Systematic search of Bayesian statistics in the field of psychotraumatology

Rens van de Schoot, Naomi Schalken & Miranda Olff

To cite this article: Rens van de Schoot, Naomi Schalken & Miranda Olff (2017) Systematic search of Bayesian statistics in the field of psychotraumatology, European Journal of Psychotraumatology, 8:sup1, 1375339, DOI: 10.1080/20008198.2017.1375339

To link to this article: https://doi.org/10.1080/20008198.2017.1375339

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Published online: 31 Oct 2017.

Submit your article to this journal

Article views: 222

View related articles

View Crossmark data

Citing articles: 2 View citing articles
1. Introduction
In recent years there has been increased interest in Bayesian analysis in many disciplines; for example, see the systematic reviews in the fields of educational science (König & van de Schoot, 2017), organizational science (Kruschke, 2010), psychometrics (Rupp, Dey, & Zumbo, 2004), health technology (Spiegelhalter, Myles, Jones, & Abrams, 2000), epidemiology (Rietbergen, 2017), medicine (Ashby, 2006), and psychology (Van de Schoot, Winter, Ryan, Zondervan-Zwijnenburg, & Depaoli, 2017). Also, the use of Bayesian analyses in the field of psychotraumatology was advocated during a meeting of the International Society for Traumatic Stress Studies (ISTSS) global meetings program.

Bayesian methods implement Bayes’ theorem, which states that prior beliefs are updated with data, and this process produces updated beliefs about model parameters. The prior is based on how much information we believe we have preceding data collection, as well as how accurate we believe that information to be. Within Bayesian statistics, priors can come from any source; for example, a meta-analysis, a previous study or, even, expert consensus. For a basic introduction to Bayesian statistics we refer to Yalch (2014). We also included six papers that were part of the ISTSS global meetings program, and another 148 papers were excluded for various reasons.

To further encourage the use of Bayesian statistics in the field of psychotraumatology, we initiated a special issue on the use of Bayesian statistics. Below, we first introduce briefly how Bayesian statistics is already applied by means of describing the results of a systematic search in the psychotrauma field; thereafter, we describe the papers submitted as part of this special issue on Bayesian statistics.

To describe the previously published Bayesian papers in the field of psychotraumatology, we conducted a systematic search focusing on Scopus in seven journals (Figure 1). No limitations on the time period of the search were used, which resulted in articles from 1989 to 2017. We used the following search terms: ‘Bayes”, ‘MCMC’ (Markov chain Monte Carlo), and ‘Gibbs’. We also included six papers that were part of the special issue on Bayesian statistics, which are described in Section 3. Following the initial identification of relevant articles, exact duplicates were excluded, and another 148 papers were excluded for various reasons after reading the full text (see Figure 1 for details). The total number of empirical articles found to be eligible was 18, plus another two short papers that were part of the ISTSS global meetings program, and six as part of the special issue (total n = 26) (Table 1).

2. Reasons for using Bayesian statistics
There are different reasons for using Bayesian statistics. Here, we provide a few examples of such reasons mentioned in the field of psychotraumatology.

2.1. Flexible hypothesis testing
The first reason why Bayesian statistics is used is that it provides a flexible alternative to null hypothesis significance testing. van Veen, Engelhard, and van den Hout (2016) tested several predictions from working memory theory that could explain the efficacy of eye movement desensitization and reprocessing (EMDR). The authors translated their hypothesis into a set of specific hypotheses, and tested these informative hypotheses (Hoijtink, 2012) using Bayes factors (BFs). A similar procedure was followed by van Schie, van Veen, Engelhard, Klugkist, and van den Hout (2016), who used BFs to investigate the role of working memory capacities and eye movement speed in reducing memory vividness and emotionality. Moreover, Bayesian t tests are more accurate in the case of non-normal data or outlying observations, as mentioned by Yalch, Black, Martin, and Levendosky (2016), Yalch and Levendosky (2014), and Yalch, Schroder, and Dawood (2017).

2.2. Updating probabilities
A second reason to use Bayes is because of the updating of prior knowledge with data into the posterior, for example in the computation of taxon membership (Allen, Fultz, Huntoon, & Brethour, 2002; DePrince, 2005; Goodman et al., 2003). As explained by Goodman et al. (2003), the probability of a taxon membership can be computed based on what is known before any data are collected. That is, the investigator has a subjective probability about who can be a member.
of the taxon and who cannot. After data have been collected, these prior probabilities are updated with the data and provide a more accurate probability of taxon membership.

2.3. No need for large data sets

Another reason why Bayesian statistics is so attractive is that it does not rely on large data sets. Van De Schoot, Broere, Perryck, Zondervan-Zwijnenburg, and Van Loey (2015) showed in a simulation study, and with an actual application to a limited data set of burn survivors, that Bayes outperformed the default estimation method for structural equation models. When using maximum likelihood estimation, there appear to be power issues for small samples and therefore it becomes difficult to find meaningful results. The authors investigated what kind of solutions Bayesian estimation can provide to conduct research with small sample sizes. They concluded that Bayes is able to overcome small sample issues, but only when background information is added to the model via the so-called prior distributions (see also Depaoli, Van De Schoot, Van Loey, & Sijbrandij, 2015; Van de Schoot, 2015).

2.4. Imputation of missing data

A fourth advantage of Bayesian analysis is the treatment of missing data, as applied by de Roos et al. (2011), who conducted a randomized controlled trial to compare cognitive behavioral therapy with EMDR in a group of disaster-exposed children. In the intention-to-treat analysis, the authors replaced outcome data that were missing owing to dropouts using multiple imputations by fully conditional specification using the MICE package (Van Buuren & Oudshoorn, 1999). Mohr and Rosén (2017) also used this imputation strategy to deal with missing data in their research on childhood experiences of abuse and neglect and later post-traumatic growth. Fedina (2015) solved the missing data issue by using experts to specify a ‘reasonable replacement’ for missingness in their research on human trafficking. As shown in many simulation studies (e.g. Peeters, Zondervan-Zwijnenburg, Vink, & van de Schoot, 2015), Bayesian imputation of missing data outperforms many other ways of dealing with missing data, including missing data as a result of dropouts (see Asendorpf, Van De Schoot, Denissen, & Hutteman, 2014, for more details).

2.5. Ability to deal with technical complexities

A fourth reason is that Bayes can deal with technical issues where classical methods, such as maximum likelihood, fail or require too much computational time. This argument is used in Wahlström, Michelsen, Schulman, Backheden, and Keskinen-Rosenqvist (2013), who used a dichotomous moderating variable to examine the reporting of different physical symptoms over time in survivors of a tsunami. In Neylan, Schadt, and Yehuda (2014), Bayesian statistics was proposed as a causal modeling approach to identify factors that affect biological networks, such as environmental traumatic exposures and other biological risk factors.
Reference	Topic	Why Bayes
Allen et al. (2002)	Pathological dissociative taxon membership, absorption, and reported childhood trauma	Bayes probability
DePrince (2005)	Social cognition and revictimization risk	Bayes probability
Cuperus et al. (2016)	Virtual reality paradigm and real-life trauma	Support instead of p values + informative hypothesis testing
De Roos et al. (2011)	CBT and EMDR	Including experts to deal with missing data
Fedina (2015)	Sex trafficking in the USA	Small samples
Depaoli et al. (2015)	Theory-driven solution of PTSD trajectories	Bayes probability
Goodman et al. (2003)	Pathological dissociation and personality diagnosis, and self-directed injury	Support instead of p values + informative hypothesis testing
Hagenaars, Holmes, Klaassen, and Elzinga (2017)	Tetris after PTSD	Technical – non-normality
Kuijer, Marshall, and Bishop (2014)	Relationship between pretrauma variables, such as neuroticism, optimism, self-control, pretrauma depression, and post-earthquake adjustment (PTSD symptoms)	Small samples
Küffer et al. (2016)	Childhood adversity, dysfunctional rearing behavior, psychological health offspring	Support instead of p values + informative hypothesis testing
Littel et al. (2017)	Post-traumatic growth and depreciation	Not mentioned
Michélsen, Therup-Svedenlöf, Backheden, and Schulman (2017)	Protective factors on post-traumatic growth	To deal with missing data
Mohr and Rosén (2017)	Somatoform Dissociation Questionnaire (SDQ-20)	Not mentioned
Mueller-Pfieffer et al. (2010)	Biomarkers for combat-related PTSD	To model causal relations
Neylan et al. (2014)	Latent growth mixture models to estimate PTSD trajectories	Small samples
Van De Schoot (2015)	PTSD after burn event	To deal with small samples
Van De Schoot et al. (2015)	Modification of episodic memories by novel learning	Support instead of p values + informative hypothesis testing
Van Schie et al. (2016)	EMDR	Support instead of p values + informative hypothesis testing
Van Schie et al. (2016)	EMDR	Technical – dichotomous mediator
Van Veen et al. (2016)	Reporting psychological symptoms	Introduction to Bayes
Yalch et al. (2016)	Applicability of Bayesian statistics in psychological trauma research	Technical – non-normality
Yalch et al. (2016)	Effects of prenatal and post-birth intimate partner violence	Technical – non-normality
Yalch and Levendosky (2014)	Betrayal trauma and dimensions of borderline personality organization	Technical – non-normality
Yalch et al. (2017)	Survivors of intimate partner violence	Technical – non-normality

*aPart of the special issue.

bPart of the International Society for Traumatic Stress Studies (ISTSS) global meetings program.

CBT, cognitive behavioral therapy; EMDR, eye movement desensitization and reprocessing; PTSD, post-traumatic stress disorder.
3. Special issue

As part of the special issue, six papers have been published.

Krypotos, Klugkist, and Engelhard (2017) introduced Bayesian analysis in the field of threat conditioning, which is an important paradigm in the experimental study of post-traumatic stress disorder (PTSD). In this approach, an initially neutral stimulus is paired with an evolutionary aversive stimulus or event. Consequently, the neutral stimulus will evoke threat or fear responses. To simplify the analysis of threat conditioning data and the calculation of BFs, the authors developed the ‘condir’ package in R, including an easy-to-use Shiny application. Users merely have to provide the right conditioning data, and condir easily generates the final results in terms of BFs.

van Schie, van Veen, van den Hout, and Engelhard (2016) tested null hypotheses using BFs in the R package BayesFactor (Morey, Rouder, & Jamil, 2014) to replicate the laboratory study of Wichert, Wolf, and Schwabe (2013). When consolidated memories are reactivated, they can become unstable and sensitive to change before they are stored into long-term memory. With a mechanism such as novel learning, the reactivated memories could be disrupted. The authors were able to replicate the finding that there was memory impairment and memory updating in the group with both reactivation and new learning in comparison to the reactivation-only group and the group without reactivation or new learning. However, they failed to replicate the difference between new learning in combination with reactivation and new learning alone.

Littel, van Schie, and van den Hout (2017) used BFs to whether prior knowledge about the EMDR treatment would change the memory-attenuating effects of eye movements. The authors used the software BIEMS (Mulder, Hoijtink, & de Leeuw, 2012) to evaluate informative hypotheses specified based on background knowledge. They concluded that prior knowledge was found to have no to modest effects on eye movements.

Hagenaars, Holmes, Klaassen, and Elzinga (2017) used BFs to test a set of very specific hypotheses about a trauma film paradigm (TFP), which was used to examine the effects of a supposedly visuospatial task (the computer game Tetris) and a more verbal task (word games) versus no task (reactivation only) on intrusion frequency in a reconsolidation time frame. They found support for two hypotheses: (a) an intervention effect, with both task conditions being equally effective (reactivation + Tetris = reactivation + word games < reactivation only); and (b) a modality effect, with word games being the most effective task (reactivation + word games < reactivation + Tetris < reactivation only).

Küffer, Thoma, and Maercker (2016) investigated early-life adversity experienced by parents that had an impact on their children’s mental health. The authors tested the null hypothesis using BFs in the software JASP (Marsman & Wagenmakers, 2016). They investigated the role of parental rearing behavior in the transgenerational conveyance of aversive childhood events experienced by parents as Verding children on the mental health of their offspring. The ‘Verdingkinder’ were former Swiss indentured child laborers, for whom there was a high prevalence of adverse childhood experiences and poor mental health. The authors found substantial support for higher levels of childhood adversity in the Verding children and more problematic rearing behavior, but found no substantial mental health problems in their offspring.

Cuperus, Klaassen, Hagenaars, and Engelhard (2016) evaluated informative hypotheses using BIEMS regarding the use of virtual reality (VR) in the TFP using BFs. With the TFP, the effects of psychological trauma can be studied under controlled experimental settings. However, there is a lack of active behavioral engagement in this approach, which is a disadvantage. Therefore, as shown by the authors, the use of VR can be used as an alternative.

4. Conclusion

Bayesian analyses are slowly creeping into many areas of science, including the field of psychotraumatology. Even with a systematic search limited to psychotraumatology, we see an increasing number of papers using Bayesian analyses for a range of reasons, as described above. The method of evaluating a set of informative hypotheses, each representing a theoretical meaningful ordering of relevant parameters, seems especially popular. The advantage of dealing with limited data in the Bayesian framework is another probable reason why more researchers would (need to) make the switch. For whatever reason Bayesian analysis is used, the prior settings are always of importance and should be described in detail. The idea of making optimal use of existing information is an attractive and efficient way forward.

Notes

1. https://www.rensvandeschoot.com/agenda/sympo-sium-estimating-ptsd-trajectories/.
2. In two articles (Michelsen et al., 2017; Mueller-Pfeiffer et al., 2010), Bayes was used but without any argumentation.
3. https://utrecht-university.shinyapps.io/Condir/.

Acknowledgment

The first author was supported by a grant [NWO-VIDI-452-14-006] from the Netherlands Organisation for Scientific Research.
Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Netherlands Organisation for Scientific Research [NWO-VIDI-452-14-006].

References

Allen, J. G., Fultz, J., Huntoon, J., & Brethour, J. R. (2002). Pathological dissociative taxon membership, absorption, and reported childhood trauma in women with trauma-related disorders. *Journal of Trauma & Dissociation, 3*(1), 89–110. doi:10.1300/J329v03n01_07

Asendorpf, J. B., Van De Schoot, R., Denissen, J. J., & Hutteman, R. (2014). Reducing bias due to systematic attrition in longitudinal studies: The benefits of multiple imputation. *International Journal of Behavioral Development, 38*(5), 453–460. doi:10.1177/0165025414542713.

Ashby, D. (2006). Bayesian statistics in medicine: A 25 year review. *Statistics in Medicine, 25*(21), 3589–3631. doi:10.1002/sim.2672

Cuperus, A., Klaassen, F., Hагенаарс, M., & Engelhard, I. (2016). A virtual reality paradigm as an analogue to real-life trauma: Its effectiveness compared with the trauma film paradigm. *European Journal of Psychotraumatology, 8*(S1), doi:10.1080/20008198.2017.1338106.

de Roos, C., Greenwald, R., den Hollander-Gijsman, M., Noorhooorn, E., van Buuren, S., & De Jongh, A. (2011). A randomised comparison of cognitive behavioural therapy (CBT) and eye movement desensitisation and reprocessing (EMDR) in disaster-exposed children. *European Journal of Psychotraumatology, 2*(1), 5694. doi:10.3402/ejpt.v2i0.5694

Depaoli, S., Van De Schoot, R., Van Loey, N., & Sijbrandij, M. (2015). Using Bayesian statistics for modeling PTSD through latent growth mixture modeling: Implementation and discussion. *European Journal of Psychotraumatology, 6*, 1–2. doi:10.3402/ejpt.v6.27516

DePrince, A. P. (2005). Social cognition and revictimization risk. *Journal of Trauma & Dissociation, 6*(1), 125–141. doi:10.1300/J329v06n01_08

Fedina, L. (2015). Use and misuse of research in books on sex trafficking. *Trauma, Violence, & Abuse, 16*(2), 188–198. doi:10.1177/1529973104253377

Goodman, M., Weiss, D. S., Mitropoulou, V., New, A., Koenigsberg, H., Silverman, J. M., & Siever, L. (2003). The relationship between pathological dissociation, self-injury and childhood trauma in patients with personality disorders using taxometric analyses. *Journal of Trauma & Dissociation, 4*(2), 65–88. doi:10.1300/J229v04n02_05

Hagenaars, M. A., Holmes, E. A., Klaassen, F., & Elzinga, B. (2017). Tetris and Word games lead to fewer intrusive memories when applied several days after analogue trauma. *European Journal of Psychotraumatology, 8*(S1), doi:10.1080/20008198.2017.1386959

Hooitink, H. (2012). Informative hypotheses: Theory and practice for the behavioral and social scientists. New York: CRC Press.

König, C., & van de Schoot, R. (2017). Bayesian statistics in educational research: A look at the current state of affairs. *Educational Review, 1–24*. doi:10.1080/00131911.2017.1350636

Kruschke, J. K. (2010). Bayesian data analysis. *Wiley Interdisciplinary Reviews: Cognitive Science, 1*(5), 658–676. doi:10.1002/wcs.72

Krypotos, A., Klugkist, I., & Engelhard, I. M. (2017). Bayesian hypothesis testing for human threat conditioning research: An introduction and the condir R package. *European Journal of Psychotraumatology, 8*, 1314782. doi:10.1080/20008198.2017.1314782

Küffer, A. L., Thoma, M. V., & Maercker, A. (2016). Transgenerational aspects of former Swiss child laborers: Do second generations suffer from their parents’ adverse early-life experiences? *European Journal of Psychotraumatology, 7*(1), 30804. doi:10.3402/ejpt.v7.30804

Kuijer, R. G., Marshall, E. M., & Bishop, A. N. (2014). Prospective predictors of short-term adjustment after the canteenbury earthquakes: Personality and depression. *Psychological Trauma: Theory, Research, Practice, And Policy, 6*(4), 361–369. doi:10.1037/a0034591

Littell, M., van Schie, K., & van den Hout, M. (2017). Exploring expectation effects in EMDR: Does prior treatment knowledge affect the degrading effects of eye movements on memories?. *European Journal of Psychotraumatology, 8*, 1328954. doi:10.1080/20008198.2017.1328954

Marsman, M., & Wagenmakers, E.-J. (2016). Bayesian benefits with JASP. *European Journal of Developmental Psychology, 14*(3), 545–555. doi:10.1080/17405629.2016.1259614.

Michelsen, H., Ther-up-Svedenløf, C., Backheden, M., & Schulman, A. (2017). Posttraumatic growth and deprecation six years after the 2004 tsunami. *European Journal of Psychotraumatology, 8*(1), 1302691. doi:10.1080/20008198.2017.1302691

Mohr, D., & Rosén, L. A. (2017). The impact of protective factors on posttraumatic growth for college student survivors of childhood maltreatment. *Journal of Aggression, Maltreatment & Trauma, 1–16*. doi:10.1080/10926771.2017.1304478

Morey, R. D., Rouder, J. N., & Jamil, T. (2014). BayesFactor: Computation of Bayes factors for common designs. *R package version 0.9, 8.*

Mueller-Pfeiffer, C., Schumacher, S., Martin-Soelch, C., Pazhenkottil, A. P., Wirtz, G., Fuhrhans, C., . . . Rufer, M. (2010). The validity and reliability of the German version of the Somatoform Dissociation Questionnaire (SDQ-20). *Journal of Trauma & Dissociation, 11*(3), 337–357. doi:10.15299731003793450

Mulder, J., Hooitink, H., & de Leeuw, C. (2012). BIEMS: A Fortran 90 program for calculating Bayes factor for inequality and equality constrained models. *Journal of Statistical Software, 46*, 1–39.

Neylan, T. C., Schadt, E. E., & Yehuda, R. (2014). Biomarkers for combat-related PTSD: Focus on molecular networks from high-dimensional data. *European Journal of Psychotraumatology, 5*, 23938. doi:10.3402/ejpt.v5.23938

Peeters, M., Zondervan-Zwijnenburg, M., Vink, G., & van de Schoot, R. (2015). How to handle missing data: A comparison of different approaches. *European Journal of Developmental Psychology, 12*(4), 377–394. doi:10.1080/17405629.2015.1049526

Rietbergen, C., Debray, T. P., Klugkist, I., Janssen, K. J., & Riphagen, I. (2015). Exploring expectation effects in EMDR: Does prior treatment knowledge affect the degrading effects of eye movements on memories?. *European Journal of Psychotraumatology, 8*, 1328954. doi:10.1080/20008198.2017.1328954

Rupp, A. A., Dey, D. K., & Zumbo, B. D. (2004). To bayes or not to bayes, from whether to when: Applications of
Bayesian methodology to modeling. *Structural Equation Modeling, 11*(3), 424–451. doi:10.1207/s15328007sem1103_7

Spiegelhalter, D. J., Myles, J., Jones, D., & Abrams, K. (2000). Bayesian methods in health technology assessment: A review. *Health Technology Assessment, 4*(38), 130. doi:10.3310/hta4380

Van Buuren, S., & Oudshoorn, C. G. M. (1999). *Flexible multivariate imputation by MICE* (PG/VGZ/99.054). Leiden: TNO Prevention and Health TNO Prevention.

Van de Schoot, R. (2015). Latent growth mixture models to estimate PTSD trajectories. *European Journal of Psychotraumatology, 6*, 27503. doi:10.3402/ejpt.v6.27503

van de Schoot, R, Kaplan, D, Denissen, J, Asendorpf, J. B, Neyer, F. J, & van Aken, Marcel A.G. (2014). A gentle introduction to bayesian analysis: applications to developmental research. *Child Dev, 85*, 842–860. doi: 10.1111/cdev.2014.85.issue-3

Van De Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M., & Depaoli, S. (2017). A systematic review of Bayesian papers in psychology: The last 25 years. *Psychological Methods, 22*(2), 217. doi: 10.1037/met0000100.

van Schie, K., Van Veen, S. C., Engelhard, I. M., Klugkist, I., & van den Hout, M. A. (2017). Blurring emotional memories using eye movements: Individual differences and speed of eye movements. *European Journal of Psychotraumatology, 7*, 29476. doi:10.3402/ejpt.v7.29476

Wahlström, L., Michelsen, H., Schulman, A., Backheden, H., & Keskinen-Rosenqvist, R. (2013). Longitudinal course of physical and psychological symptoms after a natural disaster. *European Journal of Psychotraumatology, 4*(1), 21892. doi:10.3402/ejpt.v4i0.21892

Wichert, S., Wolf, O. T., & Schwabe, L. (2013). Changing memories after reactivation: A one-time opportunity? *Neurobiology of Learning and Memory, 99*, 38–49. doi:10.1016/j.nlm.2012.11.001

Yalch, M. M. (2016). Applying Bayesian statistics to the study of psychological trauma: a suggestion for future research. *Psychological Trauma: Theory, Research, Practice, and Policy, 8*(2), 249–257. doi:10.1037/trta0000096

Yalch, M. M., Black, J. A., Martin, L. F., & Levendosky, A. A. (2016). Effects of prenatal and postbirth intimate partner violence on preschool-age children’s dissociative symptoms. *Journal of Aggression, Maltreatment & Trauma, 25*(7), 741–752. doi:10.1080/10926771.2016.1194937

Yalch, M. M., & Levendosky, A. A. (2014). Betrayal trauma and dimensions of borderline personality organization. *Journal of Trauma & Dissociation, 15*(3), 271–284. doi:10.1080/15299732.2013.837135

Wichern, S., Wolf, O. T., & Schwabe, L. (2013). Changing memories after reactivation: A one-time opportunity? *Neurobiology of Learning and Memory, 99*, 38–49. doi:10.1016/j.nlm.2012.11.001

Yalch, M. M., & Levendosky, A. A. (2014). Betrayal trauma and dimensions of borderline personality organization. *Journal of Trauma & Dissociation, 15*(3), 271–284. doi:10.1080/15299732.2013.837135

Yalch, M. M., Schroder, H. S., & Dawood, S. (2017). Interpersonal style and hypothetical treatment choice among survivors of intimate partner violence. *Journal of Aggression, Maltreatment & Trauma, 1–16*. doi:10.1080/10926771.2017.1325032

Rens van de Schoot

Department of Methods and Statistics, Utrecht University, The Netherlands

Optentia Research Program, Faculty of Humanities, North-West University, South Africa

a.g.j.vandeschoot@uu.nl

http://orcid.org/0000-0001-7736-2091

Naomi Schalken

Department of Methods and Statistics, Utrecht University, The Netherlands

Miranda Olff

Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands

Arq Psychotrauma Expert Group, Diemen, The Netherlands

http://orcid.org/0000-0003-1016-9515