A nanodomain anchored-scaffolding complex is required for PI4Kα function and localization in plants

Noack LC¹, Bayle V¹, Armengot L¹, Rozier F¹, Mamode-Cassim A²,⁴, Stevens FD³, Caillaud MC¹, Munnik T³, Mongrand S², Jaillais Y¹*

¹ Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France

² Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France

³ Research Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94215, Amsterdam, 1090 GE, The Netherlands.

⁴ Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France

*Corresponding author: yvon.jaillais@ens-lyon.fr
Abstract:
Phosphoinositides are low-abundant lipids that participate in the acquisition of membrane identity through their spatiotemporal enrichment in specific compartments. PI4P accumulates at the plant plasma membrane driving its high electrostatic potential, and thereby facilitating interactions with polybasic regions of proteins. PI4Kα1 has been suggested to produce PI4P at the plasma membrane, but how it is recruited to this compartment is unknown. Here, we pinpoint the mechanism that tethers PI4Kα1 to the plasma membrane via a nanodomain-anchored scaffolding complex. We identified that PI4Kα1 is part of a heterotetrameric complex composed of proteins from the NO-POLLEN-GERMINATION, EFR3-OFF-PLANTS, and HYCCIN families. Comprehensive knock-out and knock-down strategies revealed that subunits of the PI4Kα1 complex are essential for pollen, embryonic and post-embryonic development. We further found that the PI4Kα1 complex is immobilized in plasma membrane nanodomains. Using synthetic mis-targeting strategies, we demonstrate that a combination of lipid anchoring and scaffolding localizes PI4Kα1 to the plasma membrane, which is essential for its function. Together, this work opens new perspectives on the mechanisms and function of plasma membrane nanopatterning by lipid kinases.

Introduction
Eukaryotic cells are composed of several membrane-surrounded compartments. Each compartment has a unique physicochemical environment delimited by a membrane with a specific biochemical and biophysical identity (Bigay and Antonny, 2012). The membrane identity includes the nature of the lipids, the curvature, the electrostaticity and the density of lipids at the membrane. The identity of each membrane allows the proper localization of membrane-associated proteins.

Phosphoinositides are rare anionic lipids present in membranes. Five types of phosphoinositides exist in plants - PI3P, PI4P, PI5P, PI(4,5)P2 and PI(3,5)P2 - depending on the number and position of phosphates around the inositol ring. They accumulate differently at the plasma membrane and intracellular compartments and interact with proteins through stereo-specific or electrostatic interactions (Barbosa et al., 2016; Lemmon, 2008; Simon et al., 2016). Recent work uncovered that PI4P concentrates according to an inverted gradient by comparison to their yeast and animal counterpart (Hammond et al., 2009, 2014; Levine and Munro, 1998, 2002; Noack and Jaillais, 2017, 2020; Roy and Levine, 2004; Simon et al., 2016). Indeed, in yeast, the major PI4P pool is in the Golgi/trans-Golgi Network (TGN) compartments while a minor pool is present at the plasma membrane (Roy and Levine, 2004). The plasma membrane pool of PI4P is produced by the PI4-Kinases (PI4K) Sdt4p, while Pik1p produces the PI4P pool at the TGN (Auddyha and Emr, 2002; Audhya et al., 2000; Balla et al., 2005; Nakatsu et al., 2012; Roy and Levine, 2004). These two PI4P pools are essential for yeast survival and at least partially independent (Roy and Levine, 2004). In animal, three PI4K isoforms, PI4KIIIβ/PI4KIIα/PI4KIIβ, are responsible for synthesizing PI4P at the Golgi/TGN and in endosomes (Balla et al., 2002; Wang et al., 2003; Wei et al., 2002). Similar to the Δsdt4p in yeast, PI4KIIIα loss-of-function mutant is lethal in mammals (Nakatsu et al., 2012). In PI4KIIIα conditional mutants, the pool of PI4P disappears from the plasma...
membrane while the TGN structures seem to remain untouched suggesting that the two pools could be independent (Nakatsu et al., 2012).

In plants, PI4P massively accumulates at the plasma membrane and is less abundant at the TGN (Simon et al., 2014, 2016; Vermeer et al., 2009). This PI4P accumulation at the cell surface drives the plasma membrane electrostatic field, which in turn recruits a host of signalling proteins to this compartment (Barbosa et al., 2016; Platre et al., 2018; Simon et al., 2016). Moreover, the plant TGN is the site of vesicular secretion but also involved in endocytic sorting and recycling, which might imply regulatory mechanisms of lipid exchanges or maintenance of membrane identity between plasma membrane and TGN (Noack and Jaillais, 2017).

The *Arabidopsis* genome codes four PI4-kinases: PI4Kα1, PI4Kα2, PI4Kβ1 and PI4Kβ2 (Szumlanski and Nielsen, 2010). Due to the absence of Expressed Sequence Tags of *PI4Kα2*, it is considered as a pseudogene (Mueller-Roemer and Pical, 2002). *pi4kβ1pi4kβ2* double mutant displays mild growth defects including tip growth phenotype with bulged root hairs and cell plate defects, which suggest defective secretory pathway (Antignani et al., 2015; Delage et al., 2012; Kang et al., 2011; Lin et al., 2019; Preuss et al., 2006; Šašek et al., 2014). In addition, *pi4kβ1pi4kβ2* presents fewer and misshaped secretory vesicles at the TGN (Kang et al., 2011). PI4Kβ1 and PI4Kβ2 have first been described to be localized to the Trans-Golgi Network/Early Endosomes (TGN/EE) in root hairs (Preuss et al., 2006). This localization, as well as its accumulation at the cell plate, has later been validated by electron tomography and confocal microscopy in root meristematic cells (Kang et al., 2011; Lin et al., 2019). The targeting mechanism of PI4Kβ1 at the TGN involves RabA4b, a small GTPase (Preuss et al., 2006). In addition, PI4Kβ1 recognizes, and interacts with, the curved electronegative membrane of the TGN/EE via an amphipatic lipid packing sensor (ALPS) motif preceded by cationic amino acids (Platre et al., 2018).

In contrast, PI4Kα1 localizes at the plasma membrane (Okazaki et al., 2015) and its catalytic activity was confirmed *in vitro* (Stevenson-Paulik et al., 2003). Thus, it is a prime candidate for producing PI4P at the plasma membrane. However, PI4Kα1 is a soluble protein with no protein-lipid interaction domains or anchoring mechanism known. How PI4Kα1 is recruited and participates to the architecture of the plasma membrane are open questions.

Here, we uncovered that PI4Kα1 belongs to a 4-subunit complex composed of proteins from the NPG (NO POLLEN GERMINATION), HYC (HYCCIN) and EFOP (EFR3 OF PLANTS) protein families. Using fluorescent protein tagging, immunolocalization and subcellular fractionation, we confirmed the presence of the PI4Kα1 complex at the plasma membrane. Furthermore, we show that *pi4ka1* loss-of-function leads to full male sterility. Mutant pollen grains collapse and display abnormal cell walls. Knockout of any subunits of the PI4Kα1 complex mimics *pi4ka1* pollen lethality. Moreover, we established that the four subunits of the complex are essential for *PI4Kα1* function. By using mutant variants and chimeric constructs, we showed that the function of this complex is to target PI4Kα1 to the plasma membrane via lipid anchors. Finally, we observed that this heterotetrameric complex
is not homogenously present on the plasma membrane but enriched in nanodomains. Although all the subunits of the complex are peripheral proteins and lack a transmembrane domain, they show very little lateral mobility at the plasma membrane. These results suggest that PI4Kα1 is not localized homogeneously at the plasma membrane but rather accumulates in distinct hotspots at the inner leaflet of the plasma membrane. Consequently, the targeting of this lipid kinase by a multiprotein scaffold might allow its precise spatiotemporal recruitment in order to maintain the proper electrostatic landscape of plant cell membranes.

Results

PI4Kα1 is a soluble protein with a potential lipid-binding domain

To determine how PI4Kα1 is recruited to the plasma membrane, we first analysed its protein sequence in silico. Using TMHMM Server v. 2.0, no transmembrane helices could be predicted in PI4Kα1 protein sequence suggesting that PI4Kα1 is a soluble cytosolic protein. We then looked for lipid binding domains. Indeed, a Pleckstrin Homology (PH) domain has been found in its C-terminal, upstream from the catalytic domain (Stevenson et al., 1998; Stevenson-Paulik et al., 2003; Xue et al., 1999). This PH domain was first thought to localize PI4Kα1 at the plasma membrane through interaction with anionic phospholipids but its role is now discussed (De Jong, F. and Munnik, T., 2021). Fat blot experiments showed affinity of the putative PH domain for PI4P and in a lesser extent for PI(4,5)P₂ (Stevenson et al., 1998; Stevenson-Paulik et al., 2003). However, no experiment in planta validates this result and using the Simple Modular Architecture Research Tool (SMART) software, we were not able to retrieve the PH domain. Because of the lack of predicted domain (except for the kinase domain), we decided to consider other targeting mechanisms involving possible protein partners. Indeed, protein targeting to a membrane can be multifactorial and may require coincidence binding of lipids and protein partners.

PI4Kα1 interacts with NO POLLEN GERMINATION proteins

To investigate this last hypothesis, we screened for PI4Kα1-protein partners. We performed a yeast-two-hybrid screen with the large N-terminal part of PI4Kα1 (1-1468 aa) (Figure 1A). We recovered 267 in frame clones, which corresponded to 48 different proteins. Among them, the screen revealed interactions between PI4Kα1 and the three members of a protein family called NO POLLEN GERMINATION (NPG): NPG1 (At2g43040), NPG-Related 1 (NPGR1 – At1g27460) and NPGR2 (At4g28600) (Golovkin and Reddy, 2003). In the screen, we retrieved 39 clones (7 independent clones) for NPG1, 32 clones (6 independent clones) for NPGR1 and 2 clones (1 independent clone) for NPGR2. The clones from the NPG family corresponded to about 30% of the total clones obtained from the screen, suggesting that they were over-represented.

NPG proteins contain tetraricopeptide repeats (TPR) motifs that are protein-protein interaction motifs. In the yeast-two-hybrid screen, the selected interaction domain identified
for NPG1, NPGR1 and NPGR2 correspond to the C-terminal part of the proteins (aa 444-704 for NPG1; 501-694 for NPGR1 and 414-739 for NPGR2). This is also the part of the sequence that contains the highest density of predicted TPR motifs suggesting that the interaction between PI4Kα1 and NPGs could be mediated by the C-terminal TPR motifs.

Because all three members of the NPG family interacted with PI4Kα1 in yeast-two hybrids, and given their high degree of identity and similar architecture, we decided to focus on one member of the family to confirm the interaction in planta. We guided this choice based on the RNAseq expression data compiled on eFP browser (https://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). We chose NPGR2, as it is the family member with the highest and more widespread expression. Indeed, NPG1 was predicted to be specifically expressed in the pollen, while NPGR1 expression matched that of NPGR2 but was predicted to be much weaker.

To confirm the interaction between NPGR2 and PI4Kα1, we produced stable transgenic lines expressing UBQ10::NPGR2-mCITRINE. We raised antibodies against the native PI4Kα1 (residues 1 to 344 of PI4Kα1). In western blot the antibody recognized PI4Kα1 around the expected size (225kDa) and the tagged version of PI4Kα1 with mCITRINE and 2xmCHERRY slightly higher (Supplemental Figure 1A; Table S1). We immunoprecipitated NPGR2-mCITRINE or the plasma membrane protein Lti6b-CITRINE as control using anti-GFP antibodies and probed whether they could co-immunoprecipitate PI4Kα1, using our native antibody. We efficiently immunoprecipitated NPGR2-mCITRINE or Lti6b-CITRINE, but PI4Kα1 was only co-immunoprecipitated with NPGR2-mCITRINE (Figure 1B). Together, these experiments suggest that PI4Kα1 can interact in yeast with the C-terminus of all the three members of the NPG family and is at least found in complex with NPGR2 in planta.
Figure 1. PI4Kα1 belongs to a 4-subunit complex in *Arabidopsis*, which includes proteins from the NPG, HYC and EFOP families. (A) Co-immunoprecipitation of PI4Kα1 with NPGR2. Arabidopsis transgenic plants overexpressing NPGR2-mCITRINE (NPGR2-mCt) or Lti6b-mCITRINE (Lti6b-mCt) were used for immunoprecipitation using anti-GFP beads. Immunoblots used anti-PI4Kα1 (upper panel) and anti-GFP (lower panel). (B) Venn diagram of proteins identified by mass spectrometry from immunoprecipitation of mCITRINE-PI4Kα1, NPGR2-mCITRINE, mCITRINE-NES-mCITRINE and myristoylation-2xmCITRINE. (C) Co-immunoprecipitation of NPGR2 with HYC2. Arabidopsis transgenic plants overexpressing HYC2-mCITRINE (HYC2-mCt) or Lti6b-mCITRINE were used for immunoprecipitation using anti-GFP beads. The immunoblots used anti-PI4Kα1 (upper panel) or anti-GFP (lower panel). (D) Co-immunoprecipitation of PI4Kα1 with EFOP2 and HYC2. Arabidopsis transgenic plants overexpressing EFOP2-mCITRINE (EFOP2-mCt), HYC2-mCITRINE or Lti6b-mCITRINE were used for immunoprecipitation using anti-GFP beads. Immunoblots using anti-PI4Kα1 (upper panel) or anti-GFP (lower panel). (E) Yeast-two hybrid assay of HYC1 with NPG1, HYC2 with NPG1 or
NPG1 and NPG2. Indicated combinations of interactions between HYCCIN and NPG proteins were assessed by growth on plates with yeast growth media lacking Leu, Trp, and His (-LTH). Yeast growth on plates lacking Leu and Trp (-LT) shows the presence of the bait and prey vectors. Absence of growth when cycloheximide was added (+CHX) shows the absence of auto-activation of the DB vectors. Addition of 3-Amino-1,2,4-Triazol (+3AT) shows the strength of the interaction. (F) Summary of experiments showing interactions between PI4Kz1, NPG, HYC and EFOP2 proteins.

NPG proteins interact with HYCCIN proteins

Next, we asked whether the PI4Kα1 complex could include additional subunits. To this end, we used the lines expressing mCITRINE-PI4Kα1 and NPG2-mCITRINE to perform immunoprecipitation (IP) followed by mass spectrometry analyses. Two lines expressing membrane-associated (myristoylation-2xmCITRINE) and nuclear-excluded (mCITRINE-NES-mCITRINE) proteins were also used as generic controls for plasma membrane and cytosolic proteins, respectively. In the NPG2 IP, we found PI4Kα1, further confirming that these two proteins are present in the same complex in plants. Only one common protein was found in both NPG2 and PI4Kα1 IPs but excluded from the two controls (Figure 1C). This protein was coded by the At5g64090 locus and contains a HYCCIN domain. *Arabidopsis* genome codes for only two proteins with a HYCCIN domain subsequently called HYCCIN1 (HYC1, At5g21050) and HYCCIN2 (HYC2, At5g64090).

HYC2 is broadly expressed, while HYC1 expression is restricted to pollen according to the eFP browser data set (https://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). Hence, we chose to confirm whether HYC2 was present in the PI4Kα1/NPG2 sporophytic complex. To this end, we raised a *UBQ10::HYC2-mCITRINE* expressing lines and successfully isolated antibodies raised against NPG2 (residues 1 to 273 of NPG2). The expected size of NPG2 is 82kDa. The antibody recognized a band at ca. 80kDa that is not present in npgr2-1 or npgr2-3 knock out mutants or npgr1npgr2-1 double mutant (Supplemental Figure 1B; Table S1). Moreover, the antibody recognized NPG2-mCITRINE around 110kDa, but did not recognize NPG1-mCITRINE indicating that the antibody specifically recognized NPG2 (Supplemental Figure 1B). We found that NPG2 co-immunoprecipitated with HYC2-mCITRINE but not Lti6b-mCITRINE (Figure 1D). Similarly, PI4Kα1 also co-immunoprecipitated with HYC2-mCITRINE but not with Lti6b-mCITRINE (Figure 1E).

Next, we used yeast-two hybrid to check whether the two HYCCIN family members may directly interact with PI4Kα1/NPGs (Figure 1F). We found that the two isoforms that are pollen specific, HYC1 and NPG1 interacted in yeast. Likewise, HYC2 interacted with NPG1, NPGR1 and NPG2 in yeast. Together, our results indicate that HYCCIN family members directly interact with NPG proteins. Furthermore, HYC2 is present in complex with PI4Kα1/NPG2 in the *Arabidopsis* sporophyte, while HYC1/NPG1/PI4Kα1 could form a similar complex in the male gametophyte.

EFOPs proteins are part of the PI4Kα1-NPG-HYC complex

HYC domain containing proteins are also found in metazoan. In human cells, one of the members of the HYCCIN family, FAM126, has been shown to be part of a complex containing PI4KIIα (Baskin et al., 2016; Dornan et al., 2018). FAM126 directly interacts with a protein called TETRATRICOPEPTIDE REPEAT PROTEIN 7 (TTC7), which bridges PI4KIIα, FAM126 and a third protein called EFR3 (Baskin et al., 2016; Dornan et al., 2018;
Lees et al., 2017; Wu et al., 2014). While no HYCCIN containing protein are found in yeast, the plasma membrane PI4-Kinase, Stt4p is also anchored to the plasma membrane by a complex containing Ypp1p, which like NPG1 contains TPR motives, and Efr3p (Baird et al., 2008; Nakatsu et al., 2012; Wu et al., 2014).

Based on these information, we hypothesized that NPGs and HYCs in plants could be functional homologs of TTC7/Ypp1p and FAM126 in Arabidopsis, respectively. We thus wondered whether EFR3 homologs could exist in Arabidopsis using blast and sequence alignments. We found four potential candidates that we named EFR3 OF PLANT (EFOPs): EFOP1 (At5g21080), EFOP2 (At2g41830), EFOP3 (At1g05960) and EFOP4 (At5g26850).

Yeast Efr3p is a rod-shaped protein made of ARMADILLO-(ARM) and HEAT-like repeats. ARM and HEAT repeats are difficult to distinguished bioinformatically, but all four EFOP proteins belong to the ARM-repeat super family, which includes both ARM and HEAT repeat containing proteins (Wu et al., 2014). In Marchantia polymorpha, mutants for MpPI4Ka1 (the homolog of PI4Kα1) and MpSRI4, the homolog of EFOP2, display short rhizoids, suggesting that they could act in the same pathway and/or protein complex (Honkanen et al., 2016). In addition, based on RNAseq data, EFOP2 have a rather large pattern of expression. Thus, we decided to concentrate on EFOP2 to test whether it is indeed present in the sporophytic PI4Kα1/NPGR2/HYC2 complex. To this end, we raised UBQ10prom::EFOP2-mCITRINE transgenic lines and immunoprecipitated EFOP2-mCITRINE and Lti6b-mCITRINE using an anti-GFP antibody. We found that PI4Kα1 co-immunoprecipitated with EFOP2-mCITRINE while it did not with Lti6b-mCITRINE (Figure 1E), suggesting that EFOP2 may belong to the PI4Kα1/NPGR2/HYC2 complex.

The summary of these interactions suggests that PI4Kα1 is part of an heterotetrameric complex in which NPG proteins may act as a scaffold that bridges EFOP, HYC and PI4Kα1 proteins together (Figure 1G).

pi4ka1 mutants are pollen lethal

Next, we took a genetic approach to confirm whether NPG, HYC and EFOP family members indeed may function together with PI4Kα1 in planta. To this end, we isolated single mutants for all the genes encoding for a subunit of the PI4Kα1 complex (Table S2). We started our analysis with PI4Kα1 because it is the catalytic subunit and it is present as a single-copy gene in the Arabidopsis genome for which we isolated two T-DNA insertion alleles. The first allele (pi4ka1-1; GK_502D11) had an insertion in the first exon, while the second insertion (pi4ka1-2; FLAG_275H12) was located in the 20th intron (Figure 1A). T-DNAs of the first and second allele possess a sulfadiazine and glufosinate resistant gene, respectively. We failed to obtain homozygous mutant plants for both alleles. The segregations obtained after self-fertilization of heterozygous plants were 38% of sulfadiazine resistant seedlings for pi4ka1-1 and 9% of glufosinate resistant seedlings for pi4ka1-2 (Table 1). Because there were less than 50% of resistant plants in the progeny of self-fertilized pi4ka1 alleles, these segregations indicated likely gametophyte lethality, which might explain the absence of homozygous pi4ka1 mutant. To address whether pi4ka1 could be female and/or male gametophytic lethal, we performed reciprocal crosses, using pi4ka1 +/- and wild-type as either male or female. For
both alleles, we recovered 0% resistant plants when \textit{pi4ka1+/-} was used as the male indicating no transmission of the mutation via the pollen and thus complete male sterility (Table 2). When \textit{pi4ka1+/-} was used as female, we obtained 39% and 9% of resistant plants for each allele (Table 2). This result shows that the \textit{pi4ka1} mutation did not fully impair the transmission through the female gametophyte but led to a partial distortion of the segregation.

		Segregation	% of resistant plants	% expected	n	
		Female	Male			
PI4Ka1	pi4ka1-1	pi4ka1-1 +/-	pi4ka1-1 +/-	38.2	75	418
	pi4ka1-2	pi4ka1-2 +/-	pi4ka1-2 +/-	9.4	75	359
NPG1	npg1-1	npg1-1 +/-	npg1-1 +/-	50.3	75	296
	npg1-2	npg1-2 +/-	npg1-2 +/-	32	75	504
HYC1	hyc1	hyc1 +/-	hyc1 +/-	38.2	75	128
	hyc2-2	hyc2-2 +/-	hyc2-2 +/-	59.9	75	133
	hyc2-3	NO RESISTANCE				

Table 1: Segregation analyses of the indicated self-fertilized heterozygous mutants. n represent the number of seedling analysed.

Next, we observed \textit{pi4ka1} pollen grains using scanning electron microscopy (SEM) to test whether they showed morphological defects (Figure 2A). For both alleles, half of the pollen grains were shrivelled and likely not able to germinate explaining the pollen lethality (Figure 2A and B). However, using Alexander staining, we observed that the \textit{pi4ka1-1} pollens were still alive (Supplemental Figure 2B). DAPI staining also revealed the presence of the vegetative nucleus and the two sperm cell nuclei indicating that meiosis likely occurred normally (Supplemental Figure 2C). Further analysis by transmission electron microscopy showed that the \textit{pi4ka1-1} pollen grains displayed an abnormally thick cell wall (Figure 2C).

The reintroduction of a copy of \textit{PI4Ka1} under the control of its own promoter in \textit{pi4ka1-1} background fully complemented the \textit{pi4ka1-1} lethality as shown by the possibility to obtain homozygous mutant plants (three independent complemented lines, see Supplemental Figure 2A). In addition, self-fertilized \textit{pi4ka1-1/-; PI4Kalprom::PI4Ka1} plants showed a low number of shrivelled pollen grains, comparable to control plants, indicating that a wild-type copy of \textit{PI4Ka1} is required for transmission through the male gametophyte and normal pollen morphology (Figure 2A and B). Together, these results show that \textit{PI4Ka1} is an essential gene for pollen development.
Gene	Allele	Cross	% of resistant plants	% expected	n	
		Female	Male			
PI4Ka1	pi4ka1-1	pi4ka1-1 +/-	Co0	39	50	424
		Co0	pi4ka1-1 +/-	0	50	268
	pi4ka1-2	pi4ka1-2 +/-	Co0	9.3	50	106
		Co0	pi4ka1-2 +/-	0	50	293
NPG1	npg1-1	npg1-1 +/-	Co0	40.6	50	214
		Co0	npg1-1 +/-	0	50	163
	npg1-2	npg1-2 +/-	Co0	30.8	50	26
		Co0	npg1-2 +/-	0	50	111
HYC1	hyc1	hyc1 +/-	Co0	47	50	185
		Co0	hyc1 +/-	0	50	58
HYC2	hyc2-2	hyc2-2 +/-	Co0	29.6	50	54
		Co0	hyc2-2 +/-	29.8	50	47
	hyc2-3					
ELP3 ELP4	elp3-1 elp4-2	elp3-1 +/-	Co0	55.7	50	97
		elp4-2 +/-	Co0	2.2	50	45
	elp3-2 elp4-2	elp3-2 +/-	Co0	32.4	50	68
		elp4-2 +/-	Co0	0	50	31
	elp3-1 elp4-4	elp3-1 +/-	Co0	48.1	50	27
		elp4-4 +/-	Co0	ND	50	ND
	elp3-2 elp4-4	elp3-2 +/-	Co0	50	50	12
		elp4-4 +/-	Co0	0	50	6

Table 2: Segregation analyses of reciprocal crosses between wild-type and the indicated mutants. n represent the number of seedling analysed.
Figure 2. Analysis of the pi4kα1 pollen phenotype. (A) Scanning electron microscope micrograph of pollen grains from Col-0, self-fertilized pi4kα1-1 heterozygous plants, self-fertilized pi4kα1-2 heterozygous plants, and self-fertilized pi4kα1-1 homozygous plants expressing PI4Kα1::PI4Kα1-3'UTR (insertion n°18). Shrivelled pollen grains are coloured in red and normal pollen grains are coloured in blue. Close-up is shown for pi4kα1-1 pollen on the right. Scale bar: 50 µm. (B) Quantification of the percentage of normal (blue) versus deformed/shrivelled (red) pollen grains from Col-0, self-fertilized pi4kα1-1 heterozygous plants, self-fertilized pi4kα1-2 heterozygous plants, and self-fertilized pi4kα1-1 homozygous plants expressing PI4Kα1::PI4Kα1-3'UTR (insertion n°18). n indicates the number of pollen counted for each genotype. Statistics used chi-square test. n.s, non-significant; ***, p<0.001. (C) Observation of Col-0 and pi4kα1-1 shrivelled pollen grains by transmission electron microscopy. Right panels show close-up of the region indicated on the left panel.

Disturbing subunits of the PI4Kα1 complex mimics pi4kα1 pollen phenotypes

Next, we isolated single mutants for all the genes encoding for NPG, HYC and EFOP subunits in order to ask whether they would recapitulate pi4kα1 loss-of-function phenotype (Table S2).

The npg1 mutant was previously published as not able to germinate giving its name NO POLLEN GERMINATION to the family (Golovkin and Reddy, 2003). We reproduced this result by characterizing two new T-DNA mutant alleles of NPG1. The self-progeny of npg1-1/+ and npg1-2/+ had segregation rate of 50.3% and 32% resistant seedlings, respectively, indicating gamete lethality (Table 1). Reciprocal crosses confirmed their male sterility phenotype, with 0% of transmission of the mutation through the pollen, while the female
gametophyte might be affected only for the second allele with a weak distortion of the segregation rate (Table 2). However, the observation of *npg1-1* and *npg1-2* pollen grains by SEM did not show any morphological defect, unlike *pi4ka1* pollens (Figure 3A-B; Supplemental Figure 3A-B). The reintroduction of *NPG1* fused with mCITRINE under the control of its own promoter complemented the male sterility in *npg1-2* background leading to *npg1-2* homozygous plants (Supplemental Figure 3C). Similarly, the expression of NPGR2 fused to the mCITRINE under the control of the *NPG1* promoter also complemented *npg1-2* male sterility. These experiments indicate that NPGR2 can substitute for NPG1 function in pollen and that both NPG1-mCITRINE and NPGR2-mCITRINE fusion are fully functional (Supplemental Figure 3C).

![Figure 3](https://example.com/figure3.png)

Figure 3. Analysis of the phenotype of indicated mutants from the *npg, hyc* and *efop* families. (A) Pollen grains observed by scanning electron microscopy of self-fertilized Col-0, *npg1-2 +/+*, *npg1-2 +/−*, *npg1-2−/−*, *npg1-2−/−*-*npgr1−/−*, *hyc1−/−*, *efop3-1−/−*-*efop4-2−/−* and *efop3-1−/−*-*efop4-2−/−* plants. Deformed pollens and shrivelled pollens are colored in red and orange, respectively. Scale bar: 50 µm (B) Quantification of % of normal (blue), deformed (orange) and shrivelled (red) pollen grains from self-fertilized Col-0, *npg1-2 +/+*, *npg1-2 +/−*, *npg1-2−/−*, *npg1-2−/−*-*npgr1−/−*, *hyc1−/−*, *efop3-1−/−*-*efop4-2−/−* plants. n indicates number of pollens counted for each genotype. Statistics used chi-square test. n.s, non-significant; ***, p<0.001. (C) Observation of pollen grains from self-fertilized Col0, *pi4ka1−/−*, *hyc1−/−* and *efop3-1−/−*-*efop4-2−/−* by transmission electron microscopy. Lower panel shows close-up of region indicated on upper panel.

Because, NPGR2 can substitute for NPG1 in pollen, we speculated that a certain degree of functional redundancy between NPG1, NPGR1 and NPGR2 or compensatory effects during pollen development could lead to the weaker phenotype of *npg1* pollen compared to *pi4ka1* pollen and thus explain why *npg1* pollen did not present morphological defect by SEM. To test this hypothesis we generated higher order mutant combination within the *NPG* family (Table S2). The *npg1-2−/−*-*npgr1−/−* mutant combination presented about 10% of *pi4ka1*-like shrivelled pollen grains while *npgr1*npgr2-1 and *npgr1*npgr2-2 double homozygous mutants...
displayed about 25% of deformed (but not shrivelled) pollen grains (Figure 3A-B; Supplemental Figure 3A-B). Finally, the npg1-2+/+npgr1-/-npgr2-1/- and npg1-2+/+npgr1-/-npgr2-2/- displayed about 35 and 50% of deformed and shrivelled pollen grains, respectively. These data indicate that combinations of npg mutants partially mimic pi4kal pollen phenotype.

Next, we addressed the loss-of-function phenotypes of HYCCIN family members. The self-progeny of a hycl+/+ single mutant presented a segregation rate around 50% indicating a gametophytic lethality (Table 1). As HYC1 expression is restricted to pollen, we were expecting that the segregation bias was caused by defects of the male gametophyte. As anticipated, reciprocal crosses showed male sterility while the T-DNA transmission through the female gametophyte was not affected (Table 2). Observation of hycl+/+ pollen grains by SEM revealed that half of the pollen grains were shrivelled (Figure 3A and B). In addition, transmission electron microscopy also showed a thickening of the cell wall of the hycl mutant pollen grains, which was similar to the phenotype observed for pi4kal-1 (Figure 3C). Finally, the male sterility, as well as the pollen morphological defects, were complemented by the reintroduction of HYC1prom::HYC1-mCITRINE (Supplemental Figure 3A-B and D). All together, these data show that hycl knockout phenotype fully mimic pi4kal knockout regarding pollen development.

None of the efop single mutant presented any pollen morphological defects or distortion of segregation likely because of redundancy between the four members of this family (Supplemental Figure 3B). We thus generated all the possible combinations of double mutants (Supplemental Figure 3B; Table 3). We were able to obtain efop2efop3 double homozygous mutants, suggesting no strong synthetic lethality. However, they presented from 19% to 25% of shrivelled pollen grains, resembling those of the pi4kal and hycl mutants, and from 43% to 65% of deformed pollen (resembling those of npgr1npgr2 double mutants). Thus, depending on the alleles, these double mutant combinations presented from 70% to 90% of abnormal pollen (Supplemental Figure 3A and B). In addition, it was not possible to generate efop3efop4 double homozygous mutant no matter the alleles used. Indeed, reciprocal crosses indicated 0% of transmission of efop3 mutant allele when efop3+-efop4-/- plants were used as male, revealing that efop3efop4 pollen were lethal (Table 2). SEM showed that about 45% of the pollen grains present abnormal morphology (Figure 3A and B; Supplemental Figure 3A and B). Finally, observation of efop3-1efop4-2 shrivelled pollen grain by electron transmission microscopy revealed a thick cell wall similar to the phenotype observed for pi4kal-1 and hycl. efop2efop3 and efop3efop4 double mutants mimic partially and fully pi4kal and hycl pollen phenotypes, respectively. Altogether, our genetic analyses indicate that all the protein classes in the putative PI4Ka1 complex are essential for the male gametophyte in Arabidopsis and that certain mutant combinations in the NPG, HYC or EFOP families either fully (hycl+/+; efop3+-efop4-/) or partially (npg1+/+; npg1+/-npgr1-/- npgr1-/-npgr2-/-; nplg2-1/-npgr1-/-npgr2-2/-; efop2efop3-/) mimic the pi4kal phenotype. Thus, these proteins likely act as a single protein complex in plants.
Figure 4. Sporophytic phenotypes induced by mutations of the PI4Kα1 complex (A) Twenty seven-days-old Col-0, npg1-2+/-, npgr1-/-, npgr2-2/-, npg1-2+/-, npgr1-/- -npgr2-2/- and npg1-2+/-, npgr1-/- -npgr2-2/- plants. Scale bar: 2 cm (B) Forty-one-days-old Col-0, npg1-2+/-, npgr1-/-, npgr2-2/-, npg1-2+/-, npgr1-/- -npgr2-2/- and npg1-2+/-, npgr1-/- -npgr2-2/- plants. Scale bar: 2cm (C) Opened siliques of self-fertilized Col-0, hy2-2 and hy2-3 heterozygous mutant plants. White arrowheads indicate aborted seeds. (D) % of aborted seeds in Col0, hy2-2+/-, hy2-3+/-, hy2-2/- HYC2prom::HYC2-mCITRINE (insertion n°10), and hy2-2/- HYC2prom::HYC2-2xMCHERRY (insertion n°11) siliques. The number of seed counted is superior at 250 for each genotype. Statistics used chi-square test. n.s, non-significant; ***, p<0.001. (E) Cleared seeds from hy2-2 and hy2-3 heterozygous mutant plants. White arrowheads indicate globular embryo that have stopped development.
Disturbing the PI4Ka1 complex results in various sporophytic phenotypes

The pollen lethality of pi4ka1 knockout did not allow us to further study the role of PI4Ka1 in plant development. However, combinations of npg mutants presented growth defect phenotypes. Indeed, npgr1npgr2-2 double mutant and npg1+/npgr1-/npgr2-1/- present a mild growth phenotype while npg1+/npgr1-/npgr2-2/- is dwarf (Figure 4A-B; Supplemental Figure 4A-B). Reintroduction of NPGRIprom::NPGRI-mCITRINE was able to rescue the growth phenotype of npgr1npgr2-2 double mutant (Supplemental Figure 4C). This suggests that the PI4Ka1 complex is essential not only for pollen development but also for other developmental and growth processes.

While HYC1 is specifically expressed in pollen and is male sterile, HYC2 is predicted to be expressed in the sporophyte. We characterized two T-DNA alleles corresponding to two putative hyc2 loss-of-function mutants. The segregation rate of hyc2-2 heterozygous plants was of 60% (Table 1). Moreover, it was not possible to retrieve homozygous plants in the self-progeny of both hyc2-2 and hyc2-3. Reciprocal crosses indicated a transmission of the allele through the male and the female gametophytes even if a weak distortion could be observed in both cases (Table 2). Siliques from hyc2-2 and hyc2-3 heterozygous plants presented around 25% to 30% of aborted seeds (Figure 4C-D; Supplemental Figure 4D). Observations of the embryo after clearing showed that in those siliques, some embryo stopped their development at the globular stage before degenerating while the rest of the embryos pursued their development normally (Figure 4E). This phenotype was lost and homozygous mutant plants were obtained when HYC2-mCITRINE or HYC2-2xmCHERRY were reintroduced under the control of the HYC2 promoter (Figure 4D; Supplemental Figure 4D-E). Thus, the loss of HYC2 leads to embryo lethality at the globular stage, suggesting that HYC1 is essential for the male gametophyte, while HYC2 is essential for sporophytic development. These results are consistent with the idea that the four-subunit PI4Ka1 complex is essential in plants.

The PI4Ka1 complex is associated with the plasma membrane

To confirm the localization of PI4Ka1 at the plasma membrane, we first raised stable transgenic lines expressing PI4Ka1 tagged with mCITRINE at either its N- or C-terminal ends and the red fluorescent protein 2xmCHERRY at the C-terminal end under the control of either its own promoter or the UBQ10 promoter. Consistent with the hypothesis that PI4Ka1 acts at the plasma membrane, the three constructs mCITRINE-PI4Ka1, PI4Ka1-mCITRINE, and PI4Ka1-2xmCHERRY localized at the plasma membrane and in the cytosol (Figure 5A). However, the introduction PI4Ka1::PI4Ka1-mCITRINE, PI4Ka1::mCITRINE-PI4Ka1 or PI4Ka1::PI4Ka1-2xmCHERRY constructs in the pi4ka1-1+/- mutant background failed to complement the pollen lethality and we never recovered pi4ka1-1-/- plants (data not shown). We used the same PI4Ka1 promoter used for the rescue experiment with the untagged PI4Ka1 (Figure 2B-C; Supplemental Figure 2A), suggesting that PI4Ka1 fused with a fluorescent protein is non-functional. Expression of PI4Ka1 fused to smaller tags (i.e. PI4Ka1-6xHA or Flag-PI4Ka1) also failed to complement pi4ka1-1 (data not shown).
Figure 5. All the members of the PI4Kα1 complex localize at the plasma membrane. (A) Confocal images of PI4Kα1, NPG1, NPGR1, NPGR2, HYC1, HYC2, EFOP1, EFOP2 and EFOP3 fused to mCITRINE (mCt) or mCherry under control of the UBQ10 promoter in root epidermal cells. Scale bars: 10µ m. (B) Confocal images of PI4Kα1 using an anti-PI4Kα1 antibody in epidermal root cells on WT seedlings. Control background without primary antibody is shown. Scale bar: 10 µm. (C) Western blot using anti-PI4Kα1, anti-NPGR2, anti Anti-V-type ATPase, and anti-PiP1,2 aquaporin antibodies on plasma membrane and microsomal fractions from WT seedlings. (D) Confocal images of seedlings co-expressing Lti6b-2xCherry (under control of 2x35S promoter), NPGR2-mCITRINE, HYC2-mCITRINE or EFOP2-mCITRINE (under control of UBQ10 promoter). Graphics on the left represent intensity of each signal across the cell along the white line. Graphics in the middle represent intensity of
each signal along the membrane indicated by white arrow. pics with matching signal intensities are indicated by black arrows. Linear regression and adjusted R square for each signal are indicated. Graphics on the right represent residuals in y between signal along the membrane and linear regression. (E) Confocal images of PI4Kα1-mCt, mCt-PH4Kz1, NPGR2-mCt, HYC2-mCt, EFOP2-mCt under control of UBQ10 promoter in root epidermal cells in control (MES) and during plasmolysis (MES+Sorbitol). Scale bars: 10µm.

To confirm the localization obtained with mCITRINE fusion, we used the antibodies against the native PI4Kα1 and performed whole mount immunolocalization in roots. Similar to the mCITRINE-PI4Kα1 and PI4Kα1-mCITRINE fusions, we observed again a signal at the plasma membrane (Figure 5B). We also noticed signal in the cytosol and in nuclei (Figure 5B). To further confirm the preferential association of PI4Kα1 with the plasma membrane, we used cellular fractionation and PEG/Dextran phase partition of whole seedling and compared the signal obtained on a purified plasma membrane or whole microsomal fractions. We confirmed the presence of proteins in the two fractions using an antibody against V-type ATPase. The purity of the plasma membrane fraction was evaluated with antibodies against the PIP1,2 aquaporin, a known plasma membrane resident protein (Figure 5C). When loading the same amount of protein in each fraction, this experiment revealed the presence of a band around 225kDa, corresponding to PI4Kα1 in the plasma membrane fraction and only a very faint signal in the total microsomal fraction, showing that PI4Kα1 is enriched in the plasma membrane fraction (Figure 5C). Together, fluorescent fusion, immunolocalization and cellular fractionation show that PI4Kα1 is associated with the plasma membrane.

We next addressed the subcellular localization of NPG, HYC and EFOP proteins at the plasma membrane. NPG1 was previously found to be an extracellular protein in pollen grains (Shin et al., 2014). In our hand, NPG1-mCITRINE, NPGR1-mCITRINE and NPGR2-mCITRINE all localized at the periphery of the cell in root meristem (Figure 5A). To distinguish between the plasma membrane and cell wall, we co-expressed NPG2-mCITRINE with Lti6b-mCHERRY. We observed that the two signals perfectly colocalized indicating that NPGR2 is present at the plasma membrane (Figure 5D). Furthermore, we performed plasmolysis of the epidermal root cell by addition of sorbitol. In this context, the plasma membrane detaches from the cell wall. We observed that the signal of NPGR2-mCITRINE remains at the plasma membrane and is not present in the cell wall (Figure 5E). Moreover, in western blot using an anti-NPGR2 antibody, NPGR2 was found enriched in the plasma membrane fraction compared to the microsomal fractions (Figure 5C).

Similarly, HYC1-mCITRINE, HYC2-mCITRINE, EFOP1-mCITRINE, EFOP2-mCITRINE and EFOP3-mCITRINE expressed under the control of the UBQ10 promoter were found at the plasma membrane (Figure 5A and D). In addition to the plasma membrane localization, we noticed that EFOP1 and EFOP2 were associated with intracellular compartments, which were more prominently labelled for EFOP1 than EFOP2. Also, NPG1 and HYC1 were highly soluble in the cytosol. As HYC1 and NPG1 are normally mainly expressed in pollens, they might need each other to localize at the plasma membrane. This could explain why when we overexpressed them alone in root epidermal cells, we saw most of the proteins in the cytosol.
Upon plasmolysis, PI4Kα1-mCITRINE, mCITRINE-PI4Kα1, HYC2-mCITRINE and EFOP2-mCITRINE signals are found inside the cell and absent from the cell wall. EFOP2 remained associated with the plasma membrane while PI4Kα1 and HYC2 seem to delocalize to internal compartments (Figure 5E). In any case, all the protein classes in the putative PI4Kα1 complex were associated to some extent with the plasma membrane.

The PI4Kα1 complex is present in plasma membrane nanodomains

Using confocal microscopy, we noticed that for several of the translational reporters of the PI4Kα1 complex, the signal at the plasma membrane was not continuous, raising the question of a possible subcompartimentalization of the proteins. This is notably the case for PI4Kα1-mCITRINE, NPG1-mCITRINE, NPGR2-mCITRINE, HYC2-mCITRINE, EFOP2-mCITRINE, and EFOP3-mCITRINE (Figure 5A and D and FIGURE 6A). Using plant co-expressing Lti6b-2xmCHERRY and NPGR2-mCITRINE, HYC2-mCITRINE or EFOP2-mCITRINE, we observed that NPGR2-mCITRINE, HYC2-mCITRINE and EFOP2-mCITRINE signals along the plasma membrane is less homogeneous than Lti6b, and accumulated in patches of high intensity (Figure 5D). We calculated the linear regression of each signal along the membrane and observed that the R square of NPGR2-mCITRINE, HYC2-mCITRINE and EFOP2-mCITRINE are always smaller than the one of Lti6b-2cmCHERRY indicating a higher dispersion of the intensity. In addition, plants co-expressing NPGR2-2xmCHERRY and EFOP2-mCITRINE show similar intensity pattern with signals partially localized along the plasma membrane (Figure 5D). Similarly, when we observed the plasma membrane in tangential sections, NPGR2-2xmCHERRY and EFOP2-mCITRINE subdomains were partially colocalized (Figure 6A). As control, EFOP2-mCITRINE containing plasma membrane domains did not colocalize with the mostly uniformed localization of Lti6b-2xmCHERRY (Figure 5D and Figure 6A). In order to get a better axial resolution, we used Total Internal Reflection Fluorescence Microscopy (TIRF) microscopy and confirmed that NPGR2-mCITRINE, HYC2-mCITRINE and EFOP2-mCITRINE were present in nanodomains of the plasma membrane (Figure 6B).
Figure 6. The PI4Kα1 complex localizes in highly static nanodomains at the plasma membrane. (A) Confocal images of seedlings co-expressing Lti6b-2xmCHERRY (under control of the 2x35S promoter), NPGR2-mCITRINE or EFOP2-mCITRINE (under control of UBQ10 promoter). Graphics represent intensity of each signal across the cell along the white line. Black arrows indicate matching signals. Scale bars: 5 µm. (B) Confocal images of TIRF microscopy of NPGR2-mCt, HYC2-mCt and EFOP2-mCt. Scale bars: 5 µm. (C) Confocal images of P4M, PHFAPP1, NPGR2-mCt and EFOP2-mCt before photobleaching (prebleach) and 120s after photobleaching. Scale bars: 5 µm. (D) Kymographs along the membrane for the time laps in (C). Scale bars: 5 µm. (E) Graphic presenting the recovery of the signal intensity over time after bleaching. The number of zones measured is 37, 32, 30 and 13 for P4M, PHFAPP1, NPGR2-mCt and EFOP2-mCt, respectively. The fitting curves are represented. (F) Graphic presenting the mobile fraction of P4M, PHFAPP1, NPGR2-mCt and EFOP2-mCt after 2min postbleaching taking in account the inherent bleaching due to imaging.
PI4Kα1 complex-containing nanodomains are static at the plasma membrane

Next, we investigated the lateral dynamics of the PI4Kα1 complex at the plasma membrane. To do so, we used fluorescence recovery after photobleaching (FRAP). After bleaching, the signal of NPGR2-mCITRINE, HYC2-mCITRINE and EFOP2-mCITRINE did not recover after 2 min of acquisition (Figure 6C-E; Supplemental Figure 5). In comparison, PI4P sensors (P4M and PHFAPP1) recover in less than a minute after bleaching. Accordingly, the mobile fraction calculated of NPGR2-mCITRINE and EFOP2-mCITRINE was low (around 20%) while the mobile fraction of the sensor reached 100% (Figure 6F). This indicates that if PI4P sensors are rapidly diffusing at the membrane, the PI4Kα1 complex is relatively static. Furthermore, the identical dynamics of NPGR2-mCITRINE, HYC2-mCITRINE and EFOP2-mCITRINE further reinforce the notion that these subunits are part of a single protein complex in vivo.

EFOPs localize at the plasma membrane via a lipid anchor

We next decided to investigate the mechanism by which the PI4Kα1 complex is targeted at the plasma membrane. The four subunits of the PI4Kα complex are soluble proteins, without known lipid binding domains. The efop3-1efop4-2 and efop3-2efop4-2 mutants showed the same pollen lethality phenotype as the efop3-1efop4-2 and efop3-2efop4-2 mutant (Figure 3A-B, Supplemental Figure 3A-B). While efop4-2 led to a very small-truncated protein (42 aa), the efop4-4 allele led to near full-length protein with only a small in frame deletion of 19 residues close to EFOP4 N-terminus. This suggested that this N-terminal region is crucial for EFOP4 function (Figure 7, A).

The residues corresponding to this deletion are well conserved among the four EFOPs and include both a cysteine-rich motif, which could be S-acylated, and a polybasic region, which could contact anionic lipids at the plasma membrane (Figure 7A). We thus tested the potential role of those two elements in the regulation of EFOP localization and potentially the recruitment of the PI4Kα1 complex at the plasma membrane.
Figure 7. PI4Kα1 is targeted to the plasma membrane by a combination of lipid anchoring of the EFOP subunits and scaffolding activity of the NPG subunits. (A) N-terminal sequence alignment of EFOPs proteins. Conserved cyst-rich motif (blue) and polybasic patch (red) are indicated, as well as the deletion in efop4-4 CrisPr allele. Bold cysteines are predicted as S-acetylated on the SwissPalm database with high (blue) and medium (orange) confidence level. (B) Confocal images of EFOP2-mCITRINE (wild type), EFOP2-7Q-mCITRINE and EFOP2-CC-mCITRINE in N. benthamiana leaf epidermal cells and Arabidopsis root epidermal cells. Scale bar: 10 μm. (C) Confocal images of PI4P sensor (PH domain of FAPP1 carrying the mutation E50A), EFOP2-mCITRINE (EFOP2-mCt) and NPGR2-mCITRINE (NPGR2-mCt) treated for 30min with 30μM PAO or the equivalent volume of DMSO. Scale bars: 10 μm. (D) Confocal images of Arabidopsis root epidermal cells co-expressing EFOP2-CC-mCITRINE and NPGR2-2xmCHERRY or PI4Ka1-2xmCHERRY. White arrows indicate internal structures where the two signals colocalize. Scale bar: 10 μm. (E) Genotyping of Col0, npg1-2 homozygous plants and npg1-2 homozygous plants complemented with PI4Ka1prom:: PI4Ka1-mCITRINE-Lti6b (insertion n°19). Upper panel shows amplification of the gene sequence. Lower panel shows amplification of T-DNA border. (F) Confocal images of PI4Ka1:: PI4Ka1-mCITRINE-Lti6b in npg1-2/- background (insertion n°19).

First, we evaluated the role of the polybasic patch in the N-terminus of EFOP proteins. Indeed, this region could be involved in targeting the entire PI4Kα1 complex to the plasma membrane through electrostatic interactions with anionic lipids, notably PI4P. In EFOP2, this region goes from the aa 27 to the aa 39 and contains 7 positively charged residues (Figure
We mutated all lysines/arginines into neutral glutamines and generated a UBQ10prom::EFOP-7Q-mCITRINE construct. We observed that EFOP-7Q-mCITRINE was soluble when transiently expressed in Nicotiana benthamiana leaf cells while wild-type EFOP-mCITRINE was localized to the plasma membrane indicating that polybasic patch in EFOP2 could be essential for plasma membrane targeting (Figure 7B). We next introduced the UBQ10prom::EFOP-7Q-mCITRINE construct in Arabidopsis epidermal root cells. However we did not retrieve any lines with a detectable fluorescent signal. It is likely that EFOP-7Q-mCITRINE is unstable either because of miss folding or because EFOP2 needs to be associated with membrane to remain stable when expressed in Arabidopsis. Finally, we directly investigated the role of PI4P in the recruitment of the PI4Kα1 complex, by using PAO, a PI4K inhibitor. In this condition, the PI4P sensor is detached from the plasma membrane and relocalized in the cytosol (Figure 7C). However, neither NPGR2-mCITRINE nor EFOP-mCITRINE were mislocalized upon PAO treatment. Thus, PI4P might not be involved in the targeting of the PI4Kα1 complex at the plasma membrane or the depletion of PI4P is not sufficient to delocalize the PI4Kα1 complex. In any case, this indicates that the presence of the PI4Kα1 complex at the plasma membrane relies, at least in part, on another mechanism.

We then investigated the role of the Cys-rich motif, which was deleted in the efop4-4 allele. Such motif could be a site of S-Acylation; a lipid posttranslational modification that can anchor protein to the plasma membrane (Zaballa and Goot, 2018). Indeed, according to the SwissPalm prediction software, this motif is predicted as S-acetylated with a high (in blue) or medium level of confidence (in orange) (Figure 7A). Confirming this hypothesis, all four Arabidopsis EFOP proteins were found to be S-Acylated in a recent proteomic study (Kumar et al., 2020). Notably, all Cys-residues (underlined in Figure 7, A) within the Cys-rich region of EFOP3 and EFOP4 were found to be S-acetylated with high confidence in planta (Kumar et al., 2020). To experimentally test the importance of such lipid modification in EFOP localization, we mutated the two conserved cysteines (C20 and C23) into serine and generated a UBQ10prom::EFOP2-CC-mCITRINE construct. Similar to EFOP-7Q-mCITRINE, we observed that EFOP2-CC-mCITRINE was soluble when transiently expressed in Nicotiana benthamiana leaf cells (Figure 7B). Next, we transformed the UBQ10prom::EFOP2-CC-mCITRINE construct into Arabidopsis and found that EFOP2-CC-mCITRINE was not localized at the plasma membrane of root meristematic cells and instead accumulated in intracellular structures (Figure 7B). All together, this data suggest that EFOP2 is likely targeted to the plant plasma membrane using lipid acylation anchoring.

The EFOP/NPGR/HYC complex targets PI4Kα1 to the plasma membrane

We then asked if EFOP proteins were sufficient to determine the localization of PI4Kα1 in the cell. Taking advantage of the EFOP2-CC construct localized in intracellular structures, we introgressed NPGR2-2xmCHERRY or PI4Kα1-2xmCHERRY in plants expressing EFOP2-CC-mCITRINE and analyzed if EFOP2-CC was able to recruit NPGR2 or PI4Kα1 in those intracellular structures. We observed a weak signal of NPGR2 labelling intracellular compartments that partially colocalize with EFOP2-CC-containing structures. Similarly, PI4Kα1 was not only at the plasma membrane and soluble in the cytosol but also associated
with the EFOP2-CC-containing structures (Figure 7D). This showed that EFOP is able to recruit NPGR2 and PI4Kα1 in different compartments of the cell.

Because NPG proteins likely bridges PI4Kα1 to the membrane-binding EFOP subunits, we reasoned that they should contribute to the targeting of PI4Kα1 at the plasma membrane. To test this hypothesis, we generated a fusion between PI4Kα1-mCITRINE and the transmembrane protein Lti6b in order to artificially target PI4Kα1 at the plasma membrane and thus bypass the role of the NPG/HYC/EFOP complex. We transformed the npgl-2 mutant with the PI4Kα1prom::PI4Kα1-mCITRINE-Lti6b construct, and found a line able to complement the npgl-2 mutant (Figure 7E). This indicates that npgl pollen lethality is likely due to the absence of PI4Kα1 at the plasma membrane during pollen development. In these plants, PI4Kα1-mCITRINE-Lti6b is located in clusters at the plasma membrane while Lti6b is known as being rather homogenously localized at the plasma membrane (Figure 5D and 7G). The chimeric PI4Kα1-mCITRINE-Lti6b proteins might be restricted in clusters by other factors, which indicates that the subcompartimentalization of PI4Kα1 complex might not be an intrinsic property of the complex but rather come from interactions between PI4Kα1 and other lipids or proteins. Furthermore, it might indicate that the subcompartimentalization of PI4Kα1 complex is an essential feature for the proper function of the complex.

Discussion and conclusions

The plant PI4Kα1 complex is essential for cell survival

In this study, we showed that the loss-of-function of the PI4Kα1 leads to lethality of the male gametophyte. Similarly, knockouts of HYC1 and EFOP proteins mimic this phenotype supporting the idea that these proteins act as a complex. Surprisingly, npgl single mutant is pollen lethal but do not present the same morphological defects that pi4kα1 or hyc1 mutants. The combination of loss of function of NPG1, NPGR1 and NPGR2 gives rise to deformed and shrivelled pollen grains indicating that during pollen development the three NPGs are expressed and partially redundant. NPG1 specifically could be needed for later steps of pollen development and germination explaining the pollen lethality of NPG1 despite the absence of morphological defect. Indeed, pollen apertures are established in distinct membrane domains enriched in PI4P and PI(4,5)P2 (Lee et al., 2018). Like npgl mutant, loss-of-function of SEC3A, a gene coding for a subunit of the exocyst complex, is pollen lethal (Bloch et al., 2016; Li et al., 2017). sec3a mutant pollen grains do not present morphological defect but do not germinate. SEC3a is recruited at the pollen germination sites and its binding to the plasma membrane depends on positively charged amino acids. Thus, NPG1 could participate in the recruitment of PI4Kα1 at aperture sites, which could be necessary to landmark the germination site, and subsequent recruitment of SEC3a or other proteins. However, we showed that NPGR2 complements the npgl phenotype when expressed under the NPG1 promoter, which suggest that the difference between NPG1 and NPGR2 function is mostly at the transcriptional level.
In addition to gametophytic phenotypes, we also observed that the loss of HYC2 induces embryo lethality while npg triple sesquimutant display severe growth phenotypes. This is concordant with the idea that PI4Kα1 has a critical role for the cell function, not only during gametophytic but also sporophytic development. PI4P is crucial for the plasma membrane surface charge (Platre et al., 2018; Simon et al., 2016). Thus, it is likely that the loss of the PI4Kα1 affects the membrane surface charge and lead to the mislocalization of a whole set of proteins (Barbosa et al., 2016; Noack and Jaillais, 2020; Simon et al., 2016).

The genome of Arabidopsis codes for two other PI4Kinases, PI4Kβ1 and PI4Kβ2 localized at the TGN/EE and at the cell plate (Kang et al., 2011; Lin et al., 2019; Preuss et al., 2006). As the plasma membrane and the TGN/EE are intimately linked through vesicular trafficking, the interdependence of the TGN/EE and the plasma membrane pool of PI4P remained an open question. pi4kβ1pi4kβ2 double mutant and pi4kα1 mutant display developmental phenotypes, which indicates that these lipid kinases are not fully redundant. This is coherent with the different subcellular localization of PI4Kβ1/PI4Kβ2 and PI4Kα1 in plant cells. However, only PI4Kα1 is essential in plants, while the pi4kβ1pi4kβ2 double mutant harbours mild phenotypes. This contrasts with yeast, in which the loss of either pik1 or sst4 is lethal (Audhya et al., 2000). It is thus possible that in plants, the lack of PI4Kβs at the TGN is compensated by PI4Kα1 activity, perhaps through the endocytosis of plasma membrane PI4P. In fact, a large portion of the pi4kβ1pi4kβ2 double mutant phenotype can be attributed to its function in cytokinesis (Lin et al., 2019). Thus, PI4Kα1 activity is not able to compensate for PI4Kβs function during cell division.

Function of the NPG-HYC-EFOP complex

Our study also showed that PI4Kα1’s plasma membrane localization is likely mediated by interactions with NPG and EFOP proteins rather than by a PH domain. At first, this PH domain was thought to localize PI4Kα1 at the plasma membrane through interaction with anionic phospholipids (Stevenson et al., 1998; Stevenson-Paulik et al., 2003; Xue et al., 1999). However, recent cryoEM studies characterized this region as a N-lobe and helical domain involved in the interaction with Ypp1/TTC7 in yeast and human (Dornan et al., 2018; Lees et al., 2017). We found that PI4Kα1’s plasma membrane localization depends of the S-acylation of EFOP proteins. Several S-acylated peptides in addition to the one in the N-terminal region have been found in EFOP proteins (Kumar et al., 2020). As S-acylation is a reversible posttranslational modification. Differential S-acylation could be a mechanism explaining the different localization observed for EFOP1 and EFOP2 in the cell.

NPGs are bridging PI4Kα1 and HYC with EFOP proteins. In addition, NPG proteins are annotated as calmodulin (Cam)-binding protein. Indeed, NPG1 can interact with several Cam isoforms in presence of Ca^{2+} and has been suggested to play a role in Ca^{2+} dependent pollen tube germination (Golovkin and Reddy, 2003). Ca^{2+} is also intimately connected with phosphoinositides, membrane properties and endomembrane trafficking (Himschoot et al., 2017). Ca^{2+} can directly bind anionic phospholipids modulating locally membrane electrostatics, preventing or promoting the recruitment of lipid binding proteins, inducing the formation of PI(4,5)P_{2} clusters and facilitating membrane fusion (Li et al., 2014; McLaughlin...
and Murray, 2005). As phosphoinositides can bind Ca\(^{2+}\) diffuse in the membrane and release Ca\(^{2+}\) somewhere else, they have been suggested to buffer and modulate Ca\(^{2+}\) signalling at the subcellular level. Ca\(^{2+}\) is also known to regulate many actors of endomembrane trafficking including regulators of the cytoskeleton, TPLATE complex, ANNEXINs and SYNAPTOTAGMINs (Bürstenbinder et al., 2013, 2017; Carroll et al., 1998; Hepler, 2016; Schapire et al., 2008; Van Damme et al., 2006). For instance, the ER-Plasma membrane tethers protein SYT1 contains C2 domains that bind Ca\(^{2+}\) and phosphoinositides (Giordano et al., 2013; Idevall-Hagren et al., 2015; Lee et al., 2019; Pérez-Sancho et al., 2015; Ruiz-Lopez et al., 2020; Yamazaki et al., 2008). As previously mentioned, the PI4Kα1 complex could be localized at ER-Plasma membrane contact sites and participate in the Ca\(^{2+}\) signalling at this junction through calmodulin binding.

If EFOPs are anchoring the complex at the membrane and NPGs are bridging PI4Kα1 and EFOPs, the role of HYCCIN in the complex is less clear. In mammals, FAM126A, which has a HYCCIN domain, is involved in the stability of the complex and is used as a scaffold by TTC7 to be shaped around (Dornan et al., 2018). In human, FAM126A mutations lead to severe case of hypomyelination and congenital cataract (Baskin et al., 2016; Miyamoto et al., 2014). However, even complete knockout of FAM126A is not lethal while loss-of-function of PI4KIIIα is (Baskin et al., 2016). This subunit is not present in yeast, suggesting that HYCCIN-domain containing proteins may have an accessory function in the PI4Kα1 complex, rather than an essential one. By contrast, we found that in Arabidopsis both hyc1 and hyc2 mutants are lethal as they are required for male gametophyte and embryo development, respectively. Our result thus suggests that HYC is an essential subunit for the function of the PI4Kα1 complex in plants. In human, there are additional HYCCIN-containing proteins, including FAM126B. Our results thus open the possibility that FAM126A is not the only HYCCIN-containing proteins that may contribute to PI4KIIIα function.

Formation and possible function of PI4Kα1-containing nanoclusters

The PI4Kα1 complex localizes at the plasma membrane in nanodomains. In yeast, Stt4 is found in large clusters called PIK patches (Baird et al., 2008). However, the clusters of Stt4 do not correlate with clusters of PI4P that probably diffuse laterally in the membrane.

Similarly in *Arabidopsis*, PI4P biosensors are not clustering at the plasma membrane (Simon et al., 2014, 2016; Vermeer et al., 2009). This is in accordance with *in vitro* data showing that PI4P inhibits the catalytic activity of PI4Kα1 (Stevenson-Paulik et al., 2003). In addition, we showed that these nanodomains are immobile in plants, despite the fluidity of the plasma membrane (Jaillais and Ott, 2020). It is possible that unknown interactions with transmembrane protein, cytoskeleton or lipid rafts stabilize the PI4Kα1 complex.

Do these nanodomains correspond to a functional unit? Among many possibilities, they could correspond to ER-plasma membrane contact sites. Indeed, in yeast, Stt4 reside at these contacts (Omnus et al., 2018). Another hypothesis is that they could be a zone of attachment between the plasma membrane and the actin cytoskeleton. PI4Kα1 has been purified from F-actin-rich fraction from carrots and to associate with polymerized F-actin *in vitro* (Stevenson...
et al., 1998). Additionally, in yeast, Stt4p is necessary for a proper actin cytoskeleton organization (Audhya et al., 2000; Foti et al., 2001). The two hypotheses are not mutually exclusive. Indeed, the actin disorganization phenotype of stt4 mutant is rescued in yeast by the knockout of Sac1p, a PI4P phosphatase that resides in the ER membrane (Foti et al., 2001). Stt4p and Sac1p together control the PI4P gradient at membrane contact sites (Noack and Jaillais, 2020).

A recent preprint shows that PI(4,5)P₂ is enriched in nanodomains at the plasma membrane in pollen tubes (Fratini et al., 2020). These nanodomains contain PIP5K2 and are involved in actin dynamics. We hypothesize that the PI4Kα₁ complex is also targeted to these nanodomains in order to catalyse a phosphorylation cascade from PI to PI4P to PI(4,5)P₂. In this model, PI4Kα₁ inhibition by its substrate could help to coordinate the following phosphorylation by PIP5K2. In any case, given the absolute requirement on the PI4Kα₁ complex for plant cell survival, deciphering the mechanisms behind the precise spatiotemporal regulation of this complex and the associated function will be a fascinating challenge for the future.
Material and methods

Plant Material

Arabidopsis thaliana, ecotype Columbia (Col0) I was used in this study, except for pi4ka1-2, which is in Ws background. The plants expressing 2xp35S::myrimCITRINE-mCITRINE were obtained from Jaillais et al., 2011. The PI4P sensors lines, pUBQ10::mCITRINE-1xPHFAPP1 and pUBQ10::mCITRINE-P4M SidM were obtained from (Simon et al., 2014, 2016) (Table S3).

In vitro culture conditions

Seeds were surface-sterilized by addition of 4ml of HCl 37% in 100mL of bleach for four hours before plating on Murashige and Skoog (MS, Duchefa Biochemie®) media supplemented with 0.8% plant agar and containing the appropriate antibiotic or herbicide. Glufosinate, Kanamycin, Hygromycin and Sulfadycin have been used at 10mg.L⁻¹, 50mg.L⁻¹, 30mg.L⁻¹ and 75mg.L⁻¹ respectively. Plates were placed under continuous white light conditions for 7 to 10 days. Resistant and sensitive seedlings were counted for segregations.

Culture condition on soil

Seeds were directly sown in soil or 7-day-old seedlings were transferred from in vitro plates to soil. Plants were grown at 21°C under long day condition (16 hrs light, LED 150µmol/m²/s).

Sequence Analysis

Sequence alignments have been performed using the Muscle WS software and edited with Jalview 2.0 software. Clustal colour code has been used. Domains have been identified using the SMART (Simple Modular Architecture Research Tool) software. Predicted lipid modification sites have been found using the GPS-Lipid software.

Cloning of reporter lines

Lti6b/pDONR207, UBQ10prom/pDONR P4-P1r, 2X35S/pDONR P4-P1r, mCITRINE/pDONR 221, mCITRINE/pDONR P2R-P3, 2xmcCHERRY-4xmyc/pDONR P2R-P3 entry vectors were obtain from Elsayad et al., 2016; Jaillais et al., 2011; Marquès-Bueno et al., 2016; Simon et al., 2014, 2016 (Table S4). For other entry vectors, coding gene or genomic gene sequences and 3'UTR sequences were cloned using Gateway® technology (Invitrogen®). Promoter sequences and Lti6b-FRB were cloned by Gibson Assembly method (Biolab®). The coding sequences were amplified by PCR using the high fidelity Phusion Hot Start II (Thermo Fisher Scientific®) taq polymerase and the indicated primers and template (Table S5). The PCR products were purified using the NucleoSpin Gel and PCR Clean kit (Macherey-Nagel®) and recombined in the indicated vector using BP Clonase™ II Enzyme Mix (Invitrogen®) or Gibson Assembly mix (Biolab®) (Table S5). Thermocompetent DH5α E. coli were transformed with the corresponding vectors and plate on LB (Difco™ LB Broth,
Lennox, #214010, 20 g/L, 15% agar, Difco™ Bacto Agar) containing the Kanamycin at 50 mg/L. Plasmids were purified using the Nucleospin Plasmid kit (Macherey-Nagel®) and inserts sequenced. Expression vectors containing the promoter-gene-fluorescent tag cassette or 3’UTR were obtained by using LR clonase-based three-fragment recombination system (Invitrogen®), the pB7m34GW/pH7m34GW/pK7m34GW/pS7m43GW/pLOK180_pR7m34g (gift from L. Kalmbach) destination vectors, and the corresponding entry vectors (Table S3-S4). Only the EFOP2-7Q was introduce in the destination vector pK7FWG2 using the LR clonase-based one-fragment recombination system (Invitrogen®) (Karimi et al., 2002). Thermocompetent DH5α cells were transformed and selected on LB plate (Difco™ LB Broth, Lennox, #214010, 20 g/L, 15% agar, Difco™ Bacto Agar) containing 100 mg/L of Spectinomycin. Plasmids were purified using the Nucleospin Plasmid kit (Macherey-Nagel®) and inserts sequenced.

Site directed mutagenesis

Plasmids were amplified by PCR using the high fidelity Phusion Hot Start II (Thermo Fisher Scientific®) taq polymerase and the indicated primers carrying mutations (Table S6). PCR products were digested using and cutsmart buffer (Biolab®). Thermocompetent DH5α E. coli were transformed with the digested PCR product and plate on LB (Difco™ LB Broth, Lennox, #214010, 20 g/L, 15% agar, Difco™ Bacto Agar) containing the appropriate antibiotic. Plasmids were purified using the Nucleospin Plasmid kit (Macherey-Nagel®) and mutations were sequenced.

Agrobacterium transformation

Electrocompetent A. tumefaciens (C58pmp90) were transformed by electroporation. 1 μL of DNA plasmid at a concentration of 0.25-1 μg/μl was added into 50 μL of electrocompetent agrobacterium on ice. The agrobacterium were transfered into cold 1 mm wide electroporation chamber (Eurogentec, #CE00150). A pulse of 2 kV, 335 Ω, 15 μF, for 5 ms was performed on the electroporation chamber using the MicropulserTM (Bio-Rad, #165-2100). 1 mL of liquid LB media was added and the bacteria were placed into a new tube and incubated at 29°C for 2-3h. The agrobacterium were selected on LB (Difco™ LB Broth, Lennox, #214010, 20 g/L, 15% agar, Difco™ Bacto Agar) or YEB (0.5% beef extract, 0.1% yeast extract, 0.5% peptone, 0.5% sucrose, 1.5% bactoagar, pH7.2) plates containing the appropriate antibiotics to select the agrobacterium strain (50 mg/L of Rifampicin and 20 mg/L of Gentamycin) and the target construct (250 mg/L of Spectinomycin). Plates were incubated at 29°C for 48h.

Plant transformation and selection

Agrobacterium were spun and resuspended in 5% sucrose and 0.02% Silwet L-77 detergent. Arabidopsis were transformed by floral dipping.
Transformed seedlings were selected on Murashige and Skoog (MS, Duchefa Biochemie®) media supplemented with 0.8% plant agar containing the appropriate antibiotic or herbicide. Basta, Kanamycin, Hygromycin and Sulfadiazin have been used at 10mg.L\(^{-1}\), 50mg.L\(^{-1}\), 30mg.L\(^{-1}\) and 75mg.L\(^{-1}\) respectively. Selection of the pLOK180_pR7m34g plasmid was done using the FastRed method (i.e. red fluorescent seeds).

Protein extraction, immunoprecipitation and western blot analysis

Leaf tissue from wild-type plants and/or transgenic lines were collected, frozen in liquid nitrogen and ground to powder. The powder was resuspended in -20°C MetOH; 1% Protease inhibitor (P9599, Sigma-Aldrich®) and incubated at -20°C for 5min. Proteins were pelleted, resuspended in -20°C acetone and incubated at -20°C for 5min. Proteins were pelleted. The pellet was dried and resuspended in Protein Extraction Reagent (C0856, Sigma-Aldrich®) supplemented with 1% Protease inhibitor (P9599, Sigma-Aldrich®). Protein extraction were then kept at -20°C.

Protein samples in 1xSDG (Tris-HCL 0.25 M, 10% glycerol, 2% DTT, 2.5% SDS) supplemented with bromophenol blue were denaturated at 95°C for 5min. Samples migrated on 7.5% (for proteins over 200kDa) or 10% SDS-PAGE polyacrylamide gel at 140V with 1xTris-Glycine SDS running buffer (Euromedex®). Proteins were transferred on nitrocellulose membrane 0.45 µm in 1xTris-Glycine (Euromedex®), 20%EtOH transfer buffer at 100 V for 1h. Membrane were blocked with 5% milk, 1X PBS-T (Phosphate Buffer Saline) (Dominique Dutscher®), 2% Tween® 20 for 1h. Primary antibodies (Table S1) were used at 1/2000 in 5% milk, 1X TBS, 0.1% Tween 20 overnight. Secondary antibodies were used at 1/5000 in 1X TBS, 0.1% Tween 20 for 1h. Protein revelation was done using the Clarity or Clarity Max ECL Western Blotting Substrates (Biorad®) and the Chemidoc MP imaging system (Biorad®).

For co-immunoprecipitation, leaf tissue from transgenic lines were collected, frozen in liquid nitrogen and ground to powder. Proteins fused to mCITRINE were immunoprecipitated using the pull down kit Miltenyi µMacs anti-GFP (Miltenyi Biotec®). Crude extracts were put in 1XSDG supplemented with bromophenol blue and denaturated at 95°C for 5 min while IP samples were directly ready for migration on polyacrylamide gels.

Mass spectrometry analysis

Mass spectrometry analysis had been performed by the Protein Science Facility of SFR (Structure Fédérative de Recherche) Bioscience Lyon. Trypsine-digested samples were analysed by LC-MS/MS (Orbitrap, ThermoFischer Scientific®). The peptides identified were compare to the UniProtKb database.

Yeast-two-hybrid

The initial screen was performed by hybrigenics services (https://www.hybrigenics-services.com/contents/our-services/interaction-discovery/ultimate-y2h-2), using the
ULTImate Y2H screen against their Universal Arabidopsis Normalized library obtained using oligo_dT. The residues 2 to 1479 of PI4Kα1 were used. The screen was performed on 0.5 mM 3AT, 58.6 million interactions were analyzed, and 313 positive clones were sequenced. AD vectors (prey) and DB vectors (bait) were transformed in the Y8800 and Y8930 yeast strains, respectively. Transformed yeasts were plated on SD (0.67% yeast nitrogen base, 0.5% dextrose anhydrous, 0.01% adenine, 1.8% agar) with all amino acids except tryptophan (SD-T) for AD vectors and SD-L for DB vectors for selection. Yeast colony transformed with AD- or DB- vectors were grown in SD-T and SD-L liquid media, 30°C, 200rpm for 48h. Mating was performed at 30°C, 200rpm, overnight using 10µl of AD and 10µl DB clones in 180µl YEPD (1% yeast extract, 2% peptone, 2% dextrose anhydrous, 0.01% adenine) liquid media. Diploid yeasts were selected by addition of 100µl of SD-LT liquid media. Yeast were grown for 48h at 30°C, 200rpm. Diploids yeasts were plates on the different selective media: SD-LT to verify the mating; SD-LTH to select the positive interactions; SD-LTH+3AT (3-Amino-1,2,4-Triazol at 1mM final) to select strong interactions only; SD-LH+CHX (cycloheximide at 10µg/mL final) to determine the autoactivated DB clones; SD-LH+CHX+3AT to determine which concentration of 3AT erase the autoactivation of DB clones.

Crispr lines

20bp target sequence upstream to a 5’-NGG -3’ sequence in an exon of the gene of interest were found using the CrisPr RGEN tool (www.rgenome.net/). Primers were designed following the methods developed in (Wang et al., 2015; Xing et al., 2014) (Table S7).

T-DNA and Crispr Mutant Genotyping

Leaf tissue from wild-type plants, T-DNA insertion lines and Crispr lines were collected, frozen in liquid nitrogen and ground to powder. The powder was resuspended in the extraction buffer (200mM of Tris pH 7.5, 250mM of NaCl, 25mM of EDTA, 0.5% of SDS). DNA was precipitated with isopropanol and the DNA pellet was washed with 75% ethanol before resuspension in water. Plants were genotyped by PCR using the GoTaq® polymerase (Promega®) and the indicated primers (Table S8). PCR products were migrated on 1% agarose gel or the percentage indicated (Table S8). When sequencing was required, the bands were purified using the NucleoSpin Gel and PCR Clean kit (Macherey-Nagel®) and sequenced.

Pollen observation by SEM

Pollen grains from mutant or WT flowers were placed on tape and observed using the mini SEM Hirox® 3000 at -10°C, 10kV.
Pollen inclusion and observation by TEM

For transmission electron microscopy, anthers were placed in a fixative solution of 3.7% paraformaldehyde and 2.5% glutaraldehyde, Na₂HPO₄ 0.1 M, NaH₂PO₄ 0.1 M overnight and postfixed in 1% OsO₄, Na₂HPO₄ 0.1 M, NaH₂PO₄ 0.1 M. Anthers were dehydrated through a graded ethanol series from 30% to 100% and embedded in SPURR resin. Sections were made using an ultramicrotome Leica UC7 at 70-80 nm and poststained with Acetate Uranyle 5% (in Ethanol), Citrate Plomb (in NaOH). Pollen were observed using a transmission electron microscope Philips CM120.

Pollen staining

To perform Alexander staining, flowers that were about to open were dissected and anthers were put between slide and coverslip in Alexander staining solution (25% glycerol, 10% EtOH, 4% acetic acid, 0.05% acid fuchsin, 0.01% Malachite green, 0.005% phenol, 0.005% chloral hydrate, 0.005% Orange G,) for 7h at 50°C before observation under a stereomicroscope.

For DAPI staining, flowers that were about to open were dissected and their anthers were put between slide and coverslip in DAPI solution (10% DMSO, 0.1% NP-40, 50 mM PIPES, 5 mM EGTA, 0.01% (4',6-diamidino-2-phenylindole) DAPI) for 5min at RT before observation at the confocal microscope. DAPI was excited with a 405 nm laser (80 mW) and fluorescence emission was filtered by a 447/60 nm BrightLine® single-band bandpass filter (Semrock, http://www.semrock.com/).

Seed clearing

Siliques were opened. The replums with the seeds attached were placed between slide and coverslip in clearing solution (87.5% choral hydrate, 12.5% glycerol) for 1 hour before observation at the microscope with differential interference contrast.

Confocal Imaging setup

7 to 10 days-old seedlings were observed with an Zeiss microscope (AxioObserver Z1, Carl Zeiss Group, http://www.zeiss.com/) with a spinning disk module (CSU-W1-T3, Yokogawa, www.yokogawa.com) and a Prime 95B camera (Photometrics, https://www.photometrics.com/) using a 63x Plan-Apochromat objective (numerical aperture 1.4, oil immersion) and the appropriated laser and bandpass filter.

GFP was excited with a 488 nm laser (150 mW) and fluorescence emission was filtered by a 525/50 nm BrightLine® single-band bandpass filter (Semrock, http://www.semrock.com/).

mCITRINE was excited with a 515 nm laser (60 mW) and fluorescence emission was filtered by a 578/105 nm BrightLine® single-band bandpass filter (Semrock, http://www.semrock.com/).

mCHERRY was excited with a 561 nm laser (80 mW) and fluorescence emission was filtered by a 609/54 nm BrightLine® single-band bandpass filter (Semrock, http://www.semrock.com/). In the case of seedling expressing mCHERRY and...
mCITRINE markers, mCITRINE was excited and emission was filtered using the GFP settings.

TIRF microscopy used an objective based azimuthal ilas2 TIRF microscope (Roper Scientific) with 100x Apo NA 1.46 Oil objective. Exposure time used was 1s. HYC2-mCITRINE and NPG2-mCITRINE were excited and emission was filtered using the GFP settings while EFOP2-mCITRINE was excited and emission was filtered using the YFP settings.

Immunolocalization

Five-days old seedlings were fixed in PFA 1%, MTBS (50mM PIPES, 5mM EGTA, 5mM MgSO4, pH7) for 1h. Roots were Superfrost Plus® slides (Thermo Scientific, #10149870) and dried at RT for 1h and rehydrated using MTBS + 0.1% tritonx100. Permeabilization was done using 2% Driselase (Sigma, # D9515) in MTSB for 30 min. Roots were treated with 10% dimethylsulfoxide, 3% Igepal (Sigma, #CA-630) in MTBS for 1 h. Blocking was done using 5% normal goat serum (NGS Sigma #G9023) in MTB. Roots were incubating overnight with the primary antibody diluted at 1/100 (anti-PI4Kα1) and with secondary antibody diluted at 1/500 for 3h (anti Rat IgG, alexa Fluor 488 conjugate, InVitrogen-Molecular Probes, #A-21210). Roots were placed between slide and coverslip in Vectashield® (Vectorlabs, #H-1000-10) and observed using a confocal microscope Zeiss 800.

Microsomes and plasma membrane purification

Microsomes were purified as described in (Simon-Plas et al., 2002) and resuspended in phosphate buffer (5 mM, pH 7.8) supplemented with sucrose (300 mM) and KCl (3 mM). Plasma membrane were obtained after cell fractionation by partitioning twice in a buffered polymer two-phase system with polyethylene glycol 3350/dextran T-500 (6.6% each). For PI4Kα1, proteins were precipitated using 5 volumes of -20°C acetone for 1 volume of protein extraction and incubated for 10min at -20°C. Proteins were pelleted. This process was repeated 2 more times. Pellet was dried and resuspended in 1xSDG supplemented with bromophenol blue. All steps were performed at 4 °C.

Plasmolysis

7 to 10 days-old seedlings were placed between side and coverslip in MES 10 mM at pH 5.8 with or without 0.75M sorbitol and observed using a confocal microscope.

Fluorescence recovery after photobleaching (FRAP)

Fluorescence in a rectangle ROI (5x1.7 μm) at the plasma membrane was bleached in the root by successive scans at full laser power (150 W) using the iLas2 FRAP module (Roper scientific, http://www.biovis.com/ilas.htm). Fluorescence recovery was measured in the ROIs and in controlled ROIs (rectangle with the same dimension in unbleached area). FRAP was recorded continuously during 120 s with a delay of 1s between frames. Fluorescence intensity data were normalized as previously described (Martinière et al., 2012). The mobile fraction was calculated at t=120s with the following formula: I(t)-Min(I)/Ictrl(t)/Min(I) where I(t) and Ictrl(t) are the intensity of the bleached and control region at a time t, respectively.
Nicotiana benthamiana leaf infiltration

Transformed agrobacterium were directly taken from plate with a tip and resuspended into 2 mL of infiltration media (10 mM MES pH 5.7, 10 mM MgCl₂, 0.15 mM acetosyringone (Sigma-Aldrich®, #D134406)) by pipetting. The OD₆₀₀ was measured using a spectrophotometer (Biophotometer, Eppendorf) and adjusted to 1 by adding infiltration media.

The infiltration was performed on « heart shape » tobacco leaves from 2-3 weeks old plants. Using 1 mL syringe (Terumo®, #125162229), the infiltration solution with the agrobacterium was pressed onto the abaxial side of the chosen tobacco leaf. The plants were put back to the growth chamber for 2-3 days under long day conditions.

5 mm² regions of the leaf that surround the place where the infiltration has been made were cut. The pieces of leaf were mounted in water between slide and coverslip with the abaxial side of the leaf facing the coverslip. Using the appropriate wavelength, an epifluorescent microscope and the smallest objective (10X), the surface of the leaf was screened to find the transformed cells. Then, the subcellular localization of the fluorescent protein was observed using a spinning confocal microscope and 63X objective.

PAO treatment

Seeds (7 to 10-days-old) were incubated in liquid MS with 30µM PAO (Sigma, www.sigmaaldrich.com, PAO stock solution at 60 mM in DMSO) for 30 min before observation using a confocal microscope.

Acknowledgments:

We thank the present and past members of the SiCE group as well as G. Vert and G. Ingram for discussions and comments, the NASC/ABRC collection for providing transgenic Arabidopsis lines, L. Kalmbach and M. Barberon for the gift of pLOK180_pFR7m34GW, A. Lacroix, J. Berger and P. Bolland for plant care. We acknowledge the contribution of SFR Biosciences (UMS3444/CNRS, US8/Inserm, ENS de Lyon, UCBL) facilities: C. Lionet, E. Chatre and J. Brocard at the LBI-PLATIM-MICROSCOPY for assistance with imaging and V. Gueguen-Chaignon, A. Page and F. Delolme at the Protein Science Facility (PSF) for assistance with mass spectrometry. YJ. was funded by ERC no. 3363360-APPL under FP/2007-2013 and ANR caLIPSO (ANR18-CE13-0025), M-C.C. by a start-up package “font de recherche – projet émergent” from ENS de Lyon, SM by project PlayMobil ANR-19-CE20-0016-02 and by project PhosphoREM-domain ANR-19-CE13-0021-01, L.C.N. by a PhD fellowship from the French Ministry of Higher Education.

Author contributions:

L.C.N. was responsible of all the experiments described in this manuscript with the following exception: V.B. performed transmission electron microscopy experiments and helped with microscopy image acquisition and analyses; F.R. performed and imaged whole mount immunolocalization; A.M-C. and S.M. purified plasma membranes; M-C.C. initiated the
yeast-two hybrid screen; L.A. helped with yeast-two hybrid experiments. L.C.N. and Y.J. wrote the manuscript and all authors commented on the manuscript.

Conflict of Interest:
The authors declare that they have no conflict of interest

References

Antignani, V., Klocko, A.L., Bak, G., Chandrasekaran, S.D., Dunivin, T., and Nielsen, E. (2015). Recruitment of PLANT U-BOX13 and the PI4Kβ1/β2 Phosphatidylinositol-4 Kinases by the Small GTPase RabA4B Plays Important Roles during Salicylic Acid-Mediated Plant Defense Signaling in Arabidopsis. Plant Cell 27, 243–261.

Audhya, A., and Emr, S.D. (2002). Stt4 PI 4-Kinase Localizes to the Plasma Membrane and Functions in the Pkc1-Mediated MAP Kinase Cascade. Developmental Cell 2, 593–605.

Audhya, A., Foti, M., and Emr, S.D. (2000). Distinct Roles for the Yeast Phosphatidylinositol 4-Kinases, Stt4p and Pik1p, in Secretion, Cell Growth, and Organelle Membrane Dynamics. Mol Biol Cell 11, 2673–2689.

Baird, D., Stefan, C., Audhya, A., Weys, S., and Emr, S.D. (2008). Assembly of the PtdIns 4-kinase Stt4 complex at the plasma membrane requires Ypp1 and Efr3. J Cell Biol 183, 1061–1074.

Balla, A., Tuymetova, G., Barshishat, M., Geiszt, M., and Balla, T. (2002). Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments. J. Biol. Chem. 277, 20041–20050.

Balla, A., Tuymetova, G., Tsiomenko, A., Várnai, P., and Balla, T. (2005). A Plasma Membrane Pool of Phosphatidylinositol 4-Phosphate Is Generated by Phosphatidylinositol 4-Kinase Type-III Alpha: Studies with the PH Domains of the Oxysterol Binding Protein and FAPP1. MBoC 16, 1282–1295.

Barbosa, I.C.R., Shikata, H., Zourelidou, M., Heilmann, M., Heilmann, I., and Schwechheimer, C. (2016). Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses. Development dev.137117.

Baskin, J.M., Wu, X., Christiano, R., Oh, M.S., Schauder, C.M., Gazzerro, E., Messa, M., Baldassari, S., Assereto, S., Biancheri, R., et al. (2016). The leukodystrophy protein FAM126A/Hyccin regulates PI4P synthesis at the plasma membrane. Nat Cell Biol 18, 132–138.

Bigay, J., and Antonny, B. (2012). Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23, 886–895.
Bürstenbinder, K., Savchenko, T., Müller, J., Adamson, A.W., Stamm, G., Kwong, R., Zipp, B.J., Dinesh, D.C., and Abel, S. (2013). Arabidopsis calmodulin-binding protein IQ67-domain 1 localizes to microtubules and interacts with kinesin light chain-related protein-1. J Biol Chem 288, 1871–1882.

Bürstenbinder, K., Möller, B., Plötner, R., Stamm, G., Hause, G., Mitra, D., and Abel, S. (2017). The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus. Plant Physiology 173, 1692–1708.

Carroll, A.D., Moyen, C., Kesteren, P.V., Tooke, F., Battey, N.H., and Brownlee, C. (1998). Ca2+, Annexins, and GTP Modulate Exocytosis from Maize Root Cap Protoplasts. The Plant Cell 10, 1267–1276.

De Jong, F. and Munnik, T. (2021) Attracted to Membranes: Lipid-Binding Domains in Plants. Plant Phys. in press.

Dornan, G.L., Dalwadi, U., Hamelin, D.J., Hoffmann, R.M., Yip, C.K., and Burke, J.E. (2018). Probing the Architecture, Dynamics, and Inhibition of the PI4KIIIα/TTC7/FAM126 Complex. J. Mol. Biol. 430, 3129–3142.

Elsayad, K., Werner, S., Gallemi, M., Kong, J., Sanchez Guajardo, E.R., Zhang, L., Jaillais, Y., Greb, T., and Belkhadir, Y. (2016). Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging. Science Signalizing 9, rs5–rs5.

Foti, M., Audhya, A., and Emr, S.D. (2001). Sac1 Lipid Phosphatase and Stt4 Phosphatidylinositol 4-Kinase Regulate a Pool of Phosphatidylinositol 4-Phosphate That Functions in the Control of the Actin Cytoskeleton and Vacuole Morphology. MBoC 12, 2396–2411.

Fratini, M., Krishnamoorthy, P., Stenzel, I., Riechmann, M., Bacia, K., Heilmann, M., and Heilmann, I. (2020). Plasma membrane nano-organization specifies phosphoinositide effects on Rho-GTPases and actin dynamics in tobacco pollen tubes. BioRxiv 2020.08.12.248419.

Giordano, F., Saheki, Y., Idevall-Hagren, O., Colombo, S.F., Pirruccello, M., Milosevic, I., Gracheva, E.O., Bagriantsev, S.N., Borgese, N., and De Camilli, P. (2013). PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153, 1494–1509.

Golovkin, M., and Reddy, A.S.N. (2003). A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination. Proc Natl Acad Sci U S A 100, 10558–10563.

Hammond, G.R.V., Schiavo, G., and Irvine, R.F. (2009). Immunocytological techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P2. Biochem J 422, 23–35.

Hammond, G.R.V., Machner, M.P., and Balla, T. (2014). A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J Cell Biol 205, 113–126.

Hepler, P.K. (2016). The Cytoskeleton and Its Regulation by Calcium and Protons. Plant Physiology 170, 3–22.
Himschoot, E., Pleskot, R., Van Damme, D., and Vanneste, S. (2017). The ins and outs of Ca2+ in plant endomembrane trafficking. Current Opinion in Plant Biology 40, 131–137.

Honkanen, S., Jones, V.A.S., Morieri, G., Champion, C., Hetherington, A.J., Kelly, S., Proust, H., Saint-Marcoux, D., Prescott, H., and Dolan, L. (2016). The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants. Current Biology 26, 3238–3244.

Idevall-Hagren, O., Lü, A., Xie, B., and De Camilli, P. (2015). Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering. EMBO J. 34, 2291–2305.

Jaillais, Y., and Ott, T. (2020). The Nanoscale Organization of the Plasma Membrane and Its Importance in Signaling: A Proteolipid Perspective. Plant Physiology 182, 1682–1696.

Jaillais, Y., Hothorn, M., Belkhadir, Y., Dabi, T., Nimchuk, Z.L., Meyerowitz, E.M., and Chory, J. (2011). Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev. 25, 232–237.

Kang, B.-H., Nielsen, E., Preuss, M.L., Mastronarde, D., and Staehelin, L.A. (2011). Electron Tomography of RabA4b- and PI-4Kβ1-Labeled Trans Golgi Network Compartments in Arabidopsis. Traffic 12, 313–329.

Kumar, M., Carr, P., and Turner, S. (2020). An atlas of Arabidopsis protein S-Acylation reveals its widespread role in plant cell organisation of and function (Plant Biology).

Lee, B.H., Weber, Z.T., Zourelidou, M., Hofmeister, B.T., Schmitz, R.J., Schwechheimer, C., and Dobritsa, A.A. (2018). Arabidopsis Protein Kinase D6PKL3 Is Involved in the Formation of Distinct Plasma Membrane Aperture Domains on the Pollen Surface. The Plant Cell 30, 2038–2056.

Lee, E., Vanneste, S., Pérez-Sancho, J., Benitez-Fuente, F., Strelau, M., Macho, A.P., Botella, M.A., Friml, J., and Rosado, A. (2019). Ionic stress enhances ER–PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. PNAS 116, 1420–1429.

Lees, J.A., Zhang, Y., Oh, M.S., Schauder, C.M., Yu, X., Baskin, J.M., Dobbs, K., Notarangelo, L.D., Camilli, P.D., Walz, T., et al. (2017). Architecture of the human PI4KIIIα lipid kinase complex. PNAS 114, 13720–13725.

Lemmon, M.A. (2008). Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9, 99–111.

Levine, T.P., and Munro, S. (1998). The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Current Biology 8, 729–739.

Levine, T.P., and Munro, S. (2002). Targeting of Golgi-Specific Pleckstrin Homology Domains Involves Both PtdIns 4-Kinase-Dependent and -Independent Components. Current Biology 12, 695–704.

Li, L., Shi, X., Guo, X., Li, H., and Xu, C. (2014). Ionic protein–lipid interaction at the
plasma membrane: what can the charge do? Trends in Biochemical Sciences 39, 130–140.

Li, Y., Tan, X., Wang, M., Li, B., Zhao, Y., Wu, C., Rui, Q., Wang, J., Liu, Z., and Bao, Y. (2017). Exocyst subunit SEC3A marks the germination site and is essential for pollen germination in Arabidopsis thaliana. Sci Rep 7.

Lin, F., Krishnamoorthy, P., Schubert, V., Hause, G., Heilmann, M., and Heilmann, I. (2019). A dual role for cell plate-associated PI4Kβ in endocytosis and phragmoplast dynamics during plant somatic cytokinesis. EMBO J. 38.

Marquès-Bueno, M.M., Morao, A.K., Cayrel, A., Platre, M.P., Barberon, M., Caillieux, E., Colot, V., Jaillais, Y., Roudier, F., and Vert, G. (2016). A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J 85, 320–333.

Martinière, A., Lavagi, I., Nageswaran, G., Rolfe, D.J., Maneta-Peyret, L., Luu, D.-T., Botchway, S.W., Webb, S.E.D., Mongrand, S., Maurel, C., et al. (2012). Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci U S A 109, 12805–12810.

McLaughlin, S., and Murray, D. (2005). Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605–611.

Miyamoto, Y., Torii, T., Eguchi, T., Nakamura, K., Tanoue, A., and Yamauchi, J. (2014). Hypomyelinating leukodystrophy-associated missense mutant of FAM126A/hyccin/DRCTNNB1A aggregates in the endoplasmic reticulum. J Clin Neurosci 21, 1033–1039.

Mueller-Roeber, B., and Pical, C. (2002). Inositol Phospholipid Metabolism in Arabidopsis. Characterized and Putative Isoforms of Inositol Phospholipid Kinase and Phosphoinositide-Specific Phospholipase C. Plant Physiol 130, 22–46.

Nakatsu, F., Baskin, J.M., Chung, J., Tanner, L.B., Shui, G., Lee, S.Y., Pirruccello, M., Hao, M., Ingolia, N.T., Wenk, M.R., et al. (2012). PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity. J Cell Biol 199, 1003–1016.

Noack, L.C., and Jaillais, Y. (2017). Precision targeting by phosphoinositides: how PIs direct endomembrane trafficking in plants. Curr. Opin. Plant Biol. 40, 22–33.

Noack, L.C., and Jaillais, Y. (2020). Functions of Anionic Lipids in Plants. Annual Review of Plant Biology 71, 71–102.

Omnus, D.J., Cadou, A., Chung, G.H.C., Bader, J.M., and Stefan, C.J. (2018). A Cytoplasmic GOLD Protein Controls Cell Polarity. BioRxiv 379057.

Pérez-Sancho, J., Vanneste, S., Lee, E., McFarlane, H.E., Valle, A.E. del, Valpuesta, V., Friml, J., Botella, M.A., and Rosado, A. (2015). The Arabidopsis Synaptotagmin1 Is Enriched in Endoplasmic Reticulum-Plasma Membrane Contact Sites and Confers Cellular Resistance to Mechanical Stresses. Plant Physiology 168, 132–143.

Platre, M.P., Noack, L.C., Doumane, M., Bayle, V., Simon, M.L.A., Maneta-Peyret, L., Fouillen, L., Stanislas, T., Armengot, L., Pejchar, P., et al. (2018). A Combinatorial Lipid Code Shapes the Electrostatic Landscape of Plant Endomembranes. Dev. Cell 45, 465-480.e11.
Preuss, M.L., Schmitz, A.J., Thole, J.M., Bonner, H.K.S., Otegui, M.S., and Nielsen, E. (2006). A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol 172, 991–998.

Roy, A., and Levine, T.P. (2004). Multiple Pools of Phosphatidylinositol 4-Phosphate Detected Using the Pleckstrin Homology Domain of Osh2p. J. Biol. Chem. 279, 44683–44689.

Ruiz-Lopez, N., Pérez-Sancho, J., Valle, A.E. del, Haslam, R.P., Vanneste, S., Catalá, R., Perea-Resa, C., Damme, D.V., García-Hernández, S., Albert, A., et al. (2020). Synaptotagmins Maintain Diacylglycerol Homeostasis at Endoplasmic Reticulum-Plasma Membrane Contact Sites during Abiotic Stress. BioRxiv 2020.07.28.222919.

Šašek, V., Janda, M., Delage, E., Puyaubert, J., Guivarc’h, A., López Maseda, E., Dobrev, P.I., Caius, J., Bóka, K., Valentová, O., et al. (2014). Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth. New Phytol 203, 805–816.

Schapire, A.L., Voigt, B., Jasik, J., Rosado, A., Lopez-Cobollo, R., Menzel, D., Salinas, J., Mancuso, S., Valpuesta, V., Baluska, F., et al. (2008). Arabidopsis Synaptotagmin 1 Is Required for the Maintenance of Plasma Membrane Integrity and Cell Viability. The Plant Cell 20, 3374–3388.

Shin, S.-B., Golovkin, M., and Reddy, A.S.N. (2014). A pollen-specific calmodulin-binding protein, NPG1, interacts with putative pectate lyases. Sci Rep 4.

Simon, M.L.A., Platre, M.P., Assil, S., van Wijk, R., Chen, W.Y., Chory, J., Dreux, M., Munnik, T., and Jaillais, Y. (2014). A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J 77, 322–337.

Simon, M.L.A., Platre, M.P., Marquès-Bueno, M.M., Armengot, L., Stanislas, T., Bayle, V., Caillaud, M.-C., and Jaillais, Y. (2016). A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. Nature Plants 2, nplants201689.

Simon-Plas, F., Elmayan, T., and Blein, J.-P. (2002). The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J. 31, 137–147.

Steveson, J.M., Perera, I.Y., and Boss, W.F. (1998). A Phosphatidylinositol 4-Kinase Pleckstrin Homology Domain That Binds Phosphatidylinositol 4-Monophosphate. J. Biol. Chem. 273, 22761–22767.

Steveson-Paulik, J., Love, J., and Boss, W.F. (2003). Differential Regulation of Two Arabidopsis Type III Phosphatidylinositol 4-Kinase Isoforms. A Regulatory Role for the Pleckstrin Homology Domain. Plant Physiol 132, 1053–1064.

Szumlanski, A.L., and Nielsen, E. (2010). Phosphatidylinositol 4-Phosphate is Required for Tip Growth in Arabidopsis thaliana. In Lipid Signaling in Plants, T. Munnik, ed. (Berlin, Heidelberg: Springer), pp. 65–77.

Van Damme, D., Coutuer, S., De Rycke, R., Bouget, F.-Y., Inzé, D., and Geelen, D. (2006). Somatic Cytokinesis and Pollen Maturation in Arabidopsis Depend on TPLATE, Which Has Domains Similar to Coat Proteins. Plant Cell 18, 3502–3518.

Vermeer, J.E.M., Thole, J.M., Goedhart, J., Nielsen, E., Munnik, T., and Gadella Jr, T.W.J.
(2009). Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. The Plant Journal 57, 356–372.

Wang, Y.J., Wang, J., Sun, H.Q., Martinez, M., Sun, Y.X., Macia, E., Kirchhausen, T., Albanesi, J.P., Roth, M.G., and Yin, H.L. (2003). Phosphatidylinositol 4 Phosphate Regulates Targeting of Clathrin Adaptor AP-1 Complexes to the Golgi. Cell 114, 299–310.

Wang, Z.-P., Xing, H.-L., Dong, L., Zhang, H.-Y., Han, C.-Y., Wang, X.-C., and Chen, Q.-J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology 16, 144.

Wei, Y.J., Sun, H.Q., Yamamoto, M., Wlodarski, P., Kunii, K., Martinez, M., Barylko, B., Albanesi, J.P., and Yin, H.L. (2002). Type II phosphatidylinositol 4-kinase beta is a cytosolic and peripheral membrane protein that is recruited to the plasma membrane and activated by Rac-GTP. J. Biol. Chem. 277, 46586–46593.

Wu, X., Chi, R.J., Baskin, J.M., Lucast, L., Burd, C.G., De Camilli, P., and Reinisch, K.M. (2014). Structural Insights into Assembly and Regulation of the Plasma Membrane Phosphatidylinositol 4-Kinase Complex. Dev Cell 28, 19–29.

Xing, H.-L., Dong, L., Wang, Z.-P., Zhang, H.-Y., Han, C.-Y., Liu, B., Wang, X.-C., and Chen, Q.-J. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology 14, 327.

Xue, H.-W., Pical, C., Brearley, C., Elge, S., and Müller-Röber, B. (1999). A Plant 126-kDa Phosphatidylinositol 4-Kinase with a Novel Repeat Structure CLONING AND FUNCTIONAL EXPRESSION IN BACULOVIRUS-INFECTED INSECT CELLS. J. Biol. Chem. 274, 5738–5745.

Yamazaki, T., Kawamura, Y., Minami, A., and Uemura, M. (2008). Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20, 3389–3404.

Zaballa, M.-E., and Goot, F.G. van der (2018). The molecular era of protein S-acylation: spotlight on structure, mechanisms, and dynamics. Critical Reviews in Biochemistry and Molecular Biology 53, 420–451.
Supplemental Figure 1. Western-blot validation of the custom-made anti-PI4Kα1 and anti-NPGR2 antibodies. (A) Western blot anti-PI4Kα1 on total proteins extract of Col-0 seedlings, seedling expressing UBQ10prom::PI4Kα1-mCITRINE and seedling expressing UBQ10prom::PI4Kα1-2xmCHERRY. Red ponceau shows similar protein loading in every well. (B) Western blot anti-NPGR2 on total proteins extract of Col0, npgr2-1, npgr2-3, npgr1npgr2-1 seedlings, seedling expressing UBQ10prom::NPGR2-mCITRINE and seedling expressing UBQ10prom::NPGR1-mCITRINE. Red ponceau shows similar protein loading in every well.
Supplemental Figure 2. Characterization of pi4kal pollen phenotype

(A) Genotyping of Col0, pi4kal-1 heterozygous plants, and pi4kal-1 homozygous plants expressing PI4Kalprom::PI4Kal-3′UTR (insertion n°3, 12 and 18). Upper panel shows the amplification of gene sequence. Lower panel shows amplification of T-DNA border. (B) Alexander staining of pollen grains from Col0 and self-fertilized pi4kal-1 heterozygous plants. Shrivelled pollen grains are indicated by white arrowheads. Scale bars: 20 µm. (C) DAPI staining of pollen grains from self-fertilized pi4kal-1 heterozygous plants with normal (WT, left) and shrivelled (pi4kal-1-/-, right) shape. Nuclei are indicated with white arrowheads. Scale bars: 10 µm.
The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Supplemental Figure 3. Characterization of the pollen phenotype of single and multiple npg, hyc and efop mutants. (A) Pollen grains observed at scanning electronic microscope of self-fertilized npg1-1+/-, npg1-1+/ ngr1-1364/, npg1-1/-, npgr1-1-/-, npgr2-1/-, npgr2-2/-, hyc1/- expressing HYC1prom::HYC1-mCITRINE, efop2-1/-, efop3-1/-, 1365 efp2-1/-, efp2-2/-, efp3-1/-, efp3-2/-, efp3-1+/-, efp3-2+/-, 1366 efp4-2/-, efp4-3/-, efp4-4+/-, efp4-3+/-, and efp4-3+/- plants. Scale bars: 50 µm (B) Quantification of the % of 1369 normal (blue), deformed (orange) and shrivelled (red) pollen grains of all indicated genotypes. ND is indicated when 1370 no quantification of this genotype is available. n indicates the number of pollen grains counted. (C) Genotyping of 1371 Col-0, npg1-2 heterozygous plants and npg1-2 homozygous plants complemented with NPG1prom::NPG1-mCITRINE 1372 (insertion n° 2, 3, 5, 9, 10 and 12) and NPG1prom::NPGR2-mCITRINE (insertion n° 19 and 20). Upper panel shows 1373 amplification of the gene sequence. Lower panel shows amplification of T-DNA border. (D) Genotyping of Col-0, 1374 hyc1 heterozygous plants and hyc1 homozygous plants complemented with HYC1prom::HYC1-mCITRINE (insertion 1375 n° 2). Upper panel shows amplification of gene sequence. Lower panel shows amplification of T-DNA border.
Supplemental Figure 4. Sporophytic phenotypes of npg1+/-npgr1/-npgr2/- triple mutant and hyc2/- single mutant and complementation (A) Twenty-seven-days-old Col-0, npg1-2+/-, npgr1-/-, npgr2-2/-, npg1-2+/- npgr1-/-, npgr2-2/- and npg1-2+/- npgr1-/-, npgr2-2/- plants. Scale bar: 2 cm (B) Forty-one-days-old Col-0, npg1-2+/-, npgr1-/-, npgr2-2/-, npg1-2+/-, npgr1-/-, npgr2-2/- and npg1-2+/-, npgr1-/-, npgr2-2/- plants. Scale bar: 2 cm (C) Twenty-seven days-old Col-0, npgr1-/-, npgr2-2/- and npgr1-/-, npgr2-2/- expressing NPGR1prom::NPGR1-mCITRINE. Several independent insertions are shown. Scale bar: 2 cm (D) Forty days-old
Col-0, npgr1-/- npgr2-2/- and npgr1-/- npgr2-2/- expressing NPGR1prom::NPGR1-mCITRINE. Several independent insertions are shown. Scale bar: 2 cm (E) Opened siliques of self-fertilized hyc2-2 heterozygous mutant plants and self-fertilized hyc2-2 homozygous plants complemented by the expression of HYC2prom::HYC2-mCITRINE (insertion n°9, 10 and 17) and HYC2prom::HYC2-2xmCHERRY (insertion n°11, 18 and 24). White arrowheads indicate aborted seeds. (F) Genotyping of Col-0, hyc2-2 heterozygous plants and hyc2-2 homozygous plants complemented with HYC2prom::HYC2-mCITRINE (insertion n°9, 10, 13 and 17) and HYC2prom::HYC2-2xmCHERRY (insertion n° 11, 18 and 24). Upper panel shows amplification of gene sequence. Lower panel shows amplification of T-DNA border.
Supplemental Figure 5. FRAP analysis of NPGR2/EFOP2/HYC2 fused with mCITRINE in Arabidopsis root. Graphics presenting signal intensity over time for photobleached (red) and control regions (blue). Standard deviations are shown. The number of zones measured is 37, 32, 30, 13 and 29 for P4M, PHAPP1, NPGR2, EFOP2-mCt and HYC2-mCt, respectively.
Antibody	References	Company	Host	Concentration used
Primary				
anti-GFP	A-6455	ThermoFisher	Rabbit	1/2000
anti-mCherry	ab167453	Abcam	Rabbit	1/1000
anti-PI4Ka1	A03 rat #1	Proteogenix	Rat	1/1000
anti-NPGR2	9094-A01 rabbit #2	Proteogenix	Rabbit	1/2000
Secondary				
anti-Rat IgG, HRP conjugate	AP136P	Merck	Goat	1/5000
anti-Rabbit IgG, HRP conjugate	W4011	Promega	Goat	1/5000

Table S1. Antibodies
Table S2: Description of the single and multiple mutants analysed in this study

Gene	Locus	Name	T-DNA or CmDele ion	Genotype	Phenotype observed	Detail
PMR61	At1g63940	pmi-1	G5302_015	Heterozygous	Male sterility	Insertion in the 1st exon (130bp from ATG) of 216bp followed by two T-DNA in inverted tandem.
	At1g63940	pmi-2	F566_179542	Heterozygous	Male sterility	Insertion in the 22nd exon (696bp from ATG) of 238bp followed by one T-DNA.
NF61	At1g20340	nfp-1	SAK_262_401	Heterozygous	Male sterility	Insertion in the 3rd exon (746bp from ATG) of 218bp followed by two T-DNA in inverted tandem.
	At1g20340	nfp-2	G1_800058	Heterozygous	Male sterility	Insertion in the 3rd exon (1191bp from ATG) of 362bp followed by two T-DNA in inverted tandem and 31bp.
NUPR1	At1g21480	npatr-1	SAK_069514	Homozygous	None	Insertion of T in the first exon of the 306bp after the ATG leading to a early coding stop and a truncated protein of 81bp.
NUPR2	At1g26680	npatr-2	SAK_090807	Homozygous	None	Deletion of 17bp leading to a early coding stop and a truncated protein of 84bp.
	At1g26680	npatr-3	G1_809167	Homozygous	None	Deletion of 34bp and insertion of two T-DNA inverted tandem at 31bp from ATG.
	At1g26680	npatr-4	SAK_107457	Heterozygous	Early lethal	Insertion of 13bp followed by one T-DNA at 51bp from ATG.
	At1g26680	npatr-5	SAK_092975	Heterozygous	Early lethal	Insertion of 13bp followed by two T-DNA inverted tandem at 70bp from ATG.
	At1g26680	npatr-6	SAK_10831	Homozygous	None	Deletion of 10bp and insertion of two T-DNA inverted tandem at 70bp from ATG.
	At1g26680	npatr-7	G1_809167	Homozygous	None	Deletion of 34bp and insertion of two T-DNA inverted tandem at 31bp from ATG.

Single Mutant

Gene	Locus	Name	T-DNA or CmDele ion	Genotype	Phenotype observed	Detail
	At1g51990	nfp-1	SAK_262_401	Homozygous	Male sterility	Insertion of T in the first exon of the 306bp after the ATG leading to a early coding stop and a truncated protein of 81bp.
	At1g51990	nfp-2	G1_800058	Homozygous	Male sterility	Insertion of 13bp followed by one T-DNA at 51bp from ATG.
	At1g51990	nfp-3	G1_809167	Homozygous	Male sterility	Insertion of 13bp followed by two T-DNA inverted tandem at 70bp from ATG.
	At1g51990	nfp-4	SAK_10831	Homozygous	None	Deletion of 17bp leading to a early coding stop and a truncated protein of 84bp.
	At1g51990	nfp-5	G1_809167	Homozygous	None	Deletion of 34bp and insertion of two T-DNA inverted tandem at 31bp from ATG.
	At1g51990	nfp-6	SAK_10831	Homozygous	None	Insertion of 13bp followed by one T-DNA at 51bp from ATG.
	At1g51990	nfp-7	G1_809167	Homozygous	None	Deletion of 34bp and insertion of two T-DNA inverted tandem at 31bp from ATG.

Multiple Mutant

Gene	Locus	Name	T-DNA or CmDele ion	Genotype	Phenotype observed	Detail
	At1g51990	nfp-1	SAK_262_401	Homozygous	Male sterility	Insertion of T in the first exon of the 306bp after the ATG leading to a early coding stop and a truncated protein of 81bp.
	At1g51990	nfp-2	G1_800058	Homozygous	Male sterility	Insertion of 13bp followed by one T-DNA at 51bp from ATG.
	At1g51990	nfp-3	G1_809167	Homozygous	Male sterility	Insertion of 13bp followed by two T-DNA inverted tandem at 70bp from ATG.
	At1g51990	nfp-4	SAK_10831	Homozygous	None	Deletion of 17bp leading to a early coding stop and a truncated protein of 84bp.
	At1g51990	nfp-5	G1_809167	Homozygous	None	Deletion of 34bp and insertion of two T-DNA inverted tandem at 31bp from ATG.
	At1g51990	nfp-6	SAK_10831	Homozygous	None	Insertion of 13bp followed by one T-DNA at 51bp from ATG.
	At1g51990	nfp-7	G1_809167	Homozygous	None	Deletion of 34bp and insertion of two T-DNA inverted tandem at 31bp from ATG.

Double Mutant

Gene	Locus	Name	T-DNA or CmDele ion	Genotype	Phenotype observed	Detail	
	At1g51990	nfp-1	SAK_262_401	Homozygous	Male sterility	Insertion of T in the first exon of the 306bp after the ATG leading to a early coding stop and a truncated protein of 81bp.	
	At1g51990	nfp-2	G1_800058	Homozygous	Male sterility	Insertion of 13bp followed by one T-DNA at 51bp from ATG.	
	At1g51990	nfp-3	G1_809167	Homozygous	Male sterility	Insertion of 13bp followed by two T-DNA inverted tandem at 70bp from ATG.	
	At1g51990	nfp-4	SAK_10831	Homozygous	None	Deletion of 17bp leading to a early coding stop and a truncated protein of 84bp.	
	At1g51990	nfp-5	G1_809167	Homozygous	None	Deletion of 34bp and insertion of two T-DNA inverted tandem at 31bp from ATG.	
	At1g51990	nfp-6	SAK_10831	Homozygous	None	Insertion of 13bp followed by one T-DNA at 51bp from ATG.	
	At1g51990	nfp-7	G1_809167	Homozygous	None	Deletion of 34bp and insertion of two T-DNA inverted tandem at 31bp from ATG.	
Name	Full name	Background	Entry sector(s)	Destination sector(s)	Use	Figure	Source
-----------------------------	--	---------------------------	----------------------------------	------------------------	----------------------	--------	----------
LLOV(3X3 myths)	LLOV-FRB(3X3 myths)	2x35S::pyGFR::LLOV-FRB	LLOV-FRB::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	1	This study
TFPD1	TFPD1	2x35S::pyGFR::LLOV-FRB	TFPD1::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	1	This study
TFPD2	TFPD2	2x35S::pyGFR::LLOV-FRB	TFPD2::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	1	This study
TFPD3	TFPD3	2x35S::pyGFR::LLOV-FRB	TFPD3::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	1	This study
TFPD4	TFPD4	2x35S::pyGFR::LLOV-FRB	TFPD4::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	1	This study
TFPD5	TFPD5	2x35S::pyGFR::LLOV-FRB	TFPD5::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	1	This study
TFPD6	TFPD6	2x35S::pyGFR::LLOV-FRB	TFPD6::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	1	This study
TFPD7	TFPD7	2x35S::pyGFR::LLOV-FRB	TFPD7::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	1	This study
TFPD8	TFPD8	2x35S::pyGFR::LLOV-FRB	TFPD8::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	1	This study
TFPD9	TFPD9	2x35S::pyGFR::LLOV-FRB	TFPD9::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	1	This study
TFPD10	TFPD10	2x35S::pyGFR::LLOV-FRB	TFPD10::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	pCITRINE::pyGFR::LLOV	1	This study

This table represents a selection of transgenic lines with specific genetic modifications, highlighting their background, entry sectors, and destination sectors useful for research purposes. Each line is designed for specific applications, such as FRB (Flavin-activated Rapamycin) treatment, molecular tagging, and more, tailored for study in biological contexts.
Name	Source
Empty gateway entry vector: pDONR221	thermo Fisher
Empty gateway entry vector: pDONR P4P1R	cat# 12537023
Empty gateway entry vector: pDONR P2RP3	cat# 12537023
Empty gateway destination vector: pB7m34GW	Karimi et al.,
Empty gateway destination vector: pP7m34GW	Karimi et al.,
Empty gateway destination vector: pLOK180, pR7m34g	L. Kalmbach and M. Barberon
Empty gateway destination vector: pK7FWG2	Karimi et al.,
Entry vector: UBQ10prom/pDONR P4-P1r	Jaillais et al.,
Entry vector: 2X355/pDONR P4-P1r	Mar Marqués-
Entry vector: mCITRINE/pDONR 221	Simon et al.,
Entry vector: mCITRINE/pDONR P2R-P3	Jaillais et al.,
Entry vector: 2xmCHERRY-4xmyc/pDONR P2R-P3	Simon et al.,
Lti6b/pDONR207	Elsayad et al.,
pEGFP-FRB (Gift of Klaus Hahn)	Gift of Klaus Hahn

Table S4: Published vectors used in this study
Table S5: Primers used for cloning into gateway entry vectors

Name	Sequence	Gibson	Gateway	Gibson	Gateway	Gibson	Gateway	Gibson	Gateway
Name 1	Sequence 1	Gibson 1	Gateway 1						
Name 2	Sequence 2	Gibson 2	Gateway 2						
Name 3	Sequence 3	Gibson 3	Gateway 3						
Name 4	Sequence 4	Gibson 4	Gateway 4						
Name 5	Sequence 5	Gibson 5	Gateway 5						
Name 6	Sequence 6	Gibson 6	Gateway 6						
Name 7	Sequence 7	Gibson 7	Gateway 7						
Name 8	Sequence 8	Gibson 8	Gateway 8						
Name 9	Sequence 9	Gibson 9	Gateway 9						
Name 10	Sequence 10	Gibson 10	Gateway 10						

Note: The table represents the primers used for cloning into gateway entry vectors.
Table S6: Primers used for site directed mutagenesis

Name	Mutation	Primer Sequence (5’-3’; forward then reverse)
ELP1nsSTOP/pDONR 221	Reversion of the STOP codon (TAG→CTG leu) in ELP1pSTOP/p221	cttggtgtgacctagggctctgggttacagagt
ELP3nsSTOP/pDONR 221	Deletion of the stop (TAT)	gcacgagaCGTGACCAGGCTCTGTACAGG
ELP2-CC/pDONR 221	Site directed mutagenesis C20 and C33 to S(TGT→AGT) and TSC→AGC to mutate the palmitoylation	tggagaacgtgattctagccaggtctggagcag
EQ2-7Q/pDONR 221	Site directed mutation R29Q (AGG→GCA) on EL2	atcttcgctgctgatcctgATAGCAACAGAGGCAAGG
	Site directed mutagenesis R27Q (CGT→GCA) and R31Q (AGA→ICAA) on EL2 to use on EL2-R29Q	attgcctgctgctgatcctgATAGCAACAGAGGCAAGG
	Site directed mutation K35Q (AAG→GAC)and K39Q (AAG→CAG) on EL2 to use on EL2-R29Q	cagctcCAACGCGTGCAGCTGTGACGGTACAGG
	Site directed mutation R36Q (AAG→GAC) and K39Q (AAG→CAG) on EL2 to use on EL2-SQ	aaaaaatcgaagatgtgttgctgCTGACGAGGGCTGTGACGGTACAGG

BioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.415711; this version posted December 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Gene mutated	Primers Name	Description	Primer Sequence (5'→3') for forward then reverse
NPGR2-ΔS	To obtain new Crispr lines using the specific promoter or 3'IS promoter vectors from Wang et al. Genome Biology 2015. Cloning using Golden Gate reaction. Forward primer to clone a Single gRNA NPGR2 using pC3C-ΔIS172 vector as a template. 4 primes PCR with primers NPGR2-F and NPGR2-R and NPGR2-Bsf. Amplicon size around 620 bp. This primer contains de gRNA sequence and the BSAI cutting site. Original primer name in the protocol: DT1-Bsf.	ATTATGGTCGTGATGGTTAGCTAATAGCAACTCTCGTTT	
NPGR2-ΔO	To obtain new Crispr lines using the specific promoter or 3'IS promoter vectors from Wang et al. Genome Biology 2015. Cloning using Golden Gate reaction. Forward primer to clone a Single gRNA NPGR2 using pC3C-ΔIS172 vector as a template. 4 primes PCR with primers NPGR2-Bsf and NPGR2-R and NPGR2-Bsf. Amplicon size around 620 bp. This primer contains de gRNA sequence.	TGTTACGTTAAATGCAACTCTCGTTTGGTACGCTAGAAATAGC	
NPGR2-ΔR	To obtain new Crispr lines using the specific promoter or 3'IS promoter vectors from Wang et al. Genome Biology 2015. Cloning using Golden Gate reaction. Reverse primer to clone a Single gRNA NPGR2 using pC3C-ΔIS172 vector as a template. 4 primes PCR with primers NPGR2-R and NPGR2-F and NPGR2-Bsf. Amplicon size around 620 bp. This primer contains de gRNA sequence. Original primer name in the protocol: DT2-Bsf.	AAACAGATATCTTGTATAGCACGAATCTTGAATGCATCTAC	
NPGR2-ΔR	To obtain new Crispr lines using the specific promoter or 3'IS promoter vectors from Wang et al. Genome Biology 2015. Cloning using Golden Gate reaction. Reverse primer to clone a Single gRNA NPGR2 using pC3C-ΔIS172 vector as a template. 4 primes PCR with primers NPGR2-Bsf and NPGR2-R and NPGR2-Bsf. Amplicon size around 620 bp. This primer contains de gRNA sequence and the BSAI cutting site. Original primer name in the protocol: DT1-Bsf.	ATTATGGTCGTGAAATGCAACTCTCGTTTGGTACGCTAGAAATAGC	
EF04-ΔS	To obtain new Crispr lines using the specific promoter or 3'IS promoter vectors from Wang et al. Genome Biology 2015. Cloning using Golden Gate reaction. Forward primer to clone a Single gRNA EF04 using pC3C-ΔIS172 vector as a template. 4 primes PCR with primers EF04-F and EF04-R and EF04-Bsf. Amplicon size around 620 bp. This primer contains de gRNA sequence and the BSAI cutting site. Original primer name in the protocol: DT1-Bsf.	ATTATGGTCGTGATGGTTAGCTAATAGCAACTCTCGTTT	
EF04-ΔO	To obtain new Crispr lines using the specific promoter or 3'IS promoter vectors from Wang et al. Genome Biology 2015. Cloning using Golden Gate reaction. Reverse primer to clone a Single gRNA EF04 using pC3C-ΔIS172 vector as a template. 4 primes PCR with primers EF04-R and EF04-F and EF04-Bsf. Amplicon size around 620 bp. This primer contains de gRNA sequence. Original primer name in the protocol: DT2-Bsf.	TGATGCACATCCTCGCATGGTATAGCTAGAAATAGC	
EF04-ΔR	To obtain new Crispr lines using the specific promoter or 3'IS promoter vectors from Wang et al. Genome Biology 2015. Cloning using Golden Gate reaction. Reverse primer to clone a Single gRNA EF04 using pC3C-ΔIS172 vector as a template. 4 primes PCR with primers EF04-R and EF04-F and EF04-Bsf. Amplicon size around 620 bp. This primer contains de gRNA sequence. Original primer name in the protocol: DT2-Bsf.	AAACAGATATCTTGTATAGCACGAATCTTGAATGCATCTAC	
EF04-ΔR	To obtain new Crispr lines using the specific promoter or 3'IS promoter vectors from Wang et al. Genome Biology 2015. Cloning using Golden Gate reaction. Reverse primer to clone a Single gRNA EF04 using pC3C-ΔIS172 vector as a template. 4 primes PCR with primers EF04-R and EF04-F and EF04-Bsf. Amplicon size around 620 bp. This primer contains de gRNA sequence and the BSAI cutting site. Original primer name in the protocol: DT2-Bsf.	ATTATGGTCGTGAAATGCAACTCTCGTTTGGTACGCTAGAAATAGC	

Table S7: Primers used for crispr constructs
Table S8: Primers used for genotyping