Hypothermic oxygenated machine perfusion of the human pancreas for clinical islet isolation: a prospective feasibility study

Jason B. Doppenberg1,*, Marjolein Leemkuil2,*, Marten A. Engelse1, Eelco J. P. de Koning1 & Henri G. D. Leuvenink2

1 Transplantation Center, Leiden University Medical Center, Leiden, the Netherlands
2 Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands

Correspondence
Marjolein Leemkuil, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands.
Tel.: +31 50 361 9801; e-mail: m.leemkuil@umcg.nl

*Both authors contributed equally to this work.

SUMMARY
Due to an increasing scarcity of pancreases with optimal donor characteristics, islet isolation centers utilize pancreases from extended criteria donors, such as from donation after circulatory death (DCD) donors, which are particularly susceptible to prolonged cold ischemia time (CIT). We hypothesized that hypothermic machine perfusion (HMP) can safely increase CIT. Five human DCD pancreases were subjected to 6 h of oxygenated HMP. Perfusion parameters, apoptosis, and edema were measured prior to islet isolation. Five human DBD pancreases were evaluated after static cold storage (SCS). Islet viability, and in vitro and in vivo functionality in diabetic mice were analyzed. Islets were isolated from HMP pancreases after 13.4 h [12.9–14.5] CIT and after 9.2 h [6.5–12.5] CIT from SCS pancreases. Histological analysis of the pancreatic tissue showed that HMP did not induce edema nor apoptosis. Islets maintained >90% viable during culture, and an appropriate in vitro and in vivo function in mice was demonstrated after HMP. The current study design does not permit to demonstrate that oxygenated HMP allows for cold ischemia extension; however, the successful isolation of functional islets from discarded human DCD pancreases after performing 6 h of oxygenated HMP indicates that oxygenated HMP may be a useful technology for better preservation of pancreases.

Key words
donation after circulatory death, hypothermic machine perfusion, islet isolation

Introduction
Allogeneic transplantation of pancreatic islets is an effective treatment for a selected group of patients with long-standing type 1 diabetes mellitus. Using modern immunosuppression regimes, improved glycemic control can be achieved in most transplanted patients [1,2]. In the Eurotransplant region, pancreases are preferentially offered for vascularized pancreas transplantation, leaving pancreases with less favorable donor characteristics for islet isolation [3]. This has led to greater numbers of pancreases accepted for isolation from extended criteria donors (ECDs) such as donation after circulatory death donors (DCDs) [4]. In fact, in the Netherlands DCD procedures accounted for 34% of all multi-organ donation procedures in 2010, which increased to 59% in 2019 [5]. There are perceived added risks for the utilization of DCD organs as DCD kidneys and livers have been shown to be more susceptible to the harmful effects of warm and cold ischemia.
islets are lost because of exposure to multiple physio-
chemical stress factors [16,17]. One possibility to extend
the CIT without sacrificing quality is to decrease injury
during preservation [18]. Hypothermic machine perfu-
sion (HMP) has been proposed as an alternative strat-

ey to fulfill this role. HMP is shown to decrease
delayed graft function (DGF) after kidney transplanta-
tion and to improve the quality of higher risk livers
prior to transplantation [19–23]. Recently, it was
reported that adequate preservation of pancreatic tissue
could be achieved by oxygenated HMP [24,25], but an
extensive examination of the effects of oxygenated HMP
in human islet isolation and during the subsequent days
in culture is still lacking. We hypothesized that we can
safely extend CIT of human DCD pancreases by per-
forming 6 h of oxygenated HMP.

Methods

Donor selection

Ten human donor pancreases procured from multi-
organ donors in the Netherlands were included in this
study. For this study, a statement of no objection was
given by the Medical Ethical Committee of the Univer-
sity Medical Center Groningen (METc2012-438). The
clinical and research activities were in line with the
principles of the Declaration of Istanbul as outlined in
the “Declaration of Istanbul on Organ Trafficking and
Transplant Tourism.” To study the effect of oxy-
genated HMP on the islets of marginal donor pan-
creases, five discarded DCD organs were included.
After 6 h of oxygenated HMP, islets were isolated, and
after 3–4 days of culture, islets were tested for viability
and functionality, both in vitro and in vivo. Also, five
discarded DBD pancreases preserved by static cold
storage (SCS) were studied. Table 1 summarizes donor
demographics.

Organ procurement and transport

The pancreases were procured by the regional multi-
organ recovery teams according to the no-touch tech-
nique as described earlier [26]. Initially, all pancreases
were flushed and stored by SCS in the University of Wis-
consin Cold Storage Solution (UWS; Bridge to Life, Lon-
don, UK). The DCD pancreases were transported under
hypothermic conditions in UWS to the machine perfu-
sion facility at the University Medical Center Groningen
(UMCG) to prepare for perfusion. Oxygenated HMP was
performed during transport to the islet isolation facility
at the Leiden University Medical Center (LUMC). DBD
pancreases were directly transported (SCS) to the islet
isolation facility at the LUMC. CIT was calculated as
time from the start of aortic cold flush in the donor to the ini-
tiation of ductal enzymatic perfusion in the pancreas,
therefore including oxygenated HMP.

Oxygenated hypothermic machine perfusion

Upon arrival at the UMCG, the pancreases were pre-
pared to be connected to the transportable pressure-

| Table 1. Donor characteristics of pancreases from the SCS and HMP groups |
|---|---|---|
| Donor variable | HMP | SCS |
| DCD/DBD | 5/0 | 0/5 |
| Cause of death | Postanoxia 3/5 | SAB 4/5 |
| iCVA 1/5 | Trauma capit 1/5 |
| Euthanasia 1/5 | |
| Cardiac arrest | 4/5 | 1/5 |
| Duration cardiac arrest | 18 min [14–30] | 20 min |
| Age (years) | 50 [33.5–54.5] | 64 [47–68] |
| Sex (M/F) | 4/1 | 2/3 |
| Weight (kg) | 83 [67–95] | 82 [57.5–89.5] |
| Height (cm) | 185 [180–187.5] | 169 [162.5–176] |
| BMI (kg/m²) | 23 [19.5–29] | 28 [20.5–30.5] |
| Donor amylase (UI) | 46.5 [27.3–89] | 77 [44.8–128] |
| fWIT (min) | 26 [24.5–30.5] | - |
| CIT (hours) | 13.4 [12.9–14.5] | 9.2 [6.5–12.5] |
| Pancreas mass (grams) | 96 [76–121.5] | 103 [81.5–127] |

Donor demographics for islet isolations after HMP group (n = 5) and after SCS group (n = 5). Variables are described as median and interquartile range.

BMI, body mass index; CIT, cold ischemia time (start of aortic preservation solution flush until start enzymatic perfusion); DBD, donation after brain death; DCD, donation after circu-
laratory death; fWIT, functional warm ischemia time (O₂ satu-
ratation <80% or MAP <50 mmHg until cardiac arrest, minutes); HMP, hypothermic machine perfusion; iCVA, ischemic cerebrovascular accident; SAB, subarachnoid bleed-
ing; SCS, static cold storage.
controlled dual perfusion device (Fig. 1) as described earlier [24]. In short, a splenectomy was performed, the gastroduodenal artery was ligated and the superior mesenteric artery and the splenic artery were cannulated for separate perfusion at 25 mmHg. The portal vein was left open to ensure passive drainage of perfusion fluid back into the reservoir. One liter of University of Wisconsin Machine Perfusion Solution (UW-MPS; Bridge to Life, London, UK) was used, which was oxygenated by delivery of 100% O₂ through the hollow fiber oxygenators with a fixed flow of 100 ml/min. The pancreas was placed in a plastic netted organ holder inside an insulated box surrounded by melting ice. Ambient temperature was maintained between 4°C and 7°C during the entire transport.

Markers of edema and apoptosis

Upon arrival at the isolation facility, independent investigators examined HMP and SCS pancreases for visible macroscopic edema. Tissue samples (ventral head and tail) were taken from the HMP pancreases just before the start of HMP and from both HMP and SCS group shortly before islet isolation, using a 12G needle biopsy (Bio-feather; Medax, San Possidonio, Italy). The samples were fixed in 4% paraformaldehyde, subsequently embedded in paraffin, and cut into sections of 4 µm. Light microscopy of hematoxylin and eosin (H&E)-stained sections were performed to evaluate changes in morphology. Edema was quantified using a custom-made logarithm in Image-Pro Premier 9.1 (Media Cybernetics, Silver Springs, MD), segmenting interstitial tissue area compared with total area. Immunofluorescent staining of insulin (Santa Cruz, Heidelberg, Germany; Rabbit, 1:100) and caspase-3 (Cell Signaling, Leiden, the Netherlands; Asp175, Rabbit, 1:100) was performed to identify islets and evaluate the extent of apoptosis in the islets. For each slide, the percentage of cells in an islet staining positive was graded in a semi-quantitative scale: grade 0 (no caspase-3 staining), grade 1 (<50% of an islet stained positive for caspase-3), and grade 2 (≥50% of the islet stained positive for caspase-3). The H-score of each slide was calculated using the following formula: [1x (% cells grade 0) + 2x (% cells grade 1) + 3x (% cells grade 3)].

Islet isolations

Pancreatic islet isolations were performed at the LUMC using an adapted version of the semi-automated method as described earlier [10]. Isolation protocols for both HMP- and SCS-preserved pancreases were identical. The percentage of digested tissue was calculated by the mass of the pancreas after peri-pancreas tissue dissection (pancreas mass) minus the tissue mass remaining in the Ricordi chamber after digestion, divided by the pancreas mass. Embedded and nonembedded islets were counted from images taken from samples (>20 islets) of each fraction after purification. When ≥50% of the perimeter of an islet was surrounded by exocrine tissue, it was considered embedded. The fraction of embedded islets was then multiplied by the IEQ of that

Figure 1 Transportable dual arterial oxygenated hypothermic machine perfusion device. The perfusion system consists of two separate centrifugal pumps (1), two hollow fiber oxygenators (2), perfusion pressure, flow and temperature sensors (3), an organ holder (4) in an insulated container filled with melting ice (5).
fraction and divided by the total IEQ of the isolation and was added to all other fractions to achieve the percentage of embedded islets. A second, blinded investigator confirmed the results.

Islet culture

Isolated islets were cultured in fractions based on purity and amount of embedding, using CMRL 1066 (Mediatech, Herndon, VA, USA), supplemented with 10% human serum, 10 mM HEPES, 2 mM L-glutamine, 50 µg/ml gentamycin, 0.25 µg/ml fungizone (GIBCO BRL), and 20 µg/ml ciprofloxacin (Bayer Healthcare AG, Leverkusen, Germany) in platelet culture bags (Terumo BCT Accessory Platelet Bag 70300; Lakewood, CO, USA) at 37°C in 5% CO₂. Islet yield (in islet equivalents, IEQ) [27] was determined after isolation (day 0), after the first medium change one day after isolation (day 1), and after the second medium change three days after isolation (day 3).

Glucose-stimulated insulin secretion test

In vitro functionality of isolated islets (in duplo of ±20 islets) was tested after one day of culture via a dynamic glucose-stimulated insulin secretion (GSIS) test using a Brandel Suprafusion 1000 System (Brandel, Gaithersburg, USA), as previously described [27]. The insulin concentration at each time point was then divided by the average insulin concentration (Human Insulin ELISA Kit 10-1113-01; Mercodia AB, Uppsala, Sweden) of the last three insulin concentrations during the second low-glucose phase. This stimulation index per time point was averaged for HMP and SCS pancreases. To calculate the area under the curve of the stimulation indices, the stimulation index curves were integrated over time.

Islet viability

Islets preparations were assessed for viability on day 0, day 1, and day 3 using a fluorescein diacetate–propidium iodide (FDA-PI) staining. Briefly, an aliquot of approximately 50 islets was obtained from the purest fraction and washed in 15 ml Ringer’s acetate solution (B. Braun, Melsungen, Germany). FDA (0.67 µg/l) and PI (4 µg/l) were added simultaneously and incubated at room temperature for 30 min under dark conditions. Using a fluorescent microscope, the percentage of living cells (FDA-positive) to dead cells (PI-positive) in each islet was determined. Using a grading system, the viability of the preparation was quantified [28].

Islet transplantation in diabetic mice

Diabetes was induced by intraperitoneal injection of streptozotocin (220 mg/kg) in 6- to 8-week-old male immunodeficient (NOD.CB17-Prkdc<scid>/J, NOD-SCID) mice (Charles River, L’arbrele, France). Weight and blood glucose measurements (from tail vein blood) were taken three times a week, and mice were considered diabetic after two consecutive measurements >20 mmol/l glucose. On day 3 after islet isolation, a pellet of 3000 IEQ of the purest fraction was obtained and washed in CMRL 1066 without additives. One to four mice per isolation were anesthetized with 5% isoflurane (maintenance 2% isoflurane). Buprenorphine (0.1 mg/kg) was given as analgesia. A small incision was made in the renal capsule where the islet pellet was implanted. At day 28 post-transplantation, a nephrectomy of the kidney containing the transplant was performed and two additional blood glucose measurements were taken in the following three days to monitor a return to hyperglycemia.

In vivo functionality

At 28 days post-transplant, all mice underwent an intraperitoneal glucose tolerance test. After 4 h of fasting, two grams of glucose (dissolved in phosphate-buffered saline) per kilogram body weight was injected into the peritoneum. Blood samples were taken from the tail vein at 0, 15, 30, 60, and 120 min after glucose administration for the measurement of glucose and insulin concentrations. Plasma insulin concentration was determined analogously to the GSIS measurements (Human Insulin ELISA Kit 10-1113-01; Mercodia AB, Uppsala, Sweden).

Statistical analysis

Continuous variables are presented as median and interquartile range (IQR), unless otherwise specified. Wilcoxon signed-rank tests were performed to compare related samples. IBM SPSS Statistics version 23 for Windows was used in analyses regarding perfusion flow and apoptosis, and GraphPad Prism 8.1.1 (La Jolla, CA, USA) was used in all analyses regarding donor characteristics, pancreas graft edema, and islet isolation.

Results

Donor characteristics

Three out of five DCD donors suffered from postanoxic encephalopathy, one from an ischemic cerebrovascular
accident, and one died after euthanasia. Four out of five DCD donors experienced cardiac arrest with resuscitation with a median time of 18 min [14–30]. Donors in the HMP group were 185 cm [180–187.5] and that in the SCS group were 169 cm [162.5–176]. Pancreases in the HMP group were preserved for 13.4 h [12.9–14.5] (including 6 h of oxygenated HMP), and in the SCS group, pancreases were stored for 9.2 h [6.5–12.5] prior to isolation. Donor characteristics are shown in Table 1.

Machine perfusion

Pancreases were connected to the machine perfusion device by two investigators directly after arrival at the UMCG. Median SCS time before the start of oxygenated HMP was 356 min [296–437]. In the first 30 min, flow in the SA and in the SMA increased, after which it stabilized to 31 ml/min [26–38] and 37 ml/min [20–44] in the SA and SMA, respectively, $P < 0.05$ (Fig. 2).

Histology

Macroscopically, none of the pancreases were considered to be edematous, postprocurement, and during and after HMP or SCS. Figure 3 shows a representative example of an oxygenated HMP pancreas prior to isolation. The change in percentage of interstitial space (either post-HMP—postprocurement or post-SCS—postprocurement) reflecting microscopic edema did not change significantly (an increase of 0.45 ± 3.49% after oxygenated HMP and a decrease of 2.4 ± 4.93% after SCS, Fig. 4). The percentage of caspase-3-positive islets was described using H-scores, as a measure of amount and intensity of caspase-3 staining per slide. In the HMP group, no significant difference was observed before and after 6 h of oxygenated HMP. The H-scores were 19 (11–85) and 32 (12–40) before and after HMP, respectively ($P = 0.128$). The H-score in the SCS group before islet isolation was 26 (33–69).

Islet isolation

Pancreatic islets were isolated from HMP pancreases without any necessity to adjust the isolation in
technique. 91% [85.5–99%] of the initial pancreas mass was digested for HMP pancreases and 82% [74–92.5%] for SCS pancreases (Fig. 5a). After density gradient separation, the highest purity (of the 12 fractions) in the HMP was 85% [77.5–92.8%] and 85% [80–92.5%] for SCS pancreases (Fig. 5b). The average purity of the fractions that were considered suitable for culture (≥25% purity) was 52% [45–59%] for HMP pancreases and 57% [48–59.5%] for SCS pancreases (Fig. 5c). The proportion of embedded islets that were cultured from HMP pancreases was 27.3% [19.5–58.3%] and 36.6% [13.5–49.9%] from SCS pancreases (Fig. 5d).

After isolation, HMP pancreases yielded 378 261 [217 392–526 359] IEQ. The observed IEQ decrease during culture for HMP islets was 36%/C6 52% from day 0 to day 3. The SCS pancreases yielded 254 891 [146 739–595 652] IEQ. This yield declined by 40 ± 63% after 3 days of culture (Fig. 6).

Viability of islets

Islet viability was analyzed directly after isolation, after the first culture medium change (one day of culture later, day 1), and after the second medium change (three days after isolation, day 3). On day 0, HMP islets were 94% [79.7–97.5%] viable at day 0, 97.9% [93.7–98.6%] at day 1, and 93.9% [82–98.4%] at day 3. SCS islets were 92.8% [90.8–93%] viable at day 0, 93.4% [86.9–97.3%] at day 1, and 92% [80.2–99.6%] at day 3 (Fig. 7).

In vitro functionality

In vitro functionality of isolated islets from pancreases after 6 h of oxygenated HMP- and SCS-preserved pancreases was assessed by a dynamic glucose-stimulated insulin secretion (dGSIS) test after the first medium change.
change, one day after isolation (Fig. 8). There was a biphasic insulin release response to glucose in both groups. The peak stimulation index for HMP islets was 3.8 with an AUC fold increase in insulin of 288 ± 44.3. For SCS islets, the peak stimulation index was 3.3 with an AUC fold increase in insulin of 259 ± 34.3.

In vivo functionality

In vivo functionality of the HMP islets was assessed by transplantation of isolated islets under the kidney capsule of diabetic mice. At day 28 post-transplantation, the AUC fold increase in insulin during the intraperitoneal glucose tolerance test (IPGTT) in mice receiving HMP islets was 167 ± 28 and SCS islets was 198 ± 45 (Fig. 9a). There was also a concomitant rise in glucose concentration (Fig. 9b, AUC blood glucose of HMP islets: 1118 ± 337; AUC blood glucose of SCS islets: 1276 ± 149).

Discussion

This study describes the successful preservation of human DCD pancreases using hypothermic machine perfusion. This report shows the feasibility to isolate a clinically relevant number of viable islets from discarded human DCD pancreases after oxygenated HMP, thereby prolonging the cold ischemia time. Based on the donor characteristics, these pancreases would generally be rejected for clinical islet isolation. However, after HMP, we were able to isolate an adequate number of viable, functional islets and demonstrate proper in vitro and in vivo functionality.

There are many factors contributing to outcome after isolation and graft function after transplantation: donor characteristics, procurement, preservation, islet isolation protocol, culture, transplantation, and engraftment [17,29]. Pancreatic islet β-cells are known to be highly susceptible to oxidative stress, because of their reduced levels of endogenous antioxidants [16], which can eventually, after a period of extreme stress, lead to the production of reactive oxygen species. Evidence suggests that the oxidative stress during pancreas procurement and the isolation procedure can lead to chronic impaired islet function after transplantation [16]. The current standard preservation method for
donor pancreases after multi-organ donation is SCS, whether intended for whole organ transplantation or islet isolation [30]. Although simple and affordable, extended SCS time inevitably leads to the accumulation of intracellular toxins and ATP depletion, because of residual metabolic activity in the absence of oxygen [31]. The CIT a pancreas is subjected to is generally a consequence of the location of the donor hospital in relation to the recipient hospital combined with logistic hurdles of an islet isolation center. Data from several studies show CIT to be an independent variable that decreases islet yield and/or function (as a continuous variable, or in arbitrary cutoff values of 7, 8, 12, or 16 h CIT) [32–39]. In our center, we have found a correlation between prolonged CIT and a lower islet yield in 126 DCD islet isolations [10]. In the current study, CIT was extended by 6 h in the oxygenated HMP-preserved pancreases.

In the Netherlands, an increased number of organ donors are derived from more marginal donors including DCD donors [5]. Research has indicated that organs procured from DCD donors are especially susceptible to detrimental cold ischemia effects [40]. This cold ischemic insult combined with the inherent injury resulting from the agonal phase after withdrawal of life support and a period of warm ischemia prevalent in DCD procedures results in a reduced capacity to deal with this accumulation of stress factors compared with DBD organs [41,42]. In three small studies concerning islet isolation from DCD donors, no significant differences in islet yield obtained from DCD compared with DBD pancreases were reported [43–45]. However, two more recent studies reported a reduction of up to 100 000 IEQ from DCD pancreases compared with DBD pancreases [10,11], and another study reporting a 30% lower yield for DCD pancreases when calculated as beta-cell number [46].

Recent studies reported that hypothermic machine perfusion (HMP) is beneficial for the preservation of DCD kidneys and livers [19–22]. In an earlier study performed by our group, 6 h of oxygenated HMP using a custom-made, transportable, dual arterial perfusion system with perfusion pressure of 25 mmHg was technically feasible and safe [24]. The usage of a dual perfusion system with two centrifugal pumps enables the separate perfusion of both the splenic and superior mesenteric arteries. In this way, flow in both systems was continuously monitored and potential perfusion problems could be traced and treated if needed, which earlier ensured uniform perfusion of the pancreatic tissue. The addition of oxygen to the perfusion system led to significantly increased ATP concentrations in the tissue; we reported a 6.8-fold ATP increase in DCD pancreases and a 2.6-fold increase in DBD pancreases after 6 h of oxygenated HMP [24].

In this report, we studied whether the effects of oxygenated HMP persist in pancreatic islets several days after isolation, during culturing, and after xenotransplantation in diabetic mice. Perfusion flow was stable during the 6-h period of oxygenated HMP without visible macroscopic or microscopic edema formation. Furthermore, oxygenated HMP did not lead to increased apoptosis levels as indicated by caspase-3 staining. Other systems using low perfusion pressures have documented similar findings of low edema and injury markers in experimental HMP of pancreases that were not
transplanted or used for islet isolation [47,48]. A recent study on HMP of porcine pancreases showed moderate and severe edema after 12 and 24 h of HMP, respectively. Histological examination showed similar results up to 12 h of preservation when compared to SCS [25]. In a study regarding the effect of 24 h of HMP on isolated porcine islets, it was speculated that edema induced by HMP aided the enzymatic digestion during isolation [49]. In our hands, enzymatic digestion of perfused pancreatic tissue was as efficient as static-preserved organs. Also, HMP did not appear to improve the separation of islets from surrounding exocrine tissue, as evidenced by a similar prevalence of embedded islets. Other factors, such as donor age and enzyme perfusion technique, may play a larger role in that respect. It has long been a goal of organ preservation, in all its forms, to inhibit edema formation because of its deleterious effects [50], so the ability to isolate islets in a normal fashion without the inherent risks associated with edema should be seen as advantageous. We observed similar yield, maximum purity, and average purity between HMP and SCS islets. The similar results in islet yield between our groups, despite extended CIT, indicate that HMP can inhibit the deleterious effects of CIT once perfusion has started. *In vitro* functionality tests showed a biphasic insulin response to glucose by the HMP islets. Graft function after transplantation in diabetic mice remained adequate (blood glucose levels <10 mmol/L) for 55% of the mice during the study. IPGTT at day 28 showed a normal glucose peak at 15 min and an insulin peak at 30 min. After transplantation, all mice reverted to hyperglycemia. These xenotransplantation results support the data from *in vitro* analyses and suggest that HMP-preserved DCD islets function properly after recovery in culture.

The present study does have potential limitations. Islet isolations were performed at a single center. Also, because of limited access to discarded donor pancreases, only five HMP (DCD) and five SCS (DBD) pancreases could be included in this study. The inclusion of a second SCS group consisting of DCD pancreases could have controlled for differences in cold ischemic injury between DCD and DBD pancreases. Despite this shortcoming, we postulate that referencing our HMP results to theoretically superior DBD donors can provide insight into the effectiveness of HMP. In order to definitively demonstrate the superiority of oxygenated HMP, a randomized controlled trial comparing clinical SCS DCD pancreases to HMP DCD pancreases should be performed.

Besides studying the biological benefit of HMP to islet isolations, this study was also initiated to investigate the feasibility of postprocurement pancreas perfusion in a clinical setting. While results presented indicate that HMP can safely extend CIT without sacrificing islet yield, function, or viability, the methodology in using the transportable dual arterial oxygenated hypothermic machine perfusion system used in this study is challenging (a period of SCS during transportation to the HMP center, followed by a period of HMP during transportation to the islet isolation facility). This complex undertaking should be optimized and ideally be centralized in dedicated perfusion centers before it is more widely applied. Different approaches are hypothetically possible, direct start of HMP after procurement at the donor center (which is currently performed for all kidneys in the Netherlands) [51]: short (2–6 h) end-ischemic HMP after SCS in the recipient hospital, or extended (6–12 h) end-ischemic HMP in order to postpone the isolation procedure for logistical reasons. The protocol used in this study could theoretically be implemented in all three approaches, but is most likely best applicable in the latter two, because of the surgical complexity and time-consuming nature of connecting the pancreas to the device. Furthermore, HMP may be combined with other machine perfusion techniques during which viability or functionality of ECD pancreases can be tested such as normothermic regional perfusion or end-ischemic normothermic machine perfusion. Normothermic regional perfusion may be performed for the sake of other abdominal organs, and islets have been isolated from pancreases after these procedures although the success of which has not been well-documented so far [52]. Normothermic machine perfusion (NMP) could be performed after HMP for (islet) viability and functionality testing prior to isolation. However, only a single report of NMP of the pancreas has been documented. Unfortunately, although the endocrine function was maintained during a short period of NMP, the perfusion itself may have conferred additional necrotic damage to the pancreases [53].

Conclusion

This study demonstrates that we were able to successfully isolate functional islets from discarded human DCD pancreases after performing 6 h of oxygenated HMP that increased the cold ischemia time.

Authorship

JD, ML, and ME participated in research design, performance of the research, data analysis, and writing of the
REFERENCES

1. Shapiro AM, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol 2017; 13: 268.
2. Nijhoff MF, Engelse MA, Dubbeld J, et al. Glycemic stability through islet-after-kidney transplantation using an alemtuzumab-based induction regimen and long-term triple-maintenance immunosuppression. Am J Transplant 2016; 16: 246.
3. Eurotransplant chapter 7: ET pancreas allocation system (EPAS). Updated 2019.
4. Proneth A, Schnitzbauer AA, Schenker P, et al. Extended pancreas donor program—the EXPAND study: a prospective multicenter trial testing the use of pancreas donors older than 50 years. Transplantation 2018; 102: 1330.
5. WWW.eurotransplant.org/statistics. Accessed May 6, 2020.
6. Jochmans I, Akhtar MZ, Nasralla D, et al. Past, present, and future of dynamic kidney and liver preservation and resuscitation. Am J Transplant 2016; 16: 2545.
7. Snoeij MG, Winkens B, Heemskerk MB, et al. Kidney transplantation from donors after cardiac death: a 25-year experience. Transplantation 2010; 90: 1106.
8. Bellingham JM, Santhanakrishnan C, Neidlinger N, et al. Donation after cardiac death: a 29-year experience. Surgery 2011; 150: 692.
9. Jay C, Ladner D, Wang E, et al. A comprehensive risk assessment of mortality following donation after cardiac death liver transplant – an analysis of the national registry. J Hepatol 2011; 55: 808.
10. Doppenberg JB, Nijhoff MF, Engelse MA, de Koning EJP. Clinical use of donation after circulatory death pancreas for islet transplantation. Am J Transplant 2021. https://doi.org/10.1111/ajt.16533.
11. Ito T, Kenmochi T, Kurihara K, et al. The effects of using pancreases obtained from brain-dead donors for clinical islet transplantation in Japan. J Clin Med 2019; 8: 1430.
12. Humar A, Ramcharan T, Kandaswamy R, Gruesner RW, Gruesner AC, Sutherland DE. Technical failures after pancreas transplants: Why grafts fail and the risk factors—a multivariate analysis. Transplantation 2004; 78: 1188.
13. Keck T, Werner J, Schneider L, Gebhard MM, Klar E. Characterization of ischemia/reperfusion injury after pancreas transplantation and reduction by application of monoclonal antibodies against ICAM-1 in the rat. Surgery 2003; 134: 63.
14. Barlow AD, Hosgood SA, Nicholson ML. Current state of pancreas preservation and implications for DCD pancreas transplantation. Transplantation 2013; 95: 1419.
15. Miñambres E, Suberviola B, Domínguez-Gil B, et al. Improving the outcomes of organs obtained from controlled donation after circulatory death donors using abdominal normothermic regional perfusion. Am J Transplant 2017; 17: 2165.
16. Bottino R, Balamurugan AN, Tse H, et al. Response of human islets to isola- tion stress and the effect of anti-oxidant treatment. Diabetes 2004; 53: 2559.
17. Iwanaga Y, Sutherland DE, Harmon JV, Papas KK. Pancreas preservation for pancreas and islet transplantation. Curr Opin Organ Transplant 2008; 13: 445.
18. O’Neill S, Srinivasa S, Callaghan CJ, et al. Novel organ perfusion and preservation strategies in transplantation – where are we going in the UK? Transplantation 2020; 104: 1813.
19. Moers G, Smits JM, Maathuis MH, et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med 2009; 360: 7.
20. Tingle SJ, Figuereido RS, Moir JA, Goodfellow M, Talbot D, Wilson CH. Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev 2019;3:CD011671.
21. van Rijn R, Karimian N, Matton APM, et al. Dual hypothermic oxygenated machine perfusion in liver transplants donated after circulatory death. Br J Surg 2017; 104: 907.
22. Schlegel A, Kron P, Dutkowski P. Hypothermic machine perfusion in liver transplantation. Curr Opin Organ Transplant 2016; 21: 308.
23. Jochmans I, Brat A, Davies L, et al. Oxygenated versus standard cold perfusion preservation in kidney transplantation (COMPARE): a randomised, double-blind, paired, phase 3 trial. Lancet 2020; 396: 1653.
24. Leemkuil M, Lier G, Engelse MA, et al. Hypothermic oxygenated machine perfusion of the human donor pancreas. Transplant Direct 2018; 4: e388.
25. Prudhomme T, Kervella D, Ogbemudia AE, et al. Successful pancreas allotransplantations after hypothermic machine perfusion in a novel diabetic porcine model: a controlled study. Transpl Int 2021; 34: 353.
26. Baranski A. Pancreas procurement. In: Surgical Technique of Abdominal Organ Procurement. First ed. London: Springer-Verlag, 2009, 149–155. https://doi.org/10.1007/978-1-84800-251-7.
27. Goto M, Eich TM, Feldlin M, et al. Refinement of the automated method for human islet isolation and presentation of a closed system for in vitro islet culture. Transplantation 2004; 78: 1367.
28. London NJ, Contractor H, Lake SP, Aucott GC, Bell PR, James RF. A microfluorometric viability assay for isolated human and rat islets of langerhans. Diabetes Res 1989; 12: 141.
29. Shintaku H, Okitsu T, Kawano S, et al. Effects of fluid dynamic stress on fracturing of cell-aggregated tissue during purification for islets of langerhans transplantation. J Phys D Appl Phys 2008; 41: 15507.
30. Dholakia S, Royston E, Sharpses EJ, Sankaran V, Ploeg RI, Friend PJ.
Preserving and perfusing the allograft pancreas: past, present, and future. Transplant Rev (Orlando). 2018; 32: 127.
31. Kuan KG, Wee MN, Chung WY, et al. Extracorporeal machine perfusion of the pancreas: technical aspects and its clinical implications—a systematic review of experimental models. Transplant Rev (Orlando). 2016; 30: 31.
32. Balamurugan AN, Naziruddin B, Lockridge A, et al. Islet product characteristics and factors related to successful human islet transplantation from the collaborative islet transplant registry (CITR) 1999–2010. Am J Transplant 2014; 14: 2595.
33. Kaddis JS, Danobeitia JS, Niland JC, Stiller T, Fernandez LA. Multicenter analysis of novel and established variables associated with successful human islet isolation outcomes. Am J Transplant 2010; 10: 646.
34. Hilling DE, Bouwman E, Terpstra OT, Marang-van de Mheen PJ. Effects of donor-, pancreas-, and isolation-related variables on human islet isolation outcome: A systematic review. Cell Transplant 2014; 23: 921.
35. Lakey JR, Burridge PW, Shapiro AM. Technical aspects of islet preparation and transplantation. Transpl Int 2003; 16: 613.
36. Lehmann R, Zuellig RA, Kugelmeier P, et al. Superiority of small islets in human islet transplantation. Diabetes 2007; 56: 594.
37. Warnock GL, Meloche RM, Thompson D, et al. Improved human pancreatic islet isolation for a prospective cohort study of islet transplantation vs best medical therapy in type 1 diabetes mellitus. Arch Surg 2005; 140: 735.
38. Wassmer CH, Perrier Q, Combescure C, et al. Impact of ischemia time on islet isolation success and posttransplantation outcomes: A retrospective study of 452 pancreas isolations. Am J Transplant 2021; 21: 1493.
39. Caballero-Corbalán J, Brandhorst H, Malm H, et al. Using HTK for prolonged pancreas preservation prior to human islet isolation. J Surg Res 2012; 175: 163.
40. Summers DM, Watson CJ, Pettigrew GJ, et al. Kidney donation after circulatory death (DCD): state of the art. Kidney Int 2015; 88: 241.
41. Peters-Sengers H, Houtzager JHE, Heemskerk MBA, et al. DCD donor hemodynamics as predictor of outcome after kidney transplantation. Am J Transplant 2018; 18: 1966.
42. Berney T, Boffa C, Augustine T, et al. Utilization of organs from donors after circulatory death for vascularized pancreas and islet of langerhans transplantation: recommendations from an expert group. Transpl Int 2016; 29: 798.
43. Andres A, Kin T, O’Gorman D, et al. Clinical islet isolation and transplantation outcomes with deceased cardiac death donors are similar to neurological determination of death donors. Transpl Int 2016; 29: 34.
44. Clayton HA, Swift SM, Turner JM, James RF, Bell PR. Non-heart-beating organ donors: a potential source of islets for transplantation? Transplantation 2000; 69: 2094.
45. Markmann JF, Deng S, Desai NM, et al. The use of non-heart-beating donors for isolated pancreatic islet transplantation. Transplantation 2003; 75: 1423.
46. De Paep DL, Van Hulle F, Ling Z, et al. Lower beta cell yield from donor pancreases after controlled circulatory death prevented by shortening acirculatory warm ischemia time and by using IGL-1 cold preservation solution. PLoS One 2021; 16: e0251055.
47. Branchereau J, Renaudin K, Kervella D, et al. Hypothermic pulsatile perfusion of human pancreas: preliminary technical feasibility study based on histology. Cryobiology 2018; 85: 56.
48. Hamaoui K, Gowers S, Sandhu B, et al. Development of pancreatic machine perfusion: translational steps from porcine to human models. J Surg Res 2018; 223: 263.
49. Taylor MJ, Baicu S, Leman B, Greene E, Vazquez A, Grassil J. Twenty-four hour hypothermic machine perfusion preservation of porcine pancreas facilitates processing for islet isolation. Transplant Proc 2008; 40: 480.
50. Ridgway D, Manas D, Shaw J, White S. Preservation of the donor pancreas for whole pancreas and islet transplantation. Clin Transplant 2010; 24: 1.
51. Rijkse E, Ijzermans JNM, Minnee RC. Machine perfusion in abdominal organ transplantation: current use in the Netherlands. World J Transplant 2020; 10: 15.
52. Oniscu GC, Randle LV, Muiesan P, et al. In situ normothermic regional perfusion for controlled donation after circulatory death—the united kingdom experience. Am J Transplant 2014; 14: 2846.
53. Barlow AD, Hamed MO, Mallon DH, et al. Use of ex vivo normothermic perfusion for quality assessment of discarded human donor pancreases. Am J Transplant 2015; 15: 2475.