In Auvergne, a cattle-raising area in central France, brucellosis control measures have been strictly observed since 1965, and systematic vaccination was stopped in 1983. Active surveillance is conducted on the basis of clinical findings (abortions or orchitis) and an annual serologic test performed for every animal (rose bengal plate agglutination test or complement fixation test); abortions and orchitis have to be bacteriologically confirmed. When infected animals are detected, a second test on a new sample drawn 2 weeks later is required for confirmation. When an animal on a farm is infected, the herd is slaughtered. This policy has resulted in a dramatic decrease in the prevalence of brucellosis, and very few cases were reported in 1988 (1). In 1988, however, several animals had positive tests for brucellosis. These positive reactions apparently were associated with an epizootic due to \textit{Yersinia enterocolitica} O:9. The bacterium was isolated from the stools of cattle and goats in infected herds (2).

In Auvergne, a cattle-raising area in central France, brucellosis control measures have been strictly observed since 1965, and systematic vaccination was stopped in 1983. Active surveillance is conducted on the basis of clinical findings (abortions or orchitis) and an annual serologic test performed for every animal (rose bengal plate agglutination test or complement fixation test); abortions and orchitis have to be bacteriologically confirmed. When infected animals are detected, a second test on a new sample drawn 2 weeks later is required for confirmation. When an animal on a farm is infected, the herd is slaughtered. This policy has resulted in a dramatic decrease in the prevalence of brucellosis, and very few cases were reported in 1988 (1). In 1988, however, several animals had positive tests for brucellosis. These positive reactions apparently were associated with an epizootic due to \textit{Yersinia enterocolitica} O:9. The bacterium was isolated from the stools of cattle and goats in infected herds (2).

\textit{Yersinia enterocolitica} O:9 infections were reported in Auvergne in 1988 to 1989, while brucellosis due to \textit{Brucella abortus} was almost eliminated. The serologic cross-reactions between the two bacteria complicated the diagnosis of brucellosis cases. In 1996, human cases of \textit{Yersinia enterocolitica} O:9 infection were detected, with a peak incidence of 12 cases. Veterinary surveillance could have predicted the emergence of this disease in humans.

\textit{Yersinia enterocolitica} O:9 infections were reported in Auvergne in 1988 to 1989, while brucellosis due to \textit{Brucella abortus} was almost eliminated. The serologic cross-reactions between the two bacteria complicated the diagnosis of brucellosis cases. In 1996, human cases of \textit{Yersinia enterocolitica} O:9 infection were detected, with a peak incidence of 12 cases. Veterinary surveillance could have predicted the emergence of this disease in humans.

Before the 1988 epizootic, \textit{Y. enterocolitica} human infections were rare in Auvergne. In a 1980-81 survey of infections due to \textit{Yersinia} species, five patients had antibodies against \textit{Y. enterocolitica} O:3, the serogroup commonly found in Europe in this period (4,5). No more than three cases of \textit{Y. enterocolitica} infection were recorded each year at the University Hospital laboratory during 1982 to 1990: none had the serotype O:9. Two cases of human
autochthonous brucellosis were detected in 1988 to 1990; in both cases, brucellosis had been detected in the patients’ cattle a few months before.

Awareness of *Yersinia* infection was heightened in the regional teaching hospital, but systematic surveillance for patients with diarrhea or abdominal symptoms could not be established. The first human case was detected in 1991; this patient also had positive serologic results for brucellosis but no history of contact with *Brucella*-infected animals; gastrointestinal symptoms suggested yersiniosis (5). Since then, the number of human cases diagnosed in Auvergne has increased, despite the lack of systematic screening for *Yersinia* infection. Human yersiniosis cases were defined by clinical symptoms (fever, gastrointestinal symptoms, arthritis, *erythema nodosum*) associated with a positive serologic test for brucellosis and lack of contact with *Brucella*-infected animals.

In 1996, a retrospective study was done among regional medical laboratories to identify positive brucellosis serologic tests from April 1995 to March 1996. Of eight cases detected, six met criteria for yersiniosis and two had evidence of past brucellosis. Through the end of 1998, 42 cases were recorded, with a peak incidence of 12 cases in 1996 (Figure 2). Gastrointestinal symptoms were found in 35 (83%) patients: diarrhea alone in eight, abdominal pain in six (four patients had surgery [6]), and both in 21. Twelve patients had fever with no other symptoms when they sought medical attention (7), six had arthritis in one or several joints (two with sacroiliitis), and five had *erythema nodosum*. The diagnosis of the last 18 cases was confirmed with an enzyme-linked immunosor
not useful, the absence of contact with animals infected with brucellosis was an indication of yersiniosis. Diagnosis could be confirmed by positive YOP ELISA.

The 1996 *Yersinia* epizootic in Auvergne preceded an increase in human cases in central France, where no cases of *Y. enterocolitica* O:9 had previously been detected. The epizootic demonstrates that such emerging disease can be predicted by veterinary surveillance data (9).

Acknowledgments
The authors gratefully acknowledge the help of E. Carniel (Centre de Référence des Yersinia, Institut Pasteur, Paris).

References
1. Douzal Y. Policy of prevention against bovine brucellosis. Actual results. Medecine et Maladies Infectieuses 1993;23(S):507-12.
2. Reynaud A, Delmas C, Vidon JM, Marty-Garrec M, Dubourdieu V. Presence of *Yersinia enterolitica* O:9 in fecal samples of *Brucella abortus* ruminants revealing atypical serological reactions against antigens. Medecine et Maladies Infectieuses 1993;23(S):516-9.
3. Kittelberger R, Reichel MP, Joyce MA, Skaak C. Serological crossreactivity between *Brucella abortus* and *Yersinia enterocolitica* O:9. III. Specificity of the in vitro antigen-specific gamma interferon test for bovine brucellosis diagnosis in experimentally *Yersinia enterocolitica* O:9-infected cattle. Vet Microbiol 1997;57(4):361-71.
4. Verhaegen J, Charlier J, Lemmens P, Delmee M, Van Noyen R, Verbiest L, et al. Surveillance of human *Yersinia enterocolitica* infections in Belgium: 1967-1996. Clin Infect Dis 1998;27(1):59-64.
5. Bottone EJ. *Yersinia enterocolitica*: the charisma continues. Clin Microbiol Rev 1997;10(2):257-276.
6. Shorter NA, Thompson MD, Mooney DP, Modlin JF. Surgical aspects of an outbreak of *Yersinia enterocolitis*. Pediatr Surg Int 1998;13(1):2-5.
7. de Kleijn EM, van Lier HJ, van der Meer JW. Fever of unknown origin (FUO). II. Diagnostic procedures in a prospective multicenter study of 167 patients. The Netherlands FUO Study Group. Medicine 1997;76(6):401-14.
8. Benoit C, Guiyoule A, Carniel E. Serodiagnosis of human pathogenic *Yersinia*. Presse Med 1996;25:1627-30.
9. Tauxe RV. Emerging foodborne diseases: an evolving public health challenge. Emerg Infect Dis 1997;3(4):425-34.