Supplementary Materials

Function of triazenido compound for electrocatalytic hydrogen production catalyzed by platinum complex

Yun-Xiao Zhang, Chen-Neng Lin and Shu-Zhong Zhan*

Table of context

1	**Fig. S1.** 1H NMR spectrum of ligand (HL)	
2	**Fig. S2.** 31P NMR spectrum of Pt(PPh$_3$)$_2$Cl$_2$ in CDCl$_3$.	
3	**Fig. S3.** 31P NMR spectrum of complex 1 in CDCl$_3$.	
4	**Fig. S4.** ESI-MS of complex 1 in methanol.	
5	**Fig. S5.** ESI-MS of Pt(PPh$_3$)$_2$Cl$_2$ in methanol.	
6	**Fig. S6.** CV of 2.5 mM HL in 0.10 M of [n-Bu$_4$N]ClO$_4$ DMF solution at a glassy carbon electrode and a scan rate of 100 mV/s, ferrocene internal standard (*).	
7	**Fig. S7.** (a) Scan rate dependence of precatalytic waves for a 0.76 mM solution of complex 1 with 0.10 M [n-Bu$_4$N]ClO$_4$, at scan rates from 50 to 300 mV/s. (b) Scan rate dependence of precatalytic waves for a 1.26 mM solution of Pt(PPh$_3$)$_2$Cl$_2$ with 0.10 M [n-Bu$_4$N]ClO$_4$, at scan rates from 50 to 300 mV/s.	
8	**Fig. S8.** Temperature dependence of cyclic voltammograms for a 0.10 M [n-Bu$_4$N]ClO$_4$ DMF solution with 3.40 mM of complex 1 (a), and 3.40 mM	
Page	Image Reference	Description
------	-----------------	-------------
2		Pt(PPh₃)₂Cl₂.
9	**Fig. S9**	CVs of 2.50 mM solution of HL with varying concentrations of acetic acid in DMF. Conditions: 0.10 M [n-Bu₄N]ClO₄ as supporting electrolyte, scan rate: 100 mV/s, glassy carbon working electrode (1 mm diameter), Pt counter electrode, Ag/AgNO₃ reference electrode. Ferrocene internal standard (*).
10	**Fig. S10**	Charge buildup versus time from electrolysis of blank (black), 9.32 µM HL (red), 9.32 µM Pt(PPh₃)₂Cl₂ (blue), the mixture of 9.32 µM HL and 9.32 µM Pt(PPh₃)₂Cl₂ (green), and 9.32 µM Pt(PPh₃)₂(L)Cl (violet) in DMF (0.10 M [n-Bu₄N]ClO₄) under -1.45 V versus Ag/AgNO₃.
11	**Fig. S11**	(a) CVs of complex Pt(PPh₃)₂Cl₂ in different concentration. (b) CVs of Pt(PPh₃)₂Cl₂ (0.25 µM) in different pH. Conditions: Glassy carbon working electrode (1 mm diameter), Pt wire counter electrode, Ag/AgCl reference electrode.
12	**Fig. S12**	(a) CVs of HL in different concentration. (b) CVs of HL (0.25 µM) in different pH. Conditions: 0.25 M phosphate buffered solution (pH 7.0), glassy carbon working electrode (1 mm diameter), Pt wire counter electrode, Ag/AgCl reference electrode.
13	**Fig. S13**	(a) GC traces after a 1-h controlled-potential electrolysis at −1.45V vs Ag/AgCl of 2.33 µM Pt(PPh₃)₂(L)Cl in 0.25 M phosphate buffer (pH 7.0). A standard of CH₄ was added for calibration purposes. (b) Measured (red) and calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical pH change over time can be calculated by the equation of \[pH = 14 + \log \left(\frac{I_t}{FV} \right) \] where \(I = \) current (A), \(t = \) time (s), \(F = \) Faraday constant (96485 C/mol), \(V = \) solution volume (0.05 L).
14	**Fig. S14**	(a) GC traces after a 1-h controlled-potential electrolysis at −1.45 V vs Ag/AgCl of 2.33 µM Pt(PPh₃)₂Cl₂ in 0.25 M phosphate buffer (pH 7.0). A standard of CH₄ was added for calibration purposes. (b) Measured (red) and
calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical pH change over time can be calculated by the equation of \(pH = 14 + \lg \sum \frac{I_t}{FV} \) where \(I \) = current (A), \(t \) = time (s), \(F \) = Faraday constant (96485 C/mol), \(V \) = solution volume (0.05 L).

Fig. S15. (a) GC traces after a 1-h controlled-potential electrolysis at −1.45 V vs Ag/AgCl of 2.33 μM HL in 0.25 M phosphate buffer (pH 7.0). A standard of CH₄ was added for calibration purposes. (b) Measured (red) and calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical pH change over time can be calculated by the equation of \(pH = 14 + \lg \sum \frac{I_t}{FV} \) where \(I \) = current (A), \(t \) = time (s), \(F \) = Faraday constant (96485 C/mol), \(V \) = solution volume (0.05 L).

Fig. S16. (a) Charge buildup versus time from 2.33 μM complex 1 in a 0.25 M buffer (pH 7.0) under -1.45 V vs Ag/AgCl. (b) Charge buildup versus time from 2.33 μM Pt(PPh₃)₂Cl₂ in a 0.25 M buffer (pH 7.0) under -1.45 V vs Ag/AgCl. (c) Charge buildup versus time from 2.33 μM HL in a 0.25 M buffer (pH 7.0) under -1.45 V vs Ag/AgCl.

Eq. S1. The calculation of TOF for Pt(PPh₃)₂Cl₂ (in DMF)

Eq. S2. The calculation of TOF for Pt(PPh₃)₂(L)Cl (in DMF)

Eq. S3. The calculation of TOF for Pt(PPh₃)₂(L)Cl (in buffer, pH 7.0)

Eq. S4. The calculation of TOF for (Pt(PPh₃)₂Cl₂ (in buffer, pH 7.0).

Eq. S5. The calculation of TOF for HL (in buffer, pH 7.0)
Table S1. Crystallographic data for HL and Pt(PPh₃)₂(L)Cl 1

Table S2. Selected bond lengths (Å) and angles (°) for HL and Pt(PPh₃)₂(L)Cl 1

Fig. S1. ¹H NMR spectrum of ligand (HL)
Fig. S2. 31P NMR spectrum of Pt(PPh$_3$)$_2$Cl$_2$ in CDCl$_3$.
Fig. S3. 31P NMR spectrum of complex 1 in CDCl$_3$.

Fig. S4. ESI-MS of complex 1 in methanol.
Fig. S5. ESI-MS of Pt(PPh$_3$)$_2$Cl$_2$ in methanol.

Fig. S6. CV of 2.50 mM HL in 0.10 M of [n-Bu$_4$N]ClO$_4$ DMF solution at a glassy carbon electrode and a scan rate of 100 mV/s, ferrocene internal standard (*).
Fig. S7. (a) Scan rate dependence of precatalytic waves for a 0.76 mM solution of complex 1 with 0.10 M [n-Bu4N]ClO4, at scan rates from 50 to 300 mV/s. (b) Scan rate dependence of precatalytic waves for a 1.26 mM solution of Pt(PPh3)2Cl2 with 0.10 M [n-Bu4N]ClO4, at scan rates from 50 to 300 mV/s.
Fig. S8. Temperature dependence of cyclic voltammograms for a 0.10 M [n-Bu4N]ClO4 DMF solution with 3.40 mM of complex 1 (a), and 3.40 mM Pt(PPh₃)₂Cl₂.
Fig. S9. CVs of 2.50 mM solution of HL with varying concentrations of acetic acid in DMF. Conditions: 0.10 M [n-Bu₄N]ClO₄ as supporting electrolyte, scan rate: 100 mV/s, glassy carbon working electrode (1 mm diameter), Pt counter electrode, Ag/AgNO₃ reference electrode. Ferrocene internal standard (*).

Fig. S10. Charge buildup versus time from electrolysis of blank (black), 9.32 μM HL (red), 9.32 μM Pt(PPh₃)₂Cl₂ (blue), the mixture of 9.32 μM HL and 9.32 μM
Pt(PPh$_3$)$_2$Cl$_2$ (green), and 9.32 µM Pt(PPh$_3$)$_2$(L)Cl (violet) in DMF (0.10 M [n-Bu$_4$N]ClO$_4$) under -1.45 V versus Ag/AgNO$_3$.

Fig. S11. (a) CVs of complex Pt(PPh$_3$)$_2$Cl$_2$ in different concentration. (b) CVs of Pt(PPh$_3$)$_2$Cl$_2$ (0.25 µM) in different pH. Conditions: Glassy carbon working electrode (1 mm diameter), Pt wire counter electrode, Ag/AgCl reference electrode.
Fig. S12. (a) CVs of HL in different concentration. (b) CVs of HL (0.25 µM) in different pH. Conditions: 0.25 M phosphate buffered solution (pH 7.0), glassy carbon working electrode (1 mm diameter), Pt wire counter electrode, Ag/AgCl reference electrode.
Fig. S13. (a) GC traces after a 1-h controlled-potential electrolysis at −1.45V vs Ag/AgCl of 2.33 μM Pt(PPh₃)₂(L)Cl in 0.25 M phosphate buffer (pH 7.0). A standard of CH₄ was added for calibration purposes. (b) Measured (red) and calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical pH change over time can be calculated by the equation of

\[pH = 14 + \lg \left(\frac{I}{F} \right) \]

where I = current (A), t = time (s), F = Faraday constant (96485 C/mol), V = solution volume (0.05 L).
Fig. S14. (a) GC traces after a 1-h controlled-potential electrolysis at −1.45 V vs Ag/AgCl of 2.33 μM Pt(PPh₃)₂Cl₂ in 0.25 M phosphate buffer (pH 7.0). A standard of CH₄ was added for calibration purposes. (b) Measured (red) and calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical pH change over time can be calculated by the equation of
\[pH = 14 + \log \left(\frac{\sum I t}{FV} \right) \]

where \(I = \) current (A), \(t = \) time (s), \(F = \) Faraday constant (96485 C/mol), \(V = \) solution volume (0.05 L).

Fig. S15. (a) GC traces after a 1-h controlled-potential electrolysis at \(-1.45 \text{ V vs Ag/AgCl}\) of 2.33 \(\mu \text{M} \) HL in 0.25 M phosphate buffer (pH 7.0). A standard of CH\(_4\) was added for calibration purposes. (b) Measured (red) and calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical
pH change over time can be calculated by the equation of \(pH = 14 + \lg \frac{\sum I}{FV} \) where \(I \) = current (A), \(t \) = time (s), \(F \) = Faraday constant (96485 C/mol), \(V \) = solution volume (0.05 L).
Fig. S16. (a) Charge buildup versus time from 2.33 μM complex 1 in a 0.25 M buffer (pH 7.0) under -1.45 V vs Ag/AgCl. (b) Charge buildup versus time from 2.33 μM Pt(PPh$_3$)$_2$Cl$_2$ in a 0.25 M buffer (pH 7.0) under -1.45 V vs Ag/AgCl. (c) Charge buildup versus time from 2.33 μM HL in a 0.25 M buffer (pH 7.0) under -1.45 V vs Ag/AgCl.

\[
TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.0234C \times 3600}{96485C \cdot \text{mol}^{-1} \times 2 \times 0.373 \times 10^{-6} \text{mol} \times 120} = 9.84\text{h}^{-1}
\]

Eq. S1. The calculation of TOF for Pt(PPh$_3$)$_2$Cl$_2$ (in DMF)

\[
TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.0603C \times 3600}{96485C \cdot \text{mol}^{-1} \times 2 \times 0.373 \times 10^{-6} \text{mol} \times 120} = 25.36\text{h}^{-1}
\]

Eq. S2. The calculation of TOF for Pt(PPh$_3$)$_2$(L)Cl (in DMF)
\[\text{TOF} = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{1.55C \times 3600}{96485C \cdot \text{mol}^{-1} \times 2 \times 0.373 \times 10^{-6} \text{mol} \times 120} = 651.87 \text{h}^{-1} \]

\[\text{Eq. S3. The calculation of TOF for Pt(PPh}_3^2\text{)(L)Cl (in buffer, pH 7.0)} \]

\[\text{TOF} = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.583C \times 3600}{96485C \cdot \text{mol}^{-1} \times 2 \times 0.373 \times 10^{-6} \text{mol} \times 120} = 245.18 \text{h}^{-1} \]

\[\text{Eq. S4. The calculation of TOF for (Pt(PPh}_3^2\text{Cl}_2 (in buffer, pH 7.0).} \]

\[\text{TOF} = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.226C \times 3600}{96485C \cdot \text{mol}^{-1} \times 2 \times 0.373 \times 10^{-6} \text{mol} \times 120} = 95.06 \text{h}^{-1} \]

\[\text{Eq. S5. The calculation of TOF for HL (in buffer, pH 7.0)} \]
Table S1. Crystallographic data for HL and Pt(PPh₃)₂(L)Cl 1

Parameter	HL	Pt(PPh₃)₂(L)Cl 1
Empirical formula	C₁₂H₁₂N₄O	C₅₂H₅₁ClN₄O₃P₂Pt
Formula weight	228.26	1072.45
λ (Å)	0.71073	0.71073
Crystal system	monoclinic	monoclinic
Space group	P2(1)/c	P2(1)/c
a/Å	18.961(4)	23.331(3)
b/Å	5.3302(11)	10.0888(13)
c/Å	25.673(10)	22.298(2)
α°	90	90
β°	115.89(2)	116.786(3)
γ°	90	90
V/Å³	2334.2(11)	4685.5(10)
Z	8	4
Dc/Mgm⁻³	1.299	1.520
F(000)	960	2160
θ range for data collection	3.19 to 27.46°	3.28 to 27.48°
Reflections collected/unique	20901/5246	23259/10452
Data/restraints/parameters	5246/0/307	10452/0/538
Goodness-of-fit on F²	0.940	1.070
Final R indices [I>2sigma(I)]	R1 = 0.0520	R1 = 0.0664
	wR2 = 0.1302	wR2 = 0.1664
R indices (all data)	R1 = 0.1278	R1 = 0.0828
	wR2 = 0.1817	wR2 = 0.1726
Table S2. Selected bond lengths (Å) and angles (°) for HL and Pt(PPh₃)₂(L)Cl 1

	HL	Complex 1		
N(1)-N(2)	1.269(3)	Pt(1)-N(2)	2.038(7)	
N(2)-N(3)	1.336(3)	Pt(1)-P(1)	2.238(2)	
N(4)-C(8)	1.333(3)	Pt(1)-P(2)	2.270(2)	
N(1)-N(2)-N(3)	110.6(2)	Pt(1)-Cl(1)	2.363(2)	
	N(1)-C(1)	1.422(3)		
	N(3)-C(8)	1.388(3)		
	N(3)-C(8)-N(4)	113.6(2)	N(3)-N(1)-N(2)	112.9(7)