Excitations at the border of a condensate

Abdoulaye Diallo1,2 and Carsten Henkel1

1 Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany

2 2700 Rolido Drive, Houston, TX 77063, USA

E-mail: henkel@uni-potsdam.de

Received 14 April 2015, revised 9 June 2015
Accepted for publication 12 June 2015
Published 8 July 2015

Abstract
We solve the Bogoliubov equations for an inhomogeneous condensate in the vicinity of a linear turning point. A stable integration scheme is developed using a transformation into an adiabatic basis. We identify boundary modes trapped in a potential whose shape is similar to a Hartree–Fock mean-field treatment. These modes are non-resonantly excited when bulk modes reflect at the turning point and contribute significantly to the spectrum of local density fluctuations.

Keywords: Bose–Einstein condensate, quantum gas, elementary excitation, dynamic structure factor, Feshbach resonance

(Some figures may appear in colour only in the online journal)

Introduction

The achievement of Bose–Einstein condensation in ultra-cold trapped atomic gases (Pitaevskii and Stringari 2003) has provided experimentalists with a ‘direct look’ at quantum mechanical wave functions. In addition, the atom-atom interactions that become relevant despite the low densities, lead to a nonlinear wave mechanics of degenerate Bose gases, as described by the celebrated Gross–Pitaevskii equation at the mean field level (Gross 1961, Pitaevskii 1961), see equation (1) below. Nonlinearity brings in qualitatively new features in inhomogeneous systems, for example: by neglecting the kinetic energy (second derivative), one gets a nontrivial solution with a fixed amplitude, the so-called Thomas–Fermi condensate. This approximation breaks down in the vicinity of a turning point, and the condensate’s kinetic energy acquires logarithmic corrections (Dalfovo \textit{et al.} 1996, Fetter and Feder 1998). One has to deal with a nonlinear boundary layer problem, similar to the Ginzburg-Landau description of the surface of a superconductor (Lifshitz and Pitaevskii 1980) that leads to the distinction between type I and II superconductors.

We address in this paper the wave mechanics of elementary excitations around the Gross–Pitaevskii equation by focusing on a typical turning point where the trapping potential is approximately linear. This situation is of course well known for the linear Schrödinger equation: it leads to an Airy function and the famous \(\pi/4 \) phase when semiclassical wave functions (Wenzel–Kramers–Brillouin, WKB) are matched on both sides of the turning point (Langer 1937, Messiah 1995). In the nonlinear case, one is dealing with two coupled wave functions or Bogoliubov modes \(u \) and \(v \). This complicates the semiclassical analysis and has led to modified WKB techniques (Hyouguchi \textit{et al.} 2002). A straightforward numerical approach is impossible because the higher (fourth) order of the wave equation actually generates an instability. One of the motivations of the present analysis is to provide a robust scheme for the Bogoliubov modes that can be used as a stepping stone for inhomogeneous low-dimensional Bose gases at finite temperature. Indeed, in this case, thermally excited modes give a dominant contribution in the infrared and enforce the introduction of the quasi-condensate concept (Kagan \textit{et al.} 2000, Andersen \textit{et al.} 2002, Mora and Castin 2003). The Bogoliubov modes that we derive here capture the role of spatial coherence (delocalized waves) and may provide a quantitative assessment of the physics beyond the local density approximation. Indeed, we find that spatial gradients of the condensate density play a key role for the elementary excitations in the border region.

The paper is organized as follows. We recall the mean-field theory for the elementary excitations of an inhomogeneous degenerate Bose gas and formulate the boundary conditions on both sides of the position where the chemical potential crosses a linear(ized) trapping potential (section 1). In section 2, the Bogoliubov equations are solved approximately with the help of an adiabatic basis that generalizes the transformation to density and phase modes \(u \pm v \). We discuss in particular the appearance of ‘trapped modes’ near the
condensate boundary. The consequences for physical observables like the condensate depletion, the average thermal density and its fluctuations are illustrated in section 3. In a companion paper (Diallo and Henkel 2015), we analyse the correction to the WKB (Langer) phase at the nonlinear turning point and its role for the spectral density of elementary modes.

1. Model

Interacting Bose gases at low temperatures are quite successfully described by a mean-field theory provided most of the particles occupy the condensate mode. This mode then solves a nonlinear Schrödinger equation, also known as the Gross–Pitaevskii equation (GPE):

\[\frac{-\hbar^2}{2m} \nabla^2 \psi + V \psi + \frac{4\pi\hbar^2 a_s}{m} |\psi|^2 \psi = \mu \psi. \]

This is the stationary form of the GPE, with the eigenvalue \(\mu \) being the chemical potential. The (positive) scattering length \(a_s \) specifies the density-dependence of the inter-particle interactions at the mean-field level, and \(V \equiv V(\mathbf{r}) \) is an external potential. In this paper, we focus on a quasi-one-dimensional trap and replace the interaction term by an effective interaction strength proportional to \(a_s \) and the transverse confinement. In addition, we focus on the spatial region where the potential can be linearized, more specifically in the vicinity of a turning point:

\[\mu \approx -V(z_F z). \]

By shifting the \(z \)-coordinate, the chemical potential drops out of the GPE. With the proper choice of units (see table 1), the GPE finally takes a universal form (Dalfovo et al 1996), also recognizable as the second Painlevé transcendent (Ablowitz and Segur 1977).

\[\phi(z) \rightarrow \phi(z) + u(z) e^{-i\Omega z} + v(z) e^{i\Omega z} \]

where \(\Omega \geq 0 \) is the frequency (energy) of the elementary excitation, measured relative to the chemical potential. We fix the phases of \(\phi \), \(u \), \(v \) to be real, choosing positive \(\phi \).

1.1. Condensate wave function

The physically relevant solution to equation (2) is known as the second Painlevé transcendent and interpolates smoothly from an exponentially decreasing (tunnelling) wave to the Thomas–Fermi solution obtained by neglecting the second derivative (figure 1). Since one deals with a nonlinear equation, the amplitude of the tunnelling solution (Airy function) is not arbitrary, and it has been shown that (Ablowitz and Segur 1977, Hastings and McLeod 1980, Dalfovo et al 1996, Lundh et al 1997)

\[\phi(z) \rightarrow -\sqrt{2} \text{Ai}(-z). \]

Table 1. Natural units for the Bogoliubov equations in a linear potential \(V = -Fz \). The interaction constant in the quasi-1D geometries (first and second line) is \(g = 2\hbar a_s a_0 \) with transverse trapping frequency \(\omega_\perp/2\pi = 10 \text{ kHz} \) and s-wave scattering length \(a_s = 95 a_0 \) for \(\text{Rb} \text{87} \) (Egorov et al 2011). The trapped systems are considered in a harmonic confinement, the potential being linearized at the Thomas–Fermi radius.

System	Length	Temperature	Frequency	Density*
1D, gravity	\(0.3 \mu m \)	31 nK	640 Hz	6.4 \(\mu m^{-3} \)
1D, 100 \(\mu m \) length, 10 Hz trap	\(1.1 \mu m \)	2.3 nK	48 Hz	0.47 \(\mu m^{-3} \)
3D, 100 \(\mu m \) diam, 30 Hz trap	\(0.53 \mu m \)	9.9 nK	210 Hz	28 \(\mu m^{-3} \)

* The density scale for the 3D trap is taken as \(1/(8\pi a_s^3) \) (Dalfovo et al 1996).

Figure 1. Condensate wave function (second Painlevé transcendent and solution to equation (2)) and its asymptotic behaviour (equations (5), (6), dashed). We keep only the leading term in equation (6).

Figure 2. Bogoliubov equations in the same units can be written as

\[-\frac{d^2 u}{dz^2} - z u + 2 |\phi|^2 u + \phi^2 v^* = E u \]

\[-\frac{d^2 v}{dz^2} + z v + 2 |\phi|^2 v + \phi^2 u^* = -E v, \]

where \(E \geq 0 \) is the frequency (energy) of the elementary excitation, measured relative to the chemical potential. We fix the phases of \(\phi \), \(u \), \(v \) to be real, choosing positive \(\phi \).
On the dense side, Lundh et al (1997) and Margetis (2000) have improved the Thomas–Fermi solution into the expansion

\[z \to +\infty: \quad \phi(z) \to \sqrt{z} \left(1 - \frac{c_1}{z^3} - \frac{c_2}{z^6} - \ldots \right) \quad (6) \]

with coefficients \(c_1 = 1/8, c_2 = 73/128, \ldots \). The condensate density appears in the Bogoliubov equations (4) for \(u \) and \(v \), for example via the Hartree–Fock potential

\[V_{\text{HF}}(z) = -z + z |\phi|^2 \quad \left\{ \begin{array}{ll} -z & \text{for } z \ll -1 \\ +z & \text{for } z \gg +1 \end{array} \right. \quad (7) \]

which is a wedge-shaped trap (figure 2(left), thin solid line). Numerically, we find a polynomial approximation near its bottom (error <0.01)

\[V_{\text{HF}}(z) \approx v_0 + v_2 (z - z_0)^2 + v_3 (z - z_0)^3 \quad \text{for } |z - z_0| \leq 1 \quad (8) \]

with the minimum located at \(v_0 \approx 0.53 \) and \(z_0 \approx 0.13 \) and parameters \(v_2 \approx 0.47, v_3 \approx 0.041 \). It will turn out, however, that the Hartree–Fock well is irrelevant for the Bogoliubov solutions—the only message to keep is the characteristic energy scale \(E = O(1) \).

1.2. Boundary conditions for Bogoliubov solutions

The Bogoliubov modes feature an intermediate zone \(-E \lesssim z \lesssim E\) where the excitation changes its character from ‘single-particle’ to ‘collective’. Outside this zone, the asymptotic behaviour is as follows.

On the dilute side, the condensate \(\phi(z) \) in equations (4) vanishes, and the mode functions \(u \) and \(v \) decouple. The linear branch of the Hartree–Fock potential \(V_{\text{HF}}(z) \approx -z \) is a good approximation. We thus have a turning point \(z_E \) for \(u(z) \) at \(z_E \approx -E \). The mode \(v(z) \) is already in the tunneling regime for \(z \lessgtr -1 \) because of the opposite sign of the energy eigenvalue in equation (4).

In the dense region where the condensate dominates, also the coupling \(-\phi(z)^2 \) between \(u \) and \(v \) becomes large. It is convenient to switch to the ‘density–phase’ representation

\[f = (u + v)/\sqrt{2} \quad \text{and} \quad g = (u - v)/\sqrt{2} \quad \text{where the equations become} \]

\[\begin{align*}
-\frac{d^2 f}{dz^2} + (3\phi^2 - z) f &= Ef \\
-\frac{d^2 g}{dz^2} + (\phi^2 - z) g &= Eg.
\end{align*} \quad (9) \]

The ‘potentials’ that appear here are plotted in red and blue in figure 2(left). The ‘density mode’ \(f \) corresponds to a well (upper red) whose spectrum starts above zero energy (the minimum value of \(3\phi^2 - z \) is \(\approx 0.78 \) at \(z \approx -0.21 \)). It is enslaved to the ‘phase mode’ \(g \) that appears as a source term in equation (9), first line. The potential for the phase mode is a smooth barrier that crosses zero at \(z \approx 0.8 \) and vanishes for \(z \gg 1 \) (figure 2(left), lower blue). To take into account the density-phase coupling proportional to \(E \), we perform the adiabatic elimination \(f \approx Eg/(2z) \), using the Thomas–Fermi asymptote \(3\phi^2 - z \approx 2z \). This gives deep in the condensate the equation for the phase mode

\[z \to \infty: \quad -\frac{d^2 g}{dz^2} + \frac{E^2}{2z} g \approx 0. \quad (10) \]

This one-dimensional Coulomb problem has exact solutions that are discussed in section 2.2 below. To state the boundary conditions, a simpler semiclassical (WKB) treatment will suffice. From equation (10), identify the local wavenumber

\[k(z) = E/\sqrt{2z} \]

and calculate the action integral: one gets two independent solutions from the real and imaginary parts of

\[z \to \infty: \quad g(z) \sim \frac{(2z)^{1/4}}{\sqrt{E}} \exp(\frac{iE\sqrt{2z}}{2}). \quad (11) \]

Since \(f(z) \) is smaller by a factor \(E/(2z) \), this expression will dominate the behaviour of both \(u(z) \) and \(v(z) \) deep in the condensate. We call this asymptote the ‘local density approximation’ because the WKB treatment assumes that the
condensate density $\phi^2(z) \approx z$ varies slowly enough. In terms of
the wave number, we require $|dk/dz| \ll k^2$ or $E \sqrt{\delta z} \gg 1$. This
condition illustrates that the border region $z \sim 0$ and the
low-energy range $E \ll 1$ are actually challenging and require
techniques beyond the WKB approximation. For a discussion
of this point, see Diallo and Henkel (2015).

To summarize, the physically relevant boundary conditions are

(i) **Dilute domain** through the turning point $z \sim -E$, but
away from the condensate border

\[
\begin{align*}
 u(z) &= \alpha \text{Ai}(E - z) \\
 v(z) &= \beta \text{Ai}(E - z).
\end{align*}
\]

(12)

This covers the tunnelling region where both Airy functions
become exponentially small. At large energies, the solutions are such that $v(z)$ is much smaller than $u(z)$.

(ii) **Local density approximation** in the dense (condensate) region

\[
\begin{align*}
 z \gg E, 1/E^2: \\
 u(z) &= \frac{(2z)^{1/4}}{\sqrt{2E}} \cos(E\sqrt{2z} - \pi/4 + \delta) \\
 v(z) &= -\frac{(2z)^{1/4}}{\sqrt{2E}} \cos(E\sqrt{2z} - \pi/4 + \delta).
\end{align*}
\]

(13)

We have considered here only the leading order terms proportional to the phase mode θ (equation (11)). The normalization is such that the solutions $\delta = 0, \pi/2$ have the same amplitude and unit Wronskian, see appendix A for details.

The phase shift δ in the bulk asymptote (13) depends on the relative weight between real and imaginary parts of the complex solutions (11). The reference $-\pi/4$ is explained in section 2.2. We emphasize that this phase shift $\delta = \delta(E)$ ‘carries’ information about the behaviour near the condensate border into the bulk. For a matching of the Bogoliubov solutions near the turning point with bulk solutions using boundary layer techniques, see for example Fetter and Feder (1998).

2. Phase and density modes

The coupled Bogoliubov equations contain unphysical solutions that grow for $z \to \pm\infty$ and that typically contaminate numerical trials when the Bogoliubov equations are straightforwardly integrated. This can be seen from the first line of equations (9) whose homogeneous solutions are ‘under the barrier’ and grow exponentially. We have developed instead a semi-analytical scheme where the unstable modes are eliminated. The idea is to perform a rotation in the uv-plane that diagonalizes the coupling.

2.1. Adiabatic transformation

We make the following Ansatz for a rotated set of amplitudes

\[
\begin{align*}
 \begin{pmatrix} u' \\ v' \end{pmatrix} &= \begin{pmatrix} \cos \theta/2 & \sin \theta/2 \\ -\sin \theta/2 & \cos \theta/2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}.
\end{align*}
\]

(14)

and find that the coupling between u and v (equations (4)) is removed when the rotation angle θ is chosen as

\[
\tan \theta(z) = \frac{\phi^2(z)}{E}.
\]

(15)

Note that in the dense region, we have $\theta \to \pi/2$ and the amplitudes u, v approach the phase and density modes (g, f) introduced above equation (9). We note that a hyperbolic rotation that preserves the Bogoliubov norm $u^2 - v^2$ can also be used, but leads only to minor changes in notation.

The equations for u' and v' do not decouple completely because the rotation angle θ depends on position. By working out the second derivative of equation (14), we get

\[
\begin{align*}
 -\frac{d^2u}{dz^2} - \tilde{k}^2 u &= L\tilde{v}, \\
 \frac{d^2v}{dz^2} + \tilde{k}^2 v &= -L\tilde{u},
\end{align*}
\]

(16)

(17)

where the coupling involves derivatives of the condensate
density via the differential operator

\[
L = \frac{1}{2} \theta'' + \theta \frac{d}{dz}.
\]

(18)

The ‘adiabatic potentials’ $-\tilde{k}^2$ and \tilde{k}^2 in equations (16), (17) are recognized as the generalizations of the phase and density potentials $\phi^2 - z$ and $3\phi^2 - z$ of equations (9). They are plotted in figure 2(right) and take the form

\[
\begin{align*}
 -\tilde{k}^2 &= -z + 2\phi^2 - \sqrt{E^2 + \phi^4} + \left(\frac{1}{2} \theta'\right)^2, \\
 \tilde{k}^2 &= -z + 2\phi^2 + \sqrt{E^2 + \phi^4} + \left(\frac{1}{2} \theta'\right)^2.
\end{align*}
\]

(19)

(20)

We can understand the additional term $(\frac{1}{2} \theta')^2$ in equations (19, 20) as a ‘geometric potential’, by analogy to the geometric phase for a spin that is adiabatically transported in a slowly varying field (Berry 1984, Wilczek and Shapere 1989). Since we deal with a second-order differential equation, the structure is slightly different from the conventional geometric phase: one might also call ‘geometric’ the off-diagonal operator L in equation (18). This operator, involving the derivatives $\theta'' = d\theta/dz$ and θ'', is called ‘non-adiabatic coupling’ in the following. It peaks roughly where the mean-field potential $\phi^2(z)$ crosses the mode energy E, as illustrated in figure 3. The Thomas–Fermi approximation $\theta(z) \approx \arctan(z/E)$ provides a simple overview in the dense region, for example (magenta dashed in figure 3):

\[
z \gg 1: \quad \theta'(z) \approx \frac{E}{z^2 + E^2}.
\]

(21)

The non-adiabatic couplings are thus confined to the ‘condensate border’ $z \lesssim E$ and become weak as the energy
grows. Conversely, for \(E \to 0\), the maximum of \(\theta'(z)\) shifts into the dilute region with a scaling in position [height] roughly proportional to \(-\log(1/E)^{2/3}\), respectively, as can be checked from the tunnelling asymptotics of the Airy function (dashed in figure 3).

In the following, we proceed by adopting first the adiabatic approximation where the off-diagonal terms proportional to \(L\) are neglected (section 2.2). Non-adiabatic corrections are discussed in section 2.3, in particular the role they play for the ‘density mode’ \(\tilde{v}\).

2.2. Phase modes in open potential

In the adiabatic approximation (subscript ‘ad’), the equation for \(\tilde{u}\) can be written in the form

\[
-\frac{d^2\tilde{u}_{ad}}{dz^2} + \left(E - \tilde{k}^2(z)\right)\tilde{u}_{ad} = E\tilde{u}_{ad},
\]

where the potential \(E - \tilde{k}^2(z)\) is given by equation (19) for all \(z\) (figure 4(left)). At low energies, it is similar to the lower (blue) curve in figure 2. We call it an ‘open channel’ because we have \(E - \tilde{k}^2(z) \leq E\) as \(z \to \infty\) so that \(\tilde{u}\) is an extended wave right at the continuum threshold, with a turning point near \(z = -E\), as shown in the figure appendix B provides some details on the numerical calculation of these solutions.

Deep in the condensate, we find (black dashed line in figure 4(left))

\[
\phi^2(z) \gg E : \quad \tilde{k}^2(z) \approx -\frac{E^2}{2z} - \frac{1}{4z^2} + \mathcal{O}\left(z^{-5}, E^2z^{-4}, E^2z^{-3}\right),
\]

where the first term recovers the approximation (10). The ‘centripetal term’ \(-1/z^2\) arises from the first correction beyond the Thomas–Fermi approximation (the coefficient \(c_1 = 1/8\) in equation (6)). The higher-order corrections arise from the next-to-leading order expansion of the root \(\sqrt{E^2 + \phi^4(z)}\) and from the geometric potential \(\frac{1}{2}\theta'(z)^2\).

The Schrödinger equation for \(\tilde{u}_{ad}(z)\) therefore matches asymptotically with a modified Coulomb problem:

\[
-\frac{d^2\psi}{dz^2} + V_C(z)\psi = 0
\]

\[
V_C(z) = -\frac{E^2}{2z} - \frac{1}{4z^2}
\]

an equation that replaces equation (10) obtained above with a simpler argument. The required solutions are located just at the dissociation threshold of the Coulomb potential; they are known analytically and are linear combinations of Bessel functions (Abramowitz and Stegun 1972) (black dashed in figure 4).

\[
j(z) = \sqrt{\frac{z}{z^2 - 1}} J_0\left(E\sqrt{2z}\right)
\]

\[
y(z) = \sqrt{\frac{z}{z^2 - 1}} Y_0\left(E\sqrt{2z}\right).
\]

The argument \(E\sqrt{2z}\) of the Bessel functions is familiar from the phase of the WKB solutions in equation (11). We have chosen a normalization such that both Bessel–Coulomb solutions have the same amplitude deep in the condensate and their Wronskian is equal to unity (Abramowitz and Stegun 1972)

\[
W[j, y] = jy' - yj' = \int \frac{dy}{dz} - y \frac{dj}{dz}
\]

Deep in the condensate, the Bogoliubov mode can therefore be represented in the form

\[
\tilde{u}_{ad}(z) \approx A\left(j(z)\cos\delta_{ad} - y(z)\sin\delta_{ad}\right),
\]

where \(A\) is a normalization. This formula defines the phase shift \(\delta_{ad} = \delta_{ad}(E)\) of the Bogoliubov mode: the reference case \(\delta_{ad} = 0\) corresponds to the Coulomb wave \(j(z)\) which is regular when extrapolated back to the condensate border (at \(z = 0\) in the Thomas–Fermi approximation). According to the asymptotic series of \(J_0, Y_0\), the Bogoliubov mode function will match the behaviour deep in the condensate we required in equation (13) above:

\[
E\sqrt{2z} \gg 1 :
\]

\[
\tilde{u}_{ad}(z) \approx \frac{(2z)^{1/4}}{\sqrt{E}} \cos\left(E\sqrt{2z} - \pi/4 + \delta_{ad}\right)
\]

provided we choose the normalization factor \(A = 1\) in equation (27) (see appendix A, equation (A.11)). We recall that \(\cos\theta/2, \sin\theta/2 \to 1/\sqrt{2}\) in this limit and that \(\tilde{v}(z) = 0\) in the adiabatic approximation.

Note that the ‘centripetal potential’ \(-1/(4z^2)\) that arises from the first ‘post-Thomas–Fermi’ correction \(\phi^2(z) \approx z^{-1/4}\) in equation (6) is significant in this context. Dropping it from equation (24), the analytical solutions would involve first-order Bessel functions \(J_1, Y_1\) which are phase-shifted by \(\pi/2\) relative to their zeroth-order counterparts. This could have been expected from the long-range character of the centripetal potential, on the one hand. On the other, it is interesting to realize that one needs the \(J_0\) function in equation (25) to recover the correct behaviour of the Bogoliubov modes at low energies, as required by the U(1)
global phase symmetry of the mean field theory. We discuss the low-energy limit in more detail in section 2.4.

2.3. Non-adiabatic coupling and density modes in closed potential

We now take into account the off-diagonal (coupling) terms in the Bogoliubov equations and solve equation (17) for the density mode

$$ -\frac{d^2\tilde{v}_{ad}}{dz^2} + k^2(z)\tilde{v}_{ad} = -L\tilde{u}_{ad}(z). \tag{29} $$

This mode influences significantly the scattering phase shift δ, as we discuss in a companion paper (Diallo and Henkel 2015). In addition, it also contributes to the spectrum of density fluctuations (dynamical structure factor), as illustrated in section 3.3 below.

The Schrödinger operator on the left-hand side of equation (29) corresponds to a wedge-shaped potential well whose minimum is above zero (figure 4(right)). If the right-hand side is neglected, we therefore do not have any physically acceptable solution that remains finite for $z \to \pm \infty$. Numerically, the inhomogeneous equation can be solved straightforwardly by representing the second derivative with a finite difference scheme and solving the corresponding sparse linear system. The results are shown in figure 4(right) and figure 5(left). As expected, the density mode is localized in the border region and has an amplitude much smaller than the phase mode. The ‘local approximation’ $\tilde{v} = -L\tilde{u}/k^2(z)$ (gray dashed line) captures well its tails, but not the reduced amplitude of the oscillatory features (where the second derivative is obviously significant).

Some insight into the inhomogeneous Schrödinger equation (29) may be gathered by considering first the eigenvalue problem

$$ -\frac{d^2v_n}{dz^2} + k^2(z)v_n = \epsilon_n v_n(z) \tag{30} $$

for the potential well provided by $\tilde{k}^2(z)$. The eigenmodes v_n provide a convenient basis to expand \tilde{v}:

$$ \tilde{v}(z) = \sum_n b_nv_n(z). \tag{31} $$

The coefficients b_n are found by projecting equation (29) onto v_n, using the natural scalar product

$$ \langle \psi | \tilde{v} \rangle = \int dz \, v_n(z) \tilde{v}(z) \tag{32} $$

and choosing the normalization $\langle v_n | v_m \rangle = \delta_{nm}$. We get after two partial integrations

$$ b_n = -\left(\frac{v_n(L\tilde{u}_{ad})}{\epsilon_n} \right). \tag{33} $$

One key property here is that the source term in equation (29), $L\tilde{u}_{ad}(z)$, is actually a localized function (figure 5(left), thick blue) because the differential operator L involves the derivatives $\theta'(z)$ and $\theta''(z)$ that tend to zero as $z \gg E$ (see equation (21)). The matrix elements in equation (33) are therefore given by convergent integrals. The ‘trapped modes’ v_n are illustrated in figure 5(left). The closed-channel potential $\tilde{k}^2(z)$ is harmonic only in a narrow range around its minimum. Hence, the spectrum is non-equidistant due to the linear asymptotes away from the minimum. We derive in appendix C the asymptotics $\epsilon_n \sim E + [\pi(n + \frac{1}{2})]^{2/3}$.

Pseudo-Feshbach resonance. The results for the trapped density mode are summarized in figure 5(right) where we plot its norm $||v_{ad}||^2$ (defined as in equation (34) below) versus the energy E. To interpret the oscillating features, we suggest an analogy to the so-called Feshbach resonances in atomic and molecular scattering. The physics is essentially the same: due to non-adiabaticity, different potential surfaces are coupled.
The colliding system may thus split up and follow different paths which eventually interfere in the output (Stückelberg oscillations). A particularly strong effect occurs when a localized eigenstate in a closed channel becomes degenerate with the incoming wave in an open channel. In ultracold collisions, this mechanism operates when a differential Zeeman shift brings coupled spin states into resonance; the result is a divergence of the scattering length for specific values of the magnetic field (Feshbach resonance).

In our problem, we also have two potentials, open ($-\tilde{k}^2$) and closed (κz^2). But there is no tuning parameter available to bring the initial wave into resonance with the closed-channel eigenstates: the denominators ϵ_n in the amplitudes b_n (equation (33)) never cross zero. One can even derive the stronger bound $\epsilon_n \geq E + v_0 + \sqrt{v_0^2} \approx E + 1.22$ from the ground state of the harmonic approximation to the Hartree–Fock potential contained in $\tilde{k}^2(z)$ (see equation (8)). There is, however, one possibility for a resonantly enhanced density mode. It is not related to a matching of energies, but of wave functions. Indeed, for the energy $E \approx 0.32$, one observes a quite accurate matching in shape and position between \tilde{u} and the ground state v_0 (figure 5(top left)). This leads (as in a Franck–Condon argument) to the strong peak in the norm of the density mode

$$\|\vec{v}\|^2 = \langle \vec{v}|\vec{v}\rangle = \int dz \vec{v}^2(z)$$ (34)

as can be seen in figure 5(right) where the probabilities $|b_n|^2$ are plotted as a function of energy E and compared to the norm $\|\vec{v}\|^2$. A resonance with the first excited state v_1 at $E \approx 1.5$ is visible because at a slightly lower energy (figure 5(bottom left)), \tilde{u}_ad becomes orthogonal to the ground state v_0. At this ‘anti-resonance’, the derivative term in L is significant.

We have observed that the shape of the closed-channel potential $\tilde{k}^2(z)$ is relatively stable as the energy E increases (compare figure 5(left, top and bottom)). The overlap therefore changes chiefly because the turning point and the nodes of the open-channel solution \hat{u} shift with E, as we saw in figure 4(top). The other reason is the shifting and broadening of the non-adiabatic couplings θ^\prime, $\theta^\prime\prime$ that are involved in the operator L (recall figure 3).

2.4. Low-energy behaviour

It is well known that when the Bogoliubov spectrum is continuous, it is gapless and that the amplitudes u and v approach the shape of the condensate in the limit $E \rightarrow 0$. This translates the Goldstone mode arising from the global phase invariance (U(1) symmetry) of the Gross–Pitaevskii equation (2). In this low-energy limit, the density-phase representation of equations (9) becomes exact. For the sake of simplicity, we stay in the adiabatic basis (14) and get in the leading order the
Bogoliubov equation for the phase mode
\[E \to 0 : \quad -\frac{d^2 \bar{u}}{dz^2} + \left(\phi^2 - \epsilon \right) \bar{u} = 0. \] (35)
This is solved by the condensate \(\phi(z) \) itself. (For an illustration, see the \(E = 0.1 \) curve in figure 4(left).) In the same limit, there is only the trivial solution \(\bar{v} = 0 \) for the density mode. We fix the normalization by continuity with the low-energy limit of the Bessel–Coulomb wave that is proportional to the Thomas–Fermi condensate:
\[E^2 \leq E^2_z \ll 1 : \quad \bar{u}(z) = \sqrt{\pi} \phi(z) \approx j(z) = \sqrt{\pi} \left(1 + O\left(E^2 z \right) \right). \] (36)
We indeed find that the phase shift \(\delta(E) \) is very small in this limit so that the other Bessel–Coulomb wave \(y(z) \) (see equation (27)) has negligible weight at low energies (Diallo and Henkel 2015). The spatial range \(1 \leq z \ll 1/E^2 \) where this behaviour is relevant opens up wide for \(E \to 0 \).

3. Applications

3.1. Equilibrium correlations
It is well known that the Bogoliubov modes provide a convenient expansion of the field operator
\[\psi(z) = \phi(z) + \int_0^\infty \frac{dE}{\sqrt{\pi}} \left\{ u_E(z) a_E + v_E(z) a^\dagger_E \right\}, \] (37)
where the operators \(a^\dagger_E \) (\(a_E \)) create (annihilate) an elementary excitation with energy \(E \). We have assumed a c-number condensate (Bogoliubov shift) for simplicity and added the subscript \(E \) to the mode functions for clarity. Since the inhomogeneous potential is ‘open’ on the dense side, the energy spectrum is continuous. (The integration measure \(dE/\sqrt{\pi} \) arises from the normalization of the \(u, v \), see appendix A.) In thermal equilibrium, we have \(\langle a_E \rangle = 0 \) and the Bose occupation number
\[\langle a^\dagger_E a_E \rangle = \tilde{N}(E) \delta(E - E^*) = \frac{\delta(E - E^*)}{e^{E/E^*} - 1} \] (38)
because the expansion (37) provides a quadratic approximation of the second-quantized field Hamiltonian. The elementary excitations contribute even at zero temperature (‘depletion’) because of the operator \(a^\dagger_E \) that appears in equation (37). We focus in the following on low temperatures and leave aside the problem of ‘quasi-condensation’ and self-consistent mean-field theories in low densities; see for example Andersen et al (2002), Al Khawaja et al (2002), Mora and Castin (2003).

3.2. Field correlation spectrum
Matter-wave interference experiments are sensitive to the dynamic field correlation function
\[G(x, y, \tau) = \langle \psi^\dagger(x, t) \psi(y, t + \tau) \rangle, \] (39)
where the time dependence arises from \(a_E(t) \sim e^{-i\varepsilon t} \) in the Heisenberg picture. (Recall that we have set the zero of energy at the chemical potential.) Inserting equation (37) and taking \(x = y \), we get the well-known expression
\[G(z, \tau) = |\phi(z)|^2 + \int_0^\infty \frac{dE}{\pi} \left\{ u_E^2(z) \tilde{N}(E) e^{-i\varepsilon \tau} + v_E^2(z) \left\{ 1 + \tilde{N}(E) \right\} e^{i\varepsilon \tau} \right\}. \] (40)

We show in figure 6 a contour plot of two terms: the ‘particle spectrum’ \(u_E^2(z) \) and the ‘hole spectrum’ \(v_E^2(z) \) (with the energy scale flipped). We recognize in the upper left quadrant (particles outside the condensate) a straight nodal line \(E \approx 2.34 \sim z \) (dash-dotted) that is characteristic for the Airy function \(u_E(z) \sim A_i(-E - z) \). As the modes enter the condensate, the nodal lines shift to the pattern \(E^\pm \approx 2.405, 5.520 \ldots \) the first few roots of the Bessel function \(J_0 \) (dashed). This approximation is based on the asymptotic form (13) and works well because the Bogoliubov phase shift is small: \(|\delta(E)| \ll \pi/2 \) (see Diallo and Henkel (2015)).

At low energies (bright central region in figure 6(right)), the spectra for both particles and holes converge to the same limit (see equation (36)) that is essentially given by the condensate density (see section 2.4). The occupation number \(\tilde{N} \sim T/E \) in equation (40) thus leads to an infrared divergence of the average density \(n(z) = G(z, 0) \). This has been regularized by introducing the quasi-condensate concept (Kagan et al 2000, Andersen et al 2002): the divergence mainly arises from phase fluctuations which can be subtracted. See the discussion of the density correlations below.

Returning to the hole mode \(v_E(z) \) (figure 6(bottom left)), we see that it is confined to the dense region and follows similar nodal lines as \(u_E(z) \) as expected from the boundary condition equation (13). The contour plot provides a representation of the so-called depletion density
\[n_d(z) = \int_0^\infty \frac{dE}{\pi} v_E^2(z) \] (41)
which is simply the zero-temperature limit of the non-condensate density in equation (40) (a measure of quantum fluctuations). We have checked that this integral matches in the dense region (i.e., \(E^\pm \gg 1 \)) with the corresponding result for a homogeneous system\(^3\) (local density approximation with constant condensate \(\phi \))
\[n_{d, \text{LDA}} = \int_{-\infty}^{\infty} \frac{dk}{2\pi} v_k^2 \approx \frac{\langle \phi^2 \rangle}{\langle \phi \rangle} \int_{-\infty}^{\infty} \frac{dk}{2\pi E_k}, \] (42)
where the modes are labelled by the wave vector \(k \) and the dispersion relation is approximately linear \(E_k \approx \sqrt{k^2 + 2\mu k^2} \). The
\(^3\) A useful parametrization for the Bogoliubov amplitudes in a homogeneous system is \(u_0 = \cosh(\eta_0/2), v_0 = -\sinh(\eta_0/2) \) with \(\sinh \eta_0 = \phi^2/2E_0 \). The dispersion relation is \(E_k = k^2 + 2\mu \phi^2 \). Therefore in the dense limit \(\phi^2 \gg E_k \): \(v_k^2 \approx \phi^2/4 \approx \phi^4/2E_k \).
logarithmic infrared divergence can also be cured with suitable subtractions (Andersen et al 2002, Al Khawaja et al 2002, Mora and Castin 2003).

3.3. Density fluctuation modes

As a second application, we consider the leading order Bogoliubov contribution to the dynamic density correlations

\[S(x, t-t') = \frac{1}{2} \{ \langle \rho(x,t), \rho(y,t') \} - n(x)n(y) \}. \]

The curly brackets denote a symmetrized operator product for the particle density \(\rho(z, t) = \psi^\dagger(z, t) \psi(z, t) \). Its average \(n(z) = \langle \rho(z, t) \rangle \) does not depend on time (see equation (40) for \(\tau = 0 \)). The expectation value is worked out using the Bogoliubov shift (37) and expressed in terms of the occupation numbers (38), using the Wick theorem (gaussian statistics). Our result is consistent with equation (52) of Eckart et al (2008) and reads

\[
S(x, y, t-t') = \Re \left\{ G(x, y, -\tau) \Delta(x, y, \tau) \right\}
\]

where the first line involves the correlation function of equation (39) and the field commutator

\[
\Delta(x, y, t-t') = \left[\psi(x, t), \psi^\dagger(y, t') \right]
\]

Due to the completeness relation of the Bogoliubov modes, this goes over into \(\delta(x-y) \) when \(t \rightarrow t' \) (see appendix A). In equation (44), we use the ‘sum mode function’

\[
f_E(z) = u_E(z) + v_E(z)
\]

which is, by a property of the Bogoliubov equations, orthogonal to the condensate \(\phi(z) \) with respect to the scalar product (32). The ‘4th order terms’ of the last line arise from products of four Bogoliubov operators \(a_{E}^\dagger \) and \(a_{E} \). Note that the second line features, for \(x = y \), an integral that is similar to infrared-regularized thermal densities introduced by Andersen et al (2002), Al Khawaja et al (2002), Mora and Castin (2003). This illustrates the consistency of these procedures, since their goal is to eliminate from the density spurious contributions attributed to phase fluctuations.

We focus for illustration purposes on the ‘beating’ between the condensate and the elementary excitations and...
show in figure 7 the local spectrum

\[S_{\text{beat}}(z, E) = \frac{\phi^2(z)}{\pi} f_E^2(z)(2N(E) + 1). \]

We find this formula by including the part \(\phi^2(z)\Delta(z, E) \) of the first line in equation (44) that is proportional to the condensate density. The contour plot shows that the density fluctuations are peaking near the condensate border. This is as expected because deep inside a (quasi)condensate, such fluctuations are penalized by the self-interaction energy.

The density fluctuation spectrum does not show any infrared divergence because for small \(E \), the sum mode behaves as (adiabatic angle \(\theta \to \pi/2 \) in equation (14))

\[f_E = \left(\cos \frac{1}{2} \theta - \sin \frac{1}{2} \theta \right) \tilde{u}_E + \left(\cos \frac{1}{2} \theta + \sin \frac{1}{2} \theta \right) \tilde{v}_E \approx \frac{E}{\sqrt{2} \phi} \tilde{u}_E + \sqrt{2} \tilde{v}_E \quad \text{for } \phi^2(z) \gg E. \]

The cross term \(S_{\text{beat}} \) (equation (47)) with its dependence on \(f_E^2(z)(2N(E) + 1) \) therefore shows a low-energy scaling linear in \(E \). This can be seen in figure 7(right), in particular from the upper black curves that provide a cut through the maximum near \(z \approx 1 \). As one moves outside the condensate (lower blue curves, \(z = 0 \)), the plot also illustrates that the ‘trapped mode’ \(\tilde{v}_E(z) \) which is localized near the border (figure 4(right)), gives a significant contribution to the density fluctuations (compare dashed and solid lines). Since we focus here on the beating between the condensate density and the density due to elementary excitations, their relative phase does matter. We get the interesting result that the trapped mode \(\tilde{v}_E \) is actually reducing rather than enhancing low-frequency density fluctuations.

4. Conclusion

The elementary excitations of a Bose condensate (Bogoliubov spectrum) are well-known in a homogeneous system (Pitaevskii and Stringari 2003) and also within some approximations for a harmonically trapped gas (Stringari 1996, 1998, Öhberg et al 1997, Al Khawaja et al 2002). We have analysed in this paper the border region where the condensate density smoothly goes to zero, providing a detailed look at the physics beyond the Thomas–Fermi approximation. Previous work has focused on the condensate kinetic energy (Dalfovo et al 1996, Lundh et al 1997), ignoring the contribution of elementary excitation, and on the stability with respect to vortex formation, taking into account motion parallel to the border of the condensate (Lundh et al 1997, Anglin 2001). The mode functions provided here typically extend into the bulk of the condensate and would correspond in a three-dimensional isotropic trap to radially symmetric (angular momentum \(l = 0 \)) modes. Our main result is that the gradient in the condensate density couples elementary excitations that are mainly ‘phase-like’ and ‘density-like’, an effect clearly beyond the local-density approximation. This leads to density fluctuation modes that are localized near the border of the condensate. These fluctuations may be detected with scattering experiments using a focused probe beam that probe the dynamic structure factor locally, similar to the setup of Onofrio et al (2000). Alternatively, one may directly analyse density-density correlations when an elongated system is imaged. This may be complemented by launching, with a suitable pulse sequence, an elementary excitation coming from the bulk (dense quasi-condensate), similar to the suggestion of Brunello et al (2000). We also believe that the methods developed here provide a stepping stone towards a self-consistent description of an inhomogeneous Bose gas at finite temperature, using for example the modified Popov theory of Andersen et al (2002) or the Bogoliubov theory for quasi-condensates of Mora and Castin (2003). The border region where the density drops is
particularly interesting here because of the possibility of entering a strongly correlated phase, see for example Trebbia et al (2006), Jacqmin et al (2011), and Vogler et al (2013).

Acknowledgments

This work has been supported by a final-year student grant awarded to A D by Universität Potsdam.

Appendix A. Wronskians and normalization

We start by a generalization of the Wronskian for the Bogoliubov problem (two coupled equations). Our proposed definition is

\[
W[u, v, u_1, v_1] = W[u, u_1] + W[v, v_1] = uu_1' - uu' + vv_1' - vv',
\]

(1.1)

where the prime denotes the first derivative. We assume that all modes including the condensate \(\phi \) are real. The advantage of this combination are the following manipulations that can be applied to the pair of Bogoliubov equations

\[
Eu = -u^* + Hu + \phi^2 v,
\]

(2.2)

\[
-Ev = -v^* + Hv + \phi^2 u,
\]

(2.3)

where \(H = V + 2 |\phi|^2 - \mu \) is the Hartree–Fock potential. Consider another pair of solutions \(u_1, v_1 \) that solves the same equations with energy eigenvalue \(E_1 \). Combine equations (2.2, 2.3) to make appear \((E - E_1)(u_1 u - v_1 v) \) on the left-hand side, proportional to the integrand of the generalized \(L^2 \)-scalar product in the Bogoliubov space. On the right-hand side, most of the terms cancel and we find the derivative of the Wronskian \(W[u, v, u_1, v_1] \). Integrating and using the boundary conditions (5) for \(z \to -\infty \), we get

\[
\int dz [u_1(z)u(z) - v_1(z)v(z)] = \lim_{z \to -\infty} W[u, v, u_1, v_1] \frac{E - E_1}{E - E_1}.
\]

(A.1)

In other words: the scalar product can be analyzed locally from the asymptotic behavior of the mode functions. The orthogonality between modes with different energies in the discrete spectrum follows immediately (the Wronskian vanishes at both ends).

We continue by analyzing the continuous spectrum for the linear potential. Recall the asymptotic form deep in the condensate from equation (13):

\[
z \to +\infty: \quad u(z) \to A \frac{(2z)^{1/4}}{\sqrt{E}} \cos \left(E \sqrt{2z} - \pi/4 + \delta \right)
\]

(3.1)

and similarly for \(v(z) \) with amplitude \(B \). In this limit, the two amplitudes are given by the rotation back from the adiabatic basis

\[
\begin{pmatrix}
A \\
B
\end{pmatrix} = \begin{pmatrix}
\cos \theta/2 & -A \sin \theta/2 \\
A \sin \theta/2 & \cos \theta/2
\end{pmatrix}
\]

\[
\tan \theta = \frac{\phi^2(z)}{E},
\]

(6.6)

where we have used that only the adiabatic mode \(\tilde{\phi} \) survives’ and has amplitude \(A_i \). (\(\tilde{\phi} \) is localized in the Hartree–Fock-like well near the border, see figure 4(right).) The scattering phase \(\delta \) is therefore the same for both modes \(u \) and \(v \). Similar amplitudes \(A_1 \) and \(B_1 \) apply for the other solution at energy \(E_1 \). The Wronskian then becomes (denoting \(\varphi = E \sqrt{2z} - \pi/4 + \delta \) and similarly for \(\varphi_1 \))

\[
\lim_{z \to \infty} W[u, v, u_1, v_1] = \frac{AA_1 + BB_1}{E - E_1} \left(\frac{E_1}{E} \cos \varphi \sin \varphi_1 - \frac{E_1}{E} \sin \varphi \cos \varphi_1 \right).
\]

(A.7)

Contributions from the derivatives \(dA/dz, dB/dz \) would vanish like \(1/z^{3/2} \) relative to this term, see equation (21). It is natural to interpret this as distribution with respect to the energies \(E, E_1 \), to be put under an integral. The trigonometric functions can be re-written into \(\sin(\varphi - \varphi_1) \), this gives the expression

\[
\frac{AA_1 + BB_1}{2\sqrt{EE_1}} \sin \left((E + E_1) \sqrt{2z} - \pi/2 + \delta + \delta_1 \right).
\]

(A.8)

Since both energies are positive, this is an oscillating function as \(z \to \infty \). It averages to zero if integrated over some interval \(\Delta E > 2\pi/\sqrt{2z} \) and therefore vanishes in the distribution sense. The Wronskian is thus given by the phase difference term \(\sin(\varphi - \varphi_1) \)

\[
\lim_{z \to \infty} W[u, v, u_1, v_1] \frac{E - E_1}{E - E_1} = \frac{(AA_1 + BB_1)}{2\sqrt{EE_1}} \sin \left((E + E_1) \sqrt{2z} + \delta - \delta_1 \right) = \left(A^2 + B^2 \right) \pi \delta(E - E_1),
\]

(A.9)

where we recognized in the last fraction an oscillatory representation of a \(\delta \)-function

\[
\lim_{t \to \infty} \sin(xt) = \pi \delta(x)
\]

(A.10)

and used the continuity in energy of the phase shift and of the amplitudes. The latter sum to \(A^2 + B^2 = A^2 \) and in equation (20), chose the normalization \(A = 1 \). This leads from equation (A.4) to the orthogonality

\[
\int_\pi^\pi \left(u_1(z)u(z) - v_1(z)v(z) \right) = \delta(E - E_1)
\]

(A.11)

which is the main result of this appendix. The symmetry transformation \(u \leftrightarrow v \) and \(E \leftrightarrow -E \) of the Bogoliubov
problem (A.2, A.3) gives the additional orthogonality relation
\[\int \frac{dz}{\pi} (u_i(z)v(z) - v_i(z)u(z)) = 0. \]
(A.12)
As a consequence, we can easily check that the equations
\[a(E) = \int \frac{dz}{\sqrt{z}} \left(\psi(z)u_E(z) - \psi^*(z)v_E(z) \right) \]
\[\psi(z) = \int_0^\infty \frac{dE}{\sqrt{z}} \left(a(E)u_E(z) + a^*(E)v_E(z) \right) \]
(A.13)
translate the standard commutation relation of the field operator \([\psi(x), \psi^*(y)] = \delta(x - y)\) into an implementation of the canonical commutation relations for the elementary mode operators
\[\left[a(E), a^*(E') \right] = \delta(E - E') \]
(A.14)
provided the mode functions \(u\) and \(v\) are normalized as in equation (A.5) with \(A = 1\). The Bogoliubov shift (condensate in equation (37)) does not change this conclusion. For a discussion of the zero mode in the Bogoliubov problem and the corresponding operators, see for example Mora and Castin (2003).

Appendix B. Solving the Bogoliubov equations numerically

We use a standard differential equation solver for the Painlevé transcendent (Gross–Pitaevskii equation (2)). The solution that connects to the Thomas–Fermi profile is actually numerically unstable, and we match it around \(z \sim 3\) with the asymptotic expansion (6), keeping typically three terms.

To solve the Bogoliubov equation (16) in the open channel (mode \(\tilde{u}\)) in the adiabatic approximation, a standard forward solver is used: initialize with the tunnelling asymptote (5) and check that the potential is linear there. Integrate forward until a position \(z_1 \gg 1\) and match to a solution of the modified Coulomb problem (24)
\[\tilde{u}(z) = \alpha(z)j(z) - \beta(z)y(z). \]
(B.1)
The coefficients \(\alpha, \beta\) are conveniently calculated with the help of the Wronskians
\[\alpha(z_1) = W[\tilde{u}, y](z_1), \quad \beta(z_1) = W[\tilde{u}, j](z_1) \]
(B.2)
using the normalized Bessel–Coulomb solutions defined in equation (25).

At the position \(z_1\), the open potential \(-\hat{k}^2(z)\) may not yet have reached its Coulomb asymptote \(V_C(z)\) (see equation (23)), therefore the coefficients \(\alpha, \beta\) are still slowly varying. The Wronskians (B.2) satisfy a first-order differential equation that can be derived using the procedure explained after equation (A.3). This yields, for example,
\[\beta = \lim_{z \to \infty} W[\tilde{u}, j] \]
\[= \beta(z_1) + \int_{z_1}^{\infty} dz \left(-\hat{k}^2(z) - V_C(z) \right) \tilde{u}(z)j(z). \]
(B.3)

Figure C1. Spectrum \(\epsilon_n\) of trapped states (colored dots) compared to the Bohr–Sommerfeld rule (C.2) (thick black line). The dashed lines give the analytical approximation (C.5). To enhance the difference, the leading term \((\epsilon - E)^{1/2}\) has been subtracted from the action \((\gamma\text{-axis})\).

We choose the position \(z_1\) such that the following approximation to the open potential is accurate enough
\[z \gg z_1: \]
\[-\hat{k}^2(z) = V_C(z) \approx -\frac{E^4/(4z^2)}{z^2 + z(z^2 + E^2)^{1/2} + E^2/2}. \]
(B.4)
This term arises from the expansion of the root \((\theta^4 + E^2)^{1/2}\); other contributions (post-Thomas–Fermi correction, geometric potential) are smaller. We find that for \(z_1 \approx 15\), the relative error is smaller than \(10^{-3}\) for a wide range of energies. We compute the integral (B.3) numerically with the approximation (B.1) for \(\tilde{u}\). It converges because the potential difference scales like \(1/z^3\). One can avoid the evaluation of oscillatory Bessel functions for large arguments by (i) using their asymptotic form and (ii) shifting the integration contour into the complex plane after some point \(z \gtrsim \max\{z_1, 2E\}\) on the real axis. In this way, one is keeping clear of the branch cut of equation (B.4) at \(z = \pm i\hat{E}\). This procedure now yields the extrapolated coefficients \(\alpha, \beta\). The normalization factor for the wave function \(\tilde{u}\) is then \(1/(\alpha^2 + \beta^2)^{1/2}\), and the scattering phase shift follows from \(\tan \delta = \beta/\alpha\).

The calculation of the density mode \(v\) is based on the adiabatic approximation for the inhomogeneous Schrödinger equation (17). We represent the differential operator in the closed potential \(\hat{k}^2(z)\) on a grid with a finite difference scheme. The size of the grid is adapted to the support of the source term \(L\tilde{u}\). Due to the non-zero minimum of the potential, zero energy is not in the spectrum of the differential operator, hence the inhomogeneous equation is solved by a straightforward matrix inversion.

Appendix C. Trapped states

The closed potential \(\hat{k}^2(z)\) has linear asymptotes on both sides (see its Thomas–Fermi approximation in equations (C.3, C.4) below). Physically allowed eigenmodes therefore join into
tunnelling solutions and occur only for discrete eigenvalues ϵ_n (see equation (30), not to be confused with E which remains a continuous parameter).

For the numerical calculation of the trapped states in the closed potential, we use the finite-difference scheme of the preceding B and take a standard sparse eigenvector solver. Examples are shown in figure 5 (left column). A comparison of the spectrum $\{\epsilon_n\}$ with the familiar Bohr–Sommerfeld quantization rule is given in figure C1. Recall that this rule is based on the action integral

$$S(\epsilon) = \frac{\pi}{2} + \int_{z_1}^{z_2} dz \, p(z; \epsilon),$$

$$p(z; \epsilon) = \sqrt{\epsilon - k^2(z)}, \quad (C.1)$$

where $z_{1,2}$ are the left and right roots of $p^2(z; \epsilon)$ (also known as turning points). The phase $\pi/2$ arises from the Langer correction at both turning points (Messiah 1995). The eigenvalues are then approximately given by

$$S(\epsilon_n) = \pi(n + 1), \quad n = 0, 1, 2, \ldots \quad (C.2)$$

The action integral, computed numerically, is plotted as thick lines in figure C1, and a good agreement with the numerically computed eigenvalues is found. For the plot, the colored squares mark the pair $(\epsilon_n, \pi(n + 1))$. To enhance the visibility, we have subtracted the leading term $(\epsilon - E)^{3/2}$ from the action, see equation (C.5) below.

The dashed lines in the figure show the Thomas–Fermi approximation to the action that can be computed analytically and provides a relatively accurate estimate. The closed potential is approximated by

$$z \leq 0: \tilde{k}^2 \approx E - z, \quad (C.3)$$

$$z \geq 0: \tilde{k}^2 \approx z + \sqrt{E^2 + z^2}. \quad (C.4)$$

These formulas are also useful to estimate the position of the left and right turning points $z_{1,2}$. The action integral gives $\sqrt{3}(\epsilon - E)^{3/2}$ from the region $z_{1,2}$, and the range $0 \ldots z_2$ can be evaluated with the substitution $z = E \sinh t$. Summing the two, we get

$$S = (\epsilon - E)^{3/2} + \frac{\pi}{2} + \frac{E}{2} (\epsilon - E)^{1/2} - \frac{E^2}{2 \sqrt{\epsilon}} \arctanh \sqrt{\frac{E - \epsilon}{\epsilon}}. \quad (C.5)$$

The first two terms give with the Bohr–Sommerfeld rule (C.2) the eigenvalue spectrum $\epsilon_n \sim E + [\pi(n + \frac{1}{2})]^{2/3}$ mentioned after equation (33). The scaling law $\epsilon_n \sim n^{2/3}$ illustrates the non-equidistant spectrum in this anharmonic well. Equation (C.5) captures relatively well the numerically computed action (compare dashed and solid lines in figure C1), except at low energies where the Thomas–Fermi approximation fails to reproduce the shape of the potential.

References

Ablowitz M J and Segur H 1977 Exact linearization of a Painlevé transcendent Phys. Rev. Lett. 38 1103–06
Abramowitz M and Stegun I A (ed) 1972 Handbook of Mathematical Functions 9th edn (New York: Dover)
Al Khawaja U, Andersen J O, Proukakis N P and Stoof H T C 2002 Low dimensional Bose gases Phys. Rev. A 66 013615
Al Khawaja U, Andersen J O, Proukakis N P and Stoof H T C 2002 Phys. Rev. A 66 053615 (erratum)
Andersen J O, Al Khawaja U and Stoof H T C 2002 Phase fluctuations in atomic Bose gases Phys. Rev. Lett. 88 070407
Anglin J R 2001 Local vortex generation and the surface mode spectrum of large Bose–Einstein condensates Phys. Rev. Lett. 87 240401
Berry M V 1984 Quantal phase factors accompanying adiabatic changes Proc. R. Soc. A 392 45–57
Brunello A, Dalfovo F, Pitaevskii L and Stringari S 2000 How to measure the Bogoliubov quasiparticle amplitudes in a trapped condensate Phys. Rev. Lett. 85 4422–25
Dalfovo F, Pitaevskii L and Stringari S 1996 Order parameter at the boundary of a trapped Bose gas Phys. Rev. A 54 4213–17
Diallo A and Henkel C 2015 Bogoliubov phase shifts at a nonlinear turning point in preparation
Eckart M, Walser R and Schleich W P 2008 Exploring the growth of correlations in a quasi one-dimensional trapped Bose gas New J. Phys. 10 045024 (equation(52) corrects a typographic error in equation (91) of Walser (2004))
Egorov M, Ivaninnikov V, Opanchuk B, Hall B V, Hannaford P and Sidorov A I 2011 Precision measurements of s-wave scattering lengths in a two-component Bose–Einstein condensate Proc. Int. Quantum Electronics Conference and Conf. on Lasers and Electro-Optics Pacific Rim 2011 Optical Society of America 11034 (see also arXiv:1205.1591)
Fetter A L and Feder D L 1998 Beyond the Thomas–Fermi approximation for a trapped condensed Bose–Einstein gas Phys. Rev. A 58 3185–94
Gross E P 1961 Structure of a quantized vortex in boson systems Nuovo Cimento 20 454–76
Hastings S and McLeod J 1980 A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation Arch. Ration. Mech. Anal. 73 31–51
Hyoguchi T, Adachi S and Ueda M 2002 Divergence-free WKB method Phys. Rev. Lett. 88 170404
Jacqmin T, Armijo J, Berrada T, Kheruntsyan K V and Bouchoule I 2011 Sub-poissionian fluctuations in a 1D Bose gas: from the quantum quasicondensate to the strongly interacting regime Phys. Rev. Lett. 106 230405
Kagan Y, Kashurnikov V A, Krasavin A V, Prokof’ev N V and Svistunov B 2000 Quasicondensation in a two-dimensional interacting Bose gas Phys. Rev. A 61 043608
Langer R E 1937 On the connection formulas and the solutions of the wave equation Phys. Rev. 51 669–76
Lifshitz E M and Pitaevskii L P 1980 Statistical physics: 2. Landau and Lifshitz, Course of Theoretical Physics 2nd edn vol 9 (Oxford: Pergamon)
Lundh E, Pethick C J and Smith H 1997 Zero-temperature properties of a trapped Bose-condensed gas: beyond the Thomas–Fermi approximation Phys. Rev. A 55 2126–31
Margetis D 2000 Asymptotic formula for the condensate wave function of a trapped Bose gas Phys. Rev. A 61 055601
Messiah A 1995 Mécénique Quantique nouvelle edn vol 1 (Paris: Dunod)
Mora C and Castin Y 2003 Extension of Bogoliubov theory to quasicondensates Phys. Rev. A 67 053615
Öhberg P, Surkov E L, Tittonen I, Stenholm S, Wilkens M and Shlyapnikov G V 1997 Low-energy elementary excitations of a trapped Bose-condensed gas Phys. Rev. A 56 R3346–49
Onofrio R, Durfee D S, Raman C, Köhl M, Kuklewicz C E and Ketterle W 2000 Surface excitations of a Bose–Einstein condensate Phys. Rev. Lett. 84 810–13
Pitaevskii L P 1961 Vortex lines in an imperfect Bose gas J. Exp. Teor. Fiz. 40 646–51
Pitaevskii L P 1961 Sov. Phys. JETP 13 451–54
Pitaevskii L P and Stringari S 2003 Bose–Einstein condensation (Int. Series of Monographs on Physics vol 116) (Oxford: Oxford University Press)
Stringari S 1996 Collective excitations of a trapped Bose-condensed gas Phys. Rev. Lett. 77 2360
Stringari S 1998 Dynamics of Bose–Einstein condensed gases in highly deformed traps Phys. Rev. A 58 2385–88
Trebbia J-B, Esteve J, Westbrook C I and Bouchoule I 2006 Experimental evidence for the breakdown of a Hartree–Fock approach in a weakly interacting Bose gas Phys. Rev. Lett. 97 250403
Vogler A, Labouvie R, Stubenrauch F, Barontini G, Guarrera V and Ott H 2013 Thermodynamics of strongly correlated one-dimensional Bose gases Phys. Rev. A 88 031603
Walser R 2004 Ground state correlations in a trapped quasi one-dimensional Bose gas Opt. Commun. 243 107–29
Geometric phases in physics Wilczek F and Shapere A (ed) 1989 (Advanced Series in Mathematical Physics vol 5) (Singapore: World Scientific)