Original Article

Knowledge, Attitude, and Practice of General Population toward Complementary and Alternative Medicines in Relation to Health and Quality of Life in Sungai Petani, Malaysia

Syed G. Mohiuddin1, Sohail Aziz2, Muhammad Z. Iqbal3, Atta A. Naqvi3, Rizwan Ahmed4, Mansour A. Mahmoud5, Syed A. Ghori3

1Department of Pharmacy, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong, Kedah, Malaysia, 2Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Gelugor, Penang, Malaysia, 3Department of Pharmacy Practice, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia, 4Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia, 5Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Madina, Saudi Arabia

Address for correspondence: Syed G. Mohiuddin, PhD Scholar, Department of Pharmacy, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Kedah, Malaysia. E-mail: waqarghouse@gmail.com

How to cite this article: Mohiuddin SG, Aziz S, Iqbal MZ, Naqvi AA, Ahmed R, Mahmoud MA, et al. Knowledge, Attitude, and Practice of General Population toward Complementary and Alternative Medicines in Relation to Health and Quality of Life in Sungai Petani, Malaysia. J Pharm Bioall Sci 2020;12:57-63.

INTRODUCTION

Complementary and alternative medicine (CAM) is basically a combination of diagnostic and therapeutic disciplines that are used together with allopathic or a conventional therapy.[1] In societies and regions where multiple religion and different races

Purpose: The demand of complementary and alternative medicine (CAM) has increased drastically over the past few decades. The perceptions about CAMs among general population are positive. However, the literature highlights that effectiveness and acceptance of alternative therapies among the general population is still a subject of debate. Materials and Methods: This is a cross-sectional study and the response along with demographic details was collected through a validated questionnaire; the results were analyzed by using a validated data collection tool. The results were concluded based on good, moderate, and poor responses, which were evaluated through data analysis by using the Statistical Package for the Social Sciences software version 20.0., SPSS Inc., Chicago, III, USA. A value of $P < 0.05$ was considered statistically significant.

Results: In total, 182 (44.4%) of male and 228 (55.6%) of female respondents were selected for this study. Studies showed that a greater knowledge level was observed among female respondents (15.55 ± 2.7; $P < 0.001$). The selected Chinese population had relatively good knowledge (i.e., 15.63, $P = 0.006$). People practicing Buddhism had also good knowledge. Rural population had lesser family income and showed a good practice pattern and understanding ($P = 0.006$). The positive attitude was identified among women ($P < 0.001$) with a mean score of 15.55 ± 2.7. Postgraduate participants were found to have diverse results with $SD \pm 6.23$, and 77.1% had a good attitude. A statistically significant association was observed between religion and attitude of respondents ($P < 0.001$).

Conclusion: Although a better practice was noticed in Malaysian population, more awareness is required and knowledge should be disseminated among the population to improve the overall health and quality of life in Malaysia.

KEYWORDS: Complementary and alternative medicine, knowledge, attitude, perception, quality of life
coexist in a community with larger populations, they are more likely to have more pronounced requirement of alternative therapeutic options. However, in general population an increased use has been found with their own personal beliefs and understanding.

Materials and Methods
This cross-sectional observational study aimed to evaluate the knowledge and practice among the general population. The study was conducted in Sungai Petani Malaysia, because of existing multiple races living in rural as well as urban areas. This survey-based study conducted through a validated questionnaire was designed to evaluate the knowledge, attitude, and practice (KAP). The questionnaire was initially prepared based on previous literature,[2-4] and the modified questionnaire was validated by the experts in the field of CAMs. A score of 0 was awarded to each wrong question, whereas a score of 1 was awarded to each right answer. The scoring criteria were taken from a former study performed in Malaysia by Abdullahi et al. and Aziz et al., and in India by Gawde et al. The scoring criteria were as follows:

- 0–5 right answers (<59%), which was considered poor KAP
- 6–7 right answers (60%–79%), which was considered as moderate KAP
- 8–10 right answers (≥80%), which was considered as good KAP

Data analysis
The normality of data was tested using the Statistical Package for the Social Sciences software version 20.0 (SPSS Inc., Chicago, III, USA) and Kolmogorov–Smirnov test. A value of \(P > 0.05 \) was considered statistically significant, which showed that data were nonparametric. Thus, nonparametric tests were applied for the analysis of data. The statistical significance was obtained through the chi-squared test, Mann–Whitney U test, and Kruskal–Wallis test, and the effect size was calculated using the Phi–Cramer test. A value of \(P < 0.05 \) was considered statistically significant. A Cronbach’s \(\alpha \) of 0.696 was used to determine the internal reliability of the questionnaire, which, after the deletion of a question, was found to be 0.784 and was considered reliable.

Ethical approval
The ethical approval for this study was obtained from the ethics committee of the Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong, Kedah, Malaysia (Protocol no. AUHAEC/FOP/2016/16).

Results
Demographics
Table 1 shows the overall demographic information for the 410 participants. Of these, 182 (44.4%) were men and 228 (55.6%) were women. Sixty-eight (16.6%) respondents had secondary education, 297 (72.4%) were undergraduates, and 35 (8.5%) were postgraduate. The ethnicity data showed that 179 (43.7%) respondents were Chinese, 108 (26.3%) were Malay, 93 (22.7%) were Indian, and 30 (7.3%) were of other races.

Knowledge toward complementary and alternative medicines
In total, 63 (27.2%) respondents were women who had good knowledge toward CAMs, whereas only 18

Table 1: Demographic data variables
Variables
Gender
Male
Female
Age
≤25
26–30
31–35
36–40
≥41
Ethnicity
Malay
Chinese
Indian
Others
Religion
Islam
Buddhism
Hinduism
Christianity
Others
Place of living
Rural
Urban
Employment status
Government
Private
Unemployed
Education level
No formal education
Primary
Secondary
Undergraduate
Postgraduate
Family income
≤RM 2000
RM 2001–4000
≥RM 4001
Table 2: Overall knowledge level with different variables

Variables	Poor n (%)	Moderate n (%)	Good n (%)	P value*	Effect size
Gender					
Male	13 (7.1)	151 (83.0)	18 (9.9)	<0.001	0.310
Female	43 (18.9)	122 (53.5)	63 (27.2)		
Age					
≤25	50 (17.3)	179 (61.9)	60 (20.8)	0.001	0.182
26–30	1 (1.2)	70 (87.5)	9 (11.2)		
31–35	5 (13.5)	22 (59.5)	10 (27.0)		
36–40	0 (0.0)	1 (33.3)	0 (66.7)		
≥41	0 (0.0)	1 (100.0)	0 (0.0)		
Ethnicity					
Malay	2 (1.9)	83 (76.9)	23 (21.3)	<0.001	0.254
Chinese	28 (15.6)	127 (70.9)	24 (13.4)		
Indian	21 (22.6)	38 (40.9)	34 (36.6)		
Others	5 (16.7)	25 (82.3)	0 (0.0)		
Religion					
Islam	2 (1.9)	83 (76.9)	23 (21.3)	<0.001	0.265
Buddhism	23 (16.9)	95 (69.9)	18 (13.2)		
Hinduism	19 (22.9)	34 (41.0)	30 (36.1)		
Christians	10 (12.3)	61 (75.3)	10 (12.3)		
Others	2 (100.0)	0 (0.0)	0 (0.0)		
Place of living					
Rural	11 (12.6)	55 (63.2)	21 (24.1)	0.511	–
Urban	45 (13.9)	218 (67.5)	60 (18.6)		
Employment status					
Government	9 (14.5)	41 (66.1)	12 (19.4)	0.312	–
Private	31 (14.6)	133 (62.4)	49 (23.0)		
Unemployed	16 (11.9)	99 (73.3)	20 (14.8)		
Education level					
No formal education	0 (0.0)	2 (33.3)	4 (66.7)	<0.001	0.213
Primary	4 (100.0)	0 (0.0)	0 (0.0)		
Secondary	5 (7.4)	41 (60.3)	22 (32.4)		
Undergraduate	45 (15.2)	205 (69.0)	47 (15.8)		
Postgraduate	6 (17.1)	5 (11.4)	42 (71.4)		
Family income					
≤RM 2000	11 (9.2)	82 (68.3)	27 (22.5)	0.008	0.129
RM 2001–4000	13 (13.7)	54 (56.8)	28 (29.5)		
≥RM 4001	32 (16.4)	137 (70.3)	26 (13.3)		

*Chi-squared test

(9.9%) were men who had good knowledge [Table 2]. A significant relationship was found among the male and female gender corresponding to knowledge. Younger age participants had good knowledge (20.8%). Malay individuals had comparatively better knowledge than other ethnic groups.

Attitude toward complementary and alternative medicines

As evident from Table 3, Chinese population had better attitude towards CAMs than other races, with 24 (13.4%) having good attitude and 136 (76%) having moderate attitude. In relation to ethnicity, 101 (74%) respondents practicing Buddhism were found to have moderate knowledge toward CAMs and 19 (14%) had good knowledge as compared with respondents practicing other religions. As shown in the table, on the basis of ethnicity, the effect size was 0.324 which shows moderate association between CAM use and the ethnicity.

Practice toward complementary and alternative medicines

Table 4 shows the overall response to practice questions. There was a significant association based on religion and place of living. The table also shows the impact of education level on use of CAMs with a significant value of P.

 moderate knowledge toward CAMs and 19 (14%) had good knowledge as compared with respondents practicing other religions. As shown in the table, on the basis of ethnicity, the effect size was 0.324 which shows moderate association between CAM use and the ethnicity.

Practice toward complementary and alternative medicines

Table 4 shows the overall response to practice questions. There was a significant association based on religion and place of living. The table also shows the impact of education level on use of CAMs with a significant value of P.

 moderate knowledge toward CAMs and 19 (14%) had good knowledge as compared with respondents practicing other religions. As shown in the table, on the basis of ethnicity, the effect size was 0.324 which shows moderate association between CAM use and the ethnicity.

Practice toward complementary and alternative medicines

Table 4 shows the overall response to practice questions. There was a significant association based on religion and place of living. The table also shows the impact of education level on use of CAMs with a significant value of P.

 moderate knowledge toward CAMs and 19 (14%) had good knowledge as compared with respondents practicing other religions. As shown in the table, on the basis of ethnicity, the effect size was 0.324 which shows moderate association between CAM use and the ethnicity.
Knowledge toward complementary and alternative medicines

This study focuses on substantial knowledge among general population on CAMs and the difference of their knowledge in relation to health and quality of life (QoL). There were total 63 women who had good knowledge toward CAMs, whereas only 18 men had good knowledge toward CAMs. In comparison to this study, a study in the United States examined gender’s relationship to CAMs use and experience and reported similar findings. Hence, it could be said that Malaysian women had better knowledge and were more confident toward the use of CAMs.[6,7] The study showed better knowledge among working women than the working men, which had a greater effect on the outcomes of the study.[8] This difference may be due to the fact that women were more focused on gaining knowledge on health and for the appreciable use of CAMs as adjunctive therapies.[9]

Our results reported that age was a major factor affecting the knowledge among different groups. It was observed that the acceptance and use of CAMs was found to be higher in younger or newly diagnosed cancer patients rather than the older groups or the later-stage patients.[10]

This study, based on ethnicity, showed that Malay population had good knowledge toward CAMs, whereas Chinese population was comparatively lower within the same category of “good knowledge” ($P = 0.001$). Previous studies carried out in different regions around the world also highlighted the effect

| Table 3: Overall attitude level with different variables |
|----------------|----------------|----------------|----------------|----------------|----------------|
Variables	Negative n (%)	Neutral n (%)	Positive n (%)	P value	Effect size
Gender					
Male	15 (8.2)	152 (83.5)	15 (8.2)	0.667	–
Female	17 (7.5)	197 (86.4)	14 (6.1)		
Age					
≤25	25 (8.7)	240 (83.0)	24 (8.3)	0.667	–
26–30	4 (5.0)	71 (88.8)	5 (6.2)		
31–35	3 (8.1)	34 (91.9)	0 (0.0)		
36–40	0 (0.0)	3 (100.0)	0 (0.0)		
≥41	0 (0.0)	1 (100.0)	0 (0.0)		
Ethnicity					
Malay	0 (0.0)	108 (100.0)	0 (0.0)	<0.001	0.324
Chinese	19 (10.6)	136 (76.0)	24 (13.4)		
Indian	13 (14.0)	75 (80.6)	5 (5.4)		
Others	0 (0.0)	30 (100.0)	0 (0.0)		
Religion					
Islam	0 (0.0)	108 (100.0)	0 (0.0)	<0.001	0.212
Buddhism	16 (11.8)	101 (74.3)	19 (14.0)		
Hinduism	11 (13.3)	67 (80.7)	5 (6.0)		
Christians	5 (6.2)	71 (87.7)	5 (6.2)		
Others	0 (0.0)	2 (100.0)	0 (0.0)		
Place of living					
Rural	4 (4.6)	76 (87.4)	7 (8.0)	0.434	–
Urban	28 (8.7)	273 (84.5)	22 (6.8)		
Employment status					
Government	2 (3.2)	58 (93.5)	2 (3.2)	0.159	–
Private	15 (7.0)	183 (85.9)	15 (7.0)		
Unemployed	15 (11.5)	108 (80.0)	12 (8.9)		
Education level					
No formal education	2 (33.3)	4 (66.7)	0 (0.0)	0.262	–
Primary	0 (0.0)	4 (100.0)	0 (0.0)		
Secondary	3 (4.4)	61 (89.7)	4 (5.9)		
Undergraduate	22 (7.4)	253 (85.2)	22 (7.4)		
Postgraduate	5 (14.3)	3 (8.6)	27 (77.1)		
Family income					
≤RM 2000	8 (6.7)	104 (86.7)	8 (6.7)	0.003	0.141
RM 2001–4000	13 (13.7)	69 (72.6)	13 (13.7)		
≥RM 4001	11 (5.6)	176 (90.3)	8 (4.1)		

Chi-squared test
of ethnicity on knowledge, along with the racial gap among different ethnicities.11,12 This study demarcated major ethnic differences in knowledge showing association of race on the level of knowledge.

Educational background is one of the parameters to estimate knowledge among the respondents, which could inculcate better understanding of information on CAM.13 In this study, knowledge regarding CAMs was directly proportional to level of education. The postgraduates had good knowledge toward CAMs as compared with undergraduates who had poor knowledge. Respondents with secondary education had good knowledge representing slightly higher than undergraduates as most respondents with secondary education belonged to rural areas. They appeared more knowledgeable and this translated to an increased acceptance of CAMs in rural areas.

Attitude toward complementary and alternative medicines

This study shows a proper image of disparities in attitudes among different races and ethnicities based on places of residence in Sungai Petani, Malaysia. Various studies and systemic reviews conducted in the United States, Israel, and Thailand identified that positive attitude was linked with a high prevalence of CAM’s use.7-10 A strong and significant association was observed ($P < 0.001$) among ethnicity and attitude. Previous studies have expressed minor inconsistencies between three major ethnicities in Malaysia.11-13

Table 4: Overall responses to practice questions

Variables	Poor n (%)	Fair n (%)	Good n (%)	P value	Effect size
Gender					
Male	150 (82.4)	24 (13.2)	8 (4.4)	0.763b	–
Female	182 (79.8)	33 (14.5)	13 (5.7)	–	–
Age					
≤25	228 (78.9)	46 (15.9)	15 (5.2)	0.457	–
26–30	71 (88.8)	7 (8.8)	2 (2.5)	–	–
31–35	29 (78.4)	4 (10.8)	4 (10.8)	–	–
36–40	3 (100.0)	0 (0.0)	0 (0.0)	–	–
≥41	1 (100.0)	0 (0.0)	0 (0.0)	–	–
Ethnicity					
Malay	103 (95.4)	3 (2.8)	2 (1.9)	<0.001	0.275
Chinese	136 (76.0)	29 (16.2)	29 (16.2)	–	–
Indian	65 (69.9)	23 (24.7)	23 (24.7)	–	–
Others	28 (93.3)	2 (6.7)	2 (6.7)	–	–
Religion					
Islam	103 (95.4)	3 (2.8)	2 (1.9)	<0.001	0.289
Buddhism	102 (75.0)	23 (16.9)	11 (8.1)	–	–
Hinduism	55 (63.3)	23 (27.7)	5 (6.0)	–	–
Christians	70 (86.4)	8 (9.9)	3 (7.5)	–	–
Others	2 (100.0)	0 (0.0)	0 (0.0)	–	–
Place of living					
Rural	60 (69.0)	20 (23.0)	7 (8.0)	0.006b	0.159
Urban	272 (84.2)	37 (11.5)	14 (4.3)	–	–
Employment status					
Government	50 (80.6)	6 (9.7)	6 (9.7)	0.099	–
Private	17 (84.0)	28 (13.1)	6 (2.8)	–	–
Unemployed	103 (76.3)	23 (17.0)	9 (6.7)	–	–
Education level					
No formal education	4 (66.7)	2 (33.3)	0 (0.0)	0.002	0.112
Primary	4 (100.0)	0 (0.00)	0 (0.0)	–	–
Secondary	60 (88.2)	3 (4.4)	5 (7.4)	–	–
Undergraduate	239 (80.5)	42 (14.2)	16 (5.4)	–	–
Postgraduate	2 (5.7)	8 (22.9)	25 (71.4)	–	–
Family income					
≤RM 2000	95 (79.2)	8 (6.7)	17 (14.2)	0.327	–
RM 2001–4000	73 (76.8)	20 (20.1)	2 (2.1)	–	–
≥RM 4001	164 (84.1)	20 (10.3)	11 (5.6)	–	–

aChi-squared test
Overall, in this study Chinese respondents had good positive attitude toward CAMs. The study also reported that the majority of Malay along with Indians had neutral attitude toward CAMs. The findings of this study were in accordance with an earlier study conducted in Selangor and Kuala Lumpur, in which Chinese population was found to have better attitude and understanding toward CAMs. This could be mainly due to the fact that most of the Chinese have strong faith on traditional Chinese medicine.

In all the questions asked with associations, it was observed that education level has a significant effect on attitude. Increasing level of education promotes a more positive attitude as seen in postgraduate population having diverse results with SD ± 6.23. The highest level of education in this study was postgraduate, which showed a remarkably good attitude toward CAMs. A similar study performed on medical students regarding CAMs also supported our study observations that with an increase in level of education, the attitude was comparatively better. The postgraduate students were good in overall understanding as compared with the undergraduate students.

Practice toward complementary and alternative medicines

A number of studies have been performed on knowledge, attitude and practice towards CAM, but mostly the focus was healthcare practitioners or students. This study explains the practice of general population of Sungai Petani, Malaysia toward the use of CAM. The study was divided into four major age groups to explain the effect on practice. No significant association was found in age and individual question on practice of respondents. Despite gender differences, age was reported in many studies accordingly to measure the difference in practice, which is widely used worldwide as a major independent factor.

This study explains the racial differences and their effect on practice. A statistically high significant association was observed in ethnic groups on the practice with \(P < 0.001 \). This study identified that Indian population had good practice, which was better among all ethnicities. Therefore, Chinese and Malay population were found to have comparatively moderate practice and weaker association between ethnic groups.

Limitation

There are certain limitations associated with this study. This study was conducted in a single city, which is not densely populated and considered as under developing city. The respondents selected were mostly belonging to younger age of less than 30 years. Current study has fewer number of participants in the age group above 60 years, and hence need further elucidation. An unequal number of respondents was included based on educational, religious, ethnic, and financial levels. Therefore, the study was unable to conclude on the exact difference in association, which is also important limitation of this study.

Conclusion

A significant association was observed among different religious and ethnic groups. The study highlights a higher knowledge, positive attitude, and moderate practice in a particular group among Malaysian population. To increase the practice and better attitude of whole population, there is a need to make and implement certain strategies regarding the educational interventions. This study explains the overall knowledge and attitude of the general population regarding CAM therapies highlighting race and socioeconomic as determinants for CAM selection in the major and minor illnesses. Certain studies prove that better knowledge resulted in better attitude and practice. The promotional and informative campaigns on CAMs should be encouraged by the health authority of Malaysia to improve the overall acceptance, use, and health-related QoL.

Acknowledgement

The author thanks all the participants and all the people included in conducting this study. The author is also thankful to USM fellowship for their support.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Pelletier KR, Marie A, Krasner M, Haskell WL. Current trends in the integration and reimbursement of complementary and alternative medicine by managed care, insurance carriers, and hospital providers. Am J Health Promot 1997;12:112-22.
2. Mankar NN, Zad VR, Agharia MM, Sawant SD, Bansode AA. Knowledge, attitude and practices towards ayurvedic medicine use among second year MBBS students. J Evol Med Dent Sci 2015;4:223-7.
3. Mehralian G, Yousefi N, Hashemian F, Maleksabet H. Knowledge, attitude and practice of pharmacists regarding dietary supplements: a community pharmacy- based survey in Tehran. Iran J Pharm Res 2014;13:1457-65.
4. Gawde SR, Shetty YC, Pawar DB. Knowledge, attitude, and practices toward ayurvedic medicine use among allopathic resident doctors: a cross-sectional study at a tertiary care hospital in India. Perspect Clin Res 2013;4:175-80.
5. Abdullahi A, Hassan A, Kadarman N, Saleh A, Baraya YS, Lua PL. Food safety knowledge, attitude, and practice toward compliance with abattoir laws among the abattoir workers in Malaysia. Int J Gen Med 2016;9:79-87.

6. Aziz S, Iqbal MZ, Iqbal MS, Mohiuddin SG, Sivadasan S, Veerasamy R, Ali AN, Prajapati SK and Chandran JM. Attitude towards vaccination: A cross sectional study among the parents in Sungai Petani, Kedah, Malaysia. Int J Pharm Sci & Res 2019;10:2465-72.

7. Ni H, Simile C, Hardy AM. Utilization of complementary and alternative medicine by United States adults: results from the 1999 national health interview survey. Med Care 2002;40:353-8.

8. Jean D, Cyr C. Use of complementary and alternative medicine in a general pediatric clinic. Pediatrics 2007;120:138-41.

9. Suleiman AK. Attitudes and beliefs of consumers of herbal medicines in Riyadh, Saudi Arabia. J Community Med Health Educ 2014;4:269.

10. Zerabruk S, Yirga G. Traditional knowledge of medicinal plants in Gindeberet district, Western Ethiopia. South African Journal of Botany. 2012 1;78:165-9.

11. Vitale K, Mundar R, Sović S, Bergman-Marković B, Janev Holcer N. Use of complementary and alternative medicine among family medicine patients—example of the town of Čakovec. Acta Med Croat 2014;68:345-51.

12. Fouladbachsh JM, Stommel M. Gender, symptom experience, and use of complementary and alternative medicine practices among cancer survivors in the U.S. cancer population. Oncol Nurs Forum 2010;37:7-15.

13. Panchal GS, Mehta AS, Panchal JR, Balat JD, Nair G. Knowledge, attitude and practice of non-medicinal alternative therapy in general population of Ahmedabad, India. J Clin Exp Res 2014;2:115-22.

14. Islam FM, Chakrabarti R, Dirani M, Islam MT, Ormsby G, Wahab M, et al. Knowledge, attitudes and practice of diabetes in rural Bangladesh: the Bangladesh population based diabetes and eye study (BPDES). PLoS One 2014;9:110368.

15. Zuzak TJ, Boňková I, Careddu D, Garami M, Hadjipanayis A, Jazbec I, et al. Use of complementary and alternative medicine by children in Europe: published data and expert perspectives. Complement Ther Med 2013;1:34-47.

16. Ahmad R, Naqvi AA, Ahmad N, Baraka M, Mastour M, Al Sharedah S, et al. Awareness, perception, attitude, and knowledge regarding complementary and alternative medicines (CAMs) among the pharmacy and medical students of a public university in Saudi Arabia. Arch Pharma Pract 2017;8:51-63.

17. Naqvi AA, Ahmad R, Elewi AAW, AlAwa AH, Alasiri MJ. Dietary supplement use among undergraduate male students in health and non-health cluster colleges of a public-sector university in Dammam, Saudi Arabia. BMC Complement Altern Med 2018;18:269.

18. Naqvi AA, Ahmad R, Zehra F, Yousuf R, Kachela B, Nehal Nadir M. Dietary supplement use among students of pharmacy colleges in the city of Karachi, Pakistan: prevalence, opinions, and attitudes. J Diet Suppl 2019;16:166-78.