An algorithm for computing the global basis of an irreducible $U_q(sp_{2n})$-module

Cédric Lecouvey
lecouvey@math.unicaen.fr

Abstract

We describe a simple algorithm for computing the canonical basis of any irreducible finite-dimensional $U_q(sp_{2n})$-module.

1 Introduction

The quantum algebra $U_q(g)$ associated to a semisimple Lie algebra g is the q-analogue introduced by Drinfeld and Jimbo of its universal enveloping algebra $U(g)$. Kashiwara [4] and Lusztig [10] have discovered a distinguished basis of $U_q^-(g)$ which projects onto a global crystal basis (Kashiwara) or canonical basis (Lusztig) of each simple finite-dimensional $U_q(g)$-module. When q tends to 1 this basis yields in particular a canonical basis of the corresponding $U(g)$-module.

In this article, we restrict ourselves to the case $g = sp_{2n}$. Denote by $\{\Lambda_1, ..., \Lambda_n\}$ the set of fundamental weights, by P the weight lattice and by P^+ the set of dominant weights of sp_{2n}. Then for each $\lambda = \sum \lambda_i \Lambda_i \in P^+$ there exists a unique irreducible finite-dimensional $U_q(sp_{2n})$-module $V(\lambda)$. The aim of this article is to describe a simple algorithm for computing the global crystal basis of $V(\lambda)$. This algorithm will be a generalization of the one described by Leclerc and Toffin in [8] for the irreducible $U_q(sl_n)$-modules. In the case of $U_q(sp_{2n})$, an algorithm was only known for the fundamental modules $V(\Lambda_p)$, $p = 1, ..., n$ [11]. We note that Zelevinsky and Retakh [13] have described for every irreducible finite-dimensional $U(sp_4)$-module a so-called good basis. This basis is the specialization at $q = 1$ of the dual of the canonical basis.

Our method is as follows. First we realize $V(\Lambda_p)$ as a subrepresentation of a $U_q(sp_{2n})$-module $W(\Lambda_p)$ whose basis $\{v_C\}$ has a natural indexation in terms of column shaped Young tableaux. This representation $W(\Lambda_p)$ may be regarded as a q-analogue of the p-th exterior power of the vector representation of sp_{2n}. Then we give explicit formulas for the expansion of the global crystal basis of $V(\Lambda_p)$ on the basis $\{v_C\}$. Next we embed $V(\lambda)$ in the tensor product $W(\lambda) = W(\Lambda_1) \otimes \lambda_1 \otimes \cdots \otimes W(\Lambda_n) \otimes \lambda_n$.

The tensor product of the crystal bases of the $W(\Lambda_p)$'s is a natural basis $\{v_\tau\}$ of $V(\lambda)$ indexed by combinatorial objects τ called tabloids. Then we obtain an intermediate basis of $V(\lambda)$ fixed by the involution $q \mapsto q^{-1}$ and such that the transition matrix from this basis to the global crystal basis of $V(\lambda)$ is unitriangular. Finally we compute the expansion of the canonical basis on the basis $\{v_\tau\}$ via an elementary algorithm. We give as an example the matrix associated to the expansion of the global basis of a weight space of the $U_q(sp_6)$-module $V(\lambda)$ with $\lambda = \Lambda_1 + \Lambda_2 + 2\Lambda_3$.

2 Background

In this section we briefly review the basic facts that we shall need concerning the representation theory of $U_q(sp_{2n})$ and the notions of crystal basis and canonical basis of a $U_q(sp_{2n})$-module. The reader is referred to [6], [5], [1] and [2] for more details.
2.1 The quantum enveloping algebra $U_q(sp_{2n})$

Recall the Dynkin diagram of sp_{2n}:

$$
\frac{1}{0} - \frac{2}{0} - \frac{3}{0} \cdots \frac{n-2}{0} - \frac{n-1}{0} \leftrightarrow \frac{n}{0}.
$$

Accordingly, the Cartan matrix $A = (a_{i,j})$ of sp_{2n} is:

$$
\begin{pmatrix}
2 & -1 \\
-1 & 2 & -1 \\
& & \ddots & \ddots \\
& & & 2 & -1 \\
& & & -2 & 2
\end{pmatrix}
$$

with rows and columns indexed by $\{1, \ldots, n\}$. Given a fixed indeterminate q set

$$q_i = \begin{cases} q & \text{if } i \neq n \\ q^2 & \text{if } i = n \end{cases}.$$

$$[n]_i = \frac{q^n - q^{-n}}{q_i - q_i^{-1}} \quad \text{and} \quad [n]_i! = [n]_i[n]_i! \cdots [1]_i.$$

The quantized enveloping algebra $U_q(sp_{2n})$ is the associative algebra over $C(q)$ generated by $e_i, f_i, q^{h_i}, q^{-h_i}, i = 1, \ldots, n$, subject to the relations:

$$q^{h_i}q^{-h_i} = q^{-h_i}q^{h_i} = 1,$$

$$q^{h_i}q^{h_j} = q^{h_j}q^{h_i},$$

$$q^{h_i}e_jq^{-h_i} = q^{a_{i,j}}e_j,$$

$$q^{h_i}f_jq^{-h_i} = q^{-a_{i,j}}f_j,$$

$$[e_i, f_i] = \frac{t_i - t_i^{-1}}{q_i - q_i^{-1}} \delta_{i,j},$$

where

$$t_i = \begin{cases} q^{h_i} & \text{if } i \neq n \\ q^{2h_n} & \text{if } i = n \end{cases}.$$

\[
\text{if } i \neq j \sum_{k=0}^{1-a_{i,j}} (-1)^k e_i^{(k)} e_j e_i^{(1-a_{i,j}-k)} = \sum_{k=0}^{1-a_{i,j}} (-1)^k f_i^{(k)} f_j f_i^{(1-a_{i,j}-k)} = 0
\]

where $e_i^{(m)} = e_i^m /[m]_i!$ and $f_i^{(m)} = f_i^m /[m]_i!$.

The subalgebra of $U_q(sp_{2n})$ generated by $e_i, f_i, q^{h_n}, q^{-h_i}, i = 1, \ldots, n-1$ is isomorphic to $U_q(sl_n)$, the quantum enveloping algebra of sl_n.

The representation theory of $U_q(sp_{2n})$ is closely parallel to that of its classical counterpart $U(sp_{2n})$. The weight lattice $P(U_q(sp_{2n}))$ is the \mathbb{Z}-lattice generated by the fundamental weights $\Lambda_1, \ldots, \Lambda_n$. We denote by P_+ the set of dominant weights of $U_q(sp_{2n})$ i.e. those of the form $\lambda_1 \Lambda_1 + \cdots + \lambda_n \Lambda_n$ where $\lambda_1, \ldots, \lambda_n \in \mathbb{N}$. Let M be a $U_q(sp_{2n})$-module. For every $\mu \in P$ the subspace

$$M_\mu = \{v \in M, q^{h_i}v = q^{<h_i, \mu>}v, \ i = 1, \ldots, n\}$$

is the weight space of weight μ of M. A vector v_λ is said to be of highest weight when $e_i(v_\lambda) = 0$ for $i = 1, \ldots, n$. If M is a finite-dimensional irreducible module, M is a highest weight module that is, contains a highest weight vector v_λ of weight λ such that $M = U_q(sp_{2n})v_\lambda$. Then $\dim M_\lambda = 1$ and λ is a dominant weight. Conversely, for each dominant weight $\lambda \in P_+$, there is a unique finite-dimensional module with highest weight λ. We denote it by $V(\lambda)$ and we write v_λ for a fixed highest weight vector.

Given two $U_q(sp_{2n})$-modules M and N, we can define a structure of $U_q(sp_{2n})$-module on $M \otimes N$ by putting:

$$q^{h_i}(u \otimes v) = q^{h_i}u \otimes q^{h_i}v,$$

$$e_i (u \otimes v) = e_i u \otimes t_i^{-1}v + u \otimes e_i v,$$

$$f_i (u \otimes v) = f_i u \otimes v + t_i u \otimes f_i v.$$
2.2 Crystal basis for $U_q(sp_{2n})$-modules

Let M be a finite-dimensional $U_q(sp_{2n})$-module. Fix $i \in \{1, ..., n\}$. Let $u \in M$ and suppose that $u \in M_\mu$. Then u can be written uniquely as a finite sum $\sum_k f_i^{(k)} u_k$ where $u_k \in M_{\mu+\kappa_i}$ and $e_i u_k = 0$. Kashiwara’s operators \tilde{e}_i and \tilde{f}_i are defined by:

$$\tilde{e}_i u = \sum f_i^{(k-1)} u_k, \quad \tilde{f}_i u = \sum f_i^{(k+1)} u_k.$$

(10)

Denote by A the subalgebra of $\mathbb{C}(q)$ consisting of the rational functions without pole at $q = 0$. Let L be a free A-submodule of M such that $L \otimes \mathbb{C}(q) = M$ and B a basis of the \mathbb{Q}-vector space L/qL. Write π for the canonical projection

$$L \overset{\pi}{\to} L/qL$$

Set $L_\mu = L \cap M_\mu$ and $B_\mu = B \cap L_\mu/qL_\mu$. Then (L, B) is a crystal basis of M at $q = 0$ if the following conditions hold:

$$\begin{align*}
\text{(i)} & \quad L = \bigoplus_{\mu \in P} L_\mu \quad \text{and} \quad B = \bigcup_{\mu \in P} B_\mu, \\
\text{(ii)} & \quad \tilde{e}_i L \subset L \quad \text{and} \quad \tilde{f}_i L \subset L, \\
\text{(iii)} & \quad \tilde{e}_i B \subset B \cup \{0\} \quad \text{and} \quad \tilde{f}_i B \subset B \cup \{0\}, \\
\text{(iv)} & \quad \text{for } b_1, b_2 \in B \quad \text{and} \quad i \in \{1, ..., n\}, \quad \tilde{e}_i b_1 = b_2 \iff b_1 = \tilde{f}_i b_2.
\end{align*}$$

(11)

Note that the action of \tilde{e}_i and \tilde{f}_i on L/qL is well defined because of (ii). Kashiwara [3] has proved that every finite-dimensional $U_q(sp_{2n})$-module M has a crystal basis. Moreover if $M = V(\lambda)$ is simple, this basis is unique up to an overall scalar factor. We shall denote it by $(L(\lambda), B(\lambda))$.

If (L, B) and (L', B') are crystal bases of the finite-dimensional $U_q(sp_{2n})$-modules M and M', then $(L \otimes L', B \otimes B')$ with $B \otimes B' = \{b \otimes b'; b \in B, b' \in B'\}$ is a crystal basis of $M \otimes M'$. The action of \tilde{e}_i and \tilde{f}_i on $B \otimes B'$ is given by:

$$\tilde{f}_i (u \otimes v) = \begin{cases}
\tilde{f}_i (u) \otimes v \quad \text{if } \varphi_i (u) > \varepsilon_i (v) \\
u \otimes \tilde{f}_i (v) \quad \text{if } \varphi_i (u) \leq \varepsilon_i (v)
\end{cases}$$

(12)

and

$$\tilde{e}_i (u \otimes v) = \begin{cases}
 u \otimes \tilde{e}_i (v) \quad \text{if } \varphi_i (u) < \varepsilon_i (v) \\
\tilde{e}_i (u) \otimes v \quad \text{if } \varphi_i (u) \geq \varepsilon_i (v)
\end{cases}$$

(13)

where $\varepsilon_i (u) = \max\{k; \tilde{e}_i^k (u) \neq 0\}$ and $\varphi_i (u) = \max\{k; \tilde{f}_i^k (u) \neq 0\}$.

The set B may be endowed with a combinatorial structure called the crystal graph of M. Crystal graphs are oriented colored graphs with colors $i \in \{1, ..., n\}$. An arrow $a \overset{i}{\to} b$ means that $\tilde{f}_i (a) = b$ and $\tilde{e}_i (b) = a$. The decomposition of M into its irreducible components is reflected into the decomposition of B into its connected components. The crystal graphs of two isomorphic irreducible components are isomorphic as oriented colored graphs. A vertex $v^0 \in B$ satisfying $\tilde{e}_i (v^0) = 0$ for $i \in \{1, ..., n\}$ is called a highest weight vertex. The crystal $B(\lambda)$ contains a unique highest weight vertex.

The end of this section is devoted to Kashiwara-Nakashima’s combinatorial description of the crystal graphs of the finite-dimensional irreducible $U_q(sp_{2n})$-modules [4]. It is based on the notion of symplectic tableaux analogous to Young tableaux for type A. In the sequel we use De Concini’s version of these tableaux which is equivalent to Kashiwara-Nakashima’s one [5].

Let us consider the totally ordered alphabet

$$\mathcal{C}_n = \{1 < \cdots < n < \pi < \cdots < \top\}.$$
For each letter $x \in \mathcal{C}_n$ we denote by $\text{pred}(x)$ the largest letter y such that $y < x$. A column on \mathcal{C}_n is a Young diagram C of column shape filled from top to bottom by increasing letters of \mathcal{C}_n. The height $h(C)$ of a column C is the number of its letters. Set $\mathcal{C}(n, h)$ for the set of columns of height h on \mathcal{C}_n i.e. with letters in \mathcal{C}_n. The reading of the column $C \in \mathcal{C}(n, h)$ is the word $w(C)$ of \mathcal{C}_n obtained by reading the letters of C from top to bottom. We will say that a column C contains the pair (z, \overline{z}) when C contains the unbarred letter $z \leq n$ and the barred letter $\overline{z} > n$. Let C_1 and C_2 be two columns. We will write $C_1 \leq C_2$ when $h(C_1) \geq h(C_2)$ and the rows of the tableau C_1C_2 weakly increase.

Definition 2.2.1 Let C be a column and $I_C = \{z_1 > \cdots > z_r\}$ the set of unbarred letters z such that the pair (z, \overline{z}) occurs in C. The column C is admissible when there exists a set of unbarred letters $J_C = \{t_1 > \cdots > t_r\} \subset \mathcal{C}_n$ such that:

- t_1 is the greatest letter of \mathcal{C}_n satisfying: $t_1 < z_1, t_1 \notin C$ and $t_1 \notin C$,
- for $i = 2, \ldots, r$, t_i is the greatest letter of \mathcal{C}_n satisfying: $t_i < \min(t_{i-1}, z_i)$, $t_i \notin C$ and $t_i \notin C$.

In this case we write:

- rC for the column obtained from C by changing \overline{z}_i into \overline{t}_i for each letter $z_i \in I_C$,
- lC for the column obtained from C by changing z_i into t_i for each letter $z_i \in I_C$.

A column C on \mathcal{C}_n may be non admissible. For $C = \begin{array}{c}
2 \\
3 \\
3 \\
1
\end{array}$ it is impossible to find a letter $t < 3$ such that $t \notin C$ and $\overline{t} \notin C$. We write $\mathcal{C}a(n, h)$ for the set of admissible columns of height h on \mathcal{C}_n.

Notice that the condition $t_i < \min(t_{i-1}, z_i)$ for $i = 2, \ldots, r$ of the above definition can be replaced by the condition $t_i < z_i$ and $t_i \notin \{t_1, \ldots, t_{i-1}\}$ for $i = 2, \ldots, r$. Indeed, $t_i > t_{i-1}$ contradicts the fact that t_{i-1} is maximal. Then J_C may be regarded as the set of r maximal unbarred letters $\{t_1, \ldots, t_r\}$ such that $t_i < z_i$ and $\{t_i, \overline{t}_i\} \cap C = \emptyset$.

Similarly to the type A case, we can associate to each dominant weight $\lambda = \sum_{i=1}^{n} \lambda_i \Lambda_i$ a Young diagram $Y(\lambda)$ having λ_i columns of height $i, i = 1, \ldots, n$. By definition, a symplectic tableau T of shape λ is a filling of $Y(\lambda)$ by letters of \mathcal{C}_n satisfying the following conditions:

- the columns C_i of $T = C_1 \cdots C_s$ are admissible,
- $rC_i \leq lC_{i+1}$.

The set of symplectic tableaux of shape λ will be denoted $\mathbf{ST}(n, \lambda)$. If $T = C_1C_2 \cdots C_r \in \mathbf{ST}(n, \lambda)$, the reading of T is the word $w(T) = w(C_r) \cdots w(C_2)w(C_1)$. From \mathbb{F} and \mathbb{P} we deduce the

Theorem 2.2.2

(i): The vertices of $B(\Lambda_p)$ are in one-to-one correspondence with the readings of admissible columns of height p.

(ii): The vertices of $B(\lambda)$ are in one-to-one correspondence with the readings of the symplectic tableaux of shape λ.

More precisely Kashiwara and Nakashima realize $V(\lambda)$ into a tensor power $V(\Lambda_1) \otimes^l$ of the vector representation whose crystal graph is:

$$
1 \xrightarrow{1} 2 \cdots \xrightarrow{n-1} n-1 \xrightarrow{n} \overline{n} \xrightarrow{n-1} \overline{n-1} \xrightarrow{n-2} \cdots \xrightarrow{2} \overline{2} \xrightarrow{1} 1.
$$

(14)
Let us identify the vertices of the crystal graph $G_n = \bigoplus_l B(\Lambda_l)^ \otimes l$ with the words on C_n. The weight of the vertex $b \in G_n$ is defined by
\[
\text{wt}(b) = \sum_{i=1}^n (\varphi_i(b) - \varepsilon_i(b)) \Lambda_i.
\] (15)

$B(\Lambda_p)$ can then be identified with the connected component of G_n whose vertex of highest weight is the reading of the column
\[
C_p^0 = \begin{array}{c}
1 \\
2 \\
\vdots \\
p
\end{array}
\] In this identification, the vertices of $B(\Lambda_p)$ are the readings of the admissible columns of height p. If $\lambda = \sum_{p=1}^n \lambda_p \Lambda_p$, $B(\lambda)$ is identified with the connected component whose highest weight vertex is the reading of the symplectic tableau T_λ containing λ_p columns C_p^0 for $p = 1, \ldots, n$. Then the vertices of $B(\lambda)$ are the readings of the symplectic tableaux of shape λ.

Using Formulas $[12]$ and $[13]$ we obtain a simple rule to compute the action of \tilde{e}_i and \tilde{f}_i on $w \in G_n$ that we will use in Section 4. Consider the subword w_i of w containing only the letters $i+1, i, i, i+1$. Then encode in w_i each letter $i+1$ or i by the symbol $+$ and each letter i or $i+1$ by the symbol $-$. Because $\tilde{e}_i(+) = \tilde{f}_i(-) = 0$ in $B(\Lambda_1) \otimes B(\Lambda_1)$ the factors of type $+-+-$ may be ignored in w_i. So we obtain a subword $w_i^{(1)}$ in which we can ignore all the factors $+-$ to construct a new subword $w_i^{(2)}$ etc... Finally we obtain a subword $\rho(w)$ of w of type $\rho(w) = -^r +^s$.

Then we have the

Rule 2.2.3

- If $r > 0$, $\tilde{e}_i(w)$ is obtained by changing the rightmost symbol $+$ of $\rho(w)$ into its corresponding symbol $+$ (i.e. $i+1$ into i and 7 into $i+1$) the others letters of w being unchanged. If $r = 0$, $\tilde{e}_i(w) = 0$

- If $s > 0$, $\tilde{f}_i(w)$ is obtained by changing the leftmost symbol $-$ of $\rho(w)$ into its corresponding symbol $-$ (i.e. i into $i+1$ and 7 into $i+1$) the others letters of w being unchanged. If $s = 0$, $\tilde{f}_i(w) = 0$.

2.3 Canonical bases for $U_q (sp_{2n})$-modules

In the sequel we identify $B(\Lambda_p)$ to $\{w(C); C \in Ca(n,p)\}$ and $B(\lambda)$ to $\{w(T); T \in ST(n,\lambda)\}$. Denote by $F \to F$ the involution of $U_q (sp_{2n})$ defined as the ring automorphism satisfying
\[
\varphi = q^{-1}, \quad q^{h_i} = q^{-h_i}, \quad \varphi_i = e_i, \quad \varphi_i = f_i \quad \text{for } i = 1, \ldots, n.
\]

Writing each vector v of $V(\lambda)$ in the form $v = Fv_\lambda$ where $F \in U_q (sp_{2n})$, we obtain an involution of $V(\lambda)$ defined by
\[
\overline{v} = Fv_\lambda.
\]

Let $U^-_\mathbb{Q}$ be the subalgebra of $U_q (sp_{2n})$ generated over $\mathbb{Q}[q,q^{-1}]$ by the $f_i^{(k)}$ and set $V_\mathbb{Q}(\lambda) = U^-_\mathbb{Q}v_\lambda$. We can now state:
Theorem 2.3.1 (Kashiwara)
There exists a unique $\mathbb{Q}[q, q^{-1}]$-basis \{G(T); T \in ST(n, \lambda)\} of $V_Q(\lambda)$ such that:

\[
G(T) \equiv w(T) \mod qL(\lambda),
\]

\[
\frac{G(T)}{G(T)} = G(T).
\]

This basis is called the lower global (or canonical) basis of $V(\lambda)$, and our aim is to calculate it.

3 Fundamental modules

3.1 Marsh’s Algorithm

We review Marsh’s algorithm for computing the global basis of $V(\Lambda_p)$ \[1\]. Let $w(C) \in B(\Lambda_p)$. A letter $x \in C$ is said to be movable if $\text{pred}(x) \notin C$. We define a path in $B(\Lambda_p)$ joining $w(C)$ to $w(C_p^0)$. If $C \neq C_p^0$, let z be the lowest movable letter of C. Then we compute a new column C_1 as follows:

(i) : if $z = i + 1, \bar{t} \notin C$ or $\bar{t} + 1 \in C$, $C_1 = C - \{i + 1\} + \{i\}$,

(ii) : if $z = i + 1, \bar{t} \in C$ and $\bar{t} + 1 \notin C$, $C_1 = C - \{i + 1\} + \{t + 1, i\}$,

(iii) : if $z = \bar{t} > \pi$, $C_1 = C - \{\bar{t}\} + \{t + 1\}$,

(iv) : if $z = \pi$, $C_1 = C - \{\pi\} + \{n\}$.

Remark 3.1.1 In case (iii) the letters i and \bar{t} can not appear simultaneously in C. Otherwise by definition of z, the letters $i, i - 1, \ldots, 1$ would appear in C and C would be not admissible.

We will have $w(C_1) = \tilde{e}_1 w(C)$ in cases (i) and (iii), $w(C_1) = \tilde{e}_2 w(C)$ in case (ii) and $w(C_1) = \tilde{e}_n w(C)$ in case (iv). So C_1 is an admissible column. Write $w(C_1) = \tilde{e}_1^{p_1} w(C)$. Next we compute similarly C_2 from C_1 and write $w(C_2) = \tilde{e}_1^{p_2} w(C_1)$. Finally, after a finite number of steps, we will reach C_p^0 and we will get $w(C_p^0) = \tilde{e}_1^{p_1} \cdots \tilde{e}_1^{p_r} w(C)$, hence $w(C) = \tilde{f}_1^{p_1} \cdots \tilde{f}_r^{p_r} w(C_p^0)$.

Example 3.1.2 Let $C = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ and $n = 3$. We obtain:

In fact $\tilde{f}_1^{p_1}, \ldots, \tilde{f}_r^{p_r}$ are chosen to verify:

\[
f_{i_1}^{(p_1)} \cdots f_{i_r}^{(p_r)} v_{\Lambda_p} = \tilde{f}_1^{p_1} \cdots \tilde{f}_r^{p_r} v_{\Lambda_p}.
\]

This implies

Theorem 3.1.3 (Marsh) For any admissible column C

\[
G(C) = f_{i_1}^{(p_1)} \cdots f_{i_r}^{(p_r)} v_{\Lambda_p},
\]

where the integers i_1, \ldots, i_r and p_1, \ldots, p_r are determined by the algorithm above.
3.2 The representation $W(\Lambda_p)$

It is well known that the fundamental \mathfrak{sp}_{2n}-module of weight Λ_p may be regarded as an irreducible component of the p-th exterior power of the vector representation. This exterior power contains a natural basis indexed by the columns of height p. Our aim in this subsection is to obtain a analogous embedding for the $U_q(\mathfrak{sp}_{2n})$-module $V(\Lambda_p)$. We are going to describe a $U_q(\mathfrak{sp}_{2n})$-module $W(\Lambda_p)$ containing an irreducible component isomorphic to $V(\Lambda_p)$ (that we identify with $V(\Lambda_p)$), whose natural basis $\{v_C\}$ is indexed by all columns of $\mathbf{C}(n,p)$. The action of the generators e_i, f_i and q^{h_i} $i = 1, \ldots, n$ of $U_q(\mathfrak{sp}_{2n})$ on each vector $v_C, C \in \mathbf{C}(n,p)$ is easy to describe. So, using Marsh’s algorithm, we will be able to expand the canonical basis of $V(\Lambda_p)$ on this basis.

Consider the two totally ordered alphabets

$$A_n = \{1 < \cdots < n\} \quad \text{and} \quad \overline{A}_n = \{\overline{1} < \cdots < \overline{t}\}.$$

Let E^+_k be the vector space of dimension $\binom{n}{k}$ with basis $B^+_k = \{v_C\}$ where C_+ runs over the set of columns of height k on A_n. We define the action of the operators e_i, f_i and q^{h_i} ($i = 1, \ldots, n-1$) on E^+_k by:

$$q^{h_i}v_{C_+} = \begin{cases}
q v_{C_+} & \text{if } i \in C_+ \text{ and } i + 1 \notin C_+, \\
q^{-1} v_{C_+} & \text{if } i + 1 \in C_+ \text{ and } i \notin C_+, \\
v_{C_+} & \text{otherwise.}
\end{cases}$$

$$e_i v_{C_+} = \begin{cases}
0 & \text{if } i + 1 \notin C_+ \text{ or } i \in C_+, \\
v_D & \text{where } D = C_+ - \{i + 1\} + \{i\} \text{ otherwise.}
\end{cases}$$

$$f_i v_{C_+} = \begin{cases}
0 & \text{if } i \notin C_+ \text{ or } i + 1 \in C_+, \\
v_D & \text{where } D = C_+ - \{i\} + \{i + 1\} \text{ otherwise.}
\end{cases}$$

This endows E^+_k with the structure of a fundamental $U_q(\mathfrak{sl}_n)$-module which may be regarded as a q-analogue of the fundamental \mathfrak{sl}_n-module $\Lambda^k \mathbf{C}$. Moreover the basis $\{v_C\}$ is then the canonical basis and the crystal basis of E^+_k because the fundamental modules of $U_q(\mathfrak{sl}_n)$ are minuscule. Similarly E^-_k the vector space of dimension $\binom{n}{k}$ with basis $B^-_k = \{v_{C_-}\}$ where C_- runs over the set of columns of height k on \overline{A}_n is a q-analogue of the fundamental \mathfrak{sl}_n-module $\Lambda^{n-k} \mathbf{C}$ once defined the appropriate action of e_i, f_i and q^{h_i} (obtained by replacing in the right hand sides of the above formulas i by $\overline{i + 1}$ and $i + 1$ by \overline{i}). Then $B^-_k = \{v_{C_-}\}$ is again the canonical basis and the crystal basis of E^-_k.

Set $\Omega^+ = \bigoplus_{k=0}^n E^+_k$, $\Omega^- = \bigoplus_{k=0}^n E^-_k$ and write $B^+ = \bigcup_{k=0}^n B^+_k$, $B^- = \bigcup_{k=0}^n B^-_k$. Then $B^+ \otimes B^- = \{v_{C^+} \otimes v_{C^-} : v_{C^+} \in B^+, v_{C^-} \in B^-\}$ is a basis of $\Omega^+ \otimes \Omega^-$. For $p \in \{1, \ldots, n\}$, let $W(\Lambda_p)$ be the subspace of $\Omega^+ \otimes \Omega^-$ generated by the vectors $v_{C^+} \otimes v_{C^-}$ such that $h(C^+) + h(C^-) = p$. For each of these vectors we set $v_{C^+} \otimes v_{C^-} = v_C$ where C is the column of height p on \mathbf{C}_n (admissible or not) consisting of the letters of C_+ and C_-. Then $\{v_C\}$ is a basis of $W(\Lambda_p)$. The action of $U_q(\mathfrak{sl}_n)$ on this basis is deduced from the description of its action on B^+ and B^- and from (7), (8) and (9). The formulas below describe this action on the basis vector v_C. Set $E = C \cap \{i + 1, i, \overline{i}, i + 1\}$.
then:

\[
\begin{align*}
\text{(i)}: \quad & v_D \text{ with } D = C - \{i\} + \{i + 1\} \text{ if } E = \{i\}, \\
\text{(ii)}: \quad & v_D \text{ with } D = C - \{i\} + \{i + 1\} \text{ if } E = \{\overline{i}, i\}, \\
\text{(iii)}: \quad & v_D \text{ with } D = C - \overline{i + 1} + \{\overline{i}\} \text{ if } E = \{\overline{i + 1}\}, \\
\text{(iv)}: \quad & v_D \text{ with } D = C - \overline{i + 1} + \{\overline{i}\} \text{ if } E = \{\overline{i + 1}, i, i + 1\}, \\
\text{(v)}: \quad & q^{-1}v_D \text{ with } D = C - \{i + 1\} + \{\overline{i}\} \text{ if } E = \{i + 1\}, \\
\text{(vi)}: \quad & v_D \text{ with } D = C - \{i\} + \{i + 1\} \text{ if } E = \{\overline{i}, i\}, \\
\text{(vii)}: \quad & v_{D_1} + qv_{D_2} \text{ with } \begin{cases} D_1 = C - \{i\} + \{i + 1\} \\ D_2 = C - \{\overline{i + 1}\} + \{\overline{i}\} \end{cases} \text{ if } E = \{i + 1\}, \\
\text{(viii)}: \quad & 0 \text{ otherwise.}
\end{align*}
\]

\[
\begin{align*}
\text{(i)}: \quad & v_D \text{ with } D = C - \{i + 1\} + \{i\} \text{ if } E = \{i + 1\}, \\
\text{(ii)}: \quad & v_D \text{ with } D = C - \{i + 1\} + \{i\} \text{ if } E = \{\overline{i + 1}, i, i + 1\}, \\
\text{(iii)}: \quad & v_D \text{ with } D = C - \overline{i} + \{\overline{i + 1}\} \text{ if } E = \{\overline{i}\}, \\
\text{(iv)}: \quad & v_D \text{ with } D = C - \overline{i} + \{\overline{i + 1}\} \text{ if } E = \{\overline{i}, i, i + 1\}, \\
\text{(v)}: \quad & q^{-1}v_D \text{ with } D = C - \{i\} + \{i\} \text{ if } E = \{i + 1\}, \\
\text{(vi)}: \quad & v_D \text{ with } D = C - \{\overline{i}\} + \{\overline{i + 1}\} \text{ if } E = \{\overline{i}, i\}, \\
\text{(vii)}: \quad & v_{D_1} + qv_{D_2} \text{ with } \begin{cases} D_1 = C - \overline{i} + \{\overline{i + 1}\} \\ D_2 = C - \{i + 1\} + \{i\} \end{cases} \text{ if } E = \{i, i + 1\}, \\
\text{(viii)}: \quad & 0 \text{ otherwise.}
\end{align*}
\]

\[q^{h_i}v_C = q^{<\text{wt}(C), \Lambda_i>} v_C. \tag{21}\]

Now we define an action of the operators \(e_n, f_n\) and \(q^{h_n}\) in order to endow \(W(\Lambda_p)\) with the structure of a \(U_q(sp_{2n})\)-module. Set

\[
\begin{align*}
f_n v_C &= \begin{cases} 0 \text{ if } \ul{\pi} \in C \text{ or } n \notin C \\ v_D \text{ with } D = C - \{n\} + \{\ul{\pi}\} \text{ otherwise} \end{cases}, \tag{22}
\end{align*}
\]

\[
\begin{align*}
e_n v_C &= \begin{cases} 0 \text{ if } \ul{\pi} \notin C \text{ or } n \in C \\ v_D \text{ with } D = C - \{\ul{\pi}\} + \{n\} \text{ otherwise} \end{cases}, \tag{23}
\end{align*}
\]

\[
q^{h_n}v_C = q^{<\text{wt}(C), \Lambda_n>} v_C. \tag{24}
\]

Lemma 3.2.1 The above actions of \(e_n, f_n\) and \(q^{h_n}\) make \(W(\Lambda_p)\) into a \(U_q(sp_{2n})\)-module.
Proof. It suffices to show that the actions of f_n, e_n and h_n are compatible with (i), (ii), (iii), (iv), (v) and (vi). $W(\Lambda_p)$ is already a $U_q(sl_n)$-module so we can restrict ourselves to the cases where $i = n$ or $j = n$ in these relations. Suppose first $(i,j) = (n,n)$. Then denote by $U_q(sl_2)$ the subalgebra of $U_q(sp_{2n})$ generated by f_n, e_n and h_n. Formulas (22), (23) and (24) imply that $W(\Lambda_p)$ is a $U_q(sl_2)$-module and the only non trivial module occurring in its decomposition into irreducible $U_q(sl_2)$-modules is the vector representation of $U_q(sl_2)$. Hence we can suppose $(i,j) \neq (n,n)$. Let $C \in C(n,p)$. For $i \neq n$, we have to establish that:

(i) : $q^n e_i q^{-n} v_C = \begin{cases} q^{-1} e_i v_C & \text{if } i = n - 1 \\ e_i v_C & \text{otherwise} \end{cases}$ and $q^n f_i q^{-n} v_C = \begin{cases} q e_i v_C & \text{if } i = n - 1 \\ f_i v_C & \text{otherwise} \end{cases}$.

(ii) : $q^n e_n q^{-n} v_C = \begin{cases} q^{-1} e_n v_C & \text{if } i = n - 1 \\ e_n v_C & \text{otherwise} \end{cases}$ and $q^n f_n q^{-n} v_C = \begin{cases} q e_n v_C & \text{if } i = n - 1 \\ f_n v_C & \text{otherwise} \end{cases}$.

(iii) : $[e_n, f_i] v_C = [f_n, e_i] v_C = 0$ for $i \neq n - 1$.

(iv) : $[e_n, e_i] v_C = [f_n, f_i] v_C = 0$ for $i \neq n - 1$.

(v) : $\begin{cases} (e_n - 1) e_i^2 - (q^2 + q^{-2}) e_n - 1 + e_i^2 - 1) v_C = 0 \\ (f_n - 1) f_i^2 - (q^2 + q^{-2}) f_n = 1 + f_i^2 - 1) v_C = 0 \end{cases}$.

(vi) : $\begin{cases} e_n e_{n-1} e_i = (q^2 + q^{-2}) e_{n-1} e_i e_n + (q^2 - q^{-2}) e_{n-1} e_i e_n - e_{n-1} e_i v_C = 0 \\ f_n f_{n-1}^2 - (q^2 + q^{-2}) f_n f_{n-1} + f_n^2 f_{n-1} - 1) v_C = 0 \end{cases}$.

When $i \neq n - 1$, the actions the operators e_n, f_n or h_n on $W(\Lambda_p)$ commute with those of the operators e_i, f_i or h_i. Moreover we have $e_i^3 v_C = f_i^3 v_C = 0$ and $e_i^2 v_C = f_i^2 v_C = 0$. This implies that the above relations are immediate when $i \neq n - 1$. If $i = n - 1$, we obtain (i) and (ii) by a case by case computation from (20), (19) and (24). Relations (iii) follows from the equalities $e_{n-1} f_n v_C = n e_{n-1} v_C = e_{n-1} f_n v_C = 0$. To establish relations (v) and (vi) it suffices to prove that

$e_n e_{n-1} e_i v_C = f_n f_{n-1} f_n v_C = 0$;

$f_{n-1} f_n f_{n-1} f_n = f_{n-1} f_n f_{n-1} v_C = 0$;

$e_n e_{n-1} e_i v_C = e_n f_{n-1} f_n v_C = 0$.

If $f_n v_C = v_D \neq 0$, then the column D contains n but not n so D is of type (ii), (iii) or (vii) in (10). Then we obtain after a simple computation that $f_n f_{n-1} f_n v_C = 0$. We prove similarly the equality: $e_n e_{n-1} e_i v_C = 0$ which implies (v). From (vii) of formula (10) it follows that $f_n f_{n-1} v_C = 0$. Moreover $f_{n-1} f_n f_{n-1} v_C = 0$ because $f_n f_{n-1} v_C = 0$ or may be written v_D with D a column which is not of the type (vii) of (10). In the same manner we can see that $e_n e_{n-1} v_C = 0$ which implies (vi). \blacksquare

$W(\Lambda_p)$ is not an irreducible $U_q(sp_{2n})$-module. Since it is finite-dimensional, it decomposes into a direct sum of irreducible components. It is easy to verify that the vector v_C where C_p is the column defined in (22) is a highest weight vector of weight Λ_p. Hence setting $v_{\Lambda_p} = v_C$ we can identify $U_q(sp_{2n}) v_{C_p}$ and $V(\Lambda_p)$. Then it is possible to expand explicitly the vectors of the canonical basis of $V(\Lambda_p)$ on the basis $\{v_C; C \in C(n,p)\}$.

Lemma 3.2.2

1. Let L_p be the A-submodule of $W(\Lambda_p)$ generated by the vectors v_C, $C \in C(n,p)$. Write $w(C)$ for the image of the vector v_C, $C \in C(n,p)$ by the projection $\pi_p : L_p \to L_p/qL_p$ and $B_p = \{w(C) ; C \in C(n,p)\}$. Then (L_p, B_p) is a crystal basis of $W(\Lambda_p)$.

2. Set $L(\Lambda_p) = L_p \cap V(\Lambda_p)$ and denote by $B(\Lambda_p)$ the set of images of the vectors $\{v_C; C \in C(n,p)\}$ by π_p. Then $(L(\Lambda_p), B(\Lambda_p))$ is the crystal basis of $V(\Lambda_p)$.

Proof. 1 : We have to prove that L_p and B_p verify the assertions (i), (ii), (iii) and (iv) of (11). When $i = n$ this follows immediately from formulas (22) and (23). Indeed the actions of f_n and f_n (resp. e_n and e_n) coincide on each vector v_C, $C \in C(n,p)$. On the other hand, by construction $W(\Lambda_p)$ is a direct sum of tensor products of $U_q(sl_n)$-modules and it follows from the
compatibility of crystals with tensor products that \((L_p, B_p)\) is a crystal basis of \(W(\Lambda_p)\) considered as a \(U_q(sl_n)\)-module. Hence the assertions (i), (ii), (iii) and (iv) are also verified for \(i = 1, \ldots, n - 1\).

Note that the actions of \(\bar{e}_i\) and \(\bar{f}_i\), \(i = 1, \ldots, n\) on \(B_p\) coincide with those given by Rule 2.2.3.

2 : It is clear that \(L(\Lambda_p)\) verifies the conditions of [11]. By theorem 4.2 of [6], we know that

\[
B(\Lambda_p) = \{\bar{f}_{i_1}^{a_1} \cdots \bar{f}_{i_r}^{a_r} w(C^0_p); \ i_1, \ldots, i_r = 1, \ldots, n; \ a_1, \ldots, a_r > 0\} \setminus \{0\}
\]

for \(w(C^0_p)\) is the image of \(v_{\Lambda_p}\) by \(\pi_p\). We have just seen that the actions of \(\bar{e}_i\) and \(\bar{f}_i\), \(i = 1, \ldots, n\) on \(B_p\) coincide with those given by Rule 2.2.3. Hence, by Theorem 2.2.2, \(B(\Lambda_p) = \{w(C); C \in C(a(n, p))\}\.

3.3 Expression of \(\{G(C)\}\) on \(\{v_C\}\)

Let \(C\) be an admissible column of height \(p\) and set \(C = \bar{f}_{i_1}^{p_1} \cdots \bar{f}_{i_r}^{p_r} C^0_p\) with the notation of Section 3.1. Then by Theorem 3.1.3

\[
G(C) = \bar{f}_{i_1}^{p_1} \cdots \bar{f}_{i_r}^{p_r} v_{\Lambda_p}.
\]

We are going to give a combinatorial description of \(G(C)\). Define the \(r\)-tuple \(L_C = (u_1, \ldots, u_r) \subset A_n\) from the \(r\)-tuple \(K_C = (x_1 < \cdots < x_r)\) containing the unbarred letters \(x\) such that \((x, \pi) \subset C\) by:

\[
u_1 < x_1, \{u_1, \pi_1\} \cap C = \emptyset \quad \text{and} \quad u_1 \text{ is maximal,}
\]

for \(i = 2, \ldots, r\), \(u_i < x_i\), \(\{u_i, \pi_i\} \cap (C \cup \{u_1, \ldots, u_{i-1}\}) = \emptyset \) and \(u_i\) is maximal.

Then the letters of \(L_C\) are those of the set \(J_C\) defined in 2.2. Indeed we have seen that \(J_C\) may be regarded as the set of \(r\) maximal unbarred letters \(\{t_1, \ldots, t_r\}\) such that \(t_i < z_i\) and \(\{t_i, \pi_i\} \cap C = \emptyset\). Notice that, in general, the letters of \(L_C\) are not ordered in decreasing order as those of \(J_C\).

Example 3.3.1 \(C = \begin{pmatrix}3 \\ 5 \\ 6 \\ 5 \\ 5 \\ 3 \end{pmatrix}\) is admissible with \(K_C = (3 < 5 < 6)\) and \(L_C = (2, 4, 1)\).

For any subset \(X = \{x_1, \ldots, x_k\} \subset K_C\), let \(C_X\) be the column of \(C(n, p)\) obtained by changing in \(C\) each pair of letters \((x_i, \pi_i)\) into the corresponding pair of letters \((u_{i}, \pi_{i})\). Then, with the above notations we obtain:

Theorem 3.3.2 For any admissible column \(C\) of height \(p\)

\[
G(C) = \sum_{X \subset K_C} q^{\text{card}(X)} v_{C_X}.
\]

Example 3.3.3 With the column \(C\) of the previous example we have:

\[
G(C) = \begin{pmatrix}3 \\ 5 \\ 6 \\ 5 \\ 5 \\ 3 \end{pmatrix} + q \begin{pmatrix}2 \\ 5 \\ 6 \\ 6 \\ 5 \\ 2 \end{pmatrix} + q^2 \begin{pmatrix}2 \\ 4 \\ 5 \\ 4 \\ 3 \\ 2 \end{pmatrix} + \cdots
\]

where we have written for short \(C\) in place of \(v_C\).
Proof. Let C be an admissible column and set $w(C) = \tilde{p}_{i_1} \cdots \tilde{p}_{i_r} w(C'_p)$ with the notation of Section 3. First notice that by (13) and (2) we will have $d(D) = d(C')$ for any column D such that v_D occurs with a non-zero coefficient in the decomposition of $G(C')$ on the basis $\{v_C\}$. We proceed by induction on r. The theorem is clear for $r = 0$, i.e. $C = C'_p$. Suppose the result is proved for the admissible column $w(C') = \tilde{p}_{i_2} \cdots \tilde{p}_{i_r} w(C'_p)$, that is:

$$G(C') = \sum_{X' \subseteq K_C} q^{\text{card}(X')} v_{C'_{X'}}.$$

When $p_1 = 2$, the letters i_1 and $i_1 + 1$ occur in C' but not the letters \tilde{i}_1 or $\tilde{i}_1 + 1$. We have the same property for all the columns $C'_{X'}$. Moreover $C = C' - \{i_1, i_1 + 1\} + \{\tilde{i}_1, \tilde{i}_1 + 1\}$, $K_C = K_{C'}$ and $L_C = L_{C'}$. Then $G(C) = f_{i_1} G(C')$ is obtained by replacing in the columns $C'_{X'}$ each pair $(i_1, i_1 + 1)$ by $(\tilde{i}_1, \tilde{i}_1 + 1)$. So the theorem is proved.

When $p_1 = 1$ and $i_1 = n$, $n \in C'_{X'}$, but $n \notin C'_{X'}$. Then $K_C = K_{C'}$, $L_C = L_{C'}$ and $G(C)$ is obtained by replacing all the letters n by letters \tilde{n} into the columns $C'_{X'}$. So the theorem is proved.

When $p_1 = 1$ and $i_1 \neq n$, C can not contain the pair $(i_1 + 1, \tilde{i}_1)$ without containing a letter of $(i_1, i_1 + 1)$ (otherwise $p_1 = 2$). Hence C' may not be of type (v) in (13). Moreover C' is not of type (vi) or (viii) otherwise $f_i w(C') = 0$. Suppose C' of type (i) or (ii). Then $C = C' - \{i_1\} + \{i_1 + 1\}$, $K_C = K_{C'}$ and $L_C = L_{C'}$. Hence

$$G(C) = f_{i_1} (G(C')) = \sum_{X' \subseteq K_C} q^{\text{card}(X')} v_{C'_{X'}} - (i_1) + (i_1 + 1) = \sum_{X' \subseteq K_C} q^{\text{card}(X')} v_{C_{X'}}.$$

When C' of type (iii) or (iv) we have $C = C' - \{i_1, i_1 + 1\} + \{\tilde{i}_1\}$, $K_C = K_{C'}$ and $L_C = L_{C'}$. Hence

$$G(C) = f_{i_1} (G(C')) = \sum_{X' \subseteq K_C} q^{\text{card}(X')} v_{C'_{X'}} - (i_1, i_1 + 1) = \sum_{X' \subseteq K_C} q^{\text{card}(X')} v_{C_{X'}}.$$

If C' is of type (vii) in (13), the letters i_1 and $i_1 + 1$ occur in all the columns $C'_{X'}$ but not the letters \tilde{i}_1 or $\tilde{i}_1 + 1$. Then $C = C' - \{i_1\} + \{i_1 + 1\}$, $K_C = K_{C'} + \{i_1 + 1\}$. Note that $i_1 + 1$ is the lowest letter of K_C because $i_1 + 1$ is the lowest movable letter of C. Hence $L_C = L_{C'} + \{i_1\}$ and the letter of L_C corresponding to $i_1 + 1 \in K_C$ is i_1. We obtain $f_{i_1} v_{C'_{X'}} = v_{C_{X'}} + q v_{C_{X' + (i_1 + 1)}}$ which implies:

$$G(C) = \sum_{X' \subseteq K_C} q^{\text{card}(X')} (v_{C_{X'}} + q v_{C_{X' + (i_1 + 1)}}) = \sum_{X \subseteq K_C} q^{\text{card}(X)} v_{C_{X}}$$

because the parts of K_C are exactly the elements of the set $\{X', X' + \{i_1 + 1\}; X' \subseteq K_{C'}\}$. ■

4 The computation of the canonical basis of $V(\lambda)$

4.1 The representation $W(\lambda)$

Let $\lambda = \sum_{p=1}^n \lambda_p \Lambda_p$ be a dominant weight and write

$$W(\lambda) = W(\Lambda_1) \otimes \lambda_1 \otimes \cdots \otimes W(\Lambda_n) \otimes \lambda_n.$$

The natural basis of $W(\lambda)$ consists of the tensor products $v_{C_1} \otimes \cdots \otimes v_{C_1}$ of basis vectors v_C of the previous section. The juxtaposition of the columns C_1, \ldots, C_r is called a tabloid of shape λ. We can regard it as a filling τ of the Young diagram of shape λ, the i-th column of which is equal to C_i. We shall write $v_\tau = v_{C_1} \otimes \cdots \otimes v_{C_1}$. Note that the columns of a tabloid are not necessarily admissible and there is no condition on the rows. Write $T(n, \lambda)$ for the set of tabloids of shape λ. The reading of the tabloid $\tau = C_1 \cdots C_r \in T(n, \lambda)$ is the word $w(\tau) = w(C_r) \cdots w(C_1) \in C_n$. The weight of τ is the weight v_τ.

11
Let L_{λ} be the A-submodule of $W(\lambda)$ generated by the vectors v_τ, $\tau \in T(n, \lambda)$. We identify the image of the vector v_τ by the projection $\pi_{\lambda} : L_{\lambda} \to L_{\lambda}/qL_{\lambda}$ with the word $w(\tau)$. The pair $(L_{\lambda}, B_{\lambda} = \{w(\tau) \mid \tau \in T(n, \lambda)\})$ is then a crystal basis of $W(\lambda)$. Indeed by Lemma 3.2.2 it is the tensor product of the crystal bases of the representations $W(\Lambda_p)$ occurring in $W(\lambda)$. Denote by v_λ the tensor product in $W(\lambda)$ of the highest weight vectors of each $W(\Lambda_p)$. We identify $V(\lambda)$ with the submodule of $W(\lambda)$ of highest weight vector v_λ. Then, with the above notations, $v_\lambda = v_{T_{\lambda}}$, where T_{λ} is the symplectic tableau of shape λ whose k-th row is filled by letters k. By Theorem 4.2 of [8], we know that

$$B(\lambda) = \{ \tilde{f}_{i_1}^{a_1} \cdots \tilde{f}_{i_r}^{a_r} w(T_{\lambda}); \; i_1, \ldots, i_r = 1, \ldots, n; \; a_1, \ldots, a_r > 0 \} - \{ 0 \}. $$

The actions of \tilde{e}_i and \tilde{f}_i, $i = 1, \ldots, n$ on B_{λ} coincide with those given by Rule (2.2.3) because it is true on each B_p, $p = 1, \ldots, n$. Hence, by Theorem (2.2.2), $B(\lambda) = \{ w(T); T \in ST(n, \lambda) \}$. For each vector $G(T)$ of the canonical basis of $V(\lambda)$ we will have:

$$G(T) \equiv v_T \mod qL_{\lambda}. $$

The aim of this section is to describe an algorithm computing the decomposition of the canonical basis $\{G(T); T \in ST(n, \lambda)\}$ onto the basis $\{v_\tau; \tau \in T(n, \lambda)\}$ of $W(\lambda)$.

Let $w_1 = x_1 \cdots x_l$ and $w_2 = y_1 \cdots y_k$ be two distinct words on C_n with the same length and k the lowest integer such that $x_k \neq y_k$. Write $w_1 \leq w_2$ if $x_k \leq y_k$ in C_n and $w_1 > w_2$ else that is, \leq is the lexicographic order. Then we endow the set $T(n, \lambda)$ with a total ordering by setting:

$$\tau_1 \leq \tau_2 \iff w(\tau_1) \leq w(\tau_2). $$

Notice that for any tabloid $\tau \in T(n, \lambda)$, we have $T_{\lambda} \leq \tau$.

We are going to compute the canonical basis $\{G(T); T \in ST(n, \lambda)\}$ in two steps. First we obtain an intermediate basis $\{A(T); T \in ST(n, \lambda)\}$ which is fixed by the involution (τ)(condition (17)). Next we correct it in order to have condition (16). This second step is easy because we can prove that the transition matrix from $\{A(T); T \in ST(n, \lambda)\}$ to $\{G(T); T \in ST(n, \lambda)\}$ is uniprincipal once the symplectic tableaux and the tabloids are ordered by \leq.

We start with a general Lemma analogous to Lemma 4.1 of [8]. Let ν be a tabloid and i, m two integers such that $f_i^m v_\nu \neq 0$. Suppose that the vector v_ν appears in the decomposition of $f_i^m v_\nu$ on the basis $\{v_\tau; \tau \in T(n, \lambda)\}$ with a non zero coefficient κ_τ. Then the tabloid τ is obtained from ν by changing m occurrences of letters of $\{i+1, i\}$ into the corresponding letters of $\{i, i+1\}$. Set $w(\nu) = x_1 \cdots x_l$ and denote by $(x_{i_1}, \ldots, x_{i_m})$, $i_1 < \cdots < i_m$ the m-tuple of letters of $w(\nu)$ modified to obtain $w(\tau)$. By formula (17), the vector v_τ will appear $m!$ times in $f_i^m v_\nu$ according to the $m!$ permutation of (i_1, \ldots, i_m). For each permutation $(i_{\sigma(1)}, \ldots, i_{\sigma(m)})$ of (i_1, \ldots, i_m) write $q_i^{N(\sigma)}$ for the power of q_i appearing when we compute $w(\tau)$ by changing the letters $x_{i_{\sigma(1)}}, \ldots, x_{i_{\sigma(m-1)}}, x_{i_{\sigma(m)}}$ of $w(\nu)$ in this order. Then we obtain by induction on the length $l(\sigma)$ of the permutation σ:

$$N(\sigma) = N(\text{id}) + 2l(\sigma). $$

So the coefficient of v_ν in $f_i^m v_\nu$ is equal to

$$\kappa_\tau = \sum_{\sigma} q_i^{N(\text{id}) + 2l(\sigma)} = q_i^{N(\text{id}) + \frac{m(m+1)}{2}} [m]_i. \tag{25} $$

Hence the coordinates of $f_i^m v_\nu = f_i^m v_\nu/[m]_i$ belong to $\mathbb{N}[q,q^{-1}]$. The following lemma follows by induction on s:

Lemma 4.1.1 Let $v \in V(\lambda)$ be a vector of the type

$$v = f_{i_1}^{(r_1)} \cdots f_{i_s}^{(r_s)} v_\lambda \tag{26} $$

where (i_1, \ldots, i_s) and (r_1, \ldots, r_s) are two sequences of integers. Then the coordinates of v on the basis $\{v_\tau; \tau \in T(n, \lambda)\}$ belong to $\mathbb{N}[q,q^{-1}]$.

12
4.2 The basis \{A(T)\}

The basis \{A(T)\} will be a monomial basis, that is, a basis of the form

\[A(T) = f_{i_1}^{(r_1)} \cdots f_{i_s}^{(r_s)} v_\lambda. \] (27)

By Lemma 4.1.1, the coordinates of \(A(T)\) on the basis \(\{v_\tau\}\) of \(W(\lambda)\) belong to \(\mathbb{N}[q, q^{-1}]\). Let \(T = C_1 \cdots C_l \neq T_\lambda \in \text{ST}(n, \lambda)\). To find the two sequences of integers \((i_1, \ldots, i_s)\) and \((r_1, \ldots, r_s)\) associated to \(T\), we proceed as follows. Let \(C_k\) be the rightmost column of \(T\) such that \(C_k\) is not of highest weight, \(x\) the lowest movable letter of \(C_k\) and \(i \in \{1, \ldots, n\}\) such that \(\bar{e}_i(x) \neq 0\). Denote by \(y\) the rightmost letter of \(w(T)\) such that \(y \in \{\bar{i}, i+1\}\) and the factor \(x \cdots y\) of \(w(T)\) contains no letter of \(\{\bar{i}, i+1\}\). Set \(r_1\) for the number of letters of \(\{\bar{i}, i+1\}\) in \(x \cdots y\). Then \(i_1\) is defined to be \(i\) and \(T_1\) is defined to be the tabloid obtained by changing in \(x \cdots y\) each letter \(\bar{i}\) into \(i + 1\), and each letter \(i + 1\) into \(i\) if \(i \neq n\), and each letter \(\bar{\pi}\) into \(n\) if \(i = n\).

Lemma 4.2.1 \(T_1 \in \text{ST}(n, \lambda)\).

Then we do the same with \(T_1\) getting a new symplectic tableau \(T_2\) and a new integer \(i_2\). And so on until the tableau \(T_s\) obtained is equal to \(T_\lambda\). Notice that we can not write \(w(T_1) = \bar{e}_i w(T)\) in general, that is, our algorithm does not provide a path in the crystal graph \(B(\lambda)\) joining the vertex \(w(T)\) to the vertex of highest weight \(w(T_\lambda)\).

Proof. (of Lemma 4.2.1).

Set \(T_1 = D_1 \cdots D_l\). If \(T\) does not contain a letter of \(\{\bar{i}, i+1\}\) we may write \(w(T_1) = \bar{e}_i w(T)\) by Rule 2.2.3. So the lemma is true in this case. Otherwise, let \(C_m\) be the rightmost column of \(T\) containing a letter of \(\{\bar{i}, i+1\}\).

The letter \(x \in \{\bar{i}, i+1\}\) is movable in \(C_k\) so there is no letter \(\bar{i+1}\) or \(i\) to the left of \(x\) in \(w(C_k)\). Indeed if \(x = \bar{i}\), then \(i \notin C_k\) by Remark 3.1.1. There is no letter \(i+1\) or \(i\) to the left of \(x\) in \(w(T)\). Indeed the columns to the right of \(C_k\) are of highest weight so can not contain the barred letter \(\bar{i+1}\). Moreover if \(i\) appears in \(w(T)\) to the left of \(x\) in a column word \(w(C')\), the letters \(1, 2, \ldots, i \in C_k\) because \(T\) is a symplectic tableau. So the letter \(i+1\) can not be movable in \(C_k\) and if \(i \in C_k\) the column \(C_k\) is not admissible. Set \(T' = C_{m+1} \cdots C_l\) and \(T'_1 = D_{m+1} \cdots D_l\). Rule 2.2.3 implies that \(w(T'_1) = \bar{e}_i w(T')\) with \(p_1 \leq r_1\). Hence \(T'_1\) is a symplectic tableau.

Suppose first that \(C_m = D_m\) (hence \(y \notin C_m\) and \(p_1 = r_1\)). Then the columns \(C_1, \ldots, C_m\) are not modified when \(T_1\) is computed from \(T\). So it suffices to prove that \(rC_m \leq lD_{m+1}\). If \(\bar{e}_i w(C_m) = 0\), \(\bar{e}_i^{r_1} w(C_m T') = \bar{e}_i^{r_1} w(T') w(C_m) = w(C_m T'_1)\) is a symplectic tableau hence \(rC_m \leq lD_{m+1}\). So we can suppose \(\bar{e}_i C_m \neq 0\). Then \(i \neq n\) and the column \(C_m\) is necessarily of type (iv) in (20). Write \(C_m^{(i)}\) for the admissible column such that \(w(C_m^{(i)}) = \bar{e}_i w(C_m)\). Then we have \(rC_m = r(C_m^{(i)})\) and \(rC_m \leq lD_{m+1}\). Indeed by Formulas 12 and 13 \(\bar{e}_i^{r_1+1} w(C_m T') = w(T') \bar{e}_i w(C_m) = w(C_m T'_1)\) and \(\bar{e}_i^{r_1+1} w(C_m T')\) is a symplectic tableau.

Now suppose that \(C_m \neq D_m\) (hence \(y \in C_m\) and \(i \neq n\)). We must have \(y = i+1 \in C_m\), \(i \notin C_m\) and \(i+1 \in C_m\) because \(C_m\) contains a letter of \(\{\bar{i+1}, i\}\). We have \(r_1 = p_1 + 1\) and \(\bar{e}_i^{r_1} w(C_m T') = w(T') \bar{e}_i w(C_m) = w(D_{m} T'_1)\) is a symplectic tableau. So \(rD_m \leq lD_{m+1}\) and it suffices to shows that \(rC_m \leq lD_m\). The column \(C_m\) is necessarily of type (ii) or (v) in (20) which implies that \(lC_m = lC_m^{(i)} = lD_m\) where \(C_m^{(i)}\) is the column with reading \(\bar{e}_i w(C_m)\). Then \(rC_m \leq lC_m = lD_m\).

Example 4.2.2 For \(T = \begin{array}{ccc} 2 & 2 & 3 \\ 3 & 3 & \end{array}\) and \(n = 3\), we obtain successively

\[
\begin{array}{ccc}
2 & 2 & 2 \\
3 & 3 & \end{array}, \begin{array}{ccc}
1 & 1 & 1 \\
3 & 3 & \end{array}, \begin{array}{ccc}
1 & 1 & 1 \\
3 & 3 & \end{array}, \begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & \end{array}, \begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & \end{array}.
\]

\[A(T) = f_2 f_1^{(3)} f_3 f_2^{(2)} f_3 T_\lambda.\]
Proposition 4.2.3 The expansion of $A(T)$ on the basis $\{v_\tau; \tau \in T(n, \lambda)\}$ of $W(\lambda)$ is of the form

$$A(T) = \sum_\tau \alpha_{\tau, T}(q)v_\tau$$

where the coefficients $\alpha_{\tau, T}(q)$ satisfy:

(i): $\alpha_{\tau, T}(q) \neq 0$ only if τ and T have the same weight,
(ii): $\alpha_{\tau, T}(q) \in \mathbb{N}[q, q^{-1}]$ and $\alpha_{\tau, T}(q) = 1$,
(iii): $\alpha_{\tau, T}(q) \neq 0$ only if $\tau \leq T$.

Proof. (i) is a straightforward consequence of the definition of $A(T)$. By Lemma 4.1.1, we know that $\alpha_{\tau, T}(q) \in \mathbb{N}[q, q^{-1}]$. By induction the proposition will be proved if we show that (ii) and (iii) hold for T as soon as they hold for T_1 with $A(T) = \sum_{i=1}^n A(T_1)$ (the notations are those of Lemma 4.2.4). If the vector v_τ occurs in $A(T)$, the tabloid τ is obtained from a tabloid τ_1 labelling a vector v_{τ_1} occurring in $A(T_1)$ by changing r_1 letters + of $\{i + 1, i\}$ into the corresponding letters τ of $\{\tau, i + 1\}$.

It follows from the definition of T_1 that the tableau T is obtained by changing the r_1 rightmost letters + of T_1 (i.e. the leftmost letters + of $w(T_1)$) into the corresponding letters −. Hence v_τ appears in $f_{i_1}^{(r_1)}v_{T_1}$ with a non zero coefficient. Now suppose that there exists $\tau_1 \neq T_1$ such that v_{τ_1} appears in $A(T_1)$ and v_T appears in $f_{i_1}^{(r_1)}v_{T_1}$. Let w be the factor of the words $w(\tau_1)$ and $w(T_1)$ of maximal length such that there exist two words u, u' and two letters $x \neq y$ satisfying:

$$w(\tau_1) = wxu \text{ and } w(T_1) = wyu'$$

(28)

We must have $x < y$ because $\tau_1 < T_1$. The letter x is necessarily modified when T is obtained from τ_1. Otherwise we have $x \in w(T)$. But $w(T)$ can also be computed from $w(T_1)$. So the letter of $w(T)$ occurring at the same place as the letter y in $w(T_1)$ is $\geq y$: it can not be x. This implies that x is letter + and y is its corresponding letter −. Hence w contains the r_1 letters + changed to a when T is obtained from T_1. We derive a contradiction because in this case there are $r_1 + 1$ letters + changed into a when T is obtained from τ_1. Hence v_T can only appear in $f_{i_1}^{(r_1)}v_{T_1}$.

With the notation of (27) we will have $N(id) = -\frac{r_1(r_1+1)}{2}$ because there is no letters − to the left of the letters + modified in $w(T_1)$ to obtain $w(T)$. Then by (28) the coefficient of v_T in $f_{i_1}^{(r_1)}v_{T_1}$ is equal to 1 which proves (ii) for the coefficient of v_{T_1} in $A(T_1)$ is 1.

Consider v_τ appearing in $A(T)$ and suppose that the tabloid τ is obtained from the tabloid τ_1 such that v_{τ_1} appears in $A(T_1)$ by changing r_1 letters + into their corresponding letters −. Let τ' be the tabloid obtained by changing in $w(\tau_1)$ the r_1 leftmost letters + (not immediately followed by their corresponding letters −) by letters −. We are going to prove that $\tau' \leq T$ which implies the proposition because $\tau \leq \tau'$. If $\tau_1 = T_1$ then $\tau' = T$. So we can suppose $\tau_1 \neq T_1$ and decompose the words $w(\tau_1), w(T_1)$ as in (28) with $x < y$. If $\tau' \geq T$, there is a letter + in w (that we write z_+) which is changed into its corresponding letter − when τ' is obtained from τ_1 but is not modified when T is obtained from T_1. If we write $w = w_1z_+w_2$ where w_1 and w_2 are words of C_α, we have:

$$w(\tau_1) = w_1z_+w_2xu \text{ and } w(T_1) = w_1z_+w_2yu'.$$

Then by definition of T_1, w_1 contains the r_1 letters + changing to − to obtain T. This contradicts the definition of τ'. So (iii) is true. ■

It follows from (iii) that the vectors $A(T)$ are linearly independent in $V(\lambda)$. This implies that $\{A(T); T \in ST(n, \lambda)\}$ is a $\mathbb{Q}(q)$-basis of $V(\lambda)$. Indeed by Theorem 2.2.2, we know that $\dim V(\lambda) = \text{card}(ST(n, \lambda))$. As a consequence of (27), we obtain that $A(T) = A(T)$. Note that, by definition of Marsh’s algorithm, the bases $\{A(T)\}$ and $\{G(T)\}$ coincide when λ is a fundamental weight.

4.3 From $\{A(T)\}$ to $\{G(T)\}$

Let us write

$$G(T) = \sum_\tau d_{\tau, T}(q)v_\tau$$

where the $d_{\tau, T}(q)$ satisfy:

(i): $d_{\tau, T}(q) \neq 0$ only if τ and T have the same weight,
(ii): $d_{\tau, T}(q) \in \mathbb{N}[q, q^{-1}]$ and $d_{\tau, T}(q) = 1$,
(iii): $d_{\tau, T}(q) \neq 0$ only if $\tau \leq T$.
We are going to describe a simple algorithm for computing the rectangular matrix of coefficients

\[D = [d_{\tau,T}(q)], \quad \tau \in \mathbf{T}(n, \lambda), \quad T \in \mathbf{ST}(n, \lambda). \]

Lemma 4.3.1 The coefficients \(d_{\tau,T}(q) \) belong to \(\mathbb{Q}[q] \). Moreover \(d_{\tau,T}(0) = 0 \) if \(\tau \neq T \) and \(d_{T,T}(0) = 1 \).

Proof. Recall that \(\{G(T)\} \) is a basis of \(\mathbb{V}_Q(\lambda) = U_Q^- v_{\lambda} \). This implies that the vectors of this basis are \(\mathbb{Q}[q,q^{-1}]-\text{linear combinations of vectors of the type considered in Lemma 4.1.1.} \) In particular \(d_{\tau,T} \in \mathbb{Q}[q,q^{-1}] \). By condition (10), \(d_{\tau,T}(q) \) must be regular at \(q = 0 \) and

\[
d_{\tau,T}(q) \equiv \begin{cases} 0 \mod q & \text{if } \tau \neq T \\ 1 \mod q & \text{otherwise} \end{cases}
\]

So \(d_{\tau,T}(q) \) belong in fact to \(\mathbb{Q}[q] \) and the Lemma is true. \(\blacksquare \)

Let us write

\[
G(T) = \sum_{S \in \mathbf{ST}(n,\lambda)} \beta_{S,T}(q) A(S)
\]

the expansion of the basis \(\{G(T)\} \) on the basis \(\{A(T)\} \). We have the following lemma analogous to Lemma 4.3 of \(\text{[3]} \):

Lemma 4.3.2 The coefficients \(\beta_{S,T}(q) \) of (29) satisfy:

(i): \(\beta_{S,T}(q) = \beta_{S,T}(q^{-1}) \),

(ii): \(\beta_{S,T}(q) = 0 \) unless \(S \leq T \),

(iii): \(\beta_{T,T}(q) = 1 \).

Proof. See proof of Lemma 4.3 in \(\text{[3]} \). \(\blacksquare \)

Let \(T_\lambda = T^{(1)} \bowtie T^{(2)} \bowtie \cdots \bowtie T^{(t)} \) be the sequence of tableaux of \(\mathbf{ST}(n, \lambda) \) ordered in increasing order. We have \(G(T_\lambda) = A(T_\lambda) \), i.e. \(G(T^{(1)}) = A(T^{(1)}) \). By the previous lemma, the transition matrix \(M \) from \(\{A(T)\} \) to \(\{G(T)\} \) is upper unitriangular once the two bases are ordered with \(\leq \). Since \(\{G(T)\} \) is a \(\mathbb{Q}[q,q^{-1}] \) basis of \(\mathbb{V}_Q(\lambda) \) and \(A(T) \in \mathbb{V}_Q(\lambda) \), the entries of \(M \) are in \(\mathbb{Q}[q,q^{-1}] \). Suppose by induction that we have computed the expansion on the basis \(\{v_\tau; \tau \in \mathbf{T}(n,\lambda)\} \) of the vectors

\[
G(T^{(1)}), \ldots, G(T^{(i)})
\]

and that this expansion satisfies \(d_{v_{\tau},T^{(p)}}(q) = 0 \) if \(\tau \triangleright T^{(p)} \) for \(p = 1, \ldots, i \). The inverse matrix \(M^{-1} \) is also upper unitriangular with entries in \(\mathbb{Q}[q,q^{-1}] \). So we can write:

\[
G(T^{(i+1)}) = A(T^{(i+1)}) - \gamma_i(q) G(T^{(i)}) - \cdots - \gamma_1(q) G(T^{(1)}).
\] (30)

It follows from condition (17) and Proposition 4.2.3 that \(\gamma_m(q) = \gamma_m(q^{-1}) \) for \(m = 1, \ldots, i \).

By Lemma 4.3.3, the coordinate \(d_{T^{(i)},T^{(i+1)}}(q) \) of \(G(T^{(i+1)}) \) on the vector \(v_{T^{(i)}} \) belongs to \(\mathbb{Q}[q] \), \(d_{T^{(i)},T^{(i+1)}}(0) = 0 \) and the coordinate \(d_{T^{(i)},T^{(i)}}(q) \) of \(G(T^{(i)}) \) on the vector \(v_{T^{(i)}} \) is equal to 1. Moreover \(v_{T^{(i)}} \) can only occur in \(A(T^{(i+1)}) - \gamma_i(q) G(T^{(i)}) \). If

\[
\alpha_{T^{(i)},T^{(i+1)}}(q) = \sum_{j=-r}^{s} a_j q^j \in \mathbb{N}[q,q^{-1}]
\]

then we will have

\[
\gamma_i(q) = \sum_{j=-r}^{0} a_j q^j + \sum_{j=r+1}^{0} a_{-j} q^j \in \mathbb{N}[q,q^{-1}].
\]
Next if the coefficient of $v_{T(i-1)}$ in $A(T^{(i+1)}) - \gamma_i(q)G(T^{(i)})$ is equal to

$$\sum_{j=-l}^{k} b_j q^j$$

using similar arguments we obtain

$$\gamma_{i-1}(q) = \sum_{j=-l}^{0} b_j q^j + \sum_{j=1}^{l} b_{-j} q^j,$$

and so on. So we have computed the expansion of $G(T^{(i+1)})$ on the basis $\{v_\tau\}$ and this expansion satisfies $d_{\tau,T^{(i+1)}}(q) = 0$ if $\tau \ntriangleright T^{(i+1)}$. Finally notice that $\gamma_s(q) \in \mathbb{Z}[q, q^{-1}]$ for all s by Proposition 4.2.3.

By construction of $A(T)$, it is possible to write the basis $\{A(T)\}$ in terms of the basis $\{v_\tau\}$. Using the above, it is then possible to determine the $\gamma_i(q)$ and thus write the $G(T)$ in terms of the basis $\{v_\tau\}$. We have proved that:

Theorem 4.3.3 Let $T \in \text{ST}(n, \lambda)$. Then $G(T) = \sum d_{\tau,T}(q)v_\tau$ where the coefficients $d_{\tau,T}(q)$ satisfy:

(i): $d_{\tau,T}(q) \in \mathbb{Z}[q],$

(ii): $d_{\tau,T}(q) = 1$ and $d_{\tau,T}(0) = 0$ for $\tau \neq T,$

(iii): $d_{\tau,T}(q) \neq 0$ only if τ and T have the same weight, and $\tau \preceq T$.

5 Examples

All the vectors occurring in our calculations are weight vectors. So we can use our algorithm to compute the canonical basis of a single weight space. We give below the matrix obtained for the 12-dimension weight space of the $U_q(sp_6)$-module $V(4, 3, 2)$ (i.e. $\lambda = \Lambda_1 + \Lambda_2 + 2\Lambda_3$) corresponding to the weight $\mu = (0, 3, 0)$. Its columns and rows are respectively labelled by the symplectic tableaux and by the tabloids of weight μ ordered from left to right and top to bottom in decreasing order for \preceq. Those tabloids which are symplectic tableaux have been written in bold style.
	1121	1331	1331	1322	1222	1332	1332	1322	1332	1332	1332	1332	1332	1332
	22	22	22	32	22	22	31	21	22	21	21	21	21	21
1121	1
331	q^2
22	q	1
1331	q^4	q^2
332	q	q
22	q^3	q
1332	q^6	q^5	q^3
332	.	q^2
22	.	.	q^4
1332	.	.	q^5
332	.	.	.	q^6
22	q
1332	q
332	q
22	q
12	q
1332	q
332	q	.	.	.
22	q	.	.
12	q	.
12	q
12

17
	1121	1351	1351	1331	1322	1222	1322	1322	1322	1332	1332	1333	1333
331	22	32	32	31	31	31	31	31	31	31	31	31	31
22	q^3												
331	22	q^4											
12	q^5												
21	q^6												
1122	q^7	q^7											
321	q^8												
312	q^9												
22	q^10												
312	q^11												
22	q^12												
1131	1331	1331	1331	1332	1332	1332	1332	1332	1333	1333			
------	------	------	------	------	------	------	------	------	------	------			
22	22	22	32	22	22	31	21	22	21	21			
332	332	332	332	332	332	332	332	332	332	332			
q^7													
q^8													
q^9													
q^10													
q^11													
q^12													
	1132	1331	1331	1332	1332	1332	1332	1332	1332	1332	1332	1332	1332
------	------	------	------	------	------	------	------	------	------	------	------	------	------
22	22	22	32	22	22	32	22	22	31	22	32	22	21
322	.	.	q^{7}	.	.	q^{5}	.	.	q^{6}	.	.	q^{5}	.
332	.	.	q^{8}	.	.	q^{6}	.	.	q^{7}	.	.	q^{5}	.
333	.	.	q^{6}	.	.	q^{5}	.	.	q^{4}	.	.		
322	.	.	q^{8}	.	.	q^{7}	.	.	q^{6}	.	.	q^{5}	.
332	.	.	q^{7}	.	.	q^{5}	.	.	q^{4}	.	.		
333	.	.	q^{6}	.	.								
322	.	.	q^{7}	.	.	.							
332	.	.	q^{8}	.	.	.							
333	.	.	q^{6}	.	.	.							
322	.	.	q^{7}	.	.	.							
332	.	.	q^{8}	.	.	.							
333	.	.	q^{6}	.	.	.							
322	.	.	q^{7}	.	.	.							
332	.	.	q^{8}	.	.	.							
333	.	.	q^{6}	.	.	.							
	1123	1333	1333	1333	1222	1332	1332	1332	1332	1332	1332	1332	1332
-------	------	------	------	------	------	------	------	------	------	------	------	------	------
1123													
231													
12													
1333													
322													
21													
3133													
322													
21													
3133													
322													
21													
3133													
322													
21													
3133													
322													
21													
3133													
322													
21													
3133													
322													
21													
3133													
322													
21													
3133													
322													
21													
3133													
322													
21													
3133													
322													
21													
3133													
322													
21													

22
	1121	1331	1331	1331	1332	1332	1332	1332	1332	1332	1332	1332	1332	1332
22														
22														
22														
22														
3133	232
Note that all the coefficients $d_{\tau,T}(q)$ of the above matrix are in $\mathbb{N}[q]$. This not true in general. For example, consider the canonical basis of the weight space of the $U_q(sp_8)$-module $V(1,1,1,1)$ corresponding to the weight $(0,0,0,0)$. Then for $T = \begin{pmatrix} 1 & 4 \\ 3 & 4 \\ 4 & 3 \\ 4 & 1 \end{pmatrix}$ there are two coefficients $d_{\tau,T}(q) \notin \mathbb{N}[q]$ in $G(T)$. More precisely, we have $d_{\tau_1,T}(q) = -q^4$ and $d_{\tau_2,T}(q) = -q^4$ for $\tau_1 = \begin{pmatrix} 1 & 2 \\ 4 & 3 \\ 3 & 4 \\ 2 & 1 \end{pmatrix}$ and $\tau_2 = \begin{pmatrix} 2 & 1 \\ 3 & 4 \\ 4 & 3 \\ 1 & 2 \end{pmatrix}$.

Acknowledgments: We are very grateful to P. Toffin who implemented our algorithm in AXIOM and pointed out the above example of non-positive coefficients.

References

[1] V. Chari, A. Presley, A guide to quantum groups, Cambridge University Press 1994.
[2] J. C. Jantzen, Lectures on quantum groups, Graduate Studies in Math. 6, A.M.S 1995
[3] M. Kashiwara, Crystallizing the q-analogue of universal enveloping algebra, Commun. Math. Phys, 133 (1990), 249-260.
[4] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J, 63 (1991), 465-516.
[5] M. Kashiwara, Crystallization of quantized universal enveloping algebras, Sugaku Expositions, 7 (1994), 99-115
[6] M. Kashiwara, On crystal bases, Canadian Mathematical Society, Conference Proceedings, 16 (1995), 155-197.
[7] M. Kashiwara, T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras, Journal of Algebra, 165 (1994), 295-345.
[8] B. Leclerc, P. Toffin, A simple algorithm for computing the global crystal basis of an irreducible $U_q(sl_n)$-module, Int. J. Algebra Computation, 10 (2000), 191-208.
[9] C. Lecouvey, Schensted-type correspondence, Plactic Monoid and Jeu de Taquin for type C_n, Preprint 1999.
[10] G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Am. Math. Soc, 4 (1991), 365-421.
[11] R. Marsh, Algorithms to obtain the canonical basis in some fundamental modules of quantum groups, Journal of Algebra 196, 831-860 (1996)
[12] J.T. Sheats, A symplectic Jeu de Taquin bijection between the tableaux of King and De Concini, Trans. A.M.S, 351 (1999), 3569-3607.
[13] A.V. Zelevinsky, V.S. Retakh, The base affine space and canonical basis in irreducible representations of the group Sp_4, Sov. Math, 37 (1988), 618-622.