Evaluation of Sealing Ability of Three Root Canal Sealers: An *In Vitro* Study

Shivangi Trivedi¹, Swati Chhabra², Abhishek Bansal³, Naveent Kukreja⁴, Nitu Mishra⁵, Aparna Trivedi⁶, Parwan Gill⁷, Dinraj Kulkarni⁸

Abstract

Aim: To evaluate the sealing ability of three different types of sealers using confocal laser microscopy.

Materials and methods: Sixty extracted single-root premolars were selected and divided into three groups (20 teeth in each group) according to the type of sealer used, namely, mineral trioxide aggregate (MTA) Fillapex, AH Plus, and Bio C Sealer. Root canal preparation and obturation were done in all the samples. Roots were dissected transversely in apical plane. Percentage of gap from region to canal circumference was calculated using a confocal laser microscope. Samples were subjected to statistical analysis.

Results: High dye penetration was seen with AH Plus compared to MTA Fillapex and least with Bio C Sealer. The AH Plus is the best sealer with respect to seal ability of all the three.

Conclusion: This study helps to appraise the sealing ability of the different types of sealers using confocal laser microscopy which is useful for the success of root canal treatment.

Clinical significance: As sealer has to seal voids, foramina, and canals, it should have good penetration for the success of root canal treatment.

Keywords: AH Plus, Bio C Sealer, MTA Fillapex, Root canals.

The Journal of Contemporary Dental Practice (2020): 10.5005/jp-journals-10024-2768

Introduction

For ideal root canal treatment, several factors are responsible such as proper instrumentation, biomechanical preparation, obturation as well as postendodontic restoration. Thus, the main purpose of RCT is to put an end to microbial existence and to prevent reinfestation of root canal. This will bring out proper sealing along with successful obturation, which acts synergistically to create hermetic seal.¹

Improper filling of canal can result in fluid movement into the defects, which may cause inflammatory reactions compromising the success of treatment.² Also the root canal ramifications, such as lateral, secondary, and accessory canals, connect root canal with the periodontal ligament and apical foramen.³

Root canal sealers are used in combination with gutta-percha for filling of root canals. Sealers obliterate the discrepancies like grooves and lateral depressions that cannot be filled with gutta-percha. Gutta-percha is impermeable; thus, leakage occurs at the sealer to gutta-percha and sealer to tooth interface.⁴

Root canal sealers have the following main functions:

- Sealing off voids, patent accessory canals, and multiple foramina.
- Forming a bond between the core of filling material and root canal wall, and
- Acting as lubricant, making the placement of filling core easier and enshrining the remaining microorganism.⁵

The capability of root canal sealers to seal root canal is reinforced by minimizing the amount of sealer and assessing good adaptation and penetration of the sealer into the root dentin. Thickness of sealer and its adaptation to root dentin is the main function of sealer’s physical and chemical properties.⁶

Flow is an important property that shows its capability to penetrate into small irregularities and ramifications of the root canal and also the dentinal tubules. Along with flow, the antimicrobial effectiveness of root canal sealers aids in disinfection of root canal system.³

Some of the main factors for choice of sealer are:

- Its ability to form sound seal
- Well tolerated by periradicular tissue
- Easy to manipulate⁷

Different types of root canal sealers are available, with each one having their own merits and demerits. However, they are selected according to their sealing ability, adhesive properties, biocompatibility, and antimicrobial efficacy. Some of them are:

¹-⁸Department of Conservative Dentistry and Endodontics, Maharishi Markandeshwar College of Dental Sciences and Research Mullana, Ambala, Haryana, India
³Department of Oral Pathology and Microbiology, Modern Dental College and Research Centre, Indore, Madhya Pradesh, India
⁴Department of Prosthodontics, Crown and Bridge and Implantology, Modern Dental College and Research Centre, Indore, Madhya Pradesh, India
⁵Department of Oral and Maxillofacial Pathology, M.A. Rangoonwala Dental College and Research Centre, Pune, Maharashtra, India

Corresponding Author: Aparna Trivedi, Department of Prosthodontics, Crown and Bridge and Implantology, Modern Dental College and Research Centre, Indore, Madhya Pradesh, India, Phone: +91 9406732918, e-mail: dr90aparnatrivedi@gmail.com

How to cite this article: Trivedi S, Chhabra S, Bansal A, et al. Evaluation of Sealing Ability of Three Root Canal Sealers: An *In Vitro* Study. J Contemp Dent Pract 2020;21(3):291–295.

Source of support: Nil

Conflict of interest: None
Sealing Ability of Root Canal Sealers: In Vitro Study

Markandeshwar College of Dental Sciences and Research, Mullana, Ambala, Haryana.

Selection of Samples
Sixty extracted single-root premolars were selected after being radiographed buccolingually and mesiodistally. The samples were collected from the Department of Oral surgery, Maharishi Markandeshwar College of Dental Sciences and Research, Mullana to be used in this in vitro study.

Inclusion criteria were single straight root canal and completely formed apex with patent foramina.

Exclusion criteria were obstruction within the canal system and internal/external resorption.

Preparation of Samples
The teeth were cleaned and tissue remnants from the root surfaces were removed by using the ultrasonic tips. The samples were then disinfected with 0.2% thymol and stored in distilled water. The sample was divided into three groups of 20 each based on the sealer used. Group I: MTA-Fillapex, Group II: Bio C Sealer, and Group III: AH Plus. The teeth were radiographed to confirm the presence of a single and straight canal. Selected teeth were decoronated at 16 mm from apex (for standardization of length of all sample size). After extirpation of pulp, 10 K file was introduced into the canal until it was visible at the apical foramen. Working length was calculated by subtracting 1.0 mm from the measurement.

Root Canal Preparation
Root canal preparation was done using the step-down technique. Coronal third was flared by using Gates glidden drills of size 4, 3, and 2. Apical third was prepared using K-files of size 35, i.e., master apical file size. Then step back was done in 1 mm increments up to the file size of 60. In between each file canals were irrigated with 5.25% NaOCl. Final irrigation was done with EDTA for 3 minutes to remove the smear layer. Irrigation was done with distilled water and the canals were dried with paper points.

Obturation
Samples were randomly divided into three groups according to the type of sealer used. Canals were obturated using cold lateral compaction technique. A 35 GP size master cone was placed in each canal. All sealers are prepared according to the manufacturers’ instructions. Each sealer was labelled using rhodamine B dye. The GP master cone was coated with sealer and inserted into the canal. The root canals were filled with accessory gutta-percha points and compacted laterally with the fine sized finger spreader. Gutta-percha cones were seared off at the canal orifice. The radiographs were taken at buccal and mesial aspects to assess the quality of root canal filling. All the samples were kept into the incubator at 37°C in 100% humidity for 10 days to allow the sealer to set. For each sample epoxy resin was used and sectioning was done at apical terminus of the filling with copius coolant irrigation.

Confocal Laser Analysis
Each cross section was examined under confocal laser scanning microscopy. Images were recorded at 100x magnification using fluorescent mode with laser emission at wavelength 546–674 nm and excitation at 543 nm. and the sealer–dentin interface was evaluated (Figs 1 and 2). Sealer penetration was calculated after importing the image into the IOB software. By this, the root canal circumference and the sealer penetration into the dentinal tubules

Materials and Methods

The following materials were used in the study:

- Freshly extracted single-root premolars
- 0.2% thymol: disinfectant
- NaOCl: for irrigation between each file change
- EDTA: final irrigation
- Distilled water: to clean fractured fragment
- Sealers: MTA-Fillapex, AH Plus, and Bio C Sealer
- Rhodamine B dye: for labeling sealers

Armamentarium Used

The following armamentarium were used in the study:

- Contra-angle handpiece and low-speed diamond disk: to decoronate the sample
- K-file: size 10, 35, and 60
- Gates glidden-drill: size 4, 3, and 2
- Paper points: for drying canal
- GP master cone: for obturation
- Spreader
- Intraoral periapical radiograph films
- Incubator: to keep samples
- Confocal laser microscope

This in vitro study was conducted in the Department of Conservative Dentistry and Endodontics of Maharishi
Sealing Ability of Root Canal Sealers: In Vitro Study

The goal of our study was to compare the sealability of all the three sealers. All procedures were performed by the same operator to avoid intraoperator discrepancies. Only teeth with straight root canals were used because they can offer a more standardized method for evaluation of apical leakage. However, using a single-cone technique for root canal filling allowed observing the sealability of the sealers in more critical situation than that offered by the lateral condensation technique as it is possible to speculate that the single-master cone needs a greater interaction with the sealer to promote the sealing. Rhodamine B dye was used because it does not suffer discoloration by calcium hydroxide-based materials as seen with methylene blue.11

We choose the AH Plus sealer because it is used frequently in clinical work and is usually chosen as the control in studies on the properties of new sealers because of its good flowability, proper film thickness, and viscosity. The most critical area of the prepared root canal is the 2–3 mm of apical third, hence we choose it. The AH Plus is an epoxy-resin-based sealer. It is used because of its reduced solubility, better apical seal, microretention to root canal dentin, and less shrinkage.2,22

The MTA Fillapex is a bioceramic and resin sealer. It is biocompatible and encourages apatite-like crystalline deposits along the apical and middle third of the canal walls.4,13

The Bio C is a novel bioceramic, nonresin sealer, which stimulates tissue regeneration.14

The flow, setting time, and solubility of all three sealers are shown in Table 3.

The present study showed high dye penetration with respect to AH Plus followed by MTA Fillapex and then Bio C Sealer.

Many researchers concluded that AH Plus shows more dye penetration. Gandolfi et al. found that AH Plus demonstrated better sealing ability than that of MTA.15 Almeida et al. concluded that AH Plus permitted less dye leakage than pulp canal sealer.3 Al Haddad et al. found that AH Plus exhibits the least number of gap-containing regions than MTA Fillapex.6 Tyagi et al. found better penetration of it into the microirregularities.1 Viapiana found that AH Plus exhibits higher percentage of root canal filling than Bio C Sealer.16

Superior adaptation of AH Plus is due to its ability to bond to root dentin chemically by reacting with the exposed amino groups in collagen to form covalent bonds between the epoxy resin and collagen. The AH Plus sealer is slightly acidic and might result in self-etching when in contact with dentin, unlike the alkaline bioceramic-based sealers, thereby enhancing interfacial bonding and adaptation.3,6,17

According to Hubbe et al., AH Plus is a thixotropic fluid that undergoes transformation of its internal structure, which promotes the alternation of the flow speed accounting for the abrupt flow after a certain time.18 Al-Haddad et al. stated that hydrophobicity of this sealer facilitates the permeation of resin into open dentinal tubules and creates efficient microretention when 17% EDTA was used as the final irrigant.6

Many researchers found that AH Plus shows less dye penetration. Candeiro et al.17 proved that AH Plus has lower flow rate compared...
Sealing Ability of Root Canal Sealers: *In Vitro* Study

Table 1: Sealing ability of all three sealers

	n	Mean (μm)	Std deviation	F	Sig.
AH Plus (A)	8	463.432	73.37712		
MTA Fillapex (B)	8	454.556	42.55236	46.982	<0.001
Bio C Sealer (C)	8	224.037	47.06769		

An ideal root canal sealer should possess perfect combination of sealing ability and biocompatibility. Significant difference was found between the sealing ability of AH Plus, MTA Fillapex, and Bio C Sealer.

Understanding of the current concepts in the usage of different sealers in endodontic therapy and their comparison is essential in order to draw some clinical inferences. Further investigations are needed for Bio C Sealer.

References

1. Tyagi S, Mishra P, Tyagi P. Evolution of root canal sealers: an insight story. Eur J Gen Dent 2013;2(3):199–218. DOI: 10.4103/2278-9626.115976.

2. Gomes-Filho JE, Moreira JV, Watanabe S, et al. Sealability of MTA and calcium hydroxide containing sealers. J Appl Oral Sci 2012;20(3):347–351. DOI: 10.1590/S1678-77572012000300009.

3. Almeida JF, Gomes BP, Ferraz CC, et al. Filling of artificial lateral canals and microleakage and flow of endodontic sealers. Int Endod J 2007;40(9):692–699. DOI: 10.1111/j.1365-2591.2007.01268.x.

4. Camillieri J, Gandolfi MG, Siboni F, et al. Dynamic sealing ability of MTA root canal sealer. Int Endod J 2011;44(9):9–21. DOI: 10.1111/j.1365-2591.2010.01774.x.

5. Al-Haddad A, Che Ab Aziz ZA. Bioceramic-based root canal sealers: A review. Int J Bio 2016;1:1–10. DOI: 10.1155/2016/9753210.

6. Al-Haddad A, Abu Kasim NH, Che Ab Aziz ZA. Interfacial adaptation and thickness of bioceramic-based root canal sealers. Mater Endod 2015;34(4):516–521. DOI: 10.1002/mdm.2015-049.

7. Khandelwal D, Ballal NV. Recent advances in root canal sealers. Int J Clin Dent 2016;9(3):183–194.

8. Henston JL, Sharma N, Subhash C, et al. Root canal sealers and its role in successful endodontics: a review. ADR 2012;2(2):68–78.

9. Wu MK, van der Sluis LW, Aridia CN, et al. Fluid movement along the coronal two thirds of root fillings placed by three different gutta-percha techniques. Int Endod J 2003;35:54–63.

10. Gomes-Filho JE, Bernabé PF, Nery MJ, et al. Reaction of rat connective tissue to a new calcium hydroxide based sealer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106(2):71–76. DOI: 10.1016/j.tripleo.2008.03.030.

11. Venturi M, Prati C, Capelli G, et al. A preliminary analysis of the morphology of lateral canals after root canal filling using a tooth clearing technique. Int Endod J 2003;36(1):54–63. DOI: 10.1046/j.0143-2885.2003.00613.x.

12. Marin-Bauza GA, Silva-Sousa YT, da Gunha SA, et al. Physiochemical properties of endodontic sealers of different bases. J Appl Oral Sci 2012;20(4):455–461. DOI: 10.1590/S1678-77572012000400011.

13. Rawtiya M, Verma K, Singh S, et al. MTA based root canal sealers. J OralafRes 2013;3(1):16–21. DOI: 10.5005/jp-journals-10026-1057.

14. Angelus. MTA Fillapex bio ceramic endodontic sealer. Scientific Technical Profile 2018; 8–18.

15. Gandolfi MG, Prati C. MTA and F-doped MTA cements used as sealers with warm gutta-percha long-term study of sealing ability. Int Endod J 2010;43(10):889–901. DOI: 10.1111/j.1365-2591.2010.01763.x.

16. Viapiana R, Flumignan DL, Guerreiro TJM, et al. Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified Portland cement-based experimental endodontic sealers. Int Endod J 2014;47(5):437–448. DOI: 10.1111/iej.12167.

17. Candeiro GT, Correia FC, Duarte MA, et al. Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer. J Endod 2012;38(6):842–845. DOI: 10.1016/j.joen.2012.02.029.

18. Hubbe KL, de Oliveira KVD, Coelho BS, et al. AH plus extravision into apical tissue: literature review of main related properties and report of clinical cases. RSBO 2016;13(4):280–288. DOI: 10.21726/rsbo.v13i4.352.

19. Wang Z, Shen Y, Haapsalo M. Dentin extends the antibacterial effect of endodontic sealers against enterococcus faecalis biofilms. J Endod 2015;40(4):505–508. DOI: 10.1016/j.joen.2013.10.042.

20. El Hachem R, Khalil I, Le Brun G, et al. Dentinal tubules penetration of AH plus, BC sealer and novel tricalcium silicate sealer: A confocal...
laser scanning microscopy study. Clin Oral Inv 2019;23(4):1871–1876. DOI: 10.1007/s00784-018-2632-6.

21. Zhou HM, Shen Y, Zheng W, et al. Physical properties of 5 root canal sealers. J Endod 2013;39(10):1281–1286. DOI: 10.1016/j.joen.2013.06.012.

22. Weller RN, Tay KC, Garrett LV, et al. Microscopic appearance and apical seal of root canals filled with gutta-percha and ProRoot Endo sealer after immersion in a phosphate-containing fluid. Int Endod J 2008;41(11):977–986. DOI: 10.1111/j.1365-2918.2008.02462.x.

23. Yigit DH, Gencoglu N. Evaluation of resin/silicon based sealers. Part I: Physical properties. Dig J NanomaterBiostruct 2012;7(1):107–115.

24. Singh H, Markan S, Kaur M, et al. Endodontic sealers*: current concepts and comparative analysis. Dent Open J 2015;2(1):32–37. DOI: 10.17140/DOJ-2-107.