SEPARATED SETS AND THE FALCONER CONJECTURE FOR POLYGONAL NORMS

SERGEI KONYAGIN AND IZABELLA LABA

Abstract. The Falconer conjecture [F86] asserts that if \(E \) is a planar set with Hausdorff dimension strictly greater than 1, then its Euclidean distance set \(\Delta(E) \) has positive one-dimensional Lebesgue measure. We discuss the analogous question with the Euclidean distance replaced by non-Euclidean norms \(\| \cdot \|_X \) in which the unit ball is a polygon with \(2K \) sides. We prove that for any such norm, and for any \(\alpha > K/(K-1) \), there is a set of Hausdorff dimension \(\alpha \) whose distance set has Lebesgue measure 0.

Mathematics Subject Classification: 28A78.

\(\S 0. \) INTRODUCTION

A conjecture of Falconer [F86] asserts that if a set \(E \subset \mathbb{R}^2 \) has Hausdorff dimension strictly greater than 1, then its Euclidean distance set

\[\Delta(E) = \Delta_{l^2}(E) = \left\{ \| x - x' \|_{l^2} : x, x' \in E \right\} \]

has positive one-dimensional Lebesgue measure. The current best result in this direction is due to Wolff [W99], who proved that the conclusion is true if \(E \) has Hausdorff dimension greater than 4/3. Erdogan [Er03] extended this result to higher dimensions, proving that the same conclusion holds for subsets of \(\mathbb{R}^d \) with Hausdorff dimension greater than \(d(d+2)/2(d+1) \). This improves on the earlier results of Falconer [F86], Mattila [M87], and Bourgain [B94].

A similar question can be posed for more general two-dimensional normed spaces. More precisely, if \(X \) is such a space and \(E \subset X \), then we define the \(X \)-distance set of \(A \) as

\[\Delta_X(E) = \{ \| x - x' \|_X : x, x' \in E \} \]

and ask how the size of \(\Delta_X(E) \) depends on the dimension of \(E \) as well as on the properties of the norm \(\| \cdot \|_X \). Simple examples show that Falconer’s conjecture as stated above, but with \(\Delta(E) \) replaced by \(\Delta_X(E) \), cannot hold for all normed spaces \(X \). For instance, let

\[\| x \|_{l^2_{\infty}} = \max(|x_1|, |x_2|) \]

and let \(E = F \times F \), where \(F \) is a subset of \([0,1]\) with Hausdorff dimension 1 such that \(F - F := \{ x - x' : x, x' \in F \} \) has measure 0. (It is an easy exercise to modify the Cantor set construction to produce such a set.) Then \(E \) has Hausdorff dimension 2, but its \(l^2_{\infty} \)-distance set \(F - F \) has measure 0.

Here and below, we use \(\dim(E) \) to denote the Hausdorff dimension of \(E \), \(|F|_d \) to denote the \(d \)-dimensional Lebesgue measure of \(F \), and \(|A| \) to denote the cardinality of a finite set \(A \).

Typeset by \(\LaTeX \)
Definition 0.1. Let \(0 < \alpha < 2 \). We will say that the \(\alpha \)-Falconer conjecture holds in \(X \) if for any set \(E \subset X \) with \(\dim(E) > \alpha \) we have \(|\Delta_X(E)|_1 > 0 \).

Iosevich and the second author [IL04] proved that the \(3/2 \)-Falconer conjecture holds if the unit ball in \(X \),

\[
BX = \{ x \in \mathbb{R}^2 : \| x \|_X \leq 1 \},
\]
is strictly convex and its boundary \(\partial BX \) has everywhere nonvanishing curvature, in the sense that the diameter of the chord

\[
\{ x \in BX : x \cdot v \geq \max_{y \in BX} (y \cdot v) - \epsilon \},
\]

where \(v \) is a unit vector and \(\epsilon > 0 \), is bounded by \(C\sqrt{\epsilon} \) uniformly for all \(v \) and \(\epsilon \).

We do not know of any counterexamples to the 1-Falconer conjecture in normed spaces with \(BX \) strictly convex.

On the other hand, if \(BX \) is a polygon, then the above example shows that the \(\alpha \)-Falconer conjecture may fail for all \(\alpha < 2 \). The purpose of this paper is to examine this situation in more detail.

Theorem 1. Let \(BX \) be a symmetric convex polygon with \(2K \) sides. Then there is a set \(E \subset [0,1]^2 \) with Hausdorff dimension \(\geq K/(K-1) \) such that \(|\Delta_X(E)|_1 = 0 \).

If we assume that there is a coordinate system in which the slopes of all sides of \(K \) are algebraic, then a stronger result is known [KL04].

Corollary 2. [KL04] If \(BX \) is a polygon with finitely many sides, and if there is a coordinate system in which all sides of \(BX \) have algebraic slopes, then there is a compact \(E \subset X \) such that the Hausdorff dimension of \(E \) is 2 and the Lebesgue measure of \(\Delta_X(E) \) is 0.

In particular, Corollary 2 can be applied to all polygons \(BX \) with 4 or 6 sides. We do not know if the same assertion is true for all polygonal norms. However, using recent results on Diophantine approximations, one can prove it for almost all polygons \(BX \). Fixing a coordinate system, we can define, for any non-degenerate segment \(I \subset X \), its slope \(Sl(I) \): if the line containing \(I \) is given by an equation \(u_1x_1 + u_2x_2 + u_3 = 0 \), then we set \(Sl(I) = -u_1/u_2 \). We write \(Sl(I) = \infty \) if \(u_2 = 0 \).

Theorem 3. For any integer \(K \geq 2 \) and for almost all \(\gamma_1, \ldots, \gamma_K \) the following is true. If \(BX \) is a symmetric convex polygon with \(2K \) sides, and the slopes of non-parallel sides are equal to \(\gamma_1, \ldots, \gamma_K \), then there is a compact \(E \subset X \) such that the Hausdorff dimension of \(E \) is 2 and the Lebesgue measure of \(\Delta_X(E) \) is 0.

Actually, we will prove the stronger result: if the slopes of 3 non-parallel sides of \(BX \) are fixed, then for almost all choices of slopes of other \(K-3 \) non-parallel sides the required compact \(A \) exists (recall that for \(K \leq 3 \) Theorem 3 follows from Corollary 2).
§1. PROOF OF THEOREM 1

We may assume that $K \geq 4$, since otherwise Corollary 2 applies. We use $B(x, r)$ to denote the closed Euclidean ball with center at x and with radius r. We also denote $A - A = \{a - a' : a, a' \in A\}$ and $A \cdot v = \{a \cdot v : a \in A\}$.

Let b_1, \ldots, b_K be vectors such that

$$BX = \bigcap_{k=1}^K \{x : |x \cdot b_k| \leq 1\}.$$

Then for any $x \in X$,

$$\|x\|_X = \max_{1 \leq k \leq K} |x \cdot b_k|.$$

Let also a_1, \ldots, a_K be unit vectors parallel to the K sides of BX, so that

$$a_j \cdot b_j = 0, \quad j = 1, \ldots, K.$$

Lemma 1.1. Assume that $K \geq 4$. Then there are arbitrarily large integers n for which we may choose sets $A = A(n) \subset B(0, 1/2)$ such that $|A| = n$ and

$$|(A - A) \cdot b_k| \ll n^{1-1/K}, \quad k = 1, 2, \ldots, K,$$

(in particular, $|\Delta_X(A)| \ll n^{1-1/K}$), and

$$\|x - x'\|_X \gg n^{-1/2}, \quad x, x' \in A, \quad x \neq x',$$

with the implicit constants independent of n.

Proof. Fix a large integer N, and let u_1, \ldots, u_K be numbers in $[1, 2]$, to be determined later. Define

$$S = \left\{ \sum_{k=1}^K \frac{j_k}{N} u_k a_k : j_k \in \{1, \ldots, N\} \right\}.$$

We claim that the set

$$U = \{(u_1, \ldots, u_K) \in \mathbb{R}^K : |S| < N^K \}$$

has K-dimensional measure 0. Indeed, if $|S| < N^K$, then we must have

$$\sum_{k=1}^K \frac{j_k}{N} u_k a_k = 0$$

for some $j_1, \ldots, j_K \in \{1 - N, \ldots, N - 1\}$, not all zero. Fix such j_1, \ldots, j_K. Then the $2 \times K$ matrix with columns $\frac{j_k}{N} u_k a_k$, $k = 1, \ldots, K$, has rank at least 1, hence its nullspace has dimension at most $K - 1$. It follows that U is a union of a finite number of hyperplanes of dimension at most $K - 1$, therefore has K-dimensional measure 0 as claimed.
We will assume henceforth that \((u_1, \ldots, u_K) \notin U\). Then \(|S| = N^K\) and \(S \subset B(0,2K)\). Our goal is to obtain (1.1), (1.2) for \(n = N^K\) and \(A = (4K)^{-1}S\).

We first prove that (1.1) holds, i.e.

\[(S - S) \cdot b_k \ll N^{K-1} \ll n^{-1/K}, \ k = 1, 2, \ldots, K.\]

Indeed, let \(x \in S - S\), then \(x = \sum_{k=1}^{K} \frac{1}{N} u_k a_k\) for some \(j_1, \ldots, j_K \in \{1-N, \ldots, N-1\}\). Fix \(k_0 \in \{1, \ldots, k\}\), then

\[x \cdot b_{k_0} = \sum_{k=1}^{K} \frac{j_k}{N} u_k a_k \cdot b_{k_0} = \sum_{k \neq k_0} \frac{j_k}{N} u_k a_k \cdot b_{k_0},\]

where we also used (1.4). The last sum can take at most \((2N)^{K-1}\) possible values, which proves (1.5).

It remains to verify that there is a choice of \(u_1, \ldots, u_K\) for which (1.2) also holds. We will do so by proving that if \(t\) is a sufficiently small constant, depending only on \(K\) and on the angles between the non-parallel sides of \(BX\), then the set

\[(u_1, \ldots, u_K) \in [1, 2]^K: \ |x|_X \leq tN^{-K/2} \text{ for some } x \in S - S\]

has \(K\)-dimensional Lebesgue measure strictly less than 1.

Let \(x \in S - S\), then \(x = \sum_{k=1}^{K} \frac{1}{N} u_k a_k\) for some \(j_k \in \{1-N, \ldots, N-1\}\). Suppose that \(x \neq 0\) and

\[|x|_X \leq tN^{-K/2}.\]

Assume that \(|j_{k_1}| \geq |j_{k_2}| \geq \cdots \geq |j_{k_K}|\), and that \(|j_{k_1}| \in [2^s, 2^{s+1})\) for some integer \(s\) such that \(1 \leq 2^s \leq N\). If we had \(|j_{k_2}| < 2^{s-2}/K\), then we would also have

\[|x|_X \geq \left| \frac{j_{k_1}}{N} u_{k_1} a_{k_1} \right|_X - \sum_{k \neq k_1} \left| \frac{j_k}{N} u_k a_k \right|_X \geq \frac{2^s}{N} - K \cdot \frac{2^{s-2}}{KN} = \frac{2^{s-1}}{N} \geq \frac{1}{2N}.\]

But if \(K \geq 4\), then (1.7) implies that \(|x|_X \leq tN^{-2}\), which contradicts the last inequality if \(t \leq 1\) and \(N > 2\). It follows that

\[|j_{k_1}| \geq 2^{s}, \ |j_{k_2}| \geq 2^{s-2}/K.\]

Fix \(j_{k_1}, j_{k_2}\) as in (1.8). Fix also \(y = \sum_{k \neq k_1, k_2} \frac{1}{N} u_k a_k\), and consider the set of \((u_{k_1}, u_{k_2}) \in \mathbb{R}^2\) such that (1.7) holds, i.e.

\[\left| \frac{j_{k_1}}{N} u_{k_1} a_{k_1} + \frac{j_{k_2}}{N} u_{k_2} a_{k_2} + y \right|_X \leq tN^{-K/2}.\]

By (1.8), this set has 2-dimensional measure

\[\leq c_1(tN^{-K/2})^2 \cdot \frac{N}{2^s} \cdot \frac{NK}{2^{s-2}} = 4c_1K \cdot t^2N^{2-K}/2^{2s}.\]
Here and through the rest of the proof of the lemma, c_1, c_2, c_3 denote constants which may depend on K and on the angles between the non-parallel sides of BX, but are independent of t and N.

Integrating over u_k, $k \neq k_1, k_2$, we see that the set
\[\{(u_1, \ldots, u_K) \in [1, 2]^K : \| \sum_{k=1}^{K} \frac{jk}{N} u_k \|_X \leq tN^{-K/2} \}, \]
with fixed j_1, \ldots, j_K such that
\[2^s \leq \max_{k=1, \ldots, K} |j_k| < 2^{s+1}, \]
has K-dimensional measure $\leq 4c_1 K \cdot t^2 N^{2-K} / 2^{2s}$.

The number of K-tuples j_1, \ldots, j_K satisfying (1.9) is $\leq (2^{s+2})^K$, hence summing over all such K-tuples we get a set of measure
\[\leq c_2 t^2 N^{2-K} 2^{(K-2)s}. \]
Now sum over all s with $2^s \leq N$. We find that the measure of the set in (1.6) is
\[\leq c_2 \sum_{s=1}^{\infty} t^2 N^{2-K} 2^{(K-2)s} \leq c_3 t^2 N^{2-K} 2^{K-2} = c_4 t^2. \]
This is less than 1 if $t < \sqrt{c_3}$, as claimed.

Proof of Theorem 1. We construct E as follows. Take a small positive number c which will be specified later. Let $A_j = A(n_j)$ be as in Lemma 1.1, where a nondecreasing sequence $\{n_j\}$ and a sequence $\{N_j\}$ are such that
\[N_j = \prod_{\nu=1}^{j} n_\nu, \quad n_j \to \infty \quad (j \to \infty), \quad \log n_{j+1} / \log N_j \to 0 \quad (j \to \infty). \]
(We consider that the empty product for $j = 0$ is equal to 1.) Also, fix $s = (K-1)/K > 1/2$. Let also c be small enough so that for any j the discs $B(x, cn_j^{-s})$, $x \in A_j$, are mutually disjoint and contained in $B(0,1)$; this is possible by (1.2). Denote
\[\delta_j = cn_j^{-s}, \quad \Delta_j = \prod_{\nu=1}^{j} \delta_j = c^j N_j^{-s}. \]
Let $E_1 = \bigcup_{x \in A_j} B(x, \delta_1)$. We then define E_2, E_3, \ldots by induction. Namely, suppose that we have constructed E_j which is a union of N_j disjoint closed discs B_i of radius Δ_j each. Then E_{j+1} is obtained from E_j by replacing each B_i by the image of $\bigcup_{x \in A_{j+1}} B(x, \delta_{j+1})$ under the unique affine mapping which takes $B(0,1)$ to B_i and preserves direction of vectors. We then let $E = \bigcap_{j=1}^{\infty} E_j$.

We will first prove that E has Hausdorff dimension at least $1/s$. The calculation follows closely that in [F85], pp. 16–18.

Let B_j be the family of all discs of radius Δ_j used in the construction of E_j, and let $B = \bigcup_{j=0}^{\infty} B_j$, where we set $B_0 = \{B(0,1)\}$. We then define
\[\mu(F) = \inf \left\{ \sum_{i=1}^{\infty} N_j^{-1} : F \subset \bigcup_{i=1}^{\infty} B(x_i, r_i), B(x_i, r_i) \in B_j(i) \right\}, \]
\[5 \]
for all $F \subset E$. Clearly, μ is an outer measure on subsets of E. Observe that if $B = B(x, \Delta_j) \in B_j$, then

\[
N_j^{-1} = n_{j+1} \cdot N_{j+1}^{-1} = \sum_{B' \in B_{j+1} : B' \subset B} (N_{j+1})^{-1},
\]

hence the sum in (1.11) does not change if we replace a disc $B \in B_j$ by all its subdiscs from the next iteration B_{j+1}. In particular, we may assume that all the discs in the covering of F in (1.11) have radius less than δ for any $\delta > 0$.

We first claim that if $B_0 = B_0(x_0, r_0) \in B_j$ then

\[
\mu(E \cap B_0) = N_j^{-1}.
\]

The inequality $\mu(E \cap B_0) \leq N_j^{-1}$ is obvious, by taking a covering of $E \cap B_0$ by the single ball B_0. Let now $E \cap B_0 \subset \bigcup_i B_i$, where $B_i \in B$ has radius $r_i = \Delta_j(i)$. We need to prove that

\[
\sum r_i^{1/s} \geq r_0^{1/s}.
\]

Since E is compact and B_i are open relative to E, we may assume that the covering is finite. We may also assume that all B_i are disjoint, since otherwise we may simply remove any discs contained in any other disc of the covering. If the covering consists of the single disc B_0, we are done. Otherwise, let B_I be one of the covering discs with smallest r_i, say $B_I \in B_j$, and let $\tilde{B}_I \in B_{j-1}$ be such that $B_I \subset \tilde{B}_I$. Then $\tilde{B}_I \subset B_0$, hence all discs in B_j contained in \tilde{B}_I are also contained in B_0. By the minimality of r_I, these discs belong to the covering $\{B_i\}$. We then replace all these discs by the single disc \tilde{B}_I; by (1.12), the sum on the left side of (1.14) does not change. Iterating this procedure, we eventually arrive at a covering consisting only of B_0, which proves (1.14).

Next, we prove that for any $s' > s$

\[
\mu(E \cap B) \ll r^{1/s'}
\]

for any disc $B = B(x, r)$, not necessarily in B, where the constant in \ll may depend on s'. We may assume that $r \leq 1$, since otherwise we have from (1.13) with $B_0 = B(0, 1)$

\[
\mu(E \cap B) \leq \mu(E) = 1 \leq r^{1/s'},
\]

which proves (1.15). Let $j \geq 0$ be such that $r \in (\Delta_{j+1}, \Delta_j)$, and consider all discs in B_j which intersect $E \cap B$. They are closed, mutually disjoint discs which intersect B and have radius no less than r; hence there are at most 6 such discs. Applying (1.13) to each of these discs and summing up, we have

\[
\mu(E \cap B) \leq 6 N_j^{-1}.
\]

Moreover,

\[
r > \Delta_{j+1} = N_j^{-s} n_{j+1}^{-s} e^{-j-1},
\]

and we get (1.15) using (1.10).
Thus, if $s' > s$ and $\{B_i\}_{i=1}^\infty$ is a covering of E by discs of radii r_i, then from (1.15) we have

$$\sum_{i=1}^\infty r_i^{1/s'} \gg \sum_{i=1}^\infty \mu(E \cap B_i) \geq \mu(E).$$

Taking the infimum over all such coverings, we see that

$$H_{1/s}(E) > 0.$$

Since $s' > s$ is arbitrary, we conclude that the Hausdorff dimension of E is at least $K/(K-1)$.

It remains to prove that $|\Delta_X(E)|_1 = 0$. From (1.1) we have

(1.16) \[|(A - A) \cdot b_k| \leq CN^{1-1/K}, \quad k = 1, 2, \ldots, K, \]

with C independent of n. We choose c small enough so that

(1.17) \[cC < 1/2. \]

Let D_j be the set of the centers of the discs in B_j. We claim that

(1.18) \[|(D_j - D_j) \cdot b_k| \leq C^jN_j^s, \quad k = 1, 2, \ldots, K. \]

Indeed, for $j = 1$ this is (1.16). Assuming (1.18) for j, we now prove it for $j + 1$. Let $x, x' \in D_{j+1}$. Then $x \in B(y, \Delta_j)$, $x' \in B(y', \Delta_j)$, $y, y' \in D_j$. We write

(1.19) \[(x - x') \cdot b_k = (y - y') \cdot b_k + ((x - y) - (x' - y')) \cdot b_k. \]

The first term on the right is in $(D_j - D_j) \cdot b_k$, hence has at most $C^jN_j^s$ possible values. Also, by construction $x - y, x' - y'$ are in $\Delta_j A_{j+1}$, hence the second term is in $\Delta_j (A_{j+1} - A_{j+1}) \cdot b_k$ and has at most CN_{j+1}^s possible values, by (1.16). This gives at most $C^{j+1}N_{j+1}^s$ possible values for (1.19), as required.

By (1.18), (1.3) and the triangle inequality, $\Delta_X(E_j)$ can be covered by at most $KC^jN_j^s$ intervals of length $2c_0\Delta_j = 2c_0c^jN_j^-s$, where c_0 is the X-diameter of $B(0, 1)$. It follows that

$$|\Delta_X(E_j)|_1 \leq 2Kc_0(cC)^j \leq 2Kc_0(1/2)^j,$$

by (1.17). The last quantity goes to 0 as $j \to \infty$. Since $\Delta_X(E) \subset \Delta_X(E_j)$, this proves our claim that $|\Delta_X(E)|_1 = 0$. The proof of the theorem is complete.

Remark. It is easy to check that the set constructed in the proof of Theorem 1 has the Hausdorff dimension exactly $K/(K-1)$.

§2. PROOF OF THEOREM 3

The case $K \leq 3$ is covered by Corollary 2. We consider that $K > 3$ and denote $d = K - 3$. Denote

$$\mathcal{I} = \{l_1, \ldots, l_d\} \in \mathbb{Z}_+^d,$$

$$\mathcal{L}(L) = \{\mathcal{I} : 0 \leq l_k < L (k = 1, \ldots, d)\}.$$

For a real vector $\mathcal{P} = (\gamma_1, \ldots, \gamma_d)$ we write $\mathcal{P} \in (KM)$ if for any positive integer L and for any $\varepsilon > 0$

$$\inf_{\mathcal{I} \in \mathcal{L}(L)} \sum_{|l_1|^{\varepsilon} \ldots |l_d|^{(1+\varepsilon)L^d}} \left(\max_{\mathcal{I} \in \mathcal{L}(L)} |n_{\mathcal{P}}(\mathcal{I})|^{(1+\varepsilon)L^d} \right) > 0,$$

where infimum is taken over all nonzero integral vectors $\{n_{\mathcal{P}} : \mathcal{I} \in \mathcal{L}\}$. The following theorem easily follows from the results of Kleinbock and Margulis [KM98].
Theorem A. For almost all $\gamma \in \mathbb{R}^d$ we have $\gamma \in (KM)$.

The results of [KM98] have been refined in [BKM01], [Be02], [BBKM02].

Now we formulate the main result of this section.

Theorem 4. Let $\gamma \in (KM)$, $K = d + 3$, and let BX be a symmetric convex polygon with $2K$ sides, and the slopes of non-parallel sides are equal to $\gamma_1, \ldots, \gamma_d, 0, 1, \infty$, then there is a compact $E \subset X$ such that the Hausdorff dimension of E is 2 and the Lebesgue measure of $\Delta_X(E)$ is 0.

Formally, Theorem 4 deals with polygons BX of special kind, but it is easy to see that for any polygon we can make slopes of three sides of it equal to $0, 1, \infty$ by a choice of a coordinate system. Indeed, if I_1, I_2, I_3 are 3 non-parallel sides of BX, then, taking the x_1-coordinate axis and the x_2-coordinate axis of a new coordinate system parallel to I_1 and I_3 respectively, we get $\text{Sl}(I_1) = 0, \text{Sl}(I_3) = \infty$; moreover, the slope of I_2 can be made equal to 1 by scaling and, if necessary, reflecting, the x_2-coordinate axis. Thus, combining Theorem A and Theorem 4 we get Theorem 3 (and also its stronger version mentioned in the end of §0).

We use notation introduced in the beginning of §1. To prove Theorem 4, we need a lemma similar to Lemma 1.1.

Lemma 2.1. Assume that K, d, γ, BX satisfy the conditions of Theorem 4. Then for any $\varepsilon > 0$ there are arbitrarily large integers n for which we may choose sets $A = A(n) \subset B(0, 1/2)$ such that $|A| = n$ and

\begin{equation}
(A - A) \cdot b_k \ll n^{(1/2)+\varepsilon}, \ k = 1, 2, \ldots, K,
\end{equation}

(in particular, $|\Delta_X(A)| \ll n^{(1/2)+\varepsilon}$), and

\begin{equation}
\|x - x'\|_X \gg n^{-1/2-\varepsilon}, \ x, x' \in A, \ x \neq x',
\end{equation}

where the implicit constants may depend on ε but are independent of n.

Proof. Fix a positive integer $L > 1/\varepsilon$. Next, fix a large integer N. Define

\begin{equation}
S_0 = \left\{ \sum_{T \in \mathcal{L}(L)} \frac{\tilde{\gamma}}{N} \gamma_1^{l_1} \cdots \gamma_d^{l_d} : \tilde{\gamma} \in \{1, \ldots, N\} \right\}.
\end{equation}

and $S = S_0 \times S_0$, that is

$S = \{(x_1, x_2) : x_1, x_2 \in S_0\}$.

For any $x \in S_0$ we have

\[|x| \leq \sum_{T \in \mathcal{L}(L)} |\gamma_1|^{l_1} \cdots |\gamma_d|^{l_d} = \sum_{l=0}^{L-1} |\gamma_1|^l \cdots \sum_{l=0}^{L-1} |\gamma_d|^l \leq \gamma^{dL},\]

where

$\gamma = \max(|\gamma_1|, \ldots, |\gamma_d|) + 1.$
Therefore, \(S \subset B(0, 2\gamma dL) \). Our goal is to check that \(|S| = n\) and to obtain (2.1), (2.2) for \(n = N^{2Ld}\) and \(A = (4\gamma dL)^{-1}S\).

We consider that \(a_k \) \((k = 1, \ldots, d)\) are parallel to the sides with slopes \(\gamma_1, \ldots, \gamma_d \) respectively and \(a_{d+1}, a_{d+2}, a_{d+3} \) are parallel to the sides with slopes \(0, 1, \infty \) respectively. Thus, we can take \(b_k = (-\gamma_k, 1) \) for \(k = 1, \ldots, d \), \(b_{d+1} = (0, 1), b_{d+2} = (-1, 1), b_{d+3} = (1, 0) \).

We first prove (2.1) for \(k = 1, \ldots, d \), i.e.

\[
(2.4) \quad |(S - S) \cdot b_k| \ll n^{\frac{1}{2} + \epsilon}.
\]

Indeed, for \(x \in (S - S) \cdot b_k, k_0 = 1, 2, \ldots, d \), we have a representation

\[
x \cdot b_k = -\gamma_k \sum_{T \in L(L)} \frac{j_T}{N} \gamma_1^{l_1} \cdots \gamma_d^{l_d} + \sum_{T \in L(L)} \frac{j'_T}{N} \gamma_1^{l_1} \cdots \gamma_d^{l_d},
\]

where \(j_T, j'_T \in \{1 - N, \ldots, N - 1\} \) \((T \in L(L))\).

Denote

\[
L(L, k_0) = \{ T : 0 \leq l_k < L \ (k = 1, \ldots, d; k \neq k_0), \ 0 \leq l_{k_0} \leq L \}.
\]

Then we have

\[
x \cdot b_{k_0} = \sum_{T \in L(L, k_0)} \frac{j_T}{N} \gamma_1^{l_1} \cdots \gamma_d^{l_d}
\]

with

\[
j_T \in \{2 - 2N, \ldots, 2N - 2\} \quad (T \in L(L, k_0)).
\]

Hence,

\[
|(S - S) \cdot b_{k_0}| \ll (4N)^{Ld + Ld - 1}.
\]

By the choice of \(L \) we have \(L^d + L^{d-1} \ll (1 + \epsilon)L^d \), and we get (2.4). for \(k = 1, \ldots, d \).

Next, (2.4) holds for \(k = d+1, d+2, d+3 \) because for those \(k \) and for \(x \in (S - S) \cdot b_k \) we have a representation

\[
x \cdot b_k = \sum_{T \in L(L)} \frac{j_T}{N} \gamma_1^{l_1} \cdots \gamma_d^{l_d}
\]

with

\[
j_T \in \{2 - 2N, \ldots, 2N - 2\} \quad (T \in L(L)).
\]

Hence,

\[
|(S - S) \cdot b_k| \leq (4N)^{Ld},
\]

and we again get (4.2) for sufficiently large \(N \). So, (2.1) is proved.

Now observe that the supposition \(T \in (KM) \) implies that elements of \(S_0 \) with different representations (2.3) are distinct. This gives \(|S_0| = N^{L^d}\) and thus \(|S| = |S_0|^2 = n\) as required. Moreover, since for any \(x, x' \in S_0 \) there is a representation

\[
x - x' = \sum_{T \in L(L, k_0)} \frac{j_T}{N} \gamma_1^{l_1} \cdots \gamma_d^{l_d}
\]
with \(j \in \{1 - N, \ldots, N - 1\} \) \((l \in L(L, k_0)) \).

we conclude from the supposition \(\gamma \in (KM) \) that for \(x \neq x' \)

\[(2.5) |x - x'| \gg (2N)^{-1+0.1\varepsilon}L^d - 1.\]

By the choice of \(L \), we have \((1 + 0.1\varepsilon)L^d + 1 \leq (1 + 1.1\varepsilon)L^d \), and from (2.5) we get for sufficiently large \(N \) and distinct \(y, y' \in A \)

\[\|y - y'\|_X \gg (4\gamma^dL)^{-1} (2N)^{-(1+1.1\varepsilon)}L^d \gg N^{-(1+2\varepsilon)L^d} = n^{-1/2-\varepsilon}.\]

This completes the proof of Lemma 2.1.

Proof of Theorem 4. We construct \(E \) as follows. Let \(A_j = A(n_j) \) be as in Lemma 2.1 with \(\varepsilon = \varepsilon_j \), where a nondecreasing sequence \(\{n_j\} \), a sequence \(\{N_j\} \), and a sequence \(\{\varepsilon_j\} \) are such that

\[N_j = \prod_{\nu=1}^j n_{\nu}, \quad n_j \to \infty (j \to \infty), \quad \log n_{j+1}/\log N_j \to 0, \quad \varepsilon_j \to 0 (j \to \infty).\]

(We consider that the empty product for \(j = 0 \) is equal to 1.) Let also all \(n_j \) be large enough so that for any \(j \) the discs \(B(x, n_j^{-1/2-2\varepsilon_j}) \), \(x \in A_j \), are mutually disjoint and contained in \(B(0, 1) \); this is possible by (2.2). Denote

\[\delta_j = n_j^{-1/2-2\varepsilon_j}, \quad \Delta_j = \prod_{\nu=1}^j \delta_j.\]

Let \(E_1 = \bigcup_{x \in A_1} B(x, \delta_1) \). We then define \(E_2, E_3, \ldots \) by induction. Namely, suppose that we have constructed \(E_j \) which is a union of \(N_j \) disjoint closed discs \(B \) of radius \(\Delta_j \) each. Then \(E_{j+1} \) is obtained from \(E_j \) by replacing each \(B_i \) by the image of \(\bigcup_{x \in A_{j+1}} B(x, \delta_{j+1}) \) under the unique affine mapping which takes \(B(0, 1) \) to \(B_i \) and preserves direction of vectors. We then let \(E = \bigcap_{j=1}^\infty E_j \). The verification of properties \(\text{dim}(E) = 2 \) and \(|\Delta_X(E)| = 0 \) is exactly as in the proof of Theorem 1.

Acknowledgements. Part of this work was completed while the first author was a PIMS Distinguished Chair at the University of British Columbia, We also acknowledge the support of NSERC under grant 22R80520.

REFERENCES

[B94] J. Bourgain, Hausdorff dimension and distance sets, Israel J. Math. 87 (1994), 193–201.

[BBKM02] V.V. Beresnevich, V.I. Bernik, D.Y. Kleinbock, and G.A. Margulis, Metric Diophantine approximation: the Khintchine—Groshev theorem for nondegenerate manifolds, Moscow Mathematical Journal 2 (2002), 203–225.
[Be02] V. Beresnevich, A Groshev type theorem for convergence on manifolds, Acta Math. Hung. 94 (2002), 99–130.
[BKM01] V. Bernik, D. Kleinbock, and G. Margulis, Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative version, Int. Math. Research Notices No. 9 (2001), 453–486.
[Er03] M. B. Erdogan, Falconer’s distance set conjecture, preprint, 2004.
[F85] K.J. Falconer, The geometry of fractal sets, Cambridge University Press (1985).
[F86] K.J. Falconer, On the Hausdorff dimension of distance sets, Mathematika 32 (1986), 206–212.
[I01] A. Iosevich, Curvature, combinatorics and the Fourier transform, Notices Amer. Math. Soc. 46 (2001), 577–583.
[IL03] A. Iosevich and I. Laba, Distance sets of well-distributed planar point sets, Discrete Comput. Geometry 31 (2004), 243–250.
[IL04] A. Iosevich and I. Laba, K-distance sets, Falconer conjecture and discrete analogs, preprint, 2003.
[KL04] S. Konyagin and I. Laba, Distance sets of well distributed planar sets for polygonal norms, preprint, 2004.
[KM98] D.Y. Kleinbock and G.A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. Math. (2) 148 (1998), 339–360.
[M87] P. Mattila, Spherical averages of Fourier transforms of measures with finite energy; dimension of intersections and distance sets, Mathematica 34 (1987), 207–228.
[W99] T. Wolff, Decay of circular means of Fourier transforms of measures, Int. Math. Res. Notices 10 (1999), 547–567.

Department of Mechanics and Mathematics, Moscow State University, Moscow, 119992, Russia, e-mail: konyagin@ok.ru

Department of Mathematics, University of British Columbia, Vancouver, B.C. V6T 1Z2, Canada, e-mail: ilaba@math.ubc.ca