Prevalence and molecular identification of *Borrelia* spirochetes in *Ixodes granulatus* ticks collected from *Rattus losea* on Kinmen Island of Taiwan

Li-Lian Chao¹, Li-Ling Liu¹ and Chien-Ming Shih¹,²*

Abstract

Background: *Ixodes granulatus* is widely distributed in various countries of Southeast Asia and Taiwan. Although this tick species is presumed to be the vector for the enzoonotic transmission of *Borrelia* spirochetes in the Taiwan area, the prevalence of infection and genetic diversity of *Borrelia* spirochetes harbored by this tick species need to be further determined.

Methods: DNA extraction was performed from individual tick specimens collected from *Rattus losea* on Kinmen Island of Taiwan. *Borrelia* infection in *I. granulatus* ticks was detected by performing a specific PCR assay based on the 5S-23S intergenic spacer amplicon gene of *B. burgdorferi* sensu lato. The genetic identities of detected spirochetes were identified by gene sequencing and phylogenetic analysis.

Results: *Borrelia* infection was detected in nymph, male, and female stages of *Ixodes granulatus* ticks with an infection rate of 42.9%, 36%, and 52.7%, respectively. Genospecies identification reveals that *B. valaisiana* is the main genotype (70.7%) as compared to the genotype of *B. burgdorferi* sensu stricto (15.4%). Phylogenetic analysis revealed that these detected spirochetes were genetically affiliated to the genospecies *B. valaisiana* and *B. burgdorferi* sensu stricto, with a high sequence homology within the genospecies of *B. valaisiana* (95.8 to 100%) and *B. burgdorferi* sensu stricto (97.2 to 100%), respectively.

Conclusions: This study highlights the significance of high prevalence and genetic diversity of *Borrelia* spirochetes in *I. granulatus* ticks collected from *Rattus losea* on Kinmen Island of Taiwan. Intraspecific analysis also revealed that *B. valaisiana* species detected in Kinmen Island can be easily distinguished from the European group of *B. valaisiana* and other genospecies of *Borrelia* spirochetes. This may imply an enzoonotic cycle between *I. granulatus* ticks and rodent hosts that maintains *Borrelia* spirochetes in Kinmen Island as well as Southeast Asia.

Keywords: *Borrelia*, *Ixodes granulatus*, Tick, Genetic diversity, Taiwan
spirochetes in the southwestern regions (adjacent to Taiwan) of China [12,13].

The abundance and widespread distribution of *I. granulatus* has been recorded for the first time from various countries in Southeast Asia and Taiwan [14]. The medical importance with the recent emergence of human babesiosis [15] and Lyme borreliosis [16] in Taiwan raises the focus of research attention on *I. granulatus* ticks. Indeed, Lyme disease spirochetes (*B. burgdorferi* sensu stricto) have been isolated from six species of rodent hosts in Taiwan [17] and all these Taiwan isolates were genetically classified into the genospecies of *B. burgdorferi* sensu lato [18,19]. In addition, *Borrelia* infection has also been detected in *I. granulatus* ticks collected from the Kinmen Island of Taiwan [20]. Although the hard tick of *I. granulatus* was presumed to be the tick vector for the enzoonotic transmission of *Borrelia* spirochetes in the Taiwan area [21], the prevalence of infection and genetic diversity of *Borrelia* spirochetes harbored by this tick species in Kinmen Island needs to be further defined.

The 5S (*rrf*)-23S (*rrl*) intergenic spacer amplicon gene is unique and highly conserved in *B. burgdorferi* sensu lato [22,23]. The diversity of this gene is useful for distinguishing the genetic heterogeneity among different *Borrelia* isolates [24-26]. Indeed, genetic identity of *Borrelia* spirochetes was clarified by analyzing the sequence homology of 5S (*rrf*)-23S (*rrl*) intergenic spacer amplicon genes of *B. burgdorferi* sensu lato isolated from various biological sources [2,13,27,28]. In addition, different genospecies of *B. burgdorferi* sensu lato are distributed unevenly throughout the world and are associated with distinct ecologic features [2]. It may be that the *Borrelia* spirochetes that exist in *I. granulatus* ticks of Kinmen Island are genetically affiliated to the genospecies discovered in Asia, which are distinct from the *Borrelia* spirochetes within common vector ticks (*I. ricinus* complex) discovered in Europe and the United States. Thus, the objectives of the present study will determine the prevalence of *Borrelia* spirochetes within *I. granulatus* ticks by polymerase chain reaction (PCR) assay targeting the 5S (*rrf*)-23S (*rrl*) intergenic spacer amplicon gene of *B. burgdorferi* sensu lato and to clarify the genetic identity of detected spirochetes by analyzing phylogenetic relationships with other *Borrelia* species that have been documented in GenBank.

Methods

Collection and identification of tick specimens

All specimens of adult and nymphal ticks were removed from rodents captured at various field sites of four towns in Kinmen Island (Figure 1). All field-collected ticks were subsequently stored in separate mesh-covered and plaster-bottomed vials. Adult and nymphal ticks of *I. granulatus* collected from Kinmen Island of Taiwan were identified to species level on the basis of their morphological characteristics, as described previously [29]. In addition, ultrastructural observations by scanning electron microscope (SEM) were also used to identify the morphological features of *I. granulatus* ticks, as described previously [29].

DNA extraction from tick specimens

Total genomic DNA was extracted from individual tick specimens used in this study. Briefly, tick specimens were cleaned by sonication for 3–5 min in 75% ethanol and then washed twice in sterile distilled water. Afterwards, each individual tick specimen was dissected into pieces, placed in a microcentrifuge tube filled with 180-μl lysing buffer solution supplied in the DNeasy Blood & Tissue Kit (catalogue no. 69506, Qiagen, Hilden, Germany) and then homogenized with a sterile tissue grinder (catalogue no. 358103, Wheaton Scientific Products, Millville, NJ, USA). The homogenate was centrifuged at room temperature and the supernatant fluid was further processed using a Dneasy Blood & Tissue Kit, as per manufacturer’s instructions. After filtration, the filtrate was collected and the DNA concentration was determined spectrophotometrically with a DNA calculator (GeneQuant II; Pharmacia Biotech, Uppsala, Sweden).

DNA amplification by polymerase chain reaction (PCR)

DNA samples extracted from the tick specimens were used as a template for PCR amplification. A nested PCR was performed with primers designed to amplify the variable spacer region between two conserved duplicate structures. A specific primer set corresponding to the 3’ end of the 5S rRNA (*rrf*) (5’-CGACCTTCTTCCGCCT TAAAGC-3’) and the 5’ end of the 23S rRNA (*rrl*) (5’-TAAAGCTGACTAATACTAATTACCC-3’) were designed and applied for the primary amplification, as described previously [23]. In the nested PCR, a primer set of primer 1 (5’-CTCGGAGTTCGGGAGA-3’) and primer 2 (5’-TCCTAGGCATTCACTAATTACCC-3’) was used and expected to yield a 226–266 bp fragment depending on the *Borrelia* strain, as described previously [30]. All PCR reagents and Taq polymerase were obtained and used as recommended by the supplier (Takara Shuzo Co., Ltd., Japan). Briefly, a total of 0.2-μmol of the appropriate primer set and various amounts of template DNA (0.1-0.3 μg) were used in each 50-μl reaction mixture. The PCR amplification was performed with a Perkin-Elmer Cetus thermocycler (GeneAmp system 9700; Applied Biosystems, Taipei, Taiwan), and the primary amplification included 2 min denaturation at 96°C followed by 30 cycles of the following conditions: denaturation at 94°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 40 s. Nested amplification was performed under the same conditions, except for annealing at 59°C for 30 s.
Thereafter, amplified DNA products were electrophoresed on 2% agarose gels in Tris-Borate-EDTA (TBE) buffer and visualized under ultraviolet (UV) light after staining with ethidium bromide. A DNA ladder (1-kb plus, catalogue no. 10787–018, Gibco BRL, Taipei, Taiwan) was used as the standard marker for comparison. A negative control of distilled water was included in parallel with each amplification.

Sequence alignments and phylogenetic analysis
After purification with a QIAquick PCR purification kit (catalogue no. 28104, Qiagen, Hilden, Germany), sequencing reactions were performed with 25 cycles under the same conditions and same primer set (primer 1 and primer 2) of nested amplification by using the Big Dye Terminator Cycle Sequencing Kit (V3.1) under an ABI Prism 377–96 DNA sequencer (Applied Biosystems, Foster City, CA, USA). The resulting sequences (241–245 bp) were initially edited by BioEdit software (V5.3) and aligned with the CLUSTAL W software [31]. Afterwards, the aligned sequences (205–209 bp) were further analyzed by comparing with other *Borrelia* sequences based on the type-strain of different genospecies and different geographic origin of *Borrelia* spirochetes that were available in GenBank. Phylogenetic analysis was performed by neighbour-joining (NJ) compared with maximum parsimony (MP) methods to estimate the phylogeny of the entire alignment using MEGA 4.0 software [32]. A similarity matrix was constructed using DNASTAR program (Lasergene, version 8.0). All phylogenetic trees were constructed and performed with 1000 bootstrap replications to evaluate the reliability of the constructions, as described previously [33].

Nucleotide sequence accession numbers
The nucleotide sequences of PCR-amplified 5S (*rrf*)-23S (*rrl*) intergenic spacer amplicon genes of *Borrelia* spirochetes determined in this study have been registered and assigned the following GenBank accession numbers: strains KC-44 (JF970243), KH-05 (JF970244), KH-13 (JF970245), KH-74 (JF970246), KN-11 (JF970247), KS-61 (JF970248), KS-62 (JF970249), KH-58 (JF970250), KC-14 (JF970251), KC-49 (JF970252), KH-70 (JF970253), KH-71 (JF970254), KS-18 (JF970255), and KS-39 (JF970256). For phylogenetic analysis, nucleotide sequences of 5S (*rrf*)-23S (*rrl*) intergenic spacer amplicon genes from another 19 strains of *Borrelia* species were included for comparison (Table 1).
Table 1 Genospecies and strains of *Borrelia* spirochetes used for analysis in this study

Genospecies and strain	Origin of *Borrelia* strain	5S (rrf)-23S (rrl) gene accession number\(^a\)	
Taiwan strains			
KC-44	Ixodes granulatus	Kin-Cheng, Kinmen	JF970243
KH-05	I. granulatus	Kin-Hu, Kinmen	JF970244
KH-13	I. granulatus	Kin-Hu, Kinmen	JF970245
KH-74	I. granulatus	Kin-Hu, Kinmen	JF970246
KN-11	I. granulatus	Kin-Ning, Kinmen	JF970247
KS-61	I. granulatus	Kin-Sha, Kinmen	JF970248
KS-62	I. granulatus	Kin-Sha, Kinmen	JF970249
KH-58	I. granulatus	Kin-Hu, Kinmen	JF970250
KC-14	I. granulatus	Kin-Cheng, Kinmen	JF970251
KC-49	I. granulatus	Kin-Cheng, Kinmen	JF970252
KH-70	I. granulatus	Kin-Hu, Kinmen	JF970253
KH-71	I. granulatus	Kin-Hu, Kinmen	JF970254
KS-18	I. granulatus	Kin-Sha, Kinmen	JF970255
B. valaisiana			
KS-39	I. granulatus	Kin-Sha, Kinmen	JF970256
VS116	I. ricinus	Switzerland	L30134
UK	I. ricinus	England	L30133
QLZSP1	I. granulatus	China	EU247839
QTDM2	I. granulatus	China	EU429347
CKA2a	Apodemus agrarius	China	AB022124
OG1/01	I. granulatus	Japan	AB091441
OG45/01	I. granulatus	Japan	AB091455
HN6	I. granulatus	Korea	AF058705
B. burgdorferi sensu stricto			
B31	I. scapularis	USA	L30127
JD1	I. scapularis	USA	AY032911
TWKM5	Rattus norvegicus	Taiwan	AY032908
B. garinii			
20047	I. ricinus	France	L30119
NPB1	I. persulcatus	Japan	D84406
B. afzelii			
VS461	I. ricinus	Switzerland	L30135
PGau	Human skin	Germany	DQ111066
B. bissettii			
DNI127	I. pacificus	USA	L30126
CA376	Neotoma fuscipes	USA	AY177634
B. sinica			
CMN1.a	Niiventer sp.	China	AB022129
CMN3	Niiventer sp.	China	AB022131

\(^a\)GenBank accession numbers (JF970243 – JF970256) were submitted by this study.
Results

PCR detection of Borrelia infection in I. granulatus ticks
To verify the existence of Borrelia spirochetes in I. granulatus ticks removed from rodents of Kinmen Island, a total of 292 field rodents (Rattus losea) were captured and examined for I. granulatus ticks from four townships of Kinmen Island. An overall infestation was observed on 62% (181/292) of captured rodents with an average density of 1.44 ticks per infested rodent. A total of 261 ticks (131 female, 25 male, and 105 nymph) were examined and tested for the evidence of spirochete infection by PCR using specific primers targeting the 5S (-23S) intergenic spacer amplicon genes of B. burgdorferi sensu lato. Results indicate that Borrelia infections were detected in 52.7% (69/131) of females, 36% (9/25) of males, and 42.9% (45/105) of nymphs of I. granulatus ticks (Table 2). The highest infection was detected in 52% (65/125) of I. granulatus ticks collected from Kin-Sha township. In contrast, the lowest infection was detected in 12.5% (1/8) of I. granulatus ticks collected from Kin-Ning township. The overall infection was detected in 47.1% (123/261) of I. granulatus ticks collected from Kinmen Island.

Genetic identification of detected spirochetes
To clarify the genetic identity of Borrelia spirochetes detected in I. granulatus ticks collected from Kinmen Island, sequences of PCR-amplified 5S (-23S) intergenic spacer fragments of 123 strains of Borrelia spirochetes were aligned and compared with the downloaded sequences of known genospecies of Borrelia spirochetes. Results indicate that B. valaisiana was detected as the main genotype in 70.7% (87/123) of I. granulatus ticks and the genotype of B. burgdorferi sensu stricto was also detected in 15.4% (19/123) of I. granulatus ticks (Table 3). However, there still are 13.8% (17/123) of untyped strains.

Sequence analysis of detected spirochetes
Sequence similarity of PCR-amplified 5S (-23S) intergenic spacer fragments of 14 selected strains of Borrelia spirochetes from Kinmen Island were aligned and compared with the downloaded sequences of another 19 strains of Borrelia spirochetes (8 B. valaisiana, 3 B. burgdorferi sensu stricto, 2 B. garinii, 2 B. afzelii, 2 B. bissettii, and 2 B. sinica) from GenBank. The nucleotide sequences between the 14 Borrelia spirochetes of Kinmen Island are highly homogeneous with a high sequence homology within the genospecies of B. burgdorferi sensu stricto (97.2 to 100%) and B. valaisiana (95.8 to 100%), respectively (Table 4). However, intraspecific analysis based on the sequence similarity reveals that all these B. valaisiana spirochetes (GenBank accession numbers: JF970243, JF970246, JF970248-9, and JF970251-6) of Kinmen Island are closely related with the Asian group (China, Japan, and Korea) of B. valaisiana (GenBank accession numbers: EU247839, EU429347, AB022124, AB091441, AB091455, and AF058705) and can be distinguished from the European group (Switzerland and England) of B. valaisiana (GenBank accession numbers: L30133 and L30134), as well as other genospecies of B. burgdorferi sensu lato (Table 4).

Phylogenetic analysis of detected spirochetes
Phylogenetic relationships based on the alignment of 5S (-23S) intergenic spacer sequences were performed to analyze the genetic divergence among 33 Borrelia spirochetes investigated in this study. Bootstrap analysis was used to analyze the repeatability of the clustering of specimens represented in phylogenetic trees. Phylogenetic trees constructed by both NJ (Figure 2) and MP (data not shown) analyses showed congruent basal topologies with nine major branches of distinguished clades. All Borrelia spirochetes detected in I. granulatus ticks from Kinmen Island represent two major groups of B. valaisiana spirochetes (groups A-B) which constituted a separate clade that can be easily distinguished from the European group of B. valaisiana spirochetes, and one major group of Borrelia spirochetes which was highly affiliated with the main genospecies of B. burgdorferi sensu lato. The highest infection was detected in 52% (65/125) of I. granulatus ticks collected from Kin-Sha township.

Table 2 Detection of Borrelia infection in various stages of I. granulatus ticks collected from four townships of Kinmen Island by PCR assay targeting the 5S (-23S) intergenic spacer gene of B. burgdorferi sensu lato

Township	Male	Female	Nymph	Total No. infected/No. tested (%)
Kin-Hu	6/14 (42.9)	40/65 (61.5)	19/46 (41.3)	65/125 (52.0)
Kin-Sha	3/9 (33.3)	25/57 (43.9)	19/36 (52.8)	47/102 (46.1)
Kin-Ning	0/0 (0.0)	1/3 (33.3)	0/5 (0.0)	1/8 (12.5)
Kin-Cheng	0/2 (0.0)	3/6 (50.0)	7/18 (38.9)	10/26 (38.5)
Total	9/25 (36.0)	69/131 (52.7)	45/105 (42.9)	123/261 (47.1)

*All I. granulatus ticks were removed from the rodent host of Rattus losea.
sensu stricto (strains B31, JD1, and TWKM5) (Figure 2). The phylogenetic analysis of NJ tree strongly supports the separation of different lineages between the *Borrelia* spirochetes from Kinmen Island and Europe with a bootstrap value of 84. These results reveal a lower genetic divergence within the same genospecies of *Borrelia* spirochetes from Kinmen Island of Taiwan, but a higher genetic variation among different genospecies or variant geographic origins of *Borrelia* spirochetes.

Discussion

This study describes the first survey regarding the prevalence and genetic identification of *Borrelia* spirochetes detected in various stages of *I. granulatus* ticks collected from the offshore Kinmen Island of Taiwan. In our previous investigations, *B. burgdorferi* spirochetes had been isolated from six species of rodent hosts captured at various locations in Taiwan and *I. granulatus* ticks were observed on four species of highly infested rodent hosts [17]. Although the existence of zoonotic transmission of *Borrelia* spirochetes was suggested, the identification of *Borrelia* spirochetes within possible vector tick is required to verify the natural infection in Kinmen Island. Indeed, results from the present study confirm the high prevalence of *B. burgdorferi* sensu stricto and *B. valaisiana* spirochetes detected in various stages of *I. granulatus* ticks (Tables 2 and 3), and reveal that the rodent species of *R. losea* serves as the major infested host for maintaining the natural transmission of *Borrelia* spirochetes in Kinmen Island of Taiwan. Further investigations focusing on the seasonal abundance and prevalence of spirochetal infections among reservoir hosts would help to elucidate the enzoonotic transmission of *Borrelia* spirochetes in Kinmen Island of Taiwan.

| Table 3 Genospecies identification of *Borrelia* spirochetes detected in *I. granulatus* ticks collected from four townships of Kinmen Island, Taiwan |
Township	Positive No. by PCR	Genospecies determined by 5S (rrf)-23S (rrl) gene sequences
Kin-Hu	65	12 B. burgdorferi sensu stricto 46 B. valaisiana 7 Untyping
Kin-Sha	47	4 B. burgdorferi sensu stricto 35 B. valaisiana 8 Untyping
Kin-Ning	1	1 B. burgdorferi sensu stricto 0 B. valaisiana 0 Untyping
Kin-Cheng	10	2 B. burgdorferi sensu stricto 6 B. valaisiana 2 Untyping
Total (%)	123	19 (15.4) B. burgdorferi sensu stricto 87 (70.7) B. valaisiana 17 (13.8)

| Table 4 Sequence similarity between 5S (rrf)-23S (rrl) gene sequences from Taiwan strains of *Borrelia* detected in *Ixodes granulatus* ticks and strains of other genospecies of *Borrelia* |
Genospecies and strain	B31	TWKM5	KHS	KN11	KH13	UK	OG1	HN6	QLZSP1	KC44	KH74	KS61	KS62	20047	VS461	DN127	CMN1a	
Bbss B31	-	99.1	97.2	97.7	89.3	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.2	90.2	93.0	86.0	92.1	81.8
Bbss TWKM5	-	100	98.1	98.6	90.2	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.2	90.2	93.0	86.0	92.1	81.8
KH5	-	98.1	98.6	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.2	90.2	93.0	86.0	92.1	81.8
KN11	-	98.6	90.3	93.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.2	90.2	93.0	85.5	90.2	79.9
KH13	-	88.8	89.3	89.3	89.3	89.3	89.3	89.3	89.3	89.3	89.3	89.3	89.3	89.3	91.6	84.6	90.7	81.3
Bv UK	-	95.8	95.8	95.8	95.8	95.8	95.8	95.8	95.8	95.8	95.8	95.8	93.0	93.0	93.0	87.4	88.3	80.8
Bv OG1	-	100	99.1	99.1	99.1	99.1	99.1	99.1	99.1	99.1	99.1	99.1	93.5	93.5	93.5	88.3	87.9	80.4
Bv HN6	-	100	99.1	99.1	99.1	99.1	99.1	99.1	99.1	99.1	99.1	99.1	93.5	93.5	93.5	88.3	87.9	80.4
Bv QLZSP1	-	99.1	99.5	99.1	99.1	99.1	99.1	99.1	99.1	99.1	99.1	99.1	93.5	93.5	93.5	88.4	87.9	80.4
KC44	-	99.5	99.1	99.1	99.1	99.1	99.1	99.1	99.1	99.1	99.1	99.1	93.5	93.5	93.5	88.3	88.8	81.3
KH74	-	99.5	99.5	93.0	87.9	88.3	80.8											
KS61	-	99.1	93.5	88.3	88.8	81.3												
KS62	-	93.0	87.9	88.3	80.8													
Bg 20047	-	90.7	90.2	82.7														
Ba VS461	-	85.5	82.7															
Bbis DN127	-	79.9																
Bs CMN1a	-																	

Strains: B31 and TWKM5, B. burgdorferi sensu stricto (Bbss); UK, OG1, HN6 and QLZSP1, B. valaisiana (Bv); 20047, B. garinii (Bg); VS461, B. afzelii (Ba); DN127, B. bissetti (Bbis); CMN1a, B. sinica (Bs).
The transmission cycle for *Borrelia* spirochetes in Southeast Asia remains elusive. It is assumed that different genospecies of *Borrelia* spirochetes is relevant to the distinct reservoir hosts and vector ticks [2]. Indeed, *B. valaisiana* has been isolated or detected from *I. ricinus* ticks and avian reservoirs from at least eight European countries [34-39]. In addition, *B. valaisiana*-related spirochetes were isolated mainly from rodent hosts and detected in various hard ticks (*I. nipponensis*, *I. columnae*, *I. granulatus*, and *Haemaphysalis longicornis*) in Northeast Asia and Southwestern China [13,40-42]. However, *I. granulatus* is widespread in various countries of Southeast Asia and Taiwan [14]. Results from this study also verify the high prevalence of *B. valaisiana* and *B. burgdorferi* sensu stricto detected in *I. granulatus* ticks that are infested on the rodent host of *R. losea* in Kinmen Island. These observations may suggest that an enzoonotic cycle between rodent hosts and *I. granulatus* ticks exists, therefore perpetuating *Borrelia* spirochetes in Kinmen Island and Southeast Asia.

Figure 2 Phylogenetic relationships based on the aligned sequences (205–209 bp) of 5S (rrf)-23S (rrl) rRNA gene were used to compare the genetic variation between 14 *Borrelia* spirochetes detected in *I. granulatus* ticks from Kinmen Island of Taiwan and 19 other strains of *Borrelia* spirochetes. The tree was constructed and analyzed by the neighbour-joining method using 1000 bootstrap replicates. Numbers at the nodes indicate the percentages of reliability of each branch of the tree. Branch lengths are drawn proportional to the estimated sequence divergence.
genospecies-specific PCR primers targeting the 5S (rrf)-23S (rrl) intergenic spacer amplicon gene. Indeed, genetic heterogeneity can be further classified among Borrelia isolates that were previously identified as the same genospecies of atypical strains of Borrelia spirochetes [25, 26]. Results from the present study also verify that the genetic identities of Borrelia spirochetes detected within I. granulatus ticks of Kinmen Island are highly homogeneous within the genospecies of B. burgdorferi sensu stricto and B. valaisiana, and were clearly distinguished from other genospecies of Borrelia spirochetes (Tables 2, 3, 4). Further application of these genospecies-specific PCR tools to analyze the 5S (rrf)-23S (rrl) genes of Borrelia spirochetes detected in various tick species would help to clarify the genetic divergence of Borrelia spirochetes transmitted in the natural cycle of Kinmen Island.

Phylogenetic relationships among Borrelia spirochetes can be constructed and determined by analyzing their sequence homogeneity of a specific target gene. Indeed, the sequence analysis of 5S (rrf)-23S (rrl) intergenic spacer amplicon gene among various Borrelia spirochetes had been proved useful to evaluate the taxonomic relatedness of Borrelia spirochetes derived from various biological and geographical sources [24, 28, 43, 44]. Although PCR amplification of the intergenic spacer region located between the rrf and rrl genes of B. burgdorferi sensu lato had been reported to generate a DNA fragment of approximately 226–266 bp long [30], the variation of nucleotide sequence depends on the strain or group diversity of Borrelia spirochetes and may actually represent the genetic distance of phylogenetic divergence between or within the genospecies of Borrelia spirochetes [2, 30, 44]. In this study, phylogenetic analysis based on the sequences of 5S (rrf)-23S (rrl) intergenic spacer amplicon gene of Borrelia spirochetes from Kinmen Island demonstrated a high sequence homogeneity among Borrelia spirochetes within the genospecies of B. burgdorferi sensu stricto (Table 4; Figure 2). However, a high genetic heterogeneity within the genospecies of B. valaisiana was also observed between the Asian group and European group of Borrelia strains (Figure 2). Although a low intraspecific variation was observed among the same Asian groups of B. valaisiana, all strains of B. valaisiana from Kinmen Island represented as two separate clades (groups A-B) that can be separated from the Asian group and clearly distinguished from the European group of B. valaisiana (Figure 2). The phylogenetic trees constructed by either NJ or MP analysis strongly support the discrimination recognizing the separation of different lineages of B. valaisiana detected from the Asian group, European group, and Kinmen Island of Taiwan. Accordingly, these observations reveal that all these Borrelia spirochetes detected in I. granulatus ticks from Kinmen Island represent two major groups forming a unique clade distinct from the European group of B. valaisiana.

Conclusions

This study provides the first survey regarding the prevalence and genetic diversity of Borrelia spirochetes within I. granulatus ticks collected from Kinmen Island of Taiwan. Further application of this molecular tool to investigate the genetic variability among Borrelia spirochetes detected in different vector ticks and reservoir hosts may facilitate our understanding of the significance of genetic diversity in relation to the epidemiological features of Borrelia spirochetes in Southeast Asia.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

CMS designed the study, and collected with tick collection, data analysis, interpretation, and manuscript writing. LLC contributed with tick collection, tick identification, sequencing, and phylogenetic analysis. LLL performed DNA extraction, PCR amplification, and gel electrophoresis. All authors read and approved the final version of the manuscript.

Acknowledgements

This work was supported in part by grants from the National Science Council (NSC99-2314-B-760-001-MY2) and Department of Defense (I-13), Taipei, Taiwan, Republic of China.

Received: 21 June 2012 Accepted: 6 August 2012
Published: 10 August 2012

References

1. Burgdorfer W, Barbour AG, Hayes HF, Benach JL, Grunwaldt E, Davis JP: Lyme disease: a tick-borne spirochetosis. Science 1982, 216:1317–1319.
2. Wang G, van Dam AP, Schwartz I, Dankert J: Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin Microbiol Rev 1999, 12:633–653.
3. Masuzawa T, Takada N, Kudaken M, Fukui T, Yano Y, Ishiguro F, Kawamura Y, Ime Y: Ezaki T: Borrelia sinica sp. Nov., a Lyme disease-related Borrelia species isolated in China. Int J Syst Evol Microbiol 2001, 51:1817–1824.
4. Richter D, Postic D, Sertour N, Livey I: Matuschka FR, Baranton G: Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmani sp. nov. Int J Syst Evol Microbiol 2006, 56:873–881.
5. Postic D, Garnier M, Baranton G: Multilocus sequence analysis of atypical Borrelia burgdorferi sensu lato isolates: description of Borrelia californiensis sp. nov., and genomospecies 1 and 2. Int J Med Microbiol 2007, 297:263–271.
6. Spielman A: Lyme disease and human babesiosis: evidence incriminating vector and reservoir hosts. In The Biology of Parasitism. Edited by Englund PT, Sher AR. New York, NY: Liss; 1988:147–165.
7. Matuschka FR, Richter D, Fischer P, Spielman A: Subadult Ixodes ricinus (Acar: Ixodidae) on rodents in Berlin, West Germany. J Med Entomol 1990, 27:385–390.
8. Kawabata M, Baba S, Iuchi K, Yamaguchi N, Russell H: Lyme disease in Japan and its possible incriminated tick vector, Ixodes persulcatus. J Infect Dis 1987, 156:854.
9. Ai CX, Wen YX, Zhang YG, Wang SS, Qu Si, Shi ZX, Li DY, Chen DQ, Liu XD, Zhao JH: Clinical manifestations and epidemiological characteristics of Lyme disease in Hailin county, Heilongjiang Province, China. Am NY Acad Sci 1988, 539:302–313.
10. Nakao M, Miyamoto K, Uchiyama K, Fujita H: Characterization of Borrelia burgdorferi isolated from Ixodes persulcatus and Ixodes ovatus ticks in Japan. Ann J Trop Med Hyg 1992, 47:505–511.
ticks in group DN127). 1992, sensu lato evidenced by restriction fragment length and group VS116 by PCR in skin Int. genomospecies in sensu stricto, genomic groups VS116 and M19).

67 66 Ixodes ricinus 31 sp. Nov. (sp. Tandem repeat of the 23S and 5S ribosomal sensu lato) isolated in Taiwan by

New distributional records of ticks from Southeast Asia and 48 et al

52 5 175 35 et al. 1970, 49 1997, 48 Prevalence and molecular identification 49 18 17 on Kinmen Island of Taiwan. species in ticks collected in a Lyme borreliosis endemic region of 148 An OspA-based genospecies identification of Lyme disease spirochetes, 33 ticks by

24 Rijpkema SG, Molkenboer M, Schellekens J, F. Identification of four genomic groups of Borrelia burgdorferi sensu lato in ixodes ricinus ticks collected in a Lyme borreliosis endemic region of northern Croatia. Exp Appl Acarol 1996, 2023–30.

Kirstein F, Rijpkema SG, Molkenboer M, Gray JS. The distribution and prevalence of B. Burgdorferi genospecies in ixodes ricinus ticks in Ireland. Eur J Epidemiol 1997, 13:67–72.

Postic D, Korenberg E, Gorelova N, Kovalevsky W, Bellenger E, Baranton G: Borrelia burgdorferi sensu lato in Russia and neighbouring countries: high incidence of mixed isolates. Res Microbiol 1997, 148:691–702.

Wang G, van Dam AP, Le Fleche A, Postic D, Peter O, Baranton G, de Boer R, Spanjaard L, Dankert J. Genetic and phenotypic analysis of Borrelia valaisiana sp. Nov. (Borrelia genomic groups VS116 and M19). Int J Syst Bacteriol 1997, 47:926–932.

Clinco M, Padovan D, Murgia R, Poldini L, Frusteri L, van de Pol I, Verbeek-De KN, Rijpkema SG, Marcol M. Rate of infection of ixodes ricinus ticks with Borrelia burgdorferi sensu stricto, Borrelia gannini, Borrelia afzelii and group VS116 in an endemic focus of Lyme disease in Italy. Eur J Clin Microbiol Infect Dis 1998, 17:99–104.

Kurtenbach K, Peacey M, Rijpkema SG: Hoodless AN, Nuttall PA, Randolph SE: Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol 1998, 64:1169–1174.

Masuzawa T, Fukui T, Miyake M, Oh HB, Cho MK, Chang WH, Imai Y, Yanagihara Y: Determination of members of a Borrelia afzelii-related group isolated from Ixodes nipponensis in Korea as Borrelia valaisiana. Int. J Syst Bacteriol 1999, 49:1409–1415.

Masuzawa T, Hashimoto N, Kudeken M, Kadosaka T, Nakamura M, Kawabata H, Kozumi N, Imai Y. New genospecies related to Borrelia valaisiana, isolated from mammals in Okinawa archipelago, Japan. J Med Microbiol 2004, 53:421–426.

Hao Q, Hou XX, Geng Z, Wan KL: Distribution of Borrelia burgdorferi sensu lato in China. J Clin Microbiol 2011, 49:647–650.

Livers D, Gazumyan A, Schwartz I: Molecular typing of Borrelia burgdorferi sensu lato by PCR-restriction fragment length polymorphism analysis. J Clin Microbiol 1995, 33:589–595.

Li MQ, Masuzawa T, Takada N, Ishiguro F, Fujita H, Iwaki A, Wang HP, Wang JC, Kawabata M, Yanagihara Y. Lyme disease Borrelia species in northeastern China resemble those isolated from Far eastern Russia and Japan. Appl Environ Microbiol 1998, 64:2705–2709.

sequence weighting, position-specific gap penalties and weight matrix choice. Nuc Acids Res 1994, 22:4673–4680.

Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24:1596–1599.

Felsenstein J: Confidence limits on phylogenies: an approach using the Fitch-Margoliash method. Evolution 1985, 52:1119–1134.

40. Masuzawa T, Fukui T, Miyake M, Oh HB, Cho MK, Chang WH, Imai Y, Yanagihara Y: Determination of members of a Borrelia afzelii-related group isolated from Ixodes nipponensis in Korea as Borrelia valaisiana. Int. J Syst Bacteriol 1999, 49:1409–1415.

35. Kirstein F, Rijpkema SG, Molkenboer M, Gray JS. The distribution and prevalence of B. Burgdorferi genospecies in ixodes ricinus ticks in Ireland. Eur J Epidemiol 1997, 13:67–72.

Postic D, Korenberg E, Gorelova N, Kovalevsky W, Bellenger E, Baranton G: Borrelia burgdorferi sensu lato in Russia and neighbouring countries: high incidence of mixed isolates. Res Microbiol 1997, 148:691–702.

Wang G, van Dam AP, Le Fleche A, Postic D, Peter O, Baranton G, de Boer R, Spanjaard L, Dankert J. Genetic and phenotypic analysis of Borrelia valaisiana sp. Nov. (Borrelia genomic groups VS116 and M19). Int J Syst Bacteriol 1997, 47:926–932.

Clinco M, Padovan D, Murgia R, Poldini L, Frusteri L, van de Pol I, Verbeek-De KN, Rijpkema SG, Marcol M. Rate of infection of ixodes ricinus ticks with Borrelia burgdorferi sensu stricto, Borrelia gannini, Borrelia afzelii and group VS116 in an endemic focus of Lyme disease in Italy. Eur J Clin Microbiol Infect Dis 1998, 17:99–104.

Kurtenbach K, Peacey M, Rijpkema SG: Hoodless AN, Nuttall PA, Randolph SE: Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol 1998, 64:1169–1174.

Masuzawa T, Fukui T, Miyake M, Oh HB, Cho MK, Chang WH, Imai Y, Yanagihara Y: Determination of members of a Borrelia afzelii-related group isolated from Ixodes nipponensis in Korea as Borrelia valaisiana. Int. J Syst Bacteriol 1999, 49:1409–1415.

Masuzawa T, Hashimoto N, Kudeken M, Kadosaka T, Nakamura M, Kawabata H, Kozumi N, Imai Y. New genospecies related to Borrelia valaisiana, isolated from mammals in Okinawa archipelago, Japan. J Med Microbiol 2004, 53:421–426.

Hao Q, Hou XX, Geng Z, Wan KL: Distribution of Borrelia burgdorferi sensu lato in China. J Clin Microbiol 2011, 49:647–650.

Livers D, Gazumyan A, Schwartz I: Molecular typing of Borrelia burgdorferi sensu lato by PCR-restriction fragment length polymorphism analysis. J Clin Microbiol 1995, 33:589–595.

Li MQ, Masuzawa T, Takada N, Ishiguro F, Fujita H, Iwaki A, Wang HP, Wang JC, Kawabata M, Yanagihara Y. Lyme disease Borrelia species in northeastern China resemble those isolated from Far eastern Russia and Japan. Appl Environ Microbiol 1998, 64:2705–2709.

http://www.parasitesandvectors.com/content/5/1/167

doi:10.1186/1756-3305-5-167

Cite this article as: Chao et al.: Prevalence and molecular identification of Borrelia spirochetes in ixodes granulatus ticks collected from Rattus losea on Kinmen Island of Taiwan. Parasites & Vectors 2012 5:167.