Association of Xylella fastidiosa with Yield Loss and Altered Fruit Quality in a Naturally Infected Rabbiteye Blueberry Orchard

Mary Helen Ferguson1 and Christopher A. Clark
Department of Plant Pathology and Crop Physiology, Louisiana State University, 302 Life Sciences, Baton Rouge, LA 70803
Barbara J. Smith
U.S. Department of Agriculture, Agricultural Research Service, Thad Cochran Southern Horticulture Laboratory, P.O. Box 287, Poplarville, MS 39470

Additional index words. Vaccinium ashei, Vaccinium virgatum, Phytophthora cinnamomi, bacterial leaf scorch, soluble solids concentration, titratable acidity

Abstract. Xylella fastidiosa Wells et al. causes disease in a number of plants in the southeastern United States, including southern highbush blueberry (Vaccinium corymbosum interspecific hybrids), but little was known concerning its potential impact in rabbiteye blueberry (Vaccinium virgatum Aiton syn. Vaccinium ashei Reade). In a naturally infected orchard in Louisiana, mean yields of X. fastidiosa–positive plants were 55% and 62% less than those of X. fastidiosa–negative plants in 2013 and 2014, respectively. Average berry weight was also lower in X. fastidiosa–positive plants. Within 3 years of testing positive for X. fastidiosa, four of nine X. fastidiosa–positive plants appeared dead. However, plants that were X. fastidiosa–negative in 2013 remained so until 2015, indicating that the bacterium did not spread rapidly in this established orchard during this time. Other factors, including soil chemistry variables, Phytophthora cinnamomi, ring nematode, and ringspot symptoms, were also investigated to determine if one of these might predispose plants to infection with X. fastidiosa or be partly responsible for observed yield loss. In most cases, interactions were not found, but associations with soil Cu and Zn suggest a need for further research on whether these elements predispose rabbiteye blueberry to X. fastidiosa infection and thereby contribute to yield losses. Researchers, extension workers, and growers should be aware of X. fastidiosa as a potential yield- and survival-impacting factor in rabbiteye blueberry.

Diseases incited by X. fastidiosa are especially prevalent in the southeastern United States (Hopkins and Purcell, 2002). Proposed reasons for the bacterium’s success in this region include a long growing season and warm nights (Hopkins and Purcell, 2002). The feeding habits of the glassy-winged sharpshooter [Homalodisca vitripennis (Germam)], a vector of X. fastidiosa that is common in the southeastern United States, likely contribute as well (Hopkins and Purcell, 2002). Several X. fastidiosa–caused diseases found in the Southeast include Pierce’s disease, phony peach disease, pecan bacterial leaf scorch, and oleander leaf scorch (Hopkins and Purcell, 2002; Sanderlin and Heyderich-Alger, 2000). Since 2004, researchers in Georgia and Florida have confirmed X. fastidiosa as the cause of a leaf scorch disease of southern highbush blueberries (Vaccinium corymbosum interspecific hybrids) (Chang et al., 2009; Harmon and Hopkins, 2009). Inoculation of rabbiteye blueberry (V. virgatum syn. V. ashei) plants with X. fastidiosa resulted in no detected infection in ‘Premier’ and in local colonization of two of six ‘Powderblue’ plants. In inoculated ‘Powderblue’ plants, symptoms did not progress past the inoculated stem within a 14-month period (Chang et al., 2009). However, X. fastidiosa has been detected in samples from rabbiteye blueberry plants in farms in Louisiana that have experienced noticeable plant decline and death (Ferguson, 2016; R. Sanderlin, personal communication). Rabbiteye blueberry comprises the majority of the ~3000 acres of blueberry plantings in Louisiana and Mississippi (E. Stafne, personal communication; USDA-NASS, 2014). Bacterial leaf scorch symptoms described on southern highbush plants include marginal leaf necrosis, thin twigs on new growth, leaf drop, stem yellowing, and plant death (Brannen et al., 2016). In FL 86-19 southern highbush plants, symptoms progressed from marginal necrosis to yellow stems and leaf loss, on both inoculated and noninoculated branches (Chang et al., 2009). Defoliation combined with yellowed stems is characteristic of blueberry plants with bacterial leaf scorch, and these symptoms help differentiate between this disease and other biotic and abiotic causes of plant decline (Brannen et al., 2016). Death of southern highbush blueberry plants typically occurs a year or more after plants first show symptoms (Brannen et al., 2016).

There are other factors that may cause decline in rabbiteye blueberry plants. Phytophthora cinnamomi Rands incites root rot in blueberry, which can result in yellowing of leaves and leaf loss in rabbiteye cultivars (Milholland, 1995). Ring nematode (Mesorhizobium ornatum) has been observed in association with plants symptomatic for blueberry replant disease, although experiments did not reveal significant differences in rabbiteye blueberry plant growth after inoculation with them (Jagdale et al., 2013). Several viruses cause ringspot or ring blotch symptoms on blueberry plants (Martin et al., 2012). One of these, blueberry red ringspot virus, has been detected in rabbiteye blueberry (Polashock et al., 2009). It is important to consider such alternative causes of symptoms when assessing the possible impact of X. fastidiosa in rabbiteye blueberry.

In some crops, such as susceptible cultivars of Vitis vinifera L. grape, death of plants infected with X. fastidiosa takes place quickly enough that the proportion of yield reduction that individual infected plants experience, while they remain alive, is likely of minor interest (Hopkins and Purcell, 2002). Southern highbush blueberry plants with bacterial leaf scorch can also die soon after symptoms are observed (Brannen et al., 2016). However, in other crops, such as peach and citrus, infected plants can decline slowly with prolonged reduced yield and altered fruit quality (Goncalves et al., 2011; Hartung et al., 1994; Hutchins, 1933).

There are crops for which yield loss in the presence and absence of X. fastidiosa has been compared. In almond [Prunus dulcis

Received for publication 21 Apr. 2017. Accepted for publication 8 June 2017.

We appreciate the contributions of cooperating growers and the financial support of Louisiana State University College of Agriculture and the LSU AgCenter. This research was also supported in part by Hatch funds from the United States Department of Agriculture, National Institute of Food and Agriculture. Assistance provided by Renee Allen, Jacob Boudreaux, Phil Brannen, Tim Burks, Melinda Butler, Rock Christiano, Bill Cline, Mary Hoy, Steven Jeffers, Charlie Johnson, Rebecca Melanson, Penny Perkins-Veazie, David Picha, Randy Sanderlin, Carolyn Savario, Harald Scherm, Raj Singh, Eric Stafne, Deborah Xavier-Mis, and members of LSU’s Dept. of Experimental Statistics is gratefully acknowledged. This article is based on a chapter of the first author’s PhD dissertation.

1Corresponding author. E-mail: mferguson@yahoo.com.
Objectives of this study included determining whether there was an association between *X. fastidiosa* infection and reduced yield and/or fruit quality in rabbiteye blueberry and to what extent *X. fastidiosa* spread within a rabbiteye orchard. Soil chemistry variables, *P. cinnamomi*, ring nematode, and ringspot symptom status were also investigated to determine if they might be related to infection with *X. fastidiosa*.

**Materials and Methods**

Selection of plants for yield comparison and detection of *X. fastidiosa* in yield study plants. Because *X. fastidiosa* is a slow-growing organism, and it was not known whether an infection could be artificially established or how long it would take for an infection to become established and result in yield loss, this study used naturally infected plants. Fifty blocks of three plants were selected from within rows of ‘Tifblue’ rabbiteye blueberry plants at a commercial farm in East Feliciana Parish, LA, where *X. fastidiosa* had been detected. Within each block, the three plants were separated by a plant, a place where a plant was formerly located, or both. Plants in each block were roughly uniform in size at the beginning of the study. Five plants were removed from the study because of the determination, based on foliar appearance, time of bloom, or both, that they were a cultivar other than ‘Tifblue’, leaving a total of 40 plants in the study. The orchard was originally planted in the late 1970s or early 1980s, making the orchard ≈30 to 35 years old at the time of harvest. The orchard was ≈1 ha in size, unirrigated, managed using organic practices, and harvested by hand. The soil was a Tangi silt loam, a fine-silty mixed semiactive thermic Typic Fragudult (USDA-NRCS, 2014, 2016).

In an initial effort to determine which study plants were infected, real-time polymerase chain reaction (PCR) was used to test stem sap for *X. fastidiosa*. One cane was cut from the base of each plant in Feb. 2013. After returning from the field, fresh cuts were made at the base of each stem and roughly 15–20 cm from the location of the first cut, using pruning loppers wiped between cuts with 70% ethanol (EtOH), based on a protocol described by Holland et al. (2014). A vise was used to squeeze sap from the resulting stem piece, and sap was pipetted into autoclaved microcentrifuge tubes. Sap was held for 2 d at ≈4 °C and then at −70 °C until DNA was extracted from 50 μL of sap, or less, if 50 μL was not available, using a PowerPlant Pro DNA Isolation Kit (Mo Bio Laboratories, Inc., Carlsbad, CA). Real-time PCR was performed using Applied Biosystems Power SYBR Green PCR Master Mix (Life Technologies Corporation, Carlsbad, CA) and EFtu1 3 forward and reverse primers (forward: 5’-TGAGGTGG-GAAATTGTGGCATC-3’; reverse: 5’-AGCCTGACCTTGGCATCAAAT-3’; Holland et al., 2014). An ABI Prism 7000 Sequence Detection System (Applied Biosystems, Foster City, CA) thermocycler and the following program was used: 10 min at 95 °C; 40 cycles of 10 s at 95 °C and 1 min at 60 °C; and a dissociation step of 15 s at 95 °C, 20 s at 60 °C, and 15 s at 95 °C (Holland et al., 2014). One well (technical replicate) per plant was tested. Positive samples had cycle threshold (C) values of 35 or less and melting temperatures between 77.2 and 78.3 °C. Until a positive sample from blueberry was detected, an extract of *X. fastidiosa* from grape (A-98; Melanson et al., 2012) was used as a positive control.

If positive samples were then taken from plants in late July or early Aug. 2013. Several leafy shoots of roughly 15 cm in length were cut from various locations on each plant. The samples were held at ≈5.6 °C until shortly before petioles and lower midribs were cut from leaves using a scalpel blade, which was flame-damaged before use. A commercial enzyme-linked immunosorbent assay (ELISA) kit using the double antibody sandwich method with polyclonal antibodies (Agdia, Inc., Elkhart, IN) was used to detect *X. fastidiosa* in 0.3–0.5 g of petiole and midrib tissue of the leaves. The samples were tested in duplicate. Absorbance was measured at 630 nm on a Microplate Autorader EL311 (BioTek Instruments, Inc., Winooski, VT). An absorbance of 0.100 or higher, relative to a buffer control and accompanied by color change, was used as the criterion for a positive sample, similar to the threshold (0.100 at 620 nm) used by Chang et al. (2009).

Additional foliar samples (5–6 shoots/plant) were taken from all but two plants, which lacked foliage, in September of 2013. After excision with a flame scalpel blade, petioles and lower midribs were held at −20 °C until they were ground in liquid nitrogen using mortars and pestles. DNA was extracted from 0.04 to 0.05 g of tissue using the PowerPlant Pro DNA Isolation Kit. Real-time PCR was performed as described earlier for detection of *X. fastidiosa* in sap. The samples were tested in duplicate (two technical replicates).

Annual sampling of the 40 plants in the yield study was repeated in Aug. 2014 and Sept. 2015, to determine if the infection incidence had changed, in comparison with that found in 2013. Each time, five to seven leafy shoots were collected. After returning from the field, the samples were held at ≈5.6 °C until shortly before petioles and lower midribs were excised. Some petioles and midribs from each plant were used for testing by ELISA, as previously described, whereas others were held at −20 °C for DNA extraction. Tissue for DNA extraction was ground in liquid nitrogen. DNA was extracted in 0.05 to 0.06 g of tissue using a cetyltrimethylammonium bromide (CTAB) protocol based on that of Li et al. (2008). DNA was dissolved in sterile nuclelease-free water and held at −70 °C. Real-time PCR was performed using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, Hercules, CA), along with the previously described...
EFTu_3 primers. Positive samples still had C4 values of 35 or less, but because a different master mix was used, the range for melting temperatures of positive samples was between 81.2 and 82.4 °C. The samples were retested if there was a conflict between wells or if a sample tested positive but the amplification curve appeared atypical.

Yield and average berry weight. Fruit was harvested by hand once per week between 13 June and 5 July in 2013 and between 12 June and 10 July in 2014. Each week’s yield was weighed, and weekly yields were summed for each sample, to get total yield per plant for each season. At the time of each harvest, a sub-sample of berries was set aside for collection of average berry weight data and stored at ≈5.6 °C. Twenty-five berries, or fewer if 25 berries were not available, were weighed, and mean berry weight was recorded for each plant after each harvest date. The overall mean of averages from each harvest date was used as the average berry weight for the season, for each plant. If there were dates when a plant had fewer than 25 berries, the contribution of that week’s average to the seasonal average was reduced proportionally so that the weights from those dates did not disproportionately affect the seasonal average.

Soluble solids and titratable acidity. During one week of harvest in June 2014, a sub-sample of berries from each plant was set aside for measurements of soluble solids concentration (SSC) and titratable acidity (TA). The berries were held at −70 °C until the day of sample preparation. To prepare samples for measurements, berries were thawed, homogenized in a blender, and centrifuged in three to four 50-mL tubes per sample at 484 g for 15 min. The supernatant was filtered through a double layer of cheesecloth and centrifuged a second time at 830 g for 15 min, in 15 mL tubes.

Ten milliliters (or less, if 10 mL was not available) of the resulting juice was used for TA analysis, and the rest was held at ≈4 °C, or at −20 °C for longer periods, for SSC measurement. SSC was measured using a Bellingham and Stanley RFM 80 Refractometer (Kent, UK). To measure TA, 0.1 N NaOH was added while stirring the blueberry juice, until the pH measured ≥ pH 8.1. The volume of 0.1 N NaOH used to raise the pH to ≥8.1 was measured. This volume was multiplied by 0.1 (to account for the normality of the NaOH solution) and 0.059 [to account for the formula weight and number of dissociable hydrogen ions of a succinic acid molecule (Ehlenfeldt et al., 1994), as well as a conversion from milliliters to liters] and divided by the volume of juice used (in milliliters), to get a TA value. Calculations were based on the properties of succinic acid because Ehlenfeldt et al. (1994) found this acid to exist at the highest concentration among measured acids (including citric, malic, and quinic, along with succinic) in fruit from rabbiteye cultivars in general and from ‘Tifblue’, specifically.

Soil sampling. Six soil cores were taken under the canopy of each bush, to a depth of ≈15 to 20 cm, in Nov. 2013. Samples for each plant were mixed and placed in a plastic bag, which was then sealed. The bags were stored at 14 °C. Soil was analyzed for plant nutrient (Ca, Cu, K, Mg, P, S, and Zn) and Na content, along with pH, by the Louisiana State University Agricultural Center Soil Testing and Plant Analysis Laboratory.

Nematode populations. A 100-mL portion of the soil collected in Nov. 2013 was assayed for ring nematodes. Nematodes were extracted using the semiautomatic elutriation and sugar centrifugation method (Byrd et al., 1976; Jenkins, 1964). Using 100 mL of soil, the nematodes were trapped in a 400-mesh sieve (38-μm openings). Sieve contents were stored in water at ≈4 °C for at least 4 h and then added with tap water to a ≈40 mL centrifuge tube. The contents were centrifuged for 5 min at ≈350 g. The supernatant was poured off, and a solution containing 454 g·L−1 of sucrose was added to the tubes and stirred to mix with the contents. This mixture was centrifuged for 1 min at ≈350 g and then poured through a 400-mesh sieve. The contents were washed in tap water and stored at ≈4 °C until nematodes were identified and counted by D. Xavier-Mis at the Louisiana State University Agricultural Center Nematode Advisory Service. The counts were converted into populations of nematodes per 500 cm3.

Phytophthora assay. In Jan. 2015, four soil cores were collected from within 1 m of the base of each plant that had been part of the yield study, to depths of ≈15 to 20 cm. The samples were placed in plastic bags, which were sealed and stored at ≈5.6 °C, then set out at room temperature for 2 or 6 d before the first and second rounds of baiting, respectively. Each time, using a protocol based on that in Ferguson and Jeffers (1999), 150 cm3 of soil from around each plant was placed in a 13 cm × 9 cm × 6 cm food storage container, and 200 mL of distilled, deionized water was poured over it. Eight disks cut from Camellia japonica leaves using a single-hole punch were floated on top of the water in each container. Leaves had been dipped in 70% EtOH and allowed to dry, and the hole punch used to cut out dishes had been dipped in 70% EtOH and flamed. Three days after each round of baiting began, baits were removed from the containers, using sterilized forceps that were dipped in 70% EtOH and flamed between samples. For each sample, five disks, from among those that had not sunk, were placed on a clean paper towel and blotted dry (Ferguson and Jeffers, 1999). Forceps were used to insert the five disks into a selective medium. PARPH (pimaricin-hymexazol) medium was used after the first round of baiting, whereas pimaricin was left out the second time, so that the medium was effectively ARPH (Ferguson and Jeffers, 1999; Jeffers and Martin, 1986). Antibiotic concentrations of the media were those in Ferguson and Jeffers (1999), but carmoil agar was used and V8 was omitted, as in Jeffers and Martin (1986).

Thirteen to 14 d after inserting leaf disks into PARPH after the first round of baiting, medium from new plates of PARPH was overlaid on the original plates. There was no overlay step for plates from the second round of baiting. One to three pieces of agar (≈0.2 cm3) containing hyphae were transferred to PARPH or ARPH media from the overlaid plates (from first round) 6.5 weeks after overlay or from original plates (from second round) 2 weeks after insertion of disks. Eleven days after the previous transfers, one to three pieces of agar (≈0.2 cm3) containing hyphae were transferred to clarified V8 agar (cV8A-10%) (Jeffers, 2007).

Between 13 and 15 d after transfer to cV8A-10%, hyphae from ≈2 cm2 were scraped from the plates and placed in 1.5 mL microcentrifuge tubes with 500 μL of 10 mM Tris-HCl (pH 7.5), based on the method of Kong et al. (2003). The tubes were placed in boiling water for 20 min and then centrifuged for 3 min. The supernatant (200 μL) was transferred to new microcentrifuge tubes, and these were stored at −20 °C.

PCR using Lpv2 (forward: 5’-ACCTGGTC-GACAACGACTCTGTG-3’; reverse: 5’-GTCC-AAACCGACTCTTGATG-3’) and Lpv3 primers (forward: 5’-GTCCAGACTGTG-3’; reverse: 5’-GAACCACAACGCACAGT-3’) was performed following the protocols outlined in Kong et al. (2003). Because DNA concentrations in the extracts were low, the volume of template in the PCR reaction was successively increased from 2 to 4 to 8 to 16.9 μL, if no product was found for a given sample at a lower concentration. Because a positive result with both primers is necessary to confirm a sample as P. cinnamomi, the samples were run with Lpv3 primers at increased template concentrations only if positive results were obtained with the Lpv2 primers.

Ringspots. Leaves of yield study plants were observed in Aug. 2014 and Sept. 2015 for the presence of ringspots, to determine if a ringspot-causing virus was likely to be present.

Data analysis. Data were analyzed using SAS software (SAS 9.4; SAS Institute Inc., Cary, NC). Analyses of variance (ANOAs) were performed using PROC MIXED and the Kenward–Roger df method. Repeated measures analyses were used when 2 years of data were analyzed together. When only 1 year of data was analyzed at one time, a likelihood ratio chi-square test was done in Microsoft Excel (Microsoft Corp., Redmond, WA) using 2-Res Log Likelihood values and the df of the covariance structures, to determine whether a better fit resulted from using combined or separate variances by plant infection status. If there was not a significant difference in the fits, the simpler model was used. Likewise, when 2 years of data were analyzed together, likelihood ratio chi-square tests were done to determine if a better fit resulted from using combined or separate variances by plant infection status or by year and if an autoregressive covariance structure resulted in a better fit than the default covariance
structure. In all cases, models with non-normal residuals distributions, according to a Shapiro–Wilk test (α = 0.05), were not used. Ranked rather than raw data were used for SSC analysis, as residuals were non-normal when raw data were used. Once a satisfactory model for yield was selected, ANOVAs were also performed with *P. cinnamomi* status, 2014 ringspot status, ring nematode population, and soil chemistry variables (Ca, Cu, K, Mg, P, S, Zn, Na, or pH), individually, as covariates.

To determine whether the presence of *P. cinnamomi*, ring nematodes, or a ringspot-causing virus possibly predisposed plants to colonization with *X. fastidiosa*, logistic analyses were performed using PROC GLIMMIX, to account for the arrangement of plants in blocks. A binary distribution was specified, and the Kenward–Roger df method was used. It was also considered desirable to determine if any soil chemistry variables (nutrient or Na concentrations, or pH) might be predisposing plants to *X. fastidiosa* colonization, but because there were nine soil chemistry variables, these were subjected to a principal components analysis using PROC FACTOR in SAS. Once the top three factors were determined, the factor scores were also used as independent variables in a logistic analysis of infection incidence. For all ANOVAs and logistic analyses, reported *P* values are based on partial (type III) sums of squares.

**Results**

Only one plant of 40 in the commercial orchard in East Feliciana Parish was positive for *X. fastidiosa* based on sap from stems collected in Feb. 2013. However, nine plants, including the one that previously tested positive, tested positive by ELISA of petiole/midrib samples collected in late July and early August of 2013. None of these tested positive by real-time PCR when petiole/midrib tissue was collected in Sept. 2013, and DNA was extracted using the PowerPlant Pro DNA Isolation Kit; however, all but one of these nine plants later tested positive by real-time PCR in 2014 and/or 2015, when the CTAB extraction method was used to extract DNA from petiole/midrib tissue.

In Aug. 2014, eight plants still had a sufficient number of leaves for testing by both ELISA and real-time PCR, and samples from five of these plants tested positive by ELISA, while samples from six tested positive by real-time PCR. In 2015, outcomes of ELISA and real-time PCR tests were the same, with leaves from four of a total of six undefoliated plants testing positive by both methods. Plants that tested negative for *X. fastidiosa* by ELISA in 2013 continued to test negative by both ELISA and real-time PCR in 2014 and 2015.

By Apr. 2016, no foliage was present on four of the nine plants from the yield study in which *X. fastidiosa* had been detected. The yield study plants that consistently tested negative for *X. fastidiosa* had new growth at this time. Besides death of the aboveground parts of plants, symptoms noted in association with infected plants included foliar reddening and chlorosis and, less commonly, marginal necrosis (Fig. 1). However, the incidence of foliar symptoms was not subjected to statistical analysis, and obvious symptoms were not always observed.

The nine plants that tested positive for *X. fastidiosa* yielded significantly less than the 31 that did not, with mean yields of *X. fastidiosa*–positive plants being 55% and 62% less than *X. fastidiosa*–negative plants in 2013 and 2014, respectively (Table 1). There was a significant (*P = 0.01*) infection status by year interaction with respect to yield, but observation of mean values for each year revealed that the trends were the same in both years (i.e., positive plants yielded less than half of what negative plants did), so yield data from both years were analyzed together. The difference between average berry weights was also significant (Table 1).

In berries harvested during 1 week in 2014, the SSC was higher in fruit from plants in which *X. fastidiosa* had been detected than in fruit from plants in which it had not been detected (Table 2). No significant difference in TA was found (Table 2).

*Phytophthora cinnamomi* was detected in soil from around 56% of *X. fastidiosa*–positive plants and 23% of *X. fastidiosa*–negative plants. The logistic regression analysis to check for a possible predisposing effect of *P. cinnamomi* on *X. fastidiosa* infection was not significant (*P = 0.138*). Ringspots were observed on 33% of *X. fastidiosa*–positive plants and 65% of *X. fastidiosa*–negative plants in Aug. 2014. The *P* value (0.194) resulting from logistic regression did not suggest an association between ringspot symptoms and *X. fastidiosa* infection status. Ringspots were not observed in Sept. 2015.

Mean population estimates of ring nematodes per 500 cm$^3$ soil were 572 and 419 for *X. fastidiosa*–positive and negative plants, respectively.
respectively. Results of logistic regression analysis (\( P = 0.316 \)) did not suggest that ring nematodes might predispose plants to infection by \( X. \) fastidiosa. The \( P \) value for the “effect” of \( X. \) fastidiosa status on yield remained highly significant (\( P < 0.0001 \)) when \( P. \) cinnamomi status, ring spot status, ring nematode population estimate, or any of the soil chemistry variables were included as covariables.

A principal components analysis revealed three factors that accounted for 74% of the variation in the soil chemistry data. Factor 1 accounted for 51% of the variation in the soil chemistry data, and the most highly correlated variables were Ca, Mg, and K. Factor 2 accounted for 29% of the variation, with P, Cu, and Zn being most highly correlated with it. Factor 3, with which S, Na, and pH were most highly correlated, accounted for 15% of the variation. The Factor 2 score was the only one that resulted in a significant \( P \) value (\( P = 0.040 \)) in a logistic analysis, and the variables most highly correlated with this factor were examined individually. Means and \( P \) values for the logistic analyses using these variables are shown in Table 3. Because pH was not one of the variables most highly correlated with Factor 2, results of logistic regression using pH as an independent variable are not shown. However, mean pH values for soil around \( X. \) fastidiosa–positive and negative plants were pH 4.76 and pH 4.83, which are near the middle of the range recommended for blueberries (Puls, 1999).

**Discussion**

Results suggest that \( X. \) fastidiosa infection may cause a substantial decline in productivity of ‘Tifblue’ rabitaybe blueberry plants but that spread is limited. ELISA tests in July or Aug. 2013 indicated that nine of 40 plants were infected. \( X. \) fastidiosa was later detected by real-time PCR in all but one of these. The initial ELISA result from the single plant in which infection was not later detected may have reflected an infection that did not spread systemically in the plant. Six of the nine \( Xylella \)--positive plants were located in blocks with at least one other positive plant, seeming to suggest that spread between plants may be important. This is consistent with the findings of Park et al. (2006) in grape, in an area in which the glassy-winged sharpshooter was present but contrasts with results of Sisterson et al. (2012) in almond and Li et al. (2011) in pecan.

The fact that none of the 31 yield study plants that initially tested as \( X. \) fastidiosa–negative tested positive in 2014 or 2015 suggests that spread between plants, or spread followed by colonization to a degree that allows detection, is not rapid. It has been suggested that, in such a situation, using noninfected planting material may limit the number of infections in an orchard (Sanderlin and Heyderich-Alger 2003). However, it is possible that the infection incidence would increase more quickly in a younger orchard, and it is likely that new infections would eventually be detected if plants were monitored for a longer period. In a pecan orchard that was ~25 years old when data collection was initiated, Sanderlin and Heyderich-Alger (2003) did not detect new infections in 10 initially \( X. \) fastidiosa–negative pecan trees during the course of a three year study. However, in another pecan orchard in which trees were only 14 years old when the study began, infection incidence in trees of the same susceptible cultivar increased from 5% to 64% over a 6-year period (Sanderlin et al., 2009). Future research should investigate whether spread occurs at a different rate in young rabitaybe orchards than was observed in the old orchard surveyed in this study.

Four of the nine \( X. \) fastidiosa–positive plants appeared dead when survival was assessed in Apr. 2016. Because positive plants had been sampled more extensively after the final yield study harvest, as part of a seasonal detection study (Ferguson, 2016), they differed in this respect from \( X. \) fastidiosa–negative plants by this time. However, based on plant vigor, it appeared that all but one of the 31 \( X. \) fastidiosa–negative plants would still have had living aboveground growth at this time, had they been sampled in the same way.

Results clearly indicate that the detectable presence of \( X. \) fastidiosa is associated with yield loss in ‘Tifblue’ rabitaybe blueberry. Yield reductions of \( X. \) fastidiosa–positive plants were 55% in 2013 and 62% in 2014, compared with negative plants, and were greater than losses or estimated losses reported in almond, pecan, or citrus (Gonçalves et al., 2011; Sanderlin and Heyderich-Alger 2003; Sisterson et al., 2008, 2012). To fully assess the importance of \( X. \) fastidiosa in rabitaybe blueberry, it would be helpful to have data from other naturally infected orchards.

Average berry weight was lower in infected plants, as well. Only six of the 31 \( X. \) fastidiosa–positive plants had fruit in the second season, and those that did were plants that appeared to be in earlier stages of decline. The difference in average berry weight might have been greater if more \( X. \) fastidiosa–positive plants had produced fruit in the second year. The greater SSC observed in a limited sample of fruit from infected plants is consistent with what might be expected in plants with reduced water uptake because of plugging of the xylem. Also, studies involving other fruit crops have sometimes shown that greater SSCs have sometimes shown that greater SSCs might be expected in plants with reduced water uptake because of plugging of the xylem. Also, studies involving other fruit crops have sometimes shown that greater SSCs

### Table 2

| Soluble solids (%) | Titratable acidity (%) |
|-------------------|------------------------|
| X. fastidiosa–positive | 11.5 ± 0.5 | 0.57 ± 0.02 |
| X. fastidiosa–negative | 10.1 ± 0.1 | 0.57 ± 0.005 |
| \( P \) value | 0.0217 | 0.8324 |

*\( N = 6 \) plants.  
*Mean ± se.  
*\( N = 31 \) plants.  
*Ranks of soluble solid values were analyzed because of a lack of normality.

### Table 3

| Nutrient | \( X. \) fastidiosa–positive | \( X. \) fastidiosa–negative | \( P \) value |
|----------|-----------------------------|-----------------------------|-------------|
| Cu (ppm) | 30.8                         | 24.1                        | 0.1250      |
| Zn (ppm) | 1.62                         | 1.35                        | 0.0479      |

*\( P \) values are from logistic analyses performed to determine if the concentration of this nutrient might be related to infection by \( X. \) fastidiosa.
are coincidental, or that infected plants took up lesser amounts of them, leaving higher concentrations in the soil. Also, while results are shown for logistic analyses using Cu, Zn, and P, the fact that these are all associated with the same component in a principal components analysis shows that they are not independent of each other. It is possible that one predisposes plants to infection while the concentrations of the others are simply correlated with the concentration of that predisposing factor. The mean soil Cu and Zn concentrations for both X. fastidiosa-positive and X. fastidiosa-negative plants were well below the levels considered toxic for crops in general (Hardy et al., 2014). However, most recommendations related to Cu and Zn fertility in blueberries are based on foliar tissue levels (Hart et al., 2006; Puls, 1999), which were not analyzed in this study. Additional research is needed to show any causal relationship between soil Cu or Zn concentration and plant susceptibility to X. fastidiosa infection and should take foliar concentrations into account.

Dutta et al. (2015) formulated models that associated plant tissue concentrations of Cu²⁺ and Zn²⁺, along with Fe²⁺ and Mn²⁺, and severity of bacterial leaf spot (causal agent: Xanthomonas euvesicatoria) and severity of bacterial leaf scorch caused by Xylella fastidiosa. HortScience 44:413–417.

Byrd, D.W., K.R. Barker, H. Ferris, C.J. Nusbaum, W.E. Griffin, R.H. Small, and C.A. Stone. 1976. Two semi-automatic elutriators for extracting nematodes and certain fungi from soil. J. Nematol. 8:206–212.

Chang, C.J., R. Donaldson, P. Brannen, G. Krewer, and R. Boland. 2009. Bacterial leaf scorch, a new blueberry disease caused by Xylella fastidiosa. HortScience 44:413–417.

Dutta, B., D. Langston, H. Sanders, S. Smith, and R. Gitiatis. 2015. Severity of bacterial leaf spot in pepper is affected by cation concentrations in pepper tissues. Phytopathology 105:S2.3 (abstr.).

Ehlenfeldt, M.K., F.J. Meredith, and J.R. Ballington. 1994. Unique organic acid profile of rabbiteye vs. highbush blueberries. HortScience 29:321–323.

Einhorn, T.C., D. Laraway, and J. Turner. 2011. Crop load management does not consistently improve crop value of ‘Sweetheart’/‘Mazzard’ sweet cherry trees. HortTechnology 21:546–553.

Ferguson, A.J. and S.N. Jeffers. 1999. Detecting multiple species of Phytophthora in container mixes from ornamental crop nurseries. Plant Dis. 83:1129–1136.

Fergusson, M.H. 2016. Characterization of Xylella fastidiosa in rabbiteye blueberry. Louisiana State Univ., Baton Rouge, PhD Diss.

Gonçalves, F.P., E.S. Stuchi, S.R. da Silva, E.T. Reiff, and L. Amorin. 2011. Role of healthy nursery plants in orange yield during eight years of citrus variegated chlorosis epidemics. Sci. Hort. 129:343–345.

Hardy, D.H., M.R. Tucker, and C.E. Stokes. 2014. Crop fertilization based on North Carolina soil tests. N.C. Dept. of Agr. and Consumer Serv. Agron. Div. Circ. 1.

Harmon, P.F. and D.L. Hopkins. 2009. First report of bacterial leaf scorch caused by Xylella fastidiosa on highbush blueberry in Florida. Plant Dis. 93:1220.

Hart, J., B. Strik, L. White, and W. Yang. 2006. Nutrient management for blueberries in container and field. Plant Dis. Rptr. 49:692.

Hartung, J.S., J. Beretta, R.H. Brfiansky, J. Spisso, and R.F. Lee. 1994. Citrus variegated chlorosis bacterium: Axenic culture, pathogenicity, and serological relationships with other strains of Xylella fastidiosa. Phytopathology 84:591–597.

Holland, R.M., R.S.C. Christiano, E. Gamillet-Atinsky, and H. Scherm. 2014. Distribution of Xylella fastidiosa in blueberry stem and root sections in relation to disease severity in the field. Plant Dis. 98:443–447.

Hopkins, D.L. and A.H. Purcell. 2002. Xylella fastidiosa: Cause of Pierce’;s disease of grapevine and other emergent diseases. Plant Dis. 86:1056–1066.

Hutchins, L.M. 1933. Identification and control of the phony disease of the peach. Office of State Entomologist, State Capitol, Atlanta, GA. Bull. 78.

Jagdale, G.B., T. Holladay, P.M. Brannen, W.O. Cline, P. Agudelo, A.P. Nyczepir, and J.P. Noel. 2013. Incidence and pathogenicity of plant-parasitic nematodes associated with blueberry (Vaccinium spp.) replant disease in Georgia and North Carolina. J. Nematol. 45:92–98.

Jeffers, S.N. 2007. Identifying species of Phytophthora. 3 Feb. 2017. <https://thm.fs.fed.us/sps/sod/misc/culturing_species_phytophthora.pdf>.

Jeffers, S.N. and S.B. Martin. 1986. Comparison of two media selective for Phytophthora and Pythium species. Plant Dis. 70:1038–1043.

Jenkins, W.R. 1964. A rapid centrifugal–floatation technique for separating nematodes from soil. Plant Dis. Rptr. 49:692.

Kong, P., C.X. Hong, and P.A. Richardson. 2003. Rapid detection of Phytophthora cinnamomi using PCR with primers derived from the Lpv putative storage protein genes. Plant Pathol. 52:681–693.

Li, R., R. Mock, Q. Huang, J. Abad, J. Hartung, and G. Kanard. 2008. A reliable and inexpensive method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens. J. Virol. Methods 154:48–55.

Li, B., R.S. Sanderlin, R.A. Melanson, and Q.Z. Yu. 2011. Spatio-temporal analysis of a plant disease in a non-uniform crop: A Monte Carlo approach. J. Appl. Stat. 38:175–182.

Martin, R.R., J.J. Polashock, and I.E. Tzanetakis. 2012. New and emerging viruses of blueberry and cranberry. Viruses 4:2831–2852.

Melanson, R.A., R.S. Sanderlin, A.R. McTaggart, and J.H. Ham. 2012. A systematic study reveals that Xylella fastidiosa strains from pecan are part of X. fastidiosa subsp. multiplex. Plant Dis. 96:1123–1134.

Milholland, R.D. 1995. Phytophthora root rot, p. 7–8. In: F.L. Caruso and D.C. Ramsdell (eds.). Compendium of blueberry and cranberry diseases. APS Press, St. Paul, MN.

Park, Y.-L., T.M. Perrin, R.K. Krell, C.A. Farrar, and C. Gispert. 2006. Spatial distribution of Pierce’s disease in the Coachella valley: Implications for sampling. Amer. J. Enol. Viticult. 57:220–225.

Polashock, J.J., M.K. Ehlenfeldt, and J.A. Crouch. 2009. Molecular detection and discrimination of Blueberry red ringspot virus strains causing disease in cultivated blueberry and cranberry. Plant Dis. 93:727–733.

Puls, E.E. 1999. Commercial blueberry production. La. State Univ. Agr. Ctr. Pub. 2363.

Rooks, S.A., A.K. Watson-Selph, B. Dutta, R.D. Gitaitis, C. Nischwitz, S.W. Mullis, A.K. Culbreath, and A.S. Cisnos. 2015. Role of minor elements on tomato wilt of tobacco (Nicotiana tabacum) and superoxide-dismutase and NPR1 genes. Phytopathology 105:S2.9 (abstr.).

Sanderlin, R.S. and K.I. Heyderich-Alger. 2000. Evidence that Xylella fastidiosa can cause leaf scorch disease of pecan. Plant Dis. 84:1282–1286.

Sanderlin, R.S. and K.I. Heyderich-Alger. 2003. Effects of pecan bacterial leaf scorch on growth and yield components of cultivar Cape Fear. Plant Dis. 87:259–262.

Sanderlin, R.S., B. Li, R.A. Melanson, and S. Gil. 2009. Spread of Xylella fastidiosa in a pecan orchard and presence of potential vectors in orchards. Phytopathology 99:S114 (abstr.).

Serra, S., R. Leiss, L. Giordani, L. Kalcsits, and S. Musacchi. 2016. Crop load influences fruit quality, nutritional balance, and return bloom in ‘Honeycrisp’ apple. HortScience 51:236–244.

Siistroen, M.S., J.C. Chen, M.A. Viveros, E.L. Civerolo, C. Ledbetter, and R.L. Groves. 2008. Effects of almond leaf scorch disease on
almond yield: Implications for management. Plant Dis. 92:409–414.
Sisterson, M.S., C.A. Ledbetter, J.C. Chen, B.S. Higbee, R.L. Groves, and K.M. Daane. 2012. Management of almond leaf scorch disease: Long-term data on yield, tree vitality, and disease progress. Plant Dis. 96:1037–1044.
United States Department of Agriculture, National Agricultural Statistics Service (USDA-NASS). 2014. 2012 Census of agriculture: United States summary and state data summary and state data. U.S. Dept. Agr. AC-12-A-51.
United States Department of Agriculture, Natural Resource Conservation Service (USDA-NRCS). 2014. Tangi series. 12 Jan. 2017. <https://soilseries.sc.egov.usda.gov/OSD_Docs/T/TANGI.html>.
United States Department of Agriculture, Natural Resource Conservation Service (USDA-NRCS). 2016. Web soil survey 3.2. 12 Jan. 2017. <https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx>.
Zentmyer, G.A. 1980. Phytophthora cinnamomi and the diseases it causes. Phytopath. Monogr. 10. Amer. Phytopathol. Soc., St. Paul, MN.