INTRODUCTION

Insights about the suitability of a thermal landscape for a given species should consider not only average thermal values but also variability in thermal values (Bozinovic, Medina, Alruiz, Cavieres, & Sabat, 2016; Bozinovic, Sabat, Rezende, & Canals, 2016; Estay, Lima, & Bozinovic, 2014). Theoretical (Katz, Brush, & Parlange, 2005) and empirical studies (Easterling et al., 2000) have demonstrated that daily and seasonal variation in temperature affects organisms’ ecology and fitness (Clavijo-Baquet et al., 2014; Gilbert & Miles, 2017; Kielland, Bech, & Einum, 2017; Messenger & Flitters, 1958; Roitberg & Mangel, 2016; Saarinen, Laaksso, Lindström, & Ketola, 2018). In addition, thermal extremes, defined as events that alter the distribution of ambient temperature without influencing the mean and the variance (Ummenhofer & Meehl, 2017), have also been shown to have outstanding effects on physiological performance and survival (Bozinovic, Medina, et al., 2016; Kingsolver & Woods, 2016).

Experimental studies have evaluated the effect of thermal variability on physiological and life-history traits and have shown that organisms can respond to thermal variability through plasticity, and such responses could affect current and future fitness (Bozinovic, Catalan, Estay, & Sabat, 2013; Chevin & Hoffmann, 2017; Colinet, Sinclair, Vernon, & Renault, 2015; Fischer, Klockmann, & Reim, 2014; Manenti, Loeschcke, Moghadam, & Sørensen, 2015; Meats, 2011; Terblanche, Nyamukondiwa, & Kleynhans, 2010). Further to this, multiple studies suggest that the ability to cope with thermal fluctuations rather than just tolerate different mean temperatures is probably of much greater importance to species survival and thermal adaptation (Boher, Trefault, Estay,
Adult *D. melanogaster* flies were collected in central Chile (33°26'S; 70°39'W at 500 m above sea level) during summer 2016. After capture, flies were identified based on morphological characters (Markow & O'Grady, 2005) and from these, ten breeding groups were generated. Each group consisted of approximately 10 males and 10 females. Flies were reared in controlled conditions (24°C and LD = 12:12) in 250 ml glass vials with Burdick culture medium (Burdick, 1955). The groups were maintained for three generations. Third generation virgin flies were collected within 8 hr of hatching and were transferred to vials containing 11 g of culture medium. Two individuals (sex ratio 1:1) were maintained in each vial. After 24 hr, 20 eggs were collected from each vial using a microscope. These eggs were transferred in batch to fresh vials. Vials, each containing twenty eggs, were assigned to either the control group (28 ± 0°C) or to one of four thermal treatments that differed in the frequency pattern of thermal fluctuation (28 ± 4°C). The frequency pattern of thermal fluctuation for each treatment was composed of cycles of (a) 6 hr (*n* = 13 replicates); (b) 12 hr (*n* = 10 replicates); (c) 24 hr (*n* = 10 replicates); and (d) 48 hr (*n* = 12 replicates). In all treatments, temperature increased linearly, reached the maximum temperature (32°C), remained constant, and then began to decrease until a minimum temperature (24°C) was reached. All cycles were repeated until egg-hatching was completed. The photoperiod for each treatment was LD = 12:12. The heating/cooling rate between the minimum and maximum temperatures was 0.26°C/min, allowing them to spend most of the treatment time in the maximum and minimum temperatures. The thermal fluctuation range (28 ± 4°C) was set based on the well-known limits of fruit fly egg viability (Hoffmann, 2010). The proportions of hatching eggs in the upper (32 ± 0°C, *n* = 14 replicates) and lower (24 ± 0°C, *n* = 14 replicates) thermal fluctuation treatments were 0% and 34%, respectively. Eggs were maintained in their respective treatments until hatching occurred. Later, hatching performance was evaluated as the proportion of flies found in the replicate vials every 24 hr (i.e., accumulative hatching success within 24 hr) during a total period of 12 days; we quantified the amount of adults that successfully developed, yet we did not check for stages of development (e.g., larvae and pupae). In particular, we quantified (a) proportion of hatched eggs (total) and (b) hatching success over time. Normality and homoscedasticity assumptions were fulfilled using square root and exponential function transformations.

The proportion of hatched eggs was analyzed using a general linear model with a negative Binomial distribution. To analyze hatching success over time, we tested the effect of treatment and time until hatching (days) on the proportion of hatched eggs; the data were fitted to a second-order fractional polynomial function. Then, a linear mixed model was generated for the longitudinal data; number of replicates (random intercept) was nested in time until hatching (slope) and was included as a random effect. Differences among treatments were
Results

Egg viability differed significantly among treatments (Figure 1). In particular, the proportion of eggs that hatched was lower for flies acclimated to long (48 hr) and short (6 and 12 hr) thermal fluctuation timescales compared to flies subjected to control (0 hr) and moderate (24 hr) timescales of thermal variability.

Compared to the control group, where 77% of eggs hatched, the proportions of eggs hatching in the 6, 12, and 24 hr treatments were 54%, 50%, and 48% (Figure 1, Table 1). In addition, hatching success over time differed significantly among treatments (Table 1, Figure 2); eggs in the 24 and 48 hr treatments hatched later than eggs in the control, 6, and 12 hr groups (Figure 2).

Discussion

Adaptation to varying thermal environments depends on the temporal pattern of environmental changes and the tolerance of each phenotype (Levins, 1968). Thus, environmental variability in time and space imposes challenges on organisms (Gould, 1985) where animals that inhabit variable environments are expected to be plastic in order to survive a broad range of temperatures.

Some studies have evaluated the effect of thermal variability on life-history traits, including developmental time (Ragland & Kingsolver, 2008), hatching success (Ji, Gao, & Han, 2007), and phenotypic characteristics of progeny (Estay, Clavijo-Baquet, Lima, & Bozinovic, 2011; Folguera, Bastías, & Bozinovic, 2009; Krams, Daukšte, Kivleniece, Krama, & Rantala, 2011; Orcutt & Porter, 1983; Paaijmans et al., 2010; Pétavy, David, Debat, Gibert, & Moreteau, 2004; Williams et al., 2012). In nature, ectotherms must continuously cope with short- and long-term environmental variation (Buckley & Huey, 2016; Grant et al., 2017; Kingsolver & Buckley, 2017; Wingfield et al., 2017), and some organisms perform well and are highly tolerant to variable conditions (Angilletta, Wilson, Navas, & James, 2003; Condon, Cooper, Yeaman, & Angilletta, 2014; Seebacher, Ducret, Little, & Adriaenssens, 2015). On the contrary, other species deal with variability through thermal acclimation and/or acclimatization (Terblanche et al., 2010). Knowing how fluctuating thermal conditions affect individual performance and plastic responses is central for predicting organismal responses to climatic change (Kingsolver & Buckley, 2017; Koussooropoulos et al., 2017).

Our key finding here was that frequency of thermal stress experienced by fly eggs affects hatching performance. Some studies that have assessed the impact of thermal fluctuations on egg-to-adult viability have shown contrasting results (Manenti et al., 2015; Masel & Siegal, 2009), and most other studies have only considered intermediate scales of thermal fluctuation (e.g., 24 hr). Here, we observed that hatching performance was higher in flies maintained in thermal treatments for 24 hr compared to the hatching performance of flies maintained in treatments for 6, 12, and 48 hr (Figure 2). In addition, eggs maintained in shorter cycles of thermal fluctuation (6 hr) hatched earlier than those that experienced longer cycles. As expected, repeated heat shocking negatively affected the performance and fitness of our experimental flies. According to Ketola

Table 1: Coefficients of the linear and fractional polynomial models fitted to hatching performance of Drosophila melanogaster. Eggs were maintained in one of four treatments that differed in timescales of thermal variability (6, 12, 24, 48 hr, and control).

Effect	Estimate	SE	T	p	
Proportion of hatched eggs	Intercept	0.77	0.04	16.82	<0.001
6 hr	-0.23	0.06	-3.73	<0.001	
12 hr	-0.27	0.06	-4.06	<0.001	
24 hr	0.06	0.06	1.01	0.77	
48 hr	-0.33	0.06	-5.14	<0.001	
Hatching success over time	Intercept	-5.32	0.59	-9.01	<0.001
(Control)	-9.55	1.03	-9.2	<0.001	
6 hr	-1.61	0.51	-3.12	0.002	
12 hr	-1.21	0.55	-2.21	0.035	
24 hr	-3.77	0.55	-6.86	<0.001	
Time	6.21	0.60	10.31	<0.001	
Time²	-0.04	0.003	-12.67	<0.001	
6 hr × Time	0.71	0.23	3.08	0.002	
12 hr × Time	0.52	0.24	2.12	0.035	
24 hr × Time	1.72	0.24	6.98	<0.001	
48 hr × Time	1.57	0.23	6.67	<0.001	
et al. (2014), the high performance of *D. melanogaster* in variable environments is explained by high average viability across environments and not by having high environmental robustness in terms of viability (i.e., low variation in viability across environments) (Ketola et al., 2014; Liefting, Hoffmann, & Ellers, 2009; Masel & Siegal, 2009). In theory, when eggs are exposed to a high frequency of stressful temperatures (32°C; 6 and 12 hr treatments), reductions in hatching performance are probably a consequence of the increased
energetic costs of maintenance and synthesis of heat-shock proteins (HSPs; Chevin & Hoffmann, 2017; Cooper Brandon, Hammad Loubna, Montooth Kristi, & Robbie, 2014; Kafi, Metzl-Raz, Jona, & Barkai, 2016; Podrabsky & Somero, 2004); however, these costs were not assessed in this study. For instance, Krebs and Feder (1997) report that HSPs are biosynthesized and degraded nearly every 1.5 and 4–6 hr, respectively (see also Sørensen, Nielsen, Kruhøffer, Justesen, & Loechschke, 2005; Tomanek & Somero, 2000). Thus, frequent events of high temperatures that cause physiological stress may cause organisms to have to reduce energy allocations to long-term processes such as those involved in reproduction and hatching; hence, fitness could be negatively impacted. Also, increased ambient temperature could affect the circadian rhythms of hatching and locomotion in fruit flies (Rosbash et al., 1996). A similar hypothesis could be stated for longer times of exposure to high and stressful temperatures such as that experienced by flies in the 48 hr treatment. Indeed, according to Roberts and Feder (2000) prolonged duration of thermal exposure has negative effects on performance and fitness; specifically, chronic exposure to high temperatures reduces insect survival and rate of development (Kingsolver & Woods, 2016; Krebs & Feder, 1997).

Here, we have shown that thermal fluctuation significantly impacts hatching success. Despite this, consequences to fitness may not only depend on the direct effects of extreme temperatures (Foray, Desouhant, & Gibert, 2014; Kostál, Renault, Mehrabianová, & Bastl, 2007), but environmental conditions experienced by parents could affect performance and fitness in their offspring (Salinas et al., 2013). Thus, transgenerational effects can mediate the negative impacts of extreme events (Donelson, Salinas, L. Munday, & Shama, 2017; Donelson, Wong, Booth, & Munday, 2016; Moussaou & Dingle, 1991; Rodríguez-Romero, Jarrod, Massamba-N’Siala, Spicer, & Calosi, 2016). As a consequence, future studies that incorporate the thermal history of organisms are important to predict the probable evolution and/or acclimation capacities of thermal sensitivity in nature.

Summarizing, variable and extreme environments are characterized by the increased frequency and harshness of thermal events. Nevertheless, the definition of extreme environments in a biological context needs to consider the biological response of organisms to such extreme events. As suggested by Chevin and Hoffmann (2017), the definition of fluctuating and extreme environments is organism-specific, because a stressful environment to one organism or species may not be stressful or could even be benign to another species. At last, our results support the hypothesis that hatching performance is dependent on patterns of thermal fluctuation experienced throughout ontogeny. This fact highlights the importance of incorporating thermal fluctuation in studies of phenotypic variation. Indeed, as demonstrated here, an understanding of the effect of the patterns of thermal exposure on fly fitness is necessary for building predictions about the consequences of climatic variability (Bozinovic, Sabat, et al., 2016; Kingsolver & Woods, 2016). Although controlled experiments cannot capture the widespread range of thermal environments in nature, simple tests such as those presented here can shed light on the mechanisms involved in responses to thermal variability. Moreover, these types of experiments can shed light on the causes of phenotypic variation at different temporal and spatial scales as environmental temperature varies over time as well as across geographic gradients.

ACKNOWLEDGEMENTS

This work was funded by CONICYT (grant number FB0002-2014 line 3 to F.B.) and FONDECYT 1170017 to FB. F.M. Jaksic provided valuable comments to an early draft.

CONFLICT OF INTEREST

None declared.

AUTHOR CONTRIBUTIONS

G.C., J.M.B. and F.B. designed the experiment. G.C. and P.T. performed the experiments. G.C. and J.M.B. analyzed the data. G.C. and F.B. wrote the paper.

DATA AVAILABILITY

Data are available at the Dryad Digital Repository.

ORCID

Francisco Bozinovic http://orcid.org/0000-0003-3870-9624

REFERENCES

Angilletta, M. J., Wilson, R. S., Navas, C. A., & James, R. S. (2003). Tradeoffs and the evolution of thermal reaction norms. Trends in Ecology & Evolution, 18, 234–240. https://doi.org/10.1016/S0169-5347(03)00087-9

Boher, F., Trefault, N., Estay, S. A., & Bozinovic, F. (2016). Ectotherms in variable thermal landscapes: A physiological evaluation of the invasive potential of fruit flies species. Frontiers in Physiology, 7, 302. https://doi.org/10.3389/fphys.2016.00302

Bozinovic, F., Catalan, T. P., Estay, S. A., & Sabat, P. (2013). Acclimation to daily thermal variability drives the metabolic performance curve. Evolutionary Ecology Research, 15, 579–587.

Bozinovic, F., Medina, N. R., Alruiz, J. M., Cavieres, G., & Sabat, P. (2016). Thermal tolerance and survival responses to scenarios of experimental climatic change: Changing thermal variability reduces the heat and cold tolerance in a fly. Journal of Comparative Physiology B, 186, 581–587. https://doi.org/10.1007/s00360-016-0980-6

Bozinovic, F., & Pörtner, H.-O. (2015). Physiological ecology meets climate change. Ecology and Evolution, 5, 1025–1030. https://doi.org/10.1002/ece3.1403

Bozinovic, F., Sabat, P., Rezende, E. L., & Canals, M. (2016). Temperature variability and thermal performance in ectotherms: Acclimation, behaviour, and experimental considerations. Evolutionary Ecology Research, 17, 111–124.

Buckley, L. B., & Huey, R. B. (2016). Temperature extremes: Geographic patterns, recent changes, and implications for organismal survival.
vulnerabilities. Global Change Biology, 22, 3829–3842. https://doi.org/10.1111/gcb.13313

Burdick, A. B. (1955). Drosophila experiments for high school biology. American Biology Teacher, 17, 155–159. https://doi.org/10.2307/4438704

Castañeda, L. E., Balanyà, J., Rezende, E. L., & Santos, M. (2013). Vanishing chromosomal inversion clines in Drosophila subobscura from Chile: Is behavioral thermoregulation to blame? American Naturalist, 182, 249–259. https://doi.org/10.1086/671057

Castañeda, L. E., Rezende, E. L., & Santos, M. (2015). Heat tolerance in Drosophila subobscura along a latitudinal gradient: Contrasting patterns between plastic and genetic responses. Evolution, 69, 2721–2734. https://doi.org/10.1111/evol.12757

Cavieres, G., Bogdanovich, J. M., & Bozinovic, F. (2016). Ontogenetic thermal tolerance and performance of ectotherms at variable temperatures. Journal of Evolutionary Biology, 29, 1462–1468. https://doi.org/10.1111/jeb.12886

Chevin, L.-M., & Hoffmann, A. A. (2017). Evolution of phenotypic plasticity in extreme environments. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372, 20160138. https://doi.org/10.1098/rstb.2016.0138

Chidawanyika, F., & Terblanche, J. S. (2011). Rapid thermal responses and thermal tolerance in adult coding moth Cydia pomonella (Lepidoptera: Tortricidae). Journal of Insect Physiology, 57, 108–117. https://doi.org/10.1016/j.jinsphys.2010.09.013

Clavijo-Baquet, S., Bofer, H., Ziegler, L., Martel, S. I., Estay, S. a., & Bozinovic, F. (2014). Differential responses to thermal variation between fitness metrics. Scientific Reports, 4, 5349. https://doi.org/10.1038/srep05349

Colinet, H., Sinclair, B. J., Vernon, P., & Renault, D. (2015). Insects in fluctuating thermal environments. Annual Review of Entomology, 60, 123–140. https://doi.org/10.1146/annurev-ento-010814-021017

Condon, C., Cooper, B. S., Yeaman, S., & Angilletta, M. J. (2014). Temporal variation favors the evolution of generalists in experimental populations of Drosophila melanogaster. Evolution, 68, 720–728. https://doi.org/10.1111/evol.12296

Cooper Brandon, S., Hammad Loubna, A., Montooth Kristi, L., & Robbie, W. (2014). Thermal adaptation of cellular membranes in natural populations of Drosophila melanogaster. Functional Ecology, 28, 886–894. https://doi.org/10.1111/1365-2435.12264

Dey, S., Proulx, S. R., & Teotónio, H. (2015). Adaptation to temporarily fluctuating environments by the evolution of maternal effects. bioRxiv, 2, 1–23. https://doi.org/10.1016/j.203044

Donelson, J., Salinas, S., L. Munday, P., & Shama, L. (2017). Transgenerational plasticity and climate change experiments: Where do we go from here? Global Change Biology, 24, 13–34. https://doi.org/10.1111/gcb.13903

Donelson, J. M., Wong, M., Booth, D. J., & Munday, P. L. (2016). Transgenerational plasticity of reproduction depends on rate of warming across generations. Evolutionary Applications, 9, 1072–1081. https://doi.org/10.1111/eva.12386

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mears, L. O. (2000). Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074. https://doi.org/10.1126/science.289.5487.2068

Estay, S. A., Clavijo-Baquet, S., Lima, M., & Bozinovic, F. (2011). Beyond average: An experimental test of temperature variability on the population dynamics of Tribolium confusum. Population Ecology, 53, 53–58. https://doi.org/10.1007/s10144-010-0216-7

Estay, S. A., Lima, M., & Bozinovic, F. (2014). The role of temperature variability on insect performance and population dynamics in a warming world. Ökos, 123, 131–140. https://doi.org/10.1111/j.1600-0706.2013.00607.x

Fischer, K., Klockmann, M., & Reim, E. (2014). Strong negative effects of simulated heat waves in a tropical butterfly. Journal of Experimental Biology, 217, 2892–2898. https://doi.org/10.1242/geb.106245

Folguera, G., Bastías, D. A., & Bozinovic, F. (2009). Impact of experimental thermal amplitude on ectotherm performance: Adaptation to climate change variability? Comparative Biochemistry and Physiology Part A Molecular Integrative Physiology, 154, 389–393. https://doi.org/10.1016/j.cbpa.2009.07.008

Foray, V., Desuahant, E., & Gibert, P. (2014). The impact of thermal fluctuations on reaction norms in specialist and generalist parasitic wasps. Functional Ecology, 28, 411–423. https://doi.org/10.1111/1365-2435.12171

Gilbert, A. L., & Miles, D. B. (2017). Natural selection on thermal preference, critical thermal maxima and locomotor performance. Proceedings of the Royal Society B-Biological Sciences, 284, 20170536. https://doi.org/10.1098/rspb.2017.0536

Gould, S. J. (1985). Ontogeny and phylogeny (Later Printing ed.). Cambridge, MA: Belknap Press.

Grant, P. R., Grant, B. R., Huey, R. B., Johnson, M. T. J., Knoll, A. H., & Schmitt, J. (2017). Evolution caused by extreme events. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372, 20160146. https://doi.org/10.1098/rstb.2016.0146

Hoffmann, A. A. (2010). Physiological climatic limits in Drosophila: Patterns and implications. Journal of Experimental Biology, 213, 870–880. https://doi.org/10.1242/geb.037630

Ji, X., Gao, J.-F., & Han, J. (2007). Phenotypic responses of hatchlings to constant versus fluctuating incubation temperatures in the multibanded krait, Bungarus multicinctus (Elapidae). Zoological Science, 24, 384–390. https://doi.org/10.2108/zsj.24.384

Kafri, M., Metzl-Raz, E., Jona, G., & Barkai, N. (2016). The cost of protein production. Cell Reports, 14, 22–31. https://doi.org/10.1016/j.celrep.2015.12.015

Katz, R. W., Brush, G. S., & Par Lange, M. B. (2005). Statistics of extremes: Modeling ecological disturbances. Ecology, 86, 1124–1134. https://doi.org/10.1890/04-0606

Ketola, T., Kellermann, V. M., Loeschcke, V., López-Sepulcre, A., & Kristensen, T. N. (2014). Does environmental robustness play a role in fluctuating environments? Evolution, 68, 587–594. https://doi.org/10.1111/evol.12285

Khani, A., & Moharramipour, S. (2009). Cold hardiness and supercooling capacity in the overwintering larvae of the codling moth, Cydia pomonella. Journal of Insect Science, 10, 1–12

Kielwand, Ø. N., Bech, C., & Einum, S. (2017). Is there plasticity in developmental instability? The effect of daily thermal fluctuations in an ectotherm. Ecology and Evolution, 7, 10567-10574. https://doi.org/10.1002/ece3.3556

Kingsolver, J. G., & Buckley, L. B. (2017). Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372, 20160147. https://doi.org/10.1098/rstb.2016.0147

Kingsolver, J. G., & Woods, H. A. (2016). Beyond thermal performance curves: Modeling time-dependent effects of thermal stress on ectotherm growth rates. American Naturalist, 187, 283–294. https://doi.org/10.1086/684786

Kostá¹, V., Renault, D., Mehrabianová, A., & Bastl, J. (2007). Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: Role of ion homeostasis. Comparative Biochemistry and Physiology Part A Molecular Integrative Physiology, 147, 231–238. https://doi.org/10.1016/j.cbpa.2006.12.033

Koussoroplis, A.-M., Pincebourde, S., & Wacker, A. (2017). Understanding and predicting physiological performance of organisms in fluctuating and multifactorial environments. Ecological Monographs, 87, 178–197. https://doi.org/10.1002/ecm.1247
Vázquez, D. P., Gianoli, E., Morris, W. F., & Bozinovic, F. (2017). Ecological and evolutionary impacts of changing climatic variability. *Biological Reviews, 92*, 22–42. https://doi.org/10.1111/brv.12216

Williams, C. M., Marshall, K. E., MacMillan, H. A., Dzurisin, J. D. K., Hellmann, J. J., & Sinclair, B. J. (2012). Thermal variability increases the impact of autumnal warming and drives metabolic depression in an overwintering butterfly. *PLoS One, 7*, e34470. https://doi.org/10.1371/journal.pone.0034470

Wingfield, J. C., Pérez, J. H., Krause, J. S., Word, K. R., González-Gómez, P. L., Lisovski, S., & Chmura, H. E. (2017). How birds cope physiologically and behaviourally with extreme climatic events. *Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 372*, 1-10. https://doi.org/10.1098/rstb.2016.0140

How to cite this article: Cavieres G, Bogdanovich JM, Toledo P, Bozinovic F. Fluctuating thermal environments and time-dependent effects on fruit fly egg-hatching performance. *Ecol Evol*. 2018;8:7014–7021. https://doi.org/10.1002/ece3.4220