Dietary Intake of Branched Chain Amino Acids and Breast Cancer Risk in the NHS and NHS II Prospective Cohorts

Deirdre Tobias, ScD¹,², Boyang Chai, MS³, Rulla M. Tamimi, ScD³,⁴, JoAnn E. Manson, MD DrPH¹,⁴, Frank B. Hu, MD PhD²,³, Walter C. Willett, MD PhD²,³, A. Heather Eliassen, ScD³,⁴

1. Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School
2. Department of Nutrition, Harvard TH Chan School of Public Health
3. Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital
4. Department of Epidemiology, Harvard TH Chan School of Public Health

Corresponding author:

Deirdre K. Tobias

900 Commonwealth Avenue 3rd Floor, Boston, MA 02215

dtobias@bwh.harvard.edu

617-525-9857

© The Author(s) 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

Background: Branched-chain amino acids (BCAAs) are essential amino acids common throughout the US diet. While circulating BCAAs have been implicated in insulin resistance and some obesity-related cancers, the relationship between dietary intake of BCAAs and incident breast cancer is unknown. We sought to evaluate the association between long-term dietary intakes of BCAAs and invasive breast cancer risk.

Methods: Our analyses included 196,161 women from the Nurses’ Health Study and Nurses’ Health Study II longitudinal cohorts. Average intakes of total and individual BCAAs (isoleucine, leucine, valine) were estimated from repeated diet questionnaires and incident self-reported breast cancer cases were confirmed via medical record review. Cox proportional hazards models, adjusted for reproductive history, lifestyle, body mass index (BMI) and other breast cancer risk factors, were used to estimate hazard ratios and 95% confidence intervals.

Results: We observed 10,046 incident cases of breast cancer over a median of 20.8 years of follow-up. No associations between dietary intakes of total or individual BCAAs with breast cancer risk were observed. Compared with women in the bottom quintile of BCAA intake, the hazard ratio of breast cancer for those in the top quintile was 1.05 (95% confidence interval = 0.98 to 1.12; 2-sided $P_{\text{trend}}=0.20$). Findings were consistent across molecular subtypes and according to type 2 diabetes diagnosis and BMI categories.

Conclusions: Dietary intakes of BCAAs are not likely a risk factor for breast cancer.
Branched-chain amino acids (isoleucine, leucine, and valine) are essential amino acids derived solely from diet and from a wide range animal and vegetable proteins, including processed meats, fish, poultry, dairy, beans, and some grains. The metabolism of BCAAs as a building block in protein synthesis is well characterized, contributing to a wide range of physiologic functions throughout the human body.\(^1\) However, recent metabolomics studies identified circulating BCAAs levels as positively correlated with obesity and markers of impaired carbohydrate metabolism, and are independent predictors of type 2 diabetes and cardiovascular disease endpoints.\(^2,3\) Circulating BCAAs have also been implicated in metabolomic studies of some insulin resistance-related cancers, including pancreatic cancer and most recently postmenopausal breast cancer.\(^4,5\) Previous observational evidence suggests heterogeneity across sources of dietary protein intakes with breast cancer risk.\(^6\) For example, in a prior analysis in the Nurses’ Health Study II, women in the highest vs. lowest quintiles of long-term red meat intake had a 22% higher risk of breast cancer.\(^7\) However, Cox proportional hazards regression models observed that modeling a 1 serving per day decrease of red meat and a 1 serving per day increase in legumes or poultry to approximate a substitution between protein sources found 15% and 17% lower breast cancer risks, respectively. In addition, given the correlation between dietary BCAAs with circulating BCAAs is typically low with correlation coefficients<0.2,\(^8\) it is unknown whether long-term intake of BCAAs \textit{per se} would be associated with breast cancer risk.

Previous mechanistic evidence from basic human and animal studies are largely consistent, demonstrating BCAAs have the ability to impair insulin action and signaling
in skeletal muscle through upregulation of the mTOR pathway. Breast cancer is another cancer site with an obesity- and insulin-resistance link, and a plausible role for BCAAs was recently strengthened by compelling research demonstrating leucine's impact on cell proliferation and treatment resistance in estrogen receptor + (ER+) breast cancer cells. However, despite promising research of potential mechanisms and epidemiologic studies of circulating metabolites, little is known about the role of dietary intakes of BCAAs in relation to breast cancer incidence. Further, the correlations between dietary intakes of BCAAs with concentrations in circulation are only modest, suggesting the relationship of metabolites with incident breast cancer may differ from that of diet and cancer.

Therefore, we evaluated dietary intakes of BCAAs in relation to breast cancer risk in two large prospective cohorts of US women. The Nurses’ Health Study and Nurses’ Health Study II have repeated measures of diet spanning several decades of follow-up. Further, incident breast cancer cases are confirmed and detailed information on tumor characteristics is collected. We hypothesized that dietary intakes of BCAAs confer a modest increased risk of incident breast cancer.

Methods

Study Population

We conducted a prospective longitudinal analysis of dietary BCAA intake in relation to incident breast cancer risk in the Nurses’ Health Study (NHS) and Nurses’ Health Study II (NHS II) cohorts. The NHS and NHS II were established in 1976 and
1989 with 121,701 and 116,429 female nurses, respectively. NHS participants were 30-55 years and NHS II participants were 25-42 years at study baseline. Baseline questionnaires were administered in both cohorts to establish medical and reproductive history, lifestyle characteristics, and other factors. Questionnaires update this information on a biennial basis. A semi-quantitative food frequency questionnaire (FFQ) was also administered to NHS with 61 items in 1980, and NHS II with 116 items in 1991 which were expanded to include 152 items. The FFQs are administered to update usual diet approximately every 4 years. The study protocol was approved by the institutional review boards of the Brigham and Women’s Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as required.

Diet Assessment

Diet assessment via FFQs were conducted every 4 years to ascertain usual intake of foods and beverages over the past 12 months. The nutrient content of items, including protein and amino acid intakes, was derived according to the US Department of Agriculture database, food manufacturer data, and other published resources. A previous validation study compared total protein intake estimates derived from FFQ against repeated 7-day diet records, and demonstrated good validity in capturing types of protein intake: Spearman correlation $r=0.56$ for animal protein; $r=0.66$ for vegetable protein.16

Breast Cancer Case Ascertainment
The NHS and NHS II biennial questionnaires captured incident disease diagnoses, including breast cancer. Self-reported cases of cancer were confirmed via participants’ medical records by a committee of physicians with 99% accuracy and information was extracted for invasive vs. in situ, hormone receptor status, and tumor characteristics, when available (94% of cases). Deaths were identified by the postal service, next of kin, or National Death Index, with medical records or death certificates used for additional documentation of breast cancer. Our analyses included first primary invasive breast cancers reported through June 2014 (NHS) or June 2015 (NHS II).

ER, PR, HER2, CK5/6, EGFR and tumor grade were used to classify tumors into molecular subtypes. Cases that were ER+ and/or PR+ and HER2- and histologic grade 1 and 2 were classified as luminal A cancers; cases that were either 1) ER+ and/or PR+ and HER2+, or 2) ER+ and/or PR+, HER2- and histologic grade 3 were classified as luminal B; cases that were ER-, PR-, and HER2+ were classified as HER2-enriched; and cases that were negative for ER, PR, and HER2 and positive for CK 5/6 and/or EGFR were categorized as basal-like. Cases that lacked expression of all 5 markers were considered “unclassified”.

Assessment of Covariates

Height at baseline and recalled body weight at age 18 were used to derive body mass index (BMI) in kg/m². Weight change was estimated as the difference between current body weight and weight at age 18. Race/ethnicity was self-reported at study baselines. Family history of breast cancer in a mother or sister, personal history of
benign breast disease, menopausal status, and use of oral contraceptives and/or hormone therapy was detailed at baseline and updated biennially. Women were considered postmenopausal if they reported no menstrual cycles in the last 12 months, surgical menopause with bilateral oophorectomy, or age >54 for smokers or 56 for non-smokers. Reproductive history, including age at menarche, age at first birth, number of pregnancies lasting ≥6 months, and duration breastfeeding was captured at baseline in NHS and NHS II. These were updated biennially until the majority of the cohort were past reproductive age. Diet and lifestyle factors were updated every 2-4 years, including alcohol consumption, smoking status, and physical activity. We derived individuals’ adherence to the 2010 Alterative Healthy Eating Index dietary pattern (AHEI-2010) with alcohol intake modeled separately, reflecting intakes of healthful and unhealthful foods and nutrients, with possible scores ranging from 2.5-87.5. Total physical activity was captured as the frequency in engaging in common recreational activities, and converted into total metabolic equivalent tasks (MET-hours) per week. Participants reporting a physician diagnosis of type 2 diabetes on the biennial questionnaire were sent a supplemental questionnaire. Confirmation of diagnosis was made according to the National Diabetes Data Group criteria through 1998 and the American Diabetes Association criteria thereafter.

Statistical Analysis

Dietary intakes of isoleucine, leucine, and valine were derived as grams per day (g/d), ln-transformed, then adjusted for total energy intake using the residual method. We analyzed intakes as the cumulative average of previous FFQs to reflect long-term
usual diet. We calculated the age-standardized baseline characteristics of participants by quintiles of total BCAA intake (g/d).

We performed Cox proportional hazards regression models to estimate the associations between quintiles of total and individual BCAAs with incident breast cancer risk. The bottom quintile (lowest intake) serving as the reference group. We used quintiles for analysis *a priori* to examine the dose-response relationship and visualize potential for non-linear associations. Categories also constrains influences of outlier data. Follow-up time began at the return of the first eligible FFQ until incident breast cancer diagnosis, death, or date of the last questionnaire returned through end of follow-up (NHS: June 1, 2014; NHS II: June 1, 2015), whichever came first. Cohort data were pooled for the combined analyses. In the multivariable models, age was the underlying time scale, stratified by calendar year and cohort, and we adjusted for cancer risk factors including height (continuous), race and ethnicity (non-Hispanic white vs. other), BMI at age 18 (<20.0, 20.0-21.9, 22.0-23.9, 24.0-26.9, 27.0+ kg/m²), body weight change since age 18 (continuous, kg), family history of breast cancer (yes/no), history of benign breast disease (yes, no), oral contraceptive use (never, past, current), age at menarche (<12, 12, 13, 14+ years), menopausal status and hormone therapy (HT) use (premenopausal, postmenopausal/unknown -- never HT use, postmenopausal/unknown -- past HT use, postmenopausal/unknown -- current HT use, postmenopausal/unknown -- missing HT use, missing both menopause status and HT use), age at natural menopause (continuous), parity and age at first birth (nulliparous, ≤2 -- <25.0 years, ≤2 -- 25.0 to 29.9 years, ≤2 -- ≥30.0 years, 3+ -- <25.0 years, 3+ -- 25.0 to 29.9 years, 3+ -- ≥30.0 years), total duration of breastfeeding (0, 1 to 6, 7 to 12,
≥12 months), alcohol consumption (0, <5, 5 to 15, 15+ g/day), smoking status (never, past, current 1 to 14, current 15 to 24, current 25+ cigarettes/day), total physical activity (MET-hours/week), total energy intake (continuous, kcal/d), and AHEI 2010 diet quality score (quartiles). We created missing indicator categories for missing covariate data (≤5.5%). We modeled the medians of BCAA quintiles as a continuous variable to examine linear trends in the relationship of BCAAs and breast cancer.

We conducted subgroup analyses by type 2 diabetes (yes, no), premenopausal vs. postmenopausal, and BMI category of normal (BMI<25.0 kg/m²) vs. overweight/obesity (BMI≥25 kg/m²) to evaluate effect modification by these breast cancer risk factors. Statuses for these characteristics were updated over follow-up. We hypothesized that BCAAs may confer an elevated risk of breast cancer through those susceptible to insulin resistance and type 2 diabetes; thus, BCAAs may be positively associated among those with type 2 diabetes or obesity. We created interaction terms between median scores of BCAA quintiles and effect modifiers and used likelihood ratio tests to evaluate heterogeneity.

We performed sensitivity analyses modifying the exposure assumptions by analyzing baseline intakes only and by using only the most recent FFQ with a simple update. In exploratory analyses we performed competing risk models to evaluate the relationships for BCAAs with tumor receptor subtypes and by menopausal status at diagnosis. Heterogeneity was assessed using a likelihood ratio test; we compared models assuming the same association between the exposures and breast cancer subtypes to one allowing different associations for disease subtypes.
All statistical tests were 2-sided and a P less than .05 was considered statistically significant.

Results

Our analyses included a total of 196,161 women without a history of cancer at the first valid FFQ diet assessment, including 90,154 NHS and 106,007 NHS II participants. We excluded 41,969 for the following: reporting a prior cancer, implausible estimated total energy intake (<500 kcal/d or >3500 kcal/d), and/or >70 FFQ items left blank (Supplementary Figure 1). The distributions of energy-adjusted BCAA intakes were similar between NHS and the younger NHS II counterparts. Pooled age-adjusted baseline characteristics of NHS and NHS II participants by intake of total BCAAs are presented in Table 1. On average, women reporting higher intakes of BCAAs had greater body weight gain since age 18 (Q5=25.7 lb vs. Q1=21.9 lb), younger ages at menarche, and were more likely to breastfeed. We did not observe differences for race/ethnicity, family history of breast cancer, parity, and other reproductive characteristics across intakes of BCAAs. There were statistically significant differences in dietary factors across BCAA intake; higher BCAAs were associated with greater % kcal/d from total protein (Q1=14% vs. Q5=24% kcal/d) and carbohydrates (Q1=54% vs. Q5=44% kcal/d), but not fat (Q1=32% vs. Q5=33% kcal/d); higher animal and dairy protein intakes were positively associated with higher BCAAs, but vegetable protein intake was not related to BCAAs; overall dietary quality (AHEI score) and regular multivitamin use were also positively associated with BCAAs.
We observed 10,046 incident breast cancer cases (NHS n=6,621; NHS II n=3,425) over 20.8 years median follow-up (3,644,137 person-years); 85.5% of these cases had data available for tumor ER status (ER+ n=7,005; ER- n=1,583). Tumor tissue samples were available from 3,231 breast cancer cases (NHS, n=2,399 NHS II, n=832). Of the invasive tumors on tissue microarrays, 2,858 could be classified into the luminal A (n=1,503; 52.6%), luminal B (n= 822; 28.8%), HER2-enriched (n=178; 6.2%), basal-like (n=283; 9.9%) or unclassified (n=72; 2.5%) subtypes. Unclassified tumors were excluded from further analyses given the relatively small number of cases.

In the age-adjusted model there was no relationship between the long-term cumulative average of total dietary BCAA intake with breast cancer risk, which persisted in the multivariable-adjusted model. In Table 2 the pooled cohort hazard ratio comparing the highest with lowest quintiles of intake was 1.02 (95% CI = 0.96 to 1.09; \(P_{\text{trend}} = 0.66 \)) for the age-adjusted model and 1.05 (95% CI = 0.98 to 1.12; \(P_{\text{trend}} = 0.20 \)) for the multivariable-adjusted model. Associations were similar for the individual BCAAs, with the multivariable models indicating no association with breast cancer risk comparing the 5th and 1st quintiles for isoleucine (HR=1.03, 95% CI = 0.97 to 1.10; \(P_{\text{trend}} = 0.25 \)), leucine HR=1.04 (95% CI = 0.97 to 1.11; \(P_{\text{trend}} = 0.20 \)), and valine HR=1.04 (95% CI = 0.97 to 1.11; \(P_{\text{trend}} = 0.23 \)). These findings were consistent between NHS and NHS II cohorts.

We conducted secondary analyses to examine BCAA intake by breast cancer molecular subtypes. There was no statistically significant association between intakes of total or individual BCAAs according to subtypes of estrogen or progesterone receptor status, luminal B, basal-like, or HER2-enriched cases (Table 3). There was a modest
positive linear trend between dietary leucine intake, but not other BCAAs, with luminal A breast cancer incidence (Q5 vs. Q1 HR=1.22, 95% CI = 1.03 to 1.45; $P_{\text{trend}}=0.03$). While trends were not statistically significant in other subtypes, the point estimates were generally similar across luminal B, HER2, and basal-like tumors.

We did not observe statistically significant effect modification according to type 2 diabetes diagnosis ($P_{\text{interaction}}=0.98$), BMI above/below 25.0 kg/m2 ($P_{\text{interaction}} = 0.97$), or postmenopausal status ($P_{\text{interaction}} = 0.11$) (Supplementary Figure 2). We performed sensitivity analyses modeling dietary intake derived at cohort baseline only or with a simple updating approach including only the most recently ascertained dietary data and results between dietary BCAAs and total invasive breast cancer risk were unchanged.

Discussion

We evaluated the relationship between long-term habitual dietary intakes of BCAAs with breast cancer incidence in two large US cohorts. No associations were observed for total or individual BCAAs with breast cancer risk overall, or for most molecular subtypes. A modest positive association between dietary leucine with luminal A breast cancers warrants replication as it could be due to multiple testing.

Prior epidemiologic studies have identified obesity and insulin resistance as risk factors for breast cancer incidence, and in particular for higher risk of postmenopausal breast cancer.27,28 A previous analyses in the NHS cohort reported a modest elevation in risk for women with a history of type 2 diabetes compared with no diabetes (HR=1.17, 95% CI = 1.01 to 1.35), which was observed predominantly for ER+ breast cancer.
cases (HR=1.22, 95% CI = 1.01 to 1.47). BCAA metabolites in circulation have been implicated for their strong positive correlation with obesity, clinical markers of impaired carbohydrate metabolism, and incident type 2 diabetes risk, and therefore an underlying role in breast cancer development or progression is plausible. We recently reported complex findings between plasma BCAA metabolites with breast cancer risk in subsets of the NHS and NHS II cohorts (unpublished data). BCAAs were prospectively associated with lower breast cancer risk among premenopausal participants but with higher breast cancer risk among postmenopausal women within 10 years from blood collection. Further evidence in support of a role for BCAAs has been demonstrated through the effects of in vitro leucine administration impact on cell proliferation and treatment resistance in ER+ breast cancer cells.

Isoleucine, leucine, and valine are essential amino acids and thus derived solely from diet; thus, we sought to evaluate their upstream dietary intakes in relation to breast cancer incidence at the population level. However, we observed that despite long-term follow-up and repeated dietary assessments, dietary intakes of BCAAs were not related to breast cancer incidence in our cohorts. There are reasons that may explain these unexpected results. Firstly, while BCAAs are essential amino acids, their dietary intake may correlate only modestly with levels found in circulation. For example, in a previous analysis among women with a history of gestational diabetes, we observed correlations r<0.2 comparing dietary vs. circulating plasma levels of individual BCAAs. Further, in this analysis, while plasma BCAAs were positively associated with subsequent type 2 diabetes risk, dietary intakes were not. Thus, it is possible that levels in circulation correlate poorly with dietary intakes because they more closely reflect capacity for rate
Determinants of variability in the rate of BCAA metabolism are largely unknown; two randomized intervention trials demonstrated an effect of weight loss on decreases in circulating BCAA levels and an exercise training intervention similar observed greater BCAA turnover in parallel with increased insulin sensitivity. This suggests a plausible role for modifiable lifestyle interventions in improving BCAA exposure in circulation. Whether modifying dietary intakes of BCAAs in the absence of interventions modifying their postprandial catabolism lowers BCAAs in circulation is unknown. Thus, although dietary BCAAs were not related to breast cancer in our cohorts, we cannot rule out an association for BCAA metabolite levels. It is also plausible that BCAAs are not causally related to breast cancer incidence, despite promising hypothesis generating studies. Further, our ability to isolate the contribution of BCAAs independent of correlated dietary components in BCAA-containing foods is limited, and thus findings like that for leucine with luminal A cancers should be interpreted with caution.

The strengths of this study include its prospective cohort design with longitudinal assessment of diet prior to breast cancer diagnosis. We analyzed the cumulative average of diet reported every 4 years which reduces measurement error for estimations of long-term intake. The performance of the FFQ has been extensively validated and reliably estimates protein intake. The race and ethnic homogeneity of the NHS and NHS II cohorts is a limitation precluding our ability to investigate potential effect modification by these important breast cancer risk factors. Misclassification of breast cancer cases is unlikely with 99% confirmation of self-reported cases.
Identifying dietary risk factors underlying the relationships of diet and body weight with cancer may inform strategies for precision prevention that efficiently target specific pathways of breast cancer in women. However, despite prior evidence implicating circulating BCAAs we did not observe an association between dietary intakes of total and individual BCAAs with breast cancer incidence in our large cohort of predominantly white US women. Further investigation into determinants of circulating BCAA concentrations, which may better reflect long-term systemic exposure to BCAAs and impaired metabolism, is warranted.

Funding

This study was funded by the National Cancer Institute (R01 CA050385, P01 CA087969, U01 CA176726, UM1 CA186107) and the Breast Cancer Research Foundation.

Notes

Role of the funders: Funders had no role in design of the study; the collection, analysis, and interpretation of the data; the writing of the manuscript; and the decision to submit the manuscript for publication.

Disclosures: None.

Acknowledgements: We would like to thank the participants and staff of the Nurses’ Health Studies for their valuable contributions as well as the following state cancer
registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY.

Disclaimer: The authors assume full responsibility for analyses and interpretation of these data.

Data Availability

The datasets analyzed during the current study are available by application by following the instructions here: http://www.nurseshealthstudy.org/researchers.

References

1. Wu G. Functional amino acids in nutrition and health. *Amino acids*. Sep 2013;45(3):407-411.

2. Guasch-Ferre M, Hruby A, Toledo E, et al. Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-analysis. *Diabetes care*. May 2016;39(5):833-846.

3. Tobias DK, Lawler PR, Harada PH, et al. Circulating Branched-Chain Amino Acids and Incident Cardiovascular Disease in a Prospective Cohort of US Women. *Circulation. Genomic and precision medicine*. Apr 2018;11(4):e002157.
4. Mayers JR, Wu C, Clish CB, et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. *Nature medicine.* Oct 2014;20(10):1193-1198.

5. Zeleznik ZA, Balasubramanian R, Ren T, et al. Branched chain amino acids and risk of breast cancer. *medRxiv 2020.08.31.20185470;.* 2020;doi: https://doi.org/10.1101/2020.08.31.20185470.

6. Wu J, Zeng R, Huang J, et al. Dietary Protein Sources and Incidence of Breast Cancer: A Dose-Response Meta-Analysis of Prospective Studies. *Nutrients.* Nov 17 2016;8(11).

7. Farvid MS, Cho E, Chen WY, Eliassen AH, Willett WC. Dietary protein sources in early adulthood and breast cancer incidence: prospective cohort study. *Bmj.* Jun 10 2014;348:g3437.

8. Tobias DK, Clish C, Mora S, et al. Dietary Intakes and Circulating Concentrations of Branched-Chain Amino Acids in Relation to Incident Type 2 Diabetes Risk Among High-Risk Women with a History of Gestational Diabetes Mellitus. *Clinical chemistry.* Aug 2018;64(8):1203-1210.

9. Saha AK, Xu XJ, Balon TW, Brandon A, Kraegen EW, Ruderman NB. Insulin resistance due to nutrient excess: is it a consequence of AMPK downregulation? *Cell cycle.* Oct 15 2011;10(20):3447-3451.

10. Saha AK, Xu XJ, Lawson E, et al. Downregulation of AMPK accompanies leucine- and glucose-induced increases in protein synthesis and insulin resistance in rat skeletal muscle. *Diabetes.* Oct 2010;59(10):2426-2434.
11. Tremblay F, Marette A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. *The Journal of biological chemistry.* Oct 12 2001;276(41):38052-38060.

12. Krebs M, Brunmair B, Brehm A, et al. The Mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. *Diabetes.* Jun 2007;56(6):1600-1607.

13. Krebs M, Krssak M, Bernroider E, et al. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. *Diabetes.* Mar 2002;51(3):599-605.

14. Tremblay F, Krebs M, Dombrowski L, et al. Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. *Diabetes.* Sep 2005;54(9):2674-2684.

15. Saito Y, Li L, Coyaud E, et al. LLGL2 rescues nutrient stress by promoting leucine uptake in ER(+) breast cancer. *Nature.* May 2019;569(7755):275-279.

16. Yuan C, Spiegelman D, Rimm EB, et al. Validity of a Dietary Questionnaire Assessed by Comparison With Multiple Weighed Dietary Records or 24-Hour Recalls. *American journal of epidemiology.* Apr 1 2017;185(7):570-584.

17. Fung TT, Chiuve SE, Willett WC, Hankinson SE, Hu FB, Holmes MD. Intake of specific fruits and vegetables in relation to risk of estrogen receptor-negative breast cancer among postmenopausal women. *Breast cancer research and treatment.* Apr 2013;138(3):925-930.
18. Fortner RT, Sisti J, Chai B, et al. Parity, breastfeeding, and breast cancer risk by hormone receptor status and molecular phenotype: results from the Nurses' Health Studies. *Breast cancer research : BCR.* Mar 12 2019;21(1):40.

19. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. *Epidemiology.* Nov 1990;1(6):466-473.

20. Tobias DK, Hu FB, Chavarro J, Rosner B, Mozaffarian D, Zhang C. Healthful dietary patterns and type 2 diabetes mellitus risk among women with a history of gestational diabetes mellitus. *Archives of internal medicine.* Nov 12 2012;172(20):1566-1572.

21. Wolf AM, Hunter DJ, Colditz GA, et al. Reproducibility and validity of a self-administered physical activity questionnaire. *International journal of epidemiology.* Oct 1994;23(5):991-999.

22. Manson JE, Rimm EB, Stampfer MJ, et al. Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. *Lancet.* Sep 28 1991;338(8770):774-778.

23. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. National Diabetes Data Group. *Diabetes.* Dec 1979;28(12):1039-1057.

24. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. *Diabetes care.* Jul 1997;20(7):1183-1197.

25. Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses. *American journal of epidemiology.* Jul 1986;124(1):17-27.
26. Wang M, Spiegelman D, Kuchiba A, et al. Statistical methods for studying disease subtype heterogeneity. *Statistics in medicine*. Feb 28 2016;35(5):782-800.

27. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. *Lancet*. Feb 16 2008;371(9612):569-578.

28. Maskarinec G, Fontaine A, Torfadottir JE, et al. The Relation of Type 2 Diabetes and Breast Cancer Incidence in Asian, Hispanic and African American Populations-A Review. *Canadian journal of diabetes*. Feb 2018;42(1):100-105.

29. Michels KB, Solomon CG, Hu FB, et al. Type 2 diabetes and subsequent incidence of breast cancer in the Nurses’ Health Study. *Diabetes care*. Jun 2003;26(6):1752-1758.

30. Tobias DK, Mora S, Verma S, Lawler PR. Altered branched chain amino acid metabolism: toward a unifying cardiometabolic hypothesis. *Current opinion in cardiology*. Sep 2018;33(5):558-564.

31. Zheng Y, Ceglarek U, Huang T, et al. Weight-loss diets and 2-y changes in circulating amino acids in 2 randomized intervention trials. *The American journal of clinical nutrition*. Feb 2016;103(2):505-511.

32. Glynn EL, Piner LW, Huffman KM, et al. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans. *Diabetologia*. Oct 2015;58(10):2324-2335.
Table 1. Age-standardized characteristics of the pooled study populations, Nurses’ Health Study and Nurses’ Health Study II, at baseline, by dietary intake of branched chain amino acids

Baseline characteristics a,b	Total BCAA Dietary Intake (g/d)				
	Q1 (n=34,884)	Q2 (n=34,927)	Q3 (n=34,967)	Q4 (n=34,927)	Q5 (n=34,903)
Mean age (SD), y	42.7 (9.3)	42.5 (9.2)	42.6 (9.2)	42.7 (9.3)	43.0 (9.4)
Mean body mass index at age 18 (SD), kg/m²	20.9 (3.0)	21.0 (3.0)	21.2 (3.1)	21.4 (3.2)	22.0 (3.5)
Mean current body mass index (SD), kg/m²	24.0 (4.9)	24.4 (4.9)	24.7 (5.0)	25.1 (5.1)	25.8 (5.4)
Mean weight change since age 18 years (SD), lb	21.9 (31.6)	22.7 (31.0)	23.4 (31.0)	24.7 (32.4)	25.7 (34.4)
Mean height (SD), inches	64.7 (2.9)	64.7 (3.0)	64.7 (2.8)	64.7 (3.1)	64.7 (2.9)
White race/ethnicity, %	92.2	93.7	93.7	93.9	92.8
Mother or sister with breast cancer, %	8.5	8.4	8.4	8.2	8.5
Parity, No. of pregnancies ≥6 mo (SD)	2.1 (1.6)	2.2 (1.6)	2.2 (1.5)	2.2 (1.6)	2.2 (1.6)
Mean age at first full-term pregnancy (SD), y	25.4 (3.8)	25.4 (3.7)	25.5 (3.8)	25.5 (3.8)	25.5 (3.8)
Breastfeeding duration c, %					
Never	43.7	38.6	36.6	36.1	37.8
≤6 months	20.9	21.6	21.8	21.9	21.3
7-11 months	9.2	10.5	11.0	11.1	10.9
≥12 months	19.7	23.2	24.5	24.6	23.2
Not reported	6.5	6.1	6.1	6.2	6.8
History of confirmed benign breast disease, %	32.2	32.0	32.5	32.3	32.6
Oral contraceptive use, %					
Never	32.5	31.8	31.6	31.2	31.0
Past	60.2	61.8	62.2	63.0	63.1
Current	6.7	5.9	5.8	5.3	5.4
Missing	0.6	0.5	0.4	0.5	0.6
Age at menarche, %					
≤11 y	20.8	22.4	23.2	24.0	27.5
12 y	27.9	27.9	28.4	28.8	29.0
13 y	29.8	29.7	29.6	28.8	26.4
≥14 y	21.0	19.5	18.3	18.0	16.5
Not reported	0.5	0.5	0.5	0.5	0.6
Menopausal status / hormone therapy, %					
Premenopausal	72.2	72.8	72.8	72.6	72.0
Postmenopausal / never use	13.6	13.2	13.1	12.7	12.7
Postmenopausal / past use	7.1	7.1	7.4	7.8	7.9
Postmenopausal / current use	5.9	5.7	5.6	5.8	6.2
Postmenopausal / unknown use	1.1	1.1	1.1	0.9	1.1
Not reported	0.1	0.1	0.1	0.1	0.1

| Mean age at menopause (SD), y^c | 46.8 (5.9) | 47.1 (5.8) | 47.0 (5.9) | 47.0 (5.9) | 46.8 (5.9) |
| Mean physical activity (SD), MET, hrs/wk^a | 17.2 (26.2) | 17.2 (24.4) | 17.5 (23.0) | 18.0 (23.9) | 20.0 (27.1) |

Current smoking status, %					
Never	53.2	55.9	55.8	56.4	55.6
Past	24.3	25.8	26.8	27.6	28.5
Current - 1-14 c/d	7.3	6.5	6.2	5.8	6.2
Current - 15-24 c/d	9.1	7.2	7.0	6.4	5.9
Current - ≥25 c/d	6.0	4.3	4.1	3.7	3.6
Not reported	0.2	0.2	0.2	0.2	0.2

Mean current alcohol intake (SD), g/d	6.7 (12.6)	5.4 (9.5)	4.8 (8.4)	4.1 (7.0)	3.1 (5.7)
AHEI-2010 diet quality score (SD)	40.2 (10.5)	41.4 (10.0)	42.2 (9.9)	43.7 (9.9)	46.9 (10.1)
Multivitamin use^b, %	42.3	44.1	44.7	45.6	47.2

Total energy intake mean (SD), kcal/d	1754 (575)	1783 (547)	1793 (535)	1784 (523)	1725 (520)
Carbohydrates mean (SD), %kcal/d	54 (9)	50 (7)	48 (7)	46 (7)	44 (7)
Fat mean (SD), %kcal/d	32 (6)	33 (6)	34 (6)	34 (6)	33 (6)
Protein mean (SD), %kcal/day	14 (2)	17 (1)	19 (1)	20 (1)	24 (3)

Total protein mean (SD), g/d	62 (20)	74 (21)	82 (23)	89 (24)	100 (29)
Dairy protein	12 (7)	15 (8)	17 (9)	19 (11)	22 (12)
Animal protein	40 (15)	52 (15)	60 (17)	67 (18)	80 (24)
Vegetable protein	22 (9)	22 (8)	22 (8)	22 (8)	20 (8)
Isoleucine mean (SD), g/d	3 (1)	3 (1)	4 (1)	4 (1)	5 (1)
Leucine mean (SD), g/d	5 (2)	6 (2)	6 (2)	7 (2)	8 (2)
Valine mean (SD), g/d	3 (1)	4 (1)	4 (1)	5 (1)	5 (2)
Values except age are standardized to the age distribution of the study population. Q=quintile; SD=standard deviation; MET=metabolic equivalent tasks; AHEI=Alternative Health Eating Index dietary pattern score

Values of polytomous variables may not sum to 100% due to rounding.

Includes natural menopause and bilateral oophorectomy.
Table 2. Hazard ratios (HRs) and 95% confidence intervals (CIs) for the relationship between cumulative-average energy-adjusted dietary intake of branched-chain amino acids and incident invasive breast cancer risk: Nurses’ Health Study (1984-2012) and Nurses’ Health Study II (1991-2013).

Dietary BCAAs	Cumulative average dietary intake of energy-adjusted branched-chain amino acids (g/d)	\(P_{\text{trend}} \)																					
	Q1	Q2	Q3	Q4	Q5																		
Total BCAAs																							
Pooled																							
Cases (Person Years)	1961 (713,046)	2053 (752,849)	2123 (752,946)	1988 (741,234)	1921 (684,061)																		
Age-adjusted model, HR (95% CI)\(^a\)	1.00 (reference)	1.00 (0.94-1.06)	1.03 (0.97-1.10)	0.98 (0.92-1.04)	1.02 (0.96-1.09)	0.66																	
Multivariable model, HR (95% CI)	1.00 (reference)	0.99 (0.93-1.05)	1.03 (0.97-1.10)	0.99 (0.93-1.05)	1.05 (0.98-1.12)	0.20																	
NHS																							
Cases (Person Years)	1253 (344,588)	1364 (369,439)	1416 (369,836)	1307 (365,786)	1281 (337,945)																		
Age-adjusted model, HR (95% CI)	1.00 (reference)	1.03 (0.95-1.11)	1.07 (0.99-1.16)	1.00 (0.92-1.08)	1.06 (0.98-1.14)	0.37																	
Multivariable model, HR (95% CI)	1.00 (reference)	1.02 (0.94-1.10)	1.06 (0.98-1.15)	0.99 (0.92-1.07)	1.06 (0.98-1.15)	0.29																	
NHS II																							
Cases (Person Years)	708 (368,459)	689 (383,410)	707 (383,111)	681 (375,448)	640 (346,116)																		
Age-adjusted model, HR (95% CI)	1.00 (reference)	0.93 (0.84-1.04)	0.97 (0.87-1.07)	0.95 (0.86-1.06)	0.97 (0.87-1.08)	0.71																	
Multivariable model, HR (95% CI)	1.00 (reference)	0.93 (0.84-1.04)	0.98 (0.88-1.09)	0.98 (0.88-1.09)	1.02 (0.91-1.14)	0.57																	
Isoleucine																							
Pooled																							
Cases (Person Years)	2013 (722,587)	2036 (758,521)	2153 (756,260)	1987 (739,150)	1857 (667,620)																		
	Age-adjusted model, HR (95% CI)	Multivariable model, HR (95% CI)	NHS	Cases (Person Years)	Age-adjusted model, HR (95% CI)	Multivariable model, HR (95% CI)	NHS II	Cases (Person Years)	Age-adjusted model, HR (95% CI)	Multivariable model, HR (95% CI)	Leucine	Pooled	Cases (Person Years)	Age-adjusted model, HR (95% CI)	Multivariable model, HR (95% CI)	NHS	Cases (Person Years)	Age-adjusted model, HR (95% CI)	Multivariable model, HR (95% CI)	NHS II	Cases (Person Years)	Age-adjusted model, HR (95% CI)	Multivariable model, HR (95% CI)
------------------	----------------------------------	----------------------------------	-----	---------------------	----------------------------------	----------------------------------	--------	---------------------	----------------------------------	----------------------------------	---------	------------------	----------------------------------	----------------------------------	--------	---------------------	----------------------------------	----------------------------------	--------	---------------------	----------------------------------	----------------------------------	
Valine

	Valine	Pooled	NHS	NHS II		
Cases (Person Years)	1963 (710,566)	2040 (750,892)	2093 (752,437)	2029 (742,815)	1921 (687,427)	
Age-adjusted model, HR (95% CI)	1.00 (reference)	0.99 (0.93-1.05)	1.01 (0.95-1.08)	0.99 (0.93-1.05)	1.01 (0.95-1.08)	0.75
Multivariable model, HR (95% CI)	1.00 (reference)	0.98 (0.92-1.04)	1.01 (0.95-1.08)	1.00 (0.94-1.06)	1.04 (0.97-1.11)	0.23

NHS

Cases (Person Years)	1254 (343,081)	1356 (368,380)	1395 (369,563)	1337 (366,792)	1279 (339,779)	
Age-adjusted model, HR (95% CI)	1.00 (reference)	1.02 (0.94-1.10)	1.05 (0.97-1.13)	1.01 (0.93-1.09)	1.04 (0.96-1.12)	0.45
Multivariable model, HR (95% CI)	1.00 (reference)	1.01 (0.93-1.09)	1.04 (0.96-1.13)	1.01 (0.93-1.09)	1.05 (0.96-1.14)	0.33

NHS II

Cases (Person Years)	709 (367,485)	684 (382,512)	698 (382,874)	692 (376,023)	642 (347,649)	
Age-adjusted model	1.00 (reference)	0.92 (0.83-1.03)	0.95 (0.85-1.05)	0.96 (0.86-1.07)	0.96 (0.86-1.07)	0.67
Multivariable model	1.00 (reference)	0.93 (0.83-1.03)	0.96 (0.86-1.07)	0.98 (0.88-1.09)	1.01 (0.90-1.13)	0.60

* Estimates were derived from Cox proportional hazards regression models adjusting for age (continuous), and additional multivariable adjustment for height (continuous), race and ethnicity (non-Hispanic white vs. other), BMI at age 18 (<20.0, 20.0-21.9, 22.0-23.9, 24.0-26.9, 27.0+ kg/m²), body weight change since age 18 (continuous, kg), family history of breast cancer (yes/no), history of benign breast disease (yes, no), oral contraceptive use (never, past, current), age at menarche (<12, 12, 13, 14+ years), menopausal status and hormone therapy (HT) use (premenopausal, postmenopausal/unknown -- never HT use, postmenopausal/unknown -- past HT use, postmenopausal/unknown -- current HT use, postmenopausal/unknown -- missing HT use, missing both menopause status and HT use), age at natural menopause (continuous), parity and age at first birth (nulliparous, ≤2 -- <25.0 years, ≤2 -- 25.0 to 29.9 years, ≤2 -- ≥30.0 years, 3+ -- <25.0 years, 3+ -- 25.0 to 29.9 years, 3+ --
≥30.0 years), total breastfeeding (0, 1 to 6, 7 to 12, ≥12 months), alcohol consumption (0, <5, 5 to 15, 15+ g/day), smoking status (never, past, current 1 to 14, current 15 to 24, current 25+ cigarettes/day), total physical activity (continuous, kcal/d), and AHEI 2010 diet quality score (quartiles).
Table 3. Relationship between dietary intakes of branched-chain amino acids (g/d) and invasive breast cancer in the pooled Nurses’ Health Study and Nurses’ Health Study II, by tumor receptor subtypes

Tumor receptor subtype	Cumulative average dietary intake of energy-adjusted branched-chain amino acids (g/d)								
		Q1	Q2	Q3	Q4	Q5	\(P_{\text{trend}}\)		
ER+									
Total BCAAs									
Cases (Person Years)	1361(713620)	1457(753436)	1469(753569)	1383(741817)	1335(684615)	0.59			
Multivariable model, HR (95% CI)	1.00 (0.93-1.08)	1.02 (0.95-1.10)	0.98 (0.91-1.06)	1.04 (0.96-1.12)	0.97 (0.90-1.04)	1.00 (0.93-1.08)	0.97 (0.89-1.04)	1.02 (0.94-1.10)	0.59
Isoleucine									
Cases (Person Years)	1406(723175)	1440(759106)	1483(756888)	1383(739735)	1293(668154)	0.73			
Multivariable model, HR (95% CI)	0.97 (0.90-1.04)	1.00 (0.93-1.08)	0.97 (0.89-1.04)	1.02 (0.94-1.10)	1.02 (0.94-1.10)	0.59			
Leucine									
Cases (Person Years)	1364(710153)	1437(750504)	1473(751382)	1373(742711)	1358(692306)	0.52			
Multivariable model, HR (95% CI)	0.98 (0.91-1.06)	1.02 (0.94-1.10)	0.96 (0.89-1.04)	1.04 (0.96-1.12)	1.02 (0.94-1.10)	0.59			
Valine									
Cases (Person Years)	1373(711134)	1438(751477)	1443(753063)	1421(743404)	1330(687980)	0.78			
Multivariable model, HR (95% CI)	0.98 (0.91-1.06)	0.99 (0.92-1.07)	0.99 (0.92-1.07)	1.01 (0.94-1.10)	1.02 (0.94-1.10)	0.59			
ER-									
Total BCAAs									
Cases (Person Years)	299(714659)	319(754464)	367(754643)	310(742831)	288(685605)	0.59			
Multivariable model, HR (95% CI)	1.00 (0.86-1.18)	1.17 (1.00-1.36)	1.01 (0.86-1.19)	1.04 (0.88-1.23)	1.04 (0.88-1.23)	0.59			
Isoleucine									
Cases (Person Years)	308(724242)	314(760134)	370(757970)	314(740757)	277(669099)	0.67			
Multivariable model, HR (95% CI)	0.96 (0.82-1.13)	1.15 (0.99-1.34)	1.01 (0.86-1.18)	1.01 (0.85-1.20)	1.01 (0.85-1.20)	0.59			
Leucine									
Cases (Person Years)	305(711181)	316(751519)	350(752473)	327(743709)	285(693320)	0.78			
Multivariable model, HR (95% CI)	0.97 (0.83-1.14)	1.09 (0.93-1.27)	1.04 (0.88-1.22)	0.99 (0.84-1.17)	0.99 (0.84-1.17)	0.59			
Valine									
Cases (Person Years)	293(712190)	323(752479)	361(754109)	316(744451)	290(688972)	0.41			
Multivariable model, HR (95% CI)	1.04 (0.88-1.21)	1.17 (1.00-1.37)	1.05 (0.89-1.23)	1.07 (0.90-1.26)	1.04 (0.88-1.21)	0.41			
	Cases (Person Years)	Multivariable model, HR (95% CI)							
----------------	----------------------	----------------------------------							
Isoleucine									
Cases (Person Years)	1100(713865)	1206(753675)	1201(753833)	1153(742035)	1098(684832)				
Multivariable model, HR (95% CI)	1.03 (0.94-1.11)	1.03 (0.95-1.12)	1.01 (0.92-1.10)	1.06 (0.97-1.15)	0.38				
Leucine									
Cases (Person Years)	1136(723429)	1188(759343)	1219(757147)	1151(739953)	1064(668367)				
Multivariable model, HR (95% CI)	0.99 (0.91-1.07)	1.02 (0.94-1.11)	0.99 (0.91-1.08)	1.04 (0.95-1.13)	0.45				
Valine									
Cases (Person Years)	1104(710394)	1185(750745)	1202(751653)	1149(742923)	1118(692525)				
Multivariable model, HR (95% CI)	1.00 (0.92-1.09)	1.00 (0.92-1.10)	0.99 (0.93-1.11)	1.03 (0.95-1.13)	0.32				
ER+/PR-									
Total BCAAs									
Cases (Person Years)	228(714730)	231(754555)	233(754760)	207(742922)	214(685679)				
Multivariable model, HR (95% CI)	0.95 (0.79-1.15)	0.99 (0.82-1.19)	0.89 (0.74-1.08)	1.00 (0.83-1.22)	0.80				
Isoleucine									
Cases (Person Years)	235(724318)	233(760216)	231(758094)	208(740851)	206(669166)				
Multivariable model, HR (95% CI)	0.94 (0.78-1.13)	0.95 (0.79-1.15)	0.89 (0.73-1.07)	0.97 (0.80-1.19)	0.65				
Leucine									
Cases (Person Years)	227(711260)	232(751608)	237(752557)	200(743836)	217(693385)				
Multivariable model, HR (95% CI)	0.96 (0.80-1.15)	1.01 (0.83-1.21)	0.86 (0.71-1.05)	1.01 (0.83-1.23)	0.81				
Valine									
Cases (Person Years)	230(712253)	228(752577)	230(754229)	213(744546)	212(689040)				
Multivariable model, HR (95% CI)	0.93 (0.77-1.12)	0.96 (0.80-1.15)	0.90 (0.75-1.09)	0.97 (0.79-1.17)	0.65				
ER-PR-									
Total BCAAs									
Cases (Person Years)	259(714702)	289(754494)	319(754689)	276(742861)	261(685635)				
Multivariable model, HR (95% CI)	1.06 (0.90-1.26)	1.18 (1.00-1.39)	1.05 (0.88-1.25)	1.10 (0.92-1.32)	0.31				
Isoleucine									
Cases (Person Years)	268(724285)	281(760168)	327(758009)	276(740792)	252(669127)				
Multivariable model, HR (95% CI)	1.00 (0.85-1.19)	1.18 (1.00-1.39)	1.03 (0.86-1.22)	1.07 (0.90-1.29)	0.36				
Leucine									
Cases (Person Years)	265(711223)	286(751548)	306(752513)	290(743746)	257(693350)				
Multivariable model, HR (95% CI)	1.02 (0.86-1.21)	1.10 (0.93-1.30)	1.07 (0.90-1.27)	1.04 (0.87-1.24)	0.52				
BCAAs	Subcategory	Cases (Person Years)	Multivariable model, HR (95% CI)						
-------	-------------	----------------------	----------------------------------						
Valine		253(712234)	1.10 (0.92-1.30)						
Luminal A	Total BCAAs	292(752509)	1.19 (1.00-1.40)						
		314(754156)	1.10 (0.92-1.31)						
		284(744479)	1.13 (0.94-1.35)						
		261(689003)	0.20						
	Isoleucine	275(724278)	1.13 (0.96-1.33)						
	Leucine	275(724278)	0.96 (0.76-1.20)						
	Valine	275(724278)	0.20						
Luminal B	Total BCAAs	328(754689)	1.14 (0.96-1.35)						
		314(740745)	1.12 (0.93-1.30)						
		310(742824)	1.10 (0.93-1.29)						
		314(740745)							
		266(714692)	1.08 (0.91-1.27)						
	Isoleucine	266(714692)	1.15 (0.97-1.35)						
	Leucine	266(714692)	0.98 (0.78-1.23)						
	Valine	266(714692)	1.14 (1.03-1.45)						
HER2	Total BCAAs	316(754689)	0.98 (0.78-1.23)						
		314(740745)	1.10 (0.93-1.29)						
		311(744448)	1.12 (0.95-1.32)						
		311(744448)	1.18 (0.99-1.40)						
	Isoleucine	316(754689)	1.08 (0.87-1.34)						
	Leucine	316(754689)	0.96 (0.76-1.20)						
	Valine	316(754689)	1.22 (1.03-1.45)						
		154(714788)	1.07 (0.86-1.33)						
	Isoleucine	154(714788)	1.05 (0.84-1.31)						
	Leucine	154(714788)	0.98 (0.78-1.23)						
	Valine	154(714788)	1.19 (0.94-1.49)						
		172(685595)	0.25						
		175(754608)	1.03 (0.83-1.29)						
	Isoleucine	175(754608)	0.98 (0.78-1.23)						
	Leucine	175(754608)	1.19 (0.94-1.49)						
	Valine	175(754608)	0.34						
		167(754829)	1.03 (0.83-1.29)						
	Isoleucine	167(754829)	0.98 (0.78-1.23)						
	Leucine	167(754829)	1.19 (0.94-1.49)						
	Valine	167(754829)	0.34						
		154(742978)	1.07 (0.86-1.33)						
	Isoleucine	154(742978)	1.05 (0.84-1.31)						
	Leucine	154(742978)	0.98 (0.78-1.23)						
	Valine	154(742978)	1.19 (0.94-1.49)						
		172(685714)	0.25						
Amino Acid	Cases (Person Years)	Multivariable model, HR (95% CI)							
------------	---------------------	----------------------------------							
Leucine	34(724508)	1.25 (0.79-1.97)							
		33(758292)	0.99 (0.60-1.61)						
		36(741008)	1.07 (0.66-1.74)						
		31(669337)	1.09 (0.65-1.81)						
Valine	33(711439)	1.26 (0.79-2.00)							
		44(760394)	1.15 (0.71-1.86)						
		33(758292)	1.16 (0.72-1.88)						
		36(741008)	1.02 (0.60-1.72)						
Basal-like	32(712441)	1.31 (0.82-2.09)							
Total BCAAs	55(714894)	1.20 (0.74-1.94)							
Isoleucine	54(724492)	1.16 (0.72-1.88)							
		53(754726)	1.13 (0.78-1.64)						
		56(754938)	1.11 (0.76-1.64)						
Leucine	57(711420)	0.89 (0.60-1.31)							
		52(751780)	1.15 (0.80-1.66)						
		54(752744)	1.10 (0.75-1.60)						
Valine	53(712420)	0.87 (0.59-1.27)							
		53(752745)	1.11 (0.77-1.60)						
		61(754400)	1.04 (0.71-1.53)						

*Estimates were derived from Cox proportional hazards regression models adjusting for age (continuous), height (continuous), race and ethnicity (non-Hispanic white vs. other), BMI at age 18 (<20.0, 20.0-21.9, 22.0-23.9, 24.0-26.9, 27.0+ kg/m²), body weight change since age 18 (continuous, kg), family history of breast cancer (yes/no), history of benign breast disease (yes, no), oral contraceptive use (never, past, current), age at menarche (<12, 12, 13, 14+ years), menopausal status and hormone therapy (HT) use (premenopausal, postmenopausal/unknown -- never HT use, postmenopausal/unknown -- past HT use, postmenopausal/unknown -- current HT use, postmenopausal/unknown -- missing HT use, missing both menopause status and HT use), age at natural menopause (continuous), parity and age at first birth (nulliparous, ≤2 -- <25.0 years, ≤2 -- 25.0 to 29.9 years, ≤2 -- ≥30.0 years, 3+ -- <25.0 years, 3+ -- 25.0 to 29.9 years, 3+ -- ≥30.0 years), total breastfeeding (0, 1 to 6, 7 to 12, ≥12 months),.
alcohol consumption (0, <5, 5 to 15, 15+ g/day), smoking status (never, past, current 1 to 14, current 15 to 24, current 25+ cigarettes/day), total physical activity (continuous, kcal/d), and AHEI 2010 diet quality score (quartile)