JORDAN PROPERTY FOR ALGEBRAIC GROUPS AND AUTOMORPHISM GROUPS OF PROJECTIVE VARIETIES IN ARBITRARY CHARACTERISTIC

FEI HU

ABSTRACT. We show an analogue of Jordan’s theorem for algebraic groups defined over a field \(\mathbb{K} \) of arbitrary characteristic. As a consequence, a Jordan-type property holds for the automorphism group of any projective variety over \(\mathbb{K} \).

1. INTRODUCTION

In 1878, Camille Jordan [Jor78] proved the following remarkable theorem.

Theorem 1.1 (cf. [Jor78]). For any positive integer \(n \), there exists a constant \(J(n) \) such that any finite subgroup \(\Gamma \) of \(\text{GL}_n \) over a field of characteristic zero contains a normal abelian subgroup \(A \) of index \(\leq J(n) \).

However, the above theorem is false for fields of characteristic \(p > 0 \) due to the existence of unipotent elements of finite order. For instance, the group \(\text{GL}_n(\mathbb{F}_p) \) contains arbitrarily large subgroups of the form \(\text{SL}_n(\mathbb{F}_{p^r}) \) which are simple modulo their centers. Nevertheless, for any finite subgroup \(\Gamma \) of \(\text{GL}_n(\mathbb{K}) \) of order not divisible by \(\text{char}(\mathbb{K}) \), there still exists a normal abelian subgroup \(A \) of \(\Gamma \) with \([\Gamma : A] \leq J(n) \) for the same \(J(n) \) as in Theorem 1.1 (see e.g. [BF66, 2.9]). Later, Serre showed that the Cremona group \(\text{Cr}_2(\mathbb{K}) \) of rank 2 over a field \(\mathbb{K} \) also has this property (cf. [Ser09, Theorem 5.3]). This motivates us to make the following definition.

Definition 1.2. Let \(p \) be a prime number or zero. A group \(G \) is called a \(p \)-Jordan group, if there exists a constant \(J(G) \), depending only on \(G \), such that every finite subgroup \(\Gamma \) of \(G \) whose order is not divisible by \(p \) contains a normal abelian subgroup \(A \) of index \(\leq J(G) \).

Note that when \(p = 0 \), this notion coincides with Popov’s [Pop11, Definition 2.1]. The above mentioned results can be reformulated as follows. Both general linear groups \(\text{GL}_n(\mathbb{K}) \) and the Cremona group \(\text{Cr}_2(\mathbb{K}) \) of rank 2 are \(p \)-Jordan, where \(p = \text{char}(\mathbb{K}) \). Our first result below shows that in addition to above, any algebraic group over \(\mathbb{K} \) is \(p \)-Jordan.

Theorem 1.3. Any algebraic group \(G \) defined over a field \(\mathbb{K} \) of characteristic \(p \geq 0 \) is \(p \)-Jordan. Namely, there exists a constant \(J(G) \), depending only on \(G \), such that every finite subgroup \(\Gamma \) of \(G(\mathbb{K}) \) whose order is not divisible by \(p \) contains a normal abelian subgroup of index \(\leq J(G) \).

2010 Mathematics Subject Classification. 14G17, 14L10.

Key words and phrases. Positive characteristic, Jordan property, algebraic group.

The author was partially supported by a UBC-PIMS Postdoctoral Fellowship.
Remark 1.4. Even in characteristic zero, Theorem 1.3 is nontrivial and has just been proved by Meng and Zhang recently (cf. [MZ18, Theorem 1.3]). The main obstruction is that the Jordan property may not be preserved under group extensions (see e.g. [Pop11, Remark 2.12] or [Pop14, Example 7]). See also [Zar14] for a counterexample. Note, however, that the argument in [MZ18] also depends on the Levi decomposition of connected algebraic groups (cf. [Mos56]), which is not available in prime characteristic (see e.g. [Bri15, Remark 4.9] and references therein). Our approach is based on the investigation of the Jordan property of quotient groups (see e.g. Lemma 2.2 and Step 2 in the proof of Theorem 1.3).

Another generalization of Jordan’s theorem to prime characteristic was due to Brauer and Feit [BF66] by allowing arbitrary finite subgroup Γ of $GL_n(\mathbb{F}_p)$ whose order may be divisible by $p > 0$. They showed that Γ contains a normal abelian subgroup whose index is bounded by a constant depending on n as well as the order of the p-Sylow subgroup Γ_p of Γ. Larsen and Pink [LP11] has subsequently extended Brauer–Feit [BF66] as follows.

Theorem 1.5 (cf. [LP11, Theorem 0.4]). For any positive integer n, there exists a constant $J'(n)$ such that any finite subgroup Γ of GL_n over a field \mathbb{F}_p of characteristic $p > 0$ contains a normal abelian p'-subgroup A of index $\leq J'(n) \cdot |\Gamma_p|^3$.

Here a finite group is called a p-group (resp. p'-group) if its order is some power of p (resp. relatively prime to p). In an analogous way, we introduce the following notion.

Definition 1.6. Let p be a prime number. A group G is called a strongly p-Jordan group, if there exist constants $J'(G)$ and $e(G)$, depending only on G, such that every finite subgroup Γ of G contains a normal abelian p'-subgroup A of index $\leq J'(G) \cdot |\Gamma_p|^{e(G)}$.

Below is our second main result extending Theorem 1.5 to arbitrary algebraic groups.

Theorem 1.7. Any algebraic group G defined over a field \mathbb{F} of characteristic $p > 0$ is strongly p-Jordan. That is, there are constants $J'(G)$ and e_G, depending only on G, such that any finite subgroup Γ of $G(\mathbb{F})$ contains a normal abelian p'-subgroup A of index $\leq J'(G) \cdot |\Gamma_p|^{e(G)}$.

Remark 1.8. We may think of Theorem 1.7 as a stronger version of Theorem 1.3 in positive characteristic, if we only care about the existence of those constants (i.e., $J(G)$ and $J'(G)$). Actually, we will see in Section 3 that our constant $J(G) = c_G J(n)^{\mu G}$, where c_G is the number of connected components of G and n is the least dimension of a faithful representation of $(G^\circ)_{aff}$ over \mathbb{F}; see §2.2 for the meaning of $(G^\circ)_{aff}$. But $J'(G)$ is much more complicated and involved. Also, it will be shown that $e(G) = 3(r_G + 1)c_G$, where r_G is bounded by the rank of $(G^\circ)_{aff}$.

In characteristic zero, it has also been proved by Meng and Zhang that the automorphism group $Aut(X)$ is Jordan for any projective variety X (cf. [MZ18, Theorem 1.6]). In this note, as a byproduct of our main theorems, we also deduce two Jordan-type properties for automorphism groups of projective varieties in arbitrary characteristic.
Theorem 1.9. Let X be a projective variety defined over a field \mathbb{k} of characteristic $p \geq 0$. Then there exists a constant J_X, depending only on X, such that every finite p'-subgroup Γ of $\text{Aut}(X)$ contains a normal abelian subgroup A of index $\leq J_X$.

Theorem 1.10. Let X be a projective variety defined over a field \mathbb{k} of characteristic $p > 0$. Then there exist constants J'_X and e_X, depending only on X, such that every finite subgroup Γ of $\text{Aut}(X)$ contains a normal abelian p'-subgroup A of index $\leq J'_X \cdot |\Gamma(p)|^{e_X}$.

We also note that in characteristic zero, Prokhorov and Shramov proved that the group $\text{Bir}(X)$ of birational self-maps of any non-uniruled variety X is Jordan (cf. [PS14, Theorem 1.8(ii)]). Assuming the Borisov–Alexeev–Borisov conjecture, which was recently proved in Birkar’s pioneering work [Bir16], they even showed in [PS16] that $\text{Bir}(X)$ is (uniformly) Jordan for any rationally connected variety X, generalizing Serre’s [Ser09, Theorem 5.3] (the characteristic zero side). Quite recently, as a consequence of the aforementioned Jordan property, Reichstein obtained new low bounds on the essential dimension of a series of finite groups which was not previously known even for special cases (cf. [Rei18, Theorem 3]). At the end of our introduction, we raise the following natural question (see also [Ser09, Question 6.1] for a related question).

Question 1.11. Let $\text{Cr}_n(\mathbb{k})$ be the Cremona group of rank $n \geq 2$ defined over a field \mathbb{k} of characteristic $p > 0$. Then is $\text{Cr}_n(\mathbb{k})$ strongly p-Jordan?

2. Preliminaries

2.1. Two group-theoretic lemmas. We need the following two group-theoretic lemmas which are quite useful in dealing with (strongly) p-Jordan groups (see Definitions 1.2 and 1.6). See [Pop11, Lemmas 2.6 and 2.8] and [Pop14, Theorem 3] for related results.

Lemma 2.1. Let G_1 and G_2 be two groups and G their direct product $G_1 \times G_2$.

1. If G_1 and G_2 are p-Jordan, then so is $G_1 \times G_2$ and one can take $J(G_1 \times G_2) = J(G_1)J(G_2)$.
2. If G_1 and G_2 are strongly p-Jordan, then so is $G_1 \times G_2$ and one can take $J'(G_1 \times G_2) = J'(G_1)J'(G_2)$, $e(G_1 \times G_2) = e(G_1) + e(G_2) - 1$.

Proof. (1) It follows directly from [Pop14, Theorem 3(2)]. For the sake of completeness, we present the proof here. Let G denote the direct product $G_1 \times G_2$ and $\pi_i : G \to G_i$ the projection homomorphism. Let Γ be a finite p'-subgroup of G. Then $\Gamma_i := \pi_i(\Gamma) \leq G_i$ contains a normal abelian subgroup A_i such that

$$[\Gamma_i : A_i] \leq J(G_i).$$

The subgroup $\widetilde{A}_i := \pi_i^{-1}(A_i) \cap \Gamma$ is normal in Γ and Γ/\widetilde{A}_i is isomorphic to Γ_i/A_i. We thus have

$$[\Gamma : \widetilde{A}_i] = [\Gamma_i : A_i] \leq J(G_i).$$

Since $A := \widetilde{A}_1 \cap \widetilde{A}_2$ is the kernel of the diagonal homomorphism

$$\Gamma \longrightarrow \Gamma/\widetilde{A}_1 \times \Gamma/\widetilde{A}_2$$
defined by the canonical projections $\Gamma \to \Gamma/\tilde{A}_i$, we conclude that

$$[\Gamma : A] \leq [\Gamma : \tilde{A}_1] \cdot [\Gamma : \tilde{A}_2] \leq J(G_1)J(G_2).$$

By the construction, A is a subgroup of the abelian group $A_1 \times A_2$, so is abelian. Hence A is a normal abelian subgroup of Γ of index $\leq J(G_1)J(G_2)$ as claimed.

(2) We need to modify the above proof appropriately. More precisely, using the notation there, let Γ be a finite subgroup of $G = G_1 \times G_2$. Then $\Gamma_i := \pi_i(\Gamma) \leq G_i$ contains a normal abelian p'-subgroup A_i such that

$$[\Gamma_i : A_i] \leq J'(G_i) \cdot |(\Gamma_i)_{(p)}|^{e(G_i)}.$$

Note that $|\Gamma_{(p)}| = |(\Gamma_1)_{(p)}| \cdot |(\tilde{A}_1)_{(p)}|$ because $\Gamma/\tilde{A}_i \cong \Gamma_i/A_i$ and A_i is a p'-subgroup of Γ_i. Let $A := \tilde{A}_1 \cap \tilde{A}_2 \leq A_1 \times A_2$ as above, which is a normal abelian p'-subgroup of Γ. It follows that

$$[\Gamma : A] = [\Gamma/A] = \frac{|\Gamma/\tilde{A}_1| \cdot |\Gamma/\tilde{A}_2|}{|\Gamma/\tilde{A}_1\tilde{A}_2|} \leq J'(G_1) \cdot |(\Gamma_1)_{(p)}|^{e(G_1)} \cdot J'(G_2) \cdot |(\Gamma_2)_{(p)}|^{e(G_2)}$$

$$= J'(G_1)J'(G_2) \cdot \frac{|(\Gamma_1)_{(p)}|^{e(G_1)} \cdot |(\Gamma_2)_{(p)}|^{e(G_2)} \cdot |(\tilde{A}_1\tilde{A}_2)_{(p)}|}{|\Gamma_{(p)}|}$$

$$= J'(G_1)J'(G_2) \cdot \frac{|(\Gamma_1)_{(p)}|^{e(G_1)} \cdot |(\Gamma_2)_{(p)}|^{e(G_2)} \cdot |(\tilde{A}_1)_{(p)}| \cdot |(\tilde{A}_2)_{(p)}|}{|\Gamma_{(p)}|}$$

$$\leq J'(G_1)J'(G_2) \cdot |(\Gamma_1)_{(p)}|^{e(G_1)e(G_2)} - 1,$$

which proves Lemma 2.1. \hfill \Box

Lemma 2.2. Let G be a group and K a finite normal subgroup of G.

1. Suppose that G is p-Jordan and one of the following conditions holds:
 1. the order of K is not divisible by p,
 2. $p > 0$ and K has a normal Sylow p-subgroup $K_{(p)}$.

 Then G/K is p-Jordan and one can take $J(G/K) = J(G)$.

2. Suppose that G is strongly p-Jordan. Then G/K is strongly p-Jordan and one can take

 $$J'(G/K) = J'(G) \cdot |K_{(p)}|^{e(G)} \cdot e(G/K) = e(G).$$

Proof. (1) The first case is easy; see e.g. [Pop11, Lemma 2.6]. We now consider the case that $p > 0$ and $K_{(p)}$ is nontrivial. Let Γ be a finite p'-subgroup of G/K. Let H be the inverse of Γ in G. Since $p \nmid |\Gamma|$ by the assumption, $K_{(p)}$ is also a Sylow p-subgroup of H. It follows from $K \leq H$ that $K_{(p)}$ is also normal in H. Hence $K_{(p)} = H_{(p)}$ is the normal Sylow p-subgroup of H. Namely, we have the following exact sequence:

$$1 \rightarrow K/K_{(p)} \rightarrow H/H_{(p)} \rightarrow \Gamma \rightarrow 1.$$
By the Schur–Zassenhaus theorem (cf. [Rob96, Theorem 9.1.2]), there is a complement K_C (resp. H_C) of $K_{(p)} = H_{(p)}$ in K (resp. H), which satisfies that $K = K_{(p)} \rtimes K_C$ (resp. $H = H_{(p)} \rtimes H_C$). (Their theorem also states that all complements are conjugate to each other, here we do not need this conjugation result though). Then we rewrite the above exact sequence as follows:

$$1 \rightarrow K_C \rightarrow H_C \rightarrow \Gamma \rightarrow 1.$$

Note that our H_C now is a finite p'-subgroup of G. It follows that there is a normal abelian subgroup A_{H_C} of H_C such that $[H_C : A_{H_C}] \leq J(G)$. Let A be the image of A_{H_C} in Γ. Then $[\Gamma : A] \leq [H_C : A_{H_C}] \leq J(G)$.

(2) Let Γ be a finite subgroup of G/K and H the inverse of Γ in G. Then H contains a normal abelian p'-subgroup A_H of index $\leq J'(G) \cdot |H_{(p)}|^{e(G)}$. Let A be the image of A_H in Γ. Noting that $|H_{(p)}| = |K_{(p)}| \cdot |\Gamma_{(p)}|$, we thus have

$$[\Gamma : A] \leq [H : A_H] \leq J'(G) \cdot |H_{(p)}|^{e(G)} = J'(G) \cdot |K_{(p)}|^{e(G)} \cdot |\Gamma_{(p)}|^{e(G)}.$$

This yields the assertion (2) and hence Lemma 2.2 follows. \qed

2.2. Two algebraic group-theoretic theorems. Let G be a connected algebraic group defined over a perfect field \mathbb{K}. We record the following classical decomposition theorem of algebraic groups. By the Chevalley’s structure theorem, there is a smallest connected normal affine subgroup scheme G_{aff} of G such that the quotient G/G_{aff} is an abelian variety (cf. [Bri17, Theorem 2]). On the other hand, G has a smallest connected normal subgroup scheme G_{ant} such that the quotient G/G_{ant} is affine; moreover, G_{ant} is smooth and contained in the center $Z(G)$ of G (cf. [Ros56, §5]). We have the following Rosenlicht’s decomposition theorem (see e.g. [Bri17, §5.1]).

Theorem 2.3 (cf. [Bri17, Theorem 5.1.1 and Remark 5.1.2]). *Keep the above notation and assumptions. The following statements hold.*

1. $G = G_{\text{aff}} \cdot G_{\text{ant}} \cong G_{\text{aff}} \times G_{\text{ant}}/(G_{\text{aff}} \cap G_{\text{ant}})$.
2. $G_{\text{aff}} \cap G_{\text{ant}}$ contains $(G_{\text{ant}})_{\text{aff}}$.
3. The quotient $(G_{\text{aff}} \cap G_{\text{ant}})/(G_{\text{ant}})_{\text{aff}}$ is finite.
4. The multiplication map of G induces an isogeny

$$m: (G_{\text{aff}} \times G_{\text{ant}})/(G_{\text{ant}})_{\text{aff}} \rightarrow G,$$

where $(G_{\text{ant}})_{\text{aff}}$ is viewed as a subgroup scheme of $G_{\text{aff}} \times G_{\text{ant}}$ via $x \mapsto (x, x^{-1})$.

The theorem below is a special case of a theorem due to Lucchini Arteche [LA17] which plays an important role in the proof of our main theorems. It could be regarded as an effective version of Brion’s theorem on the existence of the quasi-splitness of an extension of algebraic groups with finite quotient (cf. [Bri15, Theorem 1.1]).
Theorem 2.4 (cf. [LA17, Theorem 3.2]). Let \(\mathbb{k} \) be an algebraically closed field of characteristic \(p \geq 0 \). Let \(\Gamma \) be a smooth finite \(\mathbb{k} \)-group of order \(n \), and \(G \) an arbitrary smooth \(\mathbb{k} \)-group. Then for any group extension
\[
1 \rightarrow G \rightarrow H \rightarrow \Gamma \rightarrow 1,
\]
there exist a finite smooth \(\mathbb{k} \)-subgroup \(S \) of \(G \) and a commutative diagram with exact rows
\[
\begin{array}{c}
1 \\ \downarrow \downarrow \\ S \rightarrow F \\ \downarrow \downarrow \\ G \rightarrow H \rightarrow \Gamma \rightarrow 1
\end{array}
\]
Moreover, if \(G \) is an algebraic torus with rank \(r \), then \(S \) can be taken as a subgroup of the \(n \)-torsion subgroup \(G[\mathbb{n}] \) of \(G \). In particular, the order of \(S \) divides \(n^r \).

3. Proofs of theorems

We are eventually interested only in questions concerning algebraic groups or varieties defined over algebraically closed fields. So from now on, we will assume that \(\mathbb{k} \) is algebraically closed.

Proof of Theorem 1.3. We may assume that \(G \) is smooth (or equivalently, reduced), since we only consider finite subgroups of the group \(G(\mathbb{k}) \) of \(\mathbb{k} \)-rational points. We first consider the case that \(G \) is connected. In the following Steps 1-3, we will show the theorem under this case.

Step 1. Let \(G_{\text{aff}} \) and \(G_{\text{ant}} \) denote the affine part and the anti-affine part of \(G \), respectively (see §2.2). We claim that \(G_{\text{aff}} \times G_{\text{ant}} \) is \(p \)-Jordan. Indeed, since both \(G_{\text{aff}} \) and \(G_{\text{ant}} \) are \(p \)-Jordan, the claim follows from Lemma 2.1(1). More precisely, let \(n \) be the least dimension of a faithful representation of \(G_{\text{aff}} \) over \(\mathbb{k} \). Then there is a constant \(J(n) \) which is essentially from Theorem 1.1 such that every finite \(p' \)-subgroup \(\Gamma \) of \(G_{\text{aff}} \times G_{\text{ant}} \) contains a normal abelian subgroup of index \(\leq J(n) \).

Step 2. Let \(N \) denote \((G_{\text{ant}})_{\text{aff}} \). Consider the following exact sequence of algebraic groups:
\[
1 \rightarrow N \rightarrow G_{\text{aff}} \times G_{\text{ant}} \rightarrow (G_{\text{aff}} \times G_{\text{ant}})/N \rightarrow 1.
\]
We claim that the quotient group \((G_{\text{aff}} \times G_{\text{ant}})/N \) is \(p \)-Jordan. Let \(\Gamma \) be a finite \(p' \)-subgroup of \((G_{\text{aff}} \times G_{\text{ant}})/N \). Let \(H \) be the inverse (or pullback) of the finite group \(\Gamma \) in \(G_{\text{aff}} \times G_{\text{ant}} \) (cf. [Bri17, Proposition 2.8.3]). Then according to Theorem 2.4, there exist a finite smooth \(\mathbb{k} \)-subgroup \(S \) of \(N \) and a commutative diagram of algebraic groups:
\[
\begin{array}{c}
1 \\ \downarrow \downarrow \\ S \rightarrow F \\ \downarrow \downarrow \\ G \rightarrow H \rightarrow \Gamma \rightarrow 1
\end{array}
\]

In characteristic zero, there is a normal abelian subgroup \(A_F \) of \(F \) such that \([F : A_F] \leq J(n) \) by Step 1. It follows that the image \(A \) of \(A_F \) in \(\Gamma \) is a normal abelian subgroup of \(\Gamma \) of index \([\Gamma : A] \leq [F : A_F] \leq J(n) \).
Now we assume that \(p = \text{char}(\mathbb{k}) > 0 \). By [Bri17, Proposition 5.5.1], any anti-affine group over \(\mathbb{k} \) is a semi-abelian variety. Thus \(N = (G_{\text{ant}})_{\text{aff}} \) is an algebraic torus over \(\mathbb{k} \). In particular, \(N \) is commutative and so is \(S \). So \(S(p) \) is the unique normal Sylow \(p \)-subgroup of \(S \). By the assumption on \(\Gamma \) that \(p \nmid |\Gamma| \), \(S(p) \) is also a Sylow \(p \)-subgroup of \(F \). It follows from \(S \leq F \) that \(S(p) \) is also normal in \(F \). Then the Schur–Zassenhaus theorem asserts that there are complements \(S_C \) and \(F_C \) of \(S(p) = F(p) \) in \(S \) and \(F \) respectively; see also the proof of Lemma 2.2(1). It follows that \(F_C \) is a \(p' \)-subgroup of \(G_{\text{aff}} \times G_{\text{ant}} \) and hence contains a normal abelian subgroup \(A_{F_C} \) of index \(\leq J(n) \) by Step 1 as in the previous case; the rest is the same.

Step 3. By Rosenlicht’s decomposition Theorem 2.3, we have the following exact sequence of algebraic groups:

\[
1 \rightarrow K \rightarrow (G_{\text{aff}} \times G_{\text{ant}})/N \xrightarrow{m} G \rightarrow 1,
\]

where \(N = (G_{\text{ant}})_{\text{aff}} \) as in Step 2 and \(K := (G_{\text{aff}} \cap G_{\text{ant}})/N \) is a finite group so that \(m \), induced from the multiplication map of \(G \), is an isogeny. Note that \(G_{\text{ant}} \) is commutative (cf. [Bri17, Proposition 3.3.5]). Then \(K \) is abelian and hence \(K(p) \) is the normal Sylow \(p' \)-subgroup of \(K \). Let \(\Gamma \) be a finite \(p' \)-subgroup of \(G \). It follows from Lemma 2.2(1) and Step 2 that \(\Gamma \) contains a normal abelian subgroup \(A \) of index \(\leq J(n) \).

Step 4. Finally, with the aid of [Pop11, Lemma 2.11], we are able to deal with non-connected algebraic groups as well. Indeed, let \(G^o \) be the neutral component of \(G \). Denote by \(c_G \) the order of the group \(\pi_0(G) := G/G^o \) of connected components of \(G \). Then any finite \(p' \)-subgroup \(\Gamma \) of \(G \) contains a normal abelian subgroup \(A \) of index \(\leq c_G J(n)^{c_G} \), where \(n \) is the least dimension of a faithful representation of \((G^o)_{\text{aff}} \) over \(\mathbb{k} \).

We finally conclude the proof of Theorem 1.3 by letting \(J(G) = c_G J(n)^{c_G} \). \(\square \)

Proof of Theorem 1.7. The proof of Theorem 1.7 basically follows the strategy of the proof of Theorem 1.3. Note, however, that the group \(\Gamma \) may be of order divisible by \(p \) now.

We first consider the case that \(G \) is a connected algebraic group. We may assume that \(\mathbb{k} \) is algebraically closed. In Step 1, we have that \(J'(G_{\text{aff}}) = J'(n) \), \(e(G_{\text{aff}}) = 3 \) by Theorem 1.5, and \(J'(G_{\text{ant}}) = 1 \), \(e(G_{\text{ant}}) = 1 \) because \(G_{\text{ant}} \) is commutative (cf. [Bri17, Proposition 3.3.5]). Here \(n \) is the least dimension of a faithful representation of \(G_{\text{aff}} \) over \(\mathbb{k} \) as usual. Thus by Lemma 2.1(2), \(J'(G_{\text{aff}} \times G_{\text{ant}}) = J'(G_{\text{aff}})J'(G_{\text{ant}}) = J'(n) \) and \(e(G_{\text{aff}} \times G_{\text{ant}}) = e(G_{\text{aff}}) + e(G_{\text{ant}}) - 1 = 3 \). In other words, any finite subgroup \(\Gamma \) of \(G_{\text{aff}} \times G_{\text{ant}} \) contains a normal abelian \(p' \)-subgroup of index \(\leq J'(n) \cdot |\Gamma(p)|^3 \).

Then in Step 2, we claim that any finite subgroup \(\Gamma \) of \((G_{\text{aff}} \times G_{\text{ant}})/N \) contains a normal abelian \(p' \)-subgroup of index \(\leq J'(n) \cdot |\Gamma(p)|^{3(r_G + 1)} \), where \(r_G \) is the rank of the algebraic torus \(N = (G_{\text{ant}})_{\text{aff}} \) which is further bounded by the rank of \(G_{\text{aff}} \). Indeed, we follow the argument as in the proof of Theorem 1.3 and get the commutative diagram (3.1). By the previous step, \(F \) contains a normal abelian \(p' \)-subgroup \(A_F \) of index \(\leq J'(n) \cdot |F(p)|^3 \). Note that Theorem 2.4 also yields that the order of \(S \) divides \(|\Gamma|^\alpha \). In particular, \(|S(p)| \) divides \(|\Gamma(p)|^\alpha \). Hence the image \(A \)
of A_F in Γ is a normal abelian p'-subgroup of Γ such that

$$[\Gamma : A] \leq [F : A_F] \leq J'(n) \cdot |F(p)|^3 = J'(n) \cdot \left(|S(p)| \cdot |\Gamma(p)| \right)^3 \leq J'(n) \cdot |\Gamma(p)|^{3(r_G+1)},$$
onumber

as claimed.

In Step 3, we consider the exact sequence (3.2). Recall that $K := (G_{aff} \cap G_{ant})/N$ is a finite group (depending on G canonically). Let Γ be a finite subgroup of G. Then it follows from the previous step and Lemma 2.2(2) that Γ contains a normal abelian p'-subgroup A of index

$$[\Gamma : A] \leq J'(n) \cdot |K(p)|^{3(r_G+1)} \cdot |\Gamma(p)|^{3(r_G+1)}.$$

Lastly, we consider the case that G may be non-connected. As before, let $\pi_0(G) = G/G^o$ denote the group of connected components of G and $c_G = |\pi_0(G)|$. Then any finite subgroup Γ of G contains a normal abelian p'-subgroup A of index at most

$$c_G \left(J'(n) \cdot |K(p)|^{3(r_G+1)} \cdot |\Gamma(p)|^{3(r_G+1)} \right)^{c_G} = c_G J'(n)^{c_G} \cdot |K(p)|^{3(r_G+1)c_G} \cdot |\Gamma(p)|^{3(r_G+1)c_G},$$

where n is the least dimension of a faithful representation of $(G^o)_{aff}$ over \mathbb{F}_p.

Let $J'(G)$ denote $c_G J'(n)^{c_G} \cdot |K(p)|^{3(r_G+1)c_G}$ and $e(G) := 3(r_G + 1)c_G$. We thus complete the proof of Theorem 1.7.

Given a projective variety X defined over \mathbb{F}_p, the automorphism group scheme Aut_X of X is locally of finite type over \mathbb{F}_p and the automorphism group $\text{Aut}(X)$ is just the rational \mathbb{F}_p-points of Aut_X, i.e., $\text{Aut}(X) = \text{Aut}_X(\mathbb{F}_p)$; in particular, the reduced neutral component $(\text{Aut}_X^0)^{\text{red}}$ of Aut_X is a smooth algebraic group defined over \mathbb{F}_p (see e.g. [Bri17, §7]). We denote $(\text{Aut}_X^0)^{\text{red}}(\mathbb{F}_p)$ by $\text{Aut}^o(X)$.

Proof of Theorem 1.9. Let $G := (\text{Aut}_X^0)^{\text{red}}$ and $G^o := \Gamma \cap \text{Aut}^o(X)$. Applying Theorem 1.3 to $G^o \leq G(\mathbb{F}_p)$, there is a normal abelian subgroup A_G^o of G^o of index $\leq J(G) = J(n)$, where n is the least dimension of a faithful representation of G_{aff} over \mathbb{F}_p. By [MZ18, Lemma 2.5], there is a constant ℓ_X depending only on X such that $[\Gamma : \Gamma^o] \leq \ell_X$ (note that their proof is independent of the characteristic; see [MZ18, Remark 2.6]). It follows that

$$A := \bigcap_{g \in \Gamma} g^{-1} A_{G^o} g = \bigcap_{i=1}^{\lceil \ell_X \rceil} g_i^{-1} A_{G^o} g_i$$

is a normal abelian subgroup of Γ, where g_i’s are representatives of Γ/G^o. Note that $g_i^{-1} A_{G^o} g_i$ is a normal abelian group of Γ^o of index $\leq J(n)$ for each i. This yields that the index of A in Γ^o is at most $J(n)^{\ell_X}$ (see also [Pop11, Lemma 2.11]). We thus have

$$[\Gamma : A] = [\Gamma : \Gamma^o] \cdot [\Gamma^o : A] \leq \ell_X J(n)^{\ell_X}.$$

To conclude the proof, we let $J_X := \ell_X J(n)^{\ell_X}$.

Remark 3.1. In fact, using a theorem due to Chermak and Delgado (cf. [Isa08, Theorem 1.41]), there exists a characteristic (and hence normal) abelian subgroup M of Γ such that

$$[\Gamma : M] \leq [\Gamma : A_{G^o}]^2 = [\Gamma : \Gamma^o]^2 \cdot [\Gamma^o : A_{G^o}]^2 \leq \ell_X^2 J(n)^2.$$
Note, however, that the construction of this so-called Chermak–Delgado subgroup M of Γ is independent of A_{Γ^o} (see [Isa08, Corollary 1.45]). Thus we do not know whether M is still a subgroup of A_{Γ^o} so that this argument breaks down in the proof of Theorem 1.10 (since M may not be a p'-subgroup of an arbitrary finite subgroup Γ of $G(\bar{k})$).

Proof of Theorem 1.10. Let $G := (\text{Aut}^*_X)_{\text{red}}$ and $\Gamma^o := \Gamma \cap \text{Aut}^o(X)$ as above. Then applying Theorem 1.7 to $\Gamma^o \leq G(\bar{k})$, there is a normal abelian p'-subgroup A_{Γ^o} of Γ^o such that

$$[\Gamma^o : A_{\Gamma^o}] \leq J'(G) \cdot |\Gamma^o_{(p)}|^{3(r_G + 1)},$$

where $\Gamma^o_{(p)}$ is the Sylow p-subgroup of Γ^o and r_G is the rank of $(G_{\text{ant}})_{\text{aff}}$. As in the proof of Theorem 1.9, we also have $[\Gamma : \Gamma^o] \leq \ell_X$ for some constant ℓ_X depending only on X. Similarly, there is a normal abelian p'-subgroup A of Γ of index

$$[\Gamma : A] = [\Gamma : \Gamma^o] \cdot [\Gamma^o : A] \leq \ell_X \left(J'(G) \cdot |\Gamma^o_{(p)}|^{3(r_G + 1)} \right)^{\ell_X} \leq \ell_X J'(G)^{\ell_X} \cdot |\Gamma_{(p)}|^{3(r_G + 1)\ell_X}.$$

The corollary follows by letting $J'_X := \ell_X J'(G)^{\ell_X}$ and $e_X = 3(r_G + 1)\ell_X$. \hfill \Box

Remark 3.2. It is known that if an algebraic torus T acting faithfully on an algebraic variety X, then T acts generically freely on X (cf. [Dem70, §1.6, Corollaire 1]). This yields that

$$r_G = \text{rank}(G_{\text{ant}})_{\text{aff}} \leq \text{rank } G_{\text{aff}} \leq \dim X.$$

Acknowledgments. The author would like to thank Zinovy Reichstein for his support, many inspiring discussions and valuable comments on an earlier draft. He also thanks De-Qi Zhang for several helpful suggestions.

References

[BF66] Richard Brauer and Walter Feit, *An analogue of Jordan’s theorem in characteristic p*, Ann. of Math. (2) **84** (1966), 119–131. MR0200350 1, 2

[Bir16] Caucher Birkar, *Singularities of linear systems and boundedness of Fano varieties*, preprint (2016), 33 pp., arXiv:1609.05543. 3

[Bri15] Michel Brion, *On extensions of algebraic groups with finite quotient*, Pacific J. Math. **279** (2015), no. 1-2, 135–153. MR3437773 2, 5

[Bri17] ________, *Some structure theorems for algebraic groups*, Algebraic groups: structure and actions, Proc. Sympos. Pure Math., vol. 94, Amer. Math. Soc., Providence, RI, 2017, pp. 53–126. MR3645068 5, 6, 7, 8

[Dem70] Michel Demazure, *Sous-groupes algébriques de rang maximum du groupe de Cremona*, Ann. Sci. École Norm. Sup. (4) **3** (1970), no. 4, 507–588. MR0284446 9

[Isa08] I. Martin Isaacs, *Finite group theory*, Graduate Studies in Mathematics, vol. 92, American Mathematical Society, Providence, RI, 2008. MR2426855 8, 9

[Jor78] Camille Jordan, *Mémoire sur les équations différentielles linéaires à intégrale algébrique*, J. Reine Angew. Math. **84** (1878), 89–215. 1

[LA17] Giancarlo Lucchini Arteche, *Extensions of algebraic groups with finite quotient and nonabelian 2-cohomology*, J. Algebra **492** (2017), 102–129. MR3709145 5, 6

[LP11] Michael J. Larsen and Richard Pink, *Finite subgroups of algebraic groups*, J. Amer. Math. Soc. **24** (2011), no. 4, 1105–1158. MR2813339 2

[Mos56] George D. Mostow, *Fully reducible subgroups of algebraic groups*, Amer. J. Math. **78** (1956), 200–221. MR0092928 2
Sheng Meng and De-Qi Zhang, *Jordan property for non-linear algebraic groups and projective varieties*, to appear in Amer. J. Math. (2018), 13 pp., arXiv:1507.02230 2, 8

Vladimir L. Popov, *On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties*, Affine algebraic geometry, CRM Proc. Lecture Notes, vol. 54, Amer. Math. Soc., Providence, RI, 2011, pp. 289–311. MR2768646 1, 2, 3, 4, 7, 8

Vladimir L. Popov, *Jordan groups and automorphism groups of algebraic varieties*, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., vol. 79, Springer, Cham, 2014, pp. 185–213. MR3229352 2, 3

Yuri Prokhorov and Constantin Shramov, *Jordan property for groups of birational selfmaps*, Compos. Math. 150 (2014), no. 12, 2054–2072. MR3292293 3

Yuri Prokhorov and Constantin Shramov, *Jordan property for Cremona groups*, Amer. J. Math. 138 (2016), no. 2, 403–418. MR3483470 3

Zinovy Reichstein, *The Jordan property of Cremona groups and essential dimension*, preprint (2018), 6 pp., arXiv:1803.09008. 3

Derek J. S. Robinson, *A course in the theory of groups*, second ed., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996. MR1357169 5

Maxwell Rosenlicht, *Some basic theorems on algebraic groups*, Amer. J. Math. 78 (1956), no. 2, 401–443. MR0082183 5

Jean-Pierre Serre, *A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field*, Mosc. Math. J. 9 (2009), no. 1, 183–198. MR2567402 1, 3

Yuri G. Zarhin, *Theta groups and products of abelian and rational varieties*, Proc. Edinb. Math. Soc. (2) 57 (2014), no. 1, 299–304. MR3165026 2

Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada

Pacific Institute for the Mathematical Sciences, 2207 Main Mall, Vancouver, BC V6T 1Z4, Canada

E-mail address: fhu@math.ubc.ca