The first 10 years’ experience in radical retropubic prostatectomy: complications, lower urinary tract symptoms, and quality of life – a single-center experience

Prvo desetogodišnje искуство у радикалној ретропубичној простатектомији: компликације, уринарни симптоми и квалитет живота – искуство једног центра

1University of Niš, Faculty of Medicine, Niš, Serbia;
2Niš Clinical Center, Clinic of Urology, Niš, Serbia;
3Niš Clinical Center, Clinic for Anesthesia and Intensive Therapy, Niš, Serbia;
4Niš Clinical Center, Clinic of Endocrine and Breast Surgery, Niš, Serbia;
5University of Belgrade, Niko Miljanić Institute of Anatomy, Belgrade, Serbia.
The first 10 years’ experience in radical retropubic prostatectomy: complications, lower urinary tract symptoms, and quality of life – a single-center experience

Prvo десетогодишње искуство у радикалној ретропубичној простатектомији: комплекције, уринарни симптоми и квалитет живота – искуство једног центра

SUMMARY
Introduction/Objective This 10-year prospective study’s primary objective was to evaluate the incidence of complications of radical retropubic prostatectomy (RRP). The secondary objective was to analyze how RRP affects lower urinary tract symptoms (LUTS) and quality of life (QoL) by using the International Prostate Symptom Score (IPSS).

Methods We analyzed 254 patients who underwent RRP in the period 2009-2018. All complications were graded according to Clavien–Dindo classification. To assess urinary symptoms and QoL all the examinees filled out the IPSS and International Prostate Symptom Score for QoL (IPSS QoL) questionnaires during preoperative preparation and 3, 6 12 months after surgery.

Results The incidence of complications Clavien–Dindo grade ≤ II and grade ≥ III were 26.4% and 16.3%, respectively. The mean overall IPSS for the entire group of patients after 12 months of follow-up was significantly different from the preoperative baseline value (p < 0.001). Patients with preoperative moderate (IPSS 8-19) and severe urinary symptoms (IPSS 20+) had a statistically significant reduction of urinary symptoms after RRP (p < 0.001). After 12 months, IPSS QoL was statistically significantly lower than preoperative (p < 0.05).

Conclusion For patients with clinically localized prostate cancer RRP is a safe and effective treatment option. It is associated with a higher rate of complications from the Clavien–Dindo grade ≤ II group. Radical retropubic prostatectomy has clinically beneficial effects on LUTS in patients with moderate and severe urinary symptoms and QoL related to LUTS.

Keywords: prostate cancer; radical prostatectomy; urination disorders; questionnaires

САЖЕТАК
Уvod/Циљ Примарни циљ ове десетогодишње проспективне студије био је да се прикаже инциденција компликација радикалне ретропубичне простатектомије (РРП). Секундарни циљ је био да се прикаже утицај РРП на симптоме доњег уринарног тракта и квалитет живота на основу интернационалног скора симптома простате (IPSS).

Методе Аналитизирано је 254 болесника којима је урађена РРП у периоду између 2009. и 2018. године. Све верификоване компликације традиционално су према класификацији Клавијен–Диндо. Процена уринарних симптома и квалитета живота у свим испитанима је урађена на основу анкета IPSS и интернационалног скора симптома простате за квалитет живота (IPSS QoL) у току пропорцисних припрема и након 3, 6 и 12 месеци после операције.

Резултати Комплекције градуса Клавијен–Диндо ≤ II забележене су у 26,4%, a Клавијен–Диндо ≥ III у 16,5% случајева. Средња вредност укупног IPSS цело групе испитаника након 12 месеци праћења била је статистички значајно мања (p < 0,001) у односу на пропорцисну базичну вредност. Статистички значајно смањење уринарних симптома након операције (IPSS ≤ 8–19) је забележено код болесника са пропорцисно умереним (IPSS 8–19) и јако израженим уринарним симптомима (IPSS 20+). У односу на пропорцисну, средња вредност IPSS QoL након 12 месеци је била статистички значајно мања (p < 0,05), а квалитет живота бољи.

Закључак За болеснике са клинички локализованим карциномом простате, РРП је ефикасна опција лечања и повезана је са вишом калибром компликација из групе Клавијен–Диндо ≤ II. Код болесника са пропорцисно умереним или јако израженим уринарним симптомима, РРП значајно доприноси њихово смањењу и побољшава квалитет живота као последицу уринарних симптома.

Кључне речи: карцином простате; радикална простатектомија; уринарне тегобе; упитници

DOI: https://doi.org/10.2298/SARH210211073D Copyright © Serbian Medical Society
INTRODUCTION

Prostate cancer (PCa) is the most common tumor in men over 50 years of age [1]. In Western Europe and USA, it is the second leading cause of cancer death [2, 3]. Among men in Serbia, PCa is by prevalence second only to lung cancer. The screening test with serum prostate specific antigen (PSA) improves the diagnosis of PCa at organ-confined status [3, 4, 5]. Accordingly, this has led to an increased number of patients considered candidates for radical prostatectomy (RP). RP performed as an open, laparoscopic, or robot-assisted surgery remains the standard procedure for patients with localized PCa and life-expectancy of at least ten years [3, 6, 7]. Despite the surgeons' growing experience, better knowledge of anatomy, and refinement of surgical techniques, most patients who undergo RP experience treatment-related side effects that can significantly impact their quality of life (QoL) [8]. This ten-year prospective study's primary objective was to evaluate the incidence of complications of radical retropubic prostatectomy (RRP). The secondary objective was to analyze how RRP affects lower urinary tract symptoms (LUTS) and QoL by using International Prostate Symptom Score (IPSS).

METHODS

The study included 254 patients with histologically confirmed PCA in clinical T2 or lower disease stage, who underwent RRP at Urology Clinic, Clinical Center Nis, between 2009-2018. Preoperative baseline data included age, PSA, Gleason score (GS), clinical stage, and ASA score. Five out of ten urologists performed 88% of operations. The anatomical approach described by Walsh was used [9]. Pelvic lymph node (PLN) dissection was done in patients with serum PSA > 10 ng/ml and/or GS ≥ 7. Preservation of the cavernous nerve was done by an individual surgeon's assessment based on clinical disease staging. Intraoperative and postoperative baseline data included average operative time, estimated blood loss, pelvic drainage, urinary catheterization time, duration of postoperative lymphorrhea, length of hospital stay, intraoperative and postoperative transfusion rate, operative specimen weight, pathological disease stage, presence of seminal vesicle invasion (SVI) and PLN involvement. All complications were evaluated, and the definitions of complications were adapted from other RP reports [5] and graded according to the Clavien–Dindo classification [10]. The evaluation
of the impact of RRP on LUTS and QoL was assessed by using IPSS and the International Prostate Symptom Score for Quality of Life (IPSS QoL). Voiding and storage symptom were analyzed independently. All the patients enrolled in the study filled out both questionnaires preoperatively and 3, 6, and 12 months after the surgery. Time from complete preoperative preparation to the operation itself was not longer than three months. The patients who received neoadjuvant or adjuvant therapy and had inadequate data or incomplete questionnaires were excluded from the study. Data are presented as mean value ± standard deviation or as median (25th–75th percentile). The general linear model - repeated measures was used to compare questionnaire scores measured at baseline and after three months, six months, and 12 months. Statistical procedures were performed using the R software. The probability value \(p < 0.05 \) was considered statistically significant [11].

All procedures on human subjects were done in accord with the ethical standards of Helsinki Declaration and approved by the Faculty of Medicine and the University of Niš as a part of the doctoral dissertation investigations (Approval No. 04-825/12).

RESULTS

Fourteen out of 268 patients who underwent RRP were excluded from the study. In 12 patients, preoperative urinary catheterization was performed because of urinary retention. Descriptive, clinical and pathological parameters are presented in Table 1. Extended PLN dissection was performed in 37.8% and limited in 29.9% of patients (Table 2). PLN involvement (N1-2) was present in 4.7%, SVI in 21.7%. Other intraoperative and postoperative parameters in patients undergoing RRP are presented in Table 2. The average operation time was 170 minutes, and the average blood loss was 867 ml. Eighty-four patients received intraoperative or immediate postoperative blood transfusions. The average length of hospital stay was 10.5 days. The average catheterization time was 15 days. Fifteen patients were incontinent, and 218 patients did not use pads 12 months after the operation.

Postoperative complications that occurred within 60 days after the surgery were defined as early complications. Complications between 60 days and 12 months are defined as late complications. The overall complication rate (OCR) was 42.9% in 72 (28.4%) patients.
Complications of RRP are presented in Table 3. Immediate surgical reintervention was done in 5 (2%) patients due to injuries to the rectum, ureter, urine leakage at the ureterovesical anastomosis, and bleeding. Most complications graded as Clavien–Dindo I (15.4%) and II (11.1%) did not require surgical reintervention. The most common complication in the Clavien–Dindo grade ≤ II group was urinary tract infection (UTI) (4.2%). The group of complications in Clavien-Dindo grade ≥ III comprised groups IIIa, IIIb, and IVa, and these were confirmed in 4.4%, 11.1%, and 1.2% of cases, respectively. Fifty percent of them were late postoperative complications, (vesicourethral anastomosis stenoses (VUAS) and incontinence) which required surgical intervention in spinal or general endotracheal anesthesia. All the patients with VUAS had UTI. Symptomatic lymphoceles were confirmed in 2 (0.8%) patients and treated with percutaneous drainage in short-term intravenous anesthesia. Postoperative pulmonary embolism was encountered in two patients and myocardial infarction in one patient.

IPSS categories in the 12-months follow-up period are presented in Figure 1. Compared to the preoperative period, after 12 months of follow-up, there were 65 patients more with mild (IPSS < 8), and 43 fewer with moderate symptoms (IPSS 8-19), while there were no patients with severe symptoms (IPSS 20+). The total IPSS score at baseline (mean ± SD) was 9.70 ± 4.32; at three months 10.69 ± 4.88; at six months 8.80 ± 3.11; and at 12 months 7.46 ± 1.85, with a statistically significant difference among the measurements (p < 0.001). IPSS voiding symptom score (IPSSv) at baseline (mean ± SD) was 4.57 ± 2.58; at three months it was 3.44 ± 3.21; at six months 2.68 ± 1.92; and at 12 months 1.96 ± 1.29, with a statistically significant difference among the measurements (p < 0.001). IPSS storage symptom score (IPSSs) at baseline (mean ± SD) was 5.13 ± 2.11; at three months 7.25 ± 2.07; at six months 6.12 ± 1.81; and at 12 months, 5.50 ± 1.48, with a statistically significant difference among the measurements (p < 0.001). All the mean changes in IPSS, IPSSv, and IPSSs in the study population were significantly different among all measurement points (Table 4). In the subgroup IPSS < 8, all the mean changes in IPSS were significantly different among all measurement points, particularly between baseline values and three months (p < 0.001). In the subgroups IPSS 8-19 and IPSS 20+, all the mean changes in IPSS were statistically different between all measurement points, particularly between baseline values and 12 months (p < 0.001). In the subgroup IPSS 20+, all the mean changes in IPSS, Voiding, and Storage were statistically different among all measurement points except for the mean change in storage in the first six months. All mean changes in IPSS Qol scores in the study population were
statistically different among all measurement points (Table 4). IPSS QoL scores were statistically significantly lower after 12 months compared to baseline (p < 0.05). Graphical presentation of IPSS categories in 12-months follow-up period is given at Figure 1.

DISCUSSION

Our study results suggest that RRP is a therapeutically effective method with a few severe complications, which is in line with other recently published studies [3]. Comparing different surgical approaches, De Carlo et al. have reported weighted mean estimated blood loss of 935 ml, intra- and postoperative transfusion rate of 19.63%, weighted mean operative time 179.03 min. (105-253 min.), length of hospital stay 7.87 days (3–16 days) and catheterization time of 12.85 days (1.23–16 days) in RRP series [3]. In our study the mean blood loss was less (846 ml) and mean operation time was shorter (170.87 min) which could be explained by the well-accomplished technique of vascular control during RRP as well as an adequate operation volume of most surgeons (≥ 25 per surgeon). Comparison of operative time and transfusion rate might be misleading due to variations in reporting operative time (depending on inclusion of set up time and PLN dissection and learning curve phase) and different clinical practice among institutions [3, 12]. Compared to minimally invasive surgical approaches, the average blood loss in RRP is three times greater, and the percentage of administered blood transfusions is five times greater [12, 13]. A great variability in length of hospital stay (6-21 days) and catheterization time (9–21 days) in our study results from hospitalization of patients from other medical centers until the time for catheter removal. Such a practice is present in European counties as well, where patients remain in hospital until the urinary catheter is removed, whereas in the USA patients are usually discharged quickly after surgery [3].

Positive surgical margins (Table 2) are an essential predictor of biochemical recurrence and additional treatment after surgery [14]. In our series of patients, it was not always available, but the overall incidence of positive surgical margins was higher (28.7%) compared to other reported series of patients (15%) [5, 14]. Relatively high incidence of pT3 patients is undoubtedly responsible for it and documented surgeon experience [14]. There was no difference in IPSS QoL during the first three months between patients with positive and
negative surgical margins like in the other series [15]. However, a decrease in the IPSS QoL during the follow-up could be explained by radiotherapy applied as a secondary treatment.

In our study, the prevalence of complications and their distribution by Clavien-Dindo grades are in line with results in other published studies [5, 12]. Although the OCR was relatively high (42.9%), reinterventions were done only in 5 (2%) operated patients. Carlsson et al. reported a similar OCR of 44.6%, whereas reintervention was performed in 14 (2.8%) patients [12]. Data from the recently published review that included 29 studies reported a weighted mean OCR of 23.2% (range, 6-68%) in patients who underwent RRP [3].

The incidence of Clavien-Dindo grade ≤ 2 complications was significantly higher (25.4%) compared to Clavien-Dindo grade ≥ 3 complications (16.5%) in our study. The most prevalent complications in Clavien-Dindo grade ≤ 2 group were UTI and prolonged lymph secretion. Lenart, Cheng, and Wang also reported symptomatic UTI in 8.2%, 4.2%, and 1.7%, respectively [5, 16, 17]. However, there is no literature about this complication as it was not analyzed as a separate parameter. Our opinion is that there is an association of this complication with a permanent urinary catheter. UTI was postoperatively confirmed in 7 out of 12 patients who had permanent catheter preoperatively. Another possible UTI mechanism is the entry of the particles containing bacteria during the operation's replacement of urinary catheters. In our study 12 out of 13 patients with VUAS had UTI. However, we did not analyze this association. Prolonged lymph secretion, as a typical complication of RP, is associated with PLN dissection [7]. In published studies, the prevalence of this complication in RRP ranges from 1.1% to 6% [5, 18]. In our study, lymphocele was confirmed in 6 (2.4%) out of 9 (3.6%) patients with prolonged lymph secretion. Based on recent data, PLN dissection during RP is associated with a considerably increased risk for lymphocele formation compared to RP alone [19]. Our complication analysis revealed another complication that resolved spontaneously and had not been described in the literature. We defined it as urinary catheter suture and classified it among Clavien-Dindo grade I events. After emptying the balloon, a surgically placed urinary catheter could not be removed even with greater tension, but it spontaneously came off in the following 48 hours. The possible cause of this complication was that the catheter crossed the placed sutures at the anastomosis before tying, or that the catheter diameter at the site of the emptied balloon was greater than the diameter of the vesicoureteral anastomosis.
The most common complication in Clavien-Dindo grade ≥ 3 in our study was VUAS. The prevalence of this complication after RRP in the literature varies from 0.5% to 32%, whereas we reported VUAS in 6.7%. Although we did not analyze the risk factors for VUAS [7, 12, 17], our opinion is that there is an association of this event with UTI as we confirmed symptomatic UTI in 12 (4.8%) out of 17 (6.7%) patients. Whether UTI is the consequence or one of the causes of VUAS remains the topic for future researches. Twelve months following RRP, there were 14.2% incontinent patients (one or more pads). The prevalence of this complication in the literature ranges from 6.3% to 29.3% [3]. Although it is a significant complication, we reported only 1.6% of men who underwent surgical management of this complication. A similar result (2.2%) was reported by Carlsson as well [12].

The effect of RRP on LUTS in our study was reported for the entire group of patients. Only the men with symptoms of IPSS≥8 can significantly benefit because of symptom improvement. Slova and Lepor analyzed the results of IPSSt, IPSSv, and IPSSs in 453 patients divided into two groups (IPSS < 8 and IPSS≥8) 12 and 48 months after RRP [20]. They did not report a statistically significant difference in mean IPSSt score after 12 months, but they reported a statistically significant reduction of mean IPSSv score. In contrast to the results of Slova and Lepor, our results demonstrated a statistically significant reduction in mean overall IPSSt after 12 months, which could be explained by greater baseline mean IPSSt (9.7 vs. 6.9), as well as by greater baseline number of patients with IPSS≥8 in our study.

They also reported a significant difference in mean IPSSt and IPSSv for the entire group between baseline values and values after 48 months. The improvement of mean IPSSt between the baseline and after 48 months was attributed primarily to the reduction of mean IPSSv in the first 12 months and reduction of mean IPSSs in the period between 12 and 48 months after the operation [20]. Our study results showed a statistically significant reduction of mean IPSSv and IPSSt 6 and 12 months after RRP compared to the baseline values, suggesting the role of IPSSv in the improvement of mean IPSSt. On the other hand, we could not estimate whether the results of IPSSs had a positive or negative impact on IPSSt after 12 months. The mean values of IPSSs at baseline and after 12 months were almost equal (5.1 vs. 5.5), and similar results for the same time interval were reported by Slova and Lepor (4.2 vs. 4.5) [20].

After 12 months, significant LUTS improvement was observed in subgroups IPSS 8-19 and IPSS 20+, since there was a statistically significant reduction of 4.3 and 10.3 symptom
units compared to baseline values. Other studies have also reported LUTS improvement after RRP in men with IPSS≥8 [20, 21]. Bayoud et al. analyzed RP's impact on LUTS in 804 patients and reported a significant increase of mean IPSS after 1 and 3 months (11.1 ± 7.1, 7.6 ± 6.1) compared to the baseline value (5.5 ± 6.6). There was not a statistically significant difference between mean baseline value and after 6, 12 and 24 months [22]. Our study baseline means IPSS was 9.7 ± 4.3, and after 3 months, IPSS increased 10.6 ± 4.8 with a tendency of statistically significant decrease after 6 and 12 months (7.4 ± 1.8). This difference in decreasing tendency of mean IPSS can be explained by very high baseline IPSS compared to the observed study and by greater number of patients with IPSS≥8 in our study (49.6% vs. 34.5%). The authors also demonstrated a downward trend in number of patients in IPSS>8 subgroup as fellows: 42.4%, 32.9%, 21.7% and 17% at 3, 6, 12 and 24 months, respectively [22], which was also confirmed in our study: 54.8%, 35.4% and 24.1% at 3, 6 and 12 months, respectively.

Numerous studies have demonstrated a beneficial role of RRP on LUTS. Papadopoulos et al. reported a significant improvement of LUTS in 240 patients undergoing RRP [23]. They studied IPSS and maximum flow rate (Qmax) before and after RRP. The percentage of patients with Qmax ≤10 ml/s was 41.3% before RRP, and during the follow-up of 12 months, Qmax increased from a median of 12 ml/s initially to 21 ml/s. In patients with Qmax of ≥10 ml/s there was not any significant difference. They also reported significant IPSS reduction in group of patients with moderate and severe symptoms [23].

Analyzing LUTS in our study, we noticed a very slow decrease of mean IPSS values in IPSS20+group during 12 months. This could be explained by the presence of postoperative incontinence in 36 (14.2%) of patients postoperatively which we did not analyze. Several authors have studied the negative impact of RRP on LUTS. The occurrence of nocturia, frequent urination and incontinence occurring de novo in 2-77% of patients after RP with up to 50% recovery, are dysfunctional disorders that can be associated with detrusor muscle overactivity, bladder compliance disorder and detrusor contractility impairment [21, 24, 25]. LUTS could be explained as a consequence of pelvic plexus injury due to surgical dissection. Nerve injury of neurovascular bundles is responsible for postoperative continence impairment [25, 26]. The bladder filling and voiding phase can thus be disturbed since damaged bladder function is usually associated with sphincter weakness [25].
Our study demonstrated a significant improvement of QoL IPPS after RRP at the end of follow-up compared to the preoperative period (1.9 ± 1.1 vs. 1.4 ± 0.9). Therefore, it was a positive impact of RRP on QoL. Changes of mean values of IPPS QoL directly correlated with improvement and deterioration trends of LUTS and IPSS following RRP. A positive impact of RRP on LUTS and QoL was reported as well by Mastubara et al. using IPSS and QoL IPSS in 117 patients 3, 6 and 12 months after RRP. They reported a significant reduction of IPSS and QoL IPSS especially in patients with IPSS≥8 [24]. Similar results were reported in the study by Thomas et al. who studied LUTS and IPPS QoL improvement in patients after robot-assisted RP [27]. Frequent urination and nocturia significantly impacted QoL IPSS in patients who did not have this symptomse before RRP [21, 24, 27]. Moreover, similar results were presented for QoL IPSS regardless of the surgical approach [22, 27, 28].

Our study has several limitations. The assessment of impact of RRP on LUTS is subjective. It is based on the estimation of urinary symptoms by using IPSS questionnaire.

The study that analyzed flow rate and IPSS showed statistically significant improvement in Qmax (21ml/min) and decrease in IPSS score 12 months following RRP only in patients with preoperative Qmax of ≤10 ml/s and IPSS≥8 [23]. We did not perform urodynamic studies, but our results showed a statistically significant reduction of IPSS score 12 months after RRP in groups of patients with preoperative IPSS≥8. Furthermore, we should be cautious regarding the uniformity of preoperative prostate biopsy and histopathology findings obtained not from one center but from some general hospitals, which presumably involve individual approaches despite a generally adopted doctrine. A single urologist did not perform the operations, and differences related to surgical skills and experience may lead to confusion when analyzing complications.

CONCLUSION

For patients with clinically localized PCa, RRP is safe and effective treatment option. It is associated with a higher rate of complications from the Clavien–Dindo grade ≤ II group, which does not require invasive surgical management. Radical retropubic prostatectomy has
clinically beneficial effects on LUTS in patients with moderate and severe urinary symptoms and QoL related to LUTS.

ACKNOWLEDGEMENTS

This work was supported by the Faculty of Medicine, University of Niš, Internal Scientific Project Number 45, and it is a part of a doctoral dissertation (No. 04-825/12).

Conflict of interests: None declared
REFERENCES

1. Culp MB, Soerjomataram I, Fessthithou JA, Bray F, Jamal A. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur Urol. 2020;77(1):38-52. DOI: 10.1016/j.eururo.2019.08.005

2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jamal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. DOI: 10.3322/caac.21660

3. De Carlo F, Celestino F, Verri C, Masedu F, Liberati E, Di Stasi SM. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: surgical, oncological, and functional outcomes: a systematic review. Urol Int. 2014;93(4):373-83. DOI: 10.1159/000366608 PMID: 25277444.

4. Patasius A, Krilavičiute A, Smalýge G. Prostate Cancer Screening with PSA: Ten Years’ Experience of Population Based Early Prostate Cancer Detection Programme in Lithuania. J Clin Med. 2020;9(12):3826. DOI: 10.3390/jcm9123826

5. Cheng WM, Lin TP, Lin CC, Huang EY, Chung HJ, Kuo JY, et al. Standardized report for early complications of radical prostatectomy. J Chin Med Assoc. 2014;77(5):234-41. DOI: 10.1016/j.jcma.2014.02.008 PMID: 24767582

6. Sirisopana K, Jenjitraranant P, Sangkum P, Kijvikai K, Pacharatakul S, Leenanupun C, et al. Perioperative outcomes of robotic-assisted laparoscopic radical prostatectomy, laparoscopic radical prostatectomy and open radical prostatectomy: 10 years of cases at Ramathibodi Hospital. Transl Androl Urol. 2019;8(5):467-475. DOI: 10.21037/tau.2019.09.03

7. Haidl F, Al-Monajjed R. Prostatatkazinom – chirurgische Komplikationen [Prostate cancer: surgical complications]. Aktuelle Urol. 2020;51(5):469-74. DOI: 10.1055/a-1185-8179 PMID: 32557447

8. Huang W, Zhang Y, Shen BH, Wang S, Meng HZ, Jin XD. Outcomes of health-related quality of life after open, laparoscopic, or robot-assisted radical prostatectomy in China. Cancer Manag Res. 2019;11:899-907. DOI: 10.2147/CMAJ.S189893

9. Walsh PC. Anatomic radical prostatectomy: evolution of the surgical technique. J Urol 1998;160(6 Pt 2):2418–24. DOI: 10.1097/00005392-199812020-00010

10. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205-13. DOI: 10.1097/01.sla.0000133083.54934.ae PMID: PMC1360123

11. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.URL https://www.R-project.org/

12. Carlsson S, Nilsson AE, Schumacher MC, Jonsson MN, Volz DS, Steineck G, et al. Surgery-related complications in 1253 robot-assisted and 485 open retropubic radical prostatectomies at the Karolinska University hospital, Sweden. Urology. 2010;75(5):1092–7. DOI: 10.1016/j.urology.2009.09.075

13. Yaxley JW, Coughlin GD, Chambers SK, Occhipinti S, Samarutunga H, Zagdlewicz L, et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: early outcomes from a randomized controlled phase 3 study. Lancet. 2016;388(10049):1057–66. DOI: 10.1016/S0140-6736(16)30592-X

14. Meeks JJ, Eastham JA. Radical prostatectomy: positive surgical margins matter. Urol Oncol. 2013;31(7):974-9. DOI: 10.1016/j.juro.2012.11.011

15. Richters A, Derks J, Husson O, Van Onna IEW, Fossion LMCL, Kil PJM, Verhoeven RHA, Aarts MJ. Effect of surgical margin status after radical prostatectomy on health-related quality of life and illness perception in patients with prostate cancer. Urol Oncol. 2015;33(1):16.e9-16.e15. DOI: 10.1016/j.juro.2014.10.006

16. Lenart S, Berger I, Böhler J, Böhm R, Gutjahr G, Hartig N, et al. Ideal timing of indwelling catheter removal after robot-assisted radical prostatectomy with a running barbed suture technique: a prospective analysis of 425 consecutive patients. World J Urol. 2020;38(9):2177-83. DOI: 10.1007/s00345-019-03001-4

17. Wang R, Wood DP Jr, Hollembek BK, Li AY, He C, Montie JE, et al. Risk factors and quality of life for post-prostatectomy vesicourethral anastomotic stenoses. Urology. 2012;79(2):449-57. DOI: 10.1016/j.juro.2011.07.1383

18. Pompe RS, Beyer B, Haese A, Preisser F, Michl U, Steuber T, et al. Postoperative complications of contemporary open and robot-assisted laparoscopic radical prostatectomy using standardised reporting systems. BJU Int. 2018;122(5):801-807. DOI: 10.1111/bju.14369

19. Thomas C, Ziewers S, Thomas A, Dotzauer R, Bartsch G, Haferkamp A, et al. Development of symptomatic lymphoceles after radical prostatectomy and pelvic lymph node dissection is independent of surgical approach: a single-center analysis. Int Urol Nephrol. 2019;51(4):633-640. DOI: 10.1007/s11255-019-02103-7

20. Slova D, Lepor H. The short-term and long-term effects of radical prostatectomy on lower urinary tract symptoms. J Urol. 2007;178(6):2397-401. DOI: 10.1016/j.juro.2007.08.004

21. Namiki S, Ishidoya S, Saito S, Satoh M, Tochigi T, Ioritani N, et al. Natural history of voiding function after radical retropubic prostatectomy. Urology. 2006;68(1):142-7. DOI: 10.1016/j.juro.2006.01.030
22. Bayoud Y, de la Taille A, Ouazzane A, Ploussard G, Allory Y, Yiou R, et al. International Prostate Symptom Score is a predictive factor of lower urinary tract symptoms after radical prostatectomy. Int J Urol. 2015;22(3):283-7. DOI: 10.1111/iju.12681

23. Papadopoulos G, Fragkoulis C, Stasinopoulos K, Stathouros G, Glykas I, Theocharis G, et al. Does radical prostatectomy result in lower urinary tract symptom improvement in high-risk and locally advanced prostate cancer? A Single-center experience. Urologia. 2021;88(2):110-114. DOI: 10.1177/0391560320964611

24. Matsubara A, Yasumoto H, Teishima J, Seki M, Mita K, Hasegawa Y, et al. Lower urinary tract symptoms and risk of prostate cancer in Japanese men. Int J Urol. 2006;13(8):1098-102. DOI: 10.1111/j.1442-2042.2006.01504.x PMID: 16903936

25. Porena M, Mearini E, Mearini L, Vianello A, Giannantoni A. Voiding dysfunction after radical retropubic prostatectomy: more than external urethral sphincter deficiency. Eur Urol. 2007;52(1):38-45. DOI: 10.1016/j.eururo.2007.03.051

26. Peyronnet B, Brucker BM. Management of Overactive Bladder Symptoms After Radical Prostatectomy. Curr Urol Rep. 2018;19(12):95. DOI: 10.1007/s11934-018-0847-3

27. Ahn T, Roberts MJ, Strahan A, Malone G, Paterdis J, Wood G, et al. Improved lower urinary tract symptoms after robot-assisted radical prostatectomy: implications for survivorship, treatment selection and patient counselling. BJU Int. 2019;123 Suppl 5:47-53. DOI: 10.1111/bju.14717

28. Inoue S, Hayashi T, Teishima J, Matsubara A. Comparative analysis of robot-assisted, laparoscopic, and open radical prostatectomy regarding lower urinary tract symptoms: A longitudinal study. Urol Sci. 2020;31(1):21-7. URL: https://www.e-urol-sci.com/text.asp?2020/31/1/21/278874
Table 1. Preoperative clinical and pathologic parameters

Characteristics	n	%
Age	62.7 ± 4.0	53–71
Clinical stage		
T1	9	3.6
T2	216	85.0
T3	29	11.4
Gleason score biopsy		
≤6	156	61.4
7	92	36.2
8	6	2.4
Baseline PSA (ng/ml)†	12.4 ± 6.1	0.6–33.2
ASA score		
0	24	9.4
1	21	8.3
2	190	74.8
3	19	7.5
Pathologic stage		
T0	2	0.8
T1	3	1.2
T2	161	63.3
T3	83	32.7
T4	5	2
Nodal status		
N0	160	63.3
N1-N2	12	4.7
Nx	82	32.3
Seminal vesicle invasion	55	21.7
Pathologic Gleason score		
≤6	125	49.2
7	101	39.8
≥8	28	11
Operative specimen weight (g)†	38.5 ± 13.1	15–90

ASA – American Society of Anesthesiologists; PSA – prostate-specific antigen; †mean ± standard deviation, min-max; data are presented as n or (%);
Table 2. Intraoperative and postoperative parameters of patients who underwent radical retropubic prostatectomy

Parameters	n	%
Nerve sparing procedure		
Yes	69	27.2
No	185	72.8
Lymph node dissection		
Extended	96	37.8
Limited	76	29.9
Not done	82	32.3
Operative time (min)†	170.8 ± 41.4	90–280
Estimated blood loss (ml)†	846.1 ± 564.9	50–2750
Blood transfusion – intraoperative (ml)†	84	33.1
Length of hospital stay (d)†	10.4 ± 3.1	6–21
Catheter duration (d)†	14.6 ± 2.3	9–21
Pelvic drainage < 5 (d)	192	75.6
Prolonged pelvic drainage 5-10 d	52	20.5
Prolonged pelvic drainage >14 d	10	3.9
Positive urine culture	23	9.1
Incontinence within 6 months	66	26
Incontinence after 12 months	15	5.9
None pad per day	218	85.8
Patients with complications	72	28.4
Positive surgical margins**	44	28.7

Data are presented as n or (%);
†mean ± standard deviation, min-max;
**status of surgical margins was available in 153/254 patients
Table 3. Complications of radical retropubic prostatectomy n = 72 (28.4%)

Variable	Clavien–Dindo grade	≤ II		≥ III	
	n	%	n	%	
Perioperative and early postoperative within 60 days					
Rectal injury preoperatively	I	5	2		
Rectal injury postoperatively	IIIb	1	0.4		
Distal ureteral injury	IIIb	2	0.8		
Postoperative blood transfusion	II	8	3.2		
Postoperative bleeding	IIIb	1	0.4		
Significant hematuria	II	5	2		
Obturator nerve injury	II	2	0.8		
Pulmonary embolism	IVa	2	0.8		
Myocardial infarction	IVa	1	0.4		
Wound infection	I	7	2.8		
Wound dehiscence	IIIa	3	1.2		
Prolonged lymph secretion	I	9	3.9		
Urinary tract infection/epididymitis	II	13	4.2		
Anastomotic leakage	I	2	0.8		
Anastomotic leakage	IIIa	3	1.2		
Anastomotic leakage	IIIb	1	0.4		
Acute urinary retention	I	7	2.8		
Dislodgment of Foley catheter	IIIa	5	2		
Suture of urinary catheter	I	5	2		
Infected lymphocele	IIIb	2	0.8		
Asymptomatic lymphocele	I	4	1.6		
Late postoperative > 60 days					
Anastomotic stenosis	IIIb	17	6.7		
Surgery for urinary incontinence	IIIb	4	1.6		
Total number of complications	109	67	26.4	42	16.5

Data are presented as n or (%)
Table 4. IPSS_t, IPSS_v, IPSS_s, and IPSS QoL, at baseline, 3 months, 6 months, and 12 months following surgery

Parameters	Baseline values	3 months	6 months	12 months	p
IPSS_t	9.70 ± 4.32^{a,b,c}	10.69 ± 4.88^{b,c}	8.80 ± 3.11^c	7.46 ± 1.85	< 0.001
IPSS < 8	6.30 ± 0.70^{a,b,c}	10.02 ± 5.13^{b,c}	7.62 ± 2.39^c	7.09 ± 1.26	< 0.001
IPSS 8-19	11.64 ± 1.69^{a,b,c}	10.38 ± 4.19^{b,c}	9.08 ± 2.69^c	7.38 ± 1.72	< 0.001
IPSS 20+	20.27 ± 1.20^{a,b,c}	16.00 ± 2.98^{b,c}	14.36 ± 2.30^c	10.00 ± 3.06	< 0.001
IPSS_v	4.57 ± 2.58^{a,b,c}	3.44 ± 3.21^{b,c}	2.68 ± 1.92^c	1.96 ± 1.29	< 0.001
IPSS_s	5.13 ± 2.11^{a,b,c}	7.25 ± 2.07^{b,c}	6.12 ± 1.81^c	5.50 ± 1.48	< 0.001
IPSS QoL	1.95 ± 1.12^{a,b,c}	2.22 ± 1.23^{b,c}	1.63 ± 1.05^c	1.42 ± 0.98	< 0.001
IPSS QoL^{**}	1.96 ± 1.10^{a,b,c}	2.20 ± 1.20^{b,c}	1.61 ± 1.01^c	1.37 ± 0.92	< 0.001
IPSS QoL[*]	1.94 ± 1.14^{a,b,c}	2.24 ± 1.26^{b,c}	1.65 ± 1.09^c	1.47 ± 1.06	< 0.001

IPSS – International Prostate Symptom Score;

data are presented as mean ± SD;

p < 0.05;

^a vs. 3 months;

^b vs. 6 months;

^c vs. 12 months;

*positive margins;

**negative margins
Figure 1. International Prostate Symptom Score (IPSS) categories over a 12-month follow-up period