Classical double-well systems coupled to finite baths

Hideo Hasegawa

Department of Physics, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
(Dated: May 2, 2014)

Abstract

We have studied properties of a classical N_S-body double-well system coupled to an N_B-body bath, performing simulations of $2(N_S + N_B)$ first-order differential equations with $N_S \simeq 1 - 10$ and $N_B \simeq 1 - 1000$. A motion of Brownian particles in the absence of external forces becomes chaotic for appropriate model parameters such as N_B, c_o (coupling strength), and $\{\omega_n\}$ (oscillator frequency of bath): For example, it is chaotic for a small N_B ($\lesssim 100$) but regular for a large N_B ($\gtrsim 500$). Detailed calculations of the stationary energy distribution of the system $f_S(u)$ (u: an energy per particle in the system) have shown that its properties are mainly determined by N_S, c_o and T (temperature) but weakly depend on N_B and $\{\omega_n\}$. The calculated $f_S(u)$ is analyzed with the use of the Γ distribution. Difference and similarity between properties of double-well and harmonic-oscillator systems coupled to finite bath are discussed.

PACS numbers: 05.40.-a, 05.70.-a, 05.10.Gg

hideohasegawa@goo.jp
I. INTRODUCTION

Many studies have been made with the use of a model describing a classical or quantum open system which is coupled to baths consisting of a collection of harmonic oscillators. Such a model is conventionally referred to as the Caldeira-Leggett (CL) model \[1, 2\], although equivalent models had been proposed earlier by Magalinskii \[3\] and Ullersma \[4\]. From the CL model, we may derive the Langevin model with dissipation and diffusion (noise) terms. Originally the CL model was introduced for \(N_B\)-body bath with \(N_B \to \infty\), for which the Ohmic and Drude-type spectral densities with continuous distributions are adopted. Furthermore in the original CL model, the number of particles in a systems, \(N_S\), is taken to be unity (\(N_S = 1\)). We expect that a generic open system may contain any number of particles and that a system may be coupled to a bath consisting of finite harmonic oscillators in general. In recent years, the CL model has been employed for a study of properties of open systems with finite \(N_S\) and/or \(N_B\) \[5–13\]. Specific heat anomalies of quantum oscillator (system) coupled to finite bath have been studied \[5, 6, 12\]. A thermalization \[7, 8\], energy exchange \[9\], dissipation \[11\] and the Jarzynski equality \[13, 14\] in classical systems coupled to finite bath have been investigated.

In a previous paper \[10\], we have studied the \((N_S + N_B)\) model for finite \(N_S\)-body systems coupled to baths consisting of \(N_B\) harmonic oscillators. Our study for open harmonic oscillator systems with \(N_S \simeq 1 – 10\) and \(N_B \simeq 10 – 1000\) has shown that stationary energy distribution of the system has a significant and peculiar dependence on \(N_S\), but it weakly depends on \(N_B\) \[10\]. These studies mentioned above \[5–13\] have been made for harmonic-oscillator systems with finite \(N_S\) and/or \(N_B\).

Double-well potential models have been employed in a wide range of fields including physics, chemistry and biology (for a recent review on double-well system, see Ref. \[15\]). Various phenomena such as the stochastic resonance (SR), tunneling through potential barrier and thermodynamical properties \[16\] have been studied. The CL model for the double-well systems with \(N_S = 1\) and \(N_B = \infty\) has been extensively employed for a study on the SR \[17\]. Properties of SR for variations of magnitude of white noise \[17, 20\] and relaxation time of colored noise \[21, 22\] have been studied. However, studies for open double-well systems with finite \(N_S\) and/or \(N_B\) have not been reported as far as we are aware of. It would be interesting and worthwhile to study open classical double-well systems described by the
(\(N_S + N_B\)) model with finite \(N_S\) and \(N_B\), which is the purpose of the present paper.

The paper is organized as follows. In Sec. II, we briefly explain the \((N_S + N_B)\) model proposed in our previous study \[10\]. In Sec. III, direct simulations (DSs) of \(2(N_S + N_B)\) first-order differential equations for the adopted model have been performed. Dynamics of a single double-well system \((N_S = 1)\) coupled to a finite bath \((2 \leq N_B \leq 1000)\) in the phase space is investigated (Sec. III B). We study stationary energy distributions in the system and bath, performing detailed DS calculations, changing \(N_S, N_B\), the coupling strength and the distribution of bath oscillators (Sec. III C). Stationary energy and position distributions obtained by DSs are analyzed in Sec. IV. The final Sec. V is devoted to our conclusion.

II. ADOPTED \((N_S + N_B)\) MODEL

We consider a system including \(N_S\) Brownian particles coupled to a bath consisting of independent \(N_B\) harmonic oscillators. We assume that the total Hamiltonian is given by \[10\]

\[
H = H_S + H_B + H_I, \tag{1}
\]

with

\[
H_S = \sum_{k=1}^{N_S} \left[\frac{P_k^2}{2M} + V(Q_k) \right], \tag{2}
\]

\[
H_B = \sum_{n=1}^{N_B} \left[\frac{p_n^2}{2m} + \frac{m\omega_n^2}{2}q_n^2 \right], \tag{3}
\]

\[
H_I = \frac{1}{2} \sum_{k=1}^{N_S} \sum_{n=1}^{N_B} c_{kn} (Q_k - q_n)^2, \tag{4}
\]

where \(H_S\), \(H_B\) and \(H_I\) express Hamiltonians for the system, bath and interaction, respectively. Here \(M\) (\(m\)) denotes the mass, \(P_k\) (\(p_n\)) the momentum, \(Q_k\) (\(q_n\)) position of the oscillator in the system (bath), \(V(Q_k)\) signifies the potential in the system, \(\omega_n\) stands for oscillator frequency in the bath, and \(c_{nk}\) is coupling constant. The model is symmetric with respect to an exchange of system ↔ bath if \(V(Q)\) is the harmonic potential. From Eqs.
we obtain \(2(N_S + N_B) \) first-order differential equations,

\[
\dot{Q}_k = \frac{P_k}{M},
\]

(5)

\[
\dot{P}_k = -V'(Q_k) - \sum_{n=1}^{N_B} c_{kn}(Q_k - q_n),
\]

(6)

\[
\dot{q}_n = \frac{p_n}{m},
\]

(7)

\[
\dot{p}_n = -m\omega_n^2 q_n - \sum_{k=1}^{N_S} c_{kn}(q_n - Q_k),
\]

(8)

which yield

\[
M\ddot{Q}_k = -V'(Q_k) - \sum_{n=1}^{N_B} c_{kn}(Q_k - q_n),
\]

(9)

\[
m\ddot{q}_n = -m\omega_n^2 q_n - \sum_{k=1}^{N_S} c_{kn}(q_n - Q_k),
\]

(10)

with prime (\('\)) and dot (\(\cdot\)) denoting derivatives with respect to the argument and time, respectively. It is noted that the second term of Eq. (6) or (9) given by

\[
F_k^{(e f f)} = -\sum_{n=1}^{N_B} c_{kn}(Q_k - q_n),
\]

(11)

plays a role of the effective force to the \(k \)th system.

A formal solution of Eq. (10) for \(q_n(t) \) is given by

\[
q_n(t) = q_n(0) \cos \tilde{\omega}_n t + \frac{\dot{q}_n(0)}{\tilde{\omega}_n} \sin \tilde{\omega}_n t + \sum_{\ell=1}^{N_S} \frac{c_{\ell n}}{m\tilde{\omega}_n} \int_0^t \sin \tilde{\omega}_n (t - t') Q_\ell(t') dt',
\]

(12)

with

\[
\tilde{\omega}_n^2 = \frac{b_n}{m} + \sum_{k=1}^{N_S} \frac{c_{kn}}{m} = \omega_n^2 + \sum_{k=1}^{N_S} \frac{c_{kn}}{m}.
\]

(13)

Substituting Eq. (12) to Eq. (9), we obtain the non-Markovian Langevin equation given by

\[
M\ddot{Q}_k(t) = -V'(Q_k) - M\sum_{\ell=1}^{N_S} \xi_{k\ell} Q_\ell(t) - \sum_{\ell=1}^{N_S} \int_0^t \gamma_{k\ell}(t - t') \dot{Q}_\ell(t') dt' - \sum_{\ell=1}^{N_S} \gamma_{k\ell}(t) Q_\ell(0) + \zeta_k(t) \quad (k = 1 \text{ to } N_S),
\]

(14)
with

\[M \xi_{k\ell} = \sum_{n=1}^{N_B} \left[c_{kn} \delta_{k\ell} - \frac{c_{kn} c_{\ell n}}{m \tilde{\omega}_n^2} \right], \quad (15) \]

\[\gamma_{k\ell}(t) = \sum_{n=1}^{N_B} \left(\frac{c_{kn} c_{\ell n}}{m \tilde{\omega}_n^2} \right) \cos \tilde{\omega}_n t, \quad (16) \]

\[\zeta_k(t) = \sum_{n=1}^{N_B} c_{kn} \left[q_n(0) \cos \tilde{\omega}_n t + \frac{\dot{q}_n(0)}{\omega_n} \sin \tilde{\omega}_n t \right], \quad (17) \]

where \(\xi_{k\ell} \) denotes the additional interaction between \(k \) and \(\ell \)th particles in the system induced by couplings \(\{ c_{kn} \} \), \(\gamma_{k\ell}(t) \) the memory kernel and \(\zeta_k \) the stochastic force.

If the equipartition relation is realized in initial values of \(q_n(0) \) and \(\dot{q}(0) \),

\[\langle m \tilde{\omega}_n^2 q_n(0)^2 \rangle_B = \langle m \dot{q}_n(0)^2 \rangle_B = k_B T, \quad (18) \]

we obtain the fluctuation-dissipation relation:

\[\langle \zeta_k(t) \zeta_k(t') \rangle_B = k_B T \gamma_{kk}(t - t'), \quad (19) \]

where \(\langle \cdot \rangle_B \) stands for the average over variables in the bath.

In the case of \(N_B \to \infty \), summations in Eqs. (15)-(17) are replaced by integrals. When the spectral density defined by

\[J(\omega) = \frac{\pi}{2} \sum_n \frac{c_n^2}{m_n \omega_n^2} \delta(\omega - \omega_n), \quad (20) \]

is given by the Ohmic form: \(J(\omega) \propto \omega \) for \(0 \leq \omega < w_D \), the kernel becomes

\[\gamma(t) \propto \frac{\sin \omega_D t}{\pi t} \propto \delta(t), \quad (21) \]

which leads to the Markovian Langevin equation.

In the case of \(N_S = 1 \), we obtain \(\xi \) and \(\gamma \) in Eqs. (15) and (16) where the subscripts \(k \) and \(\ell \) are dropped (e.g., \(c_{kn} = c_n \)),

\[M \xi(t) = \sum_{n=1}^{N_B} c_n \left(1 - \frac{c_n}{m \tilde{\omega}_n^2} \right), \quad (22) \]

\[\gamma(t) = \sum_{n=1}^{N_B} \left(\frac{c_n^2}{m \tilde{\omega}_n^2} \right) \cos \tilde{\omega}_n t. \quad (23) \]

The additional interaction vanishes (\(\xi = 0 \)) if we choose \(c_n = m \tilde{\omega}_n^2 \) in Eq. (22).

In the case of \(N_S \neq 1 \), however, it is impossible to choose \(\{ c_{kn} \} \) such that \(\xi_{k\ell} = 0 \) is realized for all pairs of \((k, \ell) \) in Eq. (15). Then \(Q_k \) is inevitably coupled to \(Q_\ell \) for \(\ell \neq k \) with the superexchange-type interaction of antiferromagnets: \(-\sum_n c_{kn} c_{\ell n} / m \tilde{\omega}_n^2 \) in Eq. (15).
III. MODEL CALCULATIONS FOR DOUBLE-WELL SYSTEMS

A. Calculation methods

We consider a system with the double-well potential

$$V(Q) = \left(\frac{\Delta}{Q_0^4} \right) (Q^2 - Q_0^2)^2, \quad (24)$$

which has the stable minima of $V(\pm Q_0) = 0$ at $Q = \pm Q_0$ and locally unstable maximum of $V(0) = \Delta$ at $Q = 0$ with the barrier height Δ. We have adopted $Q_0 = 1.0$ and $\Delta = 1.0$ in our DSs.

It is easier to solve $2(N_S + N_B)$ first-order differential equations given by Eqs. (5)-(8) than to solve the N_S Langevin equations given by Eqs. (14)-(17) although the latter provides us with clearer physical insight than the former. In order to study the N_S and N_B dependences of various physical quantities, we have assumed that the coupling c_{kn} is given by

$$c_{kn} = \frac{c_o N_S N_B}{N_S N_B}, \quad (25)$$

because the interaction term includes summations of $\sum_{k=1}^{N_S}$ and $\sum_{n=1}^{N_B}$ in Eq. (4). It is noted that with our choice of c_{kn}, the interaction contribution is finite even in the thermodynamical limit of $N_B \to \infty$ because the summation over n runs from 1 to N_B in Eq. (4). DSs of Eqs. (5)-(8) have been performed with the use of the fourth-order Runge-Kutta method with the time step of 0.01. We have adopted $k_B = 1.0$, $M = m = 1.0$, $c_o = 1.0$, and $\omega_n = 1.0$ otherwise noticed.

We consider energies per particle $u_{\eta}(t)$ in the system (η=S) and the bath (η=B) which are assume to be given by

$$u_S = \frac{1}{N_S} \sum_{k=1}^{N_S} \left[\frac{P_k^2}{2M} + V(Q_k) \right], \quad (26)$$

$$u_B = \frac{1}{N_B} \sum_{n=1}^{N_B} \left[\frac{p_n^2}{2m} + \frac{m \omega_n^2 q_n^2}{2} \right], \quad (27)$$

which is valid for the weak interaction, although a treatment of the finite interaction is ambiguous and controversial \cite{5, 6}.
B. Dynamics of a particle in the \((Q, P)\) phase space

1. Effect of \(c_o\)

First we consider an isolated double-well system \((N_S = 1\) and \(c_o = 0.0\)). Figure 1 shows the phase-space trajectories in the \((Q, P)\) phase space for this system with six different initial system energies \(E_{S_0}\). For \(E_{S_0} = 0.0\), the system has two stable fixed points at \((Q, P) = (\pm1.0, 0.0)\), and for \(E_{S_0} = \Delta = 1.0\) it has one unstable fixed point at \((Q, P) = (0.0, 0.0)\). In the case of \(0.0 < E_{S_0} < 1.0\), the trajectory is restricted in the region of \(Q > 0.0\) (or \(Q < 0.0\)). In contrast in the case of \(E_{S_0} > 1.0\), trajectory may visit both regions of \(Q > 0.0\) and \(Q < 0.0\). The case of \(E_{S_0} = 1.0\) is critical between the two cases.

Next the double-well system is coupled to a bath. In our DSs, we have assumed that system and bath are decoupled at \(t < 0\) where they are in equilibrium states with \(E_{S_0} = T\), the temperature \(T\) being defined by \(T = u_B\). We have chosen initial values of \(Q(0) = 1.0\) and \(P(0) = \sqrt{2M[E_{S_0} - V(Q(0))]\)} for a given initial system energy \(E_{S_0}\). Initial conditions for \(q_n(0)\) and \(p_n(0)\) are given by random Gaussian variables with zero means and variance proportional to \(T\) [Eq. (18)] [10]. Results to be reported in this subsection have been obtained by single runs for \(t = 0\) to 1000.

Figures 2(a) and 2(b) show a strobe plot in the \((Q, P)\) phase space (with a time interval of 1.0) and the time-dependence of \(Q(t)\), respectively, for \(E_{S_0} = 1.0\), \(N_S = 1\), \(N_B = 100\) and \(c_o = 0.2\). The trajectory starting from \(Q(0) = 1.0\) goes to the negative-\(Q\) region because a particle may go over the potential barrier with a help of a force (noise) originating from bath given by Eq. (11). The system energy fluctuates as shown in Fig. 2(c), whose distribution is plotted in Fig. 2(d).

Results in Fig. 2 are regular. In contrast, when a coupling strength is increased to \(c_o = 1.0\), the system becomes chaotic as shown in Figs. 3(a) and 3(b) where a strobe plot in the \((Q, P)\) phase space and the time-dependence of \(Q(t)\) are plotted, respectively. This is essentially the force-induced chaos in classical double-well system [23]: although an external force is not applied to our system, a force arising from a coupling with bath given by Eq. (11) plays a role of an effective external force for the system. Figures 3(c) and 3(d) show that in the case of \(c_o = 1.0\), \(u_S\) has more appreciable temporal fluctuations with a wider energy distribution in \(f_S(u)\) than in the case of \(c_o = 0.2\). Although system energies fluctuate, they
FIG. 1: Plot of phase-space trajectories for a particle in an isolated double-well system ($c_o = 0.0$). Trajectories are plotted for energies of $E_{So}/\Delta = 0.0, 0.5, 0.8, 1.0, 1.2$ and 1.5. are not dissipative at $0.0 \leq t < 1000.0$ in DSs both for $c_o = 0.2$ and $c_o = 1.0$ with $N_B = 100$.

2. Effect of ω_n distributions

We have so far assumed $\omega_n = 1.0$ in the bath, which is now changed. Figures 4(a) and 4(c) show strobe plots for $\omega_n = 0.5$ and 2.0, respectively, which are regular and which are different from a chaotic result for $\omega_n = 1.0$ shown in Fig. 4(b). When we adopt \{\omega_n\} which is randomly distributed in $[0.5, 2.0]$, a motion of a system particle becomes chaotic as shown
FIG. 2: (Color online) (a) Strobe plot in the \((Q, P)\) phase space (with a time interval of 1.0), (b) \(Q(t)\), (c) \(u_S(t)\), and (d) the system energy distribution \(f_S(u)\) obtained by a single run for \(E_{So} = 1.0, N_S = 1, N_B = 100, T = 1.0\) and \(c_o = 0.2\).

in Fig. 3(d). This is because contributions from \(\omega_n \sim 1.0\) among \([0.5, 2.0]\) induce chaotic behavior.
FIG. 3: (Color online) (a) Strobe plot in the \((Q, P)\) phase space, (b) \(Q(t)\), (c) \(u_S(t)\), and (d) the system energy distribution \(f_S(u)\) obtained by a single run for \(E_{So} = 1.0\), \(N_S = 1\), \(N_B = 100\), \(T = 1.0\) and \(c_o = 1.0\).

3. Effect of \(N_B\)

We have repeated calculations by changing \(N_B\), whose results are plotted in Figs. 5(a)-5(d). Figures 5(a), 5(b) and 5(c) show that chaotic behaviors for \(N_B = 2\) and \(N_B = 10\) are
more significant than that for $N_B = 100$. On the contrary, chaotic behavior is not realized for $N_B = 1000$ in Fig. 5(d), which is consistent with the fact that chaos has not been reported for the double-well system subjected to infinite bath.
FIG. 5: Strobe plots in the \((Q,P)\) phase space for various \(N_B\): (a) \(N_B = 2\), (b) \(N_B = 10\), (c) \(N_B = 100\) and (d) \(N_B = 1000\) with \(E_{So} = 1.0\), \(N_S = 1\), \(T = 1.0\) and \(c_o = 1.0\).

4. **Effect of initial system energy \(E_{So}\)**

Next we change the initial system energy of \(E_{So}\). Figures 6(a)-(d) show strobe plots in the \((Q,P)\) phase space for various \(E_{So}\) with \(N_S = 1\), \(N_B = 100\), \(T = 1.0\) and \(c_o = 1.0\). Figure 6(a) shows that for \(E_{So} = 0.5\), the regular trajectory starting from \(Q = 1.0\) remains
in the positive-Q region because a particle cannot go over the potential barrier of $\Delta = 1.0$. For $E_{So} = 0.8$, chaotic trajectories may go to the negative-Q region with a help of force from bath [Eq. [11]]. Figure [6(d)] shows that when E_{So} is too large compared to Δ ($E_{So}/\Delta = 1.2$), the trajectory again becomes regular, going between positive- and negative-Q regions.

Figure [7] shows the system energy distribution $f_S(u)$ for various E_{So}. $f_S(u)$ moves upward as E_{So} is increased. It is noted that peak positions of $f_S(u)$ for $E_{So} = 0.5 - 1.0$ locate at $u \simeq 1.0$ while that for $E_{So} = 1.2$ locates at $u \simeq 1.35$.

C. Stationary energy probability distributions

In this subsection, we will study stationary energy probability distributions of system and bath which are averaged over $N_r (\approx 10,000)$ runs stating from different initial conditions. Assuming that the system and bath are in the equilibrium states with $T = u_B = u_S$ at $t < 0.0$, we first generate exponential derivatives of initial system energies $\{E_j\}$: $p(E_j) \propto \exp(-\beta E_j) \ (j = 1 \text{ to } N_SN_r)$ for our DSs where $\beta = 1/k_B T$. A pair of initial values of $Q_j(0)$ and $P_j(0)$ for a given E_j is randomly chosen such that they meet the condition given by $E_j = P_j(0)^2/2M + V(Q_j(0))$. The procedure for choosing initial values of $q_n(0)$ and $p_n(0)$ is the same as that adopted in the preceding subsection [10]. We have discarded results for $t < 200$ in our DSs performed for $t = 0$ to 1000.

Before discussing cases where N_S and N_B may be greater than unity, we first study a pedagogical simple case of $N_S = N_B = 1$: a particle with double-well potential is subjected to a single harmonic oscillator. Double-chain curves in Fig. [8(a)] and [8(b)] show energy distributions of the system [$f_S(u)$] and bath [$f_B(u)$], respectively, with $c_o = 0.0$, where $u = u_S \ (u = u_B)$ for the system (bath). Both $f_S(u_S)$ and $f_B(u_B)$ follow the exponential distribution because the assumed initial equilibrium states of decoupled system and bath persist at $t \geq 0.0$. When they are coupled by a weak coupling of $c_o = 0.1$ at $t \geq 0.0$, $f_S(u)$ and $f_B(u)$ almost remain exponential distributions except for that $f_S(u)$ has a small peak at $u = 1.0$, as shown by dashed curve in Fig. [8(a)]. This peak has been realized in Figs. [2(d)] and [3(d)]. It is due to the presence of a potential barrier with $\Delta = 1.0$ in double-well potential because the peak at $u = 1.0$ in $f_S(u)$ is realized even when $T \neq 1.0$, as will be discussed later in 4. Effect of T (Fig. [12]). This peak is developed for stronger couplings of $c_o = 1.0$ and 2.0, for which magnitudes of $f_S(u)$ at small u are decreased, as shown by solid
FIG. 6: Strobe plots in the (Q,P) phase space for various E_{So}: (a) $E_{So} = 0.5$, (b) $E_{So} = 0.8$ (c) $E_{So} = 1.0$ and $E_{So} = 1.2$ with $N_{S} = 1$, $N_{B} = 100$, $T = 1.0$ and $c_o = 1.0$.

and chain curves in Figs. 8(a) and 8(b).
FIG. 7: (Color online) System energy distributions $f_S(u)$ for $E_{S_0} = 0.5, 0.8, 1.0$ and 1.2 with $N_S = 1, N_B = 100, T = 1.0$ and $c_0 = 1.0$, curves being successively shifted upward by two for clarity of figures.

1. Effect of c_0

We change the coupling strength of c_0. Figures 9(a) and 9(b) show $f_S(u)$ and $f_B(u)$, respectively, for $c_0 = 0.2, 1.0, 5.0$ and 10.0 with $N_S = 1, N_B = 100$ and $T = 1.0$. $f_S(u)$ for $c_0 = 0.2$ nearly follows the exponential distribution. When c_0 becomes larger, magnitudes of $f_S(u)$ at $u < 1.0$ are decreased while that at $u > 1.0$ is increased. In particular, the magnitude of $f_S(0)$ is more decreased for larger c_0.

15
FIG. 8: (Color online) Stationary distributions of (a) $f_S(u)$ and (b) $f_B(u)$ for various c_o: $c_o = 0.0$ (double-chain curves), 0.1 (dashed curves), 1.0 (solid curves) and 2.0 (chain curves) obtained by 10 000 runs with $N_S = N_B = 1$ and $T = 1.0$.

2. Effect of ω_n distributions

Although we have assumed $\omega_n = 1.0$ in bath oscillators, we will examine the effect of their distribution, taking into account two kinds of random distributions given by $\omega_n \in [0.5, 2.0]$
FIG. 9: (Color online) Stationary distributions of (a) $f_S(u)$ and (b) $f_B(u)$ for various c_o: $c_o = 0.2$ (dashed curves), 1.0 (chain curves), 5.0 (double-chain curves) and 10.0 (solid curves) with $N_S = 1$, $N_B = 100$ and $T = 1.0$.

and $\omega_n \in [2.0, 3.0]$. From calculated results shown in Figs. [10(a) and 10(b)], we note that $f_S(u)$ and $f_B(u)$ are not much sensitive to the distribution of $\{\omega_n\}$ in accordance with our previous calculation for harmonic oscillator system [10, 25]. This conclusion, however, might
not be applied to the case of infinite bath where distribution of \(\{ \omega_n \} \) becomes continuous distribution. Ref. [8] reported that the relative position between oscillating frequency ranges of system and bath is very important for a thermalization of the harmonic oscillator system subjected to finite bath.

3. Effect of \(N_B \)

We have calculated \(f_S(u) \) and \(f_B(u) \), changing \(N_B \) but with fixed \(N_S = 1 \), whose results are shown in Figs. 11(a) and 11(b). For larger \(N_B \), the width of \(f_B(u) \) becomes narrower as expected. However, shapes of \(f_S(u) \) are nearly unchanged for all cases of \(N_B = 1, 10, 100 \) and 1000.

4. Effect of \(T \)

We change the temperature of the bath. Figures 12(a) and 12(b) show \(f_S(u) \) and \(f_B(u) \), respectively, for \(T = 0.5, 1.0 \) and 1.5 with \(N_S = 1, N_B = 100 \) and \(c_o = 1.0 \). When \(T \) is decreased (increased), positions of \(f_B(u) \) move to lower (higher) energy such that mean values of \(u_B \) correspond to \(T \). For a lower temperature of \(T = 0.5 \), magnitude of \(f_S(u) \) at \(u < 1.0 \) is increased while that at \(u > 1.0 \) is decreased. The reverse is realized for higher temperature of \(T = 1.5 \). We should note that the peak position in \(f_S(u) \) at \(u = 1.0 \) is not changed even if \(T \) is changed because this peak is related to the barrier with \(\Delta = 1.0 \) of the double-well potential.

5. Effect of \(N_S \)

Although \(N_S = 1 \) has been adopted so far, we will change \(N_s \) to investigate its effects on stationary energy distributions. Figure 13(a) shows \(f_S(u) \) for \(N_S = 1, 2, 5 \) and 10. \(f_S(u) \) for \(N_S = 1 \) shows an exponential-like distribution with \(f_S(0) \neq 0 \) at \(u = 0.0 \). In contrast, \(f_S(u) \) vanishes at \(u = 0.0 \) for \(N_S = 2, 5 \) and 10. Figure 13(a) shows that shapes of \(f_S(u) \) much depend on \(N_S \) while those of \(f_B(u) \) are almost unchanged in Fig. 13(b).
FIG. 10: (Color online) Stationary distributions of (a) $f_S(u)$ and (b) $f_B(u)$ for various distributions of $\{\omega_n\}$: $\omega = 1.0$ (dashed curves), $\omega_n \in [0.5, 2.0]$ (solid curves) and $\omega_n \in [2.0, 3.0]$ (chain curves) with $N_S = 1$, $N_B = 100$, $T = 1.0$ and $c_o = 1.0$.
FIG. 11: (Color online) Stationary distributions of (a) $f_S(u)$ and (b) $f_B(u)$ for various N_B: $N_B = 1$ (solid curves), 10 (dashed curves), 100 (chain curves) and 1000 (bold solid curves) with $N_S = 1$, $T = 1.0$ and $c_0 = 1.0$. $f_B(u)$ for $N_B = 1000$ is multiplied by a factor of $1/3$.
FIG. 12: (Color online) Stationary distributions of (a) $f_S(u)$ and (b) $f_B(u)$ for various T: $T = 0.5$ (chain curves), 1.0 (solid curves) and 1.5 (dashed curves) with $N_S = 1$, $N_B = 100$ and $c_0 = 1.0$.
FIG. 13: (Color online) Stationary distributions of (a) $f_S(u)$ and (b) $f_B(u)$ for various N_S: $N_S = 1$ (dashed curves), 2 (dotted curves), 5 (chain curves) and 10 (solid curves) with $N_B = 100$, $T = 1.0$ and $c_o = 1.0$.
IV. DISCUSSION

A. Analysis of stationary energy distributions

Our DSs in the preceding section have shown that \(f_S(u) \) depends mainly on \(N_S, c_o \) and \(T \) while \(f_B(u) \) depends mostly on \(N_B \) and \(T \) for \(N_S \ll N_B \). We will try to analyze \(f_S(u) \) and \(f_B(u) \) in this subsection. It is well known that when variables of \(x_i (i = 1 - N) \) are independent and follow the exponential distributions with the same mean, the distribution of its sum: \(X = \sum_i x_i \) is given by the \(\Gamma \) distribution. Then for an uncoupled system \((c_o = 0.0) \), \(f_S(u) \) and \(f_B(u) \) are expressed by the \(\Gamma \) distribution given by \[f_\eta(u) = \frac{1}{Z_{\eta}} u^{a_\eta - 1} e^{-b_\eta u} \equiv g(u; a_\eta, b_\eta), \] (28)

with

\[
\begin{align*}
 a_\eta &= N_\eta, \\
 b_\eta &= N_\eta \beta, \\
 Z_\eta &= \frac{\Gamma(a_\eta)}{b_\eta^{a_\eta}},
\end{align*}
\] (30)

where \(\eta \) = S and B for a system and bath, respectively, and \(\Gamma(x) \) is the gamma function. In the limit of \(N_S = 1 \), the \(\Gamma \) distribution reduces to the exponential distribution. Mean \((\mu_\eta) \) and variance \((\sigma^2_\eta) \) of the \(\Gamma \) distribution are given by

\[
\mu_\eta = \frac{a_\eta}{b_\eta}, \quad \sigma^2_\eta = \frac{a_\eta}{b_\eta^2},
\] (31)

from which \(a_\eta \) and \(b_\eta \) are expressed in terms of \(\mu_\eta \) and \(\sigma_\eta \)

\[
\begin{align*}
 a_\eta &= \frac{\mu_\eta^2}{\sigma^2_\eta}, \\
 b_\eta &= \frac{\mu_\eta}{\sigma_\eta^2}.
\end{align*}
\] (32)

We have tried to evaluate \(f_S(u) \) and \(f_B(u) \) for the coupled system \((c_o \neq 0.0) \) as follows: From mean \((\mu_\eta) \) and root-mean-square (RMS) \((\sigma_\eta) \) calculated by DSs, \(a_\eta \) and \(b_\eta \) are determined by Eq. (32), with which we obtain the \(\Gamma \) distributions for \(f_S(u) \) and \(f_B(u) \). Filled and open squares in Fig. 14 show \(\mu_B \) and \(\sigma_B \), respectively, as a function of \(N_S \). We obtain \(\mu_B = 1.0 \) and \(\sigma_B = 0.1 \) nearly independently of \(N_S \), which yield \(a_B = b_B = 100.0 \) in agreement with Eq. (29). Filled and open triangles in Fig. 14 express the \(N_S \) dependence of \(\mu_S \) and \(\sigma_S \) obtained by DSs with \(c_o = 1.0, N_B = 100 \) and \(T = 1.0 \). Calculated mean and RMS values of \((\mu_S, \sigma_S) \) are \((1.07, 0.98), (0.99, 0.70), (0.99, 0.44) \) and \((0.99, 0.319) \) for \(N_S = 1, 2, 5 \).
FIG. 14: (Color online) N_S dependences of μ_η and σ_η of system ($\eta = S$) and bath ($\eta = B$) with $N_B = 100$ and $T = 1.0$: filled (open) triangles denote μ_S (σ_S) with $c_o = 1.0$: filled (open) circles express μ_S (σ_S) with $c_o = 10.0$: filled (open) squares show μ_B (σ_B) with $c_o = 1.0$.

and 10, respectively, for which Eq. (32) yields $(a_S, b_S) = (1.18, 1.11), (2.04, 2.05), (4.50, 5.06)$ and $(9.82, 9.97)$. These values of a_S and b_S are not so different from N_S and $N_S \beta$ given by Eq. (29). We have employed the Γ distribution with these parameters a_S and b_S for our analysis of $f_S(u)$ having been shown in Fig. 13(a). Dashed curves in Figs. 15(a)-(d) express calculated Γ distributions, which are in fairly good agreement with $f_S(u)$ plotted by solid curves, except for $N_S = 1$ for which $g(0) = 0.0$ because $a_S = 1.18 > 1.0$ while $f_S(0) \neq 0.0$.

Similar analysis has been made for another result obtained with a larger $c_o = 10.0$ for
FIG. 15: (Color online) u dependences of $f_S(u)$ for (a) $N_S = 1$, (b) $N_S = 2$, (c) $N_S = 5$ and (d) $N_S = 10$ with $T = 1.0$, $c_o = 1.0$ and $N_B = 100$ obtained by DSs (solid curves): dashed and chain curves express Γ and exponential distributions, respectively (see text).

$N_B = 100$ and $T = 1.0$. N_S-dependences of calculated μ_S and σ_S are plotted by filled and open circles, respectively, in Fig. 14. Calculated (μ_S, σ_S) are $(2.88, 2.61)$, $(1.81, 1.12)$, $(1.21, 0.47)$ and $(1.07, 0.31)$ for $N_S = 1$, 2, 5 and 10, respectively, which lead to $(a_S, b_S) =$
FIG. 16: (Color online) u dependences of $f_S(u)$ for (a) $N_S = 1$, (b) $N_S = 2$, (c) $N_S = 5$ and (d) $N_S = 10$ with $T = 1.0$, $c_0 = 10.0$ and $N_B = 100$ obtained by DSs (solid curves): dashed and chain curves express Γ and exponential distributions, respectively (see text).

$(1.22, 0.42), (2.62, 1.45), (6.57, 5.44)$ and $(11.54, 10.81)$ by Eq. (32). Obtained a_S and b_S are rather different from N_S and $N_S\beta$ given by Eq. (29). Dashed curves in Figs. 16(a)-(d) show Γ distributions with these parameters, which may approximately explain $f_S(u)$ obtained by
DSs in the *phenomenologically* sense, except for \(N_S = 1 \) for which \(g(0) = 0.0 \) but \(f_S(0) \neq 0.0 \).

We note in Fig. 15(a) or 16(a) that an agreement between \(g(u) \) and \(f_S(u) \) with \(N_S = 1 \) is not satisfactory. We have tried to obtain a better fit between them, by using the \(q \)-\(\Gamma \) distribution \(g_q(u) \) given by [10]

\[
g_q(u) = \frac{1}{Z_q} u^{a-1} e^{-bu^q}, \tag{33}
\]

with

\[
e_q^x = [1 + (1 - q)x]_{+}^{1/(1-q)}, \tag{34}
\]

where \([y]_+ = \max(y, 0)\) and \(Z_q \) is the normalization factor. Note that \(g_q(u) \) reduces to the \(\Gamma \) distribution in the limit of \(q \to 1.0 \). Although the \(q \)-\(\Gamma \) distribution was useful for \(f_S(u) \) of harmonic-oscillator systems subjected to finite bath [10], it does not work for \(f_S(u) \) of double-well systems. This difference may be understood from a comparison between \(f_S(u) \) for \(N_S = 1 \) of a double-well system shown in Fig. 15(a) [or 16(a)] and its counterpart of a harmonic oscillator system shown in Fig. 9(a) of Ref. [10]. Although the latter shows an exponential-like behavior with a monotonous decrease with increasing \(u \), the former with a characteristic peak at \(u = 1.0 \) cannot be expressed by either the exponential, \(\Gamma \), or \(q \)-\(\Gamma \) distribution.

B. Analysis of stationary position distributions

We have studied also the \(N_S \) dependence of stationary position distributions of \(p(Q) \) and \(P(\bar{Q}) \), where \(Q \) denotes the position of a particle in the system and \(\bar{Q} \) expresses the averaged position given by

\[
\bar{Q} = \frac{1}{N_S} \sum_{k=1}^{N_S} Q_k. \tag{35}
\]

Figures 17(a) and 17(b) show \(p(Q) \) and \(P(\bar{Q}) \), respectively, obtained by DSs for various \(N_S \) with \(N_B = 100, T = 1.0 \) and \(c_o = 1.0 \). For \(N_S = 1 \), we obtain \(p(Q) = P(\bar{Q}) \) with the characteristic double-peaked structure. We note, however, that \(P(\bar{Q}) \) is different from \(p(Q) \) for \(N_S > 1 \) for which \(P(\bar{Q}) \) has a single-peaked structure despite the double-peaked \(p(Q) \). This is easily understood as follows: For example, in the case of \(N_S = 2 \), two particles in
FIG. 17: (Color online) Stationary distributions of (a) \(p(Q) \) as a function of particle position \(Q \) and (b) \(P(\bar{Q}) \) as a function of the averaged position \(\bar{Q} \) for various \(N_S \): \(N_S = 1 \) (dashed curve), 2 (solid curve), 5 (dotted curve) and 10 (chain curve) with \(N_B = 100, T = 1.0 \) and \(c_0 = 1.0 \). Open circles in (b) express an analytical result obtained by Eq. (36) with \(N_S = 2 \).

the system mainly locate at \(Q_k = 1.0 \) or \(Q_k = -1.0 \) \((k = 1, 2) \) which yields the double-peaked distribution of \(f_S(Q) \). However, the averaged position of \(\bar{Q} = (Q_1 + Q_2)/2 \) will be dominantly \(\bar{Q} = 0.0 \), which leads to a single-peaked \(P(\bar{Q}) \). The situation is the same also for \(N_S > 2 \).
Theoretically $P(\bar{Q})$ may be expressed by

$$P(\bar{Q}) = \int \cdots \int \prod_{k=1}^{N_S} dQ_k \exp \left[-\beta V(Q_k) \right] \delta \left(\bar{Q} - N_S^{-1} \sum_{k=1}^{N_S} Q_k \right).$$

(36)

$P(\bar{Q})$ numerically evaluated for $N_S = 2$ is plotted by open circles in Fig. 17 which are in good agreement with the solid curve expressing $P(\bar{Q})$ obtained by DS. It is impossibly difficult to numerically evaluate Eq. (36) for $N_S \geq 3$. In the limit of $N_S \to \infty$, $P(\bar{Q})$ reduces to the Gaussian distribution according to the central-limit theorem. This trend is realized already in the case of $N_S = 10$ in Fig. 17(b).

V. CONCLUDING REMARKS

We have studied the properties of classical double-well systems coupled to finite bath, employing the $(N_S + N_B)$ model [10] in which N_S-body system is coupled to N_B-body bath. Results obtained by DSs have shown the following:

(i) Chaotic oscillations are induced in the double-well system coupled to finite bath in the absence of external forces for appropriate model parameters of c_o, N_B, T, $\{\omega_n\}$ and E_{So}.

(ii) Among model parameters, $f_S(u)$ depends mainly on N_S, c_o and T while $f_B(u)$ depends on N_B and T for $N_S \ll N_B$.

(iii) $f_S(u)$ for $N_S > 1$ obtained by DSs may be phenomenological expressed by the Γ distribution,

(iv) $f_S(u)$ for $N_S = 1$ with $c_o \neq 0.0$ cannot be described by either the exponential, Γ, or q-Γ distribution, although that with $c_o = 0.0$ follows the exponential distribution, and

(v) The dissipation is not realized in the system energy for DSs at $t = 0 - 1000$ with $N_S = 1 - 100$ and $N_B = 10 - 1000$.

The item (i) is in consistent with chaos in a closed classical double-well system driven by external forces [23], although chaos is induced without external forces in our open classical double-well system. This is somewhat reminiscent of chaos induced by quantum noise in the absence of external force in closed quantum double-well systems [27]. Effects of induced chaos in the item (i) are not apparent in $f_S(u)$ because $u (= u_S)$ is ensemble averaged over 10 000 runs (realizations) with exponentially distributed initial system energies. Items (ii) and (v) are the same as in the harmonic-oscillator system coupled to finite bath [10]. The item (v) suggests that for the energy dissipation of system, we might need to adopt a much larger
$N_B \gg 1000$ \cite{26}. The item (iv) is in contrast to $f_\Sigma(u)$ for $N_\Sigma = 1$ in the open harmonic-oscillator system which may be approximately accounted for by the q-Γ distribution \cite{10}. It would be necessary and interesting to make a quantum extension of our study which is left as our future subject.

Acknowledgments

This work is partly supported by a Grant-in-Aid for Scientific Research from Ministry of Education, Culture, Sports, Science and Technology of Japan.

[1] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).
[2] A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983).
[3] V. B. Magalinskii, Sov. Phys. JETP 9, 1381 (1959).
[4] P. Ullersma, Physica 32, 27 (1966); *ibid.* 32, 56 (1966); *ibid.* 32, 74 (1966); *ibid.* 32, 90 (1966).
[5] P. Hanggi, Gert-Ludwig Ingold and P. Talkner, New Journal of Physics 10, 115008 (2008).
[6] Gert-Ludwig Ingold, P. Hanggi, and P. Talkner, Phys. Rev. E 79, 061105 (2009).
[7] S. T. Smith and R. Onofrio, Eur. Phys. J. B 61, 271 (2008).
[8] Q. Wei, S. T. Smith, and R. Onofrio, Phys. Rev. E 79, 031128 (2009).
[9] J. Rosa and M. W. Beims, Phys. Rev. E 78, 031126 (2008).
[10] H. Hasegawa, Phys. Rev. E 83, 021104 (2011).
[11] A. Carcaterra, and A. Akay, Phys. Rev. E 84, 011121 (2011).
[12] H. Hasegawa, J. Math. Phys. 52, 123301 (2011).
[13] H. Hasegawa, Phys, Rev. E 84, 011145 (2011).
[14] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997); Phys. Rev. E 56, 5018 (1997).
[15] M. Thorwart, M. Grifoni, and P. Hänggi, Annals Phys. 293, 14 (2001).
[16] H. Hasegawa, [arXiv:1205.2058](http://arxiv.org/abs/1205.2058).
[17] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998).
[18] P. Hänggi, F. Marchesoni, and P. Grigolini, Z. Phys. B 56, 333 (1984).
[19] P. Hänggi, , P. Jung, C. Zerbe, and F. Moss, 1993, J. Stat. Phys. 70, 25 (1993).
[20] L. Gammaitoni, E. Menichella-Saetta, S. Santucci, F. Marchesoni, and C. Presilla, Phys. Rev. A 40, 2144 (1989).

[21] A. Neiman and W. Sung, Phys. Lett. A 223, 341 (1996).

[22] H. Hasegawa, arXiv:1203.0770.

[23] L. E. Reichl and W. M. Zheng, Phys. Rev. A 29, 2186 (1984).

[24] In the CL model ($N_S = 1$ and $N_B \to \infty$), we assume $c_n = a/\sqrt{N_B}$ (a: constant) because the kernel $\gamma(t)$ includes the c_n^2 term as given by $\gamma(t) = \sum_{n=1}^{N_B} c_n^2 (\cos \omega_n t/m \omega_n^2)$ which becomes $\gamma(t) = (2/\pi) \int J(\omega) (\cos \omega t/\omega) d\omega \propto \delta(t)$ in the limit of $N_B \to \infty$, $J(\omega)$ denoting the spectral density [see Eq. (20)].

[25] A careless mistake was realized in $f_B(u)$ of Fig. 6(c) in Ref. [10], which should be nearly the same as that of Fig. 10(b) in this paper.

[26] The recurrence time in a finite system is finite in the Poincaré recurrence theorem: H. Poincaré, Acta Math. 13, 1 (1890), see also S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

[27] A. K. Pattanayak and W. C. Schieve, Phys. Rev. Lett. 72, 2855 (1994).