Monochromatic k-edge-connection colorings of graphs1

Ping Li1, Xueliang Li1,2

1Center for Combinatorics and LPMC, Nankai University
Tianjin 300071, China
2School of Mathematics and Statistics, Qinghai Normal University
Xining, Qinghai 810008, China
qdli_ping@163.com, lxl@nankai.edu.cn

Abstract

A path in an edge-colored graph G is called monochromatic if any two edges on the path have the same color. For $k \geq 2$, an edge-colored graph G is said to be monochromatic k-edge-connected if every two distinct vertices of G are connected by at least k edge-disjoint monochromatic paths, and G is said to be uniformly monochromatic k-edge-connected if every two distinct vertices are connected by at least k edge-disjoint monochromatic paths such that all edges of these k paths colored with the same color. We use $mc_k(G)$ and $umc_k(G)$ to denote the maximum number of colors that ensures G to be monochromatic k-edge-connected and, respectively, G to be uniformly monochromatic k-edge-connected. In this paper, we first conjecture that for any k-edge-connected graph G, $mc_k(G) = e(G) - e(H) + \lfloor \frac{k}{2} \rfloor$, where H is a minimum k-edge-connected spanning subgraph of G. We verify the conjecture for $k = 2$. We also prove the conjecture for $G = K_{k+1}$ when $k \geq 4$ is even, and for $G = K_{k,n}$ when $k \geq 4$ is even, or when $k = 3$ and $n \geq k$. When G is a minimal k-edge-connected graph, we give an upper bound of $mc_k(G)$, i.e., $mc_k(G) \leq k - 1$, and $mc_k(G) \leq \lfloor \frac{k}{2} \rfloor$ when $G = K_{k,n}$. For the uniformly monochromatic k-edge-connectivity, we prove that for all k, $umc_k(G) = e(G) - e(H) + 1$, where H is a minimum k-edge-connected spanning subgraph of G.

Keywords: edge-coloring, monochromatic path, edge-connectivity, monochromatic k-edge connection number.

AMS subject classification (2010): 05C15, 05C40.

1Supported by NSFC No.11871034, 11531011 and NSFQH No.2017-ZJ-790.
1 Introduction

All graphs in this paper are simple and undirected. For a graph G, we use $V(G), E(G)$ to denote the vertex set and edge set of G, respectively, and $e(G)$ the number of edges of G. For all other terminology and notation not defined here we follow Bondy and Murty [1].

For a natural number r, we use $[r]$ to denote the set $\{1, 2, \cdots, r\}$ of integers. Let $\Gamma : E(G) \rightarrow [r]$ be an edge-coloring of G that allows a same color to be assigned to adjacent edges. For two vertices u and v of G, a monochromatic uv-path is a uv-path of G whose edges are colored with a same color, and G is monochromatic connected if any two distinct vertices of G are connected by a monochromatic path. An edge-coloring Γ of G is a monochromatic connection coloring (MC-coloring) if it makes G monochromatic connected. The monochromatic connection number of a connected graph G, denoted by $mc(G)$, is the maximum number of colors that are needed in order to make G monochromatic connected. An extremal MC-coloring of G is an MC-coloring that uses $mc(G)$ colors.

The notion monochromatic connection coloring was introduced by Caro and Yuster in [4]. Many results have been obtained; see [3, 6, 10, 14]. For more knowledge on the monochromatic connections of graphs we refer to a survey paper [12]. Gonzalez-Moreno, Guevara, and Montellano-Ballesteros in [5] generalized the above concept to digraphs. Now we introduce the concept of monochromatic k-edge-connectivity of graphs. An edge-colored graph G is monochromatic k-edge-connected if every two distinct vertices are connected by at least k edge-disjoint monochromatic paths (allow some of the paths to have different colors). An edge-coloring Γ of G is a monochromatic k-edge-connection coloring (MC$_k$-coloring) if it makes G monochromatic k-edge-connected. The monochromatic k-edge-connection number, denoted by $mc_k(G)$, of a connected graph G is the maximum number of colors that are needed in order to make G monochromatic k-edge-connected. Since we can color all the edges of a k-edge-connected graph by distinct colors, $mc_k(G)$ is well-defined. An extremal MC$_k$-coloring of G is an MC$_k$-coloring that uses $mc_k(G)$ colors.

In an edge-colored graph G, we say that a subgraph H of G is induced by color i if H is induced by all the edges with a same color i of G. If a color i only color one edge of $E(G)$, then we call the color i is a trivial color, and the edge is a trivial edge; otherwise, we call the colors (edges) non-trivial. We call an extremal MC$_k$-coloring a good MC$_k$-coloring of G if the coloring has the maximum number of trivial edges.

Suppose that X is a proper vertex subset of G. We use $E(X)$ to denote the set of edges with both ends in X. For a graph G and $X \subset V(G)$, to shrink X is to delete all edges in
E(X) and then merge the vertices of X into a single vertex. A partition of a vertex set V is to divide V into some mutual disjoint nonempty sets. Suppose \(\mathcal{P} = \{ V_1, \cdots, V_s \} \) is a partition of \(V(G) \). Then \(G/\mathcal{P} \) is a graph obtained from \(G \) by shrinking every \(V_i \) into a single vertex.

An edge \(e \) of a \(k \)-edge-connected graph \(G \) is \emph{deletable} if \(G \setminus e \) is also a \(k \)-edge-connected graph. A \(k \)-edge-connected graph \(G \) is \emph{minimally \(k \)-edge-connected} if none of its edges is deletable. A \emph{minimal \(k \)-edge-connected spanning subgraph} of \(G \) is a \(k \)-edge-connected spanning graph of \(G \) that does not have any deletable edges. A \emph{minimum \(k \)-edge-connected spanning subgraph} of \(G \) is a minimal \(k \)-edge-connected spanning subgraph of \(G \) that has minimum number of edges. The next result was obtained by Mader.

Theorem 1.1 (Mader [13]). Let \(G \) be a minimally \(k \)-edge-connected graph of order \(n \). Then

1. \(e(G) \leq k(n - 1) \).
2. every edge \(e \) of \(G \) is contained in a \(k \)-edge cut of \(G \).
3. \(G \) has a vertex of degree \(k \).

The following theorem was proved by Nash-Williams and Tutte independently.

Theorem 1.2 ([15] [16]). A graph \(G \) has at least \(k \) edge-disjoint spanning trees if and only if \(e(G/\mathcal{P}) \geq k(|G/\mathcal{P}| - 1) \) for any vertex partition \(\mathcal{P} \) of \(V(G) \).

We denote \(\psi(G) = \min_{|\mathcal{P}| \geq 2} \frac{e(G/\mathcal{P})}{|\mathcal{P}| - 1} \), and \(\Psi(G) = \lfloor \psi(G) \rfloor \). Then the Nash-Williams-Tutte theorem can be restated as follows.

Theorem 1.3. A graph \(G \) has exactly \(k \) edge-disjoint spanning trees if and only if \(\Psi(G) = k \).

If \(\Gamma \) is an extremal \(MC_k \)-coloring of \(G \), then each color-induced subgraph is connected; otherwise we can recolor the edges of one of its components by a fresh color, and then the new coloring is also an \(MC_k \)-coloring of \(G \), but then the number of colors is increased by one, which contradicts that \(\Gamma \) is extremal.

For the monochromatic \(k \)-edge-connection number of graphs, we conjecture that the following statement is true.

Conjecture 1.4. For a \(k \)-edge-connected graph \(G \) with \(k \geq 2 \), \(mc_k(G) = e(G) - e(H) + \lfloor \frac{k}{2} \rfloor \), where \(H \) is a minimum \(k \)-edge-connected spanning subgraph of \(G \).
In Section 2, we will prove that the conjecture is true for $k = 2$, and that it is also true for some special graph classes. We also give a lower bound of $mc_k(G)$ for $2 \leq k \leq \Psi(G)$, and an upper bound of $mc_k(G)$ for minimally k-edge-connected graphs with $k \geq 2$.

The following lemma seems easy, but it is useful for some proofs in Section 2.

Lemma 1.5. Suppose that G is a 2-edge-connected graph and H is a 2-edge-connected subgraph of G. Let S be subset of $E(G)$ whose ends are contained in $V(H)$ such that $S \cap E(H) = \emptyset$. Then $G\setminus S$ is also a 2-edge-connected graph.

Proof. We need to show that for any u,v in $G\setminus S$ there are at least two edge-disjoint paths connecting them. From the condition, there are two edge-disjoint uv-path P_1, P_2 in G. Suppose a_1 is the first vertex of $V(P_1)$ from u to v contained in $V(H)$, and a_2 is the first vertex of $V(P_2)$ from u to v contained in $V(H)$ (if $u \in V(H)$, then $u = a_1 = a_2$); suppose b_1 is the last vertex from u to v contained in $V(H)$, and b_2 is the last vertex of $V(P_2)$ from u to v contained in $V(H)$ (if $v \in V(H)$, then $v = b_1 = b_2$). Let $L_i = uPa_i$ and $L_{i+2} = b_iPuv$, $i = 1, 2$. Because each of L_i does not contain any edge of S and H is a 2-edge-connected graph, we have that $H \cup \bigcup_{i \in [4]} L_i$ is also a 2-edge-connected graph of $G\setminus S$. Therefore, there are two edge-disjoint uv-paths in $G\setminus S$.

In Section 3, we introduce other version of monochromatic k-edge-connection of graphs, i.e., uniformly monochromatic k-edge-connection of graphs, and get some results. For details we will state them there.

2 Results on the monochromatic k-edge-connection number

Theorem 2.1. Conjecture 1.4 is true when G and k satisfy one of the following conditions:

1. $k = 2$, i.e., G is a 2-edge-connected graph.
2. $G = K_{k+1}$ where $k \geq 4$ is even.
3. $G = K_{k,n}$ where $k \geq 4$ is even, and $k = 3$ and $n \geq k$.

We restate the first result of Theorem 2.1 as follows.

Theorem 2.2. Let G be a 2-edge-connected graph. Then $mc_2(G) = e(G) - e(H) + 1$, where H is a minimum 2-edge-connected spanning subgraph of G.

4
The following is the proof of Theorem 2.2. For convenience, we abbreviate the term “monochromatic path” as “path” in the proof.

Let Γ be a good MC_2-coloring of G. Then we denote the set of non-trivial colors of Γ by $[r]$, and denote G_i as a subgraph induced by the color i; subject to above, let $p(\Gamma) = \sum_{i \in [r]} p(G_i)$ be maximum, where $p(G_i)$ is the number of non-cut edges of G_i. It is obvious that each of these edges is contained in some cycles of G_i.

Claim 2.3. Each G_i is either a 2-edge-connected graph or a tree.

Proof. Suppose that G_i is neither a 2-edge-connected graph nor a tree, i.e., G_i contains both non-trivial blocks and cut edges. Therefore we can choose a cut edge $e = uv \in E(G_i)$ such that v belongs to a maximal 2-edge-connected subgraph B of G_i (actually, B is the union of some non-trivial blocks). Because B is a 2-edge-connected subgraph of G_i, each of its vertices belongs to a cycle. Let v be contained in a cycle C of B and $e' = vw$ be an edge of C. Because e is a cut edge of G_i, there is just one uw-path in G_i (the uw-path is P). Therefore, there exists another uw-path P', which is colored differently from i.

If P' is a path colored by j, then we can obtain a new coloring Γ' of G from Γ by recoloring all edges of $G_i - e'$ with j. We first prove that Γ' is an MC_2-coloring of G, i.e., we need to prove that for any two vertices a, b of $V(G)$, there are at least two ab-paths under Γ'. If at least one vertex of a, b does not belong to $V(G_i)$, then the two ab-paths are colored differently from i. Because we just change the color i, the two ab-paths are not affected; if both of a, b belong to $V(G_i)$ and at least one of them does not belong to $V(B)$, then we can choose a right ab-path such that it does not contain e' (under Γ), and so there are at least two ab-paths under Γ'; if both $a, b \in V(B)$, then the two ab-paths under Γ (call them L_1, L_2) belong to B. If e' is not an edge of any L_1, L_2, then the two ab-paths are not affected. Otherwise, let $e' \in E(L_1)$, and then $L = L_1 - e' + e + P'$ is a trial connecting a, b. Because $E(L) \cap E(L_2) = \emptyset$, there are two ab-paths under Γ'.

According to the above, Γ' is an MC_2-coloring of G. If $j \in [r]$ is a non-trivial color, then the number of colors has not changed, but the number of trivial edges is increased by one, which contradicts that Γ is good; otherwise, if j is a trivial color, i.e., uw is a trivial edge, then the new coloring Γ' is a good MC_2-coloring (the number of colors and non-trivial edges have not changed), but compared to $p(\Gamma)$, $p(\Gamma')$ is increased by one, which contradicts that $p(\Gamma)$ is maximum. Therefore, we have proved that G_i is either a 2-edge-connected graph or a tree.

By Claim 2.3, each G_i is either a 2-edge-connected graph or a tree. Suppose there are h trees and $s = k - h$ 2-edge-connected graphs. W.l.o.g., suppose that G_1, \cdots, G_s are s
2-edge-connected graphs and $G_{s+1} = T_1, \cdots, G_k = T_h$ are h trees. G_i colored by i and F_j colored by $s+j$. For convenience, we also call the color of F_j j when there is no confusion.

Claim 2.4. For each G_i and T_j, let $e = uv \in E(G_i)$ and $e' = xy \in E(T_j)$. Then at most one of u, v belongs to $V(T_j)$, and at most one of x, y belongs to $V(G_i)$.

Proof. We prove it by contradiction, i.e., suppose that there exist G_i and T_j, and there exist $e = uv \in E(G_i)$ and $e' = xy \in E(T_j)$, such that either $u, v \in V(T_j)$ or $x, y \in V(G_i)$.

Case 1: Suppose $u, v \in V(T_j)$. Then we recolor $E(G_i) - e$ by j and keep the color of e. We now prove that the new coloring (call it Γ') is an extremal MC_2-coloring of G.

We denote the segment of uT_jv by L. For any pair of vertices a, b of $V(G)$, if at least one vertex does not belong to $V(G_i)$, then the two ab-paths colored differently from i under Γ. Because we just change the color i, the two ab-paths are not affected; if $a, b \in V(G_i)$, because $G_i + L - e$ is also 2-edge-connected, then there are two ab-paths (with the same color j) under Γ'. Therefore, Γ' is an MC_2-coloring, and because the number of colors are not changed, Γ' is still an extremal MC_2-coloring. However, the number of non-trivial edges is increased (e becomes a trivial edge), which contradicts that Γ is good.

Case 2: Suppose $x, y \in V(G_i)$. Then we recolor $E(T_j) - e'$ with i and keep the color of e'. We now prove that the new coloring (call it Γ') is an extremal MC_2-coloring of G.

For any vertices pair a, b of $V(G)$, if at least one of a, b does not belong to $V(T_j)$, then the two ab-paths colored differently from j. Because we just change the color j, the two ab-paths are not affected; if $a, b \in V(T_j)$ and at least one of a, b does not belong $V(G_i)$, then there is just one ab-path of T_j and the other ab-paths colored differently from i under Γ. Because $G_i \cup (T_j \setminus e')$ is connected and all of them colored by i under Γ', there are two ab-paths under Γ'; if both $a, b \in V(G_i)$, then there are two ab-paths (with the same color i) under Γ'. Above all, Γ' is an MC_2-coloring of G. Because the number of colors are not changed, Γ' is an extremal MC_2-coloring of G. However, the number of non-trivial edges is increased (e' becomes a trivial edge), which contradicts that Γ is good. \blacksquare

By Claim 2.4, for each edge $e' = xy$ of a T_j, the other xy-paths belong to some T_q; for each edge $e = uv$ of a G_i, the other uv-paths belong to some G_l.

Claim 2.5. $h = 0$, i.e., G_i is a 2-edge-connected graph for any $i \in [r]$.

Proof. If $h \neq 0$, for an edge $e_1 = v_1u_1 \in E(T_1)$, because $P_1 = e_1 = v_1u_1$ is the only v_1u_1-path of T_1, there exists another v_1u_1-path P_2, then $|P_2| \geq 2$ (because G is simple),
and therefore the color of P_2 is non-trivial. By Claim 2.4, P_2 belongs to some T_j, w.l.o.g., suppose $j = 2$. Then $e_1 + T_2$ contains a unique cycle C_1. Let $f_1 = u_1u_2$ is a pendent edge of P_2, and $e_2 = v_2u_2$ is the edge adjacent to f_1 in P_2. Then there exists a v_2u_2-path P_3 in T_3 and $e_2 + T_3$ contains a unique cycle C_2. Let $f_2 = v_2u_3$ is a pendent edge of P_3, and $e_3 = v_3u_3$ is the edge adjacent to f_2 in P_3. By repeating the process, we get a series of trees $T_1, T_2, \ldots,$ paths P_1, P_2, \ldots and edges $f_1 = u_1u_2, f_2 = v_2u_3, \ldots,$ etc. Because there are at most $h < \infty$ trees, there is a T_d which is the first tree appearing before (w.l.o.g., suppose $T_d = T_1$), and the $v_{d-1}u_{d-1}$-path P_d is contained in $T_d = T_1$. Because there are at least two trees in this sequence, we have $d - 1 \geq 2$. Then $f_1 \in T_2, f_2 \in T_3, \ldots, f_{d-2} \in T_{d-1}; P_2 \in T_2, P_3 \in T_3, \ldots, P_d \in T_d = T_1$, etc. T_1, \ldots, T_{d-1} are different trees. Let $H = \bigcup_{i \in \{d-1\}} T_i$.

In order to complete the proof, we need to construct a 2-edge-connected subgraph T of H, a connected graph H', and an edge set B of H with $|B| = d - 2$ below.

Case 1: $e_1 \notin E(P_d)$.

We have already discussed above that $C_1 = P_2 + e_1, C_2 = P_3 + e_2, \ldots, C_{d-1} = P_d + e_{d-1}$. So, $T = C_1 + C_2 - e_2 + C_3 - e_3 + \cdots + C_{d-1} - e_{d-1} = \bigcup_{i=1}^{d-1} C_i - B$ is a closed trail, where $B = \bigcup_{i=2}^{d-1} e_i$, see Fig. 1(1). Therefore, T is a 2-edge-connected graph. Because the ends of every edge in B belong to $V(T)$, we have that $H' = \bigcup_{i \in \{d-1\}} T_i \setminus B$ is a connected graph.

Case 2: $e_1 \in E(P_d)$.

Suppose F_1, F_2 are two small trees of $T_3 \setminus e_1$ and let $v_1 \in V(F_1), u_1 \in V(F_2)$. Then there is a $u_{d-1}v_1$-path L_1 and a $v_{d-1}u_1$-path L_2 (if u_{d-1} connects u_1 and v_{d-1} connects v_1, the situation is similar). Let

$$T' = v_1e_1u_1P_2u_2P_3u_3 \cdots P_{d-2}u_{d-2}P_{d-1}u_{d-1}L_1v_1$$

and

$$T'' = u_1P_2u_2P_3u_3 \cdots P_{d-2}u_{d-2}P_{d-1}v_{d-1}L_2u_1.$$

It is obvious that both of T' and T'' are closed trails and

$$T' \cap T'' = u_1P_2u_2 \cdots P_{d-2}u_{d-2}P_{d-1}v_{d-1}$$

is a trail. Therefore, $T = T' \cup T'' = \bigcup_{i=1}^{d-1} C_i - B$ is a 2-edge-connected graph, where $B = \bigcup_{i=2}^{d-2} f_i$, see Fig. 1(2). Because the ends of each edge in B belong to $V(T)$, $H' = \bigcup_{i \in \{d-1\}} T_i \setminus B$ is a connected graph.

In above two cases, T is a 2-edge-connected subgraph of H, and B is an edge set of H with $|B| = d - 2$. We recolor each edges of $H - B$ by 1 and recolor each edge of B by different new colors, denote the new coloring of G by Γ'. Then the total number of colors
is not changed, but the number of trivial colors is increased by $|B| = d - 2 \geq 1$. In order to complete the proof by contradiction, we need to prove that Γ' is an MC_2-coloring, i.e., we need to prove that for two distinct vertices x, y of G, there are 2 edge-disjoint xy-paths under Γ'. There are three cases to discuss.

(I) At least one of x, y does not belong to $V(H)$. Then the two xy-paths do not belong to any T_1, \cdots, T_{d-1}. Because we just change the colors of T_1, \cdots, T_{d-1}, the two xy-paths are not affected from Γ to Γ'.

(II) Both of x, y belong to $V(H)$, but at least one of them does not belong to $V(T)$. If there is just one xy-path in H under Γ, then another xy-path will not be affected. Because H' is connected, there are also two edge-disjoint xy-paths under Γ'.

(III) Both of x, y belong to $V(T)$. Then because T is a 2-edge-connected graph, there are two edge-disjoint xy-paths under Γ'.

Claim 2.6. $s = 1$, i.e., all the non-trivial edges belong to G_1.

Proof. The proof is done by contradiction. If $s \geq 2$, by Claim 2.3 each G_i is a 2-
edge-connected graph. Thus, \(V(G_1) \setminus V(G_2) \neq \emptyset \) and \(V(G_2) \setminus V(G_1) \neq \emptyset \); for otherwise, w.l.o.g. suppose \(V(G_1) \subseteq V(G_2) \). Recoloring all the edges of \(G_1 \) by different new colors, then the new coloring is an \(MC_2 \)-coloring of \(G \) but it has more colors than \(\Gamma \), which contradicts that \(\Gamma \) is extremal.

Let \(a \in V(G_1) \setminus V(G_2) \) and \(b \in V(G_2) \setminus V(G_1) \). Suppose \(G_a = \bigcup_{i \in c_a} G_i \) where \(c_a = \{ i : a \in V(G_i) \} \). Let \(t \) be the minimum integer such that \(V(G_2) \subseteq V(\bigcup_{j \in [t]} G_{i_j}) \) where \(i_j \in c_a \). Then \(t \leq |G_2| \). Recoloring the edges of each \(G_{i_j} \) by \(i_1 \), and recoloring the edges of \(G_2 \) by different new colors. Then the new coloring is an \(MC_2 \)-coloring of \(G \). Because \(e(G_2) \geq |G_2| \geq t \), the number of colors is not decreased. However, the number of trivial colors is increased, which contradicts that \(\Gamma \) is good.

Claim 2.7. \(G_1 \) is a minimum 2-edge-connected spanning subgraph of \(G \).

Proof. Because \(s = 1 \) and \(h = 0 \), there is just one non-trivial color (call it 1). Then \(G_1 \) is a 2-edge-connected spanning subgraph of \(G \); for otherwise, there is a vertex \(w \notin V(G_1) \), and then there is just one \(uw \)-path (which is a trivial path) for any \(u \in V(G_1) \), a contradiction.

If \(G_1 \) is not minimum, we can choose a minimum 2-edge-connected spanning subgraph \(H \) of \(G \) with \(e(G_1) > e(H) \). Coloring each edge of \(H \) by a same color and coloring the other edges by trivial colors. Then the new coloring is an \(MC_2 \)-coloring of \(G \), but there are more colors than \(\Gamma \), which contradicts that \(\Gamma \) is extremal.

Proof of Theorem 2.2. Actually, the theorem can be proved directly by Claims 2.5, 2.6 and 2.7. Because \(\Gamma \) is an extremal \(MC_2 \)-coloring of \(G \), and the non-trivial color-induced subgraph is just \(G_1 \), which is a minimum 2-edge-connected spanning subgraph of \(G \). So, \(mc_2(G) = e(G) - e(H) + 1 \) where \(H \) is a minimum 2-edge-connected spanning subgraph of \(G \).

We have proved that if \(\Gamma \) is a coloring of \(G \) in Theorem 2.2 then there is just one non-trivial color 1 and \(H = G_1 \) is a minimum 2-edge-connected spanning subgraph of \(G \). If \(G \) has \(t \) blocks, then \(H \) also has \(t \) blocks, and each block is a minimum 2-edge-connected spanning subgraph of the corresponding block of \(G \). Furthermore, the number of edges of \(H \) is greater than or equal to \(n + t - 1 \) (equality holds if each block of \(H \) is a cycle). So, the following result is obvious.

Corollary 2.8. If \(G \) is a 2-edge-connected graph with \(t \) blocks \(B_1, \ldots, B_t \), then \(mc_2(G) = \sum_{i \in [t]} mc_2(B_i) - t + 1 \), and \(mc_2(G) \leq e(G) - n - t + 2 \).

A cactus is a connected graph where every edge lies in at most one cycle. If \(G \) is a cactus without cut edges, then every edge lies in exactly one cycle. It is obvious that
There are k edge cut of G. A minimal k-edge-connected graph is also the minimum k-edge-connected spanning subgraph of itself, and this fact will not be declared again later.

Corollary 2.9. If G is a cactus without cut edge, then $mc_2(G) = 1$.

We have proved the first result of Theorem 2.1. Next we will prove the remaining two results. Before this, we give an upper bound of $mc_k(G)$ for G being a minimal k-edge-connected graph. The following lemma is necessary for our later proof.

Lemma 2.10. Let G be a minimal k-edge-connected graph and Γ be an extremal MC_k-coloring of G (suppose $mc_k(G) = t$), and let G_i be the subgraph induced by the edges of color i, $1 \leq i \leq t$. Then each G_i is a spanning subgraph of G.

Proof. We prove it by contradiction. Suppose G_i is not a spanning subgraph of G. Let $v \notin V(G_i)$. Then for any $u \neq v$, none of the k edge-disjoint monochromatic uv-paths is colored by i. Let e be an edge colored by i. By Theorem 1.1, there exists an edge cut $C(G)$ such that $e \in C(G)$ and $|C(G)| = k$. Then $G \setminus C(G)$ has two components M_1, M_2 (in fact, $C(G)$ is a bond of G). Let $v \in V(M_1)$ and some $w \in V(M_2)$. Then the k edge-disjoint monochromatic vw-paths are retained in $G \setminus e$. However, $C(G) \setminus e$ is an edge cut of $G \setminus e$ that separates v and w, and $|C(G) \setminus e| = k - 1$, which contradicts that there are k edge-disjoint monochromatic vw-paths in $G \setminus e$.

Theorem 2.11. If G is a minimal k-edge-connected graph with $k \geq 2$, then $mc_k(G) \leq k - 1$.

Proof. We prove it by contradiction. Suppose $mc_k(H) \geq k$. Let Γ be an extremal MC_k-coloring of G. Then by Lemma 2.10, there are at least k edge-disjoint spanning subgraphs of G. Because there exists a vertex of G with degree k, there are exactly k edge-disjoint spanning subgraphs of G, denoted by G_1, \ldots, G_k. Because G is a minimal k-edge-connected graph, by Theorem 1.1, $e(G) \leq k(n - 1)$, which allows all of G_1, \ldots, G_k to be spanning trees of G.

Because $k \geq 2$, there are at least two spanning trees G_1, G_2, and so $G_1 \cup G_2$ is a 2-edge-connected spanning subgraph of G. Let $e = uv$ be an edge of G_1 and let P_1 be the uv-path of G_2. Suppose $e_1 = uu_1$ and $e_2 = vv_1$ are two terminal edges of P_1. Let P_2 be the uu_1-path of G_1 and let P_3 be the vv_1-path of G_1.

Case 1: If one of P_2 and P_3 does not contain e, w.l.o.g., suppose P_2 does not contain e. Then $T = uP_3u_1P_1vve$ is a 2-edge-connected graph (in fact, T is a closed trail, see Fig2(1)). Because $u, u_1 \in V(T)$, by Lemma 1.5, $(G_1 \cup G_2) \setminus e_1$ is a 2-edge-connected subgraph of G.

10
Case 2: If both P_2 and P_3 contain e, then $T = uevP_2u_1P_1v_1P_3u$ is a 2-edge-connected graph (in fact, T is a closed trail, see Fig.2(2)). Because $u, u_1 \in V(T)$, by Lemma 1.5, $(G_1 \cup G_2) \setminus e_1$ is a 2-edge-connected subgraph of G.

\[\text{Figure 2} \]

The coloring Γ' obtained from Γ by assigning 1 to the edges of $G_2 \setminus e_1$ and assigning a new color to e_1. From above two cases, $(G_1 \cup G_2) \setminus e_1$ is a 2-edge-connected spanning subgraph of G and G_3, \ldots, G_k are spanning subgraph of G. So, every two vertices are also connected by k monochromatic paths and the number of colors is not changed, i.e., Γ' is also an extremal MC_k-coloring of G. While e is a single edge, that would contradict that each induced subgraph is spanning by Lemma 2.10.

Before proving the second result of Theorem 2.1, we introduce a well-known result.

Fact 2.12. K_{2n+1} can be decomposed into n edge-disjoint Hamiltonian cycles; K_{2n+2} can be decomposed into n edge-disjoint Hamiltonian cycles and a perfect matching.

Theorem 2.13. $mc_{2n}(K_{2n+1}) = n$ for $n \geq 2$.

Proof. By Fact 2.12, K_{2n+1} can be decomposed into n edge-disjoint Hamiltonian cycles C_1, \ldots, C_n. Color each C_i by $i \in [n]$, and then the coloring is an MC_{2n}-coloring of K_{2n+1}. So, $mc_{2n}(K_{2n+1}) \geq n$.

We need to prove that $mc_{2n}(K_{2n+1}) \leq n$ to complete our proof. The proof is done by contradiction. Suppose $mc_{2n}(K_{2n+1}) = t \geq n + 1$. Let Γ be an extremal MC_{2n}-coloring of K_{2n+1} and let G_i be the subgraph induced by all the edges with color i, $1 \leq i \leq t$. 11
Because K_{2n+1} is a minimal $2n$-edge-connected graph, by Lemma 2.10 we have that each G_i is a spanning subgraph of G. If $t \geq 2n$, then
\[
n(2n + 1) = e(K_{2n+1}) = e(\bigcup_{i \in [t]} G_i) \geq 2tn \geq 4n^2,\]
which is a contradiction. Otherwise, if $t < 2n$, then not every G_i is a spanning tree (for otherwise, every two vertices are just connected by $t < 2n$ monochromatic paths). To ensure that every two vertices are connected by at least $2n$ monochromatic paths, there are at least $2n - t$ G_i that are 2-edge-connected. Therefore, the number of edges of $\bigcup_{i \in [t]} G_i$ satisfies
\[
e(\bigcup_{i \in [t]} G_i) \geq (2n + 1)(2n - t) + 2(t - n) \cdot 2n = t(2n - 1) + 2n \geq 2n^2 + 3n - 1.
\]
This contradicts that $\bigcup_{i \in [t]} G_i = K_{2n+1}$ and $e(K_{2n+1}) = n(2n + 1)$.
\[\square\]

Before prove the third result of Theorem 2.1, we introduce another well-known result.

Fact 2.14. $K_{2n,2n}$ can be decomposed into n Hamiltonian cycles and $K_{2n+1,2n+1}$ can be decomposed into n Hamiltonian cycles and a perfect matching.

Theorem 2.15. If $n \geq k \geq 3$, then $mc_k(K_{k,n}) \leq \left\lfloor \frac{k}{2} \right\rfloor$.

Proof. Let Γ be an extremal MC_k-coloring with t colors and let G_i be the subgraph of G induced by the edges with color i. Because $K_{k,n}$ is a minimal k-edge-connected graph, by Lemma 2.10 each G_i is a spanning subgraph of G. Let A, B be the bipartition (independent sets) of G with $|A| = n$ and $|B| = k$. Then each vertex in A has degree k.

We prove that $mc_k(K_{k,n}) \leq \left\lfloor \frac{k}{2} \right\rfloor$ by contradiction. Suppose $mc_k(K_{k,n}) = t \geq \left\lfloor \frac{k}{2} \right\rfloor + 1$. For a vertex u of A, let $d_{G_i}(u) = r_i$. Then $\sum_{i \in [t]} r_i = k$ and each $r_i \geq 1$. Because every two vertices of A are connected by k edge-disjoint monochromatic paths, and the degree of every vertex in A is k, we have that for each $u \in A$, $d_{G_i}(u) = r_i$. Because $t \geq \left\lfloor \frac{k}{2} \right\rfloor + 1$, there is a color i such that $d_{G_i}(u) = 1$, i.e., all vertices of A are leaves of G_i. Because $K_{k,n}$ is a bipartite graph with bipartition A and B, G_i is a perfect matching if $n = k$, and G_i is the union of k stars if $n > k$, both of which contradict that G_i is a connected spanning subgraph of G. Therefore, $mc_k(K_{k,n}) \leq \left\lfloor \frac{k}{2} \right\rfloor$.
\[\square\]

Corollary 2.16. Conjecture 1.4 is true for $G = K_{k,n}$, where k is even and $n \geq k \geq 4$; it is also true for $G = K_{3,n}$, where $k = 3 \leq n$.

Proof. If $k = 2l$ is even, then we prove that $mc_k(K_{k,n}) = \left\lfloor \frac{k}{2} \right\rfloor = l$. Actually, we only need to construct an MC_k-coloring of $K_{k,n}$ with l colors. Let A_1 be a subset of A with
\(k \) vertices and \(A_2 = A - A_1 \), and let \(H \) be the subgraph of \(K_{k,n} \) whose vertex set is \(A_1 \cup B \). Then \(H = K_{k,k} \), and by Fact 2.14 \(H \) can be decomposed into \(l \) Hamiltonian cycles \(\{C_1, \cdots, C_l\} \). Because the degree of each vertex in \(A_2 \) is \(k = 2l \), we mark each two edges incident with \(v \in A_2 \) with \(i, 1 \leq i \leq l \). Let \(E_i \) be the edge set with mark \(i \), and let \(G_i = C_i \cup E_i \). It is obvious that \(G_i \) is a 2-edge-connected spanning graph of \(K_{k,n} \). We color every edge of \(G_i \) by \(i \), and then we find an \(MC_k \)-coloring of \(K_{k,n} \) with \(l \) colors.

Because \(K_{3,n} \) is a minimal 3-edge-connected graph for \(n \geq 3 \), and an \(MC_3 \)-coloring of \(K_{3,n} \) assigns color 1 to all its edges, we have \(mc_3(K_{3,n}) \geq 1 \). By Theorem 2.15 \(mc_3(K_{3,n}) \leq 1 \), and thus \(mc_3(K_{3,n}) = 1 \).

If \(k \leq \Psi(G) \), then \(G \) is \(k \)-edge-connected. By Theorem 1.3 there are \(k \) edge-disjoint spanning trees \(T_1, \cdots, T_k \) of \(G \) and we color \(E(G) \) such that each \(T_i \) is colored by \(i \). Then any two vertices \(u, v \) are connected by at least \(k \) monochromatic \(uv \)-paths with different colors. So, we have the following result.

Corollary 2.17. For a graph \(G \) with \(\Psi(G) \geq k \geq 2 \), \(mc_k(G) \geq e(G) - k(n - 2) \).

3 Results for uniformly monochromatic \(k \)-edge-connection number

The monochromatic \(k \)-edge-connected graph allows \(k \) edge-disjoint monochromatic paths between any two vertices of the graph. In this section, we generalize the concept of monochromatic \(k \)-edge-connection to uniformly monochromatic \(k \)-edge-connection, and get some results.

An edge-colored \(k \)-edge-connected graph \(G \) is **uniformly monochromatic \(k \)-edge-connected** if every two distinct vertices are connected by at least \(k \) edge-disjoint monochromatic paths of \(G \) such that all these \(k \) paths have the same color. Note that for different pairs of vertices the paths may have different colors. An edge-coloring \(\Gamma \) of \(G \) is a **uniformly monochromatic \(k \)-edge-connection coloring (UMC\(_k\)-coloring)** if it makes \(G \) uniformly monochromatically \(k \)-edge-connected. The **uniformly monochromatic \(k \)-edge-connection number**, denoted by \(umc_k(G) \), of a \(k \)-edge-connected graph \(G \) is the maximum number of colors that are needed in order to make \(G \) uniformly monochromatic \(k \)-edge-connected.

An extremal **UMC\(_k\)-coloring** of \(G \) is an **UMC\(_k\)-coloring** that uses \(umc_k(G) \) colors. We call an extremal **UMC\(_k\)-coloring** a **good UMC\(_k\)-coloring** of \(G \) if the coloring has the maximum number of trivial edges. A uniformly monochromatic \(k \)-edge-connected graph is also a monochromatic connected graph when \(k = 1 \).
Theorem 3.1. Let G be a k-edge-connected graph with $k \geq 2$. Then $\text{umc}_k(G) = e(G) - e(H) + 1$, where H is a minimum k-edge-connected spanning subgraph of G.

We prove the theorem below. For convenience, we abbreviate "monochromatic uv-path" as "uv-path". Let Γ be a good UMC$_k$-coloring of G. Then, suppose that the number of non-trivial colors of Γ is t and denote the set of them by $[t]$. Let G_i be the subgraph of G induced by the edges with a non-trivial color i, $1 \leq i \leq t$. Let $G' = \bigcup_{i \in [t]} G_i$.

Claim 3.2. Each G_i is k-edge-connected.

Proof. Let π_i denote the set of pairs (u, v) such that there are at least k edge-disjoint uv-paths colored by $i \in [t]$. Therefore, any vertex pair (u, v) belongs to some π_i.

We first prove it by contradiction that each G_i is k-edge-connected.

Suppose that G_i is not a k-edge-connected graph. Then there exists a bond $C(G_i)$ with $|C(G_i)| \leq k - 1$, and $G \setminus C(G_i)$ has two components M_1 and M_2. Let $e = uv$ be an edge of $C(G_i)$, $u \in V(M_1)$, $v \in V(M_2)$. Then there are at most $|C(G)| \leq k - 1$ edge-disjoint paths in G_i between u, v. Therefore there exists a $j \neq i$ of $[t]$ such that there are at least k edge-disjoint uv-paths of G_j.

Recolor edges of $G_i - e$ with j and keep the color of e, and denote the new coloring of G by Γ'.

Because any non-trivial color $r \neq i$ is not changed. So, under Γ', any pair $(x, y) \in \pi_r$ also have at least k edge-disjoint xy-paths colored r. For any pair $(x, y) = \pi_i$, if any k edge-disjoint xy-paths (Note that P_1, \ldots, P_k) of G_i under Γ do not contain e. Then these k edge-disjoint xy-paths are retained. Otherwise, there is a path (Note that P_1) contains e. We choose a path P of G_j whose terminals are u, v. Then $T = (P_1\{e\}) \cup P$ is a trail between x, y and $E(T) \cap \bigcup_{i \neq 1} E(P_i) = \emptyset$. Let P' be a xy-path of T. Then P', P_2, \ldots, P_k are k edge-disjoint xy-paths colored by j (under Γ'). Therefore, Γ' is still an extremal UMC$_k$-coloring of G, but then e becomes to a trivial edge, which contradicts that Γ is good. So, each G_i is k-edge-connected.

By Claim 3.2, because $k \geq 2$, we have $e(G_i) \geq |G_i| \geq 3$. Denote $G_x = \bigcup_{x \in V(G_x)} G_i$, $F_x = G' - G_x$.

Claim 3.3. Each G_x is a k-edge-connected spanning subgraph of G. Furthermore, $F_x = \emptyset$.

Proof. If there is an $x \in V(G)$ such that G_x is not a spanning subgraph of G, then there is a vertex $y \in V(G) \setminus V(G_x)$. Because G is a simple graph and $k \geq 2$, any two vertices
are connected by at least one non-trivial path. It is obvious that there are no non-trivial
\(xy\)-path, a contradiction. Therefore, \(G_x\) is a spanning subgraph of \(G\).

Because each \(G_i\) is \(k\)-edge-connected, \(G_x\) is also \(k\)-edge-connected. Therefore, each
\(G_x\) is a \(k\)-edge-connected spanning subgraph of \(G\).

Now we prove that \(F_x = \emptyset\). Otherwise, if \(F_x \neq \emptyset\), then there is a \(G_j \subseteq F_x\) and \(|G_j| \geq 3\).
Suppose that \(s\) is the minimum number such that \(V(G_j) \subseteq \bigcup_{r \in [s]} G_t\), where \(G_{t1}, \ldots, G_{ts}\)
are contained in \(G_x\). Then, \(s \leq |G_j|\). Because \(k \geq 2\), we have \(e(G_j) \geq |G_j| \geq s\). We have
obtained a new coloring \(\Gamma'\) from \(\Gamma\) by recoloring each \(G_{t1}, \ldots, G_{ts}\) by \(i_1\) and recoloring
each edge of \(G_j\) by different new colors. Because \(G^* = \bigcup_{r \in [s]} G_t\) is \(k\)-edge-connected
graph, each pair \((a, b)\) with \((a, b) \in \{(\pi_{i1}, \ldots, \pi_{is}, \pi_j)\}\) has \(k\)-edge-disjoint \(ab\)-paths colored
\(i_1\) under \(\Gamma'\). It is easy to check that \(\Gamma'\) is a \(UMC_k\)-coloring. Then, the number of colors
is not decreased, but the number of trivial colors is increased by at least \(e(G_j) \geq 3\),
which contradicts that \(\Gamma\) is good. So, \(F_x = \emptyset\).

Claim 3.4. \(t = 1\) and \(G_1\) is a minimum \(k\)-edge-connected spanning subgraph of \(G\).

Proof. Suppose \(t \geq 2\). Then \(V(G_1) \setminus V(G_2) \neq \emptyset\). Otherwise, if \(V(G_1) \subseteq V(G_2)\), then
\((u, v) \in \pi_2\) when \((u, v) \in \pi_1\). We can recolor all edges of \(G_1\) by fresh colors, and then
the new coloring is also a \(UMC_k\)-coloring of \(G\) but the number of colors is increased,
which contradicts that \(\Gamma\) is extremal. So, \(V(G_1) \setminus V(G_2) \neq \emptyset\), and there is a vertex \(a \in V(G_1) \setminus V(G_2)\), i.e., \(G_2 \not= G_a\), \(G_2 \subseteq F_a\). By Claim 3.3, we have \(F_a = \emptyset\), a contradiction.
Therefore, \(t = 1\), and thus \(G_1 = G_a\) is a spanning subgraph of \(G\).

In fact, \(G_1\) is a minimum \(k\)-edge-connected spanning subgraph of \(G\); otherwise, there
exists a minimum \(k\)-edge-connected spanning subgraph \(H\) of \(G\) such that \(e(H) < e(G_1)\).
Coloring each edge of \(H\) by 1 and coloring the other edges by some different new colors.
Then the coloring is a \(UMC_k\)-coloring of \(G\) with more colors, which contradicts that \(\Gamma\)
is extremal.

Proof of Theorem 3.1. We can prove Theorem 3.1 directly by Claim 3.4.

Because any \(k\)-edge-connected graph \(G\) has the minimum degree \(\delta(G) \geq k\), by Theorem 1.1, we have that \(\frac{1}{2}kn \leq e(H) \leq k(n - 1)\), where \(H\) is a minimum \(k\)-edge-connected spanning subgraph of \(G\).

Corollary 3.5. For a \(k\)-edge-connected graph \(G\) with \(k \geq 2\), \(e(G) - k(n - 1) + 1 \leq umc_k(G) \leq e(G) - \frac{1}{2}kn + 1\).

By definition, a \(k\)-edge-connected graph \(G\) satisfies that \(umc_k(G) \leq mck(G)\). Therefore,
\(mck(G) \geq e(G) - e(H) + 1\), where \(H\) is a \(k\)-edge-connected spanning subgraph of \(G\).
By this theorem, we also get a result: A graph contains a Hamiltonian cycle if and only if \(umc_2(G) = e(G) - n + 1\).
References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

[2] Q. Cai, X. Li, D. Wu, Erdős-Gallai-type results for colorful monochromatic connectivity of a graph, J. Comb. Optim. 33(1)(2017), 123-131.

[3] Q. Cai, X. Li, D. Wu, Some extremal results on the colorful monochromatic vertex-connectivity of a graph, J. Comb. Optim. 35(2018), 1300–1311.

[4] Y. Caro, R. Yuster, Colorful monochromatic connectivity, Discrete Math. 311(2011), 1786-1792.

[5] D. Gonzalez-Moreno, M. Guevara, J.J. Montellano-Ballesteros, Monochromatic connecting colorings in strongly connected oriented graphs, Discrete Math. 340(4)(2017), 578-584.

[6] R. Gu, X. Li, Z. Qin, Y. Zhao, More on the colorful monochromatic connectivity, Bull. Malays. Math. Sci. Soc. 40(4)(2017), 1769-1779.

[7] H. Jiang, X. Li, Y. Zhang, Total monochromatic connection of graphs, Discrete Math. 340(2017), 175-180.

[8] H. Jiang, X. Li, Y. Zhang, More on total monochromatic connection of graphs, Ars Combin. 136(2018), 263–275.

[9] H. Jiang, X. Li, Y. Zhang, Erdős-Gallai-type results for total monochromatic connection of graphs, Discuss. Math. Graph Theory, in press.

[10] Z. Jin, X. Li, K. Wang, The monochromatic connectivity of some graphs, submitted, 2016.

[11] X. Li, D. Wu, The (vertex-)monochromatic index of a graph, J. Comb. Optim. 33(2017), 1443-1453.

[12] X. Li D. Wu, A survey on monochromatic connections of graphs, Theory & Appl. Graphs 0(1)(2018), Art.4.

[13] W. Mader, A reduction method for edge-connectivity in graphs, Adv. Graph Theory 3(1978), 145-164.

[14] Y. Mao, Z. Wang, F. Yanling, C. Ye, Monochromatic connectivity and graph products, Discrete Math, Algorithm. Appl. 8(01)(2016), 1650011.
[15] C. St. J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. Lond. Math. Soc. 36(1961), 445–450.

[16] W. T. Tutte, On the problem of decomposing a graph into n connected factors, J. Lond. Math. Soc. 36(1961), 221–230.