Supporting Information

Dispersive 2D Triptycene-Based Crystalline Polymers: Influence of Regioisomerism on Crystallinity and Morphology

Siquan Zhang, Nie Fang, Xiaonan Ji, Yuefei Gu, Zhenchuang Xu, Shangbin Jin,* and Yanchuan Zhao*

*Corresponding authors: Shangbin Jin, E-mail: shangbin@xjtu.edu.cn. Yanchuan Zhao, E-mail: zhaoyanchuan@sioc.ac.cn.

Table of Contents

X-ray single-crystal structures of triptycene-based molecules.................................S2
Preparation of monomers..S4
Preparation of TRIP-CPs and TBA-COFs ..S16
Solid-state NMR spectra for TRIP-CPs ..S18
Simulated structures for TRIP-CPs ...S25
Stability of TRIP-CPs ...S35
Crystallinity and pore properties of TRIP-CPs and TBA-COFsS36
TEM images ..S42
Morphology evolution ..S49
References ..S68
X-ray single-crystal structures of triptycene-based molecules

Figure S1. X-Single-crystal structures of Triptycene-based molecules with C-H bonds pointing towards interlayer space.
Figure S2. Single-crystal structures of the triptycene-based molecules with CCDC number of 737428 and 1416311, wherein the distances between the hydrogen (C-H) atoms are within the sum of the van der Waals radii.
Preparation of monomers

Synthetic procedure for sr-TTN (s, r-2, 6, 14-trinitrotriptycene):\(^12\)

5 g triptycene (19.5 mmol) and 65 mL concentrated nitric acid (67 wt %, 0.98 mol) were added into a 500 mL eggplant-shaped flask and heated to 85 °C for 16 hours under the protection of nitrogen. Then after cooling to room temperature, the reaction solution was added to 2 L of pure water and the yellow solid precipitation appeared after vigorously stirring for 12 hours. Then the crude product was obtained by suction filtration of 6.72 g light yellow solid (yield, 88%). The crude product was purified through a silica gel column with eluent PE/EA=5/1, and finally 4.02 g (60%) light yellow powder of sr-TTN was collected. R\(_f\) = 0.38 (PE/EA = 5/1). Numbers (400 MHz, CDCl\(_3\), 298 K) \(\delta\) 8.33 (d, \(J = 10.5\) Hz, 3H), 8.04 (d, \(J = 5.9\) Hz, 3H), 7.61 (d, \(J = 5.2\) Hz, 3H), 5.81 (d, \(J = 5.2\) Hz, 1H), 5.80 (s, 1H), 5.80 (s, 1H); \(^{13}\)C NMR (151 MHz, CDCl\(_3\), 298 K) \(\delta\) 149.8, 146.7, 144.9, 125.2, 122.9, 119.4, 53.4, 53.2.

Figure S3. Synthesis of sr-TTN.

Figure S4. \(^1\)H NMR spectrum (400 MHz, CDCl\(_3\), 298 K) of sr-TTN.
Synthetic procedure for ss-TTN (s,s-2,7,14-trinitrotriptycene):

5 g triptycene (19.5 mmol) and 200 mL concentrated nitric acid (67 wt %, 3.02 mol) were added into a 250 mL eggplant-shaped flask, and heated to 65 °C for 16 hours under the protection of nitrogen. Then after cooling to room temperature, the reaction solution was added to 2 L of pure water and the yellow solid precipitation appeared after vigorously stirring for 12 hours. Then the crude product was obtained by suction filtration to 6.54 g light yellow solid (yield, 85%). The crude product was purified through a silica gel column with eluent EA/PE = 3/1, and finally 2.57 g (33%) ss-TTN was collected. Rf = 0.27 (PE/EA = 3/1) 1H NMR (400 MHz, CDCl3, 298K) δ 8.34 (t, J = 11.1 Hz, 3H), 8.03 (dd, J = 8.2, 2.2 Hz, 3H), 7.61 (d, J = 8.2 Hz, 3H), 5.83 (s, 1H), 5.79 (s, 1H); 13C NMR (151 MHz, CDCl3, 298K) δ 148.8, 146.4, 144.8, 125.0, 122.6, 119.7, 53.5, 53.1.

Figure S5. 13C NMR spectrum (151 MHz, CDCl3, 298K) of sr-TTN.

Figure S6. Synthesis of ss-TTN.
Figure S7. 1H NMR spectrum (400 MHz, CDCl$_3$, 298K) of ss-TTN.

Figure S8. 13C NMR spectrum (151 MHz, CDCl$_3$, 298K) of ss-TTN.
Synthetic procedure for sr-TTA (s, r-2, 6, 14-triaminotiptycene):

200 mg of sr-TTN (0.5 mmol) and 12 equivalents of SnCl\textsubscript{2}.2H\textsubscript{2}O (1.36 g, 6 mmol) were added into a 50 mL eggplant-shaped flask, and then added 6 mL EtOH, 1.2 mL cHCl (12 mol/L, 14.4 mmol). Then, the solution was stirred and reacted at 100 °C under nitrogen protection for about 16 hours. After the reaction finished, the reaction was cooled and the pH value of the reaction solution was adjusted to weakly alkaline by saturated sodium bicarbonate solution, in air and then the reaction solution was extracted three times with ethyl acetate (100 mL*3), and finally, the organic phase is back-extracted once with saturated brine. After being treated with anhydrous Na\textsubscript{2}SO\textsubscript{4}, the solution was concentrated by a rotary evaporator. 115 mg (yield 91%) of triaminoterpene monomer crude product was obtained. After purification through silica gel chromatography with eluent EA/PE = 4/1, 94 mg (yield 74%) pure triaminoterpene monomer: ss-TTA is obtained (the third point in the silica column). R\textsubscript{f} =0.42 (EA/PE=5/1) 1\text{H} NMR (400 MHz, CDCl\textsubscript{3}, 298K) \text{δ} 7.05 (d, \textit{J} = 9.9 Hz, 3H), 6.70 (d, \textit{J} = 2.1 Hz, 3H), 6.23 (d, \textit{J} = 2.6 Hz, 3H), 5.03 (s, 1H), 5.00 (s, 1H), 3.48 (m, 6H); 13\text{C} NMR (151 MHz, CDCl\textsubscript{3}, 298K) \text{δ}147.1, 143.6, 136.2, 123.5, 111.4, 110.4, 53.6, 52.6.

Figure S9. Synthesis of sr-TTA.

Figure S10 1\text{H} NMR spectrum (400 MHz, CDCl\textsubscript{3}, 298K) of sr-TTA.
Synthetic procedure for ss-TTA (s, s-2, 7, 14-triaminotriptycene):

200 mg of ss-TTN (0.5 mmol) and 12 equivalents of SnCl₂·2H₂O (1.36 g, 6 mmol) were added into a 50 mL eggplant-shaped flask, and then added 6 mL EtOH, 1.2 mL cHCl (12 mol/L, 14.4 mmol). After stirring at 100 °C under nitrogen protection for about 16 hours, and monitored the reaction until it was completely complete by the TLC. Then, the reaction solution was cooled in air, and the pH value of the reaction solution was adjusted to weakly alkaline with saturated sodium bicarbonate solution, and then extracted three times with EA (100 mL*3), and finally, the organic phase is back-extracted once with saturated brine. After treatment with anhydrous sodium Na₂SO₄, the organic phase was concentrated by a rotatory evaporator and 105 mg (88% yield) crude product: ss-TTA, triaminopterene monomer. Then the crude product was purified through a silica gel column with EA/PE = 5/1, and finally, 78 mg (65% yield) pure triaminopterene monomer is obtained (the third point in the silica column). Rᵣ=0.28 (EA/PE=5/1). ¹H NMR (400 MHz, CDCl₃, 298K) δ7.04 (d, J = 7.8 Hz, 3H), 6.71 (d, J = 2.2 Hz, 3H), 6.24 (dd, J = 7.7, 2.1 Hz, 3H), 5.06 (s, 1H), 4.99 (s, 1H), 3.47 (m, 6H); ¹H NMR (400 MHz, DMSO-d₆, 298K) δ 6.91 (d, J = 7.5 Hz, 3H), 6.66 (s, 3H), 6.13 (d, J = 7.0 Hz, 3H), 4.95 (d, J = 7.1 Hz, 2H); ¹³C NMR (151 MHz, DMSO-d₆, 298K) δ 146.1, 143.7, 136.0, 122.8, 112.1, 111.6, 109.9, 53.6, 50.1.
Figure S12. Synthesis of ss-TTA

Figure S13. 1H NMR spectrum (400 MHz, CDCl$_3$, 298K) of ss-TTA.
Figure S14. 13C NMR spectrum (151 MHz, DMSO-d_6, 298K) of ss-TTA.

Figure S15. X-ray single-crystal structure of sr-TTA (CCDC: 1422762).

Figure S16. X-ray single-crystal structure of ss-TTA (CCDC: 1496656).
Figure S17. Comparisons between the 1H signals of –CH– in 1H NMR (400 MHz, CDCl$_3$, 298K) and 13C NMR spectrum (151 MHz, CDCl$_3$, 298K) for sr-TTN, ss-TTN, sr-TTA, and ss-TTA.

Synthetic procedure for TRIP-CP-1-Model:

300 mg of sr-TTA (1 mmol) and 6 equivalents of Salicylaldehyde (733 mg, 6 mmol) were added into a 50 mL eggplant-shaped flask, and then added 10 mL EtOH, 100 µL HOAc. After stirring at 80 °C under nitrogen protection for about 24 hours, and monitored the reaction until it was completely complete by the TLC. Then the reaction solution was cooled in air, and 90 mL MeOH was added to the reaction system. After standing for two hours, a large amount of light yellow precipitate was obtained, which was further filtered to obtain yellow solid particles. The yellow product was concentrated by a rotatory evaporator to give 417 mg (68% yield) orange product: TRIP-CP-1-Model. Then the orange product was purified through a silica gel column with PE/EA = 4/1. 1H NMR (400 MHz, Chloroform-d) δ 13.21 (s, 3H), 8.56 (s, 3H), 7.34 (d, $J = 9.4$ Hz, 12H), 7.08 – 6.83 (m, 9H), 5.51 (s, 2H). 13C NMR (126 MHz, Chloroform-d) δ 162.4, 161.3, 146.1, 143.6, 133.1, 132.2, 124.5, 119.2, 117.5, 117.2, 54.0, 53.3. HRMS (ESI) m/z: [M] Calcd for C$_{41}$H$_{30}$N$_3$O$_3$ 612.2286; Found 612.2282
Figure S18. 1H NMR spectrum (400 MHz, CDCl$_3$, 298K) and 13C NMR spectrum (151 MHz, CDCl$_3$, 298K) of TRIP-CP-1-Model.
Synthetic procedure for TRIP-CP-2-Model:

300 mg of ss-TTA (1 mmol) and 6 equivalents of Salicylaldehyde (733 mg, 6 mmol) were added into a 50 mL eggplant-shaped flask, and then added 10 mL EtOH, 100 µL HOAc. After stirring at 80 °C under nitrogen protection for about 24 hours, and monitored the reaction until it was completely complete by the TLC. Then the reaction solution was cooled in air, and 90 mL MeOH was added to the reaction system. After standing for two hours, a large amount of light yellow precipitate was obtained, which was further filtered to obtain yellow solid particles. The yellow product was concentrated by a rotatory evaporator to give 443mg (72% yield) orange product: TRIP-CP-2-Model. Then the orange product was purified through the silica gel column with PE/EA=5/1. 1H NMR (400 MHz, Chloroform-d) δ 13.16 (s, 3H), 8.56 (s, 3H), 7.44 (d, J = 7.8 Hz, 3H), 7.41 – 7.30 (m, 7H), 7.34 (s, 3H), 7.02 – 6.87 (m, 8H), 5.51 (d, J = 9.2 Hz, 2H). 13C NMR (126 MHz, Chloroform-d) δ 6163.7, 161.4, 146.4, 143.8, 133.1, 132.3, 132.26, 126.7, 119.3, 118.6, 117.20, 117.0, 54.6, 53.1. HRMS (ESI) m/z: [M] Calcd for C41H30N3O3 612.2287; Found 612.2282.

Figure S19. 1H NMR spectrum (400 MHz, CDCl₃, 298K) of TRIP-CP-2-Model.
Figure S20. 13C NMR spectrum (151 MHz, CDCl$_3$, 298K) of TRIP-CP-2-Model.
Figure S21. Comparisons between the 1H signals of –CH– in 1H NMR (400 MHz, CDCl$_3$, 298K) and 13C NMR spectrum (151 MHz, CDCl$_3$, 298K) for TRIP-CP-1-Model and TRIP-CP-2-Model.
Preparation of TRIP-CPs and TBA-COFs

Synthesis of TRIP-CP-1 in the interfacial reaction system: 1.5 equivalent of 2,5-Dihydroxy-1,4-benzenedicarboxaldehyde (DHTA) (24.9 mg, 0.15 mmol) was added into a 250 mL round glass beaker, and then added 70 mL 1,2-dichlorobenzene, 30 mL Dichloromethane (DCM). After stirring at room temperature under nitrogen protection for about 30 minutes. Completely dissolve DHTA into a pale yellow solution. 40 mg Sc(OTf)3 (0.08 mmol) as Luis acid catalyst was dissolved into 100 mL of pure water, and then the aqueous phase system was slowly poured over the organic phase system. After that 30 mg of sr-TTA (0.1 mmol) dissolved in 10 mL DCM was slowly added to the interfacial reaction system for about 12 hours. The interface reaction proceeded for about 7 days. Finally, a dense yellow-brown organic film was observed at the interface. Then it was fixed onto the sand core by a bigger holder of the suction filter equipment. Finally, the product was washed several times with H2O, methanol (MeOH), tetrahydrofuran (THF), and N,N-dimethylformamide (DMF) to remove the trapped guest molecules, and then further dried in vacuum. 14.8 mg TRIP-CP-1 product was obtained (37% yield).

Synthesis of TRIP-CP-2 in the interfacial reaction system: 1.5 equivalent of DHTA (24.9 mg, 0.15 mmol) was added into a 250 mL round glass beaker, and then added 50 mL 1,2-dichlorobenzene, 50 mL DCM. After stirring at room temperature under nitrogen protection for about 30 minutes. Completely dissolve DHTA into a pale yellow solution. 20 mg Sc(OTf)3 (0.04 mmol) and 20 µL TFA (0.2 mmol) as acid catalyst was dissolved into 100 mL of pure water, and then the aqueous phase system was slowly poured over the organic phase system. After that 30 mg of ss-TTA (0.1 mmol) dissolved in 10 mL DCM was slowly added in the interfacial reaction system about 12 hours. Finally, a yellow organic film was observed at the interface. The interface reaction was proceeded for about 7 days. Finally, the product was washed several times with H2O, MeOH, THF, and DMF to remove the trapped guest molecules, and then further dried in vacuum. 9.5 mg TRIP-CP-2 product was obtained (21% yield).

Synthesis of TRIP-CP-3 in the interfacial reaction system: 1 equivalent of 1,3,5-Triformylphloroglucinol (TFP) (21.0 mg, 0.10 mmol) was added into a 250 mL round glass beaker, and then added 100 mL Dichloromethane (DCM). After stirring at room temperature under nitrogen protection for about 30 minutes. Completely dissolve TFA into a pale colourless and transparent solution. 40 µL Trifluoroacetate (TFA) (5 mmol%) as acid catalyst was dissolved into 100 mL of pure water, then the aqueous phase system is slowly poured over the organic phase system. After that 30 mg of sr-TTA (0.1 mmol) dissolved in 10 mL DCM was slowly added to the interfacial reaction system about 12 hours. The interface reaction was proceeded for about 7 days. Finally, a dense yellow organic film was observed at the interface. Then it was fixed onto the sand core by a bigger holder of the suction filter equipment. Finally, the product was washed several times with H2O, MeOH, THF, and DMF to remove the trapped guest molecules. And then further dried in vacuum to give 43.2 mg TRIP-CP-3 (94% yield).

Synthesis of TRIP-CP-4 in the interfacial reaction system: 1 equivalent of TFP (21.0 mg, 0.10 mmol) was added into a 250 mL round glass beaker, and then added 100 mL DCM. After stirring at room temperature under nitrogen protection for about 30 minutes. Completely dissolve TFA into a pale colourless and transparent solution. 40 µL TFA (5 mmol%) as acid catalyst was dissolved into 100 mL of pure water, then the aqueous phase system is slowly poured over the organic phase system. After that 30 mg of ss-TTA (0.1 mmol) dissolved in 10 mL DCM was slowly added in the interfacial reaction system about 12 hours. The interface reaction was proceeded for about 7 days. Finally, a dense yellow organic film was observed at the interface. Then it was fixed onto the sand core by a bigger holder of the suction filter equipment. Finally, the product was washed several times with H2O, MeOH, THF, and DMF to remove the trapped guest molecules. And then it was further dried in vacuum to give 17.9 mg TRIP-CP-4 (39% yield).

Synthesis of TBA-COF-5 in the interfacial reaction system: 1.5 equivalent of DHTA (24.9 mg, 0.15 mmol) was added into a 250 mL round glass beaker, and then added 90 mL 1,2-dichlorobenzene, and 10 mL DMF. After stirring at room temperature under nitrogen protection for about 30 minutes. Completely dissolve DHTA into a pale yellow solution. 40 mg Sc(OTf)3 (0.08 mmol) as Luis acid catalyst was dissolved into 100 mL of pure water, then the aqueous phase system was slowly poured over the organic phase system. After that 35 mg of 1,3,5-tri(4-aminophenyl)benzene (TBA, 0.1 mmol) dissolved in 10 mL DCM was slowly added in the interfacial reaction system for about 12 hours. The interface reaction was proceeded for about 5 days. Finally, a dense brown organic film was observed at the
interface. Then it was fixed onto the sand core by a bigger holder of the suction filter equipment. Finally, the product was washed several times with H$_2$O, MeOH, THF, and DMF to remove the trapped guest molecules, and then further dried in vacuum. 22.5 mg TBA-COF-5 product was obtained (45% yield).

Synthesis of TBA-COF-6 in the interfacial reaction system: 1 equivalent of TFP (21.0 mg, 0.10 mmol) was added into a 250 mL round glass beaker, and then added 100 mL DCM. After stirring at room temperature under nitrogen protection for about 30 minutes. Completely dissolve TFA into a pale colourless and transparent solution. 40 uL TFA (5 mmol%) as acid catalyst was dissolved into 100 mL of pure water, then the aqueous phase system was slowly poured over the organic phase system. After that 35 mg of TBA (0.1 mmol) dissolved in 10 mL DCM was slowly added in the interfacial reaction system about 12 hours. The interface reaction was proceeded for about 7 days. Finally, a dense yellow organic film was observed at the interface. Then it was fixed onto the sand core by a bigger holder of the suction filter equipment. Finally, the product was washed several times with H$_2$O, MeOH, THF, and DMF to remove the trapped guest molecules. And then it was further dried in vacuum to give 48.4 mg TBA-COF-6 (88% yield).
Solid-state NMR spectra for TRIP-CPs

Figure S22. Solid-state 13C CP/MASS NMR spectra of TRIP-CP-1 and 13C liquid NMR of monomers.
Figure S23. Solid-state 13C CP/MASS NMR spectra of TRIP-CP-2 and 13C liquid NMR of monomers.
Figure S24. Solid-state 13C CP/MASS NMR spectra of TRIP-CP-3 and 13C liquid NMR of monomers.
Figure S25. Solid-state 13C CP/MASS NMR spectra of TRIP-CP-4 and 13C liquid NMR of monomers.
Figure S26. Solid-state 13C CP/MASS NMR spectra of TBA-COF-5 and 13C NMR liquid spectra of monomers.
Figure S27. Solid-state 13C CP/MASS NMR spectra of TBA-COF-6 and 13C liquid NMR spectra of monomers.
Figure S28. Solid-state 13C CP/MASS NMR spectra for keto-enol tautomerism Schiff COFs of TRIP-CP-3, TRIP-CP-4, and TBA-COF-6.
Simulated structures for TRIP-CPs5,6

Figure S29. Eclipsed-AA stacking model cell of TRIP-CP-1.

Figure S30. AB-staggered stacking model cell of TRIP-CP-1.
Figure S31. Non-interpenetrated-staggered stacking model cell of TRIP-CP-1.

Figure S32. interpenetrated-staggered stacking model cell of TRIP-CP-1.
Figure S33. Different calculated stacking model cell of TRIP-CP-1.
Figure S34. Eclipsed-AA and AB-staggered stacking model cell of TRIP-CP-2.
Figure S35. Non-interpenetrated-staggered stacking model cell of TRIP-CP-2.

Figure S36. Non-interpenetrated-staggered stacking model cell of TRIP-CP-2.
Figure S37. Different calculated -stacking model cell of TRIP-CP-2.
Figure S38. Eclipsed-AA stacking model cell of TRIP-CP-3.

Figure S39. AB-staggered stacking model cell of TRIP-CP-3.
Figure S40. Eclipsed-AA stacking model cell of TRIP-CP-4.

Figure S41. AB-staggered stacking model cell of TRIP-CP-4.
Figure S42. Eclipsed-AA and AB-staggered stacking model cell of TBA-COF-5.
Figure S43. Eclipsed-AA and AB-staggered stacking model cell of TBA-COF-6.
Stability of TRIP-CPs

Figure S44. Crystal stability and Chemical stability test of TRIP-CP-1 after treatment in acid, base, and organic solvent for 24 hours.
Crystallinity and Pore Properties of TRIP-CPs and TBA-COFs

Figure S45. Powder X-ray diffraction (PXRD) patterns of TRIP-CP-3. Experimental patterns (red polka dots), refined patterns (black curves), the simulated patterns by Material Studio based on their simulated structures (blue curves).

Figure S46. Powder X-ray diffraction (PXRD) patterns of TRIP-CP-4. Experimental patterns (red polka dots), refined patterns (black curves), the simulated patterns by Material Studio based on their simulated structures (blue curves).
Figure S47. Powder X-ray diffraction (PXRD) patterns of **TBA-COF-5**. Experimental patterns (red polka dots), refined patterns (black curves), and error analysis (pink curve), the simulated patterns by Material Studio based on their simulated structures (blue curves).
Figure S48. PXRD patterns of TBA-COF-5 compared with different calculated-stacking model cell of TBA-COF-5.
Figure S49. Powder X-ray diffraction (PXRD) patterns of TBA-COF-6. Experimental patterns (red polka dots), refined patterns (black curves), and error analysis (pink curve), the simulated patterns by Material Studio based on their simulated structures (blue curves).
Figure S50. TEM and HR-TEM images of TBA-COF-6.
Figure S51. Characterization of the Porosity of TBA-COF-5 and TBA-COF-6. Nitrogen adsorption (filled dots) and desorption (unfilled dots) isotherms at 77 K. Pore size distribution curves obtained based on NLDFT calculation for TBA-COFs.
Figure S52. HR-TEM images of TRIP-CP-1 observed in different local positions corresponding to different facets.
Figure S53. HR-TEM images of TRIP-CP-1 corresponding to (001) facet (FFT image inset).
Figure S54. HR-TEM images of TRIP-CP-2 in different local positions.
Figure S55. TEM images of TRIP-CP-2.
Figure S56. TEM and HR-TEM images of TRIP-CP-3.
Figure S57. TEM and HR-TEM images of TRIP-CP-4.
Figure S58. TEM images of TRIP-CPs.
Figure S59. SEM images of TRIP-CP-1, TRIP-CP-2, TRIP-CP-3, and TRIP-CP-4 samples (4 hours).
Figure S60. SEM images of TRIP-CP-3 samples observed in different reaction time.
Figure S61. Energies for stacking the hexagonal building units of TRIP-CP-1, TRIP-CP-3, TBA-COF-5, and TBA-COF-6. Simulations were performed with Materials Studios using MS Forcite Plus module in insets.
Table S1. XPS peak table of TRIP-CP-1.

TRIP-CP-1	Start BE	Peak BE	End BE	Height CPS	FWHM eV	Atomic %	Wt. %
C 1s	298.28	284.76	279.48	151155.2	2.06	80.4	75.8
N 1s	410.28	398.98	392.48	16542.46	1.65	4.8	5.3
O 1s	545.28	532.52	525.48	60193.61	2.43	14.72	18.5

Table S2. The PDI of TRIP-CPs and TBA-COFs.

Sample	PDI (Size distribution by DLS)
TRIP-CP-1	0.237
TRIP-CP-2	0.347
TRIP-CP-3	0.081
TRIP-CP-4	0.203
TBA-COF-5	0.418
TBA-COF-6	0.715

Table S3. Fractional atomic coordinates for the unit cell of TRIP-CP-1.

TRIP-CP-1 -AA

\[a = 30.5957 \, \text{Å}, \ b = 30.2345 \, \text{Å}, \ c = 7.311 \, \text{Å}; \ \alpha = 90^\circ, \ \beta = 90^\circ, \ \gamma = 120^\circ \]

Atoms	X	Y	Z	Atoms	X	Y	Z
C1	0.22306	-1.43931	0.22411	C41	0.52435	-1.75858	0.1375
C2	0.26041	-1.38455	0.18364	C42	0.53779	-1.7412	-0.05599
C3	0.27481	-1.37356	-0.01407	C43	0.62042	-1.73019	-0.00307
C4	0.24997	-1.41911	-0.1484	C44	0.60694	-1.74726	0.19101
C5	0.24815	-1.46695	0.14268	C45	0.64369	-1.73188	0.33472
---	---	---	---	---	---		
C6	0.2622	-1.4569	-0.05576	C46	0.69378	-1.6986	0.28676
C7	0.19384	-1.44062	-0.11195	C47	0.70751	-1.68136	0.09381
C8	0.17938	-1.45229	0.08559	C48	0.67056	-1.69792	-0.05187
C9	0.129	-1.47346	0.13961	C49	0.55029	-1.84226	-0.26545
C10	0.09272	-1.48234	-0.00363	C50	0.52898	-1.89293	-0.2214
C11	0.10822	-1.4672	-0.1977	C51	0.51279	-1.91077	-0.02993
C12	0.15842	-1.4466	-0.25176	C52	0.52015	-1.87641	0.11866
C13	0.30806	-1.3245	-0.07136	C53	0.49019	-1.75035	0.2402
C14	0.32867	-1.2863	0.0694	C54	0.46945	-1.72432	0.15039
C15	0.31406	-1.29809	0.26684	C55	0.48299	-1.70608	-0.04162
C16	0.27966	-1.3469	0.32283	C56	0.51767	-1.71434	-0.14482
C17	0.25807	-1.49919	0.24944	N57	0.75903	-1.65033	0.03874
C18	0.28208	-1.52184	0.15859	N58	0.4917	-1.95996	0.0169
C19	0.29612	-1.51263	-0.03952	C59	0.79452	-1.61825	0.15067
C20	0.28547	-1.48042	-0.14801	C60	0.41582	0.85021	1.0522
N21	0.0408	-1.50501	0.05182	C61	0.84764	1.40856	1.08618
N22	0.31843	-1.53849	-0.13174	C62	0.4134	0.86376	0.85674
N23	0.36064	-1.23887	0.00884	C63	0.43218	0.91393	0.80976
C24	0.39007	-1.19902	0.12306	C64	0.45632	0.95197	0.94868
C25	0.36782	-1.57995	-0.11589	C65	0.46266	0.93896	1.13935
C26	0.33342	-1.63179	-0.13292	C66	0.44246	0.88846	1.18846

S53
Table S4. Fractional atomic coordinates for the unit cell of TRIP-CP-2.

TRIP-CP-2 -AA

\[a = 29.9781 \text{ Å}, \ b = 28.7337 \text{Å}, \ c = 7.3880 \text{ Å}; \ \alpha = 90^\circ, \ \beta = 90^\circ, \ \gamma = 120^\circ \]
	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	N21	N22	
	1.68184	1.68376	1.71424	1.77024	1.76898	1.68991	1.69134	1.67054	1.64774	1.64547	1.66745	1.65825	1.62915	1.62503	1.64966	1.81817	1.86507	1.86415	1.81569	1.62274	1.91134	
	-0.40346	-0.40481	-0.38019	-0.40536	-0.40787	-0.32568	-0.32299	-0.27531	-0.23003	-0.23236	-0.28058	-0.42751	-0.44792	-0.44633	-0.42595	-0.42865	-0.45434	-0.45669	-0.43304	-0.18681	-0.48038	
	-0.5418	-0.33966	-0.25141	-0.52571	-0.33475	-0.32867	-0.51964	-0.60675	-0.50326	-0.31215	-0.22555	-0.24494	-0.33521	-0.52688	-0.64003	-0.61772	-0.51893	-0.32757	-0.23637	-0.20138	-0.22039	
	C42	C43	C44	C45	C46	C47	C48	C49	C50	C51	C52	C53	C54	C55	C56	C57	C58	C59	C60	C61	C62	
	2.43419	2.4341	2.45899	2.46131	2.43737	2.28112	2.23365	2.23362	2.28165	2.48251	N51	2.5065	1.95648	2.14122	2.18601	2.50974	1.58851	1.95648	2.14122	2.43419		
	-0.82631	-0.67258	-0.64768	-0.64879	-0.67244	-0.67329	-0.6511	-0.65281	-0.67762	-0.92004	C51	-0.59831	-0.46939	-0.64107	-0.63081	-0.96638	-0.14096	-0.46939	-0.64107	-0.82631		
																						S55
	X	Y	Z	X	Y	Z																
-----	-----	-----	-----	-----	-----	-----																
N23	1.60596	-0.46961	-0.23013	C63	-0.44591	-0.55051																
C24	1.5721	-0.48755	-0.27962	C64	-0.47899	-0.56978																
C25	2.00384	-0.53389	-0.15163	C65	-0.49722	-0.5585																
C26	2.00203	-0.51277	0.02161	C66	-0.48001	-0.53062																
C27	2.05066	-0.57623	-0.20953	O67	-0.40016	-0.50121																
C28	2.09538	-0.5982	-0.09763	O68	-0.5332	-0.57378																
C29	2.09351	-0.57718	0.0759	C69	0.53179	-1.01152																
C30	2.04667	-0.53484	0.13372	C70	0.57224	-1.06053																
C31	2.3835	-0.72271	0.53054	C71	0.58955	-1.10236																
C32	2.41199	-0.69612	0.43976	C72	0.56865	-1.09663																
C33	2.4115	-0.69732	0.24799	C73	0.52893	-1.04804																
C34	2.38367	-0.7261	0.16899	C74	0.51088	-1.00607																
C35	2.32865	-0.69731	0.44493	O75	0.5974	-1.06955																
C36	2.32884	-0.69935	0.25319	O76	0.50716	-1.04193																
C37	2.41043	-0.77902	0.26032																			
C38	2.41017	-0.77719	0.45204																			
C39	2.43336	-0.82264	0.55267																			
C40	2.45722	-0.8702	0.46241																			

TRIP-CP-2-AB staggered stacking

a=58.7514 Å, b= 57.4674 Å, c= 14.7759 Å; α = 90°, β = 90°, γ = 120°
Atoms	X	Y	Z	Atoms	X	Y	Z
C1	0.31282	0.69346	0.35833	C41	0.06365	1.13541	0.22881
C2	0.29836	0.72924	0.34123	C42	0.08661	1.08521	0.21697
C3	0.29766	0.83029	0.34215	C43	0.1633	1.07304	0.21729
C4	0.31015	0.87468	0.35721	C44	0.17574	1.11761	0.22981
C5	0.29794	0.73764	0.38524	C45	0.17521	1.21361	0.23098
C6	0.29659	0.83308	0.38461	C46	0.16345	1.26413	0.21893
C7	0.33738	0.83629	0.34488	C47	0.16315	1.269	0.14063
C8	0.33881	0.74085	0.34559	C48	0.17428	1.22049	0.1169
C9	0.36264	0.6975	0.33506	C49	0.17342	1.12463	0.11688
C10	0.38519	0.74941	0.3235	C50	0.16094	1.07796	0.14089
C11	0.38395	0.84491	0.32234	N51	0.03983	1.08583	0.2409
C12	0.35986	0.88801	0.33347	N52	0.18854	1.06602	0.23956
C13	0.28614	0.87741	0.32948	C53	0.2013	1.09967	0.06985
C14	0.27578	0.83207	0.31507	C54	0.24432	0.86194	0.47912
C15	0.27647	0.73622	0.31316	C55	0.20041	1.09424	0.25364
C16	0.28684	0.67987	0.32538	N56	0.18453	1.07205	0.09307
C17	0.28657	0.69169	0.40922	C57	0.01668	1.11847	0.25403
C18	0.27385	0.74108	0.43267	C58	0.42945	0.87403	0.29354
C19	0.27251	0.83669	0.4322	O59	0.26585	1.04031	0.47867
C20	0.28412	0.88227	0.40796	O60	0.17982	0.92069	0.07044

S57
N21	0.40665	0.90041	0.31084	C61	0.24354	0.92132	0.27743	
N22	0.26068	0.89018	0.45581	C62	0.23916	1.01362	0.28514	
N23	0.26488	0.88443	0.30345	C63	0.2244	1.06784	0.27742	
C24	0.25583	0.85947	0.28656	C64	0.21467	1.03477	0.26093	
C25	0.23365	0.9242	0.00201	C65	0.22025	0.94443	0.25187	
C26	0.24411	1.01083	0.00129	C66	0.2342	0.88868	0.26051	
C27	0.21243	0.89505	0.02529	O67	0.2492	1.05467	0.30021	
C28	0.20129	0.95083	0.04766	O68	0.21254	0.91074	0.2339	
C29	0.21169	1.03764	0.04689	C69	0.49413	1.05686	0.26504	
C30	0.23292	1.06673	0.02362	C70	0.46972	1.08444	0.28525	
C31	0.13843	1.26478	0.1918	C71	0.44881	1.02492	0.29395	
C32	0.15164	1.21924	0.20615	C72	0.45159	0.93716	0.28353	
C33	0.15099	1.12338	0.20591	C73	0.47579	0.90931	0.26364	
C34	0.13663	1.08407	0.1919	C74	0.49677	0.96901	0.25459	
C35	0.15111	1.22197	0.16439	O75	0.46532	1.16864	0.29782	
C36	0.15004	1.12613	0.16448	O76	0.47876	0.82264	0.25278	
C37	0.11024	1.12991	0.20518					
C38	0.11122	1.22575	0.20504					
C39	0.08857	1.27624	0.21654					
C40	0.06481	1.23132	0.22837					

Table S5. Fractional atomic coordinates for the unit cell of TRIP-CP-3.
TRIP-CP-3- AA

\[a = 14.5432 \, \text{Å}, \ b = 15.6056\, \text{Å}, \ c = 7.5158 \, \text{Å}; \ \alpha = 90^\circ, \ \beta = 90^\circ, \ \gamma = 120^\circ \]

Atoms	X	Y	Z
C1	0.40716	-0.20216	-1.81238
C2	0.47567	-0.09374	-1.76568
C3	0.53853	-0.06752	-1.5909
C4	0.52057	-0.15428	-1.46931
C5	0.48129	-0.24303	-1.78005
C6	0.54223	-0.21738	-1.60267
C7	0.3981	-0.21487	-1.46426
C8	0.34114	-0.23783	-1.64419
C9	0.222	-0.29923	-1.65705
C10	0.15744	-0.34576	-1.49016
C11	0.21054	-0.32196	-1.30481
C12	0.33269	-0.25471	-1.29156
C13	0.61716	0.04129	-1.54665
C14	0.6344	0.12158	-1.68395
C15	0.56796	0.09253	-1.85698
C16	0.48381	-0.0144	-1.8923
C17	0.49005	-0.31125	-1.916
C18	0.55977	-0.35596	-1.87255
Atom	X	Y	Z
------	---------	---------	---------
C19	0.6236	-0.32883	-1.69808
C20	0.61756	-0.25754	-1.56272
N21	0.688	-0.37793	-1.66736
C22	0.66178	-0.46382	-1.7882
C23	0.91847	-0.50183	-1.77228
C24	0.84622	-0.45836	-1.73111
C25	0.73452	-0.50736	-1.81102
C26	0.69298	-0.60266	-1.91792
C27	0.76394	-0.64776	-1.94842
C28	0.88112	-0.59089	-1.89645
O29	0.88481	-0.36855	-1.61296
O30	0.95406	-0.63019	-1.94376
O31	0.57994	-0.65484	-1.98505
C32	0.71033	-0.7562	-1.99992
C33	1.02107	-0.46433	-1.66824
N34	1.04371	-0.41844	-1.5247

Table S6. Fractional atomic coordinates for the unit cell of TRIP-CP-4.

TRIP-CP-4-AA

\[a = 14.9565 \text{ Å}, \ b = 15.1043 \text{ Å}, \ c = 6.4467 \text{ Å}; \ \alpha = 90^\circ, \ \beta = 90^\circ, \ \gamma = 120^\circ\]

Atoms	X	Y	Z			
---	---	---	---	---	---	---
C1	1.56241	-0.28869	-1.18658			
C2	1.32509	-0.02276	-0.72946			
C3	1.35721	0.08661	-0.79792			
C4	1.34057	0.09634	-1.01427			
C5	1.2972	-0.00171	-1.14404			
C6	1.38888	-0.04858	-0.87325			
C7	1.3688	-0.04654	-1.09125			
C8	1.19668	-0.07491	-1.02384			
C9	1.2146	-0.0837	-0.80673			
C10	1.13369	-0.12945	-0.66577			
C11	1.03482	-0.17527	-0.73804			
C12	1.01435	-0.17624	-0.9528			
C13	1.09496	-0.12496	-1.09752			
C14	1.36404	0.19004	-1.0963			
C15	1.40907	0.27684	-0.96784			
C16	1.42616	0.26732	-0.75564			
C17	1.40331	0.1739	-0.67096			
C18	1.47224	-0.05921	-0.8042			
C19	1.52808	-0.0763	-0.95465			
C20	1.49078	-0.10148	-1.16089			
C21	1.40825	-0.08856	-1.23085			
---	---	---	---			
N22	1.53212	-0.14954	-1.29005			
C23	1.49956	-0.25536	-1.25933			
C24	1.51872	-0.40076	-1.15307			
C25	1.58089	-0.44074	-1.04965			
C26	1.68947	-0.36656	-0.99285			
C27	1.73972	-0.25809	-1.06079			
C28	1.67329	-0.21758	-1.13573			
O29	1.73903	-0.3959	-0.89024			
O30	1.71066	-0.1254	-1.1581			
O31	1.43016	-0.46002	-1.20973			
C32	1.54411	-0.54092	-1.00266			
N33	1.44395	-0.62384	-1.05734			
C34	1.84355	-0.19668	-1.05445			
N35	1.91096	-0.2374	-1.02606			
Table S7. Fractional atomic coordinates for the unit cell of TBA-COF-5.

TBA-COF-5-AA

\[a = 37.0922 \text{ Å}, \ b = 38.0279 \text{ Å}, \ c = 3.5852 \text{ Å}; \ \alpha = 90^\circ, \ \beta = 90^\circ, \ \gamma = 120^\circ\]

Atoms	X	Y	Z	Atoms	X	Y	Z
C1	2.475	0.93222	0.0764	C43	2.69462	0.32748	-0.00528
C2	2.46118	0.8884	0.05209	C44	2.67031	0.34606	-0.05339
C3	2.40454	0.81803	0.03273	C45	2.62681	0.32279	-0.09655
C4	2.36308	0.79334	0.1405	C46	2.6081	0.28023	-0.10694
C5	2.34445	0.75115	0.12846	C47	2.63139	0.26094	-0.04148
C6	2.36676	0.73258	-0.00045	C48	2.67444	0.28494	0.01684
C7	2.40834	0.75749	-0.11407	C49	2.60078	0.34269	-0.11477
C8	2.42713	0.7998	-0.09706	C50	2.61081	0.21581	-0.02975
C9	2.34652	0.68751	-0.01771	C51	2.57008	0.19228	0.10961
C10	2.30392	0.66388	-0.09979	C52	2.55108	0.15	0.12763
C11	2.2835	0.62128	-0.09071	C53	2.5726	0.13024	0.00816
C12	2.3073	0.60239	-0.02996	C54	2.61303	0.15359	-0.13108
C13	2.35044	0.62535	0.03622	C55	2.6319	0.1958	-0.15269
C14	2.36937	0.66789	0.05379	C56	2.61715	0.38263	-0.25011
C15	2.37574	0.60501	0.07965	C57	2.59383	0.40227	-0.23331
C16	2.23722	0.59682	-0.12632	C58	2.55322	0.38211	-0.08709
C17	2.35827	0.56563	0.23045	C59	2.53603	0.34181	0.02886
C18	2.38116	0.54558	0.24566	C60	2.55959	0.32248	0.02125
C19	2.42241	0.56467	0.11309	N61	2.8734	0.42621	-0.01715
C20	2.44034	0.60431	-0.02436	N62	2.52854	0.40135	-0.04912
C21	2.41732	0.62418	-0.04435	C63	2.90085	0.41646	-0.12026
C22	2.21218	0.61234	0.00619	O64	2.52679	0.55462	0.33988
C23	2.16884	0.58889	-0.00287	O65	2.4527	0.39206	-0.11933
C24	2.14926	0.54893	-0.14153	N66	2.10485	0.52246	-0.13638
C25	2.17397	0.53349	-0.27667	N67	2.55541	0.08702	0.03028
C26	2.21738	0.55714	-0.27272	C68	2.07703	0.532	-0.04053
N27	2.44724	0.54532	0.1116	C69	2.51827	0.06022	0.13993
C28	2.46332	0.49112	0.15481	C70	0.44755	0.94741	1.02533
C29	2.44586	0.45018	0.05325	C71	0.46262	0.98927	1.05653
C30	2.4709	0.43273	-0.01014	C72	0.50461	1.01645	1.13604
C31	2.51448	0.45667	0.02946	C73	0.53186	1.00010	1.19739
C32	2.53193	0.49754	0.1335	C74	0.51693	0.95938	1.15839
C33	2.507	0.51476	0.20533	C75	0.94577	0.44667	0.88527
C34	2.54279	0.44019	-0.02655	C76	0.96191	0.48862	0.8177
N35	2.4219	0.86124	0.05048	C77	1.00459	0.51548	0.85765
C36	2.43482	0.50759	0.18961	C78	1.03215	0.50165	0.94879
C37	2.76548	0.33633	-0.1302	C79	1.01602	0.45969	1.0158
C38	2.8084	0.35972	-0.13462	C80	0.97334	0.43281	0.9753
C39	2.829	0.39992	-0.00171	O81	1.04049	0.44355	1.14035

S64
Table S8. Fractional atomic coordinates for the unit cell of TBA-COF-6.

TBA-COF-6-AA

\[a = 18.6367 \text{ Å}, \; b = 18.7945 \text{ Å}, \; c = 3.6088 \text{ Å}; \; \alpha = 90^\circ, \; \beta = 90^\circ, \; \gamma = 120^\circ \]

Atoms	X	Y	Z		
N1	1.23511	-0.93189	0.08543		
C2	1.28774	-0.84426	0.07171		
C3	1.37078	-0.80558	0.1874		
C4	1.42	-0.72012	0.17403		
C5	1.38752	-0.6714	0.04334		
C6	1.30408	-0.71044	-0.06838		
C7	1.25467	-0.79583	-0.05044		
C8	1.44052	-0.58044	0.0243		
C9	1.5249	-0.54442	-0.06444		
C10	1.577	-0.45869	-0.06509		
C11	1.54169	-0.4088	-0.00207		
C12	1.45651	-0.44342	0.07046		
C13	1.40723	-0.5293	0.09536		
C14	1.6682	-0.42186	-0.12144		
---	---	---	---	---	---
C15	1.41842	-0.39039	0.11015		
C16	1.70887	-0.46424	-0.00606		
C17	1.79443	-0.42908	-0.04565		
C18	1.84214	-0.34985	-0.19067		
C19	1.80208	-0.30748	-0.31165		
C20	1.71614	-0.34326	-0.2791		
C21	1.46313	-0.31098	0.26273		
C22	1.42802	-0.26049	0.28252		
C23	1.3472	-0.2882	0.15481		
C24	1.30239	-0.36747	0.00165		
C25	1.33753	-0.4178	-0.01982		
N26	1.31314	-0.23436	0.17549		
N27	1.93036	-0.31507	-0.21739		
C28	0.98797	-0.22832	-0.19218		
C29	1.06904	-0.19599	-0.10352		
C30	1.10487	-0.24624	0.0373		
C31	1.19614	-0.21248	0.03799		
C32	1.24984	-0.12424	-0.05769		
C33	1.21481	-0.06892	-0.04994		
C34	1.12547	-0.10583	-0.13948		
C35	1.22641	-0.26242	0.12761		
-----	------	------	------		
C36	1.26497	0.01166	0.02596		
O37	1.32161	-0.09737	-0.15347		
O38	1.09935	-0.0631	-0.26845		
O39	1.05975	-0.31383	0.17174		
References:

1. Li, P. F.; Chen, C. F.; Synthesis, structures, and solid state self-assemblies of formyl and acetyl substituted triptycenes and their derivatives. *J. Org. Chem.* **2012**, *77*, 9250.

2. Elbert, S. M.; Rominger, F.; Mastalerz, M.; Synthesis of a rigid C_3-symmetric tris-salicylaldehyde as a precursor for a highly porous molecular cube. *Chemistry*. **2014**, *20*, 16707.

3. Matsumoto, M.; Valentino, L.; Stiehl, G. M.; Balch, H. B.; Corcos, A. R.; Wang, F.; Ralph, D. C.; Mariñas, B. J.; Dichtel, W. R.; Lewis-Acid-Catalyzed Interfacial Polymerization of Covalent Organic Framework Films. *Chem. 2018*, *4*, 308.

4. Veber, G.; Diercks, C. S.; Rogers, C.; Perkins, W. S.; Ciston, J.; Lee, K.; Llinas, J. P.; Liebman-Peláez, A.; Zhu, C.; Bokor, J.; Fischer, F. R.; Reticular Growth of Graphene Nanoribbon 2D Covalent Organic Frameworks. *Chem. 2020*, *6*, 1125.

5. Garai, B.; Shetty, D.; Skorjanc, T.; Gandara, F.; Naleem, N.; Varghese, S.; Sharma, S. K.; Baias, M.; Jagannathan, R.; Olson, M. A.; Kirmizaltin, S.; Trabolsi, A.; Taming the Topology of Calix[4]arene-Based 2D-Covalent Organic Frameworks: Interpenetrated vs Noninterpenetrated Frameworks and Their Selective Removal of Cationic Dyes. *J. Am. Chem. Soc.* **2021**, *143*, 3407.

6. Guo, X.; Lin, E.; Gao, J.; Mao, T.; Yan, D.; Cheng, P.; Ma, S.; Chen, Y.; Zhang, Z.; Rational Construction of Borromean Linked Crystalline Organic Polymers. *Angew. Chem. Int. Ed. 2021*, *60*, 2974.