Evaluation of FluoroType MTB for direct detection of Mycobacterium tuberculosis complex and GenoType MTBDRplus for determining rifampicin and isoniazid resistance

Gonca Erkose Genc a, Dilek Satana a, Esra Yildirim b, Zayre Erturan a, Yildiz Yegenoglu a and Meltem Uzun a

aDepartment of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; bDepartment of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey

ABSTRACT
In recent years, several molecular methods have been introduced for diagnosis of Mycobacterium tuberculosis (MTBC), and detecting the drug resistance in clinical specimens. The FluoroType MTB (FT MTB) assay uses real-time polymerase chain reaction (PCR) to detect MTBC in clinical specimens. GenoType MTBDRplus is a line probe assay which detects MTBC, as well as rifampicin, and isoniazid resistance. In this study, the diagnostic performances of FT MTB and GenoType MTBDRplus were evaluated. In total, 247 specimens (124 respiratory, 123 non-respiratory) were analyzed comparing mycobacterial growth methods and FT MTB. GenoType MTBDRplus was used for the specimens positive for MTBC. In all, 23 (9.3%) of 247 specimens were positive for both the culture and FT MTB assay; therefore, the GenoType MTBDRplus assay was performed on 23 clinical specimens. The results were concordant with the drug susceptibility test results. The FT MTB assay provided quick and reliable direct detection of MTBC from the clinical specimens with high sensitivity (95.8%) and specificity (100%). Although the performance of GenoType MTBDRplus was problematic in clinical specimens with mycobacterial levels below the detection limits of the assay, it was a reliable test for cultivated specimens.

KEYWORDS
Drug resistance; drug susceptibility testing; isoniazid; rifampicin; mycobacteria; Mycobacterium tuberculosis complex

Introduction
Globally, tuberculosis (TB) is still a major health problem. In 2016, 1.3 million people died due to TB infections, and 10.4 million people were estimated to have fallen ill with TB. Moreover, 10% of the individuals newly diagnosed with TB in 2016 were HIV-positive. To fight this burden, detection and treatment gaps need to be addressed, funding gaps should be closed and new tools must be developed [1].

Drug-resistant TB continues to threaten the global control programme, and remains a major public health issue in many countries. In 2016, approximately 490,000 cases of multidrug-resistant TB (MDR-TB) were estimated to have occurred. Worldwide, 4.1% of the newly diagnosed TB cases and 19% of the previously treated cases have MDR-TB. An estimated 240,000 people died of MDR-TB in 2016 and an estimated 6.2% of those people with MDR-TB had extensively drug-resistant TB (XDR-TB) [1].

MDR-TB is defined as resistance to both isoniazid (INH) and rifampicin (RIF), while XDR-TB is defined as MDR-TB with additional resistance to any fluoroquinolone and to at least one of three injectable drugs: capreomycin, kanamycin or amikacin. In the case of RIF resistance, approximately 95% of the strains have a mutation within the 81 bp region of the *rpoB* gene. INH resistance is more complex and caused by mutations in one or more genes, such as the genes encoding catalase-peroxidase (*katG*) and the enoyl-acyl-carrier protein reductase enzyme (*inhA*) [2,3].

Bacteriological culture still the reference standard for detecting TB, but the results can take weeks to obtain. This testing requires a laboratory with specialized equipment, highly trained staff and an efficient transport system to ensure the viability of the specimens. The phenotypic drug susceptibility test (DST) on cultivated specimens is the conventional method for detecting the resistance to first and second-line TB drugs. Today faster commercial liquid culture systems are available for these tests [3].

In recent years several molecular methods have been introduced for the diagnosis of *Mycobacterium tuberculosis* (MTB) and the rapid detection of the drug resistance. Among these are the nucleic acid amplification tests, including the Amplified *M. tuberculosis* Direct Test (Gen-
Materials and methods

Clinical specimens

Specimens from patients with a clinical suspicion of TB or previous TB findings that were sent to the Istanbul Faculty of Medicine, Department of Medical Microbiology, for routine TB analysis, between June and October of 2012, were included in this study. Ethics committee approval was not required for this research, since the clinical specimens used in this study were obtained as part of the standard patient care, and the data were analyzed anonymously. In total, 247 specimens (124 respiratory: sputum, bronchoalveolar lavage, gastric lavage; 123 non-respiratory: pus, peritoneal fluid, biopsy, urine, ascites, ejaculatory fluid, cerebrospinal fluid) were analyzed.

The specimens were decontaminated using an N-ace\textsubscript{t}tyl-L-cysteine-sodium hydroxide solution, neutralized with phosphate buffer and concentrated via centrifugation [8]. The processed specimens were separated into two volumes. The first volume was used for acid-fast bacillus (AFB) microscopy via the Ehrlich-Ziehl-Neelsen (EZN) method, as well as culture in Bactec MGIT 960 liquid medium (BD, Sparks, MD, USA) and L-J solid medium (BD, Sparks, MD, USA). The second volume was used for the FT MTB analysis. The GenoType MTBDRplus assay was performed on those specimens that were found to be positive when using the FT MTB assay. For three of the specimens, the GenoType MTBDRplus assay was performed with DNA extracted from the cultivated strains, because no interpretable results could be obtained with the DNA taken directly from the specimens.

All of the cultures were incubated at 37\degree C for 6–8 weeks. From the positive Bactec MGIT 960 vials or L-J cultures, EZN stained smears were prepared and an MGIT Tbc Identification Test (BD, Sparks, MD, USA) was performed. Drug susceptibility testing was carried out for the MTBC-positive cultures using the MGIT 960 system (BD, Sparks, MD, USA) according to the manufacturer’s instructions [9].

DNA preparation from patient specimens

The mycobacterial DNA extraction from the decontaminated patient specimens was performed using a Fluorocycler (Hain Lifescience GmbH, Nehren Germany), according to the manufacturer’s instructions [10].

DNA preparation from cultivated strains

To prepare the DNA from the cultivated strains, one loopful of cells was suspended in 300 \(\mu \text{L} \) of distilled water, boiled at 95\degree C for 20 min, sonicated for 15 min and centrifuged for 5 min [11].

FT MTB assay

The FT MTB assay was divided into three steps: DNA extraction, DNA amplification and melting curve analysis.
The last two steps took place in the FluoroCycler instrument (Hain Lifescience GmbH, Nehren, Germany). The PCR mixes were freshly prepared by adding 3 μL of amplification mix A to 7 μL of amplification mix B. Then, 6 μL of the extracted DNA was added. The positive control was included in the kit, and PCR-grade water was used as the negative control. All of the PCR mixes were loaded into the FluoroCycler. The results were provided as ‘no MTB complex DNA detected’, ‘MTB complex DNA detected’, ‘not interpretable’ or ‘invalid’ [11].

Genotype MTBDRplus assay

The GenoType MTBDRplus procedure was divided into three steps: DNA extraction, multiplex amplification with biotinylated primers and reverse hybridization. The PCR mixes were freshly prepared by combining 10 μL of amplification mix A with 35 μL of amplification mix B. Then, 5 μL of the extracted DNA was added. PCR-grade water was used as the negative control, and the PCR amplification was done using the programme recommended by the manufacturer. After the PCR amplification, the reverse hybridization step was performed using a TwinCubator instrument (Hain Lifescience GmbH, Nehren, Germany). The interpretation of the hybridization results was done according to the manufacturer’s instructions [12].

Each strip of the GenoType MTBDRplus assay had 27 reaction bands, including six controls [conjugate, amplification, MTBC (TUB), rpoB, katG, inhA controls], eight rpoB wild-type (WT1-WT8) and four mutant probes (rpoB MUT D516V, rpoB MUT H526Y, rpoB MUT H526D, rpoB MUT S315L), one katG wild-type and two mutant probes (katG MUT S315T1, katG MUT S315T2), and two inhA wild-type and four mutant probes (inhA MUT1 C15T, inhA MUT2 A16G, inhA MUT3A T8C, inhA MUT3B T8A). A valid result was indicated by the presence of five control bands on each strip. A missing band in any of the wild-type probes or the presence of a band in any of the mutation probes suggested resistant isolates [12].

Results and discussion

TB is a major global health problem, and millions of people become infected each year. With the new developments in TB diagnostics over the last few years, the use of rapid molecular tests to diagnose TB and drug-resistant TB has been increasing [5]. FT MTB, which is a semi-automated assay using real-time PCR to detect the MTBC in respiratory and non-respiratory clinical specimens, is one of these tests [6]. In addition, GenoType MTBDRplus is a line probe assay which detects MTBC, as well as mutations in the rpoB gene for RIF resistance, and the katG and inhA genes for INH resistance [13].

With the FT MTB assay, Hofmann-Thiel and Hoffmann [6] analyzed 1,039 respiratory specimens; and the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were found to be 88.1%, 98.9%, 83.8% and 99.2%, respectively. Eigner et al. [4] examined 661 pulmonary specimens and reported an analytical sensitivity of 95.1%, and specificity of 96.4%. Obasanya et al. [14] analyzed 296 respiratory samples and found sensitivity and specificity of 88.6% and 59.7%, respectively. Moure et al. [15] evaluated this test for the detection of MTB complex strains in 17 paraffin-embedded biopsies and reported a sensitivity of 60%, and a specificity of 71.4%. In the present study, out of 124 respiratory specimens, 15 (12.1%) were positive for both the culture and the FT MTB assay. Eleven of the gastric lavage specimens within this group were AFB negative. The FT MTB assay failed to detect the MTBC in one gastric lavage specimen that had a positive culture, but was AFB negative. In the respiratory specimens, the sensitivity, specificity, PPV and NPV were determined to be 94%, 100%, 100% and 99%, respectively (Table 1).

In the present study, 123 non-respiratory specimens were analyzed and eight (6.5%) of them were positive for both the culture and FT MTB assay. One urine specimen from this group was AFB negative. In the non-respiratory specimens, the sensitivity, specificity, PPV and NPV were all 100% (Table 2). With regard to all 247 specimens examined in this study, 23 (9.3%) had both a positive culture and FT MTB assay, while 12 (4.8%) of these specimens were AFB negative (11 gastric lavage, one urine). The overall sensitivity, specificity, PPV and NPV for this assay were 95.8%, 100%, 100% and 99.5%, respectively.

When considering only smear-positive specimens, Hofmann-Thiel and Hoffmann [6] reported the sensitivity, specificity, PPV and NPV to be 100%, while Eigner et al. [4] found the sensitivity of the test to be 100%. In addition, Obasanya et al. [14] reported the sensitivity and the specificity to be 100% and 35.3%, respectively, for the smear positive specimens. In the present study,

Table 1. Comparison of the FT MTB assay with culture results in respiratory specimens.

	By Bactec MGIT 960	
	Culture positive	Culture negative
Positive with FT MTB	15 (12.1%)	0
Negative with FT MTB	1 (0.8%)	108 (87.1%)
Sensitivity = 94%		PPV = 100%
Specificity = 100%		NPV = 99%
Comparison of the FT MTB assay with culture results in non-respiratory specimens.

	By Bactec MGIT 960
Culture positive	Culture negative
Positive with FT MTB	8 (6.5%)
Negative with FT MTB	0
Sensitivity = 100%	PPV = 100%
Specificity = 100%	NPV = 100%

the sensitivity, specificity, PPV and NPV were 100% for both the respiratory and non-respiratory smear-positive specimens. However, there were only four smear-positive respiratory specimens and seven smear-positive non-respiratory specimens. Therefore, more specimens should be evaluated to obtain more reliable data.

Eigner et al. [4] reported that 13 of their specimens with cultural growth of nontuberculous mycobacteria (NTM) (one M. avium, two M. gordonae and 10 M. intracellulare) were negative when using the FT MTB assay, so the test showed no cross-reactivity. However, this was one of the limitations of the present study. None of the specimens showed cultural growth of NTM; therefore, we could not evaluate the cross-reactivity of this test. Another limitation of the present study was the small sample size, especially for the non-respiratory specimens, and more studies with a higher number of specimens are needed.

For the GenoType MTBDRplus assay, previous studies have reported the sensitivity, specificity, PPV and NPV values in detecting INH resistance as ranging between 60%–100%, 95.1%–100%, 97.4%–100% and 90.7%–100%, respectively. In addition, this assay’s sensitivity, specificity, PPV and NPV values in detecting RIF resistance are in the range of 82.3%–100%, 73.2%–100%, 81%–100% and 98.9%–100%, respectively [16–25]. When the results were evaluated, this assay seemed to be more sensitive for detecting RIF resistance than INH resistance. This is probably because the mutation in the rpoB gene related to RIF resistance occurs in a well-defined region, while 10%–25% of the INH resistant strains are thought to have mutations outside the katG and inhA loci. Efflux systems may also play a role in INH resistance [22]. Javed et al. [26] evaluated the reliability of the GenoType MTBDRplus assay among 100 MDR MTB strains in Pakistan. It was reported that the assay could not detect 30 (30%) isolates resistant to INH and 23 (23%) isolates resistant to RIF. The authors concluded that the resistance in these strains was probably caused by mutations in genes other than those covered by the test, so in high TB incidence countries such as Pakistan, these molecular tests should still be a complement rather than a replacement to conventional DST.

Barnard et al. [17] reported that three out of 51 MTB strains (5.9%) were not detected with the GenoType MTBDRplus assay. In addition, Yadav et al. [25] showed that this assay correctly identified MTB in 242 of 251 (96.4%) culture-positive specimens. Felkel et al. [18] reported four false positive results and a false negative one when comparing them with cultures of patients without a history of MTBC treatment. Ferreira Junior et al. [27] reported that the GenoType MTBDRplus identified two out of 40 (5%) INH resistant and three out of 40 (7.5%) RIF resistant strains as sensitive. In the study reported by Gu et al. [20], with this assay, one out of six (16.6%) RIF resistant strains and one out of seven (14.2%) INH resistant strains were falsely detected as sensitive. Ferro et al. [19] reported seven false negative results among 132 INH resistant strains (5.3%), and five false negative results among 124 RIF resistant strains (4.0%) when using this assay. In the present study, the GenoType MTBDRplus assay was performed on the 23 clinical specimens which were positive in the FT MTB assay. An interpretable result could not be obtained for three of the specimens (intestinal biopsy, urine and gastric lavage), but 20 of them were found to be susceptible to RIF and INH. In the three specimens, the result was only available when the test was performed using the cultivated specimens. An antituberculous drug susceptibility test was performed on 23 of the strains using the Bactec MGIT 960 method, and all of the strains were found to be susceptible to RIF and INH (Table 3). The GenoType MTBDRplus assay provided test results concordant with the DST in 20 specimens for which interpretable results were obtained. However, this small sample size for the GenoType MTBDRplus assay was one of the limitations of this research. For more definitive data, more specimens should be evaluated.

In one study by Cavusoglu et al. [28], interpretable results were not obtained for 10 of their 90 clinical specimens (11.1%). Similarly, in the present study, for three of the 23 specimens (13.1%) (intestinal biopsy, urine and gastric lavage) an interpretable result could not be obtained using the GenoType MTBDRplus assay. For these specimens, the result was only available when the
test was performed with cultivated specimens. This may be because the clinical specimens contained a number of mycobacteria under the detection limit of the test (160 bacteria/mL).

Conclusions

The FT MTB assay provided quick and reliable direct detection of MTBC from clinical specimens, with high sensitivity (95.8%) and specificity (100%). The performance of GenoType MTBDRplus was determined to be problematic, in some instances, with regard to the mycobacterial count in the clinical specimens, but it was found to be a reliable test for the cultivated specimens.

Disclosure statement

The authors declare that they have no competing interests.

ORCID

Gonca Erkose Genc http://orcid.org/0000-0002-8983-9675

References

[1] Global tuberculosis report 2017. Geneva (Switzerland): World Health Organization; 2017.
[2] Günther G. Multidrug-resistant and extensively drug-resistant tuberculosis: a review of current concepts and future challenges. Clin Med. 2014;14:279–285.
[3] Parsons LM, Somoskővi A, Gutierrez C, et al. Laboratory diagnosis of tuberculosis in resource-poor countries: challenges and opportunities. Clin Microbiol Rev. 2011;24:314–350.
[4] Eigner U, Veldenzer A, Hofelder M. Evaluation of the Fluorotype MTB assay for the rapid and reliable detection of Mycobacterium tuberculosis in respiratory tract specimens. Clin Lab. 2013;59:1179–1118.
[5] Ryu YJ. Diagnosis of pulmonary tuberculosis: Recent advances and diagnostic algorithms. Tuberc Respir Dis. 2015;78:64–71.
[6] Hofmann-Thiel S, Hoffmann H. Evaluation of Fluorotype MTB for detection of Mycobacterium tuberculosis complex DNA in clinical specimens from a low-incidence country. BMC Infect Dis. 2014;14:59–64.
[7] Drobniewski F, Cooke M, Jordan J, et al. Systematic review, meta-analysis and economic modelling of molecular diagnostic tests for antibiotic resistance in tuberculosis. Health Technol Assess. 2015;19:1–188.
[8] CLSI. Laboratory detection and identification of mycobacteria; approved guideline. CLSI document M48-A. Wayne (PA): Clinical and Laboratory Standards Institute; 2008.
[9] Siddiqi SH, Rusch-Gerdes S. MGIT Procedure Manual. Geneva (Switzerland): Foundation for Innovative New Diagnostics; 2006.
[10] Hain Lifescience. FluoroLyse product manual. Nehren (Germany): Hain Lifescience; 2012.
[11] Hain Lifescience. FluoroType product manual. Nehren (Germany): Hain Lifescience; 2012.
[12] Hain Lifescience. GenoType MTBDRplus version 2.0 product manual. Nehren (Germany): Hain Lifescience; 2012.
[13] Feliciano CS, Nascimento MMP, Anselmo LMP, et al. Role of a GenoType MTBDRplus line probe assay in early detection of multidrug-resistant tuberculosis at a Brazilian reference center. Braz J Med Biol Res. 2015;48:759–764.
[14] Obasanya J, Lawson L, Edwards T, et al. FluoroType MTB system for the detection of pulmonary tuberculosis. ERJ Open Res. 2017 [cited 2018 Apr 15];3:00113–00106. DOI:10.1183/23120541.00113-2016.
[15] Moure Z, Castellvi J, Sanchez-Montalva A, et al. The role of molecular techniques for the detection of Mycobacterium tuberculosis complex in paraffin-embedded biopsies. Appl Immunohistochem Mol Morphol. Forthcoming 2018 [cited 2018 Apr 15]. DOI:10.1097/PAI.0000000000000533.
[16] Aurin TH, Munshi SK, Kamal SMM, et al. Molecular approaches for detection of the multi-drug resistant tuberculosis (MDR-TB) in Bangladesh. PLoS ONE. 2014 [cited 2017 Oct 03];9:e99810. DOI:10.1371/journal.pone.0099810.
[17] Barnard M, Gey van Pittius NC, van Helden PD, et al. Diagnostic performance of Genotype MTBDRplus Version 2 line probe assay is equivalent to the Xpert MTB/RIF assay. J Clin Microbiol. 2012;50:3712–3716.
[18] Felkel M, Exner R, Schleucher R, et al. Evaluation of Mycobacterium tuberculosis drug susceptibility in clinical specimens from Nigeria using GenoType MTBDRplus and MTBDRsis assays. Eur J Microbiol Immunol. 2013;4:252–257.
[19] Ferro BE, Garcia PK, Nietto LM, et al. Predictive value of molecular drug resistance testing of Mycobacterium tuberculosis isolates in Valle del Cauca, Colombia. J Clin Microbiol. 2013;51:2220–2224.
[20] Gu Y, Wang G, Dong W, et al. Xpert MTB/RIF and GenoType MTBDRplus assays for the rapid diagnosis of bone and joint tuberculosis. Int J Infect Dis. 2015;36:27–30.
[21] Huang WL, Hsu ZJ, Chang TC, et al. Rapid and accurate detection of rifampin and isonitizid-resistant Mycobacterium tuberculosis using an oligonucleotide array. Clin Microbiol Infect. 2014;20:542–549.
[22] Maschmann RA, Spies FS, Nunes LS, et al. Performance of the GenoType MTBDRplus assay directly on sputum specimens from Brazilian patients with tuberculosis treatment failure or relapse. J Clin Microbiol. 2013;51:1606–1608.
[23] N’guessan K, Assi JS, Ouassa T, et al. Assessment of the Genotype MTBDRplus assay for rifampin and isoniazid resistance detection on sputum samples in Cote D’Ivoire. Eur J Microbiol Immunol. 2014;3:166–173.
[24] Sharma BK, Bhandari S, Maharjan B, et al. Rapid detection of rifampicin and isoniazid resistant Mycobacterium tuberculosis using GenoType MTBDRplus assay in Nepal. Int Schol Res Not. 2014 [cited 2017 Oct 03];648294. DOI:10.1155/2014/648294.
[25] Yadav RN, Singh BK, Sharma SK, et al. Comparative evaluation of GenoType MTBDRplus line probe assay with solid culture method in early diagnosis of multidrug resistant tuberculosis (MDR-TB) at a tertiary care centre in India.
[26] Javed H, Jamil N, Jagielski T, et al. Evaluation of genotype MTBDRplus assay for rapid detection of isoniazid and rifampicin resistance in *Mycobacterium tuberculosis* clinical isolates from Pakistan. Int J Mycobacteriol. 2016;5:147–148.

[27] Ferreira Junior SLM, Costa ERD, dos Santos PG, et al. In-house reverse membrane hybridization assay versus GenoType MTBDRplus and their performance to detect mutations in the genes *rpoB*, *katG*, and *inhA*. Mem Inst Oswaldo Cruz. 2014;109:307–314.

[28] Cavusoglu C, Gursel D, Bozkurt Aktoprak H. Evaluation of the Genotype MTBDRplus assay for the diagnosis of tuberculosis and rapid detection of rifampicin and isoniazid resistance in clinical specimens. Turk J Med Sci. 2011;41:419–425.