The extended cytoplasmic tail of the human B4GALNT2 is critical for its Golgi targeting and post-Golgi sorting

Sophie Groux-Degroote1, Céline Schulz1,2, Virginie Cogez1, Maxence Noël1, Lucie Portier1, Dorothée Vicogne1, Carlos Solorzano1, Fabio Dall’Olio3, Agata Steenackers1, Marlène Mortuaire1, Mariano Gonzalez-Pisfil2, Mélanie Henry2, François Foulquier1, Laurent Héliot2 and Anne Harduin-Lepers1

1 Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
2 Univ. Lille, CNRS, UMR 8523 – PhLAM - Laboratoire de Physique des Lasers, Atomes, Molécules, Lille, France
3 Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy

Keywords
B4GALNT2; cytoplasmic tail; glycosyltransferase localization; Golgi; vesicles

Correspondence
A. Harduin-Lepers, Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université Lille Nord de France, Lille1, 59655 Villeneuve d’Ascq, France
Fax: +33 320 43 65 55
Tel: +33 320 33 62 46
E-mail: anne.harduin-lepers@univ-lille.fr

Sophie Groux-Degroote, Céline Schulz and Virginie Cogez contributed equally to the work.

(Received 15 January 2018, revised 15 June 2018, accepted 31 July 2018)
doi:10.1111/febs.14621

Introduction
Glycosylation takes place along the secretory pathway and is one of the most important and complex co- and post-translational modification of proteins described in eukaryotic cells. In the Golgi apparatus, terminal glycosylation reactions (i.e., sialylation, fucosylation, N-acetylgalactosaminylation) generate a huge panel of glycans that confer a variety of structural and functional roles to the glycoproteins exposed at the cell surface.

Database
The proteins β1,4GalNAcT II, β1,4-GalT1, FucT I, FucT VI and ST3Gal IV are noted B4GALNT2, B4GALT1, FUT1, FUT6 and ST3GAL4, whereas the corresponding human genes are noted B4GALNT2, B4GALT1, FUT1, FUT6 and ST3GAL4 according to the HUGO nomenclature.

Abbreviations
CT, cytoplasmic tail; CTS, cytoplasmic/transmembrane/stem domain; eGFP, Green fluorescent protein; Fuc, Fucose; Gal, Galactose; GalNAc, N-acetylgalactosamine; GlcNAc, N-acetylglucosamine; LF-B4GALNT2, Long B4GALNT2 protein isoform; mCy, mCherry; Neu5Ac, N-acetylgalactosamine; PBS, Phosphate buffer saline; SDS/PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis; SF-B4GALNT2, Short B4GALNT2 protein isoform.
surface. Besides, altered terminal glycosylation is a common feature of cancer cells conferring novel phenotypic properties to the cells. Among sialylated glycans of interest, the \(\text{Sd}^a/\text{Cad} \) histo-blood group antigen (Neu5Ac\(\alpha \)2,3Gal\(\alpha \)Nac\(\beta \)1,4Gal\(\beta \)1,3/4GlcNac\(\gamma \)Gal\(\beta \)Nac) has been reported on glycoproteins and glycolipids in various biological systems [1–3]. Several studies reported this sialylated glycopeptide mainly in the healthy digestive tract and its disappearance in the cancerous colonic cells to the benefit of sialic Lewis x antigen (Neu5Ac\(\alpha \)2,3Gal\(\beta \)1,4|Fuc\(\alpha \)1,3|GlcNAc\(\gamma \)Gal\(\beta \)Nac), a selectin ligand serving as a cell adhesion molecule [4,5]. The last biosynthetic step of the \(\text{Sd}^a/\text{Cad} \) antigen is ensured by a glycosyltransferase named \(B4GALNT2 \) (alias \(\beta 1,4\text{GalNAcT-II} \) or \(\text{GALGT2} \)) that was cloned from human colonic Caco-2 cells [6,7]. Interestingly, we have shown that the human \(B4GALNT2 \) gene possesses two alternative first exons giving rise to two transcripts and two potential protein isoforms one of which displaying an unusual extended cytoplasmic tail (CT) of 66 amino acid residues. The two predicted \(B4GALNT2 \) protein isoforms possess identical transmembrane, stem, and catalytic domains, but different N termini. As a first step to decipher the regulatory mechanisms underpinning \(\text{Sd}^a/\text{Cad} \) expression in the digestive tract [8]. The major transcript variant was found to be the short transcript, largely expressed in embryonic colonic cells CaC841CoN, healthy colon, and stomach, and downregulated in these tumor tissues. Using western blotting approaches and a commercial polyclonal antibody directed against the common stem region of the two isoforms, this previous study also established the presence of the two predicted \(B4GALNT2 \) protein isoforms in healthy colon samples and colonic cells designated short protein isoform (SF-\(B4GALNT2 \)) and long protein isoform (LF-\(B4GALNT2 \)) and the predominantly expressed protein was found to be the short isoform [8].

Most of the Golgi glycosyltransferases share a common topology and domain structure in eukaryotic cells: they are type II transmembrane proteins exhibiting a short CT, a unique transmembrane domain, a stem and a catalytic domain located within the Golgi lumen [9]. It has long been appreciated that correct final glycosylation depends on correct localization and organization of glycosyltransferases within the Golgi apparatus [10–12]. Although extensively studied, molecular mechanisms orchestrating spatial and functional organization of Golgi glycosyltransferases remain poorly understood. It is currently accepted that the N-terminal region encompassing the CT, the transmembrane, and the stem domains is responsible for their appropriate Golgi retention [13–15] although this region represents a highly divergent domain of glycosyltransferases across vertebrate evolution [16]. A few studies have reported a potential role of glycosyltransferase CT for their specific localization to the Golgi [17–21], intracellular trafficking dynamics [22], or to atypical cellular localization [23].

Using confocal fluorescence microscopy approaches, we examined the subcellular distribution of each of the two \(B4GALNT2 \) protein isoforms in stably transfected LS174T colonic cells established previously [24] and observed distinct distribution of the two isoforms. To tackle this issue, we followed the expression of fluorescent protein (eGF/\(\text{mCy} \))-tagged isoforms of the \(B4GALNT2 \) in transiently transfected HeLa cells, which are cells commonly used in studies to map Golgi enzymes distribution [25]. We report here a similar subcellular localization of the two \(B4GALNT2 \) isoforms into the Golgi cisternae and most intriguingly, an unusual subcellular distribution of the LF-\(B4GALNT2 \) isoform localizing to vesicle-like structures by virtue of its extended CT. Molecular deletion analysis conducted as a first step to decipher the mechanism by which the LF-\(B4GALNT2 \) is targeted to these vesicles indicated that it is signal mediated. Our study points to the existence of a dibasic signal essential for ER exit and of a crucial and dominant signal for post-Golgi targeting present within the first 22 amino acid residues of the LF-\(B4GALNT2 \) CT.

Results

Differential \(B4GALNT2 \) isoforms localization and trafficking in LS174T colonic cells

We previously reported that the human \(B4GALNT2 \) gene produces two protein isoforms with the same catalytic domain, one of which shows an unusual extended CT of 66 amino acid residues [7,8]. As an initial step to assess the subcellular distribution of the two \(B4GALNT2 \) protein isoforms, we used confocal microscopy and an anti-\(B4GALNT2 \) polyclonal antibody directed against a common domain of the stem region in the stably transfected colon cancer LS174T cells, expressing either the short isoform (LS174T-S2) or the long isoform (LS174T-L21) previously established by Malagolini et al. [24]. We previously noticed that each stably transfected cell line drives the expression of similar levels of the two \(B4GALNT2 \) isoform, although the LS174T-S2 produce higher levels of \(\text{Sd}^a \)
antigen on glycoproteins compared to the LS174T-L21 [8], which could be partly due to the previously documented higher enzymatic activity of the short isoform [24]. We show here that the two isoforms localized to a Golgi-like perinuclear region in LS174T-S2 and LS174T-L21 cells and partially colocalized with GM130, a widely used Cis-Golgi marker [26], whereas no B4GALNT2 isoform could be detected in the LS174T-mock cells (Fig. 1A). Interestingly, in addition to this Golgi-like distribution, we observed also an unusual punctuated cytoplasmic distribution in LS174T-L21 suggesting the existence of an additional localization of this long isoform (Fig. 1A). Similar distribution of the LF-B4GALNT2 was observed in the LS174T-L20 cell line (data not shown) expressing lower levels of the long isoform [24]. To check the enzymatic activity of both B4GALNT2 isoforms, we also analyzed the production of Sd\(^a\) antigen in LS174T-S2 and LS174T-L21 cells using the anti-Sd\(^a\) monoclonal antibody KM694. Completely absent in the LS174T-mock cells, Sd\(^a\) synthesis is observed for both B4GALNT2 isoforms, although it appears to be

![Fig. 1. Localization of the two B4GALNT2 protein isoforms and Sd\(^a\) in stably transfected colon cancer LS174T cells. (A) LS174T-S2, LS174T-L21, and LS174T-mock cells [24] were fixed and labeled with rabbit anti-B4GALNT2 antibody (green). Mouse anti-GM130 antibody was used to mark the Golgi complex (red). Cells were counterstained with Alexa 488-labeled goat anti-rabbit IgG and Alexa 568-labeled goat anti-mouse IgG. Coverslips were analyzed by confocal fluorescence microscopy. DAPI was used for nuclei staining (blue). Merged images are shown and areas of overlapping distribution in the same optical section appear as yellow. Zoomed pictures are shown and white arrows highlight the punctate distribution of LF-B4GALNT2 (green) only observed in LS174T-L21 cells. (B) LS174T-S2, LS174T-L21, and LS174T-mock cells were fixed and labeled with rabbit anti-B4GALNT2 antibody (green). The mouse anti-Sd\(^a\) antibody KM694 was used to visualize the activity of B4GALNT2 (i.e., Sd\(^a\) antigen) in the different cells (red). Cells were counterstained with Alexa 488-labeled goat anti-rabbit IgG and Alexa 568-labeled goat anti-mouse IgG antibodies. Coverslips were analyzed by confocal fluorescence microscopy. DAPI was used for nuclei staining (blue). Merged images are shown and areas of overlapping distributions in the same optical section appear as yellow. White arrows highlight the punctate distribution of LF-B4GALNT2 (green) in LS174T-L21 cells. Images in both panels are representative of two independent experiments. Scale bars: 10 \(\mu\)m (zoom: 1 \(\mu\)m).]
less abundant in LS174T-L21 cells than in LS174T-S2 (Fig. 1B), as previously reported [8,24].

We also conducted antibody uptake experiments to assess the possible intracellular traffic of the B4GALNT2 isoforms in LS174T cells. Both types of stably transfected LS174T cells were incubated at 37 °C for 3 h with the anti-B4GALNT2 antibody. Cells were then washed, fixed, and permeabilized. Antibody tracking in the various LS174T cells using confocal microscopy and an anti-rabbit IgG Alexa 488 staining showed no anti-B4GALNT2 antibody staining in LS174T-S2, whereas anti-B4GALNT2 antibody staining could be detected in LS174T-L21 (Fig. 2A). Furthermore, we observed strong colocalization at the LS174T-L21 cell surface of the LF-B4GALNT2 with the B4GALNT2 product Sdα (Zoom/Merge in Fig. 2A). We confirmed transient cell surface exposure of the LF-B4GALNT2 performing cell surface biotinylation. Biotin-labeled cell surface proteins were affinity purified with streptavidin and run on SDS/PAGE. Western blotting carried out with the anti-B4GALNT2 indicated the presence of a faint band of the expected molecular weight for the LS174T-L21 cells, whereas no band could be detected in the LS174T-S2 and LS174T-mock cells (Fig. 2B). Altogether, these observations further suggest an exposure of the LF-B4GALNT2 at the cell surface, whereas the SF-B4GALNT2 is retained in the Golgi apparatus.

![Fig. 2. Trafficking of the two B4GALNT2 isoforms in stably transfected colon cancer LS174T cells. (A) Anti-B4GALNT2 antibody uptake in LS174T-S2, LS174T-L21, and LS174T-Mock. LS174T-S2, LS174T-L21, and LS174T-mock were grown on coverslips and incubated 3 h with the anti-B4GALNT2 antibody, fixed and processed for immunofluorescence using Alexa 488-labeled goat anti-(rabbit IgG) antibody (green). In parallel, staining of the Sdα antigen was performed as a control, using anti-Sdα antibody KM694, followed by Alexa 568-labeled goat anti-(mouse IgM) antibody (red). No staining for the anti-B4GALNT2 antibody could be observed in LS174T-S2, whereas LS174T-L21 exhibited vesicular and plasma membrane staining. Coverslips were analyzed by confocal fluorescence microscopy using the inverted Leica SP5. Scale bars: 20 μm. (B) Cell surface biotinylation experiments in LS174T-S2, LS174T-L21, and LS174T-mock. Seventy percent confluent LS174T-mock, LS174T-S2 and LS174T-L21 cells were incubated 3 h at 37°C to allow subcellular trafficking and potential transient exposure of the B4GALNT2 isoforms at the cell surface. Cell surface biotinylation was achieved using Sulfo-NHS-SS-Biotin as described in material and methods. One milligram of extracted proteins was incubated overnight at 4°C with streptavidin beads and purified proteins were run on 8% SDS/PAGE. Total B4GALNT2 (input) and cell surface B4GALNT2 (biotinylated proteins) was visualized by western blotting using the anti-B4GALNT2 antibody. No staining for B4GALNT2 was observed in the biotinylated fraction obtained from LS174T-S2, whereas the long B4GALNT2 isoform was detected in the biotinylated fraction obtained from LS174T-L21]
Construct	PCR Forward primer	Reverse primer	Vector
SF-B4GALNT2	CCTAGCTAGGCACCATGACCTCGGCCTCG	GAAGATCTCTGCCACATGGAGATG	pfx
LF-B4GALNT2	CCTAGCTAGGCACCATGACCTCGGCCTCG	GAAGATCTCTGCCACATGGAGATG	pmCherry-N1
ST3GAL4	AGGAAATCTCTCGCTCGCTGACCACATGGAGTACG	CAGCTCTGCTCAGACCCACAGAGACGATG	mCherry
LF-A139-566	CCTAGCTAGGCACCATGACCTCGGCCTCG	TTCAAAGATATTCTGCTGCAGAACGTCAC	pmCherry-N1
SF-D1-506	CCTAGCTAGGCACCATGACCTCGGCCTCG	TTCAAAGATATTCTGCTGCAGAACGTCAC	pmCherry-N1
LF-Δ22	PCR1 GCCGGCTGCTGAATATGAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
	PCR2 TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
LF-A23-43	PCR1 GCCGGCTGCTGAATATGAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
	PCR2 TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
LF-A44-64	PCR1 GCCGGCTGCTGAATATGAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
	PCR2 TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
LF-Δ23-64	PCR1 GCCGGCTGCTGAATATGAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
	PCR2 TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
LF-Δ2-8	PCR1 GCCGGCTGCTGAATATGAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
	PCR2 TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
LF-Δ9-15	PCR1 GCCGGCTGCTGAATATGAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
	PCR2 TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
LF-Δ16-22	PCR1 GCCGGCTGCTGAATATGAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
	PCR2 TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
CT-B4GALNT2-ST3GAL4	PCR1 AACTGGCTGCTGAGATCCAC	TGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
	PCR2 TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	TTGGTGCCTGAGAGGCCTCGGAGGTGGACGTCAC	pmCherry-N1
B4GALNT2-tagged isoforms localization in HeLa cells

To define more precisely the differential subcellular localization of the two B4GALNT2 isoforms, DNA constructs were made for the production of full-length B4GALNT2 C-terminal tagged fluorescent proteins (Table 1). The SF-B4GALNT2 was coupled with green fluorescent protein (eGFP), whereas the LF-B4GALNT2 was linked to red fluorescent protein (mCy) (Fig. 3A). HeLa cells previously shown to be devoid of B4GALNT2 [8], were chosen for transient transfection of the various B4GALNT2 constructs and confocal microscopy observations. Each tagged full-length B4GALNT2 isoform was individually transfected in HeLa cells. As observed in LS174T cells, a compact perinuclear Golgi-like distribution of both isoforms was observed and the LF-B4GALNT2 showed an additional atypical punctate distribution suggesting vesicle-like structures (White arrows in Fig. 3B). Cotransfection of the two tagged B4GALNT2 isoforms in HeLa cells showed an almost perfect overlap in the Golgi complex and the presence of additional red vesicles widely distributed in the cytoplasm containing the LF-B4GALNT2 (Fig. 3C). We also aimed to give a more quantitative evaluation of the atypical distribution of the LF-B4GALNT2 since the Golgi morphology of LF-B4GALNT2-transfected cells could appear slightly fragmented [27]. Toward this aim, we counted the total number of red or green vesicles distinct from the Golgi region per cell from LF-B4GALNT2- and SF-B4GALNT2-transfected cells from several independent experiments and plotted in whiskers plot (Fig. 3D), as described in the material and methods section. Further statistical analysis revealed a highly significant ($P < 0.001$) difference of vesicles number in the LF-B4GALNT2- and SF-B4GALNT2-transfected cells (Fig. 3D).

To assess intracellular trafficking of both B4GALNT2 isoforms, HeLa cells transiently cotransfected with LF-B4GALNT2-mCy and SF-B4GALNT2-eGFP were monitored by confocal video microscopy (Videos S1 and S2). Our data highlighted very distinct recorded vesicle numbers (on average, 62 vesicles per LF-B4GALNT2-transfected cell and 0.5 vesicles per SF-B4GALNT2-transfected cell) and remarkable motilities of the LF-B4GALNT2-mCy vesicles with an average track length of $9 \mu m \pm 8.8$ and velocity of $4.1 \mu m/s^{-1}$. An example of the trajectories of these vesicles, with apparently high mobility back and forth from the trans-Golgi toward the periphery of the cell, is illustrated in Fig. 4.

Fine subcellular localization of both B4GALNT2 isoforms in transfected HeLa cells

To gain insight into SF-B4GALNT2 and LF-B4GALNT2 fine Golgi localization and into the nature of the vesicles containing LF-B4GALNT2, we conducted colocalization of confocal microscopy experiments in transiently transfected HeLa cells using well-described markers of the secretory pathway. Firstly, we showed that the tagged full-length SF-B4GALNT2 and LF-B4GALNT2 did not colocalize with the endoplasmic reticulum marker calnexin (Figs 5 and 6) nor did the red LF-B4GALNT2 vesicles colocalize with the ER–Golgi intermediate compartment (ERGIC) marker ERGIC-53 (data not shown). We then used giantin, a cis/trans-Golgi marker localized to tubular cisternal Golgi elements potentially representing fenestrated connections between cisternal stacks [28]. As observed previously with GM130 in LS174T cells, both SF-B4GALNT2 and LF-B4GALNT2 exhibited a low degree of colocalization with giantin further suggesting a late Golgi localization of the two isoforms. We observed partial overlap (yellow arrows) of the tagged SF-B4GALNT2 and LF-B4GALNT2 with the trans-Golgi marker B4GALT1 and the trans-Golgi network markers TGN46 and TMEM165, a recently described cation transporter [29]. Besides its trans-Golgi localization and compared to the SF-B4GALNT2, the LF-B4GALNT2 showed an obvious and distinct vesicle-like pattern (white arrows in Fig. 6) that we aimed to further characterize. We detected no colocalization of the LF-B4GALNT2-containing vesicles with the endosomal marker Rab11A (data not shown) and very partial overlap with the early endosomal antigen-1 marker (EEA1) and the lysosome-associated membrane protein 2 marker (LAMP2) (yellow arrows, Fig. 6) as assessed by analysis of the distribution of fluorescence in vesicles using the RGB profiler plugin (ImageJ), whereas no colocalization could be detected for the SF-B4GALNT2 (Fig. 5). Altogether, these data suggested that besides its predominant Golgi localization, the LF-B4GALNT2 isoform also exhibits an atypical subcellular localization to vesicles mostly distinct from Golgi apparatus, endosomal, or lysosomal compartments.

The extended cytoplasmic tail of the LF-B4GALNT2 isoform contains Golgi/vesicle-targeting signals

We next wanted to gain insight into the mechanisms involved into the vesicles targeting of the LF-B4GALNT2. Since the presence of the extended CT is
the only structural difference between the two isoforms, we used two fluorescent truncated B4GALNT2 proteins, with their entire common catalytic domain deleted, but containing their respective CT (LF-Δ139-566-B4GALNT2-mCy and SF-Δ79-506-B4GALNT2-eGFP, Fig. 7A), and studied their subcellular localization. HeLa cells were first transiently transfected with each truncated protein. Figure 7B shows essentially the same subcellular distribution as described for the full-length B4GALNT2 isoforms, in the Golgi apparatus for both isoforms and in vesicles for the LF-B4GALNT2 (white arrows). Similarly, cotransfection of the two tagged LF-Δ139-566-B4GALNT2 and SF-Δ79-506-B4GALNT2 isoforms showed an almost perfect overlap in the Golgi complex and the presence of additional red vesicles containing the LF-B4GALNT2 (Fig. 7C).

Next, we conducted colocalization confocal microscopy experiments in transiently transfected HeLa cells using markers of the secretory pathway, that is, calnexin, giantin, TMEM165, EEA1, and LAMP2. As previously described for the full-length, tagged B4GALNT2 isoforms, the truncated isoforms showed predominantly Golgi localization and the LF-Δ139-566-B4GALNT2 showed an additional vesicular distribution distinct from Golgi, endosomes, or lysosomes (Fig. 8A,B). Taken together, these data strongly suggested a critical role of the CT of the LF-B4GALNT2 for targeting this isoform in intracellular vesicles.

Mechanistic insights into the role of the cytoplasmic tail of LF-B4GALNT2

To tackle this issue, we made additional constructs using the full-length cDNA of the human α2,3-sialyltransferase-IV (ST3GAL4) obtained previously [30] fused with eGFP (ST3GAL4-eGFP) or with the mCherry (ST3GAL4-mCy) protein at the C terminus as illustrated in Fig. 9A (Table 1). Each construct transiently transfected in HeLa cells had the expected Golgi distribution and did not display any vesicle staining (data not shown). Another construct was made fusing the first 66 amino acid residues of the CT of the LF-B4GALNT2 to the ST3GAL4 deleted of its first eight amino acids leading to the chimeric protein CT-B4GALNT2-ST3GAL4-mCy (Fig. 9A). The ST3GAL4-eGFP and CT-B4GALNT2-ST3GAL4-mCy were cotransfected in HeLa cells. Confocal microscopy analysis not only indicated a Golgi-like colocalization of the two chimeric proteins but also an additional vesicular distribution of the CT-B4GALNT2-ST3GAL4-mCy (Fig. 9B). These data demonstrated the critical role played by the extended CT sequence on the observed post-Golgi localization of the LF-B4GALNT2 and strongly suggested the presence of a molecular signal embedded in the extended CT.

To determine which region of the CT could be implicated and refine the amino acid sequence signal, four deletion mutants of the full-length LF-B4GALNT2 coupled with mCherry at the C terminus were constructed that were devoid of the first 2–22, or 23–43, or 44–64 or 23–64 amino acid residues (LF-Δ2–22, LF-Δ23–43, LF-Δ44–64, LF-Δ23–64, Fig. 10A) (Table 1). These constructs were then transiently transfected in HeLa cells and their subcellular localization examined using confocal fluorescence microscopy. As shown in Fig. 10B, the subcellular localization of the LF-Δ23–43, LF-Δ44–64, LF-Δ23–64 constructs is similar to the one observed for the full-length LF-B4GALNT2 (Fig. 6). Remarkably, the LF-Δ2–22 construct showed a diffuse distribution within the cell.
indicating that this 2–22 region is essential for Golgi and post-Golgi targeting. Furthermore, we carried out quantitation of the red vesicles distribution in each series of transfected cells and observed a slight and not significant decrease in the number of vesicles in the LF-D23-43-, LF-D44-64-, LF-D23-64-B4GALNT2-transfected cells, whereas it was significantly (\(P < 0.001\)) decreased in the LF-D2-22-B4GALNT2-transfected cells (Fig. 10C).

In an attempt to distinguish the ER-export signal from the vesicle-targeting signal of the LF-B4GALNT2, we further dissected this amino acid sequence contained within amino acids 2–22. Three additional constructs were made using the full-length LF-B4GALNT2-mCy, with deletion of the first 2–8, 9–15 or 16–22 amino acid residues (LF-D2-8, LF-D9-15, LF-D16-22 depicted in Fig. 11A). After transfection in HeLa cells, immunofluorescence assays using...
either the ER marker anti-calnexin or the \textit{trans}-Golgi marker anti-TMEM165 demonstrated the Golgi and vesicle localization (white arrows) of the LF-D\textsubscript{2-8} and LF-D\textsubscript{16-22} constructs, whereas a perfect colocalization of LF-D\textsubscript{2-22} was observed with the ER marker (Fig. 11B). However, the LF-D\textsubscript{9-15} construct localized to the Golgi compartment and showed no vesicular distribution compared to the other constructs (Fig. 11B). The total number of vesicles was counted per cell from LF-D\textsubscript{2-8}-, LF-D\textsubscript{9-15}-, and LF-D\textsubscript{16-22}-B4GALNT2-mCy-transfected cells and plotted in whiskers plots and statistical analyses revealed a highly significant ($P<0.001$) reduction in vesicles number in the LF-D\textsubscript{9-15}-B4GALNT2-mCy-transfected cells (Fig. 11C).

Altogether, these data demonstrated that the first 22 amino acids of the CT are crucial for both ER exit and post-Golgi subcellular localization. More interestingly, our results highlight the importance of the 9-15 heptapeptide (GKFHVEV) of the B4GALNT2 CT as a vesicular targeting signal.

Discussion

We have shown previously that the human \textit{B4GALNT2} gene is expressed primarily in the healthy digestive tract and drives the expression of two major transcripts encoding two protein isoforms, the so-called short and long \textit{B4GALNT2} isoforms responsible for the synthesis of Sda/Cad antigen [1,6–8]. Preliminary human evolutionary genomics analysis indicated the occurrence of a human-specific genetic change in the \textit{B4GALNT2} gene that gave rise to the long transcript variant as a result of the use of a new alternative first exon. The very unusual feature of the resulting long \textit{B4GALNT2} protein isoform is its...
Fig. 6. Intracellular colocalization of full length LF-B4GALNT2-mCy with subcellular markers calnexin, giantin, TGN46, TMEM165, B4GALT1, EEA1, and LAMP2 in transiently transfected HeLa cells. Subcellular localization of the long B4GALNT2 isoform (red) was examined and compared to the pattern of the different markers (green) by confocal microscopy. LF-B4GALNT2-mCy mostly colocalized with trans-Golgi markers and showed a vesicle-like distribution indicated by white arrows in the zoomed picture. In addition, LF-B4GALNT2-mCy showed also a very partial overlap with the different TGN/endosomal/lysosomal markers used (yellow arrows). Right panels show the intensity profiles of LF-B4GALNT2 (red) and of each marker (green) in selected vesicles using the RGB profiler plugin (Image J). Images are representative of two independent experiments. Scale bars: 10 μm.
extraordinarily long CT of 66 amino acid residues, whereas the short B4GALNT2 isoform presents a six-amino acid CT comparable to that of the previously described mouse ortholog [31]. The transmembrane and catalytic domains remain identical for the two isoforms. Using confocal fluorescence microscopy approaches, we examined the subcellular distribution of the two B4GALNT2 isoforms in the stably transfected LS174T [24] and of eGFP/mCherry-tagged isoforms of B4GALNT2 in transiently transfected HeLa cells. This analysis of the subcellular localization demonstrated a similar subcellular distribution of the two isoforms in the Golgi apparatus. The two B4GALNT2 isoforms are found across the trans-Golgi cisternae of the Golgi apparatus to the TGN (Figs 5 and 6), similarly to the previously described late acting isoform localization.
B4GALT1 and ST6Gal I enzymes [32,33]. Intriguingly, in addition to this Golgi distribution, the long isoform localizes to vesicles distributed in the cytoplasm.

The eukaryotic glycosyltransferases located in the Golgi are type II proteins with a usually short cytoplasmic (C) tail, a unique transmembrane (T) domain, a stem (S) region highly variable in length, and a large catalytic domain oriented within the Golgi lumen. To date, molecular mechanisms and signals underpinning the subcellular distribution and Golgi compartmentalization of glycosyltransferases appear to be multifactorial and are still poorly understood [12,34,35]. As reviewed previously [36], numerous studies have highlighted the crucial role of the CTS domain for the correct orchestration of Golgi glycosylation steps. In the nineties, two models have been proposed to explain Golgi localization and retention of glycosyltransferases, although none of them is entirely satisfactory: (a) the lipid bilayer thickness model depending on the length and hydrophobicity of the membrane.
transmembrane domain and the thickness of the Golgi membrane [37,38] and (b) the oligomerization or kinase recognition model that assumes the formation of glycosyltransferase homo- or hetero-oligomers through disulfide bridges when they reach the correct Golgi compartment [39,40]. Our data in Fig. 7, using both B4GALNT2 isoforms deleted of their entire catalytic domain (SFΔ79-506-eGFP and LFΔ139-566-mCy) clearly indicate that the catalytic domain is not an important parameter for the Golgi localization of the two B4GALNT2 isoforms, as previously reported for the bovine B4GALT1 [41]. These observations are consistent with a model in which the bilayer thickness plays a major role. However, hydropathy analysis of the human B4GALNT2 potential membrane spanning region and conservation analysis reveals that this 23-amino acid hydrophobic domain is not highly conserved in other B4GALNT2 orthologs (data not shown). This sequence heterogeneity further suggests that physical properties like length and hydrophobicity and/or additional features functioning in a combinatorial manner could be involved in the trans-Golgi targeting of the two human isoforms. Interestingly, our data shown in Figs 10 and 11 evidenced the existence of additional strong signals in the long B4GALNT2 isoform CT, since deletion of the first 22 amino acid residues abrogates Golgi targeting. Similar observations have been made in the past that the CT of the Golgi resident enzymes α1,3-galactosyltransferase and α1,2-fucosyltransferase could be sufficient to confer their specific Golgi localization [17,18].

Our confocal microscopy studies conducted with cells expressing each B4GALNT2 isoform and transiently transfected cells provided compelling evidences of an atypical subcellular localization of the long B4GALNT2 isoform. Beside its expected trans-Golgi and TGN targeting, the long isoform localizes in a vesicle population distinct from Golgi, endosomal, or lysosomal compartments that was not reported previously for a glycosyltransferase (Fig. 6). Such an unusual cellular localization of glycosyltransferases at post-Golgi sites including the plasma membrane has been rarely described before and remains a controversial issue. A few examples include the β1,4-galactosyltransferase 1 (B4GALT1), which also exists in short and long isoforms diverging in their N-terminal region with a cell surface expression and no vesicles localization [42,43], an α1,2-fucosyltransferase (FUT1) [23]...
and an α1,3-fucosyltransferase (FUT6) localizing in Weibel–Palade bodies of human endothelial cells [44]. In this study, we also examined the dynamic intracellular transport of both B4GALNT2 isoforms using video-microscopy (Videos S1 and S2). The trajectory of the same vesicle containing LF-B4GALNT2 was followed overtime in living cells and indicated that this vesicle originated from the Golgi apparatus, went toward the periphery of the cell and came very close to another immobile vesicle (Fig. 4). This vesicle appeared to come back toward the Golgi apparatus, but did not merge further, supporting previous observations made in LS174T-L21. Our data also demonstrated specific kinetics and fate for the LF-

![Diagram](https://via.placeholder.com/150)

Fig. 10. Fluorescence microscopy with large deletion mutants of the long B4GALNT2 cytoplasmic tail. (A) Schematic illustration of various cytoplasmic tail deletion mutants. Chimeric constructs were made with mCherry (mCy) at the C terminus of the full-length B4GALNT2. LF-B4GALNT2 was deleted of the first third of its cytoplasmic tail (LF-Δ2-22), or second third (LF-Δ23-43), or of the third third (LF-Δ44-64), or of the two last thirds of its cytoplasmic tail (LF-Δ23-64). (B) Subcellular localization of cytoplasmic tail deletion mutants of the long B4GALNT2 isoform. Fluorescently tagged deletion constructs of the long B4GALNT2-mCy isoform LF-Δ2-22, LF-Δ23-43, LF-Δ44-64, and LF-Δ23-64 were transiently expressed in HeLa cells. Subcellular localization of the various isoforms was examined by confocal microscopy. A zoom is inserted where white arrows indicate the vesicle distribution of the construct. Images are representative of three independent experiments. Scale bars: 10 μm. (C) Quantification of vesicles in HeLa cells transiently transfected with the cytoplasmic tail deletion mutants (LF-Δ2-22, LF-Δ23-43, LF-Δ44-64, and LF-Δ23-64) of the long B4GALNT2 isoform. The total number of red vesicles distinct from the Golgi region was counted per cell from 19 LF-B4GALNT2-mCy cells, 17 FL-Δ2-22-B4GALNT2-mCy cells, 17 FL-Δ23-43-B4GALNT2-mCy cells, 16 FL-Δ44-64-B4GALNT2-mCy cells, and in 11 FL-Δ23-64-B4GALNT2-mCy cells from two independent experiments. The iCY software (http://icy.bioimageanalysis.org) was used for vesicle quantitation. The number of vesicles was plotted in whiskers plots where means and SEMs are depicted. No significant variations (ns) in the number of vesicles was observed for the various mutants, except the FL-Δ2-22-B4GALNT2-mCy mutant (P < 0.001), as assessed by the Kruskal–Wallis nonparametric test with selected comparison using Dunn’s post hoc test (GRAPHPAD PRISM 5.0 software).
B4GALNT2 isoform containing vesicles indicating that their trafficking within the cell is not the result of simple bulk flow of Golgi-derived vesicles to the cell surface. Furthermore, antibody uptake experiment evidenced a particular traffic of the long isoform with transient exposure at the cell surface strongly...
suggesting that the long isoform follows a novel Golgi to plasma membrane transport pathway in living cells. Biotinylation of cell surface proteins and subsequent WB analysis of streptavidin purified proteins corroborated these findings. Indeed, to our knowledge, this is the first report of a post-Golgi localization of terminal glycosyltransferase in dynamic vesicles. In the light of these data, it is tempting to speculate that the long B4GALNT2 isoform could be implicated in the trafficking of cell surface proteins and plays a determinant role in the regulation of terminal glycosylation steps, which remains to be established.

Our study provides also essential mechanistic insights into the targeting process of the long B4GALNT2 isoform to the trans-Golgi and post-Golgi vesicles. While the CTS domain of most glycosyltransferases (including SF-B4GALNT2) is sufficient for their Golgi targeting, our deletion studies in the CT of the LF-B4GALNT2 isoform indicate the presence in the 2–22 region of strong and critical signals that are determinant for Golgi and vesicles localization (Figs 10 and 11), although no binding motif for adapter proteins could be detected [45]. Deletion of the 23–64 region of the CT does not perturb the Golgi/vesicles targeting indicating low impact of other requirements such as context or distance from the TM.

However, further dissection of the amino acid sequence contained within the 2–22 peptide of the LF-B4GALNT2 CT lead us to distinguish the ER-export signal from the vesicle targeting signal. Previous studies have reported the existence of a dibasic motif [K/R] X [K/R] in the CT of some Golgi glycosyltransferases that facilitates ER exit to Golgi through direct interaction with the small GTPase Sar1 [46–49]. Interestingly, we noted the presence of an RGR motif at positions 18–20 in the LF-B4GALNT2 CT that is absent in the LF-Δ2-22-B4GALNT2, which could explain ER retention of this construct. Furthermore, we highlighted the existence of a major signal at position 9–15 in the CT of the LF-B4GALNT2 that is critical for vesicles targeting and post-Golgi trafficking. This signal is strong enough to override the absence of the ER exit signal in the LF-Δ16-22-B4GALNT2 and directs this construct to the Golgi and post-Golgi compartments. In summary, we describe in this study an unusual post-Golgi targeting of a human Golgi glycosyltransferase and determine the essential signals involved. This further suggests additional function (s) of the LF-B4GALNT2 and likely another level of regulation of Sdα/Cad expression in human tissues that remains to be determined.

Materials and methods

Plasmons of human long and short B4GALNT2 isoforms for the expression of chimeric fluorescent proteins

Full-length B4GALNT2 constructs (GenBank accession numbers AJ517770 and AJ517771) were obtained in our laboratory from plasmids described previously [7]. The GFP expression vector pFx was a kind gift of Dr Jack Röhrer (University of Zürich) and expression vectors pEGFP-N1 and pmCherry-N1 were from Clontech. For GFP fusion, full-length or truncated SF-B4GALNT2 PCR products were amplified using oligonucleotide primers containing Nhel-BglII restriction sites for directed ligation in Nhel-BglII digested pFx vector (Table 1). Similarly, for mCherry and GFP fusions, full-length or truncated LF-B4GALNT2 were constructed using PCR in pmCherry-N1 or pEGFP-N1 vectors using Nhel-BamHI restriction sites (Table 1). To obtain all the combination of fusion constructs, SF and LF exchange fragments were carried out using Nhel and the internal B4GALNT2 BspEI restriction sites [located at 1078 bp in AJ517770 (LF) and at 860 bp in AJ517771 (SF)]. Full-length cDNA of the human α2,3-sialyltransferase-IV (ST3GAL4) was obtained previously [30] and fused with eGFP (ST3GAL4-eGFP) or mCherry (ST3GAL4-mCy) sequence. Deletion mutations Δ22–2, Δ23–43, Δ44–64, Δ23–64, Δ2–8, Δ9–15, and Δ16–22 were introduced in the CT of the pmCherry-LF-B4GALNT2 plasmid using two PCR reactions with primer pairs containing a BsaI site and PCR products (PCR1 and PCR2 in Table 1) were recombined by BsaI digestion/Ligation.

Finally, each fragment was digested with Nhel and BsmBI and the wild-type Nhel- BsmBI fragment in pmCherry-LF-B4GALNT2 was exchanged with the deleted Nhel-BsmBI fragment. The BsmBI restriction site is located at 426 bp in AJ517770 (LF-B4GALNT2) and at 208 bp in AJ517771 (SF-B4GALNT2). To construct fusion of the first 66 amino acid residues of the CT of the LF-B4GALNT2 (CT-B4GALNT2) to the ST3GAL4 deleted of its first eight amino acids leading to the chimeric protein CT-B4GALNT2-ST3GAL4-mCy, a similar strategy of deletion mutation construction was used (PCR1 and PCR2 joined by BsaI/ligation reaction (Table 1), the exchanged fragment in pmCherry-ST3GAL4 was Ndel-BsmBI. All constructions were entirely sequenced (GATC Biotech, Konstanz, Germany).

Cell culture, transfections and western blotting

Cell lines were from ATCC (LGC Standards SARL, Molshelm, France), and stably transfected LS174T (LS174T-S2 expressing the short B4GALNT2 isoform, LS174T-L21 expressing the long B4GALNT2 isoform, LS174T-mock
transfected with empty pcDNA3 vector) were previously described [24]. Human colon carcinoma cells LS174T were cultured in Eagle's minimal essential medium (EMEM) with 2 mM L-glutamine supplemented with 10% or 20% FBS. HeLa cells were cultured in Dulbecco's modified eagle's medium (DMEM) supplemented with 10% FBS. HeLa cells were grown on Petri dishes were transiently transfected with the different constructs (Table 1) using Lipofectamine 2000 (Thermo Fisher Scientific Bioscience, Villebon-sur-Yvette, France). We set up transfection conditions using various amount of plasmids ranging from 0.5 to 5 μg and finally choose to use the lowest amount of plasmid as possible (i.e., 0.5 μg). Proteins extraction from LS174T-mock cells, LS174T-S2, LS174T-L21, or transiently transfected HeLa cells was achieved as previously described [8]. Protein concentration was determined with the Micro BCA Protein Assay Reagent kit (Biorad, Marnes-la-coquette, France). Four to 25 μg of total protein extract were boiled for 5 min in Laemmli sample buffer with 2.5% β-2-mercaptoethanol (Sigma Aldrich, Saint Louis, MO, USA) and resolved by 8% SDS/PAGE. Proteins were transferred onto a nitrocellulose membrane (200 mA, 2 h). Detection of B4GALNT2 was achieved with anti-B4GALNT2 (rabbit polyclonal antibody, Cat. HPA015721-100μl, lot#A74836, Sigma Aldrich) as already described [8].

Indirect Immunofluorescences and antibodies

Twenty-four hours after seeding on glass coverslips, HeLa cells were transiently transfected with the different constructs (Table 1) using Lipofectamine 2000 (Thermo Fisher Scientific Bioscience). Similarly, LS174T-S2, LS174T-L21, and LS174T-mock cells were grown on glass coverslips, fixed and processed for fluorescence microscopy. Twenty-four hours after transfection, cells were washed twice with PBS, fixed either with 4% paraformaldehyde (PAF) in PBS for 20 min at room temperature (RT) or with ice cold methanol for 10 min. Coverslips were washed three times with PBS. After a permeabilization step of 30 min at RT in PBS containing 0.5% of Triton X100, cells were washed twice with PBS and incubated in blocking solution (PBS containing 0.2% (w/v) BSA) during 1 h. Cells were incubated overnight at 4 °C in humid chambers with primary antibodies diluted in blocking solution. After three washing steps, cells were incubated 1 h in dark at RT with secondary antibodies diluted in blocking solution. Finally, cells were washed three times in PBS and coverslips were mounted using Dako fluorescent mounting medium for observation using fluorescent confocal microscopy.

For immunofluorescence assays, primary antibodies anti-B4GALT1 (mAb GT2/36/118, Enzo Life Sciences, Villeurbanne, France), anti-TGN46 (rabbit pAb, Cat AHP1586, lot#170114, Biorad AbD serotech Gmbh, Bio-Rad AbD Serotec Ltd., Oxon, UK), anti-EEA1 (mAb Cat. 610456, lot#408703, Becton Dickinson, Le Pont-de-Clai, France), anti-LAMP2 (mAb, cat. Sc-18822, clone H484, lot#C2613, Santa Cruz Biotechnologies Inc., Heidelberg, Germany), anti-TMEM165 (pAb, Cat. HPA038299, lot#A78664, Sigma Aldrich), anti-GM130 (mAb, Cat. 610822, lot#5072921, Becton Dickinson), anti-Rab11 (rabbit mAb clone 3H18L5, 700184, lot #756772B, Thermo Fisher Scientific Bioscience), and anti-ERGIC-53 (mouse mAb, ref ALX-804-602-C100, clone G1/93, Enzo-lot : L26372) were diluted at 1/100th, anti-giantin (rabbit pAb, Cat PRB144C, Covance, Rueil-Malmaison, France) was diluted at 1/150° and anti-calnexin (pAb, Cat. ADI-SPA-860-F, lot#12301304, ENZO Life Sciences) was diluted at 1/250°. Secondary antibodies, Alexafluor® 488 and Alexafluor® 568 anti-mouse or -rabbit IgG (H+L) were from Life Technologies/Molecular Probes and diluted at 1/ 600° in blocking buffer. After three washing with PBS, coverslips were mounted on glass slides with Mowiol.

Confocal microscopy, quantitation and trajectories of vesicles analyses

Sublocalization’s studies of the fluorescent proteins and immunostaining were achieved either with an inverted Leica SP5 (Mannheim, Germany), or an inverted Zeiss LSM780 (Oberkothen, Germany) or an inverted Zeiss LSM700 confocal microscope with a 40× or 63× oil immersion objectives. The eGFP protein and the Alexafluor® 488 were visualized using the argon laser with an excitation at 488 nm and an emission range between 500 and 560 nm. The red fluorophores were visualized using the supercontinuum laser source (NKT, Cologne, Germany) with two different settings, the mCherry was excited at 590 nm and the Alexafluor® 568 was excited at 568 nm, the emission ranges were respectively between 610–700 nm and 578–700 nm. Data were collected using LAS AF LITE software (Leica) or using ZEN PRO 2.1 software (Zeiss) and analyzed with FIJI-WIN32 [50] and ICY FREE software.

For quantitation of vesicles, the ICY software (http://icy.bioimageanalysis.org) was used. First, the entire cells were individually delimited by drawing polygonal area and masking the perinuclear Golgi region (Golgi and Golgi-associated vesicles defined by colocalization data) by regions of interest (ROIs) to keep only the region of interest containing distinct vesicles. Then, the vesicles per cell were detected using the plugin ‘spot detector’ with three scales to determine the spot’s size and the sensitivity of detection for each size: scale 0 corresponding to an object size of 3 pixels at 25% of sensitivity, scale 3 (7 pixels) at 90%, and scale 4 (13 pixels) at 90% of sensitivity. Parameters of ROIs detection were adapted to the stably transfected LS174T cells (LS174T-L21) and to the transiently transfected HeLa cells. For these latter, 10–20 cells were counted to establish the average number of vesicles per cell.
and for each construct. Since no Golgi compartment could be detected in the FL-A2-22-B4GALNT2-mCy transfected HeLa cells (Figs 9 and 10), we considered the whole cell for vesicle counting. Data were plotted as whiskers plots and statistical analyses were performed using Graphpad Prism 5.0 software, GraphPad Software Inc., La Jolla, CA, USA) and were compared using a nonparametric Kruskal–Wallis test followed by Dunn’s comparison post-test. Values were considered significantly different (*) with $P < 0.05$ (**: $P < 0.001$). The Icy software with spot detector and spottracking modules (A. Dufour, Institut Pasteur Paris) was used for the analysis of LF-B4GALNT2 vesicles trajectories.

Antibody uptake and cell surface biotinylation experiments

LS174T-mock cells, LS174T-S2 and LS174T-L21 cells were grown until 70% of confluence on glass coverslips and washed four times with PBS. Cells were incubated for 3 h at 37 °C with 20 μg·mL$^{-1}$ anti-B4GALNT2 antibody or control anti-HA antibody in medium containing 10 μg·mL$^{-1}$ leupeptin. Cells were washed five times with ice-cold PBS, and fixed with ice-cold methanol for 10 min. Cells on coverslips were then incubated overnight at 4 °C in humid chambers with anti-Sd primary antibody diluted 1 : 500 in blocking solution. Coverslips were then washed three times with PBS and labeled at RT in dark for 1 h with Alexafluor® 488-conjugated goat anti-(rabbit IgG) and Alexafluor® 568-conjugated goat anti-(mouse IgM) antibody diluted 1 : 600 in blocking solution. After three washings with PBS, coverslips were mounted on glass slides with Mowiol, and both B4GALNT2 antibody signal and Sd antigen expression were studied by confocal microscopy.

Seventy % confluent LS174T-mock cells, LS174T-S2 and LS174T-L21 cells were plated and washed four times with Dulbecco PBS (DPBS, pH8). Biotinylation was achieved essentially as described before [51] using Sulfo-NHS-SS-Biotin (Biotin: EZ link, Life Technologies). Cells were incubated 3 h at 37 °C to allow subcellular trafficking and potential transient exposure of the B4GALNT2 isoforms at the cell surface and then washed three times in DPBS. One milligram of extracted proteins was incubated overnight at 4 °C with streptavidin beads (EMD Milipore Corp, Billerica, MA, USA). Purified proteins were run on 8% SDS/PAGE as mentioned above.

Video-microscopy and dynamics analyses

Confocal acquisitions were performed with spinning-disk confocal system (Yokogawa CSU-X1, Tokyo, Japan) adapted on a Leica DMi6000B inverted microscope with diode laser source emitting at a wavelength of 488 nm and 514 nm and EM-CCD camera (Li2CAM MD) with pixel size of 10.3 μm2. Cells were imaged using a 63X oil immersion objective (Leica HCX Plan Apo NA 1.4). Emitted fluorescence was then successively routed by a dichroic mirror (Semrock D01-T405/488/568/647) and spectrally filtered (Chroma, HQ545/306). Final size of pixel image 0.21 μm x 0.21 μm was obtained. We have made acquisitions for transfected cells either with LF-B4GALNT2-mCy or with two transfections, SF-B4GALNT2-eGFP and LF-B4GALNT2-mCy. The time acquisition per image was 25 ms. Stacks of four optical sections, with 100 ms by stack were made. For acquisition with two channels, we alternated the stack by channel. Videos were constituted by 601 images for a total of 30 seconds.

Acknowledgements

This work was supported partly by the Centre National de La Recherche Scientifique (CNRS), by the University of Lille1, by the ANR-2010-BLAN-120401 grant (project Galfish, to AH-L, LH) and ANR-15-CE14-0001-01 (project SOLV-CDG to FF) from the Agence Nationale de la Recherche (ANR), by the Région Nord-Pas de Calais (program Arcir dynamique to AH-L, LH), by the Ligue régionale de la recherche contre le cancer (to AH-L), by the University of Bologna (to FD) and from Pallotti Legacy for Cancer Research (to FD). The authors acknowledge the BioImaging Center of Lille (BICel) for confocal imaging. The anti-Sda antibody KM694 was a generous gift from the Pharmaceutical research center, Kyowa Hakko Kogyo Co. Ltd. (Tokyo, Japan). The authors are very grateful to L. Danglot (INSERM U894, ‘Membrane traffic in Health and Disease’, Paris) for helping with the vesicles trajectories analyses with Icy.

Conflict of interests

The authors declare that they have no competing interests.

Author contributions

SGD, FF, LH, FD, and AHL conceived and designed the experiments. CS, VC, and FD made constructs for molecular biology. MM, DV, SGD, LP, MN, and CS performed cell culture and transfections experiments. CS, SGD, DV, AG, AS, and FF used confocal microscopy and FF supervised subcellular localization experiments. MG, MH, CS, and LH used confocal laser scanning microscope. SGD, VC, FF, LH, and AHL drafted the manuscript and all the authors approved the final manuscript.
References

1. Dall’Olio F, Malagolini N, Chiricolo M, Trinchera M & Harduin-Lepers A (2014) The expanding roles of the Sd(a)/Cad carbohydrate antigen and its cognate glycosyltransferase B4GALNT2. Biochim Biophys Acta 1840, 443–453.

2. Dohi T, Ohta S, Hanai N, Yamaguchi K & Oshima M (1990) Sialylpentaosylceramide detected with anti-GM2 monoclonal antibody. Structural characterization and complementary expression with GM2 in gastric cancer and normal gastric mucosa. J Biol Chem 265, 7880–7885.

3. Morton JA, Pickles MM & Vanhegan RI (1988) The Sda antigen in the human kidney and colon. Immunol Invest 17, 217–224.

4. Dohi T, Hanai N, Yamaguchi K & Oshima M (1991) Localization of UDP-GalNAc:NeuAc alpha 2,3Gal-R beta 1,4GalNAc to Gal)N-acetylgalactosaminy ltransferase in human stomach. Enzymatic synthesis of a fundic gland-specific ganglioside and GM2. J Biol Chem 266, 24038–24043.

5. Malagolini N, Dall’Olio F, Di Stefano G, Minni F, Marrano D & Serafini-Cessi F (1989) Expression of UDP-GalNAc:NeuAc alpha 2,3Gal beta-R beta 1,4 (GalNAc to Gal) N-acetylgalactosaminyltransferase involved in the synthesis of Sda antigen in human large intestine and colorectal carcinomas. Cancer Res 49, 6466–6470.

6. Lo Presti L, Cabuy E, Chiricolo M & Dall’Olio F (2003) Molecular cloning of the human beta1,4 N-acetylgalactosaminyltransferase responsible for the biosynthesis of the Sd(a) histo-blood group antigen: the sequence predicts a very long cytoplasmic domain. J Biochem 134, 675–682.

7. Montiel MD, Krzewinski-Recchi MA, Delannoy P & Harduin-Lepers A (2003) Molecular cloning, gene organization and expression of the human UDP-GalNAc:Neu5Acalpha2-3Galbeta-R beta 1,4-N-acetylgalactosaminyltransferase responsible for the biosynthesis of the blood group Sda/Cad antigen: evidence for an unusual extended cytoplasmic domain. Biochem J 373, 369–379.

8. Groux-Degroote S, Wavelet C, Krzewinski-Recchi M, Portier L, Mortuaire M, Mihalache A, Trinchera M, Delannoy P, Malagolini N, Chiricolo M et al. (2014) B4GALNT2 gene expression controls the biosynthesis of Sda and sialyl Lewis X antigens in healthy and cancer human gastrointestinal tract. Int J Biochem Cell Biol 53, 442–449.

9. Colley KJ, Lee EU, Adler B, Browne JK & Paulson JC (1989) Conversion of a Golgi apparatus sialyltransferase to a secretory protein by replacement of the NH2-terminal signal anchor with a signal peptide. J Biol Chem 264, 17619–17622.

10. Gill DJ, Tham KM, Chia J, Wang SC, Steentoft C, Clausen H, Bard-Chapeau EA & Bard FA (2013) Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc Natl Acad Sci USA 110, E3152–E3161.

11. Nilsson T, Au CE & Bergeron JJ (2009) Sorting out glycosylation enzymes in the Golgi apparatus. FEBS Lett 583, 3764–3769.

12. Opat AS, van Vliet C & Gleeson PA (2001) Trafficking and localization of resident Golgi glycosylation enzymes. Biochimie 83, 763–773.

13. Colley KJ, Lee EU & Paulson JC (1992) The signal anchor and stem regions of the beta-galactoside alpha 2,6-sialyltransferase may each act to localize the enzyme to the Golgi apparatus. J Biol Chem 267, 7784–7793.

14. Fenteany FH & Colley KJ (2005) Multiple signals are required for alpha2,6-sialyltransferase (ST6Gal I) oligomerization and Golgi localization. J Biol Chem 280, 5423–5429.

15. Uliana AS, Giraudo CG & Maccioni HJ (2006) Cytoplasmic tails of SiaT2 and GalNAcT impose their respective proximal and distal Golgi localization. Traffic 7, 604–612.

16. Harduin-Lepers A (2013) Vertebrate sialyltransferases. In Sialobiology: Structure, Biosynthesis and Function Static acid glycoconjugates in health and diseases (Tiralongo J & Martinez-Duncker I, eds), pp. 139–187. Bentham Science, United Arab Emirates.

17. Milland J, Russell SM, Dodson HC, McKenzie IF & Sandrin MS (2002) The cytoplasmic tail of alpha 1,3-galactosyltransferase inhibits Golgi localization of the full-length enzyme. J Biol Chem 277, 10374–10378.

18. Milland J, Taylor SG, Dodson HC, McKenzie IF & Sandrin MS (2001) The cytoplasmic tail of alpha 1,2-fucosyltransferase contains a sequence for golgi localization. J Biol Chem 276, 12012–12018.

19. Sousa VL, Brito C & Costa J (2004) Deletion of the cytoplasmic domain of human alpha3/4 fucosyltransferase III causes the shift of the enzyme to early Golgi compartments. Biochim Biophys Acta 1675, 95–104.

20. de Graffenried CL & Bertozzi CR (2004) The roles of enzyme localisation and complex formation in glycan assembly within the Golgi apparatus. Curr Opin Cell Biol 16, 356–363.

21. Kizuka Y, Tonoyma Y & Oka S (2009) Distinct transport and intracellular activities of two GlcAT-P isoforms. J Biol Chem 284, 9247–9256.

22. Uemura S, Yoshida S, Shishido F & Inokuchi J (2009) The cytoplasmic tail of GM3 synthase defines its subcellular localization, stability, and in vivo activity. Mol Biol Cell 20, 3088–3100.

23. Christiansen D, Milland J, Dodson HC, Lazarus BD & Sandrin MS (2009) The cytoplasmic and transmembrane domains of secretor type
alpha1,2fucosyltransferase confer atypical cellular localization. *J Mol Recognit* **22**, 250–254.

24 Malagolini N, Santini D, Chiricolo M & Dall'Olio F (2007) Biosynthesis and expression of the Sda and sialyl Lewis x antigens in normal and cancer colon. *Glycobiology* **17**, 688–697.

25 Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG, Warren G & Nilsson T (1995) Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. *J Cell Biol* **130** (Pt 4), 1617–1627.

26 Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE & Warren G (1995) Characterization of a cis-Golgi matrix protein, GM130. *J Cell Sci* **108**, 204–214.

27 Chia J, Goh G, Racine V, Ng S, Kumar P & Bard F (2012) RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells. *Mol Syst Biol* **8**, 629.

28 Linstedt AD & Hauri HP (1993) Giantin, a novel resident glycosyltransferase. *Cell Biochem Funct* **11**, 325–332.

29 Smith PL & Lowe JB (1994) Molecular cloning of a murine N-acetylgalactosamine transferase cDNA that determines expression of the T lymphocyte-specific CT oligosaccharide differentiation antigen. *J Biol Chem* **269**, 15162–15171.

30 Roth J & Berger EG (1982) Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. *J Cell Biol* **93**, 223–229.

31 Roth J, Taatjes DJ, Luocoq JM, Weinstein J & Paulson JC (1985) Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. *Cell* **43**, 287–295.

32 Colley KJ (1997) Golgi localization of glycosyltransferases: more questions than answers. *Glycobiology* **7**, 1–13.

33 Tu L & Banfield DK (2010) Localization of Golgi-resident glycosyltransferases. *Cell Mol Life Sci* **67**, 29–41.

34 Banfield DK (2011) Mechanisms of protein retention in the Golgi. *Cold Spring Harb Perspect Biol* **3**, a005264.

35 Bretscher MS & Munro S (1993) Cholesterol and the Golgi apparatus. *Science* **261**, 1280–1281.

36 Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG, Warren G & Nilsson T (1995) Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. *J Cell Biol* **130** (Pt 4), 1617–1627.

37 Shaper NL, Mann PL & Shaper JH (1985) Cell surface glycolipid glycosyltransferases. *J Cell Biochem* **28**, 229–239.

38 Giraudo CG & Maccioni HJ (2003) Endoplasmic reticulum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sar1. *Mol Biol Cell* **14**, 3753–3766.

39 Quintero CA, Giraudo CG, Villarreal M, Montich G & Maccioni HJ (2010) Identification of a site in Sar1 involved in the interaction with the cytoplasmic tail of glycolipid glycosyltransferases. *J Biol Chem* **285**, 30340–30346.

40 Young WW Jr (2004) Organization of Golgi glycosyltransferases in membranes: complexity via complexes. *J Membr Biol* **198**, 1–13.

41 Uemura S, Shishido F, Kashimura M & Inokuchi J (2015) The regulation of ER export and Golgi retention of ST3Gal5 (GM3/GM4 synthase) and B4GalNAcT1 (GM2/GD2/GA2 synthase) by arginine/lysine-based motif adjacent to the transmembrane domain. *Glycobiology* **25**, 1410–1422.

42 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al. (2012) Fiji: an open-source platform for biological-image analysis. *Nat Methods* **9**, 676–682.

43 Potelle S, Dulaury E, Climer L, Duvet S, Morelle W, Vicogne D, Lebrédoncle H, Houdou M, Spriet C, Krzewinski-Recchi MA et al. (2017) Manganese-induced turnover of TMEM165. *Biochem J* **474**, 1481–1493.
Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Video S1. Dynamics of vesicles containing the long and the short isoforms, respectively.
Video S2. Dynamics of vesicles containing the long and the short isoforms, respectively.