Density and speed of sound in refrigerant vapor
R-125 (31 wt. %) + R-134A (69 wt. %)

S G Komarov and S V Stankus
Kutateladze Institute of Thermophysics SB RAS, 630090 Novosibirsk, Russia
E-mail: stankus@itp.nsc.ru

Abstract. Using a constant volume piezometer and ultrasonic interferometer methods, the density and speed of sound in gaseous mixture R-125 (31 wt. %) + R-134a (69 wt. %) were measured within the temperature range from 293 to 393 K and at pressure from 0.18…0.47 to 2.5 MPa. The errors in the measuring temperature, pressure, density and speed of sound were ±20 mK, ±4 kPa, ± (0.15–0.3) %, ± (0.1–0.2) %, respectively. It was shown that the speed of sound values increase with temperature and decrease with pressure. The obtained results were compared with the calculations using the REFPROP software.

1. Introduction
The REFPROP program [1], developed by the U.S. Institute of Standards and Technology, is a generally accepted world standard for the thermophysical properties of individual and mixed refrigerants. Nevertheless, our previous study of the speed of sound (U) in a mixture of R-125 and R-134a refrigerant has shown that for the composition R-125 (63.9 wt. %) + R-134a (36.1 wt. %) the obtained experimental data for vapor phase exceed the results of calculations by REFPROP by values exceeding the measurement errors of the speed of sound [2]. At the same time, refrigerants of the R-125 / R-134a system are the basis of many modern mixed refrigerants and, for this reason, high requirements are imposed on the accuracy of data on their properties in a wide range of concentrations.

The aim of this work was to measure the density (ρ) and speed of sound in a vapor of the composition R-125 (31 wt. %) + R-134a (69 wt. %) in a wide range of the state parameters.

2. Experimental details
The measurements were carried out by the methods of a constant volume piezometer (296–393 K; 0.469–2.55 MPa) and an ultrasonic interferometer (293–393 K; 0.184–2.52 MPa). The errors in the measuring temperature, pressure, density and speed of sound were ±20 mK, ±4 kPa, ± (0.15–0.3) %, ±(0.1–0.2) %, respectively [3–5]. The refrigerants of the R-125 – R134a system were prepared by the gravimetric method with an error of no more than 0.05 wt. %. Refrigerant R-125 was supplied by China and was 99.5% pure. Refrigerant R-134a was from Forane (France) and had a purity of 99.9%. These components were used without further purification. Molecular mass of the mixture was 107.00 g mol⁻¹. Before the start of the experiment, the setup was vacuumed up to a pressure of (2–4) Pa. To avoid variations in the mixture composition, the measuring cell was filled up from the liquid phase.
3. Results and Discussion
The results of our measurements of the refrigerant density and speed of sound in the vapor phase are shown in figure 1, 2 and table 1, 2.

Table 1. Measured density of 31 wt. % R125 + 69 wt. % R134a refrigerant in the vapor phase.

T (K)	p (MPa)	\(\rho \) (kg m\(^{-3}\))	T (K)	p (MPa)	\(\rho \) (kg m\(^{-3}\))
296.51	0.4692	22.46	353.15	1.3070	55.57
313.15	0.8279	39.73	353.15	2.1114	103.94
313.15	1.0856	55.69	373.15	0.6163	22.37
313.17	0.5022	22.44	373.15	1.0449	39.61
333.15	0.5407	22.41	373.15	1.4106	55.52
333.15	0.9022	39.69	373.15	2.3368	103.84
333.15	1.8738	104.05	393.15	0.6532	22.35
333.20	1.1992	55.63	393.15	1.1138	39.57
353.15	0.5787	22.39	393.15	1.5121	55.46
353.15	0.9745	39.65	393.15	2.5522	103.73

Figure 1. Experimental quasi-iscochores of the refrigerant R-125 (31 wt. %) + R-134a (69 wt. %) vapor density.

(1)–(4): 22.4; 39.7; 55.6; 104.0 kg m\(^{-3}\).

It is seen that the value \(U \) increases with temperature and decreases with pressure (figure 2). To confirm the reported error in the measuring speed of sound, initial data for each isotherm were approximated by polynomials of the second degree on pressure (total average absolute deviation AAD=0.07%), and by extrapolating \(U \) their values at zero pressure (\(U_0 \)) were obtained. These values, according to the well-known formula [3], were recalculated in the ideal-gas heat capacity (\(C_\rho \)), which is an additive value relative to pure components. Its comparison with the ideal gas heat capacity according to [2] has shown that the average absolute deviation is 3% or in terms of \(U_0 - 0.15\% \). The
latter value, taking into account the extrapolation performed, corresponds to our error in measuring the speed of sound.

Table 2. Measured speed of sound of 31 wt. % R125 + 69 wt. % R134a refrigerant in the vapor phase.

T (K)	p (MPa)	U (m s⁻¹)	T (K)	p (MPa)	U (m s⁻¹)
293.15	0.1835	154.32	333.15	1.8493	127.21
293.17	0.6952	138.65	353.15	0.2226	169.88
293.92	0.7273	137.48	353.15	0.4600	166.62
294.14	0.7169	138.51	353.15	0.8883	159.98
294.79	0.3641	150.15	353.15	1.3923	151.27
294.94	0.7416	137.65	353.15	1.6986	145.47
295.40	0.6969	140.03	353.15	2.0829	137.24
313.15	0.1962	159.43	373.15	0.4890	172.00
313.15	0.7577	146.65	373.15	0.9518	166.08
313.15	1.1454	135.19	373.15	1.5080	158.30
313.15	1.2010	133.21	373.15	1.8533	153.27
313.15	1.2128	132.74	373.15	2.3029	146.19
313.19	0.4021	155.57	393.15	0.2371	179.59
313.19	1.1494	135.09	393.15	0.2494	179.49
333.15	0.2005	165.26	393.15	0.5178	177.02
333.15	0.2092	164.70	393.15	1.0138	171.66
333.15	0.4306	161.07	393.15	1.6193	164.80
333.15	0.8263	153.59	393.15	2.0035	160.45
333.15	1.2739	143.51	393.15	2.5149	154.22

Figure 2. Speed of sound isotherms in the refrigerant R-125 (31 wt. %) + R-134a (69 wt. %). From bottom to top: 313.15 K; 333.13K; 353.13K; 373.15K; 393.15 K. Dots are experimental data, lines are approximation.
Comparison of the obtained data with calculations using the REFPROP program has shown that the average absolute deviation does not exceed 0.19% for density and 0.085% for the speed of sound. These values are within the limits of our experimental errors.

Figure 3. Relative deviations of our experimental speed of sound from data [1].

Conclusions
Experimental data on the density and speed of sound in the vapor of R-125 (31 wt. %) + R-134a (69 wt. %) refrigerants have been obtained for the first time. The measurement results show good agreement between the experimental data and the existing calculations. This suggests that the models and data included in REFPROP allow describing the thermal properties of refrigerants of the R-125 / R-134a system for compositions containing less than 50 wt. % R-125 with an experimental data error.

Acknowledgements
This work was carried out under state contract with IT SB RAS (121031800219-2).

References
[1] Lemmon E W, McLinden M O and Huber M L 2002 NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 (Gaithersburg: National Institute of Standards and Technology, Standard Reference Data Program)
[2] Komarov S G and Stankus S V 2019 J. Phys.: Conf. Ser. 1677 012166
[3] Gruzdev V A, Khairulin R A, Komarov S G and Stankus S V 2008 Int. J. Thermophys. 29 546
[4] Komarov S G and Stankus S V 2018 J. Phys.: Conf. Ser. 1105 012148
[5] Komarov S G and Stankus S V 2019 Thermophys. Aeromech. 26 619