Host associations between xylophagous longhorn beetles (Coleoptera: Cerambycidae) and American commodity tree species from Chinese collection sources

A. Simon Ernstsons #,1,*, Mei-Ying Lin #,2, You Li 3 and Jiri Hulcr 1

1School of Forest Resources and Conservation, University of Florida, Gainesville 32611, Florida, USA
2Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichen West Road, Chaoyang Dist., Beijing, 100101, China
3Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China

#These authors contributed equally to this manuscript
*Corresponding author
E-mail: aernstsons@ufl.edu

Abstract

A small number of longhorn beetle species (Coleoptera: Chrysomeloidea: Cerambycidae) have the potential to become invasive forest pests. International trade in live plants and wood packaging material are known invasion pathways for longhorn beetles. Once an invasive pest is intercepted in a new region, a rapid pest risk analysis is often needed to determine the appropriate response. For accurate risk quantification, natural history evidence is necessary. This information is also vital in preventing introduction. This study gathered insect collection data, especially references to host plants, of xylophagous longhorn beetles from the Institute of Zoology, Chinese Academy of Sciences, Beijing, China. Beetle associations with three important host groups were investigated: Fagaceae, Citrus spp., and avocado (Persea americana). We performed a systematic literature review to identify previously documented cerambycidae associated with these plants. Here, we report insect-plant host associations for 39 species of longhorn beetles based on a review of the literature; 43 interactions were documented, 10 interactions were novel. No host associations were recorded with avocado in China. This information serves as a foundation for pest risk analysis in determining threats posed by potentially invasive longhorn beetles into new regions.

Key words: forest pest, host plant, wood borers, longicorn, biosecurity

Introduction

Longhorn beetles, also commonly called long-horned or longicorn beetles, are often intercepted in new regions. While most are harmless, a small number can be highly invasive forest pests. Many species cannot successfully invade new regions. Yet, a small percentage can travel over long distances through human mediated transport and cause significant damage. All longhorn beetles are phytophagous, with juveniles often feeding internally on the xylem of the plant tissue and adults feeding externally on fast growing twigs and branches. The xylophagous species consume woody tissues, but even within this group there is a high degree of variability in behavior and host selection (Haack and Slansky 1987). Tree hosts of
Longhorn beetles from pine, Fagaceae, and citrus in China

Ernstson et al. (2021), Management of Biological Invasions 12(4): 858–872, https://doi.org/10.3391/mbi.2021.12.4.06

xylophagous longhorn beetles may be attacked under a range of conditions, from healthy trees to those recently dead (Wang 2017). The larvae of xylophagous longhorn beetles feed either under the bark or in the xylem (Hanks 1999). Most cerambycid species colonize dead or severely stressed trees, but some are able to colonize living trees, in which they damage the flow of nutrients within the host causing dieback, wilting, and occasionally tree death (Wang 2017).

Longhorn beetles may oviposit into commercial plants or wood packing material, conferring opportunities to “stowaway” on trade consignments originating within native ranges (Meurisse et al. 2019). International export of live plants, coupled with the use of wood packing material in a wide range of industrial transport practices, increases opportunistic invasion into new regions (Hulme et al. 2008). These pathways have been highlighted by recent invasions of several alien xylophagous longhorn beetles such as the Asian longhorn beetle *Anoplophora glabripennis* (Motschulsky, 1854) from its native range in Southeast Asia into Europe and North America (Hérard and Roques 2009). Once arrived in the new region, Asian longhorn beetle quickly established due to the wide host plant range. Attacks on local trees caused ecological and economic damage. Lengthy eradication efforts have been undertaken in the UK (Straw et al. 2015), USA (Haack et al. 2010), Italy, and in Central Europe (Hérard and Roques 2009; Hérard et al. 2009). In the USA between 2006 and 2013 costs for eradication of Asian longhorn beetles were estimated to be $537 million (Eyre and Haack 2017).

Potentially invasive longhorn beetles are frequently intercepted at ports of entry into the USA (Haack and Cavey 2000). Pest risk analysis is used to gauge the appropriate level of response, such as regulation or monitoring. Guidelines and international standards for phytosanitary measures have been developed for pest risk analysis (FAO 2004, 2007; Devorshak 2012). These standards utilize scientific evidence to determine the threat posed by the organism. Once the risk posed by a pest is quantified in this manner, appropriate responses such as whether it should be regulated, what, if any, measures should be imposed. A transparent, evidence-based approach is critical in determining potential pest status as well as guiding the managed response to biological invasions. A critical initial element of the pest risk assessment process is a literature review and synthesis of scientific data (Baker et al. 2009). This examination process determines the known information for adventive species. Yet, access to the primary data is often limited. Journals, datasets, herbaria, and gray literature can provide conflicting information about an organism or use unverified sources. In addition, language barriers can reduce the accessibility of information on international pests.

Over 36,000 species of longhorn beetle are recognized worldwide with many having little documented natural history. This knowledge gap complicates pest risk assessment as assumptions are made without direct
scientific data. Taxonomic groupings can help to identify pest families. However, this is imprecise. Similarly, host plants and consignment origins can identify an invasion pathway (Eschen et al. 2015). However, plant hosts are only determined based on known examples in the country of origin, while data on suitability of the new hosts usually do not exist. Some xylophagous longhorn beetles, such as *Xylotrechus arvicola* (Olivier, 1800), have shown different host preference in invaded regions (García-Ruiz et al. 2012). Changes in host preferences are the most problematic issue when attempting to quantify the risk posed by a new species. If a host association is known, then a pathway and impacts may be quantified more accurately. For example, the presence or absence of a coevolved congener on a shared host may help predicting impacts of an invasive pest species (Mech et al. 2019). Therefore, knowing host associations may play a key role in accurately predicting invasive capability and impacts of alien longhorn beetles.

We inspected resources from the Institute of Zoology, Chinese Academy of Sciences, Beijing, China (hereafter IZCAS) to expand the range of known host associations. Collection records occasionally contained additional collection information such as the feeding or oviposition host tree. This study focused on potential invasive pests of three groups of tree hosts that are economically and environmentally important in North America, and hence potentially susceptible to invasive Asian Cerambycidae: Fagaceae, the *Citrus* genus, and avocado. A comprehensive host search for all records or all hosts was beyond the boundaries of enquiry of this pilot project. Fagaceae are ecologically and economically important across the world, not just in the target region of the USA. The genus *Citrus* and the species avocado (*Persea americana* (Mill.)) were also selected because recent introductions of alien invasive species have highlighted susceptibility of these plant commodities to invasion and economic damage. The American citrus industry is worth $3.35 billion dollars (Simnitt and Calvin 2019) and the avocado industry $400 million dollars per annum (Perez and Minor 2018). Our target beetle species were xylophagous longhorn beetles, and excluded species feeding on non-woody plants. The specific questions for our survey were: (1) Which Cerambycidae species in the IZCAS collection and related materials have been recorded as feeding on, or associated with, the target plants? (2) For the identified beetle species, what plant associations have already been reported in previous literature? (3) Can this method provide data to support pest risk analysis?

Materials and methods

The survey of collection material was undertaken *in situ* at IZCAS. The original records were inspected for each of the more than 40,000 specimens in the collection. Collection notes and supporting documents were examined and explicit references to host trees recorded. Figure 1 shows a typical IZCAS collection specimen.
Ernstsons et al. (2021), *Management of Biological Invasions* 12(4): 858–872, https://doi.org/10.3391/mbi.2021.12.4.06

Figure 1. An example of the source data. Female *Monochamus guerryi* from the IZCAS collection showing the original labels. This species is an important polyphagous pest. Photo by Mei-Ying Lin.

Table 1. Method of systematic literature review process of identified longhorn species.

Data Source	Website
Integrated Digitized Biocollections	idigbio.org
Encyclopedia of Life	eol.org
Centre for Agriculture and Biosciences International - Crop Protection Compendium	cabi.org/cpc
Centre for Agriculture and Biosciences International - Invasive Species Compendium	cabi.org/isc
Titan database on longhorned beetles (in French)	titan.gbif.fr/index
European Alien Species Information Network (EASIN)	alien.jrc.ec.europa.eu/SpeciesMapper
Global Biodiversity Information Facility	gbif.org
Global Invasive Species Database	iucngisd.org/gisd/
Google Scholar Search	scholar.google.com
Google Search	google.com

Each host label record involving an identified target tree species was recorded. For each beetle species that had an identified host plant, all synonyms were collated using online databases and published information resources (Table 1). Host associations were partly quantitative, we differentiated between singleton records (1–10), occasional records (11–25), and abundant records (26+) (Table 2).

To complement the specimen label survey, a systematic literature review of online resources was then conducted (Table 1). All host interactions were recorded. The records from each database were compared highlighting the previously unpublished host interactions. Novel hosts for these beetles, as well as the previously reported hosts are listed in Table 2. A comprehensive host record analysis is commonly the first step in pest risk analysis as part of a wider systematic literature review process. In addition to the databases listed, a Google Scholar® search was conducted with the first 100 records of all English and Chinese (Mandarin) language results, checked manually. This process was completed for the senior synonym and each junior synonym of each beetle species discovered as part of the scan. Species names were confirmed using the ITIS website (www.itis.gov; retrieved 03/10/2020). Beetles were identified to species and status followed Lin and Yang (2019).
Table 2. Known host interactions of xylophagous longhorn beetles at IZCAS. Examples in bold indicate previously recorded host interactions identified in the literature. Abundance of total sampled specimens in IZCAS is simplified as 1–10 *, 11–25 **, 26+ *** in the Species Name column. Host Species abundance represent the number of specimens recording that host association. When no further information is given in the species column the original literature source identified the plant host to family level. Scientific names of the host trees were revised and confirmed according to the Taxonomic Name Resolution. Service website (http://tnrs.iplantcollaborative.org/TNRSapp.html) and the catalog of life website (http://www.catalogueoflife.org/).

Cerambycidae Scientific Name	IZCAS Recorded Host Interaction	Host Plants Identified in Literature Review	Literature Source	
Amarysius sanguinipennis (Blessig, 1872) **	Quercus sp. *	Betulaceae Betula sp.	Cherepanov 1982	
		Betulaceae Corylus sp.	Cherepanov 1982	
		Fabaceae Lespedeza sp.	Cherepanov 1982	
		Fagaceae Castanea crenata (Siebold & Zuccarini)	Hua 2002	
		Fagaceae Quercus spp.	Cherepanov 1982; Hua 2002	
		Lauraceae Lindera obtusiloba (Blume)	Lim et al. 2014	
		Rosaceae Malus domestica	Hua 2002	
		Rosaceae Prunus persica	Hua 2002	
		Salicaceae Salix vulpina	Hua 2002	
		Sapindaceae Acer pictum (Thuernberg)	Lim et al. 2014	
		Sapindaceae Acer pictum subsp. mono (Maxim.) H.Ohashi	Lim et al. 2014	
		Sapindaceae Acer saccharinum (L.)	Cherepanov 1982	
		Ulmaceae Ulmus americana (L.)	Lim et al. 2014	
		Ulmaceae Zelkova serrata	Hua 2002	
		Vitaceae Vitis vinifera (L.)	Lim et al. 2014	
Anoplistes halodendri subsp. pirus (Arakawa, 1932) ***	Quercus glauca (Thuernberg, 1784) *	Fagaceae Quercus spp.	Cherepanov 1990	
		Rosaceae Malus domestica	Chen et al. 1959	
		Rosaceae Pyrus assuriensis var. Culta	Arakawa 1932	
		Rosaceae Pyrus sp.	Chen et al. 1959	
		Rosaceae Ulmus parvifolia	Chen et al. 1959	
Anoplophora imitator (White, 1858) *	Quercus sp. *	Altingiaceae Liquidambar formosana	Hua 2002	
		Betulaceae Betula sp.	Hua 2002	
		Cupressaceae Cupressaria lanceolata	Hua 2002	
		Fagaceae Castanea mollissima	DFZJP 1983; Hua et al. 1993	
		Fagaceae Quercus sp.	Hua 2002	
		Rutaceae Citrus sp.	DFZJP 1983; Hua 2002	
		Salicaceae Populus spp.	Li and Wu 1993	
		Theaceae Schima superba	Hua 2002	
Anoplophora lurida (Pascoe, 1856) *	Quercus glauca *	Fabaceae Sophora sp.	Pu 1980; DFZJP 1983; Hua 2002	
		Fagaceae Castanea crenata	Nakamura and Kojima 1981	
		Fagaceae Quercus sp.	Hua 2002	
		Meliaceae Melia azedarach Linné	Hua 2002	
		Pinaceae Pinus massoniana D. Don	Hua 2002	
Aphrodisium gibbicolle (White, 1853) ***	Castanea mollissima *	Apiaceae Foeniculum vulgare	Chiang 1989; Hua 2002	
		Euphorbiaceae Vernicia fordii	Chiang 1989; Tu et al. 2006	
		Fagaceae Castanea mollissima	Chiang 1989; Hua 2002; Peverieri et al. 2017	
		Fagaceae Castanea spp.	Peverieri et al. 2017	
		Fagaceae Quercus glauca	Chiang 1989; Hua 2002; Zhang et al. 2010	
		Fagaceae Quercus sp.	Chiang 1989; Hua 2002; Zhang et al. 2010	
		Juglandaceae Juglans mandshurica Maximowicz	Tu et al. 2006	
		Juglandaceae		
		Pinaceae Pinus armandii Franchet var. amamiana	Chiang 1989; Hua 2002	
		Pinaceae		
		Rutaceae Citrus spp.	Hoffmann 1934; Chen et al. 1959; Chiang 1989; Hua 2002	
		Rutaceae		
		Umbelliferae		
Table 2. (continued).

Common Name	Scientific Name	Family	Synonym	Reference(s)
Aromia moschata orientalis	Plavilstshikov, 1933	Fagaceae	Morus alba L.	Chiang 1989; Hua 2002
Rosaceae	Prunus spp.	DFZJP 1983;	Chiang 1989; Hua 2002	
Salicaceae	Salix spp. Populus spp.	Gressitt 1951;	Chiang et al. 1959; DFZJP 1983; Hua 2002	
Astynocelis degener (Bates, 1873)	Quercus glauca * Castanea mollissima ***	Asteraceae	Artemisia spp.	Gressitt 1951; Hua 2002
	Betulaceae	Betula spp.	Hua 2002	
Cupressaceae	Cunninghamia lanceolata	Hua 2002		
Fagaceae	Castanea mollissima	Hua 2002		
Salicaceae	Populus spp.	Hua 2002		
Simaroubaceae	Ailanthus altissima	Hua 2002; Ding et al. 2006		
Cacia cretifera (Hope, 1831)	Citrus reticulata (Blanco, 1837) *	Anacardiaceae	Lannea = Odina sp.	Pu 1980; Chiang 1989; Hua 2002
Berberidaceae	Berberis sp.	Pu 1980; Chiang 1989; Hua 2002		
Euphorbiaceae	Mallotus philippensis	Pu 1980; Chiang 1989; Hua 2002		
Fabaceae	Albizia julibrissin	Zheng et al 2004		
Fabaceae	Albizia odoratissima	Pu 1980; Chiang 1989; Hua 2002		
Fabaceae	Bauhinia variegata	Pu 1980; Chiang 1989; Hua 2002		
Fabaceae	Dalbergia latifolia	Pu 1980; Chiang 1989; Hua 2002		
Magnoliaceae	Magnolia obovata = Magnolia liliflora	Pu 1980; Chiang 1989; Hua 2002		
Moraceae	Ficus sp.	Pu 1980; Chiang 1989; Hua 2002		
Pinaceae	Pinus yunnanensis	Hua 2002		
Castaphrodisium castaneae Gressitt, 1951 *	Castanea mollissima *	Fagaceae	Castanea sp.	Gressitt 1951
Chelidonium argentatum (Dalman, 1817) **	Citrus reticulata *	Juglandaceae	Juglans regia	Chiang 1989; Hua 2002
Euphorbiaceae	Sapium sebiferum (L.) Roxb.	DFZJP 1983		
Moraceae	Alangium lamarckii	Chiang 1989; Hua 2002		
Rutaceae	Citrus ssp.	Zhang 1958; Chen et al. 1959; DFZJP 1983; Chiang 1989; Hua 2002		
Rutaceae	Fortunella ssp.	Gressitt 1951; Chen et al. 1959		
Chelidonium venereum Thomson, 1865 = Chelidonium cinctum (Guérin-Ménéville, 1844) **	Citrus reticulata *	Rutaceae	Citrus ssp.	Chiang et al. 1985; Chiang 1989
Chloridolum laotium Gressitt & Rondon, 1970*	Quercus sp. *	Pinaceae	Pinus latori	Gressitt et al. 1970; Hua 2002
Chlorophorus annulatus (Hope, 1831) ***	Quercus glacis * Rubiaceae	Coffea sp.	Achrya & Pun 2016	
Chlorophorus diadema (Motschulsky, 1854) ***	Quercus sp. * Betulaceae	Betula sp.	Chen et al. 1959; Chiang 1989; Hua 2002	
Fabaceae	Robinia pseudoacacia L.	Hua 2002		
Fabaceae	Sophora japonica	Chen et al. 1959; Chiang 1989		
Lythraceae	Punica granatum	Hua 2002		
Rhamnaceae	Ziziphus mauritiana	Cao 2010		
Rosaceae	Cerasus sp.	Chen et al. 1959; Chiang 1989		
Rosaceae	Malus sp.	Lim et al. 2014		
Rosaceae	Prunus spp.	Hua 2002; Lim et al. 2014		
Rosaceae	Crataegus pinnatifida	Hua 2002		
Salicaceae	Populus sp.	Hua 2002		
Salicaceae	Salix spp.	Pu 1980; Cao 2010		
Vitaceae	Vitis sp.	Wu 1977; Hua 2002		
Dorysthenes granulosus (Thomson, 1861) ***	Citrus maxima (Burm. f.) Merr. * Anacardiaceae	Mangifera sp.	Zhang 1992	
Anacardiaceae	Lannea coromandelica	Chiang 1989		
Casuarinaceae	Casuarina equisetifolia	Hua 2002		
Cupressaceae	Cunninghamia lanceolata	Hua 2002		
Euphorbiaceae	Hevea brasiliensis	Chiang 1989; Hua 2002		
Euphorbiaceae	Manihot esculenta	Chen et al. 2012		
Fagaceae	Quercus spp.	Gressitt 1951; DFZJP 1983; Chiang 1989; Hua 2002		
Meliaceae	Melia azedarach	DFZJP 1983; Chiang 1989; Hua 2002		
Table 2. (continued).

Family	Genus	Species	Author/Year	
Moraceae	Artocarpus	sp.	Hua 2002	
Myrtaceae	Corymbia	citriodora	Zhu 1995	
Myrtaceae	Eucalyptus	sp.	Hua 2002	
Palmae	Areca	catechu	Chiang 1989	
Palmae	Cocos	nucifera	Chiang 1989	
Palmae	Elaeis	guineensis	Chiang 1989	
Pinaceae	Pinus	sp.	Wang 1994	
Poaceae	Saccharum	officinarum	Wickham et al. 2016	
Poaceae	Saccharum	sinense	Pu 1980; Chiang 1989; Hua 2002	
Rutaceae	Citrus	sp.	Zhu and Xu 1996	
Rutaceae	Citrus	grandis	Hua 2002	
Salicaceae	Salix	sp.	DFZJP 1983; Hua 2002	
Sapindaceae	Dimocarpus	longan	Zhu and Xu 1996	
Erythresthes bowringii (Pascoe, 1863) *	Castanea mollissima *	Fagaceae	Castanea spp.	Chiang et al. 1985
Glenea cantor (Fabricius, 1787) ***	Quercus sp. *	Bombaceae	Bombax malabaricum	Pu 1980
		Fagaceae	Castanea mollissima	Hua 2002
Grammographus notabilis subsp. cuneatus (Fairmaire, 1888) ***	Castanea mollissima *	Fagaceae	Quercus sp.	Hua 2002
Ipothalia esmeralda Bates, 1879 *	Citrus reticulata *	Fagaceae	Castanea mollissima	Hua 2002
Ischnostrangalis davidi (Pic, 1934) ***	Quercus sp. *	Fagaceae	Quercus sp.	Hua 2002
Japanostrangalia basiplicata (Fairmaire, 1889) ***	Quercus sp. *	Fagaceae	Broussonetia papyrifera	Hua 2002
Linda femorata (Chevrolat, 1852) ***	Quercus sp. *	Moraceae	Alnus sp.	Hua 2002
Mesosa myops (Dalman, 1817) ***	Castanea mollissima *	Anacardiaceae	Rhus sp.	Chen et al. 1959; Hua 2002; Lim et al. 2014
		Betulaceae	Alnus sp.	Lim et al. 2014
		Betulaceae	Betula sp.	Hua 2002
		Fabaceae	Sophora japonica	Hua 2002
		Fagaceae	Castanea sp.	Hua 2002
		Fagaceae	Quercus mongolica	Yang et al. 2013
		Fagaceae	Quercus mongolica subsp. crispula	Yang et al. 2013
		Fagaceae	Quercus spp.	Hua 2002
		Juglandaceae	Juglans manshurica	Lim et al. 2014
		Juglandaceae	Juglans regia	Hua 2002
		Malvaceae	Tilia cordata	Ehrnström and Holmer 2007
		Pinaceae	Larix sp.	Lim et al. 2014
		Pinaceae	Pinus sp.	Hua 2002; Lim et al. 2014
		Rosaceae	Malus sp.	Chen et al. 1959; Hua 2002
		Rosaceae	Prunus sp.	Chen et al. 1959; Lim et al. 2014
		Rosaceae	Pyrus sp.	Lim et al. 2014
		Rutaceae	Citrus sp.	Lim et al. 2014
		Salicaceae	Populus sp.	Chen et al. 1959; Hua 2002
		Styracaceae	Alniphyllum fortunei	Hua 2002
		Ulmaceae	Ulmus parvifolia Jacquin	Chen et al. 1959; Hua 2002; Lim et al. 2014
Table 2. (continued).

Metastrangalis thibetana (Blanchard, 1871) **	Castanea mollissima *	Cupressaceae	Metasequoia glyptostroboideae	Chiang et al. 1985; Hua 2002
Monochamus guerryi Pic, 1903 ***	Castanea mollissima *	Fagaceae	Castanea mollissima	Hua 2002; Wan et al. 2010
	Castanopsis hystrix	Fagaceae	Quercus glauca	Pu 1980; Hua 2002
	Castanopsis sp.	Fagaceae	Quercus henryi	Pu 1980; Hua 2002
		Pinaceae	Pinus kesiyu Royle ex Gordon	Hua 2002
		Rosaceae	Malus pumila	Hua 2002
Monochamus millegranus Bates, 1891 ***	Quercus sp. *	Fagaceae	Castanea mollissima	Hua 2002
		Fagaceae	Quercus sp.	Hua 2002
Nadezhdiella cantori (Hope, 1843) ***	Citrus reticulata *	Bromeliaceae	Ananas comosus Merrill	Chiang 1989; Hua 2002
		Euphorbiaceae	Vernicia fordii	DFZJP 1983; Hua 2002
		Euphorbiaceae	Sapium sebiferum (L.) Roxb.	DFZJP 1983; Hua 2002
		Fagaceae	Quercus spp.	DFZJP 1983; Hua 2002
		Lamiaceae	Tectona grandis	Hua 2002
		Moraceae	Artocarpus sp.	Hua 2002
		Oleaceae	Olea europaea Limnè	Hua 2002
		Rutaceae	Citrus spp.	Cheo 1936; Lieu 1945; Gressitt 1951; DFZJP 1983; Hua 2002
		Salicaceae	Salix sp.	Hua 2002
		Salicaceae	Populus sp.	Hua 2002
		Vitaceae	Vitis vinifera	Chen et al. 1959; Cherepanov 1982; Chiang 1989; Hua 2002
Neocerambyx raddei Blessig, 1872 ***	Quercus chenii (Nakai, 1924) *	Euphorbiaceae	Sapium sebiferum (L.) Roxb.	DFZJP 1983; Hua 2002
		Fagaceae	Castanea spp.	Matsushita 1933; Cheo 1936; Gressitt 1951; Chen et al. 1959; DFZJP 1983; Chiang 1989; Lim et al. 2014
		Fagaceae	Castanopsis spp.	Lim et al. 2014
		Fagaceae	Lithocarpus	Chen et al. 1959; Chiang 1989; Wu et al. 1995; Hua 2002
		Fagaceae	Paspisia cuspidata	Gressitt 1951
		Fagaceae	Quercus acutissima	Gressitt 1951; Chen et al. 1959; DFZJP 1983; Chiang 1989; Wu et al. 1995; Hua 2002
		Fagaceae	Quercus glandulifera	Cheo 1936; Gressitt 1951
		Fagaceae	Quercus liaotungensis	Cao et al. 2015
		Fagaceae	Quercus mongolica	Li et al. 2017
		Fagaceae	Quercus spp.,	Chen et al. 1959; Hua 2002; Lim et al. 2014
		Moraceae	Morus spp.	Li et al. 2017
		Myrtaeaceae	Eucalyptus sp.	Cheo 1936; Gressitt 1951; Chen et al. 1959; DFZJP 1983; Chiang 1989; Wu et al. 1995; Hua 2002; Lim et al. 2014
		Oleaceae	Fraxinus mandshurica Ruprecht	DFZJP 1983; Hua 2002
		Paulowniaceae	Paulownia sp.	DFZJP 1983; Wu et al. 1995; Lim et al. 2014
		Pinaceae	Pinus spp.	DFZJP 1983; DFZJP 1983
		Rosaceae	Armeniaca sp.	DFZJP 1983; DFZJP 1983
		Rosaceae	Malus domestica	DFZJP 1983; DFZJP 1983
		Rosaceae	Pyrus sp.	DFZJP 1983; DFZJP 1983
		Rutaceae	Citrus sp.	DFZJP 1983; DFZJP 1983
Oberea ferruginea (Thunberg, 1787) ***	Citrus reticulata *	Euphorbiaceae	Vernicia fordii	Hua 2002
		Poaceae	Bambusa spp.	Hua 2002
		Salicaceae	Salix nigra	Pitcher and McKnight 1990
		Theaceae	Schima superba	Hua 2002
Longhorn beetles from pine, Fagaceae, and citrus in China

Ernstson et al. (2021), Management of Biological Invasions 12(4): 858–872, https://doi.org/10.3391/mbi.2021.12.4.06

866

Table 2. (continued).

| Paraleprodera diaphthalma
(Pascoe, 1857) ***	Castanea mollissima *	Actinidiaceae	Actinidia sp.	Hua 2002
Betulaceae	Castaneopsis davidiana Decaisne	Hua 2002		
Cornaceae	Dendrobenothamia sp.	Hua 2002		
Cupressaceae	Cupressus sp.	Hua 2002		
Euphorbiaceae	Vernicia fordii (Hemsley) Airy Shaw	DEZJP 1983; Hua 2002		
Fabaceae	Pueraria montana var. lohata (Willd.) Maesen and S. Almeida	Sun et al. 2006		
Fagaceae	Castanea mollissima	Pu 1980; DEZJP 1983		
Fagaceae	Quercus sp.	DEZJP 1983; Hua 2002		
Juglandaceae	Juglans regia	DEZJP 1983; Hua 2002		
Poaceae	Bambusa sp.	Hua 2002		

| Plagionotus christophi
(Kraatz, 1879) **	Quercus sp. *	Fabaceae	Quercus spps.	Gressitt 1951; Chen et al. 1959; Hua 2002; Hoshino et al. 2009; Lim et al. 2014
Saliceae	Xylosma sp.	Hua 2002		
Rosaceae	Malus pumila	Hua 2002		

| Purpuricenus lituratus
Ganglbauer, 1887 **	Quercus chenii *	Fabaceae	Quercus spps.	Pu 1980; Hua 2002
Rosaceae	Malus pumila	Hua 2002; Chen et al. 1959; Lim et al. 2014		
Rosaceae	Malus spps.	Chen et al. 1959; Lim et al. 2014		
Rosaceae	Pyrus pyrifolia	Lim et al. 2014		

| Purpuricenus sideriger
Fairmaire, 1888 ***	Quercus chenii *	Fabaceae	Quercus chenii	Pu 1980; Hua 2002
Rosaceae	Malus spps.	Chen et al. 1959; Lim et al. 2014		
Rosaceae	Pyrus pyrifolia	Lim et al. 2014		

| Siniostrangalis ikedai
(Mitono & Tamanuki, 1939) **	Quercus sp. *	Fabaceae	Quercus semicarpifolia	Hua 1989
Pinaceae	Quercus spps.	Hua 2002		
Pinaceae	Pinus spp.	Hua 1989; Hua 2002		

| Stenygrinum quadrinotatum
Bates, 1873 ***	Quercus sp. *	Fabaceae	Acacia confusa	Hua 2002
Fabaceae	Castanea mollissima	Cheo 1936; Chen et al. 1959; Hua 2002		
Fabaceae	Quercus spps.	Cheo 1936; Zheng et al. 2005		
Fabaceae	Quercus acutissima	Cheo 1936; Chen et al. 1959; DFZJP 1983; Lim et al. 2014		
Lamiaceae	Tectona grandis Linné fils	Hua 2002		
Lauraceae	Cinnamomum camphora	DFZJP 1983		
Moraceae	Morus spps. or Morus alba	DEZJP 1983; Hua 2002		
Pinaceae	Abies sp.	Hua 2002		
Rosaceae	Malus spps.	Zhang et al. 2017		
Ulmaceae	Zelkova spps.	Hua 2002		

| Trirachys orientalis
Hope, 1843 ***	Citrus reticulata *	Fabaceae	Robinia pseudoacacia	Hua 2002
Fabaceae	Sophora spps.	Hua 2002		
Fabaceae	Quercus spps.	Hua 2002		
Rhamnaceae	Zizyphus sativa Gaertn	Hua 2002		
Rosaceae	Pyrus sp.	Chen et al. 1959; Hua 2002		
Rutaceae	Citrus spp.	Gressitt 1951; Chen et al. 1959; Duffy 1968; Gressitt et al. 1970; Chiang 1989; Hua 2002		
Saliceae	Populus sp.	DFZJP 1983; Hua 2002		
Saliceae	Salix sp.	Chen et al. 1959; DFZJP 1983; Hua 2002		

| Trirachys sinensis
(Gahan, 1890) ***	Citrus reticulata *	Ebenaceae	Diospyros spps.	Gressitt 1951; Chen et al. 1959; Duffy 1968; Gressitt et al. 1970; Chiang 1989; Hua 2002
Fagaceae	Quercus sp.	Chiang 1989; Hua 2002		
Lauraceae	Cinnamomum camphora	Hua 2002		
Meliaceae	Cedrela sps.	Gressitt 1951; Chen et al. 1959; Duffy 1968; Gressitt et al. 1970; Chiang 1989; Hua 2002		
Rosaceae	Crataegus sps.	Gressitt 1951; Duffy 1968; Gressitt et al. 1970; Hua 2002		
Rutaceae	Citrus sps.	Gressitt 1951; Chen et al. 1959; Duffy 1968; Gressitt et al. 1970; Chiang 1989; Hua 2002		
Table 2. (continued).

Family	Genus	Species	Author	
Salicaceae	Salix	sp.	Hua 2002	
Sapindaceae	Acer	sp.	Duffy 1968; Gressitt et al. 1970	
Theaceae	Camellia	oleifera	Abel	
Xylorhiza pilosipennis	Castanea mollissima *	Fagaceae	Vives et al. 2019	
Breuning, 1943 ***	(Often misidentified as Xylorhiza adusta (Wiedemann, 1819))	Lamiaceae	Gmelina hainanensis Oliver	Vives et al. 2019
	Paulowniaceae	sp.	DFZJP 1983	

Results

We investigated the known records for 40,843 specimens at IZCAS. As a result of our investigation we identified a total of 39 species of xylophagous longhorn beetle associated with Fagaceae, Citrus, and avocado.

The 39 identified beetle species had 43 documented host associations with at least one of the target trees. Some beetle species were recorded on more than one target tree host. By systematically reviewing the known literature we followed a similar process to a preliminary risk assessment and discovered 33 interactions previously documented. The remaining 10 associations were novel and previously unrecorded (Table 2). When a host-interaction was previously recorded on a plant of the same genus (e.g. Quercus sp.), we did not consider this a newly documented host association. No associations of Chinese longhorn beetles with avocado were recorded.

Discussion

The 10 new associations, previously unpublished, may be used to help determine potential pest risk. The remaining 33 associations provide important corroboration of previously recorded single observations. Multiple reported observations increase data reliability (Groom et al. 2017).

Some of the beetles identified in our study have the potential to become an important economic pest and warrant further study. We identified two Anoplophora species, A. imitator (White, 1858) and A. lurida (Pascoe, 1856) on Fagaceae. This genus has two pest species already recognized as being of global concern, A. chinensis (Forester, 1771) and A. glabripennis. Lingafelter and Hoebeke (2002) note that two thirds of the 36 species within this genus have no recorded natural history, so the threat of other Anoplophora is unknown. Another species identified in our study, Anoplistes halodendri subsp. pirus (Arakawa, 1932), has been previously misidentified in the literature as A. halodendri (Pallas, 1776). A. halodendri subsp. pirus had caused mass mortality of sea buckthorn (Hippophae rhamnoides Linné) and sweetvetch (Hedysarum scoparium Linné) in China (Liu et al. 2012). While not definitive, evidence of pest status in other regions can identify potential pest status in adventive regions (Eyre and Haack 2017).

Avocado is native to South and Central America yet it has been planted in China for roughly 100 years (Liu and Zhou 2000). It has sporadically been trialed as a commercial crop. Commercial trials often have higher
levels of vigilance and observation compared to amenity horticulture, and various provenance and pest susceptibility trials have been conducted in China (Luo and Jin 1995; Li 2000). As such, the lack of host-associations identified here are unexpected. Xylophagous longhorn beetles are documented as attacking avocado in other regions. In Hawaii, the invasive longhorn beetle *Acalolepta aesthetica* (Olliff, 1890) is an emerging pest of avocado, despite the beetle being native to Australia (Matsunaga et al. 2019). Similar studies in regions where avocado is longer established may highlight pests and associations that have been previously unrecorded.

Lack of scientific data during the pest risk analysis process could lead to an underestimation of the impacts of invasion, particularly if a species is not considered a threat to a major agricultural crop or commercial plantation (Devorshak 2012). Our two-stage survey method aimed to identify previously unpublished host interactions between xylophagous longhorn beetles and a limited range of commodity tree species that are ecologically or economically important in the USA.

Host associations records may indicate the likely area of risk of understudied alien species. Many longhorn species have little documented ecology making pest risk analysis processes difficult (Eyre and Haack 2017). Three beetle species had no host-associations identified in our systematic literature review prior to this research. In order to perform a risk assessment, the area at risk cannot be assessed without information about the host. Likewise, the level of host-specificity would be unclear. Prior to this study that identified a Fagaceae host (*Quercus* sp.) it could be assumed that a species like *Chloridolum laotium* (Gressitt & Rondon, 1970) is oligophagous on pine trees as *Pinus* spp. were the only previously recorded hosts. Similar results can be seen with *Chlorophorus annulatus* (Hope, 1831) (previously only recorded on *Coffea* sp.) and *Metastrangalis thibetana* (Blanchard, 1871) (previously only recorded on *Metasequoia glyptostroboides* Hu & Cheng). The results indicate a more diverse host association than previously known for these species. This information may be used to determine a longhorn beetles potential area at risk which impacts the pest risk assessment and phytosanitary regulation.

Despite generating useful information, there are still limitations to this study. Many other associations have probably been recorded but are inaccessible. Groom et al. (2017) discuss the difficulties of finding accurate biodiversity data, lack of interoperability and standardization, and paywalls, where access to information requires a subscription service or payment to be made. Language differences can present a special barrier, especially when collection records follow traditional or local plant taxa names, rather than the Latin binomial nomenclature. These issues increase the likelihood of host associations being unusable or incomplete during the pest risk analysis process because regulations are implemented based on species names (FAO 2007).
Previous records can themselves be inaccurate. When using historical data of this nature we cannot verify the accuracy of the host plant identified by the specimen collector in the museum collections. Often, the tree name has been translated and with colloquial or family names used for groups of similar species. As such, identification of hosts can only be made as accurate as the translated local name. Additionally, whether the plant was a feeding host or oviposition host is not recorded. The records in Table 2 identify the number of observations recorded by the original collectors in the IZCAS collection. We can infer that specimens frequently collected on the same plants likely have an association.

Our focus on the tree genus or species in question, but not on its phylogenetic relatives, can be also seen as a limitation. Many insects switch hosts within a higher phylogenetic group, regardless of whether they coevolved with the plant species or not. For example, records at IZCAS do not indicate any Cerambycidae associations on avocado, but many Chinese longhorn beetles exploit native Lauraceae trees and may potentially switch to avocado. However, the strength of our inference is that all studied tree taxa are widely planted in China, and thus served as an analog of sentinel gardens, or living in situ laboratories for new host association studies (Eschen et al. 2019).

This method could be used on other collections and other target groups to highlight species of potential pest status. Equally, documented host feeding evidence is also utilized outside of the pest risk assessment system and could provide ecological information about these organisms in many types of future studies.

Acknowledgements

MYL thanks Tuo-Zhan Fang for helping her during the investigation on the IZCAS collection, Kui-Yan Zhang for managing the collection in a good order, Nobuo Ohbayashi and Junsuke Yamasako for providing a pdf of Arakawa (1932). All authors would like to thank the Asian Forest Health Network (www.asianforeshealth.org) for networking and communication assistance. We thank the three anonymous reviewers whose comments and suggestions helped improve and clarify this manuscript.

Funding

ASE, YL and JH were funded by the USDA Forest Service International Programs and by the USDA APHIS Plant Protection Act.

Authors’ contribution

ASE – Original draft, sample design and methodology, investigation and data collection, data analysis and interpretation. MYL – Sample design and methodology, investigation and data collection, review, and editing. YL – Research conceptualization, review and editing. JH – Research conceptualization, ethics approval, funding provision, review and editing.

References

Achrya UK, Pun U (2016) Analysis of Nepalese Coffee Industry: Production and Postharvest Issues. Nepalese Horticulture 11: 66–73
Arakawa H (1932) New Cerambycidae and Buprestidae from South Manchuria. Kontyû 6: 15–19
Baker RHA, Battisti A, Bremmer J, Kenis M, Mumford J, Petter F, Schrader G, Bacher S, De Barro P, Hulme PE, Karadjova O, Lanskis AO, Puvrost O, Pysk P, Roques A, Baranchikov Y, Sun JH (2009) PRATIQUE: A research project to enhance pest risk analysis techniques in the European Union. *EPPO Bulletin* 39: 87–93, https://doi.org/10.1111/j.1365-2388.2009.02246.x

Cao C (2010) Risk analysis of *Chlorophorus diadema*. *Forest Pest and Diseases* 3: 66–70

Cao L, Yang Z, Tang Y, Wang X (2015) Notes on three braconid wasps (Hymenoptera: Braconidae, Doryctinae) parasitizing oak long-horned beetle, *Massicus raddeli* (Coleoptera: Cerambycidae), a severe pest of *Quercus* spp. in China, together with the description of a new species. *Zootaxa* 4021, 467–474, https://doi.org/10.11646/zootaxa.4021.3.6

Chen Q, Lu F, Lu H (2012) Phenology and control of *Dorycthenes granulosus* and *Anomala corpulenta* on cassava. *Chinese Journal of Tropical Crops* 33: 332–337 [in Chinese]

Chen S (= Chen X), Xie Y, Deng G (1959) Economic Insect Fauna of China. Vol. I. Coleoptera: Cerambycidae. Science Press, Beijing, China, 120 pp

Cheo M (1936) A preliminary list of the insects and arachnids injurious to economic plants in China. *Forest Pest and Diseases* 1: 102: 89–96, https://doi.org/10.1017/S000748531100040X

Cheo M (1936) Economic Insect Fauna of China. Vol. I. Coleoptera: Cerambycidae. Science Press, Beijing, China, 160 pp

Cherepanov A (1982) Usachi Severnoy Azii (Cerambycinae: Clytini, Stenaspini). Nauka, Novosibirsk, 456 pp

Cherepanov A (1989) Cerambycid larvae of China. Chongqing Publishing House, Chongqing, 160 pp

Cherepanov A (1990) Lamiinae. In: Zolotarenko GS (ed), Cerambycidae of northern Asia, Volume 3, Part 1. Brill, pp 91–105

Chiang S-N (1989) Cerambycid larvae of China. Chongqing Publishing House, Chongqing, 160 pp

Chiang S-N, Fu F-J, Hua L-Z (1985) Economic Insect Fauna of China. Vol XXXV. Coleoptera: Cerambycidae. Science Press, Beijing, China, 120 pp

Cherrick T, Oskay F, Papazova I, Prospero S, Franic I (2019) Spotting the pests of tomorrow - Sampling designs for detection of species associations with woody plants. *Journal of Biogeography* 46: 2159–2173, https://doi.org/10.1111/jbi.13670

Duffy EAJ (1968) A monograph of the immature stages of oriental timber beetles (Cerambycidae). British Museum (Natural History), 435 pp

Ehnström B, Holmer M (2007) Nationalnyckeln till Sveriges flora och fauna [CY 91], Skalbaggar: långhormingar: Coleoptera: Cerambycidae. ArtDatabanken, Sveriges Lantbruksuniversitet, 302 pp

Eschen R, Roques A, Santini A (2015) Taxonomic dissimilarity in patterns of interception and establishment of alien arthropods, nematodes and pathogens affecting woody plants in Europe. *Diversity and Distributions* 21: 36–45, https://doi.org/10.1111/ddi.12267

Eschen R, De Groot M, Glavendekić M, Lackovic N, Matosević D, Morales-Rodriguez C, O’Hanlon R, Oskay F, Papazova I, Prospero S, Franic I (2019) Spacing designs for detection of species associations with woody plants. *Journal of Biogeography* 46: 2159–2173, https://doi.org/10.1111/jbi.13670

Eyre D, Haack RA (2017) Invasive cerambycid pests and biosecurity measures. In: Wang Q (ed), Cerambycidae of the world. CRC Press, Boca Raton, FL, pp 563–618

FAO (2004) Pest risk analysis for quarantine pests including analysis of environmental risks and living modified organisms, International standards for phytosanitary measures. Publication 11. FAO, Rome, 38 pp

FAO (2007) Framework for pest risk analysis, International standards for phytosanitary measures. Publication 2. FAO, Rome, 20 pp

Garcia-Ruíz E, Marco Mancebón V, Perez-Moreno I (2012) Laboratory rearing and life history of an emerging grape pest, *Xylotrechus arvicola* (Coleoptera: Cerambycidae). *Bulletin of Entomological Research* 102: 89–96, https://doi.org/10.1017/S000748531100404X

Gressitt JL (1951) *Longicornia* 2: 1–667

Gressitt JL, Rondon JA, Von Breuning S (1970) *Longicornia* 3, https://doi.org/10.3389/fams.2017.00013

Gressitt JL, Rondon JA, Von Breuning S (1970) *Longicornia* 39: 87–93, https://doi.org/10.1111/j.1365-2338.2009.02246.x

Groom QJ, Adriaens T, Desmet P, Simpson A, De Wever A, Bazos I, Cardoso AC, Charles L, Christopoulou A, Gazda A, Helmisssa H, Hobern D, Josefsson M, Lucy F, Marisavljevic D, Oskay F, Papazova I, Prospero S, Franic I (2019) Spacing designs for detection of species associations with woody plants. *Journal of Biogeography* 46: 2159–2173, https://doi.org/10.1111/jbi.13670

Haack RA, Slansky F (1987) Nutritional ecology of wood feeding Coleoptera, Lepidoptera, and Hymenoptera. *Insect Adaptations to Woody Environments* 15: 449–486

Haack RA, Cavey JF (2000) Insects intercepted on solid wood packing materials at United States ports-of-entry: 1985-1998. In: Quarantine pests, risk, for the forestry sector and their...
effects on foreign trade. Proceedings on CD-ROM of Silvotecna 14; 2000 June 27–28; Concepcion, Chile. CORMA, Concepcion, Chile, pp 1–16
Haack RA, Hérard F, Sun J, Turgeon JJ (2010) Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: A worldwide perspective. Annual Review of Entomology 55: 521–546, https://doi.org/10.1146/annurev-ento-112408-085427
Hanks LM (1999) Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annual Review of Entomology 44: 483–505, https://doi.org/10.1146/annurev.ento.44.1.483
Hérard F, Roques A (2009) Current status of Anoplophora spp. in Europe and an update on suppression efforts. In: Proceedings of 20th US Department of Agriculture interagency research forum on invasive species, 2009 January 13–16, Annapolis, MD. Gen. Tech. Rep., PA: US Department of Agric, p 35
Hérard F, Maspero M, Ramualde N, Jucker C, Colombo M, Ciampitti M, Cavagna B (2009) Anoplophora glabripennis - Eradication Programme in Italy (April 2009) EPPO, https://www.eppo.int/ACTIVITIES/plant_quarantine/shortnotes_qps/anoplophora_glabripennis_eradication
Hoffmann WE (1934) Tree borers and their control in Kwangtung. Lingnan Agricultural Journal 1: 27–59 [in Chinese with English summary], https://doi.org/10.1007/BF03378995
Hoshino K, Hirose M, Iwabuchi K (2009) A new insect cell line from the longicorn beetle Plagionotus christophi (Coleoptera: Cerambycidae). In Vitro Cellular and Developmental Biology 45: 19–22, https://doi.org/10.1007/s11626-008-9152-7
Hua I-Z (2002) List of Chinese Insects Vol. II. Zhongshan (Sun Yat-sen) University Press, Guangzhou, 448 pp
Hua L, Nara H, Yu C (1993) Longicorn Beetles of Hainan & Guangdong. Muh-Sheng Museum of Entomology, 320 pp
Hulme PE, Bacher S, Kenis M, Klotz S, Kuhn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, Pysek P (2008) Grazing at the routes of biological invasions: A framework for integrating pathways into policy. Journal of Applied Ecology 2: 403–414, https://doi.org/10.1111/j.1365-2664.2007.01442.x
Li C-H (2000) Investigation on Adaptability of Avocado in Xishuangbanna. Journal of Yunnan Tropical Crop Science and Technology 4: 8–10
Li W, Wu C (1993) Integrated management of longhorn beetles damaging poplar trees. China Forest Press, Beijing, 290 pp [in Chinese]
Li Y, Meng Q, Silk P, Gao W, Mayo P, Sweeney J (2017) Effect of semiochemicals and trap height on catch of Neocerambyx raddei in Jilin province, China. Entomologia Experimentalis et Applicata 164: 94–101, https://doi.org/10.1111/eea.12600
Lieu KOV (1945) The Study of Wood Borers in China: I. Biology and Control of the Citrus-root-Cerambycids, Melanauster chinensis, Forster (Coleoptera). Florida Entomologist 1: 62–101, https://doi.org/10.2307/3492341
Lim J, Jung S-Y, Lim J-S, Jang J, Kim K-M, Lee Y-M, Lee B-W (2014) A review of host plants of Cerambycidae (Coleoptera: Chrysomeloidea) with new host records for fourteen cerambycids, including the Asian longhorn beetle (anoplophora glabripennis Motschulsky), in Korea. Korean Journal of Applied Entomology 53: 111–133, https://doi.org/10.5656/KJAE.2013.11.1.061
Lin M, Yang X (2019) Catalogue of Chinese Coleoptera Volume IX. Science Press, Beijing, 575 pp
Lingafelter SW, Hoebeke ER (2002) Revision of the genus Anoplophora (Coleoptera: Cerambycidae). Entomological Society of Washington, Washington, DC, 18 pp
Liu K, Zhou J (2000) Avocado production in China. In: Papademetrion MK (ed), Avocado Production in Asia and the Pacific. Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand, pp 5–14
Liu X, Luo Y, Cao C, Zong S (2012) Scanning electron microscopy of antennal sensible of Anoplophora chinensis (Motschulsky), in Korea. Annual Review of Entomology 57: 521–546, https://doi.org/10.1146/annurev-ento-112408-085427
Luo Y, Jin Q (1995) Avocado pest insects in Hainan island. Chinese Journal of Tropical Crops 16: 84–93
Matsunaga JN, Howarth FG, Kumashiro BR (2019) New State Records and Additions to the Alien Terrestrial Arthropod Fauna in the Hawaiian Islands. Proceedings of the Hawaiian Entomological Society 51: 1–71
Matsushita M (1933) Beitrag zur Kenntnis der Cerambyciden des japanischen Reichs. Journal of the Entomological Society of Japan 7: 34–102
Mech AM, Thomas KA, Marsico TD, Herms DA, Allen CR, Ayres MP, Gandhi KJ, Gurevitch J, Havill NP, Hufbauer RA, Liebhold AM (2019) Evolutionary history predicts high-impact invasions by herbivorous insects. Ecology and Evolution 9: 12216–12230, https://doi.org/10.1002/2018-099-0972
Meurisse N, Rassati D, Hurley BP, Brockerhoff EG, Haack RA (2019) Common pathways by which non-native forest insects move internationally and domestically. Journal of Pest Science 92: 13–27, https://doi.org/10.1007/s10340-018-0990-0
Minkevich II (1965) Role of the yellow spotted long horn beetle in the spreading of the infectious drying-up of oak propagation. Forests Journal 2: 21–23
Longhorn beetles from pine, Fagaceae, and citrus in China

Ernstson et al. (2021), Management of Biological Invasions 12(4): 858–872, https://doi.org/10.3391/mbi.2021.12.4.06

1. Nakamura S, Kojima K (1981) Immature stages of Taiwanese cerambycid beetles (Coleoptera, Cerambycidae), with notes on their habit. Kontyû 49: 155–165

2. Perez A, Minor T (2018) Consumer Demand for Fresh Fruit Drives Increases Across Sector. Amber Waves: The Economics of Food, Farming, Natural Resources, and Rural America 3: 4-6

3. Peverieri GS, Binazzi F, Roversi PF (2017) Chestnut-associated insects alien to Europe. Redi-giornale di Zoologie 100: 103–113, https://doi.org/10.19263/REDDIA.100.17.13

4. Pitcher J, McKnight J (1990) Black Willow - S. nigra Marsh. In: Burns RM, Honkala BH (eds), Silvics of North America. USDA-FS Agriculture Handbook No. 654, Citeeseer, 683 pp

5. Pu FJ (1980) Economic insect fauna of China. Vol. XIX. Coleoptera: Cerambycidae (Second), Beijing Science Press, Beijing, 146 pp

6. Simmert S, Calvin L (2019) Fruit and Tree Nuts Outlook. Economic Research Service - USDA, Situation and Outlook Report 9: 5–19

7. Straw NA, Fielding NJ, Tilbury C, Williams DT, Inward D (2015) Host plant selection and resource utilisation by Asian longhorn beetle Anoplophora glabripennis (Coleoptera: Cerambycidae) in southern England. Forestry: An International Journal of Forestry Research 88: 84–95, https://doi.org/10.1093/forestry/cpu037

8. Sun J-H, Liu Z-D, Britton KO, Cai P, Orr D, Hough-Goldstein J (2006) Survey of phytophagous insects and foliar pathogens in China for a biocontrol perspective on kudzu, Pueraria montana var. lobata (Willd.) Maesen and S. Almeida (Fabaceae). Biological Control 36: 22-31, https://doi.org/10.1016/j.biocontrol.2005.09.007

9. Tu K, Li G, Xue Z (2006) Research on biological characteristics of Aphrodisium gibbicolle. Guangxi Forest Science 22: 61–65 [in Chinese with English abstract]

10. Vives E, Heffern D, Lin M-Y (2019) Descriptions and notes on Oriental longhorned beetles, Part IV, Tribe Xylorhizini (Coleoptera, Cerambycidae, Lamiinae). In: Vitali F (ed), Les Cahiers Magellanes. Magellanes, pp 41–69

11. Wang J (1994) Damage to pine stumps by Dorysthenes granulosus. Guangxi Forest Science 6: 30 [In Chinese]

12. Wickham JD, Lu W, Jin T, Peng ZQ, Guo DF, Millar JG, Hanks LM, Chen Y (2016) Prionac acid: an effective sex attractant for an important pest of sugarcane, Dorysthenes granulosus (Coleoptera: Cerambycidae: Prioninae). Journal of Economic Entomology 109: 484–486, https://doi.org/10.1093/jee/tov266

13. Yang C (1995) A study on biological characteristics of Oberea ferruginea. Forest Research 8: 205–209

14. Yang ZQ, Wang ZD, Cao LM, Tang YL, Tang H (2013) Cerchysiella mesosa Yang sp. nov. (Hymenoptera: Encyrtidae), a parasitoid of Mesosa myops (Dalman) (Coleoptera: Cerambycidae) larvae in China. Zootaxa 3619: 154–160, https://doi.org/10.11646/zootaxa.3619.2.4

15. Zhang C (1992) Damage to mango seedlings by Dorysthenes granulosus. Guangxi Agricultural Science 6: 259

16. Zhang Q (2017) Cerambycidae of the world: Biology and pest management, CRC Press, Boca Raton, Florida, 642 pp

17. Zhang Q, Wang R, Yu Y, Luo Y (2017) Damage and population dynamics of wood-boring Cerambycid beetles in Rosaceous fruit tree. Chinese Journal of Applied Entomology 54: 3

18. Zhu JH, Xu MY (1996) Damage to longan and citrus by Dorysthenes granulosus. Plant Protection 22: 38