INTRODUCTION

Invasive species are considered to be one of the main drivers of biodiversity loss and recent extinctions (Bellard, Cassey, & Blackburn, 2016; Blackburn, Bellard, & Ricciardi, 2019). In addition, they may cause great ecological and economic impacts and, in some cases, even impact human health (Cook, Payne, MacLeod, & Brown, 2016; Hewitt, Campbell, & Gollasch, 2006; Ricciardi, Hoopes, Marchetti, &
These numbers are high compared to the other polar environment—the entire Arctic, with shipping activity being one of the main pur-
poses for aquatic invasive species (AIS) transport are expected in the future as shipping traffic is projected to grow given predicted ice-free conditions that will allow more direct shipping corridors between the Pacific and the Atlantic oceans (Melia et al., 2016; Miller & Ruiz, 2014; Smith & Stephenson, 2013), reducing transit distances by up to 24% relative to current shipping routes (Srvencratne et al., 2018). Aquatic invasions in Arctic eco-
systems have thus been identified as an emerging issue (Ricciardi et al., 2017) as the area is becoming increasingly susceptible due to regional climate change and associated increases in shipping activity and resource exploitation (Melia, Haines, & Hawkins, 2016; Miller & Ruiz, 2014; Niimi, 2004; Smith & Stephenson, 2013).

One of the leading causes of increasing invasion risk is the expansion of transportation networks (Early et al., 2016). Aquatic transporta-
tion, in particular, is highly relevant given that the shipping network is responsible for 90% of global trade (Kaluz, Kolczsch, Gastner, & Blasius, 2010; Xu et al., 2014), with ballast water and biofouling being the main vectors for transport of organisms (Bailey, 2015; Drake & Lodge, 2007; Ruiz, Fofonoff, Steves, & Carlton, 2015). Consequently, marine taxa are one of the dominant groups that are unintentionally introduced at a global scale (Turbelin, Malamud, & Francis, 2017), and are predicted to contribute a 3- to 20-fold increase in global invasion risk (Sardain, Sardain, & Leung, 2019). In the Arctic, almost half of known marine invasions have been due to shipping activities as a single-pathway means of transport (Chan et al., 2019). Greater opportu-
nities for aquatic invasive species (AIS) transport are expected in the future as shipping traffic is projected to grow given predicted ice-free conditions that will allow more direct shipping corridors between the Pacific and the Atlantic oceans (Melia et al., 2016; Miller & Ruiz, 2014; Smith & Stephenson, 2013), reducing transit distances by up to 24% relative to current shipping routes (Buixadé Farré et al., 2014).

A recent study tallied a total of 34 non-indigenous species for the entire Arctic, with shipping activity being one of the main pur-
ported vectors (Chan et al., 2019). In addition, non-indigenous species have been identified from both ships en route to the Arctic and in the environment to which they arrive, highlighting the risk of new invasions in this region (Ashton, Riedelecker, & Ruiz, 2008; Chan, Maclsaac, & Bailey, 2015; Dispas, 2019; Gislason et al., 2014; Golder, 2018; Laget, 2017; Lambert, Shenkar, & Swalla, 2010; Svanarsson & Dugal, 2008; Tremblay, 2017; Zimina, 2014). Furthermore, the origins of many newly observed species in Arctic locations are unknown so they have often been classified as cryptogenic (Goldsmit, Howland, & Archambault, 2014; MacDonald, Bluhm, Iken, Gagaev, & Strong, 2010). These numbers are high compared to the other polar environment—the Antarctic—where there are no established AIS populations to date and only five non-indigenous marine species that have potentially arrived through human activities (McCarthy, Peck, Hughes, & Aldridge, 2019). However, Hughes et al. (2020) suggest that marine taxa pose the greatest potential invasion risk to the Antarctic Peninsula.

Given the vast size and remoteness of the Arctic, few baseline studies have been conducted (Archambault et al., 2010; CAFF & PAME, 2017; Piepenburg et al., 2011) and the resident fauna are thus poorly described relative to more accessible locations elsewhere in the world (Costello et al., 2017). Consequently, simply identifying newly arriving species can be challenging. To improve this detection gap, new methods and identification techniques are being used in remote regions, such as environmental DNA and metabarcoding (Brown, Chain, Zhan, Maclsaac, & Cristescu, 2016; Chain, Brown, Maclsaac, & Cristescu, 2016; Lacoursière-Roussel et al., 2018; Leduc et al., 2019). Species distribution modelling (SDM) may be used to predict the distribution of suitable habitat for AIS (Barbosa & Schneck, 2015; Barbosa, Schneck, & Melo, 2012), including for high-risk AIS in areas of concern, such as high latitude regions (Byrne, Gall, Wolfe, & Agüera, 2016; de Rivera, Steves, Fofonoff, Hines, & Ruiz, 2011; Goldsmid et al., 2018; Ware et al., 2016). Modelled results can inform preinvasion management policies to avoid new arrivals and, potentially, subsequent species establishments and consequent needs for eradication actions (Floerl, 2014; Locke & Hanson, 2009).

Although future invasions are expected to be enhanced by climate change (Bellard et al., 2013), predicted SDM-modelled distributions of environmental suitability for invasive species have been understud-
ied in this context (Bellard, Jeschke, Leroy, & Mace, 2018), particularly for marine ecosystems (Barbosa et al., 2012; Bellard et al., 2018). Nevertheless, SDM tools have been successfully applied to marine species (Lowen, McKindsey, Theriault, & DiBacco, 2016; Meißner et al., 2014; Reiss, Kunze, König, Neumann, & Kröncke, 2011; Robinson et al., 2011; Robinson, Nelson, Costello, Sutherland, & Lundquist, 2017; Weinert et al., 2016), including forecasting distributions under global change scenarios in high latitude regions (de Rivera et al., 2011; Goldsmid et al., 2018; Jueterbock, Smolina, Coyer, & Hoarau, 2016).

Regions where many species coincide, known as biodiversity hotspots, may provide information about species richness, ende-
mism and/or threatened taxa, and may be of importance for conserva-
tion (Myers, Mittermeier, Mittermeier, Da Fonseca, & Kent, 2000). Based on this concept, potential invasion hotspots may be identified as areas that are hospitable to and thus at risk of invasion by ex-
ceptionally high numbers of AIS for a given region (Ruiz, Fofonoff, Steves, Foss, & Shiba, 2011). The use of a biological invasion hotspot approach has been limited to date (but see Bellard, Leroy, Thuiller, Rysman, & Courchamp, 2016; Catford, Vesk, White, & Wintle, 2011; Ibanez, Silander, Allen, Treanor, & Wilson, 2009; O'Donnell et al., 2012; Torres et al., 2018); with few studies in marine environ-
ments. Most analyses of AIS hotspots in marine ecosystems have focused on vectors (Davidson et al., 2010; Drake & Lodge, 2004; Pearce, Peel, & Stebbing, 2012; Semmens, Buhl, Salomon, & Pattengill-Semmens, 2004; Tidbury, Taylor, Kop, Garnacho, & Stebbing, 2016) and current AIS richness (Edelst, Rilov, Golani,
This study aims to identify potential high-risk AIS and predict hotspots of invasion for those under current and projected future environmental conditions in Arctic environments. Cold-tolerant planktonic and benthic AIS were scored to produce a list of the top species with the highest relative likelihood of invasion and impact, since these ecological groups include the dominant known highest risk marine invasive species (Molnar, Gamboa, Revenga, & Spalding, 2008). The distribution of suitable habitats for this set of species was then modelled to predict regions of overlap under current and future projected conditions, thus identifying hotspots of potential biological invasions. Although all analyses were done globally, there was an emphasis at the Canadian and pan-Arctic scales.

2 | MATERIALS AND METHODS

2.1 | Study region

Distribution model outputs were produced with global coverage to allow evaluation of global and pan-Arctic patterns although analyses were focussed on the potential highest-risk species for the Canadian Arctic. The rationale for this approach is the vast expanse of the Canadian Arctic (Archambault et al., 2010), its vulnerability to invasion (Chan, Bailey, Wiley, & MacIsaac, 2013; Chan, MacIsaac, & Bailey, 2016; Goldsmit et al., 2018; Goldsmit, McKindsey, Archambault, & Howland, 2019), the ambiguous status of new species that have potentially arrived through human transport (Goldsmit et al., 2014) and the unprecedented warming that it has experienced over the last decade (Bush & Lemmen, 2019; Niemi et al., 2019). The region is immense, accounting for eight of the 19 Arctic marine ecoregions (Figure 1; Spalding et al., 2007). In fact, Canada has the longest coastline in the world, the majority of which is situated in the Arctic (accounting for almost 2,000,000 km² of the territorial sea; Archambault et al., 2010). Even though few AIS have been identified in Canada relative to other Arctic regions, Chan et al. (2019) suggest that this accounts for ca. 20% of all AIS recorded from marine Arctic waters. Recently, additional species have been identified for the first time in the Canadian Arctic using molecular tools (Brown et al., 2016; Chain et al., 2016; Lacoursière-Roussel et al., 2018) or identified as cryptogenic as their origin is unclear (Goldsmit et al., 2014). Moreover, Canadian Arctic ports (especially those in the Hudson Bay Complex; Figure 1) have been identified as being of moderate to high ecological risk of invasion since they could provide suitable habitat for various AIS (Goldsmit et al., 2018; Goldsmit, Nudds, et al., 2019) and there is evidence that a number of non-indigenous species are being transported into the region by shipping (Chan et al., 2015; Dispas, 2019; Laget, 2017; Tremblay, 2017).

2.2 | Species selection

A three-step procedure was used to select potential marine AIS (zoobenthos, phytobenthos and zooplankton) for modelling (Figure S1). Most were species that are considered AIS in other regions of the

FIGURE 1 Arctic ecoregions as delineated by Spalding et al. (2007). Canadian Arctic ecoregions are coloured. 1, Hudson Bay Complex; 2, Northern Grand Banks-Southern Labrador; 3, Northern Labrador; 4, Baffin Bay-Davis Strait; 5, Lancaster Sound; 6, High Arctic Archipelago; 7, Beaufort-Amundsen-Viscount Melville-Queen Maud; 8, Beaufort Sea-continental coast and shelf; 9, Chukchi Sea; 10, Eastern Bering Strait; 11, East Siberian Sea; 12, Laptev Sea; 13, Kara Sea; 14, North and East Barents Sea; 15, White Sea; 16, North and East Iceland; 17, East Greenland Shelf; 18, North Greenland; 19, West Greenland Shelf
world and may be transported via shipping to the Canadian Arctic; several others had been previously detected in other Arctic environments. These steps included: (a) prescreening analysis and selection; (b) ranking a subset of these species using an invasive species screening tool; and (c) selecting a final list of higher risk species based on tool results.

The first step of the prescreening analysis was to identify potential Arctic AIS. One hundred species were identified using a combination of data sources including published articles, grey literature and web-based global invasive species databases (see details in Figure S1.1). Species’ biological and ecological characteristics for survival in Arctic conditions (e.g. temperature and salinity tolerances) and their ability to arrive in the region via shipping were evaluated, identifying a total of 31 potential Arctic AIS (Figure S1.2a). These species were then ranked to evaluate invasion risk using the Canadian Marine Invasive Species Tool (CMIST; Drolet et al., 2016)—a rapid screening-level risk assessment tool to quantify the risk of existing or potential marine invaders in a given area. The semiquantitative tool uses existing information and expert opinion to evaluate the potential for arrival, establishment, spread and impact by a given species and has been applied in a number of eco-regions within Canada (DFO, 2017; Drolet et al., 2016; Moore, Lowen, & DiBacco, 2018; Therriault et al., 2018). CMIST scores are computed based on responses to 17 questions related to the likelihood and impact of invasion (see Figure S1.2a) according to the information found in the literature and other sources. Expert assessor knowledge on the risk assessment areas was used to score the potential impact of a given species based on its known impacts observed elsewhere and the availability of suitable habitats and environmental conditions. Uncertainty is scored for each risk question by assigning a qualitative score reflecting the quality of information available to answer each CMIST question. A Monte Carlo randomization procedure is then used to obtain adjusted risk scores that include uncertainty (Drolet et al., 2016).

CMIST-ranked species with either medium or high mean risk scores (N = 18; Table 1) were retained for more detailed assessment using SDM. To this list, five potentially harmful phytoplankton species were added (Table 1; Figure S1.2b). These dinoflagellate species have been found in ballast water tanks and/or in ballast water exchange zones of Canadian domestic ships that discharge their ballast water into Canadian Arctic ports (Laget, 2017). All are known to have the capacity to produce toxins and have been implicated in harmful algal events throughout the world (Harmful Algal Information System, from the Intergovernmental Oceanographic Commission of UNESCO, http://haedat.iode.org/).

The final species list for modelling thus included a total of 23 known marine AIS or harmful algal species from four ecological groups (zoobenthos, phytothenthos, zooplankton and phytoplankton) that pose potential risks for invasion in the Canadian Arctic. To simplify terminology, hereafter when referring to this suite of species they will be termed as ‘AIS’. (See Table S1 for information on species’ characteristics and impacts). Likewise, the term ‘invasion’ is used to make reference to the complete process of a species transitioning all invasion stages (transport, arrival, establishment and spread; Lockwood, Hoopes, & Marchetti, 2007).

2.3 | Species data

Global scale occurrence data of marine invaders selected for modelling was compiled for both native and invaded ranges using global biodiversity databases such as the Global Biodiversity Information Facility (GBIF—www.gbif.org), Ocean Biogeographic Information System (OBIS—www.obis.org), and invasive species lists with coordinate location information and specific literature (Table S1). An effort was made to maximize the number and quality of occurrence records to best predict potential distributions by doing a vast and complete search of occurrence records and by checking information to find the original source of those records (García-Roselló et al., 2015; Guisan, Graham, Elith, & Huettmann, 2007; Guisan, Zimmermann, et al., 2007; Lobo, 2008). Both native and invaded ranges were used for training and evaluating all models (Verbruggen et al., 2013), since invaded areas provide valuable information on species’ tolerances to climatic conditions that may not be present in their native range (Marcelino & Verbruggen, 2015) and may improve predictions for the extent of suitable habitat (Broennimann & Guisan, 2008). A single presence record was counted per grid cell to decrease the possibility of overprediction, hence, occurrence points were considered at the same resolution as the corresponding environmental layers (García-Roselló et al., 2015). All points were verified to ensure that they were in sea grids (and not over land). When necessary, points were moved to the closest sea grid using the Near Proximity tool in ArcMap v10.2.2.

2.4 | Environmental data

Marine data layers, prepared specifically for ecological modelling, were used as environmental predictors and downloaded at a global scale from Bio-ORACLE v2 (http://www.bio-oracle.org/). These layers were produced with climate data describing monthly averages for the period from 2000 to 2014 representing recent (hereafter referred to as present) conditions (Assis et al., 2018). They were obtained from preprocessed global ocean re-analyses combining satellite and in situ observations at regular two- and three-dimensional spatial grids (Assis et al., 2018). A set of 37 environmental layers was used from this source comprising bottom and sea surface temperature and salinity, ice thickness, chlorophyll, oxygen, pH, photosynthetically active radiation and minerals and nutrients (iron, calcite, nitrate, phosphate and silicate; Table 1; Table S2). Long-term maximum, minimum and mean values were used for most predictors when available (Table S2). Resolution of environmental layers was 5 arcmin (approximate 9.2 km at the equator). Bathymetry and land distance layers were obtained from Aquamaps (http://www.aquamaps.org/; Kaschner et al., 2016), but with a resolution of 30 arcmin (approximately 55 km at the equator; Table S2). Bottom substratum type was not included in the analysis due to the lack of availability of a high-resolution global scale database; suitable benthic habitat was assumed to be present within each study region.
Habitat suitability for selected AIS was modelled with MaxEnt v3.3.3k (Phillips, Anderson, & Schapire, 2006) and biomod2 v3.4.6 (Thuiller, Georges, Engler, & Breiner, 2020) within R v3.6.3 (R Core Team, 2019). Multiple modelling techniques were used so that the results from each approach could be combined into an ensemble model, which has been shown to reduce the biases that single models may have (Araújo & New, 2007).

MaxEnt is a machine learning method based on maximum entropy that predicts the potential geographic distribution of suitable habitat for species using species occurrence data and various combinations...
of environmental data layers as input. The method is one of the most widely used SDM algorithms due to its high predictive accuracy and efficiency in modelling range shifts under future climate change scenarios (Bucklin et al., 2015; Elith et al., 2006, 2011; Hijmans & Graham, 2006; Pearson, 2007). It has also recently been shown to outperform other modelling techniques in accurately predicting invasive species distributions (Battini, Farias, Giachetti, Schwindt, & Bortolus, 2019). This was complemented with SDM using a suite of other techniques within biomod2, another well-known and widely used SDM tool (Hao, Elith, Guillera-Arroita, & Lahoz-Monfort, 2019) that was selected because it allows multiple models to be run on the same training and testing datasets to better ensure the consistency and accuracy of resultant ensemble models. The four models were run with biomod2: generalized linear model (GLM), random forest (RF), artificial neural network and generalized additive model (GAM) because each represents a fundamentally different modelling technique. Initially, BIOCLIM (a presence-only model) was also included in runs but was later removed as its performance was very low, in agreement with other studies (Elith et al., 2006), and is thus the least frequently used SDM approach within biomod2 (Hao et al., 2019). More detailed information about each of these models included from biomod2 may be found in Thuiller, Lafourcade, Engler, and Araújo (2009).

MaxEnt generates background data to compare with known presence points. This study used the default option, which generates 10,000 random background points. In contrast, selected models from biomod2 require presence and absence data, hence it was necessary to create pseudo-absence values before running the biomod2 models (Thuiller et al., 2020). For consistency with MaxEnt models, 10,000 pseudo-absence points were selected randomly using the biomod2 default settings.

Model predictive power for MaxEnt and biomod2 was evaluated using cross-validation with 70% of the occurrence points chosen randomly and used to train the model and the other 30% to test the complete set of models (Araújo, Pearson, Thuiller, & Erhard, 2005). For MaxEnt, data were partitioned by a random process of k = 500 training and validation iterations (Hijmans, 2012), and for biomod2 the data were partitioned randomly. Training points for MaxEnt were selected by random seeding with the convergence threshold set at 0.00001. The hinge feature in MaxEnt was used as it produces complex yet smooth and ecologically meaningful response curves and improves model performance (Merow, Smith, & Silander, 2013; Phillips & Dudik, 2008).

Environmental predictors for each species were selected based on initial models run with MaxEnt, which has been shown to have good discrimination accuracy regarding the identification of important variables compared to other models (Smith & Santos, 2019). Selected predictors included those that are most typically considered as important for related taxa and have been used in other modelling studies (Table 1: Barnes, 1999; Belanger et al., 2012; Chust et al., 2016; Cusson, Archambault, & Altken, 2007; Gallardo et al., 2015; Jensen, Mousing, & Richardson, 2017; Leidenberger, Obst, et al., 2015; Wagner, 1977), or were identified by taxonomic experts as being important (G. Winkler, personal communication, 2017: A. Rochon, personal communication, 2018). After the first run, predictors with a relative contribution score of <4% were excluded (Jueterbock et al., 2016). Correlations may lead models to produce erroneous response curves to predictors that do not reflect species physiological tolerances (Marcelino & Verbruggen, 2015). Thus, highly correlated environmental predictors (correlation coefficient ≥ 0.7; Dormann et al., 2013), as determined using the SDMtoolbox (Brown, 2014; Table S2), were evaluated and the one with the highest contribution to the modelling exercise retained for model construction. As per Goldsmit et al. (2018), environmental predictors were identified by evaluating the combination of: (a) the response curves for each species—to evaluate if the predictor behaves in a biologically meaningful way in the model (Marcelino & Verbruggen, 2015); (b) a species-specific Jackknife test—to evaluate the contributions of the various parameters and analyse the importance of predictors; and (c) the estimates of the contribution of each environmental layer to model prediction. A minimum of three environmental predictors were included in each model. Each species was then modelled again with the selected environmental predictors (Table S3).

Model performance was evaluated as the area under the curve (AUC) of the receiver operating curve and true skill statistic (TSS). AUC is the probability that the model correctly ranks a random presence site versus a random site from the study area (Phillips et al., 2009). Values close to 1 indicate good prediction in site discrimination, a value of 0.5 indicates a prediction equal to random and values lower than 0.5 indicate a performance that is worse than random predictions. TSS assesses the accuracy of predictions using sensitivity (proportion of correctly predicted presences) and specificity (proportion of correctly predicted absences) in its calculation (TSS = sensitivity + specificity − 1) and is an appropriate evaluation alternative for model predictions converted to binary maps using a threshold (Allouche, Tsar, & Kadmon, 2006). It ranges from −1 to +1, where values between 0 and −1 indicate performance no better than random, while a statistically reliable model performance is indicated by values >0.4, excellent models by a minimum of 0.7, and 1 indicates perfect agreement with the model (Allouche et al., 2006). Models with a TSS score of <0.7 and sensitivity = 0 were excluded from the final ensemble predictions.

MaxEnt and biomod2 models were each run five times. The continuous values produced by the models were transformed to binary values to identify predicted suitable and unsuitable habitat since continuous model projections may be difficult to interpret. In addition, binary presence/absence maps are more useful for risk assessment exercises and are required for some model evaluations (Liu, White, & Newell, 2013). For each species, the binary results for the five runs per model were averaged to create a single binary result per model. The resulting binary results for each model were then averaged to produce the final ensemble binary projection for each species. Binary transformation was done using the maximum training sensitivity plus specificity threshold, which maximizes TSS values to create binary maps and has been shown to produce the most accurate predictions (Andrade, Velazco, & Júnior, 2020; Jiménez-Valverde & Lobo, 2007; Liu et al., 2013), and has been used in other studies with similar objectives (e.g. Bellard et al., 2013; Duffy et al., 2017; Wisz et al., 2015). Following transformation, all binary models were delimited using a threshold for the maximum
depth each species could inhabit according to their ecological requirements (Goldsmit et al., 2018; Table S4). An exception was made for phytoplankton as they were all surface dinoflagellates; thus, there was no need to consider maximum depth for their distribution (A. Rochon, personal communication, 2018). Heat maps showing the total number of modelled AIS that may find suitable habitat in a region—hereafter ‘AIS richness’—were then created using combined maps representing the cumulative number of species (of the 23 modelled) predicted to find suitable habitat in a given grid cell at global and pan-Arctic scales. It should be kept in mind that, at a global scale, richness includes potential native and invaded ranges of all species modelled, while at the pan-Arctic scale, richness includes mainly predicted potentially suitable habitats.

2.6 | Future projections

Once all models were run, tested and validated, predicted habitat suitability was evaluated under projected global change scenarios at global and pan-Arctic scales. The same set of environmental layers that were used for contemporary models were used for projected future models although only temperature, salinity and ice layers were available for projected future scenarios (Table S3). This is common practice in similar modelling exercises (e.g. Goldsmit et al., 2018; Jueterbock et al., 2016; Leidenberger, De Giovanni, Kulawik, Williams, & Bourlat, 2015; Weinert et al., 2016). Future environmental layers were obtained from Bio-ORACLE v2 for RCP4.5 emission scenario for the years 2050 and 2100. The average and range of climatic anomalies for temperature, salinity and sea ice thickness of this scenario at the end of the century are given in Assis et al. (2018). In short, it represents an intermediate greenhouse emission (temperature anomaly of 2.4°C by 2100; Moss et al., 2008) and stabilization scenario resulting from the implementation of appropriate mitigation strategies (Clarke et al., 2007). This anomaly also coincides approximately with the expected increase in temperature in Arctic regions under the proposed efforts of the 2015 Paris Agreement (Solecki et al., 2018). Future layers were produced for 2040–2050 and 2090–2100 by averaging data from distinct atmosphere–ocean general circulation models provided by the Coupled Model Intercomparison Project 5, which was developed by the World Climate Research Programme’s Working Group on Coupled Modelling (see Assis et al., 2018 for more information).

Resulting distribution models of each individual species were compiled by ecological groups (zoobenthos, phytobenthos, zooplankton and phytoplankton) and these combined models were used to compare present with forecasted distributions for the years 2050 and 2100. This was achieved by spatially analysing species richness and distribution change between present and future climate scenarios using ArcMap v10.2.2 and SDMtoolbox (Brown, 2014). Overlap of regions was analysed at both global and pan-Arctic scales, to evaluate predicted latitudinal shifts in suitable habitat. Changes in the distribution of suitable habitat over time were evaluated independent of natural or anthropogenic habitat overlap to identify regions of loss, gain and no change in time, for both time frames.

3 | RESULTS

3.1 | Analysis of environmental predictors and model evaluation

Varying combinations of environmental predictors contributed to explaining the species distribution models of the ecological groups analysed (Figure 2). Sea surface temperature and land distance contributed to models for all ecological groups, although in varying proportions. Bottom temperature and depth were important in explaining models for zoobenthos and phytobenthos, in addition to ice thickness for the latter. Other main predictors for zooplankton included sea surface salinity, ice and depth, whereas important phytoplankton predictors included nutrients and minerals (especially iron; Figure 2; Table S3). All environmental predictors used to construct the final model for each species were within training ranges.
Analysis of unimodal environmental response curves indicated that environmental conditions were within suitable ranges for all modelled species.

After averaging the five replicates of each model, most AUC values were >0.9 and TSS > 0.8, indicating good model performance and good prediction in site discrimination with most of the models included in the ensemble results. There were only four species with somewhat lower AUC or TSS values for some of the averaged models (Chionoecetes opilio, Dinophysis caudata and Gonyaulax polygramma with AUC between 0.76 and 0.83 in MaxEnt models; and G. polygramma and Aurelia limbeta with TSS between 0.75 and 0.79 in GAM, GLM and Maxent models), but still well above the thresholds for random site prediction (Table S5). A few individual replicated GAM, GLM and RF models (N = 19) for five species were excluded from model-specific binary outputs (maximum 3/species) due to their having TSS < 0.7 and/or sensitivity = 0; which resulted in model averages based on fewer than five replicates for these species (Table S5).

3.2 | Hotspots vulnerable to invasions

From the 23 modelled species, up to 20 were predicted to have overlapping suitable habitat in Arctic regions, mostly located near the coasts surrounding Hudson Bay, Northern Grand Banks/Labrador, Chukchi/Eastern Bering seas and Barents/White seas (Figure 3a). These hotspots are predicted to have potentially greater AIS richness compared to other Arctic regions in the present and both modelled future scenarios. The areal extent of hotspots vulnerable to invasion is predicted to increase over time; this increase is predicted not only in total area, but also in the number of species projected to encounter appropriate habitat there (Figure 3b).

These same regions were predicted to be hotspots for individual ecological groups, particularly zoobenthos and phytoplankton (Figure 4a,b,d). When evaluated independently, these groups showed the same pattern of future increased areal extent in the predicted suitable habitat, but at varying taxa-dependent scales (absolute area extent: zoobenthos ~6 × 10^6 km², phyobenthos, zooplankton and phytoplankton ~1–2 × 10^6 km²; Figure 4a–d). Despite these differences in magnitude for absolute predicted future suitable habitat, at a relative scale the percentage change in suitable habitat was predicted to be greater through time for some groups (e.g. zoobenthos). Furthermore, the relative change in predicted suitable habitat for various categories of AIS richness differed between ecological groups (Figure 4e–h). For example, zoobenthos were predicted to have greater future increases in the areal extent of habitats suitable for a high number of overlapping species (i.e. with high AIS richness).

Only one species of zooplankton (Aurelia limbata) was predicted to have extended suitable habitat in the Arctic; hence, no potential hotspots with overlapping species were observed (Figure 4c). It should be highlighted that a few zoobenthic species have native ranges included in the area of analysis: (a) C. opilio: Beaufort Sea, Bering Sea and Northern Grandbanks/Labrador; (b) Littorina littorea: White Sea; (c) Mya arenaria: Northern Grandbanks/Labrador; and (d) Paralithodes camtschaticus: Bering Sea (Figure 1; Table S1).

At a global scale, total species richness was higher and largely concentrated on the coasts of Northern Europe and the White Sea, Black Sea, Northwest Atlantic, some regions of the Northwest and Northeast Pacific, Iceland and southern regions of Temperate South America and Temperate Australasia (Figure S2).
Figure 4 (a–d) Predicted hotspots of aquatic invasive species (AIS) richness per ecological group under present and future (2050 and 2100) conditions at an Arctic scale. Colours represent the number of overlapping species with suitable habitat in a given area. (e–h) Predicted future change of suitable habitat for each category of AIS richness.

Figure 5 Overall change in predicted suitable habitat for each ecological group at an Arctic scale between present and future scenarios (2050 and 2100): (a) zoobenthos, (b) phytobenthos, (c) zooplankton and (d) phytoplankton.
Figure 6 Overall change in predicted suitable habitat of all aquatic invasive species combined at global and pan-Arctic scales between present and future scenarios (2050 and 2100).

Figure 7 Percentage of predicted habitat suitability change (gain or loss) for the four ecological groups and all aquatic invasive species together at global and pan-Arctic scales. PB, phytobenthos; PP, phytoplankton; ZB, zoobenthos; ZP, zooplankton.
3.3 | Distribution change

Suitable habitat was projected to increase in the future for all AIS combined as well as for all individual ecological groups in the Arctic realm under both climate change scenarios (Figures 5 and 6), with zoobenthos showing the greatest potential habitat gains (more than double the gains of other ecological groups: Figures 5a and 7) under future climate scenarios. The overall predicted future suitable habitat changes at the pan-Arctic scale for all AIS combined were net habitat gains of +68.8% and +121.4% by 2050 and 2100, respectively (Figures 6 and 7). However, the same analysis predicted an overall suitable habitat loss at a global scale in both future scenarios (−4.3% by 2050 and −3% by 2100; Figures 6 and 7).

These results show that most modelled species are predicted to find suitable habitats in colder regions, with a trend towards poleward shifts in future distributions, particularly in northern latitudes (the poleward shift to the south is predicted to be lower; Figure 6). At a global scale, however, planktonic species are predicted to experience habitat loss (except for a small habitat gain predicted for phytoplankton towards the year 2100), while benthic species are predicted to have a positive gain, although much less than that at the pan-Arctic scale (Figure 7; Figure S3).

4 | DISCUSSION

This study predicted the distribution of suitable habitat for 23 high-risk AIS at pan-Arctic and global scales and identified hotspots of suitable habitats for multiple species. Overall, results indicate that suitability will increase over time in Arctic regions, particularly in Hudson Bay, Northern Grand Banks/Labrador, Chukchi/Eastern Bering seas and Barents/White seas regions. Gradually, these regions could become more vulnerable to invasions due to increases in the extent of suitable habitat and in the number of species that gain access to these habitats and establish reproducing populations (i.e. AIS richness). This trend was observed across all assessed ecological groups that showed gains in suitable habitat under future scenarios, with zoobenthos exhibiting the greatest future distributional changes (more than double). Nevertheless, all other ecological groups are predicted to increase their future suitable habitat by 30% up to more than 90%.

Interestingly, predicted shifts under future climate scenarios differed at pan-Arctic and global scales. When all species were considered collectively, there was a great predicted increase in suitable habitat at the pan-Arctic scale. In contrast, the net result at a global scale was a predicted loss of suitable habitat, suggesting a marked northward shift with global change. Projected future scenarios considered only the direct effect of climate change. However, projected increases of shipping to the area will likely exacerbate the risk as new transport routes open due to longer ice-free conditions that increase opportunities for natural resource extraction (Melia et al., 2016; Miller & Ruiz, 2014; Smith & Stephenson, 2013). Likewise, the Antarctic could be affected by native and invasive species from northern regions, given that environmental conditions are similar. Arctic ports could act as possible sources of AIS to the Antarctic since some ships transit between poles and could act as a potential pathway of transportation, although survival and establishment in such scenarios are unknown (McCarthy et al., 2019).

The use of CMIST as a screening tool to identify high-risk species for specific ecoregions is a recent approach to stay ahead of the invasion process (Drolet et al., 2016; Moore et al., 2018; Therriault et al., 2018). Although the use of CMIST combined with habitat modelling, as done in this study, places more emphasis on the likelihood of invasion than the likelihood of impact component of risk, such a tool may be used as a first step to develop a ranked watch list to guide early detection and monitoring efforts and to prioritize species for detailed risk assessments and potential regulations (Locke, Mandrak, & Therriault, 2011). CMIST provided the opportunity to identify potential AIS of greater risk to the Arctic by considering known species’ characteristics and impacts in other regions of the world where they have already invaded. Eighty-seven per cent of the species included in the present modelling assessment belong to groups with the greatest numbers of known invasions in the marine Arctic ecosystem (Chan et al., 2019). The uneven emphasis of organisms retained for modelling from the different ecological groups (maximum of 11 zoobenthic species versus a minimum of 3 zooplankton species) may, in part, be explained by the fact that most known introduced marine organisms are benthic species (Streftaris, Zenetos, & Papathanassiou, 2005). These proportions are comparable with previous assessment studies (Leidenberger, Obst, et al., 2015), although the uneven coverage does make general trends more difficult to interpret.

Sea surface temperature and land distance were retained in all models, consistent with other studies that found these predictors to contribute significantly to explaining species distributions (Bradic & Leung, 2017; Leidenberger, Obst, et al., 2015; Stelzer, Heyer, Bourlat, & Obst, 2013). Water temperature has been identified as the most relevant predictor of global marine species distribution and land distance of moderate importance for both benthic and planktonic species (Bosch, Tyberghein, Deneudt, Hernandez, & De Clerck, 2018; Bradic & Leung, 2017). Depth was an important predictor, as shown by Bosch et al. (2018) and Snickars et al. (2014) who suggested that bathymetry is of high relevance for modelling various taxa. Ice thickness was moderately important for phyto- benthos and zooplankton, perhaps reflecting limits on distribution of the former due to ice abrasion, changes in light exposure and a preference of ice-free waters for the latter (Clark et al., 2013; Kube, Postel, Honnef, & Augustin, 2007; Pascual et al., 2015; Richardson, 1979). Iron was an important predictor for all modelled phytoplankton species, likely as it is known to be important to phytoplankton growth, abundance, dominance and species distributions (Hecky & Kilham, 1988; Moore et al., 2013) and plays a role in the development of harmful algal bloom species (Doucette & Harrison, 1990; Wells, Mayer, & Guillard, 1991). In Arctic regions, meltwater can be a significant bioavailable source of iron to surrounding coastal oceans (Bhatia et al., 2013; Tovar-Sánchez et al., 2010) and evidence suggests a link between ice and iron from glacial meltwater leading to blooms.
in some phytoplankton taxa (Aguilar-Islas, Rember, Mordy, & Wu, 2008; Joli et al., 2018). This is important given that increased iron due to a shift from an ice-covered to an open water Arctic Ocean (Screen, 2018; Seneviratne et al., 2018) could create favourable conditions for harmful species that may arrive in the region.

Four Arctic regions (i.e. Hudson Bay, Northern Grand Banks/Labrador, Chukchi/Eastern Bering seas and Barents/White seas) were identified as potential hotspots for invasions. Invasion hotspots could pose even greater risks if they coincide with major shipping routes, biodiversity hotspots or areas of special interest/importance, which is the case for most of the invasion hotspots predicted in the present study. The predicted invasion hotspots overlap with regions that have been highlighted for being special (with regard to their uniqueness, importance for species life histories, threatened species and/or habitats, biological productivity, diversity, etc.). For example, some Ecologically and Biologically Significant Areas (also known as EBSAs) and Marine Refuges coincide with the predicted invasion hotspots in Northern Grand Banks/Labrador, Chukchi/Eastern Bering seas and Barents/White seas (Kenchington et al., 2011; Speer & Laughlin, 2011; Templeman, 2007; www.dfo-mpo.gc.ca/oceans/oeabcm-amcepz/refuges/index-eng.html), as well as in the southern Hudson Bay, which has been identified as being an area of high biological importance (Stephenson & Hartwig, 2010). Ecoregions with a high concentration of polynyas could also be at greater risk, given that they may act as important biological hotspots due to their increased productivity and biodiversity (Marchese, 2015). This may be the case for the Chukchi and Eastern Bering seas, which are known to have concentrations of polynyas (CAFF, 2013). This is consistent with previous studies that have identified biodiversity hotspots in marine and terrestrial ecosystems as being at particular risk to future invasions (Bellard et al., 2014; Li, Liu, Kraus, Tingley, & Li, 2016) and climate change (Ramirez, Afán, Davis, & Chiaradia, 2017). The presence of AIS in biological hotspots could endanger native and endemic species as AIS are considered to be one of the leading causes of biodiversity loss and contemporary extinctions (Bellard, Cassey, et al., 2016; Blackburn et al., 2019) with impacts on ecosystem structure and functioning, including changes in food webs, biomass, flux rates, etc. (Ehrenfeld, 2010). Relating where invasion hotspots overlap with biological hotspots could be crucial for prioritizing conservation efforts.

The Barents Sea has been highlighted as a region that already has a substantial number of invasions and environmental conditions that increase the probability of successful establishment (Chan et al., 2019). Two of the species modelled in the present study, C. opilio and P. camtschaticus, are already established there (Chan et al., 2019; Dvoretsky & Dvoretsky, 2009; Hansen, 2015). The former is thought to have been introduced by ballast water, while the latter was an intentional introduction (Alvsvåg, Agnalt, & Jørstad, 2009; Jørgensen & Nilssen, 2011). The Barents Sea appears to be in transition from a cold Arctic to warm Atlantic climate regime (Lind, Ingvaldsen, & Furevik, 2018), making it particularly vulnerable to invasion. Indeed, it is predicted to suffer one of the largest future habitat losses by endemic species in the Arctic (Renaud et al., 2019), leaving potential niches available for novel species to occupy. Additionally, Arctic ecoregions will be more exposed to potential future arrivals with further ice reduction and increased navigability of the Northern Sea Route and the Northwest Passage, although much greater investment in infrastructure, navigation and communications would be needed to this end (Buixadé Farré et al., 2014). Nonetheless, both human activities and AIS are likely to increase over time in the Arctic, as has been observed over the last few years (Chan et al., 2019; Dawson, Pizzolato, Howell, Copland, & Johnston, 2018).

At a global scale, planktonic organisms generally showed loss of suitable habitat that, in all but one case, exceeded predicted gains. This may be due to their being dispersive pelagic organisms which have the capability of expanding rapidly and show extensive distribution changes in response to temperature increases related to global warming (Poloczanska et al., 2013). Predicted future changes in sea surface temperatures, in particular, which are expected to outpace shifts in bottom temperature (Levitus et al., 2012), may be driving this pattern. Indeed, models in the present study showed that sea surface temperature was more important for planktonic organisms, whereas bottom temperature was important for benthic organisms. However, the pattern of predicted change by taxa is different at the pan-Arctic scale where all ecological groups showed high positive suitable habitat gains coinciding with other modelling studies (de Rivera et al., 2011; Goldsmid et al., 2018; Jueterbock et al., 2013; Townhill et al., 2018; Villarino et al., 2015; Ware et al., 2016). This could be explained by the fact that temperature increases have been shown to be greater in the Arctic than in other areas (Bush & Lemmen, 2019; Pendleton et al., 2019) and thus predicted gains in suitable habitat there would be expected to be relatively greater than losses elsewhere.

A marked poleward shift was predicted, consistent with other forecasting studies for various types of marine organisms, including invertebrates, algae and fish (Byrne et al., 2016; Chust et al., 2013; Goldsmid et al., 2018; Jones & Cheung, 2015; Mackey et al., 2012; Townhill et al., 2018; Valle et al., 2014; Wisz et al., 2015). Poleward shifts may serve as an early warning signal of ecosystem change due to climate warming. Multiple studies across different taxa are showing consistency between observed responses of marine organisms to climate change, particularly in high-latitude regions (Poloczanska et al., 2013). Cold-adapted species typically have narrow thermal windows and low-energy demand lifestyles, making them more sensitive to temperature changes (Poloczanska et al., 2013). Predicted poleward shifts in suitable habitat in the present study are disproportionately located in Arctic areas, as has been shown in Cheung et al. (2009), García Molinos et al. (2015) and Jones and Cheung (2015). Invasive species in the Antarctic region have been limited by physiology at cold temperatures rather than geographic limits, but global warming may remove those physiological barriers and alter distributions (Aronson et al., 2007). However, it should be noted that a substantial number of the species modelled here are already distributed in northern/cold regions, which may bias observed patterns. Although, three modelled species (C. intestinalis, B. schlosseri and U. pinnatifida) are among the most likely to become invasive in the Antarctic Peninsula according to a recent horizon scanning study (Hughes et al., 2020).
The combination of species invasions and predicted reductions in sea-ice cover could alter reproduction/phenology timing, energy pathways and food-web dynamics with subsequent impacts on production at higher trophic levels (Haug et al., 2017; Poloczanska et al., 2013 and references therein). In this context, AIS could take advantage of new habitats and resources and outcompete native species, which are generally expected to be more sensitive to temperature changes given that they live within a narrow low-temperature range (Peck, 2005). Invasive, non-native and native boreal species could thus expand their ranges as suitable habitats in polar regions become more common (de Rivera et al., 2011; Goldsmit et al., 2018; Renaud et al., 2019; Ware et al., 2016) with subsequent impacts on richness, community composition and Arctic ecosystems. However, it remains unknown whether biogeographic boundary locations will change (Costello et al., 2017).

The combination of methods used in this study permitted the inclusion of different modelling algorithms for more robust prediction results based on an ensemble model. Models had varying data requirements (e.g. presence-background or presence-absence) and used varying statistical approaches (e.g. statistical regression models and machine-learning decision trees). Modelling studies have restrictions and limits that should be recognized when interpreting results. A main limitation of the present study is that potential species occurrences and range changes are based solely on abiotic factors and do not reflect the realized distribution of a species, assuming that species are in equilibrium with their environment (Bellard et al., 2018; Guisan & Zimmermann, 2000). Biotic interactions, potential resources and life history traits were not included in the modelling exercise, even though they are known to be important in shaping species spatial distributions (Wisz et al., 2013). Moreover, including physiological data such as reproductive temperature to represent phenology, can significantly change SDM predictions. Including this type of data has been shown to strongly limit predicted northward shifts under future climate change scenarios (Chefaoui, Serebryakova, Engelen, Viard, & Serrão, 2019). However, this particular aspect was somewhat offset by the fact that environmental conditions for reproduction, together with conditions needed for different life stages, were considered in this study during the species selection using CMIST scores. Given that the present study modelled the potential distribution of suitable habitat in a new environment, biotic interactions may not be realistic if applied in a different context, such as different regions or time periods (Anderson, 2017 and references therein). Despite limitations and restrictions, SDM can provide valuable information to help manage resources in marine ecosystems that will face increasing anthropogenic pressures (Reiss et al., 2014) and has been shown to be a useful predictive tool to assess various taxa concurrently (Gallardo et al., 2015; Leidenberger, Obst, et al., 2015). SDM may also be particularly useful for regions such as the Arctic, where predicting biodiversity changes under global warming effects is challenging due to the paucity of baseline data for most organisms (Renaud et al., 2019; Wassmann, Duarte, Agusti, & Sejr, 2011).

Distributional change of AIS may increase risk in previously unimpacted areas, potentially creating new problems for wildlife and even human health (such as harmful algal blooms). These types of episodes are being facilitated by climate change (Hallegraeff, 2010; Kordas, Harley, & O’Connor, 2011; Poloczanska et al., 2013, 2016). The present study predicts changes over such an extensive area (~6 × 10⁶ km², equivalent to almost three times the size of Greenland) that altered community structure may be widespread. Results presented here provide information on AIS that pose some of the greatest threats to the Arctic, with areas at greatest risk identified as hotspots. This information is valuable given that aquatic invaders are understudied in the context of climate change (Bellard et al., 2018). The Arctic is predicted to be affected by increased habitat suitability for a number of potential AIS and, given its vast area, could be severely impacted by AIS accumulating in specific locations under both current and future environmental conditions. Identification of hotspots through SDM, predictions of habitat vulnerability and particular areas of concern could guide ballast water practices and other management actions, including prevention, early detection monitoring, rapid response and conservation planning. Information such as that provided by the present study should help guide how to prioritize management efforts in this unique and vast region.

ACKNOWLEDGEMENTS

Special thanks to Gesche Winkler and André Rochon for providing expert knowledge on zooplankton and dinoflagellates respectively. Thanks to A. Mathieson, G. Moore and A. Rochon for sharing species occurrence information. This work benefited from feedback received during presentations of draft results to the International Council for Exploration of the Seas (ICES) Expert Working Groups on Ballast Water and Other Shipping Vectors and Introductions and Transfers of Marine Organisms. We are grateful for funding from Fisheries and Oceans Canada (AIS Monitoring Program Funds, Strategic Program for Ecosystem-Based Research and Advice and Arctic Science Fund), the Natural Sciences and Engineering Research Council (NSERC), the Nunavut Marine Region Wildlife Management Board (NWMB), Polar Knowledge Canada, Canadian High Arctic Research Station, Ocean Frontier Institute and Quebec-Ocean. The R code written for the SDM may be found at: https://github.com/robwschlegel/ArcticInvasion. The author sequence follows the ‘first-last author-emphasis’ norm.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created in this study. The data that support the findings of this study
REFERENCES

Aguilar-Islas, A. M., Rember, R. D., Mordy, C. W., & Wu, J. (2008). Sea-ice-derived dissolved iron and its potential influence on the spring algal bloom in the Bering Sea. *Geophysical Research Letters*, 35(24), https://doi.org/10.1029/2008GL035736

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). *Journal of Applied Ecology*, 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

Alsvåg, J., Agnalt, A. L., & Jørstad, K. E. (2009). Evidence for a permanent establishment of the snow crab *Chionoecetes opilio* in the Barents Sea. *Biological Invasions*, 11(3), 587–595. https://doi.org/10.1007/s10530-008-9273-7

Anderson, R. P. (2017). When and how should biotic interactions be considered in models of species niches and distributions? *Journal of Biogeography*, 44(1), 8–17. https://doi.org/10.1111/jbi.12825

Andrade, A. F. A., Velazco, S. J. E., & Júnior, P. D. M. (2020). ENMTML: An R package for a straightforward construction of complex ecological niche models. *Environmental Modelling & Software*, 125, 104615. https://doi.org/10.1016/j.envsoft.2019.104615

Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. *Trends in Ecology & Evolution*, 22, 42–47. https://doi.org/10.1016/j.tree.2006.09.010

Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of species–climate impact models under climate change. *Global Change Biology*, 11(9), 1504–1513. https://doi.org/10.1111/j.1365-2486.2005.01000.x

Archambault, P., Snelgrove, P. V. R., Fisher, J. A. D., Gagnon, J.-M., Garbary, D. J., Harvey, M., & Poulin, M. (2010). From sea to sea: Canada’s three oceans of biodiversity. *PLoS ONE*, 5(8), e12182. https://doi.org/10.1371/journal.pone.0012182

Aronson, R. B., Thatje, S., Clarke, A., Peck, L. S., Blake, D. B., Wilga, C. D., & Seibel, B. A. (2007). Climate change and invisibility of the Antarctic benthos. *Annual Review of Ecology, Evolution and Systematics*, 38, 129–154. https://doi.org/10.1146/annurev.ecolsys.38.091206.095525

Ashon, G. V., Riedlecker, E. I., & Ruiz, G. M. (2008). First non-native crustacean established in coastal waters of Alaska. *Aquat. Biology*, 3(2), 133–137. https://doi.org/10.3354/ab00070

Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A., & De Clerck, O. (2018). Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. *Global Ecology and Biogeography*, 27(3), 277–284. https://doi.org/10.1111/geb.12693

Bailey, S. A. (2015). An overview of thirty years of research on ballast water as a vector for aquatic invasive species to freshwater and marine environments. *Aquat. Ecosystem Health & Management*, 18(3), 261–268. https://doi.org/10.1080/14634988.2015.1027129

Barbosa, F. G., & Schnack, F. (2015). Characteristics of the top-cited papers in species distribution predictive models. *Ecological Modelling*, 313, 77–83. https://doi.org/10.1016/j.ecolmodel.2015.06.014

Barbosa, F. G., Schnack, F., & Melo, A. S. (2012). Use of ecological niche models to predict the distribution of invasive species: A scientometric analysis. *Brazilian Journal of Biology*, 72(4), 821–829. https://doi.org/10.1590/S1519-698420120000500007

Barnes, D. K. A. (1999). The influence of ice on polar nearshore benthos. *Journal of the Marine Biological Association of the United Kingdom*, 79(3), 401–407. https://doi.org/10.1017/S0025315498000514

Barnhart, K. R., Miller, C. R., Overeem, I., & Kay, J. E. (2016). Mapping the future expansion of Arctic open water. *Nature Climate Change*, 6(3), 280–285. https://doi.org/10.1038/nclimate2848

Battini, N., Farias, N., Giachetti, C. B., Schwintedt, E., & Bortolus, A. (2019). Staying ahead of invaders: Using species distribution modeling to predict alien species’ potential niche shifts. *Marine Ecology Progress Series*, 612, 127–140. https://doi.org/10.3354/meps12878

Belanger, C. L., Jablonski, D., Roy, K., Berke, S. K., Krug, A. Z., & Valentine, J. W. (2012). Global environmental predictors of benthic marine biogeographic structure. *Proceedings of the National Academy of Sciences of the United States of America*, 109(35), 14046–14051. https://doi.org/10.1073/pnas.1212381109

Bellard, C., Cassey, P., & Blackburn, T. M. (2016). Alien species as a driver of recent extinctions. *Biology Letters*, 12(2), 20150623. https://doi.org/10.1098/rsbl.2015.0623

Bellard, C., Jeschke, J. M., Leroy, B., & Mace, G. M. (2018). Insights from modeling studies on how climate change affects invasive alien species geography. *Ecology and Evolution*, 8(11), 5688–5700. https://doi.org/10.1002/ece3.4098

Bellard, C., Leclerc, C., Leroy, B., Bakkenes, M., Veloz, S., Thuiller, W., & Courchamp, F. (2014). Vulnerability of biodiversity hotspots to global change. *Global Ecology and Biogeography*, 23(12), 1376–1386. https://doi.org/10.1111/geb.12228

Bellard, C., Leroy, B., Thuiller, W., Rysman, J. F., & Courchamp, F. (2016). Major drivers of invasion risks throughout the world. *Ecosphere*, 7(3), e01241. https://doi.org/10.1002/ecs2.1241

Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., Bakkenes, M., & Courchamp, F. (2013). Will climate change promote future invasions? *Global Change Biology*, 19(12), 3740–3748. https://doi.org/10.1111/gcb.12344

Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P. B., & Charette, M. A. (2013). Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. *Nature Geoscience*, 6(4), 274. https://doi.org/10.1038/ngeo1746

Blackburn, T. M., Bellard, C., & Ricciardi, A. (2019). Alien versus native species as drivers of recent extinctions. *Frontiers in Ecology and the Environment*, 17(4), 203–207. https://doi.org/10.1002/fee.2020

Bosch, S., Tyberghein, L., Deneudt, K., Hernandez, F., & De Clerck, O. (2018). In search of relevant predictors for marine species distribution modelling using the MarineSPEED benchmark dataset. *Diversity and Distributions*, 24(2), 144–157. https://doi.org/10.1111/ddi.12668

Bradic, J., & Leung, B. (2017). A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. *Journal of Biogeography*, 44(6), 1344–1361. https://doi.org/10.1111/jbi.12894

Broennimann, O., & Guisan, A. (2008). Predicting current and future biogeological invasions: Both native and invaded ranges matter. *Global Ecology and Biogeography*, 17(6), 1344–1361. https://doi.org/10.1111/ddi.12668

Brown, E. A., Chain, F. J. J., Zhan, A., Maclsaac, H. J., & Cristescu, M. E. (2016). Early detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in Canadian ports. *Diversity and Distributions*, 22(10), 1045–1059. https://doi.org/10.1111/ddi.12465

Brown, J. L. (2014). SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. *Methods in Ecology and Evolution*, 5(7), 694–700. https://doi.org/10.1111/2041-210X.12200
screening-level risk assessment tool applied to non-indigenous marine invertebrates in Canadian coastal waters. Biological Invasions, 18(1), 279–294. https://doi.org/10.1007/s10530-015-1008-y

Duffy, G. A., Coetzee, B. W., Latombe, G., Akerman, A. H., McGeoch, M. A., & Chown, S. L. (2017). Barriers to globally invasive species are weakening across the Antarctic. Diversity and Distributions, 23(9), 982–996. https://doi.org/10.1111/ddi.12593

Dvoretzky, A. G., & Dvoretzky, V. G. (2009). Fouling community of the red king crab, Paralithodes camtschaticus (Tilesius 1815), in a subarctic fjord of the Barents Sea. Polar Biology, 32(7), 1047–1054. https://doi.org/10.1007/s00300-009-0604-7

Early, R., Bradley, B. A., Dukes, J. S., Lawler, J. J., Olden, J. D., Blumenthal, D. M., ... Tatem, A. J. (2016). Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, 7, 12485. https://doi.org/10.1038/ncomms12485

Edelist, D., Rilov, G., Golani, D., Carlton, J. T., & Spanier, E. (2013). Projecting present and future habitat suitability of ship-mediated aquatic invasive species in the Canadian Arctic. Biological Invasions, 9(3), 327–342. https://doi.org/10.1039/ai.2014.9.3.08

Goldsmit, J., Archambault, P., Chust, G., Villarino, E., Liu, G., Lukovich, J. V., ... Howland, K. L. (2018). Projecting present and future habitat suitability of ship-mediated aquatic invasive species in the Canadian Arctic. Biological Invasions, 20(2), 501–517. https://doi.org/10.1007/s10530-017-1553-7

Goldsmit, J., Howland, K. L., & Archambault, P. (2014). Establishing a baseline for early detection of non-indigenous species in ports of the Canadian Arctic. Aquatic Invasions, 9(3), 327–342. https://doi.org/10.1039/ai.2014.9.3.08

Goldsmit, J., McKinsey, C., Archambault, P., & Howland, K. L. (2019). Ecological risk assessment of predicted marine invasions in the Canadian Arctic. PLoS ONE, 14(2), e0211815. https://doi.org/10.1371/journal.pone.0211815

Goldsmit, J., Nudds, S. H., Stewart, D. B., Higdon, J. W., Hannah, C. G., & Howland, K. L. (2019). Where else? Assessing zones of alternate ballast water exchange in the Canadian eastern Arctic. Marine Pollution Bulletin, 139, 74–90. https://doi.org/10.1016/j.marpolbul.2018.11.062

Guisan, A., Graham, C. H., Elith, J., & Huettmann, F. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13(3), 332–340. https://doi.org/10.1111/1472-444X.2007.00342.x

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2), 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

Guisan, A., Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S., & Peterson, A. T. (2007). What matters for predicting the occurrences of trees: Techniques, data, or species’ characteristics? Ecological Monographs, 77(4), 615–630. https://doi.org/10.1890/06-1060.1

Hallegraeff, G. M. (2010). Ocean climate change, phytoplankton community response, and harmful algal blooms: A formidable predictive challenge. Journal of Phyology, 46(2), 220–235. https://doi.org/10.1093/jphysiol/phi054

Hansen, H. S. B. (2015). Snow crab (Chionoecetes opilio) in the Barents Sea. Diet, biology and management. Master’s thesis. Retrieved from https://munin.uio.no/handle/10037/7746

Hao, T., Elith, J., Guillera-Arroita, G., & Lahoz-Monfort, J. J. (2019). A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Diversity and Distributions, 25(5), 839–852. https://doi.org/10.1111/ddi.12892

Haug, T., Bogstad, B., Chierici, M., Gjøsaeter, H., Halfredsson, E. H., Høines, Å. S., ... Sunnānå, K. (2017). Future harvest of living resources in the Arctic Ocean north of the Nordic and Barents Seas: A review of possibilities and constraints. Fisheries Research, 188, 38–57. https://doi.org/10.1016/j.fishres.2016.12.002

Hecky, R. E., & Kilham, P. (1988). Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnology and Oceanography, 33(4, part2), 796–822. https://doi.org/10.4319/lo.1988.33.4part2.0796

Hewitt, C. L., Campbell, M. L., & Gallais, S. (2006). Alien species in aquaculture. Considerations for responsible use. Gland, Switzerland and Cambridge, UK: IUCN. Retrieved from https://www.iucn.org/content/alienspecies-aquaculture-considerations-responsible-use-0

Hijmans, R. J. (2012). Cross-validation of species distribution models to predict the effect of climate change on species distributions. Diversity and Distributions, 18(3), 335–347. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Hijmans, R. J., Alpízar, L., & Gutiérrez, J. M. (2009). Evaluating the performance of species distribution models in ecology. Ecological Modelling, 220(2), 228–236. https://doi.org/10.1016/j.ecolmod.2008.09.010

Hijmans, R. J. (2007). What matters for predicting the occurrences of trees: Techniques, data, or species’ characteristics? Ecological Monographs, 77(4), 615–630. https://doi.org/10.1890/06-1060.1

Hijmans, R. J. (2012). Cross-validation of species distribution models: Removing spatial sorting bias and calibration with a null model. Ecology, 93(3), 679–688. https://doi.org/10.1890/11-0826.1

Hijmans, R. J., & Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12(12), 2272–2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x

Hughes, K. A., Pescott, O. L., Peyton, J., Adriaens, T., Cottier-Cook, E. J., Key, G., ... Roy, H. E. (2020). Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Global Change Biology, 26(4), 2702–2716. https://doi.org/10.1111/gcb.14938

Ibanez, I., Silander Jr., J. A., Allen, J. M., Treanor, S. A., & Wilson, A. (2009). Identifying hotspots for plant invasions and forecasting focal points of further spread. Journal of Applied Ecology, 46(6), 1219–1228. https://doi.org/10.1111/j.1365-2664.2009.01736.x

Jahn, A. (2018). Reduced probability of ice-free summers for 1.5°C compared to 2°C warming. Nature Climate Change, 8(5), 409. https://doi.org/10.1038/s41558-018-0127-8
Laget, F. (2017). Transport d’espèces de dinoflagellés potentiellement non-indigènes dans l’Arctique canadien, suite au déversement des eaux de ballast par un navire domestique. Master’s thesis. Retrieved from http://semaphore.uqar.ca/1342/

Lambert, G., Shenkar, N., & Swalla, B. J. (2010). First Pacific record of the north Atlantic ascidian Molgula citrina - Bioinvasion or circum-polar distribution. Aquatic Invasions, 5(4), 369–378. https://doi.org/10.3391/ai.2010.5.4.04

Leduc, N., Lacoursière-Roussel, A., Howland, K. L., Archambault, P., Sevellec, M., Normandeau, E., ... Bernatchez, L. (2019), Comparing eDNA metabarcoding and species collection for documenting Arctic metazoan biodiversity. Environmental DNA, 1(4), 342–358. https://doi.org/10.1002/edn3.35

Leidenberger, S., De Giovanni, R., Kulawik, R., Williams, A. R., & Bourlat, S. J. (2015). Mapping present and future potential distribution patterns for a meso-grazer guild in the Baltic Sea. Journal of Biogeography, 42(2), 241–254. https://doi.org/10.1111/jbi.12395

Leidenberger, S., Obst, M., Kulawik, R., Stelter, K., Heyer, K., Hardisty, A., & Bourlat, S. J. (2015). Evaluating the potential of ecological niche modelling as a component in marine non-indigenous species risk assessments. Marine Pollution Bulletin, 97(1–2), 470–487. https://doi.org/10.1016/j.marpollbul.2015.04.033

Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A., ... Yarosh, E. S. (2012). World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophysical Research Letters, 39(10). https://doi.org/10.1029/2012GL051106

Li, X., Liu, K., Kraus, F., Tingley, R., & Li, Y. (2016). Risk of biological invasions is concentrated in biodiversity hotspots. Frontiers in Ecology and the Environment, 14(8), 411–417. https://doi.org/10.1002/fee.1321

Lind, S., Ingvaldsen, R. B., & Furevik, T. (2018). Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nature Climate Change, 8(7), 634. https://doi.org/10.1038/s41558-018-0205-y

Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40(4), 778–789. https://doi.org/10.1111/jbi.12058

Lobo, J. M. (2008). More complex distribution models or more representative data? Biodiversity Informatics, 5, 14–19. https://doi.org/10.17161/biv5.i.0

Locke, A., & Hanson, J. M. (2009). Rapid response to nonindigenous species. 3. A proposed framework. Aquatic Invasions, 4(1), 259–273. https://doi.org/10.3391/ai.2009.4.1.26

Locke, A., Mandrak, N. E., & Therriault, T. W. (2011). A Canadian rapid response framework for aquatic invasive species. Canadian Science Advisory Secretariat Research Document (2010/114). Retrieved from http://publications.gc.ca/site/eng/404076/publication.html

Lockwood, J. L., Hoopes, M. F., & Marchetti, M. P. (2007). Invasion ecology. Oxford, UK: Blackwell Publishing.

Lowen, J. B., McKIndsey, C. W., Therriault, T. W., & DiBacco, C. (2016). Effects of spatial resolution on predicting the distribution of aquatic invasive species in nearshore marine environments. Marine Ecology Progress Series, 556, 17–30. https://doi.org/10.3354/meps11765

MacDonald, I. R., Bluhm, B. A., Iken, K., Gagaev, S., & Strong, S. (2010). Benthic macrofauna and mega fauna assemblages in the Arctic deep-sea Canada Basin. Deep Sea Research Part II: Topical Studies in Oceanography, 57(1), 136–152. https://doi.org/10.1016/j.dsr2.2009.08.012

Mackey, A. P., Atkinson, A., Hill, S. L., Ward, P., Cunningham, N. J., Johnston, N. M., & Murphy, E. J. (2012). Antarctic macrozooplankton of the southwest Atlantic sector and Bellingshausen Sea: Baseline historical distributions (Discovery Investigations, 1928–1935) related to temperature and food, with projections for subsequent ocean warming. Deep Sea Research Part II: Topical Studies in Oceanography, 59, 130–146. https://doi.org/10.1016/j.dsr2.2011.08.011

Marbuah, G., Gren, I.-M., & Mckie, B. (2014). Economics of harmful invasive species: A review. Diversity, 6(3), 500–523. https://doi.org/10.3390/d6030500
Marchese, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Miller, A. W., & Ruiz, G. M. (2014). Arctic shipping and marine invaders. *Frontiers in Marine Science*, 1(1), 485–492. https://doi.org/10.9871/00176

Moore, A. M., Lowen, J. B., & DiBacco, C. (2018). Assessing invasion risk of *Didemnum vexillum* to Atlantic Canada. *Marine Biological Invasions*, 9(1), 11–25. https://doi.org/10.1007/s11889-1809.1.02

Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., ... Ulløa, O. (2013). Processes and patterns of oceanic nutrient limitation. *Nature Geoscience*, 6(9), 701–710. https://doi.org/10.1038/ngeo1765

Moss, R., Babiker, W., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., ... Jones, R. N. (2008). Towards new scenarios for the analysis of emissions: Climate change, impacts and response strategies. Geneva, Switzerland: Intergovernmental Panel on Climate Change Secretariat (IPCC). Retrieved from https://www.ipcc.ch/publication/ipcc-expert-meeting-report-towards-new-scenarios-for-analysis-of-emissions-climate-change-impacts-and-response-strategies/

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. *Nature*, 403(6772), 853. https://doi.org/10.1038/35002501

Niedermreck, A. L., & Notz, D. (2018). Arctic sea ice in a 1.5 C warmer world. *Geophysical Research Letters*, 45(4), 1963–1971. https://doi.org/10.1002/2017GL076159

Niemi, A., Ferguson, S., Hedges, K., Melling, H., Michel, C., Ayles, B., ... Zimmerman, S. (2019). *State of Canada's Arctic seas*. Canadian Technical Report of Fisheries and Aquatic Science 3344:xx + 189 pp.

Niimi, A. J. (2004). Environmental and economic factors can increase the risk of exotic species introductions to the Arctic region through increased ballast water discharge. *Environmental Management*, 33(5), 712–718. https://doi.org/10.1007/s00267-004-0372-4

O’Donnell, J., Gallagher, R. V., Wilson, P. D., Downey, P. O., Hughes, L., & Leishman, M. R. (2012). Invasion hotspots for non-native plants in Australia under current and future climates. *Global Change Biology*, 18(2), 617–629. https://doi.org/10.1111/j.1365-2486.2011.02537.x

Overland, J., Dunlea, E., Box, J. E., Correll, R., Forsius, M., Kattsov, V., ... Wang, M. (2019). The urgency of Arctic change. *Polar Science*, 21, 6–13. https://doi.org/10.1016/j.polar.2018.11.008

Pascual, M., Fuentes, V., Canepa, A., Atienza, D., Gili, J. M., & Purcell, J. E. (2015). Temperature effects on asexual reproduction of the scyphozoan *Aurelia aurita*: Differences between exotic (Baltic and Red seas) and native (Mediterranean Sea) populations. *Marine Ecology*, 36(4), 994–1002. https://doi.org/10.1111/mee.12196

Pearce, F., Peeler, E., & Stebbing, P. (2012). *Modelling the risk of the introduction and spread of non-indigenous species in the UK and Ireland*. (Project report for E405W). Centre for Environment, Fisheries and Aquaculture Science (Cefas). Retrieved from http://www.nonnativespecies.org/downloadDocument.cfm?id=791

Pearson, R. G. (2007). *Species’ distribution modeling for conservation educators and practitioners*. Synthesis. American Museum of Natural History. Retrieved from http://ncep.amnh.org

Peck, L. S. (2005). Prospects for survival in the Southern Ocean: Vulnerability of benthic species to temperature change. *Antarctic Science*, 17(4), 497–507. https://doi.org/10.1017/S0954102005002920

Pendleton, S. L., Miller, G. H., Lifton, N., Lehman, S. J., Southon, J., Crump, S. E., & Anderson, R. S. (2019). Rapidly receding Arctic Canada glaciers revealing landscapes continuously ice-covered for more than 40,000 years. *Nature Communications*, 10(1), 445. https://doi.org/10.1038/s41467-019-08307-w

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. *Ecological Modelling*, 190(3), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. *Ecography*, 31(2), 161–175. https://doi.org/10.1111/j.0906-7590.2008.05203.x

Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. *Ecological Applications*, 19(1), 181–197. https://doi.org/10.1890/07-2153.1

Piepenburg, D., Archambault, P., Ambrose, W. G., Blanchard, A. L., Bluhm, B. A., ... Wdowarska-Kowalczyk, M. (2011). Towards a pan-Arctic inventory of the species diversity of the macro- and megabenthic fauna of the Arctic shelf seas. *Marine Biodiversity*, 41(1), 51–70. https://doi.org/10.1007/s12752-010-0059-7

Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Schoeman, D. S., Moore, P. J., ... Duarte, C. M. (2013). Global imprint of climate change on marine life. *Nature Climate Change*, 3(10), 919–925. https://doi.org/10.1038/nclimate1958

Poloczanska, E. S., Burrows, M. T., Brown, C. J., García Molinos, J., Halpern, B. S., Hoegh-Guldberg, O., ... Sydeman, W. J. (2016). Responses of marine organisms to climate change across oceans. *Frontiers in Marine Science*, 3, 62. https://doi.org/10.3389/fmars.2016.00062

R Core Team. (2019). *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for statistical computing. Retrieved from https://www.R-project.org/

Ramírez, F., Afán, I., Davis, L. S., & Chiaradia, A. (2017). Climate impacts on global hot spots of marine biodiversity. *Science Advances*, 3(2), e1601198. https://doi.org/10.1126/sciadv.1601198

Reiss, H., Birchenough, S., Borja, A., Buhl-Mortensen, L., Craeymeersch, J., Dannheim, J., ... Degraer, S. (2014). Benthos distribution modelling and its relevance for marine ecosystem management. *ICES Journal of Marine Science*, 72(2), 297–315. https://doi.org/10.1093/icesjms/fsu107

Reiss, H., Unne, K., König, K., Neumann, H., & Krönecke, I. (2011). Species distribution modelling of marine benthos: A North Sea case study. *Marine Ecology Progress Series*, 442, 71–86. https://doi.org/10.3354/meps09391

Renaud, P. E., Wallhead, P., Kotta, J., Wdowarska-Kowalczyk, M., Bellerby, R. G. J., Rätsep, M., ... Kukliński, P. (2019). *Arctic Sensitivity? Vulnerability of benthic species to temperature change*. Arctic Sensitivity, 241–333. https://doi.org/10.1007/978-3-030-176

Retrieved from http://www.icecatlas.org/10.1038/nclimate1765
Tovar-Sánchez, A., Duarte, C. M., Alonso, J. C., Lacorte, S., Tauler, R., & Galbán-Malagón, C. (2010). Impacts of metals and nutrients released from melting multiyear Arctic sea ice. *Journal of Geophysical Research: Oceans*, 115(C7). https://doi.org/10.1029/2009JC005685

Townhill, B. L., Tinker, J., Jones, M., Pitois, S., Creach, V., Simpson, S. D., ... Pinnegar, J. K. (2018). Harmful algal blooms and climate change: Exploring future distribution changes. *ICES Journal of Marine Science*, 75(6), 1882–1893. https://doi.org/10.1093/icesjms/fsy113

Tremblay, P. (2017). Évaluation du risque potentiel d’introduction d’espèces non-indigènes de mésozooplankton suite au déversement des eaux de ballast d’un navire domestique dans l’Arctique canadien. Master’s thesis. Retrieved from http://semaphore.uqar.ca/1300/

Turbelin, A. J., Malamud, B. D., & Francis, R. A. (2017). Mapping the global state of invasive alien species: Patterns of invasion and policy responses. *Global Ecology and Biogeography*, 26(1), 78–92. https://doi.org/10.1111/geb.12517

Valle, M., Chust, G., del Campo, A., Wisz, M. S., Olsen, S. M., Garmendia, J. M., & Borja, Á. (2014). Projecting future distribution of the seagrass *Zostera noltii* under global warming and sea level rise. *Biological Conservation*, 170, 74–85. https://doi.org/10.1016/j.biocon.2013.12.017

Verbruggen, H., Tyberghein, L., Belton, G. S., Mineur, F., Jueterbock, A., Hoarau, G., ... De Clerck, O. (2013). Improving transferability of introduced species’ distribution models: New tools to forecast the spread of a highly invasive seaweed. *PloS ONE*, 8(6), e68337. https://doi.org/10.1371/journal.pone.0068337

Verlaque, M. (2001). Checklist of the macroalgae of Thau Lagoon (Hérault, France), a hot spot of marine species introduction in Europe. *OceanoLogica Acta*, 24(1), 29–49. https://doi.org/10.1006/s0399-1784(00)01127-0

Villarino, E., Chust, G., Licandro, P., Butenschön, M., Ibaibarriaga, L., Larrañaga, A., & Irigoien, X. (2015). Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change. *Marine Ecology Progress Series*, 531, 121–142. https://doi.org/10.3354/meps11299

Wagner, F. J. E. (1977). Recent mollusc distribution patterns and palaeo-bathymetry, southeastern Beaufort Sea. *Canadian Journal of Earth Sciences*, 14(9), 2013–2028. https://doi.org/10.1139/e77-173

Ware, C., Berge, J., Jelmert, A., Olsen, S. M., Pellissier, L., Wisz, M., ... Alsos, I. G. (2016). Biological introduction risks from shipping in a warming Arctic. *Journal of Applied Ecology*, 53, 340–349. https://doi.org/10.1111/1365-2664.12566

Wassmann, P., Duarte, C. M., Agusti, S., & Sejr, M. K. (2011). Footprints of climate change in the Arctic marine ecosystem. *Global Change Biology*, 17(2), 1235–1249. https://doi.org/10.1111/j.1365-2486.2010.02311.x

Weinert, M., Mathis, M., Kröncke, I., Neumann, H., Pohlmann, T., & Reiss, H. (2016). Modelling climate change effects on benthos: Distributional shifts in the North Sea from 2001 to 2099. *Estuarine, Coastal and Shelf Science*, 175, 157–168. https://doi.org/10.1016/j.ecss.2016.03.024

Wells, M. L., Mayer, L. M., & Guillard, R. R. L. (1991). Evaluation of iron as a triggering factor for red tide blooms. *Marine Ecology Progress Series*, 69, 93–102. https://doi.org/10.3354/meps069093

Wisz, M. S., Broennimann, O., Gränkjer, P., Møller, P. R., Olsen, S. M., Swingedouw, D., ... Pellissier, L. (2015). Arctic warming will promote Atlantic-Pacific fish interchange. *Nature Climate Change*, 5(3), 261–265. https://doi.org/10.1038/nclimate2500

Wisz, M. S., Pottier, J., Kissing, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., ... Svenning, J.-C. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. *Biological Reviews of the Cambridge Philosophical Society*, 88(1), 15–30. https://doi.org/10.1111/j.1469-185X.2012.00235.x

Xu, J., Wickramarathne, T. L., Chawla, N. V., Grey, E. K., Steinhaeuser, K., Keller, R. P., ... Lodge, D. M. (2014). Improving management of aquatic invasions by integrating shipping network, ecological, and environmental data: data mining for social good. In *Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, USA, 1699–1708. https://doi.org/10.1145/262330.2623364

Zimina, O. L. (2014). Finding the snow crab *Chionoecetes opilio* (O. Fabricius, 1788) (Decapoda: Majidae) in the Kara Sea. *Russian Journal of Marine Biology*, 40(6), 490–492. https://doi.org/10.1134/S1063074014060224

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Goldsmit J, McKindsey CW, Schlegel RW, Stewart DB, Archambault P, Howland KL. What and where? Predicting invasion hotspots in the Arctic marine realm. *Glob Change Biol*. 2020;26:4752–4771. https://doi.org/10.1111/gcb.15159