Pain is a complex disease which can progress into a debilitating condition. The effective treatment of pain remains a challenge as current therapies often lack the desired level of efficacy or tolerability. One therapeutic avenue, the modulation of ion channel signaling by small molecules, has shown the ability to treat pain. However, of the 215 ion channels that exist in the human genome, with 85 ion channels having a strong literature link to pain, only a small number of these channels have been successfully drugged for pain. The focus of future research will be to fully explore the possibilities surrounding these unexplored ion channels. Toward this end, a greater understanding of ion channel modulation will be the greatest tool we have in developing the next generation of drugs for the treatment of pain.

Introduction

The effective and safe treatment of pain remains an immense clinical challenge. Current therapies often lack the desired level of efficacy or tolerability to offer optimal pain management. This unmet medical need has driven huge research efforts toward the improved understanding of the physiology and pathophysiology of pain mechanisms, with the aim of providing more effective treatment options.

Modulation of ion channel signaling has the potential to effectively treat pain. Ion channel modulators such as Lidocaine (1) and Carbamazepine (2) (Fig. 1) act on voltage-gated sodium channels and are known to reduce pain in both the clinical and pre-clinical setting. However, modulators such as these identified early in the era of modern drug discovery, generally lack ion channel selectivity which makes firm conclusions about the roles of individual ion channels difficult to draw. More recently, evidence for the role of ion channels in pain has come from the study of monogenic pain related diseases caused by mutations that affect the function of specific ion channels. These include studies into both loss and gain of function mutations in the voltage-gated sodium channel Nav1.7 mutations, which cause profound pain insensitivity and sensitivity respectively, in individuals with such mutations.

Current Ion Channel Modulators for Pain Therapy

Of the 215 ion channels that exist in the human genome, 85 ion channels have strong literature links with pain, many of which are linked to multiple pain types. Some common ion channel-targeting drugs for pain are highlighted in Table 1. The number of discrete channels that have been successfully drugged for pain is very small compared to the number of ion channels that could have therapeutic potential.

Most of the currently available ion channel pain therapeutics were discovered more than a decade ago and some are over 50 years old. For example, Carbamazepine (2) is a first generation anticonvulsant developed in the 1950s for the treatment of trigeminal neuralgia, epilepsy, and mania. Drugs of this era were often discovered using “phenotypic” methods such as in vivo efficacy models or isolated tissue preparations designed to mimic a component of the clinical condition. In this way, a definitive characterization of which protein target(s) the ligand engaged with often came much later on. Carbamazepine is now known to inhibit sustained repetitive firing by blocking sodium channels in a use-dependent fashion with pain relief resulting from synaptic transmission blockade in the trigeminal nucleus. Carbamazepine also blocks calcium channels and GABA receptors at high micromolar levels of potency. This pan-ion channel inhibition profile likely drives Carbamazepines’ broad list of indications (including antiarrhythmic, antidepressant, neuromuscular blocking, and sedative effects). Additional older drugs in this class are local anesthetics exemplified by lidocaine (1), which have been used in surgical
procedures carried out on peripheral tissues, to reverse acute pain, or to treat chronic pain. These anesthetics are administered at relatively high doses to primarily block voltage gated sodium channels, but also block potassium and calcium channels. As with many compounds possessing polypharmacology, safety side effects of non-selective agents limit their chronic usage.

A commercially successful compound, Gabapentin (3), was discovered using this “phenotypic” method. Gabapentin was originally developed to treat epilepsy and is currently also used in the treatment of neuropathic pain. As a lipophilic analog of GABA, Gabapentin was originally thought to increase GABA levels by activating glutamate decarboxylase and was found to be efficacious as an anti-convulsant. It was not until much later that Gabapentin’s true mechanism of action was discovered, namely an interaction with the α2δ subunit of voltage gated calcium channels. A follow up drug discovery effort from Pfizer has since delivered Pregabalin (4), a compound with improved pharmacokinetics over Gabapentin that has become the gold standard for the treatment of chronic pain associated with diabetic neuropathy.

The relative lack of success in bringing new ion channel pain therapies to market in recent years is notable. The reasons for this include failure to deliver clear efficacy and/or safety differentiation over the current standard of care therapies. This lack of return upon investment has driven new approaches in pain research. The strategy to select and validate pain targets is moving away from those supported by preclinical pain models (which are largely unsuccessful in predicting clinical efficacy for novel pain medicines) to an approach in which human data, including genetic data and human in vitro pharmacology data from patient-derived cells, define confidence in mechanism. These human data are coupled with an increased focus on the delivery of translatable biomarkers to enable effective clinical dose-setting.

In addition to assessing the efficacy of new mechanisms, it is hoped that such human cell platforms will enable a more phenotypic approach to the identification of new pain targets. The increased investment in human biology, human-relevant in vitro screening platforms, and translational biomarkers is hoped to lead to greater success in Phase 2 and 3 clinical trials.

Ion Channel Modulators for Pain Therapy in Clinical Development

As described above, non-selective sodium channel blockers have been used for many years in the treatment of acute pain, but their utility is limited due to the functional consequences of inhibiting sodium channels other than those expressed in nociceptors, e.g. in the heart and CNS. A more recent understanding of which sodium channels are expressed in nociceptors and the generation of experimental and/or genetic data linking specific NaV receptors to a pain phenotype, has spurred the pain research community to deliver selective sodium inhibitors for clinical characterization. Advances in automated in vitro electrophysiology screening platforms have greatly facilitated these research efforts, enabling high quality NaV isoform data to be generated in a high throughput fashion.

In 2006, a seminal publication by Cox et al. demonstrated that congenital insensitivity to pain (CIP) could be conferred by missense mutations in NaV1.7. In addition to this, gain-of-function NaV1.7 mutations have been described in the rare, extreme pain conditions of inherited primary erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). These findings initiated a huge pharmaceutical investment that has delivered a range of new medicines for the treatment of pain.

Table 1. Common Ion Channel Drugs for Pain Indications

Drug	Target Channel	Disease Target	Year of First Clinical Usage
Gabapentin	Cav (α2δ)	Pain	1994
Pregabalin	Cav (α2δ)	Pain	2004
Ziconotide	Cav 2.2	Severe Pain	2004
Lidocaine	Nav	Local Anesthetic	1949
Bupivacaine	Nav	Local Anesthetic	1987
Lamotrigine	Nav	Off label neuropathic pain	1994
Lacosamide	Nav	Seizures and Pain	2008
Carbamazepine	Nav	Epilepsy and off label for pain	1963
Eslicarbazepine	Nav	Epilepsy	2009
of reportedly selective Nav 1.7 blockers. A number of these compounds have now entered clinical trials for pain (Fig. 3), including the proline derivative 5 from GSK/Convergence,\(^1\) a spiro-oxindole compound from Xenon (series exemplified by 6 XEN402, now known as TV-45070)\(^1\)^ and an aminoheterocycle sulphonamide series from a Pfizer-Icagen collaboration (series exemplified by 7).\(^1\)^ To-date, Xenon have reported efficacy treating pain in patients with congenital erythromelalgia, but no efficacy was seen in a study of postherpetic neuralgia. Also, Convergence has reported positive data from an open-label phase of a trigeminal neuralgia study as well as statistically significant differences in the reduction of pain in a lumbosacral radiculopathy (sciatica) trial.\(^2\)^

In addition to Nav 1.7, a lot of interest has been generated in Nav1.8 as a target for both inflammatory and neuropathic pain. Abbott, in collaboration with Icagen, reported the discovery of a number of biaryl Nav1.8 inhibitors (Fig. 4), exemplified by 8 (A-803467)\(^3\) and 9,\(^4\) of which A-803467 has been used extensively in preclinical target validation. Pfizer has also disclosed a series of Nav1.8 selective compounds, exemplified by 6,6-biaryl amide 10,\(^5\) and progressed an example into the clinic. Unfortunately, in the one result published so far, amide 10 showed no efficacy in a post-surgical dental pain clinical trial.

The TRP channels constitute a family of mammalian cation channels with biological functions that include pain perception and thermosensation.\(^6\) TRPV1 is activated by numerous stimuli including heat (>42°C), vanilloids, lipids, and protons/cations. Several highly selective TRPV1 antagonists have advanced into clinical development for the treatment of pain including 11 AMG517,\(^7\) 12 SB-705498,\(^8\) 13 ABT-102,\(^9\) and 14 MK-2295\(^10\) (Fig. 5). Unfortunately, reports from many of the clinical studies have shown TRPV1 blockade to have effects on core body...
temperature, which has halted much of the drug development activity targeting this channel. The use of desensitising TRPV1 agonists has also been shown to reduce pain sensitivity. This has found clinical application with a topical approach (e.g., Astella’s Qutenza® patch, 8% capsaicin) in which a local anesthetic is applied to the painful area prior to topical capsaicin, preventing the initial painful flare that occurs with agonist-induced nociceptor excitation prior to desensitisation.

TRPM8 is activated \textit{in vitro} by cool temperatures (10–23°C) and cooling agents such as icilin and menthol. Researchers at Pfizer have recently disclosed that TRPM8 antagonist PF-05105679, Figure 6, is analgesic in an experimental model of cold pain (the Cold Pressor Test) in humans, without affecting core body temperature. TRPV1 is activated by a variety of ligands including exogenous electrophiles such as cinnamaldehyde, allyl isothiocyanate, and the endogenous ligand 4-hydroxynonenal (4-HNE). Recombinant TRPV1 is activated by noxious cold (<17°C). The TRPV1 channel has been directly linked to pain in humans by a gain-of-function mutation that causes familial episodic pain syndrome. The most advanced TRPV1 antagonist is Glenmark’s GRC17536, which has shown a statistically significant and clinically relevant response in a Phase 2a clinical trial for treating diabetic peripheral neuropathy. The structure of GRC17536 has not been disclosed, but an exemplar from one of Glenmark Pharmaceutical’s patent applications is shown in Figure 7 (compound 16, TRPA1 IC50 2.5nM). Another TRPA1 compound comes from a Hydra Biosciences/Cubist Pharmaceuticals partnership. They have taken TRPA1 antagonist CB-625, presumed to be from a series that includes 17 HC-030031 and 18 HC-068559, to the clinic for the potential oral treatment of pain and inflammatory conditions. Hydra/Cubist have reported completion of a single ascending-dose Phase 1 study with CB-625, but efficacy data is not yet available.

Figure 6. TRPM8 modulator PF-05105679.

Figure 7 (compound 16, TRPA1 IC50 2.5nM). Another TRPA1 compound comes from a Hydra Biosciences/Cubist Pharmaceuticals partnership. They have taken TRPA1 antagonist CB-625, presumed to be from a series that includes 17 HC-030031 and 18 HC-068559, to the clinic for the potential oral treatment of pain and inflammatory conditions. Hydra/Cubist have reported completion of a single ascending-dose Phase 1 study with CB-625, but efficacy data is not yet available.

TRPV3 is activated by natural products such as camphor, 2-APB, and warm temperatures (>32°C). Several classes of selective TRPV3 antagonists have to-date been disclosed (Fig. 8) that have enabled research into the role of TRPV3 in pain signaling. These include the benzothiazole 19 and the quinazolin-4-one 20 from Hydra and Glenmark’s GRC15300 (structure not disclosed), Glenmark reported the completion of a Phase 1 study with GRC 15300 in 2011 and, following a deal with Sanofi-Aventis, opened a Phase 2 trial in neuropathic pain in 2012. Unfortunately, Sanofi discontinued the trial in 2014 when the compound failed the Phase 2 proof of concept trial. Glenmark has filed a number TRPV3 patent applications, examples from which include pyridopyrimidine 21 and benzimidazole 22.

TRPV4 is activated by a number of small molecules that include anandamide, 5,6-epoxyeicosatrienoic acid, and GSK1016790A, and by heat (27–34°C). A number of selective TRPV4 antagonists have been disclosed over recent years (Fig. 9). These include RN-173433 from Renovis, Hydra’s HC-067047; a compound reported to be efficacious in preclinical models of bladder cystitis, and sulphonamide 25 from Pfizer. To date, the only TRPV4 ligand to have entered clinical trials is GSK 2798745, a compound of undisclosed structure that has entered a Phase 1 study. This ligand is hoped to be effective in treating pulmonary edema.

Figure 7. TRPA1 ligands.
(likely to be from the same family as compound 26) and Z-160 from Zalicus (now Epirus Biopharma), both of which have been progressed into Phase 2 studies. The Convergence compound has now completed a pair of Phase 2 studies, in postherpetic neuralgia and diabetic peripheral neuropathy. While the resulting efficacy data is not yet available, it is expected to be revealed at the end of 2015. The Zalicus compound has also finished a pair of Phase 2 studies, in lumbosacral radiculopathy and postherpetic neuralgia. Compound 27 did not meet the primary endpoint for either of these studies.

T-type calcium channels are low-voltage activated calcium channels that act as modulators of action potential threshold by increasing the calcium current, leading to further depolarization of the cell and activation of other calcium channels, and ultimately, sodium and potassium channels. They are present within cardiac and smooth muscle, and many neuronal cells within the central nervous system. *T*-type calcium channel blockade can reduce pain in neuropathic, inflammatory, and visceral pain models. Z944, is a novel, oral, state-dependent, selective *T*-type calcium channel blocker (structure not disclosed). This blocker has >150-fold selectivity vs. non-*T*-type voltage-gated ion channels. A Phase 1 study to determine the safety, tolerability, and pharmacokinetics of oral Z944 showed it was safe and well tolerated. A Phase 1b clinical study measuring Laser-Evoked Potentials (LEP) from skin irritated following topical application of capsaicin or exposure to UV light demonstrated that Z944 reduced peak-to-peak amplitudes of LEPs from both capsaicin and UV irritated skin models and reduced subjective Visual Analog Scale (VAS) pain scores in both skin types. On the basis of these findings, Z944 is currently being tcgq. A number of preclinical pain models have been used to examine the effects of activation of Kv7 channels which support the role of Kv7 channels in pain signaling and the potential opportunities for Kv7 openers in pain therapy. Retigabine was approved in 2011 for use in partial-onset seizures and then later taken on to a Phase 2 proof-of-concept clinical trial for pain from postherpetic neuralgia. Unfortunately Retigabine was non-superior to placebo in this study with respect to reducing pain scores. A structurally similar analog of Retigabine, Flupirtine, is approved for treatment of lower back pain in Europe.

Ionotropic glutamate receptors (iGluRs) are ligand gated ion channels that mediate excitatory neurotransmission. Subtype-selective GluN2B receptor antagonists in particular have attracted attention from the pharmaceutical research community for targeting CNS disorders including stroke and Parkinson disease. Examples of GluN2B receptor antagonists include Ifenprodil and the more selective derivative Traxoprodil (Fig. 11). Traxoprodil has progressed into clinical trials for a number of indications including stroke and neuropathic pain.
P2X receptors are purinergic cell surface ion channels gated by extracellular ATP.47 P2 × 3, P2 × 2/3, P2 × 4, and P2 × 7 receptors have received much attention over the last few years as potential targets to treat a variety of conditions that include chronic pain and arthritis.48 Evotec, Pfizer, and AstraZeneca have progressed P2 × 7 receptor antagonists to the clinic. Unfortunately, CE-224535 and AZD9056 (Fig. 12) did not demonstrate clinical efficacy in rheumatoid arthritis, although it is not yet known whether compounds such as these may be useful in pain indications.49

Conclusion and outlook

The modulation of ion channel signaling by small molecules has shown the ability to treat pain. However, current therapies often lack the desired level of efficacy or tolerability to offer optimal pain management. The focus for future research will inevitably be to provide safer and more effective treatments for pain. This future research will include advances in ion channel cloning and screening capabilities, increased knowledge regarding subtype selective molecules, and
additional screening against ion channels known to elicit CNS and cardiovascular side effects. Finally, discovery of strong genetic linkages between specific ion channels and their related diseases will help to determine the most beneficial targets. In the end, a greater understanding of ion channel modulation will be the greatest tool we have in developing the next generation of drugs for the modulation of pain in the human disease state.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

1. Lloyd RS, Blythe JO Jr. Clinical experiences with lidocaine as a local anesthetic. J Am Dent Assoc 1949; 39:296-9. PMID:18164083; http://dx.doi.org/10.14219/jada.archive.1949.0260.
2. Schindler W, Hallfager F. Derivatives of imidobenzimid. Helv Chim Acta 1954; 37:472-83; http://dx.doi.org/10.1002/hlca.1954037211.
3. Cox JJ, Reimann F, Nicholas AK, Thornton G, Ruhers E, Springkle K, Karbani G, Jafri H, Mannan J, Rausch Y, et al. An SCNA9 channelopathy causes congenital inability to experience pain. Nature 2006; 441: (21)211-8; http://dx.doi.org/10.1038/nature04513.
4. Fertleman CR, Baker MD, Parker KA, Moffatt S, Elmets CA. Benzothiazole derivatives and related compounds for modulating TRPV3 function and their preparation, pharmaceutical compositions and use in the treatment of pain and related disorders. WO2007056124A2, 2007.
5. Yang Y, Wang Y, Li S, Xu Z, Li F, Ma L, Fan J, Bu D, Liu B, Fan Z, et al. Mutations in SCNA9, encoding a sodium channel α subunit, in patients with primary erythralgia. J Med Gen 2004; 41 (3):171-4; http://dx.doi.org/10.1038/jmg.2003.012153.
6. Data derived from text-mining search of published articles in which high relevance co-occurrences are established between ion channels and disease. Search performed by Dr. Ben Sidders, Pfizer.
7. Xiong Z, Strichartz, G. R. Inhibition by local anesthetics of Ca(2+) channels in rat anterior pituitary cells. Eur J Pharmacol 1998; 363:81-90; PMID:9877085; http://dx.doi.org/10.1016/S0014-2999(98)00769-9.
8. Bagal SK, Brown AD, Cox PJ, Omoto K, Owen RM, Pyde DC, Sidders B, Skerratt SE, Stevens EB, Storer RJ, et al. Ion Channels as Therapeutic Targets: A Drug Discovery Perspective. J Med Chem 2013; 56 (3):593-624; PMID:23121096; http://dx.doi.org/10.1021/jm3011433.
9. Backonja M, Glanzman RL. Gabapentin dosing for postsurgical pain: results of a phase II dose-ranging, placebo-controlled clinical trials. Clin Ther 2003; 25:81-104; PMID:12637113; http://dx.doi.org/10.1016/S0149-2919(03)00111-7.
10. Silverman RB. From basic science to blockbuster drug: the discovery of Lyrica. Angew Chem Int Ed 2008; 47:3500-4; http://dx.doi.org/10.1002/anie.200702480.
11. Zajac MA. Process for preparing a-carnosine pyrroline-dione derivatives. WO2010127627A1, 2011.
12. Goldberg YP, Price N, Namdari R, Cohen CJ, Lamers CA, Winter C, Price J, Young CE, Verschoof H, Sherrington R, et al. Treatment of Nav1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain 2012; 153:80-5; PMID:22058895; http://dx.doi.org/10.1016/j.pain.2011.09.008.
13. Beaudoin S, Laufersweiler MC, Markworth CJ, Marron BE, Millan DS, Rawson DJ, Reister SM, Sasai K, Storer RJ, Stupple PA, et al. Preparation of heteroaryl benzothiazole derivatives and related compounds for modulating TRPV3 function and their preparation, pharmaceutical compositions and use in the treatment of pain and related disorders. WO2010077043A1, 2010.
14. Jarvis MF, Honore P, Shieh C-C, Chapman M, Joshi S, Zhang X-F, Kort M, Carroll W, Mannan B, Atkinson R, et al. A-830467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. PNAS 2007; 104:8250-5; PMID:17748345; http://dx.doi.org/10.1073/pnas.0611364104.
15. Scano MJ, Shi L, Drazin I, Gregg RJ, Atkinson RN, Thomas JB, Johnson MS, Chapman ML, Liu D, Krumbis MJ, et al. Discovery and biological evaluation of potent, selective, orally bioavailable, pyrazine-based blockers of the Nav(1.8) sodium channel with efficacy in a model of neuropathic pain. Bioorg Med Chem 2010; 18: A948-57; http://dx.doi.org/10.1016/j.bmc.2010.09.057.
16. Kemp MJ. Structural trends among second-generation voltage-gated sodium channel blockers. Progr Med Chem 2010; 49:81-111; http://dx.doi.org/10.1016/1074-5521.
17. Nilius B, Owissian G, Voets T, Peters JA. Transient Receptor Potential Cation Channels in Disease. Physiol Rev 2007; 87:165-217; PMID:17237455; http://dx.doi.org/10.1152/physrev.00122.2006.
18. Gaswa NR, Baamonde A, Hidalgo A, Menendez A, Storer RI, et al. Identification of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade. J Pharmacol Exp Ther 2007; 323:1278-87; PMID:17526353; http://dx.doi.org/10.1124/jpet.107.125674.
19. Rami HK, Thompson M, Stemp G, Fell S, Jerman JC, Stevens EB, Baker MD, Parker KA, Moffatt S, Elmets CA. Benzothiazole derivatives and related compounds for modulating TRPV3 function and their preparation, pharmaceutical compositions and use in the treatment of pain and related disorders. WO2007001396A1, 2009.
20. Beaudoin S, Laufersweiler MC, Markworth CJ, Stupple PA, et al. Preparation of heteroaryl benzothiazole derivatives and related compounds for modulating TRPV3 function and their preparation, pharmaceutical compositions and use in the treatment of pain and related disorders. WO2010127627A1, 2010.
21. Bakthavatchalam R, Blum CA, Briemlin HL, Caldwell TM, De LS. Preparation of substituted quinazolin-4(3H)-ylamine VR1 capsiceptor, receptor antagonists for relieving pain. WO2003062209A2, 2003.
22. Baamonde A, Lastra A, Juarez L, Hidalgo A, Menendez A, De LS. Preparation of substituted quinazolin-4(3H)-ylamine VR1 capsiceptor, receptor antagonists for relieving pain. WO2003062209A2, 2003.
23. Knotkova H, Blum CA, Briemlin HL, Caldwell TM, De LS. Preparation of substituted quinazolin-4(3H)-ylamine VR1 capsiceptor, receptor antagonists for relieving pain. WO2003062209A2, 2003.
24. (a) Owen R. TRPM8 blockade and its role in cold pain signalling. 17th RSC/SCI Medicinal Chemistry Symposium (Sharjah, United Arab Emirates) 2009; 9:377-95; http://dx.doi.org/10.2174/1566088109873838.
25. Ahier C, Dale CS, Kielvet AE, Chapman K, Castiglioni AJ, Matthews EA, Evans RM, Dickenson AH, Lipscombe D, Verguille N, Zamponi GW. Differential role of N-type calcium channel splice variants in inflamed tissues. Brain Res Bull 2005; 67:476-81; PMID:16216696; http://dx.doi.org/10.1016/j.brainresbull.2005.07.001.
26. Kumar S, Thomas A, Waghamare NT, Margeal S, Khaire-Joshi NS, Mukhopadhyay I. Preparation of thieno-pyrimidine derivatives as TRPA1 modulators. WO2010109334A2, 2010.
27. Edr SR, Crown ED, Moan EL, Liang HA, Chooong KC, Dima S, Herze DA, Kane SA, Urban MO. HC-300301, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hyperalgesia in mice. Pain 2008; 136:248-62; PMID:18349933; http://dx.doi.org/10.1016/j.pain.2008.01.001.

350 Channels

Volume 9 Issue 6
40. Yang W-P, Levesque PC, Little WA, Conder ML, Ramakrishnan P, Neubauer MG, Blanar MA. Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy. J Biol Chem 1998; 273:19419-23; PMID:9677360; http://dx.doi.org/10.1074/jbc.273.31.19419.

41. Mruk K, Kobertz WR. Discovery of a novel activator of KCNQ1-KCNE1 K+ channel complexes. PLoS One 2009; 4(1): e4236; PMID:19156197; http://dx.doi.org/10.1371/journal.pone.0004236.

42. Blackburn-Munro G, Jensen BS. The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol 2003; 460:109-16; PMID:12559370; http://dx.doi.org/10.1016/S0014-2999(02)02924-2.

43. Bowie D. Ionotropic glutamate receptors & CNS disorders. CNS Neurol Disord: Drug Targets 2008; 7:129-43; PMID:18537642; http://dx.doi.org/10.2174/187152708784083821.

44. Gogas KR. Glutamate-based therapeutics: NR2B receptor antagonists. Curr Opin Pharmacol 2006; 6:68-74; PMID:16376149; http://dx.doi.org/10.1016/j.coph.2005.11.001.

45. Reynolds IJ, Miller RJ. Ifenprodil is a novel type of N-methyl-D-aspartate receptor antagonist: interaction with polyamines. Mol Pharmacol 1989; 36:758-65; PMID:2555674.

46. Chenard BL, Bondner J, Butler TW, Chambers LK, Collins MA, De CDL, Ducar MF, Dumont ML, Fox CB, et al. (1S,2S)-1-(4-Hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidin-1-propanol: A Potent New Neuroprotectant Which Blocks N-Methyl-D-Aspartate Responses. J Med Chem 1995; 38:3138-45; PMID:7636876; http://dx.doi.org/10.1021/jm00016a017.

47. Khakh BS, North RA. P2X receptors as cell-surface ATP sensors in health and disease. Nature (London) 2006; 442:527-32; http://dx.doi.org/10.1038/nature04886.

48. Guile SD, Ince F, Ingall AH, Kindon ND, Meghani P, Mortimore MP. The medicinal chemistry of the P2 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine [Erratum to document cited in CA158:123117]. Ann Rheum Dis 2012; 71:2064; http://dx.doi.org/10.1136/annrheumdis-2012-201289corr1.

49. Keystone EC, Wang MM, Layton M, Hollis S, McInnes IB. Clinical evaluation of the efficacy of the P2 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine [Erratum to document cited in CA158:123117]. Ann Rheum Dis 2012; 71:2064; http://dx.doi.org/10.1136/annrheumdis-2012-201289corr1.

50. Convergence, http://www.convergencepharma.com/ index.asp?page_id=14 Press release.

51. Glenmark, http://www.glenmarkpharma.com/GLN_NWS/ homepage.aspx?res=P_GLN.

52. Zalicus Updates Progress on Z944 Clinical Development http://www.marketwatch.com/story/zalicus-updates-prog-ress-on-z944-clinical-development-2014-05-22.