INFLUENCE OF LOW, MEDIUM AND HIGH INTENSITY OF RESISTANCE TRAINING ON MUSCULAR HYPERTROPHY, AND SELECTED HEALTH RELATED FITNESS VARIABLES AMONG UNDERWEIGHT MALES

Kaukab Azeem 1 *, Erdogan Tabur 2,

1Asst Professor (V), Physical Education Department, King Fahd University of Petroleum & Minerals, Saudi Arabia
2Lecturer, Physical Education Department, King Fahd University of Petroleum & Minerals, Saudi Arabia

DOI: https://doi.org/10.22034/ijaep.v6i4.214

ABSTRACT:

Introduction: Underweight (UW) individuals face lot of problems in increasing muscle size and also increasing body weight and fitness levels. Resistance training (RT) plays a very important role in increasing hypertrophy of the muscles one and all in general. (ACSM, 2009) stated that the resistance exercise for healthy adults provides program design recommendations for muscle hypertrophy [3]. The purpose of this study is to find out the influence of low, Medium and high intensity of (RT) on the muscular hypertrophy and selected health related fitness variables among the underweight males. Method: A group of (N=40) subjects was selected randomly to participate in this study. The age of the participants was in the range of 18-24 years, (RT) program was employed for 12 weeks, two days in a week, 45 minutes of training per session. The subjects were segregated into two groups namely Group-A (n=20, experimental group), Group –B (n=20 control group). The (RT) was employed on experimental group. Control group was not given any above mentioned special training program. The tests (pre and post) considered for this study was health related fitness variables are as follows; body composition, muscular strength, muscular endurance, Flexibility and cardio-vascular endurance. And test for muscular hypertrophy i.e. (neck, shoulders, chest, arms, waist, hips, thigh and calf); To compare the mean differences from pre to post test, mean, standard deviation, and t-test was computed by the help of statistica software. Results & Discussion: 12 weeks of training protocol had revealed significant performance from pre to posttest among the subjects with regard to the selected fitness variables and presented by percentages i.e. BMI (4.45%), bench press (35.12%), sit-ups test (22.34%), sit & reach test (26.83%), and 12 min run & walk test (26.94%). Furthermore the muscular hypertrophy was enhance among the underweight students i.e. Neck (2.61%), shoulder (2.95%), chest (6.75%), arms (10.43%), waist (8.23%), thighs (11.15%), calves (4.08%); and lastly hip circumference by (3.33%) had shown reduction in size from pre to post test. Conclusion: It is concluded that the influence of training had shown significant performance among the (UW) students with regard to the selected fitness test i.e. (BMI), bench press, sit-ups test, sit & reach test and 12 min run & walk
test. Furthermore the selected muscular hypertrophy of the (UW) students i.e. Neck, shoulder, chest, arms, waist, thighs, calves circumference had shown increased in the muscular size and hip circumference had shown reduction in size from pre to post test.

KEY WORDS ; Underweight, BMI, Hypertrophy, Fitness

INTRODUCTION

Underweight (UW) individuals face lot of problems in increasing muscle size and also increasing body weight and fitness levels. Resistance training (RT) plays a very important role in increasing hypertrophy of the muscles one and all in general. Mostly bodybuilders concern about increasing overall size of the muscles from neck to calf. For increasing of the size of the muscles; technique, proper diet and rest is essential. Earlier mostly research studies focus only on overweight and obese personals and (UW) subjects were neglected in the past and there is very few research studies had been done on underweight category.

Muscle hypertrophy is pursued by the many recreational lifters who aim to develop their physiques to the fullest. As a result the maximization of muscle mass has far reaching implications to a variety of populations associated with sports and health. In untrained subjects, muscle hypertrophy is virtually nonexistent during the initial stages of resistance training, with the majority of strength gains resulting from neural adaptations [24]. (ACSM, 2009) stated that the resistance exercise for healthy adults provides program design recommendations for muscle hypertrophy [3]. Moreover, it becomes progressively hard to increase lean muscle mass as one gains training experience, heightening the significance of proper routine design. Hypertrophy of the muscles can be obtained through a wide range of weight training program [4]. Generally, bodybuilders do training with moderate loads and fairly short rest intervals that induce high amounts of metabolic stress and usually the power lifters train with high-intensity loads and lengthy rest periods between the sets. Moreover both the groups were known to display remarkable muscularity [26]. The conventional of exercise-induced hypertrophy subsequent with the effect of traditional (RT) program results from an increase of sarcomeres and myofibrils [25]. A serial increase in sarcomeres results in a given muscle length corresponding to a shorter sarcomere length [29]. In particular, bodybuilders tend to display a greater proliferation of fibrous endomysial connective tissue and greater glycogen content compared to power-lifter athletes [22]. Even though sarcoplasmic hypertrophy is often described as non-functional, it is plausible that chronic adaptations associated with its effects on cell swelling may mediate subsequent increases in protein synthesis that lead to greater contractile growth. A number of researchers have opined the possibility that increases in cross-sectional area may be at least partly because of an increase in number of fibre’s [2]. Reliably with the principle of specificity, proper manipulation of training variables is essential for maximizing exercise induced muscle hypertrophy. Particularly, mechanical overload increases muscle mass while unloading results in atrophy [11]. Interestingly, each training variable impacts the hypertrophic response with respect to the physiological variables previously discussed. Load \ Intensity has been shown to have a significant impact on muscle hypertrophy and is arguably the most important exercise variable for stimulating muscle growth [10]. Moreover the Intensity is normally expressed as a percentage of IRM and equates to the number
of reps that can be performed with a given weight. Reps can be classified into 3 basic ranges: low (1–5), moderate (6–12), and high (15+). Each of these repetition ranges will involve the use of different energy systems and tax the neuro-muscular system in different ways, impacting the extent of the hypertrophic response. The use of high reps has generally proven to be lower to moderate and lower repetition ranges in eliciting increases in muscle hypertrophy [5]. In the lack of artificially induced ischemia (i.e., occlusion training), a load less than approximately 65% of 1RM is not considered sufficient to promote substantial hypertrophy [23]. Moreover a set can be defined as the number of repetitions performed consecutively without rest, whereas exercise volume can be defined as the product of total reps, sets, and load performed in a training session. High-volume, multiple-set protocols have consistently proven superior over single set protocols with respect to increased muscle hypertrophy [21, 30]. It is not clear whether the hypertrophic superiority of higher-volume workloads is the product of greater total muscle tension, muscle damage, metabolic stress, or some combination of these factors. Higher-volume, body-building style programs that generate significant glycolytic activity have been consistently proven to elevate acute testosterone levels to a greater extent than low-volume routines [17,16]. Schwab et al. [27] showed that testosterone did not significantly increase during squat performance until after completion of the fourth set, indicating a clear benefit of multiple-set routines in this regard. Higher-volume programs also have been shown to mediate the acute release of GH, particularly in routines designed to heighten metabolic stress [15]. Earlier research shows multiple-set protocols elicit greater GH responses than single set protocols [6]. To maximize muscular hypertrophy, evidence exists that volume should be gradually increased over a given per-iodized cycle, culminate in a brief period of overreaching. Overreaching can be defined as a planned, short-term increase in volume and/or intensity intended to improve performance (10). However earlier studies had shown that overtraining is more a result of excessive volume than intensity [9,13]

The purpose of this study was to find out the influence of low. Medium and high intensity of (RT) on the muscular hypertrophy and selected health related fitness variables among (UW) males.

The following are the objectives of this study;

1. To design an effective (RT) program for (UW) males
2. To supervise, implement and administer the Training programs on the (UW) males
3. To find out the influence of (RT) on (UW) participants on the Muscular hypertrophy and selected health related fitness variables.
4. To find out the performance between the two groups i.e., (experimental group and control group).
5. Results will be analyzed for advising recommendation

METHODS

The tests considered for this study was muscular hypertrophy (neck, chest, arms, forearms, thighs, calves, hips, waist, and shoulder’s); health related fitness variables are as follows, body composition, muscular strength, muscular endurance, Flexibility and cardio-vascular endurance. BMI of subjects was find out by weight (kgs), height (meters), with the help of electronic weighting machine and stadiometre respectively, and calculated with the help of simple calculation (weight in kgs/ height in (m)2). Selected fitness variables were tested at the stadium by the help of standard sports equipment. The data was collected for pre and posttest and recorded. For analyzing the data from pre to post test the following statistical tools were considered, mean, standard deviation, and t-test, with the help of statistica software.

Selection of Subjects
To achieve the purpose of this study a group of 40 (UW) students was selected randomly from the King Fahd University of Petroleum & minerals, Saudi Arabia. The age of the selected participants was between 18 to 24 years. The selected participants was up to BMI of 18.5 were considered for this study and segregated into two groups namely (RT) group (N=20), and control group (N=20). (RT) group (N=20) is considered to employ on the underweight participants for 12 weeks, weekly 2 times, 45 minutes of training per session respectively. Control group was without specific training for 12 weeks, weekly 2 times and 45 minutes of per session. The low, medium and high intensity of resistance training was employed on experimental group. Control group was not given any above mentioned special training program.

Selection of Variables

At the outset keeping all the background in the mind the following thoughtfulness is made with regard to feasibility criteria, availability of instruments, and the relevance of the variables of the present study, the following variables were consider for this study. During this study the literature was reviewed. The various scientific literatures pertaining to the strength training, exercises on selected variables from books, journals, periodicals, research papers and online was reviewed.

Instrument Reliability

Standard equipment’s were used to assess the dependent variables. Body composition was found out by the help of Body mass index (BMI). The selected fitness variables were tested by the standard instrument at the Department of Physical Education. The measurements of the body circumference were taken in centimeters with the help of steel tape for the accuracy for the following body parts namely: (neck, chest, arms, thighs, calves, hips, waist, and shoulders.

Below Table-1, shows the details of Dependent and Independent Variables

Dependent Variables	Sl. no	Selected Health Related Fitness Variables
Body composition	1	
Muscular strength	2	
Muscular endurance	3	
Flexibility	4	
Cardio–vascular	5	
endurance		

Independent Variables		
Resistance training	1	group
Control group	2	

Orientation of the Subjects

The testers had explained the purpose of this study to the subjects. The doubts of the participants were addressed and the key advices were given to the subjects pertaining to attendance, their active participation during the training program for 12 weeks.

Ethical Considerations

The project was approved by the Physical Education Department, KFUPM and Deanship of the Scientific research Committee (DSR), KFUPM. The students were explained about the purpose of this research and taken their consent. The privacy of their results was guaranteed. The test was done in accordance with the Code of Ethics of the Helsinki.
Below table-2, shows the details of selection of Test for selected fitness variables & muscular hypertrophy

S.no	Selected Fitness Variables	Test	Unit of measurements
1	Body composition	BMI	Weight in kgs \ Height in M2
2	Muscular strength	Bench press	1 RM (KGS)
3	Muscular endurance	Sit-ups (30 seconds)	Repetitions (score)
4	Flexibility	Sit and reach test	Cms
5	Cardio-vascular endurance	12 min run and walk test	Digital watch

Muscular Hypertrophy

S.no	Measurements of important body parts circumferences (Cir)	Neck circumference (cir), shoulder cir, chest cir, Arm cir, waist cir, hip cir, thigh cir, & calves cir	Centimeters

Below Table-3, shows the details of the Training Program

Sl.no	Description	Program targets
1	Total training program	12 weeks
2	Weekly	2 times
3	Training per session	45 min
4	Resistance Training (group-1) low, medium and high intensity of training program	10 exercises
5	Control group (group -2) Control group had not given any above mentioned special training program	10 exercises
6	Test (Test was conducted before and after the 12 weeks of training program)	Pre and post test
7	The program was based on	FITT principle
RESULT AND DISCUSSION

Analysis of the data pertaining to the experimental and control group for the selected fitness variables and muscular hypertrophy among the (UW) students from pre to post test is presented in the below table-4.

Below table-4, shows the analysis of data for the selected fitness variables & muscular hypertrophy among the (UW) students from pre to post test

Selected Fitness variables	Groups N=20	Pre-test	Post test	P Value		
		Mean	S.D	Mean	S.D	
Body Mass Index	Experimental	17.53	0.86	18.31	1.49	0.01*
	Control	17.55	2.17	17.85	0.35	0.55
Bench Press (1 Max Rep)	Experimental	34.60	9.23	46.75	8.31	0.00*
	Control	34.35	6.65	34.70	6.33	0.86
Sit –ups test (30 sec)	Experimental	23.5	4.59	28.75	3.49	0.00*
	Control	23.7	4.37	23.90	4.41	0.89
Sit and reach test	Experimental	21.80	6.99	27.65	6.83	0.01*
	Control	23.70	7.84	23.85	7.64	0.95
12 min run and walk test	Experimental	1485.0	297.84	1885.0	184.3	0.00*
	Control	1480.0	289.46	1483.5	287.1	0.97
Neck circumference	Experimental	34.52	1.26	35.42	1.34	0.03*
	Control	35.27	1.13	35.40	0.99	0.71
Shoulder circumference	Experimental	103.90	2.95	106.97	4.47	0.01*
	Control	106.02	4.64	106.20	4.47	0.90
Chest circumference	Experimental	79.71	8.09	85.09	4.38	0.01*
	Control	81.88	9.44	82.05	9.44	0.96
Arm circumference	Experimental	26.47	2.15	29.23	3.04	0.00*
	Control	27.22	1.98	27.35	1.95	0.84
Waist circumference	Experimental	70.50	7.38	76.30	9.48	0.03*
	Control	72.35	9.02	72.65	9.01	0.92
Hip circumference	Experimental	90.40	4.62	87.39	8.69	0.17
	Control	92.15	5.82	92.45	5.67	0.87
Thigh circumference	Experimental	44.65	3.34	49.63	7.06	0.00*
	Control	47.75	6.32	47.95	6.16	0.91
Calf circumference	Experimental	32.83	3.17	34.17	4.13	0.25
	Control	34.37	4.06	34.4	4.07	0.95
This is evident from the above data analysis that the influence of training on selected fitness variables and muscular hypertrophy is significant and had showed improved performance among the participants of experimental group from pre to post test in the following variables i.e. BMI (P<0.01), bench press (p<0.00), sit-ups test (p<0.00), 12 minutes run and walk test (p<0.00), and increase in the muscle girth and significant in the following; neck (p<0.03), shoulder (p<0.01), chest (p<0.01), arm (p<0.00), waist (p<0.03), thigh (p<0.00), calf (p<0.05) and lastly hip girth had showed not significant (p<0.17).

Below table-5 shows the Percentages with regard to selected fitness variables and muscular hypertrophy from pre to posttest among the (UW) students

VARIABLES	PERCENTAGES	INCREASE / DECREASE
BMI	4.45 %	Increase
Bench Press	35.12 %	Increase
Sit-Ups test (30 sec)	22.34 %	Increase
Sit & reach test	26.83%	Increase
12 min run & walk test	26.94%	Increase
Neck circumference	2.61%	Increase
Shoulder circumference	2.95%	Increase
Chest circumference	6.75%	Increase
Arm Circumference	10.43%	Increase
Waist Circumference	8.23 %	Increase
Hip Circumference	-3.33 %	Decreased
Thigh Circumference	11.15%	Increase
Calf Circumference	4.08 %	Increase

The 12 weeks of training protocol had revealed significant performance from pre to posttest among the (UW) students with regard to the selected fitness variables and presented by percentages i.e. BMI (4.45%), bench press (35.12%), sit-ups test (22.34%), sit & reach test (26.83%), and 12 min run & walk test (26.94%). Furthermore the muscular hypertrophy was enhance among the underweight students i.e. Neck (2.61%), shoulder (2.95%), chest (6.75%), arms (10.43%), waist (8.23%), thighs (11.15%), calves (4.08%); and lastly hip circumference by (3.33%) had shown reduction in size from pre to post test.
DISCUSSION
The purpose of this study was to find out the influence of low, medium and high intensity of (RT) on the selected health related fitness variables among (UW) males.

For maximizing muscle hypertrophy among (UW) students’ needs systematic training, sensible approach, by starting the program with low intensity of training to adjust and go to the next level. The key findings of this current study were significant performance was revealed among the underweight students with regard to the training protocol from pre to post test on the selected fitness test i.e. Body mass index (BMI), bench press (1 maximum repetition), sit-ups test for 30 seconds, sit & reach test in centimeters, and 12 min run & walk test. Furthermore the selected anthropometric circumference of the (UW) students i.e. Neck, shoulder, chest, arms, waist, thighs, calves circumference had shown increased in the muscular size and hip circumference had shown reduction in size from pre to post test.

It was assumed that the low, medium and high intensity will be the sensible training approach for (UW) students. (UW) students cannot be exposed to the medium or high intensity exercise directly. This training protocol is very much suitable because safely they can reach from low to medium and lastly to the high intensity level and also these (UW) students they are very comfortable in doing this training without any hazels. During this training period not a single participant had got injury or received any other type of complaint.

Similarly in one of the earlier study split body routine is done with multiple exercises are performed for a specific muscle group in each session and may help to take advantage of the hypertrophic response [20]. In short duration training, however, hypertrophy begins to become the leading factor, with the upper extremities shown to hypertrophy before the lower extremities [24,28]. Earlier study of (Gonzalez. R, 2011) revealed that the (RT) influence in greater performance in the upper body and lower body muscle strength and waist girth (p=0.008), [12]. In this earlier study of (Adams et al 1992), (RT) program can enhance power performance, [1]. Crewther B, et al. (2005) investigated study pertaining on the effect of (RT) program on strength and power performances and find significant improvement [7]. (Kraemer & et al, 2002) had reported that the (RT) helps in athletic performance i.e. Muscular hypertrophy, strength, power, and endurance [19]. Earlier study of Cheema BS, & et al (2014), investigates Robust evidence from randomized controlled trials indicates that progressive (RT) can induce skeletal muscle hypertrophy and increase muscular strength and health related quality of life outcomes in men
and women [8]. This is evident that the two day (RT) in a week is also beneficial for the (UW) students in improving muscular hypertrophy and enhancing fitness level. Our research was limited by a lack of studies directly investigating on underweight students and pertaining to the training low, medium and high intensity protocol.

CONCLUSION

It is concluded that the influence of training had shown significant performance among the (UW) students with regard to the selected fitness test i.e. (BMI), bench press, sit-ups test, sit & reach test and 12 min run & walk test.

Furthermore it is also concluded that the selected muscular hypertrophy of the (UW) students i.e. Neck, shoulder, chest, arms, waist, thighs, calves circumference had shown increased in the muscular size, and hip circumference had shown reduction in size from pre to post test. Lastly Control group had not shown any changes from pre to post test.

Thus, the low, medium, and high intensity of training program is more appropriate and specially suits and fit to the UW students. This training can be employ by the trainers, coaches and physical education teachers at schools, colleges, universities and gyms.

RECOMMENDATION

1. It is recommended that the further research can be done on three day training or four day training or five day training protocol on the (UW) students.
2. Related research can be done with the intervention of a diet program.
3. This is recommended to the coaches and Physical Education faculty members to employ the low, medium and high intensity training protocol on (UW).
4. Similar studies can be done on different age groups and different gender.

ACKNOWLEDGEMENT

The Authors thank the authorities of DSR, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, and the subjects for the help in completion of this study, under Research Grant (IN141036).
REFERENCES

1. Adams K., O Shea J P., O Shea, K.I. & Climestein M.. The effects of six weeks of squat, plyometric and squat – plyometric training on power production. J Appl Sport Sci Res. (1992). 6:36-41.
2. Antonio, J and Gonyea WJ. Role of muscle fiber hypertrophy and hyperplasia in intermittently stretched avian muscle. J Appl Physiol,(1993). 4: 1893–1898.
3. American College of Sports Medicine (ACSM), (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. Mar,(2009).41(3):687-708. DOI: 10.1249/MSB.0b013e3181915670.
4. Bickel, CS, Slade, J, Mahoney, E, Haddad, F, Dudley, GA, and Adams, GR., Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol, (2005). 198: 482– 488.
5. Campos, GE, Luecke, TJ, Wendeln, HK, Toma, K, Hagerman, FC, Murray, TF, Ragg, KE, Ratamess, NA, Kraemer, WJ, Staron, RS.Muscular adaptations in response to three different resistance training regimens: Specificity of repetition maximum training zones. Eur J Appl Physio, (2002). 88: 50–60.
6. Craig, B and Kang, H. Growth hormone release following single versus multiple sets of back squats: Total work versus power. J Strength Cond Res, (1994).8: 270–275.
7. Crewther B, et al. ‘‘Possible stimuli for strength and power adaptation acute mechanical responses’’. Sports Med. (2005). 35 (11): 967-89.
8. Cheema BS, Chan D, Fahey P, Atlantis E. Effect of progressive resistance training on measures of skeletal muscle hypertrophy, muscular strength and health-related quality of life in patients with chronic kidney disease: a systematic review and meta-analysis. Sports Med, (2014).44(8):1125-38. DOI: 10.1007/s40279-014-0176-8.
9. Fry, AC and Kraemer, WJ. Resistance overtraining and overreaching: Neuro-endocrine responses. Sport Med, (1997). 23: 106–129.
10. Fry, AC. The role of resistance exercise intensity on muscle fiber adaptations. sport Med, (2004). 34: 663–679.
11. Goldberg, AL, Eilinger, JD, Goldspink, DF, Jablecki, C., Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sport Exerc, (1975).7: 185–198.
12. Gonzalez Rave JM et al. Changes in vertical jump height, anthropometric characteristics, and bio-chemical parameters after contrast training in master athletes and physically active older people ‘’. J Strength Cond Res., (2011). 25(7): 1866-79.
13. Ha’kkinen, KA, Pakarinen, A, Alen, M, Kauhanen, H, and Komi, PV. Relationships between training volume, physical performance capacity, and serum hormone concentrations during prolonged training in elite weight lifters. Int J Sport Med 8(Suppl.): (1987). 61–65.
14. Halson, SL and Jeukendrup, AE. Does overtraining exist? An analysis of overtraining and overreaching research.Sport Med, (2004). 34: 967–981.
15. Hoffman, JR, Im, J, Rundell, KW, Kang, J, Nioka, S, Spiering, BA.Kime, R. and Chance, B. Effect of muscle oxygenation during resistance exercise on anabolic hormone response. Med Sci Sport Exerc (2003). 35: 1929–1934.
16. Kraemer, WJ, Marchitelli, L, Gordon, SE, Harman, E, Dziados, JE,Mello, R, Frykman, P, McCurry, D, Fleck, SJ. Hormonal andgrowth factor responses to heavy resistance exercise protocols. J Appl Physiol I69: (1990).1442–1450.
17. Kraemer, WJ, Gordon, SE, Fleck, SJ, Marchitelli, LJ, Mello, R,Dziados, JE, Friedl, K, Harman, E, Maresh, C, Fry, AC. Endogenous anabolic hormonal and growth factor responses toheavy resistance exercise in males and females.Int J Sport Med12: (1991). 228–235.
18. Kraemer, WJ, Ha’kkinen, K, Newton, RU, Nindl, BC, Volek, JS,Mc Cormick, M, Gotshall, LA, Gordon, SE, Fleck, SJ, Campbell, WW, Putukian, M, Evans, WJ. Effects of heavy-resistance training on hormonal response patterns in younger vs. older men.J Appl Physiol, (1999). 187: 982–992.
19. Kraemer, WJ et al. “Resistance training for health and performance”. Curr sports med rep. (2002). 1(3) : 165-71.
20. Kerkicskm, CM, Wilborn, CD, Campbell, BI, Roberts, MD, Rasmussen, CJ, Greenwood, M, Kreider, RB. Early-phase adaptations to a split-body, linear periodization resistance training program in college-aged and middle-aged men.J Strength Cond Res, (2009). 23: 962–971.
21. Krieger, JW. Single vs. multiple sets of resistance exercise for muscle hypertrophy: A meta-analysis.J Strength Cond Res, (2002). 24: 1150–1159.
22. MacDougall, JD, Sale, DG, Elder, GC, Sutton, JR. Muscle ultra structural characteristics of elite power-lifters and bodybuilders. Eur J Appl Physiol Occup Physiol, (1982). 48: 117–126.
23. McDonagh, MJN and Davies, CTM. Adaptive response of mammalian skeletal muscle to exercise with high loads. Eur J Appl Physiol (1984). 52: 139–155.

24. Mulligan, SE, Fleck, SJ, Gordon, SE, and Koziris, LP. Influence of resistance exercise volume on serum growth hormone and cortisol concentrations in women. J Strength Cond Res, (1986). 10: 256–262.

25. Paul, AC and Rosenthal, N. Different modes of hypertrophy in skeletal muscle fibers. J Cell Biol, (2002). 18: 156: 751–760.

26. Schott, J, McCully, K, & Rutherford, OM. The role of metabolites in strength training. II. Short versus long isometric contractions. Eur J Appl Physiol, (1995). 71: 337–341.

27. Schwab, R, Johnson, GO, Housh, TJ, Kinder, JE, and Weir, JP. Acute effects of different intensities of weight lifting on serum testosterone. Med Sci Sport Exerc, (1993). 25: 1381–1385.

28. Tesch, PA. Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sport Exerc, (1988). 20(5 Suppl.):S132–S134.

29. Toigo, M and Boutellier, U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol (2006). 97: 643–663.

30. Wolfe, BL, LeMura, LM, and Cole, PJ. Quantitative analysis of single- vs. multiple-set programs in resistance training. J Strength Cond Res, (2004). 18: 35–47.