Regularity of the correctors and local gradient estimate of the homogenization for the elliptic equation: linear periodic case

ZHANG QiaoFu† & CUI JunZhi

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
(email: zhangqf@lsec.cc.ac.cn, cjz@lsec.cc.ac.cn)

Abstract C^{α} and $W^{1,\infty}$ estimates for the first-order and second-order correctors in the homogenization are presented based on the translation invariant and Li-Vogelius's gradient estimate for the second order linear elliptic equation with piecewise smooth coefficients. If the data are smooth enough, the error of the first-order expansion for piecewise smooth coefficients is locally $O(\varepsilon)$ in the Hölder norm; it is locally $O(\varepsilon)$ in $W^{1,\infty}$ when coefficients are Lipschitz continuous. It can be partly extended to the nonlinear parabolic equation.

Keywords: gradient estimate, homogenization, translation invariant, De Giorgi-Nash estimate

MSC(2000): 35B27, 35J65

1 Introduction

Consider the homogenization of the following elliptic problem: find $u_\varepsilon \in H^1_0(\Omega)$,

$$\mathcal{A}_\varepsilon u_\varepsilon = -\frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial u_\varepsilon}{\partial x_j} \right) = f(x), \quad \text{in } \Omega.$$ \hspace{1cm} (1.1)

Here $\Omega \subset \mathbb{R}^n$ is a bounded Lipschitz domain and the summation convention is used. $\mathcal{A} = (a_{ij})$ is symmetric and positive definite; $a_{ij}(y)$ is 1-periodic in y, $1 \leq i, j \leq n$; $a_{ij}(y)$ is at least piecewise C^{μ} to obtain the error estimate in $C^{\beta}, W^{1,\infty}$.

Assume all of the data are smooth enough, the $O(\varepsilon)$ error estimate in L^∞ was presented by A. Bensoussan, J. L. Lions and G. Papanicolaou [1]; also see M. Avellaneda and Lin FangHua [2]. O. A. Oleinik, A. S. Shamaev and G. A. Yosifian [3] proved the $O(\varepsilon^{1/2})$ estimate in H^1. Cao and Cui [4] studied the spectral properties and the numerical algorithms in perforated domains. Su et al [5] investigated the quasi-periodic problems; Zhang and Cui [6] gave a numerical example for the Rosseland equation. All of these were based on the multiple-scale expansion method [7]. There are also some other famous methods, such as periodic unfolding method [8], Multiscale Finite Element Method(MFEM [9]) and Heterogeneous Multiscale Method(HMM [10]).

The second-order expansion in Section 2 is classical which can be found in Chapter 1 [1] or Chapter 7 [7]. Translation invariant in Section 3 implies the equivalence between the boundary and the interior estimate for an abstract periodic problem. The $C^{\alpha}, W^{1,\infty}$ estimates for correctors in Section 4 follow from the De Giorgi-Nash estimate and Li Yanyan-M. Vogelius's work for piecewise smooth coefficients, respectively. In Section 5, more than the traditional L^∞ estimate $(a_{ij}(y) \in C^{\gamma}([0,1]^n), [2])$, we obtain the C^{β} error estimate $(a_{ij}(y))$ piecewise C^{μ}

† Corresponding author
in $C^{1,\alpha}$ subdomains, Corollary 5.4). At the end, we prove the main result: the error of the first-order expansion is $O(\varepsilon)$ in $W_{loc}^{1,\infty}$ for Lipschitz continuous coefficients (Corollary 6.3) based on M. Avellaneda-Lin FangHua’s gradient estimate. As far as we know, there are not such kinds ($C^0, W^{1,\infty}$) of error estimates in the homogenization.

2 Second-order two-scale expansion

Definition 2.1. The periodic cell $Y = (0, 1)^n$. Let $C^\infty_{\text{per}}(Y)$ be the subset of $C^\infty(\mathbb{R}^n)$ of Y-periodic functions (restricted on Y). Denote by $H^1_{\text{per}}(Y)$ the closure of $C^\infty_{\text{per}}(Y)$ in the H^1 norm. $W^1_{\text{per}}(Y) = \{ \varphi \in H^1_{\text{per}}(Y) : \int_Y \varphi = 0 \}$. $\|u\|_{W^1_{\text{per}}(Y)} \equiv \|\nabla u\|_{L^2(Y)}$. In the same way, we can define $W^2_{\text{per}}(Y)$ where $Y = Y + z, z \in \mathbb{R}^n$.

If $u \in H^1_{\text{per}}(Y)$, u has the same trace on the opposite faces of Y. We look for a formal asymptotic expansion of the form

$$u_\varepsilon(x) = u_0(x) + \varepsilon u_1(x, \frac{x}{\varepsilon}) + \varepsilon^2 u_2(x, \frac{x}{\varepsilon}) + ... \quad (2.1)$$

where $u_1(\cdot, y), u_2(\cdot, y)$ are Y-periodic in y. Let $y = \frac{x}{\varepsilon}$, then

$$\frac{\partial}{\partial x_i} \to \frac{\partial}{\partial x_i} + \frac{1}{\varepsilon} \frac{\partial}{\partial y_i}. \quad (2.2)$$

Substituting (2.1) into (1.1) and equating the power-like terms of ε, we introduce $N_m(y) \in W^1_{\text{per}}(Y), 1 \leq m \leq n$, to make the terms of order ε^{-1} equal zero,

$$\int_Y a_{ij}(y) \frac{\partial N_m}{\partial y_i} \frac{\partial \varphi}{\partial y_j} = - \int_Y a_{mij}(y) \frac{\partial \varphi}{\partial y_j}, \quad \forall \varphi(y) \in W^1_{\text{per}}(Y). \quad (2.3)$$

Then let $u_1 = N_m \partial_n u_0$. The problem for u_2 (the part of order ε^0) admits a unique solution if and only if there exists a $u_0 \in H^1_0(\Omega)$ such that (a compatibility condition, see Theorem 4.26 [7])

$$- \frac{\partial}{\partial x_i} [a_{ij}(y) \frac{\partial u_0}{\partial x_j}] = f, \quad a_{ij} = \int_Y [a_{ij}(y) + a_{il}(y) \frac{\partial N_i}{\partial y_l}] dy. \quad (2.4)$$

This equation called the homogenization equation is well-posed because (a^0_{ij}) is elliptic (Proposition 6.12 [7]).

Find $M_{kl} \in W^1_{\text{per}}(Y), 1 \leq k, l \leq n$, such that

$$\int_Y a_{ij}(y) \frac{\partial M_{kl}}{\partial y_i} \frac{\partial \varphi}{\partial y_j} = \int_Y \left[a_{kl} + a_{km} \frac{\partial N_l}{\partial y_m} - a^0_{kl} \right] \varphi - \int_Y a_{ik} N_i \frac{\partial \varphi}{\partial y_l}, \quad \forall \varphi \in W^1_{\text{per}}(Y). \quad (2.5)$$

If $\varphi(y) = 1$, the righthand side of the above equation equals zero (a compatibility condition). So let $u_2 = M_{kl} \partial^2_{kl} u_0$ to make the $O(\varepsilon^0)$ terms equal zero. Note that N_m, M_{kl}, u_0 are independent of ε. We will use this fact again and again.

...

Corollary 2.2. Under the hypotheses of Theorem 6.2,

$$\sup_{\overline{\Omega}} |\nabla(u_\varepsilon - u_0 - \varepsilon u_1)| \leq C\varepsilon, \quad \Omega' \subset \subset \Omega; \quad (2.6)$$
Regularity of the correctors and local gradient estimate of the homogenization

\[
\sup_{\Omega'} |A^{x}(\varepsilon)\nabla(u_\varepsilon - u_0 - \varepsilon u_1)| \leq C\varepsilon, \quad \Omega' \subset\subset \Omega. \tag{2.7}
\]

Proof. (1) We only need to prove that \(|\varepsilon \partial_i u_2| = |\partial_i (\varepsilon M_{k\ell}(\frac{x}{\varepsilon}) \partial^2_{k\ell} u_0)| \leq C\varepsilon. \]

\[
\varepsilon \frac{\partial u_2}{\partial x_i} = \frac{\partial M_{k\ell}(\frac{x}{\varepsilon})}{\partial y_i} \partial^2_{k\ell} u_0 + \varepsilon M_{k\ell}(\frac{x}{\varepsilon}) \partial^3_{ik\ell} u_0. \tag{2.8}
\]

\(M_{k\ell}, \frac{\partial M_{k\ell}}{\partial y_i}\) are bounded from Theorem 4.4; \(\partial^3_{ik\ell} u_0 \in W^{1,q}(\Omega') \hookrightarrow C^{0,\alpha}(\Omega') \subset L^\infty(\Omega').\)

(2) Note that \(A(\frac{x}{\varepsilon}) = (a_{ij})\) is bounded. \(\square\)

Remark 2.3. We give the estimate (2.7) because the flux \((A\nabla u)\) is very important in physics. One can consider the tensor case where the flux may be the stress in linear elasticity.

7 Some problems

It is possible to partly extend the above results to the following cases:

(1) tensor case: Avellaneda-Lin’s Lemma 6.1 is true for the tensor case \cite{2} and elliptic systems with Neumann boundary conditions \cite{13}; Li-Vogelius’s work was extended in \cite{14}.

(2) nonlinear case: Fusco and Moscariello \cite{15} studied the homogenization of quasilinear divergence structure operators. For the second-order expansion, see \cite{16}.

(3) parabolic case: the parabolic \(C^{\alpha,\alpha/2}\) estimate under mixed boundary conditions was presented in \cite{17}; Li-Vogelius’s gradient estimate was extended to parabolic systems in \cite{14}.

(4) nonsmooth case: if the domain is only convex or the righthand side is piecewise smooth, there are many interesting problems. One problem is that the hypotheses in Theorem 5.3 are very strong: \(\partial \Omega \in C^{2,1}, f \in W^{1,q}(\Omega), q > n\). This is a common difficulty for the multiple-scale method (see \cite{1}, \cite{2}).

(5) How can we get a global \(W^{1,\infty}\) error estimate with a proper boundary corrector?

Some results will appear elsewhere.

Acknowledgements This work is supported by National Natural Science Foundation of China (Grant No. 90916027). The authors thank Professor Yan NingNing and the referees for their careful reading and helpful comments.

References

1. Bensoussan A., Lions J. L., Papanicolaou G., Asymptotic Analysis for Periodic Structures, Amsterdam: North-Holland, 1978
2. Avellaneda M., Lin F. H., Compactness method in the theory of homogenization, Comm Pure Appl Math, 1987, 40(6): 803-847
3. Oleinik O. A., Shamaev A. S., Yosifian G. A., Mathematical Problems in Elasticity and Homogenization, Amsterdam: North-Holland, 1992
4. Cao L. Q., Cui J. Z., Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains, Numer Math, 2004, 96(3): 525-581
5. Su F., Cui J. Z., Xu Z., et al, A second-order and two-scale computation method for the quasi-periodic structures of composite materials, Finite Elements in Analysis and Design, 2010, 46(4): 320-327
6. Zhang Q. F., Cui J. Z., Multi-scale analysis method for combined conduction-radiation heat transfer of periodic composites, Advances in Heterogeneous Material Mechanics (eds. Fan J. H., Zhang J. Q., Chen H. B., et al), Lancaster: DEStech Publications, 2011, 461-464
7 Cioranescu D., Donato P., An Introduction to Homogenization, Oxford: Oxford University Press, 1999
8 Griso G., Error estimate and unfolding for periodic homogenization, Asymptotic Analysis, 2004, 40(3): 269-286
9 Hou T. Y., Wu X. H., A multiscale finite element method for elliptic problems in composite materials and porous media, J Comput Phys, 1997, 134(1): 169-189
10 E W. N., Engquist B., Huang Z. Y., Heterogeneous multiscale method: a general methodology for multiscale modeling, Phys Rev B, 2003, 67(092101): 1-4
11 Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Berlin: Springer, 2001
12 Li Y. Y., Vogelius M., Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch Rational Mech Anal, 2000, 153(2): 91-151.
13 Kenig C. E., Lin F. H., Shen Z. W., Homogenization of elliptic systems with Neumann boundary conditions, 2010, arXiv: 1010.6114v1, [math.AP]
14 Li H. G., Li Y. Y., Gradient estimates for parabolic systems from composite material, 2011, arXiv: 1105.1437v1, [math.AP]
15 Fusco N., Moscariello G., On the homogenization of quasilinear divergence structure operators, Annali di Matematica Pura ed Applicata, 1986, 146(1): 1-13
16 Zhang Q. F., Cui J. Z., Error estimate of the second-order homogenization for divergence-type nonlinear elliptic equation, 2011, arXiv: 1108.5070v1, [math-ph]
17 Griepentrog J. A., Recke L., Local existence, uniqueness and smooth dependence for nonsmooth quasilinear parabolic problems, J Evol Equ, 2010, 10(2): 341-375