High Sensing Performance Toward Acetone Vapor Using TiO$_2$ Flower-Like Nanomaterials

Weiye Yang1,2,3,4, Quanhong Ou1,2,3, Xueqian Yan1,2,3, Lei Liu1,2,3, Shaoyu Liu1,2,3, Huohuo Chen1,2,3 and Yingkai Liu1,2,3*

Abstract
For real-application gas sensors, high performances (response, selectivity, response/recovery time and stability) are demanded. An effective strategy is applying nanomaterials in gas sensors. In this study, the anatase TiO$_2$ flower-like nanomaterials (FLNMs) are prepared through a one-step hydrothermal method which exhibit high-performance toward acetone vapor. TiO$_2$ FLNMs sensors property are characterized at optimal working temperature of 330 °C with selectivity (acetone), response ($S = 33.72$ toward 250 ppm acetone), linear dependence ($R^2 = 0.9913$), response/recovery time (46/24 s toward 250 ppm acetone) and long-term stability (30 days). These demonstrate that TiO$_2$ FLNMs get a high performance for acetone sensor. Moreover, the limit of detection of acetone is 0.65 ppm which is lower than that of exhaled air for diabetes (0.8 ppm), indicating that TiO$_2$ FLNMs gas sensor gets potential application in medical diagnosis.

Keywords: Flower-like TiO$_2$, Hydrothermal method, Acetone, Gas sensing, Medical diagnosis

Introduction
Over the last couple of decades, due to tremendous requirements for application in plenty of fields such as industrial security and medical diagnosis environmental protection, gas sensors have attracted enthusiastic interest in academic circle [1, 2]. Acetone is a universally used raw material, which is transparent and colorless volatile organic chemical contained with distinct taste and smell, cleanser and diluent in laboratories and industrial manufacture. It is needed to monitor colorless volatile organic concentrations in the workplace for safety and environment for health owing to their explosive possibility and toxicity [3]. Symptoms such as light-headedness and fatigue may be caused by exposure to a certain concentration of acetone (500–2000 ppm). While the concentrations of acetone arise over 2000 ppm, it can give rise to coma, muscle weakness, nausea and even death [4, 5]. Furthermore, acetone concentration in exhaled air is an important indicator of diabetes [6, 7]. It is reported that the concentration of acetone in exhaled air is higher than 1.8 ppm for diabetic, while it is lower than 0.8 ppm for able-bodied person [8]. Therefore, low concentration detection of acetone is significant for diabetes diagnosis.

Metal oxide semiconductors (MOSs) exhibit outstanding sensing performance due to the plentiful oxygen vacancies, which can be beneficial to gas adsorption. Among the MOSs, titanium dioxide (TiO$_2$) is a widely researched n-type MOSs, which has been used in numerous areas such as solar cells [9], electrochemistry [10, 11], photocatalysis [12] and gas sensors [13]. Various kinds of TiO$_2$ nanostructures with distinct morphologies and sizes, such as nanowires, nanotubes, nanoparticles and nanobelts have been applied for acetone detecting and displayed high sensing properties [14, 15], whereas several shortcomings like poor stability, low selectivity, low response and long response/recovery times, restricted TiO$_2$ nanomaterials in realistic application. To conquer these drawbacks, strategies such as core–shell structures...
[16], doping [17], functionalize with noble metals [18] and light activation [19] have been demonstrated.

Inspired by these, TiO$_2$ flower-like nanomaterials (FLNMs) are successfully prepared through a one-step hydrothermal method, which exhibit high sensing performance for acetone. The TiO$_2$ FLNMs’ morphology, crystal structure and elementary composition are analyzed by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. Moreover, the gas properties are well researched and sensing mechanism has also been discussed. These results reveal that TiO$_2$ FLNMs display greatly response, stability and response properties to the acetone. TiO$_2$ FLNMs shows a high performance in detecting low concentration acetone, which can be used for diabetes diagnosis.

Experimental Section

Materials

Titanium films (99.999% purity) are bought from Haiyuan Aluminum Corporation, hydrofluoric acid (HF, 40 wt%) is supplied by Tianjin Chemical Reagent Corporation. Acetone (C$_3$H$_6$O, 99.5%), ethanol absolute (C$_2$H$_6$O, 99.7%), benzene (C$_6$H$_6$, 99.5%), toluene (C$_6$H$_5$CH$_3$, 99.5%), xylene (C$_8$H$_10$, 99.0%), methanol (CH$_3$OH, 99.5%) and formaldehyde solution (HCHO, 37–40%) are bought from Tianjin Chemical Reagent Corporation. All experimental water is deionized water (18.2 MΩ) in this work. All reagents are purchased without any further purification.

Sample Preparation

TiO$_2$ FLNMs are prepared through a one-step hydrothermal reaction between titanium films and HF, which is mentioned in previous report [20, 21]. Firstly, titanium films (3×1 cm) are treated by a basic procedure of decontamination. Secondly, titanium films and 10 mmol HF 60 mL are placed to a 100-mL Teflon autoclave, maintaining at the temperature of 110 °C for 6 h. The reaction occurs only on the surface of the titanium film, gray precipitates are scratched off and collected after the autoclave cooling down to room temperature, the final products are washed alternately with absolute ethanol and deionized water for three times. Finally, the specimens are dried at 80 °C and the pure TiO$_2$ FLNMs powder is obtained. The mechanism of the formation of titania processes is as follows.

$$\text{Ti} + 6\text{HF} \rightarrow \text{H}_2\text{TiF}_6 + 2\text{H}_2 \uparrow \quad (1)$$

$$\text{H}_2\text{TiF}_6 + 4\text{H}_2\text{O} \rightarrow \text{Ti(OH)}_4 + 6\text{HF} \quad (2)$$

$$\text{Ti(OH)}_4 \rightarrow \text{TiO}_2 + 2\text{H}_2\text{O} \quad (3)$$

Characterizations

The surface morphologies are obtained by scanning electron microscope with an acceleration voltage of 30.0 kV (SEM, Quanta FEG 250, FEI, USA). Transmission electron microscopy (TEM) is observed on a JEM-2100 electron microscope. The crystalline phase of all the specimens is identified by the X-ray diffraction analysis with Cu-Kα radiation ($\lambda = 1.5405$ Å) scanning from 20° to 80° (XRD, DX-1000, Dandong Fangyuan Instrument Co. Ltd., China). X-ray photoelectron spectroscopy (XPS) is measured to reveal chemical valence states and chemical composition, it was performed on an imaging photoelectron spectrometer (Thermo Fisher Scientific, USA) with a monochromatic Al Kα X-ray source. The gas sensing properties are accomplished by CGS-1TP intelligent gas sensing analysis system (Beijing Elite Tech Co., Ltd. China).

Sensor Preparation

The gas sensors are made by a brush-coating technique. Firstly, TiO$_2$ FLNMs powder is mixed with deionized water to create a uniform slurry after grinding. Secondly, the paste is coated onto Ag interdigitated electrodes by a paint brush. To increase the stability and repeatability, the prepared sensors are aged at 330 °C for 12 h in ambient air. The related preparation process is displayed in Fig. 1.

Fig. 1 The schematic diagram of TiO$_2$ FLNMs sensor preparation and test
The gas sensing measurement are achieved via CGS-1TP intelligent gas sensing analysis system. The microsyringe with the different target liquids is injected into the testing chamber (18 L). Target liquids evaporate into vapor in the chamber. The resistances of TiO$_2$ FLNMs sensors change rapidly and reach into a steady value. Then, the air is pumped into testing chamber to restore the sensor resistance to its pretest value. The gas sensor response is defined as $S = R_g/R_a$, where R_g and R_a is the resistance under target gas and atmosphere, respectively. The response time/recovery time is defined as the time needed to reach 90% of the saturation S value change upon the target gas or ambient air, respectively.

Results and Discussion

Characterization

The surface morphologies and microstructures of TiO$_2$ FLNMs are observed by SEM and TEM. SEM images are revealed in Fig. 2a, b. It is evident that TiO$_2$ composed of aggregated nanoflowers with size around 0.9–1.7 μm. In order to conform insight of TiO$_2$ FLNMs’ microstructures, TEM image is displayed in Fig. 2c. The image exhibits obvious flower-like nanostructure. The crystal-line structure of TiO$_2$ FLNMs is further demonstrated by high-resolution TEM (HRTEM), as shown in Fig. 2d. The lattice space is 0.35 nm which is well matched with the anatase TiO$_2$ (101).

The crystal structure of TiO$_2$ FLNMs is also confirmed by XRD, which is portrayed in Fig. 3. It is revealed that the characteristic diffraction peaks is anatase TiO$_2$ match with the standard data (JCPDS. 21-1272). The composition phase located at 2θ of 25.3°, 37.9°, 48.1°, 54.0°, 55.1°, 62.8°, 68.9°, 70.3° and 75.1° are assigned to (101), (004), (200), (105), (211), (204), (116), (220) and (215) planes of anatase phase.

XPS analysis is applied to confirm the surface elemental chemical states and elementary compositions. Figure 4a shows the full-scale XPS survey scan spectra. It reveals that TiO$_2$ FLNMs compose of Ti, O and F.
elements, indicating that there are no other impurities, F element is the residual of HF originating from synthetic process. C 1s at 284.8 eV is used to the calibration peak. The peaks centered at 458.7 eV and 464.5 eV are corresponding to the spin–orbit split lines of Ti$^{4+}$ 2p$_{3/2}$ and Ti$^{4+}$ 2p$_{1/2}$ respectively. (Fig. 4b) [22, 23] Fig. 4c displays peaks around at 529.9 eV and 531.5 eV can be assigned to crystal lattice oxygen ions (O_{lat}) and surface adsorbed oxygen ions (O_{ads}). The adsorbed oxygen ions play a significant role in gas sensing property [24–26]. Figure 4d reveals a peak at 684.1 eV which is derived from the adsorbed F on the TiO$_2$ surface [27].

It is seen from Fig. 5a that the TiO$_2$ FLNMs has a strong absorption in the range of 300–400 nm with absorption edge of 400 nm. Its band gap is calculated by the following equation.

$$ahv = A(hv - E_g)^2$$

(4)

The band gap (E_g) of the TiO$_2$ FLNMs is 3.10 eV, being smaller than that of anatase (3.20 eV), as shown in Fig. 5b. It is reported that F residual have an effect on band gap. It is beneficial to reduce the band gap, facilitate electron transition and improve material properties [28, 29].

Acetone Sensing Properties

To assess applicability of TiO$_2$ FLNMs sensor for acetone, some fundamental parameters are studied. As we all know, the working temperature is a significant parameter for gas sensors owning to its vigorously affect surface reaction and chemisorption between oxygen and target gas molecules. The most excellent response can be reached at an optimum working temperature when the absorption/desorption achieve equilibrium. To find the optimal working temperature, TiO$_2$ FLNMs gas sensors are tested under temperatures range from 280 to 440 °C with a concentration of 250 ppm acetone ambient, while the gas sensor prepared with Degussa P25 is also tested at the same condition, as shown in Fig. 6a. It is clearly that the optimal working temperature of TiO2 FLNMs and Degussa P25 both are 330 °C. Thus, all the subsequent experiments are carried out at the optimal working temperature of 330 °C. Furthermore, response
of Degussa P25 gas sensors is apparently lower-ranking to TiO₂ FLNMs gas sensor, whereas its response only can achieve 5.0 for 250 ppm acetone and the response of TiO₂ FLNMs is 33.72 in the same circumstance. It indicates that TiO₂ FLNMs show better gas sensing property than commercial Degussa P25. Selectivity represents anti-interference capability to special gases. Thus, the selectivity of TiO₂ FLNMs is analyzed through exposing to 250 ppm benzene, toluene, xylene, acetone, methanol, formaldehyde and ethanol under optimum working temperature, respectively, as revealed in Fig. 6b. It is clearly displayed that the response toward benzene, toluene, xylene, methanol, formaldehyde and ethanol (1.47, 3.36, 12.28, 4.94, 2.86 and 14.12) is much lower than that of acetone (33.72). It indicates that TiO₂ FLNMs sensor shows comparatively selectivity for acetone.

The dynamic response–recover curves of TiO₂ FLNMs sensors versus concentration from 10 to 1000 ppm of acetone and ambient air at optimal working temperature are displayed in Fig. 7a. It is revealed that response is linear relationship in assessing scope. The response of TiO₂ FLNMs linearly increases with the increment of acetone concentration. The linear response dependence on acetone concentration is also studied in Fig. 7b. It shows that the fitting curves versus concentration of acetone toward 10–500 ppm, the correlated coefficients (R^2) is 0.9913 indicating an outstanding linear-dependent relationship between the response and concentration. Another important parameters limit of detection (LOD) are also calculated [30–32]. The LOD of acetone is 0.65 ppm which is lower than the detection limit for diabetes in exhaled air. Therefore, TiO₂ FLNMs gas sensor gets potential application in medical diagnosis.

Repeatability is another significant factor to assess the reliability of the pre-prepared sensor. To evaluate the repeatability of TiO₂ FLNMs sensor, the dynamic sensing toward 250 ppm acetone is measured for 5 cycles (seen in Fig. 7c). It reveals that its response to 250 ppm acetone
has no distinct fluctuations, indicating excellent performance of repeatability. Such a high repeatability can be ascribed to the induction of ultra-stable TiO$_2$ to enhance its sensing stability. Figure 7d displays the response/recovery time of TiO$_2$ FLNMs. It reveals that the response/recovery time are 46 and 23 s toward 250 ppm acetone, respectively. It indicates that TiO$_2$ FLNMs sensor exhibits excellent adsorption and desorption property in acetone. This probable reason is that the target molecules are faster and easier dissociated onto the TiO$_2$ FLNMs’ surface, leading to a fast decline in the O$^{2-}$ ions concentration on the surface of TiO2 FLNMs and a rapid increase in the electron concentration, which displays an quick response.

In realistic applications, the long-term stability should be examined. TiO$_2$ FLNMs gas sensors’ response over 30 days
is assessed at the optimal working temperature (seen in Fig. 7e). It illustrates that the responses only have a minor change, which is less than 7.17% of its initial rate. It indicates excellent stability of TiO2 FLNMs gas sensor. To conform the brilliant sensing performance of TiO2 FLNMs sensor, a comparison of previous reports and this work on acetone is depicted in Table 1, it further demonstrates that TiO2 FLNMs represent high acetone sensing performance in this work.

Acetone Sensing Mechanism

TiO2 is an n-type characteristic semiconductor, while TiO2 FLNMs sensors are exposed to the acetone vapor, the resistances declined quickly, implying of n-type semiconductor properties. Gas sensing properties rely on the change of surface occupation. As reported by Wolkenstein's model for semiconductors [40], we suggest a correspondent model for TiO2 FLNMs, as schematically depicted in Fig. 8. In ambient air, oxygen adsorbs onto the surface of TiO2 FLNMs, and electron transfers from conduction band to the oxygen molecules to create a variety of oxygen ions with distinct valence states (O_{2ads}^{-}, O_{ads}^{-}, O_{ads}^{2-}), which gives rise to a thick depletion layer's formation and resulting in a high resistance of the sensor [41, 42]. When TiO2 FLNMs sensors are exposed to target gas, the reductive gas responds with the oxygen adsorbed on TiO2 FLNMs surface. The electrons are then freed back to the conduction band of semiconductor, resulting in a lower potential barrier and a thinner depletion layer [43]. This procedure leads to a reduction of resistance and can be expressed by the following equations [35]:

\begin{align}
O_2(gas) & \leftrightarrow O_2(ads) \quad (5) \\
O_2(ads) + e^- & \leftrightarrow O_2^-(ads) \quad (6) \\
O_2^-(ads) + e^- & \leftrightarrow 2O^-(ads) \quad (7) \\
O^-(ads) + e^- & \leftrightarrow O^{2-}(ads) \quad (8) \\
CH_3COCH_3(gas) & \leftrightarrow CH_3COCH_3(ads) \quad (9) \\
CH_3COCH_3(ads) + 4O_2^-(ads) & \leftrightarrow 3CO_2(gas) + 3H_2O(gas) + 4e^- \quad (10)
\end{align}

Table 1 Comparison of various TiO2 nanostructures toward acetone gas sensing performances

Sensing materials	Working temperature (°C)	Concentration (ppm)	Response (R_a/R_g)	Response/recovery time (s)	Reference
Nanoporous TiO2	370	500	25.97	13/8	[25]
TiO2 nanoparticles	400	200	7.5	240/180	[33]
Nano nanotube	150	1000	2.08	21/38	[34]
TiO2 nanorods	500	300	13	12/6	[35]
TiO2 nanoflowers	280	200	~7	<50/<100	[36]
Ag-TiO2 nanobelts	260	500	28.25	6/8	[24]
Ag-TiO2 nanospheres	350	500	29.1	1/47	[14]
TiO2 nanoparticles	270	500	9.19	10/9	[37]
TiO2 microsphere	320	100	6.9	–	[38]
Brookite TiO2	320	100	2.3	3/183	[39]
TiO2 FLNMs	330	250	33.72	46/24	This work
Conclusion
In this work, the newly anatase TiO₂ FLNMs are successfully prepared though a one-step hydrothermal method, which are composed of uniformly flower like nanostructure with size around 0.9–1.7 μm. It is found that this nanomaterials enable a high-performance toward acetone. The results show high selectivity and response, good linear dependence, excellent repeatability, and acetone-sensing characteristics of LaNi₁₋ₓTixO₃ perovskite system prepared by amorphous citrate decomposition. Sens Actuators B Chem 143(1):111–118.

Acknowledgements
Not applicable.

Author Contributions
YL guided the experiments and revised the manuscript; QO supplied help for gas sensing testing; SL and YL guided the experiments and revised the manuscript; QO supplied help for specific sensing of CO at room temperature. Inorg Chem 52(10):5924–5930.

Availability of Data and Materials
All data generated or analyzed during this study are included in this published article.

Declarations
Ethics Approval and Consent to Participate
Not applicable.

Consent for Publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Yunnan Key Laboratory of Opto-Electronic Information Technology, Yunnan Normal University, Kunming 650500, China. 2Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China. 3Key Laboratory of Advanced Technique and Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China. 4Zunyi Medical University, Zunyi 563000, China.

Received: 13 April 2022 Accepted: 20 August 2022 Published online: 02 September 2022

References
1. Novikov S, Lebedeva N, Satrapinski A, Walden J, Davydov V, Lebedev A (2016) Graphene based sensor for environmental monitoring of NO₂. Sens Actuators B Chem 236:1054–1060
2. Xing XX, Du LL, Feng DL, Wang C, Yao MS, Huang XH, Zhang SX, Yang DC (2020) Individual gas sensor detecting dual exhaled biomarkers via a temperature modulated n/p semiconducting transition. J Mater Chem A 8(48):26004–26012
3. Wang CC, Weng YC, Chou TC (2007) Acetone sensor using lead foil as working electrode. Sens Actuators B Chem 122(2):591–595
4. Ge WY, Jiao SY, Chang Z, He XM, Li YX (2022) Ultrafast response and high selectivity toward acetone vapor using hierarchical structured TiO₂ nanosheets. ACS Appl Mater Interfaces 12(11):13200–13207
5. Hou X, Liu H, Zhang Y, Jiang M, Yuan L, Shi J, Hou C (2020) Oxygen vacancies enhancing acetone-sensing performance. Mater Today Chem 18:100379
6. Choi SJ, Jiang BH, Lee SJ, Min BK, Rothschild A, Kim ID (2014) Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO₂ nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl Mater Interfaces 6(4):2588–2597
7. Park S (2017) Acetone gas detection using TiO₂ nanoparticles functionalized In₂O₃ nanowires for diagnosis of diabetes. J Alloys Compd 696:655–662
8. Wei SH, Zhao GY, Du WM, Tian QQ (2016) Synthesis and excellent acetone sensing properties of porous WO₃ nanofibers. Vacuum 124:32–39
9. Nam J, Kim JH, Kim CS, Kwon JD, Jo S (2020) Surface engineering of low-temperature processed mesoporous TiO₂ via oxygen plasma for flexible perovskite solar cells. ACS Appl Mater Interfaces 12(11):12648–12655
10. Cai Y, Wang HE, Huang SZ, Yuen MF, Cai HH, Wang C, Yu Y, Li Y, Zhang Wi, Su BL (2016) Porous TiO₂urchins for high performance Li-ion battery electrode: facile synthesis, characterization and structural evolution. Electrochim Acta 210:206–214
11. Dong WJ, Wang D, Li YY, Yao Y, Zhao X, Wang Z, Wang HE, Li Y, Chen LH, Qian D, Su BL (2020) Bronze TiO₂ as a cathode host for lithium–sulfur batteries. J Energy Chem 48:259–266
12. Yu J, Godkseen AL, Mamakhel A, Sandergaard-Pedersen F, Ricro-Carvajal T, Marks M, Lock N, Rasmussen SB, Iversen BB (2020) Selective catalytic reduction of NO using phase-pure anatase, rutile, and brookite TiO₂ nanocrystals. Inorg Chem 59(20):15324–15334
13. Zhang R, Zhang T, Zhou TT, Wang LL (2018) Rapid sensitive sensing platform based on yolk-shell hybrid hollow sphere for detection of ethanol. Sens Actuators B Chem 256:479–487
14. Cheng XL, Xu YM, Gao S, Zhao H, Huo LH (2011) Ag nanoparticles modified TiO₂ spherical heterostructures with enhanced gas-sensing performance. Sens Actuators B Chem 155(2):716–721
15. Yang M, Hua LH, Zhao H, Gao S, Rong ZM (2009) Electrical properties and acetone-sensing characteristics of LaNi₁₋ₓTixO₃ perovskite system prepared by amorphous citrate decomposition. Sens Actuators B Chem 143(1):111–118
16. Katooch A, Choi SW, Sun GJ, Kim HW, Kim SS (2014) Mechanism and prominent enhancement of sensing ability to reducing gases in p/n core–shell nanofiber. Nanotechnology 25(17):175501
17. Su J, Zou XX, Zou YC, Li GD, Wang PP, Chen JS (2013) Porous titania with heavily self-doped Ti⁺⁺ for specific sensing of CO at room temperature. Inorg Chem 52(10):5924–5930
18. Lai HY, Chen CH (2012) Highly sensitive room-temperature CO gas sensors: Pt and Pd nanoparticle-decorated In₂O₃ flower-like nanobundles. J Mater Chem A 22(26):13204–13208
19. Alenezi MR, Alshammari AS, Jayawardena KDGI, Beliatis MJ, Henley SJ, Silva SRP (2013) Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors. J Phys Chem C 117(34):17850–17858
20. Wu GS, Wang JP, Thomas DF, Chen AC (2008) Synthesis of F-doped flower like TiO₂ nanosheets with high photoelectrochemical activity. Langmuir 24(7):3503–3509
21. Yang WY, Tang JQ, Ou QH, Yan XQ, Liu L, Liu YK (2021) Recycling Ag-deposited TiO₂, SERS substrate for ultrasensitive malachite green detection. ACS Omega 6(4):127271–127278
22. Yu W, Liu XJ, Pan LK, Li JJ, Liu JY, Zhang J, Li P, Chen C, Sun Z (2014) Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO₂. Appl Surf Sci 319:107–112
23. Li JY, Xu XT, Liu XJ, Yu CY, Yan D, Sun Z, Pan LK (2016) Sn doped TiO₂ nanotube with oxygen vacancy for highly efficient visible light photocatalysis. J Alloys Compd 679:454–462
24. Zhu H, Haidry AA, Wang Z, J YW (2021) Improved acetone sensing characteristics of TiO₂ nanobelts with Ag modification. J Alloys Compd 887:161312
25. Chen N, Li YX, Deng DY, Liu X, Xing XX, Xiao XC, Wang YD (2017) Acetone sensing performances based on nanoporous TiO2 synthesized by a facile hydrothermal method. Sens Actuators B Chem 238:491–500

26. Zhang ML, Yuan ZH, Ning T, Song JP, Zheng C (2013) Growth mechanism of Pt modified TiO2 thick film. Sens Actuators B Chem 176:723–728

27. Yu JC, Yu JG, Ho WK, Jiang ZT, Zhang LZ (2002) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14(9):3808–3816

28. Serpone N, Lawless D, Khairutdinov R (1995) Size Effects on the photophysical properties of colloidal anatase TiO2 particles. size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 99(45):16646–166654

29. Zhang JF, Zhou P, Liu JJ, Yu JG (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Phys 16:20382–20386

30. Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed 49(12):2154–2157

31. Li J, Lu YJ, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett 3(7):929–933

32. Liu L, Yang WY, Zhang H, Yan XQ, Liu YK (2022) Ultra-high response detection of alcohols based on CaS/MoS2 composite. Nanoscale Res Lett 17(1):1–10

33. Rella R, Spadavecchia J, Manera MG, Capone S, Taurino A, Martinino M, Caricato AP, Torni T (2007) Acetone and ethyl alcohol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation. Sens Actuators B Chem 127(2):426–431

34. Bhattacharyya P, Bhowmik B, Fecht HJ (2015) Operating temperature, repeatability and selectivity of TiO2 nanotube-based acetone sensor: influence of Pd and Ni nanoparticle modifications. IEEE Trans Device Mater Reliab 15:376–383

35. Bian HQ, Ma SY, Sun AM, Xu X, Yang GJ, Gao JH, Zhang HJ, Zhu HB (2015) Characterization and acetone gas sensing properties of electrospun TiO2 nanorods. Superlattice Microstruct 81:107–113

36. Zhang KG, Liu Z, Ling LX, Wang BJ (2015) The effect of anatase TiO2 surface structure on the behavior of ethanol adsorption and its initial dissociation step: a DFT study. Appl Surf Sci 353:150–157

37. Navale ST, Yang ZB, Liu C, Cao PJ, Patil VB, Ramgrin H, Mane RS, Stadler FJ (2018) Enhanced acetone sensing properties of titanium dioxide nanoparticles with a sub-ppm detection limit. Sens Actuators B Chem 255:701–710

38. Chen N, Li YX, Deng DY, Liu X, Xing XX, Xiao XC, Wang YD (2017) Acetone sensing performances based on nanoporous TiO2 synthesized by a facile hydrothermal method. Sens Actuators B Chem 238:491–500

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.