In this paper we study the boundedness of global pseudo-differential operators on smooth manifolds. By using the notion of global symbol we extend a classical condition of Hörmander type to guarantee the L^p-L^q-boundedness of global operators. First we investigate L^p-boundedness of pseudo-differential operators in view of the Hörmander-Mihlin condition. We also prove L^∞-BMO estimates for pseudo-differential operators. Later, we concentrate our investigation to settle L^p-L^q boundedness of the Fourier multipliers and pseudo-differential operators for the range $1 < p \leq 2 \leq q < \infty$. On the way to achieve our goal of L^p-L^q boundedness we prove two classical inequalities, namely, Paley inequality and Hausdorff-Young-Paley inequality for smooth manifolds. Finally, we present the applications of our boundedness theorems to the well-posedness properties of different types of the nonlinear partial differential equations.

1. Introduction
2. Preliminaries
3. L^p-L^p boundedness of pseudo-differential operators
 3.1. Hörmander-Mihlin condition for pseudo-differential operators
 3.2. L^p-boundedness of pseudo-multipliers of L
 3.3. L^∞-BMO boundedness for pseudo-differential operators
4. L^p-L^q boundedness of pseudo-differential operators for $1 < p \leq 2 \leq q < \infty$
 4.1. Hausdorff-Young-Paley inequality
 4.2. L^p-L^q boundedness
5. Applications to Non-Linear PDEs
 5.1. Nonlinear Stationary Equation
 5.2. Nonlinear Heat Equation
 5.3. Nonlinear Wave Equation
References

2010 Mathematics Subject Classification. 58J40; Secondary 47B10, 47G30, 35S30.

Key words and phrases. Pseudo-differential operator, nonharmonic analysis, manifold, Hausdorff-Young-Paley inequality, multiplier, boundedness, non-linear partial differential equation.

The authors were supported by the FWO Odysseus 1 grant G.0H94.18N: Analysis and Partial Differential Equations. MR was also supported in parts by the EPSRC Grant EP/R003025/1, by the Leverhulme Research Grant RPG-2017-151.
1. Introduction

In this paper we investigate classical conditions for the boundedness of multipliers and more generally, pseudo-differential operators in the context of the Fourier analysis arising from the spectral decomposition of a model operator \(L \) on a smooth manifold \(\mathcal{M} \) (which can be closed or with smooth boundary). To explain the results in this paper, let us recall the following classical results of Fourier analysis. If \(\mathcal{F} : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n) \) is the Fourier transform on \(\mathbb{R}^n \),

\[
(\mathcal{F} f)(\xi) := \int_{\mathbb{R}^n} e^{-i2\pi x \cdot \xi} f(x) \, dx, \quad \xi \in \mathbb{R}^n, \quad f \in C_0^\infty(\mathbb{R}^n),
\]

the function \(m \) is measurable on \(\mathbb{R}^n \), and the function \(\psi \in C_0(\mathbb{R}^n) \) is a test function, under the following conditions,

1. (Hörmander Mihlin Condition)

\[
\|m\|_{L^s(\mathcal{M})} = \sup_{r > 0} \| r^{s-\frac{2}{p}} \mathcal{F}[m(\cdot)\psi(|\cdot|^r)] \|_{L^2(\mathbb{R}^n)} < \infty, \quad s > n/2,
\]

2. (Paley-type inequality)

\[
M_\psi := \sup_{t > 0} \{ \xi \in \mathbb{R}^n : \psi(\xi) \geq t \} < \infty,
\]

the operators \(T_m \) and \(T \) defined by

1'.

\[
T_m f(x) := \int_{\mathbb{R}^n} e^{i2\pi x \cdot \xi} m(\xi)(\mathcal{F} f)(\xi) d\xi, \quad f \in C_0^\infty(\mathbb{R}^n),
\]

2'.

\[
T f(\xi) := (\mathcal{F} u)(\xi)\phi(\xi)^{2\left(1 - \frac{1}{p}\right)}, \quad f \in C_0^\infty(\mathbb{R}^n),
\]

admit bounded extensions \(T_m : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n) \), for \(1 < p < \infty \), and \(T : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n) \), when \(1 < p \leq 2 \). These two classical results are due to Hörmander (see [25, pages 105 and 120]). So, the Hörmander Mihlin Condition assures the \(L^p \)-boundedness of multipliers of the Fourier transform, while, the Paley-type inequality describes the growth of the Fourier transform of a function in terms of its \(L^p \)-norm. Interpolating the Paley-inequality with the Hausdoff-Young inequality one can obtain the following Hörmander’s version of the Hausdorff-Young-Paley inequality,

\[
\left(\int_{\mathbb{R}^n} |(\mathcal{F} f)(\xi)\phi(\xi)^{\frac{1}{r} - \frac{1}{\rho'}}|^r d\xi \right)^{\frac{1}{r}} \leq \|f\|_{L^p(\mathbb{R}^n)}, \quad 1 < p \leq r \leq p' < \infty, \quad 1 < p < 2. \tag{1.6}
\]

Also, as a consequence of the Hausdorff-Young-Paley inequality, Hörmander [25, page 106] proves that the condition

\[
\sup_{t > 0} t^b \{ \xi \in \mathbb{R}^n : m(\xi) \geq t \} < \infty, \quad \frac{1}{p} - \frac{1}{q} = \frac{1}{b}, \tag{1.7}
\]

where \(1 < p \leq 2 \leq q < \infty \), implies the existence of a bounded extension of \(T_m : L^p(\mathbb{R}^n) \to L^q(\mathbb{R}^n) \). The aim of this paper is to extend these results to the case of smooth-manifolds, by using the Fourier analysis associated to a model operator \(L \) on \(\mathcal{M} \). To formulate our results more precisely, let \(L \) be a pseudo-differential operator of
order m on the interior M of \overline{M} in the sense of Hörmander. This means that in every coordinate chart on the interior M, L agrees with a pseudo-differential operator of order m in some open subset of $\mathbb{R}^{\dim(M)}$.

We assume that some boundary conditions called (BC) are fixed and lead to a discrete spectrum with a family of eigenfunctions yielding a Riesz basis in $L^2(\overline{M})$. However, it is important to point out that the operator L does not have to be self-adjoint or an elliptic differential operator. For a discussion on general bi-orthogonal systems we refer the reader to Bari [3] and Gelfand [18]. Now we formulate our assumptions precisely. The discrete set of eigenvalues and eigenfunctions will be indexed by a countable set I. We consider the spectrum $\{\lambda_\xi \in \mathbb{C} : \xi \in I\}$ of L with corresponding eigenfunctions in $L^2(M)$ denoted by u_ξ, i.e.,

$$Lu_\xi = \lambda_\xi u_\xi \text{ in } M, \quad \text{for all } \xi \in I, \quad (1.8)$$

and the eigenfunctions u_ξ satisfy the boundary conditions (BC). We can think of (BC) as defining the domain of the operator L. The conjugate spectral problem is

$$L^*v_\xi = \lambda_\xi v_\xi \text{ in } M, \quad \text{for all } \xi \in I,$$

which we equip with the conjugate boundary conditions $(BC)^\ast$. We assume that the functions u_ξ, v_ξ are normalised, i.e. $\|u_\xi\|_{L^2} = \|v_\xi\|_{L^2} = 1$ for all $\xi \in I$. Moreover, we can take biorthogonal systems $\{u_\xi\}_{\xi \in I}$ and $\{v_\xi\}_{\xi \in I}$, i.e. $(u_\xi, v_\eta)_{L^2} = 0$ for $\xi \neq \eta$, and $(u_\xi, v_\eta)_{L^2} = 1$ for $\xi = \eta$.

$$\langle f, g \rangle_{L^2} = \int_M f(x)\overline{g(x)}\,dx$$

is the usual inner product of the Hilbert space $L^2(M)$. We also assume that the system $\{u_\xi\}$ is a Riesz basis of $L^2(\overline{M})$, i.e. for every $f \in L^2(\overline{M})$ there exists a unique series $\sum_{\xi \in I} a_\xi u_\xi$ that converges to f in $L^2(\overline{M})$. It is well known that (cf. [3]) the system $\{u_\xi\}$ is a basis of $L^2(\overline{M})$ if and only if the system $\{v_\xi\}$ is a basis of $L^2(\overline{M})$. Our analysis will be based on the quantization process carried by the non-harmonic analysis developed in [30, 31]. So, if $C_L^\infty(\overline{M}) := \cap_{k=1}^\infty \text{Dom}(L^k)$, an L-pseudo-differential operator is a continuous linear operator $A : C_L^\infty(\overline{M}) \to C_L^\infty(\overline{M})$, defined by

$$Af(x) \equiv T_m f(x) := \sum_{\xi \in I} u_\xi(x)m(x, \xi)(\mathcal{F}_L f)(\xi), \quad f \in C_L^\infty(\overline{M}). \quad (1.9)$$

The L-symbol of A is the function $m : \overline{M} \times I \to \mathbb{C}$, and $\mathcal{F}_L f$ is the L-Fourier transform of f at $\xi \in I$, which is defined via,

$$\widehat{f}(\xi) \equiv (\mathcal{F}_L f)(\xi) := \int_M f(x)\overline{v_\xi(x)}\,dx.$$
• With the notation of Definition 3.2, every L-pseudo-differential operator A, can be realised as a pseudo-multiplier of L via (3.4) associating to A a continuous function $\tau_m : \mathcal{M} \times \mathbb{R} \rightarrow \mathbb{C}$ interpolating the values of the symbol m of A in the variable $\xi \in \mathcal{I}$, in terms of the spectrum of $|L|$, in such a way that $m(x, \xi) = \tau_m(x, \lambda \xi)$. In Theorem 3.6, we prove that the Hörmander-Mihlin condition,

$$
\|\tau_m\|_{L^1, \mathcal{H}^s} = \sup_{r>0, x \in \mathcal{M}} r^{(s+\tfrac{Q_m}{2})} \langle \cdot \rangle^s \mathcal{F} [\tau_m(x, \cdot) \psi(r^{-1})] \|L^2(\mathbb{R}) < \infty,
$$

with s large enough, and ψ implies that $A \equiv T_m$ defined by (1.9) admits a bounded extension on $L^p(\mathcal{M})$, for all $1 < p < \infty$. This in particular implies that, if m satisfies the Marcinkiewicz type condition

$$
\sup_{x \in \mathcal{M}} |\partial_{\alpha,\beta} \tau_m(x, \omega)| \leq C_{\alpha,\beta}(1 + |\omega|)^{-|\alpha|}, \quad \omega \in \mathbb{R},
$$

the operator $A \equiv T_m$ in (1.9) admits a bounded extension on $L^p(\mathcal{M})$, for all $1 < p < \infty$. Similar conditions are studied in Theorem 3.9 in the $L^\infty(\mathcal{M})$-$BMO(\mathcal{M})$ setting.

• We prove the following Paley-Inequality (see Theorem 4.2): Let $1 < p \leq 2$, and let us assume that

$$
\sup_{\xi \in \mathcal{I}} \left(\sup_{\xi \in \mathcal{I}} \left(\frac{\|v_{\xi}\|_{L^\infty(\mathcal{M})}}{\|u_{\xi}\|_{L^\infty(\mathcal{M})}} \right) \right) < \infty. \quad (1.11)
$$

If $\varphi(\xi)$ is a positive sequence in \mathcal{I} such that

$$
M_{\varphi} := \sup_{t>0} t \sum_{\xi \in \mathcal{I}} \|u_{\xi}\|_{L^\infty(\mathcal{M})}^2
$$

is finite, then for every $f \in L^p(\mathcal{M})$ we have

$$
\left(\sum_{\xi \in \mathcal{I}} |\mathcal{F}_L(f)(\xi)|^p \|u_{\xi}\|_{L^\infty(\mathcal{M})}^{2-p} \varphi(\xi)^{2-p} \right)^{\frac{1}{p}} \lesssim M_{\varphi} \|f\|_{L^p(\mathcal{M})}. \quad (1.12)
$$

• Assuming (1.11), the Hausdorff-Young-Paley inequality (see Theorem 4.6) takes the form,

$$
\left(\sum_{\xi \in \mathcal{I}} \left(|\mathcal{F}_L f(\xi)| \varphi(\xi)^{\frac{1}{p} - \frac{1}{p'}} \right)^{b} \|u_{\xi}\|_{L^\infty(\mathcal{M})}^{1 - \frac{b}{p}} \|v_{\xi}\|_{L^\infty(\mathcal{M})}^{1 - \frac{b}{p'}} \right)^{\frac{1}{p}} \lesssim_{p'} M_{\varphi}^{\frac{1}{p} - \frac{1}{p'}} \|f\|_{L^p(\mathcal{M})}, \quad (1.13)
$$

provided that

$$
M_{\varphi} := \sup_{t>0} t \sum_{\xi \in \mathcal{I}} \|u_{\xi}\|_{L^\infty(\mathcal{M})}^2 < \infty.
$$

• Assuming

$$
\sup_{\xi \in \mathcal{I}} \left(\frac{\|v_{\xi}\|_{L^\infty(\mathcal{M})}}{\|u_{\xi}\|_{L^\infty(\mathcal{M})}} \right) < \infty \quad \text{and} \quad \sup_{\xi \in \mathcal{I}} \left(\frac{\|u_{\xi}\|_{L^\infty(\mathcal{M})}}{\|v_{\xi}\|_{L^\infty(\mathcal{M})}} \right) < \infty, \quad (1.14)
$$
in Theorem 4.10, for $1 < p \leq 2 \leq q < \infty$, we prove that under the weak-ℓ^b, condition with $\frac{1}{b} = \frac{1}{p} - \frac{1}{q}$,

$$\sup_{s > 0, x \in M} s \left(\sum_{\xi \in I} \max\{ \| u_\xi \|_{L^2(M)}^2, \| v_\xi \|_{L^2(M)}^2 \} \right)^{\frac{1}{p}} < \infty, \quad (1.15)$$

for $|\beta| \leq \rho$, with ρ large enough, the operator $A \equiv T_m : L^p(M) \to L^q(M)$, extends to a bounded linear operator.

Finally, we apply the above $L^p - L^q$ results to the non-linear partial differential equations (PDEs):

- Let us denote by $L^2(M)$ the Hilbert space L^2 on M. In the nonlinear stationary problem case, we consider the following equation in $L^2(M)$

$$Au = |Bu|^p + f,$$

where $A, B : L^2(M) \to L^2(M)$ and $1 \leq p < \infty$.

- As an example of the application to the nonlinear heat equation, we study the Cauchy problem in the space $L^\infty(0, T; L^2(M))$

$$u_t(t) - |Bu(t)|^p = 0, \quad u(0) = u_0,$$

where B is a linear operator in $L^2(M)$ and $1 \leq p < \infty$.

- In the non-linear wave equation case, we study the following initial value problem (IVP)

$$u_{tt}(t) - b(t)|Bu(t)|^p = 0,$$

$$u(0) = u_0, \quad u_t(0) = u_1,$$

where b is a positive bounded function depending only on time, B is a linear operator in $L^2(M)$ and $1 \leq p < \infty$.

In all of these cases, we establish well-posedness properties of the solutions in the space $L^\infty(0, T; L^2(M))$. We also note that the operators B in our examples have a nature of integro-differential operators.

Remark 1.1. Let us observe that for the n-torus, $\overline{M} = T^n \equiv [0, 1)^n$, we have that $\partial M = \emptyset$, and if we choose $L = \Delta_{T^n}$ being the Laplacian on the torus, then $\nu_\xi = u_\xi = e_\xi$, where $e_\xi(x) := e^{2\pi i x \cdot \xi}$, $x \in T^n$, $\xi \in \mathcal{I} = \mathbb{Z}^n$. In this case, our main results recover the classical periodic Paley-Inequality,

$$\left(\sum_{\xi \in \mathbb{Z}^n} |\hat{f}(\xi)|^p \varphi(\xi)^{2-p} \right)^{\frac{1}{p}} \lesssim M_{\varphi}^{\frac{2-p}{p}} \| f \|_{L^p(T^n)}, \quad (1.16)$$

and the periodic Hausdorff-Young-Paley inequality

$$\left(\sum_{\xi \in \mathbb{Z}^n} \left(|\hat{f}(\xi)| \varphi(\xi)^{\frac{1}{b} - \frac{1}{p}} \right)^b \right)^{\frac{1}{b}} \lesssim_p M_{\varphi}^{\frac{b}{b-p}} \| f \|_{L^p(T^n)}.$$

$$\left(\sum_{\xi \in \mathbb{Z}^n} \left(|\hat{f}(\xi)| \varphi(\xi)^{\frac{1}{b} - \frac{1}{p}} \right)^b \right)^{\frac{1}{b}} \lesssim_p M_{\varphi}^{\frac{b}{b-p}} \| f \|_{L^p(T^n)}.$$

(1.17)
Observe that the condition (1.15), takes the form

\[
\sup_{x \in \mathbb{T}^n} \sup_{s > 0} s^b \# \{ \xi \in \mathbb{Z}^n : m(x, \xi) \geq s \}^{\frac{1}{b}} := \sup_{s > 0, x \in \mathbb{T}^n} s \left(\sum_{\xi \in \mathbb{Z}^n} \left| \partial^{|\beta|} m(x, \xi) \right| > s \right)^{\frac{1}{b}} < \infty,
\]

for \(|\beta| \leq \lceil n/p \rceil + 1\), which implies that the periodic operator

\[
Af(x) = \sum_{\xi \in \mathbb{Z}^n} e^{i2\pi x \cdot \xi} m(x, \xi) (\mathcal{F}_{\Delta^m} f)(\xi), \quad f \in C^\infty(\mathbb{T}^n),
\]

admits a bounded extension from \(L^p(\mathbb{T}^n)\) into \(L^q(\mathbb{T}^n)\), for \(1 < p \leq 2 \leq q < \infty\), and \(\frac{1}{b} = \frac{1}{p} - \frac{1}{q}\).

Remark 1.2. The Hörmander condition for pseudo-multipliers, in particular, associated with the harmonic oscillator on \(M = \mathbb{R}^n\), has been studied in [8] and [7] and references therein. In this work we will generalise such analysis to the case of arbitrary smooth manifolds.

Remark 1.3. The periodic Paley-inequality, Hausdorff-Young-Paley inequality, and the \(L^p(\mathbb{T}^n)-L^q(\mathbb{T}^n)\), estimate are known to be sharp. We refer the reader to Littlewood and Paley [22, 23], and Zygmund [38] for details.

Remark 1.4. The classical periodic inequalities in Remark 1.1, together with the the \(L^p(\mathbb{T}^n)-L^q(\mathbb{T}^n)\) estimate above, were first extended to the case of compact homogeneous manifolds in the work of Akylzhanov, the third author and Nursultanov [1], by taking \(\overline{M} = M = G/K, \partial M = \emptyset\), with \(G\) being a compact Lie group and \(K\) one of its closed subgroups. The Paley-inequality, the Hausdorff-Young-Paley inequality, and the \(L^p(M)-L^q(M)\) estimates obtained in [1], used the notion of matrix-valued symbol and also a matrix-valued Fourier transform. If we consider the model operator \(L\) being \(L \equiv \mathcal{L}_{G/K}\), that is the lifting of the Laplacian \(\mathcal{L}_G\) on \(G\), to \(M\), the inequalities obtained here are different of the obtained in [1], because we use scalar-valued symbols and a scalar-valued Fourier transform. However they are related in some sense. Recently, in [11] the \(L^p-L^q\) boundedness of spectral multipliers of the anharmonic oscillator has been investigated by Chatzakou and the second author. The anharmonic oscillator can be thought as a self-adjoint prototype for model operator \(L\) when \(M = \mathbb{R}^n\).

Remark 1.5. The sharpness of the Paley-inequality on compact homogeneous manifolds was discussed in [1, page 1529], and in particular in the case of \(M = \text{SU}(2)\), with the notion of monotone matrices (see Definition 1.8 of [1]).

Remark 1.6. Some results on \(L^p\)-Fourier multipliers in the spirit of the Hörmander-Mihlin theorem, are also known on locally compact groups (see the paper of Akylzhanov and the third author [2]). The classical work of Coifman and Weiss [13] includes the case of the group \(\text{SU}(2)\), the reference [34] for general compact Lie groups, and [17] for graded Lie groups. The case of pseudo-differential operators on compact Lie groups (and also in graded groups) can be found in [9] and [14].
Remark 1.7. If L admits a self-adjoint extension L^* on $L^2(M)$, then we have that $u_\xi = v_\xi$ for every $\xi \in \mathcal{I}$, and the condition (1.11) holds true. In this case, $L \subset L^{**}$, which means that Dom(L) \subset Dom(L^*), and for every $f \in$ Dom(L), $L f = L^* f$. In this privileged situation we have,

$$\sup_{\xi \in \mathcal{I}} \left(\frac{\|u_\xi\|_{L_\infty(M)}}{\|u_\xi\|_{L_\infty(M)}} \right) = \sup_{\xi \in \mathcal{I}} \left(\frac{\|a_\xi\|_{L_\infty(M)}}{\|a_\xi\|_{L_\infty(M)}} \right) = 1. \quad (1.20)$$

Remark 1.8. If \overline{M} is a geodesically complete Riemannian manifold, the L^∞-BMO boundedness of pseudo-differential operators will be considered in Theorem 3.9.

This work is organised as follows. In Section 2 we present some basics about the non-harmonic analysis developed in [30, 31]. In Section 3, we prove our Hörmander-Mihlin condition and also our Marcinkiewicz type condition. The Paley-inequality, Hausdorff-Young-Paley inequality, and the L^p-L^q boundedness of pseudo-differential operators will be investigated in Section 4. Finally, in Section 5, we obtain some applications of our main results. Indeed, we obtain some applications to non-linear PDEs.

Throughout the paper, we shall use the notation $A \lesssim B$ to indicate $A \leq cB$ for a suitable constant $c > 0$, where as $A \simeq B$ if $A \leq cB$ and $B \leq dA$, for suitable $c, d > 0$.

2. Preliminaries

Let \overline{M} be a manifold with boundary. This means that the interior of \overline{M}, denoted by M, is the set of points in \overline{M} which have neighbourhoods homeomorphic to an open subset of \mathbb{R}^n. The boundary of \overline{M}, denoted ∂M, is the complement of M in \overline{M}. The boundary points can be characterised as those points which are mapped on the boundary hyperplane of $\{x = (x_1, \ldots, x_n) \in \mathbb{R}^n : x_n \geq 0\}$ under some coordinate chart. If M is a manifold with boundary of dimension n then $\partial M \neq \emptyset$ is a manifold (without boundary) of dimension $n - 1$. We will assume that M is orientable. This implies the orientability of ∂M. So, we assume that \overline{M} is endowed with a density \overline{dx}. In practice, we can assume that \overline{dx} is defined by a non-trivial volume form $\overline{dx} = \omega dx_1 \wedge \cdots \wedge dx_n$ on \overline{M}. A function $f : \overline{M} \to \mathbb{C}$ is smooth at $x \in M$, if there exists a chart (ϕ, V) on M, where V is a neighbourhood of x, $V \subset M$, and $\phi : V \to W = \phi(V) \subset \mathbb{R}^n$ is a coordinate path, such that the mapping $f \circ \phi^{-1} : \phi(V) \to \mathbb{C}$ is smooth. If $x \in \overline{M} \setminus M = \partial M$, we say that $f : \overline{M} \to \mathbb{C}$ is smooth at x, if there exists a chart (ϕ, V) on M, where V is neighbourhood of $x \in \partial M$, and $\phi : V \to \phi(V) = W \cap (\mathbb{R}^{n-1} \times [0, \infty))$, with W being an open subset of \mathbb{R}^n, such that the mapping $f \circ \phi^{-1} : W \cap (\mathbb{R}^{n-1} \times [0, \infty)) \to \mathbb{C}$, is the restriction to $W \cap (\mathbb{R}^{n-1} \times [0, \infty))$ of a smooth map $g : W \to \mathbb{C}$, i.e. $g|_{W \cap (\mathbb{R}^{n-1} \times [0, \infty))} = f$.

We will denote by $C^{\infty}(\overline{M})$ the set of smooth functions f over \overline{M}. We will denote by $\partial^\alpha f := \partial_\alpha^\beta g|_W \circ \phi$, the partial derivatives of f, defined in local coordinates on \overline{M}. We will denote by $L^p(\overline{M})$, $1 \leq p < \infty$, the Lebesgue spaces associated to \overline{dx}. For $p = \infty$, $L^\infty(\overline{M})$ denotes the set of essentially \overline{dx}-bounded functions.

We will describe some elements involved in the quantization of pseudo-differential operators on manifolds as developed by the third and last author in [30] and [31]. The space

$$C^\infty_{L^k}(\overline{M}) := \cap_{k=1}^\infty \text{Dom}(L^k) \quad (2.1)$$
where Dom(L^k) := \{ $f \in L^2(M) \mid L^j f \in \text{Dom}(L), j = 0, 1, \cdots, k - 1$\}, so that the boundary condition (BC) are satisfied by the operators L^j. The Fréchet topology of $C^\infty_L(M)$ is given by the family of norms

$$\|f\|_{C^k_L} := \max_{j \leq k} \|L^j f\|_{L^2(M)}, \quad k \in \mathbb{N}_0,$$

which consists of all rapidly decreasing functions. Similarly, we define $C^\infty_{L^*}(\overline{M})$ corresponding to the adjoint L^* by

$$C^\infty_{L^*}(\overline{M}) := \bigcap_{k=1}^\infty \text{Dom}((L^*)^k)$$

where Dom$((L^*)^k)$:= \{ $f \in L^2(M) \mid (L^*)^j f \in \text{Dom}(L), j = 0, 1, \cdots, k - 1$\}, which satisfy the adjoint boundary conditions corresponding to the operator L^*. The Fréchet topology of $C^\infty_{L^*}(\overline{M})$ is given by the family of norms

$$\|f\|_{C^k_{L^*}} := \max_{j \leq k} \|(L^*)^j f\|_{L^2(M)}, \quad k \in \mathbb{N}_0,$$

Since $\{u_\xi\}$ and $\{v_\xi\}$ are dense in $L^2(M)$ we have that $C^\infty_L(M)$ and $C^\infty_{L^*}(M)$ are dense in $L^2(M)$.

In order to introduce a global definition of the Fourier transform let us introduce the space $\mathcal{S}(\mathcal{I})$, which consists of all rapidly decreasing functions $\phi : \mathcal{I} \to \mathbb{C}$. This means that for any $N \in \mathbb{N}$, there exists a constant $C_{\phi,N}$ such that $|\phi(\xi)| \leq C_{\phi,N} |\xi|^{-N}$ for all $\xi \in \mathcal{I}$. The space $\mathcal{S}(\mathcal{I})$ forms a Fréchet space with the family of semi-norms $p_k(\phi) := \sup_{\xi \in \mathcal{I}} |\xi|^k |\phi(\xi)|$. The L-Fourier transform is a bijective homeomorphism $\mathcal{F}_L : C^\infty_L(M) \to \mathcal{S}(\mathcal{I})$ defined by

$$(\mathcal{F}_L f)(\xi) := \hat{f}(\xi) := \int_M f(x) \overline{v_\xi(x)} \, dx. \quad (2.2)$$

The inverse operator $\mathcal{F}_L^{-1} : \mathcal{S}(\mathcal{I}) \to C^\infty_L(M)$ is given by

$$(\mathcal{F}_L^{-1} h)(x) := \sum_{\xi \in \mathcal{I}} h(\xi) u_\xi(x)$$

so that the Fourier inversion formula is given by

$$f(x) = \sum_{\xi \in \mathcal{I}} \hat{f}(\xi) u_\xi(x), \quad f \in C^\infty_L(M). \quad (2.3)$$

Similarly, the L^*-Fourier transform is a bijective homeomorphism $\mathcal{F}_{L^*} : C^\infty_{L^*}(\overline{M}) \to \mathcal{S}(\mathcal{I})$ defined by

$$(\mathcal{F}_{L^*} f)(\xi) := \hat{f}_*(\xi) := \int_M f(x) \overline{u_\xi(x)} \, dx. \quad (\text{where } \hat{f}_* := \mathcal{F}_{L^*} f)$$

Its inverse $\mathcal{F}_{L^*}^{-1} : \mathcal{S}(\mathcal{I}) \to C^\infty_{L^*}(M)$ is given by $$(\mathcal{F}_{L^*}^{-1} h)(x) := \sum_{\xi \in \mathcal{I}} h(\xi) v_\xi(x)$$ so that the conjugate Fourier inversion formula is given by

$$f(x) = \sum_{\xi \in \mathcal{I}} \hat{f}_*(\xi) v_\xi(x), \quad f \in C^\infty_{L^*}(M). \quad (2.4)$$
The space $\mathcal{D}'(M) := \mathcal{L}(C^\infty_c(\overline{M}, \mathbb{C}))$ of linear continuous functionals on $C^\infty_c(\overline{M})$ is called the space of L-distributions. By dualising the inverse L-Fourier transform $\mathcal{F}_L^{-1} : \mathcal{S}(\mathcal{I}) \to C^\infty_c(\overline{M})$, the L-Fourier transform extends uniquely to the mapping

$$\mathcal{F}_L : \mathcal{D}'(M) \to \mathcal{S}'(\mathcal{I})$$

by the formula $\langle \mathcal{F}_L w, \phi \rangle := \langle w, \mathcal{F}_L^{-1} \phi \rangle$ with $w \in \mathcal{D}'(M)$, $\phi \in \mathcal{S}(\mathcal{I})$. The space $l^2_L := \mathcal{F}_L(L^2(\overline{M}))$ is defined as the image of $L^2(\overline{M})$ under the L-Fourier transform. Then the space of l^2_L consists of the sequences of the Fourier coefficients of function in $L^2(\overline{M})$, in which Plancherel identity holds, for $a, b \in l^2_L$,

$$(a, b)_{l^2_L} := \sum_{\xi \in \mathcal{I}} a(\xi)(\mathcal{F}_L \circ \mathcal{F}_L^{-1}b(\xi)).$$ \hspace{1cm} (2.5)

For $f \in \mathcal{D}'(M) \cap \mathcal{D}'_c(\mathcal{I})$ and $s \in \mathbb{R}$, we say that $f \in \mathcal{H}^s_L(M)$ if and only if $\langle \xi \rangle^s \hat{f}(\xi) \in l^2_L$,

provided with the norm

$$\|f\|_{\mathcal{H}^s_L} := \left(\sum_{\xi \in \mathcal{I}} \langle \xi \rangle^{2s} \hat{f}(\xi) \overline{\hat{f}}(\xi) \right)^{1/2}.$$

Now, we will present the definition of global pseudo-differential operator as developed in \cite{30}. If $m : \overline{M} \times \mathcal{I} \to \mathbb{C}$ is a smooth function, which means that $m(\cdot, \xi) \in C^\infty_c(\overline{M})$, for every $\xi \in \mathcal{I}$, the pseudo-differential operator associated to m, is defined by

$$Af(x) = \sum_{\xi \in \mathcal{I}} u_\xi(x)m(x, \xi)\hat{f}(\xi), \ f \in \text{Dom}(A).$$ \hspace{1cm} (2.6)

In those cases where $A : C^\infty_c(\overline{M}) \to C^\infty_c(\overline{M})$ is a continuous linear operator with symbol $\sigma : \mathcal{I} \to \mathbb{C}$, that does not depends on $x \in \overline{M}$, we say that A is a L-Fourier multiplier. Indeed, such operators satisfy the identity

$$\mathcal{F}_L(Af)(\xi) = \sigma(\xi)\mathcal{F}_L(f)(\xi)$$

for every $f \in C^\infty_c(\overline{M})$ and for every $\xi \in \mathcal{I}$.

3. L^p-L^p BOUNDEDNESS OF PSEUDO-DIFFERENTIAL OPERATORS

3.1. Hörmander-Mihlin condition for pseudo-differential operators.

In this section we investigate the L^p-boundedness of global pseudo-differential operators on a manifold $\overline{M} = M \cup \partial M$, where M is the interior of \overline{M} and ∂M is its boundary. We will denote by L° the densely defined operator given by

$$L^\circ u_\xi = \lambda_\xi u_\xi, \quad \xi \in \mathcal{I}.$$

The results presented here also allow the case $\partial M = \emptyset$. We will assume the following facts,
HMII: there exist $-\infty < \gamma^{(1)}_p, \gamma^{(2)}_p < \infty$, satisfying
\[
\|u_\xi\|_{L^p(M)} \lesssim |\lambda_\xi|^{\gamma^{(1)}_p}, \quad \|v_\xi\|_{L^p(M)} \lesssim |\lambda_\xi|^{\gamma^{(2)}_p}, \quad 1 \leq p \leq \infty. \tag{3.1}
\]
HMII: The operator $\sqrt{L^\circ L}$ satisfies the Weyl-eigenvalue counting formula
\[
N(\lambda) := \sum_{\xi \in I: |\lambda_\xi| \leq \lambda} = O(\lambda^{Q'}), \quad \lambda \to \infty,
\]
where $Q > 0$. If $Q' > Q$, then $N(\lambda) = O(\lambda^{Q'})$, $\lambda \to \infty$, so that we assume that Q is the smallest real number satisfying (3.2).

Remark 3.1. The first assumption (HMII) means that the L^p-norms of the biorthonormal system $\{u_\xi\}_{\xi \in I}$ and $\{v_\xi\}_{\xi \in I}$ growth polynomially, while (HMIII) assures that we have a suitable control on the spectrum of L. If M is a closed manifold and L is an elliptic self-adjoint and positive pseudo-differential operator, is known that in (3.2), $Q = \dim(M)$. Other kind of operators appear for example when L is the positive sub-Laplacian on a closed manifold M, in this case (3.2) holds with Q being the Hausdorff dimension associated to the Carnot-Carathéodory distance associated with L.

We observe that $\gamma^{(1)}_2 = \gamma^{(2)}_2 = 0$ in view that the functions u_ξ are considered with $L^2(M)$-norm normalised. We will denote
\[
\gamma_p := \gamma^{(1)}_p + \gamma^{(2)}_p. \quad \tag{3.3}
\]

Now, we will precise the kind of pseudo-differential that we will analyse in this section. We will refer to them as pseudo-multipliers. We will define it as follows.

Definition 3.2. Let $A : C^\infty(L^\circ L) \to C^\infty(L^\circ L)$ be a continuous linear operator defined as in (2.6). We say that the pseudo-differential operator A is a pseudo-multiplier associated with L (pseudo-multiplier for short), if there exists a continuous function $\tau_m : M \times \mathbb{R} \to \mathbb{C}$, such that for every $\xi \in I$, and $x \in M$, we have $m(x, \xi) = \tau_m(x, |\lambda_\xi|)$.

In this case, we say that A is the pseudo-multiplier associated with τ_m. Clearly,
\[
Af(x) \equiv \tau_m(x, \sqrt{L^\circ L})f(x) := \sum_{\xi \in I} u_\xi(x)\tau_m(x, |\lambda_\xi|)\tilde{f}(\xi), \tag{3.4}
\]
for all $f \in C^\infty(L^\circ L)$.

Remark 3.3. There is a one to one correspondence between pseudo-differential operators mapping $C^\infty(L^\circ L)$ into itself and pseudo-multipliers. Indeed, starting with a pseudo-multiplier defined by (3.4), we can associate to it a symbol via $m(x, \xi) := \tau_m(x, |\lambda_\xi|)$, and viceversa, starting with a pseudo-differential operator defined by (2.6), we can define for every λ_ξ, $\tau'_m(x, |\lambda_\xi|) := m(x, \xi)$, and after that we can interpolate $\{\tau'_m(x, |\lambda_\xi|)\}_{x \in M, \xi \in I}$, with a continuous function $\tau_m : M \times \mathbb{R} \to \mathbb{C}$, in such a way that
\[
\tau_m|_{\mathbb{R} \times \{\lambda_\xi\}_{\xi \in I}} = \{\tau'_m(x, |\lambda_\xi|)\}_{x \in M, \xi \in I} = \{m(x, \xi)\}_{x \in M, \xi \in I}.
\]

Remark 3.4. The approach in proving the L^p-estimates for this section comes from starting with a function $\tau_m : M \times \mathbb{R} \to \mathbb{C}$, satisfying the Hörmander condition
\[
\|\tau_m\|_{L^\infty(M)} = \sup_{r > 0, x \in M} r^{(s - \frac{d}{2p})}\|\langle \cdot \rangle^s \mathcal{F}[\tau_m(x, \cdot)\psi(r^{-1} \cdot)]\|_{L^2(\mathbb{R})} < \infty, \tag{3.5}
\]
where $Q_m \in \mathbb{R}$, and later we consider for such a function τ_m, the pseudo-differential operator T_m, with symbol $\tau_m|_{\mathbb{Z}^d \times \{ |\lambda| \} \in \xi \in \mathbb{I}} = \{ m(x, \xi) \}|_{(x, \xi) \in \mathbb{Z}^d \times \mathbb{I}}$ obtained from the restriction of $\tau_m : \mathbb{M} \times \mathbb{R} \rightarrow \mathbb{C}$, to the set $\mathbb{M} \times \{ |\lambda| \} \in \mathbb{I}$. Because there are infinite continuous extensions τ_m for m, the Hörmander Mihlin condition depends on the extension τ_m under consideration. In practice, however, we can start with a function $\tau : \mathbb{M} \times \mathbb{R} \rightarrow \mathbb{C}$ satisfying (3.5) (with τ instead of τ_m) and we can consider the pseudo-multiplier associated to τ which defines a pseudo-differential operator bounded on $L^p(\mathbb{M})$, (for s large enough). Important examples of pseudo-multipliers, are the spectral multipliers of $\sqrt{L^pL}$ which are defined by

$$
\tau(\sqrt{L^pL})f(x) := \sum_{\xi \in \mathbb{I}} u_\xi(x)\tau(|\lambda\xi|)\hat{f}(\xi),
$$

for all $f \in C^\infty_c(\mathbb{M})$. Of particular interest are the functions of positive elliptic operators E, $\tau(E)$ on a closed manifold, satisfying estimates of the type $|\partial^j_t \tau(t)| \lesssim (1 + t)^{-\rho|j|}$, $\rho > 0$, (see e.g. [12] and references therein). The prototype in this situation is the positive Laplacian $\Delta_{(M,g)}$ on a closed Riemannian manifold (M, g).

Remark 3.5. We summarise the assumptions of this section keeping in mind that if we know how the spectrum of $\sqrt{L^pL}$ behaves (in the form of (HMII)), if we can estimate polynomially the L^p-norms of the eigenfunctions, and we encode the symbol of a pseudo-differential operator A, m in terms of the function τ_m, we expect to provide information on the boundedness of A, on $L^p(\mathbb{M})$, (or from $L^\infty(\mathbb{M})$ to $\text{BMO}(\mathbb{M})$), by using conditions of Hörmander Mihlin type on τ_m. One reason for this is that $\mathbb{M} \times \text{Spectrum}(\sqrt{L^pL})$ is contained in the domain of τ_m.

3.2. L^p-boundedness of pseudo-multipliers of L

In this section we prove the Hörmander-Mihlin theorem for operators on a manifold \mathbb{M}, possibly with $\partial M \neq \emptyset$, allowing also the case $\partial M = \emptyset$.

Theorem 3.6. Let \mathbb{M} be a smooth manifold with boundary and let $A : C^\infty_c(\mathbb{M}) \rightarrow C^\infty_c(\mathbb{M})$ be the pseudo-multiplier defined in (3.4). Let us assume that τ_m satisfies the following Hörmander condition,

$$
\|\tau_m\|_{l.u., H^s} = \sup_{r > 0, x \in \mathbb{M}} r^{(s - Q_m)}\|(|\cdot|)^s\mathcal{F}[\tau_m(x, \cdot)|_{\tau_m(r^{-1}, \cdot)}]\|_{L^2(\mathbb{R})} < \infty,
$$

for $s > \max\{1/2, \gamma_p + Q + (Q_m/2)\}$. Then $A \equiv T_m : L^p(\mathbb{M}) \rightarrow L^p(\mathbb{M})$ extends to a bounded linear operator for all $1 < p < \infty$.

Proof. We choose a function $\psi_0 \in C^\infty_c(\mathbb{R})$, $\psi_0(\lambda) = 1$, if $|\lambda| \leq 1$, and $\psi(\lambda) = 0$, for $|\lambda| \geq 2$. For every $j \geq 1$, let us define $\psi_j(\lambda) = \psi_0(2^{-j+1}\lambda) - \psi_0(2^{-j-1}\lambda)$. Then we have

$$
\sum_{l \in \mathbb{N}_0} \psi_l(\lambda) = 1, \text{ for every } \lambda > 0.
$$

Let us consider $f \in C^\infty_c(\mathbb{M})$. We will decompose the function m as

$$
\tau_m(x, |\lambda\xi|) = \tau_m(x, |\lambda\xi|)(\psi_0(|\lambda\xi|) + \psi_1(|\lambda\xi|)) \sum_{k=2}^\infty m_k(x, \xi),
$$

(3.9)
where
\[m_k(x, \xi) := \tau_m(x, |\lambda \xi|) \cdot \psi_k(|\lambda \xi|). \]

Let us define the sequence of pseudo-differential operators \(T_{m_j}, j \in \mathbb{N} \), associated to every symbol \(m_j \), for \(j \geq 2 \), and by \(T_0 \) the operator with symbol

\[\sigma \equiv \tau_m(x, |\lambda \xi|)(\psi_0(|\lambda \xi|) + \psi_1(|\lambda \xi|)). \]

Then we want to show that the operator series

\[T_0 + S_m, \quad S_m := \sum_k T_{m_k}, \quad (3.10) \]

satisfies,

\[\|T_m\|_{\mathcal{B}(L^p(M))} \leq \|T_0\|_{\mathcal{B}(L^p(M))} + \sum_k \|T_{m_k}\|_{\mathcal{B}(L^p(M))}, \quad (3.11) \]

where the series in the right hand side converges. So, we want to estimate every norm \(\|T_{m_j}\|_{\mathcal{B}(L^p(M))} \). For this, we will use the fact that for \(f \in C_0^\infty(M) \),

\[\|T_{m_j}f\|_{L^p(M)} = \sup\{|(T_{m_j}f, g)|_{L^2(M)} : \|g\|_{L^{p'}}(M) = 1\}. \quad (3.12) \]

In fact, for \(f \) and \(g \) as above we have

\[
(T_{m_k}f, g)_{L^2(M)} = \int_M T_{m_k}f(x)g(x)dx
\]

\[
= \int_M \sum_{2^k \leq |\lambda \xi| < 2^{k+1}} m(x, \xi) \hat{f}(\xi)u_\xi(x)g(x)dx
\]

\[
= \int_M \int_M \sum_{2^k \leq |\lambda \xi| < 2^{k+1}} m(x, \xi) f(y)u_\xi(x)\bar{\psi}(y)g(x)dydx.
\]

Now, in order use that \(\tau_m \) satisfies the Hörmander condition, we will use the Euclidean Fourier transform. Indeed, for every \(x \in M \) let us denote the inverse Euclidean Fourier transform of the function

\[\tau_m(x, \cdot)\psi(2^{-k} \cdot) : \omega \mapsto \tau_m(x, \omega)\psi(2^{-k} \omega), \]

by \(\mathcal{F}^{-1}[\tau_m(x, \cdot)\psi(2^{-k} \cdot)]. \) So, for every \(\xi \in \mathbb{Z}, \omega = |\lambda \xi| \in \mathbb{R}, \) and we have

\[m_k(x, \xi) := \tau_m(x, |\lambda \xi|)\psi(2^{-k}|\lambda \xi|) \]

\[= \mathcal{F}^{-1}(\mathcal{F}[\tau_m(x, \cdot)\psi(2^{-k} \cdot)])(\xi) = \int_{\mathbb{R}} \mathcal{F}[\tau_m(x, \cdot)\psi(2^{-k} \cdot)](z)e^{2\pi i|\lambda \xi|z}dz. \]

Consequently,

\[
|\langle T_{m_k}f, g \rangle_{L^2(M)}| \\
\leq \sum_{2^k \leq |\lambda \xi| < 2^{k+1}} \sup_{x \in M} \int_{\mathbb{R}} |\mathcal{F}[\tau_m(x, \cdot)\psi(2^{-k} \cdot)](z)|dz \\
\times \|f\|_{L^p} \|g\|_{L^{p'}} \|u_\xi\|_{L^p} \|\psi\|_{L^{p'}} \\
\lesssim \sum_{2^k \leq |\lambda \xi| < 2^{k+1}} \sup_{x \in M} \int_{\mathbb{R}} |\mathcal{F}[\tau_m(x, \cdot)\psi(2^{-k} \cdot)](z)|dz
\]
Because following Marcinkiewicz type condition pseudo-differential operators (defined in (3.7)): Let \(L \) be a smooth manifold with boundary and let \(\tau_m \) satisfies the following Marcinkiewicz type condition

\[
\sup_{x \in \overline{M}} | \partial^\alpha_\tau \tau_m(x, \omega) | \leq C_{\alpha, \beta} (1 + |\omega|)^{-|\alpha|}, \quad (x, \omega) \in \overline{M} \times \mathbb{R},
\]

we get the inequality

\[
\sum_{2^k \leq |\lambda| < 2^{k+1}} \| \tau_m \|_{L^p(\mathbb{R})} \leq \sum_{2^k \leq |\lambda| < 2^{k+1}} \| \tau_m \|_{L^p(\mathbb{R})} \cdot 2^{-k(s-Q)} |\lambda|^{-Q}.
\]

So, we can estimate the operator norm of \(T_{m_k} \) by

\[
\| T_{m_k} \|_{\mathcal{B}(L^p)} \leq \sum_{2^k \leq |\lambda| < 2^{k+1}} \| \tau_m \|_{L^p(\mathbb{R})} \cdot 2^{-k(s-Q)} |\lambda|^{-Q}.
\]

Since

\[
\| T_0 f \|_{L^p(\overline{M})} \leq \| m(\cdot, 0) \|_{L^\infty(\overline{M})} \| f \|_{L^p(\overline{M})},
\]

we have the boundedness of \(T_0 \) on \(L^p \). It is clear that if we want to end the proof, we need to estimate \(I := \sum_{k \geq 0} \| T_{m_k} \|_{\mathcal{B}(L^p(\overline{M}))} \). Consequently, we obtain

\[
0 < I \leq \| T_0 \|_{\mathcal{B}(L^p)} + \sum_{k=1}^{\infty} 2^{-k(s-Q-\frac{Qm}{2})} \| \tau_m \|_{L^p(\mathbb{R})} < \infty,
\]

for \(s > Q + \frac{Qm}{2} + \gamma_p \). So, we have

\[
\| T_m \|_{\mathcal{B}(L^p)} \leq C(\| \tau_m \|_{L^p(\mathbb{R})} + \| m \|_{L^\infty}).
\]

The proof is complete. \(\square \)

As an application of the Hörmander-Mihlin theorem proved above, we will prove that the following Marcinkiewicz type condition also implies the \(L^p \) boundedness of pseudo-differential operators (defined in (1.9)).

Theorem 3.7. Let \(\overline{M} \) be a smooth manifold with boundary and let \(A : C_0^\infty(\overline{M}) \rightarrow C_0^\infty(\overline{M}) \) be the pseudo-multiplier defined in (3.4). Let us assume that \(\tau_m \) satisfies the following Marcinkiewicz type condition

\[
\sup_{x \in \overline{M}} | \partial^\alpha_\tau \tau_m(x, \omega) | \leq C_{\alpha, \beta} (1 + |\omega|)^{-|\alpha|}, \quad (x, \omega) \in \overline{M} \times \mathbb{R},
\]
for $|\alpha| \leq \rho$, where $\rho \in \mathbb{N}$, and $\rho > \max\{1/2, \gamma_p + Q + (1/2)\}$. Then $A \equiv T_m : L^p(M) \to L^p(M)$ extends to a bounded linear operator for all $1 < p < \infty$.

Proof. For the proof, we will use that the Sobolev space $H^s(\mathbb{R})$ defined by those functions g satisfying $\|g\|_{H^s(\mathbb{R})} := \|(z)^s(\mathcal{F} g)\|_{L^2(\mathbb{R})} < \infty$, has the equivalent norm

$$\|g\|_{H^s(\mathbb{R})} := \sum_{|\beta| \leq s} \|\partial^\beta g\|_{L^2(\mathbb{R})}, \quad (3.15)$$

when s is an integer (see, e.g. [16], p. 163). We will show that

$$\sup_{k > 0, x \in M} 2^{k(\rho - \frac{1}{2})} \|\tau_m(x, \cdot)\psi(2^{-k} \cdot)\|_{H^\rho} = \sup_{k > 0, x \in M} \|\tau_m(x, 2^k \cdot)\psi(\cdot)\|_{H^\rho} < \infty, \quad (3.16)$$

provided that ρ is an integer. From the estimate

$$\|\tau_m(x, 2^k \cdot)\psi(\cdot)\|_{H^\rho} \asymp \|\tau_m(x, 2^k \cdot)\psi(\cdot)\|_{H^\rho} = \sum_{|\beta| \leq \rho} \|\partial^\beta (\tau_m(x, 2^k \cdot)\psi(\cdot))\|_{L^2(\mathbb{R})}, \quad (3.17)$$

we will estimate the L^2-norms of the derivatives $\partial^\beta (\tau_m(x, 2^k \cdot)\psi(\cdot))(\xi)$. By the Leibniz rule we have

$$\partial^\beta (\tau_m(x, 2^k \xi)\psi(\xi)) = \sum_{|\alpha| \leq |\beta|} 2^{k|\alpha|}(\partial^\alpha \tau_m)(x, 2^k \xi)\partial^{\beta - \alpha} \psi(\xi).$$

So, we obtain

$$\|\partial^\beta (\tau_m(x, 2^k \cdot)\psi(\cdot))\|_{L^2} \leq \sum_{|\alpha| \leq |\beta|} C_\alpha \|\partial^{\beta - \alpha} \psi(\cdot)\|_{L^2}, \quad (3.18)$$

where we have used that (3.14) implies the estimate $|2^{k|\alpha|}(\partial^\alpha \tau_m)(x, 2^k \cdot)| \leq C_\alpha$, for k large enough. Now, (3.16) follows by summing both sides of (3.18) over $|\beta| \leq \rho$. Thus, if we use Theorem 3.6 with $Q_m/2 = 1/2$ and $s = \rho$, we finish the proof because the condition (3.14) implies that (3.7) holds true and consequently we obtain the boundedness of A on $L^p(M)$. \hfill \square

3.3. L^∞-BMO boundedness for pseudo-differential operators. Next, we will study the $L^\infty(\overline{M})$-BMO(\overline{M}) boundedness for pseudo-differential operators on compact manifolds with boundary. In this subsection assume that (M, g) is a geodesically complete Riemannian manifold. So, let us fix the geodesical geodesic distance $d(\cdot, \cdot)$ on M. Under the condition that (M, g) is geodesically complete we can assure that every point in the boundary ∂M can be connected with other points in M using a geodesic path. This allows us to define balls on the boundary using the geodesic distance $d(\cdot, \cdot)$ defined by the Riemannian metric g (see e.g. Pigola and Veronelli [29]).

The ball of radius $r > 0$, is defined as

$$B(x, r) = \{y \in \overline{M} : d(x, y) < r\}.$$

Then the BMO space on \overline{M}, $BMO(\overline{M})$, is the space of locally integrable functions f satisfying

$$\|f\|_{BMO(\overline{M})} := \sup_B \frac{1}{|B|} \int_B |f(x) - f_B| dx < \infty,$$

where $f_B := \frac{1}{|B|} \int_B f(x) dx$.
and B ranges over all balls $B(x_0, r)$, with $(x_0, r) \in \overline{M} \times (0, \infty)$.

Remark 3.8. If (\overline{M}, g) is a Riemannian metric and with the geodesic distance $d(\cdot, \cdot)$, (\overline{M}, d) is a complete metric space, then (\overline{M}, g) is geodesically complete (see e.g. Theorem A and Corollary B of Pigola and Veronelli [29]).

The Hardy space $H^1(\overline{M})$ will be defined via the atomic decomposition. Thus, $f \in H^1(\overline{M})$ if and only if f can be expressed as $f = \sum_{j=1}^{\infty} c_j a_j$, where $\{c_j\}_{j=1}^{\infty}$ is a sequence in $l^1(\mathbb{N})$, and every function a_j is an atom, i.e., a_j is supported in some ball $B = B_j$, $\int_{B_j} a_j(x) dx = 0$, and

$$
\|a_j\|_{L^\infty(G)} \leq \frac{1}{|B_j|}.
$$

The norm $\|f\|_{H^1(\overline{M})}$ is the infimum over all possible series $\sum_{j=1}^{\infty} |c_j|$. Furthermore, if dx satisfies the doubling property, the space $BMO(\overline{M})$ is the dual of $H^1(\overline{M})$, which can be deduced from the general work on complete metric spaces with the doubling property due to Carbonaro, Mauceri, and Meda [6].

(a). If $\phi \in BMO(\overline{M})$, then $\Phi : f \mapsto \int_{\overline{M}} f(x) \phi(x) dx$, admits a bounded extension on $H^1(\overline{M})$.

(b). Conversely, every continuous linear functional Φ on $H^1(\overline{M})$ arises as in (a) with a unique element $\phi \in BMO(\overline{M})$.

$$
\|f\|_{BMO(\overline{M})} = \sup_{\|g\|_{H^1} = 1} \left| \int_{\overline{M}} f(x) g(x) dx \right|, \quad \|g\|_{H^1} = \sup_{\|f\|_{BMO} = 1} \left| \int_{\overline{M}} f(x) g(x) dx \right|.
$$

So, the L^∞-BMO boundedness for pseudo-differential operators is considered as follows.

Theorem 3.9. Let \overline{M} be a geodesically complete Riemannian manifold with (possibly empty) boundary ∂M, and let $A : C^\infty_0(\overline{M}) \to C^\infty_0(\overline{M})$ be the pseudo-multiplier defined in (3.4). Let us assume that one of the following two conditions hold.

1. $\|\tau_m\|_{L^\infty(\overline{M})} = \sup_{r > 0, x \in \overline{M}} r^{(s-\frac{Q_m}{2})} \| \mathcal{F}[\tau_m(x, \cdot) \psi(\cdot r^{-1})] \|_{L^2(\mathbb{R})} < \infty$,

 for $s > \max\{1/2, (Q_m/2) + Q + \gamma_\infty\}$.

2. $\sup_{x \in \overline{M}} |\partial_{\omega}^\alpha \tau_m(x, \omega)| \leq C_{\alpha, \beta} (1 + |\omega|)^{-|\alpha|}$, $(x, \omega) \in \overline{M} \times \mathbb{R}$,

 for all $\alpha \in \mathbb{N}_0^n$, with $|\alpha| \leq \rho$, where $\rho \in \mathbb{N}$, and $\rho > \max\{1/2, (Q_m/2) + Q + \gamma_\infty\}$.

Then, $A \equiv T_m : L^\infty(\overline{M}) \to BMO(\overline{M})$ extends to a bounded operator.

Proof. Let us assume that τ_m satisfies (3.20). This is the relevant assumption, because in Theorem 3.7, we have proved that a function satisfying (3.21) also satisfies (3.20). Let us consider $f \in L^\infty(\overline{M})$. Similar as in Theorem 3.6, we choose a function $\psi_0 \in$
Consequently, for some Ω where we have denoted $C_{0}^{\infty}(\mathbb{R})$, $\psi_{0}(\lambda) = 1$, if $|\lambda| \leq 1$, and $\psi(\lambda) = 0$, for $|\lambda| \geq 2$. For every $j \geq 1$, let us define $\psi_{j}(\lambda) = \psi_{0}(2^{-j}\lambda) - \psi_{0}(2^{-j+1}\lambda)$. Then we have
\[
\sum_{l \in \mathbb{N}_{0}} \psi_{l}(\lambda) = 1, \quad \text{for every } \lambda > 0. \tag{3.22}
\]
We will decompose the symbol τ_{m} as
\[
\tau_{m}(x, |\lambda\xi|) = \tau_{m}(x, |\lambda\xi|)(\psi_{0}(|\lambda\xi|) + \psi_{1}(|\lambda\xi|)) + \sum_{k=2}^{\infty} m_{k}(x, \xi) \tag{3.23}
\]
where we have denoted
\[
m_{k}(x, \xi) := \tau_{m}(x, |\lambda\xi|) \cdot \psi_{k}(|\lambda\xi|).
\]
Let us define the sequence of pseudo-differential operators $T_{m_{j}}$, $j \in \mathbb{N}$, associated to every symbol m_{j}, for $j \geq 2$, and by T_{0} the operator with symbol
\[
\sigma \equiv \tau_{m}(x, |\lambda\xi|)(\psi_{0}(|\lambda\xi|) + \psi_{1}(|\lambda\xi|)).
\]
Because, $f \in L^{\infty}(\mathbb{M})$ and for every j, $T_{m_{j}}$ has symbol with compact support in the ξ-variable, $T_{m_{j}} : L^{\infty}(\mathbb{M}) \to L^{\infty}(\mathbb{M})$ is bounded, and consequently $T_{m_{j}}f \in L^{\infty}(\mathbb{M}) \subset BMO(\mathbb{M})$. Now, because $T_{m_{j}}f \in BMO(\mathbb{M})$, we will estimate its BMO-norm $\|T_{m_{j}}f\|_{BMO(\mathbb{M})}$. By using that every symbol m_{k} has variable ξ supported in $\{\xi \in \mathcal{I} : 2^{k-1} \leq |\lambda\xi| \leq 2^{k+1}\}$, we have
\[
T_{m_{k}}f(x) = \sum_{2^{k-1} \leq |\lambda\xi| \leq 2^{k+1}} m_{k}(x, \xi)u_{\xi}(x)\hat{f}(\xi), \quad x \in \mathbb{M}.
\]
Consequently,
\[
\|T_{m_{k}}f\|_{BMO(\mathbb{M})} \leq \sum_{2^{k-1} \leq |\lambda\xi| \leq 2^{k+1}} \|m_{k}(\cdot, \xi)u_{\xi}(\cdot)\|_{BMO(\mathbb{M})}\hat{f}(\xi). \tag{3.24}
\]
From (3.19) and by using the Euclidean Fourier inversion formula applied to $\tau_{m_{k}}(x, \cdot) := \tau_{m}(x, \cdot) \cdot \psi_{k}(\cdot)$ we have,
\[
\|m_{k}(\cdot, \xi)u_{\xi}(\cdot)\|_{BMO(\mathbb{M})} =\sup_{\Omega_{0} \in H^{1}(\mathbb{M})} \left| \int_{\mathbb{M}} m_{k}(x, \xi)u_{\xi}(x)\Omega_{0}(x)dx \right|
\]
\[
= \left| \int_{\mathbb{M}} \int_{\mathbb{R}} e^{i2\pi|\lambda\xi|z} \bar{\tau}_{m_{k}}(x, z)dz u_{\xi}(x)\Omega(x)dx \right|
\]
\[
\leq \sup_{x \in \mathbb{M}} \int_{\mathbb{R}} |\bar{\tau}_{m_{k}}(x, z)||dz \times \int_{\mathbb{M}} |u_{\xi}(x)||\Omega(x)|dx,
\]
for some $\Omega \in H^{1}(\mathbb{M})$, such that $\|\Omega\|_{H^{1}} = 1$. Let us note that, for every $\varepsilon > 0$, there exists a decomposition of Ω given by
\[
\Omega = \sum_{j=1}^{\infty} c_{j}a_{j},
\]
where \(\{c_j\}_{j=1}^{\infty} \) is a sequence in \(\ell^1(\mathbb{N}) \), and every function \(a_j \) is an atom, i.e., \(a_j \) is supported in some ball \(B = B_j \), satisfying the cancellation property: \(\int_{B_j} a_j(x) \, dx = 0 \), with

\[
\|a_j\|_{L^\infty(B)} \leq \frac{1}{|B_j|},
\]
and

\[
\|\Omega\|_{H^1(\mathcal{M})} = 1 \leq \sum_{j=1}^{\infty} |c_j| < 1 + \varepsilon.
\]

Observe that

\[
\int_{\mathcal{M}} |u_{\xi}(x)| |\Omega(x)| \, dx \leq \sum_{j=1}^{\infty} |c_j| \|u_{\xi}\|_{L^\infty(\mathcal{M})} \int_{\mathcal{M}} |a_j(x)| \, dx = \sum_{j=1}^{\infty} |c_j| \|u_{\xi}\|_{L^\infty(\mathcal{M})} \int_{B_j} |a_j(x)| \, dx
\]

\[
\leq \sum_{j=1}^{\infty} |c_j| \|u_{\xi}\|_{L^\infty(\mathcal{M})} \|a_j\|_{L^\infty(\mathcal{M})} |B_j|
\]

\[
\leq (1 + \varepsilon) \|u_{\xi}\|_{L^\infty(\mathcal{M})}.
\]

By the Cauchy-Schwarz inequality, and the condition \(s > 1/2 \), we have

\[
\int_{\mathbb{R}} |\hat{\tau}_{mk}(x, z)| \, dz \leq \left(\int_{\mathbb{R}} (z)^{2s} |\hat{\tau}_{mk}(x, z)|^2 \, dz \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}} (z)^{-2s} \, dz \right)^{\frac{1}{2}}. \tag{3.25}
\]

Consequently, we claim that

\[
\int_{\mathbb{R}} |\hat{\tau}_{mk}(x, z)| \, dz \lesssim \|\tau_m\|_{l.u., \mathcal{H}^s} \times 2^{-k(s - \frac{Q_m}{2})}. \tag{3.26}
\]

Indeed,

\[
\int_{\mathbb{R}} |\hat{\tau}_{mk}(x, z)| \, dz \lesssim \|\tau_{mk}(x, \cdot)\|_{\mathcal{H}^s(\mathbb{R})} = \|\tau_{m}(\cdot) \psi(2^{-k} \cdot)\|_{\mathcal{H}^s(\mathbb{R})}
\]

\[
\lesssim \|\tau_m\|_{l.u., \mathcal{H}^s} \times 2^{-k(s - \frac{Q_m}{2})}.
\]

So, we obtain

\[
\|m_k(\cdot, \xi) u_{\xi}(\cdot)\|_{BMO(\mathcal{M})} \leq \|\tau_{m}\|_{l.u., \mathcal{H}^s} \times 2^{-k(s - \frac{Q_m}{2})} \times \int_{\mathcal{M}} |u_{\xi}(x)| |\Omega(x)| \, dx
\]

\[
\leq \|\tau_{m}\|_{l.u., \mathcal{H}^s} \times 2^{-k(s - \frac{Q_m}{2})} (1 + \varepsilon) \|u_{\xi}\|_{L^\infty(\mathcal{M})}.
\]

Thus, we can write

\[
\|T_{mk} f\|_{BMO(\mathcal{M})} \leq \sum_{2^{k-1} \leq |\lambda| \leq 2^{k+1}} \|\tau_{m}\|_{l.u., \mathcal{H}^s} 2^{-k(s - \frac{Q_m}{2})} \|u_{\xi}\|_{L^\infty(\mathcal{M})} |\hat{f}(\xi)|
\]

\[
\leq \sum_{2^{k-1} \leq |\lambda| \leq 2^{k+1}} \|\tau_{m}\|_{l.u., \mathcal{H}^s} 2^{-k(s - \frac{Q_m}{2})} \|u_{\xi}\|_{L^\infty(\mathcal{M})} \|u_{\xi}\|_{L^1} \|f\|_{L^\infty}.
\]
Thus, the analysis above implies the following estimate for the operator norm of T_{m_k}, for all $k \geq 2$,

$$
\|T_{m_k}\|_{\mathcal{B}(L^\infty(M), \text{BMO}(M))} \lesssim \sum_{2k-1 \leq |\lambda| \leq 2k+1} \|\tau_m\|_{l.u. H^s} 2^{-k(s-\frac{Q_m}{2})} \|u_\xi\|_{L^\infty(M)} \|u_\xi\|_{L^1(M)}
$$

$$
\lesssim \sum_{2k-1 \leq |\lambda| \leq 2k+1} 2^{k\gamma_\infty} \times \|\tau_m\|_{l.u. H^s} \times 2^{-k(s-\frac{Q_m}{2})}
$$

$$
\approx 2^{kQ} \times 2^{k\gamma_\infty} \times \|\tau_m\|_{l.u. H^s} \times 2^{-k(s-\frac{Q_m}{2})}.
$$

Now, by using that T_0 is an operator whose symbol has compact support in the ξ-variables, we conclude that T_0 is bounded from $L^\infty(M)$ to $\text{BMO}(M)$ and

$$
\|T_0\|_{\mathcal{B}(L^\infty(M), \text{BMO}(M))} \leq C \|m\|_{L^\infty}.
$$

This analysis, allows us to estimate, the operator norm of T_m as follows,

$$
\|T_m\|_{\mathcal{B}(L^\infty(M), \text{BMO}(M))} \leq \|T_0\|_{\mathcal{B}(L^\infty(M), \text{BMO}(M))} + \sum_{k} \|T_{m_k}\|_{\mathcal{B}(L^\infty(M), \text{BMO}(M))}
$$

$$
\lesssim \|m\|_{L^\infty} + \sum_{k=1}^{\infty} 2^{-k(s-Q-\frac{Q_m}{2})-\gamma_\infty} \|\tau_m\|_{l.u. H^s}
$$

$$
\leq C(\|m\|_{L^\infty} + \|\tau_m\|_{l.u. H^s}) < \infty,
$$

provided that $s > (Q_m/2) + Q + \gamma_\infty$. So, we have proved the L^∞-BMO boundedness of T_m. \qed

Now, observe that in view of the duality $(H^1)' = \text{BMO}$, we can use the duality argument to deduce the following estimate for L-Fourier multipliers.

Corollary 3.10. Let \overline{M} be a geodesically complete Riemannian manifold with (possibly empty) boundary ∂M, and let $A : C^\infty_0(\overline{M}) \to C^\infty_0(\overline{M})$ be an L-Fourier multiplier. Let us assume that one of the following two conditions hold.

1. $\|\tau_m\|_{l.u. H^s} = \sup_{r > 0} r^{s-\frac{Q_m}{2}} \|\langle \cdot \rangle^s \mathcal{F}[\tau_m(\cdot)\psi(r^{-1} \cdot)]\|_{L^2(\mathbb{R})} < \infty$, \hspace{1cm} (3.27)

 for $s > \max\{1/2, \gamma_\infty + Q + (Q_m/2)\}$.

2. $|\partial_\omega^\alpha \tau_m(\omega)| \leq C_{\alpha, \beta}(1 + |\omega|)^{-|\alpha|}$, $\omega \in \mathbb{R}$, \hspace{1cm} (3.28)

 for all $\alpha \in \mathbb{N}_0^n$, with $|\alpha| \leq \rho$, where $\rho \in \mathbb{N}$, and $\rho > \max\{1/2, (Q_m/2) + Q + \gamma_\infty\}$.

Then, A admits a bounded extension from $L^\infty(\overline{M})$ into $\text{BMO}(\overline{M})$ and from the Hardy space $H^1(\overline{M})$ to $L^1(\overline{M})$.

4. L^p-L^q BOUNDEDNESS OF PSEUDO-DIFFERENTIAL OPERATORS FOR $1 < p \leq 2 \leq q < \infty$

This section is devoted to the study of L^p-L^q boundedness of the pseudo-differential operators and Fourier multipliers on manifolds \mathcal{M}. To accomplish this aim we will first prove some inequalities, namely, Paley inequality and Hausdorff-Young-Paley inequality in our setting which eventually yield us the boundedness results. Before stating our main results of this section we recall the definition of relevant L^p-spaces on the discrete set \mathcal{I} from [30].

We describe the p-Lebesgue versions of the spaces of Fourier coefficients. These spaces can be considered as the extension of the usual ℓ^p spaces on the discrete set \mathcal{I} adapted to the fact that we are dealing with biorthogonal systems.

Thus, we introduce the spaces $l^p_L = l^p(L)$ as the spaces of all $a \in S'(\mathcal{I})$ such that

$$
\|a\|_{l^p(L)} := \left(\sum_{\xi \in \mathcal{I}} |a(\xi)|^p |u_\xi|^{2-p} \right)^{1/p} < \infty, \quad \text{for } 1 \leq p \leq 2,
$$

(4.1)

and

$$
\|a\|_{l^p(L)} := \left(\sum_{\xi \in \mathcal{I}} |a(\xi)|^p \|v_\xi\|^{2-p}_{L^\infty(\mathcal{M})} \right)^{1/p} < \infty, \quad \text{for } 2 \leq p < \infty,
$$

(4.2)

and, for $p = \infty$,

$$
\|a\|_{l^\infty(L)} := \sup_{\xi \in \mathcal{I}} \left(|a(\xi)| \cdot \|v_\xi\|^{-1}_{L^\infty(\mathcal{M})} \right) < \infty.
$$

We note that in the case of $p = 2$, we have already defined the space $l^2(L)$ by the norm (2.5). There is no problem with this since the norms (4.1)-(4.2) with $p = 2$ are equivalent to that in (2.5).

Analogously, we also introduce spaces $l^p_\ast = l^p(L^\ast)$ as the spaces of all $b \in S'(\mathcal{I})$ such that the following norms are finite:

$$
\|b\|_{l^p(L^\ast)} = \left(\sum_{\xi \in \mathcal{I}} |b(\xi)|^p \|v_\xi\|^{2-p}_{L^\infty(\Omega)} \right)^{1/p}, \quad \text{for } 1 \leq p \leq 2,
$$

$$
\|b\|_{l^p(L^\ast)} = \left(\sum_{\xi \in \mathcal{I}} |b(\xi)|^p \|u_\xi\|^{2-p}_{L^\infty(\Omega)} \right)^{1/p}, \quad \text{for } 2 \leq p < \infty,
$$

$$
\|b\|_{l^\infty(L^\ast)} = \sup_{\xi \in \mathcal{I}} \left(|b(\xi)| \cdot \|u_\xi\|^{-1}_{L^\infty(\Omega)} \right).
$$

For more discussion on this we refer to [30]. The following Hausdorff-Young inequality is proved by the last two authors in [30].

Theorem 4.1 (Hausdorff-Young inequality). Let $1 \leq p \leq 2$ and $\frac{1}{p} + \frac{1}{p'} = 1$. There is a constant $C_p \geq 1$ such that for all $f \in L^p(\mathcal{M})$ we have

$$
\left(\sum_{\xi \in \mathcal{I}} |\mathcal{F}_L(f)(\xi)|^{p'} \|v_\xi\|^{2-p'}_{L^\infty(\mathcal{M})} \right)^{\frac{1}{p'}} = \|\hat{f}\|_{l^{p'}(L)} \leq C_p \|f\|_{L^p(\mathcal{M})}.
$$
Similarly, we also have

\[
\left(\sum_{\xi \in I} |\mathcal{F}_{L^p}(f)(\xi)| |u_\xi|^{2-p'} L_\infty(M) \right)^{\frac{1}{p'}} = \|\hat{f}\|_{L^p(L^p)} \leq C_p \|f\|_{L^p(M)}.
\]

In this direction, we present the following Paley-type inequality.

4.1. Hausdorff-Young-Paley inequality. In [25], Lars Hörmander established a Paley-type inequality for the Fourier transform on \(\mathbb{R}^n \). The following inequality is an analogue of this inequality for the \(L^p \)-Fourier transform on manifolds. This inequality was established by the third author and his collaborators for compact homogeneous spaces and for locally compact unimodular groups [1, 2].

Theorem 4.2 (\(L^p \)-Paley-type inequality). Let \(1 < p \leq 2 \) and

\[
\sup_{\xi \in I} \left(\frac{\|u_\xi\|_{L^\infty(M)}}{\|u_\xi\|_{L^\infty(M)}} \right) < \infty.
\]

If \(\varphi(\xi) \) is a positive sequence in \(I \) such that

\[
M_\varphi := \sup_{t > 0} \sum_{\xi \in I} t \|u_\xi\|_{L^\infty(M)}^2 < \infty,
\]

then for every \(f \in L^p(M) \) we have

\[
\left(\sum_{\xi \in I} |\mathcal{F}_{L}(f)(\xi)| |u_\xi|^{2-p'} L_\infty(M) \varphi(\xi)^{2-p} \right)^{\frac{1}{p'}} \lesssim M_\varphi^{\frac{2-p}{p}} \|f\|_{L^p(M)}.
\]

Proof. Let \(\nu \) be the measure on \(I \) defined by \(\nu(\xi) := \varphi^2(\xi) \|u_\xi\|_{L^\infty(M)}^2 \) for \(\xi \in I \). Now, we define weighted spaces \(L^p(I, \nu) \), \(1 \leq p \leq 2 \), as the spaces of complex (or real) sequences \(a = \{a_\xi\}_{\xi \in I} \) such that

\[
\|a\|_{L^p(I, \nu)} := \left(\sum_{\xi \in I} |a_\xi|^p \varphi^2(\xi) \|u_\xi\|_{L^\infty(M)}^2 \right)^{\frac{1}{p}} < \infty.
\]

We show that the sublinear operator \(A : L^p(M) \to L^p(I, \nu) \) defined by

\[
Af := \left\{ \frac{|\mathcal{F}_{L}(f)(\xi)|}{\|u_\xi\|_{L^\infty(M)} \varphi(\xi)} \right\}_{\xi \in I}
\]

is well-defined and bounded from \(L^p(M) \) to \(L^p(I, \nu) \) for \(1 < p \leq 2 \). In other words, we claim that we have the estimate

\[
\|Af\|_{L^p(I, \nu)} = \left(\sum_{\xi \in I} \left(\frac{|\mathcal{F}_{L}(f)(\xi)|}{\|u_\xi\|_{L^\infty(M)} \varphi(\xi)} \right)^p \varphi^2(\xi) \|u_\xi\|_{L^\infty(M)}^2 \right)^{\frac{1}{p}} \lesssim M_\varphi^{\frac{2-p}{p}} \|f\|_{L^p(M)},
\]

(4.5)
which would give us (4.3) and where we set

\[M_\varphi := \sup_{t > 0} t \sum_{\xi \in \mathcal{I}, \varphi(\xi) \geq t} \| u_\xi \|_{L^2(M)}^2 . \]

To prove this we will show that \(A \) is of weak-type \((2, 2)\) and of weak-type \((1, 1)\). More precisely, with the distribution function,

\[\nu_I(y; Af) = \sum_{\xi \in \mathcal{I}, |Af(\xi)| \geq y} \| u_\xi \|_{L^2(M)}^2 \varphi^2(\xi) \]

we show that

\[\nu_I(y; Af) \leq \left(\frac{M_2 \| f \|_{L^2(M)}}{y} \right)^2 \]

with norm \(M_2 = 1 \), \hspace{1cm} (4.6)

\[\nu_I(y; Af) \leq \frac{M_1 \| f \|_{L^1(M)}}{y} \]

with norm \(M_1 = M_\varphi \). \hspace{1cm} (4.7)

Then (4.5) will follow by the Marcinkiewicz interpolation theorem. Now, to show (4.6), using Plancherel identity we get

\[y^2 \nu_I(y; Af) \leq \sup_{y > 0} y^2 \nu_I(y; Af) =: \| Af \|_{L^2(I, \nu)}^2 \leq \| Af \|_{L^2(M)}^2 \]

\[= \sum_{\xi \in \mathcal{I}} \left(\frac{|F_L(f)(\xi)|}{\varphi(\xi) \| u_\xi \|_{L^\infty(M)}} \right)^2 \varphi^2(\xi) \| u_\xi \|_{L^2(M)}^2 \]

\[= \sum_{\xi \in \mathcal{I}} |F_L(f)(\xi)|^2 = \| F_L(f) \|_{L^2(M)} = \| f \|_{L^2(M)}^2 . \]

Thus, \(A \) is type \((2, 2)\) with norm \(M_2 \leq 1 \). Further, we show that \(A \) is of weak type \((1, 1)\) with norm \(M_1 = M_\varphi \); more precisely, we show that

\[\nu_I \{ \xi \in I : \frac{|F_L(f)(\xi)|}{\varphi(\xi) \| u_\xi \|_{L^\infty(M)}} > y \} \lesssim M_\varphi \frac{\| f \|_{L^1(M)}}{y} . \] \hspace{1cm} (4.8)

Here, the left hand side is the weighted sum \(\sum \varphi^2(\xi) \| u_\xi \|_{L^\infty(M)}^2 \) taken over those \(\xi \in I \) such that \(\frac{|F_L(f)(\xi)|}{\varphi(\xi) \| u_\xi \|_{L^\infty(M)}} > y \). From the definition of the Fourier transform it follows that

\[|F_L(f)(\xi)| \leq \| v_\xi \|_{L^\infty(M)} \| f \|_{L^1(M)} . \]

Therefore, we get

\[y \leq \frac{|F_L(f)(\xi)|}{\varphi(\xi) \| u_\xi \|_{L^\infty(M)}} \leq \frac{\| f \|_{L^1(M)}}{\varphi(\xi) \| u_\xi \|_{L^\infty(M)} \| v_\xi \|_{L^\infty(M)}^{-1}} . \]

Using this, we get

\[\left\{ \xi \in I : \frac{|F_L(f)(\xi)|}{\varphi(\xi) \| u_\xi \|_{L^\infty(M)}} > y \right\} \subset \left\{ \xi \in I : \frac{\| f \|_{L^1(M)}}{\varphi(\xi) \| u_\xi \|_{L^\infty(M)} \| v_\xi \|_{L^\infty(M)}^{-1}} > y \right\} . \]
for any \(y > 0 \). Consequently,

\[
\nu \left\{ \xi \in I : \frac{|F_L(f)(\xi)|}{\varphi(\xi) \| u_\xi \|_{L^\infty(M)} \| v_\xi \|_{L^\infty(M)}^{-1}} > y \right\} \leq \nu \left\{ \xi \in I : \frac{\| f \|_{L^1(M)}}{\varphi(\xi) \| u_\xi \|_{L^\infty(M)} \| v_\xi \|_{L^\infty(M)}^{-1}} > y \right\}.
\]

By setting \(w := \frac{\| f \|_{L^1(M)}}{y} \), we get

\[
\nu \left\{ \xi \in I : \frac{|F_L(f)(\xi)|}{\varphi(\xi) \| u_\xi \|_{L^\infty(M)} \| v_\xi \|_{L^\infty(M)}^{-1}} > y \right\} \leq \sum_{\xi \in I} \varphi(\xi) \| u_\xi \|_{L^\infty(M)} \| v_\xi \|_{L^\infty(M)}^{-1} \leq w \tag{4.9}
\]

We claim that

\[
\sum_{\xi \in I} \varphi(\xi) \| u_\xi \|_{L^\infty(M)}^2 \leq M \varphi w. \tag{4.10}
\]

In fact, we have

\[
\sum_{\xi \in I} \varphi(\xi) \| u_\xi \|_{L^\infty(M)}^2 \leq w
\]

\[
= \sum_{\xi \in I} \| u_\xi \|_{L^\infty(M)}^2 \int_0^{\varphi(\xi) \| u_\xi \|_{L^\infty(M)} \| v_\xi \|_{L^\infty(M)}^{-1} \leq w} d\tau.
\]

We can interchange sum and integration with the fact that \(c := \sup_{\xi \in I} \left(\| u_\xi \|_{L^\infty(M)} \| v_\xi \|_{L^\infty(M)} \right) < \infty \) to get

\[
\sum_{\xi \in I} \| u_\xi \|_{L^\infty(M)}^2 \int_0^{\varphi(\xi) \| u_\xi \|_{L^\infty(M)} \| v_\xi \|_{L^\infty(M)}^{-1} \leq w} d\tau \leq \int_0^{w^2 c^2} d\tau \sum_{\xi \in I} \| u_\xi \|_{L^\infty(M)}^2 \| v_\xi \|_{L^\infty(M)}^{-1} \| u_\xi \|_{L^\infty(M)} \| v_\xi \|_{L^\infty(M)}^{-1} \leq w
\]

Further, we make a substitution \(\tau = t^2 \), yielding

\[
\int_0^{w^2 c^2} d\tau \sum_{\xi \in I} \| u_\xi \|_{L^\infty(M)}^2 \| v_\xi \|_{L^\infty(M)}^{-1} \| u_\xi \|_{L^\infty(M)} \| v_\xi \|_{L^\infty(M)}^{-1} \leq w
\]
\[
2 \int_0^{\infty} t dt \sum_{t \leq \varphi(\xi) \leq w} \|u_\xi\|_{L^\infty(M)}^2 \sum_{t \leq \varphi(\xi)} \|u_\xi\|_{L^\infty(M)}^2 \leq 2 \int_0^{\infty} t dt \sum_{t \leq \varphi(\xi)} \|u_\xi\|_{L^\infty(M)}^2.
\]

Since
\[
t \sum_{t \leq \varphi(\xi)} \|u_\xi\|_{L^\infty(M)}^2 \leq \sup_{t > 0} t \sum_{t \leq \varphi(\xi)} \|u_\xi\|_{L^\infty(M)}^2 = M_\varphi
\]
is finite by assumption, we have
\[
2 \int_0^{\infty} t dt \sum_{t \leq \varphi(\xi)} \|u_\xi\|_{L^\infty(M)}^2 \lesssim M_\varphi w = \frac{M_\varphi \|f\|_{L^1(M)}}{y}.
\]
This proves (4.10). Therefore, we have proved inequalities (4.6) and (4.7). Then by using the Marcinkiewicz interpolation theorem with \(p_1 = 1, p_2 = 2 \) and \(\frac{1}{p} = 1 - \theta + \frac{\theta}{2} \), we now obtain
\[
\left(\sum_{\xi \in \mathcal{I}} \left(\frac{\|\mathcal{F}_{L}(f)(\xi)\|_{L^\infty(M)} \varphi(\xi)}{\|u_\xi\|_{L^\infty(M)} \varphi(\xi)} \right)^p \|u_\xi\|_{L^\infty(M)} \varphi(\xi)^2 \right)^{\frac{1}{p}}
= \|A_{f}\|_{L^{p}(\mathcal{I}, \nu)} \lesssim M_\varphi^{2-p} \|f\|_{L^p(M)},
\]
yielding (4.3).

Now, we state the Paley inequality associated with the \(L^* \)-Fourier transform. The proof is verbatim to the Paley inequality for \(L \)-Fourier transform above with the use \(L^* \)-Fourier transform and \(\nu \)-spaces.

Theorem 4.3 (\(L^* \)-Paley-type inequality). Let \(1 < p \leq 2 \) and
\[
\sup_{\xi \in \mathcal{I}} \left(\frac{\|u_\xi\|_{L^\infty(M)}}{\|v_\xi\|_{L^\infty(M)}} \right) < \infty.
\]
If \(\varphi(\xi) \) is a positive sequence in \(\mathcal{I} \) such that
\[
M_\varphi := \sup_{t > 0} t \sum_{t \leq \varphi(\xi)} \|v_\xi\|_{L^\infty(M)}^2 < \infty,
\]
then for every \(f \in L^p(M) \) we have
\[
\left(\sum_{\xi \in \mathcal{I}} |\mathcal{F}_{L^*}(f)(\xi)|^p \|v_\xi\|_{L^\infty(M)}^{2-p} \varphi(\xi)^{2-p} \right)^{\frac{1}{p}} \lesssim M_\varphi^{2-p} \|f\|_{L^p(M)}. \tag{4.11}
\]

The following theorem [5] is useful to obtain one of our crucial results.
Theorem 4.4. Let \(d\mu_0(x) = \omega_0(x) d\mu(x) \), \(d\mu_1(x) = \omega_1(x) d\mu(x) \), and write \(L^p(\omega) = L^p(\omega_0) \) for the weight \(\omega \). Suppose that \(0 < p_0, p_1 < \infty \). Then

\[
(L^{p_0}(\omega_0), L^{p_1}(\omega_1))_{\theta,p} = L^p(\omega),
\]

where \(0 < \theta < 1, \frac{1}{\theta} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \) and \(\omega = \omega_0^{\frac{p(1-\theta)}{\theta p_0}} \omega_1^{\frac{\theta}{p_1}} \).

The following corollary is immediate.

Corollary 4.5. Let \(d\mu_0(x) = \omega_0(x) d\mu(x) \), \(d\mu_1(x) = \omega_1(x) d\mu(x) \). Suppose that \(0 < p_0, p_1 < \infty \). If a continuous linear operator \(A \) admits bounded extensions, \(A : L^p(Y, \mu) \to L^{p_0}(\omega_0) \) and \(A : L^p(Y, \mu) \to L^{p_1}(\omega_1) \), then there exists a bounded extension \(A : L^p(Y, \mu) \to L^b(\omega) \) of \(A \), where \(0 < \theta < 1, \frac{1}{\theta} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \) and \(\omega = \omega_0^{\frac{p(1-\theta)}{\theta p_0}} \omega_1^{\frac{\theta}{p_1}} \).

Using the above corollary we now present Hausdorff-Young-Paley inequality.

Theorem 4.6 (\(L \)-Hausdorff-Young-Paley inequality). Let \(1 < p \leq 2 \), and let \(1 < p \leq b \leq p' \leq \infty \), where \(p' = \frac{p}{p-1} \) and

\[
\sup_{\xi \in \mathcal{I}} \left(\frac{\|v_\xi\|_{L^\infty(M)}}{\|u_\xi\|_{L^\infty(M)}} \right) < \infty.
\]

If \(\varphi(\xi) \) is a positive sequence in \(\mathcal{I} \) such that

\[
M_\varphi := \sup_{t > 0} t \sum_{\xi \in \mathcal{I}} \|u_\xi\|_{L^\infty(M)}^2
\]

is finite, then for every \(f \in L^p(M) \) we have

\[
\left(\sum_{\xi \in \mathcal{I}} \left(|F_L f(\xi)| \varphi(\xi)^{\frac{1}{b'}} \right)^b \|u_\xi\|_{L^\infty(M)}^\frac{1}{b} \|v_\xi\|_{L^\infty(M)}^\frac{1}{b} \right)^\frac{1}{b} \leq_p M_\varphi \frac{1}{p} \|f\|_{L^p(M)}. \tag{4.12}
\]

Proof. From Theorem 4.2, the operator defined by

\[
A f(\xi) := \left\{ \frac{F_L f(\xi)}{\|u_\xi\|_{L^\infty(M)}} \right\}_{\xi \in \mathcal{I}},
\]

is bounded from \(L^p(M) \) to \(L^p(\mathcal{I}, \omega_0) \), where \(\omega_0 = \|u_\xi\|_{L^\infty(M)}^2 \varphi(\xi)^{2-p} \). From Theorem 4.1, we deduce that \(A : L^p(M) \to L^p(\mathcal{I}, \omega_1) \) with \(\omega_1(\xi) = \|u_\xi\|_{L^\infty(M)}^p \|v_\xi\|_{L^\infty(M)}^{2-p} \), admits a bounded extension. By using the real interpolation we will prove that \(A : L^p(M) \to L^b(\mathcal{I}, \omega) \), \(p \leq b \leq p' \), is bounded, where the space \(L^p(\mathcal{I}, \omega) \) is defined by the norm

\[
\|\sigma\|_{L^p(\mathcal{I}, \omega)} := \left(\sum_{\xi \in \mathcal{I}} |\sigma(\xi)|^p w(\xi) \right)^\frac{1}{p}
\]

and \(\omega(\xi) \) is positive sequence over \(\mathcal{I} \) to be determined. To compute \(\omega \), we can use Corollary 4.5, by fixing \(\theta \in (0,1) \) such that \(\frac{1}{\theta} = \frac{1-\theta}{p} + \frac{\theta}{p'} \). In this case \(\theta = \frac{p-b}{b(p-2)} \), and

\[
\omega = \omega_0^{\frac{p(1-\theta)}{\theta p_0}} \omega_1^{\frac{\theta}{p_1}} = \varphi(\xi)^{1-\frac{1}{p}} \|u_\xi\|_{L^\infty(M)}^{(1-\frac{1}{b})} \|v_\xi\|_{L^\infty(M)}^{(1-\frac{1}{b})}. \tag{4.13}
\]
Thus we finish the proof. □

Analogously, by interpolating the Hausdorff-Young inequality for L^r-Fourier transform and L^r-Paley type inequality (Theorem 4.3) we obtain the following L^r-version of Hausdorff-Young-Paley inequality.

Theorem 4.7 (L^r-Hausdorff-Young-Paley inequality). Let $1 < p \leq 2$, and let $1 < p \leq b \leq p' \leq \infty$, where $p' = \frac{p}{p-1}$ and

$$\sup_{\xi \in \mathcal{I}} \left(\frac{\| u_\xi \|_{L^\infty(M)}}{\| v_\xi \|_{L^\infty(M)}} \right) < \infty.$$

If $\varphi(\xi)$ is a positive sequence in \mathcal{I} such that

$$M_\varphi := \sup_{t > 0} \sum_{t \leq \varphi(\xi)} \| v_\xi \|_{L^\infty(M)}$$

is finite, then for every $f \in L^p(M)$ we have

$$\left(\sum_{\xi \in \mathcal{I}} \left(|F_{L^r} f(\xi)| \varphi(\xi)^{\frac{1}{b} - \frac{1}{p'}} \right)^b \| v_\xi \|_{L^\infty(M)} \| u_\xi \|_{L^\infty(M)} \right)^{\frac{1}{b}} \lesssim_p M_\varphi^{\frac{1}{b} - \frac{1}{p'}} \| f \|_{L^p(M)}. \quad (4.14)$$

4.2. L^p-boundedness

In this subsection we will prove the L^p-boundedness of Fourier multipliers related of model operator L on manifold M. This was proved for the torus in [28] using a different method.

Theorem 4.8. Let $1 < p \leq 2 \leq q < \infty$ and assume that

$$\sup_{\xi \in \mathcal{I}} \left(\frac{\| v_\xi \|_{L^\infty(M)}}{\| u_\xi \|_{L^\infty(M)}} \right) < \infty \quad \text{and} \quad \sup_{\xi \in \mathcal{I}} \left(\frac{\| u_\xi \|_{L^\infty(M)}}{\| v_\xi \|_{L^\infty(M)}} \right) < \infty. \quad (4.15)$$

Suppose that $A : C^\infty_c(M) \to C^\infty_c(M)$ is a L-Fourier multiplier with L-symbol $\sigma_{A,L}$ on M, that is, A satisfies

$$F_L(Af)(\xi) = \sigma_{A,L}(\xi) F_L f(\xi), \quad \text{for all } \xi \in \mathcal{I},$$

where $\sigma_{A,L} : \mathcal{I} \to \mathbb{C}$ is a function. Then we have

$$\| A \|_{\mathcal{B}(L^p(M), L^q(M))} \lesssim \sup_{s > 0} \left(\sum_{\xi \in \mathcal{I}} \max \{ \| u_\xi \|_{L^\infty(M)}^2, \| v_\xi \|_{L^\infty(M)}^2 \} \right)^{\frac{1}{2}} \left(\sum_{|\sigma_{A,L}(\xi)| \geq s} \max \{ \| u_\xi \|_{L^\infty(M)}^2, \| v_\xi \|_{L^\infty(M)}^2 \} \right)^{\frac{1}{2}}.$$

Before starting the proof we would like to notice here that for $p \leq q'$ we only need the first inequality in (4.15) above.

Proof. Let us first assume that $p \leq q'$, where $\frac{1}{q} + \frac{1}{q'} = 1$. Since $q' \leq 2$, the Hausdorff-Young inequality gives that

$$\| Af \|_{L^q(M)} \lesssim \| F_L(Af) \|_{L^{q'}(L)} = \| \sigma_{A,L} F_L(f) \|_{L^{q'}(L)}$$

$$= \left(\sum_{\xi \in \mathcal{I}} |\sigma_{A,L}(\xi)|^{q'} |F_L(f)(\xi)|^{q'} \| u_\xi \|_{L^\infty(M)}^{2-q'q} \right)^{\frac{1}{q'}}. \quad (4.16)$$
Now, we are in a position to apply Theorem 4.6. Set \(\frac{1}{p} - \frac{1}{q} = \frac{1}{r} \). By applying Theorem 4.6 in (4.16) by taking \(\varphi(\xi) := \left(|\sigma_{A,L}(\xi)| \| u_\xi \|_{L^\infty(\mathcal{M})}^{\frac{1}{q}} \| v_\xi \|_{L^\infty(\mathcal{M})}^{\frac{1}{q'}} \right) \) with \(b = q' \), we get

\[
\| A f \|_{L^r(\mathcal{M})} \lesssim \| \sigma_{A,L} F_L(f) \|_{L^{r'}(\mathcal{M})} \]

\[
= \left(\sum_{\xi \in \mathcal{I}} |\sigma_{A,L}(\xi)|^{q'} |F_L(f)(\xi)|^{q'} \| u_\xi \|_{L^\infty(\mathcal{M})}^{2-q'} \right)^{\frac{1}{q'}}
\]

\[
= \left(\sum_{\xi \in \mathcal{I}} \left(|F_L f(\xi)| \varphi(\xi) \right)^{q'} \| u_\xi \|_{L^\infty(\mathcal{M})}^{1-\frac{q'}{r'}} \| v_\xi \|_{L^\infty(\mathcal{M})}^{\frac{1}{r'}} \right)^{\frac{1}{q'}}
\]

\[
\lesssim \left(\sup_{s > 0} s \sum_{\xi \in \mathcal{I}} \| u_\xi \|_{L^\infty(\mathcal{M})}^{\frac{2}{r'}} \right)^{\frac{1}{q'}} \| f \|_{L^p(\mathcal{M})},
\]

(4.12)

for all \(f \in L^p(\mathcal{M}) \), in view of \(\frac{1}{p} - \frac{1}{q} = \frac{1}{q'} - \frac{1}{p'} = \frac{1}{r'} \). Thus, we obtain

\[
\| A \|_{\mathcal{B}(L^p(\mathcal{M}), L^q(\mathcal{M}))} \lesssim \left(\sup_{s > 0} s \sum_{\xi \in \mathcal{I}} \| u_\xi \|_{L^\infty(\mathcal{M})}^{\frac{2}{r'}} \right)^{\frac{1}{q'}}
\]

Now, using the condition (4.15) we deduce that \(\| u_\xi \|_{L^\infty(\mathcal{M})} \| v_\xi \|_{L^\infty(\mathcal{M})}^{-1} \| v_\xi \|_{L^\infty(\mathcal{M})}^{\frac{1}{q'}} \lesssim 1 \) and so

\[
\| u_\xi \|_{L^\infty(\mathcal{M})} \| v_\xi \|_{L^\infty(\mathcal{M})}^{\frac{1}{q'}} \| v_\xi \|_{L^\infty(\mathcal{M})}^{\frac{1}{q'}} \lesssim 1.
\]

Therefore, we get

\[
\| A \|_{\mathcal{B}(L^p(\mathcal{M}), L^q(\mathcal{M}))} \lesssim \left(\sup_{s > 0} s \sum_{\xi \in \mathcal{I}} \| u_\xi \|_{L^\infty(\mathcal{M})}^{\frac{2}{r'}} \right)^{\frac{1}{q'}} = \left(\sup_{s > 0} s^{\frac{1}{q'}} \sum_{\xi \in \mathcal{I}} \| u_\xi \|_{L^\infty(\mathcal{M})}^{\frac{2}{r'}} \right)^{\frac{1}{q'}}
\]

\[
= \sup_{s > 0} s \left(\sum_{\xi \in \mathcal{I}} \| u_\xi \|_{L^\infty(\mathcal{M})}^{\frac{2}{r'}} \right)^{\frac{1}{q'}}
\]
\[\|A\|_{\mathcal{B}(L^p(M),L^q(M))} \leq \sup_{s>0} s \left(\sum_{\xi \in \mathcal{I}} \max\{\|u_\xi\|_{L^\infty(M)}^2, \|v_\xi\|_{L^\infty(M)}^2\} \right)^{\frac{1}{p'}} < \infty. \]

Now we consider the case \(q' \leq p \) so that \(p' \leq q = (q')' \). Using the duality of \(L^p \)-spaces we have \(\|A\|_{\mathcal{B}(L^p(M),L^q(M))} = \|A^*\|_{\mathcal{B}(L^{q'}(M),L^{p'}(M))} \). The \(L^* \)-symbol of \(\sigma_{A^*,L^*}(\xi) \) of the adjoint operator \(A^* \), which is an \(L^* \)-Fourier multiplier, is equal to \(\sigma_{A,L}(\xi) \) and obviously we have \(|\sigma_{A,L}(\xi)| = |\sigma_{A^*,L^*}(\xi)| \) (see Proposition 3.6 in [15]). Now, the idea is to proceed as the case \(p \leq q' \) but this time for \(L^* \)-Fourier multiplier \(A^* \) we get, as an application of Hausdorff-Young inequality for \(L^* \)-Fourier transform and Theorem 4.7, that

\[\|A\|_{\mathcal{B}(L^p(M),L^q(M))} \leq \sup_{s>0} s \left(\sum_{\xi \in \mathcal{I}} \max\{\|u_\xi\|_{L^\infty(M)}^2, \|v_\xi\|_{L^\infty(M)}^2\} \right)^{\frac{1}{p'}} \]

Therefore, in the view of \(\frac{1}{p} - \frac{1}{q} = \frac{1}{r} = \frac{1}{q'} - \frac{1}{p'} \) we have

\[\|A\|_{\mathcal{B}(L^p(M),L^q(M))} \leq \sup_{s>0} s \left(\sum_{\xi \in \mathcal{I}} \max\{\|u_\xi\|_{L^\infty(M)}^2, \|v_\xi\|_{L^\infty(M)}^2\} \right)^{\frac{1}{p} - \frac{1}{q}}, \]

proving the Theorem 4.8.

\[\square \]

In case when \(M \) is a compact manifold the condition \(1 < p \leq 2 < q < \infty \) can be replaced by \(1 < p, q < \infty \).

Corollary 4.9. Let \(1 < p, q < \infty \) and assume that

\[\sup_{\xi \in \mathcal{I}} \left(\frac{\|v_\xi\|_{L^\infty(M)}}{\|u_\xi\|_{L^\infty(M)}} \right) < \infty \quad \text{and} \quad \sup_{\xi \in \mathcal{I}} \left(\frac{\|u_\xi\|_{L^\infty(M)}}{\|v_\xi\|_{L^\infty(M)}} \right) < \infty. \]

Suppose that \(A : C^\infty_L(M) \to C^\infty_L(M) \) is a \(L \)-Fourier multiplier with \(L \)-symbol \(\sigma_{A,L} \) on a compact manifold \(M \). If \(1 < p, q \leq 2 \), then

\[\|A\|_{\mathcal{B}(L^p(M),L^q(M))} \leq \sup_{s>0} s \left(\sum_{\xi \in \mathcal{I}} \max\{\|u_\xi\|_{L^\infty(M)}^2, \|v_\xi\|_{L^\infty(M)}^2\} \right)^{\frac{1}{p} - \frac{1}{2}}, \]

while for \(2 \leq p, q < \infty \) we have

\[\|A\|_{\mathcal{B}(L^p(M),L^q(M))} \leq \sup_{s>0} s \left(\sum_{\xi \in \mathcal{I}} \max\{\|u_\xi\|_{L^\infty(M)}^2, \|v_\xi\|_{L^\infty(M)}^2\} \right)^{\frac{1}{p'} - \frac{1}{2}}. \]
Proof. Let us assume that $1 < p, q \leq 2$. Using the compactness of \overline{M}, we have $\|A\|_{\mathcal{B}(L^p(\overline{M}), L^q(\overline{M}))} \lesssim \|A\|_{\mathcal{B}(L^p(\overline{M}), L^2(\overline{M}))}$ and therefore, Theorem 4.8 gives

$$\|A\|_{\mathcal{B}(L^p(\overline{M}), L^q(\overline{M}))} \lesssim \sup_{s > 0} \left(\sum_{\xi \in \mathcal{I}} \max_{|\sigma_{A,L}(\xi)| \geq s} \{\|u_{\xi}\|_{L^\infty(\overline{M})}^2, \|v_{\xi}\|_{L^\infty(\overline{M})}^2\} \right)^{\frac{1}{2} \cdot \frac{1}{p}} \cdot \frac{1}{q} \cdot \frac{1}{2} .$$

Now, let us assume that $2 \leq p, q < \infty$. Then $1 < p', q' \leq 2$, and using the first part of the proof we deduce

$$\|A\|_{\mathcal{B}(L^p(\overline{M}), L^q(\overline{M}))} = \|A^*\|_{\mathcal{B}(L^{p'}(\overline{M}), L^{q'}(\overline{M}))} \lesssim \sup_{s > 0} \left(\sum_{\xi \in \mathcal{I}} \max_{|\sigma_{A,L}(\xi)| \geq s} \{\|u_{\xi}\|_{L^\infty(\overline{M})}^2, \|v_{\xi}\|_{L^\infty(\overline{M})}^2\} \right)^{\frac{1}{2} \cdot \frac{1}{p'}} \cdot \frac{1}{q'} \cdot \frac{1}{2} .$$

Thus, we finish the proof. \(\square\)

The following theorem presents our main result of this section on L^p-L^q boundedness of pseudo-differential operators.

Theorem 4.10. Let $1 < p \leq 2 \leq q < \infty$ and assume that

$$\sup_{\xi \in \mathcal{I}} \left(\frac{\|v_{\xi}\|_{L^\infty(\overline{M})}}{\|u_{\xi}\|_{L^\infty(\overline{M})}} \right) < \infty \quad \text{and} \quad \sup_{\xi \in \mathcal{I}} \left(\frac{\|u_{\xi}\|_{L^\infty(\overline{M})}}{\|v_{\xi}\|_{L^\infty(\overline{M})}} \right) < \infty.$$

Suppose that $A : C^\infty_L(\overline{M}) \to C^\infty_L(\overline{M})$ is a continuous linear operator with L-symbol $\sigma_{A,L} : \overline{M} \times \mathcal{I} \to \mathbb{C}$, where \overline{M} is a compact manifold, satisfying

$$\|\sigma_{A,L}(\beta)\|_{(\beta)} := \sup_{s > 0, y \in \overline{M}} s \left(\sum_{\xi \in \mathcal{I}} \max_{|\partial_y \sigma_{A,L}(y,\xi)| \geq s} \{\|u_{\xi}\|_{L^\infty(\overline{M})}^2, \|v_{\xi}\|_{L^\infty(\overline{M})}^2\} \right)^{\frac{1}{2} \cdot \frac{1}{q}} \cdot \frac{1}{p} \cdot \frac{1}{2} < \infty, \quad (4.17)$$

for all $|\beta| \leq \left[\frac{\dim(M)}{q} \right] + 1$, where ∂_y denotes the local partial derivative (see Section 2).

If $\partial M \neq \emptyset$, let us assume additionally that $\operatorname{supp}(\sigma_{A,L}) \subset \{(y, \xi) \in \overline{M} \times \mathcal{I} : y \in \overline{M} \setminus V\}$ where $V \subset \overline{M}$ is an open neighbourhood of the boundary ∂M. Then A admits a bounded extension from $L^p(\overline{M})$ into $L^q(\overline{M})$.

Proof. Let us assume that $f \in C^\infty_0(\overline{M})$. First, assume that $\partial M \neq \emptyset$. For every $y \in \overline{M}$, we define

$$A_y f(x) := \sum_{\xi \in \mathcal{I}} u_{\xi}(x) \sigma_{A,L}(y, \xi) \hat{f}(\xi), \quad (4.18)$$
where for every \(\beta = \text{int}(M) \) get Therefore, by using the change of the order of integration and Fubini Theorem we get

\[
\|A f\|_{L^q(M)}^q = \int_M |A f(x)|^q dx = \int_M |A f(x)|^q dx
\]

\[
\leq \int_{M \setminus V} \sup_{y \in M \setminus V} |A_y f(x)|^q dx.
\]

Now, the compactness of \(M \), and the local Sobolev embedding theorem on \(M \setminus V \subset M = \text{int}(M) \), implies

\[
\sup_{y \in M \setminus V} |A_y f(x)|^q \leq C \sum_{|\beta| \leq \frac{\text{dim}(M)}{q}} + 1 \int_M |\partial_y^\beta A_y f(x)|^q dy dx
\]

\[
\leq \sum_{|\beta| \leq \frac{\text{dim}(M)}{q}} + 1 \int_M |\partial_y^\beta A_y f(x)|^q dy dx
\]

where for every \(\beta \in \mathbb{N}^{\text{dim} M} \), the operator \(\partial_y^\beta A \) is defined by

\[
(\partial_y^\beta A_y) f(x) := \sum_{\xi \in I} u_\xi(x)(\partial_y^\beta \sigma_{A,L})(y, \xi) \hat{f}(\xi). \tag{4.19}
\]

Therefore, by using the change of the order of integration and Fubini Theorem we get

\[
\|A f\|_{L^q(M)}^q \leq \int_M \sup_{y \in M \setminus V} |A_y f(x)|^q dx \leq C \int_M \sup_{|\beta| \leq \frac{\text{dim}(M)}{q}} + 1 \int_M |\partial_y^\beta A_y f(x)|^q dy dx
\]

\[
\leq C \sum_{|\beta| \leq \frac{\text{dim}(M)}{q}} + 1 \int_M |\partial_y^\beta A_y f(x)|^q dx = \sum_{|\beta| \leq \frac{\text{dim}(M)}{q}} + 1 \sup_{y \in M} \|\partial_y^\beta A_y f\|_{L^q(M)}^q
\]

\[
\leq C \sum_{|\beta| \leq \frac{\text{dim}(M)}{q}} + 1 \sup_{y \in M} \|f\| \text{Op}(\partial_y^\beta \sigma_{A,L}\gamma) f\|_{L^q(M), L^q(M)} \|f\|_{L^q(M)}^q
\]

\[
\leq \left[\sum_{|\beta| \leq \frac{\text{dim}(M)}{q}} + 1 \sup_{s > 0, y \in M} s \left(\sum_{\xi \in I} \max\{\|u_\xi\|_{L^\infty(M)}, \|v_\xi\|_{L^\infty(M)}\} \right)^{\frac{1}{p} - \frac{1}{q}} \right] \|f\|_{L^q(M)}^q,
\]

where the last inequality follows from Theorem 4.8. Hence,

\[
\|A \|_{\mathcal{B}(L^p(M), L^q(M))} \leq \sup_{s > 0, y \in M} s \left(\sum_{|\beta| \leq \frac{\text{dim}(M)}{q}} + 1 \sup_{\xi \in I} \max\{\|u_\xi\|_{L^\infty(M)}, \|v_\xi\|_{L^\infty(M)}\} \right)^{\frac{1}{p} - \frac{1}{q}} < \infty.
\]
Now, if $\partial M = \emptyset$, we can take $V = \emptyset$ above and the proof above works in this case. Thus, we finish the proof of Theorem 4.10.

The following corollary is an analogue of Corollary 4.9 for pseudo-differential operators. The proof of this corollary follows similar to Corollary 4.9 by using Theorem 4.10.

Corollary 4.11. Let $1 < p, q < \infty$ and assume that

$$
\sup_{\xi \in \mathcal{I}} \frac{\|v_\xi\|_{L^\infty(M)}}{\|u_\xi\|_{L^\infty(M)}} < \infty \quad \text{and} \quad \sup_{\xi \in \mathcal{I}} \frac{\|u_\xi\|_{L^\infty(M)}}{\|v_\xi\|_{L^\infty(M)}} < \infty.
$$

Suppose that $A : C^\infty_0(M) \to C^\infty_0(M)$ is a continuous linear operators with L-symbol $\sigma_{A,L} : \overline{M} \times \mathcal{I} \to \mathbb{C}$, where \overline{M} is a compact manifold, satisfying

- for $1 < p, q \leq 2$,

$$
\sup_{s > 0, y \in \overline{M}} s \left(\sum_{\xi \in \mathcal{I}} \max_{|\partial^0 \sigma_{A,L}(y,\xi)| \geq s} \{\|u_\xi\|_{L^\infty(M)}, \|v_\xi\|_{L^\infty(M)}\} \right)^{\frac{1}{p} - \frac{1}{2}} < \infty,
$$

for all $|\beta| \leq \left[\frac{\dim(M)}{q} \right] + 1$, and

- for $2 \leq p, q < \infty$,

$$
\sup_{s > 0, y \in \overline{M}} s \left(\sum_{\xi \in \mathcal{I}} \max_{|\partial^0 \sigma_{A,L}(y,\xi)| \geq s} \{\|u_\xi\|_{L^\infty(M)}, \|v_\xi\|_{L^\infty(M)}\} \right)^{\frac{1}{q} - \frac{1}{2}} < \infty,
$$

for all $|\beta| \leq \left[\frac{\dim(M)}{p} \right] + 1$.

If $\partial M \neq \emptyset$, let us assume additionally that $\text{supp}(\sigma_{A,L}) \subset \{(y, \xi) \in \overline{M} \times \mathcal{I} : y \in \overline{M} \setminus V \}$ where $V \subset \overline{M}$ is an open neighbourhood of the boundary ∂M. Then A admits a bounded extension from $L^p(\overline{M})$ into $L^q(\overline{M})$.

5. Applications to Non-Linear PDEs

In this section we illustrate some applications of our main results. In particular, we discuss applications of the above L^p–L^q boundedness theorems to some nonlinear PDEs. Especially, the main interest is to establish the well-posedness properties of nonlinear equations.

5.1. **Nonlinear Stationary Equation.** Let us consider nonlinear stationary equation in the Hilbert space $L^2_0(M)$

$$
Au = |Bu|^p + f,
$$

where $A, B : L^2_0(M) \to L^2_0(M)$ and $1 < p < \infty$. For any $s \in \mathbb{R}$ let us denote by $\mathcal{H}_s^p(M)$ the subspace of $L^2_0(M)$ such that

$$
\mathcal{H}_s^p(M) := \{u \in L^2_0(M) : L^s u \in L^2(M)\}.
$$
By $\mathcal{H}_L^\infty(\overline{M})$ we denote
\[\mathcal{H}_L^\infty(\overline{M}) := \bigcap_{s=1}^{\infty} \mathcal{H}_L^s(\overline{M}). \]

Lemma 5.1 ([30]). Let A be an L-elliptic pseudo-differential operator with L-symbol $\sigma_A \in S^\mu(\overline{M} \times \mathbb{L})$, $\mu \in \mathbb{R}$, and let $Au = f$ in \overline{M}, $u \in \mathcal{H}_L^\infty(\overline{M})$. Then we have the estimate
\[\|u\|_{\mathcal{H}_L^{s+r}(\overline{M})} \leq C_{sN}(\|f\|_{\mathcal{H}_L^2(\overline{M})} + \|u\|_{\mathcal{H}_L^{-N}(\overline{M})}), \]
for any $s, N \in \mathbb{R}$.

By using Lemma 5.1, we conclude estimates for the solution of the equation (5.1) as the following statement.

Corollary 5.2. Let $1 \leq p < \infty$. Suppose that the conditions of Lemma 5.1 holds. In addition, we assume that B is a Fourier multiplier as in Theorem 4.10 bounded from $L^2(\overline{M})$ to $L^{2p}(\overline{M})$. Then any solution of the equation (5.1) satisfies the inequality
\[\|u\|_{L^2(\overline{M})} \leq C_N(\|u\|_{L^{2p}(\overline{M})} + \|f\|_{L^2(\overline{M})} + \|u\|_{\mathcal{H}_L^{-N}(\overline{M})}), \]
for any $N \in \mathbb{R}$.

Proof. By using Lemma 5.1, we have
\[\|u\|_{L^2(\overline{M})} \leq C_N(\|(Bu)^p\|_{L^{2p}(\overline{M})} + \|f\|_{L^2(\overline{M})} + \|u\|_{\mathcal{H}_L^{-N}(\overline{M})}). \]
Finally, from Theorem 4.10, we obtain
\[\|u\|_{L^2(\overline{M})} \leq C_N(\|u\|_{L^{2p}(\overline{M})}^p + \|f\|_{L^2(\overline{M})} + \|u\|_{\mathcal{H}_L^{-N}(\overline{M})}). \]

\[\Box \]

5.2. Nonlinear Heat Equation

Let us consider the Cauchy problem for the nonlinear evolutionary equation in the space $L^\infty(0, T; L^2(\overline{M}))$
\[u_t(t) - |Bu(t)|^p = 0, u(0) = u_0, \tag{5.2} \]
where B is a linear operator in $L^2(\overline{M})$ and $1 < p < \infty$.

Definition 5.3. We say that the Cauchy problem (5.2) admits a solution u if it satisfies
\[u(t) = u_0 + \int_0^t |Bu(\tau)|^p d\tau \tag{5.3} \]
in the space $L^\infty(0, T; L^2(\overline{M}))$ for every $T < \infty$.

We say that the Cauchy problem (5.2) admits a local solution u if it satisfies the equation (5.3) in the space $L^\infty(0, T^*; L^2(\overline{M}))$ for some $T^* > 0$.

Theorem 5.4. Let $1 < p < \infty$. Suppose that B is a Fourier multiplier as in Theorem 4.8 bounded from $L^2(\overline{M})$ to $L^{2p}(\overline{M})$. Then the Cauchy problem (5.2) has a local solution in $L^\infty(0, T; L^2(\overline{M}))$, that is, there exists $T^* > 0$ such that the Cauchy problem (5.2) has a solution in $L^\infty(0, T^*; L^2(\overline{M}))$.

Proof. We start by integrating in t the equation (5.2),

$$u(t) = u_0 + \int_0^t |B(u(\tau))|^p \, d\tau.$$

By taking the L^2-norm on both sides, one obtains

$$\|u(t)\|_{L^2(\mathcal{M})}^2 \leq C(\|u_0\|_{L^2(\mathcal{M})}^2 + t \int_0^t \| (B(u(\tau))) \|_{L^2(\mathcal{M})}^{2p} \, d\tau),$$

since

$$\left(\int_0^t |B(u(\tau))|^p \, d\tau \right)^2 \leq t \int_0^t |B(u(\tau))|^p \, d\tau$$

and

$$\int_M \int_0^t |B(u(\tau))|^{2p} \, dx \, d\tau = \int_M \int_0^t |B(u(\tau))|^{2p} \, dx \, d\tau = \int_0^t \| (B(u(\tau))) \|_{L^{2p}(\mathcal{M})}^{2p} \, d\tau.$$

Now, using Theorem 4.8, we get

$$\|u(t)\|_{L^2(\mathcal{M})}^2 \leq C(\|u_0\|_{L^2(\mathcal{M})}^2 + t \int_0^t \| u(\tau) \|_{L^2(\mathcal{M})}^{2p} \, d\tau),$$

(5.4)

for some constant C independent from u_0 and t.

Finally, by taking L^∞-norm in time on both sides of the estimate (5.4), one obtains

$$\|u(t)\|_{L^\infty(0,T;L^2(\mathcal{M}))} \leq C(\|u_0\|_{L^2(\mathcal{M})}^2 + T^2 \| u \|_{L^\infty(0,T;L^2(\mathcal{M}))}^{2p}).$$

(5.5)

Let us introduce the following set

$$S_c := \{ u \in L^\infty(0,T;L^2(\mathcal{M})) : \|u\|_{L^\infty(0,T;L^2(\mathcal{M}))} \leq c \|u_0\|_{L^2(\mathcal{M})} \},$$

(5.6)

for some constant $c \geq 1$. Then we have

$$\|u_0\|_{L^2(\mathcal{M})}^2 + T^2 \| u \|_{L^\infty(0,T;L^2(\mathcal{M}))}^{2p} \leq \|u_0\|_{L^2(\mathcal{M})}^2 + T^2 c^{2p} \|u_0\|_{L^2(\mathcal{M})}^{2p}.$$

Finally, to be u from the set S_c it is enough to have

$$\|u_0\|_{L^2(\mathcal{M})}^2 + T^2 c^{2p} \|u_0\|_{L^2(\mathcal{M})}^{2p} \leq c^2 \|u_0\|_{L^2(\mathcal{M})}^2.$$

It can be obtained by requiring the following,

$$T \leq T^* := \sqrt{c^2 - 1} \frac{1}{c^p \|u_0\|_{L^2(\mathcal{M})}}.$$

Thus, by applying the fixed point theorem, there exists a unique local solution $u \in L^\infty(0,T^*;L^2(\mathcal{M}))$ of the Cauchy problem (5.2).

By using Theorem 4.10, one obtains:
Theorem 5.5. Let $1 < p < \infty$. Suppose that B is a continuous linear operators with L-symbol $\sigma_{B,L} : \overline{M} \times I \rightarrow \mathbb{C}$, satisfying the condition in Theorem 4.10. Then the Cauchy problem (5.2) admits a local solution in $L^\infty(0, T; L^2(\overline{M}))$, that is, there exists $T^* > 0$ such that the Cauchy problem (5.2) has a solution in $L^\infty(0, T^*; L^2(\overline{M}))$.

5.3. Nonlinear Wave Equation

Now we study well-posedness properties of the initial value problem (IVP) for the nonlinear wave equation (NLWE) in $L^\infty(0, T; L^2(\overline{M}))$

\[
\begin{align*}
\text{u}_{tt}(t) - b(t)|Bu(t)|^p = 0, \\
u(0) = u_0, \quad u_t(0) = u_1,
\end{align*}
\]

where b is a positive bounded function depending only on time, B is a linear operator in $L^2(\overline{M})$ and $1 < p < \infty$.

Definition 5.6. We say that IVP (5.7) admits a global solution u if it satisfies

\[
u(t) = u_0 + tu_1 + \int_0^t (t - \tau)b(\tau)|Bu(\tau)|^p d\tau
\]

in the space $L^\infty(0, T; L^2(\overline{M}))$ for every $T < \infty$.

We say that the Cauchy problem (5.7) admits a local solution u if it satisfies the equation (5.8) in the space $L^\infty(0, T^*; L^2(\overline{M}))$ for some $T^* > 0$.

Theorem 5.7. Let $1 \leq p < \infty$. Assume that $u_0, u_1 \in L^2(\overline{M})$. Suppose that B is a Fourier multiplier as in Theorem 4.8 bounded from $L^2(\overline{M})$ to $L^{2p}(\overline{M})$.

(i) Assume that $\|b\|_{L^2(0,T)} < \infty$ for some $T > 0$. Then the Cauchy problem (5.7) has a local solution in $L^\infty(0, T; L^2(\overline{M}))$, that is, there exists $T^* > 0$ such that the Cauchy problem (5.7) has a solution in $L^\infty(0, T^*; L^2(\overline{M}))$.

(ii) Suppose that u_1 is identically equal to zero. Let $\gamma > 3/2$. Moreover, assume that $\|b\|_{L^2(0,T)} \leq c T^{-\gamma}$ for every $T > 0$, where c does not depend on T. Then, for every $T > 0$, the Cauchy problem (5.7) has a global solution in the space $L^\infty(0, T; L^2(\overline{M}))$ for sufficiently small u_0 in L^2-norm.

Proof. (i) We start by two times integrating in t the equation (5.7)

\[
u(t) = u_0 + tu_1 + \int_0^t (t - \tau)b(\tau)|Bu(\tau)|^p d\tau.
\]

By taking the L^2-norm on both sides, for $t < T$ one obtains

\[
\|u(t)\|_{L^2(\overline{M})} \leq C(\|u_0\|_{L^2(\overline{M})}^2 + t\|u_1\|_{L^2(\overline{M})}^2 + t^2\|b\|_{L^2(0,T)}^2 \int_0^t \|(Bu(\tau))\|_{L^{2p}(\overline{M})}^{2p} d\tau),
\]
since
\[
\left| \int_0^t (t - \tau)b(\tau)(Bu(\tau))^p d\tau \right|^2 \leq \left(\int_0^t \left| b(\tau)(Bu(\tau))^p \right| d\tau \right)^2 \leq t^2 \int_0^t \left| b(\tau) \right|^2 d\tau \int_0^t \left| Bu(\tau) \right|^{2p} d\tau
\]
and
\[
\int_{\mathcal{M}} \int_0^t \left| Bu(\tau) \right|^{2p} d\tau dx = \int_{\mathcal{M}} \int_0^t \left| Bu(\tau) \right|^{2p} dx d\tau = \int_0^t \left| Bu(\tau) \right|^{2p} d\tau d\mathcal{M}.
\]
Now, using conditions on the operator B, we get
\[
\|u(t)\|^2_{L^2(M)} \leq C(\|u\|^2_{L^2(M)} + \|u\|^2_{L^2(M)} + t^2\|b\|^2_{L^2(M)} \int_0^t \|u(\tau)\|^2_{L^2(M)} d\tau), \tag{5.9}
\]
for some constant C not depending on u_0, u_1 and t. Finally, by taking the L^∞-norm in time on both sides of the estimate (5.9), one obtains
\[
\|u\|^2_{L^\infty(0,T;L^2(M))} \leq C(\|u\|^2_{L^2(M)} + T\|u\|^2_{L^2(M)} + T^3\|b\|^2_{L^2(0,T)}\|u\|^2_{L^\infty(0,T;L^2(M))}). \tag{5.10}
\]
Let us introduce the set
\[
S_c := \{u \in L^\infty(0,T;L^2(M)) : \|u\|^2_{L^\infty(0,T;L^2(M))} \leq c(\|u\|^2_{L^2(M)} + T\|u\|^2_{L^2(M)}) \} \tag{5.11}
\]
for some constant $c \geq 1$. Then we have
\[
\|u_0\|^2_{L^2(M)} + T\|u_1\|^2_{L^2(M)} + T^3\|b\|^2_{L^2(M)}\|u_0\|^2_{L^\infty(0,T;L^2(M))} \leq \|u_0\|^2_{L^2(M)} + T\|u_1\|^2_{L^2(M)} + T^3\|b\|^2_{L^2(0,T)}\|u_0\|^2_{L^2(M)} \tag{5.12}
\]
Observe that, to be u from the set S_c it is enough to have
\[
\|u_0\|^2_{L^2(M)} + T\|u_1\|^2_{L^2(M)} + T^3\|b\|^2_{L^2(0,T)}\|u_0\|^2_{L^2(M)} + T\|u_1\|^2_{L^2(M)} \leq c(\|u_0\|^2_{L^2(M)} + T\|u_1\|^2_{L^2(M)}),
\]
It can be obtained by requiring the following
\[
T \leq T^* := \min \left[\left(\frac{c - 1}{\|b\|^2_{L^2(0,T)} C^p\|u_0\|^2_{L^2(M)}} \right)^{1/3}, \left(\frac{c - 1}{\|b\|^2_{L^2(0,T)} C^p\|u_1\|^2_{L^2(M)}} \right)^{1/3} \right].
\]
Thus, by applying the fixed point theorem, there exists a unique local solution $u \in L^\infty(0,T^*;L^2(M))$ of the Cauchy problem (5.2).

Now we prove Part (ii). By repeating the arguments of the proof of Part (i), we start from (5.10). By taking into account assumptions, we have
\[
\|u\|^2_{L^\infty(0,T;L^2(M))} \leq C(\|u\|^2_{L^2(M)} + T^{3-2\gamma}\|u\|^2_{L^\infty(0,T;L^2(M))}). \tag{5.13}
\]
Fix $c \geq 1$. Introduce the set
\[
S_c := \{u \in L^\infty(0,T;L^2(M)) : \|u\|^2_{L^\infty(0,T;L^2(M))} \leq cT^{8\gamma}\|u\|^2_{L^2(M)} \},
\]
with $\gamma_0 > 0$ is to be defined later. Now, we have
\[
\|u_0\|_{L^2(M)}^2 + T^3\|b\|_{L^2(0,T;L^2(M))}^{2p} \leq \|u_0\|_{L^2(M)}^2 + T^{3-2\gamma + \gamma_0 p}\|u_0\|_{L^2(M)}^{2p},
\]
where γ_0 to be chosen later.

To guarantee $u \in S_c$, we require that
\[
\|u_0\|_{L^2(M)}^2 + T^3 - 2\gamma + \gamma_0 p \leq \|u_0\|_{L^2(M)}^2 c T^{-\tilde{\gamma} + \gamma_0}.
\]
Now by choosing $0 < \gamma_0 < \frac{2\gamma - 3}{p}$ such that
\[
\tilde{\gamma} := 3 - 2\gamma + \gamma_0 p < 0,
\]
we obtain
\[
c T^{-\tilde{\gamma} + \gamma_0} \leq \|u_0\|_{L^2(M)}^{2p - 2}.
\]
From the last estimate, we conclude that for any $T > 0$ there exists sufficiently small $\|u_0\|_{L^2(M)}$ such that IVP (5.7) has a solution. It proves Part (ii) of Theorem 5.7. □

REFERENCES

1. Akylzhanov, R., Ruzhansky, M., Nursultanov, E. Hardy-Littlewood, Hausdorff-Young-Paley inequalities, and L^p-L^q Fourier multipliers on compact homogeneous manifolds. J. Math. Anal. Appl. 479 (2019), no. 2, 1519–1548.
2. Akylzhanov, R., Ruzhansky, M. L^p-L^q multipliers on locally compact groups, J. Func. Analysis, 278(3) (2019), DOI: https://doi.org/10.1016/j.jfa.2019.108324
3. Barì, N. K. Biorthogonal systems and bases in Hilbert space. Moskov. Gos. Univ. Učenye Zapiski Matematika, 148(4) (1951) 69–107.
4. Boutet de Monvel, L. Boundary value problems for pseudodifferential operators. Acta Math. 126 (1971) pp. 11–51.
5. Bergh, J., Lofstrom, J. Interpolation spaces, Grundlehren der mathematischen Wissenschaften, (1976).
6. Carbonaro, A., Mauceri, G., Meda, S. H^1 and BMO for certain locally doubling metric measure spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009), 543–582.
7. Cardona, D. L^∞–BMO bounds for pseudo-multipliers associated with the harmonic oscillator. Rev. Colombiana Mat. To appear. arXiv:1905.03644
8. Cardona, D., Ruzhansky, M. Hörmander condition for pseudo-multipliers associated to the harmonic oscillator. arXiv:1810.01260
9. Cardona, D., Delgado, J., Ruzhansky, M. L^p–bounds for pseudo-differential operators on graded Lie groups. arXiv:1911.03397
10. Chatzakou, M., Delgado, J., Ruzhansky, M. On a class of anharmonic oscillators. arxiv.org/abs/1811.12566
11. Chatzakou, M., Kumar, V. L^p-L^q boundedness of Fourier multipliers associated with the anharmonic oscillator. arxiv.org/abs/2004.07801
12. Chen, P., Oubabaz, E. M., Sikora, A., Yan, L. Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner-Riesz means. JAMA 129, 219–283 (2016).
13. Coifman, R. R., Weiss, G. Analyse harmonique non–commutative sur certains espaces homogènes. Lecture Notes in Mathematics, Vol. 242. Springer-Verlag, Berlin, 1971. Étude de certaines intégrales singulières.
14. Delgado J., Ruzhansky M., L^p-bounds for pseudo-differential operators on compact Lie groups. J. Inst. Math. Jussieu, 18 (2019), pp. 531–559.
15. Delgado, J., Ruzhansky M., Tokmagambetov N. Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary. J. Math. Pures Appl., 107:758–783, 2017.
16. Duoandikoetxea, J. Fourier Analysis, Amer. Math. Soc. (2001)
17. Fischer, V., Ruzhansky, M. Fourier multipliers on graded Lie groups. arXiv:1411.6950, 2014.
18. Gelfand, I. M. Remark on the work of N. K. Bari, “Biorthogonal systems and bases in Hilbert space.” Moskov. Gos. Univ. Učenye Zapiski Matematika, 148(4), (1951) 224–225.
19. Grubb, G. Functional calculus of pseudo-differential boundary problems. Birkhäuser, (1986).
20. Melrose, R. Transformation of boundary value problems. Acta Math. 147 (1987) 149–236.
21. Něst, R., Schrohe, E. Dixmiers trace for boundary value problems. Manuscripta Math. 96 (1998) 203–218.
22. Littlewood, J. E., Paley, R. E. A. Theorems on Fourier series and power series, J. London Math. Soc. 6 (1931), 230–233.
23. Littlewood, J. E., and Paley, R. E. A. Theorems on Fourier series and power series (II). Proc. London Mat. Soc., 42 (1937), 52–89.
24. Helffer, B., Robert, D. Asymptotique des niveaux d’energie pour des hamiltoniens à un degr é de liberté. Duke Math. J., 49(4), (1982) 853–868.
25. Hörmander, L. Estimates for translation invariant operators in L_p spaces. Acta Math., 104, (1960) 93–140.
26. Hörmander, L. The analysis of linear partial differential operators, volume 3, Springer-Verlag, Berlin, 1985.
27. Nicola, F., Rodino, L. Global pseudo-differential calculus on Euclidean spaces, volume 4 of Pseudo-Differential Operators. Theory and Applications. Birkhäuser Verlag, Basel, 2010.
28. Nursultanov E. D., Tleukhanova N. T. Lower and upper bounds for the norm of multipliers of multiple trigonometric Fourier series in Lebesgue space, Funktsional Anal. i Prilozhen., 34(2), (2000) 86-88.
29. Pigola, S., Veronelli, G. The smooth Riemannian extension problem: completeness. arXiv:1601.05075. (2016).
30. Ruzhansky M., Tokmagambetov N., Nonharmonic analysis of boundary value problems, Int. Math. Res. Notices, (2016) 2016 (12), 3548–3615.
31. Ruzhansky M., Tokmagambetov N. Nonharmonic analysis of boundary value problems without WZ condition, Math. Model. Nat. Phenom., 12 (2017), 115–140.
32. Ruzhansky, M., Tokmagambetov, N. Wave equation for operators with discrete spectrum and irregular propagation speed. Arch. Ration. Mech. Anal., 226, (2017) 1161–1207.
33. Ruzhansky, M., Turunen, V. Pseudo-differential Operators and Symmetries: Background Analysis and Advanced Topics. Birkhäuser-Verlag, Basel, (2010).
34. Ruzhansky, M., Wirth, J. L^p-Fourier multipliers on compact Lie groups. Math. Z., 280(3–4) 621–642, 2015.
35. Schrohe, E., Schulze, B.-W. Boundary value problems in Boutet de Monvel’s algebra for manifolds with conical singularities I. In M. Demuth et al. (eds.) Pseudo-differential Calculus and Mathematical Physics Math. Topics, volume 5: Advances in Part. Diff. Equ., Akademie Verlag, Berlin, (1994).
36. Schrohe, E. Noncommutative Residues, Dixmier’s Trace, and Heat Trace Expansions on Manifolds with Boundary. In B. Booss-Bavnbek and K. Wojciechowski (eds), Geometric Aspects of Partial Differential Equations. Contemporary Mathematics, vol. 242, Amer. Math. Soc. Providence, R.I., (1999), p. 161–186
37. Schrohe, E. A Short Introduction to Boutet de Monvel’s calculus. Springer Verlag, Operators Theory: Advances and Applications, 125, (2001).
38. Zygmund, A. Trigonometrical series I-II. London (1959).

Duván Cardona Sánchez:
Department of Mathematics: Analysis Logic and Discrete Mathematics
Ghent University, Belgium
E-mail address duvanc306@gmail.com

Vishvesh Kumar:
Department of Mathematics: Analysis Logic and Discrete Mathematics
Ghent University, Belgium
E-mail address vishveshmishra@gmail.com

Michael Ruzhansky:
Department of Mathematics: Analysis, Logic and Discrete Mathematics
Ghent University, Belgium
and
School of Mathematics
Queen Mary University of London
United Kingdom
E-mail address michael.ruzhansky@ugent.be

Niyaz Tokmagambetov:
Department of Mathematics: Analysis, Logic and Discrete Mathematics
Ghent University, Belgium
and
Al–Farabi Kazakh National University
71 al–Farabi ave., Almaty, Kazakhstan
E-mail address niyaz.tokmagambetov@ugent.be