Faster Separators for Shallow Minor-Free Graphs via Dynamic Approximate Distance Oracles

Christian Wulff-Nilsen *

July 28, 2014

Abstract

Plotkin, Rao, and Smith (SODA’97) showed that any graph with \(m \) edges and \(n \) vertices that excludes \(K_h \) as a depth \(O(\ell \log n) \)-minor has a separator of size \(O(n/\ell + \ell h^2 \log n) \) and that such a separator can be found in \(O(mn/\ell) \) time. A time bound of \(O(m + n^{d+\epsilon}/\ell) \) for any constant \(\epsilon > 0 \) was later given (W., FOCS’11) which is an improvement for non-sparse graphs. We give three new algorithms. The first has the same separator size and running time \(O(\text{poly}(h)\ell m^{1+\epsilon}) \). This is a significant improvement for small \(h \) and \(\ell \). If \(\ell = \Omega(n^{\epsilon'}) \) for an arbitrarily small chosen constant \(\epsilon' > 0 \), we get a time bound of \(O(\text{poly}(h)\ell n^{1+\epsilon'}) \). The second algorithm achieves the same separator size (with a slightly larger polynomial dependency on \(h \)) and running time \(O(\text{poly}(h)(\sqrt{\ell n^{1+\epsilon}} + n^{2+\epsilon}/\ell^{3/2})) \) when \(\ell = \Omega(n^{\epsilon'}) \). Our third algorithm has running time \(O(\text{poly}(h)\sqrt{\ell n^{1+\epsilon}}) \) when \(\ell = \Omega(n^{\epsilon'}) \). It finds a separator of size \(O(n/\ell) + \tilde{O}(\text{poly}(h)\ell^{1/4}) \) which is no worse than previous bounds when \(h \) is fixed and \(\ell = \tilde{O}(n^{1/4}) \). A main tool in obtaining our results is a novel application of a decremental approximate distance oracle of Roditty and Zwick.

1 Introduction

Given an undirected graph with a non-negative vertex weight function, a separator of \(G \) is a subset of vertices whose removal partitions \(G \) into connected components none of which contain more than a \(c \)-fraction of the total vertex weight of the graph, where \(c < 1 \) is a constant. Clearly, any graph contains a separator (the entire vertex set). The goal is to find separators of small size.

A celebrated theorem of Lipton and Tarjan [4] states that every planar graph of size \(n \) has an \(O(\sqrt{n}) \)-size separator which can be found in linear time. Alon, Seymour, and Thomas [1] generalized this to minor-free graphs.

In this paper we study the bigger class of shallow minor-free graphs. A depth \(\ell \)-minor of a graph is a minor where every vertex corresponds to a contracted subgraph of radius at most \(\ell \). This class was introduced by Plotkin, Rao, and Smith [6]. They gave applications of these graphs to, e.g., geometry. Shallow minors are used to distinguish between somewhere and nowhere dense graphs [5].

*Department of Computer Science, University of Copenhagen, koolooz@di.ku.dk, http://www.diku.dk/~koolooz/.

We use \(\tilde{O} \)-notation instead of \(O \)-notation when suppressing polylogarithmic factors.
Plotkin, Rao, and Smith showed that an n-vertex graph excluding K_h as a depth $O(\ell \log n)$-minor has a separator of size $O(n/\ell + \ell h^2 \log n)$. They gave an algorithm with $O(mn/\ell)$ running time which either outputs a depth $O(\ell \log n)$-minor or a separator of size $O(n/\ell + h^2 \ell \log n)$. For non-sparse graphs, running time was improved to $O(n^{2+\epsilon}/\ell)$ for an arbitrarily small constant $\epsilon > 0$ with only a constant-factor increase (depending on ϵ) in the separator size [11].

We give three new algorithms to find separators in shallow minor-free graphs. The first achieves the same separator size as in [8] but with a running time of $O(h\ell m^{1+\epsilon} + h^2n \log n)$ for an arbitrarily small constant $\epsilon > 0$. For small h and ℓ, this is near-linear time and a significant improvement over the near-quadratic time in [11]. If $\ell = \Omega(n^{\epsilon'})$ for an arbitrarily small constant $\epsilon' > 0$, m can be replaced by n and h can be replaced by $\text{poly}(h)$ in the time bound due to sparsity of the graph. Our second algorithm achieves essentially the same separator size in time $O(\text{poly}(h)(\sqrt{n}^{1+\epsilon} + n^{2+\epsilon}/\ell^{3/2}))$ when $\ell = \Omega(n^{\epsilon'})$. The special case $\ell = \sqrt{n}$ gives the same time bound for minor-free graphs as in [11]. Our third algorithm is the fastest, achieving a running time of $O(\text{poly}(h)\sqrt{n}^{1+\epsilon})$ when $\ell = \Omega(n^{\epsilon'})$. It finds a separator of size $O(n/\ell) + \tilde{O}(\text{poly}(h)\ell\sqrt{n})$ which asymptotically is no worse than the size achieved in [8] when $\ell = \tilde{O}(n^{1/4})$ and $h = O(1)$. A main tool to achieve these new time bounds is a novel application of a dynamic approximate distance oracle of Roditty and Zwick [8]. We believe this connection is interesting in itself and should further motivate the study of dynamic distance oracles, an area which has only recently received attention from the research community.

The organization of the paper is as follows. We first give basic definitions, notation, and results in Section 2. Then we give a generic algorithm in Section 3 which is quite similar to that of Plotkin, Rao, and Smith. All our algorithms are implementations of this generic algorithms. Then our three algorithms are given in Sections 4, 5, and 6 respectively. Finally, we conclude in Section 7. Some details have been moved to the appendix.

2 Preliminaries

We consider undirected graphs only. For a graph G, $V(G)$ resp. $E(G)$ denotes the vertex set resp. edge set of G and for a subset X of V, $G[X]$ is the subgraph of G induced by X. Connected components are referred to simply as components. For vertices $u, v \in V$, $d_G(u, v)$ denotes the shortest path distance between u and v in G. This definition is extended to edge-weighted graphs.

Consider a graph $G = (V, E, w : V \to \mathbb{R})$ with a non-negative vertex weight function w. For any subset X of V, let $w(X) = \sum_{v \in X} w(v)$. A separator of G is a subset S of V such that for each component C of $G[V \setminus S]$ we have $w(C) \leq cw(V)$, for some constant $c < 1$.

Given graphs G and H, H is a minor of G if H can be obtained from a subgraph of G by edge contractions. Otherwise, we say that G is H-minor-free or that G excludes H as a minor. If H is a minor of G such that the subgraphs of G corresponding to vertices of H have radius at most ℓ, H is a minor of depth ℓ. If not, G excludes H as a minor of depth ℓ. We only consider complete excluded minors, i.e., H is of the form K_h. For our application, this is without loss of generality since if G excludes a minor H (of some depth), it also excludes K_h as a minor (of some depth), where $h = |V(H)|$; furthermore, our bounds only have small polynomial dependency on the size of the excluded minor. For integers $h \geq 1$ and $\ell \geq 0$, let $G_{h, \ell}$ denote the set of graphs that exclude K_h as a minor of depth ℓ. We have the following simple lemma.
Lemma 1. For any \(h, \mathcal{G}_{h,0} \supseteq \mathcal{G}_{h,1} \supseteq \mathcal{G}_{h,2} \supseteq \ldots \).

An essential tool in our algorithms is a decremental approximate distance oracle of Roditty and Zwick which can report approximate distances for close vertex pairs \([8]\). The following lemma states the performance of this oracle.

Lemma 2. Let \(k, d \in \mathbb{N} \) and let \(G \) be a given graph with integer edge weights and with \(m \) edges and \(n \) vertices. There is a data structure of size \(O(m + n^{1+1/k}) \) which can be maintained under edge deletions in \(G \) in \(O(dmn^{1/k}) \) total expected time such that after each edge deletion, for any vertices \(u, v \) in \(G \), an estimate \(\tilde{d}_G(u, v) \) of the shortest path distance \(d_G(u, v) \) can be reported in \(O(k) \) time satisfying the following: If \(d_G(u, v) \leq d \) then \(d_G(u, v) \leq \tilde{d}_G(u, v) \leq (2k-1)d_G(u, v) \) and if \(d_G(u, v) > d \) then \(d_G(u, v) \leq \tilde{d}_G(u, v) \). An \(uv \)-path achieving this distance estimate can be reported in constant time per vertex, starting from either \(u \) or \(v \).

The last part of the lemma is not stated in \([8]\) but it follows immediately from the observation that the oracle maintains cluster structures (see definition in \([10]\)) and paths can be traversed in constant time per vertex using these.

3 A Generic Algorithm

All of our algorithms are implementations of the same generic algorithm (except the algorithm in Section 5 which implements a slight variant) and we refer to it as \texttt{genericalg}(\(G = (V, E, w : V \to \mathbb{R}), h, \ell \)); see pseudocode in Figure 1. It is similar to that of Plotkin, Rao, and Smith \([6]\) but with some subtle differences that we come back to later. We refer to \([6]\) for a less compact description. Subsets \(V', M, V_r, B, \) and \(A \) of \(V \) are maintained where initially \(V' = V \) and \(M = V_r = B = A = \emptyset \). The algorithm attempts to form a separator of \(G \) in a number of iterations of the while-loop in lines 2–17. Set \(M \) is the union of vertex sets of trees and \(\mathcal{M} \) denotes the set of these trees. At any given time, the size \(p \) of \(\mathcal{M} \) is at most \(h \) and the trees of \(\mathcal{M} \) form the minor \(K_p \) of depth \(O(\ell \log n) \) in \(G \). At the beginning of each iteration, trees that are no longer incident to \(V' \) in \(G \) are removed from \(\mathcal{M} \) (lines 4–5). Set \(A \) is monotonically growing and consists at any given time of the vertices that previously belonged to \(M \) but have since been removed from this set. Set \(V' \) is a monotonically shrinking set and consists of vertices yet to be processed. The algorithm terminates if each component of \(G[V'] \) has vertex weight at most \(2w(V) / 3 \).

In the following, let \(p = 2\lceil \ell \ln n \rceil \). In each iteration, the algorithm attempts to find a tree \(T \) in \(G[V \setminus A] \) which is rooted at an arbitrary \(u \in V' \), has radius at most \(C \rho \) for a constant \(C \geq 1 \), and is incident in \(G \) to all trees in \(\mathcal{M} \). If such a tree is found, the trees in \(\mathcal{M} \cup \{ T \} \) form the minor \(K_{p+1} \) of depth \(O(\ell \log n) \) in \(G \). In this case, \(T \) is added to \(\mathcal{M} \). If \(p + 1 = h \), the algorithm outputs the \(p + 1 \) trees found as they constitute a certificate that \(G \) contains \(K_h \) as a minor of depth \(O(\ell \log n) \).

Suppose such a tree \(T \) could not be found. Then it is assumed in line 10 that a vertex \(v \in V' \) incident in \(G \) to \(M \) exists such that \(d_{G[V']}(u, v) > \rho \). (this assumption holds for the algorithm in \([6]\) with \(C = 1 \) since in this case there is a tree \(T' \in \mathcal{M} \) such that for any \(v \in V' \) incident to \(T' \) in \(G \), \(d_{G[V']}(u, v) > C \rho \).) Then either \(u \) or \(v \) is picked; call it \(w \). A BFS tree is grown from \(w \) in \(G[V'] \) until some layer \(N \) is small compared to \(S \) and \(V' \setminus (S \setminus N) \), where \(S \) is the set of vertices explored so far. More precisely, the process stops if \(|N| \leq |S'|/\ell \), \(^2\) Here we use a similar naming convention as in \([6]\).
Algorithm genericalg\((G = (V, E, w : V \rightarrow \mathbb{R}), h, \ell)\)

1. initialize \(V' = V\), \(M = \mathcal{M} = V_r = B = A = \emptyset\), and \(\rho = 2[\ell \ln n]\)
2. while there is a component \(X\) of \(G[V']\) with \(w(X) > \frac{2}{3}w(V)\) and \(|\mathcal{M}| < h\)
3. update \(V'\) to \(X\) and move any remaining components to \(V_r\)
4. for each \(T \in \mathcal{M}\) that is not incident to \(V'\) in \(G\)
 5. \(\mathcal{M} \leftarrow \mathcal{M} \setminus \{T\}\), \(M \leftarrow M \setminus V(T)\), \(V_r \leftarrow V_r \cup V(T)\), \(A \leftarrow A \cup V(T)\)
6. let \(u\) be any vertex in \(V'\)
7. if a tree \(T\) is identified in \(G[V \setminus (M \cup A)]\) rooted at \(u\), with radius \(\leq C\rho\)
 (for some constant \(C \geq 1\)) and incident in \(G\) to all trees in \(\mathcal{M}\)
 8. update \(\mathcal{M} \leftarrow \mathcal{M} \cup \{T\}\), \(M \leftarrow M \cup V(T)\), and \(V' \leftarrow V' \setminus V(T)\)
9. else // it is assumed that \(v\) can be found in line 10
10. pick a \(v \in V'\) which is incident in \(G\) to \(M\) such that \(d_{G[V']} (u, v) > \rho\)
11. letting \(w\) be any of \(u\) and \(v\), start growing a BFS tree in \(G[V']\) from \(w\)
12. for each BFS layer \(N\) explored
 13. let \(S\) be the set of vertices explored in all layers so far
14. let \(S'\) be the set of smaller vertex weight among \(S\) and \(V' \setminus (S \setminus N)\)
15. if \(|N| \leq |S'|/\ell\)
 16. update \(B \leftarrow B \cup N\), \(V_r \leftarrow V_r \cup S' \setminus N\), and \(V' \leftarrow V' \setminus S'\)
 17. terminate the BFS
18. if \(|\mathcal{M}| = h\) then output \(\mathcal{M}\) as a \(K_h\)-minor of \(G\) of depth \(O(\ell \log n)\)
19. else output \(M \cup B\) as a separator of \(G\)

Figure 1: A generic algorithm for either finding a separator or reporting \(K_h\) as a depth \(O(\ell \log n)\)-minor in a vertex-weighted graph \(G = (V, E, w)\) where \(n = |V|\).

where \(S'\) is the set of smaller vertex weight among \(S\) and \(V' \setminus S\). Using the same analysis as in [6], such a layer \(N\) will eventually be found. For assume otherwise. Since \(d_{G[V']} (u, v) > \rho\), more than \(\rho\) layers are explored by the BFS. For each layer explored, either \(|S|\) grows by at least a factor of \(1 + 1/\ell\) or \(|V' \setminus (S \setminus N)\)| is reduced by at least a factor of \(1 + 1/\ell\). Since \((1 + 1/\ell)^{\rho/2} \geq n\), after \(\rho\) layers, either \(S\) contains at least \(n\) vertices or \(V' \setminus (S \setminus N)\) contains less than 1 vertex, which is a contradiction.

Correctness: To prove correctness of the generic algorithm (under the assumption stated in line 9), note that the output in line 18 is indeed a \(K_h\)-minor of depth \(O(\ell \log n)\). We need to show that in line 19, \(M \cup B\) is a separator. It is easy to see that \(V'\) is disjoint from \(V_r \cup M \cup B\) during the algorithm. Consider the final iteration of the while-loop. At the beginning of line 7, \(w(V') > \frac{2}{3}w(V)\) so \(w(V_r) < w(V)/3\). If line 8 is executed then all vertices that are removed from \(V'\) are added to the set output in line 19. If lines 10–17 are executed then let \(W' > \frac{2}{3}w(V)\) be the vertex weight of \(V'\) just before executing line 10 and let \(W_r\) be the vertex weight of \(V_r\) just after executing line 17. By definition of \(S'\), \(W_r \leq (w(V) - W') + W'/2 = w(V) - W'/2 < \frac{2}{3}w(V)\). Since this is the final iteration, we also have that each component of \(G[V']\) has vertex weight less than \(\frac{2}{3}w(V)\) at the end of the iteration. Hence, \(M \cup B\) is a separator of \(G\) in line 19.
The main difference between the above generic algorithm and that in [6] is that the former searches for a tree in \(G[V \setminus (M \cup A)] \) and allows \(M \) to overlap with \(B \) and \(V_r \) whereas the latter does not maintain \(A \) and instead searches for a tree in \(G[V'] \), ensuring that \((V', M, V_r, B) \) is a partition of \(V \). This difference will be important for our algorithm in Section 3. Unlike [6], we also allow constant \(C \) in line 7 in order to facilitate the use of approximate distances.

It is easy to see that if each tree added to \(M \) in line 5 of \text{genericalg}(G = (V, E), h, \ell) \) contains at most \(s \) vertices and if a separator is output in line 19, its size is \(O(hs + n/\ell) \). Note that if a tree \(T \) exists in line 7 of \text{genericalg}(G = (V, E), h, \ell) \), we may pick it such that its size is \(O(h\ell \log n) \). This then gives a separator of size \(O(\ell^2 \ell \log n + n/\ell) \), matching that in [6]. For our algorithm in Section 6 we will need to allow a bigger size of each tree \(T \). This will increase the size of the separator but only for large values of \(\ell \).

4 A Fast Separator Theorem via Distance Oracles

For the description of our first algorithm, it will prove useful to regard \(M \) as consisting of exactly \(h-1 \) trees at any given time; this is done by permitting trees with empty vertex sets. Each tree of \(M \) is assigned a unique index between 1 and \(h-1 \) and we let \(T_i \) denote the tree with index \(i \). From the moment a tree is added to \(M \) until it leaves \(M \) or the algorithm terminates, the index of that tree is fixed. We refer to the trees of \(M \) with non-empty vertex sets as proper trees. Each of them will have diameter \(O(\ell \log n) \) and size \(O(\ell h \log n) \). Thus, the size of the separator output in line 19 is \(O(h^2 \ell \log n + n/\ell) \).

For \(1 \leq i \leq h-1 \), we maintain a decremental approximate distance oracle \(D_i \) satisfying the conditions in Lemma 2 with \(k = \lceil 1/\epsilon \rceil \) and \(d = 4kp \). Denote by \(V'_i \) the set \((V \setminus (M \cup A)) \cup V(T_i) \). At any point, \(D_i \) is an approximate distance oracle for the graph with vertex set \(V \) and containing all edges of \(G[V'_i] \) except those with both endpoints in \(T_i \) that do not belong to \(T_i \).

We denote this graph by \(G'_i = (V, E'_i) \). Note that the vertex set is fixed to \(V \) since \(D_i \) does not support vertex deletions.

4.1 Identifying a tree of small diameter

Now, consider an iteration of the while-loop of \text{genericalg}. To determine whether to execute line 8 or lines 10–17, we do as follows. Assume that at least one tree in \(M \) is proper (otherwise, a tree satisfying the conditions in line 7 can easily be found) and let \(i_{\text{min}} \) be the smallest index of such a tree. Pick \(u \) as any vertex of \(V' \) incident in \(G \) to \(T_{i_{\text{min}}} \). For each proper \(T_i \in M \) with \(i > i_{\text{min}} \) and for each \(v \in V(T_i) \), we query \(D_i \) for a distance estimate from \(u \) to \(v \) in \(G'_i \).

Let \(v_i \in V(T_i) \) be a vertex \(v \) achieving a minimum estimate and denote this estimate by \(\tilde{\delta}_i \).

In the following, we consider the following two possible cases:

1. \(\tilde{\delta}_i \leq d \) for all \(i > i_{\text{min}} \) for which \(T_i \) is proper,
2. \(\tilde{\delta}_i > d \) for some \(i > i_{\text{min}} \) for which \(T_i \) is proper.

We will show how a tree satisfying the conditions in line 7 can be found if we are in case 1 and that a vertex \(v \) satisfying the conditions in line 10 can be found if we are in case 2.

Assume case 1 first. We traverse the approximate \(uv \) path from \(u \) until reaching the first vertex which is incident in \(G \) to \(T_i \). Note that the subpath traversed is contained in \(G[V \setminus (M \cup A)] \). By Lemma 2, each traversal takes \(O(d) \) time and since each approximate distance query can be done in \(O(1) \) time, \(v_i \) is found in \(O(|V(T_i)|) = O(hd) \) time. Summing
over all i, we obtain in $O(h^2d)$ time a tree T in $G[V \setminus (M \cup A)]$ rooted at u of radius at most $d = 4kp$ and of size $O(hd)$ which is incident in G to each proper tree of M (T is in the union of the paths traversed). This tree satisfies the conditions in line 7 with $C = 4k$. We may assume that T contains at least d vertices; if not, grow it by adding additional incident vertices to it from $V \setminus (M \cup A)$ while keeping the radius at most d.

Having found T, we check if there is an index available for T in M, i.e., an index i between 1 and $h-1$ such that T_i is not proper. If there is no such index, G has K_h as a minor of depth $O(\ell \log n)$ and the algorithm outputs T and the collection of proper trees in M as a certificate of this. Otherwise, T_i is set to T, thereby adding it to M and making it proper, and $V(T)$ is removed from V' and added to M. This update may cause some other proper trees $T_j \in M$ to no longer be incident to V' in G and each of these trees need to be moved from M to V_r in the next iteration (if any). For this to happen for such a tree T_j, each edge of G_j' incident to T_j must either belong to T_j or be incident to the set V'' of vertices that will be removed from V' in line 3 of the next iteration. Note that since V' is a monotonically decreasing set, we can afford to visit the set E'' of edges of G which are incident to V'' and mark them. Now for each proper T_j, $j \neq i$, we visit all its vertices and check if it has any incident non-tree edges in E_j' which are not marked; this takes $O(|T_j| + |E''|) = O(hd + |E''|)$ time. If there is no such vertex, $V(T_j)$ is moved from M to V_r and T_j is updated to be an empty tree in M. Over all j, this takes $O(h^2d + h|E''|)$ time. The latter term is paid for by initially putting h credits on each edge of E.

To update the approximate distance oracles accordingly, consider first moving $V(T) = V(T_i)$ from V' to M. This amounts to deleting from G'_j all edges incident to $V(T_i)$, for each $j \neq i$. From D_i, we need to delete edges with both endpoints in T_i that do not belong to T_i. We identify these by simply visiting all edges incident to T_i since this can be paid for by the removal of $V(T_i)$ from V'. For a tree T_j whose vertex set needs to be moved from M to V_r, we update D_j by deleting all edges incident to $V(T_j)$.

By Lemma 2, total time to maintain all $h-1$ distance oracles is $O(hd n^{1/k}) = O(h \ell n^\epsilon \log n)$. Since each tree removed from V' has size $\Omega(d)$, total additional time for the above is $O(hm + (n/d)h^2d) = O(hm + h^2n)$.

4.2 Identifying a small separator for distant vertex pairs

The following lemma considers case 2 above.

Lemma 3. With the above definitions, suppose $\delta_i > d$ for some $i > i_{\min}$ where T_i is proper. Then the shortest path distance in $G[V']$ from u to any vertex of V' incident in G to T_i is at least $d/(2k - 1) - 1$.

Proof. Let w_i be a vertex of V' incident in G to a vertex v_i in T_i and assume for contradiction that $d_{G[V']}(u, w_i) < d/(2k - 1) - 1$. We have

$$d_{G'_i}(u, v_i) \leq d_{G'_i}(u, w_i) + 1 \leq d_{G[V']}(u, w_i) + 1 < d/(2k - 1)$$

so $\delta_i > d > (2k - 1)d_{G'_i}(u, v_i)$. By Lemma 2, $d_{G'_i}(u, v_i) > d$, contradicting that $d_{G'_i}(u, v_i) < d/(2k - 1) \leq d$. \qed

Let i be an index satisfying Lemma 3. The lemma shows that if we are in case 2 above, the condition in line 10 holds since for any vertex $v \in V'$ incident in G to T_i, $d_{G[V']}(u, v) > \ldots$
In this section, we speed up the result in Theorem 1 for large 5 Speed-up using Bootstrapping and Spanners

Theorem 1. Given a graph G with m edges and n vertices and given $h, \ell \in \mathbb{N}$ and $\epsilon > 0$, there is an algorithm with $O(h\ell m^{1+\epsilon} + h^2 n \log n)$ running time which either gives a certificate of K_h as a depth $O(\ell \log n)$-minor in G or outputs a separator of G of size $O(h^2 \ell \log n + n/\ell)$.

In the appendix, we show that when $\ell = \Omega(n^{\epsilon'})$ for an arbitrarily small chosen constant $\epsilon' > 0$ then $m = O(\text{poly}(h)n)$. In this case, our algorithm can be modified to initially check if G exceeds this edge bound and so reject and halt. Hence, we can replace m by n in Theorem 1.

5 Speed-up using Bootstrapping and Spanners

In this section, we speed up the result in Theorem 1 for large ℓ using a boot-strapping technique presented in [11]. Note that the running time in Theorem 1 grows with ℓ. The idea for the speed-up is to apply the theorem for a smaller depth than ℓ (which is possible by Lemma 1) to obtain large separators fast and to use these separators to build a compact representation of certain subgraphs of G which can be used to give a fast implementation of genericalg for the actual depth ℓ. To simplify our bounds, we assume here and in the next section that $h = O(1)$ and $\ell = \Omega(n^{\epsilon'})$ for an arbitrarily small constant $\epsilon' > 0$. The actual dependency on h is a low-degree polynomial and for smaller values of ℓ, we can apply our first algorithm. We have moved the details for our second algorithm to the appendix since the technique is basically the same as in [11]. The performance of our second algorithm is stated in the following theorem.

Theorem 2. Given a graph G with n vertices and given $h, \ell \in \mathbb{N}$ and constants $\epsilon, \epsilon' > 0$ such that $h = O(1)$ and $\ell = \Omega(n^{\epsilon'})$, there is an algorithm with $O(n^{1+\epsilon} \sqrt{\ell} + n^{2+\epsilon}/\ell^{3/2})$ running time which either correctly reports that G contains K_h as a depth $O(\ell \log n)$-minor or outputs a separator of G of size $O(\ell \log n + n/\ell)$.
6 Combining Spanners and Distance Oracles

Our third and final algorithm combines techniques from the other two. The overall idea is to maintain decremental distance oracles as in the first algorithm but for a graph of sublinear size consisting of spanners as in the second algorithm. However, there are several obstacles that we need to overcome to handle this, most notably that maintaining a sublinear-size graph representation require edge insertions in addition to deletions, something that the oracles do not support.

First, we give some definitions and results that we needed for the second algorithm (see the appendix for more details). For a connected graph \(G = (V,E) \), a cluster (of \(G \)) is a connected subgraph of \(G \). A clustering (of \(G \)) is a collection \(\mathcal{C} \) of clusters of \(G \) whose edge sets form a partition of \(E \). A boundary vertex of a cluster \(C \in \mathcal{C} \) is a vertex that \(C \) shares with other clusters in \(\mathcal{C} \). All other vertices of \(C \) are interior vertices of \(C \). For a subgraph \(C' \) of \(C \), we let \(\delta C' \) denote the set of boundary vertices of \(C \) contained in \(C' \) and we refer to them as the boundary vertices of \(C' \) (w.r.t. \(C \)).

Let \(n \) be the number of vertices of \(G \). For a parameter \(r > 0 \), an \(r \)-clustering (of \(G \)) is a clustering with clusters having a total of \(O(n/\sqrt{r}) \) boundary vertices (counted with multiplicity) and each containing at most \(r \) vertices and \(O(\sqrt{r}) \) boundary vertices. The total vertex size of clusters in an \(r \)-clustering is \(n + O(n/\sqrt{r}) \) and the number of clusters is \(O(n/\sqrt{r}) \).

Lemma 4. Let \(G \) be a vertex-weighted graph with \(m \) edges and \(n \) vertices, let \(h, \ell, \epsilon \in \mathbb{N} \) and \(0 < \epsilon < 1 \) where \(h \) and \(\epsilon \) are constants and where \(\ell = O(\sqrt{n}) \) and \(\ell = \Omega(n^\epsilon) \). For any parameter \(r \in (C\log n, \ell] \) for a sufficiently large constant \(C \), there is an algorithm with \(O(\sqrt{rm^{1+\epsilon}}) \) running time that either gives a certificate that \(G \) contains \(K_h \) as a depth \(O(\ell \log n) \)-minor or outputs an \(r \)-clustering of \(G \).

Corollary 1. Let \(\epsilon > 0 \) be a constant. If \(\ell = \Omega(n^\epsilon) \), any \(n \)-vertex graph excluding \(K_h \) as a depth \(\ell \)-minor has only \(O(\text{poly}(h)n^\epsilon) \) edges.

Lemma 5. For an \(\ell \)-clustering \(\mathcal{C} \), \(\sum_{C \in \mathcal{C}} |C| |\delta C|, \sum_{C \in \mathcal{C}} |\delta C|^3 = O(n\sqrt{\ell}) \).

For a cluster \(C \) and a subset \(B \) of \(\delta C \), consider the complete undirected graph \(D_B(C) \) with vertex set \(B \). Each edge \((u,v)\) in \(D_B(C) \) has weight equal to the weight of a shortest path in \(C \) between \(u \) and \(v \) that does not contain any other vertices of \(\delta C \). We call \(D_B(C) \) the **dense distance graph** of \(C \) (w.r.t. \(B \)). We have \(d_{D_B(C)}(u,v) = d_C(u,v) \) for all \(u,v \in B \). Our algorithm maintains a compact approximate representation of dense distance graphs using a spanner construction for general graphs: For stretch \(\delta \geq 1 \), a **\(\delta \)-spanner** of a graph is a subgraph that preserves all shortest path distances up to a factor of \(\delta \).

Lemma 6. Let \(H \) be an undirected graph with nonnegative edge weights. For any constant \(0 < \epsilon \leq 1 \), a \((1/\epsilon)\)-spanner of \(H \) of size \(O(|V(H)|^{1 + 2\epsilon}) \) can be constructed in linear time.

Now, we give our third and final algorithm. It starts by checking whether \(G \) is sparse. If not, it rejects and halts (Corollary 1). Otherwise, the set \(V_\Delta \) of vertices of degree larger than some value \(\Delta \) are removed. This set has size \(O(n/\Delta) \) and will be added as separator vertices in the end. As we show below, the separator found for the remaining graph will have size \(O(n/\ell) + O(\ell^2 \Delta) \) so we pick \(\Delta = \sqrt{n/\ell} \) to get a separator for the full graph of size \(O(n/\ell) + O(\sqrt{nl}) \). Note that this is not an asymptotic increase over the separator size in \([6]\) when \(\ell = O(n^{1/4}) \). We will give an efficient implementation of algorithm \texttt{genericAlg} to find such a separator in time \(O(n^{1+\epsilon}\sqrt{\ell}) \).
6.1 Mini clusters

In the following, we let G denote the graph after the removal of high-degree vertices. Then the degree of G is bounded by $\Delta = \sqrt{n}/\ell$. We start by computing an ℓ-clustering C' of G. From this, we will obtain a more refined set of mini clusters. Let C be a cluster of C'. In the following, we describe how mini clusters associated with C are formed.

For each interior vertex w of C, let C_w be the subgraph of C reachable from w using paths in which no interior vertices belong to δC. Let C'_1 be the set of subgraphs obtained this way over all $C \in C'$. Notice that they are connected and intersect only in boundary vertices of C. We form the subset C_1 of C'_1 consisting of those subgraphs C_w such that there is a pair of distinct vertices $b_1, b_2 \in \delta C_w$ where $d_{C_w}(b_1, b_2)$ is smallest among all subgraphs of C'_1 that have a path between b_1 and b_2; here we resolve ties by regarding the path with smaller minimum index of an interior vertex (for some arbitrary fixed assignment of indices to V) as the shortest one. We say that (b_1, b_2) is associated with C_w. Note that any pair of boundary vertices is associated with at most one subgraph of C_1.

Let C_2 be the set of edges e such that e has both endpoints in δC for some $C \in C'$. We regard each edge of C_2 as a graph. Let $C = C_1 \cup C_2$ be the set of mini clusters. Note that C is a clustering.

Lemma 7. With the above definitions, if G excludes K_h as a depth $O(\ell \log n)$-minor, the total number of boundary vertices (counted with multiplicity) of mini clusters of a cluster $C \in C'$ is $O(|\delta C| \log |\delta C|)$.

Proof. First, note that each subgraph of each cluster is sparse. If not, it would mean that it does not exclude K_h as a minor and hence (since its vertex size is at most ℓ) that G does not exclude K_h as a minor of depth $\ell - 1 = O(\ell \log n)$.

Let $C_1(C)$ resp. $C_2(C)$ be the set of mini clusters of C_1 resp. C_2 belonging to C. Note that the union of mini clusters of $C_2(C)$ is a subgraph of C with vertex set contained in δC. Since any subgraph of C is sparse, so is this union so the total number of boundary vertices of mini clusters in $C_2(C)$ is $2|C_2(C)| = O(|\delta C|)$.

It remains to bound the total number of boundary vertices of mini clusters in $C_1(C)$. Consider such mini cluster C' and let w be an interior vertex of C'. Growing a BFS tree from w in C', backtracking once a boundary vertex is reached, we get a spanning tree of C' where each boundary vertex is a leaf. The star with center w and with $\delta C'$ as the set of leaves is a minor of C' as it can be obtained from this spanning tree using edge contractions. For $i = 1, \ldots, \lceil \log |\delta C| \rceil$, let S_i be the set of stars with between 2^{i-1} and 2^i leaves over all mini clusters of $C_1(C)$ and let $s_i = |S_i|$. The lemma will follow if we can show that $\sum_{1 \leq i \leq \lceil \log |\delta C| \rceil} s_i 2^i = O(|\delta C| \log |\delta C|)$.

Since mini clusters of $C_1(C)$ intersect only in boundary vertices, the union of stars in any set S_i is a minor of C and hence excludes K_h as a minor. In particular, this union is sparse so $s_i 2^i \leq c(s_i + |\delta C|)$, for some constant c independent of i. Hence, there is a constant I such that $s_{i+1} 2^i \leq 2c|\delta C|$ for all $i \geq I$, implying that $\sum_{i > I} s_i 2^i = O(|\delta C| \log |\delta C|)$. For $i < I$, consider a star $S \in S_i$ and let C_S be the mini cluster that yielded S in the procedure above. There is a pair of distinct leaves b_1 and b_2 of S such that (b_1, b_2) is associated with C_S. Note that there is a path from b_1 to b_2 in C_S such that no interior vertex of this path belongs to any other mini cluster. Thus, picking such a pair for each $S \in S_i$ and regarding it as an edge, we obtain a minor H of C with vertex set contained in δC. Since H excludes K_h as a minor (otherwise C would not), we get $s_i 2^i \leq s_i 2^I = |E(H)| 2^I = O(|\delta C|)$. \hfill\qed
Combining this lemma with Lemma 5 and the definition of ℓ-clustering, we get the following corollary.

Corollary 2. With the set C of mini clusters defined above, if G excludes K_h as a depth $O(\ell \log n)$-minor, $\sum_{C \in C} |\delta C| = \tilde{O}(n/\sqrt{\ell})$ and $\sum_{C \in C} |\delta C| = \tilde{O}(n \sqrt{\ell})$.

Our algorithm will reject and halt if the bounds of Corollary do not hold as then G contains K_h as a depth $O(\ell \log n)$-minor.

6.2 Implementing the generic algorithm

The implementation of `genericalg` is in many ways similar to our first algorithm so we only highlight the differences here. Let S be the graph consisting of the union of spanners $S(C)$ over all mini clusters $C \in C$, where the stretch is chosen to be $6/\epsilon$. We maintain data structures D_i for $1 \leq i \leq h - 1$ with d of order $\ell \ln n$ in Lemma 2 and stretch $6/\epsilon$ and each structure is initialized with graph S. By Lemma 2 and Corollary 2 this takes $O(|E(S)|^{1+\epsilon/3} \ell) = \tilde{O}((n/\sqrt{\ell})^{(1+\epsilon/3)(1+\epsilon/3)} \ell) = O(n^{1+\epsilon/3} \sqrt{\ell})$ time over all deletions. We will use these structures to identify trees in $G[V \setminus (M \cup A)]$. Note that the stretch of the paths obtained from the structures is $36/\epsilon^2 = O(1)$.

A problem with this approach is that $G[V \setminus (M \cup A)]$ may contain parts of mini clusters of C. Approximate paths in a part of a mini cluster C might not be represented by a subgraph of $S(C)$ but each structure D_i only supports edge deletions, not insertions. We handle this by requiring the following invariant: for any mini cluster C, if $V(C) \cap V \setminus (M \cup A) \neq \emptyset$ then $V(C) \subseteq V \setminus (M \cup A)$. If we can maintain this invariant, at any point, distances in $G[V \setminus (M \cup A)]$ between boundary vertices of C can be approximated in a union of spanners of a subset of the mini clusters in C. Hence these distances can be approximated by the structures D_i if we delete all edges of $S(C)$ from them whenever a mini cluster C leaves $G[V \setminus (M \cup A)]$.

In a given iteration, if a tree T is found (line 7) by a data structure D_i, it consists of edges from spanners $S(C)$. By precomputing shortest path trees from each boundary vertex of each mini cluster (which can be done in $\tilde{O}(n \sqrt{\ell})$ time by Corollary 2), we can identify the edges of G that are contained in T in time proportional to their number. Now, to ensure the invariant, we expand T into the mini clusters it intersects. More precisely, for each mini cluster $C \in C$ for which $V(T) \cap \delta C \neq \emptyset$, we expand T to include all interior vertices of C but no vertices in δC that do not already belong to T. This is possible since by definition of mini clusters, there is a spanning tree of C in which every boundary vertex of C is a leaf. This tree expansion ensures the invariant but it comes at a cost of a worse separator size guarantee since trees of the final set M may be larger than in our first algorithm. Consider one such tree. It was obtained by expanding a tree T of size $O(\ell \log n)$ into the mini clusters of C it intersects. By our degree bound, each vertex of T is contained in at most Δ mini clusters each having size $O(\ell)$. Hence, each tree in M has size $O(\ell^2 \Delta \log n) = O(\ell \sqrt{n} \log n)$.

We have shown how trees are efficiently found in our implementation of `genericalg`. Lines 10–17 are implemented exactly as for the first algorithm, where we do BFS in parallel in $G[V']$ from two vertices that are far apart. Note that when these lines are executed, no updates are made to $M \cup A$ (vertices may be removed from M if they are no longer incident to V' but in that case they are added to A) so our data structures D_i do not require updates here. The total time for lines 10–17 is $O(m + n \log n)$ as for our first algorithm. We can now conclude with our final main result.
Theorem 3. Given a graph G with n vertices and given $h, \ell \in \mathbb{N}$ and constants $\epsilon, \epsilon' > 0$ such that with $h = O(1)$ and $\ell = \Omega(n^{\epsilon'})$, there is an algorithm with $O(n^{1+\epsilon} \sqrt{\ell})$ running time which either correctly reports that G contains K_h as a depth $O(\ell \log n)$-minor or outputs a separator of G of size $O(n/\ell) + \tilde{O}(\ell \sqrt{n})$.

7 Concluding Remarks

We gave three new algorithms to find separators of shallow-minor free graphs. For small-depth minors, a speed-up in running time of almost a linear factor is achieved compared to previous algorithms while still giving separators of the same size. A main idea was an application of a dynamic approximate distance oracle of Roditty and Zwick for general graphs. We believe our speed-ups should give improved algorithms for static graph problems such as shortest paths and maximum matching since one of the bottlenecks for many separator-based algorithms is finding a good separator. For instance, a faster separator theorem for minor-free graphs led to several improved static graph algorithms [11].

Can our bounds be improved further? Nothing suggests that the dependencies on ℓ in our time bounds are natural. The bottleneck is the dynamic distance oracle of Roditty and Zwick. Any improvement of that result would give a speed-up of our algorithms as well.

References

[1] N. Alon, P. D. Seymour, and R. Thomas. A separator theorem for nonplanar graphs. J. Amer. Math. Soc., 3(4):801–808, 1990.

[2] H. N. Djidjev and J. R. Gilbert. Separators in Graphs with Negative and Multiple Vertex Weights. Algorithmica (1999) 23:57–71.

[3] A. V. Kostochka. Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica, 4(4):307–316, 1984.

[4] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied Mathematics, 36:177–189, 1979.

[5] J. Nesetril and P. O. de Mendez. Sparsity – Graphs, Structures, and Algorithms. Algorithms and combinatorics 28, Springer 2012, ISBN 978-3-642-27874-7, pp. I-XXIII, 1–457.

[6] S. Plotkin, S. Rao, and W. D. Smith. Shallow excluded minors and improved graph decompositions. Proc. of the 5th annual ACM-SIAM symposium on Discrete algorithms, pp. 462–470, 1994.

[7] L. Roditty, M. Thorup, and U. Zwick, Deterministic Constructions of Approximate Distance Oracles and Spanners, In L. Caires et al. (Eds): ICALP 2005, LNCS 3580, pp. 261–272, 2005.

[8] L. Roditty and U. Zwick. Dynamic Approximate All-Pairs Shortest Paths in Undirected Graphs. SIAM J. Comput., 41(3), 670–683, 2012. See also FOCS’04.
[9] A. Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge Philos. Soc., 95(2):261–265, 1984.

[10] M. Thorup and U. Zwick. Approximate Distance Oracles. J. Assoc. Comput. Mach., 52 (2005), pp. 1–24.

[11] C. Wulff-Nilsen. Separator Theorems for Minor-Free and Shallow Minor-Free Graphs with Applications. Proc. FOCS’11, pp. 37–46. See extended version on arXiv.
A Details on the second algorithm

We now give more details of the algorithm in Section 6. Although it is essentially the same as that in [11], we include it to make the paper more self-contained and since we will use a variant of this idea for the algorithm in Section 6.

A.1 Nested r-Clustering

For better readability, we shall repeat the definitions and results from Section 6 here. For a connected graph $G = (V,E)$, a cluster (of G) is a connected subgraph of G. A clustering (of G) is a collection \mathcal{C} of clusters of G whose edge sets form a partition of E. A boundary vertex of a cluster $C \in \mathcal{C}$ is a vertex that C shares with other clusters in \mathcal{C}. All other vertices of C are interior vertices of C. For a subgraph C' of C, we let $\delta C'$ denote the set of boundary vertices of C contained in C' and we refer to them as the boundary vertices of C' (w.r.t. C).

Let n be the number of vertices of G. For a parameter $r > 0$, an r-clustering (of G) is a clustering with clusters having a total of $O(n/\sqrt{r})$ boundary vertices (counted with multiplicity) and each containing at most r vertices and $O(\sqrt{r})$ boundary vertices. The total vertex size of clusters in an r-clustering is $n + O(n/\sqrt{r})$ and the number of clusters is $O(n/\sqrt{r})$. Define a nested r-clustering of G as follows. Start with an r-clustering. Partition each cluster C with a separator of size $O(\sqrt{|V(C)|})$ (we assume such a separator exists) and recurse until clusters consisting of single edges are obtained. We do it in such a way that both the sizes of clusters and their number of boundary vertices go down geometrically through the recursion (see Theorem 5 in [2]).

The nested r-clustering is the collection \mathcal{C} of all clusters obtained by this recursive procedure. There are $O(\log r)$ recursion levels and we refer to clusters of \mathcal{C} at level $i \geq 1$ as level i-clusters of \mathcal{C}. Note that level 1-clusters are those belonging to the original r-clustering. We define parent-child relationships between clusters of \mathcal{C} in the natural way defined by the recursion. The following lemma shows the existence of a (nested) r-clustering for shallow minor-free graphs and gives an efficient algorithm to find it. It is done by recursive application of Theorem 1.

Lemma 8. Let G be a vertex-weighted graph with m edges and n vertices, let $h, \ell \in \mathbb{N}$ and $0 < \epsilon < 1$ where h and ϵ are constants and where $\ell = O(\sqrt{n})$ and $\ell = \Omega(n^\epsilon)$. For any parameter $r \in (C \log n, \ell]$ for a sufficiently large constant C, there is an algorithm with $O(\sqrt{rm^{1+\epsilon}})$ running time that either gives a certificate that G contains K_h as a depth $O(\ell \log n)$-minor or outputs a nested r-clustering of G.

Proof. The proof is essentially the same as in [11] except that we use Theorem 1 to find the separators. We therefore only give a sketch in the following.

We first show how to find an r-clustering within the time bound claimed in the lemma. Let $\ell' = \epsilon/3$ and apply Theorem 1 with $\ell' = r^{3-\epsilon'} n^{\epsilon'}$ instead of ℓ and ϵ' instead of ϵ to obtain a separator S of size $O(n/\ell') = O(n^{1-\epsilon'}/r^{\frac{3}{2}-\epsilon'})$ in time $O(r^{3-\epsilon'} n^{\epsilon'} m^{1+\epsilon'})$. Note that $\ell' < \ell$ so by Lemma 1 if the algorithm in Theorem 1 gives a certificate of a depth $O(\ell' \log n)$-minor, our algorithm can output this as a certificate of a depth $O(\ell \log n)$-minor.

For each component C of $G \setminus S$, let B_C be the vertices of S incident to C in G, and let $H_C = G[V(C) \cup B_C]$. If an edge belongs to more than one such graph H_C (which can only happen when both its endpoints are boundary vertices), it is removed from every subgraph
except one. Then recurse on every H_C that has more than r vertices. In a recursive call, n above is replaced by the number of vertices in the current graph.

The result is a clustering C of G where each cluster contains at most r vertices and, solving a simple recursive formula, the total number of boundary vertices over all clusters (counted with multiplicity) is $\tilde{O}(n/\sqrt{r})$. The time to find this clustering can be expressed by the following recursion formula, for some constant d':

$$T(m, n) \leq d'(r^{2-\epsilon'} m^{1+2\epsilon'}) + T(m_1, n_1) + T(m_2, n_2),$$

where $m_1 + m_2 = m$ and $n_1, n_2 < c'n$ for some constant $c' < 1$. It is easy to show that $T(m, n) = O(r^{2-\epsilon'} m^{1+2\epsilon'} \log n)$.

To get an r-clustering, we apply Theorem I to each cluster $C \in C$ that does not have $\tilde{O}(\sqrt{r})$ boundary vertices, with vertex weights evenly distributed on the boundary vertices of C, and recurse on sub-clusters as above. Using the same analysis as in [11], it follows that this gives an r-clustering of G within the above time bound.

From the r-clustering, we can obtain a nested r-clustering by applying Theorem II to each cluster C with $\ell' = \sqrt{|V(C)|}$ instead of ℓ and recursing on the sub-clusters obtained. Since $\ell' \leq \sqrt{\ell}$, the total time for this is also within that stated in the lemma.

If we pick $r = \ell$ in Lemma 8, each cluster C in a nested r-clustering of G must exclude K_h as a minor if G excludes K_h as a minor of depth $O(\ell \log n)$ since $|V(C)| \leq \ell$. As shown in [8, 9], an n-vertex K_h-minor-free graph contains only $O(nh\sqrt{\log h})$ edges. Since level 1-clusters define a partition of E and their total vertex size is $n + \tilde{O}(n/\sqrt{r})$, we get the following corollary.

Corollary 3. Let $\epsilon > 0$ be a constant. If $\ell = \Omega(n^{\epsilon})$, any n-vertex graph excluding K_h as a depth ℓ-minor has only $O(\text{poly}(h)n)$ edges.

Note that with this corollary, we can replace m by n in all our time bounds (as ϵ may be picked arbitrarily small) if we simply make an initial test to check whether the graph is sufficiently sparse and reject if not. Note though that this will not enable us to always output a shallow minor as certificate in the case where a good separator could not be found.

Our algorithm in this section is a slightly modified version of `genericalg`, where in line 7, we look for a tree in $G[V']$. This is what is done in [4]; the algorithm is correct since if a tree cannot be found, a distant pair in line 10 must exist. We will use a nested r-clustering together with so called X-clusters (defined below) to obtain a compact sublinear size graph representing $G[V']$. We will then apply Dijkstra on this compact graph to identify trees efficiently in algorithm `genericalg`.

The following lemma will prove useful later on. It is essentially the same as one from [11] so we omit the proof.

Lemma 9. For a nested ℓ-clustering C, $\sum_{C \in C} |C||\delta C|$, $\sum_{C \in C} |\delta C|^3 = \tilde{O}(n\sqrt{\ell})$.

A.2 Decomposing subgraphs

In this subsection, we show how to decompose $G[V']$ into a small number of canonical clusters (which we refer to as X-clusters). Each such cluster will be represented compactly, allowing us to run Dijkstra in sublinear time. We first describe how to use these clusters to maintain vertex weights of components considered by `genericalg`.
Lemma 11. Let \(\ell, h \in \mathbb{N} \) with \(\ell = O(\sqrt{n}) \), \(\ell = \Omega(n^\epsilon) \), and \(h = O(1) \) be given, where \(\epsilon > 0 \) is a constant. There is an algorithm with \(O(n^{1+\epsilon}\sqrt{\ell}) \) preprocessing time which either reports the existence of a \(K_h \)-minor of depth \(O(\ell \log n) \) in \(G \) or which, at any point in the dynamic scenario above, can decompose each component of \(G \setminus X \) containing at least one boundary vertex of \(C_X \) into \(X \)-clusters of \(C_X \) and report the vertex weight of each such component in a total of \(\tilde{O}(n/\sqrt{\ell}) \) time.
A.3 Obtaining a sublinear size graph

To identify a tree (or find two vertices that are far apart) in genericalg, we run Dijkstra in a graph of sublinear size that contains approximate shortest paths; the same trick is used in [11].

Dense distance graphs: For a cluster C and a subset B of δC, consider the complete undirected graph $D_B(C)$ with vertex set B. Each edge (u, v) in $D_B(C)$ has weight equal to the weight of a shortest path in C between u and v that does not contain any other vertices of δC. We call $D_B(C)$ the dense distance graph of C (w.r.t. B). We have $d_{D_B(C)}(u, v) = d_C(u, v)$ for all $u, v \in B$.

We maintain, for each cluster $C \in \mathcal{C}$, dense distance graph $D_{\delta C \setminus X}(C)$ of the set of passive boundary vertices of C. In a preprocessing step, we compute and store, for each pair of boundary vertices $u, v \in \delta C$ a shortest path (if any) from u to v in C that does not visit any other boundary vertices (i.e., a shortest path in $C \setminus (\delta C \setminus \{u, v\})$). For each u, we store these paths compactly in a shortest path tree and we also store the distances from u to each v. This takes $O(|\delta C|)$ time over all u and v in δC which by Lemma 9 is $\tilde{O}(n\sqrt{\ell})$ over all clusters $C \in \mathcal{C}$. From the distances computed, we can obtain dense distance graphs $D_{\delta C}(C)$ over all C within the same time bound. Dense distance graphs over subsets of δC can then be obtained more efficiently when given $D_{\delta C}(C)$:

Lemma 12. For a cluster C and $B \subseteq \delta C$, $D_B(C)$ can be obtained from $D_{\delta C}(C)$ in $O(|B|^2)$ time.

Proof. $D_B(C)$ is the subgraph of $D_{\delta C}(C)$ induced by B. \qed

At the beginning of the dynamic algorithm and whenever a boundary vertex of C changes its state from passive to active or vice versa, we apply Lemma 12 to update $D_{\delta C \setminus X}(C)$. Since there are $O(|\delta C|)$ updates to δC in total, Lemma 12 shows that the total time for maintaining $D_{\delta C \setminus X}(C)$ is $O(|\delta C|^3)$. Over all clusters $C \in \mathcal{C}$, this is $\tilde{O}(n\sqrt{\ell})$ by Lemma 9.

Let D_X be the union of these dense distance graphs over clusters in \mathcal{C}_X. A shortest path in D_X between any two boundary vertices has the same weight as a shortest path between them in $G \setminus X$. Furthermore, D_X has only $O(\sqrt{n\ell})$ vertices by Lemma 10. We sparsify D_X using a multiplicative spanner construction for general graphs [7] to get a graph of size sublinear in n. For $\delta \geq 1$, a δ-spanner of a graph is a subgraph that preserves all shortest path distances up to a factor of δ.

Lemma 13. Let H be an undirected graph with nonnegative edge weights. For any constant $0 < \epsilon \leq 1$, a $(1/\epsilon)$-spanner of H of size $O(|V(H)|^{1+2\epsilon})$ can be constructed in linear time.

For each $C \in \mathcal{C}$, we keep a $(1/\epsilon)$-spanner $S(C)$ of $D_{\delta C \setminus X}(C)$. Whenever $D_{\delta C \setminus X}(C)$ is updated, we invoke Lemma 13 to update $S(C)$.

Since there are $O(|\delta C|)$ updates to δC during the course of the dynamic algorithm, Lemma 13 implies that the total time for maintaining $S(C)$ is $O(|\delta C|^3)$ which over all clusters is $\tilde{O}(n\sqrt{\ell})$ by Lemma 9. Let us denote by S_X the graph obtained as the union of $S(C)$ over all $C \in \mathcal{C}_X$. Applying Dijkstra in S_X instead of in G gives a speed-up of the algorithm in [6] using the same analysis as in [11]: there are $O(n/\ell)$ iterations in total and applying Dijkstra in a given iteration takes $O(|S_X|) = \tilde{O}((n/\sqrt{\ell})^{1+2\epsilon})$ time. This gives Theorem 2.