The Frobenius problem for the shuffle operation

Jeremy Nicholson∗ and Narad Rampersad†

Department of Mathematics and Statistics
University of Winnipeg
515 Portage Avenue
Winnipeg, Manitoba R3B 2E9 (Canada)
jnich998@hotmail.com, n.rampersad@uwinnipeg.ca

August 31, 2016

Abstract
Given a set S of words, let S^\dagger denote the iterated shuffle of S. We characterize the finite sets S for which S^\dagger is co-finite, and we give some bounds on the length of a longest word not in S^\dagger.

1 Introduction
The classical Frobenius problem is the following: Given positive integers m_1, m_2, \ldots, m_k such that $\gcd(m_1, m_2, \ldots, m_k) = 1$, what is the largest integer that cannot be written as a non-negative integer linear combination of m_1, m_2, \ldots, m_k? Schur showed that this number always exists and Sylvester showed that when $k = 2$ this number is equal to $m_1 m_2 - m_1 - m_2$. The case $k \geq 3$ is rather more difficult. An entire book has been devoted to this problem [6].

Shallit proposed the following “non-commutative” version of the Frobenius problem: Given a set of words $S = \{w_1, w_2, \ldots, w_k\}$ over an alphabet Σ such that S^\ast is co-finite (i.e., contains all but finitely many words over Σ), what is the length of a longest word not in S^\ast? In other words, what is the length of a longest word that cannot be written as a concatenation of a sequence of words chosen from S? Xu studied this problem, which he called the Frobenius problem in the free monoid, in his Ph.D. thesis [8]. Note that this problem reduces to the classical Frobenius problem when Σ is a unary alphabet. For larger alphabets, Xu considered the special case where S contains words of only two lengths m and n (say, $m < n$). He showed that the answer to the problem in this setting could be exponential in $n - m$.

In this paper we examine the same problem with respect to the shuffle operation on words. Informally, the shuffle of two words u and v is the set of all words that can be obtained by “interleaving” the letters of u with the letters of v in all possible ways. This shuffle

∗The author was supported by an NSERC USRA.
†The author was supported by NSERC Discovery Grant No. 418646–2012.
operation on words was introduced, in an algebraic setting, by Eilenberg and MacLane [2]. Some notable early papers that study the shuffle operation from a formal languages perspective are Jantzen [3, 4] and Warmuth and Haussler [7].

Given a set \(S \) of words, let \(S^\dagger \) denote the \textit{iterated shuffle} of \(S \) (see the formal definition in the next section). In this paper we characterize the finite sets \(S \) for which \(S^\dagger \) is co-finite, and we show that the length of a longest word not in \(S^\dagger \) is at most quadratic in the length of the longest word in \(S \). The Frobenius problem in this setting therefore turns out to be somewhat closer to the classical integer version of the problem, rather than the “free monoid” version of the problem studied by Xu.

2 Preliminaries

Let us recall again the classical Frobenius problem: Given positive integers \(m_1, m_2, \ldots, m_k \) such that \(\gcd(m_1, m_2, \ldots, m_k) = 1 \), what is the largest integer that cannot be written as a non-negative integer linear combination of \(m_1, m_2, \ldots, m_k \)? Let \(g(m_1, m_2, \ldots, m_k) \) denote this quantity, which is known as the Frobenius number for the given instance of the problem. For \(k = 2 \) we have the exact formula of Sylvester: \(g(m_1, m_2) = m_1 m_2 - m_1 - m_2 \). For \(k \geq 2 \) there are a number of upper bounds; for our purposes, the following one due to Schur (see [1]) will suffice: if \(m_1 \leq m_2 \leq \cdots \leq m_k \), then

\[
g(m_1, m_2, \ldots, m_k) \leq m_1 m_k - m_1 - m_k. \tag{1}\]

Our goal in this paper is to generalize the Frobenius problem to the setting of words over an alphabet. Let \(\Sigma \) denote an alphabet and let \(\Sigma^* \) denote the set of all words over \(\Sigma \). For any \(a \in \Sigma \) and \(w \in \Sigma^* \), the number of occurrences of \(a \) in \(w \) is denoted by \(|w|_a \).

Let \(|\Sigma| = q \) and let \(S \) be a finite subset of \(\Sigma^* \) such that \(S^* \) is co-finite. Xu showed that if \(q > 1 \) and \(S \) contains words of lengths \(m \) and \(n \) only (\(m < n \)), then the longest word not in \(S^* \) has length at most \(mq^{n-m} + n - m \) and this bound is tight.

The Kleene star operator used above can be viewed as iterated concatenation. In this paper we will study the Frobenius problem for iterated shuffle. The \textit{shuffle operator} can be defined as follows

\[
u \boxdot v = \{u_1v_1u_2v_2 \cdots u_kv_k : u_i, v_i \in \Sigma^*, u = u_1u_2 \cdots u_k, \text{ and } v = v_1v_2 \cdots v_k\}.
\]

The \textit{iterated shuffle} \(\dagger \) of a word is defined by

\[
u^\dagger = \bigcup_{i=0}^{\infty} (u \boxdot \cdots \boxdot u),
\]

We extend both of these operations from words to sets of words in the usual way. First, for sets of words \(A \) and \(B \) we define

\[
A \boxdot B = \{u \boxdot v : u \in A \text{ and } v \in B\},
\]

\footnote{There is no standard notation to denote the iterated shuffle; we are following Jantzen’s use of the "dagger".}
and

\[A^\dagger = \bigcup_{i=0}^{\infty} (A \cup A \cup \cdots \cup A)^i. \]

For example,

\[\{01,011\} \cup \{0\} = \{001,010,0011,0101,0110\} \]

and

\[\{01,2\}^\dagger = \{w \in \{0,1,2\}^* : |w|_0 = |w|_1 \text{ and every prefix } u \text{ of } w \text{ satisfies } |u|_0 \geq |u|_1 \}. \]

Over the alphabet \{0,1\} the set \(\{00,000,11,111,01,10\}^\dagger \) is co-finite; the only strings not in this set are 0, 1, 001, 010, 100, 011, 101, 110.

The Frobenius problem for the shuffle operation is therefore the following: If \(S \) is a finite set of words over \(\Sigma \) such that \(S^\dagger \) is co-finite, what is the length of a longest word not in \(S^\dagger \)? Note that when \(|\Sigma| = 1 \), say \(\Sigma = \{x\} \), this problem is equivalent to the integer Frobenius problem. In this case, either \(x \in S \), in which case \(S^\dagger = \Sigma^* \), or \(S \) has the form \(S = \{x^{m_1}, x^{m_2}, \ldots, x^{m_k}\} \), where \(m_i \geq 2 \) for \(i = 1,2,\ldots,k \). The length of any word in \(S^\dagger \) is a multiple of \(\gcd(m_1, m_2, \ldots, m_k) \), so for \(S \) to be co-finite we must have \(\gcd(m_1, m_2, \ldots, m_k) = 1 \). In this case it is clear that \(x^n \in S^\dagger \) if and only if \(n \) can be written as a non-negative integer linear combination of \(m_1, m_2, \ldots, m_k \). Hence, the length of the longest word not in \(S^\dagger \) is exactly \(g(m_1, m_2, \ldots, m_k) \).

Lastly we define the act of matching a word. Given two words \(w = w_1 \cdots w_n \) and \(u = u_1 \cdots u_k \), a match of \(u \) in \(w \) is a subset of positions \(i_1 < i_2 < \cdots < i_k \) such that \(w_{i_j} = u_j \) for \(j = 1,2,\ldots,k \). For a given set of words \(S \), a word \(y \) is in \(S^\dagger \) if and only if all positions of \(y \) can be covered by a pairwise disjoint set of matches using words in \(S \). In this case, we say \(y \) can be matched using words in \(S \). For example, if \(S = \{011,012\} \), then 010121 \(\in S^\dagger \) since it can be matched using a single 011 and a single 012 (010121 or 010121). However, 01012112 \(\not\in S^\dagger \) because one of the 0’s will have to be matched twice to ensure the last 1 and 2 get matched.

3 A characterization of \(S \) such that \(S^\dagger \) is co-finite

In this section we give a complete characterization of the finite sets \(S \) for which \(S^\dagger \) is co-finite and we give some bounds on the length of a longest word not in \(S^\dagger \). Furthermore, given a set \(S \) such that \(S^\dagger \) is co-finite, we give a detailed description on how to match a sufficiently long arbitrary word using the words in \(S \) and we give lower bounds for \(|S| \).

For the rest of this section, let the following be true. Let \(q \geq 1 \) and let \(S \) be a finite set of words over an alphabet \(\{x_1,x_2,\ldots,x_q\} \). For each \(i \in \{1,2,\ldots,q\} \), let \(T_i \) denote the collection of all subsets \(T_i \subseteq S \), where either

\[T_i = \{x_i\}, \tag{2} \]

or

\[T_i = \{x_i^{m_{i,1}}, x_i^{m_{i,2}}, \ldots, x_i^{m_{i,h_i}}\} \cup \bigcup_{j=1, j \neq i}^{q} [x_i x_j^{a_{i,j}}, x_j^{b_{j,i}} x_i], \tag{3} \]

where \(m_{i,h_i} > \cdots > m_{i,2} > m_{i,1} \geq 2 \), \(h_i \geq 2 \), \(\gcd(m_{i,1}, m_{i,2}, \ldots, m_{i,h_i}) = 1 \) and \(a_{i,j}, b_{j,i} \geq 1 \) for all \(j \in \{1,2,\ldots,q\} \) such that \(i \neq j \).
Our first main result is the following.

Theorem 1. The set S^\dagger is co-finite if and only if for each $i \in \{1, 2, \ldots, q\}$, the collection \mathcal{T}_i is non-empty.

Proof. Follows directly from Lemma 2 and Theorem 3 below. \qed

Lemma 2. The set S^\dagger is co-finite only if for each $i \in \{1, 2, \ldots, q\}$, the collection \mathcal{T}_i is non-empty.

Proof. Let x_i be an arbitrary letter in our alphabet and assume $\{x_i\} \not\subseteq S$. If S^\dagger is co-finite, then every sufficiently long string of x_i's must be in S^\dagger. So S must have a string of x_i's, notably $x_i^{m_{i,1}}$. However, then S^\dagger will only contain strings of x_i's that are multiples of $m_{i,1}$ in length. Thus S must have at least two strings of x_i's, notably $x_i^{m_{i,1}}, x_i^{m_{i,2}}, \ldots, x_i^{m_{i,h_i}}$ (where $m_{i,h_i} > \ldots > m_{i,2} > m_{i,1} \geq 2$ and $h_i \geq 2$). Furthermore, every string of x_i's in S^\dagger is a multiple of $\gcd(m_{i,1}, m_{i,2}, \ldots, m_{i,h_i})$ in length, so if S^\dagger is co-finite, then $\gcd(m_{i,1}, m_{i,2}, \ldots, m_{i,h_i}) = 1$.

Let x_j be another arbitrary letter in our alphabet. Then $x_i x_j^s$ and $x_j^s x_i$ are in S^\dagger for all sufficiently large s. Since $\{x_i\} \not\subseteq S$,

$$\bigcup_{j=1}^{q} \{x_i x_j^{a_{i,j}}, x_j^{b_{j,i}} x_i\}$$

must be a subset of S where $a_{i,j}, b_{j,i} \geq 1$ for all $j \in \{1, 2, \ldots, q\}$ such that $i \neq j$. Thus \mathcal{T}_i is non-empty and the result follows. \qed

Theorem 3. Assume for each $i \in \{1, 2, \ldots, q\}$, the collection \mathcal{T}_i is non-empty. If $\{x_i\} \in \mathcal{T}$, define $g_i = -1$ and $m_{i,1} = a_{i,j} = b_{j,i} = 0$ for all $j \in \{1, 2, \ldots, q\}$. If $\{x_i\} \not\in \mathcal{T}$, then let T_i be a subset of S of the form (3). Define $g_i = g(m_{i,1}, m_{i,2}, \ldots, m_{i,h_i})$ and let $m_{i,1}, m_{i,2}, \ldots, m_{i,h_i}, a_{i,j}, b_{j,i}$ be as they are defined for the chosen T_i for all $j \in \{1, 2, \ldots, q\}$. Then S^\dagger contains every word of length at least

$$\sum_{i=1}^{q} g_i + q + (q - 1)(\max_{i,j \neq 1}(m_{i,1}))(\max_{i,j \neq 1}(a_{i,j}, b_{j,i})).$$

Proof. Let y be a q-ary word of length at least

$$\sum_{i=1}^{q} g_i + q + (q - 1)(\max_{i,j \neq 1}(m_{i,1}))(\max_{i,j \neq 1}(a_{i,j}, b_{j,i})).$$

If $|y|_{x_i} \geq g_i + 1$ for all i, every x_i in y can be matched by shuffling the set $\{x_i\}$ or if $\{x_i\} \not\subseteq S$, by shuffling the set $\{x_i^{m_{i,1}}, x_i^{m_{i,2}}, \ldots, x_i^{m_{i,h_i}}\}$. Furthermore, if $|y|_{x_i} \leq g_i$ for all i, then $|y| \leq \sum_{i=1}^{q} g_i$, a contradiction. So assume WLOG that $|y|_{x_1} \leq 1$, $|y|_{x_2} \leq 2$, \ldots, $|y|_{x_s} \leq g_s$, $|y|_{x_{s+1}} \leq g_{s+1}$, $|y|_{x_{s+2}} \leq g_{s+2}$, \ldots, $|y|_{x_q} \geq g_q$ for some s such that $1 \leq s \leq q - 1$. So

$$\sum_{i=1}^{s} |y|_{x_i} \leq \sum_{i=1}^{s} g_i$$
which implies
\[\sum_{i=s+1}^{q} |y|_{x_i} \geq \sum_{i=s+1}^{q} g_i + q + (q-1)(\max(m_{i,1}, \max_{i,j \neq i}(a_{i,j}, b_{j,i})) \]
\[\geq \sum_{i=s+1}^{q} g_i + q - s + (q-1)(\max(m_{i,1}, \max_{i,j \neq i}(a_{i,j}, b_{j,i})). \]

For simplicity, let \(\lambda = (\max(m_{i,1}, \max_{i,j \neq i}(a_{i,j}, b_{j,i})) and assume for all \(i \) such that \(s+1 \leq i \leq q \), we have
\[|y|_{x_i} = g_i + 1 + \gamma_i \lambda + r_i, \]
where \(\gamma_i \) is a non-negative integer and \(0 \leq r_i < \lambda \). It follows that
\[\sum_{i=s+1}^{q} |y|_{x_i} = \sum_{i=s+1}^{q} g_i + q - s + \sum_{i=s+1}^{q} \gamma_i \lambda + \sum_{i=s+1}^{q} r_i \]
\[\geq \sum_{i=s+1}^{q} g_i + q - s + (q-1)\lambda, \]
which implies
\[\sum_{i=s+1}^{q} \gamma_i \lambda + \sum_{i=s+1}^{q} r_i \geq (q-1)\lambda = (s-1)\lambda + (q-s)\lambda. \]
Since \(r_i < \lambda \) for all \(i \) between \(s+1 \) and \(q \), we have
\[\sum_{i=s+1}^{q} r_i < (q-s)\lambda. \]
So we get that
\[\sum_{i=s+1}^{q} \gamma_i \lambda \geq (s-1)\lambda + (q-s)\lambda - \sum_{i=s+1}^{q} r_i \]
\[> (s-1)\lambda + (q-s)\lambda - (q-s)\lambda \]
\[= (s-1)\lambda. \]
Since \(\sum_{i=s+1}^{q} \gamma_i \) is a non-negative integer, the previous inequality \(\sum_{i=s+1}^{q} \gamma_i \lambda > (s-1)\lambda \) implies that
\[\sum_{i=s+1}^{q} \gamma_i \geq s. \]
(When reading the remainder of this proof the reader may wish to refer to Example 1 below.)

For simplicity, let \(C = \{x_1, x_2, \ldots, x_s\} \) and \(D = \{x_{s+1}, x_{s+2}, \ldots, x_q\} \). Note that if \(x_i \in C \), then there exists a \(T_i \) of the form (3) such that \(T_i \subset S \). (If \(x_i \in S \), then \(g_i = -1 \) and so \(|y|_{x_i} \geq 0 \) implies \(x_i \in D \).) If \(s < \gamma_{s+1} \), then associate all \(s \) letters in \(C \) with \(x_{s+1} \); otherwise, associate the first \(\gamma_{s+1} \) letters from \(C \) with \(x_{s+1} \). If \(s < \gamma_{s+1} + \gamma_{s+2} \), then associate the remaining \(s - \gamma_{s+1} \) letters from \(C \) with \(x_{s+2} \); otherwise, associate the next \(\gamma_{s+2} \) letters from \(C \) with \(x_{s+2} \). If \(s < \gamma_{s+1} + \gamma_{s+2} + \gamma_{s+3} \), then associate the remaining \(s - \gamma_{s+1} - \gamma_{s+2} \) letters from \(C \) with \(x_{s+3} \);
otherwise, associate the next γ_{s+3} letters from C with x_{s+3}. Repeat this process until every letter in C has an associated letter in D (which we know is possible by (4)). Once this process is completed, every letter in C will be associated with exactly one letter in D and every letter x_i in D will be associated with at most γ_i letters of C. Let x_c be a letter from C and let x_d be its associated letter in D (note that $\gamma_d \geq 1$ by definition). By the division algorithm, we get $|y|_{x_c} = q_c m_{c,1} + r_c$ where $0 \leq r_c < m_{c,1}$. Consider the first occurrence of a x_c in y. If it is preceded by $b_{d,c} x_d$'s, then use a $x_d^{b_{d,c}}$ to match the first x_c and the first $b_{d,c} x_d$'s. If not, then it must be followed by $a_{c,d} x_d$'s. If that is the case, use $x_d^{a_{c,d}}$ to match the first x_c and the first $a_{c,d} x_d$'s that follow the first x_c. Now consider the second occurrence of a x_c. If it is preceded by $b_{d,c}$ unmatched x_d's, then use a $x_d^{b_{d,c}} x_c$ to match the second x_c and the first previously unmatched $b_{d,c} x_d$'s. If not, then it must be followed by $a_{c,d}$ unmatched x_d's. If this is the case, then use a $x_d^{a_{c,d}}$ to match the second x_c and the first $a_{c,d}$ unmatched x_d's that follow the second x_c. Repeat this process for the first $r_c x_c$'s. This process will work because once we get to the r_c'th x_c, we still have at least

$$\left(\max\left(\sum_{i} m_{i,1}\right)\left(\max\left(\sum_{i,j} a_{i,j} b_{j,i}\right)\right) - (r_c - 1)\left(\max\left(\sum_{i,c,d} a_{c,d}, b_{d,c}\right)\right)\right)$$

unmatched x_d's. This ensures that the r_c'th x_c is either preceded by $b_{d,c} x_d$'s or followed by $a_{c,d} x_d$'s. Once we match the first $r_c x_c$'s, use $q_c x_d^{m_{c,1}}$'s to match the remaining x_c's. This procedure will match every x_c in y and less than λx_d's. Repeat the procedure above for every letter in C with respect to their associated letter in D so that every occurrence of a letter in C has been matched. Let x_i be an arbitrary letter in D. After every letter in C has been matched in y, less than $\gamma_i \lambda x_i$'s have been matched. Thus, for each i such that $s + 1 \leq i \leq q$, there are at least $g_i + 1$ unmatched x_i's in y. In which case use x_i's or if $x_i \not\in S$, use the elements in the set

$$\{x_i^{m_{i,1}}, x_i^{m_{i,2}}, \ldots, x_i^{m_{i,h}}\}$$

to match the remaining x_i's in y. Every digit in y has now been matched and therefore, $y \in S^\dagger$.

\[\square\]

Remark 1. If S^\dagger is co-finite, then for all i, there exists a T_i in S of the form (2) or (3). It should be noted that for any i, several T_i's of the form (3) could be in S and if $\{x_i\} \not\subseteq S$, our choice of T_i could impact the bound we obtain in Theorem 3. Let i be arbitrary and assume $\{x_i\} \not\subseteq S$. To obtain the smallest possible bound in Theorem 3 choose a T_i of the form (3) that includes every string of x_i's in S (ensuring g_i and $m_{i,1}$ are as small as possible) and strings of the form $x_i x_i^r$ and $x_i^s x_i$ for each j where r and s are as small as possible (ensuring $a_{i,j}$ and $b_{j,i}$ are as small as possible for all j).

The following example illustrates the procedure described in the proof of Theorem 3.

6
Example 1. Consider the set

\[S = \{x_1^2, x_1, x_2^3, x_2^2, x_3, x_3^2, x_3^4, x_4, x_1 x_2, x_2 x_1, x_2 x_1^3, x_1 x_3, x_3 x_1, \\
 x_1 x_4, x_4^2, x_2 x_3, x_3 x_2, x_3^2 x_2, x_3 x_2^3, x_4 x_2, x_3 x_4^3, x_4^2 x_3, x_4^2 x_3 \}. \]

It can be observed that the set \(S \) is of the required construction to make \(S^\dagger \) co-finite by Theorem \(\text{3} \). Furthermore, we get the following values:

\[
\begin{align*}
 g_1 &= (2)(5) - 2 - 5 = 3, \\
 g_2 &= (3)(4) - 3 - 4 = 5, \\
 g_3 &= (2)(3) - 2 - 3 = 1, \\
 g_4 &= -1, \\
 \max_i (m_{i,1}) &= \max(2, 3, 2, 0) = 3, \\
 \max_{i,j,j \neq i} (a_{i,j}, b_{i,j}) &= \max(1, 2, 3, 1, 1, 1, 1, 2, 3, 0, 0, 2, 2, 3, 2, 3, 3, 0, 0, 3, 2, 0, 0) = 3.
\end{align*}
\]

By Theorem \(\text{3} \), \(S^\dagger \) contains every 4-ary word of length at least

\[3 + 5 + 1 + (-1) + 4 + (4 - 1)(3)(3) = 39. \]

Consider the word

\[y = x_3 x_3 x_4 x_2 x_4 x_3 x_3 x_4 x_1 x_4 x_2 x_3 x_4 x_3 x_4 x_2 x_3 x_4 x_1 x_4 x_2 x_3 x_4 x_1 x_4 x_2 x_3 x_4 x_2. \]

Since \(|y| = 39 \), we will be able to match all the letters in \(y \) using the procedure detailed in Theorem \(\text{3} \) above. For simplicity, let \(i \) denote \(x_i \) for all \(i \) such that \(1 \leq i \leq 4 \). So we get

\[y = 334243341423432413441442344433434344342. \]

Step 1: Determine which letters go in the sets \(C \) and \(D \).

Since \(|y|_1 = 3 \leq g_1 \) and \(|y|_2 = 5 \leq g_2 \), \(1, 2 \in C \). Since \(|y|_3 = 13 > g_3 \) and \(|y|_4 = 18 > g_4 \), \(3, 4 \in D \).

Step 2: Determine the associated \(\gamma \) for each element of \(D \).

Note that \(\lambda = 9 \). Then

\[|y|_3 = 13 = 1 + 1 + (1)(9) + 2 = g_3 + 1 + g_3 \lambda + r_3 \implies \gamma_3 = 1 \]

and

\[|y|_4 = 18 = -1 + 1 + (2)(9) + 0 = g_4 + 1 + g_4 \lambda + r_4 \implies \gamma_4 = 2. \]

Step 3: Associate every letter in \(C \) with a single letter in \(D \).

Since \(\gamma_3 = 1 < 2 = |C| \), associate only the first letter in \(C \) with 3 in \(D \). Thus, 1 is associated with 3. Since \(|C| \leq \gamma_3 + \gamma_4 \), associate the remaining letter(s) in \(C \) with 4. Thus, 2 is associated with 4.

Step 4: Match every occurrence of a letter in \(C \) in \(y \).

We will match the 1’s first. Note that \(|y|_1 = (1)(2) + 1 = q_1 m_{1,1} + r_1 \). In \(y \), the first occurrence of a 1 is preceded by \(b_{3,1} = 1 \) occurrences of 3. Thus, use a 31 to match the first 3
and the first 1. Note that in all the lines below, a letter that is underlined is currently being matched and a letter that is overlined has been previously matched.

\[31 \Rightarrow \overline{334243341423434241344144234443343444342} \]

We have matched \(r_1 \) 1’s, so now we need \(q_1 = 1 \) copies of \(1^{m_{1,1}} = 1^2 \) to match the remaining 1’s.

\[11 \Rightarrow \overline{334243341423434241344144234443343444342} \]

Now we match the 2’s. Note that \(|y|_2 = (1)(3) + 2 = q_2 m_{2,1} + r_2 \). The first occurrence of a 2 in \(y \) is not preceded by \(b_{4,2} = 3 \) occurrences of 4. Thus, we use a \(24^{q_{2,4}} = 24^3 \) to match the first 2 and the first three 4’s that follow the first 2.

\[2444 \Rightarrow \overline{334243341423434241344144234443343444342} \]

The second occurrence of a 2 in \(y \) is not preceded by three unmatched 4’s. Thus, we will use another \(24^3 \) to match the second 2 and the first three unmatched 4’s that follow the second 2.

\[2444 \Rightarrow \overline{334243341423434241344144234443343444342} \]

We have matched \(r_2 \) 2’s, so now we need \(q_2 = 1 \) copies of \(2^{m_{2,1}} = 2^3 \) to match the remaining 2’s.

\[222 \Rightarrow \overline{334243341423434241344144234443343444342} \]

Step 5: Match every remaining occurrence of a letter in \(D \) in \(y \).

First we match the remaining 3’s. Since there are at least \(g_3 + 1 = 2 \) unmatched 3’s remaining, we can use the \(3^{m_{3,1}} = 3^2 \) and \(3^{m_{3,2}} = 3^3 \) strings to match the remaining 3’s. Since there are twelve unmatched 3’s remaining, we can use six \(3^2 \)’s.

\[33 \Rightarrow \overline{334243341423434241344144234443343444342} \]

Next we match the remaining 4’s. Since \(4 \in S \), clearly we can match the twelve remaining unmatched 4’s using twelve 4’s (for simplicity, the line below symbolizes repeating the process twelve times).

\[4 \Rightarrow \overline{334243341423434241344144234443343444342} \]

Now we have matched every letter in \(y \) and it follows that \(y \in S^\dagger \).

Corollary 4. Assume \(S^\dagger \) is co-finite and let \(n \) be the length of a longest word in the set \(S \). Then the length of a longest word not in \(S^\dagger \) is less or equal to \((2q - 1)n^2 - (5q - 2)n + 3q - 2 \).
Proof. For simplicity, let \(k \) denote the length of a longest word not in \(S^\dagger \). By Lemma \(2 \), for each \(i \in \{1,2,\ldots,q\} \), the collection \(\mathcal{T}_i \) is non-empty. By Theorem \(3 \) (if \(\{x_i\} \not\subseteq \mathcal{T}_i \) for some \(i \), then let \(T_i \) be a subset of \(S \) of the form \(3 \)), \(k \) is at most

\[
\sum_{i=1}^{q} g_i + q + (q-1)(\max(m_{i,1})(\max(a_{i,j},b_{j,i}))-1.
\]

It is clear that \(\max(m_{i,1}) \leq n-1 \) and \(\max(a_{i,j},b_{j,i}) \leq n-1 \). Each \(g_i \) is either \(-1\) or

\[
g(m_{i,1},m_{i,2},\ldots,m_{i,h_i}) \leq (m_{i,1})(m_{i,h_i}) - m_{i,1} - m_{i,h_i} \leq (n-1)n - (n-1) - n = n^2 - 3n + 1
\]

by (1). Since \(n^2 - 3n + 1 \geq -1 \) for all \(n \in \mathbb{Z} \), it follows that

\[
k \leq \sum_{i=1}^{q} g_i + q + (q-1)(\max(m_{i,1})(\max(a_{i,j},b_{j,i}))-1
\]

\[
\leq q(n^2 - 3n + 1) + q + (q-1)(n-1)^2 - 1
\]

\[
= qn^2 - 3qn + q + qn^2 - n^2 - 2qn + 2n + q - 2
\]

\[
= (2q-1)n^2 - (5q-2)n + 3q - 2.
\]

Remark 2. The last corollary implies that the length of a longest word not in \(S^\dagger \) is at most quadratic in the length of a longest word in \(S \).

Theorem 5. Assume \(S^\dagger \) is co-finite and let \(m \) be the length of a shortest word in \(S \).

- If \(m = 1 \) then \(|S| \geq q \).
- If \(m = 2 \) then \(|S| \geq q^2 + q \).
- If \(m \geq 3 \) then \(|S| \geq 2q^2 \).

In each case the bound on \(|S| \) is tight.

Proof. It is clear that \(S \) must contain at least one word with just \(x_i \)'s for every \(i \). It follows that \(|S| \geq q \). The set \(S = \{x_1,x_2,\ldots,x_q\} \) is a set of size \(q \) such that \(S^\dagger \) is co-finite. Assume \(m \geq 2 \). Then \(\{x_i\} \not\subseteq S \) for all \(i \). To ensure every sufficiently long string of \(x_i \)'s is in \(S^\dagger \) for all \(i \), \(S \) must have at least two strings of \(x_i \)'s for all \(i \). Furthermore, to ensure \(x_ix_j^s \in S^\dagger \) for all \(i, j \) and sufficiently large \(s \) such that \(i \neq j \), \(S \) must contain a string consisting of a single \(x_i \) followed by at least one \(x_j \) for all \(i \) and \(j \) such that \(i \neq j \). Therefore, \(|S| \geq 2q + q(q-1) = q^2 + q \).

It can be observed (by Theorem \(3 \)) that the set

\[
S = \bigcup_{i=1}^{q} \{x_i^2,x_i^3\} \cup \bigcup_{j=1,i=1}^{q} \{x_ix_j\}
\]

is a set of size \(q^2 + q \) such that \(S^\dagger \) is co-finite. Now assume \(m \geq 3 \). By Lemma \(2 \) for all \(i \in \{1,2,\ldots,q\} \), there exists a \(T_i \) in \(S \) of the form \(3 \). Furthermore, all of the \(T_i \)'s are pairwise
disjoint (i.e. if \(i \neq j \), then \(T_i \cap T_j = \emptyset \)). Thus, \(|S| \geq q|T_i| \geq q(2 + 2(q - 1)) = 2q^2 \). It can be observed (by Theorem 3) that the set
\[
S = \bigcup_{i=1}^{q} \{x_i^m, x_i^{m+1}\} \cup \bigcup_{j=1}^{q} \bigcup_{i=1, j \neq i}^{q} \{x_i x_j^{m-1}, x_j^{m-1} x_i\}
\]
is a set of size \(2q^2 \) such that \(S^\dagger \) is co-finite.

Remark 3. Note that the lower bound on \(|S| \) does not depend on \(m \). This is significantly different from the case of concatenation: for \(S^* \) to be co-finite, the cardinality of \(S \) must be exponential in \(m \).

4 A prototypical case

To find a general formula for the length of a longest word not in \(S^\dagger \) for an arbitrary set \(S \) such that \(S^\dagger \) is co-finite is a difficult task. So instead we restrict our efforts to a family of what we deem to be the simplest constructions of \(S \) such that \(S^\dagger \) is co-finite. We define each \(T_i \) in the following way:
\[
T_i = \{x_i^m, x_i^{m+1}\} \cup \bigcup_{j=1}^{q} \bigcup_{j \neq i}^{q} \{x_i x_j^{m-1}, x_j^{m-1} x_i\}.
\]

This results in a set \(S \) of the form
\[
S = \bigcup_{i=1}^{q} \{x_i^m, x_i^{m+1}\} \cup \bigcup_{j=1}^{q} \bigcup_{i=1, j \neq i}^{q} \{x_i x_j^{m-1}, x_j^{m-1} x_i\}.
\]
The cases when \(q = 1 \) and \(m = 1 \) are both trivial so we restrict our attention to when \(q, m \geq 2 \).

In this section we prove that the length of the longest word not in \(S^\dagger \) is \(2q - 1 \) when \(m = 2 \) and \(qm^2 - 2qm + 2m - 1 \) when \(m \geq 3 \). We also find some elementary bounds on the number of words not in \(S^\dagger \). For the rest of this section, unless explicitly stated, assume the set \(S \) has the construction above.

Theorem 6. If \(q \geq 1 \) and \(m = 2 \), the length of a longest word not in \(S^\dagger \) is \(2q - 1 \).

Proof. Consider the word \(y = x_1^2 x_2^2 \cdots x_{q-1}^2 x_q \). It is clear that we cannot use a \(x_i^3 \) to match any letters in \(y \) for any \(i \). The only other words in \(S \) are of even length. Since it is impossible to match a word of odd length with only even words, \(y \not\in S^\dagger \). We claim that every \(q \)-ary word of length at least \(2q \) is in \(S^\dagger \). When \(q = 1 \), clearly every unary word of length at least 2 is in \(S^\dagger \) (since \(g(2, 3) = 1 \)). Assume the claim holds for some \(q \geq 1 \). It suffices to show that the claim holds for \(q + 1 \). Let \(y \) be a \((q + 1)\)-ary word of length at least \(2(q + 1) = 2q + 2 \). If every letter has either 0 or at least 2 occurrences, then \(y \) can be matched using the set
\[
\bigcup_{i=1}^{q+1} \{x_i^2, x_i^3\}.
\]
If not, then there exists an i such that $|y|_{x_i} = 1$. Let x_j be another letter in y. Then we can either use an $x_i x_j$ or an $x_j x_i$ to match the only x_i and one of the x_j's. Thus, y is a q-ary word of length at least $2q$ (which we know is in S^\dagger by our induction hypothesis) shuffled with a word from S. Thus $y \in S^\dagger$ and the result follows by induction on q.

Theorem 7. If $q \geq 2$ and $m \geq 3$, the length of a longest word not in S^\dagger is $qm^2 - 2qm + 2m - 1$.

Proof. Follows directly from Lemmas 8, 11 and 12 below.

Lemma 8. If $q \geq 2$ and $m \geq 3$, there exists a q-ary word y of length $qm^2 - 2qm + 2m - 1$ such that $y \notin S^\dagger$.

Proof. Let $y = x_1^{m-2} x_2^{m-2} \cdots x_{q-1}^{m-2} x_q^{qm^2 - 3qm + 3m + 2q - 4} x_1$ and assume for the sake of contradiction that $y \in S^\dagger$. By observation, the only way we can match the x_1's is if we use $m - 2$ $x_1 x_q^{m-1}$'s and a single $x_q^{m-1} x_1$. Furthermore, the only way we can match the x_2's is using $m - 2$ $x_2 x_q^{m-1}$'s. We repeat this process until we match the x_{q-1}'s with $m - 2$ $x_{q-1} x_q^{m-1}$'s. This leaves $qm^2 - 3qm + 3m + 2q - 4 - (q - 1)(m - 2)(m - 1) = m^2 - m - 1$ unmatched x_q's and since $g(m, m + 1) = m^2 - m - 1$, it is impossible to match the remaining unmatched x_q's. It follows that $y \notin S^\dagger$.

Lemma 9. If $q \geq 1$ and $m \geq 3$, then every q-ary word y of length at least $(q - 1)m^2 - 2qm + 3m + 1$ has at least one letter x_i such that $|y|_{x_i} \geq m + 1$.

Proof. It is clear that a longest q-ary word that does not contain $m + 1$ occurrences of any letter is of length qm. The result follows if $(q - 1)m^2 - 2qm + 3m + 1 \geq qm + 1$. We verify that

$$(q - 1)m^2 - 2qm + 3m + 1 - (qm + 1) = (q - 1)m^2 - 3(q - 1)m = (m - 3)(q - 1)m \geq 0.$$

Lemma 10. If $q \geq 1$ and $m \geq 3$, then every q-ary word y whose length is a multiple of m and is at least $(q - 1)m^2 - 2qm + 3m$ satisfies $y = w \sqcup \sqcup z$, where w is a word in S^\dagger and z has length exactly $(q - 1)m^2 - 2qm + 3m$.

Proof. If $|y| > (q - 1)m^2 - 2qm + 3m$ then by Lemma 9 there is some letter x_i such that $|y|_{x_i} \geq m$. We can therefore match x_i^m in y. Repeat this process until there are exactly $(q - 1)m^2 - 2qm + 3m$ unmatched letters. The matched letters form a word $w \in S^\dagger$ and the unmatched letters form the word z.

Lemma 11. If $q \geq 1$, $m \geq 3$ and every q-ary word of length $(q - 1)m^2 - 2qm + 3m$ is in S^\dagger, then every q-ary word of length at least $qm^2 - 2qm + 2m$ is in S^\dagger.

11
Proof. Assume that \(y \) is a \(q \)-ary word of length at least \(qm^2 - 2qm + 2m \). Since \(|y| - [(q - 1)m^2 - 2qm + 3m] \geq qm^2 - 2qm + 2m - [(q - 1)m^2 - 2qm + 3m] = m^2 - m > m^2 - m - 1 = g(m, m+1) \), we can write
\[
|y| - [(q - 1)m^2 - 2qm + 3m] = rm + s(m + 1)
\]
for some non-negative integers \(r \) and \(s \). By Lemma 9 we can match letters in \(y \) by making \(r \) choices from \(\{x_1^m, x_2^m, \ldots, x_q^m\} \) and \(s \) choices from \(\{x_1^{m+1}, x_2^{m+1}, \ldots, x_q^{m+1}\} \), leaving exactly \((q - 1)m^2 - 2qm + 3m \) unmatched letters. Let \(z \) denote the word of length \((q - 1)m^2 - 2qm + 3m \) consisting of these unmatched letters. By hypothesis we have \(z \in S^\dagger \). Therefore \(y \) consists of a word in \(S^\dagger \) shuffled with words in \(S \) and so \(y \in S^\dagger \), as required.

In the next lemma we will repeatedly apply the following procedure.
\textsc{match}(y, i, j, r, y):

\begin{itemize}
 \item Repeat \(r \) times for the first \(r \) occurrences of \(x_i \).
 \begin{itemize}
 \item Consider the first unmatched occurrence of \(x_i \) in \(y \).
 \item If there are at least \(m - 1 \) unmatched \(x_j \)'s to the left of the chosen \(x_i \) then use a \(x_j^{m-1} \) to match \(m - 1 \) of these \(x_j \)'s and this occurrence of \(x_i \).
 \item If there are at least \(m - 1 \) unmatched \(x_j \)'s to the right of the chosen \(x_i \) then use a \(x_i x_j^{m-1} \) to match \(m - 1 \) of these \(x_j \)'s and this occurrence of \(x_i \).
 \end{itemize}
 \item Use \(\gamma x_i^m \)'s to match \(\gamma m \) unmatched \(x_i \)'s.
\end{itemize}

Lemma 12. If \(q \geq 2 \) and \(m \geq 3 \), then every \(q \)-ary word of length \((q - 1)m^2 - 2qm + 3m \) is in \(S^\dagger \).

Proof. By induction on \(q \). First we prove the result for \(q = 2 \). That is we prove that if \(m \geq 3 \) and
\[
S = \{x_1^m, x_1^{m+1}, x_2^m, x_2^{m+1}, x_1 x_2^{m-1}, x_2^{m-1} x_1, x_2 x_1^{m-1}, x_1^{m-1} x_2\},
\]
then every binary word of length \(m^2 - m \) is in \(S^\dagger \).

Let \(y \) be a binary word of length \(m^2 - m \). If \(|y|_x = 1 \) a multiple of \(m \), then clearly \(|y|_{x_2} \) is also a multiple of \(m \) and it follows that \(y \in \{x_1^m, x_2^m\} \). So assume \(|y|_{x_1} = \gamma m + r \) where \(\gamma \) and \(r \) are non-negative integers such that \(0 \leq \gamma \leq m - 2 \) and \(1 \leq r \leq m - 1 \). It follows that \(|y|_{x_2} = (m - 2 - \gamma)m + (m - r) \).

Case 1: \(1 \leq r \leq m - 2 - \gamma \).

Apply \textsc{match}(y, 1, 2, r, \gamma). Lastly, use \(m - r - 1 - \gamma x_2^m \)'s to match the remaining \(x_2 \)'s. This process will match exactly \(\gamma m + r x_2 \)'s and \(r(m - 1) + (m - r - 1 - \gamma)m = m^2 - m + m - \gamma m + m = (m - 2 - \gamma)m + (m - r) \) \(x_2 \)'s. This procedure is possible because once we make it to the \(r \)-th \(x_1 \), there are at least \((m - 2 - \gamma)m + (m - r) - (r - 1)(m - 1) = m^2 - \gamma m - rm - 1 \geq m^2 - \gamma m - (m - 2 - \gamma)m - 1 = 2m - 1 \) unmatched \(x_2 \)'s ensuring the \(r \)-th \(x_1 \) is either preceded or followed by \(m - 1 \) unmatched \(x_2 \)'s.

Case 2: \(m - \gamma \leq r \leq m - 1 \).

Apply \textsc{match}(y, 2, 1, m - r, 2 - 2 - \gamma). Lastly, use \(\gamma - m - r + 1 x_1^m \)'s to match the remaining \(x_1 \)'s. This matches exactly \((m - 2 - \gamma)m + (m - r) \) \(x_2 \)'s and \((\gamma - m + r - 1)m + (m - r)(m - 1) = \gamma m - m^2 + rm + m + m^2 - rm - m + r = \gamma m + r x_1 \)'s. This procedure is possible because once we
make it to the \((m-r)\)-th \(x_2\), there are at least
\[\gamma m + r - (m-r-1)(m-1) = \gamma m + r - m^2 + m + rm - r + m - 1 = \gamma m - m^2 + rm + 2m - 1 \geq \gamma m - m^2 + (m-\gamma)m + 2m - 1 = 2m - 1 \]
unmatched \(x_1\)'s ensuring the \((m-r)\)-th \(x_2\) is either preceed or followed by \(m-1\) unmatched \(x_1\)'s.

Case 3: \(r = m - 1 - \gamma\).

Subcase 1: \(y\) ends with a \(x_1\).

Apply \(\text{MATCH}(y, 1, 2, m - \gamma - 1, \gamma)\) but adjust the procedure so that once the first \(m-\gamma-2\) \(x_1\)'s have been matched, match the last \(x_1\) as opposed to the \((m-\gamma-1)\)-st. This procedure matches exactly \(\gamma m + (m-\gamma-1) = \gamma m + r \) \(x_1\)'s and \((m-\gamma-1)(m-1) = m^2 - \gamma m - 2m + \gamma + 1 = \gamma m - 2m + m + \gamma + 1\) \(x_2\)'s. This procedure is possible because once we match the first \(m-\gamma-2\) \(x_1\)'s, there will be \(m-1\) unmatched \(x_2\)'s and they will all be followed by the last \(x_1\).

Subcase 2: \(y\) ends with a \(x_2\).

Apply \(\text{MATCH}(y, 2, 1, \gamma+1, m-2-\gamma)\) but adjust the procedure so that once the first \(\gamma x_2\)'s have been matched, match the last \(x_2\) as opposed to the \((\gamma+1)\)-st. This procedure matches exactly \((\gamma+1)(m-1) = \gamma m + m - 1 - \gamma = \gamma m + r \) \(x_1\)'s and \((m-\gamma-1)(m-1) = m^2 - \gamma m - 2m + \gamma + 1 = \gamma m - 2m + m + \gamma + 1\) \(x_2\)'s. This procedure is possible because once we match the first \(\gamma x_2\)'s, there will be \(m-1\) unmatched \(x_1\)'s and they will all be followed by the last \(x_2\).

In every case, all the letters in \(y\) can be matched using words in \(S\). Thus \(y \in S^\dagger\) and the result follows for \(q = 2\).

Assume the result holds for some \(q \geq 2\). It suffices to show that the result holds for \(q+1\). Let \(y\) be a \((q+1)\)-ary word of length \(qm^2 - 2(q+1)m + 3m\). Assume for the sake of contradiction that \(|y|_{x_i} \geq m^2 - 2m + 1\) for all \(i \in \{1, 2, ..., q+1\}\). Then we get

\[
|y| \geq (q+1)(m^2 - 2m + 1)
= qm^2 - 2qm + q + m^2 - 2m + 1
= qm^2 - 2(q+1)m + m^2 + q - 1
\geq qm^2 - 2(q+1)m + 3m + q - 1
> qm^2 - 2(q+1)m + 3m.
\]

It follows that \(|y|_{x_i} \leq m^2 - 2m\) for some letter \(x_i\) and WLOG we will say it is \(x_a\). If \(|y|_{x_a} = m^2 - 2m\), then we can match all of the \(x_a\)'s with \(m-2\) \(x_a\)'s. Thus, \(y\) consists of a \(q\)-ary word of length \((q-1)m^2 - 2qm + 3m\) shuffled with \(m-2\) \(x_a\)'s. By our induction hypothesis, \(y \in S^\dagger\) and we are done. So assume \(|y|_{x_a} = \gamma m + r\) where \(\gamma\) and \(r\) are non-negative integers such that \(0 \leq \gamma \leq m - 3\) and \(0 \leq r \leq m - 1\). Let \(l\) denote the number of letters in \(y\) that are not \(x_a\)'s. Then

\[l =qm^2 - 2(q+1)m + 3m - \gamma m - r = qm^2 - 2qm + m - \gamma m - r. \]

By the pigeonhole principle, at least one of these letters (call it \(x_b\)) has at least

\[
\left\lceil \frac{qm^2 - 2qm + m - \gamma m - r}{q} \right\rceil \geq \left\lceil \frac{m^2 - 2m + \frac{m - \gamma m - r}{q}}{q} \right\rceil
\]

occurrences in \(y\). If \(\gamma = 0\), then \(\left\lceil \frac{m^2 - 2m + \frac{m - \gamma m - r}{q}}{q} \right\rceil \geq \frac{m^2 - 2m + (m-1)^2}{q} \geq m^2 - 2m + 1\). If \(\gamma \neq 0\), then

\[\left\lceil \frac{m^2 - 2m + \frac{m - \gamma m - r}{q}}{q} \right\rceil \geq \frac{m^2 - 2m + m - \gamma m - r = m^2 - m - \gamma m - r.} \]

Case 1: \(0 \leq r \leq m - 2 - \gamma\).
Apply $\text{MATCH}(y, a, b, r, \gamma)$. Once we get to the r-th x_a, there are at least $(m-1)^2 - (r-1)(m-1) \geq (m-1)^2 - (m-3)(m-1) = 2m - 2$ unmatched x_b's if $\gamma = 0$ and at least $m^2 - m - \gamma m - r - (r-1)(m-1) = m^2 - m - \gamma m - rm - 1 \geq m^2 - m - \gamma m - (m-2)\gamma m - 1 = 2m - 1$ unmatched x_b's if $\gamma \neq 0$. This ensures the r-th x_a is either preceded or followed by $m - 1$ unmatched x_b's. This procedure leaves at least $qm^2 - 2(q+1)m + 3m - (\gamma + r)m \geq qm^2 - 2(q+1)m + 3m - (\gamma + m - 2)\gamma m = (q-1)m^2 - 2qm + 3m$ unmatched letters. These unmatched letters form a word over a q-letter alphabet, which by Lemma 10 can be written as the shuffle of a word in S^\uparrow and a word z of length exactly $(q-1)m^2 - 2qm + 3m$. By the induction hypothesis, the q-ary word z is in S^\uparrow. It follows that y is in S^\uparrow as well.

Case 2: $m - \gamma \leq r \leq m-1$.

Apply $\text{MATCH}(y, b, a, m-r, 0)$. Note that since $m^2 - m - \gamma m - r \geq (m-1)m - (m-3)m - r \geq m - r$, there are at least $m - r x_b$'s in y ($\gamma = 0$ is omitted since it does not fall under this case). Then use $\gamma - m + r + 1 x_a$'s to match the remaining x_a's. Once we get to the $(m-r)$-th x_b, there will still be at least $\gamma m + r - (m-r-1)(m-1) = \gamma m + r - m^2 + m + rm - r - m - 1 \geq \gamma m + (m - \gamma)m - m^2 + 2m - 1 = 2m - 1 x_a$'s ensuring that the $(m-r)$-th x_b is either preceded or followed by $m - 1$ x_a's. This procedure leaves at least $qm^2 - 2(q+1)m + 3m - [(m-r)m + (\gamma - m + r + 1)m] = qm^2 - 2(q+1)m + 3m - (\gamma + 1)m \geq qm^2 - 2(q+1)m + 3m - (m-3+1)m = (q-1)m^2 - 2q m + 3m$ unmatched letters. As in Case 1, we can use Lemma 10 and the induction hypothesis to show that the q-ary word consisting of the unmatched letters is in S^\uparrow, and consequently, so is y.

Case 3: $r = m-1 - \gamma$.

Assume for the sake of contradiction that $|y|_{x_a} = \gamma m + (m-1 - \gamma)$ and $|y|_{x_i} \geq m^2 - 2m + 1$ for all i such that $i \neq a$. Then

$$
|y| \geq \gamma m + (m - \gamma - 1) + q(m^2 - 2m + 1) \\
= \gamma (m-1) + m - 1 + qm^2 - 2qm + q \\
\geq qm^2 - 2qm + q + m - 1 \\
= qm^2 - 2(q+1)m + 3m + q - 1 \\
> qm^2 - 2(q+1)m + 3m.
$$

Thus, there exists another letter (call it x_c) such that $|y|_{x_c} \leq m^2 - 2m$. If $|y|_{x_c} = m^2 - 2m$, then you can match all of the x_c's with $m - 2 x_{c'}$'s. Thus, y consists of a q-ary word of length $(q-1)m^2 - 2qm + 3m$ shuffled with $m - 2 x_{c'}$'s and we are done. So assume $|y|_{x_c} = \delta m + s$ where δ and s are non-negative integers such that $0 \leq \delta \leq m - 3$ and $0 \leq s \leq m - 1$. If $0 \leq s \leq m - 2 - \delta$, then apply Case 1 except with x_c rather than x_a. If $m - \delta \leq s \leq m - 1$, then apply Case 2 except with x_c rather than x_a. If not, then $s = m - 1 - \delta$. Assume that the last occurrence of an x_c is after the last occurrence of an x_a in y. Apply $\text{MATCH}(y, c, a, \gamma + 1, 0)$ but adjust the procedure so that once the first γx_c's have been matched, match the last x_c as opposed to the $(\gamma + 1)$-st. Note that there are at least $\gamma + 1 x_c$'s since $\gamma + 1 \geq m - 3 + 1 = m - 2$ and there are at least $m - 2 x_c$'s by definition. This procedure is possible because once we match the first γx_c's, there will be $m - 1$ unmatched x_c's and they will all be followed by the last x_c. This procedure leaves at least $qm^2 - 2(q+1)m + 3m - (\gamma + 1)m \geq qm^2 - 2(q+1)m + 3m - (m-3+1)m = (q-1)m^2 - 2qm + 3m$ unmatched letters. As in Case 1, we can use Lemma 10 and the induction hypothesis to show that the q-ary word consisting of the unmatched letters is in S^\uparrow, and consequently, so is y.

14
The case is similar if the last occurrence of x_a is after the last occurrence of a x_c in y (just apply $\text{MATCH}(y, a, c, \delta + 1, 0)$ but adjust the procedure so that once the first δ x_a's have been matched, match the last x_a as opposed to the ($\delta + 1$)-st).

In all cases we have shown that $y \in S^\dagger$, so the proof is complete.

This sequence of lemmas completes the proof of Theorem 7. Given that we know the length of a longest word not in S^\dagger for the particular family of sets S studied in this section, a natural question would be to count exactly how many words are not in S^\dagger. Unfortunately, this seems to be rather difficult. Here is a rather weak lower bound.

Theorem 13. Let $t(S)$ denote the number of words not in S^\dagger. If $q \geq 2$ and $m \geq 3$,

$$t(S) \geq \frac{q^{m^2+m+1} - q^{m^2+m} + q^{m+1} - q^{2m+1} + q^m - q}{(q-1)(q^m-1)(q^{m+1}-1)}.$$

Proof. Since each word in S is of length m or $m+1$, it follows that any word with a length that cannot be written as a non-negative integer linear combination of m and $m+1$ is not in S^\dagger. It is clear that ℓ cannot be written as a non-negative integer linear combination of m and $m+1$ if and only if $\ell = \gamma m + r$ for non-negative integers γ and r where $\gamma + 1 \leq r \leq m - 1$. Therefore,

$$t \geq \sum_{i=1}^{m-1} q^i + \sum_{i=2}^{m-1} q^{m+i} + \cdots + \sum_{i=m-1}^{m-1} q^{(m-2)m+i}$$

$$= \sum_{j=1}^{m-1} \sum_{i=j}^{m-1} q^{(j-1)m+i}$$

$$= \sum_{j=1}^{m-1} q^{(j-1)m}(q^m - q^j) \frac{q-1}{q-1}$$

$$= \frac{q^{m^2+m+1} - q^{m^2+m} + q^{m+1} - q^{2m+1} + q^m - q}{(q-1)(q^m-1)(q^{m+1}-1)}.$$

This lower bound could certainly be improved by more complicated arguments, and similarly an upper bound could be calculated as well, but it seems difficult to get an exact, closed-form expression for $t(S)$.

5 Conclusion

One possibility for future work is to improve the upper bound given in Theorem 8. Another issue not addressed in this paper concerns the computational complexity of the following problem: *Given a set of words S such that S^\dagger is co-finite, what is the length of a longest word not in S^\dagger?* We have given an upper bound for this length but we have not given an algorithm to determine it exactly. Returning for a moment to the classical Frobenius problem, we note that Ramírez–Alfonsín showed that computing the Frobenius number for
a given set of integers is NP-hard with respect to Turing reductions \[5\]. We also claimed in our introduction that the classical Frobenius problem is equivalent to the special case of the problem considered in this paper where the set S is over a unary alphabet. However, this is not entirely true from the point of view of computational complexity. In the classical setting, the size of the inputs m_1, m_2, \ldots, m_k would be measured in terms of the lengths of their base-2 representations (i.e., in terms of their base-2 logarithms); in our setting, these integers are represented as the unary strings $0^{m_1}, 0^{m_2}, \ldots, 0^{m_k}$. With respect to this unary representation, the classical Frobenius problem is solvable in polynomial time. Over larger alphabets, however, we don’t know what the computational complexity is of determining the length of a longest word not in S^\dagger.

References

[1] A. Brauer, On a problem of partitions, Amer. J. Math. 64 (1942), 299–312.

[2] S. Eilenberg, S. MacLane, On the groups of $H(\Pi, n)$. I., Annals of Mathematics (2) 58 (1953), 55–106.

[3] M. Jantzen, The power of synchronizing operations on strings, Theoret. Comput. Sci. 14 (1981), 127–154.

[4] M. Jantzen, Extending regular expressions with iterated shuffle, Theoret. Comput. Sci. 38 (1985), 223–247.

[5] J. L. Ramírez Alfonsín, Complexity of the Frobenius problem, Combinatorica 16 (1996), 143–147.

[6] J. L. Ramírez Alfonsín, The Diophantine Frobenius Problem, Oxford University Press, 2005.

[7] M. Warmuth, D. Haussler, On the complexity of iterated shuffle, J. Computer and System Sciences 28 (1984), 345–358.

[8] Z. Xu, The Frobenius Problem in a Free Monoid, Ph.D. thesis, University of Waterloo, 2009.