Therapeutic antisense oligonucleotides against cancer: hurdling to the clinic

Pedro M. D. Moreno* and Ana P. Pêgo

Instituto de Engenharia Biomédica, Nanobiomaterials for Targeted Therapies Group, Porto, Portugal
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal

OPENING THE THERAPEUTIC LANDSCAPE BY EVOLUTION OF NUCLEIC ACIDS CHEMISTRY

Oligonucleotides have been under investigation for over 30 years, whilst achieving only two approved drugs. Those were, Fomivirsen, approved by the FDA in 1998 for the treatment of cytomegalovirus retinitis in patients with AIDS, but discontinued for low demand, and Mipomersen, FDA approved in 2013, targeting ApoB100 for the treatment of homozygous familial hypercholesterolaemia (HoFH), a rare genetic disorder that leads to excessive levels of low-density lipoprotein (LDL) cholesterol. These are both single-stranded antisense oligonucleotide drugs (most commonly known as AONs) that together with siRNA (a double-stranded oligonucleotide) make up, at present, the therapeutic antisense oligonucleotide field. In this paper more emphasis will be put on AONs due to their longer time in development and history of clinical trials.

Progress in this field has been proceeding at a steady but somewhat slow pace, driven mostly by the speed at which the different intra and extracellular obstacles encountered by the oligonucleotide drugs are being tackled. The most important hurdles have been (i) the poor stability against extra- and intracellular degradation (mostly by action of nucleases), (ii) inefficient intracellular delivery to target cells or tissues, (iii) inadequate affinity toward the intended target sequence and (iv) potential off-target/toxicity effects. Finally for most applications (v) immunostimulation has also been a matter of concern.

The pursuit of clinically relevant antisense drugs has led the field to develop different types of chemical modifications to native DNA or RNA in an attempt to overcome the aforementioned limitations. Most widely used modifications can be divided in two simple categories: (a) backbone structure and (b) sugar ring modifications (Table 1).

Under clinical development since the early 90’s and with two successfully approved drugs (Fomivirsen and Mipomersen), oligonucleotide-based therapeutics has not yet delivered a clinical drug to the market in the cancer field. Whilst many pre-clinical data has been generated, a lack of understanding still exists on how to efficiently tackle all the different challenges presented for cancer targeting in a clinical setting. Namely, effective drug vectorization, careful choice of target gene or synergistic multi-gene targeting are surely decisive, while caution must be exerted to avoid potential toxic, often misleading off-target-effects. Here a brief overview will be given on the nucleic acid chemistry advances that established oligonucleotide technologies as a promising therapeutic alternative and ongoing cancer related clinical trials. Special attention will be given toward a perspective on the hurdles encountered specifically in the cancer field by this class of therapeutic oligonucleotides and a view on possible avenues for success is presented, with particular focus on the contribution from nanotechnology to the field.

Keywords: antisense, oligonucleotides, cancer, therapeutics, nanomedicine
Table 1 | Common nucleic acids modifications divided by category.

BACKBONE STRUCTURE	SUGAR RING
![Phosphorothioate](PS)	![2′O-Methyl (2′O-Me)]
![N′3 Phosphoramidate (NP)]	![2′O-Metoxethyl (MOE)]
![Peptide Nucleic Acid (PNA)]	![Locked Nucleic Acid (LNA)]
![Morpholino (PMO)]	![Unlocked Nucleic Acid (UNA)]
![2′F-Arabino Nucleic Acid (2′F-ANA)]	

The mechanism of action of AONs has to be carefully considered when deciding for the type of nucleotide modifications and design of the oligonucleotide (here including number and position of modified nucleotides). Thus, in contrast to PS modifications that maintain the anionic character of oligonucleotides, PNA and PMO completely substitute the phosphodiester linkage by either a polyamide backbone (Nielsen et al., 1991) or a phosphorodiamidate group (Summerton and Weller, 1997), respectively, hence being uncharged nucleotide analogs. On the other hand sugar ring modifications can influence the nucleoside conformation promoting the preferential adoption of an A-form (dsRNA type) or B-form (dsDNA type) helix when in a double-stranded structure. In the case of 2′O-Me RNA (Kawai et al., 1992; Nishizaki et al., 1997), MOE (Manoharan, 1999) and LNA (Koshkin et al., 1998; Obika et al., 1998), all promote the A-form while 2′F-ANA (Berger et al., 1998) the B-form. Contrasting all the aforementioned, UNA, with its unlocked ring configuration, does not impart any conformation restrictions (Pasternak and Wengel, 2011).

All of the abovementioned nucleotide modifications have thus been used with few restrictions when designing steric hindrance AONs, since their incorporation mainly focus on achieving enhanced binding affinity and selectivity toward a target sequence. In contrast, the design of AONs for target degradation through the action of RNase H has to obey the enzyme’s structural preferences for cleaving DNA/RNA duplexes (Minshull and Hunt, 1986; Nakamura et al., 1991). Hence, all modifications too divergent from natural DNA nucleotides need to be carefully considered to not hinder the enzyme action. This can be accomplished by the design of “gapmer” AONs containing the modified nucleotides on the 5′ and 3′ terminus flanking a central unmodified DNA nucleotides stretch (Monia et al., 1993; Stanton et al., 2012). Specifically, in the case of the two approved drugs, Fomivirsen is a PS modified DNA oligonucleotide applied by intraocular injection, whereas Mipomersen is a second generation AON gapmer with MOE modifications at the ends and PS throughout, applied as an intravascular injection.

BRIEF OVERVIEW ON ANTISENSE OLIGONUCLEOTIDES

CLINICAL TRIALS RELATED TO CANCER

An increasing number of clinical trials with AONs are ongoing, which shows that the field is rapidly forwarding. In Table 2 a list of recently completed and ongoing clinical trials is presented.

Other studies have unfortunately failed, in different phases, to reach their expected endpoints or to show significant benefit, leading to a stop in the corresponding AON development. Some aspects of antisense technology have contributed to this and are next discussed.

CHALLENGES FOR ANTISENSE TECHNOLOGY—1.

UNSPECIFIC MODES OF ACTION

Along their development path, oligonucleotides have unraveled much of their potential but also many of their limitations.

As discussed above, introduction of PS modifications led to the first evidences that antisense drugs could become a reality in a clinical setting, essentially by increasing resistance to degradation and extending circulation times after systemic administration (mostly due to unspecific serum-protein binding). These properties improved the oligonucleotide therapeutic potential, despite some decreased affinity for the target sequence (when comparing to regular DNA oligonucleotides) (Kibler-Herzog et al., 1991). On
the other hand, this unspecific protein binding feature can potentially lead to associated toxicities or cellular effects not entirely sequence specific, such as complement activation, increased coagulation times and unwanted immune activation (Brown et al., 1994; Krieg and Stein, 1995; Henry et al., 1999; Mou et al., 2001; Krieg et al., 2003; Senn et al., 2005). These effects, however, are most often oligonucleotide length and concentration dependent (Webb et al., 2001). Immune activation, on the other hand, is also enhanced by specific nucleotide sequences (CpG motifs) (Barchet et al., 2008), although this can be minimized by different types of nucleotide modifications (Henry et al., 2000). Nevertheless, immune activation is an important factor that has previously led to erroneous interpretations of data when inhibition of tumor growth was not primarily driven by the antisense mechanism but by the immunostimulatory properties of CpG ODN—oligodeoxynucleotide; cEt—constrained Ethyl.

Another important concern relates to hybridization dependent toxicity, deriving from exaggerated pharmacological action (a consequence also seen with any other chemical drug), or off-target hybridization. The latter can be minimized by designing the antisense drug taking into account a detailed bioinformatics analysis for identification of both, genes with perfect matches or with partial complementarity (looking out for 1–3 mismatches as the most relevant ones) (Bennett and Swayze, 2010).

The above considerations have raised some difficulties, especially in vivo, for the exact prediction of the mechanism of action of an antisense drug and are among the causes probably hampering a more resolute demonstration of the therapeutic relevance of antisense drugs toward not only cancer but also other diseases in general. This concern can be demonstrated by the case of the antisense drug LY2275796 (a second generation AON with PS and MOE modifications targeting eIF-4E) where, besides target gene downregulation, housekeeping genes were considerably affected as well, raising the question to whether the antisense action was sequence specific or also mediated by off-target effects (Hong et al., 2011).

This scenario only reinforces the need for an in-depth pharmacologic and pharmacokinetic analysis at the preclinical stage of AON development.

CHALLENGES FOR ANTISENSE TECHNOLOGY—2. DELIVERY

The efficient and targeted delivery of nucleic acid therapeutics is seen as, if not the biggest, one of the most important challenges for this class of drugs. The most commonly used nucleic acids drugs (namely, plasmid DNA, siRNA and AONs) have specific features influencing their cellular uptake and delivery vector development. AONs, due to the short chain size have very low charge density, in addition, being single-stranded, they have the

Table 2 | On-going and recently completed anti-cancer AON clinical trials.

DRUG	AON (carrier)	TARGET	INDICATION	STATUS	DEVELOPER
Custirsen (OGX-011)	2′-MOE-PS gapmer ODN (“naked”)	Clusterin	(i) castrate resistant prostate cancer; (ii) non-small cell lung cancer	I and (ii) Phase III (recruiting)	OncoGenex
EGFR antisense DNA	Phosphorothioate ODN (“naked”)	EGFR	Advanced Head and Neck Squamous Cell Carcinoma	Phase I/II (recruiting)	University of Texas
Apatortsen (OGX-427)	2′-MOE-PS gapmer ODN (“naked”)	Hsp27	prostate cancer; pancreatic; non-squamous non-small cell lung cancer; other	Phase II (recruiting)	OncoGenex
ISIS-STAT3Rx (ISIS 481464/AZD9150)	cEt-PS gapmer ODN (“naked”)	STAT3	Lymphoma; hepatocellular carcinoma	Phase I/II (recruiting)	Astrazeneca (ISIS Pharmaceuticals)
ISIS-ARRx (AZD5312)	cEt-PS gapmer ODN (“naked”)	Androgen Receptor	Advanced solid tumors (prostate cancer indications)	Phase I (recruiting)	Astrazeneca (ISIS Pharmaceuticals)
Trabedersen (AP 12009)	Phosphorothioate ODN (“naked”)	TGFβ2	ii) Pancreatic Neoplasms, Melanoma, Colorectal Neoplasms; (ii) Glioblastoma; Anaplastic Astrocytoma	(i) Phase I; (ii) Phase IIb (both completed)	Isarna Therapeutics
EZN-2968	LNA-PS gapmer ODN (“naked”)	HIF-1α	Advanced solid tumors	Phase I (completed)	Enzon Pharmaceuticals (Santaris Pharma)
LErafAON-ETU	DNA-PS modified at 5′ and 3′ end (liposome)	c-raf	Advanced Cancer	Phase I (completed)	INSYS Therapeutics Inc
lymphatic drainage give rise to the enhanced permeability and have been found in some tumor vessels, which together with a poor static pressure differences). This effect is counterproductive in terms of drug accessibility to the tumor tissue, which then has to rely in slow diffusion processes. A dense structure of interstitial matrix and cells also mounts a final barrier to the diffusion process (Chauhan et al., 2011). Finally, the uneven leakiness of vessels found in tumors further contributes to a highly heterogeneous process of drug penetration. Another consideration is that the larger the tumor the bigger the regional differences within the tumor itself. This is illustrated by the presence of a necrotic core with an almost complete absence of blood flow, a seminecrotic region with poor blood flow within un-branched vessels, a stable region with branched vessels and good flow and an active angiogenic front where blood flow is variable and can be substantially higher than in surrounding host normal tissues (Jain, 2012).

These hindrances can result in AONs despite reaching tumor tissue, not being able to accumulate to a significant extent in the tumor tissue, with the additional drawback of distributing unevenly throughout the tissue (Plenat et al., 1995; Delong et al., 1997; Devi et al., 2005).

Certainly these delivery issues hamper a more effective translation of anti-cancer antisense oligonucleotides to the clinic.

PERSPECTIVES ON AON VECTORIZATION FOR CANCER THERAPEUTICS

Given the wide tissue distribution properties of AONs and their preferential accumulation in organs other than tumor tissue, this can lead to the necessity of using high amounts of AONs in order to reach a meaningful biological effect, raising concerns due to presence of high AON concentrations in unspecific tissue/organs. In addition, although some level of localization to tumor tissue is attained due to the EPR effect, there can be a large heterogeneity in the targeting and distribution of AONs between tumors and within the same tumor. Not achieving a homogeneous and abundant distribution of AONs to the entire tumor can result in differential intracellular concentrations of the AON affecting functional efficiency and ultimately leading to some cells evading the anti-cancer action.

The development of nanocarriers for AON delivery could have a positive contribution in AON anti-cancer efficiency while minimizing toxicity, although their utility must be evaluated in a case-by-case basis. Nanoparticle systems will be also affected by inter and intra-tumor heterogeneity, where differences between tumor mass strongly influence the EPR and IFP effects. In fact, the EPR effect is more prevalent in tumors of 100 mm³ which limits its use when targeting small or unvascularized primary or secondary tumor (metastases) (Adiseshaiah et al., 2010). While AONs associated with nanoparticle systems can take greater advantage of the EPR effect, when “naked” administration is employed these will be affected to a wider extent by IFP similarly to small drugs. Interestingly, this could mean that free AONs could have an advantage when dealing with a tumor with a less disturbed vascular architecture or when tumor vasculature normalization drugs are used (Juliano et al., 2009; Chauhan et al., 2012). This view can, however, be too simplistic as shown in a work dealing with imaging and modulation of AON microdistribution in solid tumor xenografts (Mocanu et al., 2007). It was seen that a drug-induced decrease in IFP was not accompanied by an expected improved distribution of the AON, in contrast to what has been reported...
for some small drugs. This was attributed to a strong association of the AON with regions of necrosis/hypoxia or due to the effect of the drug promoting neovascularization and the less permeable status of the newly formed vessels. Also, one could reason that the tumor matrix and the specific collagen content along with the status of other fibrillar proteins could affect distribution of AONs (Netti et al., 2000; Mocanu et al., 2007), especially when dealing with PS-AONs due to their unspecific binding properties. In contrast to tumor normalization, the EPR effect can be transiently augmented by modulation of blood pressure and local increase of blood flow through the use of angiotensin-II-induced hypertension and nitric oxide releasing agents (Fang et al., 2011). In this way uptake of nanoparticle systems could be favored.

In terms of available systems for vectorization of AONs these can be divided in nanoparticle systems formed by interactions of different carrier formulations with the AONs or nanoconjugates where AONs are covalently linked to different functional molecules (e.g., peptides, sugars) (Juliano et al., 2012; Yin et al., 2014).

Carrier formulations that have been frequently used for delivery of different nucleic acids comprise cationic lipids and polymers. The basic driving force of complex formation is the electrostatic interaction. In brief, the carrier system needs to (i) protect the nucleic-acid from extracellular and intracellular degradation, until it reaches its target, (ii) achieve a prolonged circulation time in order to be accumulated in the location of interest, (iii) efficiently interact with the cellular membrane to promote uptake (generally through endocytosis processes), (iv) promote escape from endocytic vesicles and finally (v) dissociate from the active nucleic-acid in order for it to function (Yin et al., 2014).

Cationic lipids generally used with nucleic acids (forming lipoplexes) comprise DOTMA, DOSPE, DOTAP, but also neutral lipids such as the fusogenic DOPE have been incorporated to improve transfection efficiency (Simoës et al., 2005). Some of these lipids have been studied specifically with AONs (Jaaskelainen et al., 2000; Meidan et al., 2001; Gokhale et al., 2002) but few have been utilized in pre-clinical or clinical work. A liposome formulation of c-raf antisense oligonucleotide constitutes the first example of an AON-lipoplex taken into clinical development stages (Zhang et al., 2009).

Polymers have been also used. These have an immense chemical diversity and are easy to chemically manipulate thus enabling tuning of properties by functionalization. Some examples of polymeric systems that have been utilized are poly(L-Lysine) (Stewart et al., 1996) and poly(ethylene imine) (Seong et al., 2006), especially when dealing with PS-AONs due to their unspecific binding properties. In contrast to tumor normalization, the EPR effect can be transiently augmented by modulation of blood pressure and local increase of blood flow through the use of angiotensin-II-induced hypertension and nitric oxide releasing agents (Fang et al., 2011). In this way uptake of nanoparticle systems could be favored.

Surface charge also plays a crucial role. While cationic particles tend to target tumor endothelium and exhibit a higher vascular permeability than neutral or anionic ones, the fastest and more homogeneously distribution in tumor interstitium is seen for the neutral particles. Presence of charge in particles contributes to aggregation with different components of the tumor matrix thus hindering transport. Accordingly, neutral or zwitterionic particles, or even particles with the property to change charge according to the microenvironment should perhaps be the best options (Chauhan et al., 2011). Shape, an often-overlooked property, likewise affects transport. Here factors such as rigidity and form (spherical vs. rod) come into play with flexible nanometer-sized particles showing, in principle, better transport characteristics (Chauhan et al., 2011).

In conclusion, the field of anti-cancer AONs is rapidly advancing, supported in part by the growing number of chemical modifications that conferred superior properties to AONs. However, specific and efficient delivery to tumors is still of uttermost importance. Uniform distribution throughout the tumor is an important challenge particularly due to intra-tumoral regional specificities and a progressive microenvironment. A further challenge lies in the dynamic nature of tumors that may correlate with temporal and spatial changes in expression of the AON target genes.

Multi-gene targeting AONs and efficient tumor targeting vectorization systems will, thus, be of uttermost importance in the development of a successful anti-cancer AON strategy.

ACKNOWLEDGMENTS

The authors would like to acknowledge the FEDER funds through the Programa Operacional Factores de Competitividade—COMPETE and the Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia (PTDC/CTM-NAN/115124/2009, HMSP-ICT/0020/2010 and PEst-C/SAU/LA0002/2013) that supported this work. Pedro M. D. Moreno is supported by a Marie Curie Action of the European Community’s Seventh Framework Program (PIEF-GA-2011-300485).

REFERENCES

Adeshesia, P. P., Hall, J. B., and McNeil, S. E. (2010). Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 99–112. doi: 10.1002/wnnan.66

Agrawal, S., Temsamani, J., Galbraith, W., and Tang, J. (1995). Pharmacokinetics of antisense oligonucleotides. Clin. Pharmacokinet. 28, 7–16. doi: 10.2165/00003088-199528010-00002
complexation. Biochim. Biophys. Acta 1568, 177–182. doi: 10.1016/S0304-4165(01)00216-1

Minshull, J., and Hunt, T. (1986). The use of single-stranded DNA and RNA H to promote quantitative “hybrid arrest of translation” of mRNA/DNA hybrids in reticulocyte lysate cell-free translations. Nucleic Acids Res. 14, 6433–6451. doi: 10.1093/nar/14.16.6433

Mocanu, I. D., Yip, K. W., Skliarenko, J., Shi, W., Busson, P., Lo, K. W., et al. (2007). Imaging and modulating antisense microdistribution in solid human xenograft tumor models. Clin. Cancer Res 13, 5935–5941. doi: 10.1158/1078-0432.CCR-06-3085

Monia, B. P., Lesnik, E. A., Gonzalez, C., Lima, W. F., McGee, D., Guimioso, C. J., et al. (1993). Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268, 14514–14522.

Mou, T. C., Gray, C. W., Twerillger, T. C., and Gray, D. M. (2001). FF gene 5 protein has a high binding affinity for single-stranded phosphorothioate DNA. Biochemistry 40, 2267–2275. doi: 10.1021/bi010213f

Nakamura, H., Oda, Y., Iwai, S., Inoue, H., Ohtsuka, E., Kanaya, S., et al. (1991). How does RNase H recognize a DNA/RNA hybrid? Proc. Natl. Acad. Sci. U.S.A. 88, 11535–11539. doi: 10.1073/pnas.88.24.11535

Netti, P. A., Berk, D. A., Swartz, M. A., Grodzinsky, A. J., and Jain, R. K. (2000). Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60, 2497–2503.

Nielsen, P. E., Egholm, M., Berg, R. H., and Buchardt, O. (1991). Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500. doi: 10.1126/science.1962210

Nishizaki, T., Iwai, S., Ohtsuka, E., and Nakamura, H. (1997). Solution structure of an RNA2′-O-methylated RNA hybrid duplex containing an RNA:DNA hybrid segment at the center. Biochemistry 36, 2577–2585. doi: 10.1021/bi62297c

Obika, S., Nanbu, D., Hari, Y., Andoh, J.-I., Morio, K.-I., Doi, T., et al. (1998). Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O′-A-C:methylthiononucleosides. Tetrahedron Lett. 39, 5401–5404. doi: 10.1016/S0040-4039(98)01084-3

Pasternak, A., and Wengel, J. (2011). Unlocked nucleic acid—an RNA modification with broad potential. Org. Biomol. Chem. 9, 3591–3597. doi: 10.1039/cob01085e

Plenet, F., Klein-Monhoven, N., Marie, B., Vignaud, J. M., and Duprez, A. (1995). Cell and tissue distribution of synthetic oligonucleotides in healthy and tumor-bearing nude mice. An autoradiographic, immunohistological, and direct fluorescence microscopy study. Am. J. Pathol. 147, 124–135.

Senn, J. J., Burel, S., and Henry, S. P. (2005). Silencing biological activity of antisense oligonucleotides complexed with glycosylated poly-L-lysine. Mol. Pharmacol. 50, 1487–1494.

Straarup, E. M., Fisker, N., Hedtjarn, M., Lindholm, M. W., Rosenbohm, C., Aarup, V., et al. (2010). Short locked nucleic acid antisense oligonucleotides potentially reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates. Nucleic Acids Res. 38, 7100–7111. doi: 10.1093/nar/gkq457

Summerton, J., and Weller, D. (1997). Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7, 187–195. doi: 10.1089/ol1.1997.7.187

Van Vlerken, L. E., Vyas, T. K., and Amiji, M. M. (2007). Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm. Res. 24, 1405–1414. doi: 10.1007/s11095-007-9284-6

Watanabe, T. A., Geary, R. S., and Levin, A. A. (2006). Plasma protein binding of an antisense oligonucleotide targeting human ICAM-1 (ISIS 2302). Oligonucleotides 16, 169–180. doi: 10.1089/ol.2006.16.169

Watts, J. K., and Corey, D. R. (2012). Silencing disease genes in the laboratory and the clinic. J. Pathol. 226, 365–379. doi: 10.1002/path.2993

Webb, M. S., Tortora, N., Cremese, M., Kozlowski, H., Blaquier, M., Devine, D. V., et al. (2001). Toxicity and toxicokinetics of a phosphorothioate oligonucleotide against the c-myc oncogene in cynomolgus monkeys. Antisense Nucleic Acid Drug Dev. 11, 155–163. doi: 10.1089/10872900130038681

Winkler, J., Steesl, M., Amartey, J., and Noe, C. R. (2010). Off-target effects related to the phosphorothioate modification of nucleic acids. Chem. Med. Chem. 5, 1344–1352. doi: 10.1002/cmdc.201000156

Wisse, E., Jacobs, F., Topal, B., Frederik, P., and De Geest, B. (2008). The size of endothelial fenestrae in human liver sinusoids: implications for hepaticocyte-directed gene transfer. Gene Ther. 15, 1193–1199. doi: 10.1038/gt.2008.60

Wu, X. A., Choi, C. H., Zhang, C., Hao, L., and Mirkin, C. A. (2014). Intracellular fate of spherical nucleic acid nanoparticle conjugates. J. Am. Chem. Soc. 136, 7726–7733. doi: 10.1021/ja503010a

Yin, H., Kanasty, R. L., Eltoukhhy, A. A., Vegas, A. J., Dorkin, J. R., and Anderson, D. G. (2014). Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555. doi: 10.1038/nrg3763

Zhang, C., Newsome, J. T., Mewani, R., Pei, J., Gokhale, P. C., and Kasid, U. N. (2009). Systemic delivery and pre-clinical evaluation of nanoparticles containing antisense oligonucleotides and siRNAs. Methods Mol. Biol. 480, 65–83. doi: 10.1007/978-1-59745-429-2_5

Zhang, Y., Qu, Z., Kim, S., Shi, V., Liao, B., Kraft, P., et al. (2011). Down-modulation of cancer targets using locked nucleic acid (LNA)-based antisense oligonucleotides without transfection. Gene Ther. 18, 326–333. doi: 10.1038/gt.2010.133

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 31 August 2014; paper pending published: 10 September 2014; accepted: 23 September 2014; published online: 14 October 2014.

Citation: Moreno PMD and Pêgo AP (2014) Therapeutic antisense oligonucleotides against cancer: handling to the clinic. Front. Chem. 2:87. doi: 10.3389/fchem.2014.00087

This article was submitted to Chemical Engineering, a section of the journal Frontiers in Chemistry.

Copyright © 2014 Moreno and Pêgo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.