Influence of synthesis conditions on the crystal and local structures of WO$_3$ powders.

V V Popov1,2, A P Menushenkov1, A A Pisarev1, M M Berdnikova1, Ya V Zubavichus2, R D Svetogorov2, I V Shchetinin2, M V Zheleznyi3, N A Tsarenko4, L A Arzhatkina1, A A Yastrebtsev3, B R Gaynanov1, K V Ponkratov5

1National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409 Moscow, Russia
2NRC “Kurchatov Institute”, pl. Akademika Kurchatova 1, 123182 Moscow, Russia
3National University of Science and Technology MISiS (Moscow Institute of Steel and Alloys), Leninskiy pr. 4, 119049 Moscow, Russia
4JSC “Scientific Research Institute of Chemical Technology”, Kashirskoe sh. 33, 115409 Moscow, Russia
5Renishaw plc, Kantemirovskaya st. 58, 115477 Moscow, Russia

E-mail: victorvpopov@mail.ru

Abstract. Influence of synthesis conditions on the crystal and local structures of WO$_3$ powders prepared by thermal decomposition of ammonium paratungstate and precipitation of tungstates aqueous solutions in strong acid conditions has been investigated. Combination of X-ray powder diffraction, X-ray absorption fine structure spectroscopy, IR- and Raman-spectroscopy, and scanning electron microscopy was used. The calcination of all initial compounds at temperatures $\geq 500^\circ$C led to formation of the monoclinic γ-WO$_3$ single phase. It was concluded that the neutral octahedral complex $[\text{W}=\text{O}(\text{OH})_4(\text{H}_2\text{O})]$ can be a structural unit of the precursors prepared in acidic suspensions. The local structure of synthesized tungsten oxides consists of edge-shared and corner-shared distorted octahedral WO$_6$ species linked together.

1. Introduction
Transition element oxides are of great interest for both fundamental science and technological applications due to their multifunctional properties. Tungsten oxides WO$_x$, where $2 \leq x \leq 3$, are among the most important substances from this large group. Nowadays they are commonly used as photocatalysts, gas sensors, and electrochromic materials. There are also some new applications of WO$_x$ for dye-sensitized solar cells, optical data storage and field-emission displays. Besides, cation-doped WO$_x$ is considered as high-T_c superconductor [1].

Oxides WO$_3$ and their hydrates can be synthesized using various chemical and physical methods, such as wet chemical precipitation, sol-gel hydrolysis of tungsten alkoxide, ion exchange and thermal decomposition of tungsten salts. Films of WO$_3$ can be deposited on various substrates using various vacuum techniques [1-4]. Different crystalline structures as well morphologies occur depending on the processing conditions. The WO$_3$ phase transitions are rather complex.
The aim of the present work is to study the influence of synthesis conditions on the crystal and local structures of WO₃ powders prepared by wet chemical precipitation and thermal decomposition of tungsten salts by means of X-ray diffraction, X-ray absorption fine structure spectroscopy, IR- and Raman-spectroscopy, and scanning electron microscopy.

2. Experimental

The starting materials were sodium tungstate (ST) Na₂WO₄·2H₂O (98.5%), ammonium paratungstate (APT) (NH₄)₁₀W₁₂O₄₁·5H₂O (99.0%). Precursors (tungsten trioxide hydrates or tungstic acids) were prepared by acidification of tungstates salts solutions with hydrochloric HCl (analytical grade) or nitric HNO₃ (analytical grade) acids until the final pH ~ 0 [2]. Tungsten trioxide WO₃ powders were prepared by calcination of synthesized precursors or APT at 300 - 1000°C for 2 - 6 h in air.

Crystal structures of synthesized powders were studied by X-ray powder diffraction at “Center for X-ray structural research and diagnostics of materials” MISiS using a Rigaku MiniFlex 600 diffractometer with Cu Kα radiation. The Rietveld full-profile analysis of X-ray diffraction patterns was performed with the Jana2006 software [5].

The Raman spectra were collected on a lab inVia Reflex confocal Raman microscope (Renishaw) (laser λ₁=532 nm and λ₂=785 nm) and a Nicolet iS50 FT-IR spectrometer (Thermo Fisher Scientific Inc.) with Thermo Scientific iS50 Raman module (λ=1064 nm) at room temperature. Infrared (IR) spectra of the synthesized powders were recorded on Nicolet iS50 FT-IR spectrometer with built-in all reactive, mid- and far-IR diamond iS50 ATR module in the range of 400-4000 cm⁻¹.

X-ray absorption fine structure (EXAFS) spectra were measured above W L₁₋ and L₂₋ edges at “Structural Materials Science” beamline of the Kurchatov synchrotron radiation source in transmission mode at room temperature. The processing and simulation of the EXAFS spectra were performed using IFEFFIT [6] program packages. The back scattering amplitudes and phases were calculated with FEFF-8.20 [7] based on the known crystal structure parameters and the diffraction data. The XANDA program [8] was used to fit the near-edge region of X-ray absorption spectra.

The particle morphology and elemental composition of synthesized powders were studied by Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM/EDS) using an X-Act energy dispersive detector Oxford Instruments with a spectral resolution of 125 eV mounted on a Vega 3 Tescan scanning electron microscope. The characteristic X-ray radiation was automatically processed with the AZteC program.

3. Results and discussion

It was found that acidic precipitation (pH 0; 80°C) of both ST and APT leads to formation of bright lemon yellow powders of tungsten trioxide monohydrates (tungstic acid) WO₃·H₂O with orthorhombic structure (JCPDS № 43-0679). Particles of all synthesized precursors (both ST and APT) had size up to several tens of microns and were aggregates of smaller particles (Figure 1).

Figure 1 SEM images of (ST+HCl) (a) and (APT+HNO₃) (b) precursors
In the precursor samples annealed at 300°C we observed the appearance of the monoclinic phase \(\gamma\)-WO\(_3\) (JCPDS № 43-1035) and probably some amount of residual precursor (Figure 2a, 2b). In the sample prepared by APT at 300°C, we can see the presence of some amorphous phase and hexagonal ammonium tungsten oxide bronze (\(\text{NH}_4\))\(_{0.25}\)WO\(_3\) (JCPDS № 73-1084) (Figure 2c). Further increase of calcination temperature above 500°C led to formation of the \(\gamma\)-WO\(_3\) single phase (Figure 2). This is in a good agreement with data reported in [2, 4]. The XRD study showed that increase of calcination temperature in the range of 500-1000°C leads to increase of crystallite sizes (from tens nm at 300°C to a several hundreds nm at 700°C) and decrease of microstrains in the WO\(_3\) powders.

Figure 2 XRD patterns of powders prepared by calcination of (APT+HNO\(_3\)) (a), (ST+HCl) (b) precursors and APT (c)

Figure 3 shows SEM images of WO\(_3\) particles prepared by calcination at 500°C for 2 h in air. Agglomerates with sizes in the range from a few to tens microns were observed. These agglomerates consist of primary particles with dimensions of a few hundreds nm which is close to the crystallite sizes determined from XRD data.

Figure 3 SEM images (at different magnification) of the WO\(_3\) particles prepared by calcination of APT at 500°C for 2 h in air

It was found that the IR spectra of WO\(_3\)_H\(_2\)O precursor powders, synthesized from both ST and APT, contain a strong band corresponding to the stretching vibrations of OH groups (3406 cm\(^{-1}\)) and structural water molecules (1620 cm\(^{-1}\)), an IR band at 947 cm\(^{-1}\) corresponding to stretching vibrations of \(\nu(\text{W}=\text{O})\) and very strong and broad band at 667 cm\(^{-1}\) indicating the presence of stretching vibrations of \(\nu(\text{O}-\text{W}-\text{O})\) [3] (Figures 4a and 4b). The FT-IR spectrum of APT (Figure 4c) indicates N-H bending and stretching vibrations from \(\text{NH}_4^+\) at wavenumbers of 1429 and 3163 cm\(^{-1}\), respectively; O-H bond vibrations at 1640 and 3434 cm\(^{-1}\), stretching vibrations of \(\nu(\text{W}=\text{O})\) at 952 cm\(^{-1}\) and W-O bond vibrations at 878, 719 and 522 cm\(^{-1}\) [4]. It should be noted that calcination of all initial compounds led to a significant decrease the intensity of the IR bands of both OH and N-H groups.
However their presence in the IR-spectra at 300°C indicated that both WO$_3$H$_2$O → WO$_3$ and APT → WO$_3$ phase transitions are incomplete. It should be noted that calcination of precursors (prepared from solutions) above 300°C caused the appearance of additional IR bands at 811 cm$^{-1}$ and 730 cm$^{-1}$ corresponding to the stretching vibrations of the W=O and O-W-O bonds, respectively, and indicating the formation of γ-WO$_3$ phase [3] (Figures 4a and 4b). A further increase of the temperature to 500°C led to complete disappearance of IR bands of both OH and N-H groups (Figure 4). IR spectra containing only W-O bond vibrations indicate completion of WO$_3$ formation. This is in a good agreement with the XRD data.

![Figure 4 IR spectra of powders prepared by calcinations of (APT+HNO$_3$) (a), (ST+HCl) (b) precursors and APT (c)](image)

The structural information was confirmed by Raman spectroscopy. As seen in Figure 5a, the precursor (APT + HNO$_3$) contained a sharp mode at wavenumber of 942 cm$^{-1}$ (corresponding to the stretching vibrations of W=O) and strong broad band at 630 cm$^{-1}$ (corresponding to the stretching vibrations of O-W-O). The calcination of the precursor at 300°C led to the appearance of additional intense modes at 718 and 807 cm$^{-1}$, which indicates the presence of stretching vibrations υ(O-W-O), as well as mode at 274 cm$^{-1}$ mode indicating bending vibrations δ(O-W-O) in γ-WO$_3$ [3]. It should be noted that the mode at 630 cm$^{-1}$ was still visible in the sample prepared at 300°C for 2 h. This indicates the presence of the residual WO$_3$H$_2$O phase, which practically disappeared after annealing at the temperature of 700°C (Figure 5a). The Raman spectra of powders prepared by calcinations of (ST+HCl) precursor were similar (Figure 5b). The presence of W=O and O-W-O bonds as well as the formation of an intermediate substance at 300°C and γ-WO$_3$ at ≥ 500°C was found upon calcination of APT (Figure 5c).

![Figure 5 Raman spectra of powders prepared by calcinations of (APT+HNO$_3$) (a), (ST+HCl) (b) precursors and APT (c)](image)
An analysis of IR- and Raman-data made it possible to conclude that the neutral octahedral complex \([W=\text{O(OH)}_2\text{H}_2\text{O}]\) may be a structural unit of the precursors (both APT+HNO\(_3\) and ST+HCl) prepared in acidic suspensions.

We performed XAFS-spectra measurements to understand the local atomic structure realignment during the heat treatment of precursors and prepared WO\(_3\) powders. The W L\(_3\)-edge white line mostly is derived from electron transitions from the 2p\(^{3/2}\) state to a vacant 5d state [9]. The W L\(_3\)-edge XANES spectra of the WO\(_3\) powders synthesized from (APT+HNO\(_3\)) precursor are shown in Figure 6a. There is some splitting of W L\(_3\)-edge white line (Figure 6b), which indicates the presence of distorted octahedral structure units (WO\(_6\)) in investigated samples.

The W L\(_1\)-edge XANES spectrum provides information on the electronic state and the geometry of the tungsten species. The pre-edge peak is mainly attributed to forbidden electron transitions from 2s orbitals to 5d orbitals [9]. Figure 6c shows W L\(_1\)-edge XANES spectra of (APT+HNO\(_3\)) precursor and the synthesized WO\(_3\) powders. The observed moderate pre-edge peaks confirms the presence of distorted octahedral WO\(_6\) species.

![Figure 6 XANES of powders prepared by calcinations of (APT+HNO\(_3\)) precursor W L\(_3\)-edge (a), second derivation (b) and W L\(_1\)-edge (c)](image)

The FT-EXAFS spectra of W L\(_3\)-edge of (APT+HNO\(_3\)) precursor, initial APT and the synthesized WO\(_3\) powders are shown in Figure 7. The peak in the range of 1-2 Å, which is due to the W-O shell [9, 10], appeared in all FT spectra. In Figure 7 one can see that the peak of W-O shell for the precursor consists of a few components, which may be attributed to W=O, W-O and W···OH\(_2\). Conary, for WO\(_3\) samples, the W-O shell had only single peak corresponding to W-O distance in WO\(_6\) unit. These results are in a good agreement with IR (see Figure 4) and Raman spectroscopy data (see Figure 5).

The group of peaks in the range of 3-4 Å is due to W-W shell [9, 10]. One can see in Figure 7 that the W-W shell consists of a few components, which can be attributed to the edge-shared octahedral (shorter distance ~ 3.2 Å) and to the corner-shared octahedra WO\(_6\) (longer distance ~ 3.7 Å). This is in a good agreement with published data [10].

![Figure 7 FT-EXAFS of powders prepared by calcinations of (APT+HNO\(_3\)) precursor (a) and APT (b)](image)
4. Conclusion
A combination of X-ray powder diffraction, XAFS spectroscopy, Raman spectroscopy, IR-spectroscopy, and scanning electron microscopy was used for investigation of the influence of synthesis conditions on crystal and local structures of WO₃ powders prepared by thermal decomposition of ammonium paratungstate and precipitation of tungstates aqueous solutions in strong acid conditions. The calcination of all initial compounds at temperatures above 500°C led to formation of single phase of monoclinic I γ-WO₃. It was concluded that the neutral octahedral complex \([\text{W}=\text{O(OH)}_4(\text{H}_2\text{O})]\) can be a structural unit of the precursors prepared in acidic suspensions. The local structure of synthesized tungsten oxides consist of edge-shared and corner-shared distorted octahedral WO₆ species linked together.

Acknowledgements
The work was supported by the Ministry of Education and Science of the Russian Federation (Grant № 3.9750.2017/8.9). The scanning electron microscopy was possible due to Grant № 14.Y26.31.0008 from the Ministry of Education and Science of the Russian Federation.

References
[1] Zheng H, Ou J Z, Strano M S, Kaner R B, Mitchell A and Kalantar-zadeh K 2011 Adv. Funct. Mater. 21 2175
[2] Supothina S, Seeharaj P, Yoriya S and Sriyudthsak M 2007 Ceram. Inter. 33 931
[3] Gotic M, Ivanda M, Popovic S and Music S 2000 Mater. Sci. Eng. B 77 193
[4] Kalpakli A O, Arabaci A, Kahruman C, and Yusufoglu I 2013 Int. J. Refract. Met. Hard Mater. 37 106
[5] Petricek V, Dusek M and Palatinus L 2014 Z. Kristallogr. 229 345
[6] Newville M 2001 J. Synchrotron Rad. 8 322
[7] Ankudinov A, Bouldin C, Rehr J and Conradson S 1998 Phys. Rev. B 58 7565
[8] Klementiev K V 2001 J. Phys. D: Appl. Phys. 34 209
[9] Yamazoe S, Hitomi Y, Shishido T and Tanaka T 2008 J. Phys. Chem. C 112 6869
[10] Carrier X, Marceau E, Carabineiro H, Rodriguez-González V and Che M 2009 Phys. Chem. Chem. Phys 11 7527