Rising Health Expenditure Due to Non-Communicable Diseases in India: An Outlook

Barik, Debasis and Arokiasamy, Perianayagam

National Council of Applied Economic Research

3 August 2016

Online at https://mpra.ub.uni-muenchen.de/77223/
MPRA Paper No. 77223, posted 03 Mar 2017 12:18 UTC
Corresponding Author:
Debasis Barik,
National Council of Applied Economic Research,
Parisila Bhawan, 11 Indraprastha Estate, New Delhi,
PIN – 110002 (India).

Email: debasisbarik25@gmail.com

Title: Economic Burden of Non-communicable Diseases in India

Debasis Barik
Associate Fellow
National Council of Applied Economic Research, India
debasisbarik25@gmail.com

Perianayagam Arokiasamy
Professor, Department of Development Studies
International Institute for Population Sciences, India
parokiasamy@iips.net

July 16, 2016
Rising Health Expenditure due to Non-communicable Diseases in India: An Outlook

Abstract: With ongoing demographic transition, epidemiological transition in India has been emerged as a growing concern in India. The share of non-communicable disease in total disease burden has increased from 31 per cent in 1990 to 45 per cent in 2010. This paper seeks to explore the health scenario of India in the wake of the growing pace of non-communicable diseases like diabetes, hypertension among Indian population using data from health and morbidity survey of the National Sample Survey Organisation (2004) and notifies about the resource needed to tackle this growing health risk. Given the share of private players (70 per cent) in Indian health system, results indicate a higher private expenditure, mostly out-of-pocket expense, on account of non-communicable diseases. A timely look into the matter may tackle a more dreadful situation in near future.

Background:
Through the early and mid-phase of India’s epidemiological transition, the age pattern of morbidity was overwhelmed with infectious diseases (Murray and Lopez 1997). In the recent two decades, the prevalence of non-communicable diseases has escalated immensely in India (Reddy et al. 2005). India’s swift progress through demographic and epidemiological transition has resulted into a bigger challenge of dual burden of communicable and non-communicable diseases (Jakovljevic and Milovanovic 2015; Yusuf et al. 2001). With the share of older cohorts increasing relative to that of younger cohorts, infectious and nutritional disorders are being replaced by chronic, degenerative and mental illnesses as the leading
causes of morbidity and mortality (Lopez et al. 2006; McKeown 2009). The resulting concern is not just epidemiological but also economic. Non-communicable diseases, which often go with long-standing disabilities, have direct economic consequences at households and community level, both through the expenses on healthcare those divert other expenditure, but also on levels of income through reduced labor productivity (Abegunde et al. 2007; United Nations 2015).

Expenditure on health is highly lopsided across the globe, where the developed countries spend the most on health per person (Getzen and Poullier 1992). The Organisation for Economic Co-operation and Development (OECD) countries accounted for less than 20 per cent of the world’s population but were responsible for almost 90 per cent of the world’s health spending (WHO 2003). Health expenditure, both in terms of percentage of GDP spent on health and per capita health expenditure, is much higher in the developed countries than developing countries. Unlike in economic history of Colonial Age, in recent decade’s global share of health spending is undergoing gradual but constant change in favor of developing Third World nations (Jakovljevic and Getzen 2016). Such inevitable and deep changes are led by top BRICS\(^1\) emerging markets (Jakovljevic 2016). In contrast, the ratio of public to private health expenditure in India is extremely low in India. Further, all the private expenditure in India (as in some other countries) is almost exclusively represent household’s out-of-pocket health expenses. According to World Health Organization (WHO 2014), private share on total healthcare spending in India is as high as 70 per cent, only next to some poor African countries. In India, 86 per cent of all private expenditure and 72 per cent of total expenditure are out-of-pocket. These high out-of-pocket spending on health often takes a

\(^1\) BRICS refers to the association of five major emerging national economies namely Brazil, Russia, India, China and South Africa.
higher toll on the poor than the rich (Jakovljevic 2015). Poor people in India spend about 15 per cent of their monthly household income for medical treatment (Barik and Desai 2014).

South Asian countries are going through a rapid demographic transition, which often accompanied by epidemiological transition. In this phase, while communicable diseases are still pandemic, non-communicable diseases like cardiovascular disease, diabetes, respiratory diseases, cancer are picking pace. Ghaffar, Reddy and Singhi (2004) pointed out the growing risk of these disease among South Asian population. The non-communicable disease in this region have some special feature in addition to those commonly available in the developing countries. The metabolic syndrome is very common among urban Indians (Gupta et al. 2001; Ramachandran et al. 2003). The high prevalence of glucose intolerance and the distinctive dyslipidaemic pattern of reduced concentrations of high density lipoprotein (HDL) cholesterol and high concentrations of triglycerides characterize the metabolic profile, and abdominal obesity characterizes the phenotype of the urban adult in India. Impaired maternal and fetal nutrition, resulting into low birth weight poses a greater risk of cardiovascular disease in South Asia. While use of tobacco products increases the risk of cancer in the region, indoor air pollution mostly due to burning wood fuel contributes to chronic obstructive airway disease (Ghaffar et al. 2004). Barik, Desai and Vanneman (2016) in their very recent article has argued that richer Indian adults are at greater risk of developing non-communicable diseases like diabetes, heart disease and high blood pressure than their poorer counterparts. The report of the Global Burden of Disease reported that the share of non-communicable disease on the disease burden has increased from 31 per cent in 1990 to 45 per cent in 2010 (Charlson et al. 2015).
Following the demographic transition, developed western countries have witnessed an epidemiological transition where the share of non-communicable diseases increased in the total disease burden. The non-communicable diseases require a very different health set up than that is required for communicable diseases. In the present paper, we have tried to project the future health scenario of India in the wake of demographic transition and associated health transition. We have estimated the likely scenario of share of communicable and non-communicable diseases among Indians and required economic resource for treatment of these maladies. Various countries have developed their National Health Accounts (NHA) estimates to plan their health budget according to the nature of diseases. India do not have such a comprehensive NHA estimate. This present study may throw some light to plan health budget according to the need of the hour and also for future.

Data:

We have used the Morbidity and Healthcare Survey (2004) 60th round, carried out by the National Sample Survey Organization (NSSO) under the Ministry of Statistics and Programme Implementation, Government of India as the main data source for the analysis. The survey was canvassed between January to June, 2004 across the whole of the Indian Union except i) Leh (Ladakh) and Kargil districts of Jammu and Kashmir, ii) interior villages of Nagaland situated beyond five kilometres of the bus route and (iii) villages in Andaman and Nicobar Islands which remain inaccessible throughout the year. It covered 73,868 households of which 47,302 were from rural areas and 26,566 from urban areas. Prevalence of various morbidity and utilization of healthcare services from public and private sources, together with the expenditure incurred by the households in this process have been collected through this survey. The survey collected information if a person was ailing during the last
15 days prior to the date of survey. The individual sample size was 383,338; of which 195,712 were males and 187,626 females.

The data collected can be summarized in three categories:

- The first category comprises the inpatient healthcare received by the household members as hospitalized cases during last 365 days. The expenses incurred during the reference period for treatment (as an inpatient of a hospital) of such ailments and details of the healthcare finance have been recorded here.

- Irrespective of the hospitalisation status, the second category documents all such ailments for which the patients were treated during the 15 days prior to the survey.

- The third category includes all ailments suffered during 15 days prior to the date of survey for which no medical treatment received.

Methodology:

The classification of communicable and non-communicable diseases followed the classification adopted by World Health Organization (WHO) in Global Burden of Disease Studies, 2004 (Appendix table 1). The prevalence of any ailment or morbidity has been defined as the number of persons ailing within the reference period per 1,000 persons exposed to the risk of the ailment from the same group of population.

The expected change in the share of each category of morbidities has been estimated up to year 2051. The main assumption behind this projection was that the prevalence rate of each morbidity category would remain unchanged among all the age groups over times. This is a very strong assumption, but we did not have a dataset which allows us to examine disease progression in Indian context. However, this demographic projection would help us to
foresee the future of Indian epidemiology in the course of demographic transition, the process already started. Utilization of hospitalization services over the 15-day reference period was multiplied by 24.33 (i.e. 365/15) to obtain an annualized counterpart of hospitalizations (after netting out any hospitalizations reported in the 15-day reference period).

The yearly cost of treatment for communicable and, non-communicable diseases has been estimated based on per unit cost of treatment for inpatient and outpatient, derived from the NSSO unit level data. Age-specific hospital-days have been estimated for each disease type. The average cost of treatment per stay as an inpatient and average duration of stay were estimated for each disease type to obtain per day average cost of treatment as inpatients, and multiplying it with the estimated hospital-days provide the annual cost of treatment as an inpatient. The annual out-of-pocket expenditure as outpatient has also been estimated following the similar procedure, where out-of-pocket expenditure implies to the expenditure a household bears after deducting the reimbursement from various healthcare financing sources. We reached the annual cost of treatment as an outpatient by multiplying the average cost of treatment with total number of outpatient visit. Age specific inpatient and outpatient visit has been assumed to capture the effect of the increasing prevalence of non-communicable diseases beyond age 30 years.

Household level out-of-pocket expenses are the major source of healthcare finance in India. Since the presence of health insurance in India yet to feel, the rest of the health expenditure are met by the government via its provision of free or subsidized public facilities (Mahal 2005). Thus, we will focus primarily on only these two sources of healthcare financing, referring to other funding sources when appropriate. Public subsidies for health has been
estimated as the difference between total expenditure incurred on private facilities compared to public facilities. The entire analysis has been carried out using appropriate sample weight available in the dataset. SPSS 18 PASW software was used to analyze the data.

Results:

Age-specific prevalence of communicable and non-communicable diseases in India, 2004:

In 2004, the prevalence of the communicable and non-communicable disease reported in the morbidity and health survey was 32 and 48 respectively per thousand Indian population (Figure 1). We see a dominance of communicable diseases in the very early stages of life, but with the advancement of the age, the prevalence of non-communicable disease rises manifold. Though the prevalence of non-communicable diseases rises continuously after age 30 years, it becomes dominant mainly beyond age 45 years and increases gradually with the increase in age. The prevalence of either communicable or non-communicable disease is lowest among the population of 15-29 years age group. With the increase in the age, the prevalence of both communicable and non-communicable disease increases, but the latter increased at a much faster rate. The prevalence of communicable diseases has been recorded as 56 and 62 among the old (65+ years) and oldest old (80+ years) people respectively. In contrast, the prevalence of non-communicable diseases for the same age groups was much higher, counting 288 and 340 respectively.

Non-communicable diseases will take even a higher share among Indian population by 2051:

In India, about half of the disease burden was shared by non-communicable diseases (46.4 per cent) like diabetes, high blood pressure, cardiac condition whereas the share of
communicable diseases like tuberculosis, malaria was 34 per cent (Figure 2). The share of
communicable diseases was likely to reduce to a-fourth by 2051. At the same time, the share
of non-communicable diseases has been projected to increase to 57.4 per cent. A minimal
decline will be observed in the share of other health condition during the same period. This
shift in share will be observed mainly due to the shift in age distribution of population
towards elderly hood.

Health spending on non-communicable diseases and government subsidies:
There was 75 million hospitalization cases during January to June, 2004, out of which 35
million were in government health facilities and 40 million in private facilities (Table 1). We
did not find any remarkable difference in hospitalization due to communicable and non-
communicable diseases. Hospitalization in government facilities for communicable diseases
was relatively higher than for non-communicable diseases. People usually rush to private
facilities for hospitalization in case of non-communicable diseases. Beyond age 45 years, the
volume of hospitalized persons due to non-communicable diseases was higher than
communicable diseases in both government and private facilities. Again, the average
duration of stay as an inpatient was much higher for non-communicable diseases than for
communicable diseases (Table 2). Once hospitalized, the average duration of stay in
government facilities was higher than private facilities. The number of hospital days was
higher for non-communicable diseases than communicable diseases in both government as
well as private facilities.
The average cost of hospitalization per stay at private facilities (INR 11,552) was much higher than in public facilities (INR 4,935) for any type of illnesses (Table 2). For non-communicable diseases, average cost per stay as an inpatient was as high as INR 14,377 in private compared to INR 6,876 in government. The average cost of treatment either as inpatient or outpatient was higher in private than in public. Each inpatient day accounted more than three times higher cost in private facilities than in public. In government facilities, average per day cost of hospitalization for communicable diseases was high among the youth (age less than 34 years) and the elderly (65 years and above). People of the prime working age (35-44 years) usually spent more on private facilities when suffered from a communicable diseases.

[Table 2 about here]

There were nearly 1,740 million outpatient visits during 2004, out of which 380 million were in government and 1,360 million in private. Outpatient visit was higher in private facilities than government in all the age groups. Outpatient visit due to communicable diseases was highest in 0-34 year age group in both government and private facilities but resurged with age. Outpatient visit for non-communicable diseases increased with age in both types of health facilities (Table 3). Similar to inpatient care, per visit cost of outpatient treatment was much higher in private facilities than public facilities. Although the cost of treatment in private was higher than public, people rushed to private facilities in need. This signifies the shortfall of public health systems either in reach or in belief or both in Indian context. Cost of treatment for outpatient care was also higher for non-communicable diseases than communicable diseases in both types of facilities.

[Table 3 about here]
Higher cost of treatment among the elderly age group compared to younger age groups has a clearer implication on future healthcare cost since the proportion of elderly has been projected to increase substantially with a rising burden of non-communicable diseases. Per visit out-of-pocket cost of treatment was similar to the total cost of treatment - indicates the failure of health insurance as a potential tool for effective healthcare finance. This high out-of-pocket health spending leads to the catastrophic level of spending for healthcare and pushes households to poverty trap (Ghosh 2011; Pal 2012; Peter, Ahuja and Bhandari 2010). Barman et al. (2010) pointed out that outpatient care was more impoverishing than inpatient care in urban and rural areas alike.

Government subsidies per inpatient and outpatient day were estimated INR 795 and INR 103 respectively. Subsidies per inpatient day for all types of diseases were higher than outpatient days. In 2004, Government provided a total subsidy for healthcare of INR 335 billion, out of which INR 294 billion was for inpatient treatment and INR 41 billion for outpatient treatment in 2004. The majority share of the total government subsidy was utilized for treatment of non-communicable diseases.

[Table 4 & 5 about here]

Healthcare spending on communicable and non-communicable diseases as a share of Gross Domestic Product (GDP):

In 2004, 87 per cent of the total healthcare spending in India (approximately INR 100,000 crores) was out-of-pocket spending. India spent 3.35 per cent of the GDP and out-of-pocket spending on health accounted 2.94 per cent of it. Half of the out-of-pocket spending on healthcare was on account of the treatment of non-communicable diseases and 30 per cent was due to communicable diseases during 2004.
The healthcare expenditure on the communicable diseases were expected to grow rather slowly than non-communicable diseases. Healthcare expenditure on communicable diseases in government facilities may rise by about 1.7 times by 2051 than its corresponding figure in 2006 (Table 6). Whereas expenditure for non-communicable diseases in government facilities may increase in a much faster rate by 2.5 times within the same time frame. In the private health facilities, healthcare expenditure on the communicable diseases are expected to increase from INR 26,243 crores to INR 42,222 crores and on non-communicable diseases from INR 45,735 crores to 114,413 crores during the same duration. The rise in healthcare expenditure due to communicable diseases is relatively higher in the first part of the projection period (2006-26) compared to the second part (2026-51).

Discussion:

The study provides some insights into the upcoming health requirements in Indian health system. The age profile of the morbidity indicates a rising risk of non-communicable diseases as the population ages through demographic transition (Ghaffar et al. 2004; Gupta 2004; Mohan et al. 2007; Reddy et al. 2005). In spite of a higher cost of treatment, people prefer to visit private facilities than the public. In India, the private facilities are vast and diverse – ranging from a person from local medical shop to a super specialty hospital catering to medical tourists from abroad (Desai et al. 2010). These facilities are available even in small remote places and offers services as per the convenience of people. The cost of treatment in these private facilities also varies to a great extent. People frequently prefer to go to a nearby
private facilities for short term diseases, which requires outpatient visit. Choice among various private health practitioners arises when the disease is more severe and requires long term care.

Though government provides subsidized services for public health facilities, people utilize these facilities mainly for inpatient care. The lower level government facilities like the sub-centres and the primary health centres are not well equipped to serve for severe illnesses.

The higher level and specialized government health facilities are often concentrated in urban places and travel to these places requires higher level resources and often associated with wage loss (Desai et al. 2010). India, in the past decade has introduced the Rashtriya Swasthya Bima Yojana, a health insurance scheme to cover the inpatient care expenses of the poor. It has also invested on the National Rural Health Mission in 2005, which provides budget support to expand and improve free primary care in public clinics. While these initiatives ensure government’s continued effort to improve healthcare services and protect the poor from health related expenses, these barely promise on the step toward combating non-communicable disease risks.

Conclusion:

The non-communicable diseases require attention at a very early stage and once developed, medication continues throughout lifetime. Neglecting these diseases incapacitates a person and may be even life threatening. Ghaffar et al. (2004) attributed the environmental factors as the major determinants of these health condition. Whereas, they noted sedentary lifestyle, extreme poverty and inadequate health system as the obstacle to tackle the challenge if non-communicable diseases in South Asia.
If India wishes to reap the demographic dividend out of its favourable age-structural transition, it needs to focus on the health of the youth. Creating an enabling atmosphere for the youth to lead a healthy lifestyle, create awareness about the ill health effects of smoking and drinking, regular health check-ups, good dietary intake, are some among the possible ways to avoid health risks from non-communicable diseases. In a nutshell, investing in youth health may result in a higher return in future.

Limitations:

We acknowledge the possible various limitation of the study. The main limitation stands as the prevalence of morbidity is based on the reported ailments, which is subject to the knowledge and awareness of a particular morbidity and may differ from estimates based on clinical data. The study produces the shift in disease share on the basis of pure demographic profile, which certainly sets a basic level of alarm to Indian health system, but inadequate in long run. A longitudinal study with clinical investigation will help a more detailed projection. However, we have tried to pinpoint the short fall of the Indian health system to tackle the future health problem, which will come along with the ongoing demographic transition.
Table 1: Total number of person hospitalized, average duration of stay as inpatient and total number of hospital days in government and private sector, 2004.

Hospitalization - Government (in Million)	Average duration of stay - Government (days)	Hospital Days - Government (Million)													
0-34	**35-44**	**45-64**	**65+**	**Total**	**0-34**	**35-44**	**45-64**	**65+**	**Total**	**0-34**	**35-44**	**45-64**	**65+**	**Total**	
CD	7.81	2.39	2.98	0.85	14.19	7.39	9.49	11.26	9.6	8.81	57.7	22.7	33.6	8.2	122.2
NCD	3.84	1.79	3.57	1.90	11.69	10.83	15.34	12.75	10.29	11.96	41.5	27.4	45.6	19.5	134.0
OTHERS	5.00	1.80	1.95	0.59	9.44	10.19	14.62	12.65	12.08	11.64	51.0	26.2	24.7	7.2	109.1
TOTAL	16.65	5.98	8.51	3.34	35.32	9.18	13.08	12.24	10.4	10.72	152.8	78.2	104.1	34.8	369.9

Hospitalization - Private (in Million)	Average duration of stay - Private (days)	Hospital Days - Private (Million)													
0-34	**35-44**	**45-64**	**65+**	**Total**	**0-34**	**35-44**	**45-64**	**65+**	**Total**	**0-34**	**35-44**	**45-64**	**65+**	**Total**	
CD	7.30	1.91	2.53	0.89	12.79	5.97	6.4	7.73	8.34	6.65	43.6	12.2	19.5	7.4	82.8
NCD	5.15	2.50	4.68	2.35	15.43	8.39	8.76	9.05	8.5	8.68	43.2	21.9	42.4	20.0	127.5
OTHERS	6.00	2.10	2.52	0.91	11.72	8.7	9.92	9.92	10.15	9.33	52.2	20.9	25.0	9.3	107.3
TOTAL	18.46	6.52	9.72	4.16	39.94	7.55	8.36	8.91	8.83	8.21	139.4	54.5	86.6	36.7	317.2

Source: Authors own calculation from NSS 60th round unit level data

Table 2: Average cost per stay and average cost of hospitalization per day by source of providers, 2004.

Average cost per stay as inpatient (INR)	Per day average cost of hospitalization (INR)									
0-34	**35-44**	**45-64**	**65+**	**Total**	**0-34**	**35-44**	**45-64**	**65+**	**Total**	
CD	2,815	3,079	3,369	3,346	3,034	381	324	299	349	344
NCD	5,643	8,522	8,030	5,918	6,876	521	556	630	575	575
OTHERS	4,463	5,701	5,748	5,321	5,014	438	390	454	440	431
Govt.	4,071	5,658	5,963	5,120	4,935	444	433	487	492	460
CD	5,763	10,522	9,877	12,347	8,015	965	1,644	1,278	1,480	1,205
NCD	10,262	16,263	17,799	14,244	14,377	1,223	1,857	1,967	1,676	1,656
OTHERS	10,080	12,278	13,733	14,249	11,718	1,159	1,238	1,384	1,404	1,256
Pvt.	8,454	13,202	14,613	13,835	11,552	1,120	1,579	1,640	1,567	1,407

Source: Authors own calculation from NSS 60th round unit level data
Table 3: Particulars of outpatient care visits, per visit total expenditure and out of pocket expenditure by type of diseases and source of providers, 2004.

	Total number of visit for outpatient care (in millions)	Per visit cost (INR) for outpatient care	Per visit OOP cost (INR) for outpatient care												
	0-34	35-44	45-64	65+	Total	0-34	35-44	45-64	65+	Total	0-34	35-44	45-64	65+	Total
CD	88.7	13.5	29.0	9.4	140.7	189.2	207.2	222.4	236.7	201.0	184.7	205.4	221.2	236.7	197.7
NCD	40.7	22.3	52.6	49.2	164.1	223.3	187.0	238.7	208.6	219.2	221.5	183.9	235.3	202.8	215.6
OTH	38.9	12.8	15.5	11.8	78.7	217.7	406.0	166.1	242.5	241.4	182.0	404.1	164.8	241.7	223.1
GOVT.	168.3	48.6	97.1	70.4	383.6	204.0	250.2	222.3	218.0	217.1	193.0	247.8	219.9	213.8	210.6
CD	381.7	57.5	79.1	32.9	550.9	248.8	274.1	401.8	375.6	281.3	248.5	273.2	399.4	372.6	280.5
NCD	145.3	63.6	180.0	153.2	540.2	321.3	352.6	374.7	339.5	348.2	318.8	351.7	369.1	339.0	345.4
OTH	142.6	38.7	54.6	32.2	267.8	281.8	319.1	371.1	331.2	315.3	279.7	318.4	366.7	332.3	313.0
PVT.	669.6	159.8	313.7	218.2	1358.8	31.6	26.2	7.3	90.0						

Source: Authors own calculation from NSS 60th round unit level data

Table 4: Government subsidy per inpatient day and total subsidy for inpatient care by type of disease, 2004.

	Government subsidy Per inpatient day (INR)	Total subsidy in Government (Billion INR)								
	0-34	35-44	45-64	65+	Total	0-34	35-44	45-64	65+	Total
CD	548	1154	770	896	737	31.6	26.2	25.8	7.3	90.0
NCD	655	1072	1011	937	892	27.2	29.4	46.0	18.3	119.5
OTH	644	768	771	699	706	32.8	20.2	19.0	5.0	77.0
Total	621	985	896	872	795	94.9	77.0	93.3	30.3	294.1

Source: Authors own calculation from NSS 60th round unit level data
Table 5: Government subsidy per outpatient visit and total subsidy for outpatient care by type of disease, 2004.

	Government subsidy per outpatient day (INR)	Outpatient visit in Government (Million)	Total subsidy for outpatient care in Government (INR Billion)												
	0-34	35-44	45-64	65+	Total	0-34	35-44	45-64	65+	Total	0-34	35-44	45-64	65+	Total
CD	63.86	67.75	178.16	135.87	82.74	88.7	13.49	28.97	9.44	140.74	5.66	0.91	5.16	1.28	13.02
NCD	97.29	167.8	133.78	136.22	129.81	40.7	22.33	52.64	49.18	164.12	3.96	3.75	7.04	6.7	21.45
OTH	141.4	-73.31	146.86	17.68	91.59	38.9	12.78	15.45	11.75	78.72	5.5	-0.94	2.27	0.21	7.04
Total	86.75	70.63	146.84	118.51	102.45	168.3	48.6	97.06	70.38	383.58	14.6	3.43	14.25	8.34	40.63

Source: National Sample Survey 60 Round, 25.0 sub-round, 2004.

Table 6: Projected annual healthcare cost (INR Crores) in government and private facilities for communicable and non-communicable diseases in India.

	2006	2026	2051
Communicable Diseases			
Government	4,352	5,877	7,364
Private	26,243	34,634	42,222
Non-communicable Diseases			
Government	8,424	13,294	20,722
Private	45,734	72,535	114,413

Source: Authors own calculation from NSSO 60th round unit level data
Communicable Disease	Diarrhoea/ dysentery, Gastritis/gastric or peptic ulcer, Worm infestation, Amoebiosis, Hepatitis/Jaundice, Tuberculosis, Diseases of kidney/urinary system, Conjunctivitis, Sexually transmitted diseases, Malaria, Eruptive, Mumps, Diphtheria, Whooping cough, Fever of unknown origin, Tetanus and Filariasis/Elephantiasis
Non-communicable disease	Heart disease, Hypertension, Respiratory including ear/nose/throat ailments, Bronchial asthma, Disorders of joints and bones, Prostatic disorders, Gynaecological disorders, Neurological disorders, Psychiatric disorders, Glaucoma, Cataract, Diseases of skin, Goitre, Diabetes mellitus, Anaemia, Locomotor, Visual including blindness (excluding cataract), Speech, Hearing, and Diseases of Mouth/Teeth/Gum, Cancer and other tumours, c)
Others	Under-nutrition, Accidents/Injuries/Burns/ Fractures/Poisoning, Other diagnosed ailments and Other undiagnosed ailments.
References:

Abegunde, D.O., C.D. Mathers, T. Adam, M. Ortegon, and K. Strong. 2007. "The burden and costs of chronic diseases in low-income and middle-income countries." The Lancet 370(9603):1929-1938.

Barik, D. and S. Desai. 2014. "Determinants Of Private Healthcare Utilisation And Expenditure Patterns In India." Pp. 52-64 in India Infrastructure Report 2013/14 The Road to Universal Health Coverage, edited by S.B.a.S. Ghosh. New Delhi, India: IDFC Ltd.

Barik, D., S. Desai, and R. Vanneman. 2016. "Adult Mortality in India: The Health-Wealth Nexus." in Population Association of America Annual Conference. Washington DC, USA.

Charlson, F., H. Erskine, A. Ferrari, H. Gouda, L. Knibbs, J.J. McGrath, R.E. Norman, L. Veerman, and H. Whiteford. 2015. "Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013." The Lancet 386(9995):743-800.

Desai, S.B., A. Dubey, B.I. Joshi, M. Sen, A. Shariff, and R. Vanneman. 2010. Human Development in India: Challenges for a Society in Transition. New Delhi: Oxford University Press.

Getzen, T.E. and J.-P. Poullier. 1992. "International health spending forecasts: concepts and evaluation." Social Science & Medicine 34(9):1057-1068.

Ghaffar, A., K.S. Reddy, and M. Singhi. 2004. "Burden of non-communicable diseases in South Asia." BMJ 328(7443):807-810.

Ghosh, S. 2011. "Catastrophic Payments and Impoverishment due to Out-of-Pocket Health Spending." Economic & Political Weekly XLVI 8.

Gupta, R. 2004. "Trends in hypertension epidemiology in India." Journal of human hypertension 18(2):73-78.

Gupta, R., V. Gupta, M. Sarna, S. Bhatnagar, J. Thanvi, V. Sharma, A. Singh, J. Gupta, and V. Kaul. 2001. "Prevalence of coronary heart disease and risk factors in an urban Indian population: Jaipur Heart Watch-2." Indian heart journal 54(1):59-66.

Jakovljevic, M. and T.E. Getzen. 2016. "Growth of global health spending share in low and middle income countries." Frontiers in pharmacology 7.

Jakovljevic, M.B. 2015. "BRIC’s growing share of global health spending and their diverging pathways." Frontiers in Public Health 3:135.

Jakovljevic, M.B. and O. Milovanovic. 2015. "Growing burden of non-communicable diseases in the emerging health markets: the case of BRICS." Frontiers in Public Health 3:65.

Mohan, V., S. Sandeep, R. Deepa, B. Shah, and C. Varghese. 2007. "Epidemiology of type 2 diabetes: Indian scenario." Indian journal of medical research 125(3):217.

McKeown, R.E. 2009. "The epidemiologic transition: changing patterns of mortality and population dynamics." American journal of lifestyle medicine.

Lopez, A.D., C.D. Mathers, M. Ezzati, D.T. Jamison, and C.J. Murray. 2006. "Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study." The Lancet 349(9064):1498-1504.

Pal, R. 2012. "Measuring incidence of catastrophic out-of-pocket health expenditure: with application to India." International Journal of Health Care Finance and Economics 12(1):63-85.

Peter, B., R. Ahuja, and L. Bhandari. 2010. "The Impoverishing Effect of Healthcare Payments in India: New Methodology and Findings." Economic and Political Weekly XL(V):7.
Acknowledgement: The earlier version of this paper was presented at the annual conference of the Population Association of America, held during 1-4 May, 2014 in Boston, MA. We acknowledge the suggestions received from some of the participants to improve the quality of the paper.