Research Article

Blood Reference Intervals for Antillean Manatees (Trichechus manatus manatus) from Puerto Rico

Antonio A. Mignucci-Giannoni (1,2) and Mayela M. Alsina-Guerrero (1,3)

1Caribbean Manatee Conservation Center, Inter American University of Puerto Rico, Bayamón, PR, USA
2Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
3Georgia Aquarium, Atlanta, Georgia, USA

Correspondence should be addressed to Antonio A. Mignucci-Giannoni; mignucci@me.com

Received 24 August 2022; Accepted 7 October 2022; Published 18 October 2022

Academic Editor: Remo Lobetti

Copyright © 2022 Antonio A. Mignucci-Giannoni and Mayela M. Alsina-Guerrero. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Antillean manatees (Trichechus manatus manatus) are endangered throughout the southwestern Gulf of Mexico, the Caribbean coast of Central and South America, the Greater Antilles, and the northeastern coast of South America to Brazil [1, 2]. It is an endangered marine mammal [2] protected by federal and local laws in their respective countries of origin. Its vulnerability is primarily due to anthropogenic causes of direct hunting, habitat degradation, and human encroachment, resulting in a decrease in population and continued threats to the species’ survival [3, 4]. As a result, conservation programs have been established to assist in the recovery of the populations, particularly addressing the rescue, treatment, rehabilitation, and release of orphaned calves and ill or injured manatees [5].

Establishing blood reference intervals is essential as a tool in classifying health status, diagnosing, determining treatment regimens, and monitoring the progress of a disease in rescued manatees [6]. However, blood reference ranges or values can differ among populations of the same species and vary according to age, sex, diet, environment, physiological conditions, and activity level. The hematology and blood chemistry of various Antillean manatee populations have been documented for Guyana [7], Mexico [8], Belize [9, 10], Brazil [11–14], and for the Florida subspecies (T. manatus latirostris) [6, 15–25]. However, this has not
been ascertained for Antillean manatees inhabiting the
Greater Antilles. Therefore, we sampled the population that
inhabits the coastal waters of Puerto Rico, seeking to es-
establish baseline complete blood cell count and serum
chemistry reference intervals for this population of Antillean
manatees.

2. Materials and Methods

2.1. Ethical Statement. The research has complied with all
the relevant national regulations and institutional policies
for the care and use of animals (Inter American University’s
Institutional Animal Care and Use Committee (IACUC)
#6Mar2018).

2.2. Sample Collection. We collected blood samples from 70
wild captured or rescued manatees from Puerto Rico from
1992 to 2020 (Table 1, Figure 1). Of these, 44 manatees were
captured for health assessment and radiotelemetry studies,
and 26 were primarily rescued as orphaned calves. Manatees
were caught in nets deployed either along the shore or from a
specialized net boat in open water [26] or rescued by hand in
the case of orphaned calves. The captured manatees were
immediately transported to a shaded area where they were
kept moist at all times with the use of a water mister, buckets,
and wet towels throughout the health assessment or brought
into the Caribbean Manatee Conservation Center for vet-
ery examination. Data collected included sex, complete
body measurements, tissue samples for genetic analysis, and
blood draw. In addition, an experienced manatee veterinary
and veterinary technician, with the aid of marine
biologists, conducted a complete physical examination in-
cluding, among many others: visual external and behavioral
assessment, heart rate, and respiratory rate [27] and other
vital signs [28]. All manatees were considered healthy at the
time of sampling. Manatees were categorized into 3 age
classes based on total length and ear bone growth layer
groups (GLGs) or known ages: calves (<175 cm, <2 years
old), subadults (176–225 cm, 2–7 years old), and adults
(>225 cm, >7 years old) [3]. Upon data and sample col-
lection, the manatees were immediately returned to the
water at their capture site, most fitted with a radio-trans-
mitter for tracking studies [26], or in the case of orphaned
calves, maintained in rehabilitation until completion of the
time prescribed for their rehabilitation process and then
released [29].

Blood samples were obtained by venipuncture from
the medial interosseous space of the radius and ulna,
which constitutes the brachial vascular bundle (Figure 2).
Before sample collection, the pectoral flipper was sur-
gically scrubbed with povidone-iodine and alcohol or
post-2017 with chlorhexidine scrub, chlorhexidine so-
lution, and isopropyl alcohol. An 18–21-gauge, ¾–1½-
inch needle with an attached “butterfly” BD Vacutainer
blood collection set (Becton, Dickinson and Company,
Franklin Lakes, NJ 07417, USA) or 14-inch extension set
(International WIN, Limited, Kenneth Square, PA 19348,
USA) was used depending on the size of the manatee
(Figures 3 and 4). Because of the unique structure of the
vascular system in this area, it was difficult to assess the
specific vessel site in the vascular bundle (venous or
arterial); thus, the blood collected was either or a com-
bination of venous or arterial blood. Blood was collected
first for serum chemistry analysis directly into 6 ml red
top sterile vacutainer tubes with a silicone-coated interior
(Becton, Dickinson and Company, Franklin Lakes, NJ
07417, USA), allowed to clot in a cool and shaded area,
and then separated by centrifugation. Blood was then
collected for a complete blood cell count (CBC) analysis
into 4 ml lavender top sterile vacutainer tubes, which
contained EDTA (K3EDTA; Becton, Dickinson and
Company, Franklin Lakes, NJ 07417, USA) as the anti-
coagulant, agitated gently and kept cool until analyzed.
Both serum and whole blood were kept refrigerated and
transported to the same clinical reference laboratory for
processing within 24 hours.

2.3. Complete Blood Cell Count. Values for white blood cell
count (WBC), red blood cell count (RBC), hemoglobin
(HBG), hematocrit (HCT), platelet (PLTS), and the red blood
indices of mean cell volume (MCV), mean cell hemoglobin
(MCH), mean cell hemoglobin concentration (MCHC), and
red cell distribution width (RDW) were obtained with a Cell-
Dy�3200 System Automated Hematology Analyzer (Abbott,
Abbott Park, IL 60064 USA). In addition, a manual leukocyte
differential was conducted under the microscope to allow for
the evaluation of different leukocyte cell types, identifying and
enumerating lymphocytes (LYMP), monocytes (MONO),
eosinophils (EOSI), basophils (BASO), and heterophils
(HETE), in percentages values. In automated CBC machines,
heterophils are usually wrongly categorized as eosinophils due
to their similarity in granulation morphology (Figure 5).
Thus, it was essential to run manual leukocyte counts and, in
doing so, train medical technologists and veterinarians in
manatee leukocyte identification for correct categorization
and counting.

2.4. Serum Chemistry. We performed a comprehensive
metabolic panel (CMP) on all the serum samples with a
VITROS 5, 1FS Chemistry System Analyzer (Ortho-Clinical
Diagnostics, Rochester, NY 14626 USA). The resulting
chemistry analytes were grouped based on six physiological
processes: (1) liver-associated enzymes and pigments (lactate
derhyrogenase, LDH; total bilirubin, TOT BL); (2) muscle-
associated enzymes (alanine aminotransferase, ALT; as-
partate aminotransferase, AST; alkaline phosphatase, ALP;
creatine phosphokinase, CPK); (3) kidney-associated com-
pounds and products (blood urea nitrogen, BUN; creatinine,
CREA; blood urea nitrogen-creatinine ratio, BUN-CREA;
uric acid, UA); (4) sugars, lipids, and pancreatic-associated
enzymes (glucose, GLU; triglycerides, TRIG; cholesterol,
CHOL; amylase,AMY); (5) proteins (total protein, TOT
PROT; albumin, ALB; globulin, GLOB; albumin-globulin
ratio, ALB:GLOB); and (6) electrolytes (sodium, Na; chlo-
rine,Cl; potassium, K; phosphate, PO4, or sometimes
Table 1: Antillean manatees sampled in Puerto Rico for this study, including those free-ranging and those rescued and in rehabilitation between 1991 and 2020.

Date	Field number	Name	Sex	Length (cm)	Weight (kg)	Age class	Locality
4 Dec 1991	NEPST175	Moisés	M	115	28.6	C	Toa Baja
13 Apr 1992	CPR9201	CPR9201	F	251	—	A	Ceiba
16 Apr 1992	TPR01	Taino	M	276	360	A	Ceiba
16 Apr 1992	TPR02	Caribe	M	276	386	A	Ceiba
18 Apr 1992	CPR9202	CPR9202	M	242	—	A	Ceiba
18 Apr 1992	CPR9203	CPR9203	M	294	—	A	Ceiba
18 Apr 1992	TPR03	Ceiba	M	275	—	A	Ceiba
19 May 1993	TPR04	Simu	M	244	—	A	Ceiba
20 May 1993	TPR05	Mac	M	264	—	A	Ceiba
22 May 1993	CPR9301	CPR9301	M	230	—	A	Ceiba
22 May 1993	CPR9302	CPR9302	F	210	—	SA	Ceiba
22 May 1993	TPR06	Eddie T.	M	273	—	A	Ceiba
23 May 1993	NEPST212	Glauko	M	122	31	C	San Juan
7 Sep 1994	TPR08	Judini	M	276	—	A	Ceiba
21 Jul 1995	NEPST380	Marina	F	102	17	C	Guayama
28 Aug 1996	NEPST319	Katsi	F	118	30	C	Cabo rojo
7 Aug 1997	CPR9701	Bea	F	125	—	C	Mayagüez
7 Aug 1997	TPR09	Guanajibo	M	241	—	A	Mayagüez
7 Aug 1997	TPR10	Sara	F	264	—	A	Mayagüez
11 Jun 1999	NEPST548	Nina	F	131	40	C	Guayama
23 Jul 1999	NEPST556	Yuisa	F	95	16	C	Loíza
14 Sep 1999	NEPST574	Conquistador	M	108	23	C	Fajardo
11 Nov 2002	NEPST852	Santa Cruz	F	238	195	A	Ponce
3 Jun 2003	NEPST861	Anani	F	308	440	A	Arroyo
17 Jul 2003	TPR13	Albanai	F	299	—	A	Cabo rojo
18 Jul 2003	TPR14	Guami	M	250	270	A	Cabo rojo
20 Jul 2003	CPR0301	Iro	M	212	161	SA	Guayanilla
20 Jul 2003	TPR15	Atabey	F	296	416	A	Guayanilla
21 Jul 2003	CPR0302	CPR0302	F	232	254	A	Guayanilla
23 Jul 2003	NEPST592	Rafael	M	247	289	A	Luquillo
26 Jul 2003	NEPST868	Camilia	F	99	17	C	Isabel
3 Nov 2003	TPR11	Joyuda	F	296	—	A	Cabo rojo
4 Nov 2003	TPR16	Igor	M	287	—	A	Cabo rojo
5 Nov 2003	TPR17	Eco	M	310	—	A	Guayanilla
5 Nov 2003	TPR18	Electra	F	267	—	A	Guayanilla
6 Nov 2003	TPR19	Esoubi	M	249	—	A	Guayanilla
7 Nov 2003	CPR0303	Guanina	F	236	—	A	Guayanilla
7 Jun 2004	TPR20	Gazelle	F	288	401	A	Guayanilla
7 Jun 2004	TPR21	Sally	F	297	445	A	Guayanilla
8 Jun 2004	TPR22	Beethoven	M	256	310	A	Guayanilla
10 Jun 2004	CPR0401	CPR0401	F	193	—	SA	Cabo rojo
10 Jun 2004	TPR23	Coral	M	261	—	A	Cabo rojo
23 Aug 2004	NEPST892	Iani	F	111	26	C	Ponce
22 Nov 2004	NEPST895	Siani	F	109	23	C	Aguadilla
18 Mar 2005	NEPST899	Guaili	F	115	29	C	Guayama
25 Apr 2005	TPR25	Maritizia	F	296	—	A	Ceiba
26 Apr 2005	TPR26	Rosa	F	303	—	A	Ceiba
27 Apr 2005	CPR0501	CPR0501	M	222	—	SA	Ceiba
28 Apr 2005	TPR27	India	F	255	—	A	Ceiba
29 Apr 2005	TPR28	Monty	M	273	300	A	Ceiba
29 Apr 2005	TPR29	Marieta	F	264	—	A	Ceiba
29 Apr 2005	TPR30	PJ	M	225	—	SA	Ceiba
30 Apr 2005	TPR31	Marina	F	270	—	A	Ceiba
1 May 2005	TPR32	Flipa	F	250	—	A	Ceiba
2 May 2005	TPR33	Treso	M	252	—	A	Ceiba
30 Sep 2005	NEPST910	El Tuque	M	111	29	C	Ponce
18 Sep 2006	NEPST927	Guarionex	M	104	17	C	Fajardo
18 May 2011	NEPST940	Aramana	M	107	20	C	Dorado
15 May 2013	NEPST948	Mayagua	F	138	40	C	Mayagüez
referred to as phosphorus, P; calcium, Ca; enzymatic carbon dioxide, CO$_2$; anion gap, AG).

2.5. Statistical Analysis. We used Microsoft Excel for Mac (Microsoft Corp. Version 12.2.8) for statistical analyses. Summary statistics (sample size, mean, maximum value, minimum value, and standard deviation) of hematology and serum chemistry values were calculated on all the samples for every parameter. Minimum and maximum intervals using ±2 standard deviation around the mean were calculated, and values outside this range were considered outliers and eliminated. Means and standard deviations were then recalculated, and new reference ranges were determined as ±1 standard deviation around the mean. An unpaired two-sample T-test was done comparing males versus females and adults versus calves to see if there were any significant differences ($p \leq 0.05$) between these. Subadults were not included in the latter due to small sample size.

3. Results

3.1. Sample Description. Seventy captured or rescued manatees from Puerto Rico were included in the study (Table 1). Of these, 33 were males, and 37 were females; 23 were calves, 6 were subadults, and 41 were adult individuals. Sex by age group was evenly distributed, with 9 male and 14 female calves, 3 male and 3 female subadults, and 21 males and 20 female adults. The distribution of manatees sampled around the island was also evenly distributed (Figure 1). However, directed telemetry and health assessment captures were conducted in Ceiba, Salinas, Guayama (Jobos Bay), Guayanilla, Cabo Rojo, and Mayagüez.

3.2. Complete Blood Cell Count. Hematological parameters were obtained for the entire population sampled, separately for calves, subadults, adults (Table 2), males, and females (Table 3). Leukocytes in the Puerto Rico manatee population were composed primarily of heterophils (52.3%, range of 38–67%) and lymphocytes (42.8%, range of 28–57%), with few monocytes, and rare eosinophils and basophils. We found significant differences between calf and adult manatees in red blood cell count, hemoglobin, hematocrit, mean cell volume, white blood cell count, and basophils. All were found to be higher in calves, except for mean cell volume and basophilcs, which were lower than in adults (Table 2). Manatee neonates and calves had noticeably increased red blood cell count (3.0–3.8 10^6/mm3), decreasing after 2–3 months of age (data not shown). White blood cell count was also found to be higher in calves, leveling to normal values after 3 months of age (data not shown). There were no observed significant differences between males and females regarding hematocrit values (Table 3), except for red cell distribution width ($p = 0.007$) and platelets ($p = 0.047$), which were slightly higher in females.

3.3. Serum Chemistry. Serum chemistry parameters were also obtained for the entire population sampled and separately for calves, subadults, adults (Table 4), males, and females (Table 5). Significant differences ($p \leq 0.05$) were found in all chemistry analytes when comparing adults versus calves, except aspartate aminotransferase, alkaline phosphatase, creatine phosphokinase, lactic dehydrogenase, blood urea nitrogen, blood urea nitrogen-creatinine ratio, triglycerides, cholesterol, amylase, globulin, and potassium (Table 4). Adult manatees had a higher mean value for alanine aminotransferase, creatinine, uric acid, glucose, total protein, albumin, albumin-globulin ratio, sodium, chloride, potassium, and anion gap. Calves had a lower mean value for total bilirubin, calcium, and enzymatic carbon dioxide. When comparing males versus females, no significant differences were found in all chemistry analytes (Table 5).

4. Discussion

We establish the reference intervals of hematology and blood chemistry for the population of Antillean manatees in Puerto Rico and compare them with those established for manatees from Belize, Brazil, Florida, Guyana, and Mexico. Blood reference intervals can differ among populations of the same species and vary according to age, sex, physiological condition, degree of physical activity, and environment [30]. They can also be altered by collecting and testing methods. They may also vary within individuals of the same population, suggesting the clinical need for veterinarians to compare and contrast hematology and blood chemistry results on a particular manatee patient as it develops.
medically during treatment and in long-term care. While differences in immunoglobulin G (IgG) reference values for manatees from Florida, Colombia, and Puerto Rico were found [31] and comparisons were made on hematological and serum chemistry reference ranges between Antillean manatees in Guyana and Florida manatees [7], these studies found that the majority of hematological and serum chemistry results were similar to those reported for the Florida manatee. Blood parameters of Antillean manatees in Brazil were also evaluated, and differences between sexes and environments were discussed [14]. Tabulated reference ranges for both subspecies of West Indian manatees (Antillean and Floridian) from Guyana, Mexico, Belize, Brazil, and Florida (Table 6 and 7) were used to discuss similarities or differences between these populations in comparison to hematology and blood chemistry reference ranges found for Puerto Rico.

4.1. Complete Blood Cell Count. Erythrocyte and total leukocyte counts measured in this study were similar to those previously reported for manatees in Guyana, Mexico, Belize, Brazil, and Florida [6–9, 14, 25] (Table 6). Red blood cell count was highest in neonates (>3.0 × 10⁶/mm³) and decreased as manatees grew and learned to dive [6, 32], as evident in significant variation among age classes observed in the study (Table 2). This is opposite to erythrocyte count in common bottlenose dolphins (Tursiops truncatus), pinnipeds, and terrestrial mammals as they mature in age [33].

Leukocyte counts in manatees tend to be slightly lower than in most domestic mammals but in general similar to several whale and dolphin species [6, 25]. For example, the range for Antillean manatees in Puerto Rico reported here is between 4.0 and 8.0 × 10⁹/L, with calves having a slightly higher reference range (5.3 and 9.3 × 10⁹/L) (Table 2). However, it is advised that a manatee with a white blood cell count above 8.0 × 10⁹/L should be closely monitored, and anything above 10 × 10⁹/L be considered abnormal. It is of extreme importance that white blood cell types be ascertained using a manual method, rather than by machine, and the technician reading the slide be forewarned, as heterophils may be mistaken for eosinophils given their granulocyte nature (Figure 5). Eosinophils in manatees are rarely found, usually 0–4%. Eosinophilia reported for manatees was usually performed by untrained laboratory technicians or veterinarians, which mistakenly read granular heterophils as eosinophils (AAMG personal observation).
4.2. Serum Chemistry

4.2.1. Liver-Associated Enzymes and Pigments. Wider ranges of lactic dehydrogenase observed in our marine-dwelling manatees as well as in other marine mammals may be due to muscle exertion associated with diving. Although manatees in Puerto Rico are not usually deep or long divers (<10 m, <5–10 min), differences in reported lactic dehydrogenase ranges may be due also to the administration of intramuscular injections and the manipulation prior to or during sampling [34]. Artificial changes in lactic dehydrogenase levels were reported in cetaceans due to severe hemolysis similar to those observed in individuals that received intramuscular injections but of a lesser magnitude [35]. Total bilirubin values in Puerto Rico were significantly lower in adults than in calf manatees, as calves have a higher metabolic demand for protein absorption from their mother’s milk and complementary vegetable diet (Table 4). However, overall total bilirubin values were similar to those found in other studies in Guyana, Mexico, Belize, Brazil, and Florida [6–9, 14, 24] (Table 7).

4.2.2. Muscle-Associated Enzymes. While Bossart et al. [6] included alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase in the liver-associated enzymes, to date, these analytes are considered more indicative of the muscular system [22]. Alanine aminotransferase values for Puerto Rico were significantly higher in adults compared to calves (Table 4) and were similar to Mexico, Belize, and Florida [6, 8, 9, 24] but higher than those found in Brazil [14]. Aspartate aminotransferase appears to be of little or no clinical value in manatees [6]. However, values for Puerto Rico were comparable to those described for Florida [6, 24], Guyana [7], and Brazil [14] but lower than in Mexico and Belize [8, 9]. Increased alkaline phosphatase may be present in growing, young mammals in some terrestrial species associated with osteoblastic activity [36], as seen in our reference ranges of Puerto Rican manatee calves versus adults. Although no detailed studies have been conducted in marine mammals, similar trends for alkaline phosphatase activity may also exist [6], and decreased alkaline phosphatase values appear...
to indicate older individuals, pernicious anemia, hypothyroidism, inanition, or decreased osteoblastic activity [6]. In manatees from Puerto Rico, alkaline phosphatase values for calves were clearly higher than in subadult and adult manatees.

Creatine phosphokinase values for Puerto Rico were similar to those found for Guyana [7], Mexico [8], and Florida [6]. However, they were notably different from those reported by Florida’s later study [24]. Creatine phosphokinase is an important parameter to measure in manatees in rehabilitation, as it is indicative of handling stress [6] and intestinal tissue remodeling due to colitis and enteritis. In our experience, in digestively compromised Antillean manatees, creatine phosphokinase values rapidly surpass the 500–2,000 U/L levels, and intestinal inflammation is not resolved until the values return to normal ranges (68–132 U/L). Therefore, rapid multifaceted treatment is warranted in these cases, or the chances of the manatee’s demise increase as time passes from necrotizing enteritis and pneumatosis intestinalis.

Figure 5: White blood cell types from an Antillean manatee from Puerto Rico: (a) lymphocytes, (b) monocyte, (c) eosinophil, (d) basophil, (e) heterophil, and (f) comparison between a heterophil (E) and two eosinophils (C). Wright-Giemsa, x100 objective.
4.2.3. Kidney-Associated Compounds and Products.
Reference intervals for blood urea nitrogen for Puerto Rican manatees were slightly lower than those initially established for the Florida manatee [6] but similar to those in Guyana [7], Mexico [8], Belize [9], and Florida’s later study [24]. Blood urea nitrogen reacts to a complex combination of several variables such as nutritional age, and metabolic and physiologic conditions during sampling and restraint. Decreased blood urea nitrogen may reflect their herbivorous diet [34]. Although Florida and the Antillean manatee diet are similar, the difference in blood urea nitrogen ranges may reflect different feeding behaviors during the changing seasons in Florida. Starvation and liver failure cause blood urea nitrogen levels to decrease [6].

Creatinine reference ranges in Puerto Rico were significantly different between calves and adults, being higher in the latter (Table 4). However, creatinine values were

Table 2: Mean and standard deviation hematology values for Antillean manatees from Puerto Rico for all age classes (calves, subadults, and adults; n = 70): calves only, n = 23; subadults only, n = 6; and adults only, n = 41, with ±1 standard deviation ranges in parentheses. Significant differences using p values between calves and adults are indicated with an asterisk (*).

Parameter	All manatee samples	Calves	Subadults	Adults	p value	Calves vs. adults			
WBC (10^3/L)	Mean±SD	Range	Mean±SD	Range	Mean±SD	Range			
RBC (10^6/mm³)	6.0±2.0	(4.0–8.0)	7.3±2.0	(5.3–9.3)	4.9±1.8	(3.1–6.7)	5.4±1.7	(3.8–7.1)	0.004*
HGB (g/dL)	2.7±0.6	(2.1–3.3)	3.4±0.4	(3.0–3.8)	2.3±0.1	(2.2–2.4)	2.3±0.02	(2.1–2.6)	≤0.001*
HCT (%)	11.2±2.3	(9.0–14)	13.8±1.5	(12–15)	9.4±0.5	(8.9–9.8)	9.8±0.8	(8.9–11)	≤0.001*
PLTS (10^3/mm³)	3.6±4.6	(28–41)	41.6±4.1	(38–46)	30.3±4.0	(26–34)	30.7±3.5	(27–34)	≤0.001*
Red blood cell indices									
MCV (FL)	128.6±8.2	(120–137)	124.5±7.2	(117–132)	124.9±8.1	(117–133)	131.7±7.7	(124–140)	0.001*
MCH (pg)	41.1±1.4	(40–43)	40.9±1.7	(39–43)	40.6±0.7	(40–41)	41.3±1.2	(40–43)	0.424
MCHC (g/dL)	32.2±1.2	(31–34)	32.5±1.2	(31–34)	32.5±1.5	(31–34)	32.0±1.3	(31–33)	0.124
RDW (%)	18.0±2.8	(15–21)	17.9±2.8	(15–21)	17.2±2.1	(15–19)	18.2±2.9	(15–21)	0.681
White blood cell differential									
LYMP (%)	42.8±14.5	(28–57)	38.2±16.5	(22–55)	54.0±8.0	(46–62)	44.2±13.0	(31–57)	0.165
MONO (%)	3.6±2.3	(1–6)	4.1±2.7	(1–7)	2.5±1.7	(1–4)	3.5±2.2	(1–6)	0.414
EOSI (%)	1.0±1.4	(0–3)	0.6±1.1	(0–2)	2.3±2.1	(0–4)	1.1±1.5	(0–3)	0.118
BASO (%)	0.3±0.5	(0–1)	0.0±0.2	(0–0)	0.5±0.6	(0–1)	0.5±0.6	(0–1)	≤0.001*
HETE (%)	52.3±14.7	(38–67)	51.7±16.9	(40–74)	40.8±7.5	(33–48)	50.7±13.0	(38–64)	0.145

Note: WBC = white blood cell count, RBC = red blood cell count, HGB = hemoglobin, HCT = hematocrit, PLTS = platelet count, MCV = mean corpuscular volume, MCH = mean corpuscular hemoglobin, MCHC = mean corpuscular hemoglobin concentration, RDW = red cell distribution width, LYMP = lymphocytes, MONO = monocytes, EOSI = eosinophils, BASO = basophils, and HETE = heterophils.

Table 3: Mean and standard deviation hematology values for Antillean manatees from Puerto Rico for all sex classes (males and females, n = 70): males only, n = 33, and females only, n = 37, with ±1 standard deviation ranges in parentheses. Significant differences using p values are indicated with an asterisk (*).

Parameter	All manatee samples	Males	Females	p values			
WBC (10^3/L)	Mean±SD	Range	Mean±SD	Range			
RBC (10^6/mm³)	6.0±2.0	(4.0–8.0)	5.8±1.9	(3.9–7.7)	6.2±2.1	(4.1–8.2)	0.539
HGB (g/dL)	2.7±0.6	(2.1–3.3)	2.6±0.6	(2.1–3.2)	2.7±0.6	(2.1–3.4)	0.522
HCT (%)	11.2±2.3	(9.0–14)	10.9±2.0	(8.9–13)	11.5±2.4	(9.0–14)	0.322
PLTS (10^3/mm³)	298.3±91.3	(207–390)	269.9±81.9	(188–352)	323.2±93.3	(230–417)	0.047*
Red blood cell indices							
MCV (FL)	128.6±8.2	(120–137)	128.3±7.9	(120–136)	128.8±8.6	(120–137)	0.824
MCH (pg)	41.1±1.4	(40–43)	40.8±1.3	(40–42)	41.4±1.4	(40–43)	0.168
MCHC (g/dL)	32.2±1.2	(31–34)	32.2±1.1	(31–33)	32.2±1.4	(31–34)	0.941
RDW (%)	18.0±2.8	(15–21)	16.9±2.2	(15–19)	18.9±2.9	(16–22)	0.007*
White blood cell differential							
LYMP (%)	42.8±14.5	(28–57)	42.2±10.5	(32–53)	43.2±17.2	(26–60)	0.776
MONO (%)	3.6±2.3	(1–6)	3.4±2.3	(1–6)	3.8±2.4	(1–6)	0.584
EOSI (%)	1.0±1.4	(0–3)	1.1±1.5	(0–3)	0.9±1.5	(0–2)	0.618
BASO (%)	0.3±0.5	(0–1)	0.4±0.6	(0–1)	0.3±0.5	(0–1)	0.304
HETE (%)	52.3±14.7	(38–67)	52.8±10.7	(42–64)	51.8±17.4	(34–69)	0.783

Note: WBC = white blood cell count, RBC = red blood cell count, HGB = hemoglobin, HCT = hematocrit, PLTS = platelet count, MCV = mean corpuscular volume, MCH = mean corpuscular hemoglobin, MCHC = mean corpuscular hemoglobin concentration, RDW = red cell distribution width, LYMP = lymphocytes, MONO = monocytes, EOSI = eosinophils, BASO = basophils, and HETE = heterophils.
Table 4: Mean serum chemistry values for manatees from Puerto Rico for all samples, (subadults, and adults, n = 70): calves only, n = 23; subadults only, n = 6; and adults only, n = 41, with ±1 standard deviation range in parentheses. Abbreviations for parameters are detailed in the Materials and Methods section. Significant differences using p values between calves and adults are indicated with an asterisk (*)

Parameter	All manatee samples	Calves	Subadults	Adults	p value	Calves vs. Adults
Liver-associated enzymes and pigments						
LDH (U/L)	425.3 ± 164.6	394.6 ± 174.1	538.2 ± 144.6	420.2 ± 159.7	0.620	
TOT BILI (mg/dL)	0.2 ± 0.1	0.3 ± 0.2	0.1 ± 0.04	0.2 ± 0.1	0.009*	
Muscle-associated enzymes						
ALT (U/L)	15.4 ± 7.1	12.0 ± 6.5	18.5 ± 5.5	16.8 ± 7.1	0.011*	
AST (U/L)	11.4 ± 5.2	10.3 ± 4.9	13.5 ± 6.4	11.9 ± 5.5	0.316	
ALP (U/L)	78.2 ± 20.4	86.9 ± 20.6	70.2 ± 20.7	76.2 ± 19.8	0.096	
CREA (mg/dL)	99.8 ± 32.3	85.8 ± 24.1	119.4 ± 20.9	101.4 ± 34.9	0.136	
Kidney-associated compounds and products						
BUN (mg/dL)	4.2 ± 2.1	4.1 ± 2.5	5.2 ± 2.2	4.1 ± 2.0	0.896	
CRE (mg/dL)	1.5 ± 0.4	1.3 ± 0.4	1.5 ± 0.5	1.6 ± 0.4	0.014*	
BUN:CREA	21.0 ± 7.1	17.0 ± 0.8	23.0 ± 0.4	22.0 ± 0.7	0.078	
UA (mg/dL)	0.9 ± 0.5	1.2 ± 0.4	0.8 ± 0.6	0.8 ± 0.5	0.009*	
Sugars, lipids, and pancreatic-associated enzymes						
Glucose (mg/dL)	91.2 ± 18.5	78.5 ± 14.6	86.7 ± 21.5	97.0 ± 16.9	0.001*	
Triglycerides (mg/dL)	109.3 ± 25.2	110.7 ± 28.0	88.4 ± 17.5	112.4 ± 24.4	0.867	
Cholesterol (mg/dL)	117.5 ± 25.7	130.8 ± 14.9	115 ± 19.8	116.2 ± 26.7	0.105	
Amylase (U/L)	599.7 ± 149.1	667.0 ± 179.3	573.5 ± 145.3	573.5 ± 145.3	0.399	
Proteins						
TOT PROT (g/dL)	7.0 ± 0.5	6.7 ± 0.6	6.8 ± 0.4	7.1 ± 0.4	0.004*	
ALB (g/dL)	3.9 ± 0.5	3.7 ± 0.5	3.9 ± 0.4	4.1 ± 0.4	0.012*	
GLOB (g/dL)	2.9 ± 0.4	3.0 ± 0.4	2.8 ± 0.5	2.8 ± 0.4	0.143	
ALB:GLOB	1.4 ± 0.3	1.2 ± 0.3	1.5 ± 0.3	1.4 ± 0.2	0.032*	
Electrolytes						
Na (mmol/L)	151.0 ± 5.5	147.8 ± 5.1	151.0 ± 6.2	152.6 ± 5.0	0.001*	
Cl (mmol/L)	99.6 ± 6.3	97.3 ± 6.5	99.9 ± 6.1	101.0 ± 5.9	0.036*	
K (mmol/L)	5.3 ± 0.7	4.8 ± 0.5	5.5 ± 0.5	5.5 ± 0.6	0.001*	
PO4 (mg/dL)	5.9 ± 1.1	6.2 ± 1.1	6.3 ± 1.3	5.7 ± 1.1	0.110	
Ca (mg/dL)	9.8 ± 0.7	10.1 ± 0.6	9.5 ± 0.5	9.7 ± 0.7	0.020*	
CO2 (mmol/L)	26.7 ± 9.5	33.7 ± 4.5	23.9 ± 11.7	23.0 ± 9.3	0.001*	
AG (mmol/L)	27.9 ± 10.6	19.9 ± 6.5	32.4 ± 11.7	32.2 ± 9.7	0.001*	

Similar to those established for Antillean manatees in Guyana [7], Belize [9], Brazil [14], and Florida [6], but not when compared to later study of Mexico [8] or Florida [24]. Variations associated with food intake, type of food, and salinity of environment in Florida manatees were suggested to possibly be affecting serum creatinine levels [20]. Rehabilitated Antillean manatees from Puerto Rico exhibited an increased serum creatinine following release back to the wild; while blood urea nitrogen and other blood parameters remained within their normal baseline ranges. An increase in creatinine was documented on all rehabilitated and released Antillean manatees in Puerto Rico immediately after being transferred to a sea pen during a soft release back into the wild. After the manatees acclimated to the new environment and learned to find a freshwater source, creatinine levels decreased in subsequent veterinary examinations.

Uric acid parameters were significantly higher in manatee calves from Puerto Rico when compared to adult manatees (Table 4), most probably due to the higher protein content in the calves' diet. However, uric acid values were not available from Guyana, Mexico, Belize, and Florida to further understand any differences between populations.

4.2.4. Sugars, Lipids, and Pancreatic-Associated Enzymes. Adult manatees in Puerto Rico showed significantly higher values for glucose in comparison to calves (Table 4). Hypoglycemia in rescued calves or debilitated manatees is a significant problem that must be addressed urgently upon admittance to a critical care facility. Glucose and triglyceride levels were similar among Puerto Rico, Guyana, Mexico, Belize, Brazil, and Florida populations. However, cholesterol levels from all Antillean manatees throughout the countries were similar but appreciably lower than those found in Florida manatees [6, 24], given that Florida manatees are larger in size and
TABLE 5: Mean and standard deviation hematology values for Antillean manatees from Puerto Rico for all sex classes (males and females, \(n = 70 \)): males only, \(n = 33 \), and females only, \(n = 37 \), with \(\pm 1 \) standard deviation ranges in parentheses. Significant differences using \(p \) values are indicated with an asterisk (*).

Parameter	All manatee samples	Males	Females	\(p \) values			
	Mean ± SD	Range	Mean ± SD	Range	Mean ± SD	Range	
Liver-associated enzymes and pigments							
LDH (U/L)	425.3 ± 164.6	(261–590)	392.3 ± 155.0	(237–547)	458.4 ± 170.0	(288–628)	0.127
TOT BILI (mg/dL)	0.2 ± 0.1	(0.1–0.3)	0.2 ± 0.1	(0.1–0.3)	0.2 ± 0.1	(0.1–0.3)	0.573
Muscle-associated enzymes							
ALT (U/L)	15.4 ± 7.1	(8.3–23)	14.6 ± 8.1	(6.5–23)	16.0 ± 6.3	(9.8–22)	0.435
AST (U/L)	11.4 ± 5.2	(6.1–17)	9.9 ± 4.9	(5.0–15)	12.8 ± 5.3	(7.5–18)	0.053
ALP (U/L)	78.2 ± 20.4	(58–99)	75.1 ± 20.3	(55–95)	81.0 ± 20.4	(61–101)	0.271
CK-PK (U/L)	99.8 ± 32.3	(68–132)	101.2 ± 32.1	(69–103)	98.5 ± 33.2	(65–132)	0.785
Kidney-associated compounds and products							
BUN (mg/dL)	4.2 ± 2.1	(2.1–6.3)	4.6 ± 2.2	(2.4–6.8)	3.9 ± 2.1	(1.9–6.0)	0.222
CREA (mg/dL)	1.5 ± 0.4	(1.1–1.9)	1.5 ± 0.4	(1.1–2.0)	1.5 ± 0.4	(1.1–1.9)	0.771
BUN-CREA	2.1 ± 0.7	(1.4–2.8)	2.3 ± 0.7	(1.5–3.0)	2.0 ± 0.7	(1.2–2.7)	0.234
UA (mg/dL)	0.9 ± 0.5	(0.4–1.4)	0.9 ± 0.5	(0.4–1.5)	0.9 ± 0.5	(0.4–1.4)	0.723
Sugars, lipids, and pancreatic-associated enzymes							
GLU (mg/dL)	91.2 ± 18.5	(73–110)	90.4 ± 18.7	(72–109)	91.8 ± 18.6	(73–110)	0.771
TRIG (mg/dL)	109.3 ± 25.2	(84–135)	109.8 ± 24.2	(86–134)	108.8 ± 26.6	(82–135)	0.900
CHOL (mg/dL)	117.5 ± 25.7	(92–143)	121.0 ± 23.5	(97–144)	114.3 ± 27.7	(87–142)	0.380
AMY (U/L)	599.7 ± 149.1	(451–749)	596.4 ± 134.0	(462–730)	609.0 ± 209.3	(400–818)	0.916
Proteins							
TOT PROT (g/dL)	7.0 ± 0.5	(6.4–7.5)	7.0 ± 0.5	(6.5–7.5)	6.9 ± 0.5	(6.4–7.5)	0.772
ALB (g/dL)	3.9 ± 0.5	(3.5–4.4)	4.0 ± 0.4	(3.5–4.4)	3.9 ± 0.5	(3.4–4.4)	0.746
GLOB (g/dL)	2.9 ± 0.4	(2.5–3.3)	2.9 ± 0.4	(2.4–3.3)	2.9 ± 0.4	(2.4–3.3)	0.998
ALB:GLOB	1.4 ± 0.3	(1.1–1.7)	1.4 ± 0.3	(1.1–1.7)	1.4 ± 0.3	(1.1–1.7)	0.682
Electrolytes							
NA (mmol/L)	151.0 ± 5.5	(146–157)	151.0 ± 5.7	(145–157)	151.0 ± 5.4	(146–156)	0.956
K (mmol/L)	99.6 ± 6.3	(93–106)	99.2 ± 5.5	(94–105)	99.9 ± 6.9	(93–107)	0.669
PO4 (mg/dL)	5.3 ± 0.7	(4.4–5.9)	5.3 ± 0.6	(4.8–5.9)	5.3 ± 0.7	(4.5–6.0)	0.713
Ca (mg/dL)	9.8 ± 0.7	(9.2–11)	9.9 ± 0.6	(9.3–10)	9.8 ± 0.7	(9.1–11)	0.676
CO3 (mg/dL)	26.7 ± 9.5	(17–36)	26.9 ± 8.4	(19–35)	26.5 ± 10.5	(16–37)	0.863
AG (mmol/L)	27.9 ± 10.6	(17–39)	27.8 ± 9.2	(19–37)	28.0 ± 11.7	(16–40)	0.997

Table 6: Hematology reference intervals for West Indian manatees from Puerto Rico, Guyana, Mexico, Belize, Brazil, and Florida. Puerto Rico values included all samples (calves, subadults, and adults). Abbreviations for parameters are detailed in the materials and methods section. Columns with an asterisk (*) signify that the range values are minimum and maximum.

Parameter	Antillean manatees	Florida manatees					
	Puerto Rico	Guyana [7]	Mexico [8]	Belize [9]	Brazil [14]*	Florida [6]	Florida [25]*
WBC (10^3/L)	4.0–8.0	4.6–8.6	3.9–9.1	3.4–7.9	4.4–11	4–12	2.8–14
RBC (10^6/mm³)	2.1–3.3	2.2–2.8	2.3–3.3	2.2–3.0	2.5–3.0	2.4–3.4	2.2–3.4
Hb (g/dL)	9.0–14	8.9–11	9.8–13	9.5–12	9.1–11	9.8–13	9.4–14
HCT (%)	28–41	17–24	31–42	30–37	29–34	30–40	29–44
PLTS (10^3/mm³)	207–390	—	138–266	156–384	—	195–412	111–424
MCV (fl)	120–137	—	—	100–146	109–116	122–149	114–140
MCH (pg)	40–43	—	—	36–44	33–38	38–46	37–45
MCHC (g/dL)	31–34	—	30–33	29–35	29–33	30–33	28–35
RDW (%)	15–21	—	—	—	—	—	14–23
White blood cell differential							
LYMPH (%)	28–57	—	—	—	—	—	—
MONO (%)	1–6	—	—	—	—	—	—
EOSIN (%)	0–3	—	—	—	—	—	—
BASO (%)	0–1	0–0	—	0–0	0–0	0–0	—
HET (%)	38–67	—	—	—	—	—	—
have higher fat reserves from being a northern and subtropical subspecies.

4.2.5. Proteins. Values for total protein, albumin, and albumin-globulin ratio were significantly higher in adult manatees in Puerto Rico than in calf manatees (Table 4). Plasma or serum proteins move between the blood and other fluids. The total concentration of all proteins in the blood may vary depending on changes in the volume of water or the amount of the individuals' proteins. Reference intervals for total protein established for the Puerto Rico population were slightly lower than those reported for Mexico [8] and Florida [6, 24] but similar to those in Guyana, Belize, and Brazil [7, 9, 14]. An increase in total proteins, indicative of dehydration, was observed, while manatees were in the more severe diet reduction phase of a simulated release [20]. Variations between freshwater and marine diets may explain the difference in total protein values between captive calves and free-ranging adults. Additionally, blood sample quality should be considered when evaluating total protein values due to an artificial increase caused by lipemia, icterus, and hemolysis. Albumin serves as a protein carrier, and given that it is typically higher in most marine mammals, the use of automated analyzers using human standards may give erroneous results [37]. As an early indicator of hepatic disease in marine mammals, the use of albumin is limited since it appears that these have a tremendous reserve capacity for hepatic albumin production [6]. Albumin reference intervals for manatees in Puerto Rico were slightly lower than those reported for both Antillean and Floridamanatees in other compared countries. These values were confirmed by protein electrophoresis, the preferred and recommended detection method [6].

Table 7: Serum chemistry reference intervals for West Indian manatees from Puerto Rico, Florida, Guyana, Mexico, Belize, and Brazil.

Parameter	Puerto Rico	Antillean manatees	Florida manatees
	n = 70	*n* = 11	*n* = 18
	n = 82	*n* = 30	*n* = 23
	n = 55		
Liver-associated enzymes and pigments			
LDH (U/L)	261–590	—	—
T BILI (mg/dL)	0.1–0.3	0.2–0.4	0.0–0.4
Muscle-associated enzymes			
ALT (U/L)	8.3–23	14–24	4.4–33
AST (U/L)	6.1–17	18–19	19–52
ALP (U/L)	58–99	45–80	52–106
CPK (U/L)	68–132	75–228	78–191
Kidney-associated compounds and products			
BUN (mg/dL)	2.1–6.3	1.6–6.4	3.1–13
CREA (mg/dL)	1.1–1.9	1.0–1.4	0.0–4.4
BUN:CREA	1.4–2.8		1.0–2.4
UA (mg/dL)	0.4–1.4		1.6–2.2
Sugars, lipids, and pancreatic-associated enzymes			
GLU (mg/dL)	73–110	70–97	67–101
TRIG (mg/dL)	84–135		82–134
CHOL (mg/dL)	92–143		88–170
AMY (U/L)	451–749		134–210
Proteins			
T PROT (g/dL)	6.4–7.5	6.5–7.3	6.9–8.3
ALB (g/dL)	3.5–4.4	4.1–5.1	4.0–5.6
GLOB (g/dL)	2.5–3.3		3.3–5.1
ALB:GLOB	1.1–1.7		1.9–3.7
Electrolytes			
NA (mmol/L)	146–157	138–149	142–160
CL (mmol/L)	93–106	92–105	87–105
K (mmol/L)	4.6–5.9	4.2–5.0	4.6–6.0
PO₄ (mg/dL)	4.8–7.0	4.2–5.6	3.7–7.0
CA (mg/dL)	9.2–11	9.6–11	9.1–12
CO₂ (mmol/L)	17–36	13–18	
AG (mmol/L)	17–39	30–37	
released subadults in the process of acclimating to the saline environment, and in rescued calves that are typically brought in with colic and other gastrointestinal complications due to malnourishment.

4.2.6. Electrolytes. Electrolytes analytes were significantly different between adults and calves, except for phosphate. Sodium, chloride, potassium, and anion gap were higher in adults, while calcium and enzymatic carbon dioxide were higher in calves. However, electrolyte values across countries of the Antillean subspecies and the Florida subspecies were similar.

5. Conclusions

Here, we establish the normal reference intervals for the population of Antillean manatees in the waters around the island of Puerto Rico (Tables 6 and 7). Most findings in this study were similar to those previously reported for other West Indian manatee populations of both subspecies from Guyana, Mexico, Belize, Brazil, and Florida. Factors to be considered when evaluating and explaining these similarities or differences include diet, time from last feeding, water composition (salinity, temperature, pH, etc.), body condition, capture stress, and health status. This study’s interpretation of hematology and blood chemistry data was complicated since most adult samples were collected from targeted free-ranging manatees for radiotelemetry studies, and most calves were in a captive environment for medium-term care after rescue and health stabilization. Therefore, blood reference ranges provided herein should be considered complementary guidelines for veterinary examinations and health assessments. If possible, baseline blood parameters should be established for each individual manatee as a patient or during long-term care before declaring any value as truly abnormal.

Data Availability

The datasets used and/or analyzed during the current study can be obtained from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

AAMG and MMAG contributed equally to conceptualization, data curation, formal analysis, investigation, methodology, writing, review, and editing. AAMG was responsible for funding acquisition, project administration, and resources.

Acknowledgments

The current study was conducted with the financial support of the Red Caribeña de Varamientos. Manatee rescue, capture, health assessment, and specimen collection in Puerto Rico were conducted under the authority of US Fish and Wildlife Service (USFWS) permits PRT-770191 and MA791721 and MA770191 issued to the Sirenia Project of the US Geological Survey, USFWS permits LOAF-770191-B, LOAF231088-A, and MA69720D issued to the Caribbean Stranding Network (CSN), and cooperative agreements with and permits 2001-EPE-002, 2004-EPE-003, and 2010-EPE-013 from Puerto Rico’s Department of Natural and Environmental Resources. The study, management of animals and sampling was conducted in compliance with the US Animal Welfare Act after review and approval of the Red Caribeña de Varamientos’ (1991-2009) and Inter American University’s (2010-2020) Institutional Animal Care and Use Committee (IACUC). We gratefully acknowledge the assistance of CSN and Caribbean Manatee Conservation Center technicians, students, and volunteers in the rescue, rehabilitation, and health assessment of the manatees from which blood samples were taken for this study. We also appreciate the excellent work of medical technologists C. Mercado, G. Díaz, V. Ramos, M. Román, and J. Ortiz, for their continued support and analysis of blood samples. We thank J. Thomas, K. McCravy, M. Romano, C. Poll, L. Naples, G. D. Bossart, R. K. Bonde, I. Méndez, L. J. Cabrias, and M. Dennis for their assistance and review of the manuscript. B. Rivera-Marchand reviewed the statistics of the study.

References

[1] L. W. Lefebvre, M. Marmontel, J. P. Reid, G. B. Rathbun, and D. P. Domning, “Status and biogeography of the West Indian manatee,” in Biogeography of the West Indies: Patterns and Perspectives, C. A. Woods and F. E. Sergile, Eds., pp. 425–474, CRC Press, Boca Raton, FL, USA, 2nd edition, 2001.
[2] J. B. Morales-Vela, E. Quintana-Rizzo, and A. A. Mignucci-Giannoni, “Trichechus manatus ssp. Manatus Linnaeus, 1758,” The IUCN Red List of Threatened Species, 2022, In press.
[3] A. A. Mignucci-Giannoni, A. Montoya-Ospina, R. Nild et al., “Manatee mortality in Puerto Rico,” Environmental Management, vol. 25, no. 2, pp. 189–198, 2000.
[4] C. Self-Sullivan and A. A. Mignucci-Giannoni, “West Indian manatees (Trichechus manatus) in the wider caribbean region,” in Sirenian Conservation: Issues and Strategies in Developing Countries, E. M. Hines, J. E. Reynolds, L. V. Aragones, A. A. Mignucci-Giannoni, and M. Marmontel, Eds., pp. 36–46, University Press of Florida, Gainesville, FL, USA, 2012.
[5] N. Adimey, A. A. Mignucci-Giannoni, N. E. Auil et al., “Manatees rescue, rehabilitation and release efforts as a tool for species conservation,” in Sirenian Conservation: Issues and Strategies in Developing Countries, E. M. Hines, J. E. Reynolds, L. V. Aragones, A. A. Mignucci-Giannoni, and M. Marmontel, Eds., pp. 204–217, University Press of Florida, Gainesville, FL, USA, 2012.
[6] G. D. Bossart, T. H. Reidarson, L. A. Dierauf, and D. A. Duffield, “Clinical pathology,” in CRC Handbook of Marine Mammal Medicine, L. A. Dierauf and F. M. D. Gulland, Eds., pp. 383–430, CRC Press, Boca Raton, FL, USA, 2nd edition, 2001.
[7] L. J. Converse, P. J. Fernandes, P. S. MacWilliams, and G. D. Bossart, “Hematology, serum chemistry, and morphometric reference values for Antillean manatee...
Veterinary Medicine International

(Trichechus manatus manatus),” Journal of Zoo and Wildlife Medicine, vol. 25, no. 3, pp. 423–431, 1994.

[8] L. D. Olivera-Gómez, D. Jiménez-Domínguez, and A. Aragón-Martínez, ”Blood analytes of Antillean manatees inhabiting a flood-drought environment in the southern Gulf of Mexico,” in Proceedings of the Abstracts of the 19th Biennial Conference on the Biology of Marine Mammals, p. 224, December 2011, Tampa, FL, USA.

[9] K. Sulzner, C. Kreuder Johnson, R. K. Bonde et al., ”Health assessment and seroepidemiologic survey of potential pathogens in wild Antillean manatees (Trichechus manatus manatus),” PLoS One, vol. 7, no. 9, Article ID e44517, 2012.

[10] J. L. Siegal-Willott, K. E. Harr, J. O. Hall et al., ”Blood mineral concentrations in manatees (Trichechus manatus latirostris and Trichechus manatus manatus),” Journal of Zoo and Wildlife Medicine, vol. 44, no. 2, pp. 285–294, 2013.

[11] F. M. O. Silva, J. E. Vergara-Parente, J. K. N. Gomes, M. N. Teixeira, and R. P. Lima, ”A contribution for the definition of serum chemistry values in captive Antillean manatees (Trichechus manatus manatus Linnaeus, 1758),” Journal of Veterinary Medicine A, vol. 54, no. 3, pp. 119–122, 2007.

[12] F. M. O. Silva, J. E. Vergara-Parente, J. K. N. Gomes, M. N. Teixeira, F. L. N. Attademo, and J. C. R. Silva, ”Blood chemistry of Antillean manatees (Trichechus manatus manatus): age variations,” Aquatic Mammals, vol. 35, no. 2, pp. 253–258, 2009.

[13] D. G. Anzolin, J. E. S. Sarkis, E. Díaz et al., ”Contaminant concentrations, bio-chemical and hematological biomarkers in blood of West Indian manatees Trichechus manatus from Brazil,” Marine Pollution Bulletin, vol. 64, no. 7, pp. 1402–1408, 2012.

[14] M. A. Mendonça, M. S. Fonseca, F. L. N. Attademo et al., ”Hematology and clinical biochemistry profiles in Antillean manatee Trichechus manatus manatus from different types of captivity and free living in northeast Brazil,” Journal of Aquatic Animal Health, vol. 32, no. 4, pp. 168–178, 2020.

[15] J. R. White, D. R. Harkness, R. E. Isaacks, and D. A. Duffield, ”Some studies on blood of the Florida manatee, Trichechus manatus latirostris,” Comparative Biochemistry and Physiology Part A: Physiology, vol. 55, no. 4, pp. 413–417, 1976.

[16] W. Medway, D. Black, and G. Rathbun, ”Hematology of the West Indian manatee (Trichechus manatus),” Veterinary Clinical Pathology, vol. 11, no. 2, pp. 11–15, 1982a.

[17] W. Medway, M. I. Bruss, J. L. Bengtson, and D. J. Black, ”Blood chemistry of the West Indian manatee,” Journal of Wildlife Diseases, vol. 18, no. 2, pp. 229–234, 1982b.

[18] W. Medway, W. I. Dodds, A. C. Moynihan, and R. K. Bonde, ”Blood coagulation of the West Indian manatee (Trichechus manatus),” Cornell Veterinarian, vol. 72, no. 2, pp. 120–127, 1982c.

[19] A. Kiehl and C. Schiller, ”A study of manatee leukocytes using peroxidase stain,” Veterinary Clinical Pathology, vol. 23, no. 2, pp. 50–53, 1994.

[20] C. A. Manire, C. J. Walsh, H. L. Rhinehart, D. E. Colbert, D. R. Noyes, and C. A. Luer, ”Alterations in blood and urine parameters in two Florida manatees (Trichechus manatus latirostris) from simulated conditions of release following rehabilitation,” Zoo Biology, vol. 22, no. 2, pp. 103–120, 2003.

[21] K. Harr, J. Harvey, R. K. Bonde et al., ”Comparison of methods used to diagnose generalized inflammatory disease in manatees (Trichechus manatus latirostris),” Journal of Zoo and Wildlife Medicine, vol. 37, no. 2, pp. 151–159, 2006.

[22] K. E. Harr, K. Allison, R. K. Bonde, D. Murphy, and J. W. Harvey, ”Comparison of blood aminotransferase methods for assessment of myopathy and hepatothrophy in Florida manatees (Trichechus manatus latirostris),” Journal of Zoo and Wildlife Medicine, vol. 39, no. 2, pp. 180–187, 2008.

[23] K. E. Harr, R. Rember, P. E. Ginn et al., ”Serum amyloid A (SAA) as a biomarker of chronic infection due to boat strike trauma in a free-ranging Florida manatee (Trichechus manatus latirostris) with incidental polycystic kidneys,” Journal of Wildlife Diseases, vol. 47, no. 4, pp. 1026–1031, 2011.

[24] J. W. Harvey, K. E. Harr, D. Murphy et al., ”Clinical biochemistry in healthy manatees (Trichechus manatus latirostris),” Journal of Zoo and Wildlife Medicine, vol. 38, no. 2, pp. 269–279, 2007.

[25] J. W. Harvey, K. E. Harr, D. Murphy et al., ”Hematology of healthy Florida manatees (Trichechus manatus),” Veterinary Clinical Pathology, vol. 38, no. 2, pp. 183–193, 2009.

[26] D. H. Slone, J. P. Reid, R. K. Bonde, S. M. Butler, and B. M. Stith, ”Summary of West Indian manatee (Trichechus manatus) tracking by USGS-FISC sirenia project in Puerto Rico. With additional information on Aerial surveys, carcass recovery and genetics research,” 2006, https://www.researchgate.net/publication/314875561_Summary_of_West_Indian_Manatee_Trichechus_manatus_Tracking_by_USGS-FISC_Sirenia_Project_in_Puerto_Rico.

[27] A. W. Wong, R. K. Bonde, J. Siegal-Willott et al., ”Monitoring oral temperature, heart rate, and respiration rate of West Indian manatees (Trichechus manatus) during capture and handling in the field,” Aquatic Mammals, vol. 38, no. 1, pp. 1–16, 2012.

[28] A. A. Mignucci-Giannoni, A. Salazar-Casals, A. L. Rivera-Guzmán, R. Sánchez-Okrucky, R. K. Bonde, and M. M. Alsina-Guerrero, ”Emergency protocol and standardization of medical conditions in manatees,” in Proceedings of the Abstracts of the 21st Biennial Conference on the Biology of Marine Mammals, Society for Marine Mammalogy, San Francisco, CA, USA, December 2015.

[29] A. A. Mignucci-Giannoni, A. Rivera-Guzmán, T. Alejandro-Zayas, A. D. Alicea-Garcés, M. Alsina-Guerrero, and J. Antonsanti-Arbona, ”Rescue and rehabilitation efforts for West Indian manatees (Trichechus manatus) in Puerto Rico as part of their conservation,” in Proceedings of the Abstracts of the 19th Biennial Conference on the Biology of Marine Mammals, p. 205, Society for Marine Mammalogy, Tampa, FL, USA, December 2011.

[30] K. R. Friedrichs, K. E. Harr, K. P. Freeman et al., ”ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics,” Veterinary Clinical Pathology, vol. 41, no. 4, pp. 441–453, 2012.

[31] N. M. Jiménez-Marrero, I. Méndez-Matos, R. A. Montoya-Ospina, E. H. Williams, L. Bunkley-Williams, and A. A. Mignucci-Giannoni, ”Valores de referencia de inmunoglobulina G en tres poblaciones del manati (Trichechus manatus): Puerto Rico, Colombia y Florida,” Caribbean Journal of Science, vol. 34, no. 3–4, pp. 313–315, 1998.

[32] J. R. Geraci, ”Functional hematology of the harp seal, Pagophilus groenlandicus,” Physiological Zoology, vol. 44, no. 3, pp. 162–170, 1971.

[33] S. R. Noren, G. Lacave, R. S. Wells, and T. M. Williams, ”The development of blood oxygen stores in bottlenose dolphins (Tursiops truncatus): implications for diving capacity,” Journal of Zoology, vol. 258, no. 1, pp. 105–113, 2002.

[34] G. D. Bossart and L. A. Dieraufl, ”Marine mammal clinical laboratory,” in CRC Handbook of Marine Mammal Medicine:
Health, Disease and Rehabilitation, L. A. Dierauf, Ed., pp. 1–52, CRC Press, Boca Raton, FL, USA, 1990.

[35] T. H. Reidarson, J. McBain, and L. M. Dalton, "Lactate dehydrogenase isoenzyme patterns in cetaceans," Journal of Zoo and Wildlife Medicine, vol. 30, no. 2, pp. 228–234, 1999.

[36] J. S. Price, B. Jackson, R. Eastell et al., "Age related changes in biochemical markers of bone metabolism in horses," Equine Veterinary Journal, vol. 27, no. 3, pp. 201–207, 1995.

[37] R. M. Ortiz, G. A. J. Worthy, and F. Byers, "Estimation of water turnover rates of captive West Indian manatees (Trichechus manatus) held in fresh and salt water," Journal of Experimental Biology, vol. 202, no. 1, pp. 33–38, 1999.