THE GAMMA-RAY BURST LUMINOSITY FUNCTION IN THE LIGHT OF THE SWIFT 2 YEAR DATA

R. SALVATERRA and G. CHINCARINI

Received 2006 December 11; accepted 2007 January 10; published 2007 January 23

ABSTRACT

We compute the luminosity function (LF) and the formation rate of long gamma-ray bursts (GRBs) by fitting the observed differential peak flux distribution obtained by BATSE in three different scenarios: (1) GRBs follow the cosmic star formation, and their LF is constant in time; (2) GRBs follow the cosmic star formation, but the LF varies with redshift; and (3) GRBs form preferentially in low-metallicity environments. We find that the differential peak flux number counts obtained by BATSE and by Swift can be reproduced using the same LF and GRB formation rate, indicating that the two satellites are observing the same GRB population. We then check the resulting redshift distributions in light of Swift 2 year data, focusing in particular on the relatively large sample of GRBs detected at $z > 2.5$. We show that models in which GRBs trace the cosmic star formation and are described by a constant LF are ruled out by the number of high-z Swift detections. This conclusion does not depend on the redshift distribution of bursts that lack optical identification, nor on the existence of a decline in star formation rate at $z > 2$, nor on the adopted faint end of the GRB LF. Swift observations can be explained by assuming that the LF varies with redshift and/or that GRB formation is limited to low-metallicity environments.

Subject headings: cosmology: observations — gamma rays: bursts — stars: formation

1. INTRODUCTION

Gamma-ray bursts (GRBs) are powerful flashes of high-energy photons occurring at an average rate of a few per day throughout the universe. Even though they are highly transient events very difficult to localize, they are so bright that they can be detected up to very high redshift (the current record is $z = 6.29$). The energy source of a GRB is believed to be associated with the collapse of the core of a massive star in the case of long-duration GRBs, and due to merger- or accretion-induced collapse for the short-hard class of GRBs (see Mészáros 2006 for a recent review). In this Letter, we limit our analysis to the class of long-duration GRBs.

One of the main goals of the Swift satellite (Gehrels et al. 2004) is to tackle the key issue of the GRB luminosity function (LF). Unfortunately, although the number of GRBs with good redshift determination has been largely increased by Swift, the sample is still too poor (and bias-dominated) to allow a direct measurement of the LF. Many studies (e.g., Lamb & Reichart 2000; Porciani & Madau 2001, hereafter PM01; Schmidt 2001; Choudhury & Srianand 2002; Firmani et al. 2004; Guetta et al. 2005; Natarajan et al. 2005; Daigne et al. 2006) tried to constrain the GRB LF under the assumption that GRBs trace the observed star formation rate, as suggested by the association of long GRBs to the death of massive stars. Following these works and assuming the most recent star formation rate determination, we derive the LF and formation rate of GRBs by fitting the observed BATSE differential peak flux distribution in three different scenarios: (1) GRBs follow the cosmic star formation and have a constant LF; (2) the GRB LF varies with redshift, and (3) GRBs form in low-metallicity environments. We check the results against the 2 year Swift data, focusing in particular on the large sample of high-redshift ($z > 2.5$) GRBs detected by this instrument.

2. BASIC EQUATIONS

The observed photon flux, P, in the energy band $E_{\text{min}} < E < E_{\text{max}}$ emitted by an isotropically radiating source at redshift z is

$$P = \frac{(1 + z)^{2(1 + \alpha) - 1} S(E) dE}{4\pi d_L^2(z)} ,$$

(1)

where $S(E)$ is the differential rest-frame photon luminosity of the source and $d_L(z)$ is the luminosity distance. To describe the typical burst spectrum we adopt the functional form proposed by Band et al. (1993), i.e., a broken power law with a low-energy spectral index α, a high-energy spectral index β, and a break energy E_p. In this work, we take $\alpha = -1$ and $\beta = -2.25$ (Preece et al. 2000), and $E_p = 511$ keV (PM01). Moreover, it is customary to define an isotropic equivalent intrinsic burst luminosity in the energy band 30–2000 keV as $L = \int_{30\text{ keV}}^{2000\text{ keV}} E S(E) dE$. Given a normalized GRB LF, $\phi(L)$, and the detector efficiency, $\epsilon(P)$, the observed rate of bursts with peak flux between P_1 and P_2 is

$$\frac{dN}{dt}(P_1 < P < P_2) = \int_0^\infty \frac{dV(z)}{dz} \frac{\Delta\Omega}{4\pi} \frac{\Psi_{\text{GRB}}(z)}{1 + z}$$

$$\times \int_{L(P_1,z)}^{L(P_2,z)} dL \phi(L) \epsilon(P),$$

(2)

where $dV(z)dz = 4\pi cd_s^2(z)$ is the comoving volume element, $H(z) = H_0[\Omega_m (1 + z)^3 + \Omega_\Lambda + (1 - \Omega_m - \Omega_\Lambda)(1 + z)^3]^{1/2}$, $\Delta\Omega$ is the solid angle covered on the sky by the survey, and the factor $(1 + z)^{-1}$ accounts for cosmological time dilation. Finally, $\Psi_{\text{GRB}}(z)$ is the comoving burst

1 Dipartimento di Fisica G. Occhialini, Universita degli Studi di Milano Bicocca, Milano, Italy; salvaterra@mi.infn.it.
2 INAF, Osservatorio Astronomico di Brera, Merate (LC), Italy.

formation rate. In this work, we assume that the GRB LF is described by

$$\phi(L) \propto \left(\frac{L}{L_{\text{cut}}} \right)^{-\xi} \exp \left(-\frac{L_{\text{cut}}}{L} \right). \quad (3)$$

3. MODELS

We consider three different scenarios. In the first one, the GRB formation rate is proportional to the cosmic star formation rate (SFR), $\Psi_s(z)$, i.e., $\Psi_{GRB}(z) = k_{GRB}\Psi_s(z)$, and the LF does not evolve with redshift, i.e., $L_{\text{cut}} = \text{const} = L_0$. The factor k_{GRB} gives the number of GRBs formed per solar mass in stars and has units of M_\odot^{-1} yr$^{-1}$.) $\Psi_s(z)$ (in units of M_\odot yr$^{-1}$) is commonly parameterized with the form proposed by Cole et al. (2001) as

$$\Psi_s(z) = \left(a_1 + a_2z \right) h\left(\frac{1}{1 + (z/a_3)^4} \right). \quad (4)$$

Recently, Hopkins & Beacom (2006) have provided the values of the coefficients a_i by fitting the available UV and far-infrared measurements for $z < 6$, corrected for dust obscuration. In this Letter, we adopt their best-fit parameters: $a_1 = 0.017$, $a_2 = 0.13$, and $a_3 = 3.3$ (Hopkins & Beacom 2006). The value of $a_4 = 4.3$ is taken to be slightly lower than the original one in order to match the decline of the SFR with $(1+z)^{-3.5}$ at $z \approx 5$ suggested by recent field data (see Stark et al. 2007 and references therein).

In the second scenario, while the GRB formation rate is still proportional to the observed SFR, the cutoff luminosity in the GRB LF increases with redshift as $L_{\text{cut}} = L_0(1+z)^\delta$. Lloyd-Ronning et al. (2002), using GRB redshifts and luminosities derived from the luminosity-variability relationship, found that the data imply $\delta = 1.4 \pm 0.5$, and we adopt this as fiducial value.

Finally, we consider a case in which GRBs form only in environments with metallicity below a given threshold, Z_{th}, can be computed as

$$\Sigma(z) = \frac{\Gamma[0.84, (Z_{\text{th}}/Z_\odot)^2]^{10^{\alpha_{\text{z}}}}}{\Gamma(0.84)}, \quad (5)$$

where $\Gamma (\Gamma)$ is the incomplete (complete) gamma function, and $\Gamma(0.84) \approx 1.122$. The GRB formation rate is then given by $\Psi_{GRB}(z) = k_{GRB}\Sigma(z)\Psi_s(z)$. The main effect of this convolution is that the GRB formation rate peaks at higher redshift with respect to the cosmic SFR. We adopt $Z_{\text{th}} = 0.1 Z_\odot$ as the fiducial value, and, in this case, the GRB formation peaks at $z \sim 3.5$.

4. GRB NUMBER COUNTS

The free parameters in our model are the GRB formation efficiency k_{GRB}, the cutoff luminosity at $z = 0$, L_0, and the power index, ξ, of the GRB LF function. Following PM01, we optimized the value of these parameters by χ^2 minimization over the observed differential number counts in the 50–300 keV band of BATSE. We use the off-line BATSE sample of Kommers et al. (2000), which includes 1998 archival (“triggered” plus “nontriggered”) bursts, and for which the detector efficiency is well described by the function $\epsilon(P) = 0.5[1 + \text{erf}(-4.801 + 29.868P)]$ (Kommers et al. 2000). We report the best–fit parameters for our fiducial models in Table 1. In the last column, we give the reduced χ^2 for the best-fitting model, showing that it is always possible to find a good agreement with the data.4 Note that for the metallicity evolution scenario a higher GRB formation efficiency is required, since GRBs form in only a (small) fraction of star-forming galaxies.

We can now use the best-fit parameters to compute the expected differential peak flux distribution of GRBs in the 15–150 keV band of the Burst Alert Telescope (BAT) instrument on board Swift. The results are plotted in Figure 1 and compared with the observed Swift/BAT data points. All models show a good agreement with the data without the need of any change of the GRB LF and formation efficiency, indicating that BATSE and Swift are observing essentially the same population of GRBs. This conclusion is rather insensitive to 20% variations of the adopted GRB spectrum parameters, i.e., for the large majority of burst spectra (Kaneko et al. 2006).

5. GRB REDSHIFT DISTRIBUTION

Our model allows us to compute the expected redshift distribution of GRBs detected by Swift. We decide to avoid the comparison between model results and the overall observed distribution of bursts with known redshift, since this procedure

4 Note that strong covariance on L_0 and ξ is observed in the parameter space surrounding the best-fit parameters (see also PM01).

TABLE 1

Model	$k_{GRB} (10^{-5} M_\odot)$	$L_0 (10^{43} \text{ ergs s}^{-1})$	ξ	χ^2
No evolution	1.14 \pm 0.07	9.54 \pm 4.55	3.54 \pm 0.78	0.83
Luminosity evolution ($\delta = 1.4$)	1.05 \pm 0.05	0.77 \pm 0.13	2.19 \pm 0.95	0.80
Metallicity evolution ($Z_{\text{th}} = 0.1 Z_\odot$)	10.0 \pm 0.5	16.7 \pm 5.7	2.94 \pm 0.34	0.84

Note.—Errors are at 1 σ level.
LF are ruled out by the large sample of high-
GRBs trace the cosmic SFR and are described by a constant
z population of faint GRBs would decrease the number of high-
does not depend on the faint end of the LF: increasing the
detection of high-redshift bursts. Furthermore, our analysis
bright GRBs, the rapid decline in the LF strongly hampers the
checked that variations of the shape of the SFR do not affect
implying that the observed sample of GRBs with
redshift determination is representative of all detected sources.
Moreover, important information is missed by this kind of anal-
ysis, for example, that many bright GRBs are identified at high
redshift. So we try to answer this simple question: Is the redshift
distribution consistent with the number of Swift detections at
$z > 2.5$ and $z > 3.5$?

The cumulative number of GRBs, identified during the
2 years of the Swift mission at $z > 2.5$ (left) and $z > 3.5$ (right),
is plotted in Figure 2, together with model predictions. Note
that Swift detections are to be considered as a strong lower
limit, since many high-z bursts can be missed by optical follow-
up searches. The model with no LF evolution clearly under-
estimates the number of high-redshift GRB detections at any
photon flux, and no bright GRBs are predicted for $z > 3.5$. We
checked that variations of the shape of the SFR do not affect
this result: even assuming a constant SFR at $z \gtrsim 2$, the model
predictions do not change significantly. In fact, for relatively
bright GRBs, the rapid decline in the LF strongly hampers the
detection of high-redshift bursts. Furthermore, our analysis
does not depend on the faint end of the LF: increasing the
population of faint GRBs would decrease the number of high-
z detections, strengthening our conclusion. So, models in which
GRBs trace the cosmic SFR and are described by a constant
LF are ruled out by the large sample of high-z Swift GRBs.

The number of high-z Swift identifications can be justified
assuming that the LF varies with redshift. In this case, high-z
GRBs are typically brighter than low-z ones, so they are more
easily detected. Assuming that the luminosity increases as
$(1 + z)^{4}$, we find many sources at $z > 2.5$, but the model is
barely consistent with the number of bright GRBs at $z > 3.5$.
Since some high-z sources can be missed by optical follow-up
searches, an even stronger evolution might be required to ex-
plain the data.

Finally, we consider the possibility that GRB formation is
restricted to low-metallicity environments. In this case, the peak
of the GRB formation is shifted toward higher redshift, so that
the probability of high-z detections increases. Assuming
$Z_{\text{th}} = 0.1 Z_{\odot}$, Swift identification is exceeded at both $z > 2.5$
and 3.5 without requiring any evolution in the LF. Thus, the
model is consistent with a fraction of high-redshift bursts
missed by optical follow-up searches. Increasing the threshold
metallicity will decrease the number of sources at high-z; for
$Z_{\text{th}} \sim 0.4 Z_{\odot}$ the model becomes inconsistent with the number
of observed GRBs at $z > 3.5$. Higher threshold values would
require evolution of the GRB luminosity and/or a more gentle
decline of the SFR at high redshift.

In conclusion, the existence of a large sample of bursts at
$z > 2.5$ in the Swift 2 year data imply that GRBs have ex-
perienced some kind of evolution, being more luminous or more
common in the past.

6. GRB RATE AT REDSHIFT LARGER THAN 6

The discovery of GRB050904 at $z = 6.29$ (Antonelli et al.
2005; Tagliaferri et al. 2005; Kawai et al. 2006) during the first
year of the Swift mission has strengthened the idea that many
GRBs should be observed out to very high redshift (e.g., Na-
tarajan et al. 2005; Bromm & Loeb 2006; Daigne et al. 2006).
Unfortunately, no other source at $z \gtrsim 6$ has been detected in
the second year of observations.

In Figure 3 we plot the Swift detection rate expected for the
three scenarios here considered. Models without evolution pre-
dict that almost no sources will be detected at very high redshift.
If luminosity evolution ($\delta = 1.4$) is allowed, ~ 2 bursts yr$^{-1}$
should lie above $z \sim 6$ for $P > 0.2$ photons cm$^{-2}$ s$^{-1}$, whereas in the metallicity evolution scenario ($Z_{\text{eq}} = 0.1 Z_{\odot}$), we expect ~ 8 GRBs yr$^{-1}$, one or two being at $z \gtrsim 8$.

The detection rate is found to decrease rapidly with increasing peak fluxes. Indeed, it is interesting to note that GRB050904 was relatively bright, being its observed photon flux $P = 0.658$ photons cm$^{-2}$ s$^{-1}$. At this limit, only ~ 1 (2) bursts yr$^{-1}$ would be at $z \gtrsim 6$, if luminosity (metallicity) evolution is assumed. Thus, the lack of very high redshift identification in the second year of the Swift mission might be due to practical difficulties in the optical follow-up of faint GRBs. In fact, no GRB with observed photon fluxes below 0.5 photons cm$^{-2}$ s$^{-1}$ has been detected by the UV/Optical Telescope aboard Swift, and only in a couple of cases was a redshift determination possible. Thus, the identification of just one burst at $z \gtrsim 6$ in 2 years of Swift mission is not very surprising. On the contrary, the discovery of GRB050904 may suggest that the Swift follow-up procedure is working very well, at least for relatively bright bursts.

7. CONCLUSIONS

We have computed the luminosity function and the formation rate of long GRBs by fitting the BATSE differential peak flux number counts in three different scenarios: (1) GRBs follow the cosmic star formation and have a redshift-independent LF; (2) the GRB LF varies with redshift, and (3) GRBs are associated with star formation in low-metallicity environments. In all cases, it is possible to obtain a good fit to the data by adjusting the model free parameters. Moreover, using the same LF and formation rate, it is possible to reproduce both BATSE and Swift differential counts, showing that both are observing the same GRB population.

We have then computed the expected burst redshift distribution, testing the results against the number of high-redshift GRBs detected during the 2 years of the Swift mission. We find that models in which GRBs trace the SFR and are described by a constant LF largely underestimate the number high-z GRBs detected by Swift. This conclusion does not depend on the redshift distribution of bursts lacking of optical identification, nor on the existence of a decline in the SFR at $z > 2$, nor on the adopted faint end of the LF. Alternatively, we find that the observed number of high-z detection can be justified by assuming that the GRB luminosity increases with redshift and/or that GRBs preferentially form in low-metallicity environments.

Finally, we have estimated the detection rate of bursts at very high redshift. We find that ~ 8 (8) GRBs yr$^{-1}$ should be observed at $z \gtrsim 6$, if luminosity (metallicity) evolution is assumed. The majority of these sources is faint and may be missed in optical follow-up searches, but ~ 1 (3) GRB yr$^{-1}$ should be relatively bright, with an observed photon flux in excess of 0.5 photons cm$^{-2}$ s$^{-1}$.

REFERENCES

Antonelli, L. A., et al. 2005, GCN Circ. 3924, http://gcn.gsfc.nasa.gov/gcn/ gcn3/3924.gcn3
Band, D., et al. 1993, ApJ, 413, 281
Bromm, V., & Loeb, A. 2006, ApJ, 642, 382
Choudhury, T. R., & Srianand, R. 2002, MNRAS, 336, L27
Cole, S., et al. 2001, MNRAS, 326, 255
Daigne, F., Rossi, E. M., & Mochkovitch, R. 2006, MNRAS, 372, 1034
Firmani, C., Avila-Reese, V., Ghisellini, G., & Tutukov, A. V. 2004, ApJ, 611, 1033
Gehrels, N., et al. 2004, ApJ, 611, 1005
Guetta, D., Piran, T., & Waxman, E. 2005, ApJ, 619, 412
Hopkins, A. M., & Beacom, J. F. 2006, ApJ, 651, 142
Kaneko, Y., Preece, R. D., Briggs, M. S., Paciesas, W. S., Meegan, C. A., & Band, D. L. 2006, ApJS, 166, 298
Kawai, N., et al. 2006, Nature, 440, 184
Kewley, L., & Kobulnicky, H. A. 2005, in Starburst: From 30 Doradus to Lyman Break Galaxies, ed. R. de Grijs & R. M. González Delgado (Dordrecht: Springer), 307
Kommers, J. M., Lewin, W. H. G., Kouveliotou, C., van Paradijs, J., Pendleton, G. N., Meegan, C. A., & Fishman, G. J. 2000, ApJ, 533, 696
Lamb, D. Q., & Reichart, D. E. 2000, ApJ, 536, 1
Langer, L., & Norman, C. A. 2006, ApJ, 638, L63
Lloyd-Ronning, N. M., Fryer, C. L., & Ramirez-Ruiz, E. 2002, ApJ, 574, 554
Mészáros, P. 2006, Rep. Prog. Phys., 69, 2259
Natarajan, P., Albanna, B., Hjorth, J., Ramirez-Ruiz, E., Tarvir, N., & Wijers, R. 2005, MNRAS, 364, L8
Panter, B., Heavens, A. F., & Jimenez, R. 2004, MNRAS, 355, 764
Porciuncula, C. M., & Mandel, P. 2001, ApJ, 548, 522 (PM01)
Preece, R. D., Briggs, M. S., Mallozzi, R. S., Pendleton, G. N., Paciesas, W. S., & Band, D. L. 2000, ApJS, 126, 19
Savaglio, S. 2006, New J. Phys., 8, 195
Savaglio, S., et al. 2005, ApJ, 635, 260
Schmidt, M. 2001, ApJ, 552, 36
Stark, D. P., Bunker, A. J., Ellis, R. S., Eyles, L. P., & Lacy, M. 2007, ApJ, in press (astro-ph/0604250)
Tagliaferri, G., et al. 2005, A&A, 443, L1