ALDH2 genotype modulates the association between alcohol consumption and AST/ALT ratio among middle-aged Japanese men: A genome-wide G×E interaction analysis

ALDH2の遺伝子多型が男性の飲酒量とAST/ALT比の関連を修飾する：ゲノムワイドな遺伝環境交互作用解析結果

Yoichi Sutoh1, Tsuyoshi Hachiya1, Yuji Suzuki2, Shohei Komaki1, Hideki Ohmomo1, Keisuke Kakisaka2, Ting Wang3, Yasuhiro Takikawa2, Atsushi Shimizu1,4*

須藤洋一1, 八谷剛史1, 鈴木悠地2, 小卷翔平1, 大桃秀樹1, 秩坂啓介2, 王挺3, 滝川康裕2, 清水厚志1,4*

1 岩手医科大学 災害復興事業本部 いわて東北メディカル・メガバンク機構 生体情報解析部門
2 岩手医科大学 医学部 内科学講座 消化器内科 肝臓分野
3 岩手医科大学 医歯薬総合研究所 医療開発研究部門
4 岩手医科大学 医歯薬総合研究所 生体情報解析部門
*Corresponding author

【研究のポイント】

岩手医科大学 いわて東北メディカル・メガバンク機構 生体情報解析部門の清水厚志部長（医歯薬総合研究所 教授）と医学部 内科学講座 消化器内科肝臓分野の滝川康裕教授を中心とした研究チームは、東北メディカル・メガバンク計画参加者のうち約1万人の遺伝情報を使用して、全ゲノム遺伝環境交互作用解析*1を行いました。その結果、男性では、一定の飲酒を毎日続けていた場合、アルコールの代謝に関与する2型アルデヒド脱水素酵素（ALDH2*2）の遺伝子多型*3に関連して、肝臓の検査値が顕著に高い値を示すことを明らかにし、研究成果を国際科学雑誌Scientific Reportsに10月1日付（オンライン公開）で発表いたしました。

URL: https://www.nature.com/articles/s41598-020-73263-1

γ-GT（γ-GTP）、AST、ALT*4に代表される肝臓の検査値は、肝障害の程度を推定する上
で有用ですが、実際には飲酒量だけでなく、遺伝子多型など様々な要因の影響を受けることが知られていた。一般に飲酒者ではAST/ALT比の上昇が見られることがありますが、今回の研究により、飲酒者のAST/ALT比は、仮に飲酒量が同程度の場合でも、ALDH2の遺伝型によって大きさが異なることが示されました。この成果により、ALDH2の遺伝型を考慮して、健康的な範囲の飲酒量を適切に設定することで、飲酒を原因とする肝障害の予防に貢献できる可能性が示されました。

図1：お酒（エタノール）の分解過程と今回の研究で判明したこと
エタノールの分解時に肝臓で働く主要な酵素のうち、2型アルデヒド脱水素酵素（ALDH2）の多型（rs671）がGA型の人が、一定量の飲酒を毎日続けていた場合、GG型の人に比べて、肝臓の検査値（AST/ALT比）が顕著に大きな値を示していました。

【概要】
アルコール性肝疾患*5は日常的に過度な飲酒を続けたことが原因で、肝臓の組織が傷害される疾患で、世界的にも罹患者が多く問題となっています。肝障害の程度を知るための指標として、血液中に漏れ出した肝臓由来の酵素（γ-GT（γ-GTP）, AST, ALT）の量を測定する肝臓の検査が一般的に行われています。
しかし、こうした肝臓の検査値は、アルコール以外にも多くの要因の影響を受けていることが知られています。各個人の遺伝的要因もその一つで、過去に行われた全ゲノム関連解析（Genome-wide association study; GWAS*6）により、γ-GT（γ-GTP）, AST, ALTでそれぞれ、42, 25, 27個の遺伝子多型が関連していることが示されていました。しかし、
これまでの解析は遺伝的因子、あるいは飲酒量のどちらか一方に着目して肝臓の検査値への影響を調べたものがほとんどであり、アルコール性肝疾患を招くような多量の飲酒を日常的に行っている状況で、肝臓の検査値に影響を与える遺伝的因子の探索は行われていませんでした。

そこで研究チームは、日本人を対象とした東北メディカル・メガバンク計画の参加者約1万人の遺伝子多型情報を基に、全ゲノム規模で遺伝環境交互作用解析を行い、飲酒量との関わりにより、肝臓の検査値に影響を与える遺伝的因子を探索しました。その結果、ゲノム中の12q24と呼ばれる領域に強く関連する多型が存在することを見出しました。この場合には、2型アルデヒド脱水素酵素（ALDH2）と呼ばれる酵素の遺伝子が存在しています。この遺伝子は、肝臓のアルコールの分解過程に関わっており、この遺伝子の特定の位置（rs671）がGA型の人は、GG型の人に比べてお酒を飲んだ際に顔が赤くなりやすいことが知られています。研究グループではこのALDH2遺伝子の多型は、こうしたお酒への反応の違いに加えて、飲酒量と肝臓の検査値の関係に影響を与えていることを発見しました。

例えば、日常的に過度の飲酒を繰り返した場合、一般的にAST/ALT比という指標が上昇しやすくなります。rs671がGA型の人と、GG型の人を比べた場合、GA型の人のほうがより少ない飲酒量でAST/ALT比が顕著に大きな値を示すことがわかりました（図2）。また、この現象は男性では顕著でしたが、女性では確認できず、性別の差が見られました。

図2：rs671多型と肝臓の検査値（AST/ALT比）の遺伝環境交互作用解析
東北メディカル・メガバンク計画参加者（約1万人）を居住地（岩手・宮城）及びrs671遺伝型（GG・GA）、飲酒量で層別化し、AST/ALT比を示しました。14gのエタノールは350ml缶ビール1本分のアルコール量に概ね相当します。AST/ALT比は性別、年齢、BMIで調整しました。rs671遺伝子がGA型の人では、GG型の人と比べ、より少ない飲酒量でもAST/ALT比が顕著に大きくなっていたでした。

【まとめと展望】
本研究では、日本人を対象とした遺伝環境交互作用解析を行い、飲酒量との関わりにより、肝臓の検査値に影響を与える遺伝子多型を見出しました。今後、ALDH2の遺伝子多型ごとに、適度な飲酒量を設定することで、一人ひとりの体質に合わせて飲酒習慣を改善することが可能になると期待されます。

【用語解説】
*1 全ゲノム遺伝環境交互作用解析
遺伝子多型と環境要因との関わり（遺伝環境交互作用）が個人の体質（形質）に関連しているかどうかを全ゲノムにわたって統計的に調べる方法です。今回の研究の場合、環境要因として飲酒量を当てはめ、飲酒量との関わりにより肝臓の検査値に影響を与える遺伝子多型を調べています。

*2 ALDH2
2型アルデヒド脱水素酵素。飲酒により取り込まれたアルコールは主に肝臓で分解されます。ALDH2はその際に働く主要な酵素で、アルコールの分解物であるアセトアルデヒドを分解します。アセトアルデヒドは飲酒時に顔が赤くなる、気分が悪くなるなどの症状を引き起こす有害物質のため、ALDH2の分解能力の高さが一般的なお酒の強さに影響します。

*3 遺伝子多型
ゲノム上の塩基配列が個々ごとに異なっている状態を指します。

*4 γ-GT（γ-GTP）、AST、ALT
肝臓の検査値に含まれる数値の一種で、それぞれ、ガンマグルタミルトランスフェラーゼ（γ-GTまたはγ-GTP）、アスパラギン酸アミノトランスフェラーゼ（AST）、アラニンアミノトランスフェラーゼ（ALT）と呼ばれる酵素の血中濃度を示しています。これらの酵素は肝臓に多く存在するため、血中濃度が通常より高い場合、肝臓や付随する組織が何らかの原因によって破壊され、酵素が血液中に漏れ出していることが疑われます。肝臓の組織の
破壊は、多くの場合、飲酒、肥満、肝炎ウイルス感染などを原因とする肝炎や肝硬変等の疾患の進行に伴って発生します。そのため、これらの肝臓の検査値は、より詳細な検査を受けるための目安として用いられます。

*5 アルコール性肝疾患
長期に渡る過剰な飲酒が原因で生じる肝疾患です。多くの場合、アルコール性脂肪肝から肝炎、肝硬変と進行します。これにともなって、肝臓がんや肝不全の危険性も高くなります。

*6 全ゲノム関連解析（GWAS）
個人間の形質の違いと遺伝子多型の違いとの関連をゲノム全体に対して統計的に調べる方法です。