Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Launch of an Obstetric Nurse–Led Triage Program

Introduction
Creation of a nurse-led triage program in an academic medical center hospital necessitates thoughtful program development and implementation. The hospital previously had a disorganized process for patients with concerns or questions after clinic hours. Patient dissatisfaction, provider workload, and quality concerns were a few of the identified problems. A need was identified to improve patient satisfaction, provider team satisfaction, and patient safety through development of a robust, nurse-led triage program. This presentation outlines the infrastructure, implementation, challenges, staff satisfaction, and data of a nurse-led triage program.

Methods
An interdisciplinary project team, including nursing, nurse-midwifery, obstetrics, informatics, and leadership, was developed. Plan–do–study–act cycles and small cycles of change were implemented to meet project and program goals.

Results
Provider and staff satisfaction with the triage program will be described. Patient call date, including volume, patient call reasons, disposition, and protocol use will be outlined.

Discussion/Conclusion
The University of Colorado Hospital’s obstetrics department provides a systematic framework for development of a nurse-led triage program in an obstetric emergency department.

Improvements to Screening for Intimate Partner Violence During a Pandemic

Introduction
During the COVID-19 pandemic, screening deferral for intimate partner violence (IPV) became common practice due to the partner remaining at the bedside (due to COVID-19–related visitor restrictions) in women admitted for birth. However, pregnancy is a time of increased vulnerability and risk for violence. Screening deferral and incompleteness of IPV assessment leave potential victims unidentified and at risk for poor maternal and fetal outcomes, including preterm birth and miscarriage.

Methods
Through use of the influencer model and plan–do–study–act cycles, an interactive seminar incorporating real-life scenarios, education, role playing, embedded nurse experts, and policy change addressed both the motivation and ability of nursing staff to assess for IPV. Preassessment and postassessment tools evaluated nurse confidence, screening frequency, and strategies. A Welch’s t-test compared pre–posttest confidence, with Pearson’s correlation assessing relationships among years of experience, confidence, and knowledge. Linear regression measured change in screening rates over time throughout the project.

Results
IPV screening rates increased to 90% from a baseline of 33%, whereas nurse confidence increased with statistical significance in resource awareness. Nurse knowledge on the health effects of IPV increased significantly ($p = .02$); however, there was no significant correlation between knowledge and years of experience. Knowledge of IPV risk factors significantly correlated to IPV screening ($p = .03$), asking about abuse history ($p < .01$), asking the partner to leave the bedside ($p < .01$), and awareness of resources available ($p = .02$). Knowledge of the health effects of IPV also correlated significantly to asking about abuse history ($p < .01$), asking the partner to leave the bedside ($p < .01$), and resource awareness ($p < .01$).

Discussion/Conclusion
The change in screening rate over time shows that the IPV seminar and a multifaceted approach with the influencer model accomplished the goal of increasing screening. However, without using a
Effects of Intensive Blood Pressure Monitoring in Pregnant and Postpartum Women With Severe Hypertension

Introduction

In 2017 ACOG Committee Opinion No. 692: Emergent Therapy for Acute-Onset, Severe Hypertension During Pregnancy and the Postpartum Period, was published, providing guidance for monitoring and treating severe hypertension (sHTN). The recommended monitoring after blood pressure (BP) is stabilized (i.e., <160/110) is intensive, lasting 7 hours. Our team was unable to find evidence to support the frequency and duration for poststabilization monitoring. Our goal was to review the need to continue frequent BP monitoring after stabilization. We want to provide safe care to our patients while giving them time to enjoy their newborn, which supports the mission of the Association of Women’s Health, Obstetric and Neonatal Nurses.

Methods

A retrospective data review was performed of 246 women who experienced sHTN from September 2019 to October 2020 in a tertiary medical center in Oregon. One hundred and forty-five patients met the inclusion criteria, which were as follows: treated after birth for sHTN with intravenous (IV) labetalol, IV hydralazine, and/or immediate-release nifedipine, even though BP parameters were met; and only treated in antepartum period. Each patient’s data were divided into episodes (amount of time from initial treatment for sHTN until stabilized) and reoccurring events (new episodes that are initiated after a patient has been stable for ≥2 hours) and analyzed duration from stabilization to the next episode.

Results

Labetalol IV HTN protocol = 92 patients, 134 episodes. Combination of HTN meds = 53 patients, 358 episodes. Sixty-seven percent of our patients on sHTN protocol had their blood pressure under control within 60 minutes after medication was given. The largest number of reoccurring events of sHTN occurred between 2–3 hours and 6–7 hours after blood pressure had been stabilized for 2 hours.

Discussion/Conclusion

On the basis of our findings, we propose to monitor BPs for 8 hours after stabilization while decreasing the number of BPs from 16 to 10, which will allow more time for postpartum women and their families to enjoy their newborn, thereby decreasing patient anxiety and nurse workload.

A Validated Postnatal Depression Screening Tool and Guideline to Improve Evidence-Based Screening for Postpartum Depression in Ambulatory Care

Introduction

Postpartum depression is one of the most common diagnoses for maternal morbidity and mortality, affecting one in eight women in the United States. Initially, there was no universal process for the identification of postpartum depression in ambulatory clinics in a regional health system caring for obstetric patients, which puts patients and their newborns at risk for severe and potentially detrimental consequences. A quality validated assessment tool for IPV, some victims of IPV will remain unidentified. Regardless of years of experience, nurses across the experience spectrum need education about IPV risk factors, warning signs, and screening techniques. In addition, as COVID-19 continues to affect patient care, it is essential to incorporate skills to complete violence screenings.

Keywords

hypertension
pre eclampsia
severe hypertension
hypertensive protocol
blood pressure monitoring

Obstetric Quality Improvement Posters

Sofia Costas, MBA, BSN, RN, RNC-OB, Providence St. Vincent Medical Center, Portland, OR
Jennifer Caravajal, MBA, BSN, RN, NE-BC, Providence St. Vincent Medical Center, Portland, OR
Kelsey Niehuser, BSN, RN, RNC-MNN, Providence Health and Services, Portland, OR
Meryl Villarreal, BSN, RN, RNC-MNN, Providence St. Vincent Medical Center, Portland, OR
Ryann Foster, BSN, RN, RNC-MNN, Providence St Vincent Medical Center, Portland, OR

Debbie Ketchum, MAOM, BSN, RNC, C-EFM, St. Luke’s Health System, Boise, ID

S52 JOGNN, 51, S51–S64; 2022. https://doi.org/10.1016/j.jogn.2022.05.051 http://jognn.org