Observation of Laughlin states made of light

Logan W. Clark1,2,3, Nathan Schine1,2,3, Claire Baum1,2, Ningyuan Jia1,2 & Jonathan Simon1,2,5

Much of the richness in nature emerges because simple constituents form an endless variety of ordered states1. Whereas many such states are fully characterized by symmetries2, interacting quantum systems can exhibit topological order and are instead characterized by intricate patterns of entanglement3,4. A paradigmatic example of topological order is the Laughlin state5, which minimizes the interaction energy of charged particles in a magnetic field and underlies the fractional quantum Hall effect6. Efforts have been made to enhance our understanding of topological order by forming Laughlin states in synthetic systems of ultracold atoms7–9 or photons9–11. Nonetheless, electron gases remain the only systems in which such topological states have been definitively observed6,12–14. Here we create Laughlin-ordered photon pairs using a gas of strongly interacting, lowest-Landau-level polaritons as a photon collider. Initially uncorrelated photons enter a cavity and hybridize with atomic Rydberg excitations to form polaritons15–17, quasiparticles that here behave like electrons in the lowest Landau level owing to a synthetic magnetic field created by Floquet engineering18 a twisted cavity11,19 and by Rydberg-mediated interactions between them6,17,20,21. Polariton pairs collide and self-organize to avoid each other while conserving angular momentum. Our finite-lifetime polaritons only weakly prefer such organization. Therefore, we harness the unique tunability of Floquet polaritons to distil high-fidelity Laughlin states of photons outside the cavity. Particle-resolved measurements show that these photons avoid each other and exhibit angular momentum correlations, the hallmarks of Laughlin physics. This work provides broad prospects for the study of topological quantum light22.

The simplest method for realizing topological order is to place strongly interacting particles in an effective magnetic field. The magnetic field quenches the kinetic energy of the particles so that they order themselves solely to minimize their interaction energy, resulting in intricate patterns of long-range entanglement1. These states exhibit fascinating properties largely unseen in other forms of matter; in addition to robust quantized edge transport, which also appears without interactions23, topologically ordered phases host excitations with fractional charge and anyonic statistics24. More exotic phases even host non-Abelian anyons, promising constituents for fault-tolerant quantum computers owing to their insensitivity to local perturbations25.

The scarcity of physical platforms hosting topological order has spurred great interest in explaining its exotic properties using the wide tunability, particle-resolved control and versatile detection capabilities afforded by synthetic quantum matter26,27,28. The typical constituents of synthetic matter are atoms and photons, neither of which experience a Lorentz force in ordinary magnetic fields, as they are charge neutral. Accordingly, the key challenge is to implement a synthetic magnetic field that creates an effective Lorentz force and is compatible with strong interparticle interactions. A classic approach employed the Coriolis force in rotating ultracold atomic gases27, and such systems approached the few-body fractional quantum Hall regime28. More recent efforts with ultracold atoms have focused on Floquet engineering of synthetic magnetic fields29 combined with strong atomic interactions owing to tight optical lattice confinement28. Photonic systems have also shown a variety of synthetic magnetic fields30 compatible with strong interactions via coupling to superconducting qubits in the microwave domain29,30 and cold atoms26,27,31 or quantum dots32 in the optical domain. However, synthetic magnetic fields and strong interactions have yet to be effectively combined and scaled, so the formation of topologically ordered synthetic matter has not yet been achieved.

Here we assemble optical photon pairs into a Laughlin state. To achieve this, we construct a polariton system analogous to an electronic fractional quantum Hall fluid by combining two key components: a synthetic magnetic field for light induced by a twisted optical cavity33 and strong polariton interactions mediated by Rydberg atoms17. We inject photons with angular momentum into this system and observe that the resulting intracavity polaritons do indeed behave like fractional quantum Hall electrons, undergoing mode-changing, angular-momentum-conserving collisions to minimize their interactions with one another. Given the finite lifetime of our polaritons, this leads towards but not to an intracavity Laughlin state. We then distil a Laughlin state of photons outside the cavity by manipulating the optical leakage rate of each single-polariton state and compensating for a relative phase between photons and polaritons (Supplementary Information section A1). The distilled photon pairs exhibit angular momentum correlations and spatial avoidance characteristic of a Laughlin state.
key components enable this system to explore topological order. A typical experiment begins by loading a pancake of \(6(1) \times 10^4\) laser-cooled \(^{87}\text{Rb}\) atoms at the waist of an optical cavity (Fig. 1a, Methods section 'Experimental setup'; numbers in parentheses indicate standard error). We then continuously shine a weak probe laser beam on the cavity for 100 ms. Initially uncorrelated photons from the beam entering the cavity are strongly coupled to a resonant atomic transition. With an additional Rydberg electromagnetically induced transparency field, they become polaritons, quasiparticles consisting of a superposition between a photon and a collective Rydberg excitation of the atomic gas (Fig. 1b, Methods section ‘Making polaritons with cavity Rydberg electromagnetically induced transparency’). Polaritons inherit key properties from both their photonic and Rydberg components. The motion of individual polaritons is determined by the cavity modes accessible to their photonic part. The large energy spacing between longitudinal cavity manifolds restricts the polaritons to a single manifold, confining them to undergo two-dimensional motion among their transverse modes. We utilize a twisted optical cavity and Floquet engineering to form a set of

![Fig. 1](components_for_laughlin_states_of_light.png)

Fig. 1 | Components for Laughlin states of light. a, Our experiment couples optical photons (red) with a gas of \(^{87}\text{Rb}\) atoms at the waist of a twisted, four-mirror cavity. b, This coupling turns each photon entering the cavity into a polariton, a quasiparticle combining the photon with a collective Rydberg excitation of the atomic gas. Polaritons move around in the transverse modes available to their photonic component, and a pair of polaritons (depicted) strongly interact because of their Rydberg components (blue spheres). Two key components enable this system to explore topological order. c, First, we form a flat topological band of single-photons states using a twisted optical cavity, which hosts a set of degenerate photonic modes that are equivalent to the states in the lowest Landau level available to electrons in a strong magnetic field. For each mode, the complex electric field \(E\) in the plane perpendicular to photon propagation is shown. Illustrations at the left depict the origins of the fields in each system. d, Second, the strong polaritonic interactions mediated by Rydberg atoms (R) are analogous to the Coulomb interactions between electrons in a traditional fractional quantum Hall system. Polaritons confined to a single cavity mode reveal their strong interactions via transport blockade, wherein a single polariton present in the cavity prevents a second photon from entering. Blockade results in antibunched correlations of photons exiting the cavity, shown here for \(l = 0\).

![Fig. 2](collisions_between_polaritons_in_the_lowest_landau_level.png)

Fig. 2 | Collisions between polaritons in the lowest Landau level. a, To test for mode-changing collisions between polaritons, we inject photons with orbital angular momentum \(l = 6\) and then count the photons emerging from the cavity in other angular momentum modes (Supplementary Information section A2). b, We perform spectroscopy of the single-polariton eigenstates by weakly injecting \(l = 3, l = 6\) and \(l = 9\) photons and scanning their energies. We observe Floquet Rydberg polariton resonances (three narrow peaks) for each of the three accessible lowest-Landau-level eigenstates, separated by roughly 73 MHz. The \(l = 3\) and \(l = 9\) polaritons are more photon-like (broader and taller) than the \(l = 6\) polariton (see text). We ignore the broad ‘bright’ polaritons, as they do not interact, instead probing collisions of photons injected on the Rydberg polariton resonances. c, When \(l = 6\) photons are injected into the cavity at a higher rate, the total rate \(R_{9}\), at which photons emerge with angular momentum \(l = 3\) or \(l = 9\) peaks when the collisions conserve energy (inset); \(E\) is the angular momentum polariton’s energy. Atomistic numerics (solid curve) capture key features of the data, including the full-width at half-maximum of 1.1(1) MHz and slight energy mismatch 0.15(5) of the peak due to the finite Rydberg interaction range (Supplementary Information section B5). d, At zero energy mismatch, varying the photon injection rate reveals that \(R_{9}\) grows quadratically (solid curve) rather than linearly (dotted line) with the rate \(R_{0}\) of injected \(l = 6\) photons, consistent with \(l = 3\) and \(l = 9\) polaritons produced in two-body collisions between \(l = 6\) polaritons. The probe power in c is the same as the \(R_{9} = 1.32(3)\ kHz data point in d; observed rates are incompatible due to mild \(V\) broadening of d. Error bars indicate the standard error of the mean.
To form ordered states, polaritons must also interact with one another (Fig. 1D). Polaritons inherit the strong interactions of their Rydberg components, causing them to avoid each other. When confined to a single transverse mode, one polariton can avoid another (Fig. 2b). By using a digital micromirror device for this work, alongside wider, non-interacting ‘bright’ polaritons \(^{32}\) (Supplementary Information section ‘Forming the Landau level with Floquet polaritons’). Spectroscopy reveals the narrow Rydberg-polariton eigenstates that we employ for this work, alongside wider, non-interacting ‘bright’ polaritons \(^{33}\) that we can ignore (Fig. 2b). By using a digital micromirror device for wavefront shaping, we inject photons with angular momentum \(l = 6\). Photons entering the cavity become polaritons and can then collide and begin to order. When polaritons emerge from the cavity as photons through the output mirror, we count how many photons come from each angular momentum mode (Fig. 2a).

Despite the exotic nature of polaritonic quasiparticles, we find that they undergo collisions much like ordinary particles \(^{33}\); collisions between polaritons conserve total energy, as well as angular momentum owing to the rotational symmetry of the Landau level and interactions. Accordingly, the only collision process that conserves angular momentum converts two input polaritons with \(l = 6\) into one output polariton with \(l = 3\) and another with \(l = 9\). Similarly, as we tune the relative energies between the angular momentum states, we detect only photons with \(l = 3\) or \(l = 9\) when the aforementioned collision process conserves energy (Fig. 2c, Supplementary Information section B6). Moreover, increasing the probe beam power increases the likelihood of two polaritons being present simultaneously and thereby makes collisions more likely, a feature analogous to nonlinear reaction rates in chemistry. Indeed, we observe that the rate at which collision degenerate orbital angular momentum modes equivalent to the lowest Landau level accessible to electrons in a magnetic field \(^{34,35}\) (Fig. 1C).

To form ordered states, polaritons must also interact with one another (Fig. 1D). Polaritons inherit the strong interactions of their Rydberg components, causing them to avoid each other. When confined to a single transverse mode, one polariton can avoid another only by blocking the cavity, preventing the second polariton from entering, akin to a zero-dimensional electronic quantum dot \(^{17}\). This phenomenon can be characterized via the two-photon correlation function \(g^{(2)}(\tau)\) quantifying the likelihood that two photons emerge from the cavity separated by a time \(\tau\) compared with uncorrelated photons (Supplementary Information section A3). Blockade manifests strikingly through antibunching; the \(\tau = 0\) correlation \(g^{(2)}(0)\) falls to zero because there are never two polaritons present in the cavity simultaneously.

When polaritons have access to multiple transverse modes, as in the lowest Landau level, new physics emerges. It becomes possible for two polaritons to enter the cavity simultaneously while avoiding one another; interactions need not lead to blockade, but can instead drive collisions between polaritons, causing them to move among the states of the Landau level and thereby reduce their interaction energy. To test for these collisions, we provide the polaritons with access to exactly three states in the lowest Landau level—those with orbital angular momentum \(l/h = 3, l/h = 6\) and \(l/h = 9\), where \(h\) is the reduced Planck constant—using our Floquet scheme \(^{36}\) (see Methods section ‘Forming the Landau level with Floquet polaritons’). Spectroscopy reveals the narrow Rydberg-polariton eigenstates that we employ for this work, alongside wider, non-interacting ‘bright’ polaritons \(^{33}\) that we can ignore (Fig. 2b). By using a digital micromirror device for wavefront shaping, we inject photons with angular momentum \(l = 6\). Photons entering the cavity become polaritons and can then collide and begin to order. When polaritons emerge from the cavity as photons through the output mirror, we count how many photons come from each angular momentum mode (Fig. 2a).

Despite the exotic nature of polaritonic quasiparticles, we find that they undergo collisions much like ordinary particles; collisions between polaritons conserve total energy, as well as angular momentum owing to the rotational symmetry of the Landau level and interactions. Accordingly, the only collision process that conserves angular momentum converts two input polaritons with \(l = 6\) into one output polariton with \(l = 3\) and another with \(l = 9\). Similarly, as we tune the relative energies between the angular momentum states, we detect only photons with \(l = 3\) or \(l = 9\) when the aforementioned collision process conserves energy (Fig. 2c, Supplementary Information section B6). Moreover, increasing the probe beam power increases the likelihood of two polaritons being present simultaneously and thereby makes collisions more likely, a feature analogous to nonlinear reaction rates in chemistry. Indeed, we observe that the rate at which collision
To definitively test for the formation of these photonic Laughlin states, we experimentally investigate the correlations of the emerging photon pairs. First, when we detect all output photons regardless of their spatial mode, the ‘all-mode’ correlations $g_{\text{all}}^{(2)}(r)$ reveal only weak blockade (Fig. 3c). This observation confirms that photon pairs can traverse the three-mode cavity whereas they were blocked in its single-mode counterpart; determining the structure of the pairs requires more detailed measurements.

We gain deeper insight by examining the correlations $g_{jk}^{(2)}$ between photons with angular momenta $l=3$ and $l=9$ again using the setup shown in Fig. 2a. The correlations $g_{66}^{(2)}$ between photons with $l=6$ have a non-zero value $g_{66}^{(2)}(0) = 0.32(3)$ at zero time delay, indicating a substantial population in the pair state $|66\rangle$ (Fig. 3d). However, their blockade is still stronger than that of the all-mode correlations $g_{\text{all}}^{(2)}$, indicating that the two-photon state has a large contribution from pairs not in $|66\rangle$. Most remaining pairs are accounted for by examining $g_{39}^{(2)}$, which exhibits a prominent peak at zero time (Fig. 3e). The peak height indicates that photons are $g_{39}^{(2)}(0) = 22(2)$ times more likely to appear in both modes simultaneously than expected for uncorrelated photons arriving with the same individual rates. This bunching arises because photons in these modes are produced together from polariton collisions and rarely in nonlinear crystals requiring macroscopic mode populations and collisions in our system appear for just two intracavity polaritons. In this idealized limit, providing the polaritons access to three single-particle eigenstates in the lowest Landau level leads to the emergence of a long-lived two-particle Laughlin state K (Fig. 3b). Our experiments offer a unique opportunity to connect the mathematical form of this Laughlin state to measurements of its microscopic structure. For the modes used in this work, the two-particle Laughlin wavefunction in real space is

$$\psi(z_1, z_2) = z_1^{l_1}z_2^{l_2}e^{i(l_1 - l_2)/4} \exp(-|z_1|^2/4 - |z_2|^2/4),$$

where $z_k = x_k + iy_k$ is a complex number reflecting the position (x_k, y_k) of particle k. Expanding the polynomial prefactor lets us write this state in angular-momentum space as $|L\rangle = \frac{1}{\sqrt{A}} |66\rangle - \frac{3}{\sqrt{2}} |39\rangle$, where $|mn\rangle$ is the state with two polaritons of angular momenta $m\hbar$ and $n\hbar$ (Supplementary Information section B4). As the wavefunction goes to zero when the particles are at the same position ($\psi(z_1 = z_2 = 0)$, the Laughlin state enables two particles to avoid each other while remaining in the lowest Landau level. In the angular momentum basis, this avoidance arises from destructive interference between the $|66\rangle$ and $|39\rangle$ two-particle amplitudes for co-located particles. Similar two-particle Laughlin states can be formed in any set of three evenly spaced angular-momentum states (Supplementary Information section B4).

The spatial anticorrelation of polaritons in the Laughlin state suppresses the interaction energy and interaction-induced decay present in other two-particle states. Thus, for ideal polaritons, simply shining a laser into this atom-cavity system would cause a polaritonic Laughlin state to form inside, because all other two-polariton states are blockaded (including the ‘anti-Laughlin’ superposition state $|AL\rangle = \frac{1}{\sqrt{2}} |66\rangle + \frac{1}{\sqrt{2}} |39\rangle$).

The collisions observed in Fig. 2 are the first hint of such ordering. As detailed in the Methods section ‘Forming the Landau level with Floquet polaritons’, the finite optical depth of our polaritons prevents them from reaching a polaritonic Laughlin state before decaying. Surprisingly, we can distill a high-purity photonic Laughlin state outside of the cavity from the polaritonic state produced within the cavity: this is achieved by choosing Floquet conditions to make the $l = 3$ and $l = 9$ polaritons more photon-like than the $l = 6$ polariton (apparent from their larger width in Fig. 2b), and correcting the phase imparted to the outgoing photons by the Floquet modulation (as detailed in Supplementary Information section A1).

We quantitatively compare the observed pair-photon state with the Laughlin state by calculating the two-particle populations ρ_{jk} with angular momenta j and k from the coincidence rates of events where two photons are observed near simultaneously (Fig. 3f, Supplementary Information section A3). Coincidence events corresponding to $|66\rangle$ or $|39\rangle$ account for 85(15)% of all observed photon pairs, consistent with angular momentum conservation. Moreover, the ratio $\rho_{66}/\rho_{39} = 1.5(5)$ of pair populations is near the intended ratio of 2.1 for the Laughlin state. Deviations from ideal populations could arise from the limited lifetime and interaction strength of our polaritons, slight drifts of...
system parameters between experiments or because the polaritons with angular momentum $l = 3$ and $l = 9$ are insufficiently photon-like.

We next test for the remaining essential physical feature of Laughlin states: that the photons avoid each other in real space. To measure in real space, we filter the output photons with a single-mode optical fibre (Fig. 4a) that only admits photons located at its tip, enabling us to count photons at that position. As the average density in a state composed of $|39⟩$ and $|66⟩$ forms a smooth annulus, we translate the fibre to the radius with the highest density (Fig. 4b). A natural method for measuring angular correlations $g^{(2)}(\phi, r = 0)$ between photons separated by the angle ϕ around the annulus would be to use two fibres at different positions; our Floquet scheme induces a rapid rotation of the optical field, enabling an equivalent measurement with a single fibre.

While the average density of photon pairs leaving the cavity exhibits no angular structure, we find that the photons are bunched in space (Fig. 4c) owing to a Floquet-induced phase between photons and polaritons. After compensating this phase with linear optics (Supplementary Information section A3), the photons avoid each other as expected for a Laughlin state (Fig. 4d). The spatial correlations should take the form $g^{(2)}(\phi) = g_0 + g_2 \sin^2(3\phi/2)$, which oscillates with an angle ϕ between the photons with a periodicity of 120° because only every third angular momentum state is accessible. Motivated by this expected form, we fit the observed correlations with $g^{(2)}(\phi) = g_0 + g_2 \sin^2(3\phi/2)$ allowing for an offset g_0, from perfect spatial antibunching and a reduction of the oscillation amplitude g_0 owing to imperfect state fidelity or detection. The fit yields a small offset $g_0 = 0.11(19)$ and an oscillation amplitude $g_2 = 0.77(36)$ with a significance of 2.1 standard deviations corresponding to a probability of 0.02 to arise from statistical fluctuations in a system with no dependence of correlation on angle. Combining with the uncompensated data further reduces this probability to 10^{-5} (Supplementary Information section A3).

On their own, the angular-momentum mode populations are suggestive of Laughlin physics but insensitive to the phase and even the purity of the superposition between $|39⟩$ and $|66⟩$. However, the observed spatial anticorrelation occurs only for a coherent superposition with a minus sign. Combined, these results indicate that the photon pairs, in a virtual image plane at the twisted cavity mode waist (Supplementary Information section A7), have 76(18)% overlap with a pure Laughlin state. This fidelity is limited primarily by our conservative assumptions about the unmeasured momentum-non-conserving pair populations (Supplementary Information section A4).

This work establishes quantum many-body optics as a critical route to breakthroughs in quantum materials. Feasible technological upgrades, including novel state-preparation schemes, will enable our platform to support polaritonic Laughlin states and eventually explore the statistical phases of anyons (see Methods section ‘The near future of our platform’).

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-020-2318-5.

1. Anderson, P. W. More is different. Science 177, 393–396 (1972).
2. Landau, L. D. & Lifshitz, E. M. Statistical Physics: Course of Theoretical Physics Vol. 5 (Addison-Wesley, 1958).
3. Chen, X., Gu, Z.-C. & Wen, X.-G. Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 (2010).
4. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
5. Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).
6. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
7. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).
8. Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).
9. Umucalılar, R., Wouters, M. & Carusotto, I. Probing few-particle Laughlin states of photons via correlation measurements. Phys. Rev. A 89, 023803 (2014).
10. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).
11. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
12. Du, X., Siahaan, I., Duerr, F., Luican, A. & Andrei, E. V. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).
13. Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009); corrigendum 475, 122 (2011).
14. Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).
15. Fleischhauer, M., Imamoglu, A. & Manasoglu, J. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).
16. Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).
17. Jia, N. et al. A strongly interacting polaronic quantum dot. Nat. Phys. 14, 550–554 (2018).
18. Clark, L. W. et al. Interacting Floquet polaritons. Nature 571, 532–536 (2019).
19. Schine, N., Ryu, A., Gromov, A., Sommer, A. & Simon, J. Synthetic Landau levels for photons. Nature 534, 671–675 (2016).
20. Birnbaum, K. M. et al. Photon blockade in an optical wire with one trapped atom. Nature 436, 87–90 (2005).
21. Thompson, J. D. et al. Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013).
22. Sommer, A., Buchler, H. P. & Simon, J. Quantum crystals and Laughlin droplets of cavity Rydberg polaritons. Preprint at https://arxiv.org/abs/1506.00341 (2015).
23. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
24. Stern, A. Anyons and the quantum Hall effect—a pedagogical review. Ann. Phys. 323, 204–249 (2008).
25. Cooper, N. R. Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008).
26. Gemelke, N., Sarajlic, E. & Chu, S. Rotating few-body atomic systems in the fractional quantum Hall regime. Preprint at https://arxiv.org/abs/1007.2877 (2010).
27. Eckardt, A. Colloquium: atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017).
28. Tai, M. E. et al. Microscopy of the interacting Harper–Hofstadter model in the two-body limit. Nature 546, 519–523 (2017).
29. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).
30. Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic-field. Nat. Phys. 13, 146–151 (2017).
31. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).
32. Ningyuan, J. et al. Observation and characterization of cavity Rydberg polaritons. Phys. Rev. A 93, 041802 (2016).
33. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).
The near future of our platform

This work establishes quantum many-body optics in strongly interacting gases of topological polaritons as a critical route to breakthroughs in quantum materials. We apply the unique microscopic control of our photonic platform, providing highly tunable system parameters, energy- and space-resolved particle injection, and the ability to measure correlations in almost any basis using simple linear optics. The present performance, combined with a cavity that can be made precisely degenerate in lieu of the Floquet scheme, should directly support polaritonic Laughlin states (Supplementary Information section A1). Looking ahead, novel state-preparation schemes such as dissipative stabilization will enable the formation of larger topologically ordered states. Interestingly, the Laughlin state that we have assembled in this work already contains a quasihole at its centre (Supplementary Information section B4), a precursor to directly measuring statistical phases of anyons or even non-Abelian braiding in the Moore–Read state.

Making polaritons with cavity Rydberg electromagnetically induced transparency

Coupling atomic gases with multiple modes of optical resonators provides exciting opportunities for studying many-body physics. Here we use a multimode optical cavity to generate a synthetic gauge field for light, making photons interact strongly in this cavity enables us to study strongly correlated fractional quantum Hall states of light.

In our system, photonic interactions are mediated by Rydberg atoms through a scheme called cavity Rydberg electromagnetically induced transparency. First, we couple cavity photons to the S_{1/2} → P_{3/2} transition of the 87Rb atoms at the waist of our primary cavity, which we name the ‘science’ cavity, with collective coupling strength η (Extended Data Fig. 1a). These experiments operate in the regime of resonant collective strong coupling between the atoms and the cavity, in which the collective cooperativity η_c = 4g^2/κ(T) in the relevant modes, with angular momentum ℓ, collective atom-cavity coupling g, cavity decay rate γ and atomic excited state decay rate Γ, satisfies η_c ≈ 1 (ref. 25). The P_{3/2} state is subsequently coupled to a highly excited Rydberg level 11D_{5/2} by an additional 480-nm field with coupling strength Ω. As detailed in Methods section ‘Experimental setup’ and in Supplementary Information section A6, we use a buildup cavity crossed with the science cavity to achieve sufficient intensity of that Rydberg coupling field while it covers a large area.

As a result of these couplings, photons no longer propagate in the cavity on their own as they would in vacuum. Instead each cavity mode hosts three flavors of polaritons—quasiparticles composed of hybrids between a photon and a collective excitation of the atomic gas—(Extended Data Fig. 1b). The nature of these collective excitations is detailed in Supplementary Information section B1. The two ‘bright’ polaritons are largely composed of a photon and a collective SP_{3/2} excitation; we do not employ bright polaritons in this work because they are short-lived due to rapid decay of the SP_{3/2} state at Γ = 2π × 6 MHz. We utilize the third ‘dark’ polariton throughout the main text of this work. Dark polaritons are purely a superposition of a cavity photon and a collective Rydberg excitation. Because they do not have any SP_{3/2} component, they are long-lived. Moreover, dark polaritons inherit strong interactions from their large collective Rydberg component.

A typical scan of the polariton features corresponding to a single cavity mode is shown in Extended Data Fig. 1c. That spectrum, taken of the ℓ = 6 cavity mode, directly reveals the narrow dark polariton excitation at frequency f_d with a linewidth of 60 kHz, flanked by the two bright polariton resonances, which are ±g^2/κ + Ω^2 separated in frequency and have linewidths of ≈3.7 MHz. For the displayed data, the coupling strengths are g = 2π × 13 MHz and Ω = 2π × 1.3 MHz and the effective Rydberg state linewidth (including decoherence effects) is observed to be f_d = 2π × 50 kHz.

Experimental setup

The primary cavity used in our experiments, which couples with the S_{1/2} → P_{3/2} transition, is the so-called science cavity, which consists of four mirrors in a twisted (non-planar) configuration. The cavity finesse is F = 1,950, yielding a linewidth of 2π × 1.4 MHz. The modes are approximately Laguerre–Gaussian in the lower waist where they intersect with the atomic cloud; the fundamental mode has a lower waist size of 19 μm. These parameters yield a peak coupling strength with a single atom of η_1 = 2π × 0.58 MHz, corresponding to a cooperativity of η_c = 0.16 per atom. The science cavity is crossed with a build-up cavity for increasing the intensity of the Rydberg coupling beam at 480 nm; the build-up makes it possible to achieve a sufficient intensity over the wide area spanning the science cavity modes up to ℓ = 9 in which we create polaritons. Note that the polarization eigenmodes of both cavities are circular. For more details on the cavity structure, see Supplementary Information section A6.

The science cavity was designed to be tuned to a length at which every third angular momentum state would be degenerate, forming a photonic Landau level. However, as detailed in Supplementary Information section A6, we found that cubic intracavity aberrations arising from astigmatism destabilized the cavity modes when the length was tuned to this degeneracy point. Therefore, we instead operate at a cavity length far enough from degeneracy to create a 70-MHz splitting between every third angular momentum state and utilize the Floquet scheme described below in the next section to create degenerate polaritons that are protected from the effects of intracavity aberrations.

We mediate interactions between the photons in the science cavity modes using a gas of cold 87Rb atoms loaded at the lower waist of the cavity. There are 6(1) × 10^5 atoms distributed nearly uniformly over the region spanned by the first ten modes of the science cavity. The gas is cooled to a temperature below 1 μK and polarized into the lowest-energy spin state |F = 2, m_F = −2⟩ with spin projection m_F within the hyperfine manifold F using degenerate Raman sideband cooling. For more details on the atom trapping configuration, atomic polarization and experiment procedure, see Supplementary Information section A5.

Forming the Landau level with Floquet polaritons

This section explains our scheme for forming the Landau level with Floquet polaritons, which provides a number of crucial features that made this work possible. Most importantly, Floquet polaritons helped us mitigate the effects of intracavity aberrations. As detailed in Supplementary Information section A6, aberrations prevented us from making the bare cavity modes with angular momenta ℓ = 3, 6 and ℓ = 9 degenerate. At the cavity length that would otherwise make them degenerate, aberrations mix the modes together, splitting them apart in energy and causing them to decay rapidly. Thankfully, Floquet polaritons are protected from the broadening caused by intracavity aberrations, as detailed in Supplementary Information section B2. The Floquet scheme also provides the ability to efficiently measure angular correlation functions as detailed in Supplementary Information section A3 and enables frequency discrimination to improve the selectivity of our mode sorters discussed in Supplementary Information section A2.

The essence of our Floquet scheme is depicted in Extended Data Fig. 2 and detailed in ref. 35. Briefly, a sinusoidal modulation of the energy of the intermediate SP_{3/2} state splits it into three bands that exist at energies separated by the modulation frequency Ω_mod. Cavity photons can excite the atom through any of these bands, thereby enabling the atoms to couple with modes whose energies are also split by Ω_mod.

To implement the Floquet scheme, we first used temperature and piezo tuning to increase the length of the science cavity and induce a
splitting of $f_{\text{mod}} = 70$ MHz between every third angular momentum mode (Extended Data Fig. 3a). Then, to enable the $l = 3, l = 6$ and $l = 9$ modes to simultaneously support dark polaritons, we fine-tuned the cavity length to make the $l = 6$ mode degenerate with the bare $5S_{1/2} \rightarrow 5P_{3/2}$ transition and modulated the intermediate state at $f_{\text{mod}} = 70$ MHz to create sidebands resonant with the $l = 3$ and $l = 9$ states (Extended Data Fig. 3b). By making it possible for the atoms to strongly couple with each of the cavity modes, the Floquet scheme enables all three modes to host polaritons (Extended Data Fig. 3c). Note that the splitting f_{cav} and therefore the required modulation frequency f_{mod} varied over a couple of megahertz from day to day due to variation in the cavity temperature.

Cavity spectroscopy reveals the polariton eigenmodes in all three modes simultaneously (Extended Data Fig. 4a). Because the cavity modes are separated by $f_{\text{cav}} = 70$ MHz, the photonic components of the polaritons also remain separated by approximately f_{cav}. Therefore, to spectroscopically characterize the set of polaritons for mode l, we scan the probe frequency near the frequency f_0 of that mode and simultaneously use a digital micromirror device to spatially modulate the probe laser with the cavity mode \tilde{a}, producing the spectra shown in Extended Data Fig. 4a. The asymmetric heights and frequency splittings of the bright polaritons relative to the dark polariton for $l = 3$ and $l = 9$ are caused by shifts due to coupling with off-resonant bands of the $5P_{3/2}$ state. Moreover, the smaller splitting of the bright polaritons with $l = 3$ and $l = 9$ (the ‘sideband’ modes) relative to $l = 6$ (the ‘carrier’ mode) results from smaller atom-cavity couplings $g_3 = g_6 = 0.35g$, on those modes relative to the central mode. The relative strengths of these couplings are determined by the modulation amplitude; here, we chose to make the sideband couplings weaker to make the corresponding dark polaritons more ‘photon-like’ (see Supplementary Information section A1 for details).

While the spectroscopic features are all clearly separated in the scan of the probe frequency f_0, the dark polaritons can be tuned to have equal quasifrequency \tilde{f}_0, where $f_0 = (f_{\text{mod}} + f_{\text{mod}})$ is the probe frequency modulo the modulation frequency. In a Floquet model, the energy is only defined up to multiples of the modulation energy; thus, two states with the same quasienery (equivalently, quasifrequency) behave as though they are degenerate. In the example shown in Extended Data Fig. 4a, the dark polaritons are separated in probe frequency by an amount equal to the modulation frequency $f_{\text{mod}} = 73.3$ MHz; thus, their quasifrequencies are identical.

It is not trivial to find conditions at which the quasifrequencies of the dark polaritons are equal. The primary challenges are the anharmonicity in the cavity mode spectrum and the off-resonant shifts caused by weak couplings to non-resonant Floquet bands. These effects typically prevent the dark polariton energies from matching under conditions that might naively seem suitable; in particular, when $f_{\text{cav}} = f_{\text{mod}}$, the quasifrequency \tilde{f}_0 of dark polaritons with $l = 9$ ($l = 3$) will typically be too large (small) due to the off-resonant shifts.

The dark polariton quasifrequency $\tilde{f}_0 = \tilde{f}_0 \cos^2 \theta_0 + \tilde{f}_0 \sin^2 \theta_0$ in each mode is a weighted average of the cavity mode quasifrequency \tilde{f}_0 with the Rydberg quasifrequency \tilde{f}_0; the weight is determined by the dark-state rotation angle θ_0 which satisfies $\tan \theta_0 = g_0 / \Omega$ (see Supplementary Information section B5 in ref. 1). A smaller ratio g_0 / Ω increases the contribution from the cavity photon and thus makes the polariton more ‘photon-like’; in the opposite case, the polariton is more ‘Rydberg-like’.

We adjust the Rydberg quasifrequency \tilde{f}_0 and the modulation frequency f_{mod} to tune the dark polaritons into degeneracy. The Rydberg quasifrequency is controlled by the frequency of the Rydberg coupling laser. Because the $l = 6$ polaritons are more Rydberg-like than the $l = 3$ and $l = 9$ polaritons, the quasifrequency \tilde{f}_0 of $l = 6$ polaritons increases more rapidly than the others with \tilde{f}_0. Thus, the quasifrequencies \tilde{f}_0 and \tilde{f}_0 decrease relative to \tilde{f}_0 as \tilde{f}_0 increases, as depicted in Extended Data Fig. 4b. Note that, in Fig. 2c, we varied the Rydberg quasifrequency \tilde{f}_0 to scan the energy mismatch. Adjusting the modulation frequency f_{mod} shifts the cavity mode quasifrequencies \tilde{f}_0 and \tilde{f}_0 oppositely, because they couple to the atoms through opposite modulation sidebands of the $5P_{3/2}$ state (Extended Data Fig. 3c).

These two adjustment parameters are sufficient to tune the three dark polariton features into degeneracy, as demonstrated in Extended Data Fig. 4d. In practice, to reach degeneracy, we repeatedly measure the quasifrequency spectrum of the dark polaritons while adjusting parameters. We modify the frequency of the Rydberg laser until the average of the sideband quasifrequencies matches the carrier, that is, $(\tilde{f}_0 + \tilde{f}_0) / 2 = \tilde{f}_0$. Similarly, we vary f_{mod} until $\tilde{f}_0 = \tilde{f}_0$. In the end, we are able to satisfy these conditions to an accuracy well within the linewidths of the dark polaritons.

Data availability

The experimental data presented in this manuscript are available from the corresponding author upon request.
Article

61. Nunnenkamp, A., Koch, J. & Girvin, S. Synthetic gauge fields and homodyne transmission in Jaynes–Cummings lattices. New J. Phys. 13, 095008 (2011).
62. Hayward, A. L., Martin, A. M. & Greentree, A. D. Fractional quantum Hall physics in Jaynes–Cummings–Hubbard lattices. Phys. Rev. Lett. 108, 223602 (2012).
63. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).
64. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Phys. Rev. Lett. 108, 223602 (2012).
65. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).
66. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).
67. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).
68. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).
69. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).
70. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).
71. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).
72. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).
73. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).
74. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).
75. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).
76. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).
77. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).
78. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).

Acknowledgements We thank L. Feng and M. Jaffe for feedback on the manuscript. This work was supported by AFOSR grant FA9550-18-1-0317 and AFOSR MURI grant FA9550-16-1-0323. N.S. acknowledges support from the University of Chicago Grainger graduate fellowship and C.B. acknowledges support from the NSF GRFP.

Author contributions The experiment was designed and built by all authors. N.S. built the primary cavity. L.W.C., N.S. and C.B. collected the data. L.W.C. and N.S. analysed the data. L.W.C. wrote, and all authors contributed to, the manuscript.

Competing interests The authors declare no competing interests.

Additional information Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020-2318-5.

Correspondence and requests for materials should be addressed to J.S.

Peer review information Nature thanks Laura Corman, Oliver Morsch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | Single-mode polariton spectrum. a, Photons at the waist of our twisted optical cavity (red) couple with strength g to the $5S_{1/2} \rightarrow 5P_{3/2}$ transition of a gas of cold ^{87}Rb atoms, which is subsequently coupled with strength Ω to the highly excited $^{111}\text{D}_{5/2}$ Rydberg state using an additional laser (blue). b, These couplings cause excitations of the atom-cavity system to propagate as polaritons—quasiparticles combining photons with collective atomic excitations. c, The transmission spectrum of the cavity with atoms present directly reveals the narrow dark polariton flanked by two broad bright polariton peaks. The solid curve shows a fit of the cavity electromagnetically induced transparency spectrum to the measured transmission (see ref. 32, Supplementary equation (7)).
Extended Data Fig. 2 | Essential features of the Floquet scheme. **a**, Our Floquet scheme utilizes an additional laser beam (green) incident on the atoms with a wavelength of $\lambda = 1.529 \text{ nm}$ close to the $5P_{3/2} \rightarrow 4D$ transition. **b**, This beam induces a sinusoidally modulated a.c. Stark shift $E_p = \eta \sin(2\pi f_{\text{mod}} t)$ of the $5P_{3/2}$ state with amplitude η and frequency f_{mod}. **c**, As a result of this modulation, the ordinary $5P_{3/2}$ state is split into three bands with energies separated by the modulation frequency. The additional bands enable the atoms to couple with cavity photons at frequencies shifted by $\pm f_{\text{mod}}$ from the ordinary $5S_{1/2} \rightarrow 5P_{3/2}$ resonance frequency. For more details on the Floquet scheme see ref. 18.
Extended Data Fig. 3 | Scheme for forming the Landau level of Floquet polaritons.

a. The bare cavity modes are not degenerate in this work, but instead the length of the cavity is increased so that there is a \(f_c = 70 \, \text{MHz} \) splitting between every third angular momentum mode.

b. To form polaritons in three modes, even though only the \(l = 6 \) mode is resonant with the un-modulated \(5S_{1/2} \rightarrow 5P_{3/2} \) transition, we utilize the Floquet scheme depicted in Extended Data Fig. 2. Modulating the \(5P_{3/2} \) state at \(f_{\text{mod}} = 70 \, \text{MHz} \) splits it into three bands (grey), each of which is resonant with one of the three chosen cavity modes. The coupling strengths \(g_l \) to each mode \(l \) are controlled by the modulation amplitude; in this work, \(g_3 = g_9 = 0.37(4) g_6 \). Note that each mode couples to a unique collective atomic excitation, as depicted at the top (blue atoms are included in the corresponding collective excitation, while grey atoms are not).

c. This scheme produces polaritons in the \(l = 3, l = 6 \) and \(l = 9 \) modes. The dark polaritons can be made effectively degenerate (see Extended Data Fig. 4) without making the corresponding cavity modes degenerate, which protects the polaritons from intracavity aberrations (see Supplementary Information section B2).
Extended Data Fig. 4 | Understanding and controlling polariton spectra with the Floquet scheme. a, Cavity transmission spectrum in the presence of the modulated atoms (see Extended Data Fig. 3), reproducing Fig. 2b. The spectrum was collected in three parts, corresponding to injection of photons into $l = 3$ (left, green), $l = 6$ (middle, black) and $l = 9$ (right, violet). Dark polaritons in the $l = 6$ mode are less photon-like than those in the other two modes, reducing their relative transmission (Supplementary Information section A1); we multiply the $l = 6$ transmission by four to improve visibility. The lower x axis indicates the frequency of the probe laser relative to the $l = 6$ dark polariton resonance f_6. The top x axis indicates the quasifrequency \tilde{f}, proportional to the quasienergy of the polaritons from a treatment using Floquet theory; \tilde{f} is equal to f modulo the modulation frequency f_{mod}. The solid curves show three independent fits of the cavity electromagnetically induced transparency spectrum to the measured transmission in each angular momentum mode (see ref. 32, Supplementary equation (7)). b, c, Illustration of the theoretical dependence of the quasifrequencies of the three dark polariton features on the Rydberg beam detuning (δ_r) and the modulation frequency f_{mod} (c). d, Example transmission spectra for the $l = 6$ (black, lower), $l = 3$ (green, middle) and $l = 9$ (violet, upper) dark polaritons as a function of quasifrequency. The scans are scaled to make their heights equal and have additional vertical offsets for clarity. Shortly before performing each of the experiments reported in the main text, we collect a sequence of plots similar to those displayed here and adjust the Rydberg detuning and modulation frequency to make all three dark polaritons have the same quasifrequency (right-most plot). The only experiments reported in the main text that did not use this sequence are those shown in Fig. 2c, where instead we varied δ_r to intentionally vary the energy mismatch between the polaritons. Throughout this figure, quasifrequencies \tilde{f} are reported relative to the $l = 6$ dark polariton resonance f_6. Solid curves provide a guide to the eye.