Coronatine-Insensitive 1 (COI1) Mediates Transcriptional Responses of Arabidopsis thaliana to External Potassium Supply
Armengaud, Patrick; Breitling, Rainer; Amtmann, Anna

Published in:
Molecular Plant

DOI:
10.1093/mp/ssq012

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Armengaud, P., Breitling, R., & Amtmann, A. (2010). Coronatine-Insensitive 1 (COI1) Mediates Transcriptional Responses of Arabidopsis thaliana to External Potassium Supply. Molecular Plant, 3(2), 390-405. https://doi.org/10.1093/mp/ssq012
Supplemental Figure SI4 A: Alignment of K-responsive shoot transcripts (Fig. 3 in Armengaud et al. 2004) with transcript changes in response to OPDA and MeJA treatments (Geninvestigator)
Supplemental Figure SI4 B: Alignment of transcripts that lose responsiveness to K starvation in coi1-16 (Table 3, main text) with transcript changes in response to OPDA and MeJA treatments (Genvestigator)
Supplemental Figure SI4 C: Alignment of transcripts that lose responsiveness to K re-supply in col1-16 (Table 4, main text) with transcript changes in response to OPDA and MeJA treatments (Genvestigator)
Supplemental Figure SI4 B: Alignment of transcripts that respond to K starvation in both wt and coi1-16 (Table 3, main text) with transcript changes in response to OPDA and MeJA treatments (Geninvestigator)
Supplemental Figure SI4 E: Alignment of transcripts that respond to K re-supply in both wt and coi1-16 (Table 4, main text) with transcript changes in response to OPDA and MeJA treatments (Genvestigator)
Supplemental Figure SI4 E: Alignment of transcripts that respond to K re-supply in both wt and coi1-16 (Table 4, main text) with transcript changes in response to OPDA and MeJA treatments (Genvestigator) (continued).