Anderson lattice with explicit Kondo coupling: general features and the field-induced suppression of heavy-fermion state in ferromagnetic phase

Olga Howczak1 and Jozef Spalek1,2*

1Marian Smoluchowski Institute of Physics, Jagiellonian University, 30-059 Kraków, Poland
2AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Kraków, Poland.

(Dated: October 31, 2011)

We apply the extended (statistically-consistent, SGA) Gutzwiller-type approach to the periodic Anderson model (PAM) in an applied magnetic field and in the strong correlation limit. The finite-U corrections are included systematically by transforming PAM into the form with Kondo-type interaction and residual hybridization, appearing both at the same time. This effective Hamiltonian represents the essence of Anderson-Kondo lattice model. We show that in ferromagnetic phases the low-energy single-particle states are strongly affected by the presence of the applied magnetic field. We also find that for large values of hybridization strength the system enters the so-called locked heavy fermion state. In this state the chemical potential lies in the majority-spin hybridization gap and as a consequence, the system evolution is insensitive to further increase of the applied field. However, for a sufficiently strong magnetic field, the system transforms from the locked state to the fully spin-polarized phase. This is accompanied by a metamagnetic transition, as well as by drastic reduction of the effective mass of quasiparticles. In particular, we observe a reduction of effective mass enhancement in the majority-spin subband by as much as 20% in the fully polarized state. The findings are consistent with experimental results for Ce\textsubscript{x}La\textsubscript{1−x}B\textsubscript{6} compounds. The mass enhancement for the spin-minority electrons may also diminish with the increasing field, unlike for the quasiparticles states in a single narrow band in the same limit of strong correlations.

PACS numbers: 71.27.+a, 71.10.Fd, 71.28.+d, 75.30.Mb

I. INTRODUCTION

Heavy fermion (HF) metals are customarily regarded as a quantum liquid composed of strongly correlated (quasi-atomic) and heavy f-electron quasiparticle states resulting from hybridization with conduction (band) electrons. The starting f-electrons are associated with the presence of rare-earth or actinide ions (ions with valency close to integer valence, e.g. Ce+3−δ, with δ ≪ 1). In other words, the f-f on-site Coulomb repulsion is strong and the f-electrons behave often in a solid as localized (or almost localized) magnetic moments even in the presence of the interband hybridization. Moreover, those heavy hybrid f-electrons are coupled to the conduction (d-s) electrons via antiferromagnetic Kondo interaction. Also, many of the cerium or uranium HF compounds order antiferromagnetically. Nonetheless, there is also a constantly growing group of heavy fermion compounds which show a ferromagnetic ordering, e.g. UR\textsubscript{2−x}Re\textsubscript{x}Si\textsubscript{2} for 0.3 < x < 1.0, UR\textsubscript{2}Zn\textsubscript{2}3, Ce\textsubscript{9Si\textsubscript{1,5}}, YbRh\textsubscript{2}Si\textsubscript{2}19. Therefore, it is important to understand the complexity of their phase diagram within a single theoretical framework such as Anderson4 or Kondo-lattice model5. In this respect, we use here a mixed Anderson-Kondo lattice picture derived from PAM in a systematic manner.

One of other characteristic properties of the heavy fermion compounds is the metamagnetic behavior or a sudden magnetization increase (metamagnetism) at a critical value of the applied magnetic field, observed in HF compounds such as CeRu\textsubscript{2}Si\textsubscript{2}14, CeCo\textsubscript{5}\textsubscript{16}, UPd\textsubscript{2}Al\textsubscript{3}, URu\textsubscript{2}Si\textsubscript{2}, and UPt\textsubscript{3}16. This feature of HF electron systems makes the applied field a useful tool of probing the strong-correlation behavior. For example, a sufficiently strong applied field may lead to a destruction of the HF state of those strongly correlated fermions and, as a consequence, force a localization (freezing) of the heavy, predominantly f-electron, quantum liquid. This type of transition signalled by a metamagnetic transition (MMT), was the subject of extensive studies during the past decade, but still, because of the rich variety and complicated structure of their phase diagrams, the universal nature of the MMT is hard to establish. One of the puzzles is that the metamagnetic behavior can take place starting from the ferromagnetic state.

In this paper we present a scenario in which the heavy itinerant f-electron quasiparticles localize at MMT, with a concomitant suppression of the HF state at that critical field. To account for this interplay between the localized- and the itinerant-type behavior we start from the periodic Anderson model (PAM) in an external magnetic field included via the Zeeman term. We also use the large, but finite U version of PAM formulated before15,16, in which both residual hybridization and the Kondo-type coupling are included in a systematic manner. We have used this model before15,16, which can be called the Anderson-Kondo lattice model, to discuss the so-called hybrid (Kondo-type) pairing in heavy-fermion systems. Additionally we utilize the so-called statistically-consistent extension of the Gutzwiller-type approach15,16. Such formulation allows for a consistent mean-field discussion of correlated states, here in the applied magnetic field. With this paper we are starting a series with a detailed analysis of various magnetic, as well as of the...
magnetic superconducting states.

The paper is organized as follows. In Sec. II we summarize our theoretical model. In Sec. III we discuss the so-called statistically consistent mean-field approach (SGA) and provide numerical results, as well as apply them to the analysis of Ce$_x$La$_{1-x}$B$_6$ properties. We summarize our results and provide a brief outlook in Sec. IV. The Appendices provide some details of our analytic part of the approach.

II. MODEL AND STATISTICALLY-CONSISTENT MEAN FIELD THEORY

A. Anderson-Kondo lattice Hamiltonian

In modeling the fluctuating-valence and heavy fermion systems one usually starts from the periodic Anderson model (PAM), which in the real space (Wannier) representation reads

$$\mathcal{H} = \sum_{m\sigma} t_{mn \sigma} c_{m \sigma}^\dagger c_{n \sigma} + \epsilon_f \sum_i \hat{N}_{i \sigma} + U \sum_i \hat{N}_{i \uparrow} \hat{N}_{i \downarrow} + \sum_{m \sigma} \left(V_{im} f_{i \sigma}^\dagger c_{m \sigma} + H.c. \right) - \mu \left(\sum_{m \sigma} \hat{N}_{m \sigma} + \hat{n}_{m \sigma} \right) - \frac{1}{2} g_f \mu_B H \sum_{m \sigma} \sigma \hat{N}_{m \sigma} - \frac{1}{2} g_c \mu_B H \sum_{m \sigma} \sigma \hat{n}_{m \sigma}, \quad (1)$$

with $\hat{N}_{i \sigma} \equiv f_{i \sigma}^\dagger f_{i \sigma}$ being the number of originally atomic (f) electrons and $\hat{n}_{m \sigma} \equiv c_{m \sigma}^\dagger c_{m \sigma}$ the number of conducting (c) electrons. The consecutive terms are: the first represents the hopping (band) energy of c electrons, the second - bare f atomic level position (with respect to the atomic level of c electrons, $\epsilon_f \equiv \epsilon_{f \sigma} - \epsilon_{c \sigma}$), the third - interatomic Coulomb interaction among the f-electrons (the Hubbard term), the fourth the f-c hybridization (with the amplitude V_{im}, taken in the subsequent analysis in the intraatomic form, $V_{im} = \delta_{im} V$), and the next term represents the subtraction of the chemical potential part, as we will work in the grand canonical scheme. The last two terms are the Zeeman energy in the applied magnetic field H of f and c electrons, respectively.

In the context of heavy fermion system this Hamiltonian has usually been taken in the $U = \infty$ limit, as this parameter represents the highest energy scale in the system. Typically for Ce systems: $U = 5 - 6$eV, $\epsilon_f = -1 \div -2$eV, $V \lesssim 0.5$eV, $W = 2\epsilon |t| \sim 2$eV. While $|V|/U \ll 1$, U is definitely finite and therefore, the finite-U corrections should be taken into account, as e.g. the residual Kondo exchange interaction of the magnitude $J_K \sim 2V^2/(\epsilon_f + U) \sim 0.1$eV arises and will influence the nature of the magnetic ground state in a decisive manner. However, to account for the Kondo interaction systematically, as well as to allow for itineracy of f-electrons at the same time, a direct application of either the Schrieffer-Wolff transformation or by starting from the periodic Kondo model (i.e. neglecting explicitly the hybridization term apart from the presence in the expression $\sim J_K$), may not be realistic. At least, one has to try to reach such Kondo-lattice limit in a systematic manner, by e.g. including explicitly both the nonzero renormalized hybridization and the nonvanishing Kondo coupling in the large-U limit at the same time.

For this purpose, in direct analogy to the corresponding projection set originally for the Hubbard model, we divide the f-c hybridization into the following two parts according to the prescription

$$f_{i \sigma}^\dagger c_{m \sigma} = (1 - \hat{N}_{i \sigma}) f_{i \sigma}^\dagger c_{m \sigma} = (1 - \hat{N}_{i \sigma}) f_{i \sigma}^\dagger c_{m \sigma} + \hat{N}_{i \sigma} f_{i \sigma}^\dagger c_{m \sigma}. \quad (2)$$

The first term represents the projected hybridization of the states $|f_{i \sigma}\rangle$ and $|c_{m \sigma}\rangle$ under the proviso that the f-state $|f_{i \sigma}\rangle$ is not occupied, whereas the second represents the part of the f-c quantum-mechanical mixing when the admixture of a doubly-occupied state with the opposite spins, $|f_{i \sigma}\rangle$ and $|f_{i \sigma}\rangle$, is admissible. The various hopping processes involving the original (bare) atomic f electrons and the resulting occupation-resolved hybridization processes are depicted in Fig. II (for their detailed meaning see below). Since the heavy fermion physics is related to the limit: $|\epsilon_f| \geq V$ and $|\epsilon_f| \ll \epsilon_f + U$ (with $\epsilon_f \equiv \epsilon_f - \mu$), the first term in (2) corresponds to the low-energy mixing
processes (represent a real f-c mixing, Fig. 1(b)), whereas the processes represented by the second term are realized only via virtual (high-energy processes, Fig. 1(c,d)) and are accounted for in the second-order in \(V_f/U + \epsilon_f \) (the first nontrivial order). The latter processes are removed from the original Hamiltonian 1 via canonical transformation proposed earlier\(^{12,23}\). The original Hamiltonian is then transformed to the effective Hamiltonian of the form

\[
\mathcal{H} = \hat{\mathcal{P}} \left\{ \sum_{m\sigma} \left(t_{mn} c_{m\sigma}^\dagger c_{n\sigma} - \sum_i V_{im}^* V_{in} \hat{\nu}_f \hat{n}_{m\sigma} \right) \right\} \hat{\mathcal{P}} + \hat{\mathcal{P}} \left\{ \sum_{i\sigma} V_{im}^* V_{in} \hat{S}_{i}\hat{S}_{\sigma} \hat{n}_{m\sigma} + \sum_{i\sigma} \epsilon_f \hat{n}_{i\sigma} \right\} \hat{\mathcal{P}} + \hat{\mathcal{P}} \left\{ \sum_{i\sigma} 2|V_{im}|^2 \left(\hat{S}_i \cdot \hat{s}_m - \frac{\hat{\nu}_f \hat{n}_m}{4} \right) \right\} \hat{\mathcal{P}} + \hat{\mathcal{P}} \left\{ \sum_{ij} J_{ij} \left(\hat{S}_i \cdot \hat{S}_j - \frac{\hat{\nu}_f \hat{\nu}_j}{4} \right) \right\} \hat{\mathcal{P}}, \tag{3}\]

where \(t_{mn} \equiv t_{mn} - \mu, \epsilon_f \equiv \epsilon_f - \mu \). Also, in this Hamiltonian we have projected out completely the double occupancies of f states, as well as have defined the following projected quantities for f electrons \(\hat{\nu}_f \equiv \hat{\nu}_f \hat{n}_{i\sigma} \), \(\hat{S}_i \equiv (\hat{S}_i^x, \hat{S}_i^y) = [\hat{S}_{i\sigma}, \hat{n}_m^\sigma, 1/2(\hat{n}_{m\uparrow} - \hat{n}_{m\downarrow})] \), and the corresponding (non-projected) quantities for the conducting band electrons are \(\hat{n}_{m\sigma} = c_{m\sigma}^\dagger c_{m\sigma}, \hat{n}_m = \sum_{\sigma} \hat{n}_{m\sigma} \) and \(\hat{s}_m = (\hat{s}_m^x, \hat{s}_m^y) = [c_{m\sigma}^\dagger c_{m\sigma}, 1/2(\hat{n}_{m\uparrow} - \hat{n}_{m\downarrow})] \). Additionally, we asume that \(g_c = g_f = g = 2 \), the applied field is defined as \(h = \frac{1}{2} g \mu_B H \). Finally, we have added an effective 4-th order term \(\sim J_{ij} \sim \sum_m (V_{im} V_{jm})^4 / (\epsilon_f + U)^3 \), which will not be written up explicitly here, as we concentrate only on the second-order effects. The Gutzwiller projector \(\hat{\mathcal{P}} = \prod_i (1 - \hat{N}_{i\uparrow} \hat{N}_{i\downarrow}) \) eliminates explicitly the double f-occupancies (it can be dropped as the operators inside \(\hat{\mathcal{P}} \) are already in the projected form). The first term in (3) contains c-c hopping (see Fig. 1(a)) renormalized by the virtual-hopping process, the second term is effective hopping with the spin-flip exchange between c and f electrons (see Fig. 1(b)), the third part and the fourth - the f-level energy and projected hybridization, while the fifth - the effective f-c antiferromagnetic Kondo coupling. The minimal model coming out of that procedure is to neglect an effective f-f exchange and the renormalization of the \(c \rightarrow c \) hopping. In result, we start from a simplified effective Hamiltonian which we rewrite in the explicit form

\[
\mathcal{H} = \hat{\mathcal{P}} \left\{ \sum_{m\sigma} t_{mn} c_{m\sigma}^\dagger c_{n\sigma} + \sum_{m\sigma} \frac{2|V_{im}|^2 \hat{\nu}_f \hat{n}_{m\sigma}}{4} \right\} \hat{\mathcal{P}} \tag{4} + \hat{\mathcal{P}} \left\{ \sum_{i\sigma} \epsilon_f \hat{n}_{i\sigma} + \sum_{i\sigma} (1 - \hat{N}_{i\sigma}) (V_{im}^* c_{m\sigma} + H.c.) \right\} \hat{\mathcal{P}} + \hat{\mathcal{P}} \left\{ \frac{2|V_{im}|^2}{U + \epsilon_f} \left(\hat{S}_i \cdot \hat{s}_m - \frac{\hat{\nu}_f \hat{n}_m}{4} \right) \right\} \hat{\mathcal{P}} + \hat{\mathcal{P}} \left\{ \frac{1}{2} g_f \mu_B H \sum_{i\sigma} \sigma \hat{N}_{i\sigma} - \frac{1}{2} g_c \mu_B H \sum_{m\sigma} \sigma \hat{n}_{m\sigma} \right\} \hat{\mathcal{P}}.
\]

We see that we have simultaneously presented a residual (projected) hybridization term and the Kondo kinetic exchange interaction, with the exchange integral \(J_K \equiv J_{im} = 2|V_{im}|^2 / (U + \epsilon_f) \), which differs from that obtained with the help of the Schrieffer-Wolff transformation (as it contains only high-energy virtual-hopping processes, cf. Fig. 1(b)). The appearance of a number of magnetic phases arises from a competition/cooperation of the projected hybridization and antiferromagnetic Kondo interaction.

B. A general comment: Anderson, Kondo or mixed Anderson-Kondo lattice representation?

It may be useful at this point to characterize briefly the subtle difference between the present formulation and the original Anderson- or Kondo-lattice models. First, our canonical transformation differs from the standard Schrieffer-Wolff transformation. Namely, in the Schrieffer-Wolff\(^{24}\) (and related Coqblin-Schrieffer\(^{25}\)) transformations the whole hybridization term is transformed out and replaced by the Kondo interaction. Here, only the second part of (4) represents virtual processes (cf. Fig. 1(b)), whereas the first term of (4), cannot be transformed out, since \(V \sim \epsilon_f \) and hence the corresponding processes lead to the itineracy of f-electrons (cf. Fig. 1(d) for an illustration of an effective f-f hopping). This means that the f-electrons are not strictly localized, as in most of the HF systems they are not. As a consequence, the total number of f particles is not conserved, only the total number \(\hat{N}_c = \sum_{i\sigma} \hat{N}_{i\sigma} + \sum_{m\sigma} \hat{n}_{m\sigma} \) of all particles is a conserved quantity. The last statement amounts to saying that the physics of Hamiltonian 3 and 4 is contained in that coming of 1, but in general, is not equivalent to that of true Kondo-lattice model, i.e. when the third term in (4) \(\sim V \) is absent. This is similar to the difference between the physics coming from the Anderson impurity model as compared to that coming from the Kondo model; the later representing the asymptotic limit of the former\(^{23}\).

In principle, one could say that all the relevant physics is fully contained in the general form 1. Why then introducing 3 or 4 which represent its particular limiting forms? This is the first basic question. The answer
to this question is as follows. The form (1) represents indeed a general hybridized two-orbital system with the short-range (Hubbard) interaction (apart from the absence of Falicov-Kimball term $\sim \sum_{\langle i,m \rangle} U_{i,m} \hat{N}_i \hat{n}_m$, the role of the missing Falicov-Kimball term is discussed in Appendix A). No exact solution is available in the lattice situation of dimensionality $D \gg 1$. Therefore, we have to resort to approximations and it is usually plausible, and even physically plausible, to take into account the principal interorbital/inter-site exchange interaction explicitly first and carry out a simplified (e.g. mean-field like) analysis on such an effective Hamiltonian subsequently, with the most relevant correlations included, even in the approximate manner in the mean-field type approximation. What is equally important, the form of the effective Hamiltonian, by containing physical (low-energy) interactions, helps in selecting relevant order parameters and related to them mean fields in nontrivial cases, as discussed in detail below in one such particular situation. Parenthetically, the analysis is of the same type as that when transforming the Hubbard model into an effective $t-J$ model and determining nontrivial many body ground states for the latter. Such Hamiltonian is applicable to the analysis of both normal and superconducting states, the latter with real space pairing included.

One has to note that for the Kondo-lattice Hamiltonian, which has general form

$$H_{KL} = \sum_{mn\sigma} t_{mn} c_{m\sigma}^\dagger c_{n\sigma} + \sum_{im} J_{im} \hat{S}_i \cdot \hat{S}_m + \sum_{im} J_{ij} \hat{S}_i \cdot \hat{S}_j,$$

(5)

in which the numbers of f-particles and c-particles are conserved separately, i.e. both $\hat{N}_f \equiv \sum_{i\sigma} \hat{N}_{i\sigma}$ and $\hat{N}_c \equiv \sum_{m\sigma} \hat{n}_{m\sigma}$ commute with H_{KL} separately. Therefore, in discussing the HF or superconducting states based on this type of Hamiltonian, one has to assume that those two global conservation laws are only approximately obeyed. It is better to use our effective Hamiltonian (3) or (4), on the expense of the simplicity though.

A second basic question still remains and concerns the reduction of Hamiltonian (4) or (3) to (6) in a consistent manner. This is usually done by removing the residual hybridization term and completing the Schrieffer-Wolff transformation. However, in our mean-field analysis the true Kondo-lattice limit expressed by (3), is effectively achieved as a limit $n_f \to 1$. This limit is indeed achieved when $V/\epsilon \to 0$, as we show explicitly in the next Section in concrete situation.

C. Effective mean-field Hamiltonian and statistically-consistent mean-field approximation

In order to construct a mean field Hamiltonian we assume, that a proper ground variation state can be represented in the form $|\Psi\rangle = \tilde{P}|\Psi_0\rangle$, where $|\Psi\rangle$ indicates the correlated state and $|\Psi_0\rangle$ is an eigenstate of the effective single-particle Hamiltonian. Then the expectation value of any operator can be in principle calculated as

$$\langle \hat{O} \rangle \equiv \frac{\langle \Psi | \hat{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\langle \Psi_0 | \tilde{P} \hat{O} \tilde{P}^\dagger | \Psi_0 \rangle}{\langle \Psi_0 | \tilde{P}^2 | \Psi_0 \rangle} \equiv \frac{\langle \tilde{P} \hat{O} \tilde{P}^\dagger \rangle_0}{\langle \tilde{P}^2 \rangle_0}. \quad (6)$$

In most cases, the above calculations represent a non-trivial task, mostly because the projection operator is non-local and by applying the Wick theorem many terms appear in the process of Hartree-Fock type decoupling. To carry out these evaluations an approximation is necessary at this point. Here, we use the scheme proposed recently by Fukushima in the local-constraint version, which assumes that the average number of correlated f-electrons at each site and with an arbitrary spin orientation is unchanged by the projection, i.e. $\langle \hat{N}_{i\sigma} \rangle = \langle \hat{N}_{i\sigma} \rangle_0 = n_{i\sigma}$. In the subsequent analysis, we use more general Gutzwiller-type projector, $\tilde{P} = \prod_i \lambda_{i\uparrow}^{N_{i\uparrow}/2} \lambda_{i\downarrow}^{N_{i\downarrow}/2} (1 - \hat{N}_{i\uparrow} \hat{N}_{i\downarrow})$, which eliminates the double occupancies of f-electrons in real space and conserves average number of f-electrons at each site before and after projection: the latter is accomplished by fixing the fugacity factors $\{\lambda_{i\sigma}\}$. In order to derive the explicit form of the fugacity factors, one has to calculate the density of spin f-electron at site i, namely, $\langle \hat{N}_{i\sigma} \rangle = \frac{\langle \lambda_{i\sigma} (1 - \hat{N}_{i\sigma}) \prod_i \lambda_{i\downarrow}^{N_{i\downarrow}/2} \rangle_0}{\langle \prod_i \lambda_{i\downarrow}^{N_{i\downarrow}/2} \rangle_0}$. This can be done by taking only the onsite contraction, as the intersite ones are much smaller. Then, $l \neq i$ terms cancel out (in the numerator with these of the denominator). Therefore, the condition to determine the fugacity factors is given by $\langle \hat{N}_{i\sigma} \rangle = \frac{\lambda_{i\sigma} (1 - \hat{N}_{i\sigma}) \prod_i \lambda_{i\downarrow}^{N_{i\downarrow}/2}}{\prod_i \lambda_{i\downarrow}^{N_{i\downarrow}/2}}$, which results in the explicit expression for the fugacity factors, $\lambda_{i\sigma} = \frac{1 - N_{i\sigma}}{1 - n_{i\sigma}}$.

It should be noted that the uncorrelated c-electrons are not affected by the projection procedure, as it projects out only for the number of f-electrons. Though the original local-constraint scheme for calculating the correlated averages was proposed for single band Hubbard model and was successfully applied in $t-J$ model, it can be easily extended to the periodic Anderson model in a straightforward manner (see Appendix A for details).

In effect, this kind of Gutzwiller approximation yields the mean value of the Hamiltonian (4)

$$\frac{\langle H \rangle}{\Lambda} = 8t\xi - \frac{V^2}{U + \epsilon_f} \sum_{\sigma = \uparrow, \downarrow} n_{f\sigma} n_{c\sigma} - \frac{V^2}{U + \epsilon_f} \sum_{\sigma = \uparrow, \downarrow} \left(\frac{n_{f\sigma}}{1 - n_{f\sigma}} \gamma_\sigma \gamma_\sigma^* \right) + \sum_{\sigma = \uparrow, \downarrow} V \sqrt{\frac{1 - n_{f\sigma}}{1 - n_{f\sigma}}} (\gamma_\sigma + \gamma_\sigma^*) - \frac{V^2}{U + \epsilon_f} \sum_{\sigma = \uparrow, \downarrow} \gamma_\sigma \gamma_\sigma^* \sqrt{(1 - n_{f\sigma})(1 - n_{f\sigma})} + \epsilon_f n_f - h_f m_f - h_c m_c. \quad (7)$$
where Λ is the number of lattice sites and we have additionally assumed, that all the mean fields appearing in our model represent spatially homogeneous quantities, namely, i.e.,
\[
n_{mf} = \sum_{\sigma = \uparrow, \downarrow} \langle \hat{n}_{\sigma} \rangle \equiv n_{f}, \quad n_{mc} = \sum_{\sigma = \uparrow, \downarrow} \langle \hat{n}_{\sigma m\sigma} \rangle \equiv n_{c},
\]
\[
m_{mf} = \frac{1}{2} \sum_{\sigma = \uparrow, \downarrow} \langle \sigma \hat{N}_{\sigma} \rangle \equiv m_{f},
\]
\[
m_{mc} = \frac{1}{2} \sum_{\sigma = \uparrow, \downarrow} \langle \sigma \hat{n}_{m\sigma} \rangle \equiv m_{c},
\]
\[\gamma_{im\sigma} = \langle \hat{f}_{i\sigma}^\dagger c_{m\sigma} \rangle_0 \equiv \gamma_{i\sigma}, \quad \xi_{mn\sigma} = \langle \hat{c}_{m\sigma}^\dagger c_{n\sigma} \rangle_0 \equiv \xi_{m\sigma\sigma} \quad (8)
\]

It should be noted that the hybridization term in $[7]$ has the same renormalization factor as can be obtain in standard Gutzwiller approximation27,28 in the $U = \infty$ limit.

Also, in order to formulate a completely correct mean-field approximation, we supply the mean-field Hamiltonian $[7]$ with constrains via the Lagrange-multiplier method. By doing so we ensure the statistical consistency of the present variational method15,26 with constrains via the Lagrange-multiplier field approximation, we supply the mean-field Hamiltonian, namely, i.e.,
\[
\mathcal{H}_{mf} = - \sum_{<mn>\sigma} \left(\eta \langle \hat{c}_{m\sigma}^\dagger c_{n\sigma} \rangle - \xi \right) + \text{H.c.}
\]
\[
- \lambda_{cm} \sum_{m\sigma} \langle \sigma \hat{c}_{m\sigma}^\dagger c_{m\sigma} \rangle - m_{c}
\]
\[
- \mu \sum_{i\sigma} \langle \hat{c}_{i\sigma}^\dagger c_{i\sigma} + \hat{f}_{i\sigma}^\dagger f_{i\sigma} \rangle
\]
\[
- \sum_{i\sigma} \left(\tau_{\sigma} \langle \hat{f}_{i\sigma}^\dagger c_{i\sigma} \rangle - \gamma_{i\sigma} \right) + \text{H.c.}
\]
\[
- \lambda_{f} \sum_{i\sigma} \langle \hat{f}_{i\sigma}^\dagger f_{i\sigma} \rangle - n_{f} - \lambda_{fm} \sum_{i\sigma} \langle \sigma \hat{f}_{i\sigma}^\dagger f_{i\sigma} \rangle - m_{f}
\]
\[
- \lambda_{c} \sum_{i\sigma} \langle \hat{f}_{i\sigma}^\dagger f_{i\sigma} + \hat{c}_{i\sigma}^\dagger c_{i\sigma} \rangle - n_{c}
\]
\[+ \langle \mathcal{H} \rangle \quad (9)
\]

where $<mn>$ means the summation over nearest neighboring pairs. Note that the field λ_{fm} may play role of a molecular field induced by electronic correlations whereas λ_{f} and λ represent shifts of the chemical potential (the role of λ proves to be minor).

Now, Eq. $[9]$ has a particularly simple k-space representation:
\[
\mathcal{H}_{mf} = \sum_{k\sigma} \left(\epsilon_{k\sigma} \hat{f}_{k\sigma}^\dagger \hat{f}_{k\sigma} + \epsilon_{k\sigma}^\prime \hat{c}_{k\sigma}^\dagger \hat{c}_{k\sigma} \right) + C, \quad (10)
\]

where $n_{e} = n_{f} + n_{c}$ is the total number of electrons per site and the constant C includes all the wavevector independent quantities: $C \equiv \langle \mathcal{H} \rangle + \Lambda (16 \eta + \lambda_{cm} m_{c} + 2 \sum_{\sigma} \tau_{\sigma} \gamma_{\sigma} + \lambda_{f} n_{f} + \lambda_{fm} m_{f} + \lambda n)$. For example, the band energy of c-electrons in a two-dimensional case is represented explicitly by $\epsilon_{k\sigma}^c = -4t_{\sigma} (\cos k_{x} + \cos k_{y}) - \mu - \lambda_{c} - \lambda_{fm} \sigma$ and the energy of the localized f-electrons equals $\epsilon_{k\sigma}^f = -\mu - \lambda_{f} - \lambda_{fm} \sigma$. It is easy to see that the eigenvalues of the Hamiltonian $[10]$ are then
\[
E_{k\sigma}^{c} = \frac{1}{2} \left(\epsilon_{k\sigma}^{c} + \epsilon_{k\sigma}^{\prime} + \alpha \sqrt{\epsilon_{k\sigma}^{c} - \epsilon_{k\sigma}^{\prime}}^{2} + 4 t_{\sigma}^{2} \right), \quad (11)
\]

where $\alpha = \pm 1$ labels the quasiparticle band (antibonding and bonding components, respectively). The quasiparticles form two bands with renormalized characteristics.

The mean-field values can be determined by minimizing the free energy potential $F = F_{0} - \frac{1}{\Lambda_{s}} \sum_{k\sigma} \ln (1 + e^{-E_{k\sigma}})$, i.e. by solving the following system of equation representing the necessary conditions for the minimum:
\[
\frac{\partial F}{\partial n_{e}} = 0, \quad \frac{\partial F}{\partial n_{f}} = 0, \quad \frac{\partial F}{\partial m_{f}} = 0,
\]
\[
\frac{\partial F}{\partial \mu} = 0, \quad \frac{\partial F}{\partial \lambda_{f}} = 0, \quad \frac{\partial F}{\partial \lambda_{c}} = 0,
\]
\[
\frac{\partial F}{\partial \lambda_{fm}} = 0, \quad (12)
\]

where equations with $\lambda_{i} = \{ \lambda, \lambda_{f}, \lambda_{fm}, \lambda_{cm}, \eta, \tau_{\sigma} \}$ can be easily solved analytically, so that we are left with six equations which we solve numerically with the help of GSL (Gnu Scientific Library), on the lattice of $\Lambda = 256 \times 256$ sites, using the periodic boundary conditions, with the following values of the parameters: $\epsilon_{f} = -0.75W$, $t = 1/8W$, $U = 5W$, and for sufficiently low temperature $k_{B}T/W = 5 \cdot 10^{-5}$, where W is the bare conduction-electron bandwidth, that sets our energy scale ($W = 1$). Exemplary values obtained via the self-consistent and variational method for a ferromagnetic state and bonding components, respectively). The quasiparticles are displayed in Table $[1]$ The numerical accuracy is at least on the last digit of the quantities displayed in that Table. Also the numerical results are illustrated further on the example of a two-dimensional (square) lattice. Parenthetically, a detailed shape of the density of states in bare band is of secondary importance.

III. RESULTS AND DISCUSSION

A. Phase diagram and principal characteristics of selected phases

A variety of magnetic phases appears in this model depending on the value of microscopic parameters and the type of long-range order obtained. We analyze in detail only the phases specified in Fig. $[2]$ (bottom part) as
well as provide the phase diagram on the $n_c - |V|$ plane (top part). For the case when the hybridization exists only between the electrons and holes at the same site, i.e., $V_{im} = V \delta_{im}$ and is k-independent, we can precisely evaluate the effective mass of quasiparticles using analytical results (see Appendix C for details). It can be seen from Fig. 2 that, depending on the number of total electrons n_c and the value of hybridization parameter $|V|$, we can achieve different states. In phase II, which corresponds to the weakly ferromagnetic metal (WFM), the lower majority-spin subband is fully occupied, whereas the minority-spin subband remains partially filled. The onset of region II is marked by the disappearance of the spin-up Fermi-surface sheet, since the chemical potential is placed then in the hybridization gap and the lower spin-up subband is completely filled. If the lower majority-spin subband in phase II is fully occupied (contains one electron per site) then the minority-spin subband remains partially filled and contains $n_c - 1$ electrons per site, what results in total magnetization $m = (2 - n_c)/2$ and approaches zero for $n_c \to 2$ (cf. Fig. 2(a,c) and phase II in the Fig. 2). On the other hand, for a small value of hybridization the majority-spin electrons in the phase III start filling the higher hybridized band, what results in an almost full polarization of the system (see Fig. 3(a)). As the magnetizations of f- and c-electrons, m_f and m_c, have opposite signs due to antiferromagnetic Kondo coupling between them, the maximum value of the total magnetization never exceeds $0.5\mu_B$ i.e. the maximum value in the localized limit.

In the case of $n_c < 1.0$ both f- and c-electrons have the same sign of magnetization, as a consequence of the fact that the effective hybridization, represented by the mean-field value of $\gamma_f = <f_i c_i^\dagger>$, is close to zero, as can be seen in Fig. 3(b). In the case when $n_c > 1.0$ and the bare hybridization $|V| < 0.3$, the f-electrons start localizing, as can be seen by a rapid increase of m_f (see Fig. 3(a)) and the suppression of the hybridization between localized and itinerant electrons (in Fig. 4 see a recess of both γ_f and γ_i in the region corresponding to the phase III (SFM)). The Kondo singlet correlation are destroyed to yield a strong ferromagnetism. Thus large magnetic mo-

![FIG. 2: (Color online) Phase diagram (top) on $n_c - |V|$ plane displaying various arrangements of quasiparticle spin sub-bands (bottom) relative to the chemical potential. In phase II (weakly ferromagnetic metallic - WFM) the lower majority-spin subband is fully occupied, whereas the minority-spin subband remains partially filled. The onset of region II is marked by the disappearance of the spin-up Fermi surface sheet, as the chemical potential is placed in the hybridization gap and the lower spin-up subband is completely filled. For the small values of hybridization, the majority-spin electrons fill the upper hybridized band, what results in a full polarization of the system (phase III - strongly ferromagnetic metallic SMF). The case (IV) represents the paramagnetic Kondo insulator (PKI) and can be observed only for $n_c = 2.0$. The phase diagram is drawn for $U = 5$, $\epsilon_f = -0.75$, and $t = -1/8$, all in units of the conduction electron bandwidth W. The difference between various ferromagnetic phases is connected with the difference in the shape and the filling of various parts of the density-of-states, as shown at the bottom.]

| $U = 5$, $\epsilon_f = -0.75$, $|V| = 0.3$ | γ_f | γ_i | μ | n_f | m_c | m_f
|---|---|---|---|---|---|---|
| $n_c = 1.75$ | 0.4287 | 0.3182 | -0.0781 | 0.8621 | -0.0479 | 0.1768 |
| $n_c = 1.9$ | 0.4278 | 0.3798 | -0.0291 | 0.8691 | -0.0245 | 0.0784 |
| $n_c = 1.75$ | 0.1902 | 0.1512 | 0.0094 | 0.0451 | 0.1450 | -0.0074 |
| $n_c = 1.9$ | 0.1765 | 0.1578 | 0.0092 | -0.0188 | 0.0598 | -0.0032 |

TABLE I: Values of the chemical potential and the MF parameters. The physical free energy $F = F + \mu n_c$ for $n_c = 1.9$ and 1.75 is -1.04971 and -1.04175, respectively. We see that in this limit the f-electron occupation is close to unity and their magnetic moment (m_f) is decisively larger than that of the compensating Kondo cloud (m_c).
FIG. 3: (Color online) The magnetic moments of f-electrons (a) and of conduction electrons (b) as function of bare hybridization magnitude $|V|$ and total number of electrons per site: $n_e = n_c + n_f$, and (c) the number f-electron occupancy. Other parameters are the same as those listed previously.

FIG. 4: (Color online) The mean magnitude of hybridization correlation functions: $\gamma_\uparrow = \langle f_i^\dagger c_i \uparrow \rangle$ (a) and $\gamma_\downarrow = \langle f_i^\dagger c_i \downarrow \rangle$ (b) both, as a function of total number of electrons and bare hybridization parameter $|V|$. Other parameters are the same as those used previously.

limit our discussion to the range of parameters, for which the ferromagnetic phases II and III are stable. The phase transition from the state with relatively small magnetic moments (phase II) to the phase with almost fully polarized spin-up subband (III) can be induced by reducing the hybridization strength $|V|$, as can be seen in Fig. 5. We find, in agreement with DMFT32,33 and slave boson29 calculations, that there is a critical value of hybridization strength (cf. Fig. 5) below which the system becomes fully polarized (phase III). For large value of hybridization, the strong ferromagnetic phase is destroyed because of the screening the f-electron magnetic moments partly by the c-electrons and partly by the itineracy of f-electrons. While a strong hybridization increases the magnetic interaction, it simultaneously weakens the magnitude of magnetic moments by the itineracy. When the hybridization parameter $|V|$ falls below the critical value system transforms in a discontinuous manner from the strong ferromagnetic phase III to the weak ferromagnetic phase. In the inset to Fig. 5 one can observe that the

B. Ferromagnetic phase: suppression of heavy quasiparticle masses

The detailed phase diagram should encompass also antiferromagnetic phases.22 In the present paper we shall
occu-pancy \(n_f \) simultaneously undergoes a sharp transi-
tion as a function of the hybridization strength \(|V|\). The
limit \(m_f \to \frac{1}{2} \) and \(n_f \to 1 \) (for \(|V| < 0.15\)) can be
thus called the localized moment limit, in which indeed
\(V/\epsilon_f \ll 1 \).

The density-of-states (DOS) enhancement at the Fermi
level is a direct measure of the effective mass enhance-
ment of quasiparticles. As can be seen from Fig. 5 in
the case of stable state II the density of states for the
spin-down subband increases with the increasing the hy-
bridization and that the spin-up part is absent, because
the chemical potential is placed in hybridization gap for
the spin-up subbands.

The phenomenon such as the metamagnetic behavior
of the magnetization curve, as well as the field- and
spin-dependent effective masses have been observed in
several heavy fermion compounds. For selected pa-
rameters, our model predicts that the metamagnetism
appears in the crossover region in between the regimes
II to III (see Fig. 7). Namely, the principal feature of
the heavy fermion state II (WFM phase) is its insensi-
tivity to the strong applied magnetic field. The only
quantity which changes significantly is the chemical po-
tential position. With increasing value of magnetic field,
the chemical potential shifts and eventually leaves the
quasiparticle-gap regime (cf. Fig. 8), entering into the
spin-up upper hybridized band and switching the system
to phase III. This phase transition causes sudden increase
of the magnetization and rearrangement of the quasipar-
ticle subbands as can be seen in the insets to Fig. 8.

In the inset to Fig. 7 one can see that define jump of
\(n_f \) in the applied magnetic field is observed while sys-
tem evolves from weakly polarized (II) towards strongly
polarized phase (III). The present result is consistent
with the existing considerations, where additionally the
Coulomb interaction between local and conducting elec-
trons were taken into account. The inclusion of the
inter-orbital Coulomb interaction amplifies the sharpness
of the transition.

To understand better the behavior of strongly polar-
ized HF system in phase III we analyze also the field
dependence of the quasiparticle mass. As can be seen in
the Fig. 9 the quasiparticle mass is suppressed with
increasing magnetic field. It can be interpreted as a de-
struction of the HF state. The magnetic field tends to or-
der of both electrons and in this manner to suppress the
antiferromagnetic Kondo coupling. The effective mass
reduction at high fields is one of the characteristic fea-
tures of HF. In contrast to the paramagnetic ground
state of PAM, we observe a completely different be-
behavior of the effective-mass field dependence. The first
difference is that spin-up mass is larger than the spin-
down carrier mass due to the discussed above rearrange-
ments of quasiparticle the subbands (see Fig. 8), which
is also consistent with the overall mean-field theory of

FIG. 5: (Color online) The magnetization of c- and f-
electrons, \(m_c \) and \(m_f \), respectively, plotted as a function
of hybridization parameter for selected numbers electron occu-
pancy \(n_e \). The inset shows the corresponding dependence of
the occupancy \(n_f \).
Wasserman et. al. (who does not have the spin-split masses though). Secondly, both effective spin-dependent masses ($\sigma = \pm 1$) decrease in the stronger applied field. The effective mass of quasiparticles depends also from the total number of electrons n_e. In the case of the fixed hybridization strength the value of localized electrons n_f is almost insensitive to the change in the total number of electrons, since in the region with an almost localized f-electrons ($n_f \rightarrow 1$), changes in n_f are minor. Thus the n_e dependence of effective quasiparticle mass in that region is mainly due to change in number of conduction electrons n_c.

C. Application to Ce$_2$La$_{1-x}$B$_6$

The obtained behavior can account for the field dependence of the quasiparticle effective mass of Ce$_2$La$_{1-x}$B$_6$ in very strong fields. In this material, the dHvA signal is found to originate only from a single-spin-orientation Fermi surface sheet. However, it was difficult to verify, from which spin channel it comes from. From the experimental observation, it seems that spin up channel progressively dominates the dHvA signal as the concentration x is increased (i.e. the number n_e increases). The experimental investigation claim that spin-up component may be dominant in this compound. In our approach we reproduce two important experimental features: (i) the field suppression of effective masses at high magnetic field, (ii) the non-monotonic x dependence of m^* for the dominant spin component (cf. inset to Fig. 4) and its small value for this heavy-fermion compound.

One has to mention that Ce$_2$La$_{1-x}$B$_6$ shows the Fermi T^2 - liquid behavior in low-temperature resistivity even though it exhibits a complicated phase diagram on the magnetic field-temperature plane. The discussed here effective mass suppression was observed in very strong fields, when the complicated quadrupolar phases discussed in Ref. 47 have already disappeared. This is the reason why we can apply our result to this complicated system in strong fields.

IV. SUMMARY AND OUTLOOK

In the paper we have analyzed the effect of spin-split and applied-field dependent quasiparticle masses (or quasiparticle density of states) and their influence on selected magnetic properties. The results differ from those obtained for a single narrow band model. What is equally
important, the heavy masses are strongly suppressed at the border of weakly- to strongly-ferromagnetic phase transition, as observed in Ce$_2$La$_{1-x}$B$_6$ system.\cite{38,43}

On formal side, we would like to note that we included large (but finite) U effects within the Anderson lattice model, with both the hybridization and the Kondo interaction effects incorporated in a systematic manner. In result, the effective Hamiltonian can be termed Anderson-Kondo lattice model. The systematic aspect of our approach to solving the model relies on utilizing the Fukushima type of approach and generalizing it to a two-orbital situation, in which the constraints ensuring the statistical consistency of the results have been also included. In this manner, we can claim that we have provided a mutually consistent mean-field approach starting from the Gutzwiller-type projection for the correlated f-electron states in this two-orbital model. The

Acknowledgments

Enlightening discussions with Drs. Jakub Jędrak and Jan Kaczmarczyk are gratefully acknowledged. We wish also to thank Prof. Wolfgang Nolting from the Humboldt University for a helpful discussion. The work was supported by Ministry of Higher Education and Science, Grants Nos. N N202 128736 and N N202 489839, as well as by the Project TEAM awarded to our group by the Foundation for Polish Science (FNP) for the years 2011-2014.
Appendix A: Role of the interorbital (Falicov-Kimball) term

The Falicov-Kimball term taken in the intraatomic form

\[U_{cf} \sum_{<im>} \hat{N}_i \hat{n}_m = U_{cf} \sum_i \hat{N}_i \hat{n}_i \quad (A1) \]

enters in two ways in the starting effective Hamiltonian \[\mathcal{H}_1 \]. First, the denominator of the third term should be replaced by \(U - U_{cf} + \epsilon_f \), so that the effective Kondo coupling constant increases, since it then has the form \(J_{im} = 2|V_{im}|^2/(U + U_{cf} + \epsilon_f) \). Second, after the canonical transformation of \[\mathcal{H}_1 \] leading to \[\mathcal{H}_3 \] there remains the projected part of repulsive Coulomb interaction term \(U_{cf} \sum_{<im>} \hat{v}_{tf} \hat{n}_m \) which, when treated in the simplest Hartree-Fock manner, reduces to

\[U_{cf} \sum_{<im>} \hat{v}_{tf} \hat{n}_m \approx U_{cf} \sum_{<im>} (n_f \hat{n}_m + n_f \hat{v}_{tf} - n_f n_f). \quad (A2) \]

In this manner, this term first of all shifts the energy \(f \) and \(c \) levels. Since such shifts are already included in \[\mathcal{H}_3 \] via the terms \(\sim \lambda_f \) and \(\lambda \), respectively, to be calculated self-consistently anyway, we can disregard them. This is particularly so in the interesting us heavy-fermion-liquid regime \((\hat{v}_{tf}) \approx 1 \) \((n_f \rightarrow 1) \), and then

\[U_{cf} \sum_{<im>} \hat{v}_{tf} \hat{n}_m \equiv U_{cf} \sum_{<im>} (\hat{v}_{tf} - 1) \hat{n}_m + U_{cf} \sum_{<im>} \hat{n}_m. \quad (A3) \]

In effect, the first term is relatively small and hence can be decoupled in the Hartree-Fock manner. Such reasoning justifies qualitatively the fact of neglecting the Falicov-Kimball term in our mean-field-like approach, at least in the heavy-fermion limit.

Appendix B: The Fukushima local-constraint scheme of evaluating the expectation values

In order to provide an insight into the procedure of calculating the expectation values in the Fukushima local-constraint scheme, we present here the detailed evaluations of the average representing antiferromagnetic Kondo coupling \(\hat{K} \equiv \hat{S}_i \cdot \hat{s}_m - \frac{\hat{v}_{fS} \hat{n}_m}{1} + \frac{\hat{v}_{fS} \hat{n}_m}{1} \) from Eq. (4). After performing simple algebraic manipulations we can present this term in the following form:

\[\hat{K}_i = -\hat{N}_i \hat{s}_f (1 - \hat{N}_i \hat{s}_f) c_{m\sigma}^\dagger c_{m\sigma} - c_{m\sigma}^\dagger \hat{f}_{i\sigma} \hat{f}_{i\sigma} c_{m\sigma}. \quad (B1) \]

According to \[\mathcal{B} \] we can present expectation value of above operator as

\[\langle \hat{K}_i \rangle = -\langle \mathcal{P} \hat{N}_i \hat{s}_f (1 - \hat{N}_i \hat{s}_f) c_{m\sigma}^\dagger c_{m\sigma} \mathcal{P} \rangle_0 \]

\[-\langle \mathcal{P} c_{m\sigma}^\dagger \hat{f}_{i\sigma} \hat{f}_{i\sigma} c_{m\sigma} \mathcal{P} \rangle_0 / \langle \mathcal{P} \rangle_0. \quad (B2) \]

where projector \(\mathcal{P} \) can be presented in the following form

\[\mathcal{P}_i = \lambda^{\hat{N}_i^2/2} \lambda^{\hat{N}_i^2/2} (1 - \hat{N}_i \hat{N}_i) \]

\[= (1 - \hat{N}_i) (1 + \sqrt{\lambda \hat{N}_i} (1 - \hat{N}_i). \quad (B3) \]

The uncorrelated average of the norm is

\[\langle \mathcal{P}_i^2 \rangle_0 = \frac{(1 - n_{if})(1 - n_{if})}{1 - n_{if}}. \quad (B4) \]

Using the Wick theorem we can easily calculate the following averages as

\[\langle \mathcal{P}_i \hat{N}_i \hat{s}_f (1 - \hat{N}_i \hat{s}_f) c_{m\sigma} \mathcal{P}_i \rangle_0 = \langle \lambda \hat{N}_i \hat{s}_f (1 - \hat{N}_i \hat{s}_f) c_{m\sigma} \rangle_0 \]

\[= \lambda \hat{N}_i \hat{s}_f (1 - \hat{N}_i \hat{s}_f) n_{i\sigma} + n_{if} \gamma^*_i \gamma^*_i \gamma_{i\sigma}. \quad (B5) \]

Finally,

\[\langle \hat{K}_i \rangle = -n_{if} n_{i\sigma} - n_{if} \gamma^*_i \gamma_{i\sigma} \]

\[- \frac{\gamma_{i\sigma} \gamma^*_i}{\sqrt{(1 - n_{if})(1 - n_{if})}}. \quad (B7) \]

Appendix C: Density of states and effective-mass of renormalized quasiparticles

Using quasiparticle energy spectrum \[\mathcal{H}_1 \] we can evaluate the density of states by performing the sum

\[D(\omega) = \frac{1}{\Lambda} \sum_{k\sigma} \delta(\omega - E_{k\sigma}). \quad (C1) \]

This can be carried out numerically by representing delta function as the Gaussian function with a small finite width. We may also achieve an analytical form for DOS, as follows. The matrix of the coefficients \[\mathcal{C}_a \] from the equation \[\mathcal{H}_1 \] can be shifted\(\mathcal{C}_a \) so that obtained matrix

\[\mathcal{K}_\lambda = \left(\begin{array}{cc} \epsilon^a_{\sigma} & -\tau_{\sigma} \\ -\tau_{\sigma} & \epsilon^a_{\sigma} \end{array} \right), \quad (C2) \]

has a triangular form

\[\mathcal{K}_\lambda + (\lambda + \lambda_f + \lambda_f m \sigma + \mu) \mathbb{I} = \left(\begin{array}{cc} \xi_k - b & -\tau_{\sigma} \\ -\tau_{\sigma} & 0 \end{array} \right), \quad (C3) \]

where \(b = -\lambda_f - \sigma(\lambda_f m - \lambda_m) \) and \(\xi_k = -2\eta(\cos k_x + \cos k_y) \). The eigenvalues of the above matrix are as follows

\[\epsilon^a_{\sigma} = \frac{1}{2} \left(\xi_k - b + n \sqrt{(\xi_k - b)^2 + 4\tau^2_{\sigma}} \right). \quad (C4) \]
Then, it easy to see that the sum

\[D_\ell(\omega) = \frac{1}{\Lambda} \sum_{k_\sigma n} \delta(\omega - \epsilon^n_{k_\sigma}) \]

(C5)

corresponds to the true DOS [C1] shifted by the value \(\lambda + \lambda_f + \lambda_{f,m} + \mu \) To simplify the summation (C5) we use properties of delta function so that \(D_\ell(\omega) \) can be rewritten in the form

\[D_\ell(\omega) = \frac{1}{\Lambda} \sum_{k_\sigma} \sqrt{\xi_k - b)^2 + 4\tau^2_\sigma} \delta(\omega^2 - \omega(\xi_k - b) - \tau^2_\sigma). \]

(C6)

In the thermodynamic limit the energy spectrum is extremely dense so that it can be presented as smooth function and summation can be substituted by integral so that \(\epsilon^n_{k_\sigma} \rightarrow \omega \). Using this we can express \((\xi_k - b) \rightarrow \omega^2 - \tau^2_\sigma \) so that

\[D_\ell(\omega) = \frac{1}{\Lambda} \sum_{k_\sigma} \left(1 + \frac{\tau^2_\sigma}{\omega^2} \right) \delta \left(\xi_k - b - \omega \left(1 - \frac{\tau^2_\sigma}{\omega^2} \right) \right). \]

(C7)

For the noninteracting electrons density of states can be written as the product of a line-shape function and a heaviside function, which ensures that the density of states vanishes outside the band: \(D(\omega) = g(\omega)\Theta(W^2 - 4\omega^2) \), where \(W \) is the width of a band. In the similar way manner Eq. (C7) can be expressed in the form:

\[D_\ell(\omega) = \frac{1}{\Lambda} \sum_{\sigma} \left(1 + \frac{\tau^2_\sigma}{\omega^2} \right) g(\omega)\Theta \left(W^2 - 4f(\omega)^2 \right), \]

(C8)

where \(f(\omega) = b + \omega \left(1 - \frac{V^2}{\omega^2} \right) \). The edges of DOS for interacting DOS are given by the solution of equation \(f(\omega) = 0 \) and are as follows

\[\begin{align*}
\omega_{1\sigma} &= -\sqrt{(b/2 + W/2)^2 + \tau^2_\sigma} - W/4 - b/2, \\
\omega_{2\sigma} &= -\sqrt{(b/2 - W/2)^2 + \tau^2_\sigma} + W/4 - b/2, \\
\omega_{3\sigma} &= \sqrt{(b/2 + W/2)^2 + \tau^2_\sigma} - W/4 - b/2, \\
\omega_{4\sigma} &= \sqrt{(b/2 - W/2)^2 + \tau^2_\sigma} + W/4 - b/2.
\end{align*} \]

(C9)

The DOS has non-zero values only in two intervals \((\omega_{1\sigma}, \omega_{2\sigma}) \) and \((\omega_{3\sigma}, \omega_{4\sigma}) \). The resulting expression for \(D_\ell(\omega) \) is finally as follows:

\[D_\ell(\omega) = \frac{1}{W} \sum_{\sigma i} \left(1 + \frac{\tau^2_\sigma}{\omega^2} \right) \Theta (\omega - \omega_{i\sigma}) (-1)^{i+1}. \]

(C10)

We define the effective mass enhancement of quasiparticles in the standard manner

\[m^*_\sigma = \frac{m^*}{m} = \left(\frac{\partial E^n_{k_\sigma}}{\partial \epsilon^n_{k_\sigma}} \right)^{-1}. \]

(C11)

Using the same substitution as above (i.e., \(E^n_{k_\sigma} \rightarrow \omega \)), we can express the starting energy of free electrons by \(\epsilon^*_{k_\sigma} \rightarrow \omega^2 - \tau^2_\sigma - \omega f/\omega - \epsilon^* \), so that finally the mass enhancement at the Fermi energy is

\[m^*_\sigma = \frac{\partial}{\partial \omega} \left(\frac{\omega^2 - \tau^2_\sigma - \omega f/\omega - \epsilon^*_\sigma}{\omega - \epsilon^*_\sigma} \right) = 1 + \frac{\tau^2_\sigma}{(\epsilon^*_\sigma - \omega)^2} \mid_{\omega=0}. \]

(C12)

This expression is used for numerical calculations in Sec. III.

* Electronic address: olga.howczak@uj.edu.pl
† Electronic address: ufspalek@if.uj.edu.pl

1 H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007).
2 E. D. Bauer, V. S. Zapf, P.-C. Ho, N. P. Butch, E. J. Freeman, C. Sirvent, and M. B. Maple, Phys. Rev. Lett. 94, 046401 (2005).
3 E. D. Bauer, A. D. Christianson, J. S. Gardner, V. A. Sidorov, J. D. Thompson, J. L. Sarrao, and M. F. Hundley, Phys. Rev. B 74, 155118 (2006).
4 S. Drozieger, C. Pfeiffer, M. Uhlarz, H. v. Löhneysen, D. Soutep, W. Löser, and G. Behr, Phys. Rev. B 73, 214413 (2006).
5 Y. Tokiwa, P. Gegenwart, T. Radu, J. Ferstl, G. Sparn, C. Geibel, and F. Steglich, Phys. Rev. Lett. 94, 226402 (2005).
6 P. W. Anderson, Phys. Rev. 124, 41 (1961).
7 J. Kondo, Progress of Theoretical Physics 32, 37 (1964).
8 P. Haen, J. Flouquet, F. Lapierre, P. Lejay, and G. Remenyi, Journal of Low Temperature Physics 67, 391 (1987).
9 V. K. Pecharsky, O.-B. Hyun, and K. A. Gschneider, Phys. Rev. B 47, 11839 (1993).
10 K. Sugiyma, M. Nakashima, M. Futoh, H. Ohkuni, T. Inoue, K. Kindo, N. Kimura, E. Yamamoto, Y. Haga, T. Honma, et al., Physica B 281-282, 244 (2000).
11 J. Spalek and P. Gopalan, J. Phys. France 50, 2869 (1989).
12 J. Spalek, Phys. Rev. B 38, 208 (1988).
13 M. M. Maska, M. Mierzajewski, J. Kaczmarszyk, and J. Spalek, Phys. Rev. B 82, 054509 (2010).
14 J. Karbowski and J. Spalek, Phys. Rev. B 49, 1454 (1994).
15 J. Jedrak and J. Spalek, Phys. Rev. B 81, 073108 (2010).
16 J. Jedrak, K. Kaczmarczyk, and J. Spalek (unpublished), arXiv:1008.0021.
17 In the standard version the interorbital Coulomb interaction (the Falicov-Kimball term) \(\sim U_{ij} \sum_{\langle i\neq j \rangle} N_i \bar{n}_j \) is
missing and plays an important role in the mixed-valence regime, cf. e.g. G. Czycholl, Phys. Rep. 143 277 (1986). The role of this additional term is here only minor, as discussed in Appendix A.

13 M. Matsumoto, M. J. Han, J. Otsuki, and S. Y. Savrasov, Phys. Rev. Lett. 103, 096403 (2009).
14 J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
15 J. Spalek, Acta Phys. Polon. A 111, 409 (2007).
16 J. Spalek and P. Gopalan, Physica B 163, 151 (1990).
17 B. Coqblin and J. R. Schrieffer, Phys. Rev. 185, 847 (1969).
18 M. Matsumoto, M. J. Han, J. Otsuki, and S. Y. Savrasov, Phys. Rev. Lett. 103, 096403 (2009).
19 J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
20 J. Spalek, Acta Phys. Polon. A 111, 409 (2007).
21 J. Spalek and P. Gopalan, Physica B 163, 151 (1990).
22 B. Coqblin and J. R. Schrieffer, Phys. Rev. 185, 847 (1969).
23 H. R. Krishna-murthy, K. G. Wilson, and J. W. Wilkins, Phys. Rev. Lett. 35, 1101 (1975).
24 O. Bodensiek, T. Pruschke, and R. itko, Journal of Physics: Conference Series 200, 012162 (2010).
25 N. Fukushima, Phys. Rev. B 78, 115105 (2008).
26 J. Jedrak and J. Spalek, Phys. Rev. B 83, 104512 (2011).
27 T. M. Rice and K. Ueda, Phys. Rev. Lett. 55, 995 (1985).
28 T. M. Rice and K. Ueda, Phys. Rev. B 34, 6420 (1986).
29 J. Spalek and P. Gopalan, Physica B 163, 151 (1990).
30 B. Coqblin and J. R. Schrieffer, Phys. Rev. 185, 847 (1969).
31 H. R. Krishna-murthy, K. G. Wilson, and J. W. Wilkins, Phys. Rev. Lett. 35, 1101 (1975).
32 O. Bodensiek, T. Pruschke, and R. itko, Journal of Physics: Conference Series 200, 012162 (2010).
33 N. Fukushima, Phys. Rev. B 78, 115105 (2008).
34 J. Jedrak and J. Spalek, Phys. Rev. B 83, 104512 (2011).
35 T. M. Rice and K. Ueda, Phys. Rev. Lett. 55, 995 (1985).
36 T. M. Rice and K. Ueda, Phys. Rev. B 34, 6420 (1986).
37 J. Bauer, Eur. Phys. Journ. B 68, 201 (2009).
38 A. C. Hewson, J. Bauer, and W. Koller, Phys. Rev. B 73, 045117 (2006).
39 J. Bauer and A. C. Hewson, Phys. Rev. B 76, 035119 (2007).
40 H. Aoki, S. Uji, A. K. Albessard, and Y. Ónuki, Phys. Rev. Lett. 71, 2110 (1993).
41 R. G. Goodrich, N. Harrison, A. Teklu, D. Young, and Z. Fisk, Phys. Rev. Lett. 82, 3669 (1999).
42 A. McCollam, R. Daou, S. Julian, C. Bergemann, J. Flouquet, and D. Aoki, Physica B 359-361, 1 (2005).
43 S. Viola Kusminskiy, K. S. D. Beach, A. H. Castro Neto, and D. K. Campbell, Phys. Rev. B 77, 094419 (2008).
44 T. Sugabayashi and A. Tsuruta, J. Phys. Soc. Jpn 79, 124712 (2010).
45 S. Watanabe, A. Tsuruta, K. Miyake, and J. Flouquet, Phys. Rev. Lett. 100, 236401 (2008).
46 N. Harrison, R. G. Goodrich, A. Teklu, B. Balicas, J. S. Brooks, D. Young, Z. Fisk, J. C. Cooley, and J. L. Smith, Physica B 294-295, 234 (2001).
47 Y. Ónuki, R. Settai, K. Sugiyama, T. Takeuchi, T. C. Kobayashi, Y. Haga, and E. Yamamoto, J. Phys. Soc. Jpn 73, 769 (2004).
48 S. Onari, H. Kontani, and Y. Tanaka, J. Phys. Soc. Jpn 77, 023703 (2008).
49 A. Wasserman, M. Springford, and A. C. Hewson, J. Phys.: Condense Matter 1, 2669 (1989).
50 S. Nakamura, M. Endo, H. Yamamoto, T. Iishiki, N. Kimura, H. Aoki, T. Nojima, S. Otani, and S. Kunii, Phys. Rev. Lett. 97, 237204 (2006).
51 T. Tayama, S. Honma, K. Tenya, H. Amitsuka, T. Sakakibara, and S. Kunii, Physica B 259-261, 32 (1999).
52 M. Hiroi, M. Sera, N. Kobayashi, and S. Kunii, Phys. Rev. B 55, 8339 (1997).
53 R. Doradziński and J. Spalek, Phys. Rev. B 56, R14239 (1997).
54 G. Knebel, D. Aoki, J.-P. Brison, L. Howald, G. Lapertot, J. Panarin, S. Raymond, and J. Flouquet, physica status solidi (b) 247, 557 (2010).
55 N. Kimura, K. Ito, K. Saitoh, Y. Umeda, H. Aoki, and T. Terashima, Phys. Rev. Lett. 95, 247004 (2005).
56 R. R. Urbano, B.-L. Young, N. J. Curro, J. D. Thompson, L. D. Pham, and Z. Fisk, Phys. Rev. Lett. 99, 146402 (2007).
57 K. S. D. Beach (unpublished), arXiv:cond-mat/0509778.