ON THE GEOMETRY OF WARPED FOLIATIONS

SZYMON M. WALCZAK

Abstract. We discuss the geometry of warped foliations. After examining the Levi-Civita connection, and the curvature tensor, we describe the formulae for sectional, Ricci and scalar curvatures. In the final part of this note, we present some examples.

1. Introduction

The notion of the warped foliation was introduced in [10] by the author of this note. It is a generalization of the M. Berger’s modification of a Riemannian structure of S^3 along the fibers of the Hopf fibration called Berger spheres [5].

Warped foliations were widely studied in the point of view of the Gromov-Hausdorff convergence [2]. The sufficient and necessary condition of converging in Gromov–Hausdorff sense of a Riemannian submersion and Riemannian foliation with all leaves compact to the space of leaves with a metric defined by Hausdorff distance of leaves were already developed in [7] and [8]. Moreover, in [9], the author of this paper has presented the connection between the Hausdorff leaf space for a given foliation and the warped foliation.

2. Preliminaries

At the beginning, let us recall the definitions needed in this note.

Let (M, g) be a Riemannian manifold, while ∇ the Levi-Civita connection on M. Let P be a smooth distribution on (M, g). Following [3], one can define a smooth tensor fields T of type $(1, 2)$ by the formula

$$g(T(U, V), X) = g\left(\frac{1}{2} \nabla_U V + \frac{1}{2} \nabla_V U, X\right),$$

$$g(T(U, X), V) = -g(T(U, V), X),$$

$$g(T(X, \cdot), Y) = g(T(X, \cdot), U) = 0,$$

and A (also of type $(1, 2)$) by

$$g(A(U, V), X) = g\left(\frac{1}{2} \nabla_U V - \frac{1}{2} \nabla_V U, X\right),$$

$$g(A(U, X), V) = -g(A(U, V), X),$$

$$g(A(X, \cdot), Y) = g(A(X, \cdot), U) = 0,$$

where $U, V \in P$, and $X, Y \in P^\perp$. T is called the second fundamental form of P, while A the integrability tensor. It follows from Frobenius Theorem [3] that for P integrable the integrability tensor A vanishes.

Now, consider a foliation \mathcal{F} on the manifold (M, g). There are two natural distributions on (M, g) defined by \mathcal{F}. One of them, consisting of all vectors tangent to the leaves of \mathcal{F} is called tangent, and will be also denoted by \mathcal{F}. The second one, called orthogonal

1 Theory of foliations can be found in [1], the amazing book written by A. Candel and L. Conlon
consists of all vectors which are \(g \)-orthogonal to the leaves of \(\mathcal{F} \). It will be denoted by \(\mathcal{F}^\perp \).

Denote by \(T \) the second fundamental form of \(\mathcal{F} \). Since \(\mathcal{F} \) is integrable, its integrability tensor vanishes everywhere. Let \(S \) denotes the second fundamental form, while \(A \) the integrability tensor of \(\mathcal{F}^\perp \).

Let us recall that a foliation \(\mathcal{F} \) satisfying

\[L_U g(X, Y) = 0, \]

where \(L \) denotes the Lie differentiation, \(U \in \mathcal{F} \), \(X, Y \in \mathcal{F}^\perp \), is called *Riemannian foliation*\[4\].

Theorem 2.1. \(\mathcal{F} \) is Riemannian if and only if the second fundamental form \(S \) of the orthogonal distribution \(\mathcal{F}^\perp \) vanishes.

A proof can be found in \[6\].

Throughout this paper, we will also use the following denotations:

\[H_f(U) = \nabla_U \nabla f, \quad h_f(X, Y) = \langle \nabla_X \nabla f, Y \rangle. \]

3. Warped foliations

Let \((M, \mathcal{F}, g) \) be a foliated Riemannian manifold. Consider a smooth function \(f : M \to (0, \infty) \) constant along the leaves of \(\mathcal{F} \). Such function is often called a basic function. Modify the Riemannian structure \(g \) to \(g_f \) in the following way:

Let \(g_f(v, w) = f^2 g(v, w) \) for vectors \(v, w \) tangent to the foliation \(\mathcal{F} \). Next, if at least one of vectors \(v, w \) is perpendicular to \(\mathcal{F} \) then set \(g_f(v, w) = g(v, w) \). Foliated Riemannian manifold \((M, \mathcal{F}, g_f) \) we call the *warped foliation* and denote by \(M_f \). The function \(f \) is called the *warping function*.

Briefly speaking, one can understand warping as a conformal modification of a Riemannian structure of a foliated Riemannian manifold \((M, \mathcal{F}, g) \) along the leaves of \(\mathcal{F} \) with a dilatation equal, for given leaf, to the value of a warping function on this leaf (see Fig. 1). The orthogonal vectors remain unchanged.

![Figure 1. Warping of a foliation.](image)

In the following section, we will study the geometry of the warped foliations on a compact Riemannian foliated manifolds. We will calculate the Levi-Civita connection, the curvature tensor, and the curvatures of the warped foliations.

4. Levi-Civita connection and curvature tensor

Let \((M, \mathcal{F}, g) \) be a foliated Riemannian manifold of dimension \(p \) and codimension \(q \). Let \(\nabla \) denote the Levi-Civita connection on \((M, \mathcal{F}, g) \), and let \(f : M \to (0, \infty) \) be a warping function on \(M \). Denote by \(\nabla^f \) the Levi-Civita connection of the warped foliation \(M_f \).
Theorem 4.1. The Levi-Civita ∇^f on M_f is given by

$$\nabla^f_XY = (\nabla_XY)^{\perp} + \frac{1}{f^2}(\nabla_XY)^\top - \frac{1-f^2}{f^2}A(X,Y),$$

$$\nabla^f_UV = (\nabla_UV)^\top + f^2(\nabla_UV)^{\perp} - \frac{1}{2}(U,V) \cdot \nabla f^2,$nabla^f_0U = \nabla_XU + \frac{1}{2}\frac{f^2}{f^2}U - (1-f^2)A(X,U),$$

$$\nabla^f_XU = \nabla_UX + \frac{1}{2}\frac{f^2}{f^2}U - (1-f^2)A(X,U),$$

where X and Y are orthogonal, but U and V tangent to \mathcal{F}.

Proof. By the definition of g_f, and by the Koszul formula

$$g_f(\nabla F,G) = \frac{1}{2}(Eg_f(F,G) + Fg_f(G,E) - Gg_f(E,F) + g_f([E,F],G) - g_f([F,G],E) + g_f([G,E],F)).$$

Direct calculations give the statement. \qed

Following Theorem 4.1 one can calculate the curvature tensor R^f for the warped foliation M_f. Let $W,X,Y,Z \in \mathcal{F}^\perp$ and $F,G,U,V \in \mathcal{F}$ be vector fields on M. We have

$$\langle R^f(X,Y)Z,W \rangle_f = \langle R(X,Y)Z,W \rangle - 2(1-f^2)\langle A(X,Y),A(Z,W) \rangle$$

$$+ \langle A(X,W),A(Y,Z) \rangle - \langle A(X,Z),A(Y,W) \rangle - \frac{1-f^2}{f^2}(\langle S(X,W),S(Y,Z) \rangle - \langle S(X,Z),S(Y,W) \rangle),$$

$$\langle R^f(X,Y)Z,U \rangle_f = \langle R(X,Y)Z,U \rangle + f \cdot Xf \cdot \langle A(Y,Z),U \rangle$$

$$- f \cdot Yf \cdot \langle A(X,Z),U \rangle - 2f \cdot Zf \cdot \langle A(X,Y),U \rangle$$

$$- \frac{Xf}{f} \langle S(Y,Z),U \rangle - \frac{Yf}{f} \langle S(X,Z),U \rangle$$

$$- (1-f^2)(\langle \nabla_XA(Y,Z),U \rangle + \langle \nabla_YA(X,Z),U \rangle)$$

$$- \langle A(X,Y),T(U,Z) \rangle),$$

and

$$\langle R^f(X,U)Y,V \rangle_f = f^2\langle R(X,U)Y,V \rangle + f\langle \nabla_X\nabla f,Y \rangle \langle U,V \rangle$$

$$- f \cdot Xf \cdot \langle T(U,V),Y \rangle - f \cdot Yf \cdot \langle T(U,V),X \rangle$$

$$+ f^2(1-f^2)\langle A(X,V),A(Y,U) \rangle$$

$$+ (1-f^2)(\langle S(X,V),A(Y,U) \rangle)$$

$$- \langle S(Y,V),\langle \nabla_XU \rangle^\perp \rangle - \langle \langle \nabla_U S \rangle(X,Y),V \rangle)$$

Moreover, since

$$\langle R^f(U,V)X,Y \rangle + \langle R^f(V,X)U,Y \rangle + \langle R^f(X,U)V,Y \rangle = 0,$$
then
\[
\langle R^f(U,V)X,Y \rangle_f = f^2 \langle R(U,V)X,Y \rangle \\
+ f^2 (1 - f^2) (\langle A(X,V), A(Y,U) \rangle - \langle A(Y,V), A(X,U) \rangle) \\
+ 2(1 - f^2) (\langle S(X,V), A(Y,U) \rangle - \langle S(Y,V), A(X,U) \rangle).
\]

In addition,
\[
\langle R^f(U,V)P,X \rangle_f = f^2 \langle R(U,V)P,X \rangle \\
+ f^2 (1 - f^2) \langle A(X,U), T(V,P) \rangle \\
- f^2 (1 - f^2) \langle A(X,V), T(U,P) \rangle \\
- f(1 - f^2) \langle A(\nabla f, X), U \rangle \\
+ f(1 - f^2) \langle U,P \rangle \langle A(\nabla f, X), V \rangle \\
+ f(U,P) \langle H_f(V), X \rangle - f(V,P) \langle H_f(U), X \rangle,
\]
and
\[
\langle R^f(U,V)P,Q \rangle_f = f^2 \langle R^\top(U,V)P,Q \rangle \\
- f^3 \langle U,P \rangle \langle \nabla f, T(V,Q) \rangle - f^3 \langle V,Q \rangle \langle \nabla f, T(U,P) \rangle \\
+ f^4 \langle T(U,P), T(V,Q) \rangle + f^2 \langle U,P \rangle \langle V,Q \rangle \|\nabla f\|^2 \\
+ f^3 \langle V,P \rangle \langle \nabla f, T(U,Q) \rangle + f^3 \langle U,Q \rangle \langle \nabla f, T(V,P) \rangle \\
- f^4 \langle T(V,P), T(U,Q) \rangle - f^2 \langle V,P \rangle \langle U,Q \rangle \|\nabla f\|^2.
\]

where \(R \) denotes the curvature tensor of \((M, g)\).

5. Curvatures of warped foliations

We are now able to calculate the curvatures for \(M_f \). Let \(U, V \) be tangent, while \(X, Y \) orthogonal vectors tangent to \(M_f \) at point \(x \). The natural consequence of the above section is the following theorem.

Theorem 5.1. The sectional curvature \(\kappa^f \) of a warped foliations \(M_f \) satisfies

\[
\kappa^f(X,Y) = \kappa(X,Y) + 3(1 - f^2)\|A(X,Y)\|^2 \\
+ \frac{1 - f^2}{f^2} \|S(X,Y)\|^2 - \frac{1 - f^2}{f^2} \langle S(X,X), S(Y,Y) \rangle,
\]

\[
\kappa^f(X,U) = \kappa(X,U) - \frac{1}{f} h_f(X,X) + 2fXf(T(U,U),X) \\
- (1 - f^2) [(\langle \nabla U, S \rangle(X,X), U) - \|S(X,X)\|^2] \\
- f^2 (1 - f^2) \|A(X,U)\|^2,
\]

\[
\kappa^f(U,V) = \frac{\hat{\kappa}(U,V)}{f^2} - \frac{\|\nabla f\|^2}{f^2} - f^4 \langle T(U,U), T(V,V) \rangle \\
+ f^4 \|T(U,V)\|^2 + f \langle \nabla f, T(V,V) \rangle + f \langle \nabla f, T(U,U) \rangle.
\]

where \(\hat{\kappa} \) denotes the sectional curvature of a leaf.

Proof. Follows directly from the formulae for curvature tensor from the previous section. \(\square \)
We will now calculate the Ricci tensor, and the Ricci curvature for the warped foliation M_f. Let $U_1, \ldots, U_p, X_1, \ldots, X_q$ be an orthogonal basis on M_f in a point x. Let us recall, that for any $E, F \in T_xM_f$ we have
\[
\operatorname{Ric}^f(E, F) = \sum_{i=1}^p \langle R^f(U_i, E)F, U_i \rangle_f + \sum_{j=1}^q \langle R^f(X_j, E)F, X_j \rangle_f,
\]
where $\langle \cdot, \cdot \rangle_f = g_f(\cdot, \cdot)$. Set $\bar{U}_i = fU_i$, $i = 1, \ldots, p$. $\bar{U}_1, \ldots, \bar{U}_p, X_1, \ldots, X_q$ form orthogonal basis in T_xM. By the results of Section 4, for any U, V tangent to \mathcal{F}
\[
\langle R^f(U_i, U)V, U_i \rangle_f = \langle R^T(\bar{U}_i, U)V, \bar{U}_i \rangle
\]
\[
- f^2 \langle T(\bar{U}_i, \bar{U}_i), T(U, V) \rangle + \langle T(\bar{U}_i, U), T(\bar{U}_i, V) \rangle
\]
\[
- \langle U, V \rangle \| \nabla f \|^2 + \langle \bar{U}_i, U \rangle \langle \bar{U}_i, V \rangle \| \nabla f \|^2
\]
\[
+ f \langle T(U, V), \nabla f \rangle + f \langle U, V \rangle \langle T(\bar{U}_i, \bar{U}_i), \nabla f \rangle
\]
\[
+ f \langle \bar{U}_i, U \rangle \langle T(\bar{U}_i, V), \nabla f \rangle + f \langle \bar{U}_i, V \rangle \langle T(\bar{U}_i, U), \nabla f \rangle
\]
\[\text{and}\]
\[
\langle R^f(X_j, U)V, X_j \rangle_f = f^2 \langle R(X_j, U)V, X_j \rangle
\]
\[
+ (1 - f^2) [\langle S(X_j, U), S(X_j, V) \rangle + \langle \nabla_U S(X_j, X_j), V \rangle]
\]
\[
+ f^2 (1 - f^2) \langle A(X_j, U), A(X_j, V) \rangle
\]
\[
- 2fX_jf \langle T(U, V), X_j \rangle
\]
\[
+ f \langle \nabla x_j \nabla f, X_j \rangle \langle U, V \rangle.
\]
Recall that
\[
\operatorname{Ric}^f(U, V) = \sum_{i=1}^p \langle R^f(U_i, U)V, U_i \rangle_f + \sum_{i=1}^q \langle R^f(X_j, U)V, X_j \rangle_f.
\]
Finally
\[
(2) \quad \operatorname{Ric}^f(U, V) = \operatorname{Ric}^T(U, V) + f^2 \operatorname{Ric}^A(U, V)
\]
\[
- f^2 \langle H^T, T(U, V) \rangle + f \langle U, V \rangle \langle H^T, \nabla f \rangle
\]
\[
- (p - 1) \langle U, V \rangle \| \nabla f \|^2 + pf \langle T(U, V), \nabla f \rangle
\]
\[
+ f^2 \langle T^T U, T^T V \rangle - f^2 (1 - f^2) \langle A^T U, A^T V \rangle
\]
\[
+ (1 - f^2) \langle S^T U, S^T V \rangle + (1 - f^2) \text{tr} A \langle (\nabla_U S)(\cdot, \cdot), V \rangle
\]
\[
- f \langle U, V \rangle \text{tr} A h_f
\]
where

\[
\langle T^\top U, T^\top V \rangle = \sum_{i=1}^p \langle T_{U}, u_i, T_{U}, v_i \rangle,
\]

\[
\langle A^\perp U, A^\perp V \rangle = \sum_{i=1}^q \langle A_{U}, u_i, A_{U}, v_i \rangle,
\]

\[
\langle S^\perp U, S^\perp V \rangle = \sum_{i=1}^q \langle S_{U}, u_i, S_{U}, v_i \rangle,
\]

\[
H^\mathcal{F} = \sum_{i=1}^p T(U_i, U_i),
\]

\[
tr^\perp F(\cdot, \cdot) = \sum_{i=1}^q F(X_i, X_i).
\]

Now, let \(X, Y\) be orthogonal to \(\mathcal{F}\). Similarly, we get

(3) \[\text{Ric}^f(X, Y) = \text{Ric}^\perp(X, Y) + \text{Ric}^\mathcal{F}(X, Y)\]

\[= (1 - f^2) \langle A_{X}^\perp, A_{Y}^\perp \rangle + 3(1 - f^2) \langle A^\perp X, A^\perp Y \rangle + \frac{Xf}{f} \langle H^\mathcal{F}, Y \rangle + \frac{Yf}{f} \langle H^\mathcal{F}, X \rangle - \frac{h_f(X, Y)}{f} + \frac{1 - f^2}{f^2} \langle H^\perp, S(X, Y) \rangle - \frac{1 - f^2}{f^2} \langle (S_{X}^\top, A_{Y}^\top) - tr^\perp ((\nabla.S)(X, Y), \cdot) \rangle - \langle S_{Y}^\top, (\nabla^\perp_X)^\top \rangle - \langle S_{X}^\top, S_{Y}^\perp \rangle,\]

with

\[H^\perp = \sum_{i=1}^q T(X_i, X_i),\]

\[\langle S_{X}^\top, A_{Y}^\top \rangle = \sum_{i=1}^p \langle S_{U}, u_i, A_{Y}, u_i \rangle,\]

\[tr^\perp \langle (\nabla.S)(X, Y), \cdot \rangle = \sum_{i=1}^p \langle (\nabla_{U_i} S)(X, Y), u_i \rangle,\]

\[\langle S_{Y}^\top, (\nabla^\perp_X)^\top \rangle = \sum_{i=1}^q \langle S_{Y}, u_i, \nabla^\perp_X u_i \rangle,\]

\[\langle S_{X}^\top, S_{Y}^\perp \rangle = \sum_{i=1}^q \langle S_{X}, u_i, S_{Y}^\perp u_i \rangle.\]
Theorem 5.2. The Ricci curvature $U \in F$ where $(M$ warped foliation

\begin{align*}
\text{Proof.}\quad & \top \\
\text{Let } X \in F, \quad \text{where } f \in F.
\end{align*}

Finally, if X is orthogonal and U tangent to \mathcal{F}, we have

\begin{align*}
\text{(4)} \quad \text{Ric}^f(X, U) &= \text{Ric}^\perp(X, U) + \text{Ric}^\top(X, U) \\
&= 3f \langle A(\nabla f, X), U \rangle + (p - 1) \frac{1 - f^2}{f} \langle A(\nabla f), U \rangle \\
&\quad - \frac{p - 1}{f} h_f(U, X) + (1 - f^2) \langle A_X^\top, T_U^\top \rangle \\
&\quad + (1 - f^2) \langle A(U, X), H^\mathcal{F} \rangle + \frac{1}{f} \langle S(X, \nabla f), U \rangle \\
&\quad + (1 - f^2) \text{tr}^\bot \langle (\nabla A)(X, \cdot) - (\nabla X A)(\cdot), U \rangle \\
&\quad - \frac{X f}{f} \langle H^\perp, U \rangle,
\end{align*}

where $(\nabla A)(X, \cdot) = \sum_{i=1}^q (\nabla_{X_i} A)(X, X_i)$.

Let $E \in T_x M_f$ be an unit vector. We have $E = aU + bX$, where $|U|_f = |X|_f = 1$, $U \in \mathcal{F}^\top, X \in \mathcal{F}^\perp$ and $a^2 + b^2 = 1$. Note that Ricci curvature ric^f in a point x for the warped foliation M_f is given by the formula

$$\text{ric}^f(E) = \text{Ric}^f(E, E) = a^2 \text{Ric}^f(U, U) + 2ab \text{Ric}^f(X, U) + b^2 \text{Ric}^f(X, X).$$

Theorem 5.2. The Ricci curvature ric^f in a point x for the warped foliation M_f satisfies

\begin{align*}
\text{ric}^f(E) &= a^2 \langle A(\nabla f, X), U \rangle + f^2 \langle A(\nabla f), U \rangle \\
&\quad + 2ab \langle A(U, X), H^\mathcal{F} \rangle + \frac{1}{f} \langle A(\nabla f), X \rangle \\
&\quad - \frac{p - 1}{f} \langle H^\perp, U \rangle \\
&\quad + \frac{1}{f} \langle S(X, \nabla f), U \rangle \\
&\quad + (1 - f^2) \langle A_X^\top, T_U^\top \rangle \\
&\quad + (1 - f^2) \langle A(U, X), H^\mathcal{F} \rangle \\
&\quad + \frac{1}{f} \langle S(X, \nabla f), U \rangle \\
&\quad - \frac{X f}{f} \langle H^\perp, U \rangle.
\end{align*}

Proof. The proof follows directly from the formulæ [2]-[3]. \qed

Finally, we can formulate how the scalar curvature changes while the foliation is warped by a function f.

Theorem 5.3. The scalar curvature \(s^f \) of the warped foliation \(M_f \) satisfies
\[
s^f = s^F + f^2 (s^\top)^\perp + s^\perp
\]
\[
- f^2 \|H^F\|^2 + \frac{1}{f} \langle H^F, \nabla f \rangle - \frac{p(p-1)\|\nabla f\|^2}{f^2}
+ p \langle H^F, \nabla f \rangle + \sum_{j=1}^p (f^2 \|T^j U\|^2 - f^2 (1 - f^2)\|A^\perp U_j\|^2)
+ (1 - f^2)\|S^\perp U\|^2 + (1 - f^2) \text{tr}^\perp \langle (\nabla U, S)(\cdot, \cdot), U_j \rangle - \frac{\text{tr}^\perp h_f}{f}
- \sum_{i=1}^q ((1 - f^2)\|A^\top_{X_i}\|^2 + 3(1 - f^2)\|A^\perp X_i\|^2) + \frac{2}{f} \langle H^F, \nabla f \rangle
- \frac{p \text{tr}^\perp h_f}{f} + \frac{1 - f^2}{f^2} \langle H^\perp, H^\perp \rangle - \sum_{i=1}^q (\frac{1 - f^2}{f^2} \langle S_{X_i}, A^\top_{X_i} \rangle)
- \text{tr}^\top \langle (\nabla S)(X_i, X_i), \cdot \rangle - \langle S_{X_i}, (\nabla X_i)^\top \rangle - \langle S_{X_i}, S_{X_i}^\perp \rangle).
\]
where \(s^\top = \sum_{i=1}^q \text{Ric}^\perp(U_i, U_i) \).

Proof. It follows directly from the formula
\[
s^f(x) = \sum_{i=1}^m \text{ric}^f(E_i),
\]
and Theorem 5.2.

6. Examples

We now will study some examples of warped foliations and its curvatures.

Let \((M, g)\) be a compact 2-dimensional foliated manifold carrying a 1-dimensional foliation \(\mathcal{F}\). Let suppose that the sectional curvature of the manifold \(\kappa = 0\). Let \((f_n)_{n \in \mathbb{N}}\) be a sequence of constant warping functions such that \(f_n = \frac{1}{n}\).

Theorem 6.1. \(\lim_{n \to \infty} \kappa^f_n = -\langle (\nabla S)(X, X), U \rangle + \|S(X, U)\|^2\).

Proof. By Theorem 5.1,
\[
\kappa^f(X, U) = \kappa(X, U) + \frac{1}{f} h_f(X, X) + 2 f X f \langle T(U, U), X \rangle
- (1 - f^2)(\langle (\nabla U S)(X, X), U \rangle - \|S(X, U)\|^2)
- f^2 (1 - f^2)\|A(X, U)\|^2;
\]
where \(X\) and \(U\) are vectors orthogonal and tangent to \(\mathcal{F}\), respectively. Since \(\mathcal{F}\) is a foliation of codimension one, the integrability tensor \(A\) of the orthogonal distribution vanishes everywhere. Moreover, \(Ef = 0\) for any vector field \(E\) on \(M\). Again,
\[
\kappa^f_n(X, U) = \kappa(X, U) - (1 - f^2)(\langle (\nabla U S)(X, X), U \rangle - \|S(X, U)\|^2).
\]
Recall that \(\kappa(X, U) = \kappa = 0\), and \(f_n \to 0\). Finally,
\[
\lim_{n \to \infty} \kappa^f_n = -\langle (\nabla S)(X, X), U \rangle + \|S(X, U)\|^2.
\]
This ends our proof.
Corollary 6.1. The sectional curvature of a warped by constant functions 1-dimensional Riemannian foliation on a compact 2-dimensional Riemannian manifold of curvature equal to zero is constant, and remains zero.

Proof. By Theorem 2.1, the second fundamental form S vanishes everywhere. □

References

[1] A. Candel, L. Conlon, Foliations I, American Mathematical Society, Rhode Island, 2000.
[2] M. Gromov, Metric structures for Riemannian and Non-Riemannian spaces, Birkhäuser, Boston, 1999.
[3] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Wiley & Sons, New York, 1963.
[4] I. Moerdijk, J. Mrčun, Introduction to Foliations and Lie Groupoids, Cambridge University Press, Cambridge, 2003.
[5] P. Petersen, Riemannian geometry, Springer, New York, 2006.
[6] B. L. Reinhart, Differential Geometry of Foliations, Springer-Verlag, New York-Berlin, 1983.
[7] Sz. M. Walczak, Collapse of foliated manifolds, Diff. Geom. App., Vol 25/6 (2007), pp 649-654.
[8] Sz. M. Walczak, Collapse of warped submersions, Ann. Pol. Math. 89.2, (2006) 139-146.
[9] Sz. M. Walczak, Hausdorff leaf spaces for foliations of codimension one, submitted to the Journal of the Mathematical Society of Japan (September 2009).
[10] Sz. M. Walczak, O deformacjach foliacji, thesis [in Polish], University of Łódź, 2005.