TRUTH AND THE LIAR PARADOX

NIK WEAVER

1.

The liar paradox is the paradox that arises when we try to assess the truth value of the sentence “This sentence is not true.” We call this sentence the “liar sentence”. Assuming it is true leads immediately to a contradiction, so it must not be true. But that is what it asserts, so it must be true after all, which is absurd.

The paradox may seem frivolous, but what is worrisome about it is not that there is any pressing need to assign a truth value to the liar sentence itself. The broad concern is rather that our inability to resolve the paradox reveals a fundamental deficit in our understanding of truth and/or logic. If our grasp of either of these topics is faulty, then the grand edifice of modern mathematics is called into question. If there is a specific erroneous step in the paradoxical deduction, and we are unable to pinpoint it, then this means that some deductive principle we believe to be valid is not.

That is not to say that there is any likelihood of simple arithmetical truths ever being overturned, under any circumstances. But mathematics extends well beyond simple arithmetic, and not all of the principles on which it is based are so clearly established. Without a complete understanding of the liar paradox and related problems (Russell’s paradox, etc.), we will never be able to definitively say which of these principles are genuinely trustworthy. We do have apparently reliable techniques for avoiding paradoxical reasoning, but these are engineering solutions. They are not based on a fundamental understanding of the underlying logical issues.

The liar paradox is strikingly resistant to resolution. One’s first reaction may be that the liar sentence is simply meaningless, or that it does not have a truth value in a conventional sense. But it is not meaningless to assert of a meaningless sentence, or one that lacks a truth value, that it is not true. That kind of assertion is meaningful and correct. Yet this is just what the liar sentence says of itself, so this naive approach fails immediately.

The raw intuition that the liar sentence lacks meaningful content has led to a variety of more sophisticated technical responses, none of which, however, fares much better than the naive response. The liar sentence is said to be “ungrounded” or “indeterminate”, both of which would seem to imply that it is, indeed, correct in saying of itself that it is not flatly true. Perhaps one wishes to draw a distinction between grounded and ungrounded truth, but then one has to deal with the sentence that asserts of itself that it is not true in either sense. At that point the distinction no longer seems particularly helpful. While it is certainly clear that a straightforward attempt to determine the truth value of the liar sentence leads to an infinite regress, it is not so obvious how that observation helps to resolve the paradox. We can still talk about such ungrounded sentences, and they, apparently,

Date: December 28, 2011.
can talk about themselves. We might try to say that the truth value of the liar sentence is unstable, that it should in some way be thought of as flipping back and forth between truth and falsehood. Very well, then what about the sentence that asserts of itself that it is continually false, and never true? It is hard to see how that sentence could ever be true, again leading us back to a contradiction.

Another class of approaches bring in ideas of “context” or “situation”. This seems reasonable at first, since most sentences do not have a fixed truth value, but rather one which varies depending on the context in which they are asserted or the situation at which they are directed. On the other hand, it is precisely the assertions of pure logic, into which category the liar sentence appears to fall, which are not dependent on context, so the relevance of these kinds of considerations to the liar paradox is questionable. In any case, we can easily build context-independence into the liar sentence, by modifying it to explicitly assert of itself that it is not true in any context. The idea that there could be contexts in which this modified liar sentence is true is, again, hard to accept.

One may be tempted to try to somehow preempt the sort of objection we have been making. We could try to say that every sentence has to be interpreted in some limited context, even the modified liar sentence just mentioned which purports to refer globally to all contexts. At this point the analysis becomes farcical: the claim that one cannot refer globally to all contexts itself refers globally to all contexts and is therefore self-defeating. So we do not seem to have made much progress.

A completely different type of solution advises that the liar sentence is both true and not true. But all this does is to eliminate the difficulty by, in effect, declaring it not to be a difficulty. Surely, to allow a sentence to be simultaneously true and not true is merely to change the meaning of the word “not”. We may well have a trivial resolution of the liar paradox as it applies to languages in which “not” carries some nontraditional meaning, but obviously this does not address the original problem.

2.

It appears that something must be wrong with our naive conception of truth. This is surprising because it seems like truth is a definite property of sentences whose content is exactly captured by Tarski’s biconditional \[(\star) \]

\[\langle A \rangle \text{ is true } \leftrightarrow A, \]

where \(A \) stands for an arbitrary sentence. We would have to accept that this intuition is somehow mistaken. But perhaps our intuition about truth was developed on the basis of unproblematic cases and we are wrong to assume that it remains valid when applied to exotic (e.g., self-referential) sentences. Indeed, it is not so clear that the notion of truth is well-defined in the case of the liar sentence, which strongly suggests that the naive picture may be misleading, or at least incomplete.

If we decide that our intuition about truth is unreliable, then the paradox loses much of its force. It merely shows that there can be no predicate with the properties that we expect a truth predicate to have. Our focus then shifts to the more straightforwardly technical question, to what extent is it possible to use \((\star) \) to define a workable concept of truth?

Since \((\star) \) tells us, for any sentence \(A \), the exact condition for \(A \) to be true, one might think that we could assert it as a definition of truth for all sentences. But this is impossible, for purely syntactic reasons. The expression “For every
sentence A, "$A" is true if and only if $A" is ungrammatical because the variable A functions ambiguously. In the quantifying phrase “For every sentence $A" it acts as a reference to an arbitrary sentence, not an assertion of it; but on the right side of the biconditional it has to be construed as having assertoric force. The entire expression is ungrammatical in the same way that “There exists a sentence A such that $A" is ungrammatical. We should rather say “There exists a sentence A such that A is true,” except that this assumes we already have a truth predicate which applies to arbitrary sentences. In other words, in order to use (*) to formulate a global definition of truth we need some device for asserting a mentioned sentence, which is just to say that we need to already have a global truth predicate.

We must understand (*) to be not a genuine assertion, but rather a “schematic” assertion, something which only becomes a genuine assertion when some particular sentence is substituted for A. Thus, although we cannot quantify over A, we can legitimately use (*) to define the truth of individual sentences by saying things like “‘Snow is white’ is true if and only if snow is white.” Modulo finitistic concerns, we could even conjoin all substitution instances of (*), as A ranges over all the sentences of some language, and thereby produce a truth definition for that language. But this construction would have to take place within some (infinitary) metalanguage, and there would always be sentences in that metalanguage to which the truth predicate just defined did not apply. In particular, the truth definition would itself be such a sentence, as it could never appear in one of its own conjuncts.

But even this schematic interpretation does not straightforwardly work for sentences that themselves refer to truth. Assuming we have abandoned our naive intuition for truth and are now treating the word “true” as initially undefined, it follows that sentences that explicitly refer to truth are not initially meaningful and hence cannot be substituted into (*) to produce a definition of truth. That would be circular, because the substituted sentence needs to function assertorically on the right side of (*).

Despite this difficulty, there are ways to define truth predicates that apply in at least some cases to sentences which themselves contain truth predicates. The most obvious way to do this is, following Tarski, to construct a well-ordered sequence of truth predicates $true_\alpha$, each of which satisfies (*) when applied to sentences containing only truth predicates with lower indices. This resolves the circularity issue. Another natural approach, due to Kripke [1], is to work with a single truth predicate but to define its range of application in a well-ordered sequence of stages. The idea here is that even a partial definition of truth may be sufficient to give some sentences that contain the word “true” a definite truth value. So every time the range of application of the truth predicate grows, more sentences are assigned truth values, and this creates an opportunity to expand the range of application even further.

3.

Both the Tarskian and the Kripkean schemes are natural solutions of the problem of using (*) to define truth. However, neither can be considered a complete solution. There is a “revenge” problem arising from liar type sentences targeted specifically at the two constructions, namely the sentences “This sentence is not true_\alpha for any level \alpha of Tarski’s construction” and “This sentence does not evaluate as true at any stage of Kripke’s construction.” Provided that we are working with a language
that is sufficiently expressive to allow us to formulate these assertions, it is easy to see that, indeed, the first of them is not true, for any \(\alpha \), and the second does not evaluate as true at any stage. That is to say, both sentences can be proven. But the truth predicates we have constructed are evidently too limited to allow us to say that these sentences are true.

Thus, in both cases there are sentences that we can assert but whose truth we cannot assert, and this means that a further application of \((\ast)\) would, in both cases, lead to a truth predicate with broader scope. This phenomenon is obviously not specific to the two constructions under consideration. To describe it in general, we might wish to define a partial truth predicate to be any predicate \(T \) such that \(T(A) \rightarrow A \) holds for all sentences \(A \). This expresses the idea that everything recognized as true really is true, but some true sentences might not be recognized. We would then say that we have no single notion of truth; instead, we have a hierarchy of partial truth predicates, and there is a corresponding hierarchy of liar sentences, each of which escapes paradox by not falling within the scope of the truth predicate to which it refers. The lesson of the liar paradox would be that there is no maximal partial truth predicate.

However, we cannot do this. Our definition of partial truth predicates is illegitimate because the word “holds” functions as a synonym for “is true”. We might just as well say that \(T \) is a partial truth predicate if \(T(A) \rightarrow A \) is true for all sentences \(A \). In other words, we need to have a global truth predicate before we can say what constitutes a partial truth predicate. It really is necessary because both the \(T \) on the left and the \(A \) on the right of \(T(A) \rightarrow A \) must be assertoric, so without the intervention of a truth predicate they cannot be quantified. We discussed this kind of syntactic problem earlier.

This syntactic difficulty is genuine. If we allowed ourselves to ignore it then we would have to also allow a sentence which asserts that no partial truth predicate holds of itself. This sentence would be paradoxical in the same way as the original liar sentence since we could immediately substitute it into \((\ast)\) and obtain a partial truth predicate that applies to it. It therefore appears that the idea of partial truth is just as problematic as the idea of truth.

Consequently, although we can see that our ability to go beyond the Tarskian and Kripkean constructions is a general phenomenon, there is no obvious way for us to properly express this fact. This state of affairs is clearly unacceptable. We may have succeeded in convincing ourselves that our naive intuition for a global notion of truth is illusory, and this could make the ban on universally quantifying \((\ast)\) palatable. We can see it as accomplishing the benign task of preventing us from formulating a bad definition that affirms a faulty intuition and has paradoxical consequences. But our corresponding inability to define the notion of a partial truth predicate is harder to swallow. It is quite clear that we do have an open-ended ability to use \((\ast)\) to construct partial truth definitions, and yet somehow we cannot say this.

The same problem was actually present in our initial discussion of \((\ast)\). When we made the comment that \((\ast)\) could be used schematically to define the truth of any sentence, we did not notice that this statement, too, cannot be grammatically formulated unless a global truth predicate is already available. We cannot say “For any meaningful sentence \(A \), \((\ast)\) can be used to define a predicate \(T \) such that \(T(A) \leftrightarrow A \).” Proper syntax demands something like “For any meaningful sentence
A, (⋆) can be used to define a predicate T such that $T(A) \iff A$ is true" or "such that $T(A)$ is true if and only if A is true”, so again, we need to already have a global truth predicate.

4.

What has been missing from this discussion is an explicit acknowledgement of the constructive quality of Tarski’s biconditional. We alluded to it just now in our comment that we have an open-ended ability to construct partial truth definitions. It is inherent in the nature of (⋆) both that we have a global ability to use it to define truth in limited settings, and that we can always go beyond any such setting to produce a more inclusive definition. We are having difficulty precisely expressing this idea because we are trying to express it in classical terms.

Fortunately, there is a well-developed theoretical apparatus for dealing with constructive phenomena. We have a form of reasoning, intuitionistic logic, which is suited to this kind of setting, and we have an interpretation of the logical constants, the BHK or “proof” interpretation, which supports this form of reasoning. The identification of provability as the key primitive concept in terms of which constructive reasoning is based is crucial because it provides us with the linguistic tool that we need to handle use/mention problems of the type that arose in our attempts to define truth and partial truth. In particular, the constructivist solution to the problem of defining truth is to simply equate it with provability. Thus, letting $\Box A$ stand for “A is provable”, i.e., there exists a proof of A, we can say

$$A \text{ is constructively true } \iff \Box A. \quad (\star\star)$$

Observe that neither appearance of A in (⋆) is assertoric, so there is no syntactic obstruction to quantifying over A in this expression. We are free to say that for any sentence A, A is constructively true if and only if A is provable. Thus the constructive notion of truth is genuinely global in scope.

The other problematic aspect of (⋆), that it becomes circular when applied to sentences containing the word “true”, also does not translate to (⋆⋆). We take provability to be an objective notion that exists independently of our characterization of it, so that there is nothing ill-defined about the provability of sentences which themselves refer to provability.

The difficulty we encountered in trying to define partial truth predicates can be avoided in a similar way. We can define a predicate T to be a partial truth predicate if for any sentence A the implication $T(A) \rightarrow A$ is provable. This finesses the syntactic problem discussed earlier and provides us with a global notion of partial truth. We might also say that a sentence A falls within the scope of a partial truth predicate T if the biconditional $T(A) \iff A$ is provable, and that one partial truth predicate, T_1, is subordinate to another, T_2, if for every sentence A the implication $T_1(A) \rightarrow T_2(A)$ is provable. This enables us to make the comment that we tried to make earlier, about there being a hierarchy of partial truth predicates and a corresponding hierarchy of liar sentences.

Note that under the above definition of partial truth there is no requirement that the predicate T must itself be constructive. To the contrary, we can define partial truth predicates in wide generality using either Tarskian or Kripkean techniques. To give one example, we can define Goldbach’s conjecture to be true if and only if every even number greater than two is a sum of two primes. Whether Goldbach’s
conjecture has a constructive truth value is immaterial here; what matters is that under this definition Goldbach’s conjecture and the truth of Goldbach’s conjecture are provably equivalent. Thus, although the notion of what constitutes a partial truth predicate is constructive, partial truth predicates may themselves be highly nonconstructive.

A variety of notions of truth are available. There is a global constructive truth predicate and there is a hierarchy of classical truth predicates with limited scope. What we cannot have is a global classical truth predicate.

5.

Bringing constructive ideas into play has given us the ability to globally discuss partial truth predicates, but by introducing a new, constructive notion of truth it also exposes us to a new version of the liar paradox. What are we to make of the “provable liar” sentence that asserts of itself that it is not provable, or the sentence that asserts that no partial truth predicate provably holds of itself?

Since the notion of constructive truth is global in scope, the provable liar sentence cannot be handled in the same way as the classical liar sentence. On the other hand, a paradox is less immediate here because the validity of Tarski’s biconditional is not directly evident in the constructive setting. We cannot just assume that asserting A is equivalent to asserting that A is provable. There is clearly some relationship between the two statements, but we have to determine what that relationship is.

At first sight it appears that asserting A is provable is stronger than merely asserting A. In one direction, we have no reason to expect that every classically true statement must be provable. But in the other direction, it seems clear that valid reasoning must always lead to a true conclusion. If there is any doubt about this, surely we can simply build it into our notion of what counts as a valid proof. Thus, we can apparently affirm $\square A \rightarrow A$ but not its converse.

However, this reasoning assumes that we are using classical logic and that a classical notion of truth is available. If we are working in a setting in which atomic sentences might not have definite truth values, or we lack a classical truth predicate, then the conclusion we just reached must be reconsidered. First, there could be a problem with the argument that we are free to fiat that valid proofs respect classical truth; second, if a truth table definition of implication is unavailable, then we have to switch to a constructive interpretation of implication, which changes the nature of the question.

So before we go any further with the provable liar sentence we have to decide whether the concepts present in it should be understood classically or constructively. This comes down to the question of whether we have the right to assume that $\square A$ has a definite truth value for every sentence A.

In the constructivist literature one sometimes sees the claim that every assertion of the form “p proves A” not only has a definite truth value but is even, in principle, decidable true or false. However, this may be another case where our intuition is developed on the basis of unproblematic cases and becomes unreliable when we have to deal with self-referential phenomena. There could be situations where in the course of assessing the validity of some alleged proof we need to first assess the validity of some other alleged proof, and this creates the possibility for a vicious circle.
For instance, let A be the sentence “The sentence p is not a proof of this sentence” and let p be the sentence “By inspection, this sentence is not a proof of the sentence A.” If p is a proof of A then a falsehood is provable, so we surely want to say that p does not prove A. However, decidability of the proof relation implies that if p does not prove A, then this can be seen by inspection. If we accept this principle and we agree that p does not prove A then we should also agree that the argument “By inspection, p is not a proof of A” is a valid proof of the fact that p is not a proof of A, which is just to say that we have to agree that p is a proof of A. So there is a paradox.

A contradiction can be avoided by adopting the position that p is not a proof of A, but that this cannot be seen by inspection. But this does not really help, because if some argument has to be made to show that p is not a proof of A then we ought to be able to incorporate that argument into p. For instance, we could replace p with the sentence “If this sentence were a proof of A then a falsehood would be provable, so this sentence is not a proof of A” or something of that sort. A moment’s thought shows that the even more extreme position that p is not a proof of A, but there is no way to see this, is straightforwardly self-defeating. (How could we know this?)

The explicit labelling of A and p is not necessary either. We could take A to be, say, the sentence “There is no proof of this sentence that is fewer than 1,000 characters long” and p to be the sentence “By inspection, no string of fewer than 1,000 characters is a proof of the sentence ‘There is no proof of this sentence that is fewer than 1,000 characters long’.” (Or: if any such string were a proof of that sentence then a falsehood would be provable, so no such string is a proof of that sentence.)

What the preceding should show is that it is not so clear that every statement of the form “p proves A” has a decidable (or even definite) truth value. We must be careful to distinguish decidability of the proof relation from the weaker claim that any proof can be recognized to be a proof. The latter clearly is inherent in our notion of what proofs are; if a proof is an argument which is completely persuasive to a rational mind, then certainly, in order for something to count as a proof its validity must in principle be recognizable. But to infer decidability of the proof relation we would have to be able to also affirm that anything which is not a proof can be recognized not to be a proof. (Any Turing machine which halts on null input can be recognized to halt on null input, but that does not mean we can always decide whether a given Turing machine halts on null input.) This direction is not obviously inherent in our notion of proof.

We conclude that reasoning classically about the general notion of provability is unjustified. We have to reason constructively.

6.

Since the provable liar sentence explicitly involves the general notion of provability, it must be understood constructively. We now need to determine the relationship between A and $\square A$ under constructive logic. The relevant question is whether it is always possible to convert a proof of A into a proof of $\square A$, and vice versa.

First, we need to clarify what would constitute a proof of $\square A$. By definition, to say that A is provable is to say that there exists a proof of A. So, letting $p \vdash A$ stand for “p proves A”, a proof of $\square A$ is a proof of $(\exists p)(p \vdash A)$. But if we are
reasoning constructively, any existence proof should in principle provide an explicit instance. So \(q \) is a proof of \(\square A \) if and only if, for some \(p \), \(q \) proves \(p \vdash A \).

Consider the implication \(A \to \square A \). To prove this implication we must show how to convert any proof of \(A \) into a proof of \(\square A \). But when we are compelled by a proof \(p \) to affirm an assertion \(A \), we are simultaneously compelled to affirm the assertion that \(p \) proves \(A \). (If we do not realize that we have proven \(A \), then we have not proven \(A \).) Thus, whenever \(p \) proves \(A \) it also proves \(p \vdash A \). So any proof of \(A \) is also a proof of \(\square A \), and this shows that the law \(A \to \square A \) is constructively valid.

Now consider the converse implication \(\square A \to A \). Here we must show how to convert any proof of \(\square A \) into a proof of \(A \). The obvious procedure in this case is, given \(p \) and \(q \) such that \(q \) proves that \(p \) proves \(A \), to discard \(q \) and return \(p \). This procedure succeeds if, whenever \(q \) proves that \(p \) proves \(A \), \(p \) actually does prove \(A \). Informally, we need to know that proofs are reliable. But that is just what we are trying to verify: in order to establish that \(\square A \) implies \(A \), we already need to know that \(\square (p \vdash A) \) implies \(p \vdash A \). In contrast to the \(A \to \square A \) direction, in this direction the special case of statements of the form \(p \vdash A \) is no more evident than the general case. The obvious attempt to justify the law \(\square A \to A \) is therefore circular.

In any instance where we have actually proven \(\square A \), i.e., we have proven that some \(p \) proves \(A \), we ought to be willing to accept \(p \) as a proof of \(A \) and therefore infer \(A \). Making this deduction requires only that we accept the reliability of the proof we have just given, not the global reliability of all proofs. So the passage from \(\square A \) to \(A \) manifests as a deduction rule rather than an implication.

Can we build reliability into our notion of valid proof? That is, can we modify our concept of proof so as to explicitly include the requirement that whenever \(p \) proves \(A \), \(A \) is true? In order to modify our notion of proof in this way we would need to use a classical truth predicate. But until the meaning of provability is settled, a classical truth predicate is not available for sentences like the provable liar which explicitly refer to the notion of provability. We cannot use (\(\ast \)) to define truth for any sentence whose meaning is not settled, and we have not settled the meanings of sentences which involve the notion of provability until we have specified our notion of proof. So a classical truth predicate for such sentences is not available for us to use when we are at the stage of specifying what counts as a proof. Therefore, in this setting we cannot incorporate the requirement that only true sentences are provable into our concept of proof.

All our attempts to justify the law \(\square A \to A \) under a constructive interpretation of implication are ultimately circular. So we cannot assume this law is generally valid. Only the direction \(A \to \square A \) can be universally asserted.

It may be helpful here to note that a similar restriction appears when we follow Kripke’s prescription for using (\(\ast \)) to generate a self-applicative truth predicate. At any stage of the construction we are free to affirm that the currently available predicate is sound, i.e., satisfies the law \(T(A) \to A \). That is, we can prove this implication for any sentence \(A \) which lies within the current scope of \(T \). However, when extending the current predicate we do not assume that subsequent stages will be sound. That would be patently circular, and it would generate a contradiction in the following way. If we assume that all future extensions of the truth predicate we are constructing will be sound, then a short deduction shows that the liar sentence
which states that it does not evaluate as true at any stage will, indeed, not evaluate as true at any stage. Thus, the soundness of all future stages entails this liar sentence, and this is all we need to know in order to be justified in designating this liar sentence as true at the next stage. In other words, it is only the possibility that the liar sentence might be recognized as true at some future stage that prevents us from recognizing it as true now. The lesson is that it is appropriate to affirm the soundness of earlier stages, but wrong and dangerous to assume the soundness of later stages. We may anticipate that future stages will be sound, but we cannot employ this as a premise when generating the next stage.

The analogy is that disallowing □A → A as a proof principle involves a similar restriction. Just as we cannot employ the premise that a not yet fully defined truth predicate is globally sound in order to establish that a given sentence is true, we cannot employ the premise that proofs are globally sound in order to establish that a given proof is valid. Thus, since the justification of □A → A hinges on the global soundness of all proofs, this justification fails.

7.

We are now in a position to determine what can be said about the provable liar sentence. This sentence asserts that it is not provable, which we can express symbolically as L ≡ ¬□L. Now assuming L, we can immediately deduce ¬□L. But we can also deduce □L by using the general law A → □A. Combining these statements, we get that L entails a contradiction, which means that we have proven ¬L. It follows that we can also prove ¬¬□L.

But this does not directly lead to any paradox. If we could infer ¬□L from ¬L, then the two conclusions we just reached would yield a contradiction. But the implication goes in the other direction: in general we have ¬□A → ¬A, not conversely.

A minor variation on the provable liar sentence is the sentence which asserts that its negation is provable. Here the formalization is L′ ≡ □(¬L′), and we reach slightly different conclusions. The results in this case are ¬¬L′ and L′ → □⊥, where ⊥ represents falsehood. Since ¬A equals A → ⊥ by definition, we may say that the weaker statement A → □⊥ represents “weak” falsity of A. Thus the conclusions we reach are that ¬L′ is false and L′ is weakly false.

In order to satisfy ourselves about the consistency of this kind of reasoning, we can set up a formal constructive self-referential propositional calculus. This is done in [3], and we show there that the system is consistent. Thus we are able to reach the substantive conclusions about L and L′ mentioned above without producing a contradiction.

The analysis of the sentence which asserts that no partial truth predicate provably holds of itself is similar. Again, the absence of the law □A → A blocks the paradox. In the case of the provability paradox discussed in Section 4, the result is that “p is a proof of A” is weakly false and “p is not a proof of A” is false.

Earlier we asserted that there can be no global classical truth predicate. The way to make this idea precise is to assume that there is a predicate T such that the biconditional T(A) ↔ A is provable for all sentences A; then taking A to be the corresponding liar sentence allows us to deduce □⊥. So we conclude that the existence of such a predicate is weakly false.
8.

To summarize: the classical liar paradox is vacuous because there is no global classical truth predicate. We are only able to define predicates which satisfy Tarski’s biconditional in limited settings. But the global assertion that a truth definition can be given for any meaningful sentence cannot be stated classically, only constructively.

In the constructive setting truth is equated with provability, and this is a global notion. Therefore we do have a genuine constructive liar sentence. But here there is no paradox because neither the law of excluded middle nor the law □A → A can be universally affirmed.

Attempts to deal with the liar paradox typically propose some sort of restriction on meaningful or acceptable sentences and then observe that the liar sentence violates it. But the justification of the restriction, or even its mere expression, invariably violates the very same principle, making the whole account self-defeating. We cannot reject all ungrounded assertions because the sentence which expresses this prohibition is itself ungrounded. We cannot stratify sentences into types because the assertion that every sentence has a type does not itself have a type. We cannot demand that every sentence be restricted to some local context because that demand itself would have to be restricted to some local context. And so on.

This is just a consequence of treating a constructive phenomenon as if it were classical. Indeed, no satisfactory classical conclusion can be drawn about the provable liar sentence: coming to a firm conclusion about its truth or falsehood would spell disaster either way. The way forward is to avoid contradiction by leaving open the possibility that the liar sentence might be recognized as having a definite truth value. This outcome would be disastrous, but that does not license us to deny its possibility. And that is good, because not denying this possibility is exactly what blocks the paradox.

References

[1] S. Kripke, Outline of a Theory of Truth, Journal of Philosophy 72 (1975), 690-716.
[2] A. Tarski, The semantic conception of truth, Philosophy and Phenomenological Research 4 (1944), 13-47.
[3] N. Weaver, The semantic conception of proof, manuscript.

Department of Mathematics, Washington University in Saint Louis, Saint Louis, MO 63130
E-mail address: nweaver@math.wustl.edu

1See http://www.math.wustl.edu/~nweaver/conceptualism.html