Do acupuncture trials have lower risk of bias over the last five decades? A methodological study of 4,715 randomized controlled trials

Youlin Long¹,², Rui Chen³, Qiong Guo², Shanxia Luo⁴, Jin Huang¹,⁵, Liang Du²*

¹ Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China, ² Chinese Cochrane Center, West China Hospital, Sichuan University, Chengdu, China, ³ School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China, ⁴ Department of Mental Health Center, West China Hospital, Sichuan University, Chengdu, China, ⁵ West China Hospital, Sichuan University, Chengdu, China

* duliang0606@vip.sina.com

Abstract

Objective
To evaluate the change of the risk of bias (RoB) of acupuncture randomized controlled trials (RCTs) in the past five decades.

Methods
Multiple databases were searched. We included RCTs identified from systematic reviews (SRs) on acupuncture. General characteristics and RoB judgment for each domain were extracted. The proportions of RCTs at high and unclear RoB were calculated and the changes were examined by the Mann-Kendall test.

Results
We included 368 SRs including 4,715 RCTs. The rates of RCTs at unclear RoB were the highest in allocation concealment (63%), and at the lowest in incomplete outcome data (35%); in the last five decades, statistically significant reductions were found for random sequence generation (P < 0.001) and selective reporting (P = 0.01), and increases for blinding of participants and personnel (P < 0.001), blinding of outcome assessment (P < 0.001) and incomplete outcome data (P = 0.04). For the proportions of RCTs at high RoB, blinding of participants and personnel (47%) and blinding of outcome assessment (35%) were the poorest domains; there were no significant differences in changes for all domains.

Conclusions
Although improvements concerning unclear risk were observed for random sequence generation and selective reporting, major issues remain for allocation concealment and blinding. It is imperative to use valid randomization, specify how it is conducted, and try to test for selection bias and the success of masking by using the Berger Exner test.
Introduction

The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was often used to evaluate the quality of evidence [1]. Due to the lack of high-quality evidence from systematic reviews (SRs) on acupuncture, the recommendations for acupuncture in the guidelines are not high in strength [2]. Several studies have shown that a high risk of bias (RoB) was the main reason for rating down the quality of evidence [3–5], and the conclusion cannot be trusted if randomized controlled trials (RCTs) were rated as high RoB [6]. Additionally, one methodological study has shown that supplementary information from trialists can significantly increase the rate of trials at low RoB rather than high RoB by reducing the rate of unclear RoB [7]. Therefore, it is vitally important to reduce the proportion of RCTs having unclear or high RoB in the acupuncture field.

RoB of RCTs included selective reporting, failure to perform randomization, allocation concealment, blinding, and failure to consider the intention-to-treat principle for loss to follow-up [8]. Such limitations may lead to an underestimation or overestimation of the true effects of interventions [9]. Another concern about the reporting should be noted. RoB should be rated as unclear if there is a lack of information to give a final judgment of low or high RoB [10]. The proportions of RCTs considered by the systematic reviewers to be at unclear and high RoB could be used as surrogates for poor reporting and inadequate methods, respectively [11].

Many studies have assessed the RoB or reporting quality in acupuncture RCTs, but they are restricted to the number of RCTs included, specific topics, journals, or countries [12–17]. As far as we know, there has not been an article that assesses the RoB of acupuncture RCTs from the inception of research. An assessment of this will provide valuable information about the strengths and limitations for RoB in acupuncture RCTs over time and enable targeted efforts in improving the conduct and reporting in the future.

Consequently, we aimed to explore the changes of RoB of acupuncture RCTs over time, and propose solutions with regards to what actions could be undertaken to reduce the high or unclear RoB of acupuncture RCTs.

Methods

Inclusion and exclusion criteria

Eligible SRs must determine the effect of acupuncture and include RCTs. Acupuncture is a treatment procedure requiring filiform needles penetrating the acupoint with adequate manipulation, such as body acupuncture or abdominal acupuncture [18]. We only considered SRs that included a final judgment of the RoB for at least one domain of the Cochrane RoB tool: random sequence generation, allocation concealment, blinding (blinding overall, blinding of participants and personnel, or blinding of outcome assessment), incomplete outcome data and selective reporting. Additionally, we only included SRs that had two or more independent judgments for RoB. We excluded SRs with acupuncture combined therapy and conference abstracts.

Search strategy

PubMed, Embase, China National Knowledge Infrastructure (CNKI), Chinese WanFang Database, and China Science and Technology Journal Database (VIP) were searched from their inception to 24 November, 2017. We used a comprehensive search strategy, including a combination of text words and Medical Subject Headings (MeSH) terms and related to
Search strategies in PubMed are shown in S1 Table. The screening process was not limited by publication status.

Selection of eligible SRs and RCTs
Two trained researchers independently screened the titles and abstracts of all the articles. Subsequently, full texts of potential articles were further examined to determine eligibility. Disagreements were resolved by discussion. For RCTs included in more than one SR, considering the learning curve for authors for using the RoB tool, we only considered the RoB judgment in the most recent SR [9, 11]. Consequently, we kept one of the duplicate RCTs. To identify the duplicate RCTs, the references of SRs were first identified. Then, citations of RCTs were managed in EndNote X8 and “Find duplicates” was performed. Finally, we checked whether the identified RCTs were the same ones, and manually identified duplicate RCTs in the remaining citations.

Data extraction and standardization
Microsoft Access 2016 software was used to develop a standard data extraction table. Two reviewers independently exacted the data, and disagreements were resolved by consensus of them. The following data in SRs were extracted: first author, disease, primary intervention, primary outcomes, publication year (SR and RCT), RoB domains, and final RoB judgments. According to the Cochrane Handbook [10], systematic reviewers should evaluate the blinding of outcome assessment and incomplete outcome data for each outcome. Consequently, if the SRs reported more than one judgment for the same domain above, we extracted the RoB judgments corresponding to subjective outcomes, due to the potentially higher risk of subjective outcomes [9]. For domain blinding overall, we regarded the RoB as the same for both blinding of participants, and personnel and blinding of outcome assessors. For duplicate RCTs, we extracted the RoB judgment in the SR for the most recent.

Because the wording of RoB domains varied across SRs, two authors independently standardized all relevant terms according to the Cochrane Handbook [10]. Additionally, two researchers also independently standardized the classification of RoB assessment in terms of low, high or unclear RoB due to the inconsistent classification of judgments in SRs, such as yes, no, or unclear. These inconsistent classifications were only expressed in different ways but had the same meaning. All disagreements were resolved by discussion.

Data analysis
Microsoft Excel 2019 was used to calculate the proportions of RCTs at high and unclear RoB in total. We conducted the non-parametric Mann-Kendall test to assess the monotonically increasing or decreasing trends across the study years using R software (version 3.6.3), including the changes of the annual number of RCTs, and the proportion of RCTs at high or unclear risk.

Results
Selection and general characteristics
The selection process is presented in Fig 1. We retrieved 825 acupuncture SRs, with RoB assessment performed in 368 (45%) SRs. A total of 4,715 RCTs were included in these 368 SRs. Of these RCTs, 962 (20%) focused on pain, and 467 (10%) focused on sequelae of stroke (Table 1). The primary interventions were traditional acupuncture in 3,899 (83%) RCTs and electroacupuncture in 816 (17%) RCTs. The top 3 outcomes were effective rate (45%), rate of
Fig 1. PRISMA flow diagram.

Records identified through database searching (n = 6442)

Records after duplicates removed (n = 4274)

Records screened (n = 4274)

Records excluded (n = 3457)

Full-text articles assessed for eligibility (n = 825)

Full-text articles excluded (n = 457)

Not reporting the final risk of bias judgement (n = 457)

Systematic reviews included (n = 368)

RCTs identified from systematic reviews (n = 5080)

Single RCTs (n = 4422)

Duplicate RCTs (n = 658)

RCTs excluded (n = 365)

Eligible RCTs (n = 293)

RCTs included (n = 4715)
adverse events (9%), and pain intensity improved (6%). The annual number of RCTs included in this study indicated an upward trend from 1974 to 2011 and has declined since 2011 (S1 Fig). Overall, the number of RCTs increased significantly in the last five decades (z = 6.56, P < 0.01).

Overall assessment of poor reporting and inadequate methods

The proportion of RCTs at unclear RoB was 35% and 37% of all RCTs for incomplete outcome data and blinding of participants and personnel, but was 63% for allocation concealment, and 46%, 42% and 41% for blinding of outcome assessment, random sequence generation, and selective reporting, respectively (Fig 2). The proportion of RCTs at high RoB was low for random sequence generation, selective reporting and incomplete outcome data (9%, 9%, and 10%, respectively), and higher for allocation concealment, blinding of outcome assessment and blinding of participants and personnel (20%, 35%, and 47%, respectively) (Fig 2).

Temporal trends of risk of bias

Evolution of high risk. Over the past five decades, there seems to be a slight decrease in the proportion of RCTs at high risk which included random sequence generation, allocation concealment, blinding of outcome assessment, and incomplete outcome data, but these differences were not statistically significant (z < 0, P > 0.05, Fig 3 and Table 2). Although a slight
increase in the proportion of RCTs at high risk was observed for blinding of participants and personnel and selective reporting, there were no significant differences of changes (z > 0, \(P > 0.05 \)).

Evolution of unclear risk. A statistically significant reduction in the proportion of RCTs at unclear risk was observed for random sequence generation (z = -6.43, \(P < 0.01 \), Fig 3 and Table 2) and selective reporting (z = -2.55, \(P = 0.01 \)). On the contrary, the proportion of RCTs at unclear risk increased with statistically significant trends for blinding of participants and personnel (z = 3.85, \(P < 0.01 \)), blinding of outcome assessment (z = 4.33, \(P < 0.01 \)) and incomplete outcome data (z = 2.08, \(P = 0.04 \)). Additionally, for allocation concealment, the change was not statistically significant (z = -0.39, \(P = 0.69 \)).

Discussion

This methodological study included a great number of RCTs from 368 acupuncture SRs involved in a broad range of topics. We found great improvements in the proportions of RCTs at unclear risk for random sequence generation and selective reporting. However, our results raise concerns about allocation concealment and blinding. For allocation concealment, more than half (63%) of RCTs were rated as unclear RoB, and the rates of RCTs at unclear and high risk did not change over time. More importantly, the proportions of RCTs at unclear and high risk continue to increase for blinding of participants and personnel and blinding of outcome assessment.

Due to a lack of sufficient details, the unclear RoB of RCTs was serious for all the domains, especially allocation concealment. Most studies did not mention allocation concealment in the articles or not have detailed reporting, such as sealed opaque envelopes or central random methods [17]. A large proportion of RCTs was rated as high RoB for blinding, and one possible explanation for this was that blinding of acupuncturists is infeasible in RCTs due to the nature of acupuncture intervention [19]. Additionally, it is difficult for acupuncture-experienced participants to be blinded due to the general recognition of acupuncture. Although some studies performed the blinding of participants or outcome assessors, they failed to report the specific
process or clarify who was blinded [17, 20]. For random sequence generation, this study may overestimate the number of RCTs at low RoB. According to the Cochrane Handbook version

Fig 3. Evolution of poor reporting over time in 4715 RCTs on acupuncture.

https://doi.org/10.1371/journal.pone.0234491.g003
5.1.0 [10], trials reporting “using a computer random number generator”, “envelopes” or “minimization” could be judged as low RoB. However, Berger and colleagues [21, 22] have argued that “using a computer random number generator” is not a specific randomization method (it should be judged as unclear RoB), and “envelopes” and “minimization” were flawed method (they should be judged as high RoB).

Our findings are similar to those previously reported, in which the authors found the reporting in acupuncture RCTs for a broad range of topics was generally poor when CONSORT and STRICTA were used to assess the reporting quality [12–14, 23–31]. Additionally, several studies have shown the overall high rates of RCTs at unclear and high RoB on acupuncture, which are consistent with our findings [16, 20, 32]. Kim assessed the methodological quality of acupuncture RCTs in the Korean literature, and they found that a low proportion of trials reported allocation concealment, participant blinding and outcome assessment blinding, which agrees with our results [15]. Previous studies have shown that reporting quality of acupuncture trials has improved since the introduction of the CONSORT and STRICTA in China, but the rates of some important items were still low [33, 34].

This study has strengths. To our knowledge, our study is the first that explores the evolution of RoB of RCTs in the whole of the acupuncture field. Additionally, we used a large sample of RCTs covering multiple topics (n = 4715) to support our conclusions. Finally, we used a comprehensive search strategy and two researchers independently screened citations and extracted data to follow the scientific process and minimize potential bias.

Several limitations were noted. First, our results relied on the RoB assessments from a cohort of acupuncture SRs rather than evaluating by ourselves. Consequently, we only included SRs that at least two independent assessors performed the RoB assessment to ensure the reliability of our results. Second, RCTs included in acupuncture SRs may fail to represent the real acupuncture RCTs, but we think it is unlikely to include such a significant number of RCTs if we did not take advantage of SRs. Third, we excluded SRs involved in combined therapy. It limited the applicability of these findings. Fourth, we focused on the internal validity/ risk of bias but did not focus on other reasons for the weak reliability in RCTs, such as the skill of doctors, doctor-patient relationship, or ridiculous assumptions in the statistical analyses. Finally, most SRs included the RCTs published one year before the publication date of SRs, and our study may miss the latest information of RCTs. Our results are from a large sample of acupuncture trials with a long span, so we believe there is no reason why this trend would have changed recently. This study is part of a larger project, the next step of which is to explore the

Domains	Judgment	z	P-value
Random sequence generation	High risk	-0.79	0.43
Allocation concealment	High risk	-1.20	0.23
Blinding of participants and personnel	High risk	1.78	0.08
Blinding of outcome assessment	High risk	-1.15	0.25
Incomplete outcome data	High risk	-1.41	0.16
Selective reporting	High risk	1.35	0.18
Random sequence generation	Unclear risk	-6.43	< 0.01
Allocation concealment	Unclear risk	-0.39	0.69
Blinding of participants and personnel	Unclear risk	3.85	< 0.01
Blinding of outcome assessment	Unclear risk	4.33	< 0.01
Incomplete outcome data	Unclear risk	2.08	0.04
Selective reporting	Unclear risk	-2.55	0.01

https://doi.org/10.1371/journal.pone.0234491.t002
impact of characteristics on RoB and the impact of RoB on treatment effect sizes of acupuncture meta-analyses according to the method of meta-epidemiological study [35].

Our study shows acupuncture RCTs have room for improvement in reducing high RoB. Valid randomization procedures, such as the big stick, Chen, or maximum tolerated imbalance, should be used [22]. Although blinding is not always feasible, as far as possible trialists should blind the outcome assessors, and blinding of participants and personnel should be encouraged in the explanatory RCTs. When using blinding to control for the psychological effects, the key challenge is how to ensure that participants cannot distinguish the real acupuncture from a sham control [36]. Additionally, non-insertion and needle-insertion sham acupuncture can be combined as a control to improve the effect of blinding [37]. Chen recommended using a pilot study to validate the effect of blinding before the commencement of the formal RCTs [19]. Berger-Exner test was developed to directly detect selection bias and the success of masking [38, 39]. Including Berger–Exner test results in final trial reports should become standard practice [22].

It is also essential to improve the reporting quality in acupuncture RCTs. First, trialists should take on responsibility for following the CONSORT and SRTICTA statement [40, 41], and involve methodologists to improve the design and reporting. Second, journals must promote the implementation of reporting guidelines, such as submission of the checklists with the manuscript. Third, peer reviewers could identify the problems in conduct and reporting. Finally, guideline developers need to give more sensitive keywords related to allocation concealment and blinding.

Conclusion

Although improvements concerning unclear risk were observed for random sequence generation and selective reporting over time, major issues remain in the unclear or high RoB for allocation concealment and blinding. It is imperative to use valid randomization, specify how it is conducted, and try to test for selection bias and the success of masking by using the Berger Exner test in RCTs on acupuncture.

Supporting information

S1 Checklist. PRISMA 2009 checklist. (DOC)

S1 Table. Search strategy in PubMed. (DOCX)

S1 Fig. The number of RCTs included in acupuncture SRs from 1974 to 2017. (EPS)

Acknowledgments

We thank Guanjian Liu, a statistician from the Chinese Cochrane Centre, who guided the data analysis of this study.

Author Contributions

Conceptualization: Rui Chen, Liang Du.

Data curation: Qiong Guo, Shanxia Luo.

Formal analysis: Youlin Long, Rui Chen.
Funding acquisition: Liang Du.
Investigation: Youlin Long, Rui Chen, Qiong Guo.
Methodology: Youlin Long, Shanxia Luo, Liang Du.
Resources: Youlin Long.
Software: Youlin Long.
Supervision: Jin Huang.
Validation: Jin Huang.
Visualization: Youlin Long.
Writing – original draft: Youlin Long.
Writing – review & editing: Jin Huang, Liang Du.

References
1. Guyatt GH, Oxman AD, Schunemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011; 64(4):380–2. https://doi.org/10.1016/j.jclinepi.2010.09.011 PMID: 21185693
2. Guo Y, Zhao H, Wang F, Li SN, Sun YX, Han MJ, et al. Recommendations for acupuncture in clinical practice guidelines of the national guideline clearinghouse. Chin J Integr Med. 2017; 23(11):864–70. https://doi.org/10.1007/s11655-016-2750-4 PMID: 28116662
3. He W, Li M, Zuo L, Wang M, Jiang L, Shan H, et al. Acupuncture for treatment of insomnia: An overview of systematic reviews. Complement Ther Med. 2019; 42:407–16. https://doi.org/10.1016/j.ctim.2018.12.020 PMID: 30670270
4. Xi J, Chen H, Peng ZH, Tang ZX, Song X, Xia YB. Effects of Acupuncture on the Outcomes of Assisted Reproductive Technology: An Overview of Systematic Reviews. Evid Based Complement Alternat Med. 2018; 2018:7352735. https://doi.org/10.1155/2018/7352735 PMID: 30327681
5. Zhao H, Li D, Li Y, Yang Y, Liu Y, Li J, et al. Efficacy and safety of acupuncture for hypertension: An overview of systematic reviews. Complement Ther Med Pract. 2019; 34:185–94. https://doi.org/10.1016/j.ctcp.2018.12.003 PMID: 30712726
6. Hrobjartsson A, Boutron I, Turner L, Altman DG, Moher D. Assessing risk of bias in randomised clinical trials included in Cochrane Reviews: the why is easy, the how is a challenge. Cochrane Database Syst Rev. 2013(4):ED000058. https://doi.org/10.1002/14651858.ED000058 PMID: 23728703
7. Vale CL, Tierney JF, Burdett S. Can trial quality be reliably assessed from published reports of cancer trials: evaluation of risk of bias assessments in systematic reviews. Brmj. 2013; 346:i1798. https://doi.org/10.1136/bmj.i1798 PMID: 23610376
8. Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, et al. GRADE guidelines: 4. Rating the quality of evidence—study limitations (risk of bias). J Clin Epidemiol. 2011; 64(4):407–15. https://doi.org/10.1016/j.jclinepi.2010.07.017 PMID: 21247734
9. Reveiz L, Chapman E, Asial S, Munoz S, Bonfill X, Alonso-Coello P. Risk of bias of randomized trials over time. J Clin Epidemiol. 2015; 68(9):1036–45. https://doi.org/10.1016/j.jclinepi.2014.06.001 PMID: 26227423
10. Higgins JP, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]2011.
11. Dechartres A, Trinquart L, Atal I, Moher D, Dickersin K, Boutron I, et al. Evolution of poor reporting and inadequate methods over time in 20 920 randomised controlled trials included in Cochrane reviews: research on research study. Brmj. 2017; 357:j2490. https://doi.org/10.1136/bmj.j2490 PMID: 28596181
12. You YN, Cho MR, Kim JH, Park JH, Park GC, Song MY, et al. Assessing the quality of reports about randomized controlled trials of scalp acupuncture combined with another treatment for stroke. BMC Complement Altern Med. 2017; 17(1):452. https://doi.org/10.1186/s12906-017-1950-6 PMID: 28877716
13. Hughes JG, Lewith G, MacPherson H, Witt CM, Cummings M, Fisher P. Assessment of the quality of reporting in studies of acupuncture for patients with cancer using the STRICTA guidelines. Acupunct Med. 2019; 37(4):223–7. https://doi.org/10.1136/acupmed-2017-011592 PMID: 31188014
14. Liu K, Zeng J, Pei W, Chen S, Luo Z, Lu L, et al. Assessing the reporting quality in randomized controlled trials of acupuncture for postherpetic neuralgia using the CONSORT statement and STRICTA guidelines. J Pain Res. 2019; 12:2359–70. https://doi.org/10.2147/JPR.S210471 PMID: 31534360

15. Kim S, Sagong HS, Kong JC, Choi JY, Lee MS, Wieland LS, et al. Randomised clinical trials on acupuncture in the Korean literature: bibliometric analysis and methodological quality. Acupunct Med. 2014; 32(2):160–6. https://doi.org/10.1136/acupmed-2013-010470 PMID: 24280950

16. Li X, Wang R, Shi X, Chen Z, Pan Y, Li X, et al. Reporting characteristics and risk of bias in randomised controlled trials of acupuncture analgesia published in PubMed-listed journals. Acupunct Med. 2017; 35(4):259–67. https://doi.org/10.1136/acupmed-2016-011149 PMID: 28082266

17. Chen H, Zhang X, Tang X, Li X, Hu Y, Tian G. Randomized controlled trials on acupuncture for migraine: research problems and coping strategies. Ann Transl Med. 2019; 7(6):120. https://doi.org/10.21037/atm.2019.01.56 PMID: 31032275

18. Langevin HM, Schnyer R, MacPherson H, Davis R, Harris RE, Napadow V, et al. Manual and electrical needle stimulation in acupuncture research: pitfalls and challenges of heterogeneity. J Altern Complement Med. 2015; 21(3):113–28. https://doi.org/10.1089/acm.2014.0186 PMID: 25710206

19. Chen H, Yang M, Ning Z, Lam WL, Zhao YK, Yeung WF, et al. A Guideline for Randomized Controlled Trials of Acupuncture. Am J Chin Med. 2019; 47(1):1–18. https://doi.org/10.1142/S0192415X19500010 PMID: 30612455

20. Jia P, Tang L, Yu J, Lee AH, Zhou X, Kang D, et al. Risk of bias and methodological issues in randomised controlled trials of acupuncture for knee osteoarthritis: a cross-sectional study. BMJ Open. 2018; 8(3):e019847. https://doi.org/10.1136/bmjopen-2017-019847 PMID: 29511016

21. Berger VW. Selection Bias and Covariate Imbalances in Randomized Clinical Trials. Chichester: John Wiley & Sons; 2005.

22. Berger VW. Randomization, Masking, and Allocation Concealment. Boca Raton: Chapman & Hall; 2017.

23. Jia P, Tang L, Yu J, Liu J, Kang D, Sun X. The quality of reporting in randomised controlled trials of acupuncture for knee osteoarthritis: A cross-sectional survey. PLoS One. 2018; 13(4):e0195652. https://doi.org/10.1371/journal.pone.0195652 PMID: 29649270

24. Hammerschlag R, Milley R, Colbert A, Weih J, Yohalem-Ilsley B, Mist S, et al. Randomized Controlled Trials of Acupuncture (1997–2007): An Assessment of Reporting Quality with a CONSORT- and STRICTA-Based Instrument. Evid Based Complement Alternat Med. 2011; 2011.

25. Zeng J, Lin G, Li L, Lu L, Chen C, Lu L. Assessment of reporting quality in randomised controlled trials of acupuncture for post-stroke rehabilitation using the CONSORT statement and STRICTA guidelines. Acupunct Med. 2017; 35(2):100–6. https://doi.org/10.1136/acupmed-2016-011062 PMID: 27535816

26. Lu X, Hongcai S, Jiaying W, Jing H, Jun X. Assessing the quality of reports about randomized controlled trials of acupuncture treatment on mild cognitive impairment. PLoS One. 2011; 6(2):e16922. https://doi.org/10.1371/journal.pone.0016922 PMID: 21364920

27. Kim KH, Kang JW, Lee MS, Lee JD. Assessment of the quality of reporting in randomised controlled trials of acupuncture in the Korean literature using the CONSORT statement and STRICTA guidelines. BMJ Open. 2014; 4(7):e005068. https://doi.org/10.1136/bmjopen-2014-005068 PMID: 25079926

28. You YN, Cho MR, Park JH, Park GC, Song MY, Choi JB, et al. Assessing the quality of reports about randomized controlled trials of scalp acupuncture treatment for vascular dementia. Trials. 2017; 18(1):205. https://doi.org/10.1186/s13063-017-1945-0 PMID: 28464917

29. Luo G, Lu L, Zeng J. Quality of reporting of randomised controlled trials of acupuncture for neurological diseases conducted in China. Acupunct Med. 2014; 32(5):411–7. https://doi.org/10.1136/acupmed-2014-010579 PMID: 24938529

30. Lu L, Liao M, Zeng J, He J. Quality of reporting and its correlates among randomized controlled trials on acupuncture for cancer pain: application of the CONSORT 2010 Statement and STRICTA. Expert Rev Anticancer Ther. 2013; 13(4):489–98. https://doi.org/10.1586/era.13.27 PMID: 23560843

31. Bo C, Xue Z, Yi G, Zelin C, Yang B, Zixu W, et al. Assessing the quality of reports about randomized controlled trials of acupuncture treatment on Diabetic Peripheral Neuropathy. PLoS One. 2012; 7(7):e38461. https://doi.org/10.1371/journal.pone.0038461 PMID: 22768291

32. Linde K, Jonas WB, Melchart D, Willich S. The methodological quality of randomized controlled trials of homeopathy, herbal medicines and acupuncture. Int J Epidemiol. 2001; 30(3):526–31. https://doi.org/10.1093/ije/30.3.526 PMID: 1146076

33. Prady SL, Richmond SJ, Morton VM, Macpherson H. A systematic evaluation of the impact of STRICTA and CONSORT recommendations on quality of reporting for acupuncture trials. PLoS One. 2008; 3(2):e1577. https://doi.org/10.1371/journal.pone.0001577 PMID: 18270568
34. Ma B, Chen ZM, Xu JK, Wang YN, Chen KY, Ke FY, et al. Do the CONSORT and STRICTA Checklists Improve the Reporting Quality of Acupuncture and Moxibustion Randomized Controlled Trials Published in Chinese Journals? A Systematic Review and Analysis of Trends. PLoS One. 2016; 11(1): e0147244. https://doi.org/10.1371/journal.pone.0147244 PMID: 26808550

35. Zhang Z. Meta-epidemiological study: a step-by-step approach by using R. J Evid Based Med. 2016; 9 (2):91–97. https://doi.org/10.1111/jebm.12191 PMID: 26924387

36. Hopton AK, Macpherson H. Assessing blinding in randomised controlled trials of acupuncture: challenges and recommendations. Chin J Integr Med. 2011; 17(3):173–6. https://doi.org/10.1007/s11655-011-0663-9 PMID: 21359917

37. Berman BM, Lao L, Langenberg P, Lee WL, Gilpin AM, Hochberg MC. Effectiveness of acupuncture as adjunctive therapy in osteoarthritis of the knee: a randomized, controlled trial. Ann Intern Med. 2004; 141(12):901–10. https://doi.org/10.7326/0003-4819-141-12-200412210-00006 PMID: 15611487

38. Berger VW, Exner DV. Detecting selection bias in randomized clinical trials. Control Clin Trials. 1999; 20(4):319–27. https://doi.org/10.1016/s0197-2456(99)00014-8 PMID: 10440559

39. Mickenautsch S, Fu B, Gudehithlu S, Berger VW. Accuracy of the Berger-Exner test for detecting third-order selection bias in randomised controlled trials: a simulation-based investigation. BMC Med Res Methodol. 2014; 14:114–123. https://doi.org/10.1186/1471-2288-14-114 PMID: 25283963

40. Moher D, Schulz KF, Altman D. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. Jama. 2001; 285(15):1987–91. https://doi.org/10.1001/jama.285.15.1987 PMID: 11308435

41. MacPherson H, Altman DG, Hammerschlag R, Youping L, Taixiang W, White A, et al. Revised Standards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA): extending the CONSORT statement. PLoS Med. 2010; 7(6):e1000261. https://doi.org/10.1371/journal.pmed.1000261 PMID: 20543992