Retiform hemangioendothelioma in the infratemporal fossa and buccal area: a case report and literature review

Il-Kyu Kim¹, Hyun-Young Cho¹, Bum-Sang Jung¹, Sang-Pill Pae¹, Hyun-Woo Cho¹, Ji-Hoon Seo¹, Seung-Hoon Park²

¹Division of Oral and Maxillofacial Surgery, Department of Dentistry, Inha University School of Medicine, ²Department of Oral and Maxillofacial Surgery, Catholic Kwandong University International St. Mary’s Hospital, Incheon, Korea

Abstract

We report a case of retiform hemangioendothelioma (RH) located in the infratemporal fossa and buccal area in a 13-year-old Korean boy. The tumor originated from the sphenoid bone of the infratemporal fossa area and spread into the cavernous sinus, orbital apex, and retro-nasal area with bone destruction of the pterygoid process. Tumor resection was conducted via Le Fort I osteotomy and partial maxillectomy to approach the infratemporal fossa and retro-nasal area. The diagnosis of RH was confirmed after surgery. In the presented patient, surgical excision was incomplete, and close follow-up was performed. There was no evidence of expansion or metastasis of the residual tumor in the 8 years after surgery. In cases of residual RH with low likelihood of expansion and metastasis, even though RH is an intermediate malignancy, close follow-up can be the appropriate treatment choice over additional aggressive therapy. To date, 29 papers and 48 RH cases have been reported, including this case. This case is the second reported RH case presenting as primary bone tumor and the first case originating in the oromaxillofacial area.

Key words: Retiform hemangioendothelioma, Infratemporal fossa, Le Fort osteotomy, Residual neoplasm

I. Introduction

Retiform hemangioendothelioma (RH) was first described as a new entity by Calonje et al.¹ in 1994. It is considered a rare vascular neoplasm of intermediate stage between benign hemangioma and malignant angiosarcoma, with a high rate of local recurrence and a low rate of metastasis. Histologically, RH presents as an irregular pattern of elongated and arborizing vessels like a normal rete testis. Neoplastic vessels are lined by a single layer of hobnail-like endothelial cells that protrude within the narrow lumina¹. These endothelial cells usually extend to the deep dermis or subcutaneous tissues².

To date, 29 papers and 48 RH cases have been reported, including the present case. (Table 1)¹⁻²⁸ Lesions were located in the upper and lower extremities in 32 cases, the trunk (including one case of penile location) in 10 cases, and the head and neck area in 7 cases. Most RHs originate from vessels at the superficial portion of the body including dermal or subcutaneous tissues. However, Aditya et al.³ reported a case of RH presenting as a primary bone tumor originating from the parietal bone.

In our patient, the symptom of epistaxis was followed by identification of a buccal mass. A heterogeneous mass in the infratemporal fossa and bone destruction of the pterygoid process were observed on magnetic resonance imaging (MRI). (Fig. 1, 2) Tumor resection was conservatively conducted by Le Fort I osteotomy and a posterior partial maxillectomy following incisional biopsy demonstrating a juvenile capillary hemangioma. Portions of the tumor remained in the pterygopalatine fossa, the inferior orbital fissure, and the anterior cavernous sinus. The final pathological report confirmed RH in the infratemporal fossa. Despite tumor remnants, no evidence of extension or metastasis was detected for 8 years of follow-up. The origin was inferred to be the sphenoid bone in the infratemporal fossa area. This is the second RH case
Table 1. Tumor location of 48 reported cases of retiform hemangioendothelioma including the present case

No.	Year	Author	Age (yr)	Sex	Site	Tumor size (cm)	Multiple sites	Duration of disease	Follow-up period	Recurrence	Metastasis	
1-15	1994	Calonje et al.	9-78	F	6 Lower limbs	2.9	0/15	4 mo to several yr	Median	7.5 yr	8/15	1/15
16	1996	Fukunaga et al.	75	F	Lower limb	3.5	0/1	10 yr	27 mo	1/1	0/1	
17	1996	Duke et al.	30	F	Trunk and upper limb	5-10	1/1	ND	10 yr	0/1	0/1	
18, 19	1997	Dufau et al.	29	F	Lower limb	1.0	0/2	4 yr	5 yr	0/1	0/2	
20	1997	Mentzel et al.	40	F	Lower limb	ND	0/1	ND	ND	1/1	0/1	
21	1997	Sanz-Trelles et al.	11	M	Lower limb	1.5	0/1	ND	4 yr	0/1	0/1	
22	2000	Schommer et al.	73	F	Trunk	30	0/1	ND	2 yr	1/1	0/1	
23	2000	El Darouti et al.	32	F	Lower limb	3.5	0/1	2 yr	1.5 yr	0/1	0/1	
24	2002	Ulrich and Hrynyschyn	17	M	Upper limb	0.5	0/1	2 wk	2 yr	1/1	0/1	
25	2002	Coutinho	16	M	Lower limb	ND	0/1	ND	ND	0/1	0/1	
26, 27, 28, 29, 30, 31, 32, 33-36	2003-2008	Aditya et al., Escudero et al., Tan et al., Botros et al., Ioannidou et al., Serel et al., Parsons et al.	36	M	Head and neck	ND	0/1	4 mo	ND	ND	0/1	
			82	F	Upper limb	ND	0/1	ND	ND	ND	ND	
29	2005	Tan et al.	19	F	Lower limb	4.5	0/1	2 mo	14 mo	0/1	0/1	
30	2005	Botros et al.	30	F	Head and neck	ND	0/1	ND	ND	1/1	0/1	
31	2006	Ioannidou et al.	55	F	Upper limb	1.2	0/1	9 wk	4 yr	0/1	0/1	
32	2007	Serel et al.	27	M	Lower limb	15	0/1	27 yr	6 mo	0/1	0/1	
33-36	2008-2010	Parsons et al., Love et al., Bhutoria et al., Emberger et al., Kaj et al., Aydingöz et al., Zhang et al., Hirsh et al., Albertini et al., O’Duffy et al., Choi et al., Findikcioğlu et al.	41	F	Trunk	ND	0/4	ND	ND	ND	ND	
			17	F	Upper limb	2.5	0/1	ND	ND	1/1	ND	
			71	F	Head and neck	1.5	0/1	ND	ND	1/1	ND	
			57	F	Lower limb	4	ND	ND	ND	ND	ND	
37	2009	Love et al.	11	F	Upper limb	0.7	0/1	4 mo	ND	1/1	0/1	
38	2009	Bhutoria et al.	35	F	Trunk	6	0/1	ND	31 mo	1/1	1/1	
39	2009	Emberger et al.	17	M	Trunk	2.5	0/1	1 yr	3 yr	0/1	0/1	
40	2009	Kaj et al.	8	F	Lower limb	1.2	0/1	ND	ND	1/1	0/1	
41	2010	Aydingöz et al.	60	F	Lower limb	6	0/1	4 yr	2 yr	0/1	0/1	
42	2010	Zhang et al.	61	F	Head and neck	8.2	1/1	3 mo	6 mo	1/1	0/1	
43	2010	Hirsh et al.	44	M	Lower limb	ND	0/1	1 yr	3 yr	0/1	0/1	
44	2011	Albertini et al.	6	F	Trunk	ND	0/1	3 yr	8 mo	0/1	0/1	
45	2012	O’Duffy et al.	18	M	Head and neck	ND	0/1	7 yr	16 mo	1/1	1/1	
46	2012	Choi et al.	20	M	Upper limb	1.5	0/1	6 yr	2 mo	1/1	0/1	
47	2012	Findikcioğlu et al.	8	F	Upper limb	2.5	0/1	4 mo	3 yr	0/1	0/1	
48	Present	Kim et al.	13	M	Head and neck	5.3	0/1	1 yr	8 yr	0/1	0/1	

(F: female, M: male, ND: not documented)

Il-Kyu Kim et al: Retiform hemangioendothelioma in the infratemporal fossa and buccal area: a case report and literature review. J Korean Assoc Oral Maxillofac Surg 2016

Fig. 1. Preoperative clinical photograph. A. Extraoral image of buccal cheek swelling. B. Intraoral image of buccal cheek swelling. Il-Kyu Kim et al: Retiform hemangioendothelioma in the infratemporal fossa and buccal area: a case report and literature review. J Korean Assoc Oral Maxillofac Surg 2016
Retiform hemangioendothelioma in the infratemporal fossa and buccal area

III. Case Report

A 13-year-old Korean boy presented with frequent epistaxis and right buccal cheek swelling. Frequent epistaxis had occurred for the previous year. Buccal swelling was first recognized one month prior. Clinically, a solid mass was palpated on the buccal area, and there was no pain or paresthesia. (Fig. 1) The patient also complained of loss of appetite, fatigue, and dizziness. Blood test revealed iron deficiency anemia status of red blood cell 2.68×10⁶/µL, hemoglobin 5.0 g/dL, mean corpuscular volume 65 fL, mean corpuscular hemoglobin 18.7 pg, and mean corpuscular hemoglobin concentration 29 g/dL. Continuous nasal bleeding was suspected to be the main reason for anemia.

MRI showed a well-defined mass in the right infratemporal fossa and buccal area with extension to the intracranial cavernous sinus through the foramen rotundum, the orbital apex through the inferior orbital fissure, and the retro-nasal area, with bone destruction of the pterygoid process. The posterior wall of the right maxillary sinus was remodeled. T2-weighted images revealed heterogeneous low-signal area and intermediate to high signal intensity in the nasal cavity. T1-weighted images showed intermediate to low signal intensity similar to that of muscles and relatively homogeneous patterns. (Fig. 2) Tumor size was approximately 5.0×3.0×2.0 cm. Local lymph node or distant metastasis was not observed.

Intraoral incisional biopsy of the buccal cheek area was initially performed and diagnosed as juvenile capillary hemangioma. Complete excision was recommended to rule out mixed hemangioma, composite hemangioma, or hemangioendothelioma.

1. Surgical technique

A Le Fort I osteotomy was performed, and the maxilla was retracted downward. This approach revealed relatively well-defined masses in the infratemporal fossa and retro-nasal area. We initially dissected these masses in the infratemporal fossa, and conducted posterior partial maxillectomy including...
the destructed pterygoid process and the remodeled portion of the maxillary posterior wall and tuberosity. Tumor masses adjacent to the inferior orbital fissure and retro-nasal area were segmentally dissected. (Fig. 3) Anatomically, the complete removal of masses in the deep portion of the infraorbital fissure and cavernous sinus was not possible. Loss of vision and neurological deficits are critical complications that cannot be risked.

2. Histopathology

Histological examination of the tumor revealed an irregular pattern of elongated and arborising vessels. Neoplastic vessels with hyaline core were lined by a single layer of hobnail-like endothelial cells that protruded within the narrow lumina. Dense sclerotic intervening stroma and focal lymphocytes infiltrated around vessels. Immunohistochemical stain results were positive for CD31, CD34, and factor VIII-related antigen in endothelial cells. (Fig. 4) Vascular wall showed weak patchy positivity for smooth muscle actin (SMA) and desmin. Positivity for Ki-67 was less than 0.1%. The final histological diagnosis was RH.

3. Prognosis

Epistaxis subsided after surgery, and anemia status was resolved to the normal range. Postoperative MRI showed a small enhancing soft tissue lesion in the pterygopalatine fossa, inferior orbital fissure, and anterior cavernous sinus, confirming residual tumor segments. No significant interval changes were observed on follow-up MRI over 4 years (Fig. 5), and no clinical neurological signs or symptoms were seen over 8 years of follow-up except for facial asymmetry due to under-development on the right face.

III. Discussion

RH is a rare vascular neoplasm of intermediate stage be-
Retiform hemangioendothelioma in the infratemporal fossa and buccal area

311

There has been a female predominance (female: male, 32:16), and the patients were predominantly young and middle-aged adults in 2005. However, in this review, patients under 20 years represented nearly 30% of the sample, and patients over 50 years accounted for nearly 20%. In addition, Serel et al. reported a congenital RH case. This means that the remarkable predominant generation is not defined. Most tumor sizes were less than 10 cm except in two cases. The mean duration before treatment was approximately three years. This data implies that RH grows slowly and asymptotically at the beginning.

RH location was a limb in 32 cases (65.3%), the trunk between benign hemangioma and malignant angiosarcoma with a high rate of local recurrence and low rate of metastasis. Most reported cases originate from cutaneous or superficial portions of the body, except for one case of primary bone tumor reported by Aditya et al. The tumor has nonspecific clinical and radiological features, but this invasive neoplasm is histologically characterized by elongated arborizing vessels, arranged in an anastomosing pattern that resembles the normal rete testis, and is lined with a single layer of matchstick or hobnail-like endothelial cells that protrude within the narrow lumina.

Tan et al. in 2005 reviewed 24 cases of RH, and the number of reported cases has doubled within one decade. To date, 29 papers and 48 RH cases have been reported, including this case. There has been a female predominance (female: male, 32:16), and the patients were predominantly young and middle-aged adults in 2005. However, in this review, patients under 20 years represented nearly 30% of the sample, and patients over 50 years accounted for nearly 20%. In addition, Serel et al. reported a congenital RH case. This means that the remarkable predominant generation is not defined. Most tumor sizes were less than 10 cm except in two cases. The mean duration before treatment was approximately three years. This data implies that RH grows slowly and asymptotically at the beginning.

RH location was a limb in 32 cases (65.3%), the trunk in-
Half of RH locally recurred within a mean recurrence period of approximately 12 months after surgery. Nearly half of recurred tumors were detected within six months. Metastasis is rare, only seen in three patients. One case of metastasis was lost to follow-up. In two cases with lymph node metastasis reported by Calonje et al. and O’Duffy et al., surgical excision with radiation therapy was performed, and the patients remained tumor-free. Metastasis itself does not seem like a fatal prognostic factor.

Two patients died but not due to metastasis. One patient experienced post-surgical hypovolemic shock in the context of diffuse lymphangiomatosis with pulmonary localization, and the other case, described as aggressive RH of the scalp, was probably better interpreted as classic angiosarcoma with a focal retiform pattern.

Histopathological examinations must be conducted for confirmation of diagnosis because RH does not have unique clinical or radiological features. Histopathologically, tumor-involved tissues are infiltrated by vessels like a normal rete testis. Neoplastic vessels with hyaline core are lined with a single layer of matchstick or hobnail-like endothelial cells.
Dense sclerotic intervening stroma and focal lymphocytes infiltrate around vessels. Two features of absence of dissection between individual collagen bundles and absence of endothelial atypia or mitotic activity distinguish RH from angiosarcoma. This low-grade neoplasm recurs frequently but has a very low metastatic rate. Immunohistochemical stain results were positive for CD31, CD34, and factor VIII-related antigen in neoplastic endothelial cells, and the vascular wall was negative for SMA. These previously identified histological findings were consistent with our results. The vascular wall showed weak patchy positivity for SMA, and desmin Ki-67 positivity was less than 0.1% in this case. Unfortunately, most final diagnoses of previous RHs were confirmed after surgery. Preoperative biopsy helps with diagnosis but is not always available. For this reason, postoperative management after confirmed RH diagnosis should be carefully considered with surgical treatment.

Requena and Kutzner summarized hemangioendothelio-
mas (HE) and presented seven subtypes including RH, spindle cell HE (hemangioma), papillary intralymphatic angioendothelio-
da (Dabska tumor), RH, kaposiform HE, epithelioid HE, pseudomyogenic HE (epithelioid sarcoma-like HE), and composite HE. These vascular neoplasms have borderline biological behavior, an intermediate stage between entirely benign hemangiomas and highly malignant angiosarcoma. All cases of spindle cell HE showed benign biological behavior and so were categorized as hemangioma. Epithelioid HE appears to have more aggressive biological behavior than the other subtypes. The other five subtypes including RH are truly intermediate stage. Even though RH locally recurs with a high rate, no deaths have been reported.

The need for surgical treatment and additional postoperative therapy for RH should be decided in consideration of this intermediate character. Radiotherapy was conducted in six patients. Five were successfully treated, and one patient died but the diagnosis was considered classic angiosarcoma. In addition, Hirsh et al. first reported successful treatment of RH with low-dose cisplatin and moderate radiotherapy without surgical resection. Use of surgical treatment and adjuvant therapies should be carefully considered to avoid unnecessary interventions and potential severe complications.

For the approach to the infratemporal area and the lateral skull base, the infratemporal fossa approach has been commonly used. However, this route has complications of hearing loss, facial nerve palsy, and scar caused by a periauricular incision. The approach to the nasal cavity is also limited. Roche et al. proposed surgery of the infratemporal fossa using the minimally invasive transmaxillary approach. The route is convenient for exposing the structures of the anterior part of the infratemporal fossa including retro-nasal area, pterygomaxillary fissure, and pterygopalatine fossa.

In our case, considering the preoperative diagnosis of juvenile capillary hemangioma and the intraoperatively benign character, the tumor mass was conservatively excised around the cavernous sinus and orbital apex. Le Fort I osteotomy with posterior maxillectomy was conducted to simultaneously approach the infratemporal fossa, buccal, retro-nasal, and posterior maxilla area. The patient’s epistaxis subsided after surgery. However, postoperative CT images showed small enhancing soft tissue lesions in the pterygo-palatine fossa, inferior orbital fissure, and anterior cavernous sinus, confirming residual tumor segments. As discussed above, given the intermediate tendency of RH, we decided not to perform further procedures. Close follow-up was performed. There was no evidence of expansion or metastasis during follow-up with MRI over 4 years and no clinical signs or symptoms over 8 years of follow-up.

In conclusion, RHs originate not only from the superficial vessels of the body, but also from deep structures such as the sphenoid bone of the infratemporal fossa area that has anatomically high vascularity. Half of all reported recurrences presented within six months, and close follow-up is recommended during this period. If the residual RH has relatively benign tendency and does not expand or metastasize, close follow-up can be the appropriate treatment choice rather than additional aggressive therapy.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

ORCID

Il-Kyu Kim, http://orcid.org/0000-0003-3930-766X
Hyun-Young Cho, http://orcid.org/0000-0003-3055-0591
Bum-Sang Jung, http://orcid.org/0000-0002-9773-0637
Sang-Pill Pae, http://orcid.org/0000-0002-8931-2267
Hyun-Woo Cho, http://orcid.org/0000-0002-0062-5217
Ji-Hoon Seo, http://orcid.org/0000-0003-3618-6380
Seung-Hoon Park, http://orcid.org/0000-0001-6847-0082
References

1. Calonje E, Fletcher CD, Wilson-Jones E, Rosai J. Retiform heman-
gioidothelioma. A distinctive form of low-grade angiosarcoma
delineated in a series of 15 cases. Am J Surg Pathol 1994;18:115-
25.
2. Fukunaga M, Endo Y, Masui F, Yoshikawa T, Ishikawa E, Ush-
igome S. Retiform haemangiendothelioma. Virchows Arch
1996;428:301-4.
3. Aditya GS, Santosh V, Yasha TC, Shankar SK. Epithelioid and
retiform hemangiendothelioma of the skull bone--report of four
cases. Indian J Pathol Microbiol 2003;46:645-9.
4. El Darouti M, Marzouk SA, Sobhi RM, Bassiouni DA. Retiform
hemangiendothelioma. Int J Dermatol 2000;39:365-8.
5. Zhao G, Kraybill W, Cheney RT, Khoury T. Retiform hemangio-
endothelioma: a case report and review of the literature. J Cutan
Pathol 2005;32:634-7.
6. Serel S, Serel BI, Uluc A, Heper AO, Gultan MS. Congenital reti-
form hemangioendothelioma. Ann Pathol 1997;17:47-51.
7. Mentzel T, Stengel B, Katenkamp D. Retiform hemangioendothe-
lioma. Clinico-pathologic case report and discussion of the group
of low malignancy vascular tumors. Pathologe 1997;18:390-4.
8. Kapp A, et al. Retiform hemangiendothelioma: another tumor
associated with human herpesvirus type 8? J Am Acad Dermatol
2000;42:290-2.
9. Hrynyschyn K. Fast growing multifocal retiform hemangio-
endothelioma: a case report. Eur J Plast Surg 2002;25:47-9.
10. Courinho MLF. Laser indications hemangiomas in children. An
Acad Nac Med 2002;162:74-6.
11. Escudero AG, Sanchez JS, Bustos GN, Serrano TG, Martin JIR,
Campora RG. Retiform hemangiendothelioma: a report of two
cases and literature review. Acta Dermosifiliographica 2003;94:102-6.
12. Botros MF, Abdo I, Foda S, Amer H, Attia N, Saad S, et al. Reti-
form hemangiendothelioma. Egypt Dermatol Online J 2005;1:1-
4.
13. Ioannidou D, Panayiotides J, Krasagakis K, Stefanidou M, Manios
A, Tosca A. Retiform hemangiendothelioma presenting as bruise-
like plaque in an adult woman. Int J Dermatol 2006;45:53-5.
14. Parsons A, Sheehan DJ, Sangeza OP. Retiform hemangioendothe-
lomas usually do not express D2-40 and VEGF-R-3. Am J Derma-
topathol 2008;30:31-3.
15. Love WE, Keiler SA, Tamburro JE, Honda K, Gosain AK, Bor-
deaux JS. Surgical management of congenital dermatofibrosarcoma
protuberans. J Am Acad Dermatol 2009;61:1014-23.
16. Aydingöz IE, Mansur AT, Celasun B. Correspondence: retiform
hemangioendothelioma: presentation of a case expressing D2-40. J Cutan
Pathol 2010;36:60-2.
17. Choi WK, Lee SH, Oh SA, Kang DH. Retiform hemangien-
dothelioma on the finger. Arch Plast Surg 2012;39:80-2.
18. Findikçioğlu K, Findikçioğlu F, Kutlugün C, Karabagli P. Retiform
hemangiendothelioma originated from capillary malformation: a
rare case. Turk J Plast Surg 2012;20:12-5.
19. Requena L, Kutzner H. Hemangioendothelioma. Clinico-pathologic
case report and discussion of the group of low malignancy vascular
neoplasms. Pathology 1997;29:190-4.
20. Roche PH, Fournier HD, Lacourraye L, Mercier P. Surgical anat-
omy of the infratemporal fossa using the transmaxillary approach.
Surg Radiol Anat 2003;23:209-13.