Self-Assembly of an Amphiphilic π-Conjugated Dyad into Fibers: Ultrafast and Ultrasensitive Humidity Sensor

Marco A. Squillaci, Laura Ferlauto, Yulian Zagranyarski, Silvia Milita, Klaus Müllen, and Paolo Samorì*

Humidity sensors are of paramount importance in numerous science and technology fields thus are commonly used in industries, hospitals, environmental monitoring, etc. [1] Hitherto, different transduction mechanisms have been explored in order to improve sensitivity, response speed, and recovery time, by exploiting different properties as read-out, including optical [2] and electrical characteristics (capacitance, [3] resistance, [4] and gate effect in field-effect transistors [5] as well as small mass changes. [6] To detect water in the environment, numerous materials have been employed as active components, including polymers, [7] carbon based materials, [8] and composites. [9] Since the sensing occurs via molecular recognition, the sensitivity in humidity sensing can, in principle, be harnessed by using low dimensional structures exhibiting a high surface area, fully decorated with receptors.

Amphiphilic molecular design is a viable strategy to achieve high degree of order at the supramolecular level, via sub-nanometer phase segregation between hydrophobic and hydrophilic moieties, to ultimately modulate the properties of organic electronic materials. [10] Amphiphilic molecules with large π-conjugated cores have been employed to obtain excellent optoelectronic properties (e.g., charge transport, light emission, etc.) associated with characteristic nanostructures. Typical examples include hexa-peri-hexabenzocoronene, [11] perylene diimide, [12] porphyrin, [13] and fullerene [14] based amphiphiles, which tend to possess high charge carrier mobilities when are self-assembled into ordered nanostructures.

Donor–acceptor dyads are well known molecular systems that can undergo self-assembly, forming fibers exhibiting good (photo)electrical characteristics. [15] This self-assembly capability renders them interesting components for technological applications in (opto)electronics, including thin-film transistors, [16] photovoltaics, [17] and light-emitting diodes. [18]

In this work we report the light-triggered self-assembly of an amphiphilic electron donor–acceptor (D–A) dyad, based on a conjugated backbone containing a tetrathienophene (4T) and a perylenediimide (PDI), connected by a conformationally rigid ethynylene spacer, forming fibers (Figure 1). These architectures, exposing ethylene glycol in their external shell, are employed as active components in humidity sensors that exhibit high sensitivity and ultrafast response.

The synthesis of the PDI–4T dyad was accomplished by a Sonogashira coupling of an ethynyl-group-terminated 4T derivative with the corresponding iodophenyl-group-appended PDI derivatives, respectively, as described in literature. [19] Matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectra of PDI–4T reveals single species with isotopic distributions in accordance with calculations (Figures S11 and S12, Supporting Information) and also agrees well with data reported in literature. [19]

The PDI–4T self-assembles into fibers in solution, using a modified version of solvent-induced precipitation (SIP), with a procedure different from the one reported in literature on the same system. [19] In particular, 0.5 mg of the dyad is dissolved in 1 mL of tetrahydrofuran (THF). After complete dissolution, 200 μL of the THF solution is added to 1 mL of deionized water. Different from the procedure previously reported for generating fibers, with a length of just a few hundreds of nanometers, out of the PDI–4T dyad, [19] our approach relies on a solution which is stable in environmental condition for several months. In particular, upon storage under dark condition, our solution retains its orange color (Figure S5, Supporting Information) and does not exhibit traces of precipitate. When this solution is applied to the basal plane of a SiO2 substrate by drop-casting, amorphous films are obtained (Figure S1, Supporting Information).

By keeping the solution in a sealed glass vial on the lab bench, thus under daily light for at least one week, a transition to light pink color was observed. Such a color transition of the solution can be accelerated upon exposure to the white light of a solar simulator (power density = 100 mW cm^{-2}) for at least 10 h: the water solution slowly turns from orange to light pink (see Figure S5 and S6, Supporting Information), a behavior which may be ascribed to a modification on the molecular aggregation.

To gain an insight into such process on a smaller scale, we have performed a microscopic study as a function of the irradiation time. Atomic force microscopy (AFM) imaging of a drop cast film of the solution, after irradiation for a few minutes, revealed the formation of small nanoribbons with a length of few hundreds of nanometers which are randomly orientated on the SiO2 surface (Figure 2A, and Figure S2, Supporting Information).

Exposure to white light for about 10 h promotes the aggregation of the ribbons into larger agglomerates (Figure 2B–D). In
particular, from the SEM images in Figure 2C,D, it is possible to recognize the shape of the nanoribbons inside the aggregates (see also Figure S3, Supporting Information, for a zoom-in).

Irradiation for 15 h leads to the formation of longer bundles with a higher aspect ratio (Figure 2E), characterized by an average length of $\approx 17.1 \mu m$ and a width of $\approx 1.97 \mu m$. When the solutions are irradiated for over 20 h, bundles of highly oriented ribbons are generated (see Figure 2F and Figure S4, Supporting Information), appearing as macroscopic fiber networks featuring a dendritic shape with a length of several millimeters and an average width of $\approx 1.65 \mu m$. Overall, the series of images shown in Figure 2 provide for the first time a time-resolved evidence of the light-dependent evolution of the self-assembly: upon increase of the irradiation time of the solution, the aggregation of the nanoribbons into larger and larger fiber’s bundles is promoted.

Zooming-in with AFM in the less coated part of the films reported in Figure 2B–D, revealed the presence of laterally packed and intercoiled ribbons (Figure 3A) with lengths of several micrometers. From the cross section profiles in Figure 3B it is possible to identify two different populations of ribbon widths, amounting to ≈ 7.0 and 14.5 nm. Being the contour length of the molecules, when the side chains adopt a fully elongated conformation, around 8 nm,[19] our result can be interpreted by an interdigitation of the alkyl substituents belonging to adjacent ribbons and eventual coiling of the side-groups. The 14.5 nm width suggests a supramolecular organization characterized by two laterally assembled molecules, in which all the hydrophobic side chains are in the middle of the structure, shielded from the water, as shown in Figure 1.

Interestingly, the use of water-based SIP turned out to be key to the fiber formation: irradiation of PDI–4T solutions in either THF, CHCl$_3$, N,N-dimethylformamide (DMF), acetone, ethanol, or isopropyl alcohol has not led to formation of fiber-like structures, even after over 50 h of irradiation. It is also

Figure 1. Molecular structure and packing model of PDI–4T dyad.

Figure 2. A) AFM, B,E,F) optical microscopy, and C,D) scanning electron microscopy (SEM) images of PDI–4T bundles of fibers at different aggregation levels obtained by exposure of the solution to the white light of a solar simulator for A) a few minutes, B–D) 10 h, E) 15 h, and F) more than 20 h.
noteworthy that the light irradiation, together with the effect of the water environment, on an amphiphilic molecule, promotes the self-assembly into a fibrillar system without need of using chlorinated solvents that, upon exposition to white light, form radicals, which could be transferred to the molecules, promoting the self-assembly.\(^{[20]}\) In our case, the key role played by light irradiation, in the fibers growth, likely involves electron transfer and electrostatic interactions. However, X-ray photoelectron spectroscopy analysis, on PDI–4T drop-cast solutions before and after irradiation, provided evidence for an increase of the peak at 168.2 eV (Figure S10, Supporting Information), being unambiguously assigned to a fully oxidized sulfur, up to 46.4%, demonstrating that an intense light exposure leads also to an oxidization of the thiophene rings in the molecule.

To get a deeper insight into the order at the supramolecular level within the fiber’s bundles, we have carried out grazing incidence X-ray diffraction (GIXRD) investigations of the films shown in Figure 2F. The 2D X-ray pattern in Figure 4 presents a main peak at position \(q_{xy} = 1.78 \text{ Å}^{-1}\) which corresponds to a d-spacing of 3.5 Å, typical distance for \(\pi-\pi\) stacking. Since the peak is perturbed by the large footprint of the X-ray beam, a realistic estimation of the lateral dimension of the crystalline domains is not possible.\(^{[21]}\) Being in the in-plane direction, this peak indicates that the dyad molecules adopt an edge-on orientation with respect to the basal plane of the substrate, in agreement with the proposed model in Figure 1.

To probe if the external shell of the fiber bundles consists of either hydrophobic alkyl based or more hydrophilic ethylene glycol based units, we have exposed these architectures to a humid environment. Such an exposure revealed a high sensitivity to the presence of water molecules in the atmosphere, confirming that the hydrophilic chains are in the external part of the ribbons,\(^{[11]}\) enabling dipole–dipole interactions and, in particular, hydrogen bonding, with water molecules. These interactions are likely strong enough to compress the molecules together inside the aggregate, decreasing the distance of the \(\pi-\pi\) stacking, in accordance with a previous XRD study.\(^{[10]}\) The decreasing \(\pi-\pi\) distance leads to an exponential increase

Figure 3. A) AFM phase image of PDI–4T nanoribbons on SiO\(_2\) substrate. B) Cross-section profile of the bundles (along the red line).

Figure 4. A) 2D–GIXRD pattern of PDI–4T bundles of fiber together with B) corresponding scattering intensity integrated along the out-of-plane (\(q_z\)) and in-plane (\(q_{xy}\)) directions.
of the charge transport through the ribbons, thus of the conductivity of the self-assembled architectures. Therefore, the conductivity can be tuned with the relative humidity (RH) of the environment: thus our system can be employed as resistive-type organic humidity sensor. Noteworthy, the adsorption and desorption of water on the fibers surface is a fully reversible process.

The response rate, the sensitivity, and the range of sensed humidity levels were measured by depositing the fiber’s bundles by a drop casting onto a SiO$_2$/Si n$^{++}$ substrates (230 ± 10) nm thick SiO$_2$ (Fraunhofer Institute for Photon Microsystems IPMS, Dresden, Germany), which were freshly cleaned and ozone-treated before being used. The dielectric surface exhibits patterned interdigitated gold electrodes (channel lengths, $L = 2.5$–20 µm). The response speed was measured by sending a pulsed flow of humid air over the sample during the application of a constant bias of 5 V. The results portrayed in Figure 5A show a response rate of about 26 ms with a good recovery time and an ultimate 100% reversibility. The calibration of the devices was carried out inside a chamber with a controlled atmosphere, in which the RH can be increased from 0% to 75% while performing the electrical measurement in real time. Figure 5B displays the results of the calibration for two different channel lengths using the same applied voltage. These measurements demonstrate that, when larger channel lengths are used, the sensitivity for higher humidity levels increases, as a result of the greater surface area of the fibers covered with hydrophilic ethylene glycol groups that can interact with the water molecules.

The calibration plot in Figure 5B allowed us to quantify the dependence of the measured current upon the humidity in the chamber. It reveals an exponential growth. The measured values of current go from a few pA at 0% RH up to tens of milliamps at 75%, with an overall current variation exceeding seven orders of magnitude.

Noteworthy is also that the current response is strongly selective for water molecules that, being donor of two hydrogen bonding, can behave as linker between two polyethylene glycol (PEG) side-chains exposed on two adjacent molecules within the stack. The plots reported in Figure S9, Supporting Information, show the electrical response of our PDI–4T based humidity sensors when exposed to vapor of different solvents such as ethanol, methanol, and ethyl ether. Among them, only methanol, being the smallest molecule and being able to act as hydrogen bonding donor, exhibited an increased current passing through the fibers. However, since methanol can donate just one proton to create a hydrogen bonding, the change in the current is negligible compared to the one given by water under the same condition.

In summary, we have devised a novel approach, based on light irradiation acting as a remote control on the self-assembly of an amphiphilic D–A π-conjugated dyad into ordered structures. In particular, the joint effect of light irradiation and SIP in an environmentally friendly water solvent, makes it possible to form nanoribbons. Upon tuning the irradiation time, the size of aggregation of the ribbons, forming fiber bundles, can be modulated. These ultralong 1D architectures possess an external shell exposing hydrophilic ethylene glycol moieties and π–π stacking distances that decrease with the increasing humidity.$^{[1b]}$ Such architectures, when deposited on solid surfaces, reveal a high selectivity to water in the environment: the resistive sensor exhibits ultrafast response and extremely high sensitivity. To the best of our knowledge, the seven orders of magnitude change in current signal by varying the RH from 0% to 75% is the highest reported in literature for resistive humidity sensors based on organic molecules. Moreover, the response speed of 26 ms is in line with the best data recently reported on capacitive sensors based on graphene oxide continuous films exhibiting 30 ms response speed$^{[8]}$ and on resistive sensors integrating organic fibers featuring a 10 ms response speed, being the fastest ever reported.$^{[1b]}$ Current effort in our laboratories is on the integration of these architectures in flexible sensing devices.

Experimental Section

Experimental details can be found in the Supporting Information.
Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

The authors thank Dr. Long Chen, Dr. Ruomeng Duan, and Christoph Sonn for their contribution in the early synthetic attempts and Dr. Fabiola Liscio for enlightening discussions on the XRD part. This work was financially supported by the EC through the European Research Council project SUPRAFUNCTION (GA-257305), the Marie Curie ITN projects GENIUS (PITN-GA-2010-264694) and iSwitch (GA No. 642196), the Agence Nationale de la Recherche through the LabEx project Chemistry of Complex Systems (ANR-10-LABX-0026_CSC), and the International Center for Frontier Research in Chemistry (icFRC).

Received: February 24, 2015
Revised: March 20, 2015
Published online: April 14, 2015

[1] a) J. Chu, X. Peng, P. Feng, Y. Sheng, J. Zhang, Sens. Actuators, B 2013, 178, 508; b) U. Mogera, A. A. Sagade, S. J. George, G. U. Kulkarni, Sci. Rep. 2014, 4, 4103; c) E. Traversa, Sens. Actuators, B 1995, 23, 135; d) Y. H. Wang, R. W. Besant, C. J. Simonon, W. Shang, Sens. Actuators, B 2006, 115, 93.
[2] W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. C. Lee, K. C. Leong, Sens. Actuators, B 2012, 174, 563.
[3] H. P. Hong, K. H. Jung, J. H. Kim, K. H. Kwon, C. J. Lee, K. N. Yun, N. K. Min, Nanotechnology 2013, 24, 085501.
[4] Q.-Y. Tang, Y. C. Chan, K. Zhang, Sens. Actuators, B 2011, 152, 99.
[5] F. Liang, L.-B. Luo, C.-K. Tsang, L. Zheng, H. Cheng, Y. Y. Li, Mater. Res. Bull. 2012, 47, 54.
[6] J. Xie, H. Wang, Y. Lin, Y. Zhou, Y. Wu, Sens. Actuators, B 2013, 177, 1083.
[7] M. V. Kulkarni, S. K. Apte, S. D. Naik, J. D. Ambekar, B. B. Kale, Sens. Actuators, B 2013, 178, 140.
[8] S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhanen, ACS Nano 2013, 7, 11166.
[9] Y. Zilberman, R. Ionescu, X. Feng, K. Müller, H. Haick, ACS Nano 2011, 5, 6743.
[10] a) Y. Yamamoto, T. Fukushima, Y. Suna, N. Ishii, A. Saeki, S. Seki, S. Tagawa, M. Taniguchi, T. Kawai, T. Aida, Science 2006, 314, 1761; b) W. Zhang, W. Jin, T. Fukushima, A. Saeki, S. Seki, T. Aida, Science 2011, 334, 340.
[11] I. P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shimomura, K. Ito, T. Hashizume, N. Ishii, T. Aida, Science 2004, 304, 1481.
[12] a) Y. Che, A. Datar, K. Balakrishnan, L. Zang, J. Am. Chem. Soc. 2007, 129, 7234; b) X. Zhang, Z. Chen, F. Wu, J. Am. Chem. Soc. 2007, 129, 4886; c) X. Zhang, S. Rehm, M. M. Safont-Sempere, F. Würtz, Nat. Chem. 2009, 1, 623.
[13] a) T. Sakurai, K. Tashiro, Y. Honsho, A. Saeki, S. Seki, A. Osuka, A. Muranaka, M. Uchiyama, J. Kim, S. Ha, K. Kato, M. Takata, T. Aida, J. Am. Chem. Soc. 2011, 133, 6537; b) T. Sakurai, K. Shi, H. Sato, K. Tashiro, A. Osuka, A. Saeki, S. Seki, S. Tagawa, S. Sasaki, H. Masunaga, K. Osaka, M. Takata, T. Aida, J. Am. Chem. Soc. 2008, 130, 13812.
[14] A. Munoz, B. M. Illescas, M. Sanchez-Navarro, J. Rojo, N. Martin, J. Am. Chem. Soc. 2011, 133, 16758.
[15] a) Y. Hizume, K. Tashiro, R. Charvet, Y. Yamamoto, A. Saeki, S. Seki, T. Aida, J. Am. Chem. Soc. 2010, 132, 6628; b) J. Luo, J. Kim, J. Huang, Acc. Chem. Res. 2013, 46, 2225; c) T. Nishizawa, K. Tajima, K. Hashimoto, J. Mater. Chem. 2007, 17, 2440; d) H. L. Huang, C. E. Chou, Y. K. Che, L. G. Li, C. Wang, X. M. Yang, Z. H. Peng, L. Zang, J. Am. Chem. Soc. 2013, 135, 16490.
[16] R. Pfattner, E. Pavlica, M. Jaggi, S.-X. Liu, S. Decurtins, G. Bratina, J. Veciana, M. Mas-Torrent, R. Covreira, J. Mater. Chem. C 2013, 1, 13895.
[17] a) G. Chidichimo, L. Filippelli, Int. J. Photoenergy 2010, 2010, 1; b) T. Ye, R. Singh, H. J. Butt, G. Floudas, P. E. Keivanidis, ACS Appl. Mater. Interfaces 2013, 5, 11844.
[18] a) J. L. Segura, H. Herrera, P. Baeuerle, J. Mater. Chem. 2012, 22, 8717; b) F. Fuchs, M. Linares, C. de Vet, P. Leclère, R. Demadrille, B. Grevin, Adv. Mater. 2014, 26, 6416.
[19] W. S. Li, A. Saeki, Y. Yamamoto, T. Fukushima, S. Seki, N. Ishii, K. Kato, M. Takata, T. Aida, Chem. Asian J. 2010, 5, 1566.
[20] E. Moulin, F. Niess, M. Maaloum, E. Buhler, I. Nyrkova, N. Giuseppone, Angew. Chem. Int. Ed. Engl. 2010, 49, 6974.
[21] D. M. Smilgies, J. Appl. Crystallogr. 2009, 42, 1030.