Original Article

Quality of Life Among Children Who Had Undergone Ventriculoperitoneal Shunt Surgery

Priyanka Prakash*, Manju Dhandapani*, Sandhya Ghai, Neena V. Singh, Sivashanmugam Dhandapani

National Institute of Nursing Education (NINE), 1Department of Neurosurgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India

First Authors: Both Priyanka Prakash and Manju Dhandapani to be considered as first authors

Background: Ventriculoperitoneal (VP) shunting is the most common neurosurgical treatment for hydrocephalus. In spite of significant developments in the technology and design of shunt systems, shunt surgery is still associated with morbidity. Aim: To identify the problems faced by children on VP shunt and assess their quality of life (QOL). Setting and Design: A cross-sectional exploratory study. Materials and Methods: A total of 31 children on VP shunt were selected through consecutive sampling technique, and hydrocephalus outcome questionnaire was used to collect the data, with the converted metric score ranging from 0 to 1. Hydrocephalus due to stroke, hemorrhage, and malignant tumors was excluded. Results: The mean age of patients was 11.51 ± 4.26 years. Headache and generalized pain were the common problems experienced (42%). The mean score of QOL was 0.67 ± 0.21. Among the three domains, cognitive domain was the most affected. Among the clinicoradiological factors, multiple surgeries (P = 0.02) had the most significant impact on QOL. Conclusion: Children who underwent VP shunt face various health-related problems in different domains and low QOL. Although cognitive domain was the most affected, multiple surgeries had the most significant impact on QOL. Appropriately focused interventions and holistic management are essential to improve the QOL of children undergoing VP shunt.

Keywords: Children, domains, hydrocephalus, QOL, ventriculoperitoneal shunt

INTRODUCTION

In spite of significant developments in the technology and design of ventriculoperitoneal (VP) shunt systems, shunt failure remains a significant problem in neurological surgery.[1,2] Malfunctioning of VP shunt and its complications have increased the morbidity.[3] Patients on VP shunt have reported to live with problems such as headache, epilepsy, cognitive impairment, and urinary incontinence.[4] This affects their activities of daily living and quality of life (QOL). Also, there is paucity of studies on QOL of children who had undergone VP shunt and burden among their caregivers. Hence, this study was undertaken to assess the problems experienced by children on VP shunt, their QOL, and factors influencing their QOL.

MATERIALS AND METHODS

Using consecutive sampling technique, 31 children on VP shunt between the age of 4 and 18 years and who were accompanied by the caregivers were enrolled. Patients with hydrocephalus (HCP) due to stroke, hemorrhage, and malignant tumor were excluded. Permission was obtained from the Institute Ethics Committee, Postgraduate Institute of Medical Education and Research, Chandigarh, India, and assent was taken from the subjects. Data were collected from caregivers of the children using standardized tool, i.e., HCP outcome questionnaire (HOQ). It is the first and only reliable and valid outcome measure designed specifically for HCP with Cronbach’s alpha 0.94. It is a 53-item questionnaire, divided into three domains namely physical with 15 items, social–emotional (25 items), and cognitive domain (13 items), which have

Access this article online

Quick Response Code:
Website: www.pediatricneurosciences.com
DOI: 10.4103/jpn.JPN_118_17

How to cite this article: Prakash P, Dhandapani M, Ghai S, Singh NV, Dhandapani S. Quality of life among children who had undergone ventriculoperitoneal shunt surgery. J Pediatr Neurosci 2018;13:189-94.
to be completed by the caregivers of patients who had undergone VP shunt. HOQ is measured in five point Likert scale where four means not at all true and zero means very true. From total items, item no. 19, 20, 21, and 42 were scored in the reversed order as these were the positive aspects of health where zero means not at all true and four means very true. Maximum possible score of HOQ was 212 and minimum was zero. Domain-wise score was calculated by dividing the obtained score with the maximum score of each domain. To find the QOL of the children, obtained score was divided by the maximum score of the children. Analysis of data was performed in accordance with the objectives laid down for the study using descriptive and inferential statistics in SPSS software version 20 (SPSS, Chicago, IL) using independent t-test, analysis of variance (ANOVA) and Pearson correlation.[6]

RESULTS

As shown in Table 1, the mean age of the children was 11.51 ± 4.26 years with a range of 4–18 years. Three-fourth of the children were males (74.2%). More than three-fourth of the children belonged to nuclear family (80.6%). Majority of the children were diagnosed with idiopathic HCP (29%). More than half of the children underwent surgery for multiple times (54.8%). Right VP shunt was placed in three-fourth of the children (71%). Postsurgery duration for majority of the children was less than 1 year (67.7%).

As shown in Table 2, headache and generalized pain were the most common problem and each was experienced by 42% of children on VP shunt. They were followed by fatigue in all four limbs (32.25%), blurred/decreased vision (16.12%), diplopia, fever, and impaired speech (12.90%). Very few have experienced seizure, difficulty in walking, vision loss, infection at shunt site, increased head circumference, and gait ataxia (3.22%).

QOL OF CHILDREN ON VP SHUNT

The mean summated and converted score (to equalize the score of all domains) of QOL based on HOQ of children who had undergone VP shunt is shown in Table 3. The QOL score based on HOQ was 0.67 ± 0.21 out of one, which shows that QOL was diminished in children on VP shunt. The QOL was highest in physical domain followed by social–emotional domain and cognitive domain.

The association of selected variables with QOL of children on VP shunt is shown in Table 4. Low QOL

Table 1: Socio-demographic and clinical profile of children on VP shunt

Socio-demographic and clinical variables of the children	f (%)
Age (years) Mean ± SD	11.51 ± 4.26
Range	4–18
4–6	5 (16.1)
6–12	11 (35.5)
13–18	15 (48.4)
Gender	Male
Male	23 (74.2)
Female	08 (25.8)
Educational status	Primary and less
Primary and less	19 (61.3)
Secondary	12 (38.7)
Economic status (Rs per month)	Less than 2500
Less than 2500	24 (77.4)
2500–5000	04 (12.9)
More than 5000	03 (9.7)
Type of family	Nuclear
Nuclear	25 (80.6)
Joint	06 (19.4)
Diagnosis	Idiopathic HCP
Idiopathic HCP	09 (29)
Infective HCP	08 (25.8)
Low-grade tumor	07 (22.6)
ACM/syrinx	03 (9.7)
Traumatic HCP	01 (3.2)
Congenital HCP	03 (9.7)
Type of surgery	Right VP shunt
Right VP shunt	22 (71)
Left VP shunt	06 (19.4)
Bilateral VP shunt	02 (6.5)
ETV and VP shunt	01 (3.2)
Number of surgeries	First surgery
First surgery	14 (45.2)
Multiple surgeries	17 (54.8)
Duration since surgery	Less than 1 year
Less than 1 year	21 (67.7)
1–6 years	08 (25.8)
6–12 years	02 (6.5)
History of hospitalization postsurgery	Yes
Yes	13 (41.9)

ACM = Arnold–Chiari malformation

Table 2: Problems experienced by children after VP shunt

Chief complaints after VP shunt	f (%)
Headache	13 (41.93)
Generalized pain other than headache	13 (41.93)
Fatigue all four limbs	10 (32.25)
Blurred/decreased vision	05 (16.12)
Fever	04 (12.90)
Impaired speech	04 (12.90)
Diplopia	04 (12.90)
Vomiting	03 (09.67)
Dizziness	02 (06.45)
Squinting	02 (06.45)
Seizure	01 (03.22)
Difficulty in walking	01 (03.22)
Vision loss	01 (03.22)
Infection at shunt site	01 (03.22)
Increased head circumference	01 (03.22)
Gait ataxia	01 (03.22)
was reported by the children who had undergone multiple surgeries and have received care for more than 8 hours per day.

Discussion

VP shunt has greatly improved the survival and QOL of children yet, but malfunctioning of shunt is a common problem experienced by them along with other complications. Considering the fact that QOL is the global well-being of the individual and HCP being a long-term illness, it is necessary for the health-care workers to have awareness about the QOL and various day-to-day problems of patients even after undergoing VP shunt. In this study, 31 children who underwent VP shunt for HCP were explored to assess their common problems perceived and QOL. The mean age of the children was 11.51 ± 4.26 years, and similar to other studies, most of them were males.
The most common cases of HCP in children include congenital anomalies, intracranial tumor, and trauma.\[10\] In this study, the main reasons for placing VP shunt were idiopathic HCP, infective HCP, and intracranial tumors.

The common problems experienced by 30%-42% children on VP shunt in our study were headache, generalized pain, and fatigue. The prevalence of post-VP shunt headache is well reported and varies from 54% to 80%.\[9\] Though these symptoms are ignored by the parents and other caregivers, there are evidences to prove their effect on impaired functional status and disability.\[11\] Other problems experienced by 13%-16% of the children included blurred vision, speech difficulty, diplopia, and fever. Previous reports of early shunt-related symptoms included fever in 91.4% and seizures in 17%-20% of the patients.\[12\] But in our study, fever was reported by only 13% of the patients and seizures by only 3% of the patients, as approximately 30% of the patients were of more than 1-year postshunt duration. The symptoms present in the patients after VP shunt could be due to existing underlying pathology, shunt malfunction, infection, or most of the time remains unknown. The intensity, duration, and frequency of these symptoms may also affect the milestones and academic achievement of the children. Headache associated with shunt results in poor QOL and its management increases the cost of treatment.\[13\]

HOQ used in this study is a simple, valid, and reliable measure of QOL in children with HCP. Mean score of QOL of children was 0.67 ± 0.21, which was in line with previous reports.\[13,14\] Kulkarni et al.\[15\] reported a mean HOQ score of 0.68 in children with HCP in which majority of them had undergone VP shunt. HOQ score reported in our study was lower than 0.81 in patients who underwent endoscopic third ventriculostomy (ETV) as first treatment and 0.85 in patients who underwent shunt as first treatment.\[16,17\] Though VP shunt improves the health status of the patients postoperatively, the QOL remains affected due to various problems faced by the patients as shown in our study and related other literature.\[18\] There is also impairment in physical, socio-emotional, and cognitive status of the patients as the QOL of patients in these domains is affected. Similar to previous reports,\[17\] cognitive domain was most affected in children enrolled in our study that was followed by socio-emotional domain and physical domain. As per the previous evidences, cognitive domain was affected in 12%-50% of the children who underwent VP shunt.\[19\] Cognitive deficits increase the difficulties at school and impair the academic performance of the children.\[13\] Cognitive and socio-emotional aspects of the children also need to be addressed and managed like physical manifestations, during postsurgical management of these patients. Considerable attention must be given to improve the cognitive and socio-emotional aspects as that can improve the academic performance of the children, social functioning, and their mental health. Compared to physical deficit, neuropsychological symptoms\[20\] and cognitive deficits\[21\] affect the burden and QOL of caregivers of patients with intracranial tumors and other neurological illnesses. Although the physical symptoms are addressed during their follow-up visits, these aspects remain overlooked due to inadequate reporting by the caregivers and lack of monitoring by health professionals. But Kutscher et al.\[22\] reported that the health-related QOL of adult survivors of congenital HCP with regard to mental health and social functioning was similar to healthy controls, but physical impairment was the major factor that led to compromised QOL. Hence, it is imperative to consider cognitive, socio-emotional, and physical domain of patients who had undergone VP shunt. Impairment in cognitive dysfunction and behavioral changes are reported by patients with different neurological and neurosurgical diseases and are affected more than other domains.\[23,24\] These findings emphasize the need of team approach toward the holistic care of the patients who had undergone shunt.

Similar to other disorders,\[25-27\] QOL was comparatively worse among those in poor neurological status needing longer duration of care and those underwent multiple surgeries. Multiple surgeries were either due to shunt malfunctioning or complications. Kulkarni and Shams\[28\] have reported poor QOL in children who had shunt-related complications and prolonged hospital stay. Similarly, the underlying cause of HCP may also contribute to poor QOL and should not be ignored.\[28,29\] Hence, appropriate measures must be taken to improve the QOL of children undergoing treatment of HCP.

This study has excluded the children who underwent shunt for HCP due to stroke, hemorrhage, and malignant tumor so as to eliminate the influence of these comorbidities on QOL. Our findings suggest the monitoring of QOL of children who had undergone VP shunt during their follow-up in terms of cognitive, socio-emotional, and physical aspects. With advancements in endoscopic technology\[30\] and treatments for hydrocephalus, future studies need to compare QOL across treatment strategies. Children and their caregivers must be trained and instructed to identify and report various problems in different
domains to the health-care team so that appropriate interventions can be initiated. A protocol can be prepared regarding care and rehabilitation for children who had undergone VP shunt, and health-care team can be made more sensitive toward the assessment of the domains of QOL and providing care accordingly. Special attention must be emphasized to these children by the parents and school authorities to reduce the difficulties at school by helping them to overcome their cognitive deficits. Findings of this study also suggest the importance of long-term follow-up of children in terms of their academic performance, milestones, QOL etc.

Conclusion

Patients who had undergone VP shunt for HCP face various health-related problems in different domains and low QOL, especially in children who underwent multiple surgeries. Hence, appropriate monitoring as well as holistic management by health-care team is essential to improve the QOL of children undergoing VP shunt.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Woo PYM, Pang PKH, Chan KY, Kwok JKC. Ventriculosternal shunting for the management of hydrocephalus: case report of a novel technique. Neurosurgery 2015;11:371-5.
2. Upadhyaya P, Bhargava S, Dube S, Sundaram KR, Ochaney M. Results of ventriculoatrial shunt surgery for hydrocephalus using Indian shunt valve: evaluation of intellectual performance with particular reference to computerized axial tomography. Prog Pediatr Surg 1982;15:209-22.
3. Alkharabshah AR, Momani L, Al-Nuaimi W, Ababneh J, Alwadan T, Hawatmeh A. Easily fault prediction and detection of hydrocephalus shunting system. J Biomed Sci Eng 2013;6:1-11.
4. Alam S, Manjunath NM. Severe respiratory failure following ventriculopleural shunt. Indian J Crit Care Med 2015;19:690-2.
5. Kulkarni AV, Rabin D, Drake JM. An instrument to measure the health status in children with hydrocephalus: the hydrocephalus outcome questionnaire. J Neurosurg 2004;101:134-40.
6. Dhandapani SS, Manju D, Vivekanandan S, Agarwal M, Mahapatra AK. Prospective longitudinal study of biochemical changes in critically ill patients with severe traumatic brain injury: factors associated and outcome at 6 months. Indian J Neurotrauma 2010;7:23-7.
7. Conen A, Wilt LN, Merlo A, Fluckiger U, Battegay M, Trampuz A. Characteristics and treatment outcome of cerebrospinal fluid shunt-associated infections in adults: a retrospective analysis over an 11-year period. Clin Infect Dis 2008;47:73-82.
8. Khan F, Rehman A, Shamim MS, Bari ME. Factors affecting ventriculoperitoneal shunt survival in adult patients. Surg Neurol Int 2015;6:25.
9. Lee JK, Seok JY, Lee JH, Choi EH, Phi JH, Kim SK, et al. Incidence and risk factors of ventriculoperitoneal shunt infections in children: a study of 333 consecutive shunts in 6 years. J Korean Med Sci 2012;27:1563-8.
10. Stone JJ, Walker CT, Jacobson M, Phillips V, Silberstein HJ. Revision rate of pediatric ventriculoperitoneal shunts after 15 years. J Neurosurg Pediatr 2013;11:15-9.
11. Platenkamp M, Hanlo PW, Fischer K, Gooskens RH. Quality of life in obstructive hydrocephalus: endoscopic third ventriculostomy compared to cerebrospinal fluid shunt. J Neurosurg 2007;107:26-31.
12. Rekate HL, Kranz D. Headaches in patients with shunts. Semin Pediatr Neurol 2009;16:27-30.
13. Vinchon M, Rekate H, Kulkarni AV. Pediatric hydrocephalus outcomes: a review. Fluids Barriers CNS 2012;9:18.
14. Junkkari A, Häyrinta A, Rauramaa T, Sintonen H, Nerg O, Koivisto AM, et al. Health-related quality-of-life outcome in patients with idiopathic normal-pressure hydrocephalus - a 1-year follow-up study. Eur J Neurol 2017;24:58-66.
15. Kulkarni AV, Drake JM, Rabin D, Dirks PB, Humphreys RP, Rutka JT. Measuring the health status of children with hydrocephalus by using a new outcome measure. J Neurosurg 2004;101:141-6.
16. Kulkarni AV, Cochrane DD, McNeely PD, Shams I. Comparing children's and parents' perspectives of health outcome in paediatric hydrocephalus. Dev Med Child Neurol 2008;50:587-92.
17. Kulkarni AV, Hui S, Shams I, Donnelly R. Quality of life in obstructive hydrocephalus: endoscopic third ventriculostomy compared to cerebrospinal fluid shunt. Childs Nerv Syst 2010;26:75-9.
18. Peters NJ, Mahajan JK, Bawa M, Sahu PK, Rao KL. Factors affecting quality of life in early childhood in patients with congenital hydrocephalus. Childs Nerv Syst 2014;30:867-71.
19. Vinchon M, Baroncini M, Delestrée R. Adult outcome of pediatric hydrocephalus. Childs Nerv Syst 2012;28:847-54.
20. Dhandapani M, Gupta S, Mohanty M, Gupta SK, Dhandapani S. Prevalence and trends in the neuropsychological burden of patients having intracranial tumors with respect to neurosurgical intervention. Ann Neurosci 2017;24:105-10.
21. Dhandapani M, Gupta S, Mohanty M, Gupta SK, Dhandapani S. Trends in cognitive dysfunction following surgery for intracranial tumors. Surg Neurol Int 2016;7:S190-5.
22. Kutscher A, Nestler U, Bernhard MK, Merkenschlager A, Thome U, Kiss W, Schob S. Adult long-term health-related quality of life of congenital hydrocephalus patients. J Neurosurg Pediatr 2015;16:621-5.
23. Dhandapani M, Dhandapani S, Agarwal M, Mahapatra AK. Pain perception following different neurosurgical procedures: a quantitative prospective study. Contemp Nurse 2016;52:477-85.
24. Dhandapani S, Sharma K. Is “en-bloc” excision, an option for select large vascular meningiomas?. Surgical neurology international 2013;4:102.
25. Dhandapani M, Gupta S, Dhandapani S, Kaur P, Samra K, Sharma K, et al. Study of factors determining caregiver burden among primary caregivers of patients with intracranial tumors. Surg Neurol Int 2015;6:160.
26. Dhandapani S, Karthikeyan M. “Microendoscopic” versus “pure endoscopic” surgery for spinal intradural mass lesions: a comparative study and review. Spine J 2018. doi: 10.1016j. spinee.2018.02.002. [Epub ahead of print].
27. Dhandapani S, Sarda AC, Kapoor A, Salunke P, Mathuriya SN, Mukherjee KK. Validation of a new clinico-radiological grading
for compound head injury: implications on the prognosis and the need for surgical intervention. World Neurosurg 2015;84:1244-50.
28. Kulkarni AV, Shams I. Quality of life in children with hydrocephalus: results from the hospital for sick children, Toronto. J Neurosurg 2007;107:358-64.
29. Dhandapani S, Srinivasan A. Contiguous triple spinal dysraphism associated with Chiari malformation Type II and hydrocephalus: an embryological conundrum between the unified theory of Pang and the unified theory of McLone. J Neurosurg Pediatr 2016;17:103-6.
30. Dhandapani S, Negm HM, Cohen S, Anand VK, Schwartz TH. Endonasal endoscopic transphenoidal resection of tuberculum sella meningioma with anterior cerebral artery encasement. Cureus 2015;7:e311.