On embeddings of locally finite metric spaces into ℓ_p

Sofiya Ostrovska

Department of Mathematics
Atılım University
06830 Incek, Ankara, TURKEY
E-mail address: sofia.ostrovska@atilim.edu.tr

and

Mikhail I. Ostrovskii*

Department of Mathematics and Computer Science
St. John’s University
8000 Utopia Parkway
Queens, NY 11439, USA
E-mail address: ostrovsm@stjohns.edu
Phone: 718-990-2469
Fax: 718-990-1650

September 24, 2018

Abstract

It is known that if finite subsets of a locally finite metric space M admit C-bilipschitz embeddings into ℓ_p ($1 \leq p \leq \infty$), then for every $\varepsilon > 0$, the space M admits a $(C + \varepsilon)$-bilipschitz embedding into ℓ_p. The goal of this paper is to show that for $p \neq 2, \infty$ this result is sharp in the sense that ε cannot be dropped out of its statement.

Keywords. Distortion of a bilipschitz embedding, isometric embedding, locally finite metric space, strictly convex Banach space

2010 Mathematics Subject Classification. Primary: 46B85; Secondary: 46B04.

1 Introduction and Statement of Results

During the last decades, the study of bilipschitz embeddings of metric spaces into Banach spaces has become a field of intensive research with a great number of applications. The latter are not restricted to the area of Functional Analysis, but also include Graph Theory, Group Theory, and Computer Science. We refer to

*corresponding author
This work is focused on the study of relations between the embeddability into ℓ_p of an infinite metric space and its finite pieces. Let us recollect some needed notions.

Definition 1.1. A metric space is called *locally finite* if each ball of finite radius in it has finite cardinality.

Definition 1.2. Let (A, d_A) and (Y, d_Y) be metric spaces. Given, $1 \leq C < \infty$, a map $f : A \rightarrow Y$, is called a *C-bilipschitz embedding* if there exists $r > 0$ such that
\[
\forall u, v \in A \quad rd_A(u, v) \leq d_Y(f(u), f(v)) \leq rCd_A(u, v).
\]

A map f is a *bilipschitz embedding* if it is C-bilipschitz for some $1 \leq C < \infty$. The smallest constant C for which there exists $r > 0$ such that (1) is satisfied, is called the *distortion* of f.

Unexplained terminology can be found in [14, 23].

It has been known that the bilipschitz embeddability of locally finite metric spaces into Banach spaces is finitely determined in the sense described by the following theorem.

Theorem 1.3 ([22]). Let A be a locally finite metric space whose finite subsets admit bilipschitz embeddings with uniformly bounded distortions into a Banach space X. Then, A also admits a bilipschitz embedding into X.

Theorem 1.3 has many predecessors, see [2, 3, 4, 20, 21]. Applications of this theorem to the coarse embeddings important for Geometric Group Theory and Topology are discussed in [22]. To expand on the theme, the argument of [22] yields a stronger result, namely the one stated as Theorem 1.4. In order to formulate Theorem 1.4 it is handy to employ the parameter $D(X)$ of a Banach space X introduced in [19]. Let us recollect its definition. Given a Banach space X and a real number $\alpha \geq 1$, we write:

- $D(X) \leq \alpha$ if, for any locally finite metric space A, all finite subsets of which admit bilipschitz embeddings into X with distortions $\leq C$, the space A itself admits a bilipschitz embedding into X with distortion $\leq \alpha \cdot C$;
- $D(X) = \alpha$ if α is the least number for which $D(X) \leq \alpha$;
- $D(X) = \alpha^+$ if, for every $\varepsilon > 0$, the condition $D(X) \leq \alpha + \varepsilon$ holds, while $D(X) \leq \alpha$ does not;
- $D(X) = \infty$ if $D(X) \leq \alpha$ does not hold for any $\alpha < \infty$.

In addition, we use inequalities like $D(X) < \alpha^+$ and $D(X) < \alpha$ with the natural meanings, for example $D(X) < \alpha^+$ indicates that either $D(X) = \beta$ for some $\beta \leq \alpha$ or $D(X) = \beta^+$ for some $\beta < \alpha$.
Theorem 1.4. There exists an absolute constant $D \in [1, \infty)$, such that for an arbitrary Banach space X the inequality $D(X) \leq D$ holds.

Recently, new estimates of the parameter $D(X)$ for some classes of Banach spaces have been obtained in [19]. Recall that a family of finite-dimensional Banach spaces $\{X_n\}_{n=1}^{\infty}$ is said to be nested if X_n is a proper subspace of X_{n+1} for every $n \in \mathbb{N}$. For such families, an estimate for $D(X)$ from above is expressed by:

Theorem 1.5 ([19, Theorem 1.9]). Let $1 \leq p < \infty$. If $\{X_n\}_{n=1}^{\infty}$ is a nested family of finite-dimensional Banach spaces, then $D\left(\bigoplus_{n=1}^{\infty}X_n\right)_p \leq 1^+.$

The next assertion is an immediate consequence of Theorem 1.5:

Corollary 1.6 ([19, Corollary 1.10]). If $1 \leq p < \infty$, then $D(\ell_p) \leq 1^+.$

It should be mentioned that the case where $p = \infty$ was discarded because the classical result of Fréchet [8] implies that $D(\ell_\infty) = 1$. Observe also that it is a well-known fact that $D(\ell_2) = 1$. Although the paper [19] contains some estimates for $D(X)$ from below, the following question was left open: whether $D(\ell_p) = 1^+$ or $D(\ell_p) = 1$ for $1 \leq p < \infty$, $p \neq 2$?

The main goal of this paper is to complete the picture by proving that $D(\ell_p) \geq 1^+$ if $p \in [1, \infty)$, $p \neq 2$. See Theorem 1.10 and Corollary 1.8. It is worth pointing out that our proofs for the cases $p = 1$ and $p > 1$ are different from each other.

Recall that a Banach space is called strictly convex if its unit sphere does not contain line segments. In the present work, it is shown that $D(X) > 1$ for a large class of strictly convex Banach spaces X implying that $D(X) = 1^+$ for all strictly convex Banach spaces satisfying the assumption of Theorem 1.5. To be more specific, the following statement will be proved (see Section 2):

Theorem 1.7. Let X be a strictly convex Banach space such that all finite subsets of ℓ_2 admit isometric embeddings into X, but ℓ_2 itself does not admit an isomorphic embedding into X. Then $D(X) > 1$.

With the help of Theorem 1.7, one derives:

Corollary 1.8. Let $p \in (1, \infty)$, $p \neq 2$. Then every strictly convex Banach space of the form $X = \left(\bigoplus_{n=1}^{\infty}X_n\right)_p$, where $\{X_n\}_{n=1}^{\infty}$ is a nested sequence of finite-dimensional Banach spaces satisfies $D(X) > 1$.

Combining Theorem 1.5 and Corollary 1.8 one obtains:

Corollary 1.9. Let $p \in (1, \infty)$, $p \neq 2$, and let $\{X_n\}_{n=1}^{\infty}$ be a nested family of finite dimensional strictly convex Banach spaces. Then, the space $X = \left(\bigoplus_{n=1}^{\infty}X_n\right)_p$ satisfies $D(X) = 1^+$. The equality $D(\ell_p) = 1^+$ for $p \in (1, \infty)$, $p \neq 2$, follows as a special case of this result.

The case $p = 1$ is quite different because ℓ_1 is not strictly convex. This case is examined in Section 3 where we prove:
Theorem 1.10. $D(\ell_1) > 1$.

Juxtaposing this outcome with Theorem 1.5 we reach:

Corollary 1.11. $D(\ell_1) = 1^+$.

Remark 1.12. It should be mentioned that the above results are not the first known ones claiming $D(X) > 1$. Before now, results of this kind were obtained in [13, Theorem 2.9] and [19, Theorem 1.12] for some other Banach spaces and their classes.

2 Proof of Theorem 1.7

Prior to presenting the proof of Theorem 1.7 let us provide some auxiliary information. By developing the notion of a linear triple [6, p. 56], we introduce the following:

Definition 2.1. A collection $r = \{r_i\}_{i=1}^n$ of points in a metric space (A,d_A) is called a linear tuple if the sequence $\{d_A(r_i,r_1)\}_{i=1}^n$ is strictly increasing and, for $1 \leq i < j < k \leq n$, the equality below holds:

$$d_A(r_i,r_k) = d_A(r_i,r_j) + d_A(r_j,r_k).$$

(2)

It is not difficult to see that, for strictly convex Banach spaces, the following statement is valid.

Observation 2.2. An isometric image of a linear tuple $r = \{r_i\}_{i=1}^n$ in a strictly convex Banach space is contained in the line segment joining the images of r_1 and r_n.

For the sequel, the next fact is needed (by B_Z we denote the unit ball of a Banach space Z):

Lemma 2.3. Let Z be a finite-dimensional Banach space and F be a Banach space. Then, for each $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon,Z,F) > 0$ such that if a δ-net in B_Z admits an isometric embedding into F, then F contains a subspace whose Banach-Mazur distance to Z does not exceed $(1 + \varepsilon)$.

Lemma 2.3 is an immediate consequence of Bourgain’s discretization theorem [7]. It should be emphasized that this theorem provides a much stronger claim because Bourgain found an explicit estimate for δ as a function of ε and the dimension of Z; besides in Bourgain’s theorem, the distortion of embedding of Z is estimated in terms of distortion of embedding of a δ-net of B_Z. See [8, 9] for simplifications of Bourgain’s proof, see also its presentation in [23, Section 9.2]. Meanwhile, the existence of $\delta(\varepsilon,Z,F)$ can be derived from earlier results of Ribe [24] and Heinrich and Mankiewicz [10], see [9, p. 818].

Proof of Theorem 1.7 Denote the unit vector basis of ℓ_2 by $\{e_i\}_{i=1}^\infty$. Our intention is to find a locally finite subset M of ℓ_2 in such a way that:
(A) M contains a $\delta(\frac{1}{n}, \ell_2^n, X)$-net M_n of a shifted unit ball $y_n + B_{\ell_2^n}$, $n \in \mathbb{N}$.

(B) There exists a sequence $\{\alpha_i\}_{i=1}^{\infty}$ of positive numbers, such that if $T : M \rightarrow X$ is an isometry satisfying $T(0) = 0$, then the image of $T(M_n)$ is contained in the linear span of $\{T(\alpha_1 e_1), \ldots, T(\alpha_n e_n)\}$.

The existence of such a set M will prove Theorem 17 because, by the assumption of the theorem, finite subsets of M admit isometric embeddings into X. On the other hand, M itself does not admit an isometric embedding into X. In fact, such an embedding T could be assumed to satisfy $T(0) = 0$. Therefore conditions (A) and (B), combined with Lemma 2.3, would imply that the Banach-Mazur distance between the linear span of $\{T(\alpha_1 e_1), \ldots, T(\alpha_n e_n)\}$ and ℓ_2^n does not exceed $(1 + \frac{1}{n})$.

It is well known (see [12]) that, in this case, X contains a subspace isomorphic to ℓ_2, which is a contradiction.

We let

$$M = \left(\bigcup_{n=1}^{\infty} M_n \right) \cup \{0\},$$

where M_n are finite sets constructed in the way described hereinafter.

Denote by $R_i, i \in \mathbb{N}$, the positive rays generated by e_i, that is, $R_i = \{\alpha e_i : \alpha \geq 0\}$. Let M_1 be the $\delta(1, \ell_1^n, X)$-net in the line segment $[0, 2e_1]$, where we assume that M_1 includes e_1. It is clear that M_1 satisfies (A).

For $n > 1$ sets $\{M_n\}_{n=1}^{\infty}$ will be constructed inductively. Suppose that we have already created M_1, \ldots, M_{n-1}. To construct M_n, we pick points $s^n_i \in R_i, 1 \leq i \leq n$, and one more point, $s^n_{n+1} \in R_n$ - so that R_n contains both s^n_n and s^n_{n+1} - in such a way that $\text{conv}(\{s^n_i\}_{i=1}^{n+1})$ is at distance at least n from the origin, and $\text{conv}(\{s^n_i\}_{i=1}^{n+1})$ contains a shift $y_n + B_{\ell_2^n}$ of the unit ball (for some y_n). This is clearly possible.

Next, we select a $\delta(\frac{1}{n}, \ell_2^n, X)$-net N_n in this shifted unit ball $y_n + B_{\ell_2^n}$ and include it in M_n together with $\{s^n_i\}_{i=1}^{n+1}$. At this point, it is evident that condition (A) is satisfied.

To ensure that condition (B) is also satisfied - as it will be seen later - we add, for each element $z \in N_n$, finitely many additional elements of $\text{conv}(\{s^n_i\}_{i=1}^{n+1})$ to M_n according to the procedure suggested below:

- If $z \in \{s^n_i\}_{i=1}^{n+1}$, there is nothing to include. If $z \notin \{s^n_i\}_{i=1}^{n+1}$, we find and include in M_n an element $w_1(z)$ in a convex hull of an n-element subset $W_1(z)$ of $\{s^n_i\}_{i=1}^{n+1}$ with z being on the line segment joining $w_1(z)$ and $s^n_i \in (\{s^n_i\}_{i=1}^{n+1} \setminus W_1(z))$.

- If $w_1(z) \in \{s^n_i\}_{i=1}^{n+1}$, there is nothing else to include. If $w_1(z) \notin \{s^n_i\}_{i=1}^{n+1}$, we find and include in M_n an element $w_2(z)$ in a convex hull of an $(n - 1)$-element subset $W_2(z)$ of $\{s^n_i\}_{i=1}^{n+1}$ such that $w_1(z)$ is on the line segment joining $w_2(z)$ and $s^n_i \in (\{s^n_i\}_{i=1}^{n+1} \setminus W_2(z))$.

- We continue in an obvious way.
If we do not terminate the process in one of the previous steps, we arrive at the situation when \(w_n(z) \) is in a convex hull of a 2-element subset of \(\{s^n_i\}_{i=1}^{n+1} \), and hence it is on some line segment of the form \([s^n_i, s^n_j]\). At this point we stop.

It has already been stated that condition (A) is satisfied for \(M \). Now, let us verify condition (B). To do this, it suffices to prove that, for each isometry \(T : (M_n \cup \{0\}) \to X \) satisfying \(T(0) = 0 \), the image \(T(M_n) \) is contained in the linear span of \(\{Ts^n_1, \ldots, Ts^n_n\} \). This condition looks slightly different from the one in (B). However, defining \(\{\alpha_i\}_{i=1}^\infty \) by \(\alpha_1 = 1 \) and \(\alpha_i e_i = s^n_i \) one can see that in essence the conditions are equivalent because, by Observation 2.2, the images \(\{Ts^n_i\}_{n=i}^\infty \) are multiples of each other.

To show that \(T(M_n) \) is contained in the linear span \(L \) of \(\{Ts^n_1, \ldots, Ts^n_n\} \), the procedure outlined underneath is applied, where in each step Observation 2.2 is used.

- Since \(0, s^n_n, \) and \(s^n_{n+1} \) form a linear tuple, and \(T(0) = 0 \), we have \(T(s^n_{n+1}) \in L \).
- Whenever \(w_n(z) \) is defined, one has \(Tw_n(z) \in L \) because \(w_n(z) \in [s^n_i, s^n_j] \).
- Likewise, for each \(z \) such that \(w_{n-1}(z) \) is defined, one obtains \(Tw_{n-1}(z) \in L \) since \(w_{n-1}(z) \) is in the line segment joining \(w_n(z) \) and one of \(s^n_i \).
- We proceed in a straightforward way till we get \(Tz \in L \).

In addition, it is easy to see that the assumption that \(\text{conv}(\{s^n_i\}_{i=1}^{n+1}) \) is at distance at least \(n \) from the origin together with the fact that each set \(M_n \) is finite and is contained in \(\text{conv}(\{s^n_i\}_{i=1}^{n+1}) \), implies that the set \(\bigcup_{n=1}^\infty M_n \) is locally finite.

Proof of Corollary 1.8. To check that this \(X \) satisfies the conditions of Theorem 1.7 the two well-known facts come in handy:

1. Each finite subset of \(L_p[0,1] \) admits an isometric embedding into \(\ell_p \), see [1].
2. The space \(L_p[0,1] \) contains a subspace isometric to \(\ell_2 \), see [11, p. 16].

Combining (1) and (2) we conclude that all finite subsets of \(\ell_2 \) are isometric to subsets of \(L_p \), and, thence, to subsets of \(X \). On the other hand, it is known that each infinite-dimensional subspace of \(X \) contains a subspace isomorphic to \(\ell_p \) (this can be done using a slight variation of the argument used to prove [14, Proposition 2.a.2]), and as such it is not isomorphic to \(\ell_2 \).

Remark 2.4. The first part of the proof of Theorem 1.7 demonstrates that its statement can be strengthened by replacing the condition “\(\ell_2 \) does not admit an isomorphic embedding into \(X \)” by “there is \(\alpha > 1 \) such that \(X \) does not contain a subspace whose Banach-Mazur distance to \(\ell_2 \) does not exceed \(\alpha \)”. It is known [18] that the latter condition is strictly weaker. In addition, it is not difficult to see that although Joichi did not formally state the pertinent modification of the main result of [12], it arises from the proof.
3 The case of ℓ_1

Proof of Theorem 1.10. Recall [1] that each finite subset of $L_1(-\infty, \infty)$ admits an isometric embedding into ℓ_1. To prove Theorem 1.10 we construct in $L_1(-\infty, \infty)$ a locally finite metric space M such that its isometric embeddability into ℓ_1 would imply that ℓ_1 contains a unit vector x, for every $n \in \mathbb{N}$, can be represented as a sum of 2^n vectors with pairwise disjoint supports and of norm 2^{-n} each. This leads to a contradiction: consider the maximal in absolute value coordinate of the vector x, let it be α. If, for some $n \in \mathbb{N}$, $|\alpha| > 2^{-n}$, it is clearly impossible to partition vector into 2^n vectors of norm 2^{-n} each with pairwise disjoint supports.

The starting point of the construction is the fact that the indicator function $1_{(0,1]}$ has, for each $n \in \mathbb{N}$, a representation as a sum of 2^n pairwise disjoint vectors of norm 2^{-n}. To be specific, we adopt the writing:

- $1_{(0,1]} = d_0 + d_1$, where $d_0 = 1_{(0,\frac{1}{2}], \ell_1} = 1_{(\frac{1}{2},1]}$
- $1_{(0,1]} = d_{00} + d_{01} + d_{10} + d_{11}$, where $d_{00} = 1_{(0,\frac{1}{4]}, d_{01} = 1_{(\frac{1}{4},\frac{1}{2}], d_{10} = 1_{(\frac{1}{2},\frac{3}{4}], d_{11} = 1_{(\frac{3}{4},1]}}$
- We carry on in an obvious way.

In the sequel, the following notation will be employed: let $d = 1_{(0,1]}$ and denote the functions introduced above by d_σ, where σ is a finite string of 0’s and 1’s. Denote by $\ell(\sigma)$ the length of the string σ. For each $\sigma = \{\sigma_i\}_{i=1}^{\ell(\sigma)}$, the subinterval $I(\sigma)$ of $(0,1]$ is defined by:

$$I(\sigma) = \left(\sum_{i=1}^{\ell(\sigma)} \sigma_i 2^{-i}, \sum_{i=1}^{\ell(\sigma)} \sigma_i 2^{-i} + 2^{-\ell(\sigma)} \right).$$

With this notation $d_\sigma = 1_{I(\sigma)}$ and the mentioned above representation of $1_{(0,1]}$ as a sum of 2^n terms can be written as:

$$d = \sum_{\sigma, \ell(\sigma) = n} d_\sigma,$$

where the summands are disjointly supported. Now, denote by \mathcal{T} the set of all finite strings of 0’s and 1’s. It is obvious that $\{d_\sigma\}_{\sigma \in \mathcal{T}}$ is not a locally finite set. Nonetheless, we can add to $\{d_\sigma\}$ pairwise disjoint functions in such a way that a locally finite subset of $L_1(-\infty, \infty)$ will be obtained, and the existence of an isometric embedding of this set into ℓ_1 would imply the existence in ℓ_1 of a vector x with the properties described at the beginning of the proof.

First, opt for an injective map Ψ from the collection of all finite strings of 0’s and 1’s into $\mathbb{Z}\backslash\{0\}$.

Now, we consider the locally finite set M satisfying the conditions: It contains both functions d and 0, and, in addition, it includes all sums $f_\sigma := d_\sigma + \ell(\sigma) \cdot 1_{(\Psi(\sigma),\Psi(\sigma)+1]}$, where $\sigma \in \mathcal{T}$.

7
Since $\ell(\sigma)$ is less than any fixed constant only for finitely many strings σ, this set is a locally finite subset of $L_1(-\infty, \infty)$. It has to be shown that isometric embeddability of this set into ℓ_1 implies the existence in ℓ_1 of a vector x with the properties stated in the first paragraph of the proof, thus resulting in a contradiction.

Indeed, if there is an isometric embedding of M into ℓ_1, then there is an isometric embedding F which maps 0 to 0 and - as it will be proved - in such a case $x = Fd$ is the desired vector. More elaborately put, the existence of such an isometric embedding implies that there exist vectors $\{x_\sigma\}_{\sigma \in T}$ so that, for each $n \in \mathbb{N}$, the vectors $\{x_\sigma\}_{\ell(\sigma)=n}$ are disjointly supported, have norm 2^{-n}, and

$$x = Fd = \sum_{\sigma, \ell(\sigma)=n} x_\sigma.$$

Each element $a = \sum_{i=1}^{\infty} a_i c_i$ of ℓ_1 can be considered as a possibly infinite union of intervals in the coordinate plane which join $(i,0)$ and (i,a_i). The total length of all intervals is equal to $||a||$.

The proposed construction guarantees that if $\ell(\sigma) = n$, then $||f_\sigma - d|| = ||f_\sigma|| + ||d|| - 2 \cdot 2^{-n}$. Since F is an isometry, $F(0) = 0$ and $Fd = x$, this implies $||Ff_\sigma - x|| = ||Ff_\sigma|| + ||x|| - 2 \cdot 2^{-n}$. Consequently, the total length of intersections of the intervals corresponding to x and to Ff_σ is 2^{-n} for $\sigma, n \in \{0,1\}$.

On the other hand, if $\sigma \neq \tau$ and $\ell(\sigma) = \ell(\tau) = n$, the functions f_σ and f_τ are disjointly supported and, therefore, $||f_\sigma - f_\tau|| = ||f_\sigma - 0|| + ||f_\tau - 0||$. As a result, $||Ff_\sigma - Ff_\tau|| = ||Ff_\sigma|| + ||Ff_\tau||$. This means that the intersections of the intervals corresponding to Ff_σ and Ff_τ have total length 0. It does not immediately imply that vectors Ff_σ and Ff_τ are disjointly supported: one can imagine, for example, that Ff_σ contains the interval joining $(i,0)$ and $(i, \frac{1}{4})$ and Ff_τ contains the interval joining $(i,0)$ and $(i, -\frac{1}{4})$.

Let us define the vector x_σ for σ satisfying $\ell(\sigma) = n$ as a vector for which the corresponding intervals are intersections of the intervals corresponding to x and to Ff_σ. The previous paragraphs imply that x_σ and x_τ satisfy $||x_\sigma|| = ||x_\tau|| = 2^{-n}$ and have disjoint supports when $\ell(\sigma) = \ell(\tau) = n$ and $\sigma \neq \tau$ (for the latter we use the fact that the interval corresponding to x at i can have ‘positive’ or ‘negative’ part, but not both).

Finally, let $s = \sum_{\sigma, \ell(\sigma)=n} x_\sigma$. With the preceding arguments, we conclude that $||s|| = 1$ and $|s_i| \leq |x_i|$ for each $i \in \mathbb{N}$. Thus, $s = x$, and the desired decomposition of x is completed. \qed

Acknowledgement

The second-named author gratefully acknowledges the support by National Science Foundation grant NSF DMS-1700176.
References

[1] K. Ball, Isometric embedding in ℓ_p-spaces, *European J. Combin.*, 11 (1990), no. 4, 305–311.

[2] F. Baudier, Metrical characterization of super-reflexivity and linear type of Banach spaces, *Archiv Math.*, 89 (2007), no. 5, 419–429.

[3] F. Baudier, Embeddings of proper metric spaces into Banach spaces, *Houston J. Math.*, 38 (2012), no. 1, 209–223.

[4] F. Baudier, G. Lancien, Embeddings of locally finite metric spaces into Banach spaces, *Proc. Amer. Math. Soc.*, 136 (2008), 1029–1033.

[5] B. Begun, A remark on almost extensions of Lipschitz functions, *Israel J. Math.*, 109 (1999), 151–155.

[6] L. M. Blumenthal, *Theory and applications of distance geometry*, Clarendon Press, Oxford, 1953.

[7] J. Bourgain, Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms, in: *Geometrical aspects of functional analysis* (1985/86), 157–167, *Lecture Notes in Math.*, 1267, Springer, Berlin, 1987.

[8] M. Fréchet, Les dimensions d’un ensemble abstrait, *Math. Ann.*, 68 (1910), no. 2, 145–168.

[9] O. Giladi, A. Naor, G. Schechtman, Bourgain’s discretization theorem, *Annales Mathematiques de la faculte des sciences de Toulouse*, vol. XXI (2012), no. 4, 817–837; (See also a later correction in [arXiv:1110.5368v2](http://arxiv.org/abs/1110.5368v2).)

[10] S. Heinrich, P. Mankiewicz, Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, *Studia Math.*, 73 (1982), no. 3, 225–251.

[11] W. B. Johnson, J. Lindenstrauss, Basic concepts in the geometry of Banach spaces. *Handbook of the geometry of Banach spaces*, Vol. I, 1–84, North-Holland, Amsterdam, 2001.

[12] J. T. Joichi, Normed linear spaces equivalent to inner product spaces. *Proc. Amer. Math. Soc.* 17 (1966) 423–426.

[13] N. J. Kalton, G. Lancien, Best constants for Lipschitz embeddings of metric spaces into c_0, *Fund. Math.*, 199 (2008), 249–272.

[14] J. Lindenstrauss, L. Tzafriri, *Classical Banach spaces. I. Sequence spaces*. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. Springer-Verlag, Berlin-New York, 1977.

[15] N. Linial, Finite metric spaces–combinatorics, geometry and algorithms, in: *Proceedings of the International Congress of Mathematicians*, Vol. III (Beijing, 2002), 573–586, Higher Ed. Press, Beijing, 2002.

[16] J. Matoušek, *Lectures on Discrete Geometry*, Graduate Texts in Mathematics, 212. Springer-Verlag, New York, 2002.
[17] A. Naor, L_1 embeddings of the Heisenberg group and fast estimation of graph isoperimetry, in: Proceedings of the International Congress of Mathematicians, 2010, Hyderabad India, vol. III, 2011, pp. 1549–1575.

[18] E. Odell, Th. Schlumprecht, The distortion problem, Acta Math., 173 (1994), no. 2, 259–281.

[19] S. Ostrovska, M.I. Ostrovskii, Distortion in the finite determination result for embeddings of locally finite metric spaces into Banach spaces, Glasg. Math. J., to appear; arXiv:1510.05974v3.

[20] M.I. Ostrovskii, Coarse embeddings of locally finite metric spaces into Banach spaces without cotype, C. R. Acad. Bulgare Sci., 59 (2006), no. 11, 1113–1116.

[21] M.I. Ostrovskii, Coarse embeddability into Banach spaces, Topology Proc., 33 (2009), 163–183.

[22] M.I. Ostrovskii, Embeddability of locally finite metric spaces into Banach spaces is finitely determined, Proc. Amer. Math. Soc., 140 (2012), 2721–2730.

[23] M.I. Ostrovskii, Metric Embeddings: Bilipschitz and Coarse Embeddings into Banach Spaces, de Gruyter Studies in Mathematics, 49. Walter de Gruyter & Co., Berlin, 2013.

[24] M. Ribe, On uniformly homeomorphic normed spaces, Ark. Mat., 14 (1976), no. 2, 237–244.

[25] D.P. Williamson, D.B. Shmoys, The Design of Approximation Algorithms, Cambridge University Press, 2011.