n+1} = \varphi(0) + \frac{\kappa_{1}}{\Gamma(\kappa_{1})} \int_{0}^{t+1} \frac{V(t_{k}, \varphi(t_{k}))}{t_{k} - t_{k-1}} (x - t_{k-1}) - \frac{V(t_{k-1}, \varphi(t_{k-1}))}{t_{k} - t_{k-1}} (x - t_{k}) d\tau = \varphi(0) + \frac{\kappa_{1}}{\Gamma(\kappa_{1})} \int_{0}^{t+1} \frac{V(t_{k}, \varphi(t_{k}))}{t_{k} - t_{k-1}} (x - t_{k-1}) - \frac{V(t_{k-1}, \varphi(t_{k-1}))}{t_{k} - t_{k-1}} (x - t_{k}) d\tau .
\]

5.1. Numerical results

In this portion, we present the numerical description of the Covid-19 model 1. The numerical values are taken from the article 4, where \(\mu = 0.02, \beta_{2} = 0.3, \rho_{1} = 0.9, \delta_{1} = 0.4, \beta_{1} = 0.4, \delta_{2} = 0.2, \gamma = 0.1, \delta_{3} = 0.1, \sigma = 0.1, \lambda_{1} = 8 \times 10^{5}, \lambda_{2} = 5 \times 10^{7}, \text{and the initial values are: } S(0) = 3 \times 10^{3}, \; E(0) = 2.5 \times 10^{5}, \; I(0) = 6 \times 10^{7}, \; R(0) = 5000. \; Q_{T}(0) = 10^{6} \).

From the numerical results which are explained via graphs we have observed that the population of the susceptible people and exposed people are suddenly reduced and are transferred in to the infected class. As they are quarantined, the infection is control. After few days, the recovery begins and the infection is then reduced. This shows that in the controlling of the infection, the quarantine has an important role.

The numerical description of the model is presented with the help of eight figures. The first Fig. 1 is the numerical data for the susceptible class of the model, the Fig. 2 is the exposed people to the Covid-19 patients, the Fig. 3 is the Covid-19 infected class, Fig. 4 are the simulations for the recovered class from the Covid-19, Fig. 5 represents the graphical data about quarantined people.
6. Conclusion

In this work, a fractal-fractional order Covid-19 model based on five classes of a population was taken into consideration. The classes of the considered populations are the susceptible, exposed, infected, quarantined and recovered. Here, the existence of solutions, stability of the considered system and numerical simulation based on an iterative numerical scheme were investigated for the considered model. The scheme is supported by the Lagrange’s interpolation polynomial. We also applied the numerical scheme to the available data in literature and got very much interesting results for different fractional orders. We suggest the readers for reconsideration of the fractal-fractional Covid-19 model (1) for other fractional derivatives and stability results. They can also generate numerical schemes with the help of other polynomials. The researchers can also consider the model for variable order and develop more general results as a continuation of this study.

Availability of data and material

Not applicable.

Funding source

There is no source of funding this article.
Authors contributions

The first author (H.K) worked in the conceptualization, formal analysis and methodology. The second author (FA) investigated the suggested model and helped in the writing. The third author (O.T) worked in the methodology, software and validation. The fourth author (M.J) worked in the project administration and supervision.

Declaration of Competing Interest

Authors declare that they have no conflict of interest.

Acknowledgments

Not applicable.

References

[1] World Health Organization. Who.int/csr/don/12-january-2020-novel-coronavirus-china.
[2] Atangana A. Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 2017;102:396–406. doi:10.1016/j.chaos.2017.04.027.
[3] Atangana A, Akgül A, Owolabi KM. Analysis of fractal fractional differential equations. Alex Eng J 2020;59(3):1117–34. doi:10.1016/j.aej.2020.01.005.
[4] Koushide A, Youssouf LE, Feipoucha H, Balatif O, Rachik M. Optimal control of mathematical modeling of the spread of the COVID-19 pandemic with highlighting the negative impact of quarantine on diabetics people with cost-effectiveness. Chaos Solitons Fractals 2021;145:110777.
[5] Kolebaje OT, Vincent OR, Vincent UE, McClintock PVE. Nonlinear growth and mathematical modelling of COVID-19 in some african countries with the Atanga-Baleanu fractional derivative. Commum Nonlinear Sci Numer Simul 2022;105:27.
[6] Ullah R, Waseem M, Rosli NB, Kafle J. Analysis of COVID-19 fractional model pertaining to the Atanga-Baleanu-Caputo fractional derivatives. J Fract Spaces 2021;16.
[7] Das M, Samanta G. Stability analysis of a fractional ordered COVID-19 model. Comput Math Biophys 2021;9:22–45.
[8] Furati KM, Sarumi IO, Khaliq AQM. Fractional model for the spread of COVID-19 subject to government intervention and public perception. Appl Math Model 2021;95:89–105.
[9] Baha IA, Nasidi BA. Fractional order model for the role of mild cases in the transmission of COVID-19. Chaos Solitons Fractals 2021;142:10.
[10] Alkahtani BST, Alzaid SS. A novel mathematics model of COVID-19 with fractional derivative: stability and numerical analysis. Chaos Solitons Fractals 2020:2020;90:105.
[11] Pacurar CM, Necula BR. An analysis of COVID-19 spread based on fractal interpolation and fractal dimension. Chaos Solitons Fractals 2020;139:8.
[12] Zhang Z. Corrigendum to a novel COVID-19 mathematical model with fractional derivatives: singular and nonsingular kernels. Chaos Solitons Fractals 2020;139:2. 110128.
[13] Begum R, Tunç O, Khan H, Ulzlar H, Khan A. A fractional order Zika virus model with Mittag-Leffler kernel. Chaos Solitons Fractals 2021;146:11.
[14] Akgül A, Ahmed N, Raza A, Iqbal Z, Rafiq M, Rehman MA. Baleanu D. A fractal fractional model for cervical cancer due to human papillomavirus infection. Chaos Solitons Fractals 2021;29(5):2140015–19.
[15] Akgül A, Ahmad S, Ullah A, Baleanu D, Akgül EK. A novel method for analysing the fractal fractional integrator circuit. Alex Eng J 2021;60(4):3721–9.
[16] Ibrahim RW, Baleanu D. Analytic solution of the Langlevin differential equations dominated by a multibrot fractal set. Fractal Fract 2021;5(2):50.
[17] Tassadin A, Qureshi S, Soomro A, Hincal E, Baleanu D, Shaikh AA. A new three-step root-finding numerical method and its fractal global behavior. Fract Fract 2021;5(4):204.
[18] Akgül A, Baleanu D. Analysis and applications of the proportional Caputo derivative. Adv Differ Equ 2021(1):1–12.
[19] Farman M, Akgül A, Ahmad S, Baleanu D, Saleem MU. Dynamical transmission of coronavirus model with analysis and simulation. CMES-Comput Model Eng Sci 2021;753–69.
[20] Golmankhaneh AK, Tunç C. Stochastic differential equations on fractal sets. Stochastics 2020;92(8):1244–60.
[21] Golmankhaneh AK, Tunç C. On the Lipschitz condition in the fractal calculus. Chaos Solitons Fractals 2017;95:140–7.
[22] Tunç C. Golmankhaneh AK, Branch U. On stability of a class of second alpha-order fractal differential equations. AIM Math 2020:2126–2142.
[23] Atangana A. Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination. Chaos Solitons Fractals 2020;136:38.
[24] Mohammad M, Trounev A. On the dynamical modeling of COVID-19 involving Atanga-Baleanu fractional derivative and based on Daubechies framelet simulations. Chaos Solitons Fractals 2020;40:8.
[25] Osame A, Abbas M, Onyeneogha EP. A fractional-order model for COVID-19 and tuberculosis co-infection using Atanga-Baleanu derivative. Chaos Solitons Fractals 2021:13.
[26] Khan H, Begum R, Abdeljawad T, Khashan MM. A numerical and analytical study of SEICR(1/R)AB epidemic fractional order COVID-19 model. Adv Differ Equ 2021;293:31.
[27] Yang L, Su Y, Zhuo X. Comparison of two different types of fractional-order COVID-19 distributed time-delay models with real data application. Internat J Mod Phys B 2021;35(21):22.
[28] Biala TA, Khaliq AQM. A fractional-order compartmental model for the spread of the COVID-19 pandemic. Commun Nonlinear Sci Numer Simul 2021;98:19.
[29] Alqahthani RT. Mathematical model of SIR epidemic system (COVID-19) with fractional derivative: stability and numerical analysis. Adv Differ Equ 2021;2:16.
[30] Rezapour S, Mohammadi H, Samei ME. SEIR epidemic model for COVID-19 transmission by Caputo derivative of fractional order. Adv Differ Equ 2020:490:19.
[31] Tian NH, Mohammadi H, Rezapour S. A mathematical model for COVID-19 transmission using the Caputo fractional derivative. Chaos Solitons Fractals 2020;140:11.
[32] Davies NG, Klopac P, Liu Y, Prem K, Jit M. CMMID COVID-19 working group. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med 2020;26:1–7.
[33] Jajarmi A, Baleanu D, Zarghami Vahid K, Mohayen S. A general fractional formulation and tracking control for immunogenic tumor dynamics. Math Methods Appl Sci 2022;45(2):667–80.
[34] Jajarmi A, Baleanu D, Vahid KZ, Pirouz HM, Asad JH. A new and general fractional lagrangian approach: acapacitor microphone case study. Results Phys 2021;31(104050).
[35] Khan MA, Atangana A, Alzahrani E. The dynamics of COVID-19 with quarantined and isolation. Adv Differ Equ 2020(1):1–22.