Vertex-Coloring Graphs with 4-Edge-Weightings

Ralph Keusch

1 Introduction

Let $G = (V, E)$ be a simple graph. A k-edge-weighting is a function $\omega : E \to \{1, \ldots, k\}$. Given an edge-weighting ω, for a vertex $v \in V$, we denote by $s_\omega(v) = \sum_{w \in N(v)} \omega(\{v, w\})$ its weighted degree. We say that ω is vertex-coloring if for each edge $e = \{u, v\} \in E$, it holds $s_\omega(u) \neq s_\omega(v)$. Obviously, if G contains an isolated edge, no edge-weighting is vertex-coloring. Otherwise, we aim to find a vertex-coloring k-edge-weighting with the smallest possible integer k. In 2004, Karoński, Łuczak, and Thomason conjectured that for each graph without connected component isomorphic to K_2, a vertex-coloring 3-edge-weighting exists [1]. This statement is also known as 1-2-3-conjecture. For instance, if G is a cycle of length not divisible by 4, no 2-edge-weighting is vertex-coloring, thus $k = 3$ is best possible in general.

Addario-Berry, Dalal, McDiarmid, Reed, and Thomason proved the first general upper bound of $k = 30$ [2]. The bound was improved to $k = 16$ by Addario-Berry, Dalal, and Reed [3], to $k = 13$ by Wang and Yu [4], and then, in a significant improvement, to $k = 5$ by Kalkowski, Karoński, and Pfender [5] in 2010. For a random
graph $G(n, p)$, asymptotically almost surely there exists a vertex-coloring 2-edge-weighting [3]. For d-regular graphs, an upper bound of $k = 4$ holds in general [6, 7] and the conjecture (i.e., an upper bound of $k = 3$) is confirmed for $d > 10^8$ [6]. Recently, Przybyło verified the conjecture for graphs where the minimum degree is sufficiently large compared to the maximum degree [8]. Furthermore, the conjecture was confirmed for 3-colorable graphs [1] and for dense graphs [9]. Moreover, Dudek and Wajc proved that it is NP-complete to decide whether a given graph G admits a vertex-coloring 2-edge-weighting [10]. For an early overview on the conjecture and on related problems, we refer to the survey of Seamone [11].

The contribution of this note is an improved general upper bound of $k = 4$ with the following result.

Theorem 1 Let $G = (V, E)$ be a graph without connected component isomorphic to K_2. Then there exists an edge-weighting $\omega : E \rightarrow \{1, 2, 3, 4\}$ such that for any two neighbors u and v,

$$\sum_{w \in N(u)} \omega(\{u, w\}) \neq \sum_{w \in N(v)} \omega(\{v, w\}).$$

2 Proof

We start by introducing notation, giving a high-level overview of the proof, and collecting two auxiliary results. Let $G = (V, E)$ be a graph and let $C = (S, T)$ be a cut. We denote by $E(S)$ the edge set of the induced subgraph $G[S]$ and by $E(S, T)$ the subset of edges having an endpoint in both S and T (the cut edges of C). For a vertex $v \in V$, we denote by $N(v)$ its neighborhood.

We will start the proof by identifying a vertex v_0 that is handled separately. Next, we will take a maximum cut $C = (S, T)$ of $G[V \setminus \{v_0\}]$ and construct an edge-weighting such that the weighted degree of a vertex $v \neq v_0$ is even if $v \in S$ and odd if $v \in T$. There may still be conflicting edges, that is, neighboring vertices with the same weighted degree. The main idea to solve these conflicts is to modify the edge-weighting along sufficiently many edge-disjoint paths.

To actually find a suitable collection of edge-disjoint paths, we carefully design a flow problem that depends on the set of conflicting edges. For the flow problem, we use the edges of the cut C. Because C is chosen as a maximum cut, it turns out that the auxiliary network behind the flow problem is sufficiently dense to guarantee that the resulting maximum flow yields the desired number of edge-disjoint paths. The subsequent lemma gives the formal statement.

Lemma 2 Let $G = (V, E)$ be a graph and let $C = (S, T)$ be a maximum cut of G. Furthermore, let $F \subseteq E(S) \cup E(T)$ and let σ be an orientation of the edge set F. Let $G_{C,F,\sigma}$ be the auxiliary directed multigraph network constructed as follows.

(i) As vertex set, take V, and add a source node s and a sink node t.
(ii) For each edge $\{u, v\} \in E(S, T)$, insert the two arcs (u, v) and (v, u), both with capacity 1.
(iii) For each edge \(\{u, v\} \in F \) with corresponding orientation \((u, v) \in \sigma\), insert arcs \((s, u)\) and \((v, t)\), both with capacity 1, potentially creating multi-arcs. Do not insert \((u, v)\).

Then in the network \(G_{C, F, \sigma} \), there exists an \(s-t \)-flow of size \(|F|\).

The cardinalities of \(S \) and \(T \) will determine the parity of the weighted degree of the remaining vertex \(v_0 \). It remains to ensure that the edge-weighting also properly colors \(v_0 \), which will be done by applying the following technical lemma to the induced subgraph \(G[N(v_0) \cup \{v_0\}] \) and using especially property (iv) of its statement.

Lemma 3 Let \(G = (V, E) \) be a graph with \(|V| \geq 3\), let \(v_0 \in V \) such that \(\deg(v_0) = |V| - 1 \), and let \(g : V \to \mathbb{N}_0 \) be such that for each edge \(\{u, v\} \in E(N(v_0)) \), it holds \(g(u) \neq g(v) \). Then there exists a function \(h : E \to [0, 1, 2] \) such that

(i) \(h([u, v]) \in \{0, 1\} \), whenever \(v_0 \not\in [u, v] \) and \(g(u) + g(v) \) is even,

(ii) \(h([u, v]) = 0 \), whenever \(v_0 \not\in [u, v] \) and \(g(u) + g(v) \) is odd,

(iii) \(s_h(v) := \sum_{w \in N(v)} h([v, w]) \in \{0, 2\} \) for all \(v \in N(v_0) \), and

(iv) \(g(u) + s_h(u) \neq g(v) + s_h(v) \) for each edge \(\{u, v\} \in E \).

We now start proving the theorem. The proofs of Lemma 2 and 3 are deferred to the end of the paper.

Proof of Theorem 1 Assume w.l.o.g. that \(G \) is connected and has at least three vertices. We give each edge \(e \) the provisiorial weight \(\mu(e) = 2 \), which will be modified later on. Denote by \(s_\mu(v) := \sum_{w \in N(v)} \mu([v, w]) \) the weighted degree of a vertex \(v \in V \) under \(\mu \). Let \(v_0 \) be a vertex which is not an articulation node (for instance, take a leaf of a spanning tree), so that the reduced graph \(H := G[V \setminus \{v_0\}] \) is still connected. Next, take a maximum cut \((S, T)\) of \(H \). Let \(G(S, T) \) be the bipartite subgraph with vertex set \(V(H) = V \setminus \{v_0\} \) and edge set \(E(S, T) \). Observe that \(G(S, T) \) is connected due to the maximality of the cut.

Let \(r \in N(v_0) \) and take a spanning tree \(T' \) of \(G(S, T) \) rooted at \(r \). For each node \(v \not\in r \) in the tree, denote by \(\text{par}(v) \) its parent in \(T' \). We are going to modify \(\mu \) on the edges of \(T' \) so that \(s_\mu(v) \) is even if \(v \in S \) and odd if \(v \in T \). We start with the leafs. For each leaf \(\ell \), put \(\mu([\ell, \text{par}(\ell)]) := 3 \) if \(\ell \in S \). If \(\ell \in S \), we keep \(\mu([\ell, \text{par}(\ell)]) = 2 \). Then indeed, \(s_\mu(\ell) \) is even if and only if \(\ell \in S \).

Afterwards, we iterate the idea level by level towards root \(r \), processing each internal node only after all its child nodes have been handled: We assign to each tree-edge \([v, \text{par}(v)] \) weight either 2 or 3 such that the parity modulo 2 of \(s_\mu(v) \) becomes correct. Finally, we assign to the edge \(e_0 = \{v_0, r\} \) weight either 1 or 2 such that the parity of \(s_\mu(r) \) becomes correct as well.

So far, neighboring vertices on different sides of the cut \(C \) receive different weighted degrees. We need to ensure that the same happens for neighbors on the same side of \(C \) as well, and we should not forget \(v_0 \). The plan is to give each vertex \(v \in V \) a designated “color” \(f(v) \) such that neighboring vertices always receive different colors. Afterwards, from \(\mu \) we construct a new edge-weighting \(\omega \) such that under \(\omega \), indeed each vertex \(v \) obtains weighted degree \(f(v) \). We start with \(v_0 \) and its neighborhood. Let \(N(v_0) = \{v_1, \ldots, v_m\} \subseteq V(H) \), with arbitrary order. We assign to each \(v_i \in N(v_0) \)
values \(k(v_i) \) and \(g(v_i) \) as follows. We start with \(k(v_1) := 0 \) and \(g(v_1) := s_\mu(v_1) \). For \(i > 1 \), choose \(k(v_i) \in \mathbb{N}_0 \) minimal such that \(g(v_i) := s_\mu(v_i) + 2k(v_i) \) is different from \(g(v_j) \) for all \(j < i \) with \(\{ v_i, v_j \} \in E \). If \(v_i \) has no such neighbors, use \(k(v_i) := 0 \) and \(g(v_i) := s_\mu(v_i) \). A vertex \(v_i \in S \) thus has at least \(k_i \) neighbors in \(S \) with smaller index (and the same is obviously true for \(T \)). For the sake of completeness, set \(g(v_0) := s_\mu(v_0) \).

Assume first that \(\text{deg}(v_0) > 1 \). We apply Lemma 3 to the induced subgraph \(G[N(v_0) \cup \{ v_0 \}] \), which is possible since \(g \) as defined above indeed satisfies the precondition. The lemma yields a function \(h : E(N(v_0) \cup \{ v_0 \}) \rightarrow \{ 0, 1, 2 \} \), which we use as follows.

First, we consider the edge weighting. So far, edges incident to \(v_0 \) have weight either 1 or 2. All other edges have weight 2, except some cut edges \(e \in E(S, T) \) with \(\mu(e) = 3 \). For each edge \(e \in E(N(v_0) \cup \{ v_0 \}) \), we set \(\omega(e) := \mu(e) + h(e) \). For all other edges, we put \(\omega(e) := \mu(e) \). Then, edges \(e \) incident to \(v_0 \) satisfy \(\omega(e) \leq 2 + h(e) \leq 4 \). Regarding the cut edges, recall that for \(u \in S \) and \(v \in T \), \(\mu(u) + s_\mu(v) \) is odd. Hence, by property (ii) of Lemma 3, \(h \) vanishes on cut edges, implying that we still have \(\omega(e) = \mu(e) \in \{ 2, 3 \} \) if \(e \) is a cut edge of \(C \). Finally, if \(e \in E(S) \cup E(T) \), then \(h(e) \in \{ 0, 1 \} \) by (i), implying \(\omega(e) \in \{ 2, 3 \} \) as well. Thus, on edges not incident to \(v_0 \), we can further increase or decrease the weighting \(\omega \) by 1 later on.

Second, we assign to each node \(v \in N(v_0) \cup \{ v_0 \} \) the designated color \(f(v) := g(v) + s_h(v) \). By property (iii) of Lemma 3, we preserve parities, i.e., \(f \) is even-valued on \(S \) and odd-valued on \(T \). By (iv), indeed neighboring nodes receive different designated colors. Furthermore, \(f(v_0) \) already coincides with \(s_\omega(v_0) \), and for all \(v \in N(v_0) \), we have

\[
f(v) - s_\omega(v) = g(v) + s_h(v) - s_\omega(v) = 2k(v).
\]

In the special case \(\text{deg}(v_0) = 1 \), \(r = v_1 \) is the only neighbor of \(v_0 \). Here, we directly put \(\omega \equiv \mu \), and then set \(f(v_0) := s_\omega(v_0) = \mu(e_0) \) and \(f(v_1) := s_\omega(v_1) \). Since \(|V| \geq 3 \) and \(G \) is connected, \(v_1 \) has at least one other incident edge in addition to \(e_0 \). Therefore, \(s_\omega(v_1) > s_\omega(v_0) \) and \(f(v_1) > f(v_0) \). Clearly, for each edge \(e \neq e_0 \) we again have \(\omega(e) \in \{ 2, 3 \} \).

We now turn to the remaining set of vertices \(V \setminus (N(v_0) \cup \{ v_0 \}) := \{ v_{m+1}, \ldots, v_{n-1} \} \), which didn’t yet receive a designated color. Similarly as before, for each \(v_i \), put \(f(v_i) = s_\omega(v_i) + 2k(v_i) \), where \(k(v_i) \geq 0 \) is the minimal integer such that \(f(v_i) \) differs from all \(f(v_j) \) for all its neighbors \(v_j \) with \(1 \leq j < i \). Hence, for each vertex \(v_i \neq v_0 \), we ensured \(f(v_i) - s_\omega(v_i) = 2k(v_i) \). Moreover, any two neighbors of the graph already have different designated colors. For later reference, denote by \(t(v_i) := f(v_i) - 2k(v_i) \) the current weighted degree of \(v_i \) under \(\omega \).

To actually achieve the desired colors, the weighted degree \(s_\omega(v_i) \) of each node \(v_i \) should further increase by exactly \(2k(v_i) \). In order to solve this task, we construct a subset \(F \subseteq E(S) \cup E(T) \) and an orientation \(\sigma \) of \(F \) as follows. For each vertex \(v_i \in S \), choose \(k(v_i) \) neighbors \(v_j \in S \) with smaller index (i.e., \(1 \leq j < i \)), add \(\{ v_i, v_j \} \) to \(F \), and add the orientation \((v_i, v_j) \) to \(\sigma \). For each vertex \(v_j \in T \), choose \(k(v_i) \) neighbors \(v_j \in T \) with \(1 \leq j < i \), add \(\{ v_i, v_j \} \) to \(F \), but add orientation \((v_j, v_i) \) to \(\sigma \) (mind the asymmetry compared to side \(S \)).
Then by applying Lemma 2 to the reduced graph H, there is an s-t-flow of size $|F|$ in the auxiliary multigraph $H_{C,F,\sigma}$. As all edges have capacity 1, there are $|F|$ edge-disjoint s-t-paths in $H_{C,F,\sigma}$. Consider such a path $p = (s, u_1, \ldots, u_m, t)$, and let $p' = \{u_1, \ldots, u_m\}$ be its induced, undirected subpath in the bipartite graph $G(S, T)$. Unless $u_1 = u_m$ (which happens when p' is an empty path), we modify the weighting ω of each edge $\{u_i, u_{i+1}\} \in p'$ as follows: increase its weight by 1 if $u_i \in S$, and decrease the weight by 1 if $u_i \in T$. In other words, we alternately increase or decrease the edge weights along the path. The weighted degrees of the internal nodes u_2, \ldots, u_{m-1} thereby do not change, in contrast to those of the endpoints u_1 and u_m. The weighted degree of u_1 increases by 1, if $u_1 \in S$, and decreases by 1, if $u_1 \in T$. Regarding u_m, its weighted degree increases by 1, if $u_m \in T$, and decreases by 1, if $u_m \in S$. When $u_1 = u_m$, there is no change on the weighted degree of this node.

By construction of $H_{C,F,\sigma}$, each edge of F led to exactly one arc incident to s and one arc incident to t. Thus, for each path $p = (s, u_1, \ldots, u_m, t)$ of the provided edge-disjoint s-t-paths, there are two uniquely identified F-incidences: an edge $f^+ = \{u_1, w_1\} \in F$ with $(u_1, w_1) \in \sigma$, leading to the arc $(s, u_1) \in p$, and an edge $f^- = \{w_m, u_m\} \in F$ with $(w_m, u_m) \in \sigma$, leading to the arc $(u_m, t) \in p$. Note that $f^+ = f^- = \{u_1, u_m\}$ is possible. Vice versa, as we found $|F|$ edge-disjoint s-t-paths in the auxiliary network $H_{C,F,\sigma}$, for each edge $(u^+, u^-) \in F$ with $(u^+, u^-) \in \sigma$, there are uniquely identified paths starting with (s, u^+) and ending with (u^-, t).

We repeat the described modification on ω for all $|F|$ paths provided by Lemma 2. Summing up the changes ω caused by each path p', for $v \in S$, the freshly updated edge-weighting ω satisfies

$$s_\omega(v) - t(v) = |\{w : (v, w) \in \sigma\}| - |\{w : (w, v) \in \sigma\}|,$$

whereas for $v \in T$,

$$s_\omega(v) - t(v) = |\{w : (w, v) \in \sigma\}| - |\{w : (v, w) \in \sigma\}|.$$

Finally, as a last modification step, we increase the weighting ω on each edge in F by 1, obtaining

$$s_\omega(v) - t(v) = 2|\{w : (v, w) \in \sigma\}| = 2k(v_i)$$

for all $v \in S$, and

$$s_\omega(v) - t(v) = 2|\{w : (w, v) \in \sigma\}| = 2k(v_i)$$

for all $v \in T$. We conclude that each vertex v_i obtained weighted degree $t(v_i) + 2k(v_i) = f(v_i)$, thus indeed, the constructed edge-weighting ω gives rise to a proper vertex-coloring of G. \square

Proof of Lemma 2 Let $k := |F|$ and consider the network $H := G_{C,F,\sigma}$ with auxiliary vertices s and t. Assume by contradiction that there exists no s-t-flow of value k in $G_{C,F,\sigma}$. Then, by the standard max-flow min-cut theorem [12, e.g.], there exists
a cut $C' = (A_H, B_H)$ of size $\ell < k$, where $s \in A_H$ and $t \in B_H$. Observe that $A_G := A_H \setminus \{s\}$ and $B_G := B_H \setminus \{t\}$ are both subsets of the vertex set V of the original, undirected graph $G = (V, E)$.

By step (iii) of the lemma statement, for each edge $f \in F$, in H there are two uniquely defined arcs outgoing at s and incoming at t. Let $F' := \{(u, v) \in F : u \in A_G, v \in B_G\}$ and remark that for each $f = (u, v) \in F \setminus F'$ with $(u, v) \in \sigma$, one of its two identified arcs (s, u) and (v, t) is in the cut C'. Next, let $E_1 := E(S \cap A_G, T \cap B_G) \cup E(S \cap B_G, T \cap A_G)$ and notice that for each edge $e = \{(u, v) \in E_1$, either (u, v) or (v, u) is contained in C' as well. It follows

$$|E_1| \leq \ell - |F \setminus F'| = \ell - (k - |F'|) < |F'|.$$

Finally, consider the cut

$$C'' := ((S \cap A_G) \cup (T \cap B_G), (S \cap B_G) \cup (T \cap A_G))$$

of the original graph G. Let $E_2 := E(S \cap A_G, S \cap B_G) \cup E(T \cap A_G, T \cap B_G)$, and observe that $F' \subseteq E_2$. Putting everything together, we deduce

$$|C''| = |C| - |E_1| + |E_2| > |C| - |F'| + |F'| = |C|.$$

We see that in G, C'' would be a larger cut than C, contradicting the maximality of cut C. So, in H there exists an s-t-flow of value k. \hfill \Box

Proof of Lemma 3 In order to prove the statement, we do a case analysis to find a suitable function $h : E \to \{0, 1, 2\}$ that satisfies (i)-(iv). Whenever such a function h is constructed, for each $v \in V$, define $f_h(v) := g(v) + s_h(v)$. Then (iv) is fulfilled if and only if f_h is a proper vertex coloring of G.

We start with the case $g(v_0) \neq g(v)$ for all vertices $v \neq v_0$, where we can set $h \equiv 0$. Then (i)-(iv) are all met. Otherwise, let

$$V' := \{v \neq v_0 : g(v) - g(v_0) \equiv 0 \mod 2\} = \{v_1, \ldots, v_{m'}\},$$

and assume w.l.o.g. that $g(v_1) \leq \ldots \leq g(v_{m'})$. Suppose first that $m' = |V'| = 1$. Because we already handled the case $g(v_0) \neq g(v_1)$, we can assume $g(v_0) = g(v_1)$. Take $u \in N(v_0) \setminus V'$ such that $g(u)$ is maximal. Put $h(\{v_0, u\}) := 2$ and $h(e) := 0$ for any other edge $e \neq \{v_0, u\}$. We obtain $f_h(v_1) < f_h(v_0)$. Since for any $w \in V \setminus \{u, v_0, v_1\}$, it holds that

$$f_h(u) = g(u) + 2 \geq g(w) + 2 > g(w) = f_h(w),$$

(iv) is achieved. The other properties clearly hold as well.

For the remaining proof, we can assume $m' \geq 2$. For all $j \in \{0, \ldots, m'\}$, define the function

$$h_j : E \to \mathbb{N}_0, \quad e \mapsto \begin{cases} 2, & \text{if } e = \{v_0, v_i\} \text{ for some } j < i \leq m', \\ 0, & \text{otherwise.} \end{cases}$$
The plan is now to find a suitable function \(h_j \) for as many cases as possible. Clearly, each \(h_j \) directly fulfills (i)-(iii). Regarding (iv), we claim that it is sufficient to verify the property only for edges incident to \(v_0 \). Indeed, by construction, on \(V' \) \(g(u) > g(v) \) directly implies \(f_{h_j}(u) > f_{h_j}(v) \). Hence, \(f_{h_j} \) would already properly color \(V' \cup \{v_0\} \). But \(f_{h_j} \) also preserves the parities mod 2 of \(g \), and \(h_j \) vanishes on \(E \setminus E(V' \cup \{v_0\}) \), so the proper coloring of the remaining vertices is inherited from \(g \).

Let \(x \geq 1 \) be the smallest integer such that \(g(v_0) + 2x \) differs from all \(g(v_1), \ldots, g(v_{m'}) \), and let \(i' \leq m' \) be maximal such that \(g(v_{i'}) < g(v_0) + 2x \). Because \(g(v_0) = g(v_i) \) for some \(v_i, i' \) is well-defined. First consider the case \(i' \leq m' - x \). Here, we set \(h \equiv h_{m' - x} \). Then, for \(i > m' - x \geq i' \), we have \(f_h(v_i) > g(v_i) \geq g(v_0) + 2x \), whereas for \(i \leq m' - x \), it holds \(f_h(v_i) = g(v_i) \neq g(v_0) + 2x \). Hence indeed, \(f_h(v_0) = g(v_0) + 2x \) is different from \(f_h(v_1), \ldots, f_h(v_m) \).

Next, consider the case \(i' > m' - x \) and \(x < m' \), where we put \(h \equiv h_{m' - x - 1} \). For \(i \geq m' - x \) we then have \(f_h(v_i) = g(v_i) + 2 \neq g(v_0) + 2(x + 1) \), whereas for all \(i < m' - x \) it holds that

\[
f_h(v_i) = g(v_i) \leq g(v_{i'}) < g(v_0) + 2x.
\]

Thus, for all \(v_i \in V' \), it holds \(f_h(v_0) = g(v_0) + 2(x + 1) \neq f_h(v_i) \), and (iv) is again fulfilled.

It remains the case \(x = m' \). Here, for each \(0 \leq y < m' \), the value \(g(v_0) + 2y \) is attained by one \(g(v_i) \). So we have \(g(v_i) = g(v_0) + 2(i - 1) \) for all \(v_i \in V' \). We distinguish two subcases. If \(m' \) is even, we can use \(h \equiv h_{m'/2} \). For \(i \leq m'/2 \), it then holds \(f_h(v_i) = g(v_i) \leq g(v_0) + m' - 2 \), whereas, for \(i > m'/2 \), it holds \(f_h(v_i) = g(v_i) + 2 \geq g(v_0) + m' + 2 \). Since \(f_h(v_0) = g(v_0) + m' \), (iv) is again achieved.

On the other hand, if \(m' \) is odd, then \(m' \geq 3 \). This situation is a bit inconvenient, because none of the functions \(h_j \) can be used. Instead, let \(z := \frac{m'+3}{2} \leq m' \). Put \(h(\{v_0, v_i\}) := 2 \) for all \(i > z \), and \(h(\{v_0, v_i\}) := 0 \) for all \(i < z - 1 \). Moreover, let \(h(e) := 0 \) whenever \(e \notin E(V' \cup \{v_0\}) \), so (ii) is already satisfied. We want to achieve \(s_h(v_0) = m' - 1 \), but need to be careful to satisfy (iii) and (iv) at the same time. If \(v_z \) and \(v_{z-1} \) do not share an edge, put \(h(\{v_0, v_{z-1}\}) := 2 \), \(h(\{v_0, v_z\}) := 0 \), and \(h(e) := 0 \) for all \(e \in E(N(v_0)) \). Then

\[
f_h(v_z) = f_h(v_{z-1}) = g(v_0) + 2(z - 1) = g(v_0) + m' + 1,
\]

which is fine regarding (iv), as the two nodes are not neighbors.

Vice versa, if the edge \(e' := \{v_z, v_{z-1}\} \) is present in \(E \), for each edge \(e \) of the triangle \(\{v_0, v_{z-1}, v_z\} \), put \(h(e) := 1 \). For all edges \(e \in E(V') \setminus \{e'\} \), set \(h(e) := 0 \), yielding

\[
f_h(v_z - 1) = g(v_0) + 2(z - 1) = g(v_0) + m' + 1.
\]

and

\[
f_h(v_{z-1}) = g(v_0) + 2(z - 1) = g(v_0) + m' + 1.
\]
In both subcases, \(f_h(v_0) = g(v_0) + m' - 1 \) by construction. Moreover, for each \(v_i \) with \(i \geq z + 1 \), it holds that

\[
f_h(v_i) = g(v_i) + 2 = g(v_0) + 2i \geq g(v_0) + m' + 5,
\]

whereas for \(i < z - 1 \), it holds that

\[
f_h(v_i) = g(v_i) = g(v_0) + 2(i - 1) \leq g(v_0) + 2(z - 3) = g(v_0) + m' - 3.
\]

We conclude that \(f_h \) properly colors \(V' \cup \{v_0\} \). Properties (i)-(iii) are clearly achieved with \(h \) in both subcases. By the same argument as above for the functions \(h_j, f_h \) then properly colors the entire set \(V \).

\[\square\]

References

1. Karoński, M., Łuczak, T., Thomason, A.: Edge weights and vertex colors. J Comb Theory JCT 91, 151–157 (2004)
2. Addario-Berry, L., Dalal, K., McDiarmid, C., Reed, B., Thomason, A.: Vertex-colouring edge-weightings. Combinatorica 27, 1–12 (2007). https://doi.org/10.1007/s00493-007-0041-6
3. Addario-Berry, L., Dalal, K., Reed, B.: Degree constrained subgraphs. Discrete Appl Math 156(7), 1168–1174 (2008)
4. Wang, T., Yu, Q.: On vertex-coloring 13-edge-weighting. Front Math China 3, 581–587 (2008)
5. Kalkowski, M., Karoński, M., Pfender, F.: Vertex-coloring edge-weightings: towards the 1-2-3-conjecture. J Comb Theory Ser B 100(3), 347–349 (2010)
6. Przybyło, J.: The 1-2-3 conjecture almost holds for regular graphs. J. Comb. Theory Ser. B 147, 183–200 (2021)
7. Bensmail, J.: A 1-2-3-4 result for the 1-2-3 conjecture in 5-regular graphs. Discret Appl Math 257, 31–39 (2018)
8. Przybyło, J.: The 1–2-3 conjecture holds for graphs with large enough minimum degree. Combinatorica (2022). https://doi.org/10.1007/s00493-021-4822-0
9. Zhong, L.: The 1-2-3-conjecture holds for dense graphs. J Gr Theory 90, 561–564 (2018)
10. Dudek, A., Wajc, D.: On the complexity of vertex-coloring edge-weightings. Discret Math Theor Comput Sci 13, 45–50 (2011)
11. Seamone, B.: The 1-2-3 conjecture and related problems: a survey. Cornell University (2012)
12. Ford, L.R., Fulkerson, D.R.: Flows in networks. Princeton University Press (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.