Expression of \textit{SULTR2.2} in the \textit{Arabidopsis} bundle sheath is mediated by a highly conserved positive regulator

Sandra Kirschner1, Helen Woodfield2, Katharina Prusko1, Maria Koczor1, Udo Gowik1\#, Julian M. Hibberd2\§, Peter Westhoff1\§

1Institute for Plant Molecular and Developmental Biology, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.

2Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom.

\#Present Address: Institute for Biology and Environmental Science (IBU), Plant Evolutionary Genetics, Carl von Ossietzky University Oldenburg, Germany

* Joint first authors

§ For correspondence

Email addresses:

SK - sandra.kirschner@hhu.de
HW - hkwoodfield@gmail.com
KP - katharina.prusko@hhu.de
MK - maria.koczor@hhu.de
UG - udo.gowik@uni-oldenburg.de
JMH - jmh65@cam.ac.uk
PW - west@hhu.de

Keywords: \textit{SULTR2.2}, Bundle sheath, gene expression, C\textsubscript{3} photosynthesis, \textit{Arabidopsis thaliana}, \textit{Flaveria bidentis}
Abstract

The bundle sheath provides a conduit linking veins and mesophyll cells. In C₃ *Arabidopsis thaliana* it also plays important roles in oxidative stress and sulphur metabolism. However, the mechanisms responsible for the patterns of gene expression that underpin these metabolic specialisations are poorly understood. Here we used the *A. thaliana SULTR2;2* gene as a model to better understand mechanisms that restrict expression to the bundle sheath. Deletion analysis indicated that the *SULTR2;2* promoter contains a short region necessary for expression in the bundle sheath. This sequence acts as a positive regulator and is tolerant to multiple consecutive deletions indicating considerable redundancy in the *cis*-elements involved. It is highly conserved in *SULTR2;2* genes of the Brassicaceae and is functional in the distantly related C₄ species *Flaveria bidentis* that belongs to the Asteraceae. We conclude that expression of *SULTR2;2* in the bundle sheath is underpinned by a highly redundant sequence that likely represents an ancient and conserved mechanism found in families as diverse as the Asteraceae and Brassicaceae.
Introduction

The evolution of multicellularity is associated with individual cell-types being able to undertake specialised roles within a tissue. In leaves, bundle sheath (BS) cells form a wreath-like structure around the vasculature that appears analogous to the endodermis of roots (Esau, 1965). The role of BS cells is best characterized in C₄ species that partition photosynthesis between the BS and mesophyll cells. In most C₄ plants, after HCO₃⁻ is initially fixed into C₄ acids by phosphoenolpyruvate carboxylase in mesophyll cells, these C₄ acids then diffuse to the BS where CO₂ is released and refixed by Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO). Decarboxylation of C₄ acids in the BS generates a high concentration of CO₂ around RuBisCO that suppresses the oxygenase activity of the enzyme and in so doing reduces photorespiration (Hatch, 1987). Thus, in C₄ species, the BS is specialized to allow efficient fixation of CO₂ in the Calvin-Benson-Bassham cycle. In some C₄ plants, the BS is also modified in terms of light capture. For example, in maize and sorghum Photosystem II does not fully assemble in the BS (Kubicki et al., 1994) but components of cyclic electron transport are more abundant in the BS compared with mesophyll cells (Takabayashi et al., 2005). In addition to these changes associated with photosynthesis, the C₄ BS is also modified to preferentially undertake starch synthesis and degradation, as well as the initial steps of sulphur assimilation (Friso et al., 2004).

In C₃ plants, the role of the BS is less clearly defined. It is thought to help maintain hydraulic integrity of the xylem (Sade et al., 2014), regulate flux of metabolites in and out of the leaf (Leegood, 2008) and act as a starch store (Miyake and Maeda, 1976). The C₃ BS is less important for photosynthesis than that of C₄ species. However, although only around 15% of all chloroplasts of the C₃ leaf are found in bundle sheath cells (Kinsman and Pyke, 1998), reducing photosynthesis in these cells compromises growth and seed production (Janacek et al., 2009). Thus, although less photosynthetic than the C₄ BS, this physiological analysis indicates that the BS of C₃ plants is also specialized. This notion is consistent with analysis of gene expression in this cell type. For example quantification of transcripts available for translation indicate that the A. thaliana BS is likely important in sulphur metabolism, glucosinolate biosynthesis, trehalose metabolism and detoxification of active oxygen species (Aubry et al., 2014). In summary, in both C₃ and C₄ plants mechanisms must operate to restrict the expression of some genes to BS cells.
To date, most studies of the mechanisms responsible for preferential gene expression in the BS have occurred in C₄ species (Hibberd and Covshoff, 2010). In the C₄ dicotyledon *Flaveria trinervia* the glycine decarboxylase P-subunit (GLDPA) gene contains two promoters, one proximal to the coding region, and the other more distal. Activity of the distal promoter is high but not cell-type specific. However, in the presence of the proximal promoter, transcripts derived from the distal promoter are degraded in mesophyll cells by nonsense-mediated RNA decay of incompletely spliced transcripts (Engelmann et al., 2008; Wiludda et al., 2012). Despite the phylogenetic distance between the Brassicaceae and the Asteraceae the GLDPA promoter from *F. trinervia* is able to generate BS-specific activity in C₃ *A. thaliana* (Engelmann et al., 2008; Wiludda et al., 2012). In *Amaranthus hybridus* 5’ and 3’ untranslated regions of the *RbcS1* gene act to restrict accumulation of the glucoronidase (GUS) reporter to the BS of C₄ *F. bidentis* and appear to function as enhancers of translation (Patel et al., 2006). Lastly, in C₄ *Gynandropsis gynandra* preferential expression of NAD-ME1&2 genes in the BS is associated with coding sequence rather than UTRs or promoter elements (Brown et al., 2011). The motifs underpinning this regulation are a pair of duons that play a dual role in coding for amino acids as well as the spatial patterning of gene expression associated with the C₄ leaf. Although these duons are present in C₃ *A. thaliana* and many other land plants they do not act to generate cell-specific expression in the ancestral C₃ state (Brown et al., 2011; Reyna-Llorens et al., 2016). In summary, current evidence indicates that gene expression in the BS of C₄ species is controlled by a variety of mechanisms, some of which involve regulatory codes that are derived from the ancestral C₃ state.

However, our understanding of how gene expression is restricted to the BS in C₃ species is poor. A small number of promoters including *SHORT-ROOT* (Dhondt et al., 2010), *SCARECROW* (Wysocka-Diller et al., 2000) and *SULTR2;2* (Takahashi et al., 2000) have been reported to drive BS specific expression in *A. thaliana*, but the molecular nature of cis-regulatory elements controlling their expression is unclear. An increased understanding of these processes would not only advance our understanding of mechanisms underpinning cell specific gene expression in multicellular leaves, but also provide insight into whether C₄ gene expression is built on pre-existing mechanisms found in C₃ species.
To better understand mechanisms associated with gene expression in BS cells of C₃ A. thaliana, we analysed the SULTR2;2 gene that encodes a low-affinity sulphur transporter (Takahashi et al., 2000). Elements in the promoter sequence that regulate the spatial patterning, and the strength of gene expression were identified. Specifically, preferential expression in the BS is mediated by a repetitive region that is highly conserved within orthologous genes from species of the Brassicaceae. This region acts to enhance expression in the BS rather than repressing expression in mesophyll cells. Furthermore, the SULTR2;2 promoter from A. thaliana generates BS specificity in the C₄ species F. bidentis that belongs to the Asteraceae. The most parsimonious explanation for this finding is that a common transcription factor is shared by these phylogenetically dispersed species, and that it functions in both the C₃ and C₄ BS.
Results

Nucleotides -2815 to +123 relative to the predicted SULTR2;2 translational start site have previously been reported to generate expression in the BS of A. thaliana (Takahashi et al., 2000). We confirmed this finding (Figure 1A-C). To test if sequence after the predicted start codon is required for expression in the BS a construct that terminated at nucleotide -1 relative to the predicted translational start was generated (Figure 1D). Staining showed that each construct led to strong accumulation of GUS in the BS of mature rosette leaves (Figure 1B,C,E,F). Staining was evident in vascular tissue as well as the BS but there was no evidence that GUS accumulated in mesophyll or epidermal cells from either construct (Figure 1B,C,E,F). Promoter activity was quantified using the MUG fluorimetric assay. GUS activity driven by the construct that contained 603 fewer base pairs at the 5' end but an additional 123 nucleotides of coding sequence was about tenfold higher (Figure 1G). This difference could either be due to a negative regulator located between -3418 and -2185 nucleotides, or a positive regulator in sequence downstream of the predicted translational start site.

A translational fusion between the yellow fluorescent protein (YFP) and the nuclear localized Histone 2B protein under control of the SULTR2;2 promoter (Figure 1H) labelled nuclei of BS cells and vascular tissue (Figure 1I) and indicated that the presence of GUS in the BS was due to gene expression and not diffusion of the dye outwards from to vascular tissue. Consistent with previous reports (Chytilova et al., 1999) it was noticeable that vascular nuclei were elongated and rod-like compared with the more spherical ones in the BS (Figure 1I). We conclude that elements between nucleotides -2815 and the translational start site of SULTR2;2 are sufficient to drive gene expression in vascular and BS cells of A. thaliana.

A short region that is necessary and sufficient to activate gene expression in the BS

To better understand the sequences responsible for generating expression in BS cells, a 5' deletion series was generated (Figure 2A). Each of the deleted regions are hereafter referred to as regions 1 to 5. Removal of region 1 had no significant effect on either activity or spatial accumulation of GUS (Figure 2A&C) indicating that no essential cis-regulatory elements are located within this section. Deletion of region 2 resulted in total loss of GUS activity and staining (Figure 2A&D), and removal of regions 3 and 4 had no further effect (Figure 2A, E&F). These data therefore indicate that
nucleotides in region 1 do not impact on promoter activity, but that region 2 is necessary for BS
eexpression in mature leaves. A separate deletion series involving slightly smaller regions supported
this conclusion, with expression in the BS being lost once nucleotides between -1813 and -1335
were deleted (Supplementary Figure 1).

The lack GUS accumulation in the BS and loss of promoter activity once region 2 is removed
could be because this region contains cis-elements that generate expression specifically in BS cells
or because it drives ubiquitous expression but regions 3 to 5 contain elements that restrict activity to
the BS. To investigate this possibility, 5’ rapid amplification of cDNA ends was first used to define
the transcriptional start site of SULTR2;2 (Supplemental Figure 2). No single strong transcription
start site was detected but rather multiple transcripts were initiated from position -125 onwards
(Supplementary Figure 2). Nucleotides spanning -349 to -1 were therefore considered likely to be
sufficient for transcriptional initiation and are hereafter referred to as the core promoter. Fusion of
region 2 to this core promoter led to MUG conversion that was comparable to that from the full-length
promoter (Figure 3A and Figure 2A) and was also sufficient to direct accumulation of GUS to veins
and the BS (Figure 3B). To exclude the possibility that the core promoter includes cis-elements
necessary for BS-specific expression, region 2 was also fused to the minimal CaMV35S promoter
which does not drive significant expression. Although this led to fourfold lower GUS activity than the
full-length promoter (Figure 3A) GUS accumulation was still restricted to veins and the BS (Figure
3C). We conclude that although nucleotides -349 to -1 are not able to generate expression in the BS
(Figure 2F), they likely represent the core promoter of SULTR2;2. In contrast, nucleotides -2053 to
-1312 are sufficient to restrict expression to the BS and vascular tissue of A. thaliana.

AtSULTR2;2 contains multiple redundant sequences mediating BS expression

Having established that nucleotides -2053 to -1312 relative to the predicted translational start
site are both necessary and sufficient for BS expression, an unbiased approach to further dissect
this region was adopted. Ten consecutive deletions were made to this region and each fused to the
core promoter of SULTR2;2 (Figure 4A). Strikingly, none of these deletions resulted in total loss of
GUS activity (Figure 4A), nor was GUS staining lost from the BS (Figure 4B-K) indicating that despite
an absence of repeated cis-elements in this region significant functional redundancy in regulatory
elements must mediate BS-specific expression. However, it was notable that GUS activity declined
to varying degrees compared with the intact region (Figure 4A), suggesting that either these
redundant cis-elements act additively, or that this region contains quantitative elements regulating
gene expression.

To better understand the extent to which cis-elements in this section of the promoter act
redundantly, larger deletions were made from position -2053 (Figure 5A). This generated five
regions, hereafter referred to as sub-regions 2.1 to 2.5. Deletion of sub-region 2.1 resulted in a strong
reduction of GUS activity (Figure 5A) but BS-specific accumulation of GUS was maintained (Figure
5C). This finding implies that sub-region 2.1 contains a quantitative enhancer element. Deleting sub-
region 2.2 had no clear additional impact on either BS-specificity or activity (Figure 5A&D). However,
the subsequent deletion of sub-regions 2.3 and 2.4 caused loss of GUS activity and also loss of
GUS staining in BS and vascular tissue (Figure 5A,E&F). These data indicate that cis-regulatory
elements mediating BS expression are situated in sub-region 2.3, or that quantitative elements in
this region mask qualitative elements in distal sub-regions. To address these options, 3’ deletions of
region 2 were also created (Figure 5G). As sub-regions 2.1 and 2.2 had little impact on BS
expression, the last three sub-regions were fused to the minimal CaMV35S promoter. Expression
from each of these three constructs was low (Figure 5G) however BS expression could be observed
from the construct containing sub-regions 2.3, 2.4 and 2.5 (Figure 5H). Removal of sub-region 2.5
resulted in loss of GUS in rosette leaves although cotyledons still showed patchy staining restricted
to the BS and vascular tissue (Figure 5I). Once sub-region 2.4 was removed GUS activity was further
reduced and GUS staining was no longer detectable even in seedlings (Figure 5G&J). We conclude
that sub-regions 2.3 and 2.4, which contain a total of 350 base pairs, contain cis-regulatory elements
necessary for BS expression of AtSULTR2;2.

The cis-regulatory elements necessary for BS-specific expression of AtSULTR2;2 appear to be
located in a 350 nucleotide region of the promoter. As finer-scale deletions had failed to identify the
exact cis-elements responsible for this phenotype (Figure 4) a phylogenetic approach was
undertaken. Orthologues of AtSULTR2;2 were identified from seven species of the Brassicaceae.
Alignments of sequences 5 kb upstream of each orthologue indicated that with the exception of A.
lyrata that contains a 446 nucleotide insertion, region 2 is highly conserved (Figure 6). However, no
short sequences or motifs within this sequence that may restrict expression to the BS could be identified (Figure 6). Although the results of this alignment therefore do not identify a specific cis-element that could be bound by a transcription factor responsible for generating BS expression, they do support the functional analysis and implicate the whole of region 2 as a critical component of the SULTR2;2 promoter for BS expression.

The AtSULTR2;2 promoter is capable of driving BS specific expression in C₄ Flaveria bidentis

As the GLDPA promoter from the C₄ species F. trinervia is able to confer BS specific expression in C₃ A. thaliana (Engelmann et al., 2008) we next tested whether the A. thaliana SULTR2;2 promoter would lead to BS expression in C₄ F. bidentis. GUS activity in transgenic F. bidentis plants was about fourfold higher than that in A. thaliana (Figure 7A&B). However, histochemical analysis of mature leaves revealed a very similar expression pattern to that in A. thaliana with strong GUS accumulation in BS and vascular tissue but not in mesophyll cells (Figure 7C). This indicates that transcription factors from F. bidentis recognise BS cis-regulatory elements from the Brassicaceae. The most parsimonious explanation for this finding is that these sequences represent part of an ancient and conserved mechanism that restricts gene expression to BS cells of dicotyledenous leaves.
Discussion

SULTR2;2 contains a short region that activates expression in the bundle sheath

SULTR2;2 encodes a low affinity transporter that facilitates movement of sulphate from the vascular bundle to palisade cells in the leaf (Takahashi *et al.*, 2000). Consistent with this function, analysis of both GUS and the histoneB::YFP fusion indicated that the *SULTR2;2* promoter directs expression to veins as well as to BS cells. It was notable that none of the various deletions we made to this promoter led to expression being restricted to either veins or bundle sheath cells. The *GLDPA* promoter from *F. trinervia* also drives expression in both veins and BS cells of *A. thaliana* (Engelmann *et al.*, 2008). These findings therefore imply that the *SULTR2;2* and *GLDP* genes may be controlled by gene regulatory networks that are shared by these cell-types. It is possible that these cell-types share some gene regulatory networks because they are derived from the same lineage (Dengler and Nelson, 1999; Soros and Dengler, 2001).

Within the *SULTR2;2* promoter, one specific region that impacted on gene expression in the BS was identified. This sequence, consisting of 350 nucleotides, is both necessary and sufficient for restricting expression to this cell-type. Small consecutive deletions within this region failed to abolish this spatial patterning implying that multiple contiguous elements act redundantly to generate strong and stable expression in the BS. The only detectable impact of deleting any part of this region was for strength of expression to be reduced. We therefore propose that either multiple independent BS modules contained within this region act additively, or that distinct quantitative elements are co-located, and at least partially overlapping with, *cis*-elements that determine this cell-specificity. Redundancy of this sort has previously been reported for the promoter of *Phenylalanine Ammonia Lyase*2 that drives xylem-specific expression in tobacco (Leyva *et al.*, 1992; Hatton *et al.*, 1995), *DORNROSCHEN-LIKE* of *A. thaliana* that contains three functionally redundant enhancers (Comelli *et al.*, 2016), and *EVEN-SKIPPED* (*EVE*) from *Drosophila melanogaster* where a minimal enhancer is sufficient to direct expression of *EVE* to the second stripe, but surrounding binding sites increase the robustness of this patterning during genetic and environmental perturbations (Ludwig *et al.*, 2011). Thus, although the exact role of redundancy in the regulation of *SULTR2;2* in the BS is unclear, it may also increase robustness in the control of gene expression during environmental perturbations, and/or increase patterning precision (Barolo, 2012; Payne and Wagner, 2015).
Compared with other examples of elements that restrict gene expression to BS cells of C₃ species, this single block of sequence from SULTR2;2 that acts as a positive regulator of transcription appears to operate via relatively simple mechanisms. For example, the F. trinervia GLDPA generates BS-specific expression (Engelmann et al., 2008) because of a complex interplay between transcriptional and post-transcriptional processes. These are mediated by distal and proximal sequences relative to the translational start site, leading to repression of GLDP expression in mesophyll cells (Wiludda et al., 2012). We therefore propose that the positive regulator located upstream of SULTR2;2 could be used as a synthetic module to manipulate or engineer processes in BS of A. thaliana.

The bundle sheath element of SULTR2;2 is conserved in the Brassicaceae and functional in the Asteraceae

Alignment of SULTR2;2 promoters from multiple species of the Brassicaceae did not reveal an individual shared cis-element but rather highlighted sequence that was conserved across the whole region 2. This sequence conservation argues for relatively strong purifying selection compared with the rest of the SULTR2;2 promoter and also implies that this region may function as part of a widely conserved positive regulator of gene expression in the BS of the Brassicaceae. Consistent with this proposal and indicating that these regulatory elements may be even more ancient, when the SULTR2;2 promoter was placed into the phylogenetically distant C₄ species F. bidentis it was also recognized by trans-factors that restricted gene expression to the C₄ BS. This is analogous to the behavior of the GLDPA promoter from C₄ F. trinervia which is able to restrict expression to the BS of A. thaliana (Engelmann et al., 2008; Wiludda et al., 2012). Currently, the crown ages of the rosids and asterids are estimated to be 108-117 and 107-117 million years ago (Sanderson et al., 2004; Wikström et al., 2001) indicating that these clades diverged in the Early Cretaceous. Whilst for both SULTR2;2 and GLDP it is possible that different mechanisms lead to BS specific expression in species of the Brassicaceae and Asteraceae it seems more likely that expression of each gene is determined by ancient and highly conserved cis-regulatory codes that have been maintained since these clades diverged from their last common ancestor. Although the plant vasculature is thought to have started to evolve from 450 to 430 million years ago (Furuta et al., 2014; Ye, 2002)
to our knowledge there are no clear estimates of when the BS originated. It would be intriguing if
regulatory networks operating in both the veins and BS cells are uncovered that can be associated
with the evolution of the vasculature in early diverging lineages of land plants.
Materials and methods

Cloning of promoter-reporter gene constructs and 5' Rapid Amplification of cDNA ends

All DNA fragments created by PCR were confirmed by DNA sequencing. Generation of full-length promoter construct via PCR was constructed with *Arabidopsis thaliana* Columbia-0 (Col-0) genomic DNA. Subsequent constructs were generated using this as a template. Restriction sites were added to the respective fragments by PCR and fragments were inserted into pBl121 or a partially modified pBl121. Region 2 with internal deletions were synthesised by GenScript and swapped with the full-length region 2 of 2::5.2::GUS to generate the internal deletion constructs. Total RNA from leaves of wild type *A. thaliana* Col-0 plants was extracted, DNase I treated and purified with the RNeasy® Plant Mini Kit (Qiagen, Hilden, Germany). cDNA was generated from 1 µg RNA and then 5’ RACE-PCR performed using the Advantage® 2 DNA Polymerase Mix (Clontech Laboratories, Mountain View, USA) or Phusion® HF DNA Polymerase (Thermo Fisher Scientific, Waltham, USA). Two nested 3’ oligonucleotides, AtSultr2;2-11 and AtSultr2;2-13, both binding in the cDNA of *AtSULTR2;2*, were used. PCR products were cloned and confirmed via colony PCR. Correct clones were subjected for plasmid preparation and sequencing.

Transformation and plant growth

A. thaliana ecotype Col-0 was transformed using floral dipping (Clough and Bent, 1998; Logemann et al., 2006) using *Agrobacterium tumefaciens* strain AGL1. *F. bidentis* was transformed as described previously (Chitty et al., 1999). Successful transformations of *A. thaliana* or *F. bidentis* were tested by PCR. Before transplanting to soil, positive transformants of *A. thaliana* were selected on kanamycin. Seeds were sterilized by washing twice for 5 min with 20 % (v/v) DanKlorix (Colgate-Palmolive, New York City, USA) and 0.02 % (v:v) Triton-X 100 (Fluka Analyticals, Buchs, Switzerland) and four times with sterile water. Stratification of seeds was performed at 4 °C for 48 hours prior to spreading them on ½ MS pH 5.7 containing 10 g l⁻¹ (w/v) sucrose (Sigma-Aldrich, St. Louis, USA), 0.5 g l⁻¹ MES (Biomol, Hamburg, Germany), 2.13 g/l (w/v) Murashige-Skoog basal salts (Duchefa Biochemie, Haarlem, Netherlands), 0.75 % agar (SERVA Electrophoresis, Heidelberg, Germany), 50 µg ml⁻¹ kanamycin (Sigma-Aldrich, St. Louis, USA) and 100 mg l⁻¹ Cefotaxim
Plants were transferred to 14 h light/10 h dark and temperatures of 23 °C day and 20 °C night and a light intensity of 90 µmol m⁻² s⁻¹.

Visual and quantitative analysis of reporter genes

To take account of effects caused by transgene insertion into different genomic locations at between nine and forty-one independent T₀ plants were analysed for each construct. Histochemical analysis was performed as described previously (Engelmann et al., 2008). For A. thaliana either three to four-week old rosette leaves or ten to fourteen-day old seedlings and for F. bidentis the sixth leaves of 40-50 cm tall plants were used. Transverse sections were prepared manually using a razor blade. Stained leaves were imaged using light microscopy. Quantification of GUS activity was performed via fluorimetric assay (Jefferson et al., 1987) using two to four leaves of three- to four-week old T₀ A. thaliana plants or the fifth leaf of 40-50 cm tall T₀ F. bidentis plants, respectively. The Mann-Whitney U test was used to determine statistical differences between datasets. Imaging of H2B::YFP was performed on a Zeiss LSM 780 confocal laser-scanning microscope, and YFP fluorescence excited at 514 nm and emission detected between 517 and 569 nm.

Acknowledgments: Work performed in PWs laboratory (SK, KP, MK, UG) was supported by the Deutsche Forschungsgemeinschaft through the Cluster of Excellence in Plant Sciences Duesseldorf-Cologne (EXC 1028). HW supported by a BBSRC PhD studentship. We thank the Center for Advanced imaging (HHU Düsseldorf) for provision and technical assistance of the Zeiss LSM 780 laser-scanning microscope.
References

Aubry, S., Smith-Unna, R.D., Boursnell, C.M., Kopriva, S. and Hibberd, J.M. (2014) Transcript residency on ribosomes reveals a key role for the Arabidopsis thaliana bundle sheath in sulfur and glucosinolate metabolism. Plant J., 78, 659–673.

Barolo, S. (2012) Shadow enhancers: Frequently asked questions about distributed cis-regulatory information and enhancer redundancy. BioEssays, 34, 135–141.

Brown, N.J., Newell, C.A., Stanley, S., Chen, J.E., Perrin, A.J., Kajala, K. and Hibberd, J.M. (2011) Independent and Parallel Recruitment of Preexisting Mechanisms Underlying C4 Photosynthesis. Science 331, 1436–1439.

Chitty, J.A., Furbank, R.T., Marshall, J.S., Chen, Z. and WC, T. (1999) Genetic transformation of the C4 plant, Flaveria bidentis. Plant J., 6, 949–956.

Chytilova, E.V.A., Macas, J. and Galbraith, D.W. (1999) Green Fluorescent Protein Targeted to the Nucleus, a Transgenic Phenotype Useful for Studies in Plant Biology. Ann. Bot., 83, 645–654.

Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 16, 735–743.

Comelli, P., Glowa, D., Chandler, J.W. and Werr, W. (2016) Founder-cell-specific transcription of the DORNRÖSCHEN-LIKE promoter and integration of the auxin response. J. Exp. Bot., 67, 143–155.

Dengler, N. and Nelson, T. (1999) Leaf structure and development In C4 plants. In R. F. Sage and R. K. Monson, eds. C4 Plant Biology. San Diego: Academic Press.

Dhondt, S., Coppens, F., Winter, F. De, Swarup, K., Merks, R.M., Inze, D., Bennett, M.J. and Beemster, G.T. (2010) SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle. Plant Physiol, 154, 1183–1195.

Engelmann, S., Wiludda, C., Burscheidt, J., et al. (2008) The gene for the P-subunit of glycine decarboxylase from the C4 species Flaveria trinervia: analysis of transcriptional control in transgenic Flaveria bidentis (C4) and Arabidopsis (C3). Plant Physiol., 146, 1773–1785.

Esau, K. (1965) Plant Anatomy 2nd Ed., New York: John Wiley and Sons.
Friso, G., Giacomelli, L., Ytterberg, A.J., Peltier, J.B., Rudella, A., Sun, Q. and Wijk, K.J. (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. *Plant Cell*, 16, 478–499.

Furuta, K.M., Hellmann, E. and Helariutta, Y. (2014) Molecular Control of Cell Specification and Cell Differentiation During Procambial Development. *Annu. Rev. Plant Biol.*, 65, 607–638.

Hatch, M.D. (1987) C₄ photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. *Biochim. Biophys. Acta*, 895, 81–106.

Hatton, D., Sablowski, R., Yung, M.-H., Smith, C., Schuch, W. and Bevan, M. (1995) Two classes of cis-sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco. *Plant J.*, 7, 859–876.

Hibberd, J.M. and Covshoff, S. (2010) The Regulation of Gene Expression Required for C₄ Photosynthesis. *Annu. Rev. Plant Biol.*, 61, 181–207.

Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. *Nucleic Acids Res.*, 27, 297–300.

Janacek, S.H., Trenkamp, S., Palmer, B., et al. (2009) Photosynthesis in cells around veins of the C₃ plant *Arabidopsis thaliana* is important for both the shikimate pathway and leaf senescence as well as contributing to plant fitness. *Plant J.*, 59, 329–343.

Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants. *EMBO J.*, 6, 3901–3907.

Kinsman, E.A. and Pyke, K.A. (1998) Bundle sheath cells and cell-specific plastid development in Arabidopsis leaves. *Development*, 125, 1815–1822.

Kubicki, A., Steinmuller, K. and Westhoff, P. (1994) Differential transcription of plastome-encoded genes in the mesophyll and bundle-sheath chloroplasts of the monocotyledonous NADP-malic enzyme-type C₄ plants maize and sorghum. *Plant Mol. Biol.*, 25, 669–679.

Leegood, R.C. (2008) Roles of the bundle sheath cells in leaves of C₃ plants. *J. Exp. Bot.*, 59, 1663–1673.

Leyva, A., Liang, X., Pintor-Toro, J.A., Dixon, R.A. and Lamb, C.J. (1992) cis-element combinations determine phenylalanine ammonia-lyase gene tissue-specific expression...
patterns. *Plant Cell*, 4, 263–271.

Logemann, E., Birkenbihl, R.P., Ülker, B. and Somssich, I.E. (2006) An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol. *Plant Methods*, 2, 16.

Ludwig, M.Z., Manu, Kittler, R., White, K.P. and Kreitman, M. (2011) Consequences of Eukaryotic Enhancer Architecture for Gene Expression Dynamics, Development, and Fitness. *PLOS Genet.*, 7, e1002364.

Miyake, H. and Maeda, E. (1976) Development of bundle sheath chloroplasts in rice seedlings. *Can. J. Bot.*, 54, 556–565.

Patel, M., Siegel, A.J. and Berry, J.O. (2006) Untranslated regions of *FbRbcS1* mRNA mediate bundle sheath cell-specific gene expression in leaves of a *C*₄ plant. *J. Biol. Chem.*, 281, 25485–25491.

Payne, J.L. and Wagner, A. (2015) Mechanisms of mutational robustness in transcriptional regulation. *Front. Genet.*, 6, 322.

Reyna-Llorens, I., Burgess, S.J., Williams, B.P., Stanley, S., Boursnell, C. and Hibberd, J.M. (2016) Ancient coding sequences underpin the spatial patterning of gene expression in *C*₄ leaves. *bioRxiv*, doi: https://doi.org/10.1101/085795.

Sade, N., Shatil-Cohen, A., Attia, Z., et al. (2014) The role of plasma membrane aquaporins in regulating the bundle sheath-mesophyll continuum and leaf hydraulics. *Plant Physiol.*, 166, 1609-20. doi:10.1104/pp.114.248633.

Sanderson, M.J., Thorne, J.L., Wikström, N. and Bremer, K. (2004) Molecular evidence on plant divergence times. *Am. J. Bot.*, 91, 1656–1665.

Soros, C.L. and Dengler, N.G. (2001) Ontogenetic derivation and cell differentiation in photosynthetic tissues of *C*₃ and *C*₄ Cyperaceae. *Am J Bot.*, 88, 992–1005.

Takabayashi, A., Kishine, M., Asada, K., Endo, T. and Sato, F. (2005) Differential use of two cyclic electron flows around photosystem I for driving CO₂ concentration mechanism in *C*₄ photosynthesis. *Proc. Natl. Acad. Sci. U. S. A.*, 102, 16898–16903.

Takahashi, H., Watanabe-Takahashi, A., Smith, F.W., Blake-Kalff, M., Hawkesford, M.J. and Saito, K. (2000) The roles of three functional sulphate transporters involved in uptake and
translocation of sulphate in Arabidopsis thaliana. *Plant J.*, **23**, 171–182.

Wikström, N., Savolainen, V. and Chase, M.W. (2001) Evolution of the angiosperms: calibrating the family tree. *Proc. R. Soc. London. Ser. B Biol. Sci.*, **268**, 2211 LP-2220.

Wiludda, C., Schulze, S., Gowik, U., Engelmann, S., Koczor, M., Streubel, M., Bauwe, H. and Westhoff, P. (2012) Regulation of the photorespiratory GLDPA gene in C₄ Flaveria: an intricate interplay of transcriptional and posttranscriptional processes. *Plant Cell*, **24**, 137–151.

Wysocka-Diller, J.W., Helariutta, Y., Fukaki, H., Malamy, J.E. and Benfey, P.N. (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. *Development*, **127**, 595–603.

Ye, Z.-H. (2002) VASCULAR TISSUE DIFFERENTIATION AND PATTERN FORMATION IN PLANTS. *Annu. Rev. Plant Biol.*, **53**, 183–202.
Figure legends

Figure 1: The SULTR2;2 promoter drives expression in veins and bundle sheath cells of Arabidopsis thaliana. (A-C) Nucleotides -2185 to +123 of SULTR2;2 are sufficient to generate preferential accumulation of the GUS reporter in bundle sheath cells. (D-F) Nucleotides -2185 to +123 of SULTR2;2 are sufficient to generate preferential accumulation of the GUS reporter in bundle sheath cells. (G) Quantitative analysis of expression from each construct based on the GUS activity assay. (H) Schematic of the A. thaliana SULTR2;2 full-length promoter fused to H2B::YFP that targets YFP to the nucleus. (I) H2B::YFP fusion marks nuclei from the larger bundle sheath exhibits (white arrowhead) as well as the smaller more elongated nuclei of the vasculature (red arrowhead). Data from GUS activity assays include the median (M) indicated by red lines and the number (n) of independent lines. Histological GUS assays were allowed to proceed for 23 h (B), 16 h (C) and 5 h (E) 6 h (F). Scale bars represent 500 (C) or 50 μm (D,E,F).

Figure 2: A 715 nucleotide region in the SULTR2;2 promoter that is necessary for bundle sheath expression. (A) Schematic of the 5' deletion series (left) with GUS activities (right). (B-F) GUS accumulation from each deletion. Deletion of region 2 abolished accumulation of GUS. Data from GUS activity assays include the median (M) indicated by red lines and the number (n) of independent lines. Histological GUS assays were conducted on leaves for 23 h (B), 4 h (C) and 6 days. Histological GUS assays were allowed to proceed for 23 h (B), 4 h (C) and 6 days (E&F). Scale bars represent 50 μm.

Figure 3: The SULTR2;2 promoter contains a region that is sufficient to activate expression in bundle sheath cells. (A) Schematic of constructs containing nucleotides -2053 to -1312 combined with either the core promoter of SULTR2;2 or the minimal CaMV35S promoter (left) and quantitative analysis of expression from each construct based on the GUS activity assay (right). Orange arrowheads within the core promoter indicate transcription start sites obtained by 5'-RACE. (B-C) Both constructs are sufficient to generate GUS accumulation in the bundle sheath. Data from GUS activity assays include the median (M) indicated by red lines and the number (n) of independent lines. Histological GUS assays were allowed to proceed for 5 h (B) and 22 h (C). Scale bars represent
50 µm.

Figure 4: SULTR2;2 contains a region with multiple redundant regions capable of directing bundle sheath expression. (A) Schematic of internal deletion series constructs (left) and quantitative analysis of expression from each construct based on the GUS activity assay (right). Except for the last deletion representing 66 base pairs, each construct lacks consecutive 75 base pair sequences. These internal deletions modify the GUS activity (A), but none abolish accumulation of GUS in the bundle sheath (B-K). Data from GUS activity assays include the median (M) indicated by red lines and the number (n) of independent lines. Histological GUS assays were allowed to proceed for 23 h (B), 16 h (C), 48 h (D), 23 h (E), 48 h (F), 8 h (G), 3 h (H), 7 h (I), 3 h (J) and 19 h (K). Scale bars represent 50 µm.

Figure 5: A short region of the SULTR2;2 promoter that is necessary for expression in the bundle sheath. (A) Schematic of deletions made to region 2 of the SULTR2;2 promoter (left) and quantitative analysis of expression from each construct based on the GUS activity assay (right). Activity was no longer detectable when subregions 4 and 5 were removed. (B-F) Histochemical staining of leaves indicated that subregion 3 is required for expression in the bundle sheath. (G) Schematic of 3’ deletion constructs placed upstream of the minimal CaMV35S promoter (left) and quantitative analysis of expression from each construct based on the GUS activity assay (right). (H-I) Nucleotides from -1845 to -1495 are sufficient to drive expression in the bundle sheath of leaves (H) and cotyledons (I) respectively. (J) Deletion of nucleotides -1692 to 1312 abolishes accumulation of GUS in the BS. Data from GUS activity assays include the median (M) indicated by red lines and the number (n) of independent lines. Histological GUS assays were allowed to proceed for 4 h (B), 47 h (C), 4 h (D) 6 d (E, F), 5 d (H), 2 d (I) and 29 h (J). Scale bars represent 50 µm.

Figure 6: The region necessary for BS expression of SULTR2;2 is highly conserved in the Brassicaceae. The promoter of AtSULTR2;2 was aligned against sequences ~5 kb upstream of genes from seven additional species of the Brassicaceae. With the exception of Arabidopsis lyrata, which contains a 446 bp insertion, region 2 is highly conserved. Black boxes indicate strong similarity
of sequences, grey boxes sequences not matching the consensus sequence and black lines gaps. The level of similarity is also indicated on top of the alignment. High peaks in green mark strong similarity, low red peaks poor similarity.

Figure 7: The *A. thaliana* SULTR2;2 promoter generates strong bundle sheath expression in the *C₃* species *Flaveria bidentis*. (A) Schematic of the sequence placed into *Flaveria bidentis*. (B) Quantitative analysis of expression from each construct based on the GUS activity assay. To facilitate comparison GUS data from the same construct in *C₃* *A. thaliana* are included. (C) Representative image of transverse section of *Flaveria bidentis* after histochemical staining for GUS. Data from GUS assays include the median (M) indicated by red lines and the number (n) of independent lines. Histological GUS assays were allowed to proceed for 4 h. Scale bar represents 50 µm.
Supplemental Figure 1: Additional deletion series generated for SULTR2;2. (A) Schematics illustrating each deletion (left) and quantitative analysis of expression from each construct based on the GUS activity assay (right). The series was designed to remove around 400 bp each time and to avoid cis-regulatory elements predicted by the software PLACE (Higo et al., 1999). Deletion of region II resulted in a decline in GUS activity and deletion of region III lead to a total loss of expression. (B-H) Representative images after histological staining for GUS indicating that deleting region III led to loss of GUS in the bundle sheath. Data from GUS activity assays include the median (M) indicated by red lines and the number (n) of independent lines. Histological GUS assays were allowed to proceed for 6 h. Scale bars each 50 µm.

Supplemental Figure 2: Alignment of 5′ ends of cDNAs obtained via 5′ Rapid amplification of cDNA ends. No distinct transcription start site was found. The top line shows the template used for alignment. Predicted translational start sites are marked in blue (annotated in TAIR Accession 1009028759) and red (from Takahashi et al. (2000)). A TATA box motif found by the PLACE database (Higo et al., 1999) is underlined. The black arrowhead marks the TAIR annotated transcription start site (TAIR Accession 1009028759).
Figure 1
Figure 2

A

\[\text{nmol MU/(mg protein min)} \]

\[M = 0.399 \quad n = 26 \]
\[M = 0.427 \quad n = 18 \]
\[M = 0.003 \quad n = 19 \]
\[M = 0.001 \quad n = 41 \]
\[M = 0.005 \quad n = 15 \]

B
C
D
E
F

1-5::GUS
2-5::GUS
3-5::GUS
4-5::GUS
5::GUS
Figure 3
Figure 4
Figure 5
A

B

C

Figure 7