Early enzyme replacement therapy prevents dental and craniofacial abnormalities in a mouse model of mucopolysaccharidosis type VI

Rohit Nagpal¹, Gina Georgi², Sarah Knauth², Carmen Schmid-Herrmann³, Nicole Muschol⁴, Thomas Braulke¹, Bärbel Kahl-Nieke³, Michael Amling¹, Thorsten Schinke¹, Till Koehne²* and Julian Petersen²*

¹Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, ²Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany, ³Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, ⁴Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Mucopolysaccharidosis VI (MPS VI) is a hereditary lysosomal storage disease caused by the absence of the enzyme arylsulfatase B (ARSB). Craniofacial defects are common in MPS VI patients and manifest as abnormalities of the facial bones, teeth, and temporomandibular joints. Although enzyme replacement therapy (ERT) is the treatment of choice for MPS VI, the effects on the craniofacial and dental structures are still poorly understood. In this study, we used an Arsb-deficient mouse model (Arsbm/m) that mimics MPS VI to investigate the effects of ERT on dental and craniofacial structures and compared these results with clinical and radiological observations from three MPS VI patients. Using micro-computed tomography, we found that the craniofacial phenotype of the Arsbm/m mice was characterized by bone exostoses at the insertion points of the masseter muscles and an overall increased volume of the jaw bone. An early start of ERT (at 4 weeks of age for 20 weeks) resulted in a moderate improvement of these jaw anomalies, while a late start of ERT (at 12 weeks of age for 12 weeks) showed no effect on the craniofacial skeleton. While teeth typically developed in Arsbm/m mice, we observed a pronounced loss of tooth-bearing alveolar bone. This alveolar bone loss, which has not been described before in MPS VI, was observed in one of the MPS VI patients. Interestingly, only an early start of ERT led to a complete normalization of the alveolar bone in Arsb⁻/⁻/⁻ mice. The temporomandibular joints in Arsb⁻/⁻/⁻ mice were deformed and had a porous articular surface. Histological analysis revealed a loss of physiological cartilage layering, which was also reflected in an altered proteoglycan content in the cartilage of Arsb⁻/⁻/⁻ mice. These abnormalities could only be partially corrected by an early start of ERT. In conclusion, our results show that an early start of ERT in Arsb⁻/⁻/⁻ mice achieves the best therapeutic effects for tooth, bone, and temporomandibular joint development. As the MPS VI mouse model in this study resembles the
Introduction

Mucopolysaccharidosis type VI (MPS VI or Maroteaux-Lamy syndrome) belongs to a group of lysosomal storage diseases characterized by enzymatic defects in lysosomal degradation of sulfated glycosaminoglycans (Valayannopoulos et al., 2010). The prevalence of MPS VI is estimated to be 1–9:1,000,000, and the disease is inherited in an autosomal recessive manner. MPS VI patients have mutations in the ARSB gene, which codes for the enzyme arylsulfatase B (also called N-acetylgalactosamine-4-sulfatase). Since this enzyme is involved in the lysosomal degradation of the glycosaminoglycans dermatan sulfate and chondroitin 4-sulfate, these glycosaminoglycans accumulate in all tissues and organs in MPS VI (O’Brien et al., 1974). The first manifestation of MPS VI occurs in childhood. The most striking symptoms of the disease include dysplastic and degenerative changes in the entire skeleton, such as short stature, dysostosis multiplex, and degenerative joint changes (Valayannopoulos et al., 2010). The temporomandibular joints are also affected, contributing to the distinct craniofacial phenotype of the patients. (de Almeida-Barros et al., 2012). To date, enzyme replacement therapy (ERT) with recombinant human arylsulfatase B (rhARSB) is the treatment of choice for MPS VI (Chen et al., 2019). rhARSB is modified with mannose 6-phosphate (M6P) residues which mediate the M6P receptor-dependent uptake into cells (Sly et al., 2006). Although ERT can restore the enzymatic removal of sulfate groups from dermatan sulfate and chondroitin 4-sulfate, the therapeutic success of ERT varies from organ to organ. In the late 1990s, the stabilizing effect and safety of ERT on facial bones, teeth, and temporomandibular joints, we analyzed 24-week-old Arsb^{−/−} mice in which ERT was started at 4 or 12 weeks of age, respectively.

Results

Partial correction of the craniofacial phenotype of Arsb^{−/−} mice by ERT

MPS VI patients show typical changes in facial morphology, collectively described as coarsening facial features (Galimberti et al., 2018). By investigating extraoral photographs and panoramic radiograph images of three Mucopolysaccharidosis Type VI patients who had been treated with ERT (Naglazyme, BioMarin Pharmaceuticals) at different time points (#1 age 11 started treatment at the age of 2, #2 age 23 started treatment at the age of 11 and #3 age 35 was treated only 1 year between 26–27 of age) we observed similar dental and craniofacial phenotypes as described in the literature (Figure 1). In particular, the facial photographs of patient #1 showed coarsening of the facial features, with pronounced jaw muscles (Figures 1A,B), even though this patient had been receiving ERT since the age of 2 years.

To examine potential effects of ERT on the craniofacial phenotype in a more defined and statistically controlled cohort, we utilized the Arsb^{−/−} mouse model mimicking human MPS VI. In total we investigated four groups (all at the age of 24 weeks) 1) control Arsb^{+/+} mice 2) Arsb^{−/−} mice 3) Arsb^{−/−} mice receiving ERT starting at 4 weeks of age and 4) Arsb^{−/−} mice receiving ERT starting at 12 weeks of age. At first, we analysed the skulls of these mice applying microcomputed tomography (μCT), and decalcified histology in comparison with craniofacial and dental findings from three MPS VI patients. In addition, to better understand the effect of ERT on facial bones, teeth, and temporomandibular joints, we analyzed 24-week-old Arsb^{−/−} mice in which ERT was started at 4 or 12 weeks of age, respectively.

clinical findings in MPS VI patients, our results suggest enzyme replacement therapy should be started as early as possible.

KEYWORDS

MPS VI, Arsb^{−/−} mice, condyle, alveolar bone loss, craniofacial malformations
Furthermore, quantifying the mandible and zygomatic arch revealed a significant increase in their volume in \textit{Arsb}^{+/-} mice compared to controls, which could partially be rescued with an early and late start of ERT (Figures 2B,C). In addition, despite open-bite being a prominent skeletal phenotype in MPS VI patients, we did not observe this particular phenotype in \textit{Arsb}^{+/-} mice. However, we detected alteration within the palate of \textit{Arsb}^{+/-} mice. The palatal shape was changed with an increase in palatal width and height. Only early onset of ERT led to an improvement of this phenotype (Supplementary Fig S1A–D).

To further study the cellular mechanisms of bone exostoses in \textit{Arsb}^{+/-} mice, the skulls were decalcified, sectioned in the coronal plane between the coronoid and condylar processes, and stained with hematoxylin and eosin (Figure 3A). Here, quantitative analyses identified a
significant increase in bone porosity in Arsb^{m/m} mice compared to control animals (Figure 3B). This increased porosity of the bone was also observed in the zygomatic arc (origin of the masseter muscle) (Figure 3A, Box 2) and the pterygoid process (origin of the medial pterygoid muscle) (Figure 3A, Box 3).

Moreover, in control mice, a protrusion of the bone was visible on the medial side of the mandibular angulus (insertion point of the medial pterygoid muscle) (Figure 3A, white dotted line). In contrast, the mandibles of the Arsb^{m/m} mice displayed, in addition to the protrusion on the medial side, protrusion of the bone on the lateral side of the mandibular rim (insertion point of the masseter muscle) (Figure 3A, Box 1).

Together, the present analyses show that 1) the craniofacial phenotype of Arsb^{m/m} mice is caused by hyperplasia of the jaw bones, particularly at the origin and insertion of the masseter muscles, and 2) ERT leads to a moderate improvement in mandibular morphology in Arsb^{m/m} mice, whereas the thickness and porosity of the arcus zygomaticus and the processus pterygoideus were partially, but significantly corrected.

Early start of ERT fully recovers alveolar bone loss in Arsb^{m/m} mice

The most striking dental symptoms of MPS VI patients include disorders of tooth eruption, such as impacted teeth and follicular tooth eruption cysts (Kantaputra et al., 2014). However, our dental examination of three MPS VI patients revealed significant differences here. While we observed tooth eruption disorders with retention and impaction of permanent teeth in MPS VI patient #1 and #3 (Figures 1G,I), no tooth eruption abnormalities were observed in MPS VI patient #2 (Figure 1H). Interestingly, however, we observed a noticeable alveolar bone loss in this patient (Figure 1H). In fact, the panoramic radiograph showed a horizontal bone loss in the molar region of the maxilla and mandible (Figure 1H, white line).
To further investigate the pathogenic mechanisms of these dental abnormalities in MPS VI, we next analyzed the teeth and periodontium of Arsb/m mice using µCT (Figure 4A, upper panel). Arsb/m mice showed normal tooth eruption (Figure 4A, lower panel), which did not coincide with the comment impaired tooth eruption in MPS VI patients. This indicated that the murine dentition (monophyodont dentition) might not be suitable for studying this particular aspect. Interestingly, however, a pronounced loss of alveolar bone was detected in Arsb/m mice. The µCT 3D images of Arsb/m mice showed exposed dental roots (Figure 4A, upper panel, black arrows), and the µCT cross-sectional images also demonstrated a reduction of the inter radicular bone, which is usually located at the same level as the floor of the pulp chamber (Figure 4, lower panel, white arrow). To quantify the alveolar bone loss in Arsb/m mice, we measured the visible root surface between the enamel-cement interface and the alveolar bone. Bone loss showed high variability in 24-week-old Arsb/m mice but was significantly increased overall compared to control mice of the same age (Figure 4B). Arsb/m mice with late start of ERT (Arsb/m ERT 12-24w, showing a similar degree of alveolar bone loss (Figures 4A,B). In contrast, early start of ERT in Arsb/m mice (Arsb/m ERT 4-24w) completely corrected the alveolar bone loss (Figure 4A, bottom row, and Figure 4B).

To analyze the loss of alveolar bone in Arsb/m mice in more detail, we next prepared decalcified sections followed by staining with hematoxylin and eosin of the teeth. During microscopic analysis, we also examined the junctional epithelium, a specialized epithelial layer that connects the connective tissue of the gingiva to the tooth surface. In control mice, the junctional epithelium was localized at the enamel-cement junction and extended on average 87 µm apically (Figures 4C,D, white triangles). In contrast, in Arsb/m mice, we observed a 170% longer apically migrated junctional epithelium (Figures 4C,D). In addition to bone loss, this elongation and apical migration is another sign of periodontium loss in Arsb/m mice. While the junctional epithelium was still elongated in Arsb/m mice, we observed a significant difference in the extent of this phenomenon between control and experimental groups (Figure 4B).
with late start of ERT, complete normalization was achieved with early start of ERT (Figures 4C,D).

Furthermore, we observed that the osteocyte lacunae in the alveolar bone appeared to be enlarged (Figure 4C, third panel), which have been reported for the tibia and vertebral body of Arsbm/m mice (Hendrickx et al., 2020). Quantification of the number of these empty osteocyte lacunae in the alveolar bone revealed, despite a large variance, an overall significant increase in Arsbm/m mice compared to control mice (Figure 4E). After both early and late start ERT, almost a complete normalization of the number of empty osteocyte lacunae was achieved (Figure 4E).

Taken together these results show, that the earlier ERT is started in Arsbm/m mice the better the degradation of the periodontium is prevented.

Arsbm/m mice display a change in condyle morphology

Hypoplasia of the maxillary condyle is one of the most prominent craniofacial symptoms in MPS VI. (Roberts et al., 1984; de Santana Sarmento et al., 2015; Schmid-Herrmann et al., 2021). Although this symptomatology is usually not associated
FIGURE 5

Dysmorphic condyle in Arsbn/m mice and Arsbn/m mice with ERT from 12 weeks of age. (A) 3D segmentation and wall thickness analysis of micro-CT scans of the condyle of 24-weeks control, Arsbn/m mice, Arsbn/m mice with ERT from 12–24 weeks, and ERT from 4–24 weeks. Arsbn/m -mice and Arsbn/m -mice with ERT from 12 weeks show bone exostoses and deformative pathologies of the mandibular condyle. Scale bar = 100 µm. (B) Quantification of condylar length. (C) Quantification of condylar width. (D) Quantification of condyle volume (E) Toluidine blue staining showing intense pigmentation of cartilage revealing physiological proteoglycan levels in control and Arsbn/m mice with ERT from 4 weeks. In contrast, Arsbn/m mice without therapy and ERT show faded staining from 12 weeks. Middle panel: At higher magnification, Arsbn/m mice show bone porosity (orange stars) and a pathological condyle shape. In addition, the cartilage-bone line in Arsbn/m mice is irregularly shaped and marked with an orange dashed line. Lower panel: The superficial chondrocytes in the condyles and the chondrocytes in the articular disc of control mice show physiological size and shape (green arrows). Chondrocytes in Arsbn/m mice appear markedly hypertrophic, including vacuolization (orange arrows). In contrast, Arsbn/m mice treated with ERT from week four onwards have fewer hypertrophic chondrocytes (green arrows), almost equal to those of control mice. Scale bars = 100, 50, and 25 µm (from top to bottom). d = discus articularis, p = proliferating zone, o = sclerosing zone (F) Quantification of toluidine blue-stained area within the condyle *p < 0.05. **p < 0.01. ***p < 0.001.
with pain, the temporomandibular joint changes can lead to a restricted mouth opening and a relatively vertical facial growth (Figure 1) (Fonseca et al., 2014). Indeed, we observed marked hypoplasia of the temporomandibular joint condyles (Figures 1G,J) and a vertical growth pattern in our MPS VI patients on a cephalometric image (Figure 1I).

We next segmented the condyles from the μCT scans to investigate whether Arsb^{m/m} mice show similar changes. In control mice, we observed a physiologically round and convex shape of the mandibular condyle (Figure 5A). In contrast, Arsb^{m/m} mice showed resorptions on the condylar surface and bone exostoses in the distal region of the condyle. While condyle morphology still appeared altered in Arsb^{m/m} mice with late start ERT, early start ERT led to a typical bone structure and a physiologically round-convex condyle shape (Figure 5A). To further support these findings, we measured the length, width, and volume of the mandibular condyle using μCT imaging. The length of the condyle in Arsb^{m/m} mice revealed no significant changes compared to control animals (Figure 5B). In contrast a 34% increase in the condylar width was observed in Arsb^{m/m} mice (Figure 5C). Moreover, we found significant increases of the condyle volume in Arsb^{m/m} mice (Figure 5D). Interestingly, both early and late start ERT resulted in almost complete normalization of condylar width and volume in Arsb^{m/m} mice (Figures 5C,D). Although the temporomandibular joint changes in Arsb^{m/m} mice only partially reflect the clinical phenotype of MPS VI patients, our results demonstrate that ERT can lead to an improvement of condyle morphology.

Altered composition of glycosaminoglycans in the temporomandibular joint cartilage of Arsb^{m/m} -mice

Glycosaminoglycans provide the articular cartilage with its resistance to pressure loads by binding water molecules (Buckwalter and Mankin, 1998). To analyze the relative amounts and distribution of GAGs of the temporomandibular joints, we sectioned 24-week-old control, Arsb^{m/m} mice with and without ERT treatment in the anterodorsal direction followed by staining the temporomandibular joint with toluidine blue to visualize GAGs. While in articular cartilage of control mice a physiological intense staining was observed, Arsb^{m/m} mice and Arsb^{m/m} mice with late start ERT showed significantly reduced staining of articular cartilage. In contrast, Arsb^{m/m} mice with early start ERT displayed the physiological staining as in control mice (Figures 5E,F). Next, we used safranin O staining to visualize GAGs, which stains the temporomandibular joint of control mice red while the bone tissue appeared blue-green. In contrast to control mice, Arsb^{m/m} mice without ERT showed altered staining of GAG in the cartilage. Here, only early start ERT could restore the physiological staining of articular cartilage (Supplementary Figure S2A). In summary, the GAG content in temporomandibular joints of Arsb^{m/m} mice was reduced in the cartilage tissue, which could be reversed by early start ERT only.

Discussion

In this work, the craniofacial system and dentoalveolar structures of Arsb-deficient mice, a mouse model for the human MPS VI disease, were investigated by contact radiography, micro-computed tomography, and histology. Our results show that the deficiency of arylsulfatase B in Arsb^{m/m} mice leads to alterations of the jawbone, alveolar bone, and temporomandibular joints that largely mirror the craniofacial and dental phenotype of MPS VI patients. Furthermore, we demonstrate that early administration of rhARSB replacement therapy can prevent the development of most craniofacial pathologies.

Jaw exostoses are associated with the origin and insertion points of the masticatory musculature in Arsb^{m/m} mice

In previous studies, we showed that Arsb^{m/m} mice exhibit exostoses at the mandibular rim, which are less pronounced by an early start of ERT (Pohl et al., 2018; Hendrickx et al., 2020). Similarly, we observed exostoses at the mandibular rim in a mouse model for mucolipidosis type II (MLII) (Koehne et al., 2016) and MPS I (Kuehn et al., 2015). In this study, we could show for the first time by μCT and histological analyses that these exostoses are associated with the attachment point of the masticatory muscles. In particular, our histological analysis revealed hyperplasia of the jaw bone at the origin of the masseter muscle (the arcus zygomaticus), and the origin of the medial pterygoid muscle (the pterygoid process). A systemically increased bone mass in Arsb^{m/m} mice, including the mandible, may explain these hyperplasia in the jaw bone (Pohl et al., 2018; Hendrickx et al., 2020). However, it appears to be more likely that in Arsb^{m/m} mice, deposits of non-degraded GAG in the masseter muscles lead to increased traction on the jaw bones and subsequently to reactive hyperplasia of the jaw bone at the origin as well as attachments of the jaw muscles. This pathomechanism (i.e. secondary bone growth due to increased muscle traction) would also explain why similar exostoses have been observed in the MLII mouse model (Koehne et al., 2016), despite the prevailing osteopenic bone phenotype. However, further studies are needed to analyze changes in soft tissues of MPS patients, e.g. by MRI (Koehne et al., 2018).

In this context, it should be emphasized that changes in the face are often among the first symptoms noticed in MPS patients and are stigmatizing for the patient group. Therefore, a precise analysis of the facial changes (e.g., on 3D photographs (face...
scans) could support predictions on the success of the enzyme replacement therapy. On the other hand, our experimental data confirm that complete normalization of facial morphology cannot be expected even with an early start of ERT. The effects of early administration of ERT in MPS VI on craniofacial changes, however, have not been included in respective clinical trials (Horovitz et al., 2021).

Early initiation of ERT can prevent alveolar bone loss in Arsb-deficient mice

Although disorders of tooth development are regularly reported in MPS VI (Smith et al., 1995; Hirst et al., 2021), the teeth of Arsb^{m/m} mice have not been studied so far. We could show that tooth development and eruption occur without disruption in Arsb^{m/m} mice, although in MPS VI patients, impaired tooth eruption accompanied by the development of tooth cysts, and tooth displacement, have been observed. A reason for this could be the difference in the murine dentition. Unlike humans, mice have a monophyodont dentition, and permanent molars erupt at an early age of 2–3 weeks. Here the accumulation of GAGs did not advance enough to affect tooth eruption. This phenomenon is in line with humans as the dental phenotype is only established in permanent teeth, as children exhibit mostly normal eruption of their primary teeth. Only later eruption of the permanent tooth is affected (James et al., 2012). This monophyodont dentition might indicate that the murine dentition is therefore unsuitable for studying this particular aspect. Interestingly however, our studies shows that the periodontium in Arsb^{m/m} mice showed a significant bone loss. Moreover, we observed a significantly elongated junctional epithelium, another sign of periodontal disease. This is of particular interest as it has been shown that glycosaminoglycans such as dermatan sulfate and chondroitin sulfate are present in the periodontal ligament and provide adhesion of the epithelium to the tooth (Kurylo et al., 2016). It can therefore be assumed that these glycosaminoglycans are responsible for maintaining the connection between the tooth root and the alveolar bone. (Fujii and Hirabayashi, 1999). It is possible that the synthesis/secretion of specific proteoglycans containing dermatan sulphate and chondroitin sulphate is reduced in the junctional epithelium of Arsb^{m/m} mice. This would also explain the observed bone resorption around the tooth, as the loss of periodontal fibre connection inevitably leads to a loss of alveolar bone. Furthermore, it could be possible that the enlarged cells and consequently thickened periodontal ligament displace the bone. In addition, patients with other MPS subtypes (such as MPS I and II) also show periodontal changes (Antunes, Nogueira et al., 2013). Here it would be interesting to investigate subtype-specific periodontal diseases in MPS patients and how they can be differentiated from classical bacterial periodontitis, also concerning a possible improvement by enzyme replacement.

The temporomandibular joint is altered in Arsb^{m/m} mice

Changes in the temporomandibular joint are characteristic of MPS VI patients and manifest clinically mainly through limited mobility of the mandible (Cavaleiro et al., 2013; Palmucci et al., 2013; de Almeida-Barros et al., 2018). Here, it should be emphasized, that hypoplasia of the mandibular condyle in Arsb^{m/m} mice would have been expected based on human clinical findings. However, Arsb^{m/m} mice with and without enzyme replacement therapy tended to have an irregular condylar shape and surface. The condyle width was significantly greater in Arsb^{m/m} mice compared to control mice. Thus, although Arsb^{m/m} mice did not phenotypically fully reflect the joint pathology of the patients, it should be noted that Arsb^{m/m} mice with early initiation of enzyme replacement therapy at 4 weeks of age exhibited standard condylar shape. Thus, an earlier start of enzyme replacement therapy might prevent these degenerative changes.

On a histological level, the articular cartilage of Arsb^{m/m} mice also showed changes compared to control mice. This is consistent with the finding describing that Arsb deficiency in cats leads to severe disorganization in the epiphyseal groove, which includes greatly enlarged cartilage cells with membranous inclusions resulting from an accumulation of glycosaminoglycans (Haskins et al., 1980). In addition, Hendrickx et al. described in Arsb^{m/m} mice that chondrocytes in the articular cartilage of the acetabulum were enlarged and that the uptake of rhARSB in cultured chondrocytes of Arsb^{m/m} mice was significantly reduced (Hendrickx et al., 2020). This would also explain why no complete normalization of cell morphology in articular cartilage was observed in our histological analyses of Arsb^{m/m} mice with enzyme replacement therapy. Here the cause could be two-fold 1) the extracellular matrix within the bone with its particularly high SO₄ content is hindering the M₆P-containing enzymes to reach the cartilage surface and 2) the relatively poor blood supply to cartilage tissue. It is, therefore, worth mentioning that in an animal experiment, a significant reduction in the enlargement of chondrocytes in various joints (knee, shoulder, elbow) was observed by intra-articular injection of rhARSB (Auclair et al., 2006). A similar effect would be conceivable with the intra-articular injection of rhARSB in the temporomandibular joint.

Most striking histologically, however, was that in toluidine blue and safranin O staining, the proteoglycans in the temporomandibular joint of Arsb^{m/m} mice and Arsb^{m/m} mice with late start ERT stained weaker compared to control mice. This finding is interesting because GAGs typically accumulate in almost all other tissues and organs due to the absence of ARSB.
However, 1) we cannot differentiate here between extra- and intracellular GAGs and 2) it is also possible that non-degraded GAGs cannot be stained correctly by the two staining methods. In any case, an early start of ERT showed complete normalization of cartilage staining.

Overall, the results show that enzyme replacement therapy over 12–24 weeks has a limited effect on cartilage and thus on joints in the mouse model. Therefore, further research is needed to understand the underlying mechanisms and develop targeted local therapeutic interventions (e.g. an intra-articular injection) that could be used alongside systemic enzyme replacement therapy. For example, a study in rats could show that a combination of ERT and an anti-inflammatory drug (anti-TNF-α) led to a significant improvement in cartilage and bone (Eliyahu et al., 2011). In this work, however, an early start of enzyme replacement therapy also showed a significant protective effect in the TMJ. Therefore, an early start of ERT is recommended for the temporomandibular joint as well.

Furthermore, due to the specific location of the bone exostoses in the skull (inside of the mandible, proc. coronoides, arcus zygomaticus, and the upper edge of the temporal fossa), it is of interest that these structures represent the origin and attachment of the masticatory muscles in the mouse. Although we did not detect any significant change in muscle anatomy, a possible change in shape/growth could explain the coarsened facial features and bilateral thickening of the mandible in some MPS VI patients. However, this requires further in-depth validation and experimentation.

In summary, this work shows that Arsbm/m mice largely resemble MPS VI patients in craniofacial and dental findings and that the mouse model, therefore, allows conclusions to be drawn about the clinical treatment of patients. The results in the mouse model show that an early start of enzyme replacement therapy can achieve the best therapeutic effect, even with an almost complete recovery in some tissues. As such, early enzyme replacement therapy also benefits the craniofacial system.

Material and methods

Laboratory animals

The experimental animals originated from previous experimental projects (Pohl et al., 2018; Hendrickx et al., 2020) and were available in fixed form at the Institute of Osteology and Biomechanics. The animal experiments were approved by the Authority for Health and Consumer Protection of the Free and Hanseatic City of Hamburg (43/15 and G14/068, Org529). Control mice (Arsb+/+) and MPS VI mice (Arsbmm) were studied at 24 weeks of age. In addition, 24-week-old Arsbm/m mice that received enzyme replacement therapy (ERT) with rhARSB (Naglazyme, BioMarin, Novato, California, United States) intravenously from 4 to 12 weeks of age were analyzed. For this purpose, a single weekly dose of 1 mg/kg body weight with a volume of 150 µl was administered.

Micro-computed tomography

The skulls of the experimental animals were scanned with a micro-computed tomography (µCT-40, SCANCO Medical, Brüttisellen, Switzerland). The three-dimensional analysis was performed with the integrated device software. Avizo 3D-Pro was used for semi-automatic segmentation of the skull and mandible and for volume measurements.

Histology

All samples to be sectioned and histologically examined were placed in an embedding cassette. Subsequently, the samples were placed in a decalcifying solution (USEDECALC, MEDITE Medical GmbH, Burgdorf, Germany) for 14–17 days. The solution was changed every 3 days. After decalcification, the samples were dehydrated overnight in an auto technical unit. Within 12 h, the samples were dehydrated in an ascending alcohol series, and fixative and tissue fluid were replaced with paraffin. Sections of 4 µm thickness were cut with a microtome (Supercut 2050, Reichert-Jung, Leica Microsystems GmbH, Wetzlar, Germany) and stained with hematoxylin-eosin, toluidine blue, or safranin O. The sections were then cut with a microscope. For this purpose, the sections were deparaffinized in a xylene bath (3 × 5 min). The samples were rehydrated in descending alcohol series for 2 min each, followed by a short wash in distilled water. They were then stained according to standard protocols. The stained sections were then rinsed with distilled water and dehydrated in an ascending alcohol series. Before covering with Eukitt (ORSAtec GmbH, Bobingen, Germany), infiltration with xylene was performed in three successive baths for 5 min each.

Histological evaluation

A microscope (Axio Scope. A1, Carl Zeiss Microscopy GmbH, Jena, Germany) and a photo camera (Axioacam, Carl Zeiss Microscopy GmbH, Jena, Germany) were used for image acquisition. For the histological analysis, each measurement was performed blind, i.e., only the examiner knew the assignment of the individual samples to avoid distortions.

Cartilage thickness and condylar porosity

Both parameters were measured and analyzed with OsteoMeasure (OsteoMetrics Inc., Decatur, Georgia, United States). Decalcified stained sections were viewed under a microscope. Cartilage was marked manually, and mean thickness was calculated by the software. For calculating the porosity of the mandibular condyle bone and areas without bone were selected manually. Then the
bone-absent area was divided by bone area to calculate a percentage value.

Alveolar bone loss and junctional epithelium

Measurements were performed with ImageJ (National Institutes of Health, Bethesda, Maryland, United States). In micro-CT images, the root area between the cementoenamel junction and alveolar bone was manually marked and calculated by the software. For calculating the length of absent periodontal junctional epithelium, images of stained sections were first calibrated, and then the distance between C.E.J. and the beginning of the attached junctional epithelium was calculated.

Palatal length and thickness

Two distances were determined to measure the different extent in palatal coronal width. First, palatal width was determined as the interval between the mesio-palatal cusps of the first molars. Furthermore, the total expansion of the os palatinum was measured by the distance between the most lateral points of the processus pyramidalis. The thickness was further analysed by defining the broadest expansion of the crista nasalis at the level of the mesio-palatal cusps of the first molars.

Statistical evaluation

Graphs were plotted, and statistical analysis of the data was performed using GraphPad PRISM 8 software (GraphPad Software Inc., San Diego, California, United States). A one-factor analysis of variance (ANOVA) with Tukey’s posthoc test was used for statistical analysis. The significance value or p-value was marked with asterisks as follows: $p \leq 0.05 = \ast$, $p \leq 0.01 = \ast\ast$, and $p \leq 0.001 = \ast\ast\ast$.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding authors.

Ethics statement

The animal study was reviewed and approved by Authority for Health and Consumer Protection of the Free and Hanseatic City of Hamburg (43/15 and G14/068, Org529). Written informed consent was obtained from the individual(s), and minor(s)’ legal guardian/next of kin, for the publication of any potentially identifiable images or data included in this article.

Author contributions

RN, GG, and SK collected all biological data and performed the corresponding analyses. CSH, NM, TB, and BKN provided samples and patient data. TS, TK, MA, and JP provided feedback on experimental aspects, supervised experimental approaches, and performed data analysis. JP, TK, and RN produced all figures with the data and the resulting analyses. JP, TS, and TK designed the study, organized the experimental work, and wrote the manuscript. All authors gave feedback on figures, manuscript composition, and structure.

Funding

This work was supported by the DFG grant SCHI 504/8-1 and by the Open Access Publishing Fund of Leipzig University supported by the German Research Foundation within the program Open Access Publication Funding.

Acknowledgments

We want to thank Nicole Lüder from the animal facility for carrying out the injections of the enzyme.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphys.2022.998039/full#supplementary-material
