Regulation of haematopoietic progenitor cell proliferation and survival
The involvement of the osteoblast

Julia Woodward
Academic Unit of Clinical Oncology; School of Medicine and Biomedical Sciences; University of Sheffield; Sheffield, UK

Haematopoietic progenitor cells (HPC) traffic between the circulation and the bone marrow. Through contact with osteoblasts in the bone marrow niche, their survival, maintenance and proliferation is regulated. This review summarizes recent observations regarding the interaction between osteoblasts and HPCs, and the resulting downstream effects on signaling and niche maintenance. Using live imaging, amongst other techniques, HPCs were found to make prolonged contact with the osteoblast, via a specialized region of their membrane with high expression of prominin 1, CD63 and rhodamine PE. Following contact, portions of the HPC membrane expressing these molecules were phagocytosed by the osteoblast into SARA-positive signaling-endosomes. In response, Smad signaling was downregulated in the osteoblasts, leading to increased production of SDF-1; a chemokine involved in progenitor cell trafficking, proliferation and survival in the bone marrow and potentially other niche microenvironments. Maintenance and regulation of haematopoietic stem cell self-renewal and differentiation depends upon their specific microenvironment known as the ‘stem cell niche’. Haematopoietic stem-progenitor cells reside in the bone marrow, ultimately differentiating into blood and immune cells. Once their fate is determined, HPCs move between the circulation and the bone marrow, a process regulated predominantly through osteoblasts, also residing within the bone marrow environment. The authors used a live-cell co-culture system, whereby HPCs (primary CD34+ cells or the KG1a progenitor cell line) were co-cultured with primary human osteoblasts or the human SaOS2 osteoblastic cell line, presenting live images with labeled cells to demonstrate their findings. HPCs were highly polarised, rapidly changing their morphology and migrating towards the osteoblasts, with a leading and lagging edge (termed the ‘uropod’). Further investigations of the distribution of HPC plasma membrane components identified asymmetric expression of the stem cell marker prominin 1 and the adhesion-signaling molecules CD63, CD68 and VLA-4. Rhodamine PE, a lipid that inserts within the membrane,

Key words: osteoblast, haematopoietic progenitor cell, stem cell, endosome, live imaging

Submitted: 08/03/09
Accepted: 09/17/09
Previously published online: www.landesbioscience.com/journals/celladhesion/article/10106
Correspondence to: Julia Woodward;
Email: j.k.woodward@sheffield.ac.uk
Journal Club

whereas in osteoblasts co-cultured with HPC, Smad2/3 were located within the cytoplasm, suggesting a reduction in activated Smad2/3 signaling and ultimately a reduction in TGFβ signaling. TGFβ signaling has previously been shown to downregulate osteoblast production of SDF-1, a chemokine involved with progenitor cell migration and adhesion, affecting HPC survival.7,8 Following co-culture with HPC, osteoblast expression of SDF-1 increased from 30 to 75%, and this was further shown to be associated with the intercellular transfer event and not simply due to prolonged cell contact.

In conclusion, this is the first paper to demonstrate downstream effects occurring following direct cell-cell contact of HPC with osteoblasts, and their potential importance in signaling and remodeling within the bone marrow niche. More specifically the authors used live imaging to demonstrate uptake of small portions of the HPC uropod membrane into SARA-positive signaling-endosomes within the osteoblast. Osteoblasts subsequently showed decreased Smad-signaling, and ultimately reduced SDF-1 production. As SDF-1 is involved with trafficking, survival and proliferation of HPC within the bone marrow environment, these cell contact events may play a vital role in HPC propagation. This work provides new insights into cell-cell communication and the resulting intercellular transfer and downstream events that are important in the bone marrow. Contact-dependent interactions between stem cells and organ-specific differentiated cells has been recognized for a few years now,9,10 but the complicated mechanisms underlying these processes has until now been largely unknown. Gillette et al. have elucidated one such mechanism.4 As adult stem cell niches reside in other microenvironments around the body, similar contact-dependent mechanisms may be employed to maintain and regulate the propagation and differentiation of such specific stem cell populations. Whether these are stable or dynamic situations, still needs to be identified.

also demonstrated this polarized pattern of expression (Fig. 1). Using cholesterol and actin depletion, the authors confirmed that both cholesterol and actin-based processes are involved in the cell surface expression of these molecules in the polarized regions. Confocal and time-lapse imaging, scanning electron microscopy and quantum dot (QD)-labeling of the osteoblast-HPC interaction identified that the HPC uropod mediated the cell contact through microvilli-like projections, with highly polarized expression of prominin 1, rhodamine PE, VLA-4 and CD63 detected at the site of contact.

Gillette et al. next carried out further QD-labeling and confocal microscopy experiments to characterise the transfer of lipid and protein components from the HPC uropod membrane to the osteoblast.4 Using rhodamine-PE labeled cells, the authors observed that this transfer process was not observed at the same rate when HPCs were co-cultured with HeLa cells (i.e., cells that do not normally reside in the bone marrow), nor when a membrane

Figure 1. Schematic representation of the events occurring during HPC-osteoblast interactions. HPCs interact with osteoblasts through specialized regions of the HPC membrane (uropod), expressing high levels of prominin, CD63, CD81, rhodamine PE and VLA-4 (1). Following contact, portions of the uropod membrane are actively phagocytosed by the osteoblast into SARA-positive endosomes (2). In response, osteoblast Smad signaling is reduced, leading to increased SDF-1 production (3) and ultimately increased HPC trafficking, proliferation and survival within the bone marrow (4).
References

1. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood cells 1978; 4:7-25.
2. Adams GB, Scadden DT. The haemopoietic stem cell in its place. Nat Immunol 2006; 7:333-7.
3. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL. Physiological migration of haemopoietic stem and progenitor cells. Science 2001; 294:1933-6.
4. Gillette JM, Larochelle A, Dunbar CE, Lippincott-Schwartz J. Intercellular transfer to signalling endosomes regulates an ex vivo bone marrow niche. Nat Cell Biol 2009; 11:303-11.
5. Sanchez-Madrid F, Serrador JM. Bringing up the rear: defining the roles of the uropod. Nat Rev 2009; 10:353-9.
6. von Zastrow M, Sorkin A. Signaling on the endocytic pathway. Curr Opin Cell Biol 2007; 19:436-45.
7. Jung Y, Wang J, Schneider A, Sun YX, Koh-Paige AJ, Osman NI, et al. Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone 2006; 38:497-508.
8. Wright N, de Lera TL, Garcia-Moruja C, Lillo R, Garcia-Sanchez F, Caruz A, Teixido J. Transforming growth factor-beta1 downregulates expression of chemokine stromal cell-derived factor-1: functional consequences in cell migration and adhesion. Blood 2003; 102:1978-84.
9. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006; 6:93-106.
10. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425:836-41.