Exploring Wardriving Potential in the Ecuadorian Amazon for Indirect Data Collection

Fabián Santos*, Pablo Pesantes and Santiago Bonilla-Bedoya
Centro de Investigación para el Territorio y el Hábitat Sostenible (CITEHS), Universidad Tecnológica Indoamérica, Machala y Sabanilla, 170301, Quito, Ecuador

*Email: ernestosantos@uti.edu.ec; fabian_santos_@hotmail.com

Abstract. Digital inclusion in the Ecuadorian amazon is known as a problem, which intensified with the pandemic. Since social distance is now the norm, we constructed a WiFi access point (WAP) scanner to map and analyze its data. We correlated it with ancillary geoinformation to observe its potential and limitations as a method for indirect data collection. Our result indicate that WAP correlate weakly but positively with nightlight, young population, accessibility to economical centres, and negatively with slope. Moreover, we differentiated vulnerability naming patterns from Service Set Identifiers (SSDI) and differentiated the number of WAPs according to land cover for differentiate urban from rural areas. This output is now offering increasing applications to get updated rough estimates of internet activity and indirectly correlations to socio-economic conditions, technology practices, and opportunities for natural language processing. Therefore, we conclude that wardriving offer interesting opportunities for mapping social data but also concerns as an indirect data collection method.

1. Introduction
The diminished or null digital inclusion is a condition for many people, which contributes to isolate and intensify existing inequalities [1]. In this context, produce updated spatial statistics for digital inclusion is highly required to find areas where this service is absent. Nevertheless, direct data collection approaches implies interviews which can put people at risk due to the pandemic, while on-line methods [2] may offer a solution but not necessarily with a spatial reference. Therefore, indirect data collection methods used in projects like Google Maps and Street View [3] or wardriving in WiGLE [4] offer new opportunities for multiple research disciplines; however, with restrictions and limited data availability [5].

Wardriving implies mapping the WiFi access point (WAP) from routers, computers mobiles, or any device using a location-based service (e.g. GPS, GLONASS, Galileo, Beidou) attached to a car or other platform (when it is attached to bikes or persons it is named warbiking and warwalking, respectively). An example of this is given by Sapiezynski et al., [6] who collect time series from location beacons to map human mobility using data from smartphones but with some concern about its privacy. While the latter is a pending issue [7], data generated by mobile networks has been proposed as a census alternative to analyze urban dynamics [8]. This approach is interesting, as the availability of a mobile network can reflect a socio-economic status, while its type of connection (i.e. mobile-only or computer) is associated to differentiated digital skills [9]. These findings highlight that the type
and the number of network connections could help to find people excluded from information technologies, specially in developing countries [10].

While *wardriving* has been more often applied in urban areas, here we explore its use in rural and periurban areas. Following an approach similar to Saad et al. [11], we collected and mapped WAPs using a Raspberry Pi and a GPS device from a car to count how many of these WAPs happen along an altitude gradient in Ecuador. This data is described with ancillary geoinformation to observe its interaction and discuss its potential uses and limitations. Therefore, this short paper starts describing: (i) the study area and the procedure applied to build the WAP scanner; and (ii) its results as summary statistics to discuss and conclude its relevance as a method for indirect data collection.

2. Material and Methods

2.1. Study Area

We conducted our data collection in the Amazonian region of Ecuador, along an altitude gradient from 529 to 2213 m.a.s.l. (Figure 1). This route had an extension of 81.1 Kms. And it was traveled in August of 2019. This study area is specifically in the Napo province, a territory with higher rural (61.7%) than urban (38.2%) population, which accounts less cropland area (13.1%) than natural vegetation (85%) [12,13]. Its dramatic land occupation associated to colonization policies and oil extraction is today expressed with higher levels of poverty and environmental degradation, principally among indigenous territories [14]. While the government have introduced policies to palliate its historic development gap, digital inclusion is still a pending issue in this region [15].

2.2. WAP Scanner

Wireless network or WiFi is a family of wireless network protocols used for Internet and network connections. Since WiFi networks do not need a physical connection, any device with an adapter can be potentially detected. Based in this principle, we used a Raspberry Pi Model 3B V1.2, which includes an 2.4 GHz 802.11n wireless adapter (Figure 1) to execute a Python script and run the command *iwlist* from the wireless tools for Linux [16]. This software scans available WAPs in the vicinity together with other information about their settings. With a sampling rate of 5 seconds (to not overload Raspberry Pi performance), we scanned 3191 WAPs and filtered the next information: 1) software runtime; 2) Service Set Identifier (SSDI); 3) overall quality of the link (converted to percentages); and 4) received signal strength (measured in decibel-milliwatts or dBm). These four features were stored in a text file for each *iwlist* execution. As multiple WAPs of a same SSDI occurred, we filtered the one with the highest quality, reducing our dataset to 298 Aps. To link them with a geographic position, we simultaneously used a GPS Garmin GPSMAP 64s to collect a track during WAPs scanning. For this, we synchronized their clocks to link their time stamps and get a relative position of WAPs. To conveniently analyze these results, we stored them as a spatial database to operate with QGIS [17] and the R language [18].

2.3. Ancillary Geoinformation and Data Analysis

To check results collected with the WAP scanner, we reviewed Google Earth Engine datasets [19] and other sources for collect ancillary geoinformation (Table 1). For the data analysis, we conveniently divided the GPS track into segments of 250 mts., extracting and averaging ancillary geoinformation. For this, we applied a buffer distance of 50 mts. from each segment to counted how many WAPs occurred and correlate later with the extracted geoinformation. This buffer distance was considered enough, as our WAP scanner (see section 2.2) can detect points at maximum 250 mts. but in ideal conditions (i.e. open space and a direct line of sight), which did not often happened in our case as the study area relief was irregular. Moreover, for test correlation, we followed recommendations of Puth et al. [20] and used a Kendall test, since our data do not show normality. Furthermore, as we included a land cover map for stratify WAPs, we just extracted land cover classes for each point, applying a buffer distance of 250 mts. to capture the landscape context of WAPs. We used the mode during data extraction to store the dominant land cover class and derived statistics for each class. As part of the data collected by the WAP scanner included SSDIs, we also collected male and female spanish names from Kaggle [21] to classify SSDIs and see naming patterns used in detected devices.
Figure 1. Location of the study area and detail of the WAP scanner. Data: Google satellite [3] and OpenStreetMap [22].

Name	Description	Year	Resolution [mts.]	Source
Population density	Constitute local population density and demographic estimates derived from machine learning, satellite imagery and population data. Measured as inhabitants / 30 mts².	2020	30	[23]
Nightlight	A composite using cloud-free average radiances monthly images from nighttime data from the Visible Infrared Imaging Radiometer Suite (VIIRS). Measured in nanoWatts / cm² / sr.	2019	450	[24]
Slope	Terrain slope derived from the Shuttle Radar Topography Mission (SRTM) digital elevation dataset. Measured in degrees.	2000	90	[25]
Access to economical centers	Accessibility to economical centers calculated as time used in travelling. Measured in minutes ranges.	2015	30	[26]
Land cover	Land cover classification from satellite imagery for different thematic levels. Here we is used the first classification level, which is adapted from Intergovernmental Panel on Climate Change (IPCC)	2014	30	[27]

3. Results

3.1. WAPs Quality by Land Cover Category

A summary of WAPs signal quality and clock time lag between WAP scanner and the GPS are shown in the Figure 2. They are stratified for the three land cover classes occurring in the study area, which accounted 7, 101 and 190
WAPs for forest, cropland, and built-up areas, respectively. These values show us that WAP scanner detected more points in urban areas than in periurban and rural areas, as is normally expected. Nevertheless, the WAP quality indicates that all land cover cases were in average less than 50%, i.e. half of the information packets sent by the WAP scanner were not retransmitted by scanned devices. This traduce in a poor to fair internet surfing experience and limited online information accessibility. This was also observed for the signal strength, which was just enough for communication, considering all land cover classes (-76±10.84 dBm). Respect to the clock time lag, most of WAPs failed with around 2.5 seconds respect to the GPS clock; therefore, we can expect that their exact location do not match with the one recorded by the WAP scanner. This introduced some uncertainty in our results, which was helpful to hide location of WAPs but still allow our analysis.

Figure 2. WAPs signal quality and clock time lag between the WAP scanner and GPS, stratified by land cover classes.

3.2. SSDI Naming Patterns Observed in WAPs
Using the SSDI, we tabulated some features that reveled some patterns about naming practices in the study area (Figure 3). First, we only identified 6 WAPs with hidden names, i.e. their SSDI is not explicit showed but in any case, they are still detectable by the WAP scanner. This was different when we compare SSDI names with the spanish names, as they were larger. The rest of WAPs, showed different kind of naming practices, being surprising its ability to reveal specific places, frequent internet providers, devices types (e.g computers, mobiles, routers, printers) and even personal mobile numbers.

Figure 3. Frequent SSDI naming practices in the study area.
3.3. Correlation Analysis and Significance of WAPs with Ancillary Geoinformation

With the ancillary geoinformation extracted for each segment, we constructed the correlogram to estimate how WAPs relate to each dataset (Figure 4). The Kendall test indicates that correlations were significant in all cases (p-values < 0.05) but those related to WAPs were weakly correlated (< 0.34). The order observed in this result, indicated that correlation follows the next sequence (higher to lower): nightlights, youths, accessibility, and slope. The latter was the only one with a negative value, i.e., do not relate to WAPs.

4. Discussion and Conclusions

We observed that this method as indirect data collection approach offers some opportunities to develop but also some warnings. First, we live in environments flooded by signals of different type (e.g WiFi, television, radio, etc.), which interfere other systems, including health related sensors [28], insects [29], and even drones shows [30]. Map these signals and show where are they agglomerated, should be considered as an indicator not only of environmental quality but also as a socio-economic condition. Here, we showed that WAPs where more often found in built-up areas, rather than other land cover classes. Moreover, these areas showed a better quality, suggesting faster (and more expensive) internet services. This observation compares well with correlation observed between WAPs, nightlight, and accessibility to economical centres datasets; and negatively with slope (see Figure 5). These datasets are advised as indicators of economic growth [31]; therefore, WAPs could allow to discover capital accumulation sites with more precision but more research is required to explain this. Furthermore, the youth population density and its positive correlation with WAPs provide evidence about population structure in this study area. With the pandemic, this pattern made us think about the feasibility of tele-education and tele-medicine, since we found that internet services are not the best here. In this sense, wardriving should be considered as a fast (one-day campaign can map around 500-800 kms. tracks), cheap (<300S with a Raspberry pi or with a mobile, see [32]) and not intrusive diagnostic of digital inclusion (WAPs can be detected at maximum distances from 10-250 mts. depending the terrain). Nevertheless, as collection of this information is straightforward and unnoticed, some concerns about security should be warned. We observed some naming patterns that expose personal data and with wardriving is even possible to find households or infrastructures. Moreover, natural language processing has here an interesting opportunity also for differentiate infrastructures by clustering names [33]. Therefore, better practices such as encryption of SDDI or at least use pseudonyms are recommended. Although our interest in this research was wardriving potential for indirect data collection, users of this method should consider ethical and country regulations for use this technique. Approaches such as degrade locational precision and protect identities referring them as categories (both applied in this research), could be an option to consider.
Figure 5. Regional context of the study area using the nightlight composite for 2019 as background, where Quito (capital of Ecuador) is located at the west of the study area. The two photos are cockpit views during data collection with the WAP scanner, where first show a hilly landscape near Jondachi, and the second a flat area near Archidona.

Finally, it can be mention that online mapping, such as the collection of WAPs or wardriving, offers new opportunities to explore the vast variability of existing sensors. This is interesting for automatizing data collection using variate platforms such as other project suggests [34]; and supply data needs for different scientific disciplines.

5. Acknowledgements
The author thanks to Finca Saquifancia, Tomás and Marina Rouo for their hospitality during fieldwork. This research was financed by the Indoamerica University.

References
[1] UN 2020 The Sustainable Development Goals Report 2020
[2] Sheehan K B and Hoy M G 1999 Using E-mail to Survey Internet Users in the United States: Methodology and Assessment J. Comput. Commun. 4
[3] Google 2020 Google Maps Street View
[4] WiGLE Development Team 2020 WiGLE: Wireless Network Mapping
[5] Vandeviver C 2014 Applying google maps and google street view in criminological research Crime Sci. 3 1–16
[6] Sapiezynski P, Stopczynski A, Gatej R and Lehmann S 2015 Tracking human mobility using WiFi signals PLoS One 10 1–11
[7] Cheng R, Zhang Y, Bertino E and Prabhakar S 2006 Preserving User Location Privacy in Mobile Data Management Infrastructures BT - Privacy Enhancing Technologies ed G Danezis and P Golle (Berlin, Heidelberg: Springer Berlin Heidelberg) pp 393–412
[8] Reades J, Calabrese F, Sevtsuk A and Ratti C 2007 Cellular Census: Explorations in Urban Data Collection IEEE Pervasive Comput. 6 30–8
[9] Correa T, Pavez I, Contreras J and Correa T 2020 Digital inclusion through mobile phones ?: A comparison between mobile-only and computer users in internet access, skills and use skills and use
[10] Rouvinen P 2004 Diffusion of digital mobile telephony: Are developing countries different? ETLA Discuss. Pap. 901
[11] Saad A, Amran A R and Hasan M N A 2017 WarBox: Portable wardriving over Raspberry PI ICICTM 2016 - Proc. 1st Int. Conf. Inf. Commun. Technol. 227–35
[12] Arias-Gutiérrez R, Herrera Sorzano A and González Sousa R 2016 Poblamiento indígena amazónico y
desarrollo local en Pastaza, Ecuador Noved. en población 12 24–34
[13] GADPN 2018 Proyecto de Actualización Plan de Desarrollo y Ordenamiento Territorial de la provincia de Napo
[14] Wasserstrom R and Southgate D 2013 Deforestation, Agrarian Reform and Oil Development in Ecuador, 1964-1994 Nat. Resour. 04 31–44
[15] Apolo D, Melo M, Solano J and Aliaga-Sáez F 2020 Pending issues from digital inclusion in Ecuador: challenges for public policies, programs and projects developed and ICT-mediated teacher training Digit. Educ. Rev. 2020 130–53
[16] Tourrilhes J 2007 Wireless-Tools version 30
[17] QGIS Development Team 2019 QGIS Geographic Information System
[18] R Core Team 2015 R: A Language and Environment for Statistical Computing
[19] Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D and Moore R 2017 Google Earth Engine: Planetary-scale geospatial analysis for everyone Remote Sens. Environ. 202 18–27
[20] Puth M-T, Neuhäuser M and D.Ruxton G 2015 Effective use of Spearman’s and Kendall’s correlation coefficients for association between two measured traits Anim. Behav. 102 77–84
[21] Gil M 2018 Spanish Names | Kaggle Kaggle
[22] OpenStreetMap OpenStreetMap
[23] Facebook 2019 Using HDX to Access High Resolution Population Density Maps and Demographic Estimates - Facebook Data for Good
[24] NOAA 2020 Version 1 VIIRS Day/Night Band Nighttime Lights
[25] Jarvis A, Reuter H I, Nelson A and Guevara E 2008 Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database
[26] SIGTIERRAS U-M-P 2015 Metodología Accesibilidad. Proyecto: “Levantamiento de cartografía temática escala 1:25000, lote 2”. Temáticas Nacionales.
[27] MAE-MAGAP 2015 Protocolo metodológico para la elaboración del Mapa de cobertura y uso de la tierra del Ecuador continental 2013-2014, escala 1:100.000 (Ministerio del Ambiente (MAE), Ministerio de Agricultura, Ganadería, Acuacultura y Pesca (MAGAP))
[28] Kim Y, Lee S and Lee S 2016 Coexistence of ZigBee-Based WBAN and WiFi for Health Telemonitoring Systems IEEE J. Biomed. Heal. Informatics 20 222–30
[29] Cammaerts M and Johansson O 2014 Ants can be used as bio-indicators to reveal biological effects of electromagnetic waves from some wireless apparatus 8378 282–8
[30] El Comercio 2020 Show fallido en Guayaquil generó la caída de 65 drones al río Guayas | El Comercio
[31] Henderson J V, Storeygard A and Weil D N 2012 Measuring Economic Growth from Outer Space Am. Econ. Rev. 102 994–1028
[32] Hawkins I 2018 WiFi Tracker - Apps on Google Play
[33] Rau L F 1991 Extracting Company Names from Text 29–32
[34] Open Data Kit 2017 ODK Collect — Open Data Kit Docs