Wafer-Scale Lateral Self-Assembly of Mosaic Ti$_3$C$_2$Tx MXene Monolayer Films

Mehrnaz Mojtabavi, Armin VahidMohammadi, Karthik Ganeshan, Davoud Hejazi, Sina Shahbazmohamadi, Swastik Kar, Adri C. T. van Duin, and Meni Wanunu*

ABSTRACT: Bottom-up assembly of two-dimensional (2D) materials into macroscale morphologies with emergent properties requires control of the material surroundings, so that energetically favorable conditions direct the assembly process. MXenes, a class of recently developed 2D materials, have found new applications in areas such as electrochemical energy storage, nanoscale electronics, sensors, and biosensors. In this paper, we present a lateral self-assembly method for wafer-scale deposition of a mosaic-type 2D MXene flake monolayer that spontaneously orders at the interface between two immiscible solvents. ReaxFF molecular dynamics simulations elucidate the interactions of a MXene flake with the solvents and its stability at the liquid/liquid interface, the prerequisite for MXene flakes self-assembly at the interface. Moreover, facile transfer of this monolayer onto a flake substrate (Si, glass) results in high-coverage monolayer films with uniform thickness and homogeneous optical properties. Multiscale characterization of the resulting films reveals the mosaic structure and sheds light on the electronic properties of the films, which exhibit good electrical conductivity over cm-scale areas.

KEYWORDS: self-assembly, MXene, 2D materials, 2D titanium carbide, monolayer, conductive

In recent years, various types of two-dimensional (2D) materials have gained much attention due to their emergent properties and have played significant roles in the development of new types of electrical devices,\textsuperscript{1-3} chemical/biological sensors,\textsuperscript{4-7} water purification membranes,\textsuperscript{8,9} energy conversion/storage devices,\textsuperscript{10-13} and other products. Despite widespread theoretical and experimental research into the physics and applications of 2D materials, a practical challenge common to all of these materials is related to their handling, where their extremely thin nature and ultrahigh aspect ratios (1000–10,000) demand methods for manipulation and assembly of these materials during device manufacturing. For example, in applications where a controlled 2D material film is required for harvesting the material’s electrical and optical properties over macroscale areas, techniques for large-scale assembly of 2D flakes into uniform mono- and multilayer films are in need. Efforts to address this ongoing challenge have resulted in the development of several large-scale thin-membrane assembly methods. These methods can be categorized into two groups: (1) assembly of ultrathin films from a 2D material flake dispersion, either directly on a substrate or at an interface (liquid/liquid or liquid/air),\textsuperscript{12,13} and (2) direct large-area chemical vapor deposition (CVD) of 2D materials on a substrate, followed by use or transfer to another substrate.\textsuperscript{14,15}

Among 2D materials, graphene oxide (GO) and its reduced counterpart (rGO) have been widely studied for large-scale monolayer film assembly from their dispersions. Precise methods for casting uniform layers of GO/rGO on substrates include the Langmuir method,\textsuperscript{16-21} spin-coating,\textsuperscript{22,23} and layer-by-layer assembly.\textsuperscript{24,25} The Langmuir and spin-coating methods result in well-packed films with organized structure and controlled thickness,\textsuperscript{23} while other methods result in a looser, more disordered structure.\textsuperscript{12} For other 2D materials such as graphene, MoS$_2$, and WS$_2$, poor stability in water and other common solvents limits the quality of their assembly into a film from a dispersion phase.\textsuperscript{26-28} Their wafer-scale CVD synthesis, however, has been shown to result in more uniform and reproducible films.\textsuperscript{29-35}

2D transition metal carbides and nitrides (MXenes) as an emerging class of electrically conductive, hydrophilic, and optically active 2D materials have been subjects of numerous...
containing acidic solutions. The resulting MXenes have a coating. Recently, an interfacial assembly method was used for assembling Ti3C2Tx MXene layers at an air/water interface, possibly due to strong convection induced by rapid ethyl acetate evaporation. Also, Pethukhov et al. reported MXene monolayer assembly at the liquid/air interface using the Langmuir–Blodgett and Langmuir–Schaefer techniques, respectively. In these works, surface pressure was controlled using a movable barrier at the air–water interface to direct close contact between flakes and achieve various levels of packing and overlap. However, these methods require precise control of film area and substrate positioning to direct the flake organization and to facilitate transfer to substrates.

We recently developed a method for lateral self-assembly of MXenes at a liquid/liquid interface to fabricate monolayer to multilayer Ti3C2Tx and Ti3CTx MXene films over mm-sized areas and used them as nanometer-thin freestanding membranes in solid-state nanopore sensing applications. Herein, we have further refined our rapid interfacial self-assembly technique to enable large-scale fabrication of monolayer to few-layer Ti3C2Tx films with control over the nominal film thickness, flake density, and lateral size of the self-assembled films. We find that careful control over the MXene suspension concentration affords large-area films with high monolayer coverage and <10% void areas, as characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques as well as Raman mapping and ellipsometric mapping. Further, successive depositions of monolayer films result in bilayers and trilayers as indicated by optical transmission spectra and electrical sheet resistance measurements. Moreover, to investigate the mechanism and parameters involved in this self-assembly process, we used ReaxFF molecular dynamics (MD) simulations, the result of which showed how the interaction of a MXene flake with the solvents render its stability at the liquid/liquid interface.

Our lateral self-assembly method results in rapid formation of mosaic-type high-coverage monolayer MXene films without the need for any specialized instrumentation. This simple approach facilitates device fabrication for applications that require large-area uniform MXene films.

RESULTS AND DISCUSSION

We synthesized Ti3C2Tx MXene from its MAX phase (Ti3AlC2) according to the MILD synthesis method (see Materials and Methods section for details). Previously, we showed using Ti3C2Tx and Ti3CTx MXenes that liquid/liquid interfacial self-assembly can be used to generate large-area...
suspended flake assemblies, which facilitates transfer onto substrates without the need for alignment of the flake and the substrate feature (e.g., nanoaperture). We transferred the free-standing MXene films onto SiN$_x$ membranes (~50 nm thick) with prefabricated ~100 nm nanoapertures, and used them as support membranes for nanoscale pores for single-molecule biopolymer sensing. Upon applying a voltage across the pore, nearly no ionic current leakage was observed through free-standing MXene films without any pores, which demonstrated excellent adhesion of MXene films on their respective substrates. In a more recent study, Li et al. reported the adhesion energy of Ti$_3$C$_2$Tx MXene to Si substrate is 0.90 ± 0.03 J m$^{-2}$, which is of the same order of magnitude as for graphene monolayers. In the current study, we refined and scaled-up our approach to the wafer-scale assembly process, as schematically illustrated in Figure 1a. After chemical exfoliation of Ti$_3$C$_2$T$_x$ and delamination of the monolayer flakes in water, we diluted the dispersion to an optimal concentration for monolayer assembly controlled by UV–vis absorbance spectrometry (Figure 1b) using an Eppendorf BioSpectrometer (New York, USA). It is crucial for the dispersion concentration to be optimized for the self-assembly process: If the dispersion is too concentrated, a multilayer film with non-uniform thickness will form, while a diluted dispersion results in a less packed monolayer film and small coverage areas. Then, we added methanol to the MXene dispersion to a volume ratio of 1:8 methanol:water (step (i)). Next, we submerged the substrate of interest in a chloroform bath in a PTFE dish and drop cast a few droplets of the prepared mixed dispersion on top of the chloroform to initiate the self-assembly process (step (ii)). Immediately following this, flakes begin to coalesce at the chloroform/water interface, forming a large-area two-dimensional film within 5–10 min depending on the final film dimensions. Once assembled, as visualized by no increase in the overall size of the assembly, the film is transferred to the substrate by slowly lifting the substrate from the bottom of the chloroform bath in a way that the film rests on top of the substrate and then placing the substrate on a hot plate, with the whole lifting process taking about 1–2 min (step (iii)). This is followed by drying on a hot plate at 100 °C for 30 min to ensure MXene:substrate adhesion and complete the transfer process. Supplementary Movie S1 shows the Ti$_3$C$_2$T$_x$ film assembly and transfer onto a 25 × 40 mm$^2$ glass microscope slide in detail, with the whole process taking about 12 min. To facilitate visualization we used a dispersion with a relatively higher concentration, as well as a transparent substrate. Also, Supplementary Movie S2 shows that after mechanical disruption of the self-assembled film structure, the flakes rearrange again to restore their ordered structure. Depending on the desired application or characterization method, different

Figure 2. Characterization of monolayer Ti$_3$C$_2$T$_x$ film uniformity. (a) Large area (100 × 70 μm$^2$) AFM image produced by stitching together 12 individual images for a Ti$_3$C$_2$T$_x$ monolayer film after transfer onto a Si/SiN$_x$ substrate. (b) AFM image of the dashed red area shown in (a) with corresponding line profiles. (c) Ellipsometric mapping of Ti$_3$C$_2$T$_x$ monolayer film transferred onto a 3 in. Si wafer, shown on the right. The yellow dashed circle shows the area (with 4 cm diameter) within which ellipsometric mapping was carried out. The yellow oval shape shows the approximate shape and size of the incident beam. The magnified image of the black dashed square shows the edges of the Ti$_3$C$_2$T$_x$ film on the Si substrate. The blue arrow shows the film, and the red arrow shows the bare substrate. (d) Violin plots of obtained Ψ and Δ values from 81 points in a circular area of a transferred Ti$_3$C$_2$T$_x$ film (shown with blue arrows). The red arrows show the Ψ and Δ values obtained from the bare Si wafer.
Figure 3. (a–d) Bright-field TEM images of a transferred monolayer Ti$_3$C$_2$T$_x$ films on a freestanding 50 nm-thick SiN$_x$ membrane. The ∼3 μm bright circle is a ∼30 nm-thick thin region within the membrane. All scale bars = 5 μm.

substrate types and sizes could be used. However, hydrophobic surfaces such as SiN$_x$ and HOPG require further surface treatment such as piranha cleaning, oxygen plasma, or UV/ozone cleaning to render the surface more hydrophilic. In Figure 1c, we present an optical image of a 3 in. Si wafer onto which we deposited a monolayer of Ti$_3$C$_2$T$_x$ film. The optical image shows a covered wafer before the wafer was completely vaporized. The dashed white circle highlights the approximate edges of the transferred film, which provides an optical contrast from the bare, uncovered Si substrate. Figure 1d shows an AFM image of monolayer Ti$_3$C$_2$T$_x$ film after transfer onto a SiN$_x$ substrate, demonstrating the mosaic structure of the film.

To investigate the properties of the fabricated films and their potential applications, we studied structure, uniformity, fractional area of coverage, and optical and electrical properties of the fabricated films. Figure 2a shows a stitched image of 12 individual AFM images obtained on a monolayer Ti$_3$C$_2$T$_x$ film transferred onto a SiN$_x$ substrate. This image confirms long-range, well-packed, and edge-to-edge flake arrangements with partial overlaps at the flake-to-flake boundaries. Figure S1 shows six different 30 × 30 μm$^2$ area AFM images from the stitched image in Figure 2a with corresponding height profiles. Average surface roughness values within the 30 × 30 μm$^2$ area are in the range of 1.2–1.7 nm, which indicates the smooth nature of the monolayer films. Figure 2b shows a magnified AFM image of the dashed red area in Figure 2a with the corresponding line height profile of monolayer flakes. The thickness of a monolayer Ti$_3$C$_2$T$_x$ flake is measured around 1.8 nm (see also Figure S2). Theoretically, the thickness of a Ti$_3$C$_2$T$_x$ flake is 0.98 nm; however, height artifacts in AFM are common for hydrophilic materials due to the presence of water beneath/above the flake, presence of functional groups on the MXene basal plane, and interactions of the bound surface groups of Ti$_3$C$_2$T$_x$ flakes with the substrate, all resulting in a typical AFM-based thickness of 1.5–2 nm for Ti$_3$C$_2$T$_x$ monolayer flakes, in agreement with our measurements. This figure also shows two line-height profiles at the edges (blue and yellow lines) where flakes fold onto each other and form wrinkles. These profiles show heights of 2 and 4 nm from the surface of the flakes. To further corroborate the monolayer film thickness, we performed ellipsometric measurements. In Figure 2c, we demonstrate an ellipsometric thickness map of a monolayer Ti$_3$C$_2$T$_x$ film deposited on a 3 in. Si wafer. The optical image of the wafer on the right shows a dashed yellow circle (4 cm in diameter) within which an 81-point ellipsometric mapping routine was carried out, and the yellow oval shape on the image roughly represents the size/shape of the ellipsometric incident light beam (∼1.2 mm beam diameter). To assess the thickness variation across the wafer, we mapped the ellipsometric quantities Ψ and Δ as a function of wavelength at all mapping points along the wafer. Using these data and published optical data for real (n) and imaginary (k) refractive indices for a Ti$_3$C$_2$T$_x$ film deposited on a 3 in. Si wafer, we constructed a three-layer model of our sample (Si, SiO$_2$, and MXene layer) and fit our mapping data to produce a color map using Voronoi interpolation that represents the MXene layer thickness (see Materials and Methods section for more details). The areas covered with film show thickness values in the range of 0.9–1.5 nm, which we speculate corresponds to monolayer Ti$_3$C$_2$T$_x$ film along with some areas containing partial bilayer due to laterally overlapping flakes in the assembly. The small value of the goodness-of-fit (χ$^2$) for each point on the wafer (Figure S4) demonstrates a good representation of optical constants.
and thickness of the sample. The points on the wafer where the thickness is calculated <0.8 nm have relatively higher \( \chi^2 \) values. At these points, the measured \( \Psi \) and \( \Delta \) values do not fit the model very well (Figure S4), which we assume is due to lack of coverage of the film at these points. For a deeper insight into the quality of the ellipsometric data, we show in Figure 2d violin plots of \( \Psi \) and \( \Delta \) values measured at different points on the mapping experiment in Figure 2c and compare these with values for a bare Si substrate. The difference between \( \Psi \) and \( \Delta \) values for these two substrates confirms the presence of the film over the entire area of the wafer. For each wavelength measured, we find a normally distributed variation in \( \Psi \) and \( \Delta \) values for the MXene monolayer film. An analogous map of the measured SiO\(_2\) thickness is shown in Figure S5. Moreover, the outliers in the violin plots fit the data for bare Si substrate, which identifies a few uncovered regions on the wafer (Figure 2c, red arrow on the wafer and red region on the map). In another effort to interpret the experimental data from ellipsometry measurement, we used the effective medium approximation (EMA) model to describe the MXene layer as the mixture of the material (MXene) and void (air) (see Materials and Methods section for details). Fitting the data to this model determined the most pronounced film thickness and the fractional coverage of the MXene film with that thickness at each measured point on the wafer. Figure S6 shows the scatter plot of thickness vs coverage and the histogram of each parameter, indicating a ~20 Å-thick MXene film with ~70% coverage over the measured wafer area, with only a few outliers. We speculate that the narrow regions where overlaps occur (~200 nm wide typically) are not properly measured by the ellipsometer beam, and thus the fractional coverage value is underestimated. Notably, this ellipsometric result agrees well with the measured MXene monolayer fractional area (~75%) calculated from the AFM images, as shown later.

To inspect the quality and cleanliness of our transfer process and elucidate the structure of the films at overlaps, we characterized the monolayer Ti\(_3\)C\(_2\)T\(_x\) films using TEM. To do so, we transferred MXene monolayers onto 5 × 5 \( \mu \)m\(^2\) Si chips hosting freestanding 50 nm-thick silicon nitride (SiN\(_x\)) membranes at their centers. Figure 3a–c shows TEM images of monolayer films on SiN\(_x\) membrane. These images support that our transfer process results in a clean surface with high-quality film and uniform contrast, confirming the single-layer nature of the film. The region within the SiN\(_x\) membrane that was further thinned down to ~30 nm appears as the bright round area, creating a “nano-step” feature on the membrane. Despite this feature on the surface, the flakes transferred onto the substrate in that region are not “wrapped”, and the integrity of the film has remained. Figure 3d shows a magnified image of the red dashed area in Figure 3c with the edges of four overlapping flakes highlighted with four different colors. The magnified image shows that at the overlapping regions, flakes are minimally overlaid on one another near the flakes’ edges, rather than being folded or crumbled. An unannotated version of Figure 3 (no boundary lines) is provided in Figure S7.

Another method to assess the coverage and uniformity of Ti\(_3\)C\(_2\)T\(_x\) films on a substrate is Raman spectroscopy. Sarycheva et al.\(^{32}\) recently showed that the Raman spectrum of a single Ti\(_3\)C\(_2\)T\(_x\) flake has two characteristic peaks and, further, observed an increase in peak intensities upon multilayer stacking of these flakes. Unlike transition-metal dichalcogenides, multilayer Ti\(_3\)C\(_2\)T\(_x\) flakes did not show any peak shifts, which relates to the substantial interlayer gap that exists between MXene sheets (~5–6 Å).\(^{32}\) Figure 4a shows a Raman spectrum of a monolayer Ti\(_3\)C\(_2\)T\(_x\) film on a Si/SiO\(_2\) substrate, which shows two characteristic Ti\(_3\)C\(_2\)T\(_x\) peaks centered at
∼300 cm\(^{-1}\) and ∼975 cm\(^{-1}\). The strong peak at 521 cm\(^{-1}\) corresponds to the Si substrate. Therefore, to provide some assessment of coverage, we obtained Raman spectra from a 68.5 × 44.5 μm\(^2\) area and mapped the peak height intensity of the MXene peak at ∼300 cm\(^{-1}\) to the Si peak (Figure 4b). While we cannot derive any thickness values based on these spectra, we find that MXene peaks are everywhere in the region, fluctuating in relative intensity by <25%. Three spectra (1, 2, and 3) from three different areas (green, yellow, and orange) on the map in Figure 4b show the mean and extremities of our measurements. Next, to gain a deeper insight into the packing density and fractional area coverage of the films, we used AFM and SEM. Figure S8 shows SEM images of monolayer Ti\(_3\)C\(_2\)T\(_x\) films transferred onto the Si chips. The Si\(_N_x\) membranes appear as dark areas beneath the Ti\(_3\)C\(_2\)T\(_x\) film because electrons are only weakly scattered from the ultrathin membrane. We used ImageJ software\(^3\) to calculate the fractional area covered with monolayer Ti\(_3\)C\(_2\)T\(_x\) films based on finding the optimum threshold intensity that differentiates the substrate from the monolayer and quantifying the substrate area. In Figure 4c,d, we show AFM and SEM images of MXene monolayer films, respectively, along with corresponding post-analysis images after thresholding, which were used in our coverage analysis. For the AFM measurements, we used a Si\(_N_x\) substrate, whereas for SEM measurements, we used 50 nm-thick freestanding Si\(_N_x\) membranes supported by a Si chip. For these images, we find MXene coverage values of 93% and 91%, respectively, with similar coverage values obtained in other areas we inspected (see Figures S9 and S10 for other images). We conclude that our lateral assembly method produces a mosaic structure of closely packed flakes that cover >90% of the substrate following the transfer. We conducted further analysis of the AFM images to calculate the fractional overlap/ridge areas (with more than one layer of MXene). Figure S11 shows four AFM images before (left) and after (right) analysis with void areas and overlap areas highlighted in red and blue, respectively. This analysis indicates that ∼75% of the MXene films are true monolayers, while the rest are either void or overlap. However, we note that the overlap area fractions are overestimated since they include a few occasional bilayer MXene flakes that form a part of the assembly (see yellow arrow in Figure S11).

To further understand the interactions of MXenes with their solvent environments, we have carried out reactive force-field...
Figure 6. Optical and electrical characterization of monolayer and multilayer Ti$_3$C$_2$T$_x$ films. (a) UV−vis absorbance spectra of monolayer, bilayer, and trilayer Ti$_3$C$_2$T$_x$ films, corrected for substrate absorbance. Inset shows the absorbance of the films at 550 nm. (b) Schematic of vDP apparatus used for sheet resistance measurement of the films. Bottom: Top view of the apparatus showing the location of corresponding electrodes from 1 to 4 and edges of the square area where electrical measurements were carried out (H1, H2, V1, and V2). Corresponding $I$−$V$ curves of current sweep across each edge is shown on the right. (c) Representative $I$−$V$ curves of monolayer, bilayer, and trilayer Ti$_3$C$_2$T$_x$ films. (d) Sheet resistance of Ti$_3$C$_2$T$_x$ films vs the number of Ti$_3$C$_2$T$_x$ layers. Markers show the average of the sheet resistance values and the lines show the range of the values for six measurements on six different areas on the sample.

(ReaxFF) MD simulations. From the NPT ensemble MD simulations of −OH group edge-terminated Ti$_3$C$_2$O$_2$ MXene (see Figure S12 and Supplementary Movies S3−S5), we observe that methanol molecules diffuse toward the MXene, adsorbing on its surface. This enables the MXene to be stabilized also when solvated by chloroform, while the absence of methanol forces the chloroform-solvated MXene to diffuse toward the water region (cf. Figures S12 and S13). Simulations with an edge-free MXene spanning the xy-plane separating the ternary solvent were used to quantify the energetics of these interactions. To bypass the diffusive time scale of methanol transport to the surface, half of the methanol content was initialized on the MXene, and the remaining methanol was initialized at the water/chloroform interface. Figure 5a−e shows the four different configurations considered: MXene solvated by chloroform or water, MXene at the interface of water/chloroform, and MXene solvated by water with no preadsorbed methanol. The running average potential energy and standard deviation vs time for each system are shown in Figure S5f,g. Although methanol stabilizes the MXene chloroform interface (Figure 5a,b), its reduced hydrogen-bond formation capability to the MXene surface, compared with water, makes it energetically unfavorable when compared against MXene at the liquid/liquid interface or solvated by water. However, the distinction of a favorable configuration between the water-solvated, interfacial, and water-solvated without adsorbed methanol is not straightforward. While the mean potential energy of the water-solvated MXene (with and without adsorbed methanol) is lower in energy by ~60 kcal/mol in comparison to MXene at the interface, the standard deviation in energies of a similar magnitude suggests a likelihood of all three configurations. Substantially longer MD simulations will be required to statistically separate the energies of these configurations, but our current simulations demonstrate that addition of methanol indeed makes the chloroform/water interface more accessible to the MXene flakes, thus connecting with the experiments. It must be noted that there is no additional methanol added to the solvent to compensate for the adsorption on the MXene in our simulations. Therefore, it is possible that upon further diffusion of methanol toward the surface, the difference between the three configurations is reduced. Thus, these simulations suggest that the availability of methanol at the water/chloroform interface provides stability via hydrogen bonds within the chloroform region, allowing the liquid/liquid interface to be an equally favorable site for the MXene, enabling its film-like assembly.

So far, we have shown that the lateral self-assembly method is capable of producing ultrathin, uniform monolayer, and packed Ti$_3$C$_2$T$_x$ films. To investigate the sequential assembly of bilayers and trilayers, we repeated our transfer method by lifting a monolayer film onto a substrate, drying the substrate, reimmersing the substrate in chloroform, repeating lateral self-assembly of MXene flakes at the interface, and emerging the substrate from the chloroform phase. Figure S14 shows AFM images of bilayer Ti$_3$C$_2$T$_x$ films on a SiN$_x$ substrate. The corresponding line height profiles of bilayer films are shown in Figure S14c,d, demonstrating the bilayer Ti$_3$C$_2$T$_x$ thickness is measured around 4.5 nm with average surface roughness in the range of 2.6−3 nm. Height uniformity in these images confirms that the structure and integrity of each transferred layer are not adversely affected by a sequential transfer process. We examined the resulting multilayer films using optical spectroscopy and electrical conductivity measurements. Figure 6a shows the UV−vis absorbance spectra of monolayer, bilayer, and trilayer Ti$_3$C$_2$T$_x$ films on a glass substrate. As seen in the spectra, absorbance increases with an increasing number of layers. The inset shows the absorbance for monolayer, bilayer, and trilayer films at 550 nm, showing that although the increase is not linear due to overlaps at the edges, it is in qualitative agreement with the previous studies. Due to the inherent in-plane conductivity of Ti$_3$C$_2$T$_x$ flakes, we examined how the number of MXene layers affects the electrical properties of the films. We used the van der Pauw method (vDP) to measure the sheet resistance of the films using a homemade apparatus and a Keithley 2401 source meter (Tektronix, Inc., USA). Figure 6b shows the schematic of the apparatus, which consists of a square grid of four gold electrodes separated by 10 mm. Four wires connect to each electrode at points 1, 2, 3, and 4 and attach to the Keithley source meter (see Figure S15 for an image of the experimental setup). Figure 6b also shows a schematic top-view image of the
electrodes and depicts the four edges of the film, two horizontal (H1 and H2), and two vertical (V1 and V2), where conductivity measurements are carried out. First, the current is sourced along each edge (horizontal and vertical), and voltage is measured along the opposite edge. This is repeated for all combinations which result in four independent measurements. Current vs voltage (I–V) curves of these measurements for a monolayer Ti₃C₂Tₓ film transferred onto a glass substrate are shown in Figure 6b. Due to the uniformity of the film within this 10 x 10 mm² area, the four I–V curves are identical. Figure 6c shows one representative I–V curve for each monolayer, bilayer, and trilayer Ti₃C₂Tₓ films measured after the sequential transfer of each layer. From the resistance values obtained by I–V measurements, sheet resistance values can be calculated (see Materials and Methods section for details). Figure 6d shows the sheet resistance values for two samples of Ti₃C₂Tₓ films on a glass substrate with a thickness of 1, 2, and 3 layers. As expected, as the thickness of the film increases, the sheet resistance decreases. In general, our monolayer films show a higher sheet resistance (9–11 kΩ/sq) compared to the recent study by Yun et al., which showed a resistance of 1.5 kΩ/sq for a monolayer film. We attribute this discrepancy to the mosaic morphology of our films, in which flake-to-flake contact is edge-to-edge with minimal overlapping. Despite the higher resistance, we find that our films exhibit an ohmic response and that resistance drops with increasing number of layers.

Finally, in Table S1, we have compared the advantages and disadvantages of the various methods of large-scale 2D materials film fabrication with single-layer precision such as spin coating, Langmuir–Blodgett, layer-by-layer assembly, and interfacial assembly. Compared to other methods, one advantage of our wafer-scale lateral self-assembly is the resulting uniform film structure across the entire film area, which is unlike the spin-coating method that results in a compact monolayer film only at the center of the substrate. Compared to the Langmuir transfer method, our assembly method is much faster (under 30 min for film formation on a 3 in. wafer) and, further, does not require any special apparatus apart from a PTFE dish. As discussed in our previous study, the driving force for film formation at the liquid/liquid interface is a combination of repulsion force, capillary force, and surface tension, which results in a delicate organization of the resulting mosaic film structure. Therefore, our lateral assembly method results in smoother and more organized films than those produced by spontaneous absorption of flakes from solution, such as the layer-by-layer assembly method.

CONCLUSION

In summary, we have shown here that lateral self-assembly of MXene films at a liquid/liquid interface produces uniform mosaic-type monolayers that span over large areas (we have coated up to 3 in. substrates). We have studied the film morphology of our coated substrates at various length scales using a combination of tools that include AFM, SEM, and TEM imaging as well as ellipsometric and Raman mapping. Moreover, the sequential transfer of single-layer films on a substrate enables the fabrication of multilayer films without peeling off the preceding layers. This was confirmed by the change in sheet resistance and optical properties of the films upon sequential deposition of multilayer films. MD simulation results showed the presence of methanol at the water/chloroform interface renders the interface a favorable site for MXene flakes to reside and self-assemble.

Use of 2D material devices for biosensing has been of particular interest in recent years because of their large surface area to volume ratios and their unique optical and electrical properties. Recent demonstrations of CRISPR-enhanced graphene-based field-effect transistors, MXene-based neuro-electronic devices, graphene/MoS₂ heterostructure-based sensors for DNA hybridization, and 2D material-based nanoscale devices for biomolecule probing are just a few examples of 2D material-based biosensors. A particular hurdle that limits the adoption of these devices as biosensors is the difficult step of transferring the 2D materials onto their perspective substrate in a guaranteed high yield and with appropriate alignment. In 2D material-based nanopore sensing devices, small-scale device fabrication is complicated by a lack of straightforward methods for wafer-scale fabrication and/or transfer methods. As we have shown in our previous study, this is also an existing issue for MXenes. Our straightforward method for large-area monolayer to multilayer MXene films could lead to highly functioning MXene-based biosensing devices.

Finally, while we have focused here on large-scale self-assembly of Ti₃C₂Tₓ flakes, our method should be compatible with a variety of other members of the MXene family. Considering the 30+ different MXene compositions experimentally synthesized so far, our method offers an attractive approach for producing large-area uniform films that may find use in applications that require hydrophilic and electrically conductive films with tunable optical properties such as transparent conductive electrodes for bioelectronics, illuminated displays, and other applications.

MATERIALS AND METHODS

MXenes Synthesis. Ti₃C₂Tₓ MXene flakes with large lateral sizes were synthesized according to previous reports in the literature. Initially, for every 1 g of the MAX phase, the mixed salt-acid etching solution was prepared by adding 1 g of LiF powder (98.5%, Alfa Aesar) to 20 mL of 6 M HCl solution (ACS grade, BDH), followed by stirring for 15 min to completely dissolve the LiF powder in the acid solution. The etching process was started by slowly adding 1 g of MAX phase powder (Ti₃AlC₂ synthesized according to previous work) to the etching solution. The etching container was placed into an ice bath during the addition of the MAX phase to avoid excessive heat generation due to the exothermic nature of the reaction. The etching solution was stirred at 550 rpm (by using a PTFE-coated magnetic bar) continually for 24 h at 35 °C. After 24 h, the solution containing etched MXene multilayers was divided into four different centrifuge vials, and 45 mL of DI water was added to them to start the washing process. The solutions were then shaken by hand for 1 min and centrifuged at 3,500 rpm (Eppendorf 5810R) for 3 min, after which the supernatant was poured out. The washing process was continued several times, each time adding 45 mL of DI water, followed by manual shaking of the solutions for 2 min, and then centrifuging them at 3,500 rpm for 3 min until a dark green supernatant was observed (pH > 4.5). The supernatant after this stage is the delaminated Ti₃C₂Tₓ dispersion. The initial delaminated solution (the first supernatant after the washing step was complete) was poured out, and DI water was added to the sediments. The solutions were shaken for another 2 min, and this time centrifuged at 3,500 rpm for 1 h to collect the large flake size MXene solutions (pH ~ 5).

Wafer-Scale Lateral Self-Assembly of Ti₃C₂Tₓ MXene and Transfer on Substrate. Monolayer MXene film formation was carried out by optimizing our previously reported lateral interfacial self-assembly method. MXene dispersion was first diluted to the...
desired concentration and then mixed with methanol to a 1:8 volume ratio. The substrate of desire was submerged in a chloroform bath, and the dispersion was added to the chloroform until the droplet size enlarged to the size of the substrate. After flares were self-assembled on the droplet/chloroform interface, excess chloroform was removed from the bath and the film level lowered down to reach the substrate. Afterward, the substrate was lifted and baked at 100 °C for ~30 min to dry. The substrates were kept in a vacuum desiccator until use. We note that the concentration of the dispersion plays an important role in the final morphology of the film. Due to flake size heterogeneity, we prefer to use UV−vis absorbance to quantify MXene concentration. The film concentration according to the spectrum shown in Figure 1 produces a well-packed monolayer structure. However, further optimization of the dispersion after the characterization of the initial film is sometimes required to achieve the desired morphology.

**Imaging Techniques.** For SEM and TEM imaging, monolayer Ti3C2T x films were transferred onto Si chips with fabricated 50 × 50 μm² 50 nm-thick SiN x membranes at their center. For AFM imaging, a film was transferred onto SiN x substrates. High-resolution TEM imaging was done using a JEOL 2010FEG operating in bright-field mode at 200 kV. SEM was done using JSM-IT200 at 3.0 kV accelerating voltage. AFM measurements were carried out by the FastScan AFM instrument (Bruker Instruments, Billerica, MA) using ScanAsyst cantilevers (Bruker Instruments) performing at the FastScan device’s ScanAsyst Mode. The roughness average (R x) parameter in the Roughness tool in Gwyddion software was used to report the average surface roughness values.

**Ellipsometry Spectroscopy and Mapping.** Ellipsometry measurements were carried out using HORIBA UVISEL 2 Ellipsometer (HORIBA Scientific, USA) on monolayer Ti3C2T x films deposited on Si substrate. Real (n) and imaginary (k) refractive indices previously developed38,54 were used to make a reference file for Ti3C2T x using DeltaPsi2 software. Using reference files for modeling, the optical constants are fixed for fitting, and only the thickness changes. We produced the model using DeltaPsi2 software based on the layered structure, consisting of Si, SiO2 (due to the presence of native oxide on the Si surface), and Ti3C2Tx layers (Figure S4). Figure S4 shows how well our model fits the measured Ψ and Δ values obtained from a monolayer Ti3C2Tx film at two points on the wafer. For ellipsometry mapping, the DeltaPsi2 software mapping recipe feature was used to design an automated 81-point measurement at a wavelength range of 300−800 nm with a 70° incidence angle on a predesigned circular grid with a 40 mm diameter. The measurement results (Ψ and Δ values) at each point were fitted to the layered model consisting of Si/SiO2/Ti3C2T x to calculate the thickness. Using X, Y coordinates of grid points and thickness values, the Voronoi interpolation method was adopted, using Igor Pro software, to map the measurement results to the whole wafer area. For the effective medium approximation (EMA) model, we used the Bruggeman EMA method in DeltaPsi2 software to fit the model to our experimental data. The layered model consists of a Si layer, a SiO2 layer, and a layer with a mixture of Ti3C2Tx and void (Figure S6, inset). The resulting fitting parameters, percentage of void and MXene film (coverage), and the thickness of the MXene film at each point were used for interpretation of the model.

**Raman Spectroscopy and Mapping.** The Raman measurements were carried out using a Thermo Scientific DXR2xi Raman Imaging Microscope on monolayer Ti3C2T x films deposited on 300 nm-thick SiO2 substrate. The excitation source was a 455 nm laser with 0.5 μm spot size. The laser power was kept at 2 mW with a 1 s exposure time for 10 scans per position. Mapping was done on a 68.5 × 44.5 μm² area using OminiCX Software.

**UV−vis Absorbance Measurement.** UV−vis absorbance measurements were carried out using a PerkinElmer Lambda 35 UV−vis−NIR spectrophotometer on monolayer, bilayer, and trilayer Ti3C2T x films deposited on glass substrates in the range of 330−1100 nm. The effect of the glass substrates was removed by placing an identical clean glass slide in the reference beam position of the spectrophotometer, and hence, the absorbance spectra (shown in Figure 6a) are representative for the Ti3C2T x films without any contribution from the substrate.

**Conductivity Measurement.** The conductivity measurements were carried out using Keithley 2401 source meter and a homemade apparatus on monolayer, bilayer, and trilayer Ti3C2T x films deposited on glass substrates. The apparatus consists of four gold electrodes located at four corners of a square with a 10 mm length (shown in Figure 6b,c). To calculate sheet resistance, two sets of measurements were carried out. The first set is to measure the voltage drop across each horizontal line of the square (H1 or H2) by the sourcing current across the opposite edge, followed by calculating the resistance from the slope of the I−V curves (R_H1, R_H2). The second set is to measure the voltage drop across each vertical line of the square (V1 or V2) by sourcing current across the opposite edge (R_V1, R_V2). After the four measurement sweeps were taken, the sheet resistance was calculated as follows:

\[ R_{\text{horizontal}} = \frac{R_{H1} + R_{H2}}{2} \]
\[ R_{\text{vertical}} = \frac{R_{V1} + R_{V2}}{2} \]
\[ e^{-\frac{1}{2}R_{\text{external}}/R_s} + e^{-\frac{1}{2}R_{\text{internal}}/R_s} = 1, \quad R_s = \text{sheet resistance} \]

**MD Simulations.** All MD simulations using the ReaxFF potential61,62 were carried out using the AMS suite distributed by SCM (see www.scm.com). To enable interactions with chloroform, Cl/C/H/O parameters were added to the force field developed for Ti3C2T x MXenes39,60 with corrections to the Ti/O/H parameters to improve the ReaxFF description of surface defects and deprotonation kinetics.65 The force field and details on the parameterization can be found in the SI and Table S2. A 21.56 × 26.67 Å² slab of MXene was equilibrated in bulk water under NVT ensemble MD simulation at 500 K to form terminating −OH groups, and any adsorbed water molecules were removed. The solvents, chloroform and methanol and water (1:8 volume ratio), were initialized in a periodic domain of size 43.15 × 46.47 × 16.87 Å³ each, and the edge-terminated MXene was placed at various positions between the solvents, that is, at the interface of water and chloroform, or in either solvent. The dynamics was studied under an NPT ensemble (P = 1 atm, T = 300 K) simulation for 1 ns using the Berendsen barostat and thermostat (5000 and 100 fs damping coefficients, respectively). To quantify the energetics of MXene at different positions, an edge-free orthogonalized MXene spanning the xy-plane of size 26.25 × 30.30 Å² was considered separating the solvent, each solvent with z-axis length of 40 Å. These simulations were first equilibrated using the NPT-ensemble for 100 ps to prevent artifacts due to initialization, followed by NVT ensemble MD simulations for 500 ps for data collection. The running average and standard deviation of potential energy were calculated using a sampling window of 150 ps.

**ASSOCIATED CONTENT**

**Supporting Information**

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nano.0c06393. AFM/SEM/TEM images of the monolayer MXene film, refractive indices of Ti3C2T x film, ellipsometric modeling and goodness-of-fit, ellipsometry effective medium approximation model analysis, analyzed AFM and SEM images showing substrate coverage, final snapshots of a Ti3C2T x flake in the solvent after 1.5 ns of simulation, snapshot of a Ti3C2T x flake in chloroform during early stages and after 1.5 ns, AFM images of the bilayer MXene film, vdP experimental setup, comparison between methods of large-scale film fabrication of 2D materials, comparison of ReaxFF and DFT values for molecular chloroform and chloroform crystal (PDF)
Movie S1: Detailed steps of Ti$_3$C$_2$T$_x$ film assembly and transfer (MP4)
Movie S2: MXene flake rearrangement after mechanical disruption of the self-assembled film (MP4)
Movie S3: MD simulation of Ti$_3$C$_2$T$_x$ flake at the liquid/liquid interface of the ternary mixture (MP4)
Movie S4: MD simulation of Ti$_3$C$_2$T$_x$ flake solvated by water in ternary mixture (MP4)
Movie S5: MD simulation of Ti$_3$C$_2$T$_x$ flake solvated by chloroform in ternary mixture (MP4)

AUTHOR INFORMATION

Corresponding Author
Meni Wanunu — Department of Physics and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States; orcid.org/0000-0002-9837-0004; Email: wanunu@neu.edu

Authors
Mehrnaz Mojtabavi — Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
Armin VahidMohammadi — Innovation Partnership Building, UConn TechPark, University of Connecticut, Storrs, Connecticut 06269, United States; orcid.org/0000-0002-6284-7560
Karthik Ganeshan — Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States; orcid.org/0000-0002-3911-4246
Davoud Hejazi — Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States; orcid.org/0000-0002-5215-6395
Sina Shahbazmohamadi — Innovation Partnership Building, UConn TechPark, University of Connecticut, Storrs, Connecticut 06269, United States
Swastik Kar — Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
Adri C. T. van Duin — Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States; orcid.org/0000-0002-3478-4945

Complete contact information is available at: https://pubs.acs.org/10.1021/acsnano.0c06393

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We acknowledge the National Science Foundation (DMR 1710211) for funding this work. The authors thank Kathleen Maleski, Yuriy Gogotsi, and Aaron Fafarman for providing us with the values for modeling the ellipsometric measurements. The authors acknowledge Tzahi Cohen-Karni and Raghav Garg (Carnegie-Mellon University) for loaning us the vDP apparatus and providing a protocol. The authors thank David Hoogerheide for providing us with the 3 in. Si wafer for ellipsometric measurements. K.G. and A.C.T.v.D. performed the ReaxFF MD simulations and acknowledge funding from the Fluid Interface Reactions, Structures and Transport (FIRST), an Energy Frontier Research Center funded by the US Depart-

REFERENCES
(1) Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R.; Liang, L.; Louis, S. G.; Fleming, E.; Zhou, W.; Kim, S. S.; Naik, R. R.; Sumpter, B. G.; Terrones, H.; Xia, F.; Wang, Y.; et al. Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano 2015, 9, 11509–11539.
(2) Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2017, 2, 16098.
(3) Zeng, M.; Xiao, Y.; Liu, J.; Yang, K.; Fu, L. Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chem. Rev. 2018, 118, 6236–6296.
(4) Donarelli, M.; Ottaviano, L. 2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WSe2 and Phosphorene. Sensors 2018, 18, 3638.
(5) Danda, G.; Drndić, M. Two-Dimensional Nanopores and Nanoporous Membranes for Ion and Molecule Transport. Curr. Opin. Biotechnol. 2019, 55, 124–133.
(6) Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem. Rev. 2019, 119, 478–598.
(7) Bolotsky, A.; Butler, D.; Dong, C.; Gerace, K.; Glavin, N. R.; Muratore, C.; Robinson, J. A.; Ebrahimzadeh, A. Two-Dimensional Materials in Biosensing and Healthcare: From in Vitro Diagnostics to Optogenetics and Beyond. ACS Nano 2019, 13, 9781–9810.
(8) Dervin, S.; Dionysiou, D. D.; Pillai, S. C. 2D Nanostructures for Water Purification: Graphene and Beyond. Nanoscale 2016, 8, 15115–15131.
(9) Rasool, K.; Pandey, R. P.; Rasheed, P. A.; Buuczko, S.; Gogotsi, Y.; Mahmoud, K. A. Water Treatment and Environmental Remediation Applications of Two-Dimensional Metal Carbides (MXenes). Mater. Today 2019, 30, 80–102.
(10) Pomerantseva, E.; Bonaccorso, F.; Feng, X.; Cui, Y.; Gogotsi, Y. Energy Storage: The Future Enabled by Nanomaterials. Science 2019, 366, No. eaan8285.
(11) Macha, M.; Marion, S.; Nandigana, V. R. V.; Radenovic, A. 2D Materials as an Emerging Platform for Nanopore-Based Power Generation. Nature Reviews Materials. 2019, 4, 588–605.
(12) Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J. P. 25th Anniversary Article: What Can Be Done with the Langmuir-Blodgett Method? Recent Developments and Its Critical Role in Materials Science. Adv. Mater. 2013, 25, 6477–6512.
(13) Shao, J.-J.; Lv, W.; Yang, Q.-H. Self-Assembly of Graphene Oxide at Interfaces. Adv. Mater. 2014, 26, 5586–5612.
(14) Ning, J.; Wang, D.; Chai, Y.; Feng, X.; Mu, M.; Guo, L.; Zhang, J.; Hao, Y. Review on Mechanism of Directly Fabricating Wafer-Scale Graphene on Dielectric Substrates by Chemical Vapor Deposition. Nanotechnology 2017, 28, 284001.
(15) Zavabeti, A.; Jannat, A.; Zhong, L.; Haidry, A. A.; Yao, Z.; Ou, J. Z. Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications. Nano-Micro Lett. 2020, 12, 66.
(16) Cote, L. J.; Kim, F.; Huang, J. Langmuir-Blodgett Assembly of Graphite Oxide Single Layers. J. Am. Chem. Soc. 2009, 131, 1043–1049.
(17) Kim, F.; Cote, L. J.; Huang, J. Graphene Oxide: Surface Activity and Two-Dimensional Assembly. Adv. Mater. 2010, 22, 1954–1958.
(18) Zheng, Q.; Ip, W. H.; Lin, X.; Yousefi, N.; Yeung, K. C.; Li, Z.; Kim, J.-K. Transparent Conductive Films Consisting of Ultralarge Graphene Sheets Produced by Langmuir-Blodgett Assembly. ACS Nano 2011, 5, 6039–6051.
(19) Kim, J. W.; Kang, D.; Kim, T. H.; Lee, S. G.; Byun, N.; Lee, D. W.; Seo, B. H.; Ruoff, R. S.; Shin, H. S. Mosaic-Like Monolayer of Graphene Oxide Sheets Decorated with Tetrabutylammonium Ions. ACS Nano 2013, 7, 8082–8088.
(20) Lin, X.; Jia, J.; Yousefi, N.; Shen, X.; Kim, J.-K. Excellent Optoelectrical Properties of Graphene Oxide Thin Films Deposited on a Flexible Substrate by Langmuir-Blodgett Assembly. J. Mater. Chem. C 2013, 1, 6869−6877.

(21) Hidalgo, R. S.; López-Díaz, D.; Velázquez, M. M. Graphene Oxide Thin Films: Influence of Chemical Structure and Deposition Methodology. Langmuir 2015, 31, 2697−2705.

(22) Yamaguchi, H.; Eda, G.; Mattevi, C.; Kim, H.; Chhowalla, M. Highly Uniform 300 nm Wafer-Scale Deposition of Single and Multilayered Chemically Derived Graphene Thin Films. ACS Nano 2010, 4, 524−528.

(23) Matsuba, K.; Wang, C.; Saruwatari, K.; Uesusuki, Y.; Akatsuka, K.; Osada, M.; Ebina, Y.; Ma, R.; Sasaki, T. Neat Monolayer Tiling of Molecularly Thin Two-Dimensional Materials in 1 min. Science Advances. 2017, 3, No. e1700414.

(24) Shen, J.; Hu, Y.; Li, C.; Qin, C.; Shi, M.; Ye, M. Layer-by-Layer Self-Assembly of Graphene Nanoplatelets. Langmuir 2009, 25, 6122−6128.

(25) Lee, D. W.; Hong, T.-K.; Kang, D.; Lee, J.; Heo, M.; Kim, J. Y.; Kim, B.-S.; Shin, H. S. Highly Controllable Transparent and Conducting Thin Films Using Layer-by-Layer Assembly of Oppositely Charged Reduced Graphene Oxides. J. Mater. Chem. 2011, 21, 3438−3442.

(26) Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly Conducting Graphene Sheets and Langmuir-Blodgett Films. Nat. Nanotechnol. 2008, 3, 538−542.

(27) Biswas, S.; Drzal, L. T. A Novel Approach to Create a Highly Ordered Monolayer Film of Graphene Nanosheets at the Liquid-Liquid Interface. Nano Lett. 2009, 9, 167−172.

(28) Yun, T.; Kim, J.-S.; Shim, J.; Choi, D. S.; Lee, K. E.; Koo, S. H.; Kim, I.; Jung, H. J.; Yoo, H.-W.; Jung, H.-T.; Kim, S. O. Ultratrat Interfacial Self-Assembly of 2D Transition Metal Dichalcogenides Monolayer Films and Their Vertical and In-Plane Heterostructures. ACS Appl. Mater. Interfaces 2017, 9, 1021−1028.

(29) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706−710.

(30) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colomb, L.; Ruoff, R. S. Large-Area Synthesis of High-Quality and Uniform Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-Area Synthesis of High-Quality and Uniform Molecular Thin Two-Dimensional Materials in 1 min. Science Advances. 2017, 3, No. e1700414.

(31) Hofrichter, J.; Szafranek, B. N.; Otto, M.; Echtermeyer, T. J.; Baus, M.; Majerus, A.; Geringer, V.; Ramsteiner, M.; Kurz, H. Patterned Growth of Monolayer MoS2 via Vapor-Liquid-Solid Method. Nanoscale 2019, 11, 16122−16129.

(32) Ndagui, M.; Mochnal, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th Anniversary Article: Mxenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26, 992−1005.

(33) Tian, W.; VahidMohammadi, A.; Wang, Z.; Ouyang, L.; Beidaghi, M.; Hamedi, M. M. Layer-by-Layer Self-Assembly of Pillared Two-Dimensional Multilayers. Nat. Commun. 2019, 10, 2558.

(34) Dillon, A. D.; Ghiadi, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Farafarman, A. T. Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide. Adv. Funct. Mater. 2016, 26, 4162−4168.

(35) Peng, Y.-Y.; Akuzum, B.; Kurra, N.; Zhao, M.-Q.; Alhabeb, M.; Anasori, B.; Kumbur, E. C.; Alshareef, H. N.; Gar, M.-D.; Gogotsi, Y. All-Mxene (2D Titanium Carbide) Solid-State Microsupercapacitors for On-Chip Energy Storage. Energy Environ. Sci. 2016, 9, 2847−2854.

(36) Sarycheva, A.; Poleni, A.; Liu, Y.; Dandeker, K.; Anasori, B.; Gogotsi, Y. 2D Titanium Carbide (Mxene) for Wireless Communication. Science Advances. 2018, 4, No. eaau9920.

(37) Salles, P.; Quain, E.; Kurra, N.; Sarycheva, A.; Gogotsi, Y. Automated Scalpel Patterning of Solution Processed Thin Films for Fabrication of Transparent Mxene Microsupercapacitors. Small 2018, 14, 1802864.

(38) Kim, S. J.; Choi, J.; Maleski, K.; Hantanasirisakul, K.; Jung, H.-T.; Gogotsi, Y.; Ahn, C. W. Interfacial Assembly of Ultrathin, Functionalized Mxene Films. ACS Appl. Mater. Interfaces 2019, 11, 32320−32327.

(39) Yun, T.; Kim, H.; Iqbal, A.; Cho, Y. S.; Lee, G. S.; Kim, M.-K.; Kim, S. J.; Kim, D.; Gogotsi, Y.; Kim, S. O.; Koo, C. M. Electromagnetic Shielding of Monolayer Mxene Membranes. Adv. Mater. 2020, 32, 1906769.

(40) Petukhov, D. I.; Chumakov, A. P.; Kan, A. S.; Lebedev, V. A.; Eliseev, A. A.; Konovalov, O. V.; Eliseev, A. A. Spontaneous Mxene Monolayer Assembly at the Liquid-Air Interface. Nanoscale 2019, 11, 9980−9986.

(41) Kim, H.; Kee, J.; Seo, D.-R.; Lee, Y.; Ahn, C. W.; Koo, J. Large-Area 2D-Mxene Nanosheet Assemblies Using Langmuir-Schaefer Technique: Wrinkle Formation. Formation. ACS Appl. Mater. Interfaces 2020, 12, 42294−42301.

(42) Mojtahab, M.; VahidMohammadi, A.; Liang, W.; Beidaghi, M.; Wanunu, M. Single-Molecule Sensing Using Nanopores in Two-Dimensional Transition Metal Carbide (Mxene) Membranes. ACS Nano 2019, 13, 3042−3053.

(43) Alhabeb, M.; Maleski, K.; Anasori, B.; Lelystuk, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx Mxene). Chem. Mater. 2017, 29, 7633−7644.

(44) Li, Y.; Huang, S.; Wei, C.; Wu, C.; Mochalin, V. N. Adhesion of Two-Dimensional Titanium Carbides (Mxenes) and Graphene to Silicon. Nano. Commun. 2019, 10, 3014.

(45) Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2Mxene Flakes. Advanced Electronic Materials. 2016, 2, 1600255.

(46) Lipatov, A.; Lu, H.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitskii, A. Elastic Properties of 2D Ti3C2Tx Mxene Monolayers and Bilayers. Science Advances. 2018, 4, No. eaat0491.

(47) Maleski, K.; Shuck, C. E.; Farafarman, A. T.; Gogotsi, Y. The Broad Chromatic Range of Two-Dimensional Transition Metal Carbides. Adv. Opt. Mater. 2020, 2001563.

(48) Sarycheva, A.; Gogotsi, Y. Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti3C2Tx Mxene. Chem. Mater. 2020, 32, 3480−3488.

(49) Schneider, C. A.; Eliceiri, K. W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671−675.

(50) Pauw, L. J. v. d. A Method of Measuring Speciﬁc Resistivity and Hall Effect of Discs of Arbitrary Shape. Semiconductor Devices: Pioneering Papers; World Scientiﬁc: Singapore, 1991; pp 174−182.

(51) Hsain, R.; Balderton, S.; Tran, T.; deBoer, T.; Etienne, J.; Sandhu, M.; Wauford, N. A.; Chung, J.-Y.; Nokes, J.; Athaiya, M.; Paredes, J.; Peytavi, R.; Goldsmith, B.; Murthy, N.; Conboy, I. M.; Aran, K. Detection of Unamplified Target Genes via Crispr-Cas9 Immobilized on a Graphene Field-Effect Transistor. Nature Biomedical Engineering. 2020, 3, 427−437.
(56) Driscoll, N.; Richardson, A. G.; Maleski, K.; Anasori, B.; Adeowo, O.; Lelyukh, P.; Escobedo, L.; Cullen, D. K.; Lucas, T. H.; Gogotsi, Y.; Vitale, F. Two-Dimensional Ti3C2Mxene for High-Resolution Neural Interfaces. ACS Nano 2018, 12, 10419−10429.

(57) Loan, P. T. K.; Zhang, W.; Lin, C.-T.; Wei, K.-H.; Li, L.-J.; Chen, C.-H. Graphene/MoS2 Heterostructures for Ultrasensitive Detection of DNA Hybridisation. Adv. Mater. 2014, 26, 4838−4844.

(58) Arjmandi-Tash, H.; Belyaeva, L. A.; Schneider, G. F. Single Molecule Detection with Graphene and Other Two-Dimensional Materials: Nanopores and Beyond. Chem. Soc. Rev. 2016, 45, 476−493.

(59) Thakur, M.; Macha, M.; Cherney, A.; Graf, M.; Lihter, M.; Deen, J.; Tripathi, M.; Ka, A.; Radenovic, A. Wafer-Scale Fabrication of Nanopore Devices for Single-Molecule DNA Biosensing Using MoS2. Small Methods. 2020, 4, 2000072.

(60) VahidMohammadi, A.; Moncada, J.; Chen, H.; Kayali, E.; Orangi, J.; Carrero, C. A.; Beidaghi, M. Thick and Freestanding Mxene/Pani Pseudocapacitive Electrodes with Ultrahigh Specific Capacitance. J. Mater. Chem. A 2018, 6, 22123−22133.

(61) Chenoweth, K.; van Duin, A. C. T.; Goddard, W. A. Reaxff Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation. J. Phys. Chem. A 2008, 112, 1040−1053.

(62) Senftle, T. P.; Hong, S.; Islam, M. M.; Kylasa, S. B.; Zheng, Y.; Shin, Y. K.; Junkemeier, C.; Engel-Herbert, R.; Janik, M. J.; Aktulga, H. M.; Verstraelen, T.; Grama, A.; van Duin, A. C. T. The Reaxff Reactive Force-Field: Development, Applications and Future Directions. npj Comput. Mater. 2016, 2, 15011.

(63) Osti, N. C.; Naguib, M.; Ostadhossein, A.; Xie, Y.; Kent, P. R. C.; Dyatkin, B.; Rother, G.; Heller, W. T.; van Duin, A. C. T.; Gogotsi, Y.; Mamontov, E. Effect of Metal Ion Intercalation on the Structure of Mxene and Water Dynamics on Its Internal Surfaces. ACS Appl. Mater. Interfaces 2016, 8, 8859−8863.

(64) Osti, N. C.; Naguib, M.; Ganesan, K.; Shin, Y. K.; Ostadhossein, A.; van Duin, A. C. T.; Cheng, Y.; Daemen, L. L.; Gogotsi, Y.; Mamontov, E.; Kolesnikov, A. I. Influence of Metal Ions Intercalation on the Vibrational Dynamics of Water Confined between Mxene Layers. Physical Review Materials. 2017, 1, 065406.

(65) Ganeshan, K.; Shin, Y. K.; Osti, N. C.; Sun, Y. C.; Prenger, K.; Naguib, M.; Tyagi, M.; Mamontov, E.; Jiang, D.-e.; van Duin, A. C. T. Structure and Dynamics of Aqueous Electrolytes Confined in 2D-TiO2/Ti3C2T2 MXene Heterostructures. ACS Appl. Mater. Interfaces 2020, 12 (52), 58378−58389.