Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity

Massimo Picardo 1, Oscar Núñez 2,3 and Marinella Farré 1,*

1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; masqam@idaea.csic.es
2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; oscar.nunez@ub.edu
3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain
* Correspondence: mfuqam@cid.csic.es

Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020

Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group. Finally, the toxins identified to levels 2 and 1 were prioritised according to their bioaccumulation factor, biodegradability, frequency of detection, and toxicity. This screening and prioritisation approach resulted in different natural toxins that should be further assessed for their ecotoxicological effects and considered in future studies.

Keywords: natural toxins; cyanotoxins; phytotoxins; mycotoxins; suspected screening; HRMS

Key Contribution: A suspect screening approach has been applied to assess natural toxins in one of the water reservoirs of Barcelona city, NE Spain. The toxins that were tentatively identified were prioritised.

1. Introduction

Natural toxins in the aquatic ecosystem can be produced by different organisms, including bacteria, plants and fungi, thus grouping together a wide variety of structures and physicochemical properties and effects [1]. The risk of water contamination by natural toxins generates environmental and public health issues. In some cases, natural toxins can be accumulated in aquatic organisms and transferred throughout the aquatic food chain to humans [2].

However, if we consider freshwater environments, the primary route of human exposure includes the consumption of contaminated water, dermal exposure, and inhalation during recreational activities. Intoxication can include different symptoms, such as a severe headache, a
fever, and respiratory paralysis, as well as a variety of possible effects that include hepatotoxicity, neurotoxicity, carcinogenicity, and dermal toxicity. Due to their diversity, toxicological assessment is still challenging and there is also an information gap concerning their occurrence, due to the lack of analytical methods and certified standards. Therefore, the concentration of natural toxins in drinking water for most of these groups is not yet well regulated, and this is also of concern for countries in the European Union (EU).

Among the natural toxins, the cyanotoxins group is one of the most studied groups in freshwater ecosystems. Cyanotoxins can be released by cyanobacterial blooms, which is a frequent natural phenomenon that is characterised by an algal biomass accumulation in surface water. These secondary metabolites include hepatotoxins (microcystins and nodularins), neurotoxins (such as anatoxins, saxitoxins, and β-methylamino-l-alanine), cytotoxins (such as cylindrospermopsin), and dermatotoxins (lipopolysaccharide, lyngbyatoxins, and aplysiatoxin). Among them, microcystins (MCs), produced by freshwater cyanobacteria genera such as *Microcystis*, *Aphanizomenon*, *Planktothrix*, *Dolichospermum*, etc. [3], are the most diverse group and the best described in the literature [4]. However, only one congener is regulated. The World Health Organization (WHO) has issued a guideline value of 1 µg/L in drinking water for microcystin-LR (MC-LR), which is one of the most toxic and widespread toxins in water supplies [5].

Another relevant group is represented by mycotoxins, which are secondary metabolites produced by fungi. Due to their diverse chemical structures, mycotoxins can present a wide range of toxicity, such as hepatotoxicity, nephrotoxicity, neurotoxicity, and immunotoxicity, and some of them have been recognised as being teratogenic, mutagenic, and carcinogenic [3]. Their biological effects have been extensively reported and regulated in food and feed [6,7] but not in water. However, many environmental species (particularly of the genus *Aspergillus*) show resistance to the commonly used water disinfection procedures, allowing them to enter water distribution/reticulation systems [8,9]. Moreover, those species can form mixed biofilm communities with bacteria, algae, and protozoa. These biofilms increase the ability to survive heat treatments and chlorination procedures. Therefore, fungal presence in tap water distribution systems also leads to an increase in the presence of temperature-tolerant fungi, which are the target of many studies that note this as a serious health risk [10].

The phytotoxins group includes secondary metabolites that are produced by plants as a defence mechanism against herbivores, insects, or other plant species [11]. They can include different chemical structures, including peptides, terpenoids, flavones, glycosides, and phenolic compounds (<3500 Da) [12]. Phytotoxins can be grouped into three major chemical structures: alkaloids, terpenes, and phenols. Among them, furanocoumarins, lectins, glycoalkaloids, and pyrrolizidine alkaloids are the most studied [1,13,14]. These compounds can end up in water bodies due to leaching from leaves and soil, and some of them can present high toxicity, such as the case of the carcinogenic ptaquiloside, which is produced by bracken fern [15]. However, in general, few studies have explored their presence in surface waters [16], despite their potentially high toxicity alone or in combination with other anthropogenic contaminants.

During the recent decades, the contamination and over-enrichment of nutrients (eutrophication) of surface waters have increased the number of harmful algal bloom events. Moreover, the increasing temperatures and light intensity promote the algal bloom events and consequently the production of natural toxins [17]. Their chemical diversity, the variety of their structures with structural features that are comparable to common anthropogenic contaminants, and their low concentrations can lead to harmful effects, making their determination in surface waters a great challenge. For these reasons, it is of primary importance to investigate the occurrence of natural toxins in the aquatic environment.

The most common approaches using multi-residue analysis include a limited number of compounds [18,19]. Most approaches cannot determine a wide range of polarities, in that they are mostly applied for one particular compound or a group of compounds with similar characteristics. The suspect screening methods that are based on high-resolution mass spectrometry (HRMS) opened a new window for the comprehensive study of natural toxins in surface waters.
In this regard, the main goal of the present study was to apply a recently developed method [20], based on a generic three-step solid-phase extraction (SPE) procedure followed by liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS), with full-scan (FS) and data-dependent MS² (DDA) acquisition using a Q-Exactive Orbitrap analyser, to study the natural toxins in different water reservoirs that are used to produce tap water in Barcelona city (Catalonia, NE Spain).

Here, we present the data that was originated by the analysis of a complete set of samples that were collected during a sampling campaign in the period of March to September 2018. The data reported in the previous work have been omitted in the present one. In this sampling campaign, the 48 samples were collected at 4 sites along the Ter River. Sample collection was carried out twice a month from March to September 2018. In our previous study, the 16 samples that came from the Ter River were collected using a different sampling campaign, specifically designed to assess the good performance of the newly developed approach, and was carried out in May and July, and thus needless to say at different days from the samples presented here. Moreover, a prioritisation protocol, including a scoring system, is reported now, designed to elucidate the most significant natural toxins of concern in the drinking water reservoirs.

The suspect screening was carried out using a suspect list containing 2384 items of natural toxin data that were collected from the literature and online databases (mzCloud and ChemSpider). The confidence levels for the identification of suspect natural toxins were based on the approach that was previously reported by Scymansky et al. [21], consisting of mass accuracy, isotopic fit, fragmentation, and final confirmation, using standards and retention times. Finally, the suspect natural toxins were prioritised according to their toxicity, frequency of detection, biodegradability, and bioaccumulation factors. The results of this screening and prioritisation protocol present a set of natural toxins that could be assessed for their toxicological effects and should also be considered in future water monitoring studies. To the best of our knowledge, this is the first study providing the prioritisation of natural toxins in a water reservoir in Spain.

2. Results and Discussion

2.1. Tentatively Identified Compounds

In this study, after removal of the background and the very small signals under the minimum intensity threshold, 4404 suspect masses were detected in the 48 water samples by using Compound Discoverer 3.1 software. Among them, 381 compounds (8.6%) were assessed as suspect natural toxins that were included in the in-house database and finally selected for further screening. It is noteworthy that the compounds of the study were natural toxins pertaining to three major groups in water, phytotoxins, mycotoxins, and cyanotoxins. Other compounds, such as pesticides, were discarded in this study. Among these 381 structures, after filtering by way of the isotopic patterns, ionisation efficiency, and fragmentation patterns, the number of suspected identified compounds diminished to 191 structures (50.1% of the initial potential for natural toxins). Finally, the comparison with in-silico MS² patterns gave 50 structures that were tentatively identified at level 2 (25.7% of the initial potential for natural toxins) (Table 1 and Figure 1). Finally, nine natural toxins were confirmed and quantified by injections of the standard.
Toxin	March	April	May	July	August	September
Acetoxytropane						
Aconosine						
Anaethole						
Analoacteone						
Ambrosin						
Apiole						
Arabin						
Artemistic acid						
Aspidinol						
Aspidospermine						
Azelaic acid						
Barnol						
Bisabolol oxide B						
Buddleidin B						
Conhydrine						
Cuscohygrine						
Herniarin						
Hygrine						
Hyophygrine A						
Laudanosine						
Lepamine						
Methyl Jasmonate						
N-Methylpelleterine						
N-methylpseudocoumarhydrine						
Norgaupelleterine						
P-coumaric acid						
Pterocillin						
Reticoline						
Retronecine						
Swainsonine						
Tetrahydropallavicin						
Tetranerin A						
Trachelanthamine						
Tussilagine						
Umbelliferone						
Verrucosin						
Xanthotoxin						
Aflatoxin B1						
Aflatoxin B2						
Alpha-Zearalenol						
Aspergillus acid						
Averufin						
Kojic Acid						
Anatoxin-A						
MC-L-R						
MC-LW						
MC-YR						
Nodularin						

Figure 1. Hits diagram. A dark colour indicates a positive hit.
Table 1. List of suspect compounds (level 2) after tentative identification in the four sampling sites along water reservoirs in the Ter River.

Toxins	Formula	[M + H]	Rt	MS² (1)	[M-e⁺]	MS² (2)	[M-e⁺]	MS² (3)	[M-e⁺]	MS² (4)	[M-e⁺]
Acetoxytropane	C₁₀H₁₇NO₂	184.1332	9.1	123.0805	142.0864	125.0599	165.0913	C₁₀H₁₃O₂			
Aconosine	C₂₂H₃₅NO₄	378.2639	11.3	283.1701	269.1539	235.1324	137.0599	C₁₄H₂₉O₂			
Anethole	C₈H₁₁O	149.0961	9.8	115.0544	103.0543	145.065	121.0649	C₈H₂O			
Ambrosin	C₁₅H₁₈O₃	247.1332	8.5	229.1227	201.1267	119.0857	C₁₁H₁₁				
Apiol	C₁₂H₁₄O₄	223.0965	11.9	105.07	119.0857	C₁₁H₁₁	163.0755	C₁₀H₂O			
Arabsin	C₁₅H₂₂O₄	266.1521	10.8	249.1488	231.1384	221.1539	C₁₄H₂O₂				
Artemisic acid	C₁₅H₂₉O₄	235.1702	14	179.1069	165.0901	C₁₁H₂O₂	119.0853	C₁₁H₁			
Aspidinol	C₁₂H₁₄O₄	225.1101	9.5	107.0492	137.0599	123.0441	109.0649	C₉H₂O			
Aspidospermine	C₂₂H₃₀N₂O₂	355.2380	12.5	107.0492	136.0759	C₁₁H₂NO	148.0759	C₁₃H₂O₇			
Azelaic acid	C₁₉H₃₄O₄	189.1121	11	107.0854	155.0704	111.0806	115.0391	C₁₅H₂O₇			
Barnol	C₁₈H₂₂O₄	183.1016	10.8	119.0857	135.0806	C₁₁H₂O₂	181.086	C₁₀H₂O₅			
Bisabolol oxide	C₁₅H₂₂O₂	239.2006	12.4	133.1013	121.1013	149.1326	187.1483	C₁₄H₁₉			
Buddledin B	C₁₅H₂₂O₂	235.1693	12.9	113.0598	179.1016	193.1225	155.1067	C₁₄H₂O₂			
Conhydrine	C₁₅H₂₁O₂	144.1383	11.6	107.0856	125.0962	138.0915	C₁₅H₂O₇				
Cuscohygrine	C₁₅H₂₉O₄	225.1961	12.3	123.0805	109.0649	163.1118	150.0914	C₁₅H₂O₇			
Curassavine	C₁₅H₂₂O₄	300.2169	12.6	155.0703	107.0856	C₁₁H₂O₄	173.081	C₁₄H₂O₄			
Herniarin	C₁₅H₂₉O₄	176.0477	11.8	121.0649	133.0653	C₉H₂O					
Hydroxyarbusculin A	C₁₅H₂₈O₄	267.1585	13.3	159.1169	123.0805	C₁₁H₂O₄					
Hydroxyecoumarin	C₁₅H₂₈O₄	163.0390	15.1	121.0284	149.0233	163.0389	105.0335	C₉H₂O			
Hygrine	C₁₉H₃₄O₄	142.1226	10.9	109.0655	124.0758	111.0804	140.1069	C₁₃H₃NO			
Hypoglycine A	C₁₉H₃₄O₄	142.0862	2.34	97.0287	120.0444	C₁₃H₂NO	124.0757	C₁₃H₂NO			
Laudanosine	C₁₅H₂₉N₂O₄	358.2013	13.2	121.0285	115.0543	C₁₁H₂O₂	159.088	C₁₃H₂O₇			
Lupanine	C₁₅H₂₈N₂O₄	249.1961	5.3	110.0965	120.0808	C₁₂H₂N₂	138.0915	C₁₃H₂O₇			
Methyl Jasmonate	C₁₃H₂₀O₃	225.1485	0.1	107.0855	121.1012	175.112	165.1275	C₁₃H₂O₂			
Methylpelletierine	C₁₅H₂₁O₂	156.1386	2.2	107.0705	C₁₁H₁₁	140.105	C₁₃H₄NO				
Methylpseudoconhyd-	C₁₃H₂₉NO	158.1539	11.9	107.0856	114.0914	C₁₂H₂NO	123.0805	109.0649	C₉H₂O		
Norpseudoconhydrine	C₁₅H₂₉NO	140.1070	9.1	109.0649	121.0649	138.0917	123.0806	C₁₃H₂O			
Substance	Molecular Formula	CAS Number	pKa	MW							
------------------------------	-------------------	------------	-----	------							
p-Coumaric acid	C_9H_8O_3	165.0546	12.5	165.0594							
Ptaquilosin B	C_9H_9O_2	237.1485	11.2	237.0857							
Reticuline	C_9H_11O_2	330.1700	13.2	330.0543							
Retronecine	C_10H_13O_2	156.1019	1.9	152.0709							
Swainsonine	C_9H_11O_2	174.1125	8.1	140.0682							
Tetrahydrocannabinarin	C_9H_12O_2	287.2006	12.9	163.1118							
Tetraneurin A	C_10H_20O_6	323.1489	12.6	281.0996							
Trachelanthamine	C_10H_17O_2	286.2013	12.5	155.0704							
Tussilagine	C_10H_17O_3	300.1281	10.6	301.143							
Umbelliferone	C_9H_13O_2	163.0390	11.1	147.0441							
Verrucosin	C_10H_18O_4	345.1697	13.0	301.143							
Xanthotoxol	C_12H_20O_4	203.0348	1.3	147.1173							
Aflatoxin B1	C_17H_12O_6	313.0707	11.2	213.0547							
Aflatoxin B2	C_17H_14O_6	315.0863	11.6	273.0761							
Alpha-Zearalenol	C_18H_24O_5	321.1674	14.8	149.133							
Aspergillusic acid	C_12H_18O_3	225.1598	9.4	114.0915							
Averufin	C_10H_16O_7	369.0969	10.6	327.0853							
Kojic Acid	C_4H_6O_4	143.0344	1.38	125.0239							
ANA-a	C_10H_18O_3	166.1226	0.5	149.1							
MC-LR	C_8H_14N_1O_2	995.556	9	135.0807							
MC-LW	C_8H_16N_3O_2	1025.5343	12	135.0807							
MC-YR	C_9H_12N_1O_3	1045.5317	8.9	135.0807							
NOD	C_10H_18N_3O_10	824.4446	8.6	135.0807							

Mycotoxins

Substance	Molecular Formula	CAS Number	pKa	MW
Aflatoxin B1	C_17H_12O_5	313.0707	11.2	269.0444
Aflatoxin B2	C_17H_14O_5	315.0863	11.6	255.0654
Alpha-Zearalenol	C_18H_24O_4	321.1674	14.8	149.133
Aspergillusic acid	C_12H_18O_3	225.1598	9.4	144.0889
Averufin	C_10H_16O_7	369.0969	10.6	299.0555
Kojic Acid	C_4H_6O_4	143.0344	1.38	97.02844

Cyanotoxins

Substance	Molecular Formula	CAS Number	pKa	MW
ANA-a	C_10H_18O_3	166.1226	0.5	149.1
MC-LR	C_8H_14N_1O_2	995.556	9	213.087
MC-LW	C_8H_16N_3O_2	1025.5343	12	375.1914
MC-YR	C_9H_12N_1O_3	1045.5317	8.9	375.1935
NOD	C_10H_18N_3O_10	824.4446	8.6	389.2079

Toxins 2020, 12, 752
Plant toxins were the most prominent group in the studied samples (73% of the tentatively identified compounds), with a prevalence of the alkaloids group. The most frequently identified phytotoxins were acetoxytropane, retronecine, and N-methyl pseudo conhydrine in 71%, 70%, and 46% of the samples, respectively. These results are in agreement with the diversity of endemic plants of the area [22], due to the different climatic zones of the occidental Pyrenees and the variation in dry and wet periods. The occurrence of some of these toxins was at a maximum in April, May, August, and September. These two peaks of natural toxins can be related to the leaching into the water immediately after the flowering period in the Mediterranean area, corresponding to April and May, and posteriorly the release of toxins from the dead plant with the consequent rain-washing effect into the river in August and September. For example, in Figure 2, the intensity of the signals of three alkaloids, acetoxytropane, anethole, and retronecine, which can be attributed to the Symphytum officinale, Pimpinella anisum [23], and Apiaceae families, are displayed. As can be seen, the maximum intensities of the toxins were between May and September. In addition to the alkaloids, some terpenes were also tentatively identified. A common species in this area and in the general region of the Iberian Peninsula is bracken (Pteridium aquilinum) [24], which produces ptaquiloside [15]. Ptaquiloside is a carcinogen norsesquiterpene glucoside that is responsible for haemorrhagic disease and bright blindness in livestock and can produce gastric cancer in humans [25]. As can be seen in Figure 1, in this study the degradation product of ptaquiloside, ptaquilosin B (PTB) [26], was identified in 33% of the samples, while ptaquiloside was not detected. The degradation of ptaquiloside in soils and the start of the rainy season explains the leaching of PTB into the water, which is coincident with the maximum intensities of the signals in the samples that were collected in August and September (Figure 3). Another relevant group of phytotoxins, the phenolic group, was less represented in the samples that were identified, and the representatives of this group were present in a minor number of samples. An example was p-coumaric acid, which was found in only 8% of the samples.

Figure 2. Signal intensities of three alkaloids: acetoxytropane, anethole, and retronecine.
Figure 3. Ptaquilosin B intensity signals along the sampling period.

Mycotoxins were marginally detectable in the samples, and 58% of the studied water samples did not present detectable concentrations. Alpha-zearalenol was the most prevalent suspect mycotoxin with an occurrence of 29%, followed by aflatoxin B₁ (25%), aflatoxin B₂ (12%), and averufin, which is an anthraquinoid precursor of aflatoxins [27,28]. Regarding the distribution during the study period, mycotoxins were almost exclusively detected in August and September when the rainy season started, indicating that their presence in water could be due to the washing effect of plants infected with *Aspergillus flavus* and *Aspergillus parasiticus* in the case of aflatoxins and *Fusarium* mycotoxins in the case of alpha-zearalenol. As can be seen in Figure 2, and on the principal component analysis (PCA) presented in Figure 4, the occurrence of natural toxins in natural waters is influenced by seasonality, and the months with a higher charge of natural toxins were in this case April, August, and September, while a very low presence of natural toxins was found at the end of winter and during the driest months. Contrary to what can be expected, the samples from May and July were almost free of cyanotoxins. Only in M1 and M2 during April, August, and September was the occurrence of cyanotoxins detected, in agreement with the two peaking algal blooms in the Mediterranean region. This site (M1) corresponded to the area of Pastoral dam, which is the reservoir that is located downstream of the other reservoirs and presenting slightly higher levels of eutrophication in comparison with the other three areas. The more frequently found cyanotoxins were anatoxin-a, which was present in four samples, followed by microcystin LR, LW, and YR.
The concomitant presence of three MCs, both with anatoxin-a, at the sampling point M1, suggests this area is of a higher risk in terms of the occurrence of MCs, and therefore of MC producers. This is in line with the previous studies reporting benthonic species in the NE of Catalonia. Thirty-two different species have been identified as endemic in this area [29]. Toxins producing genera of freshwater cyanobacteria include *Phormidium* spp., *Oscillatoria* spp., *Nostoc* spp., and *Pseudanabaena* spp. [27]. These were considered to be the main producers of MC-LR, MC-YR, and –LW found in the M1 point in May and July. The occurrence of cyanotoxins can be related to increments in temperature and eutrophication, as was confirmed by the Catalan Water Agency [28] and CARIMED 2018 [30] for this area during the period studied. On the other hand, M1 is the downstream point of the studied area, which receives nutrients from areas in the upper river, with nitrate levels between 0.67 and 10 mg N-NO₃/L.

2.2. Target Analysis

A target analysis of 27 natural toxins was carried out using certified standards that are summarised in Table A1 of Appendix A. Matrix-matched calibration curves were used for the quantification of eight natural toxins. The limits of detection (LODs) were between 0.002 to 0.4 µg/L while the limits of quantification (LOQs) were between 0.07 and 1.5 µg/L. The analytical parameters are summarised in Table A3. Nine toxins were confirmed (Ana, AflB1, MC-LR, MC-LW, Nod, MC-YR, Kja, 7-methoxycoumarin, and umbelliferone). Concentrations were under the limit of 1 µg/L as proposed by the World Health Organisation [24] and they were used as an arbitrary reference limit in this work. MC-LR was confirmed in only two sampling points (April M1 and September M1), where the precursor ion [M + H]+ 995.5560 m/z was detected for both with the fragment 135.0806 m/z, which is typically generated by the ADDA structure. Finally, MC-LR was confirmed with standards in these two samples. MC-LW and MC-YR were detected at the M1 point in September, August, and, surprisingly, in April, which correspond to the same months where the MC-LR was detected. Anatoxin-a was further detected in the same periods. 7-methoxycoumarin and umbelliferone were confirmed by certified standards. The concentrations of the detected natural toxins are reported in Table 2, showing their presence at relatively low levels in water.
Table 2. Quantification of the confirmed compounds detected in the Ter River.

Toxin	Month	Sampling Point	Concentration (µg L⁻¹)
Ana-a	April	M1	0.12
	August	M1	0.03
	September	M1	0.06
	September	M2	0.28
Afla B₁	September	M4	0.9
Kja	April	M4	0.7
Nod	September	M1	0.1
MC-YR	April	M1	0.1
MC-LW	August	M1	0.2
	September	M1	0.4
MC-LR	April	M1	0.1
	September	M1	0.7
Umbelliferone	May	M3	<LOD
	July	M3	0.1
	August	M3	<LOD
7-methoxycoumarin	May	M3	0.008
	July	M3	0.08
	August	M3	0.06
	September	M1	0.04

Abbreviations: Afla B₁: aflatoxin B₁; Ana-a: anatoxin-a; Kja: Kojic acid; Nod: nodularin; MC-YR: microcystin-YR; MC-LW: microcystin-LW; MC-LR: microcystin-LR.

2.3. Prioritisation

In this study, a scoring system was designed to highlight the most significant natural toxins of concern in drinking water reservoirs. The scoring system was in accordance with the previous protocol that was published by Choi et al. [31], which is based on the risk-relevant parameters such as the detection frequency in percentage, biodegradability, log BAF, and the toxicity values based on the 50% lethal dose (LD50) laboratory tests in mice. A score in the range of 0 to 100 for each parameter was used, and 100 points were additionally added if carcinogenicity or neurotoxicity was already reported for the substance as what happens, for example, with AflB₁ and AflB₂. Thus, the maximum total for a given toxin can be 500. In Table 3, detailed information on the parameterisation and scoring is provided, and in Table 4, the parameters used for each tentatively identified substance are shown. It is noteworthy that the biodegradability and the bioaccumulation factor (BAF), used as log BAF, were calculated using EPI Suite™ software (United States Environmental Protection Agency, U.S. EPA).
Table 3. Scoring system for prioritisation of the quantified substances with the risk relevant parameters (detection frequency, biodegradability, bioaccumulation factor (BAF), and toxicity value).

Detection Frequency	Biodegradability *	Log BAF *	EC50 (mg/kg)	Score
<5%	Days	<2	>1000	0
5–30%	Weeks	2–3	100–1000	25
30–55%	Weeks–Months	3–4	10–100	50
55–80%	Months	4–5	1–10	75
>80%	Recalcitrant	>5	<1	100

* Biodegradability and BAF were estimated using EPI Suite software (United States Environmental Protection Agency, US EPA).

Table 4. Parameters used for the prioritisation of the tentatively identified compounds.

Toxin	CAS No.	Frequency %	Log Kow	Biodegradation Frame *	Log BAF *	LD50 (Mouse) mg/Kg	Effects	Ref.	Smileys
Acetoxytropane	3423-26-5	71	1.5	Week–Months	1	1830	Diarrhoea and hypoactivity after administration of 50 and 200 mg/kg	[32]	CC(=O)OC12CCCC(N1C)CC2
Aconosine	38839-95-1	17	1.2	Months	0.5	0.27	Carcinogenic/anticarcinogenic potential; Cytotoxic in vitro	[33]	CC1CC2CCC(C34C2CC(C31)C5(CCC(C5CC6CCO)OC)OC
Anethole	104-46-1	13	2.7	Weeks	2.31	2090	Lethal oral toxicity in rats at 2 g/kg	[34]	CC=CC1=CC=C(C=C1)OC
Alantolactone	546-43-0	29	3.47	Week–Months	2.06	1200	Carcinogenic/anticarcinogenic potential; Cytotoxic in vitro	[35]	CC1CCC2C1=C3C3(C2)OC(=O)C3=C
Ambrosin	509-93-3	17	1.03	Week–Months	0.21		NF-κβ inhibitor	[36,37]	CC1CCC2C(C3C1=CC3=O)C0C(=O)C2=C
Apiole	523-80-8	38	2.7	Week–Months	2.21	4200	Acute oral LD50 in rats 3.96 g/kg, in mice 1.52 g/kg;	[38]	COC1=C2C=C(C=C1)CC(C=O)OCO2
	CAS	NO	Type	Duration	ADME	IC50			
----------	--------	----	-----------------------------	----------	--------	------			
Arabsin	38412-44-1	13	0.76	Weeks	−0.02		acute dermal LD50 in rabbits > 5 g/kg		
Artemisic acid	80286-58-4	4	3.8	Week–Months	4.39	50	anti-MRSA activity, with antibacterial effect. Inhibition of the formation of the ribosome		
Aspidinol	519-40-4	13	2.6	Week–Months	1.01	50	Cytotoxicity against mouse NIH3T3 cells		
Aspidospermine	466-49-9	13	3.78	Recalcitrant	1.76	46.3	Skin reaction; hepatic toxicity		
Bisabolol oxide B	26184-88-3	21	2.5	Months	2.63	633	Piscidical activity		
Buddedrin B	62346-21-8	13	2.9	Week–Months	2.97		Activation and then blocking of nicotinic acetylcholine receptors		
Conhydrine	495-20-5	50	1.21	Months	0.39	11	Autonomic nervous system blockade		
Cuscohygrine	454-14-8	29	1	Months	0	111	Inhibition of human carbonic anhydrase with a concentration of 2.4 µM		
Herniarin	531-59-9	29	1.74	Weeks	0.72	4300	Jamaican vomiting sickness; hypoglycaemia and death; encephalopathy		
Hygrine	496-49-1	29	0.5	Week–Months	−0.02	91	GABA receptors interaction glycine receptors, involved		
Hypoglycine A	156-56-9	33	−2.5	Day–Weeks	−0.05	98	Jamaican vomiting sickness; hypoglycaemia and death; encephalopathy		
Laudanosine	2688-77-9	25	3.7	Months	1.59	410	GABA receptors interaction glycine receptors, involved		

Chemical Structures:
- [39] NC1CCC(C=C=C)(C=O)OC
- [40] CC1CCC(C=C(C=C(C=C(O)(C)(C(O)O)C)O)OC)OC
- [41] CCC=C(C=C(C=CC(C=CC(C=CC(C=C(=O)(O)(O)O)O)O)O)O)O)
- [42] CCC12CCCN3C1C4(CC3C(=O)O)C
- [43] CCC1=CCC(CC1)C2(CCC(O2)C(C)(C)O)OC
- [44] CCC1=CCCC(=C)C2CC(C2(C1=O)OC)OC
- [45] C1=CCC23C4C1CC5=C2C(O=C=C5)OC(O)CC4O
- [46] CN1CC23C4CC(C1C5C=OC=C(C=C5)OC3CC(C4)OC)
- [47] COC1=CC2=C(C=C1)C=CC(=O)O2
- [48] CC(=O)C[CC@H]1CCC1NC
- [49] C=C1CC1CC(C=O)O)
- [50] CN1CC2=CC(C=C=C2CC1CC3=CC(C=C3)OC)OC)OC)OC
| Substance | CAS Number | EC Number | LD50 (mg/kg) | Route | Effect | Reference |
|---------------------------|------------|-----------|--------------|------------------------|--|-----------|
| Lupanine | 550-90-3 | 38 | 1.6 | Week–Months | 0.65 410 Tremor, Muscle contraction and dyspnoea within mouse | [51] |
| Methyl-Jasmonate | 1211-29-6 | 25 | 2.76 | Weeks | 1.25 5000 Anti-inflammatory activity in LPS-stimulation within mouse | [52] |
| Methylpseudocominhydine | 40199-45-9 | 17 | 0.8 | Week–Months | 0.05 40 Taenicide | [53,54] |
| Norpseudopelletine | 4390-39-0 | 17 | 0.2 | Weeks | 0.15 Causes severe skin burns and eye damage; genotoxic in vitro + in vivo | [56] |
| p-Coumaric acid | 7400-08-0 | 8 | 1.46 | Day–Weeks | 1.81 1.2 Reproductive toxicity | [57] |
| Ptaquilosin B | 87625-62-5 | 33 | ND | Months | 0.42 Generation of carcinogenic ADN adducts Ptosis, somnolence, convulsions. | [35] |
| Reticuline | 485-19-8 | 0 | 3 | Months | 0.61 56 Carcinogenic, pulmonary oedema, blood lymphoma, convulsions | [36] |
| Retronecine | 480-85-3 | 71 | -0.56 | Weeks | -0.04 634 Locoweed intoxication; It is a potent inhibitor of Golgi alpha-mannosidase II | [38] |
| Swainsonine | 72741-87-8 | 17 | -1.3 | Weeks | -0.05 0.35 Locoweed intoxication; It is a potent inhibitor of Golgi alpha-mannosidase II | [58] |
| Tetrahydrocannabivarin | 31262-37-0 | 21 | 5.76 | Months | 3.06 3 Neurotoxicity | [59] |
| Tetranenurin A | 22621-72-3 | 29 | 0.6 | Week–Months | -0.04 42 Antiviral activity; Ear thickness in rats; dermatitis | [60] |
| Trachelanthamine | 14140-18-2 | 0 | 1.4 | Week–Months | 0.69 1500 Somnolence, tremor, muscle weakness | [61] |
| Compound | CAS Registry | T [Weeks] | K [μM] | IC50 [μM] | Effect | Mechanism |
|--------------------------|--------------|-----------|--------|-----------|--|--|
| Tussilagine | 80151-77-5 | 8 | 0.6 | -0.04 | Carcinogenic in vivo | Inhibition of human carbonic anhydrase 9 catalytic domain |
| Umbelliferone | 93-35-6 | 21 | 1.58 | 0.4 | 10000 | Inhibitors of Secretory Acid Sphingomyelinase (S-ASM) |
| Xanthotoxol | 2009-24-7 | 29 | 1.16 | 0.22 | 480 | Inhibitors of Secretory Acid Sphingomyelinase (S-ASM) |
| Mycotoxins | | | | | | |
| Aflatoxin B1 | 1162-65-8 | 13 | 1.45 | 0.1 | Carcinogenic, terathogenic | Carcinogenic, terathogenic |
| Aflatoxin B2 | 7220-81-7 | 25 | 0.855 | 0.18 | Carcinogenic, terathogenic; hepatotoxic | Carcinogenic, terathogenic; hepatotoxic |
| Alpha-Zearalenol | 36455-72-8 | 29 | 4 | 1.41 | Chronic toxicity and carcinogenic | Chronic toxicity and carcinogenic |
| Aspergilllic acid | 2152-59-2 | 13 | 1.7 | 0.8 | Antibiotic substance; animal toxicity | Antibiotic substance; animal toxicity |
| Averufin | 14016-29-6 | 17 | 3 | 1.09 | Inhibition of deaminase | Inhibition of deaminase |
| Kojic Acid | 501-30-4 | 8 | -0.64 | -0.05 | 23.8 | Inhibition of human recombinant DAAO |
| Azelaic acid | 19619-43-3 | 13 | 1.55 | 0.64 | 5 | Irritant |
| Barnol | 2151-18-0 | 0 | 2.26 | 0.79 | | |
| Cyanotoxins | | | | | | |
| Anatoxin-a | 64285-06-9 | 17 | 0.8 | 0.36 | Neurotoxicity; muscular fasciculation, respiratory paralysis. | Neurotoxicity; muscular fasciculation, respiratory paralysis. |
| MC-LR | 101043-37-2 | 8 | -1.2 | -0.01 | Hepatotoxicity; visual disturbance, respiratory | Hepatotoxicity; visual disturbance, respiratory |
| Toxin | CAS Number | Efficacy | Recalcitrant | LD | LD50 [mg/kg] |
|---------|--------------|----------|--------------|----|--------------|
| MC-LW | 157622-02-1 | 8 | 5.2 | 0.81 | 0.25-0.33 |
| MC-YR | 101064-48-6 | 8 | -0.2 | -0.02 | 40 |
| Nodularin | 118399-22-7 | 4 | 1.7 Months | -0.04 | 0.060 |

Hepatotoxicity; visual disturbance, respiratory irritation; vomiting, and muscle weakness

MC-LW	[74] C(=O)O)C)C(C(C)C(=O)(=O)O)C C C N=N=C(N)=C(C(=O)O)C)C=CC=CC=CC(=CC(C)C=CC=CC=CC(=CC=C2)OC)C
MC-YR	[75] C(=O)O)C)C(C(C)C(=O)(=O)O)C C C N=N=C(N)=C(C(=O)O)C)C=CC=CC=CC(=CC=C2)OC)C
Nodularin	[76] C(=O)O)C)C(C(C)C(=O)(=O)O)C C C N=N=C(N)=C(C(=O)O)C)C=CC=CC=CC(=CC=C2)OC)C

Irritation; vomiting, and muscle weakness
In Table 5, the ranking of the tentatively identified substances is presented. Four substances, namely, tetrahydrocannabivarin, MC-LW, aconosine, and MC-LR, were ranked with more than 300 points, and 13 toxins were ranked with more than 200 points. In this case, it was considered to be the frequency during the sampling period, which includes seasons with a lower incidence of the substances in water.

Table 5. Prioritisation for ranking the substances detected in the Ter River.

Ranking	Tentatively Identified Substance
325	Tetrahydrocannabivarin
325	MC-LW
300	Aconosine
300	MC-LR
275	MC-YR
275	Nodularin
250	Aflatoxin B1
250	Alpha-Zearalenol
225	Ptaquilosin B
225	Retronecine
225	Tussilagine
225	Aflatoxin B2
200	Aspidospermine
175	Artemisic acid
175	Conhydrine
175	Anatoxin-a
150	Bisabolol oxide B
150	Swainsonine
150	Averufin
125	Acetoxytropane
125	Apiole
125	Aspidinol
125	Cuscohygrine
125	Hygrine
125	Laudanosine
125	Lupanine
125	Methylpelletierine
125	Methylpseudoconhydrine
125	Reticuline
125	Tetranueein A
125	Aspergillic acid
100	Alantolactone
100	Buddledin B
100	Hypoglycine A
100	p-Coumaric acid
100	Kojic Acid
100	Azelaic acid
75	Anethole
75	Ambrosin
75	Xanthotoxol
50	Arabsin
50	Herniarin
50	Methyl-Jasmonate
50	Norpseudopelletierine
50	Norpseudopelletierine
However, following a month-by-month inspection, for certain substances the frequency was higher; hence, this ranking then varies a little and a higher number of toxins reaches 300 points. For this reason, in spite of the low concentrations of the substances that are quantified as the top 12 toxins to be tentatively identified, Barcelona city water reservoirs should be monitored at least from May to September, which were the months with higher occurrences of natural toxins.

3. Conclusions

The method described in this article is a good alternative for tentatively identifying suspect natural toxins in surface water. We have shown that the presence of organic matter near the river can potentially cause the leaching of mycotoxins. Moreover, in this study, plant toxins were mostly spread across different points in relation to the presence of different endemic plants. Notwithstanding, the botanical diversity influences the presence of natural toxins as equally as the precipitation and dry periods. The concentrations of natural toxins were not determined due to the lack of certified standards; however, a correlation between the rain and the leaching in water was described and assessed.

Thanks to these results, we report on the importance of the suspect screening for the identification of natural toxins and their final inclusion in prioritisation lists in order to control their presence in water environments, in particular in drinking water reservoirs. It is also important to increase the amount of data, to help scientists identify environmental compounds when no standards are available, or where they are excessively expensive. Many MC congeners are still not included in databases such as MzCloud and Chemspider. Hence, the retrieval of MS² spectrums for the MC congeners is an issue that is being solved with the efforts of the scientific community via the constant updating of data in dedicated databases for environmental research. For comparison purposes, future works should apply this method of analysing natural toxins across different climates worldwide.

4. Materials and Methods

4.1. Chemicals and Reagents

Twenty-seven (27) natural toxin standards with a maximum purity between 95 and 99% were selected for the targeted analysis. In Table A1 of Appendix A, the list of standards, their main chemical parameters, and providers are listed. Methanol (MeOH), acetone, and acetonitrile (ACN) of HPLC grade were from Merck (Darmstadt, Germany). HPLC water grade was from Baker (Madrid, Spain).

4.2. Samples and Sampling Sites

Forty-eight surface water samples were collected from the Ter River (Catalonia, NE Spain) at four sampling sites: (M1) 41.986133, 2.603488; Point 2 (M2) 41.982191, 2.585539; Point 3 (M3) 41.991090, 2.570144; and Point 4 (M4) 41.975693, 2.395398, in the area of Pasteral, Susqueda, and Sau dams, which are the freshwater reservoirs for Barcelona city tap water.

The sampling was carried out from March to September 2018, except for June, twice per month, in order to study the prior, during, and after blooming periods, when higher concentrations of natural toxins are expected [77]. In each sampling site, the pH, conductivity, and pO₂ were measured. Water samples were collected in amber glass bottles that had previously been rinsed, transported at 4 °C, and maintained frozen at -40 °C until the start of the analytical process.
4.3. Sample Pre-Treatment

Sample pre-treatment was based on the generic methodology to isolate natural toxins from water, as recently developed by Picardo et al. [20]. Briefly, each sample was processed in an ultrasonic bath for 20 min to disrupt the microbial cells and to release the intracellular toxins. Then, the sonicated samples were filtered through a glass microfibre filter of GF/B grade (Sigma Aldrich, Steinheim, Germany). Natural toxins were isolated from the filtrate via a three-step solid-phase extraction (SPE) method, using a hand-made cartridge that had been prepared with 200 mg of a porous graphitised carbon (PGC) 120 mesh (Sigma Aldrich, Steinheim, Germany) and 200 mg of a Bond-Elut PPL (PPL) 120 mesh (Agilent, Santa Clara, CA, USA), coupled to an HLB plus cartridge (225 mg sorbent) (Waters Corporations, Milford, MA, USA).

Then, water samples, each of 100 mL, were loaded into the cartridges at a flow rate of 2 mL/min, previously conditioned with 10 mL of MeOH and 10 mL of water, and both solvents were acidified with 0.5% of formic acid (FA). After loading, the cartridges were dried and switched to elute the analytes in the backflush mode. The PGC/PPL cartridge was reversed, while the HLB cartridge maintained the same position. The toxins were eluted with 15 mL of water/MeOH 2:8 (v/v), followed by 15 mL of MeOH and 15 mL of acetone/MeOH 50:50 (v/v). All the solvents were previously warmed at 45 °C before each elution. The eluate was evaporated almost to dryness and re-dissolved in 1 mL of the mobile phase.

4.4. Liquid Chromatography Coupled with High-Resolution Mass Spectrometry

According to the method described by Picardo et al., 2020 [20], the chromatographic separation was carried out using a C18 reversed-phase Lichrosphere (125 mm × 2 mm i.d., 5 µm) column (Merck, Barcelona, ES) connected to an Acquity high-performance liquid chromatography system (Waters Corp, Milford, MA, USA). The binary mobile phase was composed of water (solvent A) and acetonitrile (solvent B) and both had been acidified with 0.1% of FA. The elution gradient was as follows: from 0–3 min, 10% B; from 3–13 min, B was linearly increased to 90%; 13–15 min, stabilised at 90% B; 15–16 min B decreased linearly to 10%; 16–20 min, column stabilisation with 10% of solvent B. A 20 µL injection volume was used with a mobile phase flow rate of 0.25 mL/min.

The HPLC system was coupled to a Thermo Scientific Orbitrap Q-Exactive mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with a heated electrospray ionisation source (HESI), and used in the positive and negative ionisation modes. The acquisition was performed using a full-scan and data-dependent analysis (FS-DDA) from \(m/z = 75 \) to \(m/z = 1100 \), with a resolution of 35,000 full widths at half maximum (FWHM) for the FS and 17,500 FWHM for the DDA There was a spray voltage of 3.75 kV (+) and −3.25 kV (−), a sheath flow gas of 20 a.u., an auxiliary gas of 20 a.u., and a sweep gas of 5 a.u. Heater and capillary temperatures were set at 300 °C with an S-lens RF level at 60%. An inclusion list of the 100 most probable suspect compounds was used (Appendix A Table A2).

4.5. Data Processing: Suspect Screening of Natural Toxins

The suspect screening procedure that was previously described by Picardo et al. [20] was employed with minor changes. Briefly, the FS chromatograms that were obtained with the acquisition software Xcalibur Qual Browser (Thermo Fisher Scientific) were processed, using an automated screening with Compound Discoverer software version 3.1 v. x86 (Thermo Fisher Scientific, San Jose, CA, USA). The first screening steps included peak picking, RT alignment, and grouping of isotopes and adducts (to form compounds), as well as the grouping of compounds across samples. Suspect compounds were marked as background if their peak area in the samples was less than three times larger than the maximum peak area in the blanks. Suspects were tentatively identified using the exact mass with a mass error of 5 ppm. This created a first list of suspect compounds that were further filtered by comparison with a homemade database containing the exact mass of more than 2384 natural toxins. Further filtering steps consisted of the comparison of isotopic patterns, ionisation efficiency, and fragmentation patterns. In Figure 5, the general workflow is summarised, which is
similar to the workflows of Krauss [78] and Schymanski [21]. Finally, the MS/MS spectrum was compared with the spectrum of a standard or the predicted fragmentation pattern using the ChemSpider and MzCloud online databases. Unequivocal confirmation was only possible when a reference standard was available (identification at level 1).

Figure 5. General workflow for suspect screening as proposed by Schymansky et al. [21].

4.6. Accuracy, Precision, Limits of Detection, and Quantification

Quantification was achieved through calibration curves that were prepared in an artificial freshwater matrix (AFW). The AFW was prepared using the same ingredients that were reported by Lipschitz and Michel [79]. Briefly, the organic matter was simulated with 10 mg/L of technical grade humic acid (Sigma-Aldrich, reference 53,680), and the pH was adjusted to 6.5 with 1.0 M formic acid. Matrix-matched calibration curves were produced using spiked samples from 0.5 to 100 µg/L. Intra-assay precision, accuracy, LOD, and LOQ for the confirmed toxins were calculated according to the EURACHEM guidelines [80]. The instrumental limits of detection (iLOD) were obtained by progressive dilution to the lowest concentration, whereby each compound could be detected. Instrumental reproducibility (inter-day precision) was calculated as the average percentage of the relative standard deviation (RSD%) of the standard solutions (six replicates) at seven concentration levels on three consecutive days.

Author Contributions: Data curation, M.P. and M.F.; Formal analysis, M.P.; Investigation, O.N. and M.F.; Supervision, O.N. and M.F.; Writing – original draft, M.P.; Writing – review & editing, O.N. and M.F. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the research and innovation programme Horizon 2020 of the European Commission under the Marie Sklodowska-Curie grant agreement No. 722493 (NaToxAq), and by the Generalitat de Catalunya (Consolidated Research Groups “2017 SGR 1404—Water and Soil Quality Unit”).

Conflicts of Interest: The authors declare no conflict of interest.
Appendix A

Toxin	Toxic Group	Chemical Formula	Exact Mass	Purity (%)	Supplied by
Microcystin LA	Cyanotoxin	C46H67N7O12	909.4847	>95	Cyano (Cyanobiotech GmbH, Berlin, Germany)
Microcystin LF	Cyanotoxin	C52H71N7O12	985.5160	>95	Cyano (Cyanobiotech GmbH, Berlin, Germany)
Microcystin LR	Cyanotoxin	C49H74N10O12	994.5488	>95	Cyano (Cyanobiotech GmbH, Berlin, Germany)
Microcystin LY	Cyanotoxin	C52H71N7O13	1001.5109	>95	Cyano (Cyanobiotech GmbH, Berlin, Germany)
Microcystin LW	Cyanotoxin	C54H72N8O12	1024.5269	>95	Cyano (Cyanobiotech GmbH, Berlin, Germany)
Microcystin YR	Cyanotoxin	C52H72N10O13	1044.5353	>95	Cyano (Cyanobiotech GmbH, Berlin, Germany)
Nodularin	Cyanotoxin	C41H60N8O10	824.4432	>95	Cyano (Cyanobiotech GmbH, Berlin, Germany)
Anatoxin-a	Cyanotoxin	C10H15NO	165.2320	>98	Santa Cruz Biotechnology (Dallas, TX, USA)
Cylindrospermopsis	Cyanotoxin	C15H21N5O7S	399.1219	99	BOCSci (BOC Sciences, Ramsey Road Shirley, NY, USA)
Afatoxin B1	Mycotoxin	C17H12O6	312.0632	>98	Merck (Darmstadt, Germany)
Ochratoxin-A	Mycotoxin	C20H18CINO6	403.0823	>98	Merck (Darmstadt, Germany)
Baicalein	Phytotoxin	C15H10O5	270.0528	98	Merck (Darmstadt, Germany)
Genistein	Phytotoxin	C15H10O5	270.0528	>98	Merck (Darmstadt, Germany)
Amygdalin	Phytotoxin	C20H27NO11	457.158	>99	Merck (Darmstadt, Germany)
Scopolamine	Phytotoxin	C17H21NO4	303.147	>98	Merck (Darmstadt, Germany)
Cinchonine	Phytotoxin	C19H22N2O	294.1732	>98	Merck (Darmstadt, Germany)
Atropine	Phytotoxin	C17H23NO3	289.1682	>99	Merck (Darmstadt, Germany)
Kojic Acid	Mycotoxin	C6H6O4	142.0274	>98	Merck (Darmstadt, Germany)
b-Asarone	Phytotoxin	C12H16O3	208.1099	70	Merck (Darmstadt, Germany)
p-Coumaric acid	Phytotoxin	C9H8O3	164.0471	>98	Merck (Darmstadt, Germany)
Abietic acid	Phytotoxin	C20H30O2	302.2256	>95	Merck (Darmstadt, Germany)
7-Ethoxyoumarin	Phytotoxin	C11H10O3	190.0634	≥97%	Merck (Darmstadt, Germany)
7-Metoxycoumarin	Phytotoxin	C10H8O3	176.0479	>98	Merck (Darmstadt, Germany)
Arbutin	Phytotoxin	C12H16O7	272.0986	>98	Merck (Darmstadt, Germany)
Umbelliferone	Phytotoxin	C9H6O3	162.0327	>99	Merck (Darmstadt, Germany)
Thujone	Phytotoxin	C10H16O	152.1235	>99	Merck (Darmstadt, Germany)
Cotinine	Phytotoxin	C10H12N2O	176.0956	>99	Merck (Darmstadt, Germany)
Table A2. Inclusion list of the 100 most probable suspect compounds.

Mass $[M + H]^+$	Formula $[M]$	CE	Toxin and Possible Isomers
239.1542	C16H18N2	35	(-)-Agroclavine
180.1019	C10H13NO2	35	(-)-Salsolinol, Fusaric acid
398.0961	C18H24BrNO4	35	(-)-Scopolamin bromide
128.1433	C8H17N	35	(+)-Coniine
142.1226	C8H15NO	35	(+)-Hygrine
249.1961	C15H24N2O	35	(+)-Lupanine
333.2060	C20 H28 O4	35	20-Deoxygeninol
184.1332	C10 H17 N O2	35	3-Acetoxytropine
197.1536	C12H20O2	35	3-Thujyl acetate
646.3221	C34H47NO11	35	Aconitine
313.0706	C17 H12 O6	70	Aflatoxin B
315.0863	C17 H14 O6	35	Aflatoxin B
329.065	C17 H12 O7	35	Aflatoxin G
331.0812	C17H14O7	35	Aflatoxin G2
502.2951	C32H39NO4	35	Aflatrem
159.0513	C4 H6 N4 O3	35	Allantoin
924.4951	C47H73NO17	35	Amphotericin Bh
458.1656	C20H27NO11	60	Amygdalin
456.1511	C20H27NO11	35	Amygdalin negative
166.1226	C10 H15 N O	45	Anatoxin-A
187.03897	C11H6O3	35	Angelicin (Isopsoralen)
504.343	C28H45N3O5	35	Antillatoxin
624.3755	C34H49N5O6	35	Apicidin
271.0601	C15H10O5	35	Apigenin
283.1540	C15H22O5	35	Artemisinin
189.1121	C9 H16 O4	35	Aspionene
290.1751	C17H23NO3	50	Atropine
369.0968	C20H16O7	35	Averufin
321.1696	C18H24O5	35	a-Zearalenol
261.1597	C15H20N2O2	35	Baptifoline
784.4167	C45H57N3O9	35	Beauvericin
641.2891	C34H44N2O8S	35	Belladonnine
209.1172	C12H16O3	50	beta-Asarone
285.0757	C16H12O5	35	Biochanin A (BIO)
438.2638	C27H35N4O	35	b-Paxitriol
281.1747	C16 H24 O4	35	Brefeldin A
235.1692	C15 H22 O2	35	Buddledin B
317.2111	C20H28O3	35	Cafestol
195.0876	C8H10N4O2	35	Caffeine
153.1273	C10H16O	35	Carveol
261.1849	C17H24O2	35	Cicudiol
259.1692	C17 H22 O2	35	Cicutoxin
1111.5836	C60H86O19	35	Ciguatoxin
295.1804	C19H22N2O	35	Cinchonine
279.0863	C14H14O6	35	Citreoisocoumarin
403.2115	C23H30O6	35	Citreoviridin
400.1754	C22H25NO6	35	Colchicine
Molecular Formula	Scientific Name	Description	
------------------	-----------------	-------------	
C8H17NO	Conhydrine		
C6H6O3	Coumarin		
C16 H29 N O4	Curassavine		
C13H24N2O	Cuscohygrine		
C15H21N5O7S	Cylindrospermopsin		
C15H1004	Daidzein (DAI)		
C21H2009	Daidzin		
C29H32O13	Dalbin		
C23H22O8	Dalbinol		
C15H2003	Damsin		
C16H18O5	Dehydrocurcularin		
C20H18O6	Deoxynivalenol		
C22H18O8	Desertorin A		
C19H26O7	Diacetoxyscirpenol		
C41H64O13	Digitoxin		
C27H42O3	Diosgenin		
C17 H26 O4	Embelin		
C15H1005	Emodin		
C60H74N10O10	Ergocladin		
C18H23NO6	Erucifoline		
C16H12O4	Formononetin (FOR)		
C10H8O5	Fraxetin		
C15H1005	Genistein or baicalein		
C10H18O	Geraniol		
C41H64O14	Gitoxin		
C8 H13 N O2	Heliotridine		
C17H21NO4	Hyoscine		
C6H6O4	Kojic acid		
C34 H52 O5	Lantadene D		
C18H27 N O4	Laudanosine		
C46H67N7O12	MC-LA		
C49H74N10O12	MC-LR		
C54H72N8O12	MC-LW		
C52H72N10O13	MC-YR		
C11H12O3	Myristicin		
C41 H60 N8 O10	Nodularin		
C7H13NO	Norhygrine		
C5H5N5O	Nostocine		
C20H18CINO6	Ochratoxin-a		
C11H18O4	Pestalotin		
C8H8N2O2	Riciné		
C11H15NO2	Salsoline		
C45H73NO15	Solanine		
C42H67NO10	Spirolide		
C8H6O5	Stipitatic acid		
C8H15N03	Swainsoneine		
C10H16O	Thujone		
C5H6O3	Tulipalin B		
C9H6O3	Umbelliferone		
C22 H30 N2 O2	Vincaminorein		
	(Aspidospermine)		
Table A3. Calibration curve parameters for the quantification of the confirmed compounds.

Toxins	Molecular Formula	[M+H]+ (µg/L)	Recovery %	RSD %	LOD (µg/L)	LOQ (µg/L)	R²
Ana	C₁₀H₁₅NO	166.1234	84	8.0	0.2	0.5	0.989
AflB₁	C₁₇H₁₂O₆	416.1242	86	9.9	0.2	0.7	0.999
MC-LR	C₂₀H₃₀N₁₂O₁₀	995.5568	78	3.3	0.2	0.5	0.995
MC-LW	C₂₄H₃₄N₁₆O₁₀	1025.534	55	5.8	0.1	0.5	0.991
Nod	C₁₃H₁₈N₈O₈	825.4512	94	16.2	0.2	0.8	0.992
MC-YR	C₂₄H₃₄N₁₆O₁₀	1045.536	84	16.9	0.4	1.5	0.943
Kja	C₁₂H₁₈O₃	208.1093	85	6.4	0.02	0.08	0.990
7-methoxycoumarin	C₁₀H₈O₃	177.0546	82	7	0.002	0.007	0.999
Umbelliferone	C₁₃H₁₆O₃	163.0388	79	11.2	0.009	0.03	0.998

References

1. Picardo, M.; Filatova, D.; Nuñez, O.; Farré, M. Recent advances in the detection of natural toxins in freshwater environments. Trends Anal. Chem. 2019, 112, 75–86, doi:10.1016/j.trac.2018.12.017.
2. Ferrão-Filho, A.d.S.; Kozlowsky-Suzuki, B. Cyanotoxins: Bioaccumulation and effects on aquatic animals. Mar. Drugs 2011, 9, 2729–2772, doi:10.3390/md9122729.
3. Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardalà, S.; Testai, E.; Funari, E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017, 91, 1049–1130, doi:10.1007/s00204-016-1913-6.
4. Neilan, B.A.; Pearson, L.A.; Muenchhoff, J.; Moffitt, M.C.; Dittmann, E. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol. 2013, 15, 1239–1253, doi:10.1111/j.1462-2920.2012.02729.x.
5. Guidelines for Drinking-Water Quality, 2nd ed; Addendum to Vol. 2. Health Criteria and Other Supporting Information; World Health Organization: Geneva, Switzerland, 1998.
6. Zinedine, A.; Mañes, J. Occurrence and legislation of mycotoxins in food and feed from Morocco. Food Control. 2009, 20, 334–344, doi:10.1016/j.foodcont.2008.07.002.
7. Miller, J.D. Mycotoxins in food and feed: A Challenge for the twenty-first century. In Biology of Microfungi; Li, D.-W., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 469–493, doi:10.1007/978-3-319-29137-6_19.
8. Oliveira, B.R.; Mata, A.T.; Ferreira, J.P.; Barreto Crespo, M.T.; Pereira, V.J.; Bronze, M.R. Production of mycotoxins by filamentous fungi in untreated surface water. Environ. Sci. Pollut. Res. 2018, 25, 17519–17528, doi:10.1007/s11356-018-1952-z.
9. Mata, A.T.; Ferreira, J.; Oliveira, B.R.; Batoreu, C.; Crespo, M.T.; Pereira, V.; Bronze, M. Bottled water: analysis of mycotoxins by LC-MS/MS. Food Chem. 2015, 176, 455–464, doi:10.1016/j.foodchem.2014.12.088.
10. Novak Babič, M.; Gunde-Cimerman, N.; Vargha, M.; Tischner, Z.; Magyar, D.; Verissimo, C.; Sabino, R.; Viegas, C.; Meyer, W.; Brandão, J. Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. Int. J. Environ. Res. Public Health 2017, 14, 636, doi:10.3390/ijerph14060636.
11. Bucheli, T.D. Phytotoxins: Environmental micropollutants of concern? Environ. Sci. Technol. 2014, 48, 13027–13033, doi:10.1021/es504342w.
12. Yamane, H.; Kono, K.; Sabelis, M.; Takabayashi, J.; Sassa, T.; Oikawa, H. 4.08—Chemical defence and toxins of plants. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds; Elsevier: Oxford, UK, 2010; pp. 339–385, doi:10.1016/B978-008045382-8.00099-X.
Toxins 2020, 12, 752

13. Clauson-Kaas, F.; Hansen, H.C.B.; Strobel, B.W. UPLC-MS/MS determination of ptaquiloside and pterosin B in preserved natural water. *Anal. Bioanal. Chem.* 2016, 408, 7981–7990, doi:10.1007/s00216-016-9895-z.

14. Günthardt, B.F.; Hollender, J.; Hungerbühler, K.; Scheringer, M.; Bucheli, T.D. Comprehensive toxic plants–phytotoxins database and its application in assessing aquatic micropollution potential. *J. Agric. Food Chem.* 2018, 66, 7577–7588, doi:10.1021/acs.jafc.8b01639.

15. Virgilio, A.; Sinisi, A.; Russo, V.; Gerardo, S.; Santoro, A.; Galeone, A.; Tagliatela-Scafati, O.; Roperto, F. Ptaquiloside, the major carcinogen of bracken fern, in the pooled raw milk of healthy sheep and goats: An underestimated, global concern of food safety. *J. Agric. Food Chem.* 2015, 63, 4886–4892, doi:10.1021/jf507627y.

16. Hoerger, C.; Schenzel, J.; Strobel, B.; Bucheli, T. Analysis of selected phytotoxins and mycotoxins in environmental samples. *Anal. Bioanal. Chem.* 2009, 395, 1261–1289, doi:10.1007/s00216-009-3088-y.

17. Griffith, A.W.; Gobler, C.J. Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems. *Harmful Algae* 2020, 91, 101590, doi:10.1016/j.hal.2019.03.008.

18. Turner, A.D.; Dhanji-Rapkova, M.; O’Neill, A.; Coates, L.; Lewis, A.; Lewis, K. Analysis of microcystins in cyanobacterial blooms from freshwater bodies in England. *Toxins* 2018, 10, 39, doi:10.3390/toxins10010039.

19. Sansseverino, I.; António, D.C.; Loos, R.; Lettieri, T. *Cyanotoxins: Methods and Approaches for Their Analysis and Detection*; EUR 28624; Publications Office of the European Union: Luxembourg, 2017; doi:10.2760/36186.

20. Picardo, M.; Sanchis, J.; Núñez, O.; Farré, M. Suspect screening of natural toxins in surface and drinking water by high performance liquid chromatography and high-resolution mass spectrometry. *Chemosphere* 2020, 261, 127888, doi:10.1016/j.chemosphere.2020.127888.

21. Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. *Environ. Sci. Technol.* 2014, 48, 2097–2098, doi:10.1021/es5002105.

22. Ninot, J.; Ferré, A.; Grau, O.; Castell, X.; Pérez-Haase, A.; Carrillo, E. Environmental drivers and plant species diversity in the Catalan and Andorran Pyrenees. *Lazaroa* 2013, 34, 89–105, doi:10.5209/rev_LAZA.2013.v34.n1.43277.

23. Mohanjr, S.; Subramanian, P.; Culvenor, C.; Edgar, J.; Frahn, J.; Smith, L.; Cockrump, P. Curassavine, an alkaloid from Heliotropium curassavicum Linn. with a C8 necic acid skeleton. *J. Chem. Soc. Chem. Commun.* 1978, 1039, doi:10.1039/c9780000423.

24. Moreno-Saiz, J.C.; Pataro, L.; Pajarón Sotomayor, S. Atlas de los pteridófitos de la Península Ibérica e Islas Baleares. *Acta Bot. Malacit.* 2015, 40, 5–55, doi:10.24310/abm.v40i0.2540.

25. Ribeiro, D.D.S.F.; Keller, K.M.; Soto-Blanco, B. Ptaquiloside and pterosin B levels in mature green fronds and sprouts of *Pteridium arachnoideum*. *Toxins* 2020, 12, 288, doi:10.3390/toxins12050288.

26. Agnew, M.P.; Lauren, D.R. Determination of ptaquiloside in bracken fern (*Pteridium esculentum*). *J. Chromatogr. A* 1991, 538, 462–468, doi:10.1016/S0021-9673(01)88870-1.

27. Marcé, R.; Armengol, J.; Dolz, J. Els efectes als embassaments i la seva rellevància en la quantitat i la qualitat de l’aigua per a la garantia del recurs. 2009. Available online: https://aca-web.gencat.cat/aca/documents/ca/publicacions/impactes_sobre_ecosistemes/capitol17_lowress.pdf. (accessed on 5 October 2020).

28. Fortuño, P.; Bonada, N.; Prat, N.; Acosta, R.; Cañedo-Argüelles, M.; Castaño, D.; Cid, N.; Múrria, C.; Pineda, D.; Rocha, K.; et al. Efectes del Canvi Ambiental en les comunitats d’organismes dels Rius MEDiterranèus (CARIMED). Informe 2017. Diputació de Barcelona. Àrea d’Espais Naturals (Estudis de la Qualitat Ecològica dels Rius; 27). p 80. 2018 Available online: http://www.ub.edu/barcelonarius/web/index.php/informe-2017 (accessed on 5 October 2020).

29. Jara, V.I.S. Comunidades de Cianobacterias Bentónicas, Producción y Liberación de Microcistinas en el río Muga (NE Península Ibérica). Ph.D. Thesis. Universitat de Girona, Girona, Spain. 2010.

30. Sivonen, K.; Carmichael, W.; Namikoshi, M.; Rinehart, K.; Dahlem, A.; Niemelä, S. Isolation and characterization of hepatotoxic microcystin homologs from the filamentous freshwater cyanobacterium *Nostoc* sp. strain 152. *Appl. Environ. Microbiol.* 1990, 56, 2650–2657, doi:10.1128/AEM.56.9.2650-2657.1990.

31. Choi, Y.; Lee, J.H.; Kim, K.; Mun, H.; Park, N.; Jeon, J. Identification, quantification, and prioritization of new emerging pollutants in domestic and industrial effluents, Korea: Application of LC-HRMS based suspect and non-target screening. *J. Hazard. Mater.* 2021, 402, doi:10.1016/j.jhazmat.2020.123706.
32. Soni, P.; Siddiqui, A.A.; Dwivedi, J.; Soni, V. Pharmacological properties of *Datura stramonium* L. as a potential medicinal tree: An overview. *Asian Pac. J. Trop. Biomed.* 2012, 2, 1002–1008, doi:10.1016/s2221-1691(13)60014-3.

33. Shmuel, Y. *Dictionary of Food Compounds with CD-ROM: Additives, Flavors, and Ingredients*; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004.

34. U.S. Environmental Protection Agency. Chemistry Dashboard. p-Hydroxycinnamic acid. Available online: https://comptox.epa.gov/dashboard/DTXSID6064660 (accessed on 3 April 2020).

35. Fernández, H.; Kumar, A.; Revilla, M.A. *Working with Ferns: Issues and Applications*; Springer: New York, NY, USA, 2010.

36. National Center for Biotechnology Information. PubChem Database. Reticuline, CID=439653. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Reticuline (accessed on 3 April 2020).

37. Khalil, M.N.A.; Choucry, M.A.; El Senousy, A.S.; Hassan, A.; El-Marsy, S.A.; El Awdan, S.A.; Omar, F.A. Ambrosin, a potent NF-κβ inhibitor, ameliorates lipopolysaccharide induced memory impairment, comparison to curcumin. *PLoS ONE* 2019, 14, e0219378, doi:10.1371/journal.pone.0219378.

38. Mulder, P.P.J.; López, P.; Castelari, M.; Bodi, D.; Ronczka, S.; Preiss-Weigert, A.; These, A. Occurrence of pyrrolizidine alkaloids in animal- and plant-derived food: Results of a survey across Europe. *Food Addit. Contam. Part A* 2018, 35, 118–133, doi:10.1080/19440049.2017.1382726.

39. Sethi, J.K.; Vidal-Puig, A.J. Thematic review series: Adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. *J. Lipid Res.* 2007, 48, 1253–1262, doi:10.1194/jlr.R70005-JLR200.

40. Lee, J.; Lee, J.; Jung, E.; Cho, J.Y.; Park, D. Arthemisic acid inhibits melanogenesis through downregulation of C/EBP α-dependent expression of HMG-CoA reductase gene. *Food Chem. Toxicol.* 2013, 51, 225–230, doi:10.1016/j.fct.2012.10.002.

41. Hua, X.; Yang, Q.; Zhang, W.; Dong, Z.; Yu, S.; Schwarz, S.; Liu, S. Antibacterial activity and mechanism of action of aspidinol against multi-drug-resistant methicillin-resistant staphylococcus aureus. *Front. Pharmacol.* 2018, 9, doi:10.3389/fphar.2018.00619.

42. U.S. Environmental Protection Agency. Chemistry Dashboard. Aspidospermine. Available online: https://comptox.epa.gov/dashboard/DTXSID70196883 (accessed on 3 April 2020).

43. Fugh-Berman, A. *The 5-Minute Herb and Dietary Supplement Consult*; Lippincott Williams & Wilkins, Philadelphia, PA, USA: 2003.

44. Yoshida, T.; Nobuhara, J.; Uchida, M.; Okuda, T. Buddleia davidii Franch. Tetrahedron Lett. 1976, 17, 3717–3720, doi:10.1016/S0040-4039(00)93090-9.

45. Furbee, B. Neurotoxic plants. *Clin. Neurotoxicology Syndr. Subst. Environ.* 2009, 523–542, doi:10.1016/B978-032305260-3.50053-8.

46. Rodríguez, A.; Rodríguez, M.; Martín, A.; Nuñez, F.; Córdoba, J.J.F.C. Evaluation of hazard of aflatoxin B1, ochratoxin A and patulin production in dry-cured ham and early detection of producing moulds by qPCR. *Food Control* 2012, 27, 118–126.

47. National Center for Biotechnology Information. PubChem Compound Summary for CID 10748, 7-Methoxycoumarin. 2020. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/7-Methoxycoumarin (accessed on 28 October 2020).

48. National Center for Biotechnology Information. PubChem Compound Summary for CID 440933, Hygrine. 2020. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Hygrine (accessed on 28 October 2020).

49. Dutcher, J.D. Aspergillic acid: An antibiotic substance produced by *Aspergillus flavus* i. general properties; formation of desoxyaspergillic acid; structural conclusions. *J. Biol. Chem.* 1947, 171, 321–339.

50. Katz, Y.; Weizman, A.; Pick, C.G.; Pasternak, G.W.; Liu, L.; Fonia, O.; Gavish, M. Interactions between laudanosine, GABA, and opioid subtype receptors: implication for laudanosine seizure activity. *Brain Res.* 1994, 646, 235–241, doi:10.1016/0006-8993(94)90084-1.

51. National Center for Biotechnology Information. PubChem Compound Summary for CID 91471, Lupanine. 2020. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Lupanine (accessed on 28 October 2020).

52. U.S. Environmental Protection Agency. Chemistry Dashboard. Methyl jasmonate. Available online: https://comptox.epa.gov/dashboard/DTXSID3036731 (accessed on April 2020).

53. Saxton, J.E. *The Alkaloids;* Royal Society of Chemistry, London, UK: 2007.
54. Sánchez-Lamar, A.; Fonseca, G.; Fuentes, J.L.; Cozzi, R.; Cundari, E.; Fiore, M.; Ricordy, R.; Perticone, P.; Degrassi, F.; De Salvia, R. Assessment of the genotoxic risk of Punica granatum L. (Punicaceae) whole fruit extracts. *J. Ethnopharmacol.* 2008, 115, 416–422, doi:10.1016/j.jep.2007.10.011.

55. U.S. Environmental Protection Agency. Chemistry Dashboard. 1-(1-Methyl-2-pyrrolidinyl)-2-propanone. Available online: https://comptox.epa.gov/dashboard/DTXSID40894081 (accessed on 3 April 2020).

56. Mosbach, K.; Ljungcrantz, I. Biosynthetic studies on barnol, a novel phenolic compound of penicillium baarnense. *Physiol. Plant.* 1965, 18, 1–3, doi:10.1111/j.1399-3054.1965.tb06861.x.

57. Yamaguchi, M.; Baile, C.A.; Zhu, S.; Shoji, M. Bioactive flavonoid p-hydroxycinnamic acid stimulates osteoblastogenesis and suppresses adipogenesis in bone marrow culture. *Cell Tissue Res.* 2013, 354, 743–750, doi:10.1007/s00441-013-1707-6.

58. U.S. Environmental Protection Agency. Chemistry Dashboard. Swainsonine. Available online: https://comptox.epa.gov/dashboard/DTXSID5046356 (accessed on 3 April 2020).

59. U.S. Environmental Protection Agency. Chemistry Dashboard. Tetrahydrocannabivarin. Available online: https://comptox.epa.gov/dashboard/DTXSID10893920 (accessed on 3 April 2020).

60. Recio, M.C.; Giner, R.M.; Uriburu, L.; Mañez, S.; Cerdá, M.; De La Fuente, J.R.; Ríos, J.L. In vivo activity of pseudoguanolide sesquiterpene lactones in acute and chronic inflammation. *Life Sci.* 2000, 66, 2509–2518, doi:10.1016/S0024-3205(00)00585-3.

61. National Center for Biotechnology Information. PubChem Database. Trachelanthamine, CID=26477. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Trachelanthamine (accessed on 3 April 2020).

62. Passreiter, C.; Willuhn, G.; Röder/Roeder, E. Tussilagine and isotussilagine: Two pyrrolizidine alkaloids in the genus arnica 1. *Planta Med.* 1993, 58, 556–557, doi:10.1055/s-2006-961549.

63. U.S. Environmental Protection Agency. Chemistry Dashboard. Umbelliferone. Available online: https://comptox.epa.gov/dashboard/DTXSID5052626 (accessed on 3 April 2020).

64. U.S. Environmental Protection Agency. Chemistry Dashboard. Xanthotoxol. Available online: https://comptox.epa.gov/dashboard/DTXSID50173910 (accessed on 3 April 2020).

65. U.S. Environmental Protection Agency. Chemistry Dashboard. Aspergilllic Acid Analog. Available online: https://comptox.epa.gov/dashboard/DTXSID20420024 (accessed on 3 April 2020).

66. U.S. Environmental Protection Agency. Chemistry Dashboard. Averufin. Available online: https://comptox.epa.gov/dashboard/DTXSID2040236 (accessed on 3 April 2020).

67. U.S. Environmental Protection Agency. Chemistry Dashboard. Anatoxin a. Available online: https://comptox.epa.gov/dashboard/DTXSID50173293 (accessed on 3 April 2020).

68. Carrasco, D.; Moreno, E.; Sanchis, D.; Wörmer, L.; Paniagua, T.; Del Cueto, A.; Quesada, A. Cyanobacterial abundance and microcystin occurrence in Mediterranean water reservoirs in Central Spain: Microcystins in the Madrid area. *Eur. J. Phycol.* 2006, 41, 281–291, doi:10.1080/0967026060801724.
78. Krauss, M.; Singer, H.; Hollender, J. LC-high resolution MS in environmental analysis: From target screening to the identification of unknowns. *Anal. Bioanal. Chem.* **2010**, *397*, 943–951, doi:10.1007/s00216-010-3608-9.

79. Lipschitz, D.L.; Michel, W.C. Amino acid odorants stimulate microvillar sensory neurons. *Chem. Senses* **2002**, *27*, 277–286.

80. Magnusson, B.; Örnemark, U. *Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics*, 2nd ed.; 2014. ISBN 978-91-87461-59-0. Available from http://www.eurachem.org

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).