CONCENTRATIONS OF SELECTED PERSISTENT ORGANOCHLORINE CONTAMINANTS IN STORE-BOUGHT FOODS FROM NORTHERN ALASKA

Todd M. O’Hara 1,2, Paul F. Hoekstra 3,4, Cyd Hanns 1, Sean M. Backus 3, Derek C.G. Muir 3

1 Department of Wildlife Management, North Slope Borough, Barrow, Alaska
2 Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
3 National Water Research Institute, Environment Canada, Burlington, Ontario, Canada
4 Syngenta Crop Protection Canada, Inc., Guelph, Ontario, Canada

Received 16 March 2005, Accepted 13 June 2005

ABSTRACT

Objectives. We address marine and terrestrial mammal blubber, liver, muscle, kidney, heart, tongue, maktak and maktaaq (epidermis and blubber from bowhead, beluga whales, respectively), and fish muscle and livers, as commonly consumed tissues in subsistence communities across northern Alaska in the context of organochlorine (OC) contamination of store-bought foods. Human exposure to contaminants from biota, as part of a subsistence diet, has been superficially evaluated in numerous studies (focused on liver and blubber), but are limited in the type of tissues analyzed, and rarely consider the contaminants in the alternatives (i.e., store-bought foods).

Study Design. Concentrations from published literature on selected persistent organochlorine contaminants (OCs) in eight tissues of the bowhead whale and other biota (1) were compared to store-bought foods evaluated in this study.

Results. As expected, store-bought foods had lower concentrations of OCs than some tissues of the marine mammals (especially blubber, maktak, and maktaaq). However, blubber is rarely eaten alone and should not be used to give consumption advice unless considered as a portion of the food item (i.e., maktak). This study indicates that the store-bought food alternatives have detectable OC concentrations (e.g., < 0.01 to 22.5 ng/g w.w. for hexachlorobenzene) and, in many cases, have greater OC concentrations than some subsistence food items. Many wildlife tissues had OC concentrations similar to those quantified in local store-bought food.

Conclusions. Switching from the traditional diet to western store-bought foods will not always reduce exposure to OCs. However, raw blubber-based products are clearly more contaminated with OCs due to lipid content. A detailed profile of traditional/country foods and western foods consumed by subsistence communities of northern Alaska is required to address chronic exposure in more detail for the diverse sources of foods (subsistence use and commercially available) and the widely varying concentrations of contaminants reported therein. This should be combined
with biomonitoring people dependent upon subsistence foods. Further assessment of essential and non-essential elements, emerging contaminants (e.g. brominated flame retardants), etc. should be conducted in order to improve our understanding of the differences and similarities between wildlife and store-bought foods.

(Int J Circumpolar Health 2005; 64(4):303-313.)

Keywords: commercial foods, country/traditional foods, organochlorines, pollutants, subsistence

INTRODUCTION

The presence of persistent organochlorine contaminants (OCs) in the Arctic is well known. First detected in the region in the late 1960s (2), OCs have been found throughout the Arctic due to their environmental recalcitrance and long-range transport in air, water and biota (3). The persistence and bioaccumulation potential of OCs is a concern in the arctic environment, where many species feed on prey with greater lipid content compared to phylogenetically similar organisms, or agricultural species inhabiting lower latitude ecosystems. Despite the long distances from sources OCs accumulate to relatively high concentrations in top predatory marine species, such as polar bears (Ursus maritimus), ringed seals (Phoca hispida), seabirds and toothed whales (3).

The accumulation of OCs in arctic biota remains relevant to indigenous peoples of this region, who may be exposed to OCs at greater concentrations than populations in southern Canada or the USA, due to the consumption of lipid-rich traditional foods (4). However, sources of food from more southerly latitudes, such as commercially available foodstuffs, are not devoid of the OCs (e.g., 5-8). Thus, advice on food consumption, based mostly on the determination of OCs in subsistence use species and rarely the alternatives available in the communities as “store-bought” foods, is incomplete. To make a thorough assessment of the potential risks to human health from dietary exposure to OCs, the alternatives to traditional country foods that are served as the basis for subsistence-based diets should be evaluated and compared.

The subsistence diet of indigenous peoples of the Arctic varies by region due to prey availability, local hunting practices (9) and the availability of resources from “Outside” (the store). For northern Alaska, we focus the comparison on the bowhead whale and a few other locally relevant marine mammals and fish. Several exposure and risk assessments have recognized the socio-cultural and nutritional benefit of traditional foods to arctic peoples (e.g. 10). However, the accumulation of OCs in Native populations from subsistence arctic communities has raised some questions concerning the suitability for human consumption of terrestrial and marine wildlife and fish from this region (4, 10-13). Concentrations of OCs in marine mammal blubber and liver, along with blubber only from other marine mammals from northern Alaska, have been reported (14-18) and, more recently, human exposure was assessed for
the bowhead whale (eight tissue types) and other subsistence food items (1). However, the exposure to OCs from local store-bought alternatives has not been investigated. In this paper we discuss the potential human exposure to OCs and the implications for human consumption of arctic mammalian tissues compared to select foods purchased locally as “alternatives” to more traditional items.

MATERIAL AND METHODS

Sample collection (store-bought foods)
Various commercially available foods [Cornish game hen, boneless pork loin chop, milkfish (Chanos chanos), smoked salmon strips (Oncorhyncus sp.), imitation crab flakes, beef shank and tongue, honeycombed tripe (rumen), reindeer steak and steak marrow (Rangifer tarandus), lobster tail (possibly Panulirus argus), chicken egg yolk, sardines (Western Family Sardines, likely Sardinella auritas, lightly smoked in soybean oil with salt), and canned salmon (O. gorbuscha; salt)] were obtained from a local market in Barrow, AK, USA, by local residents in 2002. Samples were selected based on their availability and potential dietary importance as a substitute for subsistence foods (i.e. country-based diet) (Fig. 1). Samples were transported to the National Water Research Institute (Environment Canada, Burlington, Ontario, Canada). We expected that the concentrations of OCs in the store-bought foods would be low and this presumption led to pooling of samples to increase the available mass for chemical analyses. All samples were homogenized and stored at -20 °C in pre-cleaned glass containers.

Chemicals and Standards
All solvents (pesticide grade) were obtained from Caledon Laboratories. (Georgetown, ON, Canada). American Chemical Society-grade granular sodium sulfate (Na₂SO₄) was obtained from EM Science (Gibbstown, NJ, USA). Pesticide-grade dry silica (60 – 200 mesh) was obtained from ACP (Montréal, PQ, Canada). SX-3 Biobeads (200 – 400 mesh) used in gel permeation chromatography columns were purchased from Bio-Rad Laboratories (Hercules, CA, USA).

Extraction and clean-up of store-bought food samples
Samples of store-bought foods (approximately 10 – 20 grams, wet weight; w.w.) were extracted using previously described techniques with minor modification (Hoekstra et al., (14)). Samples were homogenized with sodium sulphate (Na₂SO₄) and spiked with a mixture of internal standards (two polychlorinated biphenyl (PCB) congeners, CB-30 and CB-204; δ-substituted hexachlorocyclohexane (δ-HCH), 1,3,5-tribromobenzene, and 1,2,4,5-tetramethoxybenzene) to monitor the efficiency
of the extraction protocol. Samples were extracted with dichloromethane (DCM) using Soxhlet extraction for 16 hours and subsequently passed through an Allihn funnel containing sodium sulfate, and concentrated. Lipids and other bioorganic materials in each sample were removed using gel permeation chromatography (GPC) and lipid percent was determined gravimetrically. The analyte sample was concentrated and separated on 8 grams of 100% activated silica gel into two fractions: 65 mL of 100% hexane (F1) and 90 mL of 50% hexane: 50% dichloromethane (F2). Endrin ketone and 1,3 dibromobenzene were added as laboratory spiking surrogates to determine fractionation performance. Samples were rotary evaporated, transferred to 2,2,4-trimethylpentane (iso-octane) and concentrated to 1000 µL.

PCB/OC pesticide analysis

PCB and OC pesticide analysis on both sample fractions was performed using a Hewlett Packard (Wilmington, DE, USA) 6890 gas chromatograph (GC) with a 63Ni electron capture detector (ECD). Pulsed splitless injections of 1 µL volumes were performed by a HP 7683 autosampler and a HP 7683 Series Inject with a splitless time of 1.0 min (injector temperature set at 250 °C). Compound separation was completed using a 30 m × 0.25 mm (i.d.) HP-5MS column (internal film thickness 0.25 µm; Wilmington, DE, USA) with H₂ carrier gas (at a constant flow rate of 1.1 mL/min). Nitrogen was used as the makeup gas for the ECD (detector temperature: 350 °C). The oven temperature program was initiated at 80 °C (held 2.0 min), ramped to 90 °C at 10 °C/min, then ramped at 2.5 °C/min to 285 °C (5 min hold time) and maintained till the completion of the 86-minute run. Sample quantification was performed using multiple external standards obtained from the National Laboratory for Environmental Testing (Environment Canada, Burlington, ON, Canada) that were analyzed after every 10 samples. Sum (∑) of chlordane (∑CHL) includes technical products cis- and trans-chlordane, cis- and trans-nonachlor, and oxychlordane; the sum of o,p’- and p,p’-substituted DDT, DDE, and DDD are designated as ∑DDT; sum of α-, β- and γ-HCH isomers (ΣHCH); sum of PCB congeners (∑PCB) CB-4/10, 5/8, 6, 7/9, 12/13, 15/17, 16, 18, 19, 21/33, 23, 24/27, 25, 26, 28, 29/54, 31, 32, 40, 41/71, 42, 43, 44, 45, 46, 47/48, 49, 50, 51, 52, 55, 56/60, 59, 63, 64, 66/95, 70, 74, 76/98, 82, 83, 84/92, 81, 85, 87, 91, 97, 99, 100, 101, 105, 107/147, 110, 114, 118, 119, 128, 129/178, 130/176, 132, 133/149, 135, 136, 137, 138, 141/179, 143, 144, 145, 151, 153, 156, 158, 163, 167, 170/190, 172, 173/202, 174, 171, 175, 177, 182, 183, 185, 187, 197, 180, 189, 193, 191, 194, 195, 196/203, 198, 199, 201, 205, 206, 207, 208 and CB-209 (IUPAC designation) and the ∑PCB is the sum of PCB congeners CB-28, 31, 52, 101, 105, 118, 138, 153, 156 and CB-180 (IUPAC designation)

Analytical quality assurance

(***store-bought foods***)

Average (±1 SD) sample recovery of PCB and OC surrogate standards was 103% ± 18% and concentrations were adjusted accordingly. Detection limits ranged from 0.01 to 0.1 ng g⁻¹ for individual PCB congeners and OC pesticides and related compounds. The quality assurance protocol included extraction and analysis of laboratory blanks with every batch of 10 samples, the use of a standard
or certified reference materials (SRM1974a Organics in Muscle Tissue (Mytilus edulis) from the National Institute of Standards and Technology, Gaithersburg, MD, USA and CRM DF-2525 Lake Ontario Lake trout muscle (Salvelinus namaycush) from Environment Canada, National Laboratory for Environmental Testing, Burlington, ON, Canada), and participation in an international inter-laboratory comparison program on PCB analysis (QUASIMEME, Aberdeen, UK). Results are blank subtracted.

RESULTS AND DISCUSSION

It is no surprise that, in some cases, OC levels in store-bought food are not lower than in some traditional wildlife foods, except for blubber and blubber containing products. The OC concentrations in selected tissues from subsistence species are presented in Tables I–II (adapted from Hoekstra et al., (1)). Store-bought food items and OC concentrations are provided in Table III, along with a list of the OCs analyzed in this study. Store-bought terrestrial

Table I. Mean (± 1 SD) and median of lipid content (%) and sum (Σ) concentrations of persistent organochlorine contaminant classes and HCB (ng g⁻¹, wet weight) in bowhead whale (Balaena mysticetus) tissues and uncooked maktak from Alaska (1997–1999), adapted from Hoekstra et al. (2005).

Tissue	Statistic	% Lipid	HCB	ΣCHL	ΣDDT	ΣHCH	ΣPCB
Blubber	Mean±SD	83.7±11.0	100±24	255±122	377±343	297±126	354±211
	Median	83.0	112	239	258	273	313
(n=5)							
Maktak	Mean±SD	56.1±5.0	30.5±5.24	95.3±27.1	57.3±11.6	65.7±16.9	105±28.2
	Median	59.5	28.1	90.6	54.9	59.6	93.1
(n=5)							
Kidney	Mean±SD	8.00±5.76	5.50±3.06	7.82±4.72	6.37±4.20	7.20±5.37	12.0±8.91
	Median	7.11	5.70	7.90	5.98	6.21	10.6
(n=5)							
Liver	Mean±SD	6.58±1.70	3.17±1.77	5.48±2.22	3.72±1.54	9.45±2.22	9.10±4.13
	Median	6.89	3.66	5.70	3.69	9.14	9.04
(n=5)							
Muscle	Mean±SD	2.39±1.85	1.60±0.96	2.32±1.17	1.71±1.01	2.74±1.68	1.87±0.90
	Median	1.96	1.16	1.63	2.15	1.86	1.30
(n=5)							
Heart	Mean±SD	1.65±0.25	1.31±0.51	1.53±0.92	0.25±0.18	3.50±0.99	1.95±0.85
	Median	1.52	1.14	1.02	0.26	3.14	1.66
(n=5)							
Diaphragm	Mean±SD	2.39±2.19	1.96±1.26	2.69±2.06	1.59±1.04	4.47±2.51	3.43±1.94
	Median	0.87	1.33	1.56	0.96	3.06	2.62
(n=5)							
Tongue	Mean±SD	10.2±2.3	8.58±1.54	18.4±3.76	15.8±4.67	22.0±3.76	15.7±1.57
	Median	10.7	7.93	19.7	17.2	23.3	15.8
(n=5)							

ΣCHL = sum of chlordane technical products cis- and trans-chlordane, cis- and trans-nonachlor, and oxychlordane; ΣDDT = sum of o,p'- and p,p'-substituted DDT, DDE, and DDD; ΣHCH = sum of α- , β- and γ-HCH isomers; ΣPCB = sum of PCB congeners CB-4/10, 5/8, 6, 7/9, 12/13, 15/17, 16, 18, 19, 21/33/53, 22, 24/27, 25, 26, 28, 29/54, 31, 32, 40, 41/71, 42, 43, 44, 45, 46, 47/48, 49, 50, 51, 52, 55, 56/60, 59, 63, 64, 66/95, 70, 74, 76/98, 82, 83, 84/92, 81, 85, 87, 91, 97, 99, 100, 101, 105, 107/147, 110, 114, 118, 122, 124/178, 130/176, 132, 133/149, 135, 136, 137, 138, 141/179, 143, 144, 145, 151, 153, 156, 158, 163, 167, 170/190, 172, 173/202, 174, 171, 175, 177, 182, 183, 185, 187, 197, 180, 189, 193, 191, 194, 195, 196/203, 198, 199, 201, 205, 206, 207, 208 and CP-209 (IUPAC designation).

ΣPCB₁₀ = sum of PCB congeners CB-28, 31, 52, 101, 105, 118, 138, 153, 156 and CB-180 (IUPAC designation).
food items indicated a range of lipid content from 0.7% (pork chop, Cornish game hen) to 58.8% (reindeer steak marrow; Table III). As expected, the marine mammal tissues had a much larger range of values for lipid content (1.65 to 84.8%) (Tables I and II). As would be expected, the OCs were generally higher in items with higher lipid content. The reindeer steak marrow (58.8% lipid) contained the greatest concentration of hexachlorobenzene (HCB), sum concentrations of hexachlorocyclohexane (ΣHCH), and ΣPCB and ΣPCB₁₀ of the store-bought terrestrial foods. The sum chlordane (ΣCHL) concentration is greatest in chicken egg yolk (23.8% lipid), while ΣDDT is highest in beef tongue (12.1% lipid) for the store-bought terrestrial foods.

The lipid content of store-bought aquatic food ranged from 0.5 to 19.9%, much less than for the marine mammals. The highest lipid content item from the aquatic system (sardines) contained the highest concentration of PCBs (ΣPCB and ΣPCB₁₀) relative to all other store-bought aquatic foods. Canned salmon (4% lipid) contained the highest concentrations of HCB, ΣDDT and ΣHCH; and smoked salmon contained the second highest levels in HCB, ΣDDT and ΣHCH, but the highest concentrations of ΣCHL, of all store-bought aquatic foods (Table III). Overall, the two processed salmon products were found to have the highest levels of HCB, ΣDDT and ΣHCHs. Compared to other regions and species these concentrations are relatively low. The effects of processing

Table II. Mean (± 1 SD) and median of lipid content (%) and sum (Σ) concentrations of persistent organochlorine contaminant classes and HCB (ng g⁻¹, wet weight) in various marine mammals and fish from Alaska (1997 – 1999), adapted from Hoekstra et al. (2005).

Species	Tissue	Statistic	% Lipid	HCB	ΣCHL	ΣDDT	ΣHCH	ΣPCB	
Beluga whale (Delphinapterus leucas)	Blubber	Mean±SD	84.8±8.15	239±91.4	816±84.0	1979±954	212±161	2730±1024	
		n=20	Median	84.0	233	792	2120	175	2680
		n=5	Median	44.2±9.60	76.3±21.5	520±226	324±95.3	66.7±23.1	962±264
Maktaaq	Blubber	Mean±SD	82.2±13.6	17.3±11.7	488±400	269±198	203±127	691±526	
Ringed seal (Phoca hispida)	Blubber	Mean±SD	79.5±3.96	6.65±0.55	188±19.4	156±21.2	89.3±36.4	293±30.9	
		n=20	Median	86.1	12.3	400	230	141	495
Bearded seal (Erignathus barbatus)	Blubber	Mean±SD	6.34±0.26	1.45±0.52	1.32±0.27	1.83±0.27	1.36±0.58	2.63±3.50	
		n=7	Median	6.46	2.10	1.18	1.63	1.58	2.89
Pink salmon (Oncorhynchus gorbuscha)	Fillet	Mean±SD	4.54±1.79	1.44±0.53	1.35±1.10	1.62±0.38	1.81±0.88	2.34±0.95	
		n=5	Median	3.64	1.23	1.29	1.48	1.65	2.54
Arctic char (Salvelinus alpinus)	Fillet	Mean±SD	4.19±1.04	0.47±0.18	0.49±0.46	0.14±0.28	0.22±0.09	2.89±2.84	
		n=19	Median	3.98	0.42	0.39	0.06	0.22	1.64
Broad whitefish (Coregonus nasus)	Fillet	Mean±SD	4.45±2.70	4.83±2.59	1.28±0.90	1.32±0.72	0.26±0.29	2.13±1.71	
		n=2	Median	–	–	–	–	–	–
Arctic grayling (Thymallus arcticus)	Fillet	Mean±SD	40.62±8.93	9.74±2.70	25.2±14.7	16.2±5.89	4.41±1.58	47.3±17.7	
		n=15	Median	38.9	9.96	22.7	15.8	4.55	47.2

Descriptions for ΣCHL, ΣDDT, ΣHCH, ΣPCB are the same as in Table 1.
of the salmon tissue are difficult to determine, but could be a significant factor (i.e., desiccation and changes in wet weight concentrations, contamination from processing, etc.).

The range of ΣPCBs concentrations for store-bought foods was 0.4 to 9.40 ng/g w.w. (Tables III and IV). It should be noted that 9 of 17 mean concentrations of OCs in wildlife tissues, sampled in Hoekstra et al. (1), also fell into this range (Table IV). The ranges of concentrations for HCB (< 0.01 to 22.5 ng/g w.w.) for store-bought foods (Tables III and IV) indicate that HCB concentrations for 11 of 16 wildlife tissues sampled (Tables I and II) occur within this range. Other comparisons show similar patterns, suggesting that store-bought alternatives may not provide a “less contaminated” alternative to many traditional country foods.

Table IV lists the various matrices assessed in rank order for lipid percentage and OC concentration for the 31 matrices (14 store-bought and 17 subsistence use items) studied. Not surprisingly, the first four items are blubber, maktak and maktaaq of the whales and seals. However, it was surprising that reindeer marrow (store-bought) was fifth highest in lipid content and HCB (Table IV). Items ranked 6 through 10 included expected items, such as blubber and maktak, except for the sardines, which ranked tenth for sum PCBs (9.40 ng g⁻¹ w.w.). Items ranked 11th through 15th included organs and muscles of various species, with chicken egg yolk ΣCHL and ΣPCB (2.74 and 7.77 ng g⁻¹, w.w.),

Table III. Sum (Σ) concentrations (ng/g; wet weight) of persistent organochlorine (OC) contaminant classes and HCB (ng g⁻¹; wet weight) in selected store-bought foods from Barrow, Alaska.

Food Item	No. of Pools	% Lipid	HCB	ΣCHL	ΣDDT	ΣHCH	ΣPCB	ΣPCB₁₀
Terrestrial Biota								
Boneless Pork								
Loin Chop	1	0.7	<0.01	0.01	0.03	<0.01	2.48	0.28
Beef Shank	1	2.6	0.10	0.22	0.98	<0.01	0.96	0.21
Beef Tongue	1	12.1	0.61	0.46	2.09	0.07	2.14	0.81
Reindeer Steak	1	2.5	0.93	0.03	0.03	0.26	2.03	0.25
Reindeer								
Steak Marrow	1	58.8	22.5	0.32	0.15	1.22	7.85	2.86
Cornish								
Game Hen	2	0.7, 0.7	<0.01	0.08, 0.01	0.12, 0.01	0.03, 0.06	2.77, 3.81	0.51, 0.28
Chicken Egg Yolk	1	23.8	0.01	2.74	0.15	<0.01	7.77	0.21
Honeycombed Tripe	1	1.9	0.02	0.04	0.43	0.02	1.15	0.32
Aquatic Biota								
Milkfish	1	5.6	0.03	0.07	0.40	0.19	2.64	0.72
Smoke Salmon								
Strips	1	2.1	0.35	1.01	0.92	0.53	2.72	0.66
Sardines	1	19.9	0.02	0.27	0.86	0.03	9.40	2.22
Canned Salmon								
Imitation								
Crab Flakes	1	0.8	0.01	0.04	0.12	0.02	0.40	0.06
Lobster Tail	1	0.5	<0.01	0.03	0.01	<0.01	0.83	0.09

Descriptions for ΣCHL, ΣDDT, ΣHCH, ΣPCB are the same as in Table 1.
beef tongue ΣDDT (2.09 ng g⁻¹, w.w.); and reindeer marrow (7.85 ng g⁻¹, w.w.), canned salmon (4.77 ng g⁻¹, w.w.), and Cornish game hen (2.77 and 3.81 ng g⁻¹, w.w.) for ΣPCBs mixed in with various subsistence use items.

There is no clear demarcation in OC contamination of store-bought foods versus subsistence foods. However, due to blubber and blubber-based products, a trend for higher concentrations of OCs is evident in marine mammal-based foods. Continuing this theme, food items ranked from 15 through 28 are a mixture of store-bought foods and subsistence items. Store-bought foods dominated the final 28 through 31 items for lowest in lipid content and lowest OC concentrations. Based on these data, it is not obvious that switching to similar store-bought alternatives would have a

Table IV. Rank order of store-bought foods OC concentrations sampled in Barrow Alaska (bold italics) compared to mean OCs concentrations of select tissues from subsistence use species of northern Alaska, including lipid content (%) and sum (Σ) concentrations of persistent organochlorine contaminant classes and HCB (ng g⁻¹, wet weight).

% Lipid	HCB	ΣCHL	ΣDDT	ΣHCH	ΣPCB
1 Beluga Blubber 84.8	Beluga Blubber 239	Beluga Blubber 816	Beluga Blubber 197	Bowhead blubber 297.0	Beluga blubber 2730
2 Bowhead blubber 83.7	Bowhead blubber 100.0	Beluga maktak 520	Beluga blubber 377	Bowhead blubber 212	Beluga maktak 962
3 Ringed blubber 82.2	Beluga maktak 76.3	Ringed blubber 488	Beluga maktak 324	Ringed blubber 203	Ringed blubber 691
4 Bearded blubber 79.5	Bowhead maktak 30.5	Bowhead blubber 255.0	Ringed blubber 269	Bearded blubber 89.3	Bowhead blubber 354.0
5 RSMARROW** 50.8	RSMARROW 22.5	Bearded blubber 188	Bearded blubber 156	Beluga maktak 67.7	Bearded blubber 293
6 Bowhead maktak 56.1	Ringed blubber 17.3	Bowhead maktak 95.3	Bowhead maktak 57.3	Bowhead maktak 65.7	Bowhead maktak 105
7 Beluga maktak 44.2	Burbot liver 9.74	Burbot liver 25.2	Burbot liver 16.2	Bowhead tongue 22.0	Burbot liver 47.3
8 Burbot liver 40.6	Bowhead tongue 0.58	Bowhead tongue 18.4	Bowhead tongue 15.8	Bowhead liver 9.45	Bowhead tongue 15.7
9 YOKES 23.0	Bearded blubber 6.65	Bowhead kidney 7.82	Bowhead kidney 6.37	Bowhead kidney 7.20	Bowhead kidney 12.0
10 SARDINES 19.9	Bowhead kidney 5.50	Bowhead liver 5.48	Bowhead liver 3.72	Bowhead diaphragm 4.47	SARDINES 9.40
11 BEEF TONGUE 12.1	Ta filament 4.83	YOKES 2.74	BEEF TONGUE 2.09	Burbot liver 4.41	BEEF TONGUE 9.10
12 Bowhead tongue 10.2	Bowhead liver 3.17	Bowhead diaphragm 2.69	Pink fillet 1.83	Bowhead muscle 2.74	RSMARROW 7.85
13 Bowhead kidney 8.00	Bowhead diaphragm 1.96	Bowhead muscle 2.32	Bowhead muscle 1.71	Bowhead heart 3.50	YOKES 7.72
14 Bowhead liver 6.58	Bowhead muscle 1.60	Bowhead heart 1.53	Char fillet 1.62	Char fillet 1.81	CAN SALMON 4.77
15 Pink fillet 6.34	Pink fillet 1.45	Char fillet 1.35	Bowhead diaphragm 1.59	Pink fillet 1.36	HEN 2.77, 3.81
16 MILKFISH 5.6	Char fillet 1.44	Pink fillet 1.32	Grayling fillet 1.32	MILKFISH 1.19	CAN SALMON 0.69
17 Char fillet 4.54	Bowhead heart 1.31	Grayling fillet 1.28	Shank fillet 0.98	CAN SALMON 0.53	MILKFISH 2.72
18 Grayling fillet 4.45	REINDEER 0.93	SMOKE SALMON 1.01	SMOKE SALMON 0.92	GRAYLING 0.26	MILKFISH 2.42
19 Whitefish fillet 4.19	Whitefish fillet 0.47	CAN SALMON 0.56	SARDINES 0.86	SARDINES 0.53	MILKFISH 1.99
20 CAN SALMON 4.0	BEEF TONGUE 0.61	Whitefish fillet 0.49	SARDINES 0.92	CAN SALMON 0.53	MILKFISH 1.93
21 Bowhead muscle 2.39	CAN SALMON 0.37	TONGUE 0.46	TRIPES 0.43	BEEF TONGUE 0.22	PORK 2.48
22 SHANK 2.6	SMOKE SALMON 0.35	RSMARROW 0.32	MILKFISH 0.40	FISH TONGUE 0.22	CAN SALMON 0.35
23 REINDEER 2.5	SHANK 0.10	SARDINES 0.27	SARDINES 0.27	HEN 0.03, 0.06	CAN SALMON 0.43
24 Bowhead diaphragm 2.39	MILKFISH 0.03	SHANK 0.22	YOKES 0.15	CAN SALMON 0.43	CAN SALMON 0.35
25 SMOKE SALMON 2.1	SARDINES 0.22	MILKFISH 0.07	RSMARROW 0.15	IMITATION CRAB 0.02	IMITATION CRAB 0.12
26 TRIPES 1.9	TRIPES 0.02	HEN 0.08, 0.01	Whitefish fillet 1.14	BEEF TONGUE 0.22	IMITATION CRAB 0.02
27 Bowhead heart 1.65	YOKES 0.01	TRIPES 0.04	IMITATION CRAB 0.12	BEEF TONGUE 0.22	IMITATION CRAB 0.02
28 IMITATION CRAB 0.8	IMITATION CRAB 0.01	IMITATION CRAB 0.04	HEN 0.12, 0.01	YOKES 0.01	IMITATION CRAB 0.02
29 PORK 0.7	HEN 0.01	LOBSTER 0.03	REINDEER 0.03	PORK 0.01	SHANK 0.01
30 HEN 0.7, 0.7	PORK 0.01	REINDEER 0.03	PORK 0.01	SHANK 0.01	LOBSTER 0.01
31 LOBSTER 0.5	LOBSTER 0.01	PORK 0.01	LOBSTER 0.01	LOBSTER 0.01	IMITATION CRAB 0.02

* Subsistence wildlife species: Beluga = Beluga whale (Delphinapterus leucas), Bowhead = Bowhead whale (Balaena mysticetus), Ringed = Ringed seal (Phoca hispida), Bearded = Bearded seal (Erignathus barbatus), Pink = Pink salmon (Oncorhyncus gorbuscha), Char = Arctic char (Salvelinus alpinus), Whitefish = Broad whitefish (Coregous nasus), Grayling = Arctic grayling (Thymallus arcticus), Burbot (Lotus lota).
** Store-bought food codes (words in all-capitals in Table): Boneless Pork Loin Chop = PORK, Beef Shank = SHANK, Beef Tongue = BT, Reindeer Steak = REINDEER, Reindeer Steak Marrow = RSMARROW, Cornish Game Hen = HEN, Chicken Egg Yolk = YOKES, Honeycombed Tripe = TRIPES, Milkyfish = MILKFISH, Smoke Salmon Strips = SMOKE SALMON, Sardines = SARDINES, Canned Salmon = CAN SALMON, Imitation Crab Flakes = IMITATION CRAB, Lobster Tail = LOBSTER.
dramatic impact on reducing OC exposure, if one considers the same tissue types and basic lipid contents. Clearly, blubber and foods composed of blubber are unique, as there are no suitable, commercially available, “replacement” items with relatively high lipid contents that are predisposed to accumulating the OCs.

Careful interpretation of the food items reported in this study is required. For example, the effect of food preparation on OC concentrations was not studied. Previous investigations have noted a reduction of ΣPCB and other OC concentrations in fish due to cooking (19, 20). While the effect of rendering, fermentation, and other food preparation practices used by Native Alaskans (21), on OC concentrations is unknown, the estimated daily intake values calculated from raw tissues in (1) likely overestimate OC exposure from these subsistence dietary items when cooked. Some of the store-bought items are ready to eat (smoked salmon, sardines), while others require processing and would need to be assessed after preparation for consumption to truly reflect the OC exposure. As indicated in this study, the store-bought foods are not always less contaminated than similar food items (i.e., fish products). Dougherty et al. (7) showed that average food ingestion exposures for the whole US population exceeded benchmark concentrations for chlordane, DDT, dieldrin, dioxins and polychlorinated biphenyls, when non-detects were assumed to be equal to zero. For each of these pollutants, exposure through fish consumption accounts for a large percentage of food exposures. Interestingly, Focant et al. (8) reported that background concentrations of PCDDs, PCDFs, nonortho-PCBs, and mono-ortho-PCBs in fast food samples collected in different countries appeared to be very low.

The socio-cultural and nutritional benefits of a subsistence diet to the residents of northern Alaska must be considered when discussing switches to store-bought foods. Preliminary information on the nutritional quality of bowhead whale tissues and other wildlife suggest that these subsistence dietary items are excellent sources of nutritionally essential minerals, fatty acids and fat-soluble vitamins, such as vitamins A, D and E (e.g. 10, 22-26). The increasing prevalence of “Western”, or modern, diets over traditional foods is thought to have negative health consequences, in part due to the increased consumption of total fat, saturated fats and sucrose above recommended levels (25, 10). Upon considering the risks associated with exposure to contaminants relative to the known benefits of traditional foods, as well as the risks associated with eating poor replacement foods (e.g. 27, 12), the consumption of bowhead whale tissues and other marine biota by Inuit of northern Alaska should be maintained and encouraged, as suggested for traditional foods in general by Verbrugge and Middaugh (28) and Arnold and Middaugh (29). By using the balanced approach nutrients and contaminants, this information will allow individuals to decide for themselves which dietary habits best suits their lifestyle. In order to do this, there must be a general sense of how traditional foods compare to the store-bought alternatives with respect to contamination by OCs.
Conclusions
In conclusion, persistent OCs were quantified in numerous tissues of Alaska marine mammals and fish (marine and freshwater) and compared to store-bought food “alternatives”. As expected, lipid content significantly influenced the concentrations of ΣOCs in store-bought foods and subsistence use foods. Thus, blubber and blubber-based products have the highest concentrations of OCs for both wildlife and store-bought foods. There was no clear indication that store-bought foods were significantly less contaminated than comparable traditional (wildlife) foods, except for blubber and blubber-containing products (as there was no blubber analog in the store). We conclude that switching from non-blubber tissues to local store-bought alternatives will not eliminate OC exposure and may only provide a slight reduction, if any, that may be at the expense of much less nutrient-rich products and the elimination of important, healthy, socio-cultural practices. We did not assess a blubber analog from the store and, thus, cannot provide information comparing a “substitute”, but we recognize that blubber is the most contaminated tissue. Due to this contamination, we would encourage the assessment of the impact of food processing on resultant nutrients and contaminants in blubber (raw, boiled, fermented, pickled, etc.). The data presented here do not consider essential and non-essential elements, and emerging contaminants (e.g. brominated flame retardants). However, we recognize them as important components and, as such, will be reported upon elsewhere.

Acknowledgements
The North Slope Borough Department of Wildlife Management (Barrow, AK, USA) initiated this study and provided logistical and financial support. Additional funding was provided by the US Department of Commerce via the National Oceanic and Atmospheric Administration Coastal Impact Assistance Award (No. NA170Z2054). Students assisting at the store and/or during preparation of the Science Fair project included F. Ahsoak, R. Frantz Aker and I. Edwardson, with assistance from T. Olemaun and L. Pierce. M. Williamson and X. Wang (Environment Canada) for sample preparation and analysis. A previous draft of this manuscript was reviewed by S. Arnold and L. Verbrugge.

REFERENCES
1. Hoekstra PF, O’Hara TM, Backus SM, Hanns C, Muir DCG. Concentrations of persistent organochlorine contaminants in bowhead whale tissues and other biota from northern Alaska: Implications to human exposure from a subsistence diet. Environ Res 2005; 98 (3): 329-340.
2. Jensen S. The PCB story. Ambio 1972; 1: 123-131.
3. de Wit CA, Fisk AT, Hobbs KE, et al. Persistent organochlorine pollutants. In: de Wit CA, Fisk AT, Hobbs KE, Muir DCG (Eds.) Arctic Monitoring and Assessment Program (AMAP) II. 2004. Arctic Monitoring and Assessment Program, Oslo, Norway.
4. Sandau CD, Ayotte P, Dewailly E, Dufaye J, Norstrom RJ. Analysis of hydroxylated metabolites of PCBs (OH-PCBs) and other chlorinated phenolic compounds in whole blood from Canadian Inuit. Environ Health Perspect 2000; 108: 611-616.
5. Huwe JK. Dioxins in food: a modern agricultural perspective. J Agric Food Chem 2002; 50: 1739-1750.
6. Himberg KK. Coplanar polychlorinated biphenyls in some Finnish food commodities. Chemosphere 1993; 27: 1235-1243.
7. Dougherty CP, Henricks Holtz S, Reinert JC, Panyakosit L, Axelrad DA, Woodruff TJ. Dietary Exposures to Food Contaminants across the United States. Environ Res 2000; 84(2): 170-185.
8. Focant J–F, Pirard C, De Pauw E. Levels of PCDDs, PCDFs and PCBs in Belgian and international fast food. Food Add Comp 1998; 15: 127-134.

9. Fuller AS, George JC. Evaluation of subsistence harvest data from the North Slope Borough 1993 census for eight North Slope villages: for the calendar year 1992. Department of Wildlife Management, Barrow, AK, USA. 1997.

10. Van Oostdam J, Donaldson S, Feeley M, Tremblay N. Human health. In: Canadian Arctic Contaminants Assessment Report II. 2003. Ministry of Public Works and Government Services Canada, Ottawa, ON, Canada, pp -127.

11. Hing MC. A database for environmental contaminants in traditional foods of northern and arctic Canada: developments and applications. Food Add Contam 1998; 15: 127-134.

12. Kuhnlein HV, Chan HM. Environment and contaminants in traditional food systems of northern indigenous peoples. Annu Rev Nutr 2000; 20: 595-626.

13. Rubin CH, Lanier A, Socha M, Brock JW, Kieszak S, Zahm S. Exposure to persistent organochlorines among Alaska Native women. Int J Circumpolar Health 2001; 60: 157-169.

14. Hoekstra PF, O’Hara TM, Pallant SJ, Muir DCG. Bioaccumulation of organochlorine contaminants in bowhead whales (Balaena mysticetus) from Barrow, Alaska. Arch Environ Contam Toxicol 2002; 42: 497-507.

15. Hoekstra PF, O’Hara TM, Fisk AT, Borgå K, Solomon KR, Muir DCG. Trophic transfer of persistent organochlorine contaminants (OCs) within an arctic marine food web from the southern Beaufort-Chukchi Seas. Environ Pollut 2003; 124: 509-522.

16. Krahn MM, Burrows DG, Stein JE, et al. White whales (Delphinapterus leucas) from three Alaskan stocks: concentrations and patterns of persistent organochlorine contaminants in blubber. J Cetacean Res Manage 2000; 1: 239-249.

17. Kucklick JR, Struntz WDJ, Becker PR, York GW, O’Hara TM, Bohonowycz J. Persistent organochlorine pollutants in ringed seals and polar bears collected from northern Alaska. Sci Total Environ 2002; 287: 45-59.

18. O’Hara TM, Krahn MM, Boyd D, Becker PR, Philo LM. Organochlorine contaminant levels in Eskimo harvested bowhead whales of arctic Alaska. J Wildlife Dis 1999; 35: 741-752.

19. Kamrin MA, Fischer LJ. Current status of sport fish consumption advisories for PCBs in the Great Lakes. Regul Toxicol Pharmacol 1999; 29: 175-181.

20. Zabik ME, Zabik MJ, Booren AIM, et al. Pesticides and total polychlorinated biphenyls in chinook salmon and carp harvested from the Great Lakes: effects of skin-on and skin-off processing and selected cooking methods. J Agricul Food Chem 1995; 43: 993-1001.

21. Kassam K-AS. Passing on the knowledge: mapping human ecology in Wainwright, Alaska. 2001. Arctic Institute of North America, University of Calgary, Calgary, AB, Canada.

22. Blanchet C, Dewailly É, Ayotte P, Bruneau S, Receveur O, Holub BJ. Contribution of selected traditional and market foods to the diet of Nunavut Inuit women. Can J Diet Prac Res 2000; 61: 50-59.

23. Kenny DE, O’Hara TM, Chen TC, Lu Z, Tian X, Holick MF. Vitamin D content in Alaskan Arctic zooplankton, fishes, and marine mammals. Zoo Biology 2004; 23(1): 33-43.

24. Nobmann ED, Byers T, Lanier AP, Hankin JH, Jackson MY. The diet of Alaska Native adults: 1987 – 1988. Am J Clin Nutr 1992; 55(5): 1024-1032.

25. Nobmann ED, Lanier AP. Dietary intake among Alaska native women resident of Anchorage, Alaska. J Circumpolar Health 201; 60: 123-137.

26. Woshner VM, O’Hara TM, Bratton GR, Suydam RS, Beasley VR. Concentrations and interactions of selected essential and non-essential elements in bowhead and beluga whales of arctic Alaska. J Wildlife Dis 2001; 37: 693-710.

27. Egeland GM, Feyk LA, Middaugh JP. The use of traditional foods in a healthy diet in Alaska: risks in perspective. State of Alaska Epidemiology Bulletin 1998; Vol. 2 No. 1 (January).

28. Verbrugge LA, Middaugh JP. Use of traditional foods in a healthy diet in Alaska: risks in perspective. Second Edition: Volume 1. Polychlorinated biphenyls (PCBs) and related compounds. State of Alaska Epidemiology Bulletin 8:1-62.

29. Arnold SM, Middaugh JP. Use of traditional foods in a healthy diet in Alaska: risks in perspective. Second Edition: Volume 2. Mercury. State of Alaska Epidemiology Bulletin 8:1-48.

Todd M. O’Hara
Institute of Arctic Biology, University of Alaska
Fairbanks, Fairbanks, Alaska 99775, USA
Email: fftmo@uaf.edu