Genome sequence of the marine bacterium
Corynebacterium maris type strain Coryn-1^T (= DSM 45190^T)

Lena Schaffert¹, Andreas Albersmeier¹, Hanna Bednarz², Karsten Niehaus², Jörn Kalinowski¹*, Christian Rückert¹

¹ Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany
² Proteome and Metabolome Research, Bielefeld University, Bielefeld, Germany

*Corresponding author: Jörn Kalinowski (Joern@CeBiTec.Uni-Bielefeld.DE)

Keywords: aerobic, non-motile, Gram-positive, non-spore forming, non-hemolytic, heterotrophic, mesophilic, halotolerant

Corynebacterium maris Coryn-1· Ben-Dov et al. 2009 is a member of the genus *Corynebacterium* which contains Gram-positive, non-spore forming bacteria with a high G+C content. *C. maris* was isolated from the mucus of the Scleractinian coral *Fungia granulosa* and belongs to the aerobic and non-haemolytic corynebacteria. It displays tolerance to salts (up to 10%) and is related to the soil bacterium *Corynebacterium halotolerans*. As this is a type strain in a subgroup of *Corynebacterium* without complete genome sequences, this project, describing the 2.78 Mbp long chromosome and the 45.97 kbp plasmid pCmaris1, with their 2,584 protein-coding and 67 RNA genes, will aid the Genomic Encyclopedia of Bacteria and Archaea project.

Introduction

Strain Coryn-1^T (= DSM 45190^T) is the type strain of the species *Corynebacterium maris* originally isolated from the mucus of the coral *Fungia granulosa* from the Gulf of Eilat (Red Sea, Israel) [1]. The genus *Corynebacterium* is comprised of Gram-positive bacteria with a high G+C content. It currently contains over 80 members [2] isolated from diverse backgrounds like human clinical samples [3] and animals [4], but also from soil [5] and ripening cheese [6].

Within this diverse genus, *C. maris* has been proposed to form a distinct lineage with *C. halotolerans* YIM 70093^T demonstrating 94% similarity related to the 16S rRNA gene sequences [1]. Similar to the closest phylogenetic relative *C. halotolerans*, which displays the highest resistance to salt described for the genus *Corynebacterium* to date, *C. maris* Coryn-1^T is able to live under conditions with high salinity. This species grows on LB agar plates with salinity ranging between 0 and 10%. Optimal growth was detected between 0.5 and 4.0% [1]. Aside from this Coryn-1^T is an alkaline-tolerant bacterium, which grows well at pH 7.2-9.0 (optimum pH 7.2) [1].

Here we present a summary classification and a set of features for *C. maris* DSM 45190^T, together with the description of the genomic sequencing and annotation.

Classification and features

A representative genomic 16S rRNA sequence of *C. maris* DSM 45190^T was compared to the Ribosomal Database Project database [7] confirming the initial taxonomic classification. *C. maris* shows highest similarity to *C. halotolerans* (94%). Because sequence similarity greater than 97% was not obtained with any member of the genus *Corynebacterium*, it was suggested that *C. maris* forms an new novel species, a hypothesis that is backed by other taxonomic classifiers [1].

Figure 1 shows the phylogenetic neighborhood of *C. maris* in a 16S rRNA based tree. Within the larger group containing furthermore the species *C. marinum* 7015^T [10] and *C. humireducens* MFC-5^T [11], the two strains *C. maris* and *C. halotolerans* YIM 70093^T [1] were clustered in a common subgroup.

C. maris Coryn-1^T is a Gram-positive coccobacillus, which is 0.8-1.5 μm long and 0.5-0.8 μm wide (Table 1, Figure 2). By reason that *C. maris* contains a thick peptidoglycan layer, the cells commonly do not separate after cell-division and stay diplocellular [1], the so called snapping division.
Figure 1. Phylogenetic tree highlighting the position of *C. maris* relative to type strains of other species within the genus *Corynebacterium*. Species with at least one publicly available genome sequence (not necessarily the type strain) are highlighted in **bold face**. The tree is based on sequences aligned by the RDP aligner and utilizes the Jukes-Cantor corrected distance model to construct a distance matrix based on alignment model positions without alignment inserts, using a minimum comparable position of 200. The tree is built with RDP Tree Builder, which utilizes Weighbor [8] with an alphabet size of 4 and length size of 1,000. The building of the tree also involves a bootstrapping process repeated 100 times to generate a majority consensus tree [9]. *Rhodococcus equi* (X80614) was used as an outgroup.

Figure 2. Scanning electron micrograph of *C. maris* Coryn-1T.
Corynebacterium maris type strain Coryn-1T

Table 1. Classification and general features of *C. maris* Coryn-1T according to the MIGS recommendations [12].

MIGS ID	Property	Term	Evidence code
		Domain *Bacteria*	TAS [13]
		Phylum *Actinobacteria*	TAS [14]
		Class *Actinobacteria*	TAS [15]
	Current classification	**Order** *Actinomycetales*	TAS [15-18]
		Family *Corynebacteriaceae*	TAS [15-17,19]
		Genus *Corynebacterium*	TAS [17,20,21]
		Species *Corynebacterium maris*	TAS [1]
		Type-strain Coryne-1 (=DSM 45190)	TAS [1]
	Gram stain	Positive	TAS [1]
	Cell shape	Coccus-shaped	TAS [1]
	Motility	non-motile	TAS [1]
	Sporulation	non-sporulating	TAS [1]
	Temperature range	Mesophile	TAS [1]
	Optimum temperature	35 °C	TAS [1]
	Salinity	0-10% (w/v) NaCl or sea-salt mixture (instant ocean)	TAS [1]
	MIGS-22 Oxygen requirement	aerobic	TAS [1]
	Carbon source	maltose, lactulose, β-hydroxybutyric acid, α-ketovaleric acid, Tween 40, phenylethylamine, N-acetyl-D-galactosamine, malonic acid, L-threonine, L-glutamic acid, L-fucose, L-alanyl glycine, inosine, raffinose, D-arabitol, L-asparagine and citric acid	TAS [1]
	Energy metabolism	chemoorganoheterotrophic	TAS [1]
	Terminal electron acceptor	oxygen	NAS
	MIGS-6 Habitat	mucus of the Scleractinian coral *Fungia granulosa*	TAS [1]
	MIGS-15 Biotic relationship	symbiotic	TAS [1]
	MIGS-14 Pathogenicity	non-pathogenic	NAS
	Biosafety level	1	NAS
	MIGS-23.1 Isolation	agarosphere culturing technique	TAS [1]
	MIGS-4 Geographic location	Gulf of Eilat, Red Sea, Israel	TAS [1]
	MIGS-5 Sample collection time	not reported	
	MIGS-4.1 Latitude	N 29°51’	
	MIGS-4.2 Longitude	E 34° 94’	
	MIGS-4.3 Depth	10-15 m	
	MIGS-4.4 Altitude	not reported	

a) Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [22].
It is described as non-motile [1], which coincides with a complete lack of genes associated with ‘cell motility’ (functional category N in COGs table).

Optimal growth of Coryn-1T was shown between 0.5 and 4.0% (w/v) salinity (NaCl or sea-salt mixture); however, ranges between 0 and 10% salinity are accepted [1]. \textit{C. maris} grows at temperatures between 26-37 °C (optimum at 35 °C). Carbon sources utilized by strain Coryn-1T include maltose, lactulose, β-hydroxybutyric acid, α-ketovaleric acid, Tween 40, phenylethylamine, N-acetyl-D-galactosamine, malonic acid, L-threonine, L-glutamic acid, L-fucose, L-alanyl glycine, inosine, raffinose, D-arabitol, L-asparagine and citric acid were used weakly [1].

Coryn-1T is susceptible to sulfa-methoxazole/tri-methoprim, tetracycline, chloramphenicol, erythromycin, ampicillin and meticillin. The strain is resistant to nalidixic acid [1].

Chemotaxonomy

In \textit{C. maris} cellular fatty acids are composed of 58% oleic acid (C\textsubscript{18:1}ω9c), 30% palmitic acid (C\textsubscript{16:0}) and 12% tuberculostearic acid 10-methyl (C\textsubscript{18:0}). The mycolic acids of \textit{C. maris} are short-chained, like many but not all corynemycol acids (6% C\textsubscript{30}, 27% C\textsubscript{32}, 47% C\textsubscript{34} and 20% C\textsubscript{36}).

The biochemical characterization by Ben-Dov \textit{et al.} [1] revealed positive signals for the following enzymes/reactions: alkaline phosphatase, esterase (C4), esterase lipase (C8), lipase (C14), leucine arylamidase, α-glucosidase, pyrazinamidase, pyrrolidonyl arylamidase, and gelatin hydrolysis activities.

Genome sequencing and annotation

Genome project history

Because of its phylogenetic position and interesting capabilities, i.e. high salt tolerance, \textit{C. maris} Coryn-1T was selected for sequencing as part of a project to define the core genome and pan genome of the non-pathogenic corynebacteria. While not being part of the \textit{Genomic Encyclopedia of Bacteria and Archaea} (GEBA) project [23], sequencing of the type strain will nonetheless aid the GEBA effort. The genome project is deposited in the Genomes OnLine Database [24] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the Center of Biotechnology (CeBiTec). A summary of the project information is shown in Table 2.

Growth conditions and DNA isolation

\textit{C. maris} strain Coryn-1T, DSM 45190, was grown aerobically in LB broth (Carl Roth GmbH, Karlsruhe, Germany) at 37 °C. DNA was isolated from \~108 cells using the protocol described by Tauch \textit{et al.} 1995 [25].

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	Nextera DNA Sample Prep Kit
MIGS-29	Sequencing platforms	Illumina MiSeq
MIGS-31.2	Sequencing coverage	56.45×
MIGS-30	Assemblers	Newbler version 2.6
MIGS-32	Gene calling method	GeneMark, Glimmer
INSDC ID		CP003924, CP003925
GenBank Date of Release		July 30, 2013
GOLD ID		G20930
NCBI project ID		172964
MIGS-13	Source material identifier	DSM 45190
Project relevance		Industrial, GEBA
Corynebacterium maris type strain Coryn-1T

Genome sequencing and assembly

A WGS library was prepared using the Illumina-Compatible Nextera DNA Sample Prep Kit (Epicentre, WI, U.S.A) according to the manufacturer’s protocol. The library was sequenced in a 2 x 150 bp paired read run on the MiSeq platform, yielding 1,238,702 total reads, providing 56.45× coverage of the genome. Reads were assembled using the Newbler assembler v2.6 (Roche). The initial Newbler assembly consisted of 26 contigs in seven scaffolds. Analysis of the seven scaffolds revealed one to be an extrachromosomal element (plasmid pCmaris1), five to make up the chromosome with the remaining one containing the four copies of the RRN operon which caused the scaffold breaks. The scaffolds were ordered based on alignments to the complete genome of C. halotolerans [26] and subsequent verification by restriction digestion, Southern blotting and hybridization with a 16S rDNA specific probe.

The Phred/Phrap/Consed software package [27-30] was used for sequence assembly and quality assessment in the subsequent finishing process. After the shotgun stage, gaps between contigs were closed by editing in Consed (for repetitive elements) and by PCR with subsequent Sanger sequencing (IIT Biotech GmbH, Bielefeld, Germany). A total of 67 additional reactions were necessary to close gaps not caused by repetitive elements.

Genome annotation

Gene prediction and annotation were done using the PGAAP pipeline [31]. Genes were identified using GeneMark [32], GLIMMER [33], and Prodigal [34]. For annotation, BLAST searches against the NCBI Protein Clusters Database [35] are performed and the annotation is enriched by searches against the Conserved Domain Database [36] and subsequent assignment of coding sequences to COGs. Non-coding genes and miscellaneous features were predicted using tRNAscan-SE [37], Infernal [38], RNAMMer [39], Rfam [40], TMHMM [41], and SignalP [42].

Genome properties

The genome (on the scale of 2,833,547 bp) includes one circular chromosome of 2,787,574 bp (66.67% G+C content) and one plasmid of 45,973 bp (61.32% G+C content, [Figure 3]). For chromosome and plasmid, a total of 2,653 genes were predicted, 2,584 of which are protein coding genes. The remaining were annotated as hypothetical proteins. A total of 1,494 (57.82%) of the protein coding genes were assigned to a putative function. Of the protein coding genes, 1,067 belong to 350 paralogous families in this genome corresponding to a gene content redundancy of 41.29%. The properties and the statistics of the genome are summarized in Tables 3 and 4.

Attribute	Value	% of total
Genome size (bp)	2,833,547	100.00
DNA Coding region (bp)	2,508,355	88.52
DNA G+C content (bp)	1,886,661	66.58
Total genes	2,653	100.00
RNA genes	67	2.53
rRNA operons	4	0.15
tRNA genes	55	2.07
Protein-coding genes	2,584	97.40
Genes with function prediction (protein)	1,494	57.82
Genes assigned to COGs	1,997	75.27
Genes in paralog clusters	1,067	41.29
Genes with signal peptides	226	8.54
Genes with transmembrane helices	657	24.76

a) The total is based on either the size of the genome in base pairs or the total number of total genes in the annotated genome.

Table 3. Genome Statistics

520 Standards in Genomic Sciences
Table 4. Number of genes associated with the general COG functional categories

Code	Value	%age	Description
J	154	5.96	Translation, ribosomal structure and biogenesis
A	1	0.04	RNA processing and modification
K	163	6.31	Transcription
L	122	4.72	Replication, recombination and repair
B	0	0.00	Chromatin structure and dynamics
D	22	0.85	Cell cycle control, cell division, chromosome partitioning
Y	0	0.00	Nuclear structure
V	44	1.70	Defense mechanisms
T	63	2.44	Signal transduction mechanisms
M	116	4.49	Cell wall/membrane biogenesis
N	0	0.00	Cell motility
Z	0	0.00	Cytoskeleton
W	0	0.00	Extracellular structures
U	21	0.81	Intracellular trafficking and secretion, and vesicular transport
O	77	2.98	Posttranslational modification, protein turnover, chaperones
C	155	6.00	Energy production and conversion
G	154	5.96	Carbohydrate transport and metabolism
E	230	8.90	Amino acid transport and metabolism
F	70	2.71	Nucleotide transport and metabolism
H	111	4.30	Coenzyme transport and metabolism
I	90	3.48	Lipid transport and metabolism
P	185	7.16	Inorganic ion transport and metabolism
Q	75	2.90	Secondary metabolites biosynthesis, transport and catabolism
R	295	11.42	General function prediction only
S	181	7.00	Function unknown
-	587	22.72	Not in COGs
Corynebacterium maris type strain Coryn-1T

Figure 3. Graphical map of the chromosome and plasmid pCmaris1 (not drawn to scale). From the outside in: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), GC content, GC skew.

Acknowledgements
Christian Rückert acknowledges funding through a grant by the Federal Ministry for Education and Research (0316017A) within the BioIndustry2021 initiative.

References
1. Ben-Dov E, Ben Yosef DZ, Pavlov V, Kushmaro A. Corynebacterium maris sp. nov., a marine bacterium isolated from the mucus of the coral Fungia granulosa. *Int J Syst Evol Microbiol* 2009; 59:2458-2463. PubMed http://dx.doi.org/10.1099/ijs.0.007468-0
2. Euzéby JP. List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. *Int J Syst Bacteriol* 1997; 47:590-592. PubMed http://dx.doi.org/10.1099/00207713-47-2-590
3. Renaud FNR, Aubel D, Riegel P, Meugnier H, Bollet C. Corynebacterium treneyi sp. nov., alpha-glucosidase-positive strains related to Corynebacterium xerosis. *Int J Syst Evol Microbiol* 2001; 51:1723-1728. PubMed http://dx.doi.org/10.1099/00207713-51-5-1723
4. Collins MD, Hoyles L, Foster G, Falsen E. Corynebacterium caspium sp. nov., from a Caspian seal (Phoca caspica). *Int J Syst Evol Microbiol* 2004; 54:925-928. PubMed http://dx.doi.org/10.1099/ijs.0.02950-0
5. Zhou Z, Yuan M, Tang R, Chen M, Lin M, Zhang W. Corynebacterium desertii sp. nov., isolated from desert sand. *Int J Syst Evol Microbiol* 2012; 62:791-794. PubMed http://dx.doi.org/10.1099/00207713-51-3-843
6. Brennan NM, Brown R, Goodfellow M, Ward AC, Beresford TP, Simpson PJ, Fox PF, Cogan TM. Corynebacterium mooreparkense sp. nov. and Corynebacterium casei sp. nov., isolated from the surface of a smear-ripened cheese. *Int J Syst Evol Microbiol* 2001; 51:843-852. PubMed http://dx.doi.org/10.1099/00207713-51-3-843
8. Bruno WJ, Socci ND, Halpern AL. Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Mol Biol Evol 2000; 17:189-197. PubMed http://dx.doi.org/10.1093/oxfordjournals.molbev.a026231

9. Cole JR, Chai B, Farris RJ, Wang Q, Kula-m-Syed-Mohideen AS, Garretty GM, Tiedje JM. The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 2007; 35(Database issue):D169-D172. PubMed http://dx.doi.org/10.1093/nar/gkl889

10. Du ZJ, Jordan EM, Rooney AP, Chen GJ, Austin B. Corynebacterium marinum sp. nov. isolated from coastal sediment. Int J Syst Evol Microbiol 2010; 60:1944-1947. PubMed http://dx.doi.org/10.1099/ijsem.0.018523-0

11. Wu CY, Zhuang L, Zhou SG, Li FB, He J. Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 2011; 61:882-887. PubMed http://dx.doi.org/10.1099/ijsem.0.020909-0

12. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed http://dx.doi.org/10.1038/nbt1360

13. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed http://dx.doi.org/10.1073/pnas.87.12.4576

14. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 119-169.

15. Stackebrant E, Rainey FA, Ward-Rainey NL. Proposal for a New Hierarchic Classification System, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479-491. http://dx.doi.org/10.1099/00207713-47-2-479

16. Zhi XY, Li WJ, Stackebrant E. An update of the structure and 16S RNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009; 59:589-608. PubMed http://dx.doi.org/10.1099/ijsem.0.65780-0

17. Skerman VBD, McGowan V, Sneath PHA. Approved Lists of Bacterial Names. Int J Syst Bacteriol 1980; 30:225-420. http://dx.doi.org/10.1099/00207713-30-1-225

18. Buchanan RE. Studies in the nomenclature and classification of bacteria. II. The primary subdivisions of the Schizomycetes. J Bacteriol 1917; 2:155-164. PubMed

19. Lehmann KB, Neumann R. Lehmann’s Medizin, Handatlan ten. X Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik., Fourth Edition, Volume 2, J.F. Lehmann, München, 1907, p. 270.

20. Bernard KA, Wiebe D, Burdz T, Reimer A, Ng B, Singh C, Schindel S, Pacheco AL. Assignment of Brevibacterium stations (ZoBell and Upham 1944) Breed 1953 to the genus Corynebacterium, as Corynebacterium stations comb. nov., and emended description of the genus Corynebacterium to include isolates that can alkalinate citrate. Int J Syst Microbiol 2010; 60:874-879. PubMed http://dx.doi.org/10.1099/ijsem.0.012641-0

21. Lehmann KB, Neumann R. Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik, First Edition, J.F. Lehmann, München, 1896, p. 1-448.

22. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25:25-29. PubMed http://dx.doi.org/10.1038/75556

23. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 2009; 462:1056-1060. PubMed http://dx.doi.org/10.1038/nature08656

24. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyripides NC. The Genomes OnLine Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res
Corynebacterium maris type strain Coryn-1T

25. Tauch A, Kassing F, Kalinowski J, Pühler A. The Corynebacterium xerosis composite transposon Tn5432 consists of two identical insertion sequences, designated IS1249, flanking the erythromycin resistance gene ermCX. Plasmid 1995; 34:119-131. PubMed http://dx.doi.org/10.1006/plas.1995.9995

26. Rückert C, Albersmeier A, Al-Dilaimi A, Niehaus K, Szczepanowski R, Kalinowski J. Genome sequence of the halotolerant bacterium Corynebacterium halotolerans type strain YIM 70093(T) (= DSM 44683(T)). Stand Genomic Sci 2012; 7:284-293. PubMed http://dx.doi.org/10.4056/sigs.3236691

27. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998; 8:175-185. PubMed http://dx.doi.org/10.1101/gr.8.3.175

28. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res 1998; 8:195-202. PubMed http://dx.doi.org/10.1101/gr.8.3.195

29. Gordon D. Viewing and editing assembled sequences using Consed.Curr Protoc Bioinformatics 2003; Chapter 11:Unit 11.2.

30. Ewing B, Hillier L, Wendell MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998; 8:175-185. PubMed http://dx.doi.org/10.1101/gr.8.3.175

31. NCBI. 2010 NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP). http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html

32. Borodovsky M, Mills R, Besemer J, Lomsadze A. Prokaryotic gene prediction using GeneMark and GeneMark.hmm. Curr Protoc Bioinformatics 2003; Chapter 4:Unit 4.5.

33. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res 1999; 27:4636-4641. PubMed http://dx.doi.org/10.1093/nar/27.23.4636

34. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119. PubMed http://dx.doi.org/10.1186/1471-2105-11-119

35. Klimke W, Agarwala R, Badreddin A, Chetvernin S, Ciufo S, Fedorov B, Kryutin B, O’Neill K, Resch W, Resenchuk S, et al. The National Center for Biotechnology Information’s Protein Clusters Database. Nucleic Acids Res 2009; 37(Database issue):D216-D223. PubMed http://dx.doi.org/10.1093/nar/gkn734

36. Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Ger L, Ger RC, Gonzales NR, Gwadz M, et al. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 2009; 37(Database issue):D205-D210. PubMed http://dx.doi.org/10.1093/nar/gkn845

37. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955-964. PubMed

40. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 2005;33 Database Issue:D121-124.

41. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305:567-580. PubMed http://dx.doi.org/10.1006/jmbi.2000.4315

42. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0, J Mol Biol 2004; 340:783-795. PubMed http://dx.doi.org/10.1016/j.jmb.2004.05.028