Objective: To determine the incidence of HIV acquisition in women postrape compared with a cohort of women who had not been raped.

Design: A prospective cohort study.

Methods: The Rape Impact Cohort Evaluation study based in Durban, South Africa, enrolled women aged 16–40 years from postrape care services, and a control group of women from Primary Healthcare services. Women who were HIV negative at baseline (441 in the rape-exposed group and 578 in the control group) were followed for 12–36 months with assessments every 3 months in the first year and every 6 months thereafter. Multivariable Cox regression models adjusted for baseline and time varying covariates were used to investigate the effect of rape exposure on HIV incidence over follow-up.

Results: Eighty-six women acquired HIV during 1605.5 total person-years of follow-up, with an incident rate of 6.6 per 100 person-years [95% confidence interval (CI): 4.8–9.1] among the rape exposed group and 4.7 per 100 person-years (95% CI: 3.5–6.2) among control group. After controlling for confounders (age, previous trauma, social support, perceived stress, multiple partners and transactional sex with a casual partner), women exposed to rape had a 60% increased risk of acquiring HIV [adjusted hazard ratio: 1.59 (95% CI: 1.01–2.48)] compared with those not exposed. Survival analysis showed difference in HIV incident occurred after month 9.

Conclusion: Rape is a long-term risk factor for HIV acquisition. Rape survivors need both immediate and long-term HIV prevention and care.

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc.

AIDS 2021, 35:633–642

Keywords: HIV acquisition, HIV incidence, rape, sex-based violence, sexual violence, South Africa

Introduction

The intersecting and globally ubiquitous epidemics of rape and HIV are both partially driven by sex inequality [1,2]. This was demonstrated in a meta-analysis of four cohort studies included in a larger systematic review on the association between HIV and intimate partner violence (IPV) (n = 28 studies). Physical IPV [relative
risk (RR): 1.22; 95% confidence interval (CI): 1.01–1.46] and any type of IPV (physical, sexual and psychological) (RR: 1.28; 95% CI: 1.00–1.64) were shown to be associated with greater HIV incidence [3]. The pathways by which IPV increases exposure to HIV infection in women include increased risk of direct transmission. Male partners who perpetrate IPV have more risky sexual behaviours, including multiple sexual partners and transactional sex, greater controlling behaviours, and more frequent substance use compared with nonviolent men. Pathways for indirect exposure to HIV infection include increases in subsequent risk behaviour and substance use among IPV survivors, often linked to adverse mental health outcome such as anxiety and depression [2,4–8].

Modelling studies in conflict settings [8,9] suggest a possible impact of rape on HIV incidence but the lack of data highlight the limitations of these epidemiological projections. To date, there are extremely limited observational data on the risk of HIV acquisition among women following exposure to rape. In particular, there are no data that elucidate on the possibility of greater HIV risk associated with the rape itself as well as the potential for sustained increases in HIV risk linked to the physical and psychosocial sequelae of experiencing rape. These co-occurring problems of rape and HIV infection are of particular concern for sub-Saharan Africa, which has the largest HIV burden globally [10], and high prevalence of IPV [11]. Unsurprisingly, there has been a call for more robust longitudinal studies to quantify the health burden of sexual violence in a range of settings and populations [1–3,6,12]. This article aims to address this gap by presenting findings from the first longitudinally study to assess the effects of rape on the incidence of HIV infection among women.

Methods

Study design

Women aged 16–40 years old were enrolled into a comparative cohort study, the Rape Impact Cohort Evaluation study. Women who attended postrape services after rape exposure (defined as nonconsensual penile-vaginal penetration) were included in the exposed group. Women in the control group were recruited from primary healthcare (PHC) clinics. Recruitment took place between October 2014 and April 2019 (42 months). Participants were followed for a minimum of 12 months and a maximum of 36 months, with final follow-up interviews conducted in March 2020. Assessment was done every 3 months in the first year and every 6 months thereafter to a maximum of eight follow-up interviews per participant. Ethical approval was granted by the South African Medical Research Council Ethics Committee (Protocol ID-EC019-10/2013). The full study design is reported elsewhere [13].

Setting

The study was based in the greater Durban area in the KwaZulu-Natal Province of South Africa. Rape-exposed participants were recruited from five postrape service centres based at tertiary level public hospitals (four Thuthuzela Care Centers and a Crisis Clinic) [14]. Nonrape-exposed women were recruited from PHC clinics adjacent to the rape services; these were mainly Family Planning and Child Wellness services.

Sample size calculation

Assuming a HIV incidence of 9 and 6% among the rape-exposed and nonexposed groups respectively [13], and to achieve 90% power to detect a significant difference in HIV incidence, 1008 participants were to be recruited in each cohort. In practice, however, recruiting rape-exposed participants took longer than anticipated resulting in logistical and budgetary constraints. Following consultation with the study statistician on the likely power required for the final analysis, recruitment was stopped in March 2019 and the last women enrolled were followed-up for 12 months. The final sample comprised of 852 rape-exposed and 947 nonrape-exposed women.

Participant selection criteria

Women were eligible for inclusion in the rape-exposed cohort if the baseline interview took place within 20 calendar days of the index rape event. This was to ensure the temporal sequence of HIV testing and mental health assessments. Rape survivors who were severely mentally distressed or had cognitive disabilities were excluded. Women recruited at PHC clinics were screened for lifetime exposure to rape/forced sex and were excluded if childhood, intimate partner or nonpartner rape/forced sex were reported. Also excluded from both arms were women enrolled in other studies, more than 14 weeks pregnant or who were lactating, since HIV-positive lactating women are managed by different protocols.

Retention of study participants

Participant follow-up was maintained through regularly updating of contact details and a retention counsellor assisted with barriers and logistics that is transport assistance. A trauma counsellor provided short-term counselling on request, including immediate counselling for those flagged during mental health assessments. Clinical staff provided pre and post-HIV test counselling and other health promotion (e.g. HIV-risk reduction). A home visitation program was initiated for those who missed follow-up visits. Participant reimbursements were incrementally increased by R20 (US$1.2) per follow-up visit. Other initiatives to create a positive experience included a snack (sandwich) with tea and personal care services such as offering hand massages for women in the study waiting rooms.
Variables and measurements

Biological investigations
We assessed HIV-1/2 serostatus using WHO recommended algorithms for HIV diagnosis in high prevalence settings [15]. An initial rapid test was performed with Alere Determine Rapid (Abbott Laboratories, Tokyo, Japan), with a confirmatory test using the FDA-approved Uni-Gold Recombigen HIV1/2 test (Trinity Biotech PLC, Wicklow, Ireland). A second confirmatory test was done on positive and equivocal results using the Abbot IMX ELISA (Abbott Laboratories, Africa Division) in combination with the Vironostika HIV1/2 ELISA. Herpes Simplex (HSV2) was tested with Platelia HSV 1+2 IgG (Bio-Rad, Steenvoorde, France). Trichomonas vaginalis was tested with a self-collected vaginal swab using the OSOM Trichomonas Rapid Test (OSOM Sekisui Diagnostics (UK) Limited, Kent, UK) [16]. Participants who tested positive for T. vaginalis were treated onsite.

Sociobehavioural assessments
We collected questionnaire data via face-to-face interviews supported by a web-based data collection system. In 2017, we introduced self-completion of aspects of follow-up interviews. Sociodemographic data included age, education (<12 years), employment status (full-time/part-time/self-employment), reliance on a government Child Support Grant for children in low-income households, settlement type (formal-urban/informal-urban/rural) and food insecurity as a proxy measure for poverty. Food insecurity was assessed by how often people in the home went without food, (never/seldom or sometimes/often). Community social support was measured by how easy or difficult it was to borrow money [R200 (US$ 12)] for an emergency (easy/very easy or quite difficult/very difficult) [17].

Sexual reproductive health and sexual risk behaviours
Sexual behavioural measures included ever having had consensual sex, age at first sex (<16 years), condom use in past year (always/often or sometimes/never) and pregnancy history. Self-reported history of a sexually transmitted infection (STI) was derived from three questions: ever having had a vaginal discharge/vaginal ulcers or told by a health worker they had an STI. If the rape-exposed women received postexposure prophylaxis (PEP) for the prevention of HIV, self-reported adherence was assessed at the 3-month or next follow-up visit.

Intimate relationships [currently not in a relationship/married or cohabiting/dating (not cohabiting), number and type of sexual partners (main/casual), history of transactional sex with partners (ever/past year)] were assessed using measures derived from South African studies [17,18].

Violence and mental health measures
The widely used South African version of the WHO Multi-Country Study measured ever and past 12-month IPV (emotional/economic/physical/sexual) and non-partner sexual violence [19]. We assessed control in intimate relationships using the South African adaptation of the Relationship Control Scale [20]. Previous trauma was measured using a modified Life Events Checklist [21] and childhood trauma (before the age of 18 years) was measured using a modified version of the Childhood Trauma Questionnaire—Short Form [22]. Sexual violence reported in the latter two scales was important to ensure participants had no previous exposure to rape as per study exclusion criteria. The Davidson Trauma scale assessed Post Traumatic Stress Symptoms [23]. The Center for Epidemiologic Studies Depression Scale examined current depression symptomatology [24]. The Multidimensional Scale of Perceived Social Support measured social support [25] and the Perceived Stress Scale measured perceived stress [26] with a high score indicating better support or greater stress. A brief version of the Alcohol Use Disorders Identification Test (AUDIT), the AUDIT-C, was used to measure alcohol use with high score indicating risky alcohol use [27]. These scales have all been used widely in South Africa.

Statistical analysis
Characteristics of all HIV-negative participants at baseline including sociodemographic, intimate partner and non-partner violence experience, risky sexual behaviour and psychosocial factors were summarized using means and SD or frequencies with percentages. We used the t test for continuous variables and the Pearson’s Chi-square test for categorical variables to assess associations between baseline characteristics and loss-to-follow-up within each exposure group. To assess whether baseline characteristics differentially impacted on loss-to-follow-up between the two groups, we performed a series of logistic regressions with loss-to-follow-up as the outcome and tested for significant statistical interaction between each baseline characteristic and the exposure group. We next compared the baseline characteristics of the women who acquired HIV and those who did not during follow-up using the t test for continuous variables and the Pearson’s chi square for the categorical variables.

Including all women with follow-up data, we calculated incidence rates of HIV for the two groups and summarized the person-years. Time to event analysis was conducted to investigate the effect of rape exposure on HIV acquisition. For participants who zero-converted, time-to-event was measured from time they enrolled into the study to the time of first positive HIV result. Time-to-event was censored at the last visit for those who remained HIV negative or were loss-to-follow-up.

The data were analysed using a Cox proportional hazard model after assessing for the proportional hazard assumption. Predetermined baseline covariates included in the model were participant age and life-time experience of traumatic events. Factors found to be
Table 1. Baseline sociodemographic and behavioural characteristics among participants retained and lost to follow-up at 6 months by exposure group (N = 1019).

	Rape-exposed, n = 441	Unexposed (control group), n = 578	Differential impact on loss to follow-up between groups				
	Retained, n = 280	Lost to follow-up, n = 161	Retained, n = 463	Lost to follow-up, n = 115	P value^a	P value^b	P value^b
Age (years)	23.1 (4.7)	23.2 (4.7)	24.0 (4.6)	23.2 (4.2)	0.786	0.101	0.157
Education grade 12 and more	191 (68.2%)	113 (70.2%)	326 (70.4%)	87 (75.7%)	0.667	0.265	0.589
Employed	62 (22.1%)	47 (29.2%)	63 (13.6%)	15 (13.0%)	0.098	0.874	0.271
Currently in an intimate relationship	221 (78.9%)	123 (76.4%)	389 (84.2%)	102 (88.2%)	0.537	0.226	0.181
IPV	173 (61.8%)	85 (52.8%)	258 (55.7%)	51 (44.4%)	0.065	0.029	0.760
NPSV	4.5 (1.0)	4.5 (1.0)	4.1 (0.3)	4.1 (0.3)	0.605	0.671	0.799
Relationship control scale	20.9 (6.4)	21.3 (6.8)	21.4 (5.3)	22.1 (5.0)	0.487	0.178	0.467
HSV2 positive	136 (55.2%)	83 (51.6%)	234 (54.9%)	52 (45.2%)	0.398	0.064	0.447
Transactional sex	24 (8.6%)	15 (9.3%)	41 (8.9%)	6 (5.2%)	0.791	0.201	0.245
Multiple partners	48 (17.1%)	28 (17.4%)	50 (10.8%)	12 (10.4%)	0.947	0.910	0.896
STI ever	122 (43.6%)	56 (34.8%)	181 (39.1%)	48 (41.7%)	0.13	0.615	0.106
Social support^d	35.2 (5.1)	34.8 (5.7)	34.9 (4.6)	36.2 (4.4)	0.464	0.005	0.009
Perceived stress^e	22.9 (5.7)	23.3 (6.4)	21.5 (5.0)	20.4 (5.0)	0.539	0.035	0.042
Previous experiences of trauma	1.9 (1.7)	1.8 (1.7)	1.1 (1.4)	0.97 (1.2)	0.311	0.547	0.891
Childhood trauma	16.6 (3.6)	16.7 (3.9)	16.0 (2.8)	15.7 (2.9)	0.793	0.368	0.371
Audit C score^f	2.1 (2.6)	1.6 (2.4)	1.6 (2.3)	1.4 (2.3)	0.232	0.417	0.870
PTSS-DTS^g	35.3 (15.9)	33.7 (15.5)	31.7 (9.8)	5.4 (9.1)	0.317	0.322	0.695
Depression-CESD^h	33.2 (12.6)	32.2 (12.5)	13.3 (9.1)	11.9 (8.6)	0.964	0.139	0.221

CESD, Center for Epidemiological Studies Depression; DTS, Davidson trauma scale; HSV2, herpes simplex virus type 2; IPV, intimate partner violence-ever experienced emotional, economical, sexual or physical violence; NPSV, non-partner sexual violence; PTSS, post-traumatic stress syndrome; STI, sexually transmitted infection.

*Pearson’s chi-square and t test were applied to compare the baseline characteristics between the retained and the loss to follow-up within each exposure group.

^aN = 1018, with retained total n = 742 and unexposed retained n = 462.

^bN = 1016, with retained total n = 740 and unexposed retained n = 460.

^dN = 1017, with retained total n = 741 and unexposed retained n = 461.
controls [80.1% (n = 463/578) (Table 1)]. None of the sociodemographic, behavioural or psychosocial factors assessed at baseline were significantly associated with loss-to-follow-up among the rape-exposed group. Among the control cohort, loss-to-follow-up vs. retained participants, reported fewer IPV experiences at baseline, more social support and less stress. Moreover, baseline levels of the latter that is social support and perceived stress impacted more significantly on loss-to-follow-up in control vs. rape-exposed participants (P = 0.009 and 0.042, respectively).

Eighty-six women acquired HIV during 1605.5 total person-years of follow-up: 37 in the exposed group and 49 in the unexposed group (Table 2). Incident rates of 6.6 per 100 person-years of follow-up: 37 in the exposed group and 4.7 per 100 person-years (95% CI: 3.5–6.2) among the control group were found for those retained after baseline. We also summarized the person-years pre- and post-12 months (see Table S1 in Supplementary content 2, http://links.lww.com/QAD/B931). Overall, few significant differences were found between women who acquired HIV and those who did not (Table 3). The mean age at study enrolment was similar [incident HIV: 23.1 years; no incident HIV: 23.6 years (P = 0.383)]. However, women who acquired HIV were less educated (59.3 vs. 71.4%; P = 0.019), and reported more physical IPV in the previous year at baseline (20.9 vs. 12.7%; P = 0.031), but were less likely to have experienced sexual abuse as a child (4.7 vs. 13.0%; P = 0.026).

The Kaplan–Meier survival plot of HIV acquisition over time across the two study arms (Fig. 1) suggested that there was no significant difference in rape incidence until after month 9, after which women exposed to rape were more likely to seroconvert than nonexposed women. Multivariable Cox regression models adjusted for variables associated with differential loss to follow-up (social support and perceived stress), for baseline covariates (age and previous trauma exposure) and time varying covariates known to be associated with HIV risk among South Africa women (multiple sexual partners and transaction sex) showed women recently exposed to rape at study enrolment were nearly 60% more likely to acquire HIV compared with the women not exposed to rape (Table 4), with a hazard ratio of 1.59 in the fully adjusted model (95% CI: 1.01–2.48; P = 0.043). A further series of comprehensive sensitivity analyses showed the finding of sustained increase in HIV risk among women exposed to rape to be consistently robust to a range of analytic approaches shown in the sensitivity analysis presented in the supplementary file (Tables S2–S7 with text on sensitivity analysis in Supplementary content 3, http://links.lww.com/QAD/B932 and Figs. S2–S4 shown in Supplementary content 4, http://links.lww.com/QAD/B933).

Discussion

Our data show that rape is associated with HIV acquisition among women in South Africa. Importantly, we show that exposure to rape increases risk of HIV acquisition over an extended period postrape, rather than being primarily driven by the rape event itself. To our knowledge this is the first longitudinal study of recent rape with a control group to demonstrate such an association. The possibility of direct transmission during the rape event should be considered given that there may have been genital trauma which would have increased the likelihood of HIV transmission [28]. However, we have no information on genital injury or the HIV status of the perpetrators. Four (4/37) rape-exposed women were diagnosed with HIV infection at their 3-month follow-up visit, but it is uncertain whether these women were exposed to HIV before, during, or after the rape. All four women reported receiving PEP postrape and taking the full 28 days of treatment. More importantly, sensitivity analysis using the 3-month postenrolment as the starting point confirms that direct transmission after rape was very
The excess seroconversions among rape-exposed women outside the 3-month window in which they could be reasonably attributed to the rape itself must be due to indirect pathways stemming from increases in other risk factors following the experience of rape. This is analogous to the multiple indirect pathways from IPV to HIV acquisition noted in numerous studies in a wide range of settings [2,3]. Similar indirect pathways are likely post rape, including increasingly poor mental health leading to increases in risky behaviour including multiple, concurrent, transactional sexual partners, low condom usage and increased substance use [2]. A study among female sex workers found alcohol abuse to be associated with sexual violence in the 12-month follow-up period [29]. Understanding these potential pathways will require

Table 3. Baseline sociodemographic, sexual behaviour, relationship and previous trauma characteristics associated with HIV incidence (N = 1019).
Incident HIV: n = 86 (8.4%)
Demographics
Age (years)
Education grade 12 and more
Employed
Income from child support grant (among women with children who are alive)
Settlement area
Formal/Urban
Informal/Urban
Rural
Food security
Sometimes and often the home goes without food
Finding money for an emergency
Sexual behaviours
Ever had sex at baseline
Age at first sex (≤15 years)
Ever pregnant at baseline
Ever transactional sex with main partner
Ever transactional sex with casual partner
Sexually transmitted infection ever
Has had ≥5 partners ever
Has had ≥2 partners in the last year
Rarely use condoms used in past year
Relationship at baseline
Not in a current relationship
Cohabiting/married
Dating not cohabiting
IPV
Emotional IPV ever
Emotional IPV in last 12 months
Economic IPV ever
Economic IPV past 12 months
Physical IPV ever
Physical IPV past 12 months
Sexual IPV ever
Sexual IPV past 12 months
NPSV
Ever IPV and NPSV
Relationship control-scale score
Previous trauma
Experienced two or more previous trauma
Childhood trauma
Experienced 2 or more childhood traumas
Experienced sexual abuse as a child
Experienced physical abuse as a child
Experienced emotional abuse/neglect as a child
Alcohol use
Audit C score

CI, confidence interval; IPV, intimate partner violence; NPSV, non-partner sexual violence.

*Pearson’s chi-square and t test were applied to compare the baseline characteristics for the HIV incidence outcome.

unlikely (Table S7 in Supplementary content 3, http://links.lww.com/QAD/B932).
further exploration of the longitudinal dataset such as the role of mental health outcomes.

The long-term impact of rape on HIV acquisition affirms the potential importance of pre exposure prophylaxis (PrEP) as a biobehavioural intervention for rape survivors [30]. A recent scoping review on the potential benefits of PrEP for IPV survivors shows that this is an emerging area of research [31] and the full benefit of this women-centred approach has not received attention. To our knowledge PrEP is not offered as part of post rape care in South Africa and our study finding increases the urgency to better understand the role of PrEP to prevent HIV among both IPV and rape survivors.

Biological changes are another possible link between rape and prolonged increase in HIV risk. Despite extensive knowledge on the immunity of the female reproductive tract and how inflammatory responses increase the likelihood of HIV acquisition, very little is known about how experiences of violence and rape impact immunity. A small body of emerging research on the immune mechanisms between chronic sexual violence, mental health and HIV susceptibility suggests possible changes in the immunological environment of the genital mucosa [32]. Earlier research on a small cohort of HIV-positive women measured both CD4+ and CD8+ and showed that reduction in CD8+ decline was 70.5% higher in sexually abused women than those who did not report sexual abuse [33]; although this finding was not statistically significant due to small sample size, it nonetheless points to a possible impact of rape on women’s immunity. This warrants future investigation into the inflammatory responses associated with rape and trauma.

The study has strengths and limitations. There were some differences between the groups at baseline such as age and employment but not education and food security (Table S2 in the Supplementary content 3, http://links.lww.com/QAD/B932). Both groups however were within the same age risk profile (mean age: 23.2 vs. 23.8) for HIV infection and we controlled for age within the analysis. Moreover, our findings cannot be generalized to women outside the 16–40-year age group, or outside South Africa, nor can it be generalized to men, transgender or nonbinary people. We used a robust measure (WHO protocol) to test for HIV at each follow-up visit, mirroring diagnostic approaches used in South African. We considered a control arm of women who utilised PHC services would have more similarities with women who sought postrape care, rather than a control group...
Table 4. Cox regression models of relative incidence of HIV amongst all those retained after baseline adjusted for variables associated with drop-out, baseline covariates and time varying covariates (N = 845).

Unadjusted model (N = 845)	Hazard ratio (95% CI)	P value
Unexposed	1.00	–
Rape-exposed	1.42 (0.93–2.18)	0.108

Adjusted for baseline covariates (age and previous trauma experiences) and time-varying covariates (N = 845)

Adjusting for baseline covariates and time varying covariate: multiple partners in follow-up period	Hazard ratio (95% CI)	P value
Unexposed	1.00	–
Rape-exposed	1.57 (1.00–2.44)	0.04

Adjusted for baseline and time varying covariates: combined measure of multiple partners and transactional sex with casual partner (3 levels)

Hazard ratio (95% CI)	P value	
Unexposed	1.00	
Rape-exposed	1.60 (1.03–2.50)	0.037

Adjusted for baseline covariates (age and previous trauma experiences) and variables associated with drop-out (social support and perceived stress) and time varying covariates (combined multiple partners in past year and transactional sex with casual partner) (N = 842)

Hazard ratio (95% CI)	P value	
Unexposed	1.00	
Rape-exposed	1.58 (1.01–2.47)	0.043

Adjusting for baseline covariates and time varying covariate: transactional sex with casual partner in follow-up period

While there may have been unmeasured factors which impacted on HIV acquisition among participants, we have measured and adjusted for the most common behavioural HIV risk factors among women in the study setting. A few sets of studies have found a history of child sexual abuse associated with HIV risk behaviour [35], however, previous exposure to rape, including child rape were exclusion criteria for the nonexposed group, which prevented adjustment for child sexual abuse. We also considered including the T. vaginalis test as an indicator of STI; however, missing data from menstruating participants prevented this analysis.

Conclusion

The current study shows rape is associated with a prolonged increase in the risk of HIV infection. Clinical protocols for postrape care must be updated, as the current focus on providing PEP is insufficient to fully prevent HIV acquisition in the longer term. Rape survivors need long-term follow-up care focusing on their overall well being, psychosocial health and sexual health. Providing this care is complex, as rape survivors are vulnerable to dropping out of care that may remind them of the trauma, a phenomenon seen especially in poor rates of PEP completion [36]. This challenge must be addressed through comprehensive, extended, compassionate care that includes psychosocial support, or our postrape HIV prevention efforts are likely to fail.

Acknowledgements

Author contribution: Conceptualization was led by N.A. and R.J. with input from all authors. Project implementation and management was done by N.A. Data curation was done by S.M., C.L. and E.C. Formal analysis was done by S.M., E.C., N.A., R.J. and K.D. with initial interpretation done by same team. The original draft was written by N.A. and all authors contributed to writing, reviewing and editing the article.

We thank the participants for their time and sharing information. We thank the National Prosecuting Authority and the KwaZulu-Natal Department of Health for their support. We thank Prince Mshiyeni, R K Khan, Mahatma Gandhi and Tongaat Hospitals Thuthuzela Care Centres and the Addington Hospital Crisis Centre management and staff for their assistance. We also thank the following research staff: Singobile Mngadi, Tholsie Gouden, Thobeka Majola, Sanelisiwe Ntombela, Mpumelelo Mabhida, Zandile Ngcobo, Nokwazi Ntuli, Melda Magolela, Veronica Chamane, Khanyisile Ngcingwana, Alesha Sewnath, Janice Julius, Thamsanqua Tokota, Bongumusa, Mthembu, Nikwe Ntanzi, Rebecca Ntanzi, Phindile Kheswa, Prilene Stroud, Thobile Majola, Pearl Mdlatose, Ayanda Tembe.
Nokukhanya Nzimande, Hlengwe Lukhashe, Winnie Hlophé, Matimba Baloyi and Praysgod Ndlovu.

The current research and the publication thereof is the result of funding provided by the South African Medical Research Council in terms of the SAMRC’s Flagships Awards Project SAMRC-RFA-IFSP-01-2013/RAPE COHORT.

Funding: South African Medical Research Council: Flagships Awards Project SAMRC-RFAIFSP-01-2013.

Conflicts of interest
C.G.M. is a staff member of WHO. The authors alone are responsible for the views expressed in this publication and they do not necessarily represent the decisions or policies of WHO. We declare there are no conflicts of interest.

References

1. Dunkle KL, Jewkes RK, Brown HC, Gray GE, McIntrye JA, Harlow SD. Gender-based violence, relationship power, and risk of HIV infection in women attending antenatal clinics in South Africa. Lancet 2004; 363:1415–1421.
2. Campbell JC, Baty ML, Ghandour RM, Stockman JK, Francisco L, Wagman J. The intersection of intimate partner violence against women and HIV/AIDS: a review. Int J Soc Psychiatr Promot 2008; 15:227–231.
3. Heise L, Beatte T, Delany Morelwe S, Holmes A, Frye K, Bryce M, et al. STRIVE technical brief: HIV risk and violence against women and girls. London: London School of Hygiene & Tropical Medicine; 2019, http://strive.lshtm.ac.uk/system/files/attachments/Technical%20brief%20Violence%20against%20women%20%20and%20girls.pdf [Accessed 3 December 2020]
4. Watts CH, Foss AM, Hossam M, Zimmerman C, von Simson R, Klot J. Sexual violence and conflict in Africa: prevalence and potential impact on HIV incidence. Sex Transm Infect 2010; 86 (Suppl 3):ii83–ii99.
5. Supervie V, Halima Y, Blower S. Assessing the impact of mass rape on the incidence of HIV in conflict-affected countries. AIDS 2010; 24:2841–2847.
6. UNAIDS. Global AIDS update 2019: communities at the centre. Geneva: Switzerland: UNAIDS; 2019, www.unaids.org/sites/default/files/media_asset/2019-global-AIDS-update_en.pdf.
7. Devries KM, Mak JYT, García-Moreno C, Petzold M, Child JC, Falder G, et al. The global prevalence of intimate partner violence against women. Science 2013; 340:1327–1328.
8. World Health Organisation. Global and regional estimates of violence against women: prevalence and health effects of intimate partner violence and nonpartner sexual violence. Geneva: World Health Organisation; 2013, https://www.who.int/reproductivehealth/publications/violence/9789241564625/en/ [Accessed 3 December 2020]
9. Supervie V, Halima Y, Blower S. Assessing the impact of mass rape on the incidence of HIV in conflict-affected countries. AIDS 2010; 24:2841–2847.
10. UNAIDS. Global AIDS update 2019: communities at the centre. Geneva: Switzerland: UNAIDS; 2019, www.unaids.org/sites/default/files/media_asset/2019-global-AIDS-update_en.pdf.
11. Devries KM, Mak JYT, García-Moreno C, Petzold M, Child JC, Falder G, et al. The global prevalence of intimate partner violence against women. Science 2013; 340:1327–1328.
12. World Health Organisation. Global and regional estimates of violence against women: prevalence and health effects of intimate partner violence and nonpartner sexual violence. Geneva: World Health Organisation; 2013, https://www.who.int/reproductivehealth/publications/violence/9789241564625/en/ [Accessed 3 December 2020]
31. O’Malley TL, Hawk ME, Egan JE, Krier SE, Burke JG. Intimate partner violence and preexposure prophylaxis (PrEP): a rapid review of current evidence for women’s HIV prevention. *AIDS Behav* 2020; 24.1342–1357.

32. Ghosh M, Daniels J, Pyra M, Juzumaite M, Jais M, Murphy K, et al. Impact of chronic sexual abuse and depression on inflammation and wound healing in the female reproductive tract of HIV-uninfected and HIV-infected women. *PLoS One* 2018; 13.e0198412.

33. Jewkes R, Dunkle K, Jama-Shai N, Gray G. Impact of exposure to intimate partner violence on CD4+ and CD8+ T cell decay in HIV infected women: longitudinal study. *PLoS One* 2015; 10.e0122001.

34. Machisa M, Jewkes R, Lowe-Morna C, Rama K. The war at home: gender based violence indicators project, Gauteng research report, South Africa (Tech. Rep. ISBN: 978-0-9869879-1-5). Johannesburg: Gender Links; 2011, https://www.saferspaces.org.za/uploads/files/GenderLinks-13452_begin_war_at_home.pdf [Accessed 3 December 2020]

35. Arriola KR, Louden T, Doldren MA, Fortenberry RM. A meta-analysis of the relationship of child sexual abuse to HIV risk behavior among women. *Child Abuse Neglect* 2005; 29.725–746.

36. Abrahams N, Jewkes R. Barriers to post exposure prophylaxis (PEP) completion after rape: a South African qualitative study. *Cult Health Sex* 2010; 12.471–484.