Optical implementation of the encoding of two qubits to a single qutrit

Lucie Bartůšková,1 Antonín Černoch,1 Radim Filip,1,2 Jaromír Fiurášek,1 Jan Soubusta,3 and Miloslav Dušek1

1Department of Optics, Palacký University, 17. listopadu 50, 772 00 Olomouc, Czech Republic
2Institut für Optik, Information und Photonik, Max-Planck Forschungsguppe, Universität Erlangen-Nürnberg, Günther-Scharowsky str. 1, 91058, Erlangen, Germany
3Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic, 17. listopadu 50A, 779 07 Olomouc, Czech Republic

(Dated: June 26, 2021)

We have devised an optical scheme for the recently proposed protocol for encoding two qubits into one qutrit. In this protocol, Alice encodes an arbitrary pure product state of two qubits into a state of one qutrit. Bob can then restore error-free any of the two encoded qubit states but not both of them simultaneously. We have successfully realized this scheme experimentally using spatial-mode encoding. Each qubit (qutrit) was represented by a single photon that could propagate through two (three) separate fibers. We theoretically propose two generalizations of the original protocol. We have found a probabilistic operation that enables to retrieve both qubits simultaneously with the average fidelity above 90% and we have proposed extension of the original encoding transformation to encode N qubits into one (N + 1)-dimensional system.

PACS numbers: 03.67.-a, 42.50.-p

I. INTRODUCTION

A full description of the most elementary two-level quantum system (a qubit) in a pure state requires two real numbers – the angular coordinates of the point on the surface of the Bloch sphere which specifies the state. Although an infinite amount of classical information is required for its full characterization, the qubit can be used to transmit only a finite amount of classical information – a single bit at most. This is an example of the celebrated Holevo bound 1 which states that no more than \( \log_2 d \) bits of information could be extracted from a single copy of a \( d \)-level quantum system. The deep reason for this lies in the process of quantum measurement which cannot perfectly discriminate non-orthogonal quantum states and consequently the optimal strategy to encode information is to prepare the system in one out of \( d \) orthogonal states.

Going beyond qubits, a qutrit (three level system) in a pure state is specified by four real numbers (up to an irrelevant overall phase). This is the same number of parameters which is necessary to specify two uncorrelated qubits in a pure product state. Based on this observation, Grudka and Wojcik (GW) investigated whether a product state of two qubits could be somehow encoded onto a single qutrit 2. Interestingly, they showed that this is indeed possible, at least to certain extent. In particular they proposed an encoding and decoding strategy which allows perfectly extract either the first or the second qubit from the qutrit with average probability 2/3.

In the present paper we report on the experimental demonstration of the GW protocol for optical qubits represented by single photons propagating in two different optical fibers. This way of encoding has been used quite rarely so far but it is very suitable for our present purpose. In particular, it allows for very natural transition from qubits to a qutrit encoded into a path of a single photon which could propagate in three different optical fibers. This approach might be thus advantageous in all situations where one wishes to exploit higher-dimensional Hilbert spaces.

In addition to the experimental realization of the original GW protocol, we have also extended it in several ways. First, we have theoretically demonstrated that it is possible, with a certain probability, to extract from the qutrit both qubits simultaneously. Of course, this decoding is imperfect but the average fidelity of the decoded qubits, \( F \approx 0.9023 \), is surprisingly high. We have also shown that the protocol can be easily generalized for several qubits or even qudits.

The rest of the paper is organized as follows. In Sec. II we briefly review the GW protocol and present the optimal procedure for probabilistic simultaneous decoding of both qubits. We also describe here the extension of the protocol to more than two qubits and to qudits. The experimental setup is described in Sec. III and the experimental results are presented in Sec. IV. The paper ends with a brief summary and conclusions in Sec. V.

II. THEORY

Let us begin by briefly reviewing the GW protocol. Consider two qubits labeled 1 and 2 prepared in pure states,

\[ |\psi_1\rangle = \alpha_1|0\rangle_1 + \beta_1|1\rangle_1, \quad |\psi_2\rangle = \alpha_2|0\rangle_2 + \beta_2|1\rangle_2. \quad (1) \]

Let \(|0\rangle, |1\rangle, |2\rangle\) be the basis in the Hilbert space of the qutrit into which we will encode the qubits. The probabilistic encoding operation then consists of the following mapping,

\[ |0\rangle_1|0\rangle_2 \rightarrow |0\rangle, \quad |0\rangle_1|1\rangle_2 \rightarrow |1\rangle. \]
Note that the state $|1\rangle_1|0\rangle_2$ is filtered out in the mapping which is necessary in order to accommodate the two qubits into a single qutrit. Consequently, the normalized state of the qutrit after the retrieval reads

$$|\Psi\rangle = \frac{1}{\sqrt{N}} (\alpha_1 \alpha_2 |0\rangle + \alpha_1 \beta_2 |1\rangle + \beta_1 \beta_2 |2\rangle),$$

where $N = 1 - |\beta_1|^2 - |\alpha_2|^2$ is the probability of successful encoding. In the decoding procedure, the qutrit is projected onto a two-dimensional subspace. The projectors corresponding to the decoding of the first or the second qubit read:

$$\Pi_{1+} = |1\rangle\langle 1| + |2\rangle\langle 2|, \quad \Pi_{1-} = |0\rangle\langle 0|,$$

$$\Pi_{2+} = |0\rangle\langle 0| + |1\rangle\langle 1|, \quad \Pi_{2-} = |2\rangle\langle 2|.$$  

Projection onto $\Pi_{j+}$ indicates successful decoding of the $j$th qubit while $\Pi_{j-}$ indicates failure. Considering the decoding of the first qubit, the resulting state is given by

$$|\psi_{\text{out}}\rangle = \Pi_{1+} |\Psi\rangle = \frac{1}{\sqrt{N}} \beta_2 (\alpha_1 |1\rangle + \beta_1 |2\rangle),$$

hence $|\psi_{\text{out}}\rangle \propto |\psi_1\rangle$ and the decoding is perfect. The probability of the successful decoding of the first qubit is $|\beta_2|^2/N$. Assuming uniform distribution of the qubits on the surface of the Bloch sphere, the average probability of successful encoding and decoding is $1/2$. The same holds for the extraction of the second qubit.

The above described procedure allows to perfectly extract one qubit from the qutrit. We have investigated also an alternative decoding strategy, where both qubits are retrieved simultaneously. This unavoidably introduces some noise. Let $P_j$ denote the (generally mixed) state of the $j$th retrieved qubit, then we can quantify the quality of the decoding procedure by the fidelities $F_j = F_1(\psi_1)$ and $F_2 = F_2(\psi_2)$ averaged over all possible input states, where $F_1(\psi_1) = |\langle \psi_1 | \rho_1 | \psi_1 \rangle|^2$ and $F_2(\psi_2) = |\langle \psi_2 | \rho_2 | \psi_2 \rangle|^2$. We have concentrated on a symmetric retrieval where $|\psi_1\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$ and with the help of the techniques introduced in Ref. [1] we have determined the optimal probabilistic decoding operation which maximizes the average fidelity $F$. This operation explicitly reads

$$|0\rangle \rightarrow \frac{1}{\sqrt{2}} |0\rangle_1 |0\rangle_2,$$

$$|1\rangle \rightarrow |0\rangle_1 |1\rangle_2,$$

$$|2\rangle \rightarrow \frac{1}{\sqrt{2}} |1\rangle_1 |1\rangle_2,$$

and the corresponding average fidelity is

$$F = \frac{4 + \sqrt{2}}{6} \approx 0.9024.$$  

Note also that the procedure is not covariant and various states are encoded and decoded with different probabilities and fidelities. For a given fixed state of the first qubit $|\psi_1\rangle = \cos \frac{\varphi}{2} |0\rangle_1 + e^{i \varphi} \sin \frac{\varphi}{2} |1\rangle_1$, the probability of success of the joint encoding/decoding procedure averaged over all possible states of the second qubit is given by

$$P_j(\vartheta) = \frac{1}{4} + \frac{1}{2} \cos^2 \frac{\vartheta}{2},$$

and the corresponding normalized fidelity of the retrieved state reads

$$F_j(\vartheta) = \frac{1 + 2 \cos^2 \frac{\vartheta}{2} + \sqrt{2} \sin^2 \vartheta}{1 + 2 \cos^2 \vartheta}.$$  

Note that $P_1$ and $F_1$ do not depend on the phase $\varphi$.

The scheme can be also extended to probabilistic encoding and decoding of $N$ qubits $|\psi_j\rangle = \alpha_j |0\rangle_j + \beta_j |1\rangle_j$, $j = 1, \ldots, N$ into a $(N+1)$-dimensional state. The encoding strategy is a straightforward generalization of the two-qubit procedure [2].

$$j \Theta \prod_{k=1}^{j-1} |0\rangle_k \rightarrow |j\rangle, \quad j = 0, \ldots, N.$$  

This transformation produces the following state of the $(N+1)$-dimensional system,

$$|\Psi_{N+1}\rangle = \prod_{j=0}^{N} \prod_{k=1}^{j} \beta_k \prod_{l=j+1}^{N} \alpha_l |j\rangle.$$  

The POVM which decodes $n$-th qubit has the form

$$\Pi_{n+} = |n-1\rangle\langle n-1| + |n\rangle\langle n|,$$

$$\Pi_{n-} = I - \Pi_{n+},$$

where $I$ denotes the identity operator.

The protocol can be further generalized to qudits. If we possess $N$ qudit states then we can encode them to one $[N(d-1)+1]$-dimensional system in such a way that an arbitrary single qudit can be perfectly extracted from that state with a certain probability. The principle is the same as in the previous cases. To illustrate it, let us consider encoding of two qudits

$$|\phi_1\rangle = \alpha_1 |0\rangle_1 + \beta_1 |1\rangle_1 + \gamma_1 |2\rangle_1,$$

$$|\phi_2\rangle = \alpha_2 |0\rangle_2 + \beta_2 |1\rangle_2 + \gamma_2 |2\rangle_2,$$

into the state of a five-dimensional system. The encoding strategy can be expressed as follows,

$$|0\rangle_1 |j\rangle_2 \rightarrow |j\rangle, \quad j = 0, 1, 2,$$

$$|1\rangle_1 |2\rangle_2 \rightarrow |3\rangle,$$

$$|2\rangle_1 |2\rangle_2 \rightarrow |4\rangle.$$  

This results in a five-dimensional state which carries both qudits,

$$|\Phi\rangle \propto \alpha_1 \alpha_2 |0\rangle + \alpha_1 \beta_2 |1\rangle + \alpha_1 \gamma_2 |2\rangle + \beta_1 \gamma_2 |3\rangle + \gamma_1 \gamma_2 |4\rangle.$$
FIG. 1: Setup of the experiment. NLC denotes a nonlinear crystal, A an attenuator, FC a fiber coupler, PM a phase modulator, AG an adjustable air gap, VRC a variable-ratio coupler, and D1-D3 denote detectors.

The decoding POVM elements can be easily inferred from the structure of the state \( |\psi\rangle \) and we obtain,

\[
\Pi_{1+} = \sum_{j=2}^{4} |j\rangle \langle j|, \quad \Pi_{2+} = \sum_{j=0}^{2} |j\rangle \langle j|. \quad (16)
\]

III. DESCRIPTION OF THE EXPERIMENT

Our experimental setup is shown in Fig. 1. The experiment is based on the interplay of the second-order and fourth-order interference. To prepare the two qubits we utilize photon pairs generated by the process of type-I spontaneous parametric down conversion (SPDC) in a 10-mm-long LiIO\(_3\) nonlinear crystal (NLC) pumped by a krypton-ion cw laser (413.1 nm, 180 mW). Downconverted beams filtered by cut-off filters and circular apertures are coupled into single-mode optical fibers. The photons in each generated pair are tightly time correlated. Each of the photons enters a fiber coupler (FC) and splits into two channels. The first qubit is represented by a single photon in fibers \( f1 \) and \( f2 \) while the second qubit corresponds to a single photon in fibers \( f3 \) and \( f4 \). The final state of each qubit is determined by the adjustment of intensity ratio and phase shift between these channels. To control the intensity ratio we use a balanced fiber coupler followed by an attenuator (A) in one of the output arms (instead of a fiber coupler with a variable splitting ratio). I.e., we use a conditional preparation procedure. The phase difference is set by a phase modulator (PM). Equatorial states of qubits are realized simply by changing just the phase difference whereas the losses in both fibers are balanced.

The compression of two qubits into one qutrit is realized by a variable-ratio coupler (VRC) and a subsequent measurement. This operation is probabilistic and it succeeds only if detector D3 fires. VRC mixes modes \( f2 \) and \( f3 \). If a signal on detector D3 is detected there cannot be more than one photon in the remaining fibers \( f1, f2, f4 \). These three modes constitute a qutrit. If the described operation is successful the (non-normalized) state of the qutrit reads

\[
\sqrt{T} \alpha_1 \alpha_2 |001\rangle_{f1f2f4} + (R - T) \alpha_1 \beta_2 |010\rangle_{f1f2f4} + \sqrt{R} \beta_3 \beta_2 |100\rangle_{f1f2f4}, \quad (17)
\]

where \( R \) denotes the reflectance and \( T = 1 - R \) the transmittance of VRC. \( R \) applies between ports \( f2-f2 \) and \( f3-f3 \) whereas \( T \) between \( f2-f3 \) and \( f3-f2 \). \( |001\rangle_{f1f2f4} \) denotes the state with one photon in mode \( f4 \), etc.

To acquire the state of the qutrit in the form given by Eq. (3), suitable for the reverse decoding, a filtration procedure represented by additional attenuations has to be applied. The damping factor \( \eta_1 = (R - T)^2/R \) must be applied in mode \( f1 \), whereas \( \eta_4 = (R - T)^2/T \) in mode \( f4 \). Thus the probability of success of the whole encoding transformation (including the filtration) is \( P = (T - R)^2 (1 - |\beta_1|^2|\alpha_2|^2) \). Now we want to find such a splitting ratio of VRC which maximizes this probability. Of course, it is restricted by conditions \( \eta_1, \eta_4 \leq 1 \). The optimal value of the splitting ratio is \( R = 1/4, T = 3/4 \).

Corresponding damping factors read \( \eta_1 = 1 \) (i.e., no attenuation) and \( \eta_4 = 1/3 \) (in the experiment \( \eta_4 \) is set by increasing the attenuation of the attenuator in fiber \( f5 \)).

We can thus see that an unbalanced coupler lies at the heart of the encoding procedure. In this context it is worth noting that unbalanced beam splitters find several applications in optical quantum information processing ranging from the realization of the quantum logic gates \( \otimes \) to optimal universal \( \otimes \) and phase-covariant cloning of single-photon states.

From the created qutrit one can recover error-free either of the two original qubits but not both of them. Choosing fibers \( f1 \) and \( f2 \) one can decode qubit 1, whereas selecting \( f2 \) and \( f4 \) qubit 2 can be obtained. This procedure is also probabilistic as there is nonzero probability that the photon is in the remaining fiber. To check the states of reconstructed qubits we use an interferometric measurement. Connecting fiber \( f1 \) with \( f5 \) and \( f2 \) with \( f6 \) the reconstructed qubit 1 is verified whereas connecting \( f2-f6 \) and \( f4-f5 \) qubit 2 can be checked. Of course, only the cases when the encoding procedure successfully occurred are taken into account.

The whole process, including encoding and decoding of information, depends on the quality of the fourth- and second-order interference. Before starting the measurement it is necessary to adjust the Hong-Ou-Mandel (HOM) interferometer \( \otimes \) formed by VRC. First we set the VRC splitting ratio to 50:50 and adjusted the precise time overlap of the two photons at VRC and tuned their polarizations (this was done by mechanical fiber polarization controllers not shown in the scheme). The visibility of HOM dip was about 98%. Then we changed the VRC splitting ratio to 25:75. Fig. 2 shows HOM dip measured with this splitting ratio. During this measurement the attenuator in fiber \( f5 \) was closed and the coincidences between detectors D1 and D3 and between D2 and D3
were counted. In the graph the sum of these two coincidence counts is plotted. Each point was averaged over eight one-second measurements. For comparison the theoretical value of visibility is 42.9\%.

The fiber-based Mach-Zehnder (MZ) interferometer was adjusted by the following procedure: Only one beam from the nonlinear crystal was used, the other one was blocked. To set the same optical lengths of the arms of the interferometer an adjustable air-gap (AG) was employed. Its precision is about 0.1 \( \mu \)m (the precise setting of the phase difference was then done by an electro-optical phase modulator PM\(_{\text{meas}}\)). First, losses in both arms of the interferometer were balanced and the polarization states in both arms were aligned (it was done by mechanical fiber polarization controllers that are not shown in the scheme). In this setting we reached visibilities above 97\%. Then we unbalanced the losses to take into account the reflectivity of VRC \((R = 1/4)\) and the damping factors \(\eta_1\) or \(\eta_4\). Then we opened both inputs again and let both photons from each pair come into the system.

Fluctuations of temperature and temperature gradients cause the changes of refraction indices of fibers. This is the reason for the substantial instability of the interference pattern. Therefore the interferometer must be thermally isolated (we use polystyrene boxes). However, this is not sufficient – the phase difference between the arms of the interferometer still drifts in time by about \(\pi/1000\) per second on average. The environmental perturbations may further be reduced by means of active stabilization. In the experiment five-second measurement blocks are alternated by stabilization cycles, each taking also about 5 seconds in average. In each stabilization cycle the value of the phase drift is estimated and it is compensated by means of a phase modulator PM\(_{\text{meas}}\). During the stabilization only one beam from the crystal is allowed to enter the system, the other one is blocked. Combination of the passive and active methods of stabilization gives very good results.

The experiment itself starts with the setting of input qubit states by means of attenuators and phase modulators in fibers \(f_1, f_2, f_3\) and \(f_4\). Then the proper measurement basis for the verification of the state of a reconstructed qubit is set by adjusting the attenuator and phase modulator in the measurement part of the setup (fibers \(f_5\) and \(f_6\)). The measurement basis consists of the original state of the corresponding qubit and of the state orthogonal to it. Then the coincidences between detectors D1 and D3 and coincidences between D2 and D3 are counted. We use Perkin-Elmer single-photon counting modules (employing silicon avalanche photodiodes with quantum efficiency \(\eta \approx 60\%\) and dark counts about 50 s\(^{-1}\)) and coincidence electronics based on time-to-amplitude convertors and single-channel analyzers with a two-nanosecond coincidence window. In the ideal case the coincidences should be detected only between detectors D1 and D3 – these events correspond to the detection of the original state of the qubit; we denote the corresponding coincidence rate as \(C^+\). Coincidences between detectors D2 and D3 represent erroneous detections and we denote the corresponding coincidence rate as \(C^-\). Fidelity of the reconstructed qubit state is then

\[
F = \frac{C^+}{C^+ + C^-}. \tag{18}
\]

To realize experimentally the encoding of \(N\) qubits into one \((N + 1)\)-dimensional system one can repeatedly use the unit depicted in Fig. 1 (i.e., add other Mach-Zehnder interferometers interconnected by variable-ratio couplers). However, in such a case one would need \(N\) time-correlated photons.
IV. EXPERIMENTAL RESULTS

We encoded and decoded the states of qubits,

$$|\psi\rangle = \left[\cos \frac{\theta_1}{2} |01\rangle_{f1f2} + e^{i\varphi_1} \sin \frac{\theta_1}{2} |10\rangle_{f1f2}\right] \otimes \left[\cos \frac{\theta_2}{2} |01\rangle_{f3f4} + e^{i\varphi_2} \sin \frac{\theta_2}{2} |10\rangle_{f3f4}\right],$$

with the following parameters: For qubit 1 we checked 38 different states:

- $\theta_1 = 90^\circ$ [i.e., $|\alpha_1|^2 : |\beta_1|^2 = 1 : 1$], $\varphi_1 = 0^\circ, 10^\circ, \ldots, 180^\circ$;
- $\varphi_2$, $\varphi_2$ were arbitrary;

- $\theta_1 = 78.46^\circ$, [i.e., $|\alpha_1|^2 : |\beta_1|^2 = 3 : 2$], $\varphi_1 = 0^\circ, 10^\circ, \ldots, 180^\circ$;
- $\varphi_2$, $\varphi_2$ were arbitrary.

For qubit 2 we checked even 57 different states:

- $\theta_2 = 90^\circ$, [i.e., $|\alpha_2|^2 : |\beta_2|^2 = 1 : 1$], $\varphi_2 = 0^\circ, 10^\circ, \ldots, 180^\circ$;
- $\varphi_1$, $\varphi_1$ were arbitrary;

- $\theta_2 = 78.46^\circ$, [i.e., $|\alpha_2|^2 : |\beta_2|^2 = 3 : 2$], $\varphi_2 = 0^\circ, 10^\circ, \ldots, 180^\circ$;
- $\varphi_1$, $\varphi_1$ were arbitrary;

- $\theta_2 = 70.53^\circ$, [i.e., $|\alpha_2|^2 : |\beta_2|^2 = 2 : 1$], $\varphi_2 = 0^\circ, 10^\circ, \ldots, 180^\circ$;
- $\varphi_1$, $\varphi_1$ were arbitrary.

When we verified the state of the reconstructed qubit 1 the qubit 2 was prepared in an arbitrary state and vice versa.

Observed fidelities of reconstructed qubit states are shown in Fig. 3. Each point was calculated as an average from 10 five-second measurements (we detected hundreds of coincidences $C^+$ per second – the exact numbers varied according to attenuations). Fidelities exhibit values around 98% and are independent on the qubit states (i.e., constant within the statistical errors). The deviations from the ideal 100% fidelity are caused by misalignments, inaccuracies in polarization settings, limited precision of parameter setting, and a phase drift (during the measurement period) in the MZ interferometer.

V. CONCLUSIONS

We have experimentally realized transformation for the encoding of two single-photon qubits into one qutrit and demonstrated that it is possible to restore (probabilistically but error-free) any of the two encoded qubit states. The principle of the experiment is based on the interplay of the second-order and fourth-order interference. We have reached fidelities around 98%. The deviations from the ideal 100% are caused by imperfections of the experimental setup. We have employed encoding to spatial modes which has been used quite rarely so far but it was very suitable for our purpose, since it allows for very natural transition from qubits to a qutrit encoded into path of a single photon propagating in three different optical fibers. Note that, in principle, the scheme could also work with other encodings that admit higher dimensional Hilbert spaces such as time-bin [11, 12] or orbital angular momentum [13, 14] encodings.

Further, we have proposed some generalizations of the encoding and decoding protocol. We have found a probabilistic operation that allows to retrieve both qubits simultaneously with the average fidelity above 90%. We have also proposed an extension of the original encoding transformation to encode $N$ $d$-dimensional systems into one $[N(d-1)+1]$-dimensional system. Implementation of the encoding of $N$ qubits into one $(N+1)$-dimensional system can be done using repeatedly Mach-Zehnder interferometers interconnected by variable-ratio couplers.

Acknowledgments

This research was supported by the projects MSM6198959213 and LC06007 of the Ministry of Education of the Czech Republic, by GAČR (202/03/D239) and by the SECOQC project of the EC (IST-2002-506813).

[1] A.S. Holevo, Probl. Pereda. Inf. 9, 3 (1973) [Probl. Inf. Transm. 9, 110 (1973)].
[2] A. Grudka and A. Wojcik, Phys. Lett. A 314, 350 (2003).
[3] J. Fiurášek, Phys. Rev. A 70, 032308 (2004).
[4] N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, Phys. Rev. Lett. 95, 210504 (2005).
[5] N. Kiesel, Ch. Schmid, U. Weber, R. Ursin, and H. Weinfurter, Phys. Rev. Lett. 95, 210505 (2005).
[6] R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, Phys. Rev. Lett. 95, 210506 (2005).
[7] Z. Zhao, A.-N. Zhang, X.-Q. Zhou, Y.-A. Chen, C.-Y. Lu, A. Karlsson, and J.-W. Pan, Phys. Rev. Lett. 95, 030502 (2005).
[8] R. Filip, Phys. Rev. A 69, 052301 (2004).
[9] J. Fiurášek, Phys. Rev. A 67, 052314 (2003).
[10] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
[11] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, Phys. Rev. Lett. 93, 180502 (2004).
[12] D. Stucki, H. Zbinden, and N. Gisin, J. Mod. Opt. 52, 2637 (2005).
[13] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature (London) 412, 313 (2001).
[14] G. Molina-Terriza, A. Vaziri, J. Č. Reháček, Z. Hradil, and A. Zeilinger, Phys. Rev. Lett. 92, 167903 (2004).