Phytochemical Investigation of Egyptian Spinach Leaves, a Potential Source for Antileukemic Metabolites: In Vitro and In Silico Study

Shimaa M. Abdelgawad 1, Mona H. Hetta 1, Mohamed A. Ibrahim 2, Premalatha Balachandran 2, Jin Zhang 2, Mei Wang 3, Ghada A. Fawzy 4, Hesham I. El-Askary 4, Samir A. Ross 2,5

Received: 23 January 2022 / Accepted: 30 August 2022 / Published online: 22 September 2022
@ The Author(s) 2022

Abstract

Spinacia oleracea L., Amaranthaceae, leaves cultivated in Egypt demonstrated a potential antileukemic activity against the chronic myeloid leukemia, K562 cell line. Thus, the aim of this study is to carry out a phytochemical investigation of S. oleracea leaves as well as the isolation of its antileukemic phytoconstituents. Phytochemical investigation of S. oleracea leaves resulted in the isolation of seventeen known compounds. The biological study revealed that compounds hexaprenol, phytol, and 18-[(1-oxohexadecyl) oxy]-9-octadecenoic acid exhibited a remarkable antiproliferative activity against K562 cells in vitro. A mechanistic in silico study showed that hexaprenol, phytol, and 18-[(1-oxohexadecyl) oxy]-9-octadecenoic acid exhibited a strong binding affinity towards topoisomerase (docking score −12.50, −9.19, and −13.29 kcal/mol, respectively), and showed as well a strong binding affinity towards Abl kinase (docking score −11.91, −9.35, and −12.59 kcal/mol, respectively). Molecular dynamics study revealed that 18-[(1-oxohexadecyl) oxy]-9-octadecenoic acid produced stable complexes with both topoisomerase and Abl kinase with RMSD values of 1.81 and 1.85 Å, respectively. As a result of our findings, we recommend more in vivo and preclinical studies to confirm the potential benefit of spinach leaves for chronic myeloid leukemia patients.

Keywords Spinach · Chronic myeloid leukemia · K562 cell line · Abl kinase · Topoisomerase · Molecular dynamics

Introduction

Chronic myeloid leukemia (CML) is ranked as the fourth predominant cancer in upper Egypt that constituted about 10.2% of all the reported cancer cases, after breast, liver, and bladder cancers that constituted about 34, 23.4, and 16.6% of cases, respectively (Ibrahim et al. 2014). Chronic myeloid leukemia is a myeloproliferative neoplasm that is characterized by uncontrolled myeloid cell divisions in the bone marrow (Shahrabi et al. 2014). Chronic myeloid leukemia arises due to genesis of the BCR-ABL oncogene as a result of the reciprocal translocation between chromosome 9 and chromosome 22 (Deininger et al. 2000). The BCR-ABL oncogene encodes a constitutively activated tyrosine kinase enzyme which activates several proliferatory signaling pathways inside the cells such as RAS, a small GTPase, mitogen-activated protein kinase, signal transducers and activator of transcription, and phosphoinositide-3-kinase pathways (Sattlermc and Griffin 2003). Targeting Abl kinase was reported as a successful strategy to treat CML. Tyrosine kinase inhibitors (TKIs) such as imatinib, ilotinib, dasatinib, bosutinib, and ponatinib are currently used to treat CML.
Materials and Methods

General Experimental Procedures

Liquid chromatography analysis was conducted using an Agilent 1100 HPLC system, RP-C18 column (150 × 4.6 mm; particle size 5 μm; Luna) with column oven temperature set at 25 °C and a gradient system of eluent water (A) and methanol (B) used. The gradient condition was as follows: 0–8 min (30% B), 9–11 min (40% B—80% B), 12–15 min (100% B). The flow rate of the solvent was 2 m/min, and the injection volume was 50 μl. All the analysis was carried out at wavelength of 280 nm with a run time of 16 min. HPLC-grade methanol and water solvents were used. Acetic acid was added as a modifier to achieve a final concentration of 0.1% in each solvent. GC/MS analysis was performed with an Agilent 7890B gas chromatograph. Optical activity was measured using an AA-65 series automatic polarimeter (Cambridgeshire, PE26 1NF, England). High-resolution electrospray ionization mass spectrometry (HR-ESIMS) data were acquired using a Bruker BioApex-FTMS with electrospray ionization (ESI). 1D and 2D NMR spectra were recorded on a Bruker 400- and 500-MHz spectrometer.

Sephadex LH-20 (Mitsubishi Kagaku, Tokyo, Japan) and silica gel (60–120-μm mesh, Merck, Darmstadt, Germany), reversed phase silica (40–63 μM, Sorbert Technologies, 5955 Peachtree Corners East, Suite A, Norcross, GA 30071 USA), and Diaion® HP-20 (250 μm, Supelco, Bellefonte, PA 16823-00048, USA) were used for column chromatography (CC). SPE cartridges silica gel and C18 (Supelco Inc., Bellefonte, PA, USA) were used in the fractionation work. Fractions from CC were monitored using precoated aluminum sheets (silica 60 F254, 0.25 mm (Merck, Darmstadt, Germany)), with detection provided by UV light (254 and 366 nm) and by spraying with 2% p-anisaldehyde-H2SO4 reagent followed by heating for 5–10 min (105 °C).

Plant Material

The fresh leaves of Spinacia oleracea L., Amaranthaceae, were purchased from the Sara Organic Food Farm (https://www.sarasorganicfood.com/), Egypt, in June 2018. The plant material was authenticated as S. oleracea L. (Baladi cultivar) by Hesham Elfayoumi, lecturer at Plant Taxonomy Department, Faculty of Science, Fayoum University, and voucher specimen (FUPD-48) was kept at the Herbarium of Pharmacognosy Department, Faculty of Pharmacy, Fayoum University, Egypt.

Extraction and Isolation Procedure

The shade dried leaves (1.6 kg) were ground and extracted six times with 75% ethanol at room temperature. The combined 75% hydroethanolic extract was concentrated in vacuum to afford a crude extract (303.8 g), that was suspended in water, and fractionated successively with hexane, dichloromethane, ethyl acetate, and n-butanol to afford fractions of 31, 2.9, 7.3, and 25.3 g, respectively, and aqueous mother liquor 235 g. The obtained fractions were subjected to biological testing against leukemia K562 cell line.
Phytochemical Study of the Hexane Fraction [Fr-A]

The hexane fraction of *S. oleracea* leaves was saponified according to the published procedure (Finar 1973) and the fatty acid methyl ester (FAME) and unsaponifiable matter (USM) were then subjected to GC/MS analysis.

Unsaponifiable matter (1.8 g) was chromatographed on silica gel column by gradient elution with hexane/EtOAc (2.5% gradient) to afford six fractions (A1–A6). Fr-A-2 (68.7 mg) was chromatographed on silica gel column by gradient elution with hexane/EtOAc (2.5% gradient) to afford compound 1 (19.1 mg) and unseparated mixture of compounds 4 and 5 (34 mg). Fr-A-3 (284.44 mg) was chromatographed on silica gel column by gradient elution with hexane/EtOAc (2.5% gradient) to afford compounds 2 (133.9 mg), 3 (31.4 mg), and 6 (86.4 mg). Fr-A-4 (742.27 mg) was chromatographed on silica gel column by gradient elution with hexane/EtOAc (2.5% gradient) to afford unseparated mixture of compounds 7 and 8 (23.4 mg), unseparated mixture of compounds 9 and 10 (11.4 mg), and compound 11 (22.2 mg). Fr-A-6 was one pure compound 12 (15.7 mg) on TLC.

Phytochemical Study of the EtOAc Fraction [Fr-B]

EtOAc fraction (6.8 g) was subjected to column chromatography on Sephadex LH-20 with methanol as eluent to afford 9 subfractions (B1–B9). Fr-B-5 (2.9 g) was chromatographed on reversed phase silica gel (RP-SPE) cartridge by gradient elution with water/methanol to afford 3 subfractions. Fr-B-5-1 (1.9 g) was chromatographed on silica gel column eluting with dichloromethane/methanol gradient to afford 6 subfractions. Fr-B-5-1-3 (123 mg) was chromatographed on silica gel column chromatography eluting with dichloromethane/methanol gradient to afford 5 subfractions. Subfraction Fr-B-5-1-3-2 (15.3 mg) was purified using HPLC RP column eluting by water/methanol gradient to afford compound 13 (3 mg) at retention time of 9.16 min (Fig. S1, Supplementary materials). Subfraction Fr-B-5-1-3-4 (82.18 mg) was purified using HPLC RP column eluting by water/methanol gradient to afford compounds 14 (11 mg) and 15 (4 mg) at retention times 7.51 and 8.02 min, respectively (Fig. S2, Supplementary materials). Fr-B-5-1-5 was a single spot by TLC under UV light and by spraying with *p*-anisaldehyde and afforded compound 16 (16.9 mg). Fr-B-5-2 (130.3 mg) was chromatographed on reversed phase silica gel (RP-SPE) cartridge by gradient elution with water/methanol to afford compound 17 (3.4 mg).

Cytotoxicity Assay

K562 cells from the American Type Culture Collection (ATCC) were plated in a clear 384-well plate at an initial density of 2500 cells/well in 40 μl of growth medium (DMEM with 10% FBS and 1% pen/strep). Next day, the test agents were added in quadruplicate at the specified concentration and the treatment continued for 48 h and the cell viability was finally assessed using WST-8 assay Cell Counting Kit from Bimake, according to manufacturer’s instructions. The results were calculated by measuring the absorbance at 450 nm using a Spectra Max M5 plate reader (Molecular Devices). Cell viability was calculated in comparison to DMSO as a negative control, Taxol and doxorubicin as a positive control (Kageyama et al. 2018). The extract and fractions were screened primary at concentration of 20 μg/ml and the percentage inhibitions were calculated. Isolated compounds were screened at six concentrations (5, 10, 25, 50, 75, and 100 μg/ml) and IC₅₀ values were calculated.

Molecular Docking

All docking simulations were conducted using MOE 2019 software (https://www.chemcomp.com). The receptors and the ligands were prepared using the standard structure optimization protocol of the software. The receptors were obtained from the protein data bank, PDB IDs: 3QX3, 3QRJ, 1M17, 2SRC, and 6QS9 for topoisomerase, Abl Kinase, EGFR-tyrosine kinase, SRC kinase, and albumin, respectively. Then they were energy minimized under AMBER12: EHT force field. The active sites were set as where the co-crystalized ligand was bound. The docking was performed using a molecular structure of compounds isolated from *S. oleracea* leaves using the general protocol of MOE DOCKTITE Wizard. Triangle matcher and London dG were utilized as the placement method and scoring algorithm, respectively. The validation of docking experiments was achieved through the re-docking of the co-crystalized ligands into their corresponding active sites and then the root mean square deviation (RMSD) was calculated. The docking results were visualized, and the docking scores were reported in kcal/mol.

Molecular Dynamics

To conduct the required molecular dynamics (MD) simulations, Groningen Machine for Chemical Simulations (GROMACS) 5.1.1 software was employed (Abraham et al. 2015). To validate the retrieved binding modes from the docking study, two MD simulation experiments were conducted. The two simulation experiments were performed on the most active compound 3 in complex with Abl kinase and topoisomerase. GROMOS96 force field was implemented to generate the ligand topology using the GlycoBioChem PRODRG2 Server (Schüttelkopf and Van Aalten 2004). Later on, complex topology was generated through joining both ligand and enzymes. As already published in the literature, the typical scheme for enzyme-ligand simulations by
GROMACS was applied, starting with system solvation using a single point charge (SPC) water model and ending with neutralization by adding the suitable number of counter ions (El Hassab et al. 2020, 2021, 2022a, 2022b).

The two solvated neutralized systems were energy minimized under GROMOS9643A1 force field using the steepest descent minimization algorithm with a maximum of 50,000 steps and 10 kJ/mol force under. All the systems were equilibrated to the used temperature (310 K) and pressure (1 atm) using NPT (isothermal-isobaric ensemble) for 2 ns preceded by NVT (canonical ensemble) for 1 ns. To compute the long-range electrostatic values, the particle mesh Ewald (PME) method with a 12-Å cut-off and 12-Å Fourier spacing was implemented. All the systems were subjected to a production stage of 50 ns. Every two consecutive steps were separated by 2 fs and the structural coordinates were saved every 20 ps. The V-rescale weak coupling method (modified Berendsen thermostat) and the Parrinello-Rahman method were used to regulate the temperature (310 K) and the pressure (1 atm) throughout the simulation (Parrinello and Rahman 1981; Berendsen et al. 1984). The root mean square deviation (RMSD) of the entire system was calculated from the generated trajectories from the production step.

Results and Discussion

Spinacia oleracea was selected based on the results of our previous screening of certain Egyptian leafy vegetables for antileukemic activity. The total 75% ethanolic extract of *S. oleracea* leaves exhibited a strong antiproliferative activity against K562 cell with 88.9% percentage of inhibition at a concentration of 10 mg/ml. The hexane, dichloromethane, ethyl acetate, *n*-butanol, and the aqueous fractions were tested at a concentration of 20 μg/ml and percentage inhibitions were calculated as 23, 19, 19, 20, and 18%, respectively, compared to doxorubicin and Taxol (86 and 79% at 10 μM, respectively). Based on the biological screening results as well as TLC screening of the bioactive fractions, the hexane and ethyl acetate fractions were selected for further phytochemical study with the aim of isolating the bioactive compounds.

Phytochemical Study of Hexane Fraction

Twenty-five compounds were identified in the saponifiable matter (Table 1) with five majors identified as methyl palmitate, (Z)-methyl hexadec-11-enoate, methyl oleate, methyl linoleate, and methyl linolenate at retention times of 33.1, 33.3, 37.5, 37.7, and 38.2 min, respectively. Moreover, twelve compounds were identified in the unsaponifiable matter (Table 2) with seven majors identified as palmitic acid, phytol, oleic acid, linoelaidic acid, linolenic acid, stigmasterol, and γ-sitosterol at retention times of 34.2, 37.3, 38.7, 39.0, 39.5, 66.1, and 68.6 min, respectively.

The unsaponifiable matter was subjected to column chromatographic separations which resulted in the isolation of twelve compounds (Fig. S3, Supplementary materials), identified as hexaprenol (1) (Grigor’eva et al. 1990), phytol (2) (Argoni et al. 1999), 18-[(1-oxohexadecyl)oxy]-9-octadecenoic acid (3), 24-methylene cycloartanol (4) (El-Feky et al. 2020), (2E,6E)-3,7,11,15,19-pentamethylcyclocosa-2,6-dien-1-ol (5) (Toyoda et al. 1969), palmitic acid (6) (Di Pietro et al. 2020), (Schulz et al. 2000), γ-sitosterol (7) (Jain et al. 2009), stigmasterol (8) (Jain et al. 2009), 25,26-dihydroelasterol (9) (Doshi et al. 2015), 22,23-dihydrospinitasterol (10) (Hetta et al. 2017), spinasterol (11) (Ragas and Lim 2005), and lutein (12) (Prapalert et al. 2016). This is the first report of compounds 1 and 3 in *S. oleracea* leaves while compounds 2, 4–12 were previously isolated from spinach leaves (Wolf et al. 1962; Modlin et al. 1994; Drews 1996; Ligor and Buszewski 2012; Hetta et al. 2017).
Table 1 Results of GC/MS analysis of fatty acid methyl ester (FAME) of the hexane fraction of *Spinacia oleracea* leaves

Comp. no.	Compound name	RT (min)	Mol weight (amu)	Peak area (%)
1.	Methyl myristate	27.8	242.225	0.70
2.	Methyl pentadecanoate	30.4	256.24	0.57
3.	Phytone	30.7	268.277	0.47
4.	(Z)-9-Hexadecenoic acid, methyl ester	32.7	268.24	0.51
5.	Methyl palmitate	33.1	270.256	24.09
6.	(Z)-Methyl hexadec-11-enoate	33.3	268.24	2.40
7.	7,10,13-Hexadecatrienoic acid, methyl ester	33.4	264.209	0.77
8.	Palmitic acid	34.2	256.24	0.28
9.	Methyl margarate	35.4	284.272	0.51
10.	Hexadecanoic acid, 2-hydroxy-, methyl ester	36.4	286.251	1.00
11.	Methyl isostearate	36.7	298.287	0.28
12.	Methyl oleate	37.5	296.272	8.70
13.	Methyl linoleate	37.7	294.256	13.99
14.	11,14-Octadecadienoic acid, methyl ester	37.9	294.256	0.61
15.	Methyl linolenate	38.2	292.24	17.43
16.	Methyl 9-cis,11-trans-octadecadienoate	40.2	294.256	0.56
17.	cis-13-Eicosenoic acid, methyl ester	41.9	324.303	0.55
18.	Methyl arachidate	42.0	326.318	0.65
19.	Methyl behenate	46.1	354.35	1.46
20.	Methyl tricosanoate	48.0	368.365	0.49
21.	Methyl lignocerate	49.9	382.381	1.60
22.	Methyl 2-hydroxy-tetracosanoate	52.8	398.376	1.65
23.	Methyl hexacosanoate	53.4	410.412	0.66
24.	Methyl montanate	57.3	438.444	0.66
25.	Stigmasta-3,5-diene	58.9	396.376	0.83

Saturated fatty acids 35%

Unsaturated fatty acids 46.4%

Unidentified compounds 18.6%

Table 2 Results of GC/MS analysis of unsaponifiable matter of the hexane fraction of *Spinacia oleracea* leaves

Comp. no.	Compound name	RT (min)	Mol weight (amu)	Peak area (%)
1.	Dihydroactinolide	26.9	180.115	0.55
2.	Phytone	30.7	268.277	0.83
3.	Palmitic acid	34.2	256.24	11.07
4.	Loliolid	34.8	196.11	1.64
5.	Phytol	37.3	296.308	33.37
6.	Oleic acid	38.7	282.256	3.24
7.	Linoelaidic acid	39.0	280.24	10.12
8.	Linolenic acid	39.5	278.225	24.79
9.	Nonacos-1-ene	45.4	406.454	0.22
10.	1-Tetracosene	49.3	406.454	0.57
11.	Stigmasterol	66.1	412.371	2.56
12.	gamma-Sitosterol	68.6	414.386	1.79

Total hydrocarbons 83%

Sterols 4.35%

Unidentified compounds 12.65%
Phytochemical Investigation of the Ethyl Acetate Fraction

Five flavonoids (Fig. S4, Supplementary materials) were isolated from the ethyl acetate fraction identified as isosertisin-2′′-O-xyloside (13) (Bakhtiar et al. 1990), vitexin-2′′-O-xyloside (14) (Isayenkova et al. 2006), margaritene (15) (Larionova et al. 2010), vitexin-2′′-O-rhamnosome (16) (Nikolov et al. 1982), and 3-O-glycoside identified as isorhamnetin-3-O-β-D-xylopyranosyl (1→6)-β-D-glucopyranoside (17) (Sakar et al. 1980; Moustapha et al. 2011). This is the first report for compounds 13–17 in S. oleracea leaves.

Biological Study

The antileukemic activity of the major constituent of the saponifiable matter of hexane fraction, the linolenic acid, was previously reported in many research articles (Beaulieu et al. 2011; Ge et al. 2009; Harada et al. 2002; Jóźwiak et al. 2020; Liu and Leung 2014; Mainou-Fowler et al. 2001; Moloudizargari et al. 2018; Valencia-Serna et al. 2013). Methyl oleate (Saab et al. 2011) and methyl linolenate (Ge et al. 2009) were also reported for their in vitro antileukemic activity against K562 cells. Thus, the activity of saponifiable matter may be attributed to the presence of those compounds.

The compounds isolated from USM, hexaprenol (1), phytol (2), and 18-[1-oxohexadecyl oxy]-9-octadecenoic acid (3) (NMR spectrum Figs. S5-S7, Supplementary materials), exhibited antiproliferative activity against K562 cells with IC50 of 44.89, 33.28, and 70.58 μg/ml, respectively, compared to doxorubicin and Taxol with IC50 of 11.41 and 1.70 μg/ml, respectively. The antileukemic activity of compound 2 against K562 cells was previously reported (Anuchapreeda et al. 2020) while this is the first report of the activity of compounds 1 and 3 against K562 cells. The compounds isolated from the ethyl acetate fraction showed no antiproliferative activity against K562 cell line. However, some of these compounds have several applications that could be beneficial in the management of CML disease. For example, vitexin-2′′-O-rhamnosome (16), which is a major compound in the EtOAc fraction, reported for its antioxidant and anti-apoptotic activities (Wei et al. 2014). Margaritene (15) also was reported for its antioxidant activity (Lou et al. 2015). Additionally, 22,23-dihydroprostanasterol (10) and spinasterol (11) were recently reported for their moderate antioxidant activity (Ahmed et al. 2022).

In a clinical study conducted on 47 CML patients, the oxidative stress was reported to be associated with the pathophysiology of CML (Ahmad et al. 2008). Thus, the use of antioxidants could be beneficial for CML patients. Spinach leaves extract was reported for its antioxidant activity in several clinical studies (Cao et al. 1998; Castenmiller et al. 1999; Pool-Zobel et al. 1997; Porrini et al. 2002). Therefore, the antioxidant activity of the spinach extract or its isolated compounds in addition to the antileukemic activities of the isolated compounds might work in symmetry to improve CML disease, but this still needs further in vivo and preclinical investigations.

Molecular Docking

Multitarget therapies are crucial in the field of complex diseases, such as cancers and inflammatory and thrombotic diseases which can be affected by several cellular pathways (Skok et al. 2019). Targeting two different pathways involved in the development of a disease can represent logic solution for this challenge and can reduce the potential for the development of resistance (Skok et al. 2019).

Recent research showed a correlation between CML cell line (K562) and several target proteins whose inhibition leads to antiproliferative effect in this cell line. Four target proteins are named: human topoisomerase II beta in complex with DNA and etoposide (PDB ID-3QX3), epidermal growth factor receptor complexed with erlotinib (PDB ID-1M17), human ABL1 kinase (PDB ID-3QJR), and SRC kinase (PDB ID-2SRC) were reported as docking targets in the K562 cell line (James et al. 2017; Zamakshshari et al. 2019).

Table 3	Affinity binding docking scores (kcal/mol) of compounds isolated from Spinacia oleracea leaves against several targets				
Compound no.	Topoisomerase (3QX3)	SRC kinase (2SRC)	Abl kinase (3QJR)	EGF-tyrosine kinase (1M17)	Albumin (6QS9)
1	−12.50	−9.13	−11.91	−9.33	−9.36
2	−9.19	−9.62	−9.35	−8.34	−9.41
3	−13.29	−9.21	−12.59	−9.44	−11.32
Etoposide	−11.77				
Adenylyl-imidodiphosphate		−8.97			
Rebastinib			−13.43		
Erlotinib				−12.73	
Ketoprofen					−7.54
The active isolated compounds were docked into the active site of the selected targets and the resulted docking scores are reported in Table 3. Hexaprenol (1), phytol (2), and 18-[(1-oxohexadecyl)oxy]-9-octadecenoic acid (3) show a strong binding affinity towards all the selected targets (Table 3). The best docking results were obtained with topoisomerase and Abl kinase enzymes and in turn their docking results were selected for further analysis. As depicted in Fig. 1, compound 1 showed a strong binding pattern towards the topoisomerase enzyme through forming several interactions with DT9, DG10, DC11, and DC14 in the DNA in addition to one interaction with Arg820. Similarly, compound 2 formed six interactions with DA12, DG13, Gly776, and Ala779, while compound 3 interacted with DG13, Lys505, and Arg820. The interaction pattern and docking scores of the three isolated compounds with topoisomerases is very similar to the crystal reference etoposide (Table 3, Fig. 1). Moreover, the three isolated compounds achieved acceptable docking scores with Abl kinase, having binding scores of -11.91, -9.35, and -12.59 kcal/mol for compounds 1, 2, and 3, respectively (Table 3). Moreover, compound 1 formed four interactions with Phe359 and His361, while compound 2 formed four interactions with Met290, Asn358, and Ile360 (Fig. 2). At last, compound 3 interacted with Lys271, Met290, and Phe382 (Fig. 2).

Molecular docking provided a mechanistic information on the possible antiproliferative activity against K562 cells through binding with Abl kinase and topoisomerase.

The in silico–based safety analysis of the antileukemic compounds was tested by measuring their binding affinity to albumin (PDB ID–6QS9) (Behzadi et al. 2019). The affinity of cytotoxic compounds to bind to albumin has a great impact on their pharmacodynamics and pharmacokinetic properties; for example, the anticancer agent chlorambucil is 99% bound to albumin and yet has a short half-life of 1.3 ± 0.90 h (Sparreboom and Loos 2004). In accordance with this
information, compounds 1 and 2 are safer in silico and with greater half-life than compound 3 (Table 3).

Molecular Dynamics

Molecular dynamics (MD) simulation has been an inevitable technique in studies involving in silico drug discovery. MD provides many important parameters, data, and figures necessary in various computational and molecular modelling studies. One of the most common applications of the MD is the precise determination of the binding stability between a ligand and its target. Therefore, it was logistic to take the advantage of the MD to further endorse our docking results. Two MD simulation experiments were conducted on compound 3 bound to Abl kinase and topoisomerase. Interestingly, the calculated RMSD for compound 3 with Abl kinase and topoisomerase reached 1.85 and 1.81 Å respectively at their maximum deviations (Fig. 3). The ability of compound 3 to produce such a lower RMSD value is a powerful indicator of its ability to produce stable complexes with Abl kinase and topoisomerase. The MD results supported the docking results and highlighted the ability of the isolated compounds as antileukemic agents.

Conclusions

The hexane fraction of Egyptian Spinach leaves as well as its isolated compounds, hexaprenol (1), phytol (2), and 18-[(1-oxohexadecyl oxy]-9-octadecenoic acid (3), showed
remarkable antiproliferative activity against leukemia K562 cell line. The molecular docking study revealed that this activity is supposed to be through targeting Abl kinase and topoisomerase, and this still needs to be proved by in vitro assay of these compounds against the mentioned targets. As a result of our findings, we recommend more in vivo and preclinical investigations to confirm the potential benefit of spinach leaves for CML patients.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s43450-022-00307-0.

Acknowledgements Support from National Center for Natural Products research (NCNPR), University of Mississippi, is gratefully acknowledged.

Author Contribution SMA contributed to the plant material collection, extraction, and chemical assays. MAI, PB, and JZ participated in the experimental biological assays. MHH, GAF, HIE-A, MAI, and SAR conceived, designed, and contributed to the formal analysis of the study. MW participated in the GC/MS analyses and interpretation of the data. The first draft of the manuscript was written by SMA, and all authors commented on this version. All authors have read the final manuscript and approved the submission.

Funding Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). This work was supported by the Egyptian Ministry of Higher Education Missions Sector (grant no. JS-3770).

Declarations

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdelgawad SM, Hetta MH, Fawzy GA, El-Askary HI (2021) In vitro antileukemic activity of extracts of some medicinal plants from upper Egypt in human chronic leukemia K562 cell line. Trop J Nat Prod Res 5:2115–2122. https://doi.org/10.26538/tjnpr/v14.i.5

Abdul-Wahab FK, Jalil TZA (2012) Study of Iraqi spinach leaves (phytochemical and protective effects against methotrexate-induced hepatotoxicity in rats). Iraqi J Pharm Sci 21:8–17. https://doi.org/10.31351/vol21iss2pp8-17

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25. https://doi.org/10.1016/j.softx.2015.06.001

Ahmad R, Tripathi AK, Tripathi P, Singh R, Singh S, Singh RK (2008) Oxidative stress and antioxidant status in patients with chronic myeloid leukemia. Indian J Clin Biochem 23:328–333. https://doi.org/10.1007/s12291-008-0072-9

Ahmed M, Sajid AR, Javeed A, Aslam M, Ahsan T, Hussain D, Mateen A, Li X, Qin P, Ji M (2022) Antioxidant, antifungal, and aphidical activity of the triterpenoids spinasterol and 22,23-dihydrospinasterol from leaves of Citrullus colocynthis L. Sci Rep 12:4910. https://doi.org/10.1038/s41598-022-08999-z

Akard LP (2010) Second-generation BCR-ABL kinase inhibitors in CML. N Engl J Med 363:1672–1673. https://doi.org/10.1038/nm2126

Ali MA (2016) Chronic myeloid leukemia in the era of tyrosine kinase inhibitors: an evolving paradigm of molecularly targeted therapy. Mol Diagn Ther 20:315–333. https://doi.org/10.1007/s40291-016-0208-1

Altemimi A, Lakhssassi N, Abu-Ghazaleh A, Lightfoot DA (2017) Evaluation of the antimicrobial activities of ultrasonicated spinach leaf extracts using rapid markers and electron microscopy. Arch
Drews HJ (1996) Analysis of free sugars and chlorophyll in spinach from a local retail market. Master’s Thesis, University of Tennessee, 1996. https://trace.tennessee.edu/utk_gradthes/4424. (5, 1996)

Edenharder R, Keller G, Platt KL, Unger KK (2001) Isolation and characterization of structurally novel antimutagenic flavonoids from spinach (Spinacia oleracea). J Agric Food Chem 49:2767–2773. https://doi.org/10.1021/jf0013712

El Hassab MA, Shoun AA, Al-Rashood ST, Al-Warhi T, Eldehwa WM (2020) Identification of a new potential SARS-COV-2 RNA-dependent RNA polymerase inhibitor via combining fragment-based drug design, docking, molecular dynamics, and MM-PBSA calculations. Front Chem 8:915. https://doi.org/10.3389/fchem.2020.584894

El Hassab MA, Ibrahim TM, Shoun AA, Al-Rashood ST, Alkahtani HM, Alharbi A, Eskandrani RO, Eldehwa WM (2021) In silico identification of potential SARS-COV-2 2′-O-methyltransferase inhibitor: fragment-based screening approach and MM-PBSA calculations. RSC Adv 11:16026–16033. https://doi.org/10.1039/D1RA01809D

El Hassab MA, Eldehwa WM, Al-Rashood ST, Alharbi A, Eskandrani RO, Alkahtani HM, Elkaheed EB, Abou-Seri SM (2022a) Multi-stage structure-based virtual screening approach towards identification of potential SARS-CoV-2 NSP13 helicase inhibitors. J Enzyme Inhib Med Chem 37:563–572. https://doi.org/10.1080/14756366.2021.2022659

El Hassab MA, Hemeda LR, Elsayed AM, Alhamed Amin MK, Abdel-Aziz HA, Eldehwa WM (2022b) Computational prediction of the potential target of SARS-CoV-2 inhibitorplitidepsin via molecular docking, dynamic simulations and MM-PBSA calculations. Chem Biodivers 19:e202100719. https://doi.org/10.1002/cbdv.20200719

El-Feky AM, Elbatanomy MM. Naser AFA, Kutkat OM, El-Sayed AE, Hamed MA (2020) Phytoconstituents and in vitro anti-oxidant, anti-viral, anti-hyperlipidemic and anticancer effects of Chlorella vulgaris microalgae in normal and stress conditions. Pharma Chem. 12:9–20 http://derpharmachemica.com/

Fekry WA, Nawar DA (2017) Improving the growth, productivity and quality of spinach plants (Spinacia oleracea L.). Zagazig J Agric Res 44:2473–2484. https://doi.org/10.21608/ZJAR.2017.51328

Ferreres F, Castañer M, Tomás-Barberán FA (1997) Acylated flavonol glycosides from spinach leaves (Spinacia oleracea). Phytochemistry. 45:1701–1705. https://doi.org/10.1016/S0031-9422(97)00244-6

Finar I (1973) Organic Chemistry Vol 1, 6th edn. ELBS

Foglio P, Tapparo A, Gallo G, Scaglia M, Trasatti S (1991) The food matrix of spinach is a limiting factor in determining β-carotene contents. J Food Chem 39:241–251. https://doi.org/10.1016/S0308-8146(05)80137-6

Fogueira E, Pero R, Morais M, Travassos E, Fernandes J, Guimarães V, Macias-Garcia H, Oliveira A, Carvalho M, Silva D, Guedes AI, et al. (2021) Antiviral activity of propolis and propolis-based nanoemulsions against SARS-CoV-2. Front Pharmacol 12:748306. https://doi.org/10.3389/fphar.2021.748306

Fujita T, Okada T, Yamada Y, Nakamura T, Shonen K, Fujisawa S, Existence of potential SARS-CoV-2 NSP13 helicase inhibitors. J Enzyme Inhib Med Chem 37:563–572. https://doi.org/10.1080/14756366.2021.2022659

Ganguly S, Chakravarty NC, Sengupta S, Chakraborty B, Mukherjee A (2020) In silico identification and characterization of potential SARS-CoV-2 2′-O-methyltransferase inhibitor: fragment-based virtual screening approach and MM-PBSA calculations. RSC Adv 11:16026–16033. https://doi.org/10.1039/D1RA01809D

Gao RX, Xu Y, Sun J, Xie Y, Wang J, Yang H, Zhai Y, Li H, Shen S, Zeng Y, et al. (2020) Identification of a new potential SARS-CoV-2 RNA-dependent RNA polymerase inhibitor via combining fragment-based drug design, docking, molecular dynamics, and MM-PBSA calculations. Front Chem 8:915. https://doi.org/10.3389/fchem.2020.584894

Gurigovaeva NY, Yudina O, Daeva E, Moseinikov A (1990) Synthesis of modified hexaprenol WC5 OH from glutaraldehyde derivatives. Bull Acad Chem 39:76-84. https://doi.org/10.1007/BF00963008

Harada H, Yamashita U, Kurihara H, Fukushima E, Kawabata J, Kameyama (2010) Antitumor activity of palmic acid could act as a selective cytotoxic substance in a marine red alga. Anticancer Res 22:2587–2590

Hetta MH, Moawad AS, Hamed MA, Sabri AI (2017) In-vitro and In-vivo hypolipidemic activity of spinach roots and flowers. Iran J Pharm Sci 13:597–608. https://doi.org/10.22037/IJPR.2017.2113

Ibrahim AM, Khaled HM, Mikhail NN, Baraka H, Kamel H (2014) Cancer incidence in Egypt: results of the national population-based cancer registry program. J Cancer Epidemiol 2014:437971. https://doi.org/10.1155/2014/437971

Isayenkova J, Wray V, Nimtz M, Strack D, Vogt T (2006) Cloning and in silico structural elucidation of chemical constituents from Benincasa hispida roots by gas chromatography: mass spectroscopy. Pharmacogn Res 4:249–256. https://doi.org/10.1179/175184306X137254

Jain P, Bari S, Surana S (2009) Isolation of stigmastrol and α-sitosterol from petroleum ether extract of woody stem of Abelmoschus manihot. J Food Sci 74:249–256. https://doi.org/10.1179/0022-323909.0000000033

Kim JH, Park HJ, Park KS, Lee CH, Park HW, Kang IS, Kang KS, Shin SH, Lee JH, et al. (2020) The food matrix of spinach is a limiting factor in determining β-carotene contents. J Food Chem 39:241–251. https://doi.org/10.1016/S0308-8146(05)80137-6

Kobayashi H, Iimura H, Furukawa Y, Uchikawa S, Iizuka T, Kondo T, Ohashi K, Ohashi H (2020) The food matrix of spinach is a limiting factor in determining β-carotene contents. J Food Chem 39:241–251. https://doi.org/10.1016/S0308-8146(05)80137-6

Kohara M, Higashikawa M, Kato S, Okada Y, Sato A, Sugimoto T, Sato Y, Kato Y, Tanaka Y, et al. (2020) The food matrix of spinach is a limiting factor in determining β-carotene contents. J Food Chem 39:241–251. https://doi.org/10.1016/S0308-8146(05)80137-6

Kohara M, Higashikawa M, Kato S, Okada Y, Sato A, Sugimoto T, Sato Y, Kato Y, Tanaka Y, et al. (2020) The food matrix of spinach is a limiting factor in determining β-carotene contents. J Food Chem 39:241–251. https://doi.org/10.1016/S0308-8146(05)80137-6

Kohara M, Higashikawa M, Kato S, Okada Y, Sato A, Sugimoto T, Sato Y, Kato Y, Tanaka Y, et al. (2020) The food matrix of spinach is a limiting factor in determining β-carotene contents. J Food Chem 39:241–251. https://doi.org/10.1016/S0308-8146(05)80137-6
Modlin RF, Alred PA, Tjerneld F (1994) Utilization of temperature-

Mithöfer A, Jakupovic J, Weiler E (1999) A triterpenoid glycoside from

Spinacia

Mainou-Fowler T, Proctor SJ, Dickinson AM (2001)

Lomnitski L, Carbonatto M, Ben-Shaul V, Peano S, Conz A, Corradin L,

Parrinello M, Rahman A (1981) Polymorphic transitions in single crys-
tals: a new molecular dynamics method. J Appl Phys 52:7182–7190.
https://doi.org/10.1063/1.328693

Pool-Zobel B, Bub A, Müller H, Wollowski I, Rechkenner G (1997)
Consumption of vegetables reduces genetic damage in humans: first
results of a human intervention trial with carotenoid-rich foods.
Carcinogenesis 18:1847–1850. https://doi.org/10.1093/carcin/18.9.
1847

Porrmii M, Riso P, Oriani G (2002) Spinach and tomato consumption
increases lymphocyte DNA resistance to oxidative stress but this is
not related to cell carotenoid concentrations. Eur J Nutr 41:95–100.
https://doi.org/10.1007/s003942000014

Prappaler W, Santiarworn S, Liawruangrath B, Pyne SG (2016) The isolation of lutein and lutein 3′-methyl ether from Peristrophe lanceolaria. Nat Prod Commun 11:1793–1795.
https://doi.org/10.1177/1934578X1601101205

Ragasa CY, Lim K (2005) Sterols from Cucurbita maxima. Philij Sci 134:83–87

Saab AM, Lamproti L, Grandini A, Bortaggi M, Finotti A, Sacchetti G,
Gambari R, Guerrini A (2011) Antiproliferative and erythroid dif-
fentiation activities of Cedrus libani seed extracts against K562
human chronic myelogenous leukemia cells. Int J Pharm Biol Arch
2:1744–1748

Sachot T (2014) Imatinib in chronic myeloid leukemia: an overview.
Medtrr J Hematol Infect Dis 6:e2014007. https://doi.org/10.
4084/mjhid.2014.007

Sakar MK, Engelshowe R, Friedrich H (1980) A new flavonol glycoside
from Papaver orientale leaves. Planta Med 40:193–196. https://doi.
org/10.1055/s-2008-1074958

Sattlerme C, Griffith JD (2003) Molecular mechanisms of transformation
by the BCR-ABL oncogene. Semin Hematol 39:40–4. https://doi.
org/10.1053/shem.2003.50034

Schulz S, Arsenic C, Tauber M, McNeil JN (2000) Composition of lipids
from sunflower pollen (Helianthus annuus). Phytochemistry 54:
325–336. https://doi.org/10.1016/S0031-9422(00)00089-3

Schütteckof AW, van Aalten DM (2004) PRODRG: a tool for high-
throughput crystallography of protein–ligand complexes. Acta
Crystallogr D 60:1355–1363. https://doi.org/10.1107/
S0907444004011679

Shahabi S, Azizidost S, Shahajhane M, Rahim F, Ahmadzadeh A, Saki
N (2014) New insights in cellular and molecular aspects of BM
niche in chronic myelogenous leukemia. Tumor Biol 35:10627–
10633. https://doi.org/10.1007/s13277-014-2610-9

Shamroc CL, Comeau JM (2013) Ponatinib: a new tyrosine kinase in-
hibitor for the treatment of chronic myeloid leukemia and Philadelphia
chromosome–positive acute lymphoblastic leukemia. Ann

Kojták M, Filipowska A, Fiorino F, Struga M (2020) Anticancer activ-
ities of fatty acids and their heterocyclic derivatives. Eur J
Pharmacol 871:172937. https://doi.org/10.1016/j.ejpharm.2020.
172937

Kageyama M, Li K, Sun S, Xing G, Gao R, Lei Z, Zhang Z (2018) Anti-
tumor and anti-metastasis activities of honey bee larvae powder
by suppressing the expression of EZH2. Biomed Pharmacother
105:690–696. https://doi.org/10.1016/j.biopharm.2018.06.034

Khajapeer KV, Baskaran R (2016) Natural products for treatment of
chronic myeloid leukemia. In: Anti-cancer drug synthesis,
and cell. 1st edn. Intech Publications, Croatia, pp 1–48. https://
org/10.5772/66175

Larionova M, Spengler I, Nogueira C, Quijano L, Ramirez-Gualito K,
Cortés-Guzmán F, Cuevas G, Calderón JS (2010) A C-
glycosylflavone from Piper ossanum, a compound conformationally
controlled by CH/T and other weak intramolecular interactions.
J Nat Prod 73:1623–1627. https://doi.org/10.1021/
np100004v

Ligor M, Buszewski B (2012) Study of xanthophyll concentration in
spinach leaves by means of HPLC coupled with UV–VIS and
Corona CAD detectors. Food Anal Methods 5:388–395. https://
doi.org/10.1007/s12261-011-9256-7

Liu WN, Leung KN (2014) Apoptosis-and differentiation-inducing activ-
cities of jarcic acid, a conjugated linolenic acid isomer, on human
eosinophilic leukemia EoL-1 cells. Oncol Rep 32:1881–1888.
https://doi.org/10.3892/or.2014.3446

Lomnitski L, Carbonatto M, Ben-Shaul V, Peano S, Conz A, Corradin L,
Maronpot RR, Grossman S, Nyska A (2000) The prophylactic ef-
effects of natural water-soluble antioxidant from spinach and apocynin
in a rabbit model of lipopolysaccharide-induced endotoxemia.
Toxicol Pathol 28:588–600. https://doi.org/10.1177/
01926233002800413

Lou SN, Lai YC, Huang JD, Ho CT, Feng LH, Chang YC (2015) Drying
effect on flavonoid composition and antioxidant activity of immu-
خامねんするクイノン

Mainou-Fowler T, Proctor SJ, Dickinson AM (2001) Gly-

Sakar MK, Engelshowe R, Friedrich H (1980) A new flavonol glycoside
from Papaver orientale leaves. Planta Med 40:193–196. https://doi.
org/10.1055/s-2008-1074958

Sattlerme C, Griffin JD (2003) Molecular mechanisms of transformation
by the BCR-ABL oncogene. Semin Hematol 39:40–4. https://doi.
org/10.1053/shem.2003.50034

Schulz S, Arsenic C, Tauber M, McNeil JN (2000) Composition of lipids
from sunflower pollen (Helianthus annuus). Phytochemistry 54:
325–336. https://doi.org/10.1016/S0031-9422(00)00089-3

Schütteckof AW, van Aalten DM (2004) PRODRG: a tool for high-
throughput crystallography of protein–ligand complexes. Acta
Crystallogr D 60:1355–1363. https://doi.org/10.1107/
S0907444004011679

Shahabi S, Azizidost S, Shahajhane M, Rahim F, Ahmadzadeh A, Saki
N (2014) New insights in cellular and molecular aspects of BM
niche in chronic myelogenous leukemia. Tumor Biol 35:10627–
10633. https://doi.org/10.1007/s13277-014-2610-9

Shamroc CL, Comeau JM (2013) Ponatinib: a new tyrosine kinase in-
hibitor for the treatment of chronic myeloid leukemia and Philadelphia
chromosome–positive acute lymphoblastic leukemia. Ann

Springer
