Blood-brain barrier dysfunction significantly correlates with serum matrix metalloproteinase-7 (MMP-7) following traumatic brain injury

Paul Nichols a,*, Javier Urriola b, Stephanie Miller d, Tracey Bjorkman d, Kate Mahady e, Viktor Vegh b, i, Fatima Nasrallah b, Craig Winter b, g

a Department of Neurosurgery, Royal Brisbane and Women’s Hospital, Australia
b Queensland Brain Institute, The University of Queensland, Australia
c Australian e-Health Research Centre, CSIRO, Brisbane, Australia
d University of Queensland Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women’s Hospital, Australia
e School of Medicine, The University of Queensland, Australia
f Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Australia
g The ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, Australia

ABSTRACT

Objectives: To determine if radiological evidence of blood brain barrier (BBB) dysfunction, measured using Dynamic Contrast Enhanced MRI (DCE-MRI), correlates with serum matrix metalloproteinase (MMP) levels in traumatic brain injury (TBI) patients, and thereby, identify a potential biomarker for BBB dysfunction.

Patients and Methods: 20 patients with a mild, moderate, or severe TBI underwent a DCE-MRI scan and BBB dysfunction was interpreted from K trans. K trans is a measure of capillary permeability that reflects the efflux of gadolinium contrast into the extra-cellar space. The serum samples were concurrently collected and later analyzed for MMP-1, -2, -7, -9, and -10 levels using an ELISA assay. Statistical correlations between MMP levels and the K trans value were calculated. Multiple testing was corrected using the Benjamin-Hochberg method to control the false-discovery rate (FDR).

Results: Serum MMP-1 values ranged from 1.5 to 49.6 ng/ml (12 ± 12.7), MMP-2 values from 58.3 to 174.1 ng/ml (109.5 ± 26.7), MMP-7 from 1.5 to 31.5 ng/ml (10 ± 7.4), MMP-9 from 128.6 to 1917.5 ng/ml (647.7 ± 749.6) and MMP-10 from 0.1 to 0.6 ng/mL (0.3 ± 0.2). Non-parametric Spearman correlation analysis on the data showed significant positive relationship between Ktrans and MMP-7 (r = 0.55, p < 0.01). Correlations were also found between Ktrans and MMP-1 (r = 0.74, p < 0.0002) and MMP-2 (r = 0.5, p < 0.025) but the actual MMP values were not above reference ranges, limiting the interpretation of results. Statistically significant correlations between K trans and either MMP-9 or -10 were not found.

Conclusion: This is the first study to show a correlation between DCE measures and MMP values in patients with a TBI. Our results support the suggestion that serum MMP-7 may be considered as a peripheral biomarker quantifying BBB dysfunction in TBI patients.

1. Introduction

Traumatic brain injury (TBI) represents a significant health and socioeconomic problem worldwide. The Australian Institute of Health and Welfare estimate the prevalence of TBI to be 107 per 100,000 people and in the US an estimated 1.7 million civilians sustain a TBI each year (Fortune and Wen, 1999). Patient outcome relates to both the primary structural brain injury and the development of secondary molecular mechanisms that cause subsequent damage, such as hypoxia–ischemia, neuroinflammation, lipid peroxidation, glutamate excitotoxicity, and blood–brain barrier (BBB) disruption (Sahuquillo et al.). The anatomical substrates of the BBB are comprised of endothelial cells, which are held...
together by tight junctions, with associated astrocytes that limit the paracellular flux of solutes (Caculio et al., 2011). Functionally this has an essential role in regulating the interstitial fluid microenvironment such that any compromise may lead to alterations in extracellular ion concentrations, neuronal disruption, increased vasogenic oedema, and raised intracranial pressure (Chow and Gu, 2015).

Both immediate and delayed dysfunction of the BBB have been observed in TBI and the hypothesis that BBB damage is an important factor in determining post-injury progression and patient outcome is increasingly emphasized (Neuwelt et al., 2008). The ability to measure the severity of BBB impairment following TBI could potentially aid in both patient outcome prognostication and in the current management of head injury patients. Defining a severely altered BBB in the setting of a head injury may, for example, modify fluid and blood pressure parameters so as not to worsen peri-contusional vasogenic oedema. The identification of on-going BBB processes, either harmful or reparative, that exacerbate or abort BBB dysfunction, would aid in the assessment of the extent of BBB dysfunction by measuring K^{Trans} (i.e. the volume transfer constant), the quantitative parameter extracted from DCE-MRI data. A damaged BBB enables the extravasation of low molecular weight intravascular contrast agents and the accumulation in the extracellular space leads to both increased longitudinal relaxation rates and signal intensity in T1 weighted images. DCE-MRI utilises this T1 enhancement to detect and calculate indices related to the absorption and excretion of the MRI contrast medium. This is expressed as K^{Trans}, which reflects the number of contrast agent molecules delivered to the interstitial space per unit time (Tofts et al., 1999). Wei et al. (Wei et al., 2011) found significant differences in early K^{Trans} values between severe and moderate vs. mild TBI in experimental animal models of TBI. Lu et al. (Lu et al., 2018) later confirmed a sustained increase in K^{Trans} value in a controlled cortical injury.

The role of MMPs in TBI-induced BBB disruption has been a growing area of investigation in recent years (Planas et al., 2001). They are calcium-dependant zinc endopeptidases of the metzincin superfamily (Stocker et al., 1995) and with the exception of MMP-28, are ubiquitously expressed in mammalian organisms. There are currently 24 human MMP homologues described and they are categorised into subfamilies such as gelatinases (MMPs −2 and −9), collagenases (MMPs −1, −8 and −13) and endopeptidases (MMP-7). They have a role in morphogenesis, cell migration and angiogenesis and are also involved in pathological processes such as wound healing, inflammation and cancer (Rempe et al., 2016).

MMPs have a significant role in the regulation of the extracellular matrix (ECM) (Loff et al., 2011) and they likely affect BBB integrity in head injuries by digesting and remodelling the ECM surrounding brain capillaries and by degrading tight junction proteins that seal the endothelium (Lischper et al., 2010; Feng et al., 2011). The composition of the BBB basement membrane includes Type IV collagen, laminin and fibronectin (Chakraborti et al., 2003); all of which are known to be degraded by MMPs. Additionally, MMPs directly compromise vascular integrity resulting in BBB dysfunction (Rempe et al., 2016). To further explore the role of MMP levels, we hypothesised that blood MMP levels would correlate with the degree of BBB permeability as measured using K^{Trans} in patients with TBI.

This study sought to address whether MMPs measured in serum blood correlated with DCE-MRI measured BBB dysfunction to determine if MMPs could act as a biomarker of BBB dysfunction in TBI. A serum biomarker would have great practical implications in the diagnosis and monitoring of BBB dysfunction, particularly in centres where access to MRI is limited or not practical. It would also have potential research implications in monitoring response to novel treatment strategies.

2. Materials and methods

2.1. Study subjects and design

The study was approved by the local Human Research and Ethics Committee (HREC/16/QRBH/604). TBI patients admitted to the Neurosurgical unit at the Royal Brisbane and Women’s Hospital were approached for enrolment into the study. Inclusion criteria were patients aged between 18 and 80 with a radiologically verified TBI. Consent was gained from the patient or the next of kin. Exclusion criteria included patients with significant multi-trauma, known neurodegenerative diseases or significant mental health disorders and when the MRI was contraindicated (e.g. contrast allergy).

For each patient, details of age and initial Glasgow Coma Score (GCS) were collected (Table 1). The predominant finding on the CT brain scan was documented, i.e., diffuse axonal injury, contusion, traumatic sub-arachnoid haemorrhage or extra-axial haematoma and the head injury classified into mild (GCS 13-15), moderate (GCS 9-12) or severe (GCS 3-8) (Teasdale and Jennett, 1974).

2.2. Magnetic resonance imaging protocols

All images were obtained using a 3 T MRI scanner (Prisma, Siemens Healthcare, Germany) using a 32-channel head array coil. The MRI protocols consisted of an anatomical T1-weighted Magnetisation Prepared Rapid Gradient-Echo (MPRAGE) scan acquired with the following parameters: TE = 2.26 ms, TR = 1900, FA = 9 degrees, Acquisition matrix = 256 × 256, with 1 mm isotropic voxel. The dynamic contrast-enhanced MRI (DCE-MRI) acquisition was performed using a 3D gradient-echo (GRE) T1-weighted Controlled Aliasing in Parallel Imaging Results in Higher Acceleration-volumetric interpolated breath-hold examination sequence (CAIPIRINHA-VIBE) (TE = 1.8 ms, TR = 4.35 ms, FA = 9 degrees, Acquisition matrix 221 × 200, resolution 0.94 × 0.94 × 0.9, number of measurements = 20, slices per volume = 208). Baseline images were acquired. Subsequently, during the first 2 min, and while the dynamic acquisition was continuing, the contrast agent Gadavist (GE Healthcare, USA) was injected as a bolus (0.1 mmol/kg) in to the antecubital vein. A total of 20 dynamic volumes were acquired with a temporal resolution of 55 s per volume. A post-contrast T1 MPRAGE was then obtained with the same parameters as the pre-contrast T1-weighted image.

2.3. MRI analysis and Pre-processing

Image pre-processing was performed using the FMRIB Software Library (FSL), Statistical Parametric Mapping (SPM12) and Matlab (MATLAB R2018b; The MathWorks, Inc., Natick, MA). DCE-MRI pre-processing steps included realignment of the volumes of the time-series to the first baseline volume, followed by tissue class segmentation and image bias field inhomogeneity correction using SPM12. For each patient, a visual inspection of all pre-processed DCE-MRI volumes and the realignment matrix was performed to detect volumes affected by motion artefacts, which were manually removed and replaced by a three-dimensional mean image from two adjacent volumes during the
baseline. DCE-MRI images were resampled to 1 mm isotropic resolution, contained the K_{trans} of the extracellular space (EES). Thus, the resulting BBB permeability maps, at 2.7. K_{trans}-M on each respective 1 mm isotropic masks. Thus, patients with higher K_{trans}-M on each respective 1 mm isotropic masks. Thus, patients with higher K_{trans}-CHC ratio reflect an increased permeability of the contusional core compared to the permeability of normal-appearing tissue.

To compare the permeability values of the contrast-enhanced T1-weighted images, the GM-WM mask was used to estimate the threshold of the T1-difference image, set at mean plus two standard deviations. The threshold adjusted T1-difference image was then used as input for a semi-automatic segmentation method involving the filling of the contrast-enhancement injury lesion on successive iterations using region competition snakes as implemented in ITKsnap (ITK-SNAP v3.4, 2015). For this segmentation, 2 mm diameter spherical seeds were placed in non-vascular contusional regions of high signal intensity of the thresholded T1-difference image prior to running the segmentation algorithm. A neuroradiologist (KM), who had all structural and subtraction DCE images, inspected the semi-automatic results and adjusted any voxels accordingly.

2.6. Normal-appearing tissue mask and ratio with CHC

To compare the permeability values of the contrast-enhanced T1-weighted images, the GM-WM mask was used to estimate the threshold of the T1-difference image, set at mean plus two standard deviations. The threshold adjusted T1-difference image was then used as input for a semi-automatic segmentation method involving the filling of the contrast-enhancement injury lesion on successive iterations using region competition snakes as implemented in ITKsnap (ITK-SNAP v3.4, 2015). For this segmentation, 2 mm diameter spherical seeds were placed in non-vascular contusional regions of high signal intensity of the thresholded T1-difference image prior to running the segmentation algorithm. A neuroradiologist (KM), who had all structural and subtraction DCE images, inspected the semi-automatic results and adjusted any voxels accordingly.

2.7. K_{trans}-M ratio between contusional core and normal-appearing tissue mask

It has been shown that in normal-appearing GM and WM, the K_{trans}-M value is low but not zero (Larsson et al., 2009; Gramer et al., 2014; Barnes et al., 2016). Systematic noise in the measurement, motion, small amount of leakage of contrast-enhanced Gd through the intact BBB and normal aging (Montagne et al., 2015) has been identified to influence normal permeability measures. To account for normal-BBB variability’s, the ratio between the mean K_{trans}-M value of the CHC and the mean normal-appearing tissue mask was used to quantify the degree of BBB leakiness of the TBI lesion relative to the GM and WM parenchyma. The mean was obtained from non-zero voxels using the FSL command fslstats -M on each respective 1 mm isotropic masks. Thus, patients with higher K_{trans}-M ratio reflect an increased permeability of the contusional core compared to the permeability of normal-appearing tissue.

2.8. Region-of-interest selection and extraction

Three different masks were created to allow the study of the relationship between MMPs and pathological BBB permeability measurements. First, a brain mask of the pre-contrast T1-weighted image was obtained using antsBrainExtraction.sh (using the Open Access Series of Imaging Studies-OASIS template as tissue priors (Marcus et al., 2007) as implemented in the ANTs neuroimaging toolbox v.2.3.4. (Avants et al., 2009). A specialist neuroradiologist (KM) inspected each brain mask to ensure that the mask was an accurate reflection of the BBB region. From the same structural image, grey (GM) and white matter (WM) were segmented using SPM. The tissue probability maps in the native space were then thresholded at 0.95 and combined into a single GM-WM mask.

2.9. Contusional haemorrhagic-core (CHC) mask

This mask was aimed to delineate the haemorrhagic, contused brain parenchyma and vasogenic oedema lesion by depicting the central contusional region(s) of increased contrast enhancement following TBI. The mask was generated from the subtraction of the spatially registered structural post- and pre-contrast T1-weighted images. The GM-WM mask was used to estimate the threshold of the T1-difference image, set at mean plus two standard deviations. The threshold adjusted T1-difference image was then used as input for a semi-automatic segmentation method involving the filling of the contrast-enhancement injury lesion on successive iterations using region competition snakes as implemented in ITKsnap (ITK-SNAP v3.4, 2015). For this segmentation, 2 mm diameter spherical seeds were placed in non-vascular contusional regions of high signal intensity of the thresholded T1-difference image prior to running the segmentation algorithm. A neuroradiologist (KM), who had all structural and subtraction DCE images, inspected the semi-automatic results and adjusted any voxels accordingly.

Table 1

Clinical information, matrix metalloproteinases (MMP) and Dynamic Contrast-enhanced Magnetic Resonance Imaging (DCE-MRI) values of the 20 patients. (CHC: Contusional Haemorrhagic Core; GCS: Glasgow Coma Score; IQR: Interquartile range; TBI: Traumatic Brain Injury; >OOR: out-of-range i.e. values above the detectable threshold at 1:60 dilution, NAB: Normal Appearing Brain).
3. Blood sampling and processing

Blood samples were collected in EDTA collection tubes on the same day as the MRI scan. Ten ml of blood was centrifuged at 1600 × g for 10 min, the sera extracted and stored at −80 degreesC and later analysed using a multiplex immunoassay (HMMP2MAG-55 K, Merck Millipore, Australia). Serum samples were diluted to 1:20, 1:30 or 1:60 where results were out of range. All samples were performed in duplicate; the mean fluorescence intensity was used to calculate MMP values. MMPs −1, −2, −7, −9, and −10 values were obtained.

4. Statistical analysis

GraphPad Prism 9 (GraphPad Software, Inc., San Diego, California, USA) was used for statistical analysis. The Shapiro-Wilk normality test was used to determine the distribution of the variables. The test showed that GCS, MMP and DCE-MRI values did not follow a Gaussian distribution (See Appendix table A1), hence the Mann-Whitney U and Kruskal-Wallis test were used to compare group differences, and the Spearman’s rank correlation was used to assess the relationship between non-normally distributed variables. The significance alpha level was set to p < 0.05. To adjust for multiple testing, the Benjamini–Hochberg method was used to control the false-discovery rate (FDR) with a significance level set at p < 0.05 (Benjamini and Hochberg, 1995) (See Appendix A2).

5. Results

5.1. Patient demographics

A total of 20 patients completed the study (18 males, 2 females) with an age range of 18–66 years. Of these, mechanisms of injury included falls, assaults, and motor vehicle accidents. The patients were classified into mild (n = 14), moderate (n = 4), and severe (n = 2) using the GCS score (Teasdale and Jennett, 1974). The predominant CT finding was multiple contusions followed by acute subdural haematoma and traumatic subarachnoid haemorrhage.

5.2. DCE-MRI: Results and K_{Trans} findings

The DCE-MRI results are shown in Table 1. The median contusional haemorrhagic core (CHC) was 2933 mm3 (IQR: 939–9935) with a median K_{Trans} value of 0.0215 min$^{-1}$ (IQR: 0.011–0.041). This compares to a K_{Trans} value of 0.0014 min$^{-1}$ (IQR: 0.001–0.003) for normal-appearing tissue. When we compared the CHC permeability measures between different head injury groups we found no statistical differences in the

Fig. 1. Glasgow Coma Scale (GCS) category and contusional haemorrhagic core (CHC) DCE-MRI values. Top row: No differences between the volume of the CHC. Bottom left: K_{Trans} CHC and normal-appearing brain (NAB) across three GCS categories. Bottom right: K_{Trans} CHC and normal-appearing brain (NAB) when combining moderate and severe GCS category in the same group.
volume or K_{Trans} values (Kruskal–Wallis test -See Fig. 1). K_{Trans} values were increased in the CHC region when compared to the rest of the brain for both mild and moderate patient groups ($p < 0.001$ and $p < 0.03$ FDR corrected, respectively). Due to the small dataset of severe TBI patients ($n = 2$), no differences were detected between CHC and normal-appearing brain in the two severe head injuries. When merging the severe and moderate TBI group the K_{Trans} values within the CHC were also increased ($p < 0.02$) (See Fig. 2). The median K_{Trans} ratio between CHC and normal-appearing brain was 16.4 (8.43 – 37.1 interquartile range (IQR). Fig. 2 displays representative images for two illustrative patients.

5.3. Serum matrix metalloproteinases

Serum MMP-1 values ranged from 1.5 to 49.6 ng/ml (12 ± 12.7), MMP-2 values from 58.3 to 174.1 ng/ml (109.5 ± 26.7), MMP-7 from 1.5 to 31.5 ng/mL (10 ± 7.4), MMP-9 from 128.6 to 1917.5 ng/ml (647.7 ± 749.6) and MMP-10 from 0.1 to 0.6 ng/mL (0.3 ± 0.2). MMP-7 and MMP-9 were elevated compared to the literature (Dimitrova et al., 2019; Vocka et al., 2019) with MMP-9 values out of range (despite a 1:60 dilution) for three patients. The serum levels of MMP-1, –2 and –10 levels were within the limits of published normal ranges.

5.4. Correlations between MMP serum levels and DCE-MRI

Fig. 3 provides the correlations and Spearman’s coefficients (r) and p-values ($p < 0.05$ FDR corrected) calculated between the MMP concentrations and the permeability ratio between CHC and normal-appearing tissue. We found a significant correlation between K_{Trans} ratios and MMP-7 ($p < 0.01$). Correlations were also found between K_{Trans} and MMP-1 ($p < 0.0002$) and MMP-2 ($p < 0.025$) but the MMP values were not above reference ranges. No correlations were seen with K_{Trans} and either MMP-9 or –10.

6. Discussion

This work is the first to demonstrate a significant correlation between DCE measures of BBB leakiness and serum MMP levels following TBI. We confirm elevated serum MMP-7 levels above published reference ranges and a statistically significant correlation with the K_{Trans} ratio between abnormal and intact BBB regions ($p < 0.01$, FDR corrected). The K_{Trans} ratio also correlated with serum levels of MMP-1 and MMP2, although serum MMP-1, and –2 levels were not elevated compared to typically normal blood levels. Our MMP-7 levels ranged from 1.5 to 31.5

Fig. 2. Examples of a patient with severe (P09) and mild TBI (P10). The top two rows correspond to the registered T1 pre (first row) and post (second row) contrast-enhanced MPRAGE volumes of each patient and the white arrows define the contusional haemorrhagic core. T1-difference image and contusional haemorrhagic core mask are shown in rows three and four with the total mask volume of the haemorrhagic lesion overlayed on the glass brain (row 5). Row 6 represents the whole brain K_{Trans} illustrating the regions of increased BBB permeability in a blue to red color-coded scale. The GCS and the respective K_{Trans} ratio are shown between the values of the haemorrhagic lesion and normal-appearing tissue masks. CHC: contusional haemorrhagic core; Gd: Gadolinium-contrast; GCS: Glasgow Coma Score. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Our cohort showed elevated MMP-7 levels and this included all the severe and moderate TBI patients (n = 6) and 64% (n = 9) of the mild head injuries.

DCE-MRI is an in vivo imaging method used for quantification of the severity of BBB dysfunction by measuring the coefficient K\text{Trans}. Indeed, this DCE-MRI measure has been shown to reflect severity-dependent changes in permeability in a quantitative fashion (Wei et al., 2011). A previous study, also using DCE-MRI to measure BBB compromise in head injured patients reported a tendency for K\text{Trans} to increase with the severity of TBI, but the trend was not statistically significant (Winter et al., 2015). In our study we found the median K\text{Trans} value for the contusional haemorrhagic core was 0.0215 min\(^{-1}\) (IQR: 0.011 – 0.041) compared to the normal-appearing brain tissue with a value of 0.0014 min\(^{-1}\) (IQR: 0.001 – 0.003). We used the ratio of the mean K\text{Trans} between the contusional core and normal-appearing tissue, as opposed to direct readings of K\text{Trans}, to minimise the contribution of noise, motion, physiological leakage, and aging (Larsson et al., 2009; Gramer et al., 2014; Barnes et al., 2016; Montagne et al., 2015) and found that the ratio significantly correlates with MMP levels.

The role of MMPs in BBB compromise has been a point of discussion in many reviews and studies (Rempe et al., 2016; Seo et al., 2012). Specifically, MMP-7 is a zinc and calcium-dependent endopeptidase that has a direct role in the integrity of the BBB, degrading a range of ECM substrates (including type IV collagen). It has been found to be elevated in other brain pathologies with BBB compromise such as multiple sclerosis and brain tumours (Dimitrova et al., 2019; Pardo and Selman, 2005; Elkington et al., 2011). A recent paper by Castellazzi et al. (Castellazzi et al., 2018) analysed CSF MMP-7 levels and noted elevated levels in patients with longer disease duration, in keeping with our increased MMP-7 levels taken outside of the respective MMP peak. It will be relevant to allow to quantify subtle BBB leakage (Heye et al., 2016). Hence, a possibility is that the normal MMP-1 and MMP-2 levels correspond to levels taken outside of the respective MMP peak. It will be relevant to analyse the temporal dynamic and relationship between MMP and BBB.

In line with previous research we are able to confirm elevated serum MMP-9 levels in TBI patients though a significant correlation with BBB dysfunction was not found. MMP-9 levels ranged from 128.6 to 1917.5 ng/ml (647.7 ± 749.6) with three values out of range (despite a 1:60 dilution) compared to historical ranges of 45.7–233.6 ng/ml (Costins et al., 1997) and 30–357 ng/ml (Nikkola et al., 2005; Riedel et al., 2000). Raised MMP-9 levels following severe TBI have been documented in the CSF (Grossete et al., 2009) and ECF in microdialysis studies (Vilalta et al., 2008). Guilfoyle et al (Guilfoyle et al., 2015) confirmed an initial rise in the dialysate MMP-9 levels within the first 24 h in peri-contusional brain but this was followed by a decline.

Our serum MMP-1 values ranged from 1.5 to 49.6 ng/ml (12 ± 12.7) and MMP-2 values from 58.3 to 174.1 ng/ml (109.5 ± 26.7). Surprisingly, correlations were found between K\text{Trans} ratio and MMP-1 (p < 0.025) despite serum MMP values were not above reference ranges. MMP-1 is known to act on type I, II and III collagen in the ECM and is involved in the cleavage of a number of non-matrix substrates and cell surface molecules (Pardo and Selman, 2005) and could therefore be considered as a potential indicator of on-going BBB compromise. The literature confirms variability in the expression of MMP-2 following head injury. Vilati et al. (Vilalta et al., 2008) confirmed an acute increase in MMP-2 reducing after 24 h. Conversely, the study by Roberts et al. (Roberts et al., 2013) described an initially low concentration MMP-2 concentration, followed by a 48-hour peak, and then a progressive decline. It has additionally been proposed that MMP-2 may only be elevated in a subset of patients with TBI (Guilfoyle et al., 2015). The combination of variable post-TBI expression, short-lived elevation and in our study a lack of elevation above normal ranges would indicate that MMP-1 and MMP-2 cannot be realistically considered as potential BBB biomarkers. MMP-10 levels were not elevated above the normal range and no statistical correlation with K\text{Trans} was found. MMP-10, also known as stromelysin-2, is expressed in epithelial cells and macrophages (Zhang et al., 2014; McMahan et al., 2016) but its physiological function remains unclear. Further study is needed to identify its role in TBI.

The Patlak model has been shown to be highly sensitive to assess the BBB permeability with high spatial resolution and brain coverage, allowing to quantify subtle BBB leakage (Heye et al., 2016). Hence, a possibility is that the normal MMP-1 and MMP-2 levels correspond to levels taken outside of the respective MMP peak. It will be relevant to analyse the temporal dynamic and relationship between MMP and BBB.
dysfunction. However, our study has two limitations that prevent the interpretation of a subset of our data for this purpose. (1) The number of participants on the entire cohort was 20 and splitting the data into small and large TBI – DCE-MRI temporal intervals will reduce the power of the study to find associations between the variables, and (2) the data of the subjects included in this study was not optimised to investigate the effect of the time interval between TBI and DCE-MRI as this factor was not part of the experimental design. Future studies scanning patients at different temporal intervals will be needed to assess if MMP-1 and MMP-2 have earlier or later temporal window than MMP-7.

We acknowledge that our conclusions are based on a limited number of patients and this inherently limits the robustness of our analyses. Further studies involving a greater number of participants with serial DCE-MRI scans, coupled with concurrent serum values, would lead to a greater understanding of the temporal profile of MMP expression. Additionally, biomarkers such as S100B and GFAP have been well studied in the literature, they were found to be potentially lacking in their applicability to function as a clinical biomarker. Our study design could serve as a template for further study in the field of BBB dysfunction. As further potential biomarkers become apparent it would be possible to use this design to quantify their value with correlation to DCE-MRI.

In our group, due to logistical reasons, patients were scanned at different times post-TBI. The MRI was delayed for the severe TBI patients until they had been extubated because of safety concerns around transport of an intubated intensive care patient, or for the moderate TBI patients who were too agitated for an acute MRI. The number of days post head injury that the DCE-MRI scan was performed ranged from 3 to 30 (9.2 ± 7.4) and we would suggest that this does not invalidate the premise that MMP-7 may be suitable as a BBB biomarker. BBB dysfunction relates to the initial primary brain injury but it also develops in a delayed time course secondary to neuro-inflammation and metabolic disturbances after even a mild TBI, such that any delayed correlation between BBB dysfunction and MMP-7 is valid. In recent times the investigation of the long-term sequelae of mild TBI and the development of Chronic Traumatic Encephalopathy (CTE) is taking centre stage such that a marker providing insight into a potentially important delayed secondary process, such as BBB dysfunction, should be welcomed.

7. Conclusion

We suggest that serum MMP-7 may be considered as a peripheral biomarker quantifying BBB dysfunction within the contusional core of traumatic brain injuries as measured by KTrans from DCE-MRI data. To our knowledge, a direct correlation between measures of DCE-MRI and MMP serum levels has not been reported previously. A larger cohort of patients may strengthen the association and provide more insights into the role of MMP-7, and MMPs in general, in BBB dysfunction.

Funding

This work was supported by The Motor Accident Insurance Commission (MAIC), The Queensland Government, Australia [Grant number 2014000857].

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nicl.2021.102741.

References

Fortune, N., Wen, X. The definition, incidence and prevalence of acquired brain injury in Australia. Australian Institute of Health and Welfare. AIHW Cat no DIS 15 Canberra: AIHW 1999.

Sahquillo, J., Foca, M., Amoros, S. Current aspects of pathophysiology and cell dysfunction after severe head injury. Curr. Pharm. Des. 7, 1475-1503. doi10.2147/13816120139711.

Cucullo, L., Hossain, M., Puvenna, V., Marchi, N., Janigro, D., 2011. The role of shear stress in Blood-Brain Barrier endothelial physiology. BMC Neurosci. 12 (1) https://doi.org/10.1186/1471-2202-12-40.

Chow, B.W., Gu, C., 2015. The molecular constituents of the blood-brain barrier. Trends Neurosci. 38 (10), 598–608. https://doi.org/10.1016/j.tins.2015.06.003.

Neuwelt, E., Abbott, N.J., Alvey, L., Banks, W.A., Blakley, B., Engelhardt, B., Grantcharov, P., Nedergaard, M., Nett, J., Pardridge, W., Rosenberg, G.A., Smith, Q., Drewes, L.R., 2008. Strategies to advance translational research into brain barriers. Lancet Neurol. 7 (1), 84–96. https://doi.org/10.1016/S1474-4422(07)70326-5.

Thripplenton, M.J., Backes, W.H., Souchon, S., Ingrisch, M., van Osch, M.J.P., Duchamps, M., Fazekas, F., Ropelle, S., Frayne, R., van Oostenbrugge, R.J., Smith, E.E., Wardlaw, J.M., 2019. Quantifying blood-brain barrier leakage in small vessel disease: Review and consensus recommendations. Alzheimer’s Dementia. 15 (6), 840-858. https://doi.org/10.1016/j.jalz.2019.03.013.

Armitage, P.A., Farrall, A.J., Carpenter, T.K., Doubal, F.N., Wardlaw, J.M., 2011. Use of dynamic contrast-enhanced MRI to measure subtle blood-brain barrier abnormalities. Magn. Reson. Imaging 29 (3), 305–314. https://doi.org/10.1016/j.mri.2010.09.002.

Cha, S., 2006. Update on brain tumor imaging: from anatomy to physiology. Am. J. Neuroradiol. 27 (3), 475–487.

Zhang, X., Quan, X., Lu, S., Huang, F., Yang, J., Chan, Q., Lin, T., 2014. The clinical value of dynamic contrast-enhanced magnetic resonance imaging at 3.0T to detect prostate cancer. J. Int. Med. Res. 42 (5), 1077–1084. https://doi.org/10.1177/030006051451827.

Totts, P.S., Brix, G., Buckley, D.L., et al., 1999. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. ImagingJMRI. 10 (3), 223–232. https://doi.org/10.1002/jmri.1035.

Wei, X.-E., Wang, D., Li, M.-H., Zhang, Y.-Z., Li, Y.-H., Li, W.-B., 2011. A useful tool for the initial assessment of blood-brain barrier permeability after traumatic brain injury in rabbits: dynamic contrast-enhanced magnetic resonance imaging. J. The Trauma: Injury Infect. Critical Care 71 (6), 1645–1651. https://doi.org/10.1097/TA.0b013e318234966b.

Lu, L., Wang, M., Wei, X., Li, W., 2018. 2018 HETE inhibition by HET0106 decreases the blood-brain-barrier permeability and brain edema after traumatic brain injury. Front. Aging Neurosci. 10 https://doi.org/10.3389/fnagi.2018.00207.

Planas, A.M., Sole, S., Justicia, C., 2001. Expression and activation of matrix metalloproteinases-2 and -9 in rat brain after transient focal cerebral ischemia. Neurobiol. Dis. 8 (5), 834–846. https://doi.org/10.1006/nbdi.2001.0435.

Stockner, W., Grams, F., Reinemer, P., Bode, W., Baumann, U., Gomis-Rüth, F.-X., Mckay, D.B., 1995. The mettincins - Tophological and sequential relations between the atacins, adamalysins, serralysins, and matrixins (collagens) define a super family of zinc-peptides. Protein Sci. 4 (5), 823-840. https://doi.org/10.1002/pro.5560040502.

Rempe, R.G., Hartz, A.M.S., Bauer, B., 2016. Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J. Cerebral Blood Flow Metabol. Official J. Int. Soc. Cerebral Blood Flow Metabol. 36 (9), 1481–1507. https://doi.org/10.1177/0271678X16655551.

Lofke, S., Schilling, O., Franz, E., C., 2011. Biological role of matrix metalloproteinases: a critical balance. Eur. Respir. J. 38 (1), 191–208. https://doi.org/10.1183/09031936.00146510.

Chakraborti, S., Mandal, M., Das, S., et al., 2003. Regulation of matrix metalloproteinases: an overview. Mol. Cell. Biochem. 253 (1-2), 269–285. https://doi.org/10.1023/a:1026028301916.
Teasdale, G., Jennett, B., 1974. Assessment of coma and impaired consciousness. Lancet 304 (7872), 81–84. https://doi.org/10.1016/s0140-6736(74)91639-0.

Barnes, S.R., Ng, T.S.C., Santa-Maria, N., Montagne, A., Zlokovic, B.V., Jacobs, R.E., 2019. ROCKETSHP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies. BMC Med. Imaging 15 (1). https://doi.org/10.1186/s12880-015-0062-2.

Patlak, C.S., Blasberg, R.G., 1985. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J. Cereb. Blood Flow Metab. 5 (4), 584–590. https://doi.org/10.1038/jcbfm.1985.87.

Patlak, C.S., Blasberg, R.G., Fenstermacher, J.D., 1983. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab. 3 (1), 1–7. https://doi.org/10.1038/jcbfm.1983.1.

Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L., 2007. Cramer, S.P., Simonsen, H., Frederiksen, J.L., Rostrup, E., Larsson, H.B.W., 2014. Measurement of brain transfer constants for accurate assessment of low \(K_{\text{trans}} \) blood-brain barrier permeability. J. Cereb. Blood Flow Metab. 35 (8), 1498–1507. https://doi.org/10.1161/jc.000000000000035.

Seo, J.H., Guo, S., Lok, J., et al., 2012. Neurovascular matrix metalloproteinases and the power of advanced imaging. Neuroradiology 54 (10), 708–717. https://doi.org/10.1007/s00291-012-1150-9.

Pardo, A., Selman, M., 2005. MMP-1: the elder of the family. Int. J. Biochem. Cell Biol. 37 (2), 283–288. https://doi.org/10.1016/j.biocel.2004.06.017.

Elkington, P., Shiomi, T., Breen, R., et al. (2011). MMP-1 drives immunopathology in human tuberculosis and transgenic mice. J. Clin. Invest. 121(S) 1827-1833. doi: 10.1172/JCI45666. Epub 2011 Apr 25. PMID: 21519144; PMCID: PMC3083790.