Members of the methanotrophic genus *Methylomarinum* inhabit inland mud pots.

Danielle T Fradet, Patricia L Tavormina, Victoria J Orphan

Proteobacteria capable of converting the greenhouse gas methane to biomass, energy, and carbon dioxide represent a small but important sink in global methane inventories. Currently, 23 genera of methane oxidizing (methanotrophic) proteobacteria have been described, although many are represented by only a single validly described species. Here we describe a new methanotrophic isolate that shares phenotypic characteristics and phylogenetic relatedness with the marine methanotroph *Methylomarinum vadi*. However, the new isolate derives from a terrestrial saline mud pot at the northern terminus of the Eastern Pacific Rise. This new cultivar expands our knowledge of the ecology of *Methylomarinum*, ultimately towards a fuller understanding of the role of this genus in global methane cycling.
Members of the methanotrophic genus *Methylomarinum* inhabit inland mud pots

Running title: Methanotroph from Salton Sea mud pots

Danielle Fradet¹, Patricia L. Tavormina²#, and Victoria J. Orphan²#

1. Mentored precollegiate research; Flintridge Sacred Heart Academy, La Canada Flintridge, CA, 91011

2. Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA.

#corresponding author pattytav@gps.caltech.edu, vorphan@gps.caltech.edu, phone: (626)395-6018, fax: (626)683-0621
Abstract

Proteobacteria capable of converting the greenhouse gas methane to biomass, energy, and carbon dioxide represent a small but important sink in global methane inventories. Currently, 23 genera of methane oxidizing (methanotrophic) proteobacteria have been described, although many are represented by only a single validly described species. Here we describe a new methanotrophic isolate that shares phenotypic characteristics and phylogenetic relatedness with the marine methanotroph *Methylomarinum vadi*. However, the new isolate derives from a terrestrial saline mud pot at the northern terminus of the Eastern Pacific Rise. This new cultivar expands our knowledge of the ecology of *Methylomarinum*, ultimately towards a fuller understanding of the role of this genus in global methane cycling.
Introduction

The biological conversion of methane to biomass introduces carbon into the food web chemosynthetically. Members of both Archaea and Bacteria are capable of oxidizing methane for energy and carbon, and represent a significant biological sink for methane on Earth (Conrad, 2009; Reeburgh, 2007). Among Bacteria, methane oxidation occurs aerobically (reviewed in (Hanson and Hanson, 1996; Trotsenko and Murrell, 2008)) with 23 validly-described genera of aerobic Alphaproteobacteria and Gammaproteobacteria encompassing the majority of cultivated bacterial methane oxidizers (Knief, 2015). Twelve of these (Methyloferula, Methylohalobius, Methylomarinovum, Methylogaea, Methylomagnum, Methyloparacoccus, Methyloglobulus, Methylosoma, Methylomarimum, Methylosphaera, and Methyloprofundus) are represented by a single validly-described species each, and their ecological impact is not clear.

Methylomarinum vadi (Gammaproteobacteria, family Methylococcaceae) was isolated in 2007 from a marine mat associated with a hydrothermal feature near Taketomi Island, Japan (strain IT4 (Hirayama et al., 2013; Hirayama et al., 2007). Taketomi Island lies at the subduction zone of the Philippines and Eurasian plates. Another species of Methylomarinum vadi was isolated independently in 1998 from coastal mud near Hiroshima, Japan (strain T2-1, (Fuse et al., 1998; Hirayama et al., 2013)). Because these strains were isolated from locations over 1300 km apart, Methylomarinum has been postulated to be ubiquitous. However, clear molecular signatures for uncultured Methylomarinum have only been reported from a single additional site, the brine:seawater interface of the Red Sea (Abdallah et al., 2014b). The Red Sea overlies the rift zone defined by the Arabian and African plates. Thus, undefined environmental factors, possibly
associated with plate boundary zones, may promote the environmental establishment of
Methylomarinum.

The Eastern Pacific rise (EPR) is a rift zone that extends from Antarctica to the
Salton Sea basin in southern California (Figure 1). The EPR is predominantly oceanic, and
deep-sea hydrothermal vents and chemosynthetic communities occur along its length (e.g.
(Baker and Urabe, 1996; Shank et al., 1998)). The northern terminus of the EPR occurs on
land, in the Salton Sea basin in southern California, and provides a ‘terrestrial analog’ of
deep sea vents and seeps (Svensen et al., 2009). The Salton Sea itself is an inland body of
water that formed following the diversion of the Colorado River between 1905 and 1907.
Due to the combination of agricultural runoff and evaporative loss of water, the sea steadily
increases in salinity, which currently stands at 4.4%. The larger Salton Sea basin has
notable hydrothermal features including fumaroles, seeps, and mud volcanoes (gyrophons)
that emit steam, carbon dioxide, and methane (Mazzini et al., 2011). The Davis-Schrimpf
seep field near the southeast shoreline of the Salton Sea comprises one such cluster of
hydrothermal features (Figure 1).

Despite its unique geology, setting, and history, microbial ecological studies of the
Salton Sea region have not been widely reported. Two studies suggest that microorganisms
in Salton Sea sediments affiliate with marine lineages (Dillon et al., 2009; Swan et al., 2010).
Microbial ecological studies on the Davis-Schrimpf hydrothermal seep field have not, to our
knowledge, been undertaken. We were interested in asking whether methane-oxidizing
organisms are part of the microbial community in this field, and if so, whether they are
similar to terrestrial or marine methanotrophs. Here we report the first methanotrophic
isolate from this region.
Methods

Sampling and enrichment:

Two mud pots in the Davis-Schrimpf seep field (latitude 33.200, longitude -115.579) were sampled on September 9, 2012. Temperature and pH were determined for each pot (Table 1). Approximately 400 ml of mud (~30% solids) from each pot was sampled into sterile 1l polycarbonate bottles. The bottles were capped and transported to the laboratory at ambient temperature.

On September 12, 2012, a 10ml slurry from each bottle was transferred to 30ml serum bottles, capped with black butyl stoppers, and sealed with aluminum crimps. Methane was added to a final headspace concentration of 50%, and the bottles were kept at 22°C.

On January 30, 2016, additional samples were collected from 6 mud pots and associated gryphons (mud volcanos less than 3m in height) in the Davis-Schrimpf seep field (Sites 1 – 6, Figure S1) as described above, except that 50 ml polypropylene tubes were used for collection, and the collected volume was approximately 30 – 50ml per sample. Salinity, temperature, and pH were recorded for each sample (Table 1).

Media

A modified nitrate mineral salts (modified NMS) media was used for cultivation. This medium is similar to nitrate mineral salts (NMS, ATCC 1306), except that trace elements from DSMZ 141 replaced the trace elements from medium ATCC 1306. Vitamins were added (DSMZ 141, 1000X), and sodium chloride was added to 2%. The medium was sterilized by filtration. To solidify medium for plates, Bacto agar (Becton Dickinson and
Company, Franklin Lakes New Jersey) was added to 1.5% final concentration and the
medium was autoclaved.

Isolation of methanotrophic species

In June 2015, approximately 20 μl of slurry from each enrichment bottle was
streaked onto modified NMS agar plates. Plates were incubated in a cultivation jar (Oxoid
anaerobic jar, Thermo Fisher Scientific, Grand Island NY) with 50% methane and 50% air
in the headspace. Incubations proceeded for fourteen days at 22°C, and individual colonies
of distinct morphology were targeted for additional analysis.

Molecular identification of methane-oxidizing colonies

Colonies were probed for the presence of the pmoA gene (which provides a
molecular indicator of methane oxidation potential) via polymerase chain reaction (PCR).
Single colonies were picked with sterile pipet tips into 50 μl of sterile phosphate-buffered
saline (PBS, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄, 137 mM NaCl, 2.7 mM KCl, pH 7.4). Two μl of
this suspension was used as a template in PCR; final reaction volume was 20 μl. Reactions
were performed in 1x Taq reaction buffer, with 0.2 mM each dNTP, 10 μM of forward and
reverse primers (pmoA189f and mb661r (Costello and Lidstrom, 1999), synthesized by
Integrated DNA Technologies, Coralville IA, USA) and 1 unit Taq polymerase (New England
Biolabs, Ipswich MA). Reactions were heated to 95°C for 10 minutes to lyse bacterial cells,
and then cycled at 95°C (1 min), 54°C (1 min), and 72°C (1 min). After 30 cycles, a final
extension step at 72°C (1 min) was included. Four μl of the product was electrophoresed
through a 1% (w/v) agarose gel, stained with SYBR safe dye (Thermo Fisher Scientific,
Grand Island NY), and visualized with ultraviolet transillumination. Bacterial colonies that
gave a PCR amplicon of ~500 base pairs were retained for further analysis.
For determination of 16S rRNA gene sequences, PCR was performed as above except
that primers Bac8f and Uni1492r ((Lane, 1991), synthesized by Integrated DNA
Technologies, Coralville IA) replaced pmoA189 and mb661r, and a ~1400 bp product was
expected. When using PCR to amplify target genes from DNA (instead of bacterial cells),
the initial denaturation step was reduced from 10 minutes to 3 minutes.

Clone library construction
To identify the major contaminating species in an early enrichment culture, PCR
primers Bac8f and Uni1492r (Lane, 1991) targeting the 16S rRNA gene were used to
generate a ~1400 bp PCR product. This product was purified from 1% agarose gel
electrophoresis using the Wizard DNA extraction kit (Promega, Madison WI) following
manufacturer’s recommendations. The gel-purified product was cloned into the pSMART
GCHK vector using the pSMART system (Lucigen, Middleton, WI) and following
manufacturer’s recommendations. 48 colonies containing the 16S rRNA gene insert were
sequenced commercially.

Sequencing
To prepare amplicons for sequencing, PCR products were diluted with sterile water
to 100 µl, and separated from primers on 96-well filter plates under vacuum (EMD
Millipore, Billerica, MA). Cleaned amplicons were resuspended in 30µl of 10mM Tris pH
7.5, and DNA concentrations were measured by Nanodrop (Thermo Scientific, Wilmington DE). DNA amplicons were sequenced commercially (Laragen, Culver City, CA).

Purification of *Methylomarinum* strain SSMP-1

To generate a pure culture of *Methylomarinum* strain SSMP-1 (Salton Sea Mud Pots), colonies that gave a positive pmoA PCR signal were inoculated into 3 mls of sterile liquid modified NMS and incubated under 50% methane headspaces in Balch style tubes. Inocula were grown with gentle rotation at 22°C until they reached slight but visible turbidity. These cultures were diluted via a tenfold dilution series to an estimated 1000 cells per ml (4 dilution steps). At this point in the dilution series, 2 fold dilutions were made past extinction (an additional 14 tubes.). This set of 18 tubes was incubated with rotation at 22°C, and the ‘most dilute’ tube that ultimately grew was subjected to this same dilution-to-extinction procedure, until molecular (amplification and sequencing of the 16S rRNA gene) and microscopic (fluorescent *in situ* hybridization) inspection failed to detect any contaminants. At this point *Methylomarinum* strain SSMP-1 was considered pure. The isolate was stored at -80°C as described in (Hoefman et al., 2012).

Growth determinations

The growth rate of *Methylomarinum* strain SSMP-1 was determined by measuring the change in optical density (450 nm) of liquid cultures grown at 10°C, 22°C, 28°C, 37°C, and 45°C. Duplicate tubes were grown at each temperature and results were averaged. The effect of trace metals on the growth of *Methylomarinum* strain SSMP-1 was determined by measuring the change in optical density (450 nm) of liquid cultures
amended with 1X, 2X, 4X, 6X, 8X, 10X and 20X concentrations of DSMZ141 trace element solution. Duplicate tubes were grown for each amended media, and results were averaged.

DNA extraction

To extract DNA from cell cultures, 4 – 10ml cultures at an optical density of 0.3 were pelleted in polypropylene tubes in a Beckman Coulter Allegra X-15R tabletop centrifuge at 4000 RPM for 20 minutes. The supernatant was discarded and the cell pellets were subjected to lysozyme-proteinase K treatment followed by a phenol-chloroform extraction protocol and ethanol precipitation (Wilson, 2001). The resulting DNA was treated with an additional cesium chloride and ethidium bromide cleanup step (Saunders and Burke, 1990), to attain a level of purity suitable for molecular analysis.

To extract DNA from environmental samples, the Power Soil DNA extraction kit was used following manufacturer's specifications (Mo Bio Laboratories, Carlsbad CA). Approximately 0.2 g of sediment was extracted per sample. A FastPrep bead beater (Bio101, Thermo Fisher Scientific, Waltham, MA) was used to disrupt cells during this procedure.

Microscopy: FISH and motility

To visualize cells via fluorescence *in situ* hybridization (FISH), 0.5 ml of exponential-phase culture was fixed with 2% paraformaldehyde (PFA, 2 h, 22°C). Standard protocols were used to perform FISH (e.g. (Manz et al., 1992)). In brief, fixed cells were transferred onto 20 x 64 mm glass slides and hybridized with 16S rRNA- targeted fluorescently-labeled oligonucleotide probes specific for all bacteria (Fluos-labelled EUB 338 I-III; (Amann et al.,
186 1990; Daims et al., 1999)) and Gammaproteobacterial methanotrophs (Cy3-labelled My705;
187 (Eller et al., 2001)). Probes were synthesized by Integrated DNA Technologies (Coralville
188 IA). Following hybridization, cellular DNA was stained with diamidino-2-phenyindole
189 (DAPI). Cells were imaged on an Olympus BX51 microscope under oil immersion at 1000X
190 magnification.

191 To observe motility in *Methylomarinum* strain SSMP-1, log phase cells were
192 removed from their stoppered vessel with an 18-gauge needle attached to a 3ml syringe. A
drop (~25μl) of this culture was deposited gently onto a glass slide and covered with a 20 x
194 60mm coverslip. This wet-mounted preparation was viewed using phase contrast on an
195 Olympus BX51 microscope under oil immersion at 1000X magnification.

196

197 Quantitative PCR

198 To enumerate *Methylomarinum* from cultures and environmental samples, qPCR
199 primers specific to *Methylomarinum* were designed (*Methylomarinum_pmoA267f:
200 ACTRTTTCTGTATTRGCCTG, and *Methylomarinum pmoA375r:*
201 AAYCARGTTTGATGGGAATACG). Probes were synthesized by Integrated DNA
202 Technologies, Coralville IA. At least 1 mismatch in each primer is predicted for all other
203 validly published methanotrophic genera, thus, as a paired set, these primers are not
204 expected to easily amplify from methanotrophs outside of *Methylomarinum*. The primers
205 were empirically validated in this regard against genomic DNA corresponding to
206 *Methylomarinum* strain SSMP-1, *Methylosinus trichosporium* strain OB3b (Genbank
207 accession number AF186586), *Methylocystis parvus* strain OBBP (AF533665),
Methylomicrobium album strain BG8 (FJ713039), Methylospirillum lacus strain LW14 (AY007286), Methylospirillum fibrata (AF177325), Methylomonas sp. strain LW13 (AF150793), Methylomonas methanica strain S1 (U31653), Methylomicrobium alcaliphilum strain 2OZ (FO082060), Methylophilus sedimenti strain WF1 (KF484908), and from the nitrosifiers Nitrosococcus oceani (U96611) and Nitrosomonas europaea (AF037107).

Optimal annealing temperature for this primer pair was 53°C. The ‘no template control’ used PCR grade water in place of DNA template, and generated a Cq of 39 or greater in quantitative PCR. DNA templates from environmental samples were assayed at 1-fold, 4-fold, and 16-fold to verify that the assay fell within the linear range (i.e. no inhibitory substances in the DNA extract). The standard curve was generated against 10 fold dilutions of genomic DNA from Methylomarinum strain SSMP1. Assuming a pmoA copy number of 1 and genome size of 4.3 x 10^6 bp, which is the size of the Methylomarinum vadi strain IT4 genome, the standard curve ranged from 20 to 2x10^7 copies per microliter. The dynamic range of the assay encompassed these values.

Quantitative PCR was performed using the Power SYBR Universal mastermix (Thermo Fisher Scientific, Grand Island NY) and a Biorad CFX96 Real time C1000 Touch Thermal Cycler System. Prior to cycling, DNA was denatured for 3 minutes at 95°C. Then, forty cycles of qPCR (denaturing at 95°C, for 15 seconds and annealing and extending at 57°C for 1 min) were performed. A dissociative melt curve (0.5 degrees per minute) was included to evaluate amplicon homogeneity. Measurements were made in triplicate and averaged; standard deviations were calculated. The products of qPCR were sequenced commercially (Laragen, Culver City CA).
Phylogenetic analysis

For the 16S rRNA gene, sequences from select species within *Methylococcaceae* and relevant environmental sequences were used to infer a tree by maximum-likelihood, using the PhyML package (Guindon et al., 2010) and the HKY evolutionary model in the software program ARB (version 5.5, http://www.arb-home.de/; (Ludwig et al., 2004). The sequences were aligned in the SSURef- 119-SILVA-NR database (http://www.arb-silva.de/; (Quast et al., 2013)) and masked using the provided bacterial filter. The tree's reliability was estimated by bootstrapping in software program Geneious version 7.1.7 (http://www.geneious.com/) using PhyML maximum-likelihood, the HKY model and 1000 replicates. Sequences that formed the outgroup (not shown) included *Methylocapsa acidiphila* strain B2 (AJ278726), *Methylocystis parvus* strain OBBP (Y18945) and *Methylosinus trichosporium* strain OB3b (ADVE01000118).

To reconstruct a phylogenetic tree for the A subunit of particulate methane monooxygenase, pMMO-A sequences from cultured methanotrophs within *Methylococcaceae*, *Methylothermaceae*, and select environmental sequences were aligned using MUSCLE (http://www.phylogeny.fr; (Dereeper et al., 2008)). The resulting alignment was analyzed via maximum-likelihood, with the AMO-A sequences of *Nitrosomonas cryotolerans* ATCC 49181 (AF314753) and *Nitrosospira briensis* strain C-128 (U76553) as the outgroup (not shown). Sequences generated in this study were deposited to Genbank under accession numbers KU740209-KU740211 and KX060584.
Results:

Isolation of *Methylomarinum* strain SSMP-1

We routinely place environmental samples under methane, as one means of building resources for investigating microbial methane oxidation. Two such incubations, from samples collected at the Davis-Schrimpf seep field (Figure 1) near the southeast shore of the Salton Sea, were established in September 2012.

In June of 2015, a small amount of sediment slurry from each of these incubations was inoculated onto solid modified NMS medium and placed under 50% methane headspace. After 14 days, approximately 22 distinct colony types were identified that ranged in size, coloration, and shape. These colonies were probed for the particulate methane monooxygenase gene (*pmoA*), whose product, pMMO-A, catalyzes aerobic methane oxidation. Of the 22 colonies probed, two generated strong *pmoA* amplicons. Both colonies derived from the “Site 2” mud pot (Figure S1). The sequences of these two amplicons were identical, and were 89% identical (at the DNA level) to the *pmoA* sequence of the marine methanotroph *Methylomarinum vadi* IT-4.

Both colonies were streaked 3 times successively on agar in an effort to purify them from co-cultivating bacteria; however this approach did not yield a pure culture. One of the colonies was inoculated into liquid media and purified via the dilution-to-extinction method twice, until no contaminating species were evident (Figure 2). At this point, both the *pmoA* and the 16S ribosomal genes were amplified from the culture. The 16S rRNA gene demonstrated 96.7% identity to *Methylomarinum vadi* IT-4, and the pMMO-A protein scores were 97% (identity) and 99% (similarity) when compared to *Methylomarinum vadi*
IT-4 (Figure 3). These results place strain SSMP-1 within *Methylococcaceae*, and within *Methylomarinum*, in Gammaproteobacteria.

Characteristics of Methylomarinum strain SSMP-1

The doubling time of *Methylomarinum* strain SSMP-1 in liquid modified NMS was measured at 10°C, 22°C, 28°C, 37°C, and 45°C. The strain did not grow at 10°C, 37°C, or 45°C. At 22°C, the strain doubled every 15 hours, while at 30°C the strain doubled every 18 hours. These results indicate a lower optimal growth temperature for *Methylomarinum* strain SSMP-1 than that reported for *Methylomarinum vadi* IT-4, which has an optimal growth temperature of 37 – 43°C (Hirayama et al., 2013). As *Methylomarinum* strain SSMP-1 approached saturation, it formed large flocs, in sheets approximately three - four millimeters across. Because hydrothermal features often exhibit elevated metal concentrations, the tolerance of *Methylomarinum* strain SSMP-1 to elevated metals was preliminarily assessed, by amending culture media with up to 20-fold higher trace element solution. Even at the highest end of this amendment series, *Methylomarinum* strain SSMP-1 grew with near normal kinetics (not shown). In contrast, the reference marine organism *Methyloprofundus sedimenti* (Tavormina et al., 2015) was inhibited for growth at a 6-fold elevation in trace element concentration.

When grown on solid modified NMS media, *Methylomarinum* strain SSMP-1 formed colonies within 2 weeks that were approximately ½ millimeter across. Colonies were smooth and shiny at two weeks but rough and irregular at four weeks. Non-uniform pink pigmentation developed as incubations proceeded past 2 weeks (Figure S2).
Individual cells of *Methylomarinum* strain SSMP-1 were short, thick rods approximately 1.3 - 1.5 \(\mu \text{m} \) long (Figure 2), similar to the size reported for *Methylomarinum vadi* IT-4 (Hirayama et al., 2013). At a magnification of 1000X, cells appeared granular (Figure 2). Cells were clearly motile (Movie S1), in keeping with reported features of the type species of the genus (Hirayama et al., 2013). During the course of purifying *Methylomarinum* strain SSMP-1, cells were routinely imaged with FISH. These images indicated that *Methylomarinum* strain SSMP-1 initially existed in close association with smaller rod-shaped bacteria (Figure 2a). These rods were typically surrounded by *Methylomarinum* strain SSMP-1, but occasionally occurred independently. The contaminating rods were not detected in the pure culture (Figure 2b). A 16S rRNA clone library derived from the enrichment culture revealed that approximately 83% of 16S rRNA genes affiliated with *Methylomarinum*, whereas 16% affiliated with genus *Methylophaga* (96.9% identity to accession KF790925 (Mishamandani et al., 2014)). This finding suggests that organisms capable of utilizing methanol as a carbon source may associate with *Methylomarinum* in the Davis Schrimpf seep field environment.

Natural abundance of Methylomarinum in the Davis-Schrimpf seep field

Because *Methylomarinum* strain SSMP-1 was isolated following a three-year enrichment at room temperature, its significance to the *in situ* microbial community in the seep field is not clear. To assess the natural abundance of *Methylomarinum* in the seep field, DNA from six mud pots and associated gryphons was extracted and probed directly for the *pmoA* gene using quantitative PCR with primers specific to *Methylomarinum*. These primers did not amplify DNA from ten reference organisms (results not shown). Environmental
319 samples for this analysis were collected in January 2016, after four years of drought in
320 California, and the water level of the mud pots was significantly reduced relative to
321 September 2012, when the original samples were collected (Figure S3). Additionally, the
322 samples were collected in January when ambient temperatures are near their lowest values
323 of the year. Despite these distinctions between the two collection dates in this study,
324 *Methylomarinum* pmoA genes were readily detected in all mud pots, and were most
325 abundant at Site 2, the original source of *Methylomarinum* strain SSMP-1 (Table 1). At this
326 site they were detected at over 10^4 copies per nanogram of DNA. Sequencing these
327 amplicons confirmed that they are closely related to *Methylomarinum*, although several
328 base changes exist between in situ amplified pmoA sequences and the *Methylomarinum*
329 strain SSMP-1 pmoA sequence. A near-complete pmoA gene sequence was recovered from
330 Site 2 DNA, to verify affiliation with *Methylomarinum* (Figure 3).
331
332 A general trend existed between increasing salinity of the mud pots and decreased
333 abundance of *Methylomarinum*, as assessed by abundance of the pmoA gene (Table 1). Also,
334 a clear distinction in abundance existed between gryphons and mud pots. In gryphons,
335 abundance of *Methylomarinum* did not exceed ~50 copies per nanogram of DNA; this
336 equates to three orders of magnitude less than the abundance of *Methylomarinum* in the
337 Site 2 pot. The salinity of gryphons was between 0 and 1.2 in all cases, lower than the
338 salinity in mud pots where values were between 5.0 and 17.2 (Table 1). The reported
339 tolerated salinity range of *Methylomarinum vadi* is 1.0 – 8.0, with an optimum of 2.5 – 3.0
340 (Hirayama et al., 2013), which fits reasonably well with the numbers reported here, from
341 individual pots and gryphons within the seep field.
Discussion:

The fumaroles, mud pots, and gryphons in the Salton Sea basin are emission sources of one-carbon compounds, including methane and carbon dioxide. The Davis-Schrimpf seep field provides a terrestrial analog of submarine hydrothermal features in the Guaymas Basin, within the Gulf of California (Svensen et al., 2009). Yet, methane (and carbon dioxide) cycling in the Davis-Schrimpf field is essentially uncharacterized. The present work demonstrates, firstly, that methane-oxidizing bacteria reside in abundance in the Davis-Schrimpf seep field; secondly, that the ecological range of genus *Methylomarinum* includes inland mud pots; and thirdly, that the Davis-Schrimpf seep field shares not only morphological and geochemical elements with deep-sea hydrothermal features, but also microbial ecological elements.

Hydrothermal features along seismic zones source CO₂ and CH₄ to the environment, and the biological constraints that limit the escape of these gases to the atmosphere are not fully characterized. In deep marine systems, methane emissions are naturally remediated by sediment-hosted Archaea and Bacteria. Methane that escapes sediments can be oxidized within the water column, which hosts a distinct methane-oxidizing assemblage below 200 m water depth (Tavormina et al., 2008; Tavormina et al., 2013). Methane-oxidizing microbial assemblages in shallow ocean waters have yet to be clearly or definitively identified. Within the Davis-Schrimpf seep field, where methane is sourced from shallow saline water, methane that is not remediated *in situ* is expected to directly enter the atmosphere. Thus, methane-oxidizing assemblages in the mud pots within this field are of particular interest, for their role in limiting the escape of methane to the atmosphere.
Both *Methylomarinum vadi* strain IT-4 and *Methylomarinum* strain SSMP-1 were isolated from hydrothermal features, along seismic zones. *Methylomarinum vadi* strain T2-1 was isolated from mud at several meters water depth, near Hiroshima, Japan. Molecular signatures (*pmoA*) of related uncultured organisms (Figure 3 this work; (Abdallah et al., 2014a)) have been reported from the seawater:brine interface in the Atlantis II Deep brine pool in the Red Sea, at a water depth of approximately 2000 meters. Red Sea brine pools are characterized by hypersalinity, low oxygen, acidity, and elevated concentrations of metals (Bougouffa et al., 2013). Molecular signatures (16S rRNA) with slightly lower relatedness to the *Methylomarinum* 16S rRNA gene have been detected from hydrothermal vent sites, sediment incubations amended with manganese, and from hypersaline sediments from the Gulf of Mexico (Figure 3, (Beal et al., 2009; Hirayama et al., 2007; Li et al., 2013; Lloyd et al., 2006; Schauer et al., 2011)). Taken together, the available evidence may suggest that genus *Methylomarinum* preferentially establishes in environments characterized by elevated salinity or temperature, reduced pH, and/or high metal content. Initial queries here into the roles of temperature, salinity, and metals suggest that genus *Methylomarinum* may be particularly tolerant of elevated metal concentrations. Indeed, analysis of genomic potential among available methanotrophic genomes reveals that the number of genes conferring resistance to cadmium, zinc, and cobalt ranges from a low of 17 in *Methylohalobius* to a high of 34 in *Methylococcus*. Importantly, *Methylomarinum* also encodes 34 genes relevant to cadmium, zinc, and cobalt tolerance. This result places *Methylomarinum* at the uppermost end of the range. Direct quantitation of *Methylomarinum* from habitats ranging in salinity, pH, and methane and metal concentrations, will likely provide additional insight into the physicochemical or geological factors that promote the
establishment of this genus in the environment. Such studies, coupled with controlled laboratory investigations with cultured members of *Methylophilum*, will ultimately improve our understanding of the role of this genus in global methane cycling.
Acknowledgments:

We thank Roland Hatzenpichler and Derek Smith for sampling the Salton Sea mudpots in 2012 and providing critical methodological, graphic, and scientific input. We thank Alyssa Boedigheimer for assistance in sample collection in January 2016. We thank Stephanie Connon for assistance with the 16S rRNA gene phylogeny.
Abdallah, R.Z., Adel, M., Ouf, A., Sayed, A., Ghazy, M.A., Alam, I., Essack, M., Lafi, F.F., Bajic, V.B., El-Dorry, H., Siam, R., 2014a. Aerobic methanotrophic communities at the Red Sea brine-seawater interface. Frontiers in microbiology 5, 487.

Abdallah, R.Z., Adel, M., Ouf, A., Sayed, A., Ghazy, M.A., Alam, I., Essack, M., Lafi, F.F., Bajic, V.B., El-Dorry, H., Siam, R., 2014b. Aerobic methanotrophic communities at the Red Sea brine-seawater interface. Frontiers in microbiology 5, 487.

Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., Stahl, D.A., 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919-1925.

Baker, E., Urabe, T., 1996. Extensive distribution of hydrothermal plumes along the superfast spreading East Pacific Rise, 13° 30′ -18° 40′ S. Journal of Geophysical Research; Solid Earth 101, 8685-8695.

Beal, E.J., House, C.H., Orphan, V.J., 2009. Manganese- and iron-dependent marine methane oxidation. Science 325, 184-187.

Bougouffa, S., Yang, J.K., Lee, O.O., Wang, Y., Batang, Z., Al-Suwailem, A., Qian, P.Y., 2013. Distinctive microbial community structure in highly stratified deep-sea brine water columns. Appl Environ Microbiol 79, 3425-3437.

Conrad, R., 2009. The global methane cycle: recent advances in understanding the microbial processes involved. Environmental microbiology reports 1, 285-292.

Costello, A.M., Lidstrom, M.E., 1999. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65, 5066-5074.

Daims, H., Bruhl, A., Amann, R., Schleifer, K.H., Wagner, M., 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Systematic and applied microbiology 22, 434-444.

Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Guindon, S., Lefort, V., Lescot, M., Claverie, J.M., Gascuel, O., 2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic acids research 36, W465-469.

Dillon, J.G., McMath, L.M., Trout, A.L., 2009. Seasonal changes in bacterial diversity in the Salton Sea. Hydrobiologia 632, 49-64.

Eller, G., Stubner, S., Frenzel, P., 2001. Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEMS microbiology letters 198, 91-97.

Fuse, H., Ohta, M., Takamura, O., Murakami, K., Inoue, H., Yamaoka, Y., Oclarit, J.M., Omori, T., 1998. Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomonas strain containing soluble methane monoxygenase. Biosci Biotechnol Biochem 62, 1925-1931.

Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology 59, 307-321.

Hanson, R.S., Hanson, T.E., 1996. Methanotrophic bacteria. Microbiol Rev 60, 439-471.

Hirayama, H., Fuse, H., Abe, M., Miyazaki, M., Nakamura, T., Nunoura, T., Furushima, Y., Yamamoto, H., Takai, K., 2013. Methylomarinum vadi gen. nov., sp. nov., a methanotroph
isolated from two distinct marine environments. International journal of systematic and evolutionary microbiology 63, 1073-1082.

Hirayama, H., Sunamura, M., Takai, K., Nunoura, T., Noguchi, T., Oida, H., Furushima, Y., Yamamoto, H., Oomori, T., Horikoshi, K., 2007. Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. Appl Environ Microbiol 73, 7642-7656.

Hoefman, S., Van Hoorde, K., Boon, N., Vandamme, P., De Vos, P., Heylen, K., 2012. Survival or revival: long-term preservation induces a reversible viable but non-culturable state in methane-oxidizing bacteria. PloS one 7, e34196.

Knief, C., 2015. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker. Frontiers in microbiology 6, 1346.

Lane, D., 1991. 16S/23S rRNA sequencing, in: Stackenbrandt, E., Goodfellow, M. (Eds.), Nucleic acid techniques in bacterial systematics. John Wiley and sons, New York, NY, pp. 115-175.

Li, J., Peng, X., Zhou, H., Li, J., Sun, Z., 2013. Molecular evidence for microorganisms participating in Fe, Mn, and S biogeochemical cycling in two low-temperature hydrothermal fields at the Southwest Indian Ridge. Journal of Geophysical Research; Biogeosciences 118, 665-679.

Lloyd, K.G., Lapham, L., Teske, A., 2006. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72, 7218-7230.

Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., Forster, W., Brettke, I., Gerber, S., Ginhart, A.W., Gross, O., Grumann, S., Hermann, S., Jost, R., Konig, A., Liss, T., Lussmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., Schleifer, K.H., 2004. ARB: a software environment for sequence data. Nucleic acids research 32, 1363-1371.

Manz, W., Amann, R., Ludwig, W., Wagner, M., Schleifer, K.-H., 1992. Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions. Systematic and applied microbiology 15, 593-600.

Mazzini, A., Svensen, H., Etiope, G., Onderdonk, N., Banks, D., 2011. Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System (California, USA). Journal of Volcanology and Geothermal Research 205, 67-83.

Mishamandani, S., Gutierrez, T., Aitken, M.D., 2014. DNA-based stable isotope probing coupled with cultivation methods implicates Methylophaga in hydrocarbon degradation. Frontiers in microbiology 5, 76.

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glockner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research 41, D590-596.

Reeburgh, W.S., 2007. Oceanic methane biogeochemistry. Chemical reviews 107, 486-513.

Saunders, S.E., Burke, J.F., 1990. Rapid isolation of miniprep DNA for double strand sequencing. Nucleic acids research 18, 4948.

Schauer, R., Roy, H., Augustin, N., Gennerich, H.H., Peters, M., Wenzhoefer, F., Amann, R., Meyerdierks, A., 2011. Bacterial sulfur cycling shapes microbial communities in surface
490 sediments of an ultramafic hydrothermal vent field. Environmental microbiology 13, 2633-
491 2648.
492 Shank, T., Fornari, D., Von Damm, K., Lilley, M., Haymon, R., Lutz, R., 1998. Temporal and
493 spatial patterns of biological community development at nascent deep-sea hydrothermal
494 vents (9° 50’ N, East Pacific Rise). Deep Sea Research Part II: Topical Studies in
495 Oceanography 45, 465-515.
496 Svensen, H., Hammer, O., Mazzini, A., Onderdonk, N., Polteau, S., Planke, S., Podladchikov,
497 Y.Y., 2009. Dynamics of hydrothermal seeps from the Salton Sea geothermal system
498 (California, USA) constrained by temperature monitoring and time series analysis. Journal
499 of Geophysical Research; Solid Earth 114.
500 Swan, B.K., Ehrhardt, C.J., Reifel, K.M., Moreno, L.I., Valentine, D.L., 2010. Archaeal and
501 bacterial communities respond differently to environmental gradients in anoxic sediments
502 of a California hypersaline lake, the Salton Sea. Appl Environ Microbiol 76, 757-768.
503 Tavormina, P.L., Hatzenpichler, R., McGlynn, S., Chadwick, G., Dawson, K.S., Connon, S.A.,
504 Orphan, V.J., 2015. Methyloprofundus sedimenti gen. nov., sp. nov., an obligate
505 methanotroph from ocean sediment belonging to the 'deep sea-1' clade of marine
506 methanotrophs. International journal of systematic and evolutionary microbiology 65, 251-
507 259.
508 Tavormina, P.L., Ussler, W., 3rd, Orphan, V.J., 2008. Planktonic and sediment-associated
509 aerobic methanotrophs in two seep systems along the North American margin. Appl
510 Environ Microbiol 74, 3985-3995.
511 Tavormina, P.L., Ussler, W., 3rd, Steele, J.A., Connon, S.A., Klotz, M.G., Orphan, V.J., 2013.
512 Abundance and distribution of diverse membrane-bound monooxygenase (Cu-MMO) genes
513 within the Costa Rica oxygen minimum zone. Environmental microbiology reports 5, 414-
514 423.
515 Trotsenko, Y.A., Murrell, J.C., 2008. Metabolic aspects of aerobic obligate methanotrophy.
516 Advances in applied microbiology 63, 183-229.
517 Wilson, K., 2001. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol Chapter
518 2, Unit 2 4.
519
Figure legends

Figure 1. Study area. The Davis-Schrimpf seep field is situated approximately 3 km east of the southeast corner of the Salton Sea. Inset: a view of the field from a southwest approach.

Figure 2. Microscopic appearance of *Methylomarinum* strain SSMP-1. a. Rod shaped bacteria initially co-purified with the isolate, and were typically surrounded by cells of *Methylomarinum* strain SSMP-1. b. No contaminating bacteria were evident after 2 successive dilution-to-extinctions in liquid modified NMS. Scale bar: 5 microns.

Figure 3. Phylogenetic relatedness of *Methylomarinum* strain SSMP-1 to select methanotrophic genera. Closed circles indicate bootstrap value greater than 80%. Open circles indicate bootstrap values greater than 60%. a. A 16S rRNA gene phylogeny. Analysis of the 16S rRNA gene supports placement of *Methylomarinum* strain SSMP-1 near *Methylomarinum vadi* strains IT4 and T2-1. b. A pMMO-A protein phylogeny. Analysis of protein sequences from select methanotrophic genera also indicates that *Methylomarinum* strain SSMP-1 affiliates with *Methylomarinum vadi*. Sequences amplified directly from Site 2 mud pot DNA, and sequences from uncultured organisms at the brine:seawater interface in the Red Sea, are shown.

Supplemental materials

Figure S1. Sites sampled in the Davis-Schrimpf seep field in 2012 and 2016. In 2012, samples were collected from the light brown pot at site 2 and the dark grey pot at site 3. In 2016, samples were collected from water, sediment, and gryphons associated with Sites 1 –
6, as indicated in Table 1. Inset: Pots were roughly 2 – 4 meters in diameter; gryphons were roughly 2 - 2.5 meters tall.

Figure S2. Appearance of *Methylomarinum* strain SSMP-1 when grown on solid medium. Colonies required approximately 2 weeks to become visible on solid modified NMS plates incubated at 22°C. Between 2 and 4 weeks growth, colonies became rough in appearance and non-uniform pink pigmentation developed. a. View of colonies by eye. b. View of colonies by stereoscope.

Figure S3. Water levels at Site 2 in the Davis Schrimpf seep field in 2012 and 2016. a. In 2012, water levels at Site 2 were within 0.2 meters of ground level. b. Water levels were significantly lower in 2016, approximately a meter below ground level.

Movie S1. Motility in *Methylomarinum* strain SSMP-1, video loop. Actively growing cells demonstrate clear tumbling motility in wet-mount preparations.
Table 1 (on next page)

General features of mud pots and gryphons at the Davis-Schrimpf seep field, January 2016.
Table 1. General features of mud pots and gryphons at the Davis-Schrimpf seep field, January 2016 (unless otherwise noted).

Site	Sample	Temp. (°C)	pH	Salinity (%)	Copies pmoA gene /ng DNA (SD)	Copies pmoA gene /g sample
1	Turbid water	18.7	6.4	7.2	2.7E+02 (1.8E+01)	1.2E+05
	Sediment	18.7	6.5	7	2.2E+03 (8.5E+01)	7.9E+06
2	Southeast end	18.3	6.2	5	1.4E+04 (7.7E+02)	6.3E+07
	Northwest end	18.3	6.3	5	6.6E+04 (3.9E+03)	1.5E+08
	Gryphon	51.7	ND	0.8	3.6E+01 (3.3E+00)	3.9E+03
	9-2012, mid-pot	35-37	6.83	ND	ND	ND
3	Water	17.2	6.2	16	2.6E+01 (5.4E+00)	3.6E+03
	Sediment	17.2	6.8	17.2	9.3E+02 (1.4E+02)	3.5E+06
	Gryphon	43.3	ND	1.2	4.3E+01 (1.1E+01)	3.2E+03
	9-2012, mid-pot	35-37	7.07	ND	ND	ND
4	Water	16.1	6.7	14.2	2.8E+02 (6.8E+01)	7.7E+04
	Sediment	16.1	6.7	14.2	1.5E+02 (2.1E+01)	3.9E+04
	Gryphon	46.9	ND	0.2	1.7E+01 (5.4E+00)	3.6E+03
5	Sediment	16.7	6.45	10.2	4.3E+02 (6.5E+01)	3.9E+05
	Gryphon	62.8	ND	1	8.4E+00 (3.0E-01)	1.5E+04
6	Water	16.7	6.76	12.4	2.6E+03 (5.5E+01)	8.4E+06
	Sediment	16.7	6.5	13	1.2E+03 (1.3E+02)	2.4E+06

2 ND = Not determined.
3 a. See figure S1.
4 b. The pH values of gryphons were not determined due to the high viscosity of these samples.
5 c. Salinity was measured in the supernatant derived from pelleted sediment, using a hand held refractometer.
Study area: the Davis Schrimpf Seep Field.

Study area. The Davis-Schrimpf seep field occurs approximately 3 km east of the southeast corner of the Salton Sea. Inset: a view of the field from a southwest approach.
Microscopic appearance of Methylococcaceae strain SSMP-1.

Microscopic appearance of *Methylococcaceae* strain SSMP-1. a. Rod shaped bacteria initially co-purified with the isolate, and were typically surrounded by cells of *Methylococcaceae* strain SSMP-1. b. No contaminating bacteria were evident after 2 successive dilution-to-extinctions in liquid modified NMS. Scale bar: 5 microns.
Figure 3 (on next page)

Phylogenetic relatedness of Methylococcaceae strain SSMP-1 to select methanotrophic genera.

Phylogenetic relatedness of *Methylococcaceae* strain SSMP-1 to select methanotrophic genera. Closed circles indicate bootstrap value greater than 80%. Open circles indicate bootstrap values greater than 60%. a. A 16S rRNA gene phylogeny. Analysis of the 16S rRNA gene supports placement of *Methylococcaceae* strain SSMP-1 near *Methylomarinum vadi* strains IT4 and T2-1. b. A pMMO-A protein phylogeny. Analysis of protein sequences from select methanotrophic genera also indicates that *Methylococcaceae* strain SSMP-1 affiliates with *Methylomarinum vadi*. Sequences amplified directly from Site 2 mud pot DNA, and sequences from uncultured organisms at the brine:seawater interface in the Red Sea, are shown.
Methylothermus subterraneous (AB536747)
Methylomarinovum caldicuralli, str. IT-9 (AB301718)
Methylhalobius crimeensis (AJ581837)
Methylocaldum szegediense (U893000)
Methylogaea oryzaea, str. E10 (EU672873)
Methyllococcus capsulatus, str. Bath (AE017282)
Methylosoma difficile (DQ119050)
Methyllovulum miyakonense (AB501287)
Methyloglobulus morosus, str. KoM1 (JN386974)
Methylothermus subterraneous (AB536747)
Methylomarinovum caldicuralli, str. IT-9 (AB301718)
Methylhalobius crimeensis (AJ581837)
Methylocaldum szegediense (U893000)
Methylogaea oryzaea, str. E10 (EU672873)
Methyllococcus capsulatus, str. Bath (AE017282)
Methylosoma difficile (DQ119050)
Methyllovulum miyakonense (AB501287)
Methyloglobulus morosus, str. KoM1 (JN386974)

Methylobacter tundripaludum (AJ414655)
Methylosarcina fibrata (AF177296)
Methylosarcina lacus (AY007296)
Methylobacter whittenburyi (X72773)
Methylobacter luteus (X72772)
Methylomicrobium japonense (D89279)
Methylomicrobium alcaliphilum (FO082060)
Methyloprofundus sedimenti, str. WF1 (KF484906)
Methylomarinum vadi, str. IT-4 (AB301717)
Methylomarinum vadi, str. T2-1 (AB453958)
Methyloprofundus sedimenti, str. WF1 (KF484906)
Methylomarinum vadi, str. IT-4 (AB301717)
Methylomarinum vadi, str. T2-1 (AB453958)
Methylococcaceae strain SSMP-1 (KU740210)
Uncultured clone T13J-B48 (JN860373)
Uncultured clone pltb-vmat-59 (AB294960)
Uncultured clone Mn3b-B37 (FJ264570)
Uncultured clone SURF-GC205-Bac34 (DQ521819)
Uncultured clone 285-23 (FN553606)

Methylococcaceae strain SSMP-1 (KU740210)
Uncultured clone T13J-B48 (JN860373)
Uncultured clone pltb-vmat-59 (AB294960)
Uncultured clone Mn3b-B37 (FJ264570)
Uncultured clone SURF-GC205-Bac34 (DQ521819)
Uncultured clone 285-23 (FN553606)