The possible protective role of quercetin on induced cardiac Oxidative DNA Damage by repeated exposure to diesel exhaust nanoparticles in rats (a histological and immunohistochemical study)

Eman Mohammed Faruk¹*, Aisha El Mansy¹, Wardah Abdullah Mohammed Alasmari² and Amal Mahmoud Elsafy Elshazly³

Abstract
Diesel exhaust nanoparticles (DENPs) are gaseous exhaust and one component of particulate matter (PM) air pollution which is found to cause health hazards in humans. Quercetin is widely known for its antioxidant and antitoxic potential. We aimed to detect the protective effect of quercetin in DENP-induced cardio toxicity. Fifty Male albino rats were divided into two groups, first group (ten rats) divided into two equal subgroups (one receive saline act as control and other receive quercetin, the second group (forty rats) divided equally into two subgroups (one was treated with repeated doses of DENPs [90µg/ rat and 180µg/ rat for 6 days intratracheally every two days] and other treated orally with quercetin (60 mg/kg B.Wt.) 1h prior to DENP exposure, DNA damage was examined by measures serum 8-hydroxydeoguanosine (8-OHdG) levels followed by histological and immunohistochemical studies for nuclear factor-κappa B (NF-κB) expression in heart tissues. Tumor necrosis factor- alpha (TNFα), interleukin-6 (IL-6) and serum level 8-Ohd Gare significantly higher in repeated doses of DENPs than the control group. Pretreatment with quercetin reduced significantly serum level 8-OhdG when compared to DENPs group. Cardiac myocytes disruption, vacuolation, inflammation and wide separation of its fibers in contrast to control group. Myocyte inflammations were significantly decreased with quercetin group compared with control group (decrease NF-κB immunostaining). The present work yields experimental evidence that quercetin can reduce oxidative DNA damage and inflammation induced by DENPs, so suggested that quercetin possible cardioprotective effect against DENPs.

Keywords: Diesel exhaust particles, DNA damage, quercetin, air pollution

Introduction
Various studies have seen a strong relationship between particulate matter (PM) air pollution and increase in the mortality and morbidity. In association with this, a relationship between the daily number of hospitalizations, deaths and everyday differential in the ambient PM air pollution concentration has been detected by experts [1,2]. Inhaled airborne PM was found to cause cerebrovascular and cardiac diseases such as ischemia [3]. Studies also showed that airborne PM increased circulating neutrophil count (CNC) in the bloodstream of residents exposed to high PM concentrations [4]. PM10 deposition in alveoli leads to an infiltration of polymorphonuclear leukocytes (PMN) [4]. Studies by Terashima et al. [5] revealed that bronchial epithelial cells and alveolar macrophages exposed to PM10 lead to the release of hematopoietic cytokines. Suwa et al. [6] reported that the inhalation of air pollution leads to an increase in the pro-inflammatory cells concentration in the circulation because of increased production of cytokines. Traffic-related particles such as diesel (DEPs) and petrol (DENPs) exhaust particles are the main components of PM air...
pollution. They mainly contain nano-size particles that can easily enter the lungs [7]. Studies on humans reported that exposure to DEP in a controlled manner resulted in elevated thrombus formation and endothelial dysfunction. Previous studies on lung cells and macrophages exposed to diesel exhaust nanoparticles (DENPs) in different concentrations demonstrated dose-dependent cytotoxicity, oxidative stress, inflammation, and DNA damage in cell lines [8]. Increased oxidative stress is detected in most types of HF, that resulting from ischaemic and non-ischaemic cardiomyopathy, pressure and volume overload, tachycardio-myopathy [9]. The side effects of oxidative stress in HF patients are vascular endothelial dysfunction [10], cardiac hypertrophy [11] and myocyte contractile dysfunction [12].

Oxidative stress results in damage to DNA, membranes, proteins and other macromolecules. The previous study showed that somatic DNA damage included in the pathogenesis of atherosclerosis and elevated levels of oxidative DNA damage in HF patients [13].

Quercetin is a major flavonoid found widely in various medicinal plants. It is one of the famous anti-oxidant and anti-inflammatory medicinal herbs [14]. Recently, quercetin has been detected as an inhibitor of interleukin 1 beta (IL-1β) induced intercellular adhesion molecule-1 (ICAM-1) expression and nuclear factor-kappa B (NF-κB) activity in human A549 lung cells [15]. Indeed oral administration of quercetin in animal models was reported to inhibit experimentally induced pulmonary fibrosis, [16] airway inflammation [17] and emphysema [18]. Mi et al. [19] showed that quercetin suppressed oxidative damage characterized by lipid peroxidation, decreased spermatogonial cell numbers, vacuolated cytoplasm and condensed nuclei in spermatogonial cells of embryonic chicken exposed to 3-methyl-4-nitrophenol.

However, to the finest of our acquaintance, the histological effect of quercetin on the cardiovascular effects of DENPs has not been addressed so far. Consequently, in the current study, we have evaluated the histological and immunohistochemical effect of DENPs (repeated exposure) 48 h after last 4 exposures to DENPs performed every 2nd day and the possible protective effect of pretreatment with quercetin on cardiac tissues.

Materials and methods
Chemicals
All fine chemicals were procured from Sigma-Aldrich, Egypt.
1-Quercetin (Sigma Aldrich, Egypt) (60 mg/kg b.wt) dissolved in olive oil and was given to animals by oral gavage 1h before each i.t. instillation of DENPs. Dose of quercetin was based on a previous report [14]. Quercetin doses were found well tolerated in humans and animals in previous studies [9].
2-Collection and characterization of DENPs Petrol engines and duty light multi-cylinder diesel operating at a speed of 1500rpm in orderto collect DEPs, as the method by Durga et al., [7]. They were suspended in sterile normal saline (NaCl 0.9%) containing tween 80 (0.01%)to decrease aggregation, Control group received only normal saline with 0.01% tween 80 [8]. The collected particles were less than 2.5 µm in size. Transmission Electron Microscope (HR-TEM) (JEOL 3010) was used for morphological analysis and seen the presence of nano-size particles.

Animals and treatment
This study was reviewed and approved by our institutional animal ethical committee and the experiment was performed according to the approved protocols from the Institutional Animal Care Committee.

Fifty male albino rats of average weight 200–250 g were used after a 7 day acclimatization period in the current study. All animals were housed in cages in temperature (30±2°C), humidity and light controlled rooms. They were given water ad libitum and standard pellet food. Animals were randomly divided into two groups first group (ten rats) divided into two equal subgroups (one receive saline act as control and other receive quercetin, the second group (forty rats) divided equally into two subgroups, one of them treated with repeated doses of DENPs [90µg/ rat and 180µg/ rat for 6 days intratracheally every two days] othereone treated orally with quercetin (60 mg/kg b.Wt.) 1h prior to DENP exposure.

Following this, sodium pentobarbital (intraperitoneally; 60mg/kg b.wt) was used for rats anesthesia.

A 24-gauge cannula by the mouth was inserted into the trachea. Either the DENPs suspensions or normal saline only was intratracheally instilled using a sterile syringe [8]. The administration was done on days 1, 3, 4 and 7. Body and heart weights of each animal were measured at the end of the study.

Collection and analysis of blood
48h post the last i. instillation of DENPs the rats were anesthetized as describes above. Blood was collected from the tail vein in 4% EDTA tubes. Then was investigated for total cell counts and platelets using a fully automated hematological analyzer. The remaining blood sample was centrifuged at 900g for 15mins at 4°C and the plasma was separated. It was stored at -80°C for further analysis.

Determination of plasma IL-6 and TNFα
The concentration of rat IL-6, TNF-α, D-dimer, CRP, MIP-2 and PAI-1 levels were determined using ELISA kits (Invitrogen, India) [20].

Serum 8-OHdG Levels
Blood was collected and allowed to clot for 1 h before centrifugation at 3,000 rpm for 10 min. Then, the samples were stored at –80°C until analysis. Serum 8-OHdG levels were measured using a commercially available enzyme-linked immunosorbent assay kit (Japan Institute for the Control of Aging, Fukuroi, Japan).

Histological studies
The heart specimens were fixed in 10% formalin, processed,
embedded in paraffin sections. Then sections were cut into 5 μm thicknesses using a microtome and mounted on slides to H&E stain for histological assessment [21] and immunohistochemical detection of TNF-αB expression, using a standard avidin-biotin peroxidase complex system according to the kit used (Neomarkers) followed by dianinobenzidine (DAB) visualization [22]. Sections were counterstained with hematoxylin [23].

Statistical analysis

The results were expressed as mean±SD. Data were analyzed by standard statistical analysis one-way ANOVA for multiple comparisons to determine significance between different groups. The results were considered statistically significant if ‘p’ value was <.05 or less.

Morphometric study

The mean area percentage for TNF-αB expression were quantified in 10 images for each group using Image-Pro Plus program version 6.0 (Media Cybernetics Inc., Bethesda, Maryland, USA).

Results

Body weight and lung weight

The body weights of animals exposed to D1 and D2 significantly decreased by 38.39% and 27.89%, respectively, compared with the control. However, in quercetin-treated groups, the body weights were significantly increased by 60.19% and 38.47%, respectively, compared with D1 and D2 and were almost near normal control values (**Figure 2A**). In contrast, lung weights were increased by 126.02% (D1) and 116.14% (D2) when compared with the control group. However, lung weights of Q + D1 treated groups and Q + D2-treated groups were decreased significantly by 47.86% and 43.58% when compared with D1 and D2 groups and were near normal values (**Table 1**).

Total cell counts and platelet numbers in blood

Total cell count was significantly increased by 2.21 (D1) and 3.65 times (D2) by repeated i.t. exposure to DENPs. Pretreatment with quercetin decreased the levels by 0.39 and 0.29 times for Q + D1 and Q + D2 groups when compared with the D1 and D2 groups. In contrast, this plateau levels were decreased upon DENPs exposure by 29.59% (D1) and 34.89% (D2) demonstrating the occurrence of in vivo platelet aggregation. However, quercetin pre-treatment partially reversed the decrease in platelet counts significantly (p<0.05) by 38.81% and 68.09% caused by the i.t. exposure to DENPs (**Table 2**).

Cytokine analysis in plasma

The concentration of plasma IL-6 and TNFα was seen increased by 128.11% and 250.25%. Prior treatment with quercetin reduced the levels by 48.18% and 32.06% respectively (**Table 3**).

Serum Levels of 8-OHdG

D1 and D2 group had significantly elevated serum levels of 8-OHdG compared with control subjects (D1 and D2: 5.6±3.1 ng/mL and 6.3±1.6 ng/mL vs control groups: 3.0±1.5 ng/mL and 3.5±2.1 ng/mL, p<0.0018). Decrease in serum 8-hydroxy-

Group Parameters	C	Q	D1	D2	Q + D1	Q + D2
Body weight at start of experiment (g)	192.8±2.11	203 ±1.30	196 ±0.54a	204 ±1.38a	200 ±0.83a	199 ±0.72b
Body weight at end of experiment (g)	205.8±3.23	206 ±6.32	192 ±3.25	198 ±6.56a	205 ±0.20a	203 ±0.19b
Heart weight at end of experiment (g)	5.9±0.76	6.1±1.94	4.9±1.28a	4.3±7.21ab	5.7±0.12a	5.4±1.52b

Table 1. Body and heart weight of animals exposed to saline (control) or diesel exhaust particles (D1/D2) without or with quercetin (Q) pretreatment. Data are mean±SD (n=8 in each group).

Group Parameters	C	Q	D1	D2	Q + D1	Q + D2
Hemoglobin (g/dL)/Hb	12.5 ± 0.39	12.4 ± 0.12	9.1 ± 0.25ab	8.8 ± 0.36a	11.0 ± 0.22a	11.2 ± 0.15b
Erythrocytes (×10⁶/µL) (TEC)	7.4 ± 0.23	7.5 ± 0.32	6.0 ± 0.07ab	5.9 ± 0.12a	8.6 ± 1.62b	7.6 ± 0.18 b
Leukocytes (×10³/µL) TLC	6.9 ± 0.29	6.6 ± 0.27	11.17±2.99	11.4±1.11a	8.53±3.43a	8.70±2.57b
Platelet (×10³/µL)	227±52.03	216±87.55	175.5±75.7a	130±95.05a	196±43.55a	241±33.3b

Table 2. Changes in hemoglobin (Hb, mg/dl), total erythrocyte count (TEC, 106/mm3), and total leukocyte count (TLC, ×10⁵/mm³) of rats quercetin exposed to saline (control) or diesel exhaust particles (D1/D2) with or without quercetin (Q) pretreatment. Data are mean±SD (n=8 in each group).

Note: C i.e control, Q i.e quercetin,D1 and D2 i.e DENP treated group and D +Q quercin pretreated group *as compared with control normal group, a* as compared with D1 treated group and b* as compared with D2 treated group.
2-deoxyguanosine (8-OHdG) levels with quercetin pretreatment (7.2±2.5 ng/mL and 5.1±3.2 ng/mL (19%), p<0.05) (Table 4).

Histological (H&E)
The histological examination of cardiac tissues of control group ratsshowed normal cardiac muscle fibers that appeared in different directions and contained acidophilic sarcoplasm with central, single and oval nuclei. Cardiac muscle cells were connected to make fibers by intercalated discs and the space between the fibers were narrow (Figure 1).

The cardiac muscle fibers of group II D1 (DENP treated group) showed separation of myofibers that contain extravasated RBCs, and congested blood vessels with an area of hemorrhage could be seen and degenerated cardiac myocytes that appeared vacuolated with darkly stained nuclei (Figure 2).

Focal mononuclear cellular infiltration could also be seen in many areas of the degenerated cardiac muscle fibers of group II D2 (DENP treated group) with congested blood vessels (Figure 3B). There was an apparent hemorrhage of separated degenerated cardiac muscle fibers in the affected areas (Figure 3B). In D+Q quercetin pretreated group revealed that most of the cardiac muscle fibers appeared nearly similar to the control group with central vesicular nuclei. However, many wide interfiber spaces were still detected (Figure 4B). Some areas showed pale vacuolated cardiac muscle fibers with inflammatory cells infiltration between wide interfiber spaces (Figure 4B).

Immunohistochemical stains (Inos& Kappa B)
Immunohistochemical examination of Kappa B stained sections of cardiac tissue of control group revealed weak brown positive cytoplasmic reaction, Figure 5. While, Immunohistochemical examination of Kappa B stained sections of
Figure 3A. A photomicrograph of a longitudinal section in the cardiac muscle from the group IIaD2 (DENP treated group) showing, degenerated and separated of the cardiac muscle fibers with focal mononuclear cellular infiltration (dark arrow). Notice hemorrhages between the myocytes (white arrow). (H&E ×200).

Figure 3B. A photomicrograph of a longitudinal section in the cardiac muscle from the group IIa D2 (DENP treated group) showing, degenerated of the cardiac muscle fibers with focal mononuclear cellular infiltration (arrow). Notice large areas of hemorrhage could be detected (H). (H&E × 400).

Figure 4A and B. A photomicrograph of a longitudinal section of the cardiac muscle from the group IIbD + Q quercetin pretreated group showing, nearly similar to the control group with central vesicular nuclei (white arrow). Notice wide interfiber spaces were still detected with inflammatory cells infiltration (dark white). (H&E X 400).

cardiac tissue of D1 (DENP treated group) showed moderate brown positive cytoplasmic reaction, Figure 6. On the other hand, sections of cardiac tissue of D2 (DENP treated group) resulted in strong Immunohistochemical reaction in Kappa B stained sections, Figure 7 In D1 + Q quercetin pretreated group showed moderate to week brown cytoplasmic reaction in Kappa B stained sections, Figure 8 which more decreased with D2+Q group, Figure 9. Table 5.

Morphometric and statistical analysis

Optical density mean of Kappa B

There was a significant decrease in the Optical density mean of Kappa B immunoreactivity in group D1+Q (1.73±1.30) when compared with the control group (5.10±2.56), with a P value (0.006). While in D1 and D2 groups, the Optical density mean of Kappa B were (6.32±1.35) and (7.84±2.15) respectively was significantly increased as compared with the control group (P value 0.001). No significant difference was found between control and quercetin group (P value 2.001) (Table 5).
Figure 7. A photomicrograph of a section in the cardiac muscle of D2 treated rats, showing increased immunoreactions for Kappa B in the sarcoplasm of cardiac myocytes (arrow). (Kappa B X 400).

Figure 8. A photomicrograph of a section in the cardiac muscle of D1+Q treated rats, showing decreased immunoreactions for Kappa B in the sarcoplasm of cardiac myocytes (M). (Kappa B X 400).

Figure 9. A photomicrograph of a section in the cardiac muscle of D2+Q treated rats, showing decreased immunoreactions for Kappa B in the sarcoplasm of cardiac myocytes (arrow). (Kappa B X 400).

Table 5: Optical density mean of Kappa B immunoreactivity in all groups.

Group	C	Q	D1	D2	Q + D1	Q + D2
Optical density	5.10 ± 2.56	4.83 ± 1.35	6.32 ± 1.35*	7.84 ± 2.15*	1.73± 1.30a*	1.12± 0.90b*
P value	2.001	0.006	0.005	0.001	0.001	0.001

Note: C i.e control, Q i.e quercetin, D1 and D2 i.e DENP treated group and Q +D quercetin pretreated group * as compared with control normal group, a* as compared with D1 treated group and b* as compared with D2 treated group.

Discussion

There is prominent evidence that inhalation exposures to air pollutants result in cardiopulmonary effects but the detailed mechanisms are not well understood. Various studies have also reported higher risks of lung infection and asthma in residents who reside near highways with increased traffic congestion [8].

In the present study, we began to investigate the relationship between exposure to DENPs (a component of air pollution) and the accumulating evidence of inflammation and cardio toxicity. The current study approach is seen more related to the daily human exposure circumstances than single exposure dose. The dose of DENPs administered to rats in the current study was chosen from previous studies which have seen to correct arrhythmia in rats [24,25]. In general the results of our present study demonstrates that exposure to DENPs induces significant cardiac toxicity in rats and this is evident from (a) reduction in total body weight (b) increase in levels of pro-inflammatory cytokines in plasma, (c) decrease in the levels of platelets in blood, (d) increase in the serum level 8-OhdG which is biomarker of oxidative DNA damage and (e) histologically result revealed degeneration and inflammatory cell infiltration of the cardiac myocytes with apparent separation of its fibers. Our previous characterization studies revealed that the DENPs contained majorly nanosize particles of size less than 100nm [7]. These airborne nanoparticles are of great concern as there is evident data suggesting that nanoparticles penetrate the lungs, resulting in inflammation and also enter other extra-pulmonary organs via, the circulation. Their small size allows them to penetrate cells and cellular organelles and hence disrupt their normal function. Cellular uptake, sub-cellular localization, and the ability to catalyze oxidative products depend on the nanoparticle size, shape and chemistry.

Previous studies have shown transition metal (vanadium, chromium, copper, and iron) induced nanoparticle toxicity by the generation of ROS. Similarly, silver, aluminum, gold, and zinc nanoparticles were found to induce toxicity because of their small size by alteration of intracellular calcium levels, stimulation of transcription factors and inducing cytokine formation [25].

Our results represented that repeated intratracheal exposure to DENPs causes an important inflammatory reaction in the cardiac tissue characterized by an elevation in the optical density of NF-κB immunostaining. Similar results were seen after a single dose and repeated dose administration of particles [8,26-28]. Studies by Nemmar et al. [26] in humans showed
an increase in a number of mast cells and neutrophils in the bronchial submucosa along with an increase in myeloperoxidase and interleukin 8 (IL-8) concentrations. Along with the influx of inflammatory cells, we found a statistically significant elevation in the levels of TNFα. This finding correlates with the data of previous studies that have illustrated an elevation in TNFα concentrations in particle exposed humans [29]. An increase in IL-6 concentration in plasma after the last administration was observed invivo. Similarly, studies by Nemmar et al. [27] demonstrated that IL-6 was elevated at 18 hours but not at the 4h time point or 24h. Our previous invitro studies showed an elevation in IL-6 concentration in human A549 lungs [30]. Although the mechanism of cardiovascular mortality and morbidity caused by nanoparticles is not still completely understood, various studies showed that systemic inflammation is the key step leading to these pathological changes through the production of inflammatory mediators. Our results showed that repeated administration of DENPs to rats caused systemic inflammation. Sallam et al. [31] and Park et al. [32] demonstrated in diabetic mice an elevation in CRP during inflammation. Studies reported that IL-6 is required for CRP expression [33]. Our study results were similar to human experiments that reported the high risk of cardiovascular effects associated with elevated levels of pro-inflammation and inflammatory cytokines such as CRP and TNFα. [29,34]. Increased concentrations of CRP and TNFα play a key role in the pathology of plaque instability and atherosclerosis [35]. Our experimental results corroborate with previous findings which illustrated that long exposures to PM air pollution caused the influx of cytokines leading to systemic inflammation. Simultaneously, the markers for oxidative damage were also elevated [36,37]. In the current study, and we have determined the effect of DENPs on platelet numbers and all blood content. Our results showed that there was a significant reduction in platelet numbers in rats exposed to DENPs suggesting invitro platelet aggregation. Previous studies reported the decrease in platelets both in clinical studies [31] and in mice [38]. Weight loss is associated with increased oxidative DNA damage not only in healthy individuals but also in people with inflammatory diseases.

Our data represented that DENPs caused neutrophil influx into the heart tissue enhanced epithelial permeability in rats [36]. To the best of our knowledge no study till date has demonstrated the effect of quercetinon the cardiovascular parameters following DENP exposure. The chosen dose of quercetin has been stated to correspond to doses of quercetin in commercial products routinely consumed on the mg/kg scaling basis. Quercetin has been reported to exhibit numerous beneficial activities like antioxidant, anti-inflammatory, and anti-tumour activities. Human oranimal studies reported that quercetin interfered with the formation of inflammatory cytokines, p300 activity, accumulation of beta-amyloid and activities of cytokine p450 NF-κB [9]. Animal orhuman studies demonstrated that quercetin is tolerated in oral doses of (60 mg/kg) without evident toxicity [18]. The chosen dose of quercetin has been stated to correspond to doses of quercetin in commercial products routinely consumed on the mg/kg scaling basis. Our data reported that pretreatment with quercetin inhibited the production of inflammatory cells and cytokines in plasma, which can play an important role in atherosclerosis and coronary thrombosis [39,40]. Previous studies demonstrated that quercetin blocks TNFα mediated NF-κB activities and inhibit TNFα dependent regulation of PPARy in mesangial cells [41]. Studies showed that in the mouse model, TNFα plays an important role in LPS induced PAI-1 regulation [42]. Studies also demonstrated that TNFαis a key regulator of PAI-1 in the adipose tissue of rats [40]. Hence, TNFα is a strong against for PAI-1 regulation, contributing to various diseases. Likewise, similar to our results Hou et al. [43] and Plomgaard et al. [44] reported that TNFα but not cytokine IL-6 regulates PAI-1 expression in the sub-cutaneous adipose tissue. This confirms the key role of TNFα in the observed effects. The reduction in platelet numbers by the repeated exposure to DENPs was partially reverted to quercetin. This suggests that DENPs exhibit a direct effect on platelet aggregation. DNA damage has a high incidence in human hearts under different diseases, such as myocardial ischemia and myocarditis [45,46]. In the present study, we found increased oxidative DNA damage in the serum of the rats taken DENPs, so oxidative stress is also a condition under which DNA damage occurs.

The serum 8-OHdG levels are affected by oxidative stress not only in heart but systemically. Elevation of circulating 8-OHdG levels may reflect other organ damage, such as endothelial dysfunction [47].

Conclusion
In conclusion, the present work showed that the repeated exposure to DENPs induced Cardiac inflammation and oxidative DNA damage. Our results indicate that quercetin is a significant anti-inflammatory agent and might be effective for decreasing the oxidative DNA damage induced by DENPs.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

Authors’ contributions	EMF	AEM	WAML	AMS
Research concept and design	✓	✓	--	--
Collection and/or assembly of data	✓	✓	--	✓
Data analysis and interpretation	--	--	✓	✓
Writing the article	✓	✓	--	--
Critical revision of the article	✓	✓	✓	--
Final approval of article	✓	✓	✓	✓
Statistical analysis	--	--	✓	✓

Publication history
EIC: Gaetano Giuseppe Magro, University of Catania, Italy.
Received: 22-Oct-2017 Final Revised: 29-Nov-2017
Accepted: 24-Dec-2017 Published: 08-Jan-2018
References

1. Franchini M and Mannucci PM. Thrombogenicity and cardiovascular effects of ambient air pollution. Blood. 2011; 118:2405-12. | Article | PubMed

2. Brook RD, Rajagopalan S, Pope CA, 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC, Jr., Whitsett L and Kaufman JD. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation. 2010; 121:2331-78. | Article | PubMed

3. Blann A, Bignell A and McCollum C. von Willebrand factor, fibrinogen and other plasma proteins as determinants of plasma viscosity. Atherosclerosis. 1998; 139:317-22. | Article | PubMed

4. Van Eeden, SF, Tan WC and Suwa T. et al. Cytokines involved in the systemic inflammatory response induced by exposure to particulate air pollutants (PM10). Am J RespirCrit Care Med. 2001; 164:826-830.

5. Terashima T, Wiggs B and English D. et al. Phagocytosis of small carbon particles (PM10) by alveolar macrophages stimulates the release of polymorphonuclear leukocytes from bone marrow. Am J Respir Crit Care Med. 1997; 155:1441-1447.

6. Suwa T, Hogg JC, Vincent R, Mukeh H, Fujii T and van Eeden SF. Ambient air particles stimulate alveolar macrophages of smokers to promote differentiation of myeloid precursor cells. Exp Lung Res. 2002; 28:1-18.

7. Durga M and Nathiya Sand Devasena T. In vitro evaluation of cytotoxicity, oxidative stress, DNA damage and inflammation induced by diesel exhaust particles in human A549 lung cells and murine raw 264.7 macrophages. Int J Pharm Pharm Sci. 2014; 6:105-110.

8. Nemmar A, Subramaniam D and Ali BH. Protective effect of curcumin on pulmonary and cardiovascular effects induced by repeated exposure to diesel exhaust particles in mice. PLoS One. 2012; 7:e93554. | Article | PubMed Abstract | PubMed FullText

9. Seddon M, Looi YH and Shah AM. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart. 2007; 93:903-7. | Article | PubMed Abstract | PubMed FullText

10. Dixon LJ, Morgan DR, Hughes SM, McGrath LT, El-Sherbeeny NA, Plumb RD, Devine A, Leahey W, Johnston GD and McViege GE. Functional consequences of endothelial nitric oxide synthase uncoupling in congestive cardiac failure. Circulation. 2003; 107:1725-8. | Article | PubMed

11. Cave A, Grieve D, Johar S, Zhang M and Shah AM. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology. Philos Trans R Soc Lond B Biol Sci. 2005; 360:2327-34. | Article | PubMed Abstract | PubMed FullText

12. Kobayashi S, Susa T, Tanaka T, Wada Y, Okuda S, Doi M, Nao T, Yoshiga Y, Yamada J, Okamura T, Ueyama T, Kawamura S, Yano M and Matsuzaki M. Urinary 8-hydroxy-2′-deoxyguanosine reflects symptomatic status and severity of systolic dysfunction in patients with chronic heart failure. Eur J Heart Fail. 2011; 13:29-36. | Article | PubMed

13. Tsutsui H, Ide T and Kinogawa S. Mitochondrial oxidative stress, DNA damage, and heart failure. Antioxid Redox Signal. 2008; 6:1737-44. | Article | PubMed

14. Nathiya S, Durga M and Devasena T. Quercetin, encapsulated quercetin and its application a review. Int J Pharm Pharm Sci. 2014; 6:20-26.

15. Ying B, Yang T, Song X, Hu X, Fan H, Lu X, Chen L, Cheng D, Wang T, Liu D, Xu D, Wei Y and Wen F. Quercetin inhibits IL-1 beta-induced ICAM-1 expression in pulmonary epithelial cell line A549 through the MAPK pathways. Mol Biol Rep. 2009; 36:1825-32. | Article | PubMed

16. El-Sayed NS and Rizk SM. The protective effect of quercetin, green tea or malt extracts against experimentally-induced lung fibrosis in rats. Afr J Pharm Pharmacol. 2009; 3:191-201. | Article | PubMed

17. Rothero AP, Dura CL, Andrade EL, Chaves JS, Silva LF, Lemos-Senna E and Calixto JB. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol Res. 2010; 61:288-97. | Article | PubMed

18. Ganesan S, Faris AN, Comstock AT, Chatteraj SS, Chatteraj A, Burgess JR, Curtis JL, Martinez FJ, Zick S, Hershenson MB and Sajjan US. Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Respir Res. 2010; 11:131. | Article | PubMed Abstract | PubMed FullText

19. Sangai NP and Verma RJ. Quercetin ameliorates bisphenol A-induced toxicity in mice. Acta Pol Pharm. 2012; 69:557-63. | PDF | PubMed

20. Mutlu GM, Green D, Bellmeyer A, Baker CM, Burgess Z, Rajamannan N, Christman JW, Foles N, Kamp DW, Ghio AJ, Chandel NS, Dean DA, Snojder JI and Bunderger GR. Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway. J Clin Invest. 2007; 117:2952-61. | Article | PubMed Abstract | PubMed FullText

21. Bancroft JD and Layton C. The Hematoxylin and eosin. In: Suvarna SK, Layton C and Bancroft JD editors. Theory & Practice of histological techniques. 7th ed., Churchill Livingstone of El Sevier. Philadelphia. Ch. 10 and 11. 2013; 172-214.

22. Jackson P and Blythe D. Immunohistochemical techniques. In: Suvarna SK, Layton C and Bancroft JD editors. Theory & Practice of histological techniques. 7th ed., Churchill Livingstone of El Sevier. Philadelphia. Ch. 18. 2013; 381-434.

23. Bayomy NA, Abd-Elmagayed ER and Tawfik SM. Effect of Leflunomide (Avara) Drug on the Lung of Adult Male Albino Rats: A Histological and Immunohistochemical Study. Egypt J. Histol. 2008; 31:278-282.

24. Yokota S, Seki T, Furuya M and Ohara N. Acute functional enhancement of circulatory neutrophils after intratracheal instillation with diesel exhaust particles in rats. Inhal Toxicol. 2005; 17:671-9. | Article | PubMed

25. Buzea C, Pacheco, II and Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Bioinertphases. 2007; 2:MR17-71. | PubMed

26. Nemmar A, Hoet PH, Vermeylen J, Nemery B and Hoylaerts MF. Phagocytosis and oxidative stress: the role of phagocytes in the prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods. Atherosclerosis. 2010; 210:139-48. | Article | PubMed

27. Nemmar A, Melght and Ali BH. The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanoparticles in rats. Exp Biol Med (Maywood). 2008; 233:610-9. | Article | PubMed

28. Kido T, Tamagawa E, Bai N, Suda K, Yang HH, Li Y, Chiang G, Yatera K, Mukeh H, Sin DD and Van Eeden SF. Particulate matter induces translocation of IL-6 from the lung to the systemic circulation. Am J Respir Cell Mol Biol. 2011; 44:197-204. | Article | PubMed

29. Budinger GR, McKell JL, Urich D, Foiles N, Weiss I, Chiarella SE, Gonzalez A, Soberanes S, Ghio AJ, N整洁elagioiu R, Mutlu EA, Radiaga KA, Green D, Kwaan NC and Mutlu EM. Imperial particulate matter-induced lung inflammation increases systemic levels of PAI-1 and activates coagulation through distinct mechanisms. PLoS One. 2011; 6:e18525. | Article | PubMed Abstract | PubMed FullText

30. Nemmar A, Al Salam S and Dhanasekaran S. et al. Pulmonary exposure to diesel exhaust particles promotes cerebral micro vessel thrombosis: Protective effect of a cysteine prodrug L-2-oxothialidone-4- carboxylic acid. Toxicology. 2009; 263:84-92.

31. Sallam N, Khazaei M and Laher I. Effect of moderate-intensity exercise on plasma C-reactive protein and aortic endothelial function in type 2 diabetic mice. Mediators Inflamm. 2010; 2010:149678. | Article | PubMed Abstract | PubMed FullText

32. Park NY, Park SK and Lim Y. Long-term dietary antioxidant cocktail supplementation effectively reduces renal inflammation in diabetic mice. Br J Nutr. 2011; 106:1514-21. | Article | PubMed

33. Packard RR and Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem. 2008; 54:24-38. | Article | PubMed

34. Pai JK, Pischon T, Ma J, Manson JE, Hankinson SE, Joshiura K, Curnan GC, Rifai N, Cannuscio CC, Stampfer MJ and Rimm EB. Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med. 2004; 351:2599-610. | Article | PubMed

35. Libby P, Ridker PM and Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011; 473:317-25. | Article | PubMed
36. Brook RD, Urch B, Dvonch JT, Bard RL, Speck M, Keeler G, Morishita M, Marsik FJ, Kamal AS, Kaciroti N, Harkema J, Corey P, Silverman F, Gold DR, Wellenius G, Mittleman MA, Rajagopalan S and Brook JR. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension. 2009; 54:659-67. | Article | PubMed Abstract | PubMed FullText

37. Sun Q, Hong X and Wold LE. Cardiovascular effects of ambient particulate air pollution exposure. Circulation. 2010; 121:2755-65. | Article | PubMed Abstract | PubMed FullText

38. Nemmar A, Al-Salam S, Zia S, Marzouqi F, Al-Dhaheri A, Subramaniyan D, Dhansakaran S, Yasin J, Ali BH and Kazzam EE. Contrasting actions of diesel exhaust particles on the pulmonary and cardiovascular systems and the effects of thymoquinone. Br J Pharmacol. 2011; 164:1871-82. | Article | PubMed Abstract | PubMed FullText

39. Lowe GD and Rumley A. Use of fibrinogen and fibrin D-dimer in prediction of arterial thrombotic events. Thromb Haemost. 1999; 82:667-72. | PubMed

40. Gruber F, Hufnagl P, Hofer-Warbinek R, Schmid JA, Breuss JM, Huber-Beckmann R, Lucerna M, Papac N, Harant H, Lindley I, de Martin R and Binder BR. Direct binding of Nur77/NAK-1 to the plasminogen activator inhibitor 1 (PAI-1) promoter regulates TNF alpha -induced PAI-1 expression. Blood. 2003; 101:3042-8. | Article | PubMed

41. Ghosh A, Mandal AK, Sarkar S, Panda S and Das N. Nanoencapsulation of quercetin enhances its dietary efficacy in combating arsenic-induced oxidative damage in liver and brain of rats. Life Sci. 2009; 84:75-80. | Article | PubMed

42. Yamashita M. Tumor necrosis factor alpha is involved in the induction of plasminogen activator inhibitor-1 by endotoxin. Thromb Res. 1997; 87:165-70. | Article | PubMed

43. Hou B, Eren M, Painter CA, Covington JW, Dixon JD, Schoenhard JA and Vaughan DE. Tumor necrosis factor alpha activates the human plasminogen activator inhibitor-1 gene through a distal nuclear factor kappaB site. J Biol Chem. 2004; 279:18127-36. | Article | PubMed

44. Plomgaard P, Keller P, Keller C and Pedersen BK. TNF-alpha, but not IL-6, stimulates plasminogen activator inhibitor-1 expression in human subcutaneous adipose tissue. J Appl Physiol (1985). 2005; 98:2019-23. | Article | PubMed

45. Nimata M, Kishimoto C, Shioji K, Ishizaki K, Kitaguchi S, Hashimoto T, Nagata N and Kawai C. Upregulation of redox-regulating protein, thioredoxin, in endomyocardial biopsy samples of patients with myocarditis and cardiomyopathies. Mol Cell Biochem. 2003; 248:193-6. | PubMed

46. Corbucci GG, Perrino C, Donato G, Ricchi A, Lettieri B, Troncone G, Indolfi C, Chiariello M and Avvedimento EV. Transient and reversible deoxyribonucleic acid damage in human left ventricle under controlled ischemia and reperfusion. J Am Coll Cardiol. 2004; 43:1992-9. | Article | PubMed

47. Higashi Y, Sasaki S, Nakagawa K, Kimura M, Noma K, Hara K, Matsuura H, Goto C, Oshima T, Chayama K and Yoshizumi M. Low body mass index is a risk factor for impaired endothelium-dependent vasodilation in humans: role of nitric oxide and oxidative stress. J Am Coll Cardiol. 2003; 42:256-63. | Article | PubMed

Citation:
Faruk EM, El Mansy A, ALasmari WAM and Al-Shazly AM. The possible protective role of quercetin on induced cardiac Oxidative DNA Damage by repeated exposure to diesel exhaust nanoparticles in rats (a histological and immunohistochemical study). J Histol Histopathol. 2017; 5:2. http://dx.doi.org/10.7243/2055-091X-5-2

9