Błędy w diagnostyce ultrasonograficznej śledziony

Errors made in the ultrasound diagnostics of the spleen

Joanna Walczyk, Maria Krystyna Walas

Oddział Kliniczny Kliniki Chorób Metabolicznych, Szpital Uniwersytecki, Kraków, Polska
Adres do korespondencji: Joanna Walczyk, Oddział Kliniczny Kliniki Chorób Metabolicznych, Szpital Uniwersytecki, ul. Kopernika 15, 31-501 Kraków,
e-mail: joasia.walczyk@gmail.com

Streszczenie
Podobnie jak każda metoda obrazowa ultrasonografia niesie ze sobą ryzyko popełniania błędów. Spośród wszystkich badań obrazowych jest ona w największym stopniu subiektywna, zależna od wiedzy i doświadczenia wykonującego badanie. W pracy wskazano przyczyny pomyłek zależne od badającego, ale również od ustawień technicznych i przygotowania pacjenta do badania. Ponadto przedstawiono najczęstsze błędy popełniane w diagnostyce ultrasonograficznej chorób śledziony, wynikające z nieznanym wariantów anatomicznych jej budowy, nieprawidłowych pomiarów i nieprawidłowej techniki badania. Omówiono pomyłki w różnicowaniu zmian ogniskowych śledziony i jej wnęki. Opisano różnicowanie naczyń krążenia obocznego, węzłów chłonnych oraz śledzion dodatkowych. Zwrócono uwagę na mylną interpretację lewego płata wątroby jako kwiaka śledziony, a także wydatnego ogona trzustki, wypełnionego treścią żołądka lub pętli jelitowej jako nieprawidłowych mas lub zbiorników płynnych w okolicy wnęki śledziony. Ponadto omówiono patologię wnęki, takie jak guz zagłębienia śledzionowego jelita grubego, zmiany wychodzące z lewej nerki lub lewego nadnerca. Wymieniono charakterystyczne cechy w obrazowaniu najczęstszej spotykanych zmian ogniskowych w standardowym badaniu ultrasonograficznym, jak również wzorce wzmocnienia w badaniach z użyciem środków kontrastowych. Omówiono cechy i różnicowanie m.in. zawału, torbieli śledziony, z uwzględnieniem torbieli bąbelkowych, ropni i naczyniaków. Wspomniano o obrazach ultrasonograficznych w przebiegu chloniaków oraz wtórnym zajęciu śledziony przez inne nowotwory złośliwe. Artykuł zawiera przydatne wskazówki dotyczące techniki obrazowania oraz interpretacji uzyskanych obrazów. Wykonanie badań zgodnie z obowiązującymi standardami pozwala na optymalną ocenę narzędzia oraz minimalizowanie ryzyka popełnienia błędów. Praca została przygotowana na podstawie publikacji ekspertów Polskiego Towarzystwa Ultrasonograficznego z 2005 roku i zakualifikowana o najnowsze doniesienia z piśmiennictwa. Do artykułu dołączono dokumentację zdjęciową obrazującą opisywane zmiany.
Key words
ultrasound diagnostics, diagnostic errors, diseases of the spleen, splenomegaly, neoplasm of the spleen

Abstract
Ultrasonography, like any imaging method, entails the risk of errors. From among all means of imaging, it is the most subjective and dependent on the examiner’s knowledge and experience. This paper presents the causes of examiner-dependent errors as well as those which result from technical settings and preparation of the patient for the examination. Moreover, the authors discuss the most frequent errors in the diagnosis of splenic conditions, which result from insufficient knowledge concerning anatomical variants of this organ, wrong measurements and incorrect examination technique. The mistakes made in the differentiation of focal lesions of the spleen and its hilum are also discussed. Additionally, the differentiation of collateral circulation, lymph nodes and accessory spleens is mentioned. The authors also draw attention to erroneous interpretation of the left liver lobe as a fragment of the spleen as well as the prominent tail of the pancreas filled with gastric contents and intestinal loops as abnormal masses or fluid cisterns in the area of the splenic hilum. Furthermore, the pathologies of the hilum are discussed such as tumors of the splenic flexure of the colon, lesions arising from the left kidney or the left adrenal gland. The authors list characteristic imaging features of the most common focal lesions visualized in a standard ultrasound scan as well as enhancement patterns appearing in contrast-enhanced examinations. The article discusses the features and differentiation of, among others, infarction, splenic cysts including hydatid ones, abscesses and angiomas. The ultrasound appearance of lymphoma and secondary involvement of the spleen by other malignant neoplasms is also mentioned. Moreover, the authors provide useful tips connected with imaging techniques and interpretation of the findings. The ultrasound examination carried out in compliance with current standards allows for an optimal assessment of the organ and reduction of the error-making risk. This article is based on the publication of the experts from the Polish Ultrasound Society of 2005 and updated with the latest findings in pertinent literature. The photographic documentation, which provides images of the discussed lesions, is attached to this article.

Wstęp
Badanie ultrasonograficzne (USG) jest wyjściowym i podstawowym badaniem obrazowym śledzonym. Dynamiczny rozwój technologiczny ultrasonografii wpłynął na poprawę wykrywalności nieprawidłowych zmian w śledzieniu i na różnicowanie ich charakteru. Nadal jednak popełniane są błędy diagnostyczne. Istnieje wiele przyczyn pomyłek, począwszy od aspektów technicznych (niska klasa aparatu, jego złe ustawienia, obecność artefaktów), przez czynniki zależne od badanego (niewłaściwe przygotowanie do badania, ciężki stan i brak współpracy), po błędy zależne od wykonującego badanie (niedostateczna wiedza, brak doświadczenia, technika badania niezgodna ze standardami, tworzenie i interpretacja błędnych obrazów, zbyt szybkie i pobieżne badanie, niedostateczna ocena innych narządów po wykryciu i skoncentrowaniu się na jednej patologie). Pomyłki i błędy mogą ponadto wynikać z braku dostępu do danych klinicznych i wyników wcześniej wykonanych badań, a także z nieprzeprowadzenia wywiadu i badania przedmiotowego.

Błędy związane z techniką badania
Badanie śledzonej utrudnia jej anatomiczne położenie pod lewym łukiem zebrowym – w sąsiedztwie żebra, żołądka, jelita grubego, przepony i zachylków przeponowo-żebrowych oplucnej. Dodatkowo przyczyną złej interpretacji ocenianych obrazów może być niewłaściwe przygotowanie pacjenta do badania (duża ilość gazu w jelitach, brak współpracy). W każdym przypadku należy dążyć do uwidocznienia całej śledzony po przyłożeniu głowicy w okolicy X międzyżebrza

Introduction
Ultrasound scanning (US) constitutes the initial and primary imaging examination of the spleen. The dynamic technological development in the field of ultrasonography improved the detectability and differentiation of abnormal splenic lesions. Still, however, diagnostic errors are being made. There are numerous causes of such errors. They range from technical aspects (low-quality scanners, wrong settings or presence of artifacts), through patient-related factors (improper preparation for the examination, serious condition or lack of cooperation), to examiner-dependent errors (insufficient knowledge, lack of experience, examination technique inconsistent with the standards, creating and interpreting false images, too brief or superficial examination, inappropriate assessment of other organs after detecting and focusing on one pathology only). Mistakes and errors may also occur due to the lack of access to clinical data and earlier examination results as well as the failure to perform an interview or a physical examination.

Errors related to the examination technique
The examination of the spleen is restricted by its anatomical position. It is located below the left costal margin and surrounded by ribs, stomach, large intestine and costodiaphragmatic recess of the pleura. In addition, the cause of wrong interpretation of images may be the inappropriate preparation of the patient for the examination (large amount of gas in the intestines or lack of cooperation). Each time, it is important to visualize the entire spleen by
Błędy w ocenie wielkości śledziony

Warianty anatomiczne śledziony, takie jak śledziona mnoga, wydatne bieguny oraz przetwarta płciowość płodowa, mogą być przyczyną błędnej interpretacji guzów nadnercza lewego (ryc. 1, 2) lub nerki lewej. Błędu tego można unikać, jeśli wykonana się szereg przekrojów podłużnych i poprzecznych śledziony[1].

Ze względu na anatomiczne sąsiedztwo śledziony i lewego płata wątroby oraz niższą zazwyczaj echogeniczność miąższu wątroby niż śledziona zdarza się, że lewy płat wątroby jest interpretowany jako kwiak podtorebkowy śledziony (ryc. 3), zwykle u osób szczupłych, z wąską klatką piersiową i wydatnym lewym płatem wątroby. Element różnicujący stanowi obecność naczyń wrotnych w obrębie obszaru mylnie sugerującego „kwiaka śledziony”[1].

Najczęściej badający określają wielkość śledziony, mierząc jej długość, która według podręczników nie powinna przekraczać 120 mm[2]. Trzeba pamiętać, że jest to wielkość umowna, gdyż nie ma kryteriów stopnia powiększenia narządu. U niektórych pacjentów nieznaczne powiększenie śledziony, np. do 130 mm, może być zjawiskiem fiziologicznym (istotna jest analiza wielkości z uwzględnieniem wysokości ciała badanego), podczas gdy u innych wskazuje na początek choroby (rozwiązujące się naciśnięcie wrotne, chloniaki, ugościone i miejscowe procesy zapalne, zaburzenia immunologiczne)[3]. Postępowanie w takich przypadkach należy zindywidualizować, uwzględniając wyniki badania podmiotowego, przedmiotowego oraz innych badań dodatkowych. Ewentualne wątpliwości pomożą rozwiązać kolejne badanie diagnostyczne lub kontrolne applying the transducer in the area of the 10th intercostal space in the anterior axillary or midaxillary lines. In the case of splenomegaly, accessing the spleen along the left costal margin is frequently omitted, which may lead to the failure to recognize the subcapsular pathologies[1].

Errors related to the assessment of size

Anatomical variants of the spleen, such as polysplenia, prominent poles and persistent fetal lobulation, may constitute a cause of erroneous interpretation of tumors of the left adrenal gland (figs. 1, 2) or of the left kidney. This error, however, may be avoided by performing a range of longitudinal and transverse scans of the spleen[1].

Due to the anatomical neighborhood of the spleen and the left liver lobe as well as due to the fact that the hepatic parenchyma usually presents lower echogenicity than the splenic one, the left liver lobe is sometimes incorrectly interpreted as a subcapsular hematoma of the spleen (fig. 3). This usually happens in slender patients with narrow chest and prominent left liver lobe. The presence of portal vessels within the area erroneously suggesting a “splenic hematoma” constitutes a differentiating factor[3].

When estimating the size of the spleen, examiners frequently measure its length which according to medical textbooks should not exceed 120 mm[2]. One needs to remember, however, that it is an approximate number since there are no criteria concerning the extent of splenic enlargement. In some patients, minor splenomegaly, e.g. to 130 mm, may be a physiological phenomena (the analysis of the size of the spleen should include the height of the patient). In others, on the other hand, such an enlargement indicates the beginning of disease (developing portal hypertension, lymphoma, generalized and local inflammation or immune system disorders)[1]. The procedure in such cases must be individualized. The results of the interview,
badanie USG. Znaczne stopniu powiększenie śledziony, która dolnym biegunem może sięgać do lewego talerza biodrowego, najczęściej obserwuje się w przebiegu osteome- 
lofibrozy, czerwienicy prawdziwej, przewlekłej białaczki szpikowej, malarii i leiszmaniozy(1).

W każdym przypadku badający powinien dokładnie ocenić 
wnękę śledziony, w której lokalizuje się wiele zmian chorobowych. Należy poszukiwać przede wszystkim powiększonych węzłów chlonnych, nacieków nowotworowych w przebiegu chloniaków oraz nowotworów żołądka i trzustki. Wydatny ogon trzustki może być mylnie interpretowany jako nieprawidłowa masa wwięką śledziony. Jego owalny kształt, jednorodna echogeniczność oraz obecność otaczającej go żyły śledzio-
nowej są czynnikami różnicującymi(3). We wnęce można również uwidocznić gusz zagięcia śledzionowego jelita grubego, który w obrazie ultrasonograficznym jest zazwyczaj 
hipoechogeniczny, choć może mieć również mieszaną echogeniczność; światło jelita jest wąskie, wypełnione gazem. We wnęce śledziony niekiedy widać również zmiany wycho-
dające z lewej nerki lub z odnogi bocznej lewego nadnercza. Niejednokrotnie wypełniony żołądek lub pętle jelitowe tworzą 
obraz zbiorników płynowych lub patologicznych mas we wnęce śledziony (ryc. 4). Obserwacja tej okolicy przez dłuższy 
czas pozwala dostrzec perystalsis i wynikającą z niej różnicę 
miękkości "zmiany" w czasie badania. Oceniając 
wnękę śledziony, należy przyrzeć się obecnym w niej naczyniow. Różnicowanie naczyń krążeniowych obocznych, występującej w naczu-
nymi, w żołądku jest wadliwe, o znacznym obrazie Dopplerem. Obraz interpretujemy, oceniając jed-
obecność śledziony, której otaczająca nieznaczna, a wtnęce 
wkładającego w naczu-

W różnicowaniu powiększonych węzłów chlonnych trzeba 
brać pod uwagę obecność śledzion dodatkowych. Śledziona 
dodatkowe występują we wnęce śledzio-
nego o 0,1–11% badanych. Najczęściej ujawnia się je przypadkowo, jako poje-
dyncze zmiany o echogeniczności identycznej jak śledziona, typowo położone w 1/3 dolnej długości wnęk, w okolicę 
biegunów, o średnicy 10–40 mm. Charakterystyczna dla śledziona dodatkowej jest ponadto obecność terebki, wnęk 
oraz unaczynienia pochodzącego od tętnicy śledzionowej(4).

During each scan, examiners should thoroughly examine the 
spenic hilum where numerous pathological changes may be 
found. First and foremost, one needs to search for enlarged 
lymph nodes as well as neoplastic infiltrations in the course 
of lymphoma and neoplasms of the stomach and pancreas. 
The prominent tail of the pancreas may be erroneously inter-
preted as a pathological mass in the splenic hilum. Its oval 
shape, homogeneous echogenicity and the presence of the 
spenic vein constitute the differentiating factors(1). In the 
hilum, one may also find a tumor of the splenic flexure of 
the colon, which in a US examination is usually hypoechoic, 
but occasionally, its echogenicity may be mixed. The intestinal 
with fluid filled with gas. Moreover, the splenic 
hilum may also show certain lesions arising from the kidney 
or the lateral limb of the left adrenal gland. Furthermore, 
if filled, the stomach and intestinal loops create an image of 
fluid cisterns or pathological masses in the splenic hilum 
(ryc. 4). However, by observing this area for a longer period 
of time, the examiner may notice peristalsis and a conse-
quent difference in the size of a presumed "lesion" during the 
examination. When assessing the splenic hilum, one needs to 
examine the vessels. The differentiation of the collateral ves-
sels, occurring in portal hypertension, and enlarged lymph 

When diagnosing enlarged lymph nodes, the examiner needs 
to take into account the presence of accessory spleens. They 
occur in the splenic hilum in about 0.1–11% of patients. Accessory spleens are most often detected incidentally and 
they are visualized as single changes with the echogenicity 
identical to that of the spleen. They are typically located at one 
third of the lower length of the hilum or in the area of the poles

Ryc. 3. Lewy płat (LP) wątroby mylnie zinterpretowany jako krwiak podobiezbny śledziony

Ryc. 4. Żołądek wypełniony treścią płynową imitującą torbiel śledziową
Jednoznaczne rozpoznanie możliwe jest w badaniu USG z użyciem środka kontrastowego, w scyntygrafii lub tomo- 
grafii komputerowej (TK).

Błędy w ocenie zmian ogniskowych śledzony

Diagnostyka zmian ogniskowych śledzony jest problema-
tyczna ze względu na niską specyficzność badania USG. Jeden obraz zmiany ogniskowej można przyporządkować 
 wielu jednostkom chorobowym i odwrotnie – jedna jednostka chorobowa może dawać różne obrazy. Interpretacja 
 obrazu USG łącznie z danymi z wywiadu i badania przed-
miotowego oraz wynikami badań dodatkowych pozwala na 
 przedstawienie najbardziej prawdopodobnego rozpoznania 
 i diagnozy różnicową oraz zaproponowanie kolejnych, 
o ile jest to konieczne, badań algorytmu diagnostycznego.

Zmiany ogniskowe pojedyncze i hiperechogeniczne mają 
 zwykle łagodny charakter (naczyniak, odpryskowiak, 
 choroba Gauchera, Niemann-Picka). Zmiany o charak-
terze mnogim i o niskiej echogeniczności, zwłaszcza jeśli 
powstały w krótkim okresie, szczególnie u pacjentów onko-
logicznych, sugerują złośliwy charakter. Standardowe 
 badanie USG cechuje się niską specyficznością, co nie 
pozwala na pewne różnicowanie zmian złośliwych i łagod-
nych. Metodą z wyboru jest TK lub rezonans magnetyczny 
(MR). Duże nadzieje są wiązane z ultrasonografią z użyciem 
 środków kontrastujących (contrast-enhanced ultrasound, 
 CEUS)(3,4). Weryfikację w biopsji cienkoigłowej (BACC) 
 przeprowadza się rzadko, głównie w celu weryfikacji zmian o 
 charakterze przerzutowym, przy czym ryzyko powikłań 
 jest podobne jak w przypadku BACC innych narządów(3).

Zawal

Zawal należy do najczęstszych zmian ogniskowych śledzony. Obszar ten daje dość charakterystyczny obraz 
 piramidy podstawy zwróconej ku tormeczę śledziony. 
 W początkowej fazie obrazu zawału jest hipoecho-
geniczne lub bezechowe, w późniejszym okresie dochodzi 
 do wzrostu echogeniczności. Jeśli zawał ma kształt nie-
regularny i niską echogeniczność, wymaga różnicowania 
 z innymi zmianami ogniskowymi, w pierwszej kolejności 
 z zapalnami. W celu różnicowania zalecane są dwufazowe 
 badanie TK lub CEUS. Po podaniu środka kontrastowego 
 obszar zawału pozostaje hipointensywny w porównaniu ze 
 zdrowym miąższem śledzony w wszystkich fazach bada-
nia(4). Jeżeli dochodzi do masowego zawału obejmującego 
cząt narządu, obserwuje się brak wzmocnienia śledziony 
 w porównaniu z sąsiadującymi narzędziami czy strukturami”(5). Zęściem zawału może być pseudotorbiel lub 
 ropień śledziony, rzadziej ogniskowe zwłóknienie(3).

Torbiel

W różnicowaniu etiologii torbieli śledzony (torbiel zapalna, 
pourazowa, wrodnona, bąbelkowa) podstawą jest dobrze 
 zebrany wywiad. Najczęstszymi są pseudotorbielcja pourazowe, 
 and their diameters range from 10–40 mm. Furthermore, the 
 accessory spleen is characterized by the presence of the cap-
sule, hilum and splenic arterial vascularity(4). Unambiguous 
 diagnosis is possible in contrast-enhanced ultrasound exami-
nation, scintigraphy or computed tomography (CT).

Errors related to the assessment of focal lesions

The diagnostics of focal lesions in the spleen is problematic 
 due to the low specificity of the US examination. The same 
 image of a focal lesion may be assigned to numerous dis-
 ease entities and the other way round – one disease entity 
 may give numerous US images. The interpretation of a US 
 image together with the data obtained in the interview, 
 physical examination and results of additional tests, allows 
 for establishing the most probable diagnosis, differentiation 
 and, if needed, suggestion for further examinations of the 
 diagnostic algorithm.

Infarction

Infarction is one of the most common focal lesions of the 
 spleen. The infarction area is quite characteristic in the US 
 examination and presents the image of a pyramid with its 
 base turned towards the splenic capsule. In its early phase, 
 the focus of infarction is hyperechoic or anechoic. Later, 
 however, the echogenicity increases. If infarction presents 
 an irregular image and low echogenicity, it requires the 
 differentiation with other focal lesions, above all with the 
 inflammatory ones. Here, two-phase CT or CEUS are re-
 commended. After the administration of the contrast agent, 
 the infarction area remains hypointense in relation to the 
 normal splenic parenchyma in all phases of the examina-
tion(4). In the case of massive infarction, involving the whole 
 organ, the absence of the enhancement of the spleen in 
 relation to the adjacent organs or structures is observed(5). 
The outcomes of infarction may be: a pseudocyst, splenic 
 abscess or, more rarely, focal fibrosis(4).

Cyst

In the determination of the etiology of splenic cysts (inflam-
atory, post-traumatic, congenital or hydatid), a good
nieco rzadsze torbie wrodzone, pozapalne, pozawałowe; najrzadziej stwierdza się torbie bąbelkowe, zwykle powstające wtórnie do torbieli bąbelkowych wątroby. Tylko torbie bąbelkowe posiadają unaczynioną ścianą. Torbie wrodzone na skutek wynaczynienia krwi do ich światła mogą manifestować się ostrymi objawami (nagły ból lewego podżebrza, bolesność palpacyjna oraz wyczuciwalny opór tej okolicy)[1]. Gdy w badaniu B-mode światło torbieli nie jest zupełnym bezecho, można fałszywie rozpoznać guzy lub ropnie śledziony. W TK oraz CEUS zmiany takie nie ulegają wzmocnieniu w żadnej fazie badania[5].

Naczyńnik

Obraz naczyńnika śledzony w większości przypadków nie różni się od obrazu USG naczyńników wątroby. Najwięcej trudności diagnostycznych stwarzają naczyńniki w postaci torbielowato-litej (ryc. 5), ponieważ mogą przypominać wielokomorową torbiel lub przerzut w postaci zmiany torbielowatej (chłonik, czerniak)[1]. W badaniu CEUS typowe naczyńniki po podaniu kontrastu wykazują obwodowy/obrączkowaty wzorzec wzmocnienia, z wypełnianiem się w kierunku środka zmiany w fazie tętnicznej. Niektóre naczyńniki o tzw. szybkim przepływie (ang. high flow) prezentują homogenne wzmocnienie całej zmiany w fazie tętnicznej, ze stopniowym oслabieniem wzmocnienia w fazie miąższoj i żylnej w porównaniu z otaczającym mięśnem, co utrudnia odróżnienie ich od zmiany złóżliewej[5].

Gruźlica

W przypadku zakażenia gruźlicą o rozpoznaniu zwykle przesądza obecność w miąższo śledzonych rozsianych obszarów hiperechogenicznych lub zwapnień w skojarzeniu z obrazem klinicznym. Diagnostyka jest bardziej skomplikowana, jeżeli w przebiegu zakażenia gruźlicą tworzą się niecharakterystyczne obszary martwicy przypominające klasyczne ropnie. Różnicuje wynik badania cytologicznego[1].

Angioma

The appearance of splenic angiomas is, in most cases, not different from the US appearance of hepatic angiomas. The angiomas in cystic-solid forms (fig. 5) are the most problematic to diagnose. This is because they may resemble a multilocular cyst or metastasis in the cystic form (lymphoma or melanoma)[1]. In CEUS examinations, angiomas demonstrate peripheral/ring-like enhancement pattern, filling in towards the center in the arterial phase. Some angiomas of, so called, high flow, present homogeneous enhancement of the whole lesion in the arterial phase with gradual decrease of enhancement in the parenchymal and venous phases in relation to the surrounding parenchyma, which hinders their differentiation from a malignant lesion[5].

Tuberculosis

In the case of tuberculosis, the diagnosis is established on the basis of the presence of disseminated hyperechoic areas in the splenic parenchyma or calcifications in combination with the clinical picture. The diagnosis is more complicated when uncharacteristic areas of necrosis are formed in the course of the disease. They resemble classic abscesses. In order to differentiate between them, cytological tests are necessary[1].
Ropnie

W diagnostyce różnicowej ropni grzybiczych lub bakteryjnych dużą rolę odgrywają obraz kliniczny choroby i wyniki badań laboratoryjnych[1]. Ropnie bakteryjne posiadają zazwyczaj dobrze wykształconą i unaczynioną torebkę, co pozwala odróżnić je od zmian nowotworowych pierwotnych lub przerzutowych. Światło ropni może być całkowicie bezechoowe albo mieć niską, mieszaną bądź wysoką echogeniczność. W badaniu CEUS ropnie są hipointensywne w porównaniu z prawidłowym mięśniami śledzonymi, w późnej fazie wzmocnieniu ulegają jedynie przegrody i torebka[3,4].

Wykształcone ropnie grzybicze, ze względu na różnorodność obrazów, poza formą „koła w kole” lub „tarczy”, są trudne do jednoznacznego oceny. Mogą występować pojedynczo lub mieć mnogi charakter, wysoką lub niską echogeniczność, podobnie jak nowotwory lagodne albo złośliwe. Szczególne kłopotliwe są mikroropnie grzybicze, które z uwagi na niewielkie wymiary, rzędu 2–4 mm, oraz rozsiany charakter wymagają różnicowania z naciekiem rozsianej postaci chloniaka lub plamicy. Wynik badania cytologicznego oraz wykrojówkę jewelryczych w przypadku śledzi, której echogeniczność pozostaje bez zmian.

Chloniaki

W różnych postaciach chloniaków nieziarniczych oraz w ziarnicy złośliwej można wyróżnić kilka typów obrazów ultrasonograficznych, które są wspólne dla tych jednostek chorobowych. Zajęcie mięśniaśń śledzony w przebiegu tych chorób może manifesować się nieznanego stopniowo powiększeniem śledzinę z zachowaniem jednorodnej echogeniczności, obecnością pojedynczej lub mnogich zmian ogniskowych albo mieć postać rozsianego nacieku (ryc. 7). W białaczkach śledziona jest zazwyczaj powiększona, jednak jej echogeniczność pozostaje bez zmian.

Największe trudności stwarza różnicowanie charakteru drobnych rozsianych, hipoechohogenicznych, wręcz bezechoowych zmian w mięśniśń śledzony, które mogą odpowiadać mikroropniom lub ropniom grzybiczym, zmianom przerztowym oraz rzadko występującej plamicy śledzony, czyli

Abscessozy

The clinical picture of the disease and the results of laboratory tests constitute important elements in the differentiation diagnostics between mycotic and bacterial abscesses[1]. Bacterial abscesses usually have a well-developed and vascularized capsule which allows for their differentiation from primary and metastatic neoplastic lesions. The lumen of the abscess may be completely anechoic or have low, mixed or high echogenicity. In CEUS examinations, abscesses are hypointense in relation to the normal splenic parenchyma and in the delayed phase, only the septations and capsule undergo enhancement[3,4].

Apart from the “wheel-within-a-wheel” or “target” patterns, developed mycotic abscesses present diversified images and thus, are difficult to diagnose. Similarly to benign or malignant neoplasms, they may be solitary or multiple and have high or low echogenicity. Mycotic microabscesses are particularly troublesome. Due to their small sizes (2–4 mm) and scattered character, they must be differentiated from an infiltration of disseminated lymphoma or peliosis. Cytology and mycological tests are frequently nondiagnostic[1]. Scattered hypoechoic areas may also occur in sarcoidosis (fig. 6).

Lymphomas

In various forms of non-Hodgkin lymphoma or in Hodgkin disease, several types of US images may be distinguished which are common for both of these disease entities. The involvement of the splenic parenchyma may manifest itself with slight enlargement of the spleen with homogeneous echogenicity and the presence of solitary or multiple focal lesions. It may also present itself as a diffuse infiltration (fig. 7). In leukemia, the spleen is usually enlarged but its echogenicity remains unchanged.

The most problematic character differentiation concerns slight, disseminated, hypoechoic, or even anechoic, lesions in the splenic parenchyma, which may constitute microabscesses, mycotic abscesses, metastatic lesions or rarely occurring splenic peliosis (cyst-like dilatation of the splenic sinuses)[12]. In a CEUS examination, lymphomas and metastatic lesions are characterized by the enhancement in the early phase with subsequent quick contrast wash-out[2,5,6].

Metastases to the spleen

The appearance of metastases to the spleen is diverse and uncharacteristic. The echogenicity of the majority of
Podsumowanie

W artykule przedstawiono najczęstsze błędy popełniane w badaniu ultrasonograficznym śledziony. Wykonanie badania zgodnie z obowiązującymi standardami, łącznie z analizą wszystkich dostępnych danych klinicznych, pozwala w wielu przypadkach na prawidłową interpretację uzyskanych obrazów albo, jeśli to nie jest możliwe, na wskazanie kolejnej metody diagnostycznej.

Konflikt interesów

'autorki nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpłynąć na treść publikacji oraz rościć sobie prawo do tej publikacji.

Piśmiennictwo/References

1. Jakubowski W (red.): Błędy i pomyłki w diagnostyce ultrasonograficznej. Praktyczna Ultrasonografia, Roztoczańska Szkoła Ultrasonografii, Warszawa – Zamość 2005: 124–137.
2. Jakubowski W (red.): Diagnostyka ultrasonograficzna w gabinecie lekarza rodzinnego. Praktyczna Ultrasonografia, Roztoczańska Szkoła Ultrasonografii, Warszawa – Zamość 2003: 134–143.
3. Piscaglia F, Nolsøe C, Dietrich CF, Cosgrove DO, Gilja OH, Bachmann Nielsen M et al.: The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med 2012; 33: 33–59.
4. Popescu A, Sporea I, Şirli R, Dănilă M, Nicolijă D, Martie A: The role of contrast-enhanced ultrasonography with second generation contrast agents in the evaluation of focal splenic lesions. Med Ultrason 2009; 11: 61–65.
5. von Herbay A, Barreiros AP, Ignee A, Westendorf J, Gregor M, Galle PR et al.: Contrast-enhanced ultrasonography with SonoVue: differentiation between benign and malignant lesions of the spleen. J Ultrasound Med 2009; 28: 421–434.
6. Yu X, Yu J, Liang P, Liu F: Real-time contrast-enhanced ultrasound in diagnosing of focal spleen lesions. Eur J Radiol 2012; 81: 430–436.