Genetic and chemodiversity in native populations of *Schinus terebinthifolia* Raddi along the Brazilian Atlantic forest

Jannaira Velasques1*, Bruno do Amaral Crispim2, Adrielle Ayumi de Vasconcelos3, Miklos Maximiliano Bajay4, Claudia Andrea Lima Cardoso5, Alexeia Barufatti2 & Maria do Carmo Vieira6

Schinus terebinthifolia is a species native to different ecoregions in the Brazilian Atlantic Forest. The plant is listed on the National Relation of Medicinal Plants and recommended as phytomedicine, however while extractive exploitation prevails as the main route of raw material a significant variation of compounds will be detected. To assure the expansion of productive chain it is important to start by studying population diversity and chemical variations. We used SSR markers for studies of genetic structure among populations from dense ombrophilous forest (ES); the deciduous seasonal forest (SM); the savanna (DOU) and the sandbanks (ITA and MSP), and compared the results to their chemical profiles of essential oil. Genetic structure revealed differences among populations and significant fixation rates. Pairwise studies and Bayesian analysis showed similarities between ITA and SM and between DOU and MSP, proving that the patterns of distribution for the species do not follow the isolation by distance or similarity by environmental conditions. The comparison between PCA of genotypes and chemodiversity reinforces the unique profile for each population despite the environmental similarity observed and genetic analysis. The most divergent genotype and chemical group was found at the ombrophilous forest, strong evidence that we should undertake conservation efforts to prevent losses of biodiversity in that area.

Schinus terebinthifolia Raddi (Anacardiaceae) is an aromatic spice commonly known as pink pepper, Brazilian peppertree, faux poivrier, baie rose. The species is native to the Brazilian Atlantic Forest and has considerable ecoplasticity. In Brazil, it can be seen throughout several ecosystems from the sandbanks in south Pernambuco (08° 03’ 14’’ S and 34° 52’ 52’’ W) to the deciduous seasonal forests in Rio Grande do Sul (30° 01’ 59’’ S and 51° 13’ 48’’ W). As a small evergreen tree, it grows up to 3–13 m and behaves as a pioneer in degraded areas showing rapid and aggressive development by preventing regeneration of other native species. There’s a historical link attributing the interest in the aromatic and spicy features of its fruits to the spread of the species during Brazilian colonization, followed by recent re-introductions for ornamental purposes. Hence, it’s now dispersed worldwide and colonizing abandoned agricultural areas, degraded forests, coastal ecosystems, wetlands, and riparian zones, which has influenced its ranking among the 100 worst invasive species on the planet1-5.

On the other hand, the Brazilian peppertree is well known for its medicinal properties. The leaves and the fruits are widely used in traditional medicine as anti-inflammatory, antipyretic, analgesic and purifying agents6. In recent years, a number of pharmacological studies have confirmed its antimicrobial, antioxidant, vasodilatory,

1Programa de Pós-Graduação em Biossistemas, Universidade Federal do Sul da Bahia, Itabuna, Bahia, Brazil. 2Programa de Pós-Graduação em Biodiversidade e Meio Ambiente, Facultade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil. 3Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil. 4Departamento de Engenharia de Pesca e Biologia, Universidade do Estado de Santa Catarina, Florianópolis, Santa Catarina, Brazil. 5Programa de Pós Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brazil. 6Programa de Pós-Graduação em Agronomia, Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil. *email: jannavelasques@ufsdb.edu.br
from Itaparica—Bahia (Af) and from Morro de São Paulo—Bahia (Af). We ask if differences in chemodiversity
Brazilian ecosystems: deciduous seasonal forest from Santa Maria—Rio Grande do Sul (Cfa); savanna from Dourados—Mato Grosso do Sul (Cwa); tropical rainforest climate; Aw, Tropical wet and dry climate; Cfa, Subtropical fully humid hot summer; Cwa, Subtropical dry winter hot summer.

Table 1. Georeferences and climate information of native populations of S. terebinthifolia from five Brazilian ecosystems in the Atlantic Forest biome, used for population genetics and chemodiversity studies. BA, Bahia; ES, Espírito Santo; MS, Mato Grosso do Sul; RS, Rio Grande do Sul; PI, Pluvimetric index; Af, Tropical rainforest climate; Aw, Tropical wet and dry climate; Cfa, Subtropical fully humid hot summer; Cwa, Subtropical dry winter hot summer.

Genotype	Origin	Ecosystem	Latitude (S)	Longitude (W)	Altitude (m)	Climate	PI (mm)	°C
ES	São Mateus ES	Dense ombrophilous forest	18° 43’ 00"	39° 51’ 31"	38	Aw	1313	24.1
SM	Santa Maria RS	Deciduous seasonal forest	29° 41’ 02"	53° 48’ 25"	151	Cfa	1617	18.8
ITA	Vera Cruz BA	Sandbanks	12° 57’ 32"	38° 36’ 16"	13	Af	1874	25.1
MSP	Morro de São Paulo BA	Sandbanks	13° 23’ 22"	38° 54’ 36"	19	Af	2151	25.3
DOU	Dourados MS	Savanna	22° 13’ 15"	54° 48’ 21"	430	Cw	1400	23.6

and antitumor activities. These studies have encouraged the Brazilian Ministry of Health to include the Brazilian peppertree among the species of therapeutic potential to be distributed by the National Health System (SUS)7–16. Therefore, a series of studies encouraging the propagation of Brazilian peppertree by family farming and its use for reforesting degraded areas increased substantially. Some authors, considering the idea of the occurrence of chemotypes, defend the necessity of preventing extractive exploitation and the management of units for conservation of the species17,18. However, the Brazilian peppertree has a short generation time, is a highly prolific seed producer, and the seeds are readily consumed and spread by birds2,19,20, it is imperative to take into account the global warning about the difficult control of Brazilian peppertree dispersion and the risks it implies to the environment.

Studies of genetic diversity and spatial structure were carried out with distinct populations of Brazilian peppertree5,18–21. Nevertheless, there are still many gaps related to the distribution and dispersion of the Brazilian peppertree, mainly because the sample groups in previous works have always been restricted to a few native ecogeographic regions. Essential oil composition may be affected by a variety of factors including soil properties, solar radiation, temperature, altitude, humidity and ontogenetic stage, and physiological stages of fruit maturation22–24. The sum of all these factors can potentially affect the bioactivity of a final product. Studies comparing the genetic diversity and chemodiversity of the species across different environmental conditions for growth is crucial for the development of elite lines for traditional medicine and the pharmaceutical industry.

The essential oil of the Brazilian peppertree is already used in the formula of many cosmetics and pharmaceutical products. Although considering the heterogeneity of its composition observed on pharmacological studies, we could not find in the literature studies in comparison of chemodiversity of the species considering environmental conditions of growth. Nevertheless, major constituents often observed are α-pinene, limonene, sabine, β-pinene, α-copaene, α-phellandrene, germacrene and cis-salvene8,25–28, with a great variation among their concentration.

In this study, we compare genetic diversity and chemodiversity among five populations representing distinct Brazilian ecosystems: deciduous seasonal forest from Santa Maria—Rio Grande do Sul (Cfa); savanna from Dourados—Mato Grosso do Sul (Cwa); dense ombrophilous forest from São Mateus—Espírito Santo (Aw); sandbanks from Itaparica—Bahia (Af) and from Morro de São Paulo—Bahia (Af). We ask if differences in chemodiversity may be related to ecoregion or genetic differences among these populations.

Materials and methods
Plant material and DNA extraction. To access the plant material in this study, the authors followed all Brazilian legal frameworks (Law 13,123/15 and Decree 8772/16) to Genetic Heritage for purpose of scientific research. A former Certificate was emitted by the Genetic Heritage Management Council in the name of Universidade Federal da Grande Dourados and can be accessed in the National System of Genetic Resource Management and Associated Traditional Knowledge (SISGEN nº A9CDAAE). The material collected never left Brazilian territory and all the analysis were made in our laboratory under our legislation and security.

Fresh young leaves of native accessions were randomly collected to represent ecogeographical groups in Brazil (Table 1, Fig. 1). A voucher specimen of each location was identified by the specialist Dr Zefa Valdivina Pereira and deposited in the herbarium collection of Universidade Federal da Grande Dourados (DDMS 4872, 4873, 4874, 4875 and 4876, respectively for ITA, MSP, ES, SM and DOU).

After collection, the plant material was sterilized in a 3% NaClO solution for 10 min, then rinsed, dried and stored in liquid nitrogen until DNA extraction. Total genomic DNA was extracted from leaf tissue using the CTAB method29.

Microsatellites. We used a panel of seven microsatellite loci adapted from Williams et al.30 (StAAT1, StAAT9, StAAT16, StAAT17, StAAT25, StAAT47, StAAT55) for polymorphisms. PCR were performed using a multiplex system as described in Table 2.

PCR final volume (25 μl) contained: 4.5 μl of ultrapure water, 12.5 μl of PCR master mix, 1.0 μl of each primers, 2U of Taq DNA Polymerase and 2.3 μl of DNA (25–30 ng). The thermocycling program consisted of an
initial denaturation at 94 °C for 2 min, followed by 30 denaturation cycles at 94 °C for 30 s, annealing at 50 °C for 30 s and extension at 72 °C for 30 s. A final extension step at 72 °C for 10 min was performed at the end of the 30 cycles.

Amplified products were separated in 6% polyacrylamide gel, prepared on a 34-well sandwich type glass plate. A pre-run of 50 min at 70 W was carried out before applying the PCR samples. The 5 μL aliquot from

Table 2. Polymorphic markers used to genotype native populations of *S. terebinthifolia*. Microsatellite loci, primer sequences (5′–3′), annealing temperature (°C), number of alleles (NA) and accession numbers.

Multiplex	Locus	Primer sequences 5′–3′	T (°C)	NA	Genbank accession nº
M1	SAA25	ATTTGAAAAATAATAATAATAA	50	6	AF404285.1
		GCCGAGAATTCATAATGATG			
M1	SAA55	AAGGGTTAAAAATAATAAAACT	50	10	AF404289.1
		TAAATAACTAGGTTAGTAGAG			
M2	SAA16	AACAGCCCACCTAAACAAA	50	7	AF404282.1
		TGGGAGGTGATGACGTCTCA			
M2	SAA47	CCTCTTTAGGAACACTTTTTATT	50	4	AF404287.1
		TTGGTTTGATGATGGTTAAT			
M2	SAA17	TTTGTGAATAGGAGATTCTTA	50	7	AF404283.1
		AGGGAAATGAATAGTATATT			
M2	SAA9	ATTTTGGAAAATGGATGTTTA	50	7	AF40280.1
		AGGGAATGTTGATTCTATA			
M2	SAA1*	AAGGGTTGAAACATGAAATTTA	50	12	AF40279.1
		GGCAAAACCTAAGTGTTTTA			

* a Primers redesigned based on total sequences published on Genbank databases, adapted from Williams et al.30.

* b Primers designed according to Williams et al.30.
parameters of loci diversity were estimated for all microsatellites, in all populations, using the CERVUS 3.0 program\(^{31}\). The parameters were as follows: allele frequency was estimated by direct counting, expected (H_e) and observed heterozygosity (H_o), polymorphic information content (PIC) and Hardy–Weinberg equilibrium (HWE). The diveRsitY R package (R Development Core Team 2020)\(^{32}\) was used to calculate allele richness (AR) and estimates of Wright's F statistics (F_{ST}, F_{IS} and F_{ST}). Confidence intervals were obtained with 10,000 bootstrap replicates. The influence of null alleles was determined in FREENA\(^{33}\) by computing the genetic divergence parameter (F_{ST}) values using an excluding null alleles (ENA) correction. After accounting for null allele frequencies, loci with frequencies of \(\geq 0.2 \) were considered potentially problematic for the calculations.

The P-value was adjusted using the Bonferroni procedure with the same statistical package. Population structure was evaluated by analysis of molecular variance (AMOVA) using the ARLEQUIN program version 3.5.2.2\(^{34}\) to reveal the diversity within localities and among localities. The dendrogram was constructed by cluster analysis using the UPGMA method, based on calculations of Nei's genetic distances and 1000 bootstrap resamplings using poppr R package\(^{35}\).

Based on the allelic frequency of the seven microsatellite loci, the individuals were grouped in a given number of populations and probabilistically marked into groups inferred by Bayesian analysis using the Structure program\(^{36}\). The tests were performed using an admixture model where the allelic frequencies were correlated. To select the appropriate number of inferred populations, several analyzes were conducted with k (number of populations inferred) ranging from 2 to 6, with 30,000 interactions (burn-in period of 300), with three independent replications for each analysis. The real values of K were inferred from the magnitude of ΔK and given as a criterion (BIC) value.

Data analysis.

Parameters of loci diversity were estimated for all microsatellites, in all populations, using the CERVUS 3.0 program\(^{31}\). The parameters were as follows: allele frequency was estimated by direct counting, expected (H_e) and observed heterozygosity (H_o), polymorphic information content (PIC) and Hardy–Weinberg equilibrium (HWE). The diveRsitY R package (R Development Core Team 2020)\(^{32}\) was used to calculate allele richness (AR) and estimates of Wright's F statistics (F_{ST}, F_{IS} and F_{ST}). Confidence intervals were obtained with 10,000 bootstrap replicates. The influence of null alleles was determined in FREENA\(^{33}\) by computing the genetic divergence parameter (F_{ST}) values using an excluding null alleles (ENA) correction. After accounting for null allele frequencies, loci with frequencies of \(\geq 0.2 \) were considered potentially problematic for the calculations.

The P-value was adjusted using the Bonferroni procedure with the same statistical package. Population structure was evaluated by analysis of molecular variance (AMOVA) using the ARLEQUIN program version 3.5.2.2\(^{34}\) to reveal the diversity within localities and among localities. The dendrogram was constructed by cluster analysis using the UPGMA method, based on calculations of Nei's genetic distances and 1000 bootstrap resamplings using poppr R package\(^{35}\).

Based on the allelic frequency of the seven microsatellite loci, the individuals were grouped in a given number of populations and probabilistically marked into groups inferred by Bayesian analysis using the Structure program\(^{36}\). The tests were performed using an admixture model where the allelic frequencies were correlated. To select the appropriate number of inferred populations, several analyzes were conducted with k (number of populations inferred) ranging from 2 to 6, with 30,000 interactions (burn-in period of 300), with three independent replications for each analysis. The real values of K were inferred from the magnitude of ΔK and given as a criterion (BIC) value.

Chemical analysis of essential oil.

We used a Clevenger-type apparatus for the extraction of the essential oil from ripe berries of Brazilian peppertree. A pool of fruits from several individuals representative from each ecogeographic region was weight (300 g) and submitted to 3 h of hydrodistillation. The Fig. 4 shows the moment and quality of fruits harvested (images with participant consent).

The essential oil was stored in sterile microtubes at – 20 °C until further analysis. The samples were prepared in hexane at the concentration 100 µg mL\(^{-1}\). The gas chromatograph used was a GC-2010 Plus (Shimadzu, Kyoto, Japan) coupled to a mass spectrometer (GC–MS 2010 Ultra) using a DB-5 column (J and W, Folsom, California, USA) coated with 5% phenyl dimethylpolysiloxane on capillary fused silica (30 m long × 0.25 mm internal diameter × 0.25 µm film thickness). The conditions of analysis were as follows: injection volume 1 µL in split 1:20 mode; heating ramp with initial temperature of 50 °C, reaching 280 °C at a rate of 3 °C min\(^{-1}\) and remaining at the final temperature for 10 min; and injector temperature of 280 °C. The temperatures of detector and transfer line were 290 °C. The parameters of mass spectrometry included scanning MS voltage electron impact ionization of 70 eV with m/z 40–600 and scanning range of 0.3 s. Compound identifications were performed using the calculated retention index (RI) and the linear alkane (C\(_7\)–C\(_{40}\) Sigma Aldrich purity ≥ 90%) standard, along with comparisons of the RI with indexes found in the literature\(^{41}\) and also used our interpretation of mass spectra obtained from the samples and compared with the databases (NIST21 and WILEY229). The peak area of each compound was determined by manual integration of each total ion chromatogram (TIC). Then all areas were transformed into relative percentage areas (relative abundance percentual).

Ethical approval.

The access to genetic resources were assured by SISGEN license nº A9CDAAE.

Results

Population structure analysis revealed differentiation among them of 37.72% (Table 3) and significant fixation index based on F\(_{ST}\) (P < 0.001).

The parameters evaluated for genotypic characterization of the populations based on seven microsatellite loci are described in Table 4. The population ES (São Mateus-ES) had the higher allelic richness (4.98), with the inbreeding coefficient being significantly different from zero (0.16), the greatest expected heterozygosity was shown by the population of SM (Santa Maria-RS) (0.53). The DOU population (Dourados-MS) presented the

Variance source	DF	Variation (%)	FI
Interpopulation	4	37.72	F\(_{ST}\) = 0.377*
Intrapopulation	145	62.68	

Table 3. Analysis of Molecular Variance (AMOVA) of \(S. \) terebinthifolia in five ecoregions of the Atlantic forest biome. DF degree of freedom, FI fixation index. *P < 0.001.
lower allelic richness (2.43); but the lower expected heterozygosity (0.43) was observed in MSP (Morro de São Paulo-BA).

When analyses were performed considering all populations, the seven microsatellite loci showed Hardy–Weinberg equilibrium. However, when the populations were evaluated separately, the loci in HWE were: ES (StAAT01, StAAT09, StAAT17, StAAT55); SM (StAAT01, StAAT16, StAAT55); ITA (StAAT01, StAAT09, StAAT17) and DOU (StAAT01, StAAT16, StAAT17, StAAT55). After null allele correction (ENA), overall \(F_{ST} \) changed only slightly (from 0.377 to 0.369). Pairwise \(F_{ST} \) values were highest for DOU, followed by MSP while \(F_{ST} \) was the lowest between ITA and SM (Table 5).

UPGMA analysis also confirmed greater similarity between the SM and ITA populations, and revealed considerable distance between ITA and MSP, despite them being geographically close together in the same type of ecoregion (Fig. 2).

The STRU CTU RE analysis and the Evanno method indicated that \(K = 3 \) was the most likely number of populations and grouped SM and ITA together and MSP and DOU together. In contrast, the DAPC analysis grouped individuals into their five respective populations with a few individuals in the SM population assigned to ITA (Fig. 3).

CG analysis detected 38 compounds, four of which were at relatively high concentration and found in all five populations including α-pinene, sabinene, β-pinene, limonene. A number of compounds were not observed in all five populations including ζ-salvene (only in MSP, SM and DOU), β-ocimene, evadone (only in ITA and MSP), aromadendrene, d-germacrene, d-davanone (only in MSP), carotol (only in ITA and SM) and eremoligenol (only in ES) (Table 6).

Principal Components Analysis (PCA) plots were performed using genotypes and chemical compound data. Clusters found for genotypes reinforced the patterns of previous genetic structure analysis. ES individuals group in a separate cluster, while ITA and SM individuals cluster together. MSP and DOU individuals form two clusters that are close to each other and separate from the other populations. However, when the populations were grouped by their chemodiversity, the PCA revealed that each population has a unique chemical profile (Fig. 4).

Discussion

As expected for an outcrossing species, the inbreeding coefficients \((F_{IS}) \) were low and genetic diversity was high in most of the sampled populations with the exception of DOU (Cerrado—Brazilian Savanna). The excess of heterozygotes and low allelic richness suggest this population has experienced a recent bottleneck.\(^{45,46}\). This population is located in an area recently classified as an ‘Ecological Transition Zone’ due to anthropic pressures (deforestation, fire regime, settlement, etc.) which may be responsible for the bottleneck. Similar bottlenecks in Brazilian peppertree populations have been detected in other fragmented areas in Brazil and highlight the negative effect that anthropogenic factors can have on this species in its native range. The ES population was distinct in all clustering analyses and had the highest genetic diversity compared to the other sites. The ES population is located in an important conservation area (dense ombrophilous forest) which may have protected this population.
from genetic erosion. The presence of important species for phytomedicine such as Brazilian peppertree in these areas further supports the conservation of those forests.

This assumption can also be supported by the values of an observed heterozygosity higher than the expected (He 0.58 and 0.46, respectively). When a population experiences a reduction of its effective size, it generally develops a heterozygosity excess which may persist only for a certain number of generations until a new equilibrium is established42. Moreover, DOU showed the lowest rates for allelic richness (2.43). Reinforcing the hypothesis of bottleneck since the loss of the average number of alleles per locus is also related to genetic drift typical in populations that have their effective size dramatically reduced43.

To understand the genetic diversity of Brazilian peppertree it's important to consider the high ecoplasticity and invasive behavior of the species. The populations analyzed in this work are originally from five different ecogeographic regions with particular characteristics (Table 1). Nevertheless, all five populations showed high genetic diversity (Table 4), especially when taking into account the rates from previous studies21,44, reinforced by a high differentiation index among populations (37.72%) and it proves that neither the time nor human pressure were enough to disrupt their distribution patterns—typical in invasive species. Possibly due to the high spatial density and efficient mechanisms for seed dispersal which allowed an intense gene exchange and consequent genotypic recombination, responsible to increase its evolutionary potential and adaptability.

Structure analysis (Fig. 3) showed us three clusters based on genetic similarity (SM + ITA; DOU + MSP and ES). Interestingly the clusters have no correlation with the distances where samples were collected, confirming what Ruas et al.44 had inferred about the species distribution patterns do not fit within the isolation by distance patterns. Pinto et al.2 have analyzed haplotypes distribution of Brazilian peppertree considering different biomes, and the authors suggested a cluster of 3 haplotypes based on the intravarietal polymorphisms. Nevertheless, in our study, population from ES showed the highest distance instead of DOU, while SM and ITA corroborate by clustering together. ES also presented the higher allelic richness (4.98), coincidentally this population occurs in the ecogeographic region of greater preservation compared to the others (dense ombrophilous forest).

The patterns of genetic variation across a species range can provide information about the processes of distribution and help us to understand how ecology, evolution and geography intersect45. We believe the similarities found between populations from SM and ITA may be correlated to the same colonization event and a reasonable explanation for divergence of the other three genotypes may be due to environmental barriers—DOU occurs in a fragmental zone; MSP in an isolated island and ES surrounded by the dense forest. Thus, an isolation by environment (IBE) could be expected under the action of natural selection and/or environmentally influenced mating or migration46,47. Furthermore, Williams et al.21 described the existence of well-structured populations of Brazilian peppertree in their native habitat. This phenomenon becomes evident in pairwise study when greater differentiation rates are obtained by DOU and MSP, respectively, two populations established in a narrow area and environmentally isolated48,49.

The dendrogram based on Nei distance (Fig. 2) confirms the occurrence of clusters, but if we consider the values on pairwise estimation (Table 5) the similarity between DOU and MSP is not relevant enough to confirm they are the same lineage. Still, it is necessary further analysis in comparison with other spatially intermediate populations to better understand migration patterns and distribution of the species.

The analysis of GC–MS of the essential oil of the fruits detected 38 different compounds (major and minor), some of which were not present in all five populations. The PCA revealed that each population had a unique
chemical profile. Secondary metabolites are mostly related to environmental factors including soil properties, solar radiation, temperature, altitude, humidity and harvest time22,23, it would be unexpected some clustering formations. Consistent with this expectation, our sampled populations, with the exception of ITA and MSP, were in different ecosystems and had unique chemical profiles. ITA and MSP are located geographically close together in the same pedo-climatic conditions and yet they had the greatest divergences for chemical composition between the populations. This suggests that ecosystem designations are not capturing all of the relevant variables that could result in chemical profile differences. For instance, differences in predators, disease, or pollinators could also influence secondary metabolite synthesis. Future studies will need to take into consideration a wider variety of factors to determine which are important for differences in chemodiversity of populations.

From a pharmacological perspective, it is important to consider every factor that might influence the bioactivity of a phytomedicine. Understanding how environmental factors affect the chemodiversity of Brazilian peppertree will make it possible to develop elite lines for industry. As more studies are conducted across a wide variety of systems, we may be able to predict how different factors will influence patterns of chemodiversity.
Compounds	RI	ITA (%)	ES (%)	MSP (%)	SM (%)	DOU (%)
cis-Salvène	856	–	–	1.96	4.34	4.70
α-Pinen	939	22.34	9.76	11.43	13.42	14.90
α-Fenchene	953	3.85	4.08	4.32	4.23	4.95
Sabine	976	6.08	7.45	9.01	7.89	8.89
β-Pinen	980	9.56	14.03	8.63	8.52	12.99
Myrcene	991	0.36	0.18	0.25	0.19	0.11
a-Phellandrene	1009	0.37	0.17	0.28	0.46	0.19
δ-S-Carene	1011	0.28	–	0.29	0.15	0.17
Sylvestrene	1028	0.32	–	0.25	0.21	0.12
Limonene	1029	16.22	17.01	14.01	19.45	10.99
1,8-Cineole	1031	1.87	2.29	–	1.91	2.15
β-Phellandrene	1031	0.31	0.19	0.31	0.38	0.10
β-Ocimene	1037	1.44	1.42	3.37	1.34	1.26
γ-Terpine	1060	–	1.69	2.55	1.61	1.73
Terpinolene	1088	0.25	0.16	0.56	0.27	0.10
Terpinen-4-ol	1176	1.22	1.64	1.38	–	1.51
α-Terpinol	1189	0.28	0.16	0.76	0.34	0.11
neo-iso-Verbanol	1189	–	2.22	2.54	2.52	2.71
γ-Patchenol	1319	3.02	3.30	2.21	3.27	3.46
δ-Elemene	1339	0.21	0.12	0.51	0.30	0.12
Evodone	1340	1.34	–	1.04	–	–
α-Cubebene	1351	0.63	–	0.62	0.31	0.11
Isoleden	1373	0.20	–	0.51	0.21	0.10
Longicyclene	1375	2.46	1.91	1.95	1.95	1.03
α-Copaene	1377	6.34	7.35	9.03	9.09	10.15
β-Elemene	1391	0.29	0.12	0.11	0.38	0.13
Longifolene	1402	0.31	–	0.54	0.41	0.18
α-Funenbre	1403	2.57	2.05	3.05	2.19	3.33
Z-Caryophyllene	1404	0.27	0.11	0.59	0.42	0.15
Aromadendrene	1465	1.63	4.03	1.63	1.58	2.78
α-Germacrene	1485	3.24	8.82	6.86	4.80	3.67
Bicyclogermacrene	1500	3.44	1.33	3.38	1.37	1.32
δ-Cadinene	1514	1.89	1.34	1.79	1.94	2.13
Sphatulenol	1578	2.78	3.03	2.98	2.97	3.14
Globulol	1585	2.56	2.02	–	–	–
δ-Davanone	1588	–	–	1.17	–	–
Carotol	1595	2.02	–	1.05	–	–
Eremoligenol	1631	1.65	–	–	–	–

Table 6. Comparison of chemical profiles of the essential oil from fresh berries of *S. terebinthifolia* collected in five native populations from the Atlantic Forest Biome. RI, Retention index calculated; ITA, Itaparica (sandbank); ES, São Mateus (dense ombrophilous forest); MSP, Morro de São Paulo (sandbank); SM, Santa Maria (deciduous seasonal forest) and DOU, Dourados, MS (savanna). For those cells represented by “–,” means the compound was not detected in that population.
Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Received: 28 May 2020; Accepted: 6 September 2021
Published online: 14 October 2021

References

1. Cuda, J. P., Ferriter, A. P., Manrique, V. & Medal, J. C. Recommendations from the Brazilian Peppertree Task Force Florida Exotic Pest Plant Council. 81 (2006).
2. Williams, D. A., Muchugu, E., Overholt, W. A. & Cuda, J. P. Colonization patterns of the invasive Brazilian peppertree, Schinus terebinthifolius, in Florida. Heredity 98, 284–293 (2007).
3. Lorenzi, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. (Instituto Plantarum de Estudos da Flora, 2002).
4. Williams, D. A., Muchugu, E., Overholt, W. A. & Cuda, J. P. Colonization patterns of the invasive Brazilian peppertree, Schinus terebinthifolius, in Florida. Heredity 98, 284–293 (2007).
5. Pinto, J. V. C. et al. Intravarietal polymorphisms reveal possible common ancestor of native Schinus terebinthifolius Raddi populations in Brazil. Genet. Mol. Res. 15, gmr7477 (2016).
6. Carvalho, M. G., Melo, A. G. N., Aragão, C. F. S., Raffin, F. N. & Moura, T. F. A. L. Schinus terebinthifolius Raddi: Chemical composition, biological properties and toxicity. Revista Brasileira de Plantas Medicinais 15, 158–169 (2013).
7. El-Massry, K. F., El-Ghorab, A. H., Shaaban, H. A. & Shibamoto, T. Chemical compositions and antioxidant/antimicrobial activities of various samples prepared from Schinus terebinthifolius leaves cultivated in Egypt. J. Agric. Food Chem. 57, 5265–5270 (2009).
8. Bendadou, H., Romdhane, M., Aragão, C. F. S., Raffin, F. N. & Moura, T. F. A. L. Schinus terebinthifolius Raddi: Chemical composition, biological properties and toxicity. Revista Brasileira de Plantas Medicinais 15, 158–169 (2013).
9. El-Massry, K. F., El-Ghorab, A. H., Shaaban, H. A. & Shibamoto, T. Chemical compositions and antioxidant/antimicrobial activities of various samples prepared from Schinus terebinthifolius leaves cultivated in Egypt. J. Agric. Food Chem. 57, 5265–5270 (2009).
10. Bendaoud, H., Romdhane, M., Souchard, J. P., Cazaux, S. & Bouajila, J. Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils. J. Food Sci. 75, C466–C472 (2010).
11. Nazari Formaggio, A. S. et al. Chemical composition and anti-inflammatory activity of the essential oil of Schinus terebinthifolius Raddi (Anacardiaceae) fruits. Molecules 22, 1792 (2017).
12. Matsuo, A. L. et al. α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem. Biophys. Res. Commun. 411, 449–454 (2011).
13. da Silva, M. M. et al. Schinus terebinthifolius: Phenolic constituents and in vitro antioxidant, antiproliferative and in vivo anti-inflammatory activities. Rev. Bras. Biol. 77, 445–452 (2017).
14. Oliveira, M. B. S. et al. Schinus terebinthifolius Raddi extracts: From sunscreen activity toward protection of the placenta to Zika virus infection, new uses for a well-known medicinal plant. Ind. Crops Products 152, 112503 (2020).

Figure 4. Cluster analysis based on PCA of genotypes and chemodiversity of native populations of Schinus terebinthifolius Raddi from five ecoregions in the Brazilian Atlantic Forest. ES, São Mateus-ES (dense ombrophilous forest); SM, Santa Maria-RS (deciduous seasonal forest); ITA, Itaparica-BA (sandbanks); MSP, Morro de São Paulo-BA (sandbanks); DOU, Dourados-MS (savanna).
15. Silva, B. G., Fileti, A. M. F., Foglio, M. A., de Rosa, P. T. V. & Taranto, O. P. Effects of different drying conditions on key quality parameters of pink peppercorns (Schinus terebinthifolius Raddi). J. Food Qual. 2017, 6312797 (2017).
16. Tang, H. et al. Triterpenoid acids isolated from Schinus terebinthifolius fruits reduce Staphylococcus aureus virulence and abate dermonecrosis. Sci. Rep. 10, 8046 (2020).
17. Souza, D. et al. Characterization of wild genotypes of Aroeira: Subsidy for plant breeding. J. Agric. Biotechnol. Sustain. Dev. https://doi.org/10.5897/JABS2014.223 (2014).
18. Álvares-Carvalho, S. V. et al. Structure and genetic diversity of natural Brazilian pepper populations (Schinus terebinthifolius Raddi). Genet. Mol. Res. 15, gm1123 (2016).
19. Mukherjee, A. et al. Comparative cytotoxicity of essential oil components of Schinus terebinthifolius and Thymus pulegioides against human HepG2 liver cancer cell line and their insecticidal activities. J. Essential Oil Bear. Plants 10, 639–650 (2009).
20. Geiger, J. H., Pratt, P. D., Wheeler, G. S. & Williams, A. D. Hybrid vigor for the invasive exotic Brazilian peppertree (Schinus terebinthifolius Raddi, Anacardiaceae) in Florida. Int. J. Plant Sci. 172, 655–663 (2011).
21. Williams, D. A., Overholt, W. A., Cuda, J. P. & Hughes, C. R. Chloroplast and microsatellite DNA diversities reveal the introduction history of Brazilian peppertree (Schinus terebinthifolius) in Florida. Mol. Ecol. 14, 3643–3656 (2005).
22. Ložienė, K. & Venskutonis, P. R. Influence of environmental and genetic factors on the stability of essential oil composition of Thymus pulegioides. Biochem. Syst. Ecol. 33, 517–525 (2005).
23. Tohidi, B., Rahimimalek, M. & Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 220, 153–161 (2017).
24. Ennigrou, A., Casabianca, H., Laarif, A., Hanchi, B. & Hosni, K. Maturation-related changes in phytochemicals and biological activities of the Brazilian pepper tree (Schinus terebinthifolius Raddi) fruits. S. Afr. J. Bot. 108, 407–415 (2017).
25. da Pinto, J. V. C. et al. Effect of nitrogen and phosphorus on early development and essential oil composition of Schinus terebinthifolius Raddi. J. Essential Oil Bear. Plants 19, 247–257 (2016).
26. Piccinelli, A. C. et al. Antihyperalgesic and antidepressive actions of (R)-(+)-limonene, α-phellandrene, and essential oil from Schinus terebinthifolius fruits in a neuropathic pain model. Nutr. Neurosci. 18, 217–224 (2015).
27. Santana, J. S. et al. Essential oils from Schinus terebinthifolius leaves—Chemical composition and in vitro cytotoxicity evaluation. Pharm. Biol. 50, 1248–1253 (2012).
28. Ennigrou, A., Casabianca, H., Vuillet, E., Hanchi, B. & Hosni, K. Assessing the fatty acid, essential oil composition, their radical scavenging and antibacterial activities of Schinus terebinthifolius Raddi leaves and twigs. J. Food Sci. Technol. 55, 1582–1590 (2018).
29. Doyle, J. DNA protocols for plants. In Molecular Techniques in Taxonomy (eds Hewitt, G. M., Johnston, A. W. B. & Young, J. P. W.) 283–293 (Springer, 1991). https://doi.org/10.1007/978-3-642-83962-7_18.
30. Williams, D. A., da Sternberg, L. S. L. & Hughes, C. R. Characterization of polymorphic microsatellite loci in the invasive Brazilian pepper, Schinus terebinthifolius. Mol. Ecol. Notes 2, 231–232 (2002).
31. Kalinowska, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
32. Keenan, K., McGinnity, P. Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Mol. Ecol. 14, 231–232 (2005).
33. Chapsis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Evol. 24, 621–631 (2007).
34. Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Évol Bioinform. Online 1, 47–50 (2007).
35. Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).
36. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
37. Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
38. Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
39. Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
40. Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
41. Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry (Arured Limited, Publication, 2007).
42. Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
43. Futuyama, D. J. Biologia Evolutiva (FUNPEC, 2009).
44. Ruas, E. A. et al. Anatomy and genetic diversity of two populations of Schinus terebinthifolius (Anacardiaceae) from the Tibergh river basin in Paraná, Brazil. Genet. Mol. Res. 10, 526–536 (2011).
45. Sexton, J. P., McIntryre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).
46. Orsini, L., Vanoverbeke, J., Swinnen, I., Mergeay, J. & Meester, L. D. Drivers of population genetic differentiation in the wild: by isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 22, 5983–5999 (2013).
47. Sexton, J. P., Hangartner, S. R. & Hoffmann, A. A. Genetic isolation by environment or distance: Which pattern of gene flow is most common? Evolution 68, 1–15 (2014).
48. Frankham, R., Ballou, J. D. & Briscoe, D. A. Fundamentos de Genética da Conservação (Sociedade Brasileira de Genética, 2008).
49. Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: Defining, estimating and interpreting F ST. Nat. Rev. Genet. 10, 639–650 (2009).

Acknowledgements
Authors are thankful for CNPq, Capes Foundation and Fundect-MS for grants and scholarships. This study was granted by FUNDECT/CNPq 16/2014 PRONEX-MS (Process 59/300.029/2015).

Author contributions
J.V. wrote the manuscript, designed the experimental plan and collected material in their native sites. J.V., B.A.C. and A.A.V. worked on DNA and SSR analysis and standardized essential oil extraction. C.A.L.C. assisted with compound isolation and contributed to analysis of chemistry data. B.A.C. and M.M.B. performed bioinformatics and data analysis. A.B and M.C.V. supervised and support all experiments providing grant and laboratory supplies. All authors contributed to the revision and final review of the manuscript.
Funding
This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021