A Review on Medicinal Uses of Cinnamomum verum (Cinnamon)

Rashmi Pathak*, Himanshu Sharma

School of Pharmaceutical Sciences, IFTM University, Lodhiapur Rajput, Moradabad, Uttar Pradesh, India

INTRODUCTION

Cinnamomum verum (Lauraceae) is a spice plant that is well-known for its medicinal and pharmacological qualities. The old botanical synonym for this tree, Cinnamomum zeylanicum, is derived from Sri Lanka's former name, Ceylon. Since ancient times, Cinnamomum zeylanicum has been frequently used as a medicinal condiment. It's native to Sri Lanka and India's southern states. Cinnamomum verum belongs to the Lauraceae family and is also known by the synonym Cinnamomum zeylanicum Blume. It's a dried bark that has been stripped of its outer cork and underlying parenchyma. Cinnamomum verum is a popular medicinal herb with a wide range of applications. It has long been used to flavour food and in pharmaceutical preparations to treat a variety of ailments. For commercial purposes, it is commonly used as candies, chewing gums, mouthwash, and toothpaste in the current period. Many volatile oils, primarily cinnamaldehyde, cinnamic acid, and cinnamate, are abundant in the plant. Eugenol is the active principal ingredient linked to a variety of biological functions. This herb is found in almost every pharmacological system on the planet. Each of these features is essential for human health development. Antimicrobial, wound healing, anti-diabetic, anti-HIV, anti-anxiety, and anti-are Parkinson's among the plant’s key medical characteristics. The major components of the Cinnamomum verum plant include eugenol, cinnamaldehyde, cinnamyl acetate, copane, and camphor. The pharmacological effects of cinnamon aldehyde have been extensively researched. Every aspect of the plant was thoroughly examined in this study, from its morphological description to its phytochemical profile and therapeutic action. In this review, we’ve attempted to compile a comprehensive list of its medical and pharmacological qualities.

KEYWORDS: Cinnamomum verum, Dalchini, Medicinal Properties, volatile oils, Antimicrobial, Anti-HIV, antidiabetic

HISTORY

Cinnamon has been utilized in a variety of culinary applications for thousands of years. It has been employed as an antiemetic, anti-diarrheal, ant flatulent, and stimulant in Ayurvedic medicine due to its high healing importance. It was employed for mumification by the Egyptians. During the 16th and 17th centuries, Portuguese traders brought the spice (C. zeylanicum) from Sri Lanka to Europe. Cinnamon cultivation began in Java under the Dutch occupation in the 17th century, and it was brought to Europe by the East India Company. After Ceylon cinnamon farming declined, Sri Lanka became the primary source of cinnamon oils, which are utilised in the pharmaceutical and food industries. Pharmaceutical companies also employ Chinese cinnamon oil.
PHYTOCHEMICAL CONSTITUENTS OF CINNAMOMUM ZEYLANICUM (DALCHINI)

Cinnamon contains a variety of resinous compounds, such as cinnamaldehyde, cinnamate, cinnamic acid, and a variety of essential oils. Because of the cinnamaldehyde component, cinnamon has a spicy flavour and a strong aroma. Trans-cinnamaldehyde, cinnamyl acetate, eugenol, L-borneol, caryophyllene oxide, b-caryophyllene, L-borneol acetate, E-nerolidol, alpha-cubebene, alpha-terpineol, terpinolene, and alpha thujene are some of the essential oils found in cinnamon. Because of the cinnamaldehyde component, cinnamon has a spicy flavour and a strong aroma. Trans-cinnamaldehyde, cinnamyl acetate, eugenol, L-borneol, caryophyllene oxide, b-caryophyllene, L-borneol acetate, E-nerolidol, alpha-cubebene, alpha-terpineol, terpinolene, and alpha thujene are some of the essential oils found in Cinnamomum zeylanicum. The aldehydes contained in the bark essential oil of C. zeylanicum include cinnamaldehyde, methoxy-cinnamaldehyde, hydrocinnamic, benzaldehyde, vanillin, cinnamaldehyde, benzenepropanal, 2-methyl-3-phenyl-propanal, and citronellal. Cinnamyl alcohol, alpha-terpineol, linalool, and alpha-pinene are alcohols derived from the Cinnamomum zeylanicum plant; esters are cinnamyl acetate, cinnamaldehyde diethyl acetal, methyl cinnamate, hydrocinnamyl acetate, benyl benzoate, bornyl acetate. Different sections of the plant contain cinnamic acid, ferulic acid, caffeic acid, gallic acid, protocatechuic acid, oleic acid, and phytobenzoic acid. P-cymene, limonene, alpha-terpineol, alpha-pinene, camphene, camphor, 1,4-cineole, beta-pinene, alpha-Phellandrene, alpha-phellandrene, and 3-carene are among the monoterpenes found in Cinnamomum zeylanicum. Because there are so many essential oils, isolating and separating them might take a long time. The hydrodistillation method is the most often utilised separation method. The bark, leaves, fruits, buds, and stalks of the plant are used to extract chemical components. The procedure is both quick and inexpensive. The downside of this approach is that it causes chemical changes, and heat-sensitive substances are readily destroyed. The supercritical fluid extraction method was introduced to overcome this constraint. This approach is suitable for the isolation of thermally and chemically unstable substances. The major component found in cinnamon leaves is eugenol, with alpha-ylangene, methyl, and ethyl cinnameate also present in the leaf oil. Cinnamon also included benzyl benzoate in bark oil and terpinene-4-ol in root-bark oil. A study by Jayaprakasha and Jagan Mohan Rao found 72 chemicals in diverse portions of C. zeylanicum, including leaf, stem bark, and root bark oils, of which 32 compounds were previously described. There were 11 monoterpenes, 4 sesquiterpenes, 2 aliphatic, and 15 aromatic compounds among the newly discovered compounds. Isogai et al. also discovered two novel chemicals, cinnzeylamine and cinnzeylanol, in the dried bark of C. zeylanicum. By analysing the oil of C. zeylanicum leaves, Vermin et al. discovered the presence of p-cymene (21.35 percent) and eugenol (16.7%). GC-MS study of essential oils from cinnamon leaves cultivated in India detected 47 chemical components. Figure 02 depicts the structures of some of C. zeylanicum’s main compounds.

BOTANICAL DISTRIBUTION OF CINNAMOMUM ZEYLANICUM

Cinnamomum zeylanicum (Dalchini) is an evergreen tropical shrub with thick, smooth, reddish-brown bark that grows to a height of around 6-8 metres. The opposite or sub-opposite leaves are glabrous, ovate and lancedolate, hard and coriaceous, and opposite or sub-opposite leaves are glabrous, ovate and lancedolate, hard and coriaceous. The leaves are brightly coloured above and pale beneath, with 3-5 major nerves. Petiole flattened to ½ inch in length. Axillary or sub-terminal cymes or panicles produce flowers. The fruit is ovate or oblong in shape, about 1.5-2 cm long, minutely apiculate, dry or somewhat fleshy and dark purple in colour.
cup of warm cinnamon water every day can assist women have less pain during menstruation for a brief period of time.

Some Major Ayurvedic Medicinal Uses of Cinnamomum Zeylanicum are:

- It relieves sore throats, influenza, the common cold, and headaches.
- It also has antitubercular properties and is used as an expectorant.
- In the case of rheumatoid arthritis, it is a natural treatment.
- It’s also good for lowering cholesterol and strengthening the cardiac muscles.
- It provides relief in menstrual pain. A study says women should drink a cup of warm cinnamon water every day it helps in experiencing less pain during menstruation for a short duration.

MEDICINAL USES OF CINNAMOMUM VERUM

Antimicrobial Activity

Because of its strong hydrophobic character, Cinnamomum zeylanicum is a well-documented antibacterial agent, according to many researches. The antimicrobial activity of essential oils of C. zeylanicum and three other herbs, Cuminum cyminum, Amomum subulatum, and Syzygium aromaticum, against Salmonella typhi, Salmonella para-typhoid, Escherichia coli, Staphylococcus aureus, Bacillus licheniformis, and Pseudomonas fluorescens, was investigated using the broth C. zeylanicum was found to have more powerful antibacterial action against all bacteria than the other three plants. The results revealed that ethyl acetate exhibited substantial antibacterial action against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, while petroleum ether extract had the highest sensitivity against Bacillus subtilis. Another study looked at the effects of 15 essential oil extracts from 15 different plants on distinct bacterial strains. Cinnamon essential oil has a higher antimicrobial action than other essential oils.

Antioxidant Activity

DPPH, phosphomolybdate, and ferric reducing antioxidant power assays were used to determine the antioxidant activity of hexane, chloroform, and methanol extracts of cinnamon, black pepper, ginger, and turmeric. Cinnamon methanol extract has the highest antioxidant activity of all the extracts. Cinnamon essential oil was found to have the highest antioxidant activity when compared to lemon oil in another study. Cinnamon powder has antioxidant action in alloxan-induced diabetic rats. Cinnamon powder contains antioxidant enzymes such as glutathione, peroxidase, catalase, and superoxide dismutase, which dramatically boosted and reduced blood glucose levels in rats.

Anti-inflammatory Activity

The methanolic and ethanolic extracts of C. zeylanicum inhibited the lipoxigenase (LOX) enzyme activity in mice, resulting in anti-inflammatory activity. Collagen-mediated arthritis was artificially produced in the animals. In the model, both extracts were observed to lower the production of pro-inflammatory cytokines. Another study looked at the anti-inflammatory efficacy of ethanolic extracts of C. zeylanicum and C. longa in polymorph nuclear cells that had been exposed to lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) and tumour necrosis factor (TNF-α). Cinnamic acid was found to have anti-inflammatory...
properties in vitro by lowering the levels of IL-6 and TNF-α in the cells.

Anticancer Activity

A cell proliferation assay was used to test the anticancer efficacy of the water-soluble polysaccharide and other cinnamon extracts against macrophage cell lines in an in vitro investigation. When compared to other cinnamon extracts, the polysaccharide component of cinnamon was found to have greater immunostimulatory properties. Cinnamon aqueous extract considerably slowed the progression of oral cancer, according to the findings.

Antidiabetic Activity

Cinnamon methanol extract and 50 green teas have anti-diabetic action in 50 diabetic rats caused by streptozotocin (STZ). The treatment lasted six weeks. The rats’ glucose levels were found to be much lower after therapy. The extracts have been found to have a synergistic impact in the treatment of diabetes. Streptozocin was used to stimulate the mice. Cinnamon was given to mice for a period of 14 days. Diabetic mice were then tested using a glucose oxidase (GOD) assay and a radioimmunoassay (RIA). Cinnamon maintains blood glucose and insulin levels in rats, according to the findings.

Wound Healing Activity

Cinnamon ethanolic extract has wound-healing properties in mice. For 14 days, the mice were given either 1.5 percent or 3 percent cinnamon extract. The results revealed that 3 percent cinnamon extract had potent wound-healing properties.

Anti-HIV Activity

C. zeylanicum was found to be useful in the treatment of acquired immunodeficiency disorders (AIDS). A total of 26 plants were employed to treat HIV/AIDS in the study.

Antianxiety and Antidepressant Activity

Cinnamon essential oil has anti-anxiolytic and antidepressant properties. To investigate the antidepressant efficacy of Cinnamon essential oil, they used various experiments such as the forced swim test (FST) and the tail suspension test (TST). To investigate the anti-anxiety activity of CEO, researchers used the elevated plus maze test (EPM) and the open field test. Cinnamon considerably shortened the immobility time delay and increased the overall period of immobility in the FST test, while the EPM test demonstrated a significant reduction in open arms entries. As a result, cinnamon extract has anti-anxiolytic and anti-depressant properties.

Anti-Parkinson Activity

Cinnamomum zeylanicum has antiparkinsonian actions in MPTP-intoxicated mice. In mice, a dose of 100 μL cinnamon powder dissolved in 0.5 percent methycellulose (MC) was given. Cinnamon appears to be effective in the treatment of Parkinson’s disease, according to the findings.

Spasmolytic and Cardiovascular Activity

Cinnamaldehyde’s effects on the cardiovascular and digestive systems were investigated. Cinnamaldehyde’s papaverine-like musculotropic action appeared to be involved in vasodilation.

Overdose

Cinnamon bark oil and cinnamaldehyde have irritating characteristics in doses greater than 0.2 g/day (equal to 15-20 g of crude drug) (ESCP, 2003).

CONCLUSION

Cinnamomum verum is a widely used medicinal herb for a variety of pharmacological purposes. Almost every pharmaceutical system in the world contains this herb. Cinnamomum verum has been reported to have anti-diabetic, antibacterial, antioxidant, anti-inflammatory, and anticancer effects. Each of these characteristics is critical to the growth of human health. The Cinnamomum verum plant contains eugenol, cinnamaldehyde, cinnamyl acetate, copane, and camphor as main components. Cinnamaldehyde’s pharmacological effects have been studied extensively. From its morphological description to its phytochemical profile and therapeutic action, every aspect of the plant was thoroughly examined in this study.

REFERENCES

1. Gaber E. El-Desoky, Mourad A. M. Aboul-Soud, Anti-diabetic and hypolipidemic effects of Ceylon cinnamon (Cinnamomum verum) in alloxan-diabetic rats, Journal of Medicinal Plants Research, 2012; 6(9):1685-1691. https://doi.org/10.5897/JMPR11.1472

2. Paranagama PA, Wimalasena S, Jayatilake GS, Jayawardena AL, Senanayake UM, Mubarak AM. A comparison of essential oil constituents of bark, leaf, root and fruit of cinnamon (Cinnamomum zeylanicum Blhm) grown in Sri Lanka. Journal of the National Science Foundation of Sri Lanka. 2001 Dec 27; 29(3-4). https://doi.org/10.4038/jnssr.v29i3-4.2613

3. Bisset NG. In Herbal drugs and phytopharmaceuticals, Medpharm Scientific Publishers: Stuttgart; 1994.

4. Assessment report on Cinnamomum verum J. S. Presl, cortex and cortex aetheroleum, Committee on Herbal Medicinal Products (HMPC).

5. Hänsel R, Keller K, Rimpler H, Schneider G. In: Hagers Hand buchder Pharmazeutischen Praxis. Berlin Springer-Verlag; 1992.

6. Ouattara B, Simard RE, Holley RA, Piette GJ, Bégin A. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms, international journal of food microbiology. 1997 Jul 22; 37(2-3):155-62. https://doi.org/10.1016/S0168-1605(97)00070-6

7. Gruenwald J, Freeder J, Armbruster N. Cinnamon and health, Critical reviews in food science and nutrition. 2010 Sep 30; 50(9):822-34. https://doi.org/10.1080/10408390902773052

8. Khasnis S, Pahan K. Sodium benzato, a metabolite of cinnamon and a food additive, upregulates neuroprotective Parkinson disease protein DJ-1 in astrocytes and neurons, Journal of neuroimmunology. 2012 Jun; 7(2):424-35. https://doi.org/10.1017/s11481-011-9286-3

9. Kim SH, Hyun SH, Cheung SY. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. Journal of ethnopharmacology. 2006 Mar 8; 104(1-2):119-23. https://doi.org/10.1016/j.jep.2005.03.059

10. Senanayake UM, Lee TH, Wills RB, Volatile constituents of cinnamon (Cinnamomum zeylanicum) oils, Journal of Agricultural and Food Chemistry. 1978 Jul; 26(4):822-4. https://doi.org/10.1021/jf00218a003

11. Singh G, Maurya S, DeLampasona MP, Catalan CA. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents, Food and chemical toxicology. 2007 Sep 1; 45(9):1650-6. https://doi.org/10.1016/j.fct.2007.02.031

12. Y Tung, M.T Chua, Wang SY, and Chang S.T. Anti inflammation activities of essential oil and its constituents from indigenous cinnamon. Journal of Drug Delivery & Therapeutics. 2021; 11(6-S):161-166
22. Yamin A, Anwar MN. Composition and antifungal activity of cinnamon (Cinnamomum Zeylanicum, Breyne) extracts, Bell Chim Farm. 1996; 137:443-447.

23. Muddgal D, Dravyagan Vijnana, Ayurvedic hindi pustak bhandar. 2nd edition 2019.

24. Sharma PV, Dravyagan Vigan, Chaukhamba Bharti Academy, Varanasi. 2019.

25. Shifali et al., Dalchini (cinnamon ozymiculum) a versatile spice with significant therapeutic potential, International Journal of Pharmaceutics and Drug Analysis. 2021; 9(2):126-136. https://doi.org/10.1016/j.jjfad.2018.04.036

26. Wisal GA. Antibacterial and antifungal effect of cinnamon, Microbiology research Journal International. 2018 May 1; 12(3):239-245. https://doi.org/10.1016/j.mjri.2018.04.036

27. Naveed R, Hussain I, Tawab A, Tariq M, Rahman M, Hameed S, Mahmood MS, Siddique AB, Igbal M. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria. BMC complementary and alternative medicine. 2013 Dec; 13(1):1-0. https://doi.org/10.1186/1472-6882-13-265

28. Abdalla RM, Abdelgadir EA. Antibacterial activity and phytochemical constituents of Cinnamomum verum and Matricaria chamomilla from Sudan, Bio Bulletin. 2016; 2(2):10-0.

29. Miceli-Filho J et al. Antioxidant activity of cinnamon (Cinnamomum Zeylanicum, Breyne) extracts, Connecticut Farm. 1998; 137:443-447.

30. Mith H, Dure R, Delcenserie V, Zirhi A, Daube G, Clinquart A. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria, Food science & nutrition. 2014 Jul; 2(4):403-16. https://doi.org/10.1002/fsn3.116

31. Saranya B, Subikarai T, Chandhu S, Muneeb AM, Leela NK, Zachariah TJ. Turmeric and cinnamon dominate in antioxidant potential among four major spices, Journal of Spices and Aromatic Crops. 2017 Jun 1; 26(1):27-32. https://doi.org/10.25081/josac.2017.v26.i1.803

32. Elgendy EM, Ibrahim HS, Elshehery HF, Sediqi AG, Mekhemer FL. Chemical and biological comparative in vitro studies of cinnamon bark and lemon peel essential oils, Food and Nutrition Sciences. 2016 Dec; 8(1):110-25. https://doi.org/10.4236/fns.2017.911008

33. Beji RS, Khemir S, Wannes WA, Ayari K, Ksouri R. Antidiabetic, antihyperglycemic and antioxidant influences of the spice cinnamon (Cinnamomum zeylanicum) in experimental rats, Brazilian Journal of Pharmaceutical Sciences. 2018; 54(2). https://doi.org/10.1590/s0127-011520180002017576

34. Durak A, Gawlik-Dziuki U, Pecio L. Coffee with cinnamon-impact of phytochemical interactions on antioxidant and anti-

ISSN: 2250-1177
CODEN (USA): JDDTAAO

Pathak et al. Journal of Drug Delivery & Therapeutics. 2021; 11(6-S):161-166
46. Qabaha K, Abu-Laﬁ S, Al-Rimawi F. Antiinflammatory Activities of Ethanol Extracts of curcuma Longa (Turmeric) and cinnamon (Cinnamomum verum).

47. Goyal M, Kaur H, Bhandari M, Rizvanov AA, Khaboullina SF, Baranwal M. Antioxidant and Immune Effects of Water-Soluble Polysaccharides Isolated from Cinnamomum verum Bark, BioNanoScience. 2018 Sep; 8(3):935-40. https://doi.org/10.1007/s12668-018-0542-3

48. Ezzat SK, AbuElkhair MT, Mourad MI, Helal ME, Grawish ME. Effects of aqueous cinnamon extract on chemically-induced carcinoma of hamster cheek pouch mucosa, Biochemistry and biophysics reports. 2017 Dec 1; 12: 72-8. https://doi.org/10.1016/j.bbrep.2017.08.014

49. Shokri G, Fathi H, Jafari Sabet M, Nasri Nasrabadi N, Ataee R. Evaluation of antidiabetic effects of hydroalcoholic extract of green tea and cinnamon on streptozotocin induced diabetic rats, Pharmaceutical and Biomedical Research. 2015 Jan 10; 1(2):20-9. https://doi.org/10.13869/acadpub.pbr.1.2.20

50. Li R, Liang T, Xu L, Li Y, Zhang S, Duan X. Protective effect of cinnamon polyphenols against STZ-diabetic mice fed high-sugar, highfat diet and its underlying mechanism, Food and Chemical Toxicology. 2013 Jan 1; 51:419-25. https://doi.org/10.1016/j.fct.2012.10.024

51. Farahpour MR, Habibi M. Evaluation of the wound healing activity of an ethanolic extract of Ceylon cinnamon in mice. Vet Med. 2012 Jan 1; 57(1):55-7. https://doi.org/10.17221/4972-VETMED

52. Semenya SS, Potgieter MJ, Erasmus LJ. Ethnobotanical survey of medicinal plants used by Tswana traditional healers to manage HIV/AIDS in the Limpopo Province, South Africa, Journal of Medicinal Plants Research. 2013 Feb 25; 7(8):434-41.

53. Fadai S, Asle-Rousta M. Anxiolytic and antidepressant effects of cinnamon (Cinnamomum verum) extract in rats receiving lead acetate, Scientific Journal of Kurdistan University of Medical Sciences. 2017; 22 (6).

54. Khasnavis S, Pahan K. Cinnamon treatment upregulates neuroprotective proteins Parkin and DJ-1 and protects dopaminergic neurons in a mouse model of Parkinson’s disease, Journal of Neuroimmune Pharmacology. 2014 Sep; 9(4):569-81. https://doi.org/10.1007/s11481-014-9552-2

55. Keller K, Hänsel R, Chandler RF. Adverse Effects of Herbal Drugs: Cinnamomum species. Volume 1 by P.A.G.M. De Smet. Springer Verlag, Heidelberg 1992. https://doi.org/10.1007/978-3-642-49540-9_6

56. E/S/C/O/P Monographs. The scientific foundation for herbal medicinal products. 2nd ed. Thieme, 2003.