1 Introduction

Marine ciliates (phylum Ciliophora) are heterotrophic and mixotrophic protists that are of high biodiversity and playing important ecological roles in coastal and marine ecosystems (Song et al., 2003, 2009; Lynn, 2008). In pelagic food webs, marine ciliates usually act as microzooplankton that transfers carbon and energy to higher trophic levels (e.g., metazoans) by predating on bacteria, pico- and nano-sized protists (Stoecker and Capuzzo, 1990). Many ciliate species are also abundant in marine benthos, especially the water-sediment interface layer (Fenchel, 1969; Gao et al., 2014), but could be easily ignored due to loss of morphological integrity, cell disruption, and difficulty in telling from sediment particles (Caron and Countway, 2009). In the past decade, molecular approaches, especially high-throughput sequencing, have circumscribed these methodological difficulties and been widely applied in studying benthic protist diversity and biogeography (Doherty et al., 2010; Massana et al., 2015; Zhao and Xu, 2016). Recently, using molecular method based on high-throughput sequencing, Gong et al. (2015) have revealed that depth shapes the diversity and community composition along coastal line of the Black Sea (Azovsky and Mazei, 2005) and Yellow Sea (Meng et al., 2012; Zhou and Xu, 2016). While the application of these traditional methodologies has contributed greatly in ciliate diversity and ecology, a large part of ciliate diversity might have been missing. For example, fragile and nano-sized ciliates sometimes are abundant in marine habitats (Dong et al., 2014), but could be easily ignored due to loss of morphological integrity, cell disruption, and difficulty in telling from sediment particles (Caron and Countway, 2009). In the past decade, molecular approaches, especially high-throughput sequencing, have circumscribed these methodological difficulties and been widely applied in studying benthic protist diversity and biogeography (Doherty et al., 2010; Massana et al., 2015; Zhao and Xu, 2016). Recently, using molecular method based on high-throughput sequencing, Gong et al. (2015) have revealed that depth shapes the diversity and community composition and
structure of microbial eukaryotes in the surficial sediments of the Bohai Sea and Yellow Sea of China, and ciliates appear to be important members in the benthic microeukaryotic communities. However, the variations in ciliate genetic diversity and community in these regions have not been analyzed, and it remains to be explored what factors determined the community assembly of coastal benthic ciliates across the Bohai Sea and Yellow Sea.

In our study, we focus on ciliates by extracting their sequences from the existing 454 sequencing dataset for benthic microeukaryotes in the Bohai Sea and Yellow Sea (Gong et al., 2015). We are particularly interested in the following questions: (1) What ciliate phyla or groups exist in these basins, and how the ciliate community was assembled and varied across space and time? (2) Is the biogeographic pattern of benthic ciliates different from the protists or microeukaryotes?

2 Materials and methods

2.1 Sampling information, environmental variables and sequence analyses

The sequences and environmental data used in this study were derived from Gong et al. (2015). Briefly, forty sediment samples were collected from the surface layer (top 0–5 cm) at 20 stations in the Bohai Sea (BHS), North Yellow Sea (NYS), South Yellow Sea (SYS, Fig. 1), during the summer and winter cruises of 2011. Sediment cores were put into cryovials and transferred immediately to liquid nitrogen for further DNA extraction, the rest of sediments was preserved at 4°C for physicochemical analyses. A total of 25 variables were recorded. These included: temperature, salinity, chlorophyll a (Chl a), pH and dissolved oxygen (DO) of bottom waters, and nitrate (NO$_3^-$), nitrite (NO$_2^-$), ammonium (NH$_4^+$), total organic carbon (TOC) and nitrogen (TON), and grain size of sediments. Moreover, metal concentrations in sediment and geographic distances were also measured or calculated. Total environmental DNA was extracted and purified using the FastDNA SPIN Kit (Q-BIOgene) for Soil. The V2 and V3 regions of 18S rDNA was then amplified using the universal eukaryotic primers 82F (5'-GAAACTGGAATGGCCTC-3') and 516R (5'-ACCCAGACTTGGCCTCC-3'). Pyrosequencing was performed on a Roche 454 GS FLX Titanium sequencer by the BGI company (Shenzhen, China). The raw sequence data have been deposited in the GenBank under the accession number SRA1577723. Sequence data were processed by quality controlling, denoising, and discarding chimera and singletons. The clean sequences were clustered and aligned, and classified against the Protist Ribosomal Reference Database (PR2 database). Operational taxonomic units (OTU) were clustered at a sequence similarity of 97%. One winter sample from NYS (NY10W) was failed to amplify and was not included in the subsequent analysis. Rarefaction curves were depicted and inspected to confirm that a majority of ciliate diversity had been recovered by the retrieved ciliate sequences (Fig. S1). To minimize the bias associated with sequencing coverage and allow comparing alpha-diversity estimators, we rarefied the datasets to 100 sequences per sample (the lowest number of sequences recovered for the 36 samples) using multiple_rarefactions_even_depth.py command. Three samples (SH08W, NH10W and NH24W) were excluded due to low sequence numbers (<100). The alpha-diversity estimators (OTU richness, Simpson, Shannon, and Chao1 indices) were calculated. To explore the distribution pattern of the communities of benthic ciliates, nonmetric multidimensional scaling (NMDS) was conducted based on a Bray-Curtis matrix using the package PRIMER v.6.0 (Plymouth Marine Laboratory, UK).

2.2 Statistical analyses

One-way ANOVA and student’s t-tests (two-tailed) were performed to examine the differences in alpha-diversity estimators and taxon-specific read proportions of benthic ciliates among BHS, NYS and SYS basins and between two seasons. Spearman’s correlation analysis was conducted to examine the associations between alpha-diversity estimators and environmental factors, and between relative proportions of ciliate taxa and environmental factors. All these analyses above were executed using SPSS v.13.0 (SPSS, Chicago, IL, USA).

To test the effects of season and basin on the variations in community structure of benthic ciliates, ANOSIM (analysis of similarity) was performed with the Bray-Curtis distance-based matrix using PRIMER. Because the spatial scale of this study was relative large, the horizontal (geographic) distance could limit the dispersal of benthic ciliates thus affect the geographic distribution pattern of these microorganisms. To test this hypothesis, simple and partial Mantel tests were conducted to partitionate the effects of geographic distance, depth, and environmental factors on the community structure of benthic ciliates using the vegan package in R statistical software (R 3.1.2, R Development Core Team, www.r-project.org).

3 Results

3.1 Alpha-diversity of benthic ciliates

A total of 25 608 reads affiliated with phylum Ciliophora were obtained for the 39 sediment samples, with 12 to 2 343 (median 500) reads per sample (Table S1). Classification of the pyrosequencing reads indicated that a total of six ciliate classes were recovered in this study. These included Spirotrichea, Oligohymen-
ophorea, Phyllopharyngea, Litostomatea, Colpodea and Karyorelictea (Fig. 2a). Overall, a total of 481 OTUs were detected in our non-rarefied dataset. The number of OTUs obtained from each site varied from 4 to 156, with an average of 69 (Table S1). Among the 481 OTUs identified in our dataset, more than 1/3 OTUs were unique to one or two sites. Only four OTUs (about 0.8%) were nearly common to all the sites. Most OTUs detected in all the 39 samples were affiliated with classes Spirotrichea (66.5%), Litostomatea (11.2%) and Oligohymenophorea (3.7%). Within Spirotrichea, the subclass Choreotrichia (17.5%) dominated in terms of OTU richness, followed by Stichotrichia (2.3%), Oligotrichia (1.7%) and Hypotrichia (0.8%, Fig. 2a). Of the rarefied dataset (normalized to 100 reads per sample), alpha-diversity estimators of benthic ciliates were high and varied greatly among samples (Table S1, Fig. 3), with OTU richness ranging from 8 to 42, Simpson indices of 0.347–0.954, Shannon indices 1.21–4.90 and Chao1 indices 11–90 (Table S1). Between two seasons, alpha-diversity estimators appeared to be higher in the winter than in the summer, which were, however, not statistically significant (t-tests, $P > 0.07$, Fig. 3). Among these three basins, the alpha-diversity estimators in the BHS were usually the highest ($P < 0.05$), whereas there were no significant differences between NYS and SYS ($P > 0.05$).

3.2 Community composition and structure of benthic ciliates

In terms of sequence proportions, the class Spirotrichea dominated (77.7%), followed by Litostomatea (4.6%) and Oligohymenophorea (1.5%), whereas the relative proportions of other classes (i.e., Phyllopharyngea, Colpodea, Karyorelictea) were each on average less than 1%. About 15.8% sequences remained unclassified at the class level (Fig. 2a). The proportion of Spirotrichea sequences ranged from 9.8% to 98.4% among individual samples, with many sequences assigned to the subclasses Choreotrichia (0.0% to 46.6%), Stichotrichia (0.0% to 10.0%), Oligotrichia (0.0% to 6.0%) and Hypotrichia (0.0% to 3.4%), and the unclassified (0.8% to 95.5%) (Fig. 2b).

The NMDS plot showed the OTU-level community distance among the 39 samples (Fig. 4). In the plot, the samples were largely clustered by basin, with NYS and SYS samples clearly separating from each other and the BHS samples nested within a space mainly occupied by SYS samples. Seasonal separation was not distinct. These results were well supported by the ANOSIM, which indicated that the basin-wise differences were significant ($R = 0.31$, $P = 0.001$, Table 1), but the seasonality was indistinct ($R < 0.01$, $P = 0.396$, Table 1).

Comparison of relative proportions of rDNA sequences could reveal the source taxa whose proportion changes contributed

![Fig. 2.](image-url) The proportions of major taxonomic groups (classes/subclasses) in benthic ciliates communities. a. Overall OTU and sequence proportions and b. OTU and sequence proportions in individual samples. Abbreviations in sample IDs indicate the sampling locations and seasons: BH for Bohai Sea, NY North Yellow Sea, SY South Yellow Sea, S summer, and W winter.
mostly to the overall community structure variations (Table 2).

For most classes and orders examined, their relative sequence proportions were not significantly different among basins ($P>0.05$), nor between two seasons ($P>0.05$), exhibiting a relative

Fig. 3. Comparisons of alpha diversity estimators of benthic ciliates. P values are given for the comparisons among basins (BHS, NYS and SYS) using one-way ANOVA and between two seasons (summer and winter) using t-tests. Basins sharing no lowercase letters above their boxes indicate significant differences in pairwise comparisons (t-tests, $P<0.05$).
stable community organization at higher taxonomic levels. The only exception was the class Litostomatea, which had substantially higher proportions (mean 16%) in the ciliate communities in SYS than these in the BHS (mean 4.0%) and NYS (mean 3.0%) (P<0.05). Apparently, the order Haptoria was one of the major contributors to these differences (Table 2). The relative proportion of Spirotrichea sequences progressively decreased from BHS (80±1.08%) to SYS (67±7.84 %), but this pattern was not statistically significant (ANOVA, P=0.64, Table 2).

3.3 Correlations of alpha-diversity estimators and relative proportions with environmental factors

Ciliate OTU richness had the strongest correlation with water depth (ρ=–0.71, P<0.001), followed by temperature (ρ=0.64, P<0.001), salinity (ρ=0.63, P<0.001), longitude (ρ=–0.57, P<0.001), pH (ρ=0.55, P<0.001) and Chl a (ρ=0.49, P=0.002, Table 3).

The associations between relative proportion of major taxa and environmental factors were also explored (Table 4). The proportion of Litostomatea exhibited a positive relationship with C:N (ρ=0.34, P=0.032) and Pb (ρ=–0.38, P=0.021), whereas the relative abundance of Oligohymenophorea was negatively and significantly correlated with grain size (ρ=–0.32, P=0.042). No strong correlations were observed for the class Spirotrichea with all environmental factors measured in this study. At the subclass level, Oligotrichia and Haptoria were negatively correlated with water depth and positively with temperature. Furthermore, there were strong associations between Oligotrichia and several other variables, i.e., salinity (ρ=–0.56, P<0.001), pH (ρ=0.50, P=0.001), Chl a (ρ=0.49, P=0.002) and concentrations of some metals (V, Cr, Fe, As, Pb, Cu).
Table 3. Spearman’s correlation coefficients between alpha-diversity estimators and environmental factors

	Richness	Simpson	Shannon	Chao1
Longitude	-0.57**	-0.49**	-0.55**	-0.49**
Latitude	0.39*	0.22	0.31	0.42*
Depth	-0.71**	-0.65**	-0.70**	-0.59**
Temperature	0.64**	0.59**	0.65**	0.45**
Salinity	-0.63**	-0.56**	-0.61**	-0.57**
DO	-0.20	-0.25	-0.23	-0.07
pH	0.55**	0.50**	0.55**	0.46**
Chl a	0.49**	0.38**	0.45**	0.40**
Grain size	0.29	0.16	0.21	0.35*
NO₂⁻	-0.27	-0.26	-0.25	-0.26
NO₃⁻	0.27	0.21	0.26	0.06
NH₄⁺	0.21	0.32	0.28	0.12
DIN	0.12	0.22	0.19	0.04
TOC/TN	-0.22	-0.12	-0.18	-0.32
Pb	-0.24	-0.07	-0.13	-0.34*
V	-0.47**	-0.33*	-0.39*	-0.47**
Cr	-0.43**	-0.26	-0.32	-0.41*
Mn	0.29	0.29	0.31	0.20
Fe	-0.42*	-0.29	-0.34*	-0.37*
Co	-0.21	-0.03	-0.09	-0.31
Ni	-0.20	-0.04	-0.10	-0.30
Cu	-0.26	-0.12	-0.17	-0.36
Zn	-0.44**	-0.34*	-0.37*	-0.40*
As	0.44**	0.42*	0.44**	0.33*
Cd	-0.03	0.09	0.05	-0.11

Note: ** P < 0.01; * P < 0.05.

3.4 Water depth, geographic distance and environmental controls on beta-diversity of benthic ciliates

We also distinguished the effects of horizontal (geographic distance) and vertical (depth) spatial factors and environmental variables on community composition using Mantel tests (Table 5). The simple Mantel tests showed that the changes in community structure of benthic ciliates were significantly correlated with both geographic distance (r=0.21, P<0.001) and depth (r=0.29, P<0.001), but not with environmental distance (r=0.10, P=0.251, Table 5). In the partial Mantel tests, however, when water depth was controlled, the effect of geographic distance became insignificant (r=0.02, P=0.350), whereas the effect of depth remained when geographic distance was controlled (r=0.20, P<0.001), indicating that water depth was the most important factor shaping the ciliate community in the studied areas.

4 Discussion

Previously, the benthic ciliate diversity and community composition and structure in the Yellow Sea (including NYS and SYS) were studied using morphology-based methods (MBM), e.g., Ludox density centrifugation and quantitative protargol stain (Meng et al., 2012; Zhou and Xu, 2016). The present study expands the sampling regions (including the Bohai Sea) and revisits the topic from a molecular perspective, revealing several consistent characteristics in comparison with the previous work. For example, the regional pattern of OTU-based ciliate species richness, much like those described in the MBM studies, exhibits a decreasing tendency from NYS to SYS (Fig. 3); the bentic ciliate richness was positively correlated with bottom water temperature, but negatively with bottom water salinity and water depth (Table 3). The depth-dependent pattern of alpha diversity of ciliates is much like that previously observed for microeukaryotes (Gong et al., 2015), in which limitation of sunlight and primary productivity may be also responsible for the reduction of ciliate species number in the benthos.

Table 4. Coefficients (r) of Spearman’s correlations between the relative abundance of major groups of benthic ciliates and environmental variables

	Depth	Temp	Sal	DO	pH	Chl a	NO₂⁻	C:N	Pb	V	Cr	Fe	Co	Zn	As
Oligohymenophorea	0.35*														
Peritrichia															
Scuticociliatia															
Pleurostomatida															
Spirotrichea															
Choreotrichia	-0.39*	0.45**	-0.50**	0.49**			-0.43**	-0.32	-0.40						0.32*
Tintinnida	-0.68**	0.48**	-0.60**	0.49**	0.52**			-0.32*	-0.41*	-0.45**	-0.44**	-0.43**	0.40*		
Oligotrichia	-0.62**	0.44**	-0.56**	0.50**	0.49**			-0.37*	-0.49**	-0.45**	-0.45**	-0.58**	0.34*		
Stichotrichia	-0.37*	0.33*	0.33*	0.41*				-0.40*							
Urostylida	0.39*	0.37*	0.37*	0.33*											
Sporadotrichida															
Hypotrichia															
Euplotida															
Phyllopharyngea															
Cyrtophoria															
Dysteriida															
Litostomatea															
Haptoria															
Haplotardia															
Apostomatida															

Note: * P<0.05; ** P<0.01; *** P<0.001; and insignificant correlations were left blank. Temp represents temperature and Sal salinity.

Zn and As, ρ>0.34, P<0.05). The correlations of orders Choreotrichia and Tintinnida generally followed the subclass Oligotrichia (Table 4).
Oligotrichia, which are typical planktonic groups (Santoferrara et al., 2016; Zhang et al., 2017), and were hardly observed in the MBM studies involving fixation and morphological examination (Meng et al., 2012). It is possible that these planktonic cells have been broken during physical mixing with sediment particles and extraction using Ludox density centrifugation, thus lost the integrated morphology for proper identification under microscopes, because these protists generally have a relatively thinner cortical membrane and more fragile than most other ciliates (Song et al., 2003, 2009). Previous studies have also demonstrated microscopic observations may miss a large number of the existent species (e.g., Tamura et al., 2011). Alternatively, these ciliates presented as cyst forms in the surface sediments (e.g., Chao et al., 2013), thus could not be readily identified and enumerated in previous morphology-based surveys. However, every coin has two sides. The rDNA-based surveys could not tell which community members are viable or dormant, thus have to be interpreted as a reflection of recent situation of the benthic community (Zhu et al., 2018). It is also likely that the eukaryotic universal primers used in this study are biasing against prostomatean ciliates, thus fail to amplify their 18S rDNA sequences. Another cause for the absence of prostomatean rDNA sequences may be that they have been PCR amplified but not properly classified due to the lack of enough reference sequences in the publically available databases. By building phylogenetic trees containing reference and sequences yielded in this study (data not shown), and BLASTing against the GenBank (Tables S2 and S3), we did not obtain any evidence for the notion that some prostomatean sequences might be lumped into the category of unclassified ciliates. This possibility can thus be ruled out. To some extents, the MBM may have an advantage over rDNA-based approaches in detecting the most viable members, which are assumed to be directly involved in the ecological and biogeochemical processes in the microbial food webs at the sampling time points.

Our analyses point to a distinct pattern of regional variations in ciliate community structure among the BHS, NYS and SYS (Table 1), which was not previously recognized. In the MBM studies, the benthic ciliate community structure was not significantly different between the NYS and SYS (Meng et al., 2012; Zhou and Xu, 2016), indicating that the inactive members may be quite differently assembled among these regions. This implies that classical taxonomic work has to expand the geographic range of sampling sites from coastlines to off-shore locations for species discovery. In addition, the present study provides new data on benthic ciliate diversity in the BHS, and shows there is much higher species richness of ciliates in the benthos of this basin than in the NYS and SYS, illustrating that the shallow basin could be a hotspot for benthic ciliate diversity.

It is interesting to note that the relative proportion of Litostomatea sequences was significantly higher in the deeper SYS than in the shallow NYS and BHS, a statistically supported character-

Table 5. Simple and partial Mantel tests for correlations between geographic distance, depth, environmental factors, and changes in community structure based on Bray-Curtis distance

	Simple Mantel test	Control for	Partial Mantel test
	r	P	
	Geo_distance	0.21	0.001
	Geo_distance	-	-
	Depth	0.29	0.001
	Depth	-	-
	Environment	0.10	0.251
	Environment	-	-
	Depth	-0.04	0.682
	Geo_distance	0.01	0.446

Note: Significant P-values (<0.01) are highlighted in bold. Geo_distance represents pairwise geographic distances between samples.
istic for the community structure changes among the three basins (Table 2). The litostomateans are carnivorous ciliates primarily feeding on other protozoans even small-sized metazoans. The increasing biomass contribution of these carnivorous in deeper sites reflects a decrease of bacterioophages and herbivores, which are sustained by bacterial and microalgal food (microphytobenthos) dwelling in or depositing on the surface sediments. With the increasing water depth, the declining temperature and light will increasingly limit the growth of microphytobenthos and hence bacterial and algal predators, resulting in the depth-dependent pattern of litostomateans observed in this study. However, again this pattern disagrees with the MBM studies in the similar regions, in which the carnivorous biomass seemed to be decreasing in the SYS (Meng et al., 2012; Zhou and Xu, 2016), suggesting that the changes in relative abundance/biomass of a given taxon in the communities does not necessarily follow its biological abundance in the samples, as we previously discussed (Zhu et al., 2018).

The spatial scale of the present study is relatively large (spanning about 500 km), it is thus important to consider geographic distance in addressing the relative importance of spatial factors (horizontal and vertical distances that are related to biological dispersal) and environmental filtering in shaping the benthic ciliate communities in the BHS, NYS and SYS (Martiny et al., 2006; Gong et al., 2015). Our study shows that water depth is the most important factor in benthic ciliate community assembly, a result similar to the biogeographic study of microeukaryotes (Gong et al., 2015), but different from that of fungi, which showed distinct seasonality (hence environmental filtering is the most important driver) in the similar studied area (Wang et al., 2017). This demonstrates that different microeukaryotic groups may have different biogeographies. Life history, trophic style, growth kinetics, and ecological association may be key factors explaining these differences, which is an interesting issue warranted further investigations.

References
A佐ovsky A I, Mazel Y A. 2005. Distribution and community structure of benthic ciliates in the North Eastern part of the Black Sea. Protistology, 4(2): 83–90
Caron D A, Countwray P D. 2009. Hypotheses on the role of the protistan rare biosphere in a changing world. Aquatic Microbial Ecology, 57(4): 227–238
Chao C F, Tsai A Y, Ishikawa A, et al. 2013. Seasonal dynamics of ciliate cysts and the impact of short-term change of salinity in a eutrophic coastal marine ecosystem. Terrestrial, Atmospheric and Oceanic Sciences, 24(6): 1051–1061
Doherty M, Tamura M, Vriezen J A, et al. 2010. Diversity of oligotrichia and choereotrichia ciliates in coastal marine sediments and in overlying plankton. Applied and Environmental Microbiology, 76(12): 3924–3935
Dong Jun, Shi Fei, Li Han, et al. 2014. SSU rDNA sequence diversity and seasonally differentiated distribution of nanoplanktonic ciliates in neritic Bohai and Yellow Seas as revealed by T-RFLP. PLoS One, 9(7): e102040
Fenchel T. 1969. The ecology of marine microbenthos: IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special refer-
cence to the ciliated protozoa. Ophelia, 6(1): 1–182
Fu Rao, Gong Jun. 2017. Single cell analysis linking ribosomal (r)DNA and rRNA copy numbers to cell size and growth rate provides insights into molecular protistan ecology. Journal of Eukaryotic Microbiology, 64(5): 885–896, doi: 10.1111/jeu.12425
Gao Feng, Huang Jie, Zhao Yan, et al. 2017. Systematic studies on cili-
ates (Alveolata, Ciliophora) in China: progress and achieve-
ments based on molecular information. European Journal of

Protistology, 61: 409–423, doi: 10.1016/j.ejop.2017.04.009
Gao Feng, Warren A, Zhang Qianqian, et al. 2016. The all-data-based evolutionary hypothesis of ciliated protists with a revised classi-
fication of the phylum Ciliophora (Eukaryota, Alveolata). Sci-
entific Reports, 6: 24874
Gong Jun, Dong Jun, Liu Xihan, et al. 2013. Extremely high copy num-ers and polymorphisms of the rDNA operon estimated from single cell analysis of Oligotrich and Peritrich ciliates. Protist, 164(3): 369–379
Gong Jun, Shi Fei, Ma Bin, et al. 2015. Depth shapes α- and β-diversi-
ties of microbial eukaryotes in surficial sediments of coastal eco-
systems. Environmental Microbiology, 17(10): 3722–3737
Lynd D H. 2008. The Ciliated Protozoa: Characterization, Classifica-
tion, and Guide to the Literature. 3rd ed. New York: Springer

Science & Business Media, 99–104
Martiny J B H, Bohannan B J M, Brown J H, et al. 2006. Microbial biogeography: putting microorganisms on the map. Nature Re-
views Microbiology, 4(2): 102–112
Massana R, Gobet A, Audic S, et al. 2015. Marine protist diversity in European coastal waters and sediments as revealed by high-
throughput sequencing. Environmental Microbiology, 17(10): 4035–4049
Meng Zhaocui, Xu Kuidong, Dai Renhai, et al. 2012. Ciliate community structure, diversity and trophic role in offshore sedi-
ments from the Yellow Sea. European Journal of Protistology, 48(1): 73–84
Park S J, Park B J, Pham V H, et al. 2008. Microeukaryotic diversity in marine environments, an analysis of surface layer sediments from the East Sea. Journal of Microbiology, 46(3): 244–249
Santoferrara L F, Bachy C, Alder V A, et al. 2016. Updating biod-
iversity studies in loricate protists: the case of the tintinnids (Al-
veolata, Ciliophora, Spirotrichea). Journal of Eukaryotic Micro-
biology, 63(5): 651–656
Song Weibo, Warren A, Hu Xiaohong. 2009. Free-living Ciliates in the Bohai and Yellow Seas, China (in Chinese). Beijing: Science Press
Song Weibo, Zhao Yuanjun, Xu Kuidong, et al. 2003. Pathogenic Proto-
zoa in Mariculture (in Chinese). Beijing: Science Press
Stoecker D K, Capuzzo J M. 1990. Predation on protozoa: its impor-
tance to zooplankton. Journal of Plankton Research, 12(5): 891–908
Su Lei, Zhang Qianqian, Gong Jun. 2018. Development and evalu-
ation of specific PCR primers targeting the ribosomal DNA in-
ternal transcribed spacer (ITS) region of peritrich ciliates in en-
vironmental samples. Chinese Journal of Oceanology and Lim-
ology: doi: 10.1007/s00348-018-6326-3
Tamura M, Katz L A, McManus G B. 2011. Distribution and diversity of oligotrich and choereotrich ciliates across an environmental gradient in a large temperate estuary. Aquatic Microbial Ecology, 64(1): 51–67
Wang Yaping, Guo Xiaohong, Zheng Pengfei, et al. 2017. Distinct se-
sonality of chytrid-dominated benthic fungal communities in the neritic oceans (Bohai Sea and North Yellow Sea). Fungal Ecology, 30: 55–66
Zhang Qianqian, Agatha S, Zhang Wuchang, et al. 2017. Three rDNA loci-based phylogenies of tintinnid ciliates (Ciliophora, Spiro-
trichea, Choereotrichia). Journal of Eukaryotic Microbiology, 64(2): 238–241
Zhao Feng, Xu Kuidong. 2016. Molecular diversity and distribution pattern of ciliates in sediments from deep-sea hydrothermal vents in the Okinawa Trough and adjacent sea areas. Deep Sea Research Part I: Oceanographic Research Papers, 116: 22–32
Zhou Bailing, Xu Kuidong. 2016. Spatiotemporal variation in com-
munity structure of marine benthic ciliates in the Yellow Sea during and after macroalgal and giant jellyfish blooms. Chinese Journal of Oceanology and Limnology, 34(4): 629–641
Zhu Ping, Wang Yaping, Shi Tiantian, et al. 2018. Genetic diversity of benthic microbial eukaryotes in response to spatial heterogen-
ity of sediment geochemistry in a mangrove ecosystem. Estu-
aries Coasts, 41(3): 751–764, doi: 10.1007/s12237-017-0317-z
Supplementary information:

Fig. S1. Rarefaction curves of 39 sediment samples showing the sequences sampled and the numbers of OTUs obtained.

Fig. S2. Distribution of the numbers of the unclassified ciliate OTUs that fall in three identity categories (95%<identity ≤ 97%, 90%<identity ≤ 95%, and ≤ 90%). The identities were relative to their closest described species which were located by BLASTing the OTUs against the GenBank. a. The OTUs unclassified at the class level and b. the OTUs unclassified in the class Spirotrichea.

Table S1. Summary of the pyrotags and alpha-diversity of benthic ciliates in sediment samples.

Table S2. Results of BLASTing against GenBank with the representative sequences of ciliate OTUs that are unclassified at the class level.

Table S3. Results of BLASTing against GenBank with the representative sequences of spirotrichean ciliate OTUs that are unclassified at lower ranks.

The supplementary information is available online at https://doi.org/10.1007/s13131-018-1236-y and www.hyxb.org.cn/aosen/ch/index.aspx. The supplementary information is published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.