Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding

B. O’Donoghue E. Chu N. Parikh S. Boyd

Convex Optimization and Beyond, Edinburgh, 11/6/2104
Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions
Cone programming

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax + s = b, \quad s \in \mathcal{K}
\end{align*}
\]

- variables \(x \in \mathbb{R}^n \) and (slack) \(s \in \mathbb{R}^m \)
- \(\mathcal{K} \) is a proper convex cone
 - \(\mathcal{K} \) nonnegative orthant \(\rightarrow \) LP
 - \(\mathcal{K} \) Lorentz cone \(\rightarrow \) SOCP
 - \(\mathcal{K} \) positive semidefinite matrices \(\rightarrow \) SDP
- the ‘modern’ canonical form for convex optimization
- popularized by Nesterov, Nemirovsky, others, in 1990s
Cone programming

- parser/solvers like CVX, CVXPY, YALMIP translate or canonicalize to cone problems
- focus has been on symmetric self-dual cones
- for medium scale problems with enough sparsity, interior-point methods reliably attain high accuracy
- but they scale superlinearly in problem size
- open source software (SDPT3, SeDuMi, ...) widely used
This talk

a new first order method that

- solves general cone programs
- finds primal and dual solutions, or certificate of primal/dual infeasibility
- obtains modest accuracy quickly
- scales to large problems and is easy parallelized
- is matrix-free: only requires $z \rightarrow Az$, $w \rightarrow A^T w$
Some previous work

- projected subgradient type methods (Polyak 1980s)
- primal-dual subgradient methods (Chambelle-Pock 2011)
- matrix-free interior-point methods (Gondzio 2012)
- can use iterative linear solver (CG) in any interior-point method
Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Homogeneous embedding
Primal-dual cone problem pair

primal and dual cone problems:

minimize \(c^T x \)
subject to \(Ax + s = b \)
\((x, s) \in \mathbb{R}^n \times \mathcal{K} \)

maximize \(-b^T y \)
subject to \(-A^T y + r = c \)
\((r, y) \in \{0\}^n \times \mathcal{K}^* \)

- primal variables \(x \in \mathbb{R}^n, s \in \mathbb{R}^m \); dual variables \(r \in \mathbb{R}^n, y \in \mathbb{R}^m \)
- \(\mathcal{K}^* \) is dual of closed convex proper cone \(\mathcal{K} \)
- note that \(\mathbb{R}^n \times \mathcal{K} \) and \(\{0\}^n \times \mathcal{K}^* \) are dual cones
Example cones

\(\mathcal{K} \) is typically a Cartesian product of smaller cones, e.g.,

- \(\mathbb{R}, \{0\}, \mathbb{R}_+ \)
- second-order cone \(Q = \{(x, t) \in \mathbb{R}^{k+1} | \|x\|_2 \leq t\} \)
- positive semidefinite cone \(\{X \in \mathbb{S}^k | X \succeq 0\} \)
- exponential cone \(\text{cl}\{(x, y, z) \in \mathbb{R}^3 | y > 0, \ e^{x/y} \leq z/y\} \)

these cones would handle almost all convex problems that arise in applications
Optimality conditions

KKT conditions (necessary and sufficient, assuming strong duality):

- primal feasibility: $Ax + s = b$, $s \in \mathcal{K}$
- dual feasibility: $A^T y + c = r$, $r = 0$, $y \in \mathcal{K}^*$
- complementary slackness: $y^T s = 0$
 equivalent to zero duality gap: $c^T x + b^T y = 0$
Primal-dual embedding

- KKT conditions as feasibility problem: find

\[(x, s, r, y) \in \mathbb{R}^n \times \mathcal{K} \times \{0\}^n \times \mathcal{K}^*\]

that satisfy

\[
\begin{bmatrix}
 r \\
 s \\
 0
\end{bmatrix} = \begin{bmatrix} 0 & A^T \\ -A & 0 \\ c^T & b^T \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} c \\ b \\ 0 \end{bmatrix}
\]

- reduces solving cone program to finding point in intersection of cone and affine set

- no solution if primal or dual problem infeasible/unbounded
Homogeneous self-dual (HSD) embedding

(Ye, Todd, Mizuno, 1994)

- find nonzero

\[(x, s, r, y) \in \mathbb{R}^n \times \mathcal{K} \times \{0\}^n \times \mathcal{K}^*, \quad \tau \geq 0, \quad \kappa \geq 0\]

that satisfy

\[
\begin{bmatrix}
 r \\
 s \\
 \kappa
\end{bmatrix} =
\begin{bmatrix}
 0 & A^T & c \\
 -A & 0 & b \\
 -c^T & -b^T & 0
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 \tau
\end{bmatrix}
\]

- this feasibility problem is homogeneous and self-dual

- \(\tau = 1, \kappa = 0\) reduces to primal-dual embedding

- due to skew symmetry, any solution satisfies

\[(x, y, \tau) \perp (r, s, \kappa), \quad \tau \kappa = 0\]
any HSD solution \((x, s, r, y, \tau, \kappa)\) falls into one of three cases:

1. \(\tau > 0, \kappa = 0\): \((\hat{x}, \hat{y}, \hat{s}) = (x/\tau, y/\tau, s/\tau)\) is a solution

2. \(\tau = 0, \kappa > 0\): in this case \(c^T x + b^T y < 0\)
 - if \(b^T y < 0\), then \(\hat{y} = y/(-b^T y)\) certifies primal infeasibility
 - if \(c^T x < 0\), then \(\hat{x} = x/(-c^T x)\) certifies dual infeasibility

3. \(\tau = \kappa = 0\): nothing can be said about original problem (a pathology)
Homogeneous primal-dual embedding

HSD embedding

- obviates need for phase I / phase II solves to handle infeasibility/unboundedness
- is used in all interior-point cone solvers
- is a particularly nice form to solve
 (for reasons not completely understood)
Notation

- define

\[
 u = \begin{bmatrix} x \\ y \\ \tau \end{bmatrix}, \quad v = \begin{bmatrix} r \\ s \\ \kappa \end{bmatrix}, \quad Q = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix}
\]

- HSD embedding is: find \((u, v)\) that satisfy

\[
 v = Qu, \quad (u, v) \in C \times C^*
\]

with \(C = \mathbb{R}^n \times \mathcal{K}^* \times \mathbb{R}_+\)
Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Operator splitting
Consensus problem

- consensus problem:

 minimize \(f(x) + g(z) \)

 subject to \(x = z \)

- \(f, g \) convex, not necessarily smooth, can take infinite values

- \(p^* \) is optimal objective value
Alternating direction method of multipliers

- ADMM is: for $k = 0, \ldots,$

$$x^{k+1} = \arg\min_x \left(f(x) + \left(\frac{\rho}{2}\right)\|x - z^k - \lambda^k\|_2^2\right)$$

$$z^{k+1} = \arg\min_z \left(g(z) + \left(\frac{\rho}{2}\right)\|x^{k+1} - z - \lambda^k\|_2^2\right)$$

$$\lambda^{k+1} = \lambda^k - x^{k+1} + z^{k+1}$$

- $\rho > 0$ step-size
- λ (scaled) dual variable for $x = z$ constraint
- same as many other operator splitting methods for consensus problem, e.g., Douglas-Rachford method
Convergence of ADMM

under benign conditions ADMM guarantees:

- $f(x^k) + g(z^k) \to p^*$
- $\lambda^k \to \lambda^*$, an optimal dual variable
- $x^k - z^k \to 0$
ADMM applied to HSD embedding

- HSD in consensus form

\[
\begin{align*}
\text{minimize} & \quad l_{C \times C^*}(u, v) + l_{Q_{\tilde{u} = \tilde{v}}}(\tilde{u}, \tilde{v}) \\
\text{subject to} & \quad (u, v) = (\tilde{u}, \tilde{v})
\end{align*}
\]

\(l_S\) is indicator function of set \(S\)

- ADMM is:

\[
\begin{align*}
(\tilde{u}^{k+1}, \tilde{v}^{k+1}) &= \Pi_{Q_{u = v}}(u^k + \lambda^k, v^k + \mu^k) \\
u^{k+1} &= \Pi_C(\tilde{u}^{k+1} - \lambda^k) \\
v^{k+1} &= \Pi_{C^*}(\tilde{v}^{k+1} - \mu^k) \\
\lambda^{k+1} &= \lambda^k - \tilde{u}^{k+1} + u^{k+1} \\
\mu^{k+1} &= \mu^k - \tilde{v}^{k+1} + v^{k+1}
\end{align*}
\]

\(\Pi_S(x)\) is Euclidean projection of \(x\) onto \(S\)
Simplifications

(straightforward, but not immediate)

- if $\lambda^0 = v^0$ and $\mu^0 = u^0$, then $\lambda^k = v^k$ and $\mu^k = u^k$ for all k
- simplify projection onto $Qu = v$ using $Q^T = -Q$
- nothing depends on \tilde{v}^k, so can be eliminated
Final algorithm

- for $k = 0, \ldots,$

\[
\begin{align*}
\tilde{u}^{k+1} &= (I + Q)^{-1}(u^k + v^k) \\
u^{k+1} &= \Pi_C (\tilde{u}^{k+1} - v^k) \\
v^{k+1} &= v^k - \tilde{u}^{k+1} + u^{k+1}
\end{align*}
\]

- parameter free
- homogeneous
- same complexity as ADMM applied to primal or dual alone
Variation: Approximate projection

- replace exact projection with any \tilde{u}^{k+1} that satisfies

$$\|\tilde{u}^{k+1} - (I + Q)^{-1}(u^k + v^k)\|_2 \leq \mu^k,$$

where $\mu^k > 0$ satisfy $\sum_k \mu_k < \infty$

- useful when an iterative method is used to compute \tilde{u}^{k+1}

- implied by the (more easily verified) inequality

$$\|(Q + I)\tilde{u}^{k+1} - (u^k + v^k)\|_2 \leq \mu^k$$

by skew-symmetry of Q
Convergence

can show the following (even with approximate projection):

- for all iterations $k > 0$ we have
 \[u^k \in C, \quad v^k \in C^*, \quad (u^k)^T v^k = 0 \]
- as $k \to \infty$,
 \[Qu^k - v^k \to 0 \]
- with $\tau^0 = 1, \kappa^0 = 1$, (u^k, v^k) bounded away from zero
Solving the linear system

\[\begin{bmatrix} I & A^T & c \\ -A & I & b \\ -c^T & -b^T & 1 \end{bmatrix} \begin{bmatrix} \tilde{u}_x \\ \tilde{u}_y \\ \tilde{u}_\tau \end{bmatrix} = \begin{bmatrix} w_x \\ w_y \\ w_\tau \end{bmatrix} \]

\(\Rightarrow \) let

\[M = \begin{bmatrix} I & A^T \\ -A & I \end{bmatrix}, \quad h = \begin{bmatrix} c \\ b \end{bmatrix} \]

so

\[I + Q = \begin{bmatrix} M & h \\ -h^T & 1 \end{bmatrix} \]

\(\Rightarrow \) it follows that

\[\begin{bmatrix} \tilde{u}_x \\ \tilde{u}_y \end{bmatrix} = (M + hh^T)^{-1} \left(\begin{bmatrix} w_x \\ w_y \end{bmatrix} - w_\tau h \right), \]
Solving the linear system, contd.

- applying matrix inversion lemma to \((M + hh^T)^{-1}\) yields

\[
\begin{align*}
\begin{bmatrix}
\tilde{u}_x \\
\tilde{u}_y
\end{bmatrix} &= \left(M^{-1} - \frac{M^{-1}hh^TM^{-1}}{1 + h^T M^{-1}h} \right) \begin{bmatrix} w_x \\
w_y \end{bmatrix} - w_\tau h
\end{align*}
\]

and

\[
\tilde{u}_\tau = w_\tau + c^T \tilde{u}_x + b^T \tilde{u}_y
\]

- first compute and cache \(M^{-1}h\)

- so each iteration requires that we compute

\[
M^{-1} \begin{bmatrix} w_x \\
w_y \end{bmatrix}
\]

and perform vector operations with cached quantities
Direct method

- to solve
\[
\begin{bmatrix}
I & -A^T \\
-A & -I
\end{bmatrix}
\begin{bmatrix}
z_x \\
z_y
\end{bmatrix} =
\begin{bmatrix}
w_x \\
w_y
\end{bmatrix}
\]

- compute sparse permuted LDL factorization of matrix

- re-use cached factorization for subsequent solves

- factorization guaranteed to exist for all permutations, since matrix is symmetric quasi-definite
Indirect method

- by elimination

\[z_x = (I + A^T A)^{-1}(w_x - A^T w_y) \]
\[z_y = w_y + Az_x \]

- can apply *conjugate gradient (CG)* to first equation

- CG requires only multiplies by \(A \) and \(A^T \)

- terminate CG iterations when residual smaller than \(\mu^k \)

- easily parallelized; can exploit warm-starting

Operator splitting
Scaling / preconditioning

convergence greatly improved by scaling / preconditioning:

- replace original data A, b, c with $\hat{A} = DAE$, $\hat{b} = Db$, $\hat{c} = Ec$
- D and E are diagonal positive; D respects cone boundaries
- D and E chosen by equilibrating A (details in paper)
- stopping condition retains unscaled (original) data
Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions
SCS software package

- available from:
 https://github.com/cvxgrp/scs
- written in C with matlab and python hooks
- can be called from CVX and CVXPY
- solves LPs, SOCPs, ECPs, and SDPs
- includes sparse direct and indirect linear system solvers
- can use single or double precision, ints or longs for indices
Portfolio optimization

- $z \in \mathbb{R}^p$ gives weights of (long-only) portfolio with p assets
- maximize risk-adjusted portfolio return:
 \[
 \text{maximize } \mu^T z - \gamma (z^T \Sigma z)
 \]
 subject to
 \[
 1^T z = 1, \quad z \geq 0
 \]
- μ, Σ are return mean, covariance
- $\gamma > 0$ is risk aversion parameter
- Σ given as factor model $\Sigma = FF^T + D$
- $F \in \mathbb{R}^{q \times p}$ is factor loading matrix
- can be transformed to SOCP

Numerical results
Portfolio optimization results

	5000	50000	100000
assets p			
factors q	50	500	1000
SOCP variables n	5002	50002	100002
SOCP constraints m	10055	100505	201005
nonzeros in A	3.8×10^4	2.5×10^6	1.0×10^7

SDPT3:
- solve time: 1.14 sec, 17836.7 sec, OOM

SCS direct:
- solve time: 0.17 sec, 4.7 sec, 37.1 sec
- iterations: 420, 340, 760

SCS indirect:
- solve time: 0.23 sec, 12.2 sec, 101 sec
- average CG iterations: 1.62, 1.39, 1.82
- iterations: 400, 400, 800
\(\ell_1 \)-regularized logistic regression

- fit logistic model, with \(\ell_1 \) regularization
- data \(z_i \in \mathbb{R}^p, i = 1, \ldots, q \) with labels \(y_i \in \{-1, 1\} \)
- solve

\[
\text{minimize} \quad \sum_{i=1}^{q} \log(1 + \exp(y_i w^T z_i)) + \mu \| w \|_1
\]

over variable \(w \in \mathbb{R}^p; \mu > 0 \) regularization parameter
- can be transformed to exponential cone program (ECP)

Numerical results
\(\ell_1 \)-regularized logistic regression results

	small	medium	large
features \(p \)	600	2000	6000
samples \(q \)	3000	10000	30000
ECP variables \(n \)	10200	34000	102000
ECP constraints \(m \)	22200	74000	222000
nonzeros in \(A \)	\(1.9 \times 10^5 \)	\(1.9 \times 10^6 \)	\(1.7 \times 10^7 \)

SCS direct:

	small	medium	large
solve time	22.1 sec	165 sec	1020 sec
iterations	280	660	1240

SCS indirect:

	small	medium	large
solve time	24.0 sec	199 sec	1290 sec
average CG iterations	2.00	2.49	2.82
iterations	300	760	1320
Large random SOCP

- randomly generated SOCP with known optimal value
- \(n = 1.6 \times 10^6 \) variables, \(m = 4.8 \times 10^6 \) constraints
- \(2 \times 10^9 \) nonzeros in \(A \), 22.5Gb memory to store
- indirect solver, tolerance \(10^{-3} \), parallelized over 32 threads
- results:
 - 740 SCS iterations, about 5000 matrix multiplies
 - 10 hours wall-clock time
 - \(|c^T x - c^T x^*| / |c^T x^*| = 7 \times 10^{-4}\)
 - \(|b^T y - b^T y^*| / |b^T y^*| = 1 \times 10^{-3}\)
Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions
Conclusions

- HSD embedding is great for first-order methods
- diagonal preconditioning critical
- matrix-free algorithm: only $z \rightarrow Az$, $w \rightarrow A^T w$
- SCS is now standard large scale solver in CVXPY