Drosophila spermatid individualization is sensitive to temperature and fatty acid metabolism

Geulah Ben-David¹, Eli Miller¹, and Josefa Steinhauer*

Department of Biology; Yeshiva University; New York, NY USA

¹These authors contributed equally to the work.

Keywords: actin, drosophila, fatty acids, individualization, lipid metabolism, prostaglandins, spermiogenesis

Abbreviations: PLA2 phospholipase A2; AT acyltransferase; IC individualization complex; GSC germline stem cell; PC phosphatidylcholine; PE phosphatidylethanolamine

Fatty acids are precursors of potent lipid signaling molecules. They are stored in membrane phospholipids and released by phospholipase A2 (PLA2). Lysophospholipid acyltransferases (ATs) oppose PLA2 by re-esterifying fatty acids into phospholipids, in a biochemical pathway known as the Lands Cycle. Drosophila Lands Cycle ATs oys and nes, as well as 7 predicted PLA2 genes, are expressed in the male reproductive tract. Oys and Nes are required for spermatid individualization. Individualization, which occurs after terminal differentiation, invests each spermatid in its own plasma membrane and removes the bulk of the cytoplasmic contents. We developed a quantitative assay to measure individualization defects. We demonstrate that individualization is sensitive to temperature and age but not to diet. Mutation of the cyclooxygenase Pxt, which metabolizes fatty acids to prostaglandins, also leads to individualization defects. In contrast, modulating phospholipid levels by mutation of the phosphatidylcholine lipase Swiss cheese (Sws) or the ethanolamine kinase Easily shocked (Eas) does not perturb individualization, nor does Sws overexpression. Our results suggest that fatty acid derived signals such as prostaglandins, whose abundance is regulated by the Lands Cycle, are important regulators of spermatogenesis.

Introduction

In most species, spermatozoa contribute only DNA, centrioles, and select signaling molecules to the developing zygote. In the testis, sperm are stripped of their cytoplasmic contents following terminal differentiation and acquire their characteristic streamlined shape. The sperm of many species develop as a syncytium. The mitotic and meiotic divisions of spermatogenesis end with incomplete cytokinesis, leaving intercellular bridges that permit cytoplasmic sharing among sister sperm, which are thought to synchronize differentiation and protect spermatids against the deleterious effects of haploidy. In both mammals and Drosophila, the removal of excess cytoplasm and the dissolution of intercellular bridges occur concurrently in an actin mediated process. This process is important for fertility, but the mechanisms that regulate it are not well understood.

The Drosophila male gonad is organized such that the developing sperm cells are arranged chronologically within the testis tubule, permitting identification and observation of all spermatogenic stages simultaneously. The germline stem cells (GSCs) reside at the apical end of the testis, clustered around a stem cell niche called the hub. Each GSC divides to produce another stem cell that remains associated with the hub and a gonialblast cell that is displaced from the hub and is destined to differentiate. The gonialblast undergoes a series of 4 mitoses with incomplete cytokinesis to produce 16 interconnected spermatocytes that comprise the developing germ cell cyst. The spermatocytes increase their volume 25-fold and undergo 2 meiotic divisions to produce 64 spermatids. As differentiation proceeds, each cyst is displaced basally down the testis by newly formed gonialblasts and cysts. After meiosis is complete, the spermatid nuclei condense, and the microtubule-based axonemes elongate. Finally, spermatid individualization occurs. Throughout the course of spermatogenesis, each cyst is enveloped by 2 non-mitotic somatic cells, called cyst cells, which originate from a population of somatic stem cells located at the hub.

Cytoplasm removal and resolution of individual sperm are mediated by an actin-rich individualization complex (IC) following axoneme elongation. Each IC is composed of 64 actin cones, which form around the 64 germ nuclei of the cyst. Once the actin cones have formed, the IC moves away from the nuclei, which are located basally in the testis, and travels along
the axonemes back toward the apical end of the testis (Fig. 1A, B). As the IC progresses, the spermatids’ cytoplasmic contents accumulate in a cystic bulge around the IC.9 When the cystic bulge and associated IC reach the end of the axoneme, they form a waste bag and are degraded.17 The ICs are readily visible with fluorophore-conjugated phalloidin.11

Many mutants that disrupt individualization have been identified.18,19 However, different mutants have distinct effects, some disrupting both nuclei and actin cones, some disrupting the morphology of the actin cones, and others perturbing the movement of the ICs without affecting the nuclei or actin cones themselves.11,20 We found previously that deletion of the lysophospholipid acyltransferases (ATs) Oysgedart (Oys) and Nessy (Nes) results in male sterility and failure of spermatid individualization.21 In oys nes double mutants, actin cone formation and morphology appear normal, but synchronous translocation of the actin cones in the IC is disrupted.

Oys and Nes regulate the metabolism of membrane phospholipids via a biochemical pathway called the Lands Cycle (Fig. 7A).21,22 Lands Cycle enzymes of the phospholipase A2 (PLA2) family catabolize phospholipids into lysophospholipids and fatty acids, which can be converted into potent short-range signaling molecules.23,24 Oys and Nes catalyze the reverse reaction, re-esterifying lysophospholipids and fatty acids into phospholipids.25,26 Both lysophospholipid and fatty acid-derived signaling molecules bind G-protein coupled receptors (GPCRs) on the surface of target cells and activate a variety of downstream signal transduction cascades.27,28 They can also bind and activate nuclear receptors, such as the peroxisome proliferator-activated receptor PPAR-γ.29–31 Fatty acid derived mediators of the prosta glandin and leukotriene families are especially important in the mammalian immune and reproductive systems.32,33 The lysophospholipid derived mediator lysophosphatic acid is important for wound healing, vascular development, and neuronal development and function.34 PLA2s and ATs are critical for regulating lipid signal availability,26 and disruptions in lipid signaling contribute to infertility, inflammation, atherosclerosis, metabolic syndrome, and cancer.35,36 Lipid signaling molecules are thought to play important roles in invertebrates as well, but their target receptors and signal transduction pathways are uncharacterized.37,38 In addition to regulating the availability of bioactive lipid mediators, the Lands Cycle modulates the molecular species composition of membrane phospholipids through acyl chain exchange.22,39 The Lands Cycle is thought to function in all cells to maintain the membranes’ physical properties (e.g., fluidity and curvature), but its regulation and its influence on cellular physiology and behavior are not well understood.50,44

Here we show that oys and nes are expressed in the Drosophila male germ line and that 7 PLA2 family members are expressed in the adult male reproductive tract. We introduce a quantitative method to measure defects in spermatid individualization and find that individualization is highly sensitive to temperature. Applying our methodology to other mutants reveals that individualization is sensitive to disruptions in prostaglandin metabolism but not other phospholipid metabolism pathways. Together, our results suggest that fatty acid derived signals in the testis are critical for successful completion of spermatogenesis.

Results

Characterization and quantification of individualization

To understand the individualization process in more detail, we characterized normal and abnormal ICs and waste bags. We conceptually divided the testis into 3 zones (Fig. 1A, B). In zone 1, the ICs formed around the spermatid nuclei, and nascent actin cones were thin and needle-shaped (Fig. 1C). Progressing actin cones in zone 2 accumulated actin and acquired their characteristic conical shape (Fig. 1D). In normal progressing ICs, the actin cones of each IC remained tightly assembled (Fig. 1D). Waste bags were distinguishable from ICs by their disorganized appearance, degenerating actin cones, and the distinct cortical actin surrounding them (Fig. 1E). Under normal conditions, waste bags formed only in zone 3, upon reaching the ends of the axonemes (Fig. 1A, B).

Under environmental or genotypic conditions that disrupt individualization (see below), abnormal ICs were observed. Abnormal ICs had loosely associated actin cones (Fig. 1F) or formed waste bag-like structures that degenerated before reaching the apical region of the testis (Fig. 1H). Tests with aberrant individualization also had many stray actin cones not associated with a distinguishable IC (Fig. 1G). In some cases, abnormal ICs appeared basally oriented instead of apically oriented.

To quantify the individualization process, we counted the number of normal progressing ICs (those not affiliated with nuclei) and waste bags in 0–3 day old males from 3 control genotypes at room temperature (23–24°C): w1118, Canton S, and the balancer stock Sco/SM6;MKRS/TM6B to control for non-specific effects from balancer chromosomes. The average number of normal progressing ICs and waste bags was similar among the 3 control genotypes (8–11 per testis, Figure 2D). This average was reproducible and consistent across many control genotypes (see below). We designated ICs having 4 or more separated actin cones as abnormal. Even with this stringent criterion, we did not observe more than 4 abnormal ICs per testis in either w1118 or the balancer stock at room temperature. Canton S showed slightly more variability, with an occasional testis displaying more than 4 abnormal ICs.

Aged males have smaller testes, because the GSCs divide less frequently.43 We examined IC progression in testes of our 3 control genotypes in aged flies. Males were collected within 0–3 d of eclosion and allowed to age in the presence of females for 5 d, 10 d, 15 d, or 26 d. The average number of normal progressing ICs and waste bags per testis decreased dramatically with age. While the youngest males had an average of 8–11 normal individualization structures per testis, males aged for 5 d had 4–7 normal individualization structures per testis, and older males had fewer than 5 normal individualization structures per testis on average (Fig. 2D). The average number of abnormal ICs also declined with age, such that the proportion of abnormal ICs versus normal individualization structures stayed similar at all ages.
Figure 1. For Figure legend see Page 4.
showed the strongest effect at 18°C. Cytokinesis defects were
individuation structures per testis (Fig. 3B). This is consistent with
the observation that aging did not disrupt the ICs, and it suggests
that young males produce sperm in large excess, perhaps to foster
sperm competition or to ensure reproductive success in the wild.44 Additionally, older males may maintain their fertility by
storing sperm.

Individualization is sensitive temperature

To determine whether spermatid individualization was sensi-
tive to environmental conditions, we quantified individualization
structures in flies reared at a range of temperatures. Flies raised at
27°C had a slight decrease in the average number of normal indi-
viduation structures per testis, whereas flies raised at 29°C
showed severe individualization defects. At 29°C, *w*^1118^, *Sco/
SM6;MKRS/TM6B* showed averages of 5.5 or fewer
normal progressed ICs and waste bags per testis (Fig. 3A). Low
temperature also disrupted individualization. At 18°C, *w*^1118^ had
an average of only 1.7 normal progressed ICs and waste bags per
testis (Fig. 3B). Canton S males raised at 18°C showed an aver-
age of 8.2 normal individualization structures per testis, and *Sco/
SM6;MKRS/TM6B* at 18°C displayed an average of 6.4 normal
individualization structures per testis (Fig. 3B). More abnormal
individualization structures were observed in all 3 genotypes at
18°C (Fig. 3C-E). This was in contrast to aged males, in which
the presence of fewer cysts led to fewer individualization struc-
tures but the number of abnormal structures did not increase.
Males also displayed reduced fertility at both 18°C and 29°C
(Fig. 3F). Male fertility in all 3 genotypes was strongly reduced
at 29°C, with Canton S showing the strongest effect. At 18°C,
Canton S and balancer males had slightly reduced fertility, whereas the fertility of *w*^1118^ males was dramatically reduced.
This is in accord with the effects on individualization, in which
Canton S displayed the strongest effect at 29°C and *w*^1118^ showed the strongest effect at 18°C. Cytokinesis defects were
occasionally observed in *w*^1118^ but not the other genotypes when
males were reared at 18°C and in all 3 genotypes at 29°C (Fig. 5A).
Thus, rearing flies at extreme temperatures disrupted spermatogenesis. Different genetic backgrounds rendered flies
more or less susceptible to temperature-induced defects. Interest-
ingly, the wild-type strain Canton S showed more variability in
individualization at room temperature but was less sensitive to
cooler temperatures.

We also quantified spermatid individualization in flies that
were raised at room temperature and shifted to 29°C as adults.
Males were collected 0–3 d after eclosion and allowed to age in
the presence of females for 5 d either at room temperature or at
29°C. Temperature shifted males of all 3 control genotypes had
significant individualization defects compared to siblings kept at
room temperature, showing averages of fewer than 3.5 normal
progressed ICs per testis. The temperature shifted males also had more abnormal ICs per testis than the corresponding room temperature controls (Fig. S3). In the reverse experiment, males reared at 29°C and
shifted to room temperature for 5 d showed rescue of individuali-
Zation compared to age-matched males kept at 29°C (Fig. 3H). These experiments revealed that the individualization process
itself was sensitive to temperature.

Individualization is not sensitive to diet

Because individualization was sensitive to environmental per-
urbations, we asked whether diet can affect the individualization
process. We reared animals on regular medium and shifted them
following eclosion to glucose medium for 4 d or 8 d at room tem-
perature. This medium contained only glucose and cholesterol.
Individualization appeared normal in these flies (Fig. 4A, B).
Flies reared throughout their development on glucose medium
did not survive to adulthood. However, some flies did survive to
adulthood when reared on lipid-depleted food supplemented
with cholesterol.45 These flies had normal individualization (data
not shown). Thus, the individualization process was not sensitive
to reduced dietary lipid intake.

Oys and Nes are expressed in the germline

Testes from 0–5 day old *oys nes* double mutant males raised at
room temperature showed an average of ~2 normal individuali-
Zation structures per testis (Fig. 5A). Many abnormal individuali-
Zation structures were observed in the mutant (Fig. 5C). Actin
cones from mutant ICs were almost always scattered (Fig. 5B,
D), and waste bags appeared devoid of actin cones (Fig. 5E). Iso-
genic control males had 8.5 normal individualization structures
per testis on average, like the control genotypes above. Males
homozygous for either *oys* or *nes* and heterozygous for the other

Figure 1. (See previous page). Characterization of normal and abnormal individualization structures.

(A, B) Testes can be divided schematically into 3 domains. In zone 1, the ICs (phalloidin, green) form in apposition to the nuclei (DAPI, purple). The ICs migrate along the spermatid axonemes toward the apical testis (zone 2). In zone 3, the ICs are degraded within the waste bags. (C–E) Testes from *Sco/SM6;MKRS/TM6B*. (C) Newly formed actin cones in zone 1 are thin and needle-shaped (arrowheads). (D) As the IC progresses, actin cones in zone 2 become conical and migrate synchronously. (E) Waste bags in zone 3 are bounded by cortical actin and contain the degenerating actin cones (arrowheads). (F–H) Testes from Canton S males reared at 29°C. Abnormal ICs contain scattered actin cones (F), unaffiliated actin cones (G), or degenerate before reaching zone 3, as indicated in the photograph by the proximity to the seminal vesicle (asterisk, H).
Figure 2. For Figure legend see Page 6.
Also showed normal individualization (Fig. 5A). Thus, individualization was not sensitive to the dosage of oys and nes. Endogenous oys and nes transcripts were detectable in the germline using in situ hybridization (Fig. 5F, G). Cytokinesis was normal in oys nes homozygotes and heterozygotes (Fig. 5H, I).²¹

Because Oys and Nes esterify fatty acids into phospholipids,²¹ thereby reducing free fatty acid concentrations, we expected fatty acid levels to increase in the oys nes double mutant. Therefore, we investigated whether reducing dietary intake of fatty acids could rescue the oys nes mutant phenotype. However, culturing oys nes mutant males on glucose food lacking fatty acids did not rescue the individualization defect (Fig. 4C).

PLA₂ genes are expressed in the male reproductive tract

PLA₂ enzymes act in opposition to ATs, hydrolyzing the sn-2 ester bond in phospholipids and releasing lysophospholipids and fatty acids (Fig. 7A).²³ Mammals possess more than 20 PLA₂ homologs, which can be broadly grouped into 4 categories: cytoplasmic PLA₂ (cPLA₂), secreted PLA₂ (sPLA₂), calcium independent PLA₂ (iPLA₂), and platelet-activating factor acetylhydrolases (PAFAHs) (Fig. 6A).²₄ Using RT-PCR, we found that the iPLA₂ encoded by sws, CG6718, and CG10133 were expressed endogenously in the male reproductive tract, as were the sPLA₂ encoded by CG14507, CG17035, and CG11124 (Fig. 6B). The sPLA₂ CG1583 was weakly expressed as well (Fig. 6B), consistent with ModENCODE and FlyAtlas expression data (flybase.org). Thus, like Oys and Nes, PLA₂ may be important for Drosophila male fertility.

Perturbation of prostaglandin synthesis affects individualization

Phosphatidylcholine (PC) molecular species composition is abnormal in oys nes mutants compared to controls.²¹ However, altering PC levels in the testis by overexpression or mutation of the iPLA₂/PC lipase Swiss cheese (Sws) did not affect individualization (Fig. 7B).²⁵ Inhibiting de novo phosphatidylethanolamine (PE) synthesis by mutation of the ethanolamine kinase Easily shocked (Eas) also had no effect on individualization (Fig. 7B).²¹ Thus, altered phospholipid composition did not inhibit individualization.

In mammals, fatty acids liberated from membrane phospholipids by the Lands Cycle are oxygenated and further metabolized into eicosanoid signaling molecules, such as prostaglandins.²⁷ The most upstream enzymes in the prostaglandin production cascade are the cyclooxygenases.³⁶ There is evidence for prostaglandin activity in invertebrates,³⁷,³⁸,³⁹ and the peroxidase Pxt was identified recently as having cyclooxygenase activity.⁵³ pxt mutant females have reduced fertility and actin-based oogenesis defects, and the severity of the defects increases with age. Similarly, males homozygous for the strong pxt⁵⁰,⁵⁰ mutation showed individualization defects at all ages (Fig. 7C, D). Despite the individualization defects, Myosin VI localized normally to pxt mutant actin cones (Fig. 7E, F). Cytokinesis appeared normal in pxt mutants (Fig. 7G).

Discussion

Fatty acid mediators as regulators of spermatogenesis

Oys and Nes are ATs that esterify fatty acids to lysophospholipids to make phospholipids. They prefer long (C16-C20) unsaturated fatty acid substrates. Although Oys can act on a range of lysophospholipid substrates, Nes shows a strong preference for lysophosphatidylcholine.²¹ Because Oys and Nes are genetically redundant, we expect that together they regulate levels of long chain fatty acids and lysophosphatidylcholine, as well as the molecular species composition of PC. Indeed, we have shown previously that PC acyl chain composition is altered in the oys nes mutant.²¹,²⁵ Which lipid is responsible for the mutant phenotype? Our data suggest that individualization is not sensitive to alterations in PC, since genetic perturbation of the PC lipase Sws does not affect individualization. Likewise, individualization is not disrupted by mutations in Eas, the ethanolamine kinase that initiates de novo PE synthesis.²⁵ Thus, we infer that phospholipid composition is not critical for individualization. Instead, our data suggest that altered levels of fatty acids and/or their metabolites disrupt individualization, as mutation of the cyclooxygenase Pxt leads to individualization defects.

In the absence of Oys and Nes, we expect fatty acid levels to be elevated. In the presence of wild-type Pxt, these excess fatty acids may be converted into prostaglandins. Prostaglandins regulate...
the actin cytoskeleton via various molecular pathways. Pxt mutant females show premature actin bundling in the female germline during stage 9 of oogenesis, as well as a failure of normal actin bundling during later stages of oogenesis. Therefore, precise temporal regulation of prostaglandin signals organizes the actin cytoskeleton during oogenesis. A similar process may be occurring in spermatogenesis. Excess prostaglandins, formed from excess fatty acids in the Oys Nes mutant, may prevent timely completion of spermatid individualization. However, loss of prostaglandins in the pxt mutant also disrupts individualization. Thus, we hypothesize that individualization requires a precisely calibrated prostaglandin pulse. In the Drosophila oocyte, the actin regulatory proteins Fascin (Singed) and Enabled are downstream of prostaglandin signaling. Interestingly, Singed localizes to the ICs, suggesting that molecular players downstream of prostaglandin signals may be conserved in gametogenesis. Singed still localizes to pxt mutant ICs (data not shown), but its regulation might be altered. Endogenous Oys and Nes are expressed in the male germline. Similarly, Pxt acts in the germline during oogenesis.

In mammals, altered dietary fatty acid intake affects phospholipid composition, lipid mediator availability, and fertility. A recent study found that Drosophila phospholipid composition also is sensitive to dietary lipid alterations. We were surprised to find that removal of fatty acids from the adult diet does not disrupt individualization in wild-type flies. This may indicate that sufficient fatty acids are stored during development, which may be facilitated by the relatively short life span of Drosophila. Alternatively, flies may be capable of synthesising necessary fatty acids from carbohydrate sources. Dietary fatty acid depletion also does not rescue the individualization defect of Oys Nes mutant flies. Thus,
Sperm cell development before individualization is normal in *oys nes* mutants, again implicating a specific regulatory pathway, as opposed to a general perturbation of cell function, in the mutant phenotype. Furthermore, other unrelated lipid metabolic pathways affect different aspects of spermatogenesis. Phosphatidylinositol lipids are required for spermatocyte cytokinesis, cysl polarity, and axoneme growth. A fatty acid elongase, encoded by the *bond* gene, is required for cytokinesis as well while *Oys, Nes*, and *Pxt* are dispensable for cytokinesis. These observations indicate that different lipids play distinct roles during sperm development.

The Lands Cycle has been found to influence Golgi dynamics, and alterations in membrane phospholipid composition have been seen to induce ER stress and apoptosis. It is unlikely that these effects underlie the *oys nes* phenotype, because mutations that perturb trafficking through the Golgi apparatus, such as *4 way stop* and *syntaxin 5*, disrupt spermatocyte cytokinesis and axoneme elongation, and such defects are not observed in the *oys nes* mutant. Additionally, immunofluorescent staining of the Golgi appears normal in *oys nes* mutant cells, and we do not observe ectopic germ cell apoptosis in the *oys nes* mutant.

Figure 4. Individualization is not sensitive to diet. Males reared on normal food and shifted within 3 d of eclosion to glucose food (light bars) for either 4 d (A) or 8 d (B) show no individualization defects compared to age matched siblings kept on normal food (dark bars). N ≥ 10 tests each condition. (C) *oys*Δ67 *nes*Δ52 double mutant males collected within 5 d of eclosion and cultured on glucose food for 5 d show highly abnormal individualization, with an average of fewer than one normal IC per testis. Controls are balancer siblings cultured in parallel. N ≥ 17 tests each condition.

Spermatogenesis
Temperature sensitivity of individualization

Individualization in Drosophila melanogaster is extremely temperature sensitive. Our temperature shift experiments demonstrate that individualization itself is the sensitive process, as opposed to gonad formation during larval development. Cytokinesis defects also are apparent at extreme temperatures, but at lower penetrance than the individualization defects. It has been shown previously that spermatogenesis is sensitive to temperatures above 28°C.76 Here we show that low temperature, i.e. 18°C, also disrupts spermatogenesis. Individualization defects may underlie the observed effects on male fertility, because these 2 parameters are well correlated at both high and low temperatures. A practical implication of this observation relates to the temperature at which GAL4 experiments are conducted in lab strains. Although GAL4 activity is maximized at 29°C,77 we recommend using 27°C when assessing spermatogenesis phenotypes, as few defects are observed at this temperature. A conceptual implication relates to how different populations and species cope with seasonal or daily climatic variations.76,78

In conclusion, we have developed a quantitative assay to assess defects in Drosophila spermatid individualization, using fluorescent detection of the actin-rich ICs. We have characterized the individualization process as it occurs over a range of environmental parameters. Many mutations have been discovered that perturb individualization, and we hope that our system will be of use in analyzing these mutations in more detail. Individualization is sensitive to genetic disruption of the Lands Cycle and prosta glandin metabolism, and AT and PLA2 homologs are expressed in the Drosophila male reproductive tract. Fatty acid mediators are important for male fertility in mammals as well as Drosophila.32,36,58 PLA2 knockout mice exhibit spermatogenesis defects and mammalian ATs are highly expressed in testis,79 suggesting that the roles of the Lands Cycle in spermatogenesis are evolutionarily conserved throughout metazoa.

Materials and Methods

Fly stocks

Stocks used were w1118, Canton S, Sco/SM6;MKRS/TM6B, tj-GAL4, sus4, elavGal4 (from Bloomington Stock Center), UAS-Sws (gift from D. Kretzschmar),50 bam-GAL4-VP16 (gift from T. Tootle).53 The oysΔ6 nesA52 mutant stock and oysA58 nesA19 precise excision revertant control were as described.21

Aging and temperature shift individualization experiments

For aging experiments, males were collected within 3 d of eclosion and aged for 5 days, 10 days, 15 days, or 26 d at room temperature in the presence of sibling females. Flies were transferred to new vials every few days. For aging of pxt mutants, males were collected within 3 d of eclosion and aged for 5 d or 13 d at room temperature in the presence of sibling females.

For temperature experiments, flies were reared at room temperature (23–24°C), 29°C, 27°C, or 18°C. Males at room temperature, 29°C, or 27°C were collected and dissected within 3 d
of eclosion. Males at 18°C were collected and dissected within 6 d of eclosion.

For the temperature upshift experiment, stocks were reared at room temperature. Males were collected within 3 d of eclosion and shifted to 29°C for 5 d in the presence of sibling females. Control flies were collected within 3 d of eclosion and kept at room temperature for 5 d. For the temperature downshift experiment, stocks were reared at 29°C. Males were collected within 3 d of eclosion and shifted to room temperature for 5 d in the presence of sibling females. Control sibling males were collected within 5 d of eclosion and kept on glucose food for 5 d at room temperature in the presence of sibling females.

Drosophila food

Normal food contained 3.83% molasses, 1.58% yeast, and 3.83% corn meal supplemented with 0.11% methyl paraben and 0.38% propionic acid as mold inhibitors. Glucose food recipe was adapted from ref. 45 and contained 10% glucose, 0.5% agar (MoorAgar Inc., 41004), 0.11% methyl paraben, 0.38% propionic acid, and 6.2 μg/mL cholesterol.45 Cholesterol was dissolved in 100% ethanol before addition to food. Males from control genotypes were collected within 3 d of eclosion and kept on normal food at room temperature in the presence of sibling females. Control sibling males were collected within 3 d of eclosion and kept on glucose food for 4 d or 8 d at room temperature.

Lipid depleted food recipe was adapted from ref. 45 and contained 10% chloroform-extracted yeast autolysate (Sigma-Aldrich, 73145–500G–F), 10% glucose, 0.5% agar, 0.11% methyl paraben, 0.38% propionic acid, and 6.2 mg/mL cholesterol.45

Fertility tests

For aging fertility tests, males of each genotype reared at room temperature were collected within 3 d of eclosion and mating singly to one virgin w1118 female each or allowed to age for 5 days, 10 days, 15 days, or 30 d in the presence of sibling females and thereafter mated singly to one virgin w1118 female each (virgin females were also reared at room temperature). Matings were performed in standard food vials supplemented with granular dry active yeast (Lab Scientific, FLY-8040–10F). Each mating was allowed to proceed for 3 d at room temperature. After 3 days, P0 adults were discarded, and larvae were allowed to develop at room temperature. F1 adults were scored every 3–4 d until the 20th day after establishment of the vial. Ten matings were performed for each age group. Crosses that yielded no progeny were discarded.

For temperature fertility tests, 10 males of each genotype reared at the experimental temperature were mated to 15–20 virgin w1118 females and transferred to egg collecting cages. Both mating and egg laying were allowed to proceed at the experimental temperature. Within a 24 hour egg laying period, 100 eggs...
Figure 7. A strong pxt mutant disrupts individualization. (A) Schematic of the Lands Cycle. Long chain unsaturated fatty acids are esterified to single chain lysosphospholipids, like lysosphatidylcholine, by A Ts Oys and Nes to form PC.21 When stimulated, PLA2 enzymes catabolize phospholipids to release fatty acids and lysosphospholipids.21 Cyclooxygenases such as Pxt metabolize fatty acids to prostaglandin signaling molecules.83 (B) Males overexpressing UAS-Sws in the germline with bam-GAL4-VP16 (n = 18), males overexpressing UAS-Sws in the somatic cyst cells with tj-GAL4 (n = 21), males hemizygous for the strong hypomorphic sws4 allele50 (n = 36), or males hemizygous for the strong hypomorphic easalaE13 allele84 (n = 25) show no individualization defects compared to control males bearing UAS-Sws alone (n = 13). p > 0.1 for each experimental condition. (C) 0–3 d old homozygous pxtf0100 males have significantly more abnormal ICs per testis (average 2.9, n = 10) than revertant males (rev, average 0.9, n = 20), p < 0.05. pxtEY03502 homozygotes do not show a significant increase in abnormal ICs (average 1.35, n = 20), p = 0.32. (D) Males homozygous for the strong hypomorphic pxtf0100 mutation55 (light blue bars) have a reduced number of normal individualization structures at 0–3 d old, 5–8 d old, and 13–16 d old, when compared to precise excision controls (rev, dark blue bars). Males homozygous for the weak pxtEY03502 mutation do not show individualization defects (medium blue bars). N ≥ 10 testes per each condition. (E, F) Actin cones (purple, phalloidin) from pxtrev (E) and pxtf0100 (F) males both show normal Myosin VI localization to the front of the cones (green). (G) pxtf0100 mutants do not show cytokinesis defects in phase contrast testis squashes. p values were obtained using 2-tailed students’ t-test with unequal variance. Experiments were repeated at least twice; data shown are from a representative trial.
from each cross were collected and placed into food vials, in order to control for reduced egg laying at extreme temperatures. The progeny were allowed to develop in food vials at 24°C, in order to control for reduced egg laying at extreme temperatures. Males reared at 24°C or 29°C were collected within 3 d of eclosion. Males reared at 18°C were collected within 6 d of eclosion. Adult progeny were counted until the 19th day after establishment of the vial.

Fluorescence staining
Adult testes were dissected in phosphate-buffered saline (PBS) and fixed in 5% formaldehyde for 20 min at room temperature, washed in PBS (PBS + 0.1% Triton X-100) for 15–20 min, and stained with rhodamine-phalloidin (1:200, Sigma-Aldrich, P1951) and DAPI (1:4000, Roche, 10236276001) for 20 min at room temperature. Following three washes in PBS, testes were mounted in Fluoromount G (Southern Biotechnology, 01–00). For antibody staining, the apical ends of the testes were removed before fixation to expose the spermatids. Following fixation in 5% formaldehyde for 20 min, testes were blocked in PBS + 5% normal donkey serum + 1% Triton X-100. Testes were incubated in primary antibodies overnight (+ 5% normal donkey serum) at 4°C, washed 3 times in PBX, and incubated with secondary antibodies (Alexa Fluor 488-conjugated donkey anti-mouse secondary antibody from Molecular Probes, 1:1000, A-21202), DAPI, and rhodamine-phalloidin for 2 hours at room temperature. Mouse anti-myosin VI was kindly provided by K. Miller and used at 1:20. 80 Mouse anti-Singed (Fascin) was used undiluted (DSHB, sn 7C). Images were captured using a Zeiss LSM510 Confocal or an Olympus IX-81 motorized inverted microscope with XM-10 monochrome camera. ICs were scored using a 20x objective.

RT-PCR
Testis cDNA was prepared following ref. 81 using SuperScript III first-strand synthesis kit (Life Technologies, 18080051). 81 PCR primer pairs were as follows:

Gene	Forward primer	Reverse primer
CG1583	5'-CGAACGCCATCGGAAAGCTC 5'	5'-CATAGACGGTGTTCTCTTGG 5'
CG3009	5'-CCTCGTGGTCTGCGGCGTCG 5'	5'-ACCTCTGATTGCGGCCAGC 5'
CG11124	5'-CAGCAGGATCATTTTGGAGG 5'	5'-ACCGTGGGATGTGGAAGAAC 5'
CG30503	5'-CGACCGCAATCAGTGATCTGCGT 5'	5'-CAGCTGGTACGTGAGACATCG 5'
CG4346	5'-CTTCAGTCGTCGTGCGGCTG 5'	5'-GGATCGTGTCTCAACGCC 5'
CG14507	5'-GGTCGGACGCTTCGGAGCTG 5'	5'-CATGAGTAAACCGGCCGCTG 5'
CG66718	5'-CGACCCACCTCCTGGATTCC 5'	5'-GACACCGAGCATTGGAGC 5'
CG10133	5’-GAAGGGGAGGGAGCTGTCG 5’	5’-GTTGCGGGGAGTAGAAC 5’
CG17035	5’-CTAACCTGACCCGTTACAGG 5’	5’-CGTGGCGGACCTTCCGACG 5’
Sws	5’-CTAAAGCGCTTGTGCGTGTCG 5’	5’-CGACGTCAGTCCACCCGTCC 5’

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
We thank the Vienna Drosophila RNAi Center, the Bloomington Drosophila Stock Center, the Kyoto Drosophila Genetic Resource Center, and the Developmental Studies Hybridoma Bank for fly stocks and reagents. We thank EMBL-EBI (European Bioinformatics Institute) for sequence alignment programs and Interactive Tree of Life (itol.embl.de) for phylogenetic tree software. We are grateful to Doris Kretzschmar, Yukiko Yamashita, Tina Tootle, and Jessica Treisman for fly stocks; Kathryn Miller for Myosin VI antibody; Tina Tootle, Hyung Don Ryoo, Jennifer Kennell, and Jessica Treisman for discussions; Ruth Lehmann for use of her confocal; Benjamin Statman for help with temperature fertility experiments. The manuscript was improved by the critical comments of Jessica Treisman and Sergio Astigarraga.

Funding
This work was supported by the Provost’s Office of Yeshiva University start-up funding to J.S and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (1R15HD080511–01 to J.S.).

References
1. Surovskiy P, Schatten G. Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. Int Rev Cytol 2000; 195:1-65; PMID:10603574; http://dx.doi.org/10.1016/S0070-2153(08)62703-5
2. Marcello MR, Singaravelu G, Singaravel A. Fertilization. Adv Exp Med Biol 2013; 757:321-50; PMID:22872482; http://dx.doi.org/10.1007/978-1-4614-4015-4_11
3. Fitch KR, Yasuda GK, Owens KN, Wakimoto BT. Paternal effects in drosophila: implications for mechanisms of early development. Curr Top Dev Biol 1999; 38:1-34; PMID:9390975; http://dx.doi.org/10.1016/S0070-2153(08)62703-5
4. O’Donnell L, Nicholls PK, O’Bryan MK, McLachlan RI, Stanton PG. Spermiogenesis: The process of sperm release. Spermatogenesis 2011; 1:14-35; PMID:21866274; http://dx.doi.org/10.1081/jcb-108314525
5. Fawcett DW, Iso S, Slaunward D. The occurrence of intercellular bridges in groups of cells exhibiting synchronous differentiation. J Biophysical Biochemical Cytol 1959; 5:453-60; PMID:13664686; http://dx.doi.org/10.1081/jcb-5.3.453
6. Greenbaum MP, Iwamori T, Buchold GM, Matzuk MM. Germ cell intercellular bridges. Cold Spring Harbor Perspect Biol 2011; 3:4005850; PMID:21669984; http://dx.doi.org/10.1101/cshperspect.a005580
7. Ren HP, Russell LD. Clonal development of interconnected germ cells in the rat and its relationship to the segmental and subsegmental organization of spermatogenesis. Am J Anatomy 1991; 192:121-8; PMID:1759679; http://dx.doi.org/10.1002/aja.100192003
8. Weber JE, Russell LD. A study of intercellular bridges during spermatogenesis in the rat. Am J Anatomy 1987; 180:1-24; PMID:6364164; http://dx.doi.org/10.1002/aja.1001800102
9. Tokuyasu KT, Peacock WJ, Hardy RW. Dynamics of spermiogenesis in drosophila melanogaster. I. individualization process. Z Zellforsch Mikrosk Anat 1972; 124:479-506; PMID:4622067; http://dx.doi.org/10.1007/BF00335253
10. Xiao X, Yang WX. Actin-based dynamics during spermiogenesis and its significance. J Zhejiang Univ Sci B 2007; 8:498-506; PMID:17610330; http://dx.doi.org/10.1631/jzus.2007.B0498
11. Fabrizio JJ, Filie G, Lemmon SK, Bazer C. Genetic dissection of sperm individualization in drosophila melanogaster. Development 1998; 125:1833-43; PMID:9550716
12. Russell LD, Saxena NK, Turner TT. Cytoskeletal involvement in spermiation and sperm transport. Tissue Cell 1989; 21:361-79; PMID:2479117; http://dx.doi.org/10.1016/0040-8166(89)90051-7
13. Rengan AK, Agarwal A, van der Linde M, du Plessis SS. An investigation of excess residual cytoplasm in human spermatozoa and its distinction from the cytoplasmic droplet. Rep Biol Endocrinol 2012; 10:92; PMID:23159014; http://dx.doi.org/10.1186/1477-7827-10-92
14. Matunis EL, Stine RR, de Cuerv M. Recent advances in drosophila male germ-line cell biology. Spermatogenesis 2012; 2:3-17; PMID:23087833; http://dx.doi.org/10.4161/spmg.21763
15. Spadding A, Fuller MT, Braun RE, Yoshida S. Germ-line stem cells. Cold Spring Harbor Perspectives Biol 2011; 3:4002642; PMID:21791099; http://dx.doi.org/10.1101/cshperspect.a002642
16. Zoller R, Schulz C. The drosophila cyst stem cell lineage: partners behind the scene? Spermatogenesis 2012; 2:145-57; PMID:23087834; http://dx.doi.org/10.1631/jzus.2013010
biphosphate directs spermatid cell polarity and exocyst localization in drosophila. Mol Biol Cell 2010; 21:1546-55; PMID:20237161; http://dx.doi.org/10.1091/mbc.E09-07-0582

64. Wei HC, Rolline J, Fabian L, Hayes M, Polevoy G, Bazinet C, Brill JA. Depletion of plasma membrane PtdIns(4,5)P2 reveals essential roles for phosphoinositides in flagellar biogenesis. J Cell Sci 2008; 121:1076-84; PMID:18334551; http://dx.doi.org/10.1242/jcs.024927

65. Wong R, Hadjiyanni I, Wei HC, Polevoy G, McBride R, Sem KP, Brill JA. PtdIns(4,5)P2 hydrolysis and calcium release are required for cytokinesis in drosophila spermatocytes. Curr Biol 2005; 15:1401-6; PMID:16085493; http://dx.doi.org/10.1016/j.cub.2005.06.060

66. Brill JA, Hime GR, Schazer-Schukz M, Fuller MT. A very-long-chain fatty acids in furrow ingression during cytokinesis in drosophila spermatocytes. Curr Biol 2008; 18:1426-31; PMID:18804373; http://dx.doi.org/10.1016/j.cub.2008.08.061

67. Ha KD, Clarke BA, Brown WJ. Regulation of the golgi complex by phospholipid remodeling enzymes. Biochim Biophys Acta 2012; 1821:1078-88; PMID:22562055; http://dx.doi.org/10.1016/j.bbabio.2012.04.004

68. Volmer R, van der Ploeg K, Ron D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc Nat Acad Sci U S A 2013; 110:4628-33; PMID:23487760; http://dx.doi.org/10.1073/pnas.1217611110

69. Farkas RM, Giansanti MG, Gatti M, Fuller MT. The drosophila cog5 homologue is required for cytokinesis, cell elongation, and assembly of specialized golgi architecture during spermatogenesis. Mol Biol Cell 2003; 14:190-200; PMID:12529436; http://dx.doi.org/10.1091/mbc.E02-06-0343

70. Shindou H, Shimizu T. Acyl-CoA:lysophospholipid acyltransferases. J Biol Chem 2010; 285:22027-35; PMID:20489212; http://dx.doi.org/10.1074/jbc.M110.126870

71. Xu H, Brill JA, Hsien J, McBride R, Boulianne GL, Versteeg HH. Prostanoids and prostanoid receptors in signal transduction. Int J Biochem Cell Biol 2004; 36:1187-205; PMID:15109566; http://dx.doi.org/10.1016/j.biocel.2003.08.006

72. Trotta V, Calboli FC, Ziosi M, Guerra D, Pezzoli MC, Rogat AD, Miller KG. A role for myosin VI in actin dynamics at sites of membrane remodeling during drosophila spermatogenesis. J Cell Sci 2002; 115:4835-65; PMID:12432075; http://dx.doi.org/10.1242/jcs.00149

73. Parvizi M, Crespo EM, Cribbs MD, Hume DA. Increased membrane phospholipid unsaturation activates the unfolded protein response transducer p90(rib)k1 in drosophila. J Biol Chem 2008; 283:27961-7; PMID:18545040; http://dx.doi.org/10.1074/jbc.M108.671352

74. Ariyama H, Kono N, Matsuda S, Inoue T, Arai H. Decrease in membrane phospholipid unsaturation induces unfolded protein response. J Biol Chem 2010; 285:22027-35; PMID:20489212; http://dx.doi.org/10.1074/jbc.M110.126870

75. Xu H, Brill JA, Hsien J, McBride R, Boulianne GL, Versteeg HH. Prostanoids and prostanoid receptors in signal transduction. Int J Biochem Cell Biol 2004; 36:1187-205; PMID:15109566; http://dx.doi.org/10.1016/j.biocel.2003.08.006

76. Szafer-Glusman E, Giannanti MG, Nishihama R, Bolivar B, Pringle J, Gatti M, Fuller MT. A role for very-long-chain fatty acids in furrow ingression during cytokinesis in drosophila spermatocytes. Curr Biol 2008; 18:1426-31; PMID:18804373; http://dx.doi.org/10.1016/j.cub.2008.08.061

77. Viswanath V, Calboli FC, Ziosi M, Guerra D, Pezzoli MC, Rogat AD, Miller KG. A role for myosin VI in actin dynamics at sites of membrane remodeling during drosophila spermatogenesis. J Cell Sci 2002; 115:4835-65; PMID:12432075; http://dx.doi.org/10.1242/jcs.00149

78. Viswanath V, Calboli FC, Ziosi M, Guerra D, Pezzoli MC, Rogat AD, Miller KG. A role for myosin VI in actin dynamics at sites of membrane remodeling during drosophila spermatogenesis. J Cell Sci 2002; 115:4835-65; PMID:12432075; http://dx.doi.org/10.1242/jcs.00149

79. Parvizi M, Crespo EM, Cribbs MD, Hume DA. Increased membrane phospholipid unsaturation activates the unfolded protein response transducer p90(rib)k1 in drosophila. J Biol Chem 2008; 283:27961-7; PMID:18545040; http://dx.doi.org/10.1074/jbc.M108.671352