A note on partial isometries on pseudo-Hilbert spaces

Păstorel Gaspar Loredana Ciurdariu

Abstract

The aim of this paper is to show that two accessible subspaces in the Loynes \mathcal{Z} - space \mathcal{H} are the initial and final space of a partial gramian isometry, respectively if the norm of the difference of the associated gramian selfadjoint projections is strictly less than 1.

1 Introduction

Generalizing the concept of pre-Hilbert or Hilbert space, R.M. Loynes introduced in [5] the VE - spaces or VH - spaces respectively. A VH - space is characterized in [6] by the fact that the inner product takes values in a suitable ordered topological vector (admissible) space \mathcal{Z}, thus being also called Loynes \mathcal{Z} - spaces. Many authors used these spaces in the study of abstract stochastic processes (see [7], [1], [11], [12]). In [11] these spaces are referred to as pseudo-Hilbert spaces. Spectral theory for some classes of operators on such spaces was developed initially by Loynes himself ([5], [6]) and later by the authors in [3], respectively [2] and by A. Gheondea and B. E. Ugurcan in [4].

In what follows \mathcal{H}, \mathcal{K} will denote two pseudo-Hilbert spaces over the same admissible space \mathcal{Z} and $\mathcal{L}(\mathcal{H}, \mathcal{K})$ the space of all linear operators from \mathcal{H} to \mathcal{K}. Recall that an operator $T \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ is bounded, if there exists a constant $M > 0$ such that

$$[Th, Th]_\mathcal{K} \leq M^2[h, h]_\mathcal{H}, \quad h \in \mathcal{H},$$

where $[\cdot, \cdot]_\mathcal{K}$ is the inner product (also referred to as gramian) of the Loynes \mathcal{Z} - space \mathcal{K}, while “≤” means the order in \mathcal{Z}. We shall denote that by

\[1\] AMS Subject Classification: 46C50, 47B37

Keywords: pseudo-Hilbert spaces, partial gramian isometry, gramian selfadjoint projection
\(T \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \). As usually, for \(\mathcal{H} = \mathcal{K} \), we use the notations \(\mathcal{L}(\mathcal{H}) \) and \(\mathcal{B}(\mathcal{H}) \) respectively. Moreover \(\mathcal{B}(\mathcal{H}, \mathcal{K}) \) is a Banach space (algebra if \(\mathcal{H} = \mathcal{K} \)) with the norm defined by

\[
\| T \| = \| T \|_{\mathcal{B}(\mathcal{H}, \mathcal{K})} = \inf \{ M : (\|) \text{ holds } \}.
\]

The operators \(T \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \) for which \(\| T \| \leq 1 \) will be called grammian contractions.

The adjoint \(T^* \) of an operator \(T \in \mathcal{L}(\mathcal{H}, \mathcal{K}) \) and the gramian orthogonal complement \(\mathcal{M}^\perp \) of a subspace \(\mathcal{M} \) of \(\mathcal{H} \) will be defined (if they exist) analogously as in the Hilbert space case, but with respect to the inner products of \(\mathcal{H} \) and \(\mathcal{K} \).

By \(\mathcal{L}^*(\mathcal{H}, \mathcal{K}), \mathcal{B}^*(\mathcal{H}, \mathcal{K}) \) will be denoted the set of all adjointable elements of \(\mathcal{L}(\mathcal{H}, \mathcal{K}) \) and \(\mathcal{B}(\mathcal{H}, \mathcal{K}) \), respectively, whereas \(P_\mathcal{M} \) denotes the gramian selfadjoint projection associated to the complementable (accessible) subspace \(\mathcal{M} \) of \(\mathcal{H} \).

We also remark that \(\mathcal{L}^*(\mathcal{H}, \mathcal{K}) \cap \mathcal{B}(\mathcal{H}, \mathcal{K}) = \mathcal{B}^*(\mathcal{H}, \mathcal{K}) \) and \(\mathcal{B}^*(\mathcal{H}) \) is a \(C^* \)-algebra.

\(T \in \mathcal{L}(\mathcal{H}, \mathcal{K}) \) is called a grammian isometry (grammian co-isometry) if \(T \in \mathcal{B}^*(\mathcal{H}, \mathcal{K}) \) and \(T^*T = I_\mathcal{H} \) (\(TT^* = I_\mathcal{K} \), respectively) and \(T \) is grammian unitary if it is simultaneously a grammian isometry and a grammian co-isometry.

If a grammian contraction \(T \) is adjointable, then \(T^* \) is a grammian contraction too (see [5], [6]). Familiar examples of adjointable contractions are self-adjoint grammian projections and grammian partial isometries, the latter containing two remarkable subclasses: that of grammian isometries and of grammian co-isometries. The latter classes were studied by the first author in [3], where also a geometric proof of the existence of the grammian co-isometric extension of a grammian adjointable contraction is given.

In what follows some definitions and results from [3] are needed.

Definition 1.1. Let \(\mathcal{H} \) and \(\mathcal{K} \) be two Loynes \(\mathbb{Z} \)-spaces. A linear operator \(T \in \mathcal{L}(\mathcal{H}, \mathcal{K}) \) is a partial grammian isometry, if its kernel \(N(T) \) and its range \(\mathcal{R}(T) \) are accessible (i.e. they have grammian orthogonal complements) in \(\mathcal{H} \) and \(\mathcal{K} \), respectively and from \(N(T)^\perp \) to \(\mathcal{R}(T) \) it preserves the grammian (is grammian unitary). The spaces \(\mathcal{M} \) := \(N(T)^\perp \) and \(\mathcal{R}(T) \) are called the initial and the final space of \(T \), respectively. The set of all partial grammian isometries from \(\mathcal{H} \) to \(\mathcal{K} \) will be denoted by \(\mathcal{PI}(\mathcal{H}, \mathcal{K}) \).

It can be easily seen, that \(\mathcal{PI}(\mathcal{H}, \mathcal{K}) \subset \mathcal{B}^*(\mathcal{H}, \mathcal{K}) \). Observe that if \(N(T) = 0 \), then \(T \) is simply a grammian isometry.

Proposition 1.1. If \(T \in \mathcal{PI}(\mathcal{H}, \mathcal{K}) \), then \(T^*T \) and \(TT^* \) are grammian self-adjoint projections for which the following hold:
(i) \(T^*T = P_{M(T)} \);
(ii) \(P_{M(T)} = TT^* \);
(iii) If \(\mathcal{H} = \mathcal{K} \) then \(T \) is a partial isometry in \(B^*(\mathcal{H}) \) as a \(C^* \)-algebra.

Proposition 1.2. For \(T \in \mathcal{L}(\mathcal{H}, \mathcal{K}) \), the following are equivalent:

(i) \(T \in \mathcal{PI}(\mathcal{H}, \mathcal{K}) \);
(ii) \(T \in B^*(\mathcal{H}, \mathcal{K}) \) and \(T^*T \) is a gramian self-adjoint projection on \(\mathcal{H} \);
(iii) \(T \in B^*(\mathcal{H}, \mathcal{K}) \) and \(TT^* \) is a gramian self-adjoint projection on \(\mathcal{K} \);
(iv) \(T \in L^*(\mathcal{H}, \mathcal{K}) \) and \(T^* \in \mathcal{PI}(\mathcal{K}, \mathcal{H}) \).

It is obvious that any gramian isometry or gramian co-isometry is a partial gramian isometry.

2 The result

Focusing on the case \(\mathcal{H} = \mathcal{K} \) and taking \(T \in \mathcal{PI}(\mathcal{H}) \), then the operators \(T^*T \) and \(TT^* \) will be two gramian self-adjoint projections in \(B^*(\mathcal{H}) \). It is thus interesting, as in the case of Hilbert space (see [10, pp. 266,267]), to find a sufficient condition on two gramian self-adjoint projections \(P \) and \(Q \) in order to have their ranges as initial and final space of a certain partial gramian isometry. Indeed the following assertion holds.

Theorem 2.1. If \(P \) and \(Q \) are gramian self-adjoint projections and

\[
\| P - Q \| < 1, \tag{2}
\]

then there exists \(T \in \mathcal{PI}(\mathcal{H}) \) such that \(P = T^*T \) and \(Q = TT^* \).

Proof. Denote \(A = I + P(Q - P)P \). Since \(\| I - A \| = \| P(Q - P)P \| \leq \| P - Q \| < 1 \), by using that \(B^*(\mathcal{H}) \) is a Banach algebra, it results that \(A \) is invertible with a bounded inverse. On the other hand the operator \(A \) is positive. Indeed

\[
[Ah, h] = [h, h] + [P(Q - P)Ph, h] = [h, h] + [QPh, h] - [P^3h, h] \\
= [(I - P)h, h] + [QPh, Ph] \geq 0,
\]

where we used the fact that \(I - P \) and \(Q \) are gramian self-adjoint projections. In this situation, there exists the square root of \(A \), which is also invertible.
The operator $T := QA^{-1/2}P$ satisfies the requirements of the statement. Indeed we have $T^* = PA^{-1/2}Q$ and further on $PT^* = T^* = A^{-1/2}PQ$. Since $PA = AP$, we infer that $PA^{1/2} = A^{1/2}P$ which implies $A^{-1/2}P = PA^{-1/2}$. Further we get $TP = T = QPA^{-1/2}$. Taking into account that $PA = PQP$ we infer

$$T^*T = A^{-1/2}PQQPA^{-1/2} = A^{-1/2}PQPA^{-1/2} = A^{-1/2}PAA^{-1/2} = P.$$

Using Proposition 1.2 we infer that T is a partial gramian isometry and $TT^* = P_{\mathcal{R}(T)}$. But, the calculation of TT^* leads us to the equalities

$$TT^* = QA^{-1/2}PPA^{-1/2}Q = QA^{-1}PQ,$$

which imply $\mathcal{R}(T) = \mathcal{R}(TT^*) \subset \mathcal{R}(Q)$, i.e. $TT^* \leq Q$. Now, let us show that $I - TT^* \leq I - Q$. Let $h \in (I - TT^*)\mathcal{K}$. Then the next implications hold

$$h \in (I - TT^*)\mathcal{K} \Rightarrow h = (I - TT^*)h \Rightarrow TT^*h = 0 \Rightarrow R^*h \in \mathcal{N}(T) \cap \mathcal{R}(T^*) = \{0\} \Rightarrow T^*h = 0 \Rightarrow PA^{-1/2}Qh = 0 \Rightarrow PQh = 0 \Rightarrow (Q - P)Qh = Qh \Rightarrow Qh = 0 \Rightarrow (I - Q)h = h \Rightarrow h \in \mathcal{R}(I - Q).$$

This shows that $\mathcal{R}(I - TT^*) \subset \mathcal{R}(I - Q)$, which indicates that $I - TT^* \leq I - Q$. Hence the equality $TT^* = Q$ holds.

\begin{remark}
Our theorem can be applied in perturbation theory to treat the variation of the spectral measure of gramian selfadjoint operators on pseudo-Hilbert spaces in a limit taking process. For the Hilbert space case see [10] no. 135.
\end{remark}

\begin{remark}
Our theorem states that (2) is a sufficient condition on the two gramian selfadjoint projections P and Q in order to determine the initial and final space of a partial isometry. This condition isn’t however necessary, as the following example shows. For V a gramian (non-unitary) isometry on \mathcal{K} we have that $V^*V - VV^*$, being a gramian selfadjoint projection, has norm equal to 1. It would therefore be interesting to find a weaker condition that would still be sufficient.
\end{remark}

\begin{remark}
Our definition of the partial isometry on the pseudo-Hilbert space \mathcal{K} as well as the statement of our result being given in the C^*- algebra $\mathcal{B}(\mathcal{K})$ let us observe that following [3] or [4] it is possible to define and characterize the notion of a partial isometry in the Banach algebra $\mathcal{B}(\mathcal{K})(\mathcal{S})$.
\end{remark}
It is then naturally to ask if there exist such partial isometries in $\mathcal{B}(\mathcal{H})$ which are not in $\mathcal{B}^*(\mathcal{H})$ and if this would be the case, would an analogue of Theorem 2.1 hold in $\mathcal{B}(\mathcal{H})$?

References

[1] S.A. Chobanyan, A. Weron, *Banach-space-valued stationary processes and their linear prediction*, Dissertationes Math., 125, (1975), 1-45.

[2] L. Ciurdariu, A. Crăciunescu, *On Spectral Representation of Gramian Normal Operators on Pseudo-Hilbert Spaces*, Anal. Univ. de Vest Timişoara, Vol. XLV, (1), 2007, 131-149.

[3] P. Gaspar, *Partial isometries on Loynes spaces*, Anal. Univ. de Vest Timişoara, Vol. XL, (2), 2002, 31-47.

[4] A. Gheondea, B. E. Ugurcan, *On two equivalent dilation theorems in VH - spaces*, Complex Analysis and Operator Theory, vol. 6, (3), 2012, 625-650.

[5] R.M. Loynes, *Linear operators in VH-spaces*, Trans. American Math. Soc., 116, (1965), 167-180.

[6] R.M. Loynes, *On generalized positive definite functions*, Proc. London Math. Soc., 3, (1965), 373-384.

[7] R.M. Loynes, *On a generalization of second-order stationarity*, Proc. London Math. Soc., 3, (1965), 385-398.

[8] M. Mbekhta, *Partial isometries and generalized inverses*, Acta. Sci. Math. (Szeged) 70 (2004), 767-781.

[9] D. Mosić, D. S. Djordjević, *Partial isometries and EP elements in Banach algebras*, preprint, http://operator.pmf.ni.ac.rs/licne_prezentacije/DDjordjevic/publications/Partial-EP-Banach.pdf

[10] F. Riesz, B. Sz.-Nagy, *Leçons d’analyse fonctionnelle*, 4-ème Edition, Gauthier-Villars Paris and Akadémiai Kiadó Budapest, 1965.

[11] A. Weron, S.A. Chobanyan, *Stochastic Processes on pseudo-Hilbert spaces (russian)*, Bull. Acad. Pol., Ser. Math. Phys., tom XX1, 9, (1973), 847-854.
[12] A. Weron, *Prediction theory in Banach spaces*, Proc. of Winter School on Probability, Karpacz, Springer Verlag, London, 1975, 207-228.

Păstorel Gaspar, “Aurel Vlaicu” University, Arad, e-mail: pastogaspar@yahoo.com

Loredana Ciurdariu, “Politehnica” University, Timișoara