Determinants of Green Highway Implementation Factors by Using Partial Least Squares

Fatin Najwa Mohd Nusa¹²*, Mohd Amizan Mohamed @ Arifin², Nur Izzati Ab Rani³ Azlan Abu Bakar³, Ain Nazura Paimin⁴, Fam Soo Fen⁵ and Siti Hamidah Abdul Rahman⁶

¹ Malaysia Institute of Transport (MITRANS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
² Faculty of Civil Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
³ Pusrawi International Universiti College, Taman Perindustrian IKS, 68100 Wilayah Persekutuan Kuala Lumpur, Malaysia.
⁴ Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat Johor, Malaysia.
⁵ Universiti Teknikal Malaysia (UTeM), 76100 Durian Tunggal, Melaka, Malaysia.
⁶ LINTON University College, Bandar Universiti Teknologi Lagenda, 71700 Mantin, Negeri Sembilan, Malaysia.

*Corresponding author: fatinnajwa@uitm.edu.my

Abstract. Malaysia was officially launched Malaysia Green Highway Index (MyGHI) manual as a guideline to confirm the green credential of a highway, this concept is at the conforming stage in Malaysia with seventeen (17) operated tolled highway projects and eleven (11) other registered and awaiting assessment for certification. Subsequently, INFRASTAR developed as an evidence-based rating system for infrastructure projects. Further measurement should be taken into account from the perspectives of highway concessions and stakeholders. Thus, this is not only to focus on the rating scores; as well as to highlight the driven factors that lead to Malaysia’s green highway implementation. The primary constructs of this research model namely green highway challenges, green highway characteristics and green highway implementation are assessed. A total of 63 surveys from 81 surveys were responded (77.8% of responses rate). The response rate was high, and there was no evidence of bias noted. The statistical result of this study corroborates the exploratory study interviewed earlier which suggested a positive relationship between green highway characteristics and green highway implementation. Besides, all the constructs represent 12.8%, 37.7% and 96.2% of factors for challenges and characteristics towards green highway implementation in Malaysia’s operated tolled highway projects, respectively. Implications and future research directions of this study are discussed.

1. Introduction
Recently, green initiatives have received increasing attention from government organisations and society towards sustainable development. In the construction industry, sustainable development is overemphasised and always been questioned by different stakeholders [1]. For that reason, to achieve a green highway in the future, several areas should be taken into account, which includes highway planning, design, construction, operation, and maintenance. In line with the government initiatives and
aspirations, Malaysia Highway Authority (MHA) has been promoting the Malaysia Highway Index since November 2013 and Construction Industry Development Board (CIDB) developed INFRASTAR rating tools which exert an objective and evidence-based rating system that assesses land use planning and management, resource management, energy and water management, biodiversity and other ecosystem services, social and cultural protection and stakeholder coordination for better infrastructure development in Malaysian construction industry [2-4]. Some of the green highway aspects such as reducing energy consumption during construction, recycling water runoff, installing the Electronic Toll Collection (ETC) system to reduce vehicle idling, recycling materials such as old tyres, processing used asphalt and other types of solid waste to produce well-disposed material, reducing the greenhouse gas emissions produced by the asphalt fumes during the construction process, using low energy consumption equipment for road construction such as the Light Emitting Diode (LED) for the street light to reduce the electricity usage are taken into account in the guideline [2, 3, 5–11]. Seventeen (17) out of twenty-eight (28) operated tolled highway projects certified with Malaysia Green Highway Index (MyGHI) (MHA, 2019). Therefore, there is a need for a model of green highway projects as for now MyGHI manual is relatively new to such endeavour in the Malaysian context. It is also feasible for Malaysia to conduct a full implementation of green highway in the industry since there are various governments’ and stakeholders’ initiatives available to enhance green technology development.

2. Literature Review

2.1. Drivers for Green Highway Model Update

Literature is satiated with several identifiable drivers of green highway implementation in the built environment existing all over the world. The key drivers of green highway implementation involve government enforcement on legislation and meeting other regulatory requirements and incentives. Apart from that, stakeholders’ attempt to implement green highway in response to the current practice of highway projects in Malaysia has become a crucial agenda towards sustainable development [12–18].

However, according to [9, 19–21], the sustainable development is not well understood by the stakeholders in the highway projects, but it is well agreed as a beneficial approach if there is an improvement along with it such as a guidelines, model, or framework that can be used for assessing green highway projects in Malaysia together with the environmental aspect considerations in order to upgrade the ways highway projects are being planned and executed.

The existing MyGHI emphasises five (5) areas of green highway namely material and technology; sustainable design and construction activities; energy efficiency; environmental and water management and social and safety [2]. However, there is a need to have a model for an extensive study that manifests the variables as for now MyGHI manual and INFRASTAR are relatively new to such endeavour in the Malaysian context.

3. Methodology

This study describes the detailed findings received from a questionnaire survey. There are three (3) sections of data analysis involved in which the first section starts with checking the assumptions, statistical analysis involving data input checking, data screening, examination of normality, examination of outliers, and non-response bias assessment. Next, the second section of data analysis continues with the criticality index assessment to establish the opinions of stakeholders in highway projects regarding the green highway characteristics, green highway challenges, and success factors towards green highway implementation. Finally, the last sections of data analysis for this paper present a model that relates the driving factors of characteristics and challenges of green highway with the success factors to implement green highway in the Malaysian context developed using Partial Least Squares – Structural Equation Modelling (PLS-SEM) and concludes with the examination of hypotheses on the results generated from the developed model in order to test the green highway implementation model as well as to compare findings gathered from the unstructured interview.
4. Research Model
Figure 1 shows the conceptual model of green highway implementation. The proposed model illustrates a reflective measurement model with all arrows from the latent variables is pointed out. According to [22], a reflective measurement model is directly based on a classical test theory and manifestations effects of an underlying construct and has a long tradition in the social sciences. The hypotheses in the model were introduced and established from the literature (concept/theory) and exploratory data (interview). The research hypotheses are shown in Table 1, which illustrate the reciprocal relationship between green highway challenges, characteristics, and success factors.

![Conceptual Model](image)

Figure 1. Conceptual Model.

The results explained the key and determinant indicators that have weightage to implementation of green highway concept in Malaysia as the output factors. The hypotheses of the study are shown in Table 1. Different hypotheses were listed out for each construct.

Hypotheses	Definition
H₁a	Green highway challenges will significantly influence success to implement green highway
H₁b	Green highway characteristics will significantly influence green highway challenges
H₂a	Green highway characteristics will significantly influence success to implement green highway

Most of the research in field investigation enables the researcher to deal with constructs such as beliefs, perceptions, motivations, attitudes, or judgements of the individuals [23]. In this research, perception and judgement are useful to investigate the constructs for green highway challenges (CHALL) and green highway characteristics (CHAR) towards the success factors to implement green highway (IMPLMT). Theoretically, these constructs can be measured by a set of indicators which is usually modelled as latent variables and finally the 98 structural equation models will describe the relationships between these latent variables using a number of algorithms and software programmes available to calculate the relationship between the latent variables based on a dataset. An empirical analysis of the research model in this research was formulated based on literature review and interviews conducted.
5. Findings and Discussion
The measurement models and structural models need to go through two phases of separate assessment in PLS-SEM. The first phase is to examine the reliability and validity measure whether they are following specific criteria related to the formative and reflective measurement model specifications. Frequently, this step relies on the logical foundation, and if the measure represents the construct of interest to be adequate, there is a second step comprises the assessment of the structural model estimation.

According to [24], PLS-SEM final results (model evaluation) require a thorough assessment similar to other multivariate analysis techniques. Besides, the model evaluation in PLS-SEM is still influenced by Covariance Based (CB-SEM) reporting, especially in the assessment of the measurement model because PLS-SEM reporting follows the notion of an underlying covariance-based latent constructs-generating mechanism.

5.1. Checking the Assumptions
Assessment in this analysis part was conducted in two (2) significant phases. The first phase of preliminary data analysis involved the reliability test and data examination process using SPSS. This process is essential to ensure that the dataset of all items is suitable, normally distributed, and free from missing values, and outliers that become the requirements to use the dataset in PLS-SEM [25].

The second phase dealt with two stages of data analysis using PLS-SEM, which involved measurement model evaluation and structural model evaluation for latent constructs in the model. Measurement model evaluation confirmed the indicator reliability, internal consistency, and average variance extracted validity of all constructs.

In this research, the rate of missing values was below 1.6% (missing values is manageable) mostly for the characteristics of the green highway [26]. Other than that, missing values could be analysed using PLS-SEM 2.0 [27]. This study using Mean Imputation (MI) method (or also known as mean value replacement or case wise deletion) in dealing with classifiers by replacing all missing dataset with a single value [28].

The examination of normality for this study was conducted using the “Descriptive Statistics” option toolbar in the Statistical Package for Social Science (SPSS) version 22. Skewness values for this study were ranging from -0.930 to +0.694, and Kurtosis values were ranging from -2.012 to +3.002. More than 15 items were reported as non-normal items in the distribution as they had a varying degree of skewness and this showed that the delivery was skewed and not normally distributed.

According to [29], data collected in scientific and engineering applications frequently get a lower bound of zero where it is categorised as “skewed right” data. This condition would not affect the reliability process because the percentage of “skewed right” data was only 24% which was less than 50% of the total dataset [30]. Moreover, as mentioned by [31], highly skewed data, as well as the used of formative measures in the PLS-SEM model, will increase the robustness of the results. Therefore, this kind of non-normal distributed data will not affect the path coefficient consistency and the ability to estimate the non-normal condition in PLS-SEM because the goal of using PLS-SEM is for prediction of endogenous variables. Testing for the outlier in this research was not required due to the reason for a distinct group or strata sample size and no extreme suspicious response in this study.

Additionally, the result shows that there was only 4.44% of the total 90 variables had the problem of non-response bias based on the t-test procedure and this small percentage will not consider as a substantial influence because all variables were supported by an exploratory study. Finally, the structural model satisfied the indicative of collinearity where the value of tolerance level was 0.796, and the VIF value was 1.256. Therefore, a step to solve the collinearity problems could be neglected in the context of multi-collinearity [32] and [27] which highlights a high signals variance inflation factor (VIF) value of 3.3.
5.2. Evaluating Measurement Model

According to Hulland (1999), cited by [33], all indicator loadings in a measurement model need to satisfy a value above 0.7 to determine the reliability of the individual items to their respective constructs. However, Hulland also stated that in the case of exploratory research, the value of 0.4 or higher for all individual items in a reflective outer model is acceptable. Since this research is exploratory, this section refers to the second opinion from Hulland in measuring the composite reliability value of 0.4 or higher. If the loadings are less than 0.4, the indicator in the reflective model must be eliminated from the measurement model. Table 2 summarises the results for the reflective outer model.

Table 2. Results of Measurement Model.

Latent Variable	Indicators	Loadings	Indicator Reliability (i.e. loadings)	Composite Reliability	AVE
CHALL	CULTURAL	0.707	0.500		
	FINANCIAL	0.769	0.591		
	LEG_RGL	0.824	0.679	0.798	0.505
	TECH_PHY	0.499	0.249		
	CONSTRUCTN	0.802	0.643		
CHAR	DESIGN	0.911	0.830		
	MAINTENCE	0.836	0.699		
	PLANNING	0.749	0.561		0.683
	CONST_ACT	0.970	0.941		
IMPLMT	INNOV	0.890	0.792		0.950
	MAT_RSOR	0.925	0.856		

5.3. Evaluating Structural Model

Results showed that the critical t-value of more significant than 2.57 was suitable as a benchmark in the research model. Based on the outcome, all relationships linked in the model were meaningful and acceptable as shown in Table 3 which indicated that there was enough evidence to support the hypotheses. Therefore, the results confirmed the earlier findings that all path coefficients for the inner model were highly significant with 99.0% chances of hypotheses were valid as depicted in the visual PLS-SEM in figure 1 previously.

Table 3. Path Coefficient and Hypotheses testing.

Hypotheses	Relationship	Path Coefficient	Empirical t-value	Decisions
H₁a	CHALL > IMPLMT	0.242	2.624	Supported
H₂a	CHAR > CHALL	0.523	5.636	Supported
H₂b	CHAR > IMPLMT	0.664	7.220	Supported

Next, the standard path coefficient; the significance of the path coefficient to the structural model and the squared multiple correlations of R² for endogenous constructs were identified. R² is the amount of explained variance of endogenous latent variables in the structural model. According to [27], a higher value of each R² will lead to a good explanation of latent variables by a construct in the structural model which also indicates a good structural model path relationship. The author also added that a high value of R² would provide evidence that the values of the construct are well predicted by the PLS model. Table 4 shows the structural model result as follows:
Table 4. Structural Model Results.

Hypotheses	Relationship	Path Coefficient	Squared Path Coefficient, (R^2)
H1	CHALL > IMPLMT	0.242	0.668
H2b	CHAR > IMPLMT	0.664	
H2a	CHAR > CHALL	0.523	0.274

From Table 5, results showed a weak value of squared multiple correlations, (R^2) for CHAR>CHALL relationship (R^2 =0.274) was supported by large effect size, (f^2) of 0.377, while moderate squared multiple correlations, (R^2) for relationship (R^2 =0.668) was supported by small and large effect size, (f^2) of 0.128 and 0.962. Consequently, results supported the findings from the hypotheses testing in which 12.8% showed relevance to H_1 = green highway challenges would significantly influence success to implement green highway, 96.2% showed significance to H_{2b} = green highway characteristics will significantly affect success to apply green highway which indicate and support that characteristics of green highway is the key construct for green highway implementation, and 37.7% showed relevance to H_{2b} = green highway characteristics will significantly influence green highway challenges.

Table 5. Results of f^2 Values.

Relationship	Squared Path Coefficient, (R^2)	Effect size, (f^2)
CHALL > IMPLMT	0.668	0.128
CHAR > IMPLMT		0.962
CHAR > CHALL	0.274	0.377

6. Conclusion and Recommendations

Respondents believed that the characteristics and challenges of the green highway are the main factors influencing the success of green highway implementation in Malaysia. Results indicate that the model fits the data well, and nearly all of the hypothesised relations among constructs are supported in the model. The green highway implementation model shows that the key construct in implementing green highway is the characteristics of a green highway. All factors are positively related to each other which expresses that green highway challenges are significantly influencing success to implement green highway, green highway characteristics significantly influence green highway challenges, and green highway characteristics significantly influence success to implement green highway. Results show that there are a significant relationship and positive effect between characteristics and challenges in implementing a green highway. Findings from the hypotheses testing confirmed the views that the characteristics of the green highway have a substantial impact on the success of green highway implementation. Findings from the hypotheses testing also supported the results from the unstructured interview in which green highway challenges does affect the success of green highway implementation.

It is essential to understand that utilising the model in construction projects can help the implementation of the green highway. However, the implementation of green highway in the existing highways in Malaysia needs to be done to achieve a successful implementation of the green highway itself. Besides, this study is aligned with the CIDB where a rating tool to measure greenness level of infrastructure projects (INFRASTAR). INFRASTAR can be applied to most types of infrastructure projects including the highway. Cooperation between the stakeholders in highway construction, government, and private agencies is essential as a first step to initiate, perceive and realise the green highway implementation in Malaysia.
7. References

[1] Otaili M and Ujene A O 2019 Level of Adoption of Sustainability Practices Among Locally and Foreign Owned Construction Firms in Niger Delta J. Eng. Technol. Lev. (101)
[2] MHA and UTM, 2015. Malaysia Green Highway Index Manual V1.0 (MyGHI) First Edit. (Malaysia: Perpustakaan Negara Malaysia)
[3] Salfiza Y, Aifa W N, Balubaid S, Seng F K, Bujang M B, Hamzah B, Shafaghat A 2014 Development of green highway index in malaysia, in 9th Malaysian Road Conference Proceedings (Petaling Jaya, Malaysia)
[4] Construction Industry Development Board (CIDB) 2018 Sustainable Infracstrast Certification, (Malaysia) Retrieved on June 20, 2019 from http://www.cidb.gov.my/images/content/pdf/updates/Sustainable-INFRASTAR-Brochure.pdf.
[5] Bryce J M 2008 Developing Sustainable Transportation Infrastructure (University of Missouri: 2008 ASTM WISE Intern)
[6] Eisenman A A P 2012 Sustainable Streets and Highways: An Analysis of Green Roads Rating Systems, Master Thesis (Georgia Institute of Technology).
[7] Malaysia Highway Authority (MHA) 2019 Senarai Anugerah Malaysia Green Highway Index (MyGHI).
[8] Pinghui Z 2013 Green’ highway set to open by end of year, South China Morning Post, China (June)
[9] Reddy M A 2011 Need of Green Highways in India for Sustainable Development, in 6th Symposium on National Frontiers of Engineering
[10] Shen L, Wu Y and Zhang X 2011 Key Assessment Indicators for the Sustainability of Infrastructure Projects J. Constr. Eng. Manag. 137(6) 441–451
[11] Talati V A, Talati A V, Mehta J and Six K 2013 Green Highways: A Future Need, PARIPEX-Indian J. Res. 2(3) 109–111
[12] Green Highway Partnership (GHP), Green Highways and Green Streets for 21st Century Infrastructure: Strategies, Technologies and Funding, Retrive on November 2009, from https://slideplayer.com/slide/3992856/
[13] Hazwani T N 2013. Storm Water Management Criteria for Malaysia Green Highway, Thesis (Malaysia: Universiti Teknologi Malaysia).
[14] Huang R and Yeh C 2008 Development of an Assessment Framework for Green Highway Construction J. Chinese Inst. Eng. 31(4) 573–585
[15] Zakaria R, Seng F K, Majid M Z A, Zin R M, Haimin M R, Puan O C and Moayedi F 2013 Energy Efficiency Criteria for Green Highways in Malaysia J. of Technology 3 91–95
[16] MHA 2010 Preliminary Guide to Nurture Green Highway in Malaysia First Edition (Lembaga Lebuhraya Malaysia).
[17] Zhang X, Shen L, Wu Y and Qi G 2011 Barriers to Implement Green Strategy in the Process of Developing Real Estate Projects Open Waste Manag. J. 4 33–37
[18] Adilah Y, Harumain S, Nordin N A and Farhana N 2019 Implementation of Hentian Komuniti Towards Heritage Town Sustainability Malaysian Journal of Sustainable Environment 6(1) 23–38
[19] Butler A and Åkerskog A 2014 Awareness-raising of landscape in practice. An analysis of Landscape Character Assessments in England, Land use policy 36 441–449
[20] Yahya M A and Peng N C 2010 Awareness in Innovative Highway Construction in Malaysia Conference of Asean Federation of Engineering Organizations CAFEO
[21] Abidin N Z 2010 Investigating the awareness and application of sustainable construction concept by Malaysian developers Habitat Int. 34(4) 421–426
[22] Becker J M, Klein K and Wetzel M 2012 Hierarchical Latent Variable Models in PLS-SEM: Guidelines for Using Reflective-Formative Type Models Long Range Plann. 45(5–6) 359–394
[23] Urbach N and Ahlemann F 2010 Structural Equation Modeling in Information Systems Research Using Partial Least Squares Structural Equation Modeling in Information Systems Research Using Partial Least Squares J. Inf. Technol. theory Appl. 11 5–40

[24] Bentler P M and Yuan K H 2000 Structural Equation Modeling with Small Samples: Test Statistics, Multivariate Behav. Res. 34(2) 181–197

[25] Bakar M.A.M, Jaafar, H.S. and Faisol, N. 2016 Determinants of Logistics Performance Using Partial Least Squares, MITRANS Logist. Transp. Int. Conf. 6(3) 255–262

[26] Acuria E and Rodriguez C 2004 Classification, Clustering, and Data Mining Applications Treat. missing values its Eff. Classif. accuracy 639–647

[27] Hair J F, Hult G T M, Ringle C M and Sarstedt M 2014 A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (Germany: Sage Publications).

[28] Hair J F, Ringle C M and Sarstedt M 2013 Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance, Long Range Plann. 46(1–2) pp. 1–12.

[29] Asparouhov T and Muthen B 2014 Structural Equation Models And Mixture Models With Continuous Non-Normal Skewed Distributions, Structural Equation Modeling: A Multidisciplinary Journal 19(1) 1–49

[30] Croarkin C and Tobias P 2012 Histogram Interpretation: Skewed (Non-Normal) Right, Retrieved on 7 July 2014 from Available: http://www.itl.nist.gov /div898/ handbook/ eda/ section3/ histogr6.htm.

[31] Hair J F, Sarstedt M Ringle C M and Mena J A 2011 An assessment of the use of partial least squares structural equation modeling in marketing research, J. Acad. Mark. Sci., 40(3), pp. 414–433, Jun. 2011.

[32] Hair C, Risher J, Sarstedt J and Ringle M 2019 When to use and how to report the results of PLS-SEM, Eur. Bus. Rev. 31(1) 2–24

[33] Wong K K 2013 Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS, Mark. Bull. 24(1)

Acknowledgments
This research paper is part of a completed Master of Science (MSc) thesis entitled: “A Model for Relationship between Characteristics and Challenges in Implementing Green Highway” at Malaysia Institute of Transport (MITRANS). The author would like to express highly gratitude to Malaysia Highway Authority (MHA), Malaysia Institute of Transport (MITRANS) and Faculty of Civil Engineering, University Teknologi MARA (UiTM) for continuous support and opportunity to write, conduct research and hence disseminates the information through this paper.