Determine the Location for Reactive Power Compensation in the Microgrid Based on the Hybrid Neural Network

Huynh Thi Ngoc Thuong¹, Le Trong Nghia¹, Phung Trieu Tan², Nguyen Phung Bao Long¹, Vo Huu Hung¹

¹Affiliation for first author Department of Electrical and Electronics Engineering, University of Technology and Education, Ho Chi Minh city, Vietnam.
²Department of Electrical and Electronics Engineering, Cao Thang Technical College, Ho Chi Minh city, Vietnam.

Corresponding author. Email: thuonghtn@hcmute.edu.vn

ARTICLE INFO

Received: 31/12/2021
Revised: 2/4/2022
Accepted: 8/4/2022
Published: 30/8/2022

KEYWORDS

Microgrid (MG);
Reactive Power compensation;
Hybrid PSO-ANN;
Voltage quality;
Particle swarm optimization.

ABSTRACT

This paper presents a method to determine the capacity and location of compensating capacitors to reduce power loss and improve voltage quality in the Microgrid. At each bus location, the compensating capacitor capacity is varied to determine the bus location and capacitor capacity. In case of small power loss and good voltage quality, compensation position and capacity will be chosen. The construction of the neural network training dataset is done with load levels from 50% to 100%. For each load level, the reactive power compensation position and the compensation capacity will be determined. The improved PSO algorithm is proposed to improve the traditional neural network structure. The Microgrid 9-Bus power system is used to simulate and test the effectiveness of the proposed method. The results show that power loss and voltage quality achieve positive results. From the simulation results, we can conclude that the proposed neural network model is suitable for controlling the voltage quality of the Microgrid system.

Copyright © JTE. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution-Non Commercial 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purpose, provided the original work is properly cited.

1. Introduction

Grid-connected control technology for Microgrids (MG) with distributed generation (DG) sources such as: Solar cells, fuel cells, wind turbines, microturbines... are clean energy sources with great potential [1]. The Microgrid can operate in grid disconnected circumstance, a major fault or noise circumstance [2].

Keeping voltage stable and improving voltage quality in Microgrid is an important issue [3]. Voltage instability is caused by load changes that consume power beyond the capacity of the transmission and generation systems. Voltage collapse is the process by which a chain of failures involves voltage instability and eventually leads to power system disintegration or abnormally low voltage over large areas of the power system. The analysis to determine voltage stability in Microgrid need to consider 2 factors: before instability status and the mechanism of voltage stabilization [4-5]. Instability or Voltage collapse is a serious issue in power system operation, leading to a power outage over an area or a large area, causing huge economic, political and social losses.

This paper focused on improving the voltage quality in Microgrid system connected to the grid by proposing a method determine to compensate position optimization based on the hybrid neural network combine improved Particle Swarm Optimization (PSO) algorithm. PSO algorithm with nonlinear search ability is suitable for improving neural network structure. The combination of coefficients improves the search speed and increases the performance of the PSO algorithm. From that, it helps to identify better strategies and achieve higher accuracy in training.

The effectiveness of the proposed method is simulated and tested on the Microgrid 9-bus system. The simulation results show a positive in restoring the voltage quality of the power system. The voltage values quickly return to the allowable range and have better voltage quality than before reactive power compensation. The proposed neural network is adapted well to simulation data of the power system and achieves high-performance load forecasting.
The remain of this article is organized as follows: In Section 2, we present the problem of voltage control in the power grid, Artificial Neural Network (ANN) theory, PSO algorithm, ANN hybrid combine with PSO. In section 3, we represent simulation and testing in research. Finally, in section 4, we show conclusion about the proposed method.

2. Materials and Methods

2.1. Voltage control in power system

Voltage stability is the ability to maintain the voltage within the allowable value in the buses of the power system in all cases. The system will enter an unstable state when there is an increase such as a sudden increase in load or a change in operating conditions in the system. Such changes can cause the voltage drop to occur and, worst of all, to lose the ability to regulate, causing voltage collapse [6].

Voltage regulation in power system is one of the particularly important tasks in power system operation [7]. The goal of voltage regulation is first to ensure the quality of the power supplied to the load, which means the voltage on the buses is within the allowable limits; the second is to ensure the stability of power system in case of abnormality and failure, and economic efficiency in operation. Finally, minimize power loss and voltage loss [8].

The voltage loss between 2 points in the power system can be calculated as the following equation [9]:

\[
\Delta U = \frac{PR + QX}{U} + j \frac{PX - QR}{U} \tag{1}
\]

\(U\) - starting point voltage
\(P, Q\) - active power and reactive power between two points

On the main grid, the overhead line should be the \(X >> R\) component, so for simplicity the \(R\) component can be ignored. Expression (1) is rewritten as follows:

\[
\Delta U = \frac{QX}{U} + j \frac{PX}{U} \tag{2}
\]

In fact, the angle \(\delta\) (voltage difference angle between 2 nodes) is very small \((\approx 3-5^o)\), so the amplitude of voltage deviation depends mainly on the \(\frac{QX}{U}\) component and the voltage phase difference between 2 points depends mainly on \(\frac{PX}{U}\) component.

In other words, the reactive power transmitted on the line directly affects the voltage difference between the two nodes. And the active power transmitted on the line determines the voltage phase difference between the two nodes.

So voltage regulation is to adjust the flow of reactive power in the system. The voltage deviation is represented by a vector diagram as shown in Figure 1 [10].

![Figure 1. Voltage deviation vector diagram](image-url)
Ensuring the voltage within the limit is very complicated because the load in the power system is scattered and constantly changing, which can lead to the change in the reactive power requirements on the transmission grid.

Horizontal capacitors can be used to increase reactive power for power systems to increase local voltage. Its advantages are low cost, flexibility in installation and operation. However, its drawback is that the reactive power is proportional to the square of the voltage:

$$Q_c = \frac{U^2}{X_c},$$

with Q_c is the amount of reactive power of capacitor and X_c is the capacitive reactance of the capacitor when put into the system. When low voltage requires a lot of reactive power, the output power is also reduced.

2.2. Backpropagation Neural Network

An artificial neural network, abbreviated neural network, is a mathematical model built on the basis of the biological neural network of the human brain. It consists of 3 layers: input, output and hidden. In each layer there are artificial neurons, these neurons will connect with each other and process information according to the links to calculate new values at the nodes [11].

Neural Network has the ability to adapt to any changes from the input. The most commonly used ANN in big data analysis and processing is the deep neural network (DNN). Backpropagation algorithm [12], is a commonly used method in training neural networks to find the correct set of weights. Backpropagation is a supervised learning method. Backpropagation is a technique that uses gradient descent- it computes the gradient of the output to the target and redistributes it across the layers of a deep neural network. And finally giving results are weight-adjusted for neurons.

2.3. Hybrid Neural Network with advanced PSO algorithm

PSO is a popular optimization solution, a technique based on the social behaviour of the elements of a group of birds or fish [13]. The principles of finding optimal solutions for a problem in PSO are based on the number of elements that move in the search space. The movement of particles is determined by their position and velocity.

In PSO, to find the optimal solution to n-dimensional problem, the number of elements N_p will be used when the position and velocity vectors of the element d are represented by x_{id} and v_{id} where $d = 1, \ldots, N_p$; and $i = 1, \ldots, n$. At each step, the best position of each element is represented by $p_{best_d} = [p_{1d}, p_{2d}, \ldots, p_{nd}]$ ($d = 1, \ldots, N_p$), which is based on determining the value of the objective function and the elements.

Figure 2. Basic Back Propagation Neural Network
The best in the population represented by \(g_{\text{best}} \) will be stored for the next steps. The velocity of each element in the next iteration \((k+1)\) is calculated as follows:

\[
v_{id}(k+1) = w^{(k+1)} \cdot v_{id}^{(k)} + c_1 \cdot \text{rand}_1 \cdot (p_{\text{best}id}^{(k)} - x_{id}^{(k)}) + c_2 \cdot \text{rand}_2 \cdot (g_{\text{best}id}^{(k)} - x_{id}^{(k)})
\]

(3)

After each cycle, the position of each particle will be updated as below:

\[
x_{id}(k+1) = x_{id}^{(k)} + v_{id}^{(k+1)}
\]

(4)

In which:
- \(w \): inertial weight
- \(c_1, c_2 \): acceleration coefficients
- \(\text{rand}_1, \text{rand}_2 \): random number between 0 and 1

The performance of the PSO algorithm for optimization problems is sensitive to the element velocity calculations. Thus, Clerc and Kennedy proposed an improvement to the calculation of velocities of particles adding a coefficient of contraction [14]. The velocity of the elements with the coefficient \(C \) is calculated as follows:

\[
v_{id}(k+1) = C \cdot [w^{(k+1)} \cdot v_{id}^{(k)} + c_1 \cdot \text{rand}_1 \cdot (p_{\text{best}id}^{(k)} - x_{id}^{(k)}) + c_2 \cdot \text{rand}_2 \cdot (g_{\text{best}id}^{(k)} - x_{id}^{(k)})]
\]

(5)

\[
C = \frac{2}{2 - \varphi - \sqrt{\varphi^2 - 4\varphi}}
\]

(6)

The higher the value of \(\varphi \), the lower the limit of \(C \) will diversify the solution direction and the response will be slower.

3. Results and Discussion

The tested Microgrid- MG system was based on [15,16]. The MG system includes 20MVA power source with 9 buses, 2 sets of 80kw power batteries, a 250kW wind turbine, 3 load buses, which can be seen in Figure 3.

![Diagram of proposed MG system](image)

Figure 3. Diagram of proposed MG system

In this research, the MG system diagram is simulated on ETAP software. The neural training data is collected based on many load cases (50–99% - 50 cases). In each case, each load level will be installed with different capacitor capacities (10 capacitor capacities - 200, 400, 600, 700, 800, 1000, 1200, 1400, 1500, 1800 kVar) and each capacity will be installed in different possible locations (including three buses – bus 3, bus 6, and bus 7). Input variables include parameters: load capacity \((P_{\text{load}}) \), generator
power ($P_{\text{generator}}$), bus voltage (U_{bus}) including 14 variables. The output variable consists of 3 location variables of the 3 buses – bus 3, bus 6 and bus 7. Ranked will be based on the lowest power loss between the buses and is numbered 1 (remaining 0). This process collects 500 data sets; the flow chart of data collection is shown in Figure 4. The operation process of the proposed neural network model is presented in Figure 5.

Figure 6 shows that the proposed neural network advantages in improving the accuracy of BPNN network. Specifically, with 2 neurons in the hidden layer, the training and testing accuracy of the PSO-ANN are 96% and 90.59% higher than the BPNN are 56.71% and 56%.

In the case study, with the load operating at 90%, all buses in the system (except bus 1) have their voltage drops, the voltage at each bus is below 100%. To overcome this situation, it is necessary to install a suitable compensating capacitor. With the load level of the MG system is 90% and the capacitor capacity is 1000kVar, based on the power loss between the buses from the process of the Neural Network, it is proposed to determine the optimal compensation position in the MG grid as bus 3. Results show that the voltage value at the bus is significantly improved from 1.25% to 1.33%, as shown in Figure 7.

The results of Figure 8 show that, when the system operates with greater capacity, the percentage of voltage on the buses decreases. In the case of Load 60%, placing a 1000kVar capacitor at Bus 3 achieves the highest voltage percentage gain from 1.37% to 1.44% for the buses in the system.

![Figure 4. Flowchart of data collection](image-url)
Table 1. Compare the results of proposed method and other methods

Number of hidden Neural layer	PSO-ANN	BPNN		
	Train	Test	Train	Test
1	96	90.59	4.94	5.33
2	96	90.59	56.71	56
3	96	90.59	62.35	53.33
4	96	90.82	1.18	2.67
5	96	90.59	0	0
6	90.67	90.12	0.24	1.33
7	96	90.59	16.94	17.33
8	94.67	90.12	72.94	68
9	96	90.59	7.76	13.33
10	96	90.59	4.24	2.67
11	96	90.59	32	28

Figure 5. The proposed neural network application diagram to determine the optimal placement on the MG
Figure 6. The chart compares the training results of the proposed method with BPNN.

Figure 7. The graph of the power percentage of the buses before and after installing the compensating capacitors on the MG system with a load level of 90%, in case of installing a 1000kVar capacitor at Bus 3.

Figure 8. Percentage chart of bus power before and after installing compensating capacitors on MG system at 50-100% load, in case of installing 1000kVar compensating capacitors at Bus 3.
4. Conclusions

The application of the PSO-ANN algorithm to determine the location of the capacitors installation helps to solve the problem of improving voltage quality in the Microgrid. Quickly classifying and locating optimal capacitor installations will greatly assist in voltage recovery on the Buses, improving power quality and reducing power loss.

The application PSO-ANN algorithm helps to determine link weight neural network faster and better. The coefficient improves the calculation of the element's velocities, resulting in a faster search time. This ensures the accuracy as well as the speed of training the neural network.

The good voltage recovery when it is simulated on the Microgrid 9 bus test system showed on the effectiveness of method proposed.

In the future, the method of determination optimizes compensate capacitor will improve and solve the problem of economic compensation, thereby reducing economic losses for customers.

Acknowledgments

This work belongs to the project grant number: T2021-16 funded by Ho Chi Minh City University of Technology and Education, Vietnam.

REFERENCES

[1] E. Bullich-Massagué, F. Díaz-González, M. Aragüés-Peñaalba, et al., "Microgrid clustering architectures", Applied Energy, vol. 212, pp. 340-361, 2018. DOI: 10.1016/j.apenergy.2017.12.048

[2] V. Garg and S. Sharma, "Overview on Microgrid System", 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), 2018. DOI: 10.1109/pdgc.2018.8745849.

[3] F. Katiraei, M. Iravani and P. Lehn, "Micro-Grid Autonomous Operation During and Subsequent to Islanding Process", IEEE Transactions on Power Delivery, vol. 20, no. 1, pp. 248-257, 2005. DOI: 10.1109/tpwd.2004.835051.

[4] M. Farrokhabadi et al., "Microgrid Stability Definitions, Analysis, and Examples", IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 13-29, 2020. DOI: 10.1109/tpwrs.2019.2925703.

[5] N. Hosseinzadeh, A. Aziz, A. Mahmud, A. Gargoom and M. Rahbani, "Voltage Stability of Power Systems with Renewable-Energy Inverter-Based Generators: A Review", Electronics, vol. 10, no. 2, p. 115, 2021. DOI: 10.3390/electronics10020115.

[6] X. Meng and Z. Pian, "Derivation of Distribution Network Vulnerability Indicators Based on Voltage Stability", Intelligent Coordinated Control of Complex Uncertain Systems for Power Distribution Network Reliability, pp. 65-89, 2016. DOI: 10.1016/b978-0-12-849896-5.00004-0.

[7] M. Nazir, A. Ahmad and I. Hussain, "Operational and environmental aspects of standalone microgrids", Control of Standalone Microgrid, pp. 25-59, 2021. DOI: 10.1016/b978-0-12-823022-0.00008-8.

[8] P. Pavithren, R. Raghu Raman, P. Nair and K. Nithyandroid, "Voltage Stability Analysis and Stability Improvement of Power System", International Journal of Electrical and Computer Engineering (IJECE), vol. 5, no. 2, p. 189, 2015. DOI: 10.11591/ijece.v5i2.pp189-197.

[9] J. Petinn and M. Shaaban, "Impact of renewable generation on voltage control in distribution systems", Renewable and Sustainable Energy Reviews, vol. 65, pp. 770-783, 2016. DOI: 10.1016/j.rser.2016.06.073.

[10] C. Wachjoe and H. Zein, "A Method for Voltage Drop Monitoring on Load Sides in Medium Voltage Feeder", 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), 2020. DOI: 10.1109/codit49905.2020.9263852.

[11] A. Aljanad, A. Mohamed, T. Khatib, A. Ayob and H. Shareef, "A Novel Charging and Discharging Algorithm of Plug-in Hybrid Electric Vehicles Considering Vehicle-to-Grid and Photovoltaic Generation", World Electric Vehicle Journal, vol. 10, no. 4, p. 61, 2019. DOI: 10.3390/wej10040061.

[12] Y. Yu, Y. Tian, N. Feng and M. Lei, "Research on Lifetime Precision Method of Tower Crane Based on Back Propagation Neural Network", Advances in Intelligent and Soft Computing, pp. 111-116, 2012. DOI: 10.1007/978-3-642-28658-2_17.

[13] M. Inman, R. Hashim and N. Khalid, "An Overview of Particle Swarm Optimization Variants", Proces Engineering, vol. 53, pp. 491-496, 2013. DOI: 10.1016/j.proeng.2013.02.063.

[14] M. Clerc and J. Kennedy, "The particle swarm - explosion, stability, and convergence in a multidimensional complex space", IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58-73, 2002. DOI: 10.1109/4235.985692.

[15] J. Izzatiilae, "Determination of Power Flows in Microgrids with Renewable Energy Sources by Using Special Computer Programs", Applied Solar Energy, vol. 56, no. 2, pp. 149-155, 2020. DOI: 10.3103/s0003701x20020061.

[16] M. Hussain, D. Hussain, M. Khan and S. Shah, "Solar Grid Integration Issue: Overvoltage Dilemma", SSRN Electronic Journal, 2017. DOI: 10.2139/ssrn.2984567.

Huynh Thi Ngoc Thuong received her M.Sc. degree in electrical engineering from Ho Chi Minh City University of Technology, Vietnam, in 2003. Currently, she is a lecturer in the Faculty Electrical and Electronics Engineering, HCMUTE. Her main areas of research interests are distribution network, electric drive and microgrid.
Le Trong Nghia. received his Ph.D degree in electrical engineering from Ho Chi Minh City University of Technology and Education (HCMUTE), Vietnam, in 2020. Currently, he is a lecturer in the Faculty Electrical and Electronics Engineering, HCMUTE. His main areas of research interests are load shedding in power systems, power systems stability and distribution network.

Phung Trieu Tan received his M.Sc. degree in electrical engineering from Ho Chi Minh City University of Technology and Education (HCMUTE), Vietnam, in 2020. Currently, he is a lecturer in the Faculty Electrical and Electronics Engineering, Cao Thang Technical College. His main areas of research interests are Artificial Neural network, load shedding in power systems.

Nguyen Phung Bao Long received his Bachelor degree in Ho Chi Minh City University of Technology and Education (HCMUTE), Vietnam, in 2020. He is currently studying for a master's degree at National Chung Cheng University, Taiwan.

Vo Huu Hung is student in the Faculty of Electrical and Electronics Engineering in Ho Chi Minh City University of Technology and Education (HCMUTE), Vietnam.