Desmame ventilatório em pediatria

Pediatric ventilation weaning

IMPORTÂNCIA DA LIBERAÇÃO DA VENTILAÇÃO

A ventilação mecânica (VM) é uma prática amplamente utilizada nas unidades de terapia intensiva (UTIs) pediátricas em todo o mundo. Os dados oriundos de ensaios multicêntricos revelam taxas de utilização que variam entre 20% e 64%, e a VM tipicamente dura cerca de 5 a 6 dias.\(^1\)\(^-\)\(^2\) A prática de utilizar métodos ventilatórios artificiais é considerada uma revolução no tratamento de pacientes críticos, por reduzir sua morbidade e mortalidade. Por outro lado, é amplamente reconhecido que essas ferramentas podem provocar uma variedade de possíveis complicações, como pneumonia associada ao tratamento, lesões das vias aéreas superiores e inferiores e instabilidade cardiovascular.\(^3\)\(^-\)\(^5\) Mais ainda, para utilizar esse recurso, na maioria das vezes, é necessário recorrer a fármacos sedativos e analgésicos.\(^1\) Assim, é indispensável que se cesse a VM o mais cedo possível.

Levar um tempo demasiado para reconhecer que a VM não é mais essencial acarreta aumento dos riscos e custos (até US$2.000 por dia)\(^6\) e falha da boa prática médica. Atualmente, o tempo para desmame corresponde a cerca de 40% do tempo total de VM.\(^7\)\(^-\)\(^9\) Entretanto, a definição do melhor momento para a extubação é extremamente importante, pois o início muito precoce pode aumentar a morbidade e mortalidade, o tempo de permanência na UTI pediátrica e a chance de lesão de vias aéreas na reintubação.

Assim, devemos considerar os fatores de risco para a falha da extubação em cada população com doenças similares.\(^10\)

MANEJO DO DESMAME - UMA QUESTÃO MULTIPROFISSIONAL

Até aqui as decisões a respeito do início do desmame, do melhor momento para o teste de respiração espontânea e da extubação são primariamente centradas no médico.\(^11\)\(^-\)\(^13\) Contudo, nas UTIs pediátricas muito movimentadas, particularmente aquelas em centros terciários muito complexos, frequentemente a equipe médica está focalizada em outras atividades. Cremos que, para o paciente que já tem condições para iniciar o processo de desmame da VM, frequentemente este acaba adiado, levando a uma maior duração da VM e ao consequente aumento dos riscos de possíveis complicações.

Assim, realizaram-se alguns estudos para comprovar que o envolvimento de uma equipe multidisciplinar (como, por exemplo, com terapeutas respiratórios e enfermeiros) melhora as práticas ventilatórias e reduz a duração da VM nas UTIs pediátricas.\(^7\)\(^,\)\(^14\)\(^-\)\(^16\)

Em alguns países europeus e norte-americanos, observa-se uma tendência a compreender o papel de uma equipe multidisciplinar na detecção de pacientes “desmamáveis” e na condução do protocolo.\(^17\)\(^-\)\(^19\)

Recente estudo realizado no Brasil buscou compreender o papel dos profissionais da equipe da UTI pediátrica durante o controle do desmame do paciente. O questionário aplicado obteve dados interessantes, que revelaram que 80% das UTIs pediátricas pesquisadas tinham terapeutas respiratórios dedicados,
e, em quase 70% dos casos na UTI pediátrica, o desmame era conduzido em conjunto pela equipe médica e a equipe de terapeutas respiratórios. Em contraste, em apenas 12% das UTIs pediátricas, o desmame era conduzido pela equipe multidisciplinar (incluindo enfermeiros). (20)

Essa não é a realidade encontrada na Austrália e na Nova Zelândia. Outro estudo demonstrou que, nas UTIs pediátricas avaliadas, a equipe de enfermagem estava envolvida no processo de desmame em até 85% dos casos e era responsável por detectar a falha do desmame em até 94% dos pacientes. (21)

Contudo, não se trata de uma observação nova. Em outubro de 2001, durante a 21ª Conferência de Terapia Intensiva e Medicina de Emergência: desmame de ventilação mecânica, a *Langue Francaise Société de Réanimation* apresentou um estudo de coorte que demonstrava que um protocolo de enfermagem para avaliação diária dos pacientes com condições para iniciar o desmame foi eficaz na redução dos tempos de VM e de permanência na UTI. (22)

Entretanto, outro estudo australiano, publicado em 2020, demonstrou não haver redução no tempo de VM ou taxas de reintubação após implantação de um protocolo com base na enfermagem. (23)

Aqueles no Brasil que argumentam contra protocolos com base em outros profissionais apontam alguns aspectos estruturais que comprometem esses protocolos. Primariamente, o número de profissionais é um problema. O estudo da Oceania revelou uma proporção de enfermagem por leito de 1:1 nos casos de pacientes sob VM, o que não é o caso das UTIs pediátricas brasileiras. As leis nacionais exigem a presença de apenas um enfermeiro para cada oito leitos e um técnico de enfermagem para cada dois leitos. (24) Além do número de profissionais por leito, há, em nossa opinião, outras barreiras a superar para que se possa atingir esse ideal. Cremos que, para que exista um protocolo multiprofissional de desmame, os protocolos de sedoanalgesia, assim como visitas diárias multiprofissionais, devem estar bem estabelecidos. Os familiares dos pacientes devem ter uma compreensão completa do processo, de forma a evitar o desconforto e o sofrimento dos familiares durante os estágios do processo de despertar, testes de respiração espontânea e subsequente extubação. Em geral, cremos que, para que a aplicação desse tipo de protocolo possa ser bem-sucedida, é necessário um investimento em educação pública em saúde.

ESTABELECIMENTO DE UM PROTOCOLO DE DESMAME

Em 1996, Ely et al. comprovaram que a simples existência de um protocolo de avaliação diária dos pacientes, para verificar sua capacidade para iniciar o desmame, conseguiu reduzir o tempo de VM e até mesmo a taxa de traqueostomias; (25) subsequentemente, numerosos outros autores chegaram à mesma conclusão. (11,26,27)

Alguns estudos demonstraram que a implantação de um protocolo de desmame reduz sua duração e, consequentemente, diminui o tempo de ventilação em crianças; (28) assim, isso faz parte das recomendações do Consenso Brasileiro sobre Ventilação Mecânica. (29)

Entretanto, a evidência científica ainda não é suficiente para dar suporte a uma melhor padronização das técnicas para desmame. Até mesmo a *Paediatric Mechanical Ventilation Consensus Conference* (PEMVECC), realizada em 2017, não se comprometeu completamente em fornecer uma abordagem para desmame e uso rotineiro de alguma técnica para testar a viabilidade de extubação. (30-32)

Há numerosas técnicas conhecidas de desmame, como o teste de respiração espontânea (TRE) uma vez por dia, TREs múltiplos, redução gradual da pressão de suporte, redução gradual da ventilação sincronizada intermitente mandatória (VSIM) e redução gradual da VSIM e pressão de suporte. Em adultos, por cerca de 20 anos, o TRE foi a forma mais comum para desmame ventilatório, (8,33,34) e até foram criadas estratégias mnemônicas para tentar a implantação dessa rotina. (35)

Os dados que descrevem as práticas de ventilação e desmame em UTIs pediátricas em todo o mundo são limitados. Entretanto, um recente estudo europeu demonstrou que TRE diários é também a estratégia mais comumente utilizada nas UTIs pediátricas. (7) Contudo, em nossa opinião, ainda não é esta a realidade nas UTIs pediátricas brasileiras. Segundo nossa visão, a estratégia de redução dos parâmetros do modo de VSIM ainda é a estratégia mais frequentemente adotada pelos médicos intensivistas pediátricos no país.

ESFORÇOS PELA PADRONIZAÇÃO DO DESMAME

À luz do acima descrito, é natural que sejamos compelidos a pensar estratégias eficazes para reduzir o tempo de desmame, diminuir do tempo de VM e, consequentemente, reduzir o ônus deles decorrentes. Entretanto, há diversos fatores que influenciam, direta ou indiretamente, nessa estratégia, como sobrecarga de fluidos, sedação excessiva, *delirium*, desnutrição, pressão expiratória final positiva, hipertensão pulmonar e função diafragmática, entre outros.

Assim, quando pensamos em um protocolo de desmame da ventilação, precisamos ter uma visão ampla e pensar no paciente como um ser complexo, exposto a múltiplas práticas diferentes e com uma miríade de possíveis respostas às terapêuticas propostas.
Um mesmo paciente pode ter falha durante o processo de desmame por fatores relacionados à equipe de atendimento junto ao leito, como a frequência e a intensidade que com eles reduzem os parâmetros, o momento em que detecta a capacidade para um teste de respiração espontânea e até mesmo os critérios utilizados para diagnosticar a falha do desmame, que podem ser mais permissivos ou mais rigorosos.

Para Hartmann, para ser considerado robusto, um bom protocolo de desmame ventilatório deve ter quatro fundamentos fortes: regras predeterminadas para redução dos parâmetros ventilatórios; critérios de aptidão para o teste de respiração espontânea (TRE); um TRE bem registrado e critérios bem estabelecidos para falha.(36)

Até onde sabemos, encontra-se bem estabelecido em adultos que o uso da pressão de suporte é a melhor forma de encurtar a duração da VM. Assim, em nossa prática, adotamos essa estratégia para o desmame de crianças ventiladas em nossas UTIs pediátricas.

Em nossa opinião, o uso da pressão de suporte não piora os indicadores de qualidade da terapia ventilatória e não aumenta as taxas de falha e, além disso, encerra o tempo para o desmame. Assim, enfatizamos que não existe na literatura evidência forte para recomendar uma estratégia única para desmame ventilatório em pacientes pediátricos.

O uso de pressão de suporte como estratégia com base na opinião desses autores se baseia em sua extensa prática clínica na utilização desse modo ventilatório.

Há poucos estudos nesta área, e cremos que os pesquisadores de VM em pediatria devem dar mais atenção a essa matéria.

REFERÊNCIAS

1. Newth C, Venkataraman S, Willson DF, Meert KL, Harrison R, Dean JM, Pollack M, Zimmerman J, Anand KJ, Cargillo JA, Nicholson CE; Eunice Shriver Kennedy National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Network. Weaning and extubation readiness in pediatric patients. Pediatr Crit Care Med. 2009;10(1):1-11.

2. Farias JA, Fernández A, Monteverde E, Flores JC, Baltodano A, Menchaca A, Puntera R, Pánico F, Johnson M, von Dessauer B, Donoso A, Zavala I, Zavala C, Troster E, Peña Y, Flameneco C, Almeida H, Nilda V, Esteban A; Latin-American Group for Mechanical Ventilation in Children. Mechanical ventilation in pediatric intensive care units during the season for acute lower respiratory infection: a multicenter study. Pediatr Crit Care Med. 2012;13(2):158-64.

3. Mutlu GM, Factor P. Complications of mechanical ventilation. Respir Care. 2008;53(6):613-21.

4. Principi T, Fraser DD, Morrison GC, Al Farsi S, Carrelas JF, Maurice EA, et al. Complications of mechanical ventilation in the pediatric population. Pediatr Pulmonol. 2011;46(5):452-7.

5. Rivera R, Tibballs J. Complications of entotraqueal intubation and mechanical ventilation in infants and children. Crit Care Med. 1992;20(2):193-9.

6. Cooper LM, Linde-Zwirble WT. Medicare intensive care unit use: analysis of incidence, cost, and payment. Crit Care Med. 2004;32(11):2247-53.

7. Tume LN, Kneyber MC, Blackwood B, Rose L. Mechanical ventilation, weaning practices, and decision making in European PICUs. Pediatr Crit Care Med. 2017;18(4):e182-8.

8. Esteban A, Anzueto A, Frutos F, Alia I, Brochard L, Stewart TE, Benito S, Epsteins SK, Apezteguia C, Nightingale P, Arrolliga AC, Tobin MJ; Mechanical Ventilation International Study Group. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;288(3):345-55.

9. Cooper LM, Linde-Zwirble WT. Medicare intensive care unit use: analysis of incidence, cost, and payment. Crit Care Med. 2004;32(11):2247-53.

10. Johnston C, Carvalho WB, Piva J, Garcia PC, Fonseca MC. Risk factors for extubation failure in infants with severe acute bronchiolitis. Respir Care. 2010;55(3):328-33.
19. Tume LN, Scally A, Carter B. Paediatric intensive care nurses’ and doctors’ perceptions on nurse-led protocol-directed ventilation weaning and extubation. Nurs Crit Care. 2014;19(4):292-303.

20. Bacci SL, Pereira JM, Chagas AC, Carvalho LR, Azvedo VM. Role of physical therapists in the weaning and extubation procedures of pediatric and neonatal intensive care units: a survey. Braz J Phys Ther. 2019;23(4):317-23.

21. Rose L, Nelson S, Johnston L, Presneill JJ. Workforce profile, organisation structure and role responsibility for ventilation and weaning practices in Australia and New Zealand intensive care units. J Clin Nurs. 2008;17(8):1035-43.

22. Richard C, Beydon L, Cantagrel S, Cuvelier A, Fauroux B, Garo B, et al. Sevrage de la ventilation mécanique (à l’exclusion du nouveau-né et du réveil d’anesthésie). Réanimation. 2001;10(8):699-705.

23. Duynndam A, Houmes RJ, van Rosmalen J, Tibboel D, van Dijk M, Ista E. Implementation of a nurse-driven ventilation weaning protocol in critically ill children: can it improve patient outcome? Aust Crit Care. 2020;33(1):80-8.

24. Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução-RDC Nº 7, de 24 de fevereiro de 2010. Dispõe sobre os requisitos mínimos para funcionamento de unidades de terapia intensiva e dá outras providências. Brasília (DF): Ministério da Saúde; 2010. [citado 2020 Jun 11]. Disponível em: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2010/res0007_24_02_2010.html

25. Ely EW, Baker AM, Dunagan DP, Burke HL, Smith AC, Kelly PT, et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med. 1996;335(25):1864-9.

26. Johnston C, Zanetti NM, Comaru T, Ribeiro SN, Andrade LB, Santos SL. I Recomendação brasileira de fisioterapia respiratória em unidade de terapia intensiva pediátrica e neonatal. Rev Bras Ter Intensiva. 2012;24(2):119-29.

27. Foronda FK, Troster EJ, Farias JA, Barbosa CS, Ferraro AA, Faria LS, et al. The impact of daily evaluation and spontaneous breathing test on the duration of pediatric mechanical ventilation: a randomized controlled trial. Crit Care Med. 2011;39(11):2526-33.

28. Sandeen A, Cifra C, Schmidt G, Volk A, Kamath S. Ventilator weaning protocol reduces duration of ventilation in a pediatric ICU. Crit Care Med. 2015;43(12):237.

29. Goldwasser R, Farias A, Freitas EE, Saddy F, Amado V, Okamoto VN. Desmame e interrupção da ventilação mecânica. Rev Bras Ter Intensiva. 2007;19(3):384-92.

30. Kneyber MC, Luca D, Calderini E, Jarreau PH, Javouhey E, Lopez-Herce J, Hamner J, Macrae D, Markhorst DG, Medina A, Pons-Odena M, Racca F, Wolf G, Biban P, Brierley J, Rimensberger PC; section Respiratory Failure of the European Society for Paediatric and Neonatal Intensive Care. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC). Intensive Care Med. 2017;43(12):1764-80.

31. Rose L, Schultz MJ, Cardwell CR, Jouvet P, McAuley DF, Blackwood B. Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children: a Cochrane systematic review and meta-analysis. Crit Care. 2015;19(1):48.

32. Gaias M, Tabbutt S, Schwartz SM, Bird GL, Alten JA, Shekerdemian LS, et al. Clinical epidemiology of extubation failure in the pediatric cardiac ICU: a report from the Pediatric Cardiac Critical Care Consortium. Pediatr Crit Care Med. 2015;16(9):837-45.

33. Damasceno MP, David CM, Souza PC, Chavone PA, Cardoso LT, Amaral JL, et al. Ventilação mecânica no Brasil. Aspectos epidemiológicos. Rev Bras Ter Intensiva. 2006;18(3):219-28.

34. Nugent K, Edriss H. Official American Thoracic Society/American College of Chest Physicians clinical practice guideline: Liberation from mechanical ventilation in critically ill adults. South Respir Crit Care Chron. 2017;5(19):1-3.

35. Goldwasser RS, David CM. Desmame da ventilação mecânica: promova uma estratégia. Rev Bras Ter Intensiva. 2007;19(1):107-12.

36. Hartmann SM, Zimmerman JJ. Standardization of ventilator weaning benefits both researchers and clinicians. Crit Care Med. 2017;45(1):139-40.