On extremal self-dual ternary codes of length 48

Gabriele Nebe
Lehrstuhl D für Mathematik, RWTH Aachen University
52056 Aachen, Germany
nebe@math.rwth-aachen.de

Abstract. All extremal ternary codes of length 48 that have some automorphism of prime order \(p \geq 5 \) are equivalent to one of the two known codes, the Pless code or the extended quadratic residue code.

Keywords: extremal self-dual code, automorphism group
MSC: primary: 94B05

1 Introduction.

The notion of an extremal code has been introduced in [8]. As Andrew Gleason [4] remarks one may use invariance properties of the weight enumerator of a self-dual code to deduce upper bounds on the minimum distance. Extremal codes are self-dual codes that achieve these bounds. The most wanted extremal code is a binary self-dual doubly even code of length 72 and minimum distance 16. One frequently used strategy is to classify extremal codes with a given automorphism, see [6] and [3] for the first papers on this subject.

Ternary codes have been studied in [7]. The minimum distance \(d(C) := \min\{\text{wt}(c) \mid 0 \neq c \in C\} \) of a self-dual ternary code \(C = C^\perp \leq \mathbb{F}_3^n \) of length \(n \) is bounded by

\[
d(C) \leq 3\lfloor \frac{n}{12} \rfloor + 3.
\]

Codes achieving equality are called extremal. Of particular interest are extremal ternary codes of length a multiple of 12. There exists a unique extremal code of length 12 (the extended ternary Golay code), two extremal codes of length 24 (the extended quadratic residue code \(Q_{24} := QR(23, 3) \) and the Pless code \(P_{24} \)). For length 36, the Pless code yields one example of an extremal code. [7] shows that this is the only code with an automorphism of prime order \(p \geq 5 \), a complete classification is yet unknown. The present paper investigates the extremal codes of length 48. There are two such codes known, the extended quadratic residue code \(Q_{48} \) and the Pless code \(P_{48} \). The computer calculations described in this paper show that these two codes are the only extremal ternary codes \(C \) of length 48 for which the order of the automorphism group is divisible by some prime \(p \geq 5 \). Theoretical arguments exclude all types of automorphisms that do not occur for the two known examples.
2 Automorphisms of codes.

Let \mathbb{F} be some finite field, \mathbb{F}^* its multiplicative group. For any monomial transformation $\sigma \in \text{Mon}_n(\mathbb{F}) := \mathbb{F}^* \wr S_n$, the image $\pi(\sigma) \in S_n$ is called the permutational part of σ. Then σ has a unique expression as

$$\sigma = \text{diag}(\alpha_1, \ldots, \alpha_n)\pi(\sigma) = m(\sigma)\pi(\sigma)$$

and $m(\sigma)$ is called the monomial part of σ. For a code $C \leq \mathbb{F}^n$ we let

$$\text{Mon}(C) := \{ \sigma \in \text{Mon}_n(\mathbb{F}) \mid \sigma(C) = C \}$$

be the full monomial automorphism group of C.

We call a code $C \leq \mathbb{F}^n$ an orthogonal direct sum, if there are codes $C_i \leq \mathbb{F}^{n_i}$ $(1 \leq i \leq s > 1)$ of length n_i such that

$$C \sim \bigoplus_{i=1}^{s} C_i = \{ (c_1^{(1)}, \ldots, c_{n_1}^{(1)}, \ldots, c_1^{(s)}, \ldots, c_{n_s}^{(s)}) \mid c_i \in C (1 \leq i \leq s) \}.$$\[Lemma 2.1.\] Let $C \leq \mathbb{F}^n$ be not an orthogonal direct sum. Then the kernel of the restriction of π to $\text{Mon}(C)$ is isomorphic to \mathbb{F}^*.

Proof. Clearly $\mathbb{F}^*C = C$ since C is an \mathbb{F}-subspace. Assume that $\sigma := \text{diag}(\alpha_1, \ldots, \alpha_n) \in \text{Mon}(C)$ with $\alpha_i \in \mathbb{F}^*$, not all equal. Let $\{\alpha_1, \ldots, \alpha_n\} = \{\beta_1, \ldots, \beta_s\}$ with pairwise distinct β_i. Then

$$C = \bigoplus_{i=1}^{s} \ker(\sigma - \beta_i \text{id})$$

is the direct sum of eigenspaces of σ. Moreover the standard basis is a basis of eigenvectors of σ so this is an orthogonal direct sum. \square

In the investigation of possible automorphisms of codes, the following strategy has proved to be very fruitful ([6], [2]).

Definition 2.2. Let $\sigma \in \text{Mon}(C)$ be an automorphism of C. Then $\pi(\sigma) \in S_n$ is a direct product of disjoint cycles of lengths dividing the order of σ. In particular if the order of σ is some prime p, then we say that σ has cycle type (t, f), if $\pi(\sigma)$ has t cycles of length p and f fixed points (so $pt + f = n$).

Lemma 2.3. Let $\sigma \in \text{Mon}(C)$ have prime order p.

(a) If p does not divide $|\mathbb{F}^*|$ then there is some element $\tau \in \text{Mon}_n(\mathbb{F})$ such that $m(\tau \sigma \tau^{-1}) = \text{id}$. Replacing C by $\tau(C)$ we hence may assume that $m(\sigma) = 1$.

(b) Assume that p does not divide char(\mathbb{F}), $m(\sigma) = 1$, and $\pi(\sigma) = (1, \ldots, p) \cdots ((t - 1)p + 1, \ldots, tp)(tp + 1) \cdots (n)$. Then $C = C(\sigma) \oplus E$, where

$$C(\sigma) = \{ c \in C \mid c_1 = \ldots = c_p, c_{p+1} = \ldots = c_{2p}, \ldots, c_{(t-1)p+1} = \ldots = c_{tp} \}$$
is the fixed code of σ and

$$E = \{ c \in C \mid \sum_{i=1}^{p} c_i = \sum_{i=p+1}^{2p} c_i = \ldots = \sum_{i=(t-1)p+1}^{tp} c_i = c_{tp+1} = \ldots = c_n = 0 \}$$

is the unique σ-invariant complement of $C(\sigma)$ in C.

(c) Define two projections

$$\pi_t : C(\sigma) \to F^t, \quad \pi_t(c) := (c_p, c_{2p}, \ldots, c_{tp})$$

$$\pi_f : C(\sigma) \to F^f, \quad \pi_f(c) := (c_{tp+1}, c_{tp+2}, \ldots, c_{tp+f})$$

So $C(\sigma) \cong (\pi_t(C(\sigma)), \pi_f(C(\sigma))) =: C(\sigma)^*$. If $C = C^\perp$ is self-dual with respect to $(x, y) := \sum_{i=1}^{n} x_i y_i$, then $C(\sigma)^* \leq F^{t+f}$ is a self-dual code with respect to the inner product $(x, y) := \sum_{i=1}^{t} px_i y_i + \sum_{j=t+1}^{t+f} x_j y_j$.

(d) In particular $\dim(C(\sigma)) = (t + f)/2$ and $\dim(E) = t(p - 1)/2$.

Proof. Part (a) follows from the Schur-Zassenhaus theorem in finite group theory. For the ternary case see [7, Lemma 1].

(b) and (c) are similar to [6, Lemma 2].

In the following we will keep the notation of the previous lemma and regard the fixed code $C(\sigma)$.

Remark 2.4. If $f \leq d(C)$ then $t \geq f$.

Proof. Otherwise the kernel $K := \ker(\pi_t) = \{(0, \ldots, 0, c_1, \ldots, c_f) \in C(\sigma)\}$ is a nontrivial subcode of minimum distance $\leq f < d(C)$.

The way to analyse the code E from Lemma 2.3 is based on the following remark.

Remark 2.5. Let $p \neq \text{char}(F)$ be some prime and $\sigma \in \text{Mon}_n(F)$ be an element of order p. Let

$$X^p - 1 = (X - 1)g_1 \ldots g_m \in F[X]$$

be the factorization of $X^p - 1$ into irreducible polynomials. Then all factors g_i have the same degree $d = |(|F| + p\mathbb{Z})|$, the order of $|F|$ mod p.

There are polynomials $a_i \in F[X]$ $(0 \leq i \leq m)$ such that

$$1 = a_0 g_1 \ldots g_m + (X - 1) \sum_{i=1}^{m} a_i \prod_{j \neq i} g_j.$$

Then the primitive idempotents in $F[X]/(X^p - 1)$ are given by the classes of

$$\bar{e}_0 = a_0 g_1 \ldots g_m, \quad \bar{e}_i = a_i \prod_{j \neq i} g_j(X - 1), \quad 1 \leq i \leq m.$$
Let L be the extension field of F with $[L : F] = d$. Then the group ring
\[F[X]/(X^p - 1) = F\langle \sigma \rangle \cong F \oplus L \oplus \ldots \oplus L \]
is a commutative semisimple F-algebra. Any code $C \leq F^n$ with an automorphism $\sigma \in \text{Mon}(C)$ is a module for this algebra. Put $e_i := \tilde{e}_i(\sigma) \in F[\sigma]$. Then $C = Ce_0 \oplus Ce_1 \oplus \ldots \oplus Ce_m$ with $Ce_0 = C(\sigma), E = Ce_1 \oplus \ldots \oplus Ce_m$. Omitting the coordinates of E that correspond to the fixed points of σ, the codes Ce_i are L-linear codes of length t.

Clearly $\dim_F(E) = d\sum_{i=1}^{m} \dim_L(Ce_i)$.

If C is self-dual then $\dim(E) = t\frac{p-1}{2}$.

3 Extremal ternary codes of length 48.

Let $C = C^\perp \leq F_3^{48}$ be an extremal self-dual ternary code of length 48, so $d(C) = 15$.

3.1 Large primes.

In this section we prove the main result of this paper.

Theorem 3.1. Let $C = C^\perp \leq F_3^{48}$ be an extremal self-dual code with an automorphism of prime order $p \geq 5$. Then C is one of the two known codes. So either $C = Q_{48}$ is the extended quadratic residue code of length 48 with automorphism group
\[\text{Mon}(C) = C_2 \times \text{PSL}_2(47) \text{ of order } 2^5 \cdot 3 \cdot 23 \cdot 47 \]
or $C = P_{48}$ is the Pless code with automorphism group
\[\text{Mon}(C) = C_2 \times \text{SL}_2(23).2 \text{ of order } 2^6 \cdot 3 \cdot 11 \cdot 23. \]

Lemma 3.2. Let $\sigma \in \text{Mon}(C)$ be an automorphism of prime order $p \geq 5$. Then either $p = 47$ and $(t, f) = (1, 1)$ or $p = 23$ and $(t, f) = (2, 2)$ or $p = 11$ and $(t, f) = (4, 4)$.

Proof. For the proof we use the notation of Lemma 2.3. In particular we let $K := \ker(\pi_t) = \{(0, \ldots, 0, c_1, \ldots, c_f) \in C(\sigma)\}$ and put $K^* := \{(c_1, \ldots, c_f) \mid (0, \ldots, 0, c_1, \ldots, c_f) \in C(\sigma)\}$. Then
\[K^* \leq F_3^f, \ d(K^*) \geq 15, \ dim(K^*) \geq \frac{f-t}{2}. \]

Moreover $tp + f = 48$.

1) If $t = 1$ **then** $p = 47$.

If $p = 47$, then $t = f = 1$.

So assume that $p < 47$ and $t = 1$. Then the code E has length p and dimension $(p - 1)/2$, therefore $p \geq d(C) = 15$. So $p \geq 17$ and $f \leq 48 - 17 = 31$.

4
Then $K^* \leq \mathbb{F}_3^f$ has dimension $(f - 1)/2$ and minimum distance $d(K^*) \geq 15$. From the bounds given in [5] there is no such possibility for $f \leq 31$.

2) If $t = 2$ then $p = 23$.

Assume that $t = 2$. Since $2 \cdot p \leq 48$ we get $p \leq 23$ and if $p = 23$, then $(t, f) = (2, 2)$.

So assume that $p < 23$. The code E is a non-zero code of length $2p$ and minimum distance ≥ 15, so $2p \geq 15$ and p is one of $11, 13, 17, 19$, and $f = 26, 22, 14, 10$. The code $K^* \leq \mathbb{F}_3^f$ has dimension $\geq f/2 - 1$ and minimum distance ≥ 15. Again by [5] there is no such code.

3) $p \neq 13$.

For $p = 13$ one now only has the possibility $t = 3$ and $f = 9$. The same argument as above constructs a code $K^* \leq \mathbb{F}_3^f$ of dimension at least $(f + t)/2 - t = 3$ of minimum distance $\geq 15 > f$ which is absurd.

4) If $p = 11$, then $t = f = 4$.

Otherwise $t = 3$ and the code K^* as above has length 15, dimension ≥ 6 and minimum distance ≥ 15 which is impossible.

5) If $p = 7$ then $t = f = 6$.

Otherwise $t = 3, 4, 5$ and $f = 27, 20, 13$ and the code K^* as above has dimension $\geq (f + t)/2 - t = 12, 8, 4$, length f, minimum distance ≥ 15 which is impossible by [5].

6) $p \neq 7$.

Assume that $p = 7$, then $t = f = 6$ and the kernel K of the projection of $C(\sigma)$ onto the first 42 components is trivial. So the image of the projection is $\mathbb{F}_3^6 \otimes \langle (1, 1, 1, 1, 1, 1) \rangle$, in particular it contains the vector $(1^7, 0^{35})$ of weight 7. So $C(\sigma)$ contains some word $(1^7, 0^{35}, a_1, \ldots, a_6)$ of weight ≤ 13 which is a contradiction.

7) If $p = 5$ then $t = f = 8$ or $t = 9$ and $f = 3$.

Otherwise $t = 3, 4, 5, 6, 7$ and $f = 33, 28, 23, 18, 13$ and the code $K^* \leq \mathbb{F}_3^f$ has dimension $\geq (f + t)/2 - t = 15, 12, 9, 6, 3$ and minimum distance ≥ 15 which is impossible by [5].

8) $p \neq 5$.

Assume that $p = 5$. Then either $t = 8$ and the projection of $C(\sigma)$ onto the first $8 \cdot 5$ coordinates is $\mathbb{F}_3^8 \otimes \langle (1, 1, 1, 1, 1) \rangle$ and contains a word of weight 5. But then $C(\sigma)$ has a word of weight w with $5 < w \leq 5 + 8 = 13$ a contradiction.

The other possibility is $t = 9$. Then the code $E = E^\perp$ is a Hermitian self-dual code of length 9 over the field with $3^4 = 81$ elements, which is impossible, since the length of such a code is 2 times the dimension and hence even. \qed

Lemma 3.3. If $p = 11$ then $C \cong P_{48}$.

Proof. Let $\sigma \in \text{Mon}(C)$ be of order 11. Since $(x^{11} - 1) = (x - 1)gh \in \mathbb{F}_3[x]$ for irreducible polynomials g, h of degree 5,

$$\mathbb{F}_3(\sigma) \cong \mathbb{F}_3 \oplus \mathbb{F}_{3^5} \oplus \mathbb{F}_{3^5}.$$

Let $e_1, e_2, e_3 \in \mathbb{F}_3(\sigma)$ denote the primitive idempotents. Then $C = Ce_1 \oplus Ce_2 \oplus Ce_3$ with $C(\sigma) = Ce_1 = Ce_1^\perp$ of dimension 4 and $Ce_2 = Ce_3^\perp \leq (\mathbb{F}_{3^5} \oplus \mathbb{F}_{3^5})^4$. Clearly the projection of $C(\sigma)$ onto the first 44 coordinates is injective. Since all weights of C are multiples of 3 and
≥ 15, this leaves just one possibility for $C(\sigma)$:

$$G_0 = (L_0 | R_0) := \begin{pmatrix}
1^{11} & 0^{11} & 0^{11} & 0^{11} \\
0^{11} & 1^{11} & 0^{11} & 0^{11} \\
0^{11} & 0^{11} & 1^{11} & 0^{11} \\
0^{11} & 0^{11} & 0^{11} & 1^{11}
\end{pmatrix} \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{pmatrix}.$$

The cyclic code Z of length 11 with generator polynomial $(x - 1)g$ (and similarly the one with generator polynomial $(x - 1)h$) has weight enumerator

$$x^{11} + 132x^5y^6 + 110x^2y^9$$

in particular it contains more words of weight 6 than of weight 9. This shows that the dimension of C_{e_i} over \mathbb{F}_3 is 2 for both $i = 2, 3$, since otherwise one of them has dimension ≥ 3 and therefore contains all words $(0, 0, c, \alpha c)$ for all $c \in Z$ and some $\alpha \in \mathbb{F}_3^\ast$. Not all of them can have weight ≥ 15. Similarly one sees that the codes $C_{e_i} \leq \mathbb{F}_3^4$ have minimum distance 3 for $i = 2, 3$. So we may choose generator matrices

$$G_1 := \begin{pmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \end{pmatrix}, \quad G_2 := \begin{pmatrix} 1 & 0 & a' & b' \\ 0 & 1 & c' & d' \end{pmatrix}$$

with $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{F}_3)$ and $\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = -\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-tr}$. To obtain \mathbb{F}_3-generator matrices for the corresponding codes C_{e_2} and C_{e_3} of length 48, we choose a generator matrix $g_1 \in \mathbb{F}_3^{5 \times 11}$ of the cyclic code Z of length 11 with generator polynomial $(x - 1)g$, and the corresponding dual basis $g_2 \in \mathbb{F}_3^{5 \times 11}$ of the cyclic code with generator polynomial $(x - 1)h$. We compute the action of σ (the multiplication with x) and represent this as left multiplication with $z_{11} \in \mathbb{F}_3^{5 \times 5}$ on the basis g_1. If $a = \sum_{i=0}^{4} a_i z_{11}^i \in \mathbb{F}_3^{5 \times 11}$ with $a_i \in \mathbb{F}_3$, then the entry a in G_1 is replaced by $\sum_{i=0}^{4} a_i z_{11}^i g_1 \in \mathbb{F}_3^{5 \times 11}$. Analogously for G_2, where we use of course the matrix g_2 instead of g_1. Replacing the code by an equivalent one we may choose a, b, c as orbit representatives of the action of $\langle -z_{11} \rangle$ on \mathbb{F}_3^5.

A generator matrix of C is then given by

$$\begin{pmatrix} L_0 & R_0 \\ G_1 & 0 \\ G_2 & 0 \end{pmatrix}.$$

All codes obtained this way are equivalent to the Pless code P_{48}. \hfill \square

Lemma 3.4. If $p = 23$ then $C \cong P_{48}$ or $C \cong Q_{48}$.

Proof. Let $\sigma \in \text{Mon}(C)$ be of order 23. Since $(x^{23} - 1) = (x - 1)gh \in \mathbb{F}_3[x]$ for irreducible polynomials g, h of degree 11,

$$\mathbb{F}_3(\sigma) \cong \mathbb{F}_3 \oplus \mathbb{F}_{3^{11}} \oplus \mathbb{F}_{3^{11}}.$$
By Lemma 2.3 the code

\[C(\sigma) = \langle (1^{23}, 0^{23}, 1, 0), (0^{23}, 1^{23}, 0, 1) \rangle. \]

The codes \(C_2 \) and \(C_3 \) are codes of length 2 over \(\mathbb{F}_{311} \) such that \(\dim(C_2) + \dim(C_3) = 2 \). Note that the alphabet \(\mathbb{F}_{311} \) is identified with the cyclic code of length 23 with generator polynomial \((x-1)g \) resp. \((x-1)h \). These codes have minimum distance \(9 < 15 \), so \(\dim(C_2) = \dim(C_3) = 1 \) and both codes have a generator matrix of the form \((1, t) \) (resp. \((1, -t^{-1}) \)) for \(t \in \mathbb{F}_{311}^* \). Going through all possibilities for \(t \) (up to the action of the subgroup of \(\mathbb{F}_{311}^* \), of order 23) the only codes \(C \) for which \(C(\sigma) \) have minimum distance \(\geq 15 \) are the two known extremal codes \(P_{48} \) and \(Q_{48} \). \(\square \)

Lemma 3.5. If \(p = 47 \) then \(C \cong Q_{48} \).

Proof. The subcode \(C_0 := \{ c \in \mathbb{F}_3^{47} \mid (c, 0) \in C \} \) is a cyclic code of length 47, dimension 23 and minimum distance \(\geq 15 \). Since \(x^{47} - 1 = (x-1)gh \in \mathbb{F}_3[x] \) for irreducible polynomials \(g, h \) of degree 23, \(C_0 \) is the cyclic code with generator polynomial \((x-1)g \) (or equivalently \((x-1)h \)) and \(C = \langle (C_0, 0), 1 \rangle \leq \mathbb{F}_3^{48} \) is the extended quadratic residue code. \(\square \)

3.2 Automorphisms of order 2.

As above let \(C = C^\perp \leq \mathbb{F}_3^{48} \) be an extremal self-dual ternary code. Assume that \(\sigma \in \text{Mon}(C) \) such that the permutational part \(\pi(\sigma) \) has order 2. Then \(\sigma^2 = \pm 1 \) because of Lemma 2.1. If \(\sigma^2 = -1 \), then \(\sigma \) is conjugate to a block diagonal matrix with all blocks \(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} =: J \) and \(C \) is a Hermitian self-dual code of length 24 over \(\mathbb{F}_9 \). Such automorphisms \(\sigma \) with \(\sigma^2 = -1 \) occur for both known extremal codes.

If \(\sigma^2 = 1 \), then \(\sigma \) is conjugate to a block diagonal matrix

\[\sigma \sim \text{diag}(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^t, 1^f, (-1)^a) \]

for \(t, a, f \in \mathbb{N}_0, 2t + a + f = 48 \).

Proposition 3.6. Assume that \(\sigma \in \text{Mon}(C) \), \(\sigma^2 = 1 \) and \(\pi(\sigma) \neq 1 \). Then either \((t, a, f) = (24, 0, 0) \) or \((t, a, f) = (22, 2, 2) \). Automorphisms of both kinds are contained in \(\text{Aut}(P_{48}) \).

Proof. 1) Wlog \(f \leq a \).

Replacing \(\sigma \) by \(-\sigma \) we may assume without loss of generality that \(f \leq a \).

2) \(f - t \in 4\mathbb{Z} \).

By Lemma 2.3 the code \(C(\sigma)^* \leq \mathbb{F}_3^{4t+f} \) is a self-dual code with respect to the inner product \((x, y) = -\sum_{i=1}^t x_i y_i + \sum_{j=1}^f x_j y_j \). This space only contains a self-dual code if \(f - t \) is a multiple
of 4.

3) \(t + f \in \{22, 24\} \).

The code \(C(\sigma)^t \leq \mathbb{F}_3^{t+f} \) has dimension \(\frac{t+f}{2} \) and minimum distance \(\geq 15/2 \) and hence minimum distance \(\geq 8 \). By [5] this implies that \(t + f \geq 22 \). Since \(t + a \geq t + f \) and \((t + a) + (t + f) = 48 \) this only leaves these two possibilities.

4) \(t + f \neq 22 \).

We first treat the case \(f \leq 14 \). Then \(K^* \cong \ker(\pi_t) \) is a code of length \(f \leq 14 \) and minimum distance \(\geq 15 \) and hence trivial. So \(\pi_t \) is injective and

\[
C(\sigma) \cong D := \pi_t(C(\sigma)) \leq \mathbb{F}_3^t, \dim(D) = 11, \text{ and } d(D) \geq \left\lceil \frac{15 - f}{2} \right\rceil.
\]

Using [5] and the fact that \(f - t \) is a multiple of 4, this only leaves the cases \((t, f) \in \{(19, 3), (21, 1)\} \). To rule out these two cases we use the fact that \(D \) is the dual of the self-orthogonal ternary code \(D^\perp = \pi_t(\ker(\pi_f)) \). The bounds in [9] give \(d(D) \leq 5 < \frac{15-3}{2} \) for \(t = 19 \) and \(d(D) \leq 6 < \frac{15-1}{2} \) for \(t = 21 \).

If \(f \geq 15 \), then \(t \leq 7 \) and \(K^* \cong \ker(\pi_t) \) has dimension \(f - t > 0 \) and minimum distance \(\geq 15 \). This is easily ruled out by the known bounds (see [5]).

5) If \(t + f = 24 \) then either \((t, f) = (24, 0) \) or \((t, f) = (22, 2) \).

Again the case \(f > t \) is easily ruled out using dimension and minimum distance of \(K^* \) as before. So assume that \(f \leq t \) and let \(D = \pi_t(C(\sigma)) \) as before. Then \(\dim(D) = 12 \) and using [5] one gets that

\[
(t, f) \in \{(24, 0), (22, 2), (20, 4)\}.
\]

Assume that \(t = 20 \). Then there is some self-dual code \(\Lambda = \Lambda^\perp \leq \mathbb{F}_3^{20} \) such that

\[
D^\perp = \pi_t(\ker(\pi_f)) \leq \Lambda = \Lambda^\perp \leq D.
\]

Clearly also \(d(\Lambda) \geq d(D) \geq 6 \), so \(\Lambda \) is an extremal ternary code of length 20. There are 6 such codes, none of them has a proper overcode with minimum distance 6. \(\square \)

Remark 3.7. If \(\sigma \in \text{Mon}(C) \) is some automorphism of order 4, then \(\sigma^2 = -1 \) or \(\sigma^2 \) has Type (24, 0, 0) in the notation of Proposition 3.6.

Proof. Assume that \(\sigma \in \text{Mon}(C) \) has order 4 but \(\sigma^2 \neq -1 \). Then \(\tau = \sigma^2 \) is one of the automorphisms from Proposition 3.6 and so \(\sigma \) is conjugate to some block diagonal matrix

\[
\sigma \sim \text{diag}(\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix})^{t/2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{f/2}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{a/2}.
\]

If \(t = 22 \) and \(f = 2 \) then The fixed code of \(\sigma \) is a self-dual code in \(\langle (1, 1, 1, 1) \rangle^{t/2} \oplus \langle (1, 1) \rangle^{f/2} \) and \(C(\sigma)^* \leq \mathbb{F}_3^{t/2+f/2} \) is a self-dual code with respect to the form \((x, y) := \sum_{i=1}^{t/2} x_i y_i - \sum_{i=t/2+1}^{t/2+f/2} x_i y_i \) which implies that \(t/2 - f/2 \) is a multiple of 4, a contradiction. \(\square \)

For the two known extremal codes all automorphisms \(\sigma \) of order 4 satisfy \(\sigma^2 = -1 \). It would be nice to have some argument to exclude the other possibility.
References

[1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997) 235-265.

[2] S. Bouyuklieva, On the automorphism group of a doubly-even (72, 36, 16) code. IEEE Trans. Inform. Theory 50 (2004) 544-547.

[3] J.H. Conway, V. Pless, On primes dividing the group order of a doubly-even (72, 36, 16) code and the group order of a quaternary (24, 12, 10) code. Discrete Math. 38 (1982) 143-156.

[4] A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, Actes, Congrès International de Mathématiques (Nice, 1970), Gauthiers-Villars, Paris, 1971, Vol. 3, 211-215.

[5] M. Grassi, Code Tables: Bounds on the parameters of various types of codes. http://www.codetables.de/

[6] W. C. Huffman, Automorphisms of codes with Applications to Extremal Doubly Even Codes of Length 48. IEEE Trans. Inform. Theory 28 (1982) 511-521.

[7] W. C. Huffman, On extremal self-dual ternary codes of lengths 28 to 40. IEEE Trans. Inform. Theory 38 (1992) 1395-1400.

[8] C.L. Mallows, N.J.A. Sloane, An upper bound for self-dual codes. Information and Control 22 (1973) 188-200.

[9] Annika Meyer, Maximal self-orthogonal codes of Type I-IV Advances in Mathematics of Communications 4 (2010) 579 - 596.