T Cell Receptor-γ/δ Cells Protect Mice from Herpes Simplex Virus Type 1-induced Lethal Encephalitis

By R. Sciammas, P. Kodukula, Q. Tang, R. L. Hendricks, and J. A. Bluestone*

Summary

Increased numbers of T cell receptor (TCR-γ/δ) cells have been observed in animal models of influenza and sendai virus infections, as well as in patients infected with human immunodeficiency virus and herpes simplex virus type 1 (HSV-1). However, a direct role for TCR-γ/δ cells in protective immunity for pathogenic viral infection has not been demonstrated. To define the role of TCR-γ/δ cells in anti-HSV-1 immunity, TCR-α-/- mice treated with anti-TCR-γ/δ monoclonal antibodies or TCR-γ/δ x TCR-α/β double-deficient mice were infected with HSV-1 by footpad or ocular routes of infection. In both models of HSV-1 infection, TCR-γ/δ cells limited severe HSV-1-induced epithelial lesions and greatly reduced mortality by preventing the development of lethal viral encephalitis. The observed protection resulted from TCR-γ/δ cell-mediated arrest of both viral replication and neurovirulence. The demonstration that TCR-γ/δ cells play an important protective role in murine HSV-1 infections supports their potential contribution to the immune responses in human HSV-1 infection. Thus, this study demonstrates that TCR-γ/δ cells may play an important regulatory role in human HSV-1 infections.

Herpes simplex virus type 1 (HSV-1) is a neurotrophic virus that infects mucosal or abraded skin surfaces of nonimmune individuals (1). The virus replicates and destroys cells at the portal of entry. In addition, the virus infects nerve endings and is transported by retroaxonal flow to the nucleus of autonomic nervous system neurons in which it establishes a latent infection. Immunocompromised individuals develop viral encephalitis due to an inability to limit the spread of virus (2). Numerous studies have demonstrated that both cellular and humoral arms of the immune system contribute to the recovery from infection; however, T cells are ultimately required to protect the host (3).

The discovery of TCR-γ/δ cells a decade ago generated a great deal of interest in this novel T cell subset since it might manifest a unique role in immune responses. Significant progress toward understanding the development, antigen reactivity, and immunobiology of TCR-γ/δ cells has been made (4). Multiple studies have demonstrated that elevated numbers of TCR-γ/δ cells exist at inflammatory sites of a variety of human autoimmune disorders and infections (4, 5). In addition, these cells display an activated phenotype suggesting an important role for these cells during the immune response. In fact, the study of various in vivo animal models of bacterial and parasitic infections have revealed a critical role for TCR-γ/δ cells in regulating infection (4-11). In a bacterial model of infection using Listeria monocytogenes, TCR-γ/δ cells have a profound impact on reducing the pathogenic load in the spleen early in the infection, before TCR-α/β-mediated clearance (9). Similarly, in a parasitic model of Plasmodium falciparum infection, TCR-γ/δ cells are critical in regulating the parasitic burden in the liver (10). In contrast, the role of TCR-γ/δ cells in host immunity to viral infections is less clear (12). Increased numbers of TCR-γ/δ cells have been observed in animal models of influenza and sendai infection, as well as in patients infected with HIV (13-15). Furthermore, in these animal models, distinct subsets of TCR-γ/δ cells are recruited to the sites of viral replication. However, a direct role for TCR-γ/δ cells in regulating these viral infections has not been demonstrated.

Several reports have shown that HSV-1 seropositive individuals contain elevated numbers of TCR-γ/δ cells in their peripheral blood that are specific for infected cells (16, 17). In addition, we studied a murine TCR-γ/δ cell clone...
from an infected animal that is specific for the HSV-1 glycoprotein, gl (18, 19). These findings suggested that TCR-γ/δ cells may play an important role in HSV-1 immunity. To test this hypothesis, we assessed the role of TCR-γ/δ cell-immune responses to HSV-1 in both a footpad and ocular model of HSV-1 infection (20, 21). These studies used TCR-specific mAbs, TCR-α/β- and TCR-α/β × TCR-γ/δ-deficient mice to specifically target the TCR-γ/δ cell population. In both models of infection, the virus replicates at the site of infection and is transmitted to sensory ganglia where it establishes latency and, if not regulated, to the central nervous system where it can cause lethal encephalitis. Our results demonstrate that TCR-γ/δ cells regulate HSV-1 infections by controlling the viral replication and spread, thus preventing viral induced lethal encephalitis.

Materials and Methods

Media. TCR-γ/δ cell cloning experiments were performed in complete media which consisted of DMEM media containing 10% FCS, 25 μM Hapes, 2 mM glutamine, 100 U penicillin, 100 μg/ml streptomycin, 2 mM nonessential amino acids, and 5 × 10⁻⁵ M 2-mercaptoethanol.

Mice. All mice used in this study were bred in the University of Chicago (Chicago, IL) animal barrier facility under specific pathogen-free conditions. TCR-α/β- mice bred to the BALB/c background were provided by Adriam Hayday (Yale University, New Haven, CT). A breeding pair of TCR-α/β- mice were bred to the C57BL/6 background were obtained from Jackson Labs. (Bar Harbor, ME). The TCR-α/β- mice were provided by Sumusu Tonegawa (Massachusetts Institute of Technology, Boston, MA) and were bred to the C57BL/6 background at the University of Chicago. Mutant mice generated in our breeding were identified by cell-surface immunofluorescence staining of peripheral blood cells using anti-TCR-α/β (H57-597) and anti–Thy-1 (53-2.1) mAbs (PharMingen, San Diego, CA) and analyzed on a FACScan® (Becton Dickinson, Mountain View, CA). In addition, PCR analysis of genomic tail DNA was used to determine the presence of TCR-constant-α and -neomycin genes.

Virus. Two different virus strains were used. The F strain of HSV-1 was used for the footpad infections and the RE strain of HSV-1 was used for the ocular infections. Both viral stocks were grown in monolayer cultures of Vero cells overlayed with 199V medium (22). The stocks were stored frozen at 10⁻⁹⁰ PFU/ml concentrations. The virus was diluted into PBS just before infection. Infections. Mice were infected at 5–6 wk of age. Footpad infections were performed by injecting 50 μl of inoculum containing 10⁻⁰ or 10⁻⁰ PFU into a single hind footpad. Cornal infections of anesthetized mice were performed by scarifying the cornea in a crisscross pattern using a 30-gauge needle. An inoculum of 3 μl containing 5 × 10⁻¹ or 10⁻⁰ PFU of HSV-1 was added and gently massaged into the cornea. Mice were visually examined for disease progression and survival over the course of the experiments.

Antibodies. Anti-TCR-γ/δ mAbs were produced in our laboratory from the GL3 hybridoma (23). The antibody was purified on protein A–sepharose (Pharmacia, U ppsala, Sweden) and stored frozen in PBS. Purified control hamster Ig (C appel, M alvern, PA) or anti-TCR-γ/δ mAbs were administered to mice (intrapertoneally) at least 1 d before infection and continued every 7 d throughout the study at a dose of 250 μg/mouse. Some experiments used PBS treatments instead of hamster Ig. A human serum with a high titer of anti-HSV-1 antibody was used for immuno-histochemical detection of viral coat proteins. The biotinylated secondary antibody used for immunohistochemistry was Fcγ-recombinant specific goat anti–human IgG (Jackson Immunoresearch Labs. Inc., West Grove, PA).

Aays of Viral Replication in the Brain. Corneal-infected mice were killed at day 35 after infection. The trigeminal ganglia and brains were aseptically removed and stored frozen in 1 ml of 199 media. Samples were homogenized in a mechanical tissue grinder, titrated in medium, and plated on Vero cells (22). Plaques were counted 2 d later.

Immunohistochemical Analysis of Virus Replication in the Trigeminal Ganglia. Mice were killed at the indicated time points after corneal infection. Ipsilateral trigeminal ganglia were excised and processed for frozen sectioning as previously described (21). Frozen and fixed sections were blocked with normal goat serum for at least 20 min and then incubated with anti-HSV-1 antibody at 37°C for 1 h (or at 4°C overnight). The biotinylated secondary antibody was incubated for 30 min at room temperature after extensive washing. The avidin–biotin complex developing reagent (Vectastain ABC kit; Vector Labs., Inc., Burlingame, CA) was used to detect antiviral antibody binding. Sections were counterstained with eosin and mounted with a coverslip using Permount. No positive cells were observed in uninfected trigeminal ganglia. Statistical differences were assessed by a one-way ANOVA with Tukey’s post test.

Isolation of HSV-1 gI-reactive TCR-γ/δ Cells. TCR-α/β- spleenocytes were enriched for T cells by antibody- and complement-mediated depletion of MHC class II⁺ cells with a mixture of anti–mouse IgG (11D) and anti–class II culture supernatants (25–9–3) plus rabbit complement. This mixture was incubated for 45 min at 37°C and was then subjected to Ficoll–Hypaque gradient centrifugation to remove dead cells. The resultant cells were plated in 24-well Linbro plates (ICN Biomedicals, Lisle, IL) at a concentration of 4 × 10⁶ cells/well in the presence of 6 × 10⁵ mitomycin C (40 μg/ml; Sigma Chemical Co., St. Louis, MO)–treated gI-transfected L cells. This mixture was incubated for 3–5 d in a 7.5% CO₂ incubator for 5 d at which time they were harvested, washed once, and replated in the same conditions as above except the growth factors were changed to include 50 U/ml rhIL-2, and 10 ng/ml rhIL-7 (Immunex). At 7 d, the cells were assessed for specificity. Immunofluorescence analysis showed that the expanded cells were 100% TCR-γ/δ positive.

HSV-1 gI Stimulation of Expanded TCR-γ/δ Cells. Cells were tested for antigen specificity by assaying IFN-γ production. Soluble gI was constructed by fusing the ectodomain of HSV-1 gI and the Ig Fc domain of human IgG as previously described (19). Soluble gI stimulation was performed by immobilizing 5 μg/ml gI antigen on plastic wells at 4°C overnight. Wells were washed three times with 1× PBS, and TCR-γ/δ cells (10⁵ cells/well) were incubated at 37°C in 7.5% CO₂ incubator for 48 h. IFN-γ production was detected by an ELISA (19).

Results

TCR-γ/δ Cells Mediate Host Protection After HSV-1 Footpad Infections. The ability of TCR null mice to respond to...
footpad infection with HSV-1 was analyzed. Fig. 1A shows that TCR-α−/− (TCR-γδ cell+) or TCR-δ−/− (TCR-α/β cell+) mice survived HSV-1 infection. In contrast, the majority of the footpad-infected T cell–deficient TCR-β−/−/δ−/− mice succumbed to a lethal infection as had previously been shown with T cell–deficient nude mice (25). In addition, the TCR-β−/−/δ−/− mice that eventually succumbed to the infection developed hind limb paralysis during the infection supporting the conclusion that, in the absence of TCR-γδ cells, the virus gains access to spinal cord tissue. All groups of mice developed lesions at the site of infection (the footpad); however, only the TCR-β−/−/δ−/− mice, including those that had survived, failed to resolve their lesions (data not shown). These data suggest that, under these conditions, both TCR-γδ and TCR-α/β cells were able to clear the infection in the absence of the other T cell subset. Therefore, under conditions of suboptimal TCR-α/β cell responses, TCR-γδ cells can provide a critical protective role in this infection. In fact, it is likely that TCR-γδ cells are involved in HSV-1 infections in normal mice as TCR-α−/− mice are recruited to the infected ganglia as early as day 6 after infection (21).

TCR-γδ cells Mediate Host Protection After HSV-1 Corneal Infection. To further define the role of TCR-γδ cells in HSV-1 pathogenesis, an ocular model of HSV-1 infection was examined. Corneal infection results in both a lytic infection in the cornea and in the surrounding skin tissues (periorbital lesions) as well as migration of the virus to the trigeminal ganglia. The viral replicative cycle as well as the induced immune response are best characterized in the BALB/c strain (26–30). Therefore, since the double knockout mice were bred to the BALB/c background, studies using the corneal model required the use of TCR-α−/− mice that had been bred to the BALB/c background. In this setting, it is impossible to generate double knockout mice. Therefore, the TCR-γδ cells were depleted using an anti-TCR-γδ mAbs. As seen in Fig. 1B, TCR-α−/− mice treated with control hamster Ig did not develop encephalitis, whereas anti-TCR-γδ mAb–treated TCR-α−/− mice succumbed to a disseminated viral infection and lethal encephalitis. Both groups of mice developed periorbital skin lesions around day 10–15 after infection that contained vesicles of HSV-1 (data not shown). These lesions spread as the infection proceeded, but the control group ultimately resolved the skin infection by clearing viral induced vesicles and scabbing that covers the eye. Photos were taken at day 37 after infection from the same experiment.
Figure 3. The dynamics of HSV-1 replication is different in TCR-α+/− and TCR-α−/− mice. (A) Quantitation of immunohistochemical staining of HSV-1 viral antigens in the trigeminal ganglia at day 6 after infection. Two mice per group and three representative sections of each ganglia (six sections per group) were prepared for immunohistochemical staining. An average of 1,200 neurons were counted for each group. Data are recorded as the percent of neurons that exhibited specific HSV-1 staining. The differences between the day 6 after infection control and anti–TCRγδ mAb–treated TCR-α+/− mice, or between the control and anti–TCRγδ mAb–treated TCR-α−/− mice, were statistically significant (P < 0.05). (B) Photomicrographs depicting immunohistochemical staining of HSV-1 antigens in the trigeminal ganglion. Trigeminal ganglia were obtained 6 d after corneal infection from TCR-α+/− mice (A and B) and TCR-α−/− mice (C and D). Mice received control (A and C) or anti–TCRγδ mAb (B and D) treatments. Infected neurons, black arrows; uninfected neurons, white arrows; a cluster of infected inflammatory cells, black arrowhead in B. Original magnification: 100×.
HSV-1 infection of the cornea results in a widely studied inflammatory phenomenon termed herpetic stromal keratitis (HSK; 31) characterized by corneal opacity, necrosis, and ultimately blindness. HSK may be due to autoimmunity. Corneal infection exposes the immune system to a normally privileged corneal antigen that is cross-reactive with HSV-1 gI (Fig. 4) since immobilized gIIg fusion protein could be recognized by unimmunized TCR-\(\gamma/\delta\) cells. This pool may account for the rapid TCR-\(\gamma/\delta\) cell expansion on antigen exposure and the failure to restore the HSK phenotype when this cell population is depleted, as shown in anti-TCR-\(\gamma/\delta\) mAb-treated mice (33). To determine whether HSV-1 gI-specific TCR-\(\gamma/\delta\) cells could be isolated from TCR-\(\alpha^{-/-}\) mice, spleen cells were cultured with HSV-1 gIIg-transfected L cell fibroblasts. After 2 wk in culture in the presence of antigen and growth factors, gl-specific TCR-\(\gamma/\delta\) cells could be detected based on their ability to secrete IFN-\(\gamma\) in response to antigen stimulation. Recognition was direct and specific for unprocessed gI (Fig. 4) since immobilized gIg fusion protein could be recognized in the absence of antigen-processing cells, just as the Tgl4.4 clone (19). TCR-\(\gamma/\delta\) cell-mediated HSV-1 neutralization observed at day 6 after infection of normal mice (Fig. 3).

Discussion

This study provides direct evidence that TCR-\(\gamma/\delta\) cells can respond to and suppress HSV-1 infection. Other viral infections, such as influenza (13) and sendai (14), induce increases in the TCR-\(\gamma/\delta\) population after infection. However, little evidence exists for a direct role in regulating the infection. Therefore, the critical role of TCR-\(\gamma/\delta\) cells in HSV-1 infection of TCR-\(\alpha^{-/-}\) mice suggests that there exists a circulating pool of HSV-1-specific TCR-\(\gamma/\delta\) cells. This pool may account for the rapid TCR-\(\gamma/\delta\) cell-mediated HSV-1 neutralization observed at day 6 after infection of normal mice (Fig. 3).

Table 1. TCR-\(\gamma/\delta\) Cells Eliminate the Lytic HSV-1 Infection

HSV-1-infected	TCR-\(\alpha^{-/-}\) mice (day 35 after infection)	Trigeminal ganglia	Brain
PFU	PFU		
PBS	0	0	
Anti-TCR-\(\gamma/\delta\)	75	>10,000	

Trigeminal ganglion and brain tissue were harvested from treated or untreated ocularly infected TCR-\(\alpha^{-/-}\) mice 35 d after infection and were used to quantify the amount of replicating lytic virus using a viral plaque assay. PFU were counted and averaged from two mice and the data are representative of two separate experiments.

In contrast, the moribund (day 35 after infection) anti-TCR-\(\gamma/\delta\) mAb-treated TCR-\(\alpha^{-/-}\) mice contained high levels of systemic infectious virus (Table 1). The prolonged viral load in the trigeminal ganglia of TCR-\(\alpha^{-/-}\) mice is consistent with the delayed resolution of skin lesions in these mice. It is not clear why the virus persists longer in TCR-\(\alpha^{-/-}\) mice. However, clonal expansion of TCR-\(\gamma/\delta\) cells to protective levels may take longer to occur because the total number T cells is reduced in the TCR-\(\alpha^{-/-}\) null mice (33). Together, these results suggest that TCR-\(\gamma/\delta\) cells are both limiting viral replication and restricting its progression into the brain.

TCR-\(\alpha^{-/-}\) Mice Contain HSV-1 gI-specific TCR-\(\gamma/\delta\) Cells. Previous results have shown that a single TCR-\(\gamma/\delta\) cell clone recognized a HSV-1-encoded glycoprotein, gl. To determine whether HSV-1 gI-specific TCR-\(\gamma/\delta\) cells could be isolated from TCR-\(\alpha^{-/-}\) mice, spleen cells were cultured with HSV-1 gIg-transfected L cell fibroblasts. After 2 wk in culture in the presence of antigen and growth factors, gl-specific TCR-\(\gamma/\delta\) cells could be detected based on their ability to secrete IFN-\(\gamma\) in response to antigen stimulation. Recognition was direct and specific for unprocessed gI (Fig. 4) since immobilized gIg fusion protein could be recognized in the absence of antigen-processing cells, just as the Tgl4.4 clone (19). TCR variable region repertoire of these expanded TCR-\(\gamma/\delta\) cells shows that they were polyclonal (data not shown). Lastly, the expansion of TCR-\(\gamma/\delta\) cells from unimmunized TCR-\(\alpha^{-/-}\) mice suggests that there exists a circulating pool of HSV-1-specific TCR-\(\gamma/\delta\) cells. This pool may account for the rapid TCR-\(\gamma/\delta\) cell-mediated HSV-1 neutralization observed at day 6 after infection of normal mice (Fig. 3).

![Figure 4. TCR-\(\gamma/\delta\) cells isolated from TCR-\(\alpha^{-/-}\) mice are specific for HSV-1 gI. Expanded TCR-\(\gamma/\delta\) cells were stimulated with immobilized gIg or control fusion CTLA4Ig and IFN-\(\gamma\) production was measured.](image-url)
sis shows that both TCR-γ/δ response is polyclonal since reverse transcriptase-PCR analy-
iminary results suggest that the observed protective re-
antigens and mount antiviral effector function. Finally, pre-
lished observations). Kodukula, R.L. Hendricks, and J.A. Bluestone, unpub-
anti–HSV-1 IgG in the serum of infected TCR-
tions (34). However, we have not been able to detect any
confer important viral neutralizing activity in HSV-1 infec-
tive TCR-
addition, the isolation of cytolytic, IFN-γ-producing, H SV-1
gi-specific TCR-γ/δ cells, TgII.4 and the expanded cells, suggests that TCR-γ/δ cells can directly recognize viral antigens and mount antiviral effector function. Finally, pre-
alysis shows that both TCR-Vγ1.1 and TCR-Vγ2 transcripts are present in infected trigeminal ganglia (Sciammas, R., P. Kodukula, R.L. Hendricks, and J.A. Bluestone, unpublished observations). These results suggest that, in contrast to other disease models (35, 36), TCR-γ/δ cells are not protecting HSV-1-infected mice by providing B cell help. Therefore, it is striking that the TCR-γ/δ cells in TCR-α/- mice are able to regulate HSV-1 pathology in light of a nonexistent humoral response and a reduced number of TCR-γ/δ cells.

TCR-γ/δ cells, including TgII.4, recognize antigen di-
rectly in a MHC-independent manner (19, 37). Intrigu-
ingly, this mode of recognition may be useful in regulating the viral life cycle by interacting with envelope glycoproteins on the surface of infected cells or on the virus itself. In addition, it has been reported that HSV-1 has the ability to specifically intervene with efficient MHC class I expression by inhibiting the TAP complex (38, 39). Therefore, direct antigen recognition by TCR-γ/δ cells may circumvent viral intervention of MHC presentation. Secondly, since HSV-1 is a neurotropic virus, TCR-γ/δ cells could be adept at recognizing antigens directly on central nervous system neurons that are poor at processing and presenting antigens in an MHC-restricted manner (40, 41). Thus, these data suggest that under circumstances where TCR-α/β cell function is compromised, such as in human acquired immunodeficiency syndromes, TCR-γ/δ cells may be es-
tial to protect the infected individual.

We are grateful to L. Smith and B. Roizman for excellent intellectual and technical support. We also thank A. Hayday and S. Tonegawa for generously providing the TCR gene-targeted mice. We are grateful to Dr. T.F. Gajewski for the rthL-12. We also thank P. Fields, E. Klutz, and R. Khattri for discussions and critique of the manuscript.

R. Sciammas is supported by a National Institutes of Health/National Institute of Allergy and Infectious Diseases interdisciplinary training program in immunology No. ST 32A107090, J. Bluestone is supported by a grant from the National Institutes of Health No. R01 AI26847, and P. Kodukula, Q. Tang, and R.L. Hendricks are supported by grants from the National Institutes of Health No. EY 10359, EY 05945, and EY 01792.

Address correspondence to Jeffrey A. Bluestone, Ben May Institute for Cancer Research, University of Chicago, M C 1089, 5841 S. M aryland Ave., Chicago, IL 60637.

Received for publication 24 March 1997.

References

1. Roizman, B., and A.E. Sears. 1990. Herpes simplex viruses and their replication. In Virology. B. N. Fields and D. M. Knipe, editors. Raven Press, Ltd., New York. 1795–1842.
2. Whitley, R. J. 1990. Herpes simplex viruses. In Virology. B. N. Fields and D. M. Knipe, editors. Raven Press, Ltd., New York. 1843–1887.
3. Schmid, D. S., and B. T. Rouse. 1992. The role of T cell immunity in control of herpes simplex virus. Curr. Top. Microbiol. Immunol. 179:57–74.
4. Bluestone, J. A., R. Khattri, R. Sciammas, and A. I. Sperling. 1995. TCR γδ cells: a specialized T-cell subset in the immune system. Annu. Rev. Cell Dev. Biol. 11:307–353.
5. Haas, W. P., Pereira, and S. Tonegawa. 1993. Gamma/delta cells. Annu. Rev. Immunol. 11:637–685.
6. Ombaerts, P., J. Arnoldi, F. Rüss, S. Tonegawa, and S.H. Kaufmann. 1993. Different roles of αβ and γδ T cells in immunity against an intracellular bacterial pathogen. Nature (London). 365:53–56.
7. Laulet, C. H., J. Hees, S. Daugelat, P. Mombaerts, S. Tonegawa, and S. H. Kaufmann. 1995. Contribution of αβ and γδ T lymphocytes to immunity against M. bovis B. Calmette Guerin: studies with T cell receptor-deficient mutant mice. Eur. J. Immunol. 25:838–846.
8. Waters, W. R., and J. A. Harp. 1996. Cryptosporidium parvum infection in T-cell receptor (TCR)-αβ- and TCR-γδ-deficient mice. Infect. Immun. 64:1854–1857.
9. Hiromatsu, K., Y. Yoshikai, G. Matsuoka, S. O Hga, K. M uramori, K. Matsuoka, J. A. Bluestone, and K. Nomoto. 1992. A protective role of γδ T cells in primary infection with Listeria monocytogenes in mice. J. Exp. Med. 175:49–56.
Our understanding of the immune system, particularly the role of T lymphocytes, has advanced significantly over the years. Here, I summarize some key studies that have contributed to our knowledge in this area.

1. Doherty, P.C., W. Allan, M. Eichelberger, S. Hou, K. Botthoff, D.G. Schild, H., M. avadatt, C. Litzenberger, E.W. Ehrich, M.M. Davis, J.A. Bluestone, M. Di, R.K. Draper, and Y.-H. Chien. 1994. The nature of MHC recognition by T cells. Cell. 171:809-817.

2. Hill, A., P. Jogovic, I. York, G. Rus, J. Bennink, J. Eyewdell, H. Ploegh, and D. Johnson. 1995. The nature of MHC recognition by T cells. Cell. 76:269-278.

3. Fruh, K., K. Ahn, H. Djaballah, P. Sempe, P.M. Van Endert, R. Tampe, P.A. Peterson, and Y.-H. Chien. 1995. The nature of MHC recognition by T cells. Cell. 76:269-278.

4. Skarda, D., R. Nussenzweig, C. Litzenberger, E.W. Ehrich, M.M. Davis, J.A. Bluestone, M. Di, R.K. Draper, and Y.-H. Chien. 1994. The nature of MHC recognition by T cells. Cell. 76:269-278.

5. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

6. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

7. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

8. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

9. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

10. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

11. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

12. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

13. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

14. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

15. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

16. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

17. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

18. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

19. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

20. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

21. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

22. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

23. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

24. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

25. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

26. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

27. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

28. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

29. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

30. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

31. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

32. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

33. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

34. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

35. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

36. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

37. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

38. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

39. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

40. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.

41. Fabry, Z., C.S. Raine, and M.N. Halt. 1994. The role of T lymphocytes in the immune response to herpes simplex virus infection. J. Immunol. 153:1-12.