Supporting Information

T cell receptors (TCRs) employ diverse strategies to target a p53 cancer neoantigen

Daichao Wu, Ragul Gowathaman, Brian G. Pierce, and Roy A. Mariuzza

Supporting Tables 1–5

Supporting Figure 1
Table S1. Data collection and structure refinement statistics

Parameter	**TCR 6-11–p53R175H–HLA-A2**
PDB accession code	7RM4
Data collection	
Resolution range (Å)	49.3–3.33 (3.45–3.33)
Space group	P1211
Unit cell parameters	127.2 Å, 55.1 Å, 304.9 Å
Total reflections	294,644 (33,281)
Unique reflections	60,837 (4,526)
Multiplicity	4.8 (5.3)
Completeness (%)	92.6 (72.0)
Mean I/σ(I)	10.3 (4.0)
Wilson B factor (Å²)	59.5
Rmerge^{a,b}	0.169 (0.730)
CC1/2	0.992 (0.737)
Refinement	
Resolution range (Å)	49.3–3.33
Reflections used in refinement^a	58,081 (4,525)
R_{work}^c	0.237 (0.322)
R_{free}^c	0.293 (0.387)
No. of protein atoms	26,474
Protein residues	3308
r.m.s.d. from ideality	
Bond lengths (Å)	0.006
Bond angles (°)	0.92
Ramachandran plot statistics	
Favored (%)	92.2
Allowed (%)	7.0
Disallowed (%)	0.7
Rotamer outliers (%)	1.0
Clashscore	9.8
Average B factor (Å²)	50.6
Protein	50.6

^aValues in parentheses correspond to the highest resolution shell.

^bRmerge = ∑|I_i - <I>|/∑I_i, where I_i is the intensity of an individual reflection and <I> is the average intensity of that reflection.

^cRwork (Rfree) = ∑||F_i - |F_c||/∑|F_i|; 5.0% of data were used for Rfree.
Table S2. TCR center positions over peptide-MHC plane for MHC class I complexes

Complex	x pos	y pos
5SWS	22.3	-14.8
5SWZ	22.3	-13.9
38-10	14.8	-6.1
3TJH	13.8	-3.3
5TEZ	13	-0.8
3TF7	12.9	3.0
6-11	12.8	-3.7
3PQY	12.5	1.6
4G9F	12.5	-4.8
3TFK	12.4	2.5
4G8G	12.2	-4.6
3KPR	11.8	-1.4
3KPS	11.8	-1.3
4N0C	11.3	1.6
4N5E	11.3	1.8
5IVX	10.9	1.6
1M15	10.6	-2.8
2OL3	10.6	0.1
5W1W	10.4	-0.5
4MXQ	10.3	2.9
1NAM	10	-1.8
5W1V	10	-0.6
12-6	10.0	-2.3
1FO0	9.6	-0.4
5D2L	8.8	-1.7
3TPU	8.1	0.1
1a2	8.1	-0.3
4MS8	8	1.8
3GSN	7.6	-3.2
2O19	7.4	2.2
5M01	7.4	-2.2
6G9Q	7.4	-2.2
5M00	7.2	-1.8
5D2N	7.1	-2.5
5HHO	7.1	4.9
3E3Q	7	2
5EUO	7	4.6
3E2H	6.9	1.8
2E7L	6.8	1.9
4MVB	6.8	1.2
5M02	6.8	-2.1
Code	Value1	Value2
-------	--------	--------
5TIL	6.6	-2.1
2VLR	6.5	4.5
5HHM	6.5	4.7
5E6I	6.4	6.5
5TJE	6.4	-2.2
2ESV	6.3	2.4
3SJV	6.2	-2.5
1G6R	6	1.2
1MWA	5.9	1.5
2BNQ	5.9	-1.9
1OGA	5.8	4
2PYE	5.8	-3.6
4EUP	5.8	1.3
5EU6	5.8	1.1
6MTM	5.8	1
2BNR	5.7	-2.1
2P5E	5.7	-3.5
2P5W	5.6	-3.5
5XYU	5.6	-2.7
2YPL	5.5	1.2
4MJ1	5.4	1.9
5WLG	5.3	1.5
5JZI	5.2	-1.7
2F53	5	-3
3QDM	4.9	-2.3
5E9D	4.8	5.3
5ISZ	4.6	3.9
5JHD	4.5	4.9
6BJ2	4.4	5.6
5MEN	4.1	5.1
1LP9	4	2.7
4NHU	4	-5.7
4MNQ	3.9	5.2
3DXA	3.6	-1.5
3RGV	3.4	-1.2
4PRH	3.4	3
3MV7	3.1	2.4
3MV8	3.1	2.6
3MV9	3.1	2.7
4PRP	3	2.6
3VXM	2.7	-3.4
5NHT	2.7	1.1
5NQK	2.4	0.9
Code	Value1	Value2
--------	--------	--------
5NMG	2.2	3.2
3VXS	2.1	-0.6
5C0B	2.1	-1.9
3QEQ	2	-0.8
6AVG	2	1.2
3O4L	1.7	-1.2
5C0C	1.7	-1.7
5NME	1.7	3.1
6D78	1.7	-0.2
4L3E	1.6	-0.4
3VXR	1.5	-0.6
5C08	1.4	-2.8
5C0A	1.4	-0.8
3QDG	1.3	-1
5C09	1.3	-1.5
5WKF	1.3	-1.3
6DKP	1.3	-0.2
2AK4	1.2	6.6
3QDJ	1.2	-0.9
5C07	1.2	-1.7
5NMF	1.2	3.2
5WKH	1.2	-1.6
3VXU	1.1	3.3
5HYJ	1	-2.3
6AM5	0.9	-0.8
4JRX	0.8	8.5
1KJ2	0.7	2.5
2GJ6	0.6	1.8
3UTS	0.4	-0.2
6EQA	0.2	-1.5
4JFD	0.1	-2.5
5BRZ	0.1	6.4
5BS0	0.1	6.8
3QFJ	0	1.7
6EQB	0	-2.2
3PWP	-0.1	1.6
4JFE	-0.1	-2.4
4JFF	-0.1	-2.4
4QOK	-0.1	-1.8
6AMU	-0.1	0.2
1QRN	-0.2	2
3H9S	-0.2	2
3HG1	-0.2	-1.9
PDB Code	X Position (Å)	Y Position (Å)
----------	----------------	----------------
4FTV	-0.3	1.6
1AO7	-0.4	2
1QSE	-0.5	1.4
2NX5	-0.7	2.4
1QSF	-0.8	1.5
4QRP	-0.9	-1.3
1BD2	-1.3	-0.3
6AVF	-1.7	-0.1
3FFC	-2.3	2.9
4JRY	-14.6	0.8

1PDB code for complex structure, with four TCR–p53R175H–HLA-A2 complex structures given by TCR name (6-11, 12-6, 38-10, 1a2) and corresponding rows highlighted.

2TCR–pMHC complexes were oriented into a common reference frame centered at average Cα atom position of MHC helices, and rotated such that the x–y plane is parallel with the helix plane, and the x-axis is parallel to peptide groove, with greater x value corresponding to peptide C-terminus. All values are in Ångstrom units. TCR variable domain centers were calculated by taking centers of individual variable domains by average positions of Sγ atoms of conserved Cys residues (or Cα atoms at corresponding positions where Cys residues are not present in the TCR), and then calculating the mean position of TCR Vα and Vβ centers. X position (x pos) and y position (y pos) values represent projections into the x–y plane, and thus the MHC helix plane, of these centers.
Table S3. Interactions between TCRs and HLA-A2

HLA-A2	TCR 6-11 Hydrogen bonds	TCR 6-11 Van der Waals contacts	TCR 38-10 Hydrogen bonds	TCR 38-10 Van der Waals contacts	TCR12-6 Hydrogen bonds	TCR12-6 Van der Waals contacts	TCR 1a2 Hydrogen bonds	TCR 1a2 Van der Waals contacts	
a1	R65H	S26a(2)	Q94a(O) R65H(Nt2)	Q96a(Nc2) R65H(Nc)	Q94a(7) G93a(1) Q96a(9)	L94a(O) R65H(Nt2)	A29a(3) L94a(3) E96a(2)		
	K68H	Y95a(2)	E96a(3) K68H(O)						
	A69H	S98a(1)	Y95a(5) W98b(4)						
	Q72H	Y95a(3)	W98b(9)						
	T73H	P96a(2)	W98b(12)	S98a(1)					
R75H	V54(O) R75H(Nt1)	D58b(1)	N30b(Ot1) R75H(Nt2)	N30b(Ot2) S51b(2)					
	V54(O) R75H(Nt2)								
	V55(O) R75H(Nt1)								
V76H	Y50b(1)			N30b(1)					
T80H	R30b(2)								
a2	K146H	D97b(4)	R30b(Nt2) K146b(Nc2)	R30b(2) L96b(2)					
	A149H	Y32a(1) G99b(2)	L96b(1)						
	D100b(Nb)								
	D100b(Ot1) A149b(O)								
A150H	Y32a(4) P98b(1) G99b(1)	Y97a(Ot1) A150b(O)	Y97a(5)						
H151H	R51a(Nt1) H151b(Nt1)	E52a(Ot2) H151b(Nt2)	E52a(5) Y54b(1) K55b(5)						
	R51a(Nt2) H151b(Nc2)	E52a(Ot2) H151b(Nc2)							
	Y32b(1) R51b(11) D100b(4)								
V152H	Y97b(3)								
E154H	N53a(Nt2) E154a(Oc1) N53a(Nt2) E154a(Oc2)	N53a(5)	Y54a(3) S52a(Nb) E154a(Oc1) S53a(Oy1) E154a(Oc1) S53a(Oy2) E154a(Oc2) S53a(Nb) E154a(Oc1)						
	E154a(Oc1) N53a(Nt2) E154a(Oc2)								
Q155H	Y95a(Ot3) Q155b(Oc3)	A31b(2) Y95a(4) N31a(Nt2) Q155b(Oc1) N31a(Nt2) Q155b(Oc2) Y97a(Ot3) Q155b(Oc3)	N31a(3) Y54a(2) Y97a(3) S32a(3) Q155b(Oc1) Q31a(Nc2) Q155b(Oc2)	Q31a(3) Y51a(1) Y100b(2) Q31a(Nc2) Q155b(Oc1) Y32a(Ot3) Q155b(Oc2) Y32a(Ot3) Q155b(Oc2)					
	Q155b(Oc2)								

Contact residues were identified with CONTACT (31). Hydrogen bonds were calculated using a cut-off distance of 3.5 Å. The cut-off distance for van der Waals contacts was 4.0 Å.
Table S4. Interactions between TCRs and p53R175H peptide

p53R175H	TCR 6-11	TCR 38-10	TCR 12-6	TCR 1a2						
	Hydrogen bonds	Van der Waals contacts								
E4p	S29a(3) Y95a(5)	E4p(O) N30a(N) E4p(Oc2)	G94a(N) E4p(Oc1)	V100b(1) G93a(2)	Y100a(O) E4p(O)	A29a(6) Q31a(1) L94a(2) Y100a(3)				
V5p	Y95a(10)	V100a(1)	W98b(1) Q99b(3) V100b(1)	Q97b(N) V6p(0)	L94a(1) Y100a(2)					
V6p	Y95a(4) P96a(2)	S98a(1)	V100a(N) V6p(0)	W98b(1) Q99b(3) V100b(1)	Q97b(N) V6p(0)	L94a(1) Y100a(2)				
R7p	D93a(1) R7p(N) D93a(2) R7p(N)	P96a(2) R7p(N)	Y97a(10) Y103a(12)	V97a(10) Y103a(12)	Y97a(10) Y103a(12)	V97a(10) Y103a(12)	Q99b(12) V100b(3) E103b(5)	D100b(10) R7p(N)	Q96b(2) Q97b(4) A99b(3) D100b(2)	Y98b(10) Y100a(11)
H8p	R103a(O) H8p(N) R30b(3)	Y31b(5) R103a(24)	E95b(Oc2) H8p(N)	E95b(Oc2) H8p(N)	E95b(Oc2) H8p(N)	E95b(Oc2) H8p(N)	Q97b(Oc1) H8p(N)	M50b(1) Q96b(4) Q97b(15) S98b(2)		
C9p	R30b(N) C9p(O) R30b(1)	R30b(1)								

Contact residues were identified with CONTACT (31). Hydrogen bonds were calculated using a cut-off distance of 3.5 Å. The cut-off distance for van der Waals contacts was 4.0 Å.
Table S5. Predicted TCR 6-11 affinity changes ($\Delta \Delta G$s) for substitutions at P8 of peptide p53R175H

Peptide substitution	Rosetta $\Delta \Delta G^1$
H8A	1.2
H8C	1.2
H8D	1.3
H8E	1.1
H8F	-0.7
H8G	1.3
H8I	0.7
H8K	0.6
H8L	0.6
H8M	0.1
H8N	1.3
H8P	0.7
H8Q	1.2
H8R	1.6
H8S	1.3
H8T	1.0
H8V	1.0
H8W	-1.0
H8Y	-0.8

1Predicted TCR 6-11 binding affinity change, calculated by Rosetta (v. 2.3) using the 6-11–p53R175H–HLA-A2 complex structure as input. Values are in Rosetta Energy Units (REU) and analogous to energies in kcal/mol. Values in bold correspond to substantial predicted affinity disruptions (>1.0 REU).
Figure S1. Modeled peptide residue P8 (p53 residue 175) packing for arginine reversion substitution. Structure of TCR 6-11 in complex with (a) p53R175H–HLA-A2, from X-ray structure, and (b) p53R175–HLA-A2, with peptide reversion arginine substitution modeled using Rosetta. Peptide shown as green sticks, with peptide residue P8 cyan. HLA-A2 is shown as gray cartoon, and TCR α and β chains, pink cartoon and blue cartoon, respectively. TCR residues proximal to P8 residue are labeled and shown as sticks.