Electronic Supporting Information

Probing Halogen Bonds by Scalar Couplings
Bono Jimmink, Daniel Sethio, Lotta Turunen, Daniel von der Heiden, Máté Erdélyi*

Table of Contents
General information .. S2
The iodine basicity scale .. S2
1 Experimental Setup and Details .. S2
 1.1. The Spectrometer settings relevant for the measurement accuracy of $^1J_{F,C}$ S2
 1.2. Sample preparation ... S2
 1.2.1. Experiment repetition ... S2
 1.2.2. 1-Iodoperfluorobenzene samples ... S2
 1.2.3. 1-Iodoperfluoroctane samples ... S7
 1.3. Error estimation .. S8
 1.3.1. The method used for error estimation in this study .. S8
 1.3.2. Curve fitting algorithms .. S8
 1.3.3. Comparison of the observed errors for the $\Delta^1J_{F,C}$ estimations for 1-iodopentafluorobenzene and 1-iodoheptadecafluoroctane ... S8
 1.4. The influence of moisture .. S11
2 Experimental Data ... S12
 2.1. 1-Iodoperfluorobenzene: a typical example ... S13
 2.2. 1-Iodoperfluorobenzene: Base induced changes in the 19F NMR S16
 2.2.1. The $\Delta^1J_{F,C}$ and $\Delta\delta$ values for 1-iodopentafluorobenzene induced by Lewis bases S17
 2.2.2. Subset analysis of $\Delta^1J_{\text{ortho}-F,C}$ values for 1-iodopentafluorobenzene induced by Lewis bases S18
 2.3. 1-Iodoheptadecafluoroctane: A typical example ... S19
 2.4. 1-Iodoperfluoroctane: Base induced changes in the 19F NMR ... S21
 2.4.1. The $\Delta^1J_{F,C}$ and $\Delta\delta$ values for 1-iodoheptadecafluoroctane induced by Lewis bases S22
 2.5. Evaluating the impact of Non-Directional Effects .. S22
3 Computational Details .. S22
4 Computational Results .. S24
 4.1. Decomposition of the computed scalar couplings into FC, SD, PSO and DSO terms S39
5 Optimized Structures Obtained at the B3LYP-D3/aug-cc-pVTZ-pp Level of Theory S46
6 References .. S77
General information

The solvent CD$_2$Cl$_2$ was used as delivered (Eurisotop® lot: T1071) or was distilled over CaH$_2$; CH$_2$Cl$_2$ (VWR, AnalAR NORMAPUR Reag. Ph.Eur., ACS, water < 0.01 %, Lot 20G034019) was used as delivered. Dry solvents were stored over 3 Å molecular sieves in a glovebox. All other chemicals were purchased from commercial suppliers and used without further purification. For all synthesis and analytical studies, the glassware had been dried in vacuo, at least overnight. NMR spectra were recorded on an Agilent MR4000-DD2 equipped with a OneNMR probe. Chemical shifts are reported on the δ scale (ppm), with respect to the solvent deuterium lock signal. To assign the 19F NMR resonances, chemical shifts (δ), multiplicity, coupling constants (J Hz) and integrals were considered. Multiplicities are denoted as s (singlet), d (doublet), t (triplet), q (quartet), hep (heptet), and m (multiplet). MestReNova 12.0.3. was used to process the NMR spectra.

The iodine basicity scale

The iodine basicity (e.g. pK$_{b}$I$_2$ and Δν(I-I) scale) gives Lewis base-type dependent correlations to observables that describe the non-covalent binding of Lewis bases to diiodine. NMR-spectroscopy detects a time-averaged signal of the species involved into the binding equilibrium. The pK$_{b}$I$_2$ scale describes the same equilibrium process. The iodine basicity observed for a halogen bond acceptor is interconvertible via a linear correlation justifying the pK$_{b}$I$_2$ dependency of the correlations described in this work. There are a variety of basicity scales available, with the book “Lewis Basicity and Affinity Scales” by C. Laurence and J-F. Gal providing a helpful overview of the scope of each.

1 Experimental Setup and Details

1.1 The Spectrometer settings relevant for the measurement accuracy of 19F,C$_{s}$

19F NMR spectra have been recorded for CD$_2$Cl$_2$ solutions at 25.0 °C, acquiring 128 scans with 1 sec relaxation delay at 376.25 MHz using specifications given in Table S1.

Table S2. Experimental parameters for 19F measurements of 1-Iodoperfluorobenzene samples.

Spectral Width	30487.8 Hz
Acquired / Processed Size	131072 / 262144 points
Detected / Processed Digital Resolution	0.232 Hz / 0.116 Hz

Table S2. Experimental parameters for 19F measurements of 1-Iodoperfluoroctane samples.

Spectral Width	39062.5 Hz
Acquired / Processed Size	131072 / 262144 points
Detected / Processed Digital Resolution	0.298 Hz / 0.149 Hz

1.2 Sample preparation

1.2.1 Experiment repetition

Upon repetition of an experiment (19F NMR measurement) a fresh sample was used. Each individual sample was measured fresh and prepared on a different day.

1.2.2 1-Iodoperfluorobenzene samples

Each sample was prepared individually by mixing 1-Iodopentafluorobenzene (58.8±1.7% mg, 1.00 eq.) and 2.50 eq. equivalent of a base filled up to 1.00±0.01 mL (CD$_2$Cl$_2$:CH$_2$Cl$_2$ 1:1 v/v) resulting in a set of consistent concentrations for a given halogen bond donor.
The filename format of the NMR rawdata, which is provided at the open access repository Zenodo with DOI: 10.5281/zenodo.4698893: [YYYYMMDD]_[Operatorlabel]_[Systematiclabel]_[nonessentialdescriptions]

Table 3: Weigh-ins of experiments of 1-iodopentafluorobenzene and base with deviations.

Halogen bond donor...Base	Systematic labels:	Calcd. weigh-in base [mg]	Exp. weigh-in base [mg]	Dev.	Calcd. weigh-in C₆F₅I [mg]	Exp. weigh-in C₆F₅I [mg]	Dev.
Pentfluoriodobenzene...	Arl-3	0.0611	0.0614	0.5%	0.0588	0.0586	0.3%
4-Dimethylaminopyridine	Arl-9	0.0611	0.0609	0.3%	0.0588	0.0594	1.0%
Pentfluoriodobenzene...	Arl-15	0.0611	0.0611	0.0%	0.0588	0.0593	0.9%
Pentfluoriodobenzene...	Arl-4	0.0396	0.0391	1.1%	0.0588	0.0593	0.9%
4-Dimethylaminopyridine	Arl-10	0.0396	0.0398	0.6%	0.0588	0.0588	0.0%
4-Dimethylaminopyridine	Arl-29	0.0396	0.0394	0.4%	0.0588	0.0592	0.7%
4-Dimethylaminopyridine	Arl-5	0.0476	0.0474	0.3%	0.0588	0.0591	0.5%
4-Dimethylaminopyridine	Arl-11	0.0476	0.0476	0.1%	0.0588	0.059	0.3%
4-Dimethylaminopyridine	Arl-17	0.0476	0.0476	0.1%	0.0588	0.0596	1.4%
4-Methoxypyridine	Arl-6	0.0546	0.0544	0.3%	0.0588	0.0591	0.5%
Pentfluoriodobenzene...	Arl-12	0.0546	0.0546	0.1%	0.0588	0.0586	0.3%
Pentfluoriodobenzene...	Arl-18	0.0546	0.0546	0.1%	0.0588	0.0586	0.3%
Pentfluoriodobenzene...	Arl-7	0.0376	0.0372	0.9%	0.0588	0.0589	0.2%
Pentfluoriodobenzene...	Arl-13	0.0376	0.0378	0.7%	0.0588	0.0584	0.7%
Pentfluoriodobenzene...	Arl-19	0.0376	0.0375	0.1%	0.0588	0.0596	1.4%
N,N-Dimethyl-2-imidazolidinone	Arl-8	0.0571	0.0572	0.2%	0.0588	0.0592	0.7%
Pentfluoriodobenzene...	Arl-14	0.0571	0.0576	0.9%	0.0588	0.0586	0.3%
N,N-Dimethyl-2-imidazolidinone	Arl-20	0.0571	0.0576	0.9%	0.0588	0.0598	1.7%
Pentfluoriodobenzene...	Arl-22	0.0366	0.0363	0.7%	0.0588	0.0591	0.5%
Pentfluoriodobenzene...	Arl-30	0.0366	0.0363	0.7%	0.0588	0.0582	1.0%
Pentfluoriodobenzene...	Arl-41	0.0366	0.037	1.2%	0.0588	0.0592	0.7%
Pentfluoriodobenzene...	Arl-23	0.0366	0.0364	0.5%	0.0588	0.0591	0.5%
Butylamine	Arl-31	0.0366	0.0369	0.9%	0.0588	0.0583	0.9%
Pentfluoriodobenzene...	Arl-42	0.0366	0.0363	0.7%	0.0588	0.0585	0.5%
Pentfluoriodobenzene...	Arl-24	0.1227	0.1222	0.4%	0.0588	0.0583	0.9%
Pentfluoriodobenzene...	Arl-32	0.1227	0.1226	0.0%	0.0588	0.0596	1.4%
Halogen bond donor → Base	Systematic labels:	Calcd. weigh-in base [mg]	Exp. weigh-in base [mg]	Dev.	Calcd. weigh-in C$_6$F$_5$I [mg]	Exp. weigh-in C$_6$F$_5$I [mg]	Dev.
---------------------------	---------------------	---------------------------	------------------------	------	-------------------------------	-------------------------------	------
Pentafluoriodobenzene	ArI-43	0.1227	0.1229	0.2%	0.0588	0.059	0.3%
Triphenylamine	ArI-25	0.1437	0.1395	2.9%	0.0588	0.0588	0.0%
Triphenylphosphine oxide	ArI-37	0.1437	0.1389	3.4%	0.0588	0.0586	0.3%
Triphenylphosphine oxide	ArI-48	0.1437	0.1391	3.2%	0.0588	0.0594	1.0%
Triphenylbenzenes	ArI-26	0.0426	0.0424	0.4%	0.0588	0.0583	0.9%
Triphenylbenzenes	ArI-33	0.0426	0.0425	0.2%	0.0588	0.0583	0.9%
Triphenylbenzenes	ArI-44	0.0426	0.043	1.0%	0.0588	0.0594	1.0%
ArI-27	0.0568	0.0565	0.5%	0.0588	0.0594	1.0%	
ArI-34	0.0568	0.0566	0.3%	0.0588	0.0589	0.2%	
ArI-45	0.0568	0.0565	0.5%	0.0588	0.0586	0.3%	
ArI-28	0.0646	0.0642	0.7%	0.0588	0.0587	0.2%	
ArI-35	0.0646	0.0645	0.2%	0.0588	0.0585	0.5%	
ArI-46	0.0646	0.0646	0.0%	0.0588	0.0589	0.2%	
ArI-74	0.0506	0.0503	0.6%	0.0588	0.0592	0.7%	
ArI-47	0.0506	0.0506	0.0%	0.0588	0.0589	0.2%	
ArI-50	0.0506	0.0507	0.2%	0.0588	0.0588	0.0%	
ArI-39	0.0426	0.0427	0.3%	0.0588	0.0584	0.7%	
ArI-49	0.0426	0.0423	0.6%	0.0588	0.0591	0.5%	
ArI-51	0.0426	0.0426	0.1%	0.0588	0.059	0.3%	
ArI-52	0.0790	0.0791	0.1%	0.0588	0.0587	0.2%	
ArI-62	0.0790	0.0787	0.4%	0.0588	0.0588	0.0%	
ArI-75	0.0790	0.0788	0.3%	0.0588	0.0589	0.2%	
ArI-55	0.0536	0.0532	0.7%	0.0588	0.0583	0.9%	
ArI-63	0.0536	0.0534	0.3%	0.0588	0.0589	0.2%	
ArI-76	0.0536	0.0534	0.3%	0.0588	0.0589	0.2%	
ArI-56	0.0536	0.0537	0.2%	0.0588	0.0594	1.0%	
ArI-64	0.0536	0.0532	0.7%	0.0588	0.0592	0.7%	
ArI-77	0.0536	0.0534	0.3%	0.0588	0.0589	0.2%	
ArI-57	0.0740	0.0741	0.1%	0.0588	0.0594	1.0%	
ArI-65	0.0740	0.0744	0.5%	0.0588	0.0593	0.9%	
Halogen bond donor...-Base	Systematic labels:	Calcd. weigh-in base [mg]	Exp. weigh-in base [mg]	Dev.	Calcd. weigh-in C_6F_5I [mg]	Exp. weigh-in C_6F_5I [mg]	Dev.
--------------------------	-------------------	--------------------------	------------------------	------	------------------------------	--------------------------	------
Pentafluoroiodobenzene...	ArI-78	0.0740	0.074	0.0%	0.0588	0.0594	1.0%
Pentafluoroiodobenzene...	ArI-58	0.0366	0.0369	0.9%	0.0588	0.0585	0.5%
Pentafluoroiodobenzene...	ArI-66	0.0366	0.0364	0.5%	0.0588	0.0589	0.2%
Pentafluoroiodobenzene...	ArI-79	0.0366	0.0366	0.1%	0.0588	0.0591	0.5%
Pyrrolidinone	ArI-59	0.0356	0.0354	0.5%	0.0588	0.0594	1.0%
Pentfluoroiodobenzene...	ArI-91	0.0356	0.0356	0.1%	0.0588	0.0588	0.0%
Pyrrolidine	ArI-80	0.0356	0.0354	0.5%	0.0588	0.0594	1.0%
Pentafluoroiodobenzene...	ArI-60	0.0506	0.0503	0.6%	0.0588	0.0596	1.4%
Diisopropylamine	ArI-68	0.0506	0.0506	0.0%	0.0588	0.0587	0.2%
Pentafluoroiodobenzene...	ArI-81	0.0506	0.0504	0.4%	0.0588	0.0585	0.5%
Pentfluoroiodobenzene...	ArI-61	0.0436	0.0439	0.7%	0.0588	0.0584	0.7%
Ethylisopropylamine	ArI-69	0.0436	0.0432	0.9%	0.0588	0.0591	0.5%
Pentfluoroiodobenzene...	ArI-82	0.0436	0.0435	0.2%	0.0588	0.0588	0.0%
tert-Butylamine	ArI-70	0.0366	0.0366	0.1%	0.0588	0.0593	0.9%
Pentafluoroiodobenzene...	ArI-83	0.0366	0.0362	1.0%	0.0588	0.0589	0.2%
tert-Butylamine	ArI-86	0.0366	0.0362	1.0%	0.0588	0.0589	0.2%
Pentfluoroiodobenzene...	ArI-71	0.0646	0.0643	0.5%	0.0588	0.0591	0.5%
Pentfluoroiodobenzene...	ArI-84	0.0646	0.0644	0.3%	0.0588	0.0591	0.5%
Pentfluoroiodobenzene...	ArI-87	0.0646	0.0648	0.3%	0.0588	0.0584	0.7%
Tributylamine	ArI-73	0.0927	0.0924	0.3%	0.0588	0.0593	0.3%
Pentfluoroiodobenzene...	ArI-85	0.0927	0.0925	0.2%	0.0588	0.0588	0.0%
Tributylamine	ArI-88	0.0927	0.0928	0.1%	0.0588	0.0593	0.9%
Pentfluoroiodobenzene...	ArI-89	0.0506	0.0505	0.2%	0.0588	0.0596	1.4%
Disopropylamine	ArI-92	0.0506	0.0502	0.8%	0.0588	0.0585	0.5%
Disopropylamine	ArI-103	0.0506	0.051	0.8%	0.0588	0.0585	0.5%
2-Methylpyridine	ArI-90	0.0466	0.0466	0.1%	0.0588	0.0583	0.9%
Pentfluoroiodobenzene...	ArI-93	0.0466	0.0467	0.3%	0.0588	0.0583	0.9%
Dimethylsulfoxide	ArI-94	0.0391	0.0394	0.8%	0.0588	0.059	0.3%
Pentfluoroiodobenzene...	ArI-106	0.0391	0.0386	1.2%	0.0588	0.0588	0.0%
Dimethylsulfoxide	ArI-110	0.0391	0.0388	0.7%	0.0588	0.0582	1.0%
Halogen bond donor—Base	Systematic labels:	Calcd. weigh-in base [mg]	Exp. weigh-in base [mg]	Dev.	Calcd. weigh-in $C_{6}F_{5}I$ [mg]	Exp. weigh-in $C_{6}F_{5}I$ [mg]	Dev.
---	--------------------	---------------------------	------------------------	------	----------------------------------	-------------------------------	------
Pentafluoriodobenzene—Dimethylformamide	Arl-95	0.0365	0.0361	1.2%	0.0588	0.0592	0.7%
Pentafluoriodobenzene—Dimethylformamide	Arl-105	0.0365	0.0361	1.2%	0.0588	0.0595	1.2%
Pentafluoriodobenzene—Dimethylformamide	Arl-111	0.0365	0.0365	0.1%	0.0588	0.0588	0.0%
Acetophenone	Arl-96	0.0601	0.06	0.1%	0.0588	0.0587	0.2%
Acetophenone	Arl-101	0.0601	0.0602	0.2%	0.0588	0.059	0.3%
Acetophenone	Arl-107	0.0601	0.06	0.1%	0.0588	0.0585	0.5%
Benzophenone	Arl-97	0.0911	0.0906	0.6%	0.0588	0.0583	0.9%
Benzophenone	Arl-108	0.0911	0.0898	1.4%	0.0588	0.0593	0.9%
Benzophenone	Arl-112	0.0911	0.0911	0.0%	0.0588	0.0584	0.7%
4-Methylpyridine-N-oxide	Arl-98	0.0546	0.0548	0.4%	0.0588	0.0585	0.5%
4-Methylpyridine-N-oxide	Arl-109	0.0546	0.0543	0.5%	0.0588	0.0583	0.9%
4-Methylpyridine-N-oxide	Arl-113	0.0546	0.0548	0.4%	0.0588	0.0595	1.2%

Max deviation: **3.4%**
Average weigh-in deviation: **0.5%**

Control experiments

Halogen bond donor—n-pentane	Systematic labels:	Calcd. weigh-in base [mg]	Exp. weigh-in base [mg]	Dev.	Calcd. weigh-in $C_{6}F_{5}I$ [mg]	Exp. weigh-in $C_{6}F_{5}I$ [mg]	Dev.
Pentafluoriodobenzene—n-pentane	DAN-Arl-9	0.0361	57.8 μL	1.0%	0.0588	0.0593	0.9%
Pentafluoriodobenzene—n-pentane	DAN-Arl-10	0.0361	57.8 μL	1.0%	0.0588	0.0595	1.2%
Pentafluoriodobenzene—n-pentane	DAN-Arl-11	0.0361	57.8 μL	1.0%	0.0588	0.0587	0.2%
1.2.3. 1-Iodoperfluorooctane samples

Each sample was prepared individually by mixing 1-iodoheptadecafluorooctane (109.2mg±0.9%, 1.00 eq.) and 2.50eq.±0.9% of a base filled up to 1.00±0.01 mL (CD$_2$Cl$_2$:CH$_2$Cl$_2$ 1:1 v/v) resulting in a set of consistent concentrations for a given halogen bond donor.

Table 4: Weigh-ins of experiments of 1-iodoperfluorooctane and base with deviations.

Halogen bond donor—Base	Rawdata filename format: [date]_[Operator]_[Label]_[add.descri.].[Labels:	XBA	XBD				
	Calcd. weigh-in [mg]	Exp. weigh-in [mg]	Dev.	Calcd. weigh-in [mg]	Exp. weigh-in [mg]	Dev.	
Heptadecafluoriodooctane—4-Dimethylaminopyridine	AllI-30	0.0611	0.0609	0.3%	0.1092	0.1099	0.6%
Heptadecafluoriodooctane—4-Dimethylaminopyridine	AllI-36	0.0611	0.0614	0.5%	0.1092	0.1102	0.9%
Heptadecafluoriodooctane—Pyridine	AllI-31	0.0396	0.0392	0.9%	0.1092	0.1097	0.5%
Heptadecafluoriodooctane—Pyridine	AllI-37	0.0396	0.0395	0.1%	0.1092	0.1097	0.5%
Heptadecafluoriodooctane—Pyridine—N-oxide	AllI-32	0.0476	0.0472	0.7%	0.1092	0.1092	0.0%
Heptadecafluoriodooctane—Pyridine—N-oxide	AllI-38	0.0476	0.0475	0.1%	0.1092	0.1091	0.1%
Heptadecafluoriodooctane—4-Methoxypyridine	AllI-33	0.0546	0.0547	0.2%	0.1092	0.1093	0.1%
Heptadecafluoriodooctane—4-Methoxypyridine	AllI-39	0.0546	0.0545	0.1%	0.1092	0.1091	0.1%
Heptadecafluoriodooctane—4-Methoxypyridine	AllI-49	0.0546	0.0549	0.6%	0.1092	0.1091	0.1%
Heptadecafluoriodooctane—4-Methoxypyridine	AllI-45	0.0546	0.0545	0.1%	0.1092	0.1092	0.0%
Heptadecafluoriodooctane—3,5-Dimethylpyridine	AllI-42	0.0536	0.0536	0.0%	0.1092	0.1096	0.4%
Heptadecafluoriodooctane—3,5-Dimethylpyridine	AllI-46	0.0536	0.0538	0.4%	0.1092	0.1098	0.5%
Heptadecafluoriodooctane—2,6-Dimethylpyridine	AllI-43	0.0536	0.0534	0.3%	0.1092	0.1099	0.6%
Heptadecafluoriodooctane—2,6-Dimethylpyridine	AllI-47	0.0536	0.0535	0.1%	0.1092	0.1095	0.3%
Heptadecafluoriodooctane—3-Bromopyridine	AllI-44	0.0790	0.0788	0.3%	0.1092	0.1089	0.3%
Heptadecafluoriodooctane—3-Bromopyridine	AllI-48	0.0790	0.0793	0.4%	0.1092	0.110	0.7%
Heptadecafluoriodooctane—3-Bromopyridine	AllI-50	0.0790	0.0791	0.1%	0.1092	0.1091	0.1%
Heptadecafluoriodooctane—3-Chloropyridine	AllI-51	0.0568	0.0565	0.5%	0.1092	0.110	0.7%
Heptadecafluoriodooctane—3-Chloropyridine	AllI-55	0.0568	0.0567	0.1%	0.1092	0.1092	0.0%
Heptadecafluoriodooctane—3,5-Dichloropyridine	AllI-54	0.0740	0.0735	0.7%	0.1092	0.1093	0.1%
Heptadecafluoriodooctane—3,5-Dichloropyridine	AllI-56	0.0740	0.0741	0.1%	0.1092	0.1097	0.5%
Heptadecafluoriodooctane—2-Methylpyridine	AllI-53	0.0466	0.0464	0.4%	0.1092	0.1094	0.2%
Heptadecafluoriodooctane—2-Methylpyridine	AllI-57	0.0466	0.0464	0.4%	0.1092	0.1096	0.4%

Max deviation: 0.9% 0.9%
Average deviation: 0.3% 0.3%
1.3. Error estimation

We carefully investigated the errors possibly caused by traces of water, solvent and differences between samples (repetition). The acquired digital resolution is 0.232-0.298 Hz, whereas the processed is 0.116-0.149 Hz (see Section 1.1). The reproducibility of the read-out coupling constants has been 0.01-0.10 Hz, with 17 out of 114 $J_{F,C}$ that exceed these limits (see section 2.2). The concentrations of the samples have errors < 1.1%, based on the weigh-ins (see section 1.2.2 and 1.2.3).

1.3.1. The method used for error estimation in this study

The reported error of the $J_{F,C}$ (see 1.2.1) is the averaged (\bar{x}) value, based on $\bar{x} = \left(\sum_{i=1}^{n} x_n\right)/n$ “AVERAGE”, and its standard deviation σ as $\sigma = \sqrt{\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{n-1}}$ (STDEV)

This method consistently gives the largest σ within the dataset/sample size, compared to alternatives tested. Alternative methods for describing variations of a very small datasets do treat σ differently, e.g. giving the ± range of the averaged value ($\frac{Max(A)-Min(A)}{2}$) instead of accessing variance.

1.3.2. Curve fitting algorithms

To fit functions to the dataset, a given function has been minimized by reducing its overall R^2 value without applying weighing methods, using the software Origin 2018.

1.3.3. Comparison of the observed errors for the $\Delta J_{F,C}$ estimations for 1-iodopentafluorobenzene and 1-iodoheptadecafluorooctane

The pyridine data sets with 1-iodopentafluorobenzene and 1-iodoheptadecafluorooctane have been compared to estimate which of the two halogen bond donors gives more reliable ΔJ values. Despite the closer proximity of the observed $\Delta J_{F,C}$ measured for 1-iodoheptadecafluorooctane higher relative errors have been observed. We therefore decided to conduct the further study with 1-iodopentafluorobenzene.

Table S5. Average of three measurements of the $J_{ortho-F,C}$ of 1-iodopentafluorobenzene. Standard deviation and error in percentage was taken from Table S11.

Pyrrolidine	2.57	0.22	0.09
4-Dimethylaminopyridine	2.14	0.03	0.01
3,5-Dimethylpyridine	1.03	0.02	0.02
4-Methoxypyridine	1.02	0.01	0.01
2-Methylpyridine	0.78	0.00	0.00
Compound	Value 1	Value 2	Value 3
--------------------------	---------	---------	---------
Pyridine	0.70	0.03	0.04
2,6-Dimethylpyridine	0.34	0.02	0.06
3-Bromopyridine	0.28	0.01	0.04
3-Chloropyridine	0.30	0.02	0.07
3,5-Dichloropyridine	0.05	0.00	0.09
Average	**0.043**	**0.00**	**0.03**
Compound	$\Delta^1J_{a,F,C}$ (Hz)	STDEV	Error in percentage [0.%%]
--------------------------	--------------------------	-------	---------------------------
4-Dimethylaminopyridine	3.32	0.19	0.06
3,5-Dimethylpyridine	2.33	0.01	0.00
4-Methoxypyridine	2.08	0.15	0.07
2-Methylpyridine	2.00	0.12	0.06
Pyridine	1.65	0.09	0.06
2,6-Dimethylpyridine	1.03	0.02	0.02
3-Bromopyridine	1.35	0.31	0.23
3-Chloropyridine	1.82	0.09	0.05
3,5-Dichloropyridine	0.58	0.09	0.16
Average	**0.079**		
1.4. The influence of moisture

To estimate the influence of moisture on the detected $^{1}J_{\alpha,F,C}$, we recorded the 19F NMR spectrum of 1-iodoheptadecafluoroctane in dry CD$_2$Cl$_2$ (Eurisotop® lot: T1071) and in mixtures of non-dried CD$_2$Cl$_2$ (Eurisotop® lot: T1071) and CH$_2$Cl$_2$ (VWR, Lot 20G034019).

The influence of water residues was insignificant (Table S1), with the variations between the samples being within the error limits. Averaging the coupling constants read on several individual peaks of a multiplet for a single coupling constant gives a lower error than the digital resolution of the spectra would permit.

Table S7. Comparison of the $^{1}J_{\alpha,F,C}$ determined for 1-iodoheptadecafluoroctane using different solvent sources. Note that the calculated average value and the standard deviation are both below the digital resolution of the NMR data.

| α-F, CD$_2$Cl$_2$ distilled from CaH$_2$ and stored over Molecular sieves | Peak | Hz | Peak | Hz | $|^{1}J_{\alpha,F,C}|$ (Hz) |
|-------------------------------|-----|-----|------|-----|-----------------|
| 1 | -22460.30 4 | -22780.79 | 320.49 |
| 2 | -22475.35 5 | -22795.88 | 320.53 |
| 3 | -22490.28 6 | -22810.97 | 320.69 |
| Average | 320.57 |
| stdev | 0.11 |
| digital resolution | 0.14 |

| α-F, 50% technical grade CH$_2$Cl$_2$ + 50% non-dried CD$_2$Cl$_2$ | Peak | Hz | Peak | Hz | $|^{1}J_{\alpha,F,C}|$ (Hz) |
|-------------------------------|-----|-----|------|-----|-----------------|
| 1 | -22457.78 4 | -22778.2 | 320.42 |
| 2 | -22472.91 5 | -22793.39 | 320.48 |
| 3 | -22487.78 6 | -22808.35 | 320.57 |
| Average | 320.49 |
| stdev | 0.08 |
| digital resolution | 0.15 |
2 Experimental Data

Table S8. Halogen bond donors used in this study and the iodine basicity of the Lewis bases applied.

Pyridines	pK_B	Amines	pK_B	N-Oxides and Carbonyls	pK_B
Pyrrolidine	3.85	Butylamine	3.00	DMSO	1.56
4-Dimethylaminopyridine	3.78	sec-butylamine	2.78	1,3-dimethyl-2-imidazolidinone	1.22
3,5-Dimethylpyridine	2.78	tert-butylamine	2.86	2-Pyridolidone	1.20
4-Methoxypridione	2.63	Diethylamine	3.73	DMF	0.81
2-Methylypyridine	2.35	Dipropylamine	3.58	Acetophenone	0.06
Pyridine	2.22	Dibutylamine	3.58	Benzophenone	-0.07
2,6-Dimethylpyridine	1.83	Ethylisopropylamine	2.85	Pyridine-N-Oxide	2.40
3-Bromopyridine	1.40	Diisopropylamine	3.85	4-Methylpyridine-N-Oxide	2.31
3-Chloropyridine	1.38	Piperidine	3.85	Triphenylphosphine oxide	2.08
3,5-Dichloropyridine	0.81	Triethylamine	3.67		
		Tributylamine	3.05		
		Diisopropylethylamine		Not available	
		Triphenylamine		Not available	
		3-°			

Figure S1. Summary of the Lewis bases evaluated for halogen bonding.
2.1 1-Iodoperfluorobenzene: a typical example

Enlarged multiplets of the 19F NMR spectrum of 1-iodopentafluorobenzene without and in the presence of 4-methoxypyridine. The multiplet patterns don’t change in the presence of the base. The 19F NMR spectra corresponds to the data given in Figure S2 and Figure S3.

![Figure S2. Enlarged multiplets of the 19F NMR spectrum of 1-iodopentafluorobenzene without the presence of a Lewis base.](image)

![Figure S3. Enlarged multiplets of the 19F NMR spectrum of 1-iodopentafluorobenzene in the presence of 4-methoxypyridine.](image)
Table S9. Extracted peaks and calculated $^{1}J_{F,C}$ coupling constants in 1-Iodopentafluorobenzene without the presence of a base.

| Multiplet information | Rawdata filename format: [date]_[Operator]_[Label]_[add.descri.] | Labels: Peak Hz Peak Hz | $|^{1}J_{F,C}|$ (Hz) |
|-----------------------|---|-------------------------|---------------------|
| 1 $^{1}J_{ortho-F,C}$ | Arl-Ref1 | 1 -44969.9 15 -45214.2 | 244.3 |
| | | 2 -44971.8 16 -45216.2 | 244.4 |
| | | 3 -44974.5 17 -45218.9 | 244.4 |
| | | 4 -44976.7 18 -45221.1 | 244.4 |
| | | 5 -44978.8 19 -45223.3 | 244.5 |
| | | 6 -44981.5 20 -45226.1 | 244.6 |
| | | 7 -44983.7 21 -45228.1 | 244.4 |
| | | 8 -44993 22 -45237.4 | 244.4 |
| | | 9 -44995.2 23 -45239.5 | 244.3 |
| | | 10 -44997.9 24 -45242.3 | 244.4 |
| | | 11 -44999.9 25 -45244.5 | 244.6 |
| | | 12 -45002.1 26 -45246.5 | 244.4 |
| | | 13 -45004.8 27 -45249.5 | 244.7 |
| | | 14 -45007 28 -45251.5 | 244.5 |
| 2 $^{1}J_{para-F,C}$ | Arl-Ref1 | 1 -57430.2 4 -57684.6 | 254.4 |
| | | 2 -57450.2 5 -57704.6 | 254.4 |
| | | 3 -57470.2 6 -57724.6 | 254.4 |
| 3 $^{1}J_{meta-F,C}$ | Arl-Ref1 | 1 -60128 3 -60382 | 254.0 |
| | | 2 -60164.4 4 -60418.4 | 254.0 |
| 1 $^{1}J_{ortho-F,C}$ | Arl-Ref2 | 1 -44970.1 15 -45214.7 | 244.6 |
| | | 2 -44972.2 16 -45216.6 | 244.4 |
| | | 3 -44974.9 17 -45219.2 | 244.3 |
| | | 4 -44977.1 18 -45221.5 | 244.4 |
| | | 5 -44979.1 19 -45223.7 | 244.6 |
| | | 6 -44982.1 20 -45226.4 | 244.3 |
| | | 7 -44984 21 -45228.4 | 244.4 |
| | | 8 -44993.4 22 -45237.9 | 244.5 |
| | | 9 -44995.5 23 -45239.9 | 244.4 |
| | | 10 -44998.3 24 -45242.7 | 244.4 |
| | | 11 -45000.3 25 -45244.8 | 244.5 |
| | | 12 -45002.5 26 -45246.8 | 244.3 |
| | | 13 -45005.3 27 -45249.9 | 244.6 |
| | | 14 -45007.4 28 -45251.9 | 244.5 |
| 2 $^{1}J_{para-F,C}$ | Arl-Ref2 | 1 -57430.2 4 -57684.6 | 254.4 |
| | | 2 -57450.2 5 -57704.6 | 254.4 |
| | | 3 -57470.2 6 -57724.6 | 254.4 |
Table S10. Extracted peaks and calculated $^{1}J_{F,C}$ coupling constants in 1-iodopentafluorobenzene in the presence of 4-methoxypyridine.

| Multiplet information | Rawdata filename format: [date]_[Operator]_[Label]_[add.descri.] | Labels: | Peak Hz | Peak Hz | $|^{1}J_{F,C}|$ (Hz) |
|-----------------------|--|---------|---------|---------|-----------------|
| $^{1}J_{ortho-F,C}$ | Arl-Ref5 | | -44970.1 | 15 | -45214.7 | 244.6 |
| | | | -44972.2 | 16 | -45216.6 | 244.4 |
| | | | -44974.9 | 17 | -45219.2 | 244.3 |
| | | | -44977.1 | 18 | -45221.5 | 244.4 |
| | | | -44979.1 | 19 | -45223.7 | 244.6 |
| | | | -44981.1 | 20 | -45226.4 | 244.3 |
| | | | -44984 | 21 | -45228.4 | 244.4 |
| | | | -44993.4 | 22 | -45237.9 | 244.5 |
| | | | -44995.5 | 23 | -45239.9 | 244.4 |
| | | | -44998.3 | 24 | -45242.7 | 244.4 |
| | | | -45000.3 | 25 | -45244.8 | 244.5 |
| | | | -45002.5 | 26 | -45246.8 | 244.3 |
| | | | -45005.3 | 27 | -45249.9 | 244.6 |
| | | | -45007.4 | 28 | -45251.9 | 244.5 |
| $^{1}J_{para-F,C}$ | Arl-Ref5 | | -57430.2 | 4 | -57684.6 | 254.4 |
| | | | -57450.2 | 5 | -57704.6 | 254.4 |
| | | | -57470.2 | 6 | -57724.6 | 254.4 |
| $^{1}J_{meta-F,C}$ | Arl-Ref5 | | -60128.8 | 3 | -60382.9 | 254.1 |
| | | | -60165.1 | 4 | -60419.2 | 254.1 |
2.2 1-Iodoperfluorobenzene: Base induced changes in the 19F NMR

Table S11. The average changes in the 19F-13C-J coupling constants ($\text{AVARAGE}(\Delta J)_{\text{obs}}$), chemical shift ($\text{AVARAGE}(\Delta \delta)$) as well as their standard deviations (STDEV) of 1-iodoperfluorobenzene (c = 0.200 mol/L) by the presence of selected halogen bond acceptors (c = 0.500 mol/L). All samples have been prepared trice.

Compound	$\text{AVARAGE}(\Delta J)_{\text{obs}}$	STDEV	$\text{AVARAGE}(\Delta \delta)_{\text{ortho}}$	STDEV	$\text{AVARAGE}(\Delta \delta)_{\text{para}}$	STDEV	$\text{AVARAGE}(\Delta \delta)_{\text{meta}}$	STDEV
Pyridines								
4-Dimethylaminopyridine	2.14	0.03	1.48	0.02	0.52	0.03	0.686	0.007
3,5-Dimethylpyridine	1.03	0.02	0.28	0.85	0.27	0.03	0.367	0.005
Methoxypyridine	1.02	0.02	0.71	0.05	0.27	0.03	0.355	0.008
2-Methylpyridine	0.78	0.00	0.53	0.05	0.25	0.00	0.266	0.004
Pyridine	0.70	0.03	0.47	0.04	0.29	0.12	0.235	0.005
2,6-Dimethylpyridine	0.34	0.03	0.08	0.27	0.08	0.03	0.097	0.003
3-Bromopyridine	0.28	0.03	0.19	0.05	0.07	0.00	0.104	0.001
3-Chloropyridine	0.30	0.03	0.20	0.13	0.10	0.10	0.254	0.035
3,5-Dichloropyridine	0.05	0.02	0.00	0.05	0.07	0.02	0.061	0.001
Primary Amines								
Butylamine	1.34	0.07	0.87	0.03	0.32	0.08	0.674	0.006
Secbutylamine	1.06	0.02	0.24	0.82	0.23	0.08	0.533	0.003
Tertbutylamine	1.18	0.01	0.27	0.95	0.27	0.03	0.612	0.006
Secondary Amines								
Diethylamine	1.99	0.04	1.24	0.04	0.35	0.05	0.920	0.024
Diisopropylamine	1.69	0.09	0.98	0.15	0.22	0.03	0.776	0.010
N-ethylisopropylamine	0.73	0.03	0.18	0.47	0.02	0.02	0.368	0.003
Piperidine	1.23	0.03	0.29	0.00	0.22	0.00	0.566	0.002
Pyrrolidine	2.69	0.04	1.61	0.04	0.25	0.26	1.171	0.010
Tertiary Amines								
Triethylamine	1.30	0.06	0.92	0.04	0.12	0.03	0.634	0.011
Tributylamine	0.50	0.00	0.11	0.33	0.08	0.12	0.228	0.007
Carbonyls								
DMSO	0.61	0.01	0.46	0.05	0.35	0.13	0.183	0.002
1,3-dimethyl-2-imidazolidine	0.49	0.02	0.40	0.00	0.32	0.06	0.186	0.008
2-Pyrrolidone	0.38	0.01	0.24	0.02	0.15	0.00	0.150	0.004
Dimethylformamide	0.39	0.03	0.32	0.02	0.23	0.06	0.181	0.001
Acetophenone	0.07	0.03	0.07	0.03	0.07	0.08	0.046	0.000
Benzophenone	0.03	0.02	0.04	0.02	0.00	0.05	0.181	0.008
N-Oxides								
Trimethylamin-N-Oxide	4.04	0.02	2.82	0.07	1.10	0.02	1.437	0.016
2.2.1. The $\Delta^{1}J_{F,C}$ and $\Delta\delta$ values for 1-iodopentafluorobenzene induced by Lewis bases

![Graphs showing $\Delta^{1}J_{F,C}$ and $\Delta\delta$ values for 1-iodopentafluorobenzene induced by Lewis bases.](image)

Figure S4: The $\Delta^{1}J_{F,C}$ and $\Delta\delta$ values for 1-iodopentafluorobenzene induced by the presence of a base, based on Table S11.

![Graphs showing $\Delta\delta_{ortho}$, $\Delta\delta_{meta}$, and $\Delta\delta_{para}$ values vs pK_{B} for 1-iodopentafluorobenzene induced by Lewis bases.](image)

Figure S5: The $\Delta\delta_{ortho}$ (blue, $R^2 = 0.79$, slope 0.066), $\Delta\delta_{meta}$ (red, $R^2 = 0.68$, slope 0.052), $\Delta\delta_{para}$ (green, $R^2 = 0.76$, slope 0.10) values vs pK_{B} for 1-iodopentafluorobenzene induced by the presence of a base, based on Table S11.
2.2.2. Subset analysis of $\Delta^1 J_{\text{ortho-F,C}}$ values for 1-iodopentafluorobenzene induced by Lewis bases

Figure S6: The $\Delta^1 J$ and $\Delta \delta$ values for 1-iodopentafluorobenzene induced by Lewis bases, based on Table S11. Top-left: $\Delta^1 J_{\text{ortho-F,13C}}$ vs pK_{B} grouped according to the type of base employed. The data points have been fitted to $ax^2 + b$. Top-right: The change of $^1 J_{\text{F,C}}$ in the ortho-position of iodopentafluorobenzene, $\Delta^1 J_{\text{ortho-F,C}}$, as a function of the Lewis basicity, pK_{B}^2, upon binding to various Lewis bases. Errors are given as standard deviations; $pK_{\text{B}} = 0$ refers to a K = 1. The data corresponding to the pyridines is shown in red ($R^2 = 0.98$), to amines in blue ($R^2 = 0.60$), to N-oxides in green ($R^2 = 0.94$), whereas to all data in black ($R^2 = 0.71$).

Bottom-left: $\Delta^1 J_{\text{ortho-F,13C}}$ vs pK_{B}^2 of the amine subset grouped into 1°, 2° and 3° with their linear correlation.
2.3. 1-idoheptadecafluorooctane: A typical example

Expansions of the 19F NMR spectrum of 1-idoheptadecafluorooctane without and in the presence of 4-methoxypyridine. The multiplet patterns don’t change upon addition of a Lewis base. The 19F NMR spectra correspond to the data given in Figure S7 and Figure S8.

Figure S7. Cut-outs of the 19F NMR spectrum of 1-idoheptadecafluorooctane without the presence of a base (AliI_Ref7) showing satellites with peaks picked.

Figure S8. Cut-outs of the 19F NMR spectrum of 1-iodoheptadecafluorooctane in the presence of 4-methoxypyridine showing satellites with peaks picked.
Table S12. Extracted peaks and calculated $^{1}J_{F,C}$ coupling constants in 1-iodopentafluorobenzene without the presence of a base.

Multiplet information	Rawdata filename format: [date]_[Operator]_[Label]_[add.descri.]	Peak 1 Hz	Peak 4 Hz	$^{1}J_{F,C}$ (Hz)
$^{1}J_{\alpha F,C}$	Arl-Ref7	-22459.9	-22780.5	320.6
		-22475.2	-22795.6	320.4
		-22490.2	-22810.8	320.6
$^{1}J_{\beta F,C}$	Arl-Ref7	-42633	-42900.6	267.6
$^{1}J_{\theta F,C}$	Arl-Ref7	-30594.2	-30882.4	288.2
		-30604.3	-30892.5	288.2
		-30614.5	-30902.6	288.1

Table S13. Extracted peaks and calculated $^{1}J_{F,C}$ coupling constants in 1-iodopentafluorobenzene in the presence of 4-methoxypyridine.

Multiplet information	Rawdata filename format: [date]_[Operator]_[Label]_[add.descri.]	Peak 1 Hz	Peak 4 Hz	$^{1}J_{F,C}$ (Hz)
$^{1}J_{\alpha F,C}$	Arl-Ref8	-22459.8	-22780.4	320.6
		-22475.2	-22795.6	320.4
		-22490.2	-22810.7	320.7
$^{1}J_{\beta F,C}$	Arl-Ref8	-42632	-42900.3	268.3
$^{1}J_{\theta F,C}$	Arl-Ref8	-30592.4	-30880.5	288.1
		-30602.5	-30890.6	288.1
		-30612.6	-30900.8	288.2
2.4 1-Iodoperfluorooctane: Base induced changes in the 19F NMR

Changes in selected chemical shifts and coupling constants of 1-iodoperfluorooctane are given in Table S14. The changes in coupling constant observed for the terminal CF$_3$ group are within the error of the experiment. Significant chemical shift changes of the terminal CF$_3$ group has been rationalized by Ciancaleoni et. al. as secondary interaction with the aromatic π-system leading to an orientation of the chain above the aromatic cycle and therefore remote Fluorine resonances experience a shielding effect. 3

Table S14. The average changes in the 19F-13C-1J coupling constants ($\text{AVARAGE} (\Delta J_{^{19}F-^{13}C-^{1}J})$), chemical shift ($\text{AVARAGE} (\Delta \delta_{^{19}F})$) as well as their standard deviations (STDEV) of 1-iodoperfluorooctane ($c = 0.200 \text{ mol/L}$) by the presence of selected halogen bond acceptors ($c = 0.500 \text{ mol/L}$). Samples have been prepared at least twice.

Compound	$\text{AVARAGE} (\Delta J_{^{19}F-^{13}C-^{1}J})$ [Hz]	STDEV	$\text{AVARAGE} (\Delta \delta_{^{19}F})$ [ppm]	STDEV	$\text{AVARAGE} (\Delta \delta_{^{13}C})$ [ppm]	STDEV	$\text{AVARAGE} (\Delta \delta_{^{1}J})$ [ppm]	STDEV							
Pyridines															
4-Dimethylaminopyridine	3.32	0.19	2.75	0.28	0.07	0.05	8.47	0.11	0.71	0.01	0.13	0.01	3.78	0.19	14.29
3,5-Dimethylpyridine	2.33	0.01	1.70	0.07	0.05	0.05	4.71	0.03	0.39	0.00	0.07	0.00	2.78	0.07	7.73
Methoxypyridinea	2.08	0.15	1.98	0.30	0.05	0.05	4.40	0.11	0.38	0.01	0.04	0.01	2.63	0.04	6.92
Pyridine-N-oxide	1.65	0.09	1.25	0.57	0.05	0.02	3.24	0.09	0.26	0.01	0.05	0.02	2.40	0.01	5.76
Pyridine	1.03	0.02	1.05	0.14	0.02	0.04	1.84	0.04	0.12	0.12	0.08	0.04	2.22	0.04	4.93
2,6-Dimethylpyridine	1.35	0.31	0.62	0.21	0.02	0.05	1.55	0.01	0.10	0.10	0.05	0.01	1.83	0.02	3.36
3-Bromopyridineb	1.82	0.09	0.60	0.07	0.05	0.00	1.52	0.02	0.10	0.00	0.04	0.00	1.40	0.02	1.96
3-Chloropyridine	2.28	0.00	1.45	0.14	0.00	0.05	3.98	0.04	0.37	0.01	0.00	0.02	1.38	0.02	1.90
Control without basic additives (not part of the graphs)															
n-Pentane	0.42	0.11	0.10	0.04	2.15	0.30	0.036	0.002	0.173	0.002	0.070	0.001	-	-	

aSample has been prepared four-times, bSample has been prepared three times.
2.4.1. The $\Delta^1 J_{F,C}$ and $\Delta \delta$ values for 1-iodoheptadecafluorooctane induced by Lewis bases

![Graphs showing $\Delta^1 J_{F,C}$ and $\Delta \delta$ values for 1-iodoheptadecafluorooctane induced by Lewis bases.]

Figure S9. Left: $\Delta^1 J_{F,C}$ in iodoperfluorooctane ($c = 0.200 \text{ mol} \cdot \text{L}^{-1}$) vs the iodine basicity ($pK_{B}I_2$) of a present base ($c = 0.500 \text{ mol} \cdot \text{L}^{-1}$). α-F (black), β-F (red) and θ-F (blue). Right: $\Delta \delta$ in iodoperfluorooctane ($c = 0.200 \text{ mol} \cdot \text{L}^{-1}$) vs the iodine basicity ($pK_{B}I_2$) of a present base ($c = 0.500 \text{ mol} \cdot \text{L}^{-1}$). α-F (black), β-F (red) and θ-F (blue).

2.5. Evaluating the impact of Non-Directional Effects

Addition of Lewis bases does not affect the $^1 J_{F,C}$ of the terminal θ-CF$_3$ group of IC$_8$F$_{17}$ whereas it influences in $^1 J_{F,C}$ $^1 J_{oF,C}$ and $^1 J_{pF,C}$ in a Lewis basicity dependent manner (Figure 4, main text). Significant change, 2.15 Hz, was observed for the $^1 J_{F,C}$ of the θ-CF$_3$ group upon addition of 2.5 eq. pentane to the solution of the halogen bond donor, whereas the $^1 J_{F,C}$ of the α- and β-CF$_2$ groups were not affected by n-pentane significantly. This observation indicates that the remote θ-CF$_3$ group serves as an internal reference to detect non-directional solvent effects introduced by changes in the bulk properties of the solution e.g. polarity. Thus, halogen bonding is observable close to the halogen bond donor site at the α- and β-CF$_2$ groups but not at the remote θ-CF$_3$ group whereas bulk solvent effects are detectable on the θ-CF$_3$ but not on the α- and β-CF$_2$ groups.

Iodopentafluorobenzene lacks a comparable reference position. However, upon addition of 2.5 eq. n-pentane only minor, $\Delta^1 J_{F,C} < 0.07 \text{ Hz}$, were observed at the ortho and para- $^1 J_{F,C}$ whereas that at the the meta position has been slightly more sensitive ($\Delta^1 J_{F,C} = 0.13 \text{ Hz}$). Halogen bonding shows the opposite effect (larger change at the ortho and para- $^1 J_{F,C}$) whereas no significant Lewis basicity dependent change at the meta position.

Overall, no significant influence of solvent polarity has been observed upon n-pentane addition, suggesting that the Lewis bases used in this study did not induce changes in $^1 J_{F,C}$ by changing the solvents bulk properties.

3 Computational Details

All geometry optimization calculations for all halogen bonded complexes investigated in this work were carried out utilizing the B3LYP4,5 functional augmented with Grimme’s D36 dispersion correction in combination with the large correlation consistent Dunning’s aug-cc-pVTZ7,8 basis set. Scalar relativistic effects for heavy atoms (e.g. I) were assessed by utilizing the Stuttgart-Dresden (SDD)9,10 effective core potential. The B3LYP-D3 functional was chosen as it is known to adequately account for electron correlations for
systems exhibiting noncovalent interactions.11-12 Dichloromethane solvation effects were included using the polarizable continuum model (PCM) of Tomasi and co-workers.13 Vibrational frequency calculations were followed at the same level of theory to confirm the optimized geometry corresponding to geometry minima.

All calculations were performed using the Gaussian 16 Rev. C.01 package.14 The geometries were optimized using an ultrafine grid and tight convergence criteria for the forces and displacements.15 Natural population analysis and second-order perturbation of the Fock matrix analysis of two interacting orbitals were carried out utilizing the NBO7 program.16 Topological analysis of electron density were carried out using the AIMALL version 19.10.12 program.17 The nature of halogen bonding interactions were characterized through the energy density (H_c) at the N···I and O···I bond critical points, where a negative value of the energy ($H_c < 0$) indicates covalent bond and a positive value of the energy ($H_c > 0$) points to electrostatic interactions.18

The associated binding energies (ΔE) were calculated by taking the energy difference between halogen bonded complexes (A···B) and its isolated components (A and B) at their equilibrium geometries,

$$A + B \rightarrow A\cdots B$$

$$\Delta E = E_{A\cdots B} - (E_A + E_B).$$

Due to the size of the molecules, the coupling constant calculations of 1-iodoperfluorooctane were replaced with 1-iodoperfluoropropane.
4 Computational Results

Table S15. Contributions of the Fermi-contact (F,C), the spin dipolar (SD), the paramagnetic (PSO), and the diamagnetic spin-orbit (DSO) components to the change of $\Delta \chi_{F,C}$ of the halogen bond donor upon halogen bonding. The slope of the computed contribution of the component as a function of $\Delta \chi_{F,C}$ are given, with the variance of the linear fits being shown in brackets. The first three rows show data computed for 1-iodopentafluorobenzene (IC$_6$F$_5$), whereas the next two data for 1-iodoperfluorooctane (IC$_8$F$_{17}$). Visualisation of the data used for extraction of these values can be found in section 4.1.

	FC	SD	PSO	DSO
$\Delta \chi_{o-F,C}$	0.713	0.076	0.209	0.000
IC$_6$F$_5$	(0.99)	(0.81)	(0.93)	(0.00)
$\Delta \chi_{m-F,C}$	0.435	0.150	0.416	0.002
IC$_6$F$_5$	(0.43)	(0.55)	(0.57)	(0.31)
$\Delta \chi_{p-F,C}$	0.459	0.126	0.414	0.000
IC$_6$F$_5$	(0.96)	(0.97)	(0.97)	(0.00)
$\Delta \chi_{o-F,C}$	0.076	0.207	0.720	-0.003
IC$_8$F$_{17}$	(0.18)	(0.97)	(0.97)	(0.89)
$\Delta \chi_{o-F,C}$	0.615	0.098	0.281	-0.020
IC$_8$F$_{17}$	(0.98)	(0.95)	(0.97)	(0.63)

The weak correlation is caused by a single outlier.
Table S16. Bond distances (R), 19F-1I-coupling constants ($J_{F,C}$), binding energies (ΔE), electron densities (ρ) and energy densities (H) at the C-F and N-1 bond critical point, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

CsF$_5$-I--Base	R_{C-F} (Å)	R_{C-I} (Å)	R_{N-I} (Å)	$J_{C,F}$ (Hz)	ΔE (kcal/mol)	ρ_{C-F} (e/Å3)	H_{C-F} (h/Å3)	ρ_{N-I} (e/Å3)	H_{N-I} (h/Å3)
-	1.337	2.099	-	-132.60	-	1.8382	-2.7164	-	-
4-Dimethylaminopyridine	1.343	2.148	2.723	-299.43	-31.86	1.8066	-2.6495	0.22552	-0.0114
2-Methylpyridine	1.342	2.135	2.819	-301.99	29.02	1.8130	-2.6631	0.18682	-0.0013
2,6-Dimethylpyridine	1.341	2.131	2.904	-302.69	-28.86	1.8152	-2.6677	0.15958	+0.0035
4-Methoxypyridine	1.342	2.139	2.773	-300.79	28.53	1.8109	-2.6586	0.20322	-0.0049
3,5-Dimethylpyridine	1.342	2.139	2.775	-301.02	-28.44	1.8111	-2.6589	0.20344	-0.0052
Pyridine	1.342	2.136	2.796	-301.55	26.99	1.8129	-2.6628	0.19420	-0.0026
3-Bromopyridine	1.341	2.129	2.840	-302.49	-24.51	1.8165	-2.6704	0.17639	+0.0014
3-Chloropyridine	1.341	2.129	2.840	-302.42	-24.39	1.8164	-2.6701	0.17636	+0.0014
3,5-Dichloropyridine	1.340	2.124	2.880	-303.18	-22.40	1.8193	-2.6764	0.16166	+0.0042

Table S17. Hybridization characters and natural population charge analysis (X) of C, F, N, and I atoms, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

CsF$_5$-I--Base	spn	spn	spn	spn	$X_{C_{IPSO}}$ (in e)	X_{I} (in e)	$X_{F(ortho)}$ (in e)	X_{I} (in e)
-	sp19	sp24	sp24	sp24	-0.2931	+0.2517	-0.3075	-
4-Dimethylaminopyridine	sp26	sp24	sp24	sp24	-0.3197	+0.2591	-0.3183	-0.5211
2-Methylpyridine	sp15	sp24	sp24	sp24	-0.3158	+0.2585	-0.3159	-0.4768
2,6-Dimethylpyridine	sp14	sp15	sp20	sp14	-0.3143	+0.2586	-0.3149	-0.4898
4-Methoxypyridine	sp15	sp24	sp24	sp16	-0.3172	+0.2601	-0.3168	-0.4953
3,5-Dimethylpyridine	sp15	sp24	sp24	sp16	-0.3171	+0.2593	-0.3167	-0.4577
Pyridine	sp15	sp24	sp24	sp15	-0.3159	+0.2599	-0.3161	-0.4662
3-Bromopyridine	sp14	sp24	sp24	sp14	-0.3139	+0.2605	-0.3148	-0.4454
3-Chloropyridine	sp14	sp24	sp24	sp14	-0.3139	+0.2606	-0.3149	-0.4458
3,5-Dichloropyridine	sp13	sp24	sp24	sp13	-0.3120	+0.2606	-0.3139	-0.4262

*Due to the use of effective core potential for describing relativistic effects of I atom

Table S18. Decomposition terms of calculated $J_{C,F}$ coupling constants into Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbital (PSO), diamagnetic spin-orbit (DSO), and the total $J_{C,F}$ coupling constants at the ortho position as well as the second-order perturbation of the Fock Matrix between C-I and σ^* orbital of C-F, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

CsF$_5$-I--Base	Fermi Contact (Hz)	Spin-Dipolar (Hz)	Paramagnetic Spin-orbit (Hz)	Diamagnetic Spin-orbit (Hz)	$J_{C,F}$(Hz)	C-I \rightarrow C-F (kcal/mol)
-	-310.78	3.96	-6.94	1.17	-312.60	1.33
4-Dimethylaminopyridine	-300.76	4.82	-4.67	1.18	-299.43	1.68
2-Methylpyridine	-302.67	4.65	-5.15	1.18	-301.99	1.57
2,6-Dimethylpyridine	-303.11	4.58	-5.34	1.18	-302.69	1.52
4-Methoxypyridine	-301.69	4.17	-4.98	1.18	-300.79	1.61
3,5-Dimethylpyridine	-301.90	4.70	-5.00	1.18	-301.02	1.61
Pyridine	-302.26	4.65	-5.13	1.18	-301.55	1.58
3-Bromopyridine	-302.83	4.56	-5.39	1.18	-302.49	1.54
3-Chloropyridine	-302.78	4.56	-5.38	1.18	-302.42	1.53
3,5-Dichloropyridine	-303.24	4.48	-5.59	1.18	-303.18	1.50
Table S19. Decomposition terms of calculated $^1J_{F,C}$ coupling constants into Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbital (PSO), diamagnetic spin-orbit (DSO), and the total $^1J_{F,C}$ coupling constants at the meta position (in Hz), calculated at the B3LYP-D3/aug-cc-pVTZ-pp

C$_6$F$_5$I···Base	Fermi Contact	Spin-Dipolar	Paramagnetic Spin-orbit	Diamagnetic Spin-orbit	$^1J_{F,C}$(Hz)
–	-320.78	4.86	-2.50	1.15	-317.26
4-Dimethylaminopyridine	-319.13	5.57	-0.54	1.16	-312.94
2-Methylpyridine	-319.32	5.42	-0.96	1.16	-313.69
2,6-Dimethylpyridine	-319.50	5.38	-1.07	1.16	-314.02
4-Methoxypyridine	-318.96	5.47	-0.82	1.16	-313.15
3,5-Dimethylpyridine	-319.07	5.47	-0.83	1.16	-313.27
Pyridine	-318.97	5.43	-0.95	1.16	-313.33
3-Bromopyridine	-318.96	5.34	-1.17	1.16	-313.63
3-Chloropyridine	-318.94	5.35	-1.16	1.16	-313.60
3,5-Dichloropyridine	-318.94	5.28	-1.36	1.16	-313.86

Table S20. Decomposition terms of calculated $^1J_{F,C}$ coupling constants into Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbital (PSO), diamagnetic spin-orbit (DSO), and the total $^1J_{F,C}$ coupling constants at the para position (in Hz), calculated at the B3LYP-D3/aug-cc-pVTZ-pp

C$_6$F$_5$I···Base	Fermi Contact	Spin-Dipolar	Paramagnetic Spin-orbit	Diamagnetic Spin-orbit	$^1J_{F,C}$(Hz)
–	-320.92	4.12	-5.45	1.15	-321.11
4-Dimethylaminopyridine	-317.03	4.97	-2.58	1.15	-313.49
2-Methylpyridine	-317.71	4.78	-3.23	1.15	-315.01
2,6-Dimethylpyridine	-318.12	4.73	-3.39	1.15	-315.63
4-Methoxypyridine	-317.38	4.84	-3.02	1.15	-314.41
3,5-Dimethylpyridine	-317.37	4.84	-3.02	1.15	-314.41
Pyridine	-317.55	4.78	-3.21	1.15	-314.83
3-Bromopyridine	-317.79	4.68	-3.55	1.15	-315.51
3-Chloropyridine	-317.80	4.68	-3.54	1.15	-315.51
3,5-Dichloropyridine	-318.05	4.60	-3.82	1.15	-316.13

Table S21. Calculated 19F coordination shifts ($\Delta \delta = \delta_{\text{complex}} - \delta_{\text{free}}$) in ppm

C$_6$F$_5$I···Base	$\Delta \delta_{\text{ortho}}$	$\Delta \delta_{\text{meta}}$	$\Delta \delta_{\text{para}}$
–	43.55	2.48	10.50
4-Dimethylaminopyridine	40.39	0.47	6.14
2-Methylpyridine	40.96	0.96	7.20
2,6-Dimethylpyridine	41.36	1.05	7.50
4-Methoxypyridine	40.74	0.76	6.83
3,5-Dimethylpyridine	40.83	0.84	6.86
Pyridine	40.92	0.92	7.14
3-Bromopyridine	41.20	1.15	7.68
3-Chloropyridine	41.21	1.19	7.67
3,5-Dichloropyridine	41.45	1.40	8.13
Table S22. Natural occupation numbers of 2s and 2p orbitals of C atoms in the ortho-position, calculated at the B3LYP-D3/aug-cc-pVTZ-pp.

Compound	2s (2s\(_\sigma\))	2px (2p\(_\sigma\))	2py (2p\(_\sigma\))	2pz (2p\(_\pi\))	\(^1\text{J}_\text{F,C}\) (Hz)	\(\Delta\text{SUM}(2\sigma)^a\) (reference)	\(\Delta(2\pi)^a\) (reference)
-	0.8545	0.9671	0.7921	1.0322	-312.6	0.000	0.000
4-Dimethylaminopyridine	0.8582	0.9668	0.7919	1.0366	-299.43	0.00331	0.004
2-Methylpyridine	0.8574	0.9673	0.7911	1.0358	-301.99	0.00212	0.004
2,6-Dimethylpyridine	0.8572	0.9669	0.7919	1.0353	-302.69	0.00230	0.003
4-Methoxypyridine	0.8577	0.9786	0.7797	1.0362	-300.79	0.00229	0.004
3,5-Dimethylpyridine	0.8577	0.9668	0.7922	1.0354	-301.02	0.00305	0.003
Pyridine	0.8574	0.9669	0.7914	1.0359	-301.55	0.00205	0.004
3-Bromopyridine	0.8570	1.0253	0.7329	1.0355	-302.49	0.00148	0.003
3-Chloropyridine	0.8570	1.0045	0.7537	1.0355	-302.42	0.00146	0.003
3,5-Dichloropyridine	0.8566	0.9669	0.7913	1.0350	-303.18	0.00111	0.003

\(a\) The aromatic rings were placed in the XY plane (in-plane), whereas the \(\pi\) orbitals are located in the out-of-plane (Z-axis). The \(\sigma\) orbitals are assumed to have sp\(_2\)-hybridization with equal contribution from 2s, 2px, and 2py.

Figure S10: Trends between calculated \(^1\text{J}_\text{F,C}\) coupling constants and natural occupation of 2s and 2p orbitals of the ortho-C-atom in iodopentafluorobenzene on halogen bond formation with different pyridine bases.
Table S23. Natural occupation numbers of 2s and 2p orbitals of C atoms in the meta-position, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

C₆F₅I···Base	2s	2px	2py	2pz	¹J_F,C(Hz)	Δ(SUM(2σ))^a	Δ(2π)^a
	0.871	0.966	0.773	1.068	-312.6	0.000 (reference)	0.000 (reference)
4-Dimethylaminopyridine	0.874	0.969	0.770	1.072	-299.43	0.004	0.00219
2-Methylpyridine	0.873	0.968	0.771	1.072	-301.99	0.004	0.00138
2,6-Dimethylpyridine	0.873	0.968	0.771	1.071	-302.69	0.003	0.00143
4-Methoxy pyridine	0.873	0.958	0.781	1.072	-300.79	0.004	0.00152
3,5-Dimethyl pyridine	0.873	0.969	0.771	1.071	-301.02	0.003	0.00241
Pyridine	0.873	0.968	0.770	1.072	-301.55	0.004	0.00143
3-Bromopyridine	0.873	0.904	0.835	1.071	-302.49	0.003	0.00115
3-Chloropyridine	0.873	0.930	0.809	1.071	-302.42	0.003	0.00114

^a The aromatic rings were placed in the XY plane (in-plane), whereas the π orbitals are located in the out-of-plane (Z-axis). The σ orbitals are assumed to have sp₂-hybridization with equal contribution from 2s, 2px, and 2py.

Figure S11: Trends between calculated ¹J_{F,C} coupling constants and natural occupation of 2s and 2p orbitals of the meta-C-atom in pentafluoriodobenzene on halogen bond formation with different pyridine bases.
Table S24. Natural occupation numbers of 2s and 2p orbitals of C atoms in the para-position, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

Base	2s	2px	2py	2pz	$^1J_{F,C}$ (Hz)	Δ(SUM(2\(\sigma\)))a	Δ(2\(\pi\))a
--	0.875	0.683	1.055	1.050	-312.6	0.000 (reference)	0.000 (reference)
4-Dimethylaminopyridine	0.875	0.680	1.056	1.060	-313.49	0.010	-0.00093
2-Methylpyridine	0.875	0.680	1.056	1.058	-315.01	0.008	-0.00075
2,6-Dimethylpyridine	0.875	0.680	1.056	1.057	-315.63	0.007	-0.00074
4-Methoxypyridine	0.875	0.681	1.055	1.058	-314.41	0.009	-0.00081
3,5-Dimethylenpyridine	0.875	0.680	1.056	1.058	-314.41	0.009	-0.00079
Pyridine	0.875	0.680	1.056	1.058	-314.83	0.008	-0.00074
3-Bromopyridine	0.875	0.693	1.043	1.057	-315.51	0.007	-0.00063
3-Chloropyridine	0.875	0.685	1.051	1.057	-315.51	0.007	-0.00067
3,5-Dichloropyridine	0.875	0.681	1.055	1.056	-316.13	0.006	-0.00056

a The aromatic rings were placed in the XY plane (in-plane), whereas the π orbitals are located in the out-of-plane (Z-axis). The σ orbitals are assumed to have sp2-hybridization with equal contribution from 2s, 2px, and 2py.

Figure S12: Trends between calculated $^1J_{F,C}$ coupling constants and natural occupation of 2s and 2p orbitals of the para-C-atom in iodopentafluorobenzene on halogen bond formation with different pyridine bases.
Table S25. Bond distances (R), 19F-13C-J-coupling constants ($J_{F,C}$), binding energies (ΔE), electron densities (ρ) and energy densities (ρ) at the C-F and N--I bond critical point, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

Base	R_{C-F} (Å)	R_{C-I} (Å)	R_{N-I} (Å)	$J_{F,C}$ (Hz)	ΔE (kJ/mol)	ρ_{C-F} (e/Å3)	H_{C-F} (h/Å3)	ρ_{N-I} (e/Å3)	H_{N-I} (h/Å3)
3,5-Dichloropyridine	1.354	2.219	2.685	-388.16	-34.86	1.812	-2.682	0.246	-0.018
3-Chloropyridine	1.356	2.209	2.785	-388.35	-31.38	1.828	-2.717	0.203	-0.005
4-Methoxypyridine	1.352	2.205	2.872	-386.69	-30.65	1.833	-2.729	0.173	+0.001
3,5-Dimethoxypyridine	1.357	2.211	2.736	-388.50	-31.06	1.823	-2.705	0.222	-0.010
Pyridine	1.356	2.209	2.761	-389.55	-29.26	1.828	-2.717	0.211	-0.007
3-Bromopyridine	1.354	2.204	2.805	-390.12	-26.34	1.837	-2.736	0.192	-0.002
3-Chloropyridine	1.354	2.204	2.806	-390.23	-26.23	1.837	-2.736	0.191	-0.002
3,5-Dichloropyridine	1.353	2.199	2.848	-390.97	-23.79	1.844	-2.735	0.175	0.001

Table S26. Hybridization characters and natural population charge analysis (X) of C, F, N, and I atoms, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

Base	C$_{ortho}$	F$_{ortho}$	C	F	I	X$_C$	X$_I$	X$_{F(ortho)}$	X$_N$
4-Dimethylaminopyridine	sp3	sp2	sp3	sp3*	sp3	+0.5622	+0.1509	-0.3370	-
2-Methylpyridine	sp3	sp2	sp3	sp3	sp3	+0.4959	+0.1785	-0.3577	-0.5205
2,6-Dimethylpyridine	sp3	sp3	sp3	sp3	sp3	+0.5074	+0.1738	-0.3530	-0.4758
4-Methoxypyridine	sp3	sp3	sp3	sp3	sp3	+0.5118	+0.1718	-0.3516	-0.4884
3,5-Dimethoxypyridine	sp3	sp3	sp3	sp3	sp3	+0.5031	+0.1775	-0.3546	-0.4948
Pyridine	sp3	sp3	sp3	sp3	sp3	+0.5035	+0.1761	-0.3544	-0.4568
3-Bromopyridine	sp3	sp3	sp3	sp3	sp3	+0.5067	+0.1759	-0.3531	-0.4656
3-Chloropyridine	sp3	sp3	sp3	sp3	sp3	+0.5125	+0.1747	-0.3505	-0.4453
3,5-Dichloropyridine	sp3	sp3	sp3	sp3	sp3	+0.5125	+0.1748	-0.3505	-0.4456
*Due to the use of effective core potential for describing relativistic effects of I atom

Table S27. Decomposition terms of calculated $J_{F,C}$ coupling constants into Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbital (PSO), diamagnetic spin-orbit (DSO), and the total $J_{F,C}$ coupling constants at the carbon α position as well as the second-order perturbation of the Fock Matrix between σ orbital of C-I and σ^* orbital of C-F and lone pair of I with σ^* of C-F orbital, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

Base	Fermi Contact	Spin-Dipolar	Paramagnetic Spin-orbit	Diamagnetic Spin-orbit	$J_{F,C}(Hz)$	C-I \rightarrow C-F (kcal/mol)	Lp(I)\rightarrow C-F
4-Dimethylaminopyridine	-372.42	4.36	-34.92	1.55	-401.43	1.59	4.76
2-Methylpyridine	-372.44	7.34	-24.56	1.50	-388.16	1.40	4.36
2,6-Dimethylpyridine	-370.40	6.84	-26.30	1.51	-388.35	1.38	4.44
4-Methoxypyridine	-370.93	6.65	-26.92	1.52	-389.69	1.36	4.58
3,5-Dimethoxypyridine	-371.34	7.03	-25.70	1.51	-388.50	1.39	3.77
Pyridine	-371.87	6.99	-25.75	1.51	-389.12	1.40	4.26
3-Bromopyridine	-371.67	6.86	-26.25	1.51	-389.55	1.39	4.35
3-Chloropyridine	-371.11	6.60	-27.22	1.51	-390.12	1.39	4.46
3,5-Dichloropyridine	-370.75	6.36	-28.10	1.51	-390.97	1.38	4.53
Table S28. Decomposition terms of calculated $^1J_{F,C}$ coupling constants into Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbital (PSO), diamagnetic spin-orbit (DSO), and the total $^1J_{F,C}$ coupling constants at the carbon β position, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

C$_8$F$_7$I--Base	Fermi Contact	Spin-Dipolar	Paramagnetic Spin-orbit	Diamagnetic Spin-orbit	$^1J_{F,C}$(Hz)
–	-315.14	10.27	-22.61	1.74	-325.74
4-Dimethylaminopyridine	-311.45	10.87	-20.91	1.61	-319.88
2-Methylpyridine	-312.53	10.74	-21.30	1.61	-321.47
2,6-Dimethylpyridine	-312.70	10.70	-21.44	1.61	-321.83
4-Methoxypyridine	-312.16	10.77	-21.20	1.61	-320.98
3,5-Dimethylpyridine	-312.23	10.78	-21.17	1.61	-321.02
Pyridine	-312.69	10.75	-21.28	1.61	-321.62
3-Bromopyridine	-313.33	10.67	-21.52	1.61	-322.58
3-Chloropyridine	-313.39	10.68	-21.51	1.61	-322.62
3,5-Dichloropyridine	-313.38	10.61	-21.70	1.61	-323.35

Table S29. Calculated 19F coordination shifts ($\Delta\delta = \delta_{\text{complex}} - \delta_{\text{free}}$) in ppm

C$_8$F$_7$I--Base	$\Delta\delta_{\text{alpha}}$	$\Delta\delta_{\text{beta}}$
–	114.72	49.42
4-Dimethylaminopyridine	88.71	44.73
2-Methylpyridine	93.33	45.05
2,6-Dimethylpyridine	95.09	45.17
4-Methoxypyridine	91.69	44.96
3,5-Dimethylpyridine	91.69	44.92
Pyridine	92.93	45.03
3-Bromopyridine	95.42	45.23
3-Chloropyridine	95.40	45.22
3,5-Dichloropyridine	97.54	45.41

Table S30. Natural occupation numbers of 2s and 2p orbitals of C atoms in the α-position, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

C$_8$F$_7$I--Base	2s	2px	2py	2pz	$^1J_{F,C}$(Hz)	Δ(2s)	Δ(2p$_\sigma$)a	
–	1.031	1.077	0.780	0.638	401.43	0	0	
4-Dimethylaminopyridine	1.061	1.136	0.797	0.594	-	388.16	0.03	0.032
4-Methoxypyridine	1.057	1.130	0.797	0.599	-388.5	0.026	0.031	
Pyridine	1.054	1.125	0.802	0.597	-	389.55	0.023	0.029
3-Bromopyridine	1.051	1.118	0.770	0.634	-	390.12	0.02	0.027
3-Chloropyridine	1.051	1.120	0.792	0.609	-	390.23	0.02	0.026

a We separated the contributions of the 2s and sum of 2p$_x$ + 2p$_y$ + 2p$_z$ = 3 x 2p$_\sigma$ as independent contributors.
Figure S13: Trends between calculated $^{1}J_{F,C}$ coupling constants and natural occupation of 2s and 2p$_{\sigma}$ orbitals of the α-C-atom in iodoperfluorooctane on halogen bond formation with different pyridine bases.

Table S31. Natural occupation numbers of 2s and 2p orbitals of C atoms in the β-position, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

CsF$_{17}$-I---Base	2s	2px	2py	2pz	$^{1}J_{F,C}$(Hz)	Δ(2s)	Δ(2p$_{\sigma}$)$_{a}$
-	0.936	1.061	0.781	0.621	-	325.74	-
4-Dimethylaminopyridine	0.940	1.046	0.818	0.602	-	319.88	0.004 0.003
4-Methoxypyridine	0.939	1.047	0.813	0.604	-	321.47	0.003 0.001
Pyridine	0.939	1.054	0.806	0.604	-	321.62	0.003 0.001
3-Bromopyridine	0.938	1.030	0.783	0.651	-	322.58	0.002 0.001
3-Chloropyridine	0.938	1.042	0.800	0.622	-	322.62	0.002 0.001

a We separated the contributions of the 2s and sum of 2p$_{x}$ + 2p$_{y}$ + 2p$_{z}$ = 3 x 2p$_{\sigma}$ as independent contributors.
Figure S14: Trends between calculated $^{1}J_{F,C}$ coupling constants and natural occupation of 2s and 2p$_{\sigma}$ orbitals of the β-C-atom in iodoperfluorooctane on halogen bond formation with different pyridine bases.

Table S32: Bond distances (R), $^{1}J_{F,C}$-coupling constants ($J_{F,C}$), binding energies (ΔE), electron densities (ρ) and energy densities (H) at the C-F and N--I bond critical point, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

C$_2$F$_5$-I⋯Base	R_{C-F} (Å)	R_{C-I} (Å)	R_{N-I} (Å)	ortho $^{1}J_{F,C}$ (Hz)	ΔE (kJ/mol)	ρ_{C-F} (e/Å3)	H_{C-F} (h/Å3)	ρ_{N-I} (e/Å3)	H_{N-I} (h/Å3)
–	1.337	2.099	-	-312.60	-	1.838	-2.716	-	-
NEt$_2$H	1.343	2.154	2.751	-299.31	-35.72	1.806	-2.649	0.227	-0.014
NBu$_2$H	1.343	2.150	2.758	-298.99	-29.86	1.807	-2.650	0.217	-0.010
Piperidine	1.344	2.158	2.720	-298.51	-37.14	1.804	-2.644	0.239	-0.017
N(sec-Bu)H$_2$	1.343	2.148	2.795	-298.93	-31.46	1.808	-2.652	0.203	-0.006
Pyrrolidine	1.343	2.155	2.741	-299.03	-37.37	1.805	-2.646	0.230	-0.015
N(iso-Pr)H$_2$	1.342	2.144	2.864	-299.62	-34.05	1.810	-2.656	0.181	-0.003
NEt(iso-Pr)H	1.343	2.149	2.816	-299.64	-36.17	1.808	-2.652	0.200	-0.007
N(tert-Bu)H$_2$	1.343	2.148	2.789	-298.98	-31.65	1.808	-2.652	0.205	-0.007
NBu$_3$H	1.343	2.151	2.782	-300.08	-38.52	1.807	-2.651	0.214	-0.010
NPr$_2$H	1.343	2.150	2.787	-300.13	-37.40	1.808	-2.652	0.211	-0.009
N(iso-Pr)$_3$H	1.340	2.121	3.163	-303.98	-21.65	1.822	-2.682	0.108	0.005
NEt$_3$	1.342	2.137	2.941	-301.67	-32.26	1.814	-2.665	0.160	0.001
NBu$_3$	1.343	2.152	2.794	-299.67	-42.67	1.807	-2.650	0.214	-0.012
NPr$_3$	1.337	2.102	3.413	-307.48	-14.87	1.836	-2.711	0.059	0.007
C_xF_yI_z Base	sp^n_C	sp^n_F	sp^n_I	X_C	X_I	X_F	X_N		
----------------	--------	--------	--------	-----	-----	-----	-----		
–	sp^{1.19}	sp^{2.49}	sp^{10.24}	-0.2931	+0.2517	-0.3075	-		
NEt_2H	sp^{1.26}	sp^{2.50}	sp^{17.51}	-0.3156	+0.2427	-0.3183	-0.6475		
NBu_2H	sp^{1.26}	sp^{2.49}	sp^{17.61}	-0.3173	+0.2451	-0.3181	-0.8159		
Piperidine	sp^{1.27}	sp^{2.50}	sp^{18.43}	-0.3174	+0.2424	-0.3192	-0.6411		
N(sec-Bu)H_2	sp^{1.26}	sp^{2.50}	sp^{17.16}	-0.3163	+0.2440	-0.3177	-0.8258		
Pyrrolidine	sp^{1.27}	sp^{2.50}	sp^{17.79}	-0.3168	+0.2412	-0.3187	-0.6529		
N(iso-Pr)H_2	sp^{1.25}	sp^{2.50}	sp^{16.00}	-0.3138	+0.2413	-0.3169	-0.6545		
NEt(iso-Pr)H	sp^{1.26}	sp^{2.50}	sp^{16.64}	-0.3149	+0.2418	-0.3175	-0.6498		
N(tert-Bu)H_2	sp^{1.26}	sp^{2.50}	sp^{17.30}	-0.3163	+0.2450	-0.3177	-0.8290		
NBu_3H	sp^{1.26}	sp^{2.50}	sp^{16.91}	-0.3174	+0.2437	-0.3185	-0.6420		
NPr_3H	sp^{1.26}	sp^{2.50}	sp^{16.78}	-0.3157	+0.2441	-0.3177	-0.6425		
N(iso-Pr)_3H	sp^{1.22}	sp^{2.50}	sp^{14.89}	-0.3125	+0.2438	-0.3160	-0.5289		
NBu_3	sp^{1.26}	sp^{2.50}	sp^{16.57}	-0.3154	+0.2421	-0.3183	-0.5087		
NPr_3	sp^{1.19}	sp^{2.50}	sp^{10.53}	-0.2964	+0.2496	-0.3081	+0.0637		

*Due to the use of effective core potential for describing relativistic effects of I atom

Table S34. Decomposition terms of calculated $^1J_{C,I}$ coupling constants into Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbital (PSO), diamagnetic spin-orbit (DSO), and the total $^1J_{C,I}$ coupling constants at the ortho position as well as the second-order perturbation of the Fock Matrix between σ orbital of C-I and σ* orbital of C-F, calculated at the B3LYP-D3/aug-cc-pVTZ-pp.

C_xF_yI_z Base	Fermi Contact	Spin-Dipolar	Paramagnetic Spin-orbit	Diamagnetic Spin-orbit	$^1J_{C,I}$(Hz)	C-I → C-F (kcal/mol)
–	-310.78	3.96	-6.94	1.17	-312.60	1.33
NEt_2H	-300.69	4.83	-4.63	1.18	-299.31	1.69
NBu_2H	-300.28	4.82	-4.69	1.17	-298.99	1.68
Piperidine	-300.13	4.90	-4.46	1.18	-298.51	1.73
N(sec-Bu)H_2	-300.10	4.78	-4.79	1.18	-298.93	1.65
Pyrrolidine	-300.53	4.87	-4.54	1.18	-299.03	1.70
N(iso-Pr)H_2	-300.69	4.75	-4.86	1.18	-299.62	1.61
NEt(iso-Pr)H	-300.87	4.79	-4.75	1.18	-299.64	1.63
N(tert-Bu)H_2	-300.16	4.79	-4.79	1.18	-298.98	1.65
NBu_3H	-301.36	4.81	-4.71	1.19	-300.08	1.60
NPr_3H	-301.37	4.80	-4.74	1.18	-300.13	1.64
N(iso-Pr)_3H	-303.80	4.41	-5.77	1.19	-303.98	1.42
NEt_3	-302.31	4.63	-5.17	1.19	-301.67	1.51
NBu_3	-300.99	4.81	-4.68	1.19	-299.67	1.66
NPr_3	-305.94	4.04	-6.77	1.19	-307.48	1.31
Table S35. Decomposition terms of calculated $^{1}J_{F,C}$ coupling constants into Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbital (PSO), diamagnetic spin-orbit (DSO), and the total $^{1}J_{F,C}$ coupling constants at the meta position, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

CsF$_{5}$I...Base	Fermi Contact (Hz)	Spin-Dipolar (Hz)	Paramagnetic Spin-orbit (Hz)	Diamagnetic Spin-orbit (Hz)	$^{1}J_{F,C}$ (Hz)
–	-320.78	4.86	-2.50	1.15	-317.26
NEt$_{2}$H	-319.81	5.55	-0.64	1.16	-313.75
NBu$_{2}$H	-319.18	5.53	-0.67	1.16	-313.16
Piperidine	-319.76	5.59	-0.52	1.16	-313.54
N(sec-Bu)H$_{2}$	-319.06	5.52	-0.71	1.16	-313.10
Pyrrolidine	-319.76	5.56	-0.61	1.16	-313.65
N(iso-Pr)H$_{2}$	-319.92	5.48	-0.83	1.16	-314.11
NEt(iso-Pr)H	-319.96	5.51	-0.74	1.16	-314.04
N(tert-Bu)H$_{2}$	-319.20	5.52	-0.72	1.16	-313.25
NBu$_{2}$H	-319.99	5.53	-0.70	1.16	-314.00
NPR$_{2}$H	-319.92	5.52	-0.72	1.16	-313.96
N(iso-Pr)$_{3}$H	-320.10	5.24	-1.48	1.16	-315.18
NEt$_{3}$	-320.20	5.40	-1.05	1.16	-314.69
NBu$_{3}$	-320.50	5.53	-0.71	1.16	-314.52
NPR$_{3}$	-319.62	4.89	-2.43	1.16	-316.00

Table S36. Decomposition terms of calculated $^{1}J_{F,C}$ coupling constants into Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbital (PSO), diamagnetic spin-orbit (DSO), and the total $^{1}J_{F,C}$ coupling constants at the para position, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

CsF$_{5}$I...Base	Fermi Contact (Hz)	Spin-Dipolar (Hz)	Paramagnetic Spin-orbit (Hz)	Diamagnetic Spin-orbit (Hz)	$^{1}J_{F,C}$ (Hz)
–	-320.92	4.12	-5.45	1.15	-321.11
NEt$_{2}$H	-317.09	4.92	-2.76	1.15	-313.76
NBu$_{2}$H	-317.03	4.92	-2.81	1.15	-313.77
Piperidine	-316.91	4.99	-2.59	1.15	-313.36
N(sec-Bu)H$_{2}$	-316.92	4.90	-2.86	1.15	-313.73
Pyrrolidine	-317.03	4.96	-2.70	1.15	-313.62
N(iso-Pr)H$_{2}$	-317.22	4.86	-2.97	1.15	-314.18
NEt(iso-Pr)H	-317.40	4.90	-2.88	1.15	-314.23
N(tert-Bu)H$_{2}$	-316.94	4.90	-2.87	1.15	-313.75
NBu$_{2}$H	-317.63	4.92	-2.82	1.15	-314.39
NPR$_{2}$H	-317.63	4.90	-2.86	1.15	-314.44
N(iso-Pr)$_{3}$H	-318.34	4.57	-3.93	1.15	-316.56
NEt$_{3}$	-317.66	4.77	-3.28	1.15	-315.02
NBu$_{3}$	-317.84	4.92	-2.80	1.15	-314.56
NPR$_{3}$	-319.29	4.15	-5.40	1.15	-319.39
Table S37. Calculated 19F coordination shifts ($\Delta \delta = \delta_{\text{complex}} - \delta_{\text{free}}$) in ppm

C$_6$F$_5$I---Base	$\Delta \delta_{\text{ortho}}$	$\Delta \delta_{\text{meta}}$	$\Delta \delta_{\text{para}}$
–	43.55	2.48	10.50
NEt$_2$H	40.29	0.70	6.51
NBuH$_2$	40.00	0.57	6.53
Piperidine	40.09	0.53	6.34
N(sec-Bu)H$_2$	39.94	0.62	6.44
Pyrroldidine	40.05	0.59	6.57
N(iso-Pr)H$_2$	40.12	0.88	6.72
NEt(iso-Pr)H$_2$	40.16	0.82	6.62
N(tert-Bu)H$_2$	40.04	0.66	6.51
NBu$_2$H	40.53	0.75	6.76
NPr$_2$H	40.35	0.76	6.78
N(iso-Pr)$_3$H	42.62	1.65	8.56
NEt$_3$	41.25	1.20	7.43
NBu$_3$	41.00	0.88	6.99
NPr$_3$	43.37	2.86	10.87

Table S38. Bond distances (R), 19F-13C-1J-coupling constants (J_{CF}), binding energies (ΔE), electron densities (ρ) and energy densities (H) at the C-F and N---I bond critical point, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

C$_6$F$_5$I---Base	R_{CF} (Å)	R_{CI} (Å)	R_{O-I} (Å)	J_{CF} (Hz)	ΔE (kJ/mol)	ρ_{CF} (e/Å3)	H_{CF} (h/Å3)	ρ_{N-I} (e/Å3)	H_{N-I} (h/Å3)
Table S39. Decomposition terms of calculated perturbation of the Fock Matrix between C,F,N, and I atoms, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

C,F,N-I-Base	spⁿ C	spⁿ F	spⁿ C	spⁿ I	X_C	X_F	X_I	X_O
	sp¹.¹⁹	sp².⁴⁹	sp².⁹⁶	sp¹.²⁴	-0.2931	+0.2517	-0.3075	-
Pyridine-N-oxide	sp³.¹⁴	sp².⁴⁹	sp².⁸²	sp¹.¹⁷	-0.3141	+0.2656	-0.3144	-0.6127
Trimethylamin-N-oxide	sp³.²⁷	sp².⁵⁰	sp².⁷⁷	sp¹.³³	-0.3215	+0.2686	-0.3188	-0.7428
N,N-Dimethylpyrrolidine-2-one	sp³.²³	sp².⁴⁹	sp².⁸²	sp¹.⁵⁸	-0.3121	+0.2710	-0.3135	-0.7391
Triphenylphosphineoxide	sp³.³³	sp².⁷⁹	sp¹.⁷⁵	-0.3133	+0.2842	-0.3136	-1.1300	
Pyridoline-N-oxide	sp³.²³	sp².⁴⁹	sp².⁸²	sp¹.⁶⁴	-0.3131	+0.2662	-0.3135	-0.6797
Dimethylsulfoxide	sp³.²³	sp².⁴⁹	sp².⁸¹	sp¹.⁵⁸	-0.3127	+0.2749	-0.3135	-1.0262
Dimethylformamide	sp³.²²	sp².⁸³	sp¹.²⁶	-0.3092	+0.2725	-0.3121	-0.6932	
Acetophenone	sp³.²¹	sp².⁸⁵	sp¹.⁹ⁱ	-0.3060	+0.2716	-0.3108	-0.6032	
Beroaphenone	sp³.²¹	sp².⁸⁴	sp¹.³¹	-0.3081	+0.2726	-0.3115	-0.5942	
4-Methylpyrindine-N-oxide	sp³.²³	sp².⁴⁹	sp².⁸¹	sp¹.⁶⁹	-0.3154	+0.2659	-0.3151	-0.6256

Due to the use of effective core potential for describing relativistic effects of I atom

Table S40. Decomposition terms of calculated ¹J_{C,F} coupling constants into Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbital (PSO), diamagnetic spin-orbit (DSO), and the total ¹J_{C,F} coupling constants at the ortho position as well as the second-order perturbation of the Fock Matrix between σ-orbital of C-I and σ* orbital of C-F, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

C,F,N-I-Base	Fermi Contact	Spin-Dipolar	Paramagnetic Spin-orbit	Diamagnetic Spin-orbit	¹J_{C,F}(Hz)	C-I → C-F (kcal/mol)
	-310.78	3.96	-6.94	1.17	-312.60	1.33
Pyridine-N-oxide	-302.78	4.51	-5.52	1.18	-302.60	1.51
Trimethylamin-N-oxide	-300.44	4.88	-4.49	1.18	-298.88	1.67
N,N-Dimethylpyrrolidine-2-one	-303.44	4.45	-5.67	1.18	-303.47	1.47
Triphenylphosphineoxide	-302.14	4.47	-5.62	1.20	-302.10	1.46
Pyridoline-N-oxide	-303.47	4.46	-5.64	1.18	-303.46	1.47
Dimethylsulfoxide	-302.64	4.43	-5.73	1.18	-302.76	1.48
Dimethylformamide	-304.39	4.33	-6.01	1.18	-304.89	1.42
Acetophenone	-304.99	4.22	-6.30	1.19	-305.88	1.39
Beroaphenone	-304.19	4.28	-6.15	1.19	-304.86	1.41
4-Methylpyrindine-N-oxide	-302.89	4.59	-5.28	1.18	-302.40	1.53

Table S41. Decomposition terms of calculated ¹J_{C,F} coupling constants into Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbital (PSO), diamagnetic spin-orbit (DSO), and the total ¹J_{C,F} coupling constants at the meta position, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

C,F,N-I-Base	Fermi Contact	Spin-Dipolar	Paramagnetic Spin-orbit	Diamagnetic Spin-orbit	¹J_{C,F}(Hz)
	-320.78	4.86	-2.50	1.15	-317.26
Pyridine-N-oxide	-318.79	5.35	-1.15	1.16	-313.43
Trimethylamin-N-oxide	-319.13	5.62	-0.43	1.16	-312.78
N,N-Dimethylpyrrolidine-2-one	-318.76	5.31	-1.27	1.16	-313.57
Triphenylphosphineoxide	-318.61	5.35	-1.15	1.17	-313.26
Pyridoline-N-oxide	-318.89	5.27	-1.37	1.16	-313.83
Dimethylsulfoxide	-318.53	5.32	-1.23	1.16	-313.29
Dimethylformamide	-318.79	5.21	-1.54	1.16	-313.97
Acetophenone	-318.86	5.14	-1.73	1.16	-314.29
Beroaphenone	-318.67	5.20	-1.56	1.16	-313.87
4-Methylpyrindine-N-oxide	-318.88	5.40	-1.01	1.16	-313.31
Table S42. Decomposition terms of calculated $^{1}J_{F,C}$ coupling constants into Fermi contact (FC), spin-dipolar (SD), paramagnetic spin-orbital (PSO), diamagnetic spin-orbit (DSO), and the total $^{1}J_{F,C}$ coupling constants at the para position, calculated at the B3LYP-D3/aug-cc-pVTZ-pp

C$_{6}$F$_{5}$-I...Base	Fermi Contact	Spin-Dipolar	Paramagnetic Spin-orbit	Diamagnetic Spin-orbit	$^{1}J_{F,C}$(Hz)
-	-320.92	4.12	-5.45	1.15	-321.11
Pyridine-N-oxide	-318.05	4.69	-3.49	1.15	-315.70
Trimethylamin-N-oxide	-317.20	5.03	-2.32	1.15	-313.34
N,N-Dimethylpyrroldine-2-one	-318.17	4.64	-3.64	1.15	-316.02
Triphenylphosphineoxide	-317.95	4.68	-3.44	1.15	-315.55
Pyrrolidine-N-oxide	-318.07	4.59	-3.81	1.15	-316.14
Dimethylsulfoxide	-318.16	4.64	-3.62	1.15	-315.98
Dimethylformamide	-318.67	4.51	-4.05	1.15	-317.07
Acetophenone	-318.70	4.43	-4.35	1.15	-317.47
Benzophenone	-318.58	4.50	-4.10	1.15	-317.02
4-Methylpyridine-N-oxide	-317.88	4.76	-3.22	1.15	-315.19

Table S43. Calculated 19F coordination shifts ($\Delta \delta = \delta_{(complex)} - \delta_{(free)}$) in ppm

C$_{6}$F$_{5}$-I...Base	$\Delta \delta_{ortho}$	$\Delta \delta_{meta}$	$\Delta \delta_{para}$
-	43.55	2.48	10.50
Pyridine-N-oxide	41.48	0.77	7.44
Trimethylamin-N-oxide	39.98	0.21	5.52
N,N-Dimethylpyrroldine-2-one	41.70	1.05	7.72
Triphenylphosphineoxide	41.58	0.87	7.39
Pyrrolidine-N-oxide	41.42	1.26	8.01
Dimethylsulfoxide	41.58	0.83	7.59
Dimethylformamide	42.10	1.33	8.35
Acetophenone	42.60	1.65	8.89
Benzophenone	42.33	1.42	8.49
4-Methylpyridine-N-oxide	41.16	0.74	6.98
4.1. Decomposition of the computed scalar couplings into FC, SD, PSO and DSO terms

Figure S15: Calculated $^1J_{\text{ortho-F,C}}$ couplings vs it’s FC, SD, PSO, DSO contributions for Lewis base-IC$_6$F$_5$ adducts.
Figure S16: Calculated $^1J_{\text{meta-FC}}$ couplings vs it’s FC, SD, PSO, DSO contributions for Lewis base-IC$_6$F$_5$ adducts.
Figure S17: Calculated $^1J_{p-F,C}$ couplings vs its FC, SD, PSO, DSO contributions for Lewist base-IC_6F_5 adducts.
Figure S18: Calculated $J_{\alpha,F,C}$ couplings vs its FC, SD, PSO, DSO contributions for Lewis base-IC$_8$F$_{17}$ adducts.
Figure S19: Calculated $^1J_{\beta-F,C}$ couplings vs its FC, SD, PSO, DSO contributions for Lewis base-IC$_6$F$_{17}$ adducts.

Figure S20: Calculated $^1J_{\text{ortho-F,C}}$ couplings vs calculated E_{XB} and $\rho_{N..I}$ for Lewis base-IC$_6$F$_5$ adducts.
Figure S21: Calculated $^1J_{\alpha\beta-\gamma\delta}$ couplings vs calculated E_{XB} and $\rho_{N..I}$ for different pyridine-IC$_{CF}_2$ adducts (left with ortho-substituted pyridines (2,6-dimethylpyridine and 2-picoline), right without those.)
Figure S22: Calculated $^1J_{o-F,C}$ couplings vs calculated E_{XB} and $\rho_{N..I}$ for pyridine-IC$_6$F$_5$ adducts (left with ortho-substituted pyridines (2,6-dimethylpyridine and 2-picoline), right without those.

Figure S23: Calculated $^1J_{o,F,C}$ couplings vs calculated $\rho_{N..I}$ for Lewis base-IC$_6$F$_5$ adducts for ortho, meta and para-F.
Figure S24: The calculated $^{1}J_{F,C}$ couplings vs calculated $\rho_{N,I}$ for Lewis base-IC$_{6}$F$_{5}$ adducts for alpha and beta-F.

The calculated $^{1}J_{F,C}$ vs $\rho_{N,I}$ agree with the experimentally observed trends in $\Delta^{1}J_{F,C}$ vs pK_{B12}^{2} for IC$_{6}$F$_{5}$, thus $^{1}J_{F,C}$ ortho $>$ para $>$ meta (Figure 2 and Figure S23). For IC$_{8}$F$_{17}$, the $\Delta^{1}J_{F,C}$ follows the trend alpha$>$beta (Figure 4 and Figure S24). We observed good correlations for $^{1}J_{F,C}$ for the α-F and β-F of IC$_{6}$F$_{5}$, and for the ortho-F and para-F of IC$_{6}$F$_{5}$, while weak correlation for the meta-F of IC$_{6}$F$_{5}$ in both the experimental (R^{2}=0.13 with pK_{B12}^{2}) and calculated (R^{2}=0.40 with $\rho_{N,I}$) datasets.

5 Optimized Structures Obtained at the B3LYP-D3/aug-cc-pVTZ-pp Level of Theory

Pentafluoriodobenzene (C$_{6}$F$_{5}$I)

I	-2.30648000	0.00000000	0.00000000
C	-0.20705400	0.00000200	-0.00000200
C	0.50642600	1.19249200	-0.00000200
C	0.50642800	-1.19249600	-0.00000400
C	1.89344600	1.19960400	-0.00000200
C	1.89344000	-1.19960500	-0.00000100
C	2.58917700	0.00000200	0.00000000
F	-0.12543800	-2.37041800	0.00000000
F	2.56206300	-2.35549100	0.00000100
F	3.92144000	0.00000060	0.00000200
F	2.56205700	2.35549600	0.00000100
F	-0.12543000	2.37042100	0.00000000

C$_{6}$F$_{5}$I\cdots4-Dimethylaminopyridine

I	-0.20435100	0.00000400	-0.00004300
C	3.22238500	1.13401200	-0.11049700
C	4.60000000	1.19274500	-0.11634000
C	5.35277500	-0.00000300	0.00000220
C	4.59998700	-1.19274700	0.11633600
C	3.22237300	-1.13400700	0.11041000
N	2.51876700	0.00000400	-0.00006400
H	2.64543800	2.04672000	-0.19929800
H	5.07712700	2.15461500	-0.21020900
H	5.07710300	-2.15462000	0.21023000
2-Methylpyridine

\[
\begin{array}{cccc}
H & 2.64541600 & -2.04671200 & 0.19917400 \\
C & -2.35213200 & 0.00000200 & -0.00001300 \\
C & -3.07498200 & -1.18388400 & -0.04014500 \\
C & -3.07498600 & 1.18388500 & 0.04014200 \\
C & -4.46200000 & -1.19751900 & -0.04060100 \\
C & -4.46200300 & 1.19751400 & 0.04064800 \\
F & -2.44617700 & 2.36983500 & 0.08052400 \\
F & -5.13304700 & -2.35517900 & -0.08006200 \\
F & -2.44617000 & 2.36983200 & -0.08055100 \\
N & 6.70984600 & -0.00000400 & 0.00006500 \\
C & 7.44345100 & -1.25170100 & 0.12306100 \\
H & 8.50807600 & -1.04426900 & 0.09975800 \\
H & 7.21580800 & 1.75752200 & -1.06431900 \\
H & 7.21163300 & 1.93316600 & 0.69909500 \\
H & 8.50808300 & 1.04425900 & -0.09951700 \\
\end{array}
\]

\(\text{C}_6\text{F}_3\text{I} \cdots \text{2-Methylpyridine} \)

\[
\begin{array}{cccc}
i & -0.61360800 & -0.02975600 & -0.00084000 \\
c & -4.25743700 & 0.88353100 & 0.01252300 \\
c & -5.64150100 & 0.70873200 & 0.01098000 \\
c & -6.17001000 & -0.57419600 & -0.00692700 \\
c & -5.30361400 & -1.65948200 & -0.02296800 \\
c & -3.94016200 & -1.40432600 & -0.02021300 \\
n & -3.42916200 & -0.17163400 & -0.00300500 \\
h & -7.24103100 & -0.72389900 & -0.00833500 \\
h & -6.29101700 & 1.57243000 & 0.02372900 \\
h & -5.66867200 & -2.67599100 & -0.03720400 \\
h & -3.22351000 & -2.21660500 & -0.03222200 \\
c & 1.52168200 & -0.02872300 & -0.00051100 \\
c & 2.24429500 & -1.21395800 & 0.00687000 \\
c & 2.24141000 & 1.15828200 & -0.00765700 \\
c & 3.63131400 & -1.22455900 & 0.00718700 \\
c & 3.62836700 & 1.17239800 & -0.00751500 \\
c & 4.32688600 & -0.02522700 & -0.00005000 \\
f & 1.61038400 & 2.34227700 & -0.01501600 \\
f & 4.29737100 & 2.33104200 & -0.01453100 \\
f & 5.66161500 & -0.02358400 & 0.00017300 \\
f & 4.30321900 & -2.38152200 & 0.01443100 \\
f & 1.61634600 & 2.39954100 & 0.01403000 \\
c & -3.62883700 & 2.24619000 & 0.03145600 \\
h & -2.99242100 & 2.35785400 & 0.91024500 \\
h & -2.99231500 & 2.38217900 & -0.84381000 \\
h & -4.38044500 & 3.03251300 & 0.04232400 \\
\end{array}
\]
Compound	Coordinates	
C₆F₅I–2,6-Dimethylpyridine	I: -0.46438900, -0.00000400, -0.00010800; C: -4.03998200, 1.16035700, 0.05540300; C: -5.43343300, 1.19383900, 0.05540300; C: -6.13626100, -0.00000200, 0.00028800; C: -5.43344000, -1.19383800, -0.05668600; C: -4.03998900, -1.16034600, -0.05545400; N: -3.36887400, 0.00000800, -0.00012200; H: -7.21794100, -0.00000700, 0.00044800; H: -5.95043000, 2.14159200, 0.10211300; H: -5.95044400, -2.14159400, -0.10160500; C: 1.66646500, -0.00000400, -0.00002200; C: 2.38699200, -1.18612600, 0.03754100; C: 2.38699100, 1.18612100, -0.03751900; C: 3.77396600, -1.19802100, 0.03804800; C: 3.77396600, 1.19802200, -0.03789600; C: 4.47086500, 0.00000000, 0.00010900; F: 1.75727000, 2.36973600, -0.07504300; F: 4.44413000, 2.35505400, -0.07468800; F: 5.80542800, 0.00000000, 0.00017100; F: 4.44415000, -2.35505000, 0.07490500; F: 1.75727100, -2.36974200, 0.07500700; C: -3.22965600, 2.42335600, 0.11580500; H: -2.58131300, 2.41918200, 0.99274400; H: -2.58297800, 2.50412800, -0.75866200; H: -3.86897000, 3.30253800, 0.15907700; C: -3.22967600, -2.42334200, -0.11608500; H: -2.58136300, -2.41903800, -0.99304300; H: -2.58296900, -2.50425600, 0.75834900; H: -3.86892700, -3.30251100, -0.15946200	
C₆F₅I–4-Methoxypyridine	I: -0.09648900, -0.06588200, 0.00002100; C: -3.58779900, 0.97939000, 0.00009200; C: -4.97524700, 1.00888900, 0.00006800; C: -5.66062500, -0.20792500, -0.00002900; C: -4.91265300, -1.39032300, -0.00009500; C: -3.53572100, -1.30536600, -0.00006400; N: -2.86850600, -0.14280900, 0.00002800; H: -3.02995800, 1.90771800, 0.00016600; H: -5.48619500, 1.95806800, 0.00012400; H: -5.41413000, -2.34685200, -0.00017100; H: -2.93270100, -2.20452900, -0.00011500; C: 2.04134100, 0.00373300, 0.00000500; C: 2.80235200, -1.15710200, 0.00001800; C: 2.72314200, 1.21278600, -0.00001800; C: 4.18902900, -1.12337800, 0.00000600; C: 4.10890900, 1.27205700, -0.00002900	
C 4.84577500 0.09765300 -0.00001700
F 2.05460400 2.37650800 -0.00003000
F 4.74019600 2.45198000 -0.00005200
F 6.17998800 0.14222800 -0.00002800
F 4.89808000 -2.25825300 0.00001800
F 2.21303700 -2.36283500 0.00004000
C -7.81052100 0.84041800 -0.00000100
H -7.62641000 1.43905200 0.89316400
H -7.62637700 1.43916800 -0.89308200
H -8.83783300 0.49080500 -0.00004300
O -6.99924200 -0.34045900 -0.00006400
C
6
F
5
I
\ldots
3,5-Dimethylpyridine
I -0.24539600 -0.00002400 -0.00004700
C -3.69762900 1.14471700 0.08989300
C -5.08949300 1.20780500 0.09444200
C -5.77615000 0.00003200 0.00006300
C -5.08954600 -1.20776700 -0.09438000
C -3.69768000 -1.14473200 -0.08995600
N -3.02018900 -0.00002000 -0.00006200
H -6.86005300 0.00005200 0.00011400
H -3.10518400 2.04934200 0.16122200
H -3.10527500 -2.04937900 -0.16133800
C 1.89374700 -0.00000800 -0.00001600
C 2.61546900 1.18393100 -0.06370200
C 2.61545200 -1.18393100 0.06370200
C 4.00246800 -1.19665600 0.06441200
C 4.00245100 1.19667400 -0.06436600
C 4.69960700 0.00001400 0.00003600
F 1.98619200 2.36758100 -0.12761500
F 4.67309500 2.35296100 -0.12680400
F 6.03456600 0.00002600 0.00006200
F 4.67312800 -2.35293200 0.12687800
F 1.98622500 -2.36759600 0.12758800
C -5.81450700 2.52072900 0.19269600
H -6.41264200 2.70146800 -0.70204400
H -6.49606900 2.52603900 1.04453400
H -5.12031800 3.35163400 0.30812700
C -5.81462000 -2.52066400 -0.19256800
H -5.12047400 -3.35159500 -0.30861000
H -6.41268200 -2.70137800 0.70222600
H -6.49625900 -2.52594800 -1.04434500

\textbf{C}_6\textbf{F}_3\textbf{I}\ldots\text{3,5-Dimethylpyridine}
I -0.24539600 -0.00002400 -0.00004700
C -3.69762900 1.14471700 0.08989300
C -5.08949300 1.20780500 0.09444200
C -5.77615000 0.00003200 0.00006300
C -5.08954600 -1.20776700 -0.09438000
C -3.69768000 -1.14473200 -0.08995600
N -3.02018900 -0.00002000 -0.00006200
H -6.86005300 0.00005200 0.00011400
H -3.10518400 2.04934200 0.16122200
H -3.10527500 -2.04937900 -0.16133800
C 1.89374700 -0.00000800 -0.00001600
C 2.61546900 1.18393100 -0.06370200
C 2.61545200 -1.18393100 0.06370200
C 4.00246800 -1.19665600 0.06441200
C 4.00245100 1.19667400 -0.06436600
C 4.69960700 0.00001400 0.00003600
F 1.98619200 2.36758100 -0.12761500
F 4.67309500 2.35296100 -0.12680400
F 6.03456600 0.00002600 0.00006200
F 4.67312800 -2.35293200 0.12687800
F 1.98622500 -2.36759600 0.12758800
C -5.81450700 2.52072900 0.19269600
H -6.41264200 2.70146800 -0.70204400
H -6.49606900 2.52603900 1.04453400
H -5.12031800 3.35163400 0.30812700
C -5.81462000 -2.52066400 -0.19256800
H -5.12047400 -3.35159500 -0.30861000
H -6.41268200 -2.70137800 0.70222600
H -6.49625900 -2.52594800 -1.04434500

\textbf{C}_6\textbf{F}_3\textbf{I}\ldots\text{Pyridine}
I 0.77469200 0.00000200 0.00000200
C 4.25396600 1.14692800 -0.03376600
C 5.64181200 1.19550300 -0.03523700
C 6.34877300 -0.00003000 -0.00005000
C 5.64180900 -1.19550700 0.03523000

S49
C 4.25396300 -1.14692800 0.03376800
N 3.57077900 0.00000100 0.00000200
H 7.42996500 2.05546000 -0.06050600
H 6.15021900 2.14839300 -0.06334900
H 6.15021300 -2.14839900 0.06334000
H 3.66545400 2.05546000 -0.06050600
H 6.15021300 2.14839300 -0.06334900
H 3.66544900 -2.05545800 0.06051000
C -1.36095800 0.00000000 0.00000100
C -2.08226800 -1.18604700 -0.00750300
C -2.08227000 1.18604700 0.00750300
C -3.46926200 -1.19843700 -0.00759400
C -3.46926400 1.19843500 0.00759200
C -4.16635200 0.00000200 -0.00000200
F -1.45286800 2.37090800 0.01501100
F -4.13965200 2.35628100 0.01496000
F -5.50109300 0.00000300 -0.00000300
F -4.13964800 -2.35628500 -0.01496300
F -1.45286500 -2.37090700 -0.01501000

3-Bromopyridine

C 3.28030000 0.07896200 0.00001000
C 4.65131600 0.14604000 0.00000300
C 5.13832200 -1.44470400 -0.00003600
C 4.21790000 -2.48437300 -0.00005500
C 2.86307200 -2.18162000 -0.00004100
N 2.40723100 0.09736600 0.00000800
H 6.20056800 -1.63901800 -0.00004600
H 2.87823100 1.08313300 0.00003600
H 4.54812700 3.51287500 0.00008100
H 2.11652100 -2.96498700 -0.00005500
C -2.47637100 -0.08562000 0.00000000
C -3.40187600 -1.04353100 0.00001900
C -2.96706400 1.29027400 -0.00001800
C -4.76753000 -0.80192000 0.00002000
C -4.32849100 1.55570500 -0.00001700
C -5.23306700 0.50491700 0.00002000
F -2.13098000 2.33860100 -0.00003700
F -4.77542800 2.81634800 -0.00003400
F -6.54488000 0.74924400 0.00000300
F -5.63837300 -1.81634000 0.00003900
F -2.99935700 -2.32270200 0.00003600
Br 5.84793100 1.33993600 0.00002500

3-Chloropyridine

I -0.38357600 -0.39959300 -0.00000100
C 3.28030000 0.07896200 0.00001000
C 4.65131600 -1.14604000 -0.00003600
C 5.13832200 -1.44470400 -0.00003600
C 4.21790000 -2.48437300 -0.00005500
C 2.86307200 -2.18162000 -0.00004100
N 2.40723100 0.09736600 0.00000800
H 6.20056800 -1.63901800 -0.00004600
H 2.87823100 1.08313300 0.00003600
H 4.54812700 -3.51287500 -0.00008100
H 2.11652100 -2.96498700 -0.00005500
C -2.47637100 -0.08562000 0.00000000
C -3.40187600 -1.04353100 0.00001900
C -2.96706400 1.29027400 -0.00001800
C -4.76753000 -0.80192000 0.00002000
C -4.32849100 1.55570500 -0.00001700
C -5.23306700 0.50491700 0.00002000
F -2.13098000 2.33860100 -0.00003700
F -4.77542800 2.81634800 -0.00003400
F -6.54488000 0.74924400 0.00000300
F -5.63837300 -1.81634000 0.00003900
F -2.99935700 -2.32270200 0.00003600
Br 5.84793100 1.33993600 0.00002500

C,F,I---3-Chloropyridine

I -0.19175600 -0.25117100 0.00003000
C -3.81263300 0.49472300 -0.00009100
C -5.19629600 0.36904100 -0.00006500
C -5.77574500 -0.89082500 0.00013600
C -4.93253300 -1.99341400 0.00030400
C -3.55915700 -1.78929300 0.00026600
N -3.01408400 -0.57102000 0.00007200
H -6.84984600 -1.00302800 0.00015800
H -3.34424800 1.46986500 -0.00024500
H -5.33558800 -2.99553200 0.00046300
H -2.87110400 -2.62441600 0.00039300
C 1.92384300 -0.01271700 0.00000600
C 2.77274400 -1.11139500 -0.00010700
C 2.50649600 1.24753900 0.00010100
C 4.15229200 -0.96751900 -0.00012600
C 3.88341200 1.41466200 0.00008400
C 4.71035000 0.30173300 -0.00003000
F 1.74777800 2.35317400 0.00021300
F 4.41958200 2.64004800 0.00017600
F 6.03631700 0.45149500 -0.00004700
F 4.94798700 -2.04269100 -0.00023600
F 2.27948900 -2.35414000 -0.00020200
Cl -5.51232900 2.71645200 -0.00082500

C₆F₅I−3,5-Dichloropyridine
I 0.25535000 0.00007600 0.00000500
C -3.29253100 1.15122800 -0.00035200
C -4.68196400 1.18338900 -0.00036200
C -5.40405000 -0.00006600 -0.00000300
C -4.68186100 -1.18345800 0.00035800
C -3.29243100 -1.15117600 0.00035200
N -2.62481500 0.00005500 0.00000100
H -6.48301200 -0.00011300 -0.00000400
H -2.71477100 2.06506700 -0.00063100
H -2.71459200 -2.06496500 0.00063200
C 2.37934800 0.00002500 0.00000400
C 3.09892800 -1.18764500 -0.00044500
C 3.09898800 1.18766100 0.00044800
C 4.48589800 -1.19876700 -0.00045300
C 4.48595800 1.19871100 0.00044800
C 5.18269300 -0.00004600 -0.00000500
F 2.46893500 2.37074000 0.00089500
F 5.15580200 2.35605900 0.00088200
F 6.51675200 -0.00007800 -0.00000800
F 5.15568200 -2.35615000 -0.00089100
F 2.46881600 -2.37069400 -0.00088800
Cl -5.51232900 2.71645200 -0.00082500
Cl -5.51209400 -2.71659400 0.00081900

1-Iodoheptadecafluorooctane (C₈F₁₇I)
C 5.70116600 -0.27311400 0.21789800
C 4.37915700 0.17505500 -0.48909500
C 3.07591900 -0.32417500 0.22418500
Element	X	Y	Z
C	1.78848100	0.44684300	-0.23909700
C	0.45936500	-0.31327100	0.11216400
C	-0.80790100	0.61601700	0.06242200
C	-2.15420200	-0.19082300	-0.04473700
C	-3.42098800	0.65203400	0.31423300
F	5.68644500	-1.58981500	0.44309500
F	5.86305400	0.36684100	1.37592300
F	6.73297700	0.01766700	-0.57826800
F	4.40099200	-0.31070900	-1.74402700
F	4.37807400	1.52284600	-0.53870700
F	2.92528400	-1.63707400	-0.04259200
F	3.21683000	-0.16420800	1.55488700
F	1.84140900	0.62135300	-1.57422500
F	1.77675300	1.65359700	0.36053100
F	0.30268400	-1.32331800	-0.76539300
F	0.56418400	-0.82526700	1.35461800
F	-0.71410300	1.42810300	-1.00995600
F	-0.82189800	1.37073900	1.17759000
F	-2.26686000	-0.63502500	-1.31075000
F	-2.09903300	-1.24809500	0.79115600
F	-3.38809600	1.80434000	-0.37864500
F	-3.40317700	0.94728000	1.62320600
I	-5.26576700	-0.42876800	-0.14327900

C₈F₁₇I···4-Methylaminopyridine

Element	X	Y	Z
C	-7.70933300	1.00414500	-0.34152100
C	-6.44816200	0.60603500	0.49493900
C	-5.12273500	0.55430800	-0.33963800
C	-3.96645400	-0.22010800	0.38842500
C	-2.54770200	0.09143500	-0.20982000
C	-1.46365100	-0.97369900	0.19018600
C	0.00953100	-0.46449000	-0.00896300
C	1.09303100	-1.58053500	-0.02460500
F	-8.05385300	0.02684300	-1.18007400
F	-7.47354800	2.11812300	-1.04030600
F	-8.72639700	1.22608900	0.49510300
F	-6.68521600	-0.60437500	1.04076300
F	-6.30786300	1.51222600	1.48020700
F	-5.37315900	-0.05345500	-1.51644200
F	-4.72622500	1.82039700	-0.57977300
F	-4.21023800	-1.54140100	0.28311300
F	-3.96793200	0.12225500	1.69225600
F	-2.64225100	0.12306400	-1.55496500
F	-2.16196700	1.30589700	0.22916000
F	-1.66746600	-2.07692000	-0.55653100
F	-1.63337700	-1.29535500	1.49054600
F	0.07734900	0.21008400	-1.18032100
F	0.27928500	0.39222900	1.00071400
F	0.91186200	-2.34082200	-1.13410700
F 0.88261100 -2.38415000 1.05274400
I 3.16526600 -0.78717900 -0.00363800
C 6.72971700 -0.75656700 -0.27961300
C 8.05182700 -0.36751500 -0.30110200
C 8.39241800 0.97591500 -0.01295700
C 7.30739600 1.83531000 0.28372200
C 6.02151200 1.33917200 0.27707400
N 5.71108800 0.06574200 0.00239800
H 6.46697600 -1.78399500 -0.50052500
H 8.80348300 -1.10200200 -0.53999900
H 7.45908600 2.87650200 0.51702800
H 5.18982500 1.99520700 0.50373400
N 9.67668600 1.41218500 -0.02081300
C 9.98013100 2.80595900 0.27273500
H 11.05274800 2.95697500 0.21293500
H 9.50135700 3.47823500 -0.44322200
H 9.65304600 3.08272200 1.27774400
C 10.76239500 0.49307000 -0.33276100
H 11.70589300 1.02600100 -0.28091600
H 10.80046400 -0.33534600 0.37842200
H 10.65953600 -0.07949700 -1.33889400

C₈F₁₇I...2-Methylpyridine

C -7.11419000 -0.62495100 0.47738300
C -5.82986900 -0.50341100 -0.40849700
C -4.50530900 -0.34458900 0.41444300
C -3.30527800 0.18698500 -0.44784500
C -1.90758500 -0.06664100 0.22323200
C -0.76505600 0.82809700 -0.38040600
C 0.67651700 0.28965000 -0.06088700
C 1.81914500 1.32678600 -0.26959900
F -7.40438700 0.53962300 1.05747300
F -6.94336600 -1.55429200 1.42198500
F -8.14009700 -0.98209500 -0.29922600
F -5.99054300 0.56368500 -1.21743300
F -5.74378400 -1.61561000 -1.16151500
F -4.72232200 0.51784600 1.42740700
F -4.18261800 -1.54788700 0.92990100
F -3.47213600 1.51121700 -0.63457700
F -3.32430200 -0.42973000 1.64632800
F -2.00514300 0.19577500 1.54254600
F -1.58947300 -1.36588200 0.05920400
F -0.90412600 2.07354400 0.11479600
F -0.91530400 0.87699700 -1.72106000
F 0.70828700 -0.12369800 1.22660000
F 0.89815900 -0.77297300 -0.86413900
F 1.68542900 2.30947400 0.65272000
F 1.65691300 1.89255200 -1.49288900
I 3.83255600 0.43442500 -0.10197300
C 7.29783500 -0.44109800 0.94452700
C 8.55758000 -1.03780800 0.89110400
C 8.88160800 -1.86103700 -0.17778800
C 7.93891600 -2.07309200 -1.17536100
C 6.70844700 -1.44539400 -1.05255600
N 6.39529400 -0.65330100 -0.02510500
H 9.85478500 -2.32955500 -0.23091500
H 9.27090700 -0.85438500 1.68193900
H 8.14598900 -2.70567500 -2.02599500
H 5.93920200 -1.57845100 -1.80341100
C 6.89186200 0.45785000 2.07527700
H 6.62821700 1.44669000 1.69791800
H 6.00917400 0.06033500 2.57782300
H 7.69078400 0.56461500 2.80561500

C₈F₂₃I ...2,6-Dimethylpyridine
C -7.27374400 0.59810900 -0.51402100
C -5.98862000 0.50980400 0.37464200
C -4.66623600 0.30511200 -0.44137600
C -3.46625600 -0.18625800 0.44456900
C -2.06914500 0.02903400 -0.24096900
C 0.51412000 -0.31889100 0.05812400
C 1.65336900 -1.34931200 0.31765100
F -7.56988800 -0.58905500 -1.04299300
F -7.10044000 1.48525300 -1.49790800
F -8.29691700 0.99277500 0.24795300
F -6.15382700 -0.51786100 1.23225600
F -5.89523100 1.65521800 1.07523400
F -4.88805600 -0.60700600 -1.40873800
F -4.34039800 1.47953000 -1.01781600
F -3.63669600 -1.49886000 0.69806100
F -3.48070200 0.49000900 1.61055800
F -2.16929900 -0.29948900 -1.54513800
F -1.74707400 1.33392500 -0.14317800
F -1.07064300 -2.10566600 -0.02728500
F -1.07679900 -0.81945500 1.74686500
F 0.54620500 0.02912800 -1.24825200
F 0.73922400 0.78159700 0.80707000
F 1.51853800 -2.37320600 -0.55714300
F 1.48960500 -1.85550600 1.56557700
I 3.66409400 -0.46815400 0.11217500
C 7.30319300 -0.17571200 -0.65213600
C 8.60210500 0.31060300 -0.78881800
C 8.88338500 1.60621200 -0.38337900
C 7.86467400 2.38270400 0.14701300
C 6.58588900 1.83985700 0.25815900
N 6.32458000 0.58449300 -0.13734900
H 9.88392800 2.00571700 -0.47945800
H 9.37307700 -0.32086300 -1.20624600
H 8.04995700 3.39616000 0.47256300
C 6.94515400 -1.57118600 -1.07563400
H 6.55164900 -2.13759500 -0.23083600
H 6.16595000 -1.55073800 -1.83839700
H 7.80942200 -2.09728200 -1.47507600
C 5.44778100 2.63859400 0.82542500
H 5.77084400 3.63639300 1.11410000
H 4.64339000 2.73013200 0.09469900
H 5.02999900 2.14012500 1.70081200

C₈F₁₇I ---4-Methoxypyridine
C 7.48287400 -0.89883900 -0.17780000
C 6.19537500 -0.47892400 0.60628600
C 4.88462600 -0.53291700 -0.25166700
C 3.69541900 0.26622200 0.39104600
C 2.29596100 -0.13266100 -0.20149600
C 1.17965000 0.93469800 0.08824400
C -0.27720100 0.37292700 -0.09100100
C -1.38180900 1.46160200 -0.22609000
F 7.81627800 0.02665700 -1.07739500
F 7.29038500 2.06529700 -0.80010500
F 8.48950300 -1.03281200 0.68944300
F 6.38584400 0.77569300 1.06320300
F 6.06394400 -1.31243400 1.65485500
F 5.14020100 -0.01744900 -1.47071400
F 4.52628300 -1.82492700 -0.39255700
F 3.90650900 1.58062000 0.18053800
F 3.68193400 0.03228500 1.71858200
F 2.41487800 -0.27707900 -1.53719100
F 1.93148700 -1.31423800 0.33441000
F 1.37022900 1.97550800 -0.74612000
F 1.31635600 1.36926000 1.35917100
F -0.30868400 -0.40322600 -1.19854400
F -0.54846300 -0.39609700 0.98563800
F -1.20034100 2.11617400 -1.39884800
F -1.20707200 2.36478100 0.77364900
I -3.43100300 0.63349200 -0.15686600
C -6.55178900 -0.90841500 -1.14168200
C -7.85380700 -1.36256700 -1.16291300
C -8.66092900 -1.14864300 -0.04000500
C -8.10762900 -0.48338700 1.05650900
C -6.78652300 -0.06836700 0.97290700
N -6.01334500 -0.26824500 -0.09432600
H -5.90505000 -1.05918600 -1.99659500
H -8.25334300 -1.87458600 -2.02576600
H -8.67022200 -0.28531400 1.95439100
H -6.33051900 0.45067000 1.80678800
O -9.92278000 -1.60741400 -0.10833500
Atomic Symbol	X-Coordinate	Y-Coordinate	Z-Coordinate
C	-10.79264700	-1.40990000	1.01318300
H	-10.93069600	-0.34695800	1.21576700
H	-11.74132400	-1.85432700	0.73031400
H	-10.40289000	-1.91013800	1.90069900

C₆F₁₇-I ...3,5-Dimethylpyridine

Atomic Symbol	X-Coordinate	Y-Coordinate	Z-Coordinate
C	7.39422300	0.68413500	0.54609600
C	6.11618000	0.57625000	-0.35057100
C	4.79264700	0.34449700	0.45627500
C	3.60632800	-0.16186300	-0.43972200
C	2.20176400	0.02436100	0.23892500
C	1.07872200	-0.85446500	-0.42179400
C	-0.37422100	-0.36550700	-0.07615300
C	-1.49590700	-1.40892000	-0.35284100
F	7.70751100	-0.49906000	1.07408800
F	7.20006000	1.56584900	1.53096100
F	8.41504700	1.09800800	-0.20889600
F	6.30508800	-0.44474800	-1.21128900
F	6.00667700	1.72278700	-1.04702500
F	5.02438900	-0.56928500	1.41976800
F	4.44378100	1.50993900	1.03746400
F	3.80126500	-1.46958800	-0.70070200
F	3.61602500	0.52227000	-1.60122900
F	2.30029800	-0.31412900	1.54076000
F	1.85920800	1.32478400	0.15092200
F	1.24142200	-2.12463300	-0.00210700
F	1.23398000	-0.81933500	-1.76236100
F	-0.41749800	-0.03269700	1.23434300
F	-0.61415300	0.74066300	-0.81320500
F	-1.34650200	-2.44278500	0.51047100
F	-1.31520500	-1.89890500	-1.60688700
I	-3.53119000	-0.56794200	-0.14538900
C	-7.04312000	-0.40451000	0.63718400
C	-8.36497900	0.01099100	0.78103700
C	-8.67815400	1.28871500	0.32426200
C	-7.70440600	2.10347900	-0.24785500
C	-6.41647000	1.58020800	-0.33799300
N	-6.09633700	0.35991600	0.09280900
H	-9.69443200	1.65439300	0.41523900
H	-6.73406400	-1.38768400	0.97173000
H	-5.61286800	2.16306100	-0.77227800
C	-9.40296900	-0.88043900	1.40296300
H	-9.81999800	-0.42212000	2.30114900
H	-10.23044600	-1.05344000	0.71325200
H	-8.98438400	-1.84677800	1.67953700
C	-8.02604900	3.48381000	-0.74786000
H	-7.14157100	3.98069300	-1.14312300
H	-8.77520100	3.44459800	-1.54025900
H	-8.43361700	4.10214100	0.05330100
Atom	X	Y	Z
-------	-------	-------	-------
C	-6.94168900	0.66546200	-0.37476600
C	-5.65568900	0.40851400	0.47912100
C	-4.33019700	0.39633200	-0.35734700
C	-3.12575200	-0.25984300	0.40739700
C	-1.73070500	0.10840300	-0.21449100
C	-0.58171600	-0.86553900	0.23405900
C	0.85622300	-0.27580900	0.00027900
C	2.00425900	-1.32723900	0.03683400
F	-7.22170400	-0.38738400	-1.14299200
F	-6.78085500	1.74236100	-1.14883700
F	-7.97006200	0.87635400	0.45067300
F	-5.80884700	-0.77850800	1.10090400
F	-5.57687300	1.38209300	1.40505200
F	-4.54092700	-0.29056600	-1.49778300
F	-4.01649900	1.67013600	-0.66854300
F	-3.28377900	-1.59787500	0.37763300
F	-3.14720600	0.15464900	1.68988300
F	-1.82913800	0.06396600	-1.55879200
F	-1.42005700	1.36545600	0.15898400
F	-0.71692900	-2.01607700	-0.45412700
F	-0.72666900	-1.12956900	1.54994800
F	0.88114000	0.33790700	-1.20476900
F	1.07652200	0.64607400	0.96221400
F	1.87094900	-2.15044000	-1.03018100
F	1.84948200	-2.08214700	1.15450700
I	4.01360500	-0.41010900	0.00617000
C	7.51573500	0.07434900	-0.81036100
C	8.81433300	0.56229600	-0.86784700
C	9.14377400	1.66852900	-0.09456600
C	8.16401400	2.24349100	0.70526000
C	6.89150100	1.68812400	0.69991900
N	6.57229400	0.62505300	-0.04244000
H	10.14540400	2.07497200	-0.11485800
H	7.21662800	-0.78534000	-1.39661000
H	9.54455100	0.08372500	-1.50414200
H	8.37606300	3.10447000	1.32243700
H	6.09875800	2.10480400	1.30831800

Atom	X	Y	Z				
C	-7.78156300	1.03135800	-0.53113100				
C	-6.47733800	0.97048300	0.33157200				
C	-5.21901300	0.46694700	-0.45595300				
C	-4.04569800	0.01422300	0.48418100				
C	-2.66251700	-0.06762600	-0.25673800				
C	-1.60017100	-0.92702300	0.51966200				
C	-0.12460100	-0.65968300	0.04800600				
C	0.89866100	-1.75503100	0.47314300				
---	-------	-------	-------	-------	-------	-------	-------
F	-8.22362600	-0.19421900	-0.81327100				
F	-7.55626000	1.68926700	-1.67185500				
F	-8.72460800	1.67510400	0.13753200				
F	-6.71552600	0.15042500	1.37553200				
F	-6.23347700	2.21045400	0.79467100				
F	-5.57749800	-0.57720700	-1.22933100				
F	-4.78968200	1.46871900	-1.24950800				
F	-4.35004400	-1.19836100	0.98740300				
F	-3.93763100	0.89472300	1.49903400				
F	-2.85262600	-0.61832000	-1.47292600				
F	-2.19190500	1.18525900	-0.41385100				
F	-1.90381600	-2.22777300	0.34246000				
F	-1.68641900	-0.63818400	1.83528100				
F	-0.11048500	-0.56689500	-1.30078500				
F	0.25936400	0.52457300	0.56982100				
F	0.60902000	-2.89931000	-0.18801600				
F	0.73482500	-1.99586300	1.79750100				
I	2.98588100	-1.18339300	0.05719100				
C	6.46843200	-1.43544700	-1.07238200				
C	7.80651900	-1.17179800	-1.33059000				
C	8.34604700	0.03708900	-0.91168000				
C	7.51251300	0.92729700	-0.25075200				
C	6.18240900	0.59406700	-0.02791200				
N	5.67780300	-0.56963300	-0.43528900				
H	9.38269100	0.27867300	-1.09362900				
H	6.01194900	-2.36603700	-1.38286900				
H	8.41595000	-1.89742000	-1.84906700				
H	5.51316700	1.27146600	0.48499100				
Br	8.17461100	2.60917200	0.35819100				

C₆F₅I → 3-Chloropyridine

C	-7.33519100	0.90662600	-0.44743400				
C	-6.04907300	0.71782500	0.42396400				
C	-4.75172900	0.44156700	-0.41087000				
C	-3.57535600	-0.13821900	0.45350500				
C	-2.17538000	0.00199300	-0.24628500				
C	-1.08306200	-0.94561600	0.37563000				
C	0.38436800	-0.51569700	0.01172000				
C	1.45885100	-1.61947100	0.24593100				
F	-7.71229700	-0.24799200	-0.99659900				
F	-7.11614300	1.80134500	-1.41512000				
F	-8.32281300	1.34951300	0.33472500				
F	-6.27248100	-0.31254300	1.26505600				
F	-5.87298700	1.84161700	1.14337700				
F	-5.04224400	1.60143400	-0.97422800				
F	-4.35802700	-0.43995400	-1.38823600				
F	-3.82552100	-1.44109100	0.69032900				
F	-3.53787500	0.51996300	1.62907400				
F	-2.31139500	-0.30772500	1.55268700				
F -1.77054700 1.27869700 -0.13738000
F -1.31082000 -2.19786500 -0.06641300
F -1.21103200 -0.93136500 1.71915500
F 0.42065300 -0.15848800 -1.29180700
F 0.69040200 0.56059700 0.76676900
F 1.24807500 -2.62388400 -0.63559900
F 1.28165600 -2.12565700 1.49139900
I 3.51782100 -0.86852200 0.01664500
C 7.10108600 -0.84152500 -0.77681100
C 8.42807600 -0.46420500 -0.93193800
C 8.81492700 0.80970700 -0.53945500
C 7.84638400 1.64777400 -0.00756500
C 6.53712500 1.20051500 0.11756500
N 6.17945700 -0.02447400 -0.26302800
H 9.83645000 1.14468300 -0.64204700
H 6.76198300 -1.82588500 -1.07120100
H 9.14565400 -1.15368100 -1.35184100
H 5.76845600 1.83999800 0.53020800
Cl 8.25613700 3.26557300 0.50879000

C₆F₁₇...3,5-Dichloropyridine
C 7.81768200 0.66277000 0.72272700
C 6.54497400 0.70690500 -0.18664300
C 5.22632100 0.27805900 0.54352800
C 4.05646500 -0.06024400 -0.44840300
C 2.64508700 -0.04953700 0.24160500
C 1.54763600 -0.80313500 -0.59409900
C 0.08175500 -0.42206600 -0.17283400
C -1.01003700 -1.42052800 -0.66384900
F 8.15950100 -0.59467400 1.00360900
F 7.59962700 1.32281400 1.86351100
F 8.82908200 1.24489900 -0.07340900
F 6.76457600 -0.10973800 -1.23738800
F 6.40443200 1.96881300 -0.63307300
F 5.47889600 -0.81060700 1.29702500
F 4.84459500 1.28731900 1.35177800
F 4.28412700 -1.28144400 -0.97081800
F 4.05303800 0.84792300 -1.44359000
F 2.74567400 -0.64232100 1.44858000
F 2.26925200 1.23297200 0.41484400
F 1.73544400 -2.12762500 -0.43452800
F 1.70879600 -0.49766500 -1.89868600
F 0.02021500 -0.35620000 1.17577100
F -0.18151300 0.79969900 -0.68127700
F -0.84579900 -2.59671700 -0.01876900
F -0.81512200 -1.64676400 -1.98522700
I -3.05224100 -0.68080600 -0.31714900
C -6.64289500 -0.64387400 0.59639500
C -7.95916100 -0.24365600 0.79312100
C -8.35274700 1.04117600 0.45187400
C -7.38672000 1.88046700 -0.08154200
C -6.08599400 1.42297700 -0.25487700
N -5.73675100 0.18383800 0.08197000
H -9.36890700 1.37434300 0.59542000
H -6.31919900 -1.64192000 0.85689000
H -5.32053200 2.06396100 -0.66958100
Cl -7.79755700 3.51174500 -0.53746900
Cl -9.11143600 -1.36262300 1.46986700
C
6
F
5
I
…
NEt2
H
I 0.88934200 -0.05671600 -0.12273500
C -1.26238500 -0.01375800 -0.03992100
C -1.95489400 1.18073100 0.09439200
C -2.01183300 -1.17853200 -0.11751000
C -3.34021600 1.22297400 0.15076900
C -3.39786900 -1.16362300 -0.06391800
C -4.06544000 0.04402400 0.07115200
F -1.41155100 2.37283500 -0.24856400
F -4.09649700 -2.30289900 -0.14109900
F -5.39942900 0.07155000 0.12416500
F -3.98301500 2.38988800 0.28150800
F -1.29759800 2.34912300 0.17556800
N 3.63927400 -0.07821100 -0.20323000
H 3.81955500 -0.23925600 -1.18764200
C 4.09512100 -1.23405700 0.58254200
H 4.16710400 -1.24130100 0.19293900
H 4.41052900 1.19725000 -1.25540000
C 5.37390800 1.71308000 -0.61521900
H 6.22491100 1.04280700 -0.50614800
H 5.12252200 1.77226100 -1.67617600
H 5.67862500 -2.70948700 -0.29141400
C 5.59857200 -1.50758500 0.57524500
H 5.96761800 -1.63720600 -0.44346300
H 6.15753000 -0.69634000 1.04111800
H 5.81202100 -2.42122100 1.13238000

C6F5I—NEt2H

C -7.38672000 1.88046700 -0.08154200
C -6.08599400 1.42297700 -0.25487700
N -5.73675100 0.18383800 0.08197000
H -9.36890700 1.37434300 0.59542000
H -6.31919900 -1.64192000 0.85689000
H -5.32053200 2.06396100 -0.66958100
Cl -7.79755700 3.51174500 -0.53746900
Cl -9.11143600 -1.36262300 1.46986700
C
6
F
5
I
…
NBu2H

I 0.88934200 -0.05671600 -0.12273500
C -1.26238500 -0.01375800 -0.03992100
C -1.95489400 1.18073100 0.09439200
C -2.01183300 -1.17853200 -0.11751000
C -3.34021600 1.22297400 0.15076900
C -3.39786900 -1.16362300 -0.06391800
C -4.06544000 0.04402400 0.07115200
F -1.41155100 2.37283500 -0.24856400
F -4.09649700 -2.30289900 -0.14109900
F -5.39942900 0.07155000 0.12416500
F -3.98301500 2.38988800 0.28150800
F -1.29759800 2.34912300 0.17556800
N 3.63927400 -0.07821100 -0.20323000
H 3.81955500 -0.23925600 -1.18764200
C 4.09512100 -1.23405700 0.58254200
H 4.16710400 -1.24130100 0.19293900
H 4.41052900 1.19725000 -1.25540000
C 5.37390800 1.71308000 -0.61521900
H 6.22491100 1.04280700 -0.50614800
H 5.12252200 1.77226100 -1.67617600
H 5.67862500 -2.70948700 -0.29141400
C 5.59857200 -1.50758500 0.57524500
H 5.96761800 -1.63720600 -0.44346300
H 6.15753000 -0.69634000 1.04111800
H 5.81202100 -2.42122100 1.13238000

C5F5I—NBu2H

I 0.57766200 -0.03366700 -0.57417500
C -1.52496500 -0.00550100 -0.12460900
C -2.24238600 -1.18063700 0.04674800
C -2.21900300 1.18850400 0.00837200
C -3.59828200 -1.17617200 0.33926200
C -3.57463500 1.22042300 0.30049600
C -4.26785200 0.03113600 0.46703500
F -1.59202800 2.36637800 -0.14311600
F -4.21910600 2.38695200 0.42349300
Element	X	Y	Z
F	-5.57295000	0.04850600	0.74864100
F	-4.26564600	-2.32536200	0.49948400
F	-1.63884300	-2.37492300	-0.06642900
N	3.28720000	-0.06603100	0.68575700
H	3.77141100	0.90897000	0.68575700
H	3.77263700	-0.83936200	0.78216400
C	5.58765600	-0.00644200	-0.03923800
H	5.87289700	-0.91444000	0.78216400
H	5.87289700	-0.91444000	-0.58030600
C	6.35606900	0.06581200	1.28031100
H	6.06122900	0.97111400	1.81896300
H	6.06276700	-0.77650600	1.91366400
C	7.87129100	0.05651000	1.08611800
H	8.19328400	0.90680400	0.48136700
H	8.39583400	0.10834900	2.04112100
H	8.19454800	-0.85339300	0.57622400

C₆F₅-I-Piperidine

I	-0.65111500	-0.17935300	-0.20353400
C	1.49702300	-0.03365900	-0.05224800
C	2.30279500	-1.16166300	-0.09839000
C	2.12861600	1.19236700	0.09534600
C	3.68431700	-1.08164900	-0.00257000
C	3.50803400	1.30063700	0.19346400
C	4.29004700	0.15683100	0.14424200
F	1.41486500	2.32936600	0.14883000
F	4.09126400	2.49743400	0.33519400
F	5.61920000	0.24753500	0.23763100
F	4.43789000	-2.18729300	-0.05029300
F	1.76354700	-2.38416000	-0.23933100
C	-3.91260600	-0.87022800	0.90213200
C	-5.44195400	-0.91506400	0.91636400
C	-6.03011000	0.46207900	0.59467300
C	-5.45583600	1.00199600	-0.71856700
C	-3.92611600	0.99368000	-0.68692500
H	-7.11872100	0.40923200	0.54204900
H	-5.78389100	-1.64232200	0.17343000
H	-5.78733600	-1.26729000	1.89056200
H	-3.55264700	-0.23266200	1.71413500
H	-3.48663800	-1.86134800	1.05749600
H	-5.79871400	0.38038800	-1.55160100
H	-5.81100700	2.01668400	-0.91003400
H	-3.50910700	1.30747300	-1.64374700
H	-3.56680100	1.69757200	0.06858200
H	-5.78581900	1.15561900	1.40576900
N	-3.36338800	-0.32597300	-0.35182700
\[\begin{align*}
&\text{C}_6\text{F}_5\text{I} \cdots \text{N(sec-Bu)H}_2 \\
&\text{I} & 0.88136100 & -0.14482100 & -0.57688100 \\
&C & -1.22308500 & -0.02527200 & -0.16279500 \\
&C & -1.97124700 & -1.16214600 & 0.10734300 \\
&C & -1.88850400 & 1.19224000 & -0.15252400 \\
&C & -3.33016600 & -1.09793900 & 0.37808200 \\
&C & -3.24644400 & 1.28309100 & 0.11540800 \\
&C & -3.97098100 & 0.13154100 & 0.38233200 \\
&\text{F} & -1.23051400 & 2.33517100 & -0.40464200 \\
&\text{F} & -3.86321400 & 2.47096100 & 0.11888000 \\
&\text{F} & -5.27857300 & 0.20616700 & 0.64183400 \\
&\text{F} & -4.02797100 & -2.21083500 & 0.63502700 \\
&\text{F} & -1.39614700 & -2.37541300 & 0.11516100 \\
&\text{N} & 3.60220800 & -0.30352000 & -1.19550300 \\
&\text{H} & 3.69739000 & -1.15915800 & -1.73097800 \\
&\text{H} & 3.77041500 & 0.46425600 & -1.83612400 \\
&C & 4.57232200 & -0.27526200 & -0.07954800 \\
&C & 4.32800700 & -1.48668000 & 0.81423500 \\
&\text{H} & 4.39048300 & -2.41215400 & 0.23904800 \\
&\text{H} & 5.07022000 & -1.54197100 & 1.60884800 \\
&\text{H} & 3.33711200 & -1.43406900 & 1.26778700 \\
&C & 4.43295200 & 1.05715400 & 0.66134800 \\
&\text{H} & 4.49588400 & 1.86667000 & -0.07190700 \\
&\text{H} & 3.43241100 & 1.11902000 & 1.09745300 \\
&C & 5.49044600 & 1.28005600 & 1.74078200 \\
&\text{H} & 5.38938300 & 2.27304900 & 2.17932000 \\
&\text{H} & 5.40278500 & 0.55398800 & 2.54924400 \\
&\text{H} & 6.49792900 & 1.19957200 & 1.32723000 \\
&\text{H} & 5.59638200 & -0.33704800 & -0.47101500 \\
\end{align*} \]

\[\begin{align*}
&\text{C}_6\text{F}_5\text{I} \cdots \text{Pyrrolidine} \\
&\text{I} & 1.03536400 & -0.42232200 & -0.08493300 \\
&C & -1.09516600 & -0.10120600 & -0.02717000 \\
&C & -1.63177900 & 1.17788700 & -0.02374700 \\
&C & -1.98526300 & -1.16440800 & 0.00833000 \\
&C & -3.00068500 & 1.39902100 & 0.01336700 \\
&C & -3.35829000 & -0.97090800 & 0.04594900 \\
&C & -3.86853300 & 0.31826000 & 0.04836100 \\
&\text{F} & -1.53990400 & -2.43169700 & 0.00741300 \\
&\text{F} & -4.19458400 & 2.01572400 & 0.07991900 \\
&\text{F} & -5.18844200 & 0.51786100 & 0.08436100 \\
&\text{F} & -3.49163900 & 2.64446500 & 0.01568700 \\
&\text{F} & -0.83225900 & 2.25687400 & 0.05672600 \\
&C & 4.38260500 & 0.03437600 & -1.16763200 \\
&C & 4.43692400 & 1.07722300 & 1.04699800 \\
&\text{H} & 5.39239500 & -0.32003000 & -1.40523800 \\
&C & 4.37195300 & -0.45633900 & 1.12109800 \\
\end{align*} \]
H 3.56376900 1.51612100 1.52670000
H 3.77797100 -0.82333200 1.95676500
C 4.44036900 1.40284400 -0.73357400
H 3.56630800 1.99657900 -0.77526300
H 5.32245600 1.96296200 -0.77526300
N 3.74526600 -0.82894300 -0.15875100
H 3.79804000 0.04169400 -2.08636100
H 5.31936100 1.45916600 1.55637400
H 5.37922400 -0.88103500 1.20256300
H 3.85798300 -1.81300800 -0.36915600

C\text{6}F_{5}I\cdots N\text{(iso-Pr)H}_{2}

\begin{align*}
I & -0.65540500 0.06908000 -0.12550100 \\
C & 1.48697400 0.02420400 -0.03090820 \\
C & 2.17163900 -1.14965000 0.24127900 \\
C & 2.24228300 1.16983000 -0.25983100 \\
C & 3.55673200 -1.19207300 0.30207000 \\
C & 3.62816900 1.14983200 -0.20476800 \\
C & 4.28869400 -0.03609900 0.07760900 \\
F & 1.64830900 2.33854800 -0.53667000 \\
F & 4.33299800 2.26637000 -0.42166400 \\
F & 5.62229500 -0.06480100 0.13311300 \\
F & 4.19243800 -2.33769100 0.57486800 \\
F & 1.50690300 -2.29413800 0.46524900 \\
N & -3.50742000 0.17894100 -0.36001100 \\
H & -3.48984600 0.17894100 -1.23691800 \\
C & -4.20132000 1.03164500 0.63950100 \\
C & -4.13847500 -1.13199900 -0.63435300 \\
H & -5.23972200 0.68708700 0.72138900 \\
H & -5.21367600 -0.97477300 -0.80481000 \\
C & -4.21631100 2.47643700 0.14538900 \\
H & -4.70098500 3.12602100 0.87387900 \\
H & -3.19592800 2.83738300 -0.00097300 \\
H & -4.75369700 2.56720400 -0.80021700 \\
C & -3.55886800 0.94826200 2.02500600 \\
H & -3.44703500 -0.07919000 2.36263000 \\
H & -2.57023400 1.40760900 2.01613300 \\
H & -4.17468000 1.48070800 2.75138700 \\
C & -3.54197700 -1.72299500 -1.90886700 \\
H & -4.06232300 -2.64349500 -2.17293700 \\
H & -3.63580200 -1.03191400 -2.74893600 \\
H & -2.48537600 -1.95499900 -1.77430200 \\
C & -3.98723500 -2.09294600 0.54138800 \\
H & -2.93421300 -2.22496400 0.79425700 \\
H & -4.51271800 -1.73716500 1.42590200 \\
H & -4.40418400 -3.06562700 0.27903500 \\
\end{align*}

C\text{6}F_{5}I\cdots NEt\text{(iso-Pr)H}

\begin{align*}
I & 0.85352300 0.02817700 -0.17472500 \\
\end{align*}
At.	X	Y	Z
C	-1.29218400	0.00276100	-0.05572700
C	-2.01468800	1.16124700	0.19043500
C	-3.39931500	1.15715300	0.27328000
C	-3.39395500	-1.20393000	-0.14099900
F	-1.37781600	-2.33382600	-0.45932300
F	-4.06144500	-2.35282200	-0.30224000
F	-4.07195900	2.28942000	0.51208900
F	-1.38852100	2.33707900	0.35860100
N	3.66307100	0.12771300	-0.33138100
H	3.81452400	-0.03867300	-1.32073800
C	4.34597600	-0.94551000	0.42210200
C	4.11974400	1.49009200	0.40150100
H	5.43293800	-0.80724400	0.32443900
H	5.21109500	1.51001700	0.10651200
C	3.98024300	-2.29699800	-0.18304900
C	3.70605200	2.47930900	-1.09450500
C	3.36007600	-1.16781700	0.15255700
C	4.02630800	0.04556200	0.23092100
F	1.38493800	-2.38410900	-0.09432300
F	4.04615400	-2.31090800	0.24909400
F	4.14575400	2.21353100	-2.05819400
H	2.62286700	2.50589300	-1.20987800
H	3.68706000	1.78557200	0.94125100

$\text{C}_6\text{F}_{5}\text{I}---\text{N(tert-Bu)}$

At.	X	Y	Z
I	-0.88631800	-0.06217300	-0.39939800
C	1.24415800	-0.01569300	-0.12800400
C	1.93512200	1.18480400	-0.04672900
C	1.98445400	-1.18468100	-0.02487200
C	3.31017200	1.22850200	0.13048500
C	3.36007600	-1.16781700	0.15255700
C	4.02630800	0.04556200	0.23092100
F	1.38493800	-2.38410900	-0.09432300
F	4.04615400	-2.31090800	0.24909400
F	4.14575400	2.21353100	-2.05819400
H	2.62286700	2.50589300	-1.20987800
H	3.68706000	1.78557200	0.94125100
C₆F₅I ---NBu₃H

I 0.24035800 -0.01390600 -0.24378400
C -1.90262300 0.00204300 -0.06454600
C -2.59755000 1.17822700 0.17673800
C -2.64511800 -1.16369200 -0.18432100
C -3.97932900 1.20158400 0.29586900
C -4.02747300 -1.16703700 -0.06962400
C -4.69792800 0.02232400 0.17195600
F -2.04122300 -2.34019700 -0.4177500
F -4.71965700 -2.30643500 -0.18958700
F -6.02839600 0.03207600 0.28453100
F -6.25057000 2.35065900 0.52915300
F -1.94615300 2.34557800 0.3053300
N 3.02155100 -0.02627100 -0.30732700
H 3.32630800 -0.08327700 -0.12736100
C 3.48744400 -1.21532000 0.41818700
H 2.97677000 -1.23748200 1.38504100
H 4.56133200 -1.13722900 0.62701900
C 3.49597200 1.23552600 0.27664100
H 2.98728400 1.37086300 1.23521500
H 4.56980600 1.17479600 0.49159900
C 3.19294400 -2.49827000 -0.35143800
H 2.12987800 -2.52310400 -0.59756500
H 3.73509800 -2.47637800 -1.30310000
C 3.20782700 2.42364000 -0.63400000
H 3.74987300 2.29110600 -1.57674100
H 2.14489000 2.42576000 -0.88176800
C 3.58342300 3.77588700 -0.01996500
H 3.22519400 4.56547100 -0.68439000
H 3.04264400 3.90275300 0.92249200
C 5.08226400 3.96780600 0.21839600
H 5.29372100 4.97397500 0.58274400
H 5.47061600 3.26455900 0.95586000
H 5.64463500 3.82297000 -0.70683600
C 3.56209000 -3.77386500 0.41229000
H 3.02234900 -3.78949300 1.36372700
H 3.19827400 -4.63193500 -0.15741800
C 5.06026300 -3.94605000 0.66922700
H 5.45406800 -3.16556700 1.32113100
H 5.26668700 -4.90531300 1.14572300
H 5.62163500 -3.91104400 -0.26719700
C 0.56087200 -0.14203400 -1.15557800
H 0.81412200 -1.18132500 0.59643000
H 1.49919930 -1.13720300 1.56395600
C 1.22382300 0.53899700
H 1.41936320 0.43010000 1.27831300
C 3.61526800 -2.50982800 -0.08651700
H 1.96486100 -2.58384500 -0.27977200
H 2.61653200 -1.80412000 0.02352500
C 3.89453900 4.55707000 -0.77863100
H 3.00728100 3.98106900 0.86119000
C 4.07630900 -3.70189100 0.74960500
H 3.57140100 -3.71905500 1.71737400
H 3.85971600 -4.64312500 0.24412600
H 5.15132700 -3.66198700 0.93568300
H 5.17929500 3.74215000 0.11265300

C₆F₅I⋅NPr₂H
I 0.67318300 -0.02231700 -0.19047700
C -1.47240400 -0.00095900 -0.05943700
C -2.16808300 1.17268000 0.19211000
C -2.21631900 -1.16073600 -0.22121900
C -3.55206500 1.19915900 0.28129200
C -3.60087600 -1.16067000 -0.13722700
C -4.27210500 0.02593300 0.11550200
F -1.61176600 -2.33430400 -0.46696800
F -4.29441700 -2.29421300 -0.29752000
F -5.60465900 0.03877400 0.19876000
F -4.19843000 2.34554100 0.52549200
F -1.51532800 2.33412400 0.35973200
N 3.46018300 -0.03392500 -0.19883000
H 3.78087200 -0.14203400 -1.15557800
C 3.91412200 -1.18132500 0.59643000
H 4.99199300 -1.11027800 0.79979900
C 3.92396800 1.25670100 0.32483400
H 3.41778200 1.43010000 1.27831300
H 5.00159300 1.22382300 0.53899700
C 3.61526800 -2.50982800 -0.08651700
H 2.54376600 -2.58384500 -0.27977200
H 4.11192700 -2.52915800 -1.06136100
C 3.63400200 2.40509800 -0.63315100
H 4.12963800 2.20665300 -1.58830800
H 2.56279700 2.44276700 -0.83825400
C 4.10446900 3.74817600 -0.07864800
H 3.89453900 4.55707000 -0.77863100
H 3.60028100 3.98106900 0.86119000
C 4.07630900 -3.70189100 0.74960500
H 3.57140100 -3.71905500 1.71737400
H 3.85971600 -4.64312500 0.24412600
H 5.15132700 -3.66198700 0.93568300
H 5.17929500 3.74215000 0.11265300

C₆F₅I⋅N(iso-Pr)₂H
I 0.15419100 0.15659100 -0.04317400
C -1.96485500 0.04518700 -0.01045300
C -2.61653200 -1.18041200 0.02352500
C -2.74642100 1.19272500 -0.02214900
C -4.00066500 -1.26639700 0.04552900
C -4.13179100 1.12763500 -0.00059700
C -4.76155800 -0.10725400 0.03349800
Atom	X	Y	Z
F	-2.18128700	2.40720700	-0.05481700
F	-4.86424700	2.24625700	-0.01249600
F	-6.09340600	-0.17986000	0.05446500
F	-4.60643300	-2.45799700	0.07823300
F	-1.92205000	-3.26336300	0.03636300
N	3.31421400	0.02647100	-0.00398700
C	3.85679300	1.30430000	-0.52780500
H	3.85846800	1.18696800	-1.61299600
C	3.50585900	-1.12934800	-0.91469900
H	2.94988500	-0.86313700	-1.81933700
C	2.94262500	2.49208200	-0.20927000
H	1.97165500	2.38777700	-0.68672500
H	2.78546000	2.59884800	0.86484300
C	2.87919900	-2.41628400	-0.37284000
H	3.44320400	-2.82595000	0.46417700
H	1.85110100	-2.26983500	-0.05188900
H	3.39608100	3.41727400	-0.56757200
H	2.87751400	-3.16694700	-1.16303600
C	5.29267100	1.65759600	-0.09752800
H	5.32636400	1.93158800	0.95766800
H	5.99197000	0.84244900	-0.26073500
H	5.63881900	2.51959900	-0.66961700
C	4.95389900	-1.41021900	-1.36002700
H	5.39109500	-0.56108000	-1.88170400
H	5.59654600	-1.66296600	-0.51819700
H	4.95802900	-2.25406300	-2.05214600
C	3.44981900	-0.19897400	1.44068100
H	2.63237000	-0.84926100	1.75604400
C	4.75384200	-0.78658200	2.00630700
H	5.62706400	-0.18380800	1.77323600
H	4.66551600	-0.84215800	3.09348500
H	4.93551500	-1.79606000	1.64348400
H	3.26119400	0.75838500	1.92636600

C₆F₅I ---NET₃

Atom	X	Y	Z
I	-0.69299000	-0.04226900	0.00464400
C	1.44373000	-0.01198600	0.00482300
C	2.14549000	1.18481000	-0.03127400
C	2.18120000	-1.18706400	0.04149900
C	3.53212800	1.21795400	-0.03125300
C	3.56824600	-1.17814700	0.04237300
C	4.24688200	0.03042200	0.00581700
F	1.56882100	-2.38018500	0.07756100
F	4.25655900	-2.32485800	0.07824500
F	5.58143700	0.05053000	0.00635400
F	4.18529300	2.38505800	-0.06669400
F	1.49743200	2.35889300	-0.06792900
N	-3.61952400	-0.05102200	-0.28163500
C	-3.87996200	-1.26611400	-1.07914900
Atoms	X	Y	Z
-------	-----------	-----------	-----------
H	-3.30795	-1.16852	0.00000
C	-3.81526	1.13621	-1.13782
H	-3.15609	1.02086	0.94221
C	-4.45521	0.00331	0.94221
H	-5.28296	0.70348	0.78839
H	-4.91724	-0.96975	1.09615
H	-4.94139	-1.30345	-1.36874
H	-4.84603	1.14623	-1.52486
C	-3.52236	2.47148	-0.46585
H	-3.63681	3.27051	-1.19890
H	-4.20794	2.67974	0.35441
H	-2.50463	2.50923	-0.08031
C	-3.48815	-2.57080	-0.39652
H	-4.05092	-2.74778	0.51933
H	-3.67721	0.37680	2.19801
H	-3.17991	1.33934	2.09243
C	-3.45165	0.00000	0.32235
C	-2.43423	0.00000	0.11334
C	-3.15445	-1.18514	0.18479
C	-3.15442	1.18514	0.18480
C	-4.53165	-1.19867	0.32235
C	-4.53164	1.19867	0.32235
C	-5.22511	0.00000	0.39167
C	-5.22511	0.00000	0.39167
F	-2.52436	2.37105	0.12191
F	-5.19992	2.35660	0.38887
F	-6.55378	0.00000	0.52459
F	-5.19993	-2.35660	0.38886
F	-2.52437	-2.37105	0.12190
N	2.47786	0.00000	0.45890
C	2.77352	1.20185	1.26363
H	2.13649	1.14504	2.14929
C	2.77353	-1.20186	1.26363
H	2.13651	-1.14505	2.14929
C	3.09902	0.00000	0.87744
H	2.72017	0.86821	1.41568
H	2.72018	-0.86821	1.41569
H	3.81063	1.17248	1.62657
H	3.81064	-1.17249	1.62655
C	2.52987	-2.53353	-0.56269
H	3.26139	-2.68147	0.23492
H	1.54521	-2.52827	-0.09043
C	2.52986	2.53352	-0.56271
H	3.26139	2.68147	0.23490

C₆F₅I ... NBu₃

Atoms	X	Y	Z
I	-0.29320	0.00000	-0.10243
C	-2.43423	0.00000	0.11334
C	-3.15445	-1.18514	0.18479
C	-3.15442	1.18514	0.18480
C	-4.53165	-1.19867	0.32235
C	-4.53164	1.19867	0.32235
C	-5.22511	0.00000	0.39167
C	-5.22511	0.00000	0.39167
F	-2.52436	2.37105	0.12191
F	-5.19992	2.35660	0.38887
F	-6.55378	0.00000	0.52459
F	-5.19993	-2.35660	0.38886
F	-2.52437	-2.37105	0.12190
N	2.47786	0.00000	0.45890
C	2.77352	1.20185	1.26363
H	2.13649	1.14504	2.14929
C	2.77353	-1.20186	1.26363
H	2.13651	-1.14505	2.14929
C	3.09902	0.00000	0.87744
H	2.72017	0.86821	1.41568
H	2.72018	-0.86821	1.41569
H	3.81063	1.17248	1.62657
H	3.81064	-1.17249	1.62655
C	2.52987	-2.53353	-0.56269
H	3.26139	-2.68147	0.23492
H	1.54521	-2.52827	-0.09043
C	2.52986	2.53352	-0.56271
H	3.26139	2.68147	0.23490
Atom	X	Y	Z
------	-----	-----	------
H	1.54521200	2.52826800	-0.09043200
C	4.62887100	0.00000800	0.91947500
H	5.01747500	0.87581000	0.39356100
H	4.76391200	0.87505600	2.88121600
C	5.15566700	0.00001900	2.35421500
H	4.76391400	-0.87501000	2.88123000
H	5.15567000	0.00001900	2.35421500
C	6.68140500	0.00002200	2.42640300
H	7.09593500	0.88137700	1.93259900
H	7.03207900	0.00003100	3.45936700
H	7.09593600	-0.88134100	1.93261400
C	2.61886100	-3.70851700	-1.53727300
H	1.86713400	-3.58308300	-2.32163200
C	2.61883900	3.70850700	-1.53728900
H	1.86710400	3.58306900	-2.32163800
H	3.59139300	3.69157800	-2.03806000
C	2.42061300	5.05788400	-0.84972200
H	3.18089600	5.22219100	-0.08327200
H	2.48169500	5.88111700	-1.56268800
H	1.44421200	5.10821200	-0.36349500
H	3.59142100	-3.69158700	-2.03803300
C	2.42063000	-5.05789000	-0.84970200
H	1.44422400	-5.10821900	-0.36348600
H	3.18090400	-5.22219300	-0.08324200
H	2.48172200	-5.88112800	-1.56266300

C₆F₃I ... NPr₃

Atom	X	Y	Z
I	0.67153400	-0.18672700	-0.09819800
C	2.76770600	-0.07138200	-0.04717400
C	3.54851800	-1.22048600	-0.02366100
C	3.41291000	1.15922800	-0.03425200
C	4.93327200	-1.14898600	0.01113600
C	4.79665700	1.24614700	0.00054000
C	5.55948800	0.08826600	0.02332500
F	2.71495000	2.29976300	-0.05470400
F	5.39845100	2.43857800	0.01238400
F	6.88960700	0.16438900	0.05698100
F	5.66687100	-2.26503000	0.03324700
F	2.98492000	-2.43316200	-0.03371700
N	-2.87912700	0.04752900	0.03800800
C	-2.93334000	1.42335200	-0.31834600
C	-2.12390800	2.34936600	0.34630600
C	-3.78744000	1.87279200	-1.32816500
C	-2.16888200	3.69345200	0.00544000
H	-1.46391800	2.01172800	1.13186800
C	-3.81705600	3.21813100	-1.67428400
H	-4.42340100	1.16800600	-1.84371900
C	-3.01105300	4.13717300	-1.01063500
H	-1.53283200	4.39460900	0.52875300
H -4.48327300 3.54827300 -2.46001600
H -3.03845000 5.18383800 -1.28007100
C -2.95846300 -0.32180500 1.40777700
C -2.27799200 -1.45344500 1.86883600
C -3.70830700 0.43084500 2.31532300
C -2.34602800 -1.81930700 3.20526000
H -1.70188600 -2.04881100 1.17551100
C -3.76052100 0.06659800 3.65515200
H -4.24577700 1.30256900 1.97199700
C -3.08271500 -1.05957000 4.10995000
C -2.37015600 -0.83416700 -2.18054700
C -3.91882600 -2.02395600 -0.77225400
C -2.53554400 -1.79302700 -3.16951300
H -1.71126300 0.00574800 -2.34704700
C -4.06911900 -2.98760900 -1.76177200
H -4.46488100 -2.11325500 0.15537600
C -3.38144100 -2.87983600 -2.96046000
H -1.99121900 -1.69477200 -4.09908300
H -4.73761900 -3.82065500 -1.59139000
H -3.50312400 -3.62995700 -3.73497700
C\textsubscript{6}F\textsubscript{5}I \cdots \text{Pyridine-N-oxide}
I -0.55552400 -0.45954900 -0.67914600
C -4.14777800 1.07799400 -0.38554800
C -4.90627200 1.72600200 0.56650200
C -5.47878400 1.00658800 1.60822500
C -5.26312000 -0.36521500 1.65885900
C -4.49790300 -0.98050800 0.69067600
N -3.95071200 -0.26326800 -0.32284600
H -6.07512600 -1.50103300 -2.36002900
H -3.67121300 1.56371600 -1.22063900
H -5.03972000 2.79395200 0.48050000
H -5.68238800 -0.97164300 2.44766600
H -4.28199900 -2.03551900 0.66177200
C 1.47943700 -0.10124200 -0.17995200
C 2.32217300 -1.13811100 0.19838200
C 2.01487600 1.17953300 -0.21669800
C 3.65053800 -0.91423300 0.52898700
C 3.34027700 1.42550700 0.10982200
C 4.16220700 0.37360200 0.48437400
F 1.25923300 2.22865300 -0.57193800
F 3.83146500 2.66892200 0.06619200
F 5.43888400 0.59949400 0.80019600
F 4.44132400 -1.93052300 0.89068700
F 1.87305800 -2.39978400 0.25723100
Trimethylamine-N-Oxide

I 0.91644300 0.34013200 -0.11091300
C -1.21594800 0.08745100 -0.03586700
C -1.79459500 -1.17368500 -0.02382600
C -2.07309300 1.17819100 0.00228000
C -3.16938200 -1.35121600 0.02337400
C -3.45127300 1.02824000 0.04964600
C -4.00261000 -0.24376100 0.06015700
F -1.58858500 2.43066200 -0.00535200
F -4.25369400 2.09934700 0.08564700
F -5.32818500 -0.40143000 0.10582700
F -3.69911400 -2.58094200 0.03340400
F -1.03074800 -2.27863300 -0.05820700
O 3.49644100 0.80415200 -0.25799700
C 5.79790500 0.42707200 -0.14504700
H 6.56535700 -0.30147300 0.10786800
H 5.86245100 0.70890400 -1.19040700
H 5.87943200 1.30778000 0.48269100
C 4.28306900 -0.53733200 1.51873700
H 3.28509300 -0.94215300 1.64717600
H 5.03427200 -1.27402900 1.79489600
H 4.39450100 0.36762000 2.10598800
C 4.26273400 -1.36748900 -0.78811200
H 5.01541700 -2.11498000 -0.54452000
H 3.26644800 -1.75817500 -0.61214500
H 4.35738100 -1.04452900 -1.81915900
N 4.43982000 -0.15940100 0.07858100

N.N-Dimethylimidazolidinone

I 0.27281600 -0.16136600 -0.58928200
C -1.79415400 -0.06814000 -0.15108900
C -2.53501600 -1.22099300 0.07679800
C -2.45952800 1.14926000 -0.08032900
C -3.89078900 -1.16894000 0.36484900
C -3.81460900 1.22196300 0.20620600
C -4.53361200 0.05779200 0.43001300
F -1.80626900 2.30048100 -0.28807900
F -4.43216100 2.40628900 0.26875500
F -5.83721900 0.11769400 0.70683200
F -4.58206700 -2.29300200 0.58032100
F -1.95728900 -2.42847400 0.02493000
O 3.06928500 -0.33557500 -1.17050800
C 5.57179100 -0.22357100 1.28905700
C 4.97659300 1.18735200 1.35489300
H 6.54614100 -0.22448700 0.78763600
H 5.73502000 1.96778100 1.35677500
C 3.31569700 2.36114700 -0.14299400
H 2.78545100 2.17737900 -1.07320900
H 2.58312500 2.51914900 0.65523400
H 3.91863100 -2.29086400 0.05406800
C 4.80913500 -2.60871200 -0.56166500
H 3.97228400 -2.94358600 -0.27126400
H 5.73302700 -2.37954400 -0.52758300
H 4.88058900 -2.94358600 0.92338800
C 3.86371600 -0.03929700 -0.27126400
N 4.17149000 1.23058200 0.14052900
N 4.58356600 -0.92852800 0.48219100
H 4.34189800 1.31347000 2.23913000
H 5.68459400 -0.68242900 2.26931300

\[
\text{C}_6\text{F}_5\text{I} \cdots \text{Triphenylphosphineoxide}
\]
I 1.26151000 -0.21377600 -0.77286800
C 3.34395300 -0.09110800 -0.40751800
C 3.94975300 1.12075100 -0.10108200
C 4.15448700 -1.21777000 -0.46255500
C 5.31212900 1.21385800 0.14128400
C 5.51883900 -1.14627400 -0.22337000
C 6.10069600 0.07513700 0.07974600
F 3.63755300 -2.42016200 -0.75132200
F 6.27723900 -2.24632100 -0.28299200
F 7.41248800 0.15435300 0.31130600
F 5.87079400 2.39335400 0.43392900
F 3.22869600 2.24850000 -0.02956300
O -1.50178800 -0.31447500 -1.30032700
C -4.17177800 -0.81508800 -0.78835000
C -5.09099300 -1.31651300 0.13434900
C -4.46634800 -0.85538300 -2.15319400
C -6.29838700 -1.84751400 -0.30536700
H -4.86635700 -1.30133700 1.19185400
C -5.67265700 -1.38907900 -2.58829700
H -3.74850400 -0.47836700 -2.86864800
C -6.58996300 -1.88296800 -1.66493300
H -7.00690200 -2.23714200 0.41259000
H -5.89595200 -1.42190400 -3.64582900
H -7.52824600 -2.29936700 -2.00538700
C -2.17680400 -0.78288700 1.34027900
C -1.48781700 -1.99855600 1.35410100
C -2.52125000 -0.16955440 2.54499500
C -1.15049600 -2.59377700 2.56213400
H -1.20649300 -2.46760200 0.42151300
C -2.18296600 -0.76959500 3.75316700
H -3.04437400 0.77646600 2.54575200
C -1.49910900 -1.98044200 3.76246200
H -0.61283600 -3.53192600 2.56773600
H -2.44907500 -0.28871000 4.68440300
H -1.23361700 -2.44387400 4.70290000
C -2.90392900 1.69928200 -0.01639400
C -4.16668200 2.20007800 0.30448700
C -1.81924100 2.57339900 -0.12315100
H -5.01552600 1.53455000 0.37781700
C -1.99755900 3.93354400 0.09472100
H -0.84221900 2.19031200 -0.38276500
C -3.25720500 4.42841200 0.42018800
H -5.32121900 3.94540000 0.76927500
H -1.15535100 4.60625900 0.00838400
H -3.39480100 5.48792100 0.58802900
P -2.59216000 -0.07280000 -0.28147300

C6F5I...Pyrrolidine-N-oxide
I 0.59286300 -0.61440300 0.08484600
C -1.47043400 -0.12826400 0.02429300
C -2.44109700 -1.11759900 -0.06459400
C -1.89975700 1.19159100 0.07154800
C -3.79281400 -0.80927000 -0.10577500
C -3.24638100 1.52109200 0.03202200
C -4.19738800 0.51605600 -0.05726900
F -1.01692300 2.19687700 0.15704100
F -3.63407400 2.80008000 0.07887500
F -5.49511500 0.82275000 -0.09648300
F -4.70825400 -1.78004200 -0.19176700
F -2.09739700 -2.41168000 -0.11383700
O 3.34638200 -1.23270800 0.17728500
C 5.71999500 -0.60317100 0.16627000
C 6.33731900 0.69254400 -0.37831300
H 5.95143700 -0.75998900 1.22237900
H 5.23627300 1.74803800 -0.16043100
H 7.26704500 0.96660600 0.11336500
H 5.20503800 2.49604400 -0.95005700
C 4.22267000 -0.37364000 0.05986100
N 4.02126300 0.93774600 -0.16390700
H 6.00980000 -1.50220700 0.37204600
H 6.53591800 0.58859000 -1.44449500
H 5.34969200 2.26206200 0.79699300

C6F5I...Dimethylsulfoxide
I 0.78400200 -0.17432500 -0.25819900
C -1.32237000 -0.04012200 -0.07214900
C -1.96114200 1.19067300 0.00902100
C -2.11563400 -1.17955400 -0.02747500
C -3.33928200 1.28949100 0.13008500
C -3.49525100 -1.10226500 0.09318900
C -4.11014600 0.13786600 0.17240600
F -1.56682600 -2.39989100 -0.10000700

S73
Element	X	Y	Z
F	-4.23649800	-2.21463000	0.13419200
F	-5.43660100	0.22268700	0.28879400
F	-3.92995500	2.48697600	0.20588800
F	-1.25856300	2.33138900	-0.02796900
O	3.59017400	-0.37241400	-0.56064600
S	4.52252000	0.15541800	0.52964900
C	5.87110600	-1.05484600	0.64881300
H	6.63371600	-0.66415600	1.32010300
H	5.44254000	-1.96661600	1.05664400
H	6.27389900	-1.23035300	-0.34679000
C	5.46724100	1.50355700	-0.23773200
H	6.23971100	1.83143000	0.45744300
H	5.90144400	1.14266400	-1.16811000
H	4.76548100	2.31130400	-0.42898700

C₆F₃I --- Dimethylformamide

Element	X	Y	Z
I	-0.85283200	-0.63663300	-0.15436600
C	1.19584200	-0.13785800	-0.03479200
C	2.17243700	-1.12205400	0.05362300
C	1.61351000	1.18710700	-0.04183600
C	3.51985700	-0.80266800	0.13292200
C	2.95614700	1.52771100	0.03646400
C	3.91360400	0.52675800	0.12447500
F	0.72439300	2.18572900	-0.12458100
F	3.33318000	2.80837200	0.02824600
F	5.20704800	0.84312800	0.20089800
F	4.44125600	-1.76747700	0.21746100
F	1.83925600	-2.41890500	0.06506500
O	-3.66658700	-1.35180300	-0.26085700
C	-4.55213900	-0.73400800	0.33483100
C	-5.90516600	1.20059500	0.94567300
H	-5.48263300	2.02692400	1.51957700
H	-6.68744100	1.59320400	0.29443600
H	-6.34673700	0.48496300	1.63512900
C	-4.17751300	1.38219300	-0.82264700
H	-3.53308900	0.75808500	-1.43219400
H	-4.90851100	1.88151200	-1.45933700
H	-3.57385800	2.14023400	-0.32096700
N	-4.86915300	0.55505600	0.15487200
H	-5.17780100	-1.22694100	1.09144900

C₆F₃I --- Acetophenone

Element	X	Y	Z	
I	0.13642600	-0.83807600	0.36634400	
C	-1.84511600	-0.17863000	0.08449300	
C	-2.87850900	-1.07964300	-0.14063500	
C	-2.16047500	1.17414100	0.11837200	
C	-4.18479000	-0.65177300	-0.32597600	
C	-3.46105800	1.61951500	-0.06513000	
C	-4.47743800	0.70303900	-0.28807300	
Atoms	AO Coords	X	Y	Z
-------	-----------	---	---	---
C	-1.21141200	2.09414500	0.33083900	
F	-3.74098100	2.92593600	-0.02840600	
F	-5.16300800	-1.53669900	-0.54098100	
F	-2.64232100	-2.39636700	-0.18574200	
O	2.93525800	-1.83165900	0.63515400	
C	3.89829300	-1.42102200	-0.00017200	
C	4.19348100	0.03650800	-0.08155900	
C	5.10642300	0.55548600	-1.00585500	
C	3.53471100	0.91220000	0.78920600	
H	5.62858100	-0.09950700	-1.68763600	
C	3.77835300	2.27521300	0.73398200	
H	2.83987500	0.50956800	1.51087600	
C	4.67951700	2.78386200	-0.19877500	
H	6.04098200	2.31603100	-1.79280300	
H	3.26847100	2.94248200	1.41503500	
H	4.86692000	3.84803500	-0.24510600	
C	4.80256500	-2.39249400	-0.71523400	
H	5.84715000	-2.22345900	-0.45366600	
H	4.51355200	-3.40757900	-0.45945300	
H	4.71271300	-2.25833700	-1.79501600	

C₆F₃I --- Benzophenone

Atoms	AO Coords	X	Y	Z
I	0.55657300	-0.46928000	0.55889400	
C	2.61745800	-0.32829100	0.12711900	
C	3.37473600	-1.45868800	-0.15355500	
C	3.26251700	0.90217200	0.11166600	
C	4.72902200	-1.37169000	-0.44021300	
C	4.61576100	1.00845700	-0.17288600	
C	5.35225400	-0.13315400	-0.45009000	
F	2.59134200	2.03119600	0.37288300	
F	5.21461500	2.20363300	-0.18181900	
F	6.65408200	-0.04029000	-0.72482400	
F	5.43731600	-2.47360000	-0.70693300	
F	2.81543600	-2.67525900	-0.15591400	
O	-2.32353000	-0.78539700	1.03873700	
C	-3.17586600	-0.14058400	0.43232600	
C	-2.92392600	1.28644400	0.09021800	
C	-3.35682600	1.84432000	-1.11610400	
C	-2.17007000	2.06409200	0.97476100	
C	-3.03204900	3.15695700	-1.43432400	
H	-3.92447600	1.24637600	-1.81433100	
C	-1.86966800	3.38191400	0.66704300	
H	-1.83033100	1.62505700	1.90168300	
C	-2.29614600	3.92876500	-0.54105100	
H	-3.35355000	3.57662900	-2.37745300	
H	-1.29876100	3.98155100	1.36234000	
H	-2.05315400	4.95383800	-0.78567800	
Atom	x	y	z	
------	-----------	-----------	-----------	
C	-4.45562700	-0.78987200	0.03914700	
C	-4.46970000	-2.17345200	0.00127400	
H	-3.54081000	-2.72394200	0.00127400	

C₆F₅I ---4-Methylpyridine

Atom	x	y	z
I	-0.19220300	-1.00289600	0.00001600
C	1.75797400	-0.14852200	0.00000600
F	0.88772700	2.05918900	0.00003900
F	3.35334400	3.12647300	0.00002500
C	5.54767900	1.51695900	-0.00001600

O | -2.73537300 | -1.98600800 | 0.00002700 |
N	-3.57283200	-0.97604000	0.00009000
C	4.00362500	-0.44638100	1.17013600
C	4.00358800	-0.44639100	-1.17013600
C	4.87536100	0.62012200	1.18663300
H	3.61281500	-0.92479800	2.05285700
H	3.61274900	-0.92481500	-2.05284000
C	5.33711500	1.19016400	-0.00002800
H	5.19319000	1.00519300	2.14500000
H	5.19312000	1.00517600	-2.14505000
C	6.25737300	2.37457000	-0.00004600
H	6.89157800	2.38332800	0.88506300
H	5.67919700	3.30167600	-0.00001700
H	6.89151900	2.38334700	-0.88519700
6 References

(1) Laurence, C.; Graton, J.; Berthelot, M.; El Ghomari, M. J., The Diiodine Basicity Scale: Toward a General Halogen-Bond Basicity Scale. *Chem. Eur. J.* **2011**, *17*(37), 10431–10444.

(2) Laurence, C.; Gal, J.-F., *Lewis Basicity and Affinity Scales*. Wiley: UK, The Atrium, Southern Gate, Chichester, West Sussex, England, 2010.

(3) Ciancaleoni, G.; Bertani, R.; Rocchigiani, L.; Sgarbossa, P.; Zuccaccia, C.; Macchioni, A., Discriminating Halogen-Bonding from Other Noncovalent Interactions by a Combined NOE NMR/DFT Approach. *Chem. Eur. J.* **2015**, *21*(1), 440-447.

(4) Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. *Physical Review A* **1988**, *38*(6), 3098-3100.

(5) Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Physical Review B* **1988**, *37*(2), 785-789.

(6) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132*(15), 154104.

(7) Jr., T. H. D., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. *J. Chem. Phys.* **1989**, *90*(2), 1007-1023.

(8) Woon, D. E.; Jr., T. H. D., Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. *J. Chem. Phys.* **1995**, *103*(11), 4572-4585.

(9) Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M., Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. *J. Chem. Phys.* **2003**, *119*(21), 11113-11123.

(10) Peterson, K. A., Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements. *The J. Chem. Phys.* **2003**, *119*(21), 11099-11112.

(11) DiLabio, G. A.; Johnson, E. R.; Otero-de-la-Roza, A., Performance of conventional and dispersion-corrected density-functional theory methods for hydrogen bonding interaction energies. *PCCP* **2013**, *15*(31), 12821-12828.

(12) Torres, E.; DiLabio, G. A., A (Nearly) Universally Applicable Method for Modeling Noncovalent Interactions Using B3LYP. *J. Phys. Chem. Lett.* **2012**, *3*(13), 1738-1744.

(13) Tomasi, J.; Mennucci, B.; Cammi, R., Quantum Mechanical Continuum Solvation Models. *Chem. Rev.* **2005**, *105*(8), 2999-3094.

(14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Farkas, O.; Scuseria, G. E.; Morokuma, K.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16 Rev. C.01*, Wallingford, CT, 2016.

(15) Gräfenstein, J.; Cremer, D., Efficient density-functional theory integrations by locally augmented radial grids. *J. Chem. Phys.* **2007**, *127*(16), 164113.

(16) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Karifiloglou, P.; Landis, C. R.; Weinhold, F. *NBO 7.0*, Theoretical Chemistry Institute, University of Winconsin, Madison, 2018.

(17) Keith, T. A. *AIMALL (Version 19.10.12)*, TK Grismill Software: Overland Park KS, USA, 2019.
(18) Cremer, D.; Kraka, E., Chemical Bonds without Bonding Electron Density — Does the Difference Electron-Density Analysis Suffice for a Description of the Chemical Bond? *Angew. Chem. Int. Ed.* **1984**, 23 (8), 627-628.