The effect of boundary conditions on mixing of 2D Potts models at discontinuous phase transitions.

Summary: We study Swendsen-Wang dynamics for the critical q-state Potts model on the square lattice. For $q = 2, 3, 4$, where the phase transition is continuous, the mixing time t_{mix} is expected to obey a universal power-law independent of the boundary conditions. On the other hand, for large q, where the phase transition is discontinuous, the authors recently showed that t_{mix} is highly sensitive to boundary conditions: $t_{\text{mix}} \geq \exp(cn)$ on an $n \times n$ box with periodic boundary, yet under free or monochromatic boundary conditions, $t_{\text{mix}} \leq \exp(n^{o(1)})$.

In this work we classify this effect under boundary conditions that interpolate between these two (torus vs. free/monochromatic). Specifically, if one of the q colors is red, mixed boundary conditions such as red-free-red-free on the 4 sides of the box induce $t_{\text{mix}} \geq \exp(cn)$, yet Dobrushin boundary conditions such as red-red-free-free, as well as red-periodic-red-periodic, induce sub-exponential mixing.

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B27 Critical phenomena in equilibrium statistical mechanics
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics

Keywords:
Potts model; Swendsen-Wang; mixing times; surface tension; boundary conditions
[12] D. A. Huse and D. S. Fisher. Dynamics of droplet fluctuations in pure and random Ising systems. Phys. Rev. B, 35:6841–6846, May 1987.
[13] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM J. Comput., 18(6):1149–1178, 1989. · Zbl 0723.05107
[14] L. Laanait, A. Messager, S. Miracle-Solè, J. Ruiz, and S. Shlosman. Interfaces in the Potts model. I. Pirogov-Sinai theory of the Fortuin-Kasteleyn representation. Comm. Math. Phys., 140(1):81–91, 1991. · Zbl 0734.60108
[15] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. American Mathematical Society, Providence, RI, 2nd edition, 2017. · Zbl 1305.60001
[16] E. Lubetzky, F. Martinelli, A. Sly, and F. L. Toninelli. Quasi-polynomial mixing of the 2D stochastic Ising model with “plus” boundary up to criticality. J. Eur. Math. Soc. (JEMS), 15(2):339–386, 2013. · Zbl 1266.60161
[17] F. Martinelli. On the two-dimensional dynamical Ising model in the phase coexistence region. J. Statist. Phys., 76(5–6):1179–1246, 1994. · Zbl 0839.60087
[18] F. Martinelli and F. L. Toninelli. On the mixing time of the 2D stochastic Ising model with “plus” boundary conditions at low temperature. Comm. Math. Phys., 296(1):175–213, 2010. · Zbl 1191.82036 · doi:10.1007/s00220-010-1028-1
[19] A. Messager, S. Miracle-Solè, J. Ruiz, and S. Shlosman. Interfaces in the Potts model. II. Antonov’s rule and rigidity of the order disorder interface. Comm. Math. Phys., 140(2):273–290, 1991. · Zbl 0734.60109
[20] Y. Peres and P. Winkler. Can extra updates delay mixing? Comm. Math. Phys., 323(3):1007–1016, 2013. · Zbl 1277.82036
[21] A. Sinclair. Improved bounds for mixing rates of Markov chains and multicommodity flow. Combin. Probab. Comput., 1(4):351–370, 1992. · Zbl 0801.90039
[22] R. H. Swendsen and J.-S. Wang. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett., 58:86–88, Jan 1987.
[23] M. Ullrich. Comparison of Swendsen-Wang and heat-bath dynamics. Random Structures Algorithms, 42(4):520–535, 2013. · Zbl 1277.82036 · doi:10.1002/rsa.20431
[24] M. Ullrich. Rapid mixing of Swendsen-Wang dynamics in two dimensions. Dissertationes Math. (Rozprawy Mat.), 502:64, 2014. · Zbl 1315.60113

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.