Molecular Characterization of Carbapenem-Resistant *Acinetobacter baumannii* Blood Culture Isolates from Three Hospitals in Turkey

Aysegul Gozalan1*, Ozlem Unalzi2, Dilek Guldemir2, Sibel Aydogan3, Cigdem Kuzucu4, Fatma Koksal Cakirlar4, Ziya Cibali Acikgoz5, and Riza Durmaz6

1Department of Medical Microbiology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya; 2National Molecular Microbiology Reference Laboratory, Public Health General Directorate, Ministry of Health, Sihhiye, Ankara; 3Department of Medical Microbiology, Ankara City Hospital, Ministry of Health, Ankara; 4Department of Medical Microbiology, Faculty of Medicine, Tinaztepe Izmir University, Izmir; 5Department of Medical Microbiology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul; 6Department of Medical Microbiology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey

SUMMARY: We aimed to investigate the clonal relationships, common sequence types, and carbapenemase genes in 177 non-repetitive blood culture isolates of *Acinetobacter baumannii* collected from patients at three university hospitals in Turkey in 2016. Molecular epidemiological characteristics of the isolates were examined using pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST) (Pasteur scheme-*cpn60*, *fusA*, *gltA*, *pyrG*, *recA*, *rplB*, and *rpoB*). Multiplex PCR was used to investigate the carbapenemase genes, including *bla*OXA-23-like*, *bla*OXA-24-like*, *bla*OXA-48-like*, *bla*OXA-58-like*, *bla*IMP, *bla*VIM, and *bla*NDM. PFGE genotyping yielded 92 pulsotypes with a clustering ratio of 69.7%. As per a ≥85% similarity coefficient, 159 (90.9%) isolates were found to be clonally related. The *bla*OXA-23-like and *bla*OXA-58-like genes were identified in 100% and 28.2% of the isolates, respectively. The *bla*NDM gene was identified in two isolates. The MLST analysis included 54 isolates with different pulsotypes, and 29 sequence types (STs). Most of the isolates (n = 36) belonged to the clonal complex (CC)2, one isolate belonged to CC1, and one isolate belonged to CC164. Sixteen new STs (ST1235–ST1250) were identified. Identifying both global ST2 and a large number of new STs, revealed high genetic diversity in *A. baumannii* isolates in the study population.

INTRODUCTION

Acinetobacter baumannii is an increasing cause of multidrug-resistant hospital-acquired infections, particularly in intensive care units (ICUs). The most common infection caused by *A. baumannii* is hospital-acquired pneumonia, particularly ventilator-associated pneumonia and bacteremia (1). *A. baumannii* infection has mortality rates as high as 58%, among bloodstream infections caused by hospital-acquired gram-negative bacteria (2).

The widespread use of carbapenem antibiotics in recent years has caused an increase in the frequency of multidrug-resistant *A. baumannii* isolates (3,4). The resistance of *A. baumannii* to carbapenem, fluoroquinolone, third-generation cephalosporins, aminoglycosides, and colistin was found in blood culture isolates at rates of 91.8%, 89%, 93.8%, 70.9%, and 2.1%, respectively, in a Turkish study (2). The emergence and dissemination of several clonal lineages have been reported to contribute to the increasing prevalence of carbapenem resistance in *A. baumannii*, and these clonal lineages are named international clones (ICs) I-III (5).

Using molecular typing methods, it is possible to identify the clonal relationships among *A. baumannii* isolates and understand the local and global spreading dynamics of these bacteria. These investigations are crucial to develop infection control strategies and overcome nosocomial infection outbreaks. Multilocus sequence typing (MLST) (6,7) and pulsed-field gel electrophoresis (PFGE) (8) are among the techniques developed for this purpose. The aim of this study was to investigate the clonal relationships, common sequence types, and carbapenemase genes in carbapenem-resistant *A. baumannii* isolates obtained from blood
Molecular Typing of *Acinetobacter baumannii*

MATERIALS AND METHODS

The study included 180 carbapenem-resistant *Acinetobacter calcoaceticus–A. baumannii* complex (Acb complex) isolates, isolated from the blood samples of patients who had been treated in the intensive care units of universities located in three different regions (Ankara, Istanbul, and Malatya) in Turkey in 2016. *A. baumannii* isolates were identified by amplified ribosomal DNA restriction analysis (ARDRA) (9,10) and PCR amplification of the *bla*OXA-51-like gene (11,12). Only one isolate isolated from the blood sample of each patient was included in the study.

Antibiotic susceptibility tests were initially performed in participating hospitals using the Kirby-Bauer disc diffusion method, MicroScan WalkAway Plus System (Beckman Coulter, Brea, CA, USA), or Phoenix test (BD Diagnostics, USA). To confirm carbapenem resistance, the imipenem and meropenem MIC values for all *A. baumannii* isolates were determined using the E-test (Liofilchem, Roseto degli Abruzzi, Italy) according to the criteria of the European Committee on Antimicrobial Susceptibility Testing (13).

Investigation of carbapenemase genes by multiplex PCR: The carbapenemase-encoding genes, including *bla*OXA-23-like, *bla*OXA-48-like, *bla*OXA-58-like, *bla*IMP, *bla*VIM, and *bla*NDM, were identified by multiplex PCR using the primers listed in Table 1 (14–19,22). DNA extraction from all isolates and standard isolates was performed using the boiling method (20). The PCR amplification was carried out in a 20 μL reaction mixture, containing 2.5 μL 10× Taq DNA polymerase reaction buffer, 1.25 mM dNTP mix (Fermentas/Thermo Fisher Scientific, Waltham, MA, USA), 10 pmol of each primer, 2.5 U Taq DNA polymerase (Fermentas/Thermo Fisher Scientific), and 2 μL genomic DNA. The PCR cycles were performed in the following order: initial denaturation at 94°C for 5 min, 35 cycles of denaturation (1 min, 95°C), annealing (30 s, 60°C), elongation (1.5 min, 72°C), and final

Gene	Primer sequence (5’-3’)	Product size (bp)	Reference
*bla*OXA-23-like	**Forward** - GTGTTAGTGGCCCTTATAAA **Reverse** - AGTTGAGCGAAGAGGGATT	246	14
*bla*OXA-48-like	**Forward** - TTTAGCTCATGATCTCGGATG **Reverse** - CTGCAATGATCTCGGATG	744	15
*bla*OXA-58-like	**Forward** - CTTGCTATGTTGCTTTCG **Reverse** - ATCCATGCCCAACCATGTC	650	16
*bla*NDM-1	**Forward** - GTAGTGCTCGATGTCGGCATG **Reverse** - GGGCAATCGCTTCCACAGGT	599	15
*bla*IMP	**Forward** - GAAATAGAATGGGCTTTATTC **Reverse** - CCAACCACATTACCATGTC	476	17
cpn60	**Forward** - ACTGTACATCGGCTAAGC **Reverse** - TTACAGGACGATAGAAAGATGG	380	18
fusA	**Forward** - ATCCGATTATTCTGCTCACATYGGAT **Reverse** - CCAACATACKYTGWACACCTTTGTT	-	22
gltA	**Forward** - AATTTACGTGCGCATTAGGTCGCC **Reverse** - GCCAGAATACGAGAGACATACGAC	-	22
pyrG	**Forward** - GTGGTGTTTTCATCAGATGWWAAAGG **Reverse** - AAAAAATGTTTAAAGAYTCGTGRTACCCMA	-	22
recA	**Forward** - CTGGAATCTTCTCGGTTTTAACC **Reverse** - GTTTTCTGGGCGCTCACCACATTAC	-	22
rplB	**Forward** - GTAGAGCTTGATTAATCGACCATACTAC **Reverse** - CACCCACCACRTGYGGGTGATC	-	22
rpoB	**Forward** - GGGCAATGGCAGATGA(AG)ACC A **Reverse** - GAA(AG)TC(CT)TGCTGTTGCAACC	-	22
elongation (10 min, 72°C). PCR products were run on 1.5% agarose gel, stained with ethidium bromide, and visualized under UV light.

PFGE typing: PFGE was performed as previously described (8). The bacterial cells were embedded in 1% SeaKem Gold Agarose (Lonzia Rockland, Rockland, ME, USA) with 1% sodium dodecyl sulfate. A lysis buffer containing 25 µL proteinase K was used to lyse the cells in the agarose plugs. The lysis step was performed at 55°C in a shaking water bath for 2 h. After the lysis step, the plugs were washed in a shaking water bath five times at 55°C, twice with 10 mL of sterile ultrapure water, and three times with 10 mL of TE buffer. Each washing step lasted for 15 min. After the washing step, the chromosomal DNA was digested with 30 U of Apal (Fermentas/Thermo Fisher Scientific).

Then, the fragmented DNA samples were subjected to electrophoresis on 1% pulsed-field certified agarose (Bio-Rad Laboratories, Belgium), using the CHEF-DR III system (Bio-Rad Laboratories), applying 5–20 pulse times for 19 h at a temperature of 14°C and at 6 V/cm (Bio-Rad Laboratories). Ethidium bromide (0.1%) was used to stain the DNA samples, which were examined under UV light. To analyze the DNA band profiles, BioNumerics version 7.5 software (Applied Maths, Sint-Martens-Latem, Belgium) was used. A Dice coefficient at 1.5% tolerance and 1% optimization was used for the comparisons (21).

MLST: MLST studies were performed on 54 A. baumannii isolates, selected from the isolates representing different pulsotypes. A total of 7 housekeeping gene regions were sequenced, including cpn60 (60-KDa chaperonin), ftsA (elongation factor EF-G), gltA (citrate synthase), pyrG (CTP synthase), recA (homologous recombination factor), rplB (50S ribosomal protein L2), and rpoB (RNA polymerase subunit B). The primers used for amplification are listed in Table 1 (22). Each PCR reaction mixture had a volume of 50 µL, which included 25 µL of Thermo Scientific DreamTaq Green PCR Master Mix (2×) (ThermoFisher Scientific/Life Technologies, USA), 10 pmol primary pairs (each), and 5 µL template DNA. PCR cycles were performed as in the following order: initial denaturation (5 min, 95°C), 35 cycles of denaturation (30 s, 95°C), annealing (30 s, 50°C), elongation (30 s, 72°C), and final elongation (5 min, 72°C) (http://pubmlst.org/abaumannii/info/primer_list_Pasteur.shtml). The PCR products were examined by running the products in a 2% agarose gel containing 0.5 µg/mL ethidium bromide. The PCR products were purified according to the manufacturer’s instructions using the Agencourt AMPure XP kit (Beckman Coulter). The total volume of the mixture undergoing the sequence reaction was 10 µL, which included 4 µL of Dye Term Inator Cycle Sequencing Quick Start Kit (Beckman Coulter), 1 µL primer (5 pmol), and 1–5 µL of purified DNA. The cycle sequence started with denaturation (3 min, 94°C) and was followed by 30 cycles of denaturation (20 s, 96°C), annealing (30 s, 55°C), and elongation (4 min, 60°C). Following the purification of the sequence products using the sodium acetate precipitation method, the Beckman Coulter Ceq8000 (Beckman Coulter) instrument was used for sequencing the purified product. After obtaining the sequence products, they were examined using the following online resources: The National Center for Biotechnology Information (NCBI) GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and Clustal W Interface (www.ebi.ac.uk/clustal). A. baumannii was examined using the online tools at the MLST website (http://pubmlst.org/abaumannii/).

Clonal complexes are defined to include any ST that matches the central genotype at four or more loci. In other words, a founder clone and its single locus variants (SLV), double locus variants (DLV), and triple locus variants (TLV) together form a clonal complex. Here, the ST number that identifies the founder allelic profile is also the clonal complex (clonal group) number.

Ethical considerations: This study was approved by the Yildirim Beyazit University Ethics Committee (33/17.02.2016).

Availability of data and material: The following accession numbers were assigned by PubMLST to the 54 Turkish isolates of the Acinetobacter baumannii species, using the following online resources: The National Center for Biotechnology Information (NCBI) GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and Clustal W Interface (www.ebi.ac.uk/clustal). A. baumannii was examined using the online tools at the MLST website (http://pubmlst.org/abaumannii/).

RESULTS

Out of the 180 carbapenem-resistant Acb complex isolates, 177 were found to be A. baumannii species, using the blaOXA-51-like gene and ARDRA methods. The MIC values for imipenem and meropenem were determined to be ≥8 mg/L for A. baumannii (177) isolates, confirming that all isolates were carbapenem-resistant.

Carbapenemase genes: The results of multiplex PCR indicated that all isolates harbored the blaOXA-23-like gene. Of the 177 carbapenem-resistant isolates, 50 (28.2%) were blaOXA-51-like gene-positive. All the isolates were found to be negative for carbapenemase-encoding genes blaOXA-24-like, blaOXA-48-like, blalam, and blavtm. Two isolates were found to be positive for the blalam gene. These two A. baumannii isolates belonged to two different patients treated in the same center, in Malatya province.

PFGE: Two isolates showed faint bands and were therefore excluded from PFGE interpretation. In the remaining 175 isolates, 92 different PFGE types (pulsotypes) were identified. Of these, 53 were unique, as they were represented by only one isolate. The remaining 39 pulsotypes were clusters with sizes ranging from 2 to 15 isolates. A total of 122 isolates were clustered in 39 pulsotypes, with a clustering rate of 69.7% (122/175) (Fig. 1).

Based on a similarity coefficient ≥85%, 32 PFGE groups were identified. As shown in Fig. 1, while 16 of these groups were uniquely observed in only one isolate, the remaining 16 groups from I to XVI comprised of a total of 159 (90.9%) isolates. PFGE group V was the largest group, containing 64 isolates, followed by
Molecular Typing of Acinetobacter baumannii

Table 2. Molecular typing results of the 54 *Acinetobacter baumannii* isolates studied both MLST and PFGE

Isolate Origin	Isolate	Origin	blaOXA-58-like gene(s)	Pasteur's MLST
				Ids (STs, CCs)
TR15 Ankara	Unique	7	3906	2 2 2 2 2
TR20 Ankara	V	32	3907	2 2 2 2 2
TR50 Ankara	Unique	9	3908	2 2 2 2 2
TR65 Malatya	XVI	91	3909	2 2 2 2 2
TR95 Malatya	V	24	3910	2 2 2 2 2
TR117 Malatya	Positive	X	3911	2 2 2 2 2
TR121 Istanbul	Positive	IV	3912	2 2 2 2 2
TR126 Istanbul	VIII	62	3913	2 2 2 2 2
TR143 Istanbul	Positive	V	3914	2 2 2 2 2
TR153 Istanbul	V	17	3915	2 2 2 2 2
TR158 Istanbul	IV	12	3916	2 2 2 2 2
TR161 Istanbul	Positive	Unique	3917	2 2 2 2 2
TR162 Istanbul	Positive	V	3918	2 2 2 2 2
TR176 Istanbul	Unique	61	3919	2 2 2 2 2
TR179 Istanbul	Positive	IV	3920	2 2 2 2 2
TR177 Istanbul	Unique	75	3921	2 2 2 2 2
TR101 Malatya	Unique	86	3922	2 2 2 2 2
TR47 Ankara	Unique	83	3923	40 3 7 2 2
TR94 Malatya	V	25	3924	2 2 2 2 2
TR42 Ankara	X	71	3925	2 2 2 2 2
TR34 Ankara	Unique	8	3926	2 2 2 55 2
TR149 Istanbul	V	42	3927	2 2 2 55 2
TR140 Istanbul	XV	87	3928	2 2 2 55 2
TR105 Malatya	Unique	69	3929	2 2 2 55 2
TR131 Istanbul	Positive	VIII	3930	2 2 2 55 2
TR146 Istanbul	Positive	I	3931	2 2 2 55 2
TR9 Ankara	X	72	3932	2 2 2 55 2
TR16 Ankara	II	3	3933	2 2 2 55 2
TR177 Istanbul	Unique	64	3934	2 2 2 55 2
TR41 Ankara	V	72	3935	2 2 2 55 2
TR60 Ankara	Positive	IX	3936	2 2 2 55 2
TR9 Malatya	V	22	3937	2 2 2 55 2
TR102 Malatya	Positive	VII	3938	2 2 2 55 2
TR113 Malatya	Positive	III	3939	2 2 2 55 2
TR167 Istanbul	XV	60	3945	2 2 2 55 2
TR47 Ankara	Unique	83	3948	2 2 2 55 2
TR131 Istanbul	Positive	VIII	3950	2 2 2 55 2
TR146 Istanbul	Positive	I	3951	2 2 2 55 2
TR9 Ankara	X	72	3952	2 2 2 55 2
TR60 Malatya	Positive	IX	3953	2 2 2 55 2
TR95 Malatya	V	24	3954	2 2 2 55 2
TR167 Istanbul	Unique	84	3956	2 2 2 55 2
TR31 Ankara	Positive	Unique	3957	2 2 2 55 2
TR58 Ankara	I	1	3948	2 2 2 55 2
TR81 Malatya	Positive	VII	3949	2 2 2 55 2
TR112 Malatya	XIII	80	3950	2 2 2 55 2
TR163 Istanbul	Positive	unique	3951	2 2 2 55 2
TR110 Malatya	Positive	III	3952	2 2 2 55 2
TR61 Malatya	V	41	3953	2 2 2 55 2
TR68 Malatya	X	70	3954	2 2 2 55 2
TR111 Malatya	Positive	XI	74	2 2 2 55 2
TR165 Istanbul	Unique	84	3956	2 2 2 55 2
TR174 Istanbul	XV	89	3957	2 2 2 55 2
TR99 Malatya	Unique	14	3958	2 2 2 55 2
TR166 Istanbul	Unique	82	3959	2 2 2 55 2

STs, sequence types; CCs, clonal complexes; S, singleton.

1): New ids (aliases) are given PubMLST curations.

2): Variant genes locus shown as single locus variants (TR58, 61, 68, 81, 110, 111, 112, 163), double locus variants (TR31, 123, 142, 167), and triple locus variants (TR99, 165, 166, 174).

3): New STs were given Pub MLST curations. TR31 (ST1238) and TR163 (ST1242) were identified as *A. pittii* by MLST typing.
Fig. 1. (continued on next page).
Fig. 1. (Color online) Dendrogram of pulsed field gel electrophoresis (PFGE) of the 175 multidrug-resistant *Acinetobacter baumannii* clinical isolates recovered from bloodstream infections of the patients from three different provinces (Ankara, Istanbul, and Malatya). Each pulsotype was indicated as different numbers from 1 to 92. ≥2 strains having indistinguishable PFGE profiles were classified in the same pulsotype. PFGE groups indicating Roman numerals comprised the strains having a similarity coefficient ≥85%. Numbers given on branches indicate cophenetic correlation coefficient values.
groups VII ($n = 21$ isolates) and VI ($n = 15$ isolates). These groups included isolates from all three provinces.

MLST: Based on the quality and length of the sequences, seven loci were evaluated in 54 isolates, which were submitted to the MLST database (https://pubmlst.org/) (Table 2, MLST ids: 3906-3959). MLST typing of these 54 isolates revealed 29 different STs. ST2 comprised of the largest number of isolates ($n = 15$), followed by ST1154 ($n = 9$), ST1108 ($n = 3$), and ST604 ($n = 2$). Other STs were found in only one isolate each. Sixteen new STs (ST1235-ST1250) were identified. Based on the presence of SLVs, DLVs, and TLVs, the newly identified STs were related to their predecessors as follows: 1235 (DLV157), 1236 (DLV2), 1237 (DLV704), 1238 (DLV63–A. pittii), 1239 (SLV1108), 1240 (SLV1154), 1241 (SLV158), 1242 (SLV205–A. pittii), 1243 (SLV493), 1244 (SLV604), 1245 (SLV632), 1246 (SLV642), 1247 (TLV10), 1248 (TLV157), 1249 (TLV2), and 1250 (TLV325) (Table 2).

The minimum spanning tree (MST) analysis revealed the relationships among the genotypes (Fig. 2), disclosing 3 clonal complexes (CC), most of which belonged to the international clone II (ICII). Clonal complex II included a total of 36 isolates: 15 in ST2, 9 in ST1154, 3 in ST1108, 2 in ST604, and one each in ST254, ST523, ST632, ST745, ST996, and newly discovered STs, ST1239 and 1240. It was also found that one isolate belonged to CC1, another one belonged to CC164, and 16 isolates were singletons (S). The most probable founder genotype of CC2 was ST2, from which the other STs evolved through a single allelic change. Among the identified STs, the highest frequency was that of ST2, which indicated clonal expansion in this sequence type. The results of the MLST analyses show the genomic evolution of the isolates obtained in studied provinces (Fig. 2).

DISCUSSION

Carbapenem-resistant *A. baumannii* infection is a common problem worldwide, especially in intensive care units. The genes responsible for carbapenem resistance in dominant *A. baumannii* clones are *bla*$_{OXA-23-like}$, *bla*$_{OXA-24-like}$, *bla*$_{OXA-58-like}$, *bla*$_{VIM}$ and *bla*$_{NDM}$ (5). The *bla*$_{OXA-23-like}$ gene is the most commonly identified gene worldwide, and is often expressed in IC I or II (23).

Studies carried out in Turkey, and published between 2006 and 2010, reported that the *bla*$_{OXA-58-like}$ gene was the most commonly found gene responsible for carbapenem resistance in *A. baumannii* isolates, followed by the *bla*$_{OXA-23-like}$ gene (24,25). However, recent studies have shown an increase in the incidence of *bla*$_{OXA-23-like}$ gene producing *A. baumannii* isolates (26,27). A multicenter study reported that this was accompanied by increased rates of doripenem resistance.
Molecular Typing of Acinetobacter baumannii

(70.8% in 2009 and 96.4% in 2011) (27).

The intrinsic bla\textsubscript{OXA-23-like} and bla\textsubscript{OXA-24-like} genes were identified in all A. baumannii isolates included in our study. The bla\textsubscript{OXA-58} gene was the second most common gene in the isolates (28.2%). In agreement with our results, a multicenter study on doripenem-resistant Acb complex isolates from Greece, a neighboring country, reported that bla\textsubscript{OXA-23} was the most prevalent gene (69.3%), followed by bla\textsubscript{OXA-58} (19.2%) and bla\textsubscript{OXA-24} (7.1%) (28).

Interestingly, we identified the bla\textsubscript{NDM} gene in two A. baumannii isolates isolated from the same center. These isolates were in different pulsotypes (pulsotypes 69 and 91). However, MLST analysis was not performed for either isolate. Molecular typing results do not indicate cross-contamination among patients, from whom bla\textsubscript{NDM} positive isolates were isolated. To the best of our knowledge, this is the first study to identify A. baumannii isolates with bla\textsubscript{NDM} genes isolated from blood cultures in our country.

Pulsed-field gel electrophoresis is a standard method widely used in outbreaks and local epidemiological studies to investigate clonal relatedness in hospital settings (29–32). In our study, of the 175 isolates typed using the PFGE method, 159 (90.9%) were classified into 16 clonally related pulsogroups, as many studies indicated that the isolates were related (considered the same clones), if their Dice similarity index was ≥85% (33,34). Pulsotype analysis revealed that the clustering rate was 69.7% (122/175). It was determined that the high clustering rate was not limited to only one region. Moreover, the dominant V, VI, and VII pulsogroups harbored isolates from three different provinces. These findings indicate cross-transmission between provinces and suggest that more effective infection control measures should be implemented in the provinces.

Recent studies performed in different hospitals reported high clustering rates among A. baumannii isolates, similar to the findings of our study (31,32). A multicenter study in Turkey found that the clonal relationship rate among multidrug-resistant A. baumannii isolates was 91.2%, encompassing a wide range of PFGE groups of isolates isolated from several centers (31). These findings show that the dominant clones in drug-resistant A. baumannii isolates represent a global problem, continuing to affect an increasing number of centers in many countries.

MLST is the gold standard for population structure typing, and the investigation of the global epidemiology of specific bacterial species. MLST analysis enables investigators to determine the distribution of STs and international clonal complexes worldwide (5). In the present study, 29 different STs were detected in 54 isolates analyzed using MLST. Of these STs, 16 were new and 13 matched one of the 4374 STs listed in Pasteur's MLST database for A. baumannii. Of the 54 isolates, 27.7% were in ST2, which was dominant in many countries (35–37). Other STs detected in two or more isolates were ST1154 (n = 9), ST1108 (n = 3), and ST604 (n = 2). Most of the isolates (63%) belonged to CC2, which is a common observation worldwide (5,38).

The distribution of the remaining isolates showed that one isolate belonged to CC1 and one belonged to CC164. Of the 54 isolates, 16 were singletons. These findings indicate a high diversity in the A. baumannii isolates studied. This high diversity was further supported by the findings of the MST analysis.

A multicenter study showed that A. baumannii isolates isolated from Turkey belonged to ST15, ST83, and ST84, whereas the isolates isolated from other Mediterranean countries belonged to ST1 (CC1) and ST2 (CC2) (38). Another study, conducted on doripenem-resistant Acb complex isolates collected from European and Mediterranean countries, found that the majority of the isolates belonged to ST2 (CC2) and ST15. In that study, in addition to the predominance of ST2, other STs such as ST10, ST15, ST84, ST97, ST157, and ST158 were also identified in the isolates from Turkey (27). A third study, carried out on multidrug-resistant A. baumannii clinical isolates collected from 21 hospitals in Greece, Italy, Lebanon, and Turkey, showed that most of the tested isolates belonged to CC2 (ST2 and ST45). In that study, Turkish isolates were identified as CC15 (ST15 and ST84) and CC83 (ST83) (39). Finally, Metan et al. found that CC15 (ST84) was the dominant clonal complex, followed by CC2 (ST2), CC1 (new STs), and ST19 in 98 A. baumannii isolates from Turkey (40). In agreement with our results, the majority of the studies report that the ST2 sequence type is dominant, and that global STs are identified in the country isolates besides the newly identified STs.

In conclusion, the results of the present study showed that OXA-23 carbapenemase was the primary enzyme responsible for carbapenem resistance in A. baumannii isolates tested. PFGE typing showed that dominant clones had the potential to spread not only in one hospital, but also in hospitals located in different provinces. These findings indicate that control measures, including identification of the patients at risk of nosocomial infections, monitoring hand hygiene, and following standard precautions with effective surveillance activities, are necessary to prevent the spread of resistant dominant clones. Furthermore, the high number of new STs, in addition to the globally widespread ST2, indicates that the investigated A. baumannii isolates exhibit highly variable population dynamics.

This study was presented as an oral presentation at the 5. KLINUM National Congress in Turkey.

Acknowledgments We thank to The Scientific and Technological Research Council of Turkey (TUBITAK). This study was funded by The Scientific and Technological Research Council of Turkey (TUBITAK) 3001-Starting R&D Projects Funding Program (grant number: 116S249) titled as "Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii blood isolates: Multilocus Sequence Typing, Pulsotyping, and Resistance-Related Mutation Analysis."

Conflict of interest None to declare.

REFERENCES

1. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008; 21: 538-82.
2. Aydin M, Ergönül Ö, Azap A, et al. Rapid emergence of colistin resistance and its impact on fatality among healthcare-associated infections. J Hosp Infect. 2018; 98: 260-3.
1. Doi Y, Murray GL, Peleg AY. Acinetobacter baumannii: evolution of antimicrobial resistance-treatment options. Semin Respir Crit Care Med. 2015; 36: 85-98.

2. Lin MF, Lan CY. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J Clin Cases. 2014; 2: 787-814.

3. Zarrilli R, Pournaras S, Giannouli M, et al. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents. 2013; 41:11-9.

4. Dijkshoorn L, Van Harsselaar B, Tjernberg I, et al. Evaluation of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol. 2005; 43: 4382-90. Erratum in: J Clin Microbiol. 2007; 45:2101.

5. Bartual SG, Seifert H, Hippler C, et al. Development of a multiplex real-time PCR for rapid detection of genes encoding oxacillinases and metallo-β-lactamases in carbapenem-resistant Acinetobacter baumannii. J Antimicrob Agents. 2013; 41:11-9.

6. Seifert H, Dolzani L, Bressan R, et al. Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. J Clin Microbiol. 2005; 43: 4328-35.

7. Vaneechoutte M, Dijkshoorn L, Tjernberg I, et al. Identification of Acinetobacter genomic species by amplified ribosomal DNA restriction analysis. J Clin Microbiol. 1995; 33: 11-5.

8. Dijkshoorn L, Van Hasselaar B, Tjernberg I, et al. Evaluation of amplified ribosomal DNA restriction analysis for identification of Acinetobacter genomic species. Syst Appl Microbiol. 1998; 21: 33-9.

9. Turton JF, Woodford N, Glover J, et al. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol. 2006; 44: 2974-6.

10. Lim J, Cho HH, Kim S, et al. The genetic characteristics of multidrug-resistant Acinetobacter baumannii coproducing 16S rRNA methylase armA and carbapenemase OXA-23. J Bacteriol. Virol. 2013; 43: 27-36.

11. Mostacho AK, van der Heidjen I, Rossi F, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006; 27: 351-3.

12. Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother. 2012; 56: 559-62.

13. Di Popolo A, Giannouli M, Triassi M, et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii isolates from intensive care units in northern Italy: a genomic approach to characterize new multilocus sequence types. Future Microbiol. 2019; 14: 1281-92.

14. Kawal M, Kubina P, Jambor M, et al. Single-locus-based typing of XbaI-restricted genomic DNA from Saint George hospital in Lebanon. BMC Microbiol. 2019; 19: 29.

15. Tada T, Uchida H, Hishinuma T, et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii from intensive care hospitals in Mexico: virulence profiles, innate immune response and clonal dissemination. Front Microbiol. 2019; 10: 2116.

16. Luo Y, Ma Y, Zhao Q, et al. Similarity and divergence of phylogenies, antimicrobial susceptibilities, and virulence factor profiles of Escherichia coli isolates causing recurrent urinary tract infections that persist or result from reinfection. J Clin Microbiol. 2012; 50: 4002-7.

17. Bi R, Kong Z, Qian H, et al. High prevalence of blaOXA-58 variants among carbapenem-resistant Escherichia coli in Northern Jiangsu Province, China. Front Microbiol. 2018; 9: 2704.

18. Kawal M, Kubina P, Jambor M, et al. Single-locus-based typing of XbaI-restricted genomic DNA from Saint George hospital in Lebanon. BMC Microbiol. 2019; 19: 29.

19. Di Popolo A, Giannouli M, Triassi M, et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii isolates from intensive care units in northern Italy: a genomic approach to characterize new sequence types. Future Microbiol. 2019; 14: 1281-92.

20. Abdelhal MI, Hinawi AM, Sun X. Comparative study of rapid DNA extraction methods of pathogenic bacteria. American Journal of Bioscience and Bioengineering. 2016; 4: 1-8.

21. Tenover FC, Arbeit RD, Goering RV. How to select and interpret molecular isolate typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Infect Control Hosp Epidemiol. 1997; 18: 426-39.

22. PUBMLST - Public databases for molecular typing and microbial genome diversity. MLST of Acinetobacter baumannii complex (Pasteur scheme). Available at <https://pubmlst.org/organisms/ acinetobacter-baumannii/info/primers_Pasteur.shtml>. Accessed February 10, 2020.

23. Mugnier PD, Poirel L, Naas T, et al. Worldwide dissemination of the blaOXA-23 Carbapenemase gene of Acinetobacter baumannii. Emerg Infect Dis. 2010; 16: 35-40.

24. Vahaboglu H, Budak F, Kasap M, et al. High prevalence of OXA-51-type class D beta-lactamases among ceftazidime-resistant clinical isolates of Acinetobacter spp.: co-existence with OXA-58 in multiple centres. J Antimicrob Chemother. 2006; 58: 537-42.

25. Kulah C, Mooij MJ, Comert F, et al. Characterisation of carbapenem-resistant Acinetobacter baumannii outbreak strains producing OXA-58 in Turkey. Int J Antimicrob Agents. 2010; 36: 114-8.

26. Ahmed SS, Alp E, Ulu-Kilic A, et al. Spread of carbapenem-resistant international clones of Acinetobacter baumannii in Turkey and Azerbaijan: a collaborative study. Eur J Clin Microbiol Infect Dis. 2016; 35: 1463-8.

27. Castanheira M, Costello SE, Woosley LN, et al. Evaluation of clonality and carbapenem-resistance mechanisms among Acinetobacter baumannii-Acinetobacter calcoaceticus complex and Enterobacteriaceae isolates collected in European and Mediterranean countries and detection of two novel β-lactamases, GES-22 and VIM-35. Antimicrob Agents Chemother. 2014; 58: 7356-66.

28. Pournaras S, Dafopoulos K, Del Franco M, et al. Predominance of international clone 2 OXA-23-producing Acinetobacter baumannii clinical isolates in Greece, 2013: results of a nationwide study. Int J Antimicrob Agents. 2017; 49: 749-53.

29. Durum R, Olu B, Koksal F, et al. The optimization of a rapid-field pulsed-gel electrophoresis protocol for the typing of Acinetobacter baumannii, Escherichia coli and Klebsiella spp. Jpn J Infect Dis. 2009; 62: 372-7.

30. Ertürk A, Çeçek AC, Gümiş A, et al. Molecular characterisation and control of Acinetobacter baumannii isolates resistant to multi-drugs emerging in inter-intensive care units. Ann Clin Microbiol Antimicrob. 2014; 13: 36.

31. Boral B, Unalı Ö, Ergin A, et al. A prospective multicenter study on the evaluation of antimicrobial resistance and molecular epidemiology of multidrug-resistant Acinetobacter baumannii infections in intensive care units with clinical and environmental features. Ann Clin Microbiol Antimicrob. 2019; 18:19.

32. Alcántar-Curiel MD, Rosales-Reyes R, Jarillo-Quijada MD, et al. Carbapenem-resistant Acinetobacter baumannii: overview of the potential role of multi-drugs emerging in the intensive care unit. Rev Clin Microbiol. 2017; 61: 124-33.

33. Tada T, Uchida H, Hishinuma T, et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii isolates from intensive care units in northern Italy: a genomic approach to characterize new sequence types. Future Microbiol. 2019; 14: 122-25.

34. Lorenzin G, Scaltriti E, Gargiulo F, et al. Extensively drug-resistant Acinetobacter baumannii isolated from intensive care units in northern Italy: a genomic approach to characterize new sequence types. Future Microbiol. 2019; 14: 1281-92.

35. Di Popolo A, Giannouli M, Triassi M, et al. Molecular epidemiological investigation of multidrug-resistant Acinetobacter baumannii isolates in four Mediterranean countries with a multilocus sequence typing scheme. Clin Microbiol Infect. 2011; 17: 197-201.

36. Pournaras S, Gouou V, Giannouli M, et al. Single-locus-based typing of blaOXA-143, blaOXA-144, and blaOXA-145 genes for rapid assignment of Acinetobacter baumannii clinical isolates to international clonal lineages. J Clin Microbiol. 2014; 52: 1653-7.

37. Metan G, Sariguzel F, Sumerkan B, et al. Clonal diversity and high prevalence of OXA-58 among Acinetobacter baumannii isolates from blood cultures in a tertiary care centre in Turkey. Infect Genet Evol. 2013; 14: 92-7. Erratum in: Infect Genet Evol. 2013; 16: 447-8.