Research Article

In silico analysis for transcription factors with Zn(II)$_2$C$_6$ binuclear cluster DNA-binding domains in *Candida albicans*

Sergi Maicas1, Inmaculada Moreno2, Almudena Nieto2, Micaela Gómez1, Rafael Sentandreu2 and Eulogio Valentín2*

1Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100-Burjassot, Valencia, Spain
2Departamento de Microbiología y Ecología, Universitat de València, 46100-Burjassot, Valencia, Spain

*Correspondence to: Eulogio Valentín, Departamento de Microbiología y Ecología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés i Estellés s/n, 46100-Burjassot, Valencia, Spain. E-mail: Eulogio.Valentin@uv.es

Received: 3 March 2005
Revised: 26 May 2005
Accepted: 5 September 2005

Abstract

A total of 6047 open reading frames in the *Candida albicans* genome were screened for Zn(II)$_2$C$_6$-type zinc cluster proteins (or binuclear cluster proteins) involved in DNA recognition. These fungal proteins are transcription regulators of genes involved in a wide range of cellular processes, including metabolism of different compounds such as sugars or amino acids, as well as multi-drug resistance, control of meiosis, cell wall architecture, etc. The selection criteria used in the sequence analysis were the presence of the Cys$_{X2}$Cys$_{X6}$Cys$_{X5–16}$Cys$_{X2}$Cys$_{X6}$--8 Cys motif and a putative nuclear localization signal. Using this approach, 70 putative Zn(II)$_2$C$_6$ transcription factors have been found in the genome of *C. albicans*. Copyright © 2006 John Wiley & Sons, Ltd.

Keywords: *Candida albicans*; transcription factor; Zn(II)$_2$C$_6$ domain; binuclear cluster proteins

Introduction

Biological systems contain an important group of proteins characterized by their ability for DNA binding and participation in important processes, such as DNA replication and repair and transcription gene control. Gene expression can be controlled at various levels, including transcription, mRNA splicing, mRNA stability, translation and even post-translation events, such as protein stability and modification. There are many regulatory sequences in genes that bind various transcription factors. These regulatory sequences are essentially located upstream (5') of the transcription initiation site, although some elements occur downstream (3') or even within the genes themselves. The number and type of regulatory elements are variable for each gene. Moreover, various cell types express characteristic combinations of transcription factors; this is the major mechanism for cell-type specificity in the regulation of gene expression.

Transcription factors have been grouped in different families as a function of their DNA binding domains. These DNA binding domains comprise the fungal helix-loop-helix (HLH), helix-turn-helix (HTH), high mobility group (HMG) box, basic region–leucine zipper (bZIP), MADS box, TEA/ATTS domain, the zinc(II) coordinating Cys$_2$His$_2$, Cys$_2$X$_{17}$Cys$_2$ (GATA), copper DNA binding, heat shock transcription factor (HSTF) and Zn(II)$_2$C$_6$ binuclear cluster (Klug and Rhodes, 1987; Davis and Hynes 1987; Furst et al., 1988; Nehlin and Ronne, 1990; Burglin, 1991; Jakobsen and Pelham, 1991; Todd and Andrianopoulos, 1997; Kohler et al., 2002).

In fungi such as *Saccharomyces cerevisiae* (Pan and Coleman 1990; Akache et al., 2001), *Aspergillus flavus* (Woloshuk et al., 1994), *A. nidulans* (Ascone et al., 1997), *Fusarium solani* (Li and Kolattukudy, 1997), *A. niger* (Todd et al., 1997), *Kluyveromyces lactis* (Breunig and Kuger, 1987), *Neurospora crassa* (Yuan et al., 1991) and
Schizosaccharomyces pombe (Tang et al., 1994), an important set of transcription factors is composed by a sub-family of zinc finger proteins named zinc cluster proteins or binuclear cluster proteins, Zn(II)$_2$C$_6$, characterized by containing the well-conserved motif Cys$_X$2Cys$_X$6Cys$_X$5−16Cys$_X$2Cys$_X$6−8Cys$_X$5−16Cys$_X$2Cys$_X$6−8Cys (Figure 1), with cystein residues binding to two zinc atoms which coordinate folding of the domain (Vallee et al., 1991). In C. albicans only four Zn(II)$_2$C$_6$ proteins have been reported (Kelly and Kwon-Chung, 1992; Whiteway et al., 1992; Talibi and Raymond, 1999, Moreno et al., 2003). In the present study, we have taken a sequence-dependent approach to identify new Zn(II)$_2$C$_6$ ORFs by screening the genome database of C. albicans for Zn(II)$_2$C$_6$ transcription factors by an in silico analysis.

Materials and methods

The BLAST utility provided by the C. albicans genome database (http://www.pasteur.fr/recherche/unites/GalarFungail; Altschul et al., 1997) was used to search for putative transcription factors containing the Zn(II)$_2$C$_6$ binuclear motif. The C. albicans putative Zn(II)$_2$C$_6$ proteins were aligned using the ClustalW online interface (http://www.ebi.ac.uk/clustalw; Thompson et al., 1994) and manual alignment. After the alignment, the output data were submitted to the Phylip drawtree web interface utility at the Institute Pasteur (http://bioweb.pasteur.fr/sequanl/interfaces/drawgram.html; Lim and Zhang, 1999) to get the phenogram. Comparative analysis between S. cerevisiae and C. albicans Zn(II)$_2$C$_6$ putative transcription factors was carried out by reciprocal analysis of the SGD (http://www.yeastgenome.org) and C. albicans database entries. SCANPROSITE (http://www.expasy.org/tools/scanprosite; Gattiker et al., 2002) was also used for proteins matching the consensus sequence. PSORTII (http://psort.ims.u-tokyo.ac.jp; Horton and Nakai, 1997) was used for subcellular localization prediction. The potential of dimerization via Zn(II)$_2$C$_6$ structures was investigated using the COILS program (http://www.ch.embnet.org/software/COILS.html; Lupas et al., 1991) as described by Taylor and Zhulin (1999).

Results and discussion

In silico screening for potential Zn(II)$_2$C$_6$ transcription factors

The determination of the complete genomic sequence of Candida albicans (http://www-sequence.standford.edu/group/candida), annotated by the European Consortium Galar Fungail (http://www.pasteur.fr/recherche/unites/GalarFungail), has allowed us to search for new putative transcription factors containing the Zn(II)$_2$C$_6$ binuclear motif. The criterion used for selection was the presence of the Cys$_X$2Cys$_X$6Cys$_X$5−16Cys$_X$2Cys$_X$6−8Cys cysteine pattern. All the 6047 C. albicans ORFs were screened, based on this criterion, and a set of 70 potential Zn(II)$_2$C$_6$ transcription factors, including the four previously known Zn(II)$_2$C$_6$ proteins, viz. CaFcr1p, CaSuc1p, CaCzf1p and CaCwt1p, was generated (Table 1). In the complete genome of S. cerevisiae a total of 58 Zn(II)$_2$C$_6$ proteins have been reported (Akache et al., 2001).

Structure of the Zn(II)$_2$C$_6$ domain

The characteristic DNA binding domain of Zn(II)$_2$C$_6$ proteins contains a highly-conserved Cys$_X$2Cys$_X$6Cys$_X$5−16Cys$_X$2Cys$_X$6−8Cys cysteine motif, which was first described in S. cerevisiae (Pan and Coleman, 1990). In this motif the six cysteine residues

Figure 1. Schematic representation of a characteristic C. albicans Zn(II)$_2$C$_6$ domain. The structure was produced by threading it to the S. cerevisiae Cyp1 (Hap1) DNA binding domain (PDB: 1PYC) by using the JIGSAW utility (http://www.bmm.icnet.uk/servers/3djigsaw; Bates and Sternberg, 1999). The position of the six cysteines is annotated. The figure was generated using the Swiss Pdb-viewer (Guex and Peitsch, 1997).
Table 1. Alternative names for Zn(II)$_2$Cys$_6$ proteins used in Candida DB (C. albicans DataBase at http://genolist.pasteur.fr/CandidaDB), SGTC (Stanford Genome Technology Center at http://www-sequence.sandford.edu) and CYGD (Comprehensive Yeast Genome Database at http://pedant.gsf.de)

Candida DB	SGTC	CYGD
IPF1003	orf19.5940	CA6113
IPF376	orf19.7518	CA5860
IPF776	orf19.5338	CA5497
IPF907	orf19.7583	CA5985
IPF928	orf19.7570	CA5976
IPF1034	orf19.4573	CA1083
IPF1040	orf19.4568	CA1544
IPF1196	orf19.2077	CA4820
IPF1264	orf19.7371	CA5669
IPF1266	orf19.7372	CA5670
IPF1292	orf19.7381	CA5678
IPF1457	orf19.6038	CA4901
IPF1960.5f	orf19.7318	CA5554
IPF20023	orf19.6985	CA5031
IPF20024	orf19.3012	CA5048
ARG81	orf19.4766	CA1175
CAT8	orf19.5097	CA2219
CTA7	orf19.4288	CA3060
CZF1	orf19.3127	CA3560
DALB1	orf19.3252	CA5449
ECM22	orf19.2623	CA0471
FCRI	orf19.6817	CA5890
LEU3	orf19.4225	CA4146
LYS14	orf19.5548	CA0404
PPR1	orf19.3986	CA4758
PUT3	orf19.6203	CA3214
RGT1	orf19.2747	CA1172
SEFI	orf19.3753	CA2346
SEFI1.5eoc	orf19.1926	CA0395
STB5	orf19.3308	CA4617
SUC1	orf19.7319	CA5555

Another important amino acid residue in DNA binding is a lysine residue localized between Cys$_2$ and Cys$_3$ (Figure 2). In some S. cerevisiae Zn(II)$_2$Cys$_6$ proteins such as Gal4p and Pdr1p (Laughon and Gesteland, 1984), this lysine residue is responsible for the specific contact with the CGG triplet in the DNA. This lysine residue is conserved in 57 of the C. albicans Zn(II)$_2$Cys$_6$ putative transcription factors (Figure 2), whereas 13 sequences contain arginine or histidine instead.

The subregion between Cys$_3$ and Cys$_4$ is highly variable. Although most of the motifs have a six
Figure 2. Alignment of the C₄ zinc cluster region in C. albicans proteins. The colour code is as follows: Cys, yellow and highlighted; Arg, His and Lys, blue (residues making specific DNA contact are also highlighted and in italics); Met, Val, Leu, Ala and Ile, grey; Glu, Asp, pink; Phe, Tyr and Trp, purple; Gln, Ser, Asn and Thr, green; Gly and Pro, red.
amino acid residues extension, its variability ranges from five to 16 residues. A proline residue is present in almost all the ORFs identified (Figure 2), maybe involved in the turn required between the two α-helix subregions. The subregions between Cys2 and Cys3 and between Cys5 and Cys6 are rich in basic amino acids. A consensus sequence in the N- and C-terminal regions flanking the six cysteines domain has not been found. However, there is a predominance of basic amino acid residues (Lys and Arg) at both the N-terminus and at the C-terminus, but to a lesser extent. These basic domains could permit or enhance the DNA recognition.

Structure of the C. albicans Zn(II)$_2$C$_6$ proteins

Zn(II)$_2$C$_6$ transcription regulator factors are composed of two clearly different domains responsible for DNA binding and activation (Todd and Andrianopoulos, 1997, and references herein). In C. albicans, the Zn(II)$_2$C$_6$ domain is usually found at the N-terminal region of the protein with a few exceptions: five at the C-terminus and one in the middle of the protein (Figure 3).

Whiteway et al. (1992) identified the gene CFZ1 that conferred moderate pheromone resistance on S. cerevisiae. Czf1p shows an overall structure that resembles that of a transcription factor, with a glutamine-rich region in the central part and a cysteine-rich region at the C-terminus of the protein.

The similarity outside the zinc cluster region reported for some S. cerevisiae Zn(II)$_2$C$_6$ proteins has also been found in C. albicans. It has been discovered that some putative fungal proteins contain a characteristic domain involved in transcription control (http://www.sanger.ac.uk/cgi-bin/Pfam/getacc?PF04082), although their function has not been elucidated to date (Marczak and Brandriss, 1991; Hedges et al., 1995; Kasten and Stillman, 1997; van Peij et al., 1998). The search in the C. albicans database for Zn(II)$_2$C$_6$ proteins containing such fungal domain revealed the occurrence of at least 12 ORFs (Figure 3). Moreover, some of these ORFs (PUT3, STB5, CAT8, PPR1, IPF20023 and DAL81) present a high level of identity with their respective S. cerevisiae homologues.

SCANPROSITE analysis (Gattiker et al., 2002) revealed the presence of other interesting motifs (Figure 3): (a) glutamine-rich regions, which may form hydrogen bonds with target factors (Courey and Tjian, 1988), resembling those previously described for other transcription factors (Aro et al., 2001); (b) proline-rich regions which may fold into a unique structure that forms protein–protein contact with the transcription machinery (Mermod et al., 1989) — IPF10079 and IPF9499 present such region at the C-terminus and RGT1 and IPF13024 at the N-terminus of the protein, close to the Zn(II)$_2$C$_6$ motif; (c) histidine, serine and threonine-rich regions (Figure 2); (d) basic leucine zipper domains, frequent in both S. cerevisiae (Fernandes et al., 1997) and C. albicans (Yang et al., 2001). These motifs are implicated in protein dimerization (Busch and Sassone-Corsi, 1990).

The global analysis of these proteins using the PSORTII program (Horton and Nakai, 1997) exhibits the presence of a nuclear localization signal (Talibi and Raymond, 1999; Moreno et al., 2003) in most of them, suggesting a putative nuclear localization (Table 2).

The presence of coiled-coil elements was searched for the 70 sequences by the COIL program (Taylor and Zhulin, 1999), to investigate the potential of dimerization via this structure. The program described by Lupas et al. (1991) assigns a score to each amino acid residue included in a window with 7, 14 or 28 residues (two, three or four heptads) on the basis of their probability of being involved in a coiled-coil structure. Positive scores were only reported when probability values were >0.9 in the 150 residues of the C-terminal Zn(II)$_2$C$_6$ domain (Table 2). From the 65 putative proteins with an N-terminal Zn(II)$_2$C$_6$ domain, a high peak was detected in 28, 21 and 17 for a two-, three- or four-heptad window, respectively. This analysis shows that the occurrence of a coiled-coil region situated at the C-terminus of the Zn(II)$_2$C$_6$ domain is quite frequent in these putative transcription factors, and is probably involved in dimerization events.

A transcription factor (CaCwt1p), required for cell wall integrity, has been recently characterized by our group (Moreno et al., 2003). CaCwt1p has been structurally analysed and the presence of another family of C-terminal motifs has been predicted. This region, named PAS, is presumed to be involved in eukaryotic signal transduction or dimerization events (Taylor and Zhulin, 1999).
Figure 3. Schematic structural representation of the most common structural features predicted for the C. albicans Zn(II)$_2$Cys$_6$ protein family.
Table 2. Summary of data for the *Candida albicans* Zn(II)$_2$Cys$_6$ cluster proteins

ORF name	Nuclear localization (%)	Last Cys	Coiled-coil probability > 0.9 (within 150 residues)		
			Two heptads	Three heptads	Four heptads
IPF16368.5f	94.1	36	+	+	+
IPF19850	94.1	45	−	−	−
IPF15350	94.1	Ct	na	na	na
IPF10079	56.5	59	−	−	+
SEF11.5ec	4.3	67	−	−	−
LYS14	87.0	Ct	na	na	na
IPF15273	94.1	143	+	+	+
IPF14113	82.6	40	−	−	−
IPF11777	95.7	86	+	+	+
IPF6159	94.1	42	−	−	−
IPF1034	31.8	44	+	+	−
RGT1	69.6	125	−	−	−
IPF14255	78.3	Ct	na	na	na
ARG81	52.2	135	+	−	−
IPF19920.3	13.0	31	−	−	−
IPF1040	100.0	43	−	−	−
IPF9312	21.7	267	−	−	−
IPF13021	65.2	121	−	−	−
IPF7629	87.0	84	−	−	−
IPF19614	43.5	57	−	−	−
IPF10197	21.7	41	+	−	−
IPF13024	82.6	61	−	−	−
IPF6874.3	21.7	51	−	−	−
CAT8	65.2	80	+	+	+
IPF8224	65.2	71	−	−	−
IPF6510	65.2	141	−	−	−
SEF1	73.9	120	+	+	+
IPF1188	52.2	52	+	+	+
IPF16067	43.5	93	+	+	+
IPF9499	69.6	58	+	+	+
IPF19769	21.7	97	+	+	+
IPF13158	26.1	39	−	−	−
CWT1	78.3	79	−	−	−
CTA7	73.9	201	−	−	−
IPF9826	43.5	67	+	+	+
IPF3444.3f	0.0	37	+	−	−
PUT3	69.6	57	+	+	+
IPF10533.exon1	65.2	74	+	+	+
IPF13229	65.2	74	−	−	−
CZF1	73.9	Ct	na	na	na
IPF9251	39.1	39	+	+	+
IPF6203	82.6	155	−	−	−
IPF7289	65.2	141	−	−	−
IPF7221	73.9	48	−	−	−
LEU3	65.2	112	+	+	−
IPF2319	17.4	57	+	+	+
IPF7952	43.5	46	−	−	−
STB5	22.2	66	−	−	−
IPF6554	95.7	48	−	−	−
FPR1	69.6	62	−	−	−
IPF1196	69.6	55	−	−	−
Table 2. Continued

ORF name	Nuclear localization (%)	Last Cys	Coiled-coil probability > 0.9 (within 150 residues)		
			Two heptads	Three heptads	Four heptads
IPF1457	87.0	78	–	–	–
IPF2029	69.6	45	+	+	–
IPF20023	43.5	68	+	–	+
IPF20024	60.9	78	–	–	–
DAL81	65.2	149	–	–	–
IPF776	69.6	50	+	–	–
IPF1960.5f	65.2	44	–	–	–
SUC1	47.8	39	–	–	–
IPF1264	69.6	50	+	+	+
IPF1266	47.8	59	+	+	+
IPF1292	65.2	46	–	–	–
IPF376	11.1	43	–	–	–
FCRI	82.6	52	+	+	–
IPF928	21.7	101	+	+	–
IPF907	39.1	55	+	–	–
IPF4835	56.5	Ct	na	na	na
IPF1003	21.7	70	–	–	–

Ct, located at the C-terminus of the protein.

Nuclear localization was predicted with PSORT-II (Horton and Nakai, 1997). Coiled-coil probability within the C-terminal region of the Zn(II)$_2$Cys$_6$ domain was calculated by COILS (Lupas et al., 1991).

Figure 4. (A) Multiple structure-based alignment of fungal PAS domains. The alignment was performed as described by Taylor and Zhulin (1999), with modifications. (B) The secondary structure of CaCwt1p was deduced from that of Rhizobium meliloti FxL (PDB: 1ew0). Similar residues in at least four sequences are highlighted. The N-terminal link region (blue), PAS core (red), helical connector (green) and β-scaffold (yellow) are shown. The figure was generated using RasMol (Sayle and Milner-White 1995).

putative protein IPF6554 also possesses such characteristic domain. A multiple structure-based alignment also including the S. cerevisiae sequences for CaCwt1p, YPL133c and YJL103c, respectively, is shown in Figure 4. The biological function of the PAS domain in yeast proteins has not been elucidated yet. Although many of the transcription factors described at present can be basically depicted as three-component proteins, where the DNA recognition motif is linked to a dimerization region by a function variable spacer, this is not a general rule. This general structure is not always
Table 3. Comparison between genes encoding putative zinc cluster proteins in *S. cerevisiae* and *C. albicans*. Only positive results from reciprocal BLAST are included.

Saccharomyces cerevisiae	Candida albicans				
Systematic name	**Gene**	**Function**	**Ref.**	**Systematic name**	**Ref.**
YDR207c	UME6	Regulator of early meiotic genes	a	IPFI15350	—
YDR034c	LYS14	Transcriptional activator of lysine pathway genes	b	LYS14	—
YPL130w	—	Unknown	—	IPFI4113	—
YML076c	WAR1	Regulate weak acid stress response	c	IPF6159	—
YKL038w	RGT1	Constitutive expression of glucose-induced HXT genes	d	RGT1	—
YML099c	ARG81	Regulator of arginine responsive genes	e	ARG81	—
YBL066c	SEF1	Suppressor of essential function	e	SEF1	—
YPL133c	RDS2	Unknown	e	CWT1	i
YMR019c	STB4	Unknown	f	CTA7	—
YLR256c	HAP1	Regulator of oxygen-dependent genes	e	IPP9326	—
YKL015w	PUT3	Regulator of Pro utilization genes	g	PUT3	—
YDR520c	—	Unknown	—	IPFI3229	—
YOR363c	Pip2	Activator of peroxisomal proliferation	e	IPP9251	—
YDR213w	UPC2	Involved in sterol uptake	e	IPP7289	—
YLR451w	LEU3	Regulator of amino acid biosynthesis	e	LEU3	—
YHR178w	STB5	Binds Sin3p in two-hybrid assay	f	STB5	—
YIL103c	—	Unknown	h	IPF6554	—
YLR014c	PPR1	Activator of URA1 and URA3 genes	h	PPR1	—
YOR337w	TEA1	Activator of Ty elements	e	IPF20023	—
YDR421w	ARO80	Unknown	e	IPF20024	—
YIR023w	DAL8	Regulator of nitrogen catabolic genes	e	DAL81	—
YFL052w	—	Unknown	e	SUC1	—
YDL170w	UGA3	Unknown	h	IPP928	—

References: a, Tong et al. 2004; b, El Alami et al. 2002; c, Kren et al. 2003; d, Kim et al. 2003; e, Akache et al. 2001; f, Kasten & Stillman 1997; g, Axelrod et al. 1991; h, Giaever et al. 2002; i, Moreno et al. 2003.

present and some well-characterized proteins lack this dimerization motif (Anderson et al., 1995).

The function of most of the *C. albicans* Zn(II)$_2$C$_6$ proteins remains uncharacterized, although a few cluster proteins, involved in several biological functions, have been reported. CaSuc1p is a transcription factor involved in sucrose utilization by affecting an inducible α-glucosidase, and was the first Zn(II)$_2$C$_6$ zinc finger protein described in *C. albicans* (Kelly and Kwon-Chung, 1992). The *CaCFR1* gene encoding a Zn(II)$_2$C$_6$ protein was isolated by its ability to complement the fluconazole hypersensitivity of a *S. cerevisiae* mutant lacking the transcription factors Pdr1p and Pdr3p (Talibi and Raymond, 1999). An atypical protein with a C-terminal Zn(II)$_2$C$_6$ motif, CaAzf1p, has also been reported previously (Whiteway et al., 1992).

Some other *C. albicans* putative Zn(II)$_2$C$_6$ transcription regulators have also been tentatively assigned by comparison with their corresponding *S. cerevisiae* homologues (Table 3). However, the functional role of these similarities remains unclear, and could be related to evolutionary aspects. As an example, some zinc cluster proteins control the expression of genes required for gluconeogenesis in *S. cerevisiae*, such as Cat8p (Hedges et al., 1995), Arg81p (Messenguy, 1976), Lys14p (Ramos et al., 1988) and Ppr1p (Marmorstein and Harrison, 1994), involved in the metabolism of arginine, lysine and pyrimidines, respectively, which have homologues in *C. albicans* with a high sequence identity. Another member of the Zn(II)$_2$C$_6$ protein family, CaPut3p, involved in controlling enzymes required for proline use as a nitrogen source, was previously characterized in *S. cerevisiae* (Marczak and Brandriss, 1989).

Evolutionary relationships among Zn(II)$_2$C$_6$ clusters

Phylogenetic analysis was performed using the entire DNA binding region, including the Zn(II)$_2$C$_6$
cluster and N- and C-terminal flanking sequences of the 70 predicted *C. albicans* proteins. After alignment using the ClustalW program (Figure 2), the output data were submitted to the Phylip drawtree web interface utility and a phenogram was obtained (Figure 5).

Sometimes there is strong support for grouping as inferred from bootstrap analysis. All the Zn(II)_{2}Cys_{6} proteins containing the fungal domain previously described, with the single exception of LEU3, have been clustered in a single branch. This consistent association of unknown proteins...
could represent regulation via a common pathway, although this remains to be elucidated. CWT1 and IPF6554 have also been consistently clustered on the basis of their Zn(II)$_2$C$_6$ domains. This data, together with the presence of the PAS domain in both these two putative proteins suggests their possible involvement in similar functional processes that should be investigated.

Acknowledgements

This work was partially supported by grants from the Ministerio de Ciencia y Tecnologfa, Spain (BMC2000-1449), the Program Quality of Life and Management of Living Resources, Brussels (QLK2-CT-2000-00795) and the Agencia Valenciana de Ciencia i Tecnologia de la Generalitat Valenciana, Spain (G03/187).

References

Akache B, Wu K, Turcotte B. 2001. Phenotypic analysis of genes encoding yeast zinc cluster proteins. Nucleic Acids Res 29: 2181–2190.

Altschul SF, Madden TL, Schaffer AA, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.

Anderson SF, Steber CM, Esposito RE, Coleman JE. 1995. The C-terminal Zn$_2$Cys$_6$ binuclear cluster that should be investigated.

Ascone I, Lenouvel F, Sequeval D, Dexpert H, Felenbok B. 1997. Proteins: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723.

Hedges D, Proft M, Entian KD. 1995. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol Cell Biol 15: 1915–1922.

Aono T, Talbot S, Sargent DF, et al. 1987. Zinc fingers: a novel protein motif for DNA binding. Cell 54: 373–375.

Bates PA, Sternberg MJ. 1999. Model building by comparison of a specific DNA binding protein. Cell 55: 705–717. Erratum in: Cell 1989 Jan 27; 56(2): 321 ff.

Gattiker A, Gasteiger E, Bairoch A. 2002. ScanProsite: a reference implementation of a PROSITE scanning tool. Appl Bioinforma 1: 107–108.

Giaever G, Chu AM, Ni L, et al. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391.

Guex N, Peitsch MC. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Proteins 21: 403–410.

Horton P, Nakai K. 1997. Better prediction of protein cellular localization sites with the k nearest neighbours classifier. Proc Int Conf Intell Syst Mol Biol 5: 147–152.

Jakobsen BK, Pelham HRB. 1991. A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor. EMBO J 10: 369–375.

Kammerer B, Guoyvonch A, Hubert JC. 1984. Yeast regulatory gene PPR1. I. Nucleotide sequence, restriction map and codon usage. J Mol Biol 180: 239–250.

Kasten MM, Stillman DJ. 1997. Identification of the Saccharomyces cerevisiae genes STB1–STB5 encoding Sin3p binding proteins. Mol Gen Genet 256: 376–386.

Kelly R, Kwon-Chung KJ. 1992. A zinc finger protein from Candida albicans is involved in sucrose utilization. J Bacteriol 174: 222–232.

Kim JH, Polish J, Johnston M. 2003. Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1. Mol Cell Biol 23: 5208–5216.

Klug A, Rhodes D. 1987. ‘Zinc fingers’: a novel protein motif for nucleic acid recognition. Trends Biochem Sci 12: 464–469.

Kohler T, Wescsche, Taheri N, Braus GH, Mosch HU. 2002. Dual role of the Saccharomyces cerevisiae TEA/ATTS family transcription factor Tec1p in regulation of gene expression and cellular development. Eur J Cell Biol 1: 673–686.

Kron A, Mammm Y, Bauer BE, et al. 2003. Warlp, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol 23: 1775–1785.

Laughon A, Gesteland RF. 1984. Primary structure of the Saccharomyces cerevisiae GAL4 gene. Mol Cell Biol 4: 260–267.

Li D, Kolattukudy PE. 1997. Cloning of cutinase transcription factor 1, a transactivating protein containing Cys6Zn2 binuclear cluster DNA-binding motif. J Biol Chem 272: 12462–12467.
Limm A, Zhang L. 1999. WebPHYLIP: a web interface to PHYLIP. Bioinformatics 15: 1068–1069.
Lupas A, Van Dyke M, Stock J. 1991. Predicting coiled coils from protein sequences. Science 252: 1162–1164.
Marczak JE, Brandriss MC. 1989. Isolation of constitutive mutations affecting the proline utilization pathway in Saccharomyces cerevisiae and molecular analysis of the PUT3 transcription activator. Mol Cell Biol 9: 4696–4705.
Marczak JE, Brandriss MC. 1991. Analysis of constitutive and noninducible mutations of the PUT3 transcription activator. Mol Cell Biol 11: 2609–2619.
Marmorstein R, Harrison SC. 1994. Crystal structure of a PPR1–DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Dev 8: 2504–2512.
Mermod N, O’Neill EA, Kelly TJ, Tijan R. 1989. The proline-rich transcription activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell 58: 741–753.
Messeguy F. 1976. Regulation of arginine biosynthesis in Saccharomyces cerevisiae: isolation of a cis-dominant, constitutive mutant for ornithine carbamoyltransferase synthesis. J Bacteriol 128: 49–55.
Moreno I, Pedreño Y, Maicas S, et al. 2003. Characterization of a Candida albicans gene encoding a putative transcription factor required for cell wall integrity. FEMS Microbiol Lett 226: 159–167.
Nehlin JO, Ronne H. 1990. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’ tumour finger proteins. EMBO J 9: 2891–2898.
Pan T, Coleman JE. 1990. GAL4 transcription factor is not a ‘zinc finger’ but forms a Zn(II)2Cys6 binuclear cluster. Proc Natl Acad Sci USA 87: 2077–2081.
Ramos F, Dubois E, Pierard A. 1988. Control of enzyme synthesis in the lysine biosynthetic pathway of Saccharomyces cerevisiae. Evidence for a regulatory role of gene LYS14. Eur J Biochem 15: 171–176.
Talibi D, Raymond M. 1999. Isolation of a putative Candida albicans transcription regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae. J Bacteriol 181: 231–240.
Tang CS, Bueno A, Russell P. 1994. nqf1 + encodes a 6-cysteine zinc finger-containing transcription factor that regulates the nmt1 promoter in fission yeast. J Biol Chem 269: 11921–11926.
Taylor BL, Zhulin IB. 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63: 479–506.
Thompson J, Higgins DG, Gibson TJ. 1994. ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.
Todd RB, Andrianopoulos A. 1997. Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol 21: 388–409.
Todd RB, Murphy RL, Martin HM, et al. 1997. The acetate regulatory gene facet of Aspergillus nidulans encodes a Zn(II)2Cys6 transcription activator. Mol Gen Genet 254: 495–504.
Tong AH, Lesage G, Bader GD, et al. 2004. Global mapping of the yeast genetic interaction network. Science 303: 808–813.
Vallée BL, Coleman JE, Auld DS. 1991. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. Proc Natl Acad Sci USA 88: 999–1003.
Van Peij NN, Visser J, De Graaff LH. 1998. Isolation and analysis of XlnR, encoding a transcription activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol 27: 131–142.
Whiteway M, Dignard D, Thomas DY. 1992. Dominant negative selection of heterologous genes: isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell cycle arrest. Proc Natl Acad Sci USA 89: 9410–9414.
Woloshuk CP, Foutz KR, Brewer JF, et al. 1994. Molecular characterization of afR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol 60: 2408–2414.
Yang X, Talibi D, Weber S, Poisson G, Raymond M. 2001. Functional isolation of the Candida albicans FCR3 gene encoding a bZIP transcription factor homologous to Saccharomyces cerevisiae Yap3p. Yeast 18: 1217–1225.
Yuan GF, Fu YH, Marzluf GA. 1991. nrr-4, a pathway-specific regulatory gene of Neurospora crassa, encodes a protein with a putative binuclear zinc DNA-binding domain. Mol Cell Biol 11: 5735–5745.