RELATIONS FOR QUADRATIC HODGE INTEGRALS VIA STABLE MAPS

GEORGIOS POLITOPOULOS

Abstract. Following Faber-Pandharipande, we use the virtual localization formula for the moduli space of stable maps to \(\mathbb{P}^1 \) to compute relations between Hodge integrals. We prove that certain generating series of these integrals are polynomials.

Let \(\overline{M}_{g,n} \) be the moduli space of \(n \)-pointed genus \(g \) stable curves. It is a proper smooth Deligne Mumford (DM) stack of dimension \(3g - 3 + n \). We denote by \(\pi : \mathcal{U}_{g,n} \rightarrow \overline{M}_{g,n} \) the universal curve and by \(\sigma_i : \overline{M}_{g,n} \rightarrow \mathcal{U}_{g,n} \) the sections associated to the marking \(i \) for all \(1 \leq i \leq n \). We denote by \(\omega_{\mathcal{U}_{g,n}/\overline{M}_{g,n}} \) the relative dualizing sheaf of \(\pi \). We will consider the following classes in \(A^*(\overline{M}_{g,n}) \):

- For all \(0 \leq i \leq g \), \(\lambda_i \) stands for the \(i \)-th Chern class of the Hodge bundle, i.e. the vector bundle \(E = \pi_* \omega_{\mathcal{U}_{g,n}/\overline{M}_{g,n}} \). For all \(\alpha \in \mathbb{C} \), we denote \(\Lambda_g(\alpha) = \sum_{j=0}^{g} \alpha^{g-j} \lambda_j \), and \(\Lambda_g(\alpha) = (-1)^g \Lambda_g(-\alpha) \).

- For all \(1 \leq i \leq n \), we denote \(\psi_i \) the Chern class of the cotangent line at the \(i \)th marking \(\mathcal{L}_i = \sigma_i^* (\omega_{\mathcal{U}_{g,n}/\overline{M}_{g,n}}) \).

A Hodge integral is an intersection number of the form:

\[
\int_{\overline{M}_{g,n}} \psi_1^{k_1} \cdots \psi_n^{k_n} \Lambda_g(t_1) \cdots \Lambda_g(t_m),
\]

where \(k_1, \ldots, k_n \) are non-negative integers and \(t_1, \ldots, t_m \) are complex numbers. If \(m = 1, 2, \) or \(3 \), then the above integral is called a linear, double, or triple Hodge integrals respectively. Relations between linear Hodge integrals where proved in [FP00a] using the Gromov-Witten theory of \(\mathbb{P}^1 \) and the localization formula of [GP99]. This approach was also used in [FP00b] and [TZ03] to prove certain properties of triple Hodge integrals. Linear and triple Hodge integrals naturally appeared in the GW-theory of Calabi-Yau 3-folds, thus explaining a more abundant literature on the topic. However, double Hodge integrals have appeared recently in the Quantization of Witten-Kontsevich generating series (see [Blo20]), in the theory of spin Hurwitz numbers (see [GKL21]), and in the GW theory of blow-ups of smooth surfaces (see [GKLS22]).

Date: Friday 2nd February, 2024.

\(^{1}\)Here we use the convention of [FP00a] for \(\Lambda_g(\alpha) \) and \(\Lambda_g(\alpha) \)
In the present note, we consider the following power series in $\mathbb{C}[\alpha][t]$ defined using double Hodge integrals

\begin{equation}
 P_a(\alpha,t) = \sum_{g \geq 0} t^g \left(\int_{\mathcal{M}_{g,n+1}} \frac{\Lambda_g^V(1)\Lambda_g^V(\alpha)}{1 - \psi_0} \prod_{i=1}^{n}(2a_i + 1)!(-4\psi_i)^{a_i} \right) \exp\left(\frac{t}{24} \right)
\end{equation}

where $a = (a_1, \ldots, a_n)$ is a vector of non-negative integers. If $n = 1$, we use the convention: $\int_{\mathcal{M}_{0,2}} \psi_1 \frac{\Lambda_1^V(1)\Lambda_1^V(\alpha)}{1 - \psi_2} = (-1)^a$.

Theorem 0.1. $P_a(\alpha, t)$ is a monic polynomial in $\mathbb{C}[\alpha][t]$ of degree $|a|$ in t.

Here we provide the first values of $P_a(-\alpha - 1, t)$. In the list below we omit the variables $-\alpha - 1$ and t in the notation:

$P(__) = 1$

$P(1) = t + 12$

$P(2) = t^2 - 10\alpha t + 240$

$P(1,1) = t^2 - 12t$

$P(3) = t^3 + (-77/3\alpha - 28)t^2 + 280t + 6720$

$P(2,1) = t^3 + (-10\alpha - 48)t^2 + (240\alpha + 240)t$

$P(1,1,1) = t^3 - 72t^2 + 432t$

$P(4) = t^4 + (-43\alpha - 72)t^3 + (126\alpha^2 + 756\alpha + 840)t^2 + 10080t + 241920$

$P(3,1) = t^4 + (-77/3\alpha - 100)t^3 + (1232\alpha + 1624)t^2$

$P(2,2) = t^4 + (20\alpha + 100)t^3 + (-100\alpha^2 - 1360\alpha - 1680)t^2$

$P(2,1,1) = t^4 + (-10\alpha - 132)t^3 + (840\alpha + 3120)t^2 + (-8640\alpha - 8640)t$

$P(1,1,1,1) = t^4 - 168t^3 + 5616t^2 - 20736t$.

Considering these first values, we conjecture that P_a is a polynomial of total degree $|a|$ in both variables t and α.

Acknowledgements

I am very grateful to my PhD advisor Adrien Sauvaget for introducing me to this problem and for his guidance and comments throughout the whole writing of this note.
1. Preliminaries

We denote by $\mathcal{M}_{g,n}(\mathbb{P}^1, 1)$ the moduli space of stable maps of degree 1 to \mathbb{P}^1. It is a proper DM stack of virtual dimension $2g + n$. Here we can define in an analogous way the Hodge bundle \mathcal{E}, the cotangent line bundles \mathcal{L}_i and we denote again λ_i and ψ_i the respective Chern classes. We also have the forgetful and evaluation maps

$$\pi: \mathcal{M}_{g,n+1}(\mathbb{P}^1, 1) \to \mathcal{M}_{g,n}(\mathbb{P}^1, 1), \quad \text{and} \quad ev_i: \mathcal{M}_{g,n+1}(\mathbb{P}^1, 1) \to \mathbb{P}^1.$$

Throughout this note the enumeration of markings starts from 0. Furthermore, π is the morphism that forgets the marking p_0 and ev_i is the evaluation of a stable map to the i-th marked point. The vector bundle $T := R^1\pi_*(ev_0^*\mathcal{O}_{\mathbb{P}^1}(-1))$ is of rank g and we denote by y its top Chern class. We will denote:

$$\langle n \prod_{i=0}^{n-1} \tau_{a_i}(\omega) | y \rangle_{\mathbb{P}^1_{g,1}} := \int_{[\mathcal{M}_{g,n}(\mathbb{P}^1, 1)]^{vir}} n \prod_{i=0}^{n-1} \psi_i^{a_i} ev_i^*(\omega) y$$

where ω denotes the class of a point in \mathbb{P}^1.

Theorem 1.1 (Localization Formula, [GP99], [FP00a]). Let $g \in \mathbb{Z}_{\geq 0}$, let $a \in \mathbb{Z}_{\geq 0}^n$ such that $|a| \leq g$. Then, for all complex numbers α, and $t \in \mathbb{C}^*$, we have

$$\langle \prod_{i=1}^{n} \tau_{a_i}(\omega) | y \rangle_{\mathbb{P}^1_{g,1}} = \sum_{g_1+g_2=g} \int_{\mathcal{M}_{g_1,n+1}} t^n \prod_{i=1}^{n} \psi_i^{a_i} \frac{\Lambda^\vee_1(t) \Lambda^\vee_2(\alpha t)}{t(t-\psi_0)} \times \int_{\mathcal{M}_{g_2,1}} \frac{\Lambda^\vee_2(-t) \Lambda^\vee_2((\alpha + 1)t)}{t(-t-\psi_0)}.$$

Here we use the convention $\int_{\mathcal{M}_{0,1}} \psi_0^a = 1$.

Proposition 1.2 (4.1 of [TZ03]). For all complex numbers α we have

$$F(\alpha, t) = 1 + \sum_{g>0} t^{2g} \int_{\mathcal{M}_{g,1}} \frac{\Lambda^\vee_2(1) \Lambda^\vee_2(\alpha)}{1-\psi_0} = \exp \left(-\frac{t^2}{24} \right).$$

Besides, we have the String and Dilaton equation for Hodge integrals.

Proposition 1.3. Let $g, n \in \mathbb{Z}_{\geq 0}$ such that $2g - 2 + n > 0$.

(i) [Dilaton equation for Hodge integrals] Let $(a_1, ..., a_n) \in \mathbb{Z}_{\geq 0}^n$ and assume that there exist i_0 such that $a_{i_0} = 1$. Then

$$\int_{\mathcal{M}_{0,n+1}} \frac{\psi_{i_0} \prod_{i \neq i_0} \psi_i^{a_i} \prod_{j=1}^g \lambda_k^b}{1-\psi_0} = (2g - 2 + n) \int_{\mathcal{M}_{g,n}} \frac{\prod_{i=1}^{n-1} \psi_i^{a_i} \prod_{j=1}^g \lambda_k^b}{1-\psi_0}.$$
(ii) [String equation for Hodge integrals] Let \((a_1, ..., a_n) \in \mathbb{Z}_{\geq 0}^n\) and assume that there exist \(i_0\) such that \(a_{i_0} = 0\). Then we have

\[
\int_{\mathcal{M}_{g,n+1}} \frac{\prod_{i=1}^n \psi_i^{a_i} \prod_{j=1}^g \lambda_k^{b_j}}{1 - \psi_0} = \int_{\mathcal{M}_{g,n}} \frac{\prod_{i=1}^{n-1} \psi_i^{a_i} \prod_{j=1}^g \lambda_k^{b_j}}{1 - \psi_0} + \sum_{j=1}^n \int_{\mathcal{M}_{g,n}} \frac{\psi_j^{a_j-1} \prod_{i \neq j} \psi_i^{a_i} \prod_{k=1}^g \lambda_k^{b_k}}{1 - \psi_0}.
\]

2. The calculation

Note that the GW-invariant \(\langle \prod_{i=1}^n \tau_{a_i}(\omega) \rangle_{g,1}^{p_1}\) is 0 unless \(|a| = g\) for dimensional reasons. Indeed, \(\dim_{\mathbb{C}}[\mathcal{M}_{g,n}(\mathbb{P}^1, 1)]^{\text{vir}} = 2g + n\) and the cycle we are integrating is in codimension \(g + |a| + n\). Using the above localization formula, and Lemma 2.1 of [TZ03] the intersection number \(\langle \prod_{i=1}^n \tau_{a_i}(\omega) \rangle_{g,1}^{p_1}\) is expressed as:

\[
\sum_{g_1 + g_2 = g} t^{g_1} \int_{\mathcal{M}_{g_1,n+1}} t^{n} \prod_{i=1}^n \psi_i^{a_i} \Lambda_{g_1}^V(t) \Lambda_{g_2}^V(\alpha t) \cdot \int_{\mathcal{M}_{g_2,1}} \frac{\Lambda_{g_2}^V(-t) \Lambda_{g_2}^V((\alpha + 1)t)}{-t(-t - \psi_0)}
= \sum_{g_1 + g_2 = g} \sum_{\alpha | \alpha = g} \psi_0^{3g_2-2}.
\]

In the last equation we used Proposition 1.2 in order to replace \(\int_{\mathcal{M}_{g_2,1}} \frac{\Lambda_{g_2}^V(1) \Lambda_{g_2}^V(-\alpha + 1)}{-1 - \psi_0}\) with \((-1)^{g_2} \int_{\mathcal{M}_{g_2,1}} \psi_0^{3g_2-2} - 1\).

We define

\[
A_{g,a}(\alpha) = \sum_{g_1 + g_2 = g} \int_{\mathcal{M}_{g_1,n+1}} \prod_{i=1}^n \psi_i^{a_i} \Lambda_{g_1}^V(1) \Lambda_{g_2}^V(\alpha) \cdot \int_{\mathcal{M}_{g_2,1}} \psi_0^{3g_2-2}.
\]

Then, we have

\[
A_{g,a}(\alpha) = \begin{cases} 0 & |a| < g, \\ \langle \prod_{i=1}^n \tau_{a_i}(\omega) \rangle_{g,1}^{p_1} & |a| = g. \end{cases}
\]

By the definition of \(\Lambda_{g}^V(t)\) we see that \(\Lambda_{g}^V(1) \Lambda_{g}^V(-\alpha + 1)\) is a polynomial in \(\alpha\) of degree \(g\), which actually determines the degree of \(A_{g}(\alpha)\).
We now present a proof for the main result.

Proof. [of Theorem 0.1] We begin by stating the well known fact

\[1 + \sum_{g \geq 0} t^g \int_{\mathcal{M}_{g,1}} \psi_0^{3g-2} = \exp \left(\frac{t}{24} \right) \]

proven in section 3.1 of [FP00a]. Now, we consider the product of \(\exp \left(\frac{t}{24} \right) \) and

\[\sum_{g \geq 0} t^g \left(\int_{\mathcal{M}_{g,n+4}} - \psi_0 \prod_{i=1}^{n} (2a_i + 1)!!(-4\psi_i)^{a_i} \right) \]

to obtain a new power series whose coefficients in degree \(g \) are given by

\[\sum_{g_1 + g_2 = g} \int_{\mathcal{M}_{g_1,n+1}} \prod_{i=1}^{n} (2a_i + 1)!!(-4)^a \prod_{i=1}^{n} \psi_i^{a_i} \Lambda_{g_1}^\vee(1)\Lambda_{g_2}^\vee(\alpha) \cdot \int_{\mathcal{M}_{g_2,1}} \psi_0^{3g_2-2} \]

This is exactly \(A_{g,a}(\alpha) \cdot \prod_{i=1}^{n} (2a_i + 1)!!(-4)^a \). Hence, we can rewrite the power series \(P_a(\alpha, t) \) in the form

\[P_a(\alpha, t) = \sum_{g \geq 0} t^g A_g(\alpha) \]

As it is computed in the start of Section 2 we have that the numbers \(A_{g,a}(\alpha) \) vanish when \(g > |a| \). Hence, we get that all coefficients of the power series \(P_a(\alpha, t) \) vanish when \(g > |a| \), i.e. \(P_a(\alpha, t) \) is a polynomial of degree \(|a| \). Furthermore, the top coefficient of \(P_a(\alpha, t) \), i.e. the coefficient of \(t^{|a|} \) is given by

\[\langle \prod_{i=1}^{n} (2a_i + 1)!! \cdot \tau_a(\omega)|y|^{|a|} \rangle_{|a|} \]

This value is computed in [KL11] and is actually equal to 1. In particular, the number \(\prod_{i=1}^{n} (2a_i + 1)!! \) is here to make the polynomial monic. \(\square \)

We now prove several other properties of the polynomials \(P_a \).

Proposition 2.1. The constant term \(c_0 \) of \(P_a(\alpha, t) \) is non zero if and only if \(n = 1 \) where then \(c_0 = (-1)^a \prod_{i=1}^{n} (2a_i + 1)!! \) or if \(n > 1 \) and \(\sum_{i=1}^{n} a_i \leq n - 2 \) where then

\[c_0 = \prod_{i=1}^{n} (2a_i + 1)!! \frac{(n-2)!}{a_1! \cdots (n-2-\sum a_i)!} \]

Proof. We only compute the integrals appearing in the constant term of this polynomial since then we only have to multiply with \(\prod_{i=1}^{n} (2a_i + 1)!!(-4)^a \). The integral in the constant term of \(P_a(\alpha, t) \) is given by \(\int_{\mathcal{M}_{0,n+4}} \prod_{i=1}^{n} \psi_i^{a_i} \). When \(n = 1 \), using the convention \(\int_{\mathcal{M}_{0,2}} \frac{\psi^{a}}{1-\psi_0} = (-1)^a \) we get that

\[c_0 = (-1)^a \prod_{i=1}^{n} (2a_i + 1)!! \]
When \(n > 1 \), if \(\sum_{i=1}^{n} a_i > n - 2 \), then \(c_0 \) is zero for dimensional reasons. Otherwise, we have

\[
\int_{\mathcal{M}_{0,n+1}} \prod_{i=1}^{n} \frac{\psi_i a_i}{1 - \psi_0} = \int_{\mathcal{M}_{0,n+1}} \psi_0^{n-2 - \sum a_i} \prod_{i=1}^{n} \psi_i a_i = \frac{(n - 2)!}{a_1! \cdots (n - 2 - \sum a_i)!}
\]

and so we obtain the desired result.

\[\square\]

Proposition 2.2. Let \(n \geq 3 \). Then we have the following rules:

(i) [String equation]

\[
P_{(a_1,\ldots,a_{n-1},0)}(\alpha,t) = P_{(a_1,\ldots,a_{n-1})}(\alpha,t) - \sum_{i=1}^{n} (8a_i + 4) P_{(a_1,\ldots,a_{i-1},a_i-1,\ldots,a_{n-1})}(\alpha,t)
\]

(ii) [Dilaton equation]

\[
P_{(a_1,\ldots,a_{n-1},1)}(\alpha,t) = (t - 12n + 24) P_{(a_1,\ldots,a_{n-1})}(\alpha,t) - 24tP'_{(a_1,\ldots,a_{n-1})}(\alpha,t)
\]

Proof. We define the power series

\[
\tilde{P}_a(\alpha,t) = \sum_{g \geq 0} t^g \left(\int_{\mathcal{M}_{g,n+1}} \prod_{i=1}^{n} \psi_i a_i \Lambda^Y(1) \Lambda^Y(\alpha) \right)
\]

Note that the following equation holds.

\[
P_a(\alpha,t) = \prod_{i=1}^{n} (2a_i + 1)!! (-4)^a \tilde{P}_a(\alpha,t) \exp \left(\frac{t}{24} \right)
\]

We can rewrite the coefficients of \(\tilde{P}_a(\alpha,t) \) as

\[
\sum_{k=0}^{g} \sum_{j=0}^{g} (-1)^{g+k} (a + 1)^{g-j} \int_{\mathcal{M}_{g,n+1}} \prod_{i=1}^{n} \psi_i a_i \lambda_k \lambda_j \frac{\Lambda^Y(1) \Lambda^Y(\alpha)}{1 - \psi_0}
\]

(i) Applying the String equation for Hodge integrals we obtain the following formula

\[
\tilde{P}_{(a_1,\ldots,a_{n-1},0)}(\alpha,t) = \tilde{P}_{(a_1,\ldots,a_{n-1})}(\alpha,t) + \sum_{i=1}^{n} \tilde{P}_{(a_1,\ldots,a_i-1,\ldots,a_{n-1})}(\alpha,t)
\]

Hence, multiplying with \(\prod_{i=1}^{n-1} (2a_i + 1)!! (-4)^a \exp \left(\frac{t}{24} \right) \) we obtain the desired result after a straightforward calculation.

(ii) Applying Dilaton equation for Hodge integrals we obtain the following formula

\[
\tilde{P}_{(a_1,\ldots,a_{n-1},1)}(\alpha,t) = 2 \sum_{g \geq 0} gt^g \int_{\mathcal{M}_{g,n+1}} \prod_{i=1}^{n-1} \psi_i a_i \Lambda^Y(1) \Lambda^Y(\alpha) \frac{\lambda_k \lambda_j}{1 - \psi_0} + (n - 2) \tilde{P}_{(a_1,\ldots,a_{n-1})}(\alpha,t)
\]
Note that the first term of the sum is equal to $2t\tilde{P}'_{(a_1,\ldots,a_{n-1})}(\alpha,t)$.

Now, multiplying both sides of the equation above with

$$\prod_{i=1}^{n-1} (2a_i + 1)(-4)^a_i \exp \left(\frac{t}{24} \right)$$

we have

$$\frac{-1}{12} P_{(a_1,\ldots,a_{n-1},1)}(\alpha,t) = (n-2)P_{(a_1,\ldots,a_{n-1})}(\alpha,t)$$

$$+ 2t \left(\prod_{i=1}^{n-1} (-4)^{a_i} (2a_i + 1)!! \right) \tilde{P}'_{(a_1,\ldots,a_{n-1})}(\alpha,t) e^{t/24}$$

$$= (n-2)P_{(a_1,\ldots,a_{n-1})}(\alpha,t)$$

$$+ 2t (P'_{(a_1,\ldots,a_{n-1})}(\alpha,t) - \frac{1}{24} P_{(a_1,\ldots,a_{n-1})}(\alpha,t)).$$

Finally clearing the denominators we obtain the desired result.

We recall Mumford’s relation $\Lambda^\vee_g(1) \cdot \Lambda^\vee_g(-1) = 1$ (see [Mum83]). In particular, $P_a(-1,t)$ is defined by integrals of ψ-classes.

Corollary 2.3. For any vector $a \in \mathbb{Z}_{\geq 0}^n$, the power series

$$P_a(-1,t) = \prod_{i=1}^{n} (2a_i + 1)!! (-4)^{a_i} \exp \left(\frac{t}{24} \right) \cdot \sum_{g \geq 0} (-t)^g \int_{\overline{M}_{g,n+1}} \prod_{i=1}^{n} \psi_i^{a_i} \frac{\prod_{i=1}^{n} \psi_i^{a_i}}{1 - \psi_0}$$

is a polynomial of degree $|a|$.

In this case the polynomiality as well as a closed expression were proved in [LX11].

REFERENCES

[Blot20] X. Blot. The quantum Witten-Kontsevich series and one-part double Hurwitz numbers. 2020, arXiv:2004.07581.

[FP00a] C. Faber and R. Pandharipande. Hodge integrals and Gromov-Witten theory. *Invent. Math.*, 139(1):173–199, 2000.

[FP00b] C. Faber and R. Pandharipande. Logarithmic series and Hodge integrals in the tautological ring. *Michigan Math. J.*, 48:215–252, 2000. With an appendix by Don Zagier, Dedicated to William Fulton on the occasion of his 60th birthday.

[GKL21] A. Giacchetto, R. Kramer, and D. Lewański. A new spin on Hurwitz theory and els via theta characteristics. 2021, arXiv:2104.05697.

[GKLS22] Alesandro Giacchetto, Reinier Kramer, Danilo Lewański, and Adrien Sauvaget. The spin gromov-witten/hurwitz correspondence for \mathbb{P}^1. 2022.

[GP99] T. Graber and R. Pandharipande. Localization of virtual classes. *Invent. Math.*, 135(2):487–518, 1999.

[KL11] Y.-H. Kiem and J. Li. Low degree GW invariants of spin surfaces. *Pure Appl. Math. Q.*, 7(4, Special Issue: In memory of Eckart Viehweg):1449–1475, 2011.

[LX11] K. Liu and H. Xu. The n-point functions for intersection numbers on moduli spaces of curves. *Adv. Theor. Math. Phys.*, 15(5):1201–1236, 2011.
[Mum83] D. Mumford. Towards an enumerative geometry of the moduli space of curves. In Arithmetic and geometry, Vol. II, volume 36 of Progr. Math., pages 271–328. Birkhäuser Boston, Boston, MA, 1983.

[TZ03] G. Tian and J. Zhou. Quadratic recursion relations of Hodge integrals via localization. Acta Math. Sin. (Engl. Ser.), 19(2):209–232, 2003.

Laboratoire AGM, 2 avenue Adolphe Chauvin, 95300, Cergy-Pontoise, France

Mathematical Institute, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands

Email address: g.politopoulos@math.leidenuniv.nl