High-Performance Two-Dimensional InSe Field-Effect Transistors with Novel Sandwiched Ohmic Contact for Sub-10 nm Nodes: a Theoretical Study

Jiaduo Zhu 1,2*, Jing Ning 1,2, Dong Wang 1,2, Jincheng Zhang 1,2*, Lixin Guo 3 and Yue Hao 1,2

Abstract

Two-dimensional (2D) InSe-based field effect transistor (FET) has shown remarkable carrier mobility and high on-off ratio in experimental reports. Theoretical investigations also predict that the high performance can be well preserved at sub-10 nm nodes in the ballistic limit. However, both experimental experience and theoretical calculations pointed out achieving high-quality ohmic has become the main limiting factor for high-performance 2D FET. In this work, we proposed a new sandwiched ohmic contact with indium for InSe FET and comprehensively evaluated its performance from views of material and device based on ab initio methods. The material properties denote that all of fundamental issues of ohmic contact including tunneling barrier, the Schottky barrier, and effective doping are well concerned by introducing the sandwiched structure, and excellent contact resistance was achieved. At device performance level, devices with gate length of 7, 5, and 3 nm were investigated. All metrics of sandwiched contacted devices far exceed requirement of the International Technology Roadmap for Semiconductors (ITRS) and exhibit obvious promotion as compared to conventional structures. Maximum boost of current with 69.4%, 50%, and 49% are achieved for devices with 7, 5, and 3 nm gate length, respectively. Meanwhile, maximum reduction of the intrinsic delay with 20.4%, 16.7%, and 18.9% are attained. Moreover, a benchmark of energy-delay product (EDP) against other 2D FETs is presented. All InSe FETs with sandwiched ohmic contact surpass MoS 2 FETs as well as requirement from ITRS 2024. The best result approaches the upper limit of ideal BP FET, denoting superior preponderance of sandwiched structures for InSe FETs in the next generation of complementary metal-oxide semiconductor (CMOS) technology.

Keywords: InSe, Field-effect transistor, Density functional theory, Non-equilibrium Green function, Ohmic contact

Introduction

Two-dimensional (2D) semiconductors have attracted much interest in electronic devices due to their appealing applications for the next generation of complementary metal-oxide semiconductor (CMOS) technology [1, 2]. Their ultra-thin thickness and good dielectric property can provide excellent electrostatic gate control to suppress the well-known short channel effects [3]. In addition, as few layers of 2D materials usually possess smooth surface with lack of dangle bonds, superior carrier mobility of 2D materials can be well preserved in ultrathin body systems as compared to conventional semiconductor [4]. Except for the gapless graphene, most of synthesized 2D semiconductors like transition metal dichalcogenides (TMDs), black phosphorus (BP), and indium selenide (InSe) possess none-zero band gap and are demonstrated to be suitable for field-effect transistor (FET). TMDs-based FETs have shown high on-off ratio as much as 10^8 and low leakage current in short channel devices, benefiting from the heavy effective mass [5]. BP-based FETs have presented outstanding current and switching characteristic [6], due to the high mobility of ~ 1000 cm^2/V s and anisotropic transport property [7]. Recently, InSe was demonstrated to present a superiority mobility of

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
~ 2000 cm²/V s at room temperature [8, 9], and FET based on InSe revealed a high on-off ratio of 10⁸ [10]. First-principle calculations also identified that InSe FET can be well scaled down to sub-10 nm in the ballistic limit [11, 12]. However, due to the neglect of contact resistance and hypothesis of heavily doping, approaching the theoretical limit is still challenging in real applications. In fact, as reliable doping method and way to high-quality ohmic contact are still lacking, FETs based on 2D materials including InSe are usually Schottky barrier (SB) FET [13–16]. The SB at the active regions yields large contact resistance, and low doping level further degrades current density. Achieving low contact resistance with sufficiently doped active regions has become the main limiting factor for 2D materials-based FET (2D FET) to achieve high performance [17–19].

Aiming at above issues, we proposed a novel sandwiched ohmic contact for InSe FET. Indium was selected as the electrode metal, as recent experimental and theoretical studies suggest that indium can be a promising candidate for InSe FET to achieve good performance [20–22]. We theoretically evaluated the ohmic contact quality and performance of devices with gate length of 7, 5, and 3 nm following the framework of the International Technology Roadmap for Semiconductors 2013 (ITRS) [23]. It should be noted although ITRS has been replaced by the International Roadmap for Devices and Systems (IRDS) [24], ITRS2013 presents a clear scaling trend for transistor and has been still adopted in recent studies [25, 26]. This manuscript is arranged as follows: first, electrical properties of sandwiched and conventional (top) contacts are investigated. Second, device performance metrics such as on-state current and intrinsic delay are evaluated and compared with requirements of ITRS. Finally, benchmark of power-delay product versus intrinsic delay is presented to compare against other 2D materials-based devices.

Methods

All of atomic structures were optimized by VASP [27]; energy cut of 335 eV was employed during all calculations. Unit cell of InSe was relaxed with stress criterion of 0.01 eV/Å under the framework of MetaGGA of SCAN [28]. Lattice parameters of metal indium were obtained from handbook of chemistry and physics [29]. As shown in Fig. 1, the lattice constant of InSe is 4.029 Å, which is in very good agreement with experimental reports [30, 31].

The initial structure of indium on InSe was built with 4 × 1 × 1 and 5 × 2 × 1 unit cells of InSe and indium (001) surface, respectively. The mean absolute strain was 1.32%, which is sufficient to preserve the intrinsic properties of the material. As shown in Fig. 2a, b, the sandwiched structure was built with indium/InSe/indium layers, indium of bottom and top sides has mirror symmetry with center of InSe. Both of hybrid structures were relaxed with van der Waals (vdW) functional of optb88 with criterion of force on each atom lower than 0.02 eV/Å [32, 33]. The final contact area is 16.19 Å × 6.41 Å. The resistance of ohmic contact was then evaluated by a two-probe device as shown in Fig. 2a, b. Getting rid of unnecessary resistance from semiconductor out of contact regions, InSe in the cathode was heavily doped with 1 × 10¹⁴ e/cm² for both top and sandwiched contacts.

As for the evaluation of device performance, geometry of InSe FET with sandwiched and top ohmic contacts is shown in Fig. 3a, b, respectively. All devices and nodes name follow requirement from ITRS and IRDS, respectively. Device parameters are listed in Table 1. To
suppress the intra-band tunneling, 1 nm underlap (UL) was applied at gate length of 3 nm. In contrary to ohmic contact modeling, none of parts in devices was intentional doped. The devices were built by merging the source, drain, and channel along transport direction. The channel and its two interfaces with active regions were additionally relaxed with fixed source and drain. All simulations were based on non-equilibrium Green’s function (NEGF) theory and carried out by QuantumATK with fully self-consistent calculation [34–36], which was usually employed to design and investigate transistors at sub-10 nm nodes [17, 37–39]. Double-

Fig. 2 Atomic structures of contact and related two-probe device used for evaluation of contact resistance. **a, b** are for top and sandwiched contacts, respectively. The coordinates denote the location of atoms in the out-plane direction.

Fig. 3 Geometries of InSe FETs with sandwiched (a) and top (b) contacts.
zeta polarized basis set were employed with mech-cut off of 90 Rydberg. Monkhorst pack k-point mesh was sampled with density of $8/Å^{-1} \times 11/Å^{-1} \times 180/Å^{-1}$. Parallel conjugate gradient solver is chosen as the Poisson solver for the sake of efficiency. The current of all devices can be then obtained by solving the Landauer-Büttiker formula [40]:

$$I(V_{\text{Bias}}) = \frac{2e}{h} \int T(E, V_L, V_R) \times [f_R(E, V_R) - f_L(E, V_L)] dE$$

Where, V_{Bias} is the bias and can be achieved by: $V_{\text{Bias}} = V_R - V_L$. $T(E, V_L, V_R)$ is the transmission coefficient of carriers, $f_R(E, V_R)$ and $f_L(E, V_L)$ are the Fermi-Dirac distribution function for cathode (drain) and anode (source), respectively.

Results and discussion

In general, there are three key factors correlated to the ohmic contact quality in 2D materials [18], i.e., the tunneling barrier and distance which is derived from vdW gap, orbital overlap between electrode and semiconductor, and also the SB height. First, the tunneling barrier and distance were described by effective potential shown in Fig. 4a. Compared to the top contact, introduction of sandwiched contact not only provides an additional transport path at the bottom side but also gives rise to a decrease of tunneling barrier from 5.48 to 2.38 eV, leading a reduction of 56.6%. Meanwhile, the interfacial distance also gets slightly lowered with 0.66 Å, denoting the width of tunneling barrier gets also reduced. Second, the orbital overlap can be evaluated from valence charge distribution in Fig. 4b. It can be noticed that sandwiched contact possesses more valence electrons at the interfacial region as compared to the top contact, indicating stronger orbital overlapping between indium and InSe. This feature also helps to introduce doping effect into InSe, and the excess electrons number can be calculated by using Mulliken population. We extracted the total number of electrons in InSe of sandwiched and top contacted structures, respectively. Then the doping level can be obtained by dividing the electron number by the area of the contact region, as net charge of isolated InSe should always be zero. As shown in the right panel of Fig. 4b, sandwiched contact yields a very

Channel length	EOT (nm)	V_{DS} (V)	Node
7 nm	0.5	0.68	2019
5 nm	0.41	0.64	2021
3 nm	0.41	0.64	2024

Fig. 4a Effective potential normal to the transport direction. The coordinate corresponds to the location of atoms and is defined in Fig. 1. The dark regions correspond to the vdW gap. b Plane-averaged electron distribution normal to the transport direction. The right panel is the doping level. The coordinate corresponds to the location of atoms and is defined in Fig. 1. c DOS of InSe. The green corresponds to pristine InSe. d Current dependent bias of the two probe devices. All of the red and blue correspond to top and sandwiched contacts, respectively.
high doping level of 1.6×10^{13} e/cm2, which is nearly 2.8 times higher than that of the top contact. Such a high level has approached the hypothesis in simulations of 2D tunneling FET, which usually claims much heavier doping level than metal-oxide-semiconductor FET. Thirdly, the density of states (DOS) of InSe in pristine, sandwiched, and top contacted structures are shown Fig. 4c. Orbital overlapping between indium and InSe at the interfacial region metallized the band gap of InSe, and sandwiched one results in a higher level. This feature greatly enhances carrier injection through vdW tunneling barrier at the interfacial region, as the metalized states in the band gap offer additional tunneling channels. In addition, the Fermi levels are pinned above the conduction band minimum, resulting in energy degeneracy of ~ 0.07 and 0.27 eV for top and sandwiched contacts, respectively. Therefore, the SB between indium and InSe are completely eliminated. Fourthly, the ohmic contact resistance was calculated based on bias-current curve obtained from the two-probe devices, and all results are shown in Fig. 4d. We can notice both of contacts are ohmic due to the linear evolutions. At theoretical level, i.e., neglecting of surface roughness, interfacial impurities, etc., the sandwiched structure leads to a very low contact value of 0.032 ± 0.002 Ω mm, which reduces more than half of resistance of the top contact. Based on above discussions, it is interesting to notice that double the contact region always leads to more than twice improvement of the ohmic contact. Because top contact with indium was recently experimentally confirmed to be effective to boost InSe-based devices performance [21, 22], sandwiched structure can be an appealing ohmic contact solution for InSe FETs.

Then, the device performance was evaluated, and the transfer characteristics of InSe FET at 2019, 2021, and 2024 nodes were shown in Fig. 5. It can be observed that the subthreshold swing (SS) of all nodes are below 100 mV/dec, and SS at 2019 node shows nearly ideal switching characteristics of 61.8 and 64.4 mV/dec for top and sandwiched contacted devices, respectively, indicating outstanding electrostatic control in InSe FETs. In addition, sandwiched contacted devices lead to evident improvement of I_{DS} compared to top ones with maximum increase of 69.4%, 50%, and 49% being achieved at 2019, 2021, and 2024 nodes, respectively. Furthermore, I_{ON} was extracted following the requirement of high performance (HP) in the ITRS. As shown in Fig. 5d, I_{ON} of all systems is far above the HP requirement of ITRS.
requirement. Compared to top contacted devices, sandwiched systems still present a promotion of 38.2%, 27.3%, and 20.5% for 2019, 2021, and 2024 nodes, respectively.

Another essential metric of FET is intrinsic delay (τ), which signifies the upper limit of switching speed in the logical circuit. The τ was obtained by $\tau = (Q_{\text{ON}} - Q_{\text{OFF}})/I_{\text{ON}}$, where Q_{ON} and Q_{OFF} are charges at on and off states, respectively. The on and off states are constrained at $|V_{DS}|=0.68, 0.64, \text{ and } 0.64 \text{ V for 2019, 2021, and 2024 nodes, respectively.}$ Intrinsic delay as a function of on-off ratio is shown in Fig. 6. Despite the non-monotonic evolution at large delay which is derived from the tunneling under low gate voltages [41], all delays are below 0.15 ps and sufficiently lowered than the ITRS requirement of 0.44-0.46 ps. In addition, sandwiched contacted devices give rise to a reduction of more than 30% at regions of $I_{\text{ON}}/I_{\text{OFF}} \leq 10^7, 10^6, 10^5$ for 2019, 2021, and 2024 nodes, respectively. On the basis of HP requirements shown in Fig. 6d, sandwiched contacted devices can still promote the switching speed with 20.4%, 16.7%, and 18.9% for 2019, 2021, and 2024 nodes, respectively.

In order to evaluate the device performance more intuitively, power-delay product (PDP) versus intrinsic delay is extracted. PDP corresponds to the power consumption in a single switching event and is defined by $\text{PDP} = (Q_{\text{ON}} - Q_{\text{OFF}})V_{DS}$ with all parameters derived from HP requirement of ITRS. Results and comparison with other 2D FETs are shown in Fig. 7. Firstly, all 2D FETs were selected based on the rule that they have been preliminarily verified as transistors in experimental reports, which goes a step further for CMOS technology. Secondly, except for InSe and MoS$_2$ [42], all other devices were simulated with heavily doping in active regions and neglect of ohmic contact resistance [43, 44], therefore the results correspond to the upper limit of performance. As can be seen, all energy-delay product (EDP) are below ITRS 2024 requirement, indicating the appealing future of 2D FETs. The maximum of EDP belongs to MoS$_2$ FET at 9.9 nm, and the best is from BP FET. As for InSe FETs, sandwiched contacted devices always perform better than top contacted ones at all nodes. The highest EDP of sandwiched contacted devices is at gate length of 7 nm (2019 node) and exceeds all MoS$_2$ FETs. The lowest one is at gate length of 3 nm (2024 node) and even approaches the upper limit of BP FET in the armchair direction, which is well known for the outstanding transport properties. Accordingly, the EDP of InSe FET signifies that sandwiched contacted devices exhibit sufficient competitiveness among 2D FETs.

Conclusions
In this work, a new sandwiched ohmic contact with indium was proposed for InSe FET. The sandwiched ohmic contact not only doubles the contact region but
also promotes the contact quality more than twice, leading to an excellent contact resistance. At device performance level of gate length 7, 5, and 3 nm, InSe FETs with sandwiched ohmic contact present universal performance promotion as compared to conventional top contacted devices. Under the requirement of HP from ITRS, on-state current and intrinsic delay are improved with 38.2~20.5% and 20.4~16.7%, respectively. A benchmark of EDP against other 2D FETs also reveals that InSe FETs with sandwiched ohmic contact have advantages over other 2D FETs. Our study offers a new route toward high-performance InSe FETs.

Abbreviations

2D: Two-dimensional; CMOS: Complementary metal-oxide semiconductor; TMDs: Transition metal dichalcogenides; BP: Black phosphorus; InSe: Indium selenide; FET: Field-effect transistors; SB: Schottky barrier; 2D FET: 2D materials-based FET; ITRS: International Technology Roadmap for Semiconductors; vdW: van der Waals; UL: Underlap; NEGF: Non-equilibrium Green’s function; DOS: The density of states; SS: Subthreshold swing; HP: High performance; τ: Intrinsic delay; PDP: Power-delay product; EDP: Energy-delay product

Acknowledgements

The authors are grateful for the computational resource provided by HPC system of Xidian University.

Authors’ contributions

JZ designed and performed the calculations and wrote the manuscript. JN and DW participated in this work and analyzed the data. JZ proposed the initial idea and provided the software. LG and YH revised the manuscript. All authors read and approved the final manuscript.

Authors’ information

Not applicable.

Funding

This work was supported by 111 project (Grant No. B12026), National Natural Science Foundation of China (No. 61604115, 11435010, 61474086, and 61334002), the Fundamental Research Funds for the National Scien
cific and Technological Frontiers (JBJ110109), and the Natural Science Basic Research Plan in Shaanxi Province of China (program No. 2019ZYLeGy16-03).

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi’an 710071, China. 2. Shaanxi Joint Laboratory of Graphene, Xidian University, Xi’an 710071, China. 3. School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China.

Received: 22 April 2019 **Accepted:** 28 July 2019 **Published online:** 15 August 2019

References

1. Robinson JA (2018) Perspective: 2D for beyond CMOS. Apl Materials 6:5
2. Gong CH, Hu K, Wang XP, Wangyang PH, Yan CY, Chu JW, Liao M, Dai LP, Zhai TY, Wang C, Li L, Xiong J (2018) 2D Nanomaterial Arrays for Electronics and Optoelectronics. Adv Funct Mater 28:16
3. Liu F, Wang YJ, Liu XY, Wang J, Guo H (2015) A theoretical investigation of orientation-dependent transport in monolayer MoS2 transistors at the ballistic limit. IEEE Electron Device Lett 36:10
4. Chhowalla M, Jena D, Zhang H (2016) Two-dimensional semiconductors for transistors. Nature Reviews Materials 1:11
5. Radisavljevic B, Radenovic A, Brivoj I, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:3
6. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen KH, Zhang Y (2014) Black phosphorus field-effect transistors. Nat Nano 9:5
7. Ameen TA, Iatkhameh H, Klimek G, Rahman R (2016) Few-layer phosphorene: an ideal 2D material for tunnel transistors. Scientific Reports 6:28615
8. Bandurin DA, Tyumina AV, Yu GL, Mishchenko A, Zolyomy V, Morozov SV, Kumar RK, Gorbachev RV, Kudrynskyi ZR, Pezzini S, Kovalyuk ZD, Zeitler U, Zhu et al. Nanoscale Research Letters (2019) 14:277 Page 7 of 8

Fig. 7 Power-delay product versus intrinsic delay comprised of InSe and other 2D FETs. The gray dashed guidelines correspond to specific EDP
