Sociopathic Knowledge Bases: Correct Knowledge Can Be Harmful Even Given Unlimited Computation

by

David C. Wilkins and Yong Ma

August 1989
This paper studies a situation in which correct knowledge is harmful to a problem solver even given unlimited computational resources. A knowledge base is defined to be sociopathic if all the tuples in the knowledge base are individually judged to be correct and a subset of the knowledge base gives better performance than the original knowledge base independent of the amount of computational resources that are available. Almost all knowledge bases that contain probabilistic rules are shown to be sociopathic and so this problem is very widespread.

Sociopathicity has important consequences for rule induction methods and rule set debugging methods. Sociopathic knowledge bases cannot be properly debugged using the widespread practice of incremental modification and deletion of rules responsible for wrong conclusions a la Trievesias; this approach fails to converge to an optimal solution. The problem of optimally debugging sociopathic knowledge bases is modeled as a bipartite graph minimization problem and shown to be NP-hard. Our heuristic solution approach is called the Sociopathic Reduction Algorithm and experimental results verify its efficacy.
Sociopathic Knowledge Bases:
Correct Knowledge Can be Harmful
Even Given Unlimited Computation

David C. Wilkins and Yong Ma

Knowledge-Based Systems Group
Department of Computer Science
University of Illinois
405 North Mathews Ave
Urbana, IL 61801

August 1989

Submitted for Publication:
Artificial Intelligence Journal
Sociopathic Knowledge Bases:
Correct Knowledge Can be Harmful
Even Given Unlimited Computation

David C. Wilkins and Yong Ma
Department of Computer Science
University of Illinois
405 North Mathews Avenue
Urbana, IL 61801

Abstract

This paper studies a situation in which correct knowledge is harmful to a problem solver even given unlimited computational resources. A knowledge base is defined to be sociopathic if all the tuples in the knowledge base are individually judged to be correct and a subset of the knowledge base gives better performance than the original knowledge base independent of the amount of computational resources that are available. Almost all knowledge bases that contain probabilistic rules are shown to be sociopathic and so this problem is very widespread.

Sociopathicity has important consequences for rule induction methods and rule set debugging methods. Sociopathic knowledge bases cannot be properly debugged using the widespread practice of incremental modification and deletion of rules responsible for wrong conclusions a la Teiresias; this approach fails to converge to an optimal solution. The problem of optimally debugging sociopathic knowledge bases is modeled as a bipartite graph minimization problem and shown to be NP-hard. Our heuristic solution approach is called the Sociopathic Reduction Algorithm and experimental results verify its efficacy.
Contents

1 Introduction 3

2 Inexact Reasoning and Rule Interactions 4

3 Debugging Rule Sets and Rule Interactions 6
 3.1 Types of rule interactions 6
 3.2 Traditional methods of debugging a rule set 7

4 Minimizing Sociopathic Interactions 8
 4.1 Bipartite graph minimization formulation 9

5 Sociopathic Reduction Algorithm 14
 5.1 The Sociopathic Reduction Algorithm 14
 5.2 Example of sociopathic reduction 16
 5.3 Experience with the Sociopathic Reduction Algorithm 18

6 Related Work 20

7 Summary and Conclusion 21

8 Acknowledgements 21

Appendix 1: Calculating G. 22

References 73
1 Introduction

Reasoning under uncertainty has been widely investigated in artificial intelligence. Probabilistic approaches are of particular relevance to rule-based expert systems, where one is interested in modeling the heuristic and evidential reasoning of experts. Methods developed to represent and draw inferences under uncertainty include the certainty factors used in Mycin (Buchanan and Shortliffe, 1984), fuzzy set theory (Zadeh, 1979), and the belief functions of Dempster-Shafer theory (Shafer, 1976) (Gordon and Shortliffe, 1985). In many expert system frameworks, such as Emycin, Expert, MRS, S.1, and Kee, the rule structure permits a conclusion to be drawn with varying degrees of certainty or belief. This paper addresses a concern common to all these methods and systems.

In refining and debugging a probabilistic rule set, there are three major causes of errors: missing rules, wrong rules, and deleterious interactions between good rules. The purpose of this paper is to explicate a type of deleterious interaction and to show that it (a) is indigenous to rule sets for reasoning under uncertainty, (b) is of a fundamentally different nature from missing and wrong rules, (c) cannot be handled by traditional methods for correcting wrong and missing rules, and (d) can be handled by the method described in this paper.

In section 2, we describe the type of deleterious rule interactions that we have encountered in connection with automatic induction of rule sets, and explain why the use of most rule modification methods fails to grasp the nature of the problem. In section 3, we discuss approaches to debugging and refining rule sets and explain why traditional rule set debugging methods are inadequate for handling global interactions. In section 4, we formulate the problem of reducing deleterious interactions as a bipartite graph minimization problem and show that it is NP-hard. In section 5, we present a heuristic method called the Sociopathic Reduction Algorithm. Finally, our experiences in using the Sociopathic Reduction Algorithm are described.

A brief description of terminology will be helpful to the reader. Assume there exists a collection of training instances, each represented as a set of feature-value pairs of evidence and a set of hypotheses.
Rules are in Horn clause form: conclude(H, CF) :- E, where E is a conjunction of evidence, H is a hypothesis, and CF is a certainty factor or its equivalent.

A rule that correctly confirms a hypothesis generates true positive evidence; one that correctly disconfirms a hypothesis generates true negative evidence. A rule that incorrectly confirms a hypothesis generates false positive evidence; one that incorrectly disconfirms a hypothesis generates false negative evidence. False positive and false negative evidence can lead to misdiagnoses of training instances.

2 Inexact Reasoning and Rule Interactions

When operating as an evidence-gathering system (Buchanan and Shortliffe, 1984), an expert system accumulates evidence for and against competing hypotheses. Each rule whose preconditions match the gathered data contributes either positively or negatively toward one or more hypotheses. Unavoidably, the preconditions of probabilistic rules succeed on instances where the rule will be contributing false positive or false negative evidence for conclusions. For example, consider the following rule:

```
conclude(klebsiella, 0.77) :-
    finding(surgery, yes),
    finding(gram_neg_infection, yes)
```

The frequency with which R1 generates false positive evidence has a major influence on its CF of 0.77, where $-1 \leq \text{CF} \leq 1$. Indeed, given a representative set of training instances, such as a library of medical cases, the certainty factor of a rule can be given a probabilistic interpretation\(^1\) as a function $G(z_1, z_2, z_3)$, where z_1 is the fraction of the positive instances of a hypothesis where the rule premise succeeds, thus contributing true positive or false negative evidence; z_2 is the fraction of the negative instances of a hypothesis where the rule premise succeeds, thus contributing false positive or true negative evidence;

\(^1\)See Appendix 1 for a description of the function G. The calculations of G give a purely statistical interpretation to CFs, and hence do not incorporate orthogonal utility measures as was done in MYCIN (Buchanan and Shortliffe, 1984).
and z_3 is the ratio of positive instances of a hypothesis to all instances in the training set. For R1 in our domain, $G(.43,.10,.22) = 0.77$ by the formulas in Appendix A, because statistics on 104 training instances yield the following values:

\[
\begin{align*}
 z_1 & : \text{E true among positive instances} = 10/23 \\
 z_2 & : \text{E true among negative instances} = 8/81 \\
 z_3 & : \text{H true among all instances} = 23/104
\end{align*}
\]

Hence, R1 generates false positive evidence on eight instances, some of which may lead to false negative diagnoses. But whether they do or not depends on the other rules in the system; hence our emphasis on taking a global perspective. The usual method of dealing with situations such as this is to make the rule fail less often by specializing its premise (Michalski et al., 1983). For example, surgery could be specialized to neurosurgery, and we could replace R1 with:

\[
\text{conclude(klebsiella, 0.92) :-} \\
\text{finding(neurosurgery, yes),} \\
\text{finding(gram_neg_infection, yes)}
\]

(R2)

On our case library of training instances for the R2 rule, $G(.26,.02,.22) = 0.92$, so R2 makes erroneous inferences in two instances instead of eight. Nevertheless, modifying R1 to be R2 on the grounds that R1 contributes to a misdiagnosis is not always appropriate; we offer three objections to this frequent practice. First, both rules are inexact rules that offer advice in the face of limited information, and their relative accuracy and correctness is explicitly represented by their respective CFs. We expect them to fail, hence failure should not necessarily lead to their modification. Second, all probabilistic rules reflect a trade-off between generality and specificity. An overly general rule provides too little discriminatory power, and a overly specific rule contributes too infrequently to problem solving. A policy on proper grain size is explicitly or implicitly built into rule induction programs; this policy should be followed as much as possible. Specialization produces a rule that usually violates such a policy. Third, if the underlying problem for an incorrect diagnosis is rule interactions, a more specialized rule, such as the specialization of R1 to R2, can be viewed as creating a potentially more dangerous rule. Although it only makes an incorrect inference in two
instead of eight instances, these two instances will be now harder to counteract when they contribute to misdiagnoses because R2 is stronger. Note that a rule with a large CF is more likely to have its erroneous conclusions lead to misdiagnoses. This perspective motivates the prevention of misdiagnoses in ways other than the use of rule specialization or generalization.

Besides rule modification, another common method of nullifying the incorrect inference of a rule in an evidence-gathering system is to introduce counteracting rules. In our example, these would be rules with a negative CF that concludes Klebsiella on the false positive training instances that lead to misdiagnoses. But since these new rules are probabilistic, they will introduce false negatives on some other training instances, and these may lead to misdiagnoses. We could add yet more counteracting rules with a positive CF to nullify any problems caused by the original counteracting rules, but these additional rules introduce false positives on yet other training instances, and these may lead to other misdiagnoses. Also, a counteracting rule is often of less quality in comparison to rules in the original rule set; if it were otherwise the induction program would have included the counteracting rule in the original rule set. Clearly, adding counteracting rules may not be necessarily the best way of dealing with misdiagnoses made by probabilistic rules.

3 Debugging Rule Sets and Rule Interactions

Assume we are given a set of probabilistic rules that were either automatically induced from a set of training cases or created manually by an expert and knowledge engineer. In refining and debugging this probabilistic rule set, there are three major causes of errors: missing rules, wrong rules, and unexpected interactions among good rules. We first describe types of rule interactions, and then show how the traditional approach to debugging is inadequate.

3.1 Types of rule interactions

In a rule-based system, there are many types of rule interactions. Rules interact by chaining together, by using the same evidence for different conclusions, and by drawing the same conclusions from different collections of evidence. Thus one of the lessons learned from research on MYCIN was that complete modularity of rules is not possible to achieve when
rules are written manually (Buchanan and Shortliffe, 1984). An expert uses other rules in a set of closely interacting rules in order to define a new rule, in particular to set a CF value relative to the CFs of interacting rules.

Automatic rule induction systems encounter the same problems. Moreover, automatic systems lack an understanding of the strong semantic relationships among concepts to allow judgments about the relative strengths of evidential support. Instead, induction systems use biases to guide the rule search (Michalski et al., 1983). The rule sets that are later analyzed for sociopathicity in this paper were generated by the induction subsystem of ODYSSEUS. The inductive biases used in this system are rule generality, whereby a rule must cover a certain percentage of instances; rule specificity, whereby a rule must be above a minimum discrimination threshold; rule colinearity, whereby rules must not be too similar in classification of the instances in the training set; and rule simplicity, whereby a maximum bound is placed on the number of conjunctions and disjunctions (Wilkins, 1987).

3.2 Traditional methods of debugging a rule set

The standard approach to debugging a rule set consists of iteratively performing the following steps:

- **Step 1.** Run the system on cases until a false diagnosis is made.
- **Step 2.** Track down the error and correct it, using one of five methods pioneered by Teiresias (Davis, 1982) and used by knowledge engineers generally:
 - Method 1: Make the preconditions of the offending rules more specific or sometimes more general.²
 - Method 2: Make the conclusions of offending rules more general or sometimes more specific.
 - Method 3: Delete offending rules.
 - Method 4: Add new rules that counteract the effects of offending rules.

²Ways of generalizing and specializing rules are nicely described in (Michalski et al., 1983). They include dropping conditions, changing constants to variables, generalizing by internal disjunction, tree climbing, interval closing, exception introduction, etc.
Method 5: Modify the strengths or CFs of offending rules.

This approach may be sufficient for correcting wrong and missing rules. However, it is flawed from a theoretical point of view, with respect to its sufficiency for correcting problems resulting from the global behavior of rules over a set of cases. It possesses two serious methodological problems. First, using all five of these methods is not necessarily appropriate for dealing with global deleterious interactions. In section 2 we explained why in some situations modifying the offending rule or adding counteracting rules leads to problems, and misses the point of having probabilistic rules, and this eliminates methods 1, 2 and 4. If rules are being induced from a representative set of training cases, modifying the strength of the rule is illegal, since the strength of the rule has a probabilistic interpretation, being derived from frequency information derived from the training instances, and this eliminates method 5. Only method 3 is left to cope with deleterious interactions. The second methodological problem is that the traditional method picks an arbitrary case to run in its search for misdiagnoses. Such a procedure will often not converge to a good rule set, even if modifications are restricted to rule deletion. The example in section 5.2 illustrates this situation.

Our perspective on this topic evolved in the course of experiments in induction and refinement of knowledge bases. Using “better” induction biases did not always produce rule sets with better performance, and this prompted investigating the possibility of global probabilistic interactions. Our original approach to debugging was similar to the Teiresias approach. Often, correcting a problem led to other cases being misdiagnosed, and in fact this type of automated incremental debugging seldom converged to an acceptable set of rules. It might have if we we engaged in the common practice of “tweaking” the CF strengths of rules. However this was not permissible, since our CF values were derived from a representative set of training cases, and have a precise probabilistic interpretation.

4 Minimizing Sociopathic Interactions

Assume there exists a large set of training instances, and a rule set for solving these instances has been induced that is fairly complete and contains rules that are individually judged to be good. By good, we mean that they individually meet some predefined quality standards such
as the biases described in section 3.1. Further, assume that the rule set misdiagnoses some of the instance in the training set. Given such an initial rule set, the problem is to find a rule set that meets some optimality criteria, such as to minimize the number of misdiagnoses without violating the goodness constraints on individual rules. Now modifications to rules, except for rule deletion, generally break the predefined goodness constraints. And adding other rules is not desirable, for if they satisfied the goodness constraints they would have been in the original rule set produced by the induction program. Hence, if we are to find a solution that meets the described constraints, the solution must be a subset of the original rule set. More formally:

Definition 1 (Sociopathic Knowledge Base) A knowledge base is sociopathic if and only if (1) all the tuples in the knowledge base are individually judged to be good; and (2) a subset of the knowledge base gives better performance than the original knowledge base independent of the amount of available computational resources.

By the definition of a sociopathic knowledge base, the best rule set is viewed as the element of the power set of rules in the initial rule set that yields a global minimum weighted error. A straightforward approach is to examine and compare all subsets of the rule set. However, the power set is almost always too large to work with, especially when the initial set has deliberately been generously generated. The selection process can be modeled as a bipartite graph minimization problem as follows.

4.1 Bipartite graph minimization formulation

A bipartite graph \(G = (V, E) \) is a graph whose vertices \(V \) can be partitioned into two sets \(V_1 \) and \(V_2 \) so that every edge in \(E \) joins a vertex in \(V_1 \) to a vertex in \(V_2 \). For each hypothesis in the set of training instances, define a directed bipartite graph \(G = (V, E) \), with its vertices \(V \) partitioned into two sets \(I \) and \(R \), as shown in Figure 1. Elements of \(R \) represent rules, and the evidential strength of \(R_j \) is denoted by \(CF_j \). Each vertex in \(I \) represents a training instance; for positive instances \(M_i \) is 1, and for negative instances \(M_i \) is -1. Arcs \([R_j, I_i] \) connect a rule in \(R \) with the training instances in \(I \) for which its preconditions are

\[\text{If we discover that this solution is inadequate for our needs, then introducing rules that violate the induction biases is justifiable.} \]
satisfied; the weight of arc \([R_j, I_i]\) is \(CF_j\). The weighted arcs terminating in a vertex in \(I\) are combined using an evidence combination function \(F\), which is defined by the user. The combined evidence classifies an instance as a positive instance if the combined evidence is above a user specified threshold \(CF_t\). In the example in section 5.2, \(CF_t\) is 0, while for Mycin, \(CF_t\) is 0.2.

\[
\text{Instance Set} \quad \text{Rule Set}
\]

\[
\begin{align*}
I_1 (M_1) & \quad \bullet R_1 (CF_1) \\
I_2 (M_2) & \quad \bullet R_2 (CF_2) \\
& \quad \vdots \\
I_m (M_m) & \quad \bullet R_n (CF_n)
\end{align*}
\]

Figure 1: Bipartite Graph Formulation. The left hand nodes, \(I_1, \ldots, I_m\) represent a case library of \(m\) training instances, where \(M_i\) indicates whether an instance is a positive or negative example of a hypothesis. The right hand nodes, \(R_1, \ldots, R_n\) represent a knowledge base of probabilistic rules, where \(CF_j\) is the strength of the rule. The links show which training instances \(I_1, \ldots, I_m\) satisfy the preconditions of rule \(R_j\).

More formally, assume that \(I_1, \ldots, I_m = \text{training set of instances}, \text{and } R_1, \ldots, R_n = \text{rules of an initial rule set}. Then we want to minimize:

\[
z = \sum_{i=1}^{m} b_i e_i
\]

subject to the constraints

\[
e_i = \begin{cases}
0 & \text{if } F(a_{i1}r_1, \ldots, a_{in}r_n) > CF_t \quad \text{for } M_i = 1 \\
0 & \text{if } F(a_{i1}r_1, \ldots, a_{in}r_n) \leq CF_t \quad \text{for } M_i = -1 \\
1 & \text{otherwise}
\end{cases}
\]

10
\[\sum_{j=1}^{n} r_j \geq R_{\text{min}} \] \hspace{2cm} (4)

where

\begin{align*}
 b_i &= \text{bias constant to preferentially favor instances;} \\
 r_j &= \text{if } R_j \text{ is in solution rule set then 1 else 0;} \\
 a_{ij} &= \text{if arc } [R_j, I_i] \text{ exists then } CF_j \text{ else 0;} \\
 CF_t &= \text{the } CF \text{ threshold for positive classification;} \\
 F &= \text{n-ary function for combining } CFs, \text{ where } \\
 &\quad \text{the time to evaluate is polynomial in } n; \\
 R_{\text{min}} &= \text{minimum number of rules in solution set;}
\end{align*}

The problem is to find a subset of \(R \) such that the global weighted error \(z \) is minimum. That is, the solution formulation solves for \(r_j \); if \(r_j = 1 \) then rule \(R_j \) is in the final rule set. The main tasks of the user are to specify the evidence combination function \(F \) and to set up the \(a_{ij} \) matrix, which associates rules and instances and indicates the strength of the the associations. Note that the value of \(a_{ij} \) is zero if the preconditions of \(R_j \) are not satisfied in instance \(I_i \). Preference can be given to particular instances via the bias \(b_i \) in the objective function \(z \). For instance, the user may wish to favor the selection of rules that will not misdiagnose certain instances by setting the corresponding \(b_i \) to a very high value.

The \(R_{\text{min}} \) constraint forces the solution rule set to be above a minimum size. This prevents finding a solution that is too specialized for the training set, giving good accuracy on the training set but having a high variance on other sets, which would lead to poor performance.

\textbf{Theorem 1} \textit{The bipartite graph minimization problem for heuristic rule set optimization is NP-hard.}

\textbf{Proof:} To show that the bipartite graph minimization problem (BGMP) is NP-hard, we shall reduce Satisfiability problem (SAT) to it. The major difficulty is that we have to use
numerical combination functions to determine logical truth values of clauses. Assume there are \(l \) boolean variables \(A_1, \ldots, A_l \) and \(k \) clauses \(C_1, C_2, \ldots, C_k \), where \(C_i \) is a disjunction of some literals. For example, \(C_4 = A_1 \lor \neg A_3 \lor A_4 \).

1. **Input transformation:** SAT clauses are mapped into graph instance nodes and the atoms of the clauses are mapped into rule nodes. Arcs connect rule nodes to instance nodes when the respective literals appear in the respective clauses. Let \(m = k \) and \(n = l \). Let each clause represent a positive instance, then set \(M_i = 1 \) for \(1 \leq i \leq m \). Let \(CF_j \) to be 1 for \(j = 1, 2, \ldots, n \). For each instance node \(I_i \) (corresponding to \(C_i \)), define the combination function as follows:

\[
F(a_{i1}r_1, \ldots, a_{in}r_n) = 1 - \prod_{j=1}^{n} (1 - g(a_{ij}r_j))
\]

(5)

where

\[
g(a_{ij}r_j) = \begin{cases}
 a_{ij}r_j & \text{if } A_j \text{ appears in } C_i \\
 1 - a_{ij}r_j & \text{if } \neg A_j \text{ appears in } C_i \\
 0 & \text{otherwise}
\end{cases}
\]

(6)

Note that \(a_{ij} = CF_j = 1 \) if either \(A_j \) or \(\neg A_j \) appears in \(C_i \). Thus the \(g(a_{ij}r_j) \) function can be simplified to:

\[
g(a_{ij}r_j) = \begin{cases}
 r_j & \text{if } A_j \text{ appears in } C_i \\
 1 - r_j & \text{if } \neg A_j \text{ appears in } C_i \\
 0 & \text{otherwise}
\end{cases}
\]

(7)

Since every clause is of the same importance, let \(b_i = 1 \) for all \(i \), for the objective function \(z \). Let \(R_{\min} = 0 \) to make its associate constraint trivially true. Finally, choose \(CF_i \) to be 0.

2. **Output transformation:** The output transformation is that (1) if \(R_j \) remains in the final rule set, \(A_j \) is assigned to be true; otherwise, it is assigned to be false; (2) SAT is satisfied only if \(z = 0 \), i.e., all the instances are correctly classified.

3. **Justification:** First, it is clear that the input and output transformations can be performed in polynomial time. Second, we will show that \(C_i \) is satisfied iff the corresponding \(I_i \) is correctly classified in the final rule set, i.e., \(e_i = 0 \). To help understand the functionality of \(g(a_{ij}r_j) \), let us rewrite it as follows:
\[g(a_{ij}r_j) = \begin{cases}
1 & \text{if } A_j \text{ appears in } C_i \text{ and } r_j = 1, \text{ or} \\
0 & \text{if } \bar{A}_j \text{ appears in } C_i \text{ and } r_j = 0 \\
0 & \text{otherwise}
\end{cases} \] (8)

If part: Assume that \(e_i = 0 \), i.e., \(F(a_{i1}r_1, \ldots, a_{in}r_n) > 0 \) (\(F \) must be 1), then at least one \(g(a_{ij}r_j) \) is 1. By the definition of \(g(a_{ij}r_j) \) above, either \(A_j \) appears in \(C_i \) and \(r_j = 1 \) or \(\bar{A}_j \) appears in \(C_i \) and \(r_j = 0 \). In either case, according to the output transformation, the corresponding clause \(C_i \) is satisfied (true).

Only if part: Assume that \(C_i \) is satisfied by the truth assignment in the final rule set. Then there must exist some atom \(A_j \) such that either \(A_j \) is in \(C_i \) and it is assigned to be true or \(\bar{A}_j \) is in \(C_i \) and assigned to be false. In either case, \(g(a_{ij}r_j) = 1 \), by the output transformation and the definition of the function. Therefore, \(F(a_{i1}r_1, \ldots, a_{in}r_n) = 1 \) and \(e_i = 0 \).

To summarize, \(g(a_{ij}r_j) \) being 1 corresponds intuitively to the positive contribution made by \(A_j \) to \(C_i \).

Finally, it’s shown that SAT is satisfiable iff BGMP so constructed has a minimum objective value 0. If BGMP has a solution with \(z = 0 \), then \(e_i = 0 \) for all \(i \), because \(b_i = 1 \). Therefore each \(C_i \) is satisfied and thus SAT is satisfiable. Conversely, if the SAT is satisfiable then each \(C_i \) can be satisfied by some truth assignment of atoms. Clearly, the final rule set of the BGMP formulation (of SAT) can be easily constructed with \(z = 0 \), according to that assignment. \(\square \)

Corollary 1 Given a positive real number \(B \), the problem of determining if there exists a rule set whose global weighted error \(z \) is less than or equal to \(B \) in the bipartite graph formulation for heuristic rule set optimization is NP-complete.

Proof: To show that this decision problem is in NP, we notice that it is easy to construct a polynomial algorithm for checking whether or not the (weighted) number of misdiagnosis by any given subset of \(R \) is less than or equal to \(B \). It is NP-hard by an argument similar to that in the proof of the above theorem. \(\square \)
5 Sociopathic Reduction Algorithm

In this section, a heuristic method called the Sociopathic Reduction Algorithm is described, and an example is provided based on the graph shown in Table 1.

5.1 The Sociopathic Reduction Algorithm

The following heuristic hill-climbing search method, the Sociopathic Reduction Algorithm, is one that we have developed and used in our experiments:

- Step 1. Assign values to penalty constants. Let p_1 be the penalty assigned to a poison rule. A poison rule is a strong rule giving erroneous evidence for a case that cannot be counteracted by the combined weight of all the rules in the rule base that give correct evidence. Let p_2 be the penalty for contributing false positive evidence to a misdiagnosed case, p_3 be the penalty for contributing false negative evidence to a misdiagnosed case, p_4 be the penalty for contributing false positive evidence to a correctly diagnosed case, p_5 be the penalty for contributing false negative evidence to a correctly diagnosed case, and p_6 be the penalty for using weak rules. Let h be the maximum number of rules that are removed at each iteration. Let R_{min} be the minimum size of the solution rule set.

- Step 2. Optional step for very large rule sets: given an initial rule set, create a new rule set containing the n strongest rules for each case.

- Step 3. Find all misdiagnosed cases for the rule set. If none exists, stop. Otherwise, collect and rank the rules that contribute evidence toward these erroneous diagnoses. The rank of rule R_j is $\sum_{i=1}^{6} p_i n_{ij}$, where:
 - $n_{1j} = 1$ if R_j is a poison rule or its deletion leads to the creation of another poison rule and 0 otherwise.
 - n_{2j} = the number of misdiagnoses for which R_j gives false positive evidence;
 - n_{3j} = the number of misdiagnoses for which R_j gives false negative evidence;
 - n_{4j} = the number of correct diagnoses for which R_j gives false positive evidence;
- \(n_{sf} \) = the number of correct diagnoses for which \(R_j \) gives false negative evidence;
- \(n_{sf} \) = the absolute value of the CF of \(R_j \);

- Step 4. Eliminate the \(h \) highest ranking rules.
- Step 5. If the number of misdiagnoses is decreased, go to step 3.
- Step 6. Else, if the number of misdiagnoses begins to increase and \(h \neq 1 \), then
 - Undo the last deletion, i.e., take back the most recently removed \(h \) rules.\(^4\)
 - \(h \leftarrow h - 1 \).\(^5\)
 - Goto step 3.

- Step 7. Otherwise, i.e., if the number of misdiagnoses is increased and \(h = 1 \), then undo the last rule deletion; output the final rule set and stop.

Each iteration of the algorithm produces a new rule set, and each rule set must be rerun on all training instances to locate the new set of misdiagnosed instances. If this is particularly difficult to do, the \(h \) parameter in step 4 can be increased, but there is the potential risk of converging to a suboptimal solution. For each misdiagnosed instance, the automated reasoning system that uses the rule set must be able to explain which rules contributed to a misdiagnosis. Hence, we require a system with good explanation capabilities.

The nature of an optimal rule set differs between domains. Penalty constants, \(p_i \), are the means by which the user can define an optimal policy. For instance, via \(p_2 \) and \(p_3 \), the user can favor false positive over false negative misdiagnoses, or visa versa. For medical expert systems, a false negative is often more damaging than a false positive, as false positives generated by a medical program can often be caught by a physician upon further testing. False negatives, however, may be sent home, never to be seen again.

In our experiments, the value of the six penalty constants was \(p_i = 10^6 - i \). The \(h \) constant determines how many rules are removed on each iteration, and its value is about 5. \(R_{min} \) is the minimum size of the solution rule set, usually about 90% of the original set; its usefulness was described in section 4.1.

\(^4\)It is this step that makes it a hill-climbing algorithm.
\(^5\)Since the \(h \) is usually small, say about 5, the next incremental step of 1 is the simplest, although the more complicated schema of step decrements can be implemented for a relatively big number of \(h \).
Table 1: An example for Sociopathic Reduction algorithm. There are ten training instances that are classified as positive (+) or negative (-) instances of the hypothesis. There are six rules shown with their CF strength. The marks indicate the instances to which the rules apply, i.e., when an instance satisfies the premises clauses of a rule.

5.2 Example of sociopathic reduction

In this example, which is illustrated in Table 5.1, there are ten training instances I_0, \ldots, I_9, classified as positive or negative instances of the hypothesis. There are six rules R_1, \ldots, R_6 shown with their CF strength. The marks (\times) indicate the instances to which the rules apply, i.e., when an instance satisfies the premises clauses of a rule. To simplify the example, define the combined evidence for an instance as the sum of the evidence contributed by all applicable rules, and let $CF_i = 0$. Rules with a CF of one sign that are connected to an instance of the other sign contribute erroneous evidence. Two cases in the example are misdiagnosed: I_4 and I_5. The objective is to find a subset of the rule set that minimizes the number of misdiagnoses. Before the details are examined, the following points concerning examples should be made.

First, it can be shown that it is impossible to have an example using rules with out degree less than 5 that has all the points to be made from this example, if there are the equal number of positive and negative training instances. The argument is trivial for the rules with out degree of 1 and 2. For a rule with out degree of 3, assume that it has a positive CF value and is to be deleted. Then, it must misdiagnose some negative instance to become a
rule to be blamed. And, in order to have a positive CF, it must provide (positive) evidence for two positive instances, provided that the number of positive instances is equal to that of negative instances. Therefore, the number of correct diagnoses for which it gives false positive evidence must be zero, since the only negative instance that it connects to is the misdiagnosed one. Then, its ranking vector is \((n_{1j}, n_{2j}, n_{3j}, n_{4j}, n_{5j}, n_{6j}) = (0, 1, 0, 0, 0, CF) \) which results in the smallest ranking quantity that a blamed rule with positive CF can have. Thus, the algorithm will not guarantee to chose it for deletion. The argument for rules with out degree of 4 is similar to the above, or the CF values are zeroes if the rules connect to two positive instances and two negative ones. It may be possible to devise a heuristic algorithm which gives a better computational performance from this observation.

The second point to make is that the CF values attached to the rules are the real values that are calculated based on the formula given in the appendix. Take \(R_1(+.33) \) for example.

\[
\begin{align*}
 z_1 : & \text{ E true among positive instances } = \frac{3}{5} \\
 z_2 : & \text{ E true among negative instances } = \frac{2}{5} \\
 z_3 : & \text{ H true among all instances } = \frac{5}{10}
\end{align*}
\]

Then,

\[
 z_4 = \frac{z_1z_3}{z_1z_3 + z_2(1 - z_3)} = 0.60
\]

Since \(z_4 > z_3 \),

\[
 CF = \frac{z_4 - z_3}{z_4(1 - z_3)} = \frac{1}{3} = 0.33
\]

Now the examination of the example is to be preceded. Assume that the final rule set must have at least four rules, hence \(R_{min} = 4 \). Let \(p_i = 10^{6-i} \), for \(0 \leq i \leq 5 \), thus choosing rules in the highest category, and using lower categories to break ties.

On the first iteration, two misdiagnosed instances are found, \(I_4 \) and \(I_5 \), and four rules contribute erroneous evidence toward these misdiagnoses, \(R_1, R_2, R_4, \) and \(R_5 \). Their ranking vectors are shown in Table 2. Clearly, \(R_1 \) has the highest ranking quantity \(\sum_{i=1}^{6} p_in_{ij} \), thus
Table 2: The ranking vectors of blamed rules

	\(n_{1j} \)	\(n_{2j} \)	\(n_{3j} \)	\(n_{4j} \)	\(n_{5j} \)	\(n_{6j} \)
\(R_1 \)	0	1	0	1	0	0.33
\(R_2 \)	0	1	0	0	0	0.75
\(R_4 \)	0	0	1	0	1	0.33
\(R_5 \)	0	0	1	0	0	0.75

it is chosen for deletion. On the second iteration, one misdiagnosis is found, \(I_4 \), and two erroneous rules contribute erroneous evidence, \(R_4 \) and \(R_5 \). Rules are ranked and \(R_4 \) is deleted. This reduces the number of misdiagnoses to zero and the algorithm successfully terminates.

The same example can be used to illustrate the problem of the traditional method of rule set debugging, where the order in which cases are checked for misdiagnoses influences which rules are deleted. Consider a Teiresias style program that looks at training instances and discovers \(I_4 \) is misdiagnosed. There are two rules that contribute erroneous evidence to this misdiagnosis, rules \(R_4 \) and \(R_5 \). It wisely notices that deleting \(R_4 \) causes \(I_6 \) to become misdiagnosed, hence increasing the number of misdiagnoses; so it chooses to delete \(R_5 \). However, no matter which rule it now deletes, there will always be at least one misdiagnosed case. To its credit, it reduced the number of misdiagnoses from two to one; however, it fails to converge to an rule set that minimizes the number of misdiagnoses.

5.3 Experience with the Sociopathic Reduction Algorithm

Some preliminary experiment with the Sociopathic Reduction Algorithm has been completed, using the Mycin case library which is a collection of 112 solved cases that were obtained from records at the Stanford Medical Hospital. The rule set of about 370 rules was the one after (1) correcting an incorrect domain theory, and (2) using apprenticeship learning to extend an incomplete domain theory (Wilkins and Tan, 1989). The Sociopathic Reduction Algorithm removed 21 rules from the knowledge base after 8 iterations. In Table 3, it is shown that about 10% improvement over the knowledge base tested is obtained.

Although our work is pretty much theoretical research oriented one example of experiments is not sufficient by any means. Thus, our ongoing experiments involve two kinds
Disease	Number Cases	Before Reduction	After Reduction				
	TP	FN	FP	TP	FN	FP	
Bacterial Meningitis	16	14	2	13	12	4	4
Brain Abscess	7	1	6	0	1	6	0
Cluster Headache	10	8	2	0	8	2	0
Fungal Meningitis	8	3	5	0	4	4	0
Migraine	10	6	4	0	7	3	0
Myco-TB Meningitis	4	4	0	1	4	0	3
Primary Brain Tumor	16	3	13	0	10	6	1
Subarach Hemorrhage	21	16	5	3	16	5	4
Tension Headache	9	8	1	3	8	1	1
Viral Meningitis	11	10	1	12	10	1	6
None	0	0	0	7	0	0	12
Totals	112	73	39	39	80	32	32

Table 3: The Sociopathic Reduction Algorithm, when applied to this knowledge base, improves the performance by about 10%.

of tests. First, we divide the cases into a training set and a validation set with 70% vs. 30% each, so that it can be shown that the performance improvement is carried over to the validation set. To be more accurate, we would like to randomly split the cases five times and then average the improvements. Second, we like to apply the method just described to various knowledge bases available, for example, a knowledge base after correction of wrong rules only, a knowledge base after case-based learning application, and so on.
6 Related Work

The original contribution of this paper is to show that correct knowledge can be harmful independent of problem-solving efficiency and that this problem is widespread. Another contribution is to show that the problem of harmful knowledge can be minimized and problem-solving performance improved by a particular form of knowledge base reduction, and that the optimal reduction is NP-hard.

The theme of correct knowledge being harmful has been studied by a number of other investigators. Minton has investigated how the learning of correct search control knowledge can slow down a problem solver; his solution approach is to quantify the potential utility of a new piece of control knowledge and only add those with a high utility (Minton and Carbonell, 1987). Markovitch and Scott have shown that any deductively learned knowledge affects the cost of searching a problem space; their solution approach is to use filter functions that can determine whether a piece of past knowledge that has been deductively learned should be used on a current problem (Markovitch and Scott, 1989). Still another approach is to modify learned search control knowledge to increase problem-solving speed (Prieditis and Mostov, 1987).

The theme of improving problem-solving accuracy via knowledge base reduction has been studied in conjunction with eliminating or reducing wrong knowledge. For example, the genetic algorithm used in conjunction with a classifier system eliminates as much as half of a knowledge base; it eliminates rules that has not contributed to past problem-solving successes (Holland, 1986). Another approach is to perform a global analysis of a knowledge base and eliminate those rules that are redundant or inconsistent (Ginsberg et al., 1988).

Learning systems that perform induction from noisy training instances have also addressed the problem of wrong knowledge. The RULEMOD program of META-DENDRAL selects a subset of rules that have wide applicability, thereby reducing the number of wrong rules (Buchanan and Mitchell, 1978). RULEMOD also selects rules that jointly form a good global cover and hence shares our concern for finding rules that work well together. The TRUNC program of AQ15 deletes those disjunctions of non-probabilistic induced rules that cover the fewest cases (Michalski et al., 1986a; Michalski et al., 1986b). The reduced knowledge bases produced by RULEMOD and TRUNC give equal or superior performance.
7 Summary and Conclusion

Traditional methods of debugging a probabilistic rule set are suited to handling missing or wrong rules, but not to handling deleterious interactions between good rules. This paper describes the underlying reason for this phenomenon. We formulated the problem of minimizing deleterious rule interactions as a bipartite graph minimization problem and proved that it is NP-hard. A heuristic method was described for solving the graph problem, called the Sociopathic Reduction Algorithm. In our experiments, the Sociopathic Reduction Algorithm gave good results.

We believe that the rule set refinement method described in this paper, or its equivalent, is an important component of any learning system for automatic creation of probabilistic rule sets for automated reasoning systems. All such learning systems will confront the problem of deleterious interactions among good rules, and the problem will require a global solution method, such as we have described here.

Our future research in this area is to create a theory of sociopathicity that subsumes all AI techniques for uncertainty reasoning, including certainty factors, Bayesian methods, probability methods, Dempster-Shafer theory, fuzzy reasoning, belief networks, and non-monotonic reasoning. For our progress to date, see (Ma and Wilkins, 1990a; Ma and Wilkins, 1990b; Ma and Wilkins, 1990c).

8 Acknowledgements

We thank Marianne Winslett for suggesting the bipartite graph formulation and for detailed comments, and thank Bruce Buchanan for earlier major collaboration on this work (Wilkins and Buchanan, 1986). We also express our gratitude for the helpful discussions and critiques provided by Bill Clancey, Ramsey Haddad, David Heckerman, Eric Horovitz, Curt Langlotz, Peter Rathmann and Devika Subramanian.

This work was supported in part by NSF grant MCS-83-12148, ONR grant N00014-88K-0124, and an Arnold O. Beckman research award to the first author. We are grateful for the computer time provided by the Intelligent Systems Lab of Xerox PARC and SUMEX-AIM at Stanford University.
Appendix 1: Calculating G.

Consider rules of the form $\text{conclude}(H, \text{CF}) :- \text{E}$. Then $\text{CF} = G = G(x_1, x_2, x_3) = \text{empirical predictive power of rule } R$, where:

- $x_1 = P(E^+|H^+) = \text{fraction of the positive instances in which } R \text{ correctly succeeds}$
 (true positives or false negatives)
- $x_2 = P(E^+|H^-) = \text{fraction of the negative instances in which } R \text{ incorrectly succeeds}$
 (false positives or true negatives)
- $x_3 = P(H^+) = \text{fraction of all instances that are positive instances}$

Given x_1, x_2, x_3, let

- $x_4 = P(H^+|E^+) = \frac{x_1 x_3}{x_1 x_3 + x_2 (1 - x_3)}$.

If $x_4 > x_3$ then $G = \frac{x_4 - x_1}{x_3 (1 - x_3)}$ else $G = \frac{x_4 - x_1}{x_3 (1 - x_3)}$.

This probabilistic interpretation reflects to the modifications to the certainly factor model proposed by (Heckerman, 1986).
References

Buchanan, B. G. and Mitchell, T. M. (1978). Model-directed learning of production rules. In Waterman, D. A. and Hayes-Roth, F., editors, *Pattern-Directed Inference Systems*, pages 297–312. New York: Academic Press.

Buchanan, B. G. and Shortliffe, E. H. (1984). *Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project*. Reading, Mass.: Addison-Wesley.

Davis, R. (1982). Application of meta level knowledge in the construction, maintenance and use of large knowledge bases. In Davis, R. and Lenat, D. B., editors, *Knowledge-Based Systems in Artificial Intelligence*, pages 229–490. New York: McGraw-Hill.

Ginsberg, A., Weiss, S. M., and Politakis, P. (1988). Automatic knowledge base refinement for classification systems *Artificial Intelligence, 35*(2):197–226.

Gordon, J. and Shortliffe, E. H. (1985). A method for managing evidential reasoning in a hierarchical hypothesis space. *Artificial Intelligence, 26*(3):323–358.

Heckerman, D. (1986). Probabilistic interpretations for Mycin's certainty factors. In Kanal, L. and Lemmer, J., editors, *Uncertainty in Artificial Intelligence*, pages 167–196. New York: North Holland.

Holland, J. H. (1986). Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., editors, *Machine Learning, Volume II*, volume 2, chapter 20, pages 593–624. Los Altos: Morgan Kaufmann.

Ma, Y. and Wilkins, D. C. (1990a). An analysis of Bayesian evidential reasoning. Working Paper KBS-90-001, Department of Computer Science, University of Illinois.

Ma, Y. and Wilkins, D. C. (1990b). Computation of rule probability assignments for Dempster-Shafer theory and the sociopathicity of the theory. Working Paper KBS-90-002, Department of Computer Science, University of Illinois.

Ma, Y. and Wilkins, D. C. (1990c). Sociopathicity properties of evidential reasoning systems. Working Paper KBS-90-016, Department of Computer Science, University of Illinois.

Markovitch, S. and Scott, P. D. (1989). Utilization filtering: a method for reducing the inherent harmfulness of deductively learned knowledge. In *Proceedings of the 1989 IJCAI*, pages 738–743, Detroit, MI.

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., editors (1983). *Machine Learning: An Artificial Intelligence Approach*. Palo Alto: Tioga Press.
Michalski, R. S., Mozetic, I., and Hong, I. (1986a). The AQ15 inductive learning system: An overview and experiments. Technical Report ISG 86-20, UIUCDCS-R-86-1260, Department of Computer Science, University of Illinois.

Michalski, R. S., Mozetic, I., Hong, J., and Lavrac, N. (1986b). The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. In Proceedings of the 1986 National Conference on Artificial Intelligence, pages 1041–1045, Philadelphia, PA.

Minton, S. and Carbonell, J. G. (1987). Strategies for learning search control rules: An explanation-based approach. In McDermott, J., editor, Proceedings of the 1987 IJCAI, pages 228–235, Milan.

Prieditis, A. E. and Mostov, J. (1987). PROLEARN: towards a prolog interpreter that learns. In Proceedings of the 1987 National Conference on Artificial Intelligence, pages 494–498.

Shafer, G. A. (1976). Mathematical Theory of Evidence. Princeton: Princeton University Press.

Wilkins, D. C. (1987). Apprenticeship Learning Techniques For Knowledge Based Systems. PhD thesis, University of Michigan. Also, Knowledge Systems Lab Report KSL-88-14, Dept. of Computer Science, Stanford University, 1988, 153pp.

Wilkins, D. C. and Buchanan, B. G. (1986). On debugging rule sets when reasoning under uncertainty. In Proceedings of the 1986 National Conference on Artificial Intelligence, pages 448–454, Philadelphia, PA.

Wilkins, D. C. and Tan, K. (1989). Knowledge base refinement as improving an incorrect, inconsistent, and incomplete domain theory. In Proceedings of the Sixth International Conference on Machine Learning, pages 332–337, Ithaca, NY.

Zadeh, L. A. (1979). Approximate reasoning based on fuzzy logic. In Proceedings of the 1979 IJCAI, pages 1004–1010, Tokyo, Japan.
Name	Address	
Dr. Susan Chipman	Personnel and Training Research	
	Office of Naval Research	
	Code 11459	
	Arlington, VA 22211-2000	
Dr. William J. Glassy	NRL	
	2448 Harper Street	
	Palo Alto, CA 94304	
Dr. Norman Cliff	Department of Psychology	
	Univ. of St. California	
	Los Angeles, CA 90089-1001	
Dr. Paul Cohen	Computer Science Department	
	Southern Illinois University	
	Center	
	Amherst, MA 01002	
Dr. Alisa Colling	BBN	
	22 Mainland Street	
	Cambridge, MA 02138	
Dr. Stanley Colyer	Office of Naval Technology	
	Code 222	
	400 N. Quincy Street	
	Arlington, VA 22217-1000	
Dr. Greg Cooper	Stanford University Knowledge Systems Lab	
	P. O. Box 807	
	Stanford, CA 94305	
Dr. Richard L. Coulson	Dept. of Physiology	
	School of Medicine	
	Southern Illinois University	
	Carbondale, IL 62901	
Dr. Meredith P. Crawford	University of Illinois	
	Computer Science	
	Champaign, IL 61801	
Dr. Hans P. Crambag	Faculty of Law	
	University of Limburg	
	P.O. Box 68	
	Middeltricht	
	The NETHERLANDS 8000 MD	
Dr. Kenneth B. Cross	Anapara Sciences, Inc.	
	P.O. Drawer Q	
	Santa Barbara, CA 92102	
Dr. Cary Cibec	Intelligent Instructional Systems	
	Texas Instruments AI Lab	
	P.O. Box 86046	
	Dallas, TX 75280	
Prof. Veronica Dahl	Department of Computer Science	
	Simon Fraser University	
	Burnaby, British Columbia	
Dr. John P. Dalphin	Chair, Computer Science Dept.	
	Towson State University	
Prof. Michael G. Dyer	Computer Science Department	
	UCLA	
Dr. John Elle	Navy Personnel R&D Center	
Dr. Gerald F. Dejong	Dept. of Computer Science	
	University of Illinois	
	Urbana, IL 61801	
Dr. Thomas E. DeZarn	Project Engineer, AT	
	General Dynamics	
Dr. Thomas G. Dietzler	Dept. of Computer Science	
	Oregon State University	
	Corvallis, OR 97230	
Dr. Ronna Dillon	Department of Guidance and Educational Psychology	
	Southern Illinois University	
	Carbondale, IL 62901	
Dr. J. Stuart Dunn	Faculty of Education	
	University of British Columbia	
	Vancouver, BC 3470	
Dr. Krizhan Donze	George Mason University	
	Dept. of Computer Science	
	Fairfax, VA 22030	
Dr. Pierre Dugort	Organization for Economic	
	Cooperation and Development	
	2, rue Andre-Pascal	
Dr. Ralph Drey	V-P Human Factors	
	JPL Systems	
	Suite 1206	
Dr. Jean-Ellis	Navy Personnel R&D Center	
Dr. Susan Epstein	144 S. Mountain Avenue	
	Montclair, NJ 07042	
Dr. E. L. Fink	Telenor, Inc.	
Dr. D. E. Fink	525 University Avenue	
	Palo Alto, CA 94301	
Dr. J. E. Fink	Lockheed Austin Division	
	4400 Dowling Road	
Dr. Glenn E. Fink	Office of Personnel Management	
	Office of Examination Development	
	1400 E St., NW	
Dr. Lorraine E. Fink	Naval Air Development Center	
	Wernertown, PA 19744	
Dr. Lawrence M. Fink	Stanford University Medical Center	
	1203 Medical Computer Science	
Dr. P. A. Fink	University of New England	
	Department of Psychology	
	Ambridge, New South Wales 22511	
Mr. Nicholas S. Fink	Dept. of Computer Science	
	Oregon State University	
	Corvallis, OR 97230	
Dr. Kenneth D. Fink	Division of Computer Science	
	University of Illinois	
	800 N. Mathews Avenue	
Dr. Kenneth Fink	Division of Computer Science	
	The University of Florida	
	11000 University Parkway	
	Pensacola, FL 32514	
Name	Institution	Address
--------------------	--	--
Dr. Charles Pery	Department of Computer Science	Carnegie-Mellon University, Pittsburgh, PA 15213
Dr. Barbara A. Fox	University of Colorado	Department of Linguistics, Boulder, CO 80305
Dr. Mark Fox	Carnegie Mellon University	Robotics Institute, Pittsburgh, PA 15213
Dr. Carl H. Frederiksen	Dept. of Educational Psychology	McGill University, 2600 Tatterson Street, Montreal, Quebec CANADA H3A 1Z1
Dr. John R. Frederiksen	BBN Laboratories	10 Matheras Street, Cambridge, MA 02238
Dr. Norman Frederiksen	Educational Testing Service	Princeton, NJ 08541
Dr. Alfred R. Frey	AFOSR/AFNL, Bldg. 410	Bolling AFB, DC 20232-6448
Dr. Peter Friedland	Chief, AI Research Branch	Mail stop 144-17 NASA Ames Research Center, Moffett Field, CA 94305
Dr. Michael Friendly	Psychology Department	York University, Toronto, ON, CANADA M4J 1P2
Col. Dr. Ernst Pries	Herpetologisch Dienst	Maria Theresien-Kaserne, 1536 Wien, AUSTRIA
Dr. Robert M. Gagne	Knowledge Science Institute	University of Calgary, Calgary, Alberta CANADA T2N 1N4
Dr. Brian R. Gagne	Knowledge Science Institute	University of Calgary, Calgary, Alberta CANADA T2N 1N4
Dr. Dorothy Genter	Department of Psychology	University of Illinois, 402 E. Daniel, Champaign, IL 61820
Dr. Donald Genter	Philips Laboratories	244 Statesborough Road, Briarcliff Manor, NY 10410
Dr. Helen Gigney	National Science Foundation	1600 G Street N.W., Room 904, Washington, DC 20550
Dr. Art Greenough	Dept. of Psychology	Memphis State University, Memphis, TN 38119
Dr. Philip Gillies	Army Research Institute	PERI-II, 1601 Eisenhower Avenue, Alexandria, VA 22333-4400
Dr. Allan Glase	AT&T Bell Laboratories	Holmdel, NJ 07733
Dr. Robert Glasser	Learning Research & Development Center	University of Pittsburgh, 3600 O'Hara Street, Pittsburgh, PA 15206
Dr. Marvin D. Glick	Homestead Terrace	The University of N.C., 1104 11th Street, NC 27606
Dr. Dwight J. Glassing	ARI Field Unit	P.O. Box 6787, Presidio of Monterey, CA 92944-5211
Dr. Joseph Gagnon	Computer Science Laboratory	SRI International, 330 Ravenswood Avenue, Menlo Park, CA 94025
Dr. Richard Golden	Psychology Department	Stanford University, Stanford, CA 94305
Michael Haben	DORNBIER GMBH	P.O. Box 1403, D-7000 Friedrichshafen 1 WEST GERMANY
Dr. Richard G. Gagnon	Knowledge Science Institute	University of Illinois, Department of Computer Science, Urbana, IL 61801
Dr. Sherry Goal	AFRRI/OML	Brooks AFB, TX 71226-5901
Dr. T. Gondrey	Georgia Institute of Technology	School of Industrial and Systems Engineering, Atlanta, GA 30332-0250
Dr. Wayne Gray	Artificial Intelligence Laboratory	NYNEX, 100 Westchester Avenue, White Plains, NY 10604
Dr. Al Geuse	Dept. of Psychology	Memphis State University, Memphis, TN 38119
Dr. Dik Gregory	Admistratively Research Establishment/ABX	Queens Road, Teddington, Middlesex, ENGLAND TW100LN
Dr. Glenn Griffin	Naval Education and Training Program Support Activity/Instructional Technology Impl. Div.	Panama City, FL 32408-1000
Dr. Benjamin N. Greenfield	IBM T.J. Watson Lab	P.O. Box 704, Yorktown Heights, NY 10568
Dr. Stephen Greaves	Center for Adaptive Systems	Room 246, 111 Cummington Street, Boston, MA 02115
Dr. David Hauser	Naval Education and Training Program Support Activity/Instructional Technology Impl. Div.	Panama City, FL 32408-1000
Dr. Barbara Hayes-Roth	Knowledge Systems Laboratory	701 Welch Road, Palo Alto, CA 94304
Dr. James Hendler	Center for Computer Science	University of Maryland, College Park, MD 20742
Dr. Michael Henken	DORNBIER GMBH	P.O. Box 1403, D-7000 Friedrichshafen 1 WEST GERMANY
Dr. Chris Hammond	Dept. of Computer Science	University of Chicago, 1105 E. 16th Street, Chicago, IL 60617
Dr. Marjory Hendler	Center for Computer Science	University of Maryland, College Park, MD 20742
Dr. James Hendler	Department of Educational Development	University of Delaware, Newark, DE 07118
Dr. Geoffrey Hunt	Computer Science Department	University of Toronto, Sandford Firming Building, 10 King's College Road, Toronto, Ontario CANADA M4S 1A4
Name	Address	Phone
---------------------------	--	---------
Dr. Haym Hirsh	Dept. of Computer Science	
	Rutgers University	
	New Brunswick, NJ 08903	
Dr. James E. Hoffman	Department of Psychology	
	University of Delaware	
	Newark, DE 19711	
Dr. John H. Holland	Dept. of EE and CS	
	Room 3111	
	University of Michigan	
	Ann Arbor, MI 48109	
Ms. Julia S. Hough		
	Philadelphia, PA 19144	
Dr. Jack Hunter		
	2322 Cowdridge Street	
	Lansing, MI 49040	
Dr. Ed Hutchins	Intelligent Systems Group Institute for	
	Cognitive Science [C-011]	
	UCED	
	La Jolla, CA 92032-1004	
Dr. Wayne Ike	Dept. of Information and CS	
	University of California, Irvine	
	Irvine, CA 92717	
Dr. Robin Jeffries	Hewlett-Packard Laboratories, 3L	
	P.O. Box 10495	
	Palo Alto, CA 94308-0071	
Dr. Lewis Johnson	USC	
	Information Sciences Institute	
	4578 Admiralty Way, Suite 1001	
	Marina Del Rey, CA 92092	
Dr. Daniel B. Jones	U.S. Nuclear Regulatory Commission	
	NBR/SEEB	
	Washington, DC 20555	
Mr. Paul L. Jones	Research Division	
	Chief of Naval Technical Training	
	Building East	
	Naval Air Station Memphis	
	Millington, TN 38054-5540	
Dr. Randolph Jones	Information and Computer Science	
	University of California	
	Irvine, CA 92717	
Mr. Roland Janse	Mike Mars, R-108	
	Bedford, MA 01730	
Dr. Wendy Kellogg	IBM T. J. Watson Research Ctr.	
	P.O. Box 704	
	Yorktown Heights, NY 10956	
Dr. Gary Kreese		
	618 Spenser Avenue	
	Pacific Grove, CA 98088	
Prof. Anwaad K. Ashi	Department of Computer Science	
	University of Pennsylvania	
	R-260 Meade School	
	Philadelphia, PA 19104	
Dr. Douglas Kiley	Department of Psychology	
	University of North Carolina	
	Department of Statistics	
	Chapel Hill, NC 77514	
Dr. J.A.S. Kelso	Center for Complex Systems	
	Building MT 3	
	Florida Atlantic University	
	Boca Raton, FL 23801	
Dr. Pat Langley		
	NASA Ames Research Center	
	Mail Stop 44-17	
	Moffett Field, CA 40035	
Dr. Michael Kaplan	Office of Basic Research	
	U.S. Army Research Institute	
	1201 Eisenhower Avenue	
	Alexandria, VA 22332-1600	
Ms. Shyam Kapur	Dept. of Computer Science	
	Cornell University	
	4128 Upton Hall	
	Ithaca, NY 14853	
Dr. Dennis Kibler	Department of Information & Computer Science	
	University of California	
	Irvine, CA 92717	
Dr. Thomas Kijian	AFRL/UT	
	Williams AFB, AZ 52400-6457	
Dr. J. Peter Korstad	Army Research Institute	
	Orlando Field Unit	
	r/o PM TRADE-E	
	Orlando, FL 32812	
Dr. Walter Kistach	Department of Psychology	
	University of Colorado	
	Boulder, CO 80300-0345	
Dr. Yves Kedraff	Geophysical Survey and Mapping	
	Geophysical Survey and Mapping	
	Boulder, CO 80300-0345	
Dr. Stephen Kershaw	AFRL/UT	
	Williams AFB, AZ 52400-6457	
Dr. J. Peter Korstad	Army Research Institute	
	Orlando Field Unit	
	r/o PM TRADE-E	
	Orlando, FL 32812	
Dr. Alan M. Langford	Learning R and D Center	
	2025 O'Shea Street	
	University of Pittsburgh	
	Pittsburgh, PA 15200	
Dr. Keith R. Leiwi	Honeywell S and RC	
	2450 Technology Drive	
	Minneapolis, MN 15418	
Dr. John Levine	Learning R and D Center	
	University of Pittsburgh	
	Pittsburgh, PA 15200	
Dr. Les S. Levy	1D Darade Drive	
	Morristown, NJ 07460-1900	
Name	Address	
-----------------------------	--	
Dr. Jedidiah L. Olsen	Graduate School of Business	
University of Michigan	Ann Arbor, MI 48109-2846	
Office of Naval Research	Code 11403	
800 N. Quincy Street	Arlington, VA 22211-4900	
(6 Capsules)		
Dr. James A. Beggs	University of Maryland	
School of Medicine	Department of Neurology	
32 South Greene Street	Baltimore, MD 21201	
Prof. Tom O'Shea	Institute for Defense Analyses	
The Open University	1833 Beechard St. Alexandria, VA 22311	
Dr. Bruce Parker	Computer Science Department	
University of Texas	Taylor Hall 1-764	
Austin, TX 78712-1700		
Dr. Joseph Parkin	Department of Computer and Information Science	
University of California	New Brunswick, NJ 08902	
Dr. J. Ross Quillan	School of Computing Sciences	
N.W. Institute of Technology		
University of California	Amherst, MA 01003	
Dr. Paul S. Rehboort	University of Southern California	
Information Sciences Institute		
8876 Adams Way		
Marias Del Rey, CA 95292		
Dr. Peter Pinaki	Graduate School of Education	
EMST Division	6651 Teleman Hall	
University of California	Berkeley, CA 94702	
Prof. Christoph K. Riehbeck	Department of Computer Science	
Yale University	P.O. Box 2164	
New Haven, CT 06510-2164		
Dr. Jeffrey L. Sennett	Department of Computer Science	
Carnegie Mellon University	Pittsburgh, PA 15213	
Dr. Jeffrey C. Schimmer	School of Computer Science	
Carnegie Mellon University	Pittsburgh, PA 15213	
Lawrence School	Psychological & Quantitative Foundations	
College of Education	University of Iowa	
Iowa City, IA 52242		
Dr. Ramesh Patil	MIT	
Laboratory for Computer		
Science Room 418	445 Technology Square	
Cambridge, MA 02139		
Dr. Stephen Reder	NRREL	
181 SW Main, Suite 670	Portland, OR 97204	
Dr. Joseph R. Quillan	School of Computing Sciences	
N.W. Institute of Technology		
University of California	Amherst, MA 01003	
Dr. Roy A. Reeman	Computer Science Department	
University of Southern		
California	Los Angeles, CA 90030	
Dr. David C. Ries	Department of Computer & Information Science	
George Mason University	4600 University Drive	
Fairfax, VA 22030		
Dr. Jeffrey C. Schimmer	School of Computer Science	
Carnegie Mellon University	Pittsburgh, PA 15213	
Dr. Jeffrey L. Sennett	Department of Computer Science	
Carnegie Mellon University	Pittsburgh, PA 15213	
Lawrence School	Psychological & Quantitative Foundations	
College of Education	University of Iowa	
Iowa City, IA 52242		
Dr. Paul S. Rehboort	University of Southern California	
Information Sciences Institute		
8876 Adams Way		
Marias Del Rey, CA 95292		
Dr. Peter Pinaki	Graduate School of Education	
EMST Division	6651 Teleman Hall	
University of California	Berkeley, CA 94702	
Dr. Stephen Reder	NRREL	
181 SW Main, Suite 670	Portland, OR 97204	
Dr. Joseph R. Quillan	School of Computing Sciences	
N.W. Institute of Technology		
University of California	Amherst, MA 01003	
Dr. Roy A. Reeman	Computer Science Department	
University of Southern		
California	Los Angeles, CA 90030	
Dr. David C. Ries	Department of Computer & Information Science	
George Mason University	4600 University Drive	
Fairfax, VA 22030		
Dr. Jeffrey C. Schimmer	School of Computer Science	
Carnegie Mellon University	Pittsburgh, PA 15213	
Dr. Jeffrey L. Sennett	Department of Computer Science	
Carnegie Mellon University	Pittsburgh, PA 15213	
Lawrence School	Psychological & Quantitative Foundations	
College of Education	University of Iowa	
Iowa City, IA 52242		
Name	Address	City, State, Zip
Dr. Michael G. Shanks	NASA Ames Research Ctr. Mail Stop 389-1	MERRITT FLD, CA 50250
Dr. Derek S. Siman	Computing Science Department The University	Aberdeen ABF JFX S Scotland, UNITED KINGDOM
Dr. Patrick Suppes	Stanford University Institute for Mathematical Studies in the Social Sciences	Stanford, CA 94305-4115
Dr. Kurt Van Luehn	Department of Psychology Carnegie-Mellon University	Robotics Park, Pittsburgh, PA 15210
Dr. Walter L. Sallin	Honeywell SARC 2600 Technology Drive	Minneapolis, MN 55418
Dr. Richard Setton	GTE Labs	Waltham, MA 02114
Dr. Robert L. Simpson, Jr.	Dr. Howard Caingie-Mlo Uiest Crawford Hall	College Park, MD 20742
Dr. Edward E. Smith	Department of Psychology University of Michigan	200 Packard Road Ana. Ariz. 85233
Dr. William Swartout	USC	Marina Del Rey, CA 90292
Mr. Rajiv Tadepalli	Microsoft Research Institute Department of Computer Science	New Brunswick, NJ 08900
Dr. Rand S. Siman	Schlumberger Technologies Lab. Schlumberger Palo Alto Research	Palo Alto, CA 94304
Dr. Eliot Schwary	EE/CS Department University of Michigan	Ann Arbor, MI 48109-2127
Dr. Terry W. Thordyke	PMC Corporation	Central Engineering Labs 1554 Coleman Ave., Box 180 Santa Clara, CA 95050
Dr. Howard Shebe	Symbolec, Inc.	Eleven Cambridge Center, Cambridge, MA 02142
Dr. Chris Teng	Department of Computer Science University of Illinois	New Brunswick, NJ 08900
Dr. David B. Wilkin	Department of Computer Science University of Illinios	405 N. Matthews Avenue Urbana, IL 61801
Dr. Randall Shoemaker	Naval Research Laboratory Cens 5210	455 Overlook Avenue, S.W. Washington, DC 20376-5000
Dr. Frederick Steinhauser	CIA-ORD	Amos Building Washington, DC 20588
Dr. Douglas Towsen	Behavioral Technology Lab University of Southern California	1844 S. Eleon Ave. Redondo Beach, CA 90277
Dr. Keith B. Wendt	PMC Corporation	Central Engineering Labs 1505 Coleman Ave., Box 180 Santa Clara, CA 95050
Dr. Bernhard Siler	Information Sciences	Fundamental Research Laboratory GTE Laboratories, Inc. 45 System Road Waltham, MA 02254
Dr. Ted Steinkra	Dept. of Geography	University of South Carolina Columbia, SC 29628
Dr. Michael S. Simon	Department of Computer Science and Psychology	Carnegie Mellon University Pittsburgh, PA 15213
Dr. Leon Storl	Dept. of Computer Engineering and Science	Case Western Reserve University Cleveland, Ohio 44106
Lt. Col. Edward Trautman	Naval Training Systems Center	12060 Research Parkway Orlando, FL 32808
Dr. Paul B. Williams	Institute for Simulation and Training The University of Central Florida	12456 Research Parkway, Suite 300 Orlando, FL 32826
Dr. Robert L. Simmons, Jr.	DARPA/ISTD	1600 Wilson Blvd Arlington, VA 22209-2208
Dr. Michael J. Strait	UMD Computer Graduate School	College Park, MD 20745
Dr. Paul E. Uzofor	Department of Computer and Information Science	University of Massachusetts Amherst, MA 01003
Dr. Zita M. Simons	Chief, Technologies for Skill Acquisition and Retention	1051 Eisenhower Avenue Alexandria, VA 22332
Dr. Harold P. Van Cott	Committee on Human Factors National Academy of Sciences	101 Constitution Ave. Washington, DC 20548
Dr. Edward Wernick	Honeywell S and RC	1660 Technology Drive Minneapolis, MN 55418
ONR DISTRIBUTION LIST [ILLINOIS/WILKINS]

Dr. Paul T. Wegig
Army Research Institute
8001 Eisenhower Ave.
ATTN: PERI-R.
Alexandria, VA 2233-1600

Dr. Joseph Wehl
Alphatech, Inc.
3 Burlington Executive Center
111 Middlesex Turnpike
Burlington, MA 01803

Dr. Beverly P. Wexel
Dept. of Computer and Information Sciences
University of Massachusetts
Amherst, MA 01003

Dr. Ronald R. Yager
Machine Intelligence Institute
Iona College
New Rochelle, NY 10801

Dr. Wassam Yagdami
Dept. of Computer Science
University of Easter
Princes of Wales Road
Easter EX4 4PT
ENGLAND

Dr. Joseph L. Young
National Science Foundation
Room 320
1800 G Street, N.W.
Washington, DC 20550

Dr. Maria Zemankova
National Science Foundation
1800 G Street N.W.
Washington, DC 20550

Dr. Uri Zernik
GE - CRD
P. O. Box 8
Schenectady, NY 12301