Clinicopathological and genetic study of a rare occurrence: Malignant transformation of fibrous dysplasia of the jaws

Ruirui Shi¹² | Xuefen Li¹² | Jianyun Zhang²³ | Feng Chen¹ | Ming Ma²³ | Yanrui Feng¹ | Tiejun Li²³

¹Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, PR China
²Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
³Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, PR China

Abstract

Background: Malignant transformation of fibrous dysplasia (FD) is very rare and little is known about this occurrence.

Methods: We present the detailed clinical course of three cases of osteosarcoma arising from FD of the jaws and explore the genetic aberrations by Sanger sequencing, whole-exome sequencing (WES) and immunohistochemistry (IHC). A literature review of important topics related to this occurrence was also performed.

Results: It was observed that patients with secondary sarcoma from FD showed a wide range of ages, with most during the third decade. Female and males were equally affected. Craniofacial bones and femurs were the most affected sites. High-risk factors for this occurrence included polyostotic FD, McCune-Albright syndrome and excess growth hormone. Notably, a potential relationship between thyroid hormones and sarcoma development was suggested in one patient, who began to show malignant features after hypothyroidism correction. Sanger sequencing revealed GNAS mutations of FD retained in all malignant tissues. Additionally, abnormal TP53 was demonstrated in all three cases by WES and IHC. WES also revealed two other driver mutations, ROS1 and CHD8, and large amounts of somatic copy number alterations (CNAs) where various oncogenes and tumour suppressors are located.
1 | INTRODUCTION

Fibrous dysplasia (FD) is a skeletal disorder arising from somatic mutations in GNAS (OMIM *139320) and is associated with bone marrow stromal cells (BMSCs; Saggio, 2019). GNAS mutations in FD are gain-of-function alterations, which constitutively activate adenylyl cyclase (AC) to generate excess cyclic adenosine monophosphate (cAMP) through loss of GTPase activity of GTP-bound Gαs (Landis et al., 1989) and abnormal activation of GDP-bound Gαs (Hu & Shokat, 2018), resulting in abnormal proliferation and differentiation of mutation-bearing BMSCs (Marie, 2001).

In FD, normal bone and bone marrow are replaced by abnormal trabeculae and fibrous tissue, with enhanced osteoclastogenesis, devoid of haematopoiesis and adipogenesis (Lichtenstein, 1938; Riminucci et al., 1999, 2003). The fibrotic area of FD consists of cells with phenotypic features of pre-osteogenic cells, whereas the lesional bone formed de novo within fibrous areas represents the biosynthetic output of mature but abnormal osteoblasts (Riminucci et al., 1997). The bone trabeculae within the fibrous tissues are heterogeneous in overall amount, cellularity, structure and architecture (Riminucci et al., 1997, 1999).

The clinical presentation of FD demonstrates an extensive spectrum. Based on the amount of affected bone and whether it is accompanied by extraskeletal manifestations, FD is generally categorized into three forms: monostotic or polyostotic FD and McCune-Albright syndrome (MAS, polyostotic FD with café-au-lait macules and/or hyperfunctioning endocrinopathies; Boyce & Collins, 2020; Lichtenstein, 1942).

FD itself is a benign disease, however, with a variable clinical course (Han et al., 2014; Sweeney & Kaban, 2020). Malignant transformation is one of the most damaging courses. Ruggieri and coworkers reported a mortality rate of 53.6% in FD patients with malignant transformation (Ruggieri et al., 1994). According to a recent report focused on the prognosis of malignant transformation of FD in craniofacial bones, it was confirmed that the prognosis was disappointing, with a median survival ranging from 4 to 62 months (Li et al., 2020). All forms of FD, namely, monostotic and polyostotic FD and MAS, can transform into sarcomas (Li et al., 2020; Ruggieri et al., 1994). The malignant transformations reported in the literature include osteosarcoma, fibrosarcoma, chondrosarcoma, malignant fibrous cell tumours, and angiosarcoma (Fukuroku et al., 1999; Li et al., 2020; Ruggieri et al., 1994). Among them, osteosarcoma is the most frequently occurring histologic type, with a frequency of 48%–70% in the literature (Li et al., 2020; Riddle & Bui, 2013; Ruggieri et al., 1994; Schwartz & Alpert, 1964; Yabut et al., 1988). Malignancy is suggested by rapid growth, pain, or a significant rapid change in radiographic appearance, especially in mineralization (Qu et al., 2015; Ruggieri et al., 1994). Computed tomography scans can be helpful in recognizing malignancy as well as in determining their extent (Riddle & Bui, 2013). Microscopically, the features of FD-derived sarcoma showed no difference from those in normal bone (Schwartz & Alpert, 1964).

It has been reported that the malignancy of FD ranges from 0.4% to 4% (Schwartz & Alpert, 1964). Due to its rarity, its clinical characteristics and molecular pathogenesis remain largely unclear. To obtain a better understanding of this rare but damaging disorder, we reported three new cases and performed whole-exome sequencing (WES) using both benign FD tissues and malignant tissues in the present study. A literature review regarding the limited known knowledge about the genetic aberrations associated with sarcoma change of FD, a rare entity, and several important topics related to its clinical features was also conducted.

2 | MATERIALS AND METHODS

2.1 | Patients and specimens

Three patients at Peking University School and Hospital of Stomatology with malignant tumours arising from FD were enrolled. Their clinical information, including age, sex, symptoms, serum alkaline phosphatase (ALP) level, clinical history and radiographic examinations, were retrieved from their medical records and reviewed retrospectively in detail. Haematoxylin–eosin (H&E) stained

Conclusion: This study demonstrated and reviewed the clinical features and risk factors for a rare occurrence, secondary sarcoma from FD, and provided important new knowledge about its genetics.

KEYWORDS

copy number alterations, fibrous dysplasia, GNAS, malignant transformation, TP53
sections of formalin-fixed paraffin-embedded tissue were examined for pathological evaluation by three specialized pathologists.

2.2 | DNA extraction

Genomic DNA was extracted from both the FD tissues and the matched malignant tissues of each patient using QIAamp DNA Mini Kit (Qiagen) according to the manufacturer’s instructions. For patient #1, formalin-fixed tissue prior to decalcification was used, whereas formalin-fixed paraffin-embedded (FFPE) sections from decalcified tissues were used for the other two patients. NanoDrop8000 (ThermoFisher Scientific) and Qubit2.0 fluorometer (ThermoFisher Scientific) were used to assess the quality and quantity of DNA.

2.3 | GNAS mutation analysis

Sanger sequencing of regular PCR-amplified exon 8 and exon 9 of the GNAS (GenBank and NCBI reference sequence: AH002748.2/NG_016194.2/NM_000516.7) gene was performed as described previously (Kuznetsov et al., 2008).

2.4 | Whole-exome sequencing

Qualified DNA for WES was obtained from patient #1. For WES, DNA was sheared into 180–200 bp segments and submitted to library preparation with an Agilent SureSelect Human All Exon V5/V6 kit (Agilent Technology) according to the manufacturer’s protocol. Paired-end sequencing (150 bp) was conducted on an Illumina HiSeq platform (Novogene). At least 14 giga bases of raw data were produced for each sample.

After quality control of raw data, clean sequencing reads were mapped to the human reference genome (human_B37) using BWA (Li & Durbin, 2009) and Samblaster (Faust & Hall, 2014). Through comparison with matched FD tissue data, somatic single nucleotide variations (SNVs) and insertions/deletions (INDELs) specific to malignant specimens were identified from malignant tumours using MuTect (Cibulskis et al., 2013) and Strelka (Saunders et al., 2012), respectively. Functional annotation of somatic mutations on their encoded amino acids was performed using ANNOVAR. By comparison with known driver genes using in-house software, driver genes of malignancy were identified. Somatic copy number alterations (CNAs) were identified using control-FREEC software (Boeva et al., 2012).

2.5 | Immunohistochemistry

For immunohistochemistry (IHC), FFPE tissues of both benign FD and sarcoma specimens were sectioned at a thickness of 4 µm. They were deparaffinized using xylene and hydrated through graded alcohols. For antigen unmasking, sections were treated with citrate buffer (pH 6.0). Sections were incubated with mouse monoclonal p53 antibody (ZM-0408, ZSGB-BIO) at 4°C overnight, followed by treatment with PV9001 (ZM-0408, ZSGB-BIO) and visualization with DAB (ZM-0408, ZSGB-BIO). Negative controls were obtained by omitting the primary antibody.

3 | RESULTS

3.1 | The clinicopathological data of three patients with malignant transformation of FD

Three patients with osteosarcoma arising from FD of the jaws were identified from a total of 253 patients with FD in the maxillofacial bones over a duration of 20 years (2000–2020). The clinicopathological information of these patients was summarized in Table 1.

The first patient was a 39-year-old female patient, who presented with complaints of facial swelling for more than 30 years. She underwent three operations at the ages of 9, 19 and 25 years old in external hospitals due to a gradual increase in swelling and was consistently diagnosed with FD. Three months before her referral to our hospital, she was found to have hypothyroidism and Euthyrox was prescribed. It was noted that since being treated with medicine for hypothyroidism, her facial swelling began to grow rapidly, with significant tooth displacement and proptosis of her left eye. Routine blood tests revealed an increased serum ALP level of 247 U/L. A CT scan showed an ill-defined mass with a ground-glass appearance involving her left zygomatic, ethmoid, sphenoid, temple and maxillary bones and mandible extending from the right body to the left condyle. Thinning of cortical bone and narrowing of the left maxillary sinus and nasal cavity were also observed (Figure 1b,c). X-ray chest film showed radiopaque widening in the right fourth rib and disappearance of the medullary cavity (Figure 1a). There was no significant disorder suggestive of MAS. Contour correction of the left maxilla and segmental osteotomy of the mandible were carried out, and histopathological analysis was performed, which showed FD (Figure 1d–f) in the maxilla and an osteosarcoma lesion in the mandible (Figure 1h–j).
Patient #2 was a 56-year-old male, who was referred to our hospital due to progressively worsening pain in the front area of the left ear (Figure 2a), with obvious swelling and limitation of mouth opening for 10 months. With the uncertainty of the nature of the disease, an incisional biopsy was carried out, and histopathological analysis revealed a diagnosis of FD, with a very low risk of malignant transformation, composed of bone and fibrous tissue (Figure 2d–f). The mass was found to be significantly increased three months postoperatively, as demonstrated on CT examination, measuring 5 cm in the buccal lingual direction and 4.6 cm in the axial direction, with numbness (Figure 2b,c). Blood tests revealed an elevated level of ALP of 265 U/L. Segmental osteotomy of the left mandible involving the lesion of the condyle was then conducted, and pathological analysis revealed a more proliferating area with many osteoclasts and atypical nuclei, which is the manifestation of osteosarcoma of the osteoclast-rich type (Figure 2h–j).

Patient #3 was a 31-year-old female, who complained of a progressive increase in mandible swelling for more than 18 years. Except for the mandible lesion, other bone abnormalities were also present, including abnormal ribs (Figure 3a) and both lower limbs, with a history of broken legs. Furthermore, she had precocious puberty and pigmentation, which were signs of MAS. Six months before her referral to our hospital, the mass grew rapidly, with severe pain, breathing problems and numbness of the lower lip. A blood test revealed an elevated ALP level of 1323 U/L. Chest X-ray revealed curved spines and radiopaque segmental bulging of multiple ribs (Figure 3a). CT examination revealed a huge bone mass of bilateral mandible bodies, with mixed radiopaque-radiolucent density and resorption of the tooth root. An inferior border of the mandibles was observed (Figure 3b). Resection of the bilateral mandible mass was then carried out, and pathological examination revealed both benign FD lesions (Figure 3c–e) and osteosarcoma (Figure 3g–i).

3.2 | GNAS mutation was detected in both FD and malignant tissues

GNAS mutation analysis was performed in both the benign and malignant tissues of each patient. For patient #1 and patient #2, GNAS mutation was detected at exon 8, demonstrating c.601 C>T, resulting in the substitution of Arg of 201 to Cys (R201C), a previously reported hotpot activating missense mutation of GNAS, in both FD tissue (Figures 1g and 2g) and malignant tissue (Figures 1k and 2k). For patient #3, no mutation was revealed in the benign tissue (Figure 3f), whereas
an R201C mutation was found in the malignant tissue (Figure 3j).

3.3 | WES revealed multiple SNVs and CNAs

By comparison with benign FD tissues, we obtained genomic abnormalities specific to malignant tissues, including SNVs and CNAs, using WES. In total, 117 somatic SNVs (Figure 4a, left) and 4 INDELS (Figure 4a, middle) were identified, including 46 SNVs and 2 INDELS in the coding regions (CDSs; Figure 4a, right). By further analysis of genetic aberrations in the CDSs, 30 missense mutations, 2 frameshift deletions and 1 stop-gain SNV were revealed (Table 2), among which three driver genes were found, including TP53 (frameshift deletion, NM_000546.6, c.582del), ROS1 (missense, NM_002944.3, c. T4025>C) and CDH8 (missense, NM_001170629.2, c.C2586>G). Analysis of somatic CNAs (Figure 4b) revealed multiple chromosomal abnormalities, except for chromosomes 5, 9 and 15. In total, there were 134 gain counts with a size of 413 Mb and 11 loss counts with a size of 20 Mb. In these CNVs, 29 enes were found to have a relationship with tumours in the OMIM database: RSPO1, PTCH1, MUTYH and RAD54L on chromosome 1; GALNT3 and HOXD4 on chromosome 2; ATR, TFG and PIK3CA on chromosome 3; PDGFR, KIT and CHIC2 on chromosome 4; RNF139,
RAD54B, EXT1, MYC, RB1CC1 and PLAG1 on chromosome 8; RRAS2, TSG101 and CD82 on chromosome 11; FGF23 on chromosome 12; DICER1 on chromosome 14; WWOX and ZFHX3 on chromosome 16; SMARCA4 on chromosome 19; GNAS on chromosome 20; and BACH1 on chromosome 22. Except for WWOX, which showed loss, all other 28 genes above were amplified. The details of the somatic CNAs were summarized in Table 3.

3.4 | IHC analysis showed positive staining of p53 in malignant tissues arising from FD

Alterations in the TP53 gene in sarcomas often lead to stabilization of the p53 protein and make it visible on IHC, whereas the wild-type protein has a short half-life (Yamamoto & Iwakuma, 2018). To test whether there were also TP53 aberrations in the other two patients without qualified DNA for WES, IHC was performed, which revealed a positive expression of p53 in the malignant tissues of all the patients (Figure 5).

4 | DISCUSSION

Three well-documented cases of osteosarcoma arising in FD of the jaws were reported, extending the knowledge of this rare occurrence. More importantly, WES analysis was performed, which revealed significant SNA and CNA involvement on the basis of GNAS activating mutations in sarcomas, adding novel and valuable insight into genome alterations underlying FD malignancy.
Although no precise estimation of the frequency of malignant transformation in FD is currently available, it is considered extremely rare. Several groups have made independent estimations based on large populations with FD. In 1964, Schwartz reported a ratio of 0.4%, with 6 cases of sarcoma in a total of 1517 cases of FD (including 1480 cases of monostotic FD and 37 cases of polyostotic FD) and a higher ratio (4%) in a population of 100 patients with MAS (Schwartz & Alpert, 1964). In 1994, a review of Mayo Clinic data revealed 28 cases of malignancy out of 1122 total cases of FD, with a prevalence of ~2% (Ruggieri et al., 1994). More recently, in 2012, three cases of malignancy
CytoBand	Position	Ref	Alt	GeneName	Exonic Func	AAChange	dbSNP/COSMIC ID	SIFT	Polyphen 2_HVAR	Polyphen 2_HDIV	Mutation Taster
1p36.12	21016692	C	T	KIF17	Missense	NM_001122819.3:c.G1370>A p.(Arg457Gln)	rs186246358	0.019,D	0.032,B	0.144,B	1.000,N
2q31.1	170493312	G	C	PPIG	Missense	NM_004792.3:c.G1544>C p.(Arg515Thr)	COSM334392	0.001,D	0.533,P	0.948,P	0.993,D
2q23.1	149539242	C	T	EPC2	Stopgain	NM_015630.4:c.C1750>T p.(Gln584Ter)	—	—	—	—	1,A
3p21.31	47043946	A	T	NBEAL2	Missense	NM_015715.3:c.A5237>T p.(Asp1746Val)	—	0.002,D	0.999,D	1.0,D	1,D
5q31.2	139060331	C	T	CXXC5	Missense	NM_016463.9: c.C223>T p.(Asp75Cys)	COSM292855	0.001,D	0.642,P	0.999,D	1.000,D
5q31.3	140735915	C	T	PCDHGA4	Missense	NM_018917.4:c.C1244>T p.(Ile414Ile)	—	.	0.081,B	0.019,B	1,N
5q35.5	176813546	G	A	SLC34A1	Missense	NM_001167579.2:c.G511>A p.(Val171Ile)	rs570463028	0.085,T	0.881,P	0.995,D	1.000,D
6p12.1	54095537	T	A	MLIP	Missense	NM_001281747.2:c.T2744>A p.(Val915Asp)	—	0.003,D	0.653,P	0.911,P	1,D
6q22.1	117677908	A	G	ROS1	Missense	NM_002944.3:c.T4025>C p.(Ile1342Thr)	—	0.004,D	0.11,B	0.319,B	0.540,N
7p21.3	8790825	C	T	NXPH1	Missense	NM_015745.3:c.C242>T p.(Pro81Leu)	—	0.125,T	0.037,B	0.029,B	1,D
7p15.3	23293048	G	A	GPNMB	Missense	NM_001005340.2:c.G193>A p.(Gly65Arg)	—	0.011,D	0.956,D	0.998,D	1,D
7q36.1	150325784	C	T	GIMAP6	Missense	NM_00124072.2:c.G112>A p.(Val38ffe)	rs561321166	—	—	—	1,N
8q24.3	145698002	G	A	KIFC2	Missense	NM_014575.4:c.G1774>A p.(Ala592Thr)	—	0.405,T	0.017,B	0.11,B	1,N
8q12.3	63902756	CT	C	NKA1N3	Frameshift deletion	NM_0173688.2:c.563del p.(Leu188fs)	—	—	—	—	—
9q21.11	70176851	A	G	FOXD4L5	Missense	NM_001126334.1:c.T1133>C p.(Leu378Pro)	rs3000494; COSM4592895, COSM4592896	1.0,T	0.0,B	0.0,B	0.940,D
10q11.23	49984948	C	A	WDFY4	Missense	NM_020945.2:c.C3017>A p.(Thr1006Asn)	—	0.0,D	0.997,D	1.0,D	1.000,D
CytoBand	Position	Ref	Alt	GeneName	Exonic Func	AAClange	dbSNP/COSMIC ID	Polyphen 2_HVAR	Polyphen 2_HDIV	Mutation Taster	
----------	------------	-----	-----	----------	-------------	----------------	-----------------------	-----------------	-----------------	-----------------	
11q13.3	70333254	G	T	SHANK2	Missense	NM_13266.5:c.C1380>A p.(Ser460Arg)	—	0.007,D	0.999,D	1.0,D	1.000,D
12p13.33	1017657	G	A	WNK1	Missense	NM_001184985.2:c.G7628>A p.(Arg2543Lys)	—	0.044,D	0.99,D	0.998,D	1.000,D
14q11.2	21876615	G	C	CHD8	Missense	NM_001170629.2:c.G2586>G p.(Phe862Leu)	—	0.001,D	0.883,P	0.924,P	1,D
16p13.3	2570530	G	T	AMDHD2	Missense	NM_001145815.2:c.G71>T p.(Gly24Val)	—	0.213,T	0.773,P	0.965,D	0.997,N
16q22.1	67861244	C	T	TSNAXIP1	Missense	NM_001288990.3:c.C1757>T p.(Ala586Val)	—	0.42,T	0.124,B	0.279,B	1.000,N
16p11.2	30709563	C	A	LOC730183	Missense	NM_001256932.2:c.G67>T p.(Ala23Ser)	—	—	—	—	—
16q12.1	48177945	G	T	ABCC12	Missense	NM_033226.3:c.C151>A p.(Leu51Ile)	—	0.009,D	0.945,D	0.988,D	0.723,D
17p11.2	20370767	G	C	LGALS9B	Missense	NM_001042685.3:c.C17>G p.(Ser6Cys)	rs4985834, COSM308341	0.086,T	0.001,B	0.0,B	1,P
17p13.1	7578266	TA	T	TP53	Missense	NM_000546.6:c.S82del p.(Leu194fs)	COSM308341, COSM308343, COSM308344, COSM308342, COSM308345	—	—	—	—
18q12.2	33828939	G	A	MOCOS	Missense	NM_017947.4:c.G2015>A p.(Arg672His)	rs75369462	0.367,T	0.106,B	0.219,B	1.000,N
18q21.1	46447770	C	G	SMAD7	Missense	NM_001190821.2:c.G1250>C p.(Trp417Ser)	—	0.0,D	0.998,D	0.999,D	1,D
19p13.3	3961100	G	A	DAPK3	Missense	NM_001348.3:c.G689>T p.(Ser230Leu)	rs866486559	0.044,D	0.246,B	0.758,P	1.000,D
19p13.2	10114755	G	C	COL5A3	Missense	NM_015719.4:c.C661>G p.(Leu221Val)	—	0.401,T	0.236,B	0.767,P	0.925,N
19q13.11	35434615	C	T	ZNF30	Missense	NM_001099437.2:c.C748>T p.(Arg250Trp)	rs373065289	0.08,T	0.015,B	0.069,B	1,N
19q13.43	58863024	G	A	A1BG	Missense	NM_130786.4:c.C643>T p.(His215Tyr)	—	0.437,T	0.015,B	0.001,B	1,N

(Continues)
out of 266 cases in a large Chinese population with cranio-maxillofacial FD were identified, revealing a prevalence of 1.1% (Cheng et al., 2012). Similarly, in the present study, we found 3 cases of sarcoma out of 253 cases of FD of the jaws. Therefore, the development of sarcoma from FD is rare. The first well-documented case was reported in 1945 by Coley and Stewart (1945). A recent review regarding malignant transformation in FD specifically in the craniofacial bones identified only 48 cases in the literature (Li et al., 2020), calling for a larger sample to obtain a better and comprehensive understanding of this entity. In this context, reporting these three new cases in the present study is helpful.

We carefully reviewed the detailed clinicopathological information of these three patients. Moreover, some of the most concerning topics related to this occurrence were reviewed from the literature, including risk factors for malignant transformation, malignant tendency in different sexes and types of FD (monostotic FD, polyostotic FD, MAS) and onset age of sarcoma transformation.

Generally, secondary sarcomas affect male and female patients with FD equally (Li et al., 2020; Ruggieri et al., 1994; Yabut et al., 1988). Similar to the skeletal distribution of FD, craniofacial bones and femur were the most frequently affected sites when sarcomas occurred (Ruggieri et al., 1994; Schwartz & Alpert, 1964). Regarding the onset age of sarcoma occurrence in FD, a wide range of ages were identified, mostly beyond the third decade. The onset ages of all three patients in the present study were all over 30 years old. Interestingly, de novo osteosarcoma from normal bones occurred in jaw bones two decades later than in long bones (Bertin et al., 2020). Whether this rule of primary osteosarcoma is applied to sarcomas secondary to FD is still unknown. We combined and analysed data from two large populations of this specific entity in the literature (Ruggieri et al., 1994; Schwartz & Alpert, 1964) and found that the onset ages for sarcoma were 34.96 ± 16.80 years and 40.22 ± 14.75 years for craniofacial bones and other bones, respectively. There was a site-related variation in this entity as well; however, statistical analysis (Student’s t test) showed no significant difference (p value: 0.2188).

Regarding potential risk factors leading to malignant degeneration, radiotherapy was the first one suggested in the literature. It was claimed for two reasons. First, radiation itself had carcinogenic effects (Yannopoulos et al., 1964), which can induce primary bone sarcomas (Schwartz & Alpert, 1964). Second, it was originally observed that sarcoma developed in FD exclusively with previous radiation (Schwartz & Alpert, 1964) and specifically in the field of prior irradiation (Ruggieri et al., 1994), which raised the possibility that radiation might play a significant role in sarcoma transformation.
Chr	Start	End	CNV type	GeneName related with OMIM	OMIM	
1	36480000	41090000	Gain	RSPO1	Palmoplantar hyperkeratosis and true urachal cysts; Palmoplantar hyperkeratosis with squamous cell carcinoma of skin and sex reversal	
1	44090000	46370000	Gain	PTCH2	Basal cell carcinoma, somatic; Medulloblastoma	
1	44090000	46370000	Gain	MUTYH	Adenomas, multiple colorectal; Colorectal adenomatous polyposis, autosomal recessive, with pilomatrixomas; Gastric cancer, somatic	
1	46370000	47520000	Gain	RAD54L	Adenocarcinoma, colonic, somatic (3); Lymphoma, non-Hodgkin, somatic; [Breast cancer, invasive ductal]	
2	16370000	17004000	Gain	GALNT3	Tumoral calcinosis, hyperphosphatemic, familial	
2	17769000	17831000	Gain	HOXD4	[Leukemia, acute lymphoblastic, susceptibility to] (3)	
3	14078000	15802000	Gain	ATR	Cutaneous telangiectasia and cancer syndrome, familial; GAPO syndrome; Seckel syndrome 1; [Hemangioma, capillary infantile, susceptibility to]	
3	93590000	11200000	Gain	TFG	Chondrosarcoma, extraskeletal myxoid; Hereditary motor and sensory neuropathy, proximal type	
4	52930000	75860000	Gain	PDGFRA	Gastrointestinal stromal tumor, somatic; Hypereosinophilic syndrome, idiopathic, resistant to imatinib	
4	52930000	75860000	Gain	KIT	Gastrointestinal stromal tumor, familial; Germ cell tumors; Leukemia, acute myeloid; Mast cell disease; Piebaldism	
4	52930000	75860000	Gain	CHIC2	[Leukemia, acute myeloid]	
8	107740000	134250000	Gain	RNF139	Renal cell carcinoma	
8	89090000	99230000	Gain	RAD54B	Colon adenocarcinoma (3)	Lymphoma, non-Hodgkin (3)
8	107740000	134250000	Gain	EXT1	Chondrosarcoma; Exostoses, multiple, type 1	
8	107740000	134250000	Gain	MYC	Burkitt lymphoma; Myelodysplasia, familial cortical	
8	49100000	80540000	Gain	RB1CC1	Breast cancer, somatic	
8	49100000	80540000	Gain	PLAG1	Adenomas, salivary gland pleomorphic	
11	292000000	187900000	Gain	RRAS2	Ovarian carcinoma (3)	
11	292000000	187900000	Gain	TSG101	Breast cancer, somatic	
11	356400000	460100000	Gain	CD82	[Prostate cancer, susceptibility to]	
12	364000000	486000000	Gain	FGF23	Hypophosphatemic rickets, autosomal dominant; Osteomalacia, tumor-induced (1); Tumoral calcinosis, hyperphosphatemic, familial	

(Continues)
Chr	Start	End	CNV type	GeneName related with OMIM	OMIM	
14	94780000	99960000	Gain	Dicer1	Goiter, multinodular 1, with or without Sertoli-Leydig cell tumors; Pleuropulmonary blastoma	
16	77750000	80720000	Loss	Wwox	Esophageal squamous cell carcinoma	
16	72110000	73170000	Gain	Zfhx3	[Prostate cancer, susceptibility to]	
17	16390000	18200000	Gain	Flcn	Birt-Hogg-Dube syndrome; Colorectal cancer, somatic; Pneumothorax, primary spontaneous; Renal carcinoma, chromophobe, somatic	
19	5610000	11730000	Gain	Smarca4	Mental retardation, autosomal dominant 16; Rhabdoid tumor predisposition syndrome 2	
20	55740000	60080000	Gain	Gnas	ACTH-independent macronodular adrenal hyperplasia; Acromegaly; McCune-Albright syndrome; Osseous heteroplasia, progressive; Prolonged bleeding time, brachydactyly and mental retardation (3)	
21	28200000	31730000	Gain	Bach1	Breast cancer, early-onset; Fanconi anemia, complementation group J	

Note: GenBank and NCBI reference sequence: Rspo1, AK098225.1/NG_012239.2; Ptcch2, AF091501.1/NG_013369.1; Mutyh, U63329.1/NG_008189.1; Rad54l, X97795.1/NG_012144.1; Galnt3, NG_012069.1; Hoxd4, NG_012080.1; Attr, U76308.1/NG_008951.1; Tfg, BC009241.2/NG_027821.2; Pik3c4, NG_012113.2; Pdgfra, D50017.1/NG_009250.1; Kit, S79639.1/NG_007456.1; Chic2, AF159423.1/NG_028924.1; Rnf139, AF064801.1/NG_012158.1; Rad54b, AF112481.1/NG_012878.2; Ext1, S79639.1/NG_007455.2; Myc, NG_007161.2; Rb1cc1, AB059622.1/NG_015833.2; Plag1, U65002.1/NG_023310.1; Rras2, M31468.1/NG_017058.1; Tsg101, U82130.1/NG_012138.2; Cdh2, U20770.1/NG_023234.1; Fgf23, AF265537.1/NG_007087.1; Dicer1, AB028449.1/NG_016311.1; Wwox, AF187015.1/NG_011698.1; Zfhx3, D10250.1/NG_013211.2; Flcn, AF517523.1/NG_008001.2; Smarca4, D26156.1/NG_011556.3; Gnas, AH002748.2/NG_016194.2; Bach1, AF026200.1/NG_029658.2.

FIGURE 5 IHC analysis revealed positive expression of p53 in the malignant tissues of all three patients. (a,b) Representative views of patient #1. (a) 10X view, (b) 40X view. (c,d) Representative views of patient #2. (c) 10X view, (d) 40X view. (e,f) Representative views of patient #3. (e) 10X view, (f) 40X view. P53 staining was observed in the nuclei.
However, more cases without prior radiation were reported later (Cheng et al., 2012; Li et al., 2020; Ruggieri et al., 1994; Schwartz & Alpert, 1964) and finding that no major differences in onset age were found between patients with and without radiotherapy (Ruggieri et al., 1994; Schwartz & Alpert, 1964), its role in malignant transformation became weak and controversial. Here, none of the three patients received radiation, again suggesting that there are additional unknown factors contributing to sarcoma development. It has been observed that polyostotic FD and MAS have more malignant potential than monostotic FD (Li et al., 2020; Schwartz & Alpert, 1964). In addition, in a study by Schwartz, the rate of metastasis was reported to be greater in patients with polyostotic FD than in those with monostotic FD (Schwartz & Alpert, 1964). Taken together, polyostotic FD seems to be a high-risk factor for sarcoma progression. Several case reports have also demonstrated that excess growth hormone (GH; Collins et al., 2012) is associated with malignant transformation and may be a potential driver. Interestingly, patient #1 in the present study showed rapid growth after correction of her hypothyroidism, providing evidence that thyroid-related hormones may also contribute to malignant transformation.

Based on the above discussion, it is clear that every FD has potential for malignant transformation, regardless of the sex and age of the patient or the location and type of FD. Therefore, all FD patients should be carefully followed up periodically. Specifically, some kinds of FD (polyostotic FD and MAS, especially those with abnormal hormones) have more potential for malignant transformation and need more attention. The role of radiation in malignant transformation in FD is still controversial, and radiotherapy treatment for FD should be avoided.

Very little has been reported in the literature about the genomic and molecular mechanisms underlying sarcoma transformation in FD, with only 7 papers published so far (Hagelstein-Rotman et al., 2020; Hatano et al., 2014; Jhala et al., 2003; Kanazawa et al., 2009; Sugiura et al., 2018; Yap et al., 2020; Zreik et al., 2017), which are summarized in Table 4. It has been well demonstrated that FD was caused by GNAS activating mutations, which can constitutively activate cAMP signalling and result in the abnormal proliferation and osteoblast differentiation of bone marrow stromal cells, the two major features of this disorder. Whether these mutations in FD are retained in malignant tissues has drawn much attention. In the literature, GNAS mutation analysis of malignant tissues has been performed in only 7 patients, and 5 of them showed mutations, with 3 R201C (p.Arg201Cys; Kanazawa et al., 2009; Yap et al., 2020; Zreik et al., 2017) and 2 R201H (p.Arg201His; Hatano et al., 2014; Sugiura et al., 2018). In the present study, we detected R201C GNAS mutations in all three patients. Collectively, GNAS mutations were retained in most of the sarcomas (8/10), with more R201C (75%) than R201H (25%) mutations. Whether a sarcoma in patients with FD comes from pre-existing FD or de novo has been controversial. Since the evaluation by Schwartz, which revealed that sarcomas always developed in bones affected by FD (Schwartz & Alpert, 1964), the view of sarcomas originating from pre-existing FD has become less controversial and has become more widely accepted. However, direct evidence of sarcoma development in FD has been lacking for a long time. The finding that GNAS mutations exist only in FD other than primary osteosarcoma (Salinas-Souza et al., 2015; Tabareau-Delalande et al., 2013) provides an opportunity to study the origin of sarcomas in FD patients. The combined data from the literature and our study now allow us to make more confident conclusions that FD has malignant potential.

In addition to the GNAS mutation analysis above, other molecular mechanisms underlying sarcoma development in FD, including aberrant TP53 (Sugiura et al., 2018; Yap et al., 2020), multiple chromosomal abnormalities (Hatano et al., 2014; Jhala et al., 2003), increased cell proliferation (Sugiura et al., 2018; Yap et al., 2020), MDM2 (Sugiura et al., 2018), c-fos (Kanazawa et al., 2009), PTH/PTHrP (Kanazawa et al., 2009) and keratins (Zreik et al., 2017), have been reported in case reports using traditional chromosome abnormality methods and IHC, which can reveal only limited information. Next-generation sequencing has illuminated rich and unappreciated genomic alterations for various diseases; however, only one study using WES analysis for malignant transformation in FD was found in the literature (Yap et al., 2020) when we prepared for the present study. Through WES analysis, we found several valuable genomic aberrations for FD malignancy. First, three-driver genes were found in the malignant tissues associated with FD: ROS1, CHD8 and TP53. Among them, TP53 is the only one that has been reported in the literature for this occurrence. However, different from the reported TP53 point mutation (Asp281Asn; Yap et al., 2020), it was an INDEL in the present study. Functionally, TP53 is a tumour suppressor gene that is essential for regulating cell division and preventing tumour formation. According to a recent study (Sayles et al., 2019), TP53 gain-of-function alterations can be detected in 74% of osteosarcoma cases. We also confirmed the abnormality of TP53 by IHC in the other two patients here. Taking the data from the literature and our present study, it is obvious that similar to primary osteosarcoma, TP53 abnormalities may be a significant event in osteosarcoma secondary to FD.

Regarding TP53 aberration in the malignant transformation of FD, it is notable that its coexistence with GNAS activating mutations has been reported in other malignant
Country	Sample size	Onset age of malignancy (years)	Sex	Site	Type of FD	Malignant pathology	Genetic mechanisms for sarcoma transformation	Methods for other molecular analysis	
US (Jhala et al., 2003)	1	44	F	Right elbow	Concommitant MAS and Mazabraud’s syndrome	OS	Not included Chr5 and Chr7 trisomies, multiple chromosomal abnormalities	G-banded karyotype on short-term primary cells, FISH on paraffin-embedded tissues, CGH of DNA from paraffin-embedded tissues	
Japan (Kanazawa et al., 2009)	1	38	F	Mandible	MAS	OS	R201C mutation	Expression of c-fos and PTH/PTHrP; excess serum GH and IGF-1	Immunohistochemistry on paraffin-embedded tissues; laboratory examinations
Japan (Hatano et al., 2014)	1	72	M	Femur	PFD	OS	R201H mutation	44X,-Y, add(4)(p11), add(5)(p15), add(11)(p15)t(1:11) (q21;q23), add(12)(q11), -13, der(22)(12:22) (q11:p12)	G-banded karyotype
US (Zreik et al., 2017)	1	45	M	Femur	PFD	NS	R201C mutation	Aberrant expression of multiple keratins	Immunohistochemistry
Japan (Sugiura et al., 2018)	1	33	M	Hip joint	MFD	OS	R201H mutation	Positive staining for p53 and MDM2; MIB-1 index: 15%; negative for CDK4; no MDM2 amplification	Immunohistochemistry and FISH on paraffin-embedded tissues
Netherlands (Hagelstein-Rotman et al., 2020)	7	NS	NS	NS	4 MFD, 3 NS	OS	2 out of 7 underwent GNAS mutation detection, with one negative and one inconclusive	Not included	not included
Australia (Yap et al., 2020)	1	21	M	Maxilla	MFD	OS	R201C mutation	TP53 mutation (Asp281Asn); positive staining for p53; Ki-67 proliferation index: 25%; no MDM2/CDK4 amplification	Next-generation sequencing; immunohistochemistry; FISH

Abbreviations: F, female; M, male; MAS, MuCune-Albright syndrome; MFD, monostotic fibrous dysplasia; NS, not specified; OS, osteosarcoma; PFD, polyostotic fibrous dysplasia; R201C, p.Arg201Cys; R201H, p.Arg201His.
tumours, including colorectal adenocarcinoma, oesophageal squamous cell carcinoma, pancreatic adenocarcinoma and non-small-cell lung cancer (Table 5, data from TCGA database). Furthermore, in a recent study (Patra et al., 2018), malignant transformation (pancreatic ductal adenocarcinomas, PDAs) of a benign pancreatic disorder, intraductal papillary mucinous neoplasm (IPMN), induced by GNAS mutation, with the addition of TP53 loss was reported, supporting the significant role of TP53 in the progression of benign disease with pre-existing GNAS mutation to a malignant state. Whether this coexistence of TP53 and GNAS variations makes the osteosarcoma different from the counterpart without GNAS mutation is unclear. Pathologically, no significant difference could be found, with all three of our cases being the conventional OS. However, based on the surprising finding by Patra et al that mutant GNAS was still required for the maintenance and growth of tumours after malignant transformation of IPMN, it is probably true that GNAS mutation also retained an important role after FD malignancy. Therefore, it might be feasible to treat secondary malignancies from FD and other diseases bearing this mutation by gene targeting therapy in the future. Indeed, molecular therapy targeting GNAS activating mutations has been demonstrated to be effective for FD in vitro (Piersanti et al., 2010).

Somatic CNAs are another important aspect underlying the genetic mechanism of primary osteosarcoma. It has even been hypothesized that CNAs rather than point mutations may be the dominant oncogenic mechanism for osteosarcoma progression and maintenance (Sayles et al., 2019). Furthermore, Sayles et al. (2019) identified some somatic CNAs most likely to be of direct clinical relevance, targeting these somatic CNAs could lead to a significant decrease in tumour burden. Somatic CNAs across cases of osteosarcoma are highly complex and heterogeneous; thus, their analysis in each patient is of great importance. In the literature, only one paper has demonstrated the gain of chromosomal regions in FD malignancy using comparative genomic hybridization (CGH) analysis (Jhala et al., 2003). In the present study, through WES, more detailed information about somatic CNVs in a secondary osteosarcoma of FD was revealed. Various oncogenes and tumour suppressors, including KIT, PDGFR, MYC, EXT1, PIK3A and WWOX, are located in these somatic CNAs. Based on Sayles's study, targeting oncogenes within these CNAs may provide hope for the treatment of patients with these specific genomic abnormalities.

ACKNOWLEDGEMENTS

We sincerely thank the patients for their cooperation and thank the National Natural Science Foundation of China (81671006, 81700994) and CAMS Innovation Fund for Medical Sciences (2019-12M-5-038) for funding.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTIONS

Study design: RRS, TJL. Study procedures and data collection: RRS, XFL, MM, YRF. Data analysis and interpretation: RRS, XFL, JYZ, FC, TJL. Manuscript preparation: RRS, FC, TJL.
ETHICAL COMPLIANCE
This study was approved by the Institutional Review Board of Peking University and conducted in accordance with the Declaration of Helsinki.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Ruirui Shi https://orcid.org/0000-0002-8178-5254

REFERENCES
Bertin, H., Gomez-Brouchet, A., & Redini, F. (2020). Osteosarcoma of the jaws: An overview of the pathophysiological mechanisms. Critical Reviews in Oncology Hematology, 156, 103126. https://doi.org/10.1016/j.critrevonc.2020.103126
Boevo, V., Popova, T., Bleakley, K., Chiche, P., Cappo, J., Schleiermacher, G., Janoueix-Lerosey, I., Delattre, O., & Barillot, E. (2012). Control-FREEC: A tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics, 28(3), 423–425. https://doi.org/10.1093/bioinformatics/btq670
Boyce, A. M., & Collins, M. T. (2020). Fibrous dysplasia/McCune-Albright syndrome: A rare, mosaic disease of Galphα activation. Endocrine Reviews, 41(2), 345–370. https://doi.org/10.1210/endo/bnz011
Cheng, J., Wang, Y., Yu, H., Wang, D., Ye, J., Jiang, H., Wu, Y., & Shen, G. (2012). An epidemiological and clinical analysis of craniofacioskeletal fibrous dysplasia in a Chinese population. Orphanet Journal of Rare Diseases, 7, 80. https://doi.org/10.1186/1750-1172-7-80
Cibulskis, K., Lawrence, M. S., Carter, S. L., Sivachenko, A., Jaffe, D., Sougnez, C., Gabriel, S., Meyerson, M., Lander, E. S., & Getz, G. (2013). Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature Biotechnology, 31(3), 213–219. https://doi.org/10.1038/nbt.2514
Coley, B. L., & Stewart, F. W. (1945). Bone sarcoma in polyostotic fibrous dysplasia. Annals of Surgery, 121(6), 872–881. https://doi.org/10.1097/00000656-194506000-00012
Collins, M. T., Singer, F. R., & Eugster, E. (2012). McCune-Albright syndrome and the extraskeletal manifestations of fibrous dysplasia. Orphanet Journal of Rare Diseases, 7(Suppl 1), S4. https://doi.org/10.1186/1750-1172-7-S1-S4
Faust, G. G., & Hall, I. M. (2014). SAMBLASTER: Fast duplicate marking and structural variant read extraction. Bioinformatics, 30(17), 2503–2505. https://doi.org/10.1093/bioinformatics/btu314
Fukuroku, J., Kusuzaki, K., Murata, H., Nakamura, S., Takeshita, H., Hirata, M., & Hirasawa, Y. (1999). Two cases of secondary angiosarcoma arising from fibrous dysplasia. Anticancer Research, 19(5C), 4451–4457.
Hagelstein-Rotman, M., Meier, M. E., Majoor, B. C. J., Cleven, A. H. G., Dijkstra, P. D. S., Hamdy, N. A. T., van de Sande, M. A. J., Dekkers, O. M., & Appelman-Dijkstra, N. M. (2020). Increased prevalence of malignancies in fibrous dysplasia/McCune-Albright syndrome (FD/MAS): Data from a national referral center and the Dutch National Pathology Registry (PALGA). Calcified Tissue International, 108(3), 346–353. https://doi.org/10.1007/s00223-020-00780-6
Han, I., Choi, E. S., & Kim, H. S. (2014). Monostotic fibrous dysplasia of the proximal femur: Natural history and predisposing factors for disease progression. The Bone & Joint Journal, 96-B(5), 673–676. https://doi.org/10.1302/0301-620X.96B5.33281
Hatano, H., Morita, T., Ariizumi, T., Kawashima, H., & Ogose, A. (2014). Malignant transformation of fibrous dysplasia: A case report. Oncology Letters, 8(1), 384–386. https://doi.org/10.3892/ol.2014.2082
Hu, Q., & Shokat, K. M. (2018). Disease-causing mutations in the G protein Galphαs subvert the roles of GDP and GTP. Cell, 173(5), 1254–1264.e1211. https://doi.org/10.1016/j.cell.2018.03.018
Jhala, D. N., Eltoum, I., Carroll, A. J., Lopez-Ben, R., Lopez-Terrada, D., Rao, P. H., Pettenati, M. J., & Siegal, G. P. (2003). Osteosarcoma in a patient with McCune-Albright syndrome and Mazabraud’s syndrome: A case report emphasizing the cytological and cytogenetic findings. Human Pathology, 34(12), 1354–1375. https://doi.org/10.1016/j.humpath.2003.08.004
Kanazawa, I., Yamauchi, M., Yano, S., Imanishi, Y., Kitazawa, R., Nariai, Y., Araki, A., Kobayashi, K., Inaba, M., Maruyama, R., Yamaguchi, T., & Sugimoto, T. (2009). Osteosarcoma in a pregnant patient with McCune-Albright syndrome. Bone, 45(3), 603–608. https://doi.org/10.1016/j.bone.2009.05.018
Kuznetsov, S. A., Sherman, N., Riminucci, M., Collins, M. T., Robey, P. G., & Bianco, P. (2008). Age-dependent demise of GNAS-mutated skeletal stem cells and “normalization” of fibrous dysplasia of bone. Journal of Bone and Mineral Research, 23(11), 1731–1740. https://doi.org/10.1016/j.jbmr.080609
Landis, C. A., Masters, S. B., Spada, A., Pace, A. M., Bourne, H. R., & Vallar, L. (1989). GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenyl cyclase in human pituitary tumours. Nature, 340(6236), 692–696. https://doi.org/10.1038/340692a0
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324
Li, Z., Wang, Z., & Qian, H. (2020). Malignant transformation of craniofacial fibrous dysplasia: A systematic review of overall survival. Neurosurgical Review, 43(3), 911–921. https://doi.org/10.1007/s10143-019-01089-1
Lichtenstein, L. (1938). Polyostotic fibrous dysplasia. Archives of Surgery, 36, 874–898. https://doi.org/10.1001/archsurg.1938.01190230153012
Lichtenstein, L. (1942). Fibrous dysplasia of bone. A condition affecting one, several or many bones, the graver cases of which may present abnormal pigmentation of skin, premature sexual development, hyperthyroidism or still other extraskeletal abnormalities. Archives of Pathology, 33, 777–816.
Marie, P. J. (2001). Cellular and molecular basis of fibrous dysplasia. Histology and Histopathology, 16(3), 981–988. https://doi.org/10.14670/HH-16.981
Patra, K. C., Kato, Y., Mizukami, Y., Widholz, S., Boukhali, M., Revenco, I., Grossman, E. A., Ji, F., Sadreyev, R. I., Liss, A. S., Screaton, R. A., Sakamoto, K., Ryan, D. P., Mino-Kenudson, M., Castillo, C.-D., Nomura, D. K., Haas, W., & Bardeesy, N. (2018).
Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism. *Nature Cell Biology*, 20(7), 811–822. https://doi.org/10.1038/s41556-018-0122-3

Piersanti, S., Remoli, C., Saggio, I., Funari, A., Michienzi, S., Sacchetti, B., Robey, P. G., Riminucci, M., & Bianco, P. (2010). Transfer, analysis, and reversion of the fibrous dysplasia cellular phenotype in human skeletal progenitors. *Journal of Bone and Mineral Research*, 25(5), 1103–1116. https://doi.org/10.1359/jbmr.091036

Qu, N., Yao, W., Cui, X., & Zhang, H. (2015). Malignant transformation in monostotic fibrous dysplasia: Clinical features, imaging features, outcomes in 10 patients, and review. *Medicine (Baltimore)*, 94(3), e369. https://doi.org/10.1097/MD.0000000000000369

Riddle, N. D., & Bui, M. M. (2013). Fibrous dysplasia. *Archives of Pathology and Laboratory Medicine*, 137(1), 134–138. https://doi.org/10.5858/arpa.2012.0013-RS

Riminucci, M., Fisher, L. W., Shenker, A., Spiegel, A. M., Bianco, P., & Gehron Robey, P. (1997). Fibrous dysplasia of bone in the McCune-Albright syndrome: Abnormalities in bone formation. *American Journal of Pathology*, 151(6), 1587–1600.

Riminucci, M., Kuznetsov, S. A., Cherman, N., Corsi, A., Bianco, P., & Gehron Robey, P. (2003). Osteoclastogenesis in fibrous dysplasia of bone: In situ and in vitro analysis of IL-6 expression. *Bone*, 33(3), 434–442. https://doi.org/10.1016/s8756-3282/0300064-4

Riminucci, M., Liu, B., Corsi, A., Shenker, A., Spiegel, A. M., Robey, P. G., & Bianco, P. (1999). The histopathology of fibrous dysplasia of bone in patients with activating mutations of the Gs alpha gene: Site-specific patterns and recurrent histological hallmarks. *The Journal of Pathology*, 187(2), 249–258.

Ruggieri, P., Sim, F. H., Bond, J. R., & Unni, K. K. (1994). Malignancies in fibrous dysplasia. *Cancer*, 73(5), 1411–1424.

Saggio, I. (2019). Perils and promises of therapeutic approaches for the stem cell disease fibrous dysplasia. *Stem Cells Translational Medicine*, 8(2), 110–111. https://doi.org/10.1002/sctm.18-0213

Salinas-Souza, C., De Andrea, C., Bihl, M., Kovac, M., Pillay, N., Forshew, T., Gutteridge, A., Ye, H., Amary, M. F., Tirabosco, R., Toledo, S. R. C., Baumhoer, D., & Flanagan, A. M. (2015). GNAS mutations are not detected in parosteal and low-grade central osteosarcomas. *Modern Pathology*, 28(10), 1336–1342. https://doi.org/10.1038/modpathol.2015.91

Saunders, C. T., Wong, W. S., Swamy, S., Becq, J., Murray, L. J., & Cheetham, R. K. (2012). Strelka: Accurate somatic small-variant calling from sequenced tumor-normal sample pairs. *Bioinformatics*, 28(14), 1811–1817. https://doi.org/10.1093/bioinformatics/bts271

Sayles, L. C., Breese, M. R., Koehne, A. L., Leung, S. G., Lee, A. G., Liu, H.-Y., Spillinger, A., Shah, A. T., Tanasa, B., Straessler, K., Hazard, F. K., Spunt, S. L., Marina, N., Kim, G. E., Cho, S.-J., Avedian, R. S., Mohler, D. G., Kim, M.-O., Dubois, S. G., ... Sweet-Cordero, E. A. (2019). Genome-informed targeted therapy for osteosarcoma. *Cancer Discovery*, 9(1), 46–63. https://doi.org/10.1158/2159-8290.CD-17-1152

Schwartz, D. T., & Alpert, M. (1964). The malignant transformation of fibrous dysplasia. *American Journal of the Medical Sciences*, 247, 1–20. https://doi.org/10.1097/00000441-196401000-00001

Sugiu, Y., Kanda, H., Motoi, N., Nomura, K., Inamura, K., Okada, E., Matsumoto, H., Shimoji, T., Matsumoto, S., Nakayama, J., Takazawa, Y., Ishikawa, Y., & Machinami, R. (2018). Osteosarcoma arising in fibrous dysplasia, confirmed by mutational analysis of GNAS gene. *Pathology. Research and Practice*, 214(2), 318–324. https://doi.org/10.1016/j.prp.2017.10.018

Sweeney, K., & Kaban, L. B. (2020). Natural history and progression of craniofacial fibrous dysplasia: A retrospective evaluation of 114 patients from Massachusetts general hospital. *Journal of Oral and Maxillofacial Surgery*, 78(11), 1966–1980. https://doi.org/10.1016/j.joms.2020.05.036

Tahureau-Delalande, F., Collin, C., Gomez-Brouchet, A., Decouvelaere, A.-V., Bouvier, C., Larousserie, F., Marie, B., Delfour, C., Aubert, S., Rosset, F., de Muret, A., Pagès, J.-C., & de Pinieux, G. (2013). Diagnostic value of investigating GNAS mutations in fibro-osseous lesions: A retrospective study of 91 cases of fibrous dysplasia and 40 other fibro-osseous lesions. *Modern Pathology*, 26(7), 911–921. https://doi.org/10.1038/modpathol.2012.223

Yabut, S. M. Jr, Kenan, S., Sissons, H. A., & Lewis, M. M. (1988). Malignant transformation of fibrous dysplasia. A case report and review of the literature. *Clinical Orthopaedics and Related Research*, 228, 281–289.

Yamamoto, S., & Iwakuma, T. (2018). Regulators of oncogenic mutant TP53 gain of function. *Cancers (Basel)*, 11(1), 4. https://doi.org/10.3390/cancers11010004

Yannopoulos, K., Bom, A. F., Griffiths, C. O., & Crikelair, G. F. (1964). Osteosarcoma arising in fibrous dysplasia of the facial bones: Case report and review of the literature. *American Journal of Surgery*, 107, 556–564. https://doi.org/10.1016/s0002-9610(64)90320-4

Yap, F. H. X., Amanuel, B., Van Vliet, C., Thomas, M., & Wong, D. (2020). Malignant transformation of fibrous dysplasia into osteosarcoma confirmed with TP53 somatic mutation and mutational analysis of GNAS gene. *Pathology*, https://doi.org/10.1016/j.pathol.2020.08.027

Zreik, R. T., Littrell, A. L., Jin, L., Oliveira, A. M., & Fritchie, K. J. (2017). Malignant transformation of polyostotic fibrous dysplasia with aberrant keratin expression. *Human Pathology*, 62, 170–174. https://doi.org/10.1016/j.humpath.2016.09.030

How to cite this article: Shi, R., Li, X., Zhang, J., Chen, F., Ma, M., Feng, Y., & Li, T. (2022). Clinicopathological and genetic study of a rare occurrence: Malignant transformation of fibrous dysplasia of the jaws. *Molecular Genetics & Genomic Medicine*, 10, e1861. https://doi.org/10.1002/mgg3.1861