Heat flow within convex sets

James Dibble

December 2, 2014

Abstract

Solutions to the heat equation between Riemannian manifolds, where the domain is compact and possibly has boundary, will not leave a compact and locally convex set before the image of the boundary does.

1 Acknowledgements

These results are sketched in my doctoral dissertation [D]. They were proved while I was a graduate student at Rutgers University–New Brunswick, during which time I benefitted greatly from the guidance of my dissertation advisor, Xiaochun Rong, as well as from conversations with Penny Smith and Armin Schikorra. Part of this work was completed while I was visiting Capital Normal University in Beijing.

2 Introduction

In their foundational paper [ES], Eells–Sampson invented the harmonic map heat flow for maps between Riemannian manifolds. If M is a compact Riemannian manifold without boundary, N a Riemannian manifold, and $u_0 : M \to N$ a C^1 map, this flow is a solution $u : M \times [0, \varepsilon) \to N$ to their heat equation

$$\frac{\partial u}{\partial t} = \tau_u$$

$$u(\cdot, 0) = u_0$$

(1)

Here, τ_u denotes the tension field of u, which is the trace of the second fundamental form of its positive time-slices. Eells–Sampson proved short-term existence and uniqueness of solutions to (1) for any C^1 initial data. The case where $\partial M \neq \emptyset$ was handled by Hamilton [H], who proved short-term existence and uniqueness of solutions to the corresponding Dirichlet problem. Hamilton also proved that solutions to (1) will not leave a compact and locally convex subset of N with codimension zero and smooth boundary before the image of ∂M does. The goal of this paper is to generalize that result to arbitrary compact and locally convex sets.

Theorem 1. Let M and N be Riemannian manifolds, where M is compact and possibly has boundary $\partial M \neq \emptyset$. Let $Y \subseteq N$ be a compact and locally convex set. Suppose $u : M \times [a, b] \to N$ is a continuous function that, in the interior of $M \times [a, b]$, is smooth and satisfies $\frac{\partial u}{\partial t} = \tau_u$. If $u(M \times \{a\}) \subseteq Y$ and, in the case that $\partial M \neq \emptyset$, $u(\partial M \times [a, b]) \subseteq Y$, then $u(M \times [a, b]) \subseteq Y$.

The proof combines ideas of Hamilton [H] and L. Christopher Evans [E]. Hamilton’s idea was to apply a maximum principle to the composition of the flow with the signed distance to ∂Y. Evans proved a similar result for solutions to certain reaction-diffusion systems that map into convex subsets of \mathbb{R}^n. His argument
resembled Hamilton's, with the additional insight that, when ∂Y is not smooth, that composition is still a viscosity solution to the differential inequality needed to apply the corresponding maximum principle. Combining these arguments allows one to remove the assumption that ∂Y is smooth. To handle the case where Y has arbitrary codimension, one need only change the function that's composed with the flow; rather than work with the signed distance to ∂Y, one may work with the distance to Y itself.

3 Convexity

A subset $Y \subseteq N$ is strongly convex if, given any $p,q \in Y$, there exists a unique minimal geodesic $\gamma : [0,1] \to N$ such that $\gamma(0) = p$, $\gamma(1) = q$, and $\gamma([0,1]) \subseteq Y$. The convexity radius of N will be denoted $r : N \to (0,\infty]$. This is the continuous function characterized by the fact that, for each $y \in N$, $r(y) = \max\{\varepsilon | B(x,\delta) \text{ is strongly convex for all } 0 < \delta < \varepsilon\}$. A subset $Y \subseteq N$ is locally convex if, for each $y \in Y$, there exists $0 < \varepsilon(y) < r(y)$ such that $Y \cap B(y,\varepsilon(y))$ is strongly convex. The following theorem about the structure of locally convex sets was proved by Ozols [O] and, independently, Cheeger–Gromoll [CG].

Theorem 2. (Ozols, Cheeger–Gromoll) Let N be a Riemannian manifold. If $Y \subseteq N$ is a closed and locally convex set, then Y is an embedded submanifold of N with smooth and totally geodesic interior and possibly non-smooth boundary.

It's also shown in [CG] that, at each $p \in Y$, Y has a unique tangent cone $C_p = \{t \cdot \exp_p^{-1}(y) | y \in Y \cap B(p, r(p)), t \geq 0\}$. It follows from Theorem 2 that, when p lies in the interior of Y, $C_p = T_p Y$.

The following theorem about metric projection onto locally convex sets was proved by Walter [W].

Theorem 3. (Walter) Let N be a Riemannian manifold. If $Y \subseteq N$ is a closed and locally convex set, then there exists an open set $U \subseteq N$ containing Y such that the following hold:

(i) For each $y \in U$, there exists a unique $\pi(y) \in Y$ such that $d(y, \pi(y)) = d(y, Y)$;

(ii) The geodesic $t \mapsto \exp_y \left(t \cdot \exp_y^{-1}(\pi(y)) \right)$, defined from $[0,1]$ into N, remains in U and is the unique minimal geodesic connecting y to $\pi(y)$;

(iii) The map $y \mapsto \pi(y)$ is locally Lipschitz and, therefore, differentiable almost everywhere;

(iv) The map $h : U \times [0,1] \to U$ defined by $h(y,t) = \exp_y \left(t \cdot \exp_y^{-1}(\pi(y)) \right)$ is a locally Lipschitz strong deformation retraction of U onto Y.

If Y in the above is compact, one may take $U = B(Y, \varepsilon)$ for some $\varepsilon > 0$.

4 Proof of the main theorem

Fix everything as in the statement of Theorem 1. By Theorem 2, there exists $\varepsilon > 0$ such that the projection $\pi : B(Y, \varepsilon) \to Y$ is well-defined and continuous. Because $B(Y, 2\varepsilon)$ is compact, standard curvature comparison arguments imply the existence of a lower bound $0 < R < r(B(Y, \varepsilon))$ for the focal radius $r_f(B(Y, \varepsilon)) = \inf_{y \in B(Y, \varepsilon)} r_f(y)$, where by definition

$$r_f(p) = \min\{T > 0 | \exists \text{ a non-trivial normal Jacobi field } J \text{ along a unit-speed geodesic } \gamma$$

$$\text{ with } \gamma(0) = p, J(0) = 0, \text{ and } ||J'||(T) = 0\}.$$
dim(N). Let \(v \in H^1 \) have unit length, so that \(H^1 = \{ tv \mid t \in \mathbb{R} \} \). For each \(0 \leq t < R \), the exponential map restricted to the normal bundle of the embedded submanifold \(\exp_q(H \cap B(0,R)) \) is a local diffeomorphism around the vector \(-tv\). It follows that there exists \(0 < \delta_H < R \) such that, for \(S_H = \exp_q(H \cap B(0,\delta_H)) \) and \(P_H = \{ w \in S_H^2 \mid \|w\| < \epsilon \} \), the map \(\exp|_{P_H} \) is a diffeomorphism onto its image. Similarly, there exists an open set \(U_v \) containing \(\exp(-tv) \) such that, for each \(z \in U_v \), the minimal geodesic \(\gamma_z \) connecting \(z \) to \(q \) remains inside \(\exp(P_H) \). Without loss of generality, one may take \(U_v \) to be small enough that \(U_v \cap S_H = \emptyset \).

Let \(SY = \{ w_y \in TN \mid y \in Y, \| y \| = 1 \} \). Denote by \(\mathcal{S}_{G(n-1)}(Y(e)) \) the space of bilinear forms on hyperplanes in \(G(n-1, \mathbb{B}(Y,e)) \). Define a function \(\mu : \mathcal{S}_{G(n-1)}(Y(e)) \times [0, \epsilon) \to \mathcal{S}_{G(n-1)}(Y(e)) \) by setting \(\mu(w_y, t) \) equal to the second fundamental form of the level set of \(d_y \) through \(\exp_y(-tv) \); equivalently, \(\mu(w_y, t) \) is the Hessian of \(d_y \) at \(\exp_y(tv) \). With respect to the usual smooth structure on \(\mathcal{S}_{G(n-1,N)} \) inherited from its structure as a vector bundle over \(G(n-1,N) \), the map \(\mu \) is smooth. Let \(\mu : \mathcal{S}_{G(n-1)}(Y(e)) \times [0, \epsilon) \to \mathbb{R} \) be the function that takes \((y, t)\) to the minimum eigenvalue of \(\mu(y, t) \).

Lemma 4. The function \(\mu \) is Lipschitz continuous.

Proof. Let \(V \) be a open subset of \(N \) that’s small enough that its closure is compact and admits an orthonormal frame \(\{ e_1, \ldots, e_{n-1} \} \). For each \(A \in \mathcal{S}_{G(n-1)}(Y(e)) \) and \(1 \leq i, j \leq n-1 \), let \(\varsigma_{ij}(A) = A(e_i, e_j) \). Write \(A_c = [\varsigma_{ij}(A)]_{1 \leq i, j \leq n-1} \). Then the eigenvalues of \(A_c \) are equal to the eigenvalues of \(A_c \). In particular, for the minimum eigenvalue function \(\nu \), one has that \(\nu(A) = \nu(A_c) \) on \(G(n-1, V) \). Following Hamilton, one computes

\[
\| \nu(A) - \nu(B) \| = \| \nu(A_c) - \nu(B_c) \| \leq \| A_c - B_c \| \leq C \sum_{i,j=1}^{n-1} |\varsigma_{ij}(A) - \varsigma_{ij}(B)|,
\]

where \(\| \cdot \| \) denotes the usual matrix norm and the constant \(C \) exists because all norms on a finite-dimensional space are equivalent. Since the \(\varsigma_{ij} \) vary smoothly, the term on the right is a Lipschitz continuous function on \(\mathcal{S}_{G(n-1)} \times \mathcal{S}_{G(n-1)} \), i.e., \(\| \varsigma_{ij}(A) - \varsigma_{ij}(B) \| \leq D \| A(B, B) \| \), that latter distance being measured with respect to the natural metric on \(\mathcal{S}_{G(n-1,N)} \). Thus \(\| \nu(A) - \nu(B) \| \leq CD \| A(B, B) \| \) and \(\nu \) is locally Lipschitz. Since a locally Lipschitz function on a compact set is in fact Lipschitz, the restriction \(\nu|_{\mathcal{S}_{G(n-1)}(Y(e))} \) is Lipschitz. Because \(\mu \) can be written as the composition of \(\nu|_{\mathcal{S}_{G(n-1)}(Y(e))} \) with a smooth function defined on a compact set, \(\mu \) is Lipschitz.

\[\square\]

For any \(y \in B(Y,e) \setminus Y \), let \(\gamma_y : [0, 2d(y, Y)] \to B(Y,e) \) the unique minimal geodesic with \(\gamma_y(0) = y \) and \(\gamma_y(d(y, Y)) = \pi(y) \), and set \(v = \gamma_y'(d(y, Y)) \) and \(H = H_v = v^\perp \) in the above construction. For simplicity of notation, write \(I_y = I_y(\gamma_y) \); since this is a bilinear form on the tangent space to the level set of \(d_{S_{H_v}} \) through \(y \), it accepts pairs of vectors, i.e., \(I_y = \mathbb{B}(\gamma_y, \gamma_y) \). Denote by \(\sigma_y \) the projection from \(T_y N \) onto the tangent space of the level set of \(d_{S_{H_v}} \) through \(y \). Denote by \(u_* \) the spatial derivative of \(u \), i.e., the restriction of \(Du \) to the tangent space of \(M \).

Lemma 5. Suppose \(u : M \times [a,b] \to B(Y,e) \) is a continuous function that, in the interior of \(M \times [a,b] \), is smooth and satisfies the heat equation \(\frac{D}{dt} u = \tau_u \). Let \((x, t)\) be a point in the interior of \(M \times [a,b] \) such that \(y = u(x, t) \in B(Y,e) \setminus Y \). Then \(\rho = d_{S_{H_v}} u \) satisfies \(D\rho = \frac{D\rho}{dt} + \text{trace}(I_y(\sigma_y \circ u_*, \sigma_y \circ u_*)) \) at \((x, t)\).

Proof. On a small neighborhood of \((x, t)\), \(u \) remains within \(\exp(P_{H_v}) \). In any local coordinates \((x_1, \ldots, x_m)\) for \(M \) around \(x \) and \((y_1, \ldots, y_n)\) for \(N \) around \(y \), Hamilton computes

\[
g^{ij} \left[\frac{\partial^2 d_{S_{H_v}}}{\partial y^i \partial y^j} - \frac{\partial d_{S_{H_v}}}{\partial y^i} \Gamma^i_{jk} \right] \frac{\partial u^k}{\partial x^j} \frac{\partial u^j}{\partial x^i} = \Delta \rho - \frac{D\rho}{dt}.
\]
By the definition of viscosity solution, if \(f \) is a viscosity solution on \(M \) and \(\Gamma_{\beta\gamma}^\alpha \) are the Christoffel symbols of the coordinates on \(N \). The matrix \([\sigma_{\beta\gamma}]_{1 \leq \beta, \gamma \leq n-1} \), where \(\sigma_{\beta\gamma} = \frac{\partial^2 d_{S,y}}{\partial y^\beta \partial y^\gamma} - \frac{\partial d_{S,y}}{\partial y^\beta} \Gamma_{\beta\gamma}^\alpha \frac{\partial}{\partial x^\alpha} \), is the coordinate representative of \(\Pi_y \). In exponential normal coordinates for \(M \) around \(x \), \(g^{ij} \) becomes the Kronecker delta; in normal coordinates with respect to \(\exp|S,y| \) within \(\exp(P_{H_y}) \), \(\sigma_{\beta\gamma} = \delta_{\beta\gamma} = 0 \) for all \(1 \leq \beta, \gamma \leq n \). Writing \(m = \dim(M) \), one has that

\[
g^{ij} \left[\frac{\partial^2 d_{S,y}}{\partial y^\beta \partial y^\gamma} - \frac{\partial d_{S,y}}{\partial y^\beta} \Gamma_{\beta\gamma}^\alpha \frac{\partial}{\partial x^\alpha} \right] \frac{\partial u^\beta}{\partial x^i} \frac{\partial u^\gamma}{\partial x^j} = \sum_{i=1}^m \left[\frac{\partial^2 d_{S,y}}{\partial y^\beta \partial y^\gamma} - \frac{\partial d_{S,y}}{\partial y^\beta} \Gamma_{\beta\gamma}^\alpha \frac{\partial}{\partial x^\alpha} \right] \frac{\partial u^\beta}{\partial x^i} \frac{\partial u^\gamma}{\partial x^j}
\]

\[
= \sum_{i=1}^m \Pi_y \left(\sigma_y \circ u_* \left(\frac{\partial}{\partial x^i} \right), \sigma_y \circ u_* \left(\frac{\partial}{\partial x^j} \right) \right)
\]

\[
= \text{trace} \left(\Pi_y (\sigma_y \circ u_*, \sigma_y \circ u_*) \right).
\]

\[\square\]

Lemma 6. The subspace \(H_y \) is a supporting hyperplane to \(Y \), i.e., the closure \(\overline{C}_{\Pi(y)} \) of the tangent cone at \(\pi(y) \) is contained in a closed half-space \(\overline{H}_y \) with boundary \(H_y \). Moreover, \(\exp_{\Pi(y)}^{-1}(y) \notin \overline{H}_y \).

Proof. This is a consequence of the first variation formula for length.

\[\square\]

Lemma 7. The function \(d_{S,y} \) touches \(d_y \) from below at \(y \), i.e., \(d_{S,y}(y) = d_y(y) \) and \(d_{S,y} \leq d_y \) near \(y \).

Proof. Because \(\exp \mid_P \) is a diffeomorphism, \(d_{S,y}(y) = d_y(\pi(y)) = d_y(y) \). By Lemma 6, for any \(z \in U_y \), the geodesic \(\gamma \) must hit \(S_y \) before it hits \(Y \). This shows that \(d_{S,y} \leq d_y \) within \(U_y \).

\[\square\]

I will also use the following maximum principle for viscosity solutions, which generalizes the maximum principle of Hamilton.

Theorem 8. Let \(M \) be a compact Riemannian manifold, possibly with boundary. Suppose that \(f : M \times [a,b] \to \mathbb{R} \) is a continuous function such that \(f \leq 0 \) on \(M \times [a] \) and, in the case that \(\partial M \neq \emptyset \), on \(\partial M \times [a,b] \). If there exists \(C \in \mathbb{R} \) such that, at any point in the interior of \(M \times [a,b] \) where \(f > 0 \), \(f \) is a viscosity solution to \(\frac{\partial f}{\partial t} - \Delta f - C f \leq 0 \), then \(f \leq 0 \) on \(M \times [a,b] \).

Proof. The trick is to define a function \(h : M \times [a,b] \to \mathbb{R} \) by \(h(x,t) = e^{-Ct}f(x,t) \). Then \(h > 0 \) if and only if \(f > 0 \). Fix \(a < T < b \). Assume \(h \) is positive somewhere on \(M \times [a,T] \). Then, by compactness, \(h \) achieves a positive maximum on \(M \times [a,T] \), say at \((x_0,t_0)\). By assumption, \(x_0 \notin \partial M \) and \(0 < t_0 < T < b \), so \((x_0,t_0)\) lies in the interior of \(M \times [a,b] \), and \(h \) satisfies \(\frac{\partial h}{\partial t} - \Delta h + h \leq 0 \) in the viscosity sense at \((x_0,t_0) \). Because \(x_0 \) is a global maximum of \(h \) on \(M \times \{t_0\} \), one has that \(\Delta h \leq 0 \) in the viscosity sense there. Let \(\phi \) be a smooth function that touches \(h \) from above at \((x_0,t_0) \), i.e., \(\phi(x_0,t_0) = h(x_0,t_0) \) and \(\phi \geq h \) on an open set around \((x_0,t_0) \). By the definition of viscosity solution, \(\frac{\partial \phi}{\partial t}|_{(x_0,t_0)} - \Delta \phi|_{(x_0,t_0)} + \phi(x_0,t_0) \leq 0 \). Since \(\Delta \phi|_{(x_0,t_0)} \leq 0 \) and \(\phi(x_0,t_0) > 0 \), \(\frac{\partial \phi}{\partial t}|_{(x_0,t_0)} < 0 \). But this implies that the constant function \(\psi(x,t) = h(x_0,t_0) \) touches \(h \) from above at \((x_0,t_0) \), which means that \(\frac{\partial \psi}{\partial t}|_{(x_0,t_0)} - \Delta \psi|_{(x_0,t_0)} + \psi(x_0,t_0) = \psi(x_0,t_0) = h(x_0,t_0) \leq 0 \). This is a contradiction. Thus \(h \leq 0 \) on \(M \times [a,T] \), and, letting \(T \to b \), the result follows by continuity.

\[\square\]

It is now possible to prove the main theorem.
Proof. (Theorem [1]) Let $d_Y : N \to [0, \infty)$ denote the distance to Y. The idea is to show that, wherever the composition $\sigma = d_Y \circ u$ is positive and sufficiently small, it is a viscosity solution to an equation of the form $\frac{\partial \sigma}{\partial t} - \Delta \sigma - C \sigma \leq 0$. The result will then follow from Theorem 8.

By Lemma 4, μ is Lipschitz continuous. Let $C_0 \geq 0$ be a Lipschitz constant for μ. Since the exponential image of a hyperplane is totally geodesic at the image of the origin, $\mu(w, 0) = 0$ for all w. Therefore, $|\mu(w, t) - \mu(w, 0)| \leq C_0 |t - 0| = C_0 t$ and, consequently, $\mu(w, t) \geq -C_0 t$. By compactness, $\|u_*\|$ is bounded above on $M \times [a, b]$, say by $D_0 \geq 0$. Let $C = mD_0C_0$. For all $y \in B(Y, \varepsilon)$ and $v = \gamma'_r (d(y, Y))$, one has that

$$\text{trace}(Y, (\sigma_y \circ u_*, \sigma_y \circ u_*)) \geq mD_0\mu\left(\frac{v}{\|v\|}, d(y, Y)\right) \geq -mD_0C_0 d(y, Y) = -C d(y, Y). \quad (2)$$

Assume that, somewhere in $M \times [a, b]$, u maps outside of Y. This is equivalent to the statement that $\sigma > 0$ somewhere in $M \times [a, b]$. Because $u(M \times [a]) \subset Y$ and $\|u_*\| \leq D_0$, one may, without loss of generality, shrink b so that $u(M \times [a, b]) \subset B(Y, \varepsilon)$ and still have that $\sigma > 0$ somewhere in $M \times [a, b]$. Then $\sigma = 0$ on $M \times [a]$ and, in the case that $\partial M \neq 0$, on $\partial M \times [a, b]$. It will now be shown that, at any interior point (x, t) of $M \times [a, b]$ such that $\sigma(x, t) > 0$, σ is a viscosity solution to $\frac{\partial \sigma}{\partial t} - \Delta \sigma - C \sigma \leq 0$. By (2), $\frac{\partial \sigma}{\partial t} = \Delta \rho - \text{trace}(Y, (\sigma_y \circ u_*, \sigma_y \circ u_*))) \leq \Delta \rho + C \rho$ at (x, t), so at that point ρ satisfies $\frac{\partial \rho}{\partial t} - \Delta \rho - C \rho \leq 0$. Let ϕ be any smooth function that touches σ from below at (x, t), i.e., $\phi(x, t) = \sigma(x, t)$ and $\phi \geq \sigma$ on a neighborhood of (x, t). By Lemma 7, ρ touches σ from below at (x, t), which implies that ϕ touches ρ from above at (x, t). Thus $\frac{\partial \rho}{\partial t} = \frac{\partial \sigma}{\partial t}$, $\Delta \phi \geq \Delta \rho$, and $\phi \geq \rho$ at (x, t). So $\frac{\partial \rho}{\partial t} - \Delta \phi - C \phi \leq \frac{\partial \rho}{\partial t} - \Delta \rho - C \rho \leq 0$ at (x, t). This shows that σ is a viscosity solution to $\frac{\partial \sigma}{\partial t} - \Delta \sigma - C \sigma \leq 0$ at (x, t). Theorem 8 implies that $\sigma = 0$ on $M \times [a, b]$, a contradiction.

References

[CG] Cheeger, Jeff, and Detlef Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96 (1972), 413–443.

[D] Dibble, James, Totally geodesic maps into manifolds with no focal points, Ph.D. Dissertation. Rutgers University–New Brunswick (2014).

[E] Evans, Lawrence Christopher, A strong maximum principle for parabolic systems in a convex set with arbitrary boundary, Proc. Amer. Math. Soc. 138 (2010), 3179–3185.

[ES] Eells, James, Jr., and Joseph Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160.

[H] Hamilton, Richard, Harmonic maps of manifolds with boundary, Lecture Notes in Mathematics, Vol. 471. Springer-Verlag, Berlin-New York (1975).

[O] Ozols, Vilnis, Critical points of the displacement function of an isometry, J. Differential Geometry 3 (1969), 411–432.

[W] Walter, Rolf, On the metric projection onto convex sets in Riemannian spaces, Arch. Math. 25 (1974), 91–98.