Maximising line subgraphs of diameter at most t^*

Stijn Cambie † Wouter Cames van Batenburg † Rémi de Joannis de Verclos †
Ross J. Kang †

December 13, 2021

Abstract

We wish to bring attention to a natural but slightly hidden problem, posed by Erdős and Nešetřil in the late 1980s, an edge version of the degree–diameter problem. Our main result is that, for any graph of maximum degree Δ with more than $\frac{1.5\Delta}{t}$ edges, its line graph must have diameter larger than t. In the case where the graph contains no cycle of length $2t + 1$, we can improve the bound on the number of edges to one that is exact for $t \in \{1, 2, 3, 4, 6\}$. In the case $\Delta = 3$ and $t = 3$, we obtain an exact bound. Our results also have implications for the related problem of bounding the distance-t chromatic index, $t > 2$; in particular, for this we obtain an upper bound of $1.941\Delta^t$ for graphs of large enough maximum degree Δ, markedly improving upon earlier bounds for this parameter.

Keywords: degree–diameter problem, strong cliques, distance edge-colouring

1 Introduction

Erdős in [9] wrote about a problem he proposed with Nešetřil:

“One could perhaps try to determine the smallest integer $h_t(\Delta)$ so that every G of $h_t(\Delta)$ edges each vertex of which has degree $\leq \Delta$ contains two edges so that the shortest path joining these edges has length $\geq t$. . . This problem seems to be interesting only if there is a nice expression for $h_t(\Delta)$.”

Equivalently, $h_t(\Delta) - 1$ is the largest number of edges inducing a graph of maximum degree Δ whose line graph has diameter at most t. Alternatively, one could consider this an edge version of the (old, well-studied, and exceptionally difficult) degree–diameter problem, cf. [3].

It is easy to see that $h_t(\Delta)$ is at most $2\Delta^t$ always, but one might imagine it to be smaller. For instance, the $t = 1$ case is easy and $h_1(\Delta) = \Delta + 1$. For $t = 2$, it was independently proposed by Erdős and Nešetřil [9] and Bermond, Bond, Paoli and Peyrat [2] that $h_2(\Delta) \leq 5\Delta^2/4 + 1$, there being equality for even Δ. This was confirmed by Chung, Gyárfás, Tuza and Trotter [7]. For the case $t = 3$, we suggest the following as a “nice expression”.

A preliminary version of this paper appeared as an extended abstract in Proceedings of the 11th European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2021, Barcelona), Trends in Mathematics 14: 331-338, 2021. https://doi.org/10.1007/978-3-030-83823-2_52

†Department of Mathematics. Email: stijn.cambl@hotmail.com, r.deverclos@math.ru.nl

‡Laboratoire G-SCOP (CNRS, Univ. Grenoble Alpes), Grenoble, France. Email: wouter.cames-van-batenburg@grenoble-inp.fr

Supported by a Vidi grant (639.032.614) of the Netherlands Organisation for Scientific Research (NWO).

Partially supported by ANR Project GATO (ANR-16-CE40-0009-01)
Conjecture 1. \(h_3(\Delta) \leq \Delta^3 - \Delta^2 + \Delta + 2, \) with equality if \(\Delta \) is one more than a prime power.

As to the hypothetical sharpness of this conjecture, first consider the point–line incidence graphs of finite projective planes of prime power order \(q \). Writing \(\Delta = q + 1 \), such graphs are bipartite, \(\Delta \)-regular, and of girth 6; their line graphs have diameter 3; and they have \(\Delta^3 - \Delta^2 + \Delta + 2 \) edges. At the expense of bipartiteness and \(\Delta \)-regularity, one can improve on the number of edges in this construction by one by subdividing one edge, which yields the expression in Conjecture 1. We remark that for multigraphs instead of simple graphs, one can further increase the number of edges by \(\left\lceil \frac{\Delta}{2} \right\rceil - 1 \), by deleting some arbitrary vertex \(v \) and replacing it with a multiedge of multiplicity \(\left\lfloor \frac{\Delta}{2} \right\rfloor \), whose endvertices are connected with \(\left\lfloor \frac{\Delta}{2} \right\rfloor \) and \(\left\lceil \frac{\Delta}{2} \right\rceil \) of the original \(\Delta \) neighbours of \(v \). This last remark contrasts to what we know for multigraphs in the case \(t = 2 \), cf. [4, 8].

Through a brief case analysis, we have confirmed Conjecture 1 in the case \(\Delta = 3 \).

Theorem 2. The line graph of any (multi)graph of maximum degree 3 with at least 23 edges has diameter greater than 3. That is, \(h_3(3) = 23 \).

For larger fixed \(t \), although we are slightly less confident as to what a “nice expression” for \(h_t(\Delta) \) might be, we believe that \(h_t(\Delta) = (1 + o(1)) \Delta^t \) holds for infinitely many \(\Delta \).

We contend that this naturally divides into two distinct challenges, the former of which appears to be more difficult than the latter.

Conjecture 3. For any \(\varepsilon > 0, h_t(\Delta) \geq (1 - \varepsilon) \Delta^t \) for infinitely many \(\Delta \).

Conjecture 4. For \(t \neq 2 \) and any \(\varepsilon > 0 \), \(h_t(\Delta) \leq (1 + \varepsilon) \Delta^t \) for all large enough \(\Delta \).

With respect to Conjecture 3 we mentioned earlier how it is known to hold for \(t \in \{1, 2, 3\} \). For \(t \in \{4, 6\} \), it holds due to the point–line incidence graphs of, respectively, a symplectic quadrangle with parameters \((\Delta - 1, \Delta - 1)\) and a split Cayley hexagon with parameters \((\Delta - 1, \Delta - 1)\) when \(\Delta - 1 = q \) is a prime power. For all other values of \(t \) the conjecture remains open. Conjecture 3 may be viewed as the direct edge analogue of an old conjecture of Bollobás [3]. That conjecture asserts, for any positive integer \(t \) and any \(\varepsilon > 0 \), that there is a graph of maximum degree \(\Delta \) with at least \((1 - \varepsilon) \Delta^t \) vertices of diameter at most \(t \) for infinitely many \(\Delta \). The current status of Conjecture 3 is essentially the same as for Bollobás’s conjecture: it is unknown if there is an absolute constant \(c > 0 \) such that \(h_t(\Delta) \geq c \Delta^t \) for all \(t \) and infinitely many \(\Delta \). For large \(t \) the best constructions we are aware of are (ones derived from) the best constructions for Bollobás’s conjecture.

Proposition 5. There is \(t_0 \) such that \(h_t(\Delta) \geq 0.629^t \Delta^t \) for \(t \geq t_0 \) and infinitely many \(\Delta \).

Proof. Canale and Gómez [4] proved the existence of graphs of maximum degree \(\Delta \), of diameter \(t' \), and with more than \((0.6291 \Delta)^{t'} \) vertices, for \(t' \) large enough and infinitely many \(\Delta \). Consider this construction for \(t' = t - 1 \) and each valid \(\Delta \). Now in an iterative process arbitrarily add edges between vertices of degree less than \(\Delta \). Note that as long as there are at least \(\Delta + 1 \) such vertices, then for every one there is at least one other to which it is not adjacent. Thus by the end of this process, at most \(\Delta \) vertices have degree smaller than \(\Delta \), and so the resulting graph has at least \(\frac{1}{2}(0.6291 \Delta)^{t'} \Delta - \Delta^2 \) edges, which is greater than \((0.629 \Delta)^t \) for \(t \) sufficiently large. Furthermore since the graph has diameter at most \(t - 1 \), its line graph has diameter at most \(t \). \(\square \)
By the above argument (which was noted in [17]), the truth of Bollobás's conjecture would imply a slightly weaker form of Conjecture 3; that is, with a leading asymptotic factor of 1/2. As far as we are aware, a reverse implication, i.e. from Conjecture 3 to some form of Bollobás's conjecture is not known.

Our main result is partial progress towards Conjecture 4 (and thus Conjecture 1).

Theorem 6. $h_t(\Delta) \leq \frac{3}{2}\Delta^t + 1$.

Theorem 6 is a result/proof valid for all $t \geq 1$, but as we already mentioned there are better, sharp determinations for $t \in \{1, 2\}$. We have also settled Conjecture 4 in the special case of graphs containing no cycle C_{2t+1} of length $2t + 1$ as a subgraph.

Theorem 7. The line graph of any C_{2t+1}-free graph of maximum degree Δ with at least Δ^t edges has diameter greater than t.

For $t \in \{1, 2, 3, 4, 6\}$, this last statement is asymptotically sharp (and in its more precise formulation the result is in fact exactly sharp) due to the point–line incidence graphs of generalised polygons. The cases $t \in \{3, 4, 6\}$ are perhaps most enticing in Conjecture 4 and that is why we highlighted the case $t = 3$ first in Conjecture 1.

In order to discuss one consequence of our work, we can reframe the problem of estimating $h_t(\Delta)$ in stronger terms. Let us write $L(G)$ for the line graph of G and H^t for the t-th power of H (where we join pairs of distinct vertices at distance at most t in H). Then the problem of Erdős and Nešetřil framed at the beginning of the paper is equivalent to seeking optimal bounds on $|L(G)|$ subject to G having maximum degree Δ and $L(G)^t$ inducing a clique. Letting $\omega(H)$ denote the clique number of H, our main results are proven in terms of bounds on the distance-t edge-clique number $\omega(L(G)^t)$ for graphs G of maximum degree Δ. In particular, we prove Theorem 6 by showing the following stronger form.

Theorem 8. For any graph G of maximum degree Δ, it holds that $\omega(L(G)^t) \leq \frac{3}{2}\Delta^t$.

We should remark that Dębski and Śleszyńska-Nowak [17] announced a bound of roughly $\frac{3}{2}\Delta^t$. Note that the bound in Theorem 8 can be improved in the cases $t \in \{1, 2\}$: $\omega(L(G)) \leq \Delta + 1$ is trivially true, while $\omega(L(G)^2) \leq \frac{3}{2}\Delta^2$ is a recent result of Faron and Postle [10]. We also have a bound on $\omega(L(G)^t)$ analogous to Theorem 7 a result stated and shown in Section 2.

A special motivation for us is a further strengthened form of the problem. In particular, there has been considerable interest in $\chi(L(G)^t)$ (where $\chi(H)$ denotes the chromatic number of H), especially for G of bounded maximum degree. For $t = 1$, this is the usual chromatic index of G; for $t = 2$, it is known as the strong chromatic index of G, and is associated with a more famous problem of Erdős and Nešetřil [9]; for $t > 2$, the parameter is referred to as the distance-t chromatic index, with the study of bounded degree graphs initiated in [13]. We note that the output of Theorem 8 may be directly used as input to a recent result [11] related to Reed’s conjecture [15] to bound $\chi(L(G)^t)$. This yields the following.

Corollary 9. There is some Δ_0 such that, for any graph G of maximum degree $\Delta \geq \Delta_0$, it holds that $\chi(L(G)^t) < 1.941\Delta^t$.

Proof. By Theorem 8 and [11] Thm. 1.6, $\chi(L(G)^t) \leq \left[0.881(\Delta(L(G)^t) + 1) + 0.119\omega(L(G)^t)\right] \leq \left[0.881(2\Delta^t + 1) + 0.119 \cdot 1.5\Delta^t\right] < 1.941\Delta^t$ provided Δ is taken large enough. \(\square\)
For $t = 1$, Vizing’s theorem states that $\chi(L(G)) \leq \Delta + 1$. For $t = 2$, the current best bound on the strong chromatic index [11] is $\chi(L(G)^2) \leq 1.772\Delta^2$ for all sufficiently large Δ. For $t > 2$, note for comparison with Corollary 9 that the local edge density estimates for $L(G)^t$ proved in [12] combined with the most up-to-date colouring bounds for graphs of bounded local edge density [11] yields only a bound of $1.999\Delta^t$ for all large enough Δ. We must say though that, for the best upper bounds on $\chi(L(G)^t)$, $t > 2$, rather than bounding $\omega(L(G)^t)$ it looks more promising to pursue optimal bounds for the local edge density of $L(G)^t$, particularly for $t \in \{3, 4, 6\}$. We have left this to future study.

1.1 Terminology and notation

For a graph $G = (V,E)$, we denote the i^{th} neighbourhood of a vertex v by $N_i(v)$, that is, $N_i(v) = \{u \in V \mid d(u,v) = i\}$, where $d(u,v)$ denotes the distance between u and v in G. Similarly, we define $N_i(e)$ as the set of vertices at distance i from an endpoint of e.

Let $T_{k,\Delta}$ denote a tree rooted at v of height k (i.e. the leaves are exactly $N_k(v)$) such that all non-leaf vertices have degree Δ. Let $T^1_{k,\Delta}$ be one of the Δ subtrees starting at v, i.e. a subtree rooted at v of height k such that v has degree 1, such that $N_k(v)$ only contains leaves and all non-leaf vertices have degree Δ.

2 A bound on $\omega(L(G)^t)$ for C_{2t+1}-free G

In this section, we prove the following theorem.

Theorem 10. Let $t \geq 2$ be an integer. Let G be a C_{2t+1}-free graph with maximum degree Δ. Then $\omega(L(G)^t) \leq |E(T_{t,\Delta})|$. When $t \in \{2, 3, 4, 6\}$ equality can occur for infinitely many Δ.

Since $|E(T_{t,\Delta})| \leq \Delta^t$, the expression is at most the bound desired for Conjecture [11] and thus this implies Theorem [7]. In fact, the expression matches the order of the point–line incidence graphs of generalised polygons when $t \in \{2, 3, 4, 6\}$, which are the examples for which equality holds. On the other hand, by subdividing one edge of any of these constructions, one can see in the cases $t \in \{2, 3, 4, 6\}$ that the result fails if we omit the condition of C_{2t+1}-freeness.

We note that Theorem [10] is a generalisation of a result in [15] which was specific to the case $t = 2$. It is also a stronger form of a result announced in [17] for bipartite graphs. One might wonder about excluding other cycle lengths, particularly even ones. Implicitly this was already studied in [14], in that the local sparsity estimations there imply the following statement: for any $t \geq 2$ and even $\ell \geq 2t$, $\omega(L(G)^t) = o(\Delta^t)$ for any C_{2t}-free graph of maximum degree Δ. Similarly, it would be natural to pursue a similar bound as in Theorem [10] but for an excluded odd cycle length (greater than $2t + 1$), which was done for $t = 2$ in [15].

The bound in Theorem [10] is a corollary of the following proposition.

Proposition 11. For fixed Δ and t, let G be a C_{2t+1}-free graph with maximum degree Δ and $H \subseteq G$ be a subgraph of G with maximum degree Δ_H. Let v be a vertex with degree $d_H(v) = \Delta_H = j$ and let u_1, u_2, \ldots, u_j be its neighbours. Suppose that in $L(G)^t$, every edge of H is adjacent to vu_i for every $1 \leq i \leq j$. Then $|E(H)| \leq |E(T_{t,\Delta})|$.

Proof. For fixed Δ, let H and G be graphs satisfying all conditions, such that $|E(H)|$ is maximised. This can be done since $|E(H)|$ is upper bounded by say $j\Delta^t$. With respect to the graph G, we write $N_i = N_i(v)$ for $0 \leq i \leq t + 1$. We start proving a claim that makes work easier afterwards.
Claim 12. For any $1 \leq i \leq t$, H does not contain any edge between two vertices of N_i.

Proof. Suppose it is not true for some $i \leq t - 1$. Take an edge $yz \in E(H)$ with $y, z \in N_i$. Construct the graph H' with $V(H') = V(H) \cup \{y', z'\}$ and $E(H') = E(H) \setminus yz \cup \{yy', zz'\}$, where y' and z' are new vertices, and let G' be the corresponding modification of G. Then $H' \subseteq G'$ also satisfies all conditions in Proposition 11 and $|E(H')| = |E(H)| + 1$, contradictory with the choice of H.

Next, suppose there is an edge $yz \in E(H)$ with $y, z \in N_i$. Take a shortest path from u_1 to yz, which is wlog a path P_y from u_1 to y. Note that a shortest path P_y from v to z will intersect P_y since G is C_{2t+1}-free. Let w be the vertex in $V(P_y) \cap V(P_z)$ that minimises $d_G(w, z)$ and assume $w \in N_i$, i.e. $m = d_G(v, w)$ is the distance from v to w. The condition $w \in V(P_y) \cap V(P_z)$ ensures that $d_G(w, z) = d_G(w, y)$. Furthermore note that y and z are interchangeable at this point, as both are at the same distance from u_1.

If $d_G(w, u_i) = m - 1$ for every $1 \leq i \leq j$, we can remove yz again and add two edges yy' and zz' to get a graph H' satisfying all conditions, leading to a contradiction again. This is the blue scenario illustrated in Figure 1.

In the other case there is some $1 < s \leq j$ such that $d_G(w, u_s) > m - 1$. Since $d_G(u_s, yz) = t - 1$, wlog $d_G(u_s, z) = t - 1$, there is a shortest path from u_s to z which is disjoint from the previously selected shortest path P_y between u_1 and y. Hence together with the edges u_1v, vu_s and yz, this forms a C_{2t+1} in G, which again is a contradiction. This is sketched as the red scenario in Figure 1.

Figure 1: Sketch of two scenarios (red and blue) referred to in the proof of Claim 12.

For every $1 \leq m \leq t + 1$, let A_m be the set of all vertices x in N_m such that $d_G(v, x) = d_G(u_i, x) + 1 = m$ for at least one index $1 \leq i \leq j$ and let $R_m = N_m \setminus A_m$. Also let $A_0 = \{v\}$. Let $A = \bigcup_{i=0}^{t+1} A_i$ and $R = \bigcup_{i=0}^{t+1} R_i$. We observe that a vertex in R_{t+1} cannot be an endvertex of an edge of H. Indeed, assuming the contrary, the other endvertex of such an edge would be at distance $t - 1$ from every u_i, $1 \leq i \leq j$ and in particular would belong to A_i, leading to a contradiction. Also we observe that there are no edges in H between R_t and A. By definition of R_t, any vertex $r \in R_t$ has no neighbour in A_i where $i < t$, nor does it have a neighbour in A_t by Claim 12. To end with, an edge with endvertices in R_t and A_{t+1} is not connected to any edge vu_s, $1 \leq s \leq j$, in $L(G)^t$. As a consequence, the number of edges of H which contain at least one vertex of R can be upper bounded by $|R_1| \cdot \left(|E(T_{t, \Delta})| - 1\right)$, which equals

$$\left(\text{deg}(v) - \Delta_H\right) \left(\frac{1}{\Delta} |E(T_{t, \Delta})| - 1\right).$$

(1)
All other edges of H are in the induced subgraph $H[A]$. We will now compute a bound on the number of those remaining edges.

We start with defining a weight function w on the vertices x in A which will turn out to be useful. For every $x \in A_m$ where $1 \leq m \leq t$, we define $w(x)$ to be equal to the number of paths (in G) of length $m - 1$ between x and A_1. Note that by definition $w(x)$ is at least equal to the number of vertices $u_i \in A_1$ with $d_G(x, u_i) = m - 1$ and by definition of A_m this implies $w(x) \geq 1$. An equivalent recursive definition of w is the following: we let $w(u_i) = 1$ for any $u_i \in A_1$ and for every vertex $x \in A_m$ where $m \geq 2$, we let

$$w(x) = \sum_{y \in A_{m-1} : xy \in E(G)} w(y).$$

We observe by induction that

$$\sum_{x \in A_m} w(x) \leq j(\Delta - 1)^{m-1}$$

for every $1 \leq m \leq t$. For $m = 1$ this is by definition of A_1 and j. For $m \geq 2$, we have by induction that

$$\sum_{x \in A_m} w(x) = \sum_{x \in A_m} \sum_{y \in A_{m-1} : xy \in E(G)} w(y)
= \sum_{y \in A_{m-1}} \sum_{x \in A_m : xy \in E(G)} w(y)
\leq \sum_{y \in A_{m-1}} (\Delta - 1)w(y)
\leq j(\Delta - 1)^{m-1}.$$

Let $A'_t = \{a \in A_t \mid w(a) < j\}$ and $A''_t = \{a \in A_t \mid w(a) \geq j\}$. We first count the edges that are incident to some fixed $a \in A'_t$. Note that H contains no edges between a and A_{t+1} since for such an edge we would need that a is connected by a path of length $t - 1$ to every $u_i, 1 \leq i \leq j$ and thus in particular we would have $w(a) \geq j$. By Claim 12, we also know that a cannot be incident with an other vertex in A_t. So we only need to count the edges in H between a and A_{t-1}, and by definition of the weight function, this is bounded by $w(a)$.

On the other hand, for every $a \in A''_t$ there are at most $\Delta H = j \leq w(a)$ edges in $E(H)$ incident to a. Having proven that for every $a \in A_t$ there are at most $w(a)$ edges in $H[A]$ incident with a, we conclude (remembering 12) that there are at most $\sum_{x \in A_t} w(x) \leq j(\Delta - 1)^{t-1}$ edges in $E(H[A])$ having a vertex in A_t. Also we have for every $1 \leq m \leq t - 1$ that the number of edges between A_{m-1} and A_m is bounded by $j(\Delta - 1)^{m-1}$. Hence

$$|E(H[A])| \leq \sum_{m=1}^{t} j(\Delta - 1)^{m-1} = \frac{\Delta H}{\Delta} |E(T_t, \Delta)|.$$

Together with 1 on the number of edges that intersect R, this gives the result as $\deg(v) \leq \Delta$ by definition.

An inspection of the proof yields that the extremal graphs H for Proposition 11 satisfy Claim 12, $R = \emptyset$ and for every $x \in A_m$ where $0 \leq m \leq t - 1$, there are exactly $\Delta - 1$ edges.
towards A_{m+1}. Hence such an extremal graph H is exactly $T_{i,\Delta}$ where possibly some of its leaves are identified as one (as long as the maximum degree is still Δ). Let us call such a graph a quasi-$T_{i,\Delta}$.

Next, we discuss some properties that should be satisfied by any graph that attains the bound of Theorem 10 (provided such a graph exists for the given values of t and Δ!). Let $H \subseteq G$ be a graph such that $E(H)$ is a clique in $L(G)^t$ and v be a vertex of maximum degree in H, which maximises $|E(H)|$ among all choices for G and H. Let $N_H(v) = \{u_1, \ldots, u_j\}$. Then in particular, in $L(G)^t$ every edge of H is adjacent to every edge vu_i, for all $1 \leq i \leq j$.

So by Proposition 11 for every vertex v of degree Δ we observe locally a quasi-$T_{i,\Delta}$ again, and in particular every neighbour of such a v has degree Δ (for $t \geq 2$). So H is Δ-regular and in particular a connected component of G. So it is not a tree and hence has some girth. The girth is at least $2t$ (as for every vertex we locally have a quasi-$T_{i,\Delta}$), but it cannot be $2t + 1$ since G is C_{2t+1}-free and it cannot be $2t + 2$ or more since $E(H)$ is a clique in $L(G)^t$. Also we observe that for every $a \in A^*_t$ the condition that $w(a) \geq j$ implies that it has Δ neighbours in A_{i-1} as these all have a weight function equal to 1 and so it has no neighbours in A_{t+1}. Hence H is a Δ-regular graph with girth $2t$ and diameter t. In particular they need to be Moore graphs and consequently by 16 the extremal graphs are polygons when $t \geq 3$.

3 A general bound on $\omega(L(G)^t)$

When $H \subseteq G$ is a graph whose edges form a clique in $L(G)^t$, it implies in particular that all edges adjacent to a specific vertex v are at distance at most $t - 1$ from all other edges. As $|E(T_{i,\Delta})| \leq \Delta^t$, the following proposition implies Theorem 8.

Proposition 13. For fixed Δ and t, let G be a graph with maximum degree Δ and $H \subseteq G$ be a subgraph of G with maximum degree Δ_H. Let v be a vertex with degree $d_H(v) = \Delta_H = j$ and let u_1, u_2, \ldots, u_j be its neighbours. Suppose that in $L(G)^t$, every edge of H is adjacent to vu_i for every $1 \leq i \leq j$. Then $|E(H)| \leq \frac{3}{2}|E(T_{i,\Delta})|$.

Proof. We do this analogously to the proof of Proposition 11. For fixed Δ, let H and G be graphs satisfying all conditions, such that $|E(H)|$ is maximized (which is again possible since $j\Delta$ is an upper bound for $|E(H)|$).

It suffices to show that $|E(H)| \leq \frac{3}{2}|E(T_{i,\Delta})|$. By the proof of Claim 12 we know that for any $1 \leq i \leq t - 1$, the set N_i does not induce any edges of H (but this is not necessarily true anymore for N_t).

Define A_m, R_m, the weight function w, A^*_t and A^*_t as has been done in the proof of Proposition 11.

As before, the number of edges that (are not induced by N_i and) use at least one vertex of R is bounded by 11. Also, we again have for every $1 \leq m \leq t - 1$ that the number of edges between A_{m-1} and A_m is bounded by $j(\Delta - 1)^{m-1}$. Furthermore, R_t does not induce any edge of H, because such an edge would be at distance larger than t from vu_1. Thus the number of edges of H that are either disjoint from A_t, or join A_t and $R \setminus R_t$, is at most

$$ (\Delta - j) \left(\frac{1}{\Delta} |E(T_{i,\Delta})| - 1 \right) + \sum_{m=1}^{t-1} j(\Delta - 1)^{m-1}. $$

(3)
We will derive that the remaining edges of H (which all intersect A_t) can be bounded by a linear combination of the weight functions $w(a)$ of the vertices $a \in A_t$.

For every $a \in A_t$ there are at most $j \leq w(a)$ edges in $E(H)$ having a as one of its endvertices. So let us now focus on the edges that intersect A_t.

We observe that there are no edges in H between any $a \in A_t$ and $r \in R_t$, because there is some u_t such that $d(a, u_t) \geq t$, which implies that vu_t and ar would be at distance larger than t. For the same reason H has no edges between A_t and A_{t+1}.

Finally, we want to count the edges between A_{t-1} and A_t, as well as those that are induced by A_t. We will prove that their number is bounded by $\frac{3}{2} \sum_{a \in A_t} w(a)$.

For that, we need the following technical claim.

Claim 14. Let j be fixed and assume $j > x \geq m > 0$ and $j > y \geq n > 0$ with $x + y \geq j$. Then

$$\frac{3x - m}{j - m} + \frac{3y - n}{j - n} \geq 1.$$

Equality occurs if and only $m = n = x = y = \frac{j}{2}$.

Proof. Multiplying both sides with the positive factor $2(j - m)(j - n)$, we need to prove that $3(x + y)j - 3xn - 3ym + 2mn \geq 2j^2$. For fixed j, x and y the left hand side is minimal when $m = x$ and $n = y$. This reduces to proving that $3(x + y)j - 4xy \geq 2j^2$. But this is true since

$$3(x + y)j - 4xy - 2j^2 = 0.25j^2 - (x + y - 1.5j)^2 + (x - y)^2$$

$$= (2j - (x + y)) \cdot (x + y - j) + (x - y)^2 \geq 0,$$

as $j \leq x + y < 2j$, i.e. $|x + y - 1.5j| \leq 0.5j$. \hfill \diamond

For every $a \in A_t$, let $m(a)$ denote the number of neighbours (in H) of a in A_{t-1} and let $q(a)$ denote the number of neighbours (in H) of a in A_t. Furthermore, we define $f(a) = \frac{3w(a) - m(a)}{j - m(a)}$.

Suppose H contains an edge e between two vertices $a_1, a_2 \in A_t$. Then $w(a_1) + w(a_2) \geq j$, since a_1a_2 must be within distance $t - 1$ of each of vu_1, vu_2, \ldots, vu_j. Hence by Claim 14 (applied with $m = m(a_1), n = m(a_2), x = w(a_1)$ and $y = w(a_2)$), we obtain that $f(a_1) + f(a_2) \geq 1$ for every edge a_1a_2 of $H[A_t]$.

From this it follows that $|E(H[A_t])| \leq \sum_{a_1a_2 \in E(H[A_t])} f(a_1) + f(a_2)$. The right hand side can further be rewritten as $\sum_{a \in A_t} q(a) \cdot f(a)$. Since every vertex $a \in A_t$ has $q(a) \leq j - m(a)$ neighbours in A_t and has $m(a)$ neighbours in A_{t-1}, we conclude that the number of edges of H that are either induced by A_t or join A_t and A_{t-1} is at most

$$\sum_{a \in A_t} ((j - m(a)) \cdot f(a) + m(a)) = \sum_{a \in A_t} \frac{3}{2}w(a).$$

Thus the number of edges in $E(H)$ using at least one vertex in A_t is bounded by

$$\sum_{a \in A_t} \frac{3}{2}w(a) + \sum_{a \in A_t} w(a) \leq \sum_{x \in A_t} \frac{3}{2}w(x),$$
which (see the derivation of (2)) is at most $\frac{3}{2}j(\Delta - 1)t^{-1}$. Summing this and (3), we conclude that H has fewer than $(\Delta - j) \left(\frac{1}{2}|E(T_i, \Delta)| - 1\right) + \frac{3}{2} \Delta \cdot |E(T_i, \Delta)| \leq \frac{3}{2}|E(T_i, \Delta)|$ edges. \hfill \Box

Note that the exact maximum in Proposition 13 is $\sum_{m=1}^{t-1} \Delta(\Delta - 1)^{m-1} + \frac{3}{2} \Delta(\Delta - 1)^{t-1}$ and this can be attained when Δ is even. For example when $t = 2$, the following example in Figure 2 shows that the blow-up of a C_5 is not extremal anymore when only taking into account the weaker conditions from Proposition 13.

![Figure 2: An extremal graph for Proposition 13 for $\Delta = 4$ and $t = 2$.](image)

4 Determination of $h_3(3)$

Proof of Theorem 2. Let $G = (V, E)$ be a graph of maximum degree 3 such that the line graph $L(G)$ of G has diameter at most 3, i.e. $L(G)^3$ is a clique. If we can show that G must have at most 22 edges, then the result is proven. Suppose to the contrary that $|E| \geq 23$. The proof proceeds through a series of claims that establish structural properties of G.

In each claim, we will estimate $|E|$ by performing a breadth-first search rooted at some specified edge e up to distance 3. To avoid repetition, let us set out the notation we use each time. We write $e = uv$. Let u_0 and u_1 be the two neighbours of u other than v (if u has degree 3). For $i \in \{0, 1\}$, let u_{ij} and u_{ik} be the two neighbours of u_i other than u (if u_i has degree 3). For $i, j \in \{0, 1\}$, let u_{ij0} and u_{ij1} be the two neighbours of u_{ij} other than u_i (if u_{ij} has degree 3). Similarly, define v_i, v_{ij}, v_{ijk} for $i, j, k \in \{0, 1\}$.

Claim 15. G contains no triangle, loop or multi-edge.

Proof. These 3 cases are straightforwardly bounded by the breadth-first search. If the edge e is in a triangle, $|E| = |N_{L(G)^3}[e]| \leq |E(K_3)| + 2 \cdot |E(T^1_{3,2})| + |E(T^1_{2,3})| = 3 + 2 \cdot 1 + 3 = 8$. Analogously, if the edge e is a loop, one obtains $|E| = |N_{L(G)^3}[e]| \leq 1 + 7 = 8$. If the edge e has a parallel edge then $|E| = |N_{L(G)^3}[e]| \leq 2 + 2 \cdot 7 = 16$. \hfill \Box

Claim 16. G is 3-regular, and so $|E|$ is divisible by 3.

Proof. If not, say, v has degree at most 2, then, say, v_1, v_{1j}, v_{1jk} are undefined, and so $|E| = |N_{L(G)^3}[e]| \leq 1 + 3 \cdot 7 = 22$, a contradiction. \hfill \Box

Claim 17. G contains no 4-cycle.

Proof. If the edge e is in a 4-cycle, then without loss of generality suppose $u_1 = v_0, v_0 = u_{11}$, and so on. Already $|E| = |N_{L(G)^3}[e]| \leq 4 + 2 \cdot 7 + 2 \cdot 3 = 24$ and by Claim 16 we have a contradiction if we can show that $|E|$ is 1 lower. So we may assume that $u_0, u_1, v_0, v_1, u_{00}, u_{01}, u_{10}, v_{01}, v_{10}, u_{11}$ are all distinct vertices and that the vertices $u_{00k}, u_{01k}, u_{10k}, v_{01k}, v_{10k}, v_{11k}$ (possibly not all distinct) are all at distance exactly 3 from e.

Consider the edges \(u_0u_000, u_00u_001, u_01u_010\) and \(u_01u_011\). They are within distance 3 (in \(L(G)\)) from \(v_{01}\), so \(u_000, u_001, u_010\) and \(u_011\) all need to be adjacent to \(v_{01}\), leading to a contradiction as \(\deg v_{01} \leq 3\).

\[\triangle\]

Claim 18. \(G\) contains no 5-cycle.

Proof. If the edge \(e\) is in a 5-cycle, then without loss of generality suppose \(u_{11} = v_{00}, u_{111} = v_{000}\) and so on. Already \(|E| = |N_{L(G)}(e)| \leq 5 + 2 \cdot 7 + 2 \cdot 3 + 1 = 26\). Since 26 \(\geq |E| \geq 23\) and \(G\) is 3-regular by Claim 16, it follows that \(|E| = 24\) and \(|V| = \frac{2|E|}{3} = 16\).

Note first that \(N_2(e) = \{u_{00}, u_{01}, u_{10}, u_{11}, v_{01}, v_{10}, v_{11}\}\) are all distinct vertices or else \(|E|\) is already at most 23. Thus \(|N_2(e)| = 16 - 13 = 3\) and so (again using 3-regularity, and also the fact that \(N_3(e)\) must be an independent set) there are exactly 2 edges in the subgraph induced by \(N_2(e)\).

We divide our considerations into two cases. First, we assume \(u_{11}\) has a neighbour in \(N_2(e)\). By Claim 15 without loss of generality we can assume that this neighbour is \(u_{00}\) and thus \(u_{111} = v_{000} = u_{00}, u_{11} = u_{001}\) and so on. Since \(N_2(e)\) induces two edges, we can assume that \(v_{100}, v_{110} \in N_3(e)\). Note that the edge \(u_{00}u_{11}\) is within distance 3 (in \(L(G)\)) of both \(v_{10}v_{100}\) and \(v_{11}v_{110}\). It cannot be that \(u_{000}\) is equal to \(v_{10}\) or \(v_{11}\) or else one of the edges \(v_{10}v_{100}\) and \(v_{11}v_{110}\) remains too far from \(u_{00}u_{11}\) (taking Claim 17 into account). At this point, we note that \(v_{10}\) and \(v_{11}\) both need to be adjacent to \(u_{000}\), creating a \(C_4\) and hence leading to a contradiction.

Second, since we are not in the first case, \(u_{111} = v_{000}\) must be at distance exactly 3 from \(e\). The vertex \(u_{111}\) must have all of its 3 neighbours in \(N_2(e)\), one of which is \(u_{11}\). Keeping in mind that there is no four-cycle, we can therefore assume without loss of generality that \(u_{111} = v_{000} = v_{111}\).

Let us consider as a subcase the possibility that \(u_{01}\) and \(v_{11}\) are adjacent (the case \(v_{10}\) and \(u_{00}\) being adjacent, is done in exactly the same way), say, \(u_{010} = v_{11}\). Note that the edge \(u_{01}v_{11}\) is within distance 3 (in \(L(G)\)) of both \(u_{1}u_{10}\) and \(v_{0}v_{01}\). Since \(v_{11}\) has all its neighbours already fixed (and keeping in mind that \(N_2(e)\) induces only one edge other than \(u_{01}v_{11}\)), it can only be that \(v_{01}, v_{010}\) and \(v_{00}\) have a common neighbour in \(N_3(e)\). So without loss of generality, \(u_{011} = u_{100} = v_{010}\). But now, with only the free placement of \(u_{010}\), the only possibility to have \(u_{00}u_{000}\) within distance 3 (in \(L(G)\)) of both edges \(v_{10}v_{100}\) and \(v_{01}v_{010}\), is if \(u_{010}\) is equal to \(u_{10}\) or \(v_{01}\). But then we have already determined the two edges induced by \(N_2(e)\), none of which is incident to \(v_{10}\), so that both \(v_{100}\) and \(v_{010}\) must be in \(N_3(e)\), leading to the contradiction that \(|N_3(e)| = |\{u_{100}, u_{111}, v_{000}, v_{01}\}| \geq 4\).

We have thus shown that \(u_{01}v_{11}\) and \(v_{10}v_{00}\) are not present as an edge.

Let \(i \in \{0, 1\}\). The vertex \(u_{i01}\) is not adjacent to any vertex in \(\{u_{00}, u_{1}, v_{0}, v_{1}\}\) and so \(u_{01i}\) has to be adjacent to one of them to ensure that \(u_{11}u_{111}\) is within distance 3 (in \(L(G)\)) of \(u_{01i}u_{01i}\).

This implies \(u_{01i}\) has to be equal to \(v_{110}, u_{10}, u_{01}\) or \(v_{10}\) (taking Claims 15 and 17 into account). Incidentally, \(u_{01i}\) can also not be equal to \(v_{10}\), because in order for \(u_{01}v_{10}\) to be within distance 3 of \(u_{01}u_{011}\), we would need an edge between \(\{u_{01}, v_{10}\}\) and \(\{u_{00}, v_{11}\}\), which would either create a triangle or an edge that we already showed to be not present.

So \(u_{01i}\) has to be equal to \(v_{110}, u_{10}\) or \(v_{01}\), and symmetrically \(v_{10i}\) equals \(u_{01}, u_{10}\) or \(v_{01}\), for all \(i \in \{0, 1\}\). As there are only two edges in the graph induced by \(N_2(e)\), and both \(u_{01}\) and \(v_{10}\) are an endvertex of one of them, we may conclude without loss of generality that \(u_{010} = v_{110}\) and \(v_{01} = u_{011}\). Note that the edge \(v_{11}v_{110}\) is within distance 3 (in \(L(G)\)) of \(uu_{1}\).
and so $u_{10}v_{110}$ must be an edge. But then the distance between $u_{01}v_{110}$ or $u_{10}v_{110}$ and vv_0 is at least 4, a contradiction.

By the above claims, it only remains to consider G being 3-regular and of girth at least 6. Let $e \in E$ be arbitrary. Then we have $|E| = |N_{L(G)}[e]| \leq 29$ and by Claim 16 we have a contradiction if we can show that $|E|$ is 6 lower. Since $|E| \geq 23$ and G is 3-regular, we know $|V| = \left\lceil \frac{2|E|}{3} \right\rceil \geq 16$, hence there are at least $16 - (2 + 4 + 8) = 2$ vertices at distance 3 from e. Let x and y be vertices at distance 3 from e. We may assume without loss of generality that x is adjacent to u_{00}, u_{10}, and v_{00}. Since the edge vv_1 is within distance 3 (in $L(G)$) of both edges $u_{00}x$ and $u_{10}x$, it follows (without loss of generality) that $u_{00}v_{10}$ and $u_{10}v_{11}$ are edges.

Since y must satisfy similar constraints as x, and it cannot be adjacent to u_{00} nor to u_{10}, there will be at least three edges between vertices in $N_2(e)$ and so similarly as before, we know that $|V| = \left\lceil \frac{2|E|}{3} \right\rceil \leq \left\lceil \frac{2(29-3)}{3} \right\rceil = 17$. Because every 3-regular graph has an even number of vertices, it follows that $|V| = 16$, so that in fact x and y are the only vertices in $N_3(e)$. From this and 3-regularity, we conclude that the subgraph induced by $N_2(e)$ must have exactly 5 edges. Since every edge between 2 vertices in $N_2(e)$ will be between some u_{ij} and a $v_{k\ell}$ and G is 3-regular, we know that y is adjacent to exactly one of u_{01} and u_{11}, wlog u_{11}. Similarly the two neighbours of y of the form v_{ij} are not a neighbour of x and so $N(y)$ and $N(x)$ are disjoint. In particular y cannot be adjacent to v_{00} and so it has to be adjacent to v_{01}. The last neighbour of y is either v_{10} or v_{11}. If it is v_{11}, then to ensure that uu_0 is within distance 3 of both yv_{01} and yv_{11}, we would need u_{01} to be a neighbour of both v_{10} and v_{11}, creating a four-cycle; contradiction. Thus the neighbours of y must be u_{11}, v_{01} and v_{10}.

So to ensure this, $u_{01}v_{01}$ is an edge as well.

We have now determined the whole graph, apart from two edges between $\{u_{01}, u_{11}\}$ and $\{v_{00}, v_{11}\}$. However, the edge $v_{00}u_{11}$ would create the five-cycle $xu_{10}u_{11}v_{00}$, while the edge $v_{00}u_{01}$ would yield the four-cycle $u_{01}v_{00}v_0v_{01}$. So in both cases, we get a contradiction, from which we conclude.

A brief inspection of the proof in Claim 16 yields that the extremal graph has exactly one vertex of degree 2 and 14 vertices of degree 3. Let the vertex of degree 2 be w. Let its two neighbours be u and v and then u_i, v_i, u_{ij}, v_{ij} for $i, j \in \{0, 1\}$ are defined as before. Noting that every v_{ij} has two neighbours of the form v_{0k} and v_{1k} where $k, \ell \in \{0, 1\}$, one can check that there is a unique extremal example with respect to Theorem 2, namely, the point–line incidence graph of the Fano plane, in which exactly one edge is subdivided.

Acknowledgement

We are grateful to the anonymous referees for their helpful comments and suggestions.

References

[1] E. Bannai and T. Ito. On finite Moore graphs. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 20:191–208, 1973.

[2] J.-C. Bermond, J. Bond, M. Paoli, and C. Peyrat. Graphs and interconnection networks: diameter and vulnerability. In Surveys in combinatorics (Southampton, 1983), volume 82
of *London Math. Soc. Lecture Note Ser.*, pages 1–30. Cambridge Univ. Press, Cambridge, 1983.

[3] B. Bollobás. *Extremal graph theory*, volume 11 of *London Mathematical Society Monographs*. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978.

[4] W. Cames van Batenburg and R. J. Kang. Squared chromatic number without claws or large cliques. *Canad. Math. Bull.*, 62(1):23–35, 2019.

[5] W. Cames van Batenburg, R. J. Kang, and F. Pirot. Strong cliques and forbidden cycles. *Indag. Math. (N.S.)*, 31(1):64–82, 2020.

[6] E. A. Canale and J. Gómez. Asymptotically large (Δ,D)-graphs. *Discrete Appl. Math.*, 152(1-3):89–108, 2005.

[7] F. R. K. Chung, A. Gyárfás, Z. Tuza, and W. T. Trotter. The maximum number of edges in $2K_2$-free graphs of bounded degree. *Discrete Math.*, 81(2):129–135, 1990.

[8] R. de Joannis de Verclos, R. J. Kang, and L. Pastor. Colouring squares of claw-free graphs. *Canad. J. Math.*, 71(1):113–129, 2019.

[9] P. Erdős. Problems and results in combinatorial analysis and graph theory. In *Proceedings of the First Japan Conference on Graph Theory and Applications (Hakone, 1986)*, volume 72, pages 81–92, 1988.

[10] M. Faron and L. Postle. On the clique number of the square of a line graph and its relation to maximum degree of the line graph. *J. Graph Theory*, 92(3):261–274, 2019.

[11] E. Hurley, R. de Joannis de Verclos, and R. J. Kang. An improved procedure for colouring graphs of bounded local density. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 135–148, 2021. https://arxiv.org/abs/2007.07874.

[12] T. Kaiser and R. J. Kang. The distance-t chromatic index of graphs. *Combin. Probab. Comput.*, 23(1):90–101, 2014.

[13] R. J. Kang and P. Manggala. Distance edge-colourings and matchings. *Discrete Appl. Math.*, 160(16-17):2435–2439, 2012.

[14] R. J. Kang and F. Pirot. Distance colouring without one cycle length. *Combin. Probab. Comput.*, 27(5):794–807, 2018.

[15] B. Reed. ω, Δ, and χ. *J. Graph Theory*, 27(4):177–212, 1998.

[16] R. Singleton. On minimal graphs of maximum even girth. *J. Combinatorial Theory*, 1:306–332, 1966.

[17] M. Śleszyńska Nowak and M. Dębski. t-strong cliques and the degree-diameter problem. *Acta Math. Univ. Comenian. (N.S.)*, 88(3):1057–1061, 2019.